

Machine Intelligence 1 2.2 Support Vector Machines

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2016/2017

2.2.1 Structural Risk Minimization

A bound on the generalization error

 finite samples: bound on the generalization error (c.f. Statistical Learning Theory, result 3)

$$P\bigg\{\sup_{\underline{\mathbf{w}}\in\Lambda}\Big|R_{(\underline{\mathbf{w}})}-R_{\mathrm{emp}(\underline{\mathbf{w}})}^{(p)}\Big|>\eta\bigg\}<\underbrace{4\exp\Big(G_{(2p)}^{\Lambda}-p\big(\eta-\frac{1}{p}\big)^2\Big)}_{\stackrel{!}{=}\epsilon}$$

 \blacksquare with probability larger than $1 - \epsilon$ we obtain:

$$R_{(\underline{\mathbf{w}})} < \underbrace{R_{\text{emp}(\underline{\mathbf{w}})}^{(p)}}_{\substack{\text{empirical} \\ \text{error}}} + \underbrace{\left(\frac{G_{(2p)}^{\Lambda} - \ln\frac{\epsilon}{4}}{p}\right)^{\frac{1}{2}} + \frac{1}{p}}_{\substack{\text{complexity term } C}}$$

 \blacksquare For a given ϵ , the complexity term C only depends on p and $d_{\text{VC}}.$

A bound on the generalization error

underfitting $\leftarrow \dots$ appropriate model complexity $\dots \rightarrow$ overfitting

Structural Risk Minimization (SRM)

$$R_{(\underline{\mathbf{w}})} < R_{\mathsf{emp}(\underline{\mathbf{w}})}^{(p)} + C(p, d_{\mathsf{VC}})$$

- Minimize complexity $C(p, d_{VC})$ of the model class while keeping the empirical error $R_{\text{emp}(\mathbf{w})}^{(p)}$ bounded.
- SRM-learning is consistent (cf. Vapnik 1998, chapter 6.3)

2.2.2 Perceptrons Revisited

Canonical hyperplanes

- data representation binary classification: $\underline{\mathbf{x}} \in \mathbb{R}^N$, $y_T \in \{-1, +1\}$
- **model class:** connectionist neurons $y = \operatorname{sign} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}} + b \right)$
- \blacksquare parameters of the seperating hyperplane $\underline{\mathbf{w}}^T\underline{\mathbf{x}}+b=0$ are not unique
 - lacktriangledown data dependent normalization

$$\min_{\alpha=1,\dots,p} \left| \underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right| \stackrel{!}{=} 1$$

 \blacksquare norm. distance to closest point $\underline{\mathbf{x}}^{(*)}$

$$\mathbf{d}_w = \frac{1}{\|\underline{\mathbf{w}}\|} \left| \underline{\mathbf{w}}^T \underline{\mathbf{x}}^* + b \right| \le \frac{1}{\|\underline{\mathbf{w}}\|}$$

■ The minimum normalized distance to the hyperplane is called margin.

Nested set of models

Margins and the capacity of the model class

■ larger (minimal) margin ⇒ smaller model capacity

Margins and the VC dimension

Theorem (Vapnik, 1998)

$$d_{VC} \le \min\left(\left[\frac{d_R^2}{d_w^2}\right], N\right) + 1$$

N: dimension of feature space d_w : lower bound of the margin

 d_r : range of $\underline{\mathbf{x}}$, $\underline{\mathbf{x}} \leq d_R$, for $P(\underline{\mathbf{x}}) \neq 0$

 \blacksquare $\frac{d_R^2}{d^2}$ is independent of the dimension N of feature space

2.2.3 Learning by Structural Risk Minimization

The primal optimization problem

$$y(\underline{\mathbf{x}}; \underline{\mathbf{w}}) = \operatorname{sign}(\underline{\mathbf{w}}^{\top}\underline{\mathbf{x}} + b)$$

$$\mathbf{d}_w = \frac{1}{\|\underline{\mathbf{w}}\|} \stackrel{!}{=} \max$$

$$\frac{1}{2} \| \mathbf{\underline{w}} \|^2 \stackrel{!}{=} \min$$

(minimize the capacity...)

