北京师范大学 2021~2022学年第二学期期末考试试卷(A卷)

课程名称:	实变函数	任课教师姓名:
	7~B~	14 WY 10 11 11 11 11 11 11 11 11 11 11 11 11

卷面总分: 100分 考试时长: 120分钟 考试类别: 闭卷

题号	1	2	3	4	5	6	7	8	9	10	总分
分数											

- 1. (15分)判断下述命题,并简要说明理由.
 - (1) 设|f(x)|为E上的可测函数,则f(x)也是可测函数.
 - (2) 可测集类的基数为 2^c .
 - (3) 若f(x)为可测集E上的有界可测函数,则f(x)于E上可积.
 - (4) 于任意可测集*E*上的可测函数列, 几乎处处收敛一定是近乎一致收敛的.
 - (5) 对于几乎处处有限可测函数 f(x), 一定存在连续函数列逼近 f(x).
- 2. (10分)若 f(x), g(x)是限上可测函数, 试证明 f(x) g(x) 是限上可测函数.
- 3. (10分)设 $\{E_k\}$ 是 \mathbb{R}^n 中的可测集列, 若 $m(\bigcup_{k=1}^{\infty} E_k) < \infty$, 试证明

$$m\left(\overline{\lim_{k\to\infty}}E_k\right)\geqslant \overline{\lim_{k\to\infty}}m\left(E_k\right).$$

- 4. (10分)设函数列 $\{f_n\}$ 在 E 上依测度收敛于 f, 且 $f_n(x) \leq g(x)$ a.e. 于 $E, n = 1, 2, \cdots$. 试证 $f(x) \leq g(x)$ 在E 上几乎处处成立.
- 5. (10分) 设f(x)在 $[0,+\infty)$ 上非负可积, f(0) = 0, 且f'(0)存在, 试证明存在积分

$$\int_{[0,+\infty)} \frac{f(x)}{x} \mathrm{d}x.$$

6. (10分)设函数 $f(x) \in L([a,b])$. 若对任意的 $c \in [a,b]$, 有

$$\int_{[a,c]} f(x) \mathrm{d}x = 0,$$

则f(x) = 0 a.e. $x \in [a, b]$.

- 7. (10分)设f(x)是 $E \subset \mathbb{R}^n$ 上几乎处处大于零的可测函数, 且满足 $\int_E f(x) dx = 0$, 试证明m(E) = 0.
- 8. (8分)设 $f \in L([a,b])$, 且令 $F(x) = \int_a^x f(t)dt(x \in [a,b])$, 则 $F \in BV([a,b])$, 且 $\bigvee_a^b(F) \leqslant \int_a^b |f(x)|dx$.
- 9. (8分)设 $E \subset \mathbb{R}$ 且 m(E) > 0,则存在 $x_1, x_2 \in E$,使得 $|x_1 x_2|$ 是有理数.
- 10. (9分)设 $\{g_k(x)\}$ 是在[a,b]上的绝对连续函数列,又有 $[g'_k(x)] \leq F(x)$ a.e. $(k=1,2,\cdots)$ 且 $F \in L([a,b])$. 若 $\lim_{k \to \infty} g_k(x) = g(x) (a \leq x \leq b)$, $\lim_{k \to \infty} g'_k(x) = f(x)$, a.e. $x \in [a,b]$,试证明g'(x) = f(x), a.e. $x \in [a,b]$.