Обучение с подкреплением (Reinforcement Learning)

K. B. Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

11 ноября 2015

Содержание

- 🕕 Задача о многоруком бандите
 - Простая постановка задачи
 - Жадные и полужадные стратегии
 - Адаптивные стратегии
- Ореда с контекстом
 - Постановка задачи
 - Линейная модель премий
 - Оценивание модели по историческим данных
- Ореда с состояниями
 - Постановка задачи
 - Ценность состояния и действия
 - Методы временных разностей, SARSA, *Q*-обучения

Задача о многоруком бандите (multi-armed bandit)

Имеется множество допустимых *действий* (ручек, arm), с различными распределениями размера *премии* (reward, payoff). Как быстрее найти самое выгодное действие? Какие возможны стратегии?

Задача о многоруком бандите

A — множество возможных *действий* p(r|a) — неизвестное распределение *премии* $r \in \mathbb{R}$ для $a \in A$ $\pi_t(a)$ — *стратегия* агента в момент t, распределение на A

Игра агента со средой (multi-armed bandit):

- 1: инициализация стратегии $\pi_1(a)$
- 2: для всех t = 1, ..., T, ...
- 3: агент выбирает действие $a_t \sim \pi_t(a)$;
- 4: среда генерирует премию $r_t \sim p(r|a_t)$;
- 5: агент корректирует стратегию $\pi_{t+1}(a)$;

$$Q_t(a)=rac{\sum_{i=1}^t r_i[a_i=a]}{\sum_{i=1}^t [a_i=a]}$$
 — средняя премия в t раундах $Q^*(a)=\lim_{t o\infty}Q_t(a) o\max_{a\in A}$ — ценность действия a

Примеры прикладных задач

- Рекомендация новостных статей пользователям
- Показ рекламы в Интернете
- Управление технологическими процессами
- Управление роботами
- Управление ценами и ассортиментом в сетях продаж
- Игра на бирже
- Маршрутизация в телекоммуникационных сетях
- Маршрутизация в беспроводных сенсорных сетях
- Логические игры (шашки, нарды, и т.д.)

Задача о многоруком бандите впервые рассмотрена в статье H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematics Society, 58:527–535, 1952.

Жадная стратегия

Множество действий с максимальной текущей оценкой ценности:

$$A_t = \operatorname{Arg} \max_{a \in A} Q_t(a)$$

 \mathcal{K} адная стратегия — выбирать любое действие из A_t :

$$\pi_t(a) = \frac{1}{|A_t|}[a \in A_t]$$

Недостаток жадной стратегии — по некоторым действиям a можем так и не набрать статистику для оценки $Q_t(a)$.

Компромисс «изучение-применение» (exploration-exploitation) ε -жадная стратегия:

$$\pi_t(a) = \frac{1-\varepsilon}{|A_t|}[a \in A_t] + \frac{\varepsilon}{|A|}$$

Эвристика: параметр ε уменьшать со временем.

Стратегия softmax (распределение Гиббса)

Мягкий вариант компромисса «изучение—применение»: чем больше $Q_t(a)$, тем больше вероятность выбора a:

$$\pi_t(a) = rac{\exp\left(rac{1}{ au}Q_t(a)
ight)}{\sum\limits_{b \in A} \exp\left(rac{1}{ au}Q_t(b)
ight)}$$

где au — параметр *температуры*,

при au o 0 стратегия стремится к жадной,

при $au o \infty$ — к равномерной, т.е. чисто исследовательской

Эвристика: параметр au уменьшать со временем.

Какая из стратегий лучше?

- зависит от конкретной задачи,
- решается в эксперименте

Mетод UCB (upper confidence bound)

Выбор действия с максимальной верхней оценкой ценности:

$$A_t = \operatorname{Arg} \max_{a \in A} \left(Q_t(a) + \delta \sqrt{rac{2 \ln t}{k_t(a)}}
ight),$$

где $k_t(a) = \sum\limits_{i=1}^t [a_i = a], \quad \delta$ — параметр exr/exp-компромисса.

Интерпретация:

чем меньше $k_t(a)$, тем менее исследована стратегия, тем выше должна быть вероятность выбрать a;

чем больше δ , тем стратегия более исследовательская.

