

University of Connecticut OpenCommons@UConn

Chemistry Education Materials

Department of Chemistry

2-6-2007

The Laplacian in Spherical Polar Coordinates

Carl W. David University of Connecticut, Carl.David@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/chem_educ

Part of the Chemistry Commons

Recommended Citation

David, Carl W., "The Laplacian in Spherical Polar Coordinates" (2007). Chemistry Education Materials. 34. https://opencommons.uconn.edu/chem_educ/34

The Laplacian in Spherical Polar Coördinates

C. W. David

Department of Chemistry

University of Connecticut

Storrs, Connecticut 06269-3060

(Dated: February 6, 2007)

I. SYNOPSIS

In treating the Hydrogen Atom's electron quantum mechanically, we normally convert the Hamiltonian from its Cartesian to its Spherical Polar form, since the problem is variable separable in the latter's coördinate system. This reading treats the brute-force method of effecting the transformation of the kinetic energy operator, normally called the Laplacian, from one to the other coördinate systems.

II. PRELIMINARY DEFINITIONS

We start with the primitive definitions

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

and

$$z = r \cos \theta$$

and their inverses

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}\frac{z}{r} = \cos^{-1}\frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

and

$$\phi = tan^{-1}\frac{y}{x}$$

and attempt to write (using the chain rule)

$$\frac{\partial}{\partial x} = \left(\frac{\partial r}{\partial x}\right)_{u,z} \left(\frac{\partial}{\partial r}\right)_{\theta,\phi} + \left(\frac{\partial \theta}{\partial x}\right)_{u,z} \left(\frac{\partial}{\partial \theta}\right)_{r,\phi} + \left(\frac{\partial \phi}{\partial x}\right)_{u,z} \left(\frac{\partial}{\partial \phi}\right)_{r,\theta}$$

and

$$\frac{\partial}{\partial y} = \left(\frac{\partial r}{\partial y}\right)_{x,z} \left(\frac{\partial}{\partial r}\right)_{\theta,\phi} + \left(\frac{\partial \theta}{\partial y}\right)_{x,z} \left(\frac{\partial}{\partial \theta}\right)_{r,\phi} + \left(\frac{\partial \phi}{\partial y}\right)_{x,z} \left(\frac{\partial}{\partial \phi}\right)_{r,\theta}$$

and

$$\frac{\partial}{\partial z} = \left(\frac{\partial r}{\partial z}\right)_{x,y} \left(\frac{\partial}{\partial r}\right)_{\theta,\phi} + \left(\frac{\partial \theta}{\partial z}\right)_{x,y} \left(\frac{\partial}{\partial \theta}\right)_{r,\phi} + \left(\frac{\partial \phi}{\partial z}\right)_{x,y} \left(\frac{\partial}{\partial \phi}\right)_{r,\theta}$$

III. PRELIMINARY PARTIAL DERIVATIVES

$$\left(\frac{\partial r}{\partial z}\right)_{x,y} = \cos\theta \tag{3.3}$$

The needed (above) partial derivatives are:

$$\left(\frac{\partial r}{\partial x}\right)_{y,z} = \sin\theta\cos\phi \tag{3.1}$$

$$\left(\frac{\partial r}{\partial y}\right)_{x,z} = \sin\theta\sin\phi$$
 (3.2) and we have as a starting point for doing the θ terms,

Typeset by REVTEX

$$d\cos\theta = -\sin\theta d\theta = \frac{dz}{r} + z \cdot d\left(\frac{1}{r}\right) = \frac{dz}{r} - z \cdot \left(\frac{1}{r^2}\right) dr$$
$$= \frac{dz}{r} - \frac{z}{r^2} \frac{1}{r} \left(xdx + ydy + zdz\right)$$
(3.4)

so that, for example (when dy = dz = 0) we have

$$-\sin\theta d\theta = -\frac{z}{r^2}\frac{x}{r}dx$$

which is

$$-\sin\theta d\theta = -\frac{r\cos\theta}{r^2}\sin\theta\cos\phi dx = \frac{r^2\left(1-\cos^2\theta\right)}{r^3}dz$$

