

MICROCOPY RESOLUTION TEST CHART
INSTRUMENT OF STANDARDS-1963-A

CINDAS

THERMOPHYSICAL PROPERTIES RESEARCH CENTER
ELECTRONIC PROPERTIES INFORMATION CENTER
THERMOPHYSICAL AND ELECTRONIC PROPERTIES INFORMATION ANALYSIS CENTER
UNDERGROUND EXCAVATION AND ROCK PROPERTIES INFORMATION CENTER

THERMAL CONDUCTIVITY OF TEN SELECTED BINARY ALLOY SYSTEMS

By

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill

CINDAS-TPRC Report 30 May 1975

Prepared for

OFFICE OF STANDARD REFERENCE DATA *
National Bureau of Standards
U. S. Department of Commerce

Washington, D.C. 20234

This document has been approved for public release und auto; to distribution is unlimited. SELECTE DE LE COMPANDE LE COMP

CENTER FOR INFORMATION AND NUMERICAL DATA ANALYSIS AND SYNTHESIS

PURDUE INDUSTRIAL RESEARCH PARK 2505 YEAGER ROAD WEST LAFAYETTE, INDIANA 47508

88 06 07 10

TE FIE COP

AD A 129405

BECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

SECONITY CERSSIFICATION OF THIS PAGE (with Date Smith Say)	10 15 15 15 15 15 15 15 15 15 15 15 15 15
REPORT DOCUMENTATION PAGE	PEAD INSTRUCTIONS BEFORE COMPLETING FORM
ernel conductivity, and latified thermal conductivity	geonductivity, electrosite el
REPORT NUMBER ***DIJUMBER** **DIJUMBER** ***DIJUMBER** ***DIJUMBER** ***DIJUMBER** ***DIJU	
	saiding and on any to the solding
C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh,	E. CONTRACT OR GRANT NUMBER(*)
Thermophysical and Electronic Properties Information Analysis Center, CINDAS/Purdue Univ., 2595 Yeager Road, W. Lafayette, IN 47906	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Defense Technical Information Center, Defense Logistics Agency, Attn: DTIC-AI, Cameron Station.	May 1975
Alexandria, VA 22314	230
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
· .	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	

Distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

CINDAS/TEPIAC Publication; (DTIC Source Code 413571);

Microfiche copies available from DTIC

19. KEY WORDS (Continue on reverse side if necessary and identity by block number) #Thermal conductivity--#Electrical resistivity---#Thermoelectric power---#Binary alloys---Aluminum
alloys---Copper alloys---Magnesium alloys---Gold alloys---Nickel alloys--Silver alloys---Palladium alloys---Zinc alloys

20. ABETRACT (Continue on reverse side if necessary and identity by block number)

This work presents and discusses the available data and information on the thermal conductivity of ten selected binary alloy systems and contains the recommended reference values (or provisional or typical values) resulting from critical evaluation, analysis, and synthesis of the available data and information. The ten binary alloy systems are the systems of aluminum-copper, aluminum-magnesium, copper-gold, copper-nickel, copper-palladium, copper-zinc, gold-palladium, gold-silver, iron-nickel, and silver-palladium. The recommended (or provisional or typical) values given include the total thermal

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 25 MARRICETE

SECURITY CLASSIFICATION OF THIS PASE (When Both Bulered)

20. ABSTRACT (Cont)

conductivity, electronic thermal conductivity, and lattice thermal conductivity. The values for each of the alloy systems except two are given for 25 alloy compositions: 0.5, 1, 3, 5, 10(5)95, 97, 99, and 99.5%. For most of the alloy compositions, the values cover the tamperature range from rayagened temperature to the solidus point or 1200 K. In addition, raliable methods for the estimation of the electronic and lattice thermal conductivities of alloys have been developed in this work.

C. E. ce. M. W. Lekerrall, 10 W. A. C. C. Obj.

Therepolyaical and Electronic Troperties information analysis (T.P.S/Europe Colv., 2595 Yanger Road, W. Lafarett, II (7906)

Defense T. chaical Information Cator, Befonse tion,

Le andrie, VA 22 J

Latil Month of

Coff.dlar coltantamit

div offschild abligesten; f 310 amen (ode All571); f
ffschildene eesten om (lette free af)0

*Thomas conductivity --** Constant control of the selection of the selecti

This work presente and discusses the available dete and information on see thermal conductivity of two selected binary allow systems and contains the recommended reference values (or provisional or two deal values) resulting from addition evaluation, analysis, and synthesis of the available data and information. The ten blanty allow systems are the systems of aluminum-corper, aluminum-organisation, copper-gol', conper-ptobal, coper-wall offer, copper-time, gold-palladium, gold-silver, in a silver-palladium. The

HINTLARG TOTEL

UNCLASSII IED

SECURITY CLASSIFICATION OF THIS PAGE/Thes Date Property

THERMAL CONDUCTIVITY OF TEN SELECTED BINARY ALLOY SYSTEMS

Ву

C. Y. Ho, M. W. Ackerman, K. Y. Wu, S. G. Oh, and T. N. Havill

CINDAS-TPRC Report 30 May 1975

Acces	sion For			
BTIS GRAAI DTIC TAB COMMISSION CO				
By				
Availability Codes				
Dist	Avail and/or Special			
A				

Prepared for

OFFICE OF STANDARD REFERENCE DATA
National Bureau of Standards
U. S. Department of Commerce
Washington, D. C. 20234

CENTER FOR INFORMATION AND NUMERICAL DATA
ANALYSIS AND SYNTHESIS
Purdue University
2595 Yeager Road
West Lafayette, Indiana 47906

Accession For Date of Date of Date of Table of T

Copyright @ 1975 by the Purdue Research Foundation, West Lafayette, Indiana

All rights reserved. This work or any part thereof may not be reproduced in any form without written permission of the Purdue Research Foundation.

PREFACE

This technical report was prepared by the Thermophysical Properties Research Center (TPRC) of the Center for Information and Numerical Data Analysis and Synthesis (CINDAS), Purdue University, West Lafayette, Indiana, under the auspices of the Office of Standard Reference Data of the National Bureau of Standards (NBS), Department of Commerce, Washington, D.C. It represents the most exhaustive review and critical evaluation of the recorded world knowledge on the thermal conductivity of ten selected binary allow systems, and is a continuation of a similar work on the thermal conductivity of the elements already published. The recommended salf-consistent thermal conductivity values presented in this report cover the full ranges of composition and temperature for most of the allow systems and go far beyond the limited experimental data, which are often conflicting and uncertain in many cases. Thus, new knowledge has been generated in this process of data analysis and synthesis.

This report serves many purposes. It provides engineering and design data for virtually all compositions of the ten alloy systems for industrial applications. It provides reliable data for those alloys that can be used as reference materials to check apparatus for thermal conductivity measurements or as standards in comparative thermal conductivity measurements. It provides reliable data against which theoreticians can test their theories. Furthermore, the knowledge of the thermal conductivity of binary alloy systems is essential for the study and estimation of the thermal conductivity of ternary and more complex engineering alloys. A reliable method for the calculation of the thermal conductivity of binary alloys has also been developed in this work, which will have wide applications.

Although this report is primarily the result of financial support and interest of the NBS Office of Standard Reference Data, the extensive documentary activity essential to this work was supported by the Defense Supply Agency of the Department of Defense. Throughout the course of this work, Dr. P. G. Klemens, who is a Visiting Research Professor at CINDAS and Professor of Physics at the University of Connecticut, has given the staff of this project invaluable technical guidance and advice; his contributions are hereby gratefully acknowledged. Thanks are also due Dr. H. J. White, Jr., of the NBS Office of Standard Reference Data for his sympathetic understanding and help in many ways and to Dr. D. L. McElroy of the Oak Ridge National Laboratory for useful comments and discussions.

Y. S. TOULOUKIAN

Director of CINDAS
Distinguished Atkins Professor of
Engineering
Purdue University

This work presents and discusses the available data and information on the thermal conductivity of ten selected binary alloy systems and contains the recommended reference values (or provisional or typical values) resulting from critical evaluation, analysis, and systhesis of the available data and information. The ten binary alloy systems are the systems of aluminum-copper, aluminum-magnesium, copper-gold, copper-nickel, copper-palladium, copper-zinc, gold-palladium, gold-silver, iron-nickel, and silver-palladium. The recommended (or provisional or typical) values given include the total thermal conductivity, electronic thermal conductivity, and lattice thermal conductivity. The values for each of the alloy systems except two are given for 25 alloy compositions: 0.5, 1, 3, 5, 10(5)06, 97, 99, and 99.5%. For most of the alloy compositions, the values cover the temperature range from cryogenic temperature to the solidus point or 1200 K. In addition, reliable methods for the estimation of the electronic and lattice thermal conductivities of alloys have been developed in this work.

Key words: Alloys; conductivity; critical eavluation, data analysis; data compilation; data synthesis; electrical resistivity; metals; reference data; thermal conductivity; thermoelectric power.

CONTENTS

		rage
	PREF	[1] [1] 《[1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2
	ABST	marker state of the control of the c
	LIST	OF TABLES
		The second section of the sect
	TIUT (OF FIGURES
	NOME	NCLATURE A CONTROL OF THE RESIDENCE TO THE RESIDENCE OF T
1.	INTRO	DOUCTION COLORS
2.	THEO	RETICAL BACKGROUND
	2.1.	Electronic Thermal Conductivity
	2.2.	Lattice Thermal Conductivity
	a.	Low Temperature Region
	b.	Intermediate Temperatures
	c.	High Temperature Region
3.	DATA	EVALUATION AND GENERATION OF RECOMMENDED VALUES 19
4.	THER	MAL CONDUCTIVITY OF BINARY ALLOY SYSTEMS
	4.1.	Aluminum-Copper Alloy System
	4.2.	Aluminum-Magnesium Alloy System
	4.3.	Copper-Gold Alloy System
	4.4.	Copper-Nickel Alloy System
	4.5.	Copper-Palladium Alloy System
•	4.6.	Copper-Zinc Alloy System
	4.7.	Gold-Palladium Alloy System
	4.8.	Gold-Silver Alloy System
	4.9.	Iron-Nickel Alloy System
	4.10.	Silver-Palladium Alloy System
5.	CONC	LUSIONS AND RECOMMENDATIONS
6.	REFE	RENCES
		many was a second of the control of
		The second of th
	÷	en gran i translata de la proposició de présenció de présenció de la presenció de la presenció de la presenció
,		gardinas i settinė i ir sigri settinė partito editorio il tropinė di transvelt.
. !		The second of
H .		- The Control of th
c Ya		· · · · · · · · · · · · · · · · · · ·
ş. A.		- Thermal Conductions of Iron - Nachel March Specimen Characteristics thou and Monureness Islandalia
641		A CONTRACT OF THE PROPERTY OF

LIST OF TABLES

		este de la c	i	Page
1.	Parameters for the Calculation of Lattice Thermal Conductivity of Elements Using Equation (37)		: <u>\$</u>	. 16
2.	Recommended Thermal Conductivity of Aluminum-Copper Alloy Sys	item .	. •	. 29
3.	Thermal Conductivity of Aluminum + Copper AlloysSpecimen Characterization and Measurement Information			. 40
4.	Thermal Conductivity of Copper + Aluminum Alloys Specimen Characterization and Measurement Information	• • •	•	. 43
5.	Recommended Thermal Conductivity of Aluminum-Magnesium Allog	. System	•	- 54
6.	Thermal Conductivity of Aluminum + Magnesium AlloysSpecimen Characterization and Measurement Information		•	. 61
7.	Thermal Conductivity of Magnesium + Aluminum AlloysSpecimen Characterization and Measurement Information		•	- 63
8.	Recommended Thermal Conductivity of Copper-Gold Alloy System		• (. 66
9.	Thermal Conductivity of Copper + Gold AlloysSpecimen Character and Measurement Information	rization	•	• . 77
10.	Thermal Conductivity of Gold + Copper Alloys Specimen Character and Measurement Information	ization	•	. 78
11.	Recommended Thermal Conductivity of Copper-Nickel Alloy System	٠.,	• (. 85
12.	Thermal Conductivity of Copper + Nickel AlloysSpecimen Charact and Measurement Information	erization	l • •	. 96
13.	Thermal Conductivity of Nickel + Copper AlleysSpecimen Charact and Measurement Information	erization	l • ,	. 103
14.	Recommended Thermal Conductivity of Copper-Palladium Alloy Sys	tem .	• .	109
15.	Thermal Conductivity of Copper + Palladium AlloysSpecimen Characterization and Measurement Information		•	. 120
16.	Thermal Conductivity of Palladium + Copper AlloysSpecimen Characterization and Measurement Information		• ,	. 121
17.	Recommended Thermal Conductivity of Copper-Zinc Alloy System		• (. 126
18.	Thermal Conductivity of Copper + Zinc AlloysSpecimen Character and Measurement Information			. 131
19.	Recommended Thermal Conductivity of Gold-Palladium Alloy System			. 138
20.	Thermal Conductivity of Gold + Palladium Alloys Specimen Characterization and Measurement Information			149
21.	Thermal Conductivity of Palladium + Gold AlloysSpecimen Characterization and Measurement Information		•	. 150
22.	Recommended Thermal Conductivity of Gold-Silver Alloy System		•	. 153
2 3.	Thermal Conductivity of Gold + Silver AlloysSpecimen Characteri	zation		. 164
24.	Thermal Conductivity of Silver + Gold AlloysSpecimen Characteriand Measurement Information	•		166
25.	Recommended Thermal Conductivity of Iron-Nickel Alloy System			169
26.	Thermal Conductivity of Iron + Nickel AlloysSpecimen Characteri	zation	- •	180
	and Measurement Information		• •	TOU

27.	Thermal Conductivity of Nickel + Iron Allege - Specimen Characterisation and Measurement Information	
28.	Recommended Thermal Conductivity of Silver-Pailadium Alley System	٠
29.	Recommended Thermal Conductivity of Silver-Palladium Alley System Thermal Conductivity of Silver + Palladium Alleys—Specimen Characterization and Measurement Information (1997) 988 behaviored 998	
i - ,		
30.	Thermal Conductivity of Palladium + Silver Alleys - Specimen instrument	
.`	Characterization and Measurement Information	
. 4 e *ne	Recommended Thermal Courteres of Alexander Section (Section 1997)	
	eville our Countries ingles le en le double main of l'hobimentemple	, :i
٠.,	Baponine die 1. de 1900 de 190	
• •	a production of the control of the production of	
	and the second of the second o	'
	graph of the second of the first of the second of the seco	
	the state of the s	
* 4	e de la company de la comp	ا ا
	the state of the s	
	in the second of	
	$oldsymbol{eta}_{i}$, which is the second of $oldsymbol{eta}_{i}$, which is the second of $oldsymbol{eta}_{i}$	•
	The second se	•
·,	en grand Dimension of the Artist Community of the Communi	
	and the second of the second o	*
-31,	The state of the s	
	process of the transfer of the second section of the section of the second section of the section of the second section of the section of th	
. •	gen have the engineer of the engineer of the engineering of the engine	
	and the transfer than the appropriate that the contract of the	
111	in the state of th	1
42	the control of the co	151
147, "	premiental through the the thirty and the property of the Artesta	
7,8 (Registration of making to the control of the compact the control of the compact to the control of the contr	
11.	grand by the manufacture of the country leaded to be a superior of the country of	F
11.5	September Themsel Condistry of told of Selfodyan Alless.	
78 F		(E)
901	Recommended Thermai Conductively of deed a Salver Allera	. ; ; .
104	Recommended Thermal Candoctivity of Sider a field of the	32
Sit	evel the entered to enclose the view of the confidence of the entered to a confidence of the confidenc	. (, \$
694	Enpartmental Thermal Commentary of electric Gold Alloys	. 22)
: 76	Recommended Partmal Contracts of Iron - Nichel Alloys	٠,٠٠٠
1:2	Remainsered Thermal Connectivity of Nickel 67 m. Move.	
		200

LIST OF FIGURES

				Page
1.	Recommended Electrical Resistivity of Copper + Nickel Alloys	•	•	22
2.	Recommended Electrical Resistivity of Nickel + Copper Alloys	•	•	23
3.	Recommended Absolute Thermoelestric Power of Copper + Nickel Alloys		•	24
4.	Recommended Absolute Thermoelectric Power of Nickel + Copper Alloys	•		25
5.	Recommended Thermal Conductivity of Aluminum + Copper Alloys		•	36
6.	Recommended Thermal Conductivity of Copper + Aluminum Alloys	•	•	37
7.	Experimental Thermal Conductivity of Aluminum + Copper Alloys	•	•	3 8
8.	Experimental Thermal Conductivity of Copper + Aluminum Alloys		•	39
9.	Recommended Thermal Conductivity of Aluminum + Magnesium Alloys		•	57
10.	Recommended Thermal Conductivity of Magnesium + Aluminum Alloys		•	58
11.	Experimental Thermal Conductivity of Aluminum + Magnesium Alloys .	•	•	59
12.	Experimental Thermal Conductivity of Magnesium + Aluminum Alloys .			60
13.	Recommended Thermal Conductivity of Copper + Gold Alloys		•	73
14.	Recommended Thermal Conductivity of Gold + Copper Alloys	•	•	74
15.	Experimental Thermal Conductivity of Copper + Gold Alloys		•	75
16.	Experimental Thermal Conductivity of Gold + Copper Alloys			76
17.	Recommended Thermal Conductivity of Copper + Nickel Alloys	•	•	92
18.	Recommended Thermal Conductivity of Nickel + Copper Alloys		•	93
19.	Experimental Thermal Conductivity of Copper + Nickel Alloys		•	94
20.	Experimental Thermal Conductivity of Nickel + Copper Alloys	•	•	95
21.	Recommended Thermal Conductivity of Copper + Palladium Alloys	•	•	116
22.	Recommended Thermal Conductivity of Palladium + Copper Alloys		•	117
23.	Experimental Thermal Conductivity of Copper + Palladium Alloys	•	•	118
24.	Experimental Thermal Conductivity of Palladium + Copper Alloys	•	•	119
25.	Recommended Thermal Conductivity of Copper + Zinc Alloys	•		129
26.	Experimental Thermal Conductivity of Copper + Zinc Alloys			130
27.	Recommended Thermal Conductivity of Gold + Palladium Alloys		•	145
28.	Recommended Thermal Conductivity of Palladium + Gold Alloys	•	•	146
29.	Experimental Thermal Conductivity of Gold + Palladium Alloys	•	•	147
30.	Experimental Thermal Conductivity of Palladium + Gold Alloys	•	•	148
31.	Recommended Thermal Conductivity of Gold + Silver Alloys	•	•	160
32.	Recommended Thermal Conductivity of Silver + Gold Alloys	•	•	161
33.	Experimental Thermal Conductivity of Gold + Silver Alloys	•	•	162
34.	Experimental Thermal Conductivity of Silver + Gold Alloys	•	•	163
35.	Recommended Thermal Conductivity of Iron + Nickel Alloys	•	•	176
36.	Recommended Thermal Conductivity of Nickel + Iron Alloys	•	•	177
37.	Experimental Thermal Conductivity of Iron + Nickel Alloys	•	•	178

38.	Experimental Thermal Conductivity of Nickel + Iron Alloys	•	•	•	•	179
39.	Recommended Thermal Conductivity of Silver + Palladium Alloys	•	•	•	•	197
40.	Recommended Thermal Conductivity of Palladium + Silver Alloys	•	•	•	•	198
41.	Experimental Thermal Conductivity of Silver + Palladium Alloys	•	•	•	•	199
42.	Experimental Thermal Conductivity of Palladium + Silver Alloys					200

e de la partie y la

The same of the sa

NOMENCLATURE

1	
	Lattice constant
e	Electronic charge; Base of natural logarithm (2.71828)
E	Electron energy
$\mathbf{E}_{\overrightarrow{\mathbf{k}}}$	Energy of electron in kth state
f(k)	Distribution function representing the number of carriers in kth state
f ⁰	Fermi-Dirac distribution function at equilibrium
Ħ	Reduced Planck constant
I_a, I_b, I_c	Transport integrals
I _n	Modified transport integrals
J _n	Standard transport integrals
k	Total thermal conductivity
k _e	Electronic thermal conductivity
k _{ei}	Intrinsic electronic thermal conductivity
kg	Lattice thermal conductivity
k _u	Lattice thermal conductivity of a virtual crystal
\vec{k}	Electron wave vector
K	Kelvin temperature unit
K _n	Electronic transport integrals
L	Lorenz function
L ₀	Lorenz number (2.443 x 10 ⁻⁶ V ² K ⁻²)
M	Average atomic mass
M _H	Atomic mass of the heavier element
ML	Atomic mass of the lighter element
n	Number of conduction electrons per atom
5	Absolute thermoelectric power
T	Temperature
•	Speed of sound
♥(E)	Electron velocity in spherical symmetry

v(k)	Velocity of electron in kth state	Δ
v	Average atomic volume	
$v_{_{ m H}}$	Atomic volume of the heavier element	
$v_{_{\mathbf{L}}}$	Atomic volume of the lighter element	
$\mathbf{w}_{\mathbf{e}}$	Electronic thermal resistivity	
W _{ei}	Intrinsic electronic thermal resistivity	
W _{eo}	Residual electronic thermal resistivity	
$\mathbf{w}_{\mathbf{H}\mathbf{i}}$	Contribution to Wei of electrons moving parallel to the Fermi surface	
$\mathbf{w}_{\mathbf{V}\mathbf{i}}$	Contribution to Wei of electrons moving perpendicular to the Fermi sur	face
ΔW	Deviation from thermal analog of Matthiessen's rule	
x	Reduced phonon frequency	
x ₀	Reduced phonon frequency at which the relaxation times for point-defect scattering and U-processes are equal	t
y	Atomic fraction of the solute	
y _H	Atomic fraction of the heavier element	
$^{\mathbf{y}}_{\mathbf{L}}$	Atomic fraction of the lighter element	
α	Ratio of reciprocal relaxation times for N- and U-processes	
β	Impurity-imperfection parameter of elements	
γ	Grüneisen parameter	
€	Quantity characterizing the perturbation due to mass defects and lattice distortion	;
ζ	Fermi energy	
η	Reduced electron energy	
θ	Debye temperature	
ĸ	Boltzmann constant	
μ	Ferromagnetic ordering parameter	
ρ	Total electrical resistivity	
ρ*	Resistivity of ferromagnetic metal in the absence of ferromagnetic order	oring
$ ho_0$	Residual electrical resistivity	
$ ho_{\mathbf{i}}$	Intrinsic electrical resistivity	

THE REPORT OF THE PARTY OF THE

Part of the Same Same Same Same

Δ ρ	Deviation of electrical resistivity from Matthiessen's rule
$ au(\vec{k})$	Relaxation time for electron in kth state
τ(E)	Relaxation time for electron with energy E in spherical symmetry
τ _c	Combined relaxation time
$ au_{ extbf{N}}$	Relaxation time for N-processes
$ au_{ m p}$	Relaxation time for point-defect scattering
$ au_{ m U}$	Relaxation time for U-processes
ω	Frequency of lattice wave
We	Phonon frequency at which the relaxation times for point-defect scattering and U-processes are equal

1. INTRODUCTION

The primary objective of this study was to critically evaluate, analyse, and synthesize all the available data and information on the thermal conductivity of ten selected binary alloy systems and to generate recommended reference data over the widest practicable ranges of temperature and alloy composition for each of the alloy systems. It will become evident that for most of these alloy systems there are serious gaps in the thermal conductivity data, as concerns dependence on composition or temperature, or both, and that most of the available data show large uncertainties or wide divergences. It has, therefore, been necessary to set other objectives: (1) to develop reliable methods for the estimation of the thermal conductivity of alloys, (2) to determine the extent to which the methods of data estimation developed in this study are applicable in general, and (3) to identify those areas where further theoretical and experimental research is needed.

The ten alloy systems selected for this study are the systems with the largest amount of experimental data among some 200 alloy systems for which thermal conductivity data are available. This selection of alloy systems with the largest amount of experimental data is necessary since data evaluation is possible only when data are available and the availability of fairly sufficient data for an alloy system is prerequisite for detailed data analysis, correlation, and synthesis.

The systems selected represent all three different kinds of binary alloy systems: non-transition-metal and nontransition-metal systems (aluminum-copper, aluminum-magnesium, copper-gold, copper-zinc, and gold-silver), nontransition-metal and transition-metal systems (copper-nickel, copper-palladium, gold-palladium, and silver-palladium), and a transition-metal and transition-metal system (iron-nickel). The inclusion of this wide range of alloy systems in this study has tested the broad applicability of the methods developed for data estimation and synthesis.

The methods developed for the estimation of the thermal conductivity of alloys are detailed in Section 2. These methods have been extensively tested with key sets of reliable experimental data. In Section 3 the procedures for data evaluation and for the generation of recommended values are outlined, including the procedures for data estimation using the methods detailed in Section 2.

The recommended (or provisional) values for the total thermal conductivity, electronic thermal conductivity, and lattice thermal conductivity and the original experimental data for the thermal conductivity of the ten selected binary alloy systems are reported in Section 4, together with a discussion of each system, reviewing individual pieces of available data and information, giving details of data analysis and synthesis, and discussing the considerations involved in arriving at the final assessment and recommendations. For each

The same of the sa

of the alloy systems except two (aluminum-magnesium and copper-zinc), the recommended (or provisional) thermal conductivity values are given for 25 alloy compositions: 0.5, 1, 3, 5, 10(5)95, 97, 99, and 99.5%, which greatly facilitates the interpolation of values for alloys with intermediate compositions. These values are for well-annealed disordered alloys.

The complete bibliographic citations for the 184 references are given in Section 6.

2. THEORETICAL BACKGROUND

In metals and alloys the principal carriers of thermal energy are electrons and lattice waves, and it is commonly assumed that the total thermal conductivity is

$$k = k_e + k_g \tag{1}$$

where k_e is the electronic thermal conductivity and k_g is the lattice thermal conductivity; these are the thermal conductivity components due to the transport of heat by the electrons and by the lattice waves or phonons, respectively.

In pure normal metals, conduction by lattice waves is negligible in comparison with conduction by electrons at all temperatures, but in alloys the lattice component is often comparable to and sometimes even greater than the electronic component at low temperatures and is not negligible even at temperatures well above the Debye temperature in some cases. Hence, in order to estimate the thermal conductivity of an alloy it is necessary to estimate both the electronic and lattice components. Since the principal thermal resistance mechanisms differ in different temperature regions, it is necessary to devise different methods for making predictive estimates in different temperature regions. In the course of developing these methods a number of specific areas in which further experimental and theoretical studies are needed were identified.

2.1. Electronic Thermal Conductivity

In alloys at temperatures below about 25 K the only significant contribution to the electronic thermal resistivity, W_e, is the scattering of electrons by solute atoms, so that the electronic thermal conductivity may be calculated from the Wiedemann-Franz-Lorenz relationship,

$$k_e = \frac{1}{W_e} \approx \frac{1}{W_{e0}} = \frac{L_0 T}{\rho_0}$$
 (2)

where W_{eq} is the residual electronic thermal resistivity due to impurity scattering of electrons, ρ_0 is the residual electrical resistivity. T is the temperature, and L_q is the classical theoretical Lorenz number and has a value of 2.443 x 10⁻⁶ V² K⁻².

At higher temperatures the scattering of electrons by lattice waves becomes significant. At temperatures between about 25 K and 100 K the electronic thermal resistivity has commonly been estimated from the thermal analog of Matthiessen's rule,

$$W_{e} = W_{eq} + W_{eq} = \rho_{0}/L_{0}T + W_{eq}$$
 (3)

where W_{ei} is the intrinsic electronic thermal resistivity, which is the reciprocal of the intrinsic electronic thermal conductivity, k_{ei} , of the "parent" element, and Matthiessen's

rule states that the electrical resistivity is composed of a residual and an intrinsic component:

$$\rho = \rho_0 + \rho_1 \tag{4}$$

Equation (3) is based on the assumption that the deviations from Matthiessen's rule, $\Delta \rho = \rho - \rho_0 - \rho_1$, and its thermal analog, $\Delta W = W_e - W_{ei}$, can be neglected. This is not the case at higher temperatures; $\Delta \rho$ and ΔW may be significant even at temperatures below 100 K. These deviations may be taken into account by assuming that they are related by the Wiedemann-Franz-Lorenz law: $\Delta \rho / \Delta W = LT$, where L is the Lorenz ratio which may or may not be equal to L_0 . This assumption is based on an argument by Klemers [1]* which may be summarized as follows.

The intrinsic electrical and thermal resistivities arise from interactions between electrons and phonons which take electrons from regions of momentum space where there are too many into regions where there are too few electrons relative to the equilibrium concentration. Since the phonon energies are relatively small, the electron energies are little changed by these interactions, and their initial and final states must both lie near the Fermi surface.

In the case of electrical conduction the deviation of the distribution function from the equilibrium distribution due to the electric field is proportional [2] to a function, $f(\vec{k})$, of the direction of the electron wave vector, the sign of the deviation depending on the direction of the electron wave vector. The intrinsic electrical resistivity, ρ_1 , is the result of the motion of electrons in \vec{k} space through interactions with phonons to distant regions of the Fermi surface, involving substantial changes in the direction of \vec{k} , which is a "horizontal" movement on the Fermi surface.

In the case of thermal conduction, the deviation from the electronic equilibrium distribution due to the temperature gradient is proportional to the same function $f(\vec{k})$ of the direction of the electron wave vector but it is also proportional to the reduced electron energy, $\eta = (E-\zeta)/KT$, E being the electron energy, ζ the Fermi energy, and K the Boltzmann constant. Thus the sign of the deviation of the distribution function can be changed not only by "horizontal" movement on the Fermi surface but also by changing the sign of η , which is a "vertical" movement through the Fermi surface. These motions in \vec{k} space contribute approximately additively to the intrinsic electronic thermal resistivity: $W_{el} \approx W_{Hi} + W_{Vi}$. Since $f(\vec{k})$ is the same for electrical and thermal conduction, horizontal movement is equally effective in both cases, so that ρ_l and W_{Hi} are related by the Wiedemann-Franz-Lorenz law. Now W_{Vi} depends on a local property of the Fermi surface and is, therefore, relatively insensitive to changes in the band structure due to alloying. On the other hand W_{Hi} ,

^{*} Numbers in brackets designate references listed in Section 6.

being due to motion of the electrons over large distances on the Fermi surface, is sensitive to changes in its overall shape, particularly when these changes involve contact with the zone boundary which effectively short circuits the horizontal movement. Hence the change in $W_{\rm Hi}$ on alloying is much larger than the change in $W_{\rm Vi}$ and makes the dominant contribution to the deviations from Matthiessen's rule. Thus, to a good approximation, the deviations from Matthiessen's rule and its thermal analog are related by the Wiedemann-Franz-Lorenz law,

$$W_{\rho} = (\rho - \rho_i) / LT + W_{\rho i}$$
 (5)

or

$$k_{e} = \frac{1}{(\rho - \rho_{i})/LT + W_{ei}}$$
 (6)

In applying eq. (6), W_{ei} and ρ_i are taken to be the intrinsic thermal and electrical resistivities of the virtual crystal obtained by interpolating between the values for the elements, linearly for alloys of ordinary metals and according to Mott's theory [3,4] for alloys containing transition elements. For most alloys W_{ei} is much smaller than the other term in eq. (6) so that the error introduced in common practice by taking W_{ei} of the elements to be the reciprocals of their total thermal conductivities is also small. However, in dilute alloys of elements which do not have electronic thermal conductivities comparable to those of the noble elements this error is significant, and W_{ei} is therefore calculated in this work from the expression

$$W_{ei} = \frac{1}{k_{ei}} = \frac{1}{k_e} - \frac{\beta}{T} = \frac{1}{k - k_g} - \frac{\beta}{T}$$
 (7)

where β is the impurity-imperfection parameter of the element. The values of k and β of the elements are available from ref. [5] * and the values of k g of an element at moderate and high temperatures are calculated from eq. (36). The values of electrical resistivities of the ten selected binary alloy systems and their nine constituent elements used in eq. (6) are available from ref. [7].

From the argument leading to eq. (6) it is clear that the value of L used therein should be that for horizontal motion on the Fermi surface, or for elastic scattering; the values of L appropriate for use in eq. (6) and in the Wiedemann-Franz-Lorenz law, which one might expect to be valid at high temperatures where phonons scatter electrons through large angles, are discussed below.

It should be noted that eq. (6) may not be valid in some cases. If the deviations from Matthiessen's rule are due to the fact that two bands of electrons, such as those on

The recommended values for the thermal conductivities of the elements given in ref. [5] in some cases are slightly different from those given in ref. [6], and the values given in ref. [5] are preferred and should be used whenever there is a difference.

the neck and belly regions of the Fermi surface, contribute significantly to the electrical conduction, then, in general, the deviations from Matthiessen's rule and its thermal analog are not related by the Wiedemann-Franz-Lorenz law.

Significant deviations of the Lorenz ratio from its classical value can result from band structure effects and from electron-electron scattering.

The possibility of deviations due to band structure effects and the difficulties they present may be seen from the following. Assuming the existence of a relaxation time, the electronic transport properties can be expressed through integrals over reciprocal space of the form

$$K_{n} = -\frac{1}{3} \iiint v^{2}(\vec{k}) \tau(\underline{\vec{k}}) (E_{\vec{k}} - \zeta)^{n} \frac{\partial f^{0}}{\partial E_{\vec{k}}} d^{3}\vec{k}$$
 (8)

which for spherical symmetry [182] reduces to

$$K_{n} = \frac{1}{12\pi^{3} n} \iint_{-\infty}^{\infty} v(E) \tau(E) (E - \zeta)^{n} \frac{\partial f^{0}}{\partial E} dA dE$$
 (9)

Here h is the reduced Planck constant, v is the electron velocity, τ is the relaxation time, E is the electron energy, f^0 is the Fermi-Dirac distribution function, ζ is the Fermi energy, and dA is an element of a constant energy surface in reciprocal space. In particular, the absolute thermoelectric power is given by

$$S = \frac{1}{eT} \frac{K_1}{K_0} \tag{10}$$

and the Lorenz ratio by

$$L = \frac{1}{e^2 T^2} \left[\frac{K_2}{K_0} - \frac{{K_1}^2}{{K_0}^2} \right] = \frac{1}{e^2 T^2} \frac{K_2}{K_0} - S^2$$
 (11)

Because of the factor $\partial f^0/\partial E$, the only significant contributions to these integrals are from energies differing from ζ by no more than KT, where K is the Boltzmann constant, so that the usual procedure is to expand each integrand in a Taylor series about ζ . Retaining only the leading term of the series leads to the result $L = L_q - S^2$, where L_q is the classical theoretical Lorenz number. The values of L obtained from this result are used in eq. (6) to give the equation employed in our calculations:

$$k_e = \frac{1}{\frac{p - \rho_i}{(L_e - S^2) T} + W_{ei}}$$
 (12)

The values of absolute thermoelectric powers of the ten selected binary alloy systems used in eq. (12) are available from ref. [40].

There is some question about the choice of L_0 in the case of transition-element alloys. The difficulties occur also in the treatment of the pure transition metals, and will be reviewed briefly in that context.

If, as in the case of some transition metals, a narrow band with a high density of states overlaps the conduction band at the Fermi energy, then at high temperatures it is necessary to include higher order terms in the series and this will cause a deviation of the Lorenz ratio from the classical value. It is possible, at least in principle, to evaluate the second order terms from the thermoelectric power and the series expansion for the electrical conductivity (see Williams and Fulkerson, 1969 [8, pp. 443-7]). However, if the relaxation time is a strong function of energy, as is the case in transition metals on the assumption [9] that it may be written as the reciprocal of the product of the density of states and a scattering probability per unit time, then a Taylor series expansion about (may not be adequate to represent the integrand over the energy range KT at high temperatures. In such cases the integrals must be evaluated numerically. This has been done for Pd [10] and reasonable agreement between theory and experiment was obtained; the discrepancies were presumably due to electron-electron scattering [11, p. 412] which occurs in both ordinary and transition metals. In ordinary metals, normal electron-electron scattering, in which electron quasi-momentum is conserved, contributes to the thermal resistivity but not to the electrical resistivity and thus causes a negative deviation of the Lorenz ratio. Such a deviation has been observed in Cu [12, 13]. In transition metals normal electronelectron interactions between s and d band electrons contribute to the electrical resistivity as well as to the thermal resistivity; these processes are very strong [14,15] and are generally thought to be responsible for the T2 temperature dependence of the electrical resistivity observed in these metals at low temperatures. The deviation of the Lorenz ratio due to electron-electron scattering may either enhance or partially cancel the effects of band structure. The latter appears to be the case in the group VIII elements [16]. The deviations of the Lorenz ratio of transition metals due to band structure effects are significant and cannot yet be calculated directly; further, in order to calculate correlations between the electrical resistivity and the Lorenz ratio, the density of states function of the material must be known and there are difficulties in including the effects of electron-electron scattering in such an analysis.

The Wiedemann-Franz-Lorenz law is valid in alloys at very low temperatures where one need consider only impurity scattering, and in both metals and alloys at high temperatures where phonons scatter electrons through large angles. Equation (12) was developed in order to calculate the electronic component at intermediate temperatures. However,

. F.X.

as is clear from the preceding discussion, in the case of transition-metal alloys there is considerable uncertainty about the values of the Lorenz ratio to be used in the Wiedemann-Franz-Lorenz law at high temperatures. The method tried was to interpolate for the deviation from the classical value on the basis of the questionable assumption that the net deviation resulting from band structure effects and s-d electron-electron scattering is proportional to the number of holes in the d band. It was found that in the Cu-Ni system the resulting values of k_e nowhere differed from those obtained from eq. (12) by more than 5 percent and it was decided to use eq. (12) over the entire temperature range above 25 K.

In view of the uncertainties associated with eq. (12), it is reassuring that the values obtained from it have been found to be in good agreement with the values of the electronic component obtained from experimental values of thermal conductivity considered to be reliable on the basis of the usual criteria.

While a considerable amount of effort has been concentrated on the study of deviations from Matthiessen's rule, far less attention has been given to their relation to the deviations from its thermal analog [1,17,18]. Work in this area is hindered by the failure of many authors to include the corresponding electrical resistivity data when reporting thermal conductivity values. Further work in this area would help to determine the limitations of eq. (12) and very probably lead to improvements on it.

2.2. Lattice Thermal Conductivity

The processes limiting lattice conduction are different in the temperature regions below, about, and above the temperature at which it has its maximum value. At very low temperatures, typically below one twentieth of the Debye temperature, θ , these are the ordinary and impurity-induced electron-phonon interactions and, in strained specimens, phonon scattering by dislocations. These processes are also important in the temperature range in which the lattice component has its maximum value, typically between $\theta/20$ and $\theta/5$ for alloys of ordinary metals but considerably higher for some transition elements, but in this region point-defect scattering and three-phonon anharmonic interactions also contribute to the thermal resistivity. At temperatures above this region the important resistive processes in alloys of ordinary metals are three-phonon anharmonic interactions and point-defect scattering; in alloys containing transition metals the effect of electron-phonon interactions may also be significant in the lower portion of this temperature range. This third region is the only one in which it is possible to estimate the lattice component on the basis of present theory.

a. Low Temperature Region

The problem of calculating the coupling constant for the electron-phonon interaction is a very difficult one even in the simplest cases; in fact, measurements of low temperature

alloy thermal conductivity were initially undertaken to obtain information about this interaction. From results reported by Lindenfeld and Pennehaker [19] for Cu alloys it appeared that it might be possible to estimate the lattice component from electrical resistivity data on the basis of present theory. This did not prove to be the case, It was found that values obtained from an expression which follows from the equations in ref. [19] differed from those obtained from measurements by as much as a factor of three. It is almost certain that these discrepancies are largely the result of the use of Pippard's early results [20] which are based on the free electron model; this simple model is inadequate for most metals and alloys.

At temperatures below $\theta/20$, the lattice thermal conductivity of a pure ordinary metal may be calculated from an expression derived by Klemens [21]

$$k_{g} = \frac{313 k_{ed} T^{4}}{n^{4/3} \theta^{4}}$$
 (13)

where n is the number of conduction electrons per atom, θ is the Debye temperature, and k_{ei} is the intrinsic electronic thermal conductivity. Since in this region k_{ei} is inversely proportional to T^2 , k_g has a T^2 temperature dependence. Equation (13) is based on the assumption of a reciprocal effect of the electron-phonon interaction on electronic and lattice conduction and therefore does not apply to transition elements in which electron-phonon interactions involving only d band electrons have little effect on electrical conductivity but may have a significant effect on lattice conduction. It also does not apply to alloys in which the electron mean free path is so short that the usual treatment of the electron-phonon interaction is invalid; typically, these are alloys in which the residual resistivity is 10 $\mu\Omega$ cm or greater.

However, if one attempts to estimate the kg of an alloy from this expression the value obtained is greater than the experimental value by a factor which increases rapidly with solute concentration up to approximately 10 stomic percent. A possible explanation of this behavior is that it is due to phonon scattering by dislocations which are so strongly anchored by solute atoms that they remain even after prolonged annealing at high temperatures. The experimental support for this idea is some recent measurements on Cu-Al alloys at the University of Connecticut [22] which show that such behavior is not observed at temperatures below about 0.5 K, where the dominant phonon wavelengths are larger than the range of the dislocation strain fields so that scattering by dislocations is greatly reduced [23].

Consequently, at present one cannot make reliable estimates of the k of alloys at low temperatures and it must be obtained by subtracting k, from the measured total thermal conductivity. Further, one can obtain reliable values of the k, from thermal conductivity measurements only in those cases in which the corresponding values of electricial restativity

A TONING TO SERVED TO THE SERVED

of them is a destroyment when

are given, as there is often a significant variation in the resistivities of specimens having the same nominal composition. It is unfortunate that while there is a sizable body of experimental data showing strong composition dependence of the low-temperature thermal conductivity of alloys, in most cases the corresponding values of the electrical resistivity are not reported, so that it is not possible to relate the changes in the two quantities. Finally, in view of the probability that residual dislocations are responsible for a large portion of the thermal resistivity, one cannot reliably extrapolate curves of the lattice component down to temperatures below about 1.5 K.

In order to make it possible to estimate the lattice component at low temperatures by other than empirical means, it is necessary to develop both a quantitative theory of impurity enhancement of the phonon scattering in alloys of ordinary metals and a theory of low temperature lattice conduction in transition element and high residual resistivity alloys. It seems that progress in these directions will involve the use of Pippard's more general equations [24] which apply to a non-spherical Fermi surface, taking into account changes in its shape with the addition of solutes. However, application of this theory to transition metals presents a difficult problem. Since electrical conduction is mainly by a band electrons, the residual resistivity is a measure of the mean free path of the a electrons and provides no information about the mean free path of the d band holes, which is probably very short.

b. Intermediate Temperatures

At temperatures near the maximum of the lattice component the resistive processes which limit lattice conduction at lower and higher temperatures are comparable in magnitude and the problem of estimating the lattice component in this region is a formidable one. It is, first, because of the difficulties associated with the electron-phonon interaction discussed above and, secondly, because the treatment of the resistive three-phonon anharmonic interaction in this region is complicated by the fact that here the strength of these interactions is a rapidly varying function of temperature.

At present there is no method available for the calculation of k_g in this temperature region. In this work the values of k_g in this region are derived from experimental data and the calculated values of k_g .

c. High Temperature Region

At temperatures above the region of the maximum of the lattice component, typically \$/5 for alloys of ordinary metals but considerably higher for some transition-element alloys, it is possible to estimate the lattice thermal conductivity on the basis of a theory developed by Klemens [25] and Callaway [26] assuming that the effect of the electron-phonon interaction can be neglected; this is not the case for some transition elements in the lower portion of this temperature range.

The reciprocal relaxation time for the thermally resistive three-phonon anharmonic interactions, U-processes, at frequencies not too close to the Debye limit is of the form BT ω^2 where B is a constant determined from experiment, T is the temperature, and ω is the frequency of the lattice wave. The reciprocal relaxation time for point-defect scattering is of the form $(a^3/4\pi v^3) \in \omega^4$ where a^3 is the average volume per atom, v is the speed of sound, and ϵ is a quantity which characterizes the perturbation due to mass defects and distortions of the lattice. In addition, there are three-phonon anharmonic interactions, N-processes, which do not contribute directly to the thermal resistivity but do contribute indirectly by redistributing energy from the low frequency modes to the high frequency modes which are strongly scattered by the point defects. The reciprocal relaxation time for N-processes has the same form as that for the U-processes and, as argued by Klemens, et al. [27], appears to have approximately the same magnitude in this temperature region.

Since N-processes do not contribute directly to the thermal resistivity, the effective total reciprocal relaxation time is not simply the sum of the individual reciprocal relaxation times. Callaway devised a formalism in which the N-processes are taken into account correctly for steady state lattice conduction.

Callaway found that the lattice thermal conductivity is given by

$$k_{g} = \frac{\kappa}{2\pi^{2}v} \left(\frac{\kappa_{T}}{\hbar}\right)^{3} \left(I_{a} + \frac{I_{b}^{2}}{I_{c}}\right)$$
 (14)

where

$$I_{a} = \int_{0}^{\theta/T} \tau_{c} \frac{x^{4} e^{x}}{(e^{x} - 1)^{2}} dx$$
 (15)

$$I_{b} = \int_{0}^{\theta/T} \frac{\tau_{c}}{\tau_{N}} \frac{x^{4} e^{x}}{(e^{x} - 1)^{2}} dx$$
 (16)

$$I_{c} = \int_{0}^{\theta/T} \frac{1}{\tau_{N}} \left(1 - \frac{\tau_{c}}{\tau_{N}} \right) \frac{x^{4} e^{x}}{\left(e^{x} - 1 \right)^{2}} dx$$
 (17)

and K and K are the Boltzmann constant and the reduced Planck constant, v is the speed of sound, and $x = \hbar \omega / KT$ is the reduced phonon frequency. Here τ_c is a combined relaxation time, obtained as the reciprocal of the sum of the reciprocal relaxation times for the various interactions, τ_N is the relaxation time for N-processes, and the term L_b^2/L_c occurs because of the difference between τ_c and the effective total relaxation time resulting from the fact that N-processes do not contribute directly to the thermal resistivity.

Writing the reciprocal relaxation times for point-defect scattering, U-processes and N-processes as $\tau_p^{-1} = A\omega^4$, $\tau_u^{-1} = BT \omega^2$, and $\tau_N^{-1} = \alpha BT \omega^2$ recotively, where α

The second secon

is the temperature-independent ratio of reciprocal relaxation times for N- and U-processes, the reciprocal combined relaxation time when the lattice thermal conductivity is limited by these interactions is

$$\tau_c^{-4} = \omega^2 \left[A \omega^2 + BT \left(1 + \alpha \right) \right] \tag{18}$$

so that

$$\frac{\tau_{\rm C}}{\tau_{\rm N}} = \frac{\alpha \, \rm BT}{A\omega^2 + BT \, (1+\alpha)} \tag{19}$$

and

$$\frac{1}{\tau_{N}} \left(1 - \frac{\tau_{C}}{\tau_{N}} \right) = \alpha BT\omega^{2} \left(1 - \frac{\alpha BT}{A\omega^{2} + BT (1 + \alpha)} \right) = \frac{\alpha BT\omega^{2} (A\omega^{2} + BT)}{A\omega^{2} + BT (1 + \alpha)}$$
(20)

Upon denoting the frequency at which the reciprocal relaxation times for point-defect scattering and U-processes are equal by ω_0 , noting that $\omega_0^2 = BT/A$, and introducing the reduced frequency $x = \hbar \omega/kT$, so that $x_0 = \hbar \omega_0/kT$, these relations become:

$$\tau_{c}^{-1} = BT \omega^{2} (1 + \alpha + \omega^{2}/\omega_{0}^{2}) = BT \left(\frac{\kappa T}{\hbar}\right)^{2} x^{2} (1 + \alpha + x^{2}/x_{0}^{2})$$
 (21)

$$\frac{\tau_{\mathbf{C}}}{\tau_{\mathbf{N}}} = \frac{\alpha}{1 + \alpha + \omega^2/\omega_0^2} = \frac{\alpha}{1 + \alpha + \mathbf{x}^2/\mathbf{x}_0^2}$$
(22)

and

$$\frac{1}{\tau_{\rm N}} \left(1 - \frac{\tau_{\rm C}}{\tau_{\rm N}} \right) = \frac{\alpha \ \text{BT} \ \omega^2 \ (1 + \omega^2/\omega_0^2)}{1 + \alpha + \omega^2/\omega_0^2} = \alpha \ \text{BT} \left(\frac{\kappa_{\rm T}}{\hbar} \right)^2 x^2 \frac{(1 + x^2/x_0^2)}{1 + \alpha + x^2/x_0^2}$$
(23)

Thus, for the present case, eqs. (15) to (17) become:

$$I_{a} = \left(\frac{\hbar}{\kappa T}\right)^{2} \frac{1}{BT} \int_{0}^{\theta/T} \frac{x^{2} e^{x} dx}{(e^{x} - 1)^{2} (1 + \alpha + x^{2}/x_{0}^{2})}$$

$$= \left(\frac{\hbar}{\kappa T}\right)^{2} \frac{1}{(1 + \alpha) BT} \int_{0}^{\theta/T} \frac{x^{2} e^{x} dx}{(e^{x} - 1)^{2} \left[1 + \frac{x^{2}}{x_{0}^{2} (1 + \alpha)}\right]}$$

$$= \left(\frac{\hbar}{\kappa T}\right)^{2} \frac{1}{(1 + \alpha) BT} I_{2} (\theta/T)$$
(24)

$$I_{b} = \alpha \int_{0}^{\theta/T} \frac{x^{4} e^{x} dx}{(e^{x} - 1)^{2} (1 + \alpha + x^{2}/x_{0}^{2})} = \frac{\alpha}{(1 + \alpha)} I_{4} (\theta/T)$$
 (25)

$$I_{C} = \left(\frac{\kappa_{T}}{\hbar}\right)^{2} \alpha BT \int_{0}^{\theta/T} \frac{x^{\theta} e^{X} (1 + x^{2}/x_{0}^{2}) dx}{(e^{X} - 1)^{2} (1 + \alpha + x^{2}/x_{0}^{2})}$$

$$= \left(\frac{\kappa_{\rm T}}{\hbar}\right)^2 \frac{\alpha BT}{(1+\alpha)} \left[I_6 \left(\theta/T\right) + \frac{I_8 \left(\theta/T\right)}{x_0^2}\right] \tag{26}$$

Substituting eqs. (24) to (26) into eq. (14) yields

$$k_{g} = \frac{\kappa^{2}}{[2\pi^{2} \text{ fiv } (1+\alpha) \text{ B}]} \left[I_{2} (\theta/T) + \frac{\alpha I_{4}^{2} (\theta/T)}{I_{6} (\theta/T) + I_{6} (\theta/T)/x_{0}^{2}} \right]$$
(27)

where I_n (θ/T) is the modified transport integral given by

$$I_{n}(\theta/T) = \int_{0}^{\theta/T} \frac{x^{n} e^{x} dx}{(e^{x} - 1)^{2} \left[1 + \frac{x^{2}}{x_{0}^{2}(1 + \alpha)}\right]}$$
(28)

and x_0 is the reduced frequency at which the reciprocal relaxation times for U-processes and point-defect scattering are equal; that is (see eq. (32))

$$x_0 = \hbar \omega_0 / \kappa T = \frac{\hbar}{\kappa} \sqrt{\frac{4\pi v^3 B}{a^3 \epsilon T}}$$
 (29)

Equation (27) is for the lattice thermal conductivity as limited by both point-defect scattering and three-phonon anharmonic interactions. In the limit of vanishing point-defect scattering, when the thermal conductivity is limited by three-phonon anharmonic interactions only (denoted by k_{ij}), x_0 becomes infinite so that the modified transport integral $I_{ij}(\theta/T)$ reduces to the standard transport integral $J_{ij}(\theta/T)$ and eq. (27) reduces to

$$k_{\rm u} = \frac{\kappa^2}{[2\pi^2 \text{ fiv } (1+\alpha) \text{ B}]} [J_2 (\theta/\text{T}) + \alpha J_4^2 (\theta/\text{T})/J_6 (\theta/\text{T})]$$
 (30)

where

$$J_{n}(\theta/T) = \int_{0}^{\theta/T} x^{n} e^{x} dx/(e^{x} - 1)^{2}$$
(31)

k_u is the high-temperature lattice thermal conductivity of an isotopically pure element; in the case of an alloy it is the lattice thermal conductivity of an idealized "virtual" crystal in which each atom has the same average mass and volume of the alloy. Point defect scattering is that scattering which results from the fact that the actual atoms do not have these masses and volumes.

The quantity ϵ in the expression for the reciprocal relaxation time for point-defect scattering,

$$\tau_{\mathbf{p}}^{-1} = \frac{\mathbf{a}^3}{4\pi \mathbf{v}^3} \in \omega^4 \tag{32}$$

is calculated from the expression

$$\epsilon = y_{L} \left[\frac{M_{L}^{-M}}{M} + \gamma \left(\frac{V_{L}^{-V}}{V} \right) \right]^{2} + y_{H} \left[\frac{M_{H}^{-M}}{M_{H}} + \gamma \left(\frac{V_{H}^{-V}}{V} \right) \right]^{2}$$
(33)

where M and V are the average atomic mass and volume, y_L , M_L , and V_L are the atomic fraction, mass, and volume of the lighter element, y_H , M_H , and V_H are the corresponding values for the heavier element, and γ is the Grüneisen parameter. M is calculated in the usual way, γ is obtained by linear interpolation, and V is estimated from Vegard's law,

$$V^{1/3} = y V_1^{1/3} + (1-y) V_2^{1/3}$$
(34)

1

where y is the atomic fraction of the solute and V_1 and V_2 are the atomic volumes of the solute and solvent elements respectively. The mass defect terms are based on the results of Klemens [28] and Tavernier [29] who respectively treated the case of a light atom in a heavy matrix and that of a heavy atom in a light matrix. The difference lies in the response of the atom to the driving frequency of a wave; in the former case the atom can respond rapidly enough that the speed of oscillation may be considered unaffected so that the perturbation is proportional to the deviation from the average mass while in the latter case it is better to consider the momentum as being unaffected so that the perturbation is proportional to the difference of the reciprocals of the average and impurity masses. The distortion terms and the form of ϵ are based on the results of Ackerman and Klemens [30] who rediscovered the fact [31] that, contrary to what is often stated, the displacement field of a spherical impurity in an elastic continuum has a non-vanishing non-uniform dilation and used a treatment that retained the phase relationship between the effects of the dilation and mass defect. Equation (33) does not take into account the difference, Af, in the force constant due to the mismatch of atomic bonds; however, neutron scattering and Mössbauer experiments [32, 33] indicate that Δf is very small.

The coefficient in eq. (27) is the same as the coefficient in eq. (30) and is estimated from the latter. This is done by estimating θ in the manner described below, estimating

 k_u of the virtual crystal at some temperature T' below the Debye temperature by linear interpolation between the values for the elements, and taking α equal to unity; it has been found that the values of k_g are not sensitive to small changes in α . Then k_g is estimated from the expression

$$k_{g} = k_{u}(T') \frac{I_{2}(\theta/T) + I_{4}^{2}(\theta/T)/[I_{6}(\theta/T) + I_{6}(\theta/T)/x_{6}^{2}]}{J_{2}(\theta/T') + J_{4}^{2}(\theta/T')/J_{6}(\theta/T')}$$
(35)

which, for a pure element, reduces to

$$k_{g} = k_{u}(T') \frac{J_{2}(\theta/T) + J_{4}^{2}(\theta/T)/J_{6}(\theta/T)}{J_{2}(\theta/T') + J_{4}^{2}(\theta/T')/J_{6}(\theta/T')}$$
(36)

Equations (35) and (36) are the equations used in our calculations for the lattice thermal conductivity of alloys and of pure elements, respectively. It should be noted that eq. (35) applies only to disordered solid-solution alloys.

The accuracy of the estimates obtained from eq. (35) clearly depends on the accuracy of the values of k_u for the virtual crystal. Experimental values of k_u for the elements, which essentially are the values of the lattice component of very dilute alloys, are available for only three of the metals included in this study: Cu, Au, and Ag. However, it was found that the experimental values for these metals each differed from the values obtained from the modified [34] Leibfried-Schlömann [35] equation by approximately the same factor. Accordingly initial estimates of the values of k_u for the other elements were obtained from this equation multiplied by the reciprocal of that factor, i.e.,

$$k_u T^r = 5.7 \times 10^{-6} \frac{M \theta^3 V^{1/3}}{(\gamma + 0.5)^2}$$
 (37)

where M, θ , γ , and V have the same meanings as before, It is unfortunate that in this equation the Debye temperature is raised to the third power, as the high temperature values of the Debye temperature obtained from various physical properties differ considerably. The values of the Debye temperatures and other parameters used in eq. (37) for the nine elements constituting the ten selected binary alloy systems covered in this work are given in Table 1.

While in some cases it was possible to improve on the initial estimates of k_u for some elements on the basis of experimental data for a range of compositions, in others it was not, and the estimates of the lattice thermal conductivities of alloys containing the latter elements are accordingly less reliable than those containing the former. While measurements of the thermal conductivity of very dilute alloys of additional elements would make possible more reliable estimates of alloy lattice thermal conductivity, in view of the

Table 1. Parameters for the Calculation of Lattice Thermal Conductivity of Elements Using Equation (37)²

Element	M	V	γ	θ
Aluminum	26.98154	10.00 ^b	2.18	385
Copper	6 3. 5 4	7.114	1.97	313
Gold	196.9665	10.22	3.09	160
Iron	55.847	7.094	1.81	373
Magnesium	24.305	14.00 ^C	1.63	363
Nickel	58.71	6. 593	2.00	312
P al ladium	106.4	8. 879	2.18	264
Silver	107.868	10.27	2.46	213
Zinc	65.38	9. 165 ^d	2.05	326

^a The values of γ and θ are selected from ref. [36] with some of the values adjusted in order to be consistent with the experimental thermal conductivity data.

In calculating ϵ , the molar volumes used for aluminum were 8.576 and 9.032. The first value corresponds to the size of aluminum atoms in copper as determined from the change in the lattice parameter of copper upon the addition of aluminum [37, Vol. 1]. The second value was obtained from the change in the volume of the primitive cell upon the addition of aluminum to magnesium as calculated from the changes in the lattice parameters of magnesium upon the addition of aluminum [37, Vol. 2].

In calculating ϵ , the molar volume used for magnesium was 13.77 corresponding to the size of magnesium atoms in aluminum as determined from the change in the lattice parameter of aluminum upon the addition of magnesium [37, Vol. 2].

d In calculating ϵ , the molar volume used for sinc was 8.534 corresponding to the size of zinc atoms in copper as determined from the change in the lattice parameter of copper upon the addition of zinc [37, Vol. 2].

uncertainty of the separation of the electronic and lattice components of very dilute alloys at temperatures above that of the maximum of the lattice component, it would also be useful to have measurements of the thermal conductivity of some denser alloys of pairs of these elements in this temperature range.

The value of the Debye temperature, θ , for the upper limit of the integrals in eq. (35) is estimated from the value of k_u for the virtual crystal by means of the modified Leibfried-Schlömann equation, adjusted to yield values for the lattice component in agreement with those obtained from experimental data on very dilute alloys as described above:

$$\theta = 260 \left[\frac{(\gamma + 0.5)^2 k_u^T}{MV^{1/3}} \right]^{1/3}$$
 (38)

where γ is the Grüneisen parameter, and M and V are the average molar mass and volume.

Agreement between the values obtained from eq. (35) and those obtained from measurements of thermal conductivity for the various alloy systems is discussed in the text; in general, it was better for alloy systems exhibiting complete solid solubility. Another general result is that the values from eq. (35) for dilute alloys tended to be too low at the low end of this temperature range. A possible explanation of this discrepancy is that the present treatment does not take into account the "freezing out" of U-processes which occurs when the temperature is reduced to the point at which there are few phonons having wave vectors of sufficient length to participate in such processes. Such a reduction in U-processes could significantly reduce the thermal resistivity of dilute alloys but cause only a small decrease in the thermal resistivity of dense alloys.

The most important deficiency of the present treatment is that the analysis leading to eq. (35) does not include the electron-phonon interaction, for which an adequate theory has not yet been developed. As noted earlier, this interaction contributes significantly to the thermal resistivity in some transition element alloys; this is ture of the Pd-rich alloys considered in this study and eq. (35) could not be used to calculate the values of the lattice component in these alloys below their Debye temperatures.

At high temperatures the values obtained from eq. (35) are nearly the same as those from an approximate expression derived independently by Abeles [38] and Parrott [39], but there are significant differences below the Debye temperature, where the high temperature approximation used by these authors,

$$x^2 e^{X}/(e^{X}-1)^2 \simeq 1$$

ceases to be valid. However, because of a partial cancellation of errors these differences are much smaller than might be expected from the use of the high temperature approximation.

The use of eq. (35) rather than an approximate expression for the calculation of the lattice thermal conductivity is to some extent a reflection of the present availability of high-speed digital computers. The expression for the quantity ϵ , eq. (33), which takes into account the point-defect scattering due to both the mass difference and the distortion of the lattice and is first derived and given in the present work, is definitely an improvement of the theory.

3. DATA EVALUATION AND GENERATION OF RECOMMENDED VALUES

Due to the difficulties in accurate measurement of the thermal conductivity of solids and in exact characterization of test specimens, the available experimental data on thermal conductivity extracted from various research documents are usually widely divergent and subject to large uncertainty. It is therefore very important to critically evaluate the validity and reliability of the available data and related information, to resolve and reconcile the disagreements in conflicting data, and to generate recommended reference values.

In the critical evaluation of the validity and reliability of a particular set of thermal conductivity data, the temperature dependence of the data was examined and any unusual dependence or anomaly carefully investigated, the experimental technique reviewed to see whether the actual boundary conditions in the measurement agreed with those assumed in the theory and whether all the stray heat flows and losses were prevented or minimized and accounted for, the reduction of data examined to see whether all the necessary corrections had been appropriately applied, and the estimation of uncertainties checked to ensure that all the possible sources of errors had been considered.

Experimental data could be judged to be reliable only if all sources of systematic error had been eliminated or minimized and accounted for. Major sources of systematic error include unsuitable experimental method, poor experimental technique, poor instrumentation and poor sensitivity of measuring devices, sensors, or circuits, specimen and/or thermocouple contamination, unaccounted for stray heat flows, incorrect form factor, and perhaps most important, the mismatch between actual experimental boundary conditions and those assumed in the analytical model used to derive the value of thermal conductivity. These and other possible sources of errors have been carefully considered in critical evaluation of experimental data.

-

4

1

The second second

The uncertainty of a set of data depends, however, not only on the estimated error of the data but also on the adequacy of characterization of the material for which the data are reported. For instance, suppose a set of thermal conductivity data obtained for a coldworked specimen of brass with a composition of 70.06% Cu, 28.77% Zn, and 1.17% Pb is accurate to within ±2%. If the author knew and reported his specimen only as 70:30 brass, the uncertainty of his data for a 70:30 brass would not be just ±2% but might exceed ±20%. It has been found in this and other studies that the chemical composition of a specimen reported by the author is often unreliable. This may be because in many cases the stated composition is the result of ladle analysis which the author obtained from the company who supplied the specimen and it can at best represent only the nominal composition; the actual composition varies from sample to sample. In other cases there is a strong tendency for only certain elements to be covered by a particular chemical analysis which could miss other important constituents. Furthermore, the chemical composition of a specimen may change

(Table)

奉子の湯

when it is measured at high temperatures. For binary alloys it has been found that the actual composition of a specimen may be inferred from its electrical resistivity if reported.

In the process of critical evaluation of experimental data described above, erroneous data were eliminated. The remaining data were then subjected to further critical analysis. For those test specimens for which experimental data on both thermal conductivity and electrical resistivity were reported, the electrical resistivity data were used for the calculation of electronic thermal conductivity values using eq. (12). Lattice thermal conductivity values were derived as the differences of the experimental k data and the calculated k_e values. These "experimental" k_g values derived from different sets of experimental k data were then intercompared and also compared with the calculated values from eq. (35) regarding their temperature dependence and magnitude. During these comparisons, the validity and reliability of the available experimental data could further be judged. The electrical resistivity data reported for the test specimens on which thermal conductivity measurements were made were also evaluated critically in connection with evaluation of all the electrical resistivity data available from the literature for each of the alloy systems, from which the recommended electrical resistivity values were generated.

As detailed in Section 2, the electronic component of the thermal conductivity was calculated from eq. (12), which is applicable to alloys in both the solid solution region and the mechanical mixture region. In this calculation, the recommended electrical resistivity values for the selected compositions of the present ten alloy systems and their constituent elements are available from ref. [7], the recommended thermoelectric power values are available from ref. [40], the recommended thermal conductivity values and the values of β for the pure elements are available from ref. [5], and the lattice thermal conductivity values of the pure elements used as corrections in the calculation of W_{el} from eq. (7) are calculated from eq. (36). As examples to show the recommended electrical resistivity and thermoelectric power values used for the calculations, Figures 1 and 2 show the recommended electrical resistivity of the copper-nickel alloy system available from ref. [7] and Figures 3 and 4 show the recommended absolute thermoelectric power of the same alloy system.

The lattice thermal conductivity of alloys was calculated from eq. (35), in which the k_u values were calculated from eq. (37) using the values of the Debye temperatures and the other parameters given in Table 1. The value of the Debye temperature for the upper limit of the integrals in eq. (35) was estimated from eq. (38). It is important to note that eq. (35) is applicable only to disordered solid-solution alloys and only for moderate and high temperatures. Beyond the solid solution region and at low temperatures, the lattice thermal conductivity was first obtained as the difference of the experimental total thermal conductivity and the calculated electronic thermal conductivity. The "experimental" k_g values

were then graphically smoothed and synthesized to obtain the values for alloys of the selected compositions. In the solid-solution region and at moderate and high temperatures, the "experimental" k_g values were used to check the k_g values calculated from eq. (35). If there were disagreements and the "experimental" k_g values were considered more reliable, the values of the lattice thermal conductivity of the virtual crystals, k_g , used in eq. (35) would be adjusted so that the calculated k_g values were in agreement with the "experimental" k_g values.

In graphical smoothing and synthesis of data, cross-plotting from conductivity versus temperature to conductivity versus composition and vice versa was often used. Smooth curves were drawn which approximate the best fit to the conductivity data versus temperature, and points from the smoothed curves were used to construct conductivity versus composition curves for a convenient set of selected temperatures. In the conductivity versus composition graph, the families of isotherms were similar and any required smoothing of the data could be done more easily and with greater confidence than when working directly with the conductivity-temperature curves. The points from the smoothed curves were then used to construct conductivity-temperature curves for the selected compositions, and these curves were further smoothed. In the graphical smoothing process it is extremely important that the alloy phase diagrams [104,183,184] be constantly consulted and the phase boundaries between solid solutions and/or mechanical mixtures and the boundaries of magnetic transitions be kept in mind, so as to be aware of any possible discontinuity or sydden change of slope in the thermal conductivity curves.

The total thermal conductivity values were thus obtained as the sum of the k_e values calculated from eq. (12) and the k_g values derived from the "experimental" k_g values or calculated from eq. (35), which might have been adjusted to fit the "experimental" k_g values, if such values were available and reliable.

A STATE OF THE STA

Part of the second seco

-

4. THERMAL CONDUCTIVITY OF BINARY ALLOY SYSTEMS

In the following subsections the recommended (or provisional or typical) values for the total thermal conductivity, electronic thermal conductivity, and lattice thermal conductivity and the original experimental data for the thermal conductivity of the ten selected binary alloy systems are given, together with a discussion of each system, reviewing individual pieces of available data and information and discussing the considerations involved in arriving at the final assessment and recommendations. The conductivity values are for well-annealed disordered alloys.

In this work, the term "binary alloy system" refers to the full range of comp sition of two alloying elements and is signified by a hyphen between the two elements, such as aluminum-copper alloy system. The term "binary alloys" refers to a group of binary alloys in which the first alloying element is predominent and is signified by a plus between the two elements, such as aluminum + copper alloys.

In the figures and tables, weight percent is denoted by 4 and atomic percent by At. 4. In the figures of recommended (or provisional or typical) values continuous (solid) curves represent recommended values, long-dashed curves represent provisional values, and dash-dot-dash curves represent typical values. The short-dashed portion of any of the above three kinds of curves represents values in the temperature ranges where no experimental data are available. In the tables of recommended (or provisional or typical) values, the values of residual electrical resistivity of the alloys are given, which is for the purpose of helping to characterize and identify the alloys for which the values are presented. The difference among recommended, provisional, and typical values is due to their ranges of uncertainties assigned. The ranges of uncertainties of recommended, provisional, and typical values are less than $\pm 15\%$, between $\pm 15\%$ and $\pm 30\%$, and greater than $\pm 30\%$, respectively. In the tables on specimen characterization and measurement information, the code designations used for experimental methods for thermal conductivity determinations are as follows:

- C Comparative method
- E Direct electrical heating method
- F Forbes' bar method
- L Longitudinal heat flow method
- P Periodic or transient heat flow method
- R Radial heat flow method
- T Thermoelectrical method

In each of the subsections that follow, the thermal conductivity data and information are presented in the following order: discussion text, tables of recommended values, figures of recommended curves, figures of experimental data, and tables of specimen characterization and measurement information.

4.1. Aluminum-Copper Alloy System

The aluminum-copper alloy system does not form a continuous series of solid solutions. The maximum solid solubility of copper in aluminum is 5.70% (2.50 At.%) at 821 K and the solubility decreases to 0.1-0.2% (0.04-0.08 At.%) at 523 K. The maximum solid solubility of aluminum in copper is 9.4% (19.6 At.%) in the range from about 650 to 838 K and the solubility decreases at higher and lower temperatures. Thus the region of solid solution is limited. However, the equation derived for the calculation of the electronic component of thermal conductivity, eq. (12), is applicable to all phases, though the equation for the calculation of the lattice component, eq. (35), can be used only for solid solutions, as noted before in Sections 2 and 3. Beyond the solid solution region, the lattice thermal conductivity has been derived from the experimental total thermal conductivity and the calculated electronic component.

There are 188 sets of experimental data available for the thermal conductivity of this alloy system. However, of the 49 data sets for Al + Cu alloys listed in Table 3 and shown in Figure 7, 10 sets are merely single data points around room temperature and 27 sets cover only a narrow temperature range from around room temperature to about 500 K. Of the 139 data sets for Cu + Al alloys listed in Table 4 and shown in Figure 8, 20 sets are single data points, 15 sets cover the narrow temperature range from around room temperature to about 500 K, and 84 sets are for temperatures below 4.5 K.

For the Al + Cu alloys, all measurements were made between room temperature and 800 K except four (Al + Cu curves 6-8, and 16) which were measured down to about 80 K for specimens containing 4.0, 8.0, and 15.0% Cu [41,42] and except the two of Satterthwaite [43] who investigated the thermal conductivity of a specimen containing 0.3% Cu in both the superconducting and normal states (Al + Cu curves 25 and 26). A thermal conductivity versus composition curve for 300 K was constructed following mainly the data of Griffiths and Schofield [44] (Al + Cu curves 1-5) and of Smith [45] (Al + Cu curves 12-15). Electronic thermal conductivity values at 300 K were calculated from eq. (12) using electrical resistivity reported in [7], thermoelectric power reported in [40], thermal conductivity of aluminum and the value of β reported in [5], and lattice thermal conductivity of aluminum calculated from eq. (36). These k values were also plotted on the conductivity-composition graph. The differences k, between the experimental total thermal conductivity k and the calculated electronic component ke for the various compositions were taken. These kg values were extrapolated to higher temperatures up to the solidus points according to the temperature dependence of eq. (35) and to lower temperatures according to the pattern of $k_{\rm g}$ curves of aluminum-copper system derived from the available experimental k and the calculated $\mathbf{k}_{_{\mathbf{G}}}$ around the region of maximum $\mathbf{k}_{_{\mathbf{G}}}$ and according to \mathbf{T}^2 dependence at lower temperatures assuming kg to be negligible at 1 K. The values were then adjusted so that the extrapolated

kg values plus their corresponding ke values yield total k values which fit the experimental data in those regions. The total thermal conductivity values were then obtained by adding the calculated values of ke to the adjusted extrapolated values of kg. The results are in agreement with the data of Griffiths and Schofield [44] (Al + Cu curves 1-5), Smith [45] (Al + Cu curves 12-14), and Griffiths and Shakespear [46] (Al + Cu curve 17) above room temperature to within 5%. No appropriate comparison is available below room temperature.

On the copper-rich side, several measurements were made between 4 K and 80 K [48] (Cu + Al curves 111-121) for alloys containing 4.07, 0.43, and 6.97% Al. The conductivitycomposition curve at 300 K was constructed, based mainly on the data of Smith and Palmer [49] (Cu + Al curves 2-9) and Smith [45] (Cu + Al curves 14-18), which are considered reliable. The k_e values were calculated from eq. (12) and those at 300 K were plotted on the conductivity-composition graph. The differences $\mathbf{k}_{\mathbf{g}}$ between \mathbf{k} and $\mathbf{k}_{\mathbf{e}}$ were obtained for all compositions. These k, values were adjusted so that their extrapolations to lower temperatures, according to the method described above for Al + Cu alloys, fit the k values derived from experimental data of Chu and Lipschultz [48] (Cu + Al curves 111-121) and of Friedman [50] (Cu + Al curves 122-126). Above 300 K the k_{σ} values were extrapolated to the solidus points. The total thermal conductivity values were then obtained by adding the calculated values of k to the adjusted extrapolated values of k. Because of the lack of experimental electrical resistivity data, no total k values are given below 200 K for the alloy with 10% Al, below 300 K for the alloy with 15% Al, and at temperatures other than 300 K for the alloy with 20% Al. The resulting recommended values at low temperatures are in agreement with the data of Salter and Charsley [51] (Cu + Al curves 19-26), Kusunoki and Suzuki [53] (Cu + Al curves 45-52), Chu and Lipschultz [48] (Cu + Al curves 111-121), and Friedman [50] (Cu + Al curves 122-126) to within 6%, and those at higher temperatures are in agreement with the data of Smith and Palmer [49] (Cu + Al curves 2-9), Hanson and Rodgers [47] (Cu + Al curves 10-13), Inouye [55] (Cu + Al curves 37 and 38), Smith and Palmer [49] (Cu + Al curve 78), and Aliev [116] (Cu + Al curves 57-65 and 67) to within 10%.

The resulting recommended values for k, k_e , and k_g are tabulated in Table 2 for 25 alloy compositions. These values are for well-annealed alloys. The values for k are also shown in Figures 5 and 6. For most of the alloy compositions, the temperature range covered is from 4 K to the temperature where melting starts. The values of residual electrical resistivity for the alloys are also given in Table 2. The uncertainties of the k values are stated in a footnote to Table 2, while the uncertainties of the k_g and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than $\pm 15\%$, between ± 15 and $\pm 30\%$, and greater than $\pm 30\%$, respectively.

[Temperature, T, K; Thermal Conductivity, k, W cm.- K.-; Electronic Thermal Conductivity, k, W cm.- K.-; Lattice Thermal Conductivity, kg, W cm.- K.-; RECOMMENDED THERMAL CONDUCTIVITY OF ALLMINUM-COPPER ALLOY SYSTEM. TABLE 2.

2727

14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- 0. 0600 µD cm	100			1000 (00 to 100 ct	///			2. W	, , , ,			22 22 / 2/22	(2. 19 At. %)
	a*	•		0 = °d	p _o = 0.1203 µA cm	c III		0 = 0	= 0.340 µOcm	A) = °d	ρ ₀ = 0. 532 μΩ cm	8
1			۲	l k	eu	, Le	۴	.	۰,	,sie	H	<u> </u>	™	66
			*	0.814*			-	0.292*			-30	0.189*	0.183	0.00578
			9				•	425			6	0.288*	0.275	0.0130
		•	•	1. 60. 60.			0	, 080 c			•		9.50	O. GEEE
_			12 12	3.6			2 51	1.10			22	0.738*	0.677	0.0610
	1		2	3, 92*			8	1,45*			50	0.977*	0.892	0.0649#
•	R	0,265	22	4	4.42	0.221	25	1.75*	1.61	0,139	25	1.19#	1.09	0.102#
	7.78	0.2854	8	5.14*	4.90	0.239	8	2.02*	1.87	0.152	8	1.39*	1.28	0.112
	7.2	0.2854	\$	5.64*	5.40	0.239f	\$	2.44	2.28	0.155\$	40	1.71*	1.59	0.117
50 7.36±	7.09	0.2654	8	5.45*	5.23	0.221\$	23	2.68*	2.53	0.147	ន	1.92*	1.81	0.1124
	5, 75	0.241	9	4.8 0*	4.60	0.202	9	2.70*	2.56	0.138	99	2.00*	1.89	0.106
70 4.74	4	0.2184	2	4.04	3.85	0.185	2	2.54*	2.41	0, 127	2	1.98*	1.88	0.0985
	3, 57	0.199	8	3.35*	3.18	0.170	8	2.33	2.21	0.118	8	1.994	1.80	0.0916
90 3,11*	2.93	0.183	8	2.85	2.69	0.157	8	2.11*	8	0.110	8	1.79	1.70	0.0857
	2.61	0.169#	8	2.58*	2.43	0.145\$	2	1.99*	1.89	0.102\$	200	1.72*	1.64	0.0804
	2.18	0.123#	35		2.09	0.107\$	120	1.89	1.81	0.0758	250	1.67*	1.61	0.0612
	2.14	0.0968	2		2.07	0.0847#	88	1.90#	1.84	0.0607	200	1, 72*	1.67	0.0495
	2.17	0.0801	250		2.10	0.0704	250	1.94*	1.89	0.0509	250	1. 79*	1.75	0.0416
273 2.264 3.000 3.	2. 19 3. 19	0.0745	273	2,18	2:13	0.06524	273	1.97*	1.92	0.0474	223	1. 82*	1. 1. 1. 1. 1.	0.03894
	•		}		7		3	- 60 • 1	7.90	+ 00 TO	}	•		
# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 25	0.0596	320	2.25	2; 2; 3;	0.0525	320	5 .6	8	0.0386	S 5	88	1.87	0.0319
i	4 6	0.0000	3 5		7.6	0.0407	3 5	, i	\$ &	0.03454	3 5	2 F	2 5	0.0200
d	2.2	0.03624	2	2, 19	2,16	0.0322	8 8	2.05	3 2	0.0243	9	3	1.92	0.0203
લં	2.16	0.0312#	2	2.15	2.12	0.0279	2	2.02	8	0.0212#	\$	1.92	1.80	0.01778
960 2.13*	2. 10	0.0273	8	2.08	2.06	0.0245	908	1.97*	1,95	0.0189	8	1.89*	1.87	0.0157
2.00	2	0.0243	8	2.02*	2.8	0.0219	864	1.94*	1.92	0.0177	831	1.88*	1.86	0.0152#
ri N	2. 8	0.02384	910	2.01*	1.99	0.0217								

.

† Uncertainties of the total thermal conductivity, k, are as follows:
99. 80 Al = 0. 50 Cu: ±6% below 200 K, and ±3% above 200 K.
99. 90 Al = 1.00 Cu: ±6% below 200 K, and ±3% above 200 K.
97. 00 Al = 2.00 Cu: ±8% below 100 K, ±5% between 100 and 590 K, and ±6% above 500 K.
98. 00 Al = 5. 00 Cu: ±9% below 100 K, ±5% between 100 and 500 K, and ±6% above 500 K.

5 Typical value.

* in temperature range where no experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-! K-!; Electronic Thermal Conductivity, ke, W cm-! K-!; Lattice Thermal Conductivity, kg, W cm-! K-!] RECOMMENDED THERMAL CONDUCTIVITY OF ALUMINUM-COPPER ALLOY SYSTEM (continued) * TABLE 2.

1. P.S. 45

75.00% (87.80 At.%) 25.00% (12.40 At.%)	ρ ₀ = 1. 488 μΩσα.	Me.	0.0000 0.0000	0.1X	0.345 0.0487	0.319	0.252 0.0754	0.586	75.0						1.27 0.0260		1.37 0.02194		1.49		1.49 0.0100	
Al: 75. Cu: 25.	, o	T K	400 0 9	_	10 0.188	0	25 0.467	\$ 0.67 \$ 0.67		70 0.911*	576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			250 1.184	273 1.30*		ᆏ	40 1. t	500 1.50¢		800 1.504	<u>ب</u>
At. %) At. %)	Ħ	8	0.004069	0.0156	0.0232	0.0597	0.0718	0.0822	0.07448	0.06924	0.0644	0.05656	0.04304	0.0348	0.02734	0.02534	0.0224	0.0200	0.01426	0.0124	0.0111\$	0.01094
7% (90.40 At.%) 7% (9.60 At.%)	1.312 µAcm	×°	0.0745	0.149	0.186 0.274	0.360	0. 443 522	0.0	0.877	0.938	0.840 0.840	1.8	1.11	: :: -	3	1.37	1.4	4	 	1.55	2	3
Al: 80.00% Cu: 20.00%	Po = 1	ĸ	0.0786*	0.165*	0.209* 0.317*	0.420	0.515* 0.602*	20.0	0.951*	1.01*	 5	1.00	1.15		1.27	1.40	1.46	 	1.56*	1.56	1.55*	1.55
		T	4 6	> 0 0	22	8	22 23	22		2	28	88	150	8 5	2	8	350	\$	3 8	2	98	123
At. %) At. %)	8	K eq	0.00426	0.0163	0.02 49 6 0.04494	0.0625	0.0752	0.0861	0.0779	0.0725	0.0674	0.05928	0.0451	0.0365	0.0286	0.02654	0.0235	0.0209	0.0174	0.01306	0.0116	0.01136
% (93.03 At. %) % (6.97 At. %)	= 1.118 µAcm	, k	0.0870	0.173	0.216 0.320	0.421	0.519	0.776	1.01	1.07	 69 :-	1:12	1.21	 8 8	: : :	1.46	1.52	 92 :	3 5	1.63	1,61	1.61
Al: 85.00% Cu: 15.00%	p ₀ = 1	м	0.0913*	0.189	0.249 0.365	0.484*	0.594*	0.862*	1.09	1.14	1.16	1.16	1.38	 	1:4:	1.49	1.52	# : 8: :	2 2	1.6	1.62*	•
		H	₩ 6	0	2 2	8	8 8 8	3 3	3	2	88	3	150	8 3	2 2	8	320	\$	8 8	92	8	2
At. 53)	ß	.eta	0.004668	0.0178	0.02668 0.04918	0.0684	0.0623	0.09428	0.0653	0.0794	0.07364	0.06478	0.04834	0.0300	0.031%	0.0290\$	0.0257	0.0229	0.0191	0.01424	0.01274	6.0124
% (95.49 At.%) % (4.51 At.%)	= 0.868 µD cm	*	0.110	6. 22. 28.	o. 27 6. 25 6. 25	9.53	0. 650	9.982	***	8	ត :	12	1.34	 	: .: : .:	1.	7	8	1.72	. T	1.71	L.1
Alt 90.00% Cue 10.00%	0 = 0	×	0.115	0 X	o. 486 456		6. 741+ 6. 741+	83	*	Ř	À :	3	1.8	 	; ;;	1.0	1.9	۲.	1.7	1	1.2	1.1
70		H	••	•	22	*	21	3 \$	8	8	2 1	3	2	1	E	3	3	\$	1	ķ	ŧ	S

asl conductivity, k, are as follows:

±9%below 100 K, ±5%between 100 and 500 K, and ±6%above 500 K. ±10%below 100 K, ±5%between 100 and 500 K, and ±6%above 500 K. ±10%below 100 K, ±5%between 100 and 500 K, and ±7%above 500 K. ±10%below 100 K, ±5% between 100 and 500 K, and ±7%above 500 K. 86.8 Al - 10.8 Cm 86.8 Al - 15.8 Cm 76.8 Al - 20.8 Cm 76.8 Al - 20.8 Cm

* In temperature range where no experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, k, W cm-1 K-1; Lattice Thermal Conductivity, k, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF ALLMINIM-COPPER ALLOY SYSTEM (continued) TABLE 2

Part of a few months of

- Personal Action

	Al: 70,00 Ce: 36,00	76. 00% (84. 60 At. %) 36. 66% (15. 40 At. %)	At. %) At. %)		Al: 65.00 Cu: 35.00	65.00% (81.39 At.%) 35.00% (18.61 At.%)	1t. %) 1t. %)	-	Al: 60,00° Cu: 40,00°	60.00% (77.94 At.%) 40.00% (22.06 At.%)	At. %) At. %)		Al: 55.00 Cu: 45.00	55.00% (74.22 At.%) 45.00% (25.70 At.%)	1t. %) 1t. %)
	A = 1	= 1. 633 pD cm			Po = 1.	Po = 1.754 µDcm			p ₀ = 1	ρ ₀ = 1.883 μΩcm	8		A = 2.	= 2.02 µO cm	i
•		سد		۴	, M	~	, to	F	м.	.me	, te	H		, se	u
••	0.0661*	0.0602	0.00392\$	~ «	0.0596*	0.0557	0.00392\$	4 6	0.0559*	0.0519	0.00394	~ •	0.0524*	0.0484	0.00395¢
• •	0.136	. 18	0.0150	20	0.127*	0.112	0.0150	9 6 0	0.118*	0.103	0.0151		0.111*	0.0955	0.0152 [£]
22	0.13 1.13 1.13	0, 150 0, 22 1	0.02234	2 22	0.160* 0.244*	0.138 0.203	0.02234	2 2	0.150* 0.228*	0.1 28 0.187	0.02248	22	0. 1 42* 0. 2 17*	0.11 9 0.175	0. 02258 0. 04178
8	3	0.290	0.08754	20	0.324*	0.267	0.0575	8	0.306*	0.248	0.0578	8	0.2904	0.212	0.0500
R	. 65	0.356	0.06834	8	0.388	0.330	0.0693	25	0.377*	0.304	0.0696	2	0.357*	0.257	9.63
89			0.07633	8 9	0.579		0.07616	8 4	0.439	0. 36 3	0.0764	8 \$	0. 517 *	0.437	0.0799
8	9.72	0.636	0.00618	8	0.669*	0.593	0.07618	8	0.631*	0.555	0.0764	8	0.597*	0.550	0.0766
8	O. 787*	6.715	0.07188	3	0.740	0.668	0.0718	3	0.700	0.628	0.0721	8	0.662*	0.590	0.0734
21		9.44	0.06688	28	20°-0	0.726 7.8	0.0668	28	0.751*		0.0670	2 2	0.711*		0.0674
3 2	8	0.842	0.0581	3 8	0.856*	0.78 86.79	0.0581	88	0.8134	0.755	0.0583	8	0. 778*	0.719	0.0586
2	0. 85 4	9 . 3	0.05454	8	0.880	0.825	0.0545#	8	0.850*	0.785	0.0547\$	<u>8</u>	0.805*	0.750	0.0549#
3	3	986	0.0415	150		0.957	0.0415	31	0.963*	0.921	0.0417	25	. 929	0.867	0.0418
RA		111	0.02838	2 22	1.1	1.1	0.0336	2 22	1. C	1.13 1.13	0.0337	3 2	1.10		0.020
E	Ä	ង	0.0263	273	1.21*	1.18	0.0263	273	1,17	1.14	0.0264	273	.i.	1:10	0.0266
R	R;	R	6. C244	3	1. 24.		0. 02445	8	1.20	1.18	0.0245	3	1.17	1.19	0.0240
* 1	7 A	# # 	9.0216	8		1.27	0.0216	38 8	1.25	1.23	0.0217	8	ដ្ឋ	27.	0.02186
3		3	0.6160	200	*	1.36	0.0160	9	. 3	8	0.0161#	8	, i	. 8	0.01626
3 2		1.7 2.2	0.01374	§ §	1. 40	1.39	0.0137#	98	1.37*	1.36	0.0138	96 00 00 00	1. 24.	1.3 8.4	0.0138# 0.0121#
	; ;				1 4		40000			; {	1				40000
B	;;	;; ;;	9.010.0	821	; ÷	1 : 1 :	0.0107	821	 8 8 8 7	1.37	0.0107	821		, z : :	0.0106

Uncertainties of the total thermal conductivity, k, are as follows:
76.00 Al = 30.00 Cu: ±10% below 100 K, ±5% between 100 and 500 K, and ±7% above 500 K,
64.00 Al = 35.00 Cu: ±12% below 100 K, ±5% between 100 and 500 K, and ±7% above 500 K,
65.00 Al = 40.00 Cu: ±12% below 100 K, ±5% between 100 and 500 K, and ±7% above 500 K,
84.00 Al = 46.00 Cu: ±12% below 80 K, ±5% between 80 and 500 K, and ±7% above 500 K,

9 Typical value.

· In temperature range where no experimental thermal conductivity data are available.

stature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF ALUMINUM-COPPER ALLOY SYSTEM (continued) TABLE 2.

