Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Fourier Theory
- The Fourier Transform
- The Fourier Series
- The Discrete Fourier Series (The Discrete Fourier Transform)

News

Homework #4

- Due <u>Thursday</u> by 11:59 PM
- Submit via canvas

Coding Problem #2

- Due <u>Thursday</u> by 11:59 PM
- Submit via canvas

News

Exam #1

- September 25th (1 week away)
- Will cover all material up to today... such as
 - Signal properties
 - System properties
 - LTI Systems
 - Difference equations
 - Discrete-time convolution
 - The Z-transform and its properties
 - The Discrete-time Fourier Transform and its properties
 - ♦ Etc.

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

The Discrete-Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

■ The Inverse Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$

The Discrete-Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Question: How do I interpret this DTFT?

The Discrete-Time Fourier Transform (DTFT)

$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
Inner product of signal and sinusoids!

Question: How do I interpret this DTFT?

- The Discrete-Time Fourier Transform (DTFT) Table
 - http://smartdata.ece.ufl.edu/eee5502/eee5502_DiscreteTransforms.pdf

- The Discrete-Time Fourier Transform (DTFT) Table
 - http://smartdata.ece.ufl.edu/eee5502/eee5502_DiscreteTransforms.pdf

- **Example:** Compute and sketch the DTFT of $x[n] = \cos\left(\frac{\pi n}{3}\right)$
- **■** What is interesting about this answer?

- **Example:** Compute and sketch the DTFT of $x[n] = \cos\left(\frac{\pi n}{3}\right)$
- What is interesting about this answer?

$$X(\omega) = 2\pi \sum_{k=-\infty}^{\infty} \left[\delta \left(\omega - \frac{\pi}{3} - 2\pi k \right) + \delta \left(\omega + \frac{\pi}{3} - 2\pi k \right) \right]$$

- **Example:** Compute and sketch the DTFT of $x[n] = \cos\left(\frac{\pi n}{3}\right)$
- What is interesting about this answer?

$$X(\omega) = \pi \sum_{k=-\infty}^{\infty} \left[\delta \left(\omega - \frac{\pi}{3} - 2\pi k \right) + \delta \left(\omega + \frac{\pi}{3} - 2\pi k \right) \right]$$

Example: Sketch the magnitude of

$$X(\omega) = \frac{1}{1 - (1/2)e^{-j\omega}}$$

Example: Sketch the magnitude of

$$X(\omega) = \frac{1}{1 - (1/2)e^{-j\omega}}$$

Solution:

$$|X(\omega)| = \frac{1}{\sqrt{5/4 - \cos(\omega)}}$$

Example: Compute the DTFT of

$$x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

$$x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

$$x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

$$X(\omega) = e^{-j\omega} \left[e^{+j\omega} + 2 + e^{-j\omega} \right] = 2e^{-j\omega} \left[1 + \cos(\omega) \right]$$

$$|X(\omega)| = 2(1 + \cos(\omega))$$

 $\angle X(\omega) = e^{-j\omega}$

$$x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

$$|X(\omega)| = 2(1 + \cos(\omega))$$

$$x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2]$$

$$|X(\omega)| = 1 + \cos(\omega)$$

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

- The Discrete-Time Fourier Transform (DTFT) Properties
 - http://smartdata.ece.ufl.edu/eee5502/eee5502_DiscreteTransforms.pdf

Question: Why is the convolution property important?

Example: Compute the DTFT of $x[n] = \left(\frac{1}{2}\right)^{n-2} u[n-1]$

Example: Compute the inverse DTFT of $X(\omega) = \frac{0.5e^{-j\omega}}{1-0.5e^{-j\omega}}$

Example: Compute the DTFT of $x[n] = \left(\frac{1}{2}\right)^n u[n] * \left(\frac{1}{3}\right)^n u[n]$

Example: Compute the DTFT of $x[n] = \left(\frac{1}{2}\right)^n u[n] * \left(\frac{1}{3}\right)^n u[n]$

Solution:

$$X(\omega) = \frac{1}{(1-(1/2)e^{-j\omega})(1-(1/3)e^{-j\omega})}$$

Example: Compute the DTFT of $x[n] = \left(\frac{1}{2}\right)^{-n-1} u[-n-1]$

- **Example:** Let x[n] = 2(u[n] u[n-4])
- **■** Compute the power of $X(\omega)$

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

- We often care about how to be "represent" data
- That is, how we can decompose one signal into other signals?

