2. Linear Algebra 1. Injective iff f(x1) = f(x2)implies that x1 = x2. Also, $\dim(\text{NULL}(A)) = 0$

2. Surjective iff for all $u \in Y$ there exists $x \in X$ such that v = f(x). $\dim(RANGE(A)) = n$.

3. Bijective iff it is both injective and surjective, i.e. for all $y \in Y$ there exists a unique $x \in X$ such that y =

1. f has a left inverse iff it is injective.

2. f has a right inverse iff it is surjective.

3. f is invertible iff it is bijective.

4. If f is invertible then any two inverses (left-, right- or both) coincide.

Group (G, *):

1. Associative $\forall a, b, c \in G, a * (b * c) = (a * b) * c$.

2. $Identity: \exists e \in G, \forall a \in G, a * e = e * a = a.$

3. Inverse: $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e$. (G, *) is commutative (or Abelian) iff in addition to 1-3: 4. Commutative: $\forall a, b \in G, a * b = b * a$.

Ring $(R, +, \cdot)$:

+: associative, identity, inverse, communitative \cdot : associative, identity

 $distributive: a \cdot (b+c) = a \cdot b + a \cdot cand(b+c) \cdot a = b \cdot a + c \cdot a$ **Field** is a *communitative Ring* that in addition satisfies Multiplication inverse.

Linear Space (V, F, \oplus, \odot) :

 \oplus : associative, identity, inverse, communitative(V!!) \odot : associative $\forall a, b \in F, x \in V, a \odot (b \odot x) = (a \cdot b) \odot x$ $inverse \forall x \in V, 1 \odot x = x$

Distributive: $\forall a, b \in F, \forall x, y \in V, (a + b) \odot x =$ $(a \odot x) \oplus (b \odot x) and (a \odot (x \oplus y) = (a \odot x) \oplus (a \odot y)$

Product Space $If(V, F, \oplus V, \odot V) and(W, F, \oplus W, \odot W)$ are linear spaces over the same field, the product space $(V \times W, F, \oplus, \odot)$ is the linear space comprising all pairs $(v, w) \in V \times W$ with \oplus defined by $(v1, w1) \oplus (v2, w2) =$ $(v1 \oplus v2, w1 \oplus w2), and \odot defined by a \odot (v, w) =$ $(a \odot Vv, a \odot Ww).$

Subspace Let (V, F) be a linear space and $W \subseteq V$. (W, F) is a linear subspace of V iff it's a L.S. i.e. $\forall w_1, w_2 \in W, a_1, a_2 \in F$, we have $a_1w_1 + a_2w_2 \in W$. *In \mathbb{R}^3 , all subspaces are \mathbb{R}^3 , 2D planes through the origin, 1D lines through the origin, {0}.

*Any finite-dimensional subspace W of a linear space $(V, F, \|\cdot\|)$ is a closed subset of V.

 $\mathbf{SPAN(S)} = \{\sum_{i=1}^n a_i v_i | a_i \in F, v_i \in S, i=1...n\}$ Let (V,F) a L.S.. A set of vectors $S \subseteq V$ is a **basis** of (V, F) iff linearly independent and Span(S) = V. If a basis of (V, F) with a finite number of elements exists, the number of elements of this basis is dimension of (V, F) and (V, F) is finite dimensional. Otherwise, infinite dimensional.

Linear Map: Given (U, F) and (V, F), the function $A: U \to V$ is a linear map iff $\forall u_1, u_2 \in U, a_1, a_2 \in F$, we have $A(a_1u_1 + a_2u_2) = a_1A(u_1) + a_2A(u_2)$. Let $\mathcal{A}:U\to V$ linear.

 $\mathbf{NULL}(\mathcal{A}) = \{ u \in U | \mathcal{A}(u) = \theta_V \} \subset U \text{ (Nullity)}$ **RANGE**(\mathcal{A}) = { $v \in V | \exists u \in U : v = \mathcal{A}(u)$ } $\subset V$ (rank) *1. A vector $u \in U$ s.t. $\mathcal{A}(u) = b$ exists iff $b \in RANGE(A)$. A is surjective iff RANGE(A) = V. *2. If $b \in RANGE(A)$ and for some $u_0 \in U$ we have

that $\mathcal{A}(u_0) = b$ then for all $u \in U : \mathcal{A}(u) = b \Leftrightarrow$ $u = u_0 + z$ with $z \in NULL(A)$

*3. \mathcal{A} is injective iff $NULL(\mathcal{A}) = \{\theta_U\}$

Rank and **Nullity**: Let $A \in F^{n \times m}$ and $B \in F^{m \times p}$. 1. RANK(A) + NULLITY(A) = m.

