

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

Features

- Power consumption: 0.9 mA in combo normal mode and 1.25 mA in combo high-performance mode up to 1.6 kHz.
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 8 kbyte based on features set
- Compliant with Android K and L
- ±2/±4/±8/±16 g full scale
- ±125/±245/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IOs supply (1.62 V)
- Compact footprint, 3 mm x 3 mm x 0.86 mm
- SPI/I²C serial interface with main processor data synchronization feature
- Embedded temperature sensor
- ECOPACK[®], RoHS and "Green" compliant

Applications

- Pedometer, step detector and step counter
- · Significant motion and tilt functions
- Indoor navigation
- Tap and double-tap detection
- IoT and connected devices
- · Intelligent power saving for handheld devices
- Vibration monitoring and compensation
- Free-fall detection
- 6D orientation detection

Description

The LSM6DS33 is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 1.25 mA (up to 1.6 kHz ODR) in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DS33 supports main OS requirements, offering real, virtual and batch sensors with 8 kbyte for dynamic data batching.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS33 has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 245/\pm 500/\pm 1000/\pm 2000$ dps.

High robustness to mechanical shock makes the LSM6DS33 the preferred choice of system designers for the creation and manufacturing of reliable products.

The LSM6DS33 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range [°C]	Package	Packing	
LSM6DS33	-40 to +85	LGA-16L	Tray	
LSM6DS33TR	-40 to +85	(3 x 3 x 0.86 mm)	Tape & Reel	

Contents LSM6DS33

Contents

1	Ove	iew1	1
2	Emb	dded low-power features1	2
	2.1	Tilt detection	12
3	Pin (escription1	3
4	Mod	le specifications	5
	4.1	Mechanical characteristics	15
	4.2	Electrical characteristics	17
	4.3	Temperature sensor characteristics	18
	4.4	Communication interface characteristics	19
		4.4.1 SPI - serial peripheral interface	19
		4.4.2 I ² C - inter-IC control interface	20
	4.5	Absolute maximum ratings	21
	4.6	Terminology	22
		4.6.1 Sensitivity	22
		4.6.2 Zero-g and zero-rate level	22
5	Fund	ionality	23
	5.1	Operating modes	23
	5.2	Gyroscope power modes	
	5.3	Accelerometer power modes	
	5.4	FIFO	
		5.4.1 Bypass mode	
		5.4.2 FIFO mode	
		5.4.3 Continuous mode	24
		5.4.4 Continuous-to-FIFO mode	25
		5.4.5 Bypass-to-Continuous mode	25
		5.4.6 FIFO reading procedure	25
		5.4.7 Filter block diagrams	26
6	Diet	Lintoufooo	0
U	וטוש	l interfaces	.0

	6.1	I ² C ser	rial interface	28
		6.1.1	I ² C operation	29
	6.2	SPI bus	ıs interface	30
		6.2.1	SPI read	31
		6.2.2	SPI write	
		6.2.3	SPI read in 3-wire mode	33
7	Appl	ication l	hints	34
	7.1	LSM6D	DS33 electrical connections	34
	7.2	Pin con	mpatibility with LSM6DS0	35
8	Regi	ster ma	ipping	37
9	Regi	ster des	scription	40
	9.1	FUNC_	_CFG_ACCESS (01h)	40
	9.2	FIFO_C	CTRL1 (06h)	40
	9.3	FIFO_C	CTRL2 (07h)	40
	9.4	FIFO_C	CTRL3 (08h)	41
	9.5	FIFO_C	CTRL4 (09h)	42
	9.6	FIFO_C	CTRL5 (0Ah)	43
	9.7	ORIEN	NT_CFG_G (0Bh)	44
	9.8	INT1_C	CTRL (0Dh)	44
	9.9	INT2_C	CTRL (0Eh)	45
	9.10	WHO_/	_AM_I (0Fh)	46
	9.11	CTRL1	1_XL (10h)	46
	9.12	CTRL2	2_G (11h)	48
	9.13	CTRL3	3_C (12h)	49
	9.14	CTRL4	4_C (13h)	50
	9.15	CTRL5	5_C (14h)	50
	9.16	CTRL6	6_C (15h)	51
	9.17	CTRL7	7_G (16h)	52
	9.18	CTRL8	3_XL (17h)	52
	9.19	CTRL9	9_XL (18h)	53
	9.20	CTRL1	10_C (19h)	54

Contents LSM6DS33

9.21	WAKE_UP_SRC (1Bh)	54
9.22	TAP_SRC (1Ch)	55
9.23	D6D_SRC (1Dh)	55
9.24	STATUS_REG (1Eh)	56
9.25	OUT_TEMP_L (20h), OUT_TEMP(21h)	56
9.26	OUTX_L_G (22h)	56
9.27	OUTX_H_G (23h)	57
9.28	OUTY_L_G (24h)	57
9.29	OUTY_H_G (25h)	57
9.30	OUTZ_L_G (26h)	57
9.31	OUTZ_H_G (27h)	58
9.32	OUTX_L_XL (28h)	58
9.33	OUTX_H_XL (29h)	58
9.34	OUTY_L_XL (2Ah)	58
9.35	OUTY_H_XL (2Bh)	59
9.36	OUTZ_L_XL (2Ch)	59
9.37	OUTZ_H_XL (2Dh)	59
9.38	FIFO_STATUS1 (3Ah)	59
9.39	FIFO_STATUS2 (3Bh)	60
9.40	FIFO_STATUS3 (3Ch)	60
9.41	FIFO_STATUS4 (3Dh)	61
9.42	FIFO_DATA_OUT_L (3Eh)	61
9.43	FIFO_DATA_OUT_H (3Fh)	61
9.44	TIMESTAMP0_REG (40h)	62
9.45	TIMESTAMP1_REG (41h)	62
9.46	TIMESTAMP2_REG (42h)	62
9.47	STEP_TIMESTAMP_L (49h)	62
9.48	STEP_TIMESTAMP_H (4Ah)	63
9.49	STEP_COUNTER_L (4Bh)	63
9.50	STEP_COUNTER_H (4Ch)	63
9.51	FUNC_SRC (53h)	63
9.52	TAP_CFG (58h)	
9.53	TAP THS 6D (59h)	65

14	Revis	sion history	76
	13.2	LGA-16 packing information	74
	13.1	LGA-16 package information	
13	Pack	age information	73
12	Solde	ering information	72
	11.4	STEP_COUNT_DELTA (15h)	71
	11.3	PEDO_DEB_REG (14h)	71
	11.2	SM_THS (13h)	70
	11.1	PEDO_THS_REG (0Fh)	70
11	Embe	edded functions registers description	70
10	Embe	edded functions register mapping	69
	9.59	MD2_CFG (5Fh)	68
	9.58	MD1_CFG (5Eh)	67
	9.57	FREE_FALL (5Dh)	67
	9.56	WAKE_UP_DUR (5Ch)	66
	9.55	WAKE_UP_THS (5Bh)	66
	9.54	INT_DUR2 (5Ah)	65

List of tables LSM6DS33

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin description	14
Table 3.	Mechanical characteristics	15
Table 4.	Electrical characteristics	17
Table 5.	Temperature sensor characteristics	18
Table 6.	SPI slave timing values	19
Table 7.	I ² C slave timing values	20
Table 8.	Absolute maximum ratings	21
Table 9.	Serial interface pin description	28
Table 10.	I ² C terminology	28
Table 11.	SAD+Read/Write patterns	29
Table 12.	Transfer when master is writing one byte to slave	29
Table 13.	Transfer when master is writing multiple bytes to slave	29
Table 14.	Transfer when master is receiving (reading) one byte of data from slave	30
Table 15.	Transfer when master is receiving (reading) multiple bytes of data from slave	30
Table 16.	Registers address map	
Table 17.	FUNC_CFG_ACCESS register	40
Table 18.	FUNC_CFG_ACCESS register description	40
Table 19.	FIFO_CTRL1 register	40
Table 20.	FIFO_CTRL1 register description	40
Table 21.	FIFO_CTRL2 register	40
Table 22.	FIFO_CTRL2 register description	41
Table 23.	FIFO_CTRL3 register	41
Table 24.	FIFO_CTRL3 register description	41
Table 25.	Gyro FIFO decimation setting	41
Table 26.	Accelerometer FIFO decimation setting	42
Table 27.	FIFO_CTRL4 register	42
Table 28.	FIFO_CTRL4 register description	42
Table 29.	Third FIFO data set decimation setting	42
Table 30.	FIFO_CTRL5 register	43
Table 31.	FIFO_CTRL5 register description	
Table 32.	FIFO ODR selection	43
Table 33.	FIFO mode selection	
Table 34.	ORIENT_CFG_G register	44
Table 35.	ORIENT_CFG_G register description	44
Table 36.	Settings for orientation of axes	44
Table 37.	INT1_CTRL register	
Table 38.	INT1_CTRL register description	45
Table 39.	INT2_CTRL register	45
Table 40.	INT2_CTRL register description	45
Table 41.	WHO_AM_I register	46
Table 42.	CTRL1_XL register	
Table 43.	CTRL1_XL register description	46
Table 44.	Accelerometer ODR register setting	
Table 45.	BW and ODR (high-performance mode)	47
Table 46.	CTRL2_G register	48
Table 47.	CTRL2_G register description	48
Table 48	Gyroscope ODR configuration setting	48

