Syntax

Terms $M ::= x \mid \lambda x.M \mid M_1 M_2 \mid \#op(M) \mid \text{handle } M \text{ with } H \mid (\lambda E)^{\ell}$

Values $v := \lambda x.M \mid (\lambda E)^{\ell} \mid \ell$

Handlers $H ::= \{ \text{return } x \mapsto M \} \mid \{ op(x, k) \mapsto M \} \uplus H$ **Evaluation contexts** $E ::= [] \mid v_1 \mid E \mid E \mid M_2 \mid \#op(E) \mid \text{handle } E \text{ with } H$

Type variables α, β, γ

Types $A, B, C, D ::= \alpha \mid A \rightarrow B \mid \forall \alpha. A$

 $\textbf{Typing contexts} \hspace{1cm} \Gamma ::= \emptyset \mid \Gamma, x : A \mid \Gamma, \alpha$

Runtime error ε

Reduction rules

Because the first-class continuation $(\lambda E)^{\ell}$ has a memory location ℓ , it will be convenient to recast the small step operational semantics slightly, presenting it as a reduction system for R, defined as follows: $R := M/\sigma \mid \varepsilon$, where M is a term and σ is a store, mapping finitely memory locations to values.

$$R_1 \leadsto R_2$$

$$(\lambda x.M) \ v \ /\sigma \leadsto M[v/x] \ /\sigma \qquad \qquad \text{R_Beta}$$
 handle v with $H \ /\sigma \leadsto M[v/x] \ /\sigma \ \text{(where } \{\text{return } x \mapsto M\} \in H)$ R_Return handle $E[\#op(v)]$ with $H \ /\sigma \leadsto M[v/x][(\lambda (\text{handle } E \text{ with } H))^{\ell}/k] \ /\sigma[\ell \mapsto \text{true}]$ R_Handle
$$(\text{where } op \notin E, \ \ell \text{ is fresh and } \{op(x,k) \mapsto M\} \in H)$$

$$(\lambda E)^{\ell} \ v \ /\sigma[\ell \mapsto \text{true}] \leadsto E[v] \ /\sigma[\ell \mapsto \text{false}]$$
 R_Resume
$$(\lambda E)^{\ell} \ v \ /\sigma[\ell \mapsto \text{false}] \leadsto \varepsilon$$
 R_Error

We say op $\notin E$, if and only if there is no such E_1 , E_2 , and H such that $E = E_1[$ handle E_2 with H], and H contains an operation clause for op.

Evaluation rules

$$\frac{R_1 \leadsto R_2}{E[R_1] \longrightarrow E[R_2]} \to E[R_2]$$

$$\frac{R \leadsto \varepsilon}{E[R] \longrightarrow \varepsilon} \text{ E_ERROR}$$

Term typing

$\Gamma \vdash M : A$

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A} \text{ T_VAR} \qquad \frac{\Gamma,x:A\vdash M:B}{\Gamma\vdash \lambda x.M:A\to B} \text{ T_ABS} \qquad \frac{\Gamma,\alpha\vdash M:A}{\Gamma\vdash M:\forall\alpha.A} \text{ T_GEN}$$

$$\frac{\Gamma \vdash M_1 : A \to B \qquad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : B} \text{ T_APP} \qquad \frac{ty(op) = \forall \alpha. A \to B \qquad \Gamma \vdash M : A[C/\alpha] \qquad \Gamma \vdash C}{\Gamma \vdash \#op(M) : B[C/\alpha]} \text{ T_OP}$$

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash H : A \Rightarrow B}{\Gamma \vdash \text{handle } M \text{ with } H : B} \text{ \Tau_Handle} \qquad \frac{\Gamma, x : A \vdash E[x] : B \qquad x \text{ is } fresh}{\Gamma \vdash (\lambda E)^{\ell} : A \to B} \text{ \Tau_Eabs}$$

$\Gamma \vdash H : A \Rightarrow B$

$$H = \{return \ x \mapsto M\} \uplus \{op_i(x_i, k_i) \mapsto N_i\}$$

$$\Gamma, x : A \vdash M : B \qquad ty(op_i) = \forall \alpha. C_i \to D_i \qquad \Gamma, \alpha, x_i : C_i, k_i : D_i \to B \vdash N_i : B$$

$$\Gamma \vdash H : A \Rightarrow B$$

$$T \perp \text{HANDLER}$$

Progress

If $\Delta \vdash M : A$ (Δ is the type variable environment), then:

- 1. $M \longrightarrow M'$ for some M';
- 2. M is a value; or M = E[#op(v)] for some E, op, and v such that $op \notin E$.
- 3. $M \longrightarrow \varepsilon$

PROOF By induction on the typing derivation for M.

Case (T_Var): Contradictory.

Case (T_Abs): Obvious.

Case (T_Gen): By the IH.

Case (T_App) :

$$\frac{\Gamma \vdash M_1 : A \to B \qquad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : B} \text{ T_APP}$$

By case analysis on the behavior of M_1 . We have four cases to consider by the IH.

Subcase $M_1 \longrightarrow M_1'$ for some M_1' : We have $M \longrightarrow M_1'M_2$.

