COMP 3011 DESIGN AND ANALYSIS OF ALGORITHMS FALL 2024

Graphs and Greedy Algorithms

LI Bo
Department of Computing
The Hong Kong Polytechnic University

COMMENTS

Comment: I think for the difficulties part, you can provide some solid supplementary sources on BB for those who never learn anything about algorithms. And then keep the difficulties in lecture for the advanced students.

- > Solid supplementary sources on BB
 - 1. VIII Appendix: Mathematical Background (Textbook: Introduction to Algorithms)
 - 2. Self-Reading (Math Foundations) on BB
- > Keep the difficulties in lecture for the advanced students
 - 1. Will Keep the difficulty standard.
 - 2. Look at the materials from the angles of design and analysis.

COMMENTS

- ➤ We have tutorial next Monday (Sep 16, 2024)
- ➤ We do not have lectures next Wednesday (Sep 18, 2024)

Happy Mooncake festival!

BIPARTITE GRAPHS

BIPARTITE GRAPHS

Definition (Bipartite Graphs)

 \triangleright An undirected graph G = (V, E) is bipartite if the nodes can be coloured blue or white such that every edge has one white and one blue end.

Application

> Stable matching: med-school students = blue, hospitals = white.

6

BIPARTITE GRAPHS

• Is this graph bipartite?

Given a graph, how to determine whether it is bipartite or not?

BIPARTITE GRAPHS

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

An edge has different colors on the two end points.

Proof:

 \triangleright Not possible to 2-color the odd-length cycle, let alone $G.\blacksquare$

BIPARTITE GRAPHS

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- i. No edge of G joins two nodes of the same layer, and G is bipartite.
- ii. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

9

BIPARTITE GRAPHS

Case i:

- > Suppose no edge joins two nodes in same layer.
- ➤ By BFS property, each edge joins two nodes in adjacent levels.
- ➤ Bipartition: white = nodes on odd levels, blue = nodes on even levels.

BIPARTITE GRAPHS

Case ii:

- \triangleright Suppose (x, y) is an edge with x, y in same level L_i .
- \triangleright Let z = lca(x, y) = lowest common ancestor.
- \triangleright Let L_i be level containing z.
- \triangleright Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- ➤ Its length is 1 + (j i) + (j i) = 2(j i) + 1, which is odd. \blacksquare

BIPARTITE GRAPHS

Lemma. Exactly one of the following holds.

- i. No edge of G joins two nodes of the same layer, and G is bipartite.
- ii. An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Corollary. A graph G is bipartite if and only if it contains no odd-length cycle.

DIRECTED GRAPHS

13

DIRECTED GRAPHS

Directed Graph G = (V, E).

 \triangleright Edge (u, v) leaves node u and enters node v.

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- > Space complexity $O(n^2)$.
- \triangleright Checking if (u, v) is an edge takes constant time.
- \triangleright Identifying all edges takes $\Theta(n^2)$ time.

In-degree: #incoming edges

Out-degree: #outgoing edges

14

DIRECTED GRAPHS

Adjacency lists. Node-indexed array of lists.

- > Space complexity is $\Theta(m+n)$.
- > Checking if (u, v) is an edge takes O(degree(u)) time.
- \triangleright Identifying all edges takes $\Theta(m+n)$ time.

DIRECTED GRAPHS

Directed Graph G = (V, E).

Directed reachability.

Given a node s, find all nodes reachable from s.

Directed s - t shortest path problem.

Given two nodes s and t, what is the length of a shortest path from s to t?

> Graph search: BFS extends naturally to directed graphs.

Connectivity?

16

DIRECTED GRAPHS

Definition.

- \triangleright Nodes u and v are mutually reachable if there is both a path from u to v and also a path from v to u.
- > A graph is *strongly connected* if every pair of nodes is mutually reachable.

Lemma. Let s be any node. s is strongly connected if and only if every node is reachable from s, and s is reachable from every node.

Proof.

