

卫星轨道设计

教 师: 孙文方

办公室:G216

邮 箱: wfsun@xidian.edu.cn

Q Q: 22371753

- 一、坐标系
- 二、轨道与轨道设计
- 三、坐标变换及流程
- 四、实验要求

一、坐标系

天球:为了研究天体而假想的球体。在研究卫星运动时, 天球的球心常选择在地心,天球的半径不作定义。

- 1) 天赤道: 地球赤道面和天球的交线。
- 2) 黄道: 地球公转平面和天球的交线,在地心看,太阳在黄道上运动,一年转动一圈。
- 3)春分点:天赤道和黄道在天球上的交点之一,太阳从南向北穿过天赤道的那一点。由于地球自转轴在惯性空间中进动和章动,相对应的春分点也在变化,常以2000年的春分点为基准。

1. 地心赤道惯性坐标系 $(O-X_iY_iZ_i)$

地心赤道惯性坐标系(ECI),原点在地球质心,X-Y平面为赤道面,X 轴指向春分点,Z轴沿地球自转轴指向北天极,X-Y-Z为右手法则直角坐标系。该坐标系是卫星运动姿态的绝对参考基准。

卫星位置三坐标记为x, y, z, 速度为 v_x , v_y , v_z ; 若用球坐标,地心至卫星的距离记为r, α 为赤经(从春分点,在赤道面内逆时针度量), δ 为赤纬。

$$\sin \delta = \frac{z}{r}$$

$$\tan \alpha = \frac{y}{x}$$

$$tan \alpha = \sqrt{x^2 + y^2 + z^2}$$

$$x = r \cos \alpha \cos \delta$$

$$y = r \sin \alpha \cos \delta$$

$$z = r \sin \delta$$

2. 地心固连坐标系 $(O-X_eY_eZ_e)$

地心固连坐标系(ECEF)原点在地球质心,X-Y平面为赤道面,X轴指向本初子午线,Z轴沿地球自转轴指向北天极,X-Y-Z为右手法则直角坐标系。该坐标系相对地球是固定的。

在地理学中,定义格林尼治地方子午圈为本初子午圈,是地理经度的起算点。

在天文学中,定义格林尼治子午圈与春分点的角距为格林尼治恒星时

3. 地心轨道坐标系 $(O-X_qY_qZ_q)$

轨道坐标系原点在地球质心,X-Z平面为轨道平面,Z轴为指向卫星的 负方向,Y轴指向轨道平面正法线方向,X-Y-Z为右手法则直角坐标系。

4. 近焦点坐标系 $(O-X_pY_pZ_p)$

轨道坐标系原点在地球质心,X-Y平面为轨道平面,X轴指向近焦点,Z轴指向轨道平面正法线方向,X-Y-Z为右手法则直角坐标系。

5. 卫星轨道坐标系 $(O-X_oY_oZ_o)$

卫星轨道坐标系原点在卫星质心,X-Z平面为轨道平面,X轴<mark>指向卫星飞行方向</mark>,Z轴为指向地心的负方向,X-Y-Z为右手法则直角坐标系。该坐标系是卫星姿态确定与控制的重要参考坐标系。

6. 卫星本体坐标系 $(O-X_bY_bZ_b)$

卫星本体坐标系原点在卫星质心,X轴指向卫星飞行方向,Z轴指向地心的负方向(无姿态机动时),X-Y-Z为右手法则直角坐标系。卫星三轴稳定时卫星本体系与卫星轨道系指向一致。

