

Haojun Qin

Project Team Members

Brief Introduction o RFM

Improved RFN

Numerical resu

Analysis

Improved Random Feature Method -PDEs and Machine Learning

Haojun Qin¹

¹School of Mathematical Sciences University of Sciences and Technology of China

May 18th, 2023

Haojun Qin

Project Tea Members

Brief Introduction of REM

Improved RFM

Numerical result

- Project Team Members
- ② Brief Introduction of RFM
- 3 Improved RFM
- 4 Numerical result
- 6 Analysis

Haojun Qin

Project Team Members

Brief Introduction of RFM

Improved RFM

Numerical result

rvamencar re

- 1 Project Team Members
- ② Brief Introduction of RFM
 - 3 Improved RFM
- 4 Numerical result
 - 6 Analysis

Random Feature Method

Haojun Qin

Project Team Members

Project Team Members

- Haojun Qin, USTC
- Xianglong Hou, USTC.
- Bingsong Gao, USTC.
- Lei Zhao, USTC.
- Advisor: Jingrun Chen, Suzhou Institute for Advanced Research, USTC.

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Δnalvei

- Project Team Members
- 2 Brief Introduction of RFM
- 3 Improved RFM
- 4 Numerical result
 - 6 Analysis

RFM

Improved Random Feature Method

Haojun Qin

Project Tea Members

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

Consider the following problem:

$$\begin{cases} \mathcal{L}u(x) = f(x), \ x \in \Omega \\ \mathcal{B}u(x) = g(x), \ x \in \partial\Omega \end{cases}$$

The solution is approximated by a linear combination of some trial function:

$$u(x) \approx u_M(x) = \sum_{i=1}^M u_i \phi_i(x).$$

 $\phi_i(x)$ is called the trial function (generated by neural network).

Haojun Qin

Project Team

Brief Introduction of RFM

Improved RFM

Numerical result

Analysi

Trial Function

Define $\phi_i(x)$ as the ones that occur naturally in neural network:

$$\phi_i(x) = \sigma(k_i \cdot x + b_i).$$

where σ is some scalar nonlinear function called activation function, $k_i \in \mathbb{R}^d, b_i \in \mathbb{R}$ are some random but fixed parameters.

Activation function such as sin, cos, tanh can all be used.

Haojun Qin

Project Tean

Brief Introduction of RFM

Improved REM

Mumorinal regult

. . .

Partition of unity

We start with a set of points $\{x_j\}_{j=1}^{M_p}$, each of which serves as the center for a component in the patition. And $\{d_j\}_{j=0}^{M_p}$ are the diameter of each component in the patition.

Define ψ^a and ψ^b in 1-dimension case:

Figure: ψ^a (red) and ψ^b (blue)

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

Construction of Trial Function

Now we have a partiton of unity consisting M_p components:

$$\{x_j\}_{j=1}^{M_p} + \{d_j\}_{j=1}^{M_p} \Longrightarrow \{\psi_j\}_{j=1}^{M_p}.$$

For each component, we define M original trial functions:

$$\phi_{ij}(x) = \sigma(k_{ij} \cdot x + b_{ij}), \ i = 1, 2, ..., M.$$

Apply ψ_j to ϕ_{ij} :

$$u_M(x) = \sum_{i=1}^{M_p} \sum_{j=1}^{M} u_{ij} \phi_{ij}(x) \psi_j(x)$$

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Loss Function

The trial function is:

$$u_M(x) = \sum_{j=1}^{M_p} \sum_{i=1}^{M} u_{ij} \phi_{ij}(x) \psi_j(x)$$

Collect $|C_I|$ points in Ω and $|C_B|$ points on $\partial\Omega$. And define the Loss Function:

$$L = \sum_{x_k \in C_L} \lambda_k \|\mathcal{L}u_M(x_k) - f(x_k)\|_{l^2}^2 + \sum_{x_i \in C_R} \lambda_j \|\mathcal{B}u_M(x_j) - g(x_j)\|_{l^2}^2.$$

where λ_k are the penalty parameters.

By using least-squares method, we obtain u_{ij} minimizing L.

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

Figure: Random Feature Method

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Analysi

- Project Team Members
- ② Brief Introduction of RFM
 - 3 Improved RFM
- 4 Numerical result
- 6 Analysis

Consider a contrained problem and then transform it into quadratic programming: Original:

$$\min \sum_{x_k \in C_I} \lambda_k \|\mathcal{L}u_M(x_k) - f(x_k)\|_{l^2}^2$$

s.t. $\mathcal{B}u_{M}(x_{i}) = g(x_{i}), \ \forall x_{i} \in C_{B}$

QP:

 $\min \|Ax - b\|_{l^2}^2$

st Cx = d

Solve by augmented lagrangian method.

Haojun Qin

Improved

Random Feature Method

Improved RFM

Brief Introduction

Improved RFM

Numerical result

. . . .