Subcase $M_1 = E_1[\#op(v)]$ for some E_1 , op, and v such that op $\notin E_1$: We have $E = E_1M_2$.

Subcase $M_1 \longrightarrow \varepsilon$: We have $M \longrightarrow \varepsilon$.

Subcase $M_1 = v_1$ for some v_1 : By case analysis on the behavior of M_2 with the IH.

Subcase $M_2 \longrightarrow M_2'$ for some M_2' : We have $M \longrightarrow v_1 M_2'$.

Subcase $M_2 = E_2[\#op(v)]$ for some E_2 , op, and v such that op $\notin E_2$: We have $E = v_1 E_2$.

Subcase $M_2 \longrightarrow \varepsilon$: We have $M \longrightarrow \varepsilon$.

Subcase $M_2 = v_2$ for some v_2 : we have two cases to consider.

Subcase $v_1 = (\lambda E)^{\ell}$: If $\ell \mapsto true$, then $M = E[v_2] / \sigma[\ell \mapsto false]$. Otherwise $M \longrightarrow \varepsilon$.

Subcase $v_1 = \lambda x.M'$: By (R_Beta), $M = (\lambda x.M') v_2 \longrightarrow M'[v_2/x]$.

Case (T_Op):

$$\frac{ty(op) = \forall \alpha.A \to B \qquad \Gamma \vdash M : A[C/\alpha] \qquad \Gamma \vdash C}{\Gamma \vdash \#op(M) : B[C/\alpha]} \text{ Γ_OP}$$

Subcase $M \longrightarrow M'$ for some M': We have $\#op(M) \longrightarrow \#op(M')$.

Subcase M = E'[#op'(v)] for some E', op', and v such that op' $\notin E'$: We have E = #op(E').

Subcase M = v for some v: We have E = [].

Subcase $M \longrightarrow \varepsilon$: We have $\#op(M) \longrightarrow \varepsilon$.

Case (T_Handle):

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash H : A \Rightarrow B}{\Gamma \vdash \text{handle } M \text{ with } H : B} \text{ \mathbf{T}_Handle}$$

Subcase $M \longrightarrow M'$ for some M': We have handle M with $H \longrightarrow$ handle M' with H.

Subcase M = E'[# op'(v)] for some E', op', and v, such that op' $\notin E'$: If handler H contains an operation clause op' $(x, k) \to M'$, then we have handle M with $H \longrightarrow M'[v/x][\lambda y]$. Andle E'[y] with H/k. Otherwise, if H contains no operation clause for op', we have E = handle E' with H.

Subcase M = v for some v: By (R_Return).

Subcase $M \longrightarrow \varepsilon$: We have handle M with $H \longrightarrow \varepsilon$.

Case (T_Eabs): Obvious.

Subject Reduction

Lemma 1 (Value substitution) Suppose that $\Gamma \vdash v : A$.

1. If $\Gamma, x : A \vdash M : B$, then $\Gamma \vdash M[v/x] : B$

2. If $\Gamma, x : A \vdash H : C \Rightarrow D$, then $\Gamma \vdash H[v/x] : C \Rightarrow D$

PROOF: By mutual induction on the typing derivations.

Theorem 1 (Subject reduction) If $\Gamma \vdash M : C$ and $M \longrightarrow N(M \nrightarrow \varepsilon)$, then $\Gamma \vdash N : C$.

PROOF: By induction on the typing derivation $\Gamma \vdash M : C$.

Case (T_Var): No reduction.

Case (T_Abs): No reduction.

Case (T_Gen): By the IH.

Case (T_App): We have two reduction rules to consider.

$$\frac{\Gamma \vdash M_1 : A \to B \qquad \Gamma \vdash M_2 : A}{\Gamma \vdash M_1 M_2 : B} \text{ T_APP}$$

Subcase: R_BETA implies $M_1 = \lambda x.N$, $M_2 = v$, and $(\lambda x.N)v / \sigma \rightsquigarrow N[v/x] / \sigma$. Inversion on $\Gamma \vdash M_1 : A \to B$, gives $\Gamma, x : A \vdash N : B$. By value substitution, $\Gamma \vdash N[v/x] : B$.

Subcase: R_RESUME implies $M_1 = (\lambda E)^{\ell}$, $M_2 = v$, and $(\lambda E)^{\ell}v / \sigma[\ell \mapsto true] \leadsto E[v] / \sigma[\ell \mapsto false]$. Inversion on $\Gamma \vdash M_1 : A \to B$, gives $\Gamma, x : A \vdash E[x] : B$. By value substitution, $\Gamma \vdash E[v] : B$.

Case (T_Op): No reduction.
Case (T_Eabs): No reduction.

Case (T_Handle): We have two reduction rules to consider.

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash H : A \Rightarrow B}{\Gamma \vdash \text{handle } M \text{ with } H : B} \text{ \mathbf{T}_Handle}$$

Subcase: R_RETURN implies M=v, and handle v with $H/\sigma \leadsto N[v/x]/\sigma$. Inversion on $\Gamma \vdash M:A$, gives $\Gamma, \vdash v:A$. By value substitution, $\Gamma \vdash N[v/x]:B$.

Subcase: R_HANDLE