PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

B32B 27/32, B29C 45/00, 45/16, 45/14, B65D 65/40, C08G 61/08

(11) Internationale Veröffentlichungsnummer: WO 00/61370

(43) Internationales Veröffentlichungsdatum:

19. Oktober 2000 (19.10.00)

(21) Internationales Aktenzeichen:

PCT/EP00/02666

A1

(22) Internationales Anmeldedatum:

27. März 2000 (27.03.00)

(30) Prioritätsdaten:

199 16 141.0 199 43 545.6 9. April 1999 (09.04.99)

DE 10. September 1999 (10.09.99) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): TICONA GMBH [DE/DE]; An der B43, D-65451 Kelsterbach (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): JACOBS, Alexandra [DE/DE]; Königsberger Strasse 14, D-65527 Niedemhausen (DE). SCHULZ, Detlef [DE/DE]; Höderlinstrasse 42, D-65779 Kelkheim (DE). SULLIVAN, Vincent [US/US]; 106 Ecklin Lane, Morrisville, NC 27560 (US).

(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: MULTILAYER CONTAINERS EXHIBITING AN IMPROVED ADHERENCE BETWEEN POLYMER LAYERS AS WELL AS EXCELLENT BARRIER CHARACTERISTICS
- (54) Bezeichnung: MEHRSCHICHTBEHÄLTER MIT VERBESSERTER HAFTUNG ZWISCHEN DEN POLYMERSCHICHTEN UND HERVORRAGENDEN BARRIEREEIGENSCHAFTEN

(57) Abstract

The invention relates to multilayer containers containing at least one cycloolefin polymer, to a method for producing these multilayer containers, and to the use of the inventive multilayer containers.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Mehrschichtbehälter (multilayer containers) enthaltend mindestens ein Cycloolefinpolymer, ein Verfahren zur Herstellung dieser Mehrschichtbehälter (multilayer containers) sowie die Verwendung dieser Mehrschichtbehälter (multilayer containers).

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

i							
AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenica	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Osterreich	FR	Prankreich	LU	Luxemburg	SN	Senegal
ΑŪ	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamenin		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
cz	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Beschreibung

15

20

25

Mehrschichtbehälter mit verbesserter Haftung zwischen den Polymerschichten und hervorragenden Barriereeigenschaften

Die vorliegende Erfindung betrifft Mehrschichtbehälter (multilayer containers) enthaltend mindestens ein Cycloolefinpolymer, ein Verfahren zur Herstellung dieser Mehrschichtbehälter (multilayer containers) sowie die Verwendung dieser Mehrschichtbehälter (multilayer containers).

Aus JPA-4 276 253 sind Mehrschichtbehälter bekannt, die eine Schicht eines thermoplastischen gesättigten Norbornenpolymers enthalten, das durch ringöffnende Metathesepolymerisation hergestellt wurde, sowie eine weitere Schicht eines thermoplastischen Polymers mit guten Gasbarriereeigenschaften.

Aus JP-A-9 239 909, JP-A-7 171 858 sowie JP-A-9 011 416 sind Polyolefin-Polycycloolefin-Mehrschichtbehälter bekannt, die aufgrund einer weiteren Schicht eines thermoplastischen Polymers mit guten Sauerstoffbarriereeigenschaften für die Verpackung von Lebensmitteln geeignet sind. Beschrieben wird dabei auch die Verwendung einer haftvermittelnden Schicht, die der Verbesserung der Adhesion zwischen den unterschiedlichen Polymerschichten dient.

EP-A-824 067 sowie JP-A-10 059 343 beschreiben ebenfalls Mehrschichtbehälter aufgebaut aus Polyolefin- und Polycycloolefin-Schichten, die in der Lage sind, Geschmacksstoffe zurückzuhalten und somit z.B. für die Verpackung und Aufbewahrung von Zahnpasta geeignet sind. Es wird hierin beschrieben, daß die Schichten aus verschiedenen Polymeren durch Haftvermittler verbunden werden.

Die Aufgabe der vorliegenden Erfindung liegt darin, Mehrschichtbehälter mit verbesserter Haftung zwischen den Schichten sowie ein wirtschaftliches und umweltfreundliches Verfahren zur Herstellung von Mehrschichtbehältern bereitzustellen. Unter Mehrschichtbehältern im Sinne der Erfindung werden Behälter verstanden, die aus zwei oder mehreren Schichten von Polymeren aufgebaut sind

Die Aufgabe der vorliegenden Erfindung wird durch Mehrschichtbehälter gelöst. die geeignete Cycloolefinpolymere enthalten.

Die erfindungsgemäßen Mehrschichtbehälter enthalten mindestens ein Cycloolefinpolymer, welches polymerisierte Einheiten enthält, die sich von mindestens einem cyclischen, insbesondere polycyclischen Olefin und gegebenenfalls von mindestens einem acyclischen Olefin ableiten. Der Begriff Cycloolefinpolymer umfaßt Cycloolefincopolymere wie auch Cycloolefinhomopolymere.

5

Die erfindungsgemäßen Mehrschichtbehälter enthalten zwei oder mehrere Polymerschichten, von denenn mindestens eine Polymerschicht mindestens ein Cycloolefinpolymer enthält, enthaltend 0,1 bis 100 Gew.-%, bevorzugt 0,1 bis 99,9 Gew.-%, besonders bevorzugt 3 bis 75 mol% bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten, welche sich ableiten von mindestens einem polycyclischen Olefin der Formeln I, II, III, IV, V oder VI

$$\begin{array}{c|c}
CH & CH \\
CH & CH \\
CH & CH
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
CH & CH
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
CH & R^1
\end{array}$$

worin R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und ein Wasserstoffatom oder einen C₁-C₂₀-Kohlenwasserstoffrest, wie einen linearen oder verzweigten C₁-C₈-Alkylrest, C₆-C₁₈-Arylrest, C₇-C₂₀-Alkylenarylrest, einen cyclischen oder acyclischen C₂-C₂₀-Alkenylrest bedeuten, oder einen gesättigten, ungesättigten oder aromatischen Ring bilden, wobei gleiche Reste R¹ bis R⁸ in den verschiedenen Formeln I bis VI eine unterschiedliche Bedeutung haben können, worin n Werte von 0 bis 5 annehmen kann, und enthaltend 0 bis 99,9 Gew.-%, bevorzugt 0,1 bis 99,9 Gew.-%, besonders bevorzugt 5 bis 80 mol% bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten, welche sich ableiten von einem oder mehreren acyclischen Olefinen der Formel VII

5

10

$$R^9 \sim C = C < R^{10}$$
 (VII),

worin R9, R10, R11 und R12 gleich oder verschieden sind und ein Wasserstoffatom, einen linearen, verzweigten, gesättigten oder ungesättigten C₁-C₂₀-Kohlenwasserstoffrest wie einen C₁-C₈-Alkylrest oder einen C₆-C₁₈-Arylrest bedeuten.

5 Bei den cyclischen Olefinen eingeschlossen sind ebenfalls Derivate dieser cyclischen Olefine mit polaren Gruppen wie Halogen-, Hydroxyl-, Ester-, Alkoxyx-, Carboxy-, Cyano-, Amido-, Imido- oder Silylgruppen.