so that

$$\left(\frac{\partial \theta}{\partial x}\right)_{y,z} = \frac{\cos\theta\cos\phi}{r} \tag{3.5}$$

$$\left(\frac{\partial \theta}{\partial y}\right)_{r,\sigma} = \frac{\cos \theta \sin \phi}{r} \tag{3.6}$$

but, for the z-equation, we have

$$-\sin\theta d\theta = \frac{dz}{r} - \frac{z}{r^2} \frac{1}{r} z dz$$

which is

$$-\sin\theta d\theta = \left(\frac{1}{r} - \frac{z^2}{r^3}\right) dz = \frac{r^2 - z^2}{r^3} dz$$

$$-\sin\theta d\theta = \left(\frac{1}{r} - \frac{z^2}{r^3}\right) dz = \frac{r^2 \sin^2\theta}{r^3} dz$$

so one has

$$\left(\frac{\partial \theta}{\partial z}\right)_{x,y} = -\frac{\sin \theta}{r} \tag{3.7}$$

Next, we have (as an example)

$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \tan^{-1} \frac{y}{x}$$

and taking the partial derivatives on both sides, we obtain

$$\frac{1}{\cos\vartheta}d(\sin\phi) + \frac{\sin\phi}{-\cos^2\phi}d(\cos\phi)$$

so

$$\left(1 + \frac{\sin^2 \phi}{\cos^2 \phi}\right) d\phi = \frac{dy}{x} - \frac{y}{x^2} dx$$

or

$$\left(\frac{1}{\cos^2\phi}\right)d\phi = \frac{dy}{x} - \frac{y}{x^2}dx$$

so, after multiplying across by $\cos^2 \phi$ leads to (at constant x)

$$\left(\frac{\partial \phi}{\partial y}\right)_{r,\tilde{z}} = \frac{\cos \phi}{r \sin \theta} \tag{3.8}$$

and (at constant y)

$$\left(\frac{\partial \phi}{\partial x}\right)_{y,z} = -\frac{\sin \phi}{r \sin \theta} \tag{3.9}$$

$$\left(\frac{\partial \phi}{\partial z}\right)_{T, y} = 0 \tag{3.10}$$

IV. THE FIRST PARTIAL DERIVATIVE TERMS

Given these results (above) we write

$$\frac{\partial}{\partial z} = \cos \theta \frac{\partial}{\partial r} - \left(\frac{\sin \theta}{r}\right) \frac{\partial}{\partial \theta} \tag{4.1}$$

and

$$\frac{\partial}{\partial y} = (\sin \theta \sin \phi) \frac{\partial}{\partial r} + \left(\frac{\cos \theta \sin \phi}{r}\right) \frac{\partial}{\partial \theta} + \left(\frac{\cos \phi}{r \sin \theta}\right) \frac{\partial}{\partial \phi}$$
(4.2)

and

$$\frac{\partial}{\partial x} = (\sin\theta\cos\phi)\,\frac{\partial}{\partial r} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial}{\partial \theta} + \left(-\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial}{\partial \phi} \tag{4.3}$$

V. GATHERING TERMS TO FORM THE LAPLACIAN

From Equation 4.1 we form

$$\frac{\partial^2}{\partial z^2} = \cos\theta \frac{\partial \left[\cos\theta \frac{\partial}{\partial r} - \left(\frac{\sin\theta}{r}\right) \frac{\partial}{\partial \theta}\right]}{\partial r} - \left(\frac{\sin\theta}{r}\right) \frac{\partial \left(\cos\theta \frac{\partial}{\partial r} - \left(\frac{\sin\theta}{r}\right) \frac{\partial}{\partial \theta}\right]}{\partial \theta}$$
(5.1)

