This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 461 079 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 16.07.1997 Bulletin 1997/29

(21) Application number: 91810428.2

(22) Date of filing: 05.06.1991

(51) Int. Cl.⁶: **C07D 405/04**, C07D 239/52, C07D 401/06, C07D 403/04, C07D 413/10, C07D 491/04

(54) Substituted phthalides and heterocyclic phthalides

Substituierte Phthalide und heterozyklische Phthalide Phtalides substitués et phtalides hétérocycliques

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(30) Priority: 07.06.1990 US 534794 21.12.1990 US 633592

(43) Date of publication of application: 11.12.1991 Bulletin 1991/50

(73) Proprietors:

DE

NovartIs AG
 4058 Basel (CH)
 Designated Contracting States:
 BE CH DK ES FR GB GR IT LI LU NL SE
 SANDOZ-PATENT-GMBH
 79539 Lörrach (DE)

Designated Contracting States:

SANDOZ-ERFINDUNGEN
 Verwaltungsgesellschaft m.b.H.
 1235 Wien (AT)
 Designated Contracting States:
 AT

(72) Inventors:

Anderson, Richard James
 Palo Alto, CA 94303 (US)

 Cloudsdale, lan Stuart Boulder Creek, CA 95006 (US)

 Hokama, Takeo Sunnyvale, CA 94087 (US)

(56) References cited:

EP-A- 0 410 590

WO-A-91/10653

 IUPAC, Nomenclature of Organic Chemistry, Sections A,B,C,D,E,F and H Pergamon Press, 1979 Edition, page 20

· Aldrich Catalogue, Seite 148, 1994/95

P 0 461 079 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

10

15

20

25

30

35

40

45

50

EP 0 461 079 B1

Description

The present invention concerns substituted phthalides and heterocyclic phthalides and derivatives thereof, processes for their production, compositions containing them and their use in agriculture.

More particularly, the invention concerns compounds of formula I

wherein ring system A is selected from

- a) phenyl or naphthyl
- b) pyridyl which may be fused by its (b) or (c) side to benzene
- c) pyridyl-N-oxide or pyrazinyl-N-oxide
- d) pyrimidinyl
- e) pyrazinyl
- f) 3- or 4- cinnolynyl or 2-quinoxalinyl, and
- g) a five membered heteroaromatic ring comprising oxygen, sulphur or nitrogen as heteroatom(s) which ring may be fused to a benzene ring or may comprise nitrogen as an additional heteroatom.

R is

cyano, formyl, $CX_1X_2X_3$, -C(O)R" wherein R" is $C_{1.8}$ alkyl, $C_{1.6}$ alkyl, $C_{1.8}$ alkoxy $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkenyl, aryl or aryl $C_{1.8}$ alkyl; a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group, or a group $-CONR_7R_8$, hydroxy $C_{1.8}$ alkyl, hydroxybenzyl, -CH=NOH, $-CH=NO-C_{1.8}$ alkyl, or a ring $-CONR_7R_8$, hydroxy $-CONR_7R_8$

Y₁, Y₂ and Y₃

are attached to carbon atoms and are independently hydrogen, halogen, hydroxy, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkoxy, C_{2-8} alkenyloxy, C_{2-8} alkynyloxy, C_{1-8} alkylsulfonyloxy, C_{1-8} alkylsulfonyloxy, are calkylsulfonyloxy, C_{1-8} alkoxy, hydroxy C_{1-8} alkyl, C_{2-8} acyloxy, C_{1-8} alkylsilyloxy, C_{1-8} alkylsilyloxy, arylsulfonyloxy, arylsul

Y₁ and R

taken together on adjacent carbon atoms form a bridge having the formula -C(S)-O-, -C(O)-O-E- or -C(O)-N(R_2)-E- wherein E is a direct bond or a 1 to 3 membered linking group with elements selected from methylene, -N(R_2)- and oxygen; or

Y₁ and Y

 $_2$ taken together on adjacent carbon atoms form a 3- to 5-membered bridge comprised of elements selected from methylene, -CH=, -C(R₄)=, -NH-, oxygen and -S(O)₀-;

1)

EP 0 461 079 B1

each of W₁, W₂, W₃, W₄ and W₅ is independently CH, CR₃ or nitrogen;

W₆ is

NH, oxygen, sulfur, -CR₄=, -CH= or -C(O)-;

Z is 5

a 2- or 3-membered bridge comprised of elements selected from methylene, -CH=, - $C(R_4)=$, -C(O)-, -NH-, -N=, oxygen and $S(O)_n-$;

R₁ and R₃

each is independently hydrogen, halogen, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1} . $_{8}$ alkoxy, C_{2-8} alkenyloxy, C_{2-8} alkynyloxy, C_{1-8} alkylthio, C_{2-8} alkenylthio or C_{2} . galkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; C3scycloalkyl, a 5- or 6-membered heterocycloC1-salkoxy, aryloxy, arylC1-salkoxy or arylC₁₋₈alkylthio each of which may be substituted by 1 to 3 substituents selected from halogen, C₁₋₈alkyl, C₁₋₈haloalkyl, C₁₋₈alkoxy, C₁₋₈haloalkoxy, nitro, cyano, C₁₋₈ galkylthio, C2-8acyl, amino; aminoxy, iminoxy, amido, C1-8alkylsulfonylmethyl, cyano, nitro; or -C(O)-Y₄, wherein Y₄ is hydrogen, C₁₋₈alkyl, C₁₋₈alkoxy, hydroxy or phenyl;

15

20

10

hydrogen, C₁₋₈aikyi, C₁₋₈haloaikyi, C₁₋₈aikoxyaikyi, aryi, or aryiC₁₋₈aikyi;

R₄ is

R₂ is

as defined for Y₁ except for hydrogen;

X and Y

each is independently hydrogen, hydroxy, halogen, cyano, C₁₋₈alkyl, C₁₋₈alkoxy, C₁₋ galkoxycarbonyl, C_{1.8}alkoxycarbonyloxy, hydroxyC_{1.8}alkyl, C_{1.8}haloalkyl, C_{2.8}acyl, C_{2.8} gacyloxy, carbamoyl, carbamoyloxy, C₁₋₈alkylthio, C₁₋₈alkylsulfinyl, C₁₋₈alkylsulfonyl or C₁₋₈alkylsulfonyloxy; aryl, aryloxy, arylS(O)_p, arylsulphonyloxy, each of which may in turn be substituted by 1 to 3 substituents selected from halogen, C_{1.8}alkyl. C_{1.8} shaloalkyl, C1-8alkoxy, C1-8haloalkoxy, nitro, cyano, C1-8alkylthio, C2-8acyl; amino or together represent =0, =S, =NH, =NOR₁₂ or =CR₁₃R₁₄; or

25

30

together may form a bridge having the formula -C(O)-O-, -C(O)-S or -C(O)-NR2-

wherein the carbonyl is attached to A;

p is

X and R

0, 1 or 2;

X₁, X₂ and X₃

are independently hydrogen, hydroxy, C_{1-8} alkoxy, C_{1-8} alkylthio, hydroxy C_{1-8} alkyl or hydroxybenzyl whereby at least one of X₁, X₂ and X₃ is other than hydrogen; or

X₃ is

hydrogen and X₁ and X₂ together form a 4- or 5-membered bridge comprising elements selected from -O(CH₂)_n,-O-, -OC(O)(CH₂)_mO- and -S(CH₂)_n,S-;

R₇ and R₈

are each independently (a) hydrogen, halogen; (b) C_{1-24} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $C_{1-8} alkoxy, \ C_{1-8} alkoxyC_{1-8} alkoxy, \ C_{2-8} - alkenyloxy, \ C_{2-8} alkynyloxy, \ C_{1-8} alkylthio, \ C_{2-8} - alkynyloxy, \ C_{2-8}$ 8alkenylthio or C2-8alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; (c) C₃₋₆cycloalkyl, C₃₋₆cycloalkylC₁₋₈alkyl, heterocyclyl, heterocycloC₁₋ 8alkyl, heterocycloC₁₋₈alkoxy, aryloxy, arylC₁₋₈alkoxy, or arylC₁₋₈alkylthio, each of which is unsubstituted or may be substituted by 1 to 3 substituents selected from (i) halogen; (ii) C₁₋₈alkyl, C₁₋₈alkoxy, C₁₋₈haloalkoxy, C₁₋₈haloalkyl, C₁₋₈alkylthio, C₁₋₈ 8alkylsulfonyl, C₁₋₈alkylsulfonylmethyl; and (iii) nitro, cyano, acyl, amino; (d) amino, amido, aminosulfonyl, cyano, nitro, or -(CHR4')n"-C(O)Y4', wherein Y4' is hydrogen, C1. 8alkyl, C₁₋₈ alkoxy or hydroxy and n" is 0, 1, 2 or 3; R₄' is as defined for Y₁;

50

45

hydrogen or C₁₋₈ alkyl;

R₁₃ and R₁₄

R₁₂ is

are independently hydrogen, C₁₋₈ alkyl or halogen;

55 m is

1 or 2:

n is

0, 1 or 2; and

n' is

2 or 3:

D D

EP 0 461 079 B1

with the proviso that when R is carboxyl in free ester or salt form and X and Y together are =O one of rings A and B contains a hetero atom.

Herbicidal benzylpyrimidine and benzyltriazine derivatives have been described in the European patent application EP-A-0410590, published on January 30, 1991.

When R is a carboxyl or thiocarboxyl group in ester form it is preferably of formula $-COOR_5$ or $-COSR_5$ wherein R_5 is alkyl, haloalkyl, alkoxyalkyl, alkenyl, haloalkenyl, alkynl, haloalkynyl, unsubstituted or substituted aryl, unsubstituted or substituted aralkyl, hydroxyalkyl, cycloalkyl, cyanoalkyl, aralkoxyalkyl; a group $-N=C(R_{15})(R_{16})$; a group $-(CH_2)_n-CH(R_{17})(R_{18})$; a group

-CH-O-C-R₁₁ R₁₀ X

15

20

25

50

55

10

R₁₅ and R₁₆ are independently hydrogen or alkyl,

R₁₇ and R₁₈ are independently S(O)_nalkyl, COOR₉, alkoxy, amino, substituted amino, benzyloxy, trimethylsilyl, cyano, -C(R₁₉)SR₂₀ or additionally one thereof may be hydrogen.

R₁₉ is hydrogen or alkyl,

R₂₀ is alkyl or aryl,

R₉, R₁₀ and R₁₁ are independently hydrogen, alkyl, haloalkyl, alkoxyalkyl, unsubstituted or substituted aryl or unsubstituted or substituted aralkyl,

n and n" are independently zero, one or two, and

X4 is oxygen or sulfur.

When R is carboxyl in salt form the salt is preferably formed with an alkali metal, alkali earth metal, optionally substituted ammonium cation, a trialkyl sulfonium cation, a trialkylsulfoxonium cation or a phosphonium cation, especially the cation of an alkali metal (e.g. the Li or Na cation) or of an earth alkali metal (e.g. the Ca or Mg cation); the ammonium cation; a substituted ammonium cation [such as a C_{1-5} alkylammonium cation, a di- C_{1-5} alkylammonium cation, a tri- C_{1-5} alkylammonium cation, a tetra- C_{1-5} alkylammonium cation, a (C_{1-8} alkyl)ammonium cation; a phosphonium cation; a tri(C_{1-8} alkyl)sulfoxonium cation.

When Y_1 , Y_2 and/or Y_3 is a carboxyl group this may be in ester or salt form or in amide form (i.e. a carbamoyl) and as such is as described above for R in these forms. Where A has meaning g) it contains one to three heteroatoms and signifies for example thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl or thiadiozalyl.

Where A has one of the above defined heteroaromatic significances, b) through g), the substituted hetero ring is particularly selected from pyridyl, quinolyl, pyridyl-N-oxide, pyrimidinyl, pyrazinyl, thienyl or furyl, more particularly from pyridyl or thienyl.

Alkyl moieties unless otherwise specified contain 1 to 8 carbon atoms, preferably 1 to 5, especially 1 to 4, e.g. 1 or 2 carbon atoms. Lower alkyl moieties contain 1 to 4, e.g. 1 or 2 carbon atoms. Alkyl moieties as present in R_5 , R_7 or R_8 contain preferably 1 to 12, especially 1 to 6 whereby one of R_7 and R_8 is preferably hydrogen when the other is alkyl.

Alkyl moieties as bridging groups may be straight chain or branched and preferably contain 1 to 4, e.g. 1 or 2 carbon atoms. They may be optionally substituted by aryl or substituted aryl and may optionally be interrupted by or attached via an oxygen or sulfur atom.

"Conjugated alkoxy" stands for an alkoxy group interrupted in its alkyl moiety by one or more oxygen atoms eg alkoxyalkoxy, alkoxyalkoxy, etc.

Alkenyl and alkynyl moieties contain 2 to 8, preferably 2 to 4, especially 2 or 3 carbon atoms.

Halogen is preferably F, CI or Br, especially for CI.

Aryl moieties are preferably as defined for meanings a) of ring system A, especially phenyl.

Substituted amino, -amido, -aminoxy, -aminoalkyl, - iminoxy, -carbamyl (other than as R) is preferably substituted by one or two substitutents selected from alkyl, alkoxy, haloalkyl, acyl, alkoxyalkyl, unsubstituted or substituted aryl or unsubstituted or substituted aralkyl.

Acyl as or as part of a substituent is conveniently

5

15

20

25

30

35

40

45

50

55

EP 0 461 079 B1

wherein R" is as defined for Y₁ (for example alkyl, haloalkyl, cycloalkyl, alkoxyalkyl, unsubstituted or substituted aryl (especially phenyl). Examples of acyl include acetyl, propionyl, butyryl, unsubstituted or substituted benzoyl, pivaloyl or chloracetyl, especially acetyl or unsubstituted or substituted benzoyl.

Cycloalkyl is preferably of 3 to 6 carbon atoms especially cyclopropyl, cyclopentyl or cyclohexyl. heterocyclo is preferably 5 or 6 membered and as defined for A definitions b) to g) and preferences or saturated and containing O, S or N as heteroatom, eg tetrahydrofuryl, piperidinyl, morpholinyl.

For convenience bridging members such as

-C-

are so written but are to be understood as embracing

-C-I H

Carbamoyl or substituted carbamoyl moieties are attached to the molecule which they substitute via their carbonyl. Amido or substituted amido moieties are attached to the molecule which they substitute via their nitrogen atom.

A particular group of compounds of formula I (compounds la) comprises those wherein ring system A is selected from phenyl, pyridyl or pyridyl-N-oxide.

R is a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group or a mono- or di- substituted carbamoyl group.

 Y_1 , Y_2 and Y_3 are attached to carbon atoms and are independently hydrogen, halogen, C_{1-8} alkyl, C_{1-8} alkoxy; each of W_1 , W_2 , W_3 and W_4 is independently CH, CR_3 or nitrogen;

 R_1 and R_3 each is independently hydrogen, halogen, C_{1-8} alkyl, C_{1-8} alkoxy, aryloxy or aryl C_{1-8} alkoxy. X and Y each is independently hydrogen, hydroxy, cyano. C_{1-8} alkoxy, C_{2-8} acyloxy or together represent =0; or X and R together form a bridge having the formula

O O II -C-N- I R-

wherein the carbonyl is attached to A.

When R is carboxyl or thiocarboxyl in ester form it is preferably of formula -COOR5 or COSR5;

wherein each R_5 is independently alkyl, alkoxyalkyl, alkenyl, alkynyl, substituted aryl or unsubstituted or substituted aralkyl.

When R is carboxy or thiocarboxyl in salt form the salt is preferably formed with an alkali metal, alkali earth metal, optionally substituted ammonium cation especially the cation of an alkali metal (e.g. the Li or Na cation) or of an earth alkali metal (e.g. the Ca or Mg cation); the ammonium cation; a substituted ammonium cation [such as a C_{1-5} alkylammonium cation, a tri- C_{1-5} alkylammonium cation, a tetra- C_{1-5} ammonium cation.

When R is carbamoyl or mono- or di- substituted carbamoyl it is preferably of formula $CONR_7R_8$ wherein R_7 is hydrogen, alkyl, haloalkyl, alkoxyalkyl, unsubstituted oil substituted aryl or unsubstituted or substituted aralkyl and R_8 is hydrogen, alkyl, NH_2 , NHR_6 or OR_6 wherein R_6 is as defined for R_7 .

A particular compound group (compounds lb) comprises those compounds of formula I wherein ring system A represents phenyl, pyridyl or thienyl; B represents pyrimidinyl or triazinyl; R represents a ring C especially oxazole, oxa-

zolone, oxazolidine or oxazolidinone; carboxyl in the form of the free acid or in ester or salt form; -CONR₇R₈, cyano or together with X represent

Y1, Y2 and Y3 each represent independently hydrogen, halogen, C1.8 alkyl, C1.8 alkoxy, C1.8 alkylthio or arylthio.

X, Y each represent independently hydrogen, hydroxy, C₁₋₈alkoxy, C₁₋₈acyloxy, a ring B, halogen, C₁₋₈alkylthio or arylthio or together =O or =NH

and R₁ and R₃ each represent independently halogen, C_{1.8}alkoxy, C_{1.8}alkyl, C_{1.8}haloalkoxy, aryloxy, arylC_{1.} galkoxy, C2.galkylnyloxy, C2.galkenyloxy.

A further compound group comprises compounds lb wherein Y1, Y2 and Y3 additionally may each represent inde-15 pendently aryl-C₁₋₈ alkoxy, C₂₋₈alkenyloxy or C₂₋₈alkynyloxy.

B is especially pyrimidinyl, particularly 4,6-dimethoxy-2-pyrimidinyl.

A is especially phenyl or pyridyl substituted as defined above.

X and Y are preferably hydrogen, halogen, cyano, hydroxy, alkoxy or together =O, especially hydrogen, hydroxy or together =O.

A further group of compounds according to the invention (Compounds Ic) comprises those of formula I wherein ring system A is pyridyl.

R is CONR7'R8

5

wherein R7' and R8' represent independently hydrogen, alkoxy, alkyl; or aryl or aralkyl each of which may be unsubstituted or substituted,

X is hydrogen,

Y is OR3', SR3' on OCOR3'

wherein R3' is alkyl; or aryl; or aralkyl each of which may be unsubstituted or substituted,

or X and Y together represent =O or =S and ring system B is m-CF₃ phenyl.

Within this group Ic, compounds are preferred wherein X is OH and Y is H or X and Y together represent =O, A is 2- or 3-pyridyl, R7 is hydrogen or alkyl especially methyl, R8 is phenyl or benzoyl which may be unsubstituted or substituted eg 1-3 times by halogen, alkyl and/or alkoxy. The following meanings are preferred independently for each substituent.

35	Α	a) meanings a) and b)
		b) phenyl c) pyridyl
	R	a) carboxyl in the form of the free acid or in salt or ester form or carbamoyl or mono- or di-substituted carbamoyl
40		b) COOR ₅ wherein R ₅ is hydrogen alkyl, COO $^+$ Ma $^-$ wherein Ma is an alkali metal cation or CONR ₇ R ₈ wherein R ₇ is hydrogen or alkyl and R ₈ is alkyl, aryl or substituted aryl c) COO $^-$ Na $^+$, COOCH ₃ , CONHC ₆ H ₁₃ , CONH(CH ₃) phenyl
	Y ₁	a) hydrogen, halogen, alkyl or alkoxy
	'1	b) halogen, especially fluorine or chlorine
45	Y ₂ , Y ₃	a) hydrogen or halogen, alkyl or alkoxy
	. 2, . 3	b) hydrogen or halogen
		c) hydrogen
	W ₁	N N
	W ₂	a) CH or N
50	-	b) CH
	W_3	CR ₃
	W ₄	N
	W ₅	a) CH or N
		b) N
5 5	W ₆	a) O
		b) NH
	Z	a) elements selected from methylene, substituted methylene,

 $\rho = \epsilon$

5

10

15 X₁, X₂

EP 0 461 079 B1

-C-

b)

CH₃ -CH₂-C

a) alkoxy, especially methoxy

-C-CH2-

b) hydroxy a) hydrogen Х3 b) alkoxy especially methoxy R₁, R₃ a) alkoxy, especially methoxy R_4 20 a) halogen, especially chlorine b) alkyl, especially methyl a) alkyl, especially methyl R_2 b) hydrogen a) alkyl, alkenyl or alkynyl R_5 b) C_{1.4}alkyl, especially methyl or ethyl 25 c) C₂₋₄alkenyl d) C2.4alkynyl, especially propargyl R₆, R₇ a) alkyl b) methyl, ethyl R₈ a) hydrogen 30 b) alkyl, especially methyl or ethyl c) an aryl, especially a phenyl R₉, R₁₀, a) hydrogen or alkyl R₁₂, R₁₅, R₁₉ b) hydrogen or methyl 35 R₁₁ a) alkyl b) propyl (n- or iso-) Y_4 a) alkyl or alkoxy b) CH₃ or CH₃O a) hydrogen or halogen R₁₃, R₁₄ 40 b) hydrogen or fluorine a) alkyl R₁₆ b) C₁₋₄alkyl, especially methyl or ethyl a) S(O)_nalkyl or COOR₉ R₁₇ b) SO₂CH₃ or COOCH₃ R₁₈ a) hydrogen 45 a) alkyl or phenyl R₂₀ b) methyl or phenyl a) 2 n b) 0 a) 2 50 n' b) 3

a) 1

b) 0 a) 1

b) 2

a) hydroxylb) hydrogenc) taken with Y, =Od) acyloxy

n"

m

55 X

e) alkoxycarbonyloxy f) carbamoyloxy g) sulphonyloxy a) taken with X, =O

b) hydrogen

X + R

0

10

20

25

30

35

40

45

5

R' a) alkyl

b) alkoxy

R" a) alkyl

b) methyl a) alkyl

R"' a) alkyl
b) aryl, especially phenyl

b) alyi, especially prierlyi

Ring A, Ring B a) at least one contains a heteroatom

b) ring A = a phenyl or a pyridine

ring B = a pyrimidine especially 3,5 dimethoxy pyrimidine

Combinations of the above listed preferred meanings are especially preferred. One such combination comprises compounds of formula (I) in which

A is phenyl or pyridyl;

R is a carboxyl group in the form of a free acid or salt; carbamoyl; COOR₅" wherein R₅" is C_{1-5} alkyl or C_{2-5} alkenyl or $CONR_7$ " R₈" wherein

 R_7 " is C_{1-12} alkyl, amino, C_{1-4} alkylamino, anilino, haloanilino, benzyl, halobenzyl, C_{1-4} alkylbenzyl, C_{1-4} alkoxybenzyl, phenyl, halophenyl, C_{1-4} alkylphenyl or C_{1-4} alkoxybenzyl;

R₈" is hydrogen or C₁₋₄alkyl;

Y₁, Y₂ and Y₃ are independently hydrogen or halogen;

W₁ and W₄ are N;

W2 is CH;

W₃ is CR₃ wherein R₃ is C₁₋₅alkoxy:

R₁ is C₁₋₅alkoxy;

X is hydroxyl or C₁₋₄alkoxycarbonyloxy or taken with Y is =O;

Y is hydrogen or taken with Y is =O; or

X and R together form a bridge having the formula -C(O)O- wherein the carbonyl is attached to A, and Y is hydrogen or C_{2-8} acyloxy.

