

Lecture Notes

Introduction of Control Systems

Course coordinator: Assoc. Prof. Dr. Huynh Thai Hoang
Department of Automatic Control (DAC)
Faculty of Electrical & Electronics Engineering
Ho Chi Minh City University of Technology
Email: hthoang@hcmut.edu.vn

Instructor: Lecturers of Dept. of Automatic Control

Chapter 3

SYSTEM STABILITY ANALYSIS

- * Stability concept
- * Algebraic stability criteria
 - Necessary condition
 - ▲ Routh's criterion
 - ▲ Hurwitz's criterion
- * Root locus method
 - Root locus definition
 - Rules for drawing root loci
 - Stability analysis using root locus
- * Frequency response analysis
 - ▲ Frequency response
 - ▲ Bode criterion
 - Nyquist's stability criterion

Stability concept

BIBO stability

* A system is defined to be BIBO stable if every bounded input to the system results in a bounded output over the time interval $[t_0, +\infty)$ for all initial times t_0 .

Poles and zeros

* Consider a system described by the transfer function (TF):

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

* Denote: $A(s) = a_0 s^n + a_1 s^{n-1} + ... + a_{n-1} s + a_n$ (TF's denominator)

$$B(s) = b_0 s^m + b_1 s^{m-1} + ... + b_{m-1} s + b_m$$
 (TF' numerator)

- * <u>Poles</u>: are the roots of the denominator of the transfer function, i.e. the roots of the equation A(s) = 0. Since A(s) is of order n, the system has n poles denoted as p_i , i = 1, 2, ... n.
- * **Zeros**: are the roots of the numerator of the transfer function, i.e. the roots of the equation B(s) = 0. Since B(s) is of order m, the system has m zeros denoted as z_i , i = 1, 2, ..., m.

Pole – zero plot

★ Pole – zero plot is a graph which represents the position of poles and zeros in the complex s-plane.

Stability analysis in the complex plane

- * The stability of a system depends on the location of its poles.
- ★ If all the poles of the system lie in the left-half s-plane then the system is stable.
- ★ If any of the poles of the system lie in the right-half s-plane then the system is unstable.
- * If some of the poles of the system lie in the imaginary axis and the others lie in the left-half s-plane then the system is at the stability boundary.

Characteristic equation

- * Characteristic equation: is the equation A(s) = 0
- * Characteristic polynomial: is the denominator A(s)
- * Note:

Feedback systems

Systems described by state equations

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) \\ y(t) = \mathbf{C}\mathbf{x}(t) \end{cases}$$

Characteristic equation

$$1 + G(s)H(s) = 0$$

Characteristic equation

$$\det(s\boldsymbol{I}-\boldsymbol{A})=0$$

Algebraic stability criteria

Necessary condition

- * The necessary condition for a linear system to be stable is that all the coefficients of the characteristic equation of the system must be positive.
- * Example: Consider the systems which have the characteristic equations:

$$s^3 + 3s^2 - 2s + 1 = 0$$
 Unstable

$$s^4 + 2s^2 + 5s + 3 = 0$$
 Unstable

$$s^4 + 4s^3 + 5s^2 + 2s + 1 = 0$$
 Cannot conclude about the stability

Routh's stability criterion

Rules for forming the Routh table

* Consider a linear system whose characteristic function is:

$$a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$

- * To analyze the system stability using Routh's criterion, it is necessary to form the Routh table according to the rules:
 - ▲ The Routh table has n+1 rows.
 - ▲ The 1st row consists of the even-indexed coefficients.
 - ▲ The 2nd row consists of the odd-indexed coefficients.
 - ▲ The element at row i^{th} column j^{th} ($i \ge 3$) is calculated as:

$$c_{ij} = c_{i-2,j+1} - \alpha_i \cdot c_{i-1,j+1}$$

with

$$\alpha_i = \frac{c_{i-2,1}}{c_{i-1,1}}$$

Routh's stability criterion

Routh table

	S [™]	$c_{11} = a_0$	$c_{12} = a_2$	$c_{13} = a_4$	$c_{14} = a_6$	
	s ^{n−1}	$c_{21} = a_1$	$c_{22} = a_3$	$c_{23} = a_5$	$c_{24} = a_7$	
$\alpha_3 = \frac{c_{11}}{c_{21}}$	s ⁿ⁻²	$c_{31} = c_{12} - \alpha_3 c_{22}$	$c_{32} = c_{13} - \alpha_3 c_{23}$	$c_{33} = c_{14} - \alpha_3 c_{24}$	$c_{34} = c_{15} - \alpha_3 c_{25}$	
$\alpha_4 = \frac{c_{21}}{c_{31}}$	S ^{n−3}	$c_{41} = c_{22} - \alpha_4 c_{32}$	$c_{42} = c_{23} - \alpha_4 c_{33}$	$c_{43} = c_{24} - \alpha_4 c_{34}$	$c_{44} = c_{25} - \alpha_4 c_{35}$	
$\alpha_n = \frac{C_{n-2,1}}{C_{n-1,1}}$	50	$c_{nl} = c_{n-2,2} - \\ \alpha_n c_{n-1,2}$				

$$c_{ij} = c_{i-2, j+1} - \alpha_i \cdot c_{i-1, j+1}$$

$$\alpha_i = \frac{c_{i-2, 1}}{c_{i-1, 1}}$$

Routh's stability criterion

Routh's criterion statement

- * The necessary and sufficient condition for a system to be stable is that all the coefficients of the characteristic equation are positive and all terms in the first column of the Routh table have positive signs.
- * The number of sign changes in the first column of the Routh table is equal the number of roots lying in the right-half splane.

Routh's stability criterion – Example 1

- * Analyze the stability of the system which have the following characteristic equation: $s^4 + 4s^3 + 5s^2 + 2s + 1 = 0$
- * Solution: Routh table

	s^4	1	5	1
	s^3		2	0
$\alpha_3 = \frac{1}{4}$	s^2	$5 - \frac{1}{4} \cdot 2 = \frac{9}{2}$	1	
$\alpha_4 = \frac{8}{9}$	s^1	$2 - \frac{8}{9} \cdot 1 = \frac{10}{9}$	0	
$\alpha_5 = \frac{81}{20}$	s^0	1		

* Conclusion: The system is stable because all the terms in the first column are positive.

