HERACLES: Hyperbolic Embeddings for Reconstruction and Analysis of Lineages

Gilad Turok

Columbia University, Pe'er Lab Supervised by Sitara Persad

Semester Report November 29, 2022

Outline

- 1 Background
- 2 Related Work
- **3** HERACLES Method
- 4 Conclusion

Background: Phylogeny

- **Phylogeny:** evolutionary development and diversification
- Phylogenetic Tree:

Idea: Use inherited genetic alterations to infer phylogenetic trees

Background: CRISPR/Cas9

- Use CRISPR-Cas9 to precisely insert or delete genes in a cell at specific target sites
- These alterations will propogate through cell as they evolve
- In "leaf cells", examine the genes at target sites to reconstruct the cell lineage

Background: Character Matrix

Figure from Anthony's presentation

Related Work: Methods for Lineage Tracing

Distance-Based Methods:

- Define pairwise distance function for two cells $d(c_1, c_2)$ that captures how "far away" their sequences are
- Learn all-to-all distance matrix based D on d
- Construct tree from distance matrix D

6/21

Related Work: Methods for Lineage Tracing

Distance-Based Methods:

- Define pairwise distance function for two cells $d(c_1, c_2)$ that captures how "far away" their sequences are
- Learn all-to-all distance matrix based D on d
- Construct tree from distance matrix D

Maximum Likelihood:

- Assume statistical model of DNA sequence evolution
- Infer probability distribution for diffirerent configigurations of phylogenetic trees
- Optimize over continous branch lengths and discrete tree topologies

6/21

Related Work: Methods for Lineage Tracing

Distance-Based Methods:

- Define pairwise distance function for two cells $d(c_1, c_2)$ that captures how "far away" their sequences are
- Learn all-to-all distance matrix based D on d
- Construct tree from distance matrix D

Maximum Likelihood:

- Assume statistical model of DNA sequence evolution
- Infer probability distribution for diffirerent configigurations of phylogenetic trees
- Optimize over continous branch lengths and discrete tree topologies

Maximum Parsimony: identify phylogenetic tree with smallest number of evolutionary events to explain sequence data **Bayesian Inference:** similar to maximum likelihood, but with Bayesian priors

- Paper: Learning Phylogenetic Trees as Hyperbolic Point Configurations by Benjamin Wilson, 2021
- **Idea:** *Distance-based methods* in hyperbolic space can approximate *maximum likelihood methods*
- **Motivation:** Can embed a tree into hyperbolic space with an error bounded by 2δ

Theorem (Relaxed 4 Point Condition)

Let $\delta \geq 0$. A metric space (X, d) is said to be δ -hyperbolic if, for all $w, x, y, z \in X$,

$$d(x, w) + d(y, z) \le \max \{d(x, y) + d(z, w), d(x, z) + d(y, w)\} + 2\delta$$

Gilad Turok HERACLES November 29, 2022

Figure: Euclidean Tree-Embedding

Figure: Hyperbolic Tree-Embedding

8/21

Gilad Turok HERACLES November 29, 2022

For a Riemannian manifold $M = \mathbb{R}^m$, let a point configuration $\mathbf{x} = x_1 \dots x_n \in M$ with distance function d

For N cells and sequence data Θ of length L, let $\mathcal{L}_{ij}(t\mid\Theta)$ represent the likelihood of an evolutionary distance of t between cells i,j given sequence data Θ

Gilad Turok HERACLES November 29, 2022 9/21

For a Riemannian manifold $M = \mathbb{R}^m$, let a point configuration $\mathbf{x} = x_1 \dots x_n \in M$ with distance function d

For N cells and sequence data Θ of length L, let $\mathcal{L}_{ij}(t\mid\Theta)$ represent the likelihood of an evolutionary distance of t between cells i,j given sequence data Θ

Our objective *logalike* function is

$$\mathbf{I}(\mathbf{x}) = \frac{1}{L} \sum_{i \neq j} \log \mathcal{L}_{ij}(d(x^i, x^j) \mid \Theta)$$

Gilad Turok HERACLES November 29, 2022 9/21

For a Riemannian manifold $M = \mathbb{R}^m$, let a point configuration $\mathbf{x} = x_1 \dots x_n \in M$ with distance function d

For N cells and sequence data Θ of length L, let $\mathcal{L}_{ij}(t\mid\Theta)$ represent the likelihood of an evolutionary distance of t between cells i,j given sequence data Θ

Our objective logalike function is

$$\mathbf{I}(\mathbf{x}) = \frac{1}{L} \sum_{i \neq j} \log \mathcal{L}_{ij}(d(x^i, x^j) \mid \Theta)$$

Unlike typical log-likelihood on treespace, $\mathbf{l}(\mathbf{x})$ is on a Riemannian manifold and is differentiable in \mathbf{x}

Can compute $\nabla_{x^i} \mathbf{I}(x^i)$ to learn ideal point configuration for infering phylogenetic tree

Gilad Turok HERACLES November 29, 2022 9/21

Let σ_i be the base/state at target site σ for cell i

Assume evolution is a continous time markov chain with transition probablities P, infinitesmial generator Q, and stationary distribution π .

