INFORME DE PRUEBAS

Grado en Ingeniería Informática – Ingeniería del Software

Diseño y Pruebas 2 Curso 2023-2024

Índice

1. Información general del proyecto	3
2. Resumen del ejecutivo	4
3. Tabla de revisión	5
4. Introducción	6
5. Contenidos	7
5.1 Pruebas funcionales	7
5.2 Pruebas de rendimiento	11
6. Conclusiones	14
7. Bibliografía	15

1. Información general del proyecto

NOMBRE DEL PROYECTO			Acme-SF			
PARTICIPANTES						
Nombre	Email	Rol	Nombre de usuario		Foto	
Antonio Daniel Porcar Aragón	antporara@alum.us.es	Project Manager, Desarrollador	antporara			
Francisco Miguel Jiménez Morales	frajimmor2@alum.us.e s	Tester, Desarrollador	frajimmor2			
Javier Santos Martín	javsanmar5@alum.us. es	Desarrollador, Secretario	javsanmar5			
Javier Ruiz Garrido	javruigar2@alum.us.e s	Analista, Desarrollador	Javiruizg			
José García de Tejada Delgado	josgardel8@alum.us.e s	Operador, Desarrollador	JoseGTD			
Interesados						
Francisco Miguel Jiménez Morales, Javier Ruiz Garrido, José García de Tejada Delgado, Javier Santos Martín, Antonio Daniel Porcar Aragón and José González Enriquez (the professor).						
Fecha de inicio	Fecha esperada de completado	Entregables Fech		Fecha o	echa del documento	
12/02/2024	27/05/2024	4 24/0		24/05/2	24/05/2024	

2. Resumen del ejecutivo

Las pruebas son un componente esencial en el desarrollo y mantenimiento de software, ya que permiten a los miembros del equipo de desarrollo verificar el correcto funcionamiento del sistema y detectar errores.

En este documento se presenta un informe elaborado por el estudiante 3, que abarca los capítulos sobre pruebas funcionales y pruebas de rendimiento, además de un breve análisis sobre la cobertura de dichas pruebas.

3. Tabla de revisión

No aplica

4. Introducción

El contenido se dividirá en dos secciones principales: las pruebas funcionales y su cobertura, así como las pruebas de rendimiento. La primera sección se centrará en evaluar cómo cada función del software cumple con los requisitos especificados, asegurando que todas las funcionalidades operen correctamente. La segunda sección abordará las pruebas de rendimiento, donde se medirá la eficiencia y rapidez del sistema. Se adjunta foto de la cobertura de los test a los que han sido sometidos las entidades trainingModule y trainingSession.

Element		Covera	Covered Ins	Missed Instr	Total Instruc
~	# acme.features.developer.training_module	94,7 %	1.461	81	1.542
	DeveloperTrainingModulePublishService.java	94,3 %	367	22	389
	DeveloperTrainingModuleUpdateService.java	93,9 %	310	20	330
	DeveloperTrainingModuleDeleteService.java	93,2 %	245	18	263
	DeveloperTrainingModuleCreateService.java	95,8 %	275	12	287
	DeveloperTrainingModuleListMineService.java	94,2 %	81	5	86
	DeveloperTrainingModuleShowService.java	97,4 %	147	4	151
	DeveloperTrainingModuleController.java	100,0 %	36	0	36
~	# acme.features.developer.training_session	94,7 %	1.438	81	1.519
	DeveloperTrainingSessionPublishService.java	94,6 %	317	18	335
	DeveloperTrainingSessionUpdateService.java	94,6 %	313	18	331
	DeveloperTrainingSessionCreateService.java	95,2 %	318	16	334
	DeveloperTrainingSessionDeleteService.java	90,9 %	159	16	175
	DeveloperTrainingSessionListMineService.java	95,5 %	189	9	198
	DeveloperTrainingSessionShowService.java	96,4 %	106	4	110
	DeveloperTrainingSessionController.java	100,0 %	36	0	36