_		50.00% (29.81 At.%)	K. 5)		Ali 45.00% Cur 55.00%	% (65.83 At. %) % (34.17 At. %)	At. %) At. %)	-	Al: 40.00% Cu: 60.00%	% (51.09 At.%) % (38.91 At.%)	At. %)		Cu: 65.00%	% (44.00 At.%)	\$ \$
	A-2.	2.25 µD cm			P ₀ = 2.	= 2.59 µDom			6 - 3	3.25 µAcm	a		, - °	4. 42 µDem	
Į.		•بد	.	f	M	ەبد	, M	H	×	A ⁰	.e6	۴	ж	.a•	k g
6	1 .	0.0434	0.00396#	-	0.0420*	1	0.00400	•	0.0342**	- 1	0.00402\$	*	0.03666	0.0000	0.00408
•	•	0. 964 7	0.0004	.	0.0659##	0.0569	0.00000		0.0561**	0.0455 0.0455	0.0000	.	O. O		
		6, 107	0.02274	9	0, 117*	0.00	0.02294	2	0.0074*	-	0.02304	° 2	0.0786##	0.0652	0.029
		6.186	0.04584	12	0, 181*	0.139	0.0422\$	12	0.154*		0.0426	12	0.136*	0.0616	0.0434
	į	38.0	0.05855	8	0.242**	0, 183	0.0590	28	0.206**	0.146	0.0595#	8	0.166+4	9.100	0.00036
i d	à	97.0	0.07046	200	0.296**	0.225	0.0706	22	0.252*	0.181	0.0714	2	0. 206 **	6.183	9.0736
*	À	X	0.0774	8		0.267	0.0775	8	0.253**	0.215	0.0782	8	0.237**	3	0.0784
3	7	ă.	0.08068	\$ (0.4264	0.345	0.0610#	\$:	0, 361**	0.273	0.0817	3 :	. NO.	5	
3	į	£.	0.0174	3		0.416	0.0779	2	0.413	0.0	0.0	2	0. 252		6. CT 272
8	į		0.07294	\$	0. 550++	0.477	0.0130	8	0.463##	0.369	0.0737	8	0. 368*	0.86	0.07
i F	į	9	0.0679	2	0.596**	0.528	0.06806	2	-	-	0.0	2	0.400		
8		9. 6	0.0631	2 8	0.631**	8	0.0634	88	0.555	5		8 8	467		
-	į	8	0.05548	3 3	686	2	0.0558#	8	0.50	0.558	0.05626	2	0.453	9	0.0571\$
-	i	838	0.04226	9	0.814*	0.772	0.04256	150	0.722	0.679	0.04294	150	. See	0.565	0.0438
3	Ė	6 Z	0.03618	2	0.915*	0.881	0.03434	002	0.830	0. 785	0.0349	8	0.001*	9,0	o. 9850f
7	3	1.8	0.02878	32	0.996*	0.967	0.02894	22	0.803	0.873	0.0291	2	E	9.76	
i.	.	28	0.0200	e s	# 5 5 7	82	0.02704	£ 5		98	0.0271	27. 2. 2. 2. 2. 2. 3. 3.	0 4 4 4	0.776	0.017
	1 :			} {	3 !		***************************************		1	8	7				
i.	i.	28	0.0217	3		27.	0.01978	3 6	1.07	1.05	0.0186	3 8			
	å	X	0.01636	3	4	1.20	0.0164	3	1:	1.12	0.0165	8	1.01	0.997	0.0186
_	å	27	0.01404	\$	1.25*	1.24	0.01404	8	1.17*	1.16	0.0141	8	1.06	1.05	0.0144
_	å	1.2	0.01123	8	1.27*	1.26	0.0122#	2	1.20	1.19	0.01236	8	1. 104	 8	0.0126E
4	å		0.03000	8	1. 28*	1.27	0.01094	2	1.8	1.21	0.01094	8		1111	0.0111
2	Ā	H 1	0.01000	3	1.8	1.28	0.0101	3	1.2	ដ	0.01000	\$	1.14	1.13	0.0104

#12% below 80 K, $\pm 5\%$ between 80 and 500 K, and $\pm 7\%$ bove 500 K, $\pm 19\%$ below 80 K, $\pm 10\%$ between 80 and 200 K, and $\pm 7\%$ above 200 K, $\pm 15\%$ below 60 K, $\pm 10\%$ being 20 and 200 K, and $\pm 8\%$ above 200 K, $\pm 20\%$ below 80 K, $\pm 10\%$ between 80 and 200 K, and $\pm 8\%$ above 200 K. 80.80 Al - 80.00 Cm : 45.00 Al - 65.00 Cm : 46.00 Al - 65.00 Cm : 46.00 Al - 60.00 Cm : 36.00 Al - 60.00 Al - 60.00 Cm : 36.00 Al - 60.00 Al -

a types a

are reage where no experimental therraal conductivity data are available. · is term

erature, T. K. Thermal Conductivity, k, W cm. 1 K. 1. Electronic Thermal Conductivity, E. W cm. 1 K. 1. Lattice Thermal Conductivity, E. W cm. 1 K. TABLE 2. RECOMMENDED THERMAL CONDUCTIVITY OF ALLONING ALLON SYSTEM (continued)

The state of the s

	Al: 35.009 Cer 75.009	38. 60% (38. 23 At. %) 78. 66% (48. 77 At. %)	At. 35		Al: 25.00% Cu: 75.00%	25.00% (43.98 At. %) 75.00% (56.02 At. %)	t. %) t. %)		Al: 20.00% Cu: 50.00%	* (37.06 At. %)	At. %) At. %)		Al: 15.00 Cu: 85.00	15.00% (29.36 At. %) 85.00% (70.64 At. %)	At. %)
	- e	6. 61 pilem		!	Po = 12	p ₀ = 12.4 µA cm	!		;	!					•
	*	۰,	, w	H	*	Me.	¹⁰⁰	H	*	e	'X'	۴	.	×.	,14 bs.
	0.0191**	0.0149	0.004168	₩.	0.0121**	0.00788	0.00424	₹ 6			0,00440*	₩ 0			0.00471
•		0.0897	0.0160		0.0321##	0.0158	0.0163				0.0169	av (0.0162
22	. eee7**	e. e	6.5	2 2	0.0743*	0.0294	0.0242	12			0.0251 0.0464	15			0.0268
8	0.136+4	0.0723	0.0614	2	0.102**	0.0391	0.0627	20			0.0650	8			0.0696
RR		9 5 6 5 7 6 7	0.0737	X 8	0, 124**	0.0485 0.0580	0.0750	 8 %			0.0709*	8 8			0.0834
23		9.15		28	0.163**	0.0766	0.0860	\$ 8			0.0891\$	\$ 8			0.0954 ^{\$} 0.0917 ^{\$}
8	0.2778	0.201	0.0780	8	0, 190*	0.112	0.0775	9			0.0801	8			0.0860
21		9	9.0218	28	0.201##	0.129	0.0722	28			0.0748	23			0.0801
8 2	7	0.281	0.00	88	0.224*	0. 161	0.0631	88			0.0653	88	•		0.0700
3	9.364	6.3 03	0.05804	8	0.235#	0.176	0.0592\$	901			0.0613≇	<u>ş</u>			o. 0656\$
8	0.456	0.411	0.0442	150	0.293	0.248	0.0451	150			0.0467	81			0.0501
R 3		0. 576	0.03574	8 8 8 8	2. 3.7.4.0 0. 3.8.4.7.	0.311	0, 0364* 0, 0306*	200			0.0377	8 8			o. 63404
E	9	6.6	0.02006	27.0	0.422#	0.393	0.0286	273	0.978##	0.250±	0.0296	27. 50.	0.442‡	0.412	0.0318
3	0.722	6	0.02304	350	0.489#	0.466	0.0234	320) 		0.0243	320	0.477	0.451	0.0280
\$!	9.78	37.0	0.02054	9 6		0.508	0.0209	400			0.0217	5 5	0.507	0.484	0.0233 [‡]
1		28	9	388	0.6524	0.637	0.0148#	388			0.0154	888	0.5630#	0.576	0.0166
} {				3 3		900	0.0100	2 8			0.0100	3 8			10000
ı	. 200	0. ¥50	0.0112	2 2	0. 735# 0. 763#	0.723 0.753	0.0116# 0.0104#	38			0.0120	38	0.659**	0.629	0.0116
				933	0.773*	0.763	0.0101	100			0.00050#	1000	0.671**	0.660	0. 0106# 0. 00896#
			-					1224			0.00821	1306	0.691**	0.683	0.00832#

36.66 Al - 76.06 Cm ± 25% below 80 K, ±10% between 80 and 200 K, and ±8% above 200 K. **26.06 Al** - 75.06 Cm ± 20% below 80 K, ±10% between 80 and 200 K, and ±8% above 200 K. **20.00 Al** - 75.00 Cm ± 20% below 80 K, ±10% between 80 and 200 K, and ±8% above 200 K. **20.00 Al** - 80.00 Cm ± 20% at 300 K. **15.00 Al** - 85.00 Cm ± 20% above 300 K.

* Provisional value

a Typical value.

* In temperature range where no experimental thermal conductivity data are available.

| Temperature, T. K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, ke, W cm-' K-'; Lattice Thermal Conductivity, kg, W cm-' K-'] RECOMMENDED THERMAL CONDUCTIVITY OF ALUMINUM-COPPER ALLOY SYSTEM (continued) * TABLE 2.

	20.00% (T	75. 25 AL. A.		A: 95.92	5.00% (11.03 At.%) 95.00% (88.97 At.%)	At. %)		Al: 3.00 Cu: 97.00	97.00% (83.21 At.%)	At. %)		Cu: 99.00	99. 00% (97. 68 At. %)	¥; €3
		•		,= 0	= 7.23 µAcm			Po # 5.	. 53 µAcm			P 2	= 2.36 µΩcm	
4		Me.	۲	K	.	, Me	H		Ma.	, ba	۴		×	Mer.
-		0.00522	4 4 4	0.0197	0.0134	0.00628	-	0.0259	0.0177	0.00816	•	0.0531	0.0412	0.0119
•		0.0118	9	0.0345	0.0204	0.0141	•	0.0450	0.0265	0.0185*	9	0.0	4	0.0267
•		0.0201		0.0208	0.0268	0.0241	ao s	0.0669	0.0352	0.0317*	28 :	0.120		0.0468
2		0.029	2 :	0.0694	0.0336	0.0358*	2;	0.0896	0.0441	0.0455	2;	0.173	o. 103	9.0
15		0.0551		0.116	0.0495	0.0662+	et 	0.151	0.0654	0.08361	2	- 204	0.153	0. 131
8		0.0772	_	0.159	0.0665	0.0922	8	0.207	0.0867	0.120*	2	0.382	0.201	0.181
X		0.0924	44	0.193	0.0824	0.111*	25	0.249	0.106	0.143*	25	0,463	0.250	0.2134
R		0.101	_	0.220	0.0964	0.122*	8	0.282	0.128	0.157*	8	0.588	0.298	0.236
1		0.1068		0.257	0.130	0.127*	9	0.329	0.169	0.160*	\$	0.619	0.389	0.2304
3		0.102	25	0.283	0.161	0.123	ន	0.361	0, 209	0.152	8	0.687	0.474	0. ZIS
8		0.0059		387	0.189	0.1154	8	0.388	0.246	0.142	&	0.746	0,551	0, 1954
3 2	•		_	722	0.217	107	2	0,414	0.283	0.131	2	0.796	0.618	0.178
: 1		0.0831	_	344	0.244	0.0995	8	0.440	0.318	0.122*	8	0.852#	0.688	0, 164
8		0.077	2	9.0	0.271	0.0931	8	0.465*	0.352	0.113*	8	0.902	0.751	0.151
2		0.07304	_	0.385	0.298	0.0873	8	0.491*	0.386	0.105	8	0.953#	0.813	0.1404
9		0.0555			0.420	0.06654	150	0.618*	0.540	0.0782	150	1.18*	1.08	0.103
	0	0.044			0.527	0.0538	200	0.740	0.677	0.0626	88	1.38	38	0.0616
		_	7 250	0. 673	0.628	0.04524	250	0.854*	0.802	0.0525	250	1.55*	1.48	0.0678
3	_	0.550 0.6353			0.671	0.04224	273	0. 90 3 #	0.854	0.0489	1	1.63	1.57	C. 06368
3	_	563 0.0287	_		0.718	0.0391#	<u>8</u>	0.960	0.915	0.0452	8	1.71	1.65	0.0580
354 0. 645	6	ESE 0.0288		0.835	0.800	0.0346#	350	1.06	1.02	0.0398	350	1.83	1.78	0,0506
_	_		_	0.905	0.874	0.0309	904	1.15	1.11	0.0356	8	7	1.89	0.0450
20.0	_		200	1.03	1.8	0.0257	200	1.30	1.27	0.0294	8	2. 10	2.06	0.0368
_	- - -	E23 0.0183	_	1.13	1.11	0.0220	9	1.43	1.40	0.0251\$	8	2. 22*	2.19	0.0310
78 1.85	-		_	1.22	1.20	0.01921	8	1.51*	1.49	0.0219	20	2.31*	2.28	0.02696
1.00	۲,	0.0143	908		1.28	0.0171	98	1.59	1.57	0.0195	908	2.37*	2,35	0.0236
	أسرا				1.3	0.0154	8	1.66*	3	0.0175	8	2.41*	2.39	0.0211
1900 1.18	-	17 0.0117	_	1.39	1.38	0.01404	1000	1.70#	1.68	0.0158	1900	2.4*	2.42	0.0190
	1	_			1.46	0.01194	1200	1.77*	1.76	0.01354	1200	2.48*	2.46	0.01594
		_	_		1.49	0.0108	1331	1.90#	1 70	0.01946	1351	207.0	97 6	0.01424

thermal conductivity, k, are as follows: ±10% above 200 K.

9

stabilities of the total thermal conductivity, k, are as follows:

16.00 Al - 90.00 Cm: ±10% above 200 K.

5.00 Al - 95.00 Cm: ±6% below 80 K, ±6% between 80 and 500 K, and ±8% above 500 K.

5.00 Al - 97.00 Cm: ±6% below 80 K, ±5% between 80 and 500 K, and ±7% above 500 K.

1.00 Al - 98.00 Cm: ±6% below 80 K, ±5% between 80 and 500 K, and ±6% above 500 K.

* Provinces value.

1 Typical value.

• In temperature range where no experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 2. RECOMMENDED THERMAL CONDUCTIVITY OF ALUMINIA-COPPER ALLOY SYSTEM (communed)

Al: 0.30% (1.17 At. %) Cu: 99,30% (96.83 At. %)	Ap = 1, 270 p.C.cm	18 ° 18 18 18 18 18 18 18 18 18 18 18 18 18	4 0,0011 0,0771 0,0140 6 0,146 0,115 0,0014 11 0,246 0,115 0,0014 12 0,246 0,282 0,282 13 0,246 0,282 0,280 14 0,815 0,846 0,280 15 0,136 0,846 0,286 15 0,136 0,846 0,286 16 0,136 0,186 0,286 16 0,136 0,846 0,286 17 0,136 0,136 0,186 18 0,147 1,18 0,186 19 1,74 1,68 0,186

† Uncertainties of the total thermal conductivity, k, are as follows:

0.36 Al - 98.50 Cu: ±6% below 80 K, ±5% between 80 and 500 K, and ±6% above 500 K.

9 Typical value.

* In temperature range where no experimental thermal conductivity data are available.

A CONTRACTOR OF THE PROPERTY O

は 100mm 1

The way of the same

THERMAL CONDUCTIVITY OF ALUMINUM + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION TABLE 3.

A Comment of the Comm

, iè	S. Se	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Al	sition percent) Cu	Composition (continued), Specifications, and Remarks
	\$	Griffiths, E. and Schoffeld, F.H.	1928	i i	353-473	No. 655	86.0	14.0	1.125 in. diameter and 15.5 in. long; 2 specimens chill-cast and 2 specimens sand-cast; one of each annealed at 450 C for 1 hr; electrical resistivity reported as 5.24, 6.25, 6.97, 7.69, 8.40, and 9.14 µD cm at 353, 473, 473, 523, 573, and 623 K, respectively; amoothed values reported.
~	4	Griffiths, E. and Schoffeld, F. H.	1928	H	353-473	No. 671	88.0	12.0	Similar to above except electrical resistivity reported as 5.20, 5.36, 6.51, 7.03, 7.57, and 8.11 μ G cm at 353, 423, 473, 535, 973, and 623 K, respectively.
•	\$	Griffiths, E. and Schoffeld, F. H.	1928	-	353-473	No. 921	~ 88.0	~12.0	Trace Fe; 1. 125 in. diameter and 15, 5 is. long; 2 specimens chill-cast; one of which amealed at 450 C for 1 hr; electrical resistivity reported as 4.64, 5.61, 6.34, 7.12, 7.35, and 8.62 µ0 cm at 353, 423, 473, 523, 573, and 623 K, respectively; smoothed values reported.
•	\$	Griffiths, E. and Schoffeld, F.R.	1928	į.	353-573	No. 2313	92.0	8.0	Similar to above except electrical resistivity reported as 4.06, 4.77, 5.40, 6.16, 7.03, and 8.08 μ G cm at 353, 423, 473, 523, 573, and 623 K, respectively.
•	\$	Griffithe, E. and Schoffeld, F. H.	1188	H	353-573	No. 2312	95. 5	4. 5	Similar to above except electrical resistivity reported as 4.04, 4.96, 5.61, 6.26, 6.92, and 7.59 µG cm at 353, 423, 473, 533, 573, and 623 K, respectively.
•	\$	Mammchen, W.	1831	H	87 - 476		92.0	0.8	Cast; electrical conductivity reported as 65.1, 29.3, 29.2, and 14.6 x 10 ⁴ Ω^{-1} cm ⁻¹ at 87, 273, 373, and 476 K, respectively; Lorenz function 1.549, 1.650, 1.891, and 2.18 x 10^{-4} $\rm V^2$ K ⁻² at the above temperatures, respectively.
2	7	Mamohen, W.	1931	a	87-476				The above specimen; Lorenz function 1.58, 1.64, 1.94, and 2.39 x 10^4 V ² K ² at the above temperatures, respectively.
•	#	Mannchen, W.	1931	.	87-476		85.0	15.0	Cast; electrical conductivity reported as 59.6, 22.3, 16.0, and 14.2 x 10 ⁴ f7 ⁴ cm ⁻¹ at 87, 273, 373, and 476 K, respectively; Lorenz function 1.74, 2.43, 2.79, and 2.67 x 10 ⁴ V ² K ⁻² at the above temperatures, respectively.
•	113	Grard, C. and Villey, J.	1927	ш	353-423		96.0	4.0	Approximate composition; cast.
2	113	Grard, C. and Villey, J.	1927	M	373.2		88.0	12.0	Cast; density 2.95 g cm ⁻³ ; electrical conductivity 0.16 x 10^6 Gr ⁻¹ cm ⁻¹ at 100 C.
11	114	Cnockraleki, J.	1921		301-346		92.0	~8.0	Trace 91; denaity 2. 95 to 2. 9 g cm ⁻³ .
2	\$	Smith, A. W.	1925	-1	326. 2		90.0	10.0	1.9 cm in diameter and 10 cm long; prepared by fusing 99.97° pure aluminum and copper supplied by Baker; electrical conductivity 26.0 x 10^4 Ω^{-1} cm ⁻¹ at 23 C.
2	3	Smith, A. W.	1925	1	326.2		80.0	20.0	Similar to above except electrical conductivity 20.9 x 104 GT cm-1 at 23 C.
7	45	Serich, A. W.	1925	H	326.2		10.0	30.0	Similar to above except electrical conductivity 18.5 x 104074 cm 4 23 C.
2	\$	Smith, A. W.	1925	႕	326.2		50.0	50.0	Similar to above e cept electrical conductivity 15.3 x 10 Gr cm-1 at 23 C.
=	\$	Eucken, A. and Warrentrup, H.	1935	æ	81,273		96.0	4 .0	Cast sheet; amealed at 510 C for 45 min and quenched in ice water; electrical resistivity 1. 409 and 3. 600 µB cm at -192 and 0 C, respectively.

Not shown in figure.

TABLE 3. THERMAL CONDUCTIVITY OF ALUMINIM - COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

The second second

Set.	Ref.	Author(s)	Year	Method	Ten.p. Range, K	Name and Specimen Designation	Composition (weight percent) Al	sition percent) Cu	Composition (continued), Specifications, and Renarks
=	9	Griffiths, E. and Shakespear, G.A.	1922	1	353-453	V 671 A	85.0	12.0	 in. long and 1 in. in diameter; supplied by Monthersteal Dept. of National Physical Laboratory (England); chill-cast.
81	2	Griffiths, E. and Shakespear, G.A.	1922	u	373-573	V 671 D	88.0	12.0	Prepared from commercially pure aluminum; 15 in. long and 1 in. in dameter; supplied by Metallurgical Dept. of National Physical Lab.; annealed at 450 C.
2	\$	Griffiths, E. and Shakespear, G.A.	1922	H	373-573	V 671 C	88.0	12.0	Similar to above specimen except sand-cast.
8	2	Mikryukov, V.E. and Karagezyan, A.G.	1961	ш	288-777		98. 2	o. s	3 mm diameter and 300 mm long; prepared from 99.9 pure Al.
	3	Mikryukov, V.E. and Karagezyan, A.G.	1961	щ	328-723		98.0	1.0	Similar to above.
n	23	Mikryukov, V.E. and Karagetyan, A.G.	1961	ш	333-762		96.0	€.0	Similar to above.
ន	3	Mikryskov, V.E. and Karapstyan, A.G.	1961	M	288-781		93.0	7.0	Similar to above.
Z	88	Mikryskov, V.E. and Karagstysa, A.G.	1961	M	334-792		90.0	10.0	Similar to above.
ä	43	Setbarthwalte, C. B.	1962	ı	0.4-1.2	A1-26		6.3	Bar specimen with end sections machined to 0.5 in, diameter and 0.375 in, long, and with center portion 3.2 cm long milled to 0.5 mm thick and 2 mm wide; electrical resistivity ratio $\rho(273K)/\rho(1.2K) = 26$; transition temperature (s. c.) $T_{\rm c} = 1$, 149 K; in superconducting state.
92	£	Setterthwaite, C. B.	1962	u	0.4-1.2	Al-26			The above specimen measured in normal state; reported values calculated from the given formula $k=0.242~\mathrm{T}~(\mathrm{W~cm^{-1}~K^{-1}})$ in the same temperature range as above.
E .	116	Elffein, M.	1937	i,	296-398	1,1		w	Cylindrical specimen 1.5 cm in diameter and 3.0 cm in length; cast from 98 to 99 pure Al bar (contamination: <1.0 Fe, <0.9 Si, and <0.1 Cu + Zn) and key alloy (50 Al and 50 Cu) at 750 C, and then cooled in air; electrical resistivity reported as 5.00 µG cm at 20 C.
22	118	Elfiein, M.	1937	ı	296-398	I, 5		40	Similar to the above specimen except 99.5 pure Al notch bar (contamination: 0.28 Fe and 0.22 Si) used for the melting; electrical resistivity reported as 4.56 μ G cm at 20 C.
2	118	EMein, M.	1937	1	298-398	I, 5A		က	Similar to the above specimen except electrical resistivity reported as 4.66 μ B cm at 20 C.
2	113	Kiflein, M.	1937	1	298-398	I, 5B		S	Similar to the above specimen enough electrical resistivity reported as 4.42 $\mu\Omega$ cm at 20 C.
E	18 E	Aber, M.A.	1953	1	295.2	-		10.24	1.25 cm² in cross-section and 0.64 cm thich; electrical conductivity 21.18 \times 10 4 Gr² cm²; total Lorens function 2.564 \times 10 4 V? K².
27	13	Aller, K.A.	1953	u	295.2	84		20.78	1, 25 cm² in cross-section and 0, 79 cm thich; electrical conductivity 18, 79 x 10° (T° cm²); total Lorenz function 2, 594 x 10° V² K².
2	12.00	Aller, H.A.	1953	-1	295.2	က		30.32	1.25 cm² in cross-section and 0.90 cm thich; electrical conductivity 16.72 x 10° (R² cm²²; total Lorenz function 2.622 x 10° V² R².

THERMAL CONDUCTIVITY OF ALUMINUM + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (commund) TABLE 3.

The second second

Se er.	Ref. No.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Al	ition ercent) Cu	Composition (continued), Specifications, and Remarks
ಸ	116,	Allev, N.A.	1953	₁	295.2	4		40.82	1.25 cm ² in cross-section and 0.68 cm thick; electrical conductivity 15.26 x 10 ⁴ 0 ⁷ cm ⁻¹ ; total Lorenz function 2.455 x 10 ⁴ 0 ² h ⁻² .
83	116,	Alier, N.A.	1953	-1	295.2	ıo		48.00	1.25 cm² in cross-section and 0.70 cm thick; electrical conductivity 12.41 x 10^4 Gr ⁻¹ ; total Lorenz function 2.378 x 10^4 V ² K ⁻² .
×	\$	Hanson, D. and Rodgers, C.E.	1932	1	338, 438	ო	98.47	1.01	0.209 Fe; original composition reported as 98.99 Al (containing 0.21 Fe and 0.29 Si) and 0.287 Si; as cast.
5	ş	Hanson, D. and Rodgers, C. E.	1932	ı	338, 438	ശ	94.47	5.06	0.199 Fe; original composition reported as 94.94 Al (containing 0.21 Fe and 0.29 Si) and 0.275 Si; as cast.
8	\$	Hanson, D. and Rodgers, C.E.	1932	H	338, 438	9	92.34	7.20	0.195 Fe; original composition reported as 92.60 Al (containing 0.21 Fc and 0.29 Si) and 0.269 Si; as cast.
8	ŧ	Hanson, D. and Rodgers, C.E.	1932	-1	338, 438	œ	88.05	11.51	0.186 Fe; original composition reported as 88.49 Al (containing 0.21 Fe and 0.29 Si) and 0.257 Si; as cast.
\$	ţ	Hanson, D. and Rodgers, C.E.	1932	J	338, 438	o,	79.52	15.46	0.78 Fe; original composition reported as 84.54 Al (containing 0.21 Fe and 0.29 Si) and 0.245 Si; as east.
Ħ	ţ	Hunson, D. and Rodgers, C. E.	1932	H	338, 438	Æ	98. 49	1. 01	0.209 Fe; original composition reported as 98.49 Al (containing 0.21 Fe and 0.29 Si) and 0.287 Si; as cast.
4	4	Hanson, D. and Rodgers, C. E.	1932	-2	338, 438	Y 3	94.47	5.06	0.199 Fe; original composition reported as 94.94 Al (containing 0.21 Fe and 0.29 Si) and 0.275 Si; annealed at 500 C for 24 hr, furnace cooled.
ş	4	Hanson, D. and Rodgers, C.E.	1932	a	338, 438	Y 9	92.34	7.20	0.195 Fe; original composition reported as 92.90 Al (containing 0.21 Fe and 0.29 Si) and 0.269 Si; ameried at 500 C for 24 br, furnace cooled.
\$	\$	Hanson, D. and Rodgers, C.E.	1832	.	338, 438	¥ 8	88. 05	11. 51	0.186 Fc; original composition reported as 88.49 Al (containing 0.21 Fc and 0.29 Si) and 0.257 Si; annealed at 500 C for 24 hr, furnace cooled.
\$	4	Hasson, D. and Rodgers, C.E.	1932	٦	338, 438	9 4	84.12	15.46	0.178 Fe; original composition reported as 84.54 Al (containing 0.21 Fe and 0.29 Si) and 0.245 Si; annealed at 500 C for 24 hr, furnace cooled.
\$	ş	Hearten, D. and Rodgers, C.E.	1982	ı	338, 438	10A	79. 52	20.08	0.166 Fe; original composition reported as 79, 92 Al (containing 0.21 Fe and 0.29 Si) and 0.232 Si; annealed at 500 C for 24 hr, furnace cooled.
Ļ	4	Hanson, D. and Rodgers, C.E.	1862	-	338, 438	11A	74.03	25.60	0.156 Fe; original composition reported as 74.40 Al (containing 0.21 Fe and 0.29 Si) and 0.216 Si; annealed at 500 C for 24 hr, furnace cooled.
ţ	Ş	Hammen, D. and Rodgers, C. E.	1932		338, 438	12.4	69.17	30.46	0.146 Fe; original composition reported as 69.54 Al (containing 0.21 Fe art? 0.29 Si) and 0.202 Si; annealed at 500 C for 24 hr, farnace cooled.
\$	Ş	Hanson, D. and Rodgers, C. E.	1932	7	303, 373	10	79.52	20.08	0.165 e; original composition reported as 79.92 Al (containing 0.21 Fe and v. 29 Si) and 0.232 Si; as east.

TABLE 4. THERNAL CONDECTIVITY OF COPPER - ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

The second second

, Š	1 %	Author (s	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Al	sation percent) Al	Composition (continued), Specifications, and Remarks
-	3	Griffiths, E. and Schoffeld, F. H.	1928	٦	343-450	Aluminam bronze; 6	90.06	10.9	2.53 cm in diameter and 38 cm long; chill-cast and annealed; electrical resistivity reported as 14.7, 15.6, 16.0, 16.7, 17.5, and 19.3 µf) cm at 293, 348, 373, 423, 473, and 523 K, respectively.
~	\$	Smith, C.S. and Palmer, E.W.		-	293,473	100	77.66	0. 22	0.01 Fe; 0.75 in, in diameter and 8 in, long; rolled, assessed, and cold-drawn; heat-treated at 750 C for 2 hr; electrical conductivity reported as 41.91 and 27.59 x 10 ⁴ Ω ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
6	9	Smith, C.S. and Palmer, E.W.	1935	1	293,473	101	99.47	0.47	0.02 Fe; similar to the above specimen except electrical conductivity reported as 32.10 and 22.91 x 10f Ω ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smatch, C. S. and Palmer, E. W.	1835	_	293,473	9.	99.20	0.71	0, 09 Fe; similar to the above specimen except heat-treated at 700 C; electrical conductivity reported as 23.40 and 17.95 x 10^4 Ω^{-1} cm ⁻¹ at 20 and 200 C, respectively.
10	\$	Smith, C.S. and Palmer, E.W.	1935	٦	293,473	7.1	98.08	1.89	0.03 Fe; similar to the above specimen except electrical conductivity reported as 15.91 and 13.00 x 10 ⁴ G ⁻¹ cm ⁻¹ at 20 and 200 C. respectively.
•	\$	Smith, C.S. and Palmer, E.W.	1936	H	293,473	45	95.25	4.61	0.14 Pe; similar to the above specimen except electrical conductivity reported as 10.26 and 8.824 x 10^4 Gr ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	3	Smith, C. S. and Palmer, E. W.	1936	1	293,473	\$	92.15	7.72	0.13 Fe; 0.75 in, in diameter and 8 in, long; rolled, annealed, and colddrawn; heat-treated at 750 C for 3.5 hr; alonly cooled in farnace; electrical conductivity reported as 8.834 and 7.65 x 10 ⁴ Ω ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smith, C.S. and Palmett, E.W.	1836	a	293,473	102	90.56	9.31	0.07 Fe; similar to the above specimes except best-treated at 750 C for 2 hr, then very slowly cooled in furnace to 550 C, held for 4 hr, again furnace-cooled to 450 C, held for 16 hr, cooled to room temperature; electrical conductivity reported as 8.24 and 7.056 x 10 ⁴ Ω ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Swith, C.S. and Painser, E.W.	1936	ı	283, 473	130	87.76	12.15	0.09 Fe; similar to the above specimen except electrical conductivity reported as 6.925 and 5.738 x 10^4 Gr $^{-1}$ cm $^{-1}$ at 20 and 200 C. respectively.
2	\$	Rangos, D. and Bedgers, C.E.	1932	H	333, 543	30	98.25	1.75	Prepared from Al (containing 0.21 Fe, 0.29 Si) and high grade Cu; 0.8 in. diameter and 6.5 in. long; cast in iron mould 7 in. long and 9/16 in. in diameter, machined to size; annealed at 500 C.
=	Ş	Hanson, D. and Rodgers, C.E.	1982	٦	333, 543	28	94.90	5.10	Similar to the above specimen.
2	\$	Henson, D. and Budgers, C.E.	1932	J	333, 543	27a	91.55	8.45	Similar to the above specimen.
2	¥	Henson, D. and Redgers, C. E.	1932	٦	333, 543	25	87.22	12.78	Similar to the above specimen.
2	\$	Smith, A.W.	1925	-	326.2		0.00	50. 0	1.9 cm in diameter and 10 cm long; prepared by double-flasing the Baker's analyzed copper and aluminum; electrical conductivity 15.3 x 10 ⁴ Ω ⁻¹ cm ⁻¹ at 23 C.
A ,	\$.	Smith, A. W.	1925	٦	236.2		0.09	40.0	Similar to the above specimen except electrical conductivity 10.6 x 10f Ω^{-1} cm ⁻¹ at 23 C.
A ,	#	Smith, A.W.	1925	٦	326.2		70.0	30.0	Similar to the above specimen except electrical conductivity $9.76\times 10^4~\Omega^{-1}$ cm ⁻¹ at 23 C.

THERMAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

The second of th

1925 1967 1967 1967		326. 2	Cu Al 80.0 20.0	or Composition (continued), Specifications, and Remarks Similar to the above specimen except electrical conductivity 3.60 x 104 Ω-1
1967 1967 1967	L 326.2			cm ⁻¹ at 23 Similar to the
1967 1967 1967 1967 1967 1967 1967 1967	L 1.7-4.2	SS	99.17 0.83	cm ⁻¹ at 23 C. Calculated composition; single crystal; grown in a sealed graphite mould using the Bridgman technique; ansealed in vacuo at 750 C for 14 hr; residual electrical resistivity 2.07 µ0 cm.
Mar 13 13 13 13 13 13 13 13 13 13 13 13 13	1 1.6-4.2	04	99.10 0.90	3
f. and 1967	L 1.84.1	2AR	99.17 0.83	<u>ਵੰ</u>
f. and 1967	L 1.7-4.2	8	96.69 3.31	[a
	L 1.7-4.2	65	95.91 4.09	3
Salter, J. A. M. and 1967 Cherester, P.	L 1.54.2	12	94.89 5.11	Calculated composition; similar to the above specimes exhipt residual electrical resistivity 7.21 $\mu\Omega$ cm and grain size 0.011 cm.
1967	L 1. 74.1	12(550)	94.72 5.28	Calculated composition; polyerystalline; rod specimen 3 mm in dismeter; annealed in vacuo at 560 C for 14 hr; grain size 0.0025 cm; residual electrical resistivity 7.41 μΩ cm.
Cheraloy, P.	L 1.74.0	12(450)	94.72 5.28	ਲ
Charaloy, P., 1968 Leaver, A.B.W. and Salter, J.A.M.	L 1.7-4.1		94.87 5.13	Single crystal; 0.2 x 10 x 2.5 cm; prepared by Interactional Research and Development Co.; grown in graphite mould using Bridgman technique; measured in jig in the relaxed condition.
Charatey, P., et al. 1968	L 1.84.1		94.87 5.13	The above specimen; measured in jig under a stress of 7 kg mm ⁻² .
Chardey, P., et al. 1968	L . 1.7-4.2		94.87 5.13	Polycrystalline; prepared by international Research and Development Co.; mersured in jig in the related condition.
Chereley, P., et al. 1968	1.74.1		94.87 5.13	The above specimen; amended at 750 C for 15 hr and measured in jig under a stress of 7 kg mur?
Charley, P., et al. 1968	L 1.94.1	A _i A ₂ ; cross 1	54.87 5.13	Single crystal; grown in graphite mould using Bridgman technique; prepared by International Research and Development Co.; cross shape apecimen obtained by criting perpendicular to the large those of the crystal (0.2 x 10 x 2.6 cm); the orientation of the cross was chosen such that the primary edge dislocations made equal angles with both srins A ₁ A ₂ and B ₂ B ₂ , the angle between the acrew dislocations and these two elerctions however differed; heat flow in the arm A ₁ A ₂ direction (angle to edges 55°, and angle to acrews 35°)

. Not shows in figure.

e de la company de la comp

THERMAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

See you when the state of the see of

E S	Amchor(s	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Al	sition ercent) Al	Composition (continued), Specifications, and Bemarks
35. 117	Charater, P., Leaver, A.D.W. and Salaer, J.A.M.	8961	٦	2.04.2	A,A,; cross 1	94.87	5.13	The above specimen measured in different crycetsts.
211 22	Charaley, P., et al.	1968	.	1.74.1	B ₁ B ₂ ; cross 1			The above specimen; best flow in the arm B,B, direction (angle to edges 63°, and angle to screws 73°).
34 117	Charaloy, P., et al.	1968	u	1.74.2	A,A; cross 2	4.8	5.13	Similar to the above specimen emery the orientation of the eroes was chosen such that the primary edge dislocations made different angles with both arms A ₁ A ₂ and B ₁ B ₂ , the angle between the screw dislocations and these two directions however equal; heat flew in the arm A ₂ A ₂ direction (angle to edges 80°, and angle to acrews 82°).
38 117	Charalay, P., et al.	1868	1	1.8-3.4	B _i B _i ; cross 2			The above specimen; best flow in the arm B ₁ B ₂ direction (angle to edges 46° , and angle to acreve 52°).
2 %	Lindschill, P. and Permetaline, V. B.	1983	a	1.44.2			0.617	Calculated composition; 3 x 0.135 x 0.631 in.; prepared from 90.999 pure Cu and 99.99° pure Al; materials maled, outgassed in vacuum, stirred for 0.5 hr, then cast; amealed at 700 C for 25 hr; residual electrical resistivity 2.10 µΩ cm.
*	Beage, R.	19	Ü	309-1171		*	φ	iron and alumina used as comparative materials; data taken from emoothed curve.
3	bouye, H.	1961	ပ	348-1125		85	60	Similar to the above specimen.
=	Cherty, P. and	881	ı	1.84.0	•		1.84	Calculated composition; polycrystalline; 3 mm dameter and 12 cm long; prepared by international Research and Development Co., 14d.; meterials nelted in pure argon, cast, machined, swaped, and drawn; annualed in vacuo at 750 C for 14 hr; residual electrical resistivity 3.89 μΩ cm.
=======================================	Character, P. and Salanc, J. A. M.	1966	1	2.34.2	•		2.68	Similar to the above specimes except regidual electrical resistivity 5.20 $\mu\Omega$ cm.
#	Cherator, P. and Salter, J.A.M.	1965	a	2. 1.	10		4. 22	Similar to the above specimen except residual electrical resistivity 6.62 $\mu\Omega$ cm.
118	Charstoy, P. and Subser, J.A.M.	1966	a	1.8-3.1	128		5.11	Calculated composition; single crystal; 3 mm dismeter and 12 cm long; grown by the Bridgman technique; grain size $0.1\sim0.3$ mm; residual electrical resistivity 7.49 $\mu\Omega$ cm.
118	Charatoy, P. and Salter, J.A.M.	1966	-1	2.24.2	128			The shove specimen; 2nd run.
31	Cherifoy, P. and Salace, J.A.M.	1966	a	2.54.0	128			Similar to the above specimen.
2		1969	'n	1.74.3	Specimen No. 5	93.03	6.91	Calculated composition; single crystal; cress-sectional area 2,546 anm ² ; prepared from 90,999 pure Cu (Mitanbaha-Kansan Ca. 124.) and 90,99 pure Al (Samitomo-Kansan Co. 124.) by medicing as a high purity graphic crucifie by induction heating; grays in a splitting graphic mould by the Bridgman method using a seed crystal; encanded at 1000 C for 46 hr in a vacuum better than 10 ⁻³ ann Hi; electrolytically peliabed in phospheric acid-chyl alcehol; dislocation density 8.8 x 10 ²⁰ cm ⁻³ ; residual electrical resistivity 7.617 µ0 cm.

TABLE 4. THERMAL CONDUCTIVITY OF COPPER - ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

Statemark M. and 1869 L. 1174-13 Specimen Statemark Specimen Statemark M. and 1869 L. 1164-13 Specimen Statemark M. and 1869 L. 1164-13 Specimen Statemark Statemark M. and 1869 L. 1164-13 Specimen Statemark Statemark M. and 1869 L. 1174-13 Specimen Statemark M. and Specimen Specimen			Author(s) Year Method Temp. Used Range, K	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Al	Composition (continued), Specifications, and Remarks
S. Kammorki, M. and S. Maraki, M. and S. Kammorki, M. and S. Kammorki, M. and S. Maraki, M. and S	*	2	Kusunoki, M. and Sasuki, H.	1969	1	1.7-4.3	Specimen No. 9		
S. Kommodi, M. and J. 1869 L. 1.7-4.3 Specimen Specimen Size Specimen S	\$	2 .	Kusmoki, M. and Sumki, H.	1969	1	1.84.3	Specimen No. 11		Similar to the above specimen except specimen cross-sectional area 1.535 mm², dislocation density 6.6 x 10^{16} cm ⁻² , and residual electrical resistivity 7.568 $\mu\Omega$ cm.
SS Example of M. and Sample of M. and Sample of S	‡	2	Kagreoki, M. and Stanki, H.	1369	1	1.74.3	Specimen No. 12(1)		Similar to the above specimen except specimen cross-sectional area 1.915 mm², dislocation density 2.0 x 10 ¹⁰ cm⁻², and residual electrical resistivity 7.562 µΩ cm.
5.3 Example I, M. and loss 1 1.6-4.3 Specimen No. 13(2) No. 13(2) Specimen Survey 5.3 Example I, M. and loss 1 1.7-4.4 Specimen No. 13(2) Spec	\$	2	Kasuzoki, M. sod Sazuki, H.	88	H	1.7-4.3	Specimen No. 13(1)		Similar to the above specimen except specimen cross-sectional area 2.318 mm ² , dislocation density 3.6 x 10^6 cm ⁻² , and residual electrical resistivity 7.571 $\mu\Omega$ cm.
SS Kennacki, M. and india, M. an	2	2	Kasmoki, M. and Sumki, H.	196	1	1.64.3	Specimen No. 13(2)		Similar to the above specimen except specimen cross-sectional area 2.065 mm², dislocation density 4.4 x 10 ¹⁶ cm², and residual electrical resistivity 7.606 µΩ cm.
SS Kammobil, M. and light 1969 L. 1.7-4.4 Specimen No. 12(2) 116, Allew, M.A. 1963 L. 296.2 6 50.45 116, Allew, M.A. 1963 L. 296.2 8 55.00 116, Allew, M.A. 1963 L. 296.2 8 55.00 116, Allew, M.A. 1963 L. 296.2 9 59.62 116, Allew, M.A. 1963 L. 296.2 10 69.99 116, Allew, M.A. 1963 L. 296.2 11 71.00 116, Allew, M.A. 1963 L. 296.2 17.00 116, Allew, M.A. 1963 L. 296.2 16 77.00 116, Allew, M.A. 1963 L. 296.2 16 77.00 <th>a</th> <th>2</th> <th>Komunekt, M. and Suzakt, H.</th> <td>1960</td> <td>1</td> <td>1. 7.3</td> <td>Specimen No. 14</td> <td></td> <td>Similar to the above specimen emosy. epecimen arose-sectional area $1.569~\rm mm^2$, dislocation density $8.4 \times 10^{10}~\rm cm^{-2}$, and residual electrical resistivity $7.641~\mu\Omega$ cm.</td>	a	2	Komunekt, M. and Suzakt, H.	1960	1	1. 7.3	Specimen No. 14		Similar to the above specimen emosy. epecimen arose-sectional area $1.569~\rm mm^2$, dislocation density $8.4 \times 10^{10}~\rm cm^{-2}$, and residual electrical resistivity $7.641~\mu\Omega$ cm.
116, Aller, N.A. 1963 L. 296.2 6 50.45 116, Aller, N.A. 1963 L. 296.2 7 53.00 116, Aller, N.A. 1963 L. 296.2 8 55.00 116, Aller, N.A. 1963 L. 296.2 9 55.00 116, Aller, N.A. 1963 L. 296.2 10 69.39 116, Aller, N.A. 1963 L. 296.2 11 71.00 116, Aller, N.A. 1963 L. 296.2 13 75.00 116, Aller, N.A. 1963 L. 296.2 13 77.00 116, Aller, N.A. 1963 L. 296.2 13 77.00 116, Aller, N.A. 1963 L. 296.2 14 77.00	23	2	Knemacki, M. and Snamki, M.	1969	ı	1.74.4	Specimen No. 12(2)		Same fabrication method and best-treatment as the above specimes except no other details reportest.
116, Aller, N.A. Aller, N.A. 1963 L. 296.2 7 53.00 116, Aller, N.A. 1963 L. 296.2 8 56.00 116, Aller, N.A. 1963 L. 296.2 9 59.62 116, Aller, N.A. 1963 L. 296.2 10 69.99 116, Aller, N.A. 1963 L. 296.2 11 71.00 116, Aller, N.A. 1963 L. 296.2 13 76.00 116, Aller, N.A. 1963 L. 296.2 13 76.00 116, Aller, N.A. 1963 L. 296.2 13 76.00 116, Aller, N.A. 1963 L. 296.2 13 77.00 116, Aller, N.A. 1963 L. 296.2 13 77.00 116, Aller, N.A. 1963 L. 296.2 14 77.00	2	11.6 16.	Aller, N.A.	1963	1	•	•	50.45	1.25 cm² in cross-section and 0.50 cm thick; electrical conductivity 10.68 x 10° Ω^{-1} cm ⁻¹ ; total Lorenz function 2.345 x 10^{-6} $\sqrt{7}K^{-2}$.
116, Aller, N.A. 1963 L. 296.2 8 55.00 116, Aller, N.A. 1963 L. 296.2 9 59.62 116, Aller, N.A. 1963 L. 296.2 10 69.99 116, Aller, N.A. 1963 L. 296.2 11 71.00 116, Aller, N.A. 1963 L. 296.2 13 75.00 116, Aller, N.A. 1963 L. 296.2 13 76.00 116, Aller, N.A. 1963 L. 296.2 14 77.00 116, Aller, N.A. 1963 L. 296.2 14 77.00	3	# # # # # # # # # # # # # # # # # # #	Alor, K.A.	1963	ı		7	53.00	1.25 cm² in cross-section and 0.96 cm thick; electrical combactivity 10.74 x 10° (G ⁻¹ cm ⁻¹ ; total Lorenz function 2.334 x 10 ⁻⁶ V ⁷ K ⁻² .
Aller, N.A. 1963 L. 296.2 9 59.62 Aller, N.A. 1963 L. 296.2 10 69.99 Aller, N.A. 1963 L. 296.2 11 71.00 Aller, N.A. 1963 L. 296.2 12 73.00 Aller, N.A. 1963 L. 296.2 13 76.00 Aller, N.A. 1963 L. 296.2 14 77.00	•	## ##	Aller, N.A.	1963	ı		ec e	55.00	1.25 cm ² in cross-section and 0.52 cm thick; electrical conductivity 10.82 x 10° Ω^{-1} cm ⁻¹ ; total Lorenz function 2.348 x 10^{-5} VFz ⁻² .
Allow, M.A. 1963 L. 295.2 10 69.99 1.25 cm² in cross-section and 1.15 cm thicks 6.65 x 10° G²² cm²; total Lorenz function Allow, M.A. 1963 L. 295.2 11 71.00 1.25 cm² in cross-section and 0.96 cm thick; 7.55 x 10° G²² cm²; total Lorenz function Allow, M.A. 1963 L. 295.2 13 76.00 1.25 cm² in cross-section and 0.90 cm thick; 6.02 x 10° G²² cm²; total Lorenz function Allow, M.A. 1963 L. 295.2 13 76.00 1.25 cm² in cross-section and 0.74 cm thick; 6.02 x 10° G²² cm²; total Lorenz function Allow, M.A. 1963 L. 296.2 14 77.00 1.25 cm² in cross-section and 0.74 cm thick; 4.25 x 10° G²² in cross-section and 0.80 cm thick; 3.54 x 10° G²² cm²; total Lorenz function	8	¥ 5	Alov, K.A.	1963	ı	296.2	on .	59.62	1.25 cm² in cross-section and 0.52 cm thick; electrical conductivity 9.98 x 10^4 Ω^{-1} cm² i; total Lorenz function 2.994 x 10^{-8} $\nabla^2 K^{-2}$.
Aller, N.A. 1963 L. 295.2 11 71.00 1.25 cm² in cross-section and 0.96 cm thack; netal Lowerz function 7.5 x 10° G²¹ cm²; setal Lowerz function 6.71 x 10° G²¹ cm²; setal Lowerz function 6.71 x 10° G²¹ cm²; setal Lorenz function 6.71 x 10° G²¹ cm²; setal Lorenz function 6.02 x 10° G²¹ cm²; setal Lorenz function 6.02 x 10° G²¹ cm²; setal Lorenz function 77.07 Aller, N.A. 1963 L. 296.2 14 77.07 1.25 cm² in cross-section and 0.74 cm thick; 4.25 x 10° G²¹ m²; setal Lorenz function 75.00 Aller, N.A. 1963 L. 296.2 14 77.07 1.25 cm² in cross-section and 0.74 cm thick; 4.25 x 10° G²¹ m²; setal Lorenz function 3.54 x 10° G²² cm²; setal Lorenz function 3.54 x 10° Cm²; setal Lorenz function 3.54 x 10° Cm²; setal Lorenz function 3.54 x 10° Cm² cm² cm² cm² cm² cm² cm² cm² cm²	5	ä	Aller, N.A.	1963	1		10	68.89	1.25 cm² in cross-section and 1.18 cm thick electrical conflictivity 8.65 x 10 4 Gr² cm²; total Lorenz function 2.233 x 10 4 V ⁴ Kr²
. Allow, M.A. 1963 L 296.2 12 73.00 1.25 cm² in cross-sections and 1.49 cm thick; 6.71 x 10 ⁶ G²-1 cm²; total Lorenz function 1.25 cm² in cross-section and 0.80 cm thick; 6.02 x 10 ⁶ G²-1 cr²; total Lorenz function 1963 L 296.2 14 77.00 1.25 cm² in cross-section and 0.74 cm thick; 4.25 x 10 ⁶ G²-1 m²; total Lorenz function 1.25 cm² in cross-section and 0.80 cm thick; 3.54 x 10 ⁶ G²-1 cm²; total Lorenz function 3.54 x 10 ⁶ G²-1 cm²; total Lorenz function 3.54 x 10 ⁶ G²-1 cm²; total Lorenz function 3.54 x 10 ⁶ G²-1 cm²; total Lorenz function	8	Ä	Aller, N.A.	1963	-	295.2	11	71.00	1.25 cm² is cross-section and 0.96 cm thick; electrical conductivity 7.75 x 10 ⁴ fb ⁻¹ cm ⁻¹ ; total Lovenz function 2.436 x 10 ⁻³ VMr ⁻² .
, Allow, M.A. 1963 L 295.2 13 76.00 , Allow, M.A. 1963 L 296.2 14 77.00 , Allow, M.A. 1963 L 296.2 15 75.00	2	## ##	Alber, N.A.	1865	1	296.2	12	13.00	1, 29 cm² in cross-section and 1,49 cm thick; electrical conductivity; 6.71 x 10 ⁴ Ω ⁻¹ cm ⁻¹ ; total Lorenz function 2,247 x 10 ⁻⁸ V ² K ⁻² .
Alber, N.A. 1963 L 296.2 14 77.09 Alber, N.A. 1963 L 296.2 15 75.00	3	i.	Aller, N.A.	1963	H		13	76.00	1.25 cm² in cross-section and 0.80 cm thick; electrical commutativity 6.02 x 10 f 0^-1 cm²; total Lorenz function 2.438 x 10^8 VMr².
1963 L 296.2 15 75.00	2	Ë	Aller, N.A.	1963	1	296.2	14	77.00	1.25 cm² in cross-section and 0.74 cm thick; electrical conductivity 4.25 x 10 th 11 m²; total Lorenz function 2.438 x 10 s V*k-².
	8	žŝ	Aller, R.A.	1961	1		15	75.00	1.25 cm² in cross-section and 0.80 cm thick: electrical conductivity 3.54 x 10^4 Gr 4 cm 4 ; total Lorenz function 2.392 x 10^{-8} VFR-2.

(Y

THERMAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

THE REPORT OF THE PARTY OF THE

Composition (continued), Specifications, and Remarks	1.25 cm² in cross-section and 0.95 cm thick; electrical conductivity: 4.16 x 104 f0-1 cm ⁻¹ ; total Lorenz function 2.360 x 10-8 VMc ² .	1.25 cm² in cross-section and 1.16 cm thick; electrical conductivity 5.95 x 10° fl ⁻¹ cm ⁻¹ ; total Lorenz function 2.277 x 10° VMr ⁻² .	1.25 cm ² in cross-section and 1.35 cm thick; electrical conductivity 7.40 x 10 ⁴ Ω^{-1} cm ⁻¹ ; total Lorenz function 2.345 x 10^{-4} V^2K^{-2} .	1.25 cm² in cross-section and 0.60 cm thick; electrical conductivity 10.04 x 10° fl ⁻¹ cm ⁻¹ ; total Lorenz function 2.304 x 10° t V ² K ⁻² .	1.25 cm² in cross-section and 0.51 cm thick; electrical conductivity 10.50 x 10° Ω-¹ cm⁻¹; total Lorenz function 2.258 x 10⁻² VºK⁻².	Polycry stalline specimen; annealed.	Polycrystalline specimen; plastically deformed (6%).	Polycrystalline specimen; plastically deformed (12%).	Polycrystalline; 3 mm in diameter and 10 cm long; prepared by International Research and Development Co., Ltd.; annealed at 750 C for 15 hr in graphite tubes in vacuo and furnace cooled.	Similar to the above specimen except 2. 9% deformed.	Similar to the above specimen except 10% deformed.	Similar to the above specimen except 6% deformed.	Similar to the above specimen except 6.2% deformed.	Similar to the above specimen except 12. % deformed.	0.22 Fe; 0.75 in. diameter and 8 in. long; rolled to 1.25 in. in diameter. annealed at 700-750 C, cold-drawn to size; lieat-treated at 760 C for 3.5 hr, alowly air-cooled; electrical conductivity 7.923 and 6.724 x 10 ¹ ff ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.	0.52 Fe, 0.38 Sn, 0.31 Ni, and trace Zn; 0.75 in, diameter and 3 in, lenge same fabrication method as the above apecimen; heat-treated at 730 C for 3.5 hr, very slowly cooled; electrical conductivity 7.314 and 6.34 \ 10 ⁴ \ \text{Q}^{-1} \ \text{ cm}^{-1} \ \text{ at 20 and 200 C, respectively.}	Polycrystalline; form factor 37. 30 cm ⁻¹ ; prepared from 99. 999 pure copper supplied by Johnsons and Matthey and from 99. 99 pure aluminum supplied by Jarrell Ash Co. by melting in an evacuated quartz best, casting into a quartz capillary and quesching in an soveething ansate grain vacto at 1273 K for 18 hr; average grain size I mm; residual electrical resistivity 7.51 µ0 cm.
sition ercent) Al						5.47	5.47	5.47	0.30	0.90	0.83	4.09	5.11	5.28	9.90	9.41	4.07
Composition (weight percent) Cu Al	79.53	83.00	88.00	89.22	95.00										59.38	89.38	
Name and Specimen Designation	16	17	18	19	20				84	2 (2.9%)	2 (10%)	8 (6%)	12 (6.2%)	12 (12.8%)	Ber 50	Bar 49	∢
Temp. Range, K	295.2	286.2	296.2	296.2	295.2	1.64.1	1.6-4.5	2.44.2	1.6-4.2	1.64.0	1.6-4.2	1.7-4.2	1.64.4	2.4-4.2	293,473	293,473	1.7-4.0
Method Used	7	1	ᆸ	H	ı	1	ı	H	-1	H	.1	ı	ı	1	1	-1	L
Year	1953	1963	1963	1963	1963	1966	1965	1965	1968	1968	1968	1968	1966	1968	1936	1936	1972
Author (s)	Alier, N.A.	Albr, N.A.	Albr, N.A.	Albr, N.A.	Aller, N.A.	Chareley, P. and Salter, J.A.M.	Cherekey, P. and Saltor, J.A.K.	Chardey, P. and Salter, J.A.M.	Cherricy, P., Saltor, J.A.M. and Leaver, A.D.W.	Chareloy, P., et al.	Charatey, P., et al.	Charaley, P., et al.	Charattey, P., et al.	Charalay, P., et al.	Smith, C.S. and Palmer, E.W.	States. C. S. and Palmer. E. W.	Prioduce, A.J., Cla, T.K., Elemene, P.G., and Reynolds, C.A.
% E	116.	116.	is E		ž	3	3	3	2	2	22	23	2	2	\$	•	38
, i	3	3	2	*	5	3	8	*	E	Ę	2	74.	Ë	2	Ė	2	\$

THERMAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

A CONTRACTOR OF THE PARTY OF TH

The second secon

Cer. Ref.	f. Author(s) 5.	Year	r Method Used	d Temp. Range, K	Name and Spectmen Designation	Composition (weight percent) Cu Al	Composition (continued), Specifications, and Remarks
22	119, Friedman, A.J., 169 Che, T.K., Klem P.G., and Beyende, C.A.	1972	2 r	1.5-3.8	₹	·	The above specimen irradiated for 6 hr at 25 to 60 C at the Broothaven National Laboratory BARR facility for a total fast neutren (>1 MeV) dosage of 4 x 10 ¹¹ n cm ⁻² and a total thermal dosage of 1 x 10 ¹⁵ n cm ⁻² ; form factor 37. 57 cm ⁻¹ ; residual electrical resistivity 7.46 pf) cm.
#	119, Prindman, A.J., 108, 170 ot al.	1972	7	1.7-3.8	Ø	4.07	Some fabrication method as the above specimen A; form factor 35.67 cm ⁻¹ ; residual electrical resistivity 7.60 µA cm.
119, 169, 170	9, Priedman, A.J., 170 et al.	1972		1.3-3.7	Ø		The above specimen deformed in tensions, 6.1%, at reces temperature; form factor 47.4 cm ⁻¹ ; residual electrical resistivity 7.89 µ0 cm.
23 25 25	19. Priedman, A.J	1972	7	1.3-3.8	ec,		The above specimen amesied in vacuo at 573 K for 24 hr; form factor 47.0 cm ⁻¹ ; residual electrical resistivity 7.90 µG cm.
	19, Prioduna, A.J	1972	1	1.4-3.9	æ		The above specimen irradiation treated same as the above specimen A for curve No. 78; form factor 46.9 cm ⁻¹ ; resident electrical resistivity 7.83 μ 0 cm.
H	19. Prindman, A.J	1972	~	1.6-3.8	A		The above spectmes annealed in vacuo at 673 K for 24 hr; form factor 46.6 cm ⁻¹ ; residual electrical resistivity 7.98 µC cm.
•	M. Mangada, M.A., Klamana, P.G., and Reynolds, C.A.	ž į	ii ii	1.34.1	∢	4. 20	Obtained from Materials Research Corp., Orangaburg, N. Y.; prepared from 99, 999 pure Al and Cu by vacuum induction mediag, then machining and swaping to 0, 125 in, in diameter; celd-worked in liquid altrogen, then kept at 293 K for 3 hr; residual electrical resistivity 7, 995 μ G cm.
•	M Mitchell, M.A.,	1241	1	1.4-4.1	A		Similar to the above spectmen A but annealed at 1193 K for 46 hr after cold-work; residual electrical resistivity 7.461 µ0 cm.
2	H Machell, M.A., of al.	1261	1	1.3-4.2	ជ		Sinailar to the above specimen A but annualed at 1123 K for 28 hr after cold-work, then given 9. % tornical strain at 293 K, re-annualed at 300 K for 12 hr; residual electrical resistivity 7.468 gD cm.
•	14 Mandadi, M.A	1871	1	1.4-4.1	ឌ		The above specimes re-assemed at 373 K for 48 hr; residial electrical resistivity 7.450 μ G cm.
•	is marked, M.A.,	161	1 1	1.4-4.0	ខ		The above specimen re-amenied at 693 K for 20 hr; residual electrical resistivity 7.463 $\mu\Omega$ cm.
et er	M Milebell, M.A.,	1971	1	1.3-4.1	ថ		The above specimen re-amenied at 713 K for 48 hr; residial electrical resistivity 7.404 $\mu\Omega$ cm.
	Manded, M.A.,	<u></u>	.	1:24.1	B		Same composition, supplier, and fabrication method as the above specimen A but swaped to 3/16 in. in dismeter; amended at 1205 K for 48 hr; feating a signal electrical resistivity 7.350 gO cm.
2	K MANAG, K.A	1971	1	1.54.1	ij		Similar to the above specimen D bat given, after assealing. 9, 25% tearile strain at 77 K with maximum stress 28, 5 kg mm ⁻⁴ and strain rate 0, 0003 then re-annealed at 300 K for 12 hr; residual electrical resistivity 7, 566 pdf cm.
z	M Machell, M.A.	181	7	1.3-4.1	E2		The above specimen re-annualed at 422 K for 48 hr; residual electrical resistivity 7.475 μ C cm.
3 2	56 Minchell, M.A	121	1 1	1.4-4.1	ន្ន		The above specimen re-amonied at 552 K for 48 hr; residual electrical resistivity 7, 488 LD cm.

THERNAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

-

	% E.	Anchor(s)	Year	Method Temp Used Range,	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Al	Composition (continued), Specifications, and Bemarks
I	3	Mischell, M.A., Memorie, P.G., and Reproble, C.A.	1821	1	1.2-4.1	E4	4.5	The above specimen re-amended at 673 K for 48 hr; residual electrical resistivity 7, 542 μΩ cm.
	2	Michell, M.A., et al.	1221	ы	1.2-4.2	ES		The above specimen re-amonated at 797 K for 48 hr; residual electrical resistivity 7.456 all cm.
	3	Michell, M.A., et al.	rg.	H	1.2-4.2	E6		The above spectmen re-amended at 920 K for 48 hr; regidual electrical resistivity 7.463 $\mu\Omega$ cm.
	3	Mitchell, M.A., et al.	1321	ы	1.4-4.1	E7		The above specimen re-ameraled at 1202 K for 48 hr; residual electrical resistivity 7.441 $\mu\Omega$ cm.
	3	Michell, M.A., et al.	1941	a.	1.3-4.2	I.		Similar to the above specimen E1 but amended at 1202 K for 48 hr, then given 6.13% tensile strain at 77 K with maximum atrees 29 kg mm ⁻⁴ and strain rate 0.0081 s ⁻¹ , re-amended at 360 K for 48 hr, residual electrical resistivity 7.567 μG cm.
	\$	Missball, M.A., et al.	181	H	1.4-4.2	F3		The above specimen re-amended at 564 K for 9.5 hr; residual electrical resistivity 7.536 gO cm.
	2	Mississil, M.A.,	121	ı	1.2-4.2	F3		The above apocimen re-amenaled at 565 K for 1.5 hry residual electrical resistivity 7.535 $\mu\Omega$ cm.
	3	Mitchell, M.A., et al.	181	ы	1.5-4.2	F4		The above apecimen re-amenied at 567 K for 46 hr; residual electrical resistivity 7, 498 μG cm.
	2	Mitchell, M.A., et al.	1241	ы	1.5-4.2	F. 68		The above specimen re-amonaled at 570 K for 97 hr; residual electrical resistivity 7.489 pG cm.
	3	Mitchell, M.A., et al.	181	ы	1.3-4.2	5		Similar to the above spectmen F1 but given, after assembling, 9.25% tensile strain at 77 K with maximum stress 25.1 kg mm. ² and strain rate 0.004 s ⁻¹ , re-annealed at 344 K for 48 hr; residual electrical resistivity 7.644 µD cm.
	2	Mischell, M.A., et el.	1871	н	1.2-4.2	25		The above specimen re-annealed at 670 K for 0.5 hr; residual electrical resistivity 7.625 $\mu\Omega$ cm.
	2	Mitchell, M.A., os al.	1241	1	1.2-4.2	83		The above specimen re-annealed at 661 K for 1.5 hr; residual electrical resistivity 7.612 pf cm.
	2	Mitchell, M.A., et al.	1821	H	1.2-4.1	3		The above specimen re-americal at 660 K for 48 hr; residual electrical resistivity 7,601 $\mu\Omega$ cm.
	3 .	Actional, M.A., or al.	1971	-1	1.2-4.2	gg		The above specimen re-annealed at 732 K for 48 hr; residual electrical resistivity 7.563 pf) cm.
	3	Mitchell, M.A.,	181	н	1.2-4.1	8		The above specimen re-americal at 1308 K for 48 hr; residual electrical resistivity 7.576 $\mu\Omega$ cm.
~	\$ <u>E</u>	Clm, T.K. and Lipschults, F.P.	1972	H	4.6-69	ü	0.43	Supplied by American Anaconda Brass Co.; 0.5 in. diameter x 5 in. long with central 5 in. machined to 0.25 in. in diameter; amended at 1273 K for 48 hr; electrical resistivity 1.666, 1.666, 1.362, and 2.470 pd. cm at 1.1, 4.2, 77, and 273 K, respectively.
-	\$Ë	Chu, T.K. and Lipschultz, F. P.	1972	ы	4.5-55	C 3		The above specimen fatigued for 500 cycles with maximum lead 6.4 kg mm ⁻² ; electrical resistivity 1.071, 1.067, 1.301, and 2.664 gO em at 1.1, 4.2, 77, and 273 K, respectively.

the state of the s

THERMAL CONDUCTIVITY OF COPPER - ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 4.

	ž ģ	Author(s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Al	Composition (continued), Specifications, and Remarks
113	# E	Chu, T.K. and Lipschultz, F.P.	1972	ı	1.7-72	ငဒ	0.43	The above specimen fatigued for 10° cycles with maximum load 6.4 kg mm ⁻² ; electrical resistivity 1.069, 1.069, 1.304, and 2.863 μΩ cm at 1.1, 4.2, 77, and 273 K, respectively.
#	\$E	Cha, T.K. and Lipschille, F.P.	2251	ы	4.6-69	S		Similar to the above specimen C1 but given a 5% plastic deform under uniaxial stress; electrical resistivity 1.066, 1.066, 1.294, and 2.660 µC cm at 1.1, 4.2, 77, and 273 K, respectively.
118	\$E	Che, T.K. and Lipschultz, P.P.	1872	H	4.6-66	90		The above specimen fatigued for 10 ⁵ cycles with maximum load 6.4 kg mm ⁻² ; electrical resistivity 1.064, 1.306, and 2.665 µ3 cm et 4.2, 77, and 273 K, respectively.
91	‡ E	Cles, T.K. and Lipschaftz, F.P.	1972	H	4.6-66	В1	6.97	Same supplier and dimensions as the above specimen C1; amosaled at 1237 K for 46 hr; electrical resistivity 7.868, 7.867, 8.253, and 10.19 µG cm at 1.1, 4.2, 77, and 273 K, respectively.
117	\$ 5	Cle, T.K. and Lipschill, F.P.	1972	1	4.9-68	B 2		The above specimen fatigued for 500 cycles with maximum load 8, 3 kg mm ⁻⁴ ; electrical resistivity 7, 850, 7, 853, 8, 250, and 10, 16 µD cm at 1, 1, 4, 2, 77, and 273 K, respectively.
118	\$ E	Che, T.K. and Lipschalt, F.P.	1972	H	4.7-68	B 3		The above specimen fatigued for 10° eycles; electrical resistivity 7,806, 7,806, 8.204, and 10.10 all cm at 1.1, 4.2, 77, and 273 K, respectively.
91	‡ E	Che, T.K. and Lipschultz, F.P.	1972	1	5.4-68	¥		The above specimen fatigued for 10 ⁵ cycles; electrical resistivity 7.813, 7.813, 8.217, and 10.14 all cm at 1.1, 4.2, 77, and 273 K, respectively.
8	ą£	Clu, T.K. and Lipschultz, F.P.	1942	i i	4.7-68	B 2	6.97	Similar to the above specimen B1 but given a 5% plastic deform under uniarial stress; electrical resistivity 7.869, 7.869, 8.288, and 10.16 µC cm et 1.1, 4.2, 77, and 273 K, respectively.
121	₹E	Chu, T.K. and Lipschalts, F.P.	1972	ப	4. B-65	2		The above specimen fatigued for 2 x 10 ⁵ cycles with maximum lead 8.3 kg mm ⁻² ; electrical resistivity 7.801, 8.273, and 10.21 µB cm at 4.2, 77, and 273 K, respectively.
Ħ	2	Friedman, A.J.	1974	ı	5.3-73	10	4.07	The same irradiated specimes B for curve No. 88; electrical resistivity 7.832, 7.832, 8.204, and 10.033 4f) cm at 1.2, 4.2, 77, and 273 K, respectively.
113	8	Friedman, A.J.	1974	-1	5.3-70	ıo		The above specimen re-ameraled at 873 K for 24 hr; electrical restativity 7.949, 7.949, 8.314, and 10.150 K at 1.2, 4.3, 77, and 278 K, respectively.
25	2	Prioduca, A.J.	1974	ħ	5.3-68	w	4.07	Form factor 37.487 cm ⁻¹ ; amealed in vacuum at 1273 K fer 18 hr; electrical restativity 7.513, 7.513, 7.867, and 9.630 µf) cm at 1.2, 4.2, 77, and 2.73 K, respectively.
125	3	Friedman, A.J.	1974	ı	5.0-72	9		The at we specimen.
8	8	Friedman, A.J.	1874	-	5.0-67	•		The above specimen given the same irradiation treatment as the specimen B for curve No. 82; form factor 37.569 cm ⁻¹ ; electrical resistivity 7.461, 7.461, 7.812, and 9.564 µG cm at 1.2, 4.2, 77, and 273 K, respectively.
Ħ	8	Leaver, A. B.W. and Charaley, P.	1971	ı	1.94.0	2 AJ	0.83	Similar to the specimen for curve No. 73; amealed; residual electrical resistivity 2.080 p. cm.
2	8	Legente, A.D.W. and Charaley, P.	12	1	1.54.1	2 A1		The above specim tensile strained 8.2% under a attess of 16.33 kg mm ⁻² ; residual electrical resistivity 2.109 µ0 cm.
3	23	Legeur, A.D.W. and	1811	-1	2.0-1.0	12 AJ	96 .4	Polycrystalline; obtained from "nternational Research and Development Co., Ltd.; residual electrical resistivity 7.61 (flom.

TABLE 4. THERMAL CONDUCTIVITY OF COPPER + ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

3

一人為此 有一里地 一次 多年中 医人名 人名 人名

<u> </u>	79.	Author(s)	Year	Method Used	od Temp. id Range, K	Name and Specimen Designation	Composition (weight percent) Cu AI	on cent) Al	Composition (continued), Specifications, and Remarks
3	8	Leaver, A.D.W. and Charaley, P.	1971	1	1.8-4.0	12 AJ			The above specimen tensile strained 1.8% under a stress of 15.35 kg mm residual electrical resistivity 7.62 plom.
H	2	Legver, A.D.W. and Charaley, P.	181	-	2.0-4.2	12 AJ	เก๋	5.56	Single crystal; grown in a graphite mold by the Bridgman technique; annealed,
N	8	Leaver, A.D.W. and Clarator, P.	181	H	2.3-4.1	12 VI			The above specimen tensile strained 7.3% under a stress of 3.03 kg mm^{-1} .
3	8	Leaver, A.D.W. and Claratery, P.	1971	H	1.9-4.0	12 A1			The above specimen tensile strained 17.0% under a stress of 4.48 kg mm ⁻¹ .
ž	120	Leaver, A.D.W. and Charaley, P.	1971	ч	2.04.1	12 A1			The above specimen tensile strained 22, 9% under a stress of 6, 73 kg mm^{-1} .
135	121	Kopure, Y. and Biki, Y.	1973	н	1.6~6.6		97.8 2.2	N	Calculated composition (5 a/o Al); 2.5 mm dia x 70 mm long; prepared from 99.99° Cu and Al by vacuum melting and casting; amorated in vacuum at 850 C for 15 hrs.
13	138 173	Empoor, A., Rowlands, J.A., and Woode, S.B.	1974	1	0.48-3.9		95.5 4.5	w	Calculated composition (10 a/o Al); cylindrical specimen 3.6 mm in diameter; prepared by melting the pure materials in a quartz container in vacuum, resulted ingot swaged to size; cold-worked; residual electrical resistivity 7.54 µB cm.
137	172	Kapoor, A., et al.	1974	a	0.52-4.0				The above specimen annealed in vacuum at 800 K for 12 hr; residual electrical resistivity 6.79 μ G cm.
138	172	Kapoot, A., et al.	1974	H	0.48-3.7				The above specimen reannealed in vacuum at 675 K for 12 hr; residual electrical resistivity 6.88 $\mu\Omega$ cm.
8	172	Kapoor, A., et al.	1974	h	0.65-4.0				The above specimen reannealed in vacuum at 1000 K for 12 hr; residual electrical resistivity 6.69 μ G cm.

4.2. Aluminum-Magnesium Alloy System

The aluminum-magnesium alloy system does not form a continuous series of solid solutions. The maximum solid solubility of magnesium in aluminum is 17.4% (18.9 At.%) at 723 K and the solubility decreases at higher and lower temperatures, being only 1.9% (2.1 At.%) at 373 K. The maximum solid solubility of aluminum in magnesium is 12.7% (11.6 At.%) at 710 K and likewise it decreases at higher and lower temperatures, being only about 1.5% (1.3 At.%) at 373 K. Thus the region of solid solution for this system is even more limited than that of the aluminum-copper alloy system.

There are 40 sets of experimental thermal conductivity data available for this system. Of the 22 data sets for Al + Mg alloys listed in Table 6 and shown in Figure 11, seven sets are merely single data points. Of the 18 data sets for Mg + Al alloys listed in Table 7 and shown in Figure 12, 10 sets are single data points.

For the Al + Mg alloys, measurements were limited to specimens containing no more than 15% Mg. The recommended curves are, therefore, given for 0.3 to 10% Mg alloys only. They follow the general trend of the data of Johnson [56] (Al + Mg curves 5 and 6) and Powell, et al. [57] (Al + Mg curves 18-22) at low temperatures and the data of Mikryukov and Karagezyan [58] (Al + Mg curves 8-11) at high temperatures. At 300 K the k values were calculated from eq. (12), and the k_g values at 300 K were derived as the differences between k and k_e values. These k_g values were extrapolated to higher temperatures up to the sodidus points according to the temperature dependence of eq. (35) and to lower temperatures according to the pattern of $\boldsymbol{k}_{\boldsymbol{g}}$ curves derived from the available experimental \boldsymbol{k} and the calculated $k_{\underline{e}}$ around the region of maximum $k_{\underline{\sigma}}$ and according to T^2 dependence at lower temperatures assuming $k_{\mathbf{g}}$ to be negligible at 1 K. The total thermal conductivity values were then obtained by adding the extrapolated k, and the calculated ke. The resulting recommended values agree with the data of Powell et al. [57] (Al + Mg curves 18-20) at low temperatures to within 10% and with the data of Meyer-Rassler [122] (Al + Mg curve 7) and of Mikryukov and Karagezyan [58] (Al + Mg curves 8-11) at higher temperatures to within 8%. The k_{σ} values are very uncertain and are merely to serve as correction terms for the derivation of the total thermal conductivities.

For the Mg + Al alloys, no measurements were made below 85 K and none for alloys containing more than 14% Al. The data of Smith [45] (Mg + Al curves 1 and 2) and Kikuchi [59] (Mg + Al curves 8-13) were favored in constructing the conductivity-composition curve for 300 K. The k_e values were calculated from eq. (12) and those at 300 K were plotted on the conductivity-composition graph. The k_g values at 300 K were taken as the differences between k and k_e values. These k_g values were similarly extrapolated to low and high temperatures according to the appropriate temperature dependences, which are very uncertain. The total thermal conductivity values were obtained by adding these k_g to the calculated k_e . Since

there is no information as to where the maxima of the k_g curves occur, no k_g values are given below 100 K and hence no total k values are reported at low temperatures for the dilute alloys, even though the k_g values are known. The k values of the 5 and 10% Al alloys are restricted to the range between 250 and 350 K, since electrical resistivity values are available only in this range. The recommended values are in agreement with the data of Kikuchi [59] (Mg + Al curves 8-13), Smith [45] (Mg + Al curves 1 and 2), and Giuliani [125] (Mg + Al curve 14) to within 6%.

The resulting recommended values for k, k_e , and k_g are tabulated in Table 5 for 10 alloy compositions. These values are for well-annealed alloys. The k values are also shown in Figures 9 and 10. The values of residual electrical resistivity for eight of the 10 alloys are also given in Table 5. The uncertainties of the k values are stated in a footnote to Table 5, while the uncertainties of the k_e and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than $\pm 15\%$, between ± 15 and $\pm 30\%$, and greater than $\pm 30\%$, respectively.

RECONNENDED THERMAL CONDUCTIVITY OF ALUMINIA-MAGNESICM ALLOY SYSTEM!

A THE STATE OF THE

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1]

		(0.55 At. %)		Mg: 1.00%	% (98.89 At. %) % (1.11 At. %)	At. %) At. %)		Al: 97.00% (Mg: 3.00% (0% (96.68 0% (3.32	(96.68 At. %) (3.32 At. %)		Al: 95.00% Mg: 5.00%	0% (94. 48 At. %) 0% (5. 52 At. %)	At.%)
0.21	= 0.210 µA cm			p _o = 0	= 0.420 µA cm	E.		P ₀ = 1	ρ ₀ = 1.260 μΩ cm	. czs		,= °0	$ ho_0 = 2.10 \ \mu \Omega \ cm$	£
	40	,a60	F	*	سيد ا	**	F	. ×	**	.¥60	H	<u> </u>	Me	, see
			4 4	0.240			47 (4	0.0809			4 4	0.0486		
			9 00	0.494			000	0.168				0.0968		
			2;	0.625			10	0.213			2:	0.125		
			<u>-</u>	0.942			et —	0.328			c 1	1. TaT		
			8	1.25			20	0.343			8	0.257		
			22	1. 52			52	0.552			22 2	0.322		
			3	 			3 \$	0.658			3 9	900		
			\$ %	, c,			2 28	0.964			3 %	900		
			9	2.21			9	1,05			99	0.675		
		-	2	2.10			2	1.10			2	0.728		
			88	1.98			88	1.12			88	0.768		
ું અ	2.09	0.141\$	9 6	1.85	1.74	0.113\$	8 8	1.15	1.07	0.0849	10 2	0.832	0.761	0.0710
, i	_	0.117\$	150	1.84*	1.74	0.0974	150	1.28*	1.21	0.0731\$	150	0.978	0.916	0.0615
، نہ		0.0978	200	1.89#	1.81	0.0832	200	1.40*	 	0.0631	8	1.10	1.05	0.0535
N C		0.0841	220	. \$6. % . \$6. % . \$6.	1.89	0.07233	22.80	1.50%	1. 44	0.0555	226	1.21	1.16	0.04748
2.17	2.10	0.0739\$	Š	2.03	1.97	0.0640≇	300	1.57	1.52	0.0498	8	1.29	1.25	0.0425
N		0.0658#	350	2.10	2.04	0.0574	320	1.63	1.59	0.0451	350	1.36	1.32	0.0387
~		0.0590	9	2.13	2.08	0.0520≇	400	1.68	1.64	0.0413#	8	1.41	1.38	0.0356
~	2.19	0.0491	9	2. 2. 2. 2.	2.10 2.10	0.0438	000	1.73	1.69	0.0356#	8	1.47	-: - -: 4	0.0308
. e4		0.03663	8	8 1 61	2.06	0.0334	28	1.76	1.74	0.0283	36	. 2 2		0.0247
2.104 2	07	0.0325	8	2. Q#	2.02	0.0298\$	8	1.76*	1.74	0.0257≇	8	1.55#	1.54	0.0225
તં -	2 8	0.0291\$	8		1.9	0.0270	. 881	1.76*	1.74	0.0240	678	1.55*	1.53	0.0216
	8	v. v.2002	272	1. 20-	2.7	0. 020 /s								

Uncertainties of the total thermal conductivity, h, are as follows:

99.50 Al = 0.50 Mg: ±10% below 200 K and ±6% above 200 K

99.00 Al = 1.00 Mg: ±10% below 200 K and ±6% above 200 K.

97.00 Al = 3.00 Mg: ±12% below 100 K, ±7% between 100 and 500 K, and ±6% above 500 K.

95.00 Al = 5.00 Mg: ±12% below 100 K, ±7% between 100 and 500 K, and ±8% above 500 K.

⁹ Typical value.

[·] In temperature range where no experimental thermal conductivity data are available.

me, T. K; Tuermal Conductivity, k, W cm. 1 K-1; Electronic Thermal Conductivity, ke, W cm. 1 K-1; Lattice Thermal Conductivity, ke, W cm. 1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF ALUMINUM-MAGNESIUM ALLOY SYSTEM (continued) + TABLE S.

	Ale st. cos. Me 10. cos.	8 4 8 8 8 8	: At. %)		Al: 10.00	10.00% (8.10 At.%) 90.00% (80.90 At.%)	At. %) At. %)		Al: 5.00 Mg: 95.00	5.00% (4.53 At. %) 95.00% (95.47 At. %)	At. %) At. %)		Al: 3.00 Mg: 97.00	3.00% (2.71 At.%) 97.00% (97.29 At.%)	At. %) At. %)
	2	A 4. 078 JAG CE	1										P 9	A - 4.78 MO cm	a
H		•	A ⁶⁶	۴	м	H.	a ^{ta}	H	*	No.	, Mar	H		a•	MP.
••	35							7 6				→ €		0.0204	
- 2			-									* 2		0.0508	
2 :			-	21				15				2		0.0752	
88				22				2 2				22		0.0988 0.124	
848				843			-	8 \$ 8				8 \$ 8		0. 1. 0. 182 0. 182 0. 183	
88	10			88				82				32		0. 86 206 206	
22	 1 4 5 8			82				88				88		0.318 0.33	
8	. 23	÷.	0.05724	2			0.0564\$	2			0.07238	2	o. 455	8	0.6911\$
3 %	35	9	0.04394	3 8			0.0477	250			0.06136	352	0.553	0.476	0.07718
ae	9.0	9 6	0.03000	25	0.444	9.40	0.03588	3 %	0.576	3.5 8.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	0.0400	228	0.0	3	0.05726
Ř	9		0.03506	8		o. #1	0.63178	8	0.619	0.378	0.04078	8	0.756	0.705	0.05054
21		6.0	0.02204	38	0.504	0.475	0.02854	350	0.653	0.616	0.03678	880	0.799	0.75	0.04524
	11	1	0.0257	3			0.0220	8			0.0283	8	0.888	0.854	0.0343
įį	8 :4	11	0. 0270 0. 0200 0. 0200 0. 0200	\$ 8			0.0191# 0.0170#	 \$ 5			0.02478	3 &	0. 924 0. 946 4	0.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	0. 02954 0. 02604
É	1.	1.21	0.01936	156			0.01598	9 8			0.0196\$	9 800	0.964* 0.975*	0.941	0.02326 0.02166

mediativity, k, are as follows: ow 100 K, 17% between 100 and 500 K, and ±8% above 500 K.

w 200 K, ± 0% between 200 and 500 K, and ± 8% above 500 K. 16.8 Al - 16.8 Mg 16.8 Al - 16.8 Mg 1.8 Al - 16.8 Mg 1.8 Al - 17.8 Mg

Charles and

pe where no experimental thermal conductivity data are available. 14.

| Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, 2, W cm-1 K-1; Lattice Thermal Conductivity, k, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF ALLWINTW-MAGNESIUM ALLOY SYSTEM (continued) + TABLE 5.

.....

0. 45 At. %) 8. 55 At. %)	ம் மோ	X Do	0.0996 0.150 0.249 0.369 0.461 0.461 0.986 0.982 0.973 0.973 0.973 1.18 0.1874 1.13 0.0874 1.21 0.08164 1.25 0.06614 1.20 0.0464 1.30 0.0464 1.30 0.0464 1.30 0.04664 1.30 0.02744 1.30 0.02744 1.30 0.02744
Al: 0.50% (0.45 At. %) Mg: 99.50% (99.55 At. %)	p ₀ = 0.980 µO cm	T k	4 0.0999 10 0.249 110 0.249 120 0.249 220 0.249 240 0.289 250 0.249 150 1.07* 0.982 260 1.27* 1.18 273 1.29* 1.21 260 1.37* 1.25 260 1.34 1.25 260 1.37* 1.30 260 1.34 1.32 260 1.37* 1.30 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39 260 1.34 1.39
AL %)	. A S	, to	0, 133# 0, 133# 0, 012# 0, 0746# 0, 05746# 0, 056# 0, 0546# 0, 0546# 0, 056# 0, 056# 0
다 1,00% (0.90 AL %) 다 90,06% (99.10 AL %)	A. 1. 500 µD cm	M _O	0.000 0.000
A S		H	***** ***** ***** ***** ****

+ Uncertainties of the total thermal conductivity, k, are as follows:

1.66 Al = 99.40 Mg: $\pm 12\%$ below 200 K, $\pm 6\%$ between 200 and 500 K, and $\pm 8\%$ above 500 K.

6.50 Al = 96.50 Mg: $\pm 12\%$ below 200 K, $\pm 6\%$ between 200 and 500 K, and $\pm 8\%$ above 500 K.

: Typkell rille.

京の一大学のことのなる 東ののではまる

• . •

THERMAL CONDUCTIVITY OF ALL'NINGY - MAGNESIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION TABLE 6.

Composition (continued), Specifications, and Remarks	Cast; electrical conductivity reported as 20.02, 13.21, 10.5, and s. s. x 104 ft -1 cm ⁻¹ at 87, 273, 373, and 476 K, respectively.	Annealed; electrical conductivity reported as 24.5, 15.05, 12.25, and $10.25 \times 10^4 \Omega^{-1} \mathrm{cm}^{-1}$ at 87, 273, 373, and 476 K, respectively.	Cast; electrical conductivity reported as 19.6, 11.95, 9.4, and 7.55 \times 10^4 Gr ² cm ⁻¹ at 87, 273, 373, and 476 K, respectively.	Annealed; electrical conductivity reported as 12.7, 8.96, 8.05, and 7.6 \times 10 ⁴ Ω^{-1} cm ⁻¹ at 87, 273, 373, and 476 K, respectively.	0.10 Mn; annealed.	0.10 Mn; annealed.	15 mm in diameter and 72 mm long; density 2.63 g cm ⁻³ .	3 mm diameter and 300 mm long; presared from 99.9 pure Al.	Similar to the above specimen.	Similar to the above specimen.	Similar to the above specimen.	Nominal composition; amosaled at 617 K; density 2.68 g cm ⁻² ; electrical resistivity 3.4 µC cm at 20 C.	Nominal composition; annealed at 617 K; density 2.68 g cm-3.	0, 05~0, 20 Cr and 0, 05~0, 20 Mn (nominal composition); annealed at 617 lv: density 2, 63 g cm ² ; electrical resistivity 5, 94 µQ cm at 20 C.	Nominal composition; as cast; density 2.63 g car?.	Nominal composition; as cast; density 2.57 g cm ² .	Nominal composition; as cast; density 2.57 g cm-1.	0.38 Si, 0.1 each Fe, Ga, Ma, 0.01 each Cr, Cu, Ti, V, Zn, 0.001 Ca, and 0.001 Pb; 3.66 mm diameter red appetimen; grain size 0.062 mm × 0.049 mm (longitudinal) and 0.052 mm (transversel); presipitation heattreated; electrical resistivity 0.28, 0.28, 0.33, 0.43, 9.8, 2.3, and 3.5 μΩ cm at 4, 10, 40, 60, 100, 200, and 300 K, respectively; smoothed values reported.
sition ercent) Mg	9. ú	9.0	12.0	14.0	 	3.1- 3.9	7.0	0.7	3.0	5.0	8.0	9.0	1. 8 9 8: 1	4.7~ 5.6	4.0	4.0	8.0	0.65
Composition (weight percent) Al Mg	92.0	92.0	88.0	96.0	97.7- 97.1	96.0 96.0	93.0	99.3	97.0	95.0	92.0	Bal.	Bal.	Bal.	96.0	96.0	92.0	Bal.
Name and Specimen Designation					5052	5154	Magnalium					\$005	5050	5056	64	G10A	C8A	6063-T5
Temp. Range, K	57-476	S7 -476	87-176	87-476	4.3-128	4.8-14	348.2	327-746	285-716	330-766	289-717	296.2	298.2	298.2	293.2	293. 2	293.2	4-120
Nethod	٦	٦	a	u				Ħ	M	ш	ы							a a
Year	1831	1831	1931	1931	1960	1960	1940	1961	1961	1961	1961	1969	1959	1959	1959	1959	1969	1960
Authoris	Manachen, W.	Mannchen, W.	Manachen, W.	Mannchen, W.	Johnson, E.W.	Johnson, E.W.	Meyer-Rassier, E.	Mikryakov, V.E. and Karagazyan, A.G.	Mikryukov, V.E. and Karagesyan, A.G.	Par	Mikryukov, V.E. and Karngesyan, A.G.	Materials in Design Engineering	Materials in Design Engineering	Materials in Design Engineering	Maserials in Design Engineering	Materials in Design Engineering	Materials in Design Engiseering	Powell, R. L., Hall, W.J. and Roder, H.M.
Bef. No.	7	7	7	7	28	*	122	2	2	3	2	ij	23	23	123	123	22	\$
	-	89	60	•	10	•	•	•	•	2	=	2	2	Z	2	2	=	2

A.Pr

हरी हैं। जरूर १८५४ के प्रेमिक के अने का क्षेत्र का स्थापन के का का किया के किया के किया के किया के किया के किय

TABLE 6. THERMAL CONDUCTIVITY OF ALL'MINUM + MAGNESIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

, j	Cur. Ref. No. No.	Author (s)	, is	Method Used	Method Temp. Used Range, K	Name and Specimen Designation	Composition (weight percent)	sition sercent) Mg	Composition (continued), Specifications, and Remarks
=	5	Powell, R. L., Hall, W.J. and Roder, H.M.	1360	H	4-120	5052-0	Bal. 2.46	2.46	0.22 Cr. 0.1 each Cu. Fe. Si, Ga. Mn, Zn. 0.01 Ti, 0.01 V. 0.001 Ca. and 0.001 Zr; grain size 0.056 mm x 0.032 mm (longitudinal) and 0.040 mm (transverse); annealed in vacuum for 1 hr at 350 C; electrical resistivity 2.0, 2.1, 2.2, 2.7, 4.4, and 5.0 µG cm at 4, 20, 60, 100, 200, and 300 K, respectively; smoothed values reported.
8	5	Powell, B. L., et al. 1960	1960	H	4-120	5154-0	Bal.	3. 32	0.21 Cr. 0.1 each Cu. Fe. Si, Mn. 0.01 each Ti, V. Zn. 0.001 Cn. and 0.001 Pb; grain size 0.036 mm × 0.028 mm (longilladistist) size 0.032 mm (transverse); annealed in vacuum for 1 hr at 350 C; electrical resistivity 2.2, 2.3, 2.4, and 2.5 μΩ cm at 4, 10, 30, and 60 K, respectively; smoothed values reported.
#	5	Forest, B. t., et al. 1960	1960	.	6-120	5083-0	Bei.	2	0.7 Mn, 0.1 each Cr. Fe, Si, 0.04 Cu; supplied by R.D. Olleman, Kaiser Aluminum and Chemical Co.; average crystal grain size 0.74 mm x 0.21 mm (longitudinal) and 0.54 mm x 0.14 mm (transverse); annealed in vacuum for 1 hr at 350 C.
23	8	Powell, B. L., et al.	1960	.	4-120	5086~F	Bail	4.10	0.51 Mn, 0.28 Fe, 0.1 each Cr, Si, Za, 0.07 Cu, and 0.02 Ti; average crystal grain size 0.051 mm x 0.022 mm (iongitudinal) and 0.066 mm x 0.060 mm (transverse); as fight-lensel; electrical resistivity 3.0, 3.0, 3.1, 3.6, 5.0, and 5.7 gift cm at 4, 40, 60, 100, 200, and 300 K, respectively, amonthed yalass resorted.

THERMAL CONDUCTIVITY OF MAGNESIUM - ALUMINUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION TABLE 7.

