CSCI471/971 Modern Cryptography

Commitment and Oblivious Transfer (fundamental for MPC)

Fuchun Guo SCIT UOW

Motivation Commitment

Flip&Guess over a Phone

Can you guess the result I flipped?

Head/Tail

Flip&Guess over a Phone

Problem:

If Alice cannot be trusted, she can always cheat on Bob

How to play a fair game like this?

Definition Commitment

Commitment

• A commitment scheme is a cryptographic primitive that allows one to commit to a chosen value (or chosen statement) while keeping it hidden to others, with the ability to reveal the committed value later.

 Commitment schemes are designed so that a party cannot change the value or statement after they have committed to it.

There are two parties.

Commitment

A commitment scheme between sender and receiver is composed of two algorithms:

• Commit(m): Taking as input the value m to be committed, run the PPT algorithm which returns the commitment C and secrets r.

C is given to the receiver.

• Open(C,m,r): Taking as input (C,m,r), run the PPT algorithm to verify wherther the commitment is on m or not.

Flip&Guess over a Phone

b=1, Head b=0, Tail r is random number

Let f() be a one-way function.

Flip&Guess over a Phone

b=1, Head b=0, Tail r is random number

Is this commitment secure if f() is a one-way function?

Commitment 1

 Commit(m): Taking as input the value b to be committed, choose a random r and compute

$$C=f(b,r)$$

• Open(C,b,r): Taking as input (C,m,r), run the PPT algorithm and accept if C is equal to f(b,r)

Here: f is a one-way function

Is this commitment secure if f() is a one-way function?

Commitment 1

 Commit(m): Taking as input the value b to be committed, choose a random r and compute

$$C=f(b,r)$$

Open(C,b,r): Taking as input (C,m,r), run the PPT algorithm and accept if C is equal to f(b,r)

Here: f is a one-way function

No. Because it could be easy for the sender to find (b,r) and (b',r') such that f(b,r)=f(b',r')

Commitment 2: A collision-resistant hash H

 Commit(m): Taking as input the value b to be committed, choose a random r and compute

$$C=H(b,r)$$

Open(C,b,r): Taking as input (C,m,r), run the PPT algorithm and accept if C is equal to H(b,r)

Here: H is a one-way function

Is this commitment secure if H is collision resistant?

Commitment 2: A collision-resistant hash H

 Commit(m): Taking as input the value b to be committed, choose a random r and compute

$$C=H(b,r)$$

Open(C,b,r): Taking as input (C,m,r), run the PPT algorithm and accept if C is equal to H(b,r)

Here: H is a one-way function

No. This is because it could be easy for the receiver to guess the first bit from C.

Commitment 2: A collision-resistant hash H

- Commit(m): Taking as input the value b to be committed, choose a random r and compute C=H(b,r)
- Open(C,b,r): Taking as input (C,m,r), run the PPT algorithm and accept if C is equal to H(b,r)

Here: H is a one-way function

No. This is because it could be easy for the receiver to guess the first bit from C.

For example: Let G be a secure collision-resistant hash function. We define $H(b,r)=b\mid G(r)$

A secure commitment

Commit(m): Taking as input the value m to be committed, run the PPT algorithm which returns the commitment C and secrets r.

Open(C,m,r): Taking as input (C,m,r), run the PPT algorithm to verify wherther the commitment is on m or not.

Security requirements:

- Hinding: Given (C,m_0, m_1), it is computationally hard to guess the committed message in C is either m 0 or m 1.
- Binding: Given C, it is computationally hard to open with two different messages (m 1,r 1) and (m 2,r 2)

Cyclic Group

Let (G,g,p) be a cyclic group.

- G is the set of all group elements.
- The set has p number of group elements.
- g is the generator of the group G.

$$G = \{g^0, g^1, g^2, g^3, \dots, g^{p-1}\}$$

Given x and g, we can compute g^x in a fast way. (See Lecture 6 exponentiation) Given g and h, we can compute $g \cdot h$ (basic group operation)

Given g and x, we can compute $g^{-x} = g^{p-x}$. In particuar, we can compute g^{-1} Given g and x, we can compute $g^{\frac{1}{x}}$ s.t. $x*\frac{1}{x}=1 \ mod \ p$

A secure commitment scheme

Let (g,h) be two group elements chosen by the receiver.

