WHAT IS CLAIMED IS:

1. A compound of the general formula (I)

$$\begin{array}{c|c}
 & (L^1)_z \\
 & (L^1)$$

5 wherein

10

15

Nu¹ denotes -O, -S, -Se, -PR^a, NR^a or -COO groups,

R^a denotes hydrogen, alkyl or aryl radicals and

R, R^1 , R^2 , R^3 and R^4 are identical or different radicals that are selected independently of one another from the group consisting of H, halogens, substituted or unsubstituted C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_3 - C_{12} -cycloalkyl, C_7 - C_{13} -aralkyl and C_6 - C_{14} -aryl groups,

and R¹ with R², R³ or R⁴, and R² with R³ or R⁴ may form a ring.

M¹ denotes an element of the 4th to 12th subgroup of the Periodic System,

- 20 L¹ is a neutral ligand and
 - L^2 is an anionic ligand, wherein L^1 and L^2 may be coupled together by one or more covalent bonds, and
- z is a whole number from 1 to 3.

2. The compound according to Claim 1, wherein

Nu¹ is O,

R is selected from the group consisting of substituted an unsubstituted C_6 - C_{14} -aralkyl groups,

 R^1 , R^2 , R^3 and R^4 are identical or different radicals and are selected independently of one another from the group consisting of H, substituted or unsubstituted C_1 - C_8 -alkyl groups, C_2 - C_8 -alkenyl groups, C_3 - C_{12} -cycloalkyl groups, C_7 - C_{13} -aralkyl groups and C_6 - C_{14} -aryl groups,

M¹ is selected from the group consisting of Ti, Zr, Hf, Cr, V, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd and Hg

15

20

10

- L^1 is an organic or inorganic neutral ligand selected from the group consisting of phosphanes of the general formula $(R^{13})_xPH_{3-x}$, amines of the general formula $(R^{13})_xNH_{3-x}$, ethers of the general formula $(R^{13})_2O$, alcohols of the general formula $(R^{13})OH$, pyridine derivatives of the general formula $C_5H_{5-x}(R^{13})_xN$, CO, C_1-C_{12} -alkyl nitrile, C_6-C_{14} -aryl nitrile, and singly or multiply ethylenically unsaturated double bond systems, wherein
- R^{13} is selected from the group consisting of H, C_1 - C_8 -alkyl groups, benzyl radicals and C_6 - C_{14} -aryl groups and
 - x is a whole number from 0 to 3 and
- is an anionic ligand selected from the group consisting of halide ions, amide anions of the formula R¹⁴R¹⁵N, C₁-C₆-alkyl anions, allyl anions, methallyl anions, benzyl anions and aryl anions, wherein

 R^{14} and R^{15} independently of one another are selected from the group consisting of H, C_1 - C_8 -alkyl groups, benzyl radicals and C_6 - C_{14} -aryl groups, and R^{14} may also be covalently coupled to R^{15} , and

- 5 z may be a whole number from 1 to 3.
 - 3. A compound according to Claim 1, wherein

Nu¹ is O,

10

R is mesityl, 2,4,6-trimethylphenyl or 2,6-diisopropylphenyl,

 R^1 , R^2 , R^3 and R^4 are identical or different radicals and independently of one another are selected from the group consisting of H, C_1 - C_8 -alkyl groups and C_6 - C_{14} -aryl groups,

M¹ is selected from the group consisting of Ti, Zr, Cr, V, Fe, Co, Ni, Pd, Cu and Zn

20

15

L¹ is a neutral ligand selected from the group consisting of triphenylphosphine, triethylphosphine, trimethyl-phosphine, dibenzo-phosphol, triphenyl phosphite, triethyl phosphite, trimethyl phosphite, triphenyl phosphite, trimethyl-amine, triethylamine, dimethylaniline, diethylaniline, benzyl-dimethylamine, benzyl-diethylamine, diisopropyl-amine, diethylamine, dimethylamine, diphenylamine, phenylenediamines, diethyl ether, tetrahydrofuran, water, methanol, ethanol, pyridine, 2-picoline, 3-picoline, 4-picoline, 2,3-lutidine, 2,4-lutidine, 2,5-lutidine, 2,6-lutidine, 3,5-lutidine, CO, acrylonitrile, acetonitrile, propionitrile, butyronitrile, benzonitrile, ethenyl, propenyl, cis-2-butenyl, trans-2-butenyl, cyclohexenyl and norbornenyl,

30

25

L² is an anionic ligand selected from the group consisting of chloride, bromide, dimethylamide, diethylamide, amide, 2-carboxylic acid methallyl ester, allyl, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert.-butyl, hexyl and phenyl

5

- z may be a whole number from 1 to 3.
- 4. A compound according to Claim 1, wherein
- 10 Nu^1 is O,
 - R is mesityl or 2,6-diisopropylphenyl,
 - R¹ is tert.-butyl or phenyl,
- 15 R^2 is H,
 - R³ is tert.-butyl,
 - R⁴ is H,
 - M¹ is Ni or Pd, .

20

- L¹ is triphenylphosphane or pyridine,
- L² is phenyl or methyl and
- z is a whole number from 1 to 3.
 - 5. A process for the production of the compounds according to Claim 1 comprising reacting ligand of the general formula (II)

where

5

J is selected from the group consisting of H and an element of the 1^{st} or 2^{nd} main group of the Periodic System and wherein

Nu¹, R, R¹, R², R³, R⁴ have the same meanings as in Claim 1,

10

with 0.2 to 5 equivalents of a metal compound of the general formulae

 $M^{1}X_{4}$, $M^{1}X_{3}$, $M^{1}L^{1}L^{2}$, or $M^{1}X_{2}$,

15

in which

M¹, L¹ and L² have the same meanings as in Claim 1 and

20

X is selected from the group consisting of halogen, C_1 - C_8 -alkyl, C_3 - C_{12} -cycloalkyl, C_7 - C_{13} -aralkyl and C_6 - C_{14} -aryl groups and in which M^1X_4 , M^1X_3 or M^1X_2 may be stabilized by further neutral ligands.

- 6. A process for the production of the compounds according to Claim 5, further comprising purifying and isolating the compound by crystallization.
 - 7. Process for the production of the compounds according to Claim 5,

5

25

wherein the preparation is carried out in situ.

- 8. Process for the production of the compounds according to Claim 7, wherein the ligand and the metal compound are reacted *in situ* in the presence of one or more olefinic monomers.
- 9. Process for the production of compounds according to Claim 1, wherein the process is carried out in aprotic polar solvents.
- 10 10. Process for the production of olefin (co)polymers, comprising reacting compounds according to Claim 1 in the presence of olefinic monomers selected from the group consisting of 1-olefins, cycloolefins, functionalized 1-olefins and mixtures thereof.
- Process according to Claim 10, further comprising adding boron compounds or aluminum compounds as co-catalysts to the reaction mixture.
- Process according to Claim 11, wherein the molar ratio of co-catalyst to metal M¹ in the compound according to formula (I) is in the range from 1:10 to 1:10,000.
 - 13. Process according to Claim 11, wherein aluminoxanes are used as cocatalysts.
 - 14. Process according to Claim 10, wherein the reaction is carried out in polar solvents or solvent mixtures.
- Reaction products prepared by reacting the compounds according to Claim with a co-catalyst(s).

- 16. Olefin (co)polymer prepared according to the process of Claim 10.
- 17. Molded parts prepared by processing the reaction products according to Claim 15.