GABARITO PROVA 01- MA327- 20Abril2021

1- $E = [\{(1,0,1,0),(0,1,0,0)\}] \subset \mathbb{R}^4 = \{(x_1,\ldots,x_4);x_k \in \mathbb{R}\} \text{ e } F = [\{(1,1,1,0),(0,0,0,1)\}] \subset \mathbb{R}^4.$ Assinale a afirmativa correta:

A: $E \oplus F = \mathbb{R}^4$, **B:** $E \subset F$, **C:** $F \subset E$, **D:** $E \cap F = [(1,1,01)]$, **E:** Nenhuma das **O**pções **A**nteriores é Correta,i.e., **Nenhuma Opção Anterior-NOA**

Resp: A

Comentário: Os sub-espaços gerados $E = [\{a = (1,0,1,0), b = (0,1,0,0)\}]$ e $F = [\{c = (1,1,1,0), d = (0,0,0,1)\}$ estão obviamente imersos em \mathbb{R}^4 . Para verificar **A**) basta mostrar que todos os vetores $v \in \mathbb{R}^4$ podem ser gerados na forma v = u + w de uma **única maneira** (soma direta)com $u \in E$ e $w \in F$. Para isto o sistema de 4 equações a 4 incognitas $x_1a + x_2b + x_3c + x_4d = v$ deve ter uma única solução para qualquer $v \in \mathbb{R}^4$ o que pode ser verificado pelo Método de Gauss.

2-
$$E = [\{(1,0,1,0,0),(0,1,0,0,0)\}] \subset \mathbb{R}^5 = \{(x_1,\ldots,5); x_k \in \mathbb{R}\} \text{ e } F = [\{(1,1,0,0,0),(0,0,1,00)\}] \subset \mathbb{R}^5.$$

Assinale a afirmativa Correta:

A:
$$E \cap F = [(-1,0,1,0,1)]$$
, **B**: $E \oplus F = \mathbb{R}^5$, **C**: $E + F = E$ **D**: $E + F = F$ **E**: **NOA**

Resposta: E

$$E = [\{a = (1,0,1,0,0), b = (0,1,0,0,0)\}], F = [\{c = (1,1,0,0,0), d = (0,0,1,00)\}]$$

Comentário: Observe que os 4 vetores apresentados na questão tem coordenadas nulas nas duas ultimas posições e portanto não podem gerar todo espaço \mathbb{R}^5 , logo, a opção A) é falsa. As opções C&D) são falsas porque E e F estão contidos em E+F, **mas** não são todo ele: pois $E+F=\{(A,B,C,0,0),A,B,C\in\mathbb{R}\}=[a,b,d]$, enquanto que $E=\{h=xa+yb=(x,y,x,0,0)\}$ e xa+yb=(x,y,x,0,0)=(A,B,C,0,0)=h não tem solução sempre, assim como xc+yd=(x,x,y,0,0)=h também não tem solução sempre.

$$\textbf{3}\text{-Dada a Matriz }A=\begin{pmatrix}1&0&1\\-1&0&1\\0&1&1\end{pmatrix}\text{cujas colunas são os vetores }A^k=\begin{pmatrix}A_{1k}\\A_{2k}\\A_{3k}\end{pmatrix}\in\mathbb{R}^3.\text{ Assinale a}$$

afirmativa correta:

A-
$$[\{A^1, A^2, A^3\}] = \mathbb{R}^3$$
, **B**- $[\{A^1, A^2, A^3\}] = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} \mathbf{C} - [\{A^1, A^2, A^3\}] = [\{A^1, A^2, A^3\}]$

$$D-[A^2, A^3] = [A^3] E-NOA$$

Resposta: A

Comentario: É fácil ver que dado qualquer vetor $u=\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^3$ então o sistema de três equações a três incógnitas

x+z=a $xA^1+yA^2+zA^3=-x+z=b$ tem solução única e, portanto os vetores A^1,A^2,A^3 geram o espaço \mathbb{R}^3 , o que justifica a opção A. y+z=c

A opção B) é falsa porque os vetores
$$A = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ não geram o espaço \mathbb{R}^3 , já que

o sistema xA + yB + zC = u nem sempre tem solução. A resposta C) também é falsa, pois $xA^1 + yA^2 = Y$ não tem solução para todos os $Y \in \mathbb{R}^3$ (por exemplo $Y = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$) ou seja, os dois vetores A^1, A^2 não geram o espaço \mathbb{R}^3 .

