Neural Communication

Biological Psychology

- Discipline of psychology concerned with physical ways neurons cooperate to compose mental processes
- Names:
 - Behavioral Neuroscientists
 - Neuropsychologists
 - Behavior Geneticists
 - Physiological Psychologists
 - Biopsychologists

Phrenology

- The study of the shape of skull and the making of inferences based off of that shape
 - Bumps on head indicate abilities or traits
- Developed by Franz Gall

The Neuron

- Anatomy
 - Soma = body of the cell
 - * Receives action potentials from dendrites
 - Dendrites = branching bodies that connect to other dendrites or axon terminals
 - * Receive action potentials via neurotransmitters
 - Axon = long, thin barrel with myelin sheath that uses electrotonic potential to relay signals from soma to axon terminals
 - * Covered with myelin sheath to split transmission into brief, fast electrotonic potentials and connecting action potentials to keep voltage high
 - Myelin sheath = waxy layer composed of **Schwann Cells**
 - * Serves to insulate stretches of the axon so that electrotonic potential can happen, speeding up transmission
 - Nodes of Ranvier = gaps inbetween the myelin sheathing that allows an action potential to happen, keeping the voltage within the cell high enough to ensure the signal isn't lost
 - Synapse
 - * The area where two neurons come near to each other
 - * Cite of neurotransmitter release and intake

Action Potential

- Begin at resting potential(-70mV inside neuron)
- Stimulus opens Na+ channels and tons of sodium ions flow in
 - Polarization
- After a threshold is reached, K+ gates open, letting K+ out. Voltage drops as a result
 - Depolorization
- After a while, Sodium-Potassium pumps begin to create the gradient
 - Repolarization

Drugs that Target Neurotransmitters

- Action potential at dendrite is stimulated by neurotransmitter, typically
- Drugs can fit in those receptors
- Antagonist
 - The drug fits, but poorly; as a result, the real neurotransmitter can't fit
 - **Inhibits** the targetted neurotransmitter
- Agonist
 - The drug fits really well and simulates the neurotransmitter
 - Excites the neurotransmitter or increases activity

Neurotransmitters

- Dopamine
 - Used in movement, attention, and learning
 - Schizophrenia thought to be related to dopamine imbalance
 - * Thought to be a surplus of dopamine
 - Parkinson's disease thought to be related to loss of dopamine-releasing neurons
 - * Symptoms:
 - · Movements are difficult to control
 - · Shaking while at rest
 - · Stooping posture or rigidity
 - · Unbalance
 - * Treatments
 - · L-dopa = agonist that immitates dopamine

- · Fetal tissue transplants
- · Adrenal gland transplants
- · Electrical stimulation of thalamus = stops shaking
- Part of "reward system" or limbic system

• Serotonin

- Regulates sleeping patterns
- Thought to be related to depression
 - * Especially low-serotonin
 - * High-serotonin is thought to cause mania
 - * Prozac excites serotonin
 - · SSRI = Selective Serotonin Reuptake Inhibitor
 - · Examples: Welbutrin, Zoloft, Celexa

• Acetylcholine

- First neurotransmitter we discovered
- Abbreviated "ACh"
- Used in motor neurons-stimulates muscles to contract
- Used in learning, memory, and muscle contraction
- Nicotine is an agonist for Norepinephrine and ACh
- Thought to be related to Alzheiumer's Disease
 - * Decay of memory, reasoning, and lanugage

• Endorphins

- Regulates pain/pleasure
- Pain is a stimulus for release
- Agonists
 - * Morphine
 - * Codeine
- Explains "runners high"

• Norepinephrine

- Excitatory neurotransmitter that causes "fight or flight" response
- Also related to depression
- Used in physical arousal, learning, and memory

• GABA

- Inhibitory
- Thought to be related to Huntington's disease = death of neurons in stratium that make use of GABA
 - * Jerky movements
 - * Cognitive deterioration

• Glutamate

- Very prevelant
- Excitatory neurotransmitter
- Excess glutamate and lack of GABA is associated with epilepsy

Neurons can be Excitatory or Inhibitory

- Excitatory = stimulates post-synaptic neuron to carry an action potential
- Inhibitory = Causes post-synaptic neuron to be less likely to start an action potential
 - GABA

Summary

- Stages
 - Relieved Dolby Rescued Harry = mneumonic for remembering stages of action potential
 - * \mathbf{R} elieved = \mathbf{R} esting
 - * \mathbf{D} olby = \mathbf{D} epolorization
 - * \mathbf{R} escued = \mathbf{R} epolorization
 - * Harry = H
- Ions
 - SIPO = mneumonic for remembering ions
 - * Sodium In, Potassium Out
- Agonists vs Antagonists
 - Agonists = mimic effect of neurotransmitter
 - * Nicotine, Morphine
 - Antagonists = block or inhibit effect of neurotransmitter

The Nervous System

- Nerves = small strands of neurons that act as highways for action potentials
 - Serve to connect brain to peripheral sensory organs
- Nervous System = the organ system the body employs to communicate between organs
 - Composition
 - * Nerve Cells
 - * Peripheral Nervous System(PNS) = nerve framework that connects brain to peripheral sense organs
 - * Central Nervous System(CNS) = the brain and spinal chord

Model of Nervous System

- Peripheral Nervous System
 - Autonomic Nervous System
 - * Controls unconscious actions of organs
 - * Sympathetic Nervous System = arousal
 - * Parasympathetic Nervous System = calming effect
 - · Think of a parachute-slows you down
 - Skeletal/Somatic Nervous System
 - * Controls voluntary movement of skeletal muscle
- Central Nervous System
 - Brain
 - Spinal Chord

Types of Neurons

- Sensory Neurons
 - Serve as medium through which sensory information travels to brain
 - Sense Organs -> Brain
 - * Uses affarent neurons
 - Brain -> Sense Organs
 - * Uses **efferent neurons**
 - Mneumonic = SAME
 - * Sensory Affarent Motor Efferent
- Interneurons = linking neurons that connect other systems together
 - Only found in brain and spinal chord

Reflexes

- Reflex = a simple action undertaken via the reflex arc
- Reflex $\mathbf{Arc} = \mathbf{a}$ pathway of nerves through which a reflex happens
 - Generally goes from sensory organ -> affarent neurons -> interneurons
 spinal chord -> interneurons -> efferent neurons -> motor neurons

Neural Networks

- \bullet Neural Networks = a web of inter-connected neurons that cooperate to process information
- Through experience and feedback, neural networks are modified

Lesions

- Lesions = destruction of tissue cause either naturally or by purpose
- Walter Freeman = got Nobel Prize for procedure wherein he quickly caused damage to a part of the brain to cure depression or anxiety

Brain Scan

- Electroencephalogram(EEG)
 - Places 8 electrodes around the brain and records electric brain activity
- Computed Tomography Scan(CAT Scan)
 - X-ray photoraphs taken from different angles
 - A computer generates a composite image
- Positron Emission Tomography Scan(PET Scan)
 - A radioactive form of glucose is ingested and sensors detect where glucose goes
- Magnetic Resonance Imaging Scan(MRI Scan)
 - Large electromagnets and radio waves make water in the brain orient itself in line with the magnetic field
 - Can generate very high-detail images