

Minería de datos y Patrones

Version 2025-I

Aprendizaje supervisado — Modelos Lineales

Dr. José Ramón Iglesias
DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Recordatorios

Outline: Recordatorios

Recordatorios

Resumen

Optimización

Modelos de dasificación

Clasificador lineal

Regresion Lineal

Regresion Log'istica

API: Scikit-learn

TP: Regresion Lineal

Outline: Resumen

Recordatorios

Resumen

Optimización

Modelos de dasificación

Clasificador lineal

Regresion Lineal

Regresion Log'istica

API: Scikit-learn

TP: Regresion Lineal

I Tener datos etiquetados

II. Extraer los descriptores = transformar documentos en vectores

III. Crear un modelo matemático f_{ϑ}

VI Implementar una función de costo (error) ℓ a minimizar

- V Encontrar los parámetros θ^* de manera que $\ell(f_{\vartheta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{ϑ^*} en nuevos datos con una m'etrica de evaluación adecuada

- I. Tener datos etiquetados
 - Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
 - Doc es una muestra (por ejemplo: una persona)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)
- **II. Extraer los descriptores** = transformar documentos en vectores
- III. Crear un modelo matemático f_{ϑ}
- VI Implementar una función de costo (error) ℓ a minimizar

- V Encontrar los parámetros θ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

- I. Tener datos etiquetados
 - Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
 - Doc es una muestra (por ejemplo: una persona)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 - **II. Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)
- III. Crear un modelo matemático f_{ϑ}

- VI Implementar una función de costo (error) ℓ a minimizar
- V Encontrar los parámetros θ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

I. Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 - **II. Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III. Crear un modelo matemático f_{ϑ}

- Modelo f_{ϑ} tal que $f_{\vartheta}(\mathbf{X})$ esté cerca de Y (para regresión)
- ϑ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- V Encontrar los parámetros θ^* de manera que $\ell(f_{\vartheta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

I. Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 - **II. Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III. Crear un modelo matem atico f_{ϑ}

- Modelo f_{ϑ} tal que $f_{\vartheta}(\mathbf{X})$ esté cerca de Y (para regresión)
- ϑ es el conjunto de par ametros del modelo matem atico

VI Implementar una funci´on de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequeño
- V Encontrar los parámetros θ^* de manera que $\ell(f_{\vartheta^*}(\mathbf{X}_i), Y_i)$ sea pequeño
- VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

I Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 - **II. Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III. Crear un modelo matemático f_{ϑ}

- Modelo f_{ϑ} tal que $f_{\vartheta}(\mathbf{X})$ esté cerca de Y (para regresión)
- ϑ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequeño
- V Encontrar los parámetros θ^* de manera que $\ell(f_{\theta^*}(\mathbf{X}_i), Y_i)$ sea **pequeño**
 - $\vartheta^* = \operatorname{argmin}^{\Sigma}_{\Theta} \ell(f_{\vartheta}(\mathbf{X}_i), Y_i)$
- VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

Tener datos etiquetados

- Conjunto de datos de tamaño n, $D_n = \{(Doc_i, Y_i), i = 1...n\}$
- Doc es una muestra (por ejemplo: una persona)
- Y son las etiquetas (por ejemplo: monto del préstamo concedido)
 - **II. Extraer los descriptores** = transformar documentos en vectores
 - X es un vector de observaciones (por ejemplo: edad, sexo, salario)
 - Y son las etiquetas (por ejemplo: monto del préstamo concedido)

III. Crear un modelo matem atico f_{ϑ}

- Modelo f_{ϑ} tal que $f_{\vartheta}(\mathbf{X})$ esté cerca de Y (para regresión)
- ϑ es el conjunto de parámetros del modelo matemático

VI Implementar una función de costo (error) ℓ a minimizar

- Cuanto más se equivoque el modelo, mayor será el costo
- En general, se desea tener un costo pequeño

V Encontrar los parámetros θ^* de manera que $\ell(f_{\vartheta^*}(\mathbf{X}_i), Y_i)$ sea **pequeño**

•
$$\vartheta^* = \operatorname{argmin}^{\Sigma}_{i} \ell(f_{\vartheta}(\mathbf{X}_{i}), Y_{i})$$