4- $E = \mathbb{R}^3 = \{(x_1, x_2, x_3); x_k \in \mathbb{R}\}$ e H = [(1,1,1)] e E/H = Q é o Espaço Quociente. Assinale a afirmativa correta:

A: Q é formado por um Plano, **B:** Q é formado por uma reta, **C:** $Q = \{0\}$, **D:** Q é formado por pontos de \mathbb{R}^3 , **E:** NOA

Resposta: A

Comentário: O Espaço Vetorial [(1,1,1)] é uma reta e cada uma das suas paralelas pode ser considerada como uma classe de equivalencia de $^E/_H=Q$. É estas retas são biunivocamente determinadas pelos pontos de sua interseção com algum plano fixado π que passe pela origem e seja transversal a (1,1,1), ou seja, o conjunto de classes de equivalência pode ser identificado com um plano.

5- $E = [\{(1,1), (1,0)\}]$ é um sub-espaço vetorial do Espaço Vetorial $\mathbb{C}^2 = \{(z_1, z_2); z_k \in \mathbb{C}\}$ com escalares **reais**. Assinale a afirmativa correta:

A:
$$E=\mathbb{C}^2$$
 , **B**: $E=\mathbb{C}$, **C**: $E=\mathbb{R}^2$, **D**: $E=\mathbb{C}/_{\mathbb{R}}$, **E**: E não é um sub-espaço vetorial , **D**: **NOA**

Resposta: C

Comentário: Os vetores de \mathbb{C}^2 (com escalares **reais**) gerados por combinações lineares

v = xa + yb = (x + y, x); $a = (1,1), b = (1,0), x, y \in \mathbb{R}$, obviamente, produzem somente vetores do \mathbb{R}^2 , e todos eles.

6- $K_1 \subset K_2$, $K_1 \neq K_2$, são dois subconjuntos não vazios quaisquer de um Espaço Vetorial E . Assinale a *conclusão* correta:

A:
$$[K_1] = [K_2]$$
, **B**: $[K_1] \neq [K_2]$, **C**: $[K_1] \cap [K_2] = [K_1]$, **D**: $[K_1] \oplus [K_2] = E$, **E**: **NOA**

Resposta: C

 $\begin{aligned} & \text{Coment\'ario: Se } K_1 \subset K_2 \text{ ent\~ao obviamente } [K_1] \subset [K_2] \text{ e, portanto } [K_1] \cap [K_2] = [K_1]. \text{ Mas, por exemplo se } K_1 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \} \text{ e} \\ & K_2 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \} \text{ temos } K_1 \subset K_2 \text{ , } K_1 \neq K_2 \text{, mas } [K_1] \neq [K_2] = \mathbb{R}^2, \text{ o que disprova a conclus\~ao } [K_1] = [K_2]. \text{Por outro lado, } \\ & K_1 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \} \subset K_2 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \} \text{ mas : } [K_1] = [K_2] \text{ o que disprova a conclus\~ao B). Se } K_1 = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \} \subset K_2 = \{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \}, \text{ mas obviamente } [K_1] \oplus [K_2] \neq E = \mathbb{R}^3, \text{ o que disprova a conclus\~ao D).} \end{aligned}$

7- $H = [\{l_n(x)\}_{n\geq 0}]$, $l_0(x) = 1$, $l_n(x) = \prod_{k=0}^{n-1} (x-k)$, n>0. (Exemplo: $l_3(x) = x(x-1)(x-2)$. $P(\mathbb{R}) = \text{``Espaço de todos os polinômios de Coeficientes reais''}$. $P_n(\mathbb{R}) = \text{``Espaço dos polinômios de P(\mathbb{R}) com grau menor ou igual a n''}$. Assinale a afirmativa correta:

