

SDNFV - Softwarization and Virtualization Software Defined Networking

Prof. Chien-Chao Tseng

曾建超教授

References:

Department of Computer Science National Chiao Tung University

- 1. Nick McKeown, Stanford University
- IEEE ICC 2018 // Keynote: Programmable Forwarding **Pertsengle Tos.ta.ctu.edu.tw**
- https://www.youtube.com/watch?v=8ie0FcsN07U
- CS244 Advanced Topics in Networking- Lecture 7: Programmable Forwarding
- 2. Open Networking Foundation (ONF)
- 3. Software Defined Networking: Introduction to SDN & OpenFlow, Prof. James Won-Ki Hong

Software Defined Networks (SDN) and Network Function Virtualization (NFV)

Software Defined Networking (SDN)

Centralized Programmable Network Control

Network Functions Virtualisation

Network Functions Virtualization (NFV)

leveraging standard IT virtualization technology to consolidate many network

equipment types onto industry standard high volume servers, switches and storage

- which could be located in Datacenters, Network Nodes and End User Premises.
- PE Router: Provider Edge Router,
- DPI: Deep Packet Inspection
- GGSN: Gateway GPRS Support Node,
- SGSN: Serving GPRS Support Node,
- BRAS: Broadband Remote Access Server,
- CDN: Content Delivery Network

Source: Network Functions Virtualisation – Introductory White Paper http://portal.etsi.org/NFV/NFV_White_Paper.pdf

NFV and **SDN**

- NFV is applicable to
 - Data plane packet processing and control plane function
 - in **fixed** and **mobile** network infrastructures.
- Highly Complementary to Software Defined Networking (SDN).
 - Mutually beneficial but are not dependent on each other.
- Network Functions can be virtualized and deployed without an SDN and vice-versa.
- ✓ Key principles of both SDN and NFV are based on abstraction and softwarization

Two-dimensional Model of Layer-Plane Abstraction

for Integrating SDN and NFV for Service Provisioning in Future Networks,

IEEE Network. 2016

tionai Cniao Lung University

Physical layer

Integration of SDN and NFV

- Unified Network Architecture with components in four quadrants
 - Loosely coupled with abstract interfaces

SDN

Act 1

In which network owners take charge of their **control plane**

National Chiao Tung University

The Rise of Whitebox Servers and Switches

Traditional Networking

- Integrated Control and Data Planes
- Distributed Control
 - Distributed algorithm running between neighbors
 - Vender lock-in

Traditional Network Node

- Router: can be partitioned into three planes
 - 1. Management plane → Configuration
 - 2. Control plane \rightarrow Make decision for the route
 - 3. Data plane \rightarrow Data forwarding

Source: James Won-Ki Hong, CSED702Y: Software Defined Networking, POSTECH

Software Defined Network (SDN)

SDN Concept

SDN – Separation of Control and Data Planes

Intent Service

Software Defined Network: Take 2

Now I can tailor my network to meet my needs!

I can....

- 1. Quickly deploy new protocols.
- 2. Monitor precisely what my forwarding plane is doing.
- 3. Fold expensive middlebox functions into the network, for free.
- 4. Try out beautiful new ideas. Tailor my network to meet my needs.
- 5. Differentiate. Now I own my intellectual property.

But wait a minute...

In the Beginning...

- OpenFlow was simple
- A single rule table
 - Priority, pattern, actions, counters, timeouts
- Matching on any of 12 fields, e.g.,
 - MAC addresses
 - IP addresses
 - Transport protocol
 - Transport port numbers

Over Five Years...

Proliferation of header fields

Version	Date	# Headers
OF 1.0	Dec 2009	12
OF 1.1	Feb 2011	15
OF 1.2	Dec 2011	36
OF 1.3	Jun 2012	40
OF 1.4	Oct 2013	41

- Multiple stages of heterogeneous tables
- Still not enough (e.g., VXLAN, NVGRE, STT, ...)

Where does it stop?!?

Need a New Feature on Network

What SDN pioneers had realized ...

When you need a new feature...

- Equipment vendor can't just send you a software upgrade
- 2. New forwarding features take years to develop
- 3. By then, you've figured out a kludge to work around it
- 4. Your network gets more complicated, more brittle
- 5. Eventually, when the upgrade is available, it either
 - -No longer solves your problem, or
 - -You need a fork-lift upgrade, at huge expense.

Network systems are built "Bottoms-up"

"This is how I process packets ..."

Fixed-function switch

Switch with fixed function pipeline

"Programmable switches run 10x slower, consume more power and cost more."

