Recap

Fischer Projection

Various representations

Configurations & Conformations

No animals were harmed in the making of this slide

Conformational Analysis

Conformational Analysis is the study of energetics of different conformers

Energy versus torsional angle (dihedral angle)

What is dihedral angle?

H₁
H₂
H₂

 $\theta = 180^{\circ}$

Bond length between 2 atoms

Bond angle between 3 atoms

Dihedral angle between 4 atoms

Conformational Analysis - Ethane

Ethane has two major conformers - Staggered and Eclipsed

The eclipsed conformation of ethane is 3 kcal/mol less stable than the staggered conformation. (1 kcal/mol for each eclipsed H/H pair)

Rotation Around Bonds is Not "Free"
Barrier to rotation here 3 kcal/mol

Rotational Barrier in Ethane

Barrier of 3 kcal mol⁻¹ due to steric and electronic effects

Transition state is eclipsed

eclipsed:

filled orbitals repel

Most stable conformer is staggered

Conformational Analysis - Ethane

Eclipsed conformer is 3.0 kcal/mol higher in energy than the staggered conformer: eclipsing interactions H/H (1.0 kcal)

Small Activity

Calculate the barrier of rotation for propane, 2-methyl propane and 2,2-dimethyl propane

Eclipsing interactions H/H (1.0 kcal) and Me/H (1.3 kcal)

Check your Answers

Eclipsing interactions H/H (1.0 kcal) and Me/H (1.3 kcal)

$$H$$
 CH_3
 H
 CH_3

Calculated 3.3 kcal/mol Observed 3.4 kcal/mol

3.6 kcal/mol 3.9 kcal/mol

- 3.9 kcal/mol
- 4.7 kcal/mol

Conformational Analysis - Propane

Note: eclipsing interactions H/H (1.0 kcal) and Me/H (1.3 kcal)

Lone Pairs Are Not Bad!

3 kcal

2 kcal

1 kcal

Conformational Analysis - Butane

Steric Strain

Totally eclipsed conformation of butane Copyright © 2010 Pearson Prentice Hall, Inc.

- The totally eclipsed conformation is higher in energy because it forces the two end methyl groups so close together that their electron clouds experience a strong repulsion
- This kind of interference between two bulky groups is called steric strain or steric hindrance

Types of Molecular Strain

Torsional Strain: Extra energy of eclipsed conformation arising due to the <u>repulsion between bonding electrons</u> of one substituent with that of the other as they pass close to each other

Steric Strain: Strain induced when two atoms or groups in a molecule are too close to each other, arising due to repulsion between electron clouds of interacting atoms/groups

Angle Strain: Strain induced in molecules when the bond angles are different from the desired tetrahedral bond angle of 109.5°

Cyclohexane

Both angle and torsional (eclipsing interactions) strains can be avoided by ring puckering.

Ring puckering leads to "CHAIR" and "BOAT" conformers

Planar cyclohexane (120° bond angles; 12 eclipsing hydrogens) Chair cyclohexane (Nearly tetrahedral bond angles; no eclipsing hydrogens)

Drawing Chair form

Equatorial bonds must be *parallel* to the C–C bond(s) "one over" [not the attached one(s), but the next one(s)]

D.H.R. Barton Invents Conformational Analysis (1950)

(Nobel Prize 1969 for "development of the concept of conformation and its application in chemistry")

Ring Flipping in Cyclohexane

 H_{ax} and H_{eq} are distinguishable at very low temp.

The Ring Flip Causes Equatorial-Axial Exchange

The two structures are the same!

Ring Flip

Ring Flipping - Energetics

In monosubstituted (small groups) cyclohexanes the ring flipping is of the order of 10⁴ to 10⁵ inversions/second

Reaction coordinate to conformational interconversion of cyclohexane

Chair v/s Boat : Newman Projection

Chair

Boat

Staggered form

Eclipsed form 2.9 kcal

Rel E = 6.9 kcal

Relief by Twisting

But this is only part of its mobility. The molecule "flips" from one chair to another chair form.

Ring Flip - Summary

The two structures are the same.

What happens in substituted cyclohexanes?