Еталонен модел на мрежите

Характеристики на нивата

- Основен принцип в съвременните мрежови архитектури е принципът за разслояване на функциите по управление на връзките, като всеки слой ползва услугите, предоставени от по-долните слоеве, без да знае как са реализирани тези услуги. Това е принципът на прозрачност.
- Слоят n на една машина взаимодейства със слоят n (на същото ниво) на друга машина. Правилата, по които се осъществява това взаимодействие, се определят от протокола на n-то ниво.
- Най-общо под протокол се разбира съгласувани правила между комуникиращите страни за това как да протича комуникацията.
- На практика при комуникацията между съответните слоеве на двете машини не се предават данни. Всеки слой *п* предава данни и контролна информация (header+trailer) на непосредствено по-долния слой *n-1*, докато се достигне най-долния слой *I*, където се осъществява реалната комуникация между машините през физическата среда. В приемника получените данни се разпространяват в обратна посока от слой *I* нагоре, като всеки слой премахва контролната информация, която се отнася до него. Опаковане и разопаковане (encapsulation decapsulation).

Данните+Контр. Инф. на слой n се наричат протоколен блок от данни (PDU). За слой n-1 PDU(n) са си обикновени данни. Чисто потребителските данни — payload.

- Всеки слой n предоставя **интерфейс** на слой n+1 функциите и услугите, които слоят n предоставя на слой n+1. Ясно да се знае какви функции изпълнява всеки слой.
- Разслояването позволява да се промени изцяло реализацията на даден слой n, без да се променя реализацията на другите слоеве достатъчно е да се запази множеството от услугите, които слой n осигурява на горния слой n+1. Гъвкавост (flexibility).
- Една мрежова архитектура се определя от множеството на слоевете, услугите които те предоставят и протоколите, по които се осъществява взаимодействие между слоевете на едно и също ниво.

Реализацията на слоевете, както и интерфейсът между отделните слоеве не е задължително да са едни и същи на машините в една мрежа — достатъчно е всеки слой *п* да може да комуникира със съответния слой *п* по определения протокол и да предоставя съответните услуги на по-горния слой. Мащабируемост (scalability).

Списъкът от протоколи, използвани от една система, по един протокол за всеки слой се нарича протоколен стек.

Протоколи и услуги

Протоколи и услуги на едно ниво: k.

Моделът OSI

- Съвременните мрежови архитектури следват принципите на модела OSI (Open Systems Interconnection), създаден от Международната организация по стандартизация ISO (International Standards Organization) за връзка между отворени системи.
- Отворена система е система, чиито ресурси могат да се използват от другите системи в мрежата.
- OSI моделът е абстрактен модел на мрежова архитектура, който описва предназначението на слоевете, но не се обвързва с конкретен набор от протоколи. Поради това OSI моделът се нарича още еталонен модел и всъщност дава препоръки (Reference Model).
- В еталонния модел има седем слоя физически, канален, мрежов, транспортен, сесиен, представителен, приложен.

OSI RM – хост машини и

комуникационна мрежа

Name of unit exchanged Application protocol Application Application **APDU** 7 Interface Presentation protocol Presentation Presentation **PPDU** 6 Session protocol 5 **SPDU** Session Session Transport protocol Transport Transport **TPDU** 4 Communication subnet boundary Internal subnet protocol 3 Network Network Network Network **Packet** 2 Data link Data link Data link Data link Frame **Physical Physical Physical Physical** Bit Host A Router Router Host B Network layer host-router protocol Data link layer host-router protocol Physical layer host-router protocol

The OSI reference model.

Физически слой

- **Физическият слой** (physical layer) има за задача да реализира предаването на битове през физическата среда.
- Основна функция на физическия слой е да управлява кодирането и декодирането на сигналите, представящи двоичните цифри 0 и 1. Той не се интересува от предназначението на битовете.
- Физическият слой трябва да осигурява възможност на по-горния слой да активизира, поддържа и прекратява физическите съединения.
- Обекти на този слой хардуерни устройства, реализиращо предаването на 0-и и 1-ци през физическата среда мрежови карти (NIC) и модули, модеми.