Commit(m): Taking as input the value m in Z_p to be committed, choose a random integer r from Z_p and compute

Open(C,m',r'): Taking as input (C,m',r'), accept if

A secure commitment scheme (proof of hinding)

Let (g,h) be two group elemenst chosen by the receiver.

Commit(m): Taking as input the value m to be committed, choose a random integer r and compute

Proof.

Let g^a=h and C=g^A (A=m+ra) C is a commitment on any two (m,r) and (m',r') if A=m+ra=m'+r'a The receiver knows that it is a comit on m if r=(A-m)/a The receiver knows that it is a comit on m' if r'=(A-m')/a since the secret is randomly chosen, it is equal to r or r' with the same probability. That is, C is a commit on m and m' with the same probability. Therefore, it is unconditionally secure in hinding.

A secure commitment scheme (proof of binding)

Let (g,h) be two group elements chosen by the receiver.

Commit(m): Taking as input the value m to be committed, choose a random integer r and compute

Proof.

Let g^a=h

Suppose the sender can open C with (m_1, r_1) and (m_2, r_2).

We have m_1+r_1a=m_2+r_2a

Then, it impies that the sender can compute the DL $a = \frac{m_-1-m_-2}{r_-1-r_-2}$ which is computationally hard for the sender.

ElGamal Encryption (PKE)

Let (G, G_T, e, g, p) be a bilinear pairing.

KeyGen: Choose a random x and compute

$$pk = (g, g_1) = (g, g^x), sk = x$$

Encrypt: Input message $M \in G$ and pk, choose a random number $r \in \mathbb{Z}_p$ and compute

$$CT = (C_1, C_2) = (g^r, g_1^r \cdot M)$$

Decrypt: Input (CT, sk), compute

$$M = \frac{C_2}{C_1^x} = \frac{g_1^x \cdot M}{g^{rx}} = \frac{g_1^x \cdot M}{g_1^x}$$

A secure commitment scheme (2)

Let (g,h) be two group elemenst chosen by the sender.

Commit(m): Taking as input the value m in G to be committed, choose a random integer r from Z_p and compute

Open(C,m',r'): Taking as input (C,m',r'), accept if C can be computed with (m',r')

A secure commitment scheme (2) hinding

Let (g,h) be two group elemenst chosen by the sender.

Commit(m): Taking as input the value m in G to be committed, choose a random integer r from Z_p and compute

Proof.

The message is encrypted with IND-CPA secure ElGamal encryption so, it providing hiding and computationally secure

A secure commitment scheme (2) binding

Let (g,h) be two group elemenst chosen by the sender.

Commit(m): Taking as input the value m in G to be committed, choose a random integer r from Z_p and compute

Proof.

Suppose the sender can open C with (m_1, r_1) and (m_2, r_2).

We have r_1 must be equal to r_2 from $g^{r_1}=g^{r_2}$

If m_1 is different from m_2, we have m*h^r must be different.

Therefore, it is unconditionally secure against the binding.

Motivation Oblivious Transfer

Purchasing a movie from Alice

Alice is selling digital movies (M1, M2,M3,...,Mn)
Bob wants to purchase the digital movie M2 about the Alien.
How to complete the purchase?

Purchasing a movie from Alice

What can we do to make the solution better with cryptography?

Purchasing a movie from Alice

What can we do to make the solution better with cryptography?

Oblivious Transfer Protocol

Definition OT

Oblivious Transfer

One sender and one receiver.

In cryptography, an oblivious transfer (OT) protocol is a type of protocol in which a sender transfers one of potentially many pieces of information to a receiver, but remains oblivious as to what piece (if any) has been transferred.

