Deep Learning Backpropagation (backpropa-o-quê?)

Objetivos

- Visão geral de redes neurais
- Por quê são poderosas
- Como o aprendizado ocorre

Não são objetivos

- Discutir os conceitos matemáticos
- Aprender os requisitos para codificar uma rede neural

Agenda

Introdução / Motivação

O que são redes neurais? Por que devemos estudar os algoritmos envolvidos? Compreensão

Como as redes neurais são organizadas e o que ocorre durante o aprendizado Exemplo

Vamos analisar uma rede neural para identificar o Loki e o Gauss

Introdução

O quê? Por quê?

...I think we are probably a long way from understanding how the brain does this.

Geoffrey Hinton

Breve história das redes neurais

>2011

2016

ImageNet

Muitas camadas ocultas. Poder computacional disponível. Dados abundantes

Siri, Facebook

Com a percepção de que modelos complexos agora podem ser treinados, mais empresas se envolvem Wired

"Soon We Won't Program Computers. We'll Train Them Like Dogs" The Verge

"It's 2018, so where are the self-driving cars?"

Uber reportedly thinks its self-driving car killed someone because it 'decided' not to swerve

The car's sensors saw her, but may have flagged the detection as a 'false positive'

Laying a trap for self-driving cars

×

Devin Coldewey @techcrunch / Mar 17, 2017

TRANSPORTATION \ UBER \ RIDE-SHARING

Comment

Researchers hack a self-driving car by putting stickers on street signs

Motivações (resumo)

Potencial

Provavelmente será 'tão revolucionária como a eletricidade'

Crescimento

Constantemente a área precisa de novas soluções para sobrepor problemas encontrados

Progresso

Novas soluções serão criadas usando o conhecimento atual

Entendendo redes neurais

Com uma analogia

Abordagem tradicional

Por que tudo isso?

- Feed Forward
- Forward Pass
- Backward Pass
- Função de custo/perda
- Gradient Descent
- Learning Rate (alpha)

método ADEPT

ADEPT Method for Learning								
Analogy	Tell me what it's like.							
Diagram	Help me visualize it.							
Example	Allow me to experience it.							
Plain English	Describe it with everyday words.							
Technical Definition	Discuss the formal details.							

Analogia, Diagrama, Exemplo, Português, Tecnicalidades

Vamos a analogia

REWARDS

CAREER

LEADERBOARD

BP 76

WARDROBE APPEARANCE

BELT

LEGS

✓ FEET

GROSSERIA

Selecione o chef

Monta time

Ingredientes

Treinamento dos estagiários

Calcula Erro

Retrospectiva

Time emprega suas habilidades e utensílios para trabalhar com os ingredientes e *mise* en place produzido pelos times anteriores

Tentativa/Sprint

Chef faz cálculo da pontuação de erro. Basicamente essa pontuação diz quão longe os pratos ficaram da expectativa Distribuição da culpa.

Melhoramentos necessários.

zoom nas habilidades (Brigada 1)

0.563	0.784	0.500	0.123	% 0.945	0.126	0.834	2 0.871	% 0.629	& 0.819	0.999	0.400	0.350	0.592	0.961	0.498
0.267	0.349	0.773	0.639	0.867	0.580	0.299	0.198	0.943	0.600	0.966	0.822	0.987	0.300	0.811	0.322
0.990	0.700	0.777	0.631	0.852	0.764	0.874	0.542	0.984	0.783	0.933	0.199	0.173	0.294	0.877	0.622
0.559	0.880	0.392	0.433	0.744	0.875	0.993	0.467	0.902	0.024	0.905	0.508	0.877	0.900	0.455	0.722
0.872	0.934	0.774	0.099	0.084	0.847	0.083	0.907	0.048	0.840	0.873	0.707	0.014	0.873	0.749	0.564

zoom nos utensílios (Brigada 1)

Resumo

Definições

- Feed Forward
- Forward Pass
- Backward Pass
- Função de custo/perda
- Gradient Descent
- Learning Rate (alpha)

- Layout cozinha
- Tentativa
- > Retrospectiva
- Quantidade de erros
- > Treinamento dos cozinheiros
- Grosseria

Exemplo

Exemplo

Sugestões

- Aprender fazendo
- Frases como "vamos ter q alterar o sistema inteiro" são uma oportunidade
- Codificar uma rede neural que converta binários para inteiros
- Fazer um reconhecedor facial dos seus colegas de trabalho

Onde aprender mais

- Neural Networks and Deep Learning (Coursera)
- http://neuralnetworksanddeeplearning.com/
- https://www.deeplearning.ai/

Obrigadol

Perguntas?

@anisiomarxjr & anisiomarxjr@gmail.com