Calculus 4 Exercises!

1. Match each of the following functions with the corresponding contour plot and plot in \mathbb{R}^3 :

$$a(x,y) = \cos x \cos y \, e^{-\sqrt{x^2 + y^2}/4} \qquad b(x,y) = -\frac{xy^2}{x^2 + y^2} \qquad c(x,y) = \frac{1}{4x^2 + y^2 + 1}$$
$$d(x,y) = e^{-y/10} \cos x \qquad e(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} \qquad f(x,y) = y^4 - x^4$$

$$b(x,y) = -\frac{xy^2}{x^2 + y^2}$$

$$c(x,y) = \frac{1}{4x^2 + y^2 + 1}$$

$$d(x,y) = e^{-y/10}\cos x$$

$$e(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

$$f(x,y) = y^4 - x^4$$

Contour plots:

2.

Plots in \mathbb{R}^3 :

axes for the given values of c:

a.
$$f(x,y) = x + y - 1, c = -3, -2, -1, 0, 1, 2, 3$$

b.
$$f(x,y) = x^2 + y^2$$
, $c = 0, 1, 4, 9, 16, 25$

c.
$$f(x,y) = xy, c = -9, -4, -1, 0, 1, 4, 9$$

d.
$$f(x,y) = \sqrt{25 - x^2 - y^2}$$
, $c = 0, 1, 2, 3, 4$

3. Sketch sample level curves and sketch the following functions in \mathbb{R}^3 :

a.
$$f(x, y) = y^2$$

b.
$$f(x,y) = x^2 + y^2$$

c.
$$f(x,y) = 4 - x^2 - y^2$$

d.
$$f(x,y) = 4 - |x| - |y|$$

4. Find these limits or explain why they do not exist:

a.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2 - y^2 + 5}{x^2 + y^2 + 2}$$

b.
$$\lim_{(x,y)\to(1,\pi/6)} \frac{x \sin y}{x^2+1}$$

c.
$$\lim_{(x,y)\to(1,1),x\neq y} \frac{x^2 - 2xy + y^2}{x - y}$$

d.
$$\lim_{\substack{(x,y)\to(0,0)\\x\neq y, x\geq 0, y\geq 0}} \frac{x-y+2\sqrt{x}-2\sqrt{y}}{\sqrt{x}-\sqrt{y}}$$

e.
$$\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$$

f.
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$

g.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{\sqrt{x^4+y^2}}$$

h.
$$\lim_{\substack{(x,y)\to (1,1)\\x\neq y}} \frac{x^2-y^2}{x-y}$$

i.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 - xy^2}{x^2 + y^2}$$

j.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$

k.
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

2. Sketch the level curves f(x,y) = c on the same set of **5.** At what points (x,y) in \mathbb{R}^2 are the following functions continuous?

a.
$$sin(x + y)$$

b.
$$ln(x^2 + y^2)$$

c.
$$\frac{x^2 + y^2}{x^2 - 3x + 2}$$

d.
$$\frac{1}{x^2 - y}$$

6. Find $\partial f/\partial x$, find $\partial f/\partial y$, and (in the cases where f is a function of z) find $\partial f/\partial z$:

a.
$$f(x, y) = \ln(x + y)$$

b.
$$f(x, y) = e^{xy} \ln y$$

c.
$$f(x,y) = \int_{x}^{y} g(t) dt$$
 where g is continuous

$$d. f(x,y,z) = xy + xz + yz$$

e.
$$f(x,y,z) = (x^2 + y^2 + z^2)^{-1/2}$$

f.
$$f(x,y,z) = \ln(x + 2y + 3z)$$

7. Find all second order partial derivatives:

a.
$$f(x,y) = x + y + xy$$

b.
$$f(x,y) = \sin(xy)$$

c.
$$f(x,y) = xy^2 + x^2y^3 + x^3y^4$$

8. Find the value of $\partial z/\partial x$ at the point (1,1,1) if the equation

$$xy + z^3x - 2yz = 0$$

defines z as a function of the independent variables xand y.

