Задача (о последствиях гетероскедастичности для МНК-оценок). Пусть задана модель линейной регрессии $Y_t = \beta \cdot t + \varepsilon_t$, t = 1, 2, 3, где $\mathbb{E}[\varepsilon_t] = 0$, $D(\varepsilon_t) = t\sigma^2$ и $cov(\varepsilon_s, \varepsilon_t) = 0$ при $s \neq t$. Рассматриваются две оценки:

$$\hat{eta}_{ ext{MHK}} = rac{\sum_{t=1}^{3} t Y_t}{\sum_{t=1}^{3} t^2}$$
 и $ilde{eta} = rac{\sum_{t=1}^{3} Y_t}{\sum_{t=1}^{3} t}$.

- (a) Найдите $\mathbb{E}[\hat{eta}_{\mathrm{MHK}}]$ и $\mathbb{E}[\tilde{eta}]$.
- (b) Найдите $D(\hat{\beta}_{MHK})$ и $D(\tilde{\beta})$
- (c) Сравните $D(\hat{\beta}_{MHK})$ и $D(\tilde{\beta})$. Какой вывод можно сделать о последствии гетероскедастичности на МНК-оценки?

Решение. (а) Найдем математические ожидания оценок $\hat{\beta}_{\text{мнк}}$ и $\tilde{\beta}$:

$$\mathbb{E}[\hat{\beta}_{\text{MHK}}] = \mathbb{E}\left[\frac{\sum_{t=1}^{3} t Y_{t}}{\sum_{t=1}^{3} t^{2}}\right] = \frac{\sum_{t=1}^{3} t \mathbb{E}[Y_{t}]}{\sum_{t=1}^{3} t^{2}} = \frac{\sum_{t=1}^{3} t \cdot \beta t}{\sum_{t=1}^{3} t^{2}} = \beta,$$

$$\mathbb{E}[\tilde{\beta}] = \mathbb{E}\left[\frac{\sum_{t=1}^{3} Y_{t}}{\sum_{t=1}^{3} t}\right] = \frac{\sum_{t=1}^{3} \mathbb{E}[Y_{t}]}{\sum_{t=1}^{3} t} = \frac{\sum_{t=1}^{3} \beta t}{\sum_{t=1}^{3} t} = \beta.$$

(b) Найдем дисперсии оценок $\hat{eta}_{ ext{MHK}}$ и $ilde{eta}$:

$$\begin{split} & D(\hat{\beta}_{\text{MHK}}) = D\left(\frac{\sum_{t=1}^{3} t Y_{t}}{\sum_{t=1}^{3} t^{2}}\right) = \frac{D\left(\sum_{t=1}^{3} t Y_{t}\right)}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \frac{\sum_{t=1}^{3} D(t Y_{t})}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \frac{\sum_{t=1}^{3} t^{2} D(Y_{t})}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \frac{\sum_{t=1}^{3} t^{2} D(Y_{t})}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \frac{\sum_{t=1}^{3} t^{2} t \sigma^{2}}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \sigma^{2} \frac{\sum_{t=1}^{3} t^{3}}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \sigma^{2} \frac{1^{3} + 2^{3} + 3^{3}}{\left(1^{2} + 2^{2} + 3^{2}\right)^{2}} \approx 0.18 \sigma^{2}, \\ & D(\tilde{\beta}) = D\left(\frac{\sum_{t=1}^{3} Y_{t}}{\sum_{t=1}^{3} t}\right) = \frac{D\left(\sum_{t=1}^{3} Y_{t}\right)}{\left(\sum_{t=1}^{3} t^{2}\right)^{2}} = \frac{\sum_{t=1}^{3} D(Y_{t})}{\left(\sum_{t=1}^{3} t^{2}\right)} = \frac{\sum_{t=1}^{3}$$

(c) Обе оценки $\hat{\beta}_{\text{MHK}}$ и $\tilde{\beta}$ являются несмещенными и линейными по вектору $Y = [Y_1, Y_2, Y_3]^T$ оценками неизвестного параметра β . При этом $D(\hat{\beta}_{\text{MHK}}) > D(\tilde{\beta})$. Стало быть, оценка $\tilde{\beta}$ является более эффективной по сравнению с МНК-оценкой $\tilde{\beta}$. Таким образом, в условиях гетероскедастичности МНК-оценки перестают быть наиболее эффективными среди всех несмещенных линейных по вектору Y оценками. \square