PLSC 503 – Spring 2025 Variable Selection, Specification Bias, and Multiplicative Interactions

March 3, 2025

Model Specification, etc.

Among our OLS / linear regression assumptions:

- $Cov(\mathbf{X}, \mathbf{u}) = 0$, and
- the distribution of **X** does not depend on either β or σ^2 .

Model Specification

"Truth":

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

Fitted model:

$$Y_i = \gamma_0 + \gamma_1 X_{1i} + e_i$$

Then:

$$e_i = \beta_2 X_{2i} + u_i$$

Omitted Variable Bias

Note:

$$E(e) = E(\beta_2 X_2 + u)$$

$$= X_2 E(\beta_2) + E(u)$$

$$\neq 0$$

$$E(\gamma_1) = \beta_1 + \frac{\sum_{i=1}^{N} (X_{1i} - \bar{X}_1)(X_{2i} - \bar{X}_2)}{\sum_{i=1}^{N} (X_{1i} - \bar{X}_1)^2} \beta_2$$
$$= \beta_1 + b_{X_2 X_1} \beta_2$$

where $b_{X_2X_1}$ is the "slope" coefficient one obtains from regressing X_2 on X_1 .

Omitted Variable Bias, continued

If X_2 is omitted and $Cov(X_1, X_2) = 0$, then

- $E(\hat{\gamma}_1) = \beta_1$, but
- $E(\hat{\gamma}_0) \neq \beta_0$.

If $Cov(X_1, X_2) \neq 0$ then

- $E(\hat{\gamma}_1) \neq \beta_1$ and $E(\hat{\gamma}_0) \neq \beta_0$
- In the simple bivariate case,
 - if $Cov(X_1, X_2) > 0$ then $E(|\hat{\gamma}_1|) > |\beta_1|$,
 - if $Cov(X_1, X_2) < 0$ then $E(|\hat{\gamma}_1|) < |\beta_1|$.

Omitted Variables and Inference

Recall that for one X:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = rac{\hat{\sigma}^2}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

and for two Xs:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = rac{\hat{\sigma}^2}{\sum_{i=1}^{N} (X_i - \bar{X})^2 (1 - R_{X_i X_2}^2)}$$

Also, because $\hat{e}_i \neq \hat{u}_i$,

$$\mathsf{E}(\sigma_e^2) = \sigma_u^2 + f(\beta_2, X_1) \leftarrow \mathsf{Bias}$$

Multivariate Regression

For the "true" DGP

$$Y = X\beta + u$$

and fitted model

$$\mathbf{Y} = \mathbf{Z}\Gamma + \mathbf{e}$$

where $\mathbf{Z} \subset \mathbf{X}$, we have

$$\Gamma = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'(\mathbf{X}\boldsymbol{\beta} + \mathbf{u})$$
$$= (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}\boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{u}$$

and so

$$E(\Gamma) = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}\boldsymbol{\beta}$$
$$= \mathbf{P}\boldsymbol{\beta}.$$

Overspecification

Now assume a "true" model:

$$Y = X\beta + u$$

and fitted model:

$$\mathbf{Y} = \mathbf{Z} \boldsymbol{\Gamma} + \mathbf{e}$$

where $\mathbf{X} \subset \mathbf{Z}$. This means:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\mathbf{\Theta} + \mathbf{u}$$

where $\mathbf{Z} = \mathbf{X} \cup \mathbf{W}$ and $\mathbf{\Theta} = \mathbf{0}$.