A CONTRACTOR OF THE PARTY OF TH

1 48 main, A.W. 1255 L. 386.2 9.82 4.12 0.023 Fr and 0.013 Sil-3 cm long and 0.3 cm ² in cross-s-section and solution to the chose specimen except clear of a conductivity 5.00 x 104 Cff. cm ² at 5.0 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-s-section and 3 cm long and 45 c. 135 cm ² in cross-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s	Cur. Ref. No. No.	Author (s)	Year	Method Temy Used Range	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Mg Al	ition ercent) Al	Composition (continued), Specifications, and Remarks
Senath, A.W. 1225 L 376.2 69.62 10.12 Senather, J.; 1231 L 67-476 94.0 6.0 Senather, J.; 1331 L 87-476 94.0 6.0 Senather, J.; 1332 L 87-476 96.0 12.0 Magnery, H.J. 1332 L 87-476 96.0 12.0 Magnery, H.J. 1332 L 87-476 96.0 12.0 Magnery, H.J. 1332 L 87-476 96.0 12.0 Kleech, R. R. 1332 E 290.2 97.9 12.1 Kleech, R. R. 1322 E 290.2 97.9 12.2 Kleech, R. R. 1322 E 290.1 97.9 97.9 12.2 Kleech, R. R. 1322 E 291.5 Magnori, A 97.9 10.3 Kleech, R. R. 1322 E 291.5 AZedA-F 7.8 10.0	1 48		1926	1	336.2		95. 82	4.12	0.028 Fe and 0.019 Si; ~5 cm long and 0.3 cm² in cross-section; supplied by Aluminum Co. of America; electrical conductivity 9.06 x 10 th cm² at 63 C.
Standber, J. J. 1929 L 67-476 94.0 6.0 Manuschen, W. 1931 L 87-476 92.0 6.0 Manuschen, W. 1931 L 87-476 92.0 6.0 Manuschen, W. 1931 L 87-476 99.0 12. Manuschen, W. 1932 L 87-476 99.0 8.0 Magnery, H. J. 1932 L 373-423 99.0 11 Kühecki, R. J. 1932 E 290.2 97.9 2.1 Kühecki, R. J. 1932 E 295.1 97.9 2.1 Kühecki, R. J. 1932 E 295.1 91.6 6.2 Kühecki, R. J. R. 290.2 291.5 91.6 6.2 Kühecki, R. J. R. 291.5 291.5 91.6 6.2 Kühecki, R. J. R. 291.5 291.5 91.6 6.2 Kühecki, R. J. R. 291.5 291.5 91.6 <t< td=""><td>*</td><td></td><td>1925</td><td>ı</td><td>336.2</td><td></td><td>89.82</td><td>10.12</td><td>0.023 St and 0.028 Fe; similar to the above specimen except electrical conductivity 6.00 x 104 Gr cm⁻¹ at 63 C.</td></t<>	*		1925	ı	336.2		89.82	10.12	0.023 St and 0.028 Fe; similar to the above specimen except electrical conductivity 6.00 x 104 Gr cm ⁻¹ at 63 C.
Magnetier, J.; 1929 L 87-476 92.0 8.0 Manuchan, W. 1831 L 87-476 92.0 8.0 Manuchan, W. 1831 L 87-476 94 6 Manuchan, W. 1838 L 373-423 94 6 Majorery, H.J. 1828 L 373-623 97.9 11 Külmehl, R. 1832 E 290.2 97.9 2.1 Külmehl, R. 1832 E 295.5 95.8 4.2 Külmehl, R. 1833 E 291.5 91.8 8.2 Külmehl, R. 1833 E 291.5 91.6 8.2 Külmehl, R. B. 1833 E 296.5 91.6 91.2 Külmehl, R. B. 1833 C 291.5 91.0 91.2 Külmehl, R. B. 1833 C 291.5 Magnorial II 92.1 92.0 Külmehl, R. B. 1830	**	2 2	1929 1931	1	87-476		3.	9.0	1.23 cm² in cross-section and 3 cm long; cast; electrical conductivity 14.7, 8.64, 6.47, and 5.99 \times 10° Ω^{-1} cm ⁻¹ at 87, 273, 373, and 476 K, respectively.
Magnetier, J.; 1929 L 87-476 88 12 Magnetier, M. 1831 L 373-423 94 6 Magnety, H.J. 1828 L 373-623 94 6 Kühechi, R. 1822 E 300.2 97.9 2.1 Kühechi, R. 1832 E 296.1 95.8 4.2 Kühechi, R. 1932 E 291.5 91.6 8.2 Kühechi, R. 1932 E 291.5 91.6 8.2 Kühechi, R. 1932 E 291.5 91.6 8.2 Kühechi, R. 1967 C 375-736 Magnoxi, Al 80 9.2 Guilleali, S. 1967 C 375-774 Magnox B 1.0 9.2 Magnetials in Design 1969 C 383-773 Magnox B 1.0 9.2 Parafil, R.W. 104 C 323-773 Magnox B 1.0 9.2 Magnox B 1.0 2.23-773 </td <td>41.4</td> <td>6 X</td> <td>1929</td> <td>1</td> <td>87-476</td> <td></td> <td>92.0</td> <td>8.0</td> <td>1.23 cm² in cross-section and 3 cm long; electrical conductivity 13.32, 7.31, 5.95, and 5.55 x 10⁴G⁻¹ cm⁻¹ at 87, 273, 373, and 476 K, respectively.</td>	41.4	6 X	1929	1	87-476		92.0	8.0	1.23 cm² in cross-section and 3 cm long; electrical conductivity 13.32, 7.31, 5.95, and 5.55 x 10 ⁴ G ⁻¹ cm ⁻¹ at 87, 273, 373, and 476 K, respectively.
Kighery, HJ. 1936 L 373-623 94 6 Kighecht, R. 1926 L 373-623 99 11 Kighecht, R. 1932 E 296.5 97.9 2.1 Kighecht, R. 1932 E 296.1 93.8 6.2 Kighecht, R. 1933 E 291.5 91.8 8.2 Kighecht, R. 1957 C 375-736 Magnoxi A180 7.8 9.2 Gualdent, B. 1967 C 375-736 Magnoxi A180 7.2 8-9 Magnoxi and Bootgan 1964 C 323-773 Magnox B 1.0 9.2 Provedt, R. P. 1.0 223-773 Magnox B 1.0 9.2	8 4		1929	ı	87-476		88	21	1.23 cm² in cross-section and 3 cm long; electrical conductivity 9.65, 5.99, 5.27, and 4.90 x 10^4 Gr² cm² at 87, 273, 373, and 476 K, respectively.
Kilmechi, R. 1928 L 373-623 89 11 Külmechi, R. 1832 E 300.3 97.9 2.1 Külmechi, R. 1832 E 295.5 95.8 4.2 Külmechi, R. 1832 E 291.5 91.8 6.2 Külmechi, R. 1832 E 281.5 91.8 8.2 Külmechi, R. 1832 E 281.5 91.8 8.2 Gualiani, S. 1867 C 375-736 Magnoxi, Al 90 7.8 Materials in Decign 1869 C 375-736 Magnoxi Al 90 7.2 Materials in Decign 1869 C 387.6 AZ 80A-T 7.2 Materials in Decign 1869 C 323-773 Magnox B 1.0 Providi, R.W., R.P. 1.0 323-773 Magnox B 1.0	8	Maybrey, H.J.	1928	7	373-423		ま	•	12 in. long and 1 in. in diameter; annealed at 300 C for 3 hr.
Kühnech, R. 1922 E 296.5 97.9 2.1 Kühnech, R. 1922 E 296.1 95.8 4.2 Kühnech, R. 1932 E 291.5 91.6 8.2 Kühnech, R. 1932 E 291.5 91.6 8.2 Kühnech, R. 1932 E 291.5 91.6 8.2 Kühnech, R. 1952 E 296.5 87.6 10.3 Ghalhani, S. 1967 C 375-736 Magnoxi,Al 90 7.2 Materials in Design 1969 C 387-674 Aktesia T 7.2 Regineering 1969 C 283-2 AZ60A-F 5.8- Peredi, R. W. 1964 C 323-773 Magnox B 1.0 Richardania, R. J. 1964 C 323-773 Magnox B 1.0	2	Maybrey, H.J.	1928	1	373-623		68	11	Similar to the above specimen.
Köhneth, R. 1932 E 296.1 95.8 4.2 Köhneth, R. 1933 E 296.1 93.8 6.2 Köhneth, R. 1932 E 281.5 91.8 6.2 Köhneth, R. 1932 E 286.5 97.6 10.3 Köhneth, R. 1967 C 375-736 Magnox; Al 80 7.2 Gualisati, S. 1967 C 375-736 Magnox; Al 80 0.80 Gualisati, S. 1967 C 387-674 Magnox; Al 80 7.2 Kagtacering 1969 C 280.2 AZ 60A-F 5.8- Regissering 1964 C 323-773 Magnox B 1.0 Regissering 1964 C 323-773 Magnox B 1.0	8	Kimchi, R.	1832	M	300.2		97.9	2.1	3 mm diameter and 200 mm long; electrical conductivity 11.9 x $10^4\Omega^{-1}$ cm ⁻¹ at 27 C.
Kühneth, R. 1932 E 296.1 93.8 6.2 Kühneth, R. 1932 E 291.5 91.8 8.2 Kühneth, R. 1932 E 286.5 87.6 10.3 Kühneth, R. 1967 C 375-736 Magnox; Al 80 7.8 12.2 Qialiani, S. 1967 C 387-674 Magnox; Al 80 0.80 Materiale in Decipa 1969 C 280.2 AZ64A-F 5.8- Regissering 1969 C 280.2 AZ60A-F 7.2 Regissering 1964 C 323-773 Magnox B 1.0 Regissering 1964 C 323-773 Magnox B 1.0	8	Kilmehi, R.	1932	M	296.5		95.8	4.2	3 mm diameter and 200 mm long; electrical conductivity 8.9 x $10^4 G^{-1}$ cm ⁻¹ at 22.3 C.
Kibachi, R. 1932 E 201.5 91.8 8.2 3 Kibachi, R. 1932 E 281.5 89.7 10.3 3 Cialisal, R. 1932 E 296.5 Magnoxi, Al 80 87.8 12.2 3 Cialisal, R. 1967 C 375-736 Magnoxi, Al 80 0.80 0. Chalisal, S. 1967 C 387-674 Magnoxi, Al 80 0.80 0. Regissering 1969 280.2 AZ 80A-F 7.2 7.2 Regissering 1964 C 323-773 Magnox B 1.0 0. Regissering 1964 C 323-773 Magnox B 1.0 0.	2	Künch, B.	1932	M	296.1		93.8	6.2	3 mm diameter and 200 mm long; electrical conductivity 6.9 \times 10 ⁴ G ⁻¹ cm ⁻¹ at 21.9 C.
Kibuchi, R. 1932 E 281.6 99.7 10.3 3 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.5	# #	Kilmeld, R.	1963	M	201.5		91. 6	8.2	3 mm diameter and 200 mm long; electrical condectivity 5.9 x $10^4\Omega^4$ cm ⁻¹ at 19.3 C.
Kincold, R. 1932 E 296.5 87.6 12.2 3 Gualisad, S. 1967 C 375-736 Magnox; Al 80 0.80 0.80 0 Gualisad, S. 1967 C 387-674 Magnox; Al 84 8-9 0 Registering 1959 280.2 AZ64A-F 5.8- 0 Registering 1969 280.2 AZ60A-F 7.2 Fugiteering 1964 C 323-773 Magnox B 1.0 0 Reference N.V 1964 C 323-773 Magnox B 1.0 0	2	Kingch, R.	1933	M	281. 6		89. 7	10.3	3 mm diameter and 200 mm long; electrical conductivity 5.5 x $10^4 \rm G^{-1} cm^{-1}$ at 19.3 C.
Chalisani, S. 1967 C 387-674 Magnox; Al 80 0.80 Chalisali, S. 1967 C 387-674 Magnox; Al 80 0.89 Materials in Decign 1969 283.2 AZ64A-F 5.8-7.2 Registering 1969 293.2 AZ80A-F 7.2 Registering 1969 293.2 AZ80A-T 7.8-9.2 Powell, R.W., R.W., R.W., R.W., R.W., R.W., R.W., R.W., R.W. 1964 C 323-773 Magnox B 1.0	2	Kibach, B.	1932		296.5		87.8	12.2	Q
Chalteni, S. 1967 C 387-674 Magnox; 8-9 Materials in Decign 1989 283.2 AZ64A-F 5.8- Engineering 1969 293.2 AZ90A-F 7.2 Engineering 1969 293.2 AZ90A-T 7.8- Powell, R.W., Grant, R.W., Grant, R.J., and Type, R.F. 1964 C 323-773 Magnox B 1.0		Civilizai, S.	1961	v	375-736	Magnox; Al 80		0.80	0, 0050 Be, 0, 0020 Mn, and 0, 0004 Cu; 1, 2 to 1, 3 cm in dameter and 1, 8 to 2, 5 cm long; Armeo iron used as comparative material.
Materials in Design 1959 283.2 AZ6aA-F 5.8- Engineering Materials is Design 1969 298.2 AZ90A-T 7.2 Engineering Powell, R.W., and M.Y., and Type, R.F., and Type, R.F., and Type, R.F. 1964 C 323-773 Magnox B 1.0		Chalteni, S.	1967	ပ	387-674	Magnox; Atesia T		Ĵ	0.5-1 Zn and 0.2 Mn; 1.2 to 1.3 cm in diameter and 1.8 to 2.5 cm long; Armoo iron used as comparative material.
Materials is Decign 1969 293.2 AZ 90A-T 7.8- Engineering Powell, R.W., 1964 C 323-773 Magnox B 1.0 Mathema, N.J., and Tye, R.P.	# # #	Meterials in Design Englacering	1969		283.2	AZ64A-F		8.5. 9.5	0.4-1.5 Zn and >0.15 Mn (nominal composition); density 1.80 g cm ⁻² ; electrical resistivity 12.5 $\mu\Omega$ cm at 20 C.
Peredi, R.W., 1964 C 323-773 Magnox B 1.0 Mathema, N.J., and Tye, R.P.	11 12 12	Meterials to Design Englasering	1966		288.2	AZ80A-T		6. 00 9. 54	0.2-0.8 Zn and > 0.12 Mn (nominal composition); density 1.63 g cm ⁻⁴ ; electrical resistivity 14.5 $\mu\Omega$ cm at 20 C.
	5	Partin B.V.	1961	v	323 -773	Magnox B		1.0	0.002-0.003 Be; 2.5 cm diameter x 20° cm long; electrical resistivity 6.05, 6.5, 7.3, 8.9, 10.6, 12.3, and 14.15 all cm at 20, 56, 100, 200, 300, 400, and 500 C, respectively.

4.3. Copper-Gold Alloy System

The copper-gold alloy system forms a continuous series of solid solutions over the entire range of compositions. Ordered structures are formed at temperatures below about 663 K for compositions ranging from about 40 to 63% Au (17.7 to 35.5 At.% Au) and at temperatures below about 683 K for compositions ranging from about 63 to 94% Au (35.5 to 83.5 At.% Au). These ordered structures are due to the formation of the intermetallic compounds Cu₃Au (50.85% Au), CuAu (75.63% Au), and CuAu₃ (90.30% Au). In this work only the thermal conductivity data of disordered alloys are treated.

There are 75 sets of experimental data available for the thermal conductivity of this alloy system. Of the 17 data sets for Cu + Au alloys listed in Table 9 and shown in Figure 15, nine sets are merely single data points around room temperature. Of the 58 data sets for Au + Cu alloys listed in Table 10 and shown in Figure 16, 35 sets are single data points.

For the Cu + Au alloys, the data can be separated into three groups: the low temperature data of Grüneisen and Reddemann [61] (Cu + Au curves 1 and 2) and Kemp. et al. [62] (Cu + Au curves 8 and 9), the data of Sedström [63,64] (Cu + Au curves 10-15) at the ice point, and the five points around 440 K measured by Zolotukhin [65] (Cu + Au curves 3-7) for a partially ordered 5% Au. No data are available above 470 K. Hence, the experimental data are very limited. To derive recommended values, the electronic component k_{ρ} was calculated from eq. (12) and the lattice component k_{σ} was calculated from eq. (35). The total k was obtained by adding k_g to k_e . The results agree with the data of Sedström [63] (Cu + Au curves 10, 12, 13, and 15) at the ice point and with the data of Kemp, et al. [62] (Cu + Cu curves 8 and 9) and of Leaver and Charsley [120] (Cu + Cu curve 16) at lower temperatures to within 8%. The recommended values are for disordered alloys only; hence Zolotukhin's data (Cu + Au curves 3-7) were not used for comparison. The recommended curves were extended to the solidus points at high temperatures. The curves for alloys containing 10% Au or less were not extended to temperatures below 40 K because of the large uncertainties of the calculated $k_{\mathbf{g}}$ values. For denser alloys, however, the curves were extended to 4 K using k_{g} values derived from the data of Kemp, et al. [62]. The kg values for dilute alloys are extremely uncertain at low temperatures and are not reported below 60 K.

For the Au + Cu alloys, the experimental data were mostly obtained below the order-disorder transition temperature on specimens in the ordering range, except for two measurements made by Grüneisen and Reddemann [61] (Au + Cu curves 40 and 41) on specimens containing 1.57 and 3.10% Cu at low temperatures and one made by Goff, et al. [66] (Au + Cu curve 56) on a disordered Cu_3Au specimen. The recommended values for disordered alloys were derived from k_0 calculated from eq. (12) and k_0 calculated from eq. (35). Due to poor experimental data, detailed quantitative comparison of the calculated values

is not practical. However, the recommended values agree with the data of Grüneisen and Reddemann [61] (Au + Cu curves 38-41, 45, 46, and 48) at low temperatures and the data of Goff, et al. [66] (Au + Cu curves 56-58) from 60 to 300 K to within 10%. The recommended curves were extended to the solidus points at the high temperature end, but not below 40 K at the low temperature end owing to the large uncertainties of the calculated kg values at very low temperatures, except for the curves for alloys with 45 and 50% Cu, which were extended to 4 K using the kg values derived from the data of Kemp, et al. [62]. The kg values for alloys containing 40% Cu or less are very uncertain at low temperatures and are not reported below 60 K.

The resulting recommended values for k, k_e , and k_g are tabulated in Table 8 for 25 alloy compositions. These values are for well-annealed disordered alloys. The values for k are also shown in Figures 13 and 14. The values of residual electrical resistivity for the alloys are also given in Table 8. The uncertainties of the k values are stated in a footnote to Table 8, while the uncertainties of the k_e and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than $\pm 15\%$, between ± 15 and $\pm 30\%$, and greater than $\pm 30\%$, respectively.

- A. W. . . .

The same of the same

RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-COLD ALLOY SYSTEM TABLE 8.

The same of the same of the same of

The second second

| Temperature, T. K; Thermal Conductivity, k. W on: K-i; Electronic Thermal Conductivity, k. W on: K-i; Lattice Thermal Conductivity, kg. W on: Trip

ä V V	-	80	•												4
		0. 50% (0. 16 At. %	At. %)		Cu: 99.9 Au: 1.9	99.00% (99.68 At.%) 1.00% (0.32 At.%)	At. %) At. %)		Cu: 97.0 Au: 3.0	3.00% (99.01 At.%)	At.%)		Ä Ä Ç	5.0	95.00% (98.33 At.%) 5.00% (1.67 At.%)
	9.0	= 0. 10 µD cm			0 # 0	0.20 M cm			9 0	0.530 MA cm	.		90	10	=.0.870 JA cm
£-	M	.M.	, to	F	14	74.0	جر 100	[-	*	.w	, pe	H	*	1	36
-		0.977		-		0.489		**		0.184		4			0.112
•		1.47		9		0.733		9		0.276		9			0.168
• ;		1.95	•	*		0.977		œ <u>ç</u>		0.369		6 0 <u>5</u>			0.225
2 5		\$ \$;;		3 5		1.22		3 5		0.401		3 5		ے ر	0.281
7		3		?		9				100.0		•		•	
2		3		20	•	;; ;;		50		0.922		50		•	0.562
2		5. 76		23		2.96		25		1. 14		52		0	0.697
8		6.11		ສ :		3.49		8		1.36		8		0	0.832
۽		9. 3 3. 3		2 2		4.17 4.46		\$ £		. 73		2 2		٦.	1.08
3		3	•	3		2	*	3		6.1	4	3	i	•	
8	5.57*	5.26	0.310	9	•	4.09	0.250	9	2.29*	2. 12	0.171	9	1.55	–i	1.41
	. 80±	4 8	0.296	2	3. 98¢	3.74	0.238	6	2.34*	2.18	0.162	- 10	1.63	-i	S
	4.37	4 .8	0.281	&	3.75	3.52	0.226	8	2.36	2.21	0.154	60	1.70*	-i	1.58
2	1.12	સ જ	0.268	06	3. 60*	3.38	0.215	8	2.39	2.24	0.147	06	1.76*	ä	3
	4.01*	3.75	0.255	901	3.55	3.34	$0.205^{\$}$	901	2.44*	2.30	0.139^{4}	100	1.83	-	72
	*	3.71	0.205	150	3.60*	3.44	0.165	150	2.74*	2.63	0.112*	130	2.17*	6	2.08
	3.88*	3.71	0.170	200	3,65*	3.51	0.141	200	2.92*	2.82	0.0958	200	2.42*	6	2.8
	\$	3.71	0.147	250	3. 68ª	3.56	0.123	250	3.05	2.97	0.0434	250	2.60*	તં	2.53
	7. 85t	3.71	0.138	273	3.70	3.58	0.116	273	3.10	3.02	0.0801	273	2.67	લં	2.60
8 8	3.85	3.72	0.129	8	3.71*	3.60	0.109	8	3.15	3.07	0.0757^{*}	ဓို	2.74	~	88
_	. 86 1	3.74	0.114	38	3.73	3.63	0.0979	320	3.21*	3.14	0.0688	320	2.85	6	2
\$	3.83	3.73	0.103	400	3.72*	3.63	0.0800	400	3.26*	3.20	0.0633	400	2.92	2	87
_	ŧ.	3.68	0.0861	200	3.69	3.61	0.0755	200	3, 32*	3.26	0.0548	200	3, 03	લં	88
_	3.71*	ب ج	0.0738	9	3.65	3.58	0.0656	909	3.9 4 *	3. 20. 20.	0.0486	009	3.08	က်	3. 6
_	3.64	න න්	0.0647	- 20 20	3.80	3.25	0.0581	200	3.35*	3.31	0.0437	200	3. 12*	ę	80
2	3.6	2	0.0575	98	3, 55	3.50	0.0521	8	3,34	 98	0.0398	98	3, 14	က	11
	4	8	0.0518	206	3.50*	3.45	0.0473	006	3.31	3.27	0.0366	006	3. 14*	က	3.11
**	\$	۲ 4	0.0471	1000	3. 45	3.41	0.0433	1000	3.28	3.25	0.0340	1000	3.13	က်	2
2007	*	2	0.0399	1200	3.33	3.29	0.0370	1200	3.20*	3.17	0.0297	1200	3.09	က်	90
1356	200			1353	3.24%			1346	3.13			1339	9.		

99.80 Cu = 0.50 Au: $\pm 15^\circ$ below 100 K, $\pm 10^\circ$ between 100 and 300 K, and $\pm 8^\circ$ above 300 K. 99.90 Cu = 1.00 Au: $\pm 15^\circ$ below 100 K, $\pm 10^\circ$ between 100 and 300 K, and $\pm 8^\circ$ above 300 K. 97.00 Cu = 1.00 Au: $\pm 15^\circ$ below 100 K, $\pm 10^\circ$ between 100 and 300 K, and $\pm 8^\circ$ above 300 K. 97.00 Cu = 3.00 Au: $\pm 15^\circ$ below 200 K and $\pm 10^\circ$ above 200 K. 95.00 Cu = 5.00 Au: $\pm 15^\circ$ below 200 K and $\pm 10^\circ$ above 200 K.

* Provisional value.

[Temperature, T. K; Thermal Conductivity, k, W cm-! K-!; Electronic Thermal Conductivity, he, W cm-! K-!; Lattice Thermal Conductivity, kg, W cm-! K-!] RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) TABLE 8.

g 4	Po = 1.72 #0 cm			Au: 10.00		.t. 70)	_	Au: 20.00	20.00% (7.46 At.%)	At. 70)			23.00.8 (3.11 AL. 70	16.707
	 			00 = 2.	= 2.58 µA cm			po = 3	= 3. 52 MO cm		-1	po = 4.4	= 4.45 µn cm	
•	•	, to	H	м	Me.	146	۴	.	n _o		F	¥	k e	, 7
•	0.0568		•	0.0462	0.0379	0.00829	*	0.0358	0.0278	0.00805	*	0.0299	0.0220	0.00788
•	0.0962		•	0.746	0.0568	0.0178	9	0.0580	0.0416	0.0164	9	0.0482	0.0329	0.0153
₩.	0.117		•	-	0.0758	0.0287	0 0	0.0811	0.0555	0.0256	40	0.0675	0. EX	0.0236
2	0.142		2	0.134	0.0947	0.0397	2	0.104	0.0694	0.0350	2	0.0867	0.0549	0.0318
9 7	0.213		22		0.142	0.0631	51	0.158	0.104	0.0542	12	0.131	0.0823	0.0486
2	0.284		20	0.269	0.189	0.0799	8	0.206	0.139	0.0674	20	0.170	0.110	0.0598
22	0.353		22	0.324	0.234	0.0901	22	0.248	0.173	0.0755	25	0.204	0.137	0.0665
8	0. 42 1		8	0.375	0.280	0.0950	8	0.286	0.206	0.0795	8	0.233	0.163	0.0697
\$	0.563		\$		0.368	0.0942	\$	0.351	0.272	0.0789	40	0.284	0.216	0.0684
2	0.666		S	0.534	0.446	0.0879	8	0.40	0.333	0.0743	8	0.332	0.267	0.0647
90.0	0.756	0.100	8	0.600	0.518	0.0816*	9	0.458	0,389	0.0694	9	0.373	0.312	0,0606
	0.836	0.0939	2	0.658	0.582	0.0763	2	0.506	0.441	0.0649	2	0.414	0.358	0.0565
	0.916	0.0896	8	0.714	0.642	0.0719	8	0.552	0.491	0.0610	8	0.453	0.400	0.0532*
_	0.982	0.0841	2		0.701	0. v682*	6	0.597	0.539	0.0578	96	0.491	0.441	0.0503
160 1.13*	1.05	0.0801	2	0.824*	0.759	0.0649*	901	0.643	0.588	0.0550^{*}	8	0.530	0.482	0.0478
	1.31	0.0657	150	1.08	1.03	0.0532	150	0.861*	0.816	0.0450	150	0.717*	0.678	0.0391
1.704	1.6	0.0565	200	1.31*	1.26	0.0437	200	1.06*	1.02	0.0388	8	0.882*	0.848	0.0337
	1. 8 6	0.0300	220	1.504	1.46	0.0406	220	1.22*	1.18	0.0344	250	1.03*	1.00	0.0299
273 1.98	1.93	0.0476	273	1.58	1. 2	0.0386	273	1.29*	1.26	0.0328	273	1.09	1.06	0.0285
	2.03	0.0452	8	1.66*	1.62	0.0367	90 200	1.37*	1. 3	0.0311*	<u></u>	1. 17	1.14	0.0271*
350 2.27	2.18	0.0414	320	w	1.77	0.0336	320	1.50*	1.47	0.0286	320	1.29	1.26	0.0249
	2.20	0.0363	Ş	1.91*	1.88	0.0312	400	1.62*	1.59	0.0265^{*}	\$	1.40*	1.38	0.0231
_	2.47	0.0335	ŝ	_	2.08	0.0274	200	1.81*	1.79	0.0234	<u>8</u>	1.56	1.57	0.0204
_	81	0.0300	2 2		2.23	0.0246	009	1.97*	1.95	0.0210	009	1.74*	1.72	0.0184
	7. Q/	0.02/4	3		2.35	0.0224	<u>8</u>	2.09*	2.07	0.0192	2	1.87*	1.85	0.0168*
	2.73	0.0252	8		2.44	0.0207	800	2.19*	2.17	0.0178	908	1.97*	1.95	0.0156
	2.78	0.0234	8		2.49	0.0193	96	2.26^{*}	2.24	0.0166	900	2.05^{*}	2. Q	0.0145
1000 2.82	2 (0.0219	00		7	0.0181	1000	2.33	2.31	0.0155	1000	2. 12*	2.11	0.0136
128	Z. 22	0.0195	201	2.59	2.57	0.01717	8 5	8 8	2.37	0.0147*	001	2.18	2.17	0.0129*
ė			200				8071	2.4.7			127.1	Z. Z.1.		

k, are as follows:

99.00 Cu - 10.00 Au: ±12% below 100 K, ± 8% between 100 and 400 K, and ±10% above 400 K. 65.00 Cu - 15.00 Au: ±12% below 100 K, ± 8% between 100 and 400 K, and ±10% above 400 K. 69.00 Cu - 20.00 Au: ±10% below 200 K, ± 8% between 200 and 500 K, and ±10% above 500 K, 75.00 Cu - 25.00 Au: ±10% below 200 K, ± 8% between 200 and 500 K, and ±10% above 500 K.

* Provisional value.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, k, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) TABLE 8.

H 4			30. W. (14. 10 At. 7)		Au: 35.00% (14.80 At.%)	35.00% (14.80 At.%)	14.%)		Au: 40.0	40.00% (17.70 At.%)	At.%)		AU: 45.00	45.00% (20.88 At.%)	At. %)
	Po = 5.47	G			, e 6.	6. 52 µ0 cm			# 0°	= 7.52 µO cm	8		8 = °0	8.48 JA cm	
4	N N		, M	۲	*	70	, to	۴	يد	π _o	74. 000	٤.	M	M.	, tag
•	0.0256 0.	.0179	0.00772	•	0.0226	0.0150	0.00758	4	0.0205	0.0130	0.00746	*	0.0188	0.0115	0.00735
_	0.0413 0.	0.0268	0.0145	9	0.0364	0.0225	0.0139	9	0.0327	_	0.0132	9	0.0298	0.0173	0.0125
_		0.0357	0.0218	6 0	0.0505	0.0300	0.0205	00	0.0452		0.0192	∞	0.0409	0.0230	0.0179
2:	o.	0.0447	0.0292	9 4	0.0645	0.0375	0.0270	9 1	0.0575	-	0.0250	2 :	0.0518	0.0288	0.0230
		2.00.0	140.0	2	0.0862	7000.0	0.0400	3	0.0853	0.040.0	0.0360	CT	0.0765	0.0432	0.0333
	0.143 0.	0.0803	0.0539	ಜ	0.124	0.0749	0.0488	20	0.109	0.0650	0.0444	8	0.0978	0.0576	0.0402
		0.111	0.0596	25		0.0930	0.0540	22	0.130	0.0807	0.0491	52	0.116	0.0717	0.0445
		0. 133	0.0623	8		0.111	0.0566	8	0.148	0.0964	0.0515	8	0.132	0.0856	0.0468
		0. 175	0.0615	\$		0.147	0.0559	\$	0.178	0.127	0.0509	9	0.160	0.113	0.0467
3		0.217	0.0576	28	0.233	0.181	0.0522	ଛ	0.204	0.157	0.0472	8	0, 183	0.140	0.0430
_	0.309* 0.	0.255	0.0537	9	0.262**	0.214	0.0482	3	0.230	0.186	0.0436	9	0.204	0.164	0.0396
36 .0		0.293	0.0501	20	0.291"	0.246	0.0449*	2	0.254	0.214	0.0405	22	0.228^{4}	0.191	0.0369
	-	0.329	0.0470*	8	0.319*	0.277	0.0421	8	0.279	0.241	0.0381^{*}	8	0.251*	0.216	0.0346
	_	0.864	0.0445	8	o. 348:	0.308	0.0398*	6	0.305	0.269	0.0360	<u>6</u>	0.274°	0.241	0.0327
20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.442* 0.	0. 400	0.0423*	8	0.377	0.338	0.0379+	8 	0.331	0.297	0.0342	8	0.296*	0.265	0.0311*
150 0.	0.663* 0.	0.568	0.0346	150		0.487	0.0309	251	0.456	0.428	0.0279	150	0.410*	0.385	0.0254
		0.720	0.0298	දි		0.624	0.0267	200	0.576**	0.552	0.0241	8	o. 520°	0.498	0.0219
	_		0.0265	22	0.773	0.749	0.0237	220	0.687	999.0	0.0214	250	0.622*	0.603	0.0194
213 213	••	. 517	0.0253*	213	0.825	0.802	0.0226	273	0.73°	0.716	0.0204	273	99.0	0.647	0.0186
		8	0.0	3		200	0.0610	₹ 	TR 1 -0	77.0	46TO.0	3	0.717	0.04g	0.10.0
		1. 10	0.0221	8	0.988	0.968	0.0198	380	0.887	0.869	0.0179	380	0.807	0.791	0.0162
 3 :		2	0.0205*	\$	1.08	1.06	0.0184*	\$	0.976	0.959	0.0166	400	0.880	0.875	0.0151
_		19	0.0181	8	1.25	1.23	0.0162	200	1.14	1.13	0.0147	0	1. S	1.03	0.0134
		3 1	0.0163	3 8	1.40		0.0147	8	1.27	1.26	0.0133	8	1.18	1.17	0.0121
.i	I. Bu.	1.e7	0.010.0	8	1. 53	1.52	0. 6 134	902	1.40	1.39	0.0122+	<u></u>	1. 25	1.28	0.0111
	1.78	.78	0.0138	8	1.63*	1.62	0.0124	8	1. 50°	1.49	0.0113	90	1. 8 6	.38	0.0103
	1.0	5	0.0129	8	1.72	1.71	0.0116	906	1.59	3. 38	0.0106	8	1.48	1.47	0.00962
_	1,96	*	0.0122	8	1.80	1.79	0.0109	1000	1.67	1.60	0.000034	90	1.56	1.55	. 00006
	2.03	Ŗ	0.0115*	311	. 86	1.6:	0.0104	811	1.74	1.73	0.00938	1100	1.63	1.62	0.00858
1265 Z.	Z. 1Z			1255	1.97			1245	1.82			1236	1.71		

Uncertainties of the total thermal conductivity, k, are as follows:

70.00 Cu = 30.00 Au: ±10% below 200 K, ±8% between 200 and 500 K, and = 10% above 500 K.
65.00 Cu = 35.00 Au: ±10% below 200 K, =7% between 200 and 500 K, and = 10% above 500 K.
60.00 Cu = 40.00 Au: ±10% below 200 K, =7% between 200 and 500 K, and = 10% above 500 K,
55.00 Cu = 45.00 Au: ±10% below 200 K, ±7% between 200 and 500 K, and = 10% above 500 K,

* Provisional value.

RECONNENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) TABLE 8.

Service of the servic

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1]

, <	Cu: 50.00	50.00% (75.61 At.%) 50.00% (24.30 At.%)	(F. 7.) (F. 7.)	·	Cu: 45.00 Au: 55.00	45.00% (71.72 At.%) 55.00% (28.28 At.%)	1. 3.) 1. 3.)		Cu: 40.00 Au: 60.00	40.00% (67.39 At.%) 60.00% (32.61 At.%)	At. %) At. %)		Cu: 35.00 Au: 65.00	35.00% (62.54 At.%) 65.00% (37.46 At.%)	At. %) At. %)
	, = 0d	9. 34 Jen cm			P ₀ * 10	* 10.1 M cm			Po = 1	= 10.9 MG cm			ρ0 = 1	= 11.4 µA cm	
£-	"	4 *		F	M	74.0	'X	H	.¥.	صد	ate at	H	×	4 °	مور
	0.0178	0.0105	0.00725	+*	0.0168	0.00964	0.00717	4 6		0.00808		4 5		0.00855	
•	0.0376	0.0200	0.0167		0.0320	0.0193	0.0157	6		0.0180				0.0171	
2 2	0.0	0.0862	0.0302	12	0.0636 0.0636	0.0361	0.0196	29		0.0337		2 2		0.0321	
*	0.0667	0.0823	0.0364	22	0.0811	0.0482	0.0329	8		0.0449		8		0.0427	
2	0.186 0.186	3 5	0.0402	2 8	0.0961	0.0500	0.0362	38		0.0557		28 8		0.06%	
3 2 1	0.145	0.108	0.0421	3 \$ \$	0.133	0.0947	0.03804	348	0.126*	0.0885	0.0370*	328	0.118	0.0942	0.0342
8				B	Set .9	0.113	960	ਨੇ 	U. 1437	0.110	0.00%	3	o. 13d	5	0.000
8 8	0.187	0. 151 0. 173	0.0362*	3 8	0. 172	0.130	0.0333*	88	0.161*	0.130 150	0.0307*	38	0.152*	0.12	0.62834
2 8	0.220	0.196	0.0316	2 8	0.211	0.182	0.0290	2 &	0.197*	0.170	0.0267*	2 &	0.187*	0.162	0.0247
2 5	0.230	0.220	0.0299*	85	0.231	0.20	0.0274	8 5	0.216*	0.191	0.0252*	8 5	0.204*	0.181	0.0233
			******		3 3		\$0.00	3 5			***************************************	3 :			400
3 8	0.476		0.0200	3 8	e. 4 1	0.423	0.0212	3 8	0.413	98.0	0.0188	2 8	0.310 0.310	0.278	0.0166
2	0.570	0.562	0.0178	250	0.530	0.514	0.0163	220	0.496*	0.481	0.0150	520	0.473*	0.48	0.0136
i s	0.0804	o. 62 5	0.0170	27.00 300	0.559 0.614	0.553 0.599	0.0156 0.0148	8 23 8 23	0.534	0.520 0.561	0.0143*	8 23	6 50 5 50 6 57	o. 1 96 536	0.0126
3	0.743	0.728	0.0149	380	0.692	0.678	0.0136*	350	0.651	0.638	0.0125*	98	0.621	0.609	0.0116
3	0.823	0.808	0.0138	\$	0.768	0.756	0.0127	\$	0.721	0.108	0.0117	\$	0.688	0.677	0.0108
2 3		0. 4	0.0122+ 0.0110*	8 8	2 0	0.883 1.01	0.0112+	8 8	0.850*	0.840	0.0103*	8	0.812*	900	0.00054
2	1.20	1.8	0.0101#	92	1.13	1.12	0.00932	8	1.07*	1.06	0.00859	2	1.02	1.01	0.00793
8	1.30*	1.23	0.00942	8	1.22*	1.21	0.00865	8	1.16*	1.15	0.00797	8	1.11*	1.10	0.00736
2	.	8 :	0.00881	8	* *	1.29	0.00810	8	1.23	1.22	0.00746	8	1.18	1.17	0.00680
8 9	÷ :	3	0.00823	9 5	1.38	1.37	0.007634	8 5	 	 	0.00703	8 3	1.25*	.: .: .:	0.00649
1	i i			1216	***	2.	27.00.0	3 2 5	1.01	8 5	40000	3 3	1. 31	3 .	* 00000

Provisional value.

Temperature, T. K. Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) TABLE 8.

A CONTRACTOR OF THE PARTY OF TH

4.8 8.8		مور						0.0262 [‡] 0.0236 [‡]	0.0217	0.0168	0.0178	0.0137	0.0118	0.0100	0.00051	0.00875	0.00720	0.00850*	0.00553	0.00517	0.00487	0.00461	0.00442+
15.00% (35.36 At.%) 85.00% (64.63 At.%)	= 10.8 µA cm	340	0.0136	0.0182	0.0341	0.0454	0.0500	0.0882	181-0	9 5	0.191	0.307	0.307	0.519	0.560	0.634	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0. 94 0 1. 9 3	1.19	200	1.26	1.3	97
Cu: 15.00 Au: 85.00	ρ ₀ = 10.	м						0.115	0.153	0. 191	0.20	0.81*	0.400	0. 529	0. 570	0.643	0. 836 0. 836	0.947*	**	1.20	1.26	1.31*	3.3
		H	4 9	&	2 2	88	Q 9	32	88	2 8	8 2	150	8	273	8	380	3 8	38	8	8	1000	1100	1385
1t.%) 1t.%)		فاير						0.0277* 0.0260*	0.0229*	0.0213	0.0188	0.0145	0.0125	0.0106	0.0101	0.00929	0.00765	0.00692	0.00589	0.00551	0.00520	0.00492*	0.004734
20.00% (43.66 At.%) 80.00% (56.34 At.%)	= 11.7 to cm	₩.	0.00834	0.0167	0.0208	0.0417	0.0620	0.0820	0.121	0.158	0.177	0.284	0.369	0.482	0.522	0.592	0.777	0.885 0.982	90	1.13	1.20	1.25	5
Cu: 20.00 Au: 80.00	P ₀ = 1	*						0.110	0.144	0.178	0.196*	0.299*	0.381*	0.493	0.532*	0.601	0.785	0.892* 0.988*	1.07*	1.14*	1.21*	1.26*	-
		H	4 0	æ ;	3 2	ន	6 8 8	38	88	2 8	88	150	200	27.3	90	320	\$ &	9 2 8 8	9	8	1000	2011	
1t.%) 1t.%)		,M		•				0.0296*	0.0245	0.022/	0.0201*	0.0155	0.0134	0.0119	0.0108	0.00996	0.00820	0.00742	0.00632	0.00502	0.00558*	0.00528	0.00507
25.00% (50.82 At.%) 75.00% (49.18 At.%)	= 12.0 µA cm	m _o	0.00818	0.0164	0.0204	0.0409	0.0308	0.0803	0.118	0.135	0.173	0.279	0.362	0.475	0.514	0.583	0.767	0.874	1.05	1.12	1.18	1.24	28
Cu: 25.00 Au: 75.00	ρ = 12	×						0.110	0.143	0.176	0.193	0.294*	0.375	0.452** 0.486	0.525*	0.593*	0.775	0.881*	1.06#	13	1.19	1.25*	*8
0		1	4 0	œ (5 2	ន	S 68	328	38	2 2	8 5	120	8	228	900	350	3 3	8 6	9	8	1000	1100	7
t.%) t.%)		a ^{to}						0.0318	0.0263	0.0220	0.0216#	0.0167	0.0144	0.0128	9.0116	0.0107	0.00894	0.00799*	0.006.82	. 00638*	0.00601	0.00570	0.00547*
30.00% (57.05 At.%) 70.00% (42.95 At.%)	po = 11.8 µA cm	JA O	0.00827	0.0165	0.0310	0.0413	0.0514	0.0814	0.120	0.157	0.175	0.282	0.367	0. 4 50	0.519	0.589	0.777 0.777	0.885 0.983	26	1.14	1.20	81.	F
Cu: 30.00 Au: 70.00	P ₀ = 1							0.113	0.146*	0. 163 0. 190*	0.197*	0.298*	0.361*	0.436	0.531*	0.600	186	0. 883 0. 980 0. 980	1.04	1.16	1.21*	1.27	
J 4,		F	+ 6	on:	5 2	ន	2 8	3 2 3	8	8	8 5	951	8	32	300	38	3 3	9 6	3	8	1000	901	

Uncertainties of the total thermal conductivity, k, are as follows: 30.00 Cu - 76.00 Au: $\pm 10\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K. 25.00 Cu - 75.00 Au: $\pm 10\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K. 20.00 Cu - 90.00 Au: $\pm 10\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K. 15.00 Cu - 86.00 Au: $\pm 10\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K.

* Provisional value.

Temperature, I, K. Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, ke, W cm-' K-'; Lattice Thermal Conductivity, ke, W cm-' K-'] RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) * TABLE S.

k k	4	A.: 90.00% (74.38 At. %)	62 At. %) 38 At. %)		Cu: 5.00 Au: 95.00	5.00% (14.03 At. %) 15.00% (85.97 At. %)	الد. سياري الد. سياري	4	Cu: 3.00 Au: 97.00	3.00% (8.75 At.%) 97.00% (91.25 At.%)	At. %) At. %)		Cu: 1.00 Au: 99.00	1.00% (3.04 At.%) 99.00% (96.96 At.%)	AL.%) AL.%)
k k	Q.	í	4		a°	5. 27 µ0 em			P ₀ = 3	4 PD CE			ρ0=1	.40 J.C.	
0.0112 4 0.0185 4 0.0284 6 0.0284 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 6 0.0486 8 0.0486 9 0.146 10 0.0486 6 0.0486 10 0.0486				4	24	, w	, dea	H	<u>×</u>	, e	.uta	F		M.	Ad to
C.0254 0.0271 0.0271 0.0264 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0466		0.011	2 80	4 8		0.0185		7 0		0.0284		**		0.0698	
0.0550 15 0.0257 15 0.0257 15 0.0267 16 0.0267 174 20 0.0462 16 0.0267 0.0367 174 20 0.0462 20 0.0462 20 0.0462 20 0.0462 20 0.0462 20 0.0462 20 0.0462 20 0.0462 20 0.0264 40 0.267 0.0364 40 0.2462 0.0462 20 0.0462 0.0462 0.0267 0.0364 40 0.6463 0.0462 0.0462 0.0267 0.0364 40 0.6463 0.6462 0.0267 0.0364 40 0.0267 0.0364 0.0267 0.0364 0.0267 0.0367 0	. eo e	9.02	*	- C		0.0371		∞ ς		0.0568				0.140	
0.135 0.0274 20 0.0267 20 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.114 25 0.126 0.204 0.204 0.126 0.204	. eq		2 0	12 2		0.0695		12		0.106		12		0.262	
0.135 0.115 0.0254 0 0.136 0.135 0.135 0.136 0.206 0.136 0.207 0.0204 0.0185 0.	•	0.056	9	8		0.0927		50		0.142		2		0.340	
0.155 0.110 0.0224*	R G		.	2 8		0.136		3 22		0.174		3 8		0.429	
0.151 0.0210\$* 60 0.403 0.378 0.0224* 70 0.4378 0.0229* 70 0.9329* 70 0.932 0.901 0.252 0.155 0.0224* 70 0.437 0.0229* 70 0.932 0.901 0.253 0.254 0.0264* 70 0.430 0.0229* 70 0.932 0.901 0.254 0.0192* 70 0.340 0.0264* 70 0.430 0.0229* 70 0.0115* 90 1.01 0.901 1.01 0.901 0.901 0.0114* 0.0114* 0.0114* 0.0114* 0.0114* 0.0114* 0.0116* <td< td=""><td></td><td></td><td>-</td><td></td><td>0.204</td><td>0.178</td><td>0.0265</td><td>3 \$ 8</td><td>0.297</td><td>0.267</td><td>0.0300*</td><td>3 \$ 5</td><td>0.663</td><td>0.622</td><td>0.0410</td></td<>			-		0.204	0.178	0.0265	3 \$ 8	0.297	0.267	0.0300*	3 \$ 5	0.663	0.622	0.0410
0.256 0.155 0.0195* 70 0.453 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0224* 70 0.450 0.0215* 90 0.650 0.0215* 90 1.01 0.981 0.0215* 90 1.01 0.982 0.0215* 90 0.0216* 10 0.0216* 10 0.0224					27.8	256	0.0220*	3 8	403		0.094B#	3 8	4	718 0	******
0.226 0.0183** 90 0.350 0.311 0.0191** 90 0.502 0.480 0.0215** 90 1.0183** 0.0211** 90 0.549 0.529 0.0201** 90 1.049 1.06 0.234 0.234 0.0420** 0.0403 0.0171** 100 0.549 0.579 0.0201** 90 1.07 1.14 0.335* 0.016** 0.0478 0.0180** 150 0.584* 0.570 0.0171* 100 0.599* 0.0204* 1.06 0.439* 0.016** 200 0.771 0.0118* 200 0.797 0.0129* 1.07 1.14 0.0118* 1.14 0.0129* 1.14 0.0118* 1.06 1.06 1.14 0.0129* 1.14 0.0104* 250 0.106* 273 0.106* 273 0.106* 273 0.106* 273 0.106* 273 0.116* 250 0.106* 273 0.116* 250 0.106* 273 0.106* 273	_			32	0.314	25.0	0.0204	38	0.453	0.430	0.0229*	38	0.932	0.00	0.0312
0.251 0.234 0.0173* 90 0.385 0.385 0.0171* 90 0.589* 0.0201* 90 0.0171* 100 0.597* 0.0597* 0.0597* 0.0150* 100 1.17* 1.14 0.385* 0.372 0.0114* 200 0.739 0.0138* 150 0.0138* 150 0.0138* 1.00 0.138* 1.00 1.14* 0.0150* 1.00 1.14* 0.0114* 250 1.09 1.00 0.585* 0.5718 0.0114* 200 0.739 0.0104* 250 1.15* 1.14 0.0114* 250 1.86* 1.89 0.6775 0.0104* 270 0.00955* 273 1.27* 0.0104* 250 1.89* 1.89* 1.89* 0.6775 0.00041* 270 0.00955* 273 1.27 0.0102* 200 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* 1.89* <td>_</td> <td></td> <td></td> <td>8</td> <td>0.350</td> <td>0.331</td> <td>0.0191</td> <td>8</td> <td>0.502</td> <td>0.480</td> <td>0.0215</td> <td>8</td> <td>1.01</td> <td>0.981</td> <td>0.0290</td>	_			8	0.350	0.331	0.0191	8	0.502	0.480	0.0215	8	1.01	0.981	0.0290
0.357 0.0134 0.0204 0.0171 100 0.537 0.01504 100 1.17 1.14 0.357 0.0134 200 0.77 0.01504 150 1.68 1.87 1.68 1.87 1.68 1.87 1.68 1.87 1.68 1.87 1.88 1.89				8	0.385	0.367	0.0180*	8	0.549	0.529	0.0201	8	8	8:	0.02724
0.385° 0.572 0.0138* 150 0.584* 0.570 0.018* 150 0.980 0.0150* 160 1.45 0.486° 0.478 0.0114* 200 0.731* 0.719 0.0114* 200 1.68* 1.68 0.486° 0.0114* 250 0.862 0.0104* 250 1.14 0.0114* 250 1.86* 1.84 0.677 0.677 0.0104* 250 1.15 1.21 1.20 0.0108* 2.00 1.84 1.84 1.84 1.87 1.84 1.87 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.80 1.87 1.88 1.80 1.88 1.80 1.88 1.80 1.88 1.89 1.80 1.88 1.80 1.88				3	0.420	6.403	.1/10.0	3	0.587*	U. 578	0.0180	3	1. 17.	1.14	0.0220
0.438* 0.478 0.0114* 200 0.733* 0.719 0.0118* 200 0.029* 200 0.0129* 200 1.68 1.68 0.538* 0.575 0.0104* 250 1.14 0.0114* 250 1.86* 1.84 0.637 0.666 0.0064* 273 0.918 0.908 0.00643* 300 1.28 1.27 0.0102* 273 1.81 0.637 0.666 0.0064* 350 1.07 0.00643* 300 1.28 1.27 0.0102* 300 1.89* 1.91 0.657 0.666 0.0064* 360 1.07 0.0064* 400 1.17* 1.16 0.0084* 400 1.44* 1.63 0.0063* 400 1.74* 1.64* 1.63 0.0063* 400 1.74* 1.64* 1.63 0.00678* 400 2.14* 0.00678* 400 2.14* 0.00678* 400 2.24* 2.38 1.24* 1.64* 1.64* 1.	_	_		921	0.584*	0.570	0.0138	150	0.812*	0.797	0.0150	150	1.47*	1.45	0.0203
0.5357 0.50584 2.50 0.8627 0.0114* 2.50 1.15* 1.14 0.0114* 2.50 1.86* 1.84 1.84 0.0114* 2.50 1.86* 1.84 1.84 0.0114* 2.50 1.86* 1.84 1.84 0.0114* 2.50 1.86* 1.84 1.85 1.87 1.84 1.87 1.84 1.87 1.84 1.86* 1.86 1.87 1.84 1.86 1.87 1.84 1.86 1.86* 1.86 1.87 1.84 1.86			_	8	0.731*	0.719	0.0118	200	0.993	0.980	0.0129*	200	 8	1.68	0.0172*
0.534 0.566 0.00615 300 0.370 0.00643 300 1.21 1.20 0.0102* 1.97 0.675 0.666 0.00615* 300 0.370 0.00643* 300 1.28 1.27 0.0102* 300 1.98* 1.97 0.834* 0.836 0.00781* 300 1.77* 1.16 0.00865* 350 1.98* 2.07 0.834* 0.836 0.00781* 300 1.37* 1.32 0.00704* 500 1.64* 1.63 0.00678* 400 2.77* 2.26 1.09* 1.09* 1.09* 1.49* 1.64* 1.63 0.00678* 600 2.77* 2.36 1.18* 1.09* 1.06* 1.44* 0.00678* 600 2.77* 2.36 1.27* 1.28* 0.00678* 800 1.62* 1.61 0.00534* 800 1.92* 1.91 0.00589* 800 2.37* 2.36 1.39* 1.30* 1.30*			_	3 8	200.00	0.852	0.0104+	220	1.15	1.14	0.0114+	2 5		5 .	0.0120
0.737 0.749 0.00941* 350 1.08 1.07 0.00865* 350 1.38 0.00955* 350 2.07 0.834* 0.826 0.00781* 400 1.77* 1.16 0.00801* 400 1.49* 1.48 0.00865* 400 2.16* 2.15 0.867 0.866 1.07 0.00704* 500 1.67* 1.76 1.75 0.00758* 500 2.77* 2.26 1.08* 1.07 0.00633* 600 1.76* 1.75 0.00678* 600 2.77* 2.36 1.18* 1.07 0.00578* 700 1.86* 1.85 0.00618* 700 2.77* 2.36 1.27* 1.27* 1.61 0.00534* 800 1.92* 1.91 0.00529* 800 2.37* 2.36 1.36* 1.36* 1.36* 1.000 1.98* 1.98 0.00529* 800 2.37* 2.36 1.39* 1.30* 0.00469* 1.77* </td <td></td> <td></td> <td></td> <td>. e</td> <td>0.979</td> <td>0.970</td> <td>0.00943*</td> <td>2 8</td> <td>1.28</td> <td>1.27</td> <td>0.0102</td> <td>2 00</td> <td>1.98*</td> <td>16:1</td> <td>0.0134</td>				. e	0.979	0.970	0.00943*	2 8	1.28	1.27	0.0102	2 00	1.98*	16:1	0.0134
0.834* 0.826 0.00781* 400 1.17* 1.16 0.00801* 400 1.49* 1.48 0.00865* 400 2.16* 2.15 0.967 0.960 0.00622* 500 1.32 0.00704* 500 1.64* 1.63 0.00758* 600 2.27* 2.26 1.08* 1.07 0.00670* 700 1.55* 1.54 0.00633* 600 1.76* 1.75 0.00679* 600 2.34* 2.35 1.18* 1.19* 0.00678* 700 1.86* 1.86 0.00618* 700 2.37* 2.36 1.27* 1.26* 0.00534* 800 1.96* 1.91 0.00589* 800 2.34* 2.37* 1.36* 1.36* 1.96* 1.95* 1.96 0.00589* 800 2.37* 2.36* 1.39* 1.30* 0.004695* 1.77* 1.77* 1.77* 1.77* 1.77* 1.77* 1.77* 1.99* 0.00466* 1.90			_	98	1.08	1.07	0.00865	320	1.39	1.38	0.00935	98	2,08*	2.67	0.0122
0.967 0.966 0.00690* 500 1.32 0.00704* 500 1.64* 1.63 0.00758* 600 2.27* 2.26 1.08* 1.07 0.00622* 600 1.45* 1.44 0.00633* 600 1.76* 1.75 0.00679* 600 2.34* 2.33 1.18* 1.18* 0.00678* 700 1.86* 1.85 0.00618* 700 2.37* 2.36 1.27* 1.26* 0.00528* 800 1.62* 1.61 0.00534* 800 1.96* 1.91 0.00569* 800 2.37* 2.36 1.34* 0.00498* 900 1.68* 1.68 0.00498* 900 2.34* 2.36 1.39* 1.30* 0.00498* 1000 1.96* 1.98 0.00589* 1000 2.34* 2.33 1.34* 0.00464* 1.77* 0.00441* 1100 1.99* 0.00466* 1100 2.34* 2.33 1.44* 0.00466*				400	1.17*	1.16	0.00801*	40	1.49	1.48	0.00865	\$	2, 16*	2.15	0.01124
1.08* 1.07 0.00622* 600 1.45* 1.44 0.00633* 600 1.76* 1.75 0.00679* 600 2.34* 2.33 1.18* 1.17 0.00570* 700 1.55* 1.54 0.00578* 700 1.86* 1.85 0.00618* 700 2.37* 2.36 1.27* 1.26 0.00528* 800 1.62* 1.61 0.00534* 800 1.92* 1.91 0.00569* 800 2.38* 2.37 1.34* 1.34 0.00493* 900 1.68* 1.68 0.00498* 900 1.96* 1.95 0.00529* 900 2.37* 2.36 1.39* 1.30* 0.00464* 1.77* 1.77* 0.00467* 1100 1.99* 1.99* 0.00466* 1100 2.31* 2.30			•	200	1.33	1.32	0.00704	200	1.64*	1.63	0.00758	8	2.27*	2.26	0.00974
1.13° 1.14° 0.00570° 700 1.55° 1.54 0.00578° 700 1.86° 1.85 0.00618° 700 2.37° 2.36 1.27° 1.26 0.00528° 800 1.62° 1.61 0.00534° 800 1.92° 1.91 0.00569° 800 2.38° 2.37 1.34° 1.34 0.00493° 900 1.68° 1.68 0.00498° 900 1.96° 1.95 0.00529° 800 2.37° 2.36 1.39° 1.39° 1.39 0.00464° 1000 1.73° 1.77 0.00467° 1100 1.99° 1.98 0.004695° 1100 2.34° 2.33			0.00622	909	1.45*	1.44	0.00633*	909	1.76	1.75	0.00679	9	2. 24	2.33	0.00864
1.27° 1.26 0.00528 [‡] 800 1.62 [‡] 1.61 0.00534 [‡] 800 1.92° 1.91 0.00569 [‡] 800 2.38 [‡] 2.37 1.34° 1.34 0.00463 [‡] 900 1.68° 1.68 0.00467 [‡] 1000 1.96° 1.95 0.00529 [‡] 800 2.37* 2.36 1.30° 1.30 0.00464 [‡] 1000 1.73° 1.73 0.00467 [‡] 1000 1.98° 1.98 0.00495 [‡] 1000 2.34° 2.33 1.44° 1.44 0.00439 [‡] 1100 1.77° 1.77 0.00441 [‡] 1100 1.99° 1.99 0.00466 [‡] 1100 2.31* 2.30	_		0.00570*		1.55*	1.54	0.00578*	8	1.86*	1.85	0.006187	8	2.37*	2.36	0.00780*
1.34 1.34 0.00493 900 1.68 1.68 0.00498 900 1.96 1.95 0.00529 900 2.37 2.36 1.30 0.00464 1.30 0.00464 1.73 0.00467 1100 1.98 1.98 0.00495 1100 2.34 2.33 1.44 0.00439 1100 1.77 1.77 0.00441 1110 1.99 1.99 0.00466 1100 2.31 2.30			0.00528	98	1.62*	1.61	0.00534	800	1.92*	1.91	0.00569	8	2.38	2.37	0.00712
1.30* 1.30 0.00464* 1000 1.73* 1.73 0.00467* 1000 1.98* 1.98 0.00485* 1000 2.34* 2.33			0.00493	8	1.68*	1.68	0.00498	906	1.96*	1.95	0.00529	8	2.37*	2.36 36	0.00657
1.44 0.00439 1100 1.77 1.77 0.00441 1100 1.99 0.00466 1100 2.31 2.30		_	0.00464	1000	1.73	1.73	0.00467	1000	1.98	1.98	0.00495	1000	2.34	8	0.00610
		¥:	0.00130	1100	1.77*	1.77	0.00441*	1100	1.99	1.99	0.00466	1100	2.31*	% %	0.00571

straightes of the total thermal conductivity, k, are as follows:

16.66 Cu - 86.60 Au: $\pm 10\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K.

4.66 Cu - 86.60 Au: $\pm 15\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K.

5.66 Cu ± 87.60 Au: $\pm 12\%$ below 200 K, $\pm 8\%$ between 200 and 500 K, and $\pm 10\%$ above 500 K.

5.66 Cu \rightarrow 86.06 Au: $\pm 10\%$ below 200 K and $\pm 10\%$ above 200 K.

Provietieni value.

[Temperature, T. K: Thermal Conductivity, k, W cm-! K-!; Electronic Thermal Conductivity, k, W cm-! K-!; Lattice Thermal Conductivity, kg, W cm-! K-!] BECONNENDED THERMAL CONDUCTIVITY OF COPPER-GOLD ALLOY SYSTEM (continued) TABLE 8.

The second of the second

小雅教 歌作 心

Cu: 0.50% (1.53 At. %) Au: 90.30% (98.47 At.%)	A. = 0.770 MG cm	29 ° 1 3	

establishes of the total thermal combactivity, k, are as follows: 0.88 Cm - 40.30 Am ± 15% below 200 K and ± 10% above 200 K.

Terlineal value

stangeneture manys where no experimental thermal conductivity data are available.

TABLE 9. THERMAL CONDUCTIVITY OF COPPER - GOLD ALLOYS -- SPECIMEN CHARACTERIZATION AND NEASTREMENT INFORMATION

- 1	ģ	Authoris	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Au	sition percent) Au	Composition (continued), Specifications, and Remarks
3		Grijneisen, E. and Reddenaam, H.	1934	1	21-93	10	75.2	24.8	Calculated composition; polycrystalline; form factor 1, 53 x 10°; residual electrical resistivity 6, 54 µΩ cm; electrical resistivity 6, 54 µΩ cm; electrical resistivity 8, 09 and 4, 71 µΩ cm at -190 and -251 C, respectively.
5		Grüscisen, E. and Reddensam, H.	1834	1	21-91	on .	87.4	12.6	Calculated composition; polycrystalline; form factor 2.61 x 10 ² ; residual electrical resistivity 3.85 µB cm; electrical resistivity 2.467 and 2.172 µB cm at -190 and -251 C, respectively.
3		Zolotakhin, G.E.	1957	-1	422.7		56.33	43.67	Calculated composition; cylindrical specimen 1.45 cm long and 0.63 cm ² in cross-section; cast; density 14.30 g cm ⁻² .
5		Zolotakhin, G. E.	1957	-1	448.2				The above specimen; amonded for 10 hr.
:2		Zolotukhin, G.E.	1967	1	411.2				The above specimen; annealed for 26 hr.
2		Zolotzkie, G.E.	1967	-1	467.2				The above specimen; amended for 30 hr.
8		Zolotelchin, G. E.	1867	u	422.2				The above specimen; amended for 40 hr.
2		Kremp, W.R.G., Klemens, P.G., and Tainch, R.J.	1967	a	1.9-124			20.09	8 cm long and 0.5 cm in diameter; amealed at 750 C for 1 hr; electrical restativity reported as 3.53, 3.91, and 5.37 $\mu\Omega$ cm at 0, 90, and 293 K, respectively.
2		Kemp, W.R.G., et al.	1967	ų	1. 9-91			37.99	Similar to the above specimen except electrical resistivity reported as 7.04, 7.38, and 8.89 $\mu\Omega$ cm at 0, 90, and 333 K, respectively.
3		Bedetrön, E.	1919	۲	273, 373		55.24	44 . 76	Calculated composition; specimen rolled and drawn to wire 1 mm diameter; heated to near melting point for 0.5 kg; electrical conductivity 5.7 x 10 ⁴ and 5.5 x 10 ⁴ Gr ² cm ⁻¹ at 0 and 100 C, respectively.
3		Sedetröm, E.	1919	H	273, 373		73. 52	26.48	Similar to the above specimen except electrical conductivity 10.7 x 10 ⁴ and 9.1 x 10 ⁴ Gr ² cm ⁻¹ at 0 and 100 C, respectively.
3		Sedström, E.	1924	H	273.2		94.6	5. 4	Calculated composition; specimen rolled and drawn to a wire of 3 cm in length and 1 mm² in cross-section, then heated to the melting point; electrical resistivity 8.2 µD cm at 0 C.
2		Bedetriffe, E.	1824	۴	273.2		87.6	12.4	Similar to the above specimen except electrical resistivity 4. 7 µD cm at 0 C.
3		Sedetröm, E.	1924	۴	273.2		72.7	27.3	Similar to the above specimen except electrical resistivity 7.3 µD cm at 0 C.
2		Sedetröm, E.	1924	۲	273.2		55.0	45.0	Similar to the above specimen except electrical resistivity 10.4 µD cm at 0 C.
5	-	Leaver, A.D.W. and Charaley, P.	1241	1	2.6-4.2	10 Au		25. 4	Polycrystalline; obtained from the inhermational Research and Development Co., Ltd.; amenied; residual electrical resistivity 4.396 µ0 cm.
5	_	Leaver, A.D.W. and Charaley, P.	1871	1	2.1-4.1	10 Au			The above specimen fensile strained 13, 4% under a stress of 36, 66 kg mm ⁻² ; residual electrical resistivity 4, 444 µB cm.

TABLE 10. THERMAL CONDUCTIVITY OF GOLD - COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

Mari Trans. Trans.

					Name and	Composition	ition	
	Author (s)	Year	Method	Temp. Range, K	Specimen Designation	(weight percent) Au Cu	ercent) Cu	Composition (continued), Specifications, and Remarks
Zojota	Zolomkhin, G. E.	1957	ı	488.7	ĸ	75.61	24.39	Calculated composition; cast; 1.30 cm long and 0.63 cm² in cross-section; density 18.34 g cm².
Zolot	Zolotakhin, G. E.	1957	1	483.2	2			The above specimen annealed 10 hr at 200 C.
Zolotakhin,	bhin, G.E.	1957	H	420.7	Z			The above specimen annealed 20 hr at 200 C.
Zolotskhin,	khim, G.E.	1957	.1	473.7	ĸ			The above specimen annealed 30 hr at 200 C.
Zolotzakhia,	this, G.E.	1961	H	395.2	2			The above specimen amealed 40 hr at 200 C.
Zolotukhin,	khin, G. E.	1967	H	466.2	>	85.20	14.80	Calculated composition; cast; 1.30 cm long and 0.63 cm² in croas-section; density 19.40 g cm².
Zoloteichin,	Michiga, G. E.	1957	-1	504.7	'n			The above specimen annealed 10 hr at 200 C.
Zolotekhin,	debin, G.E.	1957	1	426.2	>			The above specimen annealed 20 hr at 200 C.
Zolotalihia,	Mile, G.E.	1961		481.7	>			The above specimen amoraled 30 hr at 200 C.
Zolotakhia,	blie, G.E.	1957	1	460.7	>			The above specimen annealed 40 hr at 200 C.
Zolotekhia,	ithin, G. E.	1967	ı	445.7	Ħ	50.82	49.18	Calculated composition; cast; 1.49 cm long and 0.63 cm² in cross-section; density 15.05 g cm².
Zolotnikhin.	Mar G. E.	1957	1	483.2	Ħ			The above specimen annealed 10 hr at 200 C.
Zolotakha,	ithe, G.E.	1967	.1	401.7	Ħ			The above specimen amealed 20 hr at 200 C.
Zolotzkha,	ithin, G. E.	1957	1	470.2	Ħ			The above specimen annealed 30 hr at 200 C.
Zoletskin,	ichin, G.E.	1967		463.7	1			The above specimen annealed 40 hr at 200 C.
Zelotakta	ithin, G.E.	1967	1	491.7	Ħ	62. 54	37.46	Calculated composition; cast; 1.45 cm long and 0.63 cm² in cross-section; density 16, 70 g cm².
Zobetele.	thin, G. E.	1967	1	455.7	Ħ			The above specimen amenied 10 hr at 200 C.
Zelotatan,	den, G.E.	1967	-1	437.7	8			The above specimen amonaled 20 hr at 200 C.
Zolotnikia,	ibis, G. E.	1967	-1	467.7	B			The above specimen annualed 30 hr at 200 C.
Zolombhin	ithin, G.E.	1967	-1	# .7	日			The above specimen annualed 40 hr at 200 C.
Sedetrüm		6761	F	273, 373		96. 73	3.27	Calculated composition; rolled and drawn to 1 mm diameter wire; annealed close to melting point for 0.5 hr; electrical conductivity 14.3 and 13.4 x 10.5 dr cm² at 0 and 100 C, respectively.
1	sträm, E.	1919	۴	273, 373		92. 55	7.45	Similar to the above specimen except electrical conductivity 8.5 and 8.2 x 10 G $^{-1}$ cm $^{-1}$ at 0 and 100 C, respectively.
Sederin,	rām, z.	1919	H	273, 373		87.77	12.23	Similar to the above spectmen except electrical conductivity 6.3 and 5.9 x $10^4\Omega^{-1}$ cm ⁻¹ at 0 and 100 C, respectively.
	a. 2,6 a. , E.	1919	H	273, 373		59.25	40.75	Similar to the above specimen except electrical conductivity 5.0 and 4.6 x $10^4 \rm Gr^{-1}$ at 0 and 100 C, respectively.
į	ström, E.	1924	H	273.2		50.8	49.2	Rolled and drawn to 1 mm² in cross-sectional area and 3 cm long; annealed close to melting point for 0, 5 hr; electrical resistivity 10, 8 µG cm at 273 K.
	Sedetröm, E.	1924	۴	273.2		54. 0	46 .0	Similar to the above specimen except electrical resistivity 11.4 µD cm at 273 K.

TABLE 19. THERMAL CONDUCTIVITY OF GOLD - COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

بوق	7 S.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Au Cu	sition ercent) Cu	Composition (continued), Specifications, and Remarks
22	3	Sedström, E.	1924	Ŧ	273.2		57.0	43.0	Similar to the above specimen except electrical resistivity 11.8 $\mu\Omega$ cm at 273 K.
2	3	Sedetröm, E.	1824	+	273.2		62.6	37.4	Similar to the above specimen except electrical resistivity 13.0 $\mu\Omega$ cm at 273 K.
2	3	Sodatröm, E.	1224	٠.	273.2		67.2	32.8	Similar to the above specimen except electrical resistivity 13.6 $\mu\Omega$ cm at 273 K.
8	3	Sedström, E.	1924	H	273. 2		11.9	28.1	Similar to the above specimen except electrical resistivity 10.5 µC cm at 273 K.
Ħ	2	Sedström, E.	1224	۲	273. 2		78.1	21.9	Similar to the above specimen except electrical resistivity 7.6 $\mu\Omega$ cm at 273 K.
Ħ	3	Sedström, E	1924	۲	273.2		78.2	21.8	Similar to the above specimen except electrical resistivity 7.6 μG cm at 273 K.
R	3	Sedetröm, E.	1924	H	273.2		78.9	21.1	Similar to the above specimen except electrical resistivity 8.4 $\mu\Omega$ cm at 273 K.
z	3	Sedström, E.	1924	۲	273.2		82.1	17.9	Similar to the above specimen except electrical resistivity 11.6 $\mu\Omega$ cm at 273 K.
8	3	Sedström, E.	1324	۲	273.2		82. 4	17.6	Similar to the above specimen except electrical resistivity 11.6 $\mu\Omega$ cm at 273 K.
×	3	Sedetröm, E.	1924	۲	273.2		87.5	12.5	Similar to the above specimen except electrical resistivity 11.6 $\mu\Omega$ cm at 273 K.
8	2	Sedetröm, E.	1924	۲	273.2		4 .1	5.9	Similar to the above specimen except electrical resistivity 8.0 $\mu\Omega$ cm at 273 K.
2	3	Orthotom, E. and Reddemann, H.	1894	ı	80, 92	n	89.6	10.4	Calculated composition; polycrystalline; cast; electrical resistivity 9.27 µD cm at 83 K.
8	3	Grüpeisen, E. and Reddensan, H.	1864	ı	22-80	411			The above specimen annealed in vacuo for 40 hr at 365 C; electrical resistivity 10. 68 µΩ cm at 273 K.
\$	5	Gribation, E. and Reddenam, H.	1834	ı	22-91	12	96.9	3.10	Calculated composition; polycrystalline; cast; electrical resistivity 3.826, 4.345, and 5.94 µB cm at 22, 83, and 273 K, respectively.
#	2	Grünnisen, E. and Reddemann, H.	1834	7	21-91	13	98.43	1.57	Calculated composition; polycrystalline; cast; electrical resistivity 1.841, 2.353, and 3.99 µ0 cm at 22, 63, and 273 K, respectively.
a	7	Grüntleen, E. and Reddemann, H.	1934	1	79-91	1 4	50.1	49.9	Calculated composition; polycrystalline; cast; quenched from 800 C; electrical resistivity 6. 64 $\mu\Omega$ cm at 83 K.
3	3	Grimeisen, E. and Reddemann, H.	1884	ц	87.4	146			The above specimen annealed at ~ 400 C for 20 hr; electrical resistivity 3.23 and 5.80 $\mu\Omega$ cm at 83 and 273 K, respectively.
\$	=	Ortholom, E. and Reddemens, H.	1834	1	79,92	140			The above specimen annealed at ~ 360 C for 32 hr; electrical resistivity 3.126 and 5.42 $\mu\Omega$ cm at 83 and 273 K, respectively.
\$	5	Griffenisen, E. and Roddemann, H.	1834	.1	30,92	14d			The above specimen ampealed at~820 C for 2 hr and then quenched; electrical resistivity 11. 49 µB cm at 273 K.
2	3	Grünelsen, E. and Roddensen, H.	186	1	22-80	14e			The above specimen measured after 5 months; electrical resistivity 9.88 and 11.48 $\mu\Omega$ cm at 83 and 273 K, respectively.

THERMAL CONDUCTIVITY OF GOLD + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued) TABLE 10.

Hamagara Carama .

Composition (continued), Specifications, and Remarks	The above specimen annealed at ~ 325 C for 30 hr; electrical resintivity 2.70 and 3.41 $\mu\Omega$ cm at 22 and 83 K, respectively.	Calculated composition; polycrystalline; cast; quenched from 800 C; electrical resistivity 11.57, 13.2, and 13.41 $\mu\Omega$ cm at 83, 273, and 292 K, respectively.	The above specimen annealed at 360 C for 22 hr; electrical resistivity 1.753, 3.974, and 4.82 µB cm at 83, 273, and 253 K, respectively.	The above specimen annealed at 345 C for 30 hr; electrical resistivity 2.225 and 4.48 $\mu\Omega$ cm at 83 and 273 K, respectively.	The above specimen amealed at 325 C for 30 hr; electrical resistivity 1.797 and 4.07 μΩ cm at 83 and 273 K, respectively.	The above specimen annealed at 800 C for 2 hr and then quenched; electrical resistivity 9.17 μΩ cm at 83 K.	The above specimen measured after 4 months; electrical resistivity 7.90 µ0 cm at 83 K.	The above specimen annealed at ~325 C for 30 hr; electrical resistivity 1.626 and 4.09 µn cm at 83 and 273 K, respectively.	Intermetallic compound; 0.1858 in. diameter and 2.41 in. long; successively annealed at 360 C for 90 hr, 240 C for 110 hr, and 220 C for 600 hr; critical temperature lies between 387, 5 and 358.2 C; electrical resistivity reported as 4.2582, 4.3864, 4.8867, 5.2834, 5.8899, 6.2509, 6.6710, 7.2362, 8.2142, 9.3038, 10.6252, 10.8983, 11.317, 12.1987, 13.6671, 14.0257, 14.0355, 14.0752, 14.1064, and 14.2959 µΩ cm at 33.30, 43.74, 83.38, 124.04, 180.92, 211.71, 248.80, 278.71, 311.98, 345.78, 373.61, 377.93, 382.60, 385.80, 387.54, 388.19, 390.97, 395.25, 404.20, and 419.77 C, respectively (selected from 76 points reported by the authors).	0.1 Fe; intermetallic compound; specimen 60 mm x 3.2 mm x 3.2 mm; prepared from ASARCO five-9 Cu and Au material; the melt was first homogenized by rocking for about 10 min then cast in a constricted end of the same tube; amealed for 2 h at 850 C and querched from 700 C by breaking the capsule in water (all melting and annealing the sincinen and specimen materials were done in quartz tubes had been wacuated to less than 10° torr at close-off); residual electrical resistivity reported as 9.1, 9.1, 9.2, 9.3, 9.3, 9.4, 9.4, 9.5, 9.7, 9.6, 9.9, 10.2, 10.5, 10.8, 11.0, 10.9, and 11.3, f.G cm at 1.8, 5.6, 13.0, 16.4, 19.6, 30.0, 41.3, 63.2, 86.6, 101, 114, 131, 163, 191, 227, 254, 261, and 299 K respectively.
Composition (weight percent) Au Cu		75.6 24.4							49. 18	49. 18
Name and Specimen (w Designation	14	15e 7	156	15c	15d	15e	15f	15g	Cushu	Cu ₃ Au
Temp. Range, K	21-81	6.9	85, 85	81,92	79-91	79, 91	22-79	21-80	407-680	1. 7-275
Method Used	1	_{r-1}	ᆈ	ı	H	H	-1	႕	a.	a ·
Year	1834	1884	1934	1834	1834	1804	1934	1934	1962	1968
Cur. Ref. Authoris: Year Used Range, K Designation Au Cu	Grificisen, E. and Reddemann, H.	Grüneisen, E. and Reddensan, H.	Orthoisen, E. and Reddemann, H.	Grübelsen, E. and Reddemann, H.	Grinnisen, E. and Reddensen, H.	Griffneisen, E. and Roddemann, H.	Gribeisen, E. and Roddensenn, H.	Grinnisen, E. and Reddemann, H.	Lindenhaum, S. D. and Quinby, S. L.	Geff, J.F., Verbalia, A.C., Elyme, J.J., and Klemens, P.G.
	19	19	3	3	3	3	5	3	176,	8
	47	\$	\$	8	3	S	3	3	8	*

TABLE 16. THERMAL CONDUCTIVITY OF GOLD - COPPER ALLOYS - SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

and and a malican

ı		2 2 3	. a
	Composition (continued), Specifications, and Remarks	Intermetallic compound; similar to the above except electrical resistivity reported as 9.7, 9.9, 10.1, 10.3, 10.4, 10.6, 10.8, 10.7, 10.9, and 11.3 µfb cm at 89, 115, 146, 189, 180, 194, 224, 232, 247, and 283 K, respectively; measurement was made with an insulating packing inside the radiation shield.	Similar to the above except electrical resistivity reported as 9.1, 9.9, 9.8, 9.9, 10.1, 10.5, 11.0, 10.7, 10.9, 11.0, and 11.4 µG cm at 9.0, 112, 129, 143, 171, 211, 235, 240, 260, 265, and 287 K, respectively measurement was made in the original condition but with a measured radical past exception.
	Name and Composition Specimen (weight percent) Designation Au Cu	49.18	49.18
	Name and Specimen Designation	Cu₃A	Cu₃Au
	Method Temp. Used Range, K	117-269	154-276
	Method Used	111	-
	Year 3	1965	1966
	Authorisi	57 66 Goff, J.F., Verbans, 1965 A.C., Riwne J.J., and Klemens, P.G.	66 Goff, J.F., et al.
	Cur. Ref. No. No.	99	8
	, S.	15	Ø.

MICROCOPY RESOLUTION TEST CHART
MINIONAL BUREAU OF STANDARDS-1963-A

4.4. Copper-Nickel Alloy System

The copper-nickel alloy system forms a continuous series of solid solutions and is free of all transformations except that of ferromagnetism. As shown in Figure 2, the electrical resistivity versus temperature curves for Ni + Cu alloys change slope abruptly at the Curie temperature of the alloys. The Curie temperature decreases as the concentration of copper in the alloys increases. The ferromagnetism disappears and the Curie temperature drops to zero as the concentration of copper reaches 61.88% (60 At.%).

Mott [3] has given an explanation of the ferromagnetic behavior of these alloys based on the filling of holes in the d band of nickel by the s electrons of capper. The d-shell in a copper atom is completely occupied and there is a single s electron outside, whereas the 3d band of a nickel atom is full but there are 0.54 holes in the 3d hand; these d-band holes are the elementary magnets in nickel. The Curie temperature is proportional to the number of elementary magnets per unit volume, which in nickel is thus 0.54 times the number of atoms per unit volume. The density of states in the d band of nickel atom at the Fermi surface is approximately ten times greater than the density of states in the s band, so that as copper is added to nickel about 90 percent of the extra s electrons go to fill up the d hand, and thus decrease the number of elementary magnets per unit volume, until at 60 At. "6 Cu the d band of nickel is full, at which point the ferromagnetism disappears and the Curic temperature drops to 0 K. The insert in Figure 2 shows the Curie temperature as a function of percent copper in nickel, which is linear for the atomic percent of copper. This straight-line relationship was determined from the electrical resistivity data shown in Figure 2. The behavior of the electrical resistivity of these alloys has a direct bearing on the behavior of the thermal conductivity (see Figure 18), and therefore the knowledge of the former is prerequisite to the understanding of the latter.

There are 153 sets of experimental data available for the thermal conductivity of this alloy system. However, of the 104 data sets available for Cu + Ni alloys listed in Table 12 and shown in Figure 19, 27 sets are merely single data points and 25 sets cover only a narrow temperature range from around room temperature to about 500 K. Of the 49 data sets for Ni + Cu alloys listed in Table 13 and shown in Figure 20, 23 sets are single data points. Furthermore, many sets of data show large discrepancies.

For the Cu + Ni alloys, the most reliable measurements at room temperature were made by Smith and Palmer [49] (Cu + Ni curves 1-7), surprisingly in 1935, for a set of well-annealed alloys. Electrical resistivity data were also reported for the same specimens used for the thermal conductivity measurements. These provided the basis for the easy separation of the lattice component from the measured thermal conductivity.

Hulm [69] measured the thermal conductivity of an alloy with 20% Ni below 25 K (Cu + Ni curve 15). Berman [70] measured thermal conductivity of a sample of Constants

(40% Ni) below 100 K (Cu + Ni curve 21). Wilkinson and Wilks [71] measured the thermal conductivity of an alloy with 30% Ni below 20 K (Cu + Ni curve 14). These three sets of low-temperature data appear to be reliable and consistent in view of the cold-work condition of the 30% Ni specimen of Wilkinson and Wilks (curve 14).

In the temperature range below 70 K. Erdmann and Jahoda have measured the thermal conductivity of the Cu-Ni alloy system several times [72-74] (Cu + Ni curves 52-55, 62-66, 68, and 84; Ni + Cu curves 13-19 and 21-23). One set of their measurements [74] (Cu + Ni curves 52-55 and Ni + Cu curves 13-19) is the only one that covers a wide range of composition at low temperature. However, it was very difficult to evaluate the reliability of their results. For copper-rich alloys, the lattice thermal conductivities derived from their measured total thermal conductivities are about 40% higher than those derived from other authors' results. Since their samples seemed to be the best annealed (at 930 C) among the alloy samples, it had been thought that the lattice thermal conductivities of their samples might be higher than those of the others because annealing could eliminate dislocations. However. after the effect of annealing on the electrical resistivity and lattice thermal conductivity of binary alloys had been reviewed carefully, it was concluded that the differences are too large to be accounted for by annealing. Furthermore, around liquid helium temperature, the difference between the lattice thermal conductivities of their own dilute and concentrated alloys are too large compared with those of other measurements. If their measured total thermal conductivities are connected to the total thermal conductivities above 300 K measured by other authors, the slopes of the conductivity-temperature curves become negative between 100 and 300 K for concentrated alloys. This seems unlikely as it does not occur in the conductivity-temperature curves of the analogous silver-palladium alloys. Recent private communication from Klemens [76] provided useful thermal conductivity data for a copper alloy with 4 At.% Ni at temperatures below 40 K (Cu + Ni curve 103). The sample was annealed at 1075 C for 72 hours and slowly cooled. The results also indicate that the lattice thermal conductivities of Erdmann and Jahoda are too high. Consequently, the results of Erdmann and Jahoda were not used in the present data synthesis.

For Ni + Cu alloys, Sager [77] (Ni + Cu curves 1 and 2), Smith [45] (Ni + Cu curves 3-6), and Sedström [63] (Ni + Cu curves 7 and 8) have measured the thermal conductivity around room temperature. There is some doubt about the reported compositions of their specimens as the electrical resistivity data reported for the same specimens differ from those obtained by other authors for alloys with the same nominal compositions.

Greig and Harrison [78] measured the thermal conductivities of nickel alloys with 0.32, 0.6, 1.5, and 4.2 At.% Cu below 100 K (Ni + Cu curves 9-12). More recently Farrell and Greig [79] studied the electrical resistivity and thermal conductivity of a nickel alloy with 0.31 At.% Cu below 100 K (Ni + Cu curve 34). They concluded that the lattice thermal conductivity of pure nickel is quite high and close to those of dilute copper alloys.

A CONTRACTOR OF THE STATE OF

Chari [80] has suggested a method to separate the lattice thermal conductivity from total thermal conductivity of pure nickel and dilute nickel-rhenium alloys above 400 K. There is, however, doubt concerning his method of graphical separation of electrical resistivity into the intrinsic and magnetic components, because the anomaly of the temperature dependence of the electrical resistivity of the ferromagnetic metals can be explained by the ferromagnetic ordering of metals below the Curie point. Many authors have tried to express the resistivities of the ferromagnetic alloys in the form of $\rho = \rho^+$ $(1 + \mu)$, where μ , the ferromagnetic ordering parameter, is negative and vanishes above the Curie point [167], and ρ^+ represents the resistivity of ferromagnetic metal in the absence of ferromagnetic ordering. In other words, ρ^+ represents the resistivity of the "normal" non-forromagnetic metal. Farrell and Greig [81] indicated that deviations from Matthiessen's rule due to spin mixing must be taken into account when analyzing the electronic transport properties of nickel alloys.

In the present data synthesis, the electronic thermal conductivities of the alloys for which both thermal conductivity and electrical resistivity were repolited were calculated from eq. (12) in order to separate the lattice component from the measured total thermal conductivity. The resulting "experimental" lattice thermal conductivity data were then used for the adjustment of the lattice thermal conductivities of the virtual crystals so that the kg values calculated from eq. (35) at moderate and high temperatures are in agreement with the experimental data. At low temperatures the lattice thermal conductivity values were obtained from the experimental data similarly as the difference of the measured k and the calculated kg. The recommended total thermal conductivity values at low temperatures are in agreement with the data of Greig and Harrison [78] (Ni + Cu curves 9-12), Zimmerman [130] (Cu + Ni curves 17 and 20), Berman [70] (Cu + Ni curve 21), and Bouley, et al. [76] (Ni + Cu curve 104) to within 12%, and those at higher temperatures are in agreement with the data of Smith and Palmer [49] (Cu + Ni curves 71-73), Willett [146] (Cu + Ni curves 98-102), and Smith [45] (Ni + Cu curves 3-6) to within 10%.

The resulting recommended values for k, k_e , and k_g are tabulated in Table 11 for 25 alloy compositions covering the temperatures from 4 to 1200 K. These values are for well-annealed alloys. The values for k are also shown in Figures 17 and 18. The values of residual electrical resistivity for the alloys are also given in Table 11. The uncertainties of the thermal conductivity values are stated in a footnote to Table 11, while the uncertainties of the k_e and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than $\pm 15\%$, between ± 15 and $\pm 30\%$, and greater than $\pm 30\%$, respectively.

[Temperature, T. K. Thermal Conductivity, k. W cm-' K-'; Electronic Thermal Conductivity, k. W cm-' K-'; Lattice Thermal Conductivity, k. W cm-' K-'] Table 11. Reconstended thermal conductivity of copper-nickel alloy system

Z		99. 50% (99. 46 At. %) 0. 50% (0. 54 At. %)	At. %) At. %)		Cu: 99.00 Ni: 1.00	99.00% (98.92 At.%) 1.00% (1.08 At.%)	AL "5) AL "5)		Cu: 97.00	97.00% (96.76 At.%) 3.00% (3.24 At.%)	At. %) At. %)		Cu: 95.0	95.00% (94.61 At.%) 5.00% (5.39 At.%)	At.%) At.%)
	0.0	60 = 0.620 MOcm			00 = 1	= 1.25 µO cm			0° # 3	3.70 JA cm			= °0	6. 10 J.C cm	
		•يد	, u	H	<u></u>	no.	, pla	H	#.	140	1	F	<u></u>	*	مرر
	21.5	9.150	0.01865	**	0.0017	0.0782	0.0135	**	0.0347	0.0264	0.00030	••	0.0215	0.0160	6. 85 550
•		9.85	0.0	• •	0.218	0.136	0.0625		0.08	0.0828	0.0408	•	0.0616	0.000	
24		ă ă	0. 131 a	9 5	0. 293 4 4 4 4	0.195	0.100	2 5	0.132 2.132	0.0660	0.0655	25	0.0800	9.5	9
							4000	: 8				: :			
			0.440	8 S		0.482	0,358	2 2	0.428	0. 182 0. 164	0.x08	R 6			0. 270
	*	1.11	0.48	8	0.978	0.573	0.405	8	0.498	9. 196	0.302	8	0.27	9.18	2
	.	3 2	0.536 ² 0.846 ³	2 2	2 F	0.743	0.460	\$	0.599	0.258	9.341	\$ 5	0.456 6.456	0.156	9.5 8.5 8.5
			1		: :	}		3 :				3 :			
3 F				3 8	; ;	8:	0.465	3 8	0.715	998	9. S	3	3	# 1 0 0	9.2
	*	8	0.465	8	1.61	1.19	0.420	28	. 78		0.331	8	8	2	R
ė,	*	2	0.430	8	1.66	1.27	0.305	8	0.823±	50.	0.319	8	0.615	0.328	0.287
•	5	2		<u></u>	1. 7 2	1.35	0.370	8	0.864*	o. 248	0.306	001	0. 634*	0.358	0.276
-	2	3	0.283	25	1.98*	1.70	0.281	32	1.01	0.750	0.248	35	0.731*	0.505	9.236
	Ŀ!	8 ; v v	7	8	8	1.9	0.227	88	1.18 1.18	F	0.200	200	P 25	3	2
• •	3 5	į		35	2	7.17	0.100	3 6		1:1:	0.172	8 8	228		
	3	: 5	. 10	8	; ;	8 2	0.161	8	1.41	 	0.149	28	1.02	0.672	
_	1. 10	2	0.143	8	2.56	2.45	0.140	320	1.51	1.38	0.131	988	 1.08	6.972	0. 123
	J. 16	3	0.126	Ş	2.68	2.56	0.124	\$	1.61	1.46	0.116	\$	1.17	8.1	0.110
_	22.	21	0.162	8	2.80	2.70	0.100	8	1.77	1.67	0.0953	88	٠. ه	2:	0.0011
		2	0.0863	8	2.90	2.81	0.0843	2	1.90	1.82	0.0807	8	1.45	 8:	0.0776
	k ·	77	E. 673	8	Z. X	Z.	0.0727	8	2.01*	.: 2	0.0689	<u></u>	1.58		0.0675
8	3.27	Z Z	0.0644	98	2.98	2.92	0.0638	98	2.08	2.03	0.0617	8	1.65	2	. 038 t
•		具	6.0574	\$ 	2.98	2.82	0.0569	8	2.14	2.09	0.0552	8	1.72	1.6	6. 0636 0. 0636
•	h	E.	0.0617	000	2.88	2.91	0.0513	1000	2.18	2.13	0.0489	200	1.77	1.72	23.5
		· ·	0.0471	8	2.96	2.91	0.0468	1100	2.25	2.17	0.0455	811	1.8	1.78	9.24
æ		į			270	6	•								

90.80 Cu - 6.50-Ma ± 16% below 200 K and ± 5% above 200 K. 95.60 Cu - 1.60 Ma ± 16% below 200 K and ± 5% above 200 K. 95.60 Cu - 1.60 Ma ± 16% below 200 K and ± 5% above 200 K. 95.60 Cu - 2.60 Ma ± 5%.

