Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of <u>directly</u> operating a solid oxide fuel cell having an anode and a cathode, the method comprising:

reacting forming a first mixture comprising molecular oxygen and a compound having formula 1:

 CH_3 -O-R

wherein R is alkyl, aryl, alkaryl, or aralkyl[[;]] at heating the first mixture to a sufficient temperature of less than about 650°C to form a reaction product second mixture comprising carbon monoxide, [[and]] molecular hydrogen, and a reaction product including R; and

contacting the anode of a solid oxide fuel cell with the <u>reaction product</u> second gaseous mixture to directly oxidize the reaction product including R.

- 2. (Original) The method of claim 1 wherein the compound having formula 1 is dimethyl ether.
- 3. (Currently Amended) The method of claim 2 wherein the <u>reaction product</u> including an R group is second mixture further comprises methane.
- 4. (Currently Amended) The method of claim 1 wherein the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 in the reacting step is from about 0.1 to about 3.0.

Atty Dkt No. 81044190 (FMC 1629 PUS)

S/N: 10/707,037 Reply to Office Action of September 10, 2007

5. (Currently Amended) The method of claim 1 wherein the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 in the reacting step is from about 0.1 to about 1.0.

6. (Cancelled)

7. (Currently Amended) The method of claim 1 wherein the <u>sufficient</u> temperature is in the range of first mixture is heated to a temperature of from about 450°C to about 650°C.

8. (Cancelled)

- 9. (Currently Amended) The method of claim 1 wherein the <u>sufficient</u> temperature is in the range of first mixture is heated to a temperature of from about 550°C to about 600°C.
- 10. (Original) The method of claim 1 wherein the anode comprises a nickel-containing cermet.
- 11. (Original) The method of claim 1 wherein the anode comprises a component selected from the group consisting of nickel mixed with gadolina doped ceria, nickel mixed with yttria doped ceria zirconia, or nickel mixed with yttria doped zirconia.
- 12. (Currently Amended) The method of claim 9 <u>further comprising:</u> wherein the first mixture is formed by combining air and the compound having formula 1 <u>for the reaction of molecular oxygen and the compound having formula 1</u>, wherein the compound having formula 1 is dimethyl ether, the first mixture includes 33% by volume of dimethyl ether, and the <u>sufficient temperature is first mixture is heated to</u> a temperature of about 550°C.
 - 13. (Original) The method of claim 1 wherein R is a C_{1-6} alkyl.

S/N: 10/707,037

Reply to Office Action of September 10, 2007

14. (Currently Amended) A method of <u>directly</u> operating a solid oxide fuel cell having an anode and a cathode, the method comprising:

reacting forming a first mixture comprising air and dimethyl ether[[;]] at heating the mixture to a sufficient temperature of less than about 650°C to form a reaction product second mixture comprising carbon monoxide, methane, and molecular hydrogen; and

contacting the anode of a solid oxide fuel cell with the <u>reaction product</u> second gaseous mixture to directly oxidize the methane.

- 15. (Currently Amended) The method of claim 14 wherein the air is comprised of molecular oxygen and the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 in the reacting step is from about 0.1 to about 3.0.
- 16. (Currently Amended) The method of claim 14 wherein the air is comprised of molecular oxygen and the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 in the reacting step is from about 0.1 to about 1.0.

17. (Cancelled)

- 18. (Currently Amended) The method of claim 14 wherein the <u>sufficient</u> temperature is in the range of first mixture is heated to a temperature of from about 450°C to about 650°C.
- 19. (Currently Amended) The method of claim 14 wherein the sufficient temperature is first mixture is heated to a temperature of at least about 550°C.
- 20. (Currently Amended) The method of claim 14 wherein the <u>sufficient</u> temperature is in the range of first mixture is heated to a temperature of from about 550°C to about 600°C.

Atty Dkt No. 81044190 (FMC 1629 PUS)

S/N: 10/707,037 Reply to Office Action of September 10, 2007

- 21. (Previously Presented) The method of claim 20 wherein the anode comprises $Ni-Y_2O_3$ stabilized ZrO_2 and $(Ce,Y)O_2$.
- 22. (Currently Amended) A fuel cell system comprising: a source of a first mixture comprising molecular oxygen and a compound having formula 1:

 CH_3 -O-R

wherein R is alkyl, aryl, alkaryl, or aralkyl;

a solid oxide fuel cell having an inlet, a conduit and an outlet and an anode and a cathode; and

a heat source <u>surrounding the anode and the cathode of the solid oxide fuel cell</u>, the conduit and a portion of the inlet, the heat source heating that heats the first mixture that is <u>situated within the surrounded portion of the inlet</u> to a sufficient temperature of less than about 650°C to form a <u>reaction product second</u> mixture comprising carbon monoxide, [[and]] molecular hydrogen, and a reaction product including R,

a solid oxide fuel cell having an anode and a cathode; and

wherein the [[a]] conduit for contacting contacts the anode of the solid oxide fuel cell with the reaction product second gaseous mixture to directly oxidize the reaction product R.

- 23. (Original) The system of claim 22 wherein the compound having formula 1 is dimethyl ether.
- 24. (Original) The system of claim 22 wherein the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 is from about 0.1 to about 3.0.
- 25. (Original) The system of claim 22 wherein the molar ratio in the first mixture of molecular oxygen to a compound having formula 1 is from about 0.1 to about 1.0.

Atty Dkt No. 81044190 (FMC 1629 PUS)

S/N: 10/707,037

Reply to Office Action of September 10, 2007

26. (Original) The system of claim 22 wherein the second mixture further comprises methane.

27. (Cancelled)

28. (Previously Presented) The system of claim 22 wherein the heat source heats the first mixture to a temperature of from about 450°C to about 650°C.

29. (Cancelled)

- 30. (Previously Presented) The system of claim 22 wherein the heat source heats the first mixture to a temperature of from about 550°C to about 600°C.
- 31. (Original) The system of claim 22 wherein the anode comprises a nickel-containing cermet.
- 32. (Previously Presented) The system of claim 22 wherein the anode comprises a component selected from the group consisting of nickel mixed with gadolina doped ceria, nickel mixed with yttria doped ceria zirconia, or nickel mixed with yttria doped zirconia.

33. (Cancelled)

34. (Currently Amended) The method of claim 1 wherein the step of <u>reacting</u> molecular oxygen and the compound having formula 1 heating the first mixture produces less than about 10 weight % water and less than about 10 weight % carbon dioxide of the total weight of the <u>reaction product</u> second mixture.

35.-43. (Cancelled)