Stokes Radius Analysis by Gel Filtration

By Ren-Huai Huang

2016-09-02

Load and plot the gel filtration data

Transform the standard and then fit to the Stokes radius model

```
# superdex 200 HiLoad 16/60
vt = mean(c(122.31,122.93))
vo = mean(c(47.26,46.59))

protein_std_HiLoad$sigma <- radii::partition_coef(protein_std_HiLoad$ve, vo=vo, vt=vt)
protein_std_HiLoad$erfcinv <- radii::erfcinv(protein_std_HiLoad$sigma)
#
knitr::kable(protein_std_HiLoad, format = "markdown")</pre>
```

name	mw	radii	ve	sigma	erfcinv
vitamin B12	1350	NA	115.33	0.9036924	0.0855587
horse myoglobin	17000	1.89	98.79	0.6851840	0.2866607

name	mw	radii	ve	sigma	erfcinv
chicken ovalbumin	44000	2.75	88.62	0.5508290	0.4218022
bovine gamma-globulin	158000	5.22	74.61	0.3657441	0.6395597
bovine thyroglobulin	670000	8.50	57.13	0.1348174	1.0573877

```
protein_std_HiLoad <- na.omit(protein_std_HiLoad)

fit <- lm (radii~erfcinv+1, data = protein_std_HiLoad)
summary(fit)</pre>
```

```
##
## Call:
## lm(formula = radii ~ erfcinv + 1, data = protein_std_HiLoad)
##
## Residuals:
##
         2
                3
  0.05920 -0.26571 0.29500 -0.08848
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6826 0.3329 -2.051 0.17676
## erfcinv
              8.7679
                          0.4980 17.608 0.00321 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2907 on 2 degrees of freedom
## Multiple R-squared: 0.9936, Adjusted R-squared: 0.9904
## F-statistic: 310 on 1 and 2 DF, p-value: 0.00321
```

```
xdat <- seq(min(protein_std_HiLoad$erfcinv), max(protein_std_HiLoad$erfcinv),by = 0.01 )
pred <- predict(fit, newdata = data.frame(erfcinv=xdat))

# Plotting
g = radii:::ggplot() + geom_point(data = protein_std_HiLoad, aes(erfcinv, radii))
g <- g + ggtitle(expression("Stokes raddi vs erfcinv (" ~ sigma ~ ")"))
g + geom_line(aes(xdat,pred))</pre>
```


Purified VWF Propeptide

```
# superdex 200 HiLoad 16/60
vt = mean(c(122.31,122.93))
vo = mean(c(47.26,46.59))
# sample data
ve_D1D2_pure = 74.36
sigma_D1D2_pure=radii::partition_coef(ve_D1D2_pure, vo=vo, vt=vt)
erfcinv_D1D2_pure= radii::erfcinv(sigma_D1D2_pure)
r_D1D2_pure = predict(fit, newdata = data.frame(erfcinv=erfcinv_D1D2_pure))
print(paste("Stokes radius of the purified D1D2", r_D1D2_pure, "nm"))
```

[1] "Stokes radius of the purified D1D2 4.9637398754402 nm"

Plasma D1D2

```
# D1D2
ve_D1D2_plasma = 81
sigma_D1D2_plasma=radii::partition_coef(ve_D1D2_plasma, vo=vo, vt=vt)
erfcinv_D1D2_plasma= radii::erfcinv(sigma_D1D2_plasma)
r_D1D2_plasma = predict(fit, newdata = data.frame(erfcinv=erfcinv_D1D2_plasma))
print(paste("Stokes radius of the purified D1D2", r_D1D2_plasma, "nm"))
```

```
## [1] "Stokes radius of the purified D1D2 3.99917971664297 nm"
```

summary(fit)

```
##
## Call:
## lm(formula = radii ~ erfcinv + 1, data = protein_std_HiLoad)
##
## Residuals:
##
         2
                 3
                          4
                                   5
  0.05920 -0.26571 0.29500 -0.08848
##
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6826 0.3329 -2.051 0.17676
## erfcinv
             8.7679 0.4980 17.608 0.00321 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2907 on 2 degrees of freedom
## Multiple R-squared: 0.9936, Adjusted R-squared: 0.9904
## F-statistic: 310 on 1 and 2 DF, p-value: 0.00321
```