Optimizing Pandas code for performance

Sofia Heisler

Download these slides at: bit.ly/2Jci3BS

What's Pandas?

- Open-source library that offers data structure support and a great set of tools for data analysis
- Makes Python a formidable competitor to R and other data science tools
- Widely used in everything from simple data manipulation to complex machine learning

Why optimize Pandas code?

- Pandas is built on top of NumPy and Cython, making it very fast when used correctly
- Correct optimizations can make the difference between minutes and milliseconds

Introduction: Benchmarking

How do we know how fast a function is? Magic

- "Magic" commands available through Jupyter/ IPython notebooks
- Provide additional functionality on top of Python code
- Start with % (executed on just the line) or %% (executed on the entire cell)

Timing functions with %timeit

- Use IPython's magic %timeit command
- Re-runs a function repeatedly and shows the average and standard deviation of runtime obtained
- Can serve as a benchmark for further optimization

Timing functions with %timeit

```
def my_func():
    result = 0
    for i in range(1,11):
        result += i**2
    return result

%timeit my_func
```

19.9 ns \pm 0.105 ns per loop (mean \pm std. dev. of 7 runs, 100000000 loops each)

Our working dataset

All hotels in New York state sold by Expedia

```
import pandas as pd
import numpy as np
from math import *

df = pd.read_csv('new_york_hotels.csv', encoding='cp1252')

df.head()
```

	ean_hotel_id	name	address1	city	state_province	postal_code	latitude	longitude	star_rating	high_rate	low_rate
0	269955	Hilton Garden Inn Albany/SUNY Area	1389 Washington Ave	Albany	NY	12206	42.68751	-73.81643	3.0	154.0272	124.0216
1	113431	Courtyard by Marriott Albany Thruway	1455 Washington Avenue	Albany	NY	12206	42.68971	-73.82021	3.0	179.0100	134.0000
2	108151	Radisson Hotel Albany	205 Wolf Rd	Albany	NY	12205	42.72410	-73.79822	3.0	134.1700	84.1600
3	254756	Hilton Garden Inn Albany Medical Center	62 New Scotland Ave	Albany	NY	12208	42.65157	-73.77638	3.0	308.2807	228.4597
4	198232	CrestHill Suites SUNY University Albany	1415 Washington Avenue	Albany	NY	12206	42.68873	-73.81854	3.0	169.3900	89.3900

Source: http://developer.ean.com/database/property-data

Our practice function: Haversine distance

```
def haversine(lat1, lon1, lat2, lon2):
    miles constant = 3959
    lat1, lon1, lat2, lon2 = map(np.deg2rad, \
                             [lat1, lon1, lat2, lon2])
    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) *\
        np.cos(lat2) * np.sin(dlon/2)**2
    c = 2 * np.arcsin(np.sqrt(a))
    mi = miles constant * c
    return mi
```

Slow Pandas: Looping

Crude iteration, or what not to do

- Rookie mistake: "I just wanna loop over all the rows!"
- Pandas is built on NumPy, designed for vector manipulation - loops are inefficient
- Looping through individual cells using indexes is tempting but wrong

Looping over a function with indexes

```
def haversine_looping(df):
    distance_list = []
    for i in range(0, len(df)):
        d = haversine(40.671, -73.985,\
             df.iloc[i]['latitude'], df.iloc[i]['longitude'])
        distance_list.append(d)
    return distance_list

%%timeit
df['distance'] = haversine_looping(df)
682 ms ± 6.65 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Crude iteration with iterrows

- The Pandas iterrows method will provide a tuple of (Index, Series) that you can loop through more efficiently
- Still slow :-(

Running function with iterrows

The scoreboard

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x

Nicer looping: using apply

- apply applies a function along a specified axis (rows or columns)
- More efficient than iterrows, but still requires looping through rows
- Best used only when there is no way to vectorize a function

Timing looping with apply

The scoreboard

Methodology	Avg. single run time (ms)	Marginal performance
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x

Peeking under the hood with %Iprun

- Use the line_profiler tool to determine how much each line in the function contributes to the runtime
- Download from: github.com/rkern/line_profiler

Apply is doing a lot of repetitive steps

