Нильпотентные и разрешимые алгебры Ли

Виногродский Серафим

22 марта 2022 г.

Содержание

1	Введение		
	1.1	Основные понятия	2
	1.2	Линейные алгебры Ли	3
	1.3	Абстрактные алгебры Ли	4
	1.4	Идеалы	4
2	Разрешимые и нильпотентные алгебры Ли		5
	2.1	Разрешимость	5

1 Введение

1.1 Основные понятия

Определение 1.1. Векторное пространство L над полем F, дополненное операцией $L \times L \to L$, которая обозначается $(x,y) \mapsto [x,y]$ и называется *скобкой Ли* или *коммутатором* x и y, называется *алгеброй Ли* над полем F, если выполнен следующий ряд аксиом:

- (L1) Скобка Ли билинейна.
- $(L2) \ [x,x] = 0$ для любого $x \in L$.

(L3)
$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 $(x, y, z \in L)$.

Аксиома (L3) называется *тождеством Якоби*. Из аксиом (L1) и (L2), применённых к скобке [x+y,x+y], следует антикоммутативность скобки Ли:

$$(L2') \ [x,y] = -[y,x]$$
 для любых $x,y \in L$.

Обратно, если $\operatorname{char} F \neq 2$, то из утверждение (L2') тривиально следует из аксиомы (L2) и потому для таких полей (L2) эквивалентна (L2').

Определение 1.2. Две алгебры Ли L, L' называются *изоморфными*, если существует такой изоморфизм векторных пространств $\phi: L \to L'$, что

$$\phi([x,y]) = [\phi(x), \phi(y)] \quad \forall x, y \in L.$$

Само отображение ϕ при этом называется *изоморфизмом* алгебр Ли.

Определение 1.3. Подпространство K алгебры Ли L называется *подалгеброй* алгебры L, если K замкнуто относительно скобки Ли, т.е.

$$\forall x, y \in K \quad [x, y] \in K.$$

Нетрудно показать, что само подпространство K вместе с индуцированными операциями также является алгеброй Ли.

Любая алгебра Ли L имеет как минимум две тривиальные (несобственные) подалгебры отвечающие тривиальным подпространствам: $\{0\}$ и L. Также, если $L \neq \{0\}$, то любой ненулевой элемент $v \in L$ задаёт одномерную подалгебру Fv. Умножение в такой алгебре тривиально, поскольку в силу аксиом (L1) и (L2) имеем [x,y]=0 для любых $x,y\in Fv$.

1.2 Линейные алгебры Ли

Пусть V — конечномерное векторное пространство над полем F. Обозначим через $\operatorname{End} V$ множество всех эндоморфизмов в пространстве V. Тогда $\operatorname{End} V$ — векторное пространство размерности n^2 (где $n=\dim V$) над полем F и одновременно $\operatorname{End} V$ — кольцо относительно операции умножения операторов. Определим новую операцию [x,y]=xy-yx, называемую *скобкой* или *коммутатором* элементов x и y. Вместе с ней $\operatorname{End} V$ становится алгеброй Ли над полем F: выполнение аксиом (L1) и (L2) очевидно, а аксиома (L3) напрямую следует из (L1) и (L2). Чтобы отличать полученную алгебраическую структуру от изначальной ассоциативной структуры кольца, мы будем обозначать $\operatorname{End} V$ как $\mathfrak{gl}(V)$, когда она рассматривается как алгебра Ли.

Определение 1.4. Алгебра $\mathfrak{gl}(V)$ называется полной линейной алгеброй.

Определение 1.5. Любая подалгебра $\mathfrak{gl}(V)$ называется линейной алгеброй.

Зафиксировав базис в пространстве V, можно отождествить $\mathfrak{gl}(V)$ с множеством всех матриц размера $n \times n$ над полем F, обозначаемым $\mathfrak{gl}(n,F)$, что удобно при выполнении вычислений в явном виде.

Рассмотрим теперь некоторые примеры линейных алгебр, играющих основную роль в этой работе наряду с $\mathfrak{gl}(V)$. Они разделяются на четыре семейства: $\mathbf{A}_l, \mathbf{B}_l, \mathbf{C}_l, \mathbf{D}_l$ (где $l \geqslant 1$) — и называются классическими алгебрами. В примерах $\mathbf{B}_l - \mathbf{D}_l$ будем считать, что $\mathrm{char}\, \mathbf{F} \neq 2$.

 \mathbf{A}_l : Пусть $\dim V = l+1$. Обозначим через $\mathfrak{sl}(V)$ или $\mathfrak{sl}(l+1,\mathrm{F})$ множество всех эндоморфизмов в пространстве V, имеющих нулевой след. Поскольку

$$\operatorname{Tr}(xy) = \operatorname{Tr}(yx),$$

 $\operatorname{Tr}(x+y) = \operatorname{Tr}(x) + \operatorname{Tr}(y),$

множество $\mathfrak{sl}(V)$ замкнуто относительно коммутирования и потому является подалгеброй $\mathfrak{gl}(V)$, называемой специальной линейной алгеброй.