- We often care about how to be "represent" data
- That is, how we can decompose one signal into other signals?

$$x[n] = \sum_{k} a_k \phi_k[n]$$

- We often care about how to be "represent" data
- That is, how we can decompose one signal into other signals?

$$x[n] = a_1\phi_1[n] + a_2\phi_2[n]$$

- We often care about how to be "represent" data
- Question: What values of a_1 and a_2 give us x[n].

$$x[n] = a_1\phi_1[n] + a_2\phi_2[n]$$

Representations and Bases

We often care about how to be "represent" data

$$x[n] = a_1\phi_1[n] + a_2\phi_2[n]$$

- We often care about how to be "represent" data
- Forward transform

$$x[n] = a[1]\phi_1[n] + a[2]\phi_2[n]$$

- We often care about how to be "represent" data
- Inverse transform

$$a[k] = \frac{1}{2} [a[1]\phi_1[k] + a[2]\phi_2[k]]$$

- We often care about how to be "represent" data
- Inverse transform

$$a[k] = \frac{1}{2} [a[1]\phi_1[k] + a[2]\phi_2[k]]$$

- We often care about how to be "represent" data
- Inverse transform

$$a[k] = \frac{1}{2} [a[1]\phi_1[k] + a[2]\phi_2[k]]$$

- We often care about how to be "represent" data
- Question: Why is the forward and inverse almost the same?

$$\sum_{n=0}^{N-1} \phi_1[n]\phi_2[n] = 0$$

Representations and Bases

- We often care about how to be "represent" data
- Question: Why is the forward and inverse almost the same?

More general Orthogonality:

$$\sum_{n=0}^{N-1} \phi_i[n]\phi_j[n] = 0$$

For any $i \neq j$

- We often care about how to be "represent" data
- Question: Why do I care about transforms and representations?

- We often care about how to be "represent" data
- Question: Why do I care about transforms and representations?
 - Compression
 - Better to understand what it going on in the signal?
 - Better processing

Example

Fourier representation – why might we care about this?

■ Fourier Representation Example

What is this?

■ Fourier Representation Example

It's a sinusoid!

■ Time-Frequency Representation Example

Wavelet Example

These pictures have the same amount of information!!

From: http://web.stanford.edu/class/ee398a/handouts/lectures/09-SubbandCoding.pdf

0.074 bpp

0.048 bpp

Original 512x512 8bpp

Error images

enlarged

http://web.stanford.edu/class/ee398a/handouts/lectures/09-SubbandCoding.pdf

[Gonzalez, Woods, 2001]

Representations and Bases – Empirical Bases

Representations and Bases – Empirical Bases

Representations and Bases – Empirical Bases

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

Cosines and Sines

My signal
$$x(t) = \sum_{k} a_k \phi_k(t)$$

Synthesis Equation (Inverse transform)

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$
Fundamental Frequency

Cosines and Sines

My signal
$$x(t) = \sum_{k} a_k \phi_k(t)$$
 Basis

Cosines and Sines

My signal
$$x(t) = \sum_{k} a_k \phi_k(t)$$

Analysis Equations

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad k \ge 1$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt \qquad k \ge 1$$

Synthesis Equation

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

Analysis Equations

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad k \ge 1$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt \qquad k \ge 1$$

Synthesis Equation

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

Analysis Equations

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad k \ge 1$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt \qquad k \ge 1$$

Question: Is orthogonality found here??