LSM6DS33 List of tables

Table 49.	CTRL3_C register	49
Table 50.	CTRL3_C register description	49
Table 51.	CTRL4_C register	
Table 52.	CTRL4_C register description	50
Table 53.	CTRL5_C register	
Table 54.	CTRL5_C register description	
Table 55.	Output registers rounding pattern	
Table 56.	Angular rate sensor self-test mode selection	
Table 57.	Linear acceleration sensor self-test mode selection	
Table 58.	CTRL6_C register	51
Table 59.	CTRL6_C register description	
Table 60.	CTRL7_G register	
Table 61.	CTRL7_G register description	
Table 62.	Gyroscope high-pass filter mode configuration	
Table 63.	CTRL8_XL register	
Table 64.	CTRL8_XL register description	
Table 65.	Accelerometer slope and high-pass filter selection and cutoff frequency	
Table 66.	CTRL9_XL register	
Table 67.	CTRL9_XL register description.	
Table 68.	CTRL10_C register	
Table 69.	CTRL10_C register description.	
Table 70.	WAKE UP SRC register	
Table 71.	WAKE_UP_SRC register description	
Table 72.	TAP SRC register	
Table 73.	TAP_SRC register description	
Table 74.	D6D_SRC register	
Table 75.	D6D_SRC register description	
Table 76.	STATUS_REG register	
Table 77.	STATUS_REG register description.	
Table 78.	OUT_TEMP_L register	
Table 79.	OUT_TEMP_H register	
Table 80.	OUT_TEMP register description	
Table 81.	OUTX_L_G register	
Table 82.	OUTX_L_G register description	
Table 83.	OUTX_H_G register	
Table 84.	OUTX_H_G register description	
Table 85.	OUTY L G register	
Table 86.	OUTY_L_G register description	
Table 87.	OUTY_H_G register	
Table 88.	OUTY_H_G register description	
Table 89.	OUTZ_L_G register	
Table 90.	OUTZ L G register description	
Table 91.	OUTZ_H_G register	
Table 92.	OUTZ_H_G register description	
Table 93.	OUTX_L_XL register	
Table 94.	OUTX_L_XL register description	
Table 95.	OUTX_H_XL register	
Table 96.	OUTX_H_XL register description	
Table 97.	OUTY_L_XL register	
Table 98.	OUTY_L_XL register description	
Table 99.	OUTY_H_G register	
Table 100.	OUTY H G register description	
. 35.5 100.		

List of tables LSM6DS33

Table 101.	OUTZ_L_XL register	59
Table 102.	OUTZ_L_XL register description	59
Table 103.	OUTZ_H_XL register	59
Table 104.	OUTZ_H_XL register description	
Table 105.	FIFO_STATUS1 register	59
Table 106.	FIFO_STATUS1 register description	59
Table 107.	FIFO_STATUS2 register	60
Table 108.	FIFO_STATUS2 register description	60
Table 109.	FIFO_STATUS3 register	60
Table 110.	FIFO_STATUS3 register description	
Table 111.	FIFO_STATUS4 register	
Table 112.	FIFO_STATUS4 register description	
Table 113.	FIFO_DATA_OUT_L register	61
Table 114.	FIFO_DATA_OUT_L register description	61
Table 115.	FIFO_DATA_OUT_H register	61
Table 116.	FIFO_DATA_OUT_H register description	61
Table 117.	TIMESTAMP0_REG register	62
Table 118.	TIMESTAMP0_REG register description	62
Table 119.	TIMESTAMP1_REG register	62
Table 120.	TIMESTAMP1_REG register description	
Table 121.	TIMESTAMP2_REG register	
Table 122.	TIMESTAMP2_REG register description	
Table 123.	STEP_TIMESTAMP_L register	
Table 124.	STEP_TIMESTAMP_L register description	
Table 125.	STEP_TIMESTAMP_H register	
Table 126.	STEP_TIMESTAMP_H register description	
Table 127.	STEP_COUNTER_L register	
Table 128.	STEP_COUNTER_L register description	
Table 129.	STEP_COUNTER_H register	
Table 130.	STEP_COUNTER_H register description	
Table 131.	FUNC_SRC register	
Table 132.	FUNC_SRC register description	
Table 133.	TAP_CFG register	
Table 134.	TAP_CFG register description	
Table 135.	TAP_THS_6D register	
Table 136.	TAP_THS_6D register description	
Table 137.	Threshold for D4D/D6D function	
Table 138.	INT_DUR2 register	
Table 139.	INT_DUR2 register description	
Table 140.	WAKE_UP_THS register	
Table 141.	WAKE_UP_THS register description	
Table 142.	WAKE_UP_DUR register	
Table 143.	WAKE_UP_DUR register description	
Table 144.	FREE_FALL register	
Table 145.	FREE_FALL register description	
Table 146.	Threshold for free-fall function	
Table 147.	MD1_CFG register	
Table 148.	MD1_CFG register description	
Table 149.	MD2_CFG register	
Table 150.	MD2_CFG register description	
Table 151.	Registers address map - embedded functions	
Table 152.	PEDO THS REG register default values	70

LSM6DS33 List of tables

Table 153.	PEDO_THS_REG register description	70
	SM_THS register	
	SM_THS register description	
Table 156.	PEDO_DEB_REG register default values	71
Table 157.	PEDO_DEB_REG register description	71
Table 158.	STEP_COUNT_DELTA register	71
Table 159.	STEP_COUNT_DELTA register description	71
Table 160.	Reel dimensions for carrier tape of LGA-16 package	75
Table 161.	Document revision history.	76

List of figures LSM6DS33

List of figures

Figure 1.	Pin connections	. 13
Figure 2.	SPI slave timing diagram	
Figure 3.	I ² C slave timing diagram	. 20
Figure 4.	Accelerometer chain	26
Figure 5.	Accelerometer composite filter	26
Figure 6.	Gyroscope chain	. 27
Figure 7.	Read and write protocol	. 30
Figure 8.	SPI read protocol	. 31
Figure 9.	Multiple byte SPI read protocol (2-byte example)	. 32
Figure 10.	SPI write protocol	. 32
Figure 11.	Multiple byte SPI write protocol (2-byte example)	. 32
Figure 12.	SPI read protocol in 3-wire mode	. 33
Figure 13.	LSM6DS33 electrical connections	. 34
Figure 14.	Schematic 1 (pin 15 connected to GND)	. 35
Figure 15.	Schematic 2 (pin 15 connected to VDD, Vdd_IO = VDD)	. 36
Figure 16.	LGA 3x3x0.86 16L package outline and dimensions	. 73
Figure 17.	Carrier tape information for LGA-16 package	. 74
Figure 18.	LGA-16 package orientation in carrier tape	
Figure 19.	Reel information for carrier tape of LGA-16 package	. 75

LSM6DS33 Overview

1 Overview

The LSM6DS33 is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The integrated power-efficient modes are able to reduce the power consumption down to 1.25 mA in high-performance mode, combining always-on low-power features with superior sensing precision for an optimal motion experience for the consumer thanks to ultra-low noise performance for both the gyroscope and accelerometer.

The LSM6DS33 delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, tap and double-tap sensing, activity or inactivity, and wakeup events.

The LSM6DS33 supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DS33 can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DS33 has been designed to implement hardware features such as significant motion, tilt, pedometer functions, and time stamping.

Up to 8 kbyte of FIFO with dynamic allocation of significant data (i.e. sensors, temperature, step counter and time stamp) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DS33 leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS33 is available in a small plastic land grid array (LGA) package of $3 \times 3 \times 0.86$ mm to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DS33 has been designed to be fully compliant with Android, featuring the following on-chip functions:

- · 8 kbyte data buffering
 - 100% efficiency with flexible configurations and partitioning
 - possibility to store time stamp
- Event-detection interrupts (fully configurable):
 - free-fall
 - wakeup
 - 6D orientation
 - tap and double-tap sensing
 - activity / inactivity recognition
- Specific IP blocks with negligible power consumption and high-performance:
 - pedometer functions: step detector and step counters
 - tilt (Android compliant, refer to Section 2.1: Tilt detection for additional info
 - significant motion (Android compliant)

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

It is based on a trigger of an event each time the device's tilt changes by an angle greater than 35 degrees from the start position.

The tilt function can be used with different scenarios, for example:

- Trigger when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

477

LSM6DS33 Pin description

3 Pin description

Figure 1. Pin connections

In the LSM6DS33 an I²C slave interface or SPI (3- and 4-wire) serial interface is available.

Pin description LSM6DS33

Table 2. Pin description

Pin#	Name	Function
1	VDDIO ⁽¹⁾	Power supply for I/O pins
2	SCL	I ² C serial clock (SCL) SPI serial port clock (SPC)
3	SDA	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
4	SDO/SA0	SPI 4-wire interface serial data output (SDO) I ² C least significant bit of the device address (SA0)
5	CS	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
6	INT2	Programmable interrupt
7	INT1	Programmable interrupt
8	RES	Reserved, connect to GND
9	RES	Reserved, connect to GND
10	RES	Reserved, connect to GND
11	RES	Reserved, connect to GND
12	GND	0 V supply
13	GND	0 V supply
14	NC	Leave unconnected
15	RES	Reserved, connect to GND
16	VDD ⁽²⁾	Power supply

^{1.} Recommended 100 nF filter capacitor.

^{2.} Recommended 100 nF capacitor.

