Taller 1. Introducción a la Modelación Dinámica y los Modelos Determinísticos

Objetivo:

Comprender y aplicar la metodología de construcción de modelos matemáticos incrementales, explorando su resolución numérica y analizando cómo diferentes factores afectan la dinámica del sistema. Desarrollar habilidades para formular, interpretar y analizar modelos de optimización lineal en diferentes contextos.

Instrucciones:

- 1. Lea cada una de las partes del taller y realice los ejercicios planteados.
- 2. Utilice Python para implementar las soluciones numéricas y analice los resultados.
- 3. Responda las preguntas conceptuales de manera argumentada y soportado en soluciones con modelos computacionales como en Python, en el caso de requerirse.

Parte 1: Conceptualización de Modelos (Primera Sesión)

1. Ejercicio: Construcción de un Modelo Incremental

Seleccione un fenómeno ambiental o relacionado con su área de trabajo (ejemplo: contaminación en un lago, deforestación, dispersión de contaminantes) y realice lo siguiente:

- Planteé una ecuación diferencial simple que describa la dinámica del sistema.
- Explique qué variables adicionales podría agregar para hacer el modelo más realista.
- Justifique cuándo su modelo seguiría siendo determinístico y cuándo se volvería estocástico.

2. Modelo de Simulación del Crecimiento Forestal y Captura de Carbono:

Se desarrollará una simulación numérica de un modelo matemático que describe el crecimiento de la biomasa forestal utilizando una ecuación logística, incluyendo una tasa constante de deforestación. A partir del cambio en biomasa, se estimará la cantidad acumulada de dióxido de carbono capturada por el bosque.

El modelo se compone de las siguientes ecuaciones diferenciales:

$$\frac{dB}{dt} = rB\left(1 - \frac{B}{K}\right) - dB\tag{1}$$

$$\frac{dC}{dt} = \alpha \cdot \frac{dB}{dt} \tag{2}$$

Donde:

- B(t): Biomasa forestal en toneladas por hectárea (t/ha)
- C(t): Carbono capturado acumulado (tCO₂/ha)

- r: Tasa de crecimiento intrínseca del bosque (1/año)
- K: Capacidad máxima de biomasa (t/ha)
- d: Tasa de deforestación (proporción de biomasa/año)
- α: Factor de captura de carbono (tCO₂ por tonelada de biomasa)
- a) Implementar el modelo en Python utilizando el método odeint de scipy.integrate.
- b) Simular el crecimiento del bosque durante 100 años bajo condiciones iniciales definidas.
- c) Explorar el efecto de distintos valores de la tasa de deforestación (d) y de la tasa de crecimiento (r) sobre la biomasa.
- d) Comparar escenarios con y sin deforestación.
- e) Analizar el impacto del valor de α sobre la cantidad total de carbono capturado.

Parte 2: Conceptualización de Modelos Determinísticos (Segunda Sesión)

3. Comprensión conceptual

- a) ¿Qué diferencia existe entre un modelo de optimización y un modelo de simulación?
- b) Explique qué significa que un modelo sea determinístico y cómo esto influye en su interpretación.
- c) ¿Qué ventajas y limitaciones tiene resolver un modelo mediante métodos analíticos vs. métodos computacionales?
- d) ¿Qué interpretación tiene el valor de la función objetivo en un modelo de optimización?

4. Formulación de modelos de optimización

Problema A – Producción sostenible

Una empresa produce dos tipos de empaques ecológicos: A y B. Cada uno requiere cartón reciclado y mano de obra:

Producto	Ganancia (\$)	Cartón (kg)	Mano de obra (h)
A	40	3	2
В	30	2	4

Disponibilidad:

- Cartón: 240 kg- Mano de obra: 160 h

Deben producir al menos 20 unidades de A y 10 de B.

- a) Formule el modelo de PL (variables, función objetivo y restricciones) y justifique por qué las restricciones planteadas reflejan correctamente la realidad del problema.
- b) Reduzca la función objetivo a una sola variable y grafique su comportamiento.
- c) Resuelva el problema por medio de Python y determine el valor óptimo.
- ¿Qué pasaría si se aumentara la disponibilidad de cartón en 60 kg?¿La solución cambiaría?

