

1 WHAT IS CLAIMED IS:

2

3 1. A method for resisting electrical shorts caused by
4 an animal contacting an electrified wire and a structure
5 supporting the wire, comprising the steps of:

6 assembling a sprayable dielectric material and a
7 material sprayer;

8 spraying said dielectric material on the structure at a
9 location proximate to the electrified wire; and

10 continuing to spray dielectric material on the
11 structure until a selected dielectric material thickness is
12 achieved.

13

14 2. A method as recited in Claim 1, further comprising
15 the step of selecting a dielectric material having sprayable
16 properties.

17

18 3. A method as recited in Claim 1, further comprising
19 the step of evaluating the difference in electric potential
20 between the electrified wire and the structure before said
21 dielectric material is sprayed on the structure.

22

23 4. A method as recited in Claim 1, further comprising
24 the step of selecting the thickness of a dielectric material
25 to provide a desired dielectric insulating capability.

1

2 5. A method as recited in Claim 1, wherein said
3 dielectric material is sprayed on the structure before the
4 structure is installed to support the electrified wire.

5

6 6. A method as recited in Claim 1, further comprising
7 the step of spraying said dielectric material on the
8 electrified wire at a location proximate to the structure.

9

10 7. A method as recited in Claim 1, wherein said
11 dielectric material is sprayed on the wire before the wire
12 is supported by the structure and before the wire is
13 electrified.

14

15 8. A method for resisting electrical shorts caused by
16 an animal contacting an electrified wire and a structure
17 supporting the wire, comprising the steps of:

18 assembling a liquified dielectric material and a device
19 for distributing said liquefied dielectric material;

20 distributing said dielectric material on the structure
21 at a location proximate to the electrified wire; and

22 continuing to distribute said dielectric material on
23 the structure until a selected dielectric material thickness
24 is achieved.

25

1

2

3

4

5 9. A method as recited in Claim 8, further comprising
6 the step of selecting the thickness of a dielectric material
7 to provide a desired dielectric insulating capability.

8

9 10. A method as recited in Claim 8, further comprising
10 the step of evaluating the potential differential between
11 the electrified wire and the structure.

12

13 11. A method as recited in Claim 8, wherein said
14 dielectric material is distributed on the structure before
15 the structure is installed to support the electrified wire.

16

17 12. A method as recited in Claim 8, further comprising
18 the step of distributed said dielectric material on the
19 electrified wire at a location proximate to the structure.

20

21 13. A method as recited in Claim 12, wherein said
22 dielectric material is distributed on the wire before the
23 wire is supported by the structure and before the wire is
24 electrified.

25

1 14. A method as recited in Claim 8, wherein said
2 dielectric material is distributed on the structure without
3 de-energizing the wire.

4

5 15. A method for resisting electrical shorts caused by
6 an animal contacting an electrified wire and another object,
7 comprising the steps of:

8 assembling a liquified dielectric material and a device
9 for distributing said liquefied dielectric material;

10 distributing said dielectric material on a selection
11 portion of the wire; and

12 continuing to distribute said dielectric material on
13 the wire until a selected dielectric material thickness is
14 achieved.

15

16 16. An apparatus for supporting an electrified wire
17 while resisting electrical shorts caused by an animal in
18 contact with the electrified wire, comprising:

19 a support for supporting the electrified wire;

20 dielectric material distributed on the structure at a
21 location proximate to the electrified wire, wherein said
22 dielectric material has sufficient dielectric strength to
23 resist electrical short circuits in contact with said
24 dielectric material and the electrified wire.

25

1 17. An apparatus as recited in Claim 16, further
2 comprising dielectric material engaged with the electrified
3 wire at a location proximate to said support.

4

5 18. An apparatus as recited in Claim 16, wherein said
6 dielectric material is sprayable.

7

8 19. An apparatus as recited in Claim 16, wherein said
9 dielectric material is resistant to sunlight induced
10 deterioration.

11

12 20. An apparatus as recited in Claim 16, wherein said
13 dielectric material is resistant to deterioration induced by
14 thermal variations.

15

16

17

18

19

20

21

22

23