9. Show that each of the following functions satisfy the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$:

a.
$$f(x,y,z) = x^2 + y^2 - 2z^2$$

b.
$$f(x,y,z) = \ln \sqrt{x^2 + y^2}$$

c.
$$f(x,y,z) = \arctan(x/y)$$

10. Show that each of the following functions satisfy the equation $\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}$:

$$a. \ f(x,t) = \sin(x+ct)$$

b.
$$f(x,t) = \tan(2x - 2ct)$$

11. Assume that $w = f(s^3 + t^2)$ and $f'(x) = e^x$. Find $\partial w/\partial t$ and $\partial w/\partial s$.

12. Assume that $w = f(ts^2, s/t)$, $\partial f(x,y)/\partial x = xy$, and $\partial f(x,y)/\partial y = x^2/2$. Find $\partial w/\partial t$ and $\partial w/\partial s$.

13. Suppose that f is a function of u, v, and w where u = x - y, v = y - z, and w = z - x. Show that

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$$

- **14.** Suppose that we substitute the polar equations $x = r \cos \vartheta y = r \sin \vartheta$ into w = f(x, y).
 - a. Show that

$$\frac{\partial w}{\partial r} = f_x \cos \vartheta + f_y \sin \vartheta$$

and

$$\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

- b. Solve the equations in part a. to express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \vartheta$.
- c. Show that

$$(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \vartheta}\right)^2.$$

15. Show that if w = f(u, v) satisfies

$$f_{uu} + f_{vv} = 0$$

and if $u = (x^2 - y^2)/2$ and v = xy, then w satisfies

$$w_{xx} + w_{yy} = 0.$$

- **16.** Find the gradient of the function at the given point. Sketch the gradient and the level curve that passes through the point:
 - a. f(x,y) = y x at (2,1)
 - b. $f(x,y) = \ln(x^2 + y^2)$ at (1,1)
 - c. $f(x,y) = x^2/2 y^2/2$ at $(\sqrt{2},1)$
- **17.** Find the derivative of the function at *P* in the direction of **u**:

a.
$$f(x,y) = 2x^2 + y^2$$
 with $P = (-1,1)$ and $\mathbf{u} = (3,-4)$

b.
$$f(x,y) = \frac{x-y}{xy+2}$$
 with $P = (1,-1)$ and $\mathbf{u} = \langle 12,5 \rangle$

c.
$$f(x,y,z) = x^2 + 2y^2 - 3z^2$$
 with $P = (1,1,1)$ and $\mathbf{u} = \langle 1,1,1 \rangle$

18. Find the directions in which the functions increase and decrease most rapidly at P Then find the derivatives of the functions in these directions.

