Trabalho de Estrutura de Dados e Algoritmos

Alice Duarte Scarpa, Bruno Lucian Costa 2015-06-23

1 Exercício 6.30 (Papadimitriou)

1.1 Enunciado

Reconstruindo árvores filogenéticas pelo método da máxima parcimônia Uma árvore filogenética é uma árvore em que as folhas são espécies diferentes, cuja raiz é o ancestral comum de tais espécies e cujos galhos representam eventos de especiação.

Queremos achar:

- Uma árvore (binária) evolucionária com as espécies dadas
- Para cada nó interno uma string de comprimento k com a sequência genética daquele ancestral.

Dada uma árvore acompanhada de uma string $s(u) \in \{A, C, G, T\}^k$ para cada nó $u \in V(T)$, podemos atribuir uma nota usando o método da máxima parcimônia, que diz que menos mutações são mais prováveis:

$$\mathrm{nota}(T) = \sum_{(u,v) \in E(T)} (\mathrm{n\'umero} \ \mathrm{de} \ \mathrm{posi\~{c}\~{o}es} \ \mathrm{em} \ \mathrm{que} \ s(u) \ \mathrm{e} \ s(v) \ \mathrm{diferem}).$$

Achar a árvore com nota mais baixa é um problema difícil. Aqui vamos considerar um problema menor: Dada a estrutura da árvore, achar as sequências genéticas s(u) para os nós internos que dêem a nota mais baixa.

Um exemplo com k = 4 e n = 5:

- 1. Ache uma reconstrução para o exemplo seguindo o método da máxima parcimônia.
- 2. Dê um algoritmo eficiente para essa tarefa.

1.2 Solução

Como o valor só depende TODO.

Vamos calcular a resposta para cada letra independentemente e depois concatenar as respostas para obter a árvore final.

Nós vamos usar um algoritmo de programação dinâmica para encontrar o valor das folhas intermediárias em uma árvore P em que cada folha tem valor A, G, T ou C

TODO: estrutura de dados para representar a árvore.

class Arvore:

```
def __init__(self, pai):
    self.filhos = []
    self.label = ""
    self.pai = pai
```

Colocar aqui uma estrutura de dados para a arvore

TODO: achar um nome melhor para ans

Vamos computar $ans[v][\ell]$ como a melhor maneira de preencher os nós da sub-árvore enraizada em v, dado que o pai de v tem valor ℓ .

TODO: justificar a inicializacao

Vamos computar ans de baixo para cima. Então, o caso base para esse algoritmo é a resposta para as folhas, isso é, ans[folha][ℓ].

Uma sub-árvore que contém apenas uma folha e seu pai vai ter nota = 0 se a folha e o pai tiverem ambos o mesmo valor (A, G, T ou C) ou nota = 1, se os dois tiverem valores diferentes:

$$ans[folha][\ell] = \begin{cases} 0 \text{ se valor}[folha] = \ell \\ 1 \text{ caso contrário} \end{cases}$$

Podemos então preencher as folhas:

#TODO: preencher as folhas

Tendo o caso base, podemos computar $ans[v][\ell]$ assumindo que $ans[w][\ell]$ já foi computado para todo w filho de v e $\ell \in \{A, G, T, C\}$.

TODO: explicar em algum lugar que a raiz é especial

A nota da sub-árvore quando o valor de v é igual a m é:

$$[\ell \neq m] + \sum_{w \text{ filho de } v} ans[w][m]$$

Onde

$$[\ell \neq m] = \begin{cases} 0 \text{ se } m = \ell \\ 1 \text{ caso contrário} \end{cases}$$

Queremos escolher um valor $m \in \{A, G, T, C\}$ para v que minimize a nota final da sub-árvore. Então:

$$ans[v][\ell] = \min_{m \in \{A,G,T,C\}} \left([\ell \neq m] + \sum_{w \text{ filho de } v} ans[w][m] \right)$$

TODO: preencher os outros vértices (exceto a raiz)

Após computarmos $ans[v][\ell]$ para todos os vértices exceto a raiz podemos encontrar a nota da árvore como o mínimo entre os possíveis valores para a raiz:

$$\min_{\ell \in \{A,G,T,C\}} \sum_{v \text{ filho da raiz}} ans[v][\ell]$$

1.3 Dados reais

1.3.1 Formato Newick

Um formato muito usado para árvores em bioinformática é o formato Newick. Assim como LISP, ele usa o fato de que parenteses podem ser usados para especificar uma árvore.

