Лекция 6

План лекции.

- 1. Определение функции
- 1.1. Область определения и область значений функции
- 1.2. Образ множества и элемента множества, прообраз множества и элемента множества.
- 2. Определение отображения
- 2.1. Свойство отображения.
- 2.2. Композиция отображений.
- 2.3. Сюръективное и инъективное отображения.
- Сюръективная и инъективная функция.
- 2.5. Биекция или взаимно-однозначное соответствие

3. Способы задания функций

- 3.1. Табличный
- 3.2. Аналитический
- 3.3. Графический

4. Специальные функции

- 4.1. Тождественная функция
- 4.2. Нижнее округление
- 4.3. Верхнее округление
- 4.4. Факториал.
- 4.5. Бинарная операция
- 4.6. Конечная и бесконечная последовательности

5. Функция двух переменных

- 5.1. Матрицы, операции над матрицами
- 6. Понятие функционала
- 7. Понятие оператора

Определение функции

Функция — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция — это «закон», по которому каждому элементу одного множества ставится в соответствие некоторый элемент другого множества.

Отображение $f: X \to Y$ называется **функцией,** если оно однозначно, т. е. если для любых пар $(x_1, y_1) \in f$ и $(x_2, y_2) \in f$ из $(x_1 = x_2)$ следует $(y_1 = y_2)$.

Также значение y в любой из пар $(x,y) \in f$ называется функцией от x, что записывается в виде y = f(x).

Следовательно, функция – это множество

$$f = \{(x, y) \in X \times Y | y = f(x) \}.$$

Дадим формальное определение функции.

Отношение f на $X \times Y$ называется **функцией** из X в Y и обозначается через $f: X \to Y$, если для каждого $x \in X$ существует единственный элемент $y \in Y$ такой, что $(a,b) \in f$. Если $f: X \to Y$ — функция, и $(a,b) \in f$, то говорят, что y = f(x).

Как видно из определения, символ f используется в двух смыслах:

- $1.\ f$ это множество, элементами которого являются пары, участвующие в соответствии.
 - 2. f(x) это обозначение для $y \in Y$, которое соответствует данному $x \in X$.

Множество X называется областью определения функции f, а множество Y называется областью потенциальных значений.

Если $E\subseteq X$, то множество $f\left(E\right)=\left\{y\Big|f\left(x\right)=y$ для некоторого $x\in E\right\}$ называется *образом* множества E . Элемент $f\left(x\right)$ называется **образом** элемента x .

Образ всего множества X называется **областью значений** функции f . Если $F\subseteq Y$, то множество $f^{-1}\big(F\big)=\big\{x\Big|f\big(x\big)\in F\big\}$ называется **прообразом** множества F. Элемент x называется **прообразом** $f\big(x\big)$

Функция $f: X \to Y$ называется также *отображением*; при этом говорят, что f отображает X в Y. Если $(x,y) \in f$, так что y = f(x), то говорят, что элемент x отображается в элемент y.

Свойства отображения

Пусть $A\subseteq X$. Для произвольного $x\in A$ образом x будет множество $Q_X\subseteq Y$. Совокупность всех элементов Y, являющихся образами Q_X для всех $x\in A$, называется образом множества A и обозначается QA. Тогда согласно этому определению

$$QA = \bigcup_{x \in A} Q_X$$
.

Свойство 1. Если A_1 и A_2 — подмножества X , то имеет место соотношение:

$$Q\big(A_1\cup A_2\big)=Q\big(A_1\big)\cup Q\big(A_2\big).$$

Свойство 2. Для взаимно-однозначного отображения справедливо следующее соотношение:

$$Q \left(A_1 \cap A_2 \right) = Q \left(A_1 \right) \cap Q \left(A_2 \right).$$

Свойство 3. Для произвольного отображения справедливо соотношение:

$$Q\big(A_1\cap A_2\big)\subseteq Q\big(A_1\big)\cap Q\big(A_2\big)$$

Обобщение свойств 1 и 3:

$$Q\bigg(\bigcup_{i=1}^n A_i\bigg) = \bigcup_{i=1}^n QA_i\,,\quad Q\bigg(\bigcap_{i=1}^n A_i\bigg) \subseteq \bigcap_{i=1}^n QA_i\,.$$

Частный случай

Важный частный случай, когда множества X и Y совпадают. Тогда отображение $Q:X\to X$ отображает само в себя и определяется парой $\left(X,Q\right)$, где $Q\subseteq X\times X$ или $Q\subseteq X^2$.