VI Probar f_{ϑ^*} en nuevos datos con una métrica de evaluación adecuada

Outline: Optimizaci'on

Recordatorios

Resumen

Optimización

Modelos de dasificación

Clasificador lineal

Regresion Lineal

Regresion Log'istica

API: Scikit-learn

TP: Regresion Lineal

Optimización

Optimización de la función de costo

- Sirve para converger al valor mínimo de la función de costo en el conjunto de datos de entrenamiento
- Mejor caso: rápido y preciso
- A menudo se hacen aproximaciones para ser más rápidos

Gradiente

Una función multivariante f(x) puede escribirse como una serie de Taylor:

$$f(x + \delta_x) = f(x) + \nabla_x f(x) \delta_x + O(||\delta_x^2||)$$

Definición

El gradiente de una función $\nabla_x f(x) = (\frac{\partial f}{\partial_i})_{i=1..n}$ es su derivativa según cada dimensión. Es una aproximación lineal de la función al nivel local.

Gradiente

Una función multivariante f(x) puede escribirse como una serie de Taylor:

$$f(x + \delta_x) = f(x) + \nabla_x f(x) \delta_x + O(||\delta_x^2||)$$

Definición

El gradiente de una función $\nabla_x f(x) = (\frac{\partial f}{\partial_i})_{i=1..n}$ es su derivativa según cada dimensión. Es una aproximación lineal de la función al nivel local.

Mas detalles <u>aca</u>.

Visualización de la función de costo

Se puede visualizar el valor de la funcion de costo como una superficie:

- Los valores de los parámetros ϑ varían en el plano, y el valor de la función $\ell(D_n;\vartheta)$ varía en altura.
- La convergencia se produce cuando se tienen parámetros que estánen un hueco de esta superficie (mínimo local o global, dependiendo del modelo)

Optimización: visualización

Optimización: Descenso del Gradiente Estocástico

Descenso del gradiente

Después de cada cálculo de la función de costo $\ell(Y_i, f_{\vartheta}(\mathbf{X}_i); \theta)$, se calcula el gradiente de esta función para actualizar los parámetros θ :

$$\theta \leftarrow \theta - \alpha * \nabla_{\vartheta} \ell(Y_i, f_{\vartheta}(\mathbf{X}_i); \theta)$$

Ejemplo

• Sean
$$f_{\theta}(\mathbf{X}) = \theta^T \mathbf{X} = \sum_{k=0}^{d} \theta_k X^{(k)} \text{ y } \ell(Y, f_{\theta}(\mathbf{X})) = \frac{1}{2} (Y - f_{\theta}(\mathbf{X}))^2$$

$$\nabla_{\theta} \ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_i} \\ \vdots \\ \frac{\partial}{\partial \theta_d} \end{pmatrix} \cdot \ell(Y_i, f_{\theta}(\mathbf{X}_i); \theta) = \begin{pmatrix} X_i^{(1)}(Y - f_{\theta}(\mathbf{X}_i)) \\ \vdots \\ X_i^{(d)}(Y_i - f_{\theta}(\mathbf{X}_i)) \end{pmatrix}$$

Optimizaci'on: Descenso del Gradiente Estoc'astico

Descenso del gradiente

Después de cada cálculo de la función de costo $\ell(Y_i, f_{\vartheta}(\mathbf{X}_i); \theta)$, se calcula el gradiente de esta función para actualizar los parámetros θ :

$$\theta \leftarrow \theta - \alpha * \nabla_{\vartheta} \ell(Y_i, f_{\vartheta}(\mathbf{X}_i); \theta)$$

Ejemplo

• Sean
$$f_{\theta}(\mathbf{X}) = \theta^T \mathbf{X} = \sum_{k=0}^{d} \theta_k X^{(k)} \text{ y } \ell(Y, f_{\theta}(\mathbf{X})) = \frac{1}{2} (Y - f_{\theta}(\mathbf{X}))^2$$

$$\begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} \leftarrow \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix} - \alpha * \begin{pmatrix} X_i^{(1)}(Y - f_{\theta}(\mathbf{X}_i)) \\ \vdots \\ X_i^{(d)}(Y_i - f_{\theta}(\mathbf{X}_i)) \end{pmatrix}$$

Optimización: Importancia de la tasa de aprendizaje

Learning rate

- Un α demasiado pequeño no avanza en el aprendizaje
- Un α demasiado pequeño alarga el tiempo de entrenamiento
- Un α demasiado grande no permite alcanzar el mínimo (damos vueltas alrededor del agujero de la superficie)
- Un α demasiado grande no permite nada
- Una soluci´on: disminuir α con el tiempo

