

Curso: Ciências Contábeis

Disciplina: Métodos Quantitativos Aplicados à Contabilidade

Professor: Vicente Lima Crisóstomo **Estagiário Docente:** Bruno Goes Pinheiro

Monitor: Denny Ribeiro

Aluno(a):

Lista de Exercício Unidade 3

Distribuições Contínuas de Probabilidade (Tema 3-2)

- 1. O que é uma distribuição contínua de probabilidades?
- 2. Explique o que vem a ser a distribuição uniforme de probabilidades?
- 3. Um líquido vendido engarrafado tem conteúdo que varia de 300 a 330ml. Supondo adequada a distribuição uniforme responda. (i) qual a probabilidade de encontrar-se uma garrafa com conteúdo entre 310 e 320ml? (ii) qual a probabilidade de encontrar-se uma garrafa contendo menos de 305ml? (ii) qual o mais provável, encontrar-se uma garrafa contendo entre 305 e 310ml, ou, uma garrafa contendo entre 315 e 320ml?
- 4. Como surgiu a distribuição Normal, ou Gaussiana, de probabilidades?
- 5. Comente sobre a caracterização da distribuição Gaussiana quanto à forma.
- 6. Comente sobre a caracterização da distribuição Gaussiana quanto à maneira de especificação.
- 7. Comente sobre a caracterização da distribuição Gaussiana quanto ao seu uso para obtenção de probabilidades.
- 8. Apresente a forma de padronização da distribuição Normal. Por que se faz esta padronização?
- 9. Para as seguintes distribuições normais, especificadas média e desvio padrão, calcule o escore z para os valores de x constantes na tabela. Comente sobre valores de z coincidentes para distintas combinações de média e desvio padrão.

Média (μ)	Desvio padrão (σ)	x (valor efetivo)	z (número de σ)
150	60	30	
150	60	270	
30	8	10	
30	8	50	
80	10	60	
80	10	100	
1000	40	900	
1000	40	1100	

10. Calcule o valor ausente em cada das linhas da tabela a seguir:

	J		
Média (μ)	Desvio padrão (σ)	x (valor efetivo)	z (número de σ)
180	50	30	
150	20		3,5
20	10		2,6
30	8	50	
	10	60	1,5
80		50	-2,5
200		100	-3,5
	150	1750	5
100		95	-0,5
	58	170	1,2
500		300	-1,5

- 11. Determine os valores das probabilidades (áreas sob a curva normal) para os seguintes casos (faça o esboço da curva):
- i) área à direita de $z = 2 = P(z > 2\sigma) =$
- ii) área à esquerda de z = 2 = $P(z < 2\sigma)$ =
- iii) área à direita de z = 0,5 = $P(z > 0,5\sigma)$ =
- iv) área à esquerda de $z = -0.5 = P(z < -0.5\sigma) =$
- v) área à direita de z = -0,5 = $P(z > -0,5\sigma)$ =
- vi) área à esquerda de $z = 0.5 = P(z < 0.5\sigma) =$
- vii) área entre z = 0 e $z = 1,76 = P(0 < z < 1,76\sigma) =$
- viii) área entre z = -1,76 e z = 0 = P(-1,76 σ < z < 0 σ) =
- ix) área entre z = -1,76 e z = 1,76 = P(-1,76 σ < z < 1,76 σ) =

- x) área entre z = -2,34 e z = 1,92 = $P(-2,34\sigma < z < 1,92\sigma) =$
- 12. Usando a tabela de Distribuição Normal padronizada, determine as seguintes probabilidades para valores de x de uma DN cuja média é 3 e desvio padrão vale 1 (faça um esboço da curva normal para visualizar a área referente à probabilidade calculada):
- i) P(0 < x < 1.79) =
- ii) P(-1,79 < x < 0) =
- iii) P(-1 < x < 1) =
- iv) P(-2 < x < 2) =
- v) P(-3 < x < 3) =
- 13) Uma distribuição normal tem média 60 e desvio padrão 8. Que percentagem da população está em cada um dos intervalos seguintes:
- i) 30 a 45
- ii) 75 a 90
- iii) 52 a 68
- iv) 40 a 50
- v) 50 a 60
- vi) inferior a 44
- vii) inferior a 36
- viii) superior a 68
- ix) superior a 76
- x) superior a 84
- 14) Supondo que o salário médio de uma população possa ser aproximado por uma distribuição normal com média 5.000 e desvio padrão 1.000, pergunta-se:
- i) qual percentagem da população tem salário superior a 5.000?

il) quai percentagem da população tem saiamo superior a 0.000:
iii) qual percentagem da população tem salário superior a 7.000?
iv) qual percentagem da população tem salário superior a 8.000?
v) qual percentagem da população tem salário entre 4.000 e 6.000?
vi) qual percentagem da população tem salário entre 3.000 e 7.000?
vii) qual percentagem da população tem salário entre 2.000 e 8.000?
viii) qual percentagem da população tem salário entre 4.500 e 5.500?
15) As maças de uma carga de têm peso médio de 150g e desvio padrão 10g. i) qual a percentagem de maças com mais de 159g?
ii) qual a percentagem de maças com menos de 135g?
iii) qual a probabilidade de uma maça pesar mais que 180g?