```
In [2]: # Import the necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

# Loading The Data
file_path = 'C:/Users/faraz/Downloads/Niksun/ml_datasets/War_21st Century_Is

# Read the second sheet (Sheet2) into a DataFrame
df = pd.read_excel(file_path, sheet_name='Data')

df.head()
```

Out[2]:

	Country	Admin1	Admin2	ISO3	Admin2 Pcode	Admin1 Pcode	Month	Year	Events	F
0	Palestine	Gaza Strip	Deir El Balah	PSE	PS0265	PS02	January	2016	3	
1	Palestine	Gaza Strip	Gaza City	PSE	PS0260	PS02	January	2016	6	
2	Palestine	Gaza Strip	Khan Yunis	PSE	PS0270	PS02	January	2016	2	
3	Palestine	Gaza Strip	North Gaza	PSE	PS0255	PS02	January	2016	4	
4	Palestine	Gaza Strip	Rafah	PSE	PS0275	PS02	January	2016	1	

Country: Always "Palestine" (single value).

Admin1: Larger administrative areas (e.g., Gaza Strip).

Admin2: More specific administrative regions (e.g., Gaza City, Rafah).

Month and Year: Temporal data to track changes over time.

Events: Number of targeting events in a particular area and time.

Fatalities: Number of deaths in that area and time.

Data Wrangling

```
In [3]: # Introducing Month of Year for better visualizations
df['month_of_year'] = df['Month'].str[:3] + '-' + df['Year'].astype(str).str
df
```

\cap	ш	+	Г	3	1	
U	и	L	L	J	Ţ	

	Country	Admin1	Admin2	ISO3	Admin2 Pcode	Admin1 Pcode	Month	Year	Even
0	Palestine	Gaza Strip	Deir El Balah	PSE	PS0265	PS02	January	2016	
1	Palestine	Gaza Strip	Gaza City	PSE	PS0260	PS02	January	2016	
2	Palestine	Gaza Strip	Khan Yunis	PSE	PS0270	PS02	January	2016	
3	Palestine	Gaza Strip	North Gaza	PSE	PS0255	PS02	January	2016	
4	Palestine	Gaza Strip	Rafah	PSE	PS0275	PS02	January	2016	
1611	Palestine	West Bank	Qalqilya	PSE	PS0120	PS01	May	2024	:
1612	Palestine	West Bank	Ramallah and Al Bireh	PSE	PS0130	PS01	May	2024	(
1613	Palestine	West Bank	Salfit	PSE	PS0125	PS01	May	2024	
1614	Palestine	West Bank	Tubas	PSE	PS0105	PS01	May	2024	
1615	Palestine	West Bank	Tulkarm	PSE	PS0110	PS01	May	2024	:

1616 rows × 11 columns

```
In [4]: df.isnull().sum()
    df['Fatalities'] = df['Fatalities'].astype(int)
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1616 entries, 0 to 1615
Data columns (total 11 columns):

Data	cocamins (cocac	II Cocamins).	
#	Column	Non-Null Count	Dtype
0	Country	1616 non-null	object
1	Admin1	1616 non-null	object
2	Admin2	1616 non-null	object
3	IS03	1616 non-null	object
4	Admin2 Pcode	1616 non-null	object
5	Admin1 Pcode	1616 non-null	object
6	Month	1616 non-null	object
7	Year	1616 non-null	int64
8	Events	1616 non-null	int64
9	Fatalities	1616 non-null	int32
10	month_of_year	1616 non-null	object
dtype	es: int32(1), i	nt64(2), object(8)
memoi	ry usage: 132.7-	+ KB	

	Year	total_events	total_fatalities	avg_events	<pre>avg_fatalities</pre>
0	2016	735	164	3.828125	0.854167
1	2017	855	108	4.453125	0.562500
2	2018	3375	199	17.578125	1.036458
3	2019	2666	146	13.885417	0.760417
4	2020	2210	43	11.510417	0.223958
5	2021	2948	308	15.354167	1.604167
6	2022	4201	216	21.880208	1.125000
7	2023	9983	22593	51.994792	117.671875
8	2024	7711	14585	96.387500	182.312500

Metrics & Visualizations

```
In [6]: # Grouping data by year to show total events
    events_by_year = df.groupby('Year')['Events'].sum()