Overspecification

Results:

- $E(\hat{\beta}) = \beta$ and $E(\hat{\sigma}^2) = \sigma^2$, but
- $\widehat{\mathsf{Var}(\boldsymbol{\beta})} > \mathsf{Var}(\boldsymbol{\beta}) \leftarrow \mathsf{Inefficiency}$

Implication: Pre-Test Bias

Omitted Variable Bias: Simulated Example

"True" model:

$$Y_i = 0 + 1.0X_{1i} - 2.0X_{2i} + u_i$$

Simulation:

```
> N <- 100

> X1<-rnorm(N)  # <- X1

> X2<-(-X1)+1.5*(rnorm(N))  # <- correlated w/X1

> Y<-X1-(2*X2)+(2*(rnorm(N)))  # <- Y

> Z <- (-2*X1) + rnorm(N)  # <- correlated w/X1 but irrelevant

> data <- data.frame(Y=Y,X1=X1,X2=X2,Z=Z)
```

Scatterplot Matrix

Correctly Specified Model

```
> correct < -lm(Y^X1+X2)
> summary(correct)
Residuals:
  Min 10 Median
                   30
                        Max
-5.721 -1.209 0.093 1.198 5.915
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
0.81690 0.26718 3.057 0.00288 **
X 1
X2
         -2.13652 0.13844 -15.433 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 2.116 on 97 degrees of freedom Multiple R-squared: 0.8295, Adjusted R-squared: 0.826 F-statistic: 236 on 2 and 97 DF, p-value: < 2.2e-16

Overspecified Model

```
> overspec<-lm(Y~X1+X2+Z)</pre>
> summary(overspec)
Residuals:
   Min
         10 Median 30
                           Max
-5.9809 -1.0442 -0.0265 1.2609 6.0201
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
X 1
        X2
        -2.11735 0.14105 -15.011 < 2e-16 ***
7.
          0.01662 0.02202 0.755 0.45220
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 2.12 on 96 degrees of freedom
```

Multiple R-squared: 0.8306, Adjusted R-squared: 0.8253 F-statistic: 156.8 on 3 and 96 DF, p-value: < 2.2e-16

Underspecified Model

