

SPECIFICATION FOR APPROVAL

()	Preliminary Specification
---	---	----------------------------------

(●) Final Specification

Title 7.0" WXGA (800 x RGB x 1280) TFT LCE	l
--	---

BUYER	
MODEL	

SUPPLIER	LG Display Co., Ltd.		
MODEL	LD070WX7		
Suffix	SMN3		

APPROVED BY	SIGNATURE
/	
/	
/	
Please return 1 copy for your cyour signature and comments.	

APPROVED BY	SIGNATURE
Y. T. Woo / G.Manager	
REVIEWED BY	
K. H. Choi / Manager [C]	
K. H. Moon / Manager [M]	. <u></u>
M. S. Kang / Manager [P]	
PREPARED BY	
B. Y. Ha / Engineer	
IT/Mobile Development LG Display Co.,	

Ver. 1.0 Nov. 27. 2014 1 / 34

Contents

No	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
4	MIPI INTERFACE	8
5	OPTICAL SPECIFICATION	21
6	MECHANICAL CHARACTERISTICS	25
7	RELIABILITY	28
8	INTERNATIONAL STANDARDS	29
9	PACKING	30
10	PRECAUTIONS	33

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description
1.0	Nov. 27. 2014	-	Final Draft

1. General Description

The LD070WX7 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally Black mode. This TFT-LCD has 7.0 inches diagonally measured active display area with WXGA resolution(800 horizontal by 1280 vertical pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,772,216 colors.

The LD070WX7 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LD070WX7 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LD070WX7 characteristics provide an excellent flat display.

Table1. General Features

Active Screen Size	7.0 inches diagonal				
Outline Dimension	101.6mm x 163.0mm x 2.55mm (Typ.) [w/o FPC Ass'y]				
Dot Pitch	0.03925 (H) X 0.11775 (V) mm				
Pixel Format	800 horizontal By 1280 vertical Pixels RGB strip arrangement				
Color Depth	16,7M colors (8-bit)				
Color Gamut	50%				
Luminance, White	280 cd/m² (Min.) 350 cd/m² (Typ.)				
Weight	80g(Max.)				
Display Operating Mode	Transmitting type, Normally black				
Surface Treatment	Hard coat on the polarizer				

Ver. 1.0 Nov. 27. 2014 4 / 34

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes	
i didilicici	Symbol	Min	Max	Office	Notes	
	VDDI	-0.3	5.0	Vdc		
Power Input Voltage	AVDD	-0.3	6.0	Vdc	at 25 \pm 5°C	
	AVEE	-0.3	-6.0	Vdc		
Operating Temperature	Тор	0	50	°C	[Note 2-1,2,3,4]	
Storage Temperature	Тѕт	-20	60	ç	[Note 2-1,2]	

- [Note 2-1] This rating applies to all parts of the module and should not be exceeded.
- [Note 2-2] Maximum wet-bulb temperature is 39.2°C. Condensation of dew must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.
- [Note 2-3] The operating temperature only guarantees operation of the circuit and doesn't guarantee all the contents of Electro-optical specification.
- [Note 2-4] Ambient temperature when the backlight is lit (reference value).

Ver. 1.0 Nov. 27. 2014 5 / 34

3. Electrical Specifications

3-1. Electrical Characteristics

The LD070WX7 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the LED, is typically generated by an LED Driver. The LCD not include LED Driver.

Table 3. ELECTRICAL CHARACTERISTICS

Dovomotor	Comphal		Values	Unit	Notes	
Parameter	Symbol	Min	Тур	Max	Unit	Notes
LCD:						
Power Supply Logic Voltage	VDDI	1.7	1.8	1.9	V	
Power Supply Panel Voltage	AVDD	4.9	5.2	5.5	V	
	AVEE	-4.9	-5.2	-5.5	V	
Input High-Level Voltage	V _{IH}	0.7xVDDI	-	VDDI	V	
Input Low-Level Voltage	V _{IL}	0	-	0.3xVDDI	V	
Power Supply Input Current	l _{sys}	-	-	84	mA	
Power Consumption	P_{sys}	-	-	0.3	Watt	[Note 1]

[Note 1] The specified current and power consumption are under the VDDI = 1.8V, AVDD=5.2V, AVEE=-5.2V 25°C, fv = 60Hz condition whereas "Mosaic Pattern" is displayed and fv is the frame frequency.