```
%lprun -f haversine \
df.apply(lambda row: haversine(40.671, -73.985,\
    row['latitude'], row['longitude']), axis=1)
```

Line #	Hits	Time	Per Hit	% Time	Line Contents
1 2	1631	1429	0.9	3.1	def haversine(lat1, l miles constant =
3	1631	17035	10.4	36.7	lat1, lon1, lat2,
4	1631	1669		3.6	dlat = lat2 - lat
5	1631	1143	0.7	2.5	dlon = lon2 - lon
6	1631	16049	9.8	34.6	a = np.sin(dlat/2
7	1631	6474	4.0	13.9	c = 2 * np.arcsin
8	1631	1586	1.0	3.4	mi = miles consta
9	1631	1050	0.6	2.3	return mi

bit.ly/2Jci3BS

Vectorization

Doing it the pandorable way: vectorize

- The basic units of Pandas are arrays:
 - Series is a one-dimensional array with axis labels
 - DataFrame is a 2-dimensional array with labeled axes (rows and columns)
- Vectorization is the process of performing the operations on arrays rather than scalars

Why vectorize?

- Many built-in Pandas functions are built to operate directly on arrays
- Vectorized functions in Pandas are inherently much faster than looping functions

All calculations in our Haversine function can operate on vectors

Color key:

NumPy functions Vector-friendly functions

Vectorizing significantly improves performance

1.79 ms \pm 230 μ s per loop (mean \pm std. dev. of 7 runs, 100 loops

each)

The function is no longer looping

Line #	Hits	Time	Per Hit	% Time	Line Contents
1 2 3 4 5 6 7 8	1 1 1 1 1 1 1	2 529 362 232 3511 869 494	2.0 529.0 362.0 232.0 3511.0 869.0 494.0	0.0 8.8 6.0 3.9 58.5 14.5 8.2	<pre>def haversine(lat1, lon miles_constant = 39 lat1, lon1, lat2, lon dlat = lat2 - lat1 dlon = lon2 - lon1 a = np.sin(dlat/2)* c = 2 * np.arcsin(n) mi = miles_constant</pre>
9	1	2	2.0	0.0	return mi

The scoreboard

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping throuindexes	agh 682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x
Vectorization with Pandas	1.79	43.6x

Vectorization with NumPy arrays

Why NumPy?

- NumPy is a "fundamental package for scientific computing in Python"
- NumPy operations are executed "under the hood" in optimized, pre-compiled C code on **ndarray**s
- Cuts out a lot of the overhead incurred by operations on Pandas series in Python (indexing, data type checking, etc.)

Converting code to operate on NumPy arrays instead of Pandas series

370 μ s ± 18 μ s per loop (mean ± std. dev. of 7 runs, 1000 loops

each)

Optimizing with NumPy arrays

Runtime is down from 682 ms to 370 µs.

That's more than 1800-fold improvement!

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x
Vectorization with Pandas series	1.79	43.6x
Vectorization with NumPy arrays	0.37	4.8x
		bit.ly/2Jci3B

Okay, but I really wanted to use a loop...

Okay, but I really want to use a loop...

- There are a few reasons why you might actually want to use a loop:
 - Your function is complex and cannot operate on vectors
 - Trying to vectorize your function would result in significant memory overhead
 - You're just plain stubborn

Using Cython to speed up loops

Speeding up code with Cython

- Cython language is a superset of Python that supports calling C functions and declaring C types
- Almost any piece of Python code is also valid Cython code
- Cython compiler will convert Python code into C code which makes equivalent calls to the Python/C API.

Re-defining the function in the Cython compiler

```
%load ext cython
%%cython
cpdef haversine cy(lat1, lon1, lat2, lon2):
    miles constant = 3959
    lat1, lon1, lat2, lon2 = map(np.deg2rad, \
                             [lat1, lon1, lat2, lon2])
    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) *\
        np.cos(lat2) * np.sin(dlon/2)**2
    c = 2 * np.arcsin(np.sqrt(a))
    mi = miles constant * c
    return mi
                                           bit.ly/2Jci3BS
```

Re-defining the function in the Cython compiler

```
%%timeit
df['distance'] =\
    df.apply(lambda row: haversine_cy(40.671, -73.985,\
        row['latitude'], row['longitude']), axis=1)

76.5 ms ± 6.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```

Scoreboard

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x
Running row-wise function through Cython	76.50	1.0x
Vectorization with Pandas series	1.79	43.6x
Vectorization with NumPy arrays	0.37	4.8x

Evaluating results of conversion to Cython

Adding the **-a** option to **%%cython** magic command shows how much of the code has *not* actually been converted to C by default... and it's a lot!