⇒ Follows fro

← Path from 1

Path from 1

Given a graph, how to determine whether it is strongly connected or not?

with $s \sim v$ path.

With $s \sim u$ path.

DIRECTED GRAPHS

Theorem. Can determine if G is strongly connected in O(m+n) time.

Proof.

➤ Pick any node *s*.

- reverse orientation of every edge in G
- > Run BFS from s in G.
- \triangleright Run BFS from s in G^{reverse} .
- > Return true if and only if all nodes reached in both BFS executions.
- ➤ Correctness follows immediately from previous lemma.

If the graph contains a cycle, then no linear ordering is possible.

Definitions

An ordering of the nodes so that all edges point "forward".

- > A directed acyclic graphs (DAG) is a directed graph that contains no directed cycles.
- \triangleright A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

- ➤ How many topological orderings does the following graph have?
- > An ordering of the nodes so that all edges point "forward".

Exhaustive Search: there will be 5*4*3*2 = 120 possibilities.

Observations:

- > The first node must be one that has no edge coming into it.
- > The last node must be one that has no edge leaving it.

"a" must be first and "e" must be last

20

Lemma. If G has a topological order, then G is a DAG.

Proof [by contradiction]

- \triangleright Suppose that G has a topological order $v_1, v_2, ..., v_n$ and that G also has a directed cycle C.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_j, v_i) is an edge.
- \triangleright By our choice of i, we have i < j.
- \triangleright On the other hand, since (v_j, v_i) is an edge and $v_1, v_2, ..., v_n$ is a topological order, we must have j < i, a contradiction.

- > Question: Does every DAG have a topological ordering?
- > Question: If so, how do we compute one?

Lemma. If G is a DAG, then G has a node with no entering edges.

Proof. [by contradiction]

- \triangleright Suppose that G is a DAG and every node has at least one entering edge.
- \triangleright Pick any node v, and begin following edges backward from v.
- \triangleright Since v has at least one entering edge (u, v) we can walk backward to u.
- \triangleright Then, since u has at least one entering edge (x, u), we can walk backward to x.
- > Repeat until we visit a node, say w, twice.
- \triangleright Let C denote the sequence of nodes encountered between successive visits to w.

Lemma. If G is a DAG, then G has a topological ordering.

Proof. [by induction on n]

- \triangleright Base case: true if n = 1.
- \triangleright Inductive hypothesis: Assume true for k < n nodes.
- \triangleright Given DAG on n > 1 nodes, find a node v with no entering edges.
- $\triangleright G \{v\}$ is a DAG, since deleting v cannot create cycles.
- \triangleright By inductive hypothesis, $G \{v\}$ has a topological ordering.
- \triangleright Place v first in topological ordering; then append nodes of $G \{v\}$ in topological order.
- \triangleright This is valid since ν has no entering edges.


```
To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G-\{v\}

and append this order after v
```

Theorem. Algorithm finds a topological order in O(m + n) time.

Proof:

Maintain the following information:

- \triangleright count(w) = remaining number of incoming edges to node w
- \triangleright S = set of remaining nodes with no incoming edges

Initialization: O(m + n) via single scan through graph.

```
To compute a topological ordering of G:

Find a node v with no incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G-\{v\}

and append this order after v
```

Update: to delete v

- \triangleright remove ν from S
- \triangleright decrement count(w) for all edges from v to w; and add w to S if count(w) hits 0
- \triangleright this is O(1) per edge

GREEDY ALGORITHMS

Given a set of jobs $J = \{1, 2, \dots, n\}$

 \triangleright Job j starts at s_j and finishes at $f_j \ge s_j$.

> Two jobs (open intervals) are compatible if they don't overlap.

Goal: find maximum subset of mutually compatible jobs.

Intuition: shorter is better

Idea 1:

> Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Intuition: earlier is better

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

GREEDY ALGORITHM

- > Repeatedly pick an item until no more feasible choices.
- Among all feasible choices, we always pick the one that minimizes (or maximizes) <u>some</u> <u>property</u>.
 - > length, starting time, ...
- > Such algorithms are called *greedy*.
- > Greedy algorithms may not be optimal.
- ➤ But maybe we have been using the wrong property!