Optimización: Importancia de la tasa de aprendizaje

Learning rate

- Un α demasiado pequeño no avanza en el aprendizaje
- Un α demasiado pequeño alarga el tiempo de entrenamiento
- Un α demasiado grande no permite alcanzar el mínimo (damos vueltas alrededor del agujero de la superficie)
- Un α demasiado grande no permite nada
- Una soluci´on: disminuir α con el tiempo

Algoritmos de descenso del gradiente

Existen otros algoritmos existentes que se basan en un descenso del gradiente estocástico (SGD) con especificidades para mejorar su eficacia:

- Descenso del gradiente estocástico con momento
- Gradiente acelerado de Nestorov (NAG)
- Gradiente adaptativo (AdaGrad)
- Adam
- RMSprop

Finalmente, también existen otros métodos más dásicos de descenso: BFGS, L-BFGS, Quasi Newton, ...

Algoritmos de descenso del gradiente

Modelos de dasificación

Outline: Modelos de dasificación

Recordatorios

Resumen

Optimización

Modelos de dasificación

Clasificador lineal

Regresion Lineal

Regresion Logística

API: Scikit-learn

TP: Regresion Lineal

Outline: Clasificador lineal

Recordatorios

Resumen

Optimización

Modelos de dasificación

Clasificador lineal

Regresion Lineal

Regresion Log'istica

API: Scikit-learn

TP: Regresion Lineal

Problemas lineales y no lineales

Función lineal

Una función $f: \mathcal{X} \to \mathcal{Y}$ es lineal si:

$$\forall (\mathbf{X}, \mathbf{X}') \in \mathcal{X} \text{ y } \lambda \in \mathbb{R} \text{ entonces } f(\lambda \mathbf{X} + \mathbf{X}') = \lambda f(\mathbf{X}) + f(\mathbf{X}')$$

Es el caso de las funciones de tipo $f(\mathbf{X}) = \theta^T \mathbf{X} = \sum_i \theta_i X^{(i)}$

Recordatorios de geometría: hiperplano I

Definición

En un espacio de dimensión d, como \mathbb{R}^d un hiperplano $\mathcal H$ es el

conjunto de puntos
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$
 que satisfacen una ecuación del tipo:

$$\mathcal{H}: w_1x_1 + w_2x_2 + ... + w_dx_d + w_0 = 0$$
, donde $\forall i \ w_i \in \mathbb{R}$

Un hiperplano divide el espacio en 2 partes (es un espacio de dimensión d-1). En \mathbb{R}^2 (plano) es de dimensión 1 (es ??), en \mathbb{R}^3 es de dimensión 2 (es ??)...

El signo de $w_1x_1 + w_2x_2 + ... + w_dx_d + w_0$ define de qué lado del espacio separado por \mathcal{H} se encuentra \mathbf{X} : si > 0 entonces \mathbf{X} está de un lado del hiperplano, sino está del otro lado.

Recordatorios de geometría: hiperplano I

Definición

En un espacio de dimensión d, como \mathbb{R}^d un hiperplano $\mathcal H$ es el

conjunto de puntos $\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$ que satisfacen una ecuación del tipo:

$$\mathcal{H}: w_1x_1+w_2x_2+...+w_dx_d+w_0=0$$
, donde $\forall i \ w_i \in \mathbb{R}$

Un hiperplano divide el espacio en 2 partes (es un espacio de dimensión d-1). En \mathbb{R}^2 (plano) es de dimensión 1 (es una recta), en \mathbb{R}^3 es de dimensión 2 (es un plano)...

El signo de $w_1x_1 + w_2x_2 + ... + w_dx_d + w_0$ define de qué lado del espacio separado por \mathcal{H} se encuentra \mathbf{X} : si > 0 entonces \mathbf{X} está de un lado del hiperplano, sino está del otro lado.

Recordatorios de geometría: hiperplano II

Un hiperplano en 2D (= ???) definido por un vector normal $\vec{n} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ y un sesgo w_0 .

Un hiperplano en 3D (= ???) definido por un vector normal \vec{n} =

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 y un sesgo d

Recordatorios de geometría: hiperplano II

Un hiperplano en 2D (= Recta) definido por un vector normal \vec{n} = $\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ y un sesgo w_0 .

