Técnicas para la verificación empírica de la complejidad

Tema 1

Algoritmos

Dept. de Computación, Universidade da Coruña

Alberto Valderruten alberto.valderruten@udc.es

Verificación empírica de la complejidad

Aplicación del "método empírico" al análisis de algoritmos:

medir tiempos de ejecución (experimentos sistemáticos)

 \Rightarrow tabla de tiempos para distintos valores de n

⇒ ¿*O*?

Método empírico: Renacimiento, s. XVII (Galileo)

"Mide lo que se pueda medir;

lo que no se pueda... hazlo medible!"

- **Verificación** empírica: normalmente, se parte de una función f(n) candidata (obtenida mediante el análisis).
- Aplicación: Trabajo en prácticas

Estrategia para la medición de tiempos de ejecución (1)

Informe de resultados

- Contexto:
 - indicar qué se está midiendo: algoritmo, caso, características de la entrada, etc.
 - indicar dónde se está midiendo:
 id. ordenador del laboratorio (no debe ser un servidor!),
 características del ordenador personal
 - indicar unidades de tiempo: μs , ms, s...
- Tabla de tiempos: m mediciones para distintos valores de n

n	t(n)		
n_1	<i>t</i> ₁		
n_2	t ₂		
<i>n</i> ₃	t ₃		
n _m	t _m		

Estrategia para la medición de tiempos de ejecución (2)

• Normas en la obtención de tablas de tiempos (prácticas):

n	t(n)	
n ₁	<i>t</i> ₁	
n_2	t ₂	
n ₃	t ₃	
n _m	t _m	

- Los n_i deben seguir una progresión geométrica:
 - \rightarrow *2, *10 únicamente
- Debe medirse un mínimo de 5 valores de $n \ (m \ge 5)$:
 - → idealmente 7-8 mediciones
- No debe haber tiempos nulos $(t_i > 0)...$
- ... ni tiempos muy pequeños medidos directamente
 - $\Rightarrow t_i \geq$ umbral de confianza: $t_i \geq 500 \mu s$
 - ightarrow estrategia para la medición de tiempos pequeños
- No esperar mucho tiempo por un resultado
 - ightarrow abortar mediciones e indicarlo en la tabla, si procede

Estrategia para la medición de tiempos de ejecución (3)

Medición de tiempos pequeños:

```
leer_tiempo (ta);
repetir K veces:
    alg(n);
leer_tiempo (tb)
```

- K debe ser una potencia de 10
- en la tabla se pondrá (tb ta)/K
- y se indicará con una nota al pie que esa medición corresponde a un tiempo promedio de K ejecuciones del algoritmo
- sólo válido para algoritmos que no modifican la entrada:
 Qué hacer por ej. con un algoritmo de ordenación?
 - ightarrow Ok para medir ordenación de una entrada ordenada No usar en cualquier otro caso!

Estrategia para la medición de tiempos de ejecución (4)

Medición de tiempos pequeños (Cont.):

Eiemplo: "ordenación de un vector aleatorio" Se podría pensar en algo así (Atención: esta solución está MAL!):

```
inicializar (vector);
leer_tiempo (ta); alg(vector); leer_tiempo (tb);
t:=tb-ta;
                                        %''umbral de confianza''
si (t < 500) entonces {</pre>
  t := 0;
  repetir K veces: {
    inicializar (vector);
    leer_tiempo (ta); alg(vector); leer_tiempo (tb);
    t:=t+(tb-ta)
                                        % ESTA MAL
  t:=t/K
```


Estrategia para la medición de tiempos de ejecución (5)

Medición de tiempos pequeños (Cont.):

```
Ejemplo: "ordenación de un vector aleatorio"
inicializar (vector);
leer_tiempo (ta); alg(vector); leer_tiempo (tb);
t:=t.b-t.a:
leer_tiempo (ta);
    repetir K veces: {
        inicializar(vector); alg(vector)
    leer tiempo (tb);
                           % debería estar por encima de 500!
    t1:=tb-ta;
    leer tiempo (ta);
    repetir K veces:
                           % debe ser la misma constante K
        inicializar (vector);
    leer tiempo (tb);
    t2:=tb-ta;
    t := (t1-t2)/K
```

Estrategia para la medición de tiempos de ejecución (6)

¿Valoración de esta solución?

- se mide más "ruido" (gestión del bucle...)
 - \rightarrow dudas sobre la calidad de la mediciones
- riesgo de tiempos negativos
 - ightarrow comprobar las tablas, calcularlas varias veces. . .
- t1 también debería estar, a su vez, por encima del umbral de confianza
- ...

A pesar de todo, la menos mala

→ "Norma" para las prácticas

Estrategia para determinar la complejidad del algoritmo (1)

Punto de partida:

n	t(n)	
n ₁	<i>t</i> ₁	
n_2	t ₂	
n ₃	t ₃	
n _m	t _m	

Objetivo: encontrar f(n) tal que $t(n)/f(n) \to C$ cte. > 0 donde f(n) sea una de las funciones características ("típicas"): $logn, n, nlogn, n^k, 2^n \dots$

- - diremos entonces que f(n) es una cota (superior) ajustada (para t(n))
- \rightarrow ¿Cómo asegurarse de que la serie t(n)/f(n) → C > 0?