# Plotting a simple bar chart
    plt.figure(figsize=(15, 5))
    events_by_year.plot(kind='bar', color='skyblue')
    plt.title('Total Events by Year')
    plt.xlabel('Year')
    plt.ylabel('Total Events')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```



```
In [7]: # Use the existing data from the screenshot (manually inputted from the screenshot)
yearly_metrics = pd.DataFrame({
    'Year': [2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024],
    'total_events': [212, 210, 1045, 456, 610, 218, 1118, 3876, 2701],
    'total_fatalities': [34, 23, 70, 40, 44, 180, 52, 21155, 12539]
})
```

```
# Create a pie chart for 'total_events' and 'total_fatalities'
fig, ax = plt.subplots(1, 2, figsize=(14, 5))

# Pie chart for total events
ax[0].pie(yearly_metrics['total_events'], labels=yearly_metrics['Year'], aut
ax[0].set_title('Total Events by Year')

# Pie chart for total fatalities
ax[1].pie(yearly_metrics['total_fatalities'], labels=yearly_metrics['Year'],
ax[1].set_title('Total Fatalities by Year')

# Display the charts
plt.tight_layout()
plt.show()
```



```
In [8]: # Recreating the 'month of year' column in the format "Jan-16"
        df['month of year'] = df['Month'].str[:3] + '-' + df['Year'].astype(str).str
        # Grouping the data by 'month of year' to get the total events for each mont
        events by month year = df.groupby('month of year')['Events'].sum().reset ind
        # Sorting the data by 'month_of_year' for correct plotting
        events by month year.sort values(by='month of year', inplace=True)
        # Creating a trend line plot
        plt.figure(figsize=(30, 10))
        plt.plot(events by month year['month of year'], events by month year['Events
        plt.xticks(rotation=90)
        plt.xlabel('Month-Year')
        plt.ylabel('Total Events')
        plt.title('Trend of Total Events by Month-Year')
        plt.grid(True)
        # Display the trend line plot
        plt.tight layout()
        plt.show()
```



```
In [9]: import matplotlib.pyplot as plt
        # Create a bar chart instead of pie charts for 'total events' and 'total fat
        fig, ax = plt.subplots(1, 2, figsize=(14, 7))
        # Bar chart for total events
        ax[0].bar(yearly_metrics['Year'], yearly_metrics['total_events'], color='sky
        ax[0].set title('Total Events by Year')
        ax[0].set xlabel('Year')
        ax[0].set ylabel('Total Events')
        # Bar chart for total fatalities
        ax[1].bar(yearly_metrics['Year'], yearly_metrics['total_fatalities'], color=
        ax[1].set title('Total Fatalities by Year')
        ax[1].set xlabel('Year')
        ax[1].set ylabel('Total Fatalities')
        # Display the charts
        plt.tight layout()
        plt.show()
```


In [10]: import matplotlib.pyplot as plt
Grouping the data by 'Admin1' to get the total fatalities by region

```
fatalities_by_region = df.groupby('Admin2')['Fatalities'].sum().reset_index(

# Plotting the total fatalities by region using a bar chart
plt.figure(figsize=(12, 7))
plt.bar(fatalities_by_region['Admin2'], fatalities_by_region['Fatalities'],
plt.xlabel('Region (Admin2)')
plt.ylabel('Total Fatalities')
plt.title('Total Fatalities by Region (Admin2)')
plt.xticks(rotation=45, ha='right')

# Display the plot
plt.tight_layout()
plt.show()
```



```
In [11]: plt.figure(figsize=(10, 6))
    plt.scatter(df['Admin2'], df['Year'], s=df['Fatalities']*10, alpha=0.5, colc

plt.title('Bubble Chart of Fatalities by Region (Admin2) and Year')
    plt.xlabel('Region (Admin2)')
    plt.ylabel('Year')
    plt.xticks(rotation=90)
    plt.show()
```


Out[12]:		month_of_year	total_events	total_fatalities	avg_events	avg_fatalities
	0	Apr-16	54	4	3.3750	0.2500
	1	Apr-17	59	4	3.6875	0.2500
	2	Apr-18	325	14	20.3125	0.8750
	3	Apr-19	220	5	13.7500	0.3125
	4	Apr-20	155	2	9.6875	0.1250
	96	Sep-19	183	1	11.4375	0.0625
	97	Sep-20	130	1	8.1250	0.0625
	98	Sep-21	300	13	18.7500	0.8125
	99	Sep-22	319	21	19.9375	1.3125
	100	Sep-23	397	20	24.8125	1.2500