a.
$$f(x,y) = x^2y + e^{xy} \sin y$$
 with $P = (1,0)$

b.
$$f(x,y,z) = xe^y + z^2$$
 with $P = (1, \ln 2, 1/2)$

c.
$$f(x,y,z) = \ln(xy) + \ln(yz) + \ln(xy)$$
 with $P = (1,1,1)$

19. Is there a direction \mathbf{u} in which the rate of change of $f(x,y) = x^2 - 3xy + 4y^2$ at (1,2) equals 14? Why?

20. Find the tangent plane and the normal line for the surface at the point *P*:

a.
$$x^2 + y^2 + z^2 = 3$$
 at $P = (1, 1, 1)$

b.
$$x^2 + y^2 - z^2 = 18$$
 at $P = (3, 5, -4)$

c.
$$2z - x^2 = 0$$
 at $P = (2, 0, 2)$

d.
$$x^2 + y^2 - 2xy - x + 3y - z = -4$$
 at $P = (2, -3, 18)$

e.
$$z = \ln(x^2 + y^2)$$
 at $P = (1,0,0)$

f.
$$z = 4x^2 + y^2$$
 at $P = (1, 1, 5)$

21. Find all local maxima, local minima, and saddle points for these functions

a.
$$f(x,y) = 2xy - 5x^2 - 2y^2 + 4x + 4y - 4$$

b.
$$f(x,y) = 5xy - 7x^2 + 3x - 6y + 2$$

c.
$$f(x,y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$$

d.
$$f(x,y) = x^3 + 3xy + y^3$$

e.
$$f(x,y) = 4xy - x^4 - y^4$$

f.
$$f(x,y) = \ln(x+y) + x^2 - y$$

22. Find the absolute maxima and absolute minima of the function on the given domain:

a.
$$f(x,y) = 2x^2 - 4x + y^2 - 4y + 1$$
 on the triangular region bounded by the lines $x = 0$, $y = 2$, $y = 2x$ in the first quadrant

b.
$$f(x,y) = x^2 + xy + y^2 - 6x$$
 on $[0,5] \times [-3,3]$

c.
$$f(x,y) = (4x - x^2) \cos y$$
 on $[1,3] \times [-\frac{\pi}{4}, \frac{\pi}{4}]$

23. Find two numbers a and b with $a \le b$ that maximizes

$$\int_a^b (6-x-x^2)\,dx.$$

- **24.** Find the maximum value of xy + yz + xz where x + yz + zzy + z = 6.
- **25.** Find the minimum distance from $z = \sqrt{x^2 + y^2}$ to the point (-6, 4, 0).
- **26.** Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x,y) = xy has its extreme values.
- **27.** Find the extreme values of f(x,y) = xy subject to the constraint $g(x,y) = x^2 + y^2 10 = 0$.
- **28.** Find the points on $x^2y = 2$ closest to the origin.
- **29.** Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest and farthest from the origin.
- 30. Find the dimensions of the rectangle of largest perime- 37. Sketch the region and then evaluate the integral: ter that can be inscribed in the ellipse $x^2/a^2 + y^2/b^2 =$ 1 with sides parallel to the coordinate axes. What is this perimeter?
- **31.** Find the maximum and minimum values of 3x y + 6 subject to the constraint $x^2 + y^2 = 4$.
- **32.** Maximize and minimize xyz^2 on $x^2 + y^2 + z^2 = 1$.
- **33.** Evaluate the following integrals:

a.
$$\int_0^2 \int_{-1}^1 (x - y) \, dx \, dy$$

b.
$$\int_0^1 \int_0^1 \left(1 - \frac{x^2 + y^2}{2}\right) dx dy$$

$$c. \int_0^1 \int_1^2 xy e^x \, dx \, dy$$

d.
$$\iint_R xy \cos y \, dA \text{ where } R = [-1, 1] \times [0, \pi]$$

e.
$$\iint_{\mathbb{R}} y \sin(x+y) dA \text{ where } R = [-\pi, 0] \times [0, \pi]$$

f.
$$\iint_R \frac{y}{x^2y^2 + 1} dA$$
 where $R = [0, 1] \times [0, 1]$

g.
$$\iint_R \frac{1}{xy} dA$$
 where $R = [1,2] \times [1,2]$

- 34. Find the volume of the region bounded above by the paraboloid $z = x^2 + y^2$ and below $[-1, 1] \times [-1, 1]$.
- **35.** Sketch the described regions of integration in \mathbb{R}^2 :

a.
$$-2 \le y \le 2, y^2 \le x \le 4$$

b.
$$0 \le y \le 1, y \le x \le 2y$$

c.
$$1 \le x \le e^2, 0 \le y \le \ln x$$
.