```
> incorrect<-lm(Y~X1)</pre>
> summary(incorrect)
Residuals:
   Min
            10 Median 30
                                  Max
-9.3297 -2.9762 -0.0672 2.4828 8.7787
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2704 0.3913 0.691
                                         0.491
X1
             3.2783
                       0.3964 8.270 6.71e-13 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.913 on 98 degrees of freedom
Multiple R-squared: 0.411, Adjusted R-squared: 0.405
F-statistic: 68.39 on 1 and 98 DF, p-value: 6.714e-13
```

Omitted Variable Plot

Repeated 1000 Times...

Specification Bias: How to Deal

Nothing Beats a Good Theory. Period.

Also:

- "Model specification tests" \leftarrow meh
- Examine residuals
- Proxy variables...
- Resist the urge to overspecify!

Multiplicative Interactions

Primitives

Our old friend:

$$Y = X\beta + u$$

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$$

means:

$$\textit{E}(\textit{Y}|\textit{D}_{1}=1,\textit{D}_{2}=0) - \textit{E}(\textit{Y}|\textit{D}_{1}=0,\textit{D}_{2}=0) = \textit{E}(\textit{Y}|\textit{D}_{1}=1,\textit{D}_{2}=1) - \textit{E}(\textit{Y}|\textit{D}_{1}=0,\textit{D}_{2}=1) [\equiv \beta_{1}]$$

and

$$E(Y|D_1=0,D_2=1)-E(Y|D_1=0,D_2=0)=E(Y|D_1=1,D_2=1)-E(Y|D_1=1,D_2=0)[\equiv\beta_2].$$

Interaction Effects

Consider:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + u_i$$

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i}$$

= $\beta_0 + \beta_2 X_{2i} + (\beta_1 + \beta_3 X_{2i}) X_{1i}$
= $\beta_0 + \beta_2 X_{2i} + \psi_1 X_{1i}$

where $\psi_1 = \beta_1 + \beta_3 X_{2i}$. This means:

$$\frac{\partial \mathsf{E}(Y_i)}{\partial X_1} = \beta_1 + \beta_3 X_{2i}.$$

Interaction Effects

Similarly:

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + (\beta_2 + \beta_3 X_{1i}) X_{2i}$$

= $\beta_0 + \beta_1 X_{1i} + \psi_2 X_{2i}$

which implies:

$$\frac{\partial \mathsf{E}(Y_i)}{\partial X_2} = \beta_2 + \beta_3 X_{1i}.$$

"Direct Effects"

If $X_2 = 0$, then:

$$E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2(0) + \beta_3 X_{1i}(0)$$

= $\beta_0 + \beta_1 X_{1i}$.

Similarly, for $X_1 = 0$:

$$E(Y_i) = \beta_0 + \beta_1(0) + \beta_2 X_{2i} + \beta_3(0) X_{2i} = \beta_0 + \beta_2 X_{2i}$$

Key Point

In most instances, the quantities we care about are not β_1 and β_2 , but rather ψ_1 and ψ_2 .

Inference

Point estimates:

$$\hat{\psi}_1 = \hat{\beta}_1 + \hat{\beta}_3 X_2$$

and

$$\hat{\psi}_2 = \hat{\beta}_2 + \hat{\beta}_3 X_1.$$

For variance, recall that:

$$Var(a + bZ) = Var(a) + Z^{2}Var(b) + 2ZCov(a, b)$$

Inference

Means that:

$$\widehat{\mathsf{Var}(\hat{\psi}_1)} = \widehat{\mathsf{Var}(\hat{\beta}_1)} + X_2^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2X_2 \widehat{\mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_3)}.$$

and

$$\widehat{\mathsf{Var}(\hat{\psi}_2)} = \widehat{\mathsf{Var}(\hat{\beta}_2)} + X_1^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2X_1 \widehat{\mathsf{Cov}(\hat{\beta}_2, \hat{\beta}_3)}.$$

Types of Interactions: Dichotomous Xs

For

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{1i} D_{2i} + u_i$$

we have:

$$\begin{split} &\mathsf{E}(Y|D_1=0,D_2=0) &= \beta_0 \\ &\mathsf{E}(Y|D_1=1,D_2=0) &= \beta_0+\beta_1 \\ &\mathsf{E}(Y|D_1=0,D_2=1) &= \beta_0+\beta_2 \\ &\mathsf{E}(Y|D_1=1,D_2=1) &= \beta_0+\beta_1+\beta_2+\beta_3 \end{split}$$

Values of E(Y) for Changes in D_1

Values of E(Y) for Changes in D_2

Dichotomous and Continuous Xs

Writing:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i D_i + u_i$$

gives:

$$E(Y|X, D = 0) = \beta_0 + \beta_1 X$$

 $E(Y|X, D = 1) = (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X$

Four possibilities:

- $\beta_2 = \beta_3 = 0$
- $\beta_2 \neq 0$ and $\beta_3 = 0$
- $\beta_2 = 0$ and $\beta_3 \neq 0$
- $\beta_2 \neq 0$ and $\beta_3 \neq 0$

Scatterplot and Regression Lines of Y on X for D=0 and D=1: No Slope or Intercept Differences ($\beta_2=\beta_3=0$)

