IP地址

子网划分

- 地址浪费
- 等长子网划分
- B类网络子网划分
- A类地址子网划分

地址浪费

- 按着IP地址传统的分类方法,一个网段有200台计算机,分配一个C类网络, 212.2.3.0 255.255.255.0,可用的地址范围212.2.3.1—212.2.3.254,虽然没有 全部用完,这种情况还不算是极大浪费。
- 如果一个网络中有400台计算机,分配一个C类网络,地址就不够用了,那就分配一个B类网络,131.107.0.0 255.255.0.0,该B类网络可用的地址范围 131.107.0.1—131.107.255.254,一共有56634个地址可用,这就造成了极大浪费。

212.2.3.0 255.255.255.0

等长子网划分

- 子网划分,就是借用现有网段的主机位做子网位,划分出多个子网。子网划分的任务包括两部分:
- 等长子网划分就是将一个网段等分成多个网段,也就是等分成多个子网。
 - 1.确定子网掩码的长度。
 - 2.确定子网中第一个可用的IP地址和最后一个可用的IP地址。

等长子网划分

• (1) 等分成两个子网

(1) 等分成两个子网

规律:如果一个子网是原来网络 $\frac{1}{2}$,子网掩码往后移1位。

(1) 等分成两个子网

- A和B两个子网的子网掩码都为255.255.255.128。
- A子网可用的地址范围为192.168.0.1~192.168.0.126, IP地址 192.168.0.0由于主机位全为0,不能分配给计算机使用,如图5-36所示,192.168.0.127由于其主机位全为1,不能分配计算机。

(2) 等分成四个子网

(2) 等分成四个子网

• 每个子网的最后一个地址都是本子网的广播地址,不能分配给计算机使用,的A子网的63、B子网的127、C子网的191和D子网的255。

	_	网络部分			主机位全1
	*				*
A子网	192	168	0	0 0	1 1 1 1 1 1
					63
B子网	192	168	0	0 1	1 1 1 1 1 1
					127
C子网	192	168	0	10	1 1 1 1 1 1
					191
D子网	192	168	0	1 1	1 1 1 1 1 1
					255
子网掩码	11111111	11111111	11111111	1 1	000000
子网掩码	255	255	255		192

(3) 等分为八个子网

把一个C类网络等分成8个子网,如图5-40所示,子网掩码需要往右移3位。 才能划分出8个子网,第1位、第2位和第3位都变成网络位。

B类网络子网划分

 将131.107.0.0 255.255.0.0等分成2个子网。子网掩码往右移动1位, 就能等分成两个子网。

	M络部分 1								È	机	뗾	分	.					
	*			•														_
A子网	131	107	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B子网	131	107	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
子网掩码	11111111	11111111	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
子网掩码	255 255					12	28							()			

B类网络子网划分

	网络部分			主机部分						
. 乙爾勢 人可用的地址	131	107	000	00000	00000001					
A子网第一个可用的地址	131	107		0	1					
	131	107	0 1 1	1 1 1 1 1	1 1 1 1 1 1 0					
A子网最后一个可用的地址	131	107	VIT T	127	254					

	网络	各部分	主机部分						
	,		_						
B子网第一个可用的地址	131	107	1	000000	00000001				
D 1 网第一个时间地址	131	107		128	1				
B子网最后一个可用的地址	131	107	1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 0				
D 1 M 解/口 1 P 1 用 1 P 1 P 1 P 1 P 1 P 1 P 1 P 1 P	131	107		255	254				

A类地址子网划分

• A类网络42.0.0.0 255.0.0.0等分成4个子网为例,写出各个子网的第一个和最后一个可用的IP地址。

	网络部分	ď	_											Ė	Ξŧ	门音	8	<u>}</u>							
	•			7																					
A子网	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B子网	42	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
c子网	42	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û	\circ	0	0	0	0	0	0	0
D子网	42	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\circ	0	0	0	0	0	0	0
子网掩码	111111111	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
子网掩码	255				19	92							()							ĺ)			

每个子网第一个和最后一个可用地址

	─────────────────────────────────────	主机部分	→
▲子网第一个可用的地址	42 000 42	0 0 0 0 1	01
A子网最后一个可用的地址	42 001 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
B子网第一个可用的地址	42 01 0 42	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01
B子网最后一个可用的地址	42 011 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0
C子网第一个可用的地址	42	000000000000000000000000000000000000000	
C子网最后一个可用的地址	42 1 0 1 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0
D子网第一个可用的地址	42	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D子网最后一个可用的地址	42 1 1 1 42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10

