Player Tracking Methodology

Sajad Mashood A

15/07/2025

1 Technical Approach

1.1 Core Architecture

- Two-Stage Pipeline:
 - Detection: YOLOv8 model (custom-trained)
 - Tracking: Hybrid feature+appearance matching
- Key Components:
 - SIFT feature extraction
 - Bounding box IoU matching
 - Temporal consistency checks

1.2 Implemented Techniques

- 1. Baseline Method:
 - Simple IoU-based tracking
 - Failed during occlusions (ID switches)
- 2. Improved Version:
 - \bullet Added SIFT feature matching (30% improvement)
 - Aspect ratio similarity metric
 - Frame history buffer (reduced ID switches by 45%)
- 3. Final Approach:
 - Weighted similarity score:
 - -60% IoU
 - 20% aspect ratio
 - -20% SIFT features
 - Temporal window of 30 frames

2 Performance Metrics

3 Key Challenges

3.1 Occlusion Handling

- Implemented feature caching
- Added trajectory prediction

Table 1: Tracking Performance Comparison

Method	MOTA ↑	ID Switches \downarrow	FPS
Baseline	0.62	87	28
Feature-Augment	0.78	48	22
Final	0.85	26	18

3.2 Real-Time Constraints

- Optimized SIFT extraction ROI
- Implemented frame skipping

3.3 Lighting Variations

- Added histogram equalization
- Normalized feature descriptors

4 Lessons Learned

4.1 Critical Findings

- Appearance features degrade rapidly in sports videos
- Simple geometric metrics often outperform complex features
- 60-80 frame buffer optimal for this use case

4.2 Unexpected Results

- Color histograms hurt performance
- Smaller players tracked more reliably than larger ones

5 Future Improvements

5.1 Near-Term

- Implement DeepSORT integration
- Add team classification

5.2 Long-Term

- End-to-end trainable tracker
- 3D position estimation