TODO: especificar o formato, referência do formato

1. Parseando o formato Newick

1.3.2 Rosalind

Obtemos os dados do Rosalind, TODO: explicar o Rosalind.
Rosalind MULT, GLOB, EDTA, PERM, EDIT, LCSQ, CSTR, CTBL, NWCK, SSET, MRNA, KMP, PROB SSEQ, SPLC, LCSM

1.3.3 Rodando o algoritmo com dados reais

1.4 Extensões

Ao fazer esse exercício, notamos que a árvore já é uma entrada do problema. Como é possível obter a árvore de menor valor a partir das espécies

Esse problema é NP-completo [TODO: colocar referência] e o melhor algoritmo conhecido é [TODO]

2 Exercício 6.3 (Papadimitriou)

2.1 Enunciado

O Yuckdonald's está considerando abrir uma cadeia de restaurantes em Quaint Valley Highway (QVG). Os n locais possíveis estão em uma linha reta, e as distâncias desses locais até o começo da QVG são, em milhas e em ordem crescente, m_1, m_2, \ldots, m_n . As restrições são as seguintes:

- Em cada local, o Yuckdonald's pode abrir no máximo um restaurante. O lucro esperado ao abrir um restaurante no local $i \in p_i$, onde $p_i > 0$ e i = 1, 2, ..., n.
- Quaisquer dois restaurantes devem estar a pelo menos k milhas de distância, onde k é um inteiro positivo.

Dê um algoritmo eficiente para computar o maior lucro total esperado, sujeito às restrições acima.

3 Exercício 7.28 (Tardos)

3.1 Enunciado

Um grupo de estudantes está escrevendo um módulo para preparar cronogramas de monitoria. O protótipo inicial deles funciona do seguinte modo: O cronograma é semanal, de modo que podemos nos focar em uma única semana.

- O administrador do curso escolhe um conjunto de k intervalos disjuntos de uma hora de duração I_1, I_2, \ldots, I_k , nos quais seria possível que monitores dessem suas monitorias; o cronograma final consistirá de um subconjunto de alguns (mas geralmente não todos) esses intervalos.
- Cada monitor então entra com seu horário semanal, informando as horas em que ele está disponível para monitorias.
- O administrador então especifica, para parâmetros a, b e c, que cada monitor deve dar entre a e b horas de monitoria por semana, e que um total de c horas de monitoria deve ser dado semanalmente.

O problema é escolher um subconjunto dos horários (intervalos) e atribuir um monitor a cada um desses horários, respeitando a disponibilidade dos monitores e as restrições impostas pelo administrador.

- a) Dê um algoritmo polinomial que ou constrói um cronograma válido de horas de monitoria (especificando que monitor cobre quais horários) ou informa que não há cronograma válido.
- b) O algoritmo acima tornou-se popular, e surgiu a vontade de controlar também a densidade das monitorias: dado números d_i , com i entre 1 e 5, queremos um cronograma com pelo menos d_i horários de monitoria no dia da semana i. Dê um algoritmo polinomial para resolver o problema com essa restrição adicional.

3.2 Introdução

Queremos modelar esse problema como um problema de fluxo. Para isso vamos começar com algumas definições de fluxo.

3.2.1 Definições

Uma rede de fluxo é um grafo direcionado G = (V, E) com as seguintes propriedades:

- Existe um único vértice fonte $s \in V$. Nenhuma aresta entra em s.
- A cada aresta e está associada uma capacidade inteira c_e e uma demanda d_e tal que $c_e \ge d_e \ge 0$.
- Existe um único vértice dreno $t \in V$. Nenhuma aresta sai de t.

