

Study purposes

Be able to predict the Sales of each Store

• Anticipate it 6 weeks in advance

What for ?

- plan the company's strategies (recruitment, opening of new stores, etc.)
- identify the characteristics of high-selling stores
- stock gestion

The data used

One line per day and per Store with information on the Store and the Sales

 \rightarrow 1 017 209 rows

From the 1st January 2013 to the 31st July 2015

1115 stores

Average Sales per store per day : 6955 €

- We delete every line where Open = 0
- When a store is closed, Sales will be 0€, and it's not interesting

 \rightarrow 844 392 rows

Applied filters

We fill use 4 different types of features, that all impacts the Sales

Seasonality features

- Sales are more important on Monday and on Sunday
- Same, in **December**, the Sales in your stores are more important (Christmas Holiday, ...)

Features on the store type

- Store Id : Stores have different average Sales
- StoreType and StoreAssortment : Stores sell different things

Average Sales per StoreType

Store Id	Average Sales	Rank		
307	2 703€	FLOP		
917	21 757€	TOP		

Average Sales per Assortment

Features on promo offer

Average Sales per Holidays

- Sales are more important when there are some promo offer
- Same, during the **state holidays**, people are used to buying more articles in your shops

Features about concurrency

Histogram of the concurrent distance

- Concurrency → dense zone → higher sales
- (B)
- For 188 stores, we have lines before/after their concurrent have settled
- For these stores, CompetitionDistance is correlated to the evolution of their average sales : the closer is the concurrent, the more sales have decreased

Time series approach

- We considered the total sales of stores at each date.
- This gives general overview of the sales.
- Test data: The last 6 weeks sales values.
- Train data: The rest of the past sales.

	Date	Sales
0	2013-01-01	97235
1	2013-01-02	6949829
2	2013-01-03	6347820
3	2013-01-04	6638954
4	2013-01-05	5951593

Model and performances

- The best results were obtained with **SARIMA** model.
- Model parameters were obtained by minimizing the aic criterion.

Metric	SARIMA	Naive model		
MAE per store per day	987 744€	2 085 420€		
MAPE per day	20%	35%		

Dataset used

	Store	Month	Day	DayOfWeek	Promo	StoreType	Assortment	CompetitionDistance	has_concu_since	SchoolHoliday	StateHoliday Sales
188034	208	12	24	2	0	С	а	300.0	2824	1	0 1881
838623	921	3	15	6	0	а	а	840.0	2752	0	0 4508
789127	866	11	29	5	0	d	а	9680.0	0	0	0 7393
853549	937	2	5	3	1	d	а	2810.0	0	0	0 6781

- Train data: % of the data (the oldest data), we use the past to predict the future
- Test data: 1/5 of the data (the most recent data)
- Goal : use our 11 features to predict Sales

Our model : DecisionTreeRegressor

- Recursively splits the feature space s.t. samples with similar target values are grouped together
- **Split** = a feature plus a threshold
 - Left group = samples with a feature value under the threshold
 - Right group = the remaining samples

Almost optimal splits are chosen according to an "impurity function"

Splitting procedure can be stopped at any moment in order to avoid overfitting

• The benefit prediction are obtained by averaging the target values in each groups

Our model : DecisionTreeRegressor

The head of our Tree

- Our final model averages 10 trees like this one: it is called a RandomForestRegressor
- The first **branches** can be plotted to understand the importance features

Features importance

Naive model

We need another model to compare its performance to the one of our ML model

Our naive model consists in :

To predict the sales of a certain store, we take the average of all past sales of this store

• It's a very simple and intuitive model, without any Machine Learning

Let's see the performances!

Performances

Metric	RandomForest model	Naive model		
MAE per store per day	835 €	1435€		
MAPE per store per day	12,1%	22,1%		
MAPE per day	6,6%	15,4%		

Reminder : Average Sales per store per day = 6955€

Industrialization

 The model will be retrained every month, adding the most recent month in the dataset and deleting the oldest month → it will always be up-to-date

 No need to be trained or to be a data scientist to use the model: we will create dashboards using Tableau Software to see the predictions

 Extremely simple to use, everyone in your company can learn to use these dashboards

• Tableau dashboards has filters so you can set them to see the predictions 6 weeks in advance!

CONCLUSION

The model is explainable yet accurate

Predicts sales and informs on the most important features

Fast training (even on local computers)

Allows you to manage efficiently your stores!

Let's do a short demonstration!