A: $H = P(\mathbb{R})$, **B**: $H \neq P(\mathbb{R})$, **C**: H = Espaço dos Polinômios com raízes em \mathbb{N} . **D**: H = Espaço dos Polinômios cujas derivadas se anulam em \mathbb{N} . **E**: H = Espaço dos Polinômios com raízes reais, **D**: **NOA**.

Resposta: A

Comentário: Um polinômio de grau n é determinado pelos seus valores em $x=0, x=1, \dots x=n$. (Teorema fundamental da Álgebra: *Todo polinomio de grau n é determinado por seus valores em n+1 pontos distintos.*). Escrevendo tentativamente

 $p(x) = \sum_{k=0}^n c_k l_k(x) = c_0 + c_1 x + c_2 x(x-1) + c_3 x(x-1)(x-2) + \cdots, \text{ observamos que } p(x) \text{ \'e de fato um polinômio de grau } n \text{ e tomando } p(0) = c_0 \text{ , } p(1) = c_0 + c_1 \text{ , } p(2) = c_0 + 2c_1 + 2c_2 \text{ e etc....} p(n) \text{ calculamos sucessivamente os coeficientes } c_k \text{ .}$ Portanto $H = P(\mathbb{R})$ e as outras repostas são falsas.

8-
$$H_n = [\{l_k(x)\}_{0 \le k \le n}]$$
 , $l_0(x) = 1$, $l_k(x) = \prod_{j=0}^{k-1} (x-j) \ k > 0$. (Exemplo: $l_3(x) = x(x-1)(x-2)$. $P_n(\mathbb{R}) = \text{Espaço dos polinômios de } P(\mathbb{R}) \text{ com grau menor ou igual a } n''$. $p(x) = 1 + x^4$.

Assinale a afirmativa correta:

A:
$$p(x) = l_4(x)$$
, **B**: $p = l_0 + 2l_1 + 17l_2 + 82l_3 + 257l_4$, **C**: $p = l_0 + 2l_1 + 16l_2 + 81l_3 + 256l_4 + 512l_5$, **D**: $p \in H_3$, **E**: **NOA**

Resposta: B

Comentário: Utilizando o mesmo argumento utilizado na questão 7) e calculando os valores de $p(x) = 1 + x^4$ nos pontos x = 0, x = 1, x = 2, x = 3, x = 4 podemos escrever qualquer polinômio de grau 4, tal como $p(x) = 1 + x^4$, assim calcular $p(x) = c_0 + c_1 x + c_2 x (x - 1) + c_3 x (x - 1) (x - 2) + c_4 x (x - 1) (x - 2) (x - 3)$ e assim calcular os coeficientes.

9-
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
. $R(A) = \{Y \in \mathbb{R}^2; \exists X \in \mathbb{R}^2, AX = Y \}, \ N(A) = \{X \in \mathbb{R}^2; AX = 0\}$.

Assinale a afirmativa correta:

A:
$$R(A) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, **B**: $N(A) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, **C**: $R(A) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, **D**: $N(A) = \mathbb{R}^2$, **E**: **NOA**

Resp: C

Comentario: Analisando as combinações lineares $xa+yb=Y=A\binom{x}{y}=AX$ dos vetores colunas $a=\binom{0}{1}$ e $b=\binom{1}{1}$ da Matrix dada concluímos que pode ser resolvido para qualquer $Y\in\mathbb{R}^2$ de onde se concluí que $R(A)=\mathbb{R}^2$ que é o espaço gerado pelos vetores $\binom{1}{0},\binom{1}{-1},\binom{1}{1}$ da resposta \mathbf{C} . (Para verificar isto, basta mostrar que qualquer $Y\in\mathbb{R}^2$ pode ser escrito como, por exemplo, uma combinação linear de $\binom{1}{0},\binom{1}{-1}$, ou de $\binom{1}{-1},\binom{1}{1}$, ou de $\binom{1}{0},\binom{1}{1}$). Analisando a mesma equação para Y=0 conclui-se que necessariamente X=0 e, portanto B e D são falsas.