Außerdem können die erfindungsgemäß für mikrostrukturierte Bauteile verwendeten Cycloolefinpolymere 0 bis 45 Gew.-%, bezogen auf die Gesamtmasse des 10 Cycloolefinpolymers, polymerisierte Einheiten enthalten, welche sich ableiten von einem oder mehreren monocyclischen Olefinen der Formel VIII

$$HC = CH$$
 (VIII),

worin m eine Zahl von 2 bis 10 ist.

15

20

Bevorzugt im Sinne der Erfindung sind Cycloolefinpolymere, die polymerisierte Einheiten enthalten, welche sich ableiten von polycyclischen Olefinen der Formeln I oder III, und polymerisierte Einheiten, welche sich ableiten von acyclischen Olefinen der Formel VII.

Besonders bevorzugt sind Cycloolefinpolymere, die polymerisierte Einheiten enthalten, welche sich ableiten von Olefinen mit Norbornengrundstruktur, ganz besonders bevorzugt von Norbornen und Tetracyclododecen und gegebenenfalls Vinylnorbornen oder Norbornadien. Besonders bevorzugt sind auch Cycloolefinpolymere, die polymerisierte Einheiten enthalten, welche sich ableiten von acyclischen Olefinen mit

endständigen Doppelbindungen wie α -Olefinen mit 2 bis 20 C-Åtomen, ganz besonders bevorzugt Ethylen oder Propylen. Außerordentlich bevorzugt sind Norbornen/ Ethylen-und Tetracyclododecen/ Ethylen-Copolymere.

Die Herstellung der Cycloolefinpolymere kann durch eine heterogene oder homogene
Katalyse mit metallorganischen Verbindungen geschehen, die in einer Vielzahl von
Patenten beschrieben ist.

Die erfindungsgemäß verwendeten Cycloolefinpolymere können hergestellt werden bei Temperaturen von -78 bis 200 °C und einem Druck von 0,01 bis 200 bar, in Gegenwart eines oder mehrerer Katalysatorsysteme, welche mindestens eine

Übergangsmetallverbindung und gegebenenfalls einen Cokatalysator und gegebenenfalls ein Trägermaterial enthalten. Als Übergangsmetallverbindungen eignen sich Metallocene, insbesondere stereorigide Metallocene. Beispiele für Katalysatorsysteme, welche für die Herstellung der erfindungsgemäßen Cycloolefinpolymere geeignet sind, sind beschrieben in EP-A-407 870, EP-A-485 893 und EP-A-503 422. Auf diese Referenzen wird hier ausdrücklich Bezug genommen.

Die Herstellung der erfindungsgemäß verwendeten Cycloolefinpolymere kann unter Verwendung eines Metallocens als Übergangsmetallverbindung und einem Aluminoxan der Formel IX a

$$R^{13}$$
 Al-O-Al-O-PAI R^{13} IX a

7

für den linearen Typ und/oder der Formel IX b

für den cyclischen Typ erfolgen, wobei in den Formeln IX a und IX b R13 eine c1-C6-Alkylgruppe oder Phenyl oder Benzyl bedeutet und p eine ganze Zahl von 2 bis 50 ist.

Die Übergangsmetallkomponente kann ein Metallocen der Formel X

5 sein, worin

10

 M^1 ein Metall der Gruppe 3 bis 10 oder der Lanthaniden-Reihe des Periodensystems der Elemente, bevorzugt Titan, Zirkonium. Hafnium, Vanadium, Niob oder Tantal ist, R^{14} und R^{15} gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom. eine C_1 - C_{10} -Alkylgruppe, eine C_1 - C_{10} -Alkoxygruppe, C_6 - C_{10} -Arylgruppe, eine C_6 - C_{10} -Alkylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_7 - C_{40} -Arylalkylgruppe, eine C_7 - C_{40} -Alkylarylgruppe oder eine C_8 - C_{40} -Arylalkenylgruppe bedeuten,

R¹⁶ und R¹⁷ gleich oder verschieden sind und einen ein- oder mehrkernigen Kohlenwasserstoffrest, welcher mit dem Zentralatom M¹ eine Sandwichstruktur bilden kann, bedeuten,

WO 00/61370 PCT/EP00/02666

= BR¹⁹, AIR¹⁹, -Ge-, -Sn-, -O-, -S-, SO₂, NR¹⁹, CO, PR¹⁹ oder P(O)R¹⁹ ist, wobei R¹⁹, R²⁰ und R²¹ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe, eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluorarylgruppe, C₆-C₁₀-Arylgruppe, eine C₆-C₁₀-Aryloxygruppe, eine C₁-C₁₀-Alkoxygruppe, eine C₂-C₁₀-Alkenylgruppe, eine C₈-C₄₀-Arylalkylgruppe, eine C₇-C₄₀-Alkylarylgruppe oder eine C₈-C₄₀-Arylalkenylgruppe bedeuten oder R¹⁹, R²⁰ und R²¹ jeweils mit den sie verbindenden Atomen einen Ring bilden, und
 M² Silizium, Germanium oder Zinn ist.

Beispiele für eingesetzte Übergangsmetallverbindungen sind:

rac-Dimethylsilyl-bis-(1-indenyl)-zirkondichlorid,
rac-Dimethylgermyl-bis-(1-indenyl)-zirkondichlorid,
rac-Phenylmethylsilyl-bis-(1-indenyl)-zirkondichlorid,
rac-Phenylvinylsilyl-bis-(1-indenyl)-zirkondichlorid,
1-Silacyclobutyl-bis-(1-indenyl)-zirkondichlorid,
rac-Diphenylsilyl-bis-(1-indenyl)-hafniumdichlorid,
rac-Phenylmethylsilyl-bis-(1-indenyl)-hafniumdichlorid,

rac-Diphenylsilyl-bis-(1-indenyl)-zirkondichlorid,
rac-Ethylen-1,2-bis-(1-indenyl)-zirkondichlorid,
Dimethylsilyl-(9-fluorenyl)-(cyclopentadienyl)-zirkondichlorid,
Diphenylsilyl-(9-fluorenyl)-(cyclopentadienyl)-zirkondichlorid,

Bis(1-indenyl)-zirkondichlorid,
Diphenylmethylen-(9-fluorenyl)-cyclopentadienylzirkondichlorid,
Isopropylen-(9-fluorenyl)-cyclopentadienyl-zirkondichlorid,
rac-Isopropyliden-bis-(1-indenyl)zirkondichlorid,

25 Phenylmethylmethylen-(9-fluorenyl)-cyclopentadienyl-zirkondichlorid, Isopropylen-(9-fluorenyl)-(1-(3-isopropyl)cyclopentadienyl)-zirkondichlorid, Isopropylen-(9-fluorenyl)(1-(3-methyl)cyclopentadienyl)-zirkondichlorid, Diphenylmethylen-(9-fluorenyl)(1-(3-methyl)cyclopentadienyl)-zirkondichlorid, Methylphenylmethylen-(9-fluorenyl)(1-(3-methyl)cyclopentadienyl)-zirkondichlorid,

Dimethylsilyl-(9-fluorenyl)(1-(3-methyl)-cyclopentadienyl)-zirkondichlorid,
Diphenylsilyl-(9-fluorenyl)(1-(3-methyl)cyclopentadienyl)-zirkondichlorid,
Diphenylmethylen-(9-fluorenyl)(1-(3-tert.-butyl)cyclopentadienyl)-zirkondichlorid,
Isopropylen-(9-fluorenyl)(1-(3-tert.-butyl)cyclopentadienyl)-zirkondichlorid,