7. 地理坐标系 $(O-X_gY_gZ_g)$

地理坐标系(GCS)原点为卫星质心在地表的投影,X轴指向东,Y轴指向北,Z轴沿当地地垂线指向天。

二、轨道与轨道设计

开普勒第一定理(1602): 行星/卫星绕太阳/地球飞行的轨道 是一个椭圆,且太阳/地球位于椭圆的一个焦点上

参数定义

- 半长轴 semi-major axis
- 半短轴 semi-minor axis
- 偏心率 eccentricity
- 远地点半径 apogee radius
- 近地点半径 perigee radius
- 半交弦 semi-latus rectum
- 真近地点角 true anomaly
- 位置矢量 position vector

a

h

$$e = \sqrt{1 - \left(b/a\right)^2}$$

$$r_a = a (1 + e)$$

$$r_p = a (1 - e)$$

$$p = a \left(1 - e^2 \right)$$

M

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

开普勒第二定理(1605): 行星/卫星和太阳/地球之间的连线 在相同时间内扫过的面积相同

开普勒第三定理(1618): 行星/卫星轨道周期的平方正比与椭圆轨道半长轴的立方

$$T = 2\pi \sqrt{\frac{a^3}{\mu}} \qquad (1)$$

其中: a是半长轴,开普勒常数 μ =3.9861×10⁵ km³/s²。椭圆轨道卫星具有时变的在轨飞行速度

$$V = \sqrt{\mu(\frac{2}{r} - \frac{1}{a})} \qquad (km/s) \qquad (2)$$

轨道六要素

- ▶方向参数
 - ✓右旋升交点赤经 Ω : the right ascension of ascending node (RAAN)
 - ✓轨道倾角i: inclination angle
 - ✓近地点幅角ω: argument of the perigee
- ▶几何形状参数
 - ✓偏心率e: eccentricity $(0 \le e < 1)$
 - ✓轨道半长轴a: semi-major axis
 - ✓真近点角M: true anomaly

執滿妄執滿设计

轨道高度分类

根据卫星运行轨道距离地面的高度h,可分为

- 1) 低轨道 (LEO): 500<h<2000km
- 2) 中轨道 (MEO): 8000km<h<20000km
- 3) 静止/同步轨道(GEO): h=35786km
- 4) 高轨道(HEO): h>20000km, 椭圆轨道, 远地点可达40000km

卫星星下点轨迹图

嫦娥一号发射时,卫星并非直接通过加速直接进入地月转移轨道段,而是要绕 着地球进行三次轨道机动。第一次在近地点点火,将近地点高度抬高到600km,这 时轨道周期变为16h,在16h周期轨道上运动三圈后,卫星再在近地点第二次点火变 轨,将轨道周期变为24h,在此轨道上运行一圈至三圈后,再次到达近地点,卫星 进行第三次点火变轨,将轨道周期变为48h。

三、坐标变换及流程

(1)已知六要素:地心赤道惯性坐标系到近焦点坐标系的转

$$\mathbf{T}_{pi} = \mathbf{R}_{Z}(\omega) \mathbf{R}_{X}(i) \mathbf{R}_{Z}(\Omega)$$

$$= \begin{bmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & -\sin i & \cos i \end{bmatrix} \begin{bmatrix} \cos(\Omega) & \sin(\Omega) & 0 \\ \sin(-\Omega) & \cos(\Omega) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(2)已知速度、位置矢量:地心赤道惯性坐标系到地心轨道坐标系转换

$$\mathbf{X}_{q} = \mathbf{Y}_{q} \times \mathbf{Z}_{q}, \mathbf{Y}_{q} = \frac{\mathbf{V}_{q} \times \mathbf{R}_{q}}{\left|\mathbf{V}_{q} \times \mathbf{R}_{q}\right|}, \mathbf{Z}_{q} = \frac{\mathbf{R}_{q}}{\left|\mathbf{R}_{q}\right|}$$

$$\begin{bmatrix} \mathbf{X}_q & \mathbf{Y}_q & \mathbf{Z}_q \end{bmatrix}^T = \mathbf{T}_{qi} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(3)已知位置r、速度矢量v,地球极移Q、自转R、岁差章动W,地心赤道惯性坐标系到地心地固坐标系的转换

$$\mathbf{r}_{ECEF} = \mathbf{Q}(t)\mathbf{R}(t)\mathbf{W}(t)\mathbf{r}_{ECI} = \mathbf{T}_{ei}\mathbf{r}_{ECI}$$