Композиция отображений

Пусть даны отображения Q:X o X и G:X o X .

Композицией этих отображений называется отображение $Q\otimes G$, определяемое соотношением:

$$Q(G_X) = (Q \otimes G)_X$$

Данное соотношение выражает отображение Q отображения G .

В случае, когда Q=G возможно получить отображения:

$$Q_X^2 = Q(Q_X),$$

$$Q_X^3 = Qig(Q_X^2ig)$$
 и т. д.

В общем случае при $m \geq 2$ получаем выражение $Q_X^m = Q \Big(Q_X^{m-1} \Big).$

Введем соотношение $Q_X^0=X$ и получим соотношение для отрицательных m :

$$Q_X^0=Qig(Q_X^{-1}ig)=Qig(Q imes Q^{-1}ig)_{\!X}=X$$
 .

Поскольку Q_X^{-1} — обратное отображение, то

$$Q_X^{-2}=Qig(Q_X^{-1}ig),$$

$$Q_X^{-3}=Qig(Q_X^{-2}ig)$$
, и т. д.

Пример. Пусть X — множество людей. Для каждого человека x из множества X множество его детей определим как Q_{X} . Тогда Q_{X}^{2} будет представлять множество его внуков, Q_{X}^{3} — множество его правнуков, а Q_{X}^{-1} — множество родителей. Изобразив множество людей точками, а стрелками представив соответствия между X, Q_{X} , Q_{X}^{2} и т. д., получаем родословную или генеалогическое дерево для данного множества людей.

Отображение множества X в множество Y называется **сюрьективным**, если каждый элемент из Y имеет по крайней мере один прообраз из X. Следовательно, имеет место одномногозначное и много-однозначное соответствия.

Функция называется отображением «на», или сюръективной функцией, или сюръекцией, если для каждого $y \in Y$ существует некоторое $x \in X$ такое, что f(x) = y.

Отображение множества X в множество Y называется **инъективным,** если каждый образ $f\left(x\right)$ обладает ровно одним прообразом x. Следовательно, имеет место одно-однозначное соответствие.

Функция $f: X \to Y$ называется **инъективной**, или **инъекцией**, если из f(x) = f(x') следует x = x'.

Функция, которая является одновременно и инъективной, и сюръективной, называется взаимно-однозначным соответствием, или биекцией. Если X=Y и $f:X\to Y$ является взаимно-однозначным соответствием, то f называется перестановкой множества X.

Способы задания функций.

1. Табличный способ задания функции

пын спосоо задания функции									
x	1	2	3	4	5	6	7	8	9
f(x)) 1	4	9	16	25	36	49	64	81

В данной таблице столбцы представляют собой множество упорядоченных пар: $y = f(x) = \{(1,1), (2,4), (3,9), (4,16), (5,25), (6,36), (7,49), (8,64), (9,81)\}$, что соответствует определению функции, представленному ранее.

2. Аналитический способ задания функции

При аналитическом задании функция представлена в виде формулы, т. е. математического выражения, включающего математические операции, которые необходимо выполнить над $x \in X$, чтобы получить $y \in Y$:

$$y = f(x) = \{(x, y) \in R^2 | y = x^2 \}.$$

2. Графический способ задания функции

Если $X\subseteq R$ и $Y\subseteq R$, т. е. X и Y являются подмножествами множества вещественных чисел, то пары $(x,y)\in R^2$ возможно представить в виде точек на плоскости. Полная совокупность точек будет представлять собой график функции.

Специальные функции

Пусть $I: X \to X$ определено соотношением f(x) = x для всех $x \in X$. Функция I называется **тождественной функцией** на X.

Функция $f: X \to Y$, где X — множество действительных чисел, а Y — множество целых чисел, называется *нижним округлением* и обозначается $f(x) = \lfloor x \rfloor$, если она каждому $x \in X$ ставит в соответствие наибольшее целое число, меньшее или равное x.

Функция $f: F \to B$ называется **верхним округлением** и обозначается f(x) = [x], если она каждому $x \in X$ ставит в соответствие наименьшее целое число, большее или равное x.

