Clustering and the EM algorithm

Rich Turner and José Miguel Hernández-Lobato

What is clustering?

image segmentation

network community detection

Campbell et al Social Network Analysis

vector quantisation genetic clustering anomaly detection crime analysis

What is clustering?

- ▶ Roughly speaking, two points belonging to the same cluster are generally more similar to each other or closer to each other than two points belonging to different clusters.
- $\mathcal{D} = \{\mathbf{x}_1 \dots \mathbf{x}_N\} \to \mathbf{s} = \{s_1 \dots s_N\}$
- Unsupervised learning problem (no labels or rewards)

A first clustering algorithm: k-means

A first clustering algorithm: k-means

A first clustering algorithm: k-means

A first clustering algorithm: k-means

A first clustering algorithm: k-means

Question: is K-means guaranteed to converge for any dataset \mathcal{D} ? could one or more of the cluster centres diverge or oscillate?

K-means as optimisation

Let $s_{n,k}=1$ if data point n is assigned to cluster k and zero otherwise

Note:
$$\sum_{k=1}^{K} s_{n,k} = 1$$

Cost:

$$\mathcal{C}(\{s_{n,k}\}, \{m{m}_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} s_{n,k} ||m{x}_n - m{m}_k||^2$$

K-means tries to minimise the cost function $\mathcal C$ with respect to $\{s_{n,k}\}$ and $\{\boldsymbol m_k\}$, subject to $\sum_k s_{n,k} = 1$ and $s_{n,k} \in \{0,1\}$

K-means sequentially:

- ightharpoonup minimises $\mathcal C$ with respect to $\{s_{n,k}\}$, holding $\{\boldsymbol{m}_k\}$ fixed.
- lacktriangle minimises ${\mathcal C}$ with respect to $\{{m m}_k\}$, holding $\{s_{n,k}\}$ fixed.

Where will K-means converge to when run on these data?

Mixture of Gaussians: Generative Model

A lower bound on the log-likelihood $\log p(\boldsymbol{x}|\theta)$

A brief introduction to the Kullback-Leibler divergence

$$\mathcal{KL}(p_1(z)||p_2(z)) = \sum_{z} p_1(z) \log \frac{p_1(z)}{p_2(z)}$$

Important properties:

- ▶ Gibb's inequality: $\mathcal{KL}(p_1(z)|p_2(z)) \ge 0$, equality at $p_1(z) = p_2(z)$
 - proof via Jensen's inequality or differentiation (see MacKay pg. 35)

8.0

0.5

- Non-symmetric: $\mathcal{KL}(p_1(z)|p_2(z)) \neq \mathcal{KL}(p_2(z)|p_1(z))$
 - ▶ hence named *divergence* and not *distance*

Example:

- ▶ binary variables $z \in \{0, 1\}$
- p(z=1) = 0.8 and $q(z=1) = \rho$

A lower bound on the log-likelihood $\log p(\boldsymbol{x}|\theta)$

$$\mathcal{F}(q(\boldsymbol{s}), \boldsymbol{\theta}) = \sum_{\boldsymbol{s}} q(\boldsymbol{s}) \log \frac{p(\boldsymbol{x}|\boldsymbol{s}, \boldsymbol{\theta}) p(\boldsymbol{s}|\boldsymbol{\theta})}{q(\boldsymbol{s})} \Rightarrow \text{simple to compute}$$

$$\mathcal{KL}(q(s)||p(s|x,\theta)) \ge 0 \implies \mathcal{F}(q(s),\theta) \le \log p(x|\theta)$$

$$\mathcal{F}(q(s), \theta) \le \log p(\boldsymbol{x}|\theta)$$

KL-Divergence equal to 0 when
$$q(s) = p(s|x, \theta)$$

Free-energy equal to log-likelihood when
$$q(s) = p(s|x, \theta)$$

$$\mathcal{KL}(q(s)||p(s|x,\theta)) = 0 \implies \mathcal{F}(q(s),\theta) = \log p(x|\theta)$$

$$\mathcal{F}(q(s), \theta) = \log p(x|\theta)$$

Visualising the free-energy lower bound

$$\mathcal{F}(q(s), \theta) = \log p(x|\theta) - \mathcal{KL}(q(s)||p(s|x, \theta))$$

What is the maximal value of the free-energy along this vertical slice?