Канален слой

- Основна функция на каналният слой (data-link layer) е управлението на канала от един възел до друг (точка-точка) според класическия модел, "точка-много точки" (напр. Frame Relay) или достъп до преносната среда (MAC) в LAN.
- Откриването и евентуалното коригиране на грешки при предаването на данните.
- Данните на канално ниво се обменят на порции (PDU), наречени кадри (frames), обикновено с дължина от няколко стотин до няколко хиляди байта в зависимост от скоростта на линията.

Канален слой

- При надеждна комуникация приемникът трябва да уведомява изпращача за всеки успешно получен кадър като му изпраща обратно потвърждаващ кадър.
- Форматът на кадрите се определя от избрания протокол на канално ниво. Функциите на каналния слой обикновено се реализират смесено апаратно и програмно. Колкото повече функции са реализирани софтуерно (контролерът е реализиран на дънната платка), по-ниска епроизводителността.

Мрежов слой

- **Мрежовият слой** (network layer) отговаря за функционирането на комуникационната подмрежа.
- Приложните програми, които се изпълняват в двете крайни системи взаимодействат помежду си посредством сегменти от данни.
- Основна задача на мрежовия слой е маршрутизирането на тези сегменти, опаковани като пакети (PDU за мрежов слой).
- Пакетите са с фиксирана големина в рамките на една мрежа. Но при преминаване от една КМ в друга е възможно пакетът да се раздели на части фрагментира, след което да се възстанови. Напр. Преход: LAN-WAN-LAN
- За системите, реализиращи възлите на комуникационната подмрежа (маршрутизатори routers) този слой е последен. Функциите на мрежовия слой, както и на по-горните слоеве се реализират програмно.

Транспортен слой

- **Транспортният слой** (transport layer) осигурява транспортирането на съобщения от източника до получателя. Той е най-ниският слой, който реализира връзка от тип "край-край" между комуникиращите системи.
- В транспортния слой на изпращача съобщенията се разбиват на сегменти (PDU за тр. слой) и се подават на мрежовия слой, където се опаковат като пакети, а в транспортния слой на получателя разопакованите от мрежовия слой сегменти се реасемблират.
- Транспортният слой освобождава по-горния сесиен слой от грижата за надеждното и ефективно транспортиране на данните между крайните системи.
- Т.е транспортният слой отговаря за целостта на обменяните съобщения, което включва откриване на загубени сегменти и тяхното повторно предаване.

Сесиен слой

- **Сесийният слой** (session layer) е отговорен за диалога между две комуникиращи програми. Съобщения се обменят след като двата крайни абоната установят сесия.
- Сесийният слой осигурява различни режими на диалог двупосочен едновременен диалог (full duplex FD), двупосочен алтернативен диалог (half duplex HD), еднопосочен диалог (simplex).
- Освен това той предоставя възможност за прекъсване на диалога и последващо възстановяване от мястото на прекъсването.
- При липсата на сесиен слой всяко съобщение се предава независимо от другите съобщения.

Представителен слой

- Представителният слой (presentation layer) е най-ниският слой, който разглежда значението на предаваната информация.
- Първата функция на този слой е да определи общ синтаксис за предаване на съобщенията.
- Втората функция на слоя е да унифицира вътрешната структура на представените данни в съобщенията.
- По този начин за по-горния приложен слой няма значение дали двете крайни системи използват различни представяния на данните.
- UTF-8 (8-bit UCS/Unicode Transformation Format) представя всеки символ в Unicode стандарта, но е и обратно съвместим с ASCII. По тгези причини е предпочитан за е-mail, web страници и др.
- Криптиране на данните, компресия.