while from Equation 4.2 we obtain

$$\frac{\partial^{2}}{\partial y^{2}} = \left(\sin\theta\sin\phi\right) \frac{\partial\left[\sin\theta\sin\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\partial r\right]}{\partial r}
+ \left(\frac{\cos\theta\sin\phi}{r}\right) \frac{\partial\left[\sin\theta\sin\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\right]}{\partial\theta}
+ \left(\frac{\cos\phi}{r\sin\theta}\right) \frac{\partial\left[\sin\theta\sin\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\right]}{\partial\phi}
(5.2)$$

and from Equation 4.3 we obtain

$$\frac{\partial^{2}}{\partial x^{2}} = (\sin\theta\cos\phi) \frac{\partial \left[\sin\theta\cos\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial}{\partial\theta} - \left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\right]}{\partial r} \\
+ \left(\frac{\cos\theta\cos\phi}{r}\right) \frac{\partial \left[\sin\theta\cos\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial}{\partial\theta} - \left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\right]}{\partial\theta} \\
- \left(\frac{\sin\phi}{r\sin\theta}\right) \frac{\partial \left[\sin\theta\cos\phi\frac{\partial}{\partial r} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial}{\partial\theta} - \left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi}\right]}{\partial\phi} \\
= (5.3)$$

Expanding, we have

$$\frac{\partial^2}{\partial z^2} = \cos^2 \theta \frac{\partial^2}{\partial r^2} + \frac{\cos \theta \sin \theta}{r^2} \frac{\partial}{\partial \theta} - \frac{\sin \theta \cos \theta}{r} \frac{\partial^2}{\partial r \partial \theta} - \left(\frac{\sin \theta}{r}\right) \left(-\sin \theta \frac{\partial}{\partial r} - \cos \theta \frac{\partial}{\partial \theta}\right) - \frac{\sin \theta \cos \theta}{r^2} \frac{\partial}{\partial \theta} + \left(\frac{\sin \theta}{r}\right)^2 \frac{\partial^2}{\partial \theta^2} \tag{5.4}$$

while for the y-equation we have

$$\frac{\partial^2}{\partial y^2} = \sin^2 \theta \sin^2 \phi \frac{\partial^2}{\partial r^2} \tag{5.5}$$

$$+\sin\theta\sin\phi\left[+\left(\frac{\cos\theta\sin\phi}{r^2}\right)\frac{\partial}{\partial\theta}+\left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial^2}{\partial r\partial\theta}\right]$$
 (5.6)

$$+\sin\theta\sin\phi\left[\left(-\frac{\cos\phi}{r^2\sin\theta}\right)\frac{\partial}{\partial\phi} + \left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial r\partial\phi}\right]$$
 (5.7)

$$+\left(\frac{\cos\theta\sin\phi}{r}\right)\left[\cos\theta\sin\phi\frac{\partial}{\partial r} + \sin\theta\sin\phi\frac{\partial^2}{\partial r\partial\theta}\right] \tag{5.8}$$

$$+\left(\frac{\cos\theta\sin\phi}{r}\right)\left[-\left(\frac{\sin\theta\sin\phi}{r}\right)\frac{\partial}{\partial\theta}+\left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial^2}{\partial\theta^2}\right] \tag{5.9}$$

$$+\left(\frac{\cos\theta\sin\phi}{r}\right)\left[-\left(\frac{\cos\phi\cos\theta}{r\sin^2\theta}\right)\frac{\partial}{\partial\phi}+\left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial\phi\partial\theta}\right]$$
(5.10)

$$+\left(\frac{\cos\phi}{r\sin\theta}\right)\left[\sin\theta\cos\phi\frac{\partial}{\partial r}+\sin\theta\sin\phi\frac{\partial^2}{\partial r\partial\phi}\right] \tag{5.11}$$

$$+\left(\frac{\cos\phi}{r\sin\theta}\right)\left[+\left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial}{\partial\theta}+\left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial^2}{\partial\theta\partial\phi}\right]$$
(5.12)

