

https://pdi.dev/2022-09-21_PDI_Training.pdf

On PlaFRIM: pdi_pdf

Handling IO as a data-coupling problem with PDI

Sept 21st, 2022 – PRACE Training

Amal Gueroudji², <u>Julien Bigot</u>², Yacine Ould Rouis³, Karol Sierocinski⁷, Kacper Sinkiewicz⁷

Thanks to:

Leonardo Bautista Gomez¹, Sebastian Friedemann⁶, Virginie Grandgirard², Amal Gueroudji², Karim Hasnaoui³, Francesco Iannone⁴, Kai Keller¹, Guillaume Latu², Bruno Raffin⁶, Benedikt Steinbusch⁵, Christian Witzler⁵

¹ BSC, ² CEA, ³ CNRS, ⁴ ENEA, ⁵ FZJ, ⁶ Inria, ⁷ PSNC

Initial Motivation: the I/O Issue

- We want it easy to use
- We want it fast
- We want a portable library
- We want large language support
- We want parallelization independent file format
- We want a portable file format
- We want to leverage the underlying hardware
- We want...

Initial Motivation: the I/O Issue

- We want it easy to use
- Handling I/O is complex We war Optimizing I/O is a job on its own We war
- We want large language support
- We want parallelization independent file format
- We want a portable file format
- We want to leverage the underlying hardware
- We want...

Initial Motivation: the I/O Issue

- We want it easy to use
- We war
- Handling I/O is complex Optimizing I/O is a job on its own
- We war
- Complex but common problem,
- A community with dedicated expert
- We want a portable file format
- We want to Let's use libraries
- We want...

The I/O Issue: the library ecosystem

The I/O issue: Choosing a library

Choosing the best library: a problem on its own

- The best library depends on...
- The code specifics, the type of I/O
 - Parallelism level, replicated / distributed data, I/O frequency, ...
 - Initialization data reading, result writing (small or large), checkpoint writing, coupling related I/O
- The specific execution
 - Small case / large case, debug / production, ...
- The specific hardware available
 - I/O bandwidth, intermediate storage, ...

The I/O issue: Choosing a library

Choosing the best library: a problem on its own

- The best library depends on...
- The code specifics the type of I/O
 - Parallelism le Not one-size fits all library quency, ...
 - Initialization data reading, result writing (small or large), checkpoint writing, coupling related I/O
- The specific execution
 - Many codes end-up with an IO abstraction layer
- - I/O bandwidth, intermediate storage, ...

SITUATION: THERE ARE 14 COMPETING STANDARDS.

14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

5∞N:

SITUATION: THERE ARE 15 COMPETING STANDARDS. © XKCD https://xkcd.com/927/

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

Introducing PDI

500N: SITUATION: THERE ARE 15 COMPETING STANDARDS.

© XKCD https://xkcd.com/927/

PDI is an Interface... just an interface!

- Intermediate results.
 - · Checkpoint,
 - Post-processing,
 - Coupling outputs,

- - Final results,
 - Final checkpoint,

Initialization

parameters reading,

data initialization,

Finalization

Data assimilation

Coupling inputs,

Similar from the code point of view:

Import or export data

But... different libraries needed

- parameters reading,
- data initialization,

Initialization

- Data assimilation
- Coupling inputs,

Main loop

- Intermediate results.
- · Checkpoint,
- Post-processing,
- Coupling outputs,

- Final results,
- Final checkpoint,

Finalization

Import or export data

But... different libraries needed

- parameters rea
- data initializati

Data assimilation

Coupling inputs,

Main loop

The data-coupling problem

- Final results,
- · Final checkpoint.

Finalization

Initialization

ΔΡι

API

HPC Library

PDI annotations: a purely declarative API

Plugins for access to existing libraries

ΔΡι

API

API


```
/** Initializes PDI */
PDI_status_t PDI_init(PC_tree_t yaml_conf);
/** Finalizes PDI */
PDI_status_t PDI_finalize();
```

a C / C++ API Also available for:

- Fortran
- Python

- Init takes the specification tree as parameter
 - The YAML is parsed using the paraconf library

Finalize releases all PDI-related resources


```
typedef enum { PDI_IN, PDI_OUT, PDI_INOUT } PDI_inout_t;

// A data buffer is ready (filled)
PDI_status_t PDI_share(const char *name, void *data, PDI_inout_t access);

// A buffer will be reused
PDI_status_t PDI_reclaim(const char *name);
```

a C / C++ API Also available for:

