Exploring NYC Transit Data

Using open source tools

Midterm Project Presentation DATASCI W209

March 10th, 2016

James | Drew | Greg

Introduction

The NYC Taxi & Limousine
Commision (TLC) has made
publicly available
all green and
yellow taxi trips
between 2009
and 2015. This is
a massive data
source at > 1.1
Billion records!

Uber, by way of an information request submitted by 538 under FOIL, has made available NYC pickup data between April & September 2014 and January - July 2015, respectively.

citibike

System Data is made <u>readily</u> available on Citi Bike Share trips

NYC OpenData

Relevant Open and accessible datasets include:

- 1. Weather
- 2. Felony Incidents
- 3. MTA information turnstile usage

Visual Research Potential

A unique opportunity to:

- Build on some of the unique and amazing work done by:
 - o <u>538</u>,
 - Chris Whong
 - Todd Schneider
- Leverage techniques and frameworks taught in the course: downsampling, context, form and D3 respectively.
- Really tell a story through data - explore questions about NYC in a way not traditionally possible

Goal & Motivations

Acquire, integrate and analyze NYC open transit data to uncover macro transit trends that can be further explored in a narrow context to tell a story about a specific group of people

Hypothesis

- We hypothesize that robust well integrated transit datasets can answer real questions about how New Yorkers (read: humans) live, work and play
- Any increase or decrease in demand for NYC transit modalities has far reaching implications given transportation's importance and proxy for economic activity (eg. 175 million taxi rides in 2015)
- NYC is the perfect petri dish for analysis with its sky high population and transport density

Applicability

 We seek to visually explore both broad and narrow conceptual questions

Broadly

- Can we pinpoint the efficiency of the transit system at various points in time?
- Can we visually infer how exogenous changes influence modality choice / driver behavior?

Narrowly

 Can we tell a story about NYU students and their economic behavior given transit choice and options?*

*to be further developed / evolved

Architecture / Process Overview

Data Sources

Acquisition

Storage

Computation

Visualization

REDSHIFT

- Download entirety of NYC Taxi, Uber, Citibike and other selected open data via custom bash scripts
- Parse & clean, standardize information and load into a `Trips` schema based on dataset conformity and relevancy

- Preprocess into PostgreSQL & PostGIS to obtain geometry data
- Join main transit data together and on attributes from other open data (Weather, Felony Incidents and MTA information)
- Load processed data into Redshift for high performance columnar analysis ability
- Leverage R / Python to investigate particular questions

- Create initial prototype in Tableau
- Visualize final results as a web-app via Bokeh or Shiny & leveraging D3 for map visuals

ER Diagram

This is the present model for the NYC transit team. It is hosted in Redshift.

Blue Outline: Main trip fact table

Green Outline: Dimension tables related to the fact table Red Outline: Non-conforming Uber data from 2015, 2014 Uber data is in table Trips Yellow Outline: Derived - record counts

Not yet shown:

1. Other open data (Felonies, MTA, etc)

2. Citibike Data

central_park_weather_observations_raw			
station_id station_name	character vary		
date	date	9	
precipitation_tenths_of_mm	numeric	- 1	
snow_depth_mm	numeric	1	
snowfall_mm	numeric	- 1	
max_temperature_tenths_degrees_celsius	numeric	- 1	
min_temperature_tenths_degrees_celsius	numeric		
average_wind_speed_tenths_of_meters_per_second	numeric	- 1	

nyct2010 integer character varying(7) N ctlabel borocode character varying(1) N boroname character varying(32) N character varying(6) N ct2010 boroct2010 character varying(7) N character varying(1) N cdeligibil ntacode character varying(4) N ntaname character varying(75) N puma character varying(4) N shape_leng numeric shape area numeric

trips integer cab_type_id integer vendor_id character varying N pickup datetime timestamp NFK dropoff_datetime timestamp store_and_fwd_flag character(1) N rate_code_id integer Ν pickup_longitude N numeric pickup_latitude numeric N dropoff longitude numeric N dropoff latitude numeric passenger count integer trip_distance N numeric fare_amount numeric N extra numeric mta tax numeric N tip amount numeric N tolls amount numeric N ehail fee numeric N improvement_surcharge numeric N total amount numeric payment_type character varying N trip type integer pickup_nyct2010_gid integer dropoff nyct2010 gid integer N

uber_trips_2015 character varying N dispatching_base_num pickup_datetime timestamp affiliated base num character varying N location id integer nyct2010 ntacode character varying N uber_taxi_zone_lookups location id integer borough character varying N character varying N zone nyct2010 ntacode character varying N

record_counts

cnts bigint N
mnth double precision N
cab_type__integer N

id integer type character varying N

Target Audience

- Urban Planners
 - "Do trends in traffic flow predict a need for new / different zoning or better transportation infrastructure?"
- Traffic Engineers
 - "Does indicated traffic flow conflict with existing traffic constraints such as large impending construction projects?"
- Sociologists / policy-makers / economists
 - "Do trends in taxi vs. Uber / Lyft usage serve the public in the best way?"
- Data scientists / visualization enthusiasts
 - "What cool examples can I see for visualizing data?"