Examples of preferred compounds according to the invention are compound nos. 13, 40, 53, 55, 58, 64, 77, 78, 82, 91, 111, 124, 125, 130, 143, 149, 163, 170, 175, 199, 204, 205, 247, 249, 258, 262, 263, 265, 266, 267 and 277. Compounds having the formula

R W- R WZ

especially those wherein X is CN may exist in the alternate tautomeric form

55

15

20

25

30

35

40

45

50

55

EP 0 461 079 B1

10 The compounds of formula I according to the invention may be prepared as follows.

a) when X and R combine to form a bridging group as defined above and Y is hydrogen, cyano, arylthio, arylsulfinyl or arylsulfonyl, reacting a compound of formula II

$$\begin{array}{c}
\gamma_1 \\
\gamma_2 \\
\gamma_3
\end{array}$$

$$\begin{array}{c}
\gamma_1 \\
\gamma_3
\end{array}$$

$$\begin{array}{c}
\gamma_1 \\
\gamma_2
\end{array}$$

wherein A is as defined above, Y' represents hydrogen, cyano, arylthio, arylsulfinyl or arylfulfonyl and Z_1 represents oxygen, sulfur or NR_2 wherein R_2 is as defined above except for hydrogen. with a compound of formula III

$$R_{21} \stackrel{\omega_{1}}{\swarrow} \stackrel{R_{1}}{\swarrow} \qquad \qquad (III)$$

$$C_{21} \stackrel{\omega_{1}}{\swarrow} \stackrel{\omega_{2}}{\swarrow} \stackrel{\omega_{3}}{\searrow} \qquad \qquad (III)$$

wherein W_1 , W_2 , W_3 , W_4 are as defined above and R_{21} represents methylsulfonyl, or halogen to obtain the corresponding compound of formula Ip

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

b) treating a compound of formula Ip wherein Y' represents cyano or arylsulfonyl and Z_1 represents oxygen and the other symbols are as defined above.

- (i) by hydrolysis to give a corresponding compound of formula I wherein R and X form a bridge and Y is hydroxy or a compound of formula I wherein X and Y together form =O
- (ii) with an amine to give a corresponding compound of formula I wherein R is an optionally substituted carbamoyl group and X and Y together form =O
- (iii) with a group

MOR₂₂

wherein M is an alkali metal and R_{22} is hydrogen or alkyl, to give a corresponding compound wherein R and X form a bridge and Y is hydroxy or alkoxy

c) hydrolyzing a compound of formula lp wherein Y' represents hydrogen and Z₁ represents oxygen to give a compound of formula I wherein R is a carboxyl group optionally in salt form, X is hydrogen and Y is hydroxy

- d) ring opening a compound of formula Ip wherein Y represents hydroxy and Z_1 represents oxygen to give a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y together are =0
- e) esterifying a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y are =O to give the corresponding compound wherein R is a carboxyl group in ester form
- f) halogenating a compound of formula lp wherein Y' represent hydroxy to give a compound of formula I wherein X and R together form a bridging group and Y' is halogen
- g) reacting a compound of formula Ip wherein Z_1 is oxygen and Y' is halogen with a group R_2NH_2 and a group HOR_{23} wherein R_{23} represents alkyl, acyl or aryl and R_2 is as defined above to give the corresponding compound wherein Z_1 is NR_2 and Y' is alkoxy, aryloxy or acyloxy
- h) oxidizing a compound of formula Ip wherein Y' represents hydrogen to give the corresponding compound wherein Y' represents hydroxy
- i) reacting a compound of formula IV

5

10

25

30

35

40

45

50

55

with a compound of formula V

to produce a compound of formula lq

wherein A, R, R₁, W₁, W₂, W₃, W₄, Y₁, Y₂ and Y₃ are as defined above and X" and Y" are hydrogen and R₂₄ is alkyl, especially methyl

j) mono-or di-halogenating a compound of formula lq wherein X" and Y" are hydrogen to produce the corresponding compound of formula lq wherein one or both of X" and Y" are halogen

k) oxidizing a compound of formula lq wherein X" and Y" are both hydrogen or X" is halogen and Y" is hydrogen to produce the corresponding compound wherein X" and Y" together represent =O or one represents hydrogen and the other represents hydroxy

- I) alkylating a compound of formula lq wherein X" represents hydrogen and Y" represents hydrogen to produce the corresponding compound wherein X" represents alkyl and Y" represents hydrogen
- m) introducing an alkoxy or alkylthio group into a compound of formula lq wherein X" represents halogen and Y" represents hydrogen to produce the corresponding compound wherein X" represents alkoxy or alkylthio and Y" represents hydrogen
- n) acylating a compound of formula Iq wherein X" represents hydroxy and Y represents hydrogen to produce the corresponding compound wherein X" represents acyloxy and Y" represents hydrogen
- o) reacting a compound of formula Ip wherein Z₁ is oxygen and Y' is hydrogen with a group R₇NH₂ wherein R₇ is

as defined above to give a compound of formula I wherein R is monosubstituted carbamoyl, X is hydrogen and Y is hydroxy

p) sulfonylating, carbamoylating, acylating or carbalkoxylating a compound of formula lp wherein Z₁ is oxygen and Y' is hydroxy to produce the corresponding compound of formula I wherein R and X form a

-ç-o-

bridge and Y represents sulfonyloxy, carbamoyloxy, acyloxy or alkoxycarbonoyloxy 10

q) reacting a compound of formula Ip wherein Z₁ is oxygen and Y' is halogen with a group R₇R₈NH wherein R₇ and R_8 are as defined above (R_7 and $R_8 \neq H$) to give a compound of formula I wherein R is disubstituted carbamoyl, and X and Y together represent =O.

and recovering any compound wherein R is a carboxyl or thiocarboxyl group in free form or in ester form and

The following table is illustrative of suitable reaction conditions.

11

5

any compound wherein R is carboxyl in free form or in salt form.

15

20

25

30

35

45

40

50

REACTION CONDITIONS

_	Reaction Reagents	Solvents	Temperature Others
5	a) 1) a) base eg LDA or b) base eg NaH 2) III	1) and 2) inert eg DMF, ether, cyclic ether eg THF	a) reduced eg -70° b) R.T.
10	b) i)1) base eg NaOH	inert eg ether, cyclic ether eg THF or	R.T.
	2) acidify	alcohol eg methanol	
15	b)ii) 1) amine	inert eg ether, cyclic ether eg THF	
	b)iii) MOR ₂₂	alcohol eg methanol, cyclic ether eg THF	
20	c) base eg LiOH	water optionally with an alcohol or cyclic ether eg THF	R.T.
	d) base eg NaOH	as c)	R.T.
25	e) halide eg IR, base eg K ₂ CO ₃ , NaH	inert eg DMF, 2-butanone (MEK)	elevated eg 50-80°
	f) halogenating agent eg SOCl ₂ , DMF	inert eg chlorinated hydrocarbon eg CCl ₄ CH ₂ Cl ₂	elevated eg 50-80°
30	g) 1) R ₇ NH ₂₂ ; R ₂₂ OH	as f)	elevated eg 50-80°
35	h) 1) oxidizing agent eg NaOCl	1), 2) and 3) inert eg H ₂ O optionally with alcohol	elevated eg 50°
	2) base eg NaOH3) acid eg HCl	eg methanol	R.T. R.T.
	i) 1) base eg LDA	1) anhyd. inert eg ether such as cyclic ether eg THF	reduced eg -30°
40	2) AcOH 3) DDQ	2), 3) and 4) ether, H ₂ O	R.T.
	4)aq NaOH		reduced eg 0° elevated eg 75°
4 5	j) NBS, benzoylperoxide	inert eg halogenated hydrocarbon such as CCl,	elevated eg 75°
	k) DMSO, Na ₂ CO ₃	DMSO	elevated eg 50-60°
50	l) base eg NaH, alkyl halide	inert eg ether, THF	0° → R.T.
	m) MOR ₂₂ , MSR ₂₂ cg NaOCH ₃	inert eg DMF, alcohol	R.T. → 50°

REACTION CONDITIONS (cont.)

Reaction Reagents	Solvents	Temperature 0	ther
(o	ł		
n) acyl chloride eg CH ₃ CG or anhydride eg Ac ₃ O; amine eg triethylamine	inert eg ether, 1HF pyridine	R.T. → 30°	
o) amine, eg α-methyl benzylamine	alcohol eg methnol	R.T. → 80°	
OI amine, eg aniline, <u>CH</u> ,SO ₂ NH ₂ ; Me ₂ Al (ca	inert eg toluene stalyst) CH ₂ Cl ₂	R.T.	
p) acylchloride eg acetyl- chloride, ethylchloro- formate or anyhdride; a eg DMAP, triethylamin		R.T.	
or isocyanate eg methyliso amine eg triethylamine	суапаtе; -*-		
or sulfonyl chloride eg me sulfonyl chloride; amine triethylamine		*	
q) R ₇ R ₂ NH, triethylamine DMAP	, inert eg CH,CL	٠	

Process a) through p) also form part of the invention.

35

The starting materials of formula II or III are either known or may be prepared analogously to known methods.

The compounds of formula I have herbicidal activity as observed after their pre-emergent or post-emergent application to weeds or a weed locus.

The term "herbicide" (or "herbicidal") refers to an active ingredient (or an effect) which modifies the growth of plants because of plant growth regulating or phytotoxic properties so as to retard the growth of the plant or damage the plant sufficiently to kill it.

Application of a compound of formula I is made according to conventional procedure to the weeds or their locus using a herbicidally effective amount of the compound, usually from 10 g to 10 kg/ha.

Compounds according to the invention may be used in the control of both broad-leaf and grassy weeds on both preand post-emergent application. Compounds may also exhibit selectivity in various crops and are thus suited for use in weed control in crops such as corn, cotton, wheat and soybean.

The optimum usage of a compound of formula I is readily determined by one of ordinary skill in the art using routine testing such as greenhouse testing and small plot testing. It will depend on the compound employed, the desired effect (a phytotoxic effect requiring a higher rate than a plant growth regulating effect), the conditions of treatment and the like. In general satisfactory phytotoxic effects are obtained when the compound of formula I is applied at a rate in the range of from 0.01 to 5.0 kg, more preferably of from 0.05 to 2.5 kg per hectare, eg 0.05 to 5.0 kg per hectare, especially 0.1 to 2.5 kg kper hectare.

The compounds of formula I may be advantageously combined with other herbicides for broadspectrum weed control. Examples of herbicides which can be combined with a compound of the present invention include those selected from the carbamates, thiocarbamates, chloroacetamides, dinitroanilines, benzoic acids, glycerol ethers, pyridazinones, semicarbazones, uracils and ureas for controlling a broad spectrum of weeds.

The compounds of formula I are conveniently employed as herbicidal compositions in association with agriculturally

acceptable diluents. Such compositions also form part of the present invention. They may contain, aside from a compound of formula I as active agent, other active agents, such as herbicides or compounds having antidotal, fungicidal, insecticidal or insect attractant activity. They may be employed in either solid or liquid forms eg in the form of a wettable powder or an emulsifiable concentrate incorporating conventional diluents. Such compositions may be produced in conventional manner, eg by mixing the active ingredient with a diluent and optionally other formulating ingredients such as surfactants.

Agriculturally acceptable additives may be employed in herbicidal compositions to improve the performance of the active ingredient and to reduce foaming, caking and corrosion, for example.

The term "diluent" as used herein means any liquid or solid agriculturally acceptable material which may be added to the active constituent to bring it in an easier or improved applicable form, respectively, to a usable or desirable strength of activity. It can for example be talc, kaolin, diatomaceous earth, xylene or water.

"Surfactant" as used herein means an agriculturally acceptable material which imparts emulsifiability, spreading, wetting, dispersibility or other surface-modifying properties. Examples of surfactants are sodium lignin sulfonate and lauryl sulfate.

Particularly formulations to be applied in spraying forms such as water dispersible concentrates or wettable powders may contain surfactants such as wetting and dispersing agents, for example the condensation product of formaldehyde with naphthylene sulphonate, an ethoxylated alkylphenol and an ethoxylated fatty alcohol.

In general, the formulations include from 0.01 to 90% by weight of active agent and from 0 to 20% by weight of agriculturally acceptable surfactant, the active agent consisting either of at least one compound of formula I or mixtures thereof with other active agents. Concentrate forms of compositions generally contain between about 2 and 90%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight of active agent.

Typical herbicidal compositions, according to this invention, are illustrated by the following Examples A, B and C in which the quantities are in parts by weight.

EXAMPLE A

15

25

35

Preparation of a Dust

10 Parts of a compound according to this invention and 90 parts of powdered talc are mixed in a mechanical grinder-blender and are ground until a homogeneous, free-flowing dust of the desired particle size is obtained. This dust is suitable for direct application to the site of the weed infestation.

EXAMPLE B

Preparation of a Wettable Powder

25 Parts of a compound according to this invention are mixed and milled with 25 parts of synthetic fine silica, 2 parts of sodium lauryl sulphate, 3 parts of sodium ligninsulphonate and 45 parts of finely divided kaolin until the mean particle size is about 5 micron. The resulting wettable powder is diluted with water before use to a spray liquor with the desired concentration.

EXAMPLE C

45 Preparation of Emulsifiable Concentrate (EC)

13.37 Parts of a compound according to this invention are mixed in a beaker with 1.43 parts of Toximul 360A (a mixture of anionic and nonionic surfactants containing largely anionic surfactants), 5.61 parts of Toximul 360A (a mixture of anionic and non-ionic surfactants containing largely non-ionic surfactants), 23.79 parts of dimethylformamide and 55.8 parts of Tenneco 500-100 (predominantly a mixture of alkylated aromatics such as xylene and ethylbenzene) until solution is effected. The resulting EC is diluted with water for use.

The following examples are provided to illustrate the practice of the present invention. Temperature is given in degrees Celsius.

Abbreviations used in this specification.

THF = tetrahydrofuran LDA = lithiumdiisopropylamide RT = room temperature DMF = dimethylformamide

DDQ = 2,3-dichloro-5,6-dicyanobenzoquinone

NBS = N-bromosuccinimide

DMSO = Dimethylsulfoxide

MEK = Methylethylketone

DMAP = Dimethylaminopyridine

Individual alkyl substituents listed in the following tables from A to F are in the "n" isomeric form unless otherwise indicated.

10 EXAMPLE 1

5

7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 6)

1.68 g (0.01 mol) of 7-chlorophthalide is added to 100 ml of dry THF and the mixture cooled to -70°C. 6.8 ml (0.01 mol) of 1.5 M LDA is then added over 3 minutes and the reaction mixture stirred at -70°C for 15 minutes. 2.18 g (0.01 mol) of 2-methylsulfonyl-4,6-dimethoxypyrimidine in 50 ml of THF is then added and the mixture stirred for 4 hrs with temperature being maintained at -75 to -70°C. The reaction mixture is neutralized with 1.5 g of NH₄Cl in 5 ml of water, warmed and concentrated on a rotovaporator. The concentrate is partitioned between CH₂Cl₂/H₂O (50 ml each) and the aqueous phase separated and treated with further 30 ml of CH₂Cl₂. The combined CH₂Cl₂ phases are washed with 30 ml of water, separated and concentrated. The concentrate was flash chromatographed on silica gel using 80/20 hexane/ethyl acetate (500 ml), 50/50 hexane/ethyl acetate (500 ml) and 80/20 acetone/methanol (500 ml) (30 fractions X 50 ml). The title compound (fractions 9-23) was obtained after recrystalization from hexane/CH₂Cl₂ as a white solid, m.p. 148-149°C.

25 EXAMPLE 2

5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4,b] pyridine-7(5H)-one (Table B, cpd. no. 40)

A solution of 1.3 g (0.0096 mols) of furo [3,4-b]pyridine-7(5H)-one in 50 ml of dry THF is cooled to -75° C and 8 ml (0.0192 mols) of 2.5 M LDA added dropwise over 5 minutes. The mixture is allowed to react for 1 hr at -75° C and 2.1 g (0.0096 mol) of 2-methylsulfonyl-4,6-dimethoxypyrimidine in 30 ml of dry THF added dropwise over 10 minutes. The mixture is allowed to warm to RT, 1.6 ml of HCl added and the THF evaporated off. The residue is dissolved in 75 ml of CH_2Cl_2 , washed with water (2 x 50 ml) and the organic phase concentrated to give a yellowish white gummy solid. This is chromatographed on a silica gel column using 50/50 hexane/ethylacetate (500 ml), ethyl acetate (500 ml) and 80/20 acetone/methanol (1000 ml) (30 fractions). The crystalline residue (fractions 18-21) of the title product has m.p. of 167-168°C.

EXAMPLE 3

40 7-chloro-3-methoxy-3-(4,6-dimethoxy-2-pyrimidinyl)-2-methylisoindol-1(3H)-one (Table C, cpd. no. 54)

A mixture of 0.5 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 30 ml of CCl₄, 2 ml of SOCl₂ and 4 drops of DMF is heated at 65°C for 1½ hrs, cooled and excess SOCl₂ and CCl₄ removed on a rotovaporator. The residue is diluted with 20 ml of CH₂Cl₂ and added to a mixture of 5 ml of 40% aq methylamine and 10 ml of methanol with stirring over ½ hr. The mixture is placed on a rotovaporator and the residue partitioned between 50 ml each of CH₂Cl₂ and water. The organic phase is concentrated and flash chromatographed on silica gel using 50/50 hexane/ethyl acetate (800 ml), ethyl acetate (500 ml) and 80/20 acetone/methanol (200 ml) (30 fractions X 50 ml). The product (fractions 19-21) was obtained as a yellow gum.

50 EXAMPLE 4

7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 13)

A mixture of 1.8 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 50 ml of 1% NaOH and 50 ml of THF are stirred at room temperature for 3 hrs. The THF is removed by evaporation and the mixture is diluted with water and extracted twice with ethyl acetate. The aqueous solution is acidified with 2N-H₂SO₄. The resulting acid solution is extracted with 3 x 100 ml ethyl acetate and the organic phases combined, dried over Na₂SO₄ and concentrated to give a pale yellow solid. This residue is taken up in ethyl acetate and treated with activated charcoal until the yellow base line material is removed to give the title product as a white solid m.p. 188-190°C.

EXAMPLE 5

5

15

30

35

50

7-chloro-3-methoxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 30)

1.0 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide is slurried in 20 ml of methanol and the solution cooled with ice and 0.6 ml of sodium methoxide added dropwise. After stirring for 10 min a further 1 ml of sodium methoxide is added and stirring continued for 10 min and the mixture is then quenched with 2N H₂SO₄. Methanol is removed on a rotovaporator and the residue partitioned between water and ethyl acetate. The organic phase is dried over Na₂SO₄ and concentrated. Flash chromatography of the residue over silica gel using 25% ethyl acetate/hexane yields a white solid m.p. 180-183°C.

EXAMPLE 6

- a) Methyl 2-chloro-6-(4,6-dimethoxy-2-pyrimidinylcarbonyl)benzoate (Table C, cpd. no. 55), and
- b) 7-chloro-3-chloro-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 21)

A mixture of 0.7 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 30 ml of CCl_4 , 2 ml of $SOCl_2$ and 4 drops of DMF are refluxed at 60° for 1½ hrs. The mixture is then cooled, excess $SOCl_2$ and CCl_4 removed on a rotovaporator. The residue is diluted with 20 ml of CH_2Cl_2 and added to a stirred mixture of 10 ml of methanol and 2 ml of diethylamine. After $2\frac{1}{2}$ hrs the mixture is stripped on a rotovaporator to remove excess CH_2Cl_2 and methanol and the residue partitioned between CH_2Cl_2 (50 ml) and water (50 ml). The organic phase is separated, concentrated and the gummy residue flash chromatographed over silica gel using 80/20 hexane/ethyl acetate (500 ml), 60/40 hexane/ethyl acetate (500 ml) (28 fractions X 50 ml). Fractions 18 to 20 yielded title compound a) and fractions 11 to 16 the compound b).

EXAMPLE 7

7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 27)

600 mg of 7-chloro-3-cyanophthalide are added to an ice-cold suspension of hexane washed 60% NaH (160 mg) in DMF (20 ml). After 15 min, 710 mg of 2-methylsulfonyl-4,6-dimethoxypyrimidine are added. After stirring at RT for $1\frac{1}{2}$ hr the mixture is poured onto 200 ml of ice/water acidified with 2N H_2SO_4 and stirred. The precipitate is filtered and dried in a vacuum oven to yield the title product, m.p. 159-161°C.

EXAMPLE 8

7-chloro-3,3-bis(4,6-dimethoxy-1,3,5-triazin-2-yl)phthalide (Table A, cpd. no. 36)

1.48 g of 7-chlorophthalide are dissolved in 80 ml of THF. The solution is cooled to -70°C and 1.5 M LDA in THF (6 ml) is syringed in at -70°C over 3 min. Stirring is continued for 15 min at -70°, 1.54 g of 2-chloro-4,6-dimethoxy-1,3,5-triazine in 50 ml of THF added dropwise and the mixture is then allowed to warm to -20°. The mixture is again cooled to -70° and 1 ml of conc. HCl in 10 ml of water is added. The mixture is stirred for 25 min and allowed to warm to RT and the THF is removed by evaporation. The residue is partitioned between CH₂Cl₂ and water (50 ml each) and the aqueous phase extracted with an additional 30 ml of CH₂Cl₂. The combined organic phases are washed with 30 ml of water and concentrated to give a yellow gum. This is flash chromatographed on silica gel using 60/40 hexane/ethyl acetate (1000 ml), ethyl acetate (400 ml), 80/20 acetone/ methanol (500 ml) (30 fractions X 50 ml, 1 X 200 ml). Fractions 21 and 22 yielded a yellow gum which upon recrystalization from hexane yielded title product m.p. 126-127° as a yellow solid.