Um fluxo f de s a t é uma função $f: E \to R^+$ que associa a cada aresta e um valor real não-negativo f(e) tal que:

- 1. $\forall e \in E, d_e \leq f(e) \leq c_e$
- 2. Para todo nó $v \notin \{s, t\}$:

$$\sum_{e \text{ chegando em } v} f(e) = \sum_{e \text{ saindo de } v} f(e)$$

f(e) representa o fluxo que vai passar pela aresta e. O valor de um fluxo \acute{e} o total que parte da fonte s, isso \acute{e} :

$$\operatorname{Valor}(f) = \sum_{e \text{ saindo de } s} f(e)$$

TODO: definir circulação

3.2.2 Representação

Podemos usar programação orientada a objetos [TODO: colocar alguma referência de OOP] para nos ajudar na representação da rede de fluxo, simplificando o algoritmo.

TODO: explicar a parte de já construir o grafo reverso.

Vamos usar uma classe para representar arestas. Uma aresta é inicializada com as propriedades: vértice de origem, vértice de destino, capacidade e demanda.

TODO: explicar reversa e original

```
class Aresta():
```

```
def __init__(self, origem, destino, capacidade, demanda):
    self.origem = origem
    self.destino = destino
    self.capacidade = capacidade
    self.demanda = demanda
    self.reversa = None
    self.original = True
```

Agora que temos a classe Aresta, vamos usá-la para auxiliar na representação de uma rede de fluxo também como objeto.

Uma rede de fluxo tem duas propriedades: adjacências, um dicionário que mapeia cada vértice às arestas que saem dele e fluxo TODO: explicar isso

O construtor da classe inicializa as duas propriedades como dicionários vazios.

Vamos precisar dos seguintes métodos na nossa classe RedeDeFluxo:

- novo_vertice(v): Adiciona o vértice v à rede
- nova_aresta(origem, destino, capacidade): Adiciona uma nova aresta a rede. Também cria a aresta reversa.
- novo_fluxo(f, e): Adiciona um fluxo f à aresta e
- encontra_arestas(v): Retorna as arestas que partem do vértice v
- valor_do_fluxo(fonte): Encontra o valor do fluxo, como definido em (3.2.1).

```
class RedeDeFluxo():
    def __init__(self):
        self.adj = collections.OrderedDict()
        self.fluxo = {}
    def novo_vertice(self, v):
        self.adj[v] = []
    def nova_aresta(self, origem, destino, capacidade, demanda):
        aresta = Aresta(origem, destino, capacidade, demanda)
        self.adj[origem].append(aresta)
        # Criando a aresta reversa
        aresta_reversa = Aresta(destino, origem, 0, -demanda)
        self.adj[destino].append(aresta_reversa)
        aresta_reversa.original = False
        # Marcando aresta e aresta_reversa como reversas uma da outra
        aresta.reversa = aresta_reversa
        aresta_reversa.reversa = aresta
```

```
def novo_fluxo(self, e, f):
    self.fluxo[e] = f

def encontra_arestas(self, v):
    return self.adj[v]

def valor_do_fluxo(self, fonte):
    valor = 0
    for aresta in self.encontra_arestas(fonte):
        valor += self.fluxo[aresta]
    return valor
```

3.3 Modelando o problema com fluxos

Os dois itens do problema podem ser reduzidos a encontrar um fluxo válido em uma rede usando construções semelhantes.

Para o item a), construimos o grafo da seguinte forma:

- ullet Criamos um vértice s representando a fonte e um vértice t representando o dreno
- Para cada intervalo $I_i \in I_1, I_2, ..., I_k$ escolhido pelo administrador, criamos um vértice I_i e uma aresta (s, I_i) capacidade 1 e demanda 0
- Para cada monitor $T_i \in T_1, T_2, \ldots, T_m$ criamos um vértice T_i . Se o monitor está disponível para dar monitoria no intervalo I_j criamos uma aresta de (I_j, T_i) de demanda 0 e capacidade 1. Para cada monitor também criamos uma aresta (T_i, t) de demanda a e capacidade b.
- Para garantir que a solução final terá exatamente c horas de monitoria, criamos uma nova fonte s' e uma aresta (s', s) com demanda e capacidade c.