$$\text{s.t.} \quad y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^\top \underline{\mathbf{x}}^{(\alpha)} + b \Big) \geq 1 \,, \quad \forall \alpha \,, \qquad \quad \text{(... for zero training error)}$$

inequalities ensure normalization of the weight vector w

The method of Lagrange multipliers

$$\underbrace{f_{0(\underline{\mathbf{x}})} \stackrel{!}{=} \min}_{\text{minimization}} \quad \text{and} \quad \underbrace{f_{k(\underline{\mathbf{x}})} \leq 0, \quad k = 1, \dots, m}_{\text{constraints}}$$

$$L_{(\underline{\mathbf{x}},\{\lambda_k\})} \stackrel{!}{=} f_{0(\underline{\mathbf{x}})} + \sum_{k=1}^{m} \lambda_k f_{k(\underline{\mathbf{x}})}, \qquad \lambda_k \ge 0, \quad \forall k \in \{1,\ldots,m\}$$

Theorem (Kuhn and Tucker)

Let $A \subset \mathbb{R}^N$ be a convex subset and f_k be convex functions. If there *exists* at least one solution $\underline{\mathbf{x}} \in A$ that satisfies all constrains $f_k(\underline{\mathbf{x}}) \leq 0, \forall k$, then the solution $\underline{\mathbf{x}}^*$ of the constrained optimization problem is given by the saddle point of the Langrangian, i.e.

$$\min_{\underline{\mathbf{x}}\in A}L_{(\underline{\mathbf{x}},\{\lambda_k^*\})}=L_{(\underline{\mathbf{x}}^*,\{\lambda_k^*\})}=\max_{\lambda_k\geq 0}L_{(\underline{\mathbf{x}}^*,\{\lambda_k\})}$$

The values of the Lagrange multipliers

$$L_{(\underline{\mathbf{x}},\{\lambda_k\})} \stackrel{!}{=} f_{0(\underline{\mathbf{x}})} + \sum_{k=1}^{m} \lambda_k f_{k(\underline{\mathbf{x}})}, \qquad \lambda_k \ge 0, \quad \forall k \in \{1,\ldots,m\}$$

- **a**t minimum $\underline{\mathbf{x}}^*$ of boundary $f_{k(\underline{\mathbf{x}})} = 0$: $\frac{\partial f_0}{\partial \mathbf{x}}|_{\mathbf{x}^*} \propto -\frac{\partial f_k}{\partial \mathbf{x}}|_{\mathbf{x}^*}$
 - $\begin{array}{lll} & f_{k(\underline{\mathbf{x}}^*)} = 0 & \Rightarrow & \lambda_k > 0 & \quad \text{(solution on boundary)} \\ & f_{k(\mathbf{x}^*)} < 0 & \Rightarrow & \lambda_k = 0 & \quad \text{(solution behind boundary)} \\ \end{array}$

Application to the primal problem of SRM

binary classification with linear connectionist neuron

$$f_{0(\underline{\mathbf{w}},b)} = \frac{1}{2} \|\underline{\mathbf{w}}\|^2$$

$$f_{\alpha(\underline{\mathbf{w}},b)} = -\left\{ y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\} \le 0, \quad \forall \alpha \in \{1,\dots,p\}$$

Lagrangian

$$L_{(\underline{\mathbf{w}},b,\{\lambda_{\alpha}\})} = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{\alpha=1}^{p} \lambda_{\alpha} \left\{ y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\}$$

$$\min_{\underline{\mathbf{w}},b} L_{(\underline{\mathbf{w}},b,\{\lambda_{\alpha}^*\})} = L_{(\underline{\mathbf{w}}^*,b^*,\{\lambda_{\alpha}^*\})} = \max_{\lambda_{\alpha} \geq 0} L_{(\underline{\mathbf{w}}^*,b^*,\{\lambda_{\alpha}\})}$$

