Instantaneous Q_I/Q_{ext} -Measurements in CEBAF incl. Transmission Line Calibration

PIT Meeting

2019-08-12

Frank Marhauser

Acknowledgement: Thanks to Rongli Geng for "Brown bag" discussions on CEBAF issues

CEBAF Element Database

- The CED carries $Q_{\rm ext}$ -values for cavities as measured during cryomodule commissioning (partially dating back to 2010)
- Not clear whether or not the stub-tuning was done before or after commissioning so that actual $Q_{\rm ext}$ -values could have changed since commissioning
- We do not know the discrepancy between commissioning (CED) and actual measured $Q_{\rm ext}$ -values after stub tuning
- Q_{ext}-values measured during/after stub-tuning are not captured electronically
- Q_{ext}-values in the CED were ever updated to my knowledge
- Values for several C50 cryomodules are just specs, no measured data were recorded in CED
 - → any data-mining of commissioning data is very tedious

Stub Tuner Installation

O:\ees\RF\WAVEGUIDE\Stub Tuner Info Thanks to R. Nelson and J. Benesch for providing link

Latest entry/info: 2016-01-04

North Linac (NL): 107 (53.5%) out of 200 cavities have stub tuners

NL02	NL03	NL04	NL05	NL06	NL07	NL08	NL09	NL10	NL11	NL12	NL13	NL14	NL15	NL16	NL17	NL18	NL19	NL20	NL21	NL22	NL23	NL24	NL25	NL26
6.60E+00	8.01E+00	8.40E+00	8.40E+00	8.40E+00	7.80E+00	5.29E+00	8.19E+00	5.43E+00	7.96E+00	8.33E+00	4.94E+00	8.00E+00	5.83E+00	5.83E+00	5.57E+00	4.97E+00	4.87E+00	6.07E+00	8.00E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
6.04E+00	6.83E+00	8.40E+00	8.40E+00	8.40E+00	4.47E+00	4.94E+00	9.22E+00	7.76E+00	8.40E+00	8.26E+00	7.65E+00	6.15E+00	6.69E+00	6.69E+00	7.48E+00	6.05E+00	5.04E+00	7.00E+00	8.60E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
5.15E+00	5.48E+00	8.40E+00	8.40E+00	8.40E+00	8.00E+00	8.90E+00	4.05E+00	4.78E+00	8.40E+00	8.06E+00	7.41E+00	4.96E+00	7.16E+00	7.16E+00	3.99E+00	9.61E+00	5.49E+00	6.08E+00	7.90E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
4.94E+00	5.15E+00	8.40E+00	8.40E+00	8.40E+00	5.14E+00	4.48E+00	7.34E+00	4.59E+00	8.40E+00	7.96E+00	6.80E+00	5.46E+00	5.79E+00	5.79E+00	5.00E+00	5.13E+00	5.88E+00	5.67E+00	8.10E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
6.12E+00	6.55E+00	8.40E+00	8.40E+00	8.40E+00	5.30E+00	3.52E+00	8.46E+00	4.51E+00	8.40E+00	8.18E+00	7.66E+00	5.68E+00	5.98E+00	5.98E+00	4.49E+00	8.20E+00	5.15E+00	7.70E+00	8.10E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
8.03E+00	5.57E+00	8.40E+00	8.40E+00	8.40E+00	4.79E+00	5.45E+00	4.36E+00	5.55E+00	8.40E+00	9.63E+00	9.34E+00	6.35E+00	8.36E+00	8.36E+00	5.16E+00	8.09E+00	4.66E+00	5.93E+00	6.36E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
7.22E+00	7.72E+00	8.40E+00	8.40E+00	8.40E+00	8.40E+00	6.37E+00	4.40E+00	3.66E+00	8.67E+00	9.71E+00	7.67E+00	5.49E+00	9.02E+00	9.02E+00	6.28E+00	8.00E+00	5.16E+00	4.77E+00	6.84E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01
6.31E+00	6.33E+00	8.40E+00	8.40E+00	8.40E+00	7.40E+00	5.67E+00	3.12E+00	7.89E+00	1.13E+01	8.38E+00	3.52E+00	1.07E+01	4.26E+00	4.26E+00	7.12E+00	8.32E+00	4.95E+00	6.08E+00	6.02E+00	3.30E+01	3.30E+01	3.30E+01	3.30E+01	3.30E+01

now C50/C75 CM (not updated)

