PH3105: Mark Distribution Guideline

Expt-1: Study of Geiger-Muller Counter and counting statistics by γ -ray source.

i. Theory of GM Counter. 1 Mark ii. Data Table [Run 1, Run 2, min 15-20 data points from 0 V to Av Voltage]. 3 Marks iii. GM Characteristic Curve with proper leveling. 2 Marks iv. Calculation of μ and σ^2 from the data for distribution curve. 2 Marks v. Use the μ and σ^2 to plot the Gaussian on the histogram and compare. 2 Marks

Expt-2: Study of γ -ray absorption in matter and inverse square law by γ -ray source.

Total 10 Marks

Total 10 Marks

i.	Theory of GM Counter, Mass attenuation, μ and inverse square law.	1 Mark
ii.	Background Reading.	1 Mark
iii.	Determination of Mass attenuation coefficient [Table with 2 RUN, Graph:	
	Count Rate vs Thickness for all available range]	4 Marks
iv.	Calculation of half value thickness.	1 Mark
v.	Verification of inverse square Law.	2 Marks
vi.	Write possible errors associated with your expt.	1 Mark

Expt-3: Study of γ -ray energy spectrum using a scintillation counter with Single Channel Analyzer (SCA).

Total 10 Marks

i.	Theory: Gamma-ray interaction with matter.	1 Mark
ii.	Theory: Scintillation Energy Detector.	1 Mark
iii.	Data Table with proper window and baseline step size	2 Marks
iv.	Two RUNs of counts for averaging data.	2 Mark
v.	Pulse height analysis of the expt.	1 Mark
vi.	Graph Plotting with proper marking of backscattering peak, Compton Edge,	
	Photo peak and its relating with pulse height observed in CRO.	3 Mark

Expt-4: Analysis of γ -ray energy spectra with Multichannel analyzer (MCA).

Total 10 Marks

i.	Detail decay scheme with explanation of Co ⁶⁰ and Cs ¹³⁷ source.	2 Marks
ii.	Co ⁶⁰ and Cs ¹³⁷ energy spectra and its calibration.	2 Marks
iii.	Table: Variation of resolution for Co ⁶⁰ with PMT voltage	2 Marks
iv.	Peak fitting of Co ⁶⁰ with two Gaussian peaks + Non-linear Background (2 nd order)	2 Marks
v.	Plot: Resolution vs voltage.	2 Marks

Expt-5: *Study of beta-spectroscopy.*

Total 10 Marks Describe the functioning of a beta spectrometer. i. 2 Marks Detail decay scheme with explanation of Sr^{90} and Na^{22} source. ii. 2 Marks Derive beta-particle kinetic energy, E_{kin} formula. iii. 2 Marks Table: For Sr⁹⁰ source (as per manual). iv. 1 Mark Plot: Counts vs E_{kin} for Sr^{90} source. 1 Mark v. Table: For Na²² source (as per manual). vi. 1 Mark Plot: Counts vs E_{kin} for Na^{22} source. vii. 1 Mark