HOMEWORK

LOCAL FIELDS

1. Composition of ramified extensions

Let $p \geq 3$ be a prime number, and let ζ_p denote a root of unity of order p.

1.1. Give an example of a totally ramified finite extension K/\mathbf{Q}_p such that $K(\zeta_p)/\mathbf{Q}_p$ is not totally ramified.

2. Multiplication by p

Let p be a prime number, and let F be a formal group over a (commutative) ring R.

2.1. Show that $[p](X) \in p \cdot R[X] + R[X^p]$.

3. The zeroes of the logarithm

Let K be a finite extension of \mathbf{Q}_p . If F is a formal group over \mathcal{O}_K , let $\operatorname{Tors}(F) = \{z \in \mathfrak{m}_{\mathbf{C}_p} \text{ such that there exists } n \geq 0 \text{ with } [p^n](z) = 0\}$, and let \log_F denote the logarithm of F.

- **3.1.** Prove that $\log_F(X) \in \mathcal{H}_K$.
- **3.2.** Take $z \in \mathfrak{m}_{\mathbf{C}_p}$. Prove that if $z \neq 0$, then $|[p](z)|_p < |z|_p$.
- **3.3.** Take $z \in \mathfrak{m}_{\mathbb{C}_p}$ such that $\log_F(z) = 0$. What can you say about $\log_F([p](z))$? Prove that the set of zeroes of \log_F is precisely $\operatorname{Tors}(F)$.

4. Torsion of some formal groups

We use the notation and results of exercise 4.

- **4.1.** Take $\alpha \in \mathcal{O}_K$. Prove that $F_{\alpha}(X,Y) = X + Y + \alpha XY$ is a formal group. Hint: compute $1 + \alpha F_{\alpha}$.
- **4.2.** Compute the height of F_{α} and compute $Tors(F_{\alpha})$.
- **4.3.** Assume that F is a formal group over \mathcal{O}_K of infinite height, namely that $\overline{[p](X)} = 0$ in $k_K \llbracket X \rrbracket$. Prove that $\mathrm{Tors}(F)$ is finite.
- **4.4.** Prove that if $\operatorname{Tors}(F) = \{0\}$, then $\log_F(X) \in \mathcal{O}_K[\![X]\!]$ and that F is then isomorphic over \mathcal{O}_K to the additive formal group.
- **4.5.** Prove that if K/\mathbb{Q}_p is unramified, and F is of infinite height, then $Tors(F) = \{0\}$.