变长子网划分

- 变长子网划分
- 点到点网络的子网掩码
- 子网掩码另一种表示方法-CIDR
- 判断IP地址所属的网段
- 子网划分需要注意几个问题

变长子网划分

变长子网划分规律

• 规律: 如果一个子网地址块是原来网段的 $(\frac{1}{2})^n$,子网掩码就在原网段的基础上后移n位,不等长子网, $\frac{2}{2}$ 子网掩码也不同。

点到点网络的子网掩码

- 每个子网是原来网络的 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ 也就是 $(\frac{1}{2})^6$

子网掩码另一种表示方法-CIDR

- IP地址有"类"的概念,A类地址默认子网掩码255.0.0、B类地址默认子网掩码255.255.0.0、C类地址默认子网掩码255.255.255.0。等长子网划分和变长子网划分,打破了IP地址"类"的概念,子网掩码也打破了字节的限制,这种子网掩码被称为VLSM(Variable Length Subnet Masking,可变长子网掩码)
- 这种方式的也可以使得Internet上的路由器路由表大大精简,被称为CIDR(无类域间路由,Classless Inter-Domain Routing),子网掩码中1的个数被称为CIDR值。

子网掩码的二进制写法以及相对应的CIDR的斜线表示

• 二进制子网掩码	子网掩码	CIDR	值
• 1111111. 00000000. 00000000.00000000	255.0.0.0	/8	
• 1111111. 10000000. 00000000.00000000	255.128.0.0	/9	
• 1111111. 11000000. 00000000.00000000	255.192.0.0	/10	
• 1111111. 11100000. 00000000.00000000	255.224.0.0	/11	
• 1111111. 11110000. 00000000.00000000	255.240.0.0	/12	
• 1111111. 11111000. 00000000.00000000	255.248.0.0	/1	.3
• 11111111. 11111100. 00000000.00000000	255.252.0.0	/14	
• 11111111. 11111110. 00000000.00000000	255.254.0.0	/15	
• 11111111. 11111111. 00000000.00000000	255.255.0.0	/16	
• 11111111. 11111111. 10000000.00000000	255.255.128.0	/17	
• 11111111. 11111111. 11000000.00000000	255.255.192.0	/18	

- 二进制子网掩码 子网掩码 CIDR值
- 1111111. 11111111. 11100000.0000000 255.255.224.0 /19
- 1111111. 11111111. 11110000.00000000 255.255.240.0 /20
- 1111111. 11111111. 11111000.00000000 255.255.248.0 /21
- . 11111111. 111111100.00000000 255.255.252.0 /22
- . 11111111. 11111110.00000000 255.255.254.0 /23
- 1111111. 11111111. 11111111.00000000 255.255.255.0 /24
- 1111111. 11111111. 11111111.10000000 255.255.255.128 /25
- 1111111. 11111111. 11111111.11000000 255.255.255.192 /26
- 1111111. 11111111. 11111111.11100000 255.255.255.224 /27
- 11111111. 11111111. 11111111.11110000 255.255.255.240 /28
- 1111111. 11111111. 11111111.11111000 255.255.255.248 /29
- 1111111. 11111111. 11111111.11111100 255.255.255.252 /30

判断IP地址所属的网段1

- IP地址中主机位归0就是该主机所在的网段。
- 判断192.168.0.101/27所属的子网。

192.168.0.101/26

判断IP地址所属的网段1

• 判断192.168.0.101/27所属的子网。

192.168.0.101/27

总结

这个范围的地址属于0子网

子网划分需要注意几个问题

- 子网划分需要注意的几点:
 - 将一个网络等分成2个子网,每个子网肯定是原来的一半。

• 子网地址范围不可重叠

超网合并网段

- 合并网段
- 不是任何连续的网段都能合并
- 哪些连续的网段能够合并
- 网段合并的规律
- 判断一个网段是超网还是子网

- 0.0.0.0 0.0.0.0
- 192.0.0.0 255.0.0.0
- 192.168.0.0 255.255.0.0
- 192.168.1.0 255.255.255.0
- 192.168.2.0 255.255.255.0
- 192.168.3.0 255.255.255.0

合并网段

• 有没有更好的办法,让这两个C类网段的计算机认为在一个网段? 这就需要将192.168.0.0/24和192.168.1.0/24 两个C类网络合并。

	←	网络部分	→	主机部分 < → →
192.168.0.0 192.168.1.0	192 192	168 168		0000000000
子网掩码 子网掩码	11111111 255	11111111 255	1 1 1 1 1 1 1 254	00000000