10-
$$A = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \in M_{31}(\mathbb{R})$$
 . Assinale afirmação **incorreta**:

A: $N(A) = \{X \in M_{15}(\mathbb{R}); AX = 0\}$ é um subespaço vetorial de M_{15} , **B:** $R(A) = \{Y \in M_{35}; \exists X \in M_{15}(\mathbb{R}) | AX = Y; \}$ é um sub-espaço vetorial de M_{35} **C:** $\{0\} \in R(A)$, **D:** $\{0\} \in N(A)$, **E:** $R(A) = M_{35}(\mathbb{R})$

Resp: E

Comentario: A-B-C-D são obviamente corretas.

11-Assinale a afirmação **incorreta** a respeito do conjunto das matrizes $A \in M_{mn}(\mathbb{R})$ ="Matrizes reais com m linhas e n colunas":

 $A: M_{mn}(\mathbb{R})$ pode ser biunivocamente identificado com o Espaço Produto $(\mathbb{R}^m)^n$, $B: M_{mn}(\mathbb{R})$ pode ser biunivocamente identificado com $F = \{f: \{1, ..., m\} \times \{1, ..., n\} \to \mathbb{R} \}$ $C: M_{mn}(\mathbb{R})$ pode ser

biunivocamente identificado com $F = \{f: \{1,...,m\} \to \mathbb{R}^n \}$, $D: M_{mn}(\mathbb{R})$ é um espaço vetorial mas cuja soma não é comutativa, $E: M_{mn}(\mathbb{R})$ pode ser biunivocamente identificada com o Espaço Produto $(\mathbb{R}^n)^m$.

Resp:D

Comentário: A afirmação D é inconsistente e, portanto incorreta, pois a soma na estrutura de espaço vetorial é comutativa e $M_{mn}(\mathbb{R})$ é um espaço vetorial.

12-"Um Sub-espaço vetorial do Espaço vetorial real \mathbb{R}^n é formado por um subconjunto não vazio $F \subset E$ que é fechado para a soma (i.e., se $u, v \in F$ então $u + v \in F$)". Esta afirmação está **incorreta** porque

A: Não está incluído o axioma " $\{0\} \in F$ ", **B**: Não está incluído o axioma "1u = u", **C**: Não está incluído o axioma "Se $u \in F$ então $au \in F$ para qualquer $a \in \mathbb{R}$ ", **D**: Não está incluída o axioma "Para todo $u \in F$ existe um elemento w; w + u = 0", **E**: Qualquer subconjunto não vazio de \mathbb{R}^n é sempre um subespaço vetorial dele.

Resp: C

Comentario: Basta consultar a definição de subespaço vetorial e verificar que a incorreção é por falta do axioma D.

13-"Os Axiomas de Espaço Vetorial são considerados **Consistentes"**. Assinale uma justificativa **correta** para esta afirmação

A: Foram testados exaustivamente e nunca decepcionaram a Matemática, **B**: Independem de qualquer coisa porque são criações abstratas, **C**: Os \mathbb{R}^n cumprem fielmente todos os Axiomas e são considerados consistentes, **D**:Porque com estes axiomas é possível provar todas as propriedades interessantes, **E**: **NOA**

Resposta: C

Comentario: A consistência dos Axiomas somente pode ser provada verificando se há um modelo "estabelecido"/aceito como consistente que satisfaz aos axiomas e, portanto, os livra da possibilidade de se provar a veracidade de uma afirmação e também a falsidade dela a partir deles.