$$+\left(\frac{\cos\phi}{r\sin\theta}\right)\left[-\left(\frac{\sin\phi\cos\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi} + \left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial\phi^2}\right] \tag{5.13}$$

and finally

$$\frac{\partial^2}{\partial x^2} = (\sin\theta\cos\phi)\sin\theta\cos\phi\frac{\partial^2}{\partial r^2} + (\sin\theta\cos\phi)\left[-\left(\frac{\cos\theta\cos\phi}{r^2}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial^2}{\partial\theta\partial r}\right]$$
(5.14)

$$-\left(\sin\theta\cos\phi\right)\left[-\left(\frac{\sin\phi}{r^2\sin\theta}\right)\frac{\partial}{\partial\phi} + \left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial\phi\partial r}\right] \tag{5.15}$$

$$+\left(\frac{\cos\theta\cos\phi}{r}\right)\left[\cos\theta\cos\phi\frac{\partial}{\partial r}+\sin\theta\cos\phi\frac{\partial^2}{\partial r\partial\theta}\right]$$
 (5.16)

$$+\left(\frac{\cos\theta\cos\phi}{r}\right)\left[-\left(\frac{\sin\theta\cos\phi}{r}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial^2}{\partial\theta^2}\right] \tag{5.17}$$

$$+\left(\frac{\cos\theta\cos\phi}{r}\right)\left[+\left(\frac{\sin\phi}{r\sin^2\theta}\right)\frac{\partial}{\partial\phi}-\left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial\phi\partial\theta}\right]$$
(5.18)

$$-\left(\frac{\sin\phi}{r\sin\theta}\right)\left[\sin\theta\sin\phi\frac{\partial}{\partial r} + \sin\theta\cos\phi\frac{\partial^2}{\partial r\partial\phi}\right]$$
 (5.19)

$$-\left(\frac{\sin\phi}{r\sin\theta}\right)\left[-\left(\frac{\cos\theta\sin\phi}{r}\right)\frac{\partial}{\partial\theta} + \left(\frac{\cos\theta\cos\phi}{r}\right)\frac{\partial^2}{\partial\theta\partial\phi}\right]$$
 (5.20)

$$-\left(\frac{\sin\phi}{r\sin\theta}\right)\left[-\left(\frac{\cos\phi}{r\sin\theta}\right)\frac{\partial}{\partial\phi} - \left(\frac{\sin\phi}{r\sin\theta}\right)\frac{\partial^2}{\partial\phi^2}\right]$$
 (5.21)

Now, one by one, we expand completely each of these three terms. We have

$$\frac{\partial^2}{\partial z^2} = \cos^2 \theta \frac{\partial^2}{\partial r^2} \tag{5.22}$$

$$+\frac{\cos\theta\sin\theta}{r^2}\frac{\partial}{\partial\theta}\tag{5.23}$$

$$-\frac{\sin\theta\cos\theta}{r}\frac{\partial^2}{\partial r\partial\theta}\tag{5.24}$$

$$+\left(\frac{\sin^2\theta}{r}\right)\frac{\partial}{\partial r}\tag{5.25}$$

$$-\left(\frac{\sin\theta\cos\theta}{r}\right)\frac{\partial^2}{\partial r\partial\theta}\tag{5.26}$$

$$+\frac{\sin\theta\cos\theta}{r^2}\frac{\partial}{\partial\theta}\tag{5.27}$$

$$+\left(\frac{\sin^2\theta}{r^2}\right)\frac{\partial^2}{\partial\theta^2}\tag{5.28}$$

and, for the y-equation

$$\frac{\partial^2}{\partial y^2} = \sin^2 \theta \sin^2 \phi \frac{\partial^2}{\partial r^2}$$
 (5.29)

$$(5.6) \to +\left(\frac{\sin\theta\cos\theta\sin^2\phi}{r^2}\right)\frac{\partial}{\partial\theta}$$
 (5.30)