Routh's stability criterion – Example 2

* Analyze the system described by the following block diagram:

$$G(s) = \frac{50}{s(s+3)(s^2+s+5)}$$

$$H(s) = \frac{1}{s+2}$$

* Solution: The characteristic equation of the system:

$$1 + G(s).H(s) = 0$$

$$\Leftrightarrow$$
 1+ $\frac{50}{s(s+3)(s^2+s+5)}$. $\frac{1}{(s+2)}$ =0

$$\Leftrightarrow$$
 $s(s+3)(s^2+s+5)(s+2)+50=0$

$$\Leftrightarrow$$
 $s^5 + 6s^4 + 16s^3 + 31s^2 + 30s + 50 = 0$

Routh's stability criterion – Example 2 (cont')

* Routh table

	Sr 5	1	16	30
	s ⁴	6	31	50
$\alpha_3 = \frac{1}{6}$	s ³	$16 - \frac{1}{6}.31 = 10.83$	$30 - \frac{1}{6}.50 = 21.67$	0
$\alpha_4 = \frac{6}{10.83}$	s ²	$31 - \frac{6}{10.83} \times 21.67 = 18.99$	50	
$\alpha_{\rm s} = \frac{10.83}{18.99}$	s1	$21.67 - \frac{10.83}{18.99} \times 50 = -6.84$	0	
	z_0	50		

* Conclusion: The system is unstable because the terms in the first column change their signs two times. The characteristic equation has two roots with positive real parts.

Routh's stability criterion – Example 3

* Find the condition of *K* for the following system to be stable.

$$G(s) = \frac{K}{s(s^2 + s + 1)(s + 2)}$$

* Solution: The characteristic equation of the system is:

$$1 + G(s) = 0$$

$$\Leftrightarrow 1 + \frac{K}{s(s^2 + s + 1)(s + 2)} = 0$$

$$\Leftrightarrow$$
 $s^4 + 3s^3 + 3s^2 + 2s + K = 0$

Routh's stability criterion – Example 3 (cont')

* Routh table

	s^4	1	3	K
	s^3	3	2	0
$\alpha_3 = \frac{1}{3}$	s ²	$3 - \frac{1}{3} \cdot 2 = \frac{7}{3}$	K	
$\alpha_4 = \frac{9}{7}$	s ¹	$2-\frac{9}{7}.K$	0	
	s^0	K		

* The necessary & sufficient condition for the system to be stable:

$$\begin{cases} 2 - \frac{9}{7}K > 0\\ K > 0 \end{cases}$$

$$0 < K < \frac{14}{9}$$

Routh's stability criterion – Special case #1

* If a first-column term in any row is zero, but the remaining terms in that row are not zero or there is no remaining term, then the zero term is replaced by a very small positive number ε and the rest rows of the Routh table is calculated as the normal case.

Routh's stability criterion – Example 4

* Analyze the stability of the system whose characteristic equation is:

$$s^4 + 2s^3 + 4s^2 + 8s + 3 = 0$$

* Solution: Routh table

	s ⁴	1	4	3
	s ³	2	8	0
$\alpha_3 = \frac{1}{2}$	s^2	$4 - \frac{1}{2}.8 = 0$	3	
⇒	s ²	ε>0	3	
$\alpha_4 = \frac{2}{\varepsilon}$	s^1	$8-\frac{2}{\varepsilon}.3<0$	0	
	s ⁰	3		

* Conclusion: Because the terms in the first column change their signs two times, the system is unstable and it has two poles lying in the right-half complex plane.

Routh's stability criterion – Special case #2

- * If all the coefficients in any row are zero:
 - ▲ Forming an auxiliary polynomial with coefficients of the last row above the "all-zero-term row", denote the auxiliary polynomial as $A_0(s)$.
 - ▲ Replace the "all-zero-term row" by another row whose elements are the coefficients of the derivative $dA_0(s)/ds$.
 - ▲ Then continue to calculate the Routh table as the normal case.
- * **Note:** The roots of $A_0(s)$ are also the roots of characteristic equation.

Routh's stability criterion – Example 5

* Analyze the stability of the system whose characteristic equation is:

$$s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0$$

* Solution: Routh table

	s ⁵	1	8	7
	s ⁴	4	8	4
$\alpha_3 = \frac{1}{4}$	s ³	$8 - \frac{1}{4} \times 8 = 6$	$7 - \frac{1}{4} \times 4 = 6$	0
$\alpha_4 = \frac{4}{6}$	s ²	$8 - \frac{4}{6} \times 6 = 4$	4	
$\alpha_5 = \frac{6}{4}$	s1	$6 - \frac{6}{4} \times 4 = 0$	0	
⇒	s1	8	0	
$\alpha_6 = \frac{4}{8}$	s ⁰	$4 - \frac{4}{8} \times 0 = 4$		

Routh's stability criterion – Example 5 (cont')

★ The auxiliary polynomial:

$$A_0(s) = 4s^2 + 4 \qquad \Rightarrow \qquad \frac{dA_0(s)}{ds} = 8s + 0$$

* The roots of the auxiliary polynomial (are also the roots the characteristic equation):

$$A_0(s) = 4s^2 + 4 = 0 \Leftrightarrow s = \pm j$$

- * Conclusion:
 - ▲ All the terms in the first column are positive ⇒ characteristic equation has no root lying in the right-half s-plane.
 - ▲ The characteristic equation has two roots lying in the imaginary axis.
 - ▲ The number of roots lying in the left-half s-plane is 5-2=3.

 The system is at the stability boundary.