4 Module specifications

4.1 Mechanical characteristics

2 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				±2		
LA_FS	Linear acceleration measurement			±4		g g
LA_FS	range			±8		
				±16		
				±125		
	A I I .			±245		
G_FS	Angular rate measurement range			±500		dps
	inicasarement range			±1000		
				±2000		
		FS = ±2		0.061		
LA_So	Linear acceleration sensitivity	FS = ±4		0.122		m <i>g</i> /LSB
LA_30	Linear acceleration sensitivity	FS = ±8		0.244		1 IIIg/LSB
		FS = ±16		0.488]
	Angular rate sensitivity	FS = ±125		4.375		
		FS = ±245		8.75		mdps/LSB
G_So		FS = ±500		17.50		
		FS = ±1000		35		
		FS = ±2000		70		
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽²⁾	from -40° to +85° delta from T=25°		±1		%
G_SoDr	Angular rate sensitivity change vs. temperature ⁽²⁾	from -40° to +85° delta from T=25°		±1.5		%
LA_TyOff	Linear acceleration typical zero-g level offset accuracy ⁽³⁾			±40		m <i>g</i>
G_TyOff	Angular rate typical zero-rate level ⁽³⁾			±10		dps
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽²⁾			±0.5		mg/°C
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽²⁾			±0.05		dps/°C
Rn	Rate noise density			7		mdps/√Hz
An	Acceleration noise density	FS= ±2 <i>g</i> ODR = 104 Hz		90		μ <i>g</i> /√Hz

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
				13		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data			208		
LA_ODK	rate			416		
				833		
				1666		
				3332		
				6664		Hz
				13		
				26		
				52		
C ODD	Angular rate output data rate			104		
G_ODR	Angular rate output data rate			208		
				416		
				833		
				1666		
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} Measurements are performed in a uniform temperature setup.

^{3.} Values after soldering.

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		Vdd+0.1	V
IddHP	Gyroscope and accelerometer in high-performance mode	up to ODR = 1.6 kHz		1.25		mA
IddNM	Gyroscope and accelerometer in normal mode	ODR = 208 Hz		0.9		mA
IddLP	Gyroscope and accelerometer in low-power mode	ODR = 13 Hz		0.42		mA
LA_lddHP	Accelerometer current consumption in high-performance mode	up to ODR = 1.6 kHz		240		μΑ
LA_IddNM	Accelerometer current consumption in normal mode	ODR = 104 Hz		70		μΑ
LA_lddLM	Accelerometer current consumption in low-power mode	ODR = 13 Hz		24		μΑ
IddPD	Gyroscope and accelerometer in power down			6		μA
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

For details related to the LSM6DS33 operating modes, refer to *5.2: Gyroscope power modes* and *5.3: Accelerometer power modes*.

4.3 Temperature sensor characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽²⁾		-15		+15	°C
TSen	Temperature sensitivity			16		LSB/°C
TST	Temperature stabilization time ⁽³⁾				500	μs
T_ADC_res	Temperature ADC resolution			12		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

^{2.} The output of the temperature sensor is 0 LSB (typ.) at 25 $^{\circ}$ C.

^{3.} Time from power ON bit to valid data based on characterization data.

Communication interface characteristics 4.4

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values

Symbol	SPI clock frequency (CS) CS setup time (CS) CS hold time (SI) SDI input setup time (SI) SDI input hold time SO) SDO valid output time	Valu	ue ⁽¹⁾	Unit
Symbol	Farameter	Min	Max	Oilit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5]
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 2. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 7. I²C slave timing values

Cumbal	Parameter	I ² C Standa	ard mode ⁽¹⁾	I ² C Fast	mode ⁽¹⁾	Unit
Symbol	Parameter	Min	Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		
t _{su(SP)}	STOP condition setup time	4		0.6		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I^2C protocol requirement, not tested in production.

Figure 3. I²C slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.

Absolute maximum ratings 4.5

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.1 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply Voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.

An angular rate gyroscope is device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in *Table 3*. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

LSM6DS33 Functionality

5 Functionality

5.1 Operating modes

The LSM6DS33 has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the LSM6DS33, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 13 Hz up to 1.6 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODR (13, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.3 Accelerometer power modes

In the LSM6DS33, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in *CTRL6_C (15h)*. If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 13 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (13, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.4 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

LSM6DS33 embeds 8 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- step counter and time stamp
- temperature

Functionality LSM6DS33

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;

- step detection signal.

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the registers *FIFO_CTRL3* (08h) and *FIFO_CTRL4* (09h). The available decimation factors are 2, 3, 4, 8, 16, 32.

Programmable FIFO threshold can be set in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)* using the FTH [11:0] bits.

To monitor the FIFO status, dedicated registers (*FIFO_STATUS1 (3Ah)*, *FIFO_STATUS2 (3Bh)*, *FIFO_STATUS3 (3Ch)*, *FIFO_STATUS4 (3Dh)*) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in *INT1_CTRL (0Dh)* and *INT2_CTRL (0Eh)*.

FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] in *FIFO_CTRL5 (0Ah)* register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.4.1 Bypass mode

In Bypass mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.4.2 FIFO mode

In FIFO mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing *FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing *FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)*. If the STOP_ON_FTH bit in *CTRL4_C (13h)* is set to '1', FIFO depth is limited up to FTH [11:0] bits in *FIFO_CTRL1 (06h)* and *FIFO_CTRL2 (07h)*.

5.4.3 Continuous mode

Continuous mode (*FIFO_CTRL5* (*0Ah*) (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

LSM6DS33 Functionality

A FIFO threshold flag *FIFO_STATUS2* (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to *FIFO_CTRL1* (06h) and *FIFO_CTRL2* (07h)(FTH [11:0]).

It is possible to route *FIFO_STATUS2 (3Bh)* (FTH) to the INT1 pin by writing in register *INT1_CTRL (0Dh)* (INT1_FTH) = '1' or to the INT2 pin by writing in register *INT2_CTRL (0Eh)* (INT2_FTH) = '1'.

A full-flag interrupt can be enabled, *INT1_CTRL* (*0Dh*) (INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in *FIFO_STATUS1* (3Ah) and *FIFO_STATUS2* (3Bh) (DIFF_FIFO[11:0]).

5.4.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers *FUNC_SRC (53h)*, *TAP_SRC (1Ch)*, *WAKE_UP_SRC (1Bh)* and *D6D_SRC (1Dh)*.

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

5.4.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (*FIFO_CTRL5 (0Ah)* (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers *FUNC_SRC (53h)*, *TAP_SRC (1Ch)*, *WAKE_UP_SRC (1Bh)* and *D6D_SRC (1Dh)* are equal to '1', otherwise FIFO content is reset (Bypass mode).

5.4.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.

All FIFO status registers (*FIFO_STATUS1* (*3Ah*), *FIFO_STATUS2* (*3Bh*), *FIFO_STATUS3* (*3Ch*), *FIFO_STATUS4* (*3Dh*)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:

The 1st FIFO data set is reserved for gyroscope data:

The 2nd FIFO data set is reserved for accelerometer data:

Functionality LSM6DS33

5.4.7 Filter block diagrams

Figure 4. Accelerometer chain

Figure 5. Accelerometer composite filter

577

LSM6DS33 Functionality

Figure 6. Gyroscope chain

Digital interfaces LSM6DS33

6 Digital interfaces

The registers embedded inside the LSM6DS33 may be accessed through both the I^2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name	Pin description
CS	SPI enable I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
SCL/SPC	I ² C Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	I ² C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) I ² C less significant bit of the device address

Table 9. Serial interface pin description

6.1 I²C serial interface

The LSM6DS33 I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Term Description

Transmitter The device which sends data to the bus

Receiver The device which receives data from the bus

Master The device which initiates a transfer, generates clock signals and terminates a transfer

Slave The device addressed by the master

Table 10. I²C terminology

There are two signals associated with the I^2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemeted with fast mode (400 kHz) I²C standards as well as with the standard mode.

In order to disable the I^2C block, ($I2C_disable$) = 1 must be written in $CTRL4_C$ (13h).

47/

LSM6DS33 Digital interfaces

6.1.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DS33 is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DS33 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the *CTRL3_C* (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. *Table 11* explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 11. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 12. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Digital interfaces LSM6DS33

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Maste	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Maste	r ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

6.2 SPI bus interface

The LSM6DS33 SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.

Figure 7. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

LSM6DS33 Digital interfaces

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

6.2.1 SPI read

Figure 8. SPI read protocol

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Digital interfaces LSM6DS33

Figure 9. Multiple byte SPI read protocol (2-byte example)

6.2.2 SPI write

Figure 10. SPI write protocol

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 11. Multiple byte SPI write protocol (2-byte example)

LSM6DS33 Digital interfaces

6.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the *CTRL3_C* (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 12. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

Application hints LSM6DS33

7 Application hints

7.1 LSM6DS33 electrical connections

Vdd_IO C2 100 nF GND VDD INT2 **VDD** TOP **RES** INT1 **VIEW RES** 8 14 NC 100 nF GND GND Vdd IO I²C configuration Rpu = 10 kOhm GND SCL SDA ◀ Pull-up to be added

Figure 13. LSM6DS33 electrical connections

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $C2 = 100 \, nF$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

LSM6DS33 Application hints

7.2 Pin compatibility with LSM6DS0

→ SDA/SDISDO 100nF Vdd_IO VDD **♦** CS 0 1 5 100nF 10µF GND√ ⁷GND INT RES (TOP VIEW) RES *C1 10nF(25V) ₩GND 13 *C1 must guarantee 1 nF value under 12 V bias condition RES GND Vdd_IO GND I²C configuration Rpu = 10 kOhm Rpu C4 SCL LSM6DS0 10nF (25V) 10µF Do not mount SDA LSM6DS33 Not 0 Ohm Not Pull-up to be added necessary necessary

Figure 14. Schematic 1 (pin 15 connected to GND)

Application hints LSM6DS33

Figure 15. Schematic 2 (pin 15 connected to VDD, Vdd_IO = VDD)

LSM6DS33 Register mapping

8 Register mapping

The table given below provides a list of the 8/16 bit registers embedded in the device and the corresponding addresses.

