

Technologiemodul

Electrical Shaft Velocity _____

Referenzhandbuch

Inhalt

1	Über diese Dokumentation					
1.1	Dokumenthistorie					
1.2	verwendete konventionen					
1.3	Definition der verwendeten Hinweise					
2	Sicherheitshinweise					
3	Funktionsbeschreibung "Electrical Shaft Velocity"					
3.1	Übersicht der Funktionen					
3.2	Übersicht der Funktionen Wichtige Hinweise zum Betrieb des Technologiemoduls					
3.3	Funktionsbaustein L_TTP_ElectricalShaftVel[Base/State/High]					
	3.3.1 Eingänge und Ausgänge					
	3.3.2 Eingange					
	3.3.3 Ausgange					
	3.3.4 Parameter					
3.4	State machine					
3.5	Signalflussplan 3.5.1 Struktur des Signalflusses					
	3.5.1 Struktur des Signalflusses					
	3.5.2 Struktur der Angrittspunkte					
3.6	Handfahren (Jogging)					
3.7	Gielchiaul (Syncyel)					
3.8	Geschwindigkeits-Offset wanrend des Gielchlaufes					
3.9	Gleichlauf mit Ein-/Auskuppelmechanismus					
3.10	Positions-Trimmung					
3.11	Geschwindigkeits-Offset mit Profilgenerator					
3.12	Gleichlauf mit Grundgeschwindigkeit					
3.13	CPU-Auslastung (Beispiel Controller 3231 C)					
	Index					
	Ihre Meinung ist uns wichtig					

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Electrical Shaft Velocity";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Мо	ntage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Par	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher Controller Inverter Drives/Servo Drives I/O-System 1000 (EPM-Sxxx)
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	spielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST Technologiemodule

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze **Engineering Tool**

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	1		Beschreibung
3.2	05/2017	TD17	 Inhaltliche Struktur geändert. Allgemeine Korrekturen Neu: ▶ Drehmoment-gesteuerter Antrieb als Master (□ 12) ▶ Verwendung von Soll- oder Istwerten (□ 12)
3.1	04/2016	TD17	Allgemeine Korrekturen
3.0	10/2015	TD17	 Korrekturen und Ergänzungen Neu: L_TT1P_scAP_ElectricalShaftVel[Base/State/High] (□ 24) Inhaltliche Struktur geändert.
2.1	05/2015	TD17	Allgemeine Korrekturen
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise						
Zahlenschreibweise	Zahlenschreibweise							
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56						
Textauszeichnung								
Programmname	» «	»PLC Designer«						
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE						
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl						
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules						
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>						
Symbole	Symbole							
Seitenverweis	(□ 6)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.						

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
\triangle	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
Ý		Verweis auf andere Dokumentation

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z.B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- · Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

3 Funktionsbeschreibung "Electrical Shaft Velocity"

[3-1] Typische Mechanik des Technologiemoduls

- In der Variante "Base" erfolgt die Aktivierung des Gleichlaufes sowie das Setzen eines Offsets mit einem Geschwindigkeitssprung.
- In der Variante "State" ist es zusätzlich möglich, sprungfrei einzukuppeln. Hierzu wird eine geschwindigkeitsabhängige Kupplung verwendet. Außerdem kann ein Offset zwischen Masterund Slave-Achse durch Trimmung – analog zum Handfahren – gesetzt werden. Der absolut wirkende Offset wird sofort mit einem Geschwindigkeitssprung übernommen.
- Die Variante "High" bietet ergänzend zur State-Variante einen Gleichlauf mit Grundgeschwindigkeit sowie eine sprungfreie Zuschaltung des Geschwindigkeits-Offset über einen Profilgenerator.
- ▶ Übersicht der Funktionen (□ 11)

3.1 Übersicht der Funktionen

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl**, der **Stopp-Funktion** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base", "State" und "High" zugeordnet sind:

Funktionalität		Variante			
	Base	State	High		
Handfahren (Jogging) (25)	•	•	•		
Gleichlauf (SyncVel) (26)	•	•	•		
Geschwindigkeits-Offset während des Gleichlaufes (🕮 28)		•	•		
Gleichlauf mit Ein-/Auskuppelmechanismus (💷 29)		•	•		
Positions-Trimmung (30)		•	•		
Geschwindigkeits-Offset mit Profilgenerator (31)			•		
Gleichlauf mit Grundgeschwindigkeit (32)			•		

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein L_MC1P_AxisBasicControl, zur Stopp-Funktion und zur Halt-Funktion.

