CS251 Midterm 1 - Fall 2022

schari

September 2022

1 Summations and Logarithm Rules

- Summations
 - Given c is a constant, $\sum_{i=m}^{n} c = c(n-m+1)$
 - $-\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$
 - $-\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$
 - Given a function f(i), $\sum_{i=m}^{n} f(i) = \sum_{i=1}^{n} f(i) \sum_{i=1}^{m-1} f(i)$
- Log Rules
 - In CS 251, if you are just given a $\log(n)$ without a base, they probably mean $\log_2(n)$
 - $-\log(ab) = \log(a) + \log(b)$
 - $-\log(\frac{a}{b}) = \log(a) \log(b)$
 - Given 2 numbers a and b, $\log_a(n) = \frac{\log_b(n)}{\log_b(a)}$
 - $-\log(n^a) = a\log(n)$
 - $a^{\log_a(n)} = n$
 - $-a^{c\log_a(n)} =$

2 Experimental Analysis

- Limitations
 - Different machines can vary the run time
 - other processes/noise
 - May not be precise all the time

3 Recursive Functions

- Functions that call themselves in order to solve simpler problems
- Recursive functions don't call themselves infinitely; eventually stop when they reach a base case

•

4 Runtime Analysis

5 Arrays and LinkedLists

6 Stacks

- Data structure to store and remove data
- Last data pushed into the stack would be the first data popped off (LIFO)
 - Think of it like a stack of plates; the last plate placed on top is the first plate taken from the stack
- Standard methods for stacks:
 - push() Add an element to the top of the stack
 - pop() Remove the element from the top of the stack
 - is ${\tt Empty}()$ Whether or not there are elements on the stock
 - size() Number of elements on the stack
 - peek() View the element at the top of the stack without removing it
- Implementation using Arrays vs LinkedLists
 - Arrays: Lower memory overhead; unable to resize to accommodate more elements
 - LinkedLists: Pointers require more memory; can expand to increase number of elements in the stack

7 Queues

•

8 Trees