- Les calculatrices ne sont pas autorisées.
- Je vous conseille de bien lire chaque énoncé entièrement avant de vous lancer, de souligner ou de surligner les points ou notations importants.
- La présentation, la lisibilité et la qualité de la rédaction des copies font l'objet d'une appréciation spécifique. En particulier, les résultats doivent être encadrés à la règle.
- Si vous repérez une erreur d'énoncé, vous l'indiquez sur votre copie et expliquez les raisons des initiatives que vous prenez.

Exercice 1: Intégration

On considère l'application $f:[1,+\infty[\to\mathbb{R},t\mapsto \frac{e^t}{t}]$.

- 1. (a) Montrer que f est strictement croissante.
 - (b) Montrer que

$$\forall n \in \mathbb{N}^*, \frac{e^n}{n} \le \int_n^{n+1} f(t)dt \le \frac{e^{n+1}}{n+1}$$

(c) Montrer que

$$\forall n \in \mathbb{N}^*, \quad \exists ! x \in [n, n+1], \quad \frac{e^x}{x} = \int_0^{n+1} f(t) dt$$

- 2. Pour tout entier naturel non nul, n, on note u_n l'unique réel x dans [n, n+1] tel que $\frac{e^x}{x} = \int_n^{n+1} f(t) dt$.
 - (a) Montrer que $u_n \sim n$ quand n tend vers $+\infty$.
 - (b) Montrer que

$$\int_{n}^{n+1} \frac{e^{t}}{t^{2}} dt = o\left(\int_{n}^{n+1} \frac{e^{t}}{t} dt\right)$$

quand *n* tend vers $+\infty$.

(c) A l'aide d'une intégration par parties, montrer que $u_n - n \xrightarrow[n \to +\infty]{} \ln(e-1)$.

Exercice 2 : Algèbre linéaire

On travaille dans \mathbb{R}^4 muni de sa structure canonique d'espace vectoriel sur \mathbb{R} .

- 1. On note a = (0,6,-1,4) et b = (3,3,1,5), puis F = Vect(a,b). Déterminer la dimension de F.
- 2. On note u = (1,0,0,0), v = (1,-1,0,1) et w = (0,2,1,0) et G = Vect(u,v,w). Déterminer la dimension de G.
- 3. Calculer les vecteurs 2v + w et $\frac{1}{3}(2b a)$
- 4. Montrer que G = $\{(x, y, z, t) \in \mathbb{R}^4 | -y + 2z t = 0\}$ et que $a \notin G$.
- 5. En déduire la dimension de $H = F \cap G$.
- 6. Déterminer la dimension de F+G.
- 7. A-t-on $\mathbb{R}^4 = F + G$? $\mathbb{R}^4 = F \oplus G$?

Problème: Opérateur de moyenne intégrale

On note $\mathcal C$ l'espace des applications continues de [0,1] dans $\mathbb R$. On rappelle que c'est un espace vectoriel sur $\mathbb R$ (on ne demande pas de justifier ce résultat). Pour toute fonction f dans $\mathcal C$, on introduit la fonction $\mathsf T(f):[0,1]\to\mathbb R$ définie par

$$\forall x \in [0,1], \quad [T(f)](x) = \begin{cases} \frac{1}{x} \int_0^x f(t)dt & \text{si } x \in]0,1] \\ f(0) & \text{si } x = 0 \end{cases}$$

La fonction T(f) de [0,1] dans $\mathbb R$ ainsi construite s'appelle la transformée de f. On s'intéresse à diverses propriétés de l'opérateur T ainsi construit.

- 1. Soit $f \in \mathcal{C}$.
 - (a) Montrer que

$$\forall x \in [0,1], \quad [T(f)](x) = \int_{0}^{1} f(ux) du$$

(b) Montrer que

$$\forall (x,y) \in [0,1]^2$$
, $|[T(f)](x) - [T(f)](y)| \le \int_0^1 |f(ux) - f(uy)| du$

- (c) En déduire via le théorème de Heine que la fonction T(f) est continue.
- 2. On considère à présent l'application $T: \mathcal{C} \to \mathcal{C}, f \mapsto T(f)$. Elle est bien à valeurs dans \mathcal{C} d'après ce qui précède.
 - (a) Démontrer que T est une application linéaire.
 - (b) Déterminer le noyau de T.
 - (c) L'application T est-elle surjective?
- 3. On considère le sous-ensemble E de $\mathcal C$ constitué des fonctions constantes et le sous-ensemble F de $\mathcal C$ constitué des fonctions continues nulles en 0.
 - (a) Montrer que E et F sont des sous-espaces vectoriels de C.
 - (b) Montrer que $E \oplus F = C$.
 - (c) On note p le projecteur sur E parallèmement à F et q le projecteur sur F parallèlement à E. Donner une expression simple de p et q.
 - (d) Montrer $T(E) \subset E$ et $T(F) \subset F$.
 - (e) Montrer que $T \circ p = p \circ T$ et $T \circ q = q \circ T$.
- 4. Soit $\lambda \in \mathbb{R}$.
 - (a) Déterminer l'ensemble des applications g dérivables de]0,1] dans $\mathbb R$ vérifiant

$$\forall x \in]0,1], \lambda x g'(x) + (\lambda - 1)g(x) = 0$$

- (b) En déduire $\ker(T \lambda \operatorname{Id}_{\mathcal{C}})$. On spécifiera pour quels valeurs de λ ce noyau est non réduit à $\{0\}$.
- 5. Soit $f \in \mathcal{C}$ et $\epsilon > 0$. On admet qu'il existe une fonction polynomiale P telle que

$$\forall x \in [0,1], |f(x) - P(x)| \le \varepsilon$$

On rappelle que pour tout entier n non nul, T^n désigne la composée de T avec elle-même n fois.

(a) Montrer que

$$\forall n \in \mathbb{N}^*, \forall x \in [0,1], |T^n(f)(x) - f(0)| \le |T^n(P)(x) - P(0)| + 2\varepsilon$$

(b) En déduire que pour tout réel x dans [0,1], la suite $(T^n(f)(x))_{n\in\mathbb{N}}$ est convergente de limite f(0).