Isopropylen-(cyclopentadienyl)-(1-indenyl)-zirkondichlorid,

Diphenylcarbonyl-(cyclopentadienyl)-(1-indenyl)-zirkondichlorid,

Dimethylsilyl-(cyclopentadienyl)-(1-indenyl)-zirkondichlorid,

Isopropylen-(methylcyclopentadienyl)-(1-indenyl)-zirkondichlorid, 4-(η^5 -

cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl-zirkondichlorid, [4- $(\eta^5$ -cyclopentadienyl)-4,7,7-triphenyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -cyclopentadienyl)-4,7-dimethyl-7-phenyl-(η^5 -4,5,6,7-

tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -3'-tert.-butylcyclopentadienyl)-4,7,7-triphenyl-(η^5 -4,5,6,7-

10 tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -3'-tert.-butylcyclopentadienyl)-4,7-dimethyl-7-phenyl-(η^5 -4,5,6,7-tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -3'-methylcyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]zirkondichlorid,

15 [4-(η^5 -3'-methylcyclopentadienyl)-4,7,7-triphenyl-(η^5 -4,5,6,7-tetrahydroindenyl)]zirkondichlorid, [4-(η^5 -3'-methylcyclopentadienyl)-4,7-dimethyl-7-phenyl-(η^5 -4,5,6,7-

tetrahydroindenyl)]zirkondichlorid,
[4-(η⁵-3'-isopropylcyclopentadienyl)-4,7,7-trimethyl-(η⁵-4,5,6,7-

20 tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -3'-isoproplycyclopentadienyl)-4,7,7-triphenyl-(η^5 -4,5,6,7-

tetrahydroindenyl)]zirkondichlorid,

[4-(η^5 -3'-isopropylcyclopentadienyl)-4,7-dimethyl-7-phenyl-(η^5 -4,5,6,7-tetrahydroindenyl)]zirkondichlorid,

25 [4-(η⁵-cyclopentadienyl)(η⁵-4,5-tetrahydropentalen)]zirkondichlorid,

[4-(η^5 -cyclopentadienyl)-4-methyl-(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

[4-(η^5 -cyclopentadienyl)-4-phenyl-(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

[4-(η^5 -cyclopentadienyl)-4-phenyl-(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

[4-(η^5 -3'-methyl-cyclopentadienyl)(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

30 [4-(η^5 -3'-isopropylcyclopentadienyl)(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

[4-(η^5 -3'-benzyl-cyclopentadienyl)(η^5 -4,5-tetrahydropentalen)]zirkondichlorid,

[2,2,4Trimethyl-4-(η^5 -cyclopentadienyl)-(η^5 -4,5-tetrahydropentalen)]-zirkoniumdichlorid,

[2,2,4Trimethyl-4-(η^5 -(3,4-Di-isopropyl)cyclopentadienyl)-(η^5 -4,5-tetrahydropentalen)]-zirkoniumdichlorid.

Die Herstellung der Cycloolefinpolymere kann auch auf anderen, nachfolgend kurz skizzierten Wegen erfolgen. Katalysatorsysteme basierend auf Mischkatalysatoren aus Titansalzen und Aluminiumorganylen werden in DD-A-109 224 und DD-A-237 070 beschreiben. EP-A-156 464 beschreibt die Herstellung mit Katalysatoren auf Vanadiumbasis. EP-A-283 164, EP-A-407 870, EP-A-485 893 und EP-A-503 422 beschreiben die Herstellung von Cycloolefinpolymeren mit Katalysatoren basierend auf löslichen Metallocenkomplexen. Auf die in diesen Patenten zur Herstellung von Cycloolefinpolymeren beschriebenen Herstellungsverfahren und verwendeten Katalysatorsysteme wird hiermit ausdrücklich hingewiesen.

Die Herstellung erfindungsgemäß verwendeter Cycloolefinpolymere kann durch Homound/oder Copolymerisation cyclischer, bevorzugt polycyclicher Olefine unter Ringerhalt erfolgen.

- Die Cycloolefinpolymere können auch durch ringöffnende Polymerisation mindestens eines der Monomere der Formeln I bis VI und anschließende Hydrierung der erhaltenen Produkte hergestellt werden. Gegebenenfalls können die Cycloolefinpolymere auch durch ringöffnende Copolymerisation mindestens eines der Monomere der Formeln I bis VI mit weiteren, z.B. monocyclischen Monomeren der Formel VIII und anschließende
- 20 Hydrierung der erhaltenen Produkte hergestellt werden. Die Herstellung der Cycloolefinpolymere ist in den japanischen Patenten JP-B-3-14882, JP-B-3-122137, JP-B-4-63807, JP-B-2-27424 und JP-B-2-276842 beschrieben. Auf die in diesen Patenten zur Herstellung von Cycloolefinpolymeren beschriebenen Herstellungsverfahren und verwendeten Katalysatorsysteme wird hiermit ausdrücklich hingewiesen.
- 25 Eingeschlossen sind ebenfalls Derivate dieser cyclischen Olefine mit polaren Gruppen, wie Halogen-, Hydroxyl-, Ester-, Alkoxy-, Carboxy-, Cyano-, Amido-, Imido- oder Silylgruppen.

Hydrierte Polymere und Copolymere, wie z.B. von Styrol und Dicyclopentadien sind ausdrücklich ebenfalls geeignet und werden im Rahmen dieser Anmeldung ebenfalls als Cycloolefinpolymere bezeichnet.

30

Die Polymerisation kann auch mehrstufig erfolgen, wobei auch Blockcopolymere entstehen können (DE-A-42 05 416).

Cycloolefinpolymere sind bevorzugt amorphe, transparente und farblose Werkstoffe.

Die Wärmeformbeständigkeiten der Cycloolefinpolymere lassen sich in einem weiten
Bereich einstellen. Als Anhaltspunkt für die Wärmeformbeständigkeit, wie sie nach ISO
75 Teil 1 und Teil 2 an Spritzgußformkörpern bestimmt werden kann, läßt sich für
Cycloolefinpolymere die Glasübergangstemperatur heranziehen. Die beschriebenen
Cycloolefinpolymere weisen Glasübergangstemperaturen zwischen -50 und 220 °C auf.
Bevorzugt sind Glasübergangstemperaturen zwischen 0 und 180 °C, besonders
bevorzugt sind Glasübergangstemperaturen zwischen 40 und 180 °C.

10

15

20

Die mittlere Molmasse der Cycloolefinpolymere läßt sich durch Wasserstoff-Dosierung, Variation der Katalysatorkonzentration oder Variation der Temperatur in bekannter Weise steuern. Die in den erfindungsgemäßen mikrostrukturierten Bauteilen enthaltenen Cycloolefinpolymere weisen massenmittlere Molmassen Mw zwischen 1.000 und 10.000.000 g/mol auf. Bevorzugt sind massenmittlere Molmassen Mw zwischen 5.000 und 5.000.000 g/mol, besonders bevorzugt sind massenmittlere Molmassen Mw zwischen 10.000 und 1.200.000 g/mol.

Die in den erfindungsgemäßen Mehrschichtbehältern enthaltenen Cycloolefinpolymere weisen Viskositätszahlen zwischen 5 und 1.000 ml/g auf. Bevorzugt sind Viskositätszahlen zwischen 20 und 500 ml/g, besonders bevorzugt sind Viskositätszahlen zwischen 30 und 300 ml/g.