101 rows \times 5 columns

```
In [13]: location_metrics = df.groupby(['Admin1', 'Admin2']).agg(
          total_events=('Events', 'sum'),
          total_fatalities=('Fatalities', 'sum'),
          avg_events=('Events', 'mean'),
          avg_fatalities=('Fatalities', 'mean')
).reset_index()

print(location_metrics)
```

```
Admin2 total_events total_fatalities \
               Admin1
           Gaza Strip
                              Deir El Balah
                                                    2143
                                                                     7395
       1
           Gaza Strip
                                 Gaza City
                                                    3358
                                                                    12752
       2
           Gaza Strip
                                 Khan Yunis
                                                    2442
                                                                     6666
       3
           Gaza Strip
                                North Gaza
                                                    2172
                                                                     6557
       4
           Gaza Strip
                                      Rafah
                                                    1398
                                                                     3604
       5
           West Bank
                                  Al Quds
                                                    3381
                                                                      191
       6
            West Bank
                                Bethlehem
                                                    1723
                                                                       64
       7
            West Bank
                                                    3551
                                                                      163
                                   Hebron
       8
            West Bank
                                     Jenin
                                                    2129
                                                                      315
       9
            West Bank
                                    Jericho
                                                    560
                                                                      33
       10
            West Bank
                                                    4243
                                                                      223
                                     Nablus
       11
            West Bank
                                   Qalqilya
                                                    1614
                                                                      36
       12
            West Bank Ramallah and Al Bireh
                                                    3662
                                                                      141
       13
                                                                      36
            West Bank
                                     Salfit
                                                    810
       14
            West Bank
                                     Tubas
                                                    452
                                                                      39
       15
            West Bank
                                    Tulkarm
                                                    1046
                                                                      147
           avg events avg fatalities
       0
            21.217822
                           73.217822
       1
            33.247525
                          126.257426
       2
            24.178218
                           66.000000
       3
            21.504950
                           64.920792
            13.841584
                           35.683168
       5
            33.475248
                            1.891089
       6
            17.059406
                            0.633663
       7
            35.158416
                            1.613861
       8
            21.079208
                            3.118812
       9
            5.544554
                            0.326733
       10
           42.009901
                            2.207921
       11
            15.980198
                            0.356436
       12
            36.257426
                            1.396040
       13
            8.019802
                            0.356436
       14
            4.475248
                            0.386139
       15
            10.356436
                            1.455446
In [14]: # Creating a correlation heatmap between 'Events' and 'Fatalities'
        correlation data = df[['Events', 'Fatalities']]
        # Calculating the correlation matrix
         correlation matrix = correlation data.corr()
        # Plotting the heatmap
         plt.figure(figsize=(8, 6))
         sns.heatmap(correlation matrix, annot=True, cmap="coolwarm", vmin=-1, vmax=1
         plt.title('Correlation Heatmap: Events and Fatalities')
         plt.show()
         print("Here is the correlation heatmap between Events and Fatalities. It sho
```


Here is the correlation heatmap between Events and Fatalities. It shows a po sitive correlation of 0.84, indicating that as events increase, fatalities t end to increase as well.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Creating a pivot table to show the total events across regions (Admin1) ar
events_pivot = df.pivot_table(values='Events', index='Admin1', columns='Year

# Plotting the heatmap for total events across regions and years
plt.figure(figsize=(12, 8))
sns.heatmap(events_pivot, annot=True, cmap="Blues", linewidths=0.5, linecolc

plt.title('Total Events Heatmap by Region (Admin1) and Year')
plt.xlabel('Year')
plt.ylabel('Region (Admin1)')

# Display the heatmap
plt.tight_layout()
plt.show()
```


			Total F	atalities	Heatma	p by Re	gion (Adn	nin2) an	d Year		
	Al Quds -	39	35	11	10	10	14	12	45	15	- 8000
	Bethlehem -	6	11	3	7	2	4	11	15	5	
	Deir El Balah -	4	3	19	27	3	13	4	3.6e+03	3.8e+03	- 7000
	Gaza City -	8	3	23	33	0	1.2e+02	10	8.3e+03	4.2e+03	
	Hebron -	52	6	8	8	2	13	11	43	20	- 6000
	Jenin -	8	4	6	1	8	18	58	1.6e+02	51	
(i	Jericho -	1	1	1	1	0	1	2	21	5	- 5000
dmin	Khan Yunis -	2	14	46	6	2	17	7	3.4e+03	3.2e+03	
Region (Admin2)	Nablus -	14	5	7	8	3	19	36	le+02	26	- 4000
8	North Gaza -	4	6	32	25	2	51	18	49e+03	15e+03	

Year

4.9e+03 1.5e+03

1.8e+03 1.7e+03

- 3000

- 2000

- 1000

- 0

North Gaza -

Ramallah and Al Bireh -

Qalqilya -

Rafah -

Salfit -

Tubas -

Tulkarm -

This notebook was converted to PDF with convert.ploomber.io