1. Find the eigenvalues and eigenvectors of the following matrices:

(a)
$$\begin{pmatrix} 3 & 2 \\ 3 & 4 \end{pmatrix}$$
 (b) $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 5 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & \sqrt{2} \\ 0 & 2 & 0 \\ \sqrt{2} & 0 & 0 \end{pmatrix}$.

- 2. For the matrix in question 1(b), find a matrix P such that $P^{-1}AP = D$, a diagonal matrix with the eigenvalues of A as its elements. Check your solution by evaluating $P^{-1}AP$.
- 3. Find a 2×2 matrix A which has eigenvalue 1 with corresponding eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and eigenvalue 3 with corresponding eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 4. (a) Using Gaussian elimination, find a matrix X such that $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$
 - (b) With the help of the result of (a), find a 4×4 matrix A which has eigenvalues -1,0,0,1 with

corresponding eigenvectors
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \text{ which are } \underline{\text{rows}} \text{ of } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}.$$

- 5. Given that $\xi = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ is an eigenvector of $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$.
 - (a) Find a and b.
 - (b) Find the eigenvalues and eigenvectors of A.
 - (c) Is A diagonalizable? Please give reasons.
- 6. (a) Find the eigenvalues and corresponding eigenvectors of the symmetric matrix $A = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ and verify that the eigenvectors are mutually orthogonal.
 - (b) Let $B = A^5 5(A + 3I)^{-1} + 3A^T$. Find the eigenvalues of B.
- 7. Consider $A = \begin{pmatrix} 8 & 2 & 4 & 12 & 1 \\ 4 & 1 & 2 & 6 & 0.5 \\ 12 & 3 & 6 & 18 & 1.5 \\ 6 & 1.5 & 3 & 9 & 0.75 \\ 18 & 4.5 & 9 & 27 & 2.25 \end{pmatrix}$
 - (a) Find rank A.
 - (b) Find a column vector \vec{x} and a row vector \vec{y}^T , where \vec{x} , $\vec{y} \in R^5$ such that $\vec{A} = \vec{x} \vec{y}^T$.

- (c) Show that 0 is an eigenvalue of A and find its corresponding independent eigenvectors.
- (d) Does A have eigenvalues other than 0? If yes, find those eigenvalues and the corresponding independent eigenvectors.
- (e) Find an invertible matrix P and a diagonal matrix D such that AP = PD.
- (f) Find all eigenvalues of $A^2 + 3I_5$, where I_5 is the 5×5 unit matrix.
- 8. Suppose AP = PD, where A is 3×3 , $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $P = \begin{pmatrix} x & -4/5 & 0 \\ y & 3/5 & 0 \\ z & 0 & 1 \end{pmatrix}$ and P is invertible.
 - (a) Find the characteristic polynomial, $det(A \lambda I)$, of A
 - (b) Find all eigenvalues of A.
 - (c) Suppose the first column of P, $(x \ y \ z)^T$ with $x \ge 0$ is a unit vector and orthogonal to both

$$\begin{pmatrix} -4/5 \\ 3/5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \text{ find } \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

- (d) Compute $P^T P$ and then show that $P^T = P^{-1}$.
- (e) Find A^n , $n \ge 0$.
- 9. Let A be a 3×3 matrix with eigenvalues 1, 2, 3.
 - (a) (i) Find the characteristic polynomial $|A \lambda I|$ of A.
 - (ii) Determine |A|.
 - (iii) Is A invertible, why?

If A^{-1} of A exists, the adjoint adj A of A is defined as the matrix adj $A = |A|A^{-1}$.

Soppose
$$AM = M \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, where M is invertible.

(b) Find the eigenvalues of adj A.

Let
$$M = \begin{pmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $AM = M \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

- (c) (i) Compute MM^{T} and then find M^{-1} .
 - (ii) Find A^{-1} .
 - (iii) Find adj A.

-End-