 $\underline{\mathbf{w}}, b$: "primal" variables

 λ_{α} : "dual" variables

(solution see blackboard)

The dual problem

$$\underline{\mathbf{w}}^* = \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$$

$$L = -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{\top} \underline{\mathbf{x}}^{(\beta)}}_{\circledast} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \stackrel{!}{=} \max_{\{\lambda_{\alpha}\}}$$

$$\lambda_{lpha} \geq 0\,, \quad orall lpha \in \{1,\dots,p\}\,, \qquad ext{and} \qquad \sum_{lpha=1}^p \lambda_{lpha} y_T^{(lpha)} = 0 \quad ext{(constraints)}$$

■ solved numerically using "sequential minimal optimization" (SMO)

The optimal classifier

connectionist neuron classifier

$$y(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^{\top}\underline{\mathbf{x}} + b)$$

■ When $\{\lambda_{\alpha}^*\}_{\alpha=1}^p$ are known, we can compute

$$\underline{\mathbf{w}}^* = \sum_{\alpha=1}^p \lambda_{\alpha}^* y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)},$$

and the classifier is thus

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{\alpha=1}^{p} \lambda_{\alpha}^{*} y_{T}^{(\alpha)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{\top}}_{\alpha} \underline{\mathbf{x}} + b^{*}\right).$$

Support Vectors

• only constraints f = 0 on the boundary have $\lambda_{\alpha} \neq 0$:

$$f_{\alpha} = -\left\{y_T^{(\alpha)}\left(\underline{\mathbf{w}}^T\underline{\mathbf{x}}^{(\alpha)} + b\right) - 1\right\} \stackrel{!}{=} 0$$

- lacksquare constraint $f_{lpha}=0$ implies a normalized distance $d_{lpha}=1$
- these support vectors $\underline{\mathbf{x}}^{(\alpha)}$ are thus on the margin

Bias calculation

lacktriangle for all support vectors $\underline{\mathbf{x}}^{lpha} \in \mathrm{SV}$ on the margin holds

$$b^* = y_T^{(\alpha)} - \underline{\mathbf{w}}^{*\top} \underline{\mathbf{x}}^{(\alpha)}.$$

lacksquare compute bias b^* as average over all $\mathbf{\underline{x}}^{(lpha)} \in \mathrm{SV}$

$$b^* = \frac{1}{\#_{SV}} \sum_{\alpha \in SV} \left(y_T^{(\alpha)} - \sum_{\beta \in SV} \lambda_\beta y_T^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)} \right)^T \underline{\mathbf{x}}^{(\alpha)}}_{\text{\tiny $\underline{\alpha}$}} \right)$$

Support Vector Machines (SVM)

- **perceptrons** $\hat{y}(\underline{\mathbf{x}}) = \operatorname{sign}\left(\underline{\mathbf{w}}^T\underline{\mathbf{x}} + b\right)$ trained by SRM are called SVM
- weights and threshold are calculated by solving the dual optimization problem for Lagrange multipliers $\{\lambda_{\alpha} \geq 0\}_{\alpha=1}^{p}$

$$\max L(\{\lambda_{\alpha}\}) = -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T} \underline{\mathbf{x}}^{(\beta)}}_{\circledast} + \sum_{\alpha=1}^{p} \lambda_{\alpha}$$

$$\text{with} \quad b \ \ = \ \ \frac{1}{\#_{\mathrm{SV}}} \sum_{\alpha \in \mathrm{SV}} \left(y_T^{(\alpha)} - \sum_{\beta \in \mathrm{SV}} \lambda_\beta y_T^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^T}_{\scriptsize{\textcircled{\$}}} \underline{\mathbf{x}}^{(\alpha)} \right)$$

