

CMP6230 Draft Pipeline

Lewis Higgins - Student ID 22133848

Contents

1	Can	adidate Data Sources	1
	1.1	Candidate 1 - Indian Liver Patient Dataset	1
	1.2	Candidate 2 - Loan Approval Classification Dataset	6
	1.3	Candidate 3 - Spotify Likes Dataset	11
	1.4	Chosen dataset	17
2	Pla	nning the MLOps Pipeline	18
	2.1	Data Ingestion	18
		2.1.1 OLAP and OLTP	19
		2.1.2 ELT and ETL	19
	2.2	Data Preparation / Preprocessing	19
	2.3	Model Development	19
	2.4	Model Deployment	19
	2.5	Model Monitoring	19
	2.6	Software used in an MLOps pipeline	19

Candidate Data Sources

For the first stage of the pipeline, data ingestion, three data sources will be identified in order to find the one that would be most optimal for the production and deployment of a machine learning model to complete a supervised learning task.

1.1 Candidate 1 - Indian Liver Patient Dataset

This dataset (Bendi Ramana and N. Venkateswarlu, 2022) consists of real data sourced from hospitals northeast of Andhra Pradesh in India. It was obtained from the UCI Machine Learning Repository, and has been previously used by Straw and Wu (2022) in their analysis of sex-related bias in supervised learning models. The UCI ML Repository is a popular host of datasets used by students, educators and researchers worldwide for machine learning (UCI Machine Learning Repository, 2024), and hosts these datasets on the cloud for public download and usage, as long as credit is given.

Figure 1.1: A snapshot of the dataset's UCI repository page.

This dataset in particular aims to assist in the diagnosis of liver disease due to increasing mortality rates from conditions like liver cirrhosis, and contains 584 records with 10 features as well as the "Selector" classification column, where those wihout liver disease are classed as 1, and those with liver disease are classed as 2. For the purposes of the ML model, these can be changed to 0 and 1 respectively. The dataset is a single flat-file Comma-Seperated

Values (CSV) file, which stores data by seperating each column with commas and each row with line breaks. This CSV file uses a One Big Table (OBT) schema, as seen in the entity relationship diagram in Figure 1.2, wherein all of the data within this dataset is stored in a single table. Descriptions of the columns in the dataset, as well as the associated data types, can be found in Table 1.1.

Indian Liver Patient Dataset				
Age	integer			
Gender	varchar			
ТВ	numeric			
DB	numeric			
Alkphos	integer			
Sgpt	integer			
Sgot	integer			
TP	numeric			
ALB	numeric			
A/G Ratio	numeric			
Selector	integer			

Figure 1.2: An entity relationship diagram of the Indian Liver Patient Dataset.

A minor issue with this file is that it has no headers in its CSV file, meaning that when imported, Pandas will interpret the first row of data as the names of the columns, though this can be combated by adding the "names" argument when calling Pandas' "read_csv" function, seen below in Figure 1.3a.


```
df = pd.read_csv("Data/ilpd.csv")
  0.0s
  df.head(10)
   0.0s
        Female
                  0.7
                        0.1
                             187
                                    16
                                         18
                                              6.8
                                                    3.3
                                                          0.9
   65
                                                                1
0
   62
          Male
                  10.9
                        5.5
                              699
                                    64
                                         100
                                               7.5
                                                    3.2
                                                         0.74
                                                                1
   62
          Male
                   7.3
                        4.1
                              490
                                    60
                                          68
                                               7.0
                                                    3.3
                                                         0.89
2
   58
          Male
                   1.0
                        0.4
                              182
                                    14
                                          20
                                               6.8
                                                    3.4
                                                         1.00
                                                                1
   72
          Male
                   3.9
                        2.0
                              195
                                    27
                                                    2.4
                                                         0.40
3
                                          59
                                               7.3
          Male
                   1.8
                        0.7
                              208
                                                         1.30
                                                                1
4
   46
                                    19
                                          14
                                               7.6
                                                    4.4
   26
        Female
                   0.9
                        0.2
                              154
                                    16
                                          12
                                              7.0
                                                    3.5
                                                         1.00
        Female
                   0.9
                        0.3
                              202
                                                    3.6
   29
                                    14
                                               6.7
                                                         1.10
                                                               1
                                          11
   17
          Male
                   0.9
                        0.3
                              202
                                    22
                                          19
                                              7.4
                                                    4.1
                                                         1.20
                                    53
                   0.7
                        0.2
                              290
                                                               1
   55
          Male
                                          58
                                               6.8
                                                    3.4
                                                         1.00
9
   57
          Male
                   0.6
                        0.1
                              210
                                    51
                                          59
                                              5.9
                                                    2.7
                                                         0.80
```