Пусть A и B совпадают со множеством неотрицательных целых чисел. Факториалом назовем функцию $f: X \to Y$, обозначаемую через f(n) = n! и определяемую следующими соотношениями:

0! = 1

1! = 1

$$2! = 1 \cdot 2 = 2$$

$$3! = 1 \cdot 2 \cdot 3 = 6$$

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$$

$$k! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot k$$

Бинарная операция

Пусть X,Y,Z — тройка непустых множеств. **Бинарной операцией** или двуместной операцией в паре (x,y), $x \in X$ и $y \in Y$ со значением в $z \in Z$ называется функция $b: P \to Z$, где $P \subset X \times Y$.

Бинарная операция обозначается знаком действия, который ставится обычно между операндами.

Пусть • – произвольная операция. Тогда существуют виды записей:

- 1. Инфиксная форма записи: *x y*
- 2. Префиксная (польская запись): •ху
- 3. Постфиксная (обратная польская запись): xy •

Пример: «+», «-», «·» — бинарные операции на множестве рациональных чисел.

Последовательность

Определение. Пусть дано множество $X = \{x_1, ..., x_i, ..., x_n\}$ произвольной природы. Всякое отображение $f: N \to X$ множества натуральных чисел N в множество X называется **последовательностью** (элементов множества X).

Образ натурального числа i, а именно, элемент $x_i = f(i)$, называется i-м членом или элементом последовательности, а порядковый номер члена последовательности – её индексом.

Обозначения

Последовательность $x_1, x_2, ..., x_i, ...$ записывают в виде

$$(x_i)_{i=1}^{\infty}$$
, иногда $\{x_i\}_{i=1}^{\infty}$.

Для конечных последовательностей: $(x_i)_{i=1}^n$ или $\{x_i\}_{i=1}^n$

Сумма элементов последовательности:
$$S = \sum_{i=1}^{n} x_i$$

Функция двух переменных.

Пусть дана функция $f: X \to Y$ в которой значение множество X представлено декартовым произведением $X = A \times B$. Такая функция называется функцией двух переменных A и B и обозначается $f\left(a,b\right)$, где $a \in A$ и $b \in B$.

Формальное определение функции двух переменных имеет такой вид:

$$f=\left\{ \left(\left. a,b,y
ight) \in \left. A imes B imes Y
ight| y=f\left(a,b
ight)
ight\} .$$
 Матрица

Матрица Пусть есть два конечных множества $M = \{1, 2, ..., m\}$ и $N = \{1, 2, ..., n\}$, где m и n — натуральные числа.

Назовем матрицей размера $m \times n$, или массивом $m \times n$ (m на n) функцию:

$$A: M \times N \rightarrow D$$
,

где D — это, как правило, множество действительных, комплексных, рациональных или целых чисел.

Элементы D называются скалярами.

Таким образом, для каждого i, 1 < i < m, и каждого j, 1 < j < n, имеется элемент $A(i,j) \in D$, который находится в i-й строке и j-м столбце соответствующей прямоугольной таблицы.

Образ A(i,j) элемента области определения (i,j) сокращенно обозначается через $A_{i,j}$. Следовательно, $m \times n$ матрица A изображается прямоугольной таблицей, где образы упорядоченных пар $(i,j) \in \{1,2,...,m\} \times \{1,2,...,n\}$ быть представлены в таком виде:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mn} \end{bmatrix}$$

Матрица A содержит m строк и n столбцов и является матрицей размера $m \times n$. Сокращенно матрицу записывают $A = \begin{vmatrix} A_{ij} \end{vmatrix}$ или $A = \begin{vmatrix} a_{ij} \end{vmatrix}$.

Значение a_{ii} называется компонентой, или элементом матрицы A.

Виды матриц

1. Mатрица-столбец. Матрица размера $m \times 1$ называется матрицейстолбцом или вектором-столбцом.

$$A = \begin{bmatrix} a_{11} \\ a_{2,1} \\ \vdots \\ a_{m1} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

2. **Матрица-строка**. Матрица размера $1 \times n$ называется **матрицей-строкой** или вектором-строкой.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

Если А — матрица-строка или матрица-столбец, то индекс строки соответственно, столбца, обычно опускают.

3. *Квадратичная матрица*. Если в матрице число строк и число столбцов совпадает m = n = k, она называется *квадратной матрицей*.

