Model for Oregon

Model for Oregon from march to june

```
## SAMPLING FOR MODEL 'rt_model' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 0.002572 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 25.72 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 1: Iteration: 1000 / 2000 [ 50%]
                                          (Warmup)
## Chain 1: Iteration: 1001 / 2000 [ 50%]
                                          (Sampling)
## Chain 1: Iteration: 1200 / 2000 [ 60%]
## Chain 1: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
## Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 1: Elapsed Time: 138.271 seconds (Warm-up)
## Chain 1: 139.405 seconds (Sampling)
                          277.677 seconds (Total)
## Chain 1:
## Chain 1:
##
## SAMPLING FOR MODEL 'rt model' NOW (CHAIN 2).
## Chain 2: Gradient evaluation took 0.001148 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 11.48 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 2: Iteration: 1200 / 2000 [ 60%]
## Chain 2: Iteration: 1400 / 2000 [ 70%]
## Chain 2: Iteration: 1600 / 2000 [ 80%]
                                          (Sampling)
## Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
```

```
## Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 149.471 seconds (Warm-up)
## Chain 2:
                          146.47 seconds (Sampling)
## Chain 2:
                          295.942 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'rt_model' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 0.001102 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 11.02 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 3: Iteration: 1800 / 2000 [ 90%]
                                          (Sampling)
## Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 141.898 seconds (Warm-up)
                         139.708 seconds (Sampling)
## Chain 3:
## Chain 3:
                          281.606 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'rt model' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 0.001104 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 11.04 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
## Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
## Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
## Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
## Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
## Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
## Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
## Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
## Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
## Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
## Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
## Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 140.207 seconds (Warm-up)
## Chain 4:
             141.118 seconds (Sampling)
                          281.325 seconds (Total)
## Chain 4:
## Chain 4:
```

```
print(fit_model, pars = 'r_t')
```

```
## Inference for Stan model: rt model.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
          mean se_mean sd 2.5% 25% 50% 75% 97.5% n eff Rhat
## r t[1] 1.74
                0 0.20 1.38 1.60 1.73 1.87 2.16 3416
## r_t[2] 1.74
                   0 0.19 1.39 1.59 1.73 1.87 2.14 3450
## r_t[3] 1.73
                   0 0.19 1.40 1.60 1.72 1.85 2.13 3394
                   0 0.18 1.41 1.60 1.71 1.84 2.10 3360
## r_t[4] 1.73
                   0 0.17 1.41 1.60 1.71 1.83 2.06 3176
## r_t[5] 1.72
         1.71
                   0 0.16 1.41 1.60 1.70 1.81 2.04 3097
## r_t[6]
                   0 0.15 1.41 1.59 1.69 1.80 2.01 3019
         1.70
## r_t[7]
11 ~ + LOJ
          1 60
                    0 0 1E 1 /1 1 E0 1 60 1 70
                                               1 07
                                                    2007
```

```
## r_t[0] 1.00
                   U U.13 1.41 1.30 1.00 1.70 1.97 2907
                    0 0.14 1.40 1.57 1.66 1.75 1.94 2993
