Introduction to Audio and Music Engineering

Lecture 21

Topics:

- Frequency resolution of DFT
- Musical sound timbre analysis
- Short-time Fourier transform
- Spectrogram
- Time frequency resolution of STFT

Frequency Resolution of the DFT

Two key points to remember ...

- The maximum frequency in a spectrum is determined by R, the sampling rate. $(f_{max} = R/2)$
- The number of frequencies represented in the spectrum is N/2, where N is the total number of samples.

Therefore the frequency spacing (resolution) of the DFT is ...

$$\frac{\text{Frequency Range}}{\text{# of points}} = \frac{\frac{R}{2}}{\frac{N}{2}} = \frac{R}{N} \equiv \Delta f$$

But N/R = time length of the recording, we will call this T.

so ...
$$\Delta f = 1/T$$

Frequency resolution continued ...

So for:

T = 1 sec
$$\rightarrow \Delta f = 1$$
 Hz
T = 2 sec $\rightarrow \Delta f = \frac{1}{2}$ Hz
T = 4 sec $\rightarrow \Delta f = \frac{1}{4}$ Hz
etc.

To increase f_{max} you increase R.

To decrease Δf you increase T.

Increasing R does not improve $\Delta f!!!$

Examples

Increase R, keep N the same.

R = 16, N = 8,
$$(f_{signal} = 2 \text{ Hz})$$

 \rightarrow T = 0.5 sec
 \rightarrow $f_{max} = 8 \text{ Hz}$ (R/2)
 \rightarrow $\Delta f = 2 \text{ Hz}$

Keep R the same, increase N

R = 8, N = 16,
$$(f_{signal} = 2 \text{ Hz})$$

 \rightarrow T = 2 sec
 \rightarrow $f_{max} = 4 \text{ Hz}$ (R/2)
 \rightarrow $\Delta f = 0.5 \text{ Hz}$

Examples

Hold R constant, keep increasing N

R = 8, N = 32,
$$(f_{signal} = 2 \text{ Hz})$$

 \rightarrow T = 4 sec
 \rightarrow $f_{max} = 4 \text{ Hz}$ (R/2)
 \rightarrow $\Delta f = 0.25 \text{ Hz}$

Increase both R and N a lot ...

R = 64, N = 64,
$$(f_{signal} = 2 \text{ Hz})$$

 \rightarrow T = 1 sec
 \rightarrow $f_{max} = 32 \text{ Hz}$ (R/2)
 \rightarrow $\Delta f = 1 \text{ Hz}$

Spectral Analysis of Music

Increase R to 44,100 Hz \rightarrow f_{max} = 22,050 Hz, set N = 1024

What is Δf ?

$$T = N/R = 1024/44,100 = 0.0232 sec$$

$$\Delta f = 1/T = 43.07 \text{ Hz}$$

Typical spectrum of a musical signal ...

Improving the frequency resolution

Increase N obviously ...

$$N = 1024 \rightarrow \Delta f = 43 \text{ Hz}$$

$$N = 2048 \rightarrow \Delta f = 21.5 Hz$$

$$N = 4096 \rightarrow \Delta f = 10.25 \text{ Hz}$$

Musical example:

What frequency resolution do I need to tell A4 from A#4?

$$A4 \rightarrow 440 \text{ Hz}$$

 $A#4 \rightarrow (2^{1/12})*440 = 1.059 \times 440 = 466 \text{ Hz}.$
 $\Delta f = 26 \text{ Hz}$

Not a lot of interesting information up at 22 kHz, so we can reduce the sampling rate.

There is not a lot of interesting information up at 22 kHz, so we can reduce the sampling rate ... this applies for many audio signals.

Reduce the sample rate to 10,025, so $f_{max} \approx 5,000 \text{ Hz}$

Spectrogram

When a signal is changing over time we use the spectrogram to view the signal in frequency and time.

Single time "slice"

Spectrogram

Time - frequency resolution tradeoff in a spectrogram Zoom in on spectrogram ...

$$\Delta f = R/N$$

$$\Delta t = T = N/R$$

$$\Delta f \Delta t = 1$$

Using overlap in spectrogram

Time

Gives the illusion of better time resolution...