2.2.4 SRM Learning for Non-linear Classification Boundaries

Transformation of feature space

Transformation of feature space

feature space: monomials of degree n

$$\underbrace{\mathbf{x}}_{\text{elementary}} \longrightarrow \underbrace{\phi_{(\mathbf{x})}}_{\text{new, nonlinear}}$$

- \blacksquare n=10 and N pixel values $x_i \Rightarrow N^{10}$ monomials
- SVM requires only scalar products $\phi_{(\mathbf{x})}^{\top}\phi_{(\mathbf{x}')}$ in feature space

The kernel trick

 \blacksquare "project" data implicitely in high dimensional feature space $\underline{\phi}$

$$\underbrace{\underline{\mathbf{x}}}_{\substack{\text{elementary} \\ \text{features}}} \longrightarrow \underbrace{\underline{\phi}_{(\underline{\mathbf{x}})}}_{\substack{\text{new, nonlinear} \\ \text{features}}}$$

- SVM requires only scalar products $\phi_{(\mathbf{x})}^T \phi_{(\mathbf{x})}$ in feature space
- lacksquare replace scalar products with **kernel function** $\underline{\phi}_{(\mathbf{x})}^T\underline{\phi}_{(\mathbf{x}')} o K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')}$

Mercer's theorem

- \blacksquare let $\mathcal X$ be a *compact* subset of $\mathbb R^N$
- \blacksquare let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}, K \in L_{\infty}$, be a symmetric function ("kernel")
- let $T_K: L_{2(\mathcal{X})} \to L_{2(\mathcal{X})}$ be the linear convolution operator

$$T_K[f]_{(\underline{\mathbf{x}})} := \int_{\mathcal{X}} K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}}')} d\underline{\mathbf{x}}'$$

■ let $\lambda_i \in \mathbb{R}$ be eigenvalues and $\psi_{i(\mathbf{x})} \in L_{2(\mathcal{X})}$ eigenfunctions of T_K

Mercer's theorem

Every positive semi-definite kernel K corresponds to a scalar product $K(\underline{\mathbf{x}},\underline{\mathbf{x}}') = \underline{\phi}_{(\mathbf{x})}^{\top}\underline{\phi}_{(\mathbf{x}')}$ in the feature space spanned by $\phi_{i(\underline{\mathbf{x}})} = \sqrt{\lambda_i}\psi_{i(\underline{\mathbf{x}})}$.

Kernel properties

symmetric kernels

orthonormal eigenfunctions:

$$\int_{\mathcal{X}} \psi_{i(\underline{\mathbf{x}})} \, \psi_{j(\underline{\mathbf{x}})} \, d\underline{\mathbf{x}} = \delta_{ij}, \forall i, j \in \mathbb{N}$$

positive semi-definite kernels

all eigenvalues λ_i are non-negative:

$$\iint\limits_{\mathcal{X}\times\mathcal{X}} K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}}')} \, d\underline{\mathbf{x}} \, d\underline{\mathbf{x}}' \geq 0 \,, \quad \forall f \in L_{2(\mathcal{X})} \,, \quad \text{(positive semi-definite)}$$

The feature space induced by kernels may be infinite dimensional!

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = (\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + 1)^d$$

polynomial kernel of degree $d \rightarrow \text{image processing: pixel correlations}$

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = (\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + 1)^d$$

$$ightarrow$$
 image processing: pixel correlations

polynomial kernel of degree d

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

RBF-kernel with range σ \rightarrow infinite dimensional feature space

$$K_{(\mathbf{x},\mathbf{x}')} = (\mathbf{x}^T\mathbf{x}' + 1)^d$$

polynomial kernel of degree
$$d$$
 \rightarrow image processing: pixel correlations

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

RBF-kernel with range σ \rightarrow infinite dimensional feature space

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \tanh\left\{\kappa\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + \theta\right\}$$

neural network kernel with parameters κ and $\theta \to \text{ not positive definite!}$

$$K_{(\mathbf{x},\mathbf{x}')} = (\mathbf{x}^T\mathbf{x}' + 1)^d$$

polynomial kernel of degree
$$d$$
 \rightarrow image processing: pixel correlations

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

RBF-kernel with range σ \rightarrow infinite dimensional feature space

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \tanh\left\{\kappa\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + \theta\right\}$$

neural network kernel with parameters κ and $\theta \to \,$ not positive definite!