Эвристика: параметр δ уменьшать со временем.

P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of the multiarmed bandit problem, Machine Learning, 2002.

Модельные эксперименты в обучении с подкреплением

 $\ll 10$ -рукая испытательная среда \gg : Генерируется 2000 задач, в каждой задаче |A|=10, $p(r|a)=\mathcal{N}(r;Q^*(a),1)$, $Q^*(a)\sim\mathcal{N}(0,1)$.

Строятся графики зависимости

- средней премии (average reward),
- доли оптимальных действий (% optimal action),
- от числа шагов t, усреднённые по 2000 задачам.

Richard Sutton, Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press. 1998, 2004.

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html Русский перевод:

Р. Саттон, Э. Барто. Обучение с подкреплением. Изд-во «Бином». 2011.

Сравнение жадных и ε -жадных стратегий

Рекуррентная формула для эффективного вычисления средних

Общая формула вычисления Q_t для корректировки стратегии:

$$Q_{t+1}(a) = (1 - \alpha_t)Q_t(a) + \alpha_t r_{t+1} = Q_t(a) + \alpha_t \left(\frac{r_{t+1}}{r_{t+1}} - Q_t(a)\right)$$

При
$$lpha_t = rac{1}{k_t(a)+1}$$
 это среднее арифметическое, $k_t(a) = \sum\limits_{i=1}^t [a_i = a]$

При $lpha_t=$ const это экспоненциальное скользящее среднее

Условие сходимости к среднему:

$$\sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Среднее арифметическое — для стационарных задач

Экспоненциальное скользящее среднее — для нестационарных (в этом случае сходимости нет, но она и не нужна)

Экспоненциальное скользящее среднее (напоминание)

Задача прогнозирования временного ряда y_0,\ldots,y_t,\ldots :

- простейшая регрессионная модель константа $y_t = c$,
- наблюдения учитываются с весами, убывающими в прошлое,
- прогноз \hat{y}_{t+1} методом наименьших квадратов:

$$\sum_{i=0}^t w_{t-i}(y_i-c)^2 \to \min_c, \quad w_i = \beta^i, \quad \beta \in (0,1)$$

Аналитическое решение — формула Надарая-Ватсона:

$$c \equiv \hat{y}_{t+1} = \frac{\sum_{i=0}^{t} \beta^{i} y_{t-i}}{\sum_{i=0}^{t} \beta^{i}}$$

Запишем аналогично \hat{y}_t , оценим $\sum_{i=0}^t eta^i pprox \sum_{i=0}^\infty eta^i = rac{1}{1-eta}$,

получим $\hat{y}_{t+1} = \hat{y}_t \beta + (1 - \beta) y_t$, заменим $\alpha = 1 - \beta$:

$$\hat{\mathbf{y}}_{t+1} = (1 - \alpha)\hat{\mathbf{y}}_t + \alpha\mathbf{y}_t = \hat{\mathbf{y}}_t + \alpha(\mathbf{y}_t - \hat{\mathbf{y}}_t)$$

Метод сравнения с подкреплением (reinforcement comparison)

Идея: использовать не сами значения премий, а их разности со средней (эталонной) премией:

$$ar{r}_{t+1} = ar{r}_t + lpha(m{r}_t - ar{r}_t) - c$$
редняя премия по всем действиям $p_{t+1}(a_t) = p_t(a_t) + eta(r_t - ar{r}_t) -$ предпочтения действий $\pi_{t+1}(a) = rac{\exp(p_{t+1}(a))}{\sum\limits_{b \in A} \exp(p_{t+1}(b))} -$ softmax-стратегия агента

Эвристика: оптимистично завышенное начальное \bar{r}_0 стимулирует изучающие действия в начале

Экспериментальный факт: сравнение с подкреплением сходится быстрее ε -жадных стратегий.

Сравнение с подкреплением лучше ε -жадных стратегий

Эксперимент с 10-рукой испытательной средой:

Richard Sutton, Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press. 1998, 2004.

Р. Саттон, Э. Барто. Обучение с подкреплением. Изд-во «Бином». 2011.