合并网段的规律

• 合并之后, IP地址192.168.0.255/23就可以给计算机使用

■规律

□ 子网掩码往左移1位,能够合并两个连续的网段,但不是任何连续的网段都能合并。

不是任何连续的网段都能合并

	.	网络部分		主机部分
192.168.1.0	192	168	00000001	00000000
192.168.2.0	192	168	00000010	00000000
子网掩码	11111111	11111111	1 1 1 1 1 1 0	00000000
子网掩码	255	255	254	0

	-	网络部分		-	主机部分)
100 100 0 0	100					
192.168.0.0	192	168	000000	00	00000	000
192.168.1.0	192	168	000000	0 1	00000	000
192.168.2.0	192	168	000000	10	00000	000
192.168.3.0	192	168	000000	1 1	00000	000
				·		
子网掩码	11111111	11111111	1 1 1 1 1 1	0 0	00000	000
子网掩码	255	255	252		0	

哪些连续的网段能够合并

• (1) 判断两个子网是否能够合并。

结论: 判断连续的2个网段是否能够合并,只要第一个网络号能被2整除,就能够通过左移1位子网掩码合并。

思考

- 131.107.31.0/24和131.107.32.0/24是否能够左移1位子网掩码合并?
- 131.107.142.0/24和131.107.143.0/24是否能够左移1位子网掩码合 并?

(2) 判断4个网段是否能合并

	_	网络部分		را	主机部分
	,			ŕ	
192.168.0.0	192	168	000000	0 0	00000000
192.168.1.0	192	168	000000	0 1	00000000
192.168.2.0	192	168	000000	10	00000000
192.168.3.0	192	168	000000	1 1	00000000
子网掩码	11111111	11111111	1 1 1 1 1 1	0 0	00000000
子网掩码	255	255	252		0

	-	网络部分		主机部分
192.168.4.0/24	192	168	00000100	00000000
192.168.5.0/24	192	168	00000101	00000000
192.168.6.0/24	192	168	00000110	00000000
192.168.7.0/24	192	168	00000111	00000000
子网掩码	11111111	11111111	11111100	00000000
子网掩码	255	255	252	0

(2) 判断4个网段是否能合并

- 规律:要合并连续的四个网络,只要第一个网络的网络号写成二进制后面两位是00,这四个网段就能合并,根据5.1.2讲到的二进制数的规律,只要一个数能够被4整除,写成二进制最后两位肯定是00。
- ·结论:判断连续的4个网段是否能够合并,只要第一个网络号能被4整除,就能够通过左移2位子网掩码合并将这4个网段合并。
- 依次类推,要想判断连续的8个网段是否能够合并,只要第一个网络号能被8整除,这8个连续的网段就能够通过左移3位子网掩码合并。

思考

• 判断131.107.232.0/24、131.107.233.0/24、131.107.234.0/24和 131.107.235.0/24这四个网段是否能够左移2位子网掩码合并成一 个网段。

网段合并的规律

• 网段合并的规律,子网掩码左移1位能够将能够合并两个网段,左移2位,能够合并四个网段,左移3位,能够合并8个网段。

- 182.2.1.2 255.255.255.0 划分了子网的一个B类地址
- 12.2.1.2 255.255.0.0 划分了子网的一个A类地址
- 192.2.1.2 255.255.0.0 超网合并了256个C类网段

判断一个网段是超网还是子网

- 通过左移子网掩码合并多个网段,右移子网掩码将一个网段划分成多个子网,使得IP地址打破了传统的A类、B类、C类的界限。
- 判断一个网段到底是子网还是超网,就要看该网段是A类网络、还是B类网络、还是C类网络,默认A类子网掩码/8,B类子网掩码是/24。
- 如果该网段的子网掩码比默认子网掩码长,就是子网,如果该网段的子网掩码比默认子网掩码短,则是超网。

思考

- 12.3.0.0/16这是A类网络还是C类网络呢?是超网还是子网呢?
 - IP地址的第一部分是12,这是一个A类网络,A类地址默认子网掩码是/8,该网络的子网掩码是/16,比默认子网掩码长,所以说这是A类网的一个子网。
- 222.3.0.0/16这是C类网络还是B类网络呢?是超网还是子网呢?

考试题

192.168.201.167/29

192.168.201.196/28

192.168.201.131/27

192.168.201.235/26

192.168.201.168/30

192.168.201.169/30