4 Typinal unb

TABLE 11. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-NICKEL ALLOY SYSTEM (continued)

[Temperature, T, K; Thermal Conductivity, k, W cm^1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1]

	20.00 20.00	30.00% (30.27 At.%) 30.00% (30.73 At.%)	M. 5)		Cu: 85.00% Ni: 15.00%	1.00% (83.96 At.%) 1.00% (16.04 At.%)	1.%) 1.%)		Cu: 80.00 N1: 20.00	90.00% (78.71 At.%) 20.00% (21.29 At.%)	At.%) \t.%)		Cu: 75.00 Ni: 25.00	75.00% (73.49 At.%) 25.00% (36.51 At.%)	14.5) 14.5)
•	1.0	e 12.16 pD cm			0 = 17	17.95 JA can			D ₀ = 23	Do = 23.70 pf) cm			D = 0	Po = 29. 30 MD cm	a
	-	مد	A ^N	4	M	No.	, to	t		140	, to	H	 ,	•	مرر
-	6.0113		0.00315			60** 0.00544	0.00325	-	0.00762	0.00412	0.00350*	•	0.00794	0.0	0.00380
••			0.0000	6 4	0.0170**	0.00817	0.00000	*	0.0158	0.00619	0.00010	•	0.0143*		
• g			0.0335	° 2	0.0426*	0.0136	0.0290	2	0.0373	0.0103	0.0270	2	0.0344		0.00
2	3	0.0003	0.6760	27	0.0636*	0.0204	0.06354	1.6	0.0725*	0.0155	0.0210	12	0.0000*	•	o. otsay
1	£.18	25.	0.124	2	0.128**	0.0272	0.101	8	0.111#	9020.0	0.0000	8	0.1904	0.0367	0.0000
A		-	. 165	22	0.169**	0.0330	0.136	2	0.144	0.0257	0.116	ដ	0.150	9	0.00
R		3	2	R :	202.0	0.0407	0.161+	8 9	0. 17Z+		0.141+	2 :	0.10		
88				3	. X. X	0.00£1	0.217	3 2	6. 2. 2. 0	6.9612		38		919	į
1			•	•	8	0.000	0 22Kt	8	0.261\$	0.0411	A. 200\$			3	
}	į	i i	250	1 2	0.317**	0.031	0.224	2	0.273	0.0711	0.902	2	. 22		
8	5.5		0.28	8	0.327	9.10	0.221	8	0.281	0.0800	0.200	8	0.248**	1	
2:		Ę	9. 1	2 5		6.118 6.118	0.216	8 5	0.28		0.196	8 §	0.254 1.254		E
R				}				}				}	5		}
8	3	. T.	 	2	500	9.78	0.174	2	8	Į.	29. 0.	ន្ទ		3.	22.0
81		R I		R			- T-	8 8		79.79	6. L38				
R							0. 121	32	3	0.247	511.0			Í	
1	3		0.13	8	\$. 25	0.113	8	0.275	9	9. 166	8	2		2
1	9.0		0.130	98	0.502	0.40	0.102	2	0.403	98.0	0.0027	8	6. M.1.	*	
1	+	0.0		\$	0.546	0.446	0.0822	\$	0.43	97.0	0.0870	\$. 25.0	. E.	
8	3	2.7	0.0	3	0.610	0.537	0.0778	8	0.491	0.417	0.0738	3	0.412*	7	9.436
1	3:			8 8		0.617	0.0673	8 8		0.483	0.00	8 E	- 1	8 !	
B	1			3				}	18.5	5		<u> </u>	710.) ;	
8	3	3		8	2	0.767	0.0531	8	0.0	P. 603	0.020	2	150		3
8		1		8	E.		0.0481	8	9.70	200		2	* 193 · o	3	
9	a i	2		2	- 66	3	870.0	8	92.0	5 .7	3	8		2 2 3	
					0.00					6.765		8 9			
ì															

stal thereas conductivity, k, are as follows:

90.00 Cm - 10.00 Mt. ± 15%. 96.00 Cm - 15.00 Mt. ± 15% below 50 K, ± 10% between 50 and 200 K, and ± 5% above 200 K. 96.00 Cm - 20.00 Mt. ± 15% below 50 K, ± 10% between 50 and 200 K, and ± 5% above 200 K. 96.00 Cm - 20.00 Mt. ± 15% below 50 K, ± 10% between 50 and 200 K, and ± 5% above 200 K.

age where so esperimental thermal conductivity data are available.

grature, T. K. Thermal Conductivity, k. W cm-1 K-1; Electronic Thermal Conductivity, k., W cm-1 K-1; Lattice Thermal Conductivity, kg. W cm-1 K-1 TABLE 11. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-NICKEL ALLOY SYSTEM (continued)

ŠĒ	2	6 (66. 31 At. %) 6 (31. 88 At. %)	3.4.4. 3.6.		Ce: 65.003 Ni: 35.003	65.00% (63.18 At.%) 36.00% (36.62 At.%)	કહે કહે	·	Cu: 50.00 Ni: 40.00	60.00% (56.09 At.%) 40.00% (41.91 At.%)	1. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.		Cu: 55.00	55.00% (53.04 At.%) 45.00% (46.96 At.%)	77 23
	P 3L	0 = 34.90 pf) cm			A ₀ = 40	= 40.05 pC cm			P. 0	Po = 45.00 MD cm	4	 	3 = °0	46. 60 JAS cm	
		20	A ^{SO}	۲		46	مور	£-	4	140	ماير	H	_	140	من
	200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00440	-	0.00748**	0.00244	0.00505*	-	0.00797	0.00217	0.00580*	**	0.00000*	\$ 0.00010	0.0
•	i		0.0175		0.02X-	0.00488	0.0183	•	0.0238	0.00434	0.0195		0.0253**	Ġ	
22			0.0265 0.0615	9 4	0.0351**	0.00610 9.00015	0.0270	2 2	0.0334*	0.00543	0.0260*	25	0.03474	0.00584 0.00584	0.0 3 5
		1	*****		O. O.T.T.	0.0122	0.0756	\$	400.00	0.010	*00.00		*******	0 010K	*****
	1		0.100	ដ	0.110**	0.0154	0.0820*	2 23	0.10	0.0137	0.0000	3 2	0. 101	0.018	0.0
8:	2		0.118	8	0. 128**	0.0185	0.110	8	0.121	0.0164	0.105	8	0.118	0.0150	. 10th
- • 12	E		•	22	0.177**	0.0246 0.0397	0. 146 0. 146		0.147	0.0219	0.125* 0.137*	\$ 8	0.140	0.0257	0.1214
. 1		- 6416	0, 1666	8	0, 191**	0.0367	0.154*	•	0.178\$	0.035	0.1454		170	0.0000	138
		200	6. 16g*	2	0. 199**	0.0428	0.156*	2	0.185	0.0383	0.147	38	0.178	0.0	A
2 :	h	3	0.10	8 (0.2064	9.0498	0.157	2	0.192*	0.0437	0.148	8	0.184	0.0	0.143
, . } }	į		37.3	2 3	0.214	0.0	6. 15¢	88	0.200	0.0536	0.146	8 8	0. 1 8	0.0	0. 143 143 143
	- 24	0.0	0.144	81	0.228	0.0671	0.138	150	0.212	0.0786	0.138	150	0.20	0.0738	0.130
į		31	6.136	21	6. 23d	9.113 113	0.122	21	0.231*	0.103	0.118	88	0.213	9.0	6.176
12	Ė	6.73		E	i i	0.151	0.101	32	0.237	0.138	9.00	22		3	9.0
2		9.18	•. ee.	8	0.280	0.165	0.0000	8	0.34	0.151	0.0931	8	0.233	0.141	-
		227		8	0.276	0.190	0.0858	350	0.258	0.174	0.0842	98	0.246	0.163	0.0031
, s tê		įį			, N. O.	0.263 0.263	0.000	3 %			0.0667	\$ 8 		6. 18 8. 18 8. 18	
Ħ	5			8 8	P 4	0.310 9.310	0.0585	38	0.347	0.280	0.0575	38	0.32	0.275	3
								}				<u> </u>			
 ! 2			1	3		. 4 SE	0.0428	38	0.450	0.411	0.046X	88	7		
2	3	3		100	0.519	0.475	0.0383	200	0.485	6.47	0.0367	8	•	3	9
e i	ţ			2		0.512	0.0364	81	0.517	0.451	0.030	811	. 2	÷.	9
B	ļ	B								7					

stal thermal conductivity data are available.

table 11. Recommended thermal conductivity of copper-nickel alloy system (continued)

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, k, W cm-1 K-1; Lattice Thermal Conductivity, k, W cm-1 K-1]

Part		S	10.00% (48.02 AL.%) 10.00% (51.98 AL.%)	1. X)		Cu: 45.007 Nr: 55.007	45. 00% (43. 05 At. %) 55. 00% (56. 98 At. %)	((())		Ni: 60.00	40.00% (39.12 At.%) 60.00% (61.88 At.%)	AC. 76) AC. 96)		N: 65.0	39. 00% (38. EZ AL. %) 65. 00% (66. 78 AL. %)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOUIS CONTROL		*- %	E Poem				25 J. Can			0° = 31	1.60 JA CE			P	7.65 pD on	
County C	+		J.º	a ^s	F		" •	a to	۴	, w	J4 0	, to	F		ا ميد	مور
Committee Comm	•	0.0387 ⁴	9.0	0.00054	•	0.0120**	0.00273	0.00930*	**	0.0131**	J	0.0100	•	0.00		9
Committee Comm	•				9 a	# # # # # # # # # # # # # # # # # # #	0.00545	0.0161	• «	0.02101		0.0245	_	0.023		
Company Comp	9	. 6		0.0310	2	0.0385	0.00682	0.0317	` 2	0.0402**	0.00773	0.0325	° 2	0.0418		
Line: 0.0010; 0.0010; 0.0000; 0.0000; 0.0100;	3			0.0615	2	0.0617**	0.0102	0.05154	15	0.0631**	0.0116	0.0515	91	0.0658	0.0133	9.0
Light composed to 1102** 0.0185* 0.0800** 25 0.118** 0.0800** 25 0.118** 0.0800** 20 0.118** 0.0800** 20 0.118** 0.0800*	*	9. 9651 ⁴	0.0121	0. 0710*	2	0.0642**	0.0137	0.0705	ន	0.0860*	0.0155	0.0705	ន	0.0	0.0177	
C. 1337 C. 1000 D. 1127 C. 00345 C. 1127 C. 00345 C. 1137 C. 00347 C. 1137 C. 1137 <td>#</td> <td>. 101</td> <td>0. SEA.</td> <td>0.0000</td> <td>25</td> <td>0.102**</td> <td>0.0163</td> <td>0.0860*</td> <td>25</td> <td>0. 105**</td> <td>0.0168*</td> <td>0.0860</td> <td>22</td> <td>0.106</td> <td>0.0216</td> <td></td>	#	. 101	0. SEA.	0.0000	25	0.102**	0.0163	0.0860*	25	0. 105**	0.0168*	0.0860	22	0.106	0.0216	
	8	6. 117°	6. 0171°	0.000	8	0.116	0.0194	0.0000	8	0.121**	0.0224	0.0000	8	0. 126	9.6	3
1.107 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 0.137 0.0254 <th< td=""><td>\$ 1</td><td></td><td></td><td>0.117</td><td>\$:</td><td>0.147</td><td>9.0255°</td><td>0.117*</td><td>3 8</td><td>0.1474</td><td>0.0204</td><td>0.118</td><td>\$1</td><td>7</td><td></td><td>3</td></th<>	\$ 1			0.117	\$:	0.147	9.0255°	0.117*	3 8	0.1474	0.0204	0.118	\$1	7		3
0.187* 0.082* 0.187* 0.082* 0.084*<	B		-		8	O. 100	0.031Z	0.120	8		1080.0		3	#. IV	0.0017	
0.178* 0.188** 70 0.188** 70 0.188** 70 0.188** 70 0.188** 70 0.188** 70 0.188** 70 0.188** 0.0645* 0.148** 90 0.288** 0.148** 90 0.288** 0.148** 90 0.288** 0.148** 90 0.288** 0.148** 90 0.288** 0.148** 90 0.288** 0.148** 100 0.288** 0.148** 100 0.288** 0.148** 100 0.288** 0.148** 100 0.288** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148** 0.0628** 0.148**	8	0, 1074	6. RB4*	0.135	8	0.172**	0.0368	0.135	8	0.180**	0.0425		3	0.188	0.001	2.7
6.188 0.0565 0.143* 0.01465 0.141* 80 0.186 0.144* 90 0.2144*	2	o. 1755	0.0373	0.1384	2	0.181*	0.0421	0.130	2	0.190**	0.0487		2	0. 201**		9.75
0.1877 0.08227 0.1427 90 0.2447 0.08227 0.1437 100 0.1447 90 0.1447 100 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 0.1447 <td>8</td> <td>ė. M</td> <td>9. 94B1*</td> <td>0.18</td> <td>8</td> <td>0.186</td> <td>0.0468</td> <td>0.141*</td> <td>8</td> <td>0.198</td> <td>0.0545</td> <td></td> <td>8</td> <td>0.230**</td> <td></td> <td>ë.</td>	8	ė. M	9. 94B1*	0.1 8	8	0.186	0.0468	0.141*	8	0.198	0.0545		8	0.230**		ë.
C. 2577 C. 135 150 C. 1377 C. 1317 150 C. 1357	2		0	9.79	2	0. 194	0.0882	0.142*	8	0.204**	0.0600	0.144	2 .	0.217**		3
C. 2007 C. 2107 C. 2107 <t< td=""><td>2</td><td></td><td></td><td>e. 14</td><td>2</td><td>0.127</td><td>0.086Z*</td><td>0. 141*</td><td>8</td><td>0.208**</td><td>0.0645*</td><td>0.148*</td><td>울 </td><td></td><td></td><td></td></t<>	2			e. 14	2	0.127	0.086Z*	0. 141*	8	0.208**	0.0645*	0.148*	울 			
0.250 0.114 200 0.244 0.105 0.118 200 0.244 0.102 224 0.105 0.118 200 0.224 0.103 220 0.224 0.118 0.103 220 0.224 0.118 0.103 220 0.224 0.118 0.007 273 0.224 0.130 0.007 273 0.224 0.130 0.007 273 0.224 0.130 0.007 273 0.224 0.140 0.007 273 0.224 0.140 0.007 273 0.224 0.140 0.007 273 0.224 0.140 0.007 273 0.224 0.140 0.007 273 0.140 0.007 273 0.140 0.007 273 0.140 0.007 273 0.140 0.007 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140 0.140	3	. 101.	25.	0.126	150	0.209**	0.0775	0.131	150	0.2194#	0.09664	0.186	2	0.232**		
0.115 0.102 250 0.124 0.121 0.103 257° 0.131 0.103 250° 0.224° 0.121 0.103 250° 0.227° 0.135 0.0070 277 0.228 0.130 0.0070 277 0.228 0.130 0.0070 277 0.228 0.130 0.0070 277 0.128 0.130 0.0070 277 0.128 0.130 0.0070 277 0.128 0.130 0.0070 277 0.128 0.140 0.0070 277 0.128 0.140 0.0070 278 0.140 0.0070 278 0.140 0.0070 278 0.177 0.0074 500 0.226 0.177 0.0074 500 0.236 0.0070 0.236 0.0074 500 0.236 0.0070 0.236 0.0074 0.0070 0.236 0.0070 0.236 0.0070 0.236 0.0070 0.236 0.0070 0.236 0.0070 0.236 0.0070 0.0070 0.0070 0.0070 0.0	Ř	. H.	o. 8 17	0.114	욹	0.214	0.0968	0.117	202	0.223**	0.105	0.118	R	. XX.	0.117	
C. 257 C. 257<	1	114	0.116	0.102	2	9. 21¢	0.116	0.102	2	0.224	0.121	0.103	2	. 237		
0.239 0.156 0.025 350 0.243 0.160 0.083 350 0.243 0.160 0.083 350 0.243 0.160 0.083 400 0.243 0.160 0.084 0.160 0.084 0.160 0.084 0.160 0.084 0.160 0.084 </td <td>E I</td> <td></td> <td></td> <td>5.00</td> <td>2</td> <td>0.222</td> <td>0.125</td> <td>0.00</td> <td>2 2</td> <td>0 C</td> <td>81.6 81.6</td> <td></td> <td></td> <td>ij</td> <td></td> <td>-</td>	E I			5.00	2	0.222	0.125	0.00	2 2	0 C	81.6 81.6			ij		-
0.257 0.175 0.0754 0.0755 330 0.243 0.160 0.0825 330 0.243 0.160 0.0825 330 0.243 0.160 0.255 0.177 0.0754 4.00 0.255 0.179 0.0775 0.256 0.179 0.0775 0.256 0.179 0.0775 0.256 0.179 0.0775 0.256 0.179 0.0775 0.256 0.179 0.0775 0.256 0.0754 0.256 0.179 0.0755 0.256 0.179 0.0756 0.256 0.179 0.0756 0.256 0.179 0.256 0.0756 0.256 0.0566 0.05	}				} ;				} ;				}			
0.287 0.284 0.0044 500 0.284 0.210 0.0047 300 0.284 0.0044 500 0.284 0.0044 500 0.284 0.0047 300 0.284 0.0047 300 0.284 0.0047 300 0.284 0.0047 0.0054 0.0047 0.0054	R	2			8		9.5	0.0625	8	0.25 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	0.160 0.160	0.000	*			
0.385* 0.986 0.986 0.0864 600 0.316 0.362 0.0866 600 0.317* 0.0864 600 0.386 0.0864 700 0.387* 0.307* 0.0862 700 0.386 0.0864 700 0.387* 0.307* 0.0862 700 0.387* 0.307* 0.0862 700 0.386* 0.0864 700 0.387* 0.387* 0.0458 0.0464 0.0864 700 0.387* 0.0464 0.0464 0.0864			Ħ	0.0645	9	0.284	0.220	4400	9	78.0	0,219	0.0647	3			
6.384 6.384 6.384 700 0.387* 0.307 0.6502 700 0.386 0.986 700 0.387* 0.387* 0.0453 800 0.384 0.946 800 0.387* 0.0453 800 0.381 0.946 800 0.387* 0.0453 800 0.384 0.946 800 0.384 800 0.484 800 0.484 800 0.484 800 0.484 800 0.484 800 0.486 <	ŧ		. N	0.0565	\$	0.319	0.263	0.0564	8	0.318	0.262	0.0566	3			3
0.380* 0.980* 0.980* 0.347 0.0453 800 0.381 0.946* 800 0.946* 800 0.980* 0.946* 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800	ļ	- H	- H	0.0384	Ş	0.357	0.307	0.0502	30	0.356	9 8.0	0.0504	8	. K		
0.450 0.450 0.451 0.00 0.427 0.385 0.0413 0.0 0.434 0.263 0.4414 0.0 0.0 0.455 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450 0.435 0.450	•		. N	6.0454	8	6.0	0.347	0.0453	8	0.381	3.346	0.0464	8			
0.000 0.450 0.000 0.450 0.450 0.451 0.050 0.455 0.450 0.050 0.000 0.	1			7	8	-	o. 385	0.0413	8	187 .0	2000 2000 2000 2000 2000 2000 2000 200	0.011	2			3
O BOLL SECTION OF THE TANK OF THE A LEG OF THE A LEG OF THE ALL OF							0.421	9000	96:	0.456						
	įį							0.0332	325		6.400 6.400	0.0000	B :			

serioistics of the total thermal conductivity, k, are as follows:

90.00 Cu - 90.00 Mit ± 15% below 20 K, ± 26% between 20 and 100 K, ± 10% between 100 and 200 K, and ± 5% above 200 K.

45.00 Cu - 95.00 Mit ± 15% below 20 K, ± 26% between 20 and 150 K, and ± 16% above 150 K.

46.00 Cu - 66.00 Mit ± 15% below 20 K, ± 26% between 20 and 200 K, and ± 16% above 200 K.

26.00 Cu - 65.00 Mit ± 10% below 20 K, ± 26% between 20 and 250 K, and ± 16% above 250 K.

Provincional value.

Temperature, T. E. Inermal Conductivity, E. W. em-' K-'; Electronic Thermal Conductivity, E. W. em-' K-'; Lattice Thermal Conductivity, E. W. em-' K-'] TABLE 11. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-NICKEL ALLOY SYSTEM (continued)

	ÖË	28.85 28.88	39. 60% (28. 37. At. 7.) 78. 60% (71. 63 At. %)	(%) (%)		Cu: 25.00 Ni: 75.00	5.00% (23.55 At.%) 5.00% (76.45 At.%)	1.5) 1.8)		Cu: 20.007 Ni: 80.007	20.00% (18.76 AL.%) 80.00% (81.24 AL.%)	(f. %)		Cu: 15.00 M: 85.00	15.00% (14.08 At.%) 86.00% (86.98 At.%)	3.4 3.8
L. M. L. L. L. T. T. L.		A 23.	.To In CB			P ₀ = 19	. 80 JAG CID			0° = 16	00 = 16.00 per com			P 1	00 = 11.00 pc) cm	
C. Digital C.	*		a ^{to}	, pla	H	*	Ju [©]	, de	۲	24	M 0	a ^{te}	4	H	**	ad ^{to}
C. 100 C.		-	0.00612	0.6103	*	0.0148**	9.00494	0.00885	•	0.0153**	0.0011	0.00026	•	0.0162	0.00022	0.00000
	, 4			0.0175	4	0.0234	6.007 t5	0.0164	4 0 4	0.0244**	0.00016	0.0152	••		9.0	
	9:		0.0103	0.00	2	0.0433*	0.0123	0.0310	2	0.0439	0.0155	0.0286	.5	0.066	9	8
	9			0.0515*	2	0.06754	0.0185	0.0490	21	0.0	0.0	0.0460	2	. 538		
	~ 4			0.000 0.000 0.000 0.000	2 %	0.0017**	0.6247	0.0670	8 %	0.085F*		.00	2:			
C. 1867 C.				900	8	0.138*	0.082	8	8	1.0	2		38			
	. .			9.119* 0.131*	\$8	0.100	0.0506	0. 121 E	\$ 8	0.185**	0.0300t		\$1	, E		
	: 0	1001	. 000	0.140*	8	0.214*	0.00014	0.145	8	0.230**	0.0866	0.180		*****	811.0	9
0.247 0.0677 0.126			3	0.146	2	0.230	0.0782	0.151	2	0.250**	0.0077	0.197	32			3
0.237** 0.0077* 0.144* 1100 0.256** 0.104** 0.124** 0.	2 G		0.00	0.150	88	0.255	0.0007 0.0007	0. 15¢*	88	0.276*		9,164	2 2	. M.S.		
0.201** 0.130*		237	0. eem+	0.166	3	0.258**	0.104	0.154	2	0. 23 3ª \$	0.120	0.104	<u> </u>	. X.	0.1014	0. 179
C. 257 C. 1127	. .		6.1162	0.135	130	0.251**	0.136	0.1434	201	0. 320**	0. 100	6.151	3	0. ST##	0.214	
6.287 6.1167 6.1013 6.287 6.1167 6.1013 6.287 6.1175 6.0020 6.287 6.1175 6.0020 6.287 6.1277 6.1277 6.287 6.1277 6.1277	. 4			0.100	8 5		6.161* 0.174*	0.126	2:		0.150	0.180	R	2	į	3
6.287 6.162 6.0044 300 0.265 0.197 6.265 6.197 6.265 6.197 6.265 6.197 6.265 6.197 6.265 6.197 6.265 6.197 6.265 6	- 6	i	P. 15.	0. 2014	32	0.285*	0.181	0.104	22	. 321 ÷	. H34	0.1004	E		i i	
6.254 6.175 6.0000 340 6.150 6	ø.		0. 162*	0.0	8	0.286	0.187	0.0977*	*	0.330	0. 118 ⁴	0.10 3 4	*	. X	. 25	- 1
0.250 0.257 0.255 0.250 0.257 0.255 0.250 0.257 0.255 0.250 0.257 0.255 0.250 0.257 0.255 0.250 0.257 0.255 0.250 0.257 0.255	• :	Ž.	0.176		*	. 260	0.1964	0.0680	2	200	0.234	0.0018	*	9. 361*		
0.341 0.273 0.0675 000 0.347 0.338 0.346 0.346 0.0463 00 0.427 0.375 0.467 0.367 0.0463 000 0.427 0.775 0.487 0.388 0.0431	,	į	18	\$ 0.00 0.00 0.00 0.00	\$ 3			0.0000	\$ \$		0.237 2.27 2.27 2.27		\$!		į	
0.464 0.387 0.0483 800 0.422 0.375 0. 0.488 0.387 0.0483 800 0.422 0.375 0.	•	Ę	6.22	0.0000	3	. M.	0.266	0.0361*	3	0.367	0.306		!	1	Ä	
0.404 0.387 0.0634 800 0.427 0.375 0. 0.438 0.458 0.6434 800 0.458 0.413 0.					<u></u>	0.369	9.336	0.0524*	8	0.411	0.361	0.0537*	<u>\$</u>	2	*	
	9 (į	į		2 3	. .	0.375	0.0471*	2 3	o. 145	£:	9.0	8		3	
0.472 0.453 0.6385 1000 0.489* 5.450 0.		ŧ	3	.000	2000	0.480	9.4E0	0.0301\$	2 2	0.5114			3			
1367* 1100 0.821* 0.485 0.		3	Ę	0.0357	1100	0.621*	0.486	0.0361	8	0.547		0.0367	3	İ		25
6. 50g* 6. 505 6. 6551* 1200 0. 562* 0. 518 0.			. 20 5	0.03314	1200	0. 562*	0.518	0.0335	1200	0. STP*	0. 656	6. 6541 [‡]	1300	6. See		8,000°

* Presistent valu

Types wife.

RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-NICKEL ALLOY SYSTEM (continued) TABLE 11.

	Thermal Conductivity, kg, W cm-1 K-1]
	ic Thermal Conductivity, ke, W cm ⁻¹ K ⁻¹ ; Lattice Thermal Cond
	aductivity, k, W cm ⁻¹ K ⁻¹ ; Electronic The
· 17	[Temperature, T. K; Thermal Con

78: 90.e	2	6. 00 At. %)		NI: 95.00	6. 60% (95. 36 At. %)	16.56)		Ni: 97.00	97.00% (97.22 At.%)	At. %)		Ni: 99.00	99. 00% (99. 08 At. %)	At. W
	- C. C. C. C.	•		4 = 0	a ₆ = 4.100 µA cm	•		D ₀ = 2.	Do = 2.400 MA cm	S		9 - 0	00 = 0.900 pf. cm	8
	مد	مور	Ĥ		Japa .	, 36	Ę.	.		e de la composition della comp	H	.		
1	20 0. 0122	0.00000	•	0.0279	0.0238	0.00410	-	0.0481**	0.0407	0.00740	-	0, 123	0.100	0.016
3	2000	0.0116	•	0.0438	9.0368	0.00000	•	0.0741**	0	0.0130		0.186	0.163	0.022
3	12 0.85	0.01718	•	0.0001	0.0407	0.0127	•	0.101**		0.0192 ⁶	80	0.250	0.217	0.000
3		0.0000	2	o. 077 p	0.0	0.01624	2	0.128**	0.102	0.0260	2	0.314	0.271	0.0433
3.	E114 - C. BEEF	0.0383	27	0.123	0.0807	0.0337	91	0.1964	0.153	0.0445	35	0.477	0.40	0.000 E
17	11907		20	0.1714	9.119	0.05154	2	0.268#	6.20	0.0630\$	20	0.638	0.543	D. 0960£
	3		2	0.217	0.1464	0.07063	2	0.339**	0.2464	0.05704	25	0.771\$	0.649	0.1220
3	-		8	0. M.	0.1734	0.00194	8	0.307**	0.2674	3.0	8	. 200¢	0.7424	
# ·	. 113	6.196	\$	0.354	0.234	0.130	\$	0.5164	0.3634	0.153	40	1.07	0.875	0. 195
# ·	. 143	6.156	2	0.433	0.268	0.165	28	0.613**	0.454	0.150\$	2	1. 194	0.9324	0.235
H	Fee 9, 1664	£. 105	3	0.407	0.3864	0.1914	8	0.6584	0.4734	0.215\$	2	1.21	0.9	0.265
7	PET I	0.1704	2	0.543	0.3374	0.206	2	0.734**	0.504	0.2304	20	1.21	0.924	0.283
3	THE STATE OF	e. 1866	2	6. 378 [‡]	0.362	0.216	8	0.765**	0.524	6.241	8	1.194	0.899	0.283
77-	ure caus	0.190	2	0.886**	0. 3784	0.221	8	0.784**	0.537	0.247	06	1.16	0.866	0.295#
4:	, 120°	0.1928	8	0.614**	0.381*	0.223	2	0.786**	0.536	0.250	8	1.11	0.6234	0. 25 Q
j	F. 6.227	6.176	3	9.627*	0.436	0.206	130	0.778**	6.554	0.225	250	0.993##	0.741	0.252€
53		0.188	200	0.637**	0.463	0.174	200	0.743**	0.557	0.186	8	0.900**	0.698	0.2024
3		6.125	22	0.023**	0.476	0.147*	250	0.717##	9.561	0.156	220	0.838**	0.670	0.168*
3		6.159	213	0.616**	0.478	6. 137°	273	0.704**	0.558*	0.145	273	0.819**	0.663*	0.155
<u>.</u>		0.115*	8	o. 608*	0.481*	0.127	8	0,692**	0.558	0.134	8	0. 801#¢	0.656	e. 1434
3	-	0.1634	98	0.501	0.479	0.1124	350	0.665"t	0.547	0.118	320	0.764**	0.6404	6. 15¢
13 S		0.0023	\$	6.566**	0.486	6. 100 ⁴	8	0.633**	0.530	0.105	400	0.724*	0.615	0.110
3	-	. 6770	3	o. 523	0.414	0.0626	200	0.581**	0.495	0.0855	8	0.655	0.00	9
S.			9	•	0.424	0.0702	9	0.527	0.455	0.0723	000	0.50	0.523	0.0747
3		6. 867 ST	8	6.0	0.43	0.06103	8	0.581	. 518	0.0626*	200	0.619	0.555	0.0643
3	1	9. 0514 ⁴	2	0. 579*	0.525	0.0536	200	0.611*	0.556	0.0551*	8	9.65%	0.587	0.0565
•		0.04634	2	0.607#	0.536	0.0483*	8	0.6387	0.588	0.0493	006	0.000	0.618	0.0503
•	2	0.0421*	8	0.636	0.591	o. 9437*	8	0.662*	0.618	0.0445	901 	0.682	9. 5	0.0121°
1100		0.0386	100	0.6617	0.621	0.0400	2	0.687	0.646	0.0406	001 -	0.715	0.673	0.0413
•		0.0357*			3	D. 03888	256	47.0%	010		-	1000 i		

exhibites of the total thermal conductivity. k, are as follows:

16.46 Cu = 90.00 Mir ± 20% below 20 K, ± 25% between 20 and 500 K, and ± 15% above 500 K.

5.40 Cu = 95.00 Mir ± 20% below 20 K, ± 25% between 20 and 500 K, and ± 15% above 500 K.

5.40 Cu = 97.00 Mir ± 20% below 20 K, ± 25% between 20 and 600 K, and ± 15% above 600 K.

1.00 Cu = 90.00 Mir ± 20% below 20 K, ± 25% between 20 and 600 K, and ± 15% above 600 K.

9 Provisional value

seed thermal conductivity data are available.

13-45. TABLE 11. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-NICKEL ALLOY SYSTEM (continued)

same, T. E. Thermal Contractivity, k. Wem-1 K-1; Electronic Thermal Conductivity, k., Wem-1 K-1; Lattice Tharmal Conductivity, k., Wem-5 K-1]

	6 (0.45 At. 5) 6 (96. 55 At. 5)			
9	20 P cm			
J				
))) <u>)</u>		er.		
3 22				4
				· · ·
56 :	11			
		**************************************	•	
* 11	C. 700 C. 200 C.			en solition
	6.000 6.000 6.000			
	C. C. L. C.		•	
				*
	0.0000 0.0000			
		<i>A</i>		

Care the total thermal conductivity, k, are as follows:

1

ngs where so experimental thermal conductivity data are available.

京 二年 小田本本書

TABLE 12. THERMAL CONDUCTIVITY OF COPPER + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

Cer.	žė į	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Compo (weight i	Composition (weight percent) Cu Ni	Composition (continued), Specifications, and Remarks
~	\$	Smith, C. S. and Poince, E. V.	1936	ı,	293,473	Bar 107	99.73	0.28	0.03 Mg and 0.01 Fe; specimen 0.75 in. in diameter and 8 in. long; supplied by American Brase Co.; cold-rolled, annealed, and cold-drawn; annealed at 800 C for 2 hr; electrical conductivity 45.70 and 29.11 x 104 ff ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smith, C. S. and Palmer, E. W.	***************************************	4	293,473	Bar 108	99.47	3	0.04 Mg and 0.02 Fe; similar to the above specimen except electrical conductivity 39.94 and 26.96 x 10^4 Ω^{-1} cm ⁻¹ at 20 and 200 C, respectively.
n		Smith, C. S. and Palmer, E. W.	1936	÷	293, 473	Bar 109	9. %	1.97	0.04 Mg and 0.02 Fe; similar to the above specimen except annealed at 800 C for 4 hr; electrical conductivity 22.71 and 17.58 x 10 fr 1 cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smith, C. S. and Palmer, B. W.	1936	ii	293,473	Bar 110	1 .93	5.09	0.03 Mg and 0.01 Fe; similar to the above specimen except electrical conductivity 12.39 and 19.64 x 10^4 Ω^{-1} cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smith, C.S. and Palmer, E.W.	1936	ı	293,473	Bar 111	69.90	10.07	0.03 Mg, 0.024 C, and 0.02 Per similar to the above specimen except electrical comfactivity 7.07 and 6.46 x 10^4 Gr ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.
•	\$	Smith, C. S. and Palmer, E. W.	1936	ı	293, 473	Ber 125	84.85	15.07	0.06 Fe. 0.03 Mn, and 0.91 Mg; similar to the above specimen except electrical conductivity 5.094 and 4.795 x 10^4 Ω^{-1} cm ⁻¹ at 20 and 200 C, respectively.
	\$	Smoth, C. S. and Palmer, E.W.	1936	ı	293, 473	Bar 124	69.54	30.23	0.13 Mn, 0.05 Fe, and 0.05 Mg; similar to the above specimen except electrical conductivity 2.754 and 2.730 x 10^4 Ω^{-1} cm ⁻¹ at 20 and 200 C. respectively.
•	. Mar.,	Zeveritekti, N.V.	1966	L	2.3-106	Russian cupro nickai NM-81; 7	81.0	19.0	Specimen in strip form cut from a 6 κ 5 mm tube; measured in helium.
•	8	Zavarttekti, N.V. and Zeldovich, A.G.	1966	a	2.5-76	Russian cupro nickei NM-81; 6	81.0	19.0	The above specimen; annealed at 800 C; measured in belium.
2	E		1930	p _a	321-964	-	8.67	20. 0	0.2 Ms and trace Mg; ~0.25 cm in diameter and ~3.5 cm long; chill cast, hot rolled and cold drawn; annealed at 700 C for 12 hr; electrical conductivity 3.54, 3.46, 3.33, 3.21, 3.12, and 3.02 x 10⁴ Ω⁻¹ cm⁻² at 46. 150, 315, 462, 575, and 711 C, respectively.
=	£	Softer, Q. F.	1930	<u>n</u>	335-991	-	∞59.8	40.0	Similar to the above specimen except electrical conductivity 1.99, 1.99, 1.96, and 1.92 x 10^4 G ⁻¹ cm ⁻¹ at 62, 266, 510, and 717 C. respectively.
2	Ħ	Darriett, T.	1914	•	273-373	Euroka	60.0	40.0	0.0995 cm diameter and 40.0 cm long; electrical resistivity 45.90 and 45.87 μ G cm at 0 and 100 C, respectively.
2	4	Coffee E. E.	192	H	21,63	رم 11	99.0	1.0	7 cm long and 0.1 to 0.3 cm wide; drawn; electrical resistivity 2.97, 1.60, and 1.295 $\mu\Omega$ cm at 0, -190, and -252 C, respectively.
*	F .	Wildeson, K. R. and Wilks, J.	1949	٦	10-20	Cupro-nickel	10	30	4.1 mm in O.D., 2.5 mm in 1.D., and 21 mm long; supplied by Yorkshire Copper Works Ltd.; cold-worked.
2	8	Palm, J.K.	1961	a	1.9-22		8	20	Average grain size 0.011 mm.
3	3	Jager, W. and Descelbers, H.	1900	M	291, 375	Constantan	©	9	1.996 cm diameter and 27 cm long; density 8.92 g cm ⁻² at 18 C; electrical conductivity 2.04 and 2.037 x 10 ⁴ G ⁻¹ cm ⁻¹ at 18 and 100 C, respectively.

TABLE 12. THERMAL CONDUCTIVITY OF COPPER - NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

The second secon

	Sed.	Author (s)	Year	Method	d Temp. Range, K	Name and Specimen Designation	Comp (weight Cu	Composition (weight percent) Cu Ni	Composition (continued), Specifications, and Remarks
11	130, 176	Zimmerman, J. E.	1951	ı	3.3-78	CN	06	10	Cylindrical specimen 0.125 in. in diameter; machined from a forged bar; electrical resistivity 12.50, 12.72, and 14.65 $\mu\Omega$ cm at 19.7, 75.9, and 296 K, respectively.
2	130,	Zimmerman, J.E.	1961	ы	3.0-77	CS 2	06	10	Cylindrical specimen 0.125 in. in diameter; cold-worked by rolling from 0.25 in, thick to 0.14 in. before being machined to size; electrical resistivity 12.65 and 14.69 $\mu\Omega$ cm at 76.2 and 296 K. respectively.
19	130.	Zimmerman, J.E.	1961	ı	3.6-79	CN 3	06	10	Cylindrical specimen 0.125 in. in diameter; severely cold-worked; rolled from 0.5 in. ² cross section to 0.22 x 0.24 in. before machining; electrical resistivity 12.63 and 14.65 µΩ cm at 78.7 and 298 K, respectively.
8	136,	Zimmerman, J. E.	1951	7	3.4-79	CN 4	8	10	Single crystal; cylindrical specimen 0.125 in. in diameter; electrical resistivity 13.0, 13.10, and 15.04 μΩ cm at 20.5. 79.3. and 295 K. respectively.
Z	2	Berman, R.	1951	H	3.0-91	Constantan	09	0 7	317 36 gauge wires bound and soldered together at ends; electrical resistivity 44.3, 45.3, and 52.7 $\mu\Omega$ cm at 20, 90, and 290 K. respectively.
Ħ	4	Hanson, D. and Rodgers, C.E.	1932	ı	438.2		Bel.	0.78	Prepared from high grade electrolytic Cu with traces of impurities; 6.5 in. long and 0.5 in. in diameter; annealed at 900 C.
Ħ	42	Hanson, D. and Rodgers, C.E.	1932	ı	438.2		Bei.	1.57	Similar to the above specimen.
x	4	Hanson, D. and Rodgers, C.E.	1932	ผ	438.2		Bal.	2.76	Similar to the above specimen.
n	\$	Hanson, D. and Rodgers, C.E.	1932	ı	438.2		Bal.	4	Similar to the above specimen.
×	\$	Parith , A.W.	1928	H	330.2		20	20	~5 cm long with cross section 0.3 cm²; made from Cu (< 0.03 of total impurity) supplied by Baker by fasting with Ni (99.75 to 99.85 pure including cobalt) supplied by International Nickel Co. of America; electrical conductivity 1.98 x 10 ⁴ G ⁻¹ cm ⁻¹ at 25 C.
r.	3	Seuth, A.W.	1925	H	330.2		80	04	Similar to the above specimen except electrical conductivity 2.04 \times 10° Ω^{-1} cm $^{-1}$ at 25 C.
8	\$	Smith, A.W.	1925	a	330.2		10	30	Similar to the above specimen except electrical conductivity 2.45 \times 10^4 Ω^{-1} cm 1 at 25 C.
2	\$	Smith, A.W.	1925	-1	330.2		8	10	Similar to the above specimen except electrical conductivity 3.49 \times 104 Ω^{-1} cm ⁻¹ at 25 C.
8	131	Ellis, W.C., Morgan, F. L. and Seger, F.G.	1928	Δ	306.2	Advance	10	45	0.25 cm diameter and 35 cm long; density 8.78 g cm ⁻³ ; electrical conductivity 2.023 x 10^4 G ⁻¹ cm ⁻¹ at 32 C; thermal conductivity value calculated from measured thermal diffusivity, specific hest capacity, and density.
Ħ	Ħ	Silverman, L.	1963	ပ	323-1174	Lohm	93.4	6.05	0.01 Mn and 0.01 St; ammented at 900 C; advance used as comparative material.
Ħ	83	Powers, R.W., Zhejfer, J.B. and Johnston, H.L.	1961	1	26-295	Constantan	55 55	45	No details given.

TABLE 12. THERMAL CONDUCTIVITY OF COPPER + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

Cur. Ref.	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Ni	ition presut) Ni	Composition (continued), Specifications, and Remarks
8	Sedntriffen, E.	1919	۲	273,373		89.98 20.98	10.06	Calculated composition; rolled and drawn to 1 mm thick; bested 0.5 kr close to mediting point; electrical conductivity 6.2 and 6.1 x 10 ⁴ D ⁻¹ cm ⁻¹ at 0 and 100 C, respectively.
2	Bedetrifen, E.	1919	H	273,373		79.90 20.10	0.10	Similar to the above specimen except electrical conductivity 3.5 and 3.3 x $10^4~\Omega^{-1}~{\rm cm}^{-1}$ at 0 and 100 C, respectively.
3	Sodierfin, E.	1919	۲.	273, 373		60.02 3	39.98	Similar to the above specimen except electrical conductivity 2.0 and 2.0 x $10^4~{\rm G}^{-1}~{\rm cm}^{-1}$ at 0 and 100 C, respectively.
*	Aoyana, S. and Bo, T.	1340	H	78.2	œ	Ä	29. 89	0.63 Mn. 0.03 Fe, and traces of other impurities; prepared from electrolytic Nu (containing 0.53 Co. 0.05 Fe, and 6.02 Al) and electrolytic Cu (containing 0.015 Sb, 0.01 Fe, 0.007 S, and trace of P) by fusing; 4.00 mm in diameter and 60.0 mm long; electrical restativity 40.3 µ Ω cm at -196 C.
8	Asymme, S. and No. T.	25	н	78.2	dh	a	19. 83	0.04 Mn, 0.02 Fe, and traces of other impurities; the same original materials and dimensions as the above specimen; electrical resistivity 27.1 µ0 cm at -186 C.
X	Acyman, S. and No. T.	1940	a	78.2	10	ä	13.84	0.11 Fe and trace May the same original materials and dimensions as the above specimen; electrical resistivity 17.6 µ0 cm at -196 C.
¥.		1946	4	78.2	=	-	9.47	0.14 Fe. traces of Mn and other impurities; the same original materials and dimensions as the above specimen; electrical resistivity 11.9 $\mu\Omega$ cm at -196 C.
3	Asympte, S. and No. T.	1940	ı	78.2	12	••	3.67	0.09 Fe and traces of other impurities; the same original materials and dimensions as the above specimen; electrical resistivity 3.43 $\mu\Omega$ cm at -195 C.
3	Marie 6 and	940	u	78. 2	13	76	1.03	0.03 Fe and traces of other impurities; the same original materials and dimensions as the above specimen; electrical resistivity 1,039 $\mu\Omega$ cm at -195 C.
#1	Gribelsen, E.	1900	H	291.2		22 84	•	Density 8.89 g cm ⁻² ; electrical conductivity 1.99 x 10° fl ⁻¹ cm ⁻¹ at 18 C.
\$ 2	Mileyskov, V.E.	1961		336-825		99.05	0.70	 1 Be and 0.15 Co; electrical conductivity 25.8, 23.1, 20.4, 18.25, 16.5, 15.67, and 14.33 x 10⁴ Ω⁻¹ cm⁻¹ at 63.0, 114.6, 195, 273, 375.8, 433.5, and 551.3 C, respectively.
# #	Maryahov, V.E.	1967		333-900		Bal.	90.90	0.10 Be and 0.10 Zr; electrical restativity 3.34, 3.65, 4.33, 5.21, 5.75, 6.33, 7.05, and 6.14 µG cm at 50.4, 115.6, 171.5, 291.6, 365.6, 457, 534.5, and 626.5 C, respectively.
3 2	Maleyster, V. E.	1961		336-947		Bel.	0.80	0.29 Ti; electrical resistivity 4.25, 4.86, 5.56, 6.01, 6.46, 6.57, 7.18, 7.29, 7.46, 8.83, and 9.76 µll om at 62.8, 139, 9, 217.5, 296,6,462.5, 440.3, 560.3, 538.3, 674.2, 618.0, and 673.6 C, respectively.
*) Mileryahov, V.E.	1967		345-923		Bel.	0.55	0.17 Zr; electrical resistivity 3.45, 4.13, 4.43, 5.10, 5.32, 5.76, 6.20, 6.83, 7.20, and 8.67 gG cm at 71.8, 155.7, 201.0, 291.0, 331.0, 441.4, 473.6, 534.5, 575.0, and 649.5 C, respectively.
# 153	Chamb, W. P.	1938	-1	273-403		Bai.	0.204	2.0.079 O; specimen 50.6 cm long.
121	Cheb, v. P.	1936		273-463		Bel.	0.303	≈0.079 C; specimen 50.6 cm long.
# 12	Chalb, W.F.	1938	-1	273-483		Bal.	0.506	≥ 0.079 O; specimen 50.6 cm long.

TABLE 12. THERMAL CONDUCTIVITY OF COPPER + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

The major of the second

The state of the s

, j		Author (s)	Year	Method	l Temp. Range, K	Name and Specimen Designation	O B C	Composition (weight percent) Cu Ni	Composition (continued), Specifications, and Remarks
2	153	Clarkb, W. F.	1936	1	\$73-403		Bal.	0.303	0,0042 Fe, 0,0014 Pb, trace Sn and Zn; specimen 50.6 cm long.
4	Ħ	Clath, W. F.	1836	1	273-403		Bei	0.508	~0.022 O; specimen 50.6 cm long.
#	*	Erdmann, J.C. and Jakofa, J.A.	<u> </u>	۵	4.2-70	3 .		2.23	Single crystal; 6.0-7.5 mm diameter and 12 cm long; propared by electron beam float zoning; supplied by Materials Research Corp.; residual electrical resistivity 2.17 µB cm; measured in a vacuum of 10 ⁻⁶ mm Hg.
2	2	Erdmann, J.C. and Jahoda, J.A.	1968	1	4.2-51	8 8		4.05	Similar to the above specimen except residual electrical resistivity 4.96 $\mu\Omega$ cm.
3	2	Erchaum, J. C. and Johnste, J. A.	186	4	4.2-71	ಷ ಪ		9.30	0.025 Al; polycrystalline; 5.0 mm is dismeter and 10 cm long; vacuum cast ingot harmer forged, hot rolled to 18 mm dismeter and rough turned, the rough swaged to 10 mm in dismeter, then machined to size; amealed at 930 C for 24 hr in the argun formace and allowed to cool slowly; residual electrical resistivity 11.22 $\mu\Omega$ cm; measured in a vacuum of 10°4 mm Hg.
*	2	Erdmann, J.C. and Johnde, J.A.	1380	ų	1.2-54	Ou 72		27.8	0.023 Al; similar to the above specimen except residual electrical resistivity 33.36 μΩ cm.
	83	Remare, D.L., Resemble, J.J. and Lem, D.W.	ij	ပ	496-949	Constantan, No. 103	99~	07~	Thermocouple grade; 1 in. diameter and 1 in. thick; Armeo iron used as comparative material.
	3	Emmer, D. L., et al. 1966	1. 1966	O	539-906	Constantan, No. 103	9~	-40	2.5 in. O.D., 0.75 in. l.D., and 3 in. long.
3	3	Carroll, J.M.	ž	Ů	492-850	Constantan; Specimen No. 1	9	9	Thermocouple grade; I in. in diameter and I in. long; Armoe free used as comparative material.
7	3	Carrell, J.M.	1	ပ	499-860	Constantan; Specimen No. 2	9	0 1 ~	Similar to the above specimen.
8	3	Carrell, J.M.	ĭ	e	683-1044	Comstantan; Specimen No. 1	9~	-40	Thermocouple grade; 0.25 in. I.D., 1 in. O.D., and 1 in. long.
2	3	Carrell, J. M.	Ä	*	622-1175	Constantan; Specimen No. 3	9	-40	Similar to the above specimen.
8	£	Erdnen, J. C. and Johnsto, J. A.	ž	4	;	9	i A	07~	Polycrystalline; wire specimen 1,35 to 1.45 mm in diameter and 125 mm long; obtained from International Nichel Co.; vnoumn onet inget humaner forget, but rolled to 18,5 mm diameter, rough turned, onld relied to 6 mm diameter, rough turned, onld relied to 6 mm diameter, est; amended at 2000 C for 24 hr, alonity cooled in the farmone over a period of 0 hr, electropopolished; electrical resistivity 42,3 μΩ cm at 4,2 K.
8	£	Erdenm, J.C. and Jahoda, J.A.	ĭ	a	4.2	99	Bei.	ස ශ්	0.025 At polyerystalline; same dimensions, supplier, and therestien method as the above specimen; electrical resistivity 19.94 µB cm at 4.2 K.
2	ţ.	Erdnen, J.C. and Jakobs, J.A.	ĭ	ឯ	4.3	76	Ä	7.7	<0.1 each of Fe, Mg, and Me, and 0.043 All polyeryshalline; manadimensions, supplier, and fabrication method as the above aperimen; electrical resistivity 7.04 µO cm at 4.2 K.
	2	Street, J.C. and John J.A.	Ĭ	ų	1.2	96	į	3.8	Polycrystalline; same dimensions, supplier, and therication method as the above specimen; electrical resistivity 2.17 $\mu\Omega$ cm at 4.2 K.
ĭ	* Net about	a to frame.							

The second second

THE SECTION OF THE SE

TABLE 12. THERMAL CONDUCTIVITY OF COPPER + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

· ·

ition Preent) Composition (continued), Specifications, and Remarks Ni	0.28 0.24 Zr and 0.19 Be; electrical conductivity 26.10, 22.90, 19.50, 17.46. 15.30, 14.34, 13.40, and 12.12 x 10° fir's at 59.8, 119.5, 216.5, 302.6, 383.0, 455.1, 522.0, and 581.6 C, respectively.	49.45 0.26 Co. 0.06 Fe. 0.06 Mn. 0.01 Al. 0.006 Sb. 0.004 S. and trace Pb (calculated composition); electrical resistivity 54.9 μΩ cm.	39.6 0.21 Co, 0.07 Fe, 0.02 Mn, 0.009 Sb, 0.006 Al, 0.004 S, and trace Pb (calculated composition); electrical restativity 51.4 μΩ cm.	30.0 0.40 Fe; nominal composition; supplied by Anaconds; drawn into 0.0522 in. O.D. and 0.0567 in. I.D.	0.7 0.15 Co, 0.15 Fe, 0.1 Be, and 0.1 C; electrical resistivity 3.99, 4.29. 5.01, 5.60, 5.98, 6.37, 6.93, 7.55, and 9.32 µff cm at 65, 115, 196, 275, 390, 440, 511, 589, and 700 C, respectively.	27.96 <1.0 each Mn, Mg. Fe, and 0.023 Al; polycrystalline; wire specimen 1.35 to 1.45 mm in diameter and 125 mm long; obtained from international Nichal Co.; vacuum cast ingot hammer forgad, hot relied to 18.5 mm diameter, rough turned, cold rolled to 6 mm diameter and drawn to 1.5 mm diameter, out; annualed at 1000 C for 24 km, cooled slowly in the farmace over a period of 6 km, electropolished; electrical resistivity 32.3 µG cas 4.2 K.	•	3.01 0.88 St and 0.04 Pe; 0.75 in. diameter and 8 in. long; cold-rolled to 1.25 in. is diameter, semested, cold-drawn to size; heat-tweeted at 870 C for 3 hr, quenched; electrical conductivity 9.778 and 9.140 x 10 ⁴ Ω ⁻¹ cm ⁻¹ at 20 and 200 C, respectively.	Similar to the above specimen energy reheated after quenching at 500 C for 2 let, electrical conductivity 20.69 and 16.39 x 104 (T-f cm-1 at 20 and 200 C, respectively.	Similar to the above specimen bar 66 (Curve No. 86) emerge cooled alowly after best-treatment at 870 C; ejectrical confectivity 22.60 and 17.34 x 10^4 Gr ² cm ⁻¹ at 20 and 200 C. respectively.	0 0.6 Ma and 0.5 Fe; nominal composition; density 8.94 g cm ⁻³ ; electrical restativity 37 $\mu\Omega$ cm at 20 C.	 1.36 Pe and 0.4 Ma; nominal composition; density 3.96 g em⁻³; electrical restativity 15 μΩ cm at 20 C. 	0.07 1.18 Pb. 0.67 Mm, < 0.10 Zb, and < 0.02 Pb; ansended at 750 C and couled by waterfall agray at the exit end of the farmons; Armon iron used as comparative material; equilibrium 1.	The above specimen; equilibrium 2.	The above specimen: equil Brium 3.
Composition (weight percent) Cu Ni	49.3	Bel. 49	Bel. 39	69.60 30	Bei.	Pal.	79.68 19.79	8.			68.9 30	88.35 10	88.08 10.07		
Name and Specimen (v		ψ	-	Cupronickel		667	Ber 39	Der 68	Ber 66A	Ber 66 B	Cupro-nicinal	Cape o-alokal	Copper-Nickel (706) alloy	Copper-Mehal (706) alloy	Copper-Michel
Temp. Range, K	333-855	78.2	78.2	0.28-4.0	340-827	÷.	293, 473	193, 473	93,473	193,473	280.3	293.3	378-463	701-969	207
Method	ш ш		-1	٦ ٥	M	a a	H	 	1	2			e, C	ى د	U
Year	1967	1940	1940	1960	1968	3	1836	1836	1936	1836	196	186	8	# F	1961
Author (s)	Mikryakov, V. E.	Aoyama, S. and Ro, T.	Aoyuna, S. and Ro, T.	Pairbank, H.A. and Loe, D.M.	Milityuskov, V. Ye.	Erthuma, J.C. and Jahode, J.A.	Smith, C. S. and Paimer, E. W.	Smith, C. S. and Palmer, E. W.	Smith, C. S. and Palmer, E. W.	Smith, C.S. and Palmer, E.W.	Materials in Design Engineering	Meterials in Design Englesering	Willes, R. E.	Villen, R. E.	Willen, R. E.
2 9	ä	75	31	3	143	t	\$	\$	\$		3	#	3	*	3
<u>بۇ</u> چ	£	2	8	ż	2	2	8	8	6	2	2	8	z	2	8

34	Author (s)	Year	Method Used	Tomb. M. S. K.	Name and Specimen Designation	Composition (weight percent) Cu Ni	Composition (continued), Specifications, and Remarks
*	Wilser, R.E.	1981	Ö	467-568	Copper-Nichal (706) alloy	88.08 10.07	1.18 Fe, 0.67 Mn, < 0.10 Za, and <0.02 Fb; the above specimen; equilibrium 4.
*	Willet, R. E.	200	Ü	867-738	Copper-Mehal (786) alloy		The above specimen; equilibrium 5.
*	William, R. E.	3	ပ	391-48	Copper-Mehal (706) alloy		Similar to the above specimen except annealed at $750~\mathrm{C}$ for 1 hr and water quenched,
\$ \$	Willett, R. E.	11 25 11	Ů	377-1017	Copper-Michael (706) alloy		Similar to the above specimen except annealed at 750 C for 1 hr and farnace cooled.
3	Willott, R. E.	200	Ü	362-1650	Copper-Michel (710) alloy	77.75 20.67	0.81 Fb, 0.65 Mm, 0.20 Zn, 0.01 Fb, and 0.017 C; meanied at 750 C and cooled by valorial spray at the exit end of the farmace; Armeo iron used as comparative material.
*	Willet, R. E.	1966	ပ	408-927	Copper-Nickel (715) alloy; 1	66.33 30.72	0.53 Pb. 0.41 Min, < 0.10 Zn. 0.055 C, and <0.005 Pb; assembled at 650 C and cooled by waterfull spray at the exit and of the furnace; Armeo from used as comparative material.
\$.	Willet, R. E.		O	365-949	Compar-Nichal (716) alloy; 2	69.29 30.87	0.50 km, 0.51 Fe, 0.34 C, <0.16 Zh, smd 0.066 Ph; similar to the shove specimen except assembled at 750 C.
# #	Willet, R. E.	*	v	36-146 36-146	Copper-Nichal (715) alloy	68.40 29.94	0.62 Fe. 0.50 Zn. 0.46 Mn. 0.063 C, and 0.010 Fb; similar to the above specimes.
81 84	Willett, R.E.	186	ပ	399-901	Copper-Nichal (715) alloy	68.60 29.94	0.61 Fe, 0.48 Ma, 0.30 Za, 0.060 C, and 0.007 Fb; sinsidar to the above specimen except annealed at 1000 C and water quesched.
ž K	Bendey, A., Man, R., 1976 Klaffly, R., Dumon, D.E., and Mehan, R.R.			11 - 60		3.71	Calculated composition from atomic percent; amosted at 1075 \pm 5 C for 72 hrs and atomy cooled afterwards in 18 hrs; resistant checkrical restativity reported as 4.92 μ D cm.
ř	Design A., A al.	1974		ğ		3.71	Calculated composition from atomic percent; heavily swageds residual slec- triosi resistivity reported as 4.54 MB cm.

TABLE 13. THERMAL CONDUCTIVITY OF NICKEL - COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

	red from Mand others 1.00, of 17 cm² at setively; thermal fillestvity, specific	adaptivity 3. 60, 1. 17. 2. 12, 21, 164, 184,	cus long and . 00 x 10 fg.	2.17 x 10 ⁴ G ⁻¹	2. 02 × 10 ⁴ G ⁻¹	1. 30 x 10 ⁴ G ⁻¹	ند	*	item from atomic and them i email grains: a c. set. b. c. rite, c. set. i. d. rite, c. set. i. d. rite, d. set. i. d. rite, d. set.	direction, very files are enti- ministery k as fir, 1, 646, file, 1, 515, 19.2, 14.5, 18.4, 69.3,
Composition (continued), Specifications, and Remarks	0.2 Mn and 0.17 Mg; 2 mm diameter and 35 cm long; propered from Mean nichel by fasting, chill-casting, hot-rolling, and onle-drawing; emember 4 700 C for 12 hr; density 8.81 g cm ⁻² ; electrical cambotivity 1.69, 1.86, 1.85, 1.82, 1.61, 1.78, 1.76, 1.75, and 1.72 x 16' G ² cm ⁻² at 26, 133; 204, 366, 467, 590, 642, 680, and 756 C, respectively; there conductivity values calculated from measured thermal diffusivity, species cancelly.	Similar to above except density 8.82 g cm ⁻¹ and electrical conductivity 3.03, 3.04, 2.90, 2.72, 2.67, 2.48, 2.40, 2.33, 2.27, 2.32, 2.17, 2.13, 2.04, 1.97, and 1.92 x 10 ⁴ Gr ² cm ⁻¹ at 26, 76, 91, 126, 131, 164, 184, 231, 291, 331, 396, 451, 546, 668, and 744 C, respectively.	Prepared by fasting Ni (89, 75 to 89, 85 pure); supplied by Internitional Nichel Co., and 99, 97' pure Cu, supplied by Baker; ~ 5, 5 cm long and 0, 3 cm² in cross-sectional area; electrical conductivity 3, 90 x 19° fg-cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 2.17 x 104Gr cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 2.02 x 104G7 cm ⁻¹ at 25 C.	Similar to the above specimen except electrical conductivity 1. 26 x 104Gr cm $^{-1}$ at 25 C.	Rolled and drawn; amended at close to melting point for 0.5 hr.	Statlar to the above spectmen.	Cylindrical specimen, 4 mm in diameter; calculated composition to composition; supplied by Johnson Matthey and Co.; chill cast for J. M. 800 Mi and J. M. 30 Cu; amended at 850 C for 12 hr; small very fine grain boundaries; electrical resistivities are estimate reported Lorent number. L and thermal conductivity k as exclusive clear, e. 622, e. 634,	o the above spectment long grains running in east-1-0. 66 mm) grain boundaries; electrical restairty from reported Lorens manher. Land thérimal est. 1-666, 1.156, 1.259, 1.259, 1.256, 1.513, 1.551, 1.461, 1.513,
ercent) Cu	\$	20	20	8	\$	2	39. 07	18.37	6.	1. 89
Composition (weight percent) Ni Cu	S	2	2	2	8	2	60. 93	81.63		
Name and Specimen Designation									U	a
Temp. Range, K	325-970	317-966	98	330	95	92	273, 373	273, 373	. ← III	1. 6-197
Method	A .	<u>A</u>	ı	1	٦	ı,	۲	۳	14	M
Year	1830	1990	186	1986	1988	1925	1910	1919	E	#
Author (a)	Segar, G. F.	Sager, G.F.	Smith, A. W.	Said, A.W.	Suib, A. W.	Saib, A. W.	Sodatriba, E.	Sodetröm, E.	Graff, D. and Merrison, J. P.	15 1
<u> </u>	F	F	3	\$	\$	\$	2	3	2	2
	-	•	•	•	•	•	~	•	•	2

Table 13. Thermal conductivity of nickel + copper alloys -- specimen characterization and measurement information (coasing of

يغ	žė.	Author (s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Ni Cu	ercent) Cu	Composition (continued), Specifications, and Remarks
я	2	Gredg, D. and Rarrison, J. P.	125	Ħ	2.3-82.1	ing .		4. 53	Similar to the above specimen; various sizes of grain; various thickness of grain boundaries; electrical resistivities are estimated from regarded. Lorenz number L and thermal conductivity k as 2.977, 4.818, 3.344, 3.337, 3.804, 3.757, 3.706, 3.732, 6.005, 4.903, 4.903, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 4.203, 3.3, 4.6, 6.5, 8.6, 10.6, 12.5, 14.4, 16.4, 16.3, 16.5, 16.4, 16.3, 16.5, 16.3, 16.5, 16.3, 16.5, 16.3, 16.5, 16.3,
	2 ·	Merican District Dist	1965	u	2. 0-111	ga,		9 8 9	Similar to the above specimen; mostly small grains, but few long grains running from confer; electrical resistivities are estimated from reported Lorenz number L and thermal conductivity k as 0.219, 0.199, 0.256, 0.224, 0.239, 0.235, 0.257, 0.227, 0.225, 0.244, 0.244, 0.250, 0.255, 0.254, 0.259, 0.359, 0.359, 0.350, 0.41, 0.541, 0.712, 0.573, 1.604, and 1.323, pd cm at 2.4.4, 6.7, 6.7, 10.4, 12.3, 14.6, 16.7, 13.2, 20.3, 23.3, 25.8, 26.0, 25.8, 26.9, 26.1, 35.2, 40.9, 45.5, 51.0, 42.1, 71.8, 31.3, 31.0, 42.1, 32.2, 32.3, 33.3, 3
2	2	I TO THE TOTAL OF THE PARTY OF	8	1	5 2 46	C	50.50	49. 47	0.000 Al; polycrystalline; 5.6 mm diameter and 16 cm long; supplied by international Niekel Co., Inc; vacuum cast ingut hammer feeged, betwast rolled to 18 mm diameter and rough turned; swaged to 10 mm diameter, moder, and machined to size; amended at \$50 C for 24 hr in argum furnace and cooled slowly; residual detection! resistivity 46.10 µD cm; measured in a vacuum of 10° mm Hg.
2	2	Ertum, J.C. and Johnth, J.A.	1368	1	4.2-65	N3 65	64.81	Bel	0.051 Al; similar to above except residual electrical resistivity 27.62 pf cm.
	2	Erdner, J.C. and Jabots, J.A.	1388	t	4.2-63	N1 66	84. 70	Bej.	0.064 Al; similar to above except residual electrical resistivity 11.14463 cm.
	2	Erdnen, J.C. and Johnson, J.A.	1 36	1	4.2-30	0C IN	3 0. 2 7		0.060 Ai; similar to above except residual electrical resistivity 8.24 pf3 cm.
	7	Erdness, J.C. and Jabole, J.A.	138	1	19-2-91	N: 91	91.05	Bel.	0.046 Al; similar to above except residual electrical resistivity 15.88 pM cm.
	2	Erdman, J.C. and Johoth, J.A.	1968	1	£ 2	% %	95.60	Bel.	Similar to above except residual electrical resistivity 3.91 pB cm.
	\$	Erden, J.C. and Jahren, J.A.	1968	1	4. 2-28	8 Ž	36. 35	Be.i.	Single crystal; 6. 0-7.5 mm in diameter and 12 cm long; supplied by Materials Research Corp; prepared by electron beam float sasing; residual electrical resistivity 0. 907 µC cm; measured in a vacuum of 10° mm Hg.
2	ž	Jackson, P.J. and Semalars, N.H.	1968		514~614		Bel.	6 .	Polyciystalline; prepared from 4 N parity Mi and Cu; sunsaled; Curie point $278\ {\rm C}_{\star}$
ដ	2	Fig. 1.c.	<u>\$</u>	٦	4	5	ië B	. 03 	Polycrystalline; wire specimen 1.35 to 1.45 mm in dismeter and 125 mm long; obtained from international Nichal Co.; wessens cost ingut lammaer forged, bot-rolled to 18.5 mm in diameter, rough termed, cold reflect to 6 mm diameter, cut; assealed at 1800 C for 24 hr, slowly cooled in the furnace for a period of 6 hr, electropolished; grain size 50 to 250 µ; electrical resistivity 1.65 µ0 cm at 4.2 K.

TABLE 13. THERMAL CONDICTIVITY OF NICHEL - COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (combined)

A COMMITTED TO

ear Method Temp. Name and Composition Composition (continued), Specifications, and Remarks (*sed Range, K Designation Ni Cu	964 L 4.2 670 84.7 Bai. < 0.1 each of Fe and Mn, 0.054 Al, and 0.02 C; polycrystalline; same supplier and fabrication method as the above specimen; electrical resistivity 10.64 μΩ cm at 4.2 K.	964 L 4.2 669 64.87 Bal. 0.051 Al, 0.013 C, and <0.01 Fe; polycrystalline; eams supplier and fabrication method as the above specimen; electrical resistivity 27.8 μΩ cm at 4.2 K.	968 E 316.2 95 5 Prepared from 99.98 pure nickel; measured in transverse magnetic fleids ranging from 0.48 to 10.63 kDe; reported data tales from smooth curve.	968 E 316.2 The above specimen measured in longitudinal magnetic fields ranging from 0.16 to 10.59 kDe; smoothed values reported.	968 E 316.2 90 10 Prepared from 99.86 pure nichel; measured in transverse magnetic fields ranging from 0.49 to 10.48 kDe; smoothed values reported.	968 E 316.2 The above specimen measured in longitudinal magnetic fields ranging from 0.17 to 10.48 kOe; smoothed values reported.	968 E 316.2 85 15 Propared from 99.98 pare nickel; measured in transverse magnetic fields ranging from 0.47 to 10.50 kDe; smoothed values reported.	966 E 316.2 The above specimen measured in longitudinal magnetic fields ranging from 0.19 to 10.47 kOe; smoothed values reported.	966 E .316.2 80 20 Prepared from 99.99 pure nichel; measured in transverse magnetic fleids renging from 0.45 to 10.39 kDe; amoothed values repeted.	966 E 316.2 The above specimen measured in longitudinal magnetic fields ranging from 0.29 to 10.42 MOs; smoothed values reported.	968 E 316.2 75 25 Propared from 96.98 pare nichel; measured in transverse magnetic fields ranging from 0.46 to 10.34 MOs; smoothed values reported.	988 E 316.2 The above specimen measured in longitudinal magnetic fields ranging from 0.33 to 10.46 MOs; smoothed values reported.	1969 L 3.4–90 0.34 ~3 mm diameter and 9 cm long; supplied by Metals Research 1.44, gamented at 850 C for 15 hr; resident electrical resistivity 0.347 μΩ cm; electrical resistivity 0.347 μΩ cm at 0 C.	969 L 1.7-4.3 Bal. 35 Polycrystalline from Johnson Matthey Ni and Cu, vacuum melbed, evaged, bomogenized for 48 hr at 1200 C in purified belium, and furnance occled.	The above specimen measured in a constant lengthedinal field of 58.9 kg.	23.4 Properted by modified high-parity Johnson Modifiedy marked in a versum of 6 x 10° torr, after cooling, marchineing to remain red, homographing at 1300 C for 3400 kr, in beliam, assembling in a versum of 10° terr at 1300 C for 0.5 kr, swapper to 0.787 can in distinctive, again assembling in a versum of 6 x 10° torr at 750 C for 1 kr; grain size of 1,0.0.5 mm; electrical resistivity 13.4 µG cm at 4.3 K; run 7.	L 1.7-4.3
Year	1964	1964	1968	1968	1968	1968	1968	1968	1968	1968	1968	1966	1969	1969	1369	1970	1970
Author (6)	Erdmann, J.C. and Jaboda, J.A.	Erdmann, J.C. and Jahoda, J.A.	Burger, R., Dittrich, H., and Koch, K.M.	Burger, R., et al.	Burger, R., et al.	Burger, R., et al.	Burger, R., et al.	Burger, R., et al.	Burger, R., et al.	Burger, R., ot al.	Burger, R., et al.	Durger, R., et al.	Parrell, T. and Greig, D.	Borper, L.	Beeger, 1.	Toles, W. B. and Bengar, L.	Yolen, W.O. and
						148	991	991	91	?	-		E	3	•	E E	1
Cur. Ref.	50	55	148	148	148	7	7	=	7	7	3	27	•	7	3	22	A

TABLE 13. THERMAL CONDUCTIVITY OF NICKEL + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

一日本の一人をあることのはないないとのできるというできると

ğ g	¥.	Author (s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Ni Cu	sition ercent) Cu	Composition (continued), Specifications, and Remarks
2	äĒ	Yoke, W.B. and Berger, L.	1970	7	2. 3-21				The above specimen measured in a parallel magnetic field of 58. 96 kG; run 10.
\$	ie.	Yolen, W.B. and Borger, L.	1970	4	1.4-2.1				The above specimen measured without the magnetic field; run 11.
7	ĔĒ	Yoke, W.B. and Borger, L.	1970	٦	1.43				The above specimen; run 9.
3	ŽE	Yoka, W. B. and Berger, L.	1970	4	2.1-21				The above specimen; run 12.
3	3	Donaldson, J. W.	1859	ų	353-701	"K" Mone!	66.73	29. 76	2. 50 Al. 0.35 Fe, 0.25 St, 0.20 C, and 0.21 Mn; rolled and annealed.
3	5	Asymetry 8. and 16. 7.	1940	1	E	No. o	2. 77	4.36	0.51 Co, 0.26 Mn, 0.08 Fe, 0.02 Al, 0.001 Sb, 0.0004 S, and trace Pb (calculated composition); 4.00 mm diameter and 60.0 mm long; cast, bot-rolled, then machined to size; electrical resistivity 5.00 $\mu\Omega$ cm at 78 K.
3	3	Asyman, S. and No. T.	94	ı	æ	No. 1	90.43	8.	0.48 Co. 0.13 Mn. 0.09 Fe, 0.02 Al, 0.001 Sb, 0.0007 S, and trace Pb (calculated composition); 4.00 mm diameter and 60.0 mm long; cast, bot-rolled, machined to size; electrical resistivity 8.50 $\mu\Omega$ cm at 78 K.
*	*	Aoyene, S. and Bo, T.	946	ı	Ę	No. 2	85. 62	13.71	0.46 Co. 0.10 Mm. 0.094 Fe. 0.017 Al. 0.002 So. 0.001 S. and trace Pb (calculated composition); 4.00 mm diameter and 89.0 mm long; cast, hot-rolled, machined to size; electrical resistivity 12.2 $\mu\Omega$ cm at 78 K.
Ş	3	Agent. S. ed M. T.	184	H	6	No. 3	77.73	21. 69	0.414 Co, 0.691 Fe, 0.65 Mn, 0.015 Al, 0.603 Sb, 0.6015 S, and trace Pb (calculated composition); 4.00 mm diameter and 60.0 mm long; cast, bot-rolled, machined to size; electrical resistivity 18.1 μ S cm at 78 K.
3	2	Aoyuma, S. and No, T.	949	H	£	No.	69.14	30.35	0.37 Co, 0.05 Si, 0.068 Fe, 0.014 Al, 0.005 Sb, 0.0021 S, and trace Pb (calculated composition); 4.00 mm diameter and 60.0 mm long; cast, bot-rolled, machined to size; electrical resistivity 28.0 μΩ cm at 78 K.
\$	3	Acquest, S. and He, T.	1940	H	87	X0. 5	28.36	40. 53	0.314 Co., 0.104 Fe., 0.012 Al., 0.04 Mn, 0.006 Sb., 0.0028 S, and trace Pb (calculated composition); 4.00 mm diameter and 60.0 mm long; cast, bot-rolled, machined to size; electrical resistivity 47.7 µΩ cm at 78 K.

4.5. Copper-Palladium Alloy System

The copper-palladium system forms a continuous series of solid solutions over the entire range of compositions. Ordered structures are formed at temperatures below about 775 K for compositions ranging from slightly below 10 to somewhat above 25 At.% (16 to 36%) palladium and at temperatures below about 975 K for compositions ranging from slightly below 30 to somewhat above 50 At.% (42 to 63%) palladium. The maxima of the temperatures of transformation suggest that these ordered structures are based on PdCu₅ and Pd₃Cu₅ respectively. In this connection, it should be noted that curves 2 and 3 of the Cu + Pd alloys and curves 3, 5, 6, 12, 13, 14, 15, 22, 23, 24, and 25 of the Pd + Cu alloys are values obtained from specimens which were in a partially ordered state.

There are 49 sets of experimental data available for the thermal conductivity of this alloy system. However, of the 19 data sets available for Cu + Pd alloys listed in Table 15 and shown in Figure 23, 14 sets are merely single data points around room temperature, and of the 30 data sets for Pd + Cu alloys listed in Table 16 and shown in Figure 24, 19 sets are single data points around room temperature.

The thermal conductivity of these alloys was first investigated by Sedström [178, 179] who measured the thermal conductivity at 273 K of 14 specimens ranging from 3.5 to 93% Pd and the thermal conductivity at 323 K of 17 specimens ranging from 8.41 to 93.19% Pd. Later Grüneisen and Reddemann [61] measured the low temperature thermal conductivity of specimens containing 10.3, 57.8, 62.7, and 90.8% Pd (Cu + Pd curve 1 and Pd + Cu curves 1-5) and it was found that prolonged annealing just below the order-disorder transition temperature produced a 6-fold increase in the thermal conductivity at 80 K of the specimen containing 57.8% Pd. More recently, Pott [82] measured the thermal conductivity of specimens containing 24.18, 35.82, 52.75, 57.81, and 70.67% Pd at temperatures ranging from 293 to 1073 K. The first four specimens were measured both in the disordered state and after prolonged annealing just below the transition temperature (Cu + Pd curves 2-5 and Pd + Cu curves 6, 7, 9, and 10); the specimen containing 70.67% Pd was measured following two different heat treatments (Pd + Cu curves 8 and 10). The most recent measurement on alloys of this system was made in 1967 by Kierspe [83] (Cu + Pd curve 6) for a specimen containing 4.92% Pd at room temperature.

The low temperature experimental thermal conductivity values for disordered specimens are in satisfactory agreement with the values calculated from eqs. (12) and (35) for those compositions for which the k_g maximum occurs below 80 K. The investigation by Fletcher and Grieg [84] of the lattice thermal conductivity of palladium-silver alloys showed that the strong electron-phonon interaction in the palladium-rich alloys reduces the low temperature lattice thermal conductivity, causing its maximum to occur at much higher temperatures than in the silver-rich alloys. A similar elevation of the temperature of the

maximum of the lattice component is believed to occur in this alloy system. The discrepancy between the experimental and calculated values of the thermal conductivity at 80 K ranged from 2 to 12%, the calculated values being higher; the 12% discrepancy was with the specimen containing 57.8% Pd and the electrical resistivities reported for this specimen are 8% greater than those reported by other authors for this composition.

At ordinary temperatures Sedström's values for his disordered specimens tend to be lower than the calculated values, particularly for the more dilute alloys; this is not surprising in view of the fact that the electrical resistivities of these specimens are higher than those reported by other authors for the same nominal compositions. In this same temperature range the calculated values are within 3% of Kierspe's value for a specimen containing 4.9% Pd and Pott's value for a specimen containing 57.8% Pd. On the other hand, the calculated values were 16% below Pott's value for a specimen containing 24.18% Pd and 28% below his value for a specimen containing 70.67% Pd. After correcting for the lattice component, corresponding Lorenz ratios for these specimens are respectively 22 and 36% greater than the classical value; it is unlikely that band structure effects could cause such large deviations from the classical value for these alloys at 300 K.

At higher temperatures there are four large discrepancies between the calculated and experimental values, ranging from 30 to 40%. Three of these are with the 70.67% Pd specimen mentioned above and are associated with Lorenz ratios 33 to 38% greater than the classical value; the other discrepancy is with Pott's specimen containing 57.8% Pd and the corresponding Lorenz ratio is 36% greater than the classical value. While heavy alloying with a noble element would presumably reduce band structure effects, these Lorenz ratios are larger than those obtained by Laubitz and Matsumura [10] for pure palladium. Also, they are very much larger than those obtained by Laubitz and van der Meer [85] for a gold alloy with 34.95% Pd in which comparable band structure effects might be expected. Further experimental work on the palladium-rich alloys of this system is clearly in order. Until there is additional experimental evidence or some theoretical support for these very large Lorenz ratios it seems safer to use evidence from similar systems rather than the thermal conductivities associated with these Lorenz ratios as a guide in recommending values.

The recommended values for k, k_e , and k_g are tabulated in Table 14 for 25 alloy compositions. These values are for well-annealed disordered alloys. The values for k are also shown in Figures 21 and 22. The k_e values cover the full temperature range from 4 to 1200 K, but k and k_g values are not given at very low temperatures. The values of residual electrical resistivity for the alloys are also given in Table 14. The uncertainties of the k values are stated in a footnote to Table 14, and those of the k_e and k_g values are of the order of \pm 10 to \pm 15%.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] Table 14. Recommended Thermal Conductivity of Copper-Palladium alloy system

4 4 TOP 22 8		g .		0 = 0			•		,					
70099 8	** 348E4 E	200		P	A = 0.580 pD cm	4		P ₀ = 1.	p ₀ = 1.620 pem	d		. o	Ao = 2.700 µAcm	_
23 1	338En P)	P	ш	34°	, e e	F	<u> </u>	.M°	a ^{to}	Į.		Ja"	au
-22 1	991 4 852 5		••		0.168 0.258		7 6		0.0603		**		0.0362	
12 1	11 11 11 11	•	•		7		60 9		0.121		•		0.0724	
1	1.73		12				12		0.25		3 2		0.136	
H			2		0.942		2		0.302		25		0.181	
88	14 2		88		, ; ;		88		6.450		38			
\$ # **	# # # # # # # # # # # # # # # # # # #	***	12	2.19	2 2 5	0.277	38	0.917*	0. 86 1 0. 713	6.0	3 3	0.615*	o. 25 0. 42	0.173
***	H	0,216	8	2,25	3.1	0.267	3	1.01*	0.820	0.194	8	9.680	0.516	0.163
\$ 00 P	77	0.307	2	4	7	0.258	2	1.0	0.905	0.184	2	0. 736	0.582	0.155
	5 5 i .	i i	8 8	i.		9 6 9 6	8 8	<u>.</u>	0.975	0.176	28	o. 731*		6.147
	8	0.275	1 2	4	2.18	6.23	3	Ř	: : : :	0.161	2	0.885	0.75	
-	2	· 256	3	2.73	2.53	0.190	150	1.60	1.46	0.133	2	1.10	1.2	9.110
	i d	2	ij	2 3	Z ;	0. 151 :	8	 1.85	: . :	9.114	2 :	4 :	X :	0.0947
200	14:	0.130	E	8	2 i ii	0. 131	E	2.11	; n	0.0949	2	1.0	12	0.0792
_	4	e. 140	*		2	0. 1 22	ğ	7.75	2.18	0.0895	8	 2	1.6	0.0748
તં •	3:	¥:	31		3.	0.100	98	2.31*	2; 2;	0.0611	8	2 . 2 .	2:	9.00
ાં ન	14	0.0013	3		i d	0.0628	8	8		0.0	8	 	8	0.0572
48 44 45	4 4 8 E	£ 5	* *	\$ \$ 6 6	R 5 6 6	0. 07 13 0. 062 7	\$ \$	2. 7% 2. 8]+	4 4 8 5	0. 056 1 0.0502	8 8	ě Ř io io	ય ય જ	
4	7.5	0.000	1		8	0.0559	8	2.84*	8	0.0455	8	4	4	0.0305
à	7		•		*	9.000	•	*	4	0.0416	2	4	*	. 8
5	R (3	i i	X	0.0100	9	. E	3	0.0363	2	3	2	0.0837
i e	N S		<u> </u>		# : # :		8 5	i i	2 ;			i i	2 : .i .	

Descriptions of the total thermal conductivity, k, are as follows: 90, 80 Cm - 0, 80 Pet. a 10f.

80,800 - 1,874 - 196. 80,800 - 1,874 - 196. 81,800 - 1,874 - 196. 81,800 - 1,874 - 196. 84,800 - 1,874 - 196. temperature range where so experimental thermal conductivity data are available

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg., W cm-1 K-1] TABLE 14. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-PALLADIUM ALLOY SYSTEM (continued) [†]

The second secon

7	10. 00% (C. 22 AL. %)	At. %		Cu: 85.00 Pd: 15.00	85.00% (90.47 At.%) 15.00% (9.53 At.%)	1t. %) 1t. %)		Cu: 80.00 Pd: 20.00	80.00% (87.01 At. %) 20.00% (12.99 At. %)	At. %) At. %)		Cu: 75.00 Pd: 25.00	75.00% (83.40 At. %) 25.00% (16.60 At. %)	At. %)
8	= 5. 38 pD cm			Po = 7	ρ ₀ = 7.91 μΩ cm			P 9	Po = 10.43 pfcm	g		, o = 1	p = 12.90 prom	g
м	4 °	,4 ¹⁰	H		.u•		ę.	м .	,M [®]	, ata	F	×	¥•	, N
	6.0184 6.0876		₩.		0.0134		**		0.00937		7 6		0.09758	
•	0.000		•		0.0347		•		0.0187				0.0152	
			2 22		0.0463		2 51		0.0351		25		0.0284	
	6.0016		8		0.0618		8		0.0468		8		0.0379	
.	o. 15		R 8		0.0		# 8 #		0.0585 0.0702		% 8		0.0473	
,	0.161	0,136	38	0.287	0. 123 0. 168	0.116	28	0.218#	0.0834	0.102	38	0. 186#	0.0755	0.0925
		3	8	0.288	0, 181	0, 107	.	0.233#	138	0.0945	8	180	0.112	O. DRK7
9	0.305	0,119	2	0.308	0.208	0.100	2	0.249	0.18	0.0886	2	0.210	91.0	0.0
7;	•	0.112	28		3	0.0947	8	0.265	0,181	0.0835	8:	0. 12.	0.147	0.075
	0.414	0.100	3 3	o. 373	0.281	0.0857	3 2	0.299	0. 253	0.0755	R S	0.249	0. 181 0. 181	0.0682
_	0, 585	0.0837	350	0.484*	0.414	0.0703	130	0.386*	0.334	0.0618	120	0.3214	0.266	0.0558
_	•	0.0719	8	0.583	0.533	0.0604	8	0.472*	0.419	0.0532	2	0.30%	0.345	0.0480
	<u>.</u>	9696	2 1		3	0.0634	22	0.557	0.510	0.0471	8	o. 4654	3	0.0425
	1.2	0.0572	8	9 5		0.0482	38	0.638		0.0425	28	0.533		0.0384
1.18	1.13	0.0822	350	0.886	9.84	0.0441	350	0.715	0.676	0.0389	350	0.599	9.564	0,0352
_	1.2	0.0482	\$	0.971*	0.930	0.0408	\$	0.787*	0.751	0.0360	\$	0.662	0.629	0.0326
	3 1.	0.0421	8		2:	0.0357	8	0.924	0.893	0.0316	8	0. 782	0.753	0.0287
		0.0340	3 2	1.4	: i	0.030	38	1.17	1. 14	0.0283	3 8	1.00	o. 958	0.0235
_	1.85	0.0312	98	1.51*	1.48	0,0267	2	1.27*	1.25	0.0238	8	1.10	1.08	0.0216
12	21	0.0289	2	1.61	1.56	0.0248	2	. S	1.2	0.0221	§	1.19	1.17	0.0201
74	5.5	6.02 70	200	 \$	1.66	0.0232	1000	1.45	1.43	0.0207	98	1.27	1.25	0.0189
3 d	5	0.0253	8	 \$	1.73	0.0218	9	1.52	3.50	0.0195	8	 \$	٦. ع	0.0178
				2				F04	-	7010		#67 ·	7	

ment thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 14. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-PALLADIUM ALLOY SYSTEM (continued)

Pd: 36.0	70. 00% (73. 62 At. %) 30. 00% (30. 38 At. %)	At. 5)		74. 55. 68. 68. 68. 68. 68. 68. 68. 68. 68. 68	35.00% (24.33 At. %)	At. %)		Pd: 40.00	40.00% (23.48 At. %)	At. 33)		Pd: 45.99	45.00% (32.82 At. %)	5 F
	Po = 15.30 pacm	đ	•	po = 1	ρ ₀ = 17.68 μΩcm	e		Ø •	p ₀ = 20.01 pfcm	a		P ₀	Po = 22.60 µAcm	
,м.	M.	A ¹⁰	H	м	¥	, K	T	.14	M.	, to	Ŧ	k	N _e	k St
	0.00639		7 4		0.00553		44		0.00488		44		0.00432	
	0.0128	_	• •		0.0111				0.00977		•		0.0065	
	0. 016 0 0. 024 0		2 22		0.0138 0.0207		15 10		0.0122 0.0183		91		0.0106 0.0162	
	0.0319		8		0.0276		8		0.0244		2		0.0216	
2 8	0. 6399 0. 0478		8 8		0.0345				0. 0305 0. 0366		28		0.0 0.0 120 0.0	
0.165*	0.0636	0.0855	\$ 8	0.149	0.0551	0.0799	\$ 8	0, 136*	0.0487	0.0756	\$ \$	0, 1264	0.0431	0.0721
	9645	0 0701	\$	1564	0000	0 0230	•	1671	7620		_		5	
20.18	0.10	0.0730	323	0.16	0.0953	0.0691	32	0.10	0.0840	0.0652	32	0.137*	0.0745	0.0
_			3 8	0.173		0.0650	3 8	0.157* 0.166*	0.0955	0.0613	28	0.143	0.0047	0.0384
0.217*	0.154	0.0628	8	0.1934	0.134	0.0585	8	0.173	0.118	0.0562	8	0.158*	0.105	0.0526
	0.226	0.0514	150	0.246*	0.198	0.0479	32	0.219	0.174	0.0451	951	0.198*	0.156	0.0429
9.00	0.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	0.0442	8 2	9000	0.259	0.0412	8 5	0.267*	0.220 2.20 2.20	0.0368	8 S	0.240	. 203 . 203	0.0369
	0.391	0.0373	273	0.378	0.9H	0.0348	273	0.338	0.305	0.0328	E	0,302	0.71	0.0312
300 0.462*	5	0.0354	8	0.401	0.374	0.0330	<u></u>	0,363	0.332	0.0311	8	0.325	0.296	0.0297
0.520	0.467	0.0325	380	0.459	0.428	0.0303	38	0.410	0.381	0.0286	3	0.367	0.840	0. OE72
0.088	6. 57 6. 57	0.0301		9 6 6 6 6 6 6	0.583 0.583	0.0281	\$ §	0.454	0. 428 0. 519	0.0265	\$ §	0.407*		0.0252
0.836	0.30	0.0238	88	0.701	0.678	0.0222	8	0.627*	900	0.0210	8	0.561*	0.561	0.000
			} {			0.020	3 8		00 0	2610.0	3 3			010
1.00	3 3 3 3	0.0186	3 2	9.0	0.931	0.0175	2 6	0.853		0.0177		0.7654	0.000	0.0163
•	1.11	0.0175	1000	1.02	1.0	0.0164	1000	0.920	9	0.0155	9	0.8254	9.810	0.0148
a.	21.	0.0165	2	1.00	1.07	0.0154	1100	0.962	0.967	0.0146	1100	0.861*	0.867	9. 9. 4 8

activity, k, are as follows:

70.00 Cm - 30.00 Pdt ±10%. 60.00 Cm - 36.00 Pdt ±10%. 66.00 Cm - 40.00 Pdt ±10%. 86.00 Cm - 45.00 Pdt ±10%.

erimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] Table 14 Recommended thermal conductivity of copper-palladium alloy system (command)

のでは、「「「「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というでは、「「」」というできます。「「」」というできます。「「」」というできます。「「」」という

ř	28, 00% (ST. 38 AL. %)	At. 33		Cu: 45.90 Pd: 55.90	45.00% (57.81 At. %) 55.00% (42.19 At. %)	i: 33		Cu: 40.00	40.00% (52.75 At. %) 60.00% (47.25 At. %)	11. %) 11. %)		Cu: 35.00 Pd: 65.00	35.00% (47.41 At. %) 65.00% (52.50 At. %)	A. 5.)
4	A = 25.55 phom			p. 2	Po = 29.00 Mam			8 = °0	Po = 32.63 pf cm		 	P. 0	Po = 40.00 j.Com	
-	40 0	ale late	۴	"	Je [®]	Ja ba	F		Mo.	ale.	F		4.	Ja ^{ba}
	0.0000		7 4		0.00337		-		0.90300		**		9.0	
	0.00786				0.00674	-			0.0059				e. 90459	
• •	0. 550 57 0. 6144		2 2		0.00642	-	2 22		0.00749		22		0.00611	
	0.0191		8		0.0168		2		0.0150		8		0.0122	
	9.		# 1		0.0210		88		0.0186		*		0.0162	
•			R \$		0.0336		8 \$		0.0		3		0.0 20.0 20.0 20.0	
6.117	0.0476	0.0683	2		0.0419	-	8		0.0000	_	2		0.0301	
0.1214	•	0.0640	8		0.0800	0.0620	8	,	0.0446		8		0.6380	
	9.58	0.0007	28	9.116	0.0280	0.0578	28	o. 108 1. 108	0.0511	0.0565	28	5		200
	.	0.0831	8 8		0.0740	0.0514	8	0.:15	0.0652	0.0503	3	0, 103	0.0636	9
100 0.145		0.0505	2		0.0819	0.0489	8	0.120	0.0722	0.0478	3	0.10	0.0501	0.0471
ė	. 0.137	0.0412	351	0.161*	0.121	0.0389	351	0.1464	0.106	0.0330	120	0.1284	0.0672	9.0
0.27	•	0.0356	2	0.182	0.158	0.0343	88	0.178 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0. 139 6. 139	0.0533	8 8		6.114 1.14	8
.			3 5		21.0	0.0300	223	212		0.0283				
30.00	98.0	0.0285	8	0.257	0.230	0.0276	8	0.227	9	0.0269	8	0.193	0.10	0.0965
0.326	6.20	0.0261	2		0.263	0.0253	320	0.254	0.230	0.0247	38	0.216	0.192	0.0243
6	0.87	0.0343	\$		0. 296	0.0235	904	0.281	0.258	0.0229	\$	0. 238	0.216	0.0
97.0	0.40	0.0213	8		0.359	0.0207	8	0.333	0.312	0.0202	8	283	0.863	0.019
	: 3	0.0176	8 8	0. 4 37	0.418	0.0186		0.382	0.413	0.0182 0.0166	3 2	0. X2 X		0.014
•	4	9.9183	8	-	628	0.0157	9	0.475	97	0.0154	808	0.407#	9	0.0151
•		0.0151	2		0.581	0.0147	8	0.520	0.506	0.0143	8	0.448*	9	0.0141
		0.0142	99	o. £	0.631	0.0138	1000	0.563	0.549	0.0134	901	0.488#	0. 1	0.0132
9.73	e. 713	0.0134	31	_	0.678	0.0130	1100	0.60	0.591	0.0127	1100	0.529	0.516	0.0125
	•		3		1						,			-

'Uncertainties of the total thermal conductivity, k, are as follows: 59, 66 Cu - 56, 60 Feb. + 10°C.