Un hiperplano en 3D (= Plano) definido por un vector normal \vec{n} =

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 y un sesgo d

Recordatorios de geometría: hiperplano III

Ecuaci'on

Para cualquier punto $\mathbf{X} \in \mathbb{R}^d$, el signo de $w_1x_1 + ... w_d x_d$ delimita de qu'elado del espacio separado por el hiperplano se encuentra el punto \mathbf{X}

Tenemos lo que está de un lado del plano y lo que está del otro lado del plano segu´n el valor del producto escalar con la normal \vec{n}

Recordatorios de geometría: hiperplano IV

Con
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \\ 1 \end{pmatrix}$$
 y $\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \\ \theta_0 \end{pmatrix}$ entonces se puede reducir la ecuación anterior a:

$$\mathcal{H}: w_1x_1 + w_2x_2 + ... + w_dx_d + w_0 = w_0 + \sum_{i=1}^d w_ix_i = \langle \theta | \mathbf{X} \rangle = 0$$

Donde $\langle \theta | \mathbf{X} \rangle$ es el producto escalar entre θ y \mathbf{X} : una operación lineal.

Aumento del espacio para linealidad

Al aumentar el taman o del espacio, se puede representar un hiperplano afín mediante la ecuación de un hiperplano lineal.

Clasificador lineal: resumen

Resumen

- **X** ∈ R^d es el vector de descriptores
- La ecuación $\mathbf{W}^T \mathbf{X} + b = 0$ define un hiperplano en \mathbf{R}^d
- $f_{\mathbf{W},b}(\mathbf{X}) = signo(\mathbf{W}^T \mathbf{X} + b)$ da la clase de \mathbf{X}

Clasificador lineal

Linealidad

- Separa el espacio con un hiperplano
- Clasificador de la forma $f_{\mathbf{W},b}(\mathbf{X}) = signo(\mathbf{W}^T\mathbf{X} + b)$
- Dos ejemplos anteriores: binario (2 clases) y multinomial (n clases)
- Operación matricial lineal

Clasificador lineal multiclasses: operación matricial

Ya no tenemos un simple vector de parámetros $\mathbf{W} = (w_1 \cdots w_D)$ como antes, sino una matriz $\mathbf{W} = (w_{cd})_{c=1...C,d=1...D}$

Clasificador lineal: Integración del

Linealidad

Al aumentar la dimensión y concatenar un simple vector de 1 al final de los descriptores, obtenemos una operaci´on lineal

- Separa el espacio con un hiperplano
- Clasificador de la forma $f_{\mathbf{W},b}(\mathbf{X}) = \arg \max_{clases} (\mathbf{W}^T \mathbf{X} + b)$
- Si solo hay 2 clases, el argmax puede reemplazarse por una función de signo

Clasificador lineal: Aumento del espacio

Al aumentar la dimensión y agregar nuevos descriptores, podemos hacer que nuestro modelo sea no lineal.

Datos no linealmente separables

- Conjunto de datos no separables linealmente
- Tenemos descriptores de la forma $\mathbf{X} = (x, y)$.
- Al definir $z = x^2 + y^2$, obtenemos descriptores en un espacio de dimensión 3 $\mathbf{X} = (x, y, x^2 + y^2)$ y así podemos separar linealmente en el espacio de dimensión 3

Outline: Regresión Lineal

Recordatorios

Resumen

Optimización

Modelos de clasificaci´on

Clasificador lineal

Regresion Lineal

Regresion Logística

API: Scikit-learn

TP: Regresion Lineal

Regresión Lineal

Linealidad

- Se modela con un hiperplano.
- Clasificador de la forma $f_{\mathbf{W},b}(\mathbf{X}) = \mathbf{W}^T \mathbf{X} + b = \sum_{i=1}^{D} w_i X_i + b$
- Operación matricial lineal.
- Puede adaptarse a datos no lineales mediante la adici´on de nuevas variables no lineales.