- Fortran
- Python

- Share
 - A buffer is in a coherent consistent state
 - Reference the buffer in PDI store

- Reclaim
 - The buffer will be reused for a different use
 - Un-reference the buffer in PDI store

PDI: Annotation API usage


```
double* data buffer = malloc( buffer size*sizeof(double) );
while (!computation finished)
                                                      buffer is shared
    compute the value of( data buffer, /*...*/ );
    PDI share("main buffer", data buffer, PDI OUT);
                                                       between here
    do something without data buffer();
    do something reading( data buffer, /*...*/ );
                                                       and here
    PDI reclaim("main buffer"); <<
    update the value of( data buffer, /*...*/ );
```

- Creates a "shared region" in code where
 - Data referenced in PDI store
 - Plugins can use it

- Code should refrain from
 - modifying it (PDI_IN|OUT)
 - accessing it (PDI_IN)

- a C / C++ API Also available for:
 - Fortran
- Python

- Expose = share +
 reclaim
- Events: similar to exposing empty data

- Multi-expose:
 - All share
 - An event
 - All reclaims

Inside PDI: The shared data store

- PDI data store: a map of buffer references
 - Name ⇒ unique identifier
 - Reference
 - Ownership & locking information
 - RW-lock: Single Writer / Multiple Readers
 - Memory ownership: Strong or Semi-weak
 - Type ⇒ memory layout and interpretation
 - Buffer address ⇒ pointer to user memory


```
#pragma pdi metadata
int buffer_size;
#pragma pdi size:[buffer_size]
double *main buffer;
```

- Data type: memory layout & sematics
 - Annotations (C/C++), fully automatic (Python), or YAML (Fortran)
 - MPI / HDF5 inspired model: scalar / array / record
- "Data" vs. "Metadata"
 - PDI only handles the pointer for "data"
 - Minimal overhead
 - PDI keeps a copy of "metadata"
 - Can be used in \$-expressions

Kevin Barre

Inside PDI: the store + notifications

- PDI data store: a map of buffer references
 - Name ⇒ unique identifier
 - Reference
 - Ownership & locking information
 - RW-lock: Single Writer / Multiple Readers
 - Memory ownership : Strong or Semi-weak
 - Type ⇒ memory layout and interpretation
 - Buffer address ⇒ pointer to user memory

Inside PDI: the store + notifications

- PDI data store: a map of buffer references
 - Name ⇒ unique identifier
 - Reference
 - Ownership & locking information
 - RW-lock: Single Writer / Multiple Readers
 - Memory ownership : Strong or Semi-weak
 - Type ⇒ memory layout and interpretation
 - Buffer address ⇒ pointer to user memory
- Notification system: register to be called
 - On data share / access
 - On arbitrary locations in code (named "events")

PDI approach: wrap-up

- Write code
- Annotate buffers availability (share / reclaim)
- Compile and... DONE! (on the code side)

- Describe shared data
- Use pre-made plugins or write your own code to choose I/O libraries, describe behavior
 - React to events
 - Access data in the store

- IO libraries
 - HDF5 / parallel HDF5, NetCDF4 / pNetCDF4, SIONlib
- Special purpose IO
 - FTI, SENSEI (WIP)
- Workflow integration
 - Dask (WIP), FlowVR, Melissa (WIP)
- Your own code
 - \$-expressions based language, Python, C, C++, Fortran

PDI in practice: Decl'HDF5


```
PDI expose("buffer size", &buffer size, PDI OUT);
double* data buffer = malloc( buffer size*sizeof(double) );
while ( iteration id < max iteration id )</pre>
    compute the value of (data buffer, /*...*/);
    PDI share("main buffer", data buffer, PDI OUT);
    do_something_reading( data_buffer, /*...*/ );
    PDI reclaim("main buffer");
```

- Write data in the HDF5 format
- Heavily relies on
 - \$-expressions
 - default configuration values

- Makes
 - Simple things easy
 - Complex things possible


```
metadata: { buffer_size: int, iteration_id: int, rank: int }
data: { main_buffer: { type: array, subtype: double, size: $buffer_size } }
plugins:
    decl_hdf5:
    file: 'my_file_${iteration_id}x${rank}.h5'
    write: main_buffer
```

