Groups C&D: Monte Carlo Pricing Methods

C. Monte Carlo 101

b). Run the MC program again with data from Batches 1 and 2.

Error Matrix (Batch 1, Call option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.251878	0.108602	-0.0384474	-0.164607	0.0912756	0.0384025
1,000	-0.0533561	-0.0870517	-0.0592721	0.0187694	0.0183932	0.00835902
10,000	-0.0104041	-0.0653066	0.00442991	-0.0410344	-0.0137536	0.00350434
100,000	-0.0222026	-0.0268527	-0.00294456	0.0155129	0.0274011	0.00369452
100,0000	-0.0166257	-0.0001377	-0.00065776	0.00018974	-0.0027913	0.00461255

Error Matrix (Batch 1, Put option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.178219	0.617421	0.741533	0.341041	0.237799	0.661955
1,000	0.181813	-0.0541072	0.00223412	0.0468783	0.316352	0.186158
10,000	-0.0045147	0.0319792	0.0617888	0.107535	0.0871251	0.100389
100,000	-0.0006821	0.0100613	0.0269275	0.00615011	-0.0106952	0.00188266
100,0000	-0.0055359	-0.0060801	0.00496558	0.0118842	0.00026649	-0.00889767

Error Matrix (Batch 2, Call option, T = 1.0)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.477133	0.0995085	-0.456498	-0.494182	0.175358	-0.146744
1,000	-0.0958045	-0.0822719	-0.229996	0.0826504	-0.243794	-0.141424
10,000	0.0151157	-0.180551	-0.0993834	-0.153064	-0.0896099	-0.0350671
100,000	-0.0042699	-0.0625969	-0.0219536	0.0350313	0.0699948	0.00379866
100,0000	0.00365388	0.011206	-0.00306876	-0.0044384	-0.00587216	0.017376

Error Matrix (Batch 2, Put option, T = 1.0)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.139968	1.15171	-0.210553	0.637125	0.484443	1.17034
1,000	0.394808	-0.0020975	-0.0806299	0.138154	0.408891	0.240675
10,000	0.0182201	0.0393024	0.1908	0.170121	0.13184	0.170992
100,000	0.0411303	0.0197412	0.0423304	0.0108124	-0.017423	-0.00211938
100,0000	0.0254141	-0.0024777	0.00882419	0.0202426	0.00097318	-0.0133003

CONCLUSIONS:

- For the fixed simulation times (NSim), increasing the time steps (NT) from 10 to 800 does not always improve the accuracy of Monte Carlo simulation, and sometime things may go worse.
- 2. Fox the fixed time steps (NT), increasing the simulation times (NSim) does improve the accuracy of MC simulation under most of the situation. The improvement is especially great when NSim goes from 100 to 1,000 and 1,000 to 10,000.
- 3. In order to get the stable result with accuracy **below 2 decimal**, we should always choose NT larger than 400 and NSim larger than **million**.

C). Run the MC program again with data from Batches 4 and get an accuracy to two places behind the decimal point.

Error Matrix (Batch 4, Call option, T = 30.0)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	6.8871	24.7918	-15.6953	-20.8759	-10.0135	0.418346
1,000	-18.3161	-10.7502	-6.39959	-5.055	-2.70881	1.63378
10,000	-18.707	-7.57187	-4.13449	-1.69468	-0.843321	-2.61702
100,000	-20.5156	-5.22228	-2.7509	0.0367613	0.721127	1.13862
100,0000	-20.5162	-5.12025	-2.65163	-0.868016	-0.674281	0.713892

Error Matrix (Batch 4, Put option, T = 30.0)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.233213	0.334768	0.500026	0.0326586	0.0509087	0.258818
1,000	1.15879	0.0961445	-0.0189283	0.0845869	0.0828274	0.0367115
10,000	1.29945	0.101395	0.0744598	0.057336	0.036091	0.0381362
100,000	1.51365	0.100315	0.0485408	0.0249194	0.0131639	0.00148295
100,0000	1.54712	0.0997821	0.0452478	0.0229343	0.0102382	0.00162479

ANALYSIS:

We can see that the results of batch 4 are not so good as batch 1 and 2. The error of Put option is among the reasonable range, however, the performance of pricing call option is extremely poor.