Solucion simple

Para encontrar los parámetros que minimizan el error calculamos las derivadas parciales de SSE respecto β_0 y β_1 . Luego igualamos las derivadas a cero y resolvemos la ecuación para despejar los parámetros.

$$\frac{\partial R}{\partial \beta_0} = -2\sum_{i=1}^{N} (y_i - \beta_0 - \beta_0 x_i) = 0$$
$$\frac{\partial R}{\partial \beta_1} = -2\sum_{i=1}^{N} (y_i - \beta_0 - \beta_0 x_i) x_i = 0$$

Lo que da:

$$\beta_1 = \frac{\sum_{1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{1}^{N} (x_i - \overline{x})^2}$$
$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

Evaluación de la predicción: distancia

Diferentes funciones para calcular el rendimiento de una regresión

- Error medio absoluto: $\frac{1}{n} \sum_{i=1}^{n} |Y_i f(\mathbf{X}i)|$
- Error cuadrático medio: $\frac{1}{n} \sum_{i} i = 1^{n} |Y_{i} f(\mathbf{X}_{i})|^{2}$
- Error medio mediano: mediana(|Y₁ − f(X₁)|, ..., |Yn − f(Xn)|)
- Coeficiente de determinación R²:

$$1 - \frac{\sum_{i=1}^{n} |Y_i - f(\mathbf{X}i)|^2}{\sum_{i=1}^{n} |Y_i - \overline{Y}|^2} = \frac{\sum_{i=1}^{n} |f(\mathbf{X}i) - \overline{Y}|^2}{\sum_{i=1}^{n} |Y_i - \overline{Y}|^2}$$

Regresión Lineal con 2 features: un plan

Regression Plane

Figure 2.25: Systolic blood pressure linearly increases with age, but also with bodyweight. A line in two directions forms a plane.

Residuals

Figure 2.26: The residuals of figure 2.25 are the vertical distances to the plane. Negative residuals are indicated by dashed linepieces.

Outline: Regresión Logística

Recordatorios

Resumen

Optimización

Modelos de clasificación

Clasificador lineal

Regresion Lineal

Regresion Logística

API: Scikit-learn

TP: Regresion Lineal

Regresión Logística

Para transformar las "distancias" $\mathbf{W}^T \mathbf{X} + b$ entre los vectores y el plan en probabilidades de classes tenemos que utilizar una función de normalizaci on, la funcion sigmoidal o *softmax*:

$$\Phi(\text{dist}) = \frac{1}{1 + e^{-\text{dist}}}$$

Regresión Logística

Regresión logística binaria

- Entrenamiento: Costo: $\ell(\mathbf{X}, Y) = \frac{1}{1 + \exp^{Y < \ell(\mathbf{X})}}$, (aquí, ??)
- Clasificación :

$$P(Y = 1) = \frac{1}{1 + \exp^{-\langle \theta | \mathbf{X} \rangle}} = \frac{1}{1 + \exp^{-\sum_{k=1}^{d} \theta_k X(k)}}$$

Selección de etiqueta según el valor de < θ|X>:

$$P(Y = 1) = \frac{1}{1 + \exp^{-\langle \theta | X \rangle}}$$

Lo que da para la otra clase:

$$P(Y = -1) = 1 - P(Y = 1) = \frac{\exp^{-\langle \theta | \mathbf{X} \rangle}}{1 + \exp^{-\langle \theta | \mathbf{X} \rangle}} = \frac{1}{1 + \exp^{+\langle \theta | \mathbf{X} \rangle}}$$

• Clase final: $\hat{c} = \arg \max_{c} P(Y = c)$

Regresión Logística

Regresión logística binaria

- Entrenamiento: Costo: $\ell(\mathbf{X}, Y) = \frac{1}{1 + \exp^{Y < \theta(\mathbf{X})}}$, (aquí, logística)
- · Clasificación :

$$P(Y = 1) = \frac{1}{1 + \exp^{-\langle \theta | \mathbf{X} \rangle}} = \frac{1}{1 + \exp^{-\sum_{k=1}^{d} \theta_k X^{(k)}}}$$

Selección de etiqueta según el valor de < θ X >:

$$P(Y = 1) = \frac{1}{1 + \exp^{-\langle \theta | X \rangle}}$$

Lo que da para la otra clase:

$$P(Y = -1) = 1 - P(Y = 1) = \frac{\exp^{-<\theta|X>}}{1 + \exp^{-<\theta|X>}} = \frac{1}{1 + \exp^{+<\theta|X>}}$$

Clase final: c = arg max_c P(Y = c)