90,00 Ct - 30,00 Pt ±197, 46,00 Ct - 36,00 Pt ±197, 46,00 Ct - 80,00 Pt ±197, 36,00 Ct - 66,00 Pt ±197, temperature range where no experimental thermal conductivity data are available.

[Temperature, I, K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, ke, W cm-' K-'; Lattice Thermal Conductivity, ke, W cm-' K-'] TABLE 14. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-PALLADIUM ALLOY SYSTEM (continued)

A --- I A --- --- --- --- ----

T k k E k	7	30, 00% (41, 78 70, 00% (36, 25	(41.78 At.%) (38.23 At.%)		Cu: 25.00 Pd: 75.00	25. 00% (35. 62 At. %) 75. 00% (64. 18 At. %)	11. %) 11. %)		Cu: 20.00 Pd: 80.00	20.00% (29.51 At.%) 89.00% (70.49 At.%)	k. %)		Cu: 15,00 Pd: 85,00	15.00% (22.81 At.%) 85.00% (77.19 At.%)	स्थ इस
k k	- 0	. 44.19 pBe	A		A = 4:	2. 40 pAcm			P. = 3	6. 26 MCE			- Q	p ₀ = 28.68 µAcm	8
C.00231 4 0.00231 4 C.00346 6 0.00461 8 C.00335 0.00461 8 0.00461 10 C.0035 15 0.00461 10 10 C.0137 25 0.0142 25 10 C.0137 25 0.0142 25 20 C.0137 25 0.0142 25 20 C.0137 20 0.0142 25 20 C.0137 20 0.0142 25 20 C.0137 20 0.0142 20 20 C.0217 20 0.0285 70 0.0386 70 C.0217 20 0.0386 20 0.0441 80 0.0441 80 C.0217 20 0.0386 20 0.0441 80 0.0344 80 C.0218 0.0390 20 0.1384 0.1384 20 0.1344 100 C.0218 0.0222 <		**	, to	F	"	" •	a	F	*	.M [©]	, D	F	×	N _o	, to
0.00461 0.00461 <t< td=""><td>~*</td><td>0.0021</td><td></td><td>••</td><td></td><td>0.00231</td><td></td><td>₩ «</td><td></td><td>0.00270</td><td></td><td>~ •</td><td></td><td>0.00341</td><td></td></t<>	~*	0.0021		••		0.00231		₩ «		0.00270		~ •		0.00341	
C. 60555 1.0 0.00576 10 C. 6111 20 0.0115 20 C. 6127 25 0.0142 25 C. 6155 30 0.0142 25 C. 6156 30 0.0142 25 C. 6157 30 0.0142 25 C. 6157 40 0.0256 40 C. 6157 40 0.0256 70 C. 6157 90 0.0256 70 C. 137* 6. 137* 0.0441 90 C. 137* 6. 137* 0.0441 90 C. 137* 0. 0244 90 0.0441 90 C. 137* 0. 0244 90 0.0441 90 C. 137* 0. 0244 90 0.0441 90 C. 137* 0. 0244 100 0.0244 90 C. 137* 0. 0244 100 0. 0244 90 C. 138* 0. 0244 100 0. 0244 100 0. 138*	• eo	0.842	• ~-	9 6 0		0.00461		• œ		0.00539		9 00		0.00682	
0.0111 20 0.0115 20 0.0127 25 0.0142 25 0.0256 40 0.0226 40 0.0273 40 0.0226 40 0.0276 0.0276 40 0.0226 40 0.0277 0.0276 0.0276 40 0.0276 40 0.117* 0.0276 100 0.0276 100 0.0276 100 0.117* 0.0276 150 0.139 0.0241 90 0.150* 0.157* 0.104 0.0330 200 0.139 0.0241 90 0.157* 0.104 0.0330 200 0.139 0.0241 90 0.157* 0.158* 0.139 0.0242 200 0.150* 0.157* 0.158* 0.139 0.0262 200 0.150* 0.157* 0.158* 0.105 0.0262 200 0.150* 0.159* 0.158* 0.139 0.0262 200 0.1	22	o. 66553 6. 66623		22		0.00576 0.00664		22		0.00674 0.0101		22		0.00852 0.0128	
C. 6137 25 0,0142 25 C. 6216 30 0,0170 30 C. 6217 30 0,0226 40 C. 6218 60 0,0226 40 C. 6218 60 0,0230 0,0441 90 C. 6218 90 0,0441 90 0,0441 90 C. 137* 0,0230 200 0,139* 0,108 100 0,137* 0,136* 0,034 100 0,0441 90 0,137* 0,136* 0,034 100 0,0441 90 0,137* 0,136* 0,034 200 0,139* 0,139* 100 0,137* 0,136* 0,034 200 0,139* 0,139* 0,130 0,130 0,137* 0,138* 0,034 200 0,139* 0,130 0,130 0,139* 0,139* 0,024 0,024 0,024 0,024 0,024 0,139* 0,139* 0,034 0,024 <t< td=""><td>2</td><td>0.0111</td><td></td><td>8</td><td></td><td>0.0115</td><td></td><td>8</td><td></td><td>0.0135</td><td></td><td>24</td><td></td><td>0.0170</td><td></td></t<>	2	0.0111		8		0.0115		8		0.0135		24		0.0170	
C. 6873 40 0.0256 40 C. 6873 60 0.0281 50 C. 6873 60 0.0281 50 C. 6873 70 0.0286 70 C. 6873 90 0.0441 90 C. 117** C. 6780 0.0386 150 C. 117** C. 104 0.0386 150 C. 117** C. 104 0.0386 150 C. 117** C. 104 0.0330 200 0.150* C. 117** C. 104 0.0330 200 0.150* 200 C. 117** C. 128 0.0286 250 0.150* 200 C. 117** C. 128 0.0286 273 0.168 0.171* C. 118* C. 128 0.0286 273 0.180 0.171* C. 118* C. 128 0.0286 273 0.180 0.171* C. 128* C. 128 0.0286 274 0.0267 300 0.144 C. 128* <	22	0.0137	•	ឧន		0.0142		88		0.0165		25		6.6507	
0.0836 0.0835 60 0.0836 70 0.0836 70 0.0886 70 0.0886 70 0.0836 90 0.0841 80 0.0441 80 0.0836 100 0.0841 80 0.0441 80 0.137* 0.137* 0.084 100 0.0841 100 0.137* 0.138 0.084 100 0.1384 0.084 100 0.137* 0.138 0.084 0.084 20 0.139 0.084 250 0.171* 0.187* 0.138 0.0282 20 0.139 0.0282 273 0.180 0.18* 0.18* 0.18* 0.18* 0.0267 300 0.171* 0.19* 0.0243 300 0.26* 0.26* 0.0267 300 0.130 0.19* 0.18* 0.0245 0.0245 300 0.244 0.0227 400 0.236* 0.26* 0.28* 0.0245 0.0	19:			341		0.0		3\$8		0.0261		388		0.0	
0.0035 0.0035 0.0036 70 0.0036 70 0.0035 90 0.00441 80 70 0.0036 70 0.017* 0.0035 100 0.00441 80 0.00441 80 0.137* 0.137* 0.034 100 0.0344 100 0.137* 0.136 0.034 20 0.139 0.034 20 0.137* 0.136 0.034 20 0.139 0.034 20 0.150* 0.137* 0.138 0.0242 250 0.139 0.0246 250 0.171* 0.136 0.137 0.138 0.139 0.0246 250 0.171* 0.137 0.136 0.0243 300 0.139 0.0267 300 0.132 0.139 0.136 0.0243 300 0.222 0.189 0.0227 400 0.236* 0.243 0.136 0.0146 0.0245 0.0146 0.0245 400 0.236*	e	0. 0ETS		8		0.0281		3		0.0323		3		9.0	
0.0655 0.117* 0.0780 0.0547 100 0.117* 0.0780 0.0364 150 0.113* 0.0801 0.0388 150 0.117* 0.156 0.0350 200 0.138* 0.139 0.0282 250 0.113* 0.157* 0.158 0.0282 250 0.138* 0.139 0.0282 273 0.180 0.167 0.188 0.0264 300 0.178 0.182 0.0267 300 0.171* 0.178 0.178 0.182 0.0267 300 0.178 0.182 0.0267 300 0.171* 0.180 0.178 0.022 0.178 0.162 400 0.227 400 0.236* 0.200 0.186 0.024 0.222 0.189 0.0227 400 0.236* 0.303 0.186 0.0178 500 0.244 0.0227 400 0.236* 0.303 0.315 800 0.378 0.0164 700 0.366* 0.304 0.415 0.0142 900 0.457 0.0142 900 0.452*	221	35		828		0.0335 0.0388		828				828		0.0473 0.0645	
0.137* 0.0780 0.0364 150 0.119* 0.0801 0.0388 150 0.137* 0.104 0.0330 200 0.138* 0.105 0.0334 200 0.150* 0.157* 0.128 0.0282 250 0.138* 0.129 0.0282 273 0.180 0.167 0.128 0.0262 273 0.168 0.179 0.0282 273 0.180 0.178 0.178 0.162 0.0267 300 0.171* 0.180 0.176 0.162 0.0267 300 0.171* 0.281 0.0245 360 0.204 0.227 400 0.236* 0.282 0.189 0.0245 350 0.236* 0.236* 0.236* 0.362 0.384 0.374 0.327 400 0.36* 0.343 0.0152 0.0152 0.0152 0.0164 700 0.40* 0.341 0.0152 0.0152 0.0164 0.0164 0.0164	122	9.0		888		0.0694		888		0.0561 0.0619		888		0.0	
0.157* 0.158 0.0292 250 0.159* 0.129 0.0294 250 0.171* 0.157* 0.158 0.0292 250 0.171* 0.158 0.158 0.129 0.0292 250 0.171* 0.158 0.168 0.139 0.0282 273 0.180 0.178 0.180 0.178 0.0282 273 0.180 0.178 0.180 0.178 0.0282 273 0.190 0.192 0.229 0.178 0.0245 250 0.171* 0.229 0.178 0.0245 250 0.192 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.289 0.0180 0.0180 0.020 0.289* 0.289 0.0181 0.0181 0.0184 0.389 0.389 0.399 0.289* 0.289* 0.0181 0.0182 0.089 0.389* 0.409* 0.409* 0.409* 0.409* 0.409* 0.409* 0.409* 0.409* 0.445* 0.0133 0.0133 0.0133 0.409*		•	0.0364	93	0.1194	0.0801	0.0388	950		0.0893		- S1		0.107	2
0.167 0.139 0.0282 273 0.168 0.139 0.0282 273 0.180 0.178 0.178 0.168 0.179 0.162 0.0267 300 0.192 0.139 0.178 0.162 0.0267 300 0.192 300 0.192 0.220 0.186 0.027 400 0.227 400 0.236* 0.362 0.363 0.264 0.244 0.0227 400 0.236* 0.363 0.364 0.264 0.264 0.260 0.260 0.260 0.365 0.367 0.0163 700 0.367 700 0.367 0.367 0.367 0.0164 700 0.367 700 0.468 0.461 0.0142 900 0.430 0.417 0.0142 900 0.452*		. .	0.0282 0.0282	3 2	0.158	0.129	0.0296	38	0.171*	0.140	0.0305	38	0.1964	0.163	
0.139 0.175 0.0243 350 0.200 0.176 0.0245 350 0.214 0.230 0.186 0.0225 400 0.222 0.189 0.0227 400 0.236* 0.303 0.385 0.0178 500 0.264 0.244 0.0200 500 0.280* 0.303 0.385 0.0178 600 0.366 0.286 0.0180 600 0.323* 0.363 0.387 0.388 0.373 0.0164 700 0.366* 0.363 0.264 0.0152 800 0.368* 0.0164 700 0.408* 0.456 0.0151 800 0.388 0.373 0.0164 700 0.408* 0.456 0.0152 900 0.416 0.0142 900 0.457 0.0133 1000 0.452*		6. 138 6. 138	0.0 0.0 200.0	28	0.168 0.179	0.138 0.158	0.0282	272 80 80	0.180 0.192	0. 151 19. 19.	0.0290 0.0275	£8	0. 206 218	o. 175 0. 175 0. 175	
0.227 0.027 400 0.222 0.189 0.027 400 0.236** 0.303 0.384 0.0196 500 0.264 0.244 0.020 500 0.286** 0.303 0.385 0.286 0.286 0.0180 600 0.323** 0.363 0.387 0.0164 700 0.366** 0.422 0.286 0.273 0.0164 700 0.366** 0.441 0.0152 800 0.430 0.415 900 0.456** 0.441 0.0132 1000 0.457 0.0133 1000 0.452**	_	0.175	0.0243	380	0.200	0.176	0.0245	350	0.214	0.189	0.0252	3	0.242	0.215	0.0
0.363 0.286 0.0178 600 0.306 0.288 0.0180 600 0.323* 0.343* 0.387 0.373 0.0164 700 0.365* 0.363 0.364 0.0151 800 0.388 0.373 0.0152 800 0.406* 0.422 0.486 0.0140 800 0.430 0.415 0.0142 900 0.450* 0.461 0.0132 1000 0.477 0.433 1000 0.452*		 	0.0125 0.0198	\$ 8 8	o o 20 73 20 73	6. 1 5 0	0.0227	\$ 8 8	0.236 0.280	0. 213 0. 259	0.0234	\$ 8	0. M604 0. M114		P 2
0.363 0.366 0.0151 800 0.388 0.373 0.0152 800 0.408+ 0.422 0.466 0.0140 900 0.430 0.415 0.0142 900 0.450+ 0.461 0.466 0.0132 1000 0.470 0.487 0.0133 1000 0.452+		in it	0.0178 0.0163	38	0.306 0.347	0.288 0.331	0.0180	8 5	0.323* 0.366*	0.304 0.349	0.0185	88	o. 456 404 104	. 25 25 25 25 25 25 25 25 25 25 25 25 25 2	0.0195 0.0176
0.422 0.486 0.0140 800 0.430 0.415 0.0142 800 0.450* 0.461 6.448 0.0132 1000 0.470 0.487 0.0133 1000 0.492*		0.30	0.0151	908	0.388	0.373	0.0152	800	0.408*	0.393	0.0156	2	0.43	0.437	0.0164
	9 6	•	0.0140	8 5	0.430	0.415	0.0142	8 5	0.450	9.5	0.0145	8 5	0. 45 45 45 45 45 45 45 45 45 45 45 45 45	6. 4 6. 5 6. 5	0.0153
0.362 0.409 0.6124 1100 0.513 0.500 0.0125 1100 0.534*	3	\$	0.0124	8	0.513	9	0.0125	11	200	0.521	0.0128	8	9	3	0.0125

sotivity, k, are as follows:

20, 80 Cu - 70, 80 Pd: ±19%, 24, 80 Cu - 70, 80 Pd: ±19%, 24, 80 Cu - 70, 80 Pd: ±19%, 26, 80 Pd: ±19%, 16, 80 Cu - 80, 80 Pd: ±19%, 16, 80 Cu - 80, 80 Pd: ±19%,

sectal thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] Table 14. Reconnended Thermal Conductivity of Copper-Palladium alloy System (continued)

A CONTRACTOR OF THE PARTY OF TH

The second secon

	90. 00% (84. 31 At. %)	At. 55)		Pd: 95.0	5. 90% (8. 10 At. %) 95. 00% (91. 90 At. %)	At. %)		Pd: 97.00	3. 90% (4. 52 At. %) 97. 00% (95. 08 At. %)	At. %)		Pd: 99.00	1.00% (1.66 AL. %) 99.00% (98.34 AL. %)	1 × ×
9	Po = 20.10 poem			, o = 1	= 10.31 pacm	g		9 = °	ρ ₀ = 6.20 μΩcm			po = 2	p ₀ = 2.100 µΩcm	A
M	A ⁰	, N	Ŧ	×	k.	k g	T	Ą	k e	,M	H	м	" •	, , •
-	0.00406		7.	ļ	0.00948		44		0.0158		40		0.0465	
-			9 60		0.0190				0.0315		0 00		0.0931	
	0.0122		2		0.0237		2		0.0394		2		0.116	
_	. ests		2		0.0355		12		0.0591		21		0.175	
_	0. 6543		2		0.0474		8		0.0788		2		0.133	
			22		0.0572		22		0.0959		22		0.276	
	955		8		0.0676		유 : 		0.113		8		0.315	
_	3		\$:		0.0871		\$:		31.		-		ž	
			3		0.102		3		0. 167		2		9.	
	0.0000		8		0.120		8		0.214		8		0.30	
	o. 9756		21		0.135		28		230		28			
			8 8				88		0.0 281		8			
1 2	0, 103		2 2		0.176		8		0.273		88		9	
130	0, 141		150		0.223				0.294		8		0.41	
_	3	0.0407	8	0.312*	0.261	0.0509	88		0.320		8		4	
	.	0.6360	25	C. 2374	0.290	0,0448	3 2	0.411#	9 5	0.0533	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0674	£ .	0.0762
	1	0.0324	28	0.362	 	0.0403	<u> </u>	0.435	0.387	0.0477	28	0.562		0.0676
282 0.282	-	0.0297	350	688	0.359	0.0367	330	0.462*	0.419	0.0434	350	0.5854	0, 524	0.0606
_	ن ق	0.0274	\$		0.381	0.0339	\$	0.486*	0.46	0.0399	9	0. 605#	9.0	0.05
_	9.36	0.0240	25		0.436	0.0295	8	0.533	0.499	0.0346	8	0.646*	0.200	0.0471
	.	0.0215 0.015	8	0.515 2.515 3.515	0.489	0.0263	8 8	0.5794	0.548	0.0307	8 8	0.690		0.0411
		9970	3		0. 939	0.023	3	0.023		0.027	<u> </u>	- 101-		3
	0.451	0.0180	8	0.661*	0.639	0.0219	80	0.665*	0.640	0.0253	2	0.770	0.737	0.0320
3		0.0168	8	. 641#	0.621	0.0202	006	0.706*	0.682	0.0233	8	# 608°	o. 736	0.029
	3	0.0157	3 3	0.676*	0.657	0.0189	3 :	0.743#	0.7ZZ	0.0216	200	0.847*	918.0	e. 0278
			311	U. 711*	C. 045	o. of T.	3		C. 733	0.0202	311		7007	

activity, k, are as follows:

10.8 Cu - 80.88 Ptt - 10.88 Cu - 80.88 Ptt - 10.88 Ptt

ce no experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] TABLE 14. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-PALLADIUM ALLOY SYSTEM (continued)

The state of the s

Cu: 0.28% (0.33 At. %) Pd: 30.28% (90.17 At. %)	A ₀ = 1.100 pDcm	A ^{lo}	15	

mostrinities of the total thermal conductivity, it, are as follows: 0.36 Cu - 90.30 Fd: ±19%. In temperature range where no experimental thermal conductivity data are available.

. .

A STATE OF THE STATE OF

A CONTRACTOR OF THE PARTY OF TH

TABLE 15. THERMAL CONDUCTIVITY OF COPPER + PALLADIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

THE COUNTY AND THE PARTY OF THE

, i	¥ 9.	Author(s)	Year	Method	I Temp. Range, K	Name and Specimen Designation	Composition (weight percent)	tion cent) Pd	Composition (continued), Specifications, and Remarks
-	5	Grüncisen, E. and Roddennen, H.	1934	1	22-91	20	89.7 10	10.3	Calculated composition; polycrystalline; electrical resistivity 6.82, 5.508, and 5.184 $\mu\Omega$ cm at 0, -190, and -251 C, respectively.
*	8	Pott, F. P.	186	.	293, 573		*	ž :	Calculated composition; annealed at 600 to 700 C for 2 hr; ordered; electrical resistivity 9.7, 12.4, and 13.9 $\mu\Omega$ cm at 36, 300, and 480 C, respectively.
•	2	Pott, F. P.	186	ı	293, 623		.	38.88	Similar to the above specimen except electrical resistivity 10.5, 12.9, and 15.2 $\mu\Omega$ cm at 34, 251, and 449 C, respectively.
•	2	Pott, F. P.	1868	J	293, 1048		Ň	24. 10	Similar to the above specimen except disordered with electrical resistivity 14.2, 17.1, and 19.3 $\mu\Omega$ cm at 19, 441, and 779 C, respectively.
•	g	Pott, f.P.	1966	J	818, 1028		e e	35. 8 2	Similar to the above specimen except electrical resistivity 19.7, 22.4, and 25.6 µf) cm at 25, 400, and 800 C. respectively.
•	2	Klerap. W.	1961	.a	288.2			÷	Cylindrical specimens electrical resistivity 2.5662, 2.5865, 2.5901, 2.6052, 2.6379, 2.6849, 2.9092, 2.9047, 3.0440, 3.1647, 3.3258, 3.4636, 3.6005, 3.7351, 3.8703, 4.0055, 4.1351, and 4.2018 µD cm at 4.2, 10, 20, 30, 40, 50, 70, 83, 103, 123, 143, 163, 183, 203, 223, 243, 263, and 273 K, respectively.
-	178	Holgerseen, S. and Sedström, E.	1924		323.2			8. 41	Calculated composition (5.2 a/o Pd); electrical resistivity 6.8 μ cm at 50 C.
•	178	Holgersoon, S. and Seletribn, E.	1924		323.2		14	16.57	Calculated composition (10.6 a/o Pd); electrical resistivity 11.9 $\mu\Omega$ cm at 50 C.
•	178	Holgertseca, S. and Selection, E.	1924		323.2		72	22.40	Calculated composition (14.7 a/o Pd); electrical resistivity 15.4 $\mu\Omega$ cm at 50 C.
2	178	Holgerseon, 8. and Selectron, E.	185		323.2		22	28.73	Calculated composition (19.4 a/o Pd); density 9.78 g cm ⁻² ; electrical resistivity 18.8 µA cm at 50 C.
Ħ	178	Holgerreson, S.	1924		323.2		8	35. 45	Calculated composition (24.7 a/o Pd); electrical resistivity 22.0 µA cm at 50 C.
21	178	Holgersson, S. and Sederrin, E.	1924		323.2		4	42.36	Calculated composition (30.5 a/o Pd); electrical registivity 27.0 µA cm at 50 C.
13	178	Holgerseen, S. and Sedetröm, E.	1924		323.2		34	48.94	Calculated composition (36.4 a/o Pd); density 10.12 g cm ⁻² ; electrical resistivity 29.8 μΩ cm at 50 C.
2	5 2	Sodström, E.	1924		273.2		e)		Thermal conductivity value extracted from Schuize, A. (Z. Anorg. Chem., 159, 325-42, 1927).
22	178	Sedritelle, Z.	1924		273.2		w	8.7	Same as above; electrical resistivity 6.90 pf. cm at 0 C.
2	22	Sodetriffe, E.	1924		273.2		11	11.1	Same data source as above.
12	E	Sodstriffe, E.	1924		273.2		11	17.3	Same as above; electrical resistivity 11.79 m cm at 0 C.
=	2	Societrifie, E.	1924		273.2		42	42.8	Same as above; electrical resistivity 25.38 M cm at 0 C.
2	2	Sedström, E.	1924		273.2		48	49.0	Same as above; electrical resistivity 29.67 µG cm at 0 C.

11 -

TABLE 16. THERMAL CONDUCTIVITY OF PALLADIUM + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

1 61 Gründstein, E. and 1894 L. 21-81 15 90.8 9.2 Calculated composition; polypryrabilities Reference Re	<u>بۇ</u> ۋ		Aethor (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Pd Cu	ition ercent) Cu	Composition (continued), Specifications, and Remarks
61 Gründlam, F. and 1834 L 21-85 19 62.7 37.3 Ca Rodinam, H. and Sandam, H. and 1834 L 21-82 21b 57.5 42.2 Ca Rodinam, H. and 1834 L 21-82 21b 77.5 42.2 Ca Rodinam, H. and 1834 L 21-82 21b 77.5 42.2 Ca Rodinam, H. and 1834 L 21-82 21b 77.5 42.2 Ca Rodinam, H. and 1834 L 21-80 21c 77.5 47.25 Ca Rodinam, H. and 1834 L 21-80 21c 77.5 47.25 Ca Rodinam, H. and 1834 L 283,823 77.5 47.25 Ca Rodinam, H. and 1834 L 283,823 77.5 47.25 Ca Rodinam, H. and 1834 L 283,1048 77.5 47.25 Su Rodinam, H. and 1834 L 283,1048 77.5 47.25 Su Rodinam, H. and 1834 L 283,1048 77.5 47.25 Su Rodinam, H. and 1834 L 283,1048 77.5 47.25 Su Rodinam, H. and 1834 L 283,1048 77.5 47.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 17.5 Ca Rodinam, H. and 1834 L 283,1048 77.5 Ta Rodin	-	5	M H	1934	ı	21-91	18	90.8	9.2	Calculated composition; polycrystalline; electrical resistivity 20.59, 22.18, and 28.05 $\mu\Omega$ cm at 22, 33, and 273 K, respectively.
61 Gründlan, E. and 1834 L 71-67 21a 57.8 42.2 Ca Rodinan, H. and Rodinan, H.	N	6	Grünelsen, E. Reddemann, H	1934	1	21-85	19	62.7	37.3	Calculated composition; electrical resistivity 32. 49, 33. 68, 36. 8, and 37.15 µ0 cm at 22, 83, 273, and 291. 60 K, respectively.
61 Gründlan, E. and 1994 L 21-60 210 The The Reddenian, H. 22-60 210 The Reddenian, H. 25-60 The Reddenian	•	2	Grüncisen, E. Roddemann, H	1834	۵.	79-67	212	57.8	42.2	Calculated composition: electrical resistivity 3.168, 5.1, and 5.32 µ£l cm at 83, 273, and 292.6 K, respectively.
61 Crimeten, E. and Marten, H. 21-80 21c 17b 82 Pott, F.P. 1968 L. 283,823 52.75 47.25 Ca 82 Pott, F.P. 1968 L. 283,623 57.81 42.19 Sin 82 Pott, F.P. 1968 L. 283,1048 57.81 42.19 Sin 82 Pott, F.P. 1968 L. 283,1048 57.75 47.25 Sin 82 Pott, F.P. 1968 L. 283,1048 57.75 47.25 Sin 83 Pott, F.P. 1968 L. 821,1073 70.67 29.33 Sin 84 Bolgerrena, S. 1974 323.2 47.56 Ca 178 Bolgerrena, S. 1974 323.2 47.56 Ca 178 Bolgerrena, S. 1924 323.2 47.56 Ca 178 Bolgerrena, S. 1924 323.2 47.56 Ca 178 Bolgerrena, S. 1924 323.2 37.39 37.39 3	•	5	Gründsen, E. Reddemann, H	1894	ı	21-92	216			The above specimen annealed in vacuo for 2 hr at ~850 C; electrical resistivity 33.47, 34.01, 36.4, and 36.6 µ0 cm at 22, 83, 273, and 291.60 K, respectively.
82 Poot, F.P. 1958 L 293,623 57.81 47.25 Ca. 82 Poot, F.P. 1968 L 293,623 57.81 47.25 Ca. 82 Poot, F.P. 1958 L 303,623 70.67 29.33 Sin 82 Poot, F.P. 1958 L 393,1048 52.75 47.25 Sin 82 Poot, F.P. 1958 L 289,1048 57.81 42.19 Sin 83 Poot, F.P. 1958 L 281,1073 70.67 29.33 Sin 84 Poot, F.P. 1958 L 223,2 46.40 Ca 178 Bolgerraon, S. 1924 323,2 47.56 Ca 178 Bolgerraon, S. 1924 323,2 47.56 Ca 178 Bolgerraon, S. 1924 323,2 33.3 35.63 Ca 178 Bolgerraon, S. 1924 323,2 323,2 33.3 3	w	5		1834	,i		21c			The above specimen annealed at ~ 325 C for 30 hr; electrical resistivity 2. 812, 3.286, and 5.25 μ G cm at 22, 83, and 273 K, respectively.
82 Poet, F.P. 1968 L 283,623 57.81 42.18 Sus 82 Poet, F.P. 1968 L 303,623 70.67 29.33 Sus 82 Poet, F.P. 1968 L 283,1048 52.75 47.25 Sus 83 Poet, F.P. 1968 L 283,1048 57.81 42.19 Sus 83 Poet, F.P. 1968 L 821,1073 70.67 29.33 Sus 178 Holgerraon, S. 1924 323,2 47.56 Ca 178 Holgerraon, S. 1924 323,2 37.58 Ca 178 Holgerraon, S. 1924 323,2 37.59 Ca 178 Holgerraon, S. 1924 <td></td> <td>2</td> <td></td> <td>1958</td> <td>H</td> <td></td> <td></td> <td>52. 75</td> <td>47.25</td> <td>Calculated composition; specimen cut from a 0.2 mm thick sheet; cold-rolled, amealed for 2 hr at ~650 C; ordered atomic arrangement; electrical resistivity 7.8, 10.8, and 14.0 µC cm at 35, 300, and 590 C, respectively.</td>		2		1958	H			52. 75	47.25	Calculated composition; specimen cut from a 0.2 mm thick sheet; cold-rolled, amealed for 2 hr at ~650 C; ordered atomic arrangement; electrical resistivity 7.8, 10.8, and 14.0 µC cm at 35, 300, and 590 C, respectively.
82 Poet, F. P. 1958 L 303,623 70.67 29.33 Sin 82 Poet, F. P. 1968 L 883,1048 52.75 47.25 Sin 82 Poet, F. P. 1968 L 283,1048 57.81 42.19 Sin 82 Poet, F. P. 1968 L 821,1073 70.67 29.33 Sin 178 Rolperson, S. 1924 323.2 44.75 Ca Ca 178 Rolperson, S. 1924 323.2 47.56 Ca 178 Rolperson, S. 1924 323.2 47.56 Ca 178 Rolperson, S. 1924 323.2 323.2 47.56 Ca 178 Rolperson, S. 1924 323.2 323.2 37.58 Ca 178 Rolperson, S. 1924 323.2 323.2 35.63 Ca 178 Rolperson, S. 1924 323.2 323.2 35.83 35.83	~	2		1968	ı			57, 81	42.19	Similar to the above specimen except electrical resistivity 4.3, 7.7, and 11.0 $\mu\Omega$ cm at 0, 291, and 560 C, respectively.
82 Poet, F.P. 1968 L 883,1048 52.75 47.25 Sin 82 Poet, F.P. 1968 L 283,1048 57.81 42.19 Sin 82 Poet, F.P. 1968 L 821,1073 70.67 29.33 Sin 170 Rolgerracon, S. 1974 323.2 48.40 Ca 170 Rolgerracon, S. 1924 323.2 47.56 Ca 170 Rolgerracon, S. 1924 323.2 37.39 37.39 Ca 170 Rolgerracon, S. 1924 323.2 33.36 Ca 170 Rolgerracon, S. 1924 323.2 33.39		ä		1958	1			70.67	29.33	Similar to the above specimen except electrical resistivity 49.3, 50.6, and 51.4 µΩcm at 0, 314, and 580 C, respectively.
82 Poet, P.P. 1968 L 283,1046 57,81 42.19 82 Poet, P.P. 1958 L 821,1073 70.67 29.33 178 Holgermeen, S. 1924 323.2 46.40 178 Holgermeen, S. 1924 323.2 47.56 178 Holgermeen, S. 1924 323.2 43.58 178 Holgermeen, S. 1924 323.2 53.58 178 Holgermeen, S. 1924 323.2 53.58 178 Holgermeen, S. 1924 323.2 53.98 178 Holgermeen, S. 1924 323.2 53.98 178 Holgermeen, S. 1924 323.2 53.98	•	2		1958	H			52. 75	47.25	Similar to the above specimen except disordered atomic arrangement and electrical resistivity 28.4, 31.4, and 35.9 $\mu\Omega$ cm at 25, 400, and 792 C, respectively.
178 Holgermeon, 8. 1924 323.2 48.40 48.40 48.40 49.40		2		1968	1			57, 81	42. 19	Similar to the above specimen except electrical resistivity 34.2, 37.4, and 41.4 $\mu\Omega$ cm at 36, 400, and 800 C, respectively.
170 Holgerson, 8. 1924 323.2 46.40 170 Holgerson, 8. 1924 323.2 47.56 170 Holgerson, 8. 1924 323.2 47.56 170 Holgerson, 8. 1924 323.2 41.70 170 Holgerson, 8. 1924 323.2 41.70 170 Holgerson, 8. 1924 323.2 37.58 170 Holgerson, 8. 1924 323.2 37.58 170 Holgerson, 8. 1924 323.2 35.63 170 Holgerson, 8. 1924 323.2 35.63 170 Holgerson, 8. 1924 323.2 58.99 170 Holgerson, 8. 1924 323.2 58.99	_	2		1958	1	821, 1073		70, 67	29.33	Similar to the above specimen except electrical resistivity 47.6, 49.7, and 51.7 μ G cm at 32, 400, and 900 C, respectively.
170 Holperson, 8. 1924 323.2 47.56 170 Holperson, 8. 1924 323.2 41.70 and Sodardin, E. 1924 323.2 41.70 176 Holperson, 8. 1924 323.2 37.58 176 Holperson, 8. 1924 323.2 37.58 176 Holperson, 8. 1924 323.2 35.63 176 Holperson, 8. 1924 323.2 33.36 178 Holperson, 8. 1924 323.2 38.36 178 Bolgerson, 8. 1924 323.2 28.99	_	178		1924		323.2			48.40	Calculated composition (61.1 a/o Cu); electrical resistivity 11.9 µC cm at 50 C.
178 Holgerson, S. 1924 323.2 41.70 and Sodardin, E. 1924 323.2 41.70 178 Holgerson, S. 1924 323.2 37.58 176 Engerson, S. 1924 323.2 35.63 178 Engerson, S. 1924 323.2 35.63 178 Engerson, S. 1924 323.2 33.36 178 Engerson, S. 1924 323.2 28.99	_	178	Bolgersson, S. sad Sedetröm,	1924		323. 2			47.56	Calculated composition (60.3 a/o Cu); electrical reststivity 10.3 $\mu\Omega$ cm at 50 C.
178 Holperson, S. 1924 323.2 37.58 22 Enderson, S. 1924 323.2 35.63 23 Enderson, S. 1924 323.2 35.63 178 Enderson, S. 1924 323.2 33.36 178 Enderson, S. 1924 323.2 26.99	_	23	Holgerseau, S. and Sederfim, E.	1924		323.2			41.70	Calculated composition (54, 5 a/o Cu); density 10.35 g cm ⁻³ ; electrical resistivity 19.1 $\mu\Omega$ cm at 50 C.
176 Endpartment, 8. 1924 323.2 35.63 35.63 323.2 35.63 35.63 35.63 323.2 323.2 33.36	_	13	Holgerson, S. and Sodström, E.	1924		323.2			37.58	Calculated composition (49.8 a/o Cu); electrical reststivity 10.0 $\mu\Omega$ cm at 80 C.
170 Endpartment, 6. 1924 324.2 33.36 33.36 33.45 324.2 324.2 33.36 33.36 33.36 324.2	_	176	Robertsen, S.	188		323.2			35. 63	Calculated composition (48.1 a/o Cu); density 10.50 g cm ⁻³ ; electrical resistivity 48.1 μ Ω cm at 50 C.
178 Beigervoon, S. 1924 323.2 28.99 and Sedentist, E.	_	11	Estates and Sedetribu	7		323.2			33.36	Calculated composition (48, 6 a/o Cu); density 10.96 g cm $^{-3}$; electrical resistivity 50.1 μ Ω cm at 50 C.
	_	5	Beigersonn, S. and Sedetrölln, B.	1924		323.2			28.99	Calculated composition (40.6 a/o Cu); electrical registivity 55.4 $\mu\Omega$ cm at 50 C.

TABLE 16. THERMAL CONDUCTIVITY OF PALLADIUM + COPPER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

I								
	Ref.	Author(s)	Year	Method Used R	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Pd Cu	Composition (continued), Specifications, and Remarks
2	178	Holgersson, S. and Sedetröm, E.	1924		323.2		20.22	Calculated composition (2º.8 a/o Cu); density 11.26 g cm ⁻³ ; electrical resistivity 51.4 µD cm at 50 C.
8	178	Holgareson, S. and Sedetrika, E.	1924		323. 2		14.13	Caloniated composition (21.6 a/o Cu); electrical resistivity 41.1 $\mu\Omega$ cm at 50 C.
Ħ	178	Holgersonn, S. and Sodetriden, E.	1884		333. 2		6.81	Calculated composition (10.9 a/o Cu); electrical resistivity 29.7 $\mu\Omega$ cm at 50 C.
#	173	Soderffa, I.	1924		273.2		51.6	Thermal conductivity value extracted from Schulze, A. (Z. Anorg, Chem., $\underline{159}$, 325-42, 1927); electrical resistivity 11.10 $\mu\Omega$ cm at 0 C.
n	173	Sodetrille, E.	721		273.2		52.5	Same as above but electrical resistivity 8.77 µG cm at 0 C.
X	173	Sedstriffe, E.	1824		273.2		58.4	Same as above but electrical resistivity 18.28 µn cm at 0 C.
*	17	Sodetrille, E.	1824		273.2		62.4	Same as above but electrical resistivity 8.26 µB cm at 0 C.
*	£1	Bodistrille, E.	1221		273. 2		64.4	Same as above but electrical resistivity 47.39 \(\mathbb{\mt}\m{\mth}\and\mtx\exim\and\angami\mta\mode\angami\mta\mode\angami\mta\mode\angami\mta\mta\mta\mta\mta\mta\mta\mta\mta\mta
Ħ	178	Sedetrůla, E.	1924		273.2		66.7	Same data source as above.
8	2	Bedetriffe, E.	1824		273.2		79.8	Same as above; electrical resistivity 50.76 $\mu\Omega$ cm at 0 C.
8	5	Sedströln, E.	1824		273.2		85.9	Same as above but electrical resistivity 40.16 µO cm at 0 C.
8	273	Sedström, E.	1924		273.2		93.0	Same as above but electrical resistivity 27.32 µΩ cm at 0 C.

4.6. Copper-Zinc Alloy System

The copper-zinc alloy system does not constitute a continuous series of solid solutions. The maximum solid solubility of zinc in copper is 38.3% (39.0 At.%) at 727 K and the solubility decreases at higher and lower temperatures. At lower temperatures, the attainment of equilibrium becomes very slow and the solubility data are uncertain. Massalski and Kittl [86] have analyzed existing data and have concluded that the boundary lies at about 35% Zn at 473 K and suggest that it may lie at less than 30% Zn at room temperature. Shinoda and Amano [87] have reported a much greater reduction in solubility at room temperature.

There are 91 sets of experimental data available for the thermal conductivity of Cu + Zn alloys as listed in Table 18 and shown in Figure 26. Of these, seven sets are merely single data points, 24 sets cover a narrow temperature range from around room temperature to about 500 K, and 17 sets are for temperatures below 4.5 K. Most of the measurements were on alloys in the solid solution region. Surprisingly there are no data available for the Zn + Cu alloys on either the thermal conductivity or the electrical resistivity. Consequently, only Cu + Zn alloys are treated in the present work.

In order to ascertain the reliability of experimental data and to fill gaps in data, the lattice and electronic components of the thermal conductivity of the Cu + Zn alloys were calculated. The electronic component was calculated from eq. (12). However, these calculations were limited to temperatures below 400 K, since no reliable electrical resistivity data were available at higher temperatures. Where values of the electronic component are reported at higher temperatures in Table 17, these were obtained by graphical smoothing of the differences between the experimental thermal conductivity data and the calculated values of the lattice thermal conductivity in the low temperature region were based on experimental data and values in the high temperature region were calculated from eq. (35). In the intermediate range, near the maximum, graphical techniques were used to smoothly join the high and low temperature values (following a crude separation of kg as a guide). The high temperature calculations of the lattice component were limited to alloys with Zn not exceeding 30%.

The low temperature lattice thermal conductivity of solid-solution Cu + Zn alloys in both strained and annealed states has been extensively investigated by Kemp, et al. [62, 88,89] (curves 17-24 and 27-33). Their results show that the lattice and total thermal conductivities of the alloys increase markedly as the annealing temperature is increased, due to the removal of both point defects and dislocations. This increase is illustrated by curves 30-33 in Figure 26 for an alloy with 32% Zn. Apparently the dislocations are locked in by the impurity atoms, and cannot be removed by normal annealing just above the recrystallization temperature. Even annealing the alloys at temperatures near the melting point was found to remove only a fraction of the dislocations. In recommending low-temperature

~

lattice thermal conductivities, only the data for alloys annealed at high temperatures were used. The values given in Table 17 were based primarily on the data of Kemp, et al. [62] for alloys with 2.06, 5.14, and 10.26% Zn (curves 27-29), which were annealed at 1123 K. Because the low temperature lattice thermal conductivities of solid-solution Cu + Zn alloys do not vary greatly with composition in the 10-30% Zn range, it was possible to estimate the lattice components of alloys in this range by graphically extending the conductivity-composition curves formed by the 2.06, 5.14, and 10.26% Zn alloys to higher Zn concentrations, using data of Kemp, et al. [88] for alloys annealed at a lower temperature (773 K) (curves 18, 20, and 24) as a guide. Although this procedure should not introduce unacceptable uncertainties, the lattice components reported for the 10-30% Zn alloys should be accepted with more caution than those for which direct, supporting experimental data are available.

Problems were encountered in attempts to develop reliable estimates of the lattice thermal conductivities of the alloys at high temperatures. Initially, the lattice components for the alloys were calculated by using White and Woods' [90,91] value of 35.0 watts cm⁻¹ for the value of kg T of pure copper to determine ku (T') in eq. (35). However, calculations of the lattice components from high temperature measurements by Kemp, et al. [62, 88,89] (curves 17-24 and 27-33) and Smith [92] (curves 1-13) of the total thermal conductivity and the electrical resistivity for the same alloy samples were as much as 50% higher than the values calculated using eq. (35) with White and Woods' values for the lattice component of copper. It was found that this discrepancy could be reduced by increasing the values for the lattice component of pure copper by 50% at high temperatures. This resulted in a much better agreement between experimental and calculated values of the lattice component over the entire range of compositions. However, because of this conflict between White and Woods' value for the lattice component of copper and the available experimental data for copper-zinc alloys, the lattice components of the dilute copper-zinc alloys are not reported at high temperatures.

The recommended total thermal conductivity values are in agreement with the data at low temperatures of Lomer [161] (curves 80-86), Kemp, et al. [88] (curves 18, 20-22, and 24), Kemp, et al. [89] (curve 33), and Olsen [157] (curves 56-59) to within 10%, and with the data at higher temperatures of Smith [92] (curves 1-8, 11, 71, and 72), Smith and Palmer [49] (curve 14), Bailey [151] (curve 15), and Lees [152] (curve 16) to within 8%.

The recommended values for k, k_e , and k_g are tabulated in Table 17 for nine alloy compositions ranging from 0.50 to 30% Zn. These values are for well-annealed alloys. The values for k are also shown in Figure 25, covering the temperature range from 4 to 700 K. The values of residual electrical resistivity for the alloys are also given in Table 17. The uncertainties of the k values are stated in a footnote to Table 17, while the uncertainties of the k_g and k_g values are indicated by their being designated as recommended or provisional

values. The ranges of uncertainties of recommended and provisional values are less than $\pm 15\%$ and between $\pm 15\%$ and $\pm 30\%$, respectively.

The state of the s

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] TABLE 17. RECONCIENDED THERMAL CONDUCTIVITY OF COPPER-ZINC ALLOY SYSTEM!

, ~	Cu: 99.50% Ze: 0.56%	% (99. 51 At.%) % (0. 49 At.%)	At 35		Cu: 99.00% (Zn: 1.00% (0% (99.03 At %) 0% (0.97 At %)	At. %) At. %)		Cu: 97.00% Zn: 3.00%	0% (97.08 At.%) 0% (2.92 At.%)	At. %)		Cu: 95.	95.00% (95.13 5.00% (4.87	(95.13 At. %) (4.87 At. %)
i	A = 0.	= 0.1500 µO.cm			0 = °	= 0.2650 µAcm	A		90	= 0.705 µAcm	a		4	= 1.090 µAcm	Ē
-		40	A ^{le}	+	*	A4 ^{ED}	, de	۴	14	MO.	.Mbc	f+		Mg.	Jeta
-	0.675	0.651	0.02354	*	0.389	0.369	0.0196	*	0.152	0.139	0.0129	•	0.101	0.0697	0.0114
•	1.63	6.977	0.05654	•	0.603	0.553	0.0498#	•	0.242	0.208	0.0341	•	0.162	0.134	0.0280
•	1.4	1.8	0.104	60	0.834	0.738	0.09604	6 0	0.345	0.277	0.0677	œ —	0.232	0.179	0.0230
2 ;	i.	34	0.1604	2 5		0.922	0.148# 0.264#	2 2	0.453	0,347	0.106 0.185	2 5	0.30 4.96	22. 22. 23. 24.	0.0850
2	4	;		-	\$	3		?	3	;		-		3	
8	7. 65¢	R	o. 889	2	2.19	1.84	0.346#	೩	0.945	0.693	0.252	<u>ส</u>	0.667	0.448	0.219
2	124	2	0.473	23	2.61	2,21	0.3994	22	1.15	0.853	0.298*	52	908	0.547	0.261
8	÷	4	÷ 4884	8	8	2.57	0.434	8	1.33	8:	0.331	<u>ଛ</u>	0.935	0:645	290
\$	2	4.73	0.5334	2	8. 48	3.01	0.468#	?	1.64	1.27	0.366#	2	1.14	0.823	200
2	£ 14			3	3.61			යි 	1.82			28	1.30	998	0.327
8	4.61*			8	3.52			8	1.89			8	1.39	1.07	0.320
2	4.8			2	ы Ж.			2	1.95			20	1.46	1.15	0.308
8	4			28	3.24			26	1.99			8	1.51	1. 23	0.2954
2	i S			8	3.2			8	2.05			8	1.58	1.29	0.284
8	8			2	3.21		_	8	2.11			<u></u>	1.6	1.37	0.274
3	3.81*			150			-	120	2, 42			120	1.95	1.72	0.2304
2	4			8	3.47*		_	8	2,65			82	2.18	1.8	0.198
202	3.77			22	50. %			252	2.80			250	% %		
E	3.70			23	જ જ			273	2.85			273	2.41		
ş	2. 7s			8	9. S			8	8			8	4		
2	3.75			38	8 8			350	2.97			350	58		
1	3.74			\$	3.57			\$	3.03			9	2.65		
3	3.70			8	3, 57		. •	8	3.11			200	2.77		
3	207			8	3.57*		_	2	3.18			9	2.88		
2				2 	3, 57*		_	8	3.26			700	5. 88		
2				8			-	2				98			
1				3 5				3 5				3 5			
1				3 2 2				3 2				3 2			
ł				5											

total thermal conductivity, k, are as follows:

90.90 Cm - 0.30 Zm ± 19%. 90.90 Cm - 1.60 Zm ± 19%. 97.60 Cm - 2.60 Zm ± 19%. 86.60 Cm - 5.60 Zm ± 19%. below 300 K and ± 5% above 300 K.

I Sh # Proviet · In temperature range where no experimental thermal conductivity data are available.

TABLE 17. RECOMMENDED THERMAL CONDUCTIVITY OF COPPER-ZINC ALLOY SYSTEM (continued) +

A State of State of the Control of t

The second second

大田の 本本 東京大学 様でを書いてからいのできる

[Temperature, I., K; Thermal Conductivity, k, W cu. '' K''; Electronic Thermal Conductivity, ke, W cm '' K''; Lattice Thermal Conductivity, ke, W cm '' K'']

۱۹ و	2.5 2.5 2.5 2.5	90.00% (90.25 At.%) 10.00% (9.75 At.%)	4: %) Ac. %)		Cu: 85.00 Za: 15.00	85. 00% (83. 38 At. %) 15. 00% (14. 64 At. %)	At. 53) At. 53)		Cu: 80.0 Zn: 20.0	80.00% (80.45 At.%) 20.00% (19.55 At.%)	At. %) At. %)		Cu: 75.0 Zn: 25.0	75.00% (75.53 At.%) 25.00% (24.47 At.%)	(K. 14.
	A-1	A 1.848 pilem				= 2.360 µD cm			9	= 2.840 µAcm	8		a o	A ₀ = 3.200 µA cm	•
p.		4.	A ^M	۲	*	4.	440	۴		" •	.w	H	سر ا	۰,	ale.
-	0.00	0.0630	0.0100	•	0.0619	0.0411	0.01064	•	0.0448	0.0344	0.0104	•	0.0408	0.0305	0.01034
• •		26.0			0. 406.5°	9. e	0.02494	• •	0.0759	0.0516	0.0243#	• •	9.00	9.0458	
2	į	e. 153	e. e7ee	9	9.17	o. 18	0.0694	2	0.15	. 08 08 08 08 08	0.0680	2	0.14	0.0763	0.0672
2	. n	P. 138	0.125	15	0.281+	0. 154	0. 127\$	12	0.254	0.129	0.1254	15	0.237	0.115	0.1234
8	=======================================	9. X	0.184	8		o. 20 5	0.173	8	0.336	0.172	0.166	8	0.313	0.153	0.160
81	3 5	Ä	3	X 1	. 45¢	0.252	0. 20 04	2 5	0.402	0.212	0,190	2 2	0.373	0.10	0.184
84				R 9			0.2314	8 9	64.0	20.0	2,4064	3 \$	1		0. 1974 0. 2064
8				3			0. 2334	28	0.611	, N	0.2154	28	0.556	o. 85	1
8	3	=	6. Mgd	8	9.761*	9.534	0. 2274	8	0.660	0.452	0.208	8	0.601	0.406	0, 196
*		5.7	. 200	2	0.811*	0.592	0.2194	2	0.703	0.503	0.2004	2	638	0.450	0.188
8	3	. 110		2	0.854	3	0.210	2	0.742	0.550	0.192	8	0.673	0.493	0.180
r g	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			R 2	0 . M	0.687	0.2014	8 8	0.780	. 586 7.	0.184	8 §	0.707	0.586 878 878	0.1724
		8			:	! ;									
3	3 E			3 \$	i. 16	3 5	0.160	3 8	1.01	. 867	0.146*	2 5	6.918 6.918	0.782	0.136
A	i i	3		1	3	1.38	0.1224	3 2	7. 10	2 2	0.111	3 5	3	200	0.104
E	1.8	1.	6. 130¢	E	1. 35	7.	0.116	273	1.37	1.26	0,106	273	7.	1.16	0.00024
i	1. 2	: :	. 11	8	i. 8	1.51	0.1104	8	1.43	1. 8	0.100	<u>§</u>	1.8	1.8 8	0.0940
	2.8	1.	0.234	*	1.73	1.63	0.100	38	1.52	1.43	0.0918	98	1.38	1.80	0.08594
1	4. 21	3 1	7.70	\$!	 	22:	0.09254	\$	9:	1.51	0.0647	\$	4 :	8	0.0783
H	14	i a		1 8	100	20.20	0.0003	3 8	2.1.	2 . 2 .	0.0738+	3 \$	3 6	2 7	0.0017
2	2 20	3	. 9726.	ş	, 2 , 2	2.14	0.0646	8	# # F	8	0.0595	}	: : :	1 2	0.0559
3				2				8				8			
				8				8				8			
				B 5				2 5			•	8 S			
}								3							

\$10% below 300 K and ±5% above 300 K. +10% below 300 K and ±5% above 300 K. #19% below 70 K and ±10% above 70 K. ±18% below 70 K and ±10% above 70 K. 90. 90 Ck - 10. 90 Zk 90. 90 Ck - 11. 90 Zk 90. 90 Ck - 20. 90 Zk 76. 90 Ck - 20. 90 Zk

· In temperature range where no experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] Table 17. Recondended Thermal Conductivity of Copper-2DIC Alloy system (combined) +

The second secon

Cu 75.85%	A- 2.3	4 F	
70.00% (70.50 At.%) 30.00% (20.41 At.%)	A. = 3. 300 pilom	40	
કુક જુક		, p	
		i	,
			·
			·
			·
			•.

+ Uncertainties of the total thermal conductivity, k, are as follows: 76.06 Cu - 20.00 Em. ±18% below 70 K and ±10% above 70 K.

4 Provisional value.

347

TABLE 18. THERMAL CONDUCTIVITY OF COPPER - ZINC ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT IN PORMATION

1.21.35

þ

TABLE 16. THERMAL CONDUCTIVITY OF COPPER + ZINC ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

. Š.	76.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Zn	ittion rcent) Zn	Composition (continued), Specifications, and Remarks
10	2	Komp, W.R.G., Kluman, P.G., Tainsh, R.J., and White, G.K.	1967	ı	2.0-130	6			The above specimen amorated at 500 C for 4 hr in belium atmosphere; residual electrical resistivity 0.38 $\mu\Omega$ cm.
2	*	Kemp, W.B.G., et al.	1967	H	2.1-91	88		5.37	Same dimensions and supplier as the above specimen; as drawn; residual electrical resistivity 1.22 μΩ cm.
2	2	Kemp, W.R.G., et al.	1967	H	2.5-91	ဖ			The above specimen annealed at 500 C for 4 hr in a belium atmosphere; residual electrical resistivity 1.12 $\mu\Omega$ cm.
Ħ	8	Kemp, W.R.G., et al.	1967	4	1.9-91	10		6	Similar to the above specimen except residual electrical resistivity 1.88 $\mu\Omega$ cm.
Ħ	2	Kemp, W.R.G., et al.	1957	ı	1.9-91	20	ri	19.48	Similar to the above specimen except residual electrical resistivity 2.97 $\mu\Omega$ cm.
ន	2	Kemp, W.R.G., et al.	1957	٦	2.5-91	308	m	31.87	Same dimensions and supplier as the above specimen; as drawn; residual electrical resistivity 4.31 $\mu\Omega$ cm.
*	2	Kemp, W.R.G., et al.	1967	H	2.2-91	90			The above specimen annealed in a heitum atmosphere at 500 C for 4 hr; residual electrical resistivity 3.60 µ0 cm.
n	31	Racth, C.H.	1		302-335	Brass			Cylindrical specimen 2.565 cm long and 5.017 cm ² in cross-sectional area.
×	153	Racth, C.H.	3	ı	314-344	Brass			Cylindrical specimen 2.570 cm long and 3.447 cm ² in cross-sectional area.
72	2	Kemp, W.R.G., Klemens, P.G., and Tainsh, R.J.	1967	a	1. 9-121			2.06	8 cm long and 0.5 cm in diameter; drawn; annealed at 850 C for 4 hr; electrical resistivity reported as 0.563, 6.873, and 2.273 $\mu\Omega$ cm at 0, 90, and 293 K, respectively.
22	25	Kemp, W.R.G., et al.	1967	ы	2.0-91		•	5.14	Similar to the above specimen except electrical resistivity reported as $1.20,\ 1.53,\ \mathrm{and}\ 3.00\ \mu\mathrm{G}$ cm at 0, 90, and 283 K, respectively.
2	2	Kemp, W.R.G., et al.	1967	H	2.3-61			10. 26	Similar to the above specimen except electrical resistivity reported as 1.94, 2.31, and 3.89 $\mu\Omega$ cm at 0, 90, and 293 K, respectively.
8		Kemp, W.R.G., et al.	1969	H	2. 0-91		. 33	81	α -brass; machined from an annealed and torsionally deformed bar; electrical resistivity 4.59, 5.11, and 7.27 $\mu\Omega$ cm st 4.2, 90, and 293 K, respectively.
Ħ	8	Kemp, W.R.G., et al.	1959	.	6.5-91	84			Similar to the above specimen except annealed (after machining) up to 250 C at a rate of 6 C mirri; electrical resistivity 4.20, 4.84, and 6.88 µfl cm at 4.2, 90, and 293 K, respectively.
×	8	Kemp, W.B.G., et al.	1959	u	2.1-91	က			Similar to the above specimen except annealed (after machining) up to 290 C at a rate of 6 C min ⁻¹ ; electrical resistivity 3.90, 4.49, and 6.58 µG cm at 4.2, 90, and 253 K, respectively.
R	•	Kamp, W.R.G., et al.	1959	×	2. 0-91	~			Similar to the above specimen except annealed after machining up to 400 C at a rate of 6 C min ⁻¹ ; electrical resistivity 3.66, 4.27, and 6.31 $\mu\Omega$ cm at 4.2, 90, and 293 K, respectively.
*	2	Sedetröm, E.	1919	۴	273, 373		92. 65	7.35	Rolled and drawn; annealed close to the melting point for 0, 5 hr.
R	2	Sederfin, E.	1919	۲	273, 373		85.65 1	14.36	Similar to the above specimen.
*	8	Sodström, E.	1910	H	273, 373		72. 11 27	27.89	Similar to the above specimen.
z	2	Sodetröm, E.	1919	۴	273, 373		66.97 X	33. 63	Similar to the above specimen.

TABLE 16. THERMAL CONDUCTIVITY OF COPPER - ZINC ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

33 114 Duchen, A and Manne, A and Markan 186 L. 80,273 Red brass 82 18 Polygraphilles grain aise 0.10 cm ² is 40 cm ² is 18 cm ² in the total 278, r. septembra. 0. 33 114 Examera, A. 186 L. 2.3-4. Brass 82 15 Polygraphilles grain aise 0.11 cm ² , since in the total 278, r. septembra. 0. 40 115 Leamer, J. N. and M. 186 L. 2.3-4.5 Brass 85 15 Polygraphilles grain aise 0.11 cm ² , since in the total of molecule of control control of control of control of control of control contr	٠. ورود	Ref.	Author (s.)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent)	eition ercent) Zn	Composition (continued), Specifications, and Remarks
156 Excelona, A., and Sections, A., and Sections, A., and Sections, A., and Sections, J. N. and Sections, J. Sections, S. and Sections, Secti	8	134		1924	ה	90, 273	Red brass	83	18	Polycrystalline; grain size 0.006 cm ² ; electrical conductivity 26,95 and 17.50 x 10^4 Gr ² cm ⁻¹ at 90 and 273 K, respectively.
155 Lower, J.N. and Moseuberg, H.N. and Moseub	8	154	Encken, A. and Noumann, O.	1224	1	90, 273	Red brass	23	18	Polycrystalline; grain size 0.11 cm²; electrical conductivity 27.36 and 17.75 x 104 f3-1 cm-1 at 90 and 273 K, respectively.
156 Lomer, J. N. and Society, J. S. A. S. Brass 156 Lomer, J. N. and Society, R. and Socie	\$	155	Louser, J. N. and Rosenberg, H. M.	1969	-1		Brass	85	15	q-brass; 2.5 mm diameter and 4 cm long; prepared from Johnson Matthey spectrographically standardized metals by melting in vacuo, cooling, and swaging; amealed just below melting point for 40 hr.
156 Louent, J.N. and Society, E.M. Brass Bootenberg, H.M. 1959 L 2.3-4.4 Brass Bootenberg, H.M. 1940 L.R 78,273 1 95,46 4.54 156 Adynam, S. and No. T. 1940 L.R 78,273 2 92.82 7.18 156 Adynam, S. and No. T. 1940 L.R 78,273 3 86.87 13.13 156 Adynam, S. and No. T. 1940 L.R 78,273 5 79.73 20.27 156 Adynam, S. and No. T. 1940 L.R 78,273 5 79.73 20.27 156 Adynam, S. and No. T. 1940 L.R 73,273 5 79.73 20.27 156 Adynam, S. and No. T. 1940 L.R 73,273 6 75.44 24.56 156 Adynam, S. and No. T. 1940 L.R 73,273 8 64.05 35.95 156 Adynam, S. and No. T. 1940 L.R 73,273 10 59.23 40.07 156 Adynam, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 156 Adynam, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 157 Adynam, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 158 Adynam, S. and No. T. 1940 L.R 73,273 11 55.62 44.39 159 Adynam, S. and No. T. 1940 L.R 73,273 11 55.62 44.39	#	156	Lomer, J. N. and Rosemberg, H. M.	1959	-1	2.3-4.5	Brass			The above specimen drawn to produce 4. % strain.
156 Lounce, J.N. and 1959 L 2.3-4.4 Brass Rosenberg, H.M. 1950 L.R 78,273 1 95,46 4.54 156 Adyana, S. and Ito, T. 1940 L.R 78,273 3 86,87 13.13 156 Adyana, S. and Ito, T. 1940 L.R 78,273 3 86,87 13.13 13.14 Adyana, S. and Ito, T. 1940 L.R 78,273 5 79,73 20,27 156 Adyana, S. and Ito, T. 1940 L.R 78,273 6 75,44 24.56 156 Adyana, S. and Ito, T. 1940 L.R 78,273 6 75,44 24.56 156 Adyana, S. and Ito, T. 1940 L.R 73,273 6 75,44 24.56 156 Adyana, S. and Ito, T. 1940 L.R 73,273 6 75,44 24.56 156 Adyana, S. and Ito, T. 1940 L.R 73,273 6 6 75,44 24.56 156 Adyana, S. and Ito, T. 1940 L.R 73,273 9 62.30 37.70 156 Adyana, S. and Ito, T. 1940 L.R 73,273 10 55,62 44.38 156 Adyana, S. and Ito, T. 1940 L.R 73,273 11 55,62 44.38	4	138		1869	-1	+	Brass			The above specimen drawn to produce 10. of strain.
156 Acyman, S. and No. T. 1940 L.R 78,273 1 95,46 4.54 156 Acyman, S. and No. T. 1940 L.R 78,273 3 86.97 13.13 156 Acyman, S. and No. T. 1940 L.R 78,273 3 86.97 13.13 156 Acyman, S. and No. T. 1940 L.R 78,273 6 75.44 24.56 156 Acyman, S. and No. T. 1940 L.R 73,273 6 75.44 24.56 156 Acyman, S. and No. T. 1940 L.R 73,273 6 75.44 24.56 156 Acyman, S. and No. T. 1940 L.R 73,273 6 75.44 24.56 156 Acyman, S. and No. T. 1940 L.R 73,273 9 62.30 37.70 156 Acyman, S. and No. T. 1940 L.R 73,273 10 89.93 40.07 156 Acyman, S. and No. T. 1940 L.R 73,273 10 89.93 40.07 156 Acyman, S. and No. T. 1940 L.R 73,273 11 55.62 44.39 156 Acyman, S. and	3	156	Louser, J.N. and Rosemberg, H.M.	1959	7		Brass			The above specimen drawn to produce 19. % strain.
156 Adynama, S. and No. T. 1940 L.R 78,273 2 92.82 7.18 156 Adynama, S. and No. T. 1940 L.R 78,273 3 86.87 13.13 156 Adynama, S. and No. T. 1940 L.R 78,273 4 82.58 17.42 156 Adynama, S. and No. T. 1940 L.R 78,273 6 75.44 24.56 156 Adynama, S. and No. T. 1940 L.R 73,273 6 75.44 24.56 156 Adynama, S. and No. T. 1940 L.R 73,273 8 64.05 35.95 156 Adynama, S. and No. T. 1940 L.R 73,273 9 62.30 37.70 156 Adynama, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 156 Adynama, S. and No. T. 1940 L.R 73,273 11 55.62 44.38 156 Adynama, S. and No. T. 1940 L.R 73,273 12 51.09 48.91	\$	156	wi	18	L, R	78,273	~	95. 46	÷	Prepared from electrolytic copper containing impurities: 0.015 Sb, 0.010 Fe, 0.007 S, 0.0008 As, and 0.0008 Pb; q-brass; annealed in N; for 20 hr at 380-400 C; electrical conductivity 6.00 and 3.25 x 10 ⁵ G ² cm ⁻¹ at 78 and 273 K, respectively.
156 Adynama, S. and Ho, T. 1940 L, R 78,273 3 86,87 13.13 156 Adynama, S. and Ho, T. 1940 L, R 78,273 4 82.59 17.42 156 Adynama, S. and Ho, T. 1940 L, R 78,273 6 75.44 24.56 156 Adynama, S. and Ho, T. 1940 L, R 73,273 7 70 30 156 Adynama, S. and Ho, T. 1940 L, R 73,273 8 64,05 35.95 156 Adynama, S. and Ho, T. 1940 L, R 73,273 9 62.30 37.70 156 Adynama, S. and Ho, T. 1940 L, R 73,273 10 59.93 40.07 156 Adynama, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.39 156 Adynama, S. and Ho, T. 1940 L, R 73,273 12 51.09 48.91	3	35	Aoyana, S. and No, T.		L,R	78, 273	84	92.82	7.18	Similar to the above specimen except electrical conductivity 4.59 and 2.71 x 10 ⁶ GT ⁻¹ cm ⁻¹ at 78 and 273 K, respectively.
156 Adystma, S. and Ho, T. 1940 L, R 78,273 4 82.58 17.42 156 Adystma, S. and Ho, T. 1940 L, R 78,273 5 79.73 20.27 156 Adystma, S. and Ho, T. 1940 L, R 73,273 7 70 30 156 Adystma, S. and Ho, T. 1940 L, R 73,273 8 64.05 35.95 156 Adystma, S. and Ho, T. 1940 L, R 73,273 9 62.30 37.70 156 Adystma, S. and Ho, T. 1940 L, R 73,273 10 59.93 40.07 156 Adystma, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Adystma, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Adystma, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Adystma, S. and Ho, T. 1940 L, R 73,273 12 51.09 48.91	*	156	S. and Ito,		L,R	78, 273	m	86.87	13.13	Similar to the above specimen except electrical conductivity 3.56 and 2.29 x 10 ⁶ G ⁻¹ cm ⁻¹ at 78 and 273 K, respectively.
156 Aoyana, S. and Bo, T. 1940 L,R 78,273 5 79.73 20.27 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 7 70 30 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 8 64.05 35.95 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 9 62.30 37.70 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 10 59.93 40.07 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 11 55.62 44.38 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 11 55.62 44.38 156 Aoyana, S. and Bo, T. 1940 L,R 73,273 11 55.62 44.38	#	156		1940	L, R	78, 273	4	82.58	17.42	Similar to the above specimen except electrical conductivity 3.08 and 2.03 x 10 fp² cm² at 78 and 273 K, respectively.
156 Aoyanaa, S. and Ho, T. 1940 L, R 78,273 6 75.44 24.56 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 7 70 30 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 8 64.05 35.95 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 10 59.93 40.07 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Aoyanaa, S. and Ho, T. 1940 L, R 73,273 12 51.09 48.91	\$	156		1940	L, R	78, 273	ĸ	79. 73	20.27	Similar to the above specimen except electrical conductivity 3.04 and 1.99 x 10 f7 cm ⁻¹ at 78 and 273 K, respectively.
156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 7 70 30 156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 8 64.05 35.95 156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 10 59.93 40.07 156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 11 55.62 44.38 156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 11 55.62 44.38 156 Aoyanaa, 8. and No. T. 1940 L,R 73,273 12 51.09 48.91	\$	156	. S. and Ito,	1940	L,R	78, 273	•	15.4	24. 56	Similar to the above specimen except electrical conductivity 2.83 and 1.87 x 10 fp² cm² at 78 and 273 K, respectively.
156 Aoyana, S. and No. T. 1940 L.R 73,273 B 64.05 35.95 156 Aoyana, S. and No. T. 1940 L.R 73,273 9 62.30 37.70 156 Aoyana, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 156 Aoyana, S. and No. T. 1940 L.R 73,273 11 55.62 44.38 159 Aoyana, S. and No. T. 1940 L.R 73,273 12 51.09 48.91	3	200			I, R	73, 273	٧	02	99	Similar to the above specimen except electrical conductivity 2.46 and 1.64 x 10 GT cm ⁻¹ at 78 and 273 K, respectively.
156 Aoyana, S. and No. T. 1940 L.R 73,273 9 62.30 37.70 156 Aoyana, S. and No. T. 1940 L.R 73,273 10 59.93 40.07 156 Aoyana, S. and No. T. 1940 L.R 73,273 11 55.62 44.38 156 Aoyana, S. and No. T. 1940 L.R 73,273 12 51.09 48.91	3	138		1940	L,R	73, 273	c o	64. 05	35.95	Similar to the above specimen except electrical conductivity 2.39 and 1.57 x 10 ⁶ G ⁻¹ cm ⁻¹ at 78 and 273 K, respectively.
156 Aoyana, S. and Ho, T. 1940 L, R 73,273 10 59.93 40.07 156 Aoyana, S. and Ho, T. 1940 L, R 73,273 11 55.62 44.38 156 Aoyana, S. and Ho, T. 1940 L, R 73,273 12 51.09 48.91	3	3	, S. and Ito,	180	L,B	73, 273	.	62.30	37. 70	Prepared from the same original materials by the same fabrication method; $\alpha+\beta$ -brass; electrical conductivity 2.63 and 1.61 x $10^5\Omega^{-1}\mathrm{cm}^{-1}$ at 78 and 273 K, respectively.
186 Acystem, S. and 180, T. 1940 L,R 73,273 11 55.62 44.38	2	12	Aoyuma, S. and Ito, T.	1940	L, R	73, 273	10	59. 93	40.04	Similar to the above specimen except electrical conductivity 3.28 and 1.76 x 10 6 GT cm ⁻¹ at 78 and 273 K, respectively.
186 Acyuma, S. and Sto. T. 1940 L.R 73,273 12 51.09 48.91	3	2	wi	1940	ų, R	73, 273	ដ	55. 62	4 .8	Similar to the above specimen except electrical conductivity 4.73 and 2.05 x 10° 07" cm ⁻¹ at 78 and 273 K. respectively.
	3	2			r, R	73, 273	12	51.09	48.91	\$\thereone \text{\$\thereone \text{\$\}}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{

TABLE 18. THERMAL CONDUCTIVITY OF COPPER + ZINC ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

The second of

Cer.	76. 76.	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent)	sition percent) Zn	Composition (continued), Specifications, and Remarks
*	187	Olem, T.	1960	.	1.3-4.2	12	95. 4	4. 59	0.01 Pb; cylindrical specimen 10 cm long; machined; amseled for 21 hr at 540 C; electrical resistivity 1.13 and 1.08 $\mu\Omega$ cm at 1.06 and 4.2 K, respectively.
5	151	Olom, T.	1860	۵ ,	1.3-4.2	215	3	15. 43	0.02 Fe and 0.02 Pb; cylindrical specimen 10 cm long; machined; amenied for 21 hr at 540 C; electrical resistivity 2.55 and 2.36 µΩ cm at 1.05 and 4.2 K, respectively.
3	131	Ohen, T.	1960	۵,	1.4.2	220	3 3.	13. 43	0.01 Fe; cylindrical spectmen 10 cm long; cold-worked and machined; amoraled at 500 C for 17 hr; electrical resistivity 2.73 and 2.58 µΩ cm at 1.05 and 4.2 K, respectively.
3	151	Olem, T.	1960	,	1.34.1	230	69.95	30.02	0.02 Fe and 0.01 Pb; cylindrical specimen 10 cm long; machined; amealed for 21 hr at 540 C; electrical registivity 4.22 and 4.10 μ M cm at 1.05 and 4.2 K, respectively.
8	33	Gorden, J.E. and Ametatz, L.I.	1986		1.1-4.1	CDA alloy; No. 260	69.3 0.5 5	30.7± 0.5	0. 07 Si, 0. 025 Pb, < 0. 01 each of Fe, Co, and Ni; surip specimen 0. 0150 cm in cross-section and 3. 46 cm long; supplied by Chase Brass and Copper Co.; cold-rolled cartridge brass of nominal grain size 0, 025-0. 050 mm; electrical resistivity 3. 78 and 6. 65 µΩ cm at 4. 2 K and room temperature, respectively.
5	3	Materials in Design Engineering	1969		290.2	Gliding	7,8 90	je Ber	Nominal composition; density 8.86 g cm ⁻⁴ .
2	23	Materials in Design Engineering	1969		296.2	Commercial bronze	88.0 9.0	Be.	Nominal composition; density 8. 80 g cm ⁻³ .
2	3	Materials in Design Engineering	1969		290.2	Red brase	2, % 9 0	Bel.	Nominal composition; density 8, 75 g cm ⁻¹ .
3	3	Materials in Design Engineering	98 .		283.2	Low brass	78.5- 81.5	Bel.	Nominal composition; density 8. 66 g cm ² .
3	123	Meterials in Design Englanaring	1959		299.2	Cartridge brass	68. S- 71. 5	Bel.	Nominal composition; density 8.53 g cm ⁻³ .
3	3	Materials is Design Explanating	1969		293.2	Muntz metal	59.0- 63.0	Bel.	Nominal composition; density 8.39 g cm ² .
<u> </u>	8	Elecupe, W.	1961	1	293.2			1. 34	Cylindrical specimen.
9	8	Strivadove, B.N., Chatterjee, S., and Sen, S.K.	981	1	17-92			1: 36	Prepared from spectrographically pure rods of copper and zinc, supplied by Johnson Matthey and Co., Ltd. by scaling the metals in appropriate portion in an evacuated quartz tube, heating to 1100 C, shaking thoroughly, cooling to 906 C and maintaining for 5 days, rolled, amosted at 500 C for 6 hz; residual electrical resistivity 0.549 µD cm.
:	3	Srivadova, B.N., et al. 1969	1. 1969	1	16-91			4.76	Same fabrication method as the above specimen; residual electrical resistivity 1.043 $\mu\Omega$ cm.
5	‡	Griffithe, K. and Schoffeld, F. H.	83 27		337-496	Bar 4	50.7	ડ ડેંડ	0.5 Sn and 0.30 Mn; 1 in. diameter and 15 in. long; electrical resistivity 9.3, 9.6, 10.0, 10.4, 10.9, and 11.3 μΩ cm at 20, 75, 100, 150, 200, and 250 C, respectively.
÷	Ħ	Smith, C.S.	84	1	406-515	Ber 55	81.18	16.63	0.20 Sn. 0.02 Fe, and trace Pb; 0.750 in. diameter and 13.25 in. long: annealed at 700 C for 2 hr; electrical conductivity 18.674 x 10.f3-1 cm ⁻¹
ľ									,

* Not obsert in figure.

TABLE 18. THERMAL CONDICTATIVE OF COPPER + ZINC ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (condinged)

, j.	, S. E.	Author (s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Cu Zn	eition ercent) Zn	Composition (continued), Specifications, and Remarks
E	82	Smith, C. S.	1930	1	321-506	Bar 56	71.09	27.77	1.02 Sn. 0.02 Fe, and trace Pb; 0.750 in. diameter and 13.25 in. long; annealed at 700 C for 45 min; electrical conductivity 14.296 x 10 ⁴ Gr ⁻¹ cm ⁻¹ at 20 C.
ģ	2	Smith, C.S.	1830	ı	320-517	Bar 57	59.85	39.36	0.70 Sn, 0.07 Pb, and 0.02 Fe: 0.750 in. diameter and 13.25 in. long: amealed at 650 C for 3 hr: electrical conductivity 15.146 x 104 LT cm ⁻¹ at 20 C.
2	138	Donaldson, J. W.	1925	H	363-702	70:30 brass	70.29	28. 71	0.35 Sn. 0.34 Pb., and 0.31 Fe; 0.75 in. diameter and 15.5 in. long; machined from a dry sand-cast bar.
5	160	Tadokoro, Y.	1936	ρ.	479-888	Brass	71.00	28. 43	0.25 Pb, 0.24 Fe, and trace Ni and Si; 110 x 110 x 70 mm; amealed at 650 C for 1.5 hr; denaity 8.062 g cm ⁻² ; thermal conductivity values calculated from measured thermal diffusivity, specific heat capacity, and density data.
92	3	Charaloy, P., Salter, J.A.M., and Leaver, A.D.W.	1968	H	1.8-4.2	a-brass		27.8	Polyc-ystalline; supplied by the international Research and Development Co., 12td.; prepared by induction melting; amonded in vacuum at 730 C for 15 hrs, furnace cooled.
F	3	Charsley, P., et al.	1968	-1	1.7-4.2	a-brase			The above specimen deformed by tensile strain of 4.4%.
٤	8	Leaver , A. D.W. and Charaley, P.	1971	A	2.1-4.1	30 ZB			Similar to the specimen for curve No. 76; deformed by tensile strain of 3.2%.
8	191	Louser, J.N.	1958		10-100	0.1 Zn	6.66	0.1	Data taken from smooth curve presented by H. M. Rosenberg [180].
2	181	Louer, J.N.	1956		10-100	1.0 Zn	99.0	1.0	Similar to above.
81	15	Lomer, J.N.	1958		10-100	2.0 Zn	98.0	2.0	Similar to above.
2	181	Lomer, J.N.	1956		10-100	3.0 ZB	97.0	3.0	Similar to above.
2	15	Louner, J.N.	1956		10-100	4. 5 Zn	95.5	4.5	Similar to above.
2	191	Lomer, J.N.	1958		10-100	7.2 Zn	92.8	7.2	Similar to above.
2	1	Lomer, J.N.	1968		10-100	10.0 Zn	90.0	10.0	Similar to above.
*	5	Lomer, J.N.	1968		10-100	25. 5 Zn	74.5	25.5	Similar to above.
£	Ë	Kapoer, A., Rowlands, J.A., and Woods, S.B.	1974	1	0.57-4.0	g-Brass	69.4	30.6	Calculated composition (30 s/o Zn); 4 mm diameter x 12 cm long; cast in air, swaged to 0.25 in. diameter, and machined to size; cold worked; residual electrical resistivity 4.59 μ 0 cm.
1	172	Espor, A., et al.	1974	1	0. 52~3. 9	a-Brass			The above specimen annealed in argon at 600 K for 12 hr; residual electrical resistivity 3.62 $\mu\Omega$ cm.
ŧ	E	Kapow, A., et al.	1974	٦	. 77-4.0	G-Brass			The above specimen rennnealed in argon at 700 K for 12 hr; residual electrical restativity 3.77 $\mu\Omega$ cm.
1	<u>E</u>	Kapote, A., et al.	1974	7	0.73-4.0	g-Brass			The above specimen renumealed in argon at 1000 K for 12 hr; residual electrical resistivity 3.66 μΩ cm.
	Ē	Espour, A., et al.	1974	7	0.68-4.0	Brase			Single crystal; 3 mm diameter x 15 cm long; obtained from Windsor Metal Crystals Inc., Md.; residual electrical resistivity 3, 53 µD cm.

Met chem to form

4.7. Gold-Palladium Alloy System

The gold-palladium alloy system forms a continuous series of solid solutions over the entire range of compositions and is free from the complicating effects of any kind of transitions.

There are 14 sets of experimental data available for the thermal conductivity of this alloy system. However, of the nine data sets available for Au + Pd alloys listed in Table 20 and shown in Figure 29, five sets are merely single data points at room temperature, and all the five data sets available for Pd + Au alloys are single data points at room temperature, as listed in Table 21 and shown in Figure 30.

The thermal conductivity of these alloys was first investigated by Schulze [93] (Au + Pd curves 1-5 and Pd + Au curves 1-5) who measured the room-temperature thermal conductivity of these alloys at intervals of 10%. These values, which include the only experimental values for this system for palladium concentrations greater than 40%, are thought to be more than 20% too high in some cases. This judgment is based primarily on the fact that interpolation between the values for 30 and 40% Pd yields a value 27% greater than that obtained by Laubitz and van der Meer [85] (Au + Pd curve 8) on a specimen containing 34.95% Pd and is supported by the fact that, after correcting for the lattice component, the Lorenz ratio for the specimen containing 40% Pd (55.24 At.% Pd) is 30% greater than the classical values. It is unlikely that band structure effects could cause such a large deviation from the classical value for this composition at 298 K.

In contrast to this, the early measurements by Grüneisen and Reddemann [61] of the thermal conductivity at liquid hydrogen and liquid nitrogen temperatures of specimens containing 5, 10, and 39.9% Pd (Au + Pd curves 6-8) are thought to be close to the true values. The values calculated from eqs. (12) and (35) are in good agreement with these measurements at those temperatures for which it was possible to calculate the lattice component. The investigation by Fletcher and Greig [84] of the thermal conductivity of palladiumsilver alloys revealed that the strong electron-phonon interaction in palladium-rich alloys suppresses the low temperature lattice thermal conductivity, causing its maximum to occur at much higher temperatures than in silver-rich alloys. This elevation of the temperature of the maximum of the lattice component is believed to occur also in this alloy system; the evidence for this is that while the calculated and experimental values for the 5, 10, and 39.9% Pd (8.88, 17.06, and 55.24 At. % Pd) alloys differ by less than 5% at 80 K and the measured values at liquid hydrogen temperatures of the 5 and 10% Pd specimens are consistent with the calculated values at 30 K, the measured value for the 39.9% Pd specimen is far below the calculated value for 30 K when the expression for the lattice component at temperatures above that of its maximum is used.

At high temperatures the only measurements are those of Laubitz and van der Meer [85], but these range from 300 to 1200 K and provide a test of the temperature dependence of the calculated values of the thermal conductivity of these alloys in this region. While the slope of the calculated curve is slightly steeper than that of the experimental curve, the largest discrepancy between the calculated and experimental values is less than 7%; in view of the 3.5% experimental error estimated for these measurements this is considered satisfactory agreement.