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ A_{12} & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ A_{k1} & A_{k2} & \cdots & A_{kk} \end{bmatrix}$$

4. **Диагональная матрица.** Это квадратичная матрица, в которой все элементы, кроме диагональных, нулевые.

$$\forall (i \neq j) \Rightarrow A_{ii} = 0.$$
 $A = diag(A_1, A_2, ..., A_k).$

5. **Единичная матрица.** Это диагональная матрица с единичными элементами на диагонали.

$$\begin{cases} \forall (i \neq j) \Rightarrow A_{ij} = 0, \\ \forall (i = j) \Rightarrow A_{ij} = 1 \end{cases} A = diag(1, 1, ..., 1)$$

Операции над матрицами

Равенство матриц

Две матрицы $A = \begin{bmatrix} A_{ij} \end{bmatrix}$ и $B = \begin{bmatrix} B_{ij} \end{bmatrix}$ размера $m \times n$ *равны*, если равны их соответствующие элементы; т. е. A = B тогда и только тогда, когда $A_{ij} = B_{ij}$ для всех i, 1 < j < m, и всех j, 1 < j < n.

Умножение матрицы на скаляр

Если d — скаляр, а $A = \begin{bmatrix} A_{ij} \end{bmatrix}$ — матрица $m \times n$, то dA есть матрица $D = \begin{bmatrix} D_{ij} \end{bmatrix}$ размера $m \times n$, где $D_{ij} = dA_{ij}$, т. е. каждая компонента есть произведение соответствующей компоненты A на d. Произведение числа d и матрицы A называется умножением матрицы на скаляр.

Сумма и разность матриц

Складывать и вычитать можно только матрицы одного размера!!

Сумма

Если $A = \begin{bmatrix} A_{ij} \end{bmatrix}$ и $B = \begin{bmatrix} B_{ij} \end{bmatrix}$ — $m \times n$ -матрицы, тогда A + B есть $m \times n$ матрица $C = \begin{bmatrix} C_{ij} \end{bmatrix}$, где $C_{ij} = A_{ij} + B_{ij}$, другими словами, матрицы складываются покомпонентно. Матрица C называется *суммой матриц* A и B.

Разность

Разность двух матриц определим через их сумму. Запись A - B означает $A + (-1) \cdot B$.

Следовательно, если $A=\left[A_{ij}\right]$ и $B=\left[B_{ij}\right]$ — $m\times n$ -матрицы, тогда A-B есть $m\times n$ матрица $C=\left[C_{ij}\right]$, где $C_{ij}=A_{ij}-B_{ij}$.

Произведение матриц

1. Умножение матрицы на матрицу-столбец

Матрица должна быть слева, а матрица-столбец - справа:

$$\begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m1} & \cdots & A_{mn} \end{bmatrix} \times \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 + \dots A_{1n}B_n \\ A_{21}B_1 + A_{22}B_2 + \dots A_{2n}B_n \\ \vdots \\ A_{m1}B_1 + A_{m2}B_2 + \dots A_{mn}B_n \end{bmatrix}$$

2. Умножение матрицы-строки на матрицу.

Матрица-строка должна быть слева, а матрица-справа:

$$\begin{bmatrix} A_1 & A_2 \dots A_m \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ B_{m1} & B_{m1} & \dots & B_{mn} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^m A_k B_{k1} & \sum_{k=1}^m A_k B_{k2} & \dots & \sum_{k=1}^m A_k B_{kn} \end{bmatrix}$$

$$egin{align*} \mathbb{B})$$
 Пусть A матрица $m imes p : A = egin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots & A_{1p} \\ A_{21} & A_{22} & A_{23} & \cdots & A_{2p} \\ dots & dots & dots & dots & dots \\ A_{m1} & A_{m2} & A_{m3} & \cdots & A_{mp} \end{bmatrix} \end{bmatrix}$ Пусть B матрица $p imes n :$ $B = egin{bmatrix} B_{11} & B_{12} & B_{13} & \cdots & B_{1n} \\ B_{21} & B_{22} & B_{23} & \cdots & B_{2n} \\ dots & dots & dots & dots & dots \\ B_{p1} & B_{p2} & B_{p3} & \cdots & B_{pn} \end{bmatrix}$

Тогда произведением матриц A и B называется матрица $C = \begin{bmatrix} C_{ij} \end{bmatrix}$ размера $m \times n$, где C_{ij} — это скалярное произведение i -й строки матрицы A на j -й столбец матрицы B. C = AB

$$C_{i,j} = \begin{bmatrix} A_{i1} & A_{i2} & A_{i3} & \cdots & A_{ip} \end{bmatrix} \bullet \begin{bmatrix} B_{1j} \\ B_{2j} \\ B_{3j} \\ \vdots \\ B_{pj} \end{bmatrix} = \sum_{k=1}^{p} A_{ik} B_{kj}.$$

Транспонированная матрица

Пусть A — матрица $m \times n$.