Strict-RFM

Aim: Enforce the exact boundary conditions.

Key Method: Apply distance function to the construction of trial function.

Example

Consider the ODE problem:

$$\begin{cases} y'' = f(x, y, y') \\ y(a) = 0, \ y(b) = 0 \end{cases}$$

Define the distance function L(x) = (x - a)(b - x) satisfying $L(a) = 0, L(b) = 0, L(x) \neq 0$ when $x \neq a, b$.

For any trial funtion $\phi(x)$, $\phi(x)L(x)$ always satisfies boundary conditions strictly.

Haojun Qin

Project Tear

Brief Introduction of

Improved RFM

Numerical result

Δnalvei

- Project Team Members
- ② Brief Introduction of RFM
- 3 Improved RFM
- 4 Numerical result
 - 6 Analysis

Haojun Qin

Project Tea

Brief Introduction (RFM

Improved RFM

Numerical result

Analysis

1-dimension problem

Example (Helmholtz equation)

$$\begin{cases} \frac{\mathrm{d}^2 u(x)}{\mathrm{d}x^2} - \lambda u(x) = f(x) & x \in \Omega, \\ u(0) = c_1, & u(8) = c_2. \end{cases}$$

Choose

$$u(x) = 4\cos(4(x+\frac{3}{20})) + 5\sin(\sqrt{5}(x+\frac{7}{20})) + 2\sin(\sqrt{3}(x+\frac{1}{20})) + 3\sin(x+\frac{17}{20}) + 2.$$

1-dimension problem

Improved Random Feature Method

Haojun Qin

Project Tea

Brief Introduction of

Improved RFM

Numerical result

32

50

50

3.46E-11

Analysi

M_P	Μ	Q	RFM		Reinforced-RFM		Strict-RFM	
IVIP			L_{∞}	L^2	L_{∞}	L^2	L_{∞}	L^2
4	50	50	1.01E-02	1.18E-02	1.13E-02	1.33E-02	1.63E-02	1.27E-02
8	50	50	2.61E-07	2.92E-07	2.11E-07	2.37E-07	2.99E-07	4.27E-07
16	50	50	1.65F-09	1.74F-09	5.16F-10	4.76F-10	1.18F-09	8.98F-10

Table: Helmholtz equation error

4.66E-12

5.64E-12

1.72E-11

1.49E-11

2.55E-11

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

A nalveie

2-dimension problem

Example (Poisson equation)

$$\begin{cases} \Delta u(x,y) = f(x,y) & x \in [0,1] \times [0,1], \\ u(x,0) = g_1(x), & u(x,1) = g_2(x), \\ u(0,y) = h_1(y), & u(1,y) = h_2(x). \end{cases}$$

Choose
$$u(x,y) = -[1.5\cos(\pi x + 0.4\pi) + 2\cos(2\pi x - 0.2\pi)][1.5\cos(\pi y + 0.4\pi) + 2\cos(2\pi y - 0.2\pi)].$$

2-dimension problem

Improved Random Feature Method

Haojun Qin

Project Tea Members

Brief Introduction o RFM

Improved RFM

Numerical result

Analysis

Figure: Poisson equation error

Haojun Qin

Project Tear

Brief Introduction

Improved REN

Numerical result

.....

	М	Q_{x}	Q_y	RFM		Reinforced-RFM		Strict-RFM	
	IVI			L_{∞}	L^2	L_{∞}	L^2	L_{∞}	L^2
	200	30	30	6.91E-08	1.60E-08	1.36E-05	4.16E-06	2.24E-09	4.54E-10
ĺ	200	35	35	1.14E-07	2.57E-08	1.25E-06	2.62E-07	4.56E-09	7.17E-10
Ì	200	40	40	1.35E-07	1.76E-08	2.30E-06	6.25E-07	1.20E-08	2.36E-09
Ì	300	30	30	9.88E-10	1.45E-10	1.54E-06	4.85E-08	1.90E-10	5.01E-11
Ì	300	35	35	6.37E-10	8.31E-11	4.86E-07	1.41E-07	6.10E-11	1.15E-11
Ì	300	40	40	2.09E-09	4.00E-10	9.87E-06	2.72E-06	5.80E-11	1.52E-11

Table: Poisson equation error

2-dimension problem

Improved Random Feature Method

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFN

Numerical result

Analysis

M	Q_{\times}	0	RFM	Reinforced-RFM	Strict-RFM
101	Ψx	Q_y	Boundary	Boundary	Boundary
200	30	30	6.91E-08	3.75E-09	0
200	35	35	7.69E-08	2.53E-10	0
200	40	40	1.23E-07	3.49E-10	0
300	30	30	7.42E-10	1.70E-10	0
300	35	35	6.37E-10	1.20E-10	0
300	40	40	6.56E-10	4.67E-10	0