Die erfindungsgemäßen Mehrschichtbehältern können auch in einer oder mehreren Schichten Legierungen aus mindestens einem Cycloolefinpolymer und mindestens einem weiteren Polymer in beliebigem Mischungsverhältnissen enthalten.

Für die Legierungen mit Cycloolefinpolymeren sind bevorzugt folgende Polymere einsetzbar: Polyethylen, Polypropylen, Ethylen-Propylen-Copolymere, Polybutylen, Poly(4-methyl-1-penten), Polyisopren, Polyisobutylen, Naturkautschuk, Poly(1-methylenmetacrylat), weitere Polymetacrylate, Polyacrylat, Acrylat-Metacrylat-Copolymere, Polystyrol, Styrol-Acrylnitril-Copolymer, Bisphenol-A-Polycarbonat, weitere Polycarbonate, aromatische Polyestercarbonate, Polyethylenterephthalat,

Polybutylenterephthalat, amorphe Polyacrylat, Nylon – 6, Nylon – 66, weitere Polyamide, Polyaramide, Polyetherketone, Polyoxymethylen, Polyoxyethylen, Polyurethane, Polysulfone, Polyethersulfone, Polyvinylidenfluorid.

Für Legierungen von Cycloolefinpolymeren und Polyolefinen werden bevorzugt
folgende Polyolefine eingesetzt: Homopolymere des Ethylens und Propylens sowie
Copolymere aus diesen beiden Monomeren, Copolymere auf der Basis von Ethylen mit linearen oder verzweigten Olefinen, wie Buten, Penten, Hexen, Hepten, Octen, Nonen, Decen, Undecen und Dodecen, Copolymere auf der Basis von Propylen mit linearen oder verzweigten Olefinen, wie Buten, Penten, Hexen, Hepten, Octen, Nonen, Decen,
Undecen und Dodecen, Terpolymere aus Ethylen, Propylen und linearen oder verzweigten Olefinen, wie Buten, Penten, Hexen, Hepten, Octen, Nonen, Decen,
Undecen und Dodecen.

Die Herstellung der Legierungen kann durch übliche Verfahren erfolgen, z.B. durch gemeinsame Extrusion der Polymerkomponenten aus der Schmelze, gegebenenfalls unter Verwendung weiterer Additive, und anschließende Granulierung.

15

Cycloolefinpolymere lassen sich aus der Schmelze oder auch aus der Lösung verarbeiten. Geeignete Lösungsmittel sind aprotische unpolare Kohlenwasserstoffe wie Dekalin oder Gemische aus linearen und verzweigten Kohlenwasserstoffen.

Die erfindungsgemäßen Mehrschichtbehälter enthalten neben mindestens einer
 Schicht, die mindestens ein Cycloolefinpolymer enthält, mindestens eine weitere Schicht eines anderen Polymers oder einer Legierung weitere Polymere. Geeignete Polymere sind z.B. Polyethylen, Polypropylen, Ethylen-Propylen-Copolymere, Polybutylen, Poly (4-methyl-1-penten), Polyisopren, Polyisobutylen, Naturkautschuk, Poly (1-methylenmetacrylat), weitere Polymethacrylate, Polyacrylat, Acrylat Methacrylat-Copolymere, Polystyrol, Styrol-Acrylnitril-Copolymer, Polyacrylnitril, Bisphenol-A-Polycarbonat, weitere Polycarbonate, aromatische Polyestercarbonate, Polyethylenterephthalat, Polybutylenterephthalat, weitere Polyester, amorphe Polyacrylate, Nylon-6, Nylon-66, weiter Polyamide, Polyaramide, Polyetherketone, Polyoxymethylen, Polyoxyethylen, Polyurethane, Polysulfone, Polyethersulfone,
 Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylidenfluorid.

Besonders geeignet sind Polymere, die gute Gasbarriereeigenschaften aufweisen, wie z.B. Polyester wie z.B. Polyethylenterephthalat, Polyethylennaphthalat sowie flüssigkristalline Polyester, Polyacrylnitril, Polyvinylchlorid, Polyvinylidenchlorid, Ethylvinylalkohol, Polyamide und weitere.

Die Herstellung der erfindungsgemäßen Mehrschichtbehälter kann durch Mehrkomponenten-Spritzguß, Mehrkomponenten-Spritzblasen sowie Mehrkomponenten-Spritzstreckblasen erfolgen.

10

15

20

Die Herstellung von Vorformlingen für Mehrkomponenten-Spritzblasen sowie Mehrkomponenten-Spritzstreckblasen durch Mehrkomponenten-Spritzguß führt zur Mehrschichtvorformlingen. Die Herstellung von Mehrschichtvorformlingen ist z.B. durch Coinjektion zweier oder mehrerer Materialien oder durch Überspritzen der ersten Schicht eines Materials mit einem oder mehreren weiteren Materialien möglich.

Die Herstellung der erfindungsgemäßen Mehrschichtbehälter kann unter Verwendung von Additiven in üblichen Mengen erfolgen, wie z.B. Plastifiziermittel, UV-Stabilisatoren, optische Aufheller, Antioxidantien, Anstistatika, Wärmestabilisatoren oder verstärkende Zusätze wie Glasfasern, Kohlefasern oder Hochmodulfasern wie Polyaramide oder flüssigkristalline Polyester oder ähnliche. Außerdem können Füllstoffe wie anorganische Materialien, Talkum, Titandioxid oder ähnliches verwendet werden. Die genannten Additive und Füllstoffe können bereits vor der Verarbeitung den Polymermaterialien zugegeben worden sein oder aber während der Verarbeitung zugegeben werden.

Es ist möglich, die verschiedenen Polymerschichten durch Verwendung von haftvermittelnden Schichten zu verbinden. Geeignete Materialien hierfür sind z.B. Polyolefine wie die Materialien Tafmer®, Admer® der Firma Mitsui Chemicals.

Es wurde jedoch überraschend gefunden, daß die erfindungsgemäß verwendeten

Cycloolefinpolymere eine hervorragende Haftung zu den anderen Schichten aufweisen.

Es kann daher auf eine Verwendung von haftvermittelnden Schichten verzichtet werden, was aufgrund der geringeren Materialkosten und des geringeren Aufwands bei der Herstellung der Mehrschichtbehälter von großem ökonomischem Vorteil ist.

Die erfindungsgemäß verwendeten Cycloolefincopolymere zeigen überraschenderweise bei Herstellung von erfindungsgemäßen Mehrschichtsystemen ohne haftvermittelnde Schichten eine deutliche Verbesserung der mechanischen Eigenschaften.

Für eine Optimierung der Haftung zwischen den verschiedenen Schichten der erfindungsgemäßen Mehrschichtbehälter ist eine Abstimmung des Schrumpfverhaltens der unterschiedlichen, erfindungsgemäß verwendeten Materialien möglich.

Die erfindungsgemäßen Mehrschichtbehälter weisen gegenüber Behältern, die nur aus Cycloolefinpolymeren hergestellt wurden, eine verbesserte Beständigkeit gegenüber Schlag- und Stoßbeanspruchungen auf sowie ein verbesserte Beständigkeit gegenüber Ölen und Fetten.

