Bayes' theorem application to physical model parameter extraction

Weiyao Ke Modified from JetScape Winter School 2019 talk by Jake Coleman & Weiyao Ke

Dec 3, 2019

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 1/21

- Bayes' theorem
- 2 Complex model: high dimensional input and output
 - Designing parameter samples
 - Interpolator: Gaussian process
 - Dimensional reduction: principal component analyais
- 3 Application: a toy model for jet-quenching
- 4 Summary and discussion

<□ > <□ > <□ > < = > < = > < = > < 0

Bayes' theorem

2 Complex model: high dimensional input and output

3 Application: a toy model for jet-quenching

4 Summary and discussion

4□ > 4□ > 4 = > 4 = > = 90

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 2 / 21

Bayes' parameter extraction

The problem:

- 1. Given a model \mathcal{M} : compute quantities \mathbf{y} with input parameters \mathbf{x} .
- 2. Given a prior belief of \mathbf{x}' true value's distribution $P_0(\mathbf{x}_{\text{true}})$
- 3. Given observations \mathbf{y}_{exp} .
- !! Ask for the updated probability distribution of \mathbf{x}_{true} : $P(\mathbf{x}_{\text{true}})$.

Bayes' theorem:
$$\underbrace{P(\mathbf{x}_{\text{true}}|\mathcal{M}, \mathbf{y}_{\text{exp}})}_{\text{Posterior}} = \underbrace{\frac{P_L(\mathbf{y}_{\text{exp}}|\mathcal{M}, \mathbf{x}_{\text{true}})}{P_L(\mathbf{x})P_0(\mathbf{x})d\mathbf{x}}}_{\text{Normalization (evidence)}}$$

Often the form P_L is unknown. Commonly assumed to take the form:

$$\ln P_L = C - \frac{1}{2} \Delta \mathbf{y} \Sigma^{-1} \Delta \mathbf{y}^T, \quad \Delta \mathbf{y} = \mathbf{y}_{\mathsf{exp}} - \mathbf{y}(\mathbf{x}; \mathcal{M}), \Sigma : \text{Contains uncertainties}$$

Weiyao Ke CCNU, Wuhan Dec 3, 2019 3/21

A toy model: flip coin

The problem:

- A coin flip experiments gets m = 7 head out of n = 10 trials.
- ullet What is the probability heta to get a head each time.

The model:

- Outcome follows a binomial distribution. We know the exact likelihood function $P_L(m \text{ out of } n|\theta) = C_n^m \theta^m (1-\theta)^{n-m}$.
- Try different prior: $P_0(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

The resulting inference on p:

- Posterior probability distribution $P(\theta) \propto \theta^{m+\alpha-1} (1-\theta)^{n-m+\beta-1}$
- Mean \pm Std: $\theta = \frac{m+\alpha}{n+\alpha+\beta} \pm \sqrt{\frac{(m+\alpha)(n-m+\beta)}{(n+\alpha+\beta)^2(n+\alpha+\beta+1)}}$ ($P(\theta)$ has all the information).
- How do α, β change the inference?

Dec 3, 2019

4 / 21

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 5 / 21

1 Bayes' theorem

2 Complex model: high dimensional input and output

3 Application: a toy model for jet-quenching

4 Summary and discussion

(□▶ ◀鬪▶ ◀불▶ ◀불▶ = = - ∽)♀⊙

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 5/21

For complex model, it is impossible to evaluate outcome at arbitrary input

Computationally intensive to evaluate the full model.

- For example, 2+1D event-by-event viscous-hydro based HIC simulation \sim 5-10 events/h. To compute observables with one set of input take $\mathcal{O}10^4$ minimum biased events \rightarrow 1-2kh
- Compute at finite number of input points and interpolate the function y(x; M)

Two problems of interpolation:

- 1. How to efficiently interpolate high-dimensional input $\mathcal{O}(10)$?
- 2. How to efficiently interpolate a function with vector output.
 - ▶ For example $\mathbf{y} = (\langle E_T \rangle, dN_{\mathrm{ch}}/d\eta \langle p_T \rangle, v_2, v_3, v_4) \times [8 \text{ centrality}] \times [2 \text{ collision systems}]$ gives an 80-dimensional output at each input.