EXAMPLE 9

Lithium 2-chloro-6-(4,6-dimethoxy-α-hydroxy-2-pyrimidinylmethyl)benzoate (Table C, cpd. no. 53)

A mixture of 1.0 g of 7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 0.136 g of LiOH.H₂O, 2 ml of water and 10 ml of methanol is stirred overnight at RT. The mixture is evaporated to dryness on a rotovaporator. Further drying in a drying pistol yield the title compound as a white solid, m.p. 153-157°C.

EXAMPLE 10

Lithium 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxylate (Table D, cpd. no. 64)

A mixture of 0.490 g of 5-(4,6-dimethoxy-2-pyrimidinyl)furo [3,4,b]pyridine-7(5H)-one, 0.0768 gm of LiOH.H₂O, 10 ml of methanol and 2 ml of water is stirred for 24 hrs under nitrogen at RT and the solvent stripped off. The yellowish solid is dried for a further 2 hrs to yield the title product, m.p. >250°C (decomp.).

EXAMPLE 11

5

10

20

Sodium 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]benzoate (Table C, cpd. no. 58)

1.24 g of 7-chloro-3-hydroxy-3-(4,6-dimethoxy-2-pyrimidinyl)phthalide, 154 mg NaOH, 25 ml THF and 25 ml water are mixed until a yellow homogenous solution is achieved. The solvents are stripped on a rotovaporator and then on a Kugelrohr at 100°C to produce the title compound as a yellow solid, m.p. 276-278°C.

EXAMPLE 12

3-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]-pyridine-2-carboxylic acid (Table D, cpd. no. 63)

490 mg of 5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4-b]pyridine-7(5H)-one is dissolved in 50 ml of methanol and the mixture heated with stirring at 50°C until a homogenous solution is formed (ca ½ hr). 2.6 g of NaOCl is added dropwise and the solution heated for a further ½ hr at 55°C. 0.208 g of 50% NaOH is added at 55° and the mixture heated for a further ½ hr at this temperature and then cooled in an ice-bath and acidified with 1 ml conc. HCl. The solvent is evaporated and the residue partitioned between 50 ml of CH₂Cl₂ and 50 ml of water. The organic phase is concentrated to give a white solid, m.p. 71-73°.

EXAMPLE 13

 $2-[(4,6-dimethoxy-2-pyrimidinyl)-\alpha-iminomethyl]benzoic acid (Table C, cpd. no. 51)$

2.67 g of isopropyl 2-bromobenzoate are dissolved in 100 ml of dry diethylether, the solution cooled to -100° C and 6.6 ml of 1.6 M n-butyllithium solution added. Stirring is continued for 10 min and 12 g of 2-cyano-4,6-dimethoxypyrimidine in 60 ml of diethylether is added over 2 min at -100°C. The mixture is stirred for ½ hr at -80° and then allowed to warm to RT. 3 g of NH₄Cl in 30 ml of water is added to the reaction mixture, cooled in an ice-bath. The ether layer is separated off, washed with water (2 x 30 ml) and concentrated. The gummy residue is dissolved in 20 ml of 85/15 hexane/ethyl acetate, and CH₂Cl₂, and flash chromatographed on silica gel using 800 ml 85/15 hexane/ethyl acetate, 500 ml 1% methanol in ethyl acetate, 500 ml 5% methanol in ethyl acetate and 500 ml of 80/20 acetone/methanol (40 fractions at 50 ml; 1 at 200 ml). Fractions 7 to 10 yielded title compound which on recrystallization from CH₂Cl₂ melted at 225-235°C.

EXAMPLE 14

45

50

55

5-Chloro-5-(4,6-dimethoxy-2-pyrimidinyl)furo[3,4,b]pyridine-7(5H)-one (Table B, cpd. no. 68)

A mixture of 490 mg of 5-(4,6-dimethoxy-2-pyrimidinyl)furo[3,4,b]pyridine-7(5H)one and 50 ml of methanol is heated at 55° for 1/2 hour or until a homogenous solution is formed. 2.6 g of NaOCI (common house bleach) is added dropwise. The mixture is taken up in dichloromethane an the organic phase separated and evaporated to dryness to yield the title compound.

EXAMPLE 15

3-[(4,6-dimethoxy-2-pyrimidinyl)carbonyl]-pyridine-2-carboxylic acid (Table E, cpd. no. 63)

0.208 g of 50% NaOH is added at 55° to a solution of 0.551 g of 5-chloro-5-(4,6-dimethoxy-2-pyrimidinyl)-furo[3,4,b]pyridine (Table B, cpd. no. 68) in 50 ml methanol. The mixture stirred for a further 1/2 hr at 55°, cooled in an ice-bath, acidified with 1 ml of concentrated HCl and the solvent evaporated. The residue is partitioned between 50 ml of CH₂Cl₂ and 50 ml H₂O and the CH₂Cl₂ layer concentrated to give 0.39 g of the title product as a white solid, m.p. 71-73°C.

EXAMPLE 16

2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dichloropyrimidine (Table C, cpd. no. 61)

To a mixture of 1.25 g of 2-o-tolyl-4,4-dimethyl-oxazoline in 20 ml of ether under N₂ atmosphere at -30°C is added by syringe 4.2 ml of 1.6 M n-butyllithium in hexane with stirring which is continued for 1 hr at -10°C. 0.98 g of 4,6-dichloropyrimidine in 20 ml of ether are added slowly to the reaction mixture which is then stirred at -45 to -30°C for 30 min and at 0°C for a further 30 min. The reaction mixture is quenched with acetic acid (0.4 ml) and water (0.1 ml) in THF (1.3 ml) and then treated with 1.5 g of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in 6 ml of THF. The temperature is brought to RT and the mixture stirred for 5 min after cooling to 0°C. 7.6 ml of 1N NaOH (cooled) are added and the mixture stirred for 5 min. The organic phase is separated and dried over Na₂SO₄ filtered and the solvent removed. Following chromatography (10/90 ether/hexane) the title product is obtained.

EXAMPLE 17

15

5

2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dimethoxypyrimidine (Table C, cpd. no. 48)

To a solution of 1.7 g of 2(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dichloropyrimidine in 100 ml of methanol are added 2.18 g of 25% methanolic NaOCH₃ and the mixture heated for 10 hrs at 65°C with stirring. The temperature is lowered to 60° and stirring continued overnight. The solvent is stripped and the residue taken up in 80 ml of toluene and 50 ml of water. The toluene layer was separated and washed with 50 ml of water, separated and concentrated to give the title compound as a yellow oil.

EXAMPLE 18

25

2-(2-(4,4-dimethyl-oxazolin-2-yl)-α-bromobenzyl)-4,6-dimethoxy pyrimidine (Table C, cpd. no. 62)

0.55 g of 2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzyl)-4,6-dimethoxypyrimidine, 0.30 g of a N-bromosuccinimide, 0.03 g of benzoyl peroxide are dissolved in 60 ml of CCl₄ and heated under reflux overnight at 75°C. The reaction mixture is filtered and the filtrate washed with 5% NaHCO₃ solution (50 ml), 50 ml of water and the organic phase separated and concentrated to give the title compound.

EXAMPLE 19

35 2-(2-(4,4-dimethyl-oxazolin-2-yl)-benzoyl)4,6-dimethoxypyrimidine (Table C, cpd. no. 49)

A mixture of 1.2 g of 2-(2-(4,4-dimethyl-oxazolin-2-yl)- α -bromobenzyl)-4,6-dimethoxy-pyrimidine and 2 g of Na₂CO₃ in 30 ml of DMSO is heated with stirring at 50-60°C for 3 hrs. The mixture is poured into 150 ml of water and extracted with toluene. The toluene extract is washed twice with water (2 x 50 ml) separated and concentrated. The thus obtained gum is chromatographed with 800 ml of 80/20 hexane/ethyl acetate, 500 ml 70/30 hexane/ethyl acetate, 60/40 ml hexane/ethyl acetate (50 ml fractions) fractions 29 to 34 yielded the title compound.

EXAMPLE 20

5 2-chloro-6-(4,6-dimethoxy-2-pyrimidinylcarbonyl)-benzoic acid dimethylamide (Table C, cpd. no. 57)

1.0 g of 7-chloro-3-cyano-3-(4,6-dimethoxy-2-pyrimidinyl) phthalide is dissolved in 15 ml of THF. 0.7 ml of a 40% aqueous dimethylamine solution is then added via syringe whereupon the solution darkens. Stirring is continued at R.T. for 15 minutes and the mixture diluted with water and partitioned between ethyl acetate and water. The organic phase is separated, washed with 2N H₂SO₄, then brine, dried and concentrated. The residue is purified on silica gel, eluant 200 ml of 50% ethyl acetate/hexane then 100% ethyl acetate. Fractions 12 to 15 yielded the title compound, m.p. 141-142°C.

EXAMPLE 21

55

3-acetoxy-7-chloro-3-(4,6-dimethyloxy-2-pyrimidinyl)phthalide (Table A, cpd. no. 125)

1.1gof7-chloro-3-(4,6-dimethoxy-2-pyrimidinyl)-3-hydroxy-phthalide is dissolved in 20 ml of pyridine and 0.3 ml of acetic anhydride added with stirring. After stirring for 20 min the mixture is poured into 2N HCl and extracted with two

portions of ethylacetate. The combined ethyl acetate extracts are washed once with 2N HCl, once with H_2O and once with brine and dried over magnesium sulfate. Filtration and evaporation produced the title compound as a white solid, m.p. 213-215°.

EXAMPLE 22

3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxamide (Table E, cpd. no. 82)

To a solution of 0.9 g of ammonia, in 15 ml of methanol, is added 0.5 g of 3[(4,6-dimethoxy-2-pyrimidinyl)-7-azaphthalide. After stirring for 2 hrs at RT, the methanol is removed under reduced pressure and the concentrate recrystallized from toluene to give the title compound as a white solid, m.p. 135-137°C.

EXAMPLE 23

3[(4,6-dimethoxy-2-hydroxy-2-pyrimidinyl)methyl]pyridine-2-[carboxy(4-isopropyl)anilide] (Table E, cpd. no. 183)

To a solution of 3 ml of 4-isopropylaniline in 50 ml of toluene is syringed in 4 ml of 15.6% trimethylaluminum in hexane at RT. The mixture is stirred for 0.5 hr at RT and 0.5 g of 3-[(4,6-dimethoxy-2-pyrimidinyl)-7-azaphthalide is added. The mixture is stirred for 2 hrs at RT and acidified with 30 ml of 10% hydrochloric acid at 5-10°C. The toluene solution is separated, washed with 20 ml of 10% hydrochloric acid, 20 ml of 5% sodium carbonate and 20 ml of water, dried and concentrated. The concentrate is recrystallized from hexane to yield the title compound as a white solid, m.p. 113-114°C.

TABLE 24

25

35

45

50

3-[(4,6-dimethoxy-α-(ethoxycarbonyloxy)-2-pyrimidinyl)methyl]pyridine-2-carbaxamide (Table E, cpd. no. 129)

To a solution of 0.5 g of 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]pyridine-2-carboxamide, 0.05 g of 4-(dimethylamino)pyridine, and 1 ml of triethylamine, in 20 ml of toluene and 10 ml of dichloromethane is added 1 ml of ethyl chloroformate at RT. After stirring for 1 hr at ambient temperature, the mixture is washed with water (2x30 ml), dried and concentrated on a rotoevaporator. The concentrate is digested with v/v mixture of hexane-toluene, 10 ml, at 50°C, cooled to RT and filtered to isolate 0.45 g of the title compound as a yellow solid, m.p. 112-114°C.

EXAMPLE 25

3-[(4,6-dimethoxy-α-benzoyloxy-2-pyrimidinyl)methyl]pyridine-2-(N,N-dibenzoyl)carboxamide (Table E, cpd. no. 159)

To a solution of 0.05 g of 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]-2-carboxamide, 0.5 g, 4-(dimethylamino)pyridine and 4 ml of triethylamine in 30 ml of dichloromethane is added 1.4 g of benzoyl chloride at RT in two portions. The reaction mixture is stirred at RT for 17 hrs and washed with 30 ml of water, 30 ml of 5% hydrochloric acid and 30 ml of water. The dichloromethane solution is concentrated and the concentrate flash chromatographed through 300 ml silica gel, 230-400 mesh, using 1 L 70/30 hexane-ethyl acetic and 500 ml 50/50 hexane-ethyl acetate as eluting solvent mixtures. Fractions 18-21 gave after recrystallization from 70/30 hexane ethyl acetate the title compound as a white solid, m.p. 168-170°C.

EXAMPLE 26

 $3-[(4,6-dimethoxy-\alpha-(N-methylcarbamoyloxy)-2-pyrimidinyl)methyl]-2-pyridine carbox(N-allyl)amide (Table E, cpd. no. 133)$

To a solution of 0.5 g of 3-[(4,6-dimethoxy-α-hydroxy-2-pyrimidinyl)methyl]-2-pyridine carbox(N-allyl)amide and 3 drops of triethylamine, in 20 ml of dichloromethane is added 3 ml of methyl isocyante, in three 1 ml portion/day while stirring at RT for 3 days. The reaction mixture is washed with water (2x50ml), dried and concentrated. The concentrate is flash chromoatographed through 300 ml silica gel, 230-400 mesh, using 1 L 50/50 hexane-ethyl acetate, 500 ml ethyl acetate, 500 ml 80/20 ethyl acetate methanol taking 34 fractions (50 m/m). Fractions 21-25 give 0.4 g of the title product as a yellow gum.

The following compounds may be prepared analogously to the preceding examples or as otherwise described herein.

TABLE A

TABLE A (cont)

											melting point
5		No Y1	Y ₂	<u>Y</u> 3	¥	\underline{W}_1	$\underline{\mathbf{w}}_{2}$	<u>W</u> 3	\underline{W}_{4}	\mathbb{R}_1	_(° c)
	23	7-C1	H	Н	SCH ₃	N	CH C	-OCH2C=CCH3	N	-OCH3	134-136
	24	7-C1	H	H	Н	N	СН	C-OCH3	и .	OCH2CH-	CH ₂ 72-75
10	25	7-C1	н .	H	Н	N	N	C-OCH ₃	N	-0CH3	157-160
,,,	26	7-0CH ₃	H	H	Н	N	CH	C-OCH3	N	-0CH3	152-154
	27	7-C1	H	H	CN	N	CH	C-OCH3	N	-OCH3	159-161
	28	7-C1	H	H	CN	N	N	C-OCH3	N	-OCH3	184-186
15	29	7-C1	6-C1	Н	Н	N	CH	C-OCH3	N	-OCH3	194-195
	30	7-C1	н	н	осн3	N	СН	C-OCH3	N	- осн ₃	180-183
20	31	7-S	н	н	CN	N	СН	C-OCH3	N	-0CH ₃	169-171
	32	7-0CH ₃	6-OCH ₃	н	·s (\(\sigma\)	N	N	C-OCH3	N	-OCH3	134-136
25	33	7-C1	Н	Н	н	N	СН	C-CH3	N	-CH3	164-166
30	34	н	н	н		Hs L N	СН	C-OCH ₃	N	-OCH3	163-176
	35	Н	5-C1	H	"H1"	N	CH	C-OCH ₃	N	-OCH3	151-153
	36	7-C1	H	H	"H2"	N	N	C-OCH ₃	N	-OCH3	126-127
35	37	Н	Н	Н	ОН	N	C-C1	C-OCH ₃	N	OCH3	162-165
	38	7-F	Н	H	CN	N	CH	C-OCH ₃	N	OCH ₃	132-134
	69	7-C1	Н	H	OC ₂ H ₅	N	СН	C-OCH3	N	OCH ₃	148-151
40	72	7-OCH ₃	H	Н	CN	N	СН	C-OCH3	N	OCH3	159-163
	73	Н	H	H	CH ₃	N	СН	C-OCH ₃	N	OCH3	87-89
	75	н	Н	Н	"H1"	N	CH	C-OCH ₃	N	OCH3	168-170
45	88	7-C1	н	н	н	И	СН	C-OCH ₂	N .	-OCH3	gum, NMR
	98	7-C1	н	Н	н	N	CH C	осн Дусн,	N	-OCH ₃	97-98
50	101	7-Cl	н	н	н	N	СН	C-OCH ₂	N	-OCH3	125-127

TABLE A (cont)

5	Cpd No Y1	¥2	Y,	¥	W 1	<u>W</u> 2	Жэ	<u>w</u> .	B ₁	melting point
					_					
40	102 7-C	1 н	н	н	N	CH	C-OCH ₂	N	-OCH3	83-85
10	104 7CH ₃ OC	2H4- H	н	CN	N	СН	C-OCH3	N	-0CH3	105-108
	-0CH ₂ O	-								
	105 7CH3OC2	H ₄ - H	H	он	N	CH	C-OCH3	N	-OCH3	109-110
15	-0CH ₂ 0	•								
	109 7-F	н	Н	OCH3	N	СН	C-OCH3	N	-OCH3	172-173.5
	113 7-F	н	Н	Н	N	СН	C-OCH3	N	-OCH3	138-140
20	117 7-F	н	н	ОН	N	СН	C-OCH3	N	-OCH3	183.5-185.5
20	118 7-01	н н	Н	он	N	СН	C-OCH3	N	-OCH ₃	121-122
	120 7-0-CH ₂	-{_> н	Н	CN	N	СН	C-OCH3	N	-OCH3	174-176
25										
	125 7-C1		Н	acetoxy	N	CH	C-OCH3	N	-OCH3	213-215
	134 7-01	н н	н	он	N	СН	C-OCH3	N	-OCH ₃	138-141
30										(decomp)
	135 7CH ₃ SO	20 H	H	CN	N	CH	C-OCH3	N	-OCH ₃	159-161
	137 7-осон(с,	H,), H	Н	CN	N	CH	C-OCH3	N	-OCH3	123-125
	138 7propargyl	оку Н	Н	CN	N	CH	C-OCH ₃	N	-OCH3	174-175
35		_								
	139 7-0CH ₂) н	Н	CN	N	CH	C-OCH3	N	-OCH3	170-171
40	140 7-0CH ₂ -	(<u></u>) н	Н	CN	N	СН	C-OCH3	N	-OCH3	169-172
	ı	L. C.								
	145 7-OCH ₂ (H (<u>-</u>)	H	Н	N	СН	C-OCH3	N	-OCH3	108-110
45	a									
₩	146 7-0CH ₂ 4	(_Ун	н	н	N	CH	C-OCH3	N	-OCH ₃	115-118
		-								
		Н ₃ Н	н	ОН	N	CH	C-OCH ₃	N	-OCH3	174-176
50	153 7propargyl	oxy H	Н	Н	N	CH	C-OCH ₃	N	-OCH ₃	130-131

EP 0 461 079 B1

TABLE A (cont)

5	Cod	No Y1	<u>Y</u> 2	V.	v	T. 7	17	**		_	melting point
	990	1.6 T	±2	Υ3	¥	<u>W</u> 1	<u>W</u> 2	Жэ	<u>W</u> .	R ₁	(° C)
10	154	7-0CH ₂	н	. н	CN	N	СН	C-OCH3	N	-OCH3	182-185 (decomp)
	166	7-0CF ₃	н	н	ОН	N	СН	C-OCH3	N	-OCH3	131-132
	167	7-0CH ₃	H	н	acetoxy	N	CH	C-OCH3	N	-OCH3	201-202
15										-	
	1807	-orte ()-ce	H	н	н	N	СН	C-OCH3	N	-OCH ₃	133-136
	190	7-Oallyl	н	H	н	N	CH	C-OCH3	N	-OCH ₃	109-110
00	195	7-CF ₃ O	н	Н	acetoxy	N	СН	C-OCH3	N	-OCH ₃	165-166
20	203	7-C1	H	H	propionoxy	N	СН	C-OCH ₃	N	-OCH ₃	178-180
	204	7-C1	H	Н.	hexanoyloxy	ĸ	CH	C-OCH3	N	-OCH ₃	131-133
	205	7-C1	Н	н	cyclopropyl-	N	CH	C-OCH3	N	-OCH ₃	177-179
25					carbonyloxy						
	208	7-C1	Н	Н	benzoyloxy	N	СН	C-OCH3	N	-OCH3	192-194
	240	7-CL	Н	H	crotonylony	N	СН	C-OCH3	N	-OCH3	158-160
30	250	7-C1	H	4-C1	ОН	N	СН	C-OCH3	N	-OCH3	171-175
30	253	7-C1	H	H	cinnamoyloxy	N	CH	C-OCH3	N	-OCH3	221-224
	256	7-C1	н	н	OCC ₁₇ H ₃₅ N O	N	CH	C-OCH3	N	-OCH ₃	102-103
35	258	7-C1	Н	н	2-butenoxy	N	CH	C-OCH ₃	N	-OCH3	102-103
	263	7-C1	н	4-C1	OCCH ₃ (I	N	СН	C-OCH ₃	N	-OCH3	163-164
40	265	7-C1	н	4-C1	OCC ₅ H ₁₁	N	СН	C-OCH ₃	N	-OCH3	87-91
	266	7-C1	Н	4-C1		N	СН	C-OCH ₃	N	-OCH3	137-138
45	267	7-C1	Н	4-C1	OCCH-CHCH	l ₃ N	CH	C-OCH3	N	-OCH3	128-131
	268	7- F	н	4-F	CN	N	СН	C-OCH3	N	-OCH3	135-136
50	269	7-C1	н	4-C1	CN	N	СН	C-OCH ₃	N	-OCH ₃	123-126
50	270	7-C1	н	4-C1	Н	N	СН	C-OCH ₃	N	-OCH ₃	156-161
	307	4-C1	н	н	ОН	N	СН	C-OCH3	N.	-OCH ₃	146-150
								-		•	

EP 0 461 079 B1

TABLE A (cont)

