	Utech
Name:	
Roll No.:	The Country of Execution and Explained
Invigilator's Signature :	

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/2012-13 2012 ANALOG ELECTRONIC CIRCUITS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$
 - i) An ideal regulated power supply should have regulation which is
 - a) maximum
- b) 50%

c) zero

- d) 75%.
- ii) Thermal Runaway in a transistor is due to
 - a) heating of the transistor
 - b) changes in β which increases with temperature
 - c) increase in reverse collector saturation current due to rise in temperature
 - d) none of these.

3257(N) [Turn over

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/20

- iii) In amplifier blocking capacitors are used
 - a) to increase the bandwidth
 - b) to match the impedance
 - c) to increase the gain
 - d) to avoid dc mixing with input or output.
- iv) The condition of oscillation is
 - a) $A\beta = 1$
 - b) feedback must be regenerative
 - c) phase angle must be zero or integral multiple of 360°
 - d) all of these.
- v) The expression of closed loop gain (A_f) for negative feedback amplifier is

a)
$$\frac{A}{1+A\beta}$$

b)
$$\frac{A}{1-A\beta}$$

c)
$$\frac{1}{1+A\beta}$$

d)
$$\frac{1}{1-A\beta}$$

- vi) A Schmitt trigger uses
 - a) Negative feedback
 - b) Positive feedback
 - c) Pull up resistor
 - d) Compensating capacitor.
- vii) Differential amplifier can be used to amplify
 - a) only a.c. signal
 - b) only *d.c.* signal
 - c) both a.c. and d.c. signal
 - d) none of these.

viii) Most efficient power amplifier is

a`	class	A
\mathbf{a}	Class	$\boldsymbol{\Lambda}$

b) class \overline{B}

d) class AB.

ix) The maximum theoretical efficiency of a push-pull class ${\it B}$ power amplifier is

b) 78.5%

d) 25%.

x) Which one of the following feedback topologies offer high input impedance ?

b) Voltage shunt

d) Current shunt.

xi) In the astable multivibrator the capacitor charges upto

a)
$$\frac{1}{3}$$
 V _{cc}

b) $\frac{2}{3}$ V $_{co}$

$$\mathbf{c}$$
) $\mathbf{V}_{\mathbf{c}}$

d) none of these.

- xii) In VCO, the frequency is dependent on the value of
 - a) Resistance

b) Capacitance

- c) Voltage
- d) None of these.

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/20

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Explain the need of biasing of a transistor.
 - b) Draw any one type of transistor biasing arrangement and determine its stability factor. 2+3
- 3. Draw the h-parameter equivalent circuit of low frequency CE mode transistor amplifier and hence calculate the current gain in terms of h-parameters. 2+3
- 4. What is VCO? What are the basic differences between VCO and fixed frequency oscillator?2 + 3
- 5. What is cross-over distortion ? How does cross-over distortion arise in class B power amplifier ? Suggest one method to avoid cross-over distortion. 1 + 3 + 1
- 6. Draw the electrical equaivalent circuit of a vibrating crystal and state the significance of each component. What are f_s and f_p ? 3+2

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Describe the working principle of π -filter with diagram.
 - b) Draw the circuit of a shunt regulator and explain its operation.
 - c) What are the merits of switched mode power supply (SMPS) over regulated power supply? With the help of a neat circuit diagram briefly explain the operation of switched mode power supply. 4 + 5 + (1 + 5)
- 8. a) Why voltage divider bias circuit is known as self bias circuit? A silicon transistor with $\beta=50$, $V_{BE}=0.6$ V, $V_{CC}=22.5$ V and $R_{C}=5.6$ K Ω is used for self biasing circuit. It is desired to establish a Q point at $V_{CE}=12$ V, $I_{C}=1.5$ mA and a stability factor $S\leq 3$. Find $R_{E}=R_{1}$ and R_{2}

(The symbols have their usual meanings).

b) Find the upper cut-off frequency of a two stage common-emitter RC coupled amplifier. A two stage common-emitter RC coupled amplifier uses transistor of the type BC 149 C of which the h-parameters and the internal capacitances are h_{fe} = 600, h_{ie} = 10 k Ω , C_{bc} = 2.5 pF, C_{be} = 9 pF. If the coupling capacitor is 0.5 μ F and the load resistance is 10 K Ω . Find the upper cut-off frequency and its gain. (2 + 5) + (4 + 4)

- 9. a) Give the circuit of colpitt's oscillator and explain its operation. Derive the condition for sustained oscillation and the expression for the frequency of oscillation of it.
 - b) What is the difference between Hartley and colpitt's oscillator.
 - c) An Hartle oscillator is designed with L1 = $20 \mu H$, L2 = 2mH and a variable capacitor. Determine the range of capacitance values if the frequency is varied between $950\ 2050\ kHz$. (5+5)+2+3
- 10. a) What is power amplifier? How does it differ from a voltage amplifier?
 - b) Explain with circuit diagram the operation of a transformer coupled class A power amplifier and calculate its maximum power efficiency.
 - c) Two transistor operate in class B push pull circuit with a collector supply voltage V_{cc} = 15 volt. The turns ratio of the output transformer is 3 : 1 and the load resistance is 9 ohm. Determine maximum dc power supplied and the maximum output power. Also find out efficiency. 3 + 7 + 5
- 11. a) What are the criteria of a good instrumentation amplifier? Describe the steps for building an instrumentation amplifier starting from the basic differential amplifier.

CS/B.TECH(EE)(EEE),(ICE)(N)/SEM-3/EC(EE)-301/2012-13

- b) Draw the circuit diagram of an astable multivibrator using 555 timer and derive the expression of its frequency of oscillation.
- c) For an astable multi-vibrator using 555 timer, R_A = 6.8 K Ω , R_B = 3.3 K Ω and C = 0.1 μ F, calculate
 - i) t_{HIGH}
 - ii) t_{LOW}
 - iii) free running frequency
 - iv) duty cycle, D.

(2+5)+5+3

12. Write short notes on any three of the following:

 3×5

- a) PLL
- b) Phase-shift oscillator
- c) Tuned amplifier
- d) Current mirror circuit
- e) Trans-conductance multiplier.