17.2 (a)
$$(f+g)(x) = \begin{cases} x^2 + 4 & x \ge 0 \\ x^2 & x < 0 \end{cases}$$

$$(fg)(x) = \begin{cases} 4x^2 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$(f \circ g)(x) = 4 \text{ since } g(x) \ge 0 \text{ for all } x \in \mathbb{R}$$

$$(g \circ f)(x) = \begin{cases} 16 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

The domain of each of these 4 functions is \mathbb{R}

- (b) fg and $f \circ g$ are continuous.
- 17.6 Proof. Let $f = \frac{p}{q}$ be a rational function, where p and q are polynomial functions. By Exercise (17.5), p and q are continuous on $\{x \in \mathbb{R} \mid g(x) \neq 0\} \subseteq \mathbb{R}$. By Theorem (17.4), $f = \frac{p}{q}$ is continuous at all points in its domain so it is a continuous function. Since f was arbitrary, every rational function is continuous.
- 17.10 (a) Proof. It suffices to find a sequence $\langle x_n \rangle$ that converges to 0 but $\langle f(x_n) \rangle$ doesn't converge to f(0) = 0. Let $\langle x_n \rangle = \langle \frac{1}{n} \rangle$. Then $\lim_{n \to \infty} x_n = 0$ but $\lim_{n \to \infty} f(x_n) = 1 \neq 0$. Therefore, f is discontinuous at 0.
 - (b) *Proof.* It suffices to find a sequence $\langle x_n \rangle$ that converges to 0 but $\langle g(x_n) \rangle$ doesn't converge to g(0) = 0. Let $\langle x_n \rangle = \langle \frac{1}{\pi(2n+\frac{1}{2})} \rangle$. Then $\lim_{n\to\infty} x_n = 0$ but $\lim_{n\to\infty} g(x_n) = \lim_{n\to\infty} \sin(\pi(2n+\frac{1}{2})) = 1 \neq 0$. Therefore, g is discontinuous at 0.
 - (c) Proof. It suffices to find a sequence $< x_n >$ that converges to 0 but $< sgn(x_n) >$ doesn't converge to sgn(0) = 0. Let $< x_n > = < \frac{1}{n} >$. Then $\lim_{n \to \infty} x_n = 0$ but $\lim_{n \to \infty} sgn(x_n) = \lim_{n \to \infty} \frac{\frac{1}{n}}{|\frac{1}{n}|} = 1 \neq 0$. Therefore, sgn is discontinuous at 0.
- 17.14 Proof. Let $x_0 \in \mathbb{Q}$. Let $\varepsilon = f(x_0)$ and $\delta > 0$. By denseness there are irrational numbers in the interval $(x_0 \delta, x_0 + \delta)$. Let $x_1 \in (x_0 \delta, x_0 + \delta)$ be an irrational number so $|x_1 x_0| < \delta$ and $f(x_1) = 0$. Thus, $|f(x_1) f(x_0)| = |f(x_0)| = f(x_0) = \varepsilon$. Since δ was arbitrary, f is discontinuous at x_0 . Since x_0 was arbitrary, f is discontinuous at each point of \mathbb{Q} . Now consider $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Let $\varepsilon > 0$ and $\delta = \min\{|y x_0| : y \in \mathbb{Q}\}$. Then if $|x x_0| < \delta$, x is irrational so f(x) = 0 and hence $|f(x) f(x_0)| = |0 0| = 0 < \varepsilon$. Since ε was arbitrary, f is continuous at x_0 . Since x_0 was arbitrary, f is discontinuous at each point of $\mathbb{R} \setminus \mathbb{Q}$.
- 18.2 If [a,b] is replaced with (a,b), the proof of (18.1) breaks down since we cannot conclude the x_0 found by the Bolzano-Weierstrass Theorem must belong to (a,b) as the interval is open and not closed like in the original proof for Theorem (18.1). As a counter-example, consider $f(x) = \frac{1}{x}$ on (0,1). Let $x_n = \frac{1}{2n}$ so $f(x_n) = 2n > n$ but $\lim_{n \to \infty} x_n = 0 \notin (0,1)$.
- 18.4 *Proof.* Since $|x-x_0|$ is continuous and positive on S as $x_0 \notin S$, $f(x) = \frac{1}{|x-x_0|}$ is a continuous function on S. Since $\lim_{n\to\infty} f(x_n) = \frac{1}{\lim_{n\to\infty} |x_n-x_0|} = +\infty$, f is unbounded. Therefore, we have shown there exists an unbounded continuous function f on S.
- 18.10 Proof. Let g(x) = f(x+1) f(x) on [0,1]. f is continuous on [0,2] so f(x+1) is continuous for $x \in [-1,1]$. Thus, g is continuous on $[0,2] \cap [-1,1] = [0,1]$. g(1) = f(2) f(1) and g(0) = f(1) f(0) = f(1) f(2) = -g(1) so we have two cases:

 Case 1 If $g(1) \neq 0$, then one of g(0) and g(1) is positive and the other negative so by the Intermediate Value Theorem, there is some $x_0 \in [0,1]$ such that $g(x_0) = f(x_0+1) f(x_0) = 0$ so $f(x_0+1) = f(x_0)$. Therefore, there exist $x = x_0$ and $y = x_0 + 1$ in [0,2] such that f(x) = f(y) and |y x| = 1.

 Case 2 If g(1) = 0, then g(0) = 0 as well so by the Intermediate Value Theorem, there is some $x_0 \in [0,1]$ such that $g(x_0) = f(x_0+1) f(x_0) = 0$ so $f(x_0+1) = f(x_0)$. Therefore, there exist $x = x_0$ and $y = x_0 + 1$ in [0,2] such that f(x) = f(y) and |y x| = 1.

10 March 2018 Page 1