Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский Государственный Технический Университет имени Н.Э. Баумана»

Национальный исследовательский университет техники и технологий

(МГТУ им. Н.Э.Баумана)

Факультет «Робототехника и комплексная автоматизация» Кафедра «Системы автоматизированного проектирования» (РК-6)

Отчет по лабораторной работе №2
По дисциплине «Прикладная механика»
На тему «Расчет статически-неопределимой балки методом конечных элементов»

Выполнил студент группы РК6-34Б Новиков В.П.

Задача

Составить конечно-элементную программу для расчета статически

неопределимой балки и проверить корректность ее работы с использованием

Siemens NX.

Исходные данные: Материал балки: сталь

(модуль Юнга E = 2e11 Па).

Сечение балки: прямоугольное (Рисунок 1).

Геометрические параметры балки: l=0.1 м, b=

10 мм, h = 20 мм Величина нагрузки: F = 10 H.

Рисунок 1. Поперечное сечение балки

Вариант

Описание алгоритма решения

- 1) Задаем исходные данные:
- b, h ширина и высота сечения;
- Ју момент инерции;
- 1 длина единичного отрезка;
- Е модуль Юнга;
- F величина силы;
- N_el кол-во КЭ в системе;
- E_sys вектор упругих свойств системы;
- L_sys вектор длин конечных элементов;
- N_dofs кол-во степеней свободы системы;
- K_global глобальная матрица жёсткости;
- U_node вектор граничных условий;
- F_node вектор внешних сил и моментов;
- K_local локальная матрица жесткости;
- Index_M матрица индексов.
- 2) Создаем матрицу индексов Index_M, хранящую номера узлов в глобальной и локальной системах координат.
- 3) С помощью вложенных циклов заполняем глобальную матрицу жесткости K_g lobal на основе матриц жесткости конечных элементов K_e , которые считаются функцией K_e loc calc.
- 4) Накладываем кинематические играничные условия, модифицируем матрицу жесткости. Для этого задается вектор U_node количеством элементов N_dofs. В ячейке, где узел закреплен, ставим 1, в свободных узлах ставим 0. Обнуляем столбцы и строки с номерами, соответствующими номерам элементов, равных 1, в векторе U_node. На пересечении этих столбцов и строк ставим 1.
- 5) Вычисляем вектор перемещений $U = pinv(K_glob)*F_node';$
- 6) Выводим на экран вектор перемещений U, переводя значения в нужные единицы измерения (мм для перемещений и градусы для углов поворота).

Элементы, стоящие на нечетных позициях, отвечают за вертикальные перемещения узлов, а на четных - за угол поворота.

Текст программы

```
function prik meich lab2
    format long
   h = 20; % Высота сечения, мм
   b = 10; % Ширина сечения, мм
    Jy = (b*h^3)/12; % Момент инерции сечения
    1 = 100; % Длина, мм
   Е = 2е5; % Модуль Юнга
    F = 10; % Сила, H
   NumberOfElements = 4; % Кол-во КЭ в системе
    E System = [E, E, E, E]; % Вектор упругих своиств системы
    LenghtSystem = [1, 1, 1.5*1, 1]; % Вектор длин конечных элеметов
    DegreesOfFreedomNumber = 2*(NumberOfElements + 1); % Кол-во степенй
свободы системы
    K GlobalMatrix = zeros(DegreesOfFreedomNumber); % Глобальная матрица
жёсткости
    Vector U = [1,1, 0,0,1,0,0,0,1]; % Вектор граничных условий
    Vector F = [0,0, -6*F,0, 0,-3*F*1, 4*F,2*F*1, 0,0]; % Вектор внешних
сил и мементов
    K LocalMatrix = zeros(4); % Локальная матрица жёсткости
    IndexMatrix = [1:4; % Матрица индексов
              3:6;
              5:8;
              7:10;];
    for i = 1:NumberOfElements % Вычисление матрицы жёсткости для каждого КЭ
и ансамблирование
        K LocalMatrix = K LocalMatirxCalc(LenghtSystem(i), E System(i), Jy);
        for j = 1:4
            for k = 1:4
              K GlobalMatrix(IndexMatrix(i, j),IndexMatrix(i, k)) =
K GlobalMatrix(IndexMatrix(i, j),IndexMatrix(i, k))+K LocalMatrix(j,k);
            end
        end
    end
    for i = 1:DegreesOfFreedomNumber % Наложение кинематических граничных
условий
      if(Vector_U(i) == 1)
         K GlobalMatrix(i, :) = 0;
          K GlobalMatrix(:, i) = 0;
          K_GlobalMatrix(i, i) = 1;
       end
    end
    U = pinv(K GlobalMatrix)*Vector F';
    for i = 1:DegreesOfFreedomNumber % Вывод вектора перемещений на экран
     if(rem(i,2) == 1)
        fprintf('%f mm\n',U(i)) % Вывод перемещений в мм
     else
         fprintf('%f deg\n',U(i)*180/pi) % Вывод угла поворота в градусах
     end
    end
end
```

```
function K = K LocalMatirxCalc(L, E, J) % Вычсление матрицы жесткости для
плоского балочного элемента
    K = [12*E*J/(L^3), 6*E*J/(L^2), -12*E*J/(L^3), 6*E*J/(L^2);
        6*E*J/(L^2), 2*E*J/L, -6*E*J/(L^2), 4*E*J/L];
end
                                 2 вариант программы
function main()
N_el = input('elements mount ');
l = input('nominal length ');
b = input('section length');
h= input('section width ');
Jy=b*h^3/12;
f = input('nominal force ');
E=2e7;
N_dof_el = 4;
N_dof_sys = (N_el+1)*N_dof_el/2;
U = zeros(1, N_dof_sys);
for i = 1:N_dof_sys
 if (mod(i,2)==1)
   U(i) = input('first DOF of i element: ');
 if (mod(i,2)==0)
   U(i) = input('fifth DOF of i element: ');
 end
end
F = zeros(1, N dof sys);
for i = 1:N_dof_sys
 if (mod(i,2)==1)
   F(i) = f*input('force of i element(coef only): ');
 end
 if (mod(i,2)==0)
   F(i) = f*l*input('moment of i element(coef only): ');
 end
end
L = zeros(1, N_el);
for i = 1:N el
 L(i) = l*input('length i element: ');
end
Index_M = zeros(N_el,N_dof_el);
for i = 1:N_el
 Index_M(i, :) = [((i-1)*2+1):((i-1)*2+N_dof_el)];
end
K_el = zeros(N_dof_el);
```

```
K_g = zeros(N_dof_sys);
E_sys = [E, E, E];
for i = 1:N_el
 K_el = K_el_calc(E_sys(1), L(1), Jy)
 j = Index_M(i, 1);
 k = Index_M(i, N_dof_el);
 K_g(j:k, j:k) = K_g(j:k, j:k) + K_el;
end
for i = 1:N_dof_sys
 if(U(i) == 0)
    K_g(:, i) = 0;
    K_g(i, :) = 0;
    K_g(i, i) = 1;
 end
end
res=inv(K_g)*F'
end
function K = K el calc(E, L, J)
K = [12*E*J/(L^3), 6*E*J/(L^2), -12*E*J/(L^3), 6*E*J/(L^2);
   6*E*J/(L^2), 4*E*J/L, -6*E*J/(L^2), 2*E*J/L;
   -12*E*J/(L^3), -6*E*J/(L^2), 12*E*J/(L^3), -6*E*J/(L^2);
   6*E*J/(L^2), 2*E*J/L, -6*E*J/(L^2), 4*E*J/L];
end
```