Table 16. Registers address map

Nama	T	Registe	er address	Defende	Comment	
Name	Type	Hex	Binary	- Default		
RESERVED	r/w	00	00000000	00000000	Reserved	
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register	
RESERVED	r/w	02-05		-	Reserved	
FIFO_CTRL1	r/w	06	00000110	00000000		
FIFO_CTRL2	r/w	07	00000111	00000000	FIFO	
FIFO_CTRL3	r/w	08	00001000	00000000	configuration	
FIFO_CTRL4	r/w	09	00001001	00000000	registers	
FIFO_CTRL5	r/w	0A	00001010	00000000		
ORIENT_CFG_G	r/w	0B	00001011	00000000		
RESERVED	r/w	0C	00001100	-	Reserved	
INT1_CTRL	r/w	0D	00001101	00000000	INT1 pin control INT2 pin control	
INT2_CTRL	r/w	0E	00001110	00000000		
WHO_AM_I	r	0F	00001111	01101001	Who I am ID	
CTRL1_XL	r/w	10	00010000	00000000		
CTRL2_G	r/w	11	00010001	00000000		
CTRL3_C	r/w	12	00010010	00000100		
CTRL4_C	r/w	13	00010011	00000000	Acceleremeter	
CTRL5_C	r/w	14	00010100	00000000	Accelerometer and gyroscope	
CTRL6_C	r/w	15	00010101	00000000	control registers	
CTRL7_G	r/w	16	00010110	00000000	registers	
CTRL8_XL	r/w	17	0001 0111	00000000		
CTRL9_XL	r/w	18	00011000	00111000		
CTRL10_C	r/w	19	00011001	00111000		
RESERVED		1A	00011010	-	Reserved	
WAKE_UP_SRC	r	1B	00011011	output		
TAP_SRC	r	1C	00011100	output	Interrupts registers	
D6D_SRC	r	1D	00011101	output		

Register mapping LSM6DS33

Table 16. Registers address map (continued)

Name	Time	Register address			0	
Name	туре	Hex	Binary	Default	Comment	
STATUS_REG	r	1E	00011110	output	Status data register	
RESERVED	r	1F	00011111	-	Reserved	
OUT_TEMP_L	r	20	00100000	output	Temperature	
OUT_TEMP_H	r	21	00100001	output	output data register	
OUTX_L_G	r	22	00100010	output		
OUTX_H_G	r	23	00100011	output		
OUTY_L_G	r	24	00100100	output	Gyroscope	
OUTY_H_G	r	25	00100101	output	output register	
OUTZ_L_G	r	26	00100110	output		
OUTZ_H_G	r	27	00100111	output		
OUTX_L_XL	r	28	00101000	output		
OUTX_H_XL	r	29	00101001	output		
OUTY_L_XL	r	2A	00101010	output	Accelerometer	
OUTY_H_XL	r	2B	00101011	output	output register	
OUTZ_L_XL	r	2C	00101100	output		
OUTZ_H_XL	r	2D	00101101	output		
RESERVED		2E-39		-	Reserved	
FIFO_STATUS1	r	3A	00111010	output		
FIFO_STATUS2	r	3B	00111011	output	FIFO status	
FIFO_STATUS3	r	3C	00111100	output	registers	
FIFO_STATUS4	r	3D	00111101	output		
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data	
FIFO_DATA_OUT_H	r	3F	00111111	output	output registers	
TIMESTAMP0_REG	r	40	01000000	output		
TIMESTAMP1_REG	r	41	01000001	output	Timestamp output registers	
TIMESTAMP2_REG	r/w	42	01000010	output		
RESERVED		43-48		-	Reserved	
STEP_TIMESTAMP_L	r	49	0100 1001	output	Step counter	
STEP_TIMESTAMP_H	r	4A	0100 1010	output	timestamp registers	
STEP_COUNTER_L	r	4B	01001011	output	Step counter	
STEP_COUNTER_H	r	4C	01001100	output	output registers	
RESERVED		4D-52		-	Reserved	

LSM6DS33 Register mapping

Table 16. Registers address map (continued)

Name	Register address			Default	C	
Name	Type	Hex	Binary	Delault	Comment	
FUNC_SRC	r	53	01010011	output	Interrupt register	
RESERVED		54-57		-	Reserved	
TAP_CFG	r/w	58	01011000	00000000		
TAP_THS_6D	r/w	59	01011001	00000000		
INT_DUR2	r/w	5A	01011010	00000000		
WAKE_UP_THS	r/w	5B	01011011	00000000	Interrupt	
WAKE_UP_DUR	r/w	5C	01011100	00000000	registers	
FREE_FALL	r/w	5D	01011101	00000000		
MD1_CFG	r/w	5E	01011110	00000000		
MD2_CFG	r/w	5F	01011111	00000000		
RESERVED		60-6B		-	Reserved	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w).

Table 17. FUNC_CFG_ACCESS register

					•			
FUNC_CFG_EN	0 ⁽¹⁾							

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 18. FUNC_CFG_ACCESS register description

FUNC_CFG_EN	Enable access to the embedded functions configuration registers ⁽¹⁾ from address 02h to 32h. Default value: 0.
	(0: disable access to embedded functions configuration registers;1: enable access to embedded functions configuration registers)

The embedded functions configuration registers details are available in 10: Embedded functions register mapping and 11: Embedded functions registers description.

9.2 FIFO_CTRL1 (06h)

FIFO control register (r/w).

Table 19. FIFO_CTRL1 register

FTH_7 FTH	H_6 FTH_5	FTH_4	FTH_3	FTH_2	FTH_1	FTH_0
-----------	-----------	-------	-------	-------	-------	-------

Table 20. FIFO_CTRL1 register description

	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 0000.
FTH [7:0]	Watermark flag rises when the number of bytes written to FIFO after the next write is
	greater than or equal to the threshold level.
	Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL2 (07h).

9.3 FIFO_CTRL2 (07h)

FIFO control register (r/w).

Table 21. FIFO_CTRL2 register

TIMER_PEDO TIMER_PEDO _FIFO_EN _FIFO_DRDY	1 ()(1)	0 ⁽¹⁾	FTH_11	FTH10	FTH_9	FTH_8	
---	---------	------------------	--------	-------	-------	-------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 22. FIFO_CTRL2 register description

TIMER_PEDO _FIFO_EN	Enable pedometer step counter and time stamp. Default: 0 (0: disable step counter and time stamp data; 1: enable step counter and time stamp data.)
TIMER_PEDO _FIFO_DRDY	FIFO write mode. Default: 0 (0: enable write in FIFO based on XL/Gyro data-ready; 1: enable write in FIFO at every step detected by step counter.)
FTH_[11:8]	FIFO threshold level setting ⁽¹⁾ . Default value: 0000 Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL1 (06h)

9.4 FIFO_CTRL3 (08h)

FIFO control register (r/w).

Table 23. FIFO_CTRL3 register

n(1)	o ⁽¹⁾	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	DEC_FIFO	
0. /	0. /	_GYRO2	_GYRO1	_GYRO0	_XL2	_XL1	_XL0	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 24. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO (first data set) decimation setting. Default: 000 For the configuration setting, refer to <i>Table 25</i> .
DEC_FIFO_XL [2:0]	Accelerometer FIFO (second data set) decimation setting. Default: 000 For the configuration setting, refer to <i>Table 26</i> .

Table 25. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 26. Accelerometer FIFO decimation setting

DEC_FIFO_XL [2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.5 FIFO_CTRL4 (09h)

FIFO control register (r/w).

Table 27. FIFO_CTRL4 register

o(1)	ONLY_HIGH	TIMER_PEDO	TIMER_PEDO	TIMER_PEDO	o(1)	o(1)	o(1)
0, ,	_DATA	_DEC_FIFO2	_DEC_FIFO1	_DEC_FIFO1	0, ,	0. /	0. /

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 28. FIFO_CTRL4 register description

ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0
	(0: disable MSByte only memorization in FIFO for XL and Gyro;
	1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
	Third FIFO data set decimation setting. Default: 000
TIMER_PEDO_DEC_	For the configuration setting, refer to <i>Table 29</i> .
FIFO[2:0]	These bits are used when the bit TIMER_PEDO_FIFO_EN is set to '1' in
	FIFO_CTRL2 (07h)

Table 29. Third FIFO data set decimation setting

TIMER_PEDO_DEC_FIFO[2:0]	Configuration
000	Third FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.6 FIFO_CTRL5 (0Ah)

FIFO control register (r/w).

Table 30. FIFO_CTRL5 register

ſ	n(1)	ODR_	ODR_	ODR_	ODR_	FIFO_	FIFO_	FIFO_
	0(1)	FIFO_3	FIFO_2	FIFO_1	FIFO_0	MODE_2	MODE_1	MODE_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 31. FIFO_CTRL5 register description

ODR FIFO [3:0]	FIFO ODR selection, setting FIFO_MODE also. Default: 0000
	For the configuration setting, refer to <i>Table 32</i>
FIFO MODE [2:0]	FIFO mode selection bits, setting ODR_FIFO also. Default value: 000
FIFO_WODE_[2.0]	For the configuration setting refer to <i>Table 33</i>

Table 32. FIFO ODR selection

ODR_FIFO_[3:0]	Configuration ⁽¹⁾
0000	FIFO disabled
0001	FIFO ODR is set to 13 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value. Moreover, these bits are effective if the TIMER_PEDO_FIFO_DRDY bit of FIFO_CTRL2 (07h) is set to 0.

Table 33. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode
000	Bypass mode. FIFO disabled.
001	FIFO mode. Stops collecting data when FIFO is full.
010	Reserved
011	Continuous mode until trigger is deasserted, then FIFO mode.
100	Bypass mode until trigger is deasserted, then Continuous mode.
101	Reserved
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111	Reserved

9.7 ORIENT_CFG_G (0Bh)

Angular rate sensor sign and orientation register (r/w).

Table 34. ORIENT CFG G register

0 ⁽¹⁾	0 ⁽¹⁾	SignX_G	SignY_G	SignZ_G	Orient_2	Orient_1	Orient_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 35. ORIENT_CFG_G register description

SignX_G	Pitch axis (X) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignY_G	Roll axis (Y) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignZ_G	Yaw axis (Z) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
Orient [2:0]	Directional user-orientation selection. Default value: 000 For the configuration setting, refer to <i>Table 36</i> .

Table 36. Settings for orientation of axes

Orient [2:0]	000	001	010	011	100	101
Pitch	Х	Х	Υ	Υ	Z	Z
Roll	Υ	Z	Х	Z	Х	Υ
Yaw	Z	Υ	Z	Х	Υ	Х

9.8 INT1_CTRL (0Dh)

INT1 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 37. INT1_CTRL register

INT1_ STEP_ DETECTOR INT1_SIGN INT1_FULL INT1_ INT1_ FLAG INT1_ FIFO_OVR INT1_ FIFO_OVR						
	STEP_	MOT	 _	· · · · · · —	 · · · · · · —	

Table 38. INT1 CTRL i	reaister description
-----------------------	----------------------

	1 a a a a a a a a a a a a a a a a a a a
INT1_STEP_	Pedometer step recognition interrupt enable on INT1 pad. Default value: 0
DETECTOR	(0: disabled; 1: enabled)
INT1 SIGN MOT	Significant motion interrupt enable on INT1 pad. Default value: 0
INTI_SIGN_WOT	(0: disabled; 1: enabled)
INT1 FULL FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0
INTI_FULL_FLAG	(0: disabled; 1: enabled)
INIT1 FIEO OVD	FIFO overrun interrupt on INT1 pad. Default value: 0
INT1_FIFO_OVR	(0: disabled; 1: enabled)
INIT4 ETU	FIFO threshold interrupt on INT1 pad. Default value: 0
INT1_FTH	(0: disabled; 1: enabled)
INIT1 DOOT	Boot status available on INT1 pad. Default value: 0
INT1_BOOT	(0: disabled; 1: enabled)
INT1 DRDY G	Gyroscope Data Ready on INT1 pad. Default value: 0
ן וואוו_טאטד_ט	(0: disabled; 1: enabled)
INT1 DRDY XL	Accelerometer Data Ready on INT1 pad. Default value: 0
INTI_DUDT_VE	(0: disabled; 1: enabled)

9.9 INT2_CTRL (0Eh)

INT2 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 39. INT2_CTRL register

INT2_STEP	INT2_STEP_	INT2_	INT2_	INT2_	INT2_ DRDY	INT2_	INT2_	
_DELTA	COUNT_OV	FULL_FLAG	FIFO_OVR	FTH	_TEMP	DRDY_G	DRDY_XL	

Table 40. INT2_CTRL register description

INT2_STEP_DELTA	Pedometer step recognition interrupt on delta time ⁽¹⁾ enable on INT2 pad. Default value: 0			
	(0: disabled; 1: enabled)			
INT2_STEP_COUNT	Step counter overflow interrupt enable on INT2 pad. Default value: 0			
_OV	(0: disabled; 1: enabled)			
INT2 FULL FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0			
INTZ_TOLL_TEAG	(0: disabled; 1: enabled)			
INT2 FIFO OVR	FIFO overrun interrupt on INT2 pad. Default value: 0			
11412_1 11 O_OVIC	(0: disabled; 1: enabled)			
INT2 FTH	FIFO threshold interrupt on INT2 pad. Default value: 0			
IIN12_1 111	(0: disabled; 1: enabled)			
INT2 DRDY TEMP	Temperature Data Ready in INT2 pad. Default value: 0			
INTZ_DRDT_TEMI	(0: disabled; 1: enabled)			
INT2 DRDY G	Gyroscope Data Ready on INT2 pad. Default value: 0			
INTZ_DRDT_G	(0: disabled; 1: enabled)			
INT2 DRDY XL	Accelerometer Data Ready on INT2 pad. Default value: 0			
THE TENDE	(0: disabled; 1: enabled)			

^{1.} Delta time value is defined in register STEP_COUNT_DELTA (15h).

9.10 WHO_AM_I (0Fh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 69h.

Table 41. WHO_AM_I register

0	1	1	0	1	0	0	1

9.11 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).

Table 42. CTRL1_XL register

ODR XL3	ODR XL2	ODR XL1	ODR XL0	FS XL1	FS XL0	BW XL1	BW XL0
_	_	_	_	_	_	_	

Table 43. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see <i>Table 44</i>).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00. (00: $\pm 2\ g$; 01: $\pm 16\ g$; 10: $\pm 4\ g$; 11: $\pm 8\ g$)
BW_XL [1:0]	Anti-aliasing filter bandwidth selection. Default value: 00 (00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz)

Table 44. Accelerometer ODR register setting

ODR_ XL3	ODR_ XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE = 1	ODR selection [Hz] when XL_HM_MODE = 0
0	0	0	0	Power-down	Power-down
0	0	0	1	13 Hz (low power)	13 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)

Table 45. BW and ODR (high-performance mode)

ODR ⁽¹⁾	Analog filter BW (XL_HM_MODE = 0)				
ODK	XL_BW_SCAL_ODR = 0	XL_BW_SCAL_ODR = 1			
6.66 - 3.33 kHz	Filter not used				
1.66 kHz	400 Hz				
833 Hz	400 Hz	Bandwidth is determined by			
416 Hz	200 Hz	setting BW_XL[1:0] in CTRL1_XL (10h)			
208 Hz	100 Hz	_ , ,			
104 - 13 Hz	50 Hz				

^{1.} Filter not used when accelerometer is in normal and low-power modes.

9.12 CTRL2_G (11h)

Angular rate sensor control register 2 (r/w).

Table 46. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	0 ⁽¹⁾

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 47. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to <i>Table 46</i>)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: 245 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125	Gyroscope full-scale at 125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 48. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1	ODR [Hz] when G_HM_MODE = 0
0	0	0	0	Power down	Power down
0	0	0	1	13 Hz (low power)	13 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)

48/77 DocID027423 Rev 4

9.13 CTRL3_C (12h)

Control register 3 (r/w).

Table 49. CTRL3_C register

				_		
BOOT BDU	H_LACTIVE	PP_OD	SIM	IF_INC	BLE	SW_RESET

Table 50. CTRL3_C register description

воот	Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content ⁽¹⁾)
BDU	Block Data Update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0 (0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface).
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is cleared by hardware after next flash boot.

Boot request is executed as soon as internal oscillator is turned on. It is possible to set bit while in power-down mode, in this case it will be served at the next normal mode or sleep mode.

9.14 CTRL4_C (13h)

Control register 4 (r/w).

Table 51. CTRL4_C register

XL_BW_ SCAL_ODR SLEEP_G INT2_on_ FIFO_ INT1 TEMP_EN	DRDY_ MASK	2C_disable	0	STOP_ON _FTH
---	---------------	------------	---	-----------------

Table 52. CTRL4_C register description

XL_BW_	Accelerometer bandwidth selection. Default value: 0
SCAL_ODR	(0 ⁽¹⁾ : bandwidth determined by ODR selection, refer to <i>Table 45</i> ;
	1 ⁽²⁾ : bandwidth determined by setting BW_XL[1:0] in <i>CTRL1_XL</i> (10h) register.)
SLEEP_G	Gyroscope sleep mode enable. Default value: 0
	(0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0
	(0: interrupt signals divided between INT1 and INT2 pads;
	1: all interrupt signals in logic or on INT1 pad)
FIFO_TEMP_EN	Enable temperature data as 4 th FIFO data set ⁽³⁾ . Default: 0
	(0: disable temperature data as 4 th FIFO data set;
	1: enable temperature data as 4 th FIFO data set)
DRDY_MASK	Configuration 1 ⁽⁴⁾ data available enable bit. Default value: 0
	(0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ² C interface. Default value: 0
	(0: both I ² C and SPI enabled; 1: I ² C disabled, SPI only)
STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0.
	(0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)

- 1. Filter used in high-performance mode only with ODR less than 3.33 kHz.
- 2. Filter used in high-performance mode only.
- 3. This bit is effective if the TIMER_PEDO_FIFO_EN bit of FIFO_CTRL2 register is set to 0.
- 4. In configuration 1, switching to combo mode, data are collected in FIFO only when both accelerometer and gyroscope are set. Switching to accelerometer only, data are collected in FIFO after filter setting.

9.15 CTRL5_C (14h)

Control register 5 (r/w).

Table 53. CTRL5 C register

ROUNDING2 ROUNDING1	ROUNDING0	0 ⁽¹⁾	ST1_G	ST0_G	ST1_XL	ST0_XL

^{1.} This bit must be set to '0' for the correct operation of the device

Table 54. CTRL5_C register description

ROUNDING[2:0]	Circular burst-mode (rounding) read from output registers. Default: 000 (000: no rounding; Others: refer to <i>Table 55</i>)
ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 56</i>)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to <i>Table 57</i>)

50/77 DocID027423 Rev 4

Table 55. Output registers rounding pattern

ROUNDING[2:0]	Rounding pattern
000	No rounding
001	Accelerometer only
010	Gyroscope only
011	Gyroscope + accelerometer

Table 56. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 57. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.16 CTRL6_C (15h)

Angular rate sensor control register 6 (r/w).