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s)||p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) \ = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) \| p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(x|\theta) - \mathcal{KL}(q(s)||p(s|x, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) \| p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

$$\mathcal{F}(q(s), \theta) = \log p(\boldsymbol{x}|\theta) - \mathcal{KL}(q(s) || p(s|\boldsymbol{x}, \theta))$$

From initial (random) parameters θ_0 iterate $t=1,\ldots,T$ the two steps:

E step: for fixed θ_{t-1} , maximize lower bound $\mathcal{F}(q(s), \theta_{t-1})$ wrt q(s). As log likelihood $\log p(\boldsymbol{x}|\theta)$ is independent of q(s) this is equivalent to minimizing $\mathcal{KL}(q(s)||p(s|\boldsymbol{x},\theta_{t-1}))$, so $q_t(s) = p(s|\boldsymbol{x},\theta_{t-1})$.

M step: for fixed $q_t(s)$ maximize the lower bound $\mathcal{F}(q_t(s), \theta)$ wrt θ .

$$\mathcal{F}(q(s), \theta) = \sum_{s} q(s) \log (p(x|s, \theta)p(s|\theta)) - \sum_{s} q(s) \log q(s),$$

the second term is the entropy of q(s), independent of θ , so the M step is

$$\theta_t = \underset{\theta}{\operatorname{argmax}} \sum_{\boldsymbol{s}} q_t(\boldsymbol{s}) \log (p(\boldsymbol{x}|\boldsymbol{s}, \theta)p(\boldsymbol{s}|\theta)).$$

Although the steps work with the lower bound (Lyupanov* function), each iteration cannot decrease the log likelihood as

$$\log p(\boldsymbol{s}|\boldsymbol{\theta}_{t-1}) \overset{\text{E step}}{=} \mathcal{F}(q_t(\boldsymbol{s}), \boldsymbol{\theta}_{t-1}) \overset{\text{M step}}{\leq} \mathcal{F}(q_t(\boldsymbol{s}), \boldsymbol{\theta}_t) \overset{\text{lower bound}}{\leq} \log p(\boldsymbol{x}|\boldsymbol{\theta}_t)$$

Application of EM to Mixture of Gaussians (E Step)

- ▶ Assume D = 1 dimensional data for x simplicity
- Gaussian mixture model parameters: $\theta = \{\mu_k, \sigma_k^2, \pi_k\}_{k=1...K}$
- ▶ One latent variable per datapoint $s_n, n = 1 \dots N$ takes values $1 \dots K$.

Probability of the observations given the latent variables and the parameters, and the prior on latent variables are:

$$p(x_n|s_n = k, \theta) = \frac{1}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{1}{2\sigma_k^2}(x_n - \mu_k)^2}$$
 $p(s_n = k|\theta) = \pi_k$

so the E step becomes:

$$q(s_n = k) = p(s_n = k | x_n, \theta) \propto p(x_n, s_n = k | \theta) = \frac{\pi_k}{\sqrt{2\pi\sigma_k^2}} e^{-\frac{1}{2\sigma_k^2}(x_n - \mu_k)^2} = u_{nk}$$

That is:
$$q(s_n = k) = r_{nk} = \frac{u_{nk}}{u_n}$$
 where $u_n = \sum_{k=1}^K u_{nk}$

Posterior for each latent variable, s_n follows a categorical distribution with probability given by the product of the prior and likelihood, renormalised. r_{nk} is called the *responsibility* that component k takes for data point n.

Application of EM to Mixture of Gaussians (M Step)

The lower bound is

$$\mathcal{F}(q(s), \theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} q(s_n = k) \left[\log(\pi_k) - \frac{1}{2\sigma_k^2} (x_n - \mu_k)^2 - \frac{1}{2} \log(\sigma_k^2) \right] + \text{const.}$$

The M step, optimizing $\mathcal{F}(q(s), \theta)$ wrt the parameters, θ

$$\frac{\partial \mathcal{F}}{\partial \mu_j} = \sum_{n=1}^N q(s_n = k) \frac{x_n - \mu_j}{\sigma_j^2} = 0 \Rightarrow \mu_j = \frac{\sum_{n=1}^N q(s_n = j) x_n}{\sum_{n=1}^N q(s_n = j)},$$

$$\frac{\partial \mathcal{F}}{\partial \sigma_j^2} = \sum_{n=1}^N q(s_n = j) \left[\frac{(x_n - \mu_j)^2}{2\sigma_j^4} - \frac{1}{2\sigma_j^2} \right] = 0 \Rightarrow \sigma_j^2 = \frac{\sum_{n=1}^N q(s_n = j) (x_n - \mu_j)^2}{\sum_{n=1}^N q(s_n = j)}$$

$$\frac{\partial [\mathcal{F} + \lambda(1 - \sum_k \pi_k)]}{\partial \pi_j} = \sum_{n=1}^N \frac{q(s_n = j)}{\pi_j} - \lambda = 0 \Rightarrow \pi_j = \frac{1}{N} \sum_{n=1}^N q(s_n = j)$$