## r_t[9] 1.66
## r t[10] 1.64
                    0 0.13 1.40 1.55 1.64 1.73 1.91
                                                    3032
          1.62
                    0 0.13 1.38 1.53 1.62 1.70
## r t[11]
                                              1.88
                                                    3125
                   0 0.12 1.36 1.51 1.59 1.68 1.84
## r_t[12] 1.60
                                                    3225
                   0 0.12 1.34 1.49 1.56 1.64 1.81 3336
## r t[13] 1.57
                   0 0.11 1.32 1.46 1.53 1.61 1.77 3594
## r_t[14] 1.53
## r_t[15] 1.50
                   0 0.11 1.30 1.43 1.50 1.57 1.72 3600
## r t[16] 1.46
                   0 0.10 1.27 1.39 1.46 1.53 1.68 3626
## r_t[17] 1.43
                   0 0.10 1.24 1.36 1.43 1.49 1.64 3750
## r t[18] 1.39
                   0 0.10 1.21 1.32 1.39 1.46 1.59 4030
## r_t[19] 1.35
                   0 0.09 1.18 1.29 1.35 1.42 1.54 4182
## r_t[20] 1.32
                   0 0.09 1.15 1.25 1.31 1.37 1.50 4179
                   0 0.09 1.12 1.22 1.28 1.34 1.45 3724
## r_t[21] 1.28
## r_t[22] 1.24
                    0 0.08 1.09 1.19 1.24 1.30 1.41 3794
## r_t[23] 1.21
                    0 0.08 1.06 1.15 1.21 1.26 1.37
                                                    3842
## r_t[24] 1.18
                    0 0.08 1.03 1.12 1.17 1.23
                                              1.33 4221
## r t[25]
          1.15
                    0 0.07 1.01 1.09 1.14 1.19 1.30 4031
                   0 0.07 0.98 1.07 1.11 1.16 1.26 4043
## r_t[26]
          1.12
                   0 0.07 0.96 1.04 1.09 1.13 1.24 4123
## r_t[27] 1.09
## r_t[28] 1.07
                   0 0.07 0.93 1.02 1.06 1.11 1.20 4337
## r t[29] 1.04
                   0 0.07 0.91 1.00 1.04 1.09 1.18 3884
## r t[30] 1.02
                   0 0.07 0.90 0.98 1.02 1.06 1.15 3840
                   0 0.06 0.88 0.96 1.00 1.04 1.13 3638
## r_t[31] 1.00
## r_t[32] 0.98
                   0 0.06 0.87 0.94 0.98 1.03 1.11 3544
## r_t[33] 0.97
                   0 0.06 0.85 0.93 0.97 1.01 1.10 3344
## r_t[34] 0.95
                   0 0.06 0.84 0.91 0.95 0.99 1.08 3587
## r_t[35] 0.94
                   0 0.06 0.83 0.90 0.94 0.98 1.07 3832
## r_t[36] 0.93
                   0 0.06 0.82 0.89 0.93 0.97 1.05 3694
## r t[37] 0.92
                    0 0.06 0.82 0.88 0.92 0.96
                                              1.04
                                                    3739
## r_t[38]
          0.91
                    0 0.06 0.81 0.88 0.91 0.95
                                              1.03
                                                    3884
                   0 0.06 0.80 0.87 0.91 0.94 1.02
## r_t[39] 0.91
                                                    3966
                   0 0.06 0.80 0.86 0.90 0.94 1.01 3915
## r_t[40] 0.90
                   0 0.06 0.79 0.86 0.89 0.93 1.01 3833
## r_t[41] 0.90
## r t[42] 0.89
                   0 0.06 0.79 0.85 0.89 0.93 1.01 3831
## r t[43] 0.89
                   0 0.05 0.78 0.85 0.89 0.92 1.00 3874
                   0 0.05 0.78 0.85 0.88 0.92 1.00 4026
## r_t[44] 0.88
## r t[45] 0.88
                   0 0.05 0.78 0.84 0.88 0.92 1.00 3908
## r_t[46] 0.88
                   0 0.06 0.78 0.84 0.88 0.91 0.99 3588
                   0 0.06 0.77 0.84 0.87 0.91 0.99 3511
## r_t[47] 0.88
## r_t[48] 0.87
                   0 0.06 0.77 0.84 0.87 0.91 0.99 3662
## r t[49] 0.87
                    0 0.06 0.77 0.83 0.87 0.91 0.99
                                                    3711
## r t[50]
          0.87
                    0 0.06 0.77 0.83 0.87 0.91 0.99
                                                    3750
## r_t[51]
          0.87
                    0 0.06 0.77 0.83 0.87 0.91
                                              0.99
                                                    3648
## r t[52]
          0.87
                    0 0.06 0.76 0.83 0.87 0.91 0.98