Метод преследования (pursuit) жадной стратегии

Вместо собственно жадной стратегии

$$\pi_{t+1}(a) = \frac{[a \in A_t]}{|A_t|}$$

предлагается преследование (сглаживание) жадной стратегии:

$$\pi_{t+1}(a) = \pi_t(a) + \beta \left(\frac{[a \in A_t]}{|A_t|} - \pi_t(a) \right)$$

Эвристика: начальное $\pi_0(a)$ можно взять равномерным.

Экспериментальный факт: метод преследования, сравнение с подкреплением и ε -жадные стратегии имеют каждый свою область применения.

Стратегия преследования ещё лучше

Эксперимент с 10-рукой испытательной средой:

Richard Sutton, Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press. 1998, 2004.

Р. Саттон, Э. Барто. Обучение с подкреплением. Изд-во «Бином». 2011.

Постановка задачи в случае, когда имеется информация о среде

```
A — множество возможных действий X — пространство контекстов, описаний состояния среды x_{ta} \in X — состояние среды в раунде t в случае выбора a \in A p(r \mid a, x) — неизвестное распределение премии r \in \mathbb{R} для a \in A \pi_t(a \mid x) — стратегия агента в момент t, распределение на A
```

Игра агента со средой (contextual bandit):

1: инициализация стратегии $\pi_1(a)$

```
2: для всех t=1,\ldots T,\ldots
3: агенту сообщается контекст x_{ta} для всех a\in A;
4: агент выбирает действие a_t \sim \pi_t(a|x_{ta});
```

- 5: среда генерирует премию $r_t \sim p(r \mid a_t, x_{ta})$;
- 6: агент корректирует стратегию $\pi_{t+1}(a|x)$;

Context-free bandit — когда $\pi_t(a|x) = \pi_t(a)$, т.е. не зависит от x

Регрессия с инкрементным обучением и доверительной оценкой

```
r(a,x) — функция премии за действие a в контексте x, \hat{r}(a,x) — регрессионная оценка этой функции, UCB(a,x) — верхняя оценка отклонения \hat{r}-r, \delta — параметр (чем больше, тем больше exploration).
```

Игра агента со средой (contextual bandit):

```
1: инициализация стратегии \pi_1(a)
2: для всех t=1,\ldots T,\ldots
3: агенту сообщается контекст x_{ta} для всех a\in A;
4: агент выбирает действие a_t=\arg\max_{a\in A}(\hat{r}(a,x_{ta})+\delta \textit{UCB}(a,x_{ta}));
5: среда генерирует премию r_t=r(a_t,x_{ta_t});
6: регрессия \hat{r}(a,x) дообучается на точке (a_t,x_{ta_t};r_t);
```

Пример. Рекомендация новостных статей пользователям

```
Агент — рекомендательная система для персонализации показов новостных статей (пользователям Yahoo! Today).
```

```
A — новостные статьи, действия системы; x_{ta} \in X — признаковое описание пары (u_t,a); u_t — пользователь, которому агент даёт рекомендацию; r_t \in \{0,1\} — пользователь u_t кликнул на предложенную статью; Q_t(a) — средняя премия, CTR (click-through rate) статьи.
```

Цель — повышение среднего СТР и «счастья пользователя».

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Линейная модель премий и гребневая регрессия

Пусть $x_{ta} \in X = \mathbb{R}^n$, $w \in \mathbb{R}^n$.

Линейная модель премий для действия $a \in A$:

$$Q^*(a) = \mathsf{E}\big[r_t \,|\, x_{ta}\big] = \langle x_{ta}, w_a \rangle.$$

Гребневая регрессия: обучение w_a для действия a в момент t:

$$\sum_{i=1}^t \left[a_i = a\right] \left(\langle x_{ia}, w \rangle - r_i\right)^2 + \frac{\tau}{2} \|w\|^2 \rightarrow \min_w.$$

$$w_a = \left(F_a^{\mathsf{T}} F_a + au I_n
ight)^{-1} F_a^{\mathsf{T}} y_a$$
 — решение задачи МНК, где $F_a = \left(x_{ia}
ight)_{i=1: \ a_i=a}^t - \ell imes n$ -матрица объекты—признаки, $y_a = \left(r_i
ight)_{i=1: \ a_i=a}^t - \ell imes 1$ -вектор ответов, $\ell = k_t(a) = \sum_{i=1}^t [a_i = a]$ — объём обучающей выборки.