Результат работы программы

```
0.000000 mm
0.000000 deg
-0.004609 mm
-0.001567 deg
0.000000 mm
0.006267 deg
0.036797 mm
0.015398 deg
0.050234 mm
0.000000 deg
```

Выполнение расчета исходной системы в программе Siemens NX

САД-модуль, создание геометрической модели:

- 1) Создаем модель моделирования;
- 2) Создаем плоский эскиз (строим 4 соединённых линии вдоль оси x) и задаем размер;
- 3) Сохраняем файл.

САЕ-модуль, создание конечно-элементной модели балочного элемента:

- 1) Создаем новый файл КЭ модели;
- 2) Связываем файл с моделью, применив отображение геометрии прямых;
- 3) Создаем конечно-элементную сетку. Выбираем параметр "1D сетка" и применяем к модели. Число элементов выбираем равным 1. .
- 4) Создаем поперечное сечение прямоугольной формы с нужными шириной и высотой;
- 5) Выбираем тип материала "AISI_STEEL_1005";
- 6) Сохраняем файл.

САЕ-модуль, решение прочностной задачи:

- 1) Создаем новый файл симуляции;
- 2) Связываем с файлом конечно-элементной модели;
- 3) Задаем граничные условия. Выбираем в верхнем меню «Тип закрепления» -> «Ограничение задаваемое пользователем». В левом верхнем углу в фильтре выбора ставим «Узел». Выбираем нужный узел и ставим «фиксировано» в необходимом месте;
- 4) Задаем внешний силовой фактор. Выбираем в верхнем меню «Тип нагрузки» -> «Сила». Выбираем нужный узел и прикладываем к нему силу. Задаем вектор направления силы;

- 5) Задаем момент. Выбираем в верхнем меню «Тип нагрузки» -> «Момент». Выбираем нужный узел и прикладываем к нему момент.Задаем вектор направления момента;
- 6) Сохраняем файл;

Результат расчёта в Siemens NX

Перемещение в узлах

Поворот в узлах

	W_1 ,	θ_1 ,	W_2 , mm	$ heta_2,$ $^{\circ}$	W_3 ,	θ_3 , °	W_4 ,	$ heta_4, {}^{\circ}$	W_5 ,	θ_5
	mm	0			mm		mm		mm	, °
MatLab	0	0	-0.0046	-0.0015	0	0.006267	0.0367	0.0153	0.05	0
Siemens Nx	0	0	-0.0051	-0.0014	0	0.006263	0.0369	0.016	0.05	0
Отн.	0%	0	8%	4%	0%	0.3%	0.4%	6%	0.6%	0
погрешность		%								%

Вывод

Результаты, полученные в NX и результаты, полученные в MatLab, равны с некой погрешностью. Это происходит потому что в обоих случаях использовался один и тот же метод расчёта (метод конечных элементов).