Dielectric Constant Experiments Summary

Yutong Zhao

Jan 25th, 2018

Task list

- 6.5.1 NaCl, NH₄NO₃, KNO₃, NaNO₃, KClO₃ varying humidity from 0-10%
- 6.5.2 Mixing two powders of varying humidity from 0-10%
- 6.5.3 Aluminum powder
- 6.5.4 Water
- 6.5.5 Icing sugar (powder) humidity from 0-10%
- 6.5.6 Fuel oil (car gasoline and diesel)

Simulations (E field, $\theta = 45^{\circ}$)

Spectra vs. humidity

Empirical model for water content

$$\epsilon = \epsilon_S + a\epsilon_W w_c + b\epsilon_W w_c^2 + i \cdot \alpha w_c^2$$

- ϵ_s -- dielectric constant at dry material
- ϵ_w -- dielectric constant of water (57.95 + 32.72i) [Barthel et al];
- a, b -- empirical parameter
- α -- conductivity loss parameter
- w_c -- water content in mass(%)

Pure chemicals at humidity from 0-10%

Solid lines: calculation results

	$\epsilon_w = 57.95 + 37.22 i$ [Barthel et al]						
Sample	a	b	Alpha	Sample	a	b	Alpha
KNO_3	1.216	0.01	133.0	NaCl	1.104	0	315.5
NaNO ₃	1.208	0.7	28.5	KClO ₃	1.152	0	40.7
NH ₄ NO ₃	1.856	0	1650.5	sugar	0.216	0	8.4

Mixture: NH₄NO₃ in sugar

	0	20 N	40 IH ₄ NO ₃	60 ratio(%)	80	100	
	Re-	al part	ا مارور رادرورو			0 % 20% 40% 50%	
$\text{Re}(\epsilon_{_{\Gamma}})$	8-6-		•	•	٠		1111(cr)
	4-2						
Ŋ.	0	2 H	4 Iumidity	(H ₂ O)-(8 %)	10	

Percent(%)	a	b	Alpha
0	0.216	0	8.4
20	0.522	0	80.5
40	0.656	0	109.5
50	0.536	0	57.5
60	1.176	0.4	84.5
75.87	1.624	0.4	144
100	1.856	0	1650.5

Task list

6.5.1 NaCl, NH₄NO₃, KNO₃, NaNO₃, KClO₃ varying humidity from 0-10%

- 6.5.2 Mixing two powders of varying humidity from 0-10%
- 6.5.3 Aluminum powder
- 6.5.4 Water
- 6.5.5 Icing sugar (powder) humidity from 0-10%
- 6.5.6 Fuel oil (car gasoline and diesel)

Problem: water and Al powder

$$\epsilon_r = 199.65 + 0.96i$$
 $\Delta \epsilon_r = 3.7\%$

$$\epsilon_r = 45.12 \\ +38.00i \\ \Delta \epsilon_r = 7.9\%$$

Non-resonant measurement (theta = 0°)

$$M_i = L \cdot T_{refi} T_i T_{refi}^{-1} \cdot R$$

$$M_{i} = \begin{pmatrix} S_{12}^{i} - \frac{S_{11}^{i} S_{22}^{i}}{S_{21}^{i}} & \frac{S_{11}^{i}}{S_{21}^{i}} \\ -\frac{S_{22}^{i}}{S_{21}^{i}} & \frac{1}{S_{21}^{i}} \end{pmatrix}$$

- → Measure 4 S parameters
- → Define transfer matrix
- → Fit result

Definition of transfer matrix

$$M_i = L \cdot T_{refi} T_i T_{refi}^{-1} \cdot R$$

$$M_0 = L \cdot T_{ref0} T_0 T_{ref0}^{-1} \cdot R$$

$$M_0^{-1} = R^{-1} \cdot T_{ref0} T_0^{-1} T_{ref0}^{-1} \cdot L^{-1}$$

Sample measure

Standard measure

Raw data and fitting results

Car fuel Measurement

Task list

- 6.5.1 NaCl, NH₄NO₃, KNO₃, NaNO₃, KClO₃ varying humidity from 0-10%
- 6.5.2 Mixing two powders of varying humidity from 0-10%
- 6.5.3 Aluminum powder
- 6.5.4 Water
- 6.5.5 Icing sugar (powder) humidity from 0-10%
- 6.5.6 Fuel oil (car gasoline and diesel)

Next step

• Redo measurement of water.