The recommended values for k, k_e , and k_g are tabulated in Table 19 for 25 alloy compositions. These values are for well-annealed alloys. The k_e values cover the full range of temperature from 4 to 1200 K, whereas the k and k_g values are not given for low temperatures. The values for k are also shown in Figures 27 and 28 and their uncertainties are stated in a footnote to Table 19, in which the values of residual electrical resistivity for the alloys are also given. The uncertainties of the k_e and k_g values are indicated by their being designated as recommended or provisional values. The ranges of uncertainties of recommended and provisional values are less than $\pm 15\%$ and between ± 15 and $\pm 30\%$, respectively.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 19. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM+

T. k. k	Au 9	99. 50% (99. 0 0. 50% (0. 9	(99.08 At. %) (0.88 At. %)		Au: 99.00% Pd: 1.00%	% (98.16 At.%) % (1.84 At.%)	At. %) At. %)		Au: 97.00 Pd: 3.00	97.00% (94.58 At.%) 3.00% (5.42 At.%)	At. %) At. %)		Au: 95.00% Pd: 5.00%	0% (91.12 At.%) 0% (8.88 At.%)	At. %) At. %)
k k	જ	- 0.3500 pt	Ocn		P ₀ = 0	. 680 µЛст	ជ		N	. 010 µDe	8		p. = 3	= 3.270 µAcm	8
0.4779 4 0.144 4 0.144 4 0.0486 4 0.418 0.216 0.216 6 0.216 6 0.04729 6 0.418 1.06 1.06 1.0 0.226 1.0 0.027 1.0 1.06 1.06 1.0 1.0 0.239 1.0 0.0432 1.0 1.06 1.06 1.0 0.713 0.723 1.0 0.743 2.0 1.07 1.06 1.0 0.714 0.0774 20 0.4039 0.0354 4.0 1.08 1.0 0.0048 0.0 1.34 0.0774 30 0.4039 0.0354 4.0 1.06 1.0 0.0048 0.0 1.34 1.0 0.0774 40 0.4039 0.0439 0.0439 1.06 1.0 0.0048 0.0 1.34 1.0 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 0.0439 <th></th> <th>°</th> <th>a^ga</th> <th>۲</th> <th>244</th> <th>a_o</th> <th>700</th> <th>F</th> <th>*</th> <th>.w</th> <th>, tu</th> <th>F</th> <th>×</th> <th>e e</th> <th>, 60</th>		 °	a ^g a	۲	244	a _o	700	F	*	.w	, tu	F	×	e e	, 6 0
0.586 0.287 0.287 0.0072 <th>~ •</th> <th>0. 279</th> <th></th> <th>4 9</th> <th></th> <th>0.144</th> <th></th> <th>₩ 0</th> <th></th> <th>0.0486</th> <th></th> <th>4.0</th> <th></th> <th>0.0299</th> <th></th>	~ •	0. 279		4 9		0.144		₩ 0		0.0486		4.0		0.0299	
1.66 1.67 1.68 1.69	 .	0.568	•	∞ <u>c</u>		0.287		æ ç		0.0972				0.0596	
1.50	2 22	8 :		22		0.539		15		0.182		12		0,112	
1.57* 1.46 0.0514 30 0.955* 0.8774 30 0.401* 0.342 0.0534 40 1.77* 1.48 0.0564 40 1.11* 1.04 0.0771 40 0.459* 0.342 0.0534 40 1.77* 1.71 0.0735 50 1.23* 1.17 0.0556 50 0.567* 0.518 0.0468 50 1.59* 1.581 0.0736 60 1.34* 1.28 0.0656 70 0.577* 0.578 0.0451 70 2.63* 1.95 0.0537 90 1.51* 1.46 0.0529 80 0.779* 0.779* 0.740 0.0392 80 2.43* 2.10 0.0537 1.00 1.66* 1.55 0.0497 90 0.846* 0.809 0.0369 90 2.43* 2.10 0.0537 1.00 1.66* 1.55 0.0497 90 0.846* 0.809 0.0369 90 2.43* 2.10 0.0537 1.00 1.66* 1.55 0.0497 90 0.846* 0.910* 0.910* 0.910* 0.910* 0.0349	2	99		200		0.719		2 50		0.243		8 %		0.149	
1.60	i. 8	# # # # # # # # # # # # # # # # # # #	0.0917	8	0.955*	0.878	0.0774	38	0.401*	0.342	0.0593	38	0.269	0.216	0.0535
1.89 1.81 0.0736 60 1.34* 1.26 0.0608 60 0.643* 0.0451 70 2.69* 1.30 0.0636 70 1.45* 1.26 0.0658 70 0.715* 0.0451 70 2.69* 1.30 0.0636 70 1.45* 1.36 0.0468 70 0.715* 0.0419 70 2.10* 2.0637 90 1.60* 1.54* 0.0468 100 0.715* 0.0419 70 2.45* 2.37 0.0468 1.00 0.910* 0.036 1.00 0.0468 100 0.0468 100 2.45* 2.37 0.0468 1.00 0.910* 0.036 1.00 0.036 1.00 2.45* 2.15 0.0362 2.00 1.97 0.0368 2.00 1.40* 1.36 0.0234 2.0 2.40* 2.10 0.0362 2.00 2.18* 2.15 0.0368 2.0 1.40* 1.36 <	7.	8.1.	0.0664	\$ 8	1.11*	1.04	0.0771	\$ 8	0,489*	0. 4 36 0. 5 18	0.0534	2 8	0. 328 0. 382	0, 280 0, 33 0	0.0479 0.0436
1.90 1.90 0.0694 70 1.43* 1.38 0.0866 70 0.715* 0.6473 0.0419 70 2.10* 1.95 0.0694 70 1.54* 1.46 0.0529 80 0.779* 0.740 0.0392 80 2.10* 0.0587 90 1.64 0.0487 90 0.846* 0.895 0.0392 80 2.45* 2.77 0.0429 1.64 0.0468 100 0.916* 0.0349 100 2.45* 2.77 0.0468 1.00 0.916* 0.0349 1.00 0.0349 1.00 2.45* 2.77 0.0362 2.00 1.46* 1.38 0.0349 2.00 1.46* 1.38 0.0349 1.00 2.45* 2.30 0.0262 2.20 1.54* 1.55 0.0278 2.00 1.54* 1.00 2.40* 2.37 0.0262 2.73 1.64* 1.36 0.0234 2.73 2.70*	_	1.2	0.0736	2	1.34	1.28	0.0608	9	0.643#	0.598	0.0451	99	0.436	0.396	0.0402
2.02* 1.85 0.0638 80 1.51* 1.46 0.0529 80 0.779* 0.740 0.0382 80 2.16* 2.04 0.0541 1.06* 1.55 0.0468 100 0.779* 0.740 0.0389 90 2.16* 2.10 0.0541 100 1.66* 1.56 0.0468 150 0.0349 0.0346 2.45* 2.37 0.036 1.50 1.50 1.36 0.0348 2.00 2.45* 2.51 2.00* 1.97 0.0468 150 1.36 0.0348 1.00 2.45* 2.52 2.00* 2.18* 0.0262 2.01 1.40* 1.55 0.0278 2.00 2.46* 2.54 2.37 0.0262 2.73 1.63* 1.64 1.00 2.40* 2.54 2.37 0.0262 2.73 1.63* 1.64 0.0163 2.00 2.75* 2.56 2.45* 2.43 0.0226 2.04	8 i 2	1.80	0.0684	2	1.43	1.38	0.0566	2	0.715*	0.673	0.0419	2	0.488	0.451	0.0374
2.16* 2.04 0.0877 90 1.60* 1.55 0.0487 90 0.846* 0.099 0.0389 90 2.16* 2.10 0.0468 1.00 0.910* 0.875 0.0236 100 2.46* 2.37 0.0468 1.00 0.910* 0.875 0.0236 100 2.66* 2.51 0.0362 2.00 1.97 0.0362 200 1.40* 1.38 0.0234 200 2.66* 2.61 0.0322 2.00 2.18* 2.15 0.0326 2.00 1.40* 1.38 0.0234 200 2.66* 2.63 0.0322 2.00 2.28 0.0242 273 1.64 0.0242 273 1.69* 0.0234 200 2.78* 2.60 2.28 0.0242 273 1.69* 0.0183 90 0.0183 90 2.79* 2.73 0.0242 2.73 0.0242 2.73 1.69* 0.0183 20	_		0.0638	2	1.51*	1.46	0.0529	8	0.779*	0.740	0.0392	8	0.537	0.502	0.0350
2.45* 2.57 0.0429 150 2.00* 1.97 0.0366 150 1.16* 0.0236 1.56 1.16* 0.0236 2.00 1.40* 1.89 0.0236 2.00 1.40* 1.89 0.0234 2.00 2.18* 2.15 0.0268 2.00 1.40* 1.89 0.0234 2.00 2.20 2.28 0.0242 2.57* 1.57* 1.55 0.0234 2.00 2.20 2.28 0.0242 2.77* 1.63* 1.61 0.0234 2.00 2.20 2.23 0.0242 2.77* 1.63* 1.61 0.0192 2.73 2.26 2.74* 1.63* 1.63* 1.61 0.0192 2.73 2.45* 2.43 0.0242 2.74* 1.79* 0.0163 3.00 2.40* 2.74* 2.43 0.0241 4.00 1.70* 1.63* 0.0163 3.50 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70* 1.70*			0.0597 0.0561	8 <u>8</u>	1. 68 1. 68	1.55	0.0468 0.0468	8 8	0.846* 0.910*	0.809 0.875	0.0349	88	0. 587 0. 635#	0.554 0.604	0.0329 0.0312
2.65e 2.66e 2.66e 2.66e 2.66e 2.66e 2.66e 2.66e 2.66e 2.66e 2.67e 2.67e 2.78e 2.33 0.0226 2.77e 1.65e 0.0192 2.73 2.73e 2.77e 2.77e 1.67e 1.69e 0.0192 2.73 2.73e 2.73e 2.74e 2.74e 2.77e 2.67e 2.77e 2.67e 2.77e 2.67e 2.74e 2.61e 0.0181 400 1.61e 0.0163 350 2.77e 2.77e 2.77e 2.77e 2.61e 0.0181 400 1.61e 2.61e 0.0163 400 2.77e 2.77e 2.77e 2.61e 0.0130 600 2.14e 2.13e 0.0149 400 2.77e 2.77e 2.77e 2.61e 0.0130 0.0130 0.0132	_	2.37	0.0429	150		1.97	0.0366	150	1.19	1.16	0.0278	150	0.857*	0.832	0.0249
2.60 2.61 2.62 2.73 <th< th=""><th>નં લ</th><th>8 1</th><th>0.0348</th><th>88</th><th></th><th>2.15</th><th>0.0302</th><th>2</th><th>.i.</th><th> 8:</th><th>0.0234</th><th>200</th><th> </th><th>1.02</th><th>0.0211</th></th<>	નં લ	8 1	0.0348	88		2.15	0.0302	2	.i.	 8:	0.0234	200	 	1.02	0.0211
2.69* 2.60* 0.0262 300 1.70* 1.69 0.0161 300 2.73* 2.60* 0.0222 350 2.45* 2.43 0.0201 350 1.61* 1.79 0.0163 350 2.73* 2.0186 400 2.51* 2.49 0.0181 400 1.91* 1.79 0.0163 350 2.73* 2.73* 0.0186 400 2.51* 2.49 0.0181 400 1.91* 1.79 0.0163 400 2.73* 2.73* 0.018 400 2.51* 2.61 0.0182 500 2.04* 2.03 400 2.73* 2.74* 2.74* 2.61 0.0130 600 2.24* 2.61 0.0115 700 2.20* 2.19 0.0101 700 2.73* 2.74* 2.54* 2.54 0.012 800 2.22* 0.0031 700 2.60* 2.90* 2.20* 2.00* 2.20* 2.21 0.0091			0.0272	2 22	, 4 , 4 , 4 , 4	, 2 8 8 8	0.0242	273	1.63		0.0192	273	1.27*	1. 16 1. 25	0.0175
2.73* 2.69 0.0222 350 2.45* 2.43 0.0201 350 1.81* 1.79 0.0163 350 2.73* 2.73* 0.0186 400 1.91* 1.89 0.0149 400 2.73* 2.73* 0.0186 400 1.91* 1.89 0.0149 400 2.73* 2.74* 2.75 2.55 0.0152 500 2.04* 2.03 0.0128 500 2.77* 2.77* 2.61 0.0130 600 2.14* 2.13 0.0138 500 2.77* 2.78* 2.61 0.0130 600 2.24* 2.61 0.0130 700 2.20* 2.19 0.0101 700 2.78* 2.70 0.0077 1.000 2.54* 2.54 0.00923 900 2.22* 0.00937 900 2.80* 2.0073 1.000 2.23* 2.22 0.00837 900 2.80* 2.90 0.0073 1.000 2.24*	_	2.8	0.0262	8	2.40	2.37	0.0226	300	1.70	1.69	0.0181	300	1.33*	1.8	0.0165
2.73 2.64 2.51 2.45 0.0181 400 1.51 1.89 0.0148 400 2.79 2.77 2.51 2.57 2.51 0.0132 500 2.04 2.03 0.0138 500 2.79 2.74 0.012 600 2.62 2.61 0.0130 600 2.04 2.03 0.0138 500 2.70 2.74 0.0167 800 2.52 2.61 0.0115 700 2.22 2.19 0.0101 700 2.71 2.76 0.0167 800 2.54 2.54 0.0102 800 2.22 2.001 700 2.60 2.60 2.64 2.54 0.0082 900 2.24 2.54 0.0094 900 2.22 0.00914 800 2.60 2.60 2.61 0.0084 1000 2.22 0.00914 800 2.60 2.61 0.0073 1100 2.21 2.21 0.0017 1100	-		0.0222	320		2.43	0.0201	350	1.81*	1.79	0.0163	350	1.45*	1.43	0.0150
2.79* 2.77* 0.0130 600 2.62* 2.61 0.0130 600 2.14* 2.13 0.0113 600 2.73* 2.74* 0.0121 700 2.20* 2.19 0.0101 700 2.73* 2.74* 0.0107 800 2.54* 2.54 0.0102 800 2.22* 2.19 0.0101 700 2.69* 2.60* 2.54* 2.54 0.00923 900 2.23* 2.22 0.00837 900 2.69* 2.69* 2.54* 2.51 0.00841 1000 2.23* 2.22 0.00837 900 2.89* 3.69* 3.64* 2.45* 0.00841 1000 2.23* 2.22 0.00772 1000 2.47* 2.46* 0.0073 1100 2.21* 2.21 0.00717 1100 2.47* 2.46* 0.0075 1200 2.18* 2.18 0.00717 1200			0.6163	3 6		2.55	0.0152	\$ 6	2.04*	2.03 2.03	0.0128	3 6	1.70	1.69	0.013
2.71 2.70 0.0107 800 2.54 2.58 0.0102 800 2.22 2.21 0.00914 800 2.25 2.22 0.00914 800 2.24 2.54 0.00823 800 2.23 2.22 0.00837 800 2.24 2.54 0.00823 800 2.23 2.22 0.00837 800 2.24 2.45 0.00773 1100 2.24 2.45 0.00773 1100 2.21 2.21 0.00777 1100 2.41 2.40 0.00715 1200 2.18 0.00670 1200			0.0130	8 8		2.61	0.0130	8 8	2.14*	2.13	0.0113	966	1.82*	1.81	0.0105
2.69 2.64 0.00570 1000 2.54 2.54 0.00923 900 2.22 2.22 0.00934 900 2.54 2.54 0.00923 900 2.23 2.22 0.00577 1000 2.54 2.54 0.00541 1000 2.23 2.22 0.00772 1000 2.55 0.00773 1100 2.24 2.21 0.00777 1100 2.44 2.45 0.00773 1100 2.21 2.21 0.00777 1100 2.47 2.46 0.00773 1200 2.21 2.21 0.00777 1200				: ;		: :		: ;		i (: 8		} ;	
2.60 2.90 0.00070 1000 2.52 2.51 0.00841 1000 2.23 2.22 0.00772 1000 2.50 2.40 0.00773 1100 2.21 2.21 0.00717 1100 2.40 2.40 0.00715 1200 2.19 2.18 0.00670 1200	ri o	R J	0.0107	2 5		8 Z	0.0102	2 5	2.22*	2.5 3.6	0.00914	2 8	1.95#	 9. 9	0.00866
2.50 * 2.60 * 2.60 * 0.00736 1100 2.46* 2.45 0.00773 1100 2.21* 2.21 0.00717 1100 2.47 * 2.46 0.00733 1200 2.41* 2.40 0.00715 1200 2.18* 2.18 0.00670 1200	1000 2.00	8	0.00670	1000		2.51	0.00841	88	2. 23 2. 23 2. 23	7 7 7	0.00772	8	2.01	8	0.00740
2.47 2.48 0.00733 1.200 2.41 2.40 0.00713 1.200 2.13 2.18 0.00670 1.200	1100 1.8	# :	0.00796	8		2.45	0.00773	1100	2.21*	2.21	0.00717	801	2.01*	2.03	0.00691
	13.2 E.S.		U. WOTAS	Neg T		2.40	0.00/15	TSW.	2.13	2.18	0.00670	1200	2.00	2.8	o. wets

Uncertainties of the total thermal conductivity, k, are as follows:

F. 20 As - 0. 20 Pet ±10% at moderate temperature and above ±10% at extreme temperature.

50.00 As - 1.00 Pet ±10% at moderate temperature and above ±10% at extreme temperature.

71.00 As - 2.00 Pet ±10% at moderate temperature and above ±10% at extreme temperature.

54.00 As - 5.00 Pet ±10% at moderate temperature and above ±10% at extreme temperature.

superstare rage where so experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-i; Electronic Thermal Conductivity. ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] TABLE 19. RECONMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM (continued) +

大 大

1

Ž	10.00%	% (82. % At. %) % (17. 06 At. %)	At. %) At. %)		Au: 85.00% Pd: 15.00%	0% (75.38 At. %) 0% (24.62 At. %)	At. %)		Au: 80.00 Pd: 20.00	80.00% (68.36 At.%) 20.00% (31.64 At.%)	At.%) At.%)		Au: 75.00 Pd: 25.00	75.00% (61.84 At.%) 25.00% (38.16 At.%)	At. %)
	e.	A = 6.160 µAcm			a	= 8.65 µAcm	a		A = 1	д _ь = 10.85 µΩст	8		ρ ₀ = 1	ρ ₀ = 12.74 μΩcm	a
Į.	м	, e	IK OF	T	k	k _e	, Ma	1	¥	, e	. 88	T	k	, o	M
		0.0159		**		0.0113		₩ 6		0.00901		46	ļ	0.00767	
•		6.0317		•		0.0228		· • •		0.0180		•		0.0163	
22				2 22		0.0424		2 2		0. 0 32 5 0. 0338		12 12		0.0192 0.0286	
81		0.0793		2		0.0565		8		0.0450		ន		0.0384	
ë R R	191	9. 115 9. 115	0.0480	28		0.0 0.0 0.0 0.0 0.0		8 8		o. 0554		88		0.0274	
**	2 1	o. 151 o. 187	6.0435 0.0386	23	0.152*	0.109	0.0429	48	0.148*	0.0876	0.0396	28		0.0749	
÷	#	0.22	0.0363	8		0.161	0.0358	8	0.166*	0.129	0.0364	8	0.148*	0.111	0.0376
5 6 2 1	į	o. 25 8	9.628	28	0. 2. 2. 2. 2. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	0.186	0.0333	28	0.184*	0.150	0.0339	28	0.1634	0.128	0.0350
: d	2	H	0.0	8	900	0.235	0.029	88	0.220	0.130	0.029		0.194*	0.163	0.0310
خ 1	ž	, K	0.0262	8		0.259	0.0279	8	0.238*	0.208	0.0284	<u>ş</u>	0. 20 4	0.180	0.0294
3	1	98.0	0.0227	25		0.375	0.0225	150	0.327*	0.304	0.0230	951	0.285#	0.261	0.0238
5 6 2 2	į		0.0183	2 25	0.00	0.481	0.0192 0.0169	8 8	0.412* 0.491*	0.392	0.0196	200	0.357*	6. 337 6. 405	0.0204
E	į	0.913	0.0161	273	0.635*	0.169	0.0161	273	0.525*	0.509	0.0165	273	0.452*	0.485	0.0171
5 c B 1			20.0	3 3		90.0	0.0152	5	0.565		0.0156		0.486*	0.470	0.0162
5 ri 8 8	Ė	k 2	0.0128	§ \$	0.888	0.0	0.0139 0.0129	3 3	0.631* 0.695*	0.617 0.682	0.0132	3 4	200		0.0138
بر 23	Ą	# 1.	0.0123	8	0.966	0.955	0.0113	200	0.806#	0. 795	0.0116	8	0.696	9	0.0121
14 18	įŧ	; ;; 3	6. 00807	3 2	1.17	1.16	0.00917	3 8	0.0		0.00947	38	0.861*	0.851	0.00889
1	ä	2	0.00632	8		1.2	0.00844	8	1.07*	1.06	0.00873	8	0.927	0.918	0.00912
7. 81	ŧ	3 ;	£ 5	2		8	0.00784	8	1.13	1.12	0.00812	8	0.961*	0.973	0.0048
	:	3 3			1.41	R 9	0.0000	8 5	.i.	: : :: ::	0.00780			: . : .	0.00195 0.00750
	1	8		Ş										3	

96.00 Am - 16.00 Pth ±10% at moderate temperature and above ±10% at entreme temperature. 96.00 Am - 15.00 Pth ±10% at moderate temperature and above ±10% at entreme temperature. 96.00 Am - 26.00 Pth ±10% at moderate temperature and above ±10% at entreme temperature. 76.00 Am - 26.00 Pth ±10% at moderate temperature and above ±10% at entreme temperature.

powhere so experimental thermal conductivity data are available.

Table 19. Recommended thermal conductivity of Gold-Palladium Alloy system (communed) + [Temperature, T. K. Thermal Conductivity, k, W cm " K -; Electronic Thermal Conductivity, ke,

The second secon

R. March (M. 198 M. 187) Alter 18.0 (M. 198 M. 187) Alter 18.0 (M. 198 M. 187) Alter 18.0 (M. 187) Alter		P. 80% (St. 74	14.6		11								A Characta A	ity, k. ₩	CB 7 K-1
A_ = 18.00 ptoto A_ = 20.57 ptoto A_ = 20.57 ptoto A_ = 20.57 ptoto A_ = 20.57 ptoto A_ = 20.55 ptoto<	Ž	B. 00% (44.24	AL S		Att. 65. Pd: 35.	00% (50.0 00% (49.9	8 At %)		Au: 60.	00% (44.7	'6 At. %)		A 65		
	₹	, - 15.00 MDc				20 67		+		00% (55.2	14 At. %)			86.2 86.2 86.2	7 At. 33
Company Comp		Jad'	4		۹ .		- 1	_	- 9		CE		a	23. 19 MO	8
Control Cont	-		-		•	×e ∣	.actoo	+	M	M.	750	1	*	*	1
C. CORRES C. CORRES <t< th=""><th>•</th><th>6. 000T7</th><th></th><th>*</th><th></th><th>0.0047</th><th></th><th></th><th></th><th></th><th></th><th>4</th><th></th><th>.•.</th><th></th></t<>	•	6. 000T7		*		0.0047						4		. •.	
C. CRESS	- ;		•	∞ α		0.00713				0.0041				0.0042	
C. C	4:			2				•		0.00630	.	•		0.0063	
C. 0.00000 250 0.0236 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.0237 250 0.02408 250 0.0237 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408 250 0.02408	۱,			15		0.0178		2 5		0.0104		9		0.006	_
C. 1320 C. 02554 25 0.02554 25 0.0257 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 25 0.0257 0.0258 <th>ı</th> <th></th> <td></td> <td>8</td> <td></td> <td>0.0238</td> <td></td> <td></td> <td></td> <td>o. 0156</td> <td></td> <td>15</td> <td></td> <td>0.0156</td> <td></td>	ı			8		0.0238				o. 0156		15		0.0156	
C. 1357 C. 0267 0. 0267 <t< td=""><th>8</th><th></th><td></td><td>22</td><td></td><td>0.0294</td><td></td><td>8 8</td><td></td><td>0.0207</td><td></td><td>-</td><td></td><td></td><td></td></t<>	8			22		0.0294		8 8		0.0207		-			
6.135 6.055 6.055 6.0 0.057 70 0.0505 6.0513 6.		0.0637		8		0.0352		8 8		0.0257		A			
6.1820 6.0843 6.0843 6.0843 6.0843 6.0843 6.0843 6.0843 6.0843 6.0843 6.0844<	8	0.0790		2 5		0.0466		3				8		0.0019	
C. 1806 C. 1806 <t< td=""><th>SEC. 9.</th><th></th><td></td><td>3</td><td></td><td>0.0579</td><td></td><td>95</td><td></td><td></td><td></td><td>\$</td><td></td><td>0.0613</td><td></td></t<>	SEC. 9.			3		0.0579		95				\$		0.0613	
C. 186 C. 0360 C. 0360 <th< td=""><th>2</th><th>d</th><td></td><td>8</td><td></td><td>0.0688</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td>0.0612</td><td></td></th<>	2	d		8		0.0688						2		0.0612	
6.117 6.126 6.036 <t< td=""><th>23</th><th>ď</th><td>0.0343</td><td>9</td><td>•</td><td>0.0797</td><td></td><td>3 8</td><td></td><td>0.0605</td><td></td><td>8</td><td></td><td>0.000</td><td></td></t<>	23	ď	0.0343	9	•	0.0797		3 8		0.0605		8		0.000	
C. 250. C. 250. C. 250. 100 0.125 0.0252 100 0.125 0.0252 100 0.125 0.0252 100 0.125 0.0252 100 0.125 0.0252 100 0.125 0.0252 150 0.125 0.0252 150 0.125 0.0252 150 0.125 0.0252 150 0.125 0.0252 150 0.125 0.0252 150 0.125 0.0274 0.0	617	4	0.0223	8 8	0.127#	0.0905	0.0360	28	0, 117	0.0701		2		0.0783	
0.280 0.0249 150 0.188+ 0.162 150 0.188+ 0.162 150 0.188+ 0.162 150 0.188+ 0.162 0.024 200 0.182+ 0.0244+ 0.0277+ 150 0.189+ 0.1421 0.0277+ 150 0.189+ 0.1421 0.0278+ 0.189+ 0.0274+ 0.128+ 0.0277+ 150 0.189+ 0.140+ 0.0274+ 0.0277+ 150 0.189+ 0.140+ 0.0277+ 150 0.189+ 0.140+ 0.0277+ 150 0.189+ 0.140+ 0.0274+ <th< td=""><th></th><th>.</th><td>0.0307</td><td>8</td><td>0.14</td><td>. 10 13 13</td><td>0.0340</td><td>8</td><td>0.125</td><td>0.0887</td><td>0.0361</td><td>8 8</td><td></td><td>9.0796</td><td></td></th<>		.	0.0307	8	0.14	. 10 13 13	0.0340	8	0.125	0.0887	0.0361	8 8		9.0796	
C. 250 C. 162 D. 0262 150 0.169+4 0.142± 0.0277± 150 0.169+4 0.142± 0.0277± 150 0.169+4 0.142± 0.0277± 150 0.169+4 0.142± 0.0277± 150 0.169+4 0.169±4 0.219±4 0.219±4 0.0277± 150 0.169±4 0.219±4 0.219±4 0.0277± 150 0.169±4 0.169±4 0.219±4 0.219±4 0.0277± 150 0.169±4 0.169±4 0.219±4 0.0210±4 200 0.230±4 0.189±4 0.0210±4 0	2	٠ •	0.0249	5	1001		v. 6323	901 	0.132*	0.0980 +	0.0341#	RE		0.000	
C. 286		.	9.0213	8 2	0.1884	0.162	0.0262	150	0,169**	0.149+		3		0.0976	
0.412* 0.0179 273 0.220** 0.220** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.240** 0.219** 0.250** 0.230** 0.230** 0.230** 0.25		4	0.0186	2 <u>F</u>	9794	90%	0.0224	200	0.206**	0. 189+	0.0277#	150	0.16944	0.140*	0.0204
0.445 0.0156 350 0.311 0.189 273 0.256** 0.266** 0.256** 0.266**	_	ø,	0.0179	273	2000	20.00	0.0199	250	0.240**	0.219*	0.02.04	8	0.304*	0.175	0.0253
0.461* 0.445 0.0156 350 0.349 0.274* 0.254* 0.255* 0.0190* 273 0.250** 0.249** 0.255** 0.0190* 273 0.0164 350 0.349 0.333 0.0164 350 0.347* 0.0164 400 0.254* 0.0174 300 0.266** 0.269** 0.251* 0.0164 350 0.268** 0.251* 0.0164 350 0.268** 0.251* 0.0174 350 0.266** 0.268** 0.0174 350 0.268** 0.268** 0.0174 350 0.268** 0.268** 0.271* 0.0174 350 0.268** 0.271* 0.0174 350 0.268** 0.271* 0.0174 350 0.268** 0.271* 0.0174 350 0.268** 0.271* 0.0174 0.0174 350 0.289** 0.311* 0.0174 0.0174 0.0174 0.0174 0.0174 0.289** 0.311* 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174 0.0174		*	0.0170	8	0.311	172.0	0.0189	273	0.256**	0.236±	0.02102	220	0.236**	0. Za3÷	0.0224
0.267* 0.267*	ě	0.446	0.0156	980			0.0179	8	0.274	0.255 #	0.0190*	228	0.250##	0.220	0.0213
0.550 0.9127 500 0.460 0.0152 400 0.341 ≈ 0.325 ± 0.0161 ± 0.325 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.025 ± 0.0161 ± 0.	<u>ن</u>	0. #C	0.0144	3 5		0.333	0.0164	350	300##	100		3	U. 267*¢	0.2474	0.0202 #
0.729 0.0114 600 0.531 0.512 0.6124 0.405## 0.405# 0.0121 0.0123 0.0134 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.311# 0.0142# 0.0142# 0.311# 0.0142# 0.314# 0.314# 0.314# 0.314# 0.314# 0.314## 0.314# 0.314## 0.314# 0.314# 0.314## 0.		₹	0.0127	3		0.371	0.0152	400	0.341*	0.291+	0.0174	320	0. 296**	0.290+	0 0105
0.738 0.719 0.0104 700 0.589 0.0120 600 0.467## 0.467## 0.467## 0.467## 0.467## 0.467## 0.466## 0.0128* 0.028* 0.0128* 0.0128* 0.028* 0.028* 0.0128* 0.028*		6. 651	0.0114	Ş	9.400	0.447	0.0134	200	0.405##	2020	0.0161	6	0. 328**	0.3114	0.0100
6.78 6.77 6.00959 800 6.65 6.010 700 6.52 6.517 6.0128 600 6.441 6.437 6.85 6.517 6.0128 600 6.441 6.437 6.85 6.	_	6.719	0.010	3 5	0.031	0.519	0.0120	900	0.467**	+ Tep 0	0.0142	200	0. 385##	0.2704	0.0151
0.867* 0.867* 0.576* 0.0103* 700 0.495** 0.495		_	00000	3	6. 322	v. 588	0.0110	200	0.528**	537	0.0128*	909	0.441*	6. 457 #	0.0196
0.500 0.00036 1000 0.716 0.706 0.00944 900 0.546** 0.640** 0.6100** 900 0.546** 0.530\$* 0.500 0.00036 1100 0.815 0.807 0.00635 1100 0.725 0.00898* 0.00898* 0.00898* 0.00898* 0.00898* 0.00898* 0.00898* 0.00898* 0.00888* 0.00792 0.00888*	•		80800		0.660	0.650	0.0101	8		* . 10	0.01163	700	0. 495*#	0.483#	0.0194
0.525 0.50750 1000 0.767 0.758 0.00865 1000 0.688** 0.679* 0.00839	0.00				0.716	0, 706	0,00944	3	0.087	0.576	0.0107#	908	O. SARAG		
6.965 0.00749 1200 0.864 0.856 0.00792 1200 0.734# 0.725 0.00886# 1100 0.634# 0.634 1200 0.734 0.00886# 1100 0.690# 0.671#	o'		0.00780		0.767		0.00885	1000	0 688*	0.630	0.0100	8	0.593**	0.583 £	C. 0114
0.00792 1200 0.782** 0.773 0.0040+ 1200 0.680** 0.671*	•	Ī	0.00749		0.815 0.964		0.00835	1100	0.734**	0.078	0.008394	200	0.634	0.0	0.010
		1			5		0.00792		782**	0.773 ±	0.00868		0.680**	0.671	0.000

78.00 Au = 28,00 Per ± 10% at moderate temperatures and above ± 10% at c..treme temperatures.

98.00 Au = 28.00 Per ± 10% at moderate temperatures and above ± 10% at c..treme temperatures.

98.00 Au = 48.00 Per ± 13% at moderate temperatures and above ± 10% at extreme temperatures.

88.00 Au = 48.00 Per ± 13%.

* Provintensal value.

po where no experimental thermal conductivity data are available. .

[Temperature, T, K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, h. W cm-' K-'; Lattice Thermal Conductivity, kg. W cm-' K-'] RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM (continued) † TABLE 19.

, i

A CONTRACT OF THE PARTY OF THE

Marine Bring president in the second plants and

	Au: 43.00 Pd: 55.00	43. 00% (30. 65 At. 🐑 55. 00% (69. 35 At. 🕾)	At. (5) At. (5)		Au: 40.009 Pd: 60.007	40. 00% (2 6. 48 At. %) 60. 00% (73. 52 At. %)	1t. %) 1t. %)	, ,	At: 35.00 Pd: 65.00	35. 00% (22. 53 At. %) 65. 00% (77. 47 At. %)	rr EE
	A. 1	A = 19.33 man	g		ρ ₀ = 17	ρ ₀ = 17.00 μΩ cm	4		P-1	A = 14.70 µD cm	
٠ ·	7 K	,4°	, to	Ħ	צי	Me.	,M ^{b0}	۴	.	м•	,, to
i	~ 4	0.00505		4 6		0.00575		4 4] .	0.00665	
	• 60	0.0101		oc 		0.0115		- 60		0.0188	
	16 15	0.0126 0.0190		12		0.014 0.0216		22		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
•••	2	0.0253		8		0.0287	-	8		0.0338	
n X	••	0. 0313 0. 0373		8 8		0. 63 53 0. 642 1		88			
\$ 3		0.0 462 0.0605		\$8		0.0563 0.0678	,	\$8			
8		0.0714		8		0.0796		8		0.0	
28		0.0620 0.0623		28		0.0914 0.103	-	28		0. 1 08 0. 116	
28		0. 1 68 0. 112		88		0.11 0.12 124		88			
8 5	***************************************	0.156	******	25.5	0 941#\$	0.170	0 0914	120	441	9.167	
3	0.254	0.228	0.0257	38	0.271*	0.243	0.0278	8	0.20		9
ES	0. 267## 0. 263##	0. 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	0.0245*	300	0.284** 0.300*	0.258*	0.02654	8 8	0. 31 Pt	. Harris	0.0873
3	0.312**	0.291	0.0213	350	0.329**	0.306	0.0230	320	0.349**	0.304	0.0250
3	0.3924	0.375	0.0197	3 2	0. 3574	o. 391*	0.02134 0.0187	3 8			0.000
8 5	0.442**	0. 476 [‡]	0.0156*	8 8	0,459## 0,506##	0. 413* 0. 490*	0.0168	88	0. 482* 0. 526*	0. 464 4 0. 51 2 4	0.0183
Ž		0.518*	0.0131*	98	0.549*	0.535	0.01414	8	0.570**	0.5544	0.0153
A	• •	0.5584	0.0122*	8	0.588##	0.575	0.01324	8	0.00		
<u> 5</u>	0.639	0.586	0.0115*	8 1	0.663**	0.652*	0.0123	987	0.0	0.6714	0.0136
- 75	•	0 476	4000	500	4400	400	40100	1900			D. 0720+

Uncertainties of the total thermal conductivity, k, are as follows:

50.00 Az - 30.00 Pd: ±13% at moderate temperature and above ±15% at extreme temperature.
45.00 Az - 55.00 Pd: ±13% at moderate temperature and above ±15% at extreme temperature.
46.00 Az - 60.00 Pd: ±15% at moderate temperature and above ±15% at extreme temperature.
55.00 Az - 65.00 Pd: ±15% at moderate temperature and above ±15% at extreme temperature.

* Provisional value.

) in temperature range where no experimental thermal conductivity data are available.

Temperature, I. K. Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, k, W cm-1 K-1; Lattice Thermal Conductivity, k, W cm-1 K-1] TABLE 19. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM (continued) +

the state of the

大学 1975 - 1985

ž	30. 00% (10. 50 At. %) 76. 60% (81. 20 At. %)	18. 80 At 31. 20 At	k (k		Au: 25.00 Pd: 75.00	25. 00% (15. 26 At. %) 75. 00% (84. 74 At. %)	At. %) At. %)		Au: 20.00 Pd: 80.00	20.00% (11.90 At. %) 80.00% (86.10 At. %)	11. %) 11. %)		Au: 15.00 Pd: 85.00	15.00% (8.70 At. %) 85.00% (91.30 At. %)	33 SS
	A = 13.00 MD cm	ED CE			A. = 1	= 10.19 µAcm	g		8 . 0	A. = 8.00 µAcm			A = 5	A = 6.850 µA cm	
	_ بد	No.	ماير	F	ĸ	, e	.e**	ę.	м	, M [©]	al ^{to}	F		صد ا	, alea
	6	25.752				0.00959		**		0.0122		4.		0.0167	
	òò	0.0113		o co		0.0192				0.0244		• œ		0.0	
.	<u>.</u>	0. 0186 0. 0282		12		0.0 24 0 0.0 36 0		0 21		0.0305 0.0458		22		0.0417 0.0 68 6	
	•	9760		8		0.0479		8		0.0611		2		0.0635	
	•	3		12 5		0.0864		28		0.04		**		0.0863	
	9 9	220		3 \$		0.0897		8 \$		0. 112		38		0. 144 0. 144	
	·	798		28		0.108		28		0.134		2		0.173	
	•	0.101	-	88		0.125		38		0.153		88		0.19	
	.	0.128		2 8		0.156		28		0.187		28		H	
2 2	. 6	6. 1 46 0. 152		3 02		0.170 0.183		88		0. 262 0. 216		88			
_ '	_	2		150				951	•	0.271		25		0.847	
	0.22674	# F F F	0.0376*	2 22	0.31944	0.278‡ 0.312¢	0.0418 * 0.0369 *	2 20 20 20 20 20 20 20 20 20 20 20 20 20	0.387**	0.313* 0.345*	0.04724	8 %	0.433**	0. 856 1. 856 1. 84 4	0.04824
273 0.3		, M. C.	0.0316	273	0.361**	-	0.0351 \$	22	0.399**	0.359	0.0396	E	0.413**	0.327	0.0
	• د س	*116.0	0.03003	3 5	0.5774		0.0000	3 5	0.4134	43.0	0.0000	3 8	4000		
400 0.4	40204	0. 9772 0. 9772	0.0254	8 8	0.438**		0.0282*	g 4	0.474	0.4424	0.0317#	3 \$	0.516		
		0.437	0.0223#	200	0.492**		0.0247	8	0.528	0.500	0.0277	8	0.570*	. 5	0.0319
600 700 6. s.	0.511#* 0. 0.567#\$ 0.	0. 500t	0.0200	8 8	0,588**	0. 588±	0.0221*	38	0.578* 0.626*	0.883 0.904 0.004	0.0226#	3 <u>8</u>	0. 666**	0.0404	0.0
•	002*¢ 0.	1598	0.01684	98	0.633**		0.0185	8	0.672	0.652*	0.0208#	8	0.7094	0.685	0.0237
3	\$ \$ \$	3	0.01564	2	0.677*	Ö	0.0172	8	0.717	0.698	0.0193#	8	0.757*	0.736	0.0220
9		<u> </u>	0.01464	96:	0.716#	0.700	0.0161#	000	0.756*	0.736*	0.0180*	8 3	27.0	0.7 8	0.02054
	3 0		0.0100	000			0.0132+	311			* 010 °	311	. 000	+ 1 TO -0	0.010

±19% at moderate temperature and above ±19% at extreme temperature. ±19% at moderate temperature and above ±15% at extreme temperature. ±15% at moderate temperature and above ±15% at extreme temperature. ±15% at moderate temperature and above ±19% at extreme temperature. 30, 00 Au - 70, 00 Pt. 26, 00 Au - 75, 00 Pt. 20, 00 Au - 90, 00 Pt. 15, 00 Au - 95, 00 Pt.

* Provisional value

itare range where no experimental thermal conductivity data are available.

[Temperature, I, K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, ke, W cm-' K-'; Lattice Thermal Conductivity, kg, W cm-' K-'] TABLE 19. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM (continued) t

The state of the s

7.00	90. 00% (94. 34	(94. 34 At. 74)		Au: 5.00 Pd: 95.00	5.00% (2.76 At. %) 95.00% (97.24 At. %)	4t. 33		Au: 3.00 Pd: 97.00	3.00% (1.64 At. %) 97.00% (96.36 At. %)	At. %)		Au: 1.00 Pd: 99.00	1.00% (0.54 At.%) 99.00% (99.46 At.%)	At. 53
.	A = 3.850 pA cm	a		A ₀ = 1.	A = 1.900 µA cm	ø		ρ.= 1.	= 1. 100 µD cm			. °	A = 0.3800 pd. cm	8
H	A**	A ^{BB}	F	x .	, A.	, bo	ę.	4	, Ma	, to	F	-	" •	a4 ⁶⁰
•	200		•		0.0514		4,		0.0688		*		0.257	
• •			.		0.0771		•		o . 133		• •			
• •	9	•	• 2		0.126		0 9		6. 1.76 22.23		° 2			
: 2			12		0.193		2		0.333		91		0.964	
2	6.137		8		0.257		8		9.	-	2		1.28	
#	0. 151		22		0.296		2		0.483		22		1.16	
2:	C 175	-	8		0.337		8		33		8		1.18	
8:	i.		\$ 5				3 8		o. 576		\$ 5		 3 [
B			3		07.		8		5		3		7.077	
3 .	2		2		0.423		8		9. 560		8		0.76	
R:			23		9.48		21		2 2 3		28			
8 2	1		8 8		3		8 8		5 6 6		8 8			
i ș			88				3		0.515		88		0.615	
2	P. 37		951		0.462		95		0.505		991		0.559	
2	P. 45.		2		0.475		2		98		2		o. 545	
3	3	0.0562+	22	0.566**	+ 507	0.0775	22	0.610**	0.517#	0.0830 \$	200		9.548	
		0.0553 *	£ \$	0.571**	0.497	4 # CO U	25	0.612**		0.0879*	2 8	0.671**	0.553 ÷	0.116+
•	•	0.04764	2	O GOEAL	4	0.06274	Ş	A ROAT	0 676	0 0745.	\$	40100	A 500 C	0.0077
		0.0439	\$	0.629	0.572	0.0575	\$	0.662##	200	0.0679*	\$	70	0.618	0.0878
•	3	0.0362#	8	0.677*	0.627	0.0495#	8	0.704*	0.646#	0.0579	8	0. 730+4	0.666	9.018
100.00		0.0330	8 8	0.720##	0.677	0.0437 *	8 5	0.74644	0.6954	0.0506*	8 8		0.715	
•			} }				3				-			
		0.000	2 2	0.80644	0.770	0.0356*	88	0.82944	0.788	0.0406*	28	989		
	0.0174	0.0041#	200	0.887*	0.857	0.0301#	38	***	0.875	0.0340*	8		. 22	
3		. 0236	1100	0.925*	0.897	0.0280	1100	0.949#	0.9174	0.0314	1100	0.9724	0.55	÷ 7887 °
		0.0113#	200	D 95944	* 65 60 60 60	O. 02624		+4790	*****			4470		9

Uncertainties of the total thermal conductivity, k, are as follows:

18.00 Am - 90.00 Pt. ± 19% at moderate temperature and above ± 15% at extreme temperature.
5.00 Am - 96.00 Pt. ± 19% at moderate temperature and above ± 15% at extreme temperature.
5.00 Am - 97.00 Pt. ± 19% at moderate temperature and above ± 15% at extreme temperature.
1.00 Am - 99.00 Pt. ± 19% at moderate temperature and above ± 15% at extreme temperature.

Provietonal value.

superstare range where no experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 19. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-PALLADIUM ALLOY SYSTEM (continued) t

The state of the s

1.3

0. 39% (0.27 At. %) 80. 39% (90. 73 At. %)	A = 0.3000 pt) cm	ad ^{to}	0.376 0.366 0.766 0.766 0.966
A# 0.0	2	M fr	**************************************

Uncertainties of the total thermal conductivity, k, are as follows:
 0.30 An - 98.50 Pd: ±19% at moderate temperature and above ±19% at extreme temperature.

2 Provintenal value.

. In temperature range where no experimental thermal conductivity data are available.

1.

A COMPANY OF THE PARTY OF THE P

The second

TABLE 20. THERMAL CONDUCTIVITY OF GOLD - PALLADIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

The second of th

Composition (continued), Specifications, and Remarks	Electrical conductivity 3, 74 x 104 Grd cm-1 at 25 C.	Electrical conductivity 4.02 x 104 Dr1 cm at 25 C.	Electrical conductivity 5.45 x 104 GT cm 1 at 25 C.	Electrical conductivity 7.82 x 10 fg cm at 25 C.	Electrical conductivity 13.27 x 104 fp1 cm1 at 25 C.	Calculated composition; heated at 800 C for 2 hr; electrical resistivity 3.479, 3.939, and 5.44 $\mu\Omega$ cm at 22, 83, and 273 K, respectively.	Calculated composition; heated at 800 C for 2 hr; electrical resistivity 7.175, 7.605, and 9.10 $\mu\Omega$ cm at 22, 83, and 273 K, respectively.	Calculated composition; heated at 800 C for 2 hr; electrical resistivity 23.66, 24.48, and 27.1 $\mu\Omega$ cm at 22, 83, and 273, K, respectively.	~1.2 cm in diameter and 10 cm long; supplied by Engelhard Ind.; annealed at 800 to 900 K for 60 hr; electrical resistivity ratio \(\rho(273K)/\rho(4K) = 1.133; electrical resistivity reported as 24.3, 25.1, 25.5, 25.3, 26.4, 26.9, 27.5, 28.2, 28.9, 28.5, 30.1, 30.8, 31.6, 31.9, 33.9 \(\rho(400)\) at 310, 420, 485, 551, 614, 688, 755, 821, 890, 953, 1012, 1072, 1140, 1198, and 1304 K, respectively; data extracted from smooth curve.
sition percent) Pd	20	9	30	20	10	ĸ	10	39.9	34.95
Composition (weight percent) Au Pd	20	09	10	8	8	92	6	60.1	65. 05
Name and Specimen Designation						22	23	24	Platnel 1503
Temp. Range, K	296.2	298.2	298.2	298.2	298.2	21-87	21-86	21-92	300-1203
Method Used	ш	ш	M	ш	ш	1	ı	1	ı
Year	1161	11811	1161	1161	1161	1934	1934	1834	1968
Authorits	Schulze, F.A.	Schulze, F.A.	Schulze, F.A.	Schulze, F.A.	Schulze, F.A.	Grübeisen, E. and Reddemann, H.	Grifbeisen, E. and Reddemann, H.	Grüneisen, E. and Reddemann, H.	Laubitz, M.J. and Van der Meer, M.P.
Cur. Ref. No. No.	8	2	8	8	2	5	5	5	.c
No.		¢1	က	•	'n	ø	~	œ	o

TABLE 21. THERMAL CONDUCTIVITY OF PALLADIUM + GOLD ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

į,	Car.	Author (s)	Year	Year Method T	Method Temp.	Name and Composition Specimen (weight percent)	Composition (weight percer	ition ercent)	Composition (continued), Specifications, and Remarks
į -	į 2	1 93 Schelze, F.A.	1911	i i	296.2	Designation	2 8	2 2	1 mm thick wire specimen obtained from Heracus Co.; electrical conduc-
*	2	83 Schulse, F.A.	181	М	296.2		8	20	<pre>tivity 6.65 x 10'47' cm's st 25 C. 1 mm thick wire specimen obtained from Heracus Co.; electrical conduction to x 3 x 10 from 1 st 25 C.</pre>
•	2	SO Schulze, F.A.	1911	M	298.2		2	30	1 mm thick wire specimen obtained from Heracus Co.; exectrical conductivity 4, 72 x 10 ⁴ D ⁻¹ cm ⁻¹ at 25 C.
•	2	Scielzo, F.A.	11811	M	296.2		09	\$	1 mm thick wire specimen obtained from Heracus Co.; electrical conductivity 3, 89 x 10 ⁴ Gr cm ⁻¹ at 25 C.
ŝ	2	Schulze, F.A.	1911	M	296.2		20	90	I mm thick wire specimen obtained from Heracus Co.; electrical conductivity 3.74 x 10 G t cm 4 25 C.

4.8. Gold-Silver Alloy System

The gold-silver alloy system forms a continuous series of solid solutions over the entire range of compositions. Possible existence of ordered structures due to the formation of AgAu intermetallic compound has been reported.

There are 39 sets of experimental data available for the thermal conductivity of this alloy system. Of the 22 data sets available for Au + Ag alloys listed in Table 23 and shown in Figure 33, 9 sets cover only a narrow temperature range from 273 to 373 K, which is the highest temperature at which data exist. Of the 17 data sets for Ag + Au alloys listed in Table 24 and shown in Figure 34, four sets likewise cover only the narrow temperature range from 273 to 373 K, which is also the highest temperature at which data exist.

Thermal conductivities of this alloy system have been reported in four papers [61, 63, 94, 95]. The measurements by Grüneisen and Reddemann [61] (Au + Ag curves 1-2 and Ag + Au curves 1-2) appear to be the most reliable, though there is some uncertainty in the compositions of their gold-rich specimens. Separation of the electronic component from their measured total thermal conductivities gives reasonable values for the lattice component, without much scatter when these kg values are plotted against the composition. Values obtained from eq. (35) agree well with the kg values derived from the experimental data of Grüneisen and Reddemann. The kg values of alloys in this system are generally very small compared with the kg values, especially at high temperatures.

The most recent measurements, by Crisp and Rungis [94] (Au + Ag curves 12-20 and Ag + Au curves 8-17), cover a wide range of composition below 300 K. Unfortunately, however, their measurements seem not to be accurate enough to give reasonable lattice thermal conductivities. Separation of the electronic component from their measured total thermal conductivities results in negative values for the lattice component for most of their specimens at 83 and 273 K. In their paper it was mentioned that the separation failed.

Early measurements by Sedström [63] (Au + Ag curves 3-11 and Ag + Au curves 3-7) in 1919 yield positive lattice thermal conductivities at 273 K, but his kg values scatter and seem to be high.

Van Baarle et al. [95] have measured the thermal conductivity of dilute gold-rich alloys between 2 and 30 K, but they have reported only the lattice thermal conductivity values. At the present time, it is very difficult to judge the reliability of their results because total thermal conductivities are not reported and the low-temperature results of Crisp and Rungis [94] are somewhat uncertain.

Since the Au-Ag alloy system is a non-transition solid-solution alloy system, for which the calculations from eqs. (12) and (35) should be more reliable, and since the calculated results indeed match well with the reliable experimental data of Grüneisen and

Reddemann [61], the recommendations were entirely based on the calculated values. The recommended total thermal conductivity values are in agreement with the data of Grüneisen and Reddemann [61] (Au + Ag curves 1-2 and Ag-Au curves 1-2) around 80 to 90 K to within 4%, with the data of crisp and Rungis [94] (Au + Ag curves 14, 15, and 17, and Ag + Au curves 9-13, and 15) between 40 and 200 K to within 10%, and with the data of Sedström [63] (Au + Ag curves 8-11 and Ag + Au curves 4, 6, and 7) around room temperature to within 5%.

The recommended values for k, k_e , and k_g are tabulated in Table 22 for 25 alloy compositions mostly covering the temperature range from 40 K to the solidus points. These values are for well-annealed disordered alloys. For two alloys with 1% and 3% Ag, the tabulated values cover the range down to 4 K. The k_e values are given from 4 K to the solidus points for all 25 alloy compositions. The values for k are also shown in Figures 31 and 32 and their uncertainties are stated in a footnote to Table 22, in which the values of residual electrical resistivity for the alloys are also given. The uncertainties of the k_e and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than \pm 15%, between \pm 15 and \pm 30%, and greater than \pm 30%, respectively.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 22. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SYSTEM

P ₀ = 0.29 LOCate P ₀ = 0.59 LOCate	k k	~ ~	AB: 99.50 Ag: 0.30	99. 50f (99. 09 At. 5) 0. 50f (0. 91 At. 7)	At. 3) At. 3)		Au: 99.00% (Ag: 1.00% (% (98.19 At. ?) % (1.81 At. †)	At. 6) At. 6)		Au: 97.005 Ag: 3.005) (94.66 At. 6)	At. §) At. €)		Au: 95.0 Ag: 5.0	95.00% (91.23 At.%) 5.00% (8.77 At.%)	At. 6)
R	R		P=0). 28 J. Cen	ď		0 = 0	. 530 M CI	ø		ρ ₀ = 1	. 52 LA cm			p ₀ = 2	= 2.470 µA cm	đ
0.349 0.384 0.0834 0.08	0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.277 0.384 0.277 0.885 0.187 0.1884 0.0885 0.1884	_		J4°	, w	H	×	¥°	, ke	Ŧ	×	70	.ad ^{b0}	T	м	k e	k e
0.686 0.486 0.389 0.1174 8 0.2504 0.189 1.33 1.00 0.644 0.461 0.1434 10 0.2504 0.181 1.33 1.00 0.644 0.461 0.1804 10 0.2504 0.181 1.33 1.06 0.922 0.1804 20 0.445 0.281 0.1804 0.2644 0.1804 0.2644 0.1804 0.2644 0.1804 0.1804 0.181 10 0.2504 0.181 0.0445 0.321 0.181 0.0435 0.0445 0.0445 0.0444 0.1804 0.0184 0.0484 0.0484 0.0184 0.0484	1.75 1.75 1.75 1.8 0.486 0.389 0.117 8 0.202 0.1202	••		9 % S		74	0.219	0.184	0.0345	4 6	0.0869*	0.0643	0.0226	₩ ≪		0.0396	
1.31 1.33 1.0 0.664* 0.461 0.143* 10 0.250* 0.161 0. 1.31 1.35 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36	0.873 1.31 1.31 1.50 1.31 1.50 1.51 1.50 1.51 1.50 1.50 1.50 1.5	•		0.68	. - =-	· •	0.486	0.369	0.117	· œ	0.202	0.129	0.0729	· œ		0.0791	
1.75 1.86 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	1.75 1.86 1.86 1.86 1.87 1.86 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.86 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87	22		0.873 1.31		12	0.604* 0.855*	0. 46 1 0. 691	0. 143* 0. 164*	12 20	0.250* 0.350*	0. 161 0. 24 1	0.0886* 0.109*	22		0.0989 0.148	
1.86 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	1.96 25 1.30 ⁴ 25 0.450 ⁴ 2.390 0. 2.19 2.01 30 1.33 ⁴ 1.19 0.137 ⁴ 30 0.554 ⁴ 0.454 ⁴ 0. 2.23 2.12 0.109 50 1.60 1.50 0.104 50 0.746 0.659 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.746 0.669 0.769	2		1.75		2	1.08	0.922	0, 160	8	0.435	0.321	0.114	20		0.198	
2.19 2.07 0.117 40 1.49 1.37 0.116 40 0.571 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.575 0.577 <td>2.19 2.07 0.117 40 1.49 1.37 0.118 40 0.657 0.571<th>2 8</th><th></th><th>8 :</th><th></th><td>20 5</td><td>1.21</td><td>1.06</td><td>0.150</td><td>88</td><td>0.497</td><td>0.390</td><td>0.107*</td><td>28</td><td></td><td>0.241</td><td></td></td>	2.19 2.07 0.117 40 1.49 1.37 0.118 40 0.657 0.571 <th>2 8</th> <th></th> <th>8 :</th> <th></th> <td>20 5</td> <td>1.21</td> <td>1.06</td> <td>0.150</td> <td>88</td> <td>0.497</td> <td>0.390</td> <td>0.107*</td> <td>28</td> <td></td> <td>0.241</td> <td></td>	2 8		8 :		20 5	1.21	1.06	0.150	88	0.497	0.390	0.107*	28		0.241	
2.25 2.15 0.104 30 0.104 30 0.745 0.659 </td <td>2.26 2.16 0.104 0.002 0.0746 0.0659 0.0746 0.0659 0.0746 0.0659 0.0746 0.0659 0.0764 0.087</td> <th>3 2 3</th> <th>2.19</th> <th>55 i ni</th> <th>0.117</th> <td>3 \$ 1</td> <td>3 2 3</td> <td>1.37</td> <td>0.118</td> <td>3 \$ 3</td> <td>0.657</td> <td>0.571</td> <td>0.0861</td> <td>348</td> <td>0.437</td> <td>963</td> <td>0.0740</td>	2.26 2.16 0.104 0.002 0.0746 0.0659 0.0746 0.0659 0.0746 0.0659 0.0746 0.0659 0.0764 0.087	3 2 3	2.19	55 i ni	0.117	3 \$ 1	3 2 3	1.37	0.118	3 \$ 3	0.657	0.571	0.0861	348	0.437	963	0.0740
2.26 2.16 0.100 60 1.68 1.59 0.0929 60 0.836 0.767 <td>2.26 2.16 0.100 60 1.68 1.59 0.0929 60 0.836 0.767 0.0763 2.35 2.24 0.0929 90 1.64 1.76 0.0840 70 0.917 0.0853 0.920 2.46 2.34 0.0728 90 1.84 1.76 0.0840 70 0.917 0.0853 0.989<</td> <th>3</th> <th></th> <th>7. F</th> <th>6. IG</th> <td>3</td> <td>1.60</td> <td>1.50</td> <td>0. 104</td> <td>3</td> <td>0.746</td> <td>0.669</td> <td>0.0770</td> <td>3</td> <td>c. 203</td> <td>0.437</td> <td>0.0661</td>	2.26 2.16 0.100 60 1.68 1.59 0.0929 60 0.836 0.767 0.0763 2.35 2.24 0.0929 90 1.64 1.76 0.0840 70 0.917 0.0853 0.920 2.46 2.34 0.0728 90 1.84 1.76 0.0840 70 0.917 0.0853 0.989<	3		7. F	6. IG	3	1.60	1.50	0. 104	3	0.746	0.669	0.0770	3	c. 203	0.437	0.0661
2.36 2.27 0.0648 90 1.77 1.69 0.0763 90 0.089 </td <td>2.35 2.27 0.0648 90 1.77 1.69 0.0763 80 0.987 0.053 0.084 0.084<!--</td--><th>8 :</th><th># S</th><th>3. 18</th><th>0.100</th><td>88</td><td></td><td>1.59</td><td>0.0929</td><td>88</td><td>0.836</td><td>0.767</td><td>0.0692</td><td>88</td><td>0.567</td><td>0.507</td><td>0.0600</td></td>	2.35 2.27 0.0648 90 1.77 1.69 0.0763 80 0.987 0.053 0.084 0.084 </td <th>8 :</th> <th># S</th> <th>3. 18</th> <th>0.100</th> <td>88</td> <td></td> <td>1.59</td> <td>0.0929</td> <td>88</td> <td>0.836</td> <td>0.767</td> <td>0.0692</td> <td>88</td> <td>0.567</td> <td>0.507</td> <td>0.0600</td>	8 :	# S	3. 18	0.100	88		1.59	0.0929	88	0.836	0.767	0.0692	88	0.567	0.507	0.0600
2.45 2.54 0.0703 90 1.92 1.85 0.0701 90 1.00 <th< td=""><td>2.48 2.54 0.0785 90 1.92 1.85 0.0701 90 1.00 <th< td=""><th>2 2</th><th>3 %</th><th>1</th><th>0.0849</th><td>2 8</td><td></td><td>1.08</td><td>0.0840</td><td>2 2</td><td>0.989</td><td>200</td><td>0.0637</td><td>2 2</td><td></td><td>0.03</td><td>0.0515</td></th<></td></th<>	2.48 2.54 0.0785 90 1.92 1.85 0.0701 90 1.00 <th< td=""><th>2 2</th><th>3 %</th><th>1</th><th>0.0849</th><td>2 8</td><td></td><td>1.08</td><td>0.0840</td><td>2 2</td><td>0.989</td><td>200</td><td>0.0637</td><td>2 2</td><td></td><td>0.03</td><td>0.0515</td></th<>	2 2	3 %	1	0.0849	2 8		1.08	0.0840	2 2	0.989	200	0.0637	2 2		0.03	0.0515
2.46 2.41 0.0657 100 1.93 0.0657 100 1.14 1.08 0.042 2.70 2.65 0.0432 2.24 0.0489 150 1.43 1.39 0.0412 2.80 2.76 0.0412 2.60 2.44 2.41 0.0389 2.00 1.43 1.39 0.0 2.83 2.86 0.0377 2.53 2.56 0.0320 2.50 1.77 0.0 2.86 2.83 0.0247 2.56 2.56 0.0273 2.07 1.83 0.0 2.86 2.84 2.56 0.0273 300 1.92* 1.90 0.0 2.86 2.64 2.65 0.0211 400 2.19* 0.0	2.46 2.41 0.0728 100 2.00 1.93 0.0657 100 1.14 1.08 0.042 2.70 2.65 0.0422 2.24 2.44 2.41 0.0489 150 1.43 1.39 0.05 2.80 2.66 2.63 2.56 0.0320 2.50 1.64* 1.61 0.05 2.85 2.86 0.0320 2.56 0.0320 2.50 1.77 0.05 2.86 2.83 0.0247 2.56 2.56 0.0273 300 1.92* 1.90 0.05 2.86* 2.86 0.0273 300 1.92* 1.90 0.05 0.024 2.66 0.0211 400 2.19* 0.05 2.86* 2.86* 0.0211 400 2.02* 2.00 0.02* 2.20 0.02* 2.86* 2.66* 2.66 0.0145 300 2.36* 2.21 0.02* 2.20 0.0144 2.20 0.02* 2.20 0.02*	8	4	8	0.0785	2		1.85	0.0701	2	1.06	1.01	0.0546	2	0.747	0.0	0.0531
2.00 2.65 0.0538 150 2.24 0.0489 150 1.43 1.39 0.0412 2.00 2.76 0.0412 2.00 2.44 2.41 0.0388 2.00 1.644 1.61 0.0320 2.86 2.86 2.86 2.56 0.0320 2.50 1.77 0.0247 2.56 2.56 0.0273 2.77 1.61 0.0247 2.56 0.0273 2.77 1.83 0.0247 2.56 0.0273 2.00 1.77 0.0247 2.56 0.0273 2.02 1.90 0.0 2.86*** 2.86*** 0.0273 2.02 2.02 2.02 2.00 0.0244 2.00 0.0211 400 2.19 0.0 2.86*** 2.66*** 2.66*** 2.66 0.0171 500 2.24 0.0125 700 2.24 0.0126 0.0126 0.024 2.21 0.0 2.86*** 2.66*** 2.66 0.0126 0.0126 0.0126 2.36	2.00 2.65 0.0538 150 2.24 0.0489 150 1.43 1.39 0.0489 2.00 2.76 0.0412 2.00 2.44 2.41 0.0388 200 1.64* 1.61 0.041 2.85 2.86 2.89 0.037 2.55 0.0320 250 1.84* 1.61 0.05 2.86 2.86 0.0371 2.73 2.56 2.56 0.0273 2.73 1.89* 1.77 0.05 2.86 2.85 0.0273 2.56 0.0273 300 1.92* 1.90 0.05 2.86* 2.66* 2.66 0.0171 500 2.27* 2.21 0.02 2.22* 2.21 0.02 2.85* 0.0176 2.66 0.0171 500 2.70* 2.68 0.0171 500 2.21 0.02 2.86* 2.76 2.66 0.0125 700 2.36 0.0126 700 2.34 2.30 2.75*	8	2	4	0.0728	2		1.93	0.0657	<u></u>	1.14	 8	0.0515	<u>§</u>	0. 796	0.753	o. 91 50
2.60 2.76 0.0412 200 2.44 2.41 0.0388 200 1.64* 1.61 0.0388 2.68 2.66 2.56 0.0320 2.50 0.0320 2.50 1.77 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 0.0273 1.61* 1.77 0.0273 1.62* 1.77 0.0273 1.62* 1.77 0.0273 1.62* 1.77 0.0273 1.62* 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0273 1.77 0.0274 1.77 0.0273 1.77 0.0273 1.77 0.0274 1.77 0.0274 1.77 0.0273 1.77<	2.60 2.76 0.0412 200 2.44 2.41 0.0388 200 1.64* 1.61 0.0388 2.63 2.66 2.56 0.0320 2.50 0.0320 2.50 1.87* 0.0320 2.66 2.66 2.56 0.0273 3.00 1.83* 1.77 0.0273 2.66 2.66 2.56 0.0273 3.00 1.82* 1.80 0.0 2.86* 2.66 0.0273 3.00 1.82* 1.90 0.0 2.86* 2.66 0.0171 500 2.22* 2.21 0.0 2.80* 2.76 0.0147 600 2.70* 2.68 0.0145 600 2.22* 2.21 0.0 2.80* 2.76 2.68 0.0145 600 2.70* 2.68 0.0145 600 2.22* 2.20 0.0 2.80* 2.74 2.74 0.0111 800 2.68 0.0145 0.014 2.28 0.0	2	2.70	2.8	0.0528	120	2.29	2.24	0.0489	150	1.43	1.39	0.0396	150	1.05#	1.01	0.0352
2.66 2.67 2.69 0.0231 2.73 2.53 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.85 1.84<	2.66 2.67 2.53 0.0257 273 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.0257 2.73 1.84 1.83 0.025 2.73 1.84 1.83 0.025 2.73 1.84 1.83 0.025 2.73 1.84	2 9	2 i	# F	0.0412	2:	4 :		0.0388	8	 2	1.61	0.0326	8	1.25#	다 .	0. 02 92
2.86 2.87 2.86 0.0273 300 1.92* 1.90 0.02 2.86* 2.86 2.86 0.073 350 2.87* 2.65 0.0211 400 2.02* 2.00 0.02 2.85* 2.85 0.0176 360 2.70* 2.65 0.0171 400 2.02* 2.00 0.0 2.85* 2.65 0.0171 400 2.70* 2.68 0.0171 400 2.22* 2.21 0.0 2.80* 2.76 2.68 0.0145 600 2.70* 2.28 0.0145 600 2.22* 2.21 0.0 2.80* 2.76 2.68 0.0145 600 2.34* 2.38 0.0 2.34* 2.33 0.0 2.75* 2.76 2.69 0.0125 700 2.34* 2.33 0.0 2.67* 2.69 0.0108 2.69 0.0086 1000 2.34* 2.34 0.0 2.49* 2.44*	2.86 2.89 0.0273 300 1.92* 1.90 0.0273 2.86* 2.84* 2.56 0.0273 350 2.94* 2.01 0.0238 350 2.02* 2.00 0.02 2.85* 2.85 0.0176 360 2.77* 2.65 0.0211 400 2.02* 2.00 0.0 2.85* 2.65 0.0171 400 2.77* 2.68 0.0171 400 2.22* 2.21 0.0 2.85* 2.65 0.0145 600 2.70* 2.68 0.0145 600 2.22* 2.21 0.0 2.80* 2.76* 2.68 0.0125 700 2.34* 2.38 0.0 2.75* 2.76* 3.69 2.69 0.0125 700 2.34* 2.33 0.0 2.75* 2.60 0.0125 700 2.34* 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34 2.34	E	38	8 8 i ci	0.0311	22	3	3 23	0.0297	273	1.86	: E	92.50	3 64	1.47	1.45	0.0
2.86* 2.84* 2.61 0.0238 350 2.02* 2.00 0.0244 2.65 0.0211 400 2.02* 2.00 0.0211 400 2.02* 2.09 0.02 2.86* 2.63 0.0171 500 2.22* 2.29 0.0 2.85* 0.0171 500 2.22* 2.21 0.0 2.80* 2.70* 2.68 0.0145 600 2.29* 2.29 0.0 2.80* 2.74 0.0127 700 2.69* 2.69 0.0125 700 2.34* 2.38 0.0 2.75* 2.76* 0.0125 700 2.34* 2.33 0.0 2.75* 2.76* 2.65 0.0110 800 2.34* 2.35 0.0 2.67* 2.66* 2.65 0.0088 1000 2.35* 2.34 0.0 2.69* 0.0088 1000 2.44* 2.43 0.0044 1200 2.27* 2.37 0.0	2.86* 2.84* 2.61* 2.61* 2.61* 2.63* 350 2.02* 2.00 0.021 2.86* 2.66 0.021 400 2.07* 2.65 0.021 400 2.02* 2.09 0.0 2.85* 2.63* 0.0171 500 2.22* 2.21 0.0 2.85* 0.0145 600 2.70* 2.68 0.0145 600 2.24* 2.21 0.0 2.80* 2.78* 2.68 0.0125 700 2.34* 2.38 0.0 2.75* 2.76* 2.68 0.0125 700 2.34* 2.38 0.0 2.75* 2.76* 2.69 0.0125 700 2.34* 2.35 0.0 2.67* 2.69 0.0109 2.36* 2.35 0.0098 2.34* 2.34 0.0 2.49* 2.49* 2.44* 2.43 0.0044 1200 2.27* 2.37 0.00668 1336 2.22* 2.21 0.0<	2	2.2	3.8	0.0285	8	2.59	2.56	0.0273	8	1.92*	.8	0.0240	8	7	1. 55	0.0219
2.68* 2.66 0.0211 400 2.67* 2.65 0.0211 400 2.10* 2.09 0.014 2.63* 2.63* 0.0171 500 2.27* 2.21 0.014 2.63* 2.78* 0.0145 600 2.70* 2.68 0.0145 600 2.21 0.0 2.60* 2.78* 0.0145 600 2.30* 2.28 0.014 0.014 2.30* 2.28 0.014 2.76* 2.78* 0.0125 700 2.34* 2.38 0.03* 2.38 0.03* 2.78* 2.74* 2.66* 2.65 0.0110 800 2.34* 2.35 0.03* 2.65* 2.66* 2.60 0.0088 1000 2.35* 2.34 0.0 2.65* 2.65* 2.55 0.0088 1000 2.37* 2.32 0.0 2.45* 2.44* 2.43 0.00744 1200 2.27* 2.27 0.0	2.68* 2.66 0.0211 400 2.67* 2.65 0.0211 400 2.10* 2.09 0.01 2.63* 2.63 0.0176 500 2.70* 2.68 0.0171 500 2.22* 2.21 0.0 2.63* 2.78* 0.0147 600 2.70* 2.68 0.0145 600 2.30* 2.28 0.0 2.76* 2.78* 0.0145 600 2.30* 2.28 0.014 500 2.34* 2.38 0. 2.76* 2.78* 0.0125 700 2.34* 2.33 0. 2.76* 2.76* 2.68 0.0110 800 2.34* 2.35 0. 2.70* 2.34* 2.60 0.0086 1000 2.34* 2.34 0. 2.49* 2.49* 2.44* 2.43 0.0044 1200 2.37* 2.37 0. 2.41* 2.44* 2.36* 0.0068 1336 2.22* 2.21* 0.	8	2. %	2.2	0.0247	3	2. G	2.61	0.0238	38	2.02*	8.8	0.0212	320	1,65	1.63	0.0196
2.83* 2.62* 2.24* 2.24* 2.21* <th< td=""><td>2.03* 2.04 2.70* 2.05 0.0171 500 2.72* 2.21 2.21 2.22 2.21 2.21 2.21 2.21 0.0147 500 2.70* 2.65 0.0145 600 2.34* 2.21 0.0145 600 2.34* 2.21 0.0125 700 2.34* 2.21 0.0125 700 2.34* 2.21 0.0125 700 2.34* 2.33 0.01 2.75* 2.76* 0.0125 0.0125 700 2.35* 2.34 0.01 0.</td><th>2 9</th><th>8</th><th>8 :</th><th>0.0218</th><td>\$:</td><td>2.67*</td><td>2.65</td><td>0.0211</td><td>\$</td><td>5.70</td><td>80.0</td><td>0.0190</td><td>\$</td><td>1.75*</td><td>1.3 2.3</td><td>0.0177</td></th<>	2.03* 2.04 2.70* 2.05 0.0171 500 2.72* 2.21 2.21 2.22 2.21 2.21 2.21 2.21 0.0147 500 2.70* 2.65 0.0145 600 2.34* 2.21 0.0145 600 2.34* 2.21 0.0125 700 2.34* 2.21 0.0125 700 2.34* 2.21 0.0125 700 2.34* 2.33 0.01 2.75* 2.76* 0.0125 0.0125 700 2.35* 2.34 0.01 0.	2 9	8	8 :	0.0218	\$:	2.67*	2.65	0.0211	\$	5 .70	80.0	0.0190	\$	1.75*	1.3 2.3	0.0177
2.80+ 2.75 0.0127 700 2.69+ 2.69 0.0125 700 2.34+ 2.33 0.0125 2.75+ 2.74 0.0111 800 2.65+ 2.65 0.0110 800 2.35+ 2.35 0.023+ 2.63+ 2.64 2.60 0.0082 900 2.35+ 2.34 0.023+ 2.63+ 2.64 2.65 0.0088 1000 2.35+ 2.34 0.03+ 2.49+ 2.49 0.0088 1000 2.35+ 2.32 0.00 2.49+ 2.44+ 2.43 0.00744 1200 2.27+ 2.27 0.0	2.80+ 2.75 0.0127 700 2.69+ 2.69 0.0125 700 2.34+ 2.33 0.0125 2.75+ 2.74 0.0111 800 2.66+ 2.65 0.0125 700 2.34+ 2.35 0.0125 2.67+ 2.67- 2.69- 2.65 0.0110 800 2.36+ 2.34 0.023+ 2.34 0.03 2.63+ 2.69- 2.65 0.0082 900 2.35+ 2.34 0.00 2.49- 2.49- 0.00686 1200 2.37+ 2.37 0.00744 1200 2.27+ 2.27 0.0068 2.41- 2.46- 2.37+ 2.36- 0.00668 1336 2.22+ 2.21 0.0068	1 8	2 2	3 2	0.0147	3 8	\$ 6.	6 6 6 6 7 6	0.0171	3 8	20.20	12 S	0.0135	3 8	# # # # # # # # # # # # # # # # # # #	2 2	0.0148 0.0128
2.75* 2.74 0.0111 800 2.65* 2.65 0.0110 800 2.35* 2.35 0.035* 2.67* 2.66 0.00982 900 2.35* 2.34 0.00982 2.63* 2.64* 2.65 0.00886 1000 2.35* 2.34 0.00744 2.45* 2.45* 2.43 0.00744 1200 2.27* 2.27 0.0	2.75* 2.74 0.0111 800 2.65* 2.65 0.0110 800 2.35* 2.35 0.035* 2.34 0.05* 2.63* 2.65* 0.00982 900 2.35* 2.34 0.00982 900 2.35* 2.34 0.00982 2.45* 2.45* 2.45* 2.45 2.43 0.00744 1200 2.37* 2.37 0.00744 2.41* 2.37* 2.37* 2.36* 0.00688 1336 2.22* 2.21* 2.21* 0.0	8	2.80	2	0.0127	8	2.69	8	0.0125	8	2.34	8	0.0118	2	2.07*	8	0.0133
2.67* 2.68 0.00982 900 2.34 0. 2.63* 2.65* 2.55 0.00886 1000 2.37* 2.34 0. 2.49* 2.49* 0.00744 1200 2.27* 2.27 2.27 0.	2.67* 2.68 0.00984 900 2.61* 2.60 0.00982 900 2.35* 2.34 0. 2.49* 2.49 0.0074 1200 2.56* 2.43 0.0074 1200 2.27* 2.27 2.27 2.27 2.27 2.27 2.21 0. 2.41* 2.44 2.36 0.00688 1336 2.27* 2.27 2.27 2.21 0.	8	2.75	2.74	0.0111	8	2.66*	2.65	0.0110	8	2.36*	2.35	0.0105	8	2. 12#	2.11	0.0101
2.43* 2.43 0.00749 1200 2.44* 2.43 0.00744 1200 2.27* 2.27 0.	2.63* 2.63 0.00886 1000 2.56* 2.55 0.00886 1000 2.33* 2.32 0. 2.49* 2.49 0.00749 1200 2.44* 2.43 0.00744 1200 2.27* 2.27 0. 2.41* 2.40 0.00070 1337 2.37* 2.36 0.00688 1336 2.22* 2.21 0.	2	5.3	8	0.00894	8	2.61*	2.60	0.00982	8	2.35	3.	0.00944	8	2.15*	2.14	0.00913
2.43 2.43 0.00749 1200 2.44 2.43 0.00744 1200 2.27 2.27 0.	2.43* 2.40 0.00070 1337 2.37* 2.36 0.00668 1336 2.22* 2.21 0.	2	3	8 :	0.00896	2	. 564 4	89 . 50 .	0.00888	800	2.33¢	83 S	0.00858	8	2.15	7.7	0.0083
9.414 9.40 A AGATA 1 1797 0 274 0 34 A AARRO 1 1238 0 004 0 01 A	מיתר שיתר היהנים ליחוד שיחוד היהוד הייתר היהוד ה	B §	i e	B 9	0.0075	2021	; ;	4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.00744	1200	2.27. 2.27.	, i	0.00725	1200	2.14	2 2 3 5	0.00710

prinel conductivity, k, are as follows:

98.99 Am - 0.50 Ag: ±104. 98.00 Am - 1.00 Ag: ±15% below 30 K, ±10% between 30 and 273 K, ±7% between 273 and 500 K, and ±10% above 500 K. 97.00 Am - 3.00 Ag: ±15% below 30 K, ±10% between 30 and 273 K, ±7% between 273 and 500 K, and ±10% above 500 K. 98.00 Am - 3.00 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

4 Provintenal value.

* in temperature range where no experimental thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SYSTEM (continued) TABLE 22.

9-°		•		AÇ: 15.00	15.00£ (24.37 AL.\$)	14.6)		Ag: 20.00	20.00% (31.34 At.\$)	At. 5)		Ag: 25.0	25.005 (37.84 At. \$)	A. 50
	P = 4 50 pG cm			9=0	A = 6.12 pacm			7 = 0a	Po = 7.36 LAcm			00	Po = 8.24 uA cm	
ų į	40	, to	۴		4 °		F		40	, M	۴		×°	M
**	9 9		**		0.0160 0.0340		46		0.0133		**		0.0119	
• •			.		0.0219				0.0266		<u>ه چ</u>		0.0237	
13			22		0.0889		2 22		0.0		22		0.0445	
8	9,18		2		0.0786		2:		0.0664		2		0.0	
	A F		28		0.0000		8 8		0.0883		8 8		0.0125	
		0.0976	\$1	90.0	0.156	0.0531	35	0.180*	0.0	0.000	\$ 5	0.168	0.116	0.0
			8		RT'S	- C-	3	- CO2 -	1 To		3	-		
	¥ ;	0.000	8 5	2 9	0. 2 2 3 4 4 5	0.0447	8 8	0.231*	0.188	0.0 687	8 8	0.211*		9.0
	F	3	. 8	. 30	0.29	0.0389	2 8	0.282*	0.245	0.0372	2 &	0.257*		0.0
3.5	9.	0.0388	8	0.360	0.323	0.0366	8	0.308*	0.273	0.0350	8	0.880	0.246	0.0363
_	‡	0.0377	2	- 186 - 0	0.358	0.0346	8	o. 334	0.301	0.0331	를 	\$ 8	0.27 7.7	0.0
•	3.0	0.0200	951	0.534	0. 206	0.0275	120	0.457*	0.431	0.0264	22	0.416	0.380	0.0854
	3	9580	8 9	0. 66. 2. 66. 2. 66.	9. 3.	## 65 G	83	0.573	0.550	0.0223	8 8			0. 62 15 15 15 15
.	2 2	0.000	12	38.0	0.814	0.0191	272	0.723	2	0.0184	27.5	3	9	0.0181
4	1.9	0.0188	8	0.868	0.872	0.0180	8	0.775	0.757	0.0173	8	0. 718	0.696	0.0171
1.20	1.18	0.0173	350	0.986	0.970	0.0162	350	0.864	0.848	0.0157	320	0.797	0.781	0.0155
	8 :	0.0158	\$ 3		8:	0.0149	\$ 8	0.947*	0.932	0.0144	\$	0.874	8	0.0145
	2 2	0.0118	3 8		1.33	0.0112	3 8	1.21*	20.7	0.0124	3 8	1.01	3 =	0.0100
1.00	118	0.0105	ğ	‡	1.43	0.0101	92	1. 32	1.31	0.00987	2	1.24	23	0.0086
1.74	1.73	0.00946	2	1. 83	1.52	0.00913	8	1.4	1.38	0.00696	8	1. 33	#	0.0089
1.7	Fi	0.00003	2	 	1.56	0.00836	8	1.47	1.46	0.00885	2	1.4		0.00623
	# 1 	0.00194	9	3	 S	0.00772	88	1.52	2 2 3 1	0.00763	8	 5	. . .	0.0076
	B 5	0.000		1.72	1. 1	0.0001	133	1.61*	19.1	0.00668	351	2 g	5 2	

Descriptions of the test thermal computation, k, are as follows:

90.00 As - 10.00 Ag: ±195 below 273 K, ±75 between 273 and 500 K, and ±105 above 500 K.

84.00 As - 12.00 Ag: ±195 below 273 K, ±75 between 273 and 500 K, and ±105 above 500 K.

90.00 As - 20.00 Ag: ±105 below 273 K, ±75 between 273 and 500 K, and ±105 above 500 K.

78.00 As - 28.00 Ag: ±105 below 273 K, ±75 between 273 and 500 K, and ±105 above 500 K.

in temperature rings where no experimental thermal conductivity data are available,

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SYSTEM (continued) TABLE 22.

一年 一年 一年

一日 からない はんかん 一大な 着 あないかいない

12		70.005 (56.10 At. 5) 30.005 (43.90 At. 5)	44 &&		Au: 65.0 Ag: 36.0	65.00% (50.42 At. \$) 36.00% (49.58 At. \$)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Au: 60.00 Ag: 40.00	60.00% (45.10 At.\$) 40.00% (54.90 At.\$)	At. 5) At. 5)		Au: 55.00 Ag: 45.00	55.00% (40.10 At.%) 45.00% (50.90 At.%)	44 66
	Po- 8.77 AD	7 E			2-0	Po = 9.0 LD cm			, o = 8	= 8.93 pacm		· ·	g = G	g = 8.66 pom	
F		*	, to	H	4	4°	ad N	H	*	4 *	ar to	F	-	" •	, a to
		0.0111		**		0.0109		**		0.0109		**		0.0113	
•		0.623		9 00		0.0217		-		0.0219		•			
22		0. 61 79 0. 06 18		2 22		0.0471 0.0407		12 12		0.0410 0.0410		91			
2		0.0557		2		0.0543		2		0.0547		2			
2 2		9. 989.1 9. 888.5 9. 888.5	-	£ 8		6. 96 73		e 8		0.0679 0.0811		28			
66 22		e. 100 124	0.0457	\$ 2	0.156	0.106	0.0502	\$ 8	0.158*	0.107	0.0511 0.0466	\$ \$	0.164	97.5	9.0
2	*108	0.18	0.0417	8	_	0.156	0.0421	8	0.200	0.157	0.0	8	0.205	0.161	0.0
e •	Ą	4	9.000	28	0.2 18	0.178 61.13	0.0392	28	0.1214	0.181	0.030	28		9.79	0.0
		3	98	88	0.261	2	0.0345	88	9	8	0.0388	88	0.871*	9	900
			0.024	3	0. 202	20.00	0.0327	3 ;	C. 2004	, NO.	0.0333				
	İ	e. 27e 6. 47s	6. 6250 6. 6213	3 2	0.367	 	0. 0262 0. 0221	2 8	6. 3914 0. 4904	99	0.0256 0.0226	3 8	0. 505*	0.275	
_	•	6.57	0.0198	2	0. 579	0.560	0.0194	25	0.584*	0.564	0.0198	25	0.601*	0.581	0.000
e e E a	BE		0.0181 0.0171	28	8 8 8 8		0.0184 0.0173	8 22			0.0187 0.0177	e 8			9. e190 9. 0180
	8	9.74	0.0155	350		0.731	0.0157	320	0.758	0.736	0.0161	3	0.773	0.756	0.0165
	3	#	0.0143	\$	0.852	908.0	0.0145	\$	0.828	0.813	0.0148	\$	0.955	6.65	0.0152
i H	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	0.0110	3 8		 8	0.0125 0.0111	38	1.08 t	 	0.0128 0.0114	3 3	1. 15*	1.10	0.0138 0.0117
	ă.	1.18	0.00968	ş		1.17	0.0100	28	1.1%	1.18	0.0102	ğ	1. R	1.11	0.0105
	1.2	1.37	0.00001	3		1.26	0.00915	98	1.28*	1.27	0.00836	2	1.31*	8:	0.00963
21		3 =	00000	8 5	;; ;	# . # .	0.00843	8 5		አ : :	0.0063	2 5	5 .	8 :	9866
	121	1 2	0.00076	200		; ; •	0.00687	3 3	1.52	; ; ;	0.0000	811	1.5	; 2 ; .;	6
	3	7	0000	3	***	2	00000	8	***	3	00000				

ere no experimental thermal conductivity data are available.

|Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, ke, W cm-1 K-1 TABLE 22. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SYSTEM (continued)

M W 0.138	4 40033 88838 86888	7	1.79 pD em k k k k k k k k k k k k k k k k k k k
0.139 0.219 0.245	+ 40055 85858 85888	700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	66 6666
0.198 0.219	40053 88848 85888	68 108 175 23 4 4 5 4 4 4 5 4 5 4 4 5 4 4 4 5 4 4 4 5 4 4 6 4 6	
0.158 0.218			0. 0518 + 0. 0418 + 0. 0418 + 0. 0512 + 0. 051
0.198 0.218	44 2224 2222		0.0478 0.0418 0.0418 0.0417 0.0303
0.158 0.219 0.245	2222 2222		0.0568 0.0518 0.0478 0.0417 0.0352
0.198 0.219 0.245	8888 8888		0.0558 0.0518 0.
0.193 0.219	38 88888		0.0568 0.0518 0.0548 0.05418 0.0513 0.0363 0.0363
0.245	82838		0.0478 0.0445 0.0417 0.0383 0.0372
	2888		0. 0445* 0. 0417* 0. 0393*
12.5	888		0.0363 * 0.0363 * 0.0372 *
0 0.324 0.283	8		0.0372*
0.350*		_	
0.479	8		. 0.0296
0 0.712* 0.689	2 2		0.640 0.020*
0.760	273		0.0200
0.816*	8		
_	350		0.0179
1.5	3 5		1.07 0.01484
8	8		0.0126
1. 42*	2 6		0.0114
1, 52*	8		0.0104
1.60	8		0.00836
	8		0.00887*
1.73	1100		
8 1.82* 1.81	23	_	0.00740

Descriptions of the total thermal conductivity, k, are as follows:

80.60 Am - 80.60 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

46.60 Am - 86.60 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K,

40.60 Am - 60.60 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K,

26.60 Am - 66.60 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K,

* In famperature range where no experimental thermal conductivity data are available.

(Temperature, T. K; Thermal Conductivity, k, W cm-! K-!; Electronic Thermal Conductivity, ke, W cm-! K-!; Lattice Thermal Conductivity, kg, W cm-! K-!) RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SISTEM (continued) TABLE 22.

京大小学を変を きゅうでき

44	Au: 30.00 Ag: 70.00	30.00f (19.01 At.\$) 70.00f (50.99 At.\$)	30		Au: 25.00% Ag: 75.00%	25.00% (15.44 At.%) 75.00% (84.56 At.%)	14.5) 14.5)		Ag: 80.00	20.00% (12.04 At. %) 80.00% (87.96 At. %)	(t. %) (t. %)		Ag: 85.00%	15. 00% (91. 19 At. 4)	t. ()
	P. = 5	5. 60 pacm		_	P. = 6	4.75 DCE		B	po=3	0 = 3.86 pacm			P° - 3	Po = 2.94 p. cm	i
ب		*	u	F	м	Mo.		۴	.	Me	, see	۴	<u> 14</u>	, e	N _P
••		0.0175		••		0.0206		••		0.0253		**		0.0332	
© (4		0.000		6				ο α		0.050		o «		0.0683	
2		9.0		2		0.0514		° 2		0.0633		° 2		0.0831	
22		0.0654		15		0.0771		12		0.0949		51		0.125	
2		0.0873		2		0.103		2		0.127		2		0.166	
2		0.108		88		0.127		25		0.157		19		0.206	
8	į	o. 123	•	8		0.156	•	8	;	0.187	•	8 :	•	0.24	•
\$ 5	. 2	9. 169 169	0.0679	\$ \$	0.272*	0, 196	0.0736*	\$ \$	0.326	0.245	0.0809+	\$ \$	0. 408 8 8	0.317	0.0909*
B		. 660		3				8	6.075	667.0		3			
8	. X	0.245	0.0574	8	0.348*	0.286	0. 0 624	8	0.418	0.349	0.0689*	8	0.524	0.446	0.0779
2	o. 885	0.282	0.0535	2		0. 32 8	0.0582	2	0.464	0.400	0.0643	2	0. 580	0.508	0.0728
8	9. 264	0.318	0.0502*	2		0.370	0.0546*	8	0, 509	0.448	0.0603	8	0.635	0.567	0.0683
	0.4014	0.364	0.0473	8	0.462*	0.411	0.0514	8	0.553	0.496	0.0569*	8	0.697	0.626	0.0644
B	- -	0. V60	0.04477	8	0. 200	0.451	0.0487*	961	0.597	0.543	0.0538+	울 	0.744	0.683	+8090 °
3 5	0. Sept	0, 556	0.0358	150		0.640	0.0389	120	0.805	0.762	0.0429	150	0.880	0. 942	0.0484
_	0.737	0.707	0.0302	8		0.808	0.0328‡	88	0.987*	0.951	0.0361	8	1.20*	1.16	0.0406
	6.871 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	7.00	0.0003*	200		98.	0.0285	8	1.15	21 :	0.0313*	200	* :	1.35	0.0351*
			0.0235		1.12	1.08	0.0270+	200	1.29	1.19	0.0278	2 8		3 5	0.0311
	1.10	8	0.02134	98			#0200	5	97 -	96	\$1360	350	1.68#	. 65	0.0279
\$	1.20	118	0.0195	\$. 35	3	0.0210*	\$	ž:	1.51	0.0229	\$	 8:	1.78	0.0254
_	1.84	1.38	0.0168*	8	1.53	1.51	0.0181	200	1.73	1.71	0.0196	20	2.01*	1.99	0.0216
_	1. S	1.51	0.0148	2	1.68*	1.67	0.0159	909	1.89*	1.87	0.0172	8	2.17*	2.15	0.0188
8	1.64	1. 2	0.0133	90	1.81*	1.80	0.0142‡	26	2.02*	8	0.0154	8	8. 8. 8.	2.27	0.0167
2	1.76	1.7	0.0121#	8	1.91*	1.8	0.0129	88	2.12*	2.10	0.0139	8	2.38*	% %	0.0151
2	27	1. 8	0.0111#	욻	1.8 4	1.98	0.0118	26	2,19*	2.18	0.0127	8	2.45	1.	0.0137
8	1.22	1. 8:	0.0103	1000	2.0¢	2.05	0.0109	1000	2.26#	2.24	0.0117#	8	. S	3	0.0126
3	1	3	0.0000	8	2.12	2.11	0.0101#	1100	2.31*	8.9	0.0108*	8	ž	9 13	0.0116
Ē		2.5	o. ueeus	1987	2.2	2.19	0.00920*	1256	2.384	2.37	0.00980#	1231	Z. 22	8.2	v. 0105*

Uncertdation of the total thermal conductivity, k, are as follows:

30.00 Am = 70.00 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

25.00 Am = 75.00 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

26.00 Am = 80.00 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

15.00 Am = 35.00 Ag: ±10% below 273 K, ±7% between 273 and 500 K, and ±10% above 500 K.

* Provintens value.

In temperature range where no experimental thermal conductivity data are available.

The second second

persture, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg., W cm-1 K-1] TABLE 22. RECOMMENDED THERMAL CONDUCTIVITY OF GOLD-SILVER ALLOY SYSTEM (continued)

1	Ap 30.00	\$ (94.26 AL.S)	4.5		Ag: 95.0	5. 00% (Z. 50 At. 3) 95. 00% (97. 20 At. 4)	it. 5)		Au: 3.0 Ag: 97.0	3.005. (1.67 At. 1) 97.00\$ (98.33 At. \$)	At. §) At. §)		AU: 1.0 Ag: 99.0	1.00% (0.55 At.%) 99.00% (99.45 At.%)	At. 53
	A. L.	A. 1. 97 (Dem	•		- °d	0.99 pD cm) = °0	0. 59 LA cm			P = 9	g = 0.190 is cm	g
			, se to	ę.,	#	4°	, de	F	. Ma	Tr _e o		H	×	Mo.	,se ^{to}
		0.000	-,-	76		0.0987		₩ 10		0.166		4.0		0.514	
•		8	•	•		0.197		- Φ		0.331		œ		1.03	
22		9 9 2 2 2 3		22		0.247 0.370		15		0. 414 0. 62 1		12		1.93 93.63	
A		25		2		0.494		2		0.828		26		2.57	
21				2 8		0.598	•	8 8		1.8		\$ 22		2. % 8. £	
 181			0.1864	3 2 5	1.8	0.873	0.145	3 \$ 5	1.53	. i. i	0.170	3 \$ 5	6. 6. 6. 6.	 	0.2114
1			***************************************	8	1 23	1.1	0 1218	S	2 2	65	140#	8		1 2	174
32		e. 715	0.0666	32	: .: : ::	1.21	0.112#	32	1.84	: :	0.129	32		3 i ai	0.159
8	5	5 2	0.6063	28	٠. نا	다. 영:	0.1048	28	1.95	1.83	0,119	8		2.96 .96	0.148
RS	, ; ; ;		6.0716*	88	3 2 	: : : :	0.0908	33	2.02 2.14	\$ \$: 6:	0.105	32	 	2 2 3 3	0. 128
_	1.8		0.0566	25	8	1.92	0.0706	150	2.53	2.45	0.0799≇	150		3.41	0.0941
	26	7. 81	0.0471	2	2.27	2.2	0.0577	26	2.79	2.73	0.0643#	200	3.67	8 . S	0.0737
	24	۲.			× ×	, c	0.0	2 20	, c	8 6 8 6	0.0538#	220	 	5 F	0. 05555
	2	3	0.0355	3	Į i n	2 1 2	0.0423	8	3.11	8 8	0.0462	8	3.81	. 75	0.0512
***	2.8	2.4	0. 6318‡	98	2.77	2.74	0.0374	320	3.21	3.17	0.0405	320	3.84*	3.78	0.044
2	2.25	2 4	0.0087*	\$ 8	2.88 4.68 5.68	8. 8. 8.	0.0335	\$ 5	3.29	3.50 2.00	0.0360	\$ 8	3.87*	8.8 8.3	0.0391
		8 S	* 6060	8		3 :	0.0237	2 2	. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	કુ ડ ્ર	0.0250	3 8	3.85.4 85.4	5 2 2	0.0265
_	. es	3	6. 0185 t	ş	3.19	3.17	0.0206	8	3.47*	3.45	0.0217	2	80. 80. 80.	80	0.0229
-	27.4	r t	0.0165	8	3.22*	3.20	0.0183	86	3.48*	3.46	0.0192	8	3.79	3.73	0.0201
2	£	2	0.0150	8	3, 274	3,21	0.0165	8	3.45	 1	0.0171	8	3. 72*	. 10 . 10	0.0179
	ž į	R (0.0137	8	÷ 23	9.50 6.50	0.0149	999	3.41	မ ခို	0.0155	8	3. 65.	۵,	0.0161
R		8			5	6. LU	O. O.S.	311		٠, وي	0.014Z	3	, y	, 0 0	C. CITALS

poertainties of the total thermal conductivity, k, are as follows:

30.00 Am - 90.00 Ag: ±10f below 273 K, ±75 between 273 and 500 K, and ±10f above 500 K. 5.00 Am - 95.00 Ag: ±10f below 273 K, ±75 between 273 and 500 K, and ±10f above 500 K. 2.00 Am - 97.00 Ag: ±10f below 273 K, ±75 between 273 and 500 K, and ±10f above 500 K. 1.00 Am - 95.00 Ag: ±10f below 273 K, ±75 between 273 and 500 K, and ±10f above 500 K.

Production of

5 Trusteed villes

. In battlementary range where no experimental thermal conductivity data are available.

[Temperature, T. K. Thermal Conductivity, k, W cm-! K-!; Electronic Thermal Conductivity, ke, W cm-! K-!; Lattice Thermal Conductivity, kg, W cm-! K-!] TABLE 22. RECOMMENDED THERMAL CONDOCTRITY OF GOLD-SILVER ALLOY SYSTEM (continued) *

The state of the s

Am 0. 805 (0. 28 At. 5) Ag: 90. 805 (90. 72 At. 5) ,	and the last of th	

* Moserhation of the total thermal conductivity, k, are as follows: 0.30 Au - 36.30 Ap. ± 106.

HILL

. In temperature range where no experimental thermal conductivity data are available.

The second of the second

"我看你"

Professor The Market With The Parket No.