- **36.** Write an iterated integral for $\iint_R dA$ over the region R using both vertical cross sections and horizontal cross sections:
 - a. The triangle in the first quadrant of \mathbb{R}^2 bounded by the graphs of x = 3 and y = 2x.
 - b. The region in the first quadrant of \mathbb{R}^2 bounded by the lines x = 2, y = 1, and the graph of the function $y = e^x$.
 - c. The region bounded by y = 3 2x, y = x, and
 - d. The region bounded by $y = x^2$ and y = x + 2.

a.
$$\int_0^{\pi} \int_0^x x \sin y \, dy \, dx$$

b.
$$\int_{1}^{2} \int_{y}^{y^{2}} dx dy$$

c.
$$\int_0^1 \int_0^{\sqrt{1-x^2}} 8y \, dy \, dx$$

38. Reverse the order of integration and then evaluate the integral:

$$a. \int_0^\pi \int_x^\pi \frac{\sin y}{y} \, dy \, dx$$

b.
$$\int_0^1 \int_y^1 x^2 e^{xy} \, dx \, dy$$

c.
$$\int_0^{2\sqrt{\ln 3}} \int_{y/2}^{\sqrt{\ln 3}} e^{x^2} dx dy$$

d.
$$\iint_R (y-2x^2) dA$$
 where R is the region bounded by $|x|+|y|=1$ in \mathbb{R}^2 .

39. Find the volume of the solid in the first octant bounded by the coordinate planes, the plane x = 3, and the parabolic cylinder $z = 4 - y^2$.

40. Find the area of the following regions using a double integral:

a. The coordinate axes and the line x + y = 2.

b. The parabola $x = -y^2$ and y = 4.

c. The curve $y = e^x$ and the lines y = 0, x = 0, and $y = \ln 2$

d. The lines y = 2x, y = x/2, and y = 3 - x.

41. Change from Cartesian into polar and evaluate:

a.
$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx$$

b.
$$\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$$

c.
$$\int_{-a}^{a} \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dy dx$$

$$d. \int_{\sqrt{2}}^2 \int_0^x y \, dy \, dx$$

e.
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2}{(1+x^2+y^2)^2} \, dy \, dx$$

f.
$$\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} (x+2y) \, dy \, dx$$

g.
$$\int_0^\infty \int_0^\infty \frac{1}{(1+x^2+y^2)^2} \, dy \, dx$$

42. The average value of a function f(x,y) over the region R in \mathbb{R}^2 is given by

$$\frac{1}{\operatorname{area}(R)} \iint_R f(x, y) \, dx \, dy.$$

Find the average values of $f(x,y) = \sqrt{a^2 - x^2 - y^2}$ over the region described by $x^2 + y^2 \le a^2$.

43. Find the average distance from a point on the disk $x^2 + y^2 \le a^2$ to the origin.

44. Let $I = \int_0^\infty e^{-x^2} dx$. Evaluate I^2 by noticing that

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right)$$
$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$$

and switching into polar.

45. Write six different iterated triple integrals for the volume of the following regions in \mathbb{R}^3 :

a. The first octant enclosed by the cylinder $x^2+z^2=4$ and the plane y=3

b. The region bounded by $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$.

c. The region bounded in the first octant that satisfies $z + y \le 1$ and $x^2 \le y$:

46. Evaluate the integrals:

a.
$$\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx$$

b.
$$\int_{0}^{e} \int_{0}^{e^{2}} \int_{0}^{e^{3}} \frac{1}{xyz} dx dy dz$$

c.
$$\int_0^1 \int_0^{3-3x} \int_{x^2+3y^2}^{8-x^2-y^2} dz dy dx$$

d.
$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2}} dz \, dy \, dx$$

e.
$$\int_0^1 \int_0^{2-x} \int_0^{2-x-y} dz \, dy \, dx$$

f.
$$\int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \cos(x+y+z) \, dz \, dy \, dx$$

47. Find the volumes of the following regions in \mathbb{R}^3 :

a. The region in the first octant bounded by the coordinate planes, the plane y+z=2, and the cylinder $x=4-y^2$:

- b. The tetrahedron in the first octant bounded by the coordinate planes and the plane passing through (1,0,0),(0,2,0) and (0,0,3).
- c. The region in the first octant bounded the by the coordinate planes, the plane y=1-x and the surface $z=\cos(\pi x/2)$ for $0 \le x \le 1$:

d. The region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3:

48. Find the center of mass of a thin plate of uniform density bounded by the lines $x=0,\,y=x$, and the parabola $y=2-x^2$ in the first quadrant.