$$+ \left(\frac{\cos\theta\sin\theta\sin^2\phi}{r}\right) \frac{\partial^2}{\partial r\partial\theta}$$
 (5.31)

$$(5.7) \rightarrow -\left(\frac{\sin\phi\cos\phi}{r^2}\right)\frac{\partial}{\partial\phi}$$
 (5.32)

$$+\left(\frac{\cos\phi\sin\phi}{r}\right)\frac{\partial^2}{\partial r\partial\phi}\tag{5.33}$$

$$(5.8) \to +\left(\frac{\cos^2\theta\sin^2\phi}{r}\right)\frac{\partial}{\partial r}$$
 (5.34)

$$+\left(\frac{\cos\theta\sin\theta\sin^2\phi}{r}\right)\frac{\partial^2}{\partial r\partial\theta}\tag{5.35}$$

$$-\left(\frac{\sin\theta\cos\theta\sin^2\phi}{r^2}\right)\frac{\partial}{\partial\theta} \tag{5.36}$$

$$(5.9) \to +\left(\frac{\cos^2\theta\sin^2\phi}{r^2}\right)\frac{\partial^2}{\partial\theta^2}$$
 (5.37)

$$-\left(\frac{\cos^2\theta\cos\phi\sin\phi}{r\sin^2\theta}\right)\frac{\partial}{\partial\phi} \tag{5.38}$$

$$+ \left(\frac{\cos\theta\cos\phi\sin\phi}{r^2\sin\theta}\right) \frac{\partial^2}{\partial\phi\partial\theta}$$
 (5.39)

$$(5.10) \to +\left(\frac{\cos^2\phi}{r}\right) \frac{\partial}{\partial r}$$
 (5.40)

$$+\left(\frac{\cos\phi\sin\phi}{r}\right)\frac{\partial^2}{\partial r\partial\phi}\tag{5.41}$$

$$+ \left(\frac{\cos^2\phi\cos\theta}{r^2\sin\theta}\right)\frac{\partial}{\partial\theta} \qquad (5.42)$$

$$(5.12) \to + \left(\frac{\cos\theta\cos\phi\sin\phi}{r^2\sin\theta}\right) \frac{\partial^2}{\partial\theta\partial\phi}$$
 (5.43)

$$(5.13) \to -\left(\frac{\cos^2\phi\sin\phi}{r\sin^2\theta}\right)\frac{\partial}{\partial\phi} \qquad (5.44)$$

$$+ \left(\frac{\cos^2 \phi}{r^2 \sin^2 \theta}\right) \frac{\partial^2}{\partial \phi^2} \tag{5.45}$$

and finally, for the x-equation, we have

ly, for the x-equation, we have
$$(5.17) \rightarrow -\left(\frac{\sin^2\phi}{r}\right) \frac{\partial}{\partial r} \quad (5.57)$$

$$\frac{\partial^2}{\partial x^2} = \sin^2\theta \cos^2\phi \frac{\partial^2}{\partial r^2} \quad (5.46)$$

$$-\left(\frac{\sin\phi \cos\phi}{r}\right) \frac{\partial^2}{\partial r\partial \phi} \quad (5.58)$$

$$(5.14) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2}\right) \frac{\partial}{\partial \theta} \quad (5.47)$$

$$(5.19) \rightarrow +\left(\frac{\cos\theta \sin^2\phi}{r^2 \sin\theta}\right) \frac{\partial}{\partial \theta} \quad (5.59)$$

$$-\left(\frac{\cos\phi \sin\phi}{r^2}\right) \frac{\partial}{\partial \phi} \quad (5.48)$$

$$-\left(\frac{\cos\phi \sin\phi}{r^2 \sin\theta}\right) \frac{\partial^2}{\partial \theta\partial \phi} \quad (5.60)$$

$$-\left(\frac{\sin\phi \cos\phi}{r}\right) \frac{\partial^2}{\partial \phi\partial r} \quad (5.50)$$

