Jacobi in 2D V=0 V=10) У v = 0 $\bigvee = \bigvee_{o}$ V=0 1 ×

		0	0	٥	O	0	0	
		0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	<u> </u>	0	()	O	0	0	C	
,		0	0	0	0	U	U	_
	1	0	0	0	0	0	0	

	l	0	0	٥	O	0	0	
		0.5	0.25	0	0	0	0	
	<u> </u>	0.5			0	0	0	
	1	0.5	0.25	O	0	O	೮	
	1	0.5	O.ZS	O	0	O	U	_\
1	<u>'</u>	0	0	0	0	0	0	

							1+.5 +.5 +.25
	0	16	٥	O	0	0	4
1	0.5	0.25	0	0	0	0	
)		0,25		0	0	0	
1	0.5	0.25	O	0	0	O	
	0.5	Q2S	0	0	U	U	-
1	0	0	0	0	0	0	

Dramatically Slower for large 2D systems.

Consider evaluating V on an N×N grid, where $N = \frac{L}{\Delta l}$

of iterations to converge $N \sim N^2$ Each iteration performs N^2 operations

Computational time (N^4 (!)

if we want $\Delta \lambda \rightarrow \frac{1}{2}\Delta \ell$, $N \rightarrow 2N$ $16 \times \text{the computation!}$

Jacobi not used much in practice

A slightly different algo: Gauss-Seidel Jucobi

(1,0,0,0,-1)

(1,0.5,0,0,...,0,0,-.5,-1)

(1,0.5,0.25,0,0,...,-0.25,-.5,-1)

(1,0.625,0.25,0.125, ..., -0.125, -0.25, -0.5, -1)

Use numbers as they become available

(1,0,0,0,0,-1)

(1,0.5,0.25,0.125,-0.4375,-1)

(1,0.625,0.375, -0.03125, -0.5/6., -1)

1

$$V_n(i) = V_{n-i}(i+1) + V_n(i-1)$$

~ Factor of 2 efficiency boost

- Xample

Pacallel Plate Capacitor

Analytically: (infinite sheets) Q/A = 0

$$\int \vec{E} \cdot d\vec{a} = 2EA = \frac{Q_{enc}}{E_o} = \frac{5A}{E_o}$$

Finite sheets Set up boundaries