2. $0 \leq RANK(A) \leq min\{m, n\}$.

3. RANK(A) + RANK(B) - m < RANK(AB) < $min\{RANK(A), RANK(B)\}.$

4. If $P \in F^{m \times m, Q \in F^{n \times n}}$ are invertible, $RANK(A) = RANK(AP) = \overline{RANK(QA)} =$ RANK(QAP) (also Nullity)

5. If $\mathcal{A}(x) = Ax$, $A \in F^{n \times n}$, we have \mathcal{A} invertible \Leftrightarrow $bijective \Leftrightarrow injective \Leftrightarrow surjective \Leftrightarrow RANK(A) = n.$ **Eigenvector:** 1. There exists $v \in \mathbb{C}^n$ s.t. $v \neq 0$ and $Av = \lambda v$. v is called **right eigenvector**. 2. There exists $\eta \in \mathbb{C}^n$ s.t. $\eta \neq 0$ and $\eta^T A = \lambda \eta^T$. η is

called left eigenvector.

 $SPEC[A] = \{\lambda_1,, \lambda_n\}$

Change of basis: $A* = P \cdot A \cdot Q$

3. Analysis

Norm:1. $\forall v_1, v_2 \in V, ||v_1 + v_2|| < ||v_1|| + ||v_2||$ $2.\forall v \in V, \forall a \in F, ||av|| = |a| \cdot ||v||$ $3. \parallel v \parallel = 0 \Leftrightarrow v = 0$

Normed Linear Space: $(V, F, \|\cdot\|)$

 $||x||_1 = \sum_{i=1}^n |x_i|,$ $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2},$

 $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}},$ $||x||_{\infty} = max|x_i|.$

Ball: Given $(V, F, \|\cdot\|)$, the **ball** of radius $r \in \mathbb{R}_+$ centered at $v \in V$ is $B(v,r) = \{v' \in V \mid ||v-v'|| \le r\}$. B(0,1)is unit ball.

Bound: $S \subseteq V$ is **bounded** if $S \subseteq B(0,r)$ for some r. Convergence: Let $(V, F, \|\cdot\|)$ be a normed space. A function $v: N \to V$ is called a sequence in V. The sequence converges to a point $\overline{v} \in V$ iff $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m > N, ||v(m) - \overline{v}|| < \epsilon$

In this case, \overline{v} is the **limit** of the sequence.

Close: iff all a set contains all its limit points.

Open: iff V K is closed.

Compact: Closed + Bounded.

Continuous: f is continuous at $u \in U$ iff $\forall \epsilon > 0 \; \exists \delta > 0 s.t. \parallel u - u' \parallel_{U} < \delta \rightarrow \parallel f(u) - f(u') \parallel_{U} < \epsilon.$ f is continuous on U iff it's continuous everywhere. *All linear functions between finite dimensional spaces are always continuous.

Equivalence: Consider a L.S. (V, F) with two norms, $\|\cdot\|_a$ and $\|\cdot\|_b$.. Th two norms are equivalent iff $\exists m_u \geq m_l \geq 0, \forall v \in V \ m_l \parallel v \parallel_a \leq \parallel v \parallel_b \leq \parallel v \parallel_a.$ Weierstrass Theorem: If $f: S \to \mathbb{R}$ is continuous and set S is compact, then f attains a minimum on S. Cauchy Inequality:

 $(\sum_{i=1}^n a_i b_i)^2 \stackrel{\checkmark}{\leq} (\sum_{i=1}^n a_i^2) (\sum_{i=1}^n b_i^2)$ Any two norms on a finite-dimensional space V are

Infinite-dimensional normed space:

 $|| f(t) ||_1 = \int_{t_0}^{t_1} || f(t) ||_2 dt,$ $|| f(t) ||_2 = \sqrt{\int_{t_0}^{t_1} || f(t) ||_2^2 dt},$

 $|| f(t) ||_p = (\int_{t_0}^{t_1} || f(t) ||_2^p dt)^{\frac{1}{p}},$

 $|| f(t) ||_{\infty} = \max || f(t) ||_{2}$.