6/21

Weivao Ke CCNU, Wuhan Dec 3, 2019

Latin hyper-cube sampling: optimized samples of high dimensional parameter space

Assume the model is well-behaved in the parameter space.

- Grid samples require too many samples $N \propto n^d$
- Random samples result in over populated regions and large gap.

Latin hyper-cube sampling (LHS): random sampling with

- Marginalized distribution is uniform.
- Maximize the minimum distance between two samples.
- ullet Usually $N \propto d$

Weiyao Ke CCNU, Wuhan Dec 3, 2019 7/21

Gaussian emulator: fast interpolator

Given y values at finite number of parameter sets x_i . Gaussian process is:

- A non-parametric interpolation.
- y^* at a new point \mathbf{x}^* are inferred from its correlation with all other points (x_i) .
- It also estimates the interpolation uncertainty!

How does it work:

• Assume $y(\mathbf{x}^*)$, $y(\mathbf{x}_i)$ form a multi-variated Gaussian distribution (centered):

$$\begin{bmatrix} y_* \\ y_i \end{bmatrix} \sim \mathcal{N} \left(\mu = 0, \text{cov} = \begin{bmatrix} k(x^*, x^*), k(x^*, x_i) \\ k(x_i, x^*), k(x_i, x_j) \end{bmatrix} \right), \quad k(\cdot, \cdot) \text{ is a kernel function}$$

• $P(y^*)$ is simply the conditional probability $P(y^*) = \frac{P(y,y_i)}{\int P(y,y_i)dy}\Big|_{y_i=y(\mathbf{x_i})}$

$$y^* \sim \mathcal{N}\left(\mu = k(x^*, x_i)k^{-1}(x_i, x_j)y_j, \text{cov} = k(x^*, x^*) - k(x^*, x_i)k^{-1}(x_i, x_j)k(x_j, x^*)\right)$$

• Question: what happens when $x^* \to x_i$

(□▶ (∰▶ (≧▶ (≧▶ ≧ ଶ)५०

Weiyao Ke CCNU, Wuhan Dec 3, 2019 8/21

Gaussian emulator: kernel function and training

One do have freedom in chosen the kernel function and its "hyperparameters", a common choice is a Gaussian-like correlation function:

- $k(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 \exp(-\frac{1}{2}|(\mathbf{x}_i \mathbf{x}_j)/\mathbf{L}|^2)$: two point correlation $\langle y(\mathbf{x}_i)y(\mathbf{x}_j)\rangle$
- σ, L called hyperparameters: They are, in principle, unknown. But one can use a set of
 "optimized values" by balancing the quality of the fit and the complexity of the emulator
 → training process
- Question: what happens if *L* is too small / too large.

(ロ > 세례 > 세분 > 세분 > - 분 - 쒸익()

9/21

Weiyao Ke CCNU, Wuhan Dec 3, 2019

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 10/21

Principal component analysis: data reduction for vector function

Suppose one has computed a list of observables at *n* design point,

$$\mathbf{x_1} \rightarrow \mathbf{y_1} = [y_1(\mathbf{x_1}), \cdots, y_m(\mathbf{x_1})]$$

$$\cdots$$
 $\mathbf{x_n} \rightarrow \mathbf{y_n} = [y_1(\mathbf{x_1}), \cdots, y_m(\mathbf{x_n})]$

Inefficient to construct m emulator for each quantity. Data has intrinsic correlation.

- For example, if y_i and y_j has a strong linear correlation, then there is effectively only one degree of freedom $(z_1(\mathbf{x}) = ay_1(\mathbf{x}) + by_2(\mathbf{x}), z_2 = by_1 ay_2 \ll \mathcal{O}(z_1))$ instead of two.
- $(y_1(\mathbf{x}), y_2(\mathbf{x})) \xrightarrow{\text{Change basis}} (z_1(\mathbf{x}), z_2(\mathbf{x})) \xrightarrow{\text{Dim reduction}} (z_1(\mathbf{x}))$
- Principal component analysis (PCA): the statistical tool to generalize this simple example.