Problema B – Transporte interregional
Una ONG debe distribuir alimentos desde 2 bodegas (B1 y B2) hacia 3 regiones vulnerables (R1, R2, R3):

	R1	R2	R3	Oferta
B1	2	3	1	40
B2	4	2	5	50
Demanda	30	35	25	

- a) Formule el modelo completo como un PL.
- b) ¿Cuántas variables y cuántas restricciones tiene el modelo?
- c) Resuelva el problema por medio de Python y determine el valor óptimo.
- d) Interprete el resultado: ¿de qué manera cambia si se reduce la demanda de R2 a 30?

Instrucciones de entrega:

- La entrega del taller debe realizarse en un documento en formato PDF, con redacción clara, organizada, concisa y estructurada por secciones.
- Todas las respuestas deben incluir la explicación detallada del razonamiento, no solo el resultado final.
- Se espera que los estudiantes analicen, interpreten y argumenten sus respuestas, especialmente en la formulación de modelos y justificación de decisiones.
- El uso de gráficas, ecuaciones, esquemas y tablas es obligatorio cuando estos elementos apoyen o clarifiquen el análisis.
- Los códigos en Python pueden utilizarse como soporte técnico para resolver los modelos, pero no reemplazan la explicación matemática ni conceptual. Es decir: el desarrollo en Python debe servir como base de análisis, no como único medio de respuesta.
- La entrega final debe realizarse en parejas.
- Se debe enviar el documento PDF a más tardar la siguiente sesión de clase al correo karen.ballesterosg@utadeo.edu.co.

Rúbrica de Evaluación entre Pares – Taller 1

Nombre del grupo	evaluador:		
Grupo evaluado: _			

Escala de valoración:

- 5 Excelente: Cumple completamente y con profundidad.
- 4 Muy bien: Cumple de forma sólida, con detalles menores a mejorar.
- 3 Aceptable: Cumple parcialmente, le falta profundidad o claridad.
- 2 Insuficiente: Cumple de manera limitada o con errores importantes.
- 1 Deficiente: No cumple o está ausente.

Parte 1: Conceptualización de Modelos (Primera Sesión)

Criterio	Puntaje (1–5)	Comentarios	
1.1 Ecuación diferencial planteada: ¿es clara, coherente			
y bien explicada?			
1.2 Identificación de variables adicionales y su justifi-			
cación			
1.3 Discusión sobre naturaleza determinística vs. es-			
tocástica del modelo			
2.1 Formulación correcta del sistema de ecuaciones difer-			
enciales (biomasa y carbono)			
2.2 Claridad en la definición de variables y parámetros			
del modelo			
2.3 Implementación funcional del modelo en Python us-			
ando odeint			
2.4 Exploración de escenarios (variación en r, d, K, α)			
2.5 Interpretación adecuada de las gráficas de biomasa y			
carbono capturado			
2.6 Presentación clara y argumentada de los resultados			
obtenidos			

Parte 2: Modelos Determinísticos y de Optimización (Segunda Sesión)

Criterio	Puntaje (1–5)	Comentarios
3.1 Respuestas a preguntas conceptuales: claridad, pro-		_
fundidad y argumentación		
4.1 Formulación correcta del modelo de PL del Problema		
A		
4.2 Análisis gráfico de la función objetivo		
4.3 Solución en Python y correcta interpretación del re-		
sultado		
4.4 Análisis de sensibilidad frente al cambio en disponi-		
bilidad de cartón		
5.1 Formulación del modelo de transporte (Problema B)		
5.2 Identificación de número de variables y restricciones		
5.3 Solución computacional del modelo de transporte		
5.4 Análisis del impacto del cambio en la demanda de $\mathrm{R}2$		

Presentación general del taller

Criterio	Puntaje (1–5)	Comentarios
Redacción clara, estructura organizada y buena presentación		
Uso adecuado de gráficas, tablas, ecuaciones y esquemas Coherencia entre código Python y análisis realizado		

Comentario general del grupo evaluador

Puntaje total sugerido: / 100		