Approximate comparison of distance automata

Thomas Colcombet Laure Daviaud

LIAFA, CNRS

Highlights of logic, games and automata, Paris 2013

ARIS

<u>Distance automaton</u>: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

$$(\mathbb{A}, Q, I, T, E)$$
 with $E \subseteq (Q \times \mathbb{A} \times \mathbb{N} \times Q)$

<u>Distance automaton</u>: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

$$(\mathbb{A}, Q, I, T, E)$$
 with $E \subseteq (Q \times \mathbb{A} \times \mathbb{N} \times Q)$

Weight of a run:

sum of the weights of the transitions

<u>Distance automaton</u>: Non deterministic finite automaton for which each transition is also labelled by a non-negative integer called the weight of the transition.

$$(\mathbb{A}, Q, I, T, E)$$
 with $E \subseteq (Q \times \mathbb{A} \times \mathbb{N} \times Q)$

b: 1

Weight of a run:

sum of the weights of the transitions

Computed function:

 $\mathbb{A}^* \to \mathbb{N} \cup \{+\infty\}$

 $w \mapsto \min \text{minimum of the weights of} \\ \text{the runs labelled by } w \text{ going} \\ \text{from an initial state} \\ \text{to a final state} \\ (+\infty \text{ if no such run})$

$$a^{n_0}ba^{n_1}b\cdots ba^{n_k}\mapsto \min(n_0,n_1,\ldots,n_k,k)$$

Decision problems on comparison

f, g computed by distance automata : $\mathbb{A}^* \to \mathbb{N} \cup \{+\infty\}$ $f \leqslant g$ if for all words w, $f(w) \leqslant g(w)$

Decision problems on comparison

 $f,\ g$ computed by distance automata : $\mathbb{A}^* \to \mathbb{N} \cup \{+\infty\}$ $f \leqslant g$ if for all words $w,\ f(w) \leqslant g(w)$

Undecidable [Krob, 92]

Given f, g computed by distance automata, is $f \leq g$?

Decidable [Colcombet, 09]

Is there a polynomial P s.t $f \leqslant P \circ g$? (context of cost functions)

Generalisation of results by Hashiguchi, Leung and Simon

Theorem of affine domination

Proposition

Given f, g computed by distance automata, the two assertions are equivalent:

- There is a polynomial P s.t $f \leqslant P \circ g$.
- ② There is an integer a s.t $f \leq ag + a$.

Theorem

Given f, g computed by distance automata, one can decide if there is an integer a s.t $f \leqslant ag + a$.

Theorem of approximate comparison

Input : f,g computed by distance automata and $\varepsilon > 0$

Theorem: Existence of an algorithm having this behaviour.

Conclusion and further questions

Undecidable [Krob, 92] $f \leqslant g$?

Algorithm of approximate
comparison
EXPSPACE
(problem PSPACE-hard)

<u>Decidable</u> [Colcombet, 09] Is there a polynomial P s.t $f \leq P \circ g$?

<u>Decidable</u>

Is there an integer a s.t $f \leqslant ag + a$?

Next steps

Capture other kinds of asymptotic behaviours Case of \max -+ automata