

Tutorium 42, #3

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Aussagen

Was sind sind sinnvolle Aussagen?

- "Abgabe der Übungsblätter ist Donnerstags."
- $f: \mathbb{N}_+ \to \mathbb{R}, x \mapsto 2x$ ist surjektiv.
- Wenn es regnet wird die Straße nass.
- Grün ist toll.
- Regnet es?

Aussagen

Was sind sind sinnvolle Aussagen?

- "Abgabe der Übungsblätter ist Donnerstags." Wahr
- $f: \mathbb{N}_+ \to \mathbb{R}, x \mapsto 2x$ ist surjektiv. **Falsch**
- Wenn es regnet wird die Straße nass. Wahr
- Grün ist toll Keine Ahnung
- Regnet es? Wo?

Aussagen: Grundlagen

Aussagen sind entweder objektiv wahr oder falsch, nichts dazwischen. Man kann sie mit Ja oder Nein beantworten.

Aussagen: Verknüpfung

Wir können die Grundaussagen miteinander verknüpfen. Seien A, B zwei Aussagen so gibt es folgende Verknüpfungen:

					A o B	$ extbf{A} \leftrightarrow extbf{B}$
f	f	W	f	f	W	W
f	W	w	W	f	W	f
W	f		W	f	f	f
W	W	f	W	W	W	W

Aussagen: Verknüpfung

- Die Verknüpfung $A \rightarrow B$ entspricht der Verknüpfung $\neg A \lor B$
- Die Verknüpfung $A \leftrightarrow B$ entspricht der Verknüpfung $(A \rightarrow B) \land (B \rightarrow A)$
- Die Reihenfolge der Verknüpfungen ist: (,) vor \neg vor \lor vor \land vor \rightarrow vor \leftrightarrow

Aufgabe

Wertet die komplexe Aussage mittels Tabelle aus:

Aufgabe

$$\neg A \land (B \rightarrow A) \leftrightarrow \neg (A \lor \neg B)$$

		1	9	2	6	3	10	8	4	7	5
Α	В	$\neg A$	\wedge	(B	\rightarrow	$\boldsymbol{A})$	\leftrightarrow	_	(A	\vee	¬ B)
		w									
f	W	w	f	W	f	f	f	w	f	f	f
W	f	f	f	f	W	W	W	f	W	W	W
		f									

Quantoren

es gibt 2 Quantoren:

- ∀: Für alle/jedes ... gilt, dass...
- ∃: Es gibt (min.) ein..., sodass...

Aufgabe

Formulert die Aussagen mittels Prädikatenlogik (d.h. mit Quantoren und Konnektiven):

Sei V die Menge aller Vögel, Eltern(v) die Menge der Eltern des Vogels v, Farbe(v) die Farbe von v

- Jeder Vogel kann fliegen, wenn alle Eltern fliegen können
- Alle schwarzen Vögel können fliegen

Aufgabe

Formulert die Aussagen mittels Prädikatenlogik (d.h. mit Quantoren und Konnektiven):

Sei V die Menge aller Vögel, Eltern(v) die Menge der Eltern des Vogels v, Farbe(v) die Farbe von v

- Jeder Vogel kann fliegen, wenn alle Eltern fliegen können
 - $\forall v \in V$: Eltern(v) können fliegen \rightarrow v kann fliegen.
- Alle schwarzen Vögel können fliegen
 - $\forall v \in V$: Farbe(v)=schwarz \rightarrow v kann fliegen.

Interpretationen

Definition

eine Interpretation I ist eine Belegung der Variablen in der Formel z.B. I(A)=w und I(B)=f

val_I(F) gibt den Wahrheitswert der Formel F zur Belegung I an. z.B. $val_I(A \rightarrow B) = f$ mit obigem I

eine aussagenlogische Formel ist entweder

- **Nicht erfüllbar**, wenn es keine Interpretation gibt für die sie wahr ist.
- **Erfüllbar**, wenn es eine Interpretation gibt für die sie erfüllbar ist.
- **Nicht Allgemeingültig**, wenn sie für nicht jede Interpration wahr ist (also für min. 1 Interpretation falsch)
- Allgemeingültig, wenn sie für jede Interpretation wahr ist.

Aussagen beweisen

In sonstigen Naturwissenschaften (Biologie, Chemie, ...): Versuch oft genug durchführen, wenn sich das Ergebnis sich währedn des Versuches nicht ändert ist es wohl richtig.

Lösung: Ein Experiment mehrfach und in verschiedenen Zuständen durchführen

In der Mathematik und Informatik: Beweis von Aussagen für unendlich viele Zustände (am besten: alle.)

Aber wie?

Vollständige Induktion

Lösung für das Problem ist die vollständige Induktion.

z.B.: Zeige dass $\forall n \in \mathbb{N}_+ : \exists m \in \mathbb{N}_0 : m < n$. Möglich, da n durchzählbar sind (1, 2, 3,..)