Generated by Cython 0.25.2

```
Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.
 01:
02: # Haversine cythonized (no other edits)
+03: import numpy as np
+04: cpdef haversine cy(lat1, lon1, lat2, lon2):
         miles constant = 3959
+05:
+06: lat1, lon1, lat2, lon2 = map(np.deg2rad, [lat1, lon1, lat2, lon2])
        dlat = lat2 - lat1
+07:
        dlon = lon2 - lon1
+08:
        a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
+09:
         c = 2 * np.arcsin(np.sqrt(a))
+10:
         mi = miles constant * c
+11:
+12:
         return mi
```

Speeding up code with Cython

- As long as Cython is still using Python methods, we won't see a significant improvement
- Make the function more Cython-friendly:
 - Add explicit typing to the function
 - Replace Python/NumPy libraries with C-specific math libraries

Better cythonizing through static typing and C libraries

```
%%cython -a
from libc.math cimport sin, cos, acos, asin, sqrt
cdef deg2rad cy(float deg):
    cdef float rad
    rad = 0.01745329252*deg
    return rad
cpdef haversine cy dtyped(float lat1, float lon1, float lat2, float lon2):
    cdef:
        float dlon
        float dlat
        float a
        float c
        float mi
    lat1, lon1, lat2, lon2 = map(deg2rad cy, [lat1, lon1, lat2, lon2])
    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = \sin(dlat/2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon/2)**2
    c = 2 * asin(sqrt(a))
    mi = 3959 * c
                                                            bit.ly/2Jci3BS
    return mi
```

Timing the cythonized function

Scoreboard

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x
Running row-wise function through Cython compiler	76.50	1.0x
Looping with Cythoninzed function	50.10	1.6x
Vectorization with Pandas series	1.79	28x
Vectorization with NumPy arrays	0.37	4.8x

bit.ly/2Jci3BS

Our code is looking a lot more Cythonized, too

Generated by Cython 0.25.2

```
Yellow lines hint at Python interaction.
Click on a line that starts with a "+" to see the C code that Cython generated for it.
 01: # Haversine cythonized
 02: from libc.math cimport sin, cos, accs, asin, sqrt
 03:
+04: cpdef deg2rad cy(float deg):
 05:
         cdef float rad
+06:
         rad = 0.01745329252*deq
+07:
         return rad
 08:
+09: cpdef haversine cy dtyped(float lat1, float lon1, float lat2, float lon2):
         cdef:
 10:
              float dlon
 11:
 12:
              float dlat
 13:
              float a
             float c
 14:
 15:
             float mi
 16:
+17:
         lat1, lon1, lat2, lon2 = map(deg2rad cy, [lat1, lon1, lat2, lon2])
+18:
         dlat = lat2 - lat1
+19:
         dlon = lon2 - lon1
+20:
         a = \sin(dlat/2)**2 + \cos(lat1) * \cos(lat2) * \sin(dlon/2)**2
+21:
         c = 2 * asin(sqrt(a))
+22:
         mi = 3959 * c
+23:
         return mi
```

Summing it up

The scoreboard

Methodology	Avg. single run time (ms)	Marginal performance improvement
Looping through indexes	682.00	
Looping with iterrows	184.00	3.7x
Looping with apply	78.10	2.4x
Looping with Cython	50.10	1.6x
Vectorization with Pandas series	1.79	28x
Vectorization with NumPy arrays	0.37	4.8x

bit.ly/2Jci3BS

The zen of Pandas optimization

- Avoid loops
- If you must loop, use apply, not iteration functions
- If you must apply, use Cython to make it faster
- Vectorization is usually better than scalar operations
- Vector operations on NumPy arrays are more efficient than on native Pandas series

A word of warning...

"Premature optimization is the root of all evil"

-- Donald Knuth

Source: https://xkcd.com/1691/

Optimizing Pandas code for performance

Sofia Heisler

References

- http://cython.readthedocs.io/en/latest/
- http://cython.org/
- http://pandas.pydata.org/pandas-docs/stable/
- http://www.nongnu.org/avr-libc/user-manual/group__avr__math.html
- https://docs.python.org/2/library/profile.html
- https://docs.scipy.org/doc/numpy/user/whatisnumpy.html
- https://ipython.org/notebook.html
- https://penandpants.com/2014/09/05/performance-of-pandas-series-vs-numpy-arrays/
- https://www.datascience.com/blog/straightening-loops-how-to-vectorize-dataaggregation-with-pandas-and-numpy/