Física I

Clase 6

continuación

módulo II

Turno H

Prof. Pedro Mendoza Zélis

Sonido, efecto Doopler

Sonido: Onda longuitudinal

$$s(x,t) = s_{\text{max}} \cos(kx - \omega t + \varphi_0)$$

- Cuando el émbolo se mueve desplaza a las moléculas vecinas [s(x,t)]
- Cambio de la presión del fluido (p=P-P₀)

Al pasar la onda, se comprime (región con alta densidad: compresión) y se enrarece (región con baja densidad: rarefacción) el medio.

Esta compresión y expansión puede ser descripto como un crecimiento o decrecimiento de la densidad local o de la presión.

$$s(x,t) = s_{\text{max}} \cos(kx - \omega t + \varphi_0)$$
$$p(x,t) = Bk s_{\text{max}} \sin(kx - \omega t + \varphi_0)$$

$$\nabla^{x} \qquad p(x,t) = -B \frac{\partial s(x,t)}{\partial x}$$

$$p(x,t) = p_{\text{max}} \sin(kx - \omega t + \varphi_0)$$

Velocidad del sonido en un gas

$$v = \sqrt{\frac{\gamma RT}{M}}$$

γ: coeficiente de dilatación adiabática

R: constante universal de los gases

T: temperatura en kelvin

M: masa molar del gas

Valores típicos para la atmósfera estándar a nivel del mar:

 γ = 1,4 para el aire

 $R = 8,314 \text{ J/(mol \cdot K)} = 8,314 \text{ kg} \cdot \text{m2/(mol \cdot K} \cdot \text{s2)}$

 $T = 293,15 \text{ K} (20 ^{\circ}\text{C})$

M = 0.029 kg/mol para el aire

 V_{aire} = 341 m/s

Potencia

A medida que la onda se propaga, cada elemento de fluido ejerce una fuerza sobre el de adelante. La fuerza que ejerce sobre el siguiente será:

$$p(x,t) = Bk s_{\text{max}} \sin(kx - \omega t + \varphi_0)$$

$$s(x,t) = s_{\text{max}} \cos(kx - \omega t + \varphi_0)$$

$$u(x,t) = -\omega s_{\text{max}} \sin(kx - \omega t + \varphi_0)$$

$$p(x,t)$$

$$p(x,t) = f(x,t)$$

$$p(x,t) = f(x,t)$$

Fuerza: $F = Ap = ABk s_{max} \sin(kx - \omega t + \varphi_0)$

Potencia:
$$P = \vec{u} \cdot \vec{F} = \left| \frac{\partial s}{\partial t} \right| |Ap| = ABk \omega s_{\text{max}}^2 \sin^2(kx - \omega t + \varphi_0)$$

$$P = \vec{u} \cdot \vec{F} = \left| \frac{\partial s}{\partial t} \right| |Ap| = ABk \omega s_{\text{max}}^2 \sin^2(kx - \omega t + \varphi_0)$$

Potencia media:

$$\langle P \rangle = ABk \omega s_{\text{max}}^2 \int_0^{\tau} \sin^2(kx - \omega t + \varphi_0) dt = \frac{ABk \omega s_{\text{max}}^2}{2}$$

Intensidad (potencia media por unidad de área):

$$I = \frac{\langle P \rangle}{A} = Bk\omega s_{\text{max}}^2 \int_0^{\tau} \sin^2(kx - \omega t + \varphi_0) dt = \frac{Bk\omega s_{\text{max}}^2}{2}$$

$$I = \frac{1}{2} \sqrt{B\rho} \omega^2 s_{\text{max}}^2 = \frac{1}{2} \frac{p_{\text{max}}^2}{\sqrt{B\rho}}$$

Especie	Rango (Hz)
Tortuga	20 - 1.000
Rana	100 - 3.000
Perdiz	200 - 10.000
Gorrión	250 - 12.000
Humano	20 - 20.000
Chimpancé	100 - 20.000
Conejo	300 - 45.000
Perro	50 - 46.000
Gato	30 - 50.000
Cobaya	150 - 50.000
Rata	1.000 - 60.000
Ratón	1.000 - 100.000
Murciélago	3.000 - 120.000
Delfín	1.000 - 130.000
A CONTRACTOR OF THE SECOND	

Hay doce órdenes de magnitud de la intensidad que el oído puede detectar

Se define una escala de intensidad logarítmica: Nivel de intensidad de sonido β

$$\beta = 10 \log \frac{I}{I_{umbral}}$$
 decibeles: dB

$$I_{umbral} = 10^{-12} W / m^2 \Rightarrow 0 dB$$

$$I_{umbral\ de\ dolor} = 1W / m^2 \Rightarrow 120 \text{ dB}$$

ONDAS ESTACIONARIAS (CONTINUACIÓN): Reflexión de una onda de sonido en el extremo de un tubo cerrado y abierto