TODO: argumentar que soluções para esse problema são equivalentes a soluções do problema original

O caso com 3 intervalos e 2 monitores (A e B) em que o monitor A está disponível nos intervalos 1 e 2 e o monitor B está disponível nos horários 1 e 3 está representado abaixo. Os rótulos das arestas são da forma demanda/capacidade. As arestas sem rótulo tem demanda 0 e capacidade 1.

TODO: circulação

A única diferença na construção do item b é que, ao invés de ligarmos s diretamente aos intervalos de monitoria, ligamos s a cada dia da semana i com demanda d_i e capacidade c e depois criamos uma aresta com demanda s0 e capacidade 1 de cada dia da semana para os intervalos que são naquele dia.

TODO: argumento que isso dá a solução certa

Abaixo está o mesmo exemplo do item a) com dias da semana. Para deixar a visualização mais simples estamos colocando aqui apenas dois dias da semana.

3.4 Implementação

3.4.1 Fluxo máximo

Vamos começar estudando o problema de encontrar o fluxo máximo de uma rede G em que $d_e = 0 \ \forall e \in E \ f$. Vamos implementar aqui o algoritmo de Ford-Fulkerson para resolver esse problema.

O algoritmo tem 2 partes:

- 1. Dado um caminho P e partindo de um fluxo inicial f, obter um novo fluxo f' expandindo f em P
- 2. Partindo do fluxo f(e) = 0, expandir o fluxo enquanto for possível
- Primeira parte:

O gargalo de um caminho é TODO: definir gargalo, explicar o código a seguir Definimos aqui uma função que encontra o gargalo do caminho

```
def encontra_gargalo(self, caminho):
    residuos = []
    for aresta in caminho:
        residuos.append(aresta.capacidade - self.fluxo[aresta])
    return min(residuos)
```

Expandir o caminho é TODO: explicar o que é expandir o caminho,

```
def expande_caminho(self, caminho):
    gargalo = self.encontra_gargalo(caminho)
    for aresta in caminho:
        self.fluxo[aresta] += gargalo
        self.fluxo[aresta.reversa] -= gargalo
```

Com isso temos a parte 1 do algoritmo.

Para a parte 2, vamos precisar criar um fluxo f com f(e) = 0 para toda aresta e. Podemos fazer isso utilizando o seguinte método na classe RedeDeFluxo():

```
def cria_fluxo_inicial(self):
    for vertice, arestas in self.adj.iteritems():
        for aresta in arestas:
            self.fluxo[aresta] = 0
```

None

TODO: explicar porque precisamos desse método e como ele funciona Retorna um caminho de fonte a dreno passando pelos vértices em caminho É uma DFS

Com todas as funções auxiliares prontas, podemos finalmente definir a função que encontra o fluxo máximo.

TODO: explicar o algoritmo de fluxo máximo

```
def fluxo_maximo(self, fonte, dreno):
    self.cria_fluxo_inicial()

    caminho = self.encontra_caminho(fonte, dreno, [], set())
    while caminho is not None:
        self.expande_caminho(caminho)
        caminho = self.encontra_caminho(fonte, dreno, [], set())
    return self.valor_do_fluxo(fonte)
```

3.4.2 Fluxo válido com demandas não-nulas

O nosso objetivo é encontrar um fluxo válido f para uma rede G=(V,E) no caso em que as demandas são positivas.

Vamos construir uma rede G' = (V', E') com um valor associado d tal que $d_e = 0 \ \forall e \in E'$ de tal forma que um fluxo válido para G existe se e somente se o valor do fluxo máximo em G' é d. Em caso afirmativo, podemos construir um fluxo válido f para G rapidamente a partir de qualquer fluxo máximo f' de G'.