Table 58. CTRL6_C register

TRIG_EN	LVLen	LVL2_EN	XL_HM_MODE	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
---------	-------	---------	------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 59. CTRL6_C register description

TRIG_EN	Gyroscope data edge-sensitive trigger enable. Default value: 0 (0: external trigger disabled; 1: external trigger enabled)
LVLen	Gyroscope data level-sensitive trigger enable. Default value: 0 (0: level-sensitive trigger disabled; 1: level sensitive trigger enabled)
LVL2_EN	Gyroscope level-sensitive latched enable. Default value: 0 (0: level-sensitive latched disabled; 1: level sensitive latched enabled)
XL_HM_MODE	High-performance operating mode disable for accelerometer ⁽¹⁾ . Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)

^{1.} Normal and low-power mode depends on the ODR setting, for details refer to *Table 44*.

9.17 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).

Table 60. CTRL7_G register

G_HM_MODE	HP_G_ EN	HPCF_G1	HPCF_G0	HP_G_R ST	ROUNDING_ STATUS	0 ⁽¹⁾	0 ⁽¹⁾
-----------	-------------	---------	---------	--------------	---------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 61. CTRL7_G register description

G_HM_MODE	High-performance operating mode disable for gyroscope ⁽¹⁾ . Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_G_EN	Gyroscope high-pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HP_G_RST	Gyro digital HP filter reset. Default: 0 (0: gyro digital HP filter reset OFF; 1: gyro digital HP filter reset ON)
ROUNDING_ STATUS	Source register rounding function enable on <i>STATUS_REG (1Eh)</i> , <i>FUNC_SRC (53h)</i> and <i>WAKE_UP_SRC (1Bh)</i> registers. Default value: 0 (0: disabled; 1: enabled)
HPCF_G[1:0]	Gyroscope high-pass filter cutoff frequency selection. Default value: 00. Refer to <i>Table 62</i> .

^{1.} Normal and low-power mode depends on the ODR setting, for details refer to *Table 48*.

Table 62. Gyroscope high-pass filter mode configuration

HPCF_G1	HPCF_G0	High-pass filter cutoff frequency
0	0	0.0081 Hz
0	1	0.0324 Hz
1	0	2.07 Hz
1	1	16.32 Hz

9.18 CTRL8_XL (17h)

Linear acceleration sensor control register 8 (r/w).

Table 63. CTRL8_XL register

LPF2_XL_ EN	HPCF_ XL1	HPCF_ XL0	0 ⁽¹⁾	0 ⁽¹⁾	HP_SLOPE_X L_EN	0 ⁽¹⁾	LOW_PASS _ON_6D
----------------	--------------	--------------	------------------	------------------	--------------------	------------------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 64. CTRL8_XL register description

LPF2_XL_EN	Accelerometer low-pass filter LPF2 selection. Refer to Figure 5.
HPCF_XL[1:0]	Accelerometer slope filter and high-pass filter configuration and cutoff setting. Refer to <i>Table 65</i> .
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 5.
LOW_PASS_ON_6D	Low-pass filter on 6D function selection. Refer to Figure 5.

Table 65. Accelerometer slope and high-pass filter selection and cutoff frequency

HPCF_XL[1:0]	Applied filter	HP filter cutoff frequency [Hz]
00	Slope	ODR_XL/50
01	High-pass	ODR_XL/100
10	High-pass	ODR_XL/9
11	High-pass	ODR_XL/400

9.19 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r/w).

Table 66. CTRL9_XL register

0 ⁽¹⁾	0 ⁽¹⁾	Zen_XL	Yen_XL	Xen_XL	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------------------	------------------	--------	--------	--------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 67. CTRL9_XL register description

Zen_XL	Accelerometer Z-axis output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL	Accelerometer Y-axis output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL	Accelerometer X-axis output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)

9.20 CTRL10_C (19h)

Control register 10 (r/w).

Table 68. CTRL10_C register

0 ⁽¹⁾	0 ⁽¹⁾ Zen_G	Yen_G	Xen_G	FUNC_EN	PEDO_RST _STEP	SIGN_ MOTION_EN
------------------	------------------------	-------	-------	---------	-------------------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 69. CTRL10_C register description

Zen_G	Gyroscope yaw axis (Z) output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G	Gyroscope roll axis (Y) output enable. Default value: 1 (0: Y-axis output disabled; 1: Y axis output enabled)
Xen_G	Gyroscope pitch axis (X) output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)
FUNC_EN	Enable embedded functionalities (pedometer, tilt, significant motion) and accelerometer HP and LPF2 filters (refer to <i>Figure 5</i>). Default value: 0 (0: disable functionalities of embedded functions and accelerometer filters; 1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_ STEP	Reset pedometer step counter. Default value: 0 (0: disabled; 1: enabled)
SIGN_MOTION _EN	Enable significant motion function. Default value: 0 (0: disabled; 1: enabled)

9.21 WAKE_UP_SRC (1Bh)

Wake up interrupt source register (r).

Table 70. WAKE_UP_SRC register

0 ⁽¹⁾	0 ⁽¹⁾	FF_IA	SLEEP_ STATE_IA	WU_IA	x_wu	Y_WU	Z_WU
------------------	------------------	-------	--------------------	-------	------	------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 71. WAKE_UP_SRC register description

FF IA	Free-fall event detection status. Default: 0
ILL_IA	(0: free-fall event not detected; 1: free-fall event detected)
SLEEP_	Sleep event status. Default value: 0
STATE_IA	(0: sleep event not detected; 1: sleep event detected)
10/11/10	Wakeup event detection status. Default value: 0
WU_IA	(0: wakeup event not detected; 1: wakeup event detected.)
V 10/11	Wakeup event detection status on X-axis. Default value: 0
X_WU	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y WU	Wakeup event detection status on Y-axis. Default value: 0
1_000	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
7 \\/\	Wakeup event detection status on Z-axis. Default value: 0
Z_WU	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

54/77 DocID027423 Rev 4

9.22 TAP_SRC (1Ch)

Tap source register (r).

Table 72. TAP_SRC register

0 ⁽¹⁾	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
------------------	--------	----------------	----------------	----------	-------	-------	-------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 73. TAP_SRC register description

	idalo i di ii ii _oi to gioto: docoription
TAP IA	Tap event detection status. Default: 0
IAF_IA	(0: tap event not detected; 1: tap event detected)
SINGLE TAP	Single-tap event status. Default value: 0
SINGLE_TAP	(0: single tap event not detected; 1: single tap event detected)
DOUBLE TAP	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X TAP	Tap event detection status on X-axis. Default value: 0
X_1X1	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y TAP	Tap event detection status on Y-axis. Default value: 0
I_IAF	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z TAP	Tap event detection status on Z-axis. Default value: 0
Z_IAF	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.23 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 74. D6D_SRC register

0 ⁽¹⁾	D6D_IA	ZH	ZL	YH	YL	XH	XL	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 75. D6D_SRC register description

D6D_	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
IA	(0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0
211	(0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0
	(0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0
' ' '	(0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0
' -	(0: event not detected; 1: event (under threshold) detected)
ХН	X-axis high event (over threshold). Default value: 0
^_''	(0: event not detected; 1: event (over threshold) detected)
X_L	X-axis low event (under threshold). Default value: 0
\^_L	(0: event not detected; 1: event (under threshold) detected)

9.24 STATUS_REG (1Eh)

Table 76. STATUS_REG register

	-	EV_BOOT	TDA	GDA	XLDA
--	---	---------	-----	-----	------

Table 77. STATUS_REG register description

EV_BOOT	Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running)					
TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)					
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)					
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)					

9.25 OUT_TEMP_L (20h), OUT_TEMP(21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement (r).

Table 78. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
Table 79. OUT_TEMP_H register							
Temp15 Temp14 Temp13 Temp12 Temp11						Temp9	Temp8

Table 80. OUT_TEMP register description

Temp[15:0]	Temperature sensor output data
iomp[io.o]	The value is expressed as two's complement sign extended on the MSB.

9.26 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r)

Table 81. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0
----	----	----	----	----	----	----	----

Table 82. OUTX_L_G register description

D[7:0]	Pitch axis (X) angular rate value (LSbyte)
1	

56/77 DocID027423 Rev 4

9.27 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r)

Table 83. OUTX H G register

	D15	D14	D13	D12	D11	D10	D9	D8

Table 84. OUTX_H_G register description

D[15:8]	Pitch axis (X) angular rate value (MSbyte)
---------	--

9.28 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 85. OUTY_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0

Table 86. OUTY_L_G register description

D[7:0]	Roll axis (Y) angular rate value (LSbyte)	
--------	---	--

9.29 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 87. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 88. OUTY_H_G register description

9.30 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement. (r).