14-Assinale a afirmação considerada **menos plausível** considerando a discussão do tema nas Notas de Aula

A: A Geometria Euclideana originou-se da percepção ecológica do espaço proveniente da observação de trajetórias luminosas em meios homogêneos, **B**: A Geometria Euclideana Vetorial é baseada no conceito de Deslocamento orientado entre pontos do espaço, **C**: A origem da Geometria Euclideana é totalmente abstrata e não tem nada a ver com a percepção ecológica do espaço, pois qualquer deficiente visual pode entendê-la. **D**: A estrutura algébrica de Espaços Vetoriais teve a sua motivação proveniente da Geometria Vetorial Euclideana desenvolvida por H.Grassmann, G.Peano e outros no século XIX.. **E: NOA**

Resposta: C

Comentario: É claro que a Geom Euclideana tem tudo a ver com a nossa percepção ecológica de espaço e é baseada em deslocamentos orientados do espaço que foram axiomatizados por Peano com base nos trabalhos de Grassmann.

15-Um Modelo de Fibonacci é descrito por uma função de variável inteira e valores complexos $F: \mathbb{N} \to \mathbb{C}$ definida pela recorrência, $F(k+2) = F(k+1) + F(k); k \in \mathbb{N}$ e cujos valores iniciais são F(1) = 1, F(2) = 2. Assinale a afirmação *incorreta*

A:F(3) = 3, **B**: F(4) = 5 e F(5) = 8 **C**: F(7) = 21 e F(6) = 13, **E**: F(67) = 5999 e F(68) = 6013 **D**: $\lim_{k\to\infty} F(k) = \infty$.

Resp: E

Comentário: Calculando recursivamente constatamos a veracidade de A): (F(3) = F(2) + F(1) = 2 + 1 = 3 e daí de B): F(4) = F(3) + F(2) = 2 + 3 = 5 e F(5) = F(4) + F(3) = 8 e analogamente C). Daí concluímos que para k > 2, $F(k) \ge 2$, e, portanto F(k) > (k-1)2 de onde D) está correta. A afirmação E) é incorreta porque para k > 7, F(k) > F(7) = 21, e, portanto F(68) = F(67) + F(66) > F(67) + 21.

16- $E = \{\varphi \colon \mathbb{N} \to \mathbb{C}\}$ =Espaço Vetorial usual das funções com escalares **complexos** \mathbb{C} . $F \subset E$ subconjunto das funções de E que satisfazem a Recorrencia de Fibonacci , f(k+2) = f(k+1) + f(k); $k \in \mathbb{N}$. Assinale a afirmação correta sobre F:

A: . Sub-espaço Vetorial de E, **B**: Sub-espaço vetorial de funções com valores reais **C**: Não é um sub-Espaço Vetorial de E, **D**: Subespaço das funções com valores inteiros, **E**: **NOA**.

Resp: A

Comentario: Verificando que se duas funções de $f,g\in E$ que satisfazem a Recorrencia de Fibonacci então $f+\lambda g$ =h também satisfaz a esta mesma recorrência para qualquer $\lambda\in\mathbb{C}$ conclui-se que esta classe de funções constituem um sub-espaço vetorial de E. (Resp. A). Os valores destas funções dependem dos seus valores iniciais (F(0)eF(1)) e, portanto, não são necessariamente só inteiros ou só reais.

17- O Axioma de Espaço Vetorial que se refere à propriedade associativa da Soma (u + v) + w = u + (v + w) está diretamente representado no Modelo Geométrico Euclideano (*Deslocamentos no Plano*) à seguinte observação:

A: Sobre os "Atalhos" no percurso de deslocamentos sucessivos entre 4 pontos, B: Sobre a Área de paralelogramos compostos C: Regra do Paralelogramo, D: Semelhança de Triângulos Retângulos E:NOA

Resp: A

Comentario:Basta fazer um gráfico e verificar a resposta A).