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Das Technologiemodul "Electrical Shaft Position" unterstüzt nur rotatorische Achsen:

- · die Master-Achse muss eine rotatorische Achse sein und
- die Slave-Achse muss eine rotatorische Achsen sein.

Stellen Sie im »PLC Designer« für j<u>ede</u> Achse unter der Registerkarte **Einstellungen** das Maschinenmaßsystem "Modulo" ein:

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Slave-Achse muss auf "Zyklisch synchrone Geschwindigkeit" (csv) eingestellt werden, da die Achse über den Geschwindigkeitsleitwert geführt wird.

Drehmoment-gesteuerter Antrieb als Master

Das Technologiemodul kann als Master auch eine Achse haben, die im Betriebsmodus "Zyklisch synchrones Drehmoment" (cst) fährt.

Dabei werden die Istwerte auf die Sollwerte geschrieben.

Verwendung von Soll- oder Istwerten

Das Technologiemodul verwendet die Sollwerte der Master-Achse.

Durch die Filterfunktion **L_MC1P_AverageFilterSetValue** können die Sollwerte beeinflusst werden, so dass das Technologiemodul auf die Istwerte umgeschaltet werden kann.

Wichtige Hinweise zum Betrieb des Technologiemoduls 3.2

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (25):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJogPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoqPos = FALSE

 TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_ElectricalShaftVel[Base/State/High]

3.3 Funktionsbaustein L_TT1P_ElectricalShaftVel[Base/State/High]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base", "State" und "High".

Die zusätzlichen Ein- und Ausgänge der Varianten "State" und "High" sind schattiert dargestellt.

Eingänge und Ausgänge 3.3.1

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante		
		Base	State	High	
MasterAxis	Referenz auf die Master-Achse (Leitachse)	•	•	•	
AXIS_RE	:				
SlaveAxis	Referenz auf die Slave-Achse	•	•	•	
AXIS_RE					

Eingänge 3.3.2

Bezeichner Datentyp	Beschrei	bung		rfügbaı /ariante	
			Base	State	High
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" auswählbar.	•	•	•
xEnable	Ausführ	ung des Funktionsbausteins	•	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.			
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.			
scCtrlABC scCtrl_ABC	• scCtr • Liegt gewe • Vom	sstruktur für den Funktionsbaustein _AxisBasicControl IABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" schselt. Zustand "Service" wird zurück in den Zustand "Ready" schselt, wenn keine Anforderung mehr anliegt.	•	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•	•
xStop BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xStop = TRUE (oder xHalt = TRUE) gesetzt ist. • Der Eingang ist auch bei "Internal Control" aktiv.	•	•	•
xHalt BOOL	TRUE	 Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. Ein Wechsel in den Zustand "Stop" erfolgt. Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE) gesetzt ist. 	•	•	•
scPar L_TT1P_scPar_ElectricalShaf tVel[Base/State/High]	Technolo Der Date	meterstruktur enthält die Parameter des ogiemoduls. entyp ist abhängig von der verwendeten Variante ate/High).	•	•	•

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
				Base	State	High
scAccessPoints L_TT1P_scAP_Elect Vel[Base/S	ctricalShaft State/High]	Der Date	uktur der Angriffspunkte r Datentyp ist abhängig von der verwendeten Variante nse/State/High).		•	•
xJogPos	BOOL	TRUE	Achse in positive Richtung fahren (Handfahren). Ist xJogNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•
xJogNeg	BOOL	TRUE	Achse in negative Richtung fahren (Handfahren). Ist xJogPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•	•
xSyncVel		Synchro	nisierung der Slave-Achse auf die Master-Achse	•	•	•
	BOOL	TRUE	Base: Synchronisierung ohne Kupplungsfunktion			
			State/High: Synchronisierung mit Geschwindigkeitskupplung			
IrSetOffsetSlave	LREAL	Die Posi Änderur	Geschwindigkeits-Offset zur Master-Achse Die Position wird im Zustand "VEL_IS_SYNCHRONISED" bei Änderung des Wertes angefahren. • Einheit: units/s		•	•
		Base/ State	Der Offset wird direkt übernommen.			
		High	Der Offset wird über den Profilgenerator vergeben.			
xTrimPos	BOOL	TRUE	Geschwindigkeit in positive Richtung trimmen. Ist xTrimNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.		•	•
xTrimNeg	BOOL	TRUE	Geschwindigkeit in negative Richtung trimmen. Ist xTrimPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.		•	•
IrSetGroundVel	LREAL	Die vorg wenn di	Grundgeschwindigkeit Die vorgegebene Geschwindigkeit wird an die Achse gegeben, venn die Kupplung geöffnet ist. Einheit: units/s			•

