Homework 5 (Due date: 11/14)

HW5.1: (20 points)

Using a long-channel model, **prove** that, in strong inversion, the transistor M_R behaves like a resistor ($R_{on,R}$) with its resistance,

$$R_{on,R} = \frac{(W/L)_C}{(W/L)_R} \frac{1}{g_{m,C}}$$

Fig. 5.1

HW5.2: (30 points)

The circuit of Fig. 5.2 is designed with $(W/L)_{1,0} = 8/2$, $(W/L)_{3,2} = 4*8/2$, and $I_{REF} = 100 \ \mu\text{A}$. Assume $\mu_n C_{ox} = 800 \mu\text{A}/\text{V}^2$, VDD=3V and $\gamma = 0$. $V_{TH} = 0.5 \text{V}$

- (a) Determine V_X and the acceptable range of V_b .
- (b) Estimate the deviation of I_{out} from 400 μ A if the drain voltage of M_3 is higher than V_X by 1 V, if λ =0.1V⁻¹.
- (c) How to design V_b to have a minimum drain voltage of M_3 ?

Fig. 5.2

Introduction to Analog Integrated Circuits (112), DECE, NTUST

Homework 5 (Due date: 11/14)

HW5.3 (30 points)

In the circuit shown in Fig. 5.3, a source follower using a *wide* transistor and a small bias current is inserted in series with the gate of M_3 to bias M_2 at the edge of saturation. Assuming M_0 – M_3 are identical and $\lambda \neq 0$, estimate the mismatch between I_{out} and I_{REF} if

(a) $\gamma = 0$ (20 points), and

(b) $\gamma \neq 0$ (10 points).

Fig. 5.3

HW5.4: (20 points)

The circuit shown in Fig. 5.4 exhibits a *negative* input inductance. Calculate the input impedance of the circuit and identify the inductive component.

Fig. 5.4