                                                    3687
                   0 0.06 0.76 0.83 0.87 0.91 0.99 3547
## r_t[53] 0.87
                   0 0.06 0.77 0.83 0.87 0.91 0.99 3776
## r t[54] 0.87
## r t[55] 0.87
                   0 0.06 0.76 0.83 0.87 0.91 0.99 3893
## r t[56] 0.87
                   0 0.06 0.76 0.83 0.87 0.91 0.99 3841
                   0 0.06 0.76 0.83 0.87 0.91 0.98 3773
## r t[57] 0.87
## r_t[58] 0.87
                   0 0.06 0.76 0.83 0.87 0.91 0.98 3600
## r t[59] 0.87
                   0 0.06 0.76 0.83 0.87 0.91 0.99 3759
                   0 0.06 0.77 0.84 0.87 0.91 0.99 3822
## r_t[60] 0.87
                   0 0.06 0.77 0.84 0.87 0.91 0.99 3608
## r_t[61] 0.87
                                                            1
## r_t[62] 0.88
                   0 0.06 0.77 0.84 0.88 0.91 1.00 3489
                   0 0.06 0.78 0.84 0.88 0.92 1.00 3452
## r_t[63] 0.88
                    0 0.06 0.78 0.85 0.89 0.92
## r t[64]
          0.89
                                              1.00
                                                    3509
## r_t[65]
          0.89
                    0 0.06 0.79 0.85 0.89 0.93 1.01
                                                    3368
                   0 0.06 0.79 0.86 0.90 0.94 1.02
## r_t[66] 0.90
                                                    3365
                   0 0.06 0.80 0.87 0.91 0.95 1.03 3383
## r_t[67] 0.91
                   0 0.06 0.81 0.88 0.92 0.96 1.04 3610
## r t[68] 0.92
                   0 0.06 0.82 0.89 0.93 0.97 1.05 3589
## r t[69] 0.93
                   0 0.06 0.83 0.90 0.94 0.98 1.07 3621
## r t[70] 0.95
## r t[71] 0.96
                   0 0.06 0.84 0.92 0.96 1.00 1.09 3563
## r t[72] 0.98
                   0 0.06 0.86 0.93 0.97 1.02 1.11 3516
## r_t[73] 0.99
                   0 0.06 0.87 0.95 0.99 1.03 1.12 3132
## r_t[74] 1.01
                    0 0.06 0.89 0.96 1.01 1.05 1.14 3136
                    0 0.07 0.90 0.98 1.02 1.07 1.16 3270
## r_t[75] 1.03
                                                            1
## r t[76] 1.04
                    0 0.07 0.91 1.00 1.04 1.09 1.18
                                                    3498
                    0 0.07 0.93 1.01 1.06 1.11
## r t[77]
          1.06
                                              1.20
                                                    3570
## r t[78]
          1.08
                    0 0.07 0.95 1.03 1.08 1.13
                                              1.22
                                                    3667
                   0 0.07 0.96 1.05 1.09 1.14 1.24 3410
## r t[79] 1.10
                                                            1
## r_t[80] 1.11
                   0 0.07 0.98 1.07 1.11 1.16 1.26 3481
```

```
0 0.07 1.00 1.08 1.13 1.18 1.28 3450
## r_t[81] 1.13
## r_t[82] 1.15
                    0 0.07 1.01 1.10 1.15 1.19 1.30 3682
## r_t[83] 1.16
                    0 0.07 1.03 1.11 1.16 1.21 1.31 3798
## r t[84] 1.18
                   0 0.08 1.04 1.13 1.18 1.23 1.33 3961
## r t[85] 1.19
                   0 0.08 1.05 1.14 1.19 1.24 1.34 3841
## r_t[86] 1.20
                   0 0.08 1.06 1.15 1.20 1.26 1.36 3872
## r_t[87] 1.21
                   0 0.08 1.07 1.16 1.21 1.26 1.36 4051
## r_t[88] 1.22
                   0 0.08 1.07 1.17 1.22 1.27 1.38 3796
                   0 0.08 1.08 1.17 1.23 1.28 1.39 3836
## r_t[89] 1.23
                   0 0.08 1.08 1.18 1.23 1.28 1.39 3710
## r_t[90] 1.23
                   0 0.08 1.09 1.18 1.24 1.29 1.40 3583
## r_t[91] 1.24
## r_t[92] 1.24
## r_t[93] 1.24
                   0 0.08 1.09 1.18 1.24 1.29 1.40 3505
0 0.08 1.09 1.19 1.24 1.30 1.40 3539
## r_t[94] 1.24
                   0 0.08 1.08 1.19 1.24 1.29 1.40 3544
## r_t[95] 1.24
                   0 0.08 1.09 1.18 1.24 1.29 1.41 3653
## r_t[96] 1.24
                   0 0.08 1.08 1.18 1.24 1.29 1.41 3693
## r t[97] 1.24
                   0 0.08 1.08 1.18 1.24 1.29 1.41 3601