10

Durch ihre hohe Reinheit, außerordentlich geringe Wasseraufnahme, hervorragenden Barriereeigenschaften gegenüber Gasen und Feuchtigkeit, ihre gute Blutverträglichkeit, hervorragende Biokompatibilität, gute Sterilisierbarkeit mittels Heißdampf, Heißluft, Ethylenoxidgas und energiereicher Strahlung (Gamma- und Elektronenstrahlen), hohe Beständigkeit gegenüber Säuren, Laugen und polaren Lösungsmitteln eignen sich die erfindungsmäßen Mehrschichtbehälter hervorragend für die Verpackung und Aufbewahrung im medizinischen, pharmazeutischen und kosmetischen und Lebensmittelbereich, z.B. in Form von Spritzen, Injektoren, Kartuschen, Fläschchen und Flaschen, Tuben und sonstigen Behältern.

Aufgrund ihrer besonderen Eigenschaften sind die erfindungsgemäßen
Mehrschichtbehälter außerordentlich gut für die Heißabfüllung von Flüssigkeiten in diese Behälter geeignet, z.B. im Lebensmittelbereich.

Die Erfindung wird anhand der folgenden Beispiele näher erläutert.

Beispiele

5

10

Beispiel 1 - 2K Spritzgiessen

Inlay-Spritzguß von Topas auf einem Zugstab-Werkzeug mit zwei Kavitäten

Für die Versuche wurde eine Krauss Maffei Spritzgießmaschine des Typs KM 90-210B und ein Werkzeug zur Herstellung von DIN-Norm Zugstäben mit zwei Kavitäten in S-Form verwendet.

Zur Vorbereitung wurden von allen Materialien Zugstäbe hergestellt und halbiert. Der angußferne Teil des Zugstabs wurde als Inlay für den Zwei-Komponenten Spritzguß verwendet. Hierzu wurde der halbierte Zugstab (Inlay) an seiner ursprünglichen Stelle in das Werkzeug eingelegt und jeweils mit dem zweiten Polymer (überspritztes Polymer; siehe Tabelle 1) die fehlende Hälfte des Zugstabs aufgespritzt. An den so entstandenen Zugstäben mit Bindenaht wurden im weiterem Verlauf Zugversuche nach ISO 527-1 zur Bestimmung der Bruchspannung und Bruchdehnung durchgeführt (siehe Tabelle 1).

15 Die Verarbeitungsbedingungen sind der Tabelle 2 und 3 zu entnehmen.

Tabelle1

Überspritztes Polymer	Vorgelegter Probekörper	Bruch-	Bruch-
		spannung	dehnung
		(MPa)	(%)
LLDPE Innovex	Topas 6013 Lot 74093	3,9	11,8
Hostalen PPR 1042	Topas 6013 Lot 74093.	3,7	3,6
Impet PET TS6	Topas 6013 Lot 74093	8,3	4,4
Nylon MXD6	Topas 6013 Lot 74093	-	-
Bayer PC CD 2005	Topas 6013 Lot 74093	-	-
DSM Stanylan LDPE-	Topas 8007 Lot 54028	2,4	8,1
Hostalen PPR 1042	Topas 8007 Lot 54028	9,2 .	7,0
Impet PET T86	Topas 8007 Lot 54028	8,7	5,3
Nylon MXD6	Topas 8007 Lot 54028	990	6,3
Bayer PC CD 2005	Topas 8007 Lot 54028	-	•
Topas 6013 Lot 74093	DSM Stanylan LDPE	6,8	53,1
Topas 6013 Lot 74093	Hostalen PPR 1042	1,0	0,85
Topas 6013 Lot 74093	Impet PET T86	3,3	2,6
Topas 6013 Lot 74093	Nylon MXD6	3,7	2,7
Topas 6013 Lot 74093	Bayer PC CD 2005	-	-
Topas 8007 Lot 54028	DSM Stanylan LDPE	4,4	16,9
Topas 8007 Lot 54028	Hostalen PPR 1042	8,5	6,6
Topas 8007 Lot 54028	Impet PET T86	4,8	3,3
Topas 8007 Lot 54028	Nylon MXD6	5,0	3,2
Topas 8007 Lot 54028	Bayer PC CD 2005	6,0	3,9
		<u> </u>	·

Tabelle2: Spritzgußbedingungen:

										,	-	—
Masse- polster (mm)	~5	~4				9~	~5	~2	5	5	4~	~5
Kühlzeit (sek)	>60	>60	>50	>50	>40	>50	>60	>60	<u>>60</u>	>60	>60	>50
Einspritz- druck (bar)*		46	51	37	29	30	40	36	49	34		33
Nachdruck- Einspritz- zeit druck (bar)* (bar)*	~43 / 15	43 / 15	23 / 10	18 / 10	3/10	8 / 10	35 / 15	33 / 15	8 / 10	8 / 10		8 / 10
Einspritz- geschw. (%)***	100	100	100	100	100	100	100	100	100	100	100	100
Plastifizier- hub (mm)	63	63	60	49	55	52	61	60	55	53		55
Schne- cken- drehzahl (%) **	50	50	50	50	50	50	50	50	50	50	50	50
Stau- druck (bar)*	12	12	12	12	12	13	13	13	13	13	13	13
Form temp.	35	20	09	45-30	30-120	35	35	50	45	35	40-20	35
Masse- temp. (°C)	210	230	270	270	280	275	210	230	275	275	280	275
Vorgelegter Probekörper	LDPE Innovex Topas 6013 Lot 210	Topas 6013 Lot 230	Topas 6013 Lot	Topas 6013 Lot 270	Topas 6013 Lot 280	Topas 6013 Lot	Topas 8007 Lot 210	Topas 8007 Lot 230	Topas 8007 Lot 275	Topas 8007 Lot 275	Topas 8007 Lot 280	Topas 8007 Lot 275
Überspritztes Polymer	LLDPE Innovex	Hostalen PPR	Impet PET T86 Topas 6013 Lot 270	Nylon MXD6	Bayer PC CD	Grilamid TR 90 Topas 6013 Lot 275	DSM Stanylan	Hostalen PPR	Impet PET T86	Nylon MXD6	Bayer PC CD	Grilamid TR 90

Drücke sind hydraulische Drücke 50% ~ 180 rpm 100% ~ 200 mm/sec.

. : :

Tabelle3: Spritzgußbedingungen:

Überspritztes Polymer	Vorgelegter Probekörper	Masse- temp. (°C)	Form temp. (°C)	Stau- druck (bar)*	Schnecken- drehzahl (%) **	Plastifizier- hub (mm)	Einspritz- geschw. (%)***	Plastifizier- Einspritz- Nachdruck- hub geschw. zeit (bar)* (mm) (%)***	Einspritz- Kühlzeit druck (sek) (bar)*	Kühlzeit (sek)	Masse- polster (mm)
Topas 6013 Lot DSM Stanylan	DSM Stanylan	270-260	35	13	50	54	100	13 / 10	41	>50	5
14883 6013 Lot	18033 6013 Lot Hostalen PPR	270-260	40	13	50	54	100	8 / 10	47	>50	S
14883 6013 Lot 119861 PET T86	IMBE PET T86	270-260	100	13	50	54	100	8 / 10	47	>50	9
Topas 6013 Lot Nylon MXD6	Nylon MXD6	270-260	100	13	50	54	100	8 / 10	53	>50	9
1983 6013 Lot	14083 6013 Lot Bayer PC CD 2005 270-260	270-260	60-110	13	20		100			>50	9
13833 6013 Lot	1883 6013 Lot Grilamid TR 90	270-260	110	13	50	51	100	8 / 10	52	>50	~4
Topas 8007 Lot DSM Stanylan	DSM Stanylan	230-220	35	13	50	54	100	13 / 10	34	>50	4
74838 8007 Lot	73838 8007 Lot H881alen PPR	230-220	40	13	50	54	100	13 / 10	33	>50	4
74028 8007 Lot	1888 PET T86	230-220	40	13	50	54	100.	13 / 10	34	>50	5
F4828 8007 Lot Nylon MXD6	Nylon MXD6	230-220	40	13	50	54	100	13/10	33	> 20 ·	5
74838 8007 Lot	74038 8007 Lot Bayer PC CD 2005 230-220	230-220	40	13	50	54	100	13/10	34	>50	4,5
76838 8007 Lot	75028 8007 Lot Grilamid TR 90	220-230	40	13	50	54	100	8 / 10	29	>50	~4
74054											