5											melting point
	<u>Cpd No</u>	Y_1	<u>Y</u> 2	<u>Y</u> 3	Y	\underline{w}_1	W ₂	₩3	<u>W</u> 4	R ₁	_(* c)
	319	4-C1	H	H	CN	N	СН	C-OCH3	N	-OCH3	132-133
10	320	4-C1	H .	H	осн3	N	CH	C-OCH ₃	N	-осн	168-168.5
10	326	7-C1	н	Н	OCIC ₃ H ₇ II O	N	СН	C-OCH3	N	-OCH3	142-143
15	409	7-C1	н	H	OCtC4H9	N	СН	C-OCH3	N	-OCH3	162-163

5				melting point	(3.)	149-151	167-168	oil NMR	120-126	166-169	oil NMR	75- 80	oil NMR	98-101		173-176	129-131	116-119
15		E I			R ₁	-0CH ₃	-OCH ₃	- осн ₃	-осн ₃	-0CH ₃	-осн ₃	-осн ₃	OCH ₃	осн	осн	осн	- OCH ₃	- ОСН3
20	TABLE B	~	T _s		Ä	z	z	z	z	z	z	z	z	z	z	z	z	z
25	I	1	¥														с-осн	
					Ä	중	ਲ	픙	픙	픙	z	z	중	픙	픙	3	ਝ	ਝ
30		Й,	ř.		Wı-	z	Z	z	z	z	z	z	z	z	z	z	z	z
		8=	_તું₹			Ξ	I	Ξ	Ŧ	I	I	=	Ŧ,	ਝੁ	CI	.HI.	Ξ	Ŧ
35		2			W ₁₀	z	품	픙	풍	픙	픙	E	z	z	픙	픙	z	CH
40		*	lf		8	E	픙	z	퓽	5	C-C2Hs	픙	CH	СН	픙	픙	ᄄ	픙
																	5	
45					ŽÍ.	픙	.z	E	품	z	z	z	E .	퓽	z	z	C-CH ₃	z
50					ž												88	

5		melting point	(5 °)	193-195	147-149	oil NMR	140-145	133-135	112-114	oil NMR	168-170	150-153	(decomb)	158-160	145-147	212-213	172-178	203-204
15	ส		R ₁	ස	-0CH ₃	-OCH ₃	-осн	- ОСН3	-0СН3	-осн	-0CH3	-0CH3		I	OCHF2	осн	осн	ОСН3
20	TABLE B (cont)		Z	z	z	z	z	z	z	CH, N	z	z		z	z	z	z	z
25	TABLE		Si M	C-CH ₃	C-C1	C-0CH ₂	C-0C ₃ H,	C-0C2H5	C-Oallyl	-сосн,-сн-сисн,	C-OCH ₃	с-осн3		с-осн3		с-осн3	с-осн3	с-осн
			N N	ਲ	ਲ	ਲ	E	3	픙	ਝ	S	3		3	품	중	품	픙
30			H1-	z	z	z	z	z	z	z	z	z		z	z	z	z	z
			×	I	I	I	I	I	I	I	I	I		I	*	"H1"	НО	용
35			N 10	픙	ਤ	중	중	중	중	픙	5	품		<u>ਦ</u>	중	Z	z	픙
40			Ä	₹	E	품	₹	5	픙	픙	픙	픙		품	풍	3	풍	픙
			SÎ	ਝ	풍	픙	풍	픙	픙	픙	z	Z		H	£	H	퓽	z
45			<u>ب</u> او	z	z	z	Z	z	z	z	c-c1	С-0СН		z	z	ਲ	ਝ	C-CH
50			Cpd No	93	76	95	66	100	106	101	114	121		136	141	148	175	260

5	meltine sotat	(2 °)		(decomb)	138-140	168-170
15 ·	7	R ₁	ОСН	•	ಕ್ಕ	осн
20 a a a a a a a a a a a a a a a a a a a	TOOLS OF THE	ă	z		z	Z
25		S.	CH C-0CH;		сн с-осн	сн с-осн
		- W2	ਰੌ		ਲ	
30		K K1	N HO		N H	СН -и(сн,)осн, N
35		W10	ਲ		픙	CH -
40		ä	. 8		3	픙
4 5		31	N HO		품	ਝ
		Cpd No W,	H000-0		z	z
50		Pd O	261		317	408

5				melting point (* C)	oil NMR	oil NMR	150-152	225-235	(free acid) 94- 95	153-157 (U' salt)
10				B ₁	-OCH ₃	-OCH ₃	-OCH ₃	-0CH ₃	-0CH ₃	-осн ₃
15	٠	, 1 , 2		્રાં	z	z	Z	z	z	Z
20		Y T		Ä	c-och3	с-осн3	c-och ₃	C-OCH3	C-OCH3	С-ОСН3
25	TABLE C		م	E	퓽	픙	₽	8	ਝ	3
		*	7	, Z	Z	z	Z	z	z	z
30		, , , , , , , , , , , , , , , , , , ,	Ž	×	±	٩	=	Ŧ	I	I
35				×	=		æ	•	I	픙
40				2 4			1 to 10 to 1	H000	N.	Н000
				×	I	x	x	x	I	=
45				ΣĬ	±	æ	x	Ŧ	I	I
50				Υ X	x	æ	=	×	2-C1	
				Cpd # X1	87	67	20	51	52	23

5	meltine point	(3 -)	oil NMR	111-011	130-132	141-142	276-278	(ta * 47)	185 (dec.) (Li* salt)	NHR		158-160 (Ll* esh)	>250 (Ll* sah)	<i>1</i> 9-99	81-83
10															
		%	-осн	-OCH3	OCH3	-OCH	-OCH3		-0CH3	ថ	ОСН	осн	осн	осн	осн,
15															•
		≊ĭ	Z	Z	Z	Z	Z		Z	Z	z	z	Z	Z	Z
20	nt)	ä	с-осн3	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH3		C-OCH3	C-C1	с-осн	с-осн,	с-осн3	с-осн,	с-осн3
25	TABLE C (cont)	3	8	3	픐	동	품		.	5	픙	픙	픙	E	퓽
	TABL	ĭ,	z	z	z	z	z		z	z	z	2	z	z	z
30		×	OCH3	٩	×	Ŷ	የ		x	×	±	Ħ	CH ₃	٩	የ
35		×			용				HO	x	Br	HO	표		
40		~ 2	-co-N-	-соосн	- CONHCH ₃	-CON(CH ₃) ₂	НООЭ		Н000	15 th	<u> </u>	Н000	Н000	cooc ₂ H ₅	COOa11y1
		Κ	= '.	I	=	I	=		=	x	=	=	=	=	=
45		77	x	Ħ	I	I	=		=	I	=	x	æ	×	×
50			2-C1						=	x	=	x	=	2-C1	201
- 7		Cpd	24	55	26	27	28		09	61	62	11	74	92	11

5		(- 6)	48-50	101-66	153-154	110-111	oil NWR	161-163	74-80	101-104	97-99	92-93	137-139	54-57	138-140	61-65	142-143	Li salt	220-240 (decomp)
10																			
15		R1	5 5	OCH,	осн	OCH,	ОСНЭ	осн,	•ко	осн	осн	осн	осн	осн	OCH	ОСН	OCH,	OCH.	
		A :	zz	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	Z	
20	nt)	N ·	C-OCH	C-0CH3	C-OCH ₃	C-OCH3	C-OCH3	C-OCH ₃	C-OCH3	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-0CH3	C-OCH ₃	C-OCH3	C-OCH ₃	C-OCH ₃	
25	TABLE C (cont)	3	5 B	퓽	품	픙	픙	퓽	동	퓽	픙	동	품	품	푱	픙	픙	퓽	
	IABLE	ર્ગ :	zz	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	
30		×,	የ የ	₹	픙	9	=	푱	Ξ	٩	٩	°	የ	9	9	٩	የ	I	
35		×					픙		Ħ,									동	
40		e2 (COObenzyl	-co-N- 1C ₃ H,	0- E	-CO-N(C2H5)2	COObenzy1	-CO-N- l phenyl	-CO-N(C ₂ H ₅) ₂	-COOCH3	-COOs11y1	-C00allyl	-COO 2-methyl- -allyl	-COO-3-methyl-	-COOpropargyl	-COObut-2-enyl	•соосн	-c00H	
		ત્ર :		x	x	I	I	×	×	I	I	×	×	x	I	I	x	I	
45		; ;	E I	I	I	=	Ξ	æ	= .	X	I	I	Ξ	=	I	I	¥	I	
50		77 Z	7. 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	2C1	2C1	2C1	I	x	2-c1	2-F	2-F	=	2-C1	2-C1	2-C1	2-C1	2-0CH ₃	2-F	
		Cpd	2 62	80	81	85	98	87	96	115	116	122	123	124	126	143	156	163	

5 .		melting point	5.	100-101	Li* salt	158-159	80-82 (decomp)	Li salt	170-174 (decomp)	Li salt	225-227 (decomp)	Li salt	195-198 (decomp)	Li* salt	>200 (decomp)	Li* salt	>273 (decomp)
15			R I	OCH.)	OCH.		OCH.	OCH,		OCH.		OCH,		OCH.		OCH ₃	
			≱i	z	z		Z	z		z		z		z		z	
20	nt)		Ä	C-OCH3	C-OCH ₃		C-OCH3	C-OCH3		C-OCH ₃		C-OCH ₃		C-OCH ₃		с-осн,	
25	TABLE C (cont)		<u>M</u>	픙	퓽		픙	Æ		품		ਲ		퓽		품	
30	TABL		M	z	z		z	z		z		z		z		z	
			×	9	I		Ŷ	I		I		I		X		=	
35			×		ᆼ			₹		₹		₹		₹		픙	
40			~	-COOallyl	Н000		соосн,	C00H		H000		C00H		C00H		СООН	
				=				≖.		×		×		=		I	
45		į	'n	=	Ē		I	×		I		I		I		I	
50			€ Xı	2-0CH ₃	181 2-0CH ₂ CH	•	2-CF30	3-c1		S -c1		4-C1		2-pro-	_	222 2-0C ₃ H ₂	
			Pas	165	181		191	192		194		197		202		222	

5		melting point	3	Na salt	>210 (decomp)	Na ⁺ salt	>205 (decomp)	86-87		112-113		Na⁺salt	>295 (decomp)	Li* salt	276 (decomp)	63-65	130-132	107-108	89-90	of 1 NMR	Na salt	>295 (decomp)	NAR	NMR	70-71	NMR
10																										
15			Rı	осн		ОСН		ogi,		осн3		SCH ₃		осн ³		8	ОСН3	OCH ₃	ОСН	OCH ₃	ОСН		OCH ₃	ОСН	осн3	ОСН
,,			ž	z		_		_		_		_		_		_										
			-31			Z		z		Z		Z		z		Z	Z	z	Z	z	z		Z	z	z	z
20	ont.)		Ä	C-OCH3		C-OCH3		C-OCH ₃		C-OCH3		C-OCH ₃		C-OCH ₃		C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH ₃	C-OCH3	C-OCH ₃		C-OCH ₃	C-OCH ₃	C-OCH ₃	С-ОСН3
25	TABLE C (cont)		ᆁ	픙		픙		품		품		픙		품		픙	픙	Ŧ	픙	픙	픙		픙	픙	품	픙
	BLE													_			_	_	_						•	Ū
	됩		ĭ	z		Z		z		Z	:	z		z		z	Z	Z	z	z	z		z	z	z	z
30			×ı	٩		I		9		I	•	9		የ		የ	የ	Ŷ	9	٩	٩		9	የ	°	٩
35		;	×			æ				OCH						-		101								
40		1	~ 4	СООН		Н000		COOCH2-	-CH-CH-C1	CON- "H1	£ :50	H000		C00H		соос ₃ н,	COOCH ₃	COOCH2CH-CHC1	C00a11y1	COOC12H25	Н000		cooc⁴H₀	COOC ₅ H ₁₁	COOC ₆ H ₁₃	COOC, H ₁₅
			×	I		I		I	:	Ŧ	:	E		=		I	=	×	X	I	I		x	Ŧ	X	×
45		:	ង	S-C1		S-C1	:	=	;	I.	:	E		=		I	2-c1	I	2-C1	S-C1	5-F		x	=	=	I
50		;	7	2-C1		2-c1	;	2-c1	•	2-C1	:	=		2-F		2-C1	2-C1	2-C1	2-C1	2-C1	2-F		2-C1	2-C1	2-C1	2-C1
			Cpd	228		235	,	239	;	242	,	743		744		247	249	251	262	797	274		277	281	287	299

5		melting point	(3 -)	NAR	Na salt	266-276 (decomp)	NAR	92-94	115-116	109-110	115-116
15			R	осн	осн3		ОСН	осн	oci,	OCH ₃	осн
			≆	z	z		z	z	Z	z	z
20	(1)		Ä	C-OCH ₃	C-OCH ₃		C-OCH ₃	с-осн ₃	C-OCH3	C-OCH ₃	C-OCH ₃
25	TABLE C (cont)		골	픙	퓽		픙	8	СН	픙	픙
30	TABL		Ŋ	z	z		z	z	z	z	z
			×	የ	٩		9	9	=	٩	٩
35			×						동		
40			~ 1	C00C ₈ H ₁ ,	нооэ		C00C12H25	COOCHC2H3 CH3	CH ₂ OH	COOC ₃ H,	COOCH3
		;	×	I	I		Ŧ	Ξ	I	I	I
45		;	Ä	X	I		I	I	×	×	Ŧ
50								2-c1			
		,	Pas S	300	306		308	314	315	316	321

TABLE D	5		melting point (* C)	125-127	oil NMR	Li* salt	>283 (decomp) oil NMR	109-111	Li* salt	160-165 (decomp)	oil NMR	142-145 (decomp)	oil NMR	129-131	ofl NMR
TABLE No			B ₁	осн	осн,	осн	осн,	осн	осн		осн,	осн	осн	осн	осн
Mo A Cantic Clockwise)* R	20	·	ર્ગ					z			z	z		Z	z
No A (anti clockwise)* R			Ę	С-ОСН	C-OCH ₃	С-0СН	C-OCH ₃	C-OCH ₃	C-OCH		C-OCH	C-OCH ₃	С-0СН3	C-OCH ₃	с-осн ₃
No A (anti clockwise)* R	?5				_			N			N CH	N CH	æ E	N CH	E CH
No A Canti clockwise)* R	30	•	×	x	z	CH3	æ	Ξ	=		I	I	=	٩	æ,
No A (anti clockwise)	35			•											x
Cpd No A (anti clockwise) 65 -S-CH-CH- 66 -S-CH-CH- 67 -CH-CH-CH- 119 -Q-N-CH-CH- 1173 -CH-CH-CH-N-	‡ 0		≃ 3	ပုံ=	o 0	Н000	CONHCH	C00C2H5	H000		CONHC ₃ H,	H000	COOCH ₃	соосн3	соосн,
Cpd No 65 65 67 119 142 142 149 173			A (anti clockwise)	· S · CH—CH·	- S - CH=CH -	- CH-CH - CH-N -	-6-N-CH-CH- C1	-CH-CH-CH-N-	-CH - CH-CH - N-		-CH - CH-CH - N-	-CH-CH-CH-N-	-CH- CH-CH-N-	-CH-CH-CH-N-	-C-N-CH-CH- OCH ₃
	ν		Cpd No	9	99	29	119	142	149	•	150	173	174	176	178

5	•	meiting point (* C)	Li* salt >240 (decomp)	147-149	Na ⁺ salt 235	125-126	Na salt 242 (decomp)	of I NMR	oil NWR	oil NWR	ofl NMR	oil NMR	103-104
10				•									
15		2	осн	оси	осн	ОСН	OCH ₃	OCH.	ОСН3	осн,	ОСН	OCH ₃	ОСН3
		ฆ์	Z	z	Z	z	Z	z	z	z	z	z	z
20	cont.)	Ŋ	. «НОО-О	с-осн	с-осн	с-осн3	C-OCH3	C-0CH3	C-0CH ₃	С-ОСН3	С-ОСН3	с-осн3	С-ОСН3
25	TABLE D (cont)	N ₂	5	픙	ਝ	5	CH	5	5	5	5		퓽
	Z	M	Z	Z	2	Z	z	Z	Z	Z	z	Z	Z
30		×	I			I	I	x	=	I	=	=	
				9	9								9
35		×	I			Br	픙	•cetory	x	Br	Br	Br	
40		04	Н000	соосн3	Н000	соосн3	СООН	соосн	COOC ₂ H ₅	COOC ₂ H ₅	COOC ₂ H ₅	COOC2H5	C00C2H3
45 50		Cpd No A (anti clockwise).	-Ç-N-CH-CH- OCH ₃	-C-N-CH-CH- OCH ₃	-C-N-CH-CH- CCH ₃	-C-N-CH-CH- OCH ₃	-CH-CH-CH-N-	-C-N-CH-CH- OCH ₃	-C-N-CH-CH- OCH ₃	-ç-N-CH-CH- CH ₃	-C-N-CH-CH- CH ₂ Br	-C-N-CH-CH- CH ₂ OCOCH ₃	-C-N-CH-CH- CH ₃
		Cpd N	179	186	187	198	199	206	216	236	237	238	248

EP 0 461 079 B1

	melting point	3.7	180-185	(decomb)	69-72	K* salt	220-230 (decomp)	oil NMR	136-138
		R ₁	OCH,	į	OCH,	OCH,		ОСН	осн
		Ą	z	=	z	z		z	z
ont)		zεί	C-OCH3	6	-0CH ₃	C-0CH		C-OCH ₃	с-осн3
TABLE D (cont)		Ä	픙	Ę	5	품		ਲ	E C
TABL		ΣĪ	z	2	z	z		z	Z
		×		=	=	=		I	픙
			٩					_	
		×		=	5	픙		Otc,H	
		~ 3	Н000	CONCELLA	WW (\2n2/2	C00H		CON(C2H5)2 OtC4H9	
		Cpd No A (anti clockwise).	-C-N-CH-CH-	CH3 -CH-CH-CH-N-		-CH-CH-CH-K-		-CH-CH-CH-N-	- N-CH - CH-CH -
	,	Cpd No	254	301		302		330	414

*Left hand atom attached to R-bearing carbon

				salt)														
5			H.P. 164-166	_	135-137	NYK	119-121	NAR	127-129	ofl NMR	69-79	ofl NMR	NYR	NHR	112-114			
10			R ₁ OCH,	SCH.	осн,	осн	осн,	осн3	ОСН	осн3	ОСН	осн3	осн,	осн	осн			
15			ol z	z	z	Z	z	z	Z	z	z	z	z	z	z			_
20			န် နှ	C-0CH ₃	c-ocH ₃	C-OCH ₃	C-OCH3	C-OCH ₃	C-OCH3	C-0CH3	C-OCH3	C-OCH ₃	с-осн	C-OCH3	C-OCH3		potassium salt m.p. >230°)	(decomb)
		A 3 3	3 5	픙	품	픙	픙	픙	₹	픙	ਝ	ਵ	픙	픙	푼	•	alt m	
25	6 21	3 3	≫i z	z	z	z	z	z	Z	z	z	z	z	z	z		itum s	
	TABLE E	×	×	×	I	I		I	=	=	Ŧ	I	×	I	I		potas	
30		· 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	۲ ×ء	НО	Ю.	. 1 8	የ	₩	НО	Н	₩	¥	benzoyloxy	acetoxy	ethoxy-	_		(decomb)
35			~	J										•	•		sodium salt m.p. >190';	
40			2 000	Н000	CONH ₂	CONHallyl	COOCH ₃	COOpenzy1	CONHCH	CONHC ₃ H,	CONHC ₆ H ₁₃	CONH(1)C ₃ H,	CONHally1	CONHallyl	CONH2		90-92	
45			× =	=			I					I		I	×		•	
		,	¥ =	=	=	×	I	I	=	I	I	Ŧ	=	I	×	,	acid	
50			¥ =	=	=	I	I	Ξ	I	=	I	I	=	Ξ	Ŧ		ree	
50			Cpd 4	79	82	78	16	6	108	110	111	112	127	128	129	:	(64: free acid m.p.	

