САМОЛЕТОВОЖЛЕНИЕ

ВЛИЯНИЕ ВЕТРА НА ПОЛЕТ САМОЛЕТА

Навигационный треугольник скоростей и его элементы

Рис. 1. Навигационный треугольник скоростей

Треугольник, образованный вектором воздушной скорости, вектором ветра и вектором путевой скорости, *называется навигационным треугольником скоростей* (Рис. 1).

Элементами навигационного треугольника скоростей являются: V - воздушная скорость; W- скорость ветра; Vn - путевая скорость; δ - направление ветра; K - курс самолета; VC - угол сноса; IIV - путевой угол; VB - угол ветра; VB - курсовой угол ветра.

Движение воздуха относительно земной поверхности называется *ветром*. Скорость и направление ветра характеризуется вектором ветра. В самолетовождении направление ветра измеряется между меридианом и вектором ветра. Этот ветер называется навигационным (куда дует ветер). Направление метеорологического ветра отличается от навигационного на 180° (откуда дует ветер).

Скорость перемещения самолета относительно поверхности Земли называется путевой скоростью.

Угол между вектором воздушной скорости и вектором путевой скорости называется *углом сноса*. Угол сноса отсчитывается от вектора воздушной скорости вправо (плюсовой) и влево (минусовой).

Путевым углом называется угол между северным направлением меридиана и вектором путевой скорости (линией пути). Он отсчитывается от северного направления меридиана до вектора путевой скорости по ходу часовой стрелки от 0 до 360° . Различают заданный путевой угол $3\Pi Y$ и фактический путевой угол $\Phi\Pi Y$

Путевой угол определяется по формуле: ПУ=К+УС

Угол между вектором путевой скорости и вектором ветра называется *углом ветра*. Угол ветра отсчитывается от вектора путевой скорости до вектора ветра по ходу часовой стрелки от 0 до 360° .

Угол между вектором воздушной скорости и вектором ветра называется *курсовым* (бортовым) *углом ветра* Курсовой угол ветра отсчитывается от вектора воздушной скорости до вектора ветра по ходу часовой стрелки от 0 до 360°

Для расчета навигационных элементов полета используются следующие зависимости между элементами навигационного треугольника скоростей:

$$V_{II} = V \cos YC + W \cos YB$$

$$\sin YC = \frac{W}{V} \sin YB$$

$$tgYg = \frac{W \sin KYB}{V + W \cos KYB}$$

или приближенно

$$V_{\rm n} \approx V + W \cos {
m YB},$$

 ${
m YC} \approx 60 {
m W \over V} \sin {
m YB}$

САМОЛЕТОВОЖЛЕНИЕ

$$V_{II} = V \cos YC + W \cos YB$$

Навигационный треугольник скоростей решается с помощью автоматических счетно-решающих устройств, с помощью ветрочета, расчетчика, на навигационной линейке и приближенно в уме.

Определение путевой скорости

Ввиду того, что $cos YC \approx d$, формулу $W=V cos YC \pm U cos YB$ можно использовать для приближенных определений:

W=VcosYC±UcosYB,

где VB - угол ветра (определяется по формуле $VB = \delta - MK$).

Пример. Определить W, если направление ветра $\delta = 170^\circ$, MK = 110° , V = 780 км/ч. U = 70 км/ч.

Решение: 1. $VB = 170-110 = 60^{\circ}$. 2. W = 780 + 0.5*70 = 815 км/ч.

Зависимость навигационных элементов от изменения режима полета или ветра

Изменение воздушной скорости приводит к изменению путевой скорости на величину ΔV

$$Vn_1 = Vn + (\pm \Delta V)$$

и к изменению угла сноса на величину **ДУС**:

$$\Delta \mathbf{y} \mathbf{C} = \frac{\Delta V}{V} \mathbf{y} \mathbf{C}.$$

Рис. 2. Изменение элементов навигационного треугольника скоростей при изменении курса самолета

Изменение угла сноса при изменении воздушной скорости до 10% ее начального значения можно не учитывать, так как оно соизмеримо с точностью его определения. При более значительном изменении (15-20%) воздушной скорости следует внести поправку в курс следования, рассчитав новое значение угла сноса.

Изменение курса при постоянных значениях воздушной скорости, направления и скорости ветра приводит к изменению *Vn, УС, УВ, ФПУ* (Рис. 2).