Regresión Logística Multinomial y Softmax

De la regresión logística binaria a multinomial

Clasificador lineal binario y función logística:

$$\begin{split} P(Y=1) &= \frac{1}{1 + \exp^{-<\theta|\mathbf{X}>}} = \frac{\exp^{<\theta|\mathbf{X}>}}{\exp^{<\theta|\mathbf{X}>} + 1} = \frac{\exp^{<\theta^{(1)} - \theta^{(-1)}|\mathbf{X}>}}{\exp^{<\theta^{(1)} - \theta^{(-1)}|\mathbf{X}>} + 1} \\ &= \frac{\exp^{<\theta^{(1)}|\mathbf{X}>}}{\exp^{<\theta^{(1)}|\mathbf{X}>} + \exp^{<\theta^{(-1)}|\mathbf{X}>}} \end{split}$$

• RL para varias clases: $P(Y = c) = \frac{\exp^{-(h^{c})|X|}}{\sum_{j=1}^{c} \exp^{-(h^{c})|X|}}$, con :

$$\theta = \begin{pmatrix} \begin{vmatrix} & & & & \\ \theta^{(1)} & \theta^{(2)} & \dots & \theta^{(C)} \\ & & & & \end{vmatrix}$$

Clase final: ĉ = arg max_c P(Y = c)

Regresión Logística – funciones de costo

A tener en cuenta

- Función de costo logística, con $Y \pm 1$: $\ell(\mathbf{X},Y) = \frac{1}{1 + \exp^{Y < \vartheta \mid \mathbf{X} >}}$
- Función de costo entropica, con $Y \in \{0,1\}$:

$$\ell(\mathbf{X}, Y) = -(Y \log(\frac{1}{1 + \exp^{-\langle \theta | \mathbf{X} \rangle}}) + (1 - Y) \log(\frac{1}{1 + \exp^{+\langle \theta | \mathbf{X} \rangle}}))$$

$$= -\sum_{c=1}^{C} \mathbb{1}\{Y = c\} \log(P(Y = c))$$

Ejercicio: ¿Cuál es la derivada $\nabla_{\theta^{[k]}} \ell(\mathbf{X}, Y; \theta)$ para la función de costo entropica?

Regresión Logística – funciones de costo

A tener en cuenta

- Función de costo logística, con $Y \pm 1$: $\ell(\mathbf{X}, Y) = \frac{1}{1 + \exp^{Y < \theta |\mathbf{X}|}}$
- Función de costo entropica, con Y ∈ {0; 1}:

$$\begin{split} \ell(\mathbf{X}, Y) &= -(Y \log(\frac{1}{1 + \exp^{-<\theta|\mathbf{X}>}}) + (1 - Y) \log(\frac{1}{1 + \exp^{+<\theta|\mathbf{X}>}})) \\ &= -\sum_{c=1}^{C} \mathbb{1}\{Y = c\} \log(P(Y = c)) \end{split}$$

Solución:

$$\nabla_{\theta^{(k)}} \ell(X, Y; \theta) = -X(1\{Y = c\} - P(Y = c))$$

Supuestos del Modelo Lineal

Linealidad

La variable de respuesta se relaciona linealmente con los atributos.

Normalidad

Los errores tienen distribución normal de media cero: $\epsilon_i \sim N(0, \sigma^2)$

Homocedasticidad

Los errores tienen varianza constante (mismo valor de σ^2)

Independencia

Los errores son independientes entre si

API: Scikit-learn

Outline: API: Scikit-learn

Recordatorios

Resumen

Optimización

Modelos de clasificación

Clasificador lineal

Regresion Lineal

Regresion Logística

API: Scikit-learn

TP: Regresion Lineal

Scikit-learn: biblioteca de Python

Biblioteca de Aprendizaje Automático muy fácil de usar:

https://scikit-learn.org/

Scikit-learn: mapa de posibilidades

Scikit-learn: funciones normalizadas

Funciones normalizadas para un aprendizaje r'apido y claridad en el c'odigo:

- Los diferentes modelos (o conjuntos de datos) se implementan como clases (tipos de variables)
- Se pueden llamar métodos en estas variables para las diferentes etapas del algoritmo: Extracci´on de caracter´ısticas, Aprendizaje de par´ametros, Predicci´on,...

```
>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> X, y = data.data, data.target
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)
>>> from sklearn.linear_model import SGDClassifier
>>> clf = SGDClassifier(max_iter=1000, tol=1e-3)
>>> clf.fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.92...
```

Scikit-learn: funciones normalizadas

Funciones normalizadas para un aprendizaje rápido y claridad en el código:

Scikit-learn: Conjuntos de datos

<u>Múltiples conjuntos de datos disponibles</u>:

- Conjuntos de datos "juguetes": precios de casas de Boston, plantas de Iris, Diabetes, reconocimiento de vinos, ...
- Conjuntos de datos reales: Caras Olivetti (imagen), Coberturas forestales (geográficas), Conjunto de datos RCV1 (texto), ...

```
>>> from sklearn.datasets import load_wine
>>> data = load_wine()
>>> data.keys()
['target_names', 'data', 'target', ...
'DESCR', 'feature_names']
```

Scikit-learn: Extracción de características

Funciones ya codificadas para vectorizar f'acilmente caracter'isticas

- Desde diccionarios: sklearn.feature_extraction
- Desde imágenes: sklearn.feature extraction.image
- Desde texto: sklearn.feature_extraction.text

Scikit-learn: Selección de características

Técnicas para seleccionar características

- Eliminar características de baja varianza: VarianceThreshold
- Usar modelos para seleccionar características: SelectFromModel
- Eliminación recursiva de características: RFE

```
>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> lsvc = LinearSVC(C=0.01, penalty="11", dual=False).fit(X, y)
>>> model = SelectFromModel(lsvc, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 3)
```

Scikit-learn: Preprocesamiento de datos

Normalización, estandarización necesaria para un mejor aprendizaje

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
scaler.transform(X_test)
```

Valores faltantes

Scikit-learn: Validación cruzada

<u>Funciones</u> para la validación de modelos y separación en conjuntos de entrenamiento/prueba:

- De manera simple train_test_split, para una K-CrossVal KFold, en Leave-one-out LeaveOneOut, conservando las proporciones de las etiquetas StratifiedKFold
- Haciendo directamente la CrossVal: cross_val_score

```
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... iris.data, iris.target, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))
```

Scikit-learn: Modelos de aprendizaje supervisado

Numerosos modelos supervisados normalizados para una fácil utilización:

- Regresión Logística/Lineal, Análisis Discriminativo Lineal/Quadrático,
 SVM, K-NN, Descenso de Gradiente Estocástico, Bayesiano Ingenuo,
 Árboles de decisión, Bosques Aleatorios, ...
- Cada uno de estos modelos se implementan como clases python con métodos que son comunes a todas las clases: fit, score, predict_proba, predict, ...

Scikit-learn: Modelos de aprendizaje no supervisado

<u>Numerosos modelos no supervisados normalizados</u> para clustering, descomposición de señales en componentes, reducción de dimensiones:

- Clustering: K-medias, PCA, Factorización de Matrices no negativas,
 Asignación Latente de Dirichlet, t-sne,...
- Estos modelos se implementan como clases python con métodos que son comunes a todas las clases: fit, fit_transform, predict, ...

Scikit-learn: Métricas

<u>Múltiples métricas disponibles</u> para la evaluación de modelos:

- de clasificación: Recuerdo, Precisión, F1, AUC, ROC, Matriz de confusión,...
- de regresión: R², Error Cuadrático Medio, ...
- de clustering: Completitud, V-medida, ...

```
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
```

Scikit-learn: Encontrar los hiperparámetros con una búsqueda

<u>Funciones para encontrar los hiperparámetros óptimos</u> realizando validaciones cruzadas para diferentes hiperpar´ametros.

- En una cuadrícula dada: GridSearchCV
- En relación con una distribución aleatoria de parámetros:

 RandomizedSearchCV
- Estos modelos se implementan como clases python con métodos que son comunes a todas las clases: fit, fit_transform, predict,...

```
>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import GridSearchCV
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svc = svm.SVC(gamma="scale")
>>> clf = GridSearchCV(svc, parameters, cv=5)
>>> clf.fit(iris.data, iris.target)
```

Outline: TP: Regresi'on

Linaal

Recordatorios

Resumen

Optimización

Modelos de clasificación

Clasificador lineal

Regresion Lineal

Regresion Logística

API: Scikit-learn

TP: Regresion Lineal

TP Introducción a Scikit-learn y regresión lineal

Estudio de la regresión mediante un plano lineal de una superficie cuadrática:

$$Y = 3X^{(1)} - 2X^{(2)}^{2} + \epsilon$$

Introducción a Scikit-learn:

- Separación en conjuntos de entrenamiento y prueba
- Creación, entrenamiento y prueba de modelos de regresión de Scikit-learn
- Ampliación del espacio de los descriptores para crear un modelo no lineal
- Comparación con otros modelos menos adecuados

Questions?

References i