Table 4. Backlight Unit

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
LED forward Current	I _f	-	23	-	mA	Ta=25°C (per chain)
LED forward Voltage	V_{f}	-	25.9	26.5	V	Ta=25°C (@ Typ. Current, per chain)
Power Consumption	P_{BL}	-	1191	1250	mW	Ta=25°C (@ Typ. Current)

[Note 1] The permissible forward current of LED vary with environmental temperature.

[LED Array Structure]

Ver. 1.0 Nov. 27. 2014 6 / 34

3-2. Interface (Input Terminal)

This LCD employs one interface connections, a 34 pin connector is needed for the module electronics interface. (Customer Matching Connector: LS Cable GB042-34P-H10)

Table 5. Module Connection Pin Configuration(CN1)

No.	Symbol	Description	No.	Symbol	Description	LCM Rear View
1	VLED	LED anode	18	GND	Ground	
2	VLED	LED anode	19	D3N	MIPI data negative signal	
3	NC	No connection	20	D3P	MIPI data positive signal	
4	FB2	LED cathode2	21	GND	Ground	
5	FB1	LED cathode2	22	D0N	MIPI data negative signal	
6	GND	Ground	23	D0P	MIPI data positive signal	
7	NC	No connection	24	GND	Ground	
8	GND	Ground	25	CLKN	MIPI clock negative signal	
9	AVDD	Analog power (Positive)	26	CLKP	MIPI clock positive signal	
10	AVEE	Analog power (Negative)	27	GND	Ground	
11	GND	Ground	28	D1N	MIPI data negative signal	/ / // /
12	LED_PWM (1.8V)	LED dimming control PWM	29	D1P	MIPI data positive signal	
13	GND	Ground	30	GND	Ground	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14	RESX (1.8V)	Reset the device	31	D2N	MIPI data negative signal	
15	VDDI	I/O power	32	D2P	MIPI data positive signal	
16	VDDI	I/O power	33	GND	Ground	
17	GND	Ground	34	GND	Ground	

Ver. 1.0 Nov. 27. 2014 7 / 34

4. MIPI Interface

4-1. General Description

The LD070WX7 supports the Mobile Industry Process Interface (MIPI) is a differential small amplitude serial interface for high-speed data transfer through the following lines: DATA_P/N 4Pair, CLK_P/N 1Pair The specifications of MIPI supported by the D-IC meet the MIPI specifications Version 1.01(DSI) with Version 0.90 D-PHY.

4-2. MIPI DSI Protocol

MIPI DSI Protocol (MIPI DSI version 1.01.00 with D-PHY version 0.90.00) is in accordance with the MIPI specification as published by MIPI ALLIANCE; refer to these specifications for more information on the MIPI Protocol.

The LD070WX7 supports only Video Mode operation because it does not have frame buffer memory. However it has bidirectional DSI interface so that DSI host can read display status registers.

4-2-1. General Packet Structure

Two packet structure are defined for low-level protocol communication: Long packets and Short packets. For both packets structures, the Data Identifier is always the first byte of the packet.

A Short packet shall contain an 8-bit Data ID followed by two command or data bytes and an 8-bit ECC; a Packet Footer shall not be present. Short packet shall be four bytes in length.

Ver. 1.0 Nov. 27. 2014 8 / 34

Long Packet Format

A long packet shall consist of three elements: a 32-bit Packet Header (PH), an application-specific Data Payload with a variable number of bytes, and a 16-bit Packet Footer (PF).

The Packet Header is further composed of three elements: an 8-bit Data Identifier, a 16-bit Word Count, and 8-bit ECC. The Packet Footer has one element, a 16-bit checksum.

Long packets can be from 6 to 65,541 bytes in length.

Ver. 1.0 Nov. 27. 2014 9 / 34

4-2-2. Data Identifier Byte

The first byte of any packet is the DI (Data Identifier) byte.

[7:6]: These two bits identify the data as directed to one of four virtual channels.

[5:0]: These six bits specify the Data Type.

The followings are the description of Data Types.