South Linac (SL): 140 (70%) out of 200 cavities have stub tuners

CEBAF Element Database

- C20 cavities possess the lowest $Q_{\rm ext}$ -values, which are never matched at any beam current level and reasonably achievable $E_{\rm acc}$ -values
- Reducing the vulnerability to microphonics might be a reason to favor too low $Q_{\rm ext}$ -values (unmatched conditions), but there are counter-arguments
- Operational consequences can be manifold:
- Larger reflections → strong standing waves in transmission lines
 - → more frequent waveguide arcing and cavity tripping...
 - \rightarrow enhanced RF losses in waveguide components such as the cold RF windows that deposit heat in He bath \rightarrow reduce 'combined Q_0 '
 - \rightarrow Combined Q_0 : We cannot differentiate between SRF wall losses and other 2 K losses in standard Q_0 -measurements; the other contributions can yet be significant, e.g. we verified a 50% Q_0 -reduction last year for a C50 cavity (1L13) due to different standing wave pattern in transmission line, while SRF wall losses were kept constant
 - → Unnecessary power consumption

Forward & Reflected Power

Recall general relationships of forward and reflected power (on crest):

$$P_f = \frac{{V_c}^2}{R/Q \cdot Q_l} \cdot \frac{1+\beta}{4\beta} \cdot \left\{ \left[1 + \frac{I_{tot} R/Q Q_l}{V_c} \right]^2 + tan^2 \Psi \right\}$$

$$P_{r} = \frac{V_{c}^{2}}{R/Q \cdot Q_{l}} \cdot \frac{1+\beta}{4\beta} \cdot \left\{ \left[\frac{\beta-1}{\beta+1} - \frac{I_{tot} R/Q Q_{l}}{V_{c}} \right]^{2} + tan^{2} \Psi \right\} \qquad Q_{l} \approx Q_{ext}$$

$$with \beta = \frac{Q_{0}}{Q_{ext}}$$

$$P_f - P_r = \frac{{V_c}^2}{R/Q \cdot Q_0} + I_{tot} \cdot V_c$$

$$P_{cav}$$

for optimum match:
$$\frac{\beta - 1}{\beta + 1} - \frac{I_{tot}R}{(\beta + 1) V_c} = 0 \qquad \Rightarrow \beta_{opt} = 1 + \frac{I_{tot}R}{V_c}$$

$$\tan(\Psi) = Q_l \cdot \left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)$$

$$\frac{1}{Q_l} = \frac{1}{Q_{ext}} + \frac{1}{Q_0}$$

$$Q_l \approx Q_{ext}$$

$$with \beta = \frac{Q_0}{Q_{ext}}$$

$$\Rightarrow \frac{Q_0}{Q_l} = \beta + 1$$

$$R_l = \frac{R/Q \cdot Q_0}{\beta + 1} = \frac{R}{\beta + 1}$$

PIT Meeting

beam loading

CEBAF Cavity Specs and Coupling Beta

Forward Power & Reflected Power

Good approximations with non-significant penalty for CEBAF:

$$P_f \approx \frac{{V_c}^2}{R/Q \cdot Q_l} \cdot \frac{1}{4} \cdot \left\{ \left[1 + \frac{I_{tot} R/Q Q_l}{V_c} \right]^2 + tan^2 \Psi \right\}$$

$$P_r \approx \frac{{V_c}^2}{R_{/Q} \cdot Q_l} \cdot \frac{1}{4} \left\{ \left[1 - \frac{I_{tot} R_{/Q} Q_l}{V_c} \right]^2 + tan^2 \Psi \right\}$$