(a) Importing without supplying column names.

✓	0.0s										
	Age	Gender	ТВ	DB	Alkphos	Sgpt	Sgot	ΤP	ALB	AGRatio	Selector
0	65	Female	0.7	0.1	187	16	18	6.8	3.3	0.90	1
1	62	Male	10.9	5.5	699	64	100	7.5	3.2	0.74	1
2	62	Male	7.3	4.1	490	60	68	7.0	3.3	0.89	1
3	58	Male	1.0	0.4	182	14	20	6.8	3.4	1.00	1
4	72	Male	3.9	2.0	195	27	59	7.3	2.4	0.40	1
5	46	Male	1.8	0.7	208	19	14	7.6	4.4	1.30	1
6	26	Female	0.9	0.2	154	16	12	7.0	3.5	1.00	1
7	29	Female	0.9	0.3	202	14	11	6.7	3.6	1.10	1
8	17	Male	0.9	0.3	202	22	19	7.4	4.1	1.20	2
9	55	Male	0.7	0.2	290	53	58	6.8	3.4	1.00	1

df.head(10)

(b) Importing with the column names.

Figure 1.3: Importing the erroneous CSV using Pandas. The column headers are highlighted in a red box.

A preliminary analysis of the file to ascertain the data types of each column, seen in Figure 1.4, also revealed that there were 4 missing values in the A/G ratio column. It is possible that these missing values could be imputed rather than deleted, as it may be possible to calculate what the A/G ratio of these rows would have been in the Data Preprocessing stage of a pipeline.

df.dtypes				
Age	int64			
Gender	object			
TB	float64			
DB	float64			
Alkphos	int64			
Sgpt	int64			
Sgot	int64			
TP	float64			
ALB	float64			
AGRatio	float64			
Selector	int64			

Figure 1.4: The data types of the Indian Liver Patient Dataset.

<pre>df.isna().sum()</pre>				
Age	0			
Gender	Θ			
TB	Θ			
DB	0			
Alkphos	Θ			
Sgpt	0			
Sgot	Θ			
TP	0			
ALB	Θ			
AGRatio	4			
Selector	0			

(a) Four missing values are identified.

	Age	Gender	ТВ	DB	Alkphos	Sgpt	Sgot	TP	ALB	AGRatio	Selector
209	45	Female	0.9	0.3	189	23	33	6.6	3.9	NaN	1
241	51	Male	0.8	0.2	230	24	46	6.5	3.1	NaN	1
253	35	Female	0.6	0.2	180	12	15	5.2	2.7	NaN	2
312	27	Male	1.3	0.6	106	25	54	8.5	4.8	NaN	2

(b) The four rows in question.

Figure 1.5: The identification of four missing values in the ${\rm A/G}$ ratio column.

