Quiz 7

Chemistry 3BB3; Winter 2006

1-3.	List three	things	that are	favorable	for cova	lent bonding
1-3.	List uncc	umies	mat arc	iavorabic	ioi cova	שוונטווטע זונטו

4.	Consider the π -bonding and π -antibonding orbitals in O_2 . Along the internuclear axis
	(the line between the two atomic nuclei that represents the "bond"), the amount of
	electron density in a π -antibonding orbital is the amount of electron density
	in the associated π -bonding orbital.

- (a) greater than
- (b) less than
- (c) the same as
- 5. Consider the σ -bonding and σ -antibonding in the Helium molecule cation, $\operatorname{He_2}^+$. Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a σ -antibonding orbital is ______ the amount of orbital density in the associated σ -bonding orbital.
 - (a) greater than
 - (b) less than
 - (c) the same as
- 6-10. Label the following approximate (unnormalized) molecular orbitals using the σ, π, δ , u, g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as $\psi_{1s}^{(l)}(\boldsymbol{r})$, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
	$\psi_{3d_{xz}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xz}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{yz}}^{(l)}\left(oldsymbol{r} ight)+\psi_{3d_{yz}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{x^{2}-y^{2}}}^{(l)}\left(m{r} ight)+\psi_{3d_{x^{2}-y^{2}}}^{(r)}\left(m{r} ight)$
	$\psi_{3d_{xy}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xy}}^{(r)}\left(oldsymbol{r} ight)$
	$\psi_{3d_{z^2}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{z^2}}^{(r)}\left(oldsymbol{r} ight)$

Quiz 7

Chemistry 3BB3; Winter 2006

- 1-3. List three things that are favorable for covalent bonding.
- -- orbitals that are similar in size.
- -- orbitals that are similar in energy.
- -- good overlap between orbitals. (Orbitals in similar regions of space.)
- -- "directionality" in orbitals (so that they "point at" each other).
- -- smaller orbitals are (usually) better than bigger orbitals.

....

4. Consider the π -bonding and π -antibonding orbitals in O_2 . Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a π -antibonding orbital is ______ the amount of electron density in the associated π -bonding orbital.

(a) greater than (b) less than

- (c) the same as
- 5. Consider the σ -bonding and σ -antibonding in the Helium molecule cation, $\operatorname{He_2}^+$. Along the internuclear axis (the line between the two atomic nuclei that represents the "bond"), the amount of electron density in a σ -antibonding orbital is _____ the amount of orbital density in the associated σ -bonding orbital.

(a) greater than **(b) less than**

- (c) the same as
- 6-10. Label the following approximate (unnormalized) molecular orbitals using the σ, π, δ , u, g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as $\psi_{1s}^{(l)}(\boldsymbol{r})$, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
π^+_u	$\psi_{3d_{xz}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xz}}^{(r)}\left(oldsymbol{r} ight)$
π_g^-	$\psi_{3d_{yz}}^{(l)}\left(oldsymbol{r} ight)+\psi_{3d_{yz}}^{(r)}\left(oldsymbol{r} ight)$
δ_g^+	$\psi_{3d_{x^2-y^2}}^{(l)}(m{r}) + \psi_{3d_{x^2-y^2}}^{(r)}(m{r})$
δ_u^-	$\psi_{3d_{xy}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{xy}}^{(r)}\left(oldsymbol{r} ight)$
σ_u^+	$\psi_{3d_{z^2}}^{(l)}\left(oldsymbol{r} ight)-\psi_{3d_{z^2}}^{(r)}\left(oldsymbol{r} ight)$