5		M.P.	oil NMR	75-78	NMR	102-104		99-79	115-116	138-140
10		S.	осн,	OCH3	OCH ₃	och;		осн	осн	OCH,
٠		ત્રાં	Z	z	z	z		z	z	2
15		ń	C-OCH ₃	C-0CH3	C-OCH ₃	с-осн3		с-осн	C-OCH ₃	C-OCH3
20		3	CH	품	픙	CH		ਲ	8	동
	TABLE E (cont)	Ä	z	z	z	z		z	z	z
25) a a	×	×	×	=	×		×	×	=
<i>30</i>	<u>IV</u>	×	НО	НО	OCONHCH ₃	НО		НО	benzoyloxy	000
40		∞4	CONHC ₁₂ H ₂₅	CONH ₂ NH ₂	CONHally1	CONHpropargy1		CONHC ₁₈ H ₃ ,	CONH2	CONH ₂
45		×		X	I	=		I	x	x
				I				I	=	x
				×				I	=	×
50		Cpd 4	130	132	133	144		155	158	161

5	7.7	135-137	109-110	ofl NMR	Na [*] salt 89-91	oil NMR
10	ăi	och,	осн	600н3	осн	OCH,
	≱	z	z	Z	Z	z
	Ä	C-OCH ₃	с-осн³	c-ocH ₃	c-ocH ₃	C-OCH3
20	, =1	5	₹	₽	В	5
	(cont.)	z	z	z	z	z
25	TABLE E (cont) Y H1	x	±	æ	±	x
30	×ı		8	Н	H 0	НО
35		±-0 0,30	₹sh¢	<i>[</i> 5]		٠,
40	2 2		CONHNH(¢) C4H	CONHCHA	Н000	CONHCH ₂
45	×	x	×	I	x	=
	Ä	x	x	×	=	=
	×	x	I	x	I	I
50	Pd5	169	170	196	199	201

5	d'e	118-119	oil NMR	ofl NMR
10	R	осн,	осн,	ен20
	Ň	Z	Z	z
15	S Î	C-OCH ₃	с-осн³	С-ОСН3
20	2	₹	픙	.
	(cont.)	z	2	z
25	TABLE E (cont) Y W1	x	æ	I
30	×	dichloro- acetoxy	но	************************************
35				
40	æ	CONH2	CONHCH2	CONHCH2
45	ત્ર	=	×	×
	×	±	x	=
50	×	=	×	I
50	pag	207	213	214
55				

5	መ.ይ. 105-106	40-42	152-154 NMR
10	B ₁ OCH ₃	OCH,	оси,
	औ z	z z	z z
15	Ky C-OCH3	c-och3	C-OCH ₃
20	7. E. C. E.	5 5	8 8
	VI N	z z	z z
25	TABLE E (cont.) Y <u>H</u> ₁ H N	x x	* *
30			
	× o .	но но	ю н
35			
40	R CONHCH ₂	CONH-NOCONH-NOCONH-NOCONH-NOCONHC2H4-N	CONHC ₃ H ₆ (CH ₃) ₂
45	×7 ==	= =	= =
	% ±	x x	= =
50	χ. H	x x	= =
	221 €	226	232

5	m.p. L1 * salt 158-160	52-54	95-56	137-138	L1* salt 210 (decomp)
10	B ₁ OCH ₃	осн³	och3	OCH,	осн
15	zí z	z	z	Z	z
	с-осн,	c-och	C-0CH3	-s	C-0CH3
20	G 52	₹	₹	с-осн3	픙
cont	э́ z	2	z	퓽	z
TABLE E (CONE)	×	æ	×	Z	
30					٩
	ત્ર સ	푱	HO	#6 6	
35					
40	,		H ₁ ,		
	В С000	CONH-N	CONHC _e H ₁ ,		C00H
	× =	x	×	x	=
	Я =	I	x	Ξ	=
	я́≖	x	×	=	I
50	241 241	. 255	259	271	272

5	₹₫₹ ⊞	Na† salt 195 (decomp)	45-47 49-51	58-62	103-105	NMR NMR
10	ឌី	осн,	och,	OCH,	och,	OCH,
15	3 1	z	zz	z	Z	zz
20	ર્સ	с- осн³	C-0CH3	C-OCH3	C-OCH ₃	C-OCH ₃
	Ä	8	ਲ ਲ	픙	ਣ	중 중
25	(cont.)	z	2 2	z	z	z z
	TABLE E (cont) Y H1	Ŷ	= =	×	æ	I I
30						
35	×		ж ж	8	픙	ю ю.
40	~		CONHC ₉ H ₁₉ CONHC ₁₀ H ₂₁	СОИНИН	CONHCH ₂ 1 Pr	CONH-C(CH ₃) ₂ -C=CH CONHC ₄ H ₉
45	×	x	= =	×	×	* =
	я	×	= =	=	x	x x
50	Ä	x	= =	=	=	x x
	Epd 4	276	278 279	280	282	284

5		T D	Li salt	185-188 (decomp)	L1 salt	>195 (decomp)	Li salt	>225 (decomp)	Li salt	195 (decomp)	LI salt	225 (decomp)							
10						•													
		R	ਉਂ		ਝੰ		×		OC2H3		ជ			•	<u>8</u>	8	OCH,	SE SE	9GH
15		Ħ	z		z		z		z		z				Z	z	z	z	Z
20		æl	C-0CH ₃		C-0CH3		C-0CH3		C-0GH3		C-0CH3				C-0CH3	C-OCH3	C-0CH3	c-0മ്പ്	C-00H3
	a	검	ਝ		퓽		ਝ		ਲ		5				픙	퓽	ਝ	ਝ	픙
25	cont	Ħ	z		z		Z		z		z				Z	z	z	z	z
	TABLE E (cont)	₹	=		I		I		I		I					×		æ	
30	Ž.								٠						9		9		9
35		×I	Ю		HO		8		Ю		픙					₹		₹	
40			-		-		-		_		_		•		(C ₂ H ₅) ₂	(C ₂ H ₅) ₂	(1C ₃ H ₇) ₂	(1C3H,),	con-och, ch,
45		ద			COOH		C00H		C00H		COOH				8	NO CO	8	8	Ž-0
		×			×		=		×		I				×	I	×	I	=
		X			Ξ		I		I		I				X	Ξ	X	=	=
50		Ķ			I		×		I		I				I	I	Ŧ	X	=
		Cpd #	318		322		323		324		325				379	380	381	382	383

5		ימים						gua NMR
10		<u>8</u>	осн	0СН3		OCH3	осн,	OCH,
		ĭ		z	z	z	z	z
15		Ę	C-0CH ₃	C-OCH3	c-ocH ₃	C-OCH3	с-осн3	C-OCH3
20		7	ਰ	팑	퓽	3	5	뚕
	(cont.)	X H	z	z	z	z	z	Z
25	5 2	×	=		= .		x	
	TAB			9		٩		Ŷ
30		×	НО		НО		М	
35								=
40		~	CON-OCH3 CH3	CON(CH ₃) ₂	CON(CH ₃) ₂	CONCeH13	CONC ₆ H ₁₃ CH ₃	CON-CH ₂ -C=CH CH ₃
45			x			I	×	×
		Χ	=	I	=	×	x	I
			×			=	×	×
50		Cpd #	384	385	386	393	394	413

55

45

TABLE F

5			X Y N — OCH ₃			
10	Cod #	AA _O	N — OCH ₃	X	¥	m.p.
15	90			н	н	123-125
20	331	COOH			- 0	
25	332		·	ОН	н	
30	333	CE COOH		,	- 0	
	334	g		он	н	
35 40	335	COOH			- 0	
••	336	n		он	н	
45	337	[N] COOH			- 0	
50	338	—-H—		ОН	н	

55

EP 0 461 079 B1

TΛ	BLE	P	(con	t)

	Cpd # AA	ANTE A VOILE	v	v	
5	339 /S \ COOH		X	·o	M.D.
10	340 — II —		ОН	н	
45	341 N COOH		•	- 0	
15	342 — 11 —		ОН	н	
20	343		-	•0	
25	344		ОН	н	
30	345 COOH		-	0	
	346 — 11 —		он	н	
35	347 N COOH		-	• 0	
40	348		он	н	
45	349 (S) COOH		-	o	,
	350		ОН	н	

47

55

EP 0 461 079 B1

TABLE F (cont)

			TABLE F (CONE)			
	Cod #			X	Y	m.p.
5	351	STOWIN			- 0	
10	352			он	н	
15	353	EN			- 0	
	354	,,		ОН	н	
20	355	N= COOIT		•	- 0	
25	356			ОН	Н	
30	357	COOIT		•	- 0	
	358			ОН	н	
35	359	COOH		•	- 0	
40	360			ОН	н	
4 5	361	COOH		•	- 0	
	362			он	Н	

TA	DID	7	/>	
- 40		_5.	(cont)	

	Cpd #	AA	THE ALL LEVILLE	X	¥	
5	363	COOH			- 0	m.p.
10	364	II		он	н	
15	365	ST COOH		•	- 0	
	366	η		он	н	
20	367	N'N T COOK			- 0	
25	368			он	н	
30 .	369	NT COOH		-	- 0	
	370			он	н	
35	371	Logico III		-	•0	
40	372			он	н	
45	373	h Cooh		-	ю	
	374	u		ОН	н	

50

55

35

40

45

50

55

EP 0 461 079 B1

TABLE F (cont)

	Cpd # AA	X	Y	m.D.
5	375 NCOOH	-	•0	
10	376 — II — COOH	ОН	н	
15	377	-	- 0	
	378	он	н	
20	410 CON(CHS)	н	н	122-123
25				
	412 ii	н	OtC ₄ H	lg gum NMR

Compounds of Table F wherein COOH is replaced by other meanings of R as listed in Tables C, D and E above for R may be prepared analogously.

NMR data [1H nmr (CDC13)]

NMR data [1H nmr (CDCl₃)] Cpd No

5

10

15

20

25

30

35

55

- 41 δ : 3.95 (s, 6H, OCH₃), 5.95 (s, 1H, pyrimidine H), 6.45 (s, 1H, OCH), 7.7-9.1 (m, 3H, pyridinc H).
- δ: 1.32 (t, 3H, CH₃), 2.87 (q, 2H, CH₂), 4.05 (s, 6H, OCH₃), 6.3 (s, 1H, OCH), 7.82 (d, 1H, arom.), 8.72 (d, 1H, arom.).
- 46 δ: 1,32 (t, 3H, CH₃), 2.85 (q, 2H, CH₂), 3.87 (s, 6H, OCH₃), 5.97 (s, 1H, pyrimidine H), 6.32 (s, 1H, OCH), 8.08 (d, 1H, pyridine H), 8.71 (d, 1H, pyridine H).
- 48 δ : 1.25 (s, 6H, CH₃), 3.85 (s, 6H, OCH₃), 3.95 (2H, OCH₂), 4.65 (s, 2H, CH₂), 5.85 (s, 1H, pyrimidine H), 7.2-8.0 (4H, aromatic).
- 49 δ : 1.00 (s, 6H, CH₃), 3.65 and 3.75 (d of d, 2H, OCH₂), 6.05 (s, 1H, pyrimidine H), 7.2-8.1 (4H, aromatic H).
- 54 δ : 2.9 (s, 3H, CH₃N), 3.10 (s, 3H, CH₃O), 3.90 (s, 6H aromatic OCH₃), 6.10 (s, 1H, pyrimidine H), 7.2-7.9 (3H, aromatic H).
- 61 δ : 1.24 (s, 6H, CH₃), 3.98 (s, 2H, CH₂0), 4.74 (s, 2H, CH₂), 7.16 (s, 1H, pyrimidine H).
- δ: 3.96 (s, 6H, OCH₃), 5.96 (s, 1H, pyrimidine H), 6.32 (s, 1H, OCH),
 7.27 (d, 1H, thienyl H), 7.85 (d, 1H, thienyl H).
- 66 δ: 4.08 (s, 6H, OCH₃), 6.27 (s, 1H, OCH), 7.18 (d, 1H, thienyl H), 7.95 (d, 1H, thienyl H).
- 76 δ : 1.63 (t, 3H, CH₂CH₃), 3.91 (s, 6H, OCH₃), 4.1 (q, 2H, OCH₂), 6.08 (s, 1H, pyrimidine H), 7.2-7.8 (m, 3H, aromatic H).
 - 84 δ: 3.85 (s, 6H, OCH₃), 4.05 (t, 2H, NCH₂), 5.0-5.45 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 6.80 (s, 1H, OCH), 7.2-8.6 (m, 3H, pyridine).
 - 86 δ : 3.85 (s, OCH₃), 5.37 (s, OCH₂Ar), 5.85 (s, pyrimidine), 6.80 (d, OCH), 7.2-8.2 (m, aromatic), mixture with cpd. 40.
 - 88 δ : 4.00 (s, 3H, OCH₃), 5.50 (s, 2H, OCH₂), 6.05 (s, 1H, pyrimidine H), 6.27 (s, 1H, O-CH) 7.1-7.7 (m, 8H, aromatic H).
 - δ: 3.85 (s, 6H, OCH₃), 5.42 (s, 2H, OCH₂), 6.05 (s, 1H, OCH), 6.42 (s, 1H, pyrimidine), 7.05-7.35 (s, 5H, aromatic), 7.35-7.768 (m, 11H, pyridine), 7.78-8.1 (d, 1H, pyridine), 8.81-9.01 (d, 1H, pyridine).
- 50 97 δ: 3.80 (s, 6H, OCH₃), 5.35 (s, 2H, OCH₂Ar), 6.85 (s, 1H, pyrimidine), 6.65 (s, 1H, OCH), 7.15-8.6 (m, 8H; aromatic), mixture with cpd. 40.

10

15

20

25

30

40

45

50

55

- 6: 1.92 (s, 3H, C=CCH₃), 3.98 (s, 6H, OCH₃), 4.92 (s, 2H, OCH₂), 6.07 (s, 1H, OCH), 6.58 (s, 1H, pyrimidine), 7.52-7.88 (m, 1H, pyridine), 8.10-8.32 (d, 1H, pyridine), 8.90-8.91 (d, 1H, pyridine).
- δ: 0.75-1.12 (t, 3H, CH₃), 3.18-3.48 (m, 2H, CH₂), 3.81 (s, 6H, OCH₃), 4.42-4.91 (m, 3H, OH and NCH₂), 5.82 (s, 1H, OCH), 6.72 (s, 1H, pyrimidine), 7.21-7.52 (m, 1H, pyridine), 7.82-8.08 (d, 1H, pyridine), 8.32-8.61 (d, 1H, pyridine).
- 112 6: 1.12-1.31 (d, 6H, CH₃), 3.81 (s, 6H, OCH₃), 4.12-4.32 (m, 1H, NCH), 5.85 (s, 1H, OCH), 6.71 (s, 1H, pyrimidine), 7.21-7.52 (q, 1H, pyridine), 7.81-8.09 (d, 1H, pyridine), 8.12-8.31 (m, 1H, NH), 8.39-8.55 (d, 1H, pyridine).
- δ: 3.05 (d, 3H, NCH₃), 3.94 (s, 6H, OCH₃), 5.20 (s, 1H, OH), 5.75 (s, 1H, OCH), 5.98 (s, 1H pyrimidine H), 7.26 (d, 1H, pyridine H), 7.82 (q, 1H, NH), 8.28 (d, 1H, pyridine H).
- 127 δ : 3.75 (s, 6H, OCH₃), 4.05 (t, 2H, NCH₂), 5.05-5.5 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 9H, aromatic + OCH).
 - 128 δ : 2.20 (s, 3H, CH₃), 3.75 (s, 6H, OCH₃), 4.10 (t, 2H, NCH₂), 5.0-6.6 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 5H, pyridine + NH, OCH).
 - 6: 2.85 (d, 3H, NCH₃), 3.85 (s, 6H, OCH₃), 4.10 (t, 2H, NCH₂), 5.0-6.0 (m, 3H, CH=CH₂), 5.85 (s, 1H, pyrimidine), 7.2-8.6 (m, 4H, pyridine + OCH).
- 50.96 (t, 3H, CH₃), 1.68 (m, 2H, CH₂CH₂CH₃), 3.50 (m, 2H, NCH₂), 3.93 (s, 6H, OCH₃), 5.92 (s, 1H, pyrimidine H), 6.17 (d, 1H, OCH), 7.21 (d of d, 1H, pyridine H), 8.07 (d of d, 1H, pyridine H), 8.57 (d of d, 1H, pyridine H), 8.66 (t, 1H, NH).
 - δ: 3.83 (s, 3H, OCH₃), 3.90 (s, 6H, OCH₃), 5.83 (s, 1H, pyrimidine H), 6.60 (d, 1H, OCH), 7.30 (d of d, 1H, pyridine H), 8.23 (d of d, 1H, pyridine H), 8.70 (d of d, 1H, pyridine H).

10

15

20

30

35

40

45

50

- 178 δ: 3.85 (s, 9H, OCH₃), 3.95 (s, 3H, OCH₃), 4.14 (s, 2H, CH₂), 5.82 (s, 1H, pyrimidine H), 6.90 (d, 1H, pyridine H), 8.12 (d, 1H, pyridine H).
- 187 δ: 3.70 (s, 9H, OCH₃), 5.82 (s, 1H, pyrimidine H), ;6.80 (d, 1H, pyridine H), 8.10 (d, 1H, pyridine H).
- 196 6: 3.78 (s, 6H, OCH₃), 4.51-4.78 (d, 2H, NCH₂), 5.35 (s, 1H, OH), 5.81 (s, 1H, OCH), 6.28 (s, 2H, furfuryl), 6.81 (s, 1H, pyrimidine), 7.12-7.43 (m, 2H, furfuryl), 7.82-8.05 (d, 1H, pyridine), 8.31-8.43 (d, 1H, pyridine), 8.52-8.71 (m, 1H, NH).
- 201 6: 1.87-2.04 (m, 4H, CH₂ and tetrahydrofuran), 3.71-3.92 (m, 9H, OCH₃ and tetrahydrofuran), 5.86-5.87 (m, 2H, OCH and OH), 6.71 (d, 1H, pyrimidine), 7.31-7.42 (d, 1H, pyridine), 7.81-7.92 (d, 1H, pyridine), 8.41-8.50 (d, 2H, NH and pyridine).

- 213 δ: 3.61 (s, 6H, OCH₃), 4.60-5.18 (m, 3H, ArCH₂, OH), 5.72 (s, 1H,
 OCH), 6.72 (s, 1H, pyrimidine), 7.15-7.17 (t, 5H, pyridine), 7.847.86 (d, 1H, pyridine), 8.38-8.44 (d, 2H, pyridine), 9.12 (s, 1H,
 NH)
- 214 6: 3.75 (s, 6H, OCH₃), 4.72-4.74 (d, 2H, NCH₂), 5.84 (s, 1H, OCH), 6.86-6.96 (d, 3H, pyrimidine, thiophenyl), 7.14-7.16 (d, 1H, pyridine), 7.32-7.36 (d, 1H, pyridine), 7.94-7.97 (d, pyridine), 8.39-8.40 (d, 1H, pyridine), 8.71 (d, 1H, NH).
- 216 δ: 1.31 (t, 3H, CH₃), 2.62 (s, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.21 (s, 2H, CH₂), 4.40 (q, 2H, OCH₂), 5.83 (s, 1H, pyrimidine H), 7.13 (d, 1H, pyridine H), 8.44 (d, 1H, pyridine H).

10

20

25

40

55

- 227 δ : 1.50 (m, 6H, CH₂), 2.40 (m, 6H, NCH₂), 3.55 (q, 2H, NCH₂), 3.80 (s, 6H, OCH₃), 5.85 (s, 1H, pyrimidine H), 6.70 (s, 1H, OCH), 7.15-8.60 (m, 1H, 3 pyridine H + NH).
- 233 6: 1.80 (q, 2H, CH₂), 2.25 (s, 6H, NCH₃), 2.35 (q, 2H, NCH₂), 3.45 (q, 2H, NCH₂), 3.80 (s, 6H, CH₃), 5.80 (s, 1H, pyridine), 6.65 (s, 1H, OCH), 7.15-850 (m, 3H, pyridine).
- 236 δ: 1.37 (t, 3H, CH₃), 2.56 (s, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.43 (q, 2H, OCH₂), 5.87 (s, 1H, pyrimidine H), 6.12 (s, 1H, CHBr), 7.90 (d, 1H, pyridine H), 8.56 (d, 1H, pyridine H).
 - 237 δ: 1.40 (t, 3H, CH₃), 3.87 (s, 6H, OCH₃), 4.43 (q, 2H, OCH₂), 4.70 (s, 2H, CH₂Br), 5.88 (s, 1H, pyrimidine H), 6.23 (s, 1H, CHBr), 8.07 (d, 1H, pyridine H), 8.65 (d, 1H, pyridine H).
 - 238 δ: 1.37 (t, 3H, CH₃), 2.06 (s, 3H, CH₃), 3.88 (s, 6H, OCH₃), 4.40 (q, 2H, OCH₂), 5.28 (s, 2H, OCH₂), 5.87 (s, 1H, pyrimidine H), 6.23 (s, 1H, CHBr), 8.04 (d, 1H, pyridine H), 8.64 (d, 1H, pyridine H).
- 264 δ: 0.8-1.9 (br s, 25H, aliphatic), 3.85-3.90 (s, 6H, 2XOMe), 6.15 (s, 1H, ArH, pyrimidine), 7.4 (s, 2H, ArH).
 - 277 δ : 0.90 (t, 3H, CH₃), 1.2-1.7 (m, 4H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.5-7.7 (m, 3H, aromatic).
- δ : 0.90 (t, 3H, CH₃), 1.3 (m, 4H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).
- 285 6: 0.75-1.13 (m, 4H, aliphatic), 1.28-1.77 (m, 3H, aliphatic), 3.2350 3.52 (m, 2H, NCH₂), 3.82 (s, 6H, OCH₃), 5.73-5.88 (m, 2H, OH, OCH),
 6.60-6.81 (d, 1H, pyrimidine), 7.21-7.45 (q, 1H, pyridine), 7.788.01 (d, 1H, pyridine), 8.32-8.55 (d, 2H, pyridine, NH).

δ: 0.85 (t, 3H, CH₃), 1.2 (m, 8H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).

300 δ: 0.90 (t, 3H, CH₃), 1.2 (m, 10H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.08 (t, 2H, OCH₃), 4.08 (t, 2H, OCH₂), 6.15 (s, 1H, pyrimidine H), 7.4-7.7 (m, 3H, aromatic).

308 6: 0.88 (t, 3H, CH₃), 1.25 (bs, 18H, aliphatic), 1.6 (m, 2H, aliphatic), 3.95 (s, 6H, OCH₃), 4.07 (t, 2H, O-CH₂), 6.15 (s, 1H, pyrimidine H), 7.55-7.7 (m, 3H, aromatic).

δ: 1.05 (m, 6H, NCH₂CH₃), 1.27 (s, 9H, C(CH₃)₂), 2.3 (m, 4H, NCH₂),
3.8 (s, 6H, OCH₃), 5.8 (s, 1H, pyrimidine H), 5.9 (s, 1H, CH-Ot-Bu),
7.18 (d of d, 1H, pyridine H), 7.45 (d of d, 1H, pyridine H), 8.6 (d of d, 1H, pyridine H).

20 407 δ : 3.18 (m, 2H, CH₂S), 3.65 (m, 2H, CH₂N), 3.95 (s, 6H, OCH₃), 5.85 (s, 1H, pyrimidine), 6.80 (s, 1H, OCH), 7.0-8.7 (m, 8H, aromatic).

 δ : 1.37 (s, 9H, tBuO), 3.30 (s, 3H, CH₃N), 3.90 (s, 6H, CH₃), 5.95 (s, 1H, pyrimidine), 5.97 (s, 1H, OCH), 6.5-7.6 (m, 10H, aromatic).

δ: 2.23 (s, 1H, C=CH), 3.12-3.23 (d, 3H, N-CH₃), 3.93 (s, 8H, OCH₃, N-CH₂C=), 6.155 (s, 1H, pyrimidine), 7.47-7.52 (m, 1H, pyridine), 8.142-8.168 (m, 1H, pyridine), 8.69-8.709 (t, 1H, pyridine).