$$\mathbf{v}_{ECEF} = \mathbf{Q}(t)\mathbf{R}(t)\mathbf{W}(t)\mathbf{v}_{ECI} + W\mathbf{Q}(t) \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{R}(t)\mathbf{W}(t)\mathbf{r}_{ECI}$$

$$=\mathbf{T}_{ei}\mathbf{v}_{ECI}+\mathbf{D}_{ei}\mathbf{r}_{ECI}$$

W为地球自转角速度为7.2921151467×10-5rad/s。

1、TLE两行轨道根数定义

1	AAA	AAU	Y	YQQQRRR	BBCCC.CCC	CCCCC	.DDDDI	DDDD	EEEE	Е-Е	FFFFF-F	G	НННН
2	IIIII	JJJ.JJ.	IJ	KKK.KKKK	LLLLLLL	MMM.	MMMM	NNN.1	NNNN	00	0.000000	OC	PPPPPZ

坐标变换及流程

关键字	定义
1	第一行行标
AAAAA	按顺序分配的人造卫星编号(5位整数,1到99999)
U	安全保密级别(U=不保密)
YYQQQRRR	国际标志符(YY, 2位整数,发射年度;QQQ,3位整数,该年度发射序列;RRR,该次发射中的部件序列号,最多3位)
BBCCC.CCCCCCC	纪元时间(BB, 2位整数,表示年份;其次3位数字表示天数,后面的小数是不足一天的时间)
.DDDDDDDD	阻力参数,平均运动一阶导数,SGP轨道传播函数中会用到这个阻力参考量。
EEEEE-E	阻力参数,平均运动二阶导数,-E指以10为底的E次幂。SGP轨 道传播函数中会用到这个阻力参考量
FFFFF-F	阻力参数(1/地球半径) - 伪弹道系数,-F是以10为底的F次幂。 SGP4轨道传播函数中会用到这个阻力参考量。
G	星历表类型
НННН	顺序分配的根数集编号(4位整数,1到9999)。当数值数到达 9999后,从1开始循环计数

坐标变换及流程

关键字	定义
2	第二行行标
IIIII	按顺序分配的人造卫星编号(5位整数,1到99999)
]]].]]]]	轨道倾角 (0到180度)
KKK.KKKK	升交点的赤经 (0到360度)
LLLLLLL	轨道偏心率 ,此处系小数点后的数值,小数点在第一位,已被省略。(意即此值在0.0到1.0之间)
MMM.MMMM	近地点幅角 (0到360度)
NNN.NNNN	平近地点角度 (0到360度)
00.00000000	平均运动(每天的公转次数)
PPPPP	公转序号(5位整数,1到99999),当数值到达99999后,从1开始循环计数
Z	校验和(1位整数)。通过计算所在行上所有整数字符的和得出校验和的值。如果当前行的符号位为负数,需要加1。对符号位和各字符数据位的和以10取模可得校验和的值。

2、用下式计算平近点角M

$$M = n(t - t_0)$$

式中, t₀为卫星过近地点的时刻, n为卫星的平均角速度:

$$n = \sqrt{\frac{G_m}{a^3}} \qquad (rad/s)$$

其中 a 为轨道椭圆的长半轴, $G_m = 398600.4418 \times 10^9 \, m^3/s^2$ 。

3、解开普勒方程 $E = M + e \cdot \sin E$ (e 为离心率), 计算偏近点角 E

初始化:
$$M = \text{mod}(M, 2\pi)$$
, $E(0) = \begin{cases} M & e < 0.8 \\ \pi & e \ge 0.8 \end{cases}$, $i = 0$