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \frac{1}{(\|\underline{\mathbf{x}}-\underline{\mathbf{x}}'\|^2 + \epsilon^2)^{N/2}}$$

Plummer kernel with parameter ϵ \rightarrow scale invariant kernel

SVM with kernels

classification

$$f(x) = \operatorname{sgn}\left(\sum_{i} \lambda_{i} k(x, x_{i}) + b\right)$$

weights

comparison: e.g. $k(x,x_i)=(x\cdot x_i)^d$

support vectors $x_1 \dots x_4$

$$k(x,x_i)=\exp(-||x-x_i||^2/c)$$

$$k(x,x_i)=\tanh(\kappa(x\cdot x_i)+\theta)$$

input vector x

see Schölkopf & Smola (2001, p. 202)

Comments

- Mercer's theorem can be used to "kernelize" many different linear methods, both supervised or unsupervised.
 - Fisher discriminant analysis
 - principal component analysis (see MI 2)
 - k-means clustering & self-organizing maps
 - canonical correlation analysis

Comments

- SVM vs. RBF networks
- RBF network for classification
 - \blacksquare 5 Gaussian bases (\times)

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{i=1}^{5} w_i \exp\left(\frac{1}{2\sigma_i^2} \|\underline{\mathbf{x}} - \underline{\mathbf{t}}_i\|^2\right)\right)$$

- SVM with Gaussian kernel
 - 5 support vectors $\underline{\mathbf{x}}_i$ (\circ)
 - $\mathbf{a}_i = \lambda_{\alpha} y_T^{(\alpha)}$, for $\underline{\mathbf{x}}_i = \underline{\mathbf{x}}^{(\alpha)}$

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{i=1}^{5} a_i \exp\left(\frac{1}{2\sigma^2} \|\underline{\mathbf{x}} - \underline{\mathbf{x}}_i\|^2\right) + b\right)$$

see Schölkopf et al. (1997), Schölkopf & Smola (2001, p. 204)

2.2.5 The C-Support Vector Machine

Classification of non-separable problems

- real-world problems are typically non-separable
- incomplete feature sets & noise
- perfect separation of the training set ~ overfitting

Classification of non-separable problems

- real-world problems are typically non-separable
- incomplete feature sets & noise
- perfect separation of the training set ~> overfitting

consequences

$$R_{(\mathbf{w})} \leq R_{\text{emp}(\mathbf{w})}^{(p)} + C(p, d_{\text{VC}})$$

- finite training error $R_{\rm emp}^{(p)} \neq 0$
- trade-off between minimization of the training error and the capacity of the model class

The primal problem

$$\frac{1}{2} \| \underline{\mathbf{w}} \|^2$$

minimize upper bound on VC dimension

constraints $(\forall \alpha)$:

$$y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \Big) \ge 1$$

normalization & correct classification of all data points

The primal problem

$$\frac{1}{2} \|\underline{\mathbf{w}}\|^2 + \frac{C}{p} \sum_{\alpha=1}^p \varphi_\alpha \stackrel{!}{=} \min \quad \left\{ \begin{array}{c} \text{minimize upper bound on VC dimension} \\ + \text{minimize (approx.) margin error} \end{array} \right.$$

constraints $(\forall \alpha)$:

$$\begin{array}{ll} y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \Big) & \geq 1 - \varphi_\alpha & \text{normalization \& correct classification} \\ \varphi_\alpha & \geq 0 & \text{"margin errors" for } \varphi_\alpha \neq 0 \end{array}$$

(C: regularization parameter)

