Relatório 2º Projeto ASA 2024/2025

Grupo: TP06

Aluno: Duarte Cruz (ist1110181)

Descrição da Solução

A solução passa por fazer um multi-grafo não-dirigido, em que cada vértice representa uma linha de metro, e cada aresta representa uma ligação entre duas linhas. Isto é, caso duas linhas tenham pelo menos uma estação em comum, então estas estarão ligadas no nosso grafo. Deste modo, o nosso grafo terá L vértices e E arestas, em que o E representa o número de ligações entre linhas. Após a construção deste grafo, percorremos o mesmo com uma BFS L vezes, que nos retornará o número máximo de mudanças de linhas que alguém fará para ir de uma estação para outra, já que a distância entre dois vértices no nosso grafo corresponde ao número de mudanças de linha necessárias para ir de uma estação na primeira linha para uma estação na segunda linha.

Análise Teórica

- Leitura dos dados de entrada e processamento dos dados: simples leitura do input, com ciclos a depender de M (número de ligações da rede de metro), em que se cria a linha Z, caso ainda não tenha sido criada, e adiciona-se as estações X e Y ao set de estações que estão inseridas na linha, com complexidade O(Mlog(N)). Caso a linha Z já tenha sido criada, obtém-se o ponteiro para a mesma, percorrendo uma lista com todas as linhas até encontrarmos a pretendida e adiciona-se as estações X e Y ao set de estações que estão inseridas na linha. Logo, O(ML + Mlog(N)).
- Construção do grafo: verifica quais linhas têm estações em comum, através de um loop a depender quadraticamente de L, em que percorre a lista de estações que pertencem à lista X e verifica se pertence também à Y. Caso pertença, adiciona a estação Y ao vetor de estações ligadas da linha X e vice-versa. Logo, O(L²Nlog(N)).
- Aplicação do algoritmo indicado para calcular o valor pedido: utilização do algoritmo BFS para percorrer o grafo através de um loop a depender de L. Este grafo tem L vértices e E arestas, em que o E corresponde ao número de ligações entre linhas, pelo que será igual a L², já que cada linha pode estar conectada a L-1 linhas. Logo, O(L³).
- Complexidade global da solução: deste modo, a solução tem uma complexidade global de $O(ML + Mlog(N) + L^2Nlog(N) + L^3)$, redutível a $O(ML + Mlog(N) + L^2Nlog(N))$.

Relatório 2º Projeto ASA 2024/2025

Grupo: TP06

Aluno: Duarte Cruz (ist1110181)

Avaliação Experimental dos Resultados

Tendo em conta que o main() terá complexidade $O(ML + Mlog(N) + L^2Nlog(N))$, para verificar este resultado, gerou-se testes em que se aumentava o tamanho de N em 10000 instâncias de 10000 até 30000, para M e L constantes. Além disso, aumentava-se o M em 300000 instâncias deste 300000 até 900000 para N e L constantes. Por fim, aumentava-se o L em 300 instâncias deste 300 até 900 para M e N constantes. Deste modo, gerou-se 27 testes para comprovar a complexidade teórica calculada.

Assim, construiu-se um gráfico com a complexidade teórica dos dados no eixo XX e com o tempo correspondente para cada N, M e L no eixo YY. No entanto, ao analisar o gráfico 1, não se verifica uma relação de linearidade entre a complexidade e os tempos obtidos, pelo que se conclui que a complexidade efetiva do programa seja O(ML + Mlog(N) + LNlog(N)). Neste último, ao construir-se o gráfico 2, já se observa uma relação de linearidade.

N	М	L	Tempo	Compl.Teórica	Compl.Efetiva
10000	300000	300	1,16	3691200000	102000000
10000	600000	300	3,173	3782400000	115806180
10000	900000	300	6,063	3873600000	130294091,3
20000	300000	300	1,064	7833144301	192000000
20000	600000	300	2,62	7924434610	204000000
20000	900000	300	4,663	8015724919	205806180
30000	300000	300	1,028	12179570524	220294091,3
30000	600000	300	2,414	12270913660	231612359,9
30000	900000	300	4,105	12362256797	260588182,6
10000	300000	600	1,85	14581200000	282000000
10000	600000	600	4,601	14762400000	295806180
10000	900000	600	8,545	14943600000	306000000
20000	300000	600	1,818	31148706278	310294091,3
20000	600000	600	4,289	31329996587	347418539,9
20000	900000	600	7,165	31511286896	384000000
10000	300000	900	2,455	32671200000	390882273,9
10000	600000	900	5,981	32942400000	411612359,9
10000	900000	900	10,778	33213600000	440588182,6
30000	300000	600	1,839	48534252687	564000000
30000	600000	600	4,097	48715595824	576000000
30000	900000	600	6,734	48896938960	591612359,9
20000	300000	900	2,594	69947976239	617418539,9
20000	600000	900	5,86	70219266548	620588182,6
20000	900000	900	9,489	70490556857	660882273,9
30000	300000	900	2,68	1,09065E+11	846000000
30000	600000	900	6,085	1,09337E+11	887418539,9
30000	900000	900	9,639	1,09608E+11	930882273,9

^{*}Testes corridos num Macbook M1 Pro com 16GB de RAM