3

Ausgänge 3.3.3

Bezeichner Datentyp	Beschrei	Beschreibung		Verfügbar in Variante		
			Base	State	High	
xInternalControlActive BOOL	TRUE	Die interne Steuerung der Achse ist über die Visualisierung aktiviert. (Eingang xEnableInternalControl = TRUE)	•	•	•	
eTMState L_TT1P_States		r Zustand des Technologiemoduls <u>machine</u> (💷 21)	•	•	•	
scStatusABC scStatus_ABC	Struktur L_MC1P	der Zustandsdaten des Funktionsbausteins _AxisBasicControl	•	•	•	
xError BOOL	TRUE	Im Technologiemodul liegt ein Fehler vor.	•	•	•	
xWarning BOOL	TRUE	Im Technologiemodul liegt eine Warnung vor.	•	•	•	
eErrorID L_IE1P_Error		chler- oder Warnungsmeldung, wenn xError = TRUE arning = TRUE ist.	•	•	•	
	Hier find	zhandbuch "FAST Technologiemodule": len Sie Informationen zu Fehler- oder gsmeldungen.				
scErrorInfo L_TT1P_scErrorInfo	Fehlerin Fehlerur	formationsstruktur für eine genauere Analyse der sache	•	•	•	
scSignalFlow L_TT1P_scSF_ElectricalShaft Vel[Base/State/High]	Der Date (Base/St	Struktur des Signalflusses Der Datentyp ist abhängig von der verwendeten Variante (Base/State/High). • Signalflussplan (🕮 22)			•	
xAxisEnabled BOOL	TRUE	Die Achse ist freigegeben.	•	•	•	
xDone BOOL	TRUE	Die Anforderung/Aktion wurde erfolgreich abgeschlossen.	•	•	•	
xBusy BOOL	TRUE	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	•	
IrActVel LREAL		Geschwindigkeit it: units/s	•	•	•	
IrActPos LREAL	1	Position eit: units	•	•	•	
IrOffset LREAL	IrSetOffs Achse	Eingestellter Geschwindigkeits-Offset aus dem Eingang IrSetOffsetSlave zwischen der Master-Achse und der Slave- Achse • Einheit: units/s		•	•	
IrOffsetTrim LREAL	zwischei	Geschwindigkeits-Offset aus der Trimmungsfunktion zwischen der Master-Achse und der Slave-Achse • Einheit: units/s			•	
IrOffsetTotal LREAL	und der	Gesamtgeschwindigkeits-Offset zwischen der Master-Achse und der Slave-Achse • Einheit: units/s		•	•	
xSynchronised BOOL	TRUE	Die Achse ist gekuppelt mit Bezug zur Master-Achse.		•	•	
xAccDecSync BOOL	TRUE	Die Synchronisierungsfunktion ist aktiv. Die Achse wird auf- oder absynchronisiert (die Kupplung öffnet oder schließt).		•	•	

3.3 Funktionsbaustein L_TT1P_ElectricalShaftVel[Base/State/High]

3.3.4 Parameter

L_TT1P_scPar_ElectricalShaftVel[Base/State/High]

Die Struktur **L_TT1P_scPar_ElectricalShaftVel[Base/State/High]** enthält die Parameter des Technologiemoduls.

Bezeichner	Datentyp	Beschreibung		Verfügbar in Variante		
			Base	State	High	
IrStopDec	LREAL	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s² • Initialwert: 10000		•	•	
IrStopJerk	LREAL	Ruck für die Stopp-Funktion und bei Auslösung der Hardware- Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s ³ • Initialwert: 100000	•	•	•	
IrHaltDec	LREAL	Verzögerung für die Halt-Funktion Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 3600 • Nur positive Werte sind zulässig.		•	•	
IrJerk	LREAL	Ruck zum Ausgleich bei einer Offsetwert-, Trimm-, Kupplungs- oder Haltfunktion • Einheit: units/s ³ • Initialwert: 100000		•	•	
IrJogJerk	LREAL	Ruck für das Handfahren • Einheit: units/s³ • Initialwert: 10000		•	•	
IrJogVel	LREAL	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: units/s • Initialwert: 10		•	•	
IrJogAcc	LREAL	Beschleunigung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units/s ² • Initialwert: 100		•	•	
IrJogDec	LREAL	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s ² • Initialwert: 100	•	•	•	
dwCouplingMode	DWORD	Modus zur Kupplung der Maßsysteme X und Y • Initialwert: 1 (Kupplung über Taktlängen)		•	•	
		0 Einheitenkupplung				
		1 Kupplung über Taktlängen				

