Group Theory May 2, 2022

1 Groups, Semigroups, Monoids and Groupoid

Definition (Binary Operation). $*: A \to A$

Definition. A non-empty set S w.r.t binary operation * is called an algebraic structures. E.g, $S = \{1, -1\}$ is a structure under \times .

Definition. Let (G, *) be an algebraic structures with binary operation * then G is called a group if it satisfy the following properties :

- Closure property i.e, $\forall a, b \in G \ a * b \in G$
- There exist an identity element e s.t $a * e = e * a = a \ \forall a \in G$
- Every element $a \in G$ has an inverse $a^{-1} \in G$ s.t $a * a^{-1} = e$
- * is Associative i.e, $\forall a, b, c \in G \ (a * b) * c = a * (b * c)$

Example 1. $(M_{m \times n}(\mathbb{R}), +)$ is a group.

Example 2. $G = \{M_{n \times n}(\mathbb{R}) | det(M) \neq 0\}$ is a non-singular matrix, (G, \times) is a group.

Definition. A group is G is called Commutative or Abelian Group if it has commutative property i.e, $\forall a, b \in G \ a * b = b * a$

Definition. (G, *) is a semigroup if it has - closure and Associativity.

Definition. (G,*) is a monoid if it has - closure, Associativity and Identity element.

Definition. Let (S, *) be a structure in which S is non-empty set and * is a binary operation define on S. Such structure is called groupoid.

Definition. A group G is called a finite group if the no. of elements in G is finite.

Definition. The no. of elements in a group (finite or infinite) is called its order, denoted as o(G) or |G|

Example 3.
$$G = \{1, -1, i, -i\} \implies o(G) = 4$$

Definition. The order of an element $a \in G$ is the smallest $n \in \mathbb{Z}^+$ s.t $a^n = e$, if $a^n \neq e$ then a has infinite orders, denoted as o(a) = n or |a| = n. For + opereration na = 0.

Example 4.
$$G = \{1, -1, i, -i\}$$
 for $i \in G \implies o(i) = 4 \iff i^4 = (i^2)^2 = (-1)^2 = 1$

Theorem 1 (Cancellation Law). Let G be a group and $a,b,c \in G$ such that $a*b=a*c \implies b=c$

Corollary. A group G has a unique identity element.

Corollary. Any element of G has a unique inverse.

Theorem 2. If $a \in G$ then $(a^{-1})^{-1} = a$ and if $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$

2 Subgroups, Cosets and Normal Subgroup

Definition (Subgroup). Let (G, *) be a group and if $H \subseteq G$ then H is a subgroup of G if (H, *) is a group. Denoted as $H \subseteq G$

Definition. The trivial subgroup of any group is the subgroup $\{e\}$ consisting of just the identity element.

Definition. A proper subgroup of a group G is a subgroup H which is a proper subset of G i.e, $H \neq G$. Denoted as H < G

Definition. If H is a subgroup of G, then G is sometimes called an overgroup of H.

Example 5. $2\mathbb{Z}$ is subgroup of $(\mathbb{Z}, +) \implies n\mathbb{Z} \leq \mathbb{Z}$

Definition. Let (G, *) be a group and H < G, and $g \in G$ then -

- The left coset of H by g is $gH = \{gh | h \in H\}$
- The right coset of H by q is $Hq = \{hq | h \in H\}$

Lemma. Each coset of a subgroup H has the same size as H i.e, |gH| = |H| = |Hg|

Remark. Coset divides the finite group G in equals parts that is $G = H \cup g_1 H \cup \cdots \cup g_k H$. Therefore,

$$|G| = |eH| + |gH| + \dots + |g_kH|$$
$$= k|H|$$

Definition. The no. of cosets (left or right) of H in G is called the index of H in G. Denoted as [G:H]. Therefore, we have a counting formula as

$$|G| = [G:H] \times |H|$$

Remark. The above serve as a proof of Lagrange's Theorem

Theorem 3 (Lagrange's Theorem). Let G be a finite group and $H \leq G$ then o(H)|o(G)

Lemma. The identity element and inverse of a subgroup is same as that of group.

Theorem 4 (Two step subgroup test). Let $H \subseteq G$, H is a subgroup of G iff -

- $a \in H, b \in H \implies a * b \in H$
- $\bullet \ a \in H \implies a^{-1} \in H$

Definition. Let $H \leq G$ then using H we can form the cosets as $H, gH, g_2H...$ if all these cosets form a group when $g^{-1}Hg \in H$ for any $g \in G$ then H is called the normal subgroup. Denoted as $H \leq G$.

Definition. The cosets group is called a Factor or Quotient Group. Denoted as G/H

Definition. If the only normal subgroups of G are G and $\{e\}$ then G is called a simple group.

Theorem 5. Every subgroup of Abelian group is a normal subgroup

Proof. Let $g \in G$ and $h \in H$ then

$$g^{-1}hg = g^{-1}(gh)$$
 Since, G is commutative
$$= (g^{-1}g)h$$
$$= eh \implies h \in H$$

Corollary. Every subgroup of a cyclic group is also a normal subgroup.