Scatterplot and Regression Lines of Y on X for D=0 and D=1: Intercept Shift $(\beta_2 \neq 0, \beta_3=0)$

Scatterplot and Regression Lines of Y on X for D=0 and D=1: Slope Change $\left(\beta_2=0,\ \beta_3\neq 0\right)$

Scatterplot and Regression Lines of Y on X for D=0 and D=1: Slope and Intercept Change $(\beta_2 \neq 0, \beta_3 \neq 0)$

Two Continuous Xs

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + u_i.$$

Implies

$$\beta_3 = 0 \rightarrow \frac{\partial E(Y)}{\partial X_1} = \beta_1 \,\forall \, X_2 \text{ and } \frac{\partial E(Y)}{\partial X_2} = \beta_2 \,\forall \, X_1$$

Two Continuous Variables: No Interactive Effects

Two Continuous Variables: Interaction Present

Quadratic, Cubic, and Other Polynomial Effects

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_j X_i^j + u_i.$$

In general:

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \beta_1 + 2\beta_2 X + 3\beta_3 X^2 + \dots + j\beta_j X^{j-1}$$

Quadratic case (j = 2):

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i.$$

implies

$$\frac{\partial \mathsf{E}(Y)}{\partial X} = \beta_1 + 2\beta_2 X$$

Two Quadratic Relationships

Note: Red line is $Y_i = 10 + 1X_i - 5X_i^2 + u_i$; black line is $Y_i = -50 - 1X_i + 3X_i^2 + u_i$.

Example of a Cubic Relationship

Note: Solid line is $Y_i = -1 + 1X_i - 8X_i^2 + 5X_i^3 + u_i$.

Higher-Order Interactive Models

Three-way interaction:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{1i}X_{2i} + \beta_{5}X_{1i}X_{3i} + \beta_{6}X_{2i}X_{3i} + \beta_{7}X_{1i}X_{2i}X_{3i} + u_{i}$$

Special case with dichotomous X_1 , X_2 :

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}D_{1i} + \beta_{3}D_{2i} + \beta_{4}X_{i}D_{1i} + \beta_{5}X_{i}D_{2i} + \beta_{6}D_{1i}D_{2i} + \beta_{7}X_{i}D_{1i}D_{2i} + u_{i}$$

Three-Way Interaction: Two Dummy and One Continuous Covariates

Example: President Clinton's 1996 "Thermometer Score"

Details:

- Source: 1996 American National Election Study
- $N \approx 1300$
- "Feeling Thermometer":

"In the list that follows, rate that person/party using something we call the feeling thermometer. Ratings between 50 degrees and 100 degrees mean that you feel favorable and warm toward the person/party. Ratings between 0 and 50 degrees mean that you don't feel favorable toward the person/party and that you don't care too much for that person. You would rate the person at the 50-degree mark if you don't feel particularly warm or cold toward the person."

- Ideology measures:
 - Seven-point scale (1 = "very left / liberal," 7 = "very right / conservative")
 - · Each respondent places themself + President Clinton
- Party ID: Republican (GOP=1) vs. Democrat/Independent (GOP=0)

Clinton "Feeling Thermometer" Data

Distribution:

Summary statistics:

> describe(ClintonTherm, skew=FALSE)

	vars	n	mean	sd	median	min	max	range	se
caseid	1	1297	2000.70	718.42	1854	1001	3403	2402	19.95
ClintonTherm	2	1297	57.00	30.00	60	0	100	100	0.83
RConserv	3	1297	4.32	1.39	4	1	7	6	0.04
${\tt ClintonConserv}$	4	1297	2.98	1.37	3	1	7	6	0.04
PID	5	1297	2.06	1.05	2	1	5	4	0.03
GOP	6	1297	0.32	0.47	0	0	1	1	0.01

A Basic Regression

Residual standard error: 23.65 on 1294 degrees of freedom Multiple R-squared: 0.3795, Adjusted R-squared: 0.3786 F-statistic: 395.7 on 2 and 1294 DF, p-value: < 2.2e-16

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Coefficient Plot: Non-Interactive Model

An Interactive Model

> summary(fit1)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.927 2.487 36.16 <2e-16 ***

RConserv -5.571 0.609 -9.15 <2e-16 ***

GOP -6.484 6.569 -0.99 0.3238

RConserv:GOP -4.058 1.281 -3.17 0.0016 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 23.6 on 1293 degrees of freedom Multiple R-squared: 0.384, Adjusted R-squared: 0.383 F-statistic: 269 on 3 and 1293 DF, p-value: <2e-16

Coefficient Plot: Interactive Model

Syntax Matters

Different ways to specify the (mathematically identical, but sometimes computationally different) interactive model in R :

