

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU-OF STANDARDS-1963-A

SMOKING AND THE DIFFERENTIAL WHITE BLOOD CELL COUNT AS DETERMINED ON A TECHNICON H6000™ AUTOMATED BLOOD CELL ANALYZER

F. C. GARLAND M. R. WHITE

G. M. SEAL

621

AD-A159

REPORT NO. 84-49

THE COPY

NAVAL HEALTH RESEARCH CENTER

P.O. BOX 85122 SAN DIEGO, CALIFORNIA 92138-9174

NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMMAND
BETHESDA, MARYLAND

DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

85 9 23 130

SMOKING AND THE DIFFERENTIAL WHITE BLOOD CELL COUNT AS DETERMINED ON A TECHNICON ${ m H6000}^{ m TM}$ AUTOMATED BLOOD CELL ANALYZER

Prank C. Garland and Martin R. White
Environmental Medicine Department
Naval Health Research Center
P. O. Box 85122
San Diego, California 92138-9174

and

Grace M. Seal

Naval Regional Medical Center, Long Beach

Branch Medical Clinic, Naval Weapons Center

China Lake, California

Report No. 84-49 was supported by the Naval Medical Research and Development Command, Department of the Navy, under research Work Unit MRO41.22-001-0005. The views presented in this paper are those of the authors. No endorsement by the Department of the Navy has been given or should be inferred.

Approved for public released
Distribution Unlimited

SUMMARY

Objective

To determine the effect smoking has on the differential white blood cell count using a Technicon N6000 automated blood cell analyzer.

Approach

Blood samples from 2968 apparently healthy employees of the Naval Weapons Center (NWC), China Lake, California, were collected from January 1982 to November 1982 as part of an ongoing Occupational Health Program at NWC. All blood samples were collected between 8:30 and 11:00 a.m. to minimize hour-to-hour variation in the white blood cell counts. A Technicon #6000 automated blood cell analyzer interfaced to a VAX/750 computer was used to analyze the blood samples.

Results

A significant increase in number of all leukocyte cell types was observed in smokers (8177 cells per mm 3) as compared to nonsmokers (6319 cells per mm 3) (p < 0.001). The largest relative percent increase occurred in neutrophils (36%) and the lowest relative percent increase in eosinophils (14%). Smokers had a slight increase in mean percentage of neutrophils compared with nonsmokers, and a slight decrease in mean percentage of lymphocytes. Smoking also appears to have affected the platelet count. Both male and female smokers show a slight increase in their platelet count, 3.2% and 5.1% higher counts respectively, in comparison to nonsmokers.

Conclusion

With the use of the new Technicon H6000 blood cell analyzers which counts as many as 10,000 cells per sample, a more accurate picture of the effect smoking has on the leukocyte count is now available. Our study showed that cigarette smoking significantly increased all five cell types, including platelets. The mechanism by which this occurred is not known, but it is unlikely that a specific releasing or inducing factor is responsible for each of the different cell types. It is feasible that a non-specific factor is present in cigarette smoke (or its metabolites) which is responsible for this increase in the leukocyte and platelet counts observed in smokers.

Introduction

Cigarette smoking has been shown to be associated with an increase in total leukocyte counts. 1,2,3 However, the effect smoking has on the individual cell types is not clear. Corre et al. and others have examined the differential counts in smokers and nonsmokers and found increases in the percentage of neutrophils and decreases in the percentage of lymphocytes. 2,4 Noble et al. reported somewhat different results, finding a decrease in the percentage of neutrophils in smokers compared to nonsmokers. 5

The inaccuracy in determining the differential-count percentages when examining a sample of only 100 or 200 cells could possibly account for this inconsistency. 6,7 We report the effect of smoking on the differential white blood cell count including platelets as determined on a Technicon H6000TM Automated Blood Cell Analyzer (Technicon Instruments Corp., Tarrytown, NY). This instrument examines 10,000 leukocytes in each sample, and determines cell types based upon size (as measured by light scatter) and intensity of biochemical reactions taking place within the cell. As a result of the larger number of cells being examined, differences between cell types can be detected with greater accuracy. 6