Synthesis Equation

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

Analysis Equations

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt$$

$$a_k = \frac{2}{T_0} \int_{T_0} x(t) \cos(k\omega_0 t) dt \qquad k \ge 1$$

$$b_k = \frac{2}{T_0} \int_{T_0} x(t) \sin(k\omega_0 t) dt \qquad k \ge 1$$

Question: Is orthogonality found here?? Yes!

Testing Orthogonality

$$\begin{split} \frac{1}{T_0} \int_{T_0} \cos(k_1 \omega_0 t) \cos(k_2 \omega_0 t) \, dt \\ &= \frac{1}{2T_0} \int_{T_0} \cos((k_1 - k_2) \omega_0 t) + \cos((k_1 + k_2) \omega_0 t) \, dt \\ &= \begin{cases} 0 & \text{if } k_1 \neq k_2 & \text{Orthogonal!} \\ 1/2 & \text{if } k_1 = k_2 \end{cases} \end{split}$$

$$\begin{split} \frac{1}{T_0} \int_{T_0} \cos(k_1 \omega_0 t) \sin(k_2 \omega_0 t) \, dt \\ &= \frac{1}{2T_0} \int_{T_0} \sin((k_1 - k_2) \omega_0 t) + \sin((k_1 + k_2) \omega_0 t) \, dt \\ &= 0 \quad \text{Orthogonal!} \end{split}$$

Testing Orthogonality

$$\begin{split} \frac{1}{T_0} \int_{T_0} \sin(k_1 \omega_0 t) \sin(k_2 \omega_0 t) \, dt \\ &= \frac{1}{2T_0} \int_{T_0} \cos((k_1 - k_2) \omega_0 t) - \cos((k_1 + k_2) \omega_0 t) \, dt \\ &= \begin{cases} 0 & \text{if } k_1 \neq k_2 & \text{Orthogonal!} \\ 1/2 & \text{if } k_1 = k_2 \end{cases} \end{split}$$

$$\begin{split} \frac{1}{T_0} \int_{T_0} \cos(k_1 \omega_0 t) \sin(k_2 \omega_0 t) \, dt \\ &= \frac{1}{2T_0} \int_{T_0} \sin((k_1 - k_2) \omega_0 t) + \sin((k_1 + k_2) \omega_0 t) \, dt \\ &= 0 \quad \text{Orthogonal!} \end{split}$$

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Easy Way (if sum of sinusoids)
 - Step 1: Determine the fundamental frequency ω_0
 - Step 2: Determine your cosine / sine harmonics of the fundamental
 - Step 3: Determine your cosine / sine amplitudes for those harmonics

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Easy Way (if sum of sinusoids)
 - Step 1: Determine the fundamental frequency ω_0 [$\omega_0 = 1$]
 - Step 2: Determine your cosine / sine harmonics (k) of the fundamental [k = 2, 3]
 - Step 3: Determine your cosine / sine amplitudes for those harmonics
 - $\diamond a_2 = 1$
 - $\diamond b_3 = 4$
 - All other coefficients are zero

$$x(t) = \cos(2t) + 4\sin(3t)$$
 \longleftrightarrow $a_2 = 1$
 $b_3 = 4$
All other coefficients are zero

Example: Find the Fourier Coefficients of...

$$a_2 = 1$$

$$b_3 = 4$$

Confirm

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$

$$x(t) = 0 + (1)\cos((2)\omega_0 t) + (4)\cos((3)\omega_0 t)$$

$$\omega_0 = 1$$

$$x(t) = \cos(2t) + 4\cos(3t)$$

Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Hard Way
 - Step 1: Find fundamental frequency ω_0
 - Step 2: Solve for a_0
 - Step 3: Solve for a_k
 - **Step 4:** Solve for b_k

Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

Hard Way

• Step 1: Find fundamental frequency ω_0

$$\omega_0 = 1$$

- Step 2: Solve for a_0
- **Step 3:** Solve for a_k

Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Hard Way
 - Step 1: Find fundamental frequency ω_0
 - Step 2: Solve for a_0

$$a_0 = \frac{1}{T_0} \int_{T_0} x(t) dt = \frac{1}{2\pi} \int_0^{2\pi} \cos(2t) + 4\sin(3t) dt = 0$$

• Step 3: Solve for a_k

Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Hard Way
 - **Step 1:** Find fundamental frequency ω_0
 - Step 2: Solve for a_0
 - **Step 3:** Solve for a_k

$$a_k = \frac{2}{T_0} \int_{T_0} [\cos(2t) + 4\sin(3t)] \cos(k\omega_0 t) dt$$
$$= \begin{cases} 1 & \text{if } k = 2\\ 0 & \text{if otherwise} \end{cases}$$

Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Hard Way
 - **Step 1:** Find fundamental frequency ω_0
 - Step 2: Solve for a_0
 - **Step 4:** Solve for b_k

$$b_k = \frac{2}{T_0} \int_{T_0} [\cos(2t) + 4\sin(3t)] \sin(k\omega_0 t) dt$$
$$= \begin{cases} 4 & \text{if } k = 3\\ 0 & \text{if otherwise} \end{cases}$$

The Continuous-Time Fourier Series Complex Exponentials

Synthesis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Analysis Equation

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

Testing Orthogonality

$$\frac{1}{T_0} \int_{T_0} e^{jk_1 \omega_0 t} e^{-jk_2 \omega_0 t} dt$$

$$= \frac{1}{T_0} \int_{T_0} e^{j(k_1 - k_2) \omega_0 t} dt$$

$$= \begin{cases} 0 & \text{if } k_1 \neq k_2 \\ 1 & \text{if } k_1 = k_2 \end{cases}$$

Example: Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Easy Way (if sum of sinusoids)
 - Step 1: Determine the fundamental frequency ω_0
 - Step 2: Determine your harmonics of the fundamental
 - Step 3: Determine your amplitudes for those harmonics (+ and -)

Example: Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t)$$

- Easy Way (if sum of sinusoids)
 - Step 1: Determine the fundamental frequency ω_0 [$\omega_0 = 1$]
 - Step 2: Determine your harmonics of the fundamental [k = 2, 3]
 - Step 3: Determine your amplitudes for those harmonics (+ and -)

$$\diamond c_2 = 1/2, c_{-2} = 1/2$$

$$\diamond c_3 = -2j, c_{-3} = 2j$$

All other coefficients are zero

Example: Find the Fourier Coefficients of...

$$x(t) = \cos(2t) + 4\sin(3t) \iff c_2 = 1/2, c_{-2} = 1/2$$

$$c_3 = -2j, c_{-3} = 2j$$
All other coefficients

Find the Fourier Coefficients of...

$$c_2 = 1/2, c_{-2} = 1/2$$

 $c_3 = -2j, c_{-3} = 2j$

Confirm

$$x(t) = \frac{1}{2}e^{2\omega_0 t} + \frac{1}{2}e^{-2\omega_0 t} - 2je^{3\omega_0 t} + 2je^{-3\omega_0 t}$$

$$x(t) = \frac{1}{2}e^{2\omega_0 t} + \frac{1}{2}e^{-2\omega_0 t} - 2je^{-3\omega_0 t} + 2je^{3\omega_0 t}$$

$$x(t) = \frac{1}{2}(e^{2\omega_0 t} + e^{-2\omega_0 t}) + 2j(-e^{3\omega_0 t} + e^{-3\omega_0 t})$$

$$x(t) = \frac{1}{2}(e^{2\omega_0 t} + e^{-2\omega_0 t}) + \frac{2}{j}(e^{3\omega_0 t} - e^{-3\omega_0 t})$$

$$x(t) = \cos(2\omega_0 t) + 4\cos(3\omega_0 t)$$

Compute the Fourier Series of an odd Square Wave

Compute the Fourier Series of an odd Square Wave

$$\frac{1}{T_0} \int_{T_0} x(t) e^{-j\omega_0 kt} dt = \frac{1}{2} \int_0^1 e^{-j\omega_0 kt} dt - \frac{1}{2} \int_1^2 e^{-j\omega_0 kt} dt = \frac{-1/2}{j\omega_0 k} e^{-j\omega_0 kt} \Big|_0^1 + \frac{1}{j\omega_0 k} e^{-j\omega_0 kt} \Big|_1^2$$