Bezeichner	Datentyp	Beschreibung		Verfügbar in Variante	
			Base	State	High
IrCouplingX	LREAL	 Kuppelfaktor für die X-Achse Die Einstellung des Parameters ist im Modus "Einheitenkupplung" (dwCouplingMode = 0) wirksam. Änderungen des Parameters werden im Zustand "Ready" übernommen. Im eingekuppelten Zustand kann der Kuppelfaktor nicht über den Parameter geändert werden. Die Änderung des Kuppelfaktors kann hierbei nur über die Angriffspunkte L TT1P scAP ElectricalShaftVel[Base/State/High] (□ 24) erfolgen. Initialwert: 1 	•	•	•
IrCouplingY	LREAL	 Kuppelfaktor für die Y-Achse Die Einstellung des Parameters ist im Modus "Einheitenkupplung" (dwCouplingMode = 0) wirksam. Änderungen des Parametrrs werden im Zustand "Ready" übernommen. Im eingekuppelten Zustand kann der Kuppelfaktor nicht über den Parameter geändert werden. Die Änderung des Kuppelfaktors kann hierbei nur über die Angriffspunkte L TT1P scAP ElectricalShaftVel[Base/State/High] (□ 24) erfolgen. Initialwert: 1 		•	•
IrTrimAcc	LREAL	Beschleunigung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zum Master beschleunigt werden soll. Die auf den Antrieb wirkende Beschleunigung ist die Summe aus der Master- und Slave- Beschleunigung. • Einheit: units/s² • Initialwert: 100		•	•
IrTrimDec	LREAL	Verzögerung für die Trimmung Vorgabe, mit welcher Geschwindigkeitsänderung relativ zum Master verzögert werden soll. Die auf den Antrieb wirkende Verzögerung ist die Summe aus der Master- und Slave- Verzögerung. • Einheit: units/s² • Initialwert: 100		•	•
IrTrimVel	LREAL	Geschwindigkeit für die Trimmung Vorgabe, mit welcher Geschwindigkeit getrimmt werden soll. • Einheit: units/s • Initialwert: 50		•	•
IrSyncOutAcc	LREAL	Beschleunigung für das Auskuppeln Base/State: Verzögerungsrampe für die Fahrt in den Stillstand High: Synchronisierung auf die Grundgeschwindigkeit IrSetGroundVel Einheit: units/s² Initialwert: 100 Wert 0.0 units/s²: Maximale Beschleunigung (Die Geschwindigkeitsdifferenz wird in einem Zyklus erreicht.)		•	•
lrSyncInAcc	LREAL	Beschleunigung für das Einkuppeln		•	•

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
			Base	State	High	
lrSyncJerk	LREAL	Ruck für die Einkuppel- und Auskuppelfunktion • Einheit: units/s³ • Initialwert: 10000		•	•	
IrOffsetAcc	LREAL	Beschleunigung zur Rampengenerierung • Wert 0.0 units/s ² : Maximale Beschleunigung (Die Geschwindigkeitsdifferenz wird in einem Zyklus erreicht.) • Einheit: units/s ² • Initialwert: 100			•	
IrOffsetDec	LREAL	Verzögerung zur Rampengenerierung • Wert 0.0 units/s ² : Maximale Verzögerung (Die Geschwindigkeitsdifferenz wird in einem Zyklus erreicht.) • Einheit: units/s ² • Initialwert: 100			•	
IrOffsetJerk	LREAL	Ruck zur Rampengenerierung • Wert 0 units/s³: Ruckbegrenzung deaktiviert (Verwendung von linearen Beschleunigungsrampen) • Einheit: units/s³ • Initialwert: 10000			•	

3.4 State machine

3.4 State machine

- [3-2] State machine des Technologiemoduls
 - (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
 - (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.5 Signalflussplan

3.5 Signalflussplan

[3-3] Signalflussplan

In der Abbildung [3.5] ist der Haupt-Signalfluss der umgesetzten Funktionen dargestellt. Der Signalfluss der Zusatzfunktionen, wie z. B. "Handfahren", sind hier nicht dargestellt.