- **49.** Find the center of mass of a thin plate of nonuniform density in the shape of a triangle bounded by the y-axis and the lines y = x and y = 2 x if the density at the point (x, y) is 6x + 3y + 3.
- **50.** Find the mass of the solid and find the center of mass for the following regions in \mathbb{R}^3 :
 - a. The solid region in the first octant bounded by the coordinate planes and the plane x+y+z=2 where the solid has density given by $\delta(x,y,z)=2x$.
 - b. The solid region in the first octant bounded by the planes y=0 and z=0 and the surfaces $z=4-x^24$ and $x=y^2$ where the solid has density given by $\delta(x,y,z)=xy$:

- c. A solid cube in the first octant bounded by the planes x=1,y=1, and z=1 where the density of the cube at (x,y,z) is given by x+y+z+1.
- **51.** Evaluate the integrals in cylindrical coordinates:

a.
$$\int_0^{2\pi} \int_0^1 \int_r^{\sqrt{2-r^2}} dz r dr d\vartheta$$

b.
$$\int_0^{2\pi} \int_0^{\vartheta/(2\pi)} \int_0^{3+24r^2} dz r dr d\vartheta$$

c.
$$\int_{0}^{2\pi} \int_{0}^{3} \int_{0}^{z/3} r^{3} dr dz d\vartheta$$

52. Convert

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2 + y^2) \, dz \, dx \, dy$$

into cylindrical coordinates and evaluate.

53. Let R be the region bounded below by the cone z = 57. Let u = x - y and v = 2x + y. $\sqrt{x^2 + y^2}$ and above by the paraboloid $z = 2 - x^2 - y^2$:

Set up the triple integrals that give the volume of *R* in these three orders: $dz dr d\theta$, $dr dz d\theta$ and $d\theta dz dr$.

54. Evaluate the integrals in spherical coordinates (some orders of integration may be easier than others):

a.
$$\int_0^\pi \int_0^\pi \int_0^{2\sin\varphi} \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\vartheta$$

b.
$$\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 \rho^3 \cos \varphi \sin \varphi \, d\rho \, d\varphi \, d\vartheta$$

c.
$$\int_0^2 \int_{-\pi}^0 \int_{\pi/4}^{\pi/2} \rho^3 \sin(2\varphi) \, d\varphi \, d\vartheta \, d\rho$$

d.
$$\int_{\pi/6}^{\pi/2} \int_{-\pi/2}^{\pi/2} \int_{\csc \varphi}^{2} 5\rho^4 \sin^3 \varphi \, d\rho \, d\vartheta \, d\varphi$$

55. Find the volumes of the region above $z = (x^2 +$ $(y^2)^2 - 1$ and below $z = 4 - 4(x^2 + y^2)$:

56. Find the average value of the function $f(\rho, \varphi, \vartheta) = \rho$ over the solid ball described by $ho \leq 1$ in spherical coordinates.

- - a. Solve for x and y in terms of u and v.

b. Find the Jacobian
$$\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

- c. Sketch the image of the triangle with corners (0,0), (1,1), and (1,-2) in the x,y plane after the transformation into the u, v plane given by u = x - yand v = 2x + y.
- d. Use this transformation to evaluate the integral

$$\iint_{R} (2x^2 - xy - y^2) \, dx \, dy$$

where R is the region in the first quadrant bounded by the lines y = -2x + 4, y = -2x + 7, y = -2x + 7x - 2, and y = x + 1.

- **58.** Let u = 3x + 2y and v = x + 4y.
 - a. Solve for x and y in terms of u and v.
 - b. Find the Jacobian $\begin{vmatrix} \frac{\partial u}{\partial u} & \frac{\partial w}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$.
 - c. Sketch the image of the triangle bounded by the xaxis, the y-axis, and the line x + y = 1 in the x, yplane after the transformation into the u, v plane given by u = 3x + 2y and v = x + 4y.
 - d. Use this transformation to evaluate the integral

$$\iint_R (3x^2 + 14xy + 8y^2) \, dx \, dy$$

where R is the region in the first quadrant bounded by the lines y = -(3/2)x + 1, y = -(3/2)x + 3, y = -(1/4)x, and y = -(1/4)x + 1.