Практически установлено, что при изменении курса в пределах $15-20^{\circ}$ на средних высотах и до $10-15^{\circ}$ на больших высотах изменение путевой скорости и угла сноса незначительно, поэтому на новом курсе можно продолжать полет некоторое время с прежними расчетными данными.

Если курс изменен более чем на 20° , то необходимо определить угол сноса и путевую скорость на новом курсе и учитывать их для следования по линии заданного пути.

От угла ветра путевая скорость и угол сноса зависят следующим образом:

при УВ= 0° (ветер попутный) УС=0, Vn=V+W;

при увеличении угла ветра от 0 до 90° угол сноса увеличивается, а путевая скорость уменьшается;

при ${\rm YB}$ =90° (ветер боковой) угол сноса максимальный, a путевая скорость примерно равна воздушной;

при увеличении угла ветра от 90° до 180° угол сноса и путевая скорость уменьшаются;

САМОЛЕТОВОЖДЕНИЕ

при УВ= 180° (ветер встречный) УС=0, а Vn = V-W;

при увеличении угла ветра от 180° до 270° угол сноса и путевая скорость увеличиваются;

при ${\rm YB=270^{\circ}}$ (ветер боковой) угол сноса максимальный, а путевая скорость примерно равна воздушной;

при увеличении угла ветра от 270° до 360° угол сноса уменьшается, а путевая скорость увеличивается.

Таким образом, при углах ветра $0-180^{\circ}$ углы сноса положительные, а при углах ветра $180^{\circ}-360^{\circ}$ отрицательные; путевая скорость при углах ветра $270^{\circ}-0-90^{\circ}$ больше воздушной скорости, а при углах ветра $90^{\circ}-180^{\circ}-270^{\circ}$ меньше воздушной скорости.

Штурманские счетные инструменты

Назначение и устройство навигационной линейки нл-10м

Навигационная линейка НЛ-10M является счетным инструментом летчика и штурмана и предназначена для выполнения необходимых расчетов при подготовке к полету и в полете.

Она устроена по принципу обычной счетной логарифмической линейки и позволяет заменить умножение и деление чисел более простыми действиями - сложением и вычитанием отрезков шкал, выражающих в определенном масштабе логарифмы этих чисел.

Навигационная линейка состоит из корпуса, движка и визиркн. На корпусе и движке нанесены шкалы, индексы, формулы и надписи (Рис. 3).

Рис. 3. Навигационная линейка НЛ-10М

Назначение и устройство ветрочета

Ветрочет предназначен для графического решения различных задач по определению элементов навигационного треугольника скоростей. Он состоит из сектора, азимутального круга и линейки скоростей (Рис. 4).

САМОЛЕТОВОЖДЕНИЕ

Рис. 4. Устройство ветрочета:

1 - курсовая черта, 2 - шкала углов сноса; 3 - сектор; 4 - азимутальный круг; 5 - рабочий часть линейки, 6 - линейка со шкалой скоростей

Назначение и устройство навигационного расчетчика нрк-2

Навигационный расчетчик НРК-2, разработанный М. В. Калашниковым, является счетным инструментом, предназначенным для выполнения навигационных расчетов при подготовке к полету и в полете.

При помощи навигационного расчетчика решаются следующие задачи:

расчет угла сноса, путевой скорости, курсового угла ветра, курса полета или фактического путевого угла по известному вектору ветра;

определение ветра по известному углу сноса и путевой скорости, по двум углам сноса и по двум путевым скоростям;

определение пройденного пути, скорости и времени полета;

нахождение радиуса и времени разворота на заданный угол по известным скорости и углу крена;

пересчет истинной скорости в приборную и приборной в истинную в диапазоне 100-2500 км/ч;

определение числа М, соответствующего заданной скорости полета, и наоборот;

определение поправки на сжимаемость воздуха в показания широкой стрелки комбинированных указателей скорости;

пересчет истинной высоты в приборную и приборной в истинную в диапазоне 100-25000 м;

нахождение значений тригонометрических функций, умножение и деление чисел на тригонометрические функции углов.

Кроме того, навигационный расчетчик позволяет выполнять некоторые другие специальные и математические вычисления.

Таким образом, навигационный расчетчик обеспечивает решение всех задач, выполняемых с помощью двух вычислительных инструментов: навигационной линейки НЛ-10М и ветрочета.

САМОЛЕТОВОЖДЕНИЕ

Рис. 5. Общий вид лицевой стороны навигационного расчетчика (ветрочет):

/ - основание, // - поворотный диск с номограммой, /// - курсовой лимб ветрочета, IV - визирная линейка с сектором