FERROMAGNETISME ET DIAMAGNETISME MISCROSCOPIQUE

Aimantation normalisé pour les matériaux paramagnetique

Fig. 4. Graphes de la fonction de Langevin $\mathcal{L}(u)$ avec $u = \mathcal{M} B/kT$ et de la fonction de Brillouin $B_{1/2}(u) \equiv \operatorname{th} u$ avec $u = g \mu_B B/2 kT$.

Aimantation normalisé pour les matériaux Ferromagnétiques

Fig. 2. a) Variation de l'aimantation à saturation en fonction de la température pour $T < T_f$. b) Inverse de la susceptibilité paramagnétique en fonction de la température pour $T_f < T$.

Intégrale d'échange pour différents cristaux

Détermination graphique de l'aimantation

FIGURE 7
Résolution graphique de l'équation d'autocohérence en champ nul. Les points d'intersection entre la courbe M/M_{∞} = th x (en trait gras) et la droite de pente variable $M/M_{\infty} = xT/T_c$ (en trait léger, pour trois valeurs de T) déterminent les aimantations spontanées possibles dans l'approximation de champ moyen.