E step fills in the values of the hidden variables: M step just like performing **supervised learning** with known (soft) cluster assignments.

EM for MoGs: soft, non-axis aligned K-means

initialise:
$$\theta = \{\pi_k, \boldsymbol{m}_k, \Sigma_k\}_{k=1}^K$$

repeat

E-Step:

$$r_{nk} = p(s_n = k | \boldsymbol{x}_n, \theta) \text{ for } n = 1 \dots N$$

M-Step:

$$\arg\max_{\theta} \sum_{n,k} r_{nk} \log p(s_n = k, \boldsymbol{x} | \theta)$$

until convergence

EM for MoGs: soft, non-axis aligned K-means

initialise:
$$\theta = \{\pi_k, \pmb{m}_k, \Sigma_k\}_{k=1}^K$$
 repeat

E-Step:

$$r_{nk} = p(s_n = k | \boldsymbol{x}_n, \theta) \text{ for } n = 1 \dots N$$

M-Step:

$$\arg\max_{\theta} \sum_{n,k} r_{nk} \log p(s_n = k, \boldsymbol{x} | \theta)$$

until convergence

EM for MoGs: soft, non-axis aligned K-means

initialise: $\theta = \{\pi_k, m{m}_k, \Sigma_k\}_{k=1}^K$ repeat

E-Step:

$$r_{nk} = p(s_n = k | \boldsymbol{x}_n, \theta) \text{ for } n = 1 \dots N$$

M-Step:

$$\arg\max_{\theta} \sum_{n,k} r_{nk} \log p(s_n = k, \boldsymbol{x} | \theta)$$

until convergence

EM for MoGs: soft, non-axis aligned K-means

What will happen with this initialisation?

1.5

Summary

- MoG + EM algorithm = soft k-means clustering with non-axis aligned, non-equally weighted clusters
- ► EM can be used to fit **latent variable models** e.g. PCA, Factor analysis, MoGs, HMMs, ...
 - requires tractable posterior $p(s|x,\theta)$ entropy and average log-joint $\mathbb{E}_{q(s|\theta)} \left[\log p(s,x|\theta) \right]$

Limitations

- MoG clusters still have simple shapes (ellipses)
 - a single real cluster might be described by many components
 - more complex cluster models have been developed
- maximum-likelihood can overfit
 - lacktriangleright Bayesian approaches avoid overfitting $p(heta,s|m{x})$
- co-ordinate ascent is often slow to converge (lots of iterations required)
 - ▶ joint optimisation of $\mathcal{F}(q(s), \theta)$ faster
 - direct optimisation of log-likelihood $\log p(\boldsymbol{x}|\theta)$

Appendix: proof of KL divergence properties

Minimise Kullback Leibler divergence (relative entropy) $\mathcal{KL}(q(x)||p(x))$: add Lagrange multiplier (enforce q(x) normalises), take variational derivatives:

$$\frac{\delta}{\delta q(x)} \Big[\int q(x) \log \frac{q(x)}{p(x)} dx + \lambda (1 - \int q(x) dx) \Big] = \log \frac{q(x)}{p(x)} + 1 - \lambda.$$

Find staionary point by setting the derivative to zero:

$$q(x) = \exp(\lambda - 1)p(x)$$
, normalization condition $\lambda = 1$, so $q(x) = p(x)$,

which corresponds to a minimum, since the second derivative is positive:

$$\frac{\delta^2}{\delta q(x)\delta q(x)} \mathcal{KL}(q(x)||p(x)) = \frac{1}{q(x)} > 0.$$

The minimum value attained at q(x) = p(x) is $\mathcal{KL}(p(x)||p(x)) = 0$, showing that $\mathcal{KL}(q(x)||p(x))$

- ▶ is non-negative
- lacktriangle attains its minimum 0 when p(x) and q(x) are equal