The sender doesn't know what has been sent to the receiver.

 \downarrow

The sender doesn't know what the receiver will get.

Oblivious Transfer

	Sender	Receiver
Input	M_1, M_2,,M_n	j
Output	Nothing	M_i

Definition: We say that an OT protocol is secure if

- The sender learns nothing about i, and
- The receiver learns nothing else except M_i.

1-out-of-2 Oblivious Transfer

	Sender	Receiver	
Input	M_1, M_2	b	
Output	Nothing	M_b	

1-out-of-n Oblivious Transfer

	Sender	Receiver
Input	M_1, M_2,,M_n	i
Output	Nothing	M_i

k-out-of-n Oblivious Transfer

	Sender	Receiver
Input	M_1, M_2,,M_n	t_1,t_2,,t_k
Output	Nothing	M_{t_i},i=1 to k

Cyclic Group

Let (G,g,p) be a cyclic group.

- G is the set of all group elements.
- The set has p number of group elements.
- g is the generator of the group G.

$$G = \{g^0, g^1, g^2, g^3, \dots, g^{p-1}\}$$

Given x and g, we can compute g^x in a fast way. (See Lecture 6 exponentiation) Given g and h, we can compute $g \cdot h$ (basic group operation)

Given g and x, we can compute $g_1^{-x} = g^{p-x}$. In particuar, we can compute g^{-1}

Given g and x, we can compute $g^{\frac{1}{x}}$ s.t. $x * \frac{1}{x} = 1 \mod p$

1-out-of-2 Oblivious Transfer

	Sender	Receiver
Input	M_1, M_2	b
Output	Nothing	M_b

1-out-of-2 Oblivious Transfer

Case 1: If h_1=g^x and h_2=h*g^{-x}, we have h_1*h_2= h. (suppose x is randomly chosen by Bob)

- When M_1 is encrypted with ElGamal Encryption using pk_1=h_1, Bob can decrypt and get M_1 because sk_1=x.
- When M_2 is encrypted with ElGamal Encryption using pk_2=h_2, Bob cannot decrypt M 2 because sk 2 is unknown.

Case 2: If h_1=h*g^{-x} and h_2=g^x, we have h_1*h_2= h. (suppose x is randomly chosen by Bob)

- When M_1 is encrypted with ElGamal Encryption using pk_1=h_1, Bob cannot decrypt M_1 because sk_1 is unknown.
- When M_2 is encrypted with ElGamal Encryption using pk_2=h_2, Bob can' decrypt M 2 because sk 2=x.

Case 1: If $h_1=g^x$ and $h_2=h^*g^{-x}$, we have $h_1^*h_2=h$.

Case 2: If $h_1=h*g^{-x}$ and $h_2=g^{x}$, we have $h_1*h_2=h$.

If Alice doesn't know x, it is impossible for Alice to know whether Bob follows case 1 or case 2.

Alice doesn't know b.

Bob knows nothing except M b.

What are advantages and disadvantages compared to trivial solution?

	Advantage	Disadvantage
Trivial Solution	easy and transmit M2 only	no privacy on receiver
OT	privacy on receiver	transmit both M1 and M2

1-out-of-n OT protocol

1-out-of-n Oblivious Transfer(try to attack this)

This 1-out-of-n OT protocol is insecure. Can you find the reason?

1-out-of-n Oblivious Transfer(try to attack this)

This is actually an (n-1)-out-of-n OT protocol!

Then the receiver knows that the secret key of pk_i is sk_i=x.

Bob runs the following 1-out-of-n protocol k times with Alice.

1-out-of-n Oblivious Transfer

Workshop

Cyclic Group

Let (G,g,p) be a cyclic group.

- G is the set of all group elements.
- The set has p number of group elements.
- g is the generator of the group G.

$$G = \{g^0, g^1, g^2, g^3, \dots, g^{p-1}\}$$

Let R: $X \times Y$ be defined as (x,y)=(h,a) such that $g^a=h$ L_R={any h: there exists a such that $g^a=h$ }

I can prove x=h\in L_R <==> I know a such that h=g^a

Let (G,g,p) be a cyclic group.