State of the same

TABLE 23. THERMAL CONDUCTIVITY OF GOLD + SILVER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

	3 .93	Author (s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Au Ag	ettion vercent) Ag	Composition (continued), Specifications, and Remarks
-	ಕ	Grüneisen, E. and Reddemann, H.	1834	7	21-91	9	64.6	35.4	Calculated composition; single crystal; electrical resistivity 8.85, 9.32, and 10.8 µD cm at 22, 83, and 273 K, respectively.
~	2	Gründsen, E. and Reddenann, E.	1934	1	22-92	۲	2 .	15.5	Calculated composition; single crystal; electrical nesistivity 6.69, 7.16, and 8.69 µΩ cm at 22, 83, and 273 K, respectively.
ო	3	Sedetröle, E.	1919	۴.	273, 373		24.62	45.38	Calculated composition; specimen rolled and drawn to 1 mm thick; heated 0.5 hr at temperature near the melting point; electrical conductivity 9.1 and 8.4 x 10 ⁴ Ω^{-1} cm ⁻¹ at 0 and 100 C, respectively.
•	2	Sedström, E.	1919	۴	273,373		60.32	39.68	Similar to the above specimen except electrical conductivity 9.1 and 8.5 x $10^4~\Omega^{-1}~\mathrm{cm}^{-1}$ at 0 and 100 C, respectively.
40	2	Sodström, E.	1919	۴	273, 373		65.46	3.5	Similar to the above specimen except electrical conductivity 7.2 and 7.2 x 10 ⁴ fb ⁻¹ cm ⁻¹ at 0 and 100 C, respectively.
•	2	Sodetröm, E.	1919	(+	273,373		69.17	30.83	Similar to the above specimen except electrical conductivity 8.9 and 8.4 x 10 ⁴ fb ⁻¹ cm ⁻¹ at 0 and 100 C, respectively.
1	2	Sadetröm, E.	1919	f	273,373		73.19	26.81	Similar to the above specimen except electrical conductivity 9.1 and 8.5 x $10^4~\Omega^{-1}~\rm cm^{-1}$ at 0 and 100 C, respectively.
95	2	Sedetröm, E.	1919	(-	273,373		81.23	18.77	Similar to the above specimen except electrical conductivity 10.2 and 9.6 x 10 ⁴ Ω^{-1} cm ⁻¹ at 0 and 100 C, respectively.
6 1	2	Sedström, E.	1919	H	273, 373		88.82	11.18	Similar to the above specimen except electrical conductivity 13.2 and 12.4 x $10^4~\Omega^{-1}~\rm cm^{-1}$ at 0 and 100 C, respectively.
9	3	Sedatrům, E.	1919	H	273,373		93.84	6.16	Similar to the above specimen except electrical conductivity 18.1 and 15.9 x $10^4~\Omega^{-1}~\rm cm^{-1}$ at 0 and 100 C, respectively.
11	2	Sedetrům, E.	1919	H	273,373		97.26	2.74	Similar to the above specimen except electrical conductivity 25.1 and 22.0 x 10^4 Gr 1 cm $^-$ 1 at 0 and 100 C, respectively.
#	*	Crisp, R.S. and Rangis, J.	1970	u	4.1-307			35.39	Calculated composition from atomic percent; specimen purchased in three batches from Cambridge Metals Research Ltd., England, prepared from 99.999 and 99.999 4.u and 99.999 48; about 0.5 to 1 mms in diameter and about 1 to 5 cm long; drawn down, etched, weahed in distilled water and alcohol; dried and sealed into quartz capsules with 1/3 atmosphere of oxygen and then amealed for 72 hr at 900 C.
2	*	Crist, B. S. and Rungis, J.	1970	1	4.1-173			12.7	Similar to the above specimen except the electrical resistivity reported as 6.038 and 8.107 $\mu\Omega$ cm at 0 and 273 K, respectively.
2	z	Crist, R. S. and Rungis, J.	1970	J	4.1-165			4.43	Similar to the above specimen except the electrical resistivity reported as 2.603 and 4.695 $\mu\Omega$ cm at 0 and 273 K, respectively.
2	X.	Crist, R. S. and Rengis, J.	1970	٦	4.1-100			2.29	Similar to the above specimen except the electrical resistivity reported as 1.404 and 3.517 $\mu\Omega$ cm at 0 and 273 K, respectively.
*	z	Crisp, R.S. and Resetts, J.	1970	٦	4.1-307			1.33	Similar to the above specimen except the electrical resistivity reported as 0.855 and 2.991 $\mu\Omega$ cm at 0 and 273 K, respectively.
11	X.	Crisp, R. S. and Rungis, J.	1970	ᆲ	4.1-156				Similar to the above specimen except the residual electrical resistivity reported as $0.670\mu\Omega$ cm .
88	2	Cristo, R. S. and Rempts, J.	1970	n	4.1-307			0.47	Similar to the above specimen except the electrical resistivity reported as 0.370 and 2.421 µΩ cm at 0 and 273 K, respectively.

TABLE 23. THERMAL CONDUCTIVITY OF GOLD + SILVER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (contained)

The same of the sa

Composition (continued), Specifications, and Remarks	Similar to the above specimen except the electrical resistivity reported as	Similar to the above apecimen except the electrical resistivity reported as	Calculated composition (10 a/o Ag); 4 mm² in cross section and 10 cm long; prepared by induction melting 99, 999 pure metals in arrow. resulted	ingot rolled to size; cold-worked; residual electrical resistivity 2, 90 μΩ cm. The above specimen annealed in vacuum at 1000 K for 12 hr; residual electrical resistivity 2, 71 μΩ cm.
sition ercent) Ag	0. 203	0.082	5.74	
Composition (weight percent) Au Ag			94.26 5.74	
Name and Specimen Designation				
Method Temp. Used Range, K D	4.1-307	4.2-307	0.65-4.0	0. . 6
Method	ı	a	-	i.
Year	1970	1970	s, 1974	1974
Author (s)	94 Crisp, R.S. and Rungis, J.	Crisp, R. S. and Rungis, J.	Espoor, A., Rowhads, 1974 J.A., and Woods, S.B.	23* 172 Kapour, A., et al.
Cur. Ref.	*	*	27- 172	21
, S. E.	6	2	· N	ä

TABLE 24. THERMAL CONDUCTIVITY OF SILVER + GOLD ALLOYS - SPECIMEN CHARACTERIZATION AND MEASUREMENT INPORMATION

	12	Author(s)	Year	Method Used	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Ag Au	sition percent) Au	Composition (continued), Specifications, and Remarks
1	8	Grüneisen, E. and Reddemann, H.	1934	7	22-92	*	99.3	0.7	Calculated composition; wire specimen; electrical resistivity 0.163, 0.473, and 1.63 µ0 cm at 22, 63, and 273 K, respectively.
•	u	Grünetsen, E. and Reddensen, H.	1934	'n	22-92	r¢.	62.2	37.8	Calculated composition; single crystal; wire specimen; electrical resistivity 6.87, 7.25, and 8.57 $\mu\Omega$ cm at 22, 83, and 273 K , respectively.
	3	Sedatrium, E.	1919	۴	273, 373		55, 64	4. 16	Calculated composition: wire specimen 1 mm in diameter; rolled and drawn; amealed at close to melting point for 0, 5 hr; electrical conductivity 19.3 and 9.7 x 10.4 Ω^{-4} cm ⁻¹ at 0 and 100 C, respectively.
_	2	Sedøtröm, E.	1919	H	273, 373		91. 22	8. 78	Similar to the above specimen; electrical conductivity 29.3 and 24.2 x 10 ⁴ Ω^{-1} cm ⁻¹ at 0 and 100 C, respectively.
4 0	2	Sodström, E.	1919	Ħ	273, 373	•	80.74	19.26	Similar to the above specimen except electrical conductivity 19.5 and $16.0 \times 10^4 \Omega^{-1} \mathrm{cm}^4$ at 0 and 100 C, respectively.
	8	Sedetröm, E.	1919	۲	273.2		76.34	23.66	Similar to the above specimen except electrical conductivity 14.7 and 13.5 x 10' Ω^4 cm ⁻⁴ at 0 and 100 C, respectively.
_	2	Sedström, E.	1919	F	273, 373		68. 63	31. 37	Similar to the above specimen except electrical conductivity 12.5 and 11.5 x $10^4 \Omega^{-1}$ cm ⁻¹ at 0 and 100 C, respectively.
s	x	Crisp, R.S. and Rungla, J.	1970	n n	4.2-136			40.31	Calculated composition from atomic percent; specimes purchased in three batches from Cambridge Metals Research Ltd., England; prepared from 99.9999 Ag and 99.9999 Aut 99.9999 Aut about 0.5 to 1 mm is dismeder and about 1 to 5 cm long; drawn down, etched, washed in distilled water and alcohol, dried and sealed into quartz capsules with 1/3 stanceghere of oxygen and then amealed for 72 hr at 900 C; electrical resistivity reported as 7.094 and 8.874 $\mu\Omega$ cm at 0 and 273 K, respectively.
_	Z	Crisp, R.S. and Rungis, J.	1970	7	4.1-136			0.164	Similar to the above specimen except the electrical resistivity reported as 0.033 and 1.532 $\mu\Omega$ cm at 0 and 273 K, respectively.
91	z	Crisp, R. S. and Rungis, J.	1970	1	4.1-300			1.25	Similar to the above specimen except the electrical resistivity reported as 0.249 and 1.756 μ C cm at 0 and 273 K, respectively.
11	z	Crisp, R.S. and Bungle, J.	1970	1	4.1-300			1.43	Similar to the above specimen except the electrical resistivity reported as 0.285 and 1.788 \$\mathbb{s} \mathbb{n} \text{ cm at 0 and 273 K, respectively.}
21	z	Crisp, R. S. and Rusgie, J.	1970	1	4.1-300			2.47	Similar to the above specimen except the electrical resistivity reported as 0.493 and 2.052 μ G cm at 0 and 273 K, respectively.
13	z .	Crisp, R. S. and Rungts, J.	1970	1	4.1-300			2.97	Similar to the above specimen except the electrical resistivity reported as 0.553 and 2.126 $\mu\Omega$ cm at 0 and 2.73 K, respectively.
7	*	Crist, R. S. and Number, J.	1970	1	4.1-300			3.95	Similar to the above specimen except the electrical resistivity reported as 0.768 and 2.507 µD cm at 0 and 273 K, respectively.
21	Z	Control of the second	1970	1	4.2-106			9.27	Similar to the above specimen except the electrical resistivity reported as 1.813 and 3.406 µG cm at 0 and 273 K, respectively.
2	X	Cristy, R. S. and Bungite, J.	1970	1	4. 2-294			Z G	Similar to the above specimen except the electrical resistivity reported as 1.923 and 3.561 £6 cm at 0 and 273 K, respectively.
11	2	Criss R.S. and	1970	1	4.1-129			16.87	Similar to the above specimen except the electrical resistivity reported as 3.303 and 4.958 $\mu\Omega$ cm at 0 and 273 K, respectively.

4.9. Iron-Nickel Alloy System

The iron-nickel alloy system does not form a continuous series of solid solutions. The maximum solid solubility of nickel in iron is 6.81% (6.5 At.%) at 618 K and the solubility decreases at higher and lower temperatures. For nickel-rich alloys the solubility of iron in nickel is uncertain due to the possible formation of FeNi₂ ordered structures. The solid solubility of iron in nickel around room temperature may be below 3%.

There are 98 sets of experimental data available for the thermal conductivity of this alloy system. However, of the 63 data sets available for Fe + Ni alloys listed in Table 26 and shown in Figure 37, 34 sets are merely single data points, and of the ?" into sets for Ni + Fe alloys listed in Table 27 and shown in Figure 38, five sets are single data points and 21 sets are for temperatures below 4.5 K.

For Fe + Ni alloys, no specimen containing less than 3% Ni was measured below 100 K. The conductivity-composition curve for 300 K was constructed based on the data of Powell and Hickman [96] (Fe + Ni curves 3 and 4), Kohlhaas and Kierspe [97] (Fe + Ni curves 30, 31, and 63), and Ingersoll, et al. [98] (Fe + Ni curves 7-16). The electronic thermal conductivities were calculated from eq. (12) except for those alloys with nickelcontent \geq 20% at temperatures above 300 K where the k_a calculations appear to be unreliable. The k values at 300 K were also plotted in the conductivity-composition graph. The differences between k and k_e were taken as k_σ , which were extrapolated to lower and higher temperatures on the basis of appropriate theoretical temperature dependences. The total thermal conductivity for each composition was then obtained by adding \mathbf{k}_{σ} to the calculated k except for those alloys containing more than 20% nickel at temperatures above 300 K, where k's were derived from the experimental data and then ka's were obtained by subtracting k, from k. The resulting values are in agreement with the data of Chari and de Nobel [99] (Fe + Ni curves 1, 33, and 34) and Kohlhaas and Kierspe [97] (Fe + Ni curves 30 and 31) at low temperatures to within 10%, and with the data of Bäcklund [101] (Fe + Ni curves 24 and 25) and Watson and Robinson [102] (Fe + Ni curves 19, 26, 28, 29, and 62) at higher temperatures to within 12%. In the process of calculating the electronic thermal conductivity, the correction due to the thermoelectric power was not made at this time, because there is an anomalous curve of thermopower vs composition at 260 C reported by Wang, et al. [103] which requires further study. Since the corrections are small, no more than 0.2% for all compositions except the 30% Ni alloy, for which it comes to nearly 1% at 260 C, the total thermal conductivity should not be in too large an error without this correction.

For Ni + Fe alloys, the conductivity-composition curve for k_g at 300 K was extrapolated from the Fe + Ni part to the Ni + Fe portion using the k value of Ingersoll [98] (Ni + Fe curve 1) for an alloy with 75.06% Ni as a reference point. That is, the sum of the extrapolated k_g value at 75% Ni and the k_e value calculated from the selected electrical resistivity for

this composition was required to approximate the Ingersoll value. The k values for allcompositions from 1 to 1100 K were calculated from the selected electrical resistivities, and the kg values at 300 K were extrapolated to higher temperatures according to the temperature dependence of eq. (35). At low temperatures, all data [81, 100, 105, 106] indicate that k_{σ} is proportional to T, and the k_{σ} values were extrapolated to higher temperature to join the k_{σ} values extrapolated from $3\bar{0}0$ K to lower temperatures. The total thermal conductivity for each composition was then obtained by adding k_g to k_e , except below 60 K for alloys containing 5% iron or less. The respective ρ_0 values were obtained based solely on the experimental data of ref. [81]. The resulting k values agree with the data of Farrell and Greig [81] (Ni + Fe curves 12-14) and de Nobel [100] (Ni + Fe curve 35) at low temperatures to within 5% and with the data of Ingersoll [98] (Ni + Fe curve 1), Silverman [132] (Ni + Fe curve 2), and Shelton and Swanger [108] (Ni + Fe curves 3-5) at higher temperatures to within 10%. The correction due to the thermoelectric power, which is no more than 2% of the total thermal conductivity for any composition at any temperature, was not made at this time for the same reason as for the Fe + Ni alloys. The recommended values are for totally disordered alloys only; there may be an order-disorder transformation in Ni + Fe alloys over a wide range of compositions.

The recommended values for k, k_e , and k_g are tabulated in Table 25 for 25 alloy compositions, for most of which the temperature range covered is from 4 to 1100 K. These values are for well-annealed disordered alloys. The values for k are also shown in Figures 35 and 36. No values are given for temperatures above 1100 K at this time because there is a phase transformation in iron at 1183 K and it is as yet unknown what effect such a transition has on the lattice thermal conductivity of these alloys. It is noted that at high temperatures the differences between the k values of 5% and 10% nickel alloys are rather large. This is caused by the discontinuity of the Curie temperature at 5.5% nickel, where it drops from 1038 K to 677 K as nickel content increases [104]. The values of residual electrical resistivity for the alloys are also given in Table 25. The uncertainties of the k values are stated in a footnote to Table 25, while the uncertainties of the k_e and k_g values are indicated by their being designated as recommended, provisional, or typical values. The ranges of uncertainties of recommended, provisional, and typical values are less than \pm 15%, between \pm 15 and \pm 30%, and greater than \pm 30%, respectively.

[Temperature, T, K; Thermal Conductivity, k, W cm-1 K-i; Electronic Thermal Conductivity, he, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] Table 25. Recommended thermal conductivity of iron-nickel alloy system⁺

A Comment of the control of the cont

Э

Fe.	99. 30% (99. 32 At.%) 0. 30% (0.48 At.%)	S2 At. %) 48 At. %)		Fe: 99.00° Ni: 1.00°	99.00% (99.05 AL%) 1.00% (0.95 AL%)	At. %) At. %)		Fe: 97.00 Ní: 3.00	97.00% (97.14 At.%) 3.00% (2.96 At.%)	At. %) At. %)		Fe: 95.00% Ni: 5.00%	5.00% (95.23 At.%) 5.00% (4.77 At.%)	8 4 4 8 8 8 9
0	= 2.06 pD cm	41 5		00 3.	= 3.45 Mcm			Do = 7.	= 7.37 µ0cm			ρ ₀ =1	= 10.37 µ0cm	
T T	14°	.46	F		Me.	.M*0	F	M	u°	, sta	£+	м	M ₀	سد
4 0.0528*	\$.0 2		•	0.0322*\$			4	0.0146*	0.0133	0.00125	*	0.0102	0.00944	0.000732
6 0.0816			9 0	0.0502**			•	0.0224*	0.0199	0.00250*	9 4	0.0156	0.0141	0.00147
10 0.112*			° =	0.0888**			-	0.03074 0.03014	0.0200	0.005024	9 2	0.0271	0.0236	0.00347#
15 0.226*			21	0.140**			12	0.0610*	0.0495	0.0115	15	0.0420	0.0362	0.00678
20 0.30	**		20	0.195**			8	0.0839	0.0659	0.0180*	2	0.0573	0.0466	0.0107*
25 0.306*	1		52	0.251*			22	0.107	0.0821	0.0250	52	0.0726	0.0576	0.0150
			R:	900			8	97.0	0.0878	0.0325*	3 9	0.0678		0.0196*
5 0.76		-	38	0.563**			2 2	0.222	0.158	0.0632*	28	0. 118 0. 146	0.167	0.00014 0.00014
ď	10 0 ST	7 0.2653	9	0.5734 \$	0.371	0.202	8	0.257	0, 180	0.0770	8	0.173	0.124	0.0485
70 0.878*			28	0.618**	0.395	0.223	2	0.288	200	0.0880*	2	0.195	0.136	0.0568#
Ġ	F* 0.563		8	0.643*	0.408	0.235	8	0.314	0.216	0.0979	28	0.214	0.150	0.0638
8.0.87	۰ *		8	0.654*	0.414	0.240*	8	0.333	0.229	0.104	2	0.230	0.161	0.0688
100 0.856	54 0.554	0.300*	울 	0.656*	0.419	0.240*	2	0.347	0.230	0.108	울 	0.243	0.171	0.0724×
•	ė		25	0.663	0.450	0.213	120	0.393	0.288	0.105	991	0.288	0.214	0.0742
•	•		2	0.666	0.487	0.179*	8	0.421	0.329	0.0923	2	0.321	0.255	0.0671
258 0.74			26	2.0	0.496	0.151*	520	5. 5. 5.	980	0.0800*	8	# :		- CO
, •	.		8	0.623	0.493	0.130	8	0.458	0.380	0.0695	38	8 8	. S	0.0619
360 0.66	0.0		8	9.50	0.485	0.113	320	0.456	0.385	0.06134	8	0.372	0.336	0.0456
		7 0.00728	3 5		0.47	0.0814	3 5	6.43 448	463	0.050	3 §			0.00
•			8		0.406	0.0686	8	0.428	0.390	0.0376	8	0.385	0.357	0.0294
76 0.48	ž	9.07034	<u>§</u>		0.377	0.0591*	8	0.389	0.366	0.0325#	<u>ફ</u>	0.371	9.36	6.03£6
800 0.412	2	0.0616	8	0.396	0.344	0.0518	8	0.366	0.337	0.0286	8	0.350	0.326	0.0216
•	i i	0.0648	8	0.363*	90.90	0.0462	2	0.38g	8	0.0255	8	0.317	987	0.0192
1100 0.200		0.0451	1100	0. 886*	0.247	0.0379	3011	0.274	0.24	0.0210	381	 		0.0154

ithermal conductivity, k, are as follows:

- #19% below 150 K and ±10% above 150 K.

- #19% below 150 K and ±10% above 150 K.

- #19% below 100 K, ±5% between 100 and 500 K, and ±6% above 500 K.

- ±16% below 100 K, ±5% between 100 and 500 K, and ±6% above 500 K. 90. 80 70 - 0. 80 705 ± 1105 90. 60 70 - 1. 80 705 ± 1105 97. 60 70 - 5. 60 705 ± 1107 96. 60 70 - 5. 60 705 ± 1107

ersture range where no experimental thermal conductivity data are available.

TABLE 25. RECOMMENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) +

me, T. K; Ibermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity. k, W cm-1 K-2; Lattice Thermal Conductivity, kg, W cm-1 K-1

70 90 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S		Fe: 86.00 Ni: 15.00	18.00% (85.63 At. 2) .5.00% (14.37 At. 2)	(S. 1)		Fe: 80.00 Ni: 20.00	80. 005 (80. 79 At. 5) 20. 00% (19. 21 At. 5)	(E) (S)		Fe: 75,00 Ni: 25,00	75.00% (75.93 At. 5) 25.00% (24.07 At. 2)	₩3. ¥¥
9	IA SO DO			6 - 18	= 19. 22 plam			P. 2	Po = 22.11 µd cm			8 = °0	= 27. 69 pdcm	£
	440	3	F	*	M.	.a60	H	*	×	bs	t.	3/ - 34 -7	40	, 100
4 6,0008	4.00588	6. 600364	*	0.00535	0.00508	0.000267	-	0.00461	0.00440	0.000214	*	0,00371	•	1
	e. e0666	6.000732#	6	0.00815	0.00761	0.000538 *	•	0.00703	0.00660	0.000431		0.00064	0.00528	
			*	6.0110 0.0140	2010	0. 001294	۽ ه	0.0000		0.000104	° <u>ç</u>			0. MOOSGO
		6, 96345 #	2 2	0.0214	9. 0189	0.00253	12	0.0184	0.0163	0.00205	2			0.00170
- Total	-	A. 00548 \$	8	0.0291	0.0251	0.00405	20	0.0249	0.0216	0,00328	20	0.0201	0.0174	0.00273
3	8	0.00775	22	0.0370	0.0312		22	0.0315	0.0269	0.00464#	22	Ö	0.0213	0.00389
		e. e102 #	8	0.0449	0.0373		8	0.0381	0.0320	0.00614*	8		0.0253	0.00515
1	£. 6573	0,0154	\$	6. 0606	9.0490	9.0116	\$	0.0513	6.0420	0.00934	40		0,0333	0,00785
21007	A. 9705	6. 0207 #	\$	0,0759	0,0602	0.0157	8	0.0644	0.0517	0.0127*	20		0.0409	0. 0107 ±
. 18	F. 8827	0.0200	8	0.0906	0.0709	0,0198	8	0.0767	0,0607	0.0160	8	0,0616	0,0481	0.0135
201.0		0.0209	2	0.104	0.0806	0.0236	2	0.0885	0.0692	0.0193*	2	0.0711	0.0548	0.01634
	101	4. ess. *	8	0.117	0.0896	0.0271*	8	0.0992*	0. C769	0.0223*	8	0.0801	0.0612	0,0189
# X.38	6.113	6. 6991 ÷	8	0.128*	6. 0978	6. 8304 *	8	0, 109*	0.0841	0.0250	8	0.0884	0.0671	0.0213
100 P.100	£ 122	0.04214	8	0.138*	9 . 105	0.0329*	8	0.118*	0,0909	0.0174	82	0.0959	0.0726	0, 023:3*
110 424	6, 159	9.0468*	120	0.177	0.139	0.0377	150	0.154	0, 122	0.0321	150	0.126	0.0980	. 0. 02 SO *
****	0.130	0.04374	8	0.204	0.168	0.0360≇	200	0.178*	0.147	0.0310	200	0.147	0.119	0. 0276€
	0.216	0.0380	25	0. 223*	0.190	0.0326#	250	0.197	0.169	0.0285	250	0.162	0.137	0.0253
212	0.25	0.0370	22	0.231	0.200	0.0310#	273	0.205	0, 178	0.0271	273	0,168	1	0.0242
	6. X.	0.0070 °	3	0.238	0.208	0. 0234 •	3	V. Z1Z	0.150	. 0220°	3	0. L/4	Ter o	V. 0229
	0.251	0.0311#	88	0.250	0.224	0.0263	350	0.225	0.202	0.0231	350	9.184	6. 163	0,0207
		6.0273	3 5	C. 260	0.230	0.0236	3 3	0,230	0.214	0.0203	3 5	191.0	277.0	#14 FG
		0.0196	3 3	0.280	0.263	0.0166	3 8	0.255	0.240	0.0147	36	0.210	191	0.0133
-	0.286	0.0168	2	0.278	0.264	u. 0144	28	0.253	0.240	0.0128	202	0.212	0.200	0.0116£
**	e. 175	0.0149	8	0.264*	0.251	0.0128	9	0.244	0.233	0.0113	008	902.0	0.198	0.0102 £
	4	e. 0133	8	0.245	0.234	0.0114	8	0.230	0.220	0.0101	96	0.208*	0.199	0.0091
		6.0121	3 5	0.231	6. 221 9. 231	0.0103*	995	0.224	0.215	0.009115		0.213"	. 20°.	# TO CO
			3	. 400	77.		3	9.	0. 460		3			,
: :: : :	1						_			-			1	

or 100 K, ± 4% between 100 and 500 K, and ≈ 10° above 500 K, or 100 K, ± 6% between 100 and 500 K, and ± 10° above 500 K, or 100 K, ± 6% between 100 and 500 K, and ± 10° above 500 K, or 100 K, ± 6% between 100 and 500 K, and ± 10° above 500 K.

pr where no experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity. kg. W cm-1 K-1; Lattice Thermal Conductivity, kg., W cm-1 K-1] RECOMMENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) t TABLE 25.

And the second s

	39. 00% (24. 98 At. %)	AL.S.		Ni: 35.005	5.00% (33.87 At.%)	it. %)		Ni: 46.00	40.00% (36.81 At.%)	L. %)		Ni: 45.00	45.00% (43.77 At. %)	A. 3.
•	0° = 61.78 µGcm	A		4 = 67.	= 67.04 pDcm			A = 25	= 25.86 µAcm			. o	Po = 18.64 pD cm	A
.M .	age.	, 10	E ·		₩.	, to	H	.	JA.	, de	£-	بد	J40	, to
4 0.001	9	0	•	0.00160\$	0.00146	0.000145	•	0.00549	0.00378	0.00171\$	•	0.00690*	- ·	0.00166
	42764 0.00238 43684 0.40317	0.0003154	•	0.002484	0.00219	0.000291#	\$	0.008264	0.00567	0.00259	φ «	0.0104**	0.04784	0.002515
		6	2	0.00434	0.00364	0.000700\$	2	0.0137#	0.00936	0.00431	9	0.0171*	_	0.00418
	MT344 0. 00504	_	21	0.00681#	0.00542	0.00130\$	S 1.	0.0202	0.0138	0.00645#	15	0.0252*	0.0180	0.00625
0.01014	9	•	2	0.00938	0.00715	0.00224\$	2	0.0268#	0.0182	0.00857#	22	0.0330*	<u>.</u>	0.008301
	200 co 120 S 0.063£28	22 8	0.0120	0.00884	0.00317#	8	0.08304	0.0223	0.0107	28	0.0405*	0.0302	0.0103#	
. 6129	.	0.00004	3 2	0.0203#	0.0139	0.00644	3 3	0.05094	0.0343	0.0166	3 \$	0.0620**		0.0161#
0.02794	•	0.00000	2	0.0258	0.0171	0.00871\$	8	0.0618	0.0418	0.0200	8	0.0748*		0.0194
. es	D# 0.0219	0.01204	3	0.03154	0.0203	0.01124	8	0.0716#	0.0487	0.0229	3	0.085g*	_	0.0218
0.0306	3	0.01456	2		0.0233	0.0135	2	0.0802	0.0880	0.0252\$	2	0.0963*	_	0.0245
		0.0100	2 2	0.04194	0.0262	0.0157	8 8	0.0878#	908	0.0270	2 3	0.105*	0.0767	0.0262
			8 8	0.0514	0.0318	0.0196	3 2	0.100	0.0710	0.0201	38	0.119*	0.000	0.02834
	H# 0.0476	0.02558	31	0.0687	0.0446	0.0241\$	951	0.119	0.0010	0.0282\$	150	0.141#	0.113	0.0275
3	3	0.02538	200	0.0802#	0.0562	0.02404	200	0.130	0. 105	0.0250\$	8	0.154	0.129	0.0244
		9000	2 5	9.080	0.0666	0.0224	8 8	0.134	0.115	0.0220	2 5	0.162	0.140	0.0215
	3	0.00124	8	6.0961	0.075	0.02028	28	0. 15 15	0.121	0.01961	38	0. 167	0.148	0.01914
B 0.100	0.0001	0.01924	98	0.103	0.0946	0.0184\$	350	0.143	0.125	0.0175	350	0.171	0.154	0.01684
•	•	0.01748	\$!	6.10	0.0928	0.0166#	9	0.144	0.128	0.2158	\$	0.173	0.197	0.0156
		0.01246	3 8	0.137	0.106 0.125	0.0119	3 8	0. 147 0. 152	0. 140 0. 140	0.0133	3 8	0. 178 0. 178	0.167	0.01134
6.15	. e. 147	0.01066	200	0.163	0.143	0.01034	700	0.165	0.155	0.0100	5	0.184	0.174	0.00088
811.0	6. MG	0.00000	8	0.169	0.160	0.00913\$	80	0.182	0.173	0.00893	200	0.198	0.188	0.00882
		0.00000 0.000000	8 5	0. 18.4 5.4	0, 175	0.00818#	8	0.197#	0.189	0.00807#	8 5	0.213	0.20g	0.00795
							3	0.00	2.624		3		017.0	54.55

below 200 K, and ±16% above 200 K. ## below 200 K, and ±16% above 200 K. ## below 150 K, ±16% between 150 and 500 K, and ±12% above 500 K. ## below 150 K, ±5% between 150 and 500 K, and ±10% above 500 K.

sestal thermal conductivity data are available.

[Temperature, T, K; Thermal Conductivity, k, W cm⁻¹ K⁻¹; Electronic Thermal Conductivity, k_e, W cm⁻¹ K⁻¹; Lattice Thermal Conductivity, k_g, W cm⁻¹ K⁻¹] RECOMMENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) +

•	Nt. 30.007	30. 00% (48. 75 At.%)	1.5)		Ní: 55.00	5.00% (53.76 At.%)	14. %)		Ni: 60.00	60.00% (38.79 At.%)	At. %)		Ni: 65.00%	65.00% (63.85 At. %)	At. %)
	A- 14	A = 14.67 µDcm			p = 12	12.17 µAcm	-		Po = 10	= 10.23 µAcm	Ħ		p. = 8.	= 8.81 µAcm	
H	24	a*	A ^{DO}	F		,M°	bs	£4	×	×°	Me .	۲	м.	Mo.	, see
	6.08630++0.	0.60661	0.00159	7 6	0.00950	0.00793	0.00157\$	76	0.0111*	0.00949	0.00163	₩ 50	0.0128*	0.0111	0.00171
•	0.0163**		0.003194	*	0.0187	0.0157	0.00318#	*	0.0223*	0.0190	0.00330	6	0.0254*	0.0220	0.00345
22	6. 64 65**	0.0162 0.0237	0.00000	2 2	0.034	0.0194 0.0285	0.00397	12	0.0404*	0.0233	0.00412*	32	0.0468*	0.0403	0.006451
8	4. CSES1	0.0309	0.007964	2	0.0451	0.0372	0.00791\$	8	0.0530*	0.0448	0,00816	8	0.0614*	0.0628	0.008574
21	4. Office	9.878 9.878	0.00966	8	0.0556	0.0458	0.00980#	8 8	0.0649#	0.0548	0.0101#	2 S	0,0753	0.0646	0.01074
; ;	5	0.0508	0.0154	3 2 3	0.0840	0.0688	0.0152	\$ \$ \$	0.0981*	0.0823	0.0158	348	0.11%	0.0964	0.0166
8	o. 00077	- C	6.0196s	7	31.5	0. USKI	0.0184	3	0.117*	3065	0.01813	3	0.104	D. 114	0. 0200
8	9.00014	0.0779	0.02128	88	0.114	0.0930	0.0210	88	0.134	0.112	0.0218	88	0.152*	c. 120	0.0229
F 1	6.11g		0.0233	R	5. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	9.10	0.0233	2 2	0.147#	0.123	0.02405 0.02405	2 8	0.167*	0.152	0.02524
3 8	1274	9.101	0.0264	8	0.146	0.120	0.0262	8 8	0,168*	0.141	0.0270	8	0.188*	0.159	0.0283
	0.1364	0.106	0. 02T1\$	901	0.154	0.127	0.0270	100	0.176*	0.148	0.0278	100	0, 195*	0.166	0.0291
8	9.138	0.131	0.02654	150	0.178	0.151	0.0263	251	0.200#	0.173	0.0270	951	0.219*	0.190	0.0282
1	0.172 0.172	0.149	0.02368	8	0.193	0.169	0.0235#	8	0.213	0.189	0.0240	8	0.232#	0.201	0.0250
RE	9. 181 1. 181 1. 181	0. 16Z	0.0200	3 2	202	0, 182	0.0207	3 2	0.221*	900	0.0211#	2 22	0.2364	0.216	0.0220
	e. 18	0.171	0.01964	8	0.208	0.180	0.0185	8	0,226*	0.207	0.0188	8	0.242#	0.22	0.01962
38	0.195	0.178	0.01674	350	0.213	0.196	0.0167	350	0.228*	0.211	0.0169	350	0.244	0.226	0, 0175
ŝ	9.138	0.184	0.01524	\$	0.216	0.201	0.0151\$	8	0.230*	0.215	0.0153	\$	0.245#	0.229	0.0158
3	6.24 3	0.190	0.0128	8	0.220	0.207	0.0127	26	0.233*	0.220	0.01294	800	0.247*	0.234	0.0133*
3 5	Į.	0.193	0.01104	8	2 2 3 3	0.210	0.0109#	8	0.235*	0.224	0.0111\$	8	0.2494	0.237	0.0118
8	i i	. TA		3	3	0.219	********	3	0.400+	077.0	*******	3	V. 6357	0.643	o. O.O.
2	0.210	0. 202	0.006584	8	0.229	0.221	0.00854	800	0.246*	0.237	0.00868	8	0.262*	0.253	0.00893
8 8	Ą		0.00774	3 5	0.241 0.241	0. 233 0. 233	0.00771*	9 5	0.259	0.251 0.966	0.007838	9 5	0.276	997.0	0.00807#
							100000				14000	200		5 6	20000

55.09 Fe - 50.09 M: ±15% below 150 K, ±6% between 150 and 500 K, and ±8% above 150 K, **45.09 Fe - 50.09 M:** ±15% below 150 K, ±6% between 150 and 500 K, and ±10% above 150 K, **45.09 Fe - 55.09 M:** ±12% below 100 K, ±8% between 100 and 500 K, and ±10% above 500 K, **40.09 Fe - 60.00 M:** ±12% below 200 K and ±8% above 200 K. 50, 00 Fe - 30, 00 Ni: 4 45, 00 Fe - 30, 00 Ni: 4 40, 00 Fe - 60, 00 Ni: 4 36, 00 Fe - 66, 00 Ni: 4

2 Typical value.

. In temperature range where no experimental thermal conductivity data are available.

TABLE 25. RECOMMENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) +

を 1 日本のでは、 1 日本のでは

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1]

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 - 7.55 µD cm				(3. W./o (74. U5 At. %)	At. 70)	TVE		80.00% (79.19 At.%)	At. %)				(84.35 AL. %)
4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		g		A = 6.	= 6.25 µΩcm			p = 5.	5.04 µAcm			Po = 3	3. 935 µAcm	a
40000	, O	, a to	۴	*	, u°	, te	F	1	me.	,M	۴		Mo.	
* # 5 # • • • • • • • •	0	0	••	0.0176	0.0156	0.00198	4,	0.0217	0.0194	0.00230#	**	0.0275	0.0248	0.00266
99		0.002764	ρ α	0.02027	0.0232	0.00300	o «	0.0324	0.0263	0.00340	o «	0.05434	0.00	0.00688
9	158		2	0.0429	0.0379	0.00503\$	2	0.0533#	0.0475	0.00578	2	0.0674#	0.0607	0.00675
,	627* 0. 0450	_	91	0.0628*	0.0262	0.00759\$	12	0.0778#	0.0692	0.00664\$	15	0.0965	0.0684	0.0101\$
3.0	MO1- 1.000	6 0.009124	ន	0.0815*	0.0714	0.0101	22	0.101*	0.0896	0.0116	8	0.128	0.114	0.0135
3	•	3	89	0.0990*	0.0863	0.0127	25	0.122*	0.108	0.0144	22	0.155	0.138	0.01684
2.0 2.0	39. - 38	_	8	0.116*	0.100	0.0151\$	8	0.142*	0.125	0.01724	8	0.181	0.161	0.0300
다. ***	0.100	•	\$:	0.145*	0.125	0.0197	9 9	0.177*	0.155	0.02248	\$:	0.224	81.0	0.02612
0.145	_	6.021 W	3	0. 170 4	0. 146	0.0237	3	0.2064	0.179	. 0.258#	2	0.256+	0.227	U. USIZE
2 0.1	F . 125		8	0.190#	0.163	0.0270	8	0.228*	0.197	0.0306#	2	0, 284	0.249	0. 0354 [#]
7	184 0.157		2	0.206	0.176	0.0295	21	0.245	0.212	0.0334	2	0.9094	3	0.000
77 °	0.168		28	0.219#	0.187	0.0315#	& :	0.259#	0.223	0.0355#	3 :	0.316#		0.000
	0.176	0.0300	3 2	0.228 0.236	0.196	0.0327	3 5	0.258*	0.23 2.23 2.33 2.34	0.0367\$			0.202	0.0426
		20000		1		\$0000 C	5	100		\$1360	-	1676		Ander C
		0.050		0.23/4	0.220	0.03204	3 5	3054	974	0.0351	3 2	2.00	3 5	97760
	•	0.02294	8	0.274	0.249	0.0248	88	\$ 8 8	0.282	0.0270	28	800	98	0.0300
# C#	_	0.02164	273	0.276*	0.252	0.0233	273	0.308	0.284	0.0254	273	0.350	0.322	0.0281
97.0	6.236	0.02036	300	0.277	0.256	0.02184	8	0.310	0.286	0.0237#	8	0.351*	0.324	0.0 364
30 C.M	•	0.0181	38	0.279	0.259	0.0195	350	0.311	0.290	0.0211\$	350	0.360	0.327	0.0234
		0.01636	\$	0.280	0.262	0.0175	9	0.311*	0.292	0.0190	\$	0.962	 	0.0210
		0.01374	3 8	0.280	0.265	0.0146	3 8	300	200	0.0158	3 8			
		0.01038	38	0.281	0.270	0.0109#	28	906	0.297	0.01194		938	0.325	0.0131
•	97.5	0,00918	908	0.290*	0.280	0.00971\$	800	0.311*	0.300	0.0106	900	0.383	0.322	0.0117\$
3	30.0	0.00030	8	0.305	0.296	0.00876	8	0.324*	0.315	0.00949#	2	976.0	0.336	0.010SE
1000	P. P. 20	0.0075#	1000	0.321*	0.313	0.00798	1000	0.340#	0.331	0.00863	1000	0.88	0.353	0.00000
双 d o	6. 313	0.00666	1100	9.384	0.330	0.00734	21100	0.356	o. 348	0.007964	1100	9. 97 4	8	0.00676

mestadation of the total thermal conductivity, k, are as follows:

20.00 Fe = 70.00 Mi: ±15% below 200 K and ±8% above 200 K. 25.00 Fe = 73.00 Mi: ±10% below 100 K, ±6% between 100 and 500 K, and ±8% above 500 K. 26.00 Fe = 30.00 Mi: ±12% below 100 K, ±8% between 100 and 500 K, and ±8% above 500 K, 15.00 Fe = 50.00 Mi: ±15% below 100 K, ±8% between 100 and 500 K, and ±10% above 100 K.

Provinces with

S Typical value.

* Is temperature range where no experimental thermal conductivity data are available.

TABLE 26. RECORDENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) +

(Temperature, T, K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1)

A_ = 1.000 pDom A_ = 2.045 pDom A_ = 2.045 pDom A_ = 1.277 µDom A_ = 1.000 pDom A_ = 1.000 pDom A_ = 1.000 pDom A_ = 1.277 µDom A_ = 1.000 pDom A_ =	k k	(88. 54 At. %) Ni: 95. 60%	3.00% (3.24 Al. 7) 95.00% (94.76 Al. %)	Nt: 97.	97.00% (3.15 At. %) 97.00% (96.85 At. %)			Ni: 99.00	1.00% (1.05 At. %) 99.00% (96.95 At. %)	At. 55
No. No.	L. C.	P. 2. 9.	S µD cm	=°d	1.227 µO cm			A = 0.	409 p.D.	g
L. CORRECT C. CORRECT C. C. C. C. C. C. C. C. C. C. C. C. C.	L. CHERCO C. CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA CASCALLA	H					£		A.	, ad to
C. 1878 C. 2014 B C. 1457 B C. 2014 B C. 1457 B C. 2014 B C. 1457 B C. 2014	C. 1775 C. 1787 C. 1287	000500 4 0.07414 december 6 0.07414		i		-	••	0.25		
6.2000 6.0000 10.2177* 10.0.277* 10.0.	6.136 6.135 0.0136 30 0.1777 6.136 0.135 0.0136 30 0.3264 6.364 0.131 0.0226 30 0.3264 6.364 0.251 0.0226 30 0.3264 6.364 0.251 0.0226 30 0.3264 6.364 0.264 0.0226 30 0.3264 6.414 0.264 0.0226 30 0.3264 6.414 0.264 0.0226 30 0.3264 6.414 0.264 0.0226 30 0.3264 6.414 0.264 0.0226 30 0.2264 6.414 0.264 0.0226 30 0.2264 6.415 0.264 0.0226 30 0.2264 6.416 0.264 0.0226 30 0.2264 6.416 0.264 0.2264 6.416 0.264 0.2264 6.416 0.264 0.2264 6.416 0.2264 0.2264						0 00			
C. 1770 C. 1770 <t< td=""><td>0.1774 0.181 0.01804 20 0.1804 0.1804 0.1814 0.181 0.01804 20 0.1804 0.1804 0.181 0.01804 20 0.1804</td><td>10 0.</td><td></td><td></td><td></td><td></td><td>2:</td><td>0.777</td><td></td><td></td></t<>	0.1774 0.181 0.01804 20 0.1804 0.1804 0.1814 0.181 0.01804 20 0.1804 0.1804 0.181 0.01804 20 0.1804	10 0.					2:	0.777		
0.1186 0.1186 20 0.5637 25	0.1700 0.1700 0.1800 0.01800 0						CT CT	F		
C. 2017 2. 2017 <t< td=""><td>6. 257 6. 257 6. 0425 70 0. 2567</td><td>8</td><td></td><td></td><td></td><td></td><td>2</td><td>1.87</td><td></td><td></td></t<>	6. 257 6. 257 6. 0425 70 0. 2567	8					2	1.87		
6.2774 6.2774 6.0714 6.0714 6.0714 6.0714 6.0714 6.0714 6.0714 7.0 7.244 7.0 7.244 7.0 7.244 80 1.244 90 1.244 90 1.244 90 1.244 <t< td=""><td>6.200</td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>3:</td><td></td><td></td></t<>	6.200						10	3:		
6.2507 6.250 6.0410 50 0.2507 70 0.2507 70 0.7787 70 0.	6.2674 6.286 6.04614 90 0.2624 6.2404 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.286 6.04134 6.0824 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2864 6.2878 6.04134 6.0824 6.2878 6.04134 6.0824 6.2878 6.04134 6.0824 6.2878 6.04134 6.0824 6.2878 6.04134 6.0824 6.2878 6.04134 6.0824 6.2878 6.2878 6.0824 6.2878 6.2878 6.0824 6.2878 6.2878 6.0824 6.2878	3 4					3			
6.395	6. 200	3					2	5		
0.2500 0.2500 70 0.2500 70 0.745% 70 0.745% 70 0.745% 70 1.250% 70 70 70 70 70 70 70 70 70 70 70 70 70 <t< td=""><td>6.4300 0.300 0.00018 80 0.3001 0.00034 0.471 0.09934 0.441 0.00934 0.0019 0.5704 0.471 0.09934 0.441 0.00934 0.0019 0.5704 0.471 0.09934 0.441 0.04194 0.5704 0.5471 0.09934 0.04194 0.5704 0.471 0.09934 0.04194 0.5704 0.5471 0.09934 0.04194 0.5704 0.5810 0.04194 0.04194 0.0504 0.5710 0.0514 0.051</td><td>0</td><td></td><td></td><td></td><td><u> </u></td><td>3</td><td>1.80</td><td></td><td></td></t<>	6.4300 0.300 0.00018 80 0.3001 0.00034 0.471 0.09934 0.441 0.00934 0.0019 0.5704 0.471 0.09934 0.441 0.00934 0.0019 0.5704 0.471 0.09934 0.441 0.04194 0.5704 0.5471 0.09934 0.04194 0.5704 0.471 0.09934 0.04194 0.5704 0.5471 0.09934 0.04194 0.5704 0.5810 0.04194 0.04194 0.0504 0.5710 0.0514 0.051	0				<u> </u>	3	1.80		
0.414*** 0.7068** 90 0.768**	0.4144 0.385 0.00212 90 0.3764 0.471 0.09934 0.4144 0.385 0.06344 0.471 0.06934 0.4486 0.471 0.06934 0.4486 0.471 0.06344 0.4189 0.04487 0.05444 0.471 0.05444 0.471 0.05444 0.471 0.05444 0.4189 0.05444 0.471 0.05444 0.05444 0.471 0.05444 0.05444 0.471 0.05444 0.05444 0.471 0.05444 0.05444 0.471 0.05444 0.0544	2:					2	1.80	•	
0.437** 0.364 0.0693* 100 0.726** 0.540 0.146* 100 1.02** 0.440** 0.364 0.465 0.4639* 150 0.627** 0.540** 150 0.117* 150 0.147* 0.440** 0.364* 0.466 0.0639* 150 0.627* 0.529 0.0147* 250 0.814* 0.410** 0.373 0.032* 0.0447* 2.0 0.627* 0.529 0.0734* 250 0.751* 0.410** 0.378 0.032* 0.040* 2.73 0.63* 0.754* 2.73 0.751* 0.410** 0.378 0.036* 0.056* 300 0.56* 0.529 0.0734* 273 0.751* 0.410** 0.378 0.036* 300 0.56* 0.56* 0.56* 0.529 0.0734* 273 0.75* 0.410** 0.378 0.040* 0.0448* 350 0.54* 0.05* 0.05* 0.05* 0.05* 0.05* <	0.417*** 0.384 0.0486** 150 0.570** 0.471 0.09834 0.489** 0.386 0.0419** 200 0.533** 0.459 0.0639* 0.489** 0.373 0.0533* 250 0.528** 0.471 0.0639* 0.418** 0.373 0.05318* 273 0.528** 0.470 0.0549* 0.410** 0.378 0.0318* 273 0.528** 0.470 0.0549* 0.410** 0.378 0.0318* 270 0.514** 0.469 0.0449* 0.389** 0.378 0.0210** 200 0.484** 0.451 0.0328* 0.380** 0.378 0.0210** 200 0.484** 0.451 0.0328* 0.380** 0.378 0.0139** 200 0.428** 0.415 0.0210* 0.380** 0.381 0.0139** 200 0.438** 0.415 0.0210* 0.380** 0.381 0.0139** 200 0.438** 0.415 0.0189* 0.380** 0.381** 0.0139** 200 0.438** 0.415 0.0189* 0.380** 0.381** 0.0139** 200 0.438** 0.415 0.0189*	3 S					88	1.14		
0.489* 0.0480* 150 0.489* 0.0830* 150 0.657* 0.657* 0.6540 0.117* 150 0.8430* 0.480* 0.0480* 0.0546* 0.052* 0.654* 0.533 0.0947* 200 0.814* 0.410* 0.0713* 250 0.656* 0.654* 250 0.0647* 250 0.0947* 200 0.814* 0.410* 0.0710* 273 0.666* 0.0545* 273 0.0947* 250 0.767* 0.410* 0.0710* 0.056* 300 0.566* 300 0.569* 0.0739* 273 0.767* 0.410* 0.576* 0.66* 0.040* 400 0.566* 350 0.758* 0.751* 273 0.767* 0.410* 0.577 0.040* 400 0.570* 0.457 0.043* 350 0.758* 0.043* 350 0.759* 350 0.759* 350 0.759* 350 0.759* 0.043* 350 0.	0.480	100 0.570				#	88	1.02	0.766	0.255
0.480	6.450 6.373 6.0314 200 6.535 6.466 6.06914 6.415 6.373 6.0334 200 6.535 6.471 6.0564 6.415 6.373 6.0334 273 6.525 6.471 6.0564 6.415 6.373 6.0344 6.415 6.0546 6.415 6.0546 6.415 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.0449 6.415 6.415 6.0449 6.415 6.0449 6.415 6.415 6.0449 6.415 6.415 6.0449 6.415 6.415 6.415 6.415 6.0114 6.415 6.41	150 0.543*				*	150	0.880	0.686	0. 1946
0.410* 0.573 0.0083* 250 0.529* 0.471 0.0564* 250 0.0544* 250 0.0794* 250 0.707* 0.410* 0.571* 0.0545* 273 0.0545* 273 0.0549* 0.529 0.0739* 273 0.751* 0.410* 0.570* 0.566* 0.529 0.0739* 273 0.751* 0.410* 0.570* 0.566* 0.566* 0.566* 0.529 0.0739* 273 0.751* 0.410* 0.570* 0.566* 0.566* 0.566* 0.566* 0.566* 0.566* 0.759* 273 0.751* 0.410* 0.570* 0.460* 0.566* 0.640* </td <td>6.410° 6.373 0.03639 250 0.520° 0.471 0.05646 0.450° 0.378 0.03184 273 0.525° 0.470 0.05458 0.450° 0.378 0.03184 300 0.514° 0.470 0.05658 0.450° 0.378 0.03184 300 0.514° 0.450° 0.0448 0.378 0.0323° 400 0.450° 0.451 0.0323° 0.471 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.02408 0.380° 0.380° 0.02408 0.380° 0.03408 0.380° 0.03408 0.380° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.435 0.435 0.0336° 0.435</td> <td>200 0.535*</td> <td></td> <td></td> <td></td> <td>#2#</td> <td>శ్ల</td> <td>0.814</td> <td>9</td> <td>0.150</td>	6.410° 6.373 0.03639 250 0.520° 0.471 0.05646 0.450° 0.378 0.03184 273 0.525° 0.470 0.05458 0.450° 0.378 0.03184 300 0.514° 0.470 0.05658 0.450° 0.378 0.03184 300 0.514° 0.450° 0.0448 0.378 0.0323° 400 0.450° 0.451 0.0323° 0.471 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.451 0.0323° 0.02408 0.380° 0.380° 0.02408 0.380° 0.03408 0.380° 0.03408 0.380° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.380° 0.435 0.0336° 0.03408 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.0336° 0.435 0.435 0.435 0.435 0.0336° 0.435	200 0.535*				#2#	శ్ల	0.814	9	0.150
C. 430c C. 376 C. 635	6.40° 0.376 0.0343 273 0.525° 0.470 0.05455 0.430 0.450° 0.470 0.05455 0.430° 0.378 0.03184 300 0.521° 0.470 0.05054 0.05054 0.5450° 0.378 0.03224 350 0.514° 0.469 0.04466 0.516° 0.378 0.03234 0.0 0.504° 0.464 0.04004 0.04004 0.378 0.02136 0.00404 0.0404 0.04004 0.04004 0.378 0.02136 0.00404 0.04004 0	250 0.5294				<u> </u>	2 2	0.767*	Z	0.124
0.450 0.356 0.514 0.448 350 0.526 350 0.704 0.450 0.378 0.6254 0.656 350 0.517 0.0534 400 0.704 0.450 0.378 0.0534 0.0534 0.0534 400 0.704 0.0534 400 0.704 0.350 0.451 0.0436 0.0436 0.0276 0.054 0.467 0.0435 500 0.504 0.056 0.0435 500 0.504 0.056 0.0436 0.0546 0.0486 0.0376 600 0.575 0.350 0.0136 0.0240 0.0240 0.0480 0.0486 0.0486 0.0376 700 0.480 0.0366 700 0.563 0.350 0.0136 0.0240 0.0480 0.0486 0.0486 0.0246 700 0.480 0.0246 700 0.480 0.0246 900 0.529 0.0246 900 0.529 0.0246 900 0.693 0.350 <th< td=""><td>6.450 0.300 0.0202* 350 0.514* 0.469 0.0446* 0.300 0.304* 0.454 0.0406* 0.0446* 0.378 0.0216* 300 0.454* 0.451 0.0326* 0.0326* 0.378 0.0216* 300 0.454* 0.451 0.0326* 0.0226* 0.0326*</td><td>273 0.525</td><td></td><td></td><td></td><td>30</td><td>273 203</td><td>0.751*</td><td>0.686 0.686</td><td>0.115¢</td></th<>	6.450 0.300 0.0202* 350 0.514* 0.469 0.0446* 0.300 0.304* 0.454 0.0406* 0.0446* 0.378 0.0216* 300 0.454* 0.451 0.0326* 0.0326* 0.378 0.0216* 300 0.454* 0.451 0.0326* 0.0226* 0.0326*	273 0.525				30	273 203	0.751*	0.686 0.686	0.115¢
C. 275 C. 275 C. 255 C. 256 C. 256<	6.250 0.373 0.02135 4.00 0.504 0.451 0.0408 0.328 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.0218 0.02408 0.250 0.02408 0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				-				
0.386	6.350 6.378 6.0210 600 6.454 6.451 6.6326 600 6.455 6.270 6.326 600 6.455 6.270 6.270 6.200 6.350 6.250	400 0.504					9 5	0. 40# 0. 676	210.0	0.00
0.350 c. 230 0.350 c. 230 0.050 c. 230 0.050 c. 230 0.050 c. 240 c. 230 0.050 c. 240 c. 230 0.050 c. 240 c.	6.250 6.271 0.0150 600 0.455 0.427 0.0270 600 0.420 0.350 0.0240 6.250 0.250 0.0240 6.250 0.250 0.0240 6.250 0.250 0.0240 6.250 0.0130 0.250 0.0130 0.250 0.450 0.450 0.450 0.0130 0.0130 0.250 0.450 0.450 0.450 0.0130 0.0130 0.250 0.450 0.450 0.450 0.0130 0.0130 0.250 0.450 0.	500 0.484*				22	8	0.623	0.557	0.0654
6.350 0.350 0.354 0.0157\$ 700 0.420* 0.0240\$ 700 0.480* 0.438 700 0.553 6.350 0.350 0.313* 800 0.496* 0.456 0.431 0.0113* 800 0.496* 0.468 0.0246* 800 0.513* 0.488 0.0246* 900 0.513* 6.350 0.314* 1000 0.456 0.456 0.415 0.0170* 1000 0.529* 0.0255* 1000 0.639*	6.350 6.350 0.0157\$ 700 0.420 0.396 0.0240\$ 0.0240\$ 0.3250 0.0240\$ 0.3250 0.0240\$ 0.0210\$ 0.3250 0.415 0.0211\$ 0.0210\$ 0.3250 0.4350 0.431 0.0180\$ 0.4550 0.4550 0.445 0.0180\$ 0.0180\$ 0.4550 0.4550 0.445 0.0180\$ 0.4550 0.445 0.445 0.0170\$ 0.4550 0.4450 0.445	600 0.455				#14	99	0.575	0, 520	0.0543
0.350 0.350 0.354 0.0139* 800 0.456 0.415 0.0213* 800 0.496* 0.468 0.0249* 800 0.513* 0.488 0.0249* 800 0.513* 0.350 0.350 0.350 0.450 0.451 0.0189* 900 0.513* 0.488 0.0249* 900 0.513* 0.0249* 900 0.601*	6.350 6.354 0.0139* 800 0.436 0.415 0.0213* 6.350 6.350 6.350 0.431 0.0189* 6.350 6.314* 1.000 0.459 0.451 0.0189* 6.350 6.451 0.0189*	700 0.420*	_			***	200	0. 563	0,517	0.04664
0.300 0.488 0.0249 ⁶ 900 0.430 0.0189 ⁶ 900 0.513 ⁴ 0.488 0.0249 ⁶ 900 0.601 ⁴ 0.500 0.529 ⁴ 0.507 0.0255 ⁶ 1000 0.639 ⁴	6.250 6.250 0.0126 500 0.450 0.431 0.01896 6.250 0.431 0.01896	800 0.436*		ö			800	0.583	0.541	0.0410
6.22 6.10 6.014 1000 0.465 0.0170t 1000 0.529 0.507 0.025f 1000 0.620+	6.100 6.100 0.0114 1000 0.450 0.450 0.0170:	900 0.450				<u> </u>	8	0.601*	o. 55	0.0364
A ARABA A AMARA		1000 0.465				2	8	0.620	. 588	0.0388

18.00.70 = 10.00 Mis ±15% below 100 K, ±5% between 100 and 500 K, and ±10% above 500 K. 5.00 To 20.00 Mis ±15% below 150 K, ±5% between 150 and 500 K, and ±15% above 500 K. 2.00 To 20.00 Mis ±15% below 150 K, ±6% between 150 and 500 K, and ±6% above 500 K. 2.00 To 20.00 Mis ±15% below 150 K, ±6% between 150 and 500 K, and ±6% above 500 K. 1.00 To = 10.00 Mis ±15% below 10 K, ±10% between 80 and 200 K, and ±6% above 200 K.

- Types ale

re range where no experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, ke, W cm-' K-'; Lattice Thermal Conductivity, ke, W cm-' K-'] TABLE 25. RECOMMENDED THERMAL CONDUCTIVITY OF IRON-NICKEL ALLOY SYSTEM (continued) ?

THE THE PERSON OF THE PERSON OF THE

0.50% (0.48 At.%) 99.50% (99.52 At.%)	A. " 0. 2045 µD cm	Ja Ga	0. 301s 0. 1774 0. 1158 0. 1158 0. 09134 0. 09134 0. 09134 0. 09134 0. 09134 0. 09134

† Uncertainties of the total thermal conductivity, k, are as follows: 6.39 Fe - 98.89 Ni: ±20% below 80 K, ±10% between 80 and 200 K, and ±6% above 200 K.

[#] Provintenal value.

o Typical value.

^{*} In temperature range where no experimental thermal conductivity data are available.

The second second consideration

MICROCOPY RESOLUTION TEST CHART MATIONAL BUREAU OF STANDARDS-1963-A

THERMAL CONDUCTIVITY OF IBON + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

jė	i	(Legal)	ļ	Mag D	To B. S.	Name and Specimen Designation	Composition (weight percent) Fe Ni	eition Percent) Ni	Composition (continued), Specifications, and Remarks
-	2	Chart, M. S.R. and do Mabel, J.	38.	1	1.6-88	3703	j.	6.10	0.34 Ma, 0.16 St, 0.11 C, 0.04 S, and 0.041 P; 7.5 mm diameter red specimen; heated to 800 C and cooled in farmace.
•	3	Menne, I.	3	U	313 -1178	41% Ni-tron	65.8	43.91	0.22 Mm, 0.050 C, and 0.003 S; annealed at 950 C; Advance used as comparative material.
•	8 .		.	ŭ	13-ts	Carbon atoni 1	Ä	9.89	0.38 Mp. 0.06 Cu, 0.06 C, 0.039 As, 0.036 S, 0.03 Mo, 0.022 Cr, 0.017 P. 0.01 St, and 0.001 At; 1 in. diameter and 8 in. long; assembled at 930 C; density 7.671 g cm ⁻⁵ ; electrical resistivity 11.9, 14.6, 17.6, 21.1, and 24.9 µG cm at 9, 59, 100, 180, and 200 C, respectively.
• .	*		§ .	ပ	273-673	Alloy steel; 9	Ä	3.41	0.88 Mm, 6.325 C; e.16 %, 0':IT Cr, 0.086 Cm, 0.034 ß, 0.032 P, 0.023 As. 0.04 Mo, 0.01 V, and 0.006 Al; amended at 300 C; density 7.855 g cm ⁻³ ; electrical resignishing 25.8, 28.4, 31.5, 34.8, 38.5, 42.5, and 46.8 µG cm at 0, 50, 100, 150, 200, 250, and 300 C, respectively.
•	3	Powell, A. W.	1	1	773-1473				The above specimen; thermal conductivity values calculated from measured electrical resistivity by the Wiedemann-Frans relation using entrapolated values of Lorenz function obtained from the previous thermal conductivity measurements.
•		D		A	330	148		1.07	<0.1 C; electrolytic.
•		benrett, L.R., et al.	1886	,1	88	1447	Ä	1.88	<0.1 C; electrolytic.
•		berred, L.R., et al.	1920	4	2	1441	Pel.	7.06	<0.1 C; electrolytic.
•		harred, L.R., et al.	100	1	2	157D	Ä	10.20	<0.1 C; electrolytic.
2	8	bgereil, 1.2., del.		4	â	14436	Ä	13.11	<0.1 C; electrolytic.
=		Bernell, 1. R., & al.	188	4	20	146P	Ä	19.21	<0.1 C; electrolytic.
2	*	legeroff, f.R., et al.		4	8	166G	Ë	22.11	 C; electrolytic; electrical resistivity reported as 38.7, 45.4, 53.4, 62.7, 72.5, 62.1, 106.3, and 111.6 µG cm at 278.2, 973.2, 473.2, 573.2, and 973.2 K, respectively.
2		bereitt, L.B., et al.	1188	-1	2	1545	Ä	25.20	<0.1 C; electrolytic.
*		. Marriell, L.R., et al.	1800	7	ħ	1 66 C	į	28.42	<0.1 C; electrolytic.
2		legeradi, ia. et el.	ij	4	3	1881.	Ä	35.8	 C: electrolytic; electrical resistivity reported as 90.3, 100.0, 106.1, 116.2, 119.4, 120.2, 126.9, and 120.3 µC cm at 273.2, 373.2, 473.2, 573.2, and 973.2 K, respectively.
*	8	hgend, 1.B., et al.	8	H	88	1880	je Mari	47.08	 C. electrolytic; electrical resistivity reported as 44.2, 60.0, 75.6, 92.1, 105.3, 109.3, 112.3, and 114.0 gd, om at \$73.2, 473.2, 473.2, 573.2, and 973.2 K, respectively.
Ħ	#	Elle, W.C., Mergan, F.L. and Saper, G.F.	5	A	*	Climax	ä	30.0	2.5 mm diameter and 25 mm long; density 8.01 g cm ⁻³ ; electrical conductivity 1.052 x 10 ⁴ ft ⁻¹ cm ⁻¹ at 32 C; thermal conductivity value calculated from measured thermal difficulty to and amortic hand connectivity.

TABLE 26. THERMAL CONDUCTIVITY OF IRON + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

11 113 March. M. 1820 C. 448 Nichal And J. 4. 0.58 Mg. 5.3 Mg. and 0.1 C. specimen horse 1. d. 183-01 ANN 1931 94.07 4.01 0.58 Mg. 5.3 Mg. and 0.1 C. specimen horse 1. d. 183-01 ANN 1931 94.07 4.01 0.58 Mg. 5.3 Mg. and 0.1 C. specimen horse 1. d. 183-01 1. 183-02 ANN 1931 1. 183-02 ANN 1931 1. 183-03 ANN 1931 1. 183-04 ANN 1931 1. 183-04 ANN 1931 1. 183-04 ANN 1931 1. 183-04 ANN 1931 1. 183-04 ANN 1931 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 1934 1. 193-04 ANN 193-04 ANN 1934 1. 1934 1. 19	, je	ŽŽ	Author(s)	Tag.	E e e d	Temp. Renge, K	Name and Specimen Designation	(weight percent) Fe Ni	ntion Ni Ni	Composition (continued), Specifications, and Remarks
18 Water, T.W. and 1811 1, 125-853 AMS 2515 A. Control A	2	14 CO 1	Erue, H.	1886	Ö	3	Nickel steel	Bel.	3.41	0.45 C; steel used as comparative material.
100 Voters, T.W. and 1801 L 372-573 ANN 2515 101 Voters, T.W. and 1801 L 372-573 ANN 2515 102 Voters, T.W. and 1801 L 420-606 ANN 2515 103 Voters, T.W. and 1801 L 100-290 3 0.946 104 Modern, R.W. and 1801 L 120-213 High-porm-49 49.503 49.15 105 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 106 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 108 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 109 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 100 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 100 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 100 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 105 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 105 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 105 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 49.16 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 3.46 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 1.00 107 Voters, T.W. and 1801 L 120-213 High-porm-49 49.503 1.00 107 Voters, T.W. and 1801 L	2	52 2	Mason, T.W. and Mason, H.E.	18	- 3	125-263	AISI 2515	94.076	4.91	0.62 Mn, 0.33 Si, and 0.14 C; specimen about 2.54 cm in diameter and about 37 cm long; furnished by international Nighel Co.; normalized at 1144.3 K, tampered at 886.5 K.
101 March, T.W. and 1881 L 400-400 AMR 2515 102 March, T.W. and 1881 L 420-000 AMR 2515 103 March, R.G. 1881 L 100-250 S 1.90 104 March, R.G. 1881 L 100-250 S 1.90 105 March, R.G. 1881 L 120-613 High-perm-49 49.503 49.15 105 March, R.E. 1881 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1881 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1881 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 3.46 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 49.15 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-613 IN High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49.503 1.04 105 March, R.E. 1891 L 120-677 NI High-perm-49 49	•	# # # # # # # # # # # # # # # # # # #	1. V. ad	181	,,	18-48	AEE 2515			The above specimen, run 2.
100 100 <td></td> <td>12</td> <td>tion, T.V. and blaces, H.E.</td> <td>1981</td> <td>4</td> <td>572-573</td> <td>ALS 2515</td> <td></td> <td></td> <td></td>		12	tion, T.V. and blaces, H.E.	1981	4	572-573	ALS 2515			
167 L 420-406 ANE 2515 267 Marketined, R. G. 1861 L 100-280 3 0.946 167 Marketined, R. G. 1861 L 190-280 5 1.90 168 Velocine, T. W. and M. E. 1861 L 123-613 High-porm-49 49.503 49.15 168 Velocine, T. W. and M. E. 1861 L 123-613 Invar. 63.97 35.41 168 Velocine, T. W. and M. E. 1861 L 123-613 ANN 2315 96.463 3.46 168 L 123-613 ANN 2315 96.463 3.46 1.04 168 L 123-613 ANN 144 97.964 1.04 168 L 100-296 19 M 14 3.75 268 L 100-296 19 M 14 3.76 268 Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R. and Marketine, R.	•	1	Mon. T.W. and Mann. M.E.	8		400-696	AISI 2515			The above specimen, run 4.
161 Method, N.G. 1861 L 100-280 S 1.90 162 Welcon, T.W. and 1861 L 123-613 High-porm-49 49.503 49.15 163 Welcon, T.W. and 1861 L 123-613 High-porm-49 49.503 49.15 164 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 165 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 166 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 166 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 167 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 96.453 3.46 168 Welcon, T.W. and 1861 L 123-613 AMR 2315 A			Man, T.V. and Mann, R.E.	79	4	133-9 08	AIST 2516			The above specimen, run 6.
100 Western, T.W. and 1861 L 123-813 High-porm-49 49.503 49.15 100 Western, T.W. and 1861 L 123-813 High-porm-49 49.503 49.15 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Market, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 97.864 1.04 100 Western, R.E. 100 Western, T.W. and 1861 L 123-813 IN NI 98 Bal. 36.91	_	# 5	ichband, N. G.	8	ı	100-280	.		0.946	Original material supplied by Heracus, Inc.; re-meited and rolled into bars with a cross-section of about 18 mm ² and a length of 166 mm; after a about rolling, amosaled at 1373 K for 2 hr in evacuated eithen tubes, then rolled to final form and amosaled at about 773 K for 16 hr; electricia resistivity 3.4, 7.9, and 12.9 LQ cm at 90, 193, and 290 K, respectively.
100 Water, T. W. and 1801 L 123-013 High-perm-19 49.503 49.15 100 Water, T. W. and 1801 L 123-013 Invar 63.97 35.41 100 Water, T. W. and 1801 L 123-013 ABI 2315 95.463 3.46 100 Water, T. W. and 1801 L 123-013 ABI 2315 95.463 3.46 100 Water, T. W. and 1801 L 123-013 ABI 3.75 100 Water, T. W. and 1801 L 123-013 ABI 3.75 100 Water, T. W. and 1801 L 123-013 ABI 3.75 100 Water, T. W. and 1801 L 123-013 ABI 3.75 100 Water, T. W. and 1801 L 123-013 ABI 3.75		¥ 5	lettemd, N.G.	1881	ı	100-200	Φ,		1.90	Similar to the above specimen; electrical resistivity 5.3, 9.5. and 15.1 $\mu\Omega$ cm at 90, 183, and 290 K, respectively.
Weisser, T.V. and Mark 1861 L. 123-813 Isrue 63.97 35.41 Weisser, T.V. and Mark 1861 L. 123-813 AMR 2315 95.463 3.46 Weisser, T.V. and Mark 1861 L. 123-813 15.N1 97.904 1.04 W. Enthura, R. and Mark M. Mark R. Mark R. Mark R. Mark 3.75 W. Enthura, R. and Mark M. M. M. M. M. M. M. M. M. M. M. M. M. M		24	Meson, T.W. and Meson, H.E.	1361		123-813	High-perm-49		49.15	0.44 Mn, 0.54 St, 0.09 Cr, and 0.035 C; specimen 2.54 cm in diameter and 37 cm long; supplied by international Nichal Co.; packed in powder and amenaled in hydrogen 5 hr at 922.1 K, 5 hr at 1450 K; furnace cooled to 700 K; data presented as a smooth curve.
26 Values, T.W. and 1981 1 120-813 AMR 2315 96.483 3.46 36 Values, T.W. and 1981 1 120-813 1 5 Ni 97.984 1.04 26 Matters, R.E. 1 200-210 10 Ni 14 3.75 26 Matters, R. and 1986 L 200-200 12 Ni 1.04 26 Matters, R. and 1986 L 200-270 12 Ni 4.75 26 Matters, R. and 1986 L 200-273 Ni 36.15		57 2	toes, T.V. and Mason, H. E.	18	ı	123-813	inar	63.97	35.41	0.13 St. 9.06 C, and 0.04 Cr; specimes 2.54 cm in dismeter and 37 cm long; supplied by international Nickei Co.; annealed 30 mm at 1102.6 K, water-quesched, air-cooled at 589.7 K for 1 hr and at 389.3 K for 46 hr; data presented as a smooth ourve.
## Water, T.V. and 1981	_	12 ·	1.4. ad	1981	ı	123-613	AISI 2316	95.483	3.46	0.54 Ma, 6.32 M, and 0.16 C; specimen 2.54 cm is dismeter and 37 cm long; supplied by interactional Nickel Co.; normalised at 1172.5 K and tempered at 266.5 K; data presented as a smooth curve.
## Exempt, P. = 1906		si E	ten, T.V. ad ten, T.T.	181	.	123-613	1 % Ni	97.984	1.8	0.66 Ma, 0.27 St, and 0.126 C; specimen 2.54 cm in dismester and 37 cm long; supplied by international Nickel Co.; normalized at 1200 K, tempered at 866.5 K; presented as a smooth curve.
77. Edition, R. and 1906 L. 50-206 13 Nt 19 4.75 26. Energy, V. 200-773 Nt 36 Bal. 36.91 56. Energy, V. 200-773 Nt 36 Bal. 36.91		ră Tă		8	H	96-296	10 M 14		3.75	0.45 Mm, 0.32 Bt, and 0.05 C; best-treated in air at 950 C for 0.5 hr and at 690 C for 2 hr; electrical resistivity 36.76. £1.90, \$2.40, \$4.31, \$5.50, and 30.70 µG on at -190, -70, -50, -55, 0, 39, 40, 60, and 80 C, respectively.
100 Images, E. and 1906 L 200-973 Ni 36 Bal. 36.91		rie 14		186	4	90-396	12 Nt 19		4.76	0.40 Mb, 0.35 St, and 0.085 C; same best-treatment as above; electrical resistivity 18.36, 39.45, 34.51, 25.96, 37.41, 28.76, 39.99, 31.19, and 32.43 µ0 cm at -190, -70, -50, -36, 0.30, 40.60, and 90 C, respectively.
		<i>15</i>		ž.	a	120-73	8	Ä	36.	0.32 Mm, 0.012 P. 0.06 Al, 0.06 Sl, 0.06 Mo, 0.06 Co, 0.02 C, said 0.000 S; cylindrical specimen; best-treated in value at 1800 C for 30 km; chestical resistivity 76.1, 86.8, 96.3, 101.7, 105.7, 100.0, 112.2, 115.0, 115.6, 117.6, 119.7, 119.7, 121.8, and 123.7 µΩ cm at 20, 100, 200, 200, 400, 400, 600, 700, 900, 1000, and 1100 C, respectively; smoothed values reperted.

TABLE 26. THERMAL CONDUCTIVITY OF IRON + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEABUREMENT INFORMATION (conditioned)

żż	iė	Author (s)	Yes	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Fe Ni	Composition (continued), Specifications, and Bemarks
#	8	Cher, M.S.B. and	38	1-3	1.7-76	1287 I	11.39	0.93 Ma. 0.22 St. and 0.18 C; 5.5 mm diameter rod specimen; beated to 300 C and cooled in furnace.
*	*	Com. M.S.R. and	3	4	1.7-76	1796 H	19.61	1.09 Mn and 0.43 C; 7.5 mm diameter rod specimen; same heat-treatment as the above specimen.
*	1	to Mess, J.	1961	٠.	15-180	1287 D	1.82	0.72 Mm, 0.21 St, and 0.14 C; 0.5 cm diameter and 4 cm long; heated to 800 C and conled in furnase.
*	•	de Mederl, J.	199		3	1449 A	31.4	0.82 Mn and 0.70 C; 0.5 cm diameter and 4 cm long; beated to 800 C and cooled in farmere.
*	3	de Hobel, J.	1361		15-61	3460-3	36.17	0.92 Ma., 0.69 S., and 6.16 C; 0.5 cm diameter and 4 cm long; bested to 1050 C and quenched in water.
	#		1918	M	8	a	4. 6	0.48 Cu, e.31 Ma, 0.11 M, 0.10 C, 0.028 P, 0.026 S, and 0.012 Co (calculated composition); 5 mm diameter and 20 cm long; prepared by melting together from and motion in a porcelain crucible, resulting alloy polithed, forgod, amended, and filed to size; semested at 900 C; electrical conductivity 3.63 x 10f Gr ² cm ⁻¹ at 30 C.
8	3	4	1916	M	88	£		Same competition, dimensions, and filtrioniton method as the above apactmen; cooled once to -190 C in liquid air; electrical conductivity 3.64 x $10^4\Omega^{-1}$ cm ⁻¹ at 30 C.
\$	*	.	1918	M	8	A	6. 6.	0.67 Cu., 0.32 Mm, 0.11 C, 0.11 St, 0.027 P, 0.025 S, and 0.024 Co (calculated composition); sums dimensions and fabrication medical as the above specimen; amended at 900 C; electrical conductivity 2.61 x 10 GT cm ⁻¹ at 30 C.
4	2	*	1818	M	2	a		Same composition, dimensions, and fabrication method as the above apadement cooled once to -190 C in liquid air; electrical conflictivity 2. 16 x 10 fg ⁻¹ cm ⁻¹ at 30 C.
4	*	4	1918	M	8	\$	13, 8	0.87 Cu. 0.32 Mm, 0.12 C. 0.12 M., 0.035 Co., 0.055 F., glid 0.055 S (exclosioned composition); same dimensions and fiberioadion method as the above specimen; ameraled at 900 C; electrical combactivity 2.65 m 10 ⁴ Gr ² cm ⁻¹ at 30 C.
2	3	4	1916	M	*	4		Same composition, dimensions, and fabrication method as the above specimen; cooled once to -190 C in liquid air; electrical conflictivity 2.56 x 10 ⁴ ft ⁻⁴ cm ⁻⁴ at 30 C.
*	•	1	1916	•	2		3. 3.	1. 06 Cu., 0.33 Mn., 0.13 C., 0.12 M., 0.046 Co., 0.034 P., and 0.094 S. (calculated composition); same dimensions and fabrication method as the above specimen; nameded at 900 C; electrical conductivity 2.32 x 10 ⁴ Gr ² cm ⁻¹ at 30 C.
*	*	1	1916	ш	303	18		Same composition, dimensions, and fabrication method as the above apact-man; cooled once to *100 C in liquid air; electrical captactivity 2. 43 x 10 ff. cm. 4 20 G.
	*	1	1919	ш	8	€ .	21.2	1.17 Cu., 6.12 Mar, 0.138 C., 6.12 St., 6.66 Co., 6.625 F., and 0.624 S. (calculated composition); some dimensions and fabrication mislind as the above specimen; amostled at 900 C; electrical confactivity 2.61 x 104 ft. 6.27 st. 20 C.

TABLE 26. THERMAL CONDUCTIVITY OF INCH + NICKEL ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

Composition (continued), Specifications, and Remarks	Same composition, dimensions, and fabrication method as the above specimen; amosaled at 900 C; electrical conductivity 2, 20 x 10^4 Gr 4 cm 4 30 C.	1.27 Cu, 0.32 Mn, 0.14 C, 0.12 St, 0.061 Co, 0.024 S, and 0.022 P (calculated composition); same dimensions and fabrication method as the above specimen; amended at 900 C; electrical confactivity 1.82 z 10 ⁶ Gr ² cm ⁻¹ at 30 C.	Same composition, dimensions, and fabrication method as the above specimen; cooled once to -190 C in liquid air; electrical conductivity 2.33 x 10^4 Gr ⁻¹ cm ⁻¹ at 30 C.	1.44 Cu, 0.32 Mn, 0.15 C, 0.12 Si, 0.071 Co, 0.023 S, and 0.021 P (calculated composition); same dimensions and fabrication mathod as the above specimen; amended at 900 C; electrical conductivity 1.07 x 10 ⁶ Gr ² cm ⁻¹ at 30 C.	Same composition, dimensions, and fabrication method as the above specimen; cooled once to -190 C in liquid air; electrical confactivity 2. $40 \times 10^4 G^{-1} cm^{-1}$ at 30 C.	1.51 Cu., 0.32 Mm, 0.15 C., 0.12 Si., 0.075 Co., 0.023 S., and 6.021 P (calculated composition); same dimensions and fabrication method as the above specimen; amended at 900 C; electrical confactivity 1.02 x 10^4 Grd cm ⁻¹ at 30 C.	Same composition, dimensions, and fabrication method as the above specimen; cooled once to $-190~C$ in liquid air; electrical confactivity 2.35 x $10^4~G^{-1}$ cm ⁻¹ at 30 C.	1.56 Cu., 0.32 Ma., 0.155 C., 0.12 St., 0.078 Co., 0.623 S., and 0.639 P. (enloulated composition); same dimensions and fabrication method as the above specimen; amonaled at 900 C; electrical confactivity 1.66 x 10° G ⁻¹ cm ⁻¹ at 30 C.	Same composition, dimensions, and fabrication medical as the above specimen; cooled once to -130 C in lighth air; electrical confinstivity. 1.86 x 10° Ω^{-1} cm ⁻¹ at 30 C.	1. 65 Cu., 0. 23 Ma., 0. 16 C., 0. 12 M., 0. 004 Co., 0. 053 M. and 0. 019 P. (exloulated composition); same dimensions and fabrication mathed as the above specimen; samesled at 900 C; electrical combativity 1. 61 m 10° Grd cm ⁻¹ at 30 C.	Statists to the above spectmen enough cooled care to -199 C in Marie air instead of amening.	1.69 Cm, 0.33 Mm, 0.17 C, 0.13 St, 0.095 Co, 0.633 S, sard 0.633 P (calculated composition); same disconsists but the time sufficience above speciment samesied at 900 C; electrical contesting 1.Mps 10.07 cm ⁻¹ at 30 C.	0.89 Ma., 0.39 C., 0.15 St., 0.030 Cu., 0.037 Aa., 0.012 Al., 0.009 F., 0.008 g. and trace Cr.; 1 in. diameter and 8 in. long; leaded to 590 C and cooled in water; electrical restrictly 94. 0. 86. 5. 90. 9. 82. 6. 96. 9. 96. 9. 96. 9. 100. 100. and 104. 9. pd. 0. 90. and 200 C; resignation to the comparative material.
Composition (weight percent) Fe Ni	·	9 6		1. 1.		29.1		30.5		32.8	•	8	r r
Name and Specimen Designation	8	2	ę	a	8	10 a	6 1	4 .	1 1	អ្ន	8 1	a:	High-Ni steel;
Temp. Range, K	368	8	303	88	86	8	506	8 ,	2	2	2	3	## ## ## ## ## ## ## ## ## ## ## ## ##
Method Used	M	M	N	M	M	M	M	M	M	*	M	N	v
Year	1918	1918	1918	1918	1918	1818	1916	1918	1910	2	1910	191	Ĭ
Author (s)	Boath, K.	i	Book, K.	i i	ilah, K	X 4	Bonda, K.		<u>'</u>	i	# 4	i	1 1 1
No.	165	8	3		100	3	3	3	5	*	\$	2	2
بۇرۇ	\$	₽	\$	2	ä	2	2	3	2	2	2	2	

Table M. Thermal computityity of iron + nickel alloys -- specinen characterization and measurement information (666

Composition (continued), Specifications, and Bennaria	0.97 Ma, 0.16 M, 0.09 Cr, and 0.005 C; specimen 2, 54 cm in Councier and 37 cm long; supplied by International Michael Co.; sec., 1.4 to an	Man & second corner. Least 2. M on to describe	40 hr at 300, 3 K; data presented as a month curve. 0. 77 Ms. 0. 35 M; and 0. 10 C; specimes 3, 54 cm its disputer and 37 cm long; supplied by international Michael Co.; surrectional of Material Action 1, 100 p.	(1172 + 1461 K), tempered at 998.7 K; data processed as a smooth curve. 0.74 Ms. 0.36 Ms. 0.661 C. 0.016 F, and 0.080 M; best-freeled in air at 750 C for 0.5 Ms and at 570 C for 0.5 Ms described residently in e. 2. 25. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30
ition Proess() Ni	12. 23	4	3	8
Composition (weight percent) Fe Ni	56.303	62. 233	30. 25 55. 55.	
Name and Specimen Designation	Low-exp-42 56.303 42.11	free cut laws 62, 233 35, 84	Z X	XS NIS
Temp. Range, K	125-613	123-613	123-613	8
Method Temp. Used Range,	'n	H		H
Year	1961	181	1961	25
Author (s)	Waters, T. V. and Reblams, E. E.	Watton, T. W. and Religion, H. E.	Waters, T. V. and Robinson, R. E.	
	2	X 177	# #	r's
بوغ	8	3	8	2

TABLE 27. THERMAL CONDUCTIVITY OF NICKEL + IBON ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

8.5	19	Author (s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Comp (weight Ni	Composition (weight percent) Ni Fe	Composition (continued), Specifications, and Remarks
-	8	Inger sell, L. R.	8	ı	293,373	J66 Q	75.06		 C: prepared from 99.97 pure iros and high-purity nicles by forging; 96 cm in diameter and 5.1 to 6.7 cm long; electrical resistivity 23.4, 31.3, 40.0, 51.0, 62.0, 70.2, 75.0, and 76.3 pill cm at 0, 100, 200, 300, 400, 500, 600, and 700 C, respectively.
₩ .	#	ádvarna. L.	361	U	323-1173		50.85	4 8.5	0.12 Mn, 0.024 C, and 0.003 S; annealed at 960 C; Advance (55 Ch. 45 Ni) used as comparative material.
•	*	Stellen, S. M. and Stranger, V. H.	1808	υ	513-686	N.S. nickel, commercial	\$	9.6	0.14 Cu, 0.09 Mn, and 0.014 S; 2 cm in diameter and 15 cm long; lead used as comparative material.
•	2	Section, S. M. and Breague, W. H.	1983	υ	313.2	N. S. nickel, commercial			Similar to the above specimen.
	5	Shelton, S. M. and Dranger, W. H.	38	υ	339-864	N. S. nickel, commercial			Similar to the above specimen except nickel used as comparative material.
•	¥	Bell, L.P. and MacDonald, J.J.	25 25 25	2	338-472	Nickel, commercial	4.06	0.2	0.1 Mg, 0.06 Co, 0.03 Sn, 0.026 C, 0.02 Si, 0.01 Cr, 0.01 Mn. 0.005 S, 0.003 Ti, and 0.002 each of Al and Pb; cylindrical specimen.
•	ž	Berger, L. and Refer, D. D.	3	a	4.2,80		86.2	14.8	0.2 cm diameter and 5.2 cm long; fased in an induction furnace under vacuo of 10°3 tour; the mixture of Ni and Pe supplied by Johnson-Matthey; cold-rolled, annealed at 1173 K for 2 hr. slowly cooled; electrical resistivity 3.78, 4.60, and 13.22 µC on at 4.18, 90.5, and 292.7 K, respectively.
•	ž	Berger, 1. and Rivier, D.	1962	٦	7.7				The above specimen measured in transverse magnetic fields ranging from 0.150 to 1.92 W $\rm m^{-2}.$
•	ž	Manger, 1. and Marker, 12.	1962	a	2				The above specimen measured in transverse magnetic fields resping from 0.373 to 1.92 W m^{-2} .
2	\$	Parties, 1. and Mindes, D. D.	1862	1	4.3				The above specimen measured in longitudinal magnetic fields ranging from 0.079 to 1.76 W $m^{-2}.$
=	Ž	Marker, D. and		.	2				The above specimen measured is longitudinal magnetic fields reaging from 0.061 to 1.41 W $\rm m^{-2}$.
# .	2	Person, T. and Orak, D.	3	u	1.3-106			8.0	About 3 mm in dismeter and 9 cm long; chill-cost under vacuum; annealed at 860 C for 15 hr; recidual electrical resistivity 9.307 µΩ cm.
2	=	Person, T. and Greek, D.	3	,a	2.8-100			1.7	Similar to the above specimes except residual electrical residuity 0.713 $\mu\Omega$ cm; electrical resistivity 7.99 $\mu\Omega$ cm at 9 C.
2	=	State, T. and	3		4.5-106			*	Similar to the above specimen except residual electrical resistivity 1.90 $\mu\Omega$ cm; electrical resistivity 9.64 $\mu\Omega$ cm at 0 C.
2	*	Note: V. A. B.	13	H	1.34.1	Permailoy	2	16	Calculated composition.
*	*	1000	1770	-1	1. T .:	Permalloy	12	29	Calculated composition.
H	*	Total W. S. and	1976	1	i.	Permalloy			The above specimen measured in a longitudinal magnetic field of 0.751 T.
ž	*	Total, W. B. and Barger, L.	1970	2	İ	Permelloy			The above specimen measured in a longitudinal magnetic field of 3, 3 T.
·		a to find a							;

24. () L

TABLE 21. THERMAL CONDUCTIVITY OF NICKEL + IBON ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

ethor(s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Ni Fe	Composition (continued), Specifications, and Remarks
7	1970	7	1.54.0	Permalloy		The above specimen measured in a longitudinal magnetic field of 5.94 T.
1	1970	H	1.64.4		29.88	Propered by fasing Johnson-Matthey metals in argon atmosphere, remelting and casting into 0.5 in. rods in helium, evaging to 0.3126 in. in dismeter, bomogenizing in hydrogen at 1200 C for 38 hr, cooling to 900 C in vacuum and ansealing for 2 hr; grain size $0.1\sim0.5$ mm; electrical resistivity 4.24 $\mu\Omega$ cm at 4.2 K; run 7.
1	1970	1	1.54.4			The above specimen measured in a parallel magnetic field of 7.81 MG.
	1970	1	1.6-4.4			The above specimen measured in a parallel magnetic field of 33,00 kG.
_	1970	ı	1.61.4			The above specimen measured in a parallel magnetic field of 59. 40 MJ.
_	1970	ı	1.54.3			The above specimen, no magnetic field; rue 8.
_	1970	ı	1.34.4			The above specimen measured in a parallel magnetic field of 7.81 MG.
•	1970	H	: Ţ:			The above specimen measured in a parallel magnetic field of 36.40 kG.
70	1970	ı	1.34.7		18.9	Same preparation method as the above specimen; grain size 0.1-0.5 mm; electrical resistivity 4.32 $\mu\Omega$ cm at 4.2 K; run 2.
7	1970	ų	1.34.6			The above apecimen measured in a parallel magnetic field of 7.15 kG.
7	1970	H	1.44.6			The above specimen measured in a parallel magnetic field of 39.49 kG.
¥	1970	н	1.34.6			The above specimen measured in a parallel magnetic field of 7.15 kG; run 3.
4	1970	a	1.24.6			The above specimen measured in a parallel magnetic field of 33.00 kG.
7	1970	a	1.34.6			The above specimen measured in the same magnetic field; run 4.
7	1970	H	1.34.6			The above specimen measured in a parallel magnetic field of 59.40 kG.
1	8	H	123-613	HyMu 80	79.24 15.283	0.71 Mm, 0.19 St, 0.06 Cr, and 0.049 C; 2.54 cm dismeder and 37 cm long; supplied by international Michael Co.; powder packed in, assembled in hydrogen at 922 K (1200 F) for 5 hr and at 1450 K (2150 F) for 5 hr and at 1450 K (2150 F) for 5 hr, furnace cooled to 700 K (800 F), then cooled in hydrogen; smoothed values reported.
	1961	-1	15-93	5277	57.5	1.31 Mn, 9.34 C, and 0.14 St; as forged.

The silver-palladium alloy system exhibits complete solid solubility and is analogous to the copper-nickel alloy system, but without the complications of ferromagnetic effects and with an electronic specific heat that is better behaved [109].

There are 32 sets of experimental data available for the thermal conductivity of this alloy system. However, of the 18 data sets available for Ag + Pd alloys listed in Table 29 and shown in Figure 41 six sets are merely single data points, and of the 14 sets for Pd + Ag alloys listed in Table 30 and shown in Figure 42 seven sets are single data points.

This allow system is the most extensively studied among the noble metal-palladium alloy systems, but the only reliable experimental data on thermal conductivity are the low temperature measurements by Kemp, et al. [110] (Pd + Ag curves 6-8 and Ag + Pd curves 6-14). Tainsh and White [111] (Ag + Pd curves 16-18), and Fletcher and Greig [84] (Pd + Ag curves 11-14). The early measurements by Schulze [93] (Pd + Ag curves 1-5 and Ag + Pd curves 1-5) of the room temperature thermal conductivity of these alloys at intervals of 10% gave values that are considerably above the actual values in some cases. Even after correcting for the lattice component, the Lorenz ratios corresponding to Schulze's values for the 60, 70, and 80% Pd alloys are respectively 30, 44, and 35% greater than the classical value; it is unlikely that band structure effects could cause such large Lorenz ratios in these alloys at 298 K. Further evidence that Schulze's values are unreliable is that he used the same method to measure the thermal conductivity of gold-palladium alloys, and that interpolation between his values for his 30 and 40% Pd specimens yields a value which is more than 25% greater than that obtained by Laubitz and van der Meer [85] for a specimen containing 35% Pd. On the other hand, the more recent measurements by Zolotukhin [112] at somewhat higher temperatures on specimens containing 25 and 50% Ag (Pd + Ag curves 9 and 10 and Ag + Pd curve 15) appear to be too low, in the second instance by approximately 25%.

This alloy system is one of the few in which the thermal conductivity has been measured over a very wide range of compositions from liquid helium temperatures to 100 K. The measurements by Kemp, et al. were undertaken to obtain fundamental information about the electron-phonon interaction, in particular to see whether electrons interact with lattice waves of all polarizations, to determine the dependence of the interaction on electron concentration and to deduce, by interpolation between these and similar measurements on silver-cadmium alloys, the contribution of the electron-phonon interaction to the lattice thermal resistivity of silver. The study revealed the cusp-like behavior of the low temperature lattice conductivity as a function of composition, as discussed in Section 2 on Theoretical Background, and led to additional measurements by Tainsh and White following further

*

いきない からかいまん お

annealing at higher temperatures to determine whether or not this behavior was caused by the locking in of dislocations by solute atoms. While the cusp-like behavior persisted, it was found that an increase in the annealing temperature from 883 K to 1213 K resulted in increases of 30% or more in the lattice thermal conductivities of these specimens at liquid helium temperatures.