Drücke sind hydraulische Drücke 50% ~ 180 rpm 100% ~ 200 mm/sec.

Beispiel 2 - 2K Spritzgiessen

Koinjektions-Spritzgiessen von Topas auf einem Plattenwerkzeug

Verwendet wurden eine 3 K Klöckner Ferromatik Spritzgußmaschine und eine zentral mit Stangenanguß angespritzte Platte ($300 \times 215 \times 3 \text{ mm}$).

Mittels eines speziellen Spritzkopfes mit gesteuerten und gefederten Nadelverschlüssen wurde mit einer vorgeschalteten 2 K - Verteilscheibe die Spritzkopfdüse so gewählt, daß die Kernkomponente zentral, von der 2ten rohrförmig umhüllt austretenden Materialschmelze gleichzeitig oder beliebig zeitlich versetzt in die Kavität gespritzt wurde. (s.Abb.1)

Die Vermeidung des Vermischens der beiden Materialströme wurde durch die Wahl der jeweiligen Fließfähigkeiten und insbesondere durch die Wahl der Einspritzfolge/ Prozeßführung beeinflußt.

Die Ausbildung der Kernschicht, hier Komponente B, wurde bei transparenten, bzw. bei leicht eingefärbten Materialien kontrolliert. Als Färbungsmittel wurde ein Topas 5013 (Cycloolefincopolymer / Ticona; HDT/B (0,45 N/mm²) = 130°C; Fließindex MVR bei 260°C, 2,16kg = 56ml/min) Sandoplast Blau B Masterbatch in einer Konzentration von ca. 2% zugesetzt.

Die Auswahl der Komponenten A der äußeren Schicht sowie der Komponente B der Kernschicht ist in Tabelle 4 zusammengefaßt.

Tabelle 4: Materialkombinationen:

B-Kompo	nente	A-Komponente	
Topas 8007	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 75°C Fließindex MVR bei 260°C, 2,16kg = 30ml/min	Metocen PP X50081 94-2710 / Tagor	Transparentes Polypropylen
Topas 8007	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 75°C Fließindex MVR bei 260°C, 2,16kg = 30ml/min	K-Resin KR-01 / Phillips	Styrol- Butadien- Copolymer
Topas 6013	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 130°C Fließindex MVR bei 260°C, 2,16kg = 13ml/min	PET Polyester T86 W03 / Kosa	Transparenter Polyester
Topas 6013	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 130°C Fließindex MVR bei 260°C, 2,16kg = 13ml/min	Grilamid TR 90 / EMS-Chemie	Transparentes Polyamid
Topas 6013	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 130°C Fließindex MVR bei 260°C, 2,16kg = 13ml/min	Nylon MXD 6 / Mitsui	Transparentes Polyamid
Topas 6013	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 130°C Fließindex MVR bei 260°C, 2,16kg = 13ml/min	Trogamid CX7323 / Degussa-Hüls	Transparentes Polyamid
Topas 6013	Cycloolefincopolymer / Ticona HDT/B (0,45 N/mm²) = 130°C Fließindex MVR bei 260°C, 2,16kg = 13ml/min	Metocen PP X50081 94-2710 / Tagor	Transparentes Polypropylen

Prozeßführung:

Die verschiedenen Materialkombinationen wurden jeweils bei zwei unterschiedlichen Einspritzprofilen verarbeitet. Die Profile unterschieden sich im Ablauf des Einspritzvorgangs der Umhüllungskomponente (Komponente A) und der Kernkomponente (Komponente B).

Beispiel 2a:

Bei dem Einspritzprofil 2a betrug die zeitliche Verzögerung der Komponente B zur Komponente A ca. zwei Sekunden, zu welcher Zeit bereits 82 Prozent der Menge der Komponente A eingespritzt waren. Das Einspritzprofil 2a ist am Beispiel Polyester/Topas 6013 exemplarisch dargestellt in Abb. 2a.

Beispiel 2b: Bei dem Einspritzprofil 2b betrug die zeitliche Verzögerung der Komponente B zur Komponente A nur ca. 0,5 Sekunden. Danach wurden ca. 90 Prozent der verbleibenden Restmengen simultan gespritzt. Das Einspritzprofil 2b ist am Beispiel Trogamid/Topas 6013 exemplarisch dargestellt in Abb. 2b.

In beiden Fällen wurde zum Abschluß des jeweiligen Spritzvorgangs der Anguß mit der Komponente A versiegelt. Weitere Verarbeitungsparameter zu den Versuchen sind in der Tabelle 6 aufgeführt.

Ein Durchbrechen der Umhüllungsschicht durch die Kernkomponente wurde nicht beobachtet, auch nicht bei der Verwendung von sehr leichtfließendem Umhüllungsmaterial wie Metocen PP X50081.

Die Schichtdickenverteilung kann über die jeweiligen Dosiervolumina, Spritzdrücke und Spritzgeschwindigkeiten der unabhängig voneinander regelbaren 2 Spritzgießaggregate beeinflußt werden, während die Lage der Kemschicht über die Werkzeugtemperierung verschoben werden kann.

Mit den oben beschriebenen Prozeßbedingungen konnten gleichmäßige Schichtdickenverteilungen und eine gute Transparenz der Platten erreicht werden. Die Platten wurden außerdem hinsichtlich Verbundhaftung und Verzugsneigung beurteilt (siehe Tabelle 5).

