Copyright (C) 2018, 2012, 2016 by Pearson Education Inc. All Rights Reserved, please visit www.pearsoned.com/permissions/.

EX.4.1.6, Sauer3

Let A be an n-by-n nonsingular matrix. (a) Prove that $(A^T)^{-1} = (A^{-1})^T$. (b) Let b be a vector of length n, then Ax = b has exactly one solution. We call x this solution. Prove that x is also the unique solution of the normal equations associated with A and b.

Copyright (c) 2021, Julien Langou. All rights reserved, please visit https://creativecommons.org/licenses/by/4.0/

EX.4.1.6, Sauer3, solution, Langou

Note that "A is an n-by-n nonsingular matrix" is the same as "A is an n-by-n invertible matrix".

a. We have that

$$A^{-1}A = I.$$

We transpose this relation, this reads:

$$\left(A^{-1}A\right)^T = I^T.$$

Now, on the left-hand side, we use $(AB)^T = B^T A^T$, on the right-hand side, we use the fact that $I^T = I$.

$$A^T \left(A^{-1} \right)^T = I.$$

From the above relation, we see that (1) A^T is invertible (since there exists a matrix C, namely $(A^{-1})^T$, such that $A^TC = I$) and (2) $(A^{-1})^T$ is the inverse of A^T , in other words

$$\left(A^{-1}\right)^T = \left(A^T\right)^{-1}.$$

- b. Let A be an n-by-n nonsingular matrix. Let b be a vector of length n. We want to prove that the solution of the least squares problem $x_{LS} = \arg\min_{x} \|b Ax\|_2$ is also the solution of the linear system of equation $Ax_{SV} = b$, that is $x_{SV} = A^{-1}b$.
 - (a) x_{LS} is given as the solution of the normal equations:

$$x_{\rm LS} = (A^T A)^{-1} A^T b$$

Since A is square invertible, so is A^T . (We just proved this in (a)). We also know that: "If A and B are invertible, then (1) AB is invertible and (2) $(AB)^{-1} = B^{-1}A^{-1}$." Using all this together we can conclude that (1) A^TA is invertible and (2) $(A^TA)^{-1} = A^{-1}(A^T)^{-1}$. Applying this in the normal equation gives us

$$x_{\rm LS} = A^{-1} (A^T)^{-1} A^T b.$$

This gives

$$x_{\rm LS} = A^{-1}b.$$

Therefore

$$x_{\rm LS} = x_{\rm SV}$$
.

(b) Another to go is to go back to the basic. We start form the least squares definition of x_{LS} :

$$x_{\rm LS} = \arg\min_{x} \|b - Ax\|_2.$$

Now, on the one hand, a norm is always nonnegative, so

$$0 \leq ||b - Ax_{LS}||_2$$
.

On the other hand, since A is invertible, there exists x_{SV} such that $Ax_{SV} = b$, which we write as

$$||b - Ax_{SV}||_2 = 0,$$

The value of $||b - Ax_{LS}||_2$ should be minimal overall x so, for sure, the value of $||b - Ax_{LS}||_2$ needs to be less than the value of $||b - Ax_{SV}||_2$, which is zero. We therefore get:

$$||b - Ax_{LS}||_2 \le 0.$$

We find that

$$0 \le ||b - Ax_{LS}||_2 \le 0.$$

Therefore

$$||b - Ax_{LS}||_2 = 0,$$

therefore

$$Ax_{LS} = b$$
,

therefore

$$x_{\rm LS} = A^{-1}b,$$

therefore

$$x_{\rm LS} = x_{\rm SV}$$
.