"margin errors" for $\varphi_{\alpha} \neq 0$

Dual problem of the C-SVM

Objective

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T} \underline{\mathbf{x}}^{(\beta)}}_{\text{kernel function}} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \quad \stackrel{!}{=} \quad \max_{\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{p}}$$

Constraints:

$$\sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0 \qquad \qquad 0 \leq \underbrace{\lambda_\alpha \leq \frac{C}{p}}_{\substack{\text{difference to separable case}}}$$

Margin and support vectors

The C-SVM classifier

$$\underline{\mathbf{w}} = \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} \qquad \rightsquigarrow \lambda_\alpha \neq 0 \text{ only for support vectors } SV$$

The C-SVM classifier

$$\begin{array}{lcl} \underline{\mathbf{w}} & = & \displaystyle\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} & \rightsquigarrow \lambda_{\alpha} \neq 0 \text{ only for support vectors } SV \\ \\ b & = & \displaystyle\frac{1}{\#SV_{<}} \displaystyle\sum_{\alpha \in SV_{<}} \left(y_{T}^{(\alpha)} - \sum_{\beta \in SV} \lambda_{\beta} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^{T}}_{\text{kernel!}} \underline{\mathbf{x}}^{(\alpha)} \right) \end{array}$$

 $SV_{<}$: SVs with $\lambda_{\alpha} < \frac{C}{p}$ (SVs on the margin)

The C-SVM classifier

$$\begin{array}{lcl} \underline{\mathbf{w}} & = & \displaystyle\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} & \rightsquigarrow \lambda_{\alpha} \neq 0 \text{ only for support vectors } SV \\ \\ b & = & \displaystyle\frac{1}{\#SV_{<}} \displaystyle\sum_{\alpha \in SV_{<}} \left(y_{T}^{(\alpha)} - \sum_{\beta \in SV} \lambda_{\beta} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^{T}}_{\text{kernel!}} \underline{\mathbf{x}}^{(\alpha)} \right) \end{array}$$

 $SV_{<}$: SVs with $\lambda_{\alpha}<\frac{C}{p}$ (SVs on the margin)

Classifier

$$\hat{y}(\underline{\mathbf{x}}) = \operatorname{sign}\left(\underline{\mathbf{w}}^T\underline{\mathbf{x}} + b\right) = \operatorname{sign}\left(\sum_{\alpha \in SV} \lambda_\alpha y_\top^{(\alpha)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^\top}\underline{\mathbf{x}} + b\right)$$

Validation & selection of hyperparameters

validation and model selection w.r.t. 0-1 loss

$$e(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)}) \ = \ \left\{ \begin{array}{ll} 0 & , \text{if } \hat{y}(\underline{\mathbf{x}}^{(\alpha)}) = y_T^{(\alpha)} \\ 1 & , \text{otherwise} \end{array} \right.$$

n hyper-parameter selection (C, σ, \ldots) by n-fold **cross-validation**

validation on hold-out validation set

train test validation

SVM and overfitting

(related $\nu\text{-SVM}$ with $\nu \in \{0.1, 0.2, \dots, 0.8\}$ and RBF kernel)

see Schölkopf & Smola (2001, p. 207)

2.2.6 Sequential Minimal Optimization

The dual problem

$$\begin{split} -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\left(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{x}}^{(\beta)}\right)} + \sum_{\alpha=1}^{p} \lambda_{\alpha} & \stackrel{!}{=} & \max_{\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{p}} \\ \text{s.t.} & \sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} = 0 \,, & 0 \leq & \lambda_{\alpha} & \leq \frac{C}{p} \,. \end{split}$$

The dual problem

$$\begin{split} &-\frac{1}{2}\sum_{\alpha,\beta=1}^{p}\lambda_{\alpha}\lambda_{\beta}y_{T}^{(\alpha)}y_{T}^{(\beta)}K_{\alpha\beta}+\sum_{\alpha=1}^{p}\lambda_{\alpha} &\stackrel{!}{=} &\max_{\{\lambda_{\alpha}\}_{\alpha=1}^{p}}\\ \text{s.t.} &&\sum_{\alpha=1}^{p}\lambda_{\alpha}y_{T}^{(\alpha)}=0\,, &&0\leq &\lambda_{\alpha} &\leq \frac{C}{p}\,. \end{split}$$