Specifically let $P_{\sigma_i\sigma_j}(t)$ represent the probability of observing state σ_j t time steps after observing state σ_i under the Jukes-Cantor model of mutation:

$$P_{ab} = \begin{cases} \frac{1}{4} + \frac{3}{4}e^{-4t/3} := P_{\text{diag}} & \text{if } a = b \\ \frac{1}{4} - \frac{1}{4}e^{-4t/3} := P_{\text{diag}} & \text{otherwise} \end{cases}$$

Figure from Sitara

Jukes-Cantor Model

Objective logalike function:

$$\mathbf{I}(\mathbf{x}) = \frac{1}{L} \sum_{i \neq j} \log \mathcal{L}_{ij}(d(x^i, x^j) \mid \Theta)$$

Likelihood under assumed model of mutation

$$egin{aligned} \mathcal{L}_{\mathit{ij}}(t) &= \prod_{\mathrm{sites}\ \sigma} \pi_{\sigma_{i}} P_{\sigma_{i}\sigma_{j}}(t) \ \log \mathcal{L}_{\mathit{ij}}(t) &= \sum_{\mathrm{sites}\ \sigma} \log P_{\sigma_{i}\sigma_{j}}(t) + C \end{aligned}$$

Expression for gradient with respect to cell *i*

$$\nabla_{\mathbf{x}^i} \mathbf{I}(\mathbf{x}^i) = \frac{1}{L} \sum_{\text{cells } j \text{ sites } \sigma} \frac{(QP(d_{ij}))_{\sigma_i,\sigma_j}}{P(d_{ij})_{\sigma_i\sigma_j}} \nabla_{\mathbf{x}^i} d_{\mathbf{x}^j}$$

Gilad Turok HERACLES November 29, 2022 11/21

HERACLES Method: Model of Mutation

Accumulation of CRISPR-Cas9 mutations evolves as a continous time Markov Chain

Use a different model of mutation because known ancestral state, mutations cannot be undone, etc

Figure from Sitara

For a cell c at site σ , possible mutation states are unedited ϕ_c , mutations 1 . . . M_{σ} , or deleted D:

$$\sigma_{c} \in \{\phi_{c}, 1, 2 \dots M_{\sigma}, D\}$$

For mutation states a, b, let $P_{ab}^{\sigma}(t)$ be the conditional probability of observing state b after t time units have passed since observing state a.

Gilad Turok HERACLES November 29, 2022 13/21

Because of time-irrervsersibility, distance betwen cells i, j at site σ is determined by distance from common ancestor to each cell.

Let $A(\sigma_i, \sigma_j)$ be the set of all possible ancestors of cells i, j at site σ . Let π_a be the prior of observing ancestral state $a \in A$

$$\mathcal{L}_{ij}(t) = \prod_{ ext{sites } \sigma} \sum_{a \in A(\sigma_i, \sigma_j)} \pi_a \ P_{a\sigma_i}(rac{t}{2}) \ P_{a\sigma_j}(rac{t}{2})$$

Biological constraints ensure set of ancestral states is small

Gilad Turok HERACLES November 29, 2022 14/21

The infinitesmial generator Q is defined below

The time to leave the unedited state and transition to a mutated or deleted state follows an exponential distribution with rate

$$\gamma = \gamma_{M} + \gamma_{D}$$

Given that a transition occurs to another character state, the transition to the observed character state C is $p_{\phi_{\sigma},c}$

After transitioning to a character state, it may transition to a deleted state with rate λ_{D}