```
> summary(lm(ClintonTherm~RConserv+GOP+RConserv*GOP,data=CT))
> summary(lm(ClintonTherm~RConserv+GOP+RConserv:GOP,data=CT))
> summary(lm(ClintonTherm~RConserv*GOP,data=CT))
> summary(lm(ClintonTherm~(RConserv+GOP)^2,data=CT))
> CT$GOPxRC<-CT$GOP * CT$RConserv
> summary(lm(ClintonTherm~RConserv+GOP+GOPxRC,data=CT))
```

Two Regressions, Sort Of

```
\begin{split} \mathsf{E}(\mathsf{Thermometer} \mid \mathsf{Non\text{-}GOP})_i &= 89.9 - 6.5(0) - 5.6(\mathsf{R's}\;\mathsf{Conservatism}_i) \\ &- 4.0(0 \times \mathsf{R's}\;\mathsf{Conservatism}_i) \\ &= 89.9 - 5.6(\mathsf{R's}\;\mathsf{Conservatism}_i) \end{split}
```

E(Thermometer | GOP)_i =
$$[89.9 - 6.5(1)] + [-5.6 - 4.0(1 \times \text{R's Conservatism}_i)]$$

= $83.4 - 9.6(\text{R's Conservatism}_i)$

Thermometer Scores by Conservatism, GOP and Non-GOP

Interactive Results \approx Separate Regressions

Feeling Thermometer Models

	Interactive	Non-GOP	GOP
(Intercept)	89.927	89.927	83.443
	(2.487)	(2.469)	(6.170)
Respondent Conservatism	-5.571	-5.571	-9.629
	(0.609)	(0.604)	(1.144)
GOP Respondent	-6.484		
	(6.569)		
Respondent Conservatism \times	-4.058		
GOP Respondent	(1.281)		
Num.Obs.	1297	887	410
R2	0.384	0.088	0.148
R2 Adj.	0.383	0.087	0.146
F	269.011	84.961	70.878
RMSE	23.53	23.38	23.86

For RConserv:

Clinton Thermometer;
$$= \beta_0 + (\beta_1 + \beta_3 \mathsf{GOP}_i)\mathsf{R's} \; \mathsf{Conservatism}_i + \beta_2 \mathsf{GOP}_i + u_i$$

 $= \beta_0 + \psi_{1i} \mathsf{R's} \; \mathsf{Conservatism}_i + \beta_2 \mathsf{GOP}_i + u_i.$

So:

$$\hat{\psi}_{1i} = \hat{\beta}_1 + \hat{\beta}_3 \times \mathsf{GOP}_i$$

and

$$\hat{\sigma}_{\psi_1} = \sqrt{\widehat{\mathsf{Var}(\hat{\beta}_1)} + (\mathsf{GOP})^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2(\mathsf{GOP}) \widehat{\mathsf{Cov}(\hat{\beta}_1, \hat{\beta}_3)}}.$$

For GOP:

Clinton Thermometer_i =
$$\beta_0 + (\beta_2 + \beta_3 \times R's Conservatism_i)GOP_i + \beta_1(R's Conservatism_i) + u_i$$

= $\beta_0 + \psi_{2i}GOP_i + \beta_1(R's Conservatism_i) + u_i$.

So:

$$\hat{\psi}_{2i} = \hat{eta}_2 + \hat{eta}_3 imes$$
 (R's Conservatism $_i$).

and

$$\hat{\sigma}_{\psi_2} = \sqrt{\widehat{\mathsf{Var}(\hat{\beta}_2)} + \big(\mathsf{R's\ Conservatism}_i\big)^2 \widehat{\mathsf{Var}(\hat{\beta}_3)} + 2k\widehat{\mathsf{Cov}(\hat{\beta}_2,\hat{\beta}_3)}}.$$

```
> Psi1<-fit1$coeff[2]+fit1$coeff[4]
> Psi1
    RConserv
-9.628577
> SPsi1<-sqrt(vcov(fit1)[2,2] + (1)^2*vcov(fit1)[4,4] + 2*1*vcov(fit1)[2,4])
> SPsi1
[1] 1.127016
> Psi1 / SPsi1 # <-- t-statistic
    RConserv
-8.543422</pre>
```