35 Claims

30

50

55

5

10

15

1. A compound of formula I

wherein

ring A is selected from

- a) phenyl or naphthyl
- b) pyridyl which may be fused by its (b) or (c) side to benzene
- c) pyridyl-N-oxide or pyrazinyl-N-oxide
- d) pyrimidinyl
 - e) pyrazinyl
 - f) 3- or 4-cinnolynyl or 2-quinoxalinyl, and
 - g) a five membered heteroaromatic ring comprising oxygen, sulphur or nitrogen as heteroatom which ring may be fused to a benzene ring or may comprise nitrogen as an additional heteroatom;

R is

cyano, formyl, $CX_1X_2X_3$, $-C(O)R^n$ wherein R^n is C_{1-8} alkyl, C_{1-6} alkyl, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl or aryl C_{1-8} alkyl; a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group, or a group $-CONR_7R_8$, hydroxy C_{1-8} alkyl, hydroxybenzyl, -CH=NOH, $-CH=NO-C_{1-8}$ alkyl, or a ring C

are attached to carbon atoms and are independently hydrogen, halogen, hydroxy, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkylsulfonyloxy,di(C_{1-8} alkylsulfamoyloxy, C_{1-8} alkylsulfonyloxy,di(C_{1-8} alkylsulfamoyloxy,di(C_{1-8}

which may in turn be substituted by 1 to 6 halogen atoms; $di(C_{1.8}alkoxy)$ methyl, conjugated $C_{1.8}alkoxy$, hydroxy $C_{1.8}alkyl$, $C_{2.8}acyl$, $C_{$

C₁₋₈alkoxy, C₁₋₈haloalkoxy, nitro, cyano, C₁₋₈alkylthio, C₂₋₈acyl, amino a group -

taken together on adjacent carbon atoms form a bridge having the formula -C(S)-O-, -C(O)-O-E- or -C(O)-N(R₂)-E- wherein E is a direct bond or a 1 to 3 membered

taken together on adjacent carbon atoms form a 3- to 5-membered bridge comprised of elements selected from methylene, -CH=, $-C(R_4)=$, -NH-, oxygen and

linking group with elements selected from methylene, -N(R2)- and oxygen; or

C(O)-R' wherein R' is hydrogen, C₁₋₈alkyl, or C₁₋₈alkoxy; or

15

10

5

Y₁, Y₂ and Y₃

25

30

20

Y₁ and R

35

40

45

50

55

Y₁ and Y₂

 $S(O)_{n^{-}}$; each of W_1 , W_2 , W_3 , W_4 and W_5 is independently CH, CR $_3$ or nitrogen;

W₆ is

NH, oxygen, sulfur, $-CR_4 = , -CH = or -C(O) - ;$

Z is

a 2- or 3-membered bridge comprised of elements selected from methylene, - CH_{-} , - $C(R_{4})_{-}$, - $C(O)_{-}$, -NH-, -N=, oxygen and - $S(O)_{n}$ -;

R₁ and R₃

each is independently hydrogen, halogen, $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{1.8}$ alkoxy, $C_{2.8}$ alkenyloxy, $C_{2.8}$ alkenyloxy, $C_{2.8}$ alkenyloxy, $C_{2.8}$ alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; $C_{3.6}$ cycloalkyl, a 5- or 6-membered heterocyclo $C_{1.8}$ alkoxy, aryloxy, aryloxy, arylo $C_{1.8}$ alkoxy or aryl $C_{1.8}$ alkylthio each of which may be substituted by 1 to 3 substituents selected from halogen, $C_{1.8}$ alkyl, $C_{1.8}$ haloalkyl, $C_{1.8}$ alkoxy, $C_{1.8}$ haloalkoxy, nitro, cyano, $C_{1.8}$ alkylthio, $C_{2.8}$ acyl, amino; aminoxy, iminoxy, amido, $C_{1.8}$ alkylsulfonylmethyl, cyano, nitro; or -C(O)- V_4 , wherein V_4 is hydrogen, $C_{1.8}$ alkyl, $C_{1.8}$ alkoxy, hydroxy or phenyl;

R₂ is

hydrogen, C₁₋₈aikyl, C₁₋₈haloaikyl, C₁₋₈aikoxyaikyl, aryl, or arylC₁₋₈aikyl;

R₄ is

as defined for Y₁ except for hydrogen;

X and Y

each is independently hydrogen, hydroxy, halogen, cyano, $C_{1.8}$ alkyi, $C_{1.8}$ alkoxy, $C_{1.8}$ alkoxycarbonyi, $C_{1.8}$ alkoxycarbonyioxy, hydroxy $C_{1.8}$ alkyi, $C_{1.8}$ haloalkyi, $C_{2.8}$

 $_{8}$ acyl, C_{2-8} acyloxy, carbamoyl, carbamoyloxy, C_{1-8} alkylsulfinyl, C_{1-8} alkylsulfonyl or C_{1-8} alkylsulfonyloxy; aryl, aryloxy, arylS(O) $_{p}$, arylsulphonyloxy, each of which may in turn be substituted by 1 to 3 substituents selected from halogen, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{1-8} haloalkoxy, C_{1-8} haloalkoxy, nitro, cyano, C_{1-8} alkylthio, C_{2-8} acyl; amino or together represent =O, =S, =NH, =NOR $_{12}$ or =CR $_{13}$ R $_{14}$; or

X and R

together may form a bridge having the formula -C(O)-O-, -C(O)-S or -C(O)-NR₂wherein the carbonyl is attached to A:

10

20

25

30

5

p is

0, 1 or 2;

X₁, X₂ and X₃

are independently hydrogen, hydroxy, C_{1-8} alkoxy, C_{1-8} alkylthio, hydroxy C_{1-8} alkyl or hydroxybenzyl whereby at least one of X_1 , X_2 and X_3 is other than hydrogen; or

15 X₃ is

hydrogen and X_1 and X_2 together form a 4- or 5-membered bridge comprising elements selected from -O(CH₂)_n-O-, -OC(O)(CH₂)_mO- and -S(CH₂)_n-S-;

R₇ and R₈

are each independently (a) hydrogen, halogen; (b) $C_{1.24}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkenyl, $C_{1.8}$ alkoxy, $C_{1.8}$ alkoxy, $C_{1.8}$ alkoxy, $C_{2.8}$ alkenylthio, $C_{2.8}$ alkenylthio or $C_{2.8}$ alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; (c) $C_{3.6}$ cycloalkyl, $C_{3.6}$ cycloalkyl $C_{1.8}$ alkyl, heterocyclo $C_{1.8}$ alkyl, heterocyclo $C_{1.8}$ alkyl, aryloxy, aryl $C_{1.8}$ alkoxy, or aryl $C_{1.8}$ alkylthio, each of which is unsubstituted or may be substituted by 1 to 3 substituents selected from (i) halogen; (ii) $C_{1.8}$ alkyl, $C_{1.8}$ alkoxy, $C_{1.8}$ haloalkoxy, $C_{1.8}$ haloalkyl, $C_{1.8}$ alkylthio, $C_{1.8}$ alkylsulfonyl, $C_{1.8}$ alkylsulfonylmethyl; and (iii) nitro, cyano, acyl, amino; (d) amino, amido, aminosulfonyl, cyano, nitro, or - $(CHR_4)_n$ "- $C(O)Y_4$ ',

wherein Y_4 is hydrogen, C_{1-8} alkyl, C_{1-8} alkoxy or hydroxy and n''' is 0, 1, 2 or 3; R_4 ' is as defined for Y_1 ;

R₁₂ is

hydrogen or C₁₋₈alkyl;

R₁₃ and R₁₄

are independently hydrogen, C₁₋₈alkyl or halogen;

35

m is 1 or 2;

n is

0, 1 or 2; and

40 n' is

50

55

2 or 3:

with the proviso that when R is carboxyl in free ester or salt form and X and Y together are =0 one of rings A and B contains a hetero atom.

- 45 2. A compound of formula (I) according to Claim 1 wherein A is pyridyl, quinolyl, pyridyl-N-oxide, pyrimidinyl, pyrazinyl, thienyl or furyl.
 - A compound of formula I according to claim 1 wherein the ring system A is selected from phenyl, pyridyl or pyridyl-N-oxide,

R is a carboxyl group which may be in the form of the free acid or in ester or salt form, a thiocarboxyl group which may be in the form of the free acid or in ester form, a carbamoyl group, or a group -CONR₇R₈,

 Y_1 , Y_2 and Y are attached to carbon atoms and are independently hydrogen, halogen, $C_{1.8}$ alkyl, $C_{1.8}$ alkoxy; each of W_1 , W_2 , W_3 and W_4 is independently CH, CR_3 or nitrogen;

R₁ and R₃ each is independently hydrogen, halogen, C₁₋₈alkyl, C₁₋₈alkoxy, aryloxy or arylC₁₋₈alkoxy,

X and Y each is independently hydrogen, hydroxy, cyano, C_{1-8} alkoxy, C_{2-8} acyloxy or together represent =O; or

15

20

25

35

40

45

50

55

EP 0 461 079 B1

X and R together form a bridge having the formula -C(O)-O- or -C(O)NR2- whrein the carbonyl is attached to A.

- 4. A compound of formula I according to claim 1 wherein ring system A represents phenyl, pyridyl or thienyl; B represents pyrimidinyl or triazinyl; R represents a ring C especially oxazole, oxazolone, oxazolidine or oxazolidinone; carboxyl in the form of the free acid or in ester or salt form; -CONR₇R₈, cyano or together with X represent -C(O)-O- or -C(O)NH₂-,
 - Y₁, Y₂ and Y₃ each represent independently hydrogen, halogen, C₁₋₈alkyl, C₁₋₈alkoxy, C₁₋₈alkylthio or arylthio,
- X, Y each represent independently halogen, hydroxy, C₁₋₈alkoxy, C₁₋₈acyloxy, a ring B, halogen, C₁₋₈alkylthio or arylthio or together =O or =NH, and
 - and R_1 and R_3 each represent independently halogen, C_{1-8} alkoxy, C_{1-8} alkyl, C_{1-8} halogalkoxy, aryloxy, aryl C_{1-8} alkoxy, C_{2-8} alkynyloxy, C_{2-8} alkenyloxy.
 - A compound according to claim 4, wherein Y₁, Y₂ and Y₃ additionally may each represent independently arylC₁₋₈ alkoxy, C₂₋₈ alkenyloxy, or C₂₋₈ alkynyloxy,
 - B is especially pyrimidinyl, particularly 4,6-dimethoxy-2-pyrimidyl,
 - A is especially phenyl or pyridyl substituted as defined above,
 - X and Y are preferably hydrogen, halogen, cyano, hydroxy, alkoxy or together =O, especially hydrogen, hydroxy or together =O.
 - 6. A compound according to claim 1 wherein X and Y are together =0.
 - 7. The compound sodium 3,6-dichloro-2-[(4,6-dimethoxypyrimidin-2-yl) carbonyl]benzoate according to claim 1.
- 30 8. A herbicidal composition comprising an herbicidally effective amount of a compound of formula (I) according to Claims 1-7.
 - 9. A method for combatting weeds which comprises applying thereto or to a locus thereof an herbicidally effective amount of a compound of formula (I) according to Claims 1-7.
 - 10. A process for preparing a compound of formula (I) according to Claim 1 comprising
 - a) when X and R combine to form a bridging group as defined in claim 1 and Y is hydrogen, cyano, arylthio, arylsulfinyl or arylsulfonyl, reacting a compound of formula II

wherein ring A, Y_1 , Y_2 and Y_3 are as defined in claim 1, Y' represents hydrogen, cyano, arylthio, arylsulfinyl or arylsulfonyl and Z_1 represents oxygen, sulfur or NR_2 wherein R_2 is as defined in claim 1 with a compound of formula III

10

25

30

35

40

45

50

EP 0 461 079 B1

$$R_{21} = \begin{pmatrix} \omega_1 & R_1 \\ B & \omega_2 \\ \omega_2 & \omega_3 \end{pmatrix}$$
 (III)

wherein W₁, W₂, W₃, W₄ and R₁ are as defined in claim 1 and R₂₁ represents methylsulfonyl or halogen to obtain the corresponding compound of formula lp

- b) treating a compound of formula lp wherein Y' represents cyano or arylsulfonyl and Z_1 represents oxygen and the other symbols are as defined in claim 1;
 - (i) by hydrolysis to give a corresponding compound of formula I wherein R and X form a bridge and Y is hydroxy or a compound of formula I wherein X and Y together form =O;
 - (ii) with an amino to give a corresponding compound of formula I wherein R is an optionally substituted carbamoyl group and X and Y together form =O;
 - (iii) with a group

MOR₂₂

- wherein M is an alkali metal and R_{22} is hydrogen or C_{1-8} alkyl, to give a corresponding compound wherein R and X form a bridge and Y is hydroxy or C_{1-8} alkoxy;
- c) hydrolyzing a compound of formula Ip wherein Y' represents hydrogen, Z₁ represents oxygen and the other symbols are as defined in claim 1 to give a compound of formula I wherein R is a carboxyl group optionally in salt form, X is hydrogen and Y is hydroxy;
- d) ring opening a compound of formula Ip wherein Y' represents hydroxy, Z_1 represents oxygen and the other symbols are as defined in claim 1 to give a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y together are =0;
- e) esterifying a compound of formula I wherein R is a carboxyl group optionally in salt form and X and Y are =O
 and the other symbols are as defined in claim 1 to give the corresponding compound wherein R is a carboxyl
 group in ester form;
- f) halogenating a compound of formula Ip wherein Y' represents hydroxy, Z₁ is as defined in part a) and the
 other symbols are as defined in claim 1 to give a compound of formula I wherein X and R together form a bridging group and Y' is halogen;
- g) reacting a compound of formula lp wherein Z₁ is oxygen, Y' is halogen and the other symbols are as defined in claim 1 with a group R₂NH₂ and a group HOR₂₃ wherein R₂₃ represents C₁₋₈alkyl, C₂₋₈acyl or aryl and R₂ is as defined in claim 1 to give the corresponding compound wherein Z₁ is NR₂ and Y' is C₁₋₈alkoxy, aryloxy or C₂₋₈acyloxy;
 - h) oxidizing a compound of formula Ip wherein Y' represents hydrogen, Z₁ is as defined in part a) and the other

symbols are as defined in claim 1 to give the corresponding compound wherein Y' represents hydroxy;

i) reacting a compound of formula IV

5

10

15

20

35

40

45

50

55

$$Y_1$$
 A
 R_{24}
 Y_2
 Y_3
(IV)

with a compound of formula V

$$\bigvee_{\mathbf{W}_{1}} \underbrace{\mathbf{B}}_{\mathbf{W}_{2}}^{\mathbf{R}_{1}}$$
 (v)

to produce a compound of formula lq

wherein ring A, R, R₁, W₁, W₂, W₃, W₄, Y₁, Y₂ and Y₃ are as defined in claim 1 and X" and Y" are hydrogen and R₂₄ is C_{1-8} alkyl,

- j) mono- or di-halogenating a compound of formula lq wherein X" and Y" are hydrogen and the other symbols are as defined in part i) to produce the corresponding compound of formula lq wherein one or both of X" and Y" are halogen:
- k) oxidizing a compound of formula lq wherein X" and Y" are both hydrogen or X" is halogen and Y" is hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" and Y" together represent =O or one represents hydrogen and the other represents hydroxy;
- alkylating a compound of formula lq wherein X" represents hydrogen and Y" represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents C_{1.8} alkyl and Y", represents hydrogen;
- m) introducing a C_{1-8} alkoxy or C_{1-8} alkylthio group into a compound of formula lq wherein X" represents halogen, Y" represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents C_{1-8} alkoxy or C_{1-8} alkylthio and Y" represents hydrogen;
- n) acylating a compound of formula lq wherein X" represents hydroxy, Y represents hydrogen and the other symbols are as defined in claim 1 to produce the corresponding compound wherein X" represents acyloxy and Y" represents hydrogen;
- o) reacting a compound of formula lp wherein Z₁ is oxygen, Y' is hydrogen and the other symbols are as defined in claim 1 with a group R₇NH₂ wherein R₇ is (a) hydrogen, halogen; (b) C_{1.24} alkyl, C_{2.8}alkenyl, C_{2.8}alkynyl, C_{1.8}alkoxy, C_{1.8}alkoxy, C_{1.8}alkoxy, C_{2.8}alkenyloxy, C_{2.8}alkynyloxy, C_{1.8}alkylthio, C_{2.8}alkenylthio or C_{2.8}alkynylthio, each of which may in turn be substituted by 1 to 6 halogen atoms; (c) C_{3.6}cycloalkyl, C_{3.6}cycloalkylC_{1.8}alkyl, heterocycloC_{1.8}alkyl, heterocycloC_{1.8}alkoxy, aryloxy, arylC_{1.8}alkoxy, or

aryl C_{1-8} alkylthio, each of which is unsubstituted or may be substituted by 1 to 3 substituents selected from (i) halogen; (ii) C_{1-8} alkyl, C_{1-8} alkoxy, C_{1-8} haloalkoxy, C_{1-8} haloalkyl, C_{1-8} alkylsulfonylmethyl; and (iii) nitro, cyano, acyl, amino; (d) amino, amido, aminosulfonyl, cyano, nitro, or - $(CHR_4)_n$ "- $C(O)Y_4$ ',

wherein Y₄' is hydrogen, C₁₋₈alkyl, C₁₋₈ alkoxy or hydroxy and n''' is 0, 1, 2 or 3, R₄' is as defined for Y₁; to give a compound of formula I wherein R is monosubstituted carbamoyl, X is hydrogen and Y is hydroxy;

p) sulfonylating, carbamoylating, acylating or carbalkoxylating a compound of formula lp wherein Z_1 is oxygen, Y' is hydroxy and the other symbols are as defined in claim 1 to produce the corresponding compound of formula I wherein R and X form a -C(O)-O- bridge and Y represents sulfonyloxy, carbamoyloxy, C_{2-8} acyloxy or $C_{1.8}$ alkoxycarbonyloxy;

q) reacting a compound of formula Ip wherein Z_1 is oxygen, Y' is halogen and the other symbols are as defined in claim 1 with a group R_7R_8NH wherein R_7 is as defined in part o) and R_8 is as defined for R_7 to give a compound of formula I wherein R is disubstituted carbamoyl, and X and Z together represent =O;

and recovering any compound wherein R is a carboxyl or thiocarboxyl group in free form or in ester form and any compound wherein R is carboxyl in free form or in salt form.

20 Patentansprüche

5

10

15

35

40

45

50

R

Verbindungen der Formel I

Y $\begin{array}{c}
Y_1 \\
X \\
Y_2
\end{array}$ $\begin{array}{c}
X \\
Y \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X \\
Y_4$ $\begin{array}{c}
X \\
Y_4
\end{array}$ $\begin{array}{c}
X$

worin das Ringsystem A ausgewählt ist aus

- a) Phenyl oder Naphthyl;
- b) Pyridyl, das an seiner Seite (b) oder (c) mit Benzol verschmolzen sein kann,
- c) Pyridyl-N-oxid oder Pyrazinyl-N-oxid,
- d) Pyrimidinyl,
- e) Pyrazinyl,
- f) 3- oder 4-Cinnolinyl oder 2-Chinoxalinyl, oder
- g) einem fünfgliedrigen heteroaromatischen Ring, der Sauerstoff Schwefel oder Stichstoff als Heteroatome enthält und der mit einem Benzolring verschmolzen sein kann oder als weiteres Heteroatom Stickstoff enthalten kann.

steht für Cyano, Formyl, $CX_1X_2X_3$, -C(O)R'', worin R'' C_1-C_8 -Alkyl, C_{1-8} -Halogenalkyl, C_1-C_8 -Alkoxy C_1-C_8 -alkyl, C_2-C_8 -Alkenyl, C_2-C_8 -Alkinyl, Aryl oder Aryl- C_1-C_8 -alkyl ist, eine Carboxylgruppe, die in Form der freien Säure oder eines Esters oder Salzes hiervon vorliegen kann, eine Thiocarboxylgruppe, die in Form der freien Säure oder in Form eines Esters vorliegen kann, eine Carbamoylgruppe oder eine Gruppe -CONR₇R₈, Hydroxy- C_1-C_8 -alkyl, Hydroxybenzyl, -CH=NOH, -CH=NO- C_1-C_8 -Alkyl oder einen Ring C

55

R₄

Y und X

55

EP 0 461 079 B1

Y₁, Y₂ und Y₃ 10 an Kohlenstoffatome gebunden sind und unabhängig voneinander stehen für Wasserstoff. Halogen, Hydroxy, C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₈-Alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₈-Alkylsulfonyloxy, Di- $(C_1-C_8$ -alkyl)-sulfamoyloxy, C_1-C_8 -Alkylsulfonyl, C_1 - C_8 -Alkylsulfinyl, Di-(C_1 - C_8 -alkyl)-carbamoyloxy, C_1 - C_8 -Alkylthio, C_2 - C_8 -15 Alkenylthio oder C2-C8-Alkinylthio, wobei jede dieser Gruppen wiederum substituiert sein kann durch 1 bis 6 Halogenatome, Di-(C1-C8-alkoxy)methyl, konjugiertes C_1 - C_8 -Alkoxy, Hydroxy, C_1 - C_8 -Alkyl, C_2 - C_8 -Aryl, C_2 - $C_8\text{-}Acyloxy, \ \, \text{Tri-}(C_1\text{-}C_8\text{-}alkyl)\text{-}silyloxy, \ \, \text{Tri-}(C_1\text{-}C_8\text{-}alkyl)\text{-}silyl, \ \, \text{Cyano, Nitro,}$ Amino, Aryl, Aryl-C1-C8-alkyl, Aryloxy, ArylC1-C8-alkoxy, Arylsulfonyl, 20 Arylsulfinyl, Arylthio oder Aryl-C1-C8-alkylthio, wobei diese Gruppen jeweils durch ein bis drei Substituenten substituiert sein können, die ausgewählt sind aus Halogen, C1-C8-Alkyl, C1-C8-Halogenalkyl, C1-C8-Alkoxy, C₁-C₈-Halogenalkoxy, Nitro, Cyano, C₁-C₈-Alkylthio, C₂-C₈-Acyl, Amino oder eine Gruppe -C(O)-R', worin R' Wasserstoff, C1-C8-Alkyl oder 25 C₁-C₈-Alkoxy ist, oder zusammengenommen an benachbarten Kohlenstoffatomen eine Brücke Y₁ und R der Formel -C(S)-O-, -C(O)-O-E-oder -C(O)-N(R2)-E- bilden, worin E eine direkte Bindung oder eine ein- bis dreigliedrige Verknüpfungsgruppe ist, deren Elemente ausgewählt sind aus Methylen, -N(R2)- und Sauerstoff, 30 oder Y₁ und Y₂ zusammengenommen an benachbarten Kohlenstoffatomen eine drei- bis fünfgliedrige Brücke bilden, die Elemente umfaßt, welche ausgewählt sind aus Methylen. -CH=, -C(R4)=, -NH-, Sauerstoff und -S(O)n-, jede der Gruppen W1, W2, W3, W4 und W5unabhängig CH, CR3 oder Stickstoff ist, 35 W₆ für NH, Sauerstoff, Schwefel, -CR4=, -CH= oder -C(O)- steht, Z eine zwei- oder dreigliedrige Brücke ist, welche Elemente umfaßt, die ausgewählt sind aus Methylen, -CH=, -C(R4)=, -C(O)-, -NH-, -N=, Sauerstoff und $-S(O)_n$ -, R₁ und R₃ jeweils unabhängig stehen für Wasserstoff, Halogen, C1-C8-Alkyl, C2-C8-40 Alkenyl, C2-C8-Alkinyl, C1-C8-Alkoxy, C2-C8-Alkenyloxy, C2-C8-Alkinyloxy, C₁-C₈-Alkylthio, C₂-C₈-Alkenylthio oder C₂-C₈-Alkinylthio, wobei jeder dieser Reste wiederum durch 1 bis 6 Halogenatome substituiert sein kann, C3-C6-Cycloalkyl, fünf- oder sechsgliedriges heterocyclisches C1-Cg-Alkoxy, Aryloxy, Aryl-C1-Cg-alkoxy oder Aryl-C1-C8-alkylthio, wovon 45 jeder dieser Reste durch ein bis drei Substituenten substituiert sein kann, die ausgewählt sind aus Halogen. C1-C8-Alkyl, C1-C8-Halogenalkyl, C1-C8-Alkoxy, C1-C8-Halogenalkoxy, Nitro, Cyano, C1-C8-Alkylthio, C2-C8-Acyl oder Amino, Aminoxy, Iminoxy, Amido, C1-C8-Alkylsulfonylmethyl, Cyano, Nitro oder -C(O)-Y₄, worin Y Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alk-50 oxy, Hydroxy oder Phenyl ist, R_2 für Wasserstoff, C_1 - C_8 -Alkyl, C_1 - C_8 -Halogenalkyl, C_1 - C_8 -Alkoxyalkyl, Aryl oder Aryl-C1-C8-alkyl steht,

ten kann.