The Gram matrix ${f K}$

$$K_{\alpha\beta} = K_{(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{x}}^{(\beta)})}$$

$$\begin{bmatrix} 1 & 2 & 3 & \dots & j \\ 1 & K_{11} & K_{12} & \dots & \dots & K_{1j} \\ 2 & \vdots & \vdots & K_{23} & \dots & K_{2j} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ i & K_{i1} & K_{i2} & \dots & \dots & K_{ij} \end{bmatrix}$$

The dual problem

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \quad \stackrel{!}{=} \quad \max_{\{\lambda_{\alpha}\}_{\alpha=1}^{p}}$$

s.t.
$$\sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0$$
, $0 \le \lambda_\alpha \le \frac{C}{p}$.

- SVMs operate on pairwise (similarity) data!
- $lue{}$ positive definite kernel ightarrow positive definite Gram matrix ${f K}$ ⇒ well defined optimization problem
- K can be pre-computed to speed up subsequent computations.

The SMO procedure

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \stackrel{!}{=} \max_{\{\lambda_{\alpha}\}_{\alpha=1}^{p}}$$

s.t.
$$\sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0$$
, $0 \le \lambda_\alpha \le \frac{C}{p}$.

while not converged do

Choose two Lagrange multipliers $\lambda_{\gamma}, \lambda_{\delta}$.

Optimize the constrained Lagrangian while changing only λ_{γ} and $\lambda_{\delta}.$

end

Choosing λ_{γ} and λ_{δ} based on KKT

 \underline{K} arush- \underline{K} uhn- \underline{T} ucker conditions (KKT conditions)

$$\begin{bmatrix} \underline{y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \Big) - 1 + \varphi_\alpha} \\ \underline{\text{constraint of the primal problem:}}_{\text{constraint of the primal problem:}} \end{bmatrix} \underbrace{\lambda_\alpha}_{\text{Lagrange mul.}}_{\text{points outside the margin}} = 0 \tag{KKT}$$

- loop over all λ_{γ} violating KKT-conditions (and additional "threshold"-conditions due to errors in b) pick λ_{γ} for which KKT $\neq 0$
- ② for this λ_{γ} : select λ_{δ} yielding a "large step" towards optimum (general heuristics, difference in relative errors $f(x^{(\alpha)}) y^{(\alpha)}$ vs. $f(x^{(\beta)}) y^{(\beta)}$)

Reduced optimization problem

$$\min_{(\lambda_{\alpha})} \quad \stackrel{!}{=} \quad \frac{1}{2} \sum_{\alpha\beta} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} - \sum_{\alpha} \lambda_{\alpha}$$

Reduced optimization problem

$$\min_{(\lambda_{\alpha})} \stackrel{!}{=} \frac{1}{2} \sum_{\alpha\beta} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} - \sum_{\alpha} \lambda_{\alpha}$$

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} \underbrace{\left(y_{T}^{(\gamma)} \right)^{2} K_{\gamma\gamma} + \lambda_{\delta}^{2} \underbrace{\left(y_{T}^{(\delta)} \right)^{2} K_{\delta\delta} + 2\lambda_{\gamma} \lambda_{\delta}}_{=1} \underbrace{y_{T}^{(\gamma)} y_{T}^{(\delta)} K_{\gamma\delta}}_{=1} \right] + \lambda_{\gamma} \underbrace{\left[\sum_{\beta \neq \delta, \gamma} \lambda_{\beta} y_{T}^{(\gamma)} y_{T}^{(\beta)} K_{\gamma\beta} - 1 \right] + \lambda_{\delta} \underbrace{\left[\sum_{\beta \neq \gamma, \delta} \lambda_{\beta} y_{T}^{(\delta)} y_{T}^{(\beta)} K_{\delta\beta} - 1 \right]}_{C_{\delta}} + \operatorname{const}_{(\lambda_{\delta}, \lambda_{\gamma})}$$