迭代:
$$f(i) = E(i) - M - e \sin E(i)$$

$$E(i+1)=E(i)-\frac{f(i)}{1-e\cos E(i)}$$
, $i=i+1$

如果 $|E(i)-E(i-1)|<\varepsilon$ 或i>15停止迭代。

4、计算卫星至地心的距离 R 和速度 V

$$R = a(1 - e\cos E)$$

$$V = \frac{\sqrt{G_m a}}{R}$$

5、计算真近点角 θ

$$\tan\frac{\theta}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2}$$

6、计算卫星在近焦点坐标系中的坐标

$$x_p = R\cos\theta$$
 $x_p = a(\cos E - e)$ $y_p = R\sin\theta$ 得到 $y_p = b\sin E = a\sqrt{1 - e^2}\sin E$ $z_p = 0$ $z_p = 0$ $v_{xp} = -V\sin E$ $v_{yp} = V\sqrt{1 - e^2}\cos E$ $v_{zp} = 0$

7、卫星在地心赤道惯性坐标系(Earth-Centered Inertial (ECI) Coordinates,J2000.0)中的坐标

由轨道倾角 i,升交点赤经 Ω 和近地点幅角 ω 三个轨道参数,可以计算出卫星在地心赤道惯性坐标系中的位置。

$$\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = \mathbf{T}_{ip} \begin{bmatrix} x_p \\ y_p \\ z_p \end{bmatrix}, \quad \begin{bmatrix} v_{xi} \\ v_{yi} \\ v_{zi} \end{bmatrix} = \mathbf{T}_{ip} \begin{bmatrix} v_{xp} \\ v_{yp} \\ v_{zp} \end{bmatrix}$$

8、卫星在地心地固坐标系(Earth-Centered Earth-Fixed (ECEF) Coordinates,WGS84)中的坐标

$$\begin{bmatrix} x_e \\ y_e \\ z_e \end{bmatrix} = \mathbf{T}_{ei} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}, \quad \begin{bmatrix} v_{xe} \\ v_{ye} \\ v_{ze} \end{bmatrix} = \mathbf{T}_{ei} \begin{bmatrix} v_{xi} \\ v_{yi} \\ v_{zi} \end{bmatrix} + \mathbf{D}_{ei} \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix}$$

9、卫星在地理坐标系中的坐标

$$L = \arctan(y_c/x_c)$$

$$B = \arctan(\frac{z_c + e'^2 b \sin^3 \theta}{\sqrt{x_c^2 + y_c^2} - e^2 a \cos^3 \theta})$$

$$H = \frac{\sqrt{x_c^2 + y_c^2}}{\cos B} - N$$

$$\theta = \arctan(\frac{z_c \cdot a}{\sqrt{x_c^2 + y_c^2} \cdot b})$$

$$N = a/\sqrt{1 - e^2 \sin^2 B}$$

$$e^2 = (a^2 - b^2)/a^2$$

$$e'^2 = (a^2 - b^2)/b^2$$

$$f = \frac{a - b}{a}$$

式中 L 为地理经度,B 为地理纬度(上式中若 y_c >0 且 L <0 则 L = L +180°,如果 y_c <0 且 L >0 则 L = L -180°),H 为海拔高度,a 为地球长半轴 6378137.000m,f 为地球曲率半径 1/298.257223563。

四、实验要求

- 1、选择某一卫星TLE数据,编写程序提取开普勒轨道根数,计算卫星在近焦点坐标系中的坐标,以及运行曲线。
- 2、编写程序把卫星从近焦点坐标转换到地心惯性坐标系。画出 三维坐标卫星轨迹曲线,分析曲线特点。
- 3、利用Matlab自带程序dcmeci2ecef.m(2016版)或用提供的eci2ecef.m程序把卫星从地心惯性坐标转换到地心地固坐标系。 画出三维坐标卫星轨迹曲线,分析曲线特点。
- 4、编写程序把卫星从地心地固坐标转换到地理坐标系,并把当前时间的轨迹实时显示到提供的全球经纬度数字地图上。

要求:

- (1) 报告整洁、明了;
- (2) 简要描述实验原理,细化实验步骤;
- (3) 粘贴核心主要程序,对此说明;
- (4) 粘贴主要仿真数据和图像,对此说明和分析;
- (5) 所有图表有标注和排号:
- (6) 报告有总结。