• Each equation can be solved for Q_1

Solve for Q_l using P_{fwd} (no approximation yet)

$$Q_{l} = \frac{V_{c}^{2}}{R/Q \cdot P_{f}} \cdot \frac{1+\beta}{4\beta} \cdot \left\{ \left[1 + \frac{R/Q I_{tot} Q_{l}}{V_{c}} \right]^{2} + tan^{2} \Psi \right\} \qquad A = \frac{V_{c}^{2}}{R/Q \cdot P_{f}} \qquad C = tan^{2} \Psi$$

$$Q_{l} = 2A \cdot D(\beta) \cdot \left\{ [1+B \cdot Q_{l}]^{2} + C \right\} \qquad B = \frac{I_{tot} R/Q}{V_{c}} \qquad D(\beta) = \frac{1+\beta}{4\beta}$$

$$Q_{l}^{2} + Q_{l} \cdot \frac{(2ABD(\beta) - 1)}{AB^{2}D(\beta)} + \frac{(1+C)}{B^{2}} = 0$$

$$A = \frac{V_c^2}{R/Q \cdot P_f} \qquad C = tan^2 \Psi$$

$$B = \frac{I_{tot} R/Q}{V_c} \qquad D(\beta) = \frac{1+\beta}{4\beta}$$

$$Q_l = -\frac{(2ABD(\beta)-1)\pm\sqrt{1-4ABD(\beta)-(2ABD(\beta))^2C}}{2AB^2D(\beta)}$$

$$AB = \frac{{V_c}^2}{R/Q \cdot P_f} \cdot \frac{I_{tot} R/Q}{V_c} = \frac{I_{tot} V_c}{P_f} \qquad AB^2 = \frac{I_{tot} V_c}{P_f} \cdot \frac{I_{tot} R/Q}{V_c} = \frac{R/Q \cdot I_{tot}^2}{P_f}$$

$$Q_{l} = \frac{\frac{P_{f}}{2 \cdot \left(\frac{1+\beta}{4\beta}\right)} - I_{tot}V_{c} \mp \frac{P_{f}}{2 \cdot \left(\frac{1+\beta}{4\beta}\right)} \cdot \sqrt{1 - \frac{4I_{tot}V_{c}}{P_{f}}\left(\frac{1+\beta}{4\beta}\right) - \frac{4I_{tot}^{2} \cdot V_{c}^{2}}{P_{f}^{2}}\left(\frac{1+\beta}{4\beta}\right)^{2} tan^{2}\Psi}}{\frac{R}{Q}I_{tot}^{2}}$$

Solve for Q_1 using P_{ref} (no approximation yet)

We get a similar expression when utilizing the reflected power

$$P_r = \frac{V_c^2}{R_L} \frac{1+\beta}{4\beta} \left\{ \left[\frac{\beta - 1}{1+\beta} - \frac{I_{tot}R_L}{V_c} \right]^2 + \tan^2 \Psi \right\}$$

$$Q_{l} = \frac{\frac{P_{r}}{2 \cdot \left(\frac{1+\beta}{4\beta}\right)} + I_{tot}V_{c}\left(\frac{\beta-1}{\beta+1}\right) \pm \frac{P_{r}}{2 \cdot \left(\frac{1+\beta}{4\beta}\right)} \sqrt{1 + \frac{4I_{tot}V_{c}}{P_{r}}\left(\frac{1+\beta}{4\beta}\right)\left(\frac{\beta-1}{\beta+1}\right) - \frac{4I_{tot}^{2} \cdot V_{c}^{2}}{P_{r}^{2}}\left(\frac{1+\beta}{4\beta}\right)^{2} tan^{2}\Psi}}{\frac{R}{Q}I_{tot}^{2}}$$

Now let's approximate:

$$\frac{1+\beta}{4\beta} \approx \frac{1}{4} \qquad \frac{\beta-1}{\beta+1} \approx 1$$

Solve for Q_{l} using P_{fwd} and P_{ref}

$$Q_{l}(P_{f}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{f} - I_{tot}V_{c} + 2P_{f} \sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}} tan^{2}\Psi}}{\frac{R}{Q}I_{tot}^{2}}$$

$$Q_{l}(P_{r}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{r} + I_{tot}V_{c} + 2P_{r}\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi}}{\frac{R}{Q}I_{tot}^{2}}$$

- All dependent variables are measurable, cavity parameters are known
- We theoretically have all information to record the loaded Q (~external Q)
 of any cavity in CEBAF at any instant of time
- Only negative signs are valid

Solve for Q_{l} using P_{fwd} and P_{ref}

$$Q_{l}(P_{f}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{f} - I_{tot}V_{c} - 2P_{f} \sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}} tan^{2}\Psi}}{\frac{R}{Q} I_{tot}^{2}}$$

$$Q_{l}(P_{r}, I_{tot}, V_{c}, \Psi, \frac{R}{Q}) = \frac{2P_{r} + I_{tot}V_{c} - 2P_{r}\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi}}{\frac{R}{Q}I_{tot}^{2}}$$

Cavity parameter

CRFP (kW)

CRRP (kW)

GMES (MV/m) $\rightarrow V_c = GMES*L_{act}$ Detuning angle (T)DETA (deg.)