Extremo cerrado

Condiciones de contorno

s(L,t) = 0 Nodo de desplazamiento

p(L,t) Vientre de presión

s(L,t) Vientre de desplazamiento

$$\frac{\pi}{2}$$

p(L,t) = 0 Nodo de presión

Ondas estacionarias en un tubo cerrado

Ondas de desplazamiento

Ondas estacionarias en un tubo cerrado

Armónico fundamental o primer armónico

$$L = \frac{\lambda_1}{4}$$

Segundo armónico

$$L = \frac{3}{4}\lambda_2$$

Tercer armónico

$$L = \frac{5}{4} \lambda_3$$

$$n = 1, 2....$$

N-ésimo armónico
$$L = \frac{2n-1}{4}\lambda_n$$
 $\lambda_n = \frac{1}{2}$

$$\lambda_n = \frac{4}{2n-1}L$$

Ondas estacionarias en un tubo cerrado

$$\lambda_m = \frac{4L}{(2m-1)}$$

$$f_m = \frac{v}{\lambda_m}$$

$$f_m = (2m-1)f$$

NO APARECEN LOS MULTIPLOS PARES DE LA FECUENCIA FUNDAMENTAL

Ondas estacionarias en un tubo abierto

Armónico fundamental o primer armónico

$$L = \frac{\lambda_1}{2}$$

Segundo armónico

$$L = \lambda_2$$

Tercer armónico

$$L = \frac{3}{2} \lambda_3$$

N-ésimo armónico
$$L = \frac{n}{2} \lambda_n$$
 $\lambda_n = \frac{2}{n} L$

$$\lambda_n = \frac{2}{n}L$$

Ondas estacionarias en un tubo abierto

$$\lambda_m = \frac{2L}{m}$$

$$f_m = \frac{v}{\lambda_m}$$

$$f_m = m \frac{v}{2L}$$

APARECEN TODOS LOS MULTIPLOS DE LA FECUENCIA FUNDAMENTAL

Contenido armónico

The square wave contains only odd harmonics with the amplitudes $A_n = \frac{1}{n}A_1$ Square Wave $\frac{1}{3} \quad \frac{1}{5} \quad \frac{1}{7} \quad \frac{1}{9}$

Efecto Doppler

Cambio de frecuencia detectado en una onda cuando el receptor y/o emisor se mueven respecto al medio

$$f_{\it R}$$
 Frecuencia observada por receptor $f_{\it F}$ Frecuencia emitida la por fuente

$$f_R = f_F$$
 Si NO hay movimiento relativo entre fuente y observador

 $f_R \neq f_F$ Si hay movimiento relativo entre fuente y observador

Frecuencias chicas sonidos más GRAVES

Frecuencias grandes sonidos más AGUDOS

Fuente moviéndose

La velocidad del sonido no depende de la velocidad de la fuente, sino del medio

Cada vibración viaja una distancia vf_{r}^{-1} y cada longitud de onda se alarga en esa distancia

La longitud de onda que llega al observador si la fuente se aleja es

v Velocidad del sonido, siempre positiva

$$v_F$$
 Velocidad de la fuente

$$f_R = \frac{v}{\lambda_R} = \frac{v}{v + v_F} f_F$$
 Frecuencia detectada por el observador

$$\lambda_R = \frac{v}{f_F} + \frac{v_F}{f_F}$$

Frecuencia emitida f_F por la fuente

observador

Si la fuente se aleja

$$\frac{1}{1 + \frac{v_F}{v}} < 1$$

$$f_R = \frac{1}{1 + \frac{v_F}{v}} f_F$$

El policía escucha sonidos más graves

Si acerca la fuente

$$\lambda_R = \frac{1}{f_F} + \frac{F}{f_F}$$

$$f_F$$

$$\frac{1}{1 - \frac{v_F}{v}} > 1$$

$$f_R > f_F$$

El policía escucha sonidos más agudos

Receptor moviéndose

El receptor (policía) se acerca a la fuente

Las crestas se acercan al receptor con una velocidad relativa $\,v_{\scriptscriptstyle R} + v\,$

v Velocidad del sonido

 v_R Velocidad del receptor u observador

 $f_{\scriptscriptstyle F}$ Frecuencia emitida por la fuente

 f_R Frecuencia detectada por el observador

$$f_R = \frac{v_R + v}{\lambda} = \frac{v_R + v}{v} f_F = \left(1 + \frac{v_R}{v}\right) f_F$$

Escucha sonidos más agudos

Fuente y receptor moviéndose

$$f_R = \frac{v \pm v_R}{v \pm v_F} f_F$$

La frecuencia:

- -aumenta cuando receptor y fuente se acercan
- -disminuye cuando receptor y fuente se alejan

Aplicaciones

Medicina: ecodoppler (permite estudiar el flujo en las arterias, las venas, el corazón, etc.).

Vida cotidiana: ejemplo: medidores de velocidad (radar doppler).

Astronomía: medición de velocidades de objetos astronómicos en efecto doppler en luz