Table 6. Data identifier Byte Table

Data Type, hex	Data Type, binary	Description	Packet Size
01h	00 0001	Sync Event, V Sync Start	Short
11h	01 0001	Sync Event, V Sync End	Short
21h	10 0001	Sync Event, H Sync Start	Short
31h	11 0001	Sync Event, H Sync End	Short
08h	00 1000	End of Transmission packet (EoTp)	Short
02h	00 0010	Color Mode (CM) Off Command	Short
12h	01 0010	Color Mode (CM) On Command	Short
22h	10 0010	Shut Down Peripheral Command	Short
32h	11 0010	Turn On Peripheral Command	Short
03h	00 0011	Generic Short WRITE, no parameters	Short
13h	01 0011	Generic Short WRITE, 1 parameter	Short
23h	10 0011	Generic Short WRITE, 2 parameters	Short
04h	00 0100	Generic READ, no parameters	Short
14h	01 0100	Generic RF.AD, 1 parameter	Short
24h	10 0100	Generic READ, 2 parameters	Short
05h	00 0101	DCS Short WRITE, no parameters	Short
15h	01 0101	DCS Short WRITE, 1 parameter	Short
06h	00 0110	DCS READ, no parameters	Short
37h	11 0111	Set Maximum Return Packet Size	Short
09h	00 1001	Null Packet, no data	Long
19h	01 1001	Blanking Packet, no data	Long
29h	10 1001	Generic Long Write	Long
39h	11 1001	DCS Long Write/write_LUT Command Packet	Long
0Eh	00 1110	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
1Eh	01 1110	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
2Eh	10 1110	Loosely Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
3Eh	11 1110	Packed Pixel Stream, 24-bit RGB, 8-8-8 Format	Long
x0h and xFh, unspecified	xx 0000 xx 1111	DO NOT USE All unspecified codes are reserved	

4-2-3. Pixel Stream and Interface Timing

Packed Pixel Stream structure for 24 bit pixel format (8-8-8) data packet.

Ver. 1.0 Nov. 27. 2014 11 / 34

4-2-4. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of MIPI Tx/Rx for its proper operation.

ITEM **Symbol** Min Typ Max Unit Note **BRPHY** Bit rate per MIPI Lane 430 250 500 Mbps 898 913 Period t_{HP} Display data 800 t_{HD} Hsync Width 2 Pixel t_{HPW} Horizontal back porch 48 63 t_{HBP} Horizontal front porch $\mathsf{t}_{\mathsf{HFP}}$ 48 Period 1321 1314 t_{VP} 1280 Display data t_{VD} Vsync Width 2 Η t_{VPW} Vertical back porch 16 19 t_{VBP} Vertical front porch 16 20 t_{VFP}

Table 7. Signal timing Specifications

< Timing Diagram >

Ver. 1.0 Nov. 27. 2014 12 / 34

4-3. MIPI Signal Timing Specification

4-3-1. MIPI DC Specification

VDDI= 1.8V, AVDD= 5.2V, AVEE=-5.2V, VSS= 0V, Ta = -20 to +60°C@SDIC

Table 8. MIPI DC Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
MIPI Characteristics for High Speed Receive	er					
Single-ended input low voltage	VILHS	-40	-	-	mV	
Single-ended input high voltage	VIHHS	-	-	460	mV	
Common-mode voltage	VCMRXDC	70	-	330	mV	
Differential input impedance	ZID	-	100	-	ohm	
HS transmit differential voltage (VOD=VDP-VDN)	VOD	140	-	-	mV	
MIPI Characteristics for Low Power Mode						
Logic 1 contention threshold (LP-CD)	VIHCD_Min	450	-	1350	mV	
Logic 0 contention threshold (LP-CD)	VILCD_Max	-	-	200	mV	
Logic 1 input threshold (LP-RX High)	VIH	880	-	1350	mV	
Logic 0 input threshold (LP-RX Low)	VIL	0	-	550	mV	
Logic 0 input voltage(CLK ULP mode)	VILLPRXULP	0	-	300	mV	
Output high level	VOH	1.1	-	1.3	V	
Output low level	VOL	-50	-	50	mV	

< MIPI DC Diagram >

Ver. 1.0 Nov. 27. 2014 13 / 34

4-3-2. MIPI signal AC Specification

♦ LP Transmitter AC Specification

Table 9. MIPI LP Transmitter AC Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Length of any Low-Power state period	T_{LPX}	50	-	75	ns	
Time to drive LP-00 by new TX	T _{TA-GET}	5x T _{LPX}	-	-	ns	
Time to drive LP-00 after Turnaround Request	T _{TA-GO}	4x T _{LPX}	-	-	ns	
Time-out before new TX side start driving	T _{TA-SURE}	T_{LPX}	-	2x T _{LPX}	ns	

