

Raspberry Pi 4 Xilinx Zynq 7000 Nvidia Jetson Nano

ASE - Arquitetura de Sistemas Embutidos

TP1 - Grupo 7 Lúcia Sousa 93086 Raquel Pinto 92948

Raspberry Pi 4

Raspberry Pi 4 is capable of doing the same as a computer. It is possible to set up an operating system, and connect wires and circuits directly to its GPIO pins.

COMPONENTS

A USB Type-C power in

B DSI display port

C Wireless/Bluetooth

D Micro-HDMI 0

E Micro-HDMI 1

F System-on-Chip

G GPIO

H RAM

I CSI camera port

J 3.5mm AV

K PoE - Power over Ethernet

L 2 USB 2.0 ports

M 2 USB 3.0 ports

N Ethernet port

The Processor

Broadcom BCM2711, a 64-bit quad-core Arm Cortex-A72 clocked at 1.5GHz

Memory

SDRAM LPDDR4-3200 of 1GB, 2GB, 4GB or 8GB

Video and sound

2 × micro HDMI ports (up to 4Kp60 supported), 2-lane MIPI DSI display port, 2-lane MIPI CSI camera port, 4-pole stereo audio and composite video port

Connectivity

 $2.4~\mathrm{GHz}$ and $5.0~\mathrm{GHz}$ IEEE $802.11b/g/n/\mathrm{ac}$ wireless LAN, Bluetooth 5.0, BLE Gigabit Ethernet, $2 \times \mathrm{USB}$ $3.0~\mathrm{ports}$ and $2 \times \mathrm{USB}$ $2.0~\mathrm{ports}$

Multimedia

H.265 (4Kp60 decode);

H.264 (1080p60 decode, 1080p30 encode);

OpenGL ES, 3.0 graphics

SD card support

Micro SD card slot for loading operating system and data storage

Input power

5V DC via USB-C connector (minimum 3A1), 5V DC via GPIO header (minimum 3A1), Power over Ethernet (PoE)

Xilinx Zynq 7000 PSoC

Xilinx Zynq 7000 PSoC family integrates the software programmability of an ARM-based processor with the hardware programmability of an FPGA, enabling key analytics and hardware acceleration while integrating CPU, DSP, ASSP, and mixed signal functionality on a single device.

COMPONENTS

- 1 Ethernet port
- 2 HDMI output port
- 3 HDMI input port
- 4 ZYNQ Processor

- 5 USB JTAG/UART port
- 6 USB 2.0
- 7 DDR3L Memory
- 8 Audio codec ports
- 9 Unique MAC address label

ZYNQ Processor

667 MHz dual-core Cortex-A9 processor

DDR3L memory controller with 8 DMA channels and 4 High Performance AXI3 Slave ports

High-bandwidth peripheral controllers: 1G Ethernet, USB 2.0, SDIO

Low-bandwidth peripheral controllers: SPI, UART, CAN, I2C

Programmable from JTAG, Quad-SPI flash, and microSD card

Programmable logic equivalent to Artix-7 FPGA

Memory

1 GB DDR3L with 32-bit bus at 1066 MHz

16 MB Quad-SPI Flash with factory programmed 128-bit random number and 48-bit globally unique EUI-48/64™ compatible identifier microSD slot

Power

Powered from USB or any 5V external power source

Audio and Video

Pcam camera connector with MIPI CSI-2 support; HDMI sink port (input) with/without* CEC; HDMI source port (output) with CEC; Audio codec with stereo headphone, stereo line-in, and microphone jacks

Switches, Push-buttons, and LEDs

6 push-buttons, 4 slide switches, 5 LEDs and 2 RGB LEDs

Nvidia Jetson Nano

NVIDIA Jetson Nano is a small, powerful computer that lets you run multiple neural networks in parallel for applications like image classification, object detection, segmentation, and speech processing.

COMPONENTS

- 1 microSD card slot for main storage
- 2 40-pin expansion header
- 3 Micro-USB port for 5V power input, or for Device Mode
- 4 Gigabit Ethernet port
- **5** 4 USB 3.0 ports
- 6 HDMI output port
- **7** DisplayPort connector
- 8 DC Barrel jack for 5V power input
- 9 MIPI CSI-2 camera connectors

GPU 128-core Maxwell

CPU Quad-core ARM A57 at 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Storage microSD

Video Encode 4K at 30 | 4x 1080p at 30 | 9x 720p at 30 (H.264/H.265)

Video Decode 4K at 60 | 2x 4K at 30 | 8x 1080p at 30 | 18x 720p at 30 (H.264/H.265)

Camera 2x MIPI CSI-2 DPHY lanes

Connectivity Gigabit Ethernet

Display HDMI and display port

USB 4x USB 3.0, USB 2.0 Micro-B

Others Low-bandwidth peripheral controllers: I2C, I2S, SPI, UART

Comparison					•	
			Xilinx Zynq 7000			
Performance (Ethernet)	0	943 Mbps	0	1000 Mbps	0	8 to 73 times faster than Raspberry Pi 4
Power Consumption	0	3.8 W to 4.0 W	0	More power consumption-12.5W	0	0.5W to 1.25W
Timing	0	Does not include a Real Time Clock module	0	Has Real Time Clock	0	Has Real Time Clock
Price	0	Lower cost	0	Higher cost	0	Higher than Raspberry Pi 4, lower than Xilinx Zynq 7000
Size	0	Bigger than Nvidia Jetson Nano and Smaller than Xilinx Zyng 7000	0	Biggest	0	Smallest

Zynq 7000