```
> # psi_2 | RConserv = 1
> fit1$coeff[3]+(1 * fit1$coeff[4])
    GOP
-10.54208
[1] 5.335847
# Implies t is approximately 2
> # psi_2 | RConserv = 7
> fit1$coeff[3]+(7 * fit1$coeff[4])
    GOP
-34.89045
> sqrt(vcov(fit1)[3,3] + (7)^2*vcov(fit1)[4,4] + 2*7*vcov(fit1)[3,4])
[1] 3.048302
# t is approximately 11
```

An Easier Way: linearHypothesis()

```
> library(car)
> linearHypothesis(fit1, "RConserv+RConserv:GOP")
Linear hypothesis test
Hypothesis:
R.Conserv + R.Conserv:GOP = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + GOP + RConserv * GOP
 Res.Df RSS Df Sum of Sq F Pr(>F)
   1294 758714
2 1293 718173 1 40541 72.99 < 2.2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> # Note: Same as t-test:
> sqrt(72.99)
[1] 8.543419
```

An Easier Way: linearHypothesis()

```
> # psi_2 | RConserv = 7:
> linearHypothesis(fit1, "GOP+7*RConserv:GOP")
Linear hypothesis test
Hypothesis:
GOP + 7 RConserv: GOP = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + GOP + RConserv * GOP
 Res.Df RSS Df Sum of Sq F Pr(>F)
   1294 790938
   1293 718173 1 72766 131.01 < 2.2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Marginal Effects Plots, I

```
> ConsSim<-seq(1,7,1)
> psis<-fit1$coeff[3]+(ConsSim * fit1$coeff[4])
> psis.ses<-sqrt(vcov(fit1)[3,3] +
    (ConsSim)^2*vcov(fit1)[4,4] + 2*ConsSim*vcov(fit1)[3,4])

> plot(ConsSim,psis,t="l",lwd=2,xlab="Respondent Conservatism",
    ylab="Estimated Marginal Effect",ylim=c(-40,0))
> lines(ConsSim,psis+(1.96*psis.ses),lty=2,lwd=2)
> lines(ConsSim,psis-(1.96*psis.ses),lty=2,lwd=2)
> abline(h=0,lwd=1,lty=2)
```

The Plot...

Same, Using plot_me (plotMElm package)

A Simple Spatial Model

Suppose that for respondent i:

Clinton Thermometer; =
$$\alpha + \delta(\text{Respondent's Ideology}_i - \text{Clinton's Ideology}_i)^2 + \epsilon_i$$

with $\delta < 0$. Note that:

Clinton Thermometer;
$$= \alpha + \delta[\texttt{R's Ideology}_i^2 + \\ \texttt{Clinton's Ideology}_i^2 - \\ 2(\texttt{R's Ideology}_i \times \texttt{C's Ideology}_i)] + \epsilon_i$$

$$= \alpha + \delta_1(\texttt{R's Ideology}_i^2) + \\ \delta_2(\texttt{Clinton's Ideology}_i^2) + \\ \delta_3(\texttt{R's Ideology}_i \times \texttt{C's Ideology}_i)] + \epsilon_i$$

Interacting Two Continuous Covariates

```
> fit2<-with(ClintonTherm.
       lm(ClintonTherm~RConserv+ClintonConserv+RConserv*ClintonConserv))
> summary(fit2)
Call:
lm(formula = ClintonTherm ~ RConserv + ClintonConserv + RConserv *
   ClintonConserv)
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       119.3515
                                   5.1634 23.115 < 2e-16 ***
RConserv
                      -19.5673 1.0362 -18.884 < 2e-16 ***
ClintonConserv
                       -7.9311 1.6477 -4.813 1.66e-06 ***
RConserv:ClintonConserv 3.6293
                                   0.3394 \ 10.695 \ < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 22.03 on 1293 degrees of freedom
Multiple R-squared: 0.4619, Adjusted R-squared: 0.4606
F-statistic: 370 on 3 and 1293 DF, p-value: < 2.2e-16
```