That is because The stock price may vary a lot in such long maturity time. However, the stock price cannot go below zero, but can go up to tremendous large value in 30 year.

We are able to reach every possible price between 0 and 100 given millions of simulation we implemented, but the condition that the price higher than 100 might not be sufficiently considered.

Therefore, the accuracy of Put option looks somewhere sound but the accuracy of Call option is inevitably poor.

D. Advanced Monte Carlo

b). Run the MC program again with data from Batches 1 and 2 to see SD and SE.

Standard Deviation Matrix (Batch 1, Call option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	5.68432	5.01132	4.35468	4.10694	4.36427	4.73576
1,000	4.4872	4.22116	4.4872	4.50803	4.65114	4.66257
10,000	4.48636	4.43742	4.54229	4.54746	4.53902	4.5282
100,000	4.43418	4.49646	4.51298	4.55943	4.55427	4.54268

Standard Error Matrix (Batch 1, Call option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.571296	0.503657	0.437662	0.412763	0.438626	0.475962
1,000	0.141969	0.133552	0.141969	0.142628	0.147156	0.147517
10,000	0.0448659	0.0443764	0.0454252	0.0454768	0.0453925	0.0452843
100,000	0.0140222	0.0142191	0.0142714	0.0144183	0.0144019	0.0143653

Standard Deviation Matrix (Batch 1, Put option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	6.34558	6.24622	6.47135	6.11058	6.09186	6.32028
1,000	5.89554	6.14564	5.89554	6.05829	5.89946	6.02363
10,000	6.07762	6.06697	6.05095	6.08452	6.02585	6.09752
100,000	6.08728	6.05186	6.05774	6.05044	6.0447	6.05226

Standard Error Matrix (Batch 1, Put option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	0.637755	0.627769	0.650395	0.614136	0.612255	0.635212
1,000	0.186527	0.194439	0.186527	0.191676	0.186651	0.190579
10,000	0.0607793	0.0606728	0.0605125	0.0608482	0.0602616	0.0609783
100,000	0.0192498	0.0191378	0.0191563	0.0191333	0.0191151	0.019139

Standard Deviation Matrix (Batch 2, Call option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	15.8111	14.3125	12.8181	12.2344	12.8753	13.6987
1,000	13.1041	12.464	13.0688	13.1188	13.5045	13.4975
10,000	13.0898	12.9576	13.2117	13.1958	13.2049	13.1825
100,000	12.9674	13.0958	13.1477	13.25	13.2462	13.2104

Standard Error Matrix (Batch 2, Call option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	1.58908	1.43846	1.28827	1.22961	1.29402	1.37677
1,000	0.414594	0.394344	0.413477	0.415061	0.427263	0.427043
10,000	0.130904	0.129583	0.132124	0.131965	0.132055	0.131831
100,000	0.0410068	0.0414126	0.0415769	0.0419003	0.0418883	0.0417752

Standard Deviation Matrix (Batch 2, Put option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	11.2165	10.8075	11.2277	10.4938	10.4424	11.0178
1,000	10.8778	10.5699	10.1231	10.3915	10.1791	10.4152
10,000	10.5307	10.4749	10.427	10.5083	10.3665	10.5203
100,000	10.5416	10.4263	10.4359	10.4152	10.3994	10.4194

Standard Error Matrix (Batch 2, Put option, T=0.25)

N_Simulations N_TimeSteps	10	50	100	200	400	800
100	1.1273	1.08619	1.12842	1.05467	1.0495	1.10733
1,000	0.344159	0.334418	0.320282	0.328772	0.322052	0.329521
10,000	0.105312	0.104754	0.104275	0.105088	0.10367	0.105208
100,000	0.0333356	0.0329711	0.0330013	0.0329358	0.0328859	0.0329492

CONCLUSIONS:

- 1. Looks like the standard deviation of simulation results did not change along with the simulation times (NSim) and time steps (NT).
- 2. Fox the fixed time steps (NT), the Standard Error decreased significantly as the simulation times (NSim) increase.