- 1(5). Find the z-transform of the <u>repeating</u> sequence, $x[n] = \{0,1,0,1,0,...\}$
- 2(15). Find the closed form analytic expressions for the inverse *z*-transforms of the following. Use tables and properties. Assume x[n] = 0 for n < 0.

(a)(5)
$$X(z) = \frac{z^{-2}}{1 - \frac{1}{3}z^{-1}}$$
 (b)(10) $X(z) = \frac{z^{-2}}{\left(1 - \frac{1}{3}z^{-1}\right)^2}$ (use property, $nx[n] \leftrightarrow -z\frac{dX(z)}{dz}$)

- (c)(10) $X(z) = \frac{z^2}{z^2 + \frac{1}{2}z \frac{1}{2}}$ (use partial fraction expansion)
- 3.(15) The z-transform of sequences $x_1[n]$ and $x_2[n]$ are $X_1(z) = 1 + z^{-1} + 2z^{-3}$ and $X_2(z) = 2z^{-1} + z^{-2} + 3z^{-3}$, respectively.
 - (a) What are $x_1[n]$ and $x_2[n]$? Express each as a sequence starting at n = 0.
 - (b) Convolve $x_1[n]$ with $x_2[n]$, i.e., find $y[n] = x_1[n] * x_2[n]$.
 - (c) Form the polynomial product $X_1(z)X_2(z)$. What is the inverse z-transform of $X_1(z)X_2(z)$?
- 4(15). The output of a discrete-time linear, time-invariant system is $y[n] = \left(1 \left(\frac{1}{2}\right)^n\right)u[n]$ when the input is a unit step, x[n] = u[n]. Using *z*-transforms, find the impulse response, h[n].
- 5(10). The signal $x(t) = \cos(5\pi t)$ is sampled every 0.1 seconds, starting at t=0. Find X(z), the z-transform of the resulting sampled signal x[n]. Note that x[n]=0 for n<0
- 6(10). Find the z-transform of $x[n] = \left(\frac{1}{3}\right)^n \cos\left(\frac{\pi}{4}n\right)u[n]$ and sketch its pole-zero diagram.
- 7(15). Find the inverse transform of $X(z) = \left(\frac{1}{4}\right) \left(\frac{8 \left(1 + 2\sqrt{3}\right)z^{-1}}{1 \frac{1}{4}z^{-1} + \frac{1}{16}z^{-2}}\right)$.
- 8(15). Find Find the inverse transform of $X(z) = \left(\frac{5(1-z^{-1})}{1-1.6z^{-1}+0.8z^{-2}}\right)$. Express in the form, $x[n] = K(a)^n \cos(bn+c)u[n]$.