## r t[98] 1.24
                   0 0.08 1.08 1.18 1.23 1.29 1.41 3532
## r t[99] 1.23
                   0 0.09 1.07 1.17 1.23 1.29 1.41 3554
## r t[100] 1.23
                   0 0.09 1.07 1.17 1.23 1.29 1.41 3155
## r t[101] 1.23
                   0 0.09 1.06 1.16 1.22 1.29 1.42 3001
## r_t[102] 1.22
                   0 0.09 1.05 1.16 1.22 1.28 1.42 2868
## r_t[103] 1.22
                   0 0.10 1.04 1.15 1.22 1.28 1.42 2793
                    0 0.10 1.03 1.15 1.21 1.28 1.42 2585
## r t[104] 1.22
## r t[105] 1.21
                    0 0.10 1.01 1.14 1.21 1.28 1.42 2424
## r t[106] 1.21
                    0 0.11 1.00 1.14 1.20 1.28 1.43 2342
                    0 0.11 0.99 1.13 1.20 1.28 1.43 2306
## r t[107] 1.20
                    0 0.12 0.97 1.12 1.20 1.28 1.45 2237
## r t[108] 1.20
## r t[109] 1.20
                   0 0.12 0.97 1.11 1.20 1.28 1.45 2131
## r t[110] 1.20
                   0 0.13 0.96 1.11 1.19 1.28 1.46 2148
## r t[111] 1.19
                   0 0.13 0.94 1.10 1.19 1.28 1.47 2106
## r t[112] 1.19
                   0 0.14 0.93 1.09 1.19 1.28 1.48 2113
## r t[113] 1.19
                   0 0.14 0.93 1.09 1.18 1.29 1.49 2116
## r_t[114] 1.19
                   0 0.15 0.92 1.09 1.18 1.29 1.50 2113
## r_t[115] 1.19
                   0 0.16 0.92 1.08 1.18 1.29 1.53 2075
                   0 0.16 0.91 1.08 1.18 1.30 1.54 2068
## r_t[116] 1.19
                   0 0.17 0.90 1.08 1.18 1.30 1.55 2038
## r_t[117] 1.19
                   0 0.17 0.89 1.07 1.18 1.30 1.57 2074
## r t[118] 1.19
## r_t[119] 1.19
                    0 0.18 0.88 1.07 1.18 1.31 1.57
                                                     2110
                   0 0.19 0.88 1.07 1.18 1.31 1.61 2075
## r_t[120] 1.20
                   0 0.19 0.88 1.06 1.18 1.32 1.61 2086
## r_t[121] 1.20
                   0 0.19 0.86 1.06 1.18 1.32 1.61 2121
## r_t[122] 1.20
## r t[123] 1.20
                   0 0.20 0.86 1.06 1.18 1.32 1.63 2168
## r t[124] 1.20
                   0 0.20 0.85 1.06 1.18 1.32 1.65 2152
## r t[125] 1.20
                   0 0.21 0.85 1.05 1.18 1.33 1.66 2138
## r_t[126] 1.20
                    0 0.22 0.84 1.05 1.18 1.34 1.68 2201
##
\#\# Samples were drawn using NUTS(diag_e) at Sun Oct 11 22:40:49 2020.
\#\# For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

```
print(fit_model, pars = 'mu')
```

```
## Inference for Stan model: rt model.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
                                         50%
                                   25%
                                                    97.5% n_eff Rhat
##
          mean se_mean
                        sd
                            2.5%
                                               75%
                                  3.78
                                              5.30
          4.63
                 0.02
                       1.20
                             2.77
                                        4.47
                                                     7.43 3117
## mu[1]
                                                     8.41 3146
                             3.31 4.41 5.17
                                              6.10
## mu[2]
          5.35
                 0.02
                       1.31
                             3.99 5.26 6.11
                                              7.15
                                                    9.73 3180
                0.03
                       1.46
## mu[3]
          6.31
          7.04 0.03 1.52 4.60 5.95 6.84 7.90 10.57 3239
## mu[4]
          7.94 0.03 1.60 5.33 6.78 7.75 8.85 11.57 3314
## mu[5]
## mu[6]
       10.07 0.03 1.79 7.12 8.78 9.87 11.11 14.07 3518
## mu[7] 12.57 0.03 1.98 9.24 11.16 12.37 13.76 16.94 3765
## mu[8] 14.07 0.03 2.10 10.53 12.58 13.87 15.35 18.69 3890
## mu[9] 15.57 0.03 2.20 11.77 14.01 15.37 16.92 20.36 4033
## mu[10]
        17.21 0.04 2.31 13.21 15.57 17.02 18.65 22.25 4166