Hurwitz's stability criterion

Rules for forming the Hurwitz matrix

* Given a system whose characteristic equation is:

$$a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$

- ★ To analyze the system stability using Hurwitz's criterion, it is necessary to form the Hurwitz matrix according to the rules:
 - ▲ The Hurwitz matrix is a square matrix of order $n \times n$.
 - ▲ *The diagonal* consists of the coefficients a_1 to a_n .
 - ▲ The odd row of the Hurwitz matrix consists of the odd-indexed coefficients of the characteristic polynomial; the indexes increase on the right and decrease on the left of the diagonal.
 - ▲ The even row of the Hurwitz matrix consists of the evenindexed coefficients of the characteristic polynomial; the indexes increase on the right and decrease on the left of the diagonal.

Hurwitz's stability criterion

Hurwitz matrix

$$\begin{bmatrix} a_1 & a_3 & a_5 & a_7 & \dots & 0 \\ a_0 & a_2 & a_4 & a_6 & \dots & 0 \\ 0 & a_1 & a_3 & a_5 & \dots & 0 \\ 0 & a_0 & a_2 & a_4 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & \dots & a_n \end{bmatrix}$$

Hurwitz's criterion statement

* The *necessary and sufficient condition* for the system to be stable is that all the determinants of the principal sub-matrices of the Hurwitz matrix are positive.

Hurwitz's stability criterion – Example 1

Analyze the stability of the system whose characteristic equation is:

$$s^3 + 4s^2 + 3s + 2 = 0$$

* Solution:

Hurwitz matrix:
$$\begin{bmatrix} a_1 & a_3 & 0 \\ a_0 & a_2 & 0 \\ 0 & a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 3 & 0 \\ 0 & 4 & 2 \end{bmatrix}$$

The determinants: $\Delta_1 = a_1 = 4$

$$\Delta_{2} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{vmatrix} = \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = 4 \times 3 - 1 \times 2 = 10$$

$$\Delta_{3} = \begin{vmatrix} a_{1} & a_{3} & 0 \\ a_{0} & a_{2} & 0 \\ 0 & a_{1} & a_{3} \end{vmatrix} = a_{3} \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{vmatrix} = 2 \times \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = 2 \times 10 = 20$$

* Conclusion: The system is stable because all the determinants are positive.

Hurwitz's stability criterion – Some corollaries

* A 2nd order system is stable if the coefficients of the characteristic polynomial satisfy the conditions:

$$a_i > 0, \quad i = \overline{0,2}$$

* A 3rd order system is stable if the coefficients of the characteristic polynomial satisfy the conditions:

$$\begin{cases} a_i > 0, & i = \overline{0,3} \\ a_1 a_2 - a_0 a_3 > 0 \end{cases}$$

* A 4th order system is stable if the coefficients of the characteristic polynomial satisfy the conditions:

$$\begin{cases} a_i > 0, & i = \overline{0,4} \\ a_1 a_2 - a_0 a_3 > 0 \\ a_1 a_2 a_3 - a_0 a_3^2 - a_1^2 a_4 > 0 \end{cases}$$

The root locus method

The concept of root locus (RL)

* Example: Plot of all the roots of the following characteristic equation when K changes from $0 \to +\infty$.

$$s^2 + 4s + K = 0$$

★ Definition: Root locus is the set of all the roots of the characteristic equation of a system when a real parameter changing from $0 \rightarrow +\infty$.

Magnitude and phase condition of the root locus

* In order to apply the rules for construction of the root locus, first we have to equivalently transform the characteristic equation to standard form:

$$1 + K \frac{N(s)}{D(s)} = 0 \tag{1}$$

where *K* is the changing parameter.

Denote:

$$G_0(s) = K \frac{N(s)}{D(s)}$$

Assume that $G_0(s)$ has n poles p_i and m zeros z_i .

$$(1) \Leftrightarrow 1 + G_0(s) = 0$$

$$\Rightarrow \begin{cases} |G_0(s)| = 1 & \text{magnitude condition} \\ \angle G_0(s) = (2l+1)\pi & \text{phase condition} \end{cases}$$

Rules for construction of the root locus

* Rule 1: The number of branches of a root locus = the order of the characteristic equation = number of poles of $G_0(s) = n$.

* Rule 2:

- ▲ For K = 0: the root locus begins at the poles of $G_0(s)$.
- ▲ As K goes to $+\infty$: m branches of the root locus end at m zeros of $G_0(s)$, the n-m remaining branches go to infinity approaching the asymptote defined by the rule 5 & rule 6.
- * Rule 3: The root locus is symmetric with respect to the real axis.
- * Rule 4: A point on the real axis belongs to the root locus if the total number of poles and zeros of $G_0(s)$ to its right is odd.

Rules for construction of the root locus (cont')

* Rule 5: The angles between the asymptotes and the real axis are calculated by:

$$\alpha = \frac{(2l+1)\pi}{n-m}$$
 (l = 0,±1,±2,...)

* Rule 6: The intersection between the asymptotes and the real axis is a point A defined by:

$$OA = \frac{\sum \text{pole} - \sum \text{zero}}{n - m} = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n - m}$$
 (p_i & z_i are poles and zeros of $G_0(s)$)

* Rule 7: Breakaway / break-in points (or break points for short), if any, are located in the real axis and are satisfied the equation:

Rules for construction of the root locus (cont')

- * Rule 8: The intersections of the root locus with the imaginary axis can be determined by using the Routh-Hurwitz criteria or by substituting $s=j\omega$ into the characteristic equation.
- * <u>Rule 9</u>: The departure angle of the root locus from a pole p_j (of multiplicity 1) is given by:

$$\theta_j = 180^0 + \sum_{i=1}^m \arg(p_j - z_i) - \sum_{\substack{i=1\\i \neq j}}^n \arg(p_j - p_i)$$

The geometric form of the above formula is:

$$\theta_j$$
 = 180° + (Σ angle from the zero z_i (i =1.. m) to the pole p_j)

- (Σ angle from the poles p_i (i =1.. m , $i\neq j$) to the pole p_j)

The root locus method – Example 1

* Sketch the root locus of the following system when $K=0 \rightarrow +\infty$.

