LING 165 Lab 1: Spam detection using a naive Bayes classifier

Build a naive Bayes classifier that determines whether an email is spam or not (a.k.a. ham) based on words in its subject line.

Data

We have two files containing email subject lines from the SpamAssassin public corpus in /home/ling165/lab1/ on the gray server:

- (1) spam_assassin.train
- (2) spam_assassin.test

Each line in a file specifies a data point in the following format:

class \t subject-line

class is 1 for spam and 0 for ham. \t denotes tab-space.

For example,

- 1 we pay cash now
- 0 asteroids anyone

Task

Build a naive Bayes classifier from scratch using (1) and report its performance on (2). More specifically,

- (3) Assume there are two generative models: one for spams (c=1) and one for hams (c=0).
- (4) Each model generates a subject-line one word at a time by sampling from a *bag of words* with replacement. So for example,

$$P(\text{we pay cash now}|c=1) = P(\text{we}|c=1) \cdot P(\text{pay}|c=1) \cdot P(\text{cash}|c=1) \cdot P(\text{now}|c=1)$$

(5) Apply add-one smoothing to estimate the probability of choosing a word from the bag. Assume that the vocabulary for each model consists of all words relevant to the model in (1) plus a dummy word reserved for any unknown word that the model may later encounter. So for example,

$$P(\text{we}|c=1) = \frac{freq(\text{we}, c=1) + 1}{N_1 + |V_1|}$$

where freq(we, c = 1) denotes how often the word we occurred in data points labeled 1, N_1 denotes the total number of word tokens in data points labeled 1, and $|V_1|$ equals the number of different words in data points labeled 1 plus one (for the dummy word).

- (6) Report performance on (2) in terms of precision and recall, where
 - precision: the proportion of true spams that your classifier detected out of those that your classifier thought were spam
 - recall: the proportion of true spams that your classifier detected out of those that should have been detected
- (7) Email me the performance scores and let me know where I can see your work.