Tabelle 5: Versuchsergebnisse:

Spritz- guß- profil	Materialkombination A-Komponente / B-Komponente	Verbund- haftung	Trübung	Verzugs- neigung
2a I	Metocen PP / Topas 8007	++	o	÷
2b (Metocen PP / Topas 8007	++	+0	-
2a II	K-Resin / Topas 8007	+	+0	+0
2b II	K-Resin / Topas 8007	+	+	+0
2a III	Metocen PP / Topas 6013	+	o	• .
2b III	Metocen PP / Topas 6013	+	+0	-
2a IV	Trogamid / Topas 6013	+0	+	+0
2b IV	Trogamid / Topas 6013	+0	++	+0
2a V	Grilamid / Topas 6013	0	+	+
2b V	Grilamid / Topas 6013	o	+	+
2a VI	PET Polyester / Topas 6013	-	0-	+
2b VI	PET Polyester / Topas 6013	-	o	+
2a VII	Nylon MXD6 / Topas 6013	0-	0-	+
2b VII	Nylon MXD6 / Topas 6013	0-	0	+

Tabelle 6: Verarbeitungsparameter:

A-Komponente:	ıte:	Topas 8007	K-Resin KR-01	Metocen PP X50081	Topas 6013	Grilamid TR 90	Polyester T86 (W03)	Nylon MXD6	Trogamid CX7323	Metocen PP X50081
B-Komponente:	ıte:		(Topas 8007)	(Topas 8007)	-	(Topas 6013)	(Topas 6013)	(Topas 6013)	(Topas 6013)	(Topas 6013)
	Einzug	30	30	30	30	30	30	30	30	30
l emp.	Zone 1	250	255	240	320	270	260	260	290	240
Zylinder-	Zone 2	250	255	250	310	275	265	265	295	250
neizung	Zone 3	250	255	250	300	280	270	270	295	250
(၁့)	Zone 4	250	255	250	300	285	275	275	300	250
	Zone 5	250	255	250	300	590	280	280	300	280
	Mischkopf	250	255	250	300	280	280	280	295	270
	Masse			250	298	290	286	280	307	250
Merkzeiia.	Angußseite	50	90	40	20	50	<20	35	60	40
temp. (°C)	Auswerfer- seite	50	50	40	50	50	<20	35	09	40
Staudruck (bar)	ar)	5	15	10	5		5	5	10	10
Plastifiziergeschwindig- keit (UpM)	schwindig-	200		100	200	200	100	100	100	100
Einspritzgeschwindigkeit (mm/sec)	chwindigkeit	09		. 09			90	130	60	09
Kühlzeit (sec)	(;	25	25	25	25	25	25	25	25	25

Patentansprüche

- Mehrschichtbehälter, enthaltend mindestens eine Schicht, die mindestens ein Cycloolefinpolymer enthält.
- 2. Mehrschichtbehälter nach Anspruch 1, enthaltend mindestens eine Schicht, die mindestens ein Cycloolefinpolymer enthält, enthaltend 0,1 100 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten, welche sich ableiten von mindestens einem polycyclischen Olefin

der Formeln I, II, II', III, IV, V oder VI

worin R¹, R², R³, R⁴, R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und ein Wasserstoffatom oder einen C₁-C₂₀-Kohlenwasserstoffrest, wie einen linearen oder verzweigten C₁-C₈-Alkylrest, C₆-C₁₈-Arylrest, C₇-C₂₀-Alkylenarylrest, einen cyclischen oder acyclischen C₂-C₂₀-Alkenylrest bedeuten, oder einen gesättigten, ungesättigten oder aromatischen Ring bilden, wobei gleiche Reste R¹ bis R⁸ in den verschiedenen Formeln I bis VI eine unterschiedliche Bedeutung haben können, worin n Werte von 0 bis 5 annehmen kann, und enthaltend 0 bis 99,9 Gew-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten, welche sich ableiten von einem oder mehreren acyclischen Olefinen der Formel VII

$$R^9 \sim C = C \sim R^{10}$$
 (VII),

worin R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und ein Wasserstoffatom, einen linearen, verzweigten, gesättigten oder ungesättigten C₁-C₂₀-Kohlenwasserstoffrest wie einen C₁-C₈-Alkylrest oder einen C₆-C₁₈-Arylrest bedeuten, und enthalten d 0 bis 45 Gew.-%, bezogen auf die Gesamtzusammensetzung des Cycloolefinpolymers, polymerisierte Einheiten, welche sich ableiten von einem oder mehreren monocyclischen Olefinen der Formel VIII.

$$HC = CH$$
 CH_2
 m
(VIII),

worin m eine Zahl von 2 bis 10 ist.

- Verfahren zur Herstellung eines Mehrschichtbehälters nach Anspruch 1 oder 2, wobei der Mehrschichtbehälter durch Mehrkomponenten-Spritzguß, Mehrkomponenten-Spritzblasen sowie Mehrkomponenten-Spritzstreckblasen hergestellt wird.
- 4. Vorformling Vorformlingen für die Herstellung eines Mehrschichtbehälter nach Anspruch 1 oder 2 erhältlich durch Coinjektion zweier oder mehrerer Materialien oder durch Überspritzen der ersten Schicht eines Materials mit mindestens einem weiteren Material.
- Verwendung eines Mehrschichtbehälters nach Anspruch 1 oder 2 zur Verpackung im medizinischen, pharmazeutischen, kosmetischen und Lebensmittelbereich.
- Verwendung eines Mehrschichtbehälters nach Anspruch 1 oder 2 für die Heißabfüllung von Flüssigkeiten.

hig: 1b

Hig: 1a

Hig: 2b

Hig: Za

Hig. 4-b

Hig. 4-a

INTERNATIONAL SEARCH REPORT

Inter xnal Application No PCT/EP 00/02666

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B32B27/32 B290 B29C45/00 B29C45/16 B29C45/14 B65D65/40 C08G61/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) B32B B29C 865D C08G Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Refevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-5 DE 195 40 356 A (HOECHST AG) X 7 May 1997 (1997-05-07) claims 1,2,4,5,15-19; example 6 EP 0 824 067 A (TOYO SEIKAN KAISHA LTD) 1-5 X 18 February 1998 (1998-02-18) cited in the application page 6, line 46 -page 12, line 31; claims 1,9,12 page 15, line 40-42-56 -page 17, line 40 1-5 EP 0 649 737 A (MITSUI PETROCHEMICAL IND) X 26 April 1995 (1995-04-26) page 35 1,2,5,6 EP 1 005 977 A (ALUSUISSE LONZA SERVICES Ε AG) 7 June 2000 (2000-06-07) claims 1,12 -/**--**Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed inventio cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 04/08/2000 26 July 2000 Name and mailing address of the ISA Authorized officer

2

European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

Derz, T

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/EP 00/02666

	PC1/EP 00/02666
particular transfer and the second se	Relevant to claim No.
Citation of document, with indication, where appropriate, of the relevant passages	neidvant to dami 140,
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30 November 1995 (1995-11-30) & JP 07 171858 A (TOPPAN PRINTING CO LTD), 11 July 1995 (1995-07-11) cited in the application abstract	1-4
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08, 30 June 1998 (1998-06-30) & JP 10 059343 A (KISHIMOTO AKIRA), 3 March 1998 (1998-03-03) cited in the application abstract	1,2
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01, 30 January 1998 (1998-01-30) & JP 09 239909 A (KISHIMOTO AKIRA), 16 September 1997 (1997-09-16) cited in the application abstract	1,2,5
PATENT ABSTRACTS OF JAPAN vol. 017, no. 073 (C-1026), 15 February 1993 (1993-02-15) & JP 04 276253 A (NIPPON ZEON CO LTD), 1 October 1992 (1992-10-01) cited in the application abstract	1,2,5
DATABASE WPI Section Ch, Week 199712 Derwent Publications Ltd., London, GB; Class A17, AN 1997-127722 XP002142008 & JP 09 011416 A (KISHIMOTO A), 14 January 1997 (1997-01-14) abstract	1,2,5
WO 00 00399 A (TAKISHIMA TADASHI ;MINAMI KOJI (JP); NIPPON ZEON CO (JP)) 6 January 2000 (2000-01-06) abstract	1,2
EP 0 968 816 A (TICONA GMBH) 5 January 2000 (2000-01-05) claims 1,2,8,9	1,2,5
	vol. 1995, no. 10, 30 November 1995 (1995-11-30) & JP 07 171858 A (TOPPAN PRINTING CO LTD), 11 July 1995 (1995-07-11) cited in the application abstract PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08, 30 June 1998 (1998-06-30) & JP 10 059343 A (KISHIMOTO AKIRA), 3 March 1998 (1998-03-03) cited in the application abstract PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01, 30 January 1998 (1998-01-30) & JP 09 239909 A (KISHIMOTO AKIRA), 16 September 1997 (1997-09-16) cited in the application abstract PATENT ABSTRACTS OF JAPAN vol. 017, no. 073 (C-1026), 15 February 1993 (1993-02-15) & JP 04 276253 A (NIPPON ZEON CO LTD), 1 October 1992 (1992-10-01) cited in the application abstract DATABASE WPI Section Ch, Week 199712 Derwent Publications Ltd., London, GB; Class A17, AN 1997-127722 XP002142008 & JP 09 011416 A (KISHIMOTO A), 14 January 1997 (1997-01-14) abstract WO 00 00399 A (TAKISHIMA TADASHI ;MINAMI KOJI (JP); NIPPON ZEON CO (JP)) 6 January 2000 (2000-01-06) abstract EP 0 968 816 A (TICONA GMBH) 5 January 2000 (2000-01-05)