Conventional wisdom in Networking

Packet Forwarding Speeds

ntional Chiao Tung University

Domain Specific Processors

SDN

Act 2

In which network system developers take charge of their forwarding plane too

Network systems are starting to be programmed "top-down"

"This is precisely how you must process packets"

```
table int_table {
  reads {
    ip.protocol;
  }
  actions {
    export queue latency;
  }
}
```


Switch OS

Domain Specific Processors

National Chiao Tung University

PISA: Protocol Independent Switch Architecture

PISA: Protocol Independent Switch Architecture

PISA – Programmable

Re-program in the Field

P4 program example: Defining Headers

P4 Program Example: Parsing Headers

P4 Program Example – Table

```
My Encap
      Ethernet
                                                               ACL
                                          IPv6
table ipv4_lpm {
   key = {
       hdr.ipv4.dst_addr : lpm;
   actions = {
       set next hop;
       drop;
                      action set_next_hop(bit<32> nhop_ipv4_addr, bit<9> port) {
                             metadata.nhop_ipv4_addr = nhop_ipv4_addr;
                             standard_metadata.egress_port = port;
                             hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
```


P4 Program Example – Control

Applications of P4

How programmability is being used

Reducing complexity

Reducing complexity

switch.p4

Switch OS

IPv4 and IPv6 routing

- Unicast Routing
 - Routed Ports & SVI
 - VRF
- Unicast RPF
- Strict and Loose
- Multicast
- PIM-SM/DM & PIM-Bidii

Ethernet switching

- -VLAN Flooding
- MAC Learning & Aging
- STP state
- VLAN Translation

Load balancing

- LAG
- ECMP & WCMP
- Resilient Hashing
- Flowlet Switching

Fast Failover - LAG & ECMP

Tunneling

- IPv4 and IPv6 Routing & Switching
- IP in IP (Gin4, 4in4)
- VXLAN, NVGRE, GENEVE & GRE
- Segment Routing, ILA

MPLS

- LER and LSR
- IPv4/v6 routing (L3VPN)
- L2 switching (EoMPLS, VPLS)
- MPLS over UDP/GRE

ACL

- MAC ACL, IPv4/v6 ACL, RACL
- QoS ACL, System ACL, PBR
- Port Range lookups in ACLs

QOS

- QoS Classification & marking
- Drop profiles/WRED
- Roce v2 & FCoE
- CoPP (Control plane policing)

NAT and L4 Load Balancing

Security Features

Storm Control, IP Source Guard

Monitoring & Telemetry

- Ingress Mirroring and Egress Mirroring
- Negative Mirroring

Sflow

- INT

Counters

- Route Table Entry Counters
- VLAN/Bridge Domain Counters
- Port/Interface Counters

Protocol Offload

- BFD, OAM

Multi-chip Fabric Support

Forwarding, QOS

Reducing complexity

National Chiao Tung University

Programmable Switch

How programmability is being used

2 Adding new features

Protocol complexity 20 years ago

Adding features: Some examples so far

- 1. New encapsulations and tunnels
- 2. New ways to tag packets for special treatment
- 3. New approaches to routing: e.g., source routing in MSDCs
- 4. New approaches to congestion control
- 5. New ways to process packets: e.g., processing ticker-symbols

MSDC: Massively Scalable Data Center

New applications: Some examples so far

1. Layer-4 Load Balancer¹

- Replace 100 servers or 10 dedicated boxes with one programmable switch
- Track and maintain mapping for 5-10 million http flows

2. Fast stateless firewall

Add/delete and track 100s of thousands of new connections per second

3. Cache for Key-value store²

- Memcache in-network cache for 100 servers
- 1-2 billion operations per second
- [1] "SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs." Rui Miao et al. Sigcomm 2017.
- [2] "NetCache: Balancing Key-Value Stores with Fast In-Network Caching", Xin Jin et al. SOSP 2017

How programmability is being used

3 Network telemetry

Path and Flow Rules Tracking

Queuing Delay

Why Long Queuing Delay

3 "How long did my packet queue at each switch?"

We'd like the network to answer these questions

- 1 "Which path did my packet take?"
- (2"Which rules did my packet follow?"
- 3"How long did it queue at each switch?"
- 4"Who did it share the queues with?"

- A PISA device programmed using P4 can answer all four questions at line rate, for the first time.
 - Without generating additional packets.

INT: Inband Network Telemetry

In summary...

1. SDN is about who is in charge!

Act 1: Network owners and operators took charge of how their networks are controlled.

Act 2: They also decide how packets are processed.

- 2. Chip technology: Programmable forwarding now has the same power, performance and cost as fixed function.
- 3. New ideas: Beautiful new ideas now owned by the programmer, not the chip designer.