Enseignements transversaux scientifiques : Mathématiques de spécialité (Etudes de cas)

Fonctions plusieurs var-Operateurs 23 24

? Question 1

Question à valeurs numériques

Consignes

□ Durée 30 min

☐ Accès : documents papier autorisé

☐ Rendre votre copie papier (sur table) à la fin de l'épreuve

On souhaite étudier la distribution de température dans un matériau conducteur tridimensionnel. On note T la température en tout point du matériau. Cette température est donnée par la fonction $T(x;y;z)=x^2+y^3+3e^z$ où x, y et z sont des coordonnées spatiales.

1. Le champ de température est donné par la figure 1 (ci dessous).

Calculer le gradient de ce champ de température $\overrightarrow{
abla}T$

Expliquer ce que représente ce gradient dans le contexte de la distribution dans le matériau.

- 2. Dans quelle direction la température augmente le plus rapidement à partir du point (1,0,2) dans le matériau ? (pensez à utiliser $\overrightarrow{\nabla T}$ pour déterminer cette direction)
- 3. On s'intéresse maintenant à la quantité totale de chaleur Q contenue dans une région délimitée par un cube. La région Σ est définie par $0 \le x \le 1$; $0 \le y \le 1$ et $0 \le z \le 1$.

Utilisez une intégrale triple pour calculer la quantité totale de chaleur contenue dans cette région en fonction de la température T(x,y,z).

4. Calculer le Laplacien ΔT de la fonction température. Ce Laplacien ΔT peut il être nul?

Réponse attendue

Commentaire de correction de la question