What about earliest-finish-time-first?

Idea 1:

> Repeatedly pick shortest compatible, unscheduled job (i.e. that does not conflict with any scheduled job).

Idea 2:

> Repeatedly pick compatible job with earliest starting time.

EARLIEST-FINISH-TIME-FIRST ALGORITHM

```
EARLIEST-FINISH-TIME-FIRST (n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)

SORT jobs by finish times and renumber so that f_1 \le f_2 \le ... \le f_n.

S \leftarrow \emptyset. \longleftarrow set of jobs selected

FOR j = 1 TO n

IF (job j is compatible with S)

S \leftarrow S \cup \{j\}.

RETURN S.
```

Proposition. Can implement earliest-finish-time first in $O(n \log n)$ time.

34

Switching j_{r+1} by i_{r+1} in 0:

Still *feasible* and *optimal*!

EARLIEST-FINISH-TIME-FIRST ALGORITHM

Theorem. The earliest-finish-time-first algorithm is optimal.

Proof. [by contradiction]

- > Assume Greedy is not optimal.
- \triangleright Let $A = \{i_1, i_2, ..., i_k\}$ be set of jobs selected by Greedy.
- \triangleright Let $O = \{j_1, j_2, ..., j_m\}$ be set of jobs in an optimal solution. Then m > k.
- \gt Let r+1 be first index such that $i_{r+1} \neq j_{r+1}$. such a job exists \Longrightarrow $f_{i_{r+1}} \leq f_{j_{r+1}}$

$$i_1 = j_1$$
 $i_2 = j_2$ $i_r = j_r$ $i_{r+1} \neq j_{r+1}$

INTERVAL PARTITIONING

36

INTERVAL PARTITIONING

Given a set of lectures (jobs) $L = \{1, 2, ..., n\}$;

- \triangleright Lecture j starts at s_j and finishes at $f_j \ge s_j$.
- > Two lectures are compatible if they don't overlap.

Goal: find minimum number of classrooms to schedule all lectures so that no two lectures occur at the same time in the same room

• Optimal is 3 classrooms.

Definition. The <u>depth</u> of a set of open intervals is the <u>maximum</u> number of intervals that contain any given point.

Key observation. #rooms needed ≥ depth.

Is depth enough???

3 classrooms are needed

2 classrooms are needed

Can we do earliest-finish-time-first?

time

Can we do earliest-start-time-first?

41

INTERVAL PARTITIONING: EARLIEST-Start-time-first algorithm

EARLIEST-START-TIME-FIRST $(n, s_1, s_2, ..., s_n, f_1, f_2, ..., f_n)$

SORT lectures by start times and renumber so that $s_1 \le s_2 \le ... \le s_n$.

 $d \leftarrow 0$. \leftarrow number of allocated classrooms

For j = 1 to n

IF (lecture *j* is compatible with some classroom)

Schedule lecture j in any such classroom k.

ELSE

Allocate a new classroom d + 1.

Schedule lecture j in classroom d + 1.

 $d \leftarrow d + 1$.

RETURN schedule.

Lemma.

The earliest-start-time-first algorithm can be implemented in $O(n \log n)$ time.

Lemma.

The earliest-start-time first algorithm never schedules two incompatible lectures in the same classroom.

The d lectures are incompatible.

INTERVAL PARTITIONING: EARLIEST-START-TIME-FIRST ALGORITHM

Theorem. Earliest-start-time-first algorithm uses #depth rooms and thus is optimal.

- \triangleright Let d = number of classrooms that the algorithm allocates.
- \triangleright Classroom d is opened because we needed to schedule a lecture, say j, that is incompatible with a lecture in each of d-1 other classrooms.
- \triangleright Thus, these d lectures each end after s_j .
- \triangleright Since we sorted by start time, each of these incompatible lectures start no later than s_i .