LinUCB: линейная модель с верхней доверительной оценкой

Доверительный интервал с коэффициентом доверия 1-lpha для линейной модели регрессии:

$$y = \langle x, w \rangle \pm \hat{\sigma} t_{\ell-n,1-\frac{\alpha}{2}} \sqrt{x^{\mathsf{T}} (F^{\mathsf{T}} F)^{-1} x},$$

 $t_{\ell-n,1-rac{lpha}{2}}$ — квантиль распределения Стьюдента, $\hat{\sigma}^2=rac{1}{\ell-n}RSS$ — оценка дисперсии отклика y.

Стратегия выбора действия с максимальной верхней оценкой ценности UCB (upper confidence bound):

$$A_t = \mathrm{Arg} \max_{a \in A} \Bigl(\langle x_{ta}, w_a \rangle + \delta \sqrt{x_{ta}^{\mathsf{T}} \bigl(F_a^{\mathsf{T}} F_a + \tau I_n \bigr)^{-1} x_{ta}} \, \Bigr).$$

Чем больше параметр δ , тем больше исследования.

LinUCB: особенности реализации и обобщения

- ullet Инкрементный алгоритм пересчёта w_a и матрицы $(F_a^{\scriptscriptstyle\mathsf{T}} F_a + au I_n)^{-1}$ при добавлении каждой строки в F_a .
- Гибридная линейная модель $Q^*(a) = \langle z_{ta}, v \rangle + \langle x_{ta}, w_a \rangle$, где v часть контекста, не зависящая от действия a.
- «Сырые признаки»: пользователи: 12 соцдем, 200 география, \sim 1000 категорий, статьи: \sim 100 категорий.
- Используется кластеризация и понижение размерности: $\dim w_a = 6$, $\dim v = 36$.
- Можно было бы использовать любую другую модель с инкрементным обучением и доверительными оценками.

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Оценивание модели по историческим данных

Проблема off-line оценивания стратегии π : исторические данные накоплены при использовании другой стратегии (logging policy) $\pi_0(a)$, отличной от π

Идея:

для оценивания $Q_t(a)$ отбираются только те события (x_{ta}, a, r_t) , для которых стратегии π и π_0 выбирали одинаковое действие:

$$a = \arg \max_{a} \pi(a, x_{ta}) = \arg \max_{a} \pi_0(a)$$

(для этого нужны очень большие данные)

Утв. Если $\pi_0(a)$ — равномерное распределение, то оценка $Q_t(a)$ по отобранной выборке является несмещённой.

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Постановка задачи в случае, когда агент влияет на среду

- A множество возможных действий
- S множество состояний среды

Игра агента со средой:

- 1: инициализация стратегии $\pi_1(a \mid s)$ и состояния среды s_1
- 2: для всех t = 1, ..., T, ...
- 3: агент выбирает действие $a_t \sim \pi_t(a \mid s_t)$;
- 4: среда генерирует премию $r_{t+1} \sim p(r \mid a_t, s_t)$ и новое состояние $s_{t+1} \sim p(s \mid a_t, s_t)$;
- 5: агент корректирует стратегию $\pi_{t+1}(a|s)$;

Это марковский процесс принятия решений (МППР), если

$$P(s_{t+1}, r_{t+1} | s_t, a_t, r_t, s_{t-1}, a_{t-1}, r_{t-1}, \dots, s_1, a_1) = P(s_{t+1}, r_{t+1} | s_t, a_t)$$

МППР называется финитным, если $|A| < \infty$, $|S| < \infty$.