$$G(s) = \frac{K}{s(s+2)(s+3)}$$

- * Solution:
- * The characteristic equation of the system:

$$1 + G(s) = 0 \quad \Leftrightarrow \quad 1 + \frac{K}{s(s+2)(s+3)} = 0 \tag{1}$$

- * Poles: $p_1 = 0$ $p_2 = -2$ $p_3 = -3$
- * Zeros: none

The root locus method – Example 1 (cont')

* The asymptotes:

ymptotes.
$$\alpha = \frac{(2l+1)\pi}{n-m} = \frac{(2l+1)\pi}{3-0} \Rightarrow \begin{cases} \alpha_1 = \frac{\pi}{3} & (l=0) \\ \alpha_2 = -\frac{\pi}{3} & (l=-1) \\ \alpha_3 = \pi & (l=1) \end{cases}$$

$$OA = \frac{\sum \text{pole} - \sum \text{zero}}{n - m} = \frac{[0 + (-2) + (-3)] - 0}{3 - 0} = -\frac{5}{3}$$

* The break points:

(1)
$$\Leftrightarrow K = -s(s+2)(s+3) = -(s^3 + 5s^2 + 6s)$$

 $\Rightarrow \frac{dK}{ds} = -(3s^2 + 10s + 6)$
Then $\frac{dK}{ds} = 0 \Leftrightarrow \begin{cases} s_1 = -2.549 & \text{(rejected)} \\ s_2 = -0.785 \end{cases}$

* The intersections of the root locus with the imaginary axis:

Method 1: Using the Hurwitz's criterion

(1)
$$\Leftrightarrow s^3 + 5s^2 + 6s + K = 0$$
 (2)

Stability condition:

$$\begin{cases} K > 0 \\ a_1 a_2 - a_0 a_3 > 0 \end{cases} \Leftrightarrow \begin{cases} K > 0 \\ 5 \times 6 - 1 \times K > 0 \end{cases} \Leftrightarrow 0 < K < 30 \Rightarrow K_{cr} = 30$$

Substitute K_{cr} = 30 into the equation (2) and solve the equation, we have the intersections of the root locus with the imaginary axis.

sinary axis.
$$\begin{cases} s_1 = -5 \\ s_2 = j\sqrt{6} \\ s_3 = -j\sqrt{6} \end{cases}$$

* The intersections of the root locus with the imaginary axis:

Method 2:

(1)
$$\Leftrightarrow s^3 + 5s^2 + 6s + K = 0$$
 (2)

Substitute $s=j\omega$ into the equation (2):

$$(j\omega)^3 + 5(j\omega)^2 + 6(j\omega) + K = 0 \quad \Leftrightarrow \quad -j\omega^3 - 5\omega^2 + 6j\omega + K = 0$$

$$\Leftrightarrow \begin{cases} -j\omega^3 + 6j\omega = 0 \\ -5\omega^2 + K = 0 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} \omega = 0 \\ K = 0 \end{cases} \\ \omega = \pm\sqrt{6} \\ K = 30 \end{cases}$$

The root locus method – Example 2

* Sketch the root locus of the system below when $K=0 \rightarrow +\infty$.

$$G(s) = \frac{K}{s(s^2 + 8s + 20)}$$

- * Solution:
- * The characteristic equation of the system:

$$1 + G(s) = 0 \quad \Leftrightarrow \quad 1 + \frac{K}{s(s^2 + 8s + 20)} = 0 \quad (1)$$

- * Poles: $p_1 = 0$ $p_{2,3} = -4 \pm j2$
- * Zeros: none

* The asymptotes:

ne asymptotes:
$$\alpha = \frac{(2l+1)\pi}{n-m} = \frac{(2l+1)\pi}{3-0} \Rightarrow \begin{cases} \alpha_1 = \frac{\pi}{3} & (l=0) \\ \alpha_2 = -\frac{\pi}{3} & (l=-1) \\ \alpha_3 = \pi & (l=1) \end{cases}$$

$$OA = \frac{\sum \text{pole} - \sum \text{zero}}{n - m} = \frac{[0 + (-4 + j2) + (-4 - j2)] - (0)}{3 - 0} = -\frac{8}{3}$$

★ The break points:

(1)
$$\Leftrightarrow K = -(s^3 + 8s^2 + 20s)$$

 $\Rightarrow \frac{dK}{ds} = -(3s^2 + 16s + 20)$
Then $\frac{dK}{ds} = 0 \Leftrightarrow \begin{cases} s_1 = -3.33 \\ s_2 = -2.00 \end{cases}$ (2 break points accepted)

* The intersections of the root locus with the imaginary axis:

$$(1) \Leftrightarrow s^3 + 8s^2 + 20s + K = 0$$
 (2)

Substitute $s=j\omega$ into the equation (2):

$$(j\omega)^3 + 8(j\omega)^2 + 20(j\omega) + K = 0$$

$$\Leftrightarrow$$
 $-j\omega^3 - 8\omega^2 + 20j\omega + K = 0$

$$\Leftrightarrow \begin{cases} -8\omega^2 + K = 0 \\ -\omega^3 + 20\omega = 0 \end{cases} \Leftrightarrow \begin{cases} \begin{cases} \omega = 0 \\ K = 0 \end{cases} \\ \begin{cases} \omega = \pm \sqrt{20} \\ K = 160 \end{cases} \end{cases}$$

* The departure angle of the root locus from the pole p_2

$$\theta_{2} = 180^{0} - [\arg(p_{2} - p_{1}) + \arg(p_{2} - p_{3})]$$

$$= 180^{0} - \{\arg[(-4 + j2) - 0] + \arg[(-4 + j2) - (-4 - j2)]\}$$

$$= 180^{0} - \{tg^{-1}\left(\frac{2}{-4}\right) + 90\}$$

$$= 180^{0} - \{153.5 + 90\}$$

$$\theta_{2} = -63.5^{0}$$

The root locus method – Example 3

* Sketch the root locus of the system below when $K=0 \rightarrow +\infty$.

