Problem 1:

$$\sum_{k=1}^{n} (2k-1) = n^{2}$$
when $n = a+1$

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(a+1) - 1$$

$$\sum_{k=1}^{n} (2k-1) = 2 - 1 = 1$$

$$\sum_{k=1}^{n} (2k-1) = 2 - 1 = 1$$

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{n} (2k-1) + 2(a+1) - 1$$

$$= a^{2} + 2a + 2 - 1$$

$$= a^{2} + 2a + 1$$
the equation is true
$$= (a+1)^{2}$$

$$\therefore \text{ the equation is clumys true}$$

Problem 2:

Assume that two propositional formula A & B has same number (respectively nA & nB) of left parentheses as right parentheses. Then $(A \lor B)$ has nA + nB + 1 pairs of parentheses. By the same method, we can prove that with combinations of other propositional formulas by Λ and \neg are also have same number of left parentheses as right parentheses.

Problem 3:

for all nonnegative
$$x$$
, $0 \le f(x) \le x$

in the recursion, $x_n < x_{n-1}$

if $f(x) = 0$
 $f(x_n) = 0$, $x_n \ge 0$
 $f(x_{n-1}) = x_{n-1} > x_n$

i. every x would gradually decrease during the recursion, and eventually reaches zero.