Найдём теперь размерность $\mathfrak{sl}(V)$. С одной стороны $\mathfrak{sl}(V)$ — собственная подалгебра $\mathfrak{gl}(V)$, так что её размерность не может быть больше $(l+1)^2-1$. С другой стороны нетрудно явно предоставить такое количество линейно независимых матриц с нулевым следом:

$$\left\{e_{ij}\mid i\neq j\right\}\cup\left\{e_{ii}-e_{i+1,i+1}\mid 1\leqslant i\leqslant l\right\},\,$$

где e_{ij} — матрица у которой в позиции (i,j) стоит единица, а в остальных позициях — ноль. Этот базис будем считать стандартным в пространстве $\mathfrak{sl}(l+1,F)$.

 \mathbf{C}_l : ...

 \mathbf{B}_{l} : ...

 \mathbf{D}_l : ...

Отметим также несколько примеров, играющих далее вспомогательную роль. Пусть $\mathfrak{t}(n,\mathrm{F})$ — множество всех верхнетреугольных матриц, $\mathfrak{n}(n,\mathrm{F})$ — множество строго верхнетреугольных матриц и $\mathfrak{d}(n,\mathrm{F})$ — множество всех диагональных матриц. Тривиально проверяется, что каждое из этих множеств замкнуто относительно коммутирования.

1.3 Абстрактные алгебры Ли

Мы рассмотрели определённое количество естественных примеров линейных алгебр Ли. Иногда, однако, бывает полезно рассматривать и абстрактные алгебры Ли. Например, любое векторное пространство L над полем F можно превратить в алгебру Ли с тривиальным умножением, задав [x,y]=0 для любых $x,y\in L$. Такая алгебра называется абелевой (поскольку в линейном случае равенство [x,y]=0 означает, что x и y коммутируют.)

Из билинейности скобки Ли следует, что если L — алгебра Ли с базисом x_1,\dots,x_n , то всю её таблицу умножения можно восстановить по структурным константам a_{ij}^k , которые входят в выражения

$$[x_i, x_j] = \sum_{k=1}^n a_{ij}^k x_k.$$

Более того, константы a_{ij}^k , для которых $i\geqslant j$, восстанавливаются по остальным в силу свойств (L2) и (L2'). Обратно, можно с нуля определить абстрактную алгебру Ли, задав семейство структурных констант $\left\{a_{ij}^k\right\}$. Естественно, подойдёт не всякое такое семейство. Чтобы заданная таким образом операция коммутирования удовлетворяла аксиомам (L2) и (L3), должны выполняться следующие соотношения:

$$a_{ii}^{k} = a_{ij}^{k} + a_{ji}^{k} = 0;$$

$$\sum_{k=1}^{n} \left(a_{ij}^{k} a_{kl}^{m} + a_{jl}^{k} a_{ki}^{m} + a_{li}^{k} a_{kj}^{m} \right) = 0.$$

1.4 Идеалы

Определение 1.6. Подпространство I алгебры Ли L называется *идеалом* в L, если для любых $x \in L, y \in I$ имеем $[x,y] \in I$. (Поскольку [x,y] = -[y,x], это

условие можно записать и как $[y, x] \in I$.)

Очевидно, что любая алгебра Ли L имеет два тривиальных идеала: $\{0\}$ и L. Менее тривиальный пример — так называемый *центр*

$$Z(L) \stackrel{\text{def}}{=} \{ z \in L \mid [x, z] = 0 \quad \forall x \in L \}.$$

Определение 1.7. Подалгебра всех линейных комбинаций коммутаторов произвольных элементов алгебры Ли L обозначается [L,L] и называется *производной алгеброй* алгебры L.

Очевидно, что [L,L] является идеалом алгебры L. Так же ясно, что алгебра L является абелевой тогда и только тогда, когда $[L,L]=\{0\}$.

Если I,J — идеалы в L, то и I+J — тоже идеал в L. Аналогично идеалом является и [I,J], где

$$[I,J] \stackrel{\text{def}}{=} \left\{ \sum_{i} [x_i, y_i] : \{x_i\} \subset I, \{y_i\} \subset J \right\}.$$

Производная алгебра [L,L] — частный случай этой конструкции.

Определение 1.8. Если в алгебре Ли L нет идеалов, кроме самой L и $\{0\}$, и при этом $[L,L] \neq \{0\}$ (т.е. L не является абелевой), то алгебра L называется *простой*.

Условие $[L,L] \neq \{0\}$ накладывается для того, что бы не придавать излишнего значения одномерным алгебрам. Нетрудно показать, что для любой простой алгебры L всегда имеем $Z(L) = \{0\}$ и [L,L] = L.

2 Разрешимые и нильпотентные алгебры Ли

2.1 Разрешимость

Определим прежде всего следующую последовательность идеалов алгебры Ли L (производный ряд):

$$L^{(0)} = L, \quad L^{(k)} = [L^{(k-1)}, L^{(k-1)}] \quad (k > 0).$$

Определение 2.1. Алгебра Ли L называется *разрешимой*, если $L^{(n)} = \{0\}$ при некотором n. В противном случае алгебра L называется *неразрешимой*.

В частности, абелевы алгебры всегда разрешимы, а простые алгебры заведомо неразрешимы.