Table: Poisson boundary error

Haojun Qin

Project Te

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

2-dimension problem

Example (Elasticity equation)

$$\begin{cases} \frac{E}{1-\mu^2}(u_{xx}+\frac{1-\mu}{2}u_{yy}+\frac{1+\mu}{2}v_{xy})+X=0 & \text{in }\Omega,\\ \frac{E}{1-\mu^2}(v_{yy}+\frac{1-\mu}{2}v_{xx}+\frac{1+\mu}{2}u_{xy})+Y=0 & \text{in }\Omega,\\ \frac{E}{1-\mu^2}(n_x(u_x+\mu v_y)+n_y\frac{1-\mu}{2}(u_y+v_x))=\hat{X} & \text{on }\Gamma_1,\\ \frac{E}{1-\mu^2}(n_y(v_y+\mu u_x)+n_x\frac{1-\mu}{2}(v_x+u_y))=\hat{Y} & \text{on }\Gamma_1,\\ u=U & \text{on }\Gamma_2,\\ v=V & \text{on }\Gamma_2. \end{cases}$$

Choose

$$\begin{cases} u = -\frac{px_2}{6EI} [(6L - 3x_1)x_1 + (2 + \mu)(x_2^2 - \frac{D^2}{4})], \\ v = \frac{p}{6EI} [3\mu(L - x_1)x_2^2 + (4 + 5\mu)\frac{D^2x_1}{4} + (3L - x_1)x_1^2]. \end{cases}$$

2-dimension problem

Improved Random Feature

Method Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

N	$Q_{\scriptscriptstyle X}$	Q_{V}	RFM		Reinforced-RFM		
/ V		Q_y	L_{∞}	L^2	L_{∞}	L^2	
1	20	20	3.57E-14	7.25E-15	5.69E-10	1.93E-10	
1	40	40	7.86E-16	2.35E-16	3.17E-11	1.32E-11	
1	60	60	2.47E-16	3.50E-17	5.57E-09	1.53E-09	
2	20	20	2.53E-14	1.08E-14	4.28E-10	1.41E-10	
2	40	40	3.63E-16	8.87E-17	9.50E-11	3.48E-11	
2	60	60	9.27E-17	1.48E-17	6.23E-10	2.57E-10	

Table: Elasticity equation u error

Haojun Qin

Project Tea

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

2-dimension problem

N	$Q_{\scriptscriptstyle X}$	Q_y	RFM		Reinforced-RFM	
/ V			L_{∞}	L^2	L_{∞}	L^2
1	20	20	2.22E-07	5.68E-08	7.44E-04	1.61E-04
1	40	40	3.18E-08	1.77E-09	3.88E-03	9.79E-04
1	60	60	1.53E-08	1.06E-09	2.45E-05	6.40E-06
2	20	20	2.47E-07	5.32E-08	2.20E-03	5.83E-04
2	40	40	1.90E-08	8.26E-10	5.64E-04	8.47E-05
2	60	60	1.64E-08	3.89E-10	7.42E-05	1.29E-05

Table: Elasticity equation boundary error

Haojun Qin

Project Tear

Brief Introduction o

Improved RFM

Numerical result

Analysis

- Project Team Members
- ② Brief Introduction of RFM
 - 3 Improved RFM
- 4 Numerical result
- 6 Analysis

Low Rank

Method Haojun Qin

.....

Project Tea Members

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

Recall the quadratic programming:

$$\min ||Ax - b||_{l^2}^2$$

s.t. $Cx = d$

Observation: C is a low-rank matrix.

Low Rank

Improved Random Feature Method

Haojun Qin

Project Te Members

Introduction of RFM

Improved RFM

Numerical result

Analysis

Row	Column	Rank	Row	Column	Rank
2400	800	150	2400	1200	152
2800	800	149	2800	1200	151
3200	800	149	3200	1200	150

Table: rank(C)

Row	Column	Rank	Row	Column	Rank
160	800	126	640	800	136
320	800	135	800	3200	364
480	800	136	1600	3200	378

Table: rank(C)

Haojun Qin

Project Tea

Brief Introduction RFM

Improved RFM

Numerical result

Analysis

Low Rank

QP:

$$\min ||Ax - b||_{l^2}^2$$

s.t. $Cx = d$

- Feasible domain $\{x: Cx = d\}$ is an empty set. Without carefully choosing parameters, the augmented lagrangian method could easily get stuck in a loop.
- When ||Cx d|| decreases, ||Ax b|| would increase. We have to make a compromise between \mathcal{L} and \mathcal{B} .
- When dealing with very large matrix, the unimproved iterative algorithm will increase the error and reduce the efficiency.

Random Feature Method

Haojun Qin

Analysis

Future Plan

Plan:

- (1). Prior estimation.
- (2). Collocation strategy.
- (3). Efficient least-squares algorithm.

Haojun Qin

Project Tean Members

Brief Introduction of RFM

Improved RFM

Numerical result

Analysis

Thanks for listening!