Congratulations! You passed!

Grade received 100% To pass 76% or higher

Go to next item

1. Given that $f(x,y)=x^2y+3x^2$, find its derivative with respect to x, i.e., find $\frac{\partial f}{\partial x}$.

1/1 point

Note: Please use * to indicate the product in the answer. So, if we would write the entire function f as an answer, it would be $x^2 + y + 3 + x^2$.

$$2xy + 6x$$

2*x*y+6*x

⊘ Correct

2. Given that $f(x,y) = xy^2 + 2x + 3y$ its gradient, i.e., $\nabla f(x,y)$ is:

1/1 point

- $\bigcirc \left[\begin{array}{c} 2xy+3 \\ y^2+2 \end{array}\right]$
- $\bigcirc \left[\begin{array}{c}
 2xy \\
 2x+3
 \end{array}\right]$
- $\bigcirc \left[\begin{array}{c} y^2 + 2 \\ 2xy + 3 \end{array} \right]$
- $O \begin{bmatrix} 2y \\ 0 \end{bmatrix}$
- **⊘** Correct

Correct! Applying the gradient's formula: $abla f(x,y) = \left[egin{array}{c} rac{\partial f}{\partial x} \\ rac{\partial f}{\partial y} \end{array}
ight]$, you can get the result!

3. Let $f(x,y)=x^2+2y^2+8y$. The minimum value of f is:

1/1 point

Hint: The question asks for the minimum value that the function can output, and not the point (x,y) that gives it.

-8

⊘ Correct

You are correct! Finding the x and y values that satisfies $\nabla f(x,y)=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\right)=(0,0)$ and then applying them to f(x,y) gives you the correct result!

4. The gradient of $f(x,y,z)=x^2+2xyz+z^2$ is:

1/1 point

- $\bigcirc \left[\begin{array}{c} 2x + 2xz \\ 2yz \\ 2xy + z \end{array}\right]$
- $\bigcap \begin{bmatrix}
 2x + 2yz \\
 2xy \\
 2xy + z
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix}
 2yz + 2xz \\
 2z \\
 2x
 \end{bmatrix}$
- **⊘** Correct

Correct!