3.5 Signalflussplan

3.5.1 Struktur des Signalflusses

L_TT1P_scSF_ElectricalShaftVel[Base/State/High]

Die Inhalte der Struktur **L_TT1P_scSF_ElectricalShaftVel[Base/State/High]** sind nur lesbar und bieten eine praktische Diagnosemöglichkeit innerhalb des Signalflusses (<u>Signalflussplan</u> (<u>LLL 22</u>)).

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
				Base	State	High
IP01_IrSetOffsetSlave	LREAL	Geschwindigkeits-Offset zur Master-Achse Die Position wird im Zustand "VEL_IS_SYNCHRONISED" bei Änderung des Wertes angefahren. • Einheit: units/s		•	•	•
		Base/ State	Der Offset wird direkt übernommen.			
		High	Der Offset wird über den Profilgenerator vergeben.			
MP01_lrSetMasterVel	LREAL	Sollgeschwindigkeit der Master-Achse • Einheit: units/s		•	•	•
MP02_lrSetClutchVel	LREAL	Leitgeschwindigkeit für die Kupplung • Einheit: units/s		•	•	•
MP03_lrSetSlaveVel	LREAL	Sollgeschwindigkeit der Slave-Achse • Einheit: units/s		•	•	•
OP01_IrOffset	LREAL	Eingestellter Geschwindigkeits-Offset aus dem Eingang IrSetOffsetSlave zwischen der Master-Achse und der Slave- Achse • Einheit: units/s		•	•	•
OP02_IrOffsetTrim	LREAL	Geschwindigkeits-Offset aus der Trimmungsfunktion zwischen der Master-Achse und der Slave-Achse • Einheit: units/s			•	•
OP03_IrOffsetTotal	LREAL	Gesamtgeschwindigkeits-Offset zwischen der Master-Achse und der Slave-Achse • Einheit: units/s			•	•

3.5 Signalflussplan

3.5.2 Struktur der Angriffspunkte

L_TT1P_scAP_ElectricalShaftVel[Base/State/High]

Über die Angriffspunkte (AP) können Signale beeinflusst werden. Im Initialzustand haben die Angriffspunkte keine Wirkung.

Jeder Angriffspunkt wirkt als ein alternativer Zweig und wird über eine ODER-Verknüpfung oder einen Schalter aktiviert.

Bezeichner	Datentyp	Beschreibung		Verfügbar in Variante		
				Base	State	High
AP01_xCouplingX		Freigabe des Angriffspunktes AP01_xCouplingX		•	•	•
	BOOL	TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss. Der Kuppelfaktor in Parameter IrCouplingX wird hierbei unwirksam.			
AP01_IrCouplingX	LREAL	• Die E "Einh • Die Ä	Aktiver Kuppelfaktor für die X-Achse • Die Einstellung des Parameters ist im Modus "Einheitenkupplung" (dwCouplingMode = 0) wirksam. • Die Änderung des Kuppelfaktors kann auch im eingekuppelten Zustand zyklisch erfolgen.			
AP02_xCouplingY		Freigabe des Angriffspunktes AP01_xCouplingY		•	•	•
BOOL		TRUE	Der Angriffspunkt überschreibt die Werte an der Zugriffstelle im Signalfluss. Der Kuppelfaktor in Parameter IrCouplingY wird hierbei unwirksam.			
AP02_IrCouplingY	LREAL	Aktiver Kuppelfaktor für die Y-Achse • Die Einstellung des Parameters ist im Modus "Einheitenkupplung" (dwCouplingMode = 0) wirksam. • Die Änderung des Kuppelfaktors kann auch im eingekuppelten Zustand zyklisch erfolgen.				

3.6 Handfahren (Jogging)

3.6 Handfahren (Jogging)

Vorausetzung

- Das Technologiemodul befindet sich im Zustand "Ready".
- Die Slave-Achse ist freigeben (xRegulatorOn = TRUE).

Ausführung

Zum Handfahren der Achse wird die Handfahr-Geschwindigkeit IrJoqVel verwendet.