$$G(s) = \frac{K(s+1)}{s(s+3)(s^2+8s+20)}$$

- * Solution:
- * The characteristic equation of the system:

$$1 + G(s) = 0 \qquad \Leftrightarrow \qquad 1 + \frac{K(s+1)}{s(s+3)(s^2 + 8s + 20)} = 0$$
 (1)

- * Poles: $p_1 = 0$ $p_2 = -3$ $p_{3,4} = -4 \pm j2$
- * Zeros: $z_1 = -1$

* The asymptotes:

$$\alpha = \frac{(2l+1)\pi}{n-m} = \frac{(2l+1)\pi}{4-1} \Rightarrow \begin{cases} \alpha_1 = \frac{\pi}{3} & (l=0) \\ \alpha_2 = -\frac{\pi}{3} & (l=-1) \\ \alpha_3 = \pi & (l=-1) \end{cases}$$

$$OA = \frac{\sum \text{pole} - \sum \text{zero}}{n - m} = \frac{[0 + (-3) + (-4 + j2) + (-4 - j2)] - (-1)}{4 - 1} = -\frac{10}{3}$$

* The break points:

(1)
$$\Leftrightarrow K = -\frac{s(s+3)(s^2+8s+20)}{(s+1)} \Rightarrow \frac{dK}{ds} = -\frac{3s^4+26s^3+77s^2+88s+60}{(s+1)^2}$$

Then
$$\frac{dK}{ds} = 0$$
 \Leftrightarrow
$$\begin{cases} s_{1,2} = -3.67 \pm j1.05 & \text{(rejected)} \\ s_{3,4} = -0.66 \pm j0.97 & \text{(rejected)} \end{cases}$$

* The intersections of the root locus with the imaginary axis:

(1)
$$\Leftrightarrow s^4 + 11s^3 + 44s^2 + (60 + K)s + K = 0$$
 (2)

Substitute $s=j\omega$ into the equation (2):

$$\omega^4 - 11j\omega^3 - 44\omega^2 + (60 + K)j\omega + K = 0$$

$$\Leftrightarrow \begin{cases} \omega^4 - 44\omega^2 + K = 0 \\ -11\omega^3 + (60 + K)\omega = 0 \end{cases} \Leftrightarrow \begin{cases} k \\ \alpha \\ K \end{cases}$$

Substitute
$$s=j\omega$$
 into the equation (2):
$$\omega^4 - 11j\omega^3 - 44\omega^2 + (60+K)j\omega + K = 0$$

$$\Leftrightarrow \begin{cases} \omega^4 - 44\omega^2 + K = 0 \\ -11\omega^3 + (60+K)\omega = 0 \end{cases} \Leftrightarrow \begin{cases} \omega = 0 \\ K = 0 \\ \omega = \pm 5,893 \\ K = 322 \\ \omega = \pm j1,314 \text{ (rejected)} \\ K = -61,7 \end{cases}$$

$$\Rightarrow \text{ the intersections are: } s = \pm j5,893 \quad \text{Critical gain: } K_{cr} = 322 \end{cases}$$

 \Rightarrow the intersections are: $s = \pm j5,893$ Critical gain: $K_{cr} = 322$

* The departure angle of the root locus from the pole p_3

$$\theta_3 = 180 + \beta_1 - (\beta_2 + \beta_3 + \beta_4)$$
$$= 180 + 146,3 - (153,4 + 116,6 + 90)$$

$$\theta_3 = -33.7^0$$

The root locus method – Example 4

* Given the system below:

Y(s)
$$G(s) = \frac{10}{(s^2 + 9s + 3)}$$

$$G_C(s) = K_P + \frac{K_I}{s}$$

- * For $K_I = 2.7$, sketch the root locus of the system when $K_I = 0 \rightarrow +\infty$, note that $dK_P / ds = 0$ has 3 roots at -3, -3, 1.5.
- * For $K_P = 270$, $K_I = 2.7$, the system is stable or not?

- * Solution:
- * The characteristic equation of the system:

$$1 + G_C(s)G(s) = 0$$

$$\Leftrightarrow 1 + \left(K_P + \frac{2.7}{s}\right) \left(\frac{10}{s^2 + 9s + 3}\right) = 0$$

$$\Leftrightarrow 1 + \frac{10K_P s}{(s+9)(s^2+3)} = 0 \tag{1}$$

- * Poles: $p_1 = -9$ $p_2 = +j\sqrt{3}$ $p_3 = -j\sqrt{3}$
- * Zeros: $z_1 = 0$

The asymptotes:

$$\alpha = \frac{(2l+1)\pi}{n-m} = \frac{(2l+1)\pi}{3-1} \Rightarrow \begin{cases} \pi/2 & (1=0) \\ -\pi/2 & (1=-1) \end{cases}$$

$$OA = \frac{\sum \text{pole} - \sum \text{zero}}{n - m} = \frac{[-9 + (j\sqrt{3}) + (-j\sqrt{3})] - (0)}{3 - 1} = -\frac{9}{2}$$

* The break points:

$$\frac{dK_P}{ds} = 0 \Leftrightarrow \begin{cases} s_1 = -3\\ s_2 = -3\\ s_3 = 1.5 \end{cases}$$
 (rejected)

The root locus has two break points at the same location –3

* The departure angle of the root locus from the pole p_2

$$\theta_2 = 180^0 + \arg(p_2 - z_1) - [\arg(p_2 - p_1) + \arg(p_2 - p_3)]$$

$$= 180^0 + \arg(j\sqrt{3} - 0) - [\arg(j\sqrt{3} - (-9)) + \arg(j\sqrt{3} - (-j\sqrt{3}))]$$

$$= 180^0 + 90 - \left\{ tg^{-1} \left(\frac{\sqrt{3}}{-9} \right) + 90 \right\}$$

$$\theta_2 = -169^0$$

* For $K_I = 2.7$ the root locus is located completely in the left-half s-plane when $K_P = 0 \rightarrow +\infty$, so the system is stable when $K_I = 2.7$, $K_P = 270$.

Frequency domain analysis

Frequency response

* Observe the response of a linear system at steady state when the input is a sinusoidal signal.