Hypothesis Tests

```
> fit2$coef[2]+(1*fit2$coef[4])
RConserv
-15.93803
> sqrt(vcov(fit2)[2,2] + (1)^2*vcov(fit2)[4,4] + 2*1*vcov(fit2)[2,4])
[1] 0.7439696
> linearHypothesis(fit2, "RConserv+1*RConserv:ClintonConserv")
Linear hypothesis test
Hypothesis:
RConserv + RConserv:ClintonConserv = 0
Model 1: restricted model
Model 2: ClintonTherm ~ RConserv + ClintonConserv + RConserv * ClintonConserv
           RSS Df Sum of Sq F Pr(>F)
1 1294 850442
2 1293 627658 1 222784 458.94 < 2.2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

More Hypothesis Tests

```
> # psi 1 | ClintonConserv = mean
> fit2$coef[2]+((mean(ClintonTherm$ClintonConserv))*fit2$coef[4])
 RConserv
-8.735424
> sgrt(vcov(fit2)[2.2] + (mean(ClintonTherm$ClintonConserv)^2*vcov(fit2)[4.4] +
                              2*(mean(ClintonTherm$ClintonConserv))*vcov(fit2)[2.4]))
[1] 0.4507971
> pt(((fit2$coef[2]+(2.985*fit2$coef[4])) / sqrt(vcov(fit2)[2,2] +
      (2.985)^2 \times \text{cov}(\text{fit2})[4,4] + 2 \times 2.985 \times \text{cov}(\text{fit2})[2,4]), df = 1293)
    RConserv
6.483788e-74
> # psi 2 | RConserv = 1
> fit2$coef[3]+(1*fit2$coef[4])
ClintonConserv
     -4.301803
> # psi_2 | RConserv = 6
> fit2$coef[3]+(6*fit2$coef[4])
ClintonConserv
      13.84463
```

Marginal Effect Plot, II

```
> psis2<-fit2$coef[3]+(ConsSim*fit2$coef[4])
> psis2.ses<-sqrt(vcov(fit2)[3,3] + (ConsSim)^2*vcov(fit2)[4,4]
+ 2*ConsSim*vcov(fit2)[3,4])

> plot(ConsSim,psis2,t="l",lwd=2,xlab="Respondent's
    Conservatism",ylab="Marginal Effect of Clinton's
    Conservatism",ylim=c(-10,20))
> lines(ConsSim,psis2+(1.96*psis2.ses),lty=2,lwd=2)
```

> lines(ConsSim,psis2-(1.96*psis2.ses),lty=2,lwd=2)

> abline(h=0,lty=2,lwd=1,col="red")

The Plot...

Same, Using plot_me

Predicted Values: A Contour Plot

```
> library(lattice)
> grid<-expand.grid(RConserv=seq(1,7,1),
   ClintonConserv=seq(1,7,1))
> hats<-predict(fit2,newdata=grid)

> levelplot(hats~grid$RConserv*grid$ClintonConserv,
   contour=TRUE,
   cuts=12,pretty=TRUE,xlab="Respondent's Conservatism",
   ylab="Clinton's Conservatism",
   col.regions=heat.colors)
```


Predicted Values: A Wireframe Plot

```
> trellis.par.set("axis.line",list(col="transparent"))
> wireframe(hats~grid$RConserv*grid$ClintonConserv,
    drape=TRUE,
    xlab=list("Respondent's Conservatism",rot=30),
    ylab=list("Clinton's Conservatism",
    rot=-40),zlab=list("Predictions",rot=90),
    scales=list(arrows=FALSE,col="black"),
    zoom=0.85,pretty=TRUE),
    col.regions=colorRampPalette(c("blue","red"))(100))
```


Predictions Using marginal effects

Interpreting Interactions: Other Tools

A partial list of packages and things:

- All the various model summary and plotting tools in Vincent Arel-Bundock's modelsummary and marginal effects packages
- interactions (vignette)
- emmeans (see, e.g., this vignette)
- plot_model in sjPlot (tutorial)
- interactionR
- interplot
- InteractionPoweR (power analyses for interactive models)