Estrategia para determinar la complejidad del algoritmo (2)

Técnica propuesta:

n	t(n)	t(n)/f(n)	t(n)/g(n)	t(n)/h(n)
n ₁	<i>t</i> ₁	$t_1/f(n_1)$	$t_1/g(n_1)$	$t_1/h(n_1)$
n ₂	t ₂	$t_2/f(n_2)$	$t_2/g(n_2)$	$t_2/h(n_2)$
n ₃	t ₃	$t_3/f(n_3)$	$t_3/g(n_3)$	$t_3/h(n_3)$
n _m	t _m	$t_m/f(n_m)$	$t_m/g(n_m)$	$t_m/h(n_m)$

Donde:

- f(n) es una cota ligeramente subestimada como cota superior ajustada
- g(n) es una cota **ajustada**: t(n) = O(g(n))
- h(n) es una cota ligeramente sobrestimada

Antención al orden de las funciones! < f(n), g(n), h(n) > ordenadas Ejemplo: < n, **nlogn** $, n^{1,5} >$; $< n^{0,8},$ **n** $, n^{1,2} >$; \dots

→ ¿Cómo diferenciar las 3 situaciones?

Estrategia para determinar la complejidad del algoritmo (3)

Estudio de la convergencia de una serie t(n)/f(n):

Dadas:

- t(n) la serie de mediciones obtenidas (tiempos)
- f(n) la cota con la que vamos a comparar las mediciones (una función característica)

 \Rightarrow

- Si $t(n)/f(n) \rightarrow \infty$ (diverge) cuando $n \rightarrow \infty$: f(n) es una cota **subestimada**
- Si $t(n)/f(n) \rightarrow C > 0$ cuando $n \rightarrow \infty$: f(n) es una cota **ajustada**: t(n) = O(f(n))
- Si $t(n)/f(n) \to 0$ (decrece) cuando $n \to \infty$: f(n) es una cota **sobrestimada**

Estrategia para determinar la complejidad del algoritmo (4)

Presentación de los resultados:

(en prácticas: ficheros de texto bien alineados)

n	t(n)	t(n)/f(n)	t(n)/g(n)	t(n)/h(n)
n ₁	t ₁ *	$t_1/f(n_1)$	$t_1/g(n_1)$	$t_1/h(n_1)$
n ₂	t ₂ *	$t_2/f(n_2)$	$t_2/g(n_2)$	$t_2/h(n_2)$
n ₃	t ₃	$t_3/f(n_3)$	$t_3/g(n_3)$	$t_3/h(n_3)$
n _m	t _m	$t_m/f(n_m)$	$t_m/g(n_m)$	$t_m/h(n_m)$
		subestimada	ajustada	sobrestimada
			Cte = <i>C</i>	

*: tiempo promedio de *K* ejecuciones del algoritmo

Tabla *i*: estudio de la complejidad de < *alg*, *caso* >

Discusión: explicar dificultades, mediciones anómalas, cualquier duda en el análisis...

Conclusión: t(n) = O(g(n))

Estrategia para determinar la complejidad del algoritmo (5)

Presentación de los resultados (Cont.): precauciones

- las cotas utilizadas deben indicarse explícitamente (y en orden)
- las constantes (K, C) deben indicarse explícitamente
 → C puede aproximarse mediante un intervalo
- comprobar recomendaciones sobre nº de mediciones, progresión de los valores de n, validez de los resultados...
- todos los números de las series calculadas deben tener al menos tres cifras significativas
- comprobar recomendaciones sobre contexto (introducción, unidades de tiempo...), discusión y conclusiones
- ¿dificultades en el análisis? → repetir las mediciones varias veces y elegir las "mejores series"

Ejemplo:

n	<i>t</i> (<i>n</i>)		$t(n)/n^{1,8}$	$t(n)/n^2$	$t(n)/n^{2,2}$
500	49,633	*	0.0006881	0.0001985	0.0000573
1000	186,558	*	0.0007427	0.0001866	0.0000469
2000	754,000		0.0008620	0.0001885	0.0000412
4000	2862,000		0.0009396	0.0001789	0.0000341
8000	11390,000		0.0010739	0.0001780	0.0000295
16000	45582,000		0.0012342	0.0001781	0.0000257
32000	183722,000		0.0014285	0.0001794	0.0000225
			subestimada	ajustada	sobrestimada
				Cte = 0.00018	

^{*:} tiempo promedio (en μs) de 1.000 ejecuciones del algoritmo

Tabla 1: estudio de la complejidad de Inserción, caso medio

Discusión: primeros valores

Conclusión: $t(n) = O(n^2)$

Consideraciones finales para las prácticas

- ¿Qué funciones utilizar?
 - → mirar bien el enunciado Cf. práctica 1
 Algunas funciones características
 Valorar la progresión de las series, deben resultar útiles
- Evaluación
 - → plantilla para la corrección de las prácticas
 Criterios de calidad de los programas y del informe de resultados
 Fórmula final
- Examen individual de prácticas