Conditions of ISA Virtualizability

References

- HSSV book, Chapter 2
- Smith & Nair, Chapter 8

Popek-Goldberg Requirements for ISA Virtualizability

- Given a computer that meets [this] basic architectural model, under which precise conditions can a VMM be constructed, so that the VMM:
 - provides <u>virtualization</u>
 - can execute one or more virtual machines;
 - provides <u>safety</u>
 - i.e. is in complete control of the machine at all times;
 - provides <u>equivalence</u>
 - i.e. <u>supports arbitrary, unmodified, and potentially malicious</u> operating systems designed for that same architecture; and
 - maintains performance
 - <u>be efficient</u> to show at worst a small decrease in speed?

Equivalence: Virtualization as Isomorphism

• Each guest state & transition must have a corresponding mapping to a host state & transition.

Safety: Resource Control

- ☐ Issue: How to retain control of resources in the VMM?
- ☐ Timer interval control performed by VMM
- ☐ Guest OS not allowed to read the timer value
 - Guest OS sees a virtual interval timer
- ☐ VMM also gains control whenever guest OS executes privileged instructions.

Figure 8.4 Actions Taken by the VMM in Retiring One Virtual Machine and Activating the Next Virtual Machine

Instruction Types

- ☐ Non-privileged: Do not cause traps
- ☐ Privileged : Cause Traps
- ☐ Sensitive: Change/depend upon system state
- ☐ Innocuous: Not "sensitive"

Figure 8.6 Types of Instructions. (a) Sensitive and privileged instructions overlap (although not necessarily completely). (b) Sensitive instructions and innocuous instructions are complements of each other.

Conditions of ISA Virtualizability

Theorem: A computer architecture is <u>fully</u> <u>virtualizable</u> if the set of sensitive instructions for that computer is a subset of the set of privileged instructions.

Figure 8.8 Illustrating Popek and Goldberg's Theorem 1. In (a), the sensitive instructions are not a subset of the privileged instructions and hence the system may not be efficiently virtualizable. On the other hand, the system in (b) satisfies the condition of Theorem 1.

Execution of Privileged Instruction

Handling Privileged Instructions in a Guest OS

Hybrid VMM Requirements

- A hybrid virtual machine monitor may be constructed for any conventional third-generation machine in which the <u>set of user-sensitive instructions</u> are a subset of the set of privileged instructions.
- User-sensitive instructions
 - Instructions that are control or behavior-sensitive only in supervisor mode
 - E.g. JRST in PDP-10 or pop in x86 fail silently in user mode.
- Hybrid VMM interprets in software 100% of the instructions in guest-supervisor mode.

Hybrid VMM example: Dynamic binary patching in early VMWare ESX server