< LP Transmitter Timing Definitions >

Ver. 1.0 Nov. 27. 2014 14 / 34

4-3-3. MIPI signal AC Specification

♦ High Speed Transmission specification

Table 10. MIPI High Speed Transmission AC Specification

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
UI instantaneous	UI _{INST}	2	-	4	ns	
Data to Clock Setup Time [measured at receiver]	tDS	0.15xUI	-	-	ns	
Data to Clock Hold Time [measured at receiver]	tDH	0.15xUI	-	-	ns	
200/ 200/ rice time and fall time	t _R	150	-	0.3xUI	ps	
20% - 80% rise time and fall time	t _F	150	-	0.3xUI	ps	

- 1. This value corresponds to a minimum 250 Mbps data rate.
- 2. Maximum total bit rate is 2Gbps for 24-bit data format in 4 lanes application which support to 800RGBx 1280 resolution

< Data to Clock Timing Definitions >

Ver. 1.0 Nov. 27. 2014 15 / 34

4-3-4. MIPI signal AC Specification

♦ High Speed Data Transmission in Bursts

Table 11. MIPI High Speed Transmission Timing in Bursts

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Low Power Mode to High Speed Mode Timing						
Length of any low power state Period	TLPX	50	-	-	ns	
Time to drive LP-00 to prepare for HS transmission	THS-PREPARE	40+4xUI	-	85+6xUI	ns	
Time to enable data receiver line termination measured from when Dn crosses VILMAX	THS-TERM-EN	-	-	35+4xUI	ns	
High Speed Mode to Low Power Mode Timing						
Time-out at display module to ignore transition period of EoT	THS-SKIP	40	-	55+4xUI	ns	
Time to drive LP-11 after HS burst	THS-EXIT	100	-	-	ns	
Time to drive flipped differential state after last payload data bit of a HS transmission burst	THS-TRAIL	60+4xUI	-	-	ns	
High Speed Mode to/from Low Power Mode Timing						
Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	TCLK-POS	60+52xUI	-	-	ns	
Time to drive HS differential state after last payload clock bit of a HS transmission burst	TCLK-TRAIL	60	-	-	ns	
Time to drive LP-11 after HS burst	THS-EXIT	100	1	-	ns	
Time to drive LP-00 to prepare for HS transmission	TCLK-PREPARE	38	-	95	ns	
Time-out at clock lane display module to enable HS Transmission	TCLK-TERM-EN	-	-	38	ns	
Minimum lead HS-0 drive period before starting clock	TCLK-PREPARE + TCLK-ZERO	300	-	-	ns	
Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	TCLK-PRE	8xUI	-	-	ns	

4-3-4. MIPI signal AC Specification

♦ High Speed Data Transmission in Bursts

<Data lanes-Low Power Mode to/from High Speed Mode Timing>

<Clock lanes- High Speed Mode to/from Low Power Mode Timing>

Ver. 1.0 Nov. 27. 2014 17 / 34

4-4. Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 12. COLOR DATA REFERENCE

Colors	Gray												Data (Signa	l										
& Gray Scale	Scale Levels				RI	ED							GRE	EEN							BL	UE			
0.1		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	ВЗ	B4	B5	B6	В7
Black		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	-	1	1	1
Green		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Cyan		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magenta		1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Yellow		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
White		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Black	R0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker	R2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
												:	:												:
		•		÷						• •						• •		• •	:	÷			• •		:
Brighter	R253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	R254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	R255	1	1	1	-	1	1	-	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Black	G0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Darker	G2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
												:	:									• •			:
		• •			• •														:						:
Brighter	G253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	G254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Green	G255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Black	В0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	B1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Darker	B2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
				:	:	:	:								:	:	:		:			:		:	
																							•		
Brighter	B253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	B254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
Blue	B255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

4-5. Power Sequence

If RESX line is held High or unstable by the host during Power On, then a Hardware Reset must be applied after both VDD and VDDI have been applied – otherwise correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

If RESX line is held Low (and stable) by the host during Power On, then the RESX must be held low for minimum 10µsec after both VDD and VDDI have been applied.

Table 13. Power Sequence Table

Lania Davanastav		Value		11-2
Logic Parameter	Min.	Тур.	Max.	Unit
T1	0	-	-	ms
T2	0	-	-	ms
Т3	0	-	-	ms
T4	40	-	-	ms
T5	0	-	T4	ms
T6	10	-	-	us
Т7	20	-	-	ms
Т8	135	-	-	ms
Т9	0	-	-	ms
T10	0	-	-	ms
T11	100	-	-	ms
T12	0	-	-	ms
T13	0	-	-	ms
T14	0	-	-	ms
T15	150	-	-	us

Ver. 1.0 Nov. 27. 2014 19 / 34

4-5. Power Sequence

VDDI=1.8V, AVDD=5.2V, AVEE=-5.2V

5. Optical Specifications

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 5 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 14. OPTICAL CHARACTERISTICS

Ta=25°C, VDDI=1.8V, AVDD=5.2V, AVEE=-5.2V, f_V =60Hz, I_{LED} = 23mA

Danamatan	Oh-al		Values		11	Notes	
Parameter	Symbol	Min	Тур	Max	Units	Notes	
Contrast Ratio	CR	560	800	-		5-1	
Surface Luminance, white	L _{wH}	280	350	-	nit	5-2	
Luminance Variation	δ _{WHITE 13P}	62.5		-	-	5-3	
Response Time						5-4	
Rise Time + Decay Time	Tr _R + Tr _D	-	35	50	ms		
Color Coordinates						5-2	
White	Wx	0.283	0.313	0.343			
	Wy	0.299	0.329	0.359			
Gamma	-	2.0	2.2	2.4		±0.2	
Color Gamut	-		50		%		
Viewing Angle			[5-5	
x axis, right(Φ=0°)	Θr	-	85	-	degree	3 o'clock	
x axis, left (Φ=180°)	ΘΙ	-	85	-	degree	9 o'clock	
 y axis, up (Φ=90°)	Θu	-	85	-	degree	12 o'clock	
y axis, down (Φ=270°)	Θd	-	85	-	degree	6 o'clock	
Crosstalk (Vertical, Horizontal)	-	-	-	2.5	%	5-6	

Ver. 1.0 Nov. 27. 2014 21 / 34

[Note 5-1] Contrast Ratio (CR) is defined mathematically as

Contrast Ratio = Surface Luminance with all white pixels
Surface Luminance with all black pixels

- [Note 5-2] Surface luminance is measured at the center point(L₁) of the LCD with all pixels displaying white at the distance of 50cm by PR-880. Color Coordinates are measured at the center point(L₁) of the LCD with all pixels displaying red, green, blue and white at the distance of 50cm by PR-650. For more information, refer to the FIG 1 and FIG 2.
- [Note 5-3] Luminance % uniformity is measured for 13 point For more information see FIG 2. δ WHITE 13P = {Minimum (L1,L2, L13) \div Maximum (L1,L2, L13)} * 100
- [Note 5-4] Response time is the time required for the display to transition from white to black (Rise Time, Tr_B) and from black to white (Decay Time, Tr_D). For additional information see FIG 3.
- [Note 5-5] Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- [Note 5-6] Measure luminance of A, B, C, D and A', B', C', D' / A", B", C", D". Calculate the cross talk based on the formula.
 - Crosstalk (Vertical) = Max. { (| A' or C', A" or C" | A or C) / A or C } X 100 (%)
 - Crosstalk (Horizontal) = Max. { (| B' or D', B" or D" | B or D) / B or D } X 100 (%)
 - Box Pattern should be masking to prevent luminance. For more information see FIG 5.

Ver. 1.0 Nov. 27. 2014 22 / 34

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".`

Ver. 1.0 Nov. 27. 2014 23 / 34

FIG. 4 Viewing angle

<Dimension of viewing angle range>

FIG. 5. Crosstalk

6. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LD070WX7. In addition the figures in the next page are detailed mechanical drawing of the LCD.

Table 15. Mechanical Characteristics

	Horizontal	101.6±0.3mm			
Outline Dimension	Vertical	163.0±0.5mm			
	Thickness (Max.)	2.70 mm (w/o FPCA) 4.25mm (w FPCA)			
Active Diapley Area	Horizontal	94.2±0.3mm			
Active Display Area	Vertical	150.72±0.3mm			
Weight	80g (Max.)				
Surface Treatment	Hard coat on	the polarizer			

Ver. 1.0 Nov. 27. 2014 25 / 34

<FRONT VIEW>

Unit:[mm], General tolerance: ± 0.2mm

<REAR VIEW>

Unit:[mm], General tolerance: \pm 0.2mm

7. Reliability

No.	Test Items	Test Condition	Remark
1	High Temperature Storage Test	Ta=60°C 240h	1,2,3
2	Low Temperature Storage Test	Ta=-20°C 240h	1,2,3
3	High Temperature Operation Test	Ta=50°C, 50%RH 240h	1,2,3
4	Low Temperature Operation Test	Ta =0°C 240h	1,2,3
5	Shock Test (non-operating)	 No functional or cosmetic defects following a shock to all 6 sides delivering at least 180 G in a half sine pulse no longer than 2 ms to the display module No functional defects following a shock delivering at least 200 g in a half sine pulse no longer than 2 ms to each of 6 sides. Each of the 6 sides will be shock tested with one each display, for a total of 6 displays 	1,2,3
6	Vibration Test (non-operating)	Random, 1.0Grms, 10 ~ 300Hz (PSD 0.0035) 3 axis, 30min/axis	
7	Packing Vibration	Random Truck & Air 1.15Grms Z axis 30Min	
8	ESD Electrostatic Withstanding Voltage	HBM 2KV, MM 0.2KV * Human Body Model * Machine Model	

Note)

- 1. T_a = Ambient Temperature
- 2. In the Reliability Test, Confirm performance after leaving in room temp.
- 3. In the standard condition, there shall be no practical problems that may affect the display function 24 hours later after reliability test. After the reliability test, we can guarantee the product only when the corrosion is causing its malfunction. The corrosion causing no functional defect can not be guaranteed.

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

Ver. 1.0 Nov. 27. 2014 28 / 34

8. International Standards

8-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc.
 Information Technology Equipment Safety Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Canadian Standards Association. Information Technology Equipment - Safety - Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment Safety Part 1 : General Requirements.

8-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

Ver. 1.0 Nov. 27. 2014 29 / 34

9. Packing

9-1. Designation of Lot Mark

a) Lot Mark

Α	В	С	D	E	F	G	Н	I	J	К	L	М
---	---	---	---	---	---	---	---	---	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH $F \sim M$: SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	Α	В	C	D	Е	F	G	Н	٦	K

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to FPC of the LCD module. This is subject to change without prior notice.

9-2. Packing Form

a) Package quantity in one box: 66 pcs

b) Box Size: 478mm(L) x 365mm(W) x 244mm(H)

c) Package quantity in one pallet: 1,584 pcs

d) Palletized Size: 1,140(L) x 990(W) x 1,105(H)

9-2-1 Packing Assembly

NO.	DESCRIPTION	MATERIAL				
1	LCD Module					
2	BAG	AL, 130*207				
3	PACKING, TOP	EPS, 35.3*466				
4	PACKING, BOTTOM	EPS, 35.3*466				
5	вох	sw				
6	TAPE	OPP 70MMX300M				
7	LABEL	YUPO 100X70				

9-2-2 Packing Assembly

NO.	DESCRIPTION	MATERIAL				
1	Packing AssY					
2	Pallet	Plywood				
3	Angle Cover	SW				
4	Label	YUPO 100X70				
5	TAPE	OPP 70MMX300M				
6	Band	PP				
7	CLIP	Steel				

10. Precautions

Please pay attention to the followings when you use this TFT LCD module.

10-1. Mounting precautions

- (1) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the
 - module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (2) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (8) Do not open the case because inside circuits do not have sufficient strength.

10-2. Operating precautions

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}$ (Over and under shoot voltage)
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.)

 And in lower temperature, response time (required time that brightness is stable after turned on) become longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (7) This module is not designed to attach TSP (touch screen panels). If TSP is applied, LGD can't guarantee the 'Ripple' related problems.

Ver. 1.0 Nov. 27. 2014 33 / 34

10-3. Electrostatic discharge control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

10-4. Precautions for strong light exposure

Strong light exposure causes degradation of polarizer and color filter.

10-5. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

10-6. Handling precautions for protection film

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 1.0 Nov. 27. 2014 34 / 34