Table 89. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 90. OUTZ_L_G register description

D[7:0] Yaw axis (Z) angular	rate value (LSbyte)
-----------------------------	---------------------

9.31 OUTZ_H_G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 91. OUTZ_H_G register

								_
D15	D14	D13	D12	D11	D10	D9	D8	

Table 92. OUTZ_H_G register description

D[15:8]	Yaw axis (Z) angular rate value (MSbyte)
---------	--

9.32 OUTX_L_XL (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 93. OUTX_L_XL register

|--|

Table 94. OUTX_L_XL register description

D[7:0]	X-axis linear acceleration value (LSbyte)
--------	---

9.33 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 95. OUTX_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 96. OUTX_H_XL register description

D[15:8]	X-axis linear acceleration value (MSbyte)]
---------	---	---

9.34 **OUTY_L_XL** (2Ah)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 97. OUTY L XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 98. OUTY_L_XL register description

D[7:0]	Y-axis linear acceleration value (LSbyte)
--------	---

9.35 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 99. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8	

Table 100. OUTY_H_G register description

D[15:8]	Y-axis linear acceleration value (MSbyte)
---------	---

9.36 OUTZ_L_XL (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 101. OUTZ_L_XL register

D7 D6 D5 D4 D3 D2 D1 D0		D4	D3 D2	D1	D0
-------------------------	--	----	-------	----	----

Table 102. OUTZ_L_XL register description

D[7:0] Z-axis linear acceleration value (LSbyte)	
--	--

9.37 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 103. OUTZ_H_XL register

D15 D14 D13 D12 D11 D10 D9	D8
----------------------------	----

Table 104. OUTZ_H_XL register description

D[15:8]	Z-axis linear acceleration value (MSbyte)
---------	---

9.38 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3 C (12h) to 1.

Table 105. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 106. FIFO_STATUS1 register description

DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO ⁽¹⁾ .
-----------------	--

^{1.} For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS2 (3Bh)

9.39 FIFO_STATUS2 (3Bh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 107. FIFO_STATUS2 register

CT.	FIFO_	FIFO_	FIFO_	DIFF_	DIFF_	DIFF_	DIFF_
FTH	OVER_RUN	FULL	EMPTY	FIFO_11	FIFO_10	FIFO_9	FIFO_8

Table 108. FIFO_STATUS2 register description

FTH	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than watermark level ⁽¹⁾ ;
FIFO OVER RUN	FIFO filling is equal to or higher than the watermark level) FIFO overrun status. Default value: 0
THO_OVER_RON	(0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL	FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY	FIFO empty bit. Default value: 0 (0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO ⁽²⁾ .

^{1.} FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)

9.40 FIFO_STATUS3 (3Ch)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in *CTRL3_C* (12h) to 1.

Table 109. FIFO_STATUS3 register

| FIFO_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| PATTERN |
| _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |

Table 110. FIFO_STATUS3 register description

PATTERN_[7:0] Word of recursive pattern read at the next reading.

^{2.} For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS1 (3Ah)

9.41 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 111. FIFO_STATUS4 register

0 ⁽¹⁾	FIFO_ PATTERN_9	FIFO_ PATTERN_8						
------------------	------------------	------------------	------------------	------------------	------------------	--------------------	--------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 112. FIFO_STATUS4 register description

FIFO_ PATTERN_[9:8]	Word of recursive pattern read at the next reading.
------------------------	---

9.42 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 113. FIFO_DATA_OUT_L register

| DATA_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| OUT_ |
| FIFO_L_7 | FIFO_L_6 | FIFO_L_5 | FIFO_L_4 | FIFO_L_3 | FIFO_L_2 | FIFO_L_1 | FIFO_L_0 |

Table 114. FIFO_DATA_OUT_L register description

DATA_OUT_FIFO_L_[7:0] FIFO data output (first byte)

9.43 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 115. FIFO_DATA_OUT_H register

			_		-		
DATA_							
OUT_							
FIFO_H_7	FIFO_H_6	FIFO_H_5	FIFO_H_4	FIFO_H_3	FIFO_H_2	FIFO_H_1	FIFO_H_0

Table 116. FIFO_DATA_OUT_H register description

DATA_OUT_FIFO_H_[7:0]	FIFO data output (second byte)
-----------------------	--------------------------------

9.44 TIMESTAMP0_REG (40h)

Time stamp first byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch).

Table 117. TIMESTAMP0_REG register

| TIMESTA |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MP0_7 | MP0_6 | MP0_5 | MP0_4 | MP0_3 | MP0_2 | MP0_1 | MP0_0 |

Table 118. TIMESTAMP0_REG register description

TIMESTAMP0_[7:0]	TIMESTAMP first byte data output
------------------	----------------------------------

9.45 TIMESTAMP1_REG (41h)

Time stamp second byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting value in *WAKE_UP_DUR* (5Ch).

Table 119. TIMESTAMP1_REG register

| TIMESTA |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MP1_7 | MP1_6 | MP1_5 | MP1_4 | MP1_3 | MP1_2 | MP1_1 | MP1_0 |

Table 120. TIMESTAMP1_REG register description

TIMESTAMP1_[7:0]	TIMESTAMP second byte data output
------------------	-----------------------------------

9.46 TIMESTAMP2_REG (42h)

Time stamp third byte data output register (r/w). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in *WAKE_UP_DUR* (5Ch). To reset the timer, the AAh value has to be stored in this register.

Table 121. TIMESTAMP2_REG register

| TIMESTA |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MP2_7 | MP2_6 | MP2_5 | MP2_4 | MP2_3 | MP2_2 | MP2_1 | MP2_0 |

Table 122. TIMESTAMP2_REG register description

TIMESTAMP2 [7:0]	TIMESTAMP third byte data output	ı
	· · · · · = - · · · · · · · · · · · · ·	1

9.47 STEP_TIMESTAMP_L (49h)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.

Table 123. STEP_TIMESTAMP_L register

| STEP_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMESTA |
| MP_L_7 | MP_L_6 | MP_L_5 | MP_L_4 | MP_L_3 | MP_L_2 | MP_L_1 | MP_L_0 |

Table 124. STEP_TIMESTAMP_L register description

STEP TIMESTAMP L[7:0]	Timestamp of last step detected.
-----------------------	----------------------------------

9.48 STEP_TIMESTAMP_H (4Ah)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.

Table 125. STEP_TIMESTAMP_H register

| STEP_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TIMESTA |
| MP_H_7 | MP_H_6 | MP_H_5 | MP_H_4 | MP_H_3 | MP_H_2 | MP_H_1 | MP_H_0 |

Table 126. STEP_TIMESTAMP_H register description

STEP_TIMESTAMP_H[7:0]	Timestamp of last step detected.
-----------------------	----------------------------------

9.49 STEP_COUNTER_L (4Bh)

Step counter output register (r).

Table 127. STEP_COUNTER_L register

ĺ	STEP_CO							
	UNTER_L							
	_7	_6	_5	_4	_3	_2	_1	_0

Table 128. STEP_COUNTER_L register description

STEP_COUNTER_L_[7:0]	Step counter output (LSbyte)
----------------------	------------------------------

9.50 STEP_COUNTER_H (4Ch)

Step counter output register (r).

Table 129. STEP_COUNTER_H register

| STEP_CO |
|---------|---------|---------|---------|---------|---------|---------|---------|
| UNTER_H |
| _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |

Table 130. STEP_COUNTER_H register description

STEP_COUNTER_H_[7:0]	Step counter output (MSbyte)

9.51 FUNC_SRC (53h)

Significant motion, tilt, step detector interrupt source register (r).

Table 131. FUNC_SRC register

STEP_COUNT_	SIGN_	TII T 1A	STEP_	STEP_	0	0	
DELTA_IA	MOTION_IA	IILI_IA	DETECTED	OVERFLOW	U	0	U

Table 132. FUNC_SRC register description

STEP COUNT	Pedometer step recognition on delta time status. Default value: 0
_DELTA_IA	(0: no step recognized during delta time; 1: at least one step recognized during delta time)
SIGN_	Significant motion event detection status. Default value: 0
MOTION_IA	(0: significant motion event not detected; 1: significant motion event detected)
TILT IA	Tilt event detection status. Default value: 0
	(0: tilt event not detected; 1: tilt event detected)
STEP_	Step detector event detection status. Default value: 0
DETECTED	(0: step detector event not detected; 1: step detector event detected)
STEP_	Step counter overflow status. Default value: 0
OVERFLOW	(0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)

9.52 TAP_CFG (58h)

Time stamp, pedometer, tilt, filtering, and tap recognition functions configuration register (r/w).

Table 133. TAP_CFG register

TIMER_ EN	PEDO_EN	TILT_EN	SLOPE _FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
--------------	---------	---------	---------------	----------	----------	----------	-----

Table 134. TAP_CFG register description

TIMER_EN	Time stamp count enable, output data are collected in <i>TIMESTAMPO_REG (40h)</i> , <i>TIMESTAMP1_REG (41h)</i> , <i>TIMESTAMP2_REG (42h)</i> register. Default: 0 (0: time stamp count disabled; 1: time stamp count enabled)
PEDO_EN	Pedometer algorithm enable. Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN	Tilt calculation enable. Default value: 0 (0: tilt calculation disabled; 1: tilt calculation enabled.)
SLOPE_FDS	Enable accelerometer HP and LPF2 filters (refer to <i>Figure 5</i>). Default value: 0 (0: disable; 1: enable)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1:X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1:Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

64/77 DocID027423 Rev 4

9.53 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 135. TAP_THS_6D register

DAI	D EN	SIXD_THS	SIXD_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS	TAP_THS
D41	D_EIN	1	0	4	3	2	1	0

Table 136. TAP_THS_6D register description

	4D orientation detection enable (Z-axis position detection is disabled).			
D4D_EN	Default value: 0			
	(0: disabled; 1: enabled)			
SIXD THS[1:0]	Threshold for D6D function. Default value: 00			
01/10_1110[1:0]	For details, refer to <i>Table 137</i> .			
TAP_THS[4:0]	Threshold for tap recognition. Default value: 00000			

Table 137. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

9.54 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 138. INT_DUR2 register

DUR3 DUR2 DUR1 DUR0 QUIET1 QUIET0 SHOCK1 S
--

Table 139. INT_DUR2 register description

DUR[3:0]	Duration of maximum time gap for double tap recognition. Default: 0000 When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
QUIET[1:0]	Expected quiet time after a tap detection. Default value: 00 Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_ time. If QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_time.
SHOCK[1:0]	Maximum duration of overthreshold event. Default value: 00 Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_ time. If SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_time.