*Replacing $|| f(t) ||_2$ by another norm on \mathbb{R}^n in the $\int_{t_0}^{t_1} dt$ and the max are equivalent to the ones above.

Cauchy Sequence: $\{v_i\}_{i=0}^{\infty}$ is a C.S. iff $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall m \geq N, \|v_m - v_N\| < \epsilon.$ *Every convergent Sequence is Cauchy.

Complete: The normed space $(V, F, \|\cdot\|)$ is complete (or Banach) iff every Cauchy sequence converges.

*Let $F = \mathbb{R}$ or $F = \mathbb{C}$ and if (V, F) is finite-dimensional. Then $(V, F, \|\cdot\|)$ is a Banach Space for any norm $\|\cdot\|$. *Many function spaces might not be Banach, but $(C([t_0,t_1],\mathbb{R}^n),\mathbb{R},\|\cdot\|_{\infty})$ is a Banach space.

Induced Norm: $||f|| = \sup_{u \neq 0} \frac{||f(u)||_V}{||u||_U}$ * $\parallel \mathcal{A} \parallel = \sup_{\parallel u \parallel_{II} = 1} \parallel \mathcal{A}(u) \parallel_{V}$

 $||A||_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}| \text{ (max column sum)}$ $||A||_2 = max_{\lambda \in SPEC[A^TA]} \sqrt{\lambda}$ (max singular value) $||A||_{\infty} = \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}| \text{ (max row sum)}$

* \mathcal{A} is continuous $\Leftrightarrow \mathcal{A}$ is continuous at $0 \Leftrightarrow \sup_{\|u\|_{L^{r}}=1}$ $\| \mathcal{A}(u) \|_{V} < \infty$, the induced norm $\| \mathcal{A} \|$ is well defined. Consider continuous linear functions $\mathcal{A}, \tilde{\mathcal{A}}: (V, F, \|\cdot\|_V)$ $(W, F, \|\cdot\|_W), \mathcal{B}: (U, F, \|\cdot\|_U) \to (V, F, \|\cdot\|_V)$

1. $\forall v \in V, || (A)(v) ||_W \leq || A || \cdot || v ||_V$. 2. $\forall a \in F, \parallel a(A) \parallel = |a| \cdot \parallel A \parallel$.

3. $\|A + \tilde{A}\| < \|A\| + \|\tilde{A}\|$.

4. $\|A\| = 0 \Leftrightarrow A(v) = 0$ for all $v \in V$.

5. $\parallel \mathcal{A} \circ \mathcal{B} < \parallel \mathcal{A} \parallel \cdot \parallel \mathcal{B} \parallel$.

A function is **piecewise continuous** iff it's continuous at all $t \in \mathbb{R}$ except those in a set of discontinuity points $D \subseteq \mathbb{R}$ that satisfiv:

1. $\forall \tau \in D$ left and right limits of u exist, i.e.

 $\lim_{t\to \tau^+} u(t)$ and $\lim_{t\to \tau^-} u(t)$ exist and are finite. Moreover, $u(\tau) = \lim_{t \to \tau^+} u(t)$.

2. $\forall t_0, t_1 \in \mathbb{R}$ with $t_0 < t_1, D \cap [t_0, t_1]$ contains a finite number of points.

The function $p: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is globally Lipschitz in x iff there exists a piecewise continuous function $k : \mathbb{R} \to \mathbb{R}_{\perp} \text{ s.t.}$

 $\forall x, x' \in \mathbb{R}^n, \forall t \in \mathbb{R} \parallel p(x, t) - p(x', t) \parallel \leq k(t) \parallel x - x' \parallel$ **Existence and uniqueness** Assume $p: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is piecewise continuous w.r.t. its second argument (with discontinuity set $D \subseteq \mathbb{R}$) and globally Lipschitz w.r.t. its first argument. Then for all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$ there exists a unique continuous function $\phi : \mathbb{R} \times \mathbb{R}^n$ s.t.: 1. $\phi(t_0) = x_0$.

