ABE370 Test 2

Name:

Instructions:

- 1. Put your name on every sheet of paper you hand in for grading, including this sheet.
- 2. Please attach your 1 page of notes to your solution.
- 3. Please <u>clearly indicate the corresponding question/part numbers for your solutions</u>. If partial credit is desired, please clearly show methodology used to solve problems. <u>If the solutions are not clearly explained</u>, no partial credit will be given.
- 4. Provide the answers in the units requested.

Problem 1 (20 points)

The performance equations for each reactor are:

$$\begin{split} \tau_m &= (C_o\text{-}C_m)/k & \tau_p &= (C_o\text{-}C_p)/k \\ \kappa \tau_m &= (C_o\text{-}C_m) & k \tau_p &= (C_o\text{-}C_p) \\ \kappa \tau_m / C_0 &= (C_o\text{-}C_m)/C_0 &= X_m & k \tau_p / C_0 &= (C_o\text{-}C_p)/C_o &= X_p \\ \text{So,} & \tau_m &= C_0 X_m / k & \tau_p &= C_0 X_p / k \\ \tau_m / \tau_p &= & \left[C_0 X_m / k \right] / \left[C_0 X_p / k \right] &= X_m / X_p \end{split}$$

If q and V are the same for both reactors, then $\tau_m = \tau_p$ so $\tau_m/\tau_p = 1$ and $X_m = X_p$. Therefore, neither reactor has a better conversion than the other.

Problem 2 (50 points)

Problem 2 solution

km:= 0.4 vm:= 3 Co:= 18
taul :=
$$\frac{80}{30}$$
 tau1 = 2.667
tau2 := $\frac{75}{30}$ tau2 = 2.5

$$tau := \frac{Co - C}{-r} \qquad tau := \frac{(Co - C) \cdot (Km + C)}{VmC}$$

Solving for C,

$$C(t, Cx) := \frac{(Cx - t\cdot vm - km) + \sqrt{(km - Cx + t\cdot vm)^2 + 4\cdot Cxkm}}{2}$$

C1 := C(tau1, Co)
C1 = 10.368
$$X1 := \frac{Co - C1}{Co}$$
 $X1 = 0.424$
C2 := C(tau2, C1) $C2 = 3.75$
 $X2 := \frac{Co - C2}{Co}$ $X2 = 0.792$

Problem 3 (30 points)

$$k := 0.17! \qquad \underline{Y} := 24! \qquad q := 18! \qquad Co := 7! \qquad tau := \frac{V}{q} \qquad tau = 1.333$$

$$\underline{C}(Cin) := \frac{-1 + \sqrt{1 + 4 \cdot k \cdot tau \cdot Cin}}{2k \cdot tau}$$
 Part A. 3 reactors in series reactor 1
$$C1 := C(Co) \qquad C1 = 15.159$$
 reactor 2
$$C2 := C(C1) \qquad C2 = 6.145$$
 reactor 3
$$C3 := C(C2) \qquad C3 = 3.395$$

$$X3 := 1 - \frac{C3}{Co} \qquad X3 = 0.952$$

Part B. 3ktCo=50.12 (see red arrow below)

Follow curve to N=3, read down to 1-X=0.048_so_X=0.952, which agrees with part A.