Ее mpaнcnohupoвahhoй матрицей называется матрица A^t размера $n \times m$ такая, что

$$A_{ij}^t = A_{ji}$$
,

где A_{ii} — элемент i -ой строки и j -го столбца матрицы A.

Симметричная матрица

Если A — матрица $n \times n$ и $A_{ij} = A_{ji}$ для всех $1 \le i$, $j \le n$, то матрица A называется *симметричной*. Иными словами, матрица A симметрична тогда и только тогда, когда $A = A^t$.

Матричное представление отношения

Пусть $A = \{a_1, a_2, a_3, ..., a_m\}$ и $B = \{b_1, b_2, b_3, ..., b_n\}$, и пусть R — отношение на $A \times B$.

Mатричным представлением R называется матрица $M = \begin{bmatrix} M_{ij} \end{bmatrix}$ размера $m \times n$, определенная соотношениями

$$M_{ij} = \begin{cases} 1, & (a_i, b_j) \in R, \\ 0, & (a_i, b_j) \notin R. \end{cases}$$

Пусть M — матрица размера $n \times n$, в каждой строке и в каждом столбце которой только один элемент равен 1, а все остальные равны 0. Такая матрица M называется матрицей перестановок.

Понятие о функционала

Понятие функционала является более широким, чем понятие функции.

Когда мы говорим об отображении $f: X \to Y$ как о функции с вещественными значениями, мы не накладываем на характер элементов множества X каких-либо ограничений. В простейших задачах множество X, как и множество Y, представляет собой множества вещественных чисел. Каждая пара $(x,y)\in f$ ставит в соответствие одному вещественному числу x другое вещественной число y. Однако для практики важным является случай, когда множество X представляет собой множество функций, а множество Y — множество вещественных чисел. Этот случай приводит к понятию функционала.

Представим себе некоторый набор кривых (траекторий) $y=f_i\left(x\right)$, соединяющих фиксированные точки A и B, как показано на рисунке.

Пусть по каждой из этих траекторий может происходить свободное перемещение точки. Обозначим через t время, которое требуется на перемещение из точки A в точку B. Это время очевидно зависит от характера траектории AB, т. е. от вида функции $f_i\left(x\right)$.

Обозначим через F(x) множество из n различных функций, изображающих траекторию AB,

$$F\left(x\right) = \left\{f_{1}\left(x\right), f_{2}\left(x\right), \dots, f_{i}\left(x\right), \dots, f_{n}\left(x\right)\right\},\,$$

а через T — множество вещественных чисел $t \in T$, определяющих время перемещения точки, то зависимость времени движения от вида функции может быть записана как отображение.

Функционал — это отображение J, которое имеет такое формальное представление:

$$J:Fig(xig) o T$$
 , или $J=ig\{ig(ig(fig(xig),tig)ig|fig(xig)\in Fig(xig),t\in T,t=Jig[fig(xig)ig]ig)ig\}$.

Понятие оператора. Оператор представляет более общее понятие по сравнению с функционалом.

Оператором называется отображение

$$L: X \to Y$$

где множества X и Y являются множествами функций с элементами $xig(tig)\in X$ и $yig(tig)\in Y$.

Отсюда следует, что элементами множества L являются пары (x(t),y(t)), а оператор L преобразует функцию

$$y(t) = L[x(t)],$$

Таким образом, оператор устанавливает соответствие между двумя множествами функций, так, что каждой функции из одного множества соответствует функция из другого множества.

Пример. Обозначим через p оператор дифференцирования. Тогда связь между производной $f'(x) = \frac{df(x)}{dx}$ и функцией f(x) может быть представлена в операторном виде $f'(x) = p \big[f(x) \big]$.