5. Contenidos

5.1 Pruebas funcionales

Training Module

- Create.hack: Sin estar logueado se prueba a cambiar la URL para crear un módulo de entrenamiento. Este intento de hackeo da un error 500 en la aplicación.
- Create.safe: Se ha logueado como developer1 y se crea un módulo de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos. Se ha obtenido una cobertura del 95,8%.
- Delete.hack: Sin estar logueado se prueba a cambiar la URL para eliminar un módulo de entrenamiento. Registrándose como developer2, se intenta eliminar un módulo de entrenamiento perteneciente al developer1. Por último, logueado como developer1, se intenta eliminar un módulo de entrenamiento que ya está publicado. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- **Delete.safe:** Se ha logueado como developer1 y se eliminan módulos de entrenamiento. Se ha obtenido una cobertura del 93,2%.
- List-mine.hack: Sin estar logueado se prueba a cambiar la URL para mostrar módulos de entrenamiento. Este intento de hackeo da como resultado un error de código 500 en la aplicación. Se ha logueado también como developer1 y developer2 para comprobar que se listan los módulos de entrenamiento adecuados.
- **List-mine.safe:** Se ha logueado como developer1 y developer2 para mostrar los listados de módulos de entrenamiento. Se ha obtenido una cobertura del 94,2%.

- Publish.hack: Sin estar logueado se prueba a cambiar la URL para publicar un módulo de entrenamiento. Registrándose como developer2, se intenta publicar un módulo de entrenamiento perteneciente al developer1. Por último, logueado como developer1, se intenta publicar un módulo de entrenamiento que ya está publicado. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- Publish.safe: Se ha logueado como developer1 y se publica un módulo de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos, incluidos los casos de intentar publicar un módulo de entrenamiento sin sesiones de entrenamiento asociadas o con sesiones de entrenamiento en modo borrador. Se ha obtenido una cobertura del 94,3%.
- Show.hack: Sin estar logueado se prueba a cambiar la URL para mostrar un módulo de entrenamiento. Registrándose como developer2, se intenta mostrar un módulo de entrenamiento perteneciente al developer1. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- Show.safe: Se ha logueado como developer1 y se muestran varios módulos de entrenamiento, y repetimos el proceso logueados como developer2. Se ha obtenido una cobertura del 97,4%.
- Update.hack: Sin estar logueado se prueba a cambiar la URL para modificar un módulo de entrenamiento. Registrándose como developer2, se intenta modificar un módulo de entrenamiento perteneciente al developer1. Por último, logueado como developer1, se intenta modificar un módulo de entrenamiento que ya está publicado. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- Update.safe: Se ha logueado como developer1 y se modifica un módulo de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos. Se ha obtenido una cobertura del 93,9%.

Training Session

- Create.hack: Sin estar logueado se prueba a cambiar la URL para crear una sesión de entrenamiento. Se loguea como developer2 y se intenta crear una sesión de entrenamiento para un módulo perteneciente al developer1. Por último se loguea como developer1 y se intenta crear una sesión de entrenamiento de un módulo ya publicado. Estos intentos de hackeo dan un error 500 en la aplicación.
- Create.safe: Se ha logueado como developer1 y se crea una sesión de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos. Se ha obtenido una cobertura del 95,2%.
- Delete.hack: Sin estar logueado se prueba a cambiar la URL para eliminar una sesión de entrenamiento. Registrándose como developer2, se intenta eliminar una sesión de entrenamiento perteneciente al developer1. Por último, logueado como developer1, se intenta eliminar una sesión de entrenamiento que ya está publicada. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- **Delete.safe:** Se ha logueado como developer1 y se eliminan sesiones de entrenamiento probando todos los casos posibles. Se obtienen los resultados esperados y un 90,9% de cobertura..
- List-mine.hack: Sin estar logueado se prueba a cambiar la URL para mostrar sesiones de entrenamiento. Este intento de hackeo da como resultado un error de código 500 en la aplicación. Se ha logueado también como developer2 y se ha intentado mostrar las sesiones de entrenamiento de un módulo perteneciente a developer1, resultando también con un error 500 en la aplicación.
- **List-mine.safe:** Se ha logueado como developer1 y developer2 para mostrar los listados de sesiones de entrenamiento. Se ha obtenido una cobertura del 95,5%.