Simple to just dump data as HDF5

Decl'HDF5: a complex YAML example


```
metadata: { buffer size: int, iteration id: int, rank: int, np: int }
data: { main buffer: { type: array, subtype: double, size: $buffer size } }
plugins:
  decl hdf5:
   file: 'my file.h5'
   when: '$iteration id % 100 = 0 & $iteration id < 10000'
    datasets:
      main dset:
       type: array
       subtype: double
        Size: [ '($buffer size - 2) * $np', 100 ]
   write:
      main buffer:
        memory selection: { start: 1, size: '$buffer size - 2' }
        dataset: main dset
        dataset selection:
          start: [ '($buffer size - 2) * $iteration id', '$iteration id/100' ]
          size: [ '$buffer size - 2', 1 ]
    communicator: $MPI COMM WORLD
 mpi:
```

Possible to do complex rearranging of data in parallel

PDI: behind the scene

PDI: behind the scene

- Data assimilation
 - Coupling inputs,

- parameters reading,
- data initialization,
- - Initialization

- Intermediate results.
- · Checkpoint,
- Post-processing,
- Coupling outputs,

- Final results,
- Final checkpoint,

Finalization

Data coupling with PDI: pycall


```
plugins:
  pycall:
    on event:
      trigger event name: # event that triggers the call
        with: { iter: $iteration id, original data: $main field }
        exec:
          if iter<1000:
               new data = original data*4 # uses numpy
               pdi.expose('new data', new data, pdi.OUT);
```

- Let you call your own Python code
 - Data is exposed as numpy arrays
 - Numpy arrays can be re-exposed
 - ⇒ In-process post-processing and data transformation

Data coupling with PDI: user-code


```
plugins:
  user code:
    on event:
      trigger event name: # event that triggers the call
        function name { in1: $iteration id, in2: $main field }
void function name(void)
     int* iter = NULL; PDI access("in1", &iter, PDI IN);
     double* main field = NULL; PDI access("in2", &iter, PDI IN);
     PDI release("in2");
     PDI release("in1");
```

- Let you call your own (C/Fortran) functions
 - When performance matters
 - To call library APIs not covered by plugins

Data analytics with Dask


```
plugins:
  decl hdf5:
    file: 'my file ${iteration id}x${rank}.h5'
   write: main buffer
```


Antoine Lavandier (MdlS)

Data coupling with Deisa


```
plugins:
  deisa:
    scheduler file: "/home/user/xp/sched.json"
    transfer: { main field: { when: "$iteration id>0" } }
```


Amal Gueroudji, Julien Bigot, Bruno Raffin. "DEISA: dask-enabled in situ analytics." HiPC 2021 - 28th International Conference on High Performance Computing. Data. and Analytics, Dec 2021, virtual, India

Amal Gueroudji (MdlS)

PDI: Perf. Evaluation 1/2

Corentin Roussel (MdlS) Kai Keller (BSC)

- 4 versions of Gysela
 - No checkpoint
 - HDF5 checkpoints
 - FTI fault-tolerance
 - PDI (none / HDF5 / FTI / HDF5+FTI)

Execution time by MB of checkpointed data on 4 MareNostrum Nodes with and without PDI

PDI: Perf. Evaluation 2/2

Corentin Roussel (MdlS) Kai Keller (BSC)

Gysela Wallclock time in weak scaling on Curie (TGCC -France) with and without PDI

Checkpointed data ~2.1GB/node

PDI: Memory overhead

Corentin Roussel (MdlS) Kai Keller (BSC)

Memory usage during a Gysela execution with and without PDI on 4 nodes of MareNostrum (BSC – Spain)

Perf evaluation: IOR

IOR IO Benchmark PDI integration

Scaling with small (128k) & large (256M) data blocks on CRESCO6

Francesco lannone

- PDI is publicly available (BSD 3-clause license)
 - Version 1.5.4 released
 - Packages available for Debian, Fedora, Ubuntu, Spack
 - Documentation available @ https://pdi.dev/1.5/
 - Heavily tested & validated
 - more than 1500 tests
 - more than 14 platforms
- Integration in production codes
 - Gysela, Parflow, ESIAS, Metalwalls (Planned & funded)

- A library for Data Coupling, Not an IO library
 - A declarative annotation API
 - Describe your data in YAML
 - Multiple plugins for actual IO and data processing
 - Describe your IO from YAML
- Your turn now!
 - Get the tutorial: https://pdi.dev/master/Hands on.html
 - On PlaFRIM: pdi_connect