$$-\left(\frac{\sin\phi \cos\phi}{r}\right) \frac{\partial^2}{\partial \phi\partial r} \quad (5.51)$$

$$+\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r}\right) \frac{\partial}{\partial r} \quad (5.51)$$

$$+\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial r\partial \theta} \quad (5.52)$$

$$(5.15) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial r\partial \theta} \quad (5.52)$$

$$(5.15) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial r\partial \theta} \quad (5.53)$$

$$(5.17) \rightarrow -\left(\frac{\sin\phi \cos\phi}{r}\right) \frac{\partial^2}{\partial r\partial \phi} \quad (5.59)$$

$$-\left(\frac{\sin\phi \cos\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial r\partial \theta} \quad (5.61)$$

$$+\left(\frac{\sin\phi \cos\phi \cos\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial r\partial \theta} \quad (5.52)$$

$$(5.15) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.53)$$

$$(5.17) \rightarrow -\left(\frac{\sin\phi \cos\phi}{r}\right) \frac{\partial^2}{\partial \theta} \quad (5.58)$$

$$-\left(\frac{\sin\phi \cos\phi}{r^2 \sin\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.52)$$

$$(5.15) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.52)$$

$$(5.15) \rightarrow -\left(\frac{\sin\theta \cos\theta \cos^2\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.53)$$

$$(5.17) \rightarrow -\left(\frac{\sin\phi \cos\phi}{r^2 \sin\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.54)$$

$$-\left(\frac{\sin\phi \cos\phi}{r^2 \sin\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.61)$$

$$+\left(\frac{\sin\phi \cos\phi}{r^2 \sin^2\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.62)$$

$$-\left(\frac{\sin\phi \cos\phi}{r^2 \sin\theta}\right) \frac{\partial^2}{\partial \theta} \quad (5.62)$$

$$-\left(\frac{\sin\phi \cos\phi}{r^2 \sin\phi}\right) \frac{\partial^2}{\partial \theta$$

we obtain (from Equations 5.22, 5.29 and 5.46)

$$\frac{\partial^2}{\partial r^2} \left(\cos^2 \theta + \sin^2 \theta \sin^2 \phi + \sin^2 \theta \cos^2 \phi \right) \to \frac{\partial^2}{\partial r^2}$$

and (from Equations 5.23, 5.26, 5.30, 5.36, 5.42, 5.47,

$$\frac{\partial}{\partial \theta} \left(+ \frac{\cos \theta \sin \theta}{r^2} + \frac{\sin \theta \cos \theta}{r^2} - \frac{\sin \theta \cos \theta \sin^2 \phi}{r^2} - \frac{\sin \theta \cos \theta \sin^2 \phi}{r^2} + \frac{\cos^2 \phi \cos \theta}{r^2 \sin \theta} \right) \\
- \frac{\sin \theta \cos \theta \cos^2 \phi}{r^2} - \frac{\sin \theta \cos \theta \cos^2 \phi}{r^2} + \frac{\cos \theta \sin^2 \phi}{r^2 \sin \theta} \right) \\
\rightarrow \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \tag{5.63}$$

while we obtain from Equations 5.28, 5.37, and 5.54:

 $(5.16) \rightarrow + \left(\frac{\cos\theta\cos\phi}{r}\right) \left(\frac{\cos\phi\sin\phi}{r\sin\theta}\right) \frac{\partial}{\partial\phi}$

$$\frac{\partial^2}{\partial \theta^2} \left(\frac{\sin^2 \theta}{r^2} + \frac{\cos^2 \theta \sin^2 \phi}{r^2} + \frac{\cos^2 \theta \cos^2 \phi}{r^2} \right) \to \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$
 (5.64)

From Equations 5.25, 5.34, 5.40, 5.51, 5.57,

$$\frac{\partial}{\partial r} \left(+ \frac{\sin^2 \theta}{r} + \frac{\cos^2 \theta \sin^2 \phi}{r} + \frac{\cos^2 \phi}{r} + \frac{\cos^2 \theta \cos^2 \phi}{r} - \frac{\sin^2 \phi}{r} \right) \to \frac{2}{r} \frac{\partial}{\partial r}$$
 (5.65)