Приложен слой

- **Приложният слой** (application layer) е най-горният слой, към който се свързват потребителските процеси в двата крайни абоната.
- Някои потребителски процеси са интерактивни взаимодействат си в голям период от време с кратки съобщения от тип заявка- отговор (request-reply).
- Други потребителски процеси взаимодействат с малко на брой големи по обем порции от данни.
- За двата вида процеси се предвиждат различни протоколи на приложния слой например протокол **FTP** (file transfer protocol) за обмен на цели файлове, протокол **HTTP** (hyper text transfer protocol) за обмен на уеб-страници и др.

Модел ТСР/ІР

- Когато започват да се изграждат реални мрежи, използвайки
- OSI-модела и съществуващите протоколи се вижда, че те не отговарят на изискваните спецификации за обслужване.
- Въведен е за първи път през 1974 г. от V. Cerf и Kahn в ARPANET първата компютърна мрежа, която прераства в Internet. Целта е била да позволи свързването на различни мрежи, да бъде жизненоспособна и гъвкава, да оцелее и в условията на ядрен апокалипсис.
- Мрежа с комутация на пакети, базирана на обслужване с неустановена връзка (connectionless без предварително уговаряне на параметрите на връзката между източник и приемник).
- Това е мрежовото ниво Интернет, където имаме "best effort delivery". IP протокол, IP пакети.

OSI vs. TCP/IP

OSI Model

TCP/IP Model (DoD Model) TCP/IP - Internet Protocol Suite

Application

Presentation

Application

Telnet, SMTP, POP3, FTP, NNTP, HTTP, SNMP, DNS, SSH, ...

Session

Transport

TCP, UDP

Network

Transport

Internet

IP, ICMP, ARP, DHCP

Data Link

Network Access

Ethernet, PPP, ADSL

Physical

TCP/IP – мрежи, протоколи и услуги

Както Интернет, така и транспортният слой е подобен на OSI.

- TCP (Transmission Control Protocol) е connection-oriented. Потокът от байтове да бъде доставен без грешка. Съобщението се разбива на сегменти.
- UDP (User Datagram Protocol) е connectionless за обмен на звук, къси съобщения: NTP, TFTP, SNMP.

Сравнение на OSI и TCP/IP

Общи свойства: единен стек от независими протоколи, подобни функции.

Три основни свойства на OSI:

- Дефиниране на услуги
- Дефиниране на интерфейси
- Дефиниране на протоколи
- Основно предимство на OSI: прави разграничение между тези три свойства.
- TCP/IP няма точно разграничение между трите.
- Протоколите в OSI са по-добре обособени, отколкото в TCP/IP. Могат да бъдат заменяни по-лесно.

Сравнение на OSI и TCP/IP

- OSI преди да е създадена концепцията за протоколите достатъчно общ.
- Липса на опит с конкретни обекти недостатъчна функционалност
- Канален слой за връзки "точка-точка". С поява на LAN broadcast мрежите нов подслой.
- Подслоевете да бъдат изменяни в зависимост от различията в конкретните мрежи.
- OSI създателите всяка страна по една OSI мрежа под управлението на правителството. Не е мислено за междумрежово свързване.
- TCP/IP първо се разработват протоколите. Моделът реално описание на вече съществуващи протоколи. Т.е пасват перфектно, без да е необходима да са напасвани към модела, както при OSI.

Сравнение на OSI и TCP/IP

TCP/IP не е приложим за описание на мрежи, които не поддържат TCP/IP. Но днес всички производители го поддържат. Такива със собствени протоколни стекове. Novell се отказа от SPX/IPX, Apple – от AppleTalk, Microsoft – от NetBIOS и др.

Т.е ТСР/ІР стана световен мрежов стандарт.

Други разлики:

- На мрежово ниво TCP/IP само connectionless; OSI и connection oriented.
- На транспортно ниво OSI само connection oriented; TCP/IP и двете (TCP и UDP).