WT61 Communication protocol

Instructions for use:

Enter commands that need to modify settings or read data

Read Format

- Data is sent in hexadecimal, not ASCII.
- Each data is transmitted in sequence by low byte and high byte, and the two are combined into a signed short type of data. For example, for data DATA1, DATA1L is the low byte and DATA1H is the high byte. The conversion method is as follows:

suppose DATA1 is the actual data, DATA1H is its high-byte part, DATA1L is its lowbyte part

Then: DATA1=(short)((short)DATA1H<<8|DATA1L). It must be noted here that DATA1H needs to be coerced into a signed short type of data before shifting, and the data type of DATA1 ise also a signed short type, so that negative numbers can be represented.

Protoc ol heade r	Data conte	Data lower 8 bits	Data higher 8 bits	SUMC RC						
0x55	TYP E 【1】	DATA1L[7:0]	DATA1H[1 5:8]	DATA2L[7:0]	DATA2H[1 5:8]	DATA3L[7:0]	DATA3H[1 5:8]	DATA4L[7:0]	DATA4H[1 5:8]	SUMC RC 【2】

[1] TYPE(Data content):

TYPE	Remark

0x51	Acceleration
0x52	Angular velocity
0x53	Angle

[2] SUMCRC (Data and Checksum):

SUMCRC=0x55+TYPE+DATA1L+DATA1H+DATA2L+DATA2H+DATA3L+DATA3H+DATA4L+DATA4H

SUMCRC is a char type, taking the lower 8 bits of the checksum

Acceleration output

0x55	0x51	AxL	AxH	AyL	АуН	AzL	AzH	TL	TH	SUM
Name	Desc	ription	Re	Remark						
AxL		leratio 8 bits		Acceleration X=((AxH<<8) AxL)/32768*16g						
АхН		leratio h 8 bit	,.	(g is the acceleration of gravity, preferably 9.8m/s2)						
AyL		leratio		celeration	Y=((AyH<	:<8) AyL)	/32768*	16g		
АуН		leratio h 8 bit		g is the acceleration of gravity, preferably 9.8m/s2))						
AzL	Accel low 8	leratio bits		celeration ?	Z=((AyH<	<8) AyL)	/32768*	16g		
AzH	Accel		n Z (g	(g is the acceleration of gravity, preferably 9.8m/s2)						
TL	8-bit l	lower eratur	^e Te	mperature	calculatio	n formul	a:			
ТН	8-bit l	high eratur		temperature=((TH<<8) TL) / 32768 * 96.38 + 36.53						
SUM	Chec	ksum	SL	M=0x55+0)x51+AxL	+AxH+A	yL+AyH-	+AzL+ <i>F</i>	\zH+Tl	_+Th

Angular velocity output

0x5 5	0x5 2	Wx L	Wx	κH	WyL	WyH	WzL	WzH	VolL	VolH	SUM
Nam e	Des	cripti	ion	Re	mark						
WxL	velc	jular ocity 2 8 bits	S	۸		-i. V (()A	/l	MI.) /202	7 00*200	09/5	
WxH	Angular H velocity X high 8 bits				guiar veio	city X=((V	/xn<<8) [,]	VV XL)/32	768"200	0 ⁻⁷ S	
WyL	velc	jular ocity ` 8 bits	S	Λn	Angular velocity Y=((WyH<<8) WyL)/32768*2000°/s						
WyH	velc	jular ocity ` n 8 bi	Y	An							
WzL	velc	jular ocity 2 8 bits	S	Λn							
WzH	velc	jular ocity 2 n 8 bi	Z								
VolL	Voltage /olL lower 8 bits (For non-Bluetooth products, this data is in			invalid)							

VolH	Voltage high	Voltage calculation formula: Voltage=((VolH<<8) VolL) /100 °C
SUM	Check sum	SUM=0x55+0x52+WxL+WxH+WyL+WyH+WzL+WzH+VoIH+Vo IL

Angle output

0x55	0x53 RollL	RollH	PitchL	PitchH	YawL	YawH	VL	VH	SUM
Name	Descriptio n	Remarks	i						
RollL	Roll angle X lower 8 bits	Dall on all							
RollH	Roll angle X high 8 bits	Roll angi	oll angle X=((RollH<<8) RollL)/32768*180(°)						
PitchL	Pitch angle Y low 8 bits	Ditabase							
Pitch H	Pitch angle Y high 8 bits		Pitch angle Y=((PitchH<<8) PitchL)/32768*180(°)						
YawL	Yaw angle Z low 8 bits								
YawH	Yaw angle Z high 8 bits	Yaw angle Z=((YawH<<8) YawL)/32768*180(°)							
VL	The lower 8 bits of the	Version r	/ersion number calculation formula: (Note: no version number data)						ber

	version number	
VH	Version number high 8 bits	
SUM	checksum	SUM=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+VH+VL

Write format

• The following data, all use Hex code hexadecimal

protocol header	protocol header	command
0xFF 0xAA CMD	0xFF 0xAA CMD	0xFF 0xAA CMD

• The Data is sent in hexadecimal, not ASCII.

Z-axis angle to zero

Instruction	0xFF	0xAA	0x52			
Remark	Z axis angle to zero					
Example	FF AA 52(Z axis angle to zero)					

Addition calibration

Instruction	0xFF	0xAA	0x67			
Remark	Acceleration calibration					
Example	FF AA 67(Acceleration calibration)					

Sleep and Unsleep

Instruction	0xFF	0xAA	0x60			
Remark	Switch sleep mode and work mode					
Example	Currently in working mode, send FF AA 60 to enter sleep mode, currently in sleep mode, send FF AA 60 to enter working mode					

Serial port mode

Instruction	0xFF	0xAA	0x61
Remark	Use serial port, disable IIC		
Example	FF AA 61 (Use serial port)		

IIC Mode

Instruction	0xFF	0xAA	0x62
Remark	Using IIC, disable serial port		
Example	FF AA 62 (IIC mode)		

Baud rate115200

Instruction	0xFF	0xAA	0x63
Remark	The serial port baud rate is 115200, and the return rate is 100Hz		
Example	FF AA 63(Baud rate 为 115200,return rate 为 100Hz)		

Baud rate9600

Instruction	0xFF	0xAA	0x64
Remark	The serial port baud rate is 9600, and the return rate is 20Hz		
Example	FF AA 64(Baud rate is 9600,return rate is 20Hz)		

Horizontal installation

Instruction	0xFF	0xAA	0x65
Remark	Modules are placed horizontally		
Example	FF AA 65 (Horizontal installation)		

Vertical installation

Instruction	0xFF	0xAA	0x66
Remark	Modules are placed vertically		
Example	FF AA 66 (vertical installation)		