From Equations 5.32, 5.38, 5.44, 5.49, 5.55 and 5.61 we obtain

 $+\left(\frac{\cos^2\theta\cos^2\phi}{r^2}\right)\frac{\partial^2}{\partial\theta^2}$

 $-\left(\frac{\sin\phi\cos\phi\cos\theta}{r^2\sin\theta}\right)\frac{\partial^2}{\partial\phi\partial\theta} \quad (5.56)$

(5.54)

$$\frac{\partial}{\partial \phi} \left(-\frac{\sin \phi \cos \phi}{r^2} - \frac{\cos^2 \theta \cos \phi \sin \phi}{r \sin^2 \theta} - \frac{\cos^2 \theta \cos \phi \sin \phi}{r \sin^2 \theta} + \frac{\cos \phi \sin \phi}{r^2} + \left(\frac{\cos \theta \cos \phi}{r} \right) + \left(\frac{\cos \theta \cos^2 \phi \sin \phi}{r^2 \sin \theta} \right) + \frac{\sin \phi \cos \phi}{r \sin^2 \theta} \right) \rightarrow 0$$
(5.66)

From Equations 5.45 and 5.62 we obtain

$$\frac{\partial^2}{\partial \phi^2} \left(\frac{\cos^2 \phi}{r^2 \sin^2 \theta} + \frac{\sin^2 \phi}{r^2 \sin^2 \theta} \right) \to \left(\frac{1}{r^2 \sin^2 \theta} \right) \frac{\partial^2}{\partial \phi^2} \tag{5.67}$$

The mixed derivatives yield, first, from Equations 5.33, 5.41, 5.50, and 5.58 leading to

$$\frac{\partial^2}{\partial r \partial \phi} \left(\frac{\cos \phi \sin \phi}{r} + \frac{\cos \phi \sin \phi}{r} - \frac{\sin \phi \cos \phi}{r} - \frac{\sin \phi \cos \phi}{r} \right) \to 0 \tag{5.68}$$

From Equations 5.24, 5.27, 5.35, 5.31 5.52, 5.48

$$\frac{\partial^2}{\partial r \partial \theta} \left(-\frac{\sin \theta \cos \theta}{r} - \frac{\sin \theta \cos \theta}{r} + \frac{\cos \theta \sin \theta \sin^2 \phi}{r} + \frac{\sin \theta \cos \theta \cos^2 \phi}{r} + \frac{\cos \theta \sin \theta \sin^2 \phi}{r} + \frac{\sin \theta \cos \theta \cos^2 \phi}{r} \right) \to 0$$
(5.69)

From Equations 5.39 5.43 5.56 5.60

$$\frac{\partial^{2}}{\partial\phi\partial\theta} \left(\frac{\cos\theta\cos\phi\sin\phi}{r^{2}\sin\theta} + \frac{\cos\phi\sin\phi}{r^{2}\sin\theta} - \left(\frac{\sin\phi\cos\phi\cos\theta}{r^{2}\sin\theta} \right) - \left(\frac{\cos\theta\sin\phi\cos\phi}{r^{2}\sin\theta} \right) \right) \to 0$$
(5.70)

Gathering together the non-vanishing terms, we obtain

$$\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

which is one of the two "classic" forms for ∇^2 . The other is

$$\frac{1}{r^2} \frac{\partial \left(r^2 \frac{\partial}{\partial r}\right)}{\partial r} + \frac{1}{r^2 \sin^2 \theta} \left(\sin \theta \frac{\partial \left(\sin \theta \frac{\partial}{\partial \theta} \right)}{\partial \theta} + \frac{\partial^2}{\partial \phi^2} \right)$$

