Fakultet tehničkih nauka, Novi Sad, SIIT / IIS

27. VIII 2017. godine

Statistika, kolokvijum 1 (Bodovi: $1\rightarrow 10, 2\rightarrow 10, 3\rightarrow 10$)

1. Verovatnoća da avion bude pogođen prvim hicem iznosi 0.4, drugim 0.5 i trećim 0.7. U slučaju jednog pogotka, avion će biti oboren sa verovatnoćom 0.2, u slučaju dva pogotka sa verovatnoćom 0.6, a u slučaju tri pogotka će sigurno biti oboren.

Izračunati verovatnoću da avion bude oboren posle tri pojedinačna hica.

- 2. Bacaju se istovremeno crvena i plava kockica za igru. Slučajna promenljiva X predstavlja broj na crvenoj kockici, Y predstavlja ostatak pri deljenju zbira dobijenih brojeva sa 4. Naći zakon raspodele dvodimenzionalne slučajne promenljive (X,Y) i zakon raspodele slučajne promenljive X|Y=0.
- 3. Slučajna promenljiva *X* ima raspodelu datu gustinom

$$\varphi(x) = \frac{2}{3}x, x \in (1,2).$$

Naći raspodelu i očekivanje slučajne promenljive $Y = \sqrt{X}$.

Statistika, kolokvijum 2 (Bodovi: $1\rightarrow 10, 2\rightarrow 10$)

- 1. Poznato je da se u prometu nalazi 20% belih automobila. Beleži se boja 1000 automobila koji sukcesivno prođu kroz raskrsnicu. Oceniti verovatnoću da relativna učestalost prolaska belih automobila odstupa od odgovarajuće verovatnoće za najviše 0.02:
 - (a) pomoću nejednakosti Čebiševa,
 - (b) pomoću teoreme Moavr-Laplasa.
- 2. Posmatra se obeležje sa Normalnom raspodelom $\mathcal{N}(m,1)$. Ocena parametra m na osnovu uzorka obima n je $\bar{X} = nX_1 X_2 X_3 \cdots X_n$. Ispitati centriranost date ocene i naći njenu disperziju.

\overline{z}	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916