Frequency response definition

* It can be observed that, for linear system, if the input is a sinusoidal signal then the output signal at steady-state is also a sinusoidal signal with the same frequency as the input, but different amplitude and phase.

$$u(t)=U_{m}\sin(j\omega)$$

$$U(j\omega)$$

$$y(t)=Y_{m}\sin(j\omega+\varphi)$$

$$Y(j\omega)$$

⋆ Definition: Frequency response of a system is the ratio between the steady-state output and the sinusoidal input.

Frequency response =
$$\frac{Y(j\omega)}{U(j\omega)}$$

It is proven that: Frequency response
$$= G(s)|_{s=j\omega} = G(j\omega)$$

Magnitude response and phase response

* In general, $G(j\omega)$ is a complex function and it can be represented in algebraic form or polar form.

$$G(j\omega) = P(\omega) + jQ(\omega) = M(\omega).e^{j\varphi(\omega)}$$

where:

$$M(\omega) = |G(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)}$$

Magnitude response

$$\varphi(\omega) = \angle G(j\omega) = tg^{-1} \left[\frac{Q(\omega)}{P(\omega)} \right]$$

Phase response

- ★ Physical meaning of frequency response:
 - ▲ The magnitude response provides information about the gain of the system with respect to frequency .
 - ▲ The phase response provides information about the phase shift between the output & the input with respect to frequency

Graphical representation of frequency response

- * <u>Bode diagram</u>: is a graph of the frequency response of a linear system versus frequency plotted with a log-frequency axis. Bode diagram consists of two plots:
 - ▶ Bode magnitude plot expresses the magnitude response gain $L(\omega)$ versus frequency ω .

$$L(\omega) = 20 \lg M(\omega) \text{ [dB]}$$

- ▶ **Bode phase plot** expresses the phase response $\varphi(\omega)$ versus frequency ω .
- * **Nyquist plot**: is a graph in polar coordinates in which the gain and phase of a frequency response $G(j\omega)$ are plotted when ω changing from $0 \rightarrow +\infty$.

Graphical representation of frequency response (cont')

Bode diagram

Nyquist plot

Frequency response of basic factor

Proportional gain

* Transfer function: G(s) = K

* Frequency response: $G(j\omega) = K$

▲ Magnitude response: $M(\omega) = K \implies L(\omega) = 20 \lg K$

▲ Phase response: $\varphi(\omega) = 0$

Integral factor

* Transfer function:
$$G(s) = \frac{1}{s}$$

* Frequency response:
$$G(j\omega) = \frac{1}{j\omega} = -j\frac{1}{\omega}$$

▲ Magnitude response:
$$M(\omega) = \frac{1}{\omega}$$
 \Rightarrow $L(\omega) = -20 \lg \omega$

▲ Phase response:
$$\varphi(\omega) = -90^0$$

Derivative factor

* Transfer function:
$$G(s) = s$$

* Frequency response:
$$G(j\omega) = j\omega$$

▲ Magnitude response:
$$M(\omega) = \omega$$
 \Rightarrow $L(\omega) = 20 \lg \omega$

▲ Phase response:
$$\varphi(\omega) = 90^0$$

Derivative factor

Bode diagram

Nyquist plot

First-order lag factor

$$G(s) = \frac{1}{Ts+1}$$

$$G(j\omega) = \frac{1}{Tj\omega + 1}$$

▲ Magnitude response:
$$M(ω) = \frac{1}{\sqrt{1 + T^2 ω^2}}$$

$$\Rightarrow$$

$$L(\omega) = -20\lg\sqrt{1 + T^2\omega^2}$$

$$\varphi(\omega) = -tg^{-1}(T\omega)$$

* Approximation of the Bode diagram by asymptotes:

 $\star \omega < 1/T$: the asymptote lies on the horizontal axis

 $\star \omega > 1/T$: the asymptote has the slope of -20dB/dec

First-order lead factor

* Transfer function:
$$G(s) = Ts + 1$$

* Frequency response:
$$G(j\omega) = Tj\omega + 1$$

▲ Magnitude response:
$$M(\omega) = \sqrt{1 + T^2 \omega^2}$$

$$\Rightarrow$$
 $L(\omega) = 20 \lg \sqrt{1 + T^2 \omega^2}$

▲ Phase response:
$$φ(ω) = tg^{-1}(Tω)$$

* Approximation of the Bode diagram by asymptotes:

 $\Delta \omega < 1/T$: the asymptote lies on the horizontal axis

 $\Delta \omega > 1/T$: the asymptote has the slope of +20dB/dec

First-order lead factor

Second-order oscilating factor

* Transfer function:
$$G(s) = \frac{1}{T^2 s^2 + 2\xi T s + 1} (0 < \xi < 1)$$

Second-order oscilating factor

$$G(j\omega) = \frac{1}{-T^2\omega^2 + 2\xi Tj\omega + 1}$$

$$M(\omega) = \frac{1}{\sqrt{(1 - T^2 \omega^2)^2 + 4\xi^2 T^2 \omega^2}}$$

$$\Rightarrow$$

$$L(\omega) = -20\lg\sqrt{(1 - T^2\omega^2)^2 + 4\xi^2T^2\omega^2}$$

$$\varphi(\omega) = -tg^{-1} \left(\frac{2\xi T\omega}{1 - T^2 \omega^2} \right)$$

★ Approximation of the Bode diagram by asymptotes:

 $\Delta \omega < 1/T$: the asymptote lies on the horizontal axis

 $\Delta \omega > 1/T$: the asymptote has the slope of -40dB/dec

Frequency response of basic factor (cont.)

Second-order oscilating factor

Nyquist plot

 $P(\omega)$

 $\omega = 0$

Frequency response of basic factor (cont.)

Time delay factor

* Transfer function:
$$G(s) = e^{-Ts}$$

* Frequency response:
$$G(j\omega) = e^{-Tj\omega}$$

▲ Magnitude response:
$$M(\omega) = 1 \implies L(\omega) = 0$$

▲ Phase response:
$$\varphi(\omega) = -T\omega$$

Frequency response of basic factor (cont.)