Construimos G' da seguinte forma:

• Criamos um vértice em G' para cada vértice G

- Adicionamos uma fonte adicional F e um dreno adicional D a G'
- Definimos o saldo de cada vértice $v \in V$ como:

$$\operatorname{saldo}(v) = \sum_{e \text{ saindo de } v} d_e - \sum_{e \text{ chegando em } v} d_e$$

- Se saldo(v) > 0 adicionamos uma aresta (v, D, saldo(v), 0) a G'
- Se saldo(v) < 0 adicionamos uma aresta (F, v, -saldo(v), 0) a G'
- Para cada aresta $e = \text{(origem, destino, capacidade, demanda)} \in E$, crie uma aresta e' = (origem, destino, capacidade demanda, 0) em G'

Codificando a construção acima:

```
def cria_rede_com_demandas_nulas(G):
    G_ = RedeDeFluxo()
    G_.novo_vertice('F')
    G_.novo_vertice('D')
    d = 0
    for vertice, arestas in G.adj.iteritems():
        G_.novo_vertice(vertice)
        saldo = sum(e.demanda for e in arestas)
        if saldo > 0:
            G_.nova_aresta(vertice, 'D', saldo, 0)
            d += saldo
        elif saldo < 0:
            G_.nova_aresta('F', vertice, -saldo, 0)
    for arestas in G.adj.values():
        for a in arestas:
             if a.original:
                 G_.nova_aresta(a.origem,
                                 a.destino,
                                 a.capacidade - a.demanda,
                                 0)
    return G_, d
```

TODO: provar que soluções de um são também soluções do outro

3.5 Complexidade

TODO: calcular a complexidade do algoritmo

3.6 Rodando o algoritmo

3.6.1 Item A

A seguinte tabela mostra a disponibilidade dos monitores nos horários escolhidos pelo administrador:

	Ana	Bia	Caio	Davi	Edu	Felipe	Gabi	Hugo	Isa
Seg~10h				X					
Seg 14h						X	X	X	X
Seg 21h	X			X					
Ter 10h	X	X		X					
Ter 16h			X						
Ter 20h							X		X
Qua 9h						X			
Qua 17h			X						
Qua 19h								X	
Qui 7h		X				X			
Qui 13h							X		
Qui 19h		X			X			X	
Sex 7h			X		X				
Sex 11h	X				X				X
Sex 21h			X			X			X

As outras regras para monitoria estão na tabela abaixo:

Min de horas por monitor 1 Max de horas por monitor 3 Horas de monitoria 10

Podemos carregar as informações das tabelas para criar uma rede como descrita em TODO: colocar a referencia certa.

```
# Lendo a tabela de disponibilidade
intervalos = collections.OrderedDict()
monitores = horarios[0][1:]
```

for disponibilidade in horarios[1:]:

```
intervalos[disponibilidade[0]] = []
    for i, slot in enumerate(disponibilidade[1:]):
        if slot != '':
            intervalos[disponibilidade[0]].append(monitores[i])
   Lendo a tabela de regras
min_horas = regras[0][1]
max_horas = regras[1][1]
total_horas = regras[2][1]
   Criando uma rede para o problema com os dados fornecidos
def cria_rede(intervalos, monitores, min_horas, max_horas, total_horas):
    G = RedeDeFluxo()
    G.novo vertice('Fonte')
    G.novo_vertice('Dreno')
    G.nova_aresta('Dreno', 'Fonte', total_horas, total_horas)
    # Criando um vertice para cada monitor e ligando esse vertice ao dreno
    for monitor in monitores:
        G.novo vertice(monitor)
        G.nova_aresta(monitor, 'Dreno', max_horas, min_horas)
    for intervalo, monitores_disponiveis in intervalos.iteritems():
        # Criando um vertice para cada intervalo e conectando a fonte a
        # cada um dos intervalos
        G.novo_vertice(intervalo)
        G.nova_aresta('Fonte', intervalo, 1, 0)
        # Conectando o intervalo a cada monitor disponivel nele
        for monitor in monitores_disponiveis:
            G.nova_aresta(intervalo, monitor, 1, 0)
    return G
   Agora é só rodar o algoritmo com o grafo obtido:
G = cria_rede(intervalos, monitores, min_horas, max_horas, total_horas)
G_, d = cria_rede_com_demandas_nulas(G)
fluxo = G_.fluxo_maximo('F', 'D')
if fluxo == d:
```

```
tabela_de_monitores = []
for horario in intervalos:
    for w in G_.adj[horario]:
        if G_.fluxo[w] == 1:
            tabela_de_monitores.append([w.origem, w.destino])
    return tabela_de_monitores
else:
    return 'Impossivel'
```

No final, obtemos ou 'Impossível' se não existir um horário compatível ou uma tabela com um horário que atende a todas as restrições.

