CS122A: Intermediate Embedded and Real Time Operating Systems

Jeffrey McDaniel

University of California, Riverside

Light-Emitting Diode (LED)

- Two-lead semiconductor light source
- Emits light when activated based on energy band gap and integrated optical components
- Provide many benefits over incandescent lighting:
 - Lower energy consumption
 - Longer lifetime
 - Improved physical robustness
 - Smaller size
 - and Faster switching

Writing to an LED Matrix

Writing to an LED Matrix

1. Update internal 2d array representation (boolean)

Writing to an LED Matrix

1. Iterate over each LED and write the appropriate value

Writing to an LED Matrix

1. LED's will begin to fade

Writing to an LED Matrix

1. LED's will begin to fade...and need to be updated every so often.

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

4/8

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	0	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $4 \rightarrow b100 \rightarrow \text{Red}$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	0	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $4 \rightarrow b100 \rightarrow \text{Red}$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $2 \rightarrow b010 \rightarrow Green$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $2 \rightarrow b010 \rightarrow Green$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	1	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $1 \rightarrow b001 \rightarrow Blue$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	1	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $1 \rightarrow b001 \rightarrow Blue$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	5	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $5 \rightarrow b101 \rightarrow \mathsf{Purple}$

The internal 2D array can now hold the values 0-7, with the binary value representing the RGB value.

7	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
3	0	0	4	2	5	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	1	2	3	4	5	6	7

▶ $5 \rightarrow b101 \rightarrow \mathsf{Purple}$

LED Examples

- ► Student project (10s- 40s)
- ▶ 8x8x8 cube
- ▶ 32x32x32 cube
- ▶ LED infinity table
- ► LED table demo (tetris)
- ▶ LED Reactive table

- An 8x8 RGB LED Matrix takes 32 pins to run
- ▶ The ATMega 1284 we are using has 32 pins
- ► Shift Registers allow you to use less pins

▶ A single shift register requires only 5 lines for 8 bits of data

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins
- RCLK and SRCLK can be shared on each to save an additional 4 pins

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins
- RCLK and SRCLK can be shared on each to save an additional 4 pins
- ▶ If you want the storage to always be output, OE can be set to ground saving an additional 4 pins

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins
- RCLK and SRCLK can be shared on each to save an additional 4 pins
- ▶ If you want the storage to always be output, OE can be set to ground saving an additional 4 pins
- ► The RGB LED Matrix can be run using 12 pins on the microcontroller

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins
- RCLK and SRCLK can be shared on each to save an additional 4 pins
- ▶ If you want the storage to always be output, OE can be set to ground saving an additional 4 pins
- ► The RGB LED Matrix can be run using 12 pins on the microcontroller
- If the RCLK and SRCLR are shared across all 4 shift registers 6 additional pins are saved

- ▶ A single shift register requires only 5 lines for 8 bits of data
- ▶ Using a shift register for each of R, G, B, and Ground on the RGB LED Matrix uses 20 pins, saving 12 pins
- RCLK and SRCLK can be shared on each to save an additional 4 pins
- ▶ If you want the storage to always be output, OE can be set to ground saving an additional 4 pins
- ► The RGB LED Matrix can be run using 12 pins on the microcontroller
- ▶ If the RCLK and SRCLR are shared across all 4 shift registers 6 additional pins are saved
- ► The RGB LED Matrix can be run using only 6 pins of the microcontroller, without daisy chains