Mit dem Eingang xJogPos = TRUE wird die Achse in positive Richtung und mit dem Eingang xJogNeg = TRUE in negative Richtung gefahren. Die Achse wird solange gefahren, wie der Eingang TRUE gesetzt bleibt.

Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden. Erst wenn beide Eingänge zurückgesetzt wurden, wechselt die <u>State machine</u> (<u>QQ 21</u>) wieder zurück in den Zustand "Ready".

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur LTT1P scPar ElectricalShaftVel[Base/State/High] (© 18).

Die Parameterwerte können während des Betriebes verändert werden. Sie werden bei erneutem Setzen der Eingänge xJogPos = TRUE oder xJogNeg = TRUE übernommen.

3.7 Gleichlauf (SyncVel)

3.7 Gleichlauf (SyncVel)

Hinweis!

Für den Kupplungsvorgang müssen die Master-Achse (Leitachse) und Slave-Achse stehen. Bei laufenden Achsen kommt es sonst zu einem Geschwindigkeitssprung.

Ausführung

Für den Gleichlauf von Slave-Achse und Master-Achse (Leitachse) wird mittels Kuppelfaktor die Slave-Geschwindigkeit direkt an die Master-Geschwindigkeit gekuppelt.

Der Kupplungsfaktor kann entweder durch Einheitenkupplung oder durch eingestellte Taktlängen vorgegeben werden:

- Kupplungsfaktor = IrCouplingY / IrCouplingX
- Kupplungsfaktor = Taklänge der Slave-Achse / Taklänge der Master-Achse

Die Kupplungsart wird über den Parameter dwCouplingMode eingestellt.

Die Taktlängen werden in den Achsen eingestellt.

Einzustellende Parameter

Die Parameter für die Kupplung befinden sich in der Parameterstruktur LTT1P scPar ElectricalShaftVel[Base/State/High] (12).

```
dwCouplingMode : DWORD := 1; // 0: Einheitenkupplung, 1: Kupplung über Taktlängen
lrCouplingX : LREAL := 1;
lrCouplingY : LREAL := 1;
```

3.7 Gleichlauf (SyncVel)

Beispiele

.8 Geschwindigkeits-Offset während des Gleichlaufes

3.8 Geschwindigkeits-Offset während des Gleichlaufes

Hinweis!

Das Setzen eines Geschwindigkeits-Offset erfolgt mit einem Geschwindigkeitssprung.

Vorausetzung

Das Setzen eines Geschwindigkeits-Offset ist nur im Zustand "VEL_IS_SYCHRONISED" möglich.

Ausführung

Ein variabler Geschwindigkeits-Offset zwischen Master und Slave wird mit dem Eingang IrSetOffsetSlave vorgegeben. Der Offset wird im Zustand "VEL_IS_SYNCHRONISED" bei Änderung des Wertes schlagartig auf die Sollgeschwindigkeit der Achse geschaltet.

Beispiel

[3-4] Geschwindigkeits-Offset IrSetOffsetSlave = 50

3.9 Gleichlauf mit Ein-/Auskuppelmechanismus

3.9 Gleichlauf mit Ein-/Auskuppelmechanismus

Ausführung

Der Gleichlauf von Slave-Achse und Master-Achse (Leitachse) ist erweitert um eine Kupplungsfunktion. Die Kupplungsfunktion synchronisiert die Geschwindigkeit der Slave-Achse auf die Leitgeschwindigkeit der Master-Achse. Die Positionierung erfolgt hierbei sprungfrei.

Das Einkuppeln startet bei einer beliebigen Position mittels xSyncVel = TRUE.

Beim Auskuppeln mittels xSyncVel = FALSE wird der Antrieb mit der Verzögerung lrSyncOutAcc zum Stillstand gebracht und in den Zustand "Ready" gewechselt.

Einzustellende Parameter

Die Parameter für die Kupplungsfunktion befinden sich in der Parameterstruktur L_TT1P_scPar_ElectricalShaftVel[Base/State/High] (\(\to 18\)).

```
lrSyncOutAcc : LREAL := 10.0;
lrSyncInAcc : LREAL := 10.0;
lrSyncOutInstantAcc : LREAL := 100.0;
lrSyncJerk : LREAL := 10000;
```

Beispiel

[3-5] Ein- und Auskuppelvorgang

Die Abbildung [3-5] zeigt den Ein- und Auskuppelvorgang aus dem Stillstand auf die Geschwindigkeit 100.0 units/s und wieder zurück in den Stillstand.