                                                                 1
         18.99
                                                    24.37 4280
                0.04 2.44 14.81 17.27 18.79 20.53
## mu[11]
                                                                 1
                0.04 2.58 16.45 19.04 20.69 22.52
## mu[12]
         20.88
                                                    26.56 4367
                                                                 1
1 C L J .... ##
         24 07
                                                     21 00 4445
```

	u[13]	24.91	U.U4	۷.09	19.93	44.90	∠4.0∪	∠७.७૩	31.00	C P P P	Τ
	u[14]	27.12	0.05	3.05	21.75	24.98	26.95	29.03	33.48	4418	1
	u[15]	29.31	0.05	3.22	23.58	27.04	29.14		35.99	4331	1
	u[16]	85.47	0.14	9.06	69.64	79.03	84.91	91.19	104.39	4166	1
	u[17]	55.03	0.09	5.75	44.80	51.00	54.71		67.05	4129	1
	u[18]	44.29	0.07	4.58	36.02	41.11	44.00	47.13	54.09	4079	1
	u[19]	46.94	0.08	4.81	38.24	43.55	46.64	49.95	57.05	4022	1
## mi	u[20]	57.25	0.09	5.83	46.72	53.15	56.90	60.96	69.44	3978	1
## m	u[21]	44.13	0.07	4.47	36.03	40.96	43.89	47.04	53.57	3944	1
## m	u[22]	45.87	0.07	4.63	37.53	42.58	45.63	48.86	55.87	3912	1
## m	u[23]	97.61	0.16	9.83	79.86	90.57	97.11	103.94	118.89	3884	1
## m	u[24]	61.26	0.10	6.16	50.36	56.89	60.95	65.14	74.52	3864	1
## mi	u[25]	50.06	0.08	5.03	41.03	46.46	49.85	53.26	60.81	3850	1
## mi	u[26]	146.79	0.24	14.73	120.36	136.30	146.22	156.31	178.36	3841	1
## mi	u[27]	56.83	0.09	5.70	46.62	52.82	56.55	60.48	69.15	3835	1
## mi	u[28]	58.96	0.10	5.91	48.34	54.85	58.65	62.72	71.70	3832	1
## mi	u[29]	76.80	0.12	7.70	62.96	71.48	76.31	81.65	93.49	3832	1
## m	u[30]	53.35	0.09	5.35	43.82	49.69	53.05	56.73	64.86	3834	1
## m	u[31]	79.35	0.13	7.97	65.07	73.84	79.00	84.26	96.09	3839	1
## mi	u[32]	125.50	0.20	12.63	102.80	116.79	125.01	133.32	151.89	3840	1
## m	u[33]	67.12	0.11	6.76	55.04	62.44	66.76	71.37	81.20	3839	1
## m	u[34]	60.67	0.10	6.12	49.64	56.47	60.35	64.58	73.47	3836	1
## mi	u[35]	52.01	0.08	5.25	42.54	48.39	51.73	55.41	63.09	3831	1
## mi	u[36]	75.84	0.12	7.67	62.02	70.51	75.36	80.85	91.71	3825	1
## mi	u[37]	65.19	0.11	6.60	53.37	60.61	64.79	69.54	78.93	3819	1
	u[38]	58.59	0.10	5.94	47.77	54.50	58.32	62.50	71.02	3815	1
	u[39]	66.44	0.11	6.73	54.19	61.71	66.10		80.52	3816	1
	u[40]	48.24	0.08	4.88	39.33	44.83	47.97		58.60	3822	1
	u[41]	47.66	0.08	4.82	39.01	44.23	47.39		57.90	3835	1
	u[42]	46.39	0.08	4.68	38.06	43.08	46.09	49.35	56.33	3856	1
	u[43]	117.90	0.19	11.83			117.20		142.84	3884	1
	u[44]	62.67	0.10	6.26	51.56	58.29	62.27	66.70	76.14	3918	1
	u[45]	76.20	0.12	7.56	62.80	70.95	75.77		92.41	3958	1
	u[46]	62.70	0.10	6.18	51.71	58.43	62.32	66.60	75.92	4005	1
	u[47]	86.23	0.13	8.44	70.89	80.42	85.74	91.50	104.36	4058	1
	u[48]	120.44	0.18	11.63			119.86		144.55	4174	1
	u[49]	56.00	0.08	5.38	46.07	52.30	55.68	59.32	66.90	4227	1
	u[50]	75.09	0.11	7.18	61.89	70.14	74.72		89.66	4264	1
	u[51]	68.64	0.10	6.56	56.58	64.12	68.31	72.77	81.96	4264	1
	u[51]	65.51	0.10	6.24	54.11	61.21	65.13	69.44	78.30	4297	1
	u[53]	46.73	0.07	4.45	38.67	43.67	46.45	49.54	55.97	4327	1
	u[54] u[55]	63.89	0.09 0.12	6.09	53.07	59.72 75.50	63.50	67.71 85.66	76.52 96.95	4355 4380	1 1
	u[55] u[56]	80.82		7.72	67.12				91.93		1
		76.65	0.11	7.35	63.49	71.67	76.22 66.94			4401	
	u[57]	67.31	0.10	6.49	55.78				81.18	4417	1
	u[58]	56.62	0.08	5.50	46.83	52.88	56.27		68.27	4410	1
	u[59] u[60]	30.84 58.77	0.05 0.09	3.02	25.45 48.41	28.77 54.78	30.63		37.20 71.06	4388	1 1
			0.26					181.13	206.81	4356	1
	u[61] u[62]	170.73	0.20	2.86	23.13	26.15	27.95	29.92	34.19	4271 4223	1
	u[62] u[63]	28.17									
	u[63] u[64]	140.12 67.91	0.22	7.06	55.58	63.04	138.85		170.67 82.80	4174 4124	1
	u[65]	53.51	0.09	5.62		49.60	53.01		65.54	4074	1
	u[65] u[66]	72.35	0.09	7.69		67.04	71.59		88.86	4074	1
	u[66] u[67]	58.09	0.12	6.23	47.08	53.75	57.45		71.65	3970	1
	u[68] u[69]	58.10 73.03	0.10	6.29 7.97	47.07 59.10	53.78 67.56	57.50 72.28		71.77	3915 3858	1