18-O número natural que em notação decimal é representado por 353 pode ser representado na notação binária com o símbolo:

A:100011, B: 101100001, C: 000111, D: 11100001 E:NOA

Resp:B

Comentario: O símbolo binário N=101100001 (opção B) tem nove dígitos e, portanto,

 $N = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 256 + 64 + 32 + 1 = 353$

19-0 Axioma de Espaço Vetorial que se refere à propriedade distributiva da Multiplicação por Escalar ($\lambda(u+v)=\lambda u+\lambda v$) corresponde no Modelo Geométrico Euclideano (*Deslocamentos no Plano*) ao seguinte resultado desta teoria:

A:Teorema de Pitágoras , **B**: Fórmula para Área de paralelogramo , **C**: Regra do Paralelogramo , **D**: Semelhança de Triângulos **E:NOA**

Resp: D

Comentario: O fundamento desta propriedade é a semelhança de triângulos facilmente verificada com qualquer fator real $\lambda \geq 0$ (e com negativos convencionando que -1u=-u). Também pode ser deduzida a partir da sua verificação para apenas dois fatores, 2 e $\frac{1}{2}$, de onde se deduz que vale para qualquer numero real na forma binária (todos eles).

20-Grupo de 3 importantes Matemáticos cujos trabalhos se relacionam com a Álgebra Linear e estiveram simultaneamente vivos em algum momento. Assinale a resposta correta

A:Liu Hui , Arquimedes, Ahmés **B**: Newton, Euler, Volterra, **C**: Gauss, Grassmann, Peano **D**: von Neumann, Banach, Hilbert **E:NOA**

Resp: D

Comentario: Embora todos os matemáticos citados tem algo a ver com Algebra Linear vias sistemas de equações lineares, somente os três últimos foram contemporâneos nas decadas de 1920-1940.

21-Sobre a **variante** do Problema matemático de Arquimedes e a coroa do rei Hieron que requer a determinação das massas de ouro, de prata e de estanho. Assinale a afirmação mais plausível sobre o tema:

A: Não se resolve com Álgebra Linear mesmo porque Arquimedes não cursou MA327 , **B**: Se resolve com a determinação experimental do vetor $\begin{pmatrix} a \\ b \\ b \end{pmatrix} \in \mathbb{C}^3$, a=Peso da coroa, b=Volume da coroa, c=Peso do ar, **C**: Se refere ao calculo do vetor $\begin{pmatrix} a \\ b \\ b \end{pmatrix} \in \mathbb{R}^3$, a=Peso da coroa, b=Volume da coroa, c=Constante da gravidade , **D**: É impossível de ser resolvido com apenas dois testes lineares independentes **E**: **NOA**

Resposta: D

Comentario: Embora, ao que conste no DAC, nenhum Arquimedes grego do século IIIAC se matriculou em alguma turma de MA327 desde 1967DC, o problema se resolve sim com Algebra Linear e portanto esta afirmação não é plausível. A afirmação D) é correta porque um sistema de duas equações lineares para três incógnitas não pode apresentar solução única.

22- O Axioma de Espaço Vetorial que se refere à propriedade comutativa da Soma é representada no Modelo Geométrico Euclideano (*Deslocamentos Planos*) à seguinte observação:

A:Teorema de Pitágoras , **B**: Fórmula para Área de paralelogramo , **C**: Regra do Paralelogramo , **D**: Semelhança de Triângulos **E:NOA**

Resp: C

Comentario: Basta fazer o gráfico e verificar que os dois lados do paralelogramo (que são as duas alternativas para a ordem da soma) se encontram no mesmo ponto.