Data Sources

Taxi Data Taxi & Limousine Commission

Synopsis

This is the granddaddy dataset and is extremely comprehensive in both size and breadth including: Vendorld,

Summary Information

- URL: Taxi TLC Data / DD
- Date Range
 - Yellow: 2009 2015
 - Green: Aug 2013 2015
- **Total Files**
 - 116
- File Size (Total // Average):
 - 267G // 2.3G
- Average Record Count:
 - 14M

Prior Work done by and self published by Todd Schneider [Image attribution]

Uber Data Duber

Synopsis

This dataset is fairly limited and only includes: date and time of pickup, lat/long, and a base code that corresponds to a TLC station name

Summary Information

URL: <u>Uber Data</u>

- Date Range
 - July 2014 September 2014
 - o Jan 2015 June 2015
- Total Files
 - o **7**
- File Size (Total // Average):
 - o 727M // 103M
- Average Record Count:
 - 1M

Manhattan Dominates Both Ubers And Cabs

Residential pickup rates by **borough**

	PICKUP INDEX (100 = AVG.)	
BOROUGH	UBER	CABS
Bronx	8	9
Brooklyn	79	29
Manhattan	357	431
Queens	19	22
Staten Island	1	0

Pickup data from April through Sept. 2014

SOURCE: TAXI & LIMOUSINE COMMISSION

Lower Income Means Fewer Pickups

Residential pickup rates by **median income** of census tract

	PICKUP INDEX (100 = AVG.)	
MEDIAN INCOME	UBER	CABS
\$0-25K	21	26
25-50	32	39
50-75	75	67
75-100	160	167
100-125	419	462
125-150	649	725
150+	539	564

Pickup data from April through Sept. 2014

TAXI & LIMOUSINE COMMISSION, CENSUS BUREAU

Some prior work done by and published on http://fivethirtyeight.com/ [Image attribution]

Bikeshare Data citibike

Synopsis

This dataset provides trip history information including: Duration, Start and End Time, Station Names & Lat / Long, Bike ID, User Type, Gender & Birthday

Summary Information

- URL: <u>System Data</u>
- Date Range
 - July 2013 December 2015
- Total Files
 - o 30
- File Size (Total // Average):
 - o 4G // 130M
- Average Record Count:
 - o 1M

For those not familiar w/ bike share data, the units when docked roughly look like this. [Image attribution]

NYC Open Data

*to be further developed / evolved

- Crime: using long/lat location to evaluate impact on transit
- Weather: how does climate conditions impact transit
- Subway/Bus/Rail: volume, location implications on other forms of transit

Current Mockup

Anticipated Interactions

- Overview, zoom, filter, details-on-demand
- Navigate from broad to specific analyses
- Potential visualizations optimized for personas/tasks
- Interactivity: brushing and linking, overview + detail, zooming and panning

Mockup - Iteration #1

Some work done to explore and aggregate counts by lat/long pairs over time

An additional attempt to map and show how disbursed all Uber pickups are

Mockup - Iteration #2

Testing Plan

Expected Feedback Capture

Initial Thoughts (Verbatims):

- Without clicking on anything, what do you expect each dropdown select to do?
- 2. Examine the titles for each of the visualizations. What do you think each title means?
- 3. What do you expect will happen if you choose a []? What about after choosing more than one?

Interactive Exercises

- Depending on final visualization form, intend on capturing user feedback that requires interactive exploration and discovery
- Likely include 5 10 "challenges" for the user to complete

Usability Questions

- Test questions along the lines of: the following will be administered:
 - a. User Satisfaction
 - b. Usage Simplicity
 - c. Productivity
 - d. Useful Error Messaging
 - e. Ease of Navigation
 - f. Information Organization
 - g. Meeting expectations

Final Analyses & Feedback

- Was the layout intuitive? If not, how would you adjust the layout?
- 2. Beyond the questions listed above, what improvements could be made to the tool?
- 3. What do you wish the tool could do for you?

Sending Us Feedback

jamesgray@ischool.berkeley.edu

gregce@gmail.com

drewplant@ischool.berkeley.edu

Questions?