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} Q_{\gamma\gamma} + \lambda_{\delta}^{2} Q_{\delta\delta} + 2\lambda_{\gamma} \lambda_{\delta} Q_{\gamma\delta} \right] + C_{\gamma} \lambda_{\gamma} + C_{\delta} \lambda_{\delta}$$

Sequential Minimal Optimization (SMO)

optimize

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} Q_{\gamma\gamma} + \lambda_{\delta}^{2} Q_{\delta\delta} + 2\lambda_{\gamma} \lambda_{\delta} Q_{\gamma\delta} \right] + C_{\gamma} \lambda_{\gamma} + C_{\delta} \lambda_{\delta}$$

under the following "box" and "equality" constraints

$$0 \le \lambda_{\gamma,\delta} \le \frac{C}{p}$$
, (i)

$$\lambda_{\gamma} + \underbrace{\frac{y_{T}^{(\gamma)}}{y_{T}^{(\gamma)}}}_{s} \lambda_{\delta} = -\underbrace{\frac{1}{y_{T}^{(\gamma)}} \sum_{\beta \neq \gamma, \delta} \lambda_{\beta} y_{T}^{(\beta)}}_{d} \quad \Rightarrow \quad \lambda_{\gamma} + s\lambda_{\delta} = -d \quad (ii)$$

- Analytical solution: Schoelkopf & Smola, p. 308
- Pseudocode: Schoelkopf & Smola, p. 313
- Software: www.csie.ntu.edu.tw/~cjlin/libsvm/
 (also covers multiclass problems, support vector regression, one-class SVMs)

Remarks

Sequential Minimal Optimization (SMO) ...

- ...exploits that for 2 constraints the optimization problem can be solved analytically
- ...needs little memory (\approx number of datapoints)
- ...can be much faster than other algorithms
- ...convergence speed depends on rules to select the λ_i \rightarrow good heuristics are important

Prof. Obermayer (www.ni.tu-berlin.de)

End of Section 2.2

the following slides contain

OPTIONAL MATERIAL

Classification margin

- **margin**: minimal (nomalized) distance to hyperplane $d^{min} = \frac{1}{\|\mathbf{w}\|}$
- large margins have low *ambiguity* ⇒ low VC-dimension

The solution of the primal problem

Lagrangian

$$L = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{n=1}^{p} \lambda_{\alpha} \left\{ y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\}$$

setting derivative w.r.t. weights \mathbf{w}_l to zero: $\underline{\mathbf{w}} = \sum_{\alpha=1}^P \lambda_\alpha \, y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$

$$\frac{\partial L}{\partial \mathbf{w}_l} = \mathbf{w}_l - \sum_{\alpha=1}^p \lambda_{\alpha} y_T^{(\alpha)} \mathbf{x}_l^{(\alpha)} \stackrel{!}{=} 0$$

The solution of the primal problem

Lagrangian

$$L = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{i=1}^{p} \lambda_{\alpha} \left\{ y_{T}^{(\alpha)} \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\}$$

 \blacksquare setting derivative w.r.t. weights \mathbf{w}_l to zero: $\underline{\mathbf{w}} = \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$

$$\frac{\partial L}{\partial \mathbf{w}_l} = \mathbf{w}_l - \sum_{r=1}^p \lambda_{\alpha} y_T^{(\alpha)} \mathbf{x}_l^{(\alpha)} \stackrel{!}{=} 0$$

setting derivative w.r.t. b to zero

$$\frac{\partial L}{\partial b} = -\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \stackrel{!}{=} 0$$

Sparse Bayesian Regression: Relevance Vector Machines

see Tipping (2001)