Time delay factor

Nyquist plot

Frequency response of control systems

* Consider a control system which has the transfer function G(s). Suppose that G(s) consists of basis factors in series:

$$G(s) = \prod_{i=1}^{l} G_i(s)$$

Frequency response:

$$G(j\omega) = \prod_{i=1}^{l} G_i(j\omega)$$

▲ Magnitude response:
$$M(\omega) = \prod_{i=1}^{l} M_i(\omega) \implies L(\omega) = \sum_{i=1}^{l} L_i(\omega)$$

▲ Phase response:

$$\varphi(\omega) = \sum_{i=1}^{l} \varphi_i(\omega)$$

⇒ The Bode diagram of a system consisting of basic factors in series equals to the sum of the Bode diagram of the basic factors.

Approximation of Bode diagram

* Suppose that the TF of the system is of the form:

$$G(s) = Ks^{\alpha}G_1(s)G_2(s)G_3(s)\dots$$

(α >0: the system has ideal derivative factor(s)

 α <0: the system has ideal integral factor(s))

- * Step 1: Determine all the corner frequencies $\omega_i = 1/T_i$, and sort them in ascending order $\omega_1 < \omega_2 < \omega_3 \dots$
- ★ Step 2: The approximated Bode diagram passes through the point A having the coordinates:

$$\begin{cases} \omega = \omega_0 \\ L(\omega) = 20 \lg K + \alpha \times 20 \lg \omega_0 \end{cases}$$

where ω_0 is a frequency satisfying $\omega_0 < \omega_1$. If $\omega_1 > 1$ then it is possible to chose $\omega_0 = 1$.

Approximation of Bode diagram (cont')

- * Step 3: Through point A, draw an asymptote with the slope:
 - \blacktriangle (- 20 $dB/dec \times \alpha$) if G(s) has α ideal integral factors
 - \star (+ 20 $dB/dec \times \alpha$) if G(s) has α ideal derivative factors. The asymptote extends to the next corner frequency.
- * Step 4: At the corner frequency $\omega_i = 1/T_i$, the slope of the asymptote is added with:
 - $-20dB/dec \times \beta_i$) if $G_i(s)$ is a first-order lag factor (multiple β_i)
 - \wedge (+20*dB*/*dec* \times β_i) if $G_i(s)$ is a first-order lead factor (multiple β_i)
 - ▲ $(-40dB/dec \times \beta_i)$ if $G_i(s)$ is a 2nd order oscillating factor (multiple β_i)
 - ▲ (+40*dB/dec* × $β_i$) if $G_i(s)$ is a 2nd order lead factor (multiple $β_i$)

The asymptote extends to the next corner frequency.

* Step 5: Repeat the step 4 until the asymptote at the last corner frequency is plotted.

Approximation of Bode diagram – Example 1

* Plot the Bode diagram using asymptotes:

$$G(s) = \frac{100(0,1s+1)}{s(0,01s+1)}$$

Based on the Bode diagram, determine the gain cross frequency of the system.

- * Solution:
- * Corner frequencies:

$$\omega_1 = \frac{1}{T_1} = \frac{1}{0,1} = 10 \text{ (rad/sec)}$$
 $\omega_2 = \frac{1}{T_2} = \frac{1}{0,01} = 100 \text{ (rad/sec)}$

* The Bode diagram pass the point A at the coordinate:

$$\begin{cases} \omega = 1 \\ L(\omega) = 20 \lg K = 20 \lg 100 = 40 \end{cases}$$

Approximation of Bode diagram – Example 1 (cont')

* In the Bode diagram, the gain crossover frequency is 10³ rad/sec.

Example 2 – Bode diagram to transfer function

★ Determine the transfer function of the system which has the approximation Bode diagram as below:

Example 2 – Bode diagram to transfer function (cont')

- * The slope of segment CD: $\frac{54-26}{2-1.301} = +40 \, (dB/dec)$
- * The corner frequencies:

$$\lg \omega_{g1} = 0 + \frac{40 - 26}{20} = 0.7 \qquad \Rightarrow \qquad \omega_{g1} = 10^{0.7} = 5 \text{ (rad/sec)}
 \lg \omega_{g2} = 1.301 \qquad \Rightarrow \qquad \omega_{g2} = 10^{1.301} = 20 \text{ (rad/sec)}
 \lg \omega_{g3} = 2 \qquad \Rightarrow \qquad \omega_{g3} = 10^2 = 100 \text{ (rad/sec)}$$

* The transfer function has the form: $G(s) = \frac{K(T_1s+1)(T_2s+1)^2}{s(T_2s+1)^2}$

$$20\lg K = 40 \implies K = 100$$

$$T_1 = \frac{1}{\omega_{g1}} = \frac{1}{5} = 0.2 \qquad T_2 = \frac{1}{\omega_{g2}} = \frac{1}{20} = 0.05 \qquad T_3 = \frac{1}{\omega_{g3}} = \frac{1}{100} = 0.01$$

Crossover frequency

* Gain crossover frequency(ω_c): is the frequency where the amplitude of the frequency response is 1 (or 0 dB).

$$M(\omega_c) = 1$$
 \Leftrightarrow $L(\omega_c) = 0$

$$\iff$$

$$L(\omega_c) = 0$$

* Phase crossover frequency $(\omega_{-\pi})$: is the frequency where phase shift of the frequency response is equal to -180° (or equal to $-\pi$ radian).

$$\varphi(\omega_{-\pi}) = -180^{\circ}$$
 \Leftrightarrow $\varphi(\omega_{-\pi}) = -\pi \text{ rad}$

$$\Leftrightarrow$$

$$\varphi(\omega_{-\pi}) = -\pi \text{ rad}$$

Stability margin

★ Gain margin (*GM***)**:

$$GM = \frac{1}{M(\omega_{-\pi})}$$
 \Leftrightarrow $GM = -L(\omega_{-\pi})$ [dB]

Physical meaning: The gain margin is the amount of positive gain at the phase crossover frequency required to bring the system to the stability boundary.