der Definition des Restes Y1 entspricht, jedoch nicht Wasserstoffbedeu-

jeweils unabhängig stehen für Wasserstoff, Hydroxy, Halogen, Cyano, C1-

 C_8 -Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkoxycarbonyl, C_1 - C_8 -Alkoxycarbonyloxy, Hydroxy- C_1 - C_8 alkyl, C_1 - C_8 -Halogenalkyl, C_2 - C_8 -Acyl, C_2 - C_8 -Acyloxy, Carbamoyl, Carbamoyloxy, C_1 - C_8 -Alkylthio, C_1 - C_8 -Alkylsulfonyloxy, Aryl, Aryloxy, Aryl-S(O)_D, Aryl-

sulfonyloxy, wovon jeder dieser Reste wiederum durch ein bis drei Substituenten substituiert sein kann, die ausgewählt sind aus Halogen, C1-C8-Alkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogenalkoxy, Nitro, Cyano, C1-C8-Alkylthio oder C2-C8-Aryl, oder Amino oder zusammengenommen stehen für =O, =S, =NH, =NOR₁₂ oder =CR₁₃R₁₄ oder 5 zusammen eine Brücke der Formeln -C(O)-O-, -C(O)-S- oder -C(O)-NR₂-X und R bilden, worin das Carbonyl an das Ringsystem A gebunden ist. $\begin{array}{c} p \\ X_1, \ X_2 \ und \ X_3 \end{array}$ für 0, 1 oder 2 steht. unabhängig Wasserstoff, Hydroxy, C1-C8-Alkoxy, C1-C8-Alkylthio, Hydroxy-C₁-C₈-alkyl oder Hydroxybenzyl sind, wobei wenigstens einer 10 der Substituenten X₁, X₂ und X₃ etwas anderes als Wasserstoffbedeutet, für Wasserstoff steht und X1 und X2 zusammen eine viergliedrige oder Хз fünfgliedrige Brücke aus Elementen bilden, die ausgewählt sind aus -O(CH₂)_n, -O-, -OC(O)(CH₂)_mO- und -S(CH₂)_n·S-, 15 R₇ und R₈ jeweils unabhängig stehen für (a) Wasserstoff oder Halogen, (b) C₁-C₂₄-Alkyl, C2-C8-Alkenyl, C2-C8-Alkinyl, C1-C8-Alkoxy, C1-C8-Alkoxy-C1-C8alkoxy, C2-C8-Alkenyloxy, C2-C8-Alkinyloxy, C1-C8-Alkylthio, C2-C8-Alkenylthio oder C2-C8-Alkinylthio, wobei jeder dieser Reste wiederum durch 1 bis 6 Halogenatome substituiert sein kann, (c) C₃-C₆-Cycloalkyl, C₃-C₆-20 Cycloalkyl-C₁-C₈-alkyl, Heterocyclyl, Heterocyclo-C₁-C₈-alkyl, Heterocyclo-C₁-C₈-alkoxy, Aryloxy, Aryl-C₁-C₈-alkoxy oder Aryl-C₁-C₈-alkylthio, wobei jeder dieser Reste unsubstituiert oder durch ein bis drei Substituenten substituiert sein kann, die ausgewählt sind aus (i) Halogen, (ii) C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogenalkoxy, C₁-C₈-Halogenalkyl, C₁-C₈-25 Alkylthio, C₁-C₈-Alkylsulfonyl oder C₁-C₈-Alkylsulfonylmethyl und (iii) Nitro, Cyano, Acyl oder Amino oder (d) Amino, Amido. Aminosulfonyl, Cyano, Nitro oder -(CHR₄')_{n'''}-C(O)Y₄', worin Y₄' Wasserstoff, C₁-C₈-Alkyl, C1-C8-Alkoxy oder Hydroxy ist und n'" für 0, 1, 2 oder 3 steht und R4' die Definition von Y1 hat, 30 Wasserstoff oder C₁-C₈-Alkyl bedeutet. R₁₂ R₁₃ und R₁₄ unabhängig Wasserstoff, C1-C8-Alkyl oder Halogen sind. für 1 oder 2 steht, m für 0, 1 oder 2 steht und n

mit der Maßgabe, daß, falls R Carboxyl in freier Esterform oder Salzform ist und X sowie Y zusammen für =O stehen, einer der Ringe A und B dann ein Heteroatom enthält.

für 2 oder 3 steht.

2. Verbindung der Formel 1 nach Ansprich 1, worin A für Pyridyl, Chinoly, Pyridyl-N-oxid, Pyrimidinyl, Pyrazinyl, Thienyl oder Furyl steht.

3. Verbindung der Formel I nach Anspruch 1, worin

35

40

n'

45	das R	Ringsstem A ausgewählt ist aus Phenyl, Pyridyl oder Pyridyl-N-oxid, eine Carboxylgruppe, die in Form der freien Säure oder in Form eines Esters oder Salzes
		hiervon vorliegen kann, eine Thiocarboxylgruppe, die in Form der freien Säure oder in Form eines Esters hiervon vorliegen kann, eine Carbamoylgruppe oder eine Gruppe der Formel - CONR ₇ R ₈ ist,
50	Y ₁ , Y ₂ und Y ₃	an Kohlenstoffatome gebunden sind und unabhängig voneinander Wasserstoff, Halogen, C ₁ -C ₈ -Alkyl oder C ₁ -C ₈ -Alkoxy bededeuten.
	W ₁ , W ₂ , W ₃ und W ₃	jeweils unabhängig CH, CR ₃ oder Stickstoff sind,
	R ₁ und R ₃	jeweils unabhängig Wasserstoff, Halogen, C ₁ -C ₈ -Alkyl, C ₁ -C ₈ -Alkoxy, Aryloxy oder Aryl-C ₁ -C ₈ -alkoxy darstellen.
55	X und Y	jeweils unabhängig Wasserstoff, Hydroxy, Cyano, C ₁ -C ₈ -Alkoxy oder C ₂ -C ₈ -Acyloxy sind oder zusammen für =O stehen, oder
	X und R	zusammen eine Brücke der Formeln -C(O)-O- oder -C(O)NR ₂ - bilden, worin die Carbonylgruppe an das Ringsystem A gebunden ist.

4. Verbindung der Formel I nach Anspruch 1, worin

das Ringsystem A Phenyl, Pyridyl oder Thienyl bedeutet,

der Ring B Pyrimidinyl oder Triazinyl ist,

R steht für einen Ring C, insbesondere Oxazol, Oxazolon, Oxazolidin oder Oxazolidinon, Carboxyl in Form der freien Säure oder in Form eines Esters oder Salzes hiervon -CONB-Re oder Cyano

in Form der freien Säure oder in Form eines Esters oder Salzes hiervon, -CONR₇R₈ oder Cyano

oder R zusammen mit X für -C(O)-O- oder -C(O)NR2-,

Y₁, Y₂ und Y₃ jeweils unabhängig Wasserstoff, Halogen, C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylthio oder

Arylthio sind.

X und Y jeweils unabhängig Halogen, Hydroxy, C₁-C₈-Alkoxy, C₁-C₈-Acyloxy, einen Ring B, Halogen, C₁-

C₈-Alkylthio oder Arylthio bedeuten oder zusammen für, =O oder =NH stehen, und

R₁ und R₃ jeweils unabhängig Halogen, C₁-C₈-Alkoxy, C₁-C₈-Alkyl, C₁-C₈-Halogenalkoxy, Aryloxy, Aryl-C₁-

C₈-alkoxy, C₂-C₈-Alkinyloxy oder C₂-C₈-Alkenyloxy bedeuten.

5. Verbindung nach Anspruch 4, worin

5

10

20

25

30

40

45

50

Y₁, Y₂ und Y₃ zusätzlich jeweils unabhängig Aryl-C₁-C₈-alkoxy, C₂-C₈-Alkenyloxy oder C₂-C₈-Alkinyloxy sein

können

der Ring B insbsondere Pyrimidinyl, vor allem 4,6-Dimethoxy-2-pyrimidyl ist,

der Ring A insbesondere Phenyl oder Pyridyl mit der oben definierten Substitution bedeutet, und

X und Y vorzugsweise Wasserstoff, Halogen, Cyano, Hydroxy oder Alkoxy sind oder zusammen für =O

stehen, und insbesondere Wasserstoff oder Hydroxy sind oder zusammen für =O stehen.

6. Verbindung nach Anspruch 1, worin X und Y zusammen für =O stehen.

7. Verbindung nach Anspruch 1, nämlich Natrium-3,6-dichlor-2-[(4,6-dimethoxypyrimidin-2-yl)carbonyl]benzoat.

8. Herbizide Zusammensetzung aus einer herbizid wirksamen Menge einer Verbindung der Formel I nach Anspruch 1 bis 7.

 Verfahren zur Bekämpfung von Unkräutern, dadurch gekennzeichnet, daß solche Unkräuter oder solche Unkräuter enthaltende Stellen mit einer herbizid wirksamen Menge einer Verbindung der Formel I nach Anspruch 1 bis 7 behandelt werden.

35 10. Verfahren zur Herstellung einer Verbindung der Formel I gemaß Definition von Anspruch 1, gekennzeichnet durch

a) falls X und R zusammen eine Brückengruppe gemäß obiger Definition bilden und X Wasserstoff, Cyano, Arylthio, Arylsulfinyl oder Arylsulfonyl ist, Umsetzung einer Verbindung der Formel II

worin der Ring A, Y₁, Y₂ und Y₃ wie in Anspruch 1 definiert sind, Y' Wasserstoff, Cyano, Arylthio, Arylsulfinyl oder Arylsulfonyl ist und Z₁ Sauerstoff, Schwefel oder NR₂ bedeutet, wobei R₂ wie in Anspruch 1 definiert ist, mit einer Verbindung der Formel III

 $R_{21} = \begin{pmatrix} \omega_1 & R_1 \\ B & \omega_2 \\ \omega_2 = \omega_3 \end{pmatrix}$ (III)

worin W1, W2, W3, W4 und R1 wie in Anspruch 1 definiert sind und R21 Methylsulfonyl oder Halogen bedeutet unter Bildung der entsprechenden Verbindung der Formel Ip

- b) Behandlung einer Verbindung der Formel Ip, worin Y' Cyano oder Arylsulfonyl ist und Z₁ Sauerstoff bedeutet und die anderen Symbole wie in Anspruch 1 definiert sind, durch
 - (i) Hydrolyse unter Bildung einer entsprechenden Verbindung der Formel I, worin R und X eine Brücke bilden und Y Hydroxy ist oder eine Verbindung der Formel I, worin X und Y zusmmen für =O stehen,
 - (ii) Umsetzung mit einem Amin unter Bildung einer entsprechenden Verbindung der Formel I, worin R eine gegebenenfalls substituierte Carbamoylgruppe ist und X und Y zusammen für =O stehen, oder
 - (iii) Umsetzung mit einer Gruppe der Formel

25

30

35

40

45

50

55

15

20

5

worin M ein Alkalimetall ist und R22 für Wasserstoff oder C1-C8-Alkyl steht, unter Bildung einer entsprechenden Verbindung, worin R und X eine Brücke bilden und Y Hydroxy oder C1-C8-Alkoxy ist,

- c) Hydrolyse einer Verbindung der Formel Ip, worin Y' Hydroxy ist und Z_1 Sauerstoff bedeutet und die anderen Symbole 'wie in Anspruch 1 definiert sind, unter Bildung einer Verbindung der Formel I, worin R eine Carboxylgruppe ist, die gegebenenfalls in Salzform vorliegt, X für Wasserstoff steht und Y Hydroxy ist,
- d) Ringöffnung einer Verbindung der Formel Ip, worin Y' Wasserstoff ist und Z₁ Sauerstoff bedeutet und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung einer Verbindung der Formel I, worin R eine Carboxylgruppe ist, die gegebenenfalls in Salzform vorliegt, und X und Y zusammen für =O stehen,
- e) Veresterung einer Verbindung der Formel I, worin X eine Carboxylgruppe ist, die gegebenenfalls in Salzform vorliegt. X und Y für =O stehen und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin R eine Carboxylgruppe in Esterform ist.
- f) Halogenierung einer Verbindung der Formel Ip, worin Y' Hydroxy ist, Z₁ wie im Teil a) definiert ist und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung einer Verbindung der Formel I, worin X und R zusammen eine Brücke bilden und Y' Halogen ist,
- g) Umsetzung einer Verbindung der Formel Ip, worin Z₁ Sauerstoff ist, Y' Halogen bedeutet und die anderen Symbole wie in Anspruch 1 definiert sind mit einer Gruppe R₂NH₂ oder einer Gruppe HOR₂₃, worin R²³ C₁-C8-Alkyl, C2-C8-Acyl oder Aryl bedeutet und R2 wie in Anspruch 1 definiert ist, unter Bildung der entsprechenden Verbindung, worin Z₁ für NR₂ steht und Y' C₁-C₈-Alkoxy, Aryloxy oder C₂-C₈-Acyloxy ist.
- h) Oxidation einer Verbindung der Formel Ip, worin Y' Wasserstoff ist, Z1 wie in Teil a) definiert ist und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin Y' Hydroxy bedeutet.
- i) Umsetzung einer Verbindung der Formel IV

$$Y_1$$

$$Y_2$$

$$Y_3$$

$$X_{3}$$
(IV)

mit einer Verbindung der Formel V

10

15

20

25

30

35

40

45

50

55

EP 0 461 079 B1

unter Bildung einer Verbindung der Formel Iq

worin A, R, R₁, W₁, W₂, W₃, W₄, Y₁, Y₂ und Y₃ wie in Anspruch 1 definiert sind X" und Y" Wasserstoff bedeuten und R₂₄ für C₁-C₈-Alkyl steht,

j) Mono- oder Dihalogenierung einer Verbindung der Formel Iq, worin X" und Y" Wasserstoff sind und die anderen Symbole wie in Teil i) definiert sind, unter Bildung der entsprechenden Verbindung der Formel Iq, worin einer oder beide der Substituenten X" und Y" Halogen sind,

k) Oxidation einer Verbindung der Formel Iq, worin X" und Y" beide Wasserstoff sind oder X" Halogen ist und Y" Wasserstoff bedeutet, und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin X" und Y" zusammen für =O stehen oder einer dieser Reste Wasserstoff ist und der andere Hydroxy bedeutet,

I) Alkylierung einer Verbindung der Formel Iq, worin X" Wasserstoff ist und Y" Wasserstoff bedeutet, und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin X" C_1 - C_8 -Alkyl ist und Y" Wasserstoff darstellt,

m) Einführung einer C_1 - C_8 -Alkoxygruppe oder C_1 - C_8 -Alkylthiogruppe in eine Verbindung der Formel Iq, worin X" Halogen ist und Y" Wasserstoff bedeutet, und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin X" C_1 - C_8 -Alkoxy oder C_1 - C_8 -Alkylthio ist und Y" für Wasserstoff steht.

n) Acylierung einer Verbindung der Formel Iq, worin X" Hydroxy ist und Y" Wasserstoff darstellt, und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung, worin X" Acyloxy ist und Y" Wasserstoff bedeutet,

o) Umsetzung einer Verbindung der Formel Ip, worin Z₁ Sauerstoff ist und Y' für Wasserstoff steht, und die anderen Symbole wie in Anspruch 1 definiert sind, mit einer Gruppe der Formel R₇NH₂, worin R₇ steht für (a) Wasserstoff oder Halogen, (b) C₁-C₂₄-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₈-Alkoxy, C₁-C₈-Alkoxy-C₁-C₈-alkoxy, C₂-C₈-Alkenyloxy, C₂-C₈-Alkinyloxy, C₁-C₈-Alkylthio, C₂-C₈-Alkenylthio oder C₂-C₈-Alkinylthio, wobei jeder dieser Reste wiederum durch 1 bis 6 Halogenatome substituiert sein kann, (c) C₃-C₆-Cycloalkyl, C₃-C₆-Cycloalkyl-C₁-C₈-alkyl, Heterocyclo-C₁-C₈-alkyl, Heterocyclo-C₁-C₈-alkoxy, Aryloxy, Aryl-C₁-C₈-alkoxy oder Aryl-C₁-C₈-alkylthio, wobei jeder dieser Reste unsubstituiert oder durch ein bis drei Substituenten substituiert sein kann, die ausgewählt sind aus (i) Halogen, (ii) C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Halogenalkoxy, C₁-C₈-Alkylthio, C₁-C₈-Alkylsulfonyl oder C₁-C₈-Alkylsulfonylmethyl und (iii) Nitro, Cyano, Acyl oder Amino oder (d) Amino, Amido, Aminosulfonyl, Cyano, Nitro oder -(CHR₄)_n--C(O)Y₄', worin Y₄' Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Alkoxy oder Hydroxy ist und n''' für nonosubstituiertes Carbamoyl steht, X Wasserstoff ist und Y Hydroxy darstellt,

p) Sulfonylierung, Carbamoylierung, Acylierung oder Carbalkoxylierung einer Verbindung der Formel Ip, worin Z_1 Sauerstoff ist und Y' Hydroxy bedeutet, und die anderen Symbole wie in Anspruch 1 definiert sind, unter Bildung der entsprechenden Verbindung der Formel I, worin R und X die Brücke -C(O)-O bilden und Y Sulfonyloxy, Carbamoyloxy, C_2 - C_8 -Acyloxy oder C_1 - C_8 -Alkoxycarbonyloxy sind,

q) Umsetzung einer Verbindung der Formel Ip, worin Z_1 Sauerstoff ist und Y' für Halogen steht, und die anderen Symbole wie in Anspruch 1 definiert sind, mit einer Gruppe der Formel R_7R_8NH , worin R_7 wie in Teil o) definiert ist und R_8 wie für den Rest R_7 definiert ist, unter Bildung einer Verbindung der Formel I, worin R disub-

stituiertes Carbamoyl bedeutet und X und Y zusammen für =O stehen,

und Gewinnung irgendeiner Verbindung, worin R eine Carboxylgruppe oder Thiocarboxylgruppe in freier Form oder in Esterform ist, und irgendeiner Verbindung, worin R Carboxyl in freier Form oder in Salzform darstellt.