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 11/21

Principal component analysis: data reduction for vector function

 PCA: systematically construct the new basis by diagonalize the empirical covariance matrix

$$C_{ij} = \frac{1}{n} \sum_{k=1}^{n} \underbrace{\frac{y_i(\mathbf{x_k}) - \bar{y}_i}{\sigma_i}}_{\text{Standardlized data } Y_{ik}} \frac{y_j(\mathbf{x_k}) - \bar{y}_j}{\sigma_j} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^\mathsf{T}$$

$$\mathbf{C} = \mathbf{V} \text{Diag} \{\lambda_1, \lambda_2, \dots \} \mathbf{V}^\mathsf{T}, \quad \lambda_1 > \lambda_2 > \dots$$

• The new basis becomes
$$z_i(\mathbf{x}) = V_{ii}^T y_i(\mathbf{x}), i = 1, 2, \dots, m$$
, with variance λ_i .

- Not all of them are important, one usually truncates at $N \ll m$ and construct emulators for the first N most important principal component.
- Given $z_{i < N}$, y_i can be reconstructed $y_i = V_{ij < N} z_{j < N}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 12/21

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 13/21

Bayes' theorem

2 Complex model: high dimensional input and output

3 Application: a toy model for jet-quenching

4 Summary and discussion

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 13/21

A toy-model example

A toy-model of jet-quenching

Initial spectrum

$$\frac{dN_0}{dp_T} \propto \frac{p_T}{\left(3^2 + p_T^2\right)^3}$$

• Energy loss ΔE follows a Γ -distribution,

$$P(\Delta E) \propto \Delta E^{\mu^2/\sigma^2 - 1} e^{-\mu \Delta E/\sigma^2}$$

 $\mu = A\sqrt{p_T}, \sigma = B\mu$

The quenched spectrum

$$\frac{dN_1}{dp_T}(p_T) = \int \frac{dN_0}{dp_T}(p_T + x)P(x)dx$$

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 14/21

A toy-model example

- Assume the model is perfect and the truths are: A = 1.0, B = 0.5.
- A measurement with finite statistics (5%) and systematic bias (10%).

$$y_{\rm exp} \approx y_{\rm true} \pm \sigma_{\rm stat} \pm \sigma_{\rm sys}$$

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 15/21

Toy model: make design

An 50-point design with $A \in [0.05, 3]$ and $B \in [0.05, 1.5]$. Model calculations of R_{AA} widely spread between 0 and 1.

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 16/21

Toy model: PCA

The first two PCs account for more than 99.8% of the data variance. PC1 is an overall shift, PC2 and PC3 capture the shapes.

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 17 / 21

Toy model: Validation

Compare GPs' predictions to model calculations at new parameter sets. Relative error on the right.

Toy model: Posterior for parameters

Using uncorrelated sys error

Using correlated sys error

* Mistreating correlated uncertainty may bias the credible region.

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 19 / 21

Toy model: Posterior predictions

^{*} Mistreating correlated uncertainty may lead to overconfident prediction uncertainties.

◆ロト ◆部ト ◆注ト ◆注ト 注 りなべ

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 20 / 21

Bayes' theorem

2 Complex model: high dimensional input and output

- 3 Application: a toy model for jet-quenching
- 4 Summary and discussion

 Weiyao Ke
 CCNU, Wuhan
 Dec 3, 2019
 20/21

Summary and discussion

- Pick design points (use LHS) \mathbf{x}_i , $i = 1, \dots, n$, compute the full model at these finite number of design points $y_i(\mathbf{x}_i)$.
- Construct principal components $z_i(\mathbf{x})$ and keep the first N components.
- Train N Gaussian process emulator on the $j \leq N$ PC to learn the mapping so that $GP_j(\mathbf{x}) \sim \mathbf{x} \to \mathbf{z_j}(\mathbf{x})$
- For any \mathbf{x} , the prediction can be obtained by $y_j(\mathbf{x}) = V_{jk \leq N} \mathrm{GP}_{k \leq N}(\mathbf{x})$
- Construct the likelihood function, and Posterior = Likelihood \times Prior.
- Use MCMC to marginalize the high-dimensional posterior distribution.

For discussion:

- Emulator is not perfect. Make the function to be learned as simple as possible! (Input parameter space transformation).
- How to properly construct the co-variance matrix if the likelihood function is not known exactly?
- Model uncertainty.

←□▶ ←□▶ ←□▶ ←□▶ ←□▶