Problem 1: Can you fit a line?

Problem Statement

Consider N data points (\mathbf{x}_i, y_i) for i = 1, ..., N obtained from an experiment, where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Let N > n+1. The goal of linear regression is to find the "best" linear fit; i.e. find $\mathbf{c} \in \mathbb{R}^n$, $d \in \mathbb{R}$ s.t.:

$$y_i \approx \mathbf{c}^T \mathbf{x}_i + d$$
, for $i = 1, \dots, N$

 \mathbf{a}

Suppose each measurement is corrupted by independent Gaussian noise with identical variances and 0 mean. Find $\mathbf{A} \in \mathbb{R}^{N \times (n+1)}$ in terms of $\mathbf{x}_1, \dots, \mathbf{x}_N$ s.t. that the maximum likelihood estimate of $\hat{\mathbf{c}}$, \hat{d} is

$$\begin{pmatrix} \hat{\mathbf{c}} \\ \hat{d} \end{pmatrix} = \left(\mathbf{A}^T \mathbf{A} \right)^{-1} \mathbf{A}^T y, \text{ where } \mathbf{y} \coloneqq \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

b

Consider the case with n=1; i.e. x_1, \ldots, x_N are scalars. Finding the best linear fit amounts to finding (\hat{c}, \hat{d}) tht minimizes:

$$J(c,d) := \sum_{i=1}^{N} (y_i - cx_i - d)^2$$

Compute a stationary point (\hat{c}, \hat{d}) by setting the derivative of J w.r.t c and d to zero.

 \mathbf{c}

Use the second derivative tests to conclude that your (\hat{c}, \hat{d}) computed in (b) is indeed a local minimizer of J. Can you conclude from this second derivative test alone that it is a local minimizer?

 \mathbf{d}

Consider the following (x, y) pairs:

- (1.00, 1.10)
- (1.50, 1.62)
- \bullet (2.00, 1.98)
- \bullet (2.57, 2.37)
- \bullet (3.00, 3.23)
- \bullet (3.50, 3.69)
- (4.00, 3.97)

Draw a scatter plot of these points; then, plot the best linear fit to these points using your formula in part (b).

Solution

 \mathbf{a}

 \mathbf{b}