Problem 4.8. Show that the interaction energy of two ideal dipoles separated by a displacement ${\bf r}$ is

$$U = \frac{1}{4\pi\epsilon_0} \frac{1}{r^3} [\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\mathbf{p}_1 \cdot \hat{\mathbf{r}})(\mathbf{p}_2 \cdot \hat{\mathbf{r}})]. \tag{4.7}$$

[*Hint*: Use <u>Prob. 4.7</u> and Eq. <u>3.104</u>.]

Problem 4.10. A sphere of radius R carries a polarization

$$\mathbf{P}(\mathbf{r}) = k\mathbf{r},$$

where k is a constant and \mathbf{r} is the vector from the center.

- (a) Calculate the bound charges σ_b and ho_b .
- (b) Find the field inside and outside the sphere.