Title:

Introduction to HDL Design of Integer and Fixed-point Multiply-Accumulators(MAC) and Introduction to SystemVerilog HDL and VHDL-2008 **Introduction**:

The main objective of this experiment is to design multiply-accumulators (MAC) using combinational and sequential logic. Most of the arithmetic operation in digital system involves addition, subtraction and multiplication. Multiplier is one of the essential component in DSP circuit.

Theory and Methodology:

Asynchronous or combinational multipliers are generally the fastest possible multiplier available. However, sequential multipliers can also be designed that performance different multiplication steps cycle by cycle. A block diagram of MAC is given below.

Simulation And Measurement:

//package declaration

```
timeunit 1ns;
timeprecision 1ps;
package MAC PKG;
parameter IN1_WIDTH=3;
parameter IN2 WIDTH=3;
localparam OUT_WIDTH=IN1_WIDTH+IN2_WIDTH;
endpackage: MAC PKG
//design module
timeunit 1ns;
timeprecision 1ps;
import MAC PKG::*;
extern module MAC(
     input logic [IN1_WIDTH-1:0]A,
            logic [IN2_WIDTH-1:0]B,
            logic SYS_CLK,
            logic SCLR,LOAD,
     output logic [OUT WIDTH-1:0]MAC OUT);
module MAC(.*);
logic[5:0] SUM, PRODUCT;
always comb
begin: ADDER MULT
PRODUCT=A*B;
SUM=PRODUCT+MAC OUT;
           // checking the output of A * B
//S=A*B;
end:ADDER MULT
always_ff@(posedge SYS_CLK)
begin: REG
```

if(SCLR) MAC_OUT<=0;
else if(LOAD) MAC_OUT<=SUM;
else MAC_OUT<=MAC_OUT;
end: REG</pre>

endmodule: MAC

Fig: Functional Verification

Apparatus:

- **1.** A Windows-based (XP or 7 or 10) PC with standard word processors (i.e. Microsoft Office) and PDF readers (i.e. Adobe Acrobat Reader/Writer, Foxit Reader/Phantom) installed.
- 2. ISE WebPack.

Precautions:

A PC with a standard Anti-Virus program installed was used.

Reference:

1. D.J. Smith, HDL Chip Design: A Practical Guide for Designing, Synthesizing & Simulating ASUC & FPGA using VHDL or Verilog, Madison, AL, USA, Doone Publications. 1996, 6th Printing-1999(minor revisions and code updates for FPGA synthesis)