Column	Description
Age	The patient's age. Ages of 90 or over
	were listed as 90 before this dataset
	was published.
Gender	The patient's gender, either "Male" or
	"Female".
TB	Total bilirubin. Bilirubin is a substance
	produced by the liver, and a high presence
	of it may be indicative of liver problems
	(Mayo Clinic, 2024).
DB	Direct bilirubin. This is a slightly differ-
	ent form of bilirubin that is formed after
	the liver has processed it.
Alkphos	Levels of alkaline phosphate - an enzyme
	in the body produced by the liver. Too
	much may indicate liver disease. (Cleve-
	land Clinic, 2024)
Sgpt	Another enzyme found in the liver, where
	too much can indicate liver problems.
Sgot	Levels of AST in the blood, where too
	much indicates liver problems.
TP	Total proteins.
ALB	Albumin - a protein in blood plasma. Too
1 /6/ 5	little of this may indicate liver problems.
A/G Ratio	The ratio of albumin to globulin, which is
	another blood protein.
Selector	The classifier, indicating if the person has
	liver disease. The target column for the
	ML model.

Table 1.1: The descriptions of each column in the Indian Liver Patient Dataset.

This dataset can be used to develop a supervised machine learning model for binary classification using the ten predictor variables and the ground truth Selector column, which will be used in measuring the accuracy of the model. There is a clear positive purpose for developing such a model; as previously mentioned, mortality rates from liver disease are high, and an early diagnosis that could leverage the power of machine learning can greatly enhance the odds of successful treatment.

1.2 Candidate 2 - Loan Approval Classification Dataset

This dataset was sourced from Kaggle's cloud servers under an Apache 2.0 license, which states that the dataset can be used as long as credit is given to the original author, and takes the form of a flat-file CSV using a One Big Table schema.

Figure 1.6: A snapshot of the Loan dataset's Kaggle page.

Unlike Candidate 1, this dataset does not consist of real data, and instead consists of synthetic data. This is likely due to the fact that this dataset, if it used real data, would contain extremely personal information that could not be shared online due to legislation such as GDPR. This particular dataset is an enhanced version of a different credit risk dataset, which also did not provide an original source and is presumably synthetic data. The dataset consists of 45,000 records and 14 features, with one of these being the ground truth target variable "loan_status", which is whether the person should be given a loan or not. As such, it is well suited for a binary classification model, using the first 13 features as predictor variables. This can also be observed from the 28 notebooks on Kaggle that utilise this dataset. The data types for each column can be seen in the entity relationship diagram and Pandas code in Figures 1.7 and 1.4, and descriptions of each column can be seen in Table 1.2.

Loan Approval Classification Dataset					
person_age	numeric				
person_gender	varchar				
person_education	varchar				
person_income	numeric				
person_emp_exp	integer				
person_home_ownership	varchar				
loan_amnt	numeric				
loan_intent	varchar				
loan_int_rate	numeric				
loan_percent_income	numeric				
cb_person_cred_hist_length	numeric				
credit_score	integer				
previous_loan_defaults_on_file	varchar				
loan_status	integer				

Figure 1.7: An entity relationship diagram of the Loan Approval Classification Dataset.

df_loan.dtypes	
person age	float64
person gender	object
person_education	object
person_income	float64
person_emp_exp	int64
person_home_ownership	object
loan_amnt	float64
loan_intent	object
loan_int_rate	float64
loan_percent_income	float64
cb_person_cred_hist_length	float64
credit_score	int64
previous_loan_defaults_on_file	object
loan_status	int64

Figure 1.8: The data types of the Loan Approval Classification Dataset.

```
df loan.isna().sum()
person age
                                    Θ
person_gender
                                    Θ
person education
person income
                                    Θ
person emp exp
person home ownership
                                    Θ
loan amnt
loan intent
                                    Θ
loan int rate
loan percent income
                                    Θ
cb person cred hist length
                                    Θ
credit score
                                    Θ
previous loan defaults on file
                                    Θ
loan status
                                    Θ
```

Figure 1.9: No missing values in the dataset.

Column	Description
person_age	The age of the person.
person_gender	The person's gender.
person_education	The person's highest level of education.
person_emp_exp	The person's years of employment ex-
	perience.
person_home_ownership	Home ownership status (for example
	rent, own, mortgage)
loan_amnt	The amount of money requested.
loan_intent	The purpose of the loan.
loan_int_rate	The interest rate of the loan.
loan_percent_income	Loan amount as a percentage of the
	person's yearly income.
cb_person_cred_hist_length	Length of credit history in years.
credit_score	Credit score of the person.
previous_loan_defaults_on_file	If the person has defaulted on a loan
	before.
loan_status	Whether the loan should be approved.
	1 if yes, 0 if no.

Table 1.2: The descriptions of each column in the dataset.

1.3 Candidate 3 - Spotify Likes Dataset

This dataset was sourced from Kaggle, a platform similar to the UCI ML repository in its purpose for students and researchers that acts as a search engine for datasets, but also allows its users to host competitions, upload their machine learning models, and also upload their own Python notebooks. This dataset is stored on their servers on the cloud, and is free to download and use.

Figure 1.10: A snapshot of the Spotify dataset's Kaggle page.

The data itself is split over two JavaScript Object Notation (JSON) files, but also fully present in an included CSV file, with all three utilising a One Big Table schema. The download also includes two Python files, which have the JSON data stored in Python dictionaries for ease of access, though these will not be used in this brief analysis. JSON files store data in **key-value pairs**, such as in the example snippet of this dataset depicted in Figure 1.11.

Figure 1.11: A snippet of the JSON data, viewed in Visual Studio Code.

Every row in the JSON files is part of the single "audio_features" key, and each new row is seperated by curly braces {}. Each column is then given as a key-value pair, such as the first row in Figure 1.11, where "danceability" is the key, and 0.352 is the associated value. This dataset does consist of real data, sourced from the author's personal liked songs directly via the Spotify API. There are 195 rows of data, with 100 liked songs, and 95 disliked songs. Liked and disliked songs are seperated into two JSON files, named "dislike" and "good". The two JSON files have 18 features, as depicted in Figure 1.12.

dislike.	ison
danceability	numeric
energy	varchar
key	integer
loudness	numeric
mode	integer
speechiness	numeric
acousticness	numeric
instrumentalness	numeric
liveness	numeric
valence	numeric
tempo	numeric
type	varchar
id	varchar
uri	varchar
track_href	varchar
analysis_url	varchar
duration_ms	integer
time_signature	integer

good.json	
danceability	numeric
energy	varchar
key	integer
loudness	numeric
mode	integer
speechiness	numeric
acousticness	numeric
instrumentalness	numeric
liveness	numeric
valence	numeric
tempo	numeric
type	varchar
id	varchar
uri	varchar
track_href	varchar
analysis_url	varchar
duration_ms	integer
time_signature	integer

Figure 1.12: An entity relationship diagram of the two JSON files. Data does not overlap between them, so they have no relation.

This dataset has been used to create machine learning models before, most notably by its own author, who has a public Github repository showcasing their work (Brice-Vergnou, 2024). Before publicising this data, however, the author had done some preprocessing of their own, having included the additional CSV file, produced as a result of merging the two JSON files into one CSV and removing unnecessary columns, as depicted in Figure 1.13. Therefore, my preliminary Pandas analysis of the data types and missing values will only be performed on this CSV, seen in Figures 1.14 and 1.15.

data.csv	
danceability	numeric
energy	varchar
key	integer
loudness	numeric
mode	integer
speechiness	numeric
acousticness	numeric
instrumentalness	numeric
liveness	numeric
valence	numeric
tempo	numeric
duration_ms	integer
time_signature	integer
liked	integer

Figure 1.13: An entity relationship diagram of the preprocessed CSV file.

df_spotifyCSV.dtypes	
danceability	float64
energy	float64
key	int64
loudness	float64
mode	int64
speechiness	float64
acousticness	float64
instrumentalness	float64
liveness	float64
valence	float64
tempo	float64
duration_ms	int64
time_signature	int64
liked	int64

Figure 1.14: The data types of the Spotify Likes Dataset.

<pre>df_spotifyCSV.isna().sum()</pre>		
danceability	0	
energy	Θ	
key	0	
loudness	Θ	
mode	Θ	
speechiness	Θ	
acousticness	Θ	
instrumentalness	Θ	
liveness	Θ	
valence	Θ	
tempo	Θ	
duration_ms	Θ	
time_signature	Θ	
liked	0	

Figure 1.15: No missing values in the dataset.

While a machine learning classification problem can definitely be performed on this dataset to identify if the author would like a song, it has significantly less of a positive impact than Candidates 1 and 2, as this dataset is the author's subjective belief rather than objective fact that can be applied to other people. Nevertheless, the descriptions of each column can be found in Table 1.3.

Column	Description
Danceability	How suitable a song is for dancing, calcu-
	lated from the tempo, rhythm stability, beat
	strength and overall regularity. 1.0 means it is
	very danceable.
Energy	The intensity and activity of a song. For exam-
	ple, death metal is high energy, whereas clas-
	sical music is low intensity. 1.0 is the most
	energetic.
Key	The musical key the song is in, converted to
	an integer using standard pitch class nota-
	tion.(Butterfield, 2024)
Loudness	The averaged decibel volume of a song, typi-
	cally between -60 and 0 dB.
Mode	Whether a song is in major or minor scale. 1
	is major and 0 is minor.
Speechiness	The calculated presence of spoken words in a
	song.
Acousticness	A confidence measure from 0.0 to 1.0 of
	whether the track is acoustic. 1.0 represents
	high confidence the track is acoustic.
Instrumentalness	Whether a song has no vocals.
Liveness	Whether a live audience can be heard as part
	of a song.
Valence	The musical positiveness of a song.
Tempo	The beats per minute of a song.
Duration_MS	The duration of a song in milliseconds.
Time signature	The estimated time signature of the song.
Liked	The target variable, indicative of whether the
	author liked the song or not.
Type	Always "audio_features". Not a relevant pre-
	dictor.
ID	Spotify's own unique ID for a song. Not a
	relevant predictor.
URI	Spotify's URI for the song. Not a relevant
	predictor.
Track HREF	A link to the song on Spotify's API. Not a
	relevant predictor.
Analysis URL	A link to the song's audio analysis data. Not
	a relevant predictor.

Table 1.3: The descriptions of each column in the Spotify songs dataset (Spotify, 2024). Red columns are only present in the CSV, whereas green columns are only present in the JSONs.

These measurements and the descriptions are part of Spotify's API, and are automatically calculated when songs are uploaded to the service. The ground truth of the dataset is present in the CSV file as the "liked" classifier column, and a train/test split can be implemented for predictions, which is aided by the fact that this dataset is well balanced (100 liked to 95 disliked).

1.4 Chosen dataset

Of the three candidates presented, the most suitable for a machine learning operations pipeline would be Candidate 2, the loan approval dataset. As mentioned in Section 1.2, this dataset possesses many predictor variables and an adequate amount of data to train a supervised learning classification model to classify whether an individual should be allowed a loan or not. While the data in this dataset is synthetic due to its real equivalent being highly protected under data protection legislation, the model trained from said synthetic data could be applied to real data using what it has learned, and could greatly expedite the process of loan approvals.

Planning the MLOps Pipeline

All machine learning operations (MLOps) follow a five-step repeatable pipeline, outlined in Figure 2.1, where the output of one stage becomes the input of the next. The pipeline begins with raw data and finishes with a trained machine learning model, and is often repeated at certain intervals, which could be as simple as once a day, or it could be repeated as new data becomes available. This repetition is performed automatically, so that the final model can become progressively more accurate. Because the process must be repeatable and automated, it is essential that data is validated to ensure that one run of the pipeline where the data may have been corrupted somehow would not cause issues, which would quickly spiral out of control as the pipeline is repeated again and again. These validation procedures and the software utilised for them are documented in Section 2.6. Overall, MLOps pipelines standardise the development and deployment process of machine learning models, ensuring continuous integration (CI) and continuous delivery (CD) and enhancing collaboration between data scientists and development teams.

Figure 2.1: The five key steps in an MLOps pipeline (InCycle Software, 2024).

2.1 Data Ingestion

The first step of any machine learning pipeline is data ingestion. This refers to the process of obtaining data from its original source and transferring it to a relevant storage medium, such as a database or data warehouse, to be used in later stages. It is of vital importance that data is not lost or corrupted when it is ingested, as this stage is the baseline for all future stages in the pipeline, and any issues here will directly impact all future stages, as previously discussed. Though, when ingesting data, it is important to understand what type of system this data will be used in, of which there are two options: Online Analytics Processing Systems (OLAP), and Online Transactional Processing Systems (OLTP), as well as how it will be loaded into this system, either using an ELT (Extract, Load, Transform) or ETL (Extract, Transform, Load) methodology.

2.1.1 OLAP and OLTP

OLAP	OLTP
Designed for complex queries and	Designed for lots of short, fast queries
data analysis.	("transactions").
Typically store massive amounts of	Usually store less data for speed pur-
data, sometimes petabytes. for ex-	poses.
tremely detailed analysis.	
Usually historical data, infrequently	Typically real-time data.
updated.	
Uses database schemas such as star	Uses normalised or denormalised mod-
or snowflake schema to allow for	els, such as One Big Table, minimising
queries using many joins.	joins and maximising speed.
Slow response times, measured in	Fast response times, measured in mil-
minutes.	liseconds.

Table 2.1: A comparison of OLAP and OLTP systems (AWS, 2024).

As mentioned in Table 2.1, OLAP systems are designed for complex and deep data analytics, which helps companies perform tasks such as analysing customer trends, while OLTP systems aim for maximum speed to complete quick transactions, which is necessary in situations like processing payments and orders.

2.1.2 ELT and ETL

2.2 Data Preparation / Preprocessing

In this stage...

2.3 Model Development

In this stage...

2.4 Model Deployment

In this stage...

2.5 Model Monitoring

In this stage...

2.6 Software used in an MLOps pipeline

The software used for this pipeline will be... Conda, airflow, Docker, MariaDB, etc.

Bibliography

- AWS (2024). OLTP vs OLAP Difference Between Data Processing Systems AWS. Amazon Web Services, Inc. URL: https://aws.amazon.com/compare/the-difference-between-olap-and-oltp/ (visited on 11/16/2024).
- Bendi Ramana and N. Venkateswarlu (2022). *ILPD (Indian Liver Patient Dataset)*. DOI: 10.24432/C5D02C.
- Brice-Vergnou (Oct. 16, 2024). $Brice-Vergnou/spotify_recommendation$. original-date: 2021-07-27T10:05:51Z.
- Butterfield, Sean (2024). 22b Lesson Pitch-class integer notation. Inquiry-Based Music Theory. URL: https://smbutterfield.github.io/ibmt17-18/22-intro-to-non-diatonic-materials/b2-tx-pcintnotation.html (visited on 11/12/2024).
- Cleveland Clinic (2024). Alkaline Phosphatase (ALP): What It Is, Causes & Treatment. Cleveland Clinic. URL: https://my.clevelandclinic.org/health/diagnostics/22029-alkaline-phosphatase-alp (visited on 11/12/2024).
- InCycle Software (2024). MLOps ENTERPRISE ACCELERATOR. URL: https://www.incyclesoftware.com/azure-machine-learning-enterprise-accelerator (visited on 11/13/2024).
- Mayo Clinic (2024). Bilirubin test Mayo Clinic. URL: https://www.mayoclinic.org/tests-procedures/bilirubin/about/pac-20393041 (visited on 11/12/2024).
- Spotify (2024). Web API Reference | Spotify for Developers. URL: https://developer.spotify.com/documentation/web-api/reference/get-audio-features (visited on 11/12/2024).
- Straw, Isabel and Honghan Wu (Apr. 25, 2022). "Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction". In: *BMJ Health & Care Informatics* 29 (1). Publisher: BMJ Publishing Group Ltd. ISSN: 2632-1009. DOI: 10.1136/bmjhci-2021-100457.
- UCI Machine Learning Repository (2024). About UCI Machine Learning Repository. URL: https://archive.ics.uci.edu/about (visited on 11/12/2024).