

Acoustic Radiation from a Mach 14 Turbulent Boundary Layer

Chao Zhang and Lian Duan

Missouri University of Science and Technology Rolla, MO 65409

Meelan Choudhari

NASA Langley Research Center Hampton, VA 23693

APS 68th Annual DFD Meeting Boston, MA, Nov. 22-24, 2015

- Transition testing in hypersonic ground facilities
 - an important avenue to understanding the laminar-turbulent transition behavior of hypersonic vehicles
- Most hypersonic wind tunnels have elevated freestream disturbances
- Tunnel Disturbances have a large impact on Transition at M > 1

Background

Disturbance Environment for Wind-Tunnel Facilities (Blanchard et al. 1997)

In a conventional ("noisy") tunnel, tunnel disturbances dominated by acoustic radiation from tunnel wall turbulent boundary layers for M > 2.5 (Laufer, 1964)

Methodology

Approach

High-fidelity simulation of acoustic radiation from tunnel-wall turbulent boundary layers

Impact: Understanding the acoustic fluctuations in wind tunnels and their influence on boundary layer transition would enable

- Better use of transition data
- Meaningful application of receptivity theory (Fedorov and Khokhlov, 1991)
- Potential reconciliation of differences in transition onset across multiple facilities

Acoustic Radiation from High-Speed Turbulent BLs

Theory

- Eddy Mach wave convecting supersonically with respect to free stream (Phillips, 1960; Ffowcs-Williams & Maidanik 1963)
- Restricted to prediction of intensity of the freestream fluctuation

Experiments

- Laufer (1961, 1964); Kendall (1970); Rufer (2000); Bounitch et al. (2011);
 Masutti et al. (2013); Radespiel et al. (2013)
- Mostly limited to amplitude and spectra with limited bandwidth; no multi-point statistics

Acoustic Radiation from High-Speed Turbulent BLS

Direct Numerical Simulations (Duan et al., AIAA 2012-3070, AIAA 2013-0532, AIAA 2014-2912, JFM vol. 746, pp 165-192, 2014)

- include both the flow field and near-acoustic field
- isolate a purely acoustic freestream disturbance field above a single tunnel wall
- Identify generic statistical and spectral features of freestream disturbances
- Open doors to further simulations of receptivity in a tunnel-like environment

DNS datasets:

- $M_{\infty} = 2.5, T_{w}/T_{r} = 1.0, Flat Plate$
- $-M_{\infty} = 5.86$, $T_{w}/T_{r} = 0.76$, Flat Plate (M6Tw076) & $T_{w}/T_{r} = 0.25$, Flat Plate (M6Tw025)
 - Freestream condition representative of Purdue Quiet Tunnel under noisy condition with $p_0 = 132 \text{ psi}$, $T_0 = 432 \text{ K}$
- $M_{\infty} = 14$, $T_{w}/T_{r} = 0.18$ (M14Tw018) Flat Plate
 - Freestream condition representative of AEDC Tunnel 9 at $p_0 = 1,023$ psi
 - Comparison with Boundary-layer measurements at AEDC Tunnel 9 (Expected)

Comparison with Experiment (M6Tw076)

Mean flow predictions and wall-p' frequency spectrum are in good agreement with the measurements in the Boeing/AFOSR Mach 6 Quiet Tunnel under noisy condition

Normalized Frequency Spectra

 Grids designed to simultaneously resolve both the hydrodynamic disturbances and near-acoustic field

9

Numerical Schlieren Visualization M14Tw18

- Large scale motions cause incursions of the freestream irrotational flow into the boundary layer
- Distributed regions of strong density gradient can be seen within the boundary layer
 - Existence of 'shocklets'???

van Driest Transformed Mean Velocity Profile

Turbulence Intensities

Significantly improved collapse of data is achieved by Morkovin's scaling

Turbulent Mach Number and Fluctuating Mach Number

Pressure Fluctuation Intensity

 p'_{rms}/τ_w near the **wall** shows a strong wall-temperature dependence p'_{rms}/τ_w in the **free stream** increases with Mach number and is insensitive to wall temperature

Pre-multiplied p' Frequency Spectra

p' spectrum peak shifts to lower frequencies as the location of interest moves away from the wall

Pre-multiplied p' Frequency Spectra

Good convergence of p' spectra in the free stream Freestream p' spectrum centered at $f\delta/U_{\infty} \approx 0.7$

Fluctuating Wall Quantities

 p_w , τ_w , and q_w show large fluctuations relative to the mean value $p'_{w'}$, $\tau'_{w'}$, and q'_w spectra peak at the same frequency of $f\delta/U_\infty \approx 2$

Propagation Speed of Acoustic Disturbance

Faster propagation speed of freestream fluctuations as Mach number increases

Wall Temperature has subtle influence on the propagation speed of freestream fluctuations

Numerical Schlieren Visualization

$$M_{\infty} = 14$$
, $T_{\rm w}/T_{\rm r} = 0.18$

- Random
- Finite spatial coherence
- Preferred range of orientation for eddy Mach waves
 - ➤ Higher inclination than Mach wave direction

Summary and Conclusion

- Turbulence statistics and pressure fluctuations induced by a Mach 14 turbulent boundary layer were investigated
 - M_{∞} = 14, Re_T ≈ 633, T_{w}/T_{r} = 0.18 (a condition of AEDC Tunnel 9)
- Velocity fluctuations scales according to the Morkovin's scaling
- Property of pressure fluctuations varies dramatically as a function of wall-normal distance within the inner layer ($z/\delta < 0.08$ or $z^+ < 50$)
 - fluctuation magnitude p'_{rms}/τ_w
 - dominant frequency f_{pk} associate with pressure spectrum
- Fluctuating wall quantities (p'_w, τ'_w, q'_w)
 - Large fluctuation amplitude relative to the mean values (p' $_{rm}/p_{w}$ =24%, τ ' $_{w,rms}/\tau$ τ_{w} = 53%, q' $_{w,rms}/q_{w}$ = 67%)

21

Outlook

Facility Disturbance + Receptivity

Provide "practical" input data regarding **disturbance environment** for conducting stability analysis in the context of actual wind-tunnel experiments

Enable holistic prediction of transition in High-Speed Boundary Layers

Acknowledgment

- Prof. Steve Schneider and Dr. Katya Casper
 - for providing wind-tunnel measurements for comparison with DNS
- Financial Support from AFOSR (Award No. FA9550-14-1-0170)
- Support from NASA Langley (Cooperative Agreement No. NNL09AA00A) and DARPA to initiate the project
- Computational resources provided by the DoD High Performance Computing Modernization Program and the NASA Advanced Supercomputing Division