- **59.** Find the area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ in the x, y-plane by using the transformation x = au, y = bv.
- **60.** Use the transformation $x = u^2 v^2$, y = 2uv to evaluate

$$\int_0^1 \int_0^{2\sqrt{1-x}} \sqrt{x^2 + y^2} \, dy \, dx.$$

- **61.** Evaluate the following line integrals:
 - a. $\int_C (x+y) ds$ where C is the straight line segment from (0,1,0) to (1,0,0).

- b. $\int_C (x-y+z-2) ds$ where C is the straight line segment from (0,1,1) to (1,0,1).
- c. $\int_C (x+\sqrt{y}-z^2)\,ds$ where C is the path that starts at (0,0,0) and then ends at (1,1,1) by moving along $\langle t,t^2,0\rangle$ for $t\in[0,1]$ and then moving along $\langle 1,1,s\rangle$ for $s\in[0,1]$.
- d. $\int_C x \, ds$ where C is the straight line segment from (0,0) to (4,2) in \mathbb{R}^2 .
- e. $\int_C x\,ds$ where C follows the parabolic curve $y=x^2$ from (0,0) to (2,4) in \mathbb{R}^2 .
- f. $\int_C x^2/(y^{4/3})\,ds$ where C follows the path described by the parametric equations $x=t^2,y=t^3$ for $t\in[1,2]$.
- g. $\int_C \frac{1}{x^2 + y^2 + 1} ds$ where C travels counterclockwise along the perimeter of the square in \mathbb{R}^2 with corners (0,0), (1,0), (1,1), and (0,1).
- **62.** Find the gradient fields for the following functions:

a.
$$f(x,y,z) = (x^2 + y^2 + z^2)^{-1/2}$$

b.
$$f(x, y, z) = xy + yz + xz$$

63. Find the line integrals of the potential function for the conservative vector field \mathbf{F} along both of the paths C_1 and C_2 where C_1 is the straight line segment from (0,0,0) to (1,1,1) and C_2 is the path described by $\langle t,t^2,t^3\rangle$ for $t\in[0,1]$:

a.
$$\mathbf{F} = \langle 3y, 3x, 4z \rangle$$

b.
$$\mathbf{F} = \langle yz, xz, xy \rangle$$

- **64.** Find the work done by F over the following curves:
 - a. $\mathbf{F} = \langle xy, y, -yz \rangle$ over $\mathbf{r}(t) = \langle t, t^2, t \rangle$ for $t \in [0, 1]$
 - b. $\mathbf{F} = \langle 2y, 3x, x+y \rangle$ over $\mathbf{r}(t) = \langle \cos t, \sin t, t/6 \rangle$ for $t \in [0, 2\pi]$
 - c. $\mathbf{F} = \langle xy, y-x \rangle$ over the straight line in \mathbb{R}^2 from (1,1) to (2,3)
 - d. F is the gradient of $f(x,y)=(x+y)^2$ over the path that travels counterclockwise once around the circle $x^2+y^2=4$ in \mathbb{R}^2 that starts and ends at (2,0).

65. State whether or not the vector field is conservative:

a.
$$\mathbf{F} = \langle yz, xz, xy \rangle$$

b.
$$\mathbf{F} = \langle y, x + z, -y \rangle$$

c.
$$\mathbf{F} = \langle -y, x \rangle$$

66. Find a potential function *f* for the field **F**:

a.
$$\mathbf{F} = \langle 2x, 3y, 4z \rangle$$

b.
$$\mathbf{F} = \langle y + z, x + z, x + y \rangle$$

67. Show that the values of the follow integrals do not depend on the path from A to B:

a.
$$\int_{A}^{B} z^2 dx + 2y dy + 2xz dz$$

b.
$$\int_{A}^{B} \frac{x \, dx + y \, dy + z \, dz}{\sqrt{x^2 + y^2 + z^2}}$$

68. Find a potential function for the gravitational field

$$\mathbf{F} = -GmM \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{3/2}}$$