3.10 Positions-Trimmung

3.10 Positions-Trimmung

Vorausetzung

Die Positions-Trimmung ist nur im Zustand "VEL_IS_SYCHRONISED" möglich.

Ausführung

Mit der Positions-Trimmung ist es möglich, die Position der Slave-Achse gegenüber der Master-Achse (Leitachse) durch "Tippen" – analog zum <u>Handfahren (Jogging)</u> (<u>Q</u> 25) – zu verstellen.

Die Positions-Trimmung wird gestartet, indem der Eingang xTrimPos oder xTrimNeg auf TRUE gesetzt wird. Der Zustand "VEL_IS_SYCHRONISED" wechselt dann richtungsabhängig in den Zustand "TRIM_POS_PLUS" oder "TRIM_POS_MINUS" und verlässt diesen erst wieder, wenn der jeweilige Eingang xTrimPos oder xTrimNeg auf FALSE zurückgetzt wird.

Durch die Trimmung verstellte Offsets lassen sich über den Ausgang *IrOffsetTrim* ermitteln. Der Wert von *IrOffsetTrim* lässt sich nur durch Ausschalten des Technologiemoduls zurück auf Null setzen.

Einzustellende Parameter

Die Parameter für die Positions-Trimmung befinden sich in der Parameterstruktur L TT1P scPar ElectricalShaftVel[Base/State/High] (12) 18).

```
lrJerk : LREAL := 10000;
lrTrimAcc : LREAL := 100;
lrTrimDec : LREAL := 100;
lrTrimVel : LREAL := 50;
```

Die Beschleunigung und die Geschwindigkeit der Trimmung werden denen der Master-Achse überlagert. Somit ergibt sich für die zu vertrimmende Achse eine ...

- resultierende Geschwindigkeit von: v_{AchseRes} = v_{Leitachse} + IrTrimVel
- resultierende Beschleunigung von: a_{AchseRes} = a_{Leitachse} + IrTrimAcc

3.11 Geschwindigkeits-Offset mit Profilgenerator

3.11 Geschwindigkeits-Offset mit Profilgenerator

Vorausetzung

Das Setzen eines Geschwindigkeits-Offset ist nur im Zustand "VEL_IS_SYCHRONISED" möglich.

Ausführung

Der Geschwindigkeits-Offset wird <u>ohne</u> Geschwindigkeitssprung über einen Profilgenerator an die Achse gegeben. Die Vorgabe des Offset erfolgt mit dem Eingang *IrSetOffsetSlave*. Der Geschwindigkeits-Offset wird mittels S-Verschliff gefahren.

Einzustellende Parameter

Die Parameter für den S-Verschliff befinden sich in der Parameterstruktur L TT1P scPar ElectricalShaftVel[Base/State/High] (18).

```
lrOffsetAcc : LREAL := 100.0;
lrOffsetDec : LREAL := 100.0;
lrOffsetJerk : LREAL := 10000;
```

Beispiel

[3-6] Geschwindigkeits-Offset (IrSetOffsetSlave = 50) mittels S-Verschliff (IrOffsetJerk = 10)

3.12 Gleichlauf mit Grundgeschwindigkeit

Ausführung

Die Grundgeschwindigkeit ist aktiv, sobald im Eingang *IrSetGroundVel* ein Wert ungleich '0' eingestellt wird. Sofort nach der Aktivierung des Funktionsbausteins fährt der Antrieb mittels S-Verschliff auf die Grundgeschwindigkeit und wechselt dann in den Zustand "GROUNDVEL".

Ausgehend von diesem Zustand kann über die Kupplungsfunktion – wie beim Gleichlauf mit Ein-/Auskuppelmechanismus (29) – die Geschwindigkeit der Slave-Achse auf die Leitgeschwindigkeit der Master-Achse synchronisiert werden. Das Einkuppeln startet bei einer beliebigen Position mittels xSyncVel = TRUE. Beim Auskuppeln mittels xSyncVel = FALSE fährt der Antrieb mit der Verzögerung IrSyncOutAcc wieder zurück auf die Grundgeschwindigkeit.