Revendications

5

20

25

30

35

40

45

50

55

1. Un composé de formule l

dans laquelle

le cycle A est choisi parmi les restes

a) phényle ou naphtyle,

- b) pyridyle qui peut être condensé par son côté (b) ou (c) au benzène,
- c) pyridyl-N-oxyde ou pyrazinyl-N-oxyde,
- d) pyrimidinyle,
- e) pyrazinyle,
- f) 3- ou 4-cinnolynyle ou 2-quinoxalinyle, et
- g) hétérocyclique à 5 chaînons comprenant de l'oxygène, du soufre ou de l'azote comme hétéroatome, ledit reste pouvant être condensé à un cycle benzénique ou pouvant comprendre de l'azote comme hétéroatome supplémentaire;

R

signifie un groupe cyano, formyle, $CX_1X_2X_3$, -C(O)R'' où R'' signifie un groupe alkyle en C_1 - C_8 , haloalkyle en C_1 - C_8 , (alcoxy en C_1 - C_8)alkyle en C_1 - C_8 , alcényle en C_2 - C_8 , aryle ou aryl-(alkyle en C_1 - C_8); un groupe carboxy qui peut se présenter sous forme d'acide libre ou sous la forme d'un ester ou d'un sel, un groupe thiocarboxy qui peut se présenter sous forme d'acide libre ou sous la forme d'un ester, un groupe carbamoyle, ou un groupe $-CONR_7R_8$, hydroxyalkyle en C_1 - C_8 , hydroxybenzyle, -CH=NOH, $-CH=NO(alkyle en <math>C_1$ - C_8) ou un cycle C

Y₁, Y₂ et Y₃

sont fixés aux atomes de carbone et signifient indépendamment l'hydrogène, un halogène ou un groupe hydroxy, alkyle en C_1 - C_8 , alcényle en C_2 - C_8 , alcynyle en C_2 - C_8 , alcoxy en C_1 - C_8 , alcényloxy en C_2 - C_8 , alcynyloxy en C_2 - C_8 , (alkyl en C_1 - C_8)sulfonyloxy, di(alkyl en C_1 - C_8)-carbamoyloxy, alkylsulfonyle en C_1 - C_8 , alcénylthio en C_1 - C_8 , alcénylthio en C_2 - C_8 ou alcynylthio en C_2 - C_8 , chacun d'entre eux pouvant être substitué à son tour par 1 à 6 atomes d'halogène;

un groupe di(alcoxy en C₁-C₈)-méthyle, un groupe alcoxy en C₁-C₈ conjugué, hydroxyalkyle en C₁-C₈,

acyle en C₂-C₈, acyloxy en C₂-C₈, tri(alkyl en C₁-C₈)-silyloxy, tri(alkyl en C₁-C₈)silyle, cyano, nitro, amino, aryle, aryl-(alkyle en C₁-C₈), aryloxy, aryl-

(alcoxy en C₁-C₈), arylsulfonyle, arylsulfinyle, arylthio ou aryl-(alkylthio en C₁-C₈), chacun d'entre eux pouvant être substitué par 1 à 3 substituants choisis parmi un halogène ou un groupe alkyle en C1-C8, haloalkyle en C1-C₈, alcoxy en C₁-C₈, haloalcoxy en C₁-C₈, nitro, cyano, alkylthio en C₁-C₈, acyle en C2-C8, amino, un groupe -C(O)-R' où R' signifie l'hydrogène ou un groupe alkyle en C₁-C₈ ou alcoxy en C₁-C₈; ou bien

pris ensemble sur les atomes de carbone adjacents forment un pont ayant la formule -C(S)-O-, -C(O)-O-E- ou -C(O)-N(R2)-E- où E signifie une liaison directe ou un groupe de liaison ayant 1 à 3 chaînons avec des éléments choisis parmi le méthylène, -N(R2)- et l'oxygène; ou bien

pris ensemble sur les atomes de carbone adjacents forment un pont de 3 à 5 chaînons comprenant les éléments choisis parmi le méthylène, -CH=, - $C(R_4)=$, -NH-, l'oxygène et -S(O)_n-;

chaque symbole W₁, W₂, W₃, W₄ et W₅signifie indépendamment CH, CR₃ ou l'azote; W_6

signifie NH, l'oxygène, le soufre, -CR₄=, -CH= ou -C(O)-;

signifie un pont à 2 ou 3 chaînons comprenant les éléments choisis parmi le méthylène, CH=, C(R₄)=, -C(O)-, -NH-, -N=, l'oxygène et -S(O)_n-;

signifient chacun indépendamment l'hydrogène, un halogène ou un groupe alkyle en C₁-C₈, alcényle en C₂-C₈, alcynyle en C₂-C₈, alcoxy en C₁-C₈, alcényloxy en C2-C8, alcynyloxy en C2-C8, alkylthio en C1-C8, alcénylthio en C2-C8 ou alcynylthio en C2-C8, chacun d'entre eux pouvant à son tour être substitué par 1 à 6 atomes d'halogène; cycloalkyle en C3-C6, hétérocyclo(alcoxy en C₁-C₈) à 5 ou 6 chaînons, aryloxy, aryl-(alcoxy en C₁-C₈)ou aryl-(alkylthio C1-C8), chacun d'entre eux pouvant être substitué par 1 à 3 substituants choisis parmi un halogène ou un groupe alkyle en C₁-C₈, haloalkyle en C_1 - C_8 , alcoxy en C_1 - C_8 , haloalcoxy en C_1 - C_8 , nitro, cyano, alkylthio en C₁-C₈, acyle en C₂-C₈, amino; aminoxy, iminoxy, amido, (alkyl en C₁-C₈)-sulfonylméthyle, cyano, nitro; ou bien -C(O)-Y₄, où Y₄ signifie l'hydrogène ou un groupe alkyle en C₁-C₈, alcoxy en C₁-C₈, hydroxy ou phényle; signifie l'hydrogène ou un groupe alkyle en C₁-C₈, haloalkyle en C₁-C₈, alcoxyalkyle en C₁-C₈, aryle ou aryl-(alkyle en C₁-C₈);

a l'une des significations définies pour Y1, sauf l'hydrogène;

signifient chacun indépendamment l'hydrogène ou un groupe hydroxy, un halogène, un groupe cyano, alkyle en C1-C8, alcoxy en C1-C8, (alcoxy en C1-C₈)carbonyle, (alcoxy en C₁-C₈)-carbonyloxy, hydroxyalkyle en C₁-C₈, haloalkyle en C₁-C₈, acyle en C₂-C₈, alcyloxy en C₂-C₈, carbamoyle, carbamoyloxy, alkylthio en C_1 - C_8 , alkylsulfinyle en C_1 - C_8 , alkylsulfonyle en C_1 - C_8 ou (alkyl en C₁-C₈)-sulfonyloxy; aryle, aryloxy, arylS(O)_p, arylsulfonyloxy, chacun d'entre eux pouvant à son tour être substitué par 1 à 3 substituants choisis parmi un halogène ou un groupe alkyle en C1-C8, haloalkyle en C1- C_8 , alcoxy en C_1 - C_8 , haloalcoxy en C_1 - C_8 , nitro, cyano, alkylthio en C_1 - C_8 , acyle en C2-C8; amino ou signifient ensemble =0, =S, =NH, =NOR12 ou =CR₁₃R₁₄; ou bien

peuvent former ensemble un pont ayant la formule -C(O)-O-, -C(O)-S ou -C(O)-NR2- où le groupe carbonyle est fixé à A;

signifie 0, 1 ou 2;

signifient indépendamment l'hydrogène ou un groupe hydroxy, alcoxy en C₁- C_8 , alkylthio en C_1 - C_8 , hydroxyalkyle en C_1 - C_8 , ou hydroxybenzyle, au moins l'un des symboles X₁, X₂ et X₃ devant avoir une signification autre que l'hydrogène; ou bien

signifie l'hydrogène et X1 et X2 forment ensemble un pont à 4 ou 5 chaînons comprenant des éléments choisis parmi -O(CH₂)_n, -O-, -OC(O)(CH₂)_mO- et -S(CH₂)_n, S-;

signifient chacun indépendamment (a) l'hydrogène ou un halogène; (b) un groupe alkyle en C1-C24, alcényle en C2-C8, alcynyle en C2-C8, alcoxy en C₁-C₈, (alcoxy en C₁-C₈)-alcoxy en C₁-C₈, alcényloxy en C₂-C₈, alcynyloxy en C2-C8, alkylthio en C1-C8, alcénylthio en C2-C8 ou alcynylthio en C2-C8, chacun d'entre eux pouvant à son tour être substitué par 1 à 6 atomes d'halogène; (c) cycloalkyle en C₃-C₆, (cycloalkyl en C₃-C₆)alkyle en C₁-C₈,

Y₁ et R

Y₁ et Y₂

R₁ et R₃

20

5

10

15

25

30 R_2

> R_4 X et Y

35

40

X et R 45

 $\begin{array}{c} p \\ X_1, \ X_2 \ et \ X_3 \end{array}$

50

 X_3

R₇ et R₈ 55

hétérocyclo(alkyle en C_1 - C_8), hétérocyclo(alcoxy en C_1 - C_8), aryloxy, aryl-(alcoxy en C_1 - C_8) ou aryl-(alkylthio en C_1 - C_8), chacun d'entre eux étant non substitué ou pouvant être substitué par 1 à 3 substituants choisis parmi (i) un halogène; (ii) un groupe alkyle en C_1 - C_8 , alcoxy en C_1 - C_8 , haloalcoxy en C_1 - C_8 , haloalkyle en C_1 - C_8 , alkylthio en C_1 - C_8 , alkylsulfonyle en C_1 - C_8 , (alkyl en C_1 - C_8)-sulfonylméthyle; et (iii) nitro, cyano, acyle, amino; (d) amino, amido, aminosulfonyle, cyano, nitro ou -(CHR₄')n'''-C(O)Y₄', où Y₄' signifie l'hydrogène ou un groupe alkyle en C_1 - C_8 , alcoxy en C_1 - C_8 ou hydroxy et n''' signifie 0, 1, 2 ou 3; R₄' est tel que défini pour Y₁;

10 R₁₂

5

15

25

30

35

40

45

50

R₁₃ et R₁₄

signifie l'hydrogène ou un groupe alkyle en C₁-C₈,

signifient indépendamment l'hydrogène ou un groupe alkyle en C₁-C₈ ou un

halogène;

m n signifie 1 ou 2; signifie 0, 1 ou 2; et

n'

signifie 2 ou 3;

lorsque R signifie un groupe carboxy sous forme d'un ester libre ou d'un sel et X et Y signifient ensemble =0, l'un des cycles A et B devant contenir un hétéroatome.

- Un composé de formule (I) selon la revendication 1, dans lequel A signifie un reste pyridyle, quinolyle, pyridyl-Noxyde, pyrimidinyle, pyrazinyle, thiényle ou furyle.
 - Un composé de formule I selon la revendication 1, dans lequel le système cyclique A est choisi parmi un reste phényle, pyridyle ou pyridyl-N-oxyde,

R signifie un groupe carboxy qui peut être sous forme d'un acide libre ou sous la forme d'un ester ou d'un sel, un groupe thiocarboxy qui peut être sous forme d'un acide libre ou sous la forme d'un ester, un groupe carbamoyle ou un groupe -CONR₇R₈,

Y₁, Y₂ et Y sont fixés à des atomes de carbone et signifient indépendamment l'hydrogène, un halogène ou un groupe alkyle en C₁-C₈, alcoxy en C₁-C₈; chacun des symboles W₁, W₂, W₃ et W₄ signifie indépendamment CH, CR₃ ou l'azote,

R₁ et R₃ signifient chacun indépendamment l'hydrogène, un halogène ou un groupe alkyle en C₁-C₈, alcoxy en C₁-C₈, aryloxy ou aryl-(alcoxy en C₁-C₈),

X et Y signifient chacun indépendamment l'hydrogène ou un groupe hydroxy, cyano, alcoxy en C₁-C₈, acy-

signifient chacun indépendamment l'hydrogène ou un groupe hydroxy, cyano, alcoxy en C_1 - C_8 , acyloxy en C_2 - C_8 ou signifient ensemble =O; ou bien

X et R forment ensemble un pont ayant la formule -C(O)-O- ou -C(O)NR₂-, où le groupe carbonyle est fixé à A.

- 4. Un composé de formule I selon la revendication 1, dans lequel le système cyclique A signifie un reste phényle, pyridyle ou thiényle; B signifie un reste pyrimidinyle ou triazinyle; R signifie un cycle C, en particulier un cycle oxazole, oxazolone, oxazolidine ou oxazolidinone; un groupe carboxy sous forme d'un acide libre ou sous la forme d'un ester ou d'un sel; -CONR₇R₈, cyano ou signifient ensemble avec X -C(O)-O- ou -C(O)NR₂-,
 - Y₁, Y₂ et Y₃ signifient chacun indépendamment l'hydrogène, un halogène ou un groupe alkyle en C₁-C₈, alcoxy en C₁-C₈, alkylthio en C₁-C₈, ou arylthio,
 - X, Y signifient chacun indépendamment un halogène ou un groupe hydroxy, alcoxy en C₁-C₈, acyloxy en C₁-C₈, un cycle B, un halogène, un groupe alkylthio en C₁-C₈ ou arylthio ou signifient ensemble =O ou =NH, et

R₁ et R₃ signifient chacun indépendamment un halogène ou un groupe alcoxy en C₁-C₈, alkyle en C₁-C₈, haloalcoxy en C₁-C₈, aryloxy, aryl-(alcoxy en C₁-C₈), alcynyloxy en C₂-C₈, alcényloxy en C₂-C₈.

- Un composé selon la revendication 4, dans lequel Y₁, Y₂ et Y₃ peuvent chacun également signifier indépendamment un groupe aryl-(alcoxy en C₁-C₈), alcényloxy en C₂-C₈ ou alcynyloxy en C₂-C₈,
- B signifie spécialement un reste pyrimidinyle, en particulier un groupe 4,6-diméthoxy-2-pyrimidinyle,
 A signifie spécialement phényle ou pyridyle substitués comme défini plus haut,
 - X et Y signifient de préférence l'hydrogène, un halogène, un groupe cyano, hydroxy, alcoxy ou signifient ensemble =O, spécialement l'hydrogène ou un groupe hydroxy ou signifient ensemble =O.

15

20

25

30

35

40

45

50

55

EP 0 461 079 B1

- 6. Un composé selon la revendication 1, dans lequel X et Y signifient ensemble = O.
- Le composé selon la revendication 1 qui est le 3,6-dichloro-2-[(4,6-diméthoxypyrimidin-2-yl)carbonyl]benzoate de sodium.
- Une composition herbicide comprenant une quantité efficace du point de vue herbicide d'un composé de formule (I) selon les revendications 1 à 7.
- Une méthode de lutte contre les mauvaises herbes qui comprend l'application sur les mauvaises herbes ou sur leur zone de croissance d'une quantité efficace du point de vue herbicide d'un composé de formule (I) selon les revendications 1 à 7.
 - 10. Un procédé de préparation d'un composé de formule (I) selon la revendication 1, procédé selon lequel
 - a) lorsque X et R forment ensemble un groupe formant pont tel que défini à la revendication 1 et Y signifie
 l'hydrogène ou un groupe cyano, arylthio, arylsulfinyle ou arylsulfonyle, on fait réagir un composé de formule II

où le cycle A, Y_1 , Y_2 et Y_3 sont tels que définis à la revendication 1, Y' signifie l'hydrogène ou un groupe cyano, arylthio, arylsulfinyle ou arylsulfonyle et Z_1 signifie l'oxygène, le soufre ou NR_2 où R_2 est tel que défini à la revendication 1,

avec un composé de formule III

$$R_{21} \stackrel{\omega_1}{\swarrow} \stackrel{R_1}{\swarrow} \qquad (III)$$

où W_1 , W_2 , W_3 , W_4 et R_1 sont tels que définis à la revendication 1 et R_{21} signifie un groupe méthylsulfonyle ou un halogène, pour obtenir le composé correspondant de formule lp

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

- b) on traite un composé de formule lp où Y' signifie un groupe cyano ou arylsulfonyle et Z_1 signifie l'oxygène et les autres symboles sont tels que définis à la revendication 1;
 - (i) par hydrolyse, ce qui donne un composé correspondant de formule I où R et X forment un pont et Y signifie un groupe hydroxy ou un composé de formule I où X et Y forment ensemble =O;
 - (ii) avec un groupe amino, ce qui donne un composé correspondant de formule I où R signifie un groupe carbamoyle éventuellement substitué et X et Y forment ensemble =O;

(iii) avec un groupe

5

10

15

20

25

30

35

40

45

50

55

MOR₂₂

où M signifie un métal alcalin et R_{22} signifie l'hydrogène ou un groupe alkyle en C_1 - C_8 , ce qui donne un composé correspondant où R et X forment un pont et Y signifie un groupe hydroxy ou alcoxy en C_1 - C_8 ;

c) on hydrolyse un composé de formule lp où Y' signifie l'hydrogène, Z₁ signifie l'oxygène et les autres symboles sont tels que définis à la revendication 1, ce qui donne un composé de formule I où R signifie un groupe carboxy éventuellement sous forme d'un sel, X signifie l'hydrogène et Y signifie un groupe hydroxy;

d) on décyclise un composé de formule lp où Y' signifie un groupe hydroxy, Z₁ signifie l'oxygène et les autres symboles sont tels que définis à la revendication 1, ce qui donne un composé de formule I où R signifie un groupe carboxy éventuellement sous forme d'un sel et X et Y signifient ensemble =O;

e) on estérifie un composé de formule I où R signifie un groupe carboxy éventuellement sous forme d'un sel et X et Y signifient =O et les autres symboles sont tels que définis à la revendication 1, ce qui donne le composé correspondant où R signifie un groupe carboxy sous la forme d'un ester;

f) on halogène un composé de formule lp où Y' signifie un groupe hydroxy, Z₁ est tel que défini sous a) et les autres symboles sont tels que définis à la revendication 1, ce qui donne un composé de formule I où X et R forment ensemble un groupe formant pont et Y' signifie un halogène;

g) on fait réagir un composé de formule lp où Z_1 signifie l'oxygène, Y' signifie un halogène et les autres symboles sont tels que définis à la revendication 1, avec un composé R_2NH_2 et un composé HOR_{23} où R_{23} signifie un groupe alkyle en C_1 - C_8 , acyle en C_2 - C_8 ou aryle et R_2 est tel que défini à la revendication 1, ce qui donne le composé correspondant où Z_1 signifie NR_2 et Y' signifie un groupe alcoxy en C_1 - C_8 , aryloxy ou acyloxy en C_2 - C_8 ;

h) on oxyde un composé de formule lp où Y' signifie l'hydrogène, Z_1 est tel que défini sous a) et les autres symboles sont tels que définis à la revendication 1, ce qui donne le composé correspondant où Y' signifie un groupe hydroxy;

i) on fait réagir un composé de formule IV

$$Y_1$$
 A
 R_{24}
(IV)

avec un composé de formule V

pour produire un composé de formule Iq

10

15

20

25

30

35

40

45

50

55

EP 0 461 079 B1

où le cycle A, R, R₁, W₁, W₂, W₃, W₄, Y₁, Y₂ et Y₃ sont tels que définis à la revendication 1 et X" et Y" signifient l'hydrogène et R₂₄ signifie un groupe alkyle en C₁-C₈;

j) on introduit un ou deux halogènes dans un composé de formule lq où X" et Y" signifient l'hydrogène et les autres symboles sont tels que définis sous i), pour produire le composé correspondant de formule lq où l'un ou les deux symboles X" et Y" signifient un halogène;

k) on oxyde un composé de formule lq où X" et Y" signifient tous les deux l'hydrogène ou bien X" signifie un halogène et Y" signifie l'hydrogène et les autres symboles sont tels que définis à la revendication 1, pour produire le composé correspondant où X" et Y" signifient ensemble =O ou l'un des deux signifie l'hydrogène et l'autre signifie un groupe hydroxy;

I) on alkyle un composé de formule lq où X" signifie l' hydrogène et Y" signifie l'hydrogène et les autres symboles sont tels que définis à la revendication 1, pour produire le composé correspondant où X" signifie un groupe alkyle en C₁-C₈, et Y" signifie l'hydrogène;

m) on introduit un groupe alcoxy en C_1 - C_8 ou un groupe alkylthio en C_1 - C_8 , dans un composé de formule lq où X" signifie un halogène, Y" signifie l'hydrogène et les autres symboles sont tels que définis à la revendication 1, pour produire le composé correspondant où X" signifie un groupe alcoxy en C_1 - C_8 , ou alkylthio en C_1 - C_8 et Y" signifie l'hydrogène;

n) on acyle un composé de formule lq où X" signifie un groupe hydroxy, Y signifie l'hydrogène et les autres symboles sont tels que définis à la revendication 1, pour produire le composé correspondant où X" signifie un groupe acyloxy et Y" signifie l'hydrogène;

o) on fait réagir un composé de formule lp où Z_1 signifie l'oxygène, Y' signifie l'hydrogène et les autres symboles sont tels que définis à la revendication 1 avec un composé R_7NH_2 où R_7 signifie (a) l'hydrogène, un halogène; (b) un groupe alkyle en C_1 - C_{24} , alcényle en C_2 - C_8 , alcynyle en C_2 - C_8 , alcoxy en C_1 - C_8 , (alcoxy en C_1 - C_8)-alcoxy en C_1 - C_8 , alcényloxy en C_2 - C_8 , alcynyloxy en C_2 - C_8 , alkylthio en C_1 - C_8 , alcénylthio en C_2 - C_8 ou alcynylthio en C_2 - C_8 , chacun d'entre eux pouvant à son tour être substitué par 1 à 6 atomes d'halogène; (c) un groupe cycloalkyle en C_3 - C_6 , (cycloalkyle en C_3 - C_6)alkyle en C_1 - C_8 , hétérocyclo(alcoxy en C_1 - C_8), aryloxy, aryl-(alcoxy en C_1 - C_8), ou aryl-(alkylthio en C_1 - C_8), chacun d'entre eux pouvant être non substitué ou être substitué par 1 à 3 substituants choisis parmi (i) un halogène; (ii) un groupe alkyle en C_1 - C_8 , alcoxy en C_1 - C_8 , haloalcoxy en C_1 - C_8 , haloalkyle en C_1 - C_8 , alkylthio en C_1 - C_8 , alkylsulfonyle en C_1 - C_8 , (alkyl en C_1 - C_8)-sulfonylméthyle; et (iii) un groupe nitro, cyano, acyle amino; (d) un groupe amino, amido, aminosulfonyle, cyano, nitro ou -(CHR4)n'''-C(O)Y4',

où Y_4 ' signifie l'hydrogène ou un groupe alkyle en C_1 - C_8 , alcoxy en C_1 - C_8 , ou hydroxy et n'' signifie 0, 1, 2 ou 3, R_4 ' est tel que défini pour Y_1 ; ce qui donne un composé de formule I où R signifie un groupe carbamoyle monosubstitué, X signifie l'hydrogène et Y signifie un groupe hydroxy;

p) on introduit un groupe sulfonyle, carboxy, acyle ou carbalcoxy dans un composé de formule Ip où Z₁ signifie l'oxygène, Y' signifie un groupe hydroxy et les autres symboles sont tels que définis à la revendication 1, pour produire le composé correspondant de formule I où R et X forment un pont -C(O)-O- et Y signifie un groupe sulfonyloxy, carbamoyloxy, acyloxy en C₂-C₈ ou (alcoxy en C₁-C₈)-carbonyloxy;

q) on fait réagir un composé de formule lp où Z_1 signifie l'oxygène, Y' signifie un halogène et les autres symboles sont tels que définis à la revendication 1 avec un composé R_7R_8NH où R_7 est tel que défini sous o) et R_8 est tel que défini pour R_7 , ce qui donne un composé de formule I où R signifie un groupe carbamoyle disubstitué et X et Z signifient ensemble =O;

EP 0 461 079 B1

et on récupère un composé où R signifie un groupe carboxy ou thiocarboxy sous forme libre ou sous forme d'un ester et un composé où R signifie un groupe carboxy sous forme libre ou sous forme d'un sel.