Graph Algorithms Introduction

COP 3503
Fall 2021
Department of Computer Science
University of Central Florida
Dr. Steinberg

Introduction

- Graphs are fundamental in the field of computer science
- There are a variety of problems that involves the use of graphs.
- Before we dive into the problems we need to understand some terminology and notations.

Graph Representation (Some Notation)

- $\bullet G = (V, E)$
- V represents a set of vertices in graph G
 - In the set contains a symbol denoting the vertex of a graph
- E represents a set of edges G
 - In the set contains a tuple (a,b) denoting two vertices that are connected in the graph
- |E| represents the number of edges in G
- |V| represents the number of vertices in G

Directed Graphs

- A graph is considered directed when the edges in *E* only go in one direction.
- In figures, this is usually denoted by using <u>arrows</u> when connecting two vertices.

Undirected Graphs

- A graph is considered undirected when the edges in *E* only go in both direction.
- In figures, this is usually denoted by using <u>solid lines</u> when connecting two vertices.

Representing a Graph

- There are two ways we can represent graphs when writing code.
 - Matrix (2D Array)
 - Adjacency List (Array of LinkedList)

Matrix for an undirected graph

	a	b	c	d	e
a	O	1	O	1	1
b	1	O	1	O	1
c	O	1	О	O	1
d	1	O	О	O	1
e	1	1	1	1	O

$$a_{ij} = \begin{cases} 1, & if(i,j) \in E \\ 0, & otherwise \end{cases}$$

Matrix for a directed weighted graph

Adjacency List for a directed graph

Matrix or Adjacency List

- Both representations work for both directed and undirected graphs
- Sparse graphs (graphs where |E| is much less than $|V|^2$)
 - Adjacency List is preferred
- Dense graphs (graphs where |E| is close to $|V|^2$)
 - Matrix is preferred
- Adjacency List Note
 - The sum of the lengths of an adjacency list
 - |E| for directed graphs
 - |2 * E| for undirected graphs

Complexity of Adjacency Lists

- Space required is O(V + E)
- Time needed to lists every vertex adjacent to vertex v. O(degree of v)
- Time needed to determine if $(v, u) \in E$ is O(degree of v)

Complexity of Matrix

- Space required is $O(V^2)$
- Time needed to lists every vertex adjacent to vertex v. O(V)
- Time needed to determine if $(v, u) \in E$ is O(1)