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte: anal Application No PCT/EP 00/02666

cited in search report		Publication date	Patent family member(s)	Publication date
DE 19540356	Α .	07-05-1997	CA 2236172 A CN 1202188 A DE 19619813 A WO 9716476 A EP 0858476 A JP 11514680 T	09-05-1997 16-12-1998 20-11-1997 09-05-1997 19-08-1998 14-12-1999
EP 0824067	A	18-02-1998	JP 10059344 A AU 715709 B AU 3326897 A US 6042906 A	03-03-1998 10-02-2000 19-02-1998 28-03-2000
EP 0649737	A	26-04-1995	CA 2134320 A DE 69411495 D DE 69411495 T JP 8072210 A US 5532030 A	27-04-1995 13-08-1998 17-12-1998 19-03-1996 02-07-1996
EP 1005977	A	07-06-2000	NONE	
JP 07171858	A	11-07-1995	NONE	
JP 10059343	Α	03-03-1998	US 6042906 A	28-03-2000
JP 09239909	A	16-09-1997	NONE	
JP 04276253	Α	01-10-1992	NONE	
JP 9011416	A	14-01-1997	NONE	
WO 0000399	A	06-01-2000	NONE	
EP 0968816	A	05-01-2000	DE 19828867 A JP 2000037818 A	30-12-1999 08-02-2000

INTERNATIONALER RECHERCHENBERICHT

males Aktenzeichen

PCT/EP 00/02666 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 7 B32B27/32 B29C45/00 B65D65/40 B29C45/16 B29C45/14 C08G61/08 Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) B32B B29C B65D C08G Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile DE 195 40 356 A (HOECHST AG) 1-5 X 7. Mai 1997 (1997-05-07) Ansprüche 1,2,4,5,15-19; Beispiel 6 1-5 X EP 0 824 067 A (TOYO SEIKAN KAISHA LTD) 18. Februar 1998 (1998-02-18) in der Anmeldung erwähnt Seite 6, Zeile 46 -Seite 12, Zeile 31; Ansprüche 1,9,12 Seite 15, Zeile 40-42-56 -Seite 17, Zeile EP 0 649 737 A (MITSUI PETROCHEMICAL IND) 1-5 X 26. April 1995 (1995-04-26) Seite 35 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentiamilie T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen 'A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröfferdlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffertlichung mit einer oder mehreren anderen Veröffertlischungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine m\u00fcndliche Offenbarung, eine Berutzung, eine Ausstellung oder andere Ma\u00ednahmen bezieht
 Ver\u00f6fentlichung, die vor dem internationalen Annededatum, aber nach dem beanspruchten Priorit\u00e4bcatum ver\u00f6fentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 04/08/2000 26. Juli 2000

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

2

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Fijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Derz, T

INTERNATIONALER RECHERCHENBERICHT

Inter xnales Aktenzeichen
PCT/EP 00/02666

	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	Adea Taile
ategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommer	nden Teile Betr. Anspruch Nr.
	EP 1 005 977 A (ALUSUISSE LONZA SERVICES AG) 7. Juni 2000 (2000-06-07) Ansprüche 1,12	1,2,5,6
(PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30. November 1995 (1995-11-30) & JP 07 171858 A (TOPPAN PRINTING CO LTD), 11. Juli 1995 (1995-07-11) in der Anmeldung erwähnt Zusammenfassung	1-4
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08, 30. Juni 1998 (1998-06-30) & JP 10 059343 A (KISHIMOTO AKIRA), 3. März 1998 (1998-03-03) in der Anmeldung erwähnt Zusammenfassung	1,2
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01, 30. Januar 1998 (1998-01-30) & JP 09 239909 A (KISHIMOTO AKIRA), 16. September 1997 (1997-09-16) in der Anmeldung erwähnt Zusammenfassung	1,2,5
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 073 (C-1026), 15. Februar 1993 (1993-02-15) & JP 04 276253 A (NIPPON ZEON CO LTD), 1. Oktober 1992 (1992-10-01) in der Anmeldung erwähnt Zusammenfassung	1,2,5
X	DATABASE WPI Section Ch, Week 199712 Derwent Publications Ltd., London, GB; Class A17, AN 1997-127722 XP002142008 & JP 09 011416 A (KISHIMOTO A), 14. Januar 1997 (1997-01-14) Zusammenfassung	1,2,5
P,X	WO 00 00399 A (TAKISHIMA TADASHI'; MINAMI KOJI (JP); NIPPON ZEON CO (JP)) 6. Januar 2000 (2000-01-06) Zusammenfassung	1,2
Ρ,Χ	EP 0 968 816 A (TICONA GMBH) 5. Januar 2000 (2000-01-05) Ansprüche 1,2,8,9	1,2,5

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inter: naies Aktenzeichen
PCT/EP 00/02666

			1	
Im Recherchenberich ngeführtes Patentdokun		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19540356	A	07-05-1997	CA 2236172 A CN 1202188 A DE 19619813 A WO 9716476 A EP 0858476 A JP 11514680 T	09-05-1997 16-12-1998 20-11-1997 09-05-1997 19-08-1998 14-12-1999
EP 0824067	A	. 18-02-1998	JP 10059344 A AU 715709 B AU 3326897 A US 6042906 A	03-03-1998 10-02-2000 19-02-1998 28-03-2000
EP 0649737	Α	26-04-1995	CA 2134320 A DE 69411495 D DE 69411495 T JP 8072210 A US 5532030 A	27-04-1995 13-08-1998 17-12-1998 19-03-1996 02-07-1996
EP 1005977	Α	07-06-2000	KEINE	
JP 07171858	A	11-07-1995	KEINE	
JP 10059343	Α	03-03-1998	US 6042906 A	28-03-2000
JP 09239909	Α	16-09-1997	KEINE	
JP 04276253	Α	01-10-1992	KEINE	
JP 9011416	A	14-01-1997	KEINE	
WO 0000399	A	06-01-2000	KEINE	
EP 0968816	Α	05-01-2000	DE 19828867 A JP 2000037818 A	30-12-1999 08-02-2000