23-Considere três vetores v_1, v_2, v_3 não nulos e não colineares dois a dois no Espaço Euclideano plano E e o conjunto gerado pelas combinações lineares deles da seguinte forma: $K = \{\sum_{k=1}^3 c_k v_k : 0 \le c_k \le 1\}$. Assinale a afirmação correta:

 $A: K ext{ \'e um sub-espaço vetorial de } E$, $B: K ext{ \'e um segmento de reta}$, $C: K ext{ \'e um polígono }$, $D: K ext{ \'e todo o espaço } E$, E: NOA

Resp: C

Comentário: A) é falsa porque os múltiplos "grandes" $(c_k > 1)$ dos vetores de K não fazem parte do conjunto K e, portanto, não podem constituir um EV. B) é falsa porque se não são colineares os próprios vetores (que podem ser escritos nesta forma) não estão em uma reta. D) é falsa pelo mesmo motivo de A). Fazendo-se um gráfico da soma $v_1 + v_2 + v_3$ de varias maneiras $\{v_1 + (v_2 + v_3) \text{ e } (v_1 + v_2) + v_3 \text{ e } \text{etc.}\}$ obtem-se o perímetro de um polígono e verifica-se que os pontos interiores (por semelhança de triângulos) são os pontos interiores do mesmo.

24- $K = \{x \in \mathbb{R}^2 : (x_1^2 - x_2^2) = 0\}$. Assinale a afirmação correta sobre K:

A: Subespaço vetorial de \mathbb{R}^2 , **B**:Soma direta de dois Subespaços vetoriais de \mathbb{R}^2 , **C**:Curva quadrática **D**:União de dois Subespacos de \mathbb{R}^2 , **E**: **NOA**

RESPOSTA: D

Comentário: Os pontos que satisfazem esta equação são aqueles que satisfazem uma das duas equações (ou as duas): $x_1 - x_2 = 0$, ou, $x_1 + x_2 = 0$ que representam duas retas bissetrizes (subespaços de \mathbb{R}^2) que se interceptam apenas na origem. Logo, K é a união destes dois subespaços.

25- $E = C^{\infty}(\mathbb{R}, \mathbb{R})$ ={Funções Reais com derivadas continuas de todas as ordens}, $K = \{u \in E : u \in Solução da equação <math>\mathcal{L}u = 0\}$. Assinale o caso em que K **não é** um sub-espaço vetorial de E

A:
$$\mathcal{L}u = x \frac{du}{dx}$$
, **B**: $\mathcal{L}u = u(x+5) - 3u(x)$, **C**: $\mathcal{L}u = \int_{-1}^{1} u(x) dx$, **D**: $\mathcal{L}u = \int_{-1}^{1} e^{x} x \frac{du}{dx} dx$

$$\mathbf{E}:\mathcal{L}u = \int_{-1}^{1} (x^2 + u(x)) dx$$

RESPOSTA: E

Comentário: As combinações lineares $h=u+\lambda v$ de duas funções $u\ e\ v$ que satisfazem simultaneamente uma das condições A),B),C).D) também satisfazem a mesma condição, basta verificar diretamente. Entretanto, nem a função nula satisfaz à condição E), $\mathcal{L}u=\int_{-1}^1(x^2+u(x))dx=\frac{2}{3}+\int_{-1}^1(u(x))dx=0$, e, portanto, estas funções não formam um espaço vetorial.

26-Sobre o Axioma "1u=u" da Axiomática de Espaços Vetoriais. Assinale a afirmação **correta**:

A-É tão óbvio que não precisa ser incluído e nem mesmo discutido, **B**-É válido em \mathbb{R}^n e, portanto, é redundante acrescentá-lo ao Sistema de Axiomas, **C** - Pode ser demonstrado a partir dos outros axiomas, mas dá muito trabalho e, portanto, é melhor estabelecê-lo de saída, **D**- A Estrutura definida em \mathbb{R}^2 , com a soma usual (coordenada a coordenada) e a multiplicação por escalar " $\lambda(x,y)=(\lambda x,y)$ satisfaz a todos os axiomas exceto o referido e, portanto, mostra a sua independência, **E**-O exemplo anterior (D) é inexistente e, portanto, não tem a nada a ver com a questão.

Resposta: D

Comentario: O Modelo bem definido em D) demonostra a possibilidade de que todos os outros axiomas de EV sejam satisfeitos menos o citado axioma. Isto mostra que jamais se poderá provar a sua validade a partir dos outros, pois, como ficaria este exemplo?