Methods

Blood samples from 2968 apparently healthy employees of the Naval Weapons Center (NWC), China Lake, California, were collected from January 1982 to November 1982 as part of an ongoing Occupational Health Program at NWC. Approximately 70% (2033) of the participants were males and 30% (935) females. About 80% were between 25 and 54 years of age, and over 90% of the participants were white. Twenty-seven percent (803), were current smokers, and 73% (2145) were former or nonsmokers. All employees who volunteered were asked to give a 7 ml sample of blood and complete a questionnaire. The questionnaire obtained personal data including name, social security number, age, race, sex, a brief smoking history, and a limited NWC work history. The questionnaire was completed at the time the initial blood sample was drawn. All blood samples were collected between 8:30 and 11:00 a.m. to minimize hour-to-hour variation in the white blood cell counts. 8 Immediately after being drawn each sample was tagged with a bar code number which could be optically read by electronic equipment. This bar code number was also affixed to the questionnaire and a laboratory report form, then entered in a blood sample log. In addition, the Technicon #6000 was interfaced directly with VAX 11/750 computer. This procedure eliminated the need for manual data entry of blood analysis results, allowing rapid, accurate, and convenient linking of individual blood analyses with data concerning personal characteristics and job-related activities obtained from the questionnaire.

Before each daily operation, quality control measures were performed on the Technicon according to the manufacturer's recommendations. 9 Checks on instrument function and electronic components and background counts were performed daily prior to routine operation. In addition, a 25% systematic sample (N = 586) of total white blood cell counts performed using the Technicon were independently and blindly performed using a Coulter Counter model ZBI (Coulter electronics, Inc., Hialeah FL). The Pearson product-moment-correlation between the two machines was r = 0.94.10

In reporting the 95% range of values for leukocyte cell types in smokers and nonsmokers, the 2.5 and 97.5 percentile values were used. 11 , 12 This procedure does not involve any assumptions regarding the distributions other than they be continuous.

Study subject participation including all procedures were in accordance with the rules and regulations protecting human subjects prescribed by the Under Secretary of the Navy.

Results

The frequency distributions of leukocytes by cell type in smokers and nonsmokers are shown in Figures 1-5, and the corresponding means and percent differences according to smoking status are shown in Table 1. The sum of all leukocyte cell types was greater in smokers than in nonsmokers (P < 0.001), with the largest relative percent difference occurring in neutrophils (36%), and the lowest in exsinophils (14%).

Table 1. Comparison of mean number of leukocytes mm³ by cell type in smokers and nonsmokers

-	Cell type					
Group	White bloo cells	đ Neutrophils	Neutrophils Lymphocytes		Eosinophils	Basophils
Smokers (803)*	8,177	4,897	2,439	478	206	61
Nonsmokers (2,145)*	6,319	3,606	2,029	387	181	50
Percent difference	+29%	+ 3 6%	+ 2 0%	+24%	+14%	+22%

^{*}Number of participants in each group

A comparison of the percentage differential count in smokers and nonsmokers is shown in Table 2. Smokers had a significantly higher (p < 0.001) percentage of neutrophils and a significantly lower (p < 0.001) percentage of lymphocytes, a finding reported by others. 1 , 4 In addition, the percentages of monocytes, eosinophils and basophils were each slightly, though significantly, (p \leq 0.007) lower in smokers compared to nonsmokers.

Table 2. Comparison of mean percentage of leukocytes mm by cell type in smokers and nonsmokers

	Cell types					
Group	Neutrophils	Lymphocytes	Monocytes	Eosinophils	Basophils	LUC**
Smokers (803)*	59.1	30.6	5.7	2.6	0.7	1.3
Nonsmokers (2,145)*	56.4	32.7	5.9	2.8	0.8	1.4

^{*}Number of participants in each group

^{**}Large unstained cells, type undetermined

Smoking also appeared to have an effect on platelets. Both male and female smokers had a slightly higher platelet count compared to nonsmokers (Table 3). Male smokers had a 3.2% higher platelet count than nonsmokers and female smokers a 5.1% higher count than nonsmokers.

Table 3. Comparison of mean platelet count in male and female smokers and nonsmokers

	Male		Female	
Group	Platelets/mm ³	Number of subjects	Platelets/mm ³	Number of subjects
Smokers	286,893	59 0	315,443	244
Nonsmokers	277,967	1,476	300,238	696
Significance (p)	p = 0.019		p = 0.022	

Table 4 gives the 95% "normal" range of cell types in both smokers and nonsmokers determined using a nonparametric method of percentile estimates. The values are derived from a cumulative frequency table at 2.5% and 97.5% giving the range of cell values which include 95% of the distribution. The leukocyte distribution in smokers is higher than the distribution for nonsmokers for every cell type in this table. In addition, the leukocyte distribution of smokers compared to nonsmokers has a greater variance, particularly for total WBC count, lymphocytes and neutrophils (Fig. 1-5). This may reflect a dose response relationship due to individual differences among smokers in the number of cigarettes smoked and the degree of inhalation.