Einzustellende Parameter

Die Parameter für den S-Verschliff und für die Kupplungsfunktion befinden sich in der Pameterstruktur <u>L TT1P scPar ElectricalShaftVel[Base/State/High]</u> (<u>LL 18</u>).

```
// Parameter für den S-Verschliff
lrOffsetAcc : LREAL := 100.0;
lrOffsetDec : LREAL := 10000;

// Parameter für die Kupplungsfunktion
lrSyncOutAcc : LREAL := 10.0;
lrSyncInAcc : LREAL := 10.0;
lrSyncOutInstantAcc : LREAL := 100.0;
lrSyncJerk : LREAL := 10000;
```

Beispiel

[3-7] Einkuppelvorgang (xSyncVel = TRUE) mit Grundgeschwindigkeit (IrSetGroundVel = 20)

3.13 CPU-Auslastung (Beispiel Controller 3231 C)

3.13 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	CPU-Auslastung		
		Durchschnitt	Maximale Spitze	
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	40 μs	72 μs	
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	50 μs	83 μs	
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncVel := TRUE;	60 µs	91 μs	

Α	K
Access points 24	Kontrollierter Anlauf der Achsen 13
Anlauf der Achsen 13	
Anwendungshinweise 7	L
Aufbau der Sicherheitshinweise 7	L_TT1P_ElectricalShaftVelBase <u>14</u>
Ausgänge 17	L_TT1P_ElectricalShaftVelHigh <u>14</u>
Auskuppelmechanismus (Gleichlauf) 29	L_TT1P_ElectricalShaftVelState <u>14</u>
	L_TT1P_scAP_ElectricalShaftVelBase <u>24</u>
В	L_TT1P_scAP_ElectricalShaftVelHigh <u>24</u>
Betriebsmodus <u>12</u>	L_TT1P_scAP_ElectricalShaftVelState <u>24</u>
	L_TT1P_scPar_ElectricalShaftVelBase <u>18</u>
С	L_TT1P_scPar_ElectricalShaftVelHigh <u>18</u>
CPU-Auslastung (Beispiel Controller 3231 C) 33	L_TT1P_scPar_ElectricalShaftVelState <u>18</u>
_	L_TT1P_scSF_ElectricalShaftVelBase 23
D	L_TT1P_scSF_ElectricalShaftVelHigh 23
Dokumenthistorie <u>5</u>	L_TT1P_scSF_ElectricalShaftVelState 23
Drehmoment-gesteuerter Antrieb als Master 12	
_	P
E	Parameterstruktur L_TT1P_scPar_ElectricalShaftVelBase/
Eingänge <u>15</u>	State/High <u>18</u>
Eingänge und Ausgänge <u>15</u>	Positions-Trimmung <u>30</u>
Einkuppelmechanismus (Gleichlauf) 29	Profilgenerator <u>31</u>
Electrical Shaft Velocity (Funktionsbeschreibung) 10	
E-Mail an Lenze <u>35</u>	S
_	Sicherheitshinweise 7, 8
F	Signalflussplan <u>22</u>
Feedback an Lenze 35	State machine <u>21</u>
Funktionen des Technologiemoduls (Übersicht) 11	Struktur der Angriffspunkte Electrical Shaft Vel Base/State/High
Funktionsbaustein L_TT1P_ElectricalShaftVelBase/State/High	<u>24</u>
14	Struktur des Signalflusses
Funktionsbeschreibung "Electrical Shaft Velocity" 10	L_TT1P_scSF_ElectricalShaftVelBase/State/High 23
G	SyncVel (Gleichlauf) <u>26</u>
	Т
Geschwindigkeits-Offset mit Profilgenerator 31	Trimmung <u>30</u>
Geschwindigkeits-Offset während des Gleichlaufes 28	71111111ding <u>30</u>
Gestaltung der Sicherheitshinweise 7	V
Gleichlauf (SyncVel) 26	Variablenbezeichner <u>6</u>
Gleichlauf mit Ein-/Auskuppelmechanismus 29	Verwendete Konventionen <u>6</u>
Gleichlauf mit Grundgeschwindigkeit 32	Verwendung von Soll- oder Istwerten 12
н	verticitating voir son oder istricited ±±
	Z
Handfahren (Jogging) 25 Hinweise zum Betrieb des Technologiemodule 12	Zielgruppe <u>4</u>
Hinweise zum Betrieb des Technologiemoduls 12	Zustände 21
J	_
Jogging (Handfahren) <u>25</u>	

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam

Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen **GERMANY** HR Hannover B 205381

[+49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal **GERMANY**

© 008000 24 46877 (24 h helpline)

💾 +49 5154 82-1112

@ service@lenze.com