★ Phase margin (*ΦM*)

$$\Phi M = 180^0 + \varphi(\omega_c)$$

Physical meaning: The phase margin is the amount of additional phase lag at the gain crossover frequency required to bring the system to the stability boundary.

Nyquist stability criterion

* Consider a unity feedback system shown below, suppose that we know the Nyquist plot of the open loop system G(s), the problem is to determine the stability of the closed-loop system $G_{cl}(s)$.

* Nyquist criterion: The closed-loop system $G_{cl}(s)$ is stable if and only if the Nyquist plot of the open-loop system G(s) encircles the critical point (-1, j0) //2 times in the counterclockwise direction when ω changes from 0 to $+\infty$ (l is the number of poles of G(s) lying in the right-half s-plane).

* Consider an unity negative feedback system, whose openloop system G(s) is stable and has the Nyquist plots below (three cases). Analyze the stability of the closed-loop system.

* Solution

The number of poles of G(s) lying in the right-half s-plane is 0 because G(s) is stable. Then according to the Nyquist criterion, the closed-loop system is stable if the Nyquist plot $G(j\omega)$ does not encircle the critical point (-1, j0)

- * Case ①: $G(j\omega)$ does not encircle (-1, j0)
 - \Rightarrow the close-loop system is stable.
- **★** Case ②: *G*(*j*ω) pass (−1, *j*0)
 - ⇒ the close-loop system is at the stability boundary;
- ★ Case ③: *G*(*j*ω) encircles (-1, *j*0)
 - ⇒ the close-loop system is unstable.

* Analyze the stability of a unity negative feedback system whose open loop transfer function is:

$$G(s) = \frac{K}{s(T_1s+1)(T_2s+1)(T_3s+1)}$$

- * Solution:
- ★ Nyquist plot: Depending on the values of T₁, T₂, T₄ and K, the Nyquist plot of G(s) could be one of the three curves 1, 2 or 3.

Nyquist stability criterion – Example 2 (cont')

The number of poles of G(s) lying in the right-half s-plane is 0 because G(s) is stable. Then according to the Nyquist criterion, the closed-loop system is stable if the Nyquist plot $G(j\omega)$ does not encircle the critical point (-1, j0)

- * Case ①: $G(j\omega)$ does not encircle (-1, j0)
 - \Rightarrow the close-loop system is stable.
- ★ Case ②: G(jω) pass (-1, j0)
 - ⇒ the close-loop system is at the stability boundary;
- * Case ③: $G(j\omega)$ encircles (-1, j0)
 - \Rightarrow the close-loop system is unstable.

Given an unstable open-loop systems which have the Nyquist plot as below. In which cases the closed-loop system is stable?

Stable

Unstable

Nyquist stability criterion – Example 3 (cont')

Given an unstable open-loop systems which have the Nyquist plot as below. In which cases the closed-loop system is stable?

Nyquist stability criterion – Example 3 (cont')

Given an unstable open-loop systems which have the Nyquist plot as below. In which cases the closed-loop system is stable?

Unstable

* Given a open-loop system which has the transfer function:

$$G(s) = \frac{K}{(Ts+1)^n}$$
 (K>0, T>0, n>2)

Find the condition of *K* and *T* for the unity negative feedback closed-loop system to be stable.

- * Solution:
- * Frequency response of the open-loop system:

$$G(j\omega) = \frac{K}{(Tj\omega + 1)^n}$$

▲ Magnitude:
$$M(\omega) = \frac{K}{\sqrt{T^2 \omega^2 + 1}}$$

▲ Phase:
$$φ(ω) = -ntg^{-1}(Tω)$$

Nyquist stability criterion – Example 4 (cont')

* Nyquist plot:

* Stability condition: the Nyquist plot of $G(j\omega)$ does not encircle the critical point (-1,j0). According to the Nyquist plot, this requires:

$$M(\omega_{-\pi}) < 1$$

Nyquist stability criterion – Example 4 (cont')

* We have: $\varphi(\omega_{-\pi}) = -ntg^{-1}(T\omega_{-\pi}) = -\pi$

$$\Rightarrow tg^{-1}(T\omega_{-\pi}) = \frac{\pi}{n} \Rightarrow (T\omega_{-\pi}) = tg\left(\frac{\pi}{n}\right)$$

$$\Rightarrow \qquad \omega_{-\pi} = \frac{1}{T} tg \left(\frac{\pi}{n} \right)$$

* Then:
$$M(\omega_{-\pi}) < 1 \Leftrightarrow$$

$$\Leftrightarrow K < \left(\sqrt{tg^2\left(\frac{\pi}{n}\right) + 1}\right)^n$$

$$\frac{K}{\left(\sqrt{T^2 \left[\frac{1}{T} tg\left(\frac{\pi}{n}\right)\right]^2 + 1}\right)^n} < 1$$

Bode criterion

* Consider a unity feedback system, suppose that we know the Nyquist plot of the open loop system G(s), the problem is to determine the stability of the closed-loop system $G_{cl}(s)$.

Bode criterion: The closed-loop system $G_{cl}(s)$ is stable if the gain margin and phase margin of open-loop system G(s) are positive.

$$\begin{cases} GM > 0 \\ \Phi M > 0 \end{cases} \Leftrightarrow \text{The closed - loop system is stable}$$

Bode criterion – Example

* Consider a unity negative feedback system whose open-loop system has the Bode diagram as below. Determine the gain margin, phase margin of the open-loop system. Is the closed-loop system stable or not?

Bode diagram:

$$\omega_c = 5$$

$$\omega_{-\pi}=2$$

$$L(\omega_{-\pi}) = 35dB$$

$$\varphi(\omega_c) = -270^\circ$$

$$GM = -35dB$$

$$\Phi M = 180^{\circ} + (-270^{\circ}) = -90^{\circ}$$

Because GM<0 and $\Phi M<0$, the closed-loop system is unstable.

Remark on the frequency domain analysis

* If the closed-loop system as below, the Nyquist and Bode criteria can also be applied and in this case the open-loop system is G(s)H(s).

End of chapter 3