VI. MAPLE EQUIVALENT

A. Example 1

Here is a set of Maple instructions adjusted from the 2-dimensional code [1] for our 3-dimensional case, which will get you the same result:

```
restart;
f:=g(r,theta,phi);
sin(theta)*cos(phi)*diff(f,r)+((cos(theta)*cos(phi))/r)*diff(f,theta)
-(sin(phi)/(r*sin(theta)))*diff(f,phi);
tx2:=expand(
sin(theta)*cos(phi)*diff(tx,r)+((cos(theta)*cos(phi))/r)*diff(tx,theta)
-(sin(phi)/(r*sin(theta)))*diff(tx,phi));
sin(theta)*sin(phi)*diff(f,r)+((cos(theta)*sin(phi))/r)*diff(f,theta)
+(cos(phi)/(r*sin(theta)))*diff(f,phi);
ty2:=expand(sin(theta)*sin(phi)*diff(ty,r)+((cos(theta)*sin(phi))/r)
*diff(ty,theta)+(cos(phi)/(r*sin(theta)))*diff(ty,phi));
tz := cos(theta)*diff(f,r)
-(sin(theta)/r)*diff(f,theta);
tz2 := expand(cos(theta)*diff(tz,r)-(sin(theta)/r)*diff(tz,theta));
del := tx2+ty2+tz2:
del := algsubs( cos(theta)^2=1-sin(theta)^2, del ):
del := expand(algsubs( cos(phi)^2=1-sin(phi)^2, del ));
```

B. Example 2

Here is another version of the same thing:

```
#CARTESIAN TO SPHERICAL POLAR
    restart:
    with(plots):
Warning, the name changecoords has been redefined
    uu:=u(sqrt(x^2+y^2+z^2), arccos(z/sqrt(x^2+y^2+z^2)), arctan(y,x));
                                uu := u(\sqrt{x^2 + y^2 + z^2}, \arccos(\frac{z}{\sqrt{x^2 + y^2 + z^2}}), \arctan(y, x))
    ux:=diff(uu,x):
>
    uy:=diff(uu,y):
    uz:=diff(uu,z):
   uxx:=diff(ux,x):
   uyy:=diff(uy,y):
    uzz:=diff(uz,z):
   Lapu:=simplify(uxx+uyy+uzz):
    assume(r,positive);
    Lapu:=simplify(subs(x=r*sin(theta)*cos(phi),
    y=r*sin(theta)*sin(phi),
   z = r*cos(theta),
    arctan(sin(theta)*sin(phi),sin(theta)*cos(phi))=phi,
    arccos(cos(theta))=theta,
    Lapu),trig):
   Lapu := subs(arctan(sin(theta)*sin(phi),sin(theta)*cos(phi))=phi,
    arccos(cos(theta))=theta,
    Lapu):
    Lapu := algsubs(-1+cos(theta)^2=-sin(theta)^2,Lapu):
   Lapu:=expand(Lapu);
                      Lapu := \frac{D_{2}(u)(r^{\tilde{}}, \theta, \phi)\sin(\theta)^{2}\cos(\theta)}{r^{\tilde{}2}(\sin(\theta)^{2})^{(3/2)}} + \frac{D_{2,2}(u)(r^{\tilde{}}, \theta, \phi)}{r^{\tilde{}2}} + \frac{D_{3,3}(u)(r^{\tilde{}}, \theta, \phi)}{r^{\tilde{}2}\sin(\theta)^{2}} + \frac{2D_{1}(u)(r^{\tilde{}}, \theta, \phi)}{r^{\tilde{}2}} + D_{1,1}(u)(r^{\tilde{}}, \theta, \phi)
```

It takes some getting used to Maple notation to see that this is the expected result. are better ways to carry out the transformation from Cartesian to Spherical Polar (and indeed any orthogonal) coördinate system.

VII. COMMENTS

The reader should be aware that the brute force methods used here are primitive in the extreme, and that there

[1] Mathias Kawski, http://math.la.asu.edu/ \sim kawski/MAPLE/MAPLE.html