R/Q

South linac with Hall D beam current

$$I_{tot} = \begin{pmatrix} Hall\ A\ injected\ I \\ Hall\ B\ injected\ I \\ Hall\ C\ injected\ I \\ Hall\ D\ injected\ I \end{pmatrix} \cdot \begin{pmatrix} passes\ to\ Hall\ A \\ passes\ to\ Hall\ B \\ passes\ to\ Hall\ C \\ 5 \end{pmatrix}^T$$
F. Marhauser

Beam currents and recirculating passes

IBC1H04CRCUR2 (μA), MMSHLAPASS IBC2C24CRCUR3 (nA), MMSHLBPASS IBC3H00CRCUR4 (μA), MMSHLCPASS IBCAD00CRCUR6 (nA), MMSHLDPASS

North linac with Hall D 6th pass in NL

$$I_{tot} = \begin{pmatrix} Hall\ A\ injected\ I \\ Hall\ B\ injected\ I \\ Hall\ C\ injected\ I \\ Hall\ D\ injected\ I \end{pmatrix} \cdot \begin{pmatrix} passes\ to\ Hall\ A \\ passes\ to\ Hall\ B \\ passes\ to\ Hall\ C \\ 6 \end{pmatrix}^T$$

PIT Meeting

Example (1L19)

C20 cavity

R1J4: North Linac Zone J Cavity 4

- Used archived CEBAF data
- Time Stamping: 2018/4/6 to 2018/4/8, when CEBAF beam current was ramped up Same period as used for G.A. Krafft's in a PIT meeting talk for C100 cavities

Example (1L19)

Mismatched cavity, no stub tuner installed \rightarrow too small Q₁

C20 cavity

R1J4: North Linac Zone J Cavity 4

LEM	
CavityType	C25
MaxGSET	8.8 MeV/m
OpsGsetMax	7 MeV/m
PhaseRMS	0.045 volts
Q0	1.43E+9
Qexternal	5.88E+6
TripOffset	8.051 Trips/shift
TripSlope	0.955 Trips/shift

 Q_1 from P_r

 $Q_{\rm I}$ from $P_{\rm f}$

Why discrepancy?

Accuracy of P_{fwd} and P_{ref}

Determination of Unknown Transmission Line Attenuation

$$Q_l\left(P_f, I_{tot}, V_c, \Psi, \frac{R}{Q}\right) = Q_l(P_r, I_{tot}, V_c, \Psi, \frac{R}{Q})$$

$$\frac{2P_f - I_{tot}V_c - 2P_f \sqrt{1 - \frac{I_{tot}V_c}{P_f} - \frac{I_{tot}^2 \cdot V_c^2}{4P_f^2} tan^2 \Psi}}{\frac{R}{Q}I_{tot}^2} = \frac{2P_r + I_{tot}V_c - 2P_r \sqrt{1 + \frac{I_{tot}V_c}{P_r} - \frac{I_{tot}^2 \cdot V_c^2}{4P_r^2} tan^2 \Psi}}{\frac{R}{Q}I_{tot}^2}$$

$$2P_{f} - I_{tot}V_{c} - 2P_{f}\sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}}tan^{2}\Psi} = 2P_{r} + I_{tot}V_{c} - 2P_{r}\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}}tan^{2}\Psi}$$

- To include attenuation α of transmission line (in dB): $P_f \cdot 10^{-\alpha/10}$
- For reflected power: $P_r \cdot 10^{(lpha-\gamma)/10}$, γ (dB) = eventual calibration error of 'stamped' BC

$$2P_{f} \cdot 10^{-\alpha/10} - I_{tot}V_{c} - 2P_{f} \cdot 10^{-\alpha/10} \sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}} tan^{2}\Psi} =$$

$$2P_{r} \cdot 10^{(\alpha-\gamma)/10} + I_{tot}V_{c} - 2 \cdot 10^{(\alpha-\gamma)/10} \sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi}$$