- Publish.hack: Sin estar logueado se prueba a cambiar la URL para publicar una sesión de entrenamiento. Registrándose como developer2, se intenta publicar una sesión de entrenamiento perteneciente al developer1. Por último, logueado como developer1, se intenta publicar una sesión de entrenamiento que ya está publicada. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- Publish.safe: Se ha logueado como developer1 y se publica una sesión de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos. Se ha obtenido una cobertura del 94,6%.
- Show.hack: Sin estar logueado se prueba a cambiar la URL para mostrar una sesión de entrenamiento. Registrándose como developer2, se intenta mostrar una sesión de entrenamiento perteneciente a un módulo del developer1. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- **Show.safe:** Se ha logueado como developer1 y se muestran varias sesiones de entrenamiento, y repetimos el proceso logueados como developer2. Se ha obtenido una cobertura del 96,4%.
- Update.hack: Sin estar logueado se prueba a cambiar la URL para actualizar una sesión de entrenamiento. Registrándose como developer2, se intenta actualizar una sesión de entrenamiento perteneciente a un módulo del developer1. Por último, logueado como developer1, se intenta actualizar una sesión de entrenamiento que ya está publicada. Todos estos intentos de hackeo dan como resultado un error de código 500 en la aplicación.
- **Update.safe:** Se ha logueado como developer1 y se modifica una sesión de entrenamiento. Se prueban también todos los casos posibles y el sistema responde de forma esperada en todos aquellos. Se ha obtenido una cobertura del 94,6%.

5.2 Pruebas de rendimiento

Previas a la refactorización con índices

Columna1				
Media	20,90819	Interval (ms)	18,57256	23,243821
Error típico	1,1891529	Interval(s)	0,0185726	0,0232438
Mediana	7,6601			
Moda	#N/D			
Desviación estándar	28,49008			
Varianza de la muestra	811,68464			
Curtosis	7,5471867			
Coeficiente de asimetría	2,4530771			
Rango	198,1868			
Mínimo	1,3593			
Máximo	199,5461			
Suma	12001,301			
Cuenta	574			
Nivel de confianza(95,0%)	2,3356304			

Posteriores a la refactorización con índices

Columna1				
Media	23,1724939	Interval(ms)	20,8471767	25,4978112
Error típico	1,18390218	Interval(s)	0,02084718	0,02549781
Mediana	9,80345			
Moda	#N/D			
Desviación estándar	28,3642801			
Varianza de la muestra	804,532388			
Curtosis	4,25037494			
Coeficiente de asimetría	1,95026781			
Rango	177,6098			
Mínimo	1,8701			
Máximo	179,4799			
Suma	13301,0115			
Cuenta	574			
Nivel de confianza(95,0%)	2,32531729			

Como se puede apreciar, después de la refactorización del código, las tareas que previamente demandaban más tiempo del sistema han reducido su tiempo promedio. Por otro lado, aquellas tareas que inicialmente requerían menos tiempo ahora presentan un ligero incremento en su duración.

Los intervalos de confianza con un nivel del 95% son (18.55, 23.25) antes de la refactorización y (20.85, 25.5) después de la misma. Se puede observar que la amplitud del intervalo es similar en ambos casos, aunque el tiempo promedio es ligeramente mayor tras la refactorización.

Hipótesis de contraste

Prueba z para medias de dos muestras		
	Before	After
Media	21,0977711	23,1724939
Varianza (conocida)	809,556291	804,532388
Observaciones	591	574
Diferencia hipotética de las medias	0	
z	-1,246258	
P(Z<=z) una cola	0,10633484	
Valor crítico de z (una cola)	1,64485363	
Valor crítico de z (dos colas)	0,21266968	
Valor crítico de z (dos colas)	1,95996398	

Con estos valores, tomados con un 95% de nivel de confianza, observamos que el valor de P se encuentra por encima de 0,05. Por esta razón, podemos concluir que la refactorización no ha sido exitosa, ya que pese a que los tiempos sean diferentes, en términos generales, pueden considerarse iguales.

6. Conclusiones

En el informe se han recogido todas las pruebas realizadas por el estudiante 3, con las cuales se asegura el correcto funcionamiento del sistema además de un análisis sobre el rendimiento del mismo. La refactorización con índices no ha dado resultados positivos además de que estos resultados carecían de valor ya que globalmente no suponían ninguna diferencia.

7. Bibliografía

Intencionalmente en blanco.