Überlegung

An n=0 n anfangen, Behauptung zeigen, weiterzählen, somit Behauptung für alle n zeigen.

Induktion: Vorgehen

Drei Schritte:

- Induktionsanfang (IA): Den kleinsten Wert nehmen und die Behauptung für diesen zeigen. Manchmal noch die Behauptung für den ersten Schritt zeigen.
- 2. Induktionsvoraussetzung: Die Behauptung <Behauptung> gilt für ein beliebiges aber festes $n \in \mathbb{N}_+$ (oder worüber man die Indution anwendet).
- 3. Induktionsschritt (IS): wenn die Behauptung für n gilt, soll sie auch für n+1 gelten. Das zeigen wir jetzt.

Induktionsschritt: Vorgehen

Der Induktionsschritt soll zeigen, dass unsere Behauptung für n+1 gilt, wenn sie für n gilt.

- 1. n+1 in die Behauptung einsetzen.
- 2. Neue Behauptung so umformen, dass Behauptung mit n wieder "auftaucht"...
- 3. Nach der IV gilt die Aussage für unser n welches gerade "aufgetaucht" ist...
- 4. Die aufgelöste Aussage in den Induktionsschritt einsetzen...
- 5. noch etwas umformen und den "n+1"-Fall zeigen.
- 6. Freuen :)

Induktion: Aufgaben

- \mathbb{Z}_2 dass $n^2 + n \forall n \ge 0$ gerade ist
- $\mathbb{Z}(1+2+3+...+n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \forall n \ge 1$

Formale Sprachen

...again? Ja, und auch nicht zum letzten Mal.

Wiederholung:

- Formale Sprache L ist Teil der Wörter die mit Alphabet A gebildet werden können $(L \subseteq A)$
- Formale Sprachen sind auch wieder Mengen (Teilmengen)
- Nützlich um sinnvolle Konstrukte (Wörter) von unsinnvollen zu trennen

Definition

Eine formale Sprache F über einem Alphabet A ist eine Teilmenge der Kleenschen Hülle A*

Formale Sprachen: Aufgaben

Wie sehen Wörter aus den Sprachen aus?

- $L_1 = \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}$
- $L_2 = \{ w_1 w_2 | w_1 \in \{a\}^* \land w_2 \in \{b\}^* \}$
- $L_3 = \{w_1 w_2 | w_1, w_2 \in \{a, b\} * |w_1| = 0 \land |w_2| < |w_1| \}$

Formale Sprachen: Aufgaben

Wie sehen Wörter aus den Sprachen aus?

- $L_1 = \{w_1 abw_2 | w_1, w_2 \in \{a, b\}^*\}$
 - Alle Wörter aus A die Das Teilwort ab enthalten (z.B. ab, aaaab, bababab, aaaaabbb)
- $L_2 = \{ w_1 w_2 | w_1 \in \{a\}^* \land w_2 \in \{b\}^* \}$
 - Beliebige Anzahl an a's gefolgt von einer beliebigen Zahl an b's (z.B. aaaab, abb, aaaaaabbbbb)
- $L_3 = \{w_1 w_2 | w_1, w_2 \in \{a, b\} * |w_1| = 0 \land |w_2| < |w_1| \}$
 - Nichts, da $|w_2|$ < 0 nicht möglich ist

Formale Sprachen: Produkt

Definition

Seien F_1 , F_2 formale Sprachen über A, so ist das Produkt $L_1*L_2=\{w_1w_2|w_1\in L_1\wedge w_2\in L_2\}$

Zum Beispiel mit $L_1 = \{a, aa, ab\}, L_2 = \{b, ba, bb\}$:

- $L_1 * L_2 = \{ab, aab, ab, aaba, aabb, abb, abba, abbb\}$

Formale Sprachen: Potenz

Definition

Sei F_1 formale Sprache über A, so ist die Potenz L_1^n die n-fache Verkettung von L_1 mit sich selbst

Zum Beispiel mit $L_1 = \{a, b\}$

- $L_1^0 = \{\epsilon\}$
- $L_1^2 = \{aa, ab, ba, bb\}$

Formale Sprachen: Konkatenationsabschluss

Definition

lacksquare Sei F formale Sprache über A, so ist $F^* = igcup_{i \in \mathbb{N}} L^i$ der Konkatenationsabschluss

Jede unendlich häufige Konkatenation von Wörtern aus F liegt in F^* .

Formale Sprachen: ϵ -freier Konkatenationsabschluss

Definition

■ Sei F formale Sprache über A, so ist $F^+ = \bigcup_{i \in \mathbb{N}_+} L^i$ der ϵ -freie Konkatenationsabschluss

Selbes wie L^* , nur ohne $L^0 = \{\epsilon\}$