2. $\forall t \in \mathbb{R} \backslash D, \frac{d}{dt} \phi(t) = p(\phi(t), t).$

*Let $\|\cdot\|$ be any norm on \mathbb{R}^n . Then for all $t_0, t_1 \in \mathbb{R}$,

$$\begin{split} & \| \int_{t_0}^{t_1} f(t) dt \| \leq | \int_{t_0}^{t_1} \| f(t) \| dt | \\ *1. \ \forall m, k \in \mathbb{N}, (m+k)! \geq m! k!. \end{split}$$

*2. $\forall c \in \mathbb{R}, \lim_{m \to \infty} \frac{c^m}{m!} = 0.$ **Gronwall**: Consider $u(.), k(.) : \mathbb{R} \to \mathbb{R}_+$ piecewice continuous, $c_1 \geq 0$, and $t_0 \in \mathbb{R}$. If for all $t \in \mathbb{R}$, we have $u(t) \leq c_1 + |in \overline{t_{t_0}^t} k(\tau) u(\tau) d\tau|$. Then for all $t \in \mathbb{R}$,

 $u(t) \le c_1 exp|int_{t_0}^{t} k(\tau)d\tau|.$ Autonomous Systems: does not depends explicitly on time, $\dot{x}(t) = p(x(t))$.

 $*s(t, t_0, x_0) = s(t - t_0, 0, x_0)$

```
4. Time varying linear systems
     \dot{x}(t) = f(x(t), u(t)) = A(t)x(t) + B(t)u(t)
                                                                                                                                                                       (1)
    y(t) = h(x(t), u(t)) = C(t)x(t) + D(t)u(t)
                                                                                                                                                                       (2)
  where x(t) \in \mathcal{R}^n, u(t) \in \mathcal{R}^m, x(t) \in \mathcal{R}^p,

A(\cdot) : \mathcal{R} \to \mathcal{R}^{n \times n}, B(\cdot) : \mathcal{R} \to \mathcal{R}^{n \times m},

C(\cdot) : \mathcal{R} \to \mathcal{R}^{p \times n}, D(\cdot) : \mathcal{R} \to \mathcal{R}^{p \times m}
    Linearization perturbation
    x(t) = x^*(t) + e_x(t), y(t) = x^*(t) + e_y(t)
    Taylor extension of LVT
 \begin{split} \dot{x}(t) &= f(x^*(t) + e_x(t), u^*(t) + e_u(t)) = f(x^*(t), u^*(t)) + \\ \frac{\partial f}{\partial x}(x^*(t), u^*(t)) e_x(t) + \frac{\partial f}{\partial u}(x^*(t), u^*(t)) e_u(t) + \text{higher} \\ \text{order terms} \\ \text{where } \frac{\partial f}{\partial x}(x^*(t), u^*(t)) &= \\ & \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_1}{\partial x_n}(x^*(t), u^*(t)) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_n}{\partial x_n}(x^*(t), u^*(t)) \end{bmatrix} = \\ A(t), \\ A(t), \\ \frac{\partial f}{\partial u}(x^*(t), u^*(t)) &= \\ & \begin{bmatrix} \frac{\partial f_1}{\partial u_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_1}{\partial u_m}(x^*(t), u^*(t)) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1}(x^*(t), u^*(t)) & \cdots & \frac{\partial f_n}{\partial u_m}(x^*(t), u^*(t)) \end{bmatrix} = \\ B(t) \end{split} 
    \dot{x}(t) = f(x^*(t) + e_x(t), u^*(t) + e_u(t)) = f(x^*(t), u^*(t)) + e_u(t)
    \frac{\frac{d}{dt}(e_x(t)) = A(t)e_x(t) + B(t)e_u(t)}{\text{Existence and structure of solutions}}
                                   (X,\mathbb{R}) (U,\mathbb{R}) (Y,\mathbb{R})
                                   \{e_i\}_{i=1}^n \quad \{f_i\}_{i=1}^m \quad \{g_i\}_{i=1}^p
          base
```

 $\overline{Assump\ 4.1:\ A(\cdot),\ B(\cdot),\ C(\cdot),\ D(\cdot)}$ are piecewise continuous. Fact 4.1: For all $u(\cdot): \mathbb{R} \to \mathbb{R}^m$ piecewise continuous and all $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}_n$ there exists UNIQUE solution $x(\cdot) : \to \mathbb{R}^n$ and $y(\cdot) : \to \mathbb{R}^p$ for the system (1) and (2).

The unique solution of (1) and (2)

State transition matrix: $x(t) = s(t, t_0, x_0, u)$, Output response map: $y(t) = \rho(t, t_0, x_0, u)$