A comparison of the values calculated from eqs. (12) and (35) in the region above the lattice component maximum with the experimental values of Kemp, et al. revealed that the calculated values for the silver-rich alloys were too low, the total conductivity by as much as 8% and the lattice component by as much as 25%. It was found that both the total and lattice thermal conductivities could be brought into good agreement with the experimental values for all compositions from 2 to 30% Pd by increasing the value of the lattice thermal conductivity of silver by 50%. Although such an increase does not require unreasonable values for the Debye temperature or the Grüneisen parameter in the equation used to estimate the lattice thermal conductivity of the elements, it raises considerable doubt as to the reliability of such estimates. While the separation of the electronic and lattice components of very dilute alloys at temperatures above that of the maximum of the lattice component involves some uncertainty, a 50% error in the lattice component is unlikely, although excellent agreement was obtained for the lattice conductivities of both 2 and 5% Pd alloys, it was decided, in view of the conflicting evidence, not to report even provisional values for the lattice thermal conductivity of the dilute silver-rich alloys. In addition, while the measurements of Tainsh and White established that, in the region below its maximum, the lattice thermal conductivity of well-annealed samples is substantially greater than the values obtained from the first set of measurements, these later measurements were limited to temperatures below 10 K and to compositions of 2, 5, and 10% Pd and could, therefore, only serve as a rough guide for correcting the values of the lattice component obtained from measurements on specimens annealed at 883 K; accordingly, the values for the silver-rich alloys at temperatures below the maximum are provisional.

The lattice thermal conductivity of the palladium-rich alloys of this system was investigated by Fletcher and Greig, who measured the thermal conductivity of specimens containing 5, 10, 15, and 20% Ag from liquid helium temperatures to about 100 K. Their study showed that the strong electron-phonon interactions in these alloys greatly reduces the low temperature lattice thermal conductivity, causing its maximum to occur at much higher temperatures than in the silver-rich alloys. The increase in the temperature of the maximum of the lattice component is even greater than that shown in their graph because, at the higher temperatures, the method used to separate the electronic and lattice components yields values of the latter which are below the true values by an amount which increases with temperature, so that the lattice components of these alloys are still increasing at 100 K.

This is consistent with the 100 K temperature of the maximum deduced from the measurements

by Kemp, et al. on a specimen containing 30% Ag. Since the measurements on the Pd-rich alloys did not extend to temperatures above those of the lattice thermal conductivity maxima, the values of the lattice component in this region were obtained by smoothly joining plots of the values deduced from measurements to those calculated from eq. (35).

The recommended values for k, k_e , and k_g are tabulated in Table 28 for 25 alloy compositions covering the full range of temperature from 4 to 1200 K for most cases. These values are for well-annealed alloys. The values for k are also shown in Figures 39 and 40. The values of residual electrical resistivity for the alloys are also given in Table 28. The uncertainties of the k values are stated in a footnote to Table 28, while the uncertainties of the k_e and k_g values are indicated by their being designated as recommended or provisional values. The ranges of uncertainties of recommended and provisional values are less than $\pm 15\%$ and between ± 15 and $\pm 30\%$, respectively.

· ·

معدي والواداة

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 28. RECOMMENDED THERMAL CONDUCTIVITY OF SILVER-PALLADIUM ALLOY SYSTEM

•				Pd: 1.00	1.00% (1.01 At. %)	At. %		Pd: 3.00	3.00% (3.04 At. %)	At. %) At. %)		Ag: 85.0	5.00% (5.07 At. %)	At. %) At. %)
ø,	po = 0.2400 pa cm	C.B.		0 = 0	= 0.4900 µAcm	a		p ₀ = 1	Po = 1.390 pacm	a		Po-2	Po = 2.280 pD cm	a
H	4. *	, to	H	*	Me.	, to	F-	м	, a ^c	. Ma	۴		°	
4 0.44	F 0.407	0.04154	•	0.230	0.199	0.0310#	•	0.0963#	0.0703	0.0260	•	0.06344	0.0432	0.0202
		0.09654	•	0.065		0.0655	•	0.1584	0. 105	0.05354	• • —-	0.108	200.0	0.04484
		0.1304	P	6.00	. 288 0 499	0.100	° <u>°</u>	0.220	0. 141 0. 176	0.124	9 =	0.2124	2000	0.07.00
21 22	2	0.246	12	0.9634	0.748	0.215	- 21	0.453‡	0.264	0.189*	22	0.3194	0.162	0.157
20.5		0.285	8	1.25*	0.997	0.254	8	0.571	0.352	0.219	8	0.405	0.216	0, 1894
ei		0.298‡	25	1.47*	1.20	0.272	22	0.665	0.433	0.232*	25	0.467	0.262	0.205
ų.		0.300	8	1.67*	 8	0.276	8	0.748	0.513	0.235	8	0. 521	0.311	0.210
20 % 20 %		0.295#	\$ 8	1.96* 2.11*	1.69	0.272#	\$ 8	0.892# 1.01	0.661	0.231*	3 3	0. 68 5	o. 494	0.208#
		-	-											
e S			3 8	2.184			2 8	1.03			3 8	5 C		
			8	2.35*			8	1.25			 	0.877		
d	•		8	2.44			8	1.33			8	0.838		
100 2.19	•		2	2. 52*			<u>ş</u>	1.41			<u>8</u>	0.88		
	•		120	2.87*			150	1.76			32	1.27		
	•		8	3.12			8 8	2.02			<u> </u>			
			2 6	5. 2. c			2 6	2. 24×			3 8	<u>.</u>		
	<u>.</u>		38	3. 41*			38	. 5 \$			38	**		
	•		988	3.50			320	2.57*			350	2.04		
	٠		\$	3.57*			8	2.69			\$	2.18*		
	•		<u>8</u>	9.63 4			8 8	2°.89			8	2.41*		
14 34 SE			38	3. 67*			38	3, 12*			35	2. 78. 72. 48.		
	•		200	3.67*			000	3.18*			98	2. 83#		
3.74			8	. 624 429			8	3.21*			8	3 :		
	•		900	3.57*			1000	3.22*			1000	2. 83#		
1100 3.0	•		1100	3.51*			8				1100	2		
	•		1200				1200	3, 224			8 8 -	* *		

1 thermal conductivity, k, are as follows:
±10% below 40 K, ±7% between 40 and 300 K, and ±10% above 300 K.
±15% below 40 K and ±10% above 40 K.
±15% below 40 K and ±10% above 40 K.
±15% below 40 K and ±10% above 40 K. 99. 30 Ag - 0. 50 Ptt 99.00 Ag - 1.00 Ptt 97. 60 Ag - 3.00 Ptt 95.00 Ag - 5.00 Ag - 5.00 Ptt 95.00 Ag - 5.00 Provisional value.

* In temperature range where no experimental thermal conductivity data are available.

(Temperature, T. K. Ibermal Conductivity, k. W cm. K. Electronic Thermal Conductivity, k. W cm. K. Lattice Thermal Conductivity, k., W cm. K. TABLE 28. RECOMMENDED THERMAL CONDUCTIVITY OF SILVER-PALLADIEM ALLOY SYSTEM (continued)

A SAME OF SAME

•	Ac: 30.00	90, 00% (89, 86 At. %) 10, 00% (10, 12 At. %)	At. %) At. %)	·····	Ag: 85.00° Pd: 15.00°	5.00% (84.82 At.%) 5.00% (15.15 At.%)	At. %) At. %)		Ag: 80.00 Pd: 20.00	80.00% (79.78 At.%) 20.00% (20.22 At.%)	At. %) At. %)		Ag: 75.00 Pd: 25.00	75.00% (74.74 At. %) 25.00% (25.26 At. %)	At. 35) At. 35)
	P 4.	p = 4.46 pcm	·		, o = 6.	= 6.46 µncm			8 = 0	ρ ₀ = 8.41 μΩcm			P ₀ = 1	P ₀ = 10.60 µA cm	a
۴		**	, to	H	<u> </u>	×*	, to	E+	.14	'Ag	a ^{to}	£-	м	M.	.
-	0.0364	9.0219	0.0145	4	0.0299##	1	0.0148	*	0.0270*	0.0116	0.0154	•	0.0253**	ď	0.0161
•	0.0662*	6353	0,0333	•	0,0553##	_	0.0326	9	0.0518	0.0174	0.0344	•	0.0483##	_	0.0945
€ (0.1004	9.0438	0.0562		0.0853**		0.0550	60	0.0812	0.0232	0.0580		0.0764*		0.0200
2 2		0.0578 0.0622	0.0775\$	2 2	0.119##	0.0378	0.0810# 0.125#	2 2	0.112° 0.165¢	0.0290	0.0825	2 2	0.107**	0.020	0. 4 54 04 0. 124#
1			467 6		41100	0000	407 0	: E	*****	040	+070	:	4100		****
R X		0.135	0.157	2 %	0.251**		0.148+	3 %	0.200	0.0381	0.1524	2 2	0.21244		120
8	0. 224	0.161	0.163‡	8	0.272*	0.111	0, 161	ි 	0.241#	0.0856	0.155	8	0.23##	0.080	0.156
\$	6. 274 ⁴	0.213	0.161	\$	0.301**	0.147	0.154	\$	0.265	0.113	0.150	\$	0, 236##	0.0001	0.1464
3	0.417	0.261	0.156	28	0.326*	0.181	0.145	8	0.281	0.140	0.141	28	0.248#	0.112	0.136
8	9.45	0.307	0.147	8	0.351*	0.215	0.136	9	0.298	0.167	0.131	8	0.259#	0.133	0.126
ę	0.491	0.352	0.139	2	0.375	0.248	0.127	2	0.316	0.193	0.123	2	0.271*	0.154	0.117
2	o. 557		0.131	2	o. 4 00 4	0.281	0.119	8	0.333	0.219	0.114	8	0.2854	0.175	0.110
8	e. 565		0.124	8 (0.427*	0.314	0.113	8 ;	0.352	0.245	0.107	8 (0.299	0.196	
8	0.602	c. 15 5	0.117	<u>8</u>	0.452#	0.346	0.106	<u></u>	0.371	0.270	0.101	음 	0.314*	0.216	0.0075
8	0.780	0.687	0.0030	32	0.581*	0.497	0.0840	120	0.472	0.392	0.0800	32	0.883	0.316	0.0770
2	6. 5.1 9	0.8 6 6	0.0775	<u>გ</u>	0.706#	0.636	0.0100	<u>8</u>	0.573*	0.506	0.0670	8	0.475	0.410	0.0645
2	1.14	1. 8	0.0665	200	0.827*	0.766	0.0610	22	0.671*	0.613	0.0280	200	0.556*	88	3
E	1.10	1.10	0.0627	2	0.881*	0.823	0.0575	273	0.716*	0.661	0.0545	23	0.5934	0.540	
R	X.	1.18	0.0286	8	0. 94 2*	0.888 0	0.0539	8 	0.766	0.715	0.0511	<u>8</u>	o. 655#	2 2 3	
2	1.8	1. 8	0.0526	88	1.05*	1.8	0.0487	320	0.858*	0.812	0.0463	360	0.711*	0.667	9.0448
2	- 2	1.45	6.01 28	\$	1.16*	1.11	9.044	9	0.946*	86.	0.0424	\$	0. 782*	0.74	0. 0 (11
2	÷	8:1	0.0406	8	1.35	1.31	0.0380	8	1.11*	1.03	0.0364	200	0.922#	286	0.8864
2	1.2	3.5	0.0354	\$	-: 5	1.49	0.0333	§	1.26*	1.23	0.0320	8	1.05	2	. 8 2
<u>B</u>	Ł	ĭ	6. 0313	<u></u>	1.68	1.65	0.0297	28	 8	 8	0.0287	<u></u>	1.17*	1.14	
1	2.25	2.18	0.0262	8	1.84	1.80	0.0268	8	1. 55	3:	0.0260	8	1.24	1.8	0.0255
£	r K	8	0.0256	8	1.93	1.91	0.0245	8	1.62*	8	0.0238	8	1.38	1.8 8	0.6834
8	7.4i	2	0.6235	8	2.02	2. 8	0.0226	<u>§</u>	1.71*	1.68	0.0220	<u>8</u>	1.464	1.43	0. BE16
2	4	3	0.0217	1100	2. 104	2. 9	0.0208	1100	1.78	1.76	0.0204	1100	1.5	1.61	0.0001
E	Š	N N				7									

Unesthateles of the total thermal conductivity, k, are as follows: 80.00 Ag - 10.00 Ft ± 15% below 40 K and ± 10% above 40 K. 86.00 Ag - 15.00 Ft: ± 20% below 40 K and ± 10% above 40 K. 80.00 Ag - 20.00 Ft: ± 20% below 40 K and ± 10% above 40 K. 75.00 Ag - 25.00 Ft: ± 20% below 40 K and ± 10% above 40 K.

Provintent value

· In temperature range where no experimental thermal conductivity data are available.

matere, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 28 RECOMMENDED THEN MAL CONDUCTIVITY OF SILVER-PALLADIUM ALLOY SYSTEM (continued)

7		30. 00% (30. 30 At. %)	ર કહે		Ag: 65.007 Pd: 35.007	15. 00% (64. 69 At. %) 15. 00% (35. 31 At. %)	14. %) 14. %)		Ag: 60.00 Pd: 40.00	60.00% (59.67 At.%) 40.00% (40.33 At.%)	At. %) At. %)		Ag: 55.00 Pd: 45.00	55. 00% (54. 66 At. %) 45. 00% (45. 34 At. %)	At 53)
	A.= 13	A = 13.01 Dem			Po = 15	- 15.62 pacm			p. = 1	Po = 18.44 (Acm	•		P. = 2	Po = 21. 56 pft cm	
	_	40	a to	H		°	at to	ě	ж	40 °		H	×	,4°	Al ^{bo}
-	100	0.0078	0.01064	7 4	0.0231**	0.0628	0.0168#	**	0.0222	0.00530	0.0169		0.021204	0.00463	0.0107
• •	# # # # # # # # # # # # # # # # # # #	85	0.0		0.0000	_	0.0565	- œ	0.0646	0.0106	_	· 60	0.0576*		0.0
22		6. 9. 8. 8. 8. 8. 8. 8.	0.06364	22	0.0945##	0.01 56 0.0235	0. 07894 0. 1214	2 2	0.0881#	0.0132 0.0199	0,0749# 0,114#	22	0.0778*	0.0113	0.0 0.0
. .	1186	9. 6776	0,1684	2	0.175##	0.0313	0.144	8	0.163#	0.0265	0.136	8	0.144*#	0.0227	0.1214
R		7	0.156#	#	0.191**	0.0387	0.152	2	0.179	0.0328	0.146	2	0.162	0.628	9
5 4 R 1			0.1564	8 \$		0.0463	0.155#	8 \$	0.1804	0.0393	0.150	8 \$	177		
	ij	9. 872	6.13	3	0.21	0.0763	0.138	38	0.200	0.0648	0.135	8	0.189	0.0553	0.19
8	223	6.10	0.136	8	0.216	0.0909	0.125	8	0.201	0.0772	0.124	8	0.185	0.0650	0.118
e	2	9. 12 21. 22 21. 23 21. 23 21. 24 21. r>25 26 26 26 26 26 26 26 26 26 26 26 26 26	0.117	28		90.10	0.114	2 2	0.207 204 204	0.088 6.06 6.06 6.06 6.06 6.06 6.06 6.06	0.115	2	0.157*		
3		6.15	0.162	8	0.236	0.134	0,101	3	0.214	0.114	0.100	8	0.195	0.0974	0.0015
•	Ę	o. 17	0.0968	2	0.245	0.149	0.0960	<u>8</u>	0. 221	0.127	0.0840	<u>8</u>	5 0.0	0.10 8	
931			0.0765	150	0.294	0.219	0.0750	150	0.200	0.186	0.0740	31	0.22	0.156	5
	Ė		0.0450	R 2	, 49 40 40 40 40 40 40 40 40 40 40 40 40 40	986	0.0540	2 2 2		2 2	0.0	8 8			
E	Ė		0.0020	22	0.44	0.377	0.0510	273	0.371*	0.320	0.0510	273	, K	o.	0.0610
2	Ž	*	0.9684	8	0.457*	9	0.0479	<u>8</u>	o. 336	0. 348 348 348 348 348 348 348 348 348 348	0.0479	8	9. 26		0.0
2 :	į			38	0.511 2.511	2 2 2 3	0.0436 5436	88	0.441#	0.391	0.0435	8	\$ 5 0 0		
:8	Ė	12		8	9.		0.0346	8	0.567	0.532	0.0347	3	0.4	£	3
	į		0. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8 5	0. 750t	0.727 0.818	0.0307	8 8	0.64 2.54 3.54 3.54 3.54 3.54 3.54 3.54 3.54 3	0. 613	0.0307 0.0278	8 8	9. S. C.	0. 512 0. 572	
•	10			8	0.926	108	0.0252	§	7804	75.	0:0259	2	0.6514	9	0.0255
8		**		8	0.907*	0.974	0.0231	8	0.837*	0.813	0.0232	2	0. 701*	0.677	0.0236
- 8:	*	Z,	0. et15	8	1.00	: 5	0.0215	1000	0.888±	0.867	0.0216	90	0.750*	0.728	0.0218
		R !		8 5 5 5	1.12	1: 1:	0.0200	82	0.9364 0.0364	0.917	0.0201	2	1	13	
r	Ì	k	0.0157	3	1. 18*										j

70.60 Ag - 30.60 Ft + 20% below 40 K and ±10% above 40 K. 65.60 Ag - 20.60 Ft + 20% below 40 K and ±10% above 40 K. 65.60 Ag - 20.60 Ft + 20% below 40 K and ±10% above 40 K. 60.60 Ag - 40.60 Ft + 20% below 40 K and ±10% above 40 K. 85.60 Ag - 45.60 Ft ±20% below 40 K and ±10% above 40 K.

Perferent sales.

beargerature trage where so experimental thermal conductivity data are available.

persture, T. K; Thermal Conductivity, k, W cm⁻¹ K⁻¹; Electronic Thermal Conductivity, k_e, W cm⁻¹ K⁻¹; Lattice Thermal Conductivity, k_e, W cm⁻¹ K⁻¹] RECOMMENDED THERMAL CONDUCTIVITY OF SILVER-PALLADIUM ALLOY SYSTEM (continued) * TABLE 28.

~ ==	Ac 11.00	38. 80% (49. 86 At. %) 38. 80% (30. 34 At. %)	44 88		Ag: 45.007 Pd: 55.007	45. 60% (44. 66 At. %) 55. 00% (55. 34 At. %)	t (%)		Ag: 40.009 Pd: 60.009	40.00% (39.67 At.%) 60.00% (60.33 At.%)	1t. 5) 1t. 5)		Ag: 35.00 Pd: 65.00	35.00% (34.69 At.%) 65.00% (65.31 At.%)	FF SS
	P. " 27	A = 27.44 pDcm			% = %	36. 50 µA cm			Po = 40	Po = 40.15 pacm			8 = °	A = 39.40 (Dem	
	"	" •	, _M ==	F		,4°	, a to	۴	.	a°	A to	F	_	Me.	, we
••	0.01974	0.0000	0.0161*	7 6	0.0174*	0.00268	0.01474	7 6	0.0150##	0.00243	0.0126 [‡] 0.0206 [‡]	7.0	0.0132**	0.00248	0.01074
•	0.0	0.00712	0.0431	•	0.0411**	0.00536	0.0356‡	•	0.0335##	0.00487	0.0286*	*	0.0268*	0.00486	0.0218
22	o. 9574 0. 9574	0.0134 0.0134	0.05654 0.06404	2 23	0.0527** 0.0755**	0.00669 0.0100	0.0460# 0.0655#	22	0.0423##	0.00609 0.00913	0.03624	22	0.0332** 0.0476**	0.00830	0.0270
*	0.1184	9. 61.78	0.100	8	0.914*	0.0134	0.0780	8	0.0757*	0.0122	0.0635*	8	0.0599##	0.0124	0.0475
X I	0.1314	9 5	0.109	2 8	0.103**	0.0166	0.0860	8 8	0.0866**	0.0151	0.0715¢	2 2	0.0703**	0.0153	0.05504
3 3 3		9	0.117	325	0, 123*	0.0264	0.0965	4 8	0, 106##	0.0240	0,0820	38	0.0933**	0.0243	0.0
8 8	207.6		0.114	3 8	101.0	7960	0.09634	3 8	11121	0.00	0.0000	3 8	1	9000	o orași
8 2	6. 166 0. 166	989	0.110 0.106	8 2	0.13744	0.0350	0.0960	8 2	0, 1224	0.0356	0.0865	3 2	0.121**	0.0417	0.073
8	0.100	988	0.0996	2	0.144	0.0514	0.0930	8	0.133*	0.0469	0.0860	8	0.127*	0.0474	0.0786#
2	0.171 0.175	o. 9 9 4 1 6 1 7	0.0905 0.0905	8 8	0.148* 0.151*	0.0576 0.0637	0.0900	8 8	0, 138 0, 142	0.0526 0.0582	0.0850 0.0836	8 <u>8</u>	0. 139## 0. 138##	0.0583 0.0583	0.0000
8	0,190	0.123	0.0745	150	0.167*	0.0935	0.0735	150	0, 159*	0,0859	0.0730	8	0.158	0.0854	0.0130
2	, E	0.15	0.0630	8	0.186*	0.122	0.0635	8	0.175	0.111	0.0640	8	0.177	0.111	0.0686
RE			0.0525	3 2	0,216	0.130 162	0.0536	222	0, 202*	0,136	0.0543	2 22	0.0	0.147	0.0
3	0.27	0.13	0.0488	8	0.226	0.176	0.0499	8	0.212	0.161	0.0513	2	0.214	0.161	0.0632
8	9.30	0.28	0.0445	88	0.249	0.204	0.0454	320	0.233#	0.186	0.0467	98	0.233	0.185	9.0
ij			0.0354	3	0.3164	0.281 0.281	0.0362 0.0362	3 8	0.297	0.260	0.072 272	3 8	. 1001 . 0		5 5 5 6 5 6 5 6
3 2	įį	;;	0.0314 0.0204	3 8	0. 362* 0. 407*	0.330 0.378	0.0327	8 5	0.339* 0.381*	0. 30 6 0. 352	0.0330 0.0296	8 8	0.874		5 5 2 5
1			0.0250	8	0.453	0.426	0.0264	8	0.424*	0.397	0.0272	8	0.417*	0.36	0.0251
3	-	3	0.0830	3	0.499*	0.474	0.0244	8	0.468#	0.443	0.0250	2	0.461*	0.436	0.6250
				8 5		0.522 5.523 5.523	0.0226	8	0.511* 0.564	0. 488 0. 536	0.0232	2 2 2 2		9 9 2 1	
1					100	0.57	U. 0411	311			1770				

St. 60 Ag - 80, 60 Neb all thermal conductivity, k, are as follows: 30, 60 Ag - 80, 60 Neb ± 15% below 40 K, and ± 10% above 40 K, 40, 60 Ag - 80, 60 Neb ± 15% below 60 K, and ± 10% above 40 K, 40, 60 Ag - 60, 60 Neb ± 15% below 50 K, and ± 16% above 50 K.

Produtezal value.

emperature range where no experimental thermal conductivity data are available.

re, T. K. Thermal Combictivity, k. W cm-1 K-1; Electronic Thermal Conductivity, ke. W cm-1 K-1; Lattice Thermal Conductivity, ke. W cm-1 K-1 Table 28. Recondended Thermal Conductivity of Silver-Palladium alloy system (continued) [†]

A ... A . Park to the land ...

	70.00% (70.20 At. %)	At. %)		Pd: 75.00	75. 00% (75. 26 At. %)	(% J)		Ag: 20.00 Pd: 80.00	20.00% (19.75 At. %) 80.00% (80.22 At. %)	At. 75		Ag: 15.00 Pd: 86.00	15. 00% (14. 63 At. %) 86. 00% (86. 17 At. %)	At. 3)
~	A = 34,11 pDen			P° - 80	29.95 µD cm	1		6 - 8	24. 13 pass			00-1	Po = 18.15 pD cm	
,,	"	ad the	T		M.	k g	F		M.	A PO	۲		*	, 1 0
3	6. 80 <i>27</i> 8	0.0000	••	0.009064	0.00236	0.00580	••	0.00005	0.00405	0.00400	••	0.00007	0.00538	0.00269
	6. 46557	9.010	•	0.0	0.00653	0.0125		0.0175	e. 90610			0.017	6. 0198	
33	2000	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	2 2	0.0241*	0.00616	0.0159 0.0240	2 22	0.0225 0.0350	0.0101 0.0152	0.0124	012	0. 0228 0. 0258	0.0135	0.00925 0.0157
	868	- 8877	2	0.0460	0.0163	0.0317	8	0.0472	0.0202	0.0270	8	0.0496	0.020	0.00
	6.0170	0.0448	# H	0.0563*	0.0196	0.0365	22	0.0583	0.0243	0.0340	2	0.0618	0.0	0.0205
			89	0, 25 53;	0.0330	0.0445	8 9		0.000	0.0401	8 9	0.046	0.088 0.088	
	6.0000	0.0	28	0.0905	0.0383	0.0612	8	0.105	0.0465	0.0585	8	0.117	900	.0
m 0.110	•	90.0	8	0.111*	0.0462	0.000	8	0.119	0.0548	0.0645	8	0.134	0.0711	0.0625
8 0.113	0.0456	0.0738	28	0. 121. 121.	0.0521	0.0685	28	0.131	6350 0 0	0.0680	28	0.74	9	0.0 0.0 0.0 0.0 0.0 0.0 0.0
3		9790	38	0.138	0.0657	0.0720	88	0.152	0.0787	0.0730	88		9	0.0730
3	•	9.61	8	0.1454	0.6723	0.0725	3	0.159	o. 0864	0.0740	<u></u>	3		- 4
•	0.0018	0.0735	3 5	0.17	0.163	0.0725	35	0.197*	0.121	0.07	23		0.16	9
		0.0615	3 2			0.0635	3 3			0.0680	3		0.115	2 2 5
21	9.78	0.0000	22	0.25	0,172	0.0615	27.2	0.261*	0.195	0.0466	23	0.301*		9.03
		200	S	28.0	22.0	0.0036	¥ 5	496		0.0573	9		278	0.00
	012.0	0.0465	\$	0.287#	0.236	0.0491	3	0.319	98.0	0.0836	\$		90,00	0.0675
		2	28	22.	287	0.0425	28	4.964	0.319	0.0454	88	***		
	28.0	0.001	3	0.417	9	0.038	38	0.455	0.45	0.086	1	6	9	986
2		0.0000	2	0.461+	0.450	0.0308	8	0.499#	0.466	0.0327	8	0.541*	908.0	0.0383
j	-	0.0270	2	0.304	0.476	0.0283	8	0.543*	0.513	0.0300	8	0.585	0.552	0.0324
		0.0	8	0.547*	25 25 25 25 25 25 25 25 25 25 25 25 25 2	0.0262	200	\$ 286°	0.558	0.0278	9	0.627 2.027	o. 597	0.02%
		. 62.50	311		200	U. UZ4D	317	2000	\$ 3 3	0.0238	311	. 664	3	6.623

mourtainties of the total thermal conductivity, k, are as follows:

38.00 Ag - 78.00 Pd: ±10% below 100 K, ±7% between 100 and 300 K, and ±10% above 300 K.

St. 00 Ag - 78.00 Pd: ±10% below 150 K, ±7% between 150 and 300 K, and ±10% above 300 K.

St. 00 Ag - 68.00 Pd: ±10% below 150 K, ±7% between 150 and 300 K, and ±10% above 300 K.

15.00 Ag - 68.00 Pd: ±10% below 150 K, ±7% between 150 and 300 K, and ±10% above 300 K.

belighter that where so experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-' K-'; Electronic Thermal Conductivity, k, W cm-' K-'; Lattice Thermal Conductivity, k, W cm-' K-'] TABLE 28, RECONDAENDED THERNAL CONDUCTIVITY OF SILVER-PALLADICM ALLOY SYSTEM (continued)

The second secon

		98.00% (90.12 At.%)	11.53)		Pd: 95.00	5. 00% (95. 06 At. %)	At. 5.)		Pd: 97.00	97.00% (97.04 At. %)	At. %)	-	Pd: 99.00	99. 00% (99. 01 At. %)	At. %)
	4°- 12	A = 12.16 µOcm			9 = 9	= 6.08 pacm			Po = 3	Po = 3.670 pacm	3		00=1	Po = 1.270 LA cm	8
Į.,		м•	A ⁰	۴	м	ae ae	A 100	4	.	.40	.460	F	<u>_</u>	×°	, M 100
4.	99886	0.00004	0.00151	7 (0.0170	0.0161	0.00090	40		0.0266		•		0.0769	
	8	9.010	0.00480	- 6	0.0355	0.0321	0.00342	.		0.0533		- œ		0.154	
2:	Ę	1983	0.0088	2:	0.0454	0.0402	0.00515	2;		0.0666		2;		0.192	
				3 8			0.0103	។ ៖		ceen o		3 8		0.409	
3 3 2 2	ğ	o. 9461	0.0261	2 2	0.120	0.0904	0.0240	2 22		0. 133 0. 153		8 %		0.385	
3	8	0.0566	0.0332	8	0,143	0.112	0.0311	8		0.177		8		0.459	
s d		6. 9786 6. 8675	0.000	3 8	0.184	0.139	0.0452	\$ 5		0.214		\$ 8		0.499 495	
			998	-				3 8				-			
	Ž		0.0100	38	0.269	0.192	0.0770	28		0.269		38		0.452	
2	8	9.15	0.0740	8	0.292	0.208	0.0842	2		0.285		8		0.472	
R	0. z 16 0. z 20	6. 1. 9 1. 9 1. 9	0.0810	38	o. 330	0.222 0.236	0.0838 0.0940	8 S		0.301 0.313		\$ <u>\$</u>		0.475	
	\$	6, 196	0.0875	150	0,393	0.287	0.106	150		0.358		150		0.482	
•	*123		0.0678	2	0.433	0.325	0.108	200		0.389		8		0.490	
		e e	9 6	3 2	0. 450 430 430 430 430 430 430 430 430 430 43	o. 356	0.103	320		0.417		3 22			
	6.37		0.0786	8	0.483	0.387	0.0958	28	0.553*	0.445	0.108	38	0.651*		0.127
.	4	9.1	0.0711	380	0.504	0.419	0.0858	350	0.572*	0.477	0.0958	320	0.663*	0.552	0.111
}	\$ {		0.0640	\$ 3	. S. S. S. S. S. S. S. S. S. S. S. S. S.	0.47	0.0777	\$	0.589*	0.503	0.0862	\$	0.675	0.576	0.0969
;	å		0.0485	3	0.0024	0.546	0.0566	3 8	0.661*	0.00	0.0615	3 8	0.70		0.0682
•	5	C. 50.1	0.0432	Ş	0.641*	0.591	0.0499	\$	0.699	0.645	0.0538	8	0.777*	0.718	0.028
•	58		0.0380	8	0.676*	0.632	0.0446	900	0.733#	0.685	0.0479	8	0.814	0.762	0.0521
•	5	3	0.0366	2	0.713	0.673	0,0404	8	0.769*	0.726	0.0431	8	0.852*	0.808	0.0465
			- Cent	2 5	0.746	0.709	0.0369	8	96.0	0.760	0.0382	8	. 885 . 0	9.9	3
•			30.5			C. 740	C. #555	301	0.831*	0.785	C. 038	811		6.001	

Description of the total thermal conductivity, k, are as follows:

1.00 Ag - 11.00 The ±107. 1.00 Ag - 17.00 The ±107. 1.00 Ag - 17.00 The ±107. experience rungs where no experimental thermal conductivity data are available.

[Temperature, T. K; Thermal Conductivity, k, W cm-1 K-1; Electronic Thermal Conductivity, ke, W cm-1 K-1; Lattice Thermal Conductivity, kg, W cm-1 K-1] TABLE 28. RECOMMENDED THERMAL CONDUCTIVITY OF SILVER-PALLADIUM ALLOY SESTEM (continued)

Ag: 0, 39% (. 40 At.%) Pb: 90, 89% (90, 51 At.%)	A 0. 000 pD cm	1		0. 602 0. 577 0. 572 0. 863	50 0.554 00 0.329 173 0.540 00 0.686* 0.354	0.000 0.700 0.700 0.700 0.707 0.707 0.707	800 0.838- 0.718 0.0533 800 0.879- 0.81 0.8475 1000 0.919- 0.910 0.0429 1100 0.989- 0.910 0.033

+ Uncertainties of the total thermal conductivity, k, are as follows: 0.39 Ag = 90.30 Pet ±10%.

. In temperature range where no experimental thermal conductivity data are available.

TAME 29. THENMAL CONDUCTIVITY OF SLIVER + PALLADIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

1 50 Sention, F.A. 1911 E 206.2 2 50 Sention, F.A. 1911 E 206.2 3 50 Sention, F.A. 1911 E 206.2 4 50 Sention, F.A. 1911 E 206.2 5 50 Sention, F.A. 1911 E 206.2 6 130 Keep, W.R.G., et al. 1900 L 2.2-112 6 130 Keep, W.R.G., et al. 1900 L 2.2-137 7 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 2.2-137 8 130 Keep, W.R.G., et al. 1900 L 1.2-131 8 130 Keep, W.R.G., et al. 1900 L 1.2-131 8 130 Keep, W.R.G., et al. 1900 L 1.2-131	žá l	id.	1	Markor(s)	Year Ma	Method	Temp. Range, K	Name and Specimen Designation	Composition (weight percent) Ag Pd	eition ercent) Pd	Composition (continued), Specifications, and Bernarius
10 Ecces, V. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 112 Ecces, W. R. G., et al. 1986 113 Ecces, W. R. G., et al. 1986 114 Ecces, W. R. G., et al. 1986 115 Ecces, W. R. G., et al. 1986 116 Ecces, W. R. G., et al. 1986 117 Ecces, W. R. G., et al. 1986 118 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 112 Ecces, W. R. G., et al. 1986 113 Ecces, W. R. G., et al. 1986 114 Ecces, W. R. G., et al. 1986 115 Ecces, W. R. G., et al. 1986 116 Ecces, W. R. G., et al. 1986 117 Ecces, W. R. G., et al. 1986 118 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 112 Ecces, W. R. G., et al. 1986 113 Ecces, W. R. G., et al. 1986 114 Ecces, W. R. G., et al. 1986 115 Ecces, W. R. G., et al. 1986 116 Ecces, W. R. G., et al. 1986 117 Ecces, W. R. G., et al. 1986 118 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 112 Ecces, W. R. G., et al. 1986 113 Ecces, W. R. G., et al. 1986 114 Ecces, W. R. G., et al. 1986 115 Ecces, W. R. G., et al. 1986 116 Ecces, W. R. G., et al. 1986 117 Ecces, W. R. G., et al. 1986 118 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 119 Ecces, W. R. G., et al. 1986 110 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 111 Ecces, W. R. G., et al. 1986 112 Ecces, W. R. G., et al. 1986 113 Ecces, W. R. G., et al. 1986 114 Ecces, W. R. G., et al. 1986 115 Ecces, W. R. G., et al. 1986 116 Ecces, W. R. G., et al. 1986 117 Ecc	-	8	Petal's.		126	M	296.2		20	99	I mm wire specimen obtained from Firms Heracus; electrical confuctivity 3.63 x 10.07 cm ⁻¹ at 25 C.
10 Ecces, V.A. 1911 E 200 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 111 Ecces, V.A.C., et al. 1900 L 2.22-1 112 Ecces, V.A.C., et al. 1900 L 2.22-1 113 Ecces, V.A.C., et al. 1900 L 2.22-1 114 Ecces, V.A.C., et al. 1900 L 2.22-1 115 Ecces, V.A.C., et al. 1900 L 2.22-1 116 Ecces, V.A.C., et al. 1900 L 2.22-1 117 Ecces, V.A.C., et al. 1900 L 2.22-1 118 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 111 Ecces, V.A.C., et al. 1900 L 2.22-1 112 Ecces, V.A.C., et al. 1900 L 2.22-1 113 Ecces, V.A.C., et al. 1900 L 2.22-1 114 Ecces, V.A.C., et al. 1900 L 2.22-1 115 Ecces, V.A.C., et al. 1900 L 2.22-1 116 Ecces, V.A.C., et al. 1900 L 2.22-1 117 Ecces, V.A.C., et al. 1900 L 2.22-1 118 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 111 Ecces, V.A.C., et al. 1900 L 2.22-1 112 Ecces, V.A.C., et al. 1900 L 2.22-1 113 Ecces, V.A.C., et al. 1900 L 2.22-1 114 Ecces, V.A.C., et al. 1900 L 2.22-1 115 Ecces, V.A.C., et al. 1900 L 2.22-1 116 Ecces, V.A.C., et al. 1900 L 2.22-1 117 Ecces, V.A.C., et al. 1900 L 2.22-1 118 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 119 Ecces, V.A.C., et al. 1900 L 2.22-1 110 Ecces, V.A.C., et al. 1900 L 2.22-1 111 Ecces, V.A.C., et al. 1900 L 2.22-1 112 Ecces, V.A.C., et al. 1900 L 2.22-1 113 Ecces, V.A.C., et al. 1900 L 2.22-1 114 Ecces, V.A.C., et al. 1900 L 2.22-1 115 Ecces, V.A.C., et al. 1900 L 2.22-1 116 Ecces, V.A.C., et al. 1900 L 2.22-1 117 Ecces, V.A.C., et al. 1900 L 2.22-1 118 Ecces,	~	2	į		116	ы	296.2		9	40) mm wire specimen obtained from Firms Berscus; electrical conductivity 4.56 x 10f Ω^{-1} cm ⁻¹ at 25 C.
110 Econo, W.R.G., et al. 1986 120 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 130 Econo, W.R.G., et al. 1986 131 Econo, W.R.G., et al. 1986 132 Economic W.R.G., et al. 1986 133 Economic W.R.G., et al. 1986 134 Economic W.R.G., et al. 1986 135 Economic W.R.G., et al. 1986 136 Econo, W.R.G., et al. 1986 137 Economic W.R.G., et al. 1986 138 Economic W.R.G., et al. 1986 148 Economic W.R.G., et al. 1986 15 Economic W.R.G., et al. 1986 16 Economic W.R.G., et al. 1986 17 Economic W.R.G., et al. 1986 18 Economic W.R.G., et al. 1986 19	•	2	į		•	M	296.2		92	2	1 mm wire specimen obtained from Firms Heracus; electrical conductivity 6.43 x 104 Ω^{-1} cm ⁻¹ at 25 C.
110 Ecces, V.R.G., et al. 1986 L. 2.2-2-1 110 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 110 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 110 Ecces, W.R.G., et al. 1986 L. 2.3-2-1 110 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 110 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 111 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 112 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 113 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 114 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 115 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 116 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 117 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 118 Ecces, W.R.G., et al. 1986 L. 1.3-2-1 119 Ecces, W.R.G., et al. 1986	•	2	i i		116	M	239.2		2	. 22	1 mm wire specimen obtained from Pirms Beraces; electrical coeffectivity 9.47 x 104 Ω^{-1} cm $^{-3}$ at 25 C.
120 Keep, W.R.G., etc. 1906 L. 1.2-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 2.1-1. 120 Keep, W.R.G., etc. 1906 L. 2.1-1. 120 Keep, W.R.G., etc. 1906 L. 2.1-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 1.5-1. 121 Keep, W.R.G., etc. 1906 L. 1.5-1. 122 Keep, W.R.G., etc. 1906 L. 1.5-1. 123 Keep, W.R.G., etc. 1906 L. 1.5-1. 124 Keep, W.R.G., etc. 1906 L. 1.5-1. 125 Keep, W.R.G., etc. 1906 L. 1.5-1. 126 Keep, W.R.G., etc. 1906 L. 1.5-1. 127 Keep, W.R.G., etc. 1906 L. 1.5-1. 128 Keep, W.R.G., etc. 1906 L. 1.5-1. 129 Keep, W.R.G., etc. 1906 L. 1.5-1. 120 Keep, W.R.G., etc. 1906 L. 1	•	2	į			×	296.2		2	10	1 mm wire specimen obtained from Firms Hersons; electrical conductivity 18.14 x 10° Ω-° cm⁻¹ at 25 C.
110 Keep, W.R.G., et al. 1000 L 1.0-11. 110 Keep, W.R.G., et al. 1000 L 1.0-11. 110 Keep, W.R.G., et al. 1000 L 2.1-11. 110 Keep, W.R.G., et al. 1000 L 2.1-11. 110 Keep, W.R.G., et al. 1000 L 2.1-11. 110 Keep, W.R.G., et al. 1000 L 1.0-11. 111 Keep, W.R.G., et al. 1000 L 1.0-11. 112 Keep, W.R.G., et al. 1000 L 1.0-11. 113 Keep, W.R.G., et al. 1000 L 1.0-11. 114 Keep, W.R.G., et al. 1000 L 1.0-11. 115 Keep, W.R.G., et al. 1000 L 1.0-11. 116 Keep, W.R.G., et al. 1000 L 1.0-11. 117 Keep, W.R.G., et al. 1000 L 1.0-11. 118 Keep, W.R.G., et al. 1000 L 1.0-11. 119 Ke	•	3		1			1.2-112		97.95	90	Rod specimen supplied by Johnson, Marthay and Co., Ltd.; ampealed at 610 C; residual electrical resistivity 0.89 $\mu\Omega$ cm; electrical resistivity 8.82 $\mu\Omega$ cm at 283 K.
110 Kemp, W.R.G., et al. 1866 L. 1.6-1 110 Kemp, W.R.G., et al. 1866 L. 2.0-1 110 Kemp, W.R.G., et al. 1866 L. 2.1-1 110 Kemp, W.R.G., et al. 1866 L. 2.1-1 110 Kemp, W.R.G., et al. 1866 L. 1.5-1 110 Kemp, W.R.G., et al. 1866 L. 1.5-1 110 Kemp, W.R.G., et al. 1866 L. 1.5-1 111 Kemp, W.R.G., et al. 1866 L. 1.5-1 112 Satestita, G.F. 1866 L. 1.5-1	•	3	İ	'.B.G., et el. 1			1.8-128				The above specimen; straked; residual electrical resistivity 0.94 $\mu\Omega$ cm; electrical resistivity 2.64 $\mu\Omega$ cm at 283 K.
110 Keep, W.R.G., et al. 1966 L. 2.0-1 110 Keep, W.R.G., et al. 1966 L. 2.1-1 110 Keep, W.R.G., et al. 1966 L. 2.1-1 110 Keep, W.R.G., et al. 1966 L. 2.1-1 110 Keep, W.R.G., et al. 1966 L. 1.1-1 110 Keep, W.R.G., et al. 1966 L. 1.1-1 111 Keep, W.R.G., et al. 1966 L. 1.1-1 112 Salesatha, G.F. 1966 L. 1.1-1	•	3	İ	.B.G., et al. 1			i. 9-147		96.01	4. 96	Red specimen supplied by Johnson, Matthey and Co., 1441, sameshed at 610 C; residual electrical resistivity 2.20 $\mu\Omega$ cm; electrical resistivity 3.91 $\mu\Omega$ cm at 293 K.
110 Keesp, W.R.G., et al. 1988 L. 2.3-1 110 Keesp, W.R.G., et al. 1988 L. 2.1-1 110 Keesp, W.R.G., et al. 1988 L. 2.5-1 110 Keesp, W.R.G., et al. 1988 L. 1.5-1 112 Satesatha, G.F. 1988 L. 1.5-1	•	ä	j	.B.G., st al. 1			. 0-150		8.23	9. 76	Red specimen supplied by Johnson, Matthey and Co., Lid.; senseled at 650 C; residual electrical resistivity 4.15 $\mu\Omega$ cm; electrical resistivity 6.0 $\mu\Omega$ cm at 283 K.
110 Keese, W.R.G., et al. 1966 L. 2.1-1 110 Keese, W.R.G., et al. 1966 L. 2.2-1 110 Keese, W.R.G., et al. 1966 L. 1.5-1 110 Keese, W.R.G., et al. 1966 L. 1.5-1 114 Satesathte, G.F. 1966 L. 1.5-1	2	ã	Kens.	. P. G. , et el. 13			. 3-187		90.14	19.86	Red specimen supplied by Johnson, Matthey and Co., Ltd.; senseded at 650 C.
120 Kemp, W.R.G., et al. 1966 L 2.5-1 120 Kemp, W.R.G., et al. 1960 L 1.5-1 130 Kemp, W.R.G., et al. 1966 L 1.5-1 132 Zelenklih, G.F. 1966 L 1.5-1	a	3	į	. H. G. , & B. 1					90.14	19.86	Rod specimen supplied by Johnson, Matthey and Co., LM.; samesled at 800 C; residual electrical resistivity 8.45 µΩ cm; electrical resistivity 10.0 µΩ cm at 293 K.
110 Kemp, W.R.C., et al. 1980 1. 1.5-1 110 Kemp, W.R.C., et al. 1966 1. 1.5-1 112 Zelenklik, G.F. 1986 1. 448.	2	2		.B.G., 8 a. u			. 3-146		70.67	29. 33	Red specimen supplied by Johnson, Matthey and Co., 14st.; emended at 800 C; residual electrical resistivity 12.79 µO cm; electrical resistivity 14.66 µO cm at 288 K.
110 Kemp, W.R.G., et al. 1966 L. 1. 5-3 112 Sefendible, G.F. 1966 L 448.	2	a		7			.9-181		2 2	39. 67	Rod specimen supplied by Johnson, Matthey and Co., Ltd.; senesled at 880 C; residual electrical resistivity 18,10 $\mu\Omega$ cm; electrical resistivity 21.1 $\mu\Omega$ cm at 293 K.
112 Sairbaldta, G.F. 1988 L 448.		2					. 2-117		50. 3 4	19. 06	Red specimen supplied by Johnson, Matthey and Co., 146.; amounted at 860 C; residual electrical resistivity 27.7 µO cm; electrical resistivity 27.7 µO cm; electrical resistivity 27.7 µO cm at 283 K.
		Ħ	Zelebekhi				448.2		50.34 49.66	9. 60	0.66 cm² in cross-section and 1.36 cm long.

TABLE 29. THERMAL CONDUCTIVITY OF SILVER + PALLADIUM ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION (continued)

Year	1	Method Used	Year Method Temp. Used Range, K	Name and Specimen Designation	Composition (weight percent) Ag Pd	sition ercent) Pd	Composition (continued), Specifications, and Remarks
1962		1	2.2-7.9		97.95 2.05	2.05	The specimen for curve no. 6 has been reannealed at 940 C in an effort to ensure that dislocation density is reduced to a minimum; rod specimen of about 6 cm long and 3 to 5 mm in diameter; electrical resistivity reported as 0.962, 1.372, and 2.612 µ0 cm at 0, 90, and 283 K, respectively.
1962		H	2.1-6.3		95, 01 4, 99	4. 99	The specimen for curve no. 8 has been reannealed at 940 C in an affort to ensure that dislocation density is reduced to a minimum; red specimen of about 6 cm long and 3 to 5 mm in diameter; electrical resistivity reported as 2, 28, 2, 68, and 3, 87 LG cm at 0, 90, and 293 K, respectively.
1962		ı	2.3-7.9		90.22 9.78	9. 78	The specimen for curve no. 9 has been reannealed to 940 C in an effort to ensure that dislocation density is reduced to a minimum; rod specimen of about 6 cm long and 3 to 5 mm in diameter; electrical resistivity reported as 4.37, 4.78, and 6.01 µ0 cm at 0, 90, and 293 K, respectively.

TABLE 39. THERMAL CONDUCTIVITY OF PALLADIUM + SILVER ALLOYS -- SPECIMEN CHARACTERIZATION AND MEASUREMENT INFORMATION

	.vovo.	Author (s)	Year	Method	Temp. Range, K	Name and Specimen Designation	Com (weigh Pd	Composition (weight percent) Pd Ag	Composition (continued), Specifications, and Remarks
-	2	Schulze, F.A.	1911	Ħ	298.2		06	10	I mm thick wire specimen obtained from Herracus Co.; electrical conductivity 4.71 x 104 R ⁻¹ cm ⁻¹ at 25 C.
•	2	Schulze, F.A.	11811	(a)	296.2		80	20	1 mm thick wire specimen obtained from Heracus Co.; electrical conductivity 3.21 x 10f Ω^{-1} cm ⁻¹ at 25 C.
m	2	Schulze, P.A.	1161	M	298.2		20	30	1 mm thick wire specimen obtained from Herrous Co.; electrical conductivity 2.56 x 10f Ω^{-1} cm ⁻¹ at 25 C.
•	2	Schulze, F.A.	1911	M	298.2		09	40	1 mm thick wire specimen obtained from Heraous Co.; electrical conductivity 2.38 x 10f Ω^{-1} cm ⁻¹ at 25 C.
40	2	Schulze, F.A.	1161	(h)	296.2		20	50	I mm thick wire specimen obtained from Herrous Co.; electrical conductivity 3.08 x 10f Ω^{-1} cm ⁻¹ at 25 C.
•	110	Kemp, W.R.G., Klemens, P.G., Sreedker, A.K.	1956	1	2.1-92		8	10	Rod specimen supplied by Johnson, Matthey and Co., Ltd.; amealed at 880 C; realdual electrical resistivity 5.81 µR cm; electrical resistivity 16.8 µR cm at 293 K.
-	110	Kemp, W.R.G., et al. 1956	al. 1956	ı	2.2-152		92	30	Similar to the above specimen except residual electrical resistivity 35.6 µG cm and electrical resistivity 40.9 µG cm at 283 K.
s 0	91	Kemp, W.B.G., et al. 1956	al. 1956	ı	1.8-117		20	20	Similar to the above specimen except residual electrical resistivity 27.7 $\mu\Omega$ cm and electrical resistivity 30.5 $\mu\Omega$ cm at 293 K.
•	77	Zolotzkhin, G.E.	1956	J	486.7		75	22	Cylindrical specimen.
2	#	Zolotzichin, G.E.	1966	ı	448.2		20	90	Cylindrical specimen.
=	2	Fletcher, R. and Greig, D.	1967	-	1.7-117			. 84	Calculated compositon from atomic percent; specimen less by International Nickel Ltd.; annealed at 700 C for 24 hrs previously; outpassed at 800 C for 4-5 hrs; residual electrical resistivity reported as 5.32 µC original data obtained through private communication with author.
2	2	Fletcher, R. and Greig, D.	1961	1	4.3-118			9.85	Similar to the above specimen except the residual electrical resistivity reported as 12.18 $\mu\Omega\mathrm{cm}$
2	\$	Fletcher, B. and Greig, D.	1967	4	1.7-115			15.05	Similar to the above specimen except the residual electrical resistivity reported as 18.0 $\mu\Omega$ cm.
7	2	Fletcher, R. and Oreig, D.	1967	H	2.1-116			20. 53	Similar to the above specimen except the residual electrical registivity reported as 24.5 $\mu\Omega$ cm.

The state of the state of

5. CONCLUSIONS AND RECOMMENDATIONS

As evidenced by the available experimental thermal conductivity data presented in this work for the ten binary alloy systems selected as those most extensively investigated, it is clear that, still, for most of these alloy systems serious gaps exist for either the compositional or the temperature dependence or both and that most of the available data are widely divergent and subject to large uncertainty. The recommended self-consistent thermal conductivity values that cover the full ranges of composition and temperature are therefore very useful and valuable.

The recommended values are based upon both the critically evaluated, analyzed, and synthesized experimental data and the values calculated using the semitheoretical methods developed in this work.

It is thought that the reliability of the methods for the calculation of the thermal conductivity of binary alloys has been sufficiently tested with selected key sets of reliable data on alloys in the various binary alloy systems. The method for the calculation of the electronic thermal conductivity was found to be applicable to all types of binary alloys: nontransition, transition, solid solution, and mechanical mixture, whereas the method for the calculation of the lattice thermal conductivity was found to be applicable only to disordered solid-solution alloys; at present the lattice thermal conductivity of alloys in the mechanical-mixture region can be obtained only from experimental data.

For all but two of the binary alloy systems the recommended thermal conductivity values are given for 25 alloy compositions, which greatly facilitates interpolation for alloys with intermediate compositions. Furthermore, since the thermal conductivity of a binary alloy in many cases can be used as a first approximation to the thermal conductivity of a multiple alloy with the same major constituent elements and the same "effective" composition, the recommended thermal conductivity values for the binary alloy systems reported herein can lead the way for the study of the thermal conductivity of multiple alloys.

In the course of this study, a number of areas where further theoretical and experimental research is needed are identified. These areas of further research are recommended and listed below:

- (1) Experimental and theoretical work on band structure effects in binary alloys of transition elements and noble elements in particular measurements on Cu + Pd and Pd + Cu alloys to determine the validity of large Lorenz ratios reported for this system.
- (2) Development of quantitative theory of impurity enhancement of phonon-electron interactions at low temperatures.

- (3) Measurements of alloy thermal conductivity down to liquid ³He temperatures to determine the extent to which residual dislocations cause the cusp-like behavior of the composition dependence of the low temperature lattice thermal conductivity.
- (4) Development of a theory of low-temperature lattice conduction in transition elements and high-residual-resistivity alloys.
- (5) Experimental and theoretical efforts on the lattice thermal conductivity outside the region of solid solubility.

大学 の はない 大大大

6. REFERENCES

- 1. Klemens, P.G., "Deviations from Matthiessen's Rule and the Lattice Thermal Conductivity of Alloys," Aust. J. Phys., <u>12</u>, 199-202, 1959.
- 2. Klemens, P.G., "Thermal Conductivity of Solids at Low Temperatures," in <u>Handbuch</u> der <u>Physik</u> (Filigge, S., Editor), Vol. 14, Springer-Verlag, Berlin, 198-281, 1956.
- 3. Mott, N. F., "A Discussion of the Transition Metals on the Basis of Quantum Mechanics," Proc. Phys. Soc. (London), 47, 571-88, 1935.
- 4. Mott, N. F. and Jones, H., <u>The Theory of the Properties of Metals and Alloys</u>, Clarendon Press, Oxford, 1936; Dover Publications, New York, 196-8, 1958.
- 5. Ho, C.Y., Powell, R.W., and Liley, P.E., "Thermal Conductivity of the Elements: A Comprehensive Review," Supplement 1 to Volume 3 of the Journal of Physical and Chemical Reference Data, 796 pp., 1974.
- 6. Ho, C.Y., Powell, R.W., and Liley, P.E., "Thermal Conductivity of the Elements," J. Phys. Chem. Ref. Data, 1(2), 279-421, 1972.
- 7. Ho, C.Y., Ackerman, M.W., Wu, K.Y., Oh, S.G., and Havill, T.N., "Electrical Resistivity of Ten Selected Binary Alloy Systems and Their Nine Constituent Elements," CINDAS-TPRC Report to NBS on Contract No. 3-35707, in preparation.
- 8. Williams, R.K. and Fulkerson, W., "Separation of the Electronic and Lattice Contributions to the Thermal Conductivity of Metals and Alloys," in <u>Thermal Conductivity</u> <u>Proceedings of the Eighth Conference</u> (Ho, C.Y. and Taylor, R.E., Editors), Plenum Press, New York, 389-456, 1969.
- 9. Jones, H., "Theory of Electrical and Thermal Conductivity in Metals," in <u>Handbuch</u> der Physik (Flügge, S., Editor), Vol. 19, Springer-Verlag, Berlin, 227-315, 1956.
- 10. Laubitz, M.J. and Matsumura, T., "High-Temperature Transport Properties of Palladium," Can. J. Phys., <u>50</u>, 196-205, 1972.
- 11. Ziman, J.M., Electrons and Phonons, Oxford University Press, England, 554 pp., 1960.
- 12. Laubitz, M.J., "Transport Properties of Pure Metals at High Temperatures; I. Copper," Can. J. Phys., 45, 3677-96, 1967.
- 13. Moore, J.P., McElroy, D.L., and Graves, R.S., "Thermal Conductivity and Electrical Resistivity of High-Purity Copper from 78 to 400 K," Can. J. Phys., 45, 3849-65, 1967.
- 14. Schriempf, J.T., "Lorenz Number of Pure Palladium at Low Temperature," Phys. Rev. Lett., 19(19), 1131-6, 1967.

- 15. White, G.K. and Tainsh, R.J., "Electron Scattering in Nickel at Low Temperature," Phys. Rev. Lett., 19(4), 165-8, 1967.
- 16. Laubitz, M.J., "The Lorenz Function of Transition Metals at High Temperatures," High Temp.-High Pressures, 4(4), 379-87, 1972.
- Klemens, P.G., "Electron-Phonon Interactions Induced by Lattice Defects in Metals,"
 J. Phys. Soc. Jap., <u>18</u>, Suppl. II, 77-9, 1963.
- 18. Schriempf, J.T., "Deviations from Matthiessen's Rule in the Low Temperature Thermal and Electrical Resistivities of Very Pure Copper," in <u>Thermal Conductivity Proceedings of the Seventh Conference</u> (Flynn, D.R. and Peavy, B.A., Editors), NBS Spec. Publ. 302, 249-52, 1968.
- 19. Lindenfeld, P. and Pennebaker, W.B., "Lattice Conductivity of Copper Alloys," Phys. Rev., 127(6), 1881-9, 1962.
- 20. Pippard, A.B., "Ultrasonic Attenuation in Metals," Phil. Mag., 7, 46(381), 1104-14, 1955.
- 21. Klemens, P.G., "The Lattice Component of the Thermal Conductivity of Metals and Alloys," Aust. J. Phys., 7, 57-63, 1954.
- 22. Klemens, P.G., Private communication, April 1974.

- 23. Ackerman, M.W. and Klemens, P.G., "Lattice Thermal Resistivity Due to Dense Arrays of Dislocations," Phys. Rev., <u>133</u>(8), 2375-9, 1971.
- 24. Pippard, A.B., "Theory of Ultrasonic Attenuation in Metals and Magneto-Acoustic Oscillations," Proc. Roy. Soc. (London), A257, 165-93, 1960.
- 25. Klemens, P.G., "Thermal Resistance Due to Point Defects at High Temperatures," Phys. Rev., 119, 507-9, 1960.
- 26. Callaway, J., "Model for Lattice Thermal Conductivity at Low Temperatures," Phys. Rev., 113(4), 1046-51, 1959.
- 27. Klemens, P.G., White, G.K., and Tainsh, R.J., "Scattering of Lattice Waves by Point Defects," Phil. Mag., 7, 1323-35, 1962.
- 28. Klemens, P.G., "The Scattering of Low-Frequency Lattice Waves by Static Imperfections," Proc. Phys. Soc. (London), A68, 1113-28, 1955.
- 29. Tavernier, J., "The Influence of Fluctuations of Mass in a Crystal on the Mean Free Path of Phonons," Compt. Rend., 245(20), 1705-8, 1957.
- Ackerman, M.W. and Klemens, P.G., "Phonon Scattering by Impurity Atmospheres Surrounding Dislocations. III. Combined Mass and Distortion Scattering," J. Appl. Phys., 42, 968-71, 1971.

- 31. Carruthers, P., "Theory of Thermal Conductivity of Solids at Low Temperatures," Rev. Mod. Phys., 33(1), 92-138, 1961.
- 32. Mozer, B., Otnes, K., and Myers, V.W., "Measurement of a Simple Defect Mode of Vibration," Phys. Rev. Lett., 8, 278-80, 1962.
- 33. Bara, J., Cholewa, H. U., Hrynkiewicz, A. Z., and Matlak, T., "Temperature Dependence of the Debye-Waller Factor for 14.4 kev γ-Rays of Fe Impurity Nuclei in Zn, Mo, and Sn Crystal Lattices," Phys. Stat. Sol., 14, K147-50, 1966.
- 34. Steigmeir, E.F. and Kudman, I., "Acoustic-Optical Phonon Scattering in Ge, Si, and III-V Compounds," Phys. Rev., 141(2), 767-74, 1966.
- 35. Leibfried, G. and Schlömann, E., "Heat Conduction in Electrically Insulating Crystals," Nachr. Akad. Wiss. Göttingen, Math.-Physik. Kl., 2a(4), 71-93, 1954; English translation: AEC-TR-5892, 36 pp., 1963. [TPRC No. 28158]
- 36. Gschneider, K.A., Jr., "Physical Properties and Interrelationships of Metallic and Semimetallic Elements," Solid State Phys., Vol. 16, Academic Press, 275-426, 1964.
- 37. Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Vol. 1, 1958; Vol. 2, 1967.
- 38. Abeles, B., "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures," Phys. Rev., 131(5), 1906-11, 1963.
- 39. Parrott, J.E., "The High-Temperature Thermal Conductivity of Semiconductor Alloys," Proc. Phys. Soc. (London), 81, 726-35, 1963.
- 40. Ho, C.Y., Ackerman, M.W., Wu, K.Y., and Havill, T.N., "Thermoelectric Power of Ten Selected Binary Alloy Systems and Their Nine Constituent Elements," CINDASTPRC Report to NBS on Contract No. 3-35707, in preparation.
- 41. Mannchen, W., "Heat Conductivity, Electrical Conductivity and the Lorenz Number for a Few Light-Metal Alloys," Z. Metallk., 23, 193-6, 1931.
- 42. Eucken, A. and Warrentrup, H., "The Variation of the Thermal and Electrical Resistance in Precipitation-Hardening of Aluminum-Copper Alloys," Z. Elektrochem., 41, 331-7, 1935.
- 43. Satterthwaite, C.B., "Thermal Conductivity of Normal and Superconducting Aluminum," Phys. Rev., 125, 873-6, 1962.
- 44. Griffiths, E. and Schofield, F.H., "The Thermal and Electrical Conductivity of Some Aluminum Alloys and Bronses," J. Inst. Metals, 39, 337-74, 1928.
- 45. Smith, A.W., "The Thermal Conductivities of Alloys," Ohio State Univ. Exptl. Station Bull. No. 31, 61 pp., 1925.

- 46. Griffiths, E. and Shakespear, G.A., "Thermal Conductivity of Aluminium and Its Alloys," Repts. of Light Alloys Sub-Comm. Advisory Comm. for Aeronautics, No. 7, 108-35, 1921; J. Inst. Metals, 28, 581-2, 1922.
- 47. Hanson, D. and Rodgers, C.E., "The Thermal Conductivity of Some Non-Ferrous Alloys," J. Inst. Metals, 48, 37-45, 1932.
- 48. Chu, T.K. and Lipschultz, F.P., "A Study of Cyclic Fatigue Damage in Copper-Aluminum Alloys by Thermal Conductivity Measurements," U.S. Air Force Rept. AFOSR-TR-72-0409, 21 pp., 1972. [AD 740 593]
- 49. Smith, C.S. and Palmer, E.W., "Thermal and Electrical Conductivities of Copper Alloys," AIMME Inst. Metals Div. Tech. Pub. 648, 1-19, 1935; Metals Technology, 2, 1935; Trans. AIMME, 117, 225-43, 1935.
- 50. Friedman, A.J., Private communication, June 5, 1974.
- 51. Salter, J.A.M. and Charsley, P., "The Effect of Grain Size on the Lattice Thermal Conductivity of Copper Aluminium Alloys," Phys. Status Solidi, 21(1), 357-68, 1967.
- 52. Charsley, P., Salter, J.A.M., and Leaver, A.D.W., "An Experimental Investigation of Dislocation-Phonon Scattering in Some Copper Alloys," Phys. Status Solidi, <u>25</u>(2), 531-40, 1968.
- 53. Kusunoki, M. and Suzuki, H., "Lattice Thermal Conductivity of Deformed Copper-Aluminum Alloy Crystals at Low Temperatures," J. Phys. Soc. Jap., 26(4), 932-8, 1969.
- 54. Mitchell, M.A., Klemens, P.G., and Reynolds, C.A., "Lattice Thermal Conductivity of Plastically Deformed Copper Plus 10 Atomic Percent Aluminum Specimens in the Temperature Range 1-4 K," Phys. Rev. B, 3(4), 1119-30, 1971.
- 55. Inouye, H., "High-Thermal-Conductivity Fin Material for Radiators," Oak Ridge National Lab. Rept. ORNL-2065, 20 pp., 1957.
- 56. Johnson, E.W., "Aluminium Alloys. Tough and Ductile Down to -423 F (-253 C)," Chem. Eng., 67(16), 133-6, 1960.
- 57. Powell, R.L., Hall, W.J., and Roder, H.M., "Low-Temperature Transport Properties of Commercial Metals and Alloys. II. Aluminums," J. Appl. Phys., 31(3), 496-503, 1960.
- 58. Mikryukov, V.E. and Karagezyan, A.G., "Thermal and Electrical Properties of Alloys of the Systems Al-Mg and Al-Cu," Inzh.-Fiz. Zh. Akad. Nauk Belorrusk. SSR, 4(12), 90-3, 1961.
- Kikuchi, R., "The Thermal and Electric Conductivities of Magnesium Alloys," Kinsoka No-Kenkyuh, 9(6), 239-43, 1932.

ž

- 60. Maybrey, H.J., "Thermal Conductivities of Some Light Alloys," Metal Ind. (London), 33, 5-6, 1928.
- 61. Grüneisen, E. and Reddemann, H., "Electronic and Lattice Conduction of Heat in Metals," Ann. Physik, 20, 843-77, 1934.
- 62. Kemp, W.R.G., Klemens, P.G., and Tainsh, R.J., "Lattice Thermal Conductivity of Some Copper Alloys," Aust. J. Phys., 10, 454-61, 1957.
- 63. Sedström, E., "Peltier Heat and Total Thermal and Electrical Conductivities of Some Solid Metal Solutions," Ann. Physik, 59(4), 134-44, 1919.
- 64. Sedström, E., "To the Knowledge of Gold-Copper Alloys," Ann. Physik, 75, 549-55, 1924.
- 65. Zolotukhin, G.E., "Thermal Conductivity or Ordered Alloys in Stationary Thermal Equilibrium," Phys. Metals Metallogr. (USSR), 4(2), 124-30, 1957.
- 66. Goff, J. F., Verbalis, A. C., Rhyne, J.J., and Klemens, P.G., "The Lattice Thermal Conductivity of Cu₃Au in the Disordered State," in <u>Thermal Conductivity Proceedings</u> of the Eighth Conference (Ho, C.Y. and Taylor, R.E., Editors), Plenum Press, New York, 21-35, 1969.
- 67. Eastermann, I. and Zimmerman, J.E., "Heat Conduction in Alloys at Low Temperatures." J. Appl. Phys., 23(5), 578-88, 1952.
- 68. Zavaritskii, N.V. and Zeldovich, A.G., "Thermal Conductivity of Technical Materials at Low Temperatures," Zhur. Tekh. Fiz., 26(9), 2032-6, 1956; English translation: Special Library Association, 61-10156, 8 pp., 1960.
- 69. Hulm, J.K., "The Thermal Conductivity of a Copper-Nickel Alloy at Low Temperatures," Proc. Phys. Soc. (London), 64B, 207-11, 1951.
- 70. Berman, R., "The Thermal Conductivity of Some Alloys at Low Temperatures," Phil. Mag., 42, 642-50, 1951.
- 71. Wilkinson, K.R. and Wilks, J., "Some Measurements of Heat Flow Along Technical Materials in the Region 4 to 20 K," J. Sci. Instr. and Phys. Ind., <u>26</u>, 19-20, 1949.
- 72. Erdmann, J.C. and Jahoda, J.A., "Apparatus for Low Temperature Tensile Deformation and Simultaneous Measurements of Thermal Properties of Metals," Boeing Scientific Research Labs Rept. D1-82-0180, 21 pp., 1962. [AD 286 859]
- 73. Erdmann, J.C. and Jahoda, J.A., "Thermal Conductivity of Copper-Nickel Alloys at 4.2 K," Boeing Scientific Research Labs Rept. D1-82-0333, 25 pp., 1964. [AD 600 45]
- 74. Erdmann, J.C. and Jahoda, J.A., "Temperature Dependence of the Lattice Thermal Conductivity of Copper-Nickel Alloys at Low Temperatures," in <u>Thermal Conductivity</u> <u>Proceedings of the Seventh Conference</u> (Flyan, D.R. and Penvy, B.A., Editors), MBS

- 75. Birch, J.A., Kemp, W.R.G., Klemens, P.G., and Tainsh, R.J., "The Lattice Thermal Conductivity of Some Gold Alloys," Aust. J. Phys., 12, 455-65, 1959.
- 76. Klemens, P.G., Private communication on the data of Bouley, A., Linz, R., Kluffky, R., Dumon, D.H., and Mohan, N.S. for a Cu+Ni alloy, June 24, 1974.
- 77. Sager, G.F., "Investigation of the Thermal Conductivity of the System Cepper-Nickel," Rensselaer Polytech. Inst. Bull. Eng. and Sci. Ser., No. 27, 3-48, 1930.
- 78. Greig, D. and Harrison, J.P., "The Low Temperature Electrical Transport Properties of Nickel and Dilute Nickel-Copper Alloys," Phil. Mag., 12, 71-9, 1965.
- 79. Farrell, T. and Greig, D., "The Electrical Resistivity of Nickel and Its Alloys," J. Phys. C (Proc. Phys. Soc.), 2, 1, 1359-69, 1968.
- 80. Chari, M.S.R., "The Lattice Thermal Conductivity of Nickel and Dilute Nickel-Rhenium Alloys Above 400 K," in <u>Proceedings of the 9th Conference on Thermal Conductivity</u> (Shanks, H.R., Editor), USAEC Rept. CONF-691002, 307-17, 1970.
- 81. Farrell, T. and Greig, D., "The Thermal Conductivity of Nickel and Its Alloys,"
 J. Phys. C (Solid State Phys.), 2(8), 1465-73, 1969.
- 82. Pott, F. P., "Investigations of the Wiedemann-Franz-Lorenz Law on Disordered and Ordered Phases of the Copper-Palladium Alloys," Z. Naturforsch., 13A, 215-21, 1958.
- 83. Kierspe, W., "Effect of the Transition Elements on the Electrical and Thermal Conductivity of Copper," Z. Metallk., 58(12), 895-902, 1967.
- 84. Fletcher, R. and Greig, D., "The Lattice Thermal Conductivity of Some Palladium and Platinum Alloys," Phil. Mag., 16(140), 303-15, 1967.
- 85. Laubitz, M.J. and van der Meer, M.P., "High Temperature Transport Properties of Some Platinel Alloys," in <u>Thermal Conductivity Proceedings of the Seventh Conference</u> (Flynn, D.R. and Peavy, B.A., Editors), NBS Spec. Publ. 302, 13-6, 1968.
- 86. Massalski, T.B. and Kittel, J.E., "The Low Temperature Solid Solubility Limits of the α and β Phases in the Cu-Zn System," J. Aust. Inst. Met., 8(1), 91-7, 1963.

ALC: NO.

- 87. Shinoda, G. and Amano, Y., "The Eutectoid Transformation of the β' Phase in Cu-Zn Alloys," Trans. Jap. Inst. Met., 1(1), 54-7, 1960.
- 88. Kemp, W.R.G., Klemens, P.G., Tainsh, R.J., and White, G.K., "The Electrical and Thermal Conductivities of Some Brasses at Low Temperatures," Acta Met., 5, 303-9, 1957.
- 89. Kemp, W.R.G., Klemens, P.G., and Tainsh, R.J., "The Lattice Thermal Conductivity of Copper Alloys. Effect of Plastic Deformation and Annealing," Phil. Mag., 4(8), 845-57, 1959.

- 90. White, G.K. and Woods, S.B., "The Lattice Thermal Conductivity of Dilute Copper Alloys at Low Temperatures," Phil. Mag., 45, 1343-5, 1954.
- 91. White, G.K., "Thermal Transport in Dilute Alloys," Aust. J. Phys., 13, 255-9, 1960.
- 92. Smith, C.S., "Thermal Conductivity of Copper Alloys. I. Copper-Zinc Alloys," AIMME Tech. Pub. No. 291, 3-24, 1930; Trans. AIMME, 89, 84-106, 1930.
- 93. Schulze, F.A., "The Thermal Conductivity of Several Series of Precious Metal Alloys," Z. Physik., 12, 1028-31, 1911.
- 94. Crisp, R.S. and Rungis, J., "Thermoelectric Power and Thermal Conductivity in the Silver-Gold Alloy System from 3-300 K," Phil. Mag., 22, 217-36, 1970.
- 95. Van Baarle, C., Gorter, F.W., and Winsemius, P., "Thermal Conductivity and Thermopower of Silver and Silver-Base Alloys at Low Temperatures," Physica, 35, 223-40, 1967.
- 96. Powell, R.W. and Hickman, M.J., "Thermal Conductivity and Electrical Resistivity of a Series of Steels," Iron and Steel Inst., Spec. Rept. No. 24, 242-5, 1939.
- 97. Kohlhaas, R. and Kierspe, W., "The Thermal Conductivity of Pure Iron and Some Ferritic and Austenitic Steels Between the Temperature of Liquid Air and Room Temperature," Arch. Eisenhuettenw., 36(4), 301-9, 1965.
- 98. Ingersoll, L.R., "Some Physical Properties of Nickel-Iron Alloys," Phys. Rev., 16, 126-32, 1920.
- 99. Chari, M.S.R. and DeNobel, J., "Thermal Conductivity of Some Steels at Low Temperatures," Physica, 25(1), 73-83, 1959.
- 100. DeNobel, J., "Heat Conductivity of Steels and a Few Other Metals at Low Temperatures," Physics, 17, 551-62, 1951.
- 101. Backlund, N.G., "An Experimental Investigation of the Electrical and Thermal Conductivity of Iron and Some Dilute Iron Alloys at Temperatures Above 100 K," Phys. Chem. Solids, 20(1/2), 1-16, 1961.
- 102. Watson, T.W. and Robinson, H.E., "Thermal Conductivity of Some Commercial Iron-Nickel Alloys," J. Heat Transfer, 83(4), 403-8, 1961.
- 103. Wang, T.P., Starr, C.D., and Brown, N., "Thermoelectric Characteristics of Binary Alloys of Nickel," Acta Met., 14, 649-57, 1966.
- 104. Hansen, M., Constitution of Binary Alloys, McGraw-Hill Book Co., New York, 1305 pp., 1958.

- 105. Yelon, W.B. and Berger, L., "Magnon Heat Conduction and Magnon-Electron Scattering in Fe-Ni," Phys. Rev. Lett., 25(17), 1207-10, 1970.
- 106. Yelon, W. B. and Berger, L., "Magnon Heat Conduction and Magnon Scattering Processes in Iron-Nickel Alloys," Phys. Rev. B, 6(5), 1974-85, 1972.
- 107. Berger, L. and Rivier, D., "Electrical and Thermal Resistivity of Pure Nickel and of an Iron-Nickel Alloy in a Magnetic Field at Low Temperatures," Helv. Phys. Acta, 35, 715-32, 1962.
- 108. Shelton, S. M. and Swanger, W.H., "Thermal Conductivity of Irons and Steels and Some Other Metals in the Temperature Range 0 to 600 C," Trans. Am. Soc. Steel Treating, 21, 1061-78, 1933.
- 109. Raynor, G.V., "The Band Structure of Metals," Rept. Prog. Phys., <u>15</u>, 173-248, 1952.
- 110. Kemp, W.R.G., Klemens, P.G., Sreedhar, A.K., and White, G.K., "The Thermal and Electrical Conductivities of Silver-Palladium and Silver-Cadmium Alloys at Low Temperatures," Proc. Roy. Soc. (London), <u>A233</u>, 480-93, 1956.
- 111. Tainsh, R.J. and White, G.K., "Lattice Thermal Conductivity of Copper and Silver Alloys at Low Temperatures," Phys. Chem. Solids, 23, 1329-35, 1962.
- 112. Zolutukhin, G.E., "Investigation of the Heat Conductivity of Metals and Alloys at Thermal Equilibrium by Using an Arc-Type Discharge as Heat Source," Fiz. Metal Metalloved., 3, 508-12, 1956.
- 113. Grard, C. and Villey, J., "Physical Chemistry. On the Thermal Conductivity of Light Alloys," Compt. Rend., 185, 856-8, 1927.
- 114. Czochralski, J., "Silumin, a New Light Alloy," Z. Metallk., 13, 507-10, 1921.
- 115. Elflein, M., "The Thermal and Electrical Conductivity of Cast Aluminum Alloys with Special Reference to the Self-Aging Alloys," Forschungsarb. Metallk. Rontgenmetall., 23, 63 pp., 1937.
- 116. Aliev, N.A., "Relationship of the Thermal Conductivity of Copper-Aluminum Alloys to Their Structure," Trudy Inst. Fiz. i Mat. Akad. Azerb. SSR Ser. Fiz., 6, 62-8, 1953.
- 117. Charsley, P., Leaver, A.D.W., and Salter, J.A.M., "Measurement of Dislocation Phonon Scattering in Alloys," in <u>Thermal Conductivity Proceedings of the Seventh Conference</u> (Flynn, D.R. and Peavy, B.A., Editors), NBS Spec. Publ. 302, 131-8, 1968.

- 118. Charlsey, P. and Salter, J.A.M., "The Lattice Thermal Conductivities of Annealed Copper-Aluminum Alloys," Phys. Status Solidi, 19(2), 575-83, 1965; Lindenfeld, P., "Correction," Phys. Status Solidi, 14(1), K47-K50, 1966; "Reply by Authors," Phys. Status Solidi, 19(1), K63-K65, 1967.
- 119. Friedman, A.J., Chu, T.K., Klemens, P.G., and Reynolds, C.A., "Lattice Thermal Conductivity of a Neutron-Irradiated Copper-Aluminum Alloy," Phys. Rev. B, <u>6</u>(2), 356-63, 1972.
- 120. Leaver, A.D.W. and Charlsey, P., "The Low Temperature Lattice Thermal Conductivity of Deformed Copper Alloys," J. Phys. F (Metal Phys.), 1, 28-37, 1971.
- 121. Kogure, Y. and Hiki, Y., "Simultaneous Measurement of Low-Temperature Specific Heat and Thermal Conductivity by Temperature Wave Method," Jap. J. Appl. Phys., 12(6), 814-22, 1973.
- 122. Meyer-Rassler, E., "Applicability of Alloys on an Aluminum-Magnesium Base as Materials for Pistons of Internal Combustion Engines," Metallwirt., 19, 713-21, 1940.
- 123. Editor of Materials in Design Engineering, "Properties of Materials, Nonferrous Metals," Mater. Des. Eng., 50, 98-141, 1959.
- 124. Staebler, J., "Electrical and Thermal Conductivity and the Number of Weidemann Franz of Light Metals and Magnesium Alloys," Tech. Hochschule (of Breslau) Wroclaw, Poland, Ph.D. Thesis, 35 pp., 1929.
- 125. Giuliani, S., "Measurement of the Thermal Conductivity of Materials for Nuclear Use Between 100 and 500 C." USAEC Rept. EUR-3644i, 38 pp., 1967.
- 126. Lindenbaum, S.D. and Quimby, S.L., "The Order Dependent Electrical and Thermal Resistivity of Cu₃Au," Army Research Office (Durham) Rept. AROD No. 1931.2, 31 pp., 1962.
- 127. Barratt, T., "Thermal and Electrical Conductivities of Some of the Rarer Metals and Alloys," Proc. Phys. Soc. (London), 26, 347-71, 1913.
- 128. Grüneisen, E. and Goens, E., "Investigations of Metal Crystals. V. Electric and Thermal Conductivity of Single-Crystal and Polycrystalline Metals of the Cubic System," Z. Physik., 44, 615-42, 1927.
- 129. Jaeger, W. and Diesselhorst, H., "Heat Conduction, Electric Conduction, Heat Capacity, and Thermal Power of Some Metals," Wiss. Abh. Phys.-Tech. Reichsanst., 3, 269-425, 1900.
- 130. Zimmerman, J. E., "Heat Conduction in Alloys and Semi-Conductors at Low Temperatures," Carnegie Institute of Technology, Ph.D. Thesis, 54 pp., 1951.

- 131. Ellis, W.C., Morgan, F.L., and Sager, F.G., "The Thermal Conductivities of Copper and Nickel, and Some Alloys of Nickel," Rensselaer Polytech. Inst. Bull., No. 21, 23 pp., 1928.
- 132. Silverman, L., "Thermal Conductivity Data Presented for Various Metals and Alloys Up to 900 Degrees," J. Metals, 5, 631-2, 1953.
- 133. Powers, R.W., Ziegler, J.B., and Johnston, H.L., "The Thermal Conductivity of Metals and Alloys at Low Temperatures. IV. Data on Constantan, Monel, and Contracid Between 25 and 300 K," U.S. Air Force Rept. TR-264-8, 14 pp., 1951. [ATI 105-925]
- 134. Aoyama, S. and Ito, T., "Thermal and Electrical Conductivities of Nickel-Copper Alloys at Low Temperatures," Nippon Kinzoku Gakkai-Si, 4, 3-7, 1940.
- 135. Grüneisen, E., "The Determination of the Thermal Conductivity of Metals and Its Relationship to the Electrical Conductivity," Ann. Physik, 1, 43-74, 1900.
- 136. Mikryukov, V.E., "Thermal and Electrical Properties of Copper Alloys," Moscow Univ. Vest. Ser. Mat. Mekh. Astron. Fiz. Khim., 12(2), 85-93, 1957.
- 137. Chubb, W. F., "Thermal Conductivity Determinations. A New Apparatus and Procedure, Metal Ind. (London), 52, 579-80, 1938.
- 138. Kummer, D. L., Rosenthal, J.J., and Lum, D.W., "Shielded Ceramic Composite Structure," U.S. Air Force Rept. AFML-TR-65-331, 405 pp., 1965. [AD 475 002]
- 139. Carroll, J.M., "The Thermal Conductivity of Thermocouple Grade Constantan Rod," NASA-CR-56932, 28 pp., 1964.
- 140. Erdmann, J.C. and Jahoda, J.A., "Affected Volume and Temperature Rise During Discontinuous Slip at Low Temperatures," J. Appl. Phys., 39(6), 2793-7, 1968.

一年の一大学をおう いろうと

- 141. Erdmann, J.C. and Jahoda, J.A., "Apparatus for Low-Temperature Tensile Deformation and Simultaneous Measurements of Thermal Properties of Metals," Rev. Sci. Instr., 34, 172-9, 1963.
- 142. Zlunitsyn, S. and Savelev, I.V., "Thermal Conductivity of Technical Alloys at Low Temperatures," Zhur. Tekhn. Fiz., 9(9), 805-7, 1939.
- 143. Fairbank, H.A. and Lee, D.M., "Thermal Conductivity of 70-30 Copper-Nickel Alloy from 0.3 to 4.0 K," Rev. Sci. Instr., 31, 660-1, 1960.
- 144. Mikryukov, V.E., "Thermal and Electrical Properties of Copper Alloys," Moscow Univ. Vest. Ser. Mat. Mekh. Astron. Fiz. Khim., 12(3), 57-64, 1957.
- 145. Mikryukov, V. E., "Thermal and Electrical Properties of Copper, Silver, Gold, Aluminum, and Alloys with a Copper Base, "Issled. Zharpo. Splavam, Akad. Nauk SSSR, Inst. Met., Moscow, 3, 420-8, 1958; English translation: FTS No. 9848(1+3+4), 707-21, 1963. [AD418153]

**

- 146. Willett, R.E., "Thermal Conductivity of Cupro-Nickel Alloys at Elevated Temperatures," J. Mater., 3(4), 744-56, 1968.
- 147. Jackson, P.J. and Saunders, N.H., "Electrical and Thermal Conductivity of Nickel-Copper Alloys in the Neighbourhood of the Curie Point," Phys. Lett., <u>28A(1)</u>, 19-20, 1968.
- 148. Burger, R., Dittrich, H., and Koch, K.M., "Changes in the Thermal Conductivity of Ferromagnetic Nickel-Copper Alloys in a Magnetic Field," Z. Naturforsch., 23A(6), 861-6, 1968.
- 149. Berger, L., "Conduction Processes in Ferromagnetic Alloys," Army Research Office (Durham) Rept. AROD No. 6125.6-P, 39 pp., 1969. [AD 691 898]
- 150. Donaldson, J.W., "Thermal Conductivities of Industrial Non-Ferrous Alloys," J. Inst. Metals, 34, 43-56, 1925.
- 151. Bailey, L.C., "The Thermal Conductivities of Certain Approximately Pure Metals and Alloys at High Temperatures," Proc. Roy. Soc. (London), A134, 57-76, 1931.
- 152. Lees, C.H., "XI. Bakerian Lecture The Effects of Temperature and Pressure on the Thermal Conductivities of Solids. Part II. The Effects of Low Temperatures on the Approximately Pure Metals and Alloys," Phil. Trans. Roy. Soc. London, 208A, 381-443, 1908.
- 153. Raeth, C.H., "The Thermal Conductivity of Some Project Materials," USAEC Rept. CP-2332, 25 pp., 1944.
- 154. Eucken, A. and Neumann, O., "Toward Knowledge of the Wiedemann-Franz Law," Z. Physik. Chem., 111, 431-46, 1924.
- 155. Lomer, J. N. and Rosenberg, H.M., "The Detection of Dislocations by Low Temperature Heat Conductivity Measurements," Phil. Mag., 4, 467-83, 1959.
- 156. Aoyama, S. and Ito, T., "Thermal and Electrical Conductivities of Copper-Zinc Alloys at Low Temperatures," Nippon Kinzoku Gakkai-Si, 4, 37-40, 1940.
- 157. Olsen, T., "Lattice Thermal Conductivity in Copper Alloys," Phys. Chem. Solids, 12, 167-74, 1960.
- 158. Gordon, J. E. and Amstutz, L.I., "A Brass Thermometer for Use in Determining Temperatures Below 1 K," Cryogenics, 5, 329-32, 1965.
- 159. Srivastava, B. N., Chatterjee, S., and Sen, S.K., "Thermal and Electrical Conductivities of Alloys at Low Temperatures," Indian J. Phys., 43(4), 213-22, 1969.
- 160. Tadokoro, Y., "A Measurement of the Thermal Conductivity of Steel, Cast Iron, Brass at High Temperatures, and a New Proposal for the Theory of Blue-Shortness of Metal," J. Iron Steel Inst. (Japan), 22, 399-424, 1936.

- 161. Lomer, J. N., University of Oxford, Ph.D. Thesis, 1958.
- 162. Powell, R.W. and Hickman, M.J., "The Physical Properties of a Series of Steels.

 Part II, "J. Iron Steel Inst. (London), 154, 112-21, 1946.
- 163. Marue, H., "Thermal Conductivity of Iron and Steel," J. Iron Steel Inst. (Japan), 11, 571-7, 1925.
- 164. Bungardt, K. and Spyra, W., "Thermal Conductivity of Alloyed and Plain Steels and Alloys at Temperatures Between 20 and 700 Degrees," Arch. Eisenhuettenw., 36(4), 257-67, 1965.
- 165. Honda, K., "On the Thermal and Electrical Conductivities of Nickel Steels," Sci. Repts. Tohoku Imp. Univ., 7, 59-66, 1918.
- 166. Bell, I.P. and McDonald, J.J., "Thermal Conductivity of Metals and Uranium Compounds. A Review of Progress to 19th December 1952," UKAEA Rept. R+DB (C) TN-24, 12 pp., 1953. [AD 212 934]
- 167. Birss, R.R. and Dey, S.K., "The Temperature Dependence of the Resistivity of Ferromagnetic Metals," Proc. Roy. Soc. (London), A263(1315), 473-81, 1961.
- 168. Aliev, N.A., "Application of Wiedemann-Franz Law to Copper-Aluminum Alloys," Tr. Inst. Fiz. Mat. Akad. Nauk Azerbaidzhan Ser. Fiz., 8, 101-13, 1956.
- 169. Friedman, A.J., "The Low Temperature Lattice Thermal Conductivity of Deformed and Irradiated Cu + 10 a/o Al, and Deformed Cu + 7 a/o Ge," University of Connecticut, Ph.D. Thesis, 134 pp., 1971.
- 170. Friedman, A.J., Chu, T.K., Klemens, P.G., and Reynolds, C.A., "Lattice Thermal Conductivity of a Neutron-Irradiated Copper-Aluminum Alloy," U.S. Air Force Rept. AFOSR-TR-72-0238, 28 pp., 1972.
- 171. Chu, T.K. and Lipschultz, F.P., "A Study of Cyclic Fatigues Damage in Copper-Aluminum Alloys by Thermal Conductivity Measurements," J. Appl. Phys., 43(6), 2505-10, 1972.
- 172. Kapoor, A., Rowlands, J.A., and Woods, S.B., "Lattice Thermal Conductivity of Cold-Worked Noble-Metal Alloys Between 0.5 and 4 K," Phys. Rev. B, 9(4), 1223-9, 1974.
- 173. Powell, R.W., Hickman, M.J., and Tye, R.P., "The Thermal and Electrical Conductivity of Magnesium and Some Magnesium Alloys," Metallurgia, 70(420), 159-63, 1964.

A STATE OF THE PARTY OF THE PARTY OF

174. Lindenbaum, S.D., "The Order Dependent Electrical and Thermal Resistivity of Cu₃Au," Columbia University, Ph.D. Thesis, 38 pp., 1962. [Univ. Microfilms Publ. 63-1500]

- 175. Lindenbaum, S.D. and Quimby, S.L., "The Order Dependent Electrical and Thermal Resistivity of Cu₃Au," Army Research Office (Durham) Rept. AROD No. 1931.2, 31 pp., 1962. [AD 272 561]
- 176. Estermann, I. and Zimmerman, J.E., "Effect of Lattice Defects on the Thermal Conductivity of Certain Alloys at Low Temperatures," Bull. Intern. Inst. Refrig., Annexe, 1, 35-42, 1952.
- 177. Yelon, W.B., "Magnon Thermal Conductivity in the Ferromagnetic Alloys 70 Nickel-30 Iron and 81 Nickel-19 Iron," Carnegie-Mellon University, Ph.D. Thesis, 154 pp., 1971.
- 178. Holgersson, S. and Sedström, E., "Experimental Measurement of the Lattice Structure of Several Metal Alloys," Ann. Physik, 75(18), 143-62, 1924.
- 179. Sedström, E., "Several Physical Properties of Metallic Alloys," Dissertation, Stockholm, 1924.
- 180. Rosenberg, H.M., <u>Low Temperature Solid State Physics</u>, Oxford University Press, England, 124-5, 1963.
- 181. Kierspe, W., Gonska, H., and Kohlhaas, R., "On the Thermal Conductivity and the Thermal Diffusivity of Iron and Steels in the High Temperature Range," in <u>European Conference on Thermophysical Properties of Solids at High Temperatures</u> (Baden-Baden, 1968), Zentralstelle fur Atomkernenergie-Dokumentation, Karlsruhe, 343-67, 1968.
- 182. Klemens, P.G., "Theory of the Thermal Conductivity of Solids," in Thermal Conductivity (Proceedings of International Conference on Thermal Conductivity held at National Physical Laboratory, Teddington, Middlesex, England, July 15-17, 1964, Conference Chairman: R.W. Powell, Editor: R.P. Tye), Vol. 1, Academic Press, London, 1-68, 1969.
- 183. Elliott, R. P., Constitution of Binary Alloys, First Supplement, McGraw-Hill Book Co., New York, 877 pp., 1965.
- 184. Shunk, F.A., Constitution of Binary Alloys, Second Supplement, McGraw-Hill Book Co., New York, 720 pp., 1969.