where G, m, and M are constants. Then show that the word done by the gravitational field in moving a particle from a distance a to a distance b away from the origin is

$$GmM\left(\frac{1}{b}-\frac{1}{a}\right).$$

- **69.** Find the work done by **F** in moving a particle once counterclockwise around the given curve *C*:
 - a. $F = \langle 2xy^3, 4x^2y^2 \rangle$ with C the boundary of the region in the first quadrant enclosed by the x-axis, the line x = 1, and the curve $y = x^3$
 - b. F = $\langle 4x-2y,2x-4y\rangle$ with C the boundary of the circle $(x-2)^2+(y-2)^2=4$
- **70.** Apply Green's theorem to evaluate the integrals:
 - a. $\oint_C (y^2 dx + x^2 dy)$ with C the triangle bounded by x = 0, x + y = 1, and y = 0
 - b. $\oint_C (3y dx + 2x dy)$ with C the boundary of $0 \le x \le \pi$, $0 \le y \le \sin x$
- **71.** Green's area formula says that the area of a region R enclosed by a simple closed curve C in \mathbb{R}^2 is given by

$$\frac{1}{2} \oint_C x \, dy - y \, dx.$$

Use this formula to find the areas of the regions enclosed by these curves:

- a. The circle $\mathbf{r}(t) = \langle a \cos t, a \sin t \rangle$ for $t \in [0, 2\pi]$
- b. The ellipse $\mathbf{r}(t) = \langle a \cos t, b \sin t \rangle$ for $t \in [0, 2\pi]$
- c. The asteroid $\mathbf{r}(t) = \langle \cos^3 t, \sin^3 t \rangle$ for $t \in [0, 2\pi]$
- **72.** Find the surface area of the surface parameterized by $r(u, v) = \langle uv, v + u^2, v u^2 \rangle$ for $u, v \in [0, 1]$.
- **73.** Find the surface integrals:
 - a. Integrate xyz over the triangular surface with vertices (1,0,0), (0,2,0), and (0,1,1).
 - b. Integrate yz over the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.
 - c. Integrate z-x over the cone $z=\sqrt{x^2+y^2}$ for $0\leq z\leq 1$.
- **74.** Find the flux of $\mathbf{F} = \langle -y^2x, xy \rangle$ along the curve in \mathbb{R}^2 parameterized by $\mathbf{r}(t) = \langle t^2, t-t^3 \rangle$ for $t \in [0,1]$.
- 75. Find the divergence of the gravitational field

$$\mathbf{F}(x,y,z) = -GmM \frac{\langle x,y,z \rangle}{(x^2 + y^2 + z^2)^{3/2}}$$

where G, m, M are constants.

- **76.** Use the divergence theorem the calculate the flux of the following vector fields **F** over the closed surface *S*:
 - a. $F = \langle y-z, z-y, y-x \rangle$ and S is the cube bounded by the planes $x = \pm 1, y = \pm 1$, and $z = \pm 1$.
 - b. $\mathbf{F} = \langle x^2, xz, 3z \rangle$ and S is the unit sphere with center the origin.
 - c. $\mathbf{F}=\langle 6x^2+2xy,2y+x^2z,4x^2y^3\rangle$ and S is the cylinder above z=0, below z=3, and contained within $x^2+y^2=4$.
- **77.** Use Stokes' theorem to find the flux of the curl for $\mathbf{F}=\langle x^2-y,4z,x^2\rangle$ around the surface of the cone $z=\sqrt{x^2+y^2}$ for $z\in[0,1]$.
- **78.** Use Stokes' theorem to calculate the flux of the curl for ${\bf F}=\langle y,-xz,xz^2\rangle$ around the surface $z=x^2+4y^2$ beneath the plane z=1.