$$= \frac{-1/2}{j\omega_0 k} \left(e^{-j\omega_0 k} - 1 \right) + \frac{1/2}{j\omega_0 k} \left(e^{-j2\omega_0 k} - e^{-j\omega_0 k} \right)$$

$$T_0 = 2$$

$$\omega_0 = \frac{2\pi}{T_0} = \pi$$

$$= \frac{1/2}{j\pi k} \left(1 - e^{-j\pi k}\right) + \frac{1/2}{j\pi k} \left(e^{-j2\pi k} - e^{-j\pi k}\right)$$

$$= \begin{cases} \frac{1/2}{j\pi k}(1-1) + \frac{1/2}{j\pi k}(1-1) &= 0 & \text{If } k \text{ is even} \\ \frac{1/2}{j\pi k}(1-(-1)) + \frac{1/2}{j\pi k}(1-(-1)) &= \frac{2}{j\pi k} & \text{If } k \text{ is odd} \end{cases}$$

Fourier Series of a Square Wave

$$a_k = 0$$

$$b_k = \begin{cases} \frac{4}{\pi n} & \text{if} & n > 0 \text{ is odd} \\ 0 & \text{if} & n > 0 \text{ is even} \end{cases}$$

$$c_k = \begin{cases} \frac{2}{j\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Constructing a square wave

http://www.upv.es/~rfuster/xpicture/classroom.html

Constructing a square wave

Constructing a square wave

Constructing a ramp

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

Fourier Series Synthesis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Fourier Series Analysis Equation

$$c_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$$

Fourier Series Synthesis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Let the fundamental period $T_0 \to \infty$ Or the fundamental period $\omega_0 \to 0$ Or $k\omega_0 \to \Omega$

Fourier Series Synthesis Equation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$$

Let the fundamental period $T_0 \to \infty$ Or the fundamental period $\omega_0 \to 0$ Or $k\omega_0 \to \Omega$ Or $c_k \to \mathrm{X}(\Omega)$

So this turns into the Fourier Transform Synthesis Equation

$$x(t) = \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

Fourier Transform Synthesis Equation

$$x(t) = \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = e^{-2t}u(t)$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = e^{-2t}u(t)$$

$$X(\Omega) = \int_{-\infty}^{\infty} e^{-2t} u(t) e^{-j\Omega t} dt = \int_{0}^{\infty} e^{-(j\Omega+2)t} dt$$
$$= \frac{-1}{j\Omega+2} e^{-(j\Omega+2)t} \Big|_{0}^{\infty} = \frac{1}{2+j\Omega}$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = e^{-2t}u(t)$$
 \longleftrightarrow $X(\Omega) = \frac{1}{2 + j\Omega}$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = e^{-2t}u(t)$$
 \longleftrightarrow $X(\Omega) = \frac{1}{2 + j\Omega}$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = u\left(t + \frac{1}{2}\right) - u\left(t - \frac{1}{2}\right)$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = u\left(t + \frac{1}{2}\right) - u\left(t - \frac{1}{2}\right)$$

Fourier Transform Analysis Equation

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$x(t) = u\left(t + \frac{1}{2}\right) - u\left(t - \frac{1}{2}\right) \iff x(t) = \operatorname{sinc}(\Omega/2)$$

1ucasvb.tumblr.com

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

The Bilateral Laplace Transform

Consider the signal

$$x(t) = e^{2t}\cos(t)$$

Does this have a Fourier Transform?

