UGANDA MARTYRS UNIVERSITY NKOZI

UNIVERSITY EXAMINATIONS DECEMBER 2022

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

END OF SEMESTER ONE FINAL ASSESSMENT

SECOND YEAR EXAMINATION

BSC.GENERAL (II) & Bsc. EDU (II)

PROBABILITY THEORY

DATE: Friday, 16th/12/2022

DURATION: 3HRS (2:00- 5:00 PM)

Instructions:

- 1. Carefully read through ALL the questions before attempting
- 2. ANSWER FOUR (4) Questions ONLY. (Each question carries equal marks)
- 3. No names should be written anywhere on the examination book.
- 4. Ensure that your ID number is indicated on all pages of the examination answer booklet.
- 5. Ensure your work is clear and readable. Untidy work shall be penalized
- 6. Any type of examination Malpractice will lead to automatic disqualification
- 7. Do not write anything on the questions paper.

QUESTION 1

A and B are mutually exclusive events such that, Pr(AUB) = 0.8 and $Pr(AnB^1) = 0.5$

Find the (i) Pr (AnB)

- (ii) Pr (B) (iii) Pr (A¹nB¹) (iv) Pr (A ¹UB) [03 marks @]
- (b) Given two events A and B, explain what is meant by the following terms
- (i) A and B are independent events
- (ii) A and B are mutually exclusive events [02 Marks@]
- © A loaded die with even numbers twice as likely to occur as odd numbers is tossed. What is the probability of?
 - (i) Getting a 5? [04 marks]
 - Getting a 5 given that the number greater than 3 has occurred? [05 marks] (ii)

QUESTION 2

A discrete random variable has a probability distribution

Χ	1	2	3	4
Pr (X= x)	1/2	k	1/8	1/8

- Find. (i) k (ii) E(X) (iii) Var(X) (iv) E(6X + 2) (v) Var(3X 9) [03 marks @]
 - (b) A discrete random variable has a probability distribution

for x = 1, 2, 3, 4 and 0 otherwise P(X=x) = a/X

Determine (i) value of a [02 marks]

- (ii) $Pr(X \leq a)$ [02 marks]
- E(X)[02 marks] (iii)
- The variance and standard deviation of X [04 marks] (iv)

QUESTION 3

- (a) (i) Define decision tree [1 marks]
 - (ii) State the uses of decision tree [4 marks]
- (b) Should we develop a new product or consolidate and why? [10 marks]

Stage I	Stage II	Stage III	
	Through development	Good (pr = 0.4, \$ 1,000,000)	
		Moderate (pr= 0.4, \$ 50,000)	
New product	$(\cos t = \$150,000)$	Poor (pr = 0.2,\$2000)	
		Good (p = 0.1,\$1,000,000)	
		Moderate (pr = 0.2,\$50,000)	
	Rapid development	Poor (pr = 0.7, \$ 2000)	
	(cost= \$80,000)		
and the San of the	Strengthen the product	Good (pr = 0.3, \$ 400,000)	
Consolidate		Moderate (pr= 0.4, \$ 20,000)	
	$(\cos t = \$30,000)$	Poor (pr = 0.3,\$6000)	
	Reap products	Good (pr = 0.6, \$ 20,000)	
		Poor (pr = 0.4,\$2000)	
	$(\cos t = \$0)$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

© The NIC insurance company insures 100,000 cars. Their records indicate that during a year they will pay out the following for accidents;

X in \$ (Dollars)	100,000	50,000	25,000	5,000	1,000
Pr(X=x)	0.0001	0.001	0.002	0.008	0.02

What amount of money would the company expect to pay per car for accidents?

[10 marks]

QUESTION 4

- a) Briefly define the following
 - i. Sample space[2 marks]
 - ii. Independent Events[2 marks]
 - iii. Mutually exclusive[2 marks]
 - iv. Conditional probability[2 marks]
- b) State De Morgan's laws of probability[2 marks]
- c) A and B are events associated with an experiment such that P(B)=1/6, P(B/A)=1/3,

P(An B)=1/12. Find:

- i. P(A) [3 marks]
- ii. P(A/B) [3 marks]
- iii. P(A/B') [5 marks]
- iv. State whether events A and B are independent or mutually exclusive [4 marks]

QUESTION 5

- a) Define the terms:
 - i. Random Variables [2 marks]
 - ii. Continuous random variable [3 marks]
- b) A box contains 9 blue balls and 5 green balls. 2 balls are picked from the box one after the other. Find the probability of picking one blue and one green in any order given:
 - i. The first ball is not replaced [4 marks]
 - ii. The first ball is replaced[4 marks]
- c) A continuous random variable has probability density function as

 $F(x) = \{kx^3$

0≤x ≤4

0

Elsewhere

- i. Find the value of k [4 marks]
- ii. Calculate the E(X) and Var(X) [8 marks]

QUESTION 6

- (a) (i) Define probability of an event [2maks]
- (ii) Three men P, Q and R pack biscuits in a factory. From the batch allocated to them, P packs 55%, Q (30%) and R (15%). The probability that P breaks some biscuits in a packet is 0.7 and the respective probabilities for Q and R, are 0.2 and 0.1 respectively. What is the probability that a packet with broken biscuits found by the checker was packed by P? [6marks]

(b) A business firm from Masaka District saved money for investment. The management wanted to start two projects (I & II). Below are expected sales from the projects.

PROJECT I		PROJECT II	
SALES (\$)	Probability	SALES (\$)	Probability
8,000	0.25	10,000	0.15
8,500	0.60	9,000	0.60
9,500	0.15	5,500	0.25

- The firm's profit is 85% of the sales.
 - (i) Calculate the expected profit under each project. [4 marks]
 - (ii)Which project would you recommend to the management for the better returns? [2 Marks]
 - (iii) Calculate the standard deviation of the distribution of the profits for each project.[4 Marks]
 - (iv) What is the coefficient of variation for each project? [4 Marks]
 - (v)As a risk expert, which project would you recommend to the management?[3 marks] END