Table 4. 95% range of values for leukocytes (x10³ cells/mm³) by cell type in smokers and nonsmoker*

Group	White blood cells	Neutrophils	Lymphocytes	Monocytes	Eosinophils	Basophils
Smokers	4.81-12.95	2.41-9.03	1.35-4.00	0.22-0.92	0.06-0.51	0.01-0.18
Nonsmoker	3.84-9.97	1.82-6.37	1.13-3.34	0.18-0.70	0.05-0.48	0.01-0.12

^{*}Using the percentile estimates 2.5, 97.5

Discussion

We found a statistically significant difference in the absolute number of all five leukocyte cell types in smokers as compared to nonsmokers. Corre et al. found similar differences in leukocyte count comparing smokers with non-smokers, and smokers who inhale with those who did not. In addition, we found that cigarette smoking had an effect on the differential white blood cell count, though not a major one. Smokers had only a slight increase in mean percentage of neutrophils, compared with nonsmokers, and a slight decrease in percentage of lymphocytes. This finding is in contrast to Parulkar et al. who compared differential counts in 130 healthy Indian male smokers and nonsmokers finding a slight decrease in percentage of neutrophils in smokers and a statistically significant increase in percentage of lymphocytes (p < 0.001).

Different authors have proposed various explanations for how smoking may increase the leukocyte count. Friedman et al.² suggested that nicotine-induced catecholamine release might be a possible mechanism. Others have suggested that smoking may induce some kind of chronic inflammatory process like bronchitis which could possibly account for this increase in total leukocyte count.¹⁴ A comparison of smokers who had a history of chronic bronchitis with smokers without such a history, showed that the increase in leukocyte count was mainly attributable to smoking and not to bronchitis.¹

In the present study we found evidence that smoking has an effect on the platelet count. Both male and female smokers showed a significantly higher platelet count than their nonsmoking counterparts. A similar finding was reported by Erikssen et al. 13 for middle-aged men as long as 12 hours after smoking a cigarette.

with the use of the new Technicon H6000TM blood cell analyzers which counts as many as 10,000 cells per sample, a more accurate picture of the effect of smoking on the leukocyte count is now available. Our study showed that cigarette smoking significantly increased all five cell types, including platelets. The mechanism by which this occurred is not known, but it is unlikely that a specific releasing or inducing factor is responsible for each of the different cell types. It did not appear the difference in total white blood cell counts between smokers and nonsmokers could be attributed to an allergy to cigarette smoke, since the percentage excess of eosinophils (a marker of many allergic reactions¹⁵) was less than that of the relatively nonspecific neutrophils. Furthermore, it did not appear to be simply an immune response to a foreign antigen in cigarette smoke, since the percentage excess of lymphocytes (a marker of reaction to a specific foreign antigen¹⁵) was less than that of neutrophils. Rather, it seems likely that a non-specific factor is present in cigarette smoke (or its metabolites) which may be responsible for this increase in the leukocyte and platelet counts found in smokers.

Figure 1, Frequency distribution of neutrophils in smokers and nonsmokers, Naval Weapons Center, China Lake, CA 1982

Figure 2. Frequency distribution of lymphocytes in smokers and nonsmokers, Neval Weapons Center, China Lake, CA 1982

Figure 3 Frequency distribution of monocytes in smokers and nonsmokers, Nevel Weapons Center, Chine Lake, CA 1982

Figure 4. Frequency distribution of eosinophils in smokers and nonsmokers, Neval Weapons Center, China Lake, CA 1982

Figure 5. Frequency distribution of besophils in smokers and nonsmokers, Naval Weapons Center, China Lake, CA 1982

References

- 1. Corre F, Lellouch J, Schwartz D: Smoking and leukocyte-counts. Results of an epidemiological survey. Lancet 1971;2:632-634.
- 2. Friedman GD, Siegelaub AB, Seltzer CC, et. al.: Smoking habits and the leukocyte count.

