Periodic Table	L garage
Avangements of elements acronding to	Increasing proton
Periodic Table	all the second of the second o
	The server
A - A - A - A - A - A - A - A - A - A -	ported = Group: 8 40.0 of e in valence shell outerment shell
= 2,8,8,2 period=4 onvoy=2	

a) State they observation when - piece of group I metal re
of more.
ns) -> It floats on the surface.
> Jan 1 olgorous violent reaction.
-> Size of metal reduces.
-> bubbles of columbers going as a be seen.
to John John John John John John John Joh
Li +M20-3 LiOM + LM26)
to the second
Na+40-> NaOH+ ±H2
(5) (e) (op) (op)
(5) (2) (9)
a) what is valency/exidation state?
Ans) Ability to be or gain electrons.
exempt han an exidation state of It.
6) what is stability?
Ins) complete outermost shell.

Groy I Chorb II exidation state: - 2 B single partiale with - we dange = ide exide P=> Orygen => 02-P=> Phophorus p3phogphido M=> My dragen M" Mydride. Group VII -> Halogen (i) it reats with any metal it forms a satt) Is they all exist in diatomic form. -> State daugh form you to so liquid to solid from top changer from a lighter colour to a danter ones (from top to bottom)

Fr Jake yellow/colombers
(b. Jan yellowish green/green Br. & Riquid > yed-brown In I solid aux brown /black & purple vapours At to blak -> radioactive - metting point) by increases on your down the group. > reactivity decreases as you go down the gr group because the ability to gain electrons de opener. > Ion = Malde -> yalency =- | oxidation state A same sit Group VIII -) noblegamen or inert gases or zero group -> They do not react because they have complete/ table armingement of electrons in the valence shell. > melting bint / b.f. increases down the -) they are all dia monotomic Argan mad for bulb

\$ Soy - sulfate So3 - sulfite POy3 = phonomate 1003 = 10 thate toglay - phosphile NOT = nitvite (0)2 = (arbonate Or = carpenite one les exygen = ate -> ite Sulyide :- 5 Withide: - Nos Sulfate: - 50% - 50% Nitate: NO3 bitrite: - NO2 Transition Elements/Transition Metals 9 Ans) They goven coolined compounds 1 They have you hable exidation state (not free!) 3 They are used as catalysts They have high welling joints and high densities.