Lemma. If H < G and K < G then -

- $H \cap K$ is a subgroup of G
- if $H \subseteq G$ and $K \subseteq G$ then $H \cap K \subseteq G$

Homomorphism and Isomorphism 3

Definition. Let (G,*) and (H,\bullet) be a two group such that $f:G\to H$ is a homomorphism if $\forall a, b \in G$

$$f(a*b) = f(a) \bullet f(b)$$

Remark. Homomorphism means same shape that is if G is homomorphic to H that means G and H has similar structure. Whereas, isomorphism means identical structure.

Theorem 6. Let $f: G \to H$ be a group homomorphism and e_G and e_H be the identities of respective group then $f(e_G) = e_H$.

Proof. Let $q \in G$ then,

$$g * e_G = g$$

$$f(g * e_G) = f(g)$$

$$f(g) \bullet f(e_G) = f(g)$$

$$h \bullet f(e_G) = h$$

$$h^{-1} \bullet h \bullet f(e_G) = h^{-1}h \implies f(e_G) = e_H$$

Theorem 7. Let $f: G \to H$ be a group homomorphism and let g^{-1} be the inverse of $g \in G$ and h^{-1} for $h \in H$ then $f(g^{-1}) = h^{-1}$

Proof. Let $q \in G$ then,

$$g * g^{-1} = e_G$$

$$f(g * g^{-1}) = f(e_G)$$

$$f(g) \bullet f(g^{-1}) = e_H$$

$$h \bullet f(g^{-1}) = e_H$$

$$h^{-1} \bullet h \bullet f(g^{-1}) = e_H \bullet h^{-1}$$

$$f(g^{-1}) = h^{-1}$$

Definition. $f: G \to G$ is said to be endomorphism if f(a*b) = f(a)*f(b). If $f: G \to H$ be homomorphism if f is 1-1 then it is called monomorphism and if f is onto its is called epimorphism.

Definition. Let $f: G \to H$ be a group homomorphism then the kernal of f denoted as $ker(f) = \{g \in G \mid f(g) = e_H\}$. The $image\ of\ f,\ im(f) = \{f(g) \mid g \in G\}$. Clearly, $im(f) \subseteq H$

Definition. If $f: G \to H$ is bijective then it is isomorphism. Written as $G \cong H$

Example 6. $\mathbb{Z} \cong \mathbb{Z}_2$

Lemma. If $f: G \to H$ is isomorphism then $f^{-1}: H \to G$ is also an isomorphism

Lemma. If $G \cong H$ then G is commutative iff H is commutative

Corollary. If $G \cong H$ then G is cyclic iff H is cyclic

Lemma. $H \cong (\mathbb{Z}, +)$ where $H = \{ 2^n \mid n \in \mathbb{Z} \}$

Proof. Define $f(n) = 2^n$ then $f(a+b) = 2^{a+b} \implies 2^a * 2^b = f(a) * f(b)$

4 Cyclic Group

Definition. A group is a *cyclic group* if it is generated by a single element. Denoted as $G = \langle a \rangle$

Remark. cyclic group is of the form $G = \{a^n | n \in \mathbb{Z}\} = \langle a \rangle = \{\dots a^{-2}, a^{-1}, e, a^1, a^2 \dots \}$

Example 7. $1 \in \mathbb{Z}$ is a generator of $(\mathbb{Z}, +)$

Lemma. A generator of \mathbb{Z}_n is the number which is coprime to n.

Example 8. For $\mathbb{Z}_6 = <1> = <5>$

Lemma. If a is the generator of G then a^{-1} is also a generator.

Lemma. Every cyclic group is Abelian.

Definition. A group G is finitely generated if $\exists g_1, g_2, \dots g_k \in G$ s.t every element of G can be written as $g_1^{\alpha_1} \dots g_k^{\alpha_k} \in G$ and $\alpha_1, \dots \alpha_k \in \mathbb{Z}$

Example 9.

- $(\mathbb{Z},+)$
- $G = \{\frac{a}{b}|a, b \text{ consist of prime} \le r\}$ is finitely generated.

5 Commutative Group

Definition. A group with commutative property is the *commutative or abelian* group i.e ab = ba for all $a, b \in G$.

Definition (Partition of Integers). A multiset of positive integers that add to n is called a partition of n. The no.of partitions of k is denoted as p(k).

Example 10.
$$p(3) = 3 \iff \{3, 1+2, 1+1+1\} \ (1+2 \text{ is same as } 2+1)$$

Lemma (Fundamental Theorem of Finite Abelian Group). The no. of Abelian groups of order n is the product of no. of partitions of n_i , where n_i is obtained from the prime factorization of n

$$n = p_1^{n_1}.p_2^{n_2}...p_k^{n_k}$$

6 Quotient Group, Direct Product