Выгода. Ценность состояния. Ценность действия

$$R_t = r_{t+1} + r_{t+2} + \cdots + r_{t+k} + \cdots -$$
 суммарная выгода

Обобщение — дисконтированная выгода:

$$R_t = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{k-1} r_{t+k} + \dots$$

 $\gamma \in [0,1]$ — коэффициент дисконтирования: чем выше γ , тем более агент дальновидный

 Φ ункция ценности состояния s при стратегии π :

$$V^{\pi}(s) = \mathsf{E}_{\pi}(R_t \,|\, s_t \! = \! s) = \mathsf{E}_{\pi}\Big(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \,\Big|\, s_t \! = \! s\Big)$$

 Φ ункция ценности действия а в состоянии s при стратегии π :

$$Q^{\pi}(s, a) = \mathsf{E}_{\pi}(R_t \mid s_t = s, \ a_t = a) = \mathsf{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, \ a_t = a\right)$$

 E_π — мат.ожидание при условии, что агент следует стратегии π

Рекуррентные формулы для функций ценности

Рекуррентная формула для ценности состояния $V^{\pi}(s)$:

$$V^{\pi}(s) = E_{\pi}(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s) =$$

$$= E_{\pi}(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s) =$$

$$= E_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_{t} = s)$$

Рекуррентная формула для ценности действия $Q^{\pi}(s,a)$:

$$Q^{\pi}(s, a) = \mathsf{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, \ a_{t} = a \right) =$$

$$= \mathsf{E}_{\pi} \left(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s, \ a_{t} = a \right) =$$

$$= \mathsf{E}_{\pi} \left(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_{t} = s, \ a_{t} = a \right)$$

Жадные стратегии максимизации ценности

 $V^*(s)$, $Q^*(s,a)$ — оптимальные функции ценности.

Уравнения оптимальности Беллмана:

$$\begin{split} &V^*(s) = \max_{a \in A} \mathsf{E}_{\pi} \big(r_{t+1} + \gamma V^*(s_{t+1}) \bigm| s_t \! = \! s, \ a_t \! = \! a \big) \\ &Q^*(s,a) = \mathsf{E}_{\pi} \big(r_{t+1} + \gamma \max_{a' \in A} Q^*(s_{t+1},a') \bigm| s_t \! = \! s, \ a_t \! = \! a \big) \end{split}$$

Жадные стратегии π относительно $V^*(s)$ или $Q^*(s,a)$: выбирать то действие, на котором достигается максимум в уравнениях оптимальности Беллмана:

$$A_t = \operatorname{Arg} \max_{a \in A} \mathsf{E}_{\pi} (r_{t+1} + \gamma V^*(s_{t+1}) \mid s_t, \ a)$$
 $A_t = \operatorname{Arg} \max_{a \in A} Q^*(s_t, a)$

Утв. Эти стратегии являются оптимальными.

Метод временных разностей TD(0)

Рекуррентная формула для ценности состояния $V^{\pi}(s)$:

$$V^{\pi}(s) = \mathsf{E}_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_t = s)$$

Нужна эмпирическая оценка математического ожидания $\mathsf{E}_\pi.$

Метод временных разностей TD (temporal difference) После того, как выбрано a_t и стали известны r_{t+1} , s_{t+1} , оцениваем $V^{\pi}(s_t)$ экспоненциальным скользящим средним:

$$V(s_t) := V(s_t) + \alpha_t (r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

Утв. Если α_t уменьшается $(\sum_t \alpha_t = \infty, \sum_t \alpha_t^2 < \infty)$, и все s посещаются бесконечное число раз, то $V(s) \stackrel{\mathsf{nH}}{\to} V^\pi(s)$, $t \to \infty$

Meтод SARSA (state-action-reward-state-action)

Рекуррентная формула для ценности действия $Q^{\pi}(s,a)$:

$$Q^{\pi}(s, a) = \mathsf{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_t = s, \ a_t = a)$$

Игра агента со средой:

- 1: инициализация стратегии $\pi_1(a \mid s)$ и состояния среды s_1
- 2: для всех t = 1, ..., T, ...
- 3: агент выбирает действие $a_t \sim \pi_t(a \, | \, s_t)$: $a_t = \arg\max_a Q(s_t, a)$ жадная стратегия (но возможны и другие: ε -жадная, по Гиббсу, . . .)
- 4: среда генерирует $r_{t+1} \sim p(r \mid a_t, s_t)$ и $s_{t+1} \sim p(s \mid a_t, s_t)$;
- 5: агент разыгрывает ещё один шаг: $a' \sim \pi_t(a \, | \, s_{t+1})$;
- 6: $Q(s_t, a_t) := Q(s_t, a_t) + \alpha_t (r_{t+1} + \gamma Q(s_{t+1}, a') Q(s_t, a_t));$

