Note. From now on all graphs are simple, undirected unless it is indicated otherwise.

Definition

A graph is *connected* if any two vertices can be joined by a path.

A connected component of a graph is a maximal subgraph that is connected.

Goal:

- How to check if a graph is connected?
- If a graph is not connected, how to count its connected components?

Definition

If i is a vertex of a graph then the degree of i is the number

deg(i) = (the number of edges attached to i)

Definition

Let G be a graph with vertices $1, 2, \ldots, N$. The Laplacian of G is a matrix

$$L = D - A$$

where

- A is the adjacency matrix of A
- D is a diagonal matrix with degrees of vertices on the diagonal.

Example.

The sum of each now of the Laplacian is O.

This gives:

Upshot: i) n=0 is an eigenvalue of L

2) The vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to this eigenvalue.

Thus L has two linearly independent eigenvectors corresponding to the eigenvalue $\lambda = 0$.

In general, if a graph G with vertices 1,...,N has M connected components $G_1,...,G_M$ then then the Laplacian of G has at least M linearly independent eigenvectors $v_1, v_2,...,v_M$ corresponding to the eigenvalue $\Lambda = 0$:

$$v_k = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$
 where $x_i = \begin{cases} 1 & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases}$

Goal:

Proposition *

If L is the Laplacian of a graph G then

$$\begin{pmatrix} \text{the number of} \\ \text{connected components} \\ \text{of } G \end{pmatrix} = \begin{pmatrix} \text{the number of} \\ \text{linearly independent eigenvectors} \\ \text{of } L \text{ corresponding to } \lambda = 0 \end{pmatrix}$$

Definition

Let G be a directed graph with vertices 1, 2, ..., N and edges $e_1, e_2, ..., e_M$. The *edge incidence matrix* of G is an $N \times M$ matrix $B = (b_{ij})$ such that

- rows of B are labeled by vertices of G
- ullet columns of B are labeled by edges of G
- the entries of *B* are given by

$$b_{ij} = \begin{cases} -1 & \text{if the edge } e_j \text{ starts at the vertex } i \\ +1 & \text{if the edge } e_j \text{ ends at the vertex } i \\ 0 & \text{otherwise} \end{cases}$$

Example.

$$B = \begin{bmatrix} 2 & 2 & 2 & 2 & 2 \\ -1 & -1 & -1 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 4 & 0 & 0 & 1 & -1 \end{bmatrix}$$

Lemma

Let

- ullet G be a simple undirected graph
- ullet L be the Laplacian of G
- ullet B be the edge incidence matrix of G with the direction of edges selected in an arbitrary way.

Then $L = BB^T$.

Example.

$$BB^{T} = \frac{1}{3} \begin{bmatrix} -1 & -1 & -1 & 0 \\ -1 & -1 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 2 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ 3 & -1 & 0 & -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & 0 & -1 & 2 \end{bmatrix}$$

Proof of Proposition *.

From before: If G has vertices 1,.., N and M connected components G,,,, G, then the Laplacian of G has M linearly independent eigenvectors corresponding to 7=0: VI) -> VM where

 $v_k = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ $x_i = \begin{cases} 1 & \text{if } i \in G_k \\ 0 & \text{otherwise} \end{cases}$

We need to show: there are no more linearly independent eigenvectors of L for $\gamma=0$.

Enough to show: If w= | is an eigenvector

of L for $\lambda = 0$ then $x_i = x_j$ for any two vertices i,j that are connected by an edge.

Let B = the edge incidence matrix of G with some orientation of edges. By Lemma: L= BBT

<u>Claim</u>: Lv = 0 if and only if BTv = 0

Indeed: if BTv = O then Lv = BBTv = B.O = O

Conversely: if Lu = 0 then vTLv = 0

so: (vT B)(BTv) = 0

the dot product of $(B^T_v)^T (B^T_v) = 0$ B^T_v with itself

This gives: $B^T_v = 0$.

It remains to notice that BT. $\begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ x_i - x_j \end{bmatrix} \leftarrow \begin{bmatrix} e_1 \\ \vdots \\ x_i \end{bmatrix}$ Thus BTV = 0 if and only if

x: = x; for any vertices i j connected by an eolge,

Proposition

If B is a any matrix then all eigenvalues of the matrix $A = BB^T$ are greater or equal to 0.

Proof: Let
$$Av = \lambda v$$
, $v \neq 0$

Then $BB^{T}v = \lambda v$
 $v^{T}BB^{T}v = v^{T}\lambda v = \lambda v^{T}v = \lambda \cdot \|v\|^{2}$
 $(B^{T}v)^{T}(B^{T}v)$

C dot product

of V with itself

 $\|B^{T}v\|^{2}$

We obtain:

 $\|B^{T}v\|^{2} = \lambda \|v\|^{2}$

So:

 $\lambda = \frac{\|B^{T}v\|^{2}}{\|v\|^{2}} \geqslant 0$

Corollary

If L is the Laplacian of a graph G then all eigenvalues of L are greater or equal to \mathbb{O} .