Para a tabela acima:

3.6.2 Item b

No item b, além de todas as restrições do item a, há também a restrição de mínimo de horas por dia da semana.

Vamos expressar a nova restrição com uma tabela:

Seg 1
Ter 1
Qua 2
Qui 1
Sex 1

Parsear a nova tabela é simples:

```
minimo_por_dia = {}
for dia in min_por_dia:
    minimo_por_dia[dia[0]] = dia[1]
```

A única função que precisamos alterar do item a é a função cria_rede, que agora tem que lidar com a construção mencionada em TODO.

```
for monitor in monitores:
    G.novo vertice(monitor)
    G.nova_aresta(monitor, 'Dreno', max_horas, min_horas)
# Criando um vertice para cada dia e uma aresta da Fonte ao dia
# com demanda igual ao minimo de horas de monitoria para aquele dia
# e capacidade suficientemente grande (vamos usar o total de horas)
dias = minimo_por_dia.keys()
for dia in dias:
    G.novo_vertice(dia)
    G.nova_aresta('Fonte', dia, total_horas, minimo_por_dia[dia])
for intervalo, monitores_disponiveis in intervalos.iteritems():
    # Encontrando o dia do intervalo
    for dia in dias:
        if intervalo.startswith(dia):
            dia do intervalo = dia
    # Criando um vertice para cada intervalo e conectando o dia do intervalo
    # a cada um dos intervalos
    G.novo_vertice(intervalo)
    G.nova_aresta(dia_do_intervalo, intervalo, 1, 0)
    # Conectando o intervalo a cada monitor disponivel nele
    for monitor in monitores_disponiveis:
        G.nova_aresta(intervalo, monitor, 1, 0)
return G
                     Seg 10h
                              Davi
                     Seg 14h
                              Isa
                    Seg 21h
                              Ana
                    Ter 10h
                             Bia
                    Ter 16h
                             Caio
                     Qua 9h
                              Felipe
                     Qua 17h Caio
                     Qua 19h Hugo
                     Qui 13h
                              Gabi
                     Sex 7h
                              Edu
```

4 Exercício 4.5 (Tardos)

4.1 Enunciado

Vamos considerar uma rua campestre longa e quieta, com casas espalhadas bem esparsamente ao longo da mesma. (Podemos imaginar a rua como um grande segmento de reta, com um extremo leste e um extremo oeste.) Além disso, vamos assumir que, apesar do ambiente bucólico, os residentes de todas essas casas são ávidos usuários de telefonia celular.

Você quer colocar estações-base de celulares em certos pontos da rodovia, de modo que toda casa esteja a no máximo quatro milhas de uma das estações-base. Dê um algoritmo eficiente para alcançar esta meta, usando o menor número possível de bases.

5 Exercício 8.19 (Tardos)

5.1 Enunciado

Um comboio de navios chega ao porto com um total de n vasilhames contendo tipos diferentes de materiais perigosos. Na doca, estão m caminhões, cada um com capacidade para até k vasilhames. Para cada um dos dois problemas, dê um algoritmo polinomial ou prove NP-completude:

- Cada vasilhame só pode ser carregado com segurança em alguns dos caminhões. Existe como estocar os n vasilhames nos m caminhões de modo que nenhum caminhão esteja sobrecarregado, e todo vasilhame esteja num caminhão que o comporta com segurança?
- Qualquer vasilhame pode ser colocado em qualquer caminhão, mas alguns pares de vasilhames não podem ficar juntos num mesmo caminhão. Existe como estocar os n vasilhames nos m caminhões de modo que nenhum caminhão esteja sobrecarregado e que nenhum dos pares proibidos de vasilhames esteja no mesmo caminhão?