 S_j f_j time

Single resource processes one job at a time.

- \triangleright Job j requires t_j units of processing time and is due at time d_j .
- \triangleright If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- \triangleright Lateness: $l_j = \max\{0, f_j d_j\}$.

Goal: schedule all jobs to minimize maximum lateness $L = \max_{j} l_{j}$.

t_{j}		a _j	tillic
	d_j	f_j	time
	$l_j = f$	$\frac{1}{j} - d_j$	

	1	2	3	4	5	6
t_j	3	2	1	4	3	2
d_j	6	8	9	9	14	15

Maximum latency L = 6

d: time

45

EARLIEST-DEADLINE-FIRST $(n, t_1, t_2, ..., t_n, d_1, d_2, ..., d_n)$

SORT jobs by due times and renumber so that $d_1 \le d_2 \le ... \le d_n$.

$$t \leftarrow 0$$
.

For j = 1 to n Process the ordered jobs one by one (immediately)

Assign job *j* to interval $[t, t + t_j]$.

$$s_j \leftarrow t$$
; $f_j \leftarrow t + t_j$.
 $t \leftarrow t + t_j$.

RETURN intervals $[s_1, f_1], [s_2, f_2], ..., [s_n, f_n].$

	1	2	3	4	5	6
t_j	3	2	1	4	3	2
d_{j}	6	8	9	9	14	15

46

 $t + t_i$

Properties for optimal schedules.

Observation 1. There exists an optimal schedule with no idle time.

Observation 2. The earliest-deadline-first schedule has no idle time.

or i < j for ordered jobs

Definition. Given a schedule S, an inversion is a pair of jobs i and j such that: $d_i < d_j$ but j is scheduled before i.

swap makes the schedule better!

Observation 3. The earliest-deadline-first schedule is the *unique* idle-free schedule with no inversions.

49

SCHEDULING TO MINIMIZING LATENESS

Observation 4. If an idle-free schedule has an inversion, then it has an adjacent inversion.

two inverted jobs scheduled consecutively

Proof.

- \triangleright Let i-j be a closest inversion. $d_j > d_i$
- \triangleright Let k be element immediately to the right of j.
 - \triangleright Case 1: $d_j > d_k$. Then j k is an adjacent inversion.
 - ightharpoonup Case 2. $d_i < d_k$. Then i k is a closer inversion.

50

SCHEDULING TO MINIMIZING LATENESS

Key Claim. Exchanging two adjacent, inverted jobs i and j reduces the number of inversions by 1 and does not increase the max lateness.

 $f_j' = f_i \qquad i < j : d_i \le d_j$

 \triangleright Let l be the lateness before the swap, and let l' be it afterwards.

$$> l'_k = l_k$$
 for all $k \neq i, j$.

$$> l_i' \le l_i$$

$$\triangleright$$
 If job j is late, $l'_j = f'_j - d_j = f_i - d_j \le f_i - d_i \le l_i$.

Theorem. The earliest-deadline-first schedule S is optimal.

Proof. [by contradiction]

- \triangleright Define S^* to be an optimal schedule with the fewest inversions.
- \triangleright Can assume S^* has no idle time. \longrightarrow Observation 1
- \triangleright Case 1: S^* has no inversions. Then $S = S^*$. Observation 3
- \triangleright Case 2: S^* has an inversion.
 - \triangleright Let i j be an adjacent inversion \longrightarrow Observation 4
 - \triangleright Exchanging jobs i and j decreases the number of inversions by 1 without increasing the max lateness \longrightarrow Key Claim
 - \triangleright Contradicts "fewest inversions" part of the definition of S^* .

GREEDY ANALYSIS STRATEGIES

Greedy algorithm stays ahead.

- > Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.
- > [Interval scheduling]

Structural.

- Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.
- > [Interval partitioning]

Exchange argument.

- > Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
- > [Minimizing lateness, Interval scheduling]

Thank You!