Homework 2

Matt Forbes

October 12, 2010

Problem 3.1

 $\mathbf{a})$

min
$$-2x_1 - 3x_2$$

s. t. $x_1 + x_2 + x_3 = 4$
 $x_1 - 2x_2 + x_4 = 1$
 $\mathbf{x} \ge 0$

 $\mathbf{b})$

0	-2	-3	0	0
4	1	1	1	0
1	1	-2	0	1

 $\mathbf{c})$

	2	0	-7	0	2
Ī	3	0	3	1	-1
	1	1	-2	0	1

9	0	0	$\frac{7}{3}$	$-\frac{1}{3}$
1	0	1	$\frac{1}{3}$	$-\frac{1}{3}$
3	1	0	$\frac{2}{3}$	$\frac{1}{3}$

12	1	0	3	0
4	1	1	1	0
9	3	0	2	1

optimal form: $\mathbf{x} = (0, 4, 0, 9)^T$

 \mathbf{d})

Problem 3.2

 \mathbf{a}

min
$$-2x_1 + x_2$$

s.t $x_1 + 2x_2 + x_3 = 10$
 $-x_1 + x_2 - x_4 = 5$
 $\mathbf{x} \ge 0$

 $\mathbf{b})$

If moving from original problem to standard form:

- The feasible point is of the form $(x_1 x_2)^T$
- A point for the standard form needs an x_3 and x_4 , which are equal to $10 x_1 2x_2$ and $-x_1 + x_2 5$ respectively.
- So this solution in the standard form would be:

$$\begin{pmatrix} x_1 \\ x_2 \\ 10 - x_1 - 2x_2 \\ -x_1 + x_2 - 5 \end{pmatrix}$$

If moving from standard form to original problem:

- The feasible point is $(x_1 \quad x_2 \quad x_3 \quad x_4)^T$
- Only x_1 and x_2 are needed for original form, so the solution would be:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

 $\mathbf{c})$

Both programs are optimizing the same function with the same constraints. Therefore, if a minimum is found for one program, it is the minimum for the other.

 \mathbf{d})

Same reasoning as part c. They are the same problem, just formatted differently. There cannot be different solutions.

 $\mathbf{e})$

You're kidding right? They are the same problem.

Problem 3.3

	a	b	С	d	е
i	≥ 0	≥ 0	С	d	≥ 0
ii	≥ 0	< 0	< 0	< 0	е
iii	< 0	b	≥ 0	d	е
iv	≥ 0	=0	С	d	=0

Problem 3.6

$$\begin{array}{lll} \min & 2x_1+x_2 & -4x_3 \\ \text{s.t.} & 3x_1-2x_2+2x_3+x_4 & = 25 \\ & -x_1-x_2 & +2x_3 & +x_5 & = 20 \\ & -x_1-x_2 & +x_3 & +x_6 & = 5 \\ & \mathbf{x} \geq 0 \end{array}$$

0	2	1	-4	0	0	0
25	3	-1	2	1	0	0
20	-1	-1	2	0	1	0
5	-1		-	0	0	1

50						
5	2	0	0	1	-1	0
10	3	1	0	0	1	-2
5 10 15	2	0	1	0	1	-1

This problem is unbounded and therefore has no finite optimal solution.

Problem 3.7

 \mathbf{a}

0	2	-1	0	3	0
10	1	1	0	1	1
6	3	-1	1	-2	0

 \mathbf{b})

Basic sequence $S = \{5, 1\}$

 $\mathbf{c})$

Basic feasible solution
$$\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 6 \\ 0 \\ 10 \end{pmatrix}$$

 \mathbf{d})

Solving 1st constraint for x_2 : $x_2 = 10 - x_1 - x_4 - x_5$ Replacing x_2 in objective function: $-10 + 3x_1 + 4x_4 + x_5$ Replacing x_2 in 2nd constraint: $4x_1 + x_3 - x_4 + x_5 = 16$ Which produces a new LP problem:

min
$$3x_1 + 4x_4 + x_5 - 10$$

s.t $x_1 + 2x_2 + x_3 + x_4 = 10$
 $x_1 + x_3 - x_4 + x_5 = 16$

Which has a simplex tableau of:

-10	3	0	0	4	1
10	1	2	1	1	0
16	4	0	1	-1	1

Likewise,

Pivoting in the 2nd column of the tableau from a) results in the same form as above.

-10	3	0	0	4	1
10	1	2	1	1	0
16	4	0	1	-1	1

Problem 3.10

- **a)** Row 3.
- **b)** Row 2.
- c) Column 2, Row 1.
- d) You can rearrange the columns so they have the identity columns first, making it lexicographically positive. A possible new ordering could be $x_4, x_7, x_5, x_1, x_2, x_3, x_6$.

Problem 3.11

- a) If you were to pivot on that column, then all the rows that tie for minimum ratio (besides pivot row) would have their b-value equal to 0.
- **b)** Yes, pivoting on a column with it's c-value greater than 0 would be counter-productive, but after the pivot the rows that tied for minimum ratio would have b-value 0.

Problem 3.22

Both \mathbf{c} and \mathbf{x} are nonnegative, so the only way to minimize the function is to decrease the values of \mathbf{x} towards 0. So the ideal value of \mathbf{x} would be $\mathbf{0}$, which turns out to be a valid solution because $\mathbf{A}\mathbf{x} \leq \mathbf{b}$, where \mathbf{b} is nonnegative. The minimum value must be 0.