Infentiesmal generator Q is defined below with $\sum_i P_{\phi i} = 1$

					~ (±,2,0)		
	ϕ_1	ϕ_2	1	2	3	D	
Φ_1	$-(\lambda_{M1} + \lambda_{D})$	0	$\lambda_{M1}P_{\phi_11}$	$\lambda_{M1}P_{\phi_1^2}$	$\lambda_{M1}P_{\phi_13}$	$\lambda_{_{D}}$	
ϕ_2	0	$-(\lambda_{M2} + \lambda_{D})$	$\lambda_{M2}P_{\phi_2 1}$	$\lambda_{M2}P_{\Phi_2^2}$	$\lambda_{M2}P_{\phi_23}$	$\lambda_{_{D}}$	
1	0	0	$-\lambda_{D}$	0	0	$\lambda_{_{D}}$	
2	0	0	0	$-\lambda_{D}$	0	$\lambda_{_{D}}$	
3	0	0	0	0	$-\lambda_{D}$	$\lambda_{_{D}}$	
D	0	0	0	0	0	0	

Probability transition matrix *P* is derived from *Q*:

$$P(t) = \exp(Q * t)$$

16/21

Objective logalike function:

$$\mathbf{I}(\mathbf{x}) = \frac{1}{L} \sum_{i \neq j} \log \mathcal{L}_{ij}(d(x^i, x^j) \mid \Theta)$$

Likelihood under assumed model of mutation

$$\mathcal{L}_{ij}(t) = \prod_{\text{sites } \sigma} \sum_{a \in A(\sigma_i, \sigma_j)} \pi_a \ P_{a\sigma_i}(\frac{t}{2}) \ P_{a\sigma_j}(\frac{t}{2})$$

$$\log \mathcal{L}_{ij}(t) = \sum_{\text{sites } \sigma} \log \sum_{a \in A(\sigma_i, \sigma_j)} \pi_a \ P_{a\sigma_i}(\frac{t}{2}) \ P_{a\sigma_j}(\frac{t}{2})$$

Expression for gradient with respect to cell i

$$\nabla_{x^{i}}\mathbf{I}(x^{i}) = \frac{1}{L} \sum_{\text{cells } i \text{ sites } \sigma} \frac{(QP(d_{ij}))_{\sigma_{i},\sigma_{j}}}{P(d_{ij})_{\sigma_{i}\sigma_{j}}} \nabla_{x^{i}} d_{x^{j}}$$

Gilad Turok HERACLES November 29, 2022 17/2

Focused on implementing Riemannian SGD

- 1. Evaluate the gradient of \mathcal{L} w.r.t. the parameters $\boldsymbol{\theta}$ at $\boldsymbol{\theta}^{(t)}$.
- Orthogonally project the gradient onto the tangent space T_{θ(t)} M to get the tangent vector v, pointing in the direction of steepest ascent of L.
- 3. Perform a gradient-step on the surface of the manifold in the negative direction of the tangent vector **v**, to get the updated parameters.

Focused on implementing Riemannian SGD

- 1. Evaluate the gradient of \mathcal{L} w.r.t. the parameters $\boldsymbol{\theta}$ at $\boldsymbol{\theta}^{(t)}$.
- Orthogonally project the gradient onto the tangent space T_{θ(t)} M to get the tangent vector v, pointing in the direction of steepest ascent of L.
- 3. Perform a gradient-step on the surface of the manifold in the negative direction of the tangent vector **v**, to get the updated parameters.

Already have gradient in closed form

This yields a formula for the gradient of $l(x_i)$ as follows:

$$\nabla_{x_i} l(x_i) = \sum_j \sum_{\text{sites } \sigma} \frac{\sum_{a \in A} \pi_a P_{a\sigma_i}(d_{x_j}/2) P_{a\sigma_j}(d_{x_j}/2) \left[Q_{a\sigma_j} + Q_{a\sigma_i}\right]}{2 \sum_{a \in A} \pi_a P_{a\sigma_i}(d_{x_j}/2) P_{a\sigma_j}(d_{x_j}/2)} \times \nabla_{x_i} d_{x_j} \tag{1}$$

We use the expression of the gradient of the distance function as derived by Wilson according to the Hyperboloid model of hyperbolic space.

For any $x, y \in H_{\rho}^{m}$, the gradient of the distance function is given by:

$$\nabla_x d_y = \frac{\rho^{-2} < x, y > x - y}{\sqrt{(\rho^{-1} < x, y >)^2 - \rho^2}}$$
 (2)

Gilad Turok HERACLES November 29, 2022 18/21

Use automatic differentiation to simplify implementation

Use geoopt package that extends PyTorch to work with Riemannian manifolds

Currently finishing implementation

- Compute prior ancestral states π_a
- Update simulated data with Caissopea package
- Extract rate variables for infentiesmal generator Q

Acknowledgements

Massive thank you to Sitara and Prof Pe'er for guidance.

(And thanks to Anthony for his prior work and walking me through his code)