 Arch Environ Health 1973;26:137-143.
- 3. Helman N, Rubenstein LS: The effects of age, sex, and smoking on erythrocytes and leukocytes. Am J Clin Pathol 1974;63:35-44.
- 4. Burney SW: Cross-sectional assessment of laboratory variables in a healthy male population II. Cigarette smoking and laboratory values. Aging & Human Development 1972;3:89-94.
- 5. Noble NC, Penny BB: Comparison of leukocyte count and function in smoking and nonsmoking young men. Infection and Immunity 1975;12:550-555.
- 6. Rumke CL, Bezemer PD, Kuik DJ: Normal values and least significant differences for differential leukocyte counts. J Chron Dis 1975;28:661-668.
- 7. Simmons A, Leaverton P, Hildebrant J, Elbert G: Factors affecting manual white cell differential counts. Am J Med Technol 1973;39:354-359.
- 8. Statland BE, Winkel P, Harris SC, Burdsall MJ, Saunders AM: Evaluation of biologic sources of variation of leukocyte counts and other hematologic quantities using very precise automated analyzers. Am J Clin Pathol 1976;69:48-54.
- 9. Technicon Instruments Corporation. Technicon Information Bulletin No. TN81-443-10, New York,
 Technicon Instruments Corporation, 1981.
- 10. Garland FC, Grace MS, White MR: A comparison of total white blood cell counts on the Technicon $H6000^{TM}$ and Coulter Counter R model 2BI in an occupational health program. Am J Clin Pathol 1984;81:349-352.
- 11. Elveback LR, Guillier CL, Keating FR: Health, normality, and the ghost of Gauss. JAMA 1970;211:69-75.
- 12. Wyngaarden JB: Laboratory reference range values of clinic importance. In: Wyngaarden JB and Smith LH, eds. Cecil Textbook of Medicine. 16th ed. New York: WB Saunders, 1982:2317-
- 13. Erikssen J, Hellem A, Stormorken H: Chronic effect of smoking on platelet count and "platelet adhesiveness" in presumably healthy middle-aged men. Thrombos Haemostas 1977;38:606-611.
- 14. Parulkar VG, Balsubramaniam P, Barua MJ, Bhatt JV: Smoking and differential leucocyte (W.B.C.) count. J. Postgrad. Med. 1974;21:75-77.
- 15. David J: Immunology. In: Rubenstein E and Federman DD, eds. Scientific American Medicine.
 New York: Scientific American Inc., 1984.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
84-49	AD-1159	<i>49.1</i>		
4. TITLE (and Subtitle)	****	5. TYPE OF REPORT & PERIOD COVERED		
SMOKING AND THE DIFFERENTIAL WHITE		Interim		
COUNT AS DETERMINED ON A TECHNICON	н6000 ^{ТМ} АUTO-			
MATED BLOOD CELL ANALYZER		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)		
Frank C. Garland, Martin R. White,	and Grace M.	S. GONTHAGT ON GHANT HOMBEN(S)		
Seal	and orace in			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Naval Health Research Center		AREA & WORK BILL HOMBERS		
P.O. Box 85122		MR041.22-001-0005		
San Diego, CA 92138				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE December 1984		
Naval Medical Research & Developmen				
Naval Medical Command, National Cap Bethesda, MD 20814	pital Region	13. NUMBER OF PAGES		
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)		
Commander, Naval Medical Command		UNCLASSIFIED		
Department of the Navy		CNCLABBITILL		
Washington, DC 20372		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distri	ibution unlimited	1.		
17. DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different fro	m Report)		
Approved for public release; distribution unlimited.				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse elde if necessary ar	nd identify by block number)			
White blood cell count				
Automated blood cell analyzer				
Technican H6000 analyzer				
,		· , w		
20. ABSTRACT (Continue on reverse side if necessary and	d identify by block number)			
A Technicon H6000 automated blood	i cell analyzer w	vas used to determine the		
effect of smoking on the different:	ial white blood o	cell count and on platelet		
count. Approximately 3,000 apparently healthy individuals gave blood samples				
as part of an ongoing occupational	health program.	A significant increase in 3.		
number of all leukocyte cell types	was observed in	smokers (8,177 cells per mam)		
as compared to nonsmokers (6319 ce.				
tive percent increase occurred in a	neutrophils (36%)	and the lowest relative		

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) percent increase in eosinophils (14%). Smokers had a slight increase in mean percentage of neutrophils, compared with nonsmokers, and a slight decrease in mean percentage of lymphocytes. Smoking also appears to have affected the platelet count. Both male and female smokers show a slight increase in their platelet count in comparison to nonsmokers, 3.2% and 5.1% higher counts respectively. Possible explanations for the effect smoking has on the differential leukocyte counts are discussed.

UNCLASSIFIED

END

FILMED

10-85

DTIC

END

FILMED

10-85

DTIC