Determination of Unknown Transmission Line Attenuation

$$2P_{f} \cdot 10^{-\alpha/10} - I_{tot}V_{c} - 2P_{f} \cdot 10^{-\alpha/10} \sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}} tan^{2}\Psi} =$$

$$2P_{r} \cdot 10^{(\alpha - \gamma)/10} + I_{tot}V_{c} - 2P_{r} \cdot 10^{(\alpha - \gamma)/10} \sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi}$$

Substitution: $Att = 10^{\alpha(dB)/10}$ (attenuation factor)

Sorting:

$$Att^{2} - \frac{I_{tot}V_{c} \cdot Att}{P_{r} \cdot 10^{-\frac{\gamma}{10}} \left(\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi - 1} \right)} - \frac{P_{f} \left(\sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}} tan^{2}\Psi - 1} \right)}{P_{r} \cdot 10^{-\frac{\gamma}{10}} \left(\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}} tan^{2}\Psi - 1} \right)} = 0$$

Solution:

$$Att = \frac{I_{tot}V(\pm)\left(I_{tot}V_{c}\right)^{2} + 4P_{f} \cdot P_{r} \cdot 10^{-\frac{\gamma}{10}}\left(\sqrt{1 - \frac{I_{tot}V_{c}}{P_{f}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{f}^{2}}} \tan^{2}\Psi - 1\right)\left(\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}}} \tan^{2}\Psi - 1\right)}{2P_{r} \cdot 10^{-\frac{\gamma}{10}}\left(\sqrt{1 + \frac{I_{tot}V_{c}}{P_{r}} - \frac{I_{tot}^{2} \cdot V_{c}^{2}}{4P_{r}^{2}}} \tan^{2}\Psi - 1\right)}$$

Attenuation is: $\alpha(dB) = 10 \cdot Log 10(Att)$

only negative sign is valid

instantenous calibration

Example (1L19-4)

Before Correction:

R1J4: North Linac Zone J Cavity 4

Example (1L19-4)

After Correction:

R1J4: North Linac Zone J Cavity 4

Before Correction:

R1J3: North Linac Zone J Cavity 3

After Correction:

 γ (dB) = 0.03 dB

R1J3: North Linac Zone J Cavity 3

Before Correction:

R1J5: North Linac Zone J Cavity 5

After Correction:

$$\gamma$$
 (dB) = 0 dB

R1J5: North Linac Zone J Cavity 5

Before Correction:

R1J8: North Linac Zone J Cavity 8

After Correction: γ

$$\gamma$$
 (dB) = 0 dB

R1J8: North Linac Zone J Cavity 8

Before Correction:

R1J2: North Linac Zone J Cavity 2

~1 kW fwd. power fluctuations!

After Correction:

$$\gamma$$
 (dB) = 0.07 dB

Jefferson Lab LEM C25 MaxGSET 6.8 MeV/m PhaseRMS 0.05 volts 6.89F+9 Qexternal 4.95E+6 TripOffset 6.388 Trips/shift TripSlope 1.62 Trips/shift

R1J2: North Linac Zone J Cavity 2

More Examples: NL (C20/C50 CMs)

More Examples: NL (C100 CMs)

• Typical non-linear behavior of P_f and P_r observed for C100 cavities

North Linac

Comparison and Update of CED Data

Summary

- Instantaneous Q_I (Q_{ext}) measurements possible with instantaneous power transmission line calibration
- Could be applied for other accelerators, and those with adjustable tuners to verify coupling online
- Use as diagnostic tool? E.g. calibration issues...
- Can missing calibration explain CEBAF energy 'fudge factor'?
 Per Arne: Nominally 1-2 % but "...SRF calibration can sometimes be off by 5-10%."
- Plan forward: Implement new method into EPICS at CEBAF using highly synchronized parameters available from digital RF system
 - talked already to Tomasz Plawski to get started...
- TDB: Identifying worst mismatched cavities and tuning Q_{\parallel} ...