	u[70]	61.83	0.11	6.79		57.17	61.22		76.45	3793	1
	u[71]	55.91	0.10	6.17	45.10	51.63	55.38		69.04	3714	1
	u[72]	47.00	0.09	5.20	37.89	43.38			58.14	3638	1
	u[73]	39.50	0.07	4.38	31.84	36.41	39.13		48.84	3565	1
	u[74]	40.21	0.08	4.46	32.46	37.08	39.91		49.79	3497	1
	u[75]	35.18	0.07	3.90	28.39	32.42	34.93		43.56	3434	1
	u[76]	65.14	0.12	7.21	52.62	60.03	64.72		80.71	3373	1
	u[77]	75.72	0.15	8.35	61.24	69.81	75.18		93.71	3315	1
	u[78]	104.75	0.20	11.50	84.88		103.96		129.70	3261	1
	u[79]	62.68	0.12	6.84	50.93	57.81		67.05	77.41	3211	1
	u[80]	64.59	0.12	7.00	52.60		64.15		79.56	3168	1
	u[81]	71.21	0.14	7.66	58.02	65.74			87.68	3133	1
	u[82]	69.67	0.13	7.44		64.42			85.63	3107	1
	u[83]	77.37	0.15	8.20	63.13	71.61	76.83		95.10	2935	1
	u[84]	119.13	0.24	12.52				127.06	146.09	2838	1
## m	u[85]	91.43	0.18	9.54	74.81	84.62	90.84	97.57	112.12	2777	1

```
## mu[86]
           73.00
                    0.14
                           7.56 59.87 67.60 72.53 77.86
                                                             89.39 2731
## mu[87]
           50.05
                           5.14 41.20 46.39 49.71 53.41
                                                              61.24
                                                                     2705
                    0.10
##
  m11 [88]
          131.56
                     0.26
                          13.42 108.36 121.93 130.56 140.11
                                                             160.38
                                                                      2696
                                                                              1
  mu[89]
          115.04
                     0.22
                          11.67
                                 94.63 106.63 114.17 122.37
                                                             140.05
  mu[90]
          192.43
                     0.37
                          19.42 158.02 178.74 191.01 204.72
                                                             233.90
                          17.52 143.02 161.95 172.96 185.27
   mu[91]
                                                              211.04
  mu[92]
          177.53
                     0.33
                          17.84 145.73 164.97 176.14 189.05
                                                             215.54
  m11 [ 9.3 ]
          146.73
                          14.77 120.57 136.36 145.70 155.96
                                                             177.83
                    0.26
                                                                      3163
  m11 [94]
          101.26
                    0.18
                          10.25 82.92
                                       94.18 100.52 107.71
                                                             122.71
                                                                      3385
                                                                              1
  mu[95]
          159.21
                    0.27
                          16.26 130.58 147.89 158.03 169.23
                                                             193.66
                                                                      3740
##
                                                                              1
  mu[96]
          234.55
                    0.39
                          24.28 191.30 217.68 232.80 249.07
                                                             285.93
                                                                      3931
                                                                              1
                          25.64 197.68 225.26 241.02 257.88
  mu[97]
          242.91
                    0.40
                                                             297.20
                                                                              1
##
  mu[98]
          252.57
                    0.42