The Bilateral Laplace Transform

Consider the signal

$$x(t) = e^{2t} \cos(t)$$

However, let's multiply the signal by a exponential

$$x(t)e^{-\sigma t} = e^{2t}e^{-\sigma t}\cos(t) = e^{(2-\sigma)t}\cos(t)$$

For what values of σ does the Fourier transform exist? $\sigma > 2$

■ The Bilateral Laplace Transform

Consider the signal

$$x(t) = e^{2t}\cos(t)$$

We want to incorporate this to achieve convergence at any time.

The Fourier Transform

$$X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t} dt$$

$$x(t) = \int_{\infty}^{\infty} X(\Omega) e^{-j\Omega t} d\Omega$$

where $s = \sigma + j\omega$. s is complex.

The Bilateral Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-\sigma t}e^{-j\Omega t} dt$$

$$x(t) = \int_{-c-j\infty}^{c+j\infty} X(s)e^{-\sigma t}e^{-j\Omega t} ds$$

where $s = \sigma + j\omega$. s is complex.

The Bilateral Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$$

$$x(t) = \int_{-c-j\infty}^{c+j\infty} X(s)e^{st} ds$$

where $s = \sigma + j\omega$. s is complex.

The Bilateral Laplace Transform

• Laplace transform of $x(t) = e^{at}u(t)$

$$X(s) = \int_{-\infty}^{\infty} [e^{at}u(t)]e^{-\sigma t}e^{-j\omega} dt \text{ causal}$$

When does this converge? $\sigma > a$

• Laplace transform of $x(t) = e^{-at}u(-t)$

$$X(s) = \int_{-\infty}^{\infty} [e^{-at}u(-t)]e^{-\sigma t}e^{-j\omega} dt \quad \text{Anti-Causal}$$

When does this converge? $\sigma < -a$

The Bilateral Laplace Transform

• Laplace transform of $x_1(t) = e^{at}u(t)$

$$X_1(\omega) = \frac{1}{s - a}$$

When does this converge? $\sigma > a$

• Laplace transform of $x_2(t) = e^{-at}u(-t)$

$$X_2(s) = X(-s) = \frac{1}{-s-a} = \frac{-1}{s+a}$$

When does this converge? $\sigma < -a$

The Bilateral Laplace Transform

• Laplace transform of $x_1(t) = e^{at}u(t)$

$$X_1(\omega) = \frac{1}{s - a}$$

When does this converge? $\sigma > a$

• Laplace transform of $x_3(t) = -e^{+at}u(-t)$

$$X_3(-s) = \mathcal{L}\{-e^{-at}u(t)\} = \frac{-1}{s+a}$$
$$X_3(s) = \frac{-1}{-s+a} = \frac{-1}{s-a}$$

When does this converge? $\sigma < a$

Poles and Zeros

$$X(s) = \frac{\prod_{z=1}^{Z} (s - a_z)}{\prod_{p=1}^{P} (s - b_p)}$$

Region of Convergence

$$X(s) = \frac{\prod_{z=1}^{Z} (s - a_z)}{\prod_{p=1}^{P} (s - b_p)}$$

Region of Convergence

$$X(s) = \frac{\prod_{z=1}^{Z} (s - a_z)}{\prod_{p=1}^{P} (s - b_p)}$$

If a causal system:

Region of Convergence

$$X(s) = \frac{\prod_{z=1}^{Z} (s - a_z)}{\prod_{p=1}^{P} (s - b_p)}$$

If an anti-causal system:

Region of Convergence

$$X(s) = \frac{\prod_{z=1}^{Z} (s - a_z)}{\prod_{p=1}^{P} (s - b_p)}$$

If an anti-causal & causal system:

Example: Laplace Transform of

$$x(t) = e^{-2t}u(t) * [e^{2t}u(-t)]$$
$$X(s) = \left(\frac{1}{s+2}\right)\left(\frac{1}{-s+2}\right)$$

Lecture 8 : Fourier Theory

Foundations of Digital Signal Processing

Outline

- The Discrete-time Fourier Transform (DTFT) Review
- The Properties of the Discrete-time Fourier Transform (DTFT)
- General Representation / Fourier Theory
- The Fourier Series
- The Fourier Transform
- Laplace Transform
- The Fourier Relationships

■ For digital signal processing, just remember:

Everything's connected!

