Garbage Collection

Last Update: 2025-02-22

A program's objects (V) and references (E) are represented by a directed graph P=(V,E). Each program has at least $\varphi\in V$.

Math	English
$\frac{a \in V}{P \vdash a}$	If a is a node in V , then we can say it's "in" P .
$\overline{P dash arphi}$	The node φ always exists in P .
$\frac{(a,b) \in E}{P \vdash a \to b}$	If there is a directed edge from a to b , we write $a \rightarrow b$.
$\frac{P \vdash (a \to b) \land (b \to c)}{P \vdash a \leadsto c}$	Intr' of a new notation <
$\frac{P \vdash a}{P \vdash a \rightsquigarrow a}$	Reflexivity of ⋄⋄→ shown.
$\frac{P \vdash (a \leadsto b) \land (b \leadsto c)}{a \leadsto c}$	Transitivity of ∞→ shown.
$\vdots P \vdash a \leadsto b \text{ iff } \exists x_1x_n \in V \ni :$ $(a = x_1) \land (b = x_n) \land (x_1 \to \ldots \to x_n)$	Therefore, the meaning of $a \rightsquigarrow b$ is "there exists some path from a to b".
$\frac{P \vdash \varphi \rightsquigarrow a}{P \vdash R(a)}$	Intr' of a new predicate $R(x \in V)$. If $R(a)$ holds, we say that a is referenced by the program.
$\frac{P \vdash b}{P \vdash b^n \text{ where } n = \{a \mid a \to b \land R(a)\} }$	Intr' of a new notation a^n . It can be thought of as the number of "meaningful references to a ."
$\frac{P \vdash R(a)}{P \vdash a^n \text{ where } n > 0}$	If $R(a)$ holds, what does that say about a^n ?
$\frac{P \vdash a^0}{P \vdash \cancel{B}(a)}$	If a has no "meaningful references", does $R(a)$ hold?
$\frac{P \vdash ([a \rightarrow b] \twoheadrightarrow [a \not \leadsto b]), R(a)}{P \vdash b^n \twoheadrightarrow b^{n-1}}$	Intr' of new notation \twoheadrightarrow . When $a \twoheadrightarrow b$, we say "a steps to b".