Let $R: X \times Y$ be defined as

- x=(g_1, g_2, h_1, h_2)
- y=a

L_R={x: there exists a such that $h_1=g_1^a$ & $h_2=g_2^a$ }

Let (G,g,p) be a cyclic group.

Let $R: X \times Y$ be defined as

- x=(g_1, g_2, h_1, h_2)
- y=a

L_R={x: there exists a such that $h_1=g_1^a$ OR $h_2=g_2^a$ }

Let (G,g,p) be a cyclic group.

Let $R: X \times Y$ be defined as

We define

$$R(x,y)=1$$
 if

- y has one element a_1 and g_1=g^{a_1}, or
- y has two elements (a_2, a_3), and g_2=g^{a_2}, g_3=g^{a_3}

Alice wants to prove x\in L_R to Bob

```
Case 1 Prover
                                                                Verifier
    (g,g 1,g 2,g 3)
                                                           (g,g_1,g_2,g_3)
        a_1, a_2, a_3
1. Choose random r_1, r'_2,r'_3,c_2
2. R1=g^{r} 1
                                                           g 1 = g^a 1
  R2=g^{r'} 2}*g 2^{-c} 2
                                                          g 2 = g^2 2
                                     R1,R2,R3
  R3=g^{r'} 3}*g 3^{-c} 2
                                                           g 3 = g^a 3
                                                    3. Choose a random c\in Z p
4. c1+c 2=c mod p
Z1= r 1+c 1*a 1 mod p
                                 c1,c2,Z1,Z2,Z3
                                                      5. Accept if c=c1+c2 mod p
Z2=(r' 2-c 2*a 2)+c 2*a 2 mod p
                                                                  g^{Z1} = R1 * g_1^{c_1}
                                                                  g^{Z2} = R2 * g_2^{c_2}
Z3=(r' 3-c 2*a 3)+c 2*a 3 mod p
  = r' 3
                                                                  g^{Z3} = R3 * g_3^{c_2}
```

Case 1 Prover (g,g_1,g_2,g_3) a 1

Step 1:

- 1. Choose random r_1, r'_2,r'_3,c_2
- 2. R1=g^{r_1} R2=g^{r'_2}*g_2^{-c_2} R3=g^{r'_3}*g_3^{-c_2}
- 3. Send R1,R2,R3 to the verifier

Step 2:

- 1. Choose random c from Z_p
- 2. Send c to the prover

Verifier (g,g_1,g_2,g_3)

Step 3:

- 1. c1+c 2=c mod p
- 2. Z1= r_1+c_1*a_1 mod p
- 3. $Z2=(r' 2-c_2*a_2)+c_2*a_2 \mod p = r'_2$
- 4. Z3=(r' 3-c 2*a 3)+c 2*a 3 mod p= r' 3
- 5. Send (c_1, c_2, Z1,Z2, Z3) to the verifier

Step 4:

= r' 1

5. Accept if
$$c=c1+c2 \mod p$$

$$g^{Z1} = R1 * g_1^{c_1}$$

$$g^{Z2} = R2 * g_2^{c_2}$$

$$g^{Z3} = R3 * g_3^{c_2}$$

3. Choose a random c\in Z p

Case 2 Prover (g,g_1,g_2,g_3) a_2,a_3

Step 1:

1.Choose random r'_1, r_2,r_3,c_1

3. Send R1,R2,R3 to the verifier

Step 2:

- 1. Choose random c from Z_p
- 2. Send c to the prover

Verifier (g,g_1,g_2,g_3)

Step 3:

- 1. c1+c 2=c mod p
- 2. Z1= (r'_1-c_1*a_1)+c_1*a_1 mod p = r'_2
 Z2= r_2+c_2*a_2 mod p
 Z3=r_3+c_2*a_3 mod p
- 3. Send (c_1, c_2, Z1,Z2, Z3) to the verifier

Step 4: