We will cover:

• What are complementary classes.

- What are complementary classes.
- co-NP Turing machines.

- What are complementary classes.
- co-NP Turing machines.
- The relations between the complexity classes we've seen thus far.

- What are complementary classes.
- co-NP Turing machines.
- The relations between the complexity classes we've seen thus far.
- Implications of what it would mean if $SAT \in co-NP$.

Complementation

For any decision problem A there is a <u>complementary problem</u> \overline{A} . E.g.,

"Is *n* a prime number?"

is complementary to

"Is *n* a composite number?"

The yes-instances of A are the no-instance of \overline{A} , and vice versa.

Exercise: Prove that if $A \in \mathbf{P}$ then $\overline{A} \in \mathbf{P}$.

co-Classes

Given a <u>class</u> of languages \mathcal{L} (e.g., $\mathcal{L} = P$ or $\mathcal{L} = NP$), we define its complement as

$$\text{co-}\mathcal{L} = \{\overline{L} \mid L \in \mathcal{L}\} = \{\Sigma^* \setminus L \mid L \in \mathcal{L}\}.$$

Ran Ben Basat COMP0017 Complexity November 29, 2022 3 / 15

co-Classes

Given a <u>class</u> of languages \mathcal{L} (e.g., $\mathcal{L}=P$ or $\mathcal{L}=NP$), we define its complement as

$$\text{co-}\mathcal{L} = \{\overline{L} \mid L \in \mathcal{L}\} = \{\Sigma^* \setminus L \mid L \in \mathcal{L}\}.$$

Observe that P = co-P. (why?)

Ran Ben Basat COMP0017 Complexity November 29, 2022 3 / 15

co-Classes

Given a <u>class</u> of languages \mathcal{L} (e.g., $\mathcal{L} = P$ or $\mathcal{L} = NP$), we define its complement as

$$\text{co-}\mathcal{L} = \{\overline{L} \mid L \in \mathcal{L}\} = \{\Sigma^* \setminus L \mid L \in \mathcal{L}\}.$$

Observe that P = co-P. (why?) What about NP?

3/15

co-NP machines

It is often useful to think of "co-NP non-deterministic Turing machines".

4/15

co-NP machines

It is often useful to think of "co-NP non-deterministic Turing machines".

In a co-NP NDTM, an input is accepted only if *all* computation paths halt in Y and is rejected if *there exists* a path halting in N.

co-NP machines

It is often useful to think of "co-NP non-deterministic Turing machines".

In a co-NP NDTM, an input is accepted only if *all* computation paths halt in Y and is rejected if *there exists* a path halting in N.

Having a co-NP NDTM machine for L is equivalent to having a (standard) NDTM machine for \overline{L} . (Exercise!)

4 / 15

Let us look at some examples:

Let us look at some examples:

• $\overline{SAT} \in co\text{-}NP$.

Let us look at some examples:

- $\overline{SAT} \in co\text{-}NP$.
- $BEQ = \{\psi_1, \psi_2 \mid \text{For every assignment } v, \ v(\psi_1) = v(\psi_2)\}.$

5 / 15

Let us look at some examples:

- $\overline{SAT} \in co-NP$.
- $BEQ = \{\psi_1, \psi_2 \mid \text{For every assignment } v, \ v(\psi_1) = v(\psi_2)\}.$
- All problems in *P*.

Let us look at some examples:

- $\overline{SAT} \in co-NP$.
- $BEQ = \{\psi_1, \psi_2 \mid \text{For every assignment } v, \ v(\psi_1) = v(\psi_2)\}.$
- All problems in P.

It is not known if NP = co-NP, or if $P = NP \cap co-NP$.

We saw that SAT is NP-complete. What does that mean about co-NP?

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

Since $L \in co-NP$, it has a co-NP NDTM M.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

Since $L \in co-NP$, it has a co-NP NDTM M.

We have that $L' \leq_p L$ and and thus there exists a DTM M' that reduces L' to L.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

Since $L \in co-NP$, it has a co-NP NDTM M.

We have that $L' \leq_p L$ and and thus there exists a DTM M' that reduces L' to L.

Therefore, we can design a co-NP NDTM for L': We first run M', rewind the head, and then run M.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

Since $L \in co-NP$, it has a co-NP NDTM M.

We have that $L' \leq_p L$ and and thus there exists a DTM M' that reduces L' to L.

Therefore, we can design a co-NP NDTM for L': We first run M', rewind the head, and then run M.

This means that $NP \subseteq co-NP$.

We saw that SAT is NP-complete. What does that mean about co-NP?

Theorem

If $L \in NPC$ and $L \in co-NP$ then NP = co-NP.

Proof.

Let $L' \in NP$.

Since $L \in co-NP$, it has a co-NP NDTM M.

We have that $L' \leq_p L$ and and thus there exists a DTM M' that reduces L' to L.

Therefore, we can design a co-NP NDTM for L': We first run M', rewind the head, and then run M.

This means that $NP \subseteq co-NP$.

By complementing each language in both sides, we get that $co-NP \subseteq co-co-NP$, which gives $co-NP \subseteq NP$.

Today we saw:

Today we saw:

• The co-NP complexity class.

Today we saw:

- The co-NP complexity class.
- We can prove hardness of other problems by reductions from NP-hard problems like SAT.

Today we saw:

- The co-NP complexity class.
- We can prove hardness of other problems by reductions from NP-hard problems like SAT.

Next lecture: Space Complexity.