                          27.34 204.36 233.44 250.42 268.88
                                                             310.62
                                                                      4182
                           6.61 47.62 54.51 58.54 62.99
                                                              73.13
##
  mu[99]
           59.12
                    0.10
                                                                     4193
                          56.55 388.77 447.23 481.54 521.23 606.17
                                                                     4129
  mu[100] 486.88
##
                    0.88
## mu[101] 238.79
                    0.46 29.04 189.39 218.60 235.94 256.36 301.92
                                                                     3993
                                                                              1
## mu[102] 252.34
                    0.52 32.35 197.11 229.65 248.97 272.36 323.30
                                                                              1
  mu[103] 211.62
                     0.48 28.79 162.98 191.73 208.96 229.31 275.09
  mu[104] 174.08
                     0.44 25.29 131.52 156.62 171.65 189.66 229.89
  mu[105] 74.51
                    0.21 11.62 55.21 66.33 73.25 81.63 100.42
                                                                     3115
## mu[106] 773.83
                    2.41 129.97 560.51 682.25 760.41 851.53 1064.06
                                                                             1
                    0.85 44.70 173.65 214.85 241.76 272.51 344.23
## mu[107] 246.30
                                                                     2738
                                                                             1
                    2.18 110.77 385.09 486.20 551.82 626.49
## mu[108] 563.76
                                                             811.66
                                                                     2591
                                                                              1
## mu[109] 201.69
                    0.87
                          42.96 132.84 171.84 196.96 225.63
                                                             297.66
##
## Samples were drawn using NUTS(diag e) at Sun Oct 11 22:40:49 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Trace plots

```
mcmc_trace(
  as.array(fit_model,pars = c('r_t[1]', 'r_t[10]', 'r_t[50]', 'r_t[100]')),
  np = nuts_params(fit_model)
)
```

```
## No divergences to plot.
```



```
mcmc_trace(
  as.array(fit_model,pars = c('mu[1]', 'mu[10]', 'mu[50]', 'mu[100]')),
  np = nuts_params(fit_model)
)
```

```
\#\# No divergences to plot.
```


Effective sample size

```
ratios1 <- neff_ratio(fit_model, pars = c('mu'))
mcmc_neff(ratios1) + yaxis_text(hjust = 1)</pre>
```



```
ratios2 <- neff_ratio(fit_model, pars = c('r_t'))
mcmc_neff(ratios2) + yaxis_text(hjust = 1)</pre>
```


Density overlay

```
y_rep <- as.matrix(fit_model, pars = "y_rep")
ppc_dens_overlay(y = X$positive[nonzero_days], y_rep[1:1000, ])</pre>
```


Resulting R_t curve

```
fit_summary <- summary(fit_model)

medians_rt <- fit_summary$summary[, '50%'][129: (129+125)]

min_rt_50_interval <- fit_summary$summary[, '25%'][129: (129+125)]

max_rt_50_interval <- fit_summary$summary[, '75%'][129: (129+125)]

min_rt_95_interval <- fit_summary$summary[, '2.5%'][129: (129+125)]

max_rt_95_interval <- fit_summary$summary[, '97.5%'][129: (129+125)]

ggplot(data = NULL, aes(x = X$date, y = medians_rt)) +
    geom_line() +
    xlab('Date') +
    ylab('') +
    getitle( 'OR r_t')+
    geom_hline(yintercept=1, linetype="dashed", color = "red") +
    geom_vline(xintercept = X$date[1]) +
    geom_ribbon(aes(ymin = min_rt_50_interval, ymax = max_rt_50_interval), alpha= 0.5, fill = 'darkred') +
    geom_ribbon(aes(ymin = min_rt_95_interval, ymax = max_rt_95_interval), alpha= 0.1, fill = 'darkred')</pre>
```

OR r_t