Метод *Q*-обучения

Аппроксимируем оптимальную функцию ценности действия:

$$Q^*(s, a) = \mathsf{E}_{\pi} \big(\underset{a'}{r_{t+1}} + \gamma \max_{a'} Q^*(s_{t+1}, a') \mid s_t = s, \ a_t = a \big)$$

Оценка $Q^*(s,a)$ экспоненциальным скользящим средним:

$$Q(s_t, a_t) := Q(s_t, a_t) + \alpha_t \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

Утв. Если α_t уменьшается $(\sum_t \alpha_t = \infty, \sum_t \alpha_t^2 < \infty)$, и все s посещаются бесконечное число раз, то $Q \stackrel{\mathsf{n}}{\to} Q^*$, $t \to \infty$

Отличия от SARSA: выбрасывается шаг 5 и меняется шаг 6.

Многошаговое TD-прогнозирование

Хотелось бы иметь более надёжную оценку V(s) или Q(s,a), приближающуюся к дисконтированной выгоде R_t

$$R_{t}^{(1)} = r_{t+1} + \gamma V(s_{t+1})$$

$$R_{t}^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} V(s_{t+2})$$
...
$$R_{t}^{(n)} = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^{n} V(s_{t+n})$$

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \dots$$

Премии r_{t+2}, r_{t+3}, \ldots в момент t неизвестны, но, оказывается, можно усреднять прошлые, а не будущие наблюдения, и асимптотически это приводит к тому же результату!

Метод временных разностей $\mathsf{TD}(\lambda)$

Идея «следов приемлемости» e(s) (eligibility traces) будем корректировать V(s) не только текущего s_t , но и недавно пройденных состояний, с коэффициентом затухания $\lambda \in [0,1]$

Обновление V(s) теперь не только для $s=s_t$:

1:
$$e(s_t) := e(s_t) + 1$$
;
2: для всех $s \in S$, $e(s) \neq 0$
3: $V(s) := V(s) + e(s) \cdot \alpha_t (r_{t+1} + \gamma V(s_{t+1}) - V(s))$;
4: $e(s) := \gamma \lambda e(s)$;

Возможны варианты обновления следов приемлемости:

$$e(s) := [s = s_t]$$
 — получаем метод $\mathsf{TD}(0)$

$$e(s) := \min\{\gamma \lambda e(s), 1\}$$
 — «заметающий след»

$$e(s):=(e(s) ? 0 : $e(s)$ — обнуление слишком старых следов$$

При $\lambda=0$ имеем TD(0), при $\lambda=1$ приближаемся к оценке R_t

Методы $\mathsf{SARSA}(\lambda)$ и $Q(\lambda)$

Идея следов приемлемости легко переносится на метод SARSA:

Обновление Q(s,a) теперь не только для $s=s_t$:

```
1: e(s_t, a_t) := e(s_t, a_t) + 1;

2: для всех s \in S, a \in A: e(s, a) \neq 0

3: Q(s, a) := Q(s, a) + e(s, a) \cdot \alpha_t (r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s, a));

4: e(s, a) := \gamma \lambda e(s, a);

... и на Q-обучение, если положить a' := \arg\max Q(s_{t+1}, a);
```

Важная деталь: исследовательские действия должны прерывать следы приемлемости, иначе будут строиться неверные оценки оптимальной стратегии.

Резюме в конце лекции

- В обучении с подкреплением нет ответов учителя, есть только ответная реакция среды
- В контекстных бандитах используются модели машинного обучения, удовлетворяющие двум требованиям:
 - существует эффективный инкрементный метод обучения
 - ullet существуют доверительные оценки средней премии $Q^t(a)$
- В марковских процессах принятия решений накапливается информация о ценности отдельных состояний и действий
- Компромисс «изучение-применение» при любом обучении с подкреплением подбирается экспериментальным путём
- Объём исследовательских действий приходится уменьшать в случае конечного горизонта игры