9.55 **WAKE_UP_THS** (5Bh)

Single and double-tap function threshold register (r/w).

Table 140. WAKE_UP_THS register

SINGLE_							
DOUBLE	INACTIVITY	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0
_TAP							

Table 141. WAKE_UP_THS register description

SINGLE_DOUBLE_TAP	Single/double-tap event enable. Default: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
INACTIVITY	Inactivity event enable. Default value: 0 (0: sleep disabled; 1: sleep enabled)
WK_THS[5:0]	Threshold for wakeup. Default value: 000000

9.56 **WAKE_UP_DUR** (5Ch)

Free-fall, wakeup, time stamp and sleep mode functions duration setting register (r/w).

Table 142. WAKE_UP_DUR register

FF DUR5	WAKE_	WAKE_	TIMER_	SLEEP_	SLEEP_	SLEEP_	SLEEP_
FF_DORS	DUR1	DUR0	HR	DUR3	DUR2	DUR1	DUR0

Table 143. WAKE_UP_DUR register description

	Free fall duration event. Default: 0			
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in $FREE_FALL~(5Dh)$ configuration.			
WAKE DUR[1:0]	Wake up duration event. Default: 00			
WAKE_DUK[1.0]	1LSB = 1 ODR_time			
TIMER HR	Time stamp register resolution setting ⁽¹⁾ . Default value: 0			
TIMEK_HK	(0: 1LSB = 6.4 ms; 1: 1LSB = 25 μs)			
SLEEP DUR[3:0]	Duration to go in sleep mode. Default value: 0000			
SLEEF_DUR[3.0]	1 LSB = 512 ODR			

Configuration of this bit affects TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h), STEP_TIMESTAMP_L (49h), STEP_TIMESTAMP_H (4Ah), and STEP_COUNT_DELTA (15h) registers.

66/77 DocID027423 Rev 4

9.57 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 144. FREE_FALL register

EE DIIDA	EE DI ID3	FF DUR2	EE DUD1	EE DUIDO	EE THS2	EE THQ1	EE THSO
11_DUN 1	11_0013	11_00112	I I _DOI\	11_0010	11 _ 11102	' ' _ ' ' ' ' '	11_11130

Table 145. FREE_FALL register description

	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration
FF THS[2:0]	Free fall threshold setting. Default: 000
[1113[2.0]	For details refer to Table 146.

Table 146. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

9.58 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

Table 147. MD1_CFG register

INT INA STA	CT_ SINGLE_	INT1_WU	INT1_FF	INT1_ DOUBLE_ TAP	INT1_6D	INT1_TILT	INT1_ TIMER	
-------------------	-------------	---------	---------	-------------------------	---------	-----------	----------------	--

Table 148. MD1_CFG register description

INT1_INACT_ STATE	Routing on INT1 of inactivity mode. Default: 0 (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
INT1_SINGLE_ TAP	Single-tap recognition routing on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)

Table 148. MD1_CFG register description (continued)

INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE _TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_TILT	Routing of tilt event on INT1. Default value: 0 (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TIMER	Routing of end counter event of timer on INT1. Default value: 0 (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)

MD2_CFG (5Fh) 9.59

Functions routing on INT2 register (r/w).

Table 149. MD2_CFG register

INT2_	INT2_			INT2_			
INACT_	SINGLE_	INT2_WU	INT2_FF	DOUBLE_	INT2_6D	INT2_TILT	0 ⁽¹⁾
STATE	TAP	_		TAP	_	_	

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 150. MD2_CFG register description

INT2 INACT	Routing on INT2 of inactivity mode. Default: 0
STATE	(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
INT2 SINGLE	Single-tap recognition routing on INT2. Default: 0
TAP	(0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
	Routing of wakeup event on INT2. Default value: 0
INT2_WU	(0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
	Routing of free-fall event on INT2. Default value: 0
INT2_FF	(0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2 DOUBLE	Routing of tap event on INT2. Default value: 0
_TAP	(0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2 6D	Routing of 6D event on INT2. Default value: 0
1112_00	(0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2 TILT	Routing of tilt event on INT2. Default value: 0
	(0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)

DocID027423 Rev 4 68/77

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Table 151. Registers address map - embedded functions

Name	Type	Register	address	Default	Comment	
Name	Type	Hex	Binary	Delault		
RESERVED	-	02-0E			Reserved	
PEDO_THS_REG	r/w	0F	00001111	00000000		
RESERVED	-	10-12			Reserved	
SM_THS	r/w	13	00010011	00000110		
PEDO_DEB_REG	r/w	14	00010100	00000000		
STEP_COUNT_DELTA	r/w	15	0001 0101	00000000		
RESERVED	-	24-32			Reserved	

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions registers description

11.1 PEDO_THS_REG (0Fh)

Table 152. PEDO_THS_REG register default values

PEDO 4G	_	_	THS_	THS_	THS_	THS_	THS_
PEDO_4G	_	-	MIN4	MIN3	MIN2	MIN1	MIN0

Table 153. PEDO_THS_REG register description

PEDO_4G	This bit sets the internal full scale used in pedometer functions. Using this bit, saturation is avoided (e.g. FAST walk). 0: internal full scale = $2 g$. 1: internal full scale 4 g (device full_scale @CTRL1_XL must be $\geq 4 g$, otherwise internal full scale is $2 g$)
THS_ MIN[4:0]	Configurable minimum threshold. 1LSB = 16 mg @PEDO_4G=0, 1LSB = 32 mg @PEDO_4G=1

Procedure to modify the pedometer minimum threshold:

- Write reg FUNC_CFG_ACCESS (01h) = 80h (Enables access to the embedded functions registers)
- Set min threshold in bits [4:0] of reg 0Fh (1LSB = 16 mg @ FS = 2 g)
- Write reg FUNC_CFG_ACCESS (01h) = 00h (Disables access to the embedded functions registers)

Note: All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

11.2 SM_THS (13h)

Significant motion configuration register (r/w).

Table 154. SM_THS register

| SM_THS_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Table 155. SM_THS register description

SM_THS[7:0]	Significant motion threshold. Default value: 00000110
-------------	---

70/77 DocID027423 Rev 4

11.3 **PEDO_DEB_REG** (14h)

Table 156. PEDO_DEB_REG register default values

DEB_ TIME4	DEB_ TIME3	DEB_ TIME2	DEB_ TIME1	DEB_ TIME0	DEB_ STEP2	DEB_ STEP1	DEB_ STEP0
0	0	0	0	0	1	1	0

Table 157. PEDO_DEB_REG register description

11)EB 111/1E14:01	If this time between steps is greater than DEB_TIME*80ms, the debouncer is reactivated
DEB_STEP[2:0]	Minimum number of steps to increment step counter (debouncer)

The procedure to modify the pedometer debounce time is the following:

- Write reg FUNC_CFG_ACCESS (01h) = 80h (Enables access to the embedded functions)
- Set debounce time in bits [3:7] of reg 14h (1LSB = 80 ms.This value must be > 0)
- Write reg FUNC_CFG_ACCESS (01h) = 00h (Disables access to the embedded functions registers)

Note:

All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

11.4 STEP COUNT DELTA (15h)

Time period register for step detection on delta time (r/w).

Table 158. STEP_COUNT_DELTA register

ſ	SC_							
	DELTA_7	DELTA_6	DELTA_5	DELTA_4	DELTA_3	DELTA_2	DELTA_1	DELTA_0

Table 159. STEP COUNT DELTA register description

	_	_	•	•	
SC_DELTA[7:0]	Time period value ⁽¹⁾	(1LSB = 1.6	6384 s)		

This value is effective if the TIMER_EN bit of the TAP_CFG register is set to 1 and the TIMER_HR bit of the WAKE_UP_DUR register is set to 0.

5

Soldering information LSM6DS33

12 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.

Leave "Pin 1 Indicator" unconnected during soldering.

Land pattern and soldering recommendations are available at www.st.com/mems.

LSM6DS33 **Package information**

13 **Package information**

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

LGA-16 package information 13.1

Pin 1 indicato Ø 0.25 0.35 TOP VIEW BOTTOM VIEW \bigcirc Dimensions are in millimeter unless otherwise specified General Tolerance is +/-0.1mm unless otherwise specified **OUTER DIMENSIONS** IMENSION [mm] TOLERANCE [mm] Length [L] 3.00 ±0.1 3.00 Height [H]

Figure 16. LGA 3x3x0.86 16L package outline and dimensions

Package information LSM6DS33

13.2 LGA-16 packing information

Figure 17. Carrier tape information for LGA-16 package

Figure 18. LGA-16 package orientation in carrier tape

74/77 DocID027423 Rev 4

LSM6DS33 Package information

Figure 19. Reel information for carrier tape of LGA-16 package

Table 160. Reel dimensions for carrier tape of LGA-16 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

Revision history LSM6DS33

14 Revision history

Table 161. Document revision history

Date	Revision	Changes
18-Feb-2015	1	Initial release
17-Jul-2015	17-Jul-2015 2 Updated registers in Section 9: Register description	
27-Jul-2015	5 3 First public release	
09-Oct-2015	4	Updated package representation on page 1 Added PEDO_THS_REG (0Fh) and PEDO_DEB_REG (14h) Added Section 13.2: LGA-16 packing information

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: LSM6DS33TR