	Continuous Time	Discrete Time
Fourier Series	The Fourier Series	The Discrete Fourier Series
Fourier Transform	The Fourier Transform	The Discrete-Time Fourier Transform

	Continuous Time	Discrete Time
	The Fourier Series	The Discrete Fourier Series
Fourier Series	In time: Continuous In frequency: Discrete	In time: Discrete In frequency: Discrete
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous In frequency: Continuous	In time: Discrete In frequency: Continuous

	Continuous Time	Discrete Time
	The Fourier Series	The Discrete Fourier Series
Fourier Series	In time: Continuous	In time: Discrete
	In frequency: Discrete	In frequency: Discrete
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic	In time: Discrete, aperiodic
	In frequency: Continuous	In frequency: Continuous

	Continuous Time	Discrete Time
	The Fourier Series	The Discrete Fourier Series
Fourier Series	In time: Continuous, periodic In frequency: Discrete	In time: Discrete, periodic In frequency: Discrete
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic In frequency: Continuous	In time: Discrete , aperiodic In frequency: Continuous

	Continuous Time	Discrete Time
Fourier Series	The Fourier Series	The Discrete Fourier Series
	In time: Continuous , periodic In frequency: Discrete	In time: Discrete, periodic In frequency: Discrete
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic In frequency: Continuous	In time: Discrete, aperiodic In frequency: Continuous

	Continuous Time	Discrete Time
Fourier Series	The Fourier Series	The Discrete Fourier Series
	In time: Continuous , periodic In frequency: Discrete , aperiodic	In time: Discrete , periodic In frequency: Discrete
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic In frequency: Continuous, aperiodic	In time: Discrete , aperiodic In frequency: Continuous

	Continuous Time	Discrete Time
	The Fourier Series	The Discrete Fourier Series
Fourier Series	In time: Continuous, periodic	In time: Discrete, periodic
	In frequency: Discrete, aperiodic	In frequency: Discrete, periodic
	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic	In time: Discrete, aperiodic
	In frequency: Continuous, aperiodic	In frequency: Continuous, periodic

The Fourier Series In time: Continuous, periodic In frequency: Discrete, aperiodic The Fourier Transform The Fourier Transform In time: Continuous, aperiodic In frequency: Discrete, aperiodic The Discrete-Time Fourier Transform In time: Continuous, aperiodic In frequency: Continuous, aperiodic In frequency: Continuous, aperiodic		Continuous Time	Discrete Time
In time: Continuous, periodic In frequency: Discrete, aperiodic In frequency: Discrete, aperiodic The Fourier Transform Fourier Transform In time: Continuous, aperiodic In time: Discrete, periodic In time: Discrete, periodic In time: Discrete, aperiodic		The Fourier Series	The Discrete Fourier Series
Fourier Transform In time: Continuous, aperiodic In time: Discrete, aperiodic			
Fourier Transform In time: Continuous, aperiodic In time: Discrete, aperiodic			
Transform In time: Continuous, aperiodic In time: Discrete, aperiodic		The Fourier Transform	The Discrete-Time Fourier Transform
In frequency: Continuous, aperiodic In frequency: Continuous, periodic		In time: Continuous, aperiodic	In time: Discrete, aperiodic
		In frequency: Continuous, aperiodic	In frequency: Continuous, periodic

Repeat in frequency / sample in time

	Continuous Time	Discrete Time
	The Fourier Series	The Discrete Fourier Series
Fourier Series	In time: Continuous, periodic	In time: Discrete, periodic
Sample in	In frequency: Discrete , aperiodic	In frequency: Discrete, periodic
frequency / repeat in time	The Fourier Transform	The Discrete-Time Fourier Transform
Fourier Transform	In time: Continuous, aperiodic	In time: Discrete, aperiodic
	In frequency: Continuous, aperiodic	In frequency: Continuous, periodic

Repeat in frequency / sample in time