Linguagens Formais, Autômatos e Computabilidade

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

23 de março de 2023

Linguagem formal

- Uma linguagem formal é definida a partir de um alfabeto, formando-se palavras.
- Linguagens formais devem ter:
 - **Sintaxe** bem definida, de modo que dado uma palavra seja possível saber se ela pertence ou não a uma linguagem.
 - Semântica consistente, não permitindo palavras ou sentenças ambíguas.
- Exemplo de Linguagens formais:
 - C.
 - Pascal.
 - Java.
 - Cobol.

Hierarquia de Chomsky

Hierarquia de Chomsky

Tipo da Linguagem	Reconhecedor	Gerador
Linguagem Regular	Autômato Finito	Gramática regular
Linguagem Livre	Autômato a pilha	Gramática livre de
de contexto		contexto
Linguagem Sensíveis	Autômato limitado	Gramática sensível
ao contexto	linearmente	ao contexto
Linguagem Enumerável Recursivamente	Maquina de Turing	Gramática irrestrita

Linguagens

Exemplo de linguagens.

- L = {Todas as palavras possíveis}
- L = {Palavras de tamanho par}
- $L = \{ Palavras que começa com 0 \}$

Exemplo de alfabeto:

0 e 1.

a,b,c.

Linguagens

Anotações importantes:

- W representa a palavra.
- |W| representa o tamanho da palavra.
- * representa que aceita todas as palavras possíveis para a linguagem.
- + representa que aceita todas as palavras possíveis para a linguagem, menos o conjunto vazio.

Linguagens

Exemplo de linguagens utilizando anotações.

- $L = \{W \in \{a, b, c\}^*\}$
- $L = \{W \in \{a, b, c\}^+\}$
- L = $\{W \in \{a, b, c\}^* \mid |\mathsf{W}| \text{ \'e impar}\}$

São definidas através de uma linguagem formal e um alfabeto.

Exemplos para o alfabeto 0 e 1:

- L = {Todas as palavras possíveis} = λ ,0,1,00,01,...
- L = {Palavras de tamanho par} = 00,01,10,11,0001,...
- $L = \{Palavras que começa com 0\} = 00,01,010,011,0001,...$

Exemplos para o alfabeto a,b e c:

- $L = \{a^n | n > 0\} = a,aa,aaa,aaaa,...$
- L = $\{ab^n|n>0\}$ = ab,abb,abbb,abbb,...
- L = $\{a^n b^n | n > 0\}$ = ab,aabb,aaabbb,aaaabbbb,...

Exemplos para o alfabeto a,b e c:

- $L = \{c^n a^n | n > 0\}$
- $L = \{ab^n c | n > 0\}$
- $L = \{a^n b^n c^n | n > 0\}$
- L = $\{a^i b^j c^k | i = j + k, j > 0, k > 0\}$
- L = $\{a^i b^j c^k | k = i + j, i > 0, j > 0\}$

Exemplos para o alfabeto a,b e c:

- L = $\{c^n a^n | n > 0\}$ = ca,ccaa,cccaaa,...
- L = $\{ab^nc|n>0\}$ = abc,abbc,abbbc,abbbc,...
- L = $\{a^nb^nc^n|n>0\}$ = abc,aabbcc,aaabbbccc,...
- L = $\{a^i b^j c^k | i = j + k, j > 0, k > 0\}$ = aabc,aaabbc,aaabcc,aaaabbc,...
- L = $\{a^{i}b^{j}c^{k}|k=i+j, i>0, j>0\}$ = abcc,abbccc,aabccc,...

- Um AFD é um modelo matemático que representa uma maquina de estado que é capaz de reconhecer uma linguagem regular.
- Um **AFD** é composto por:
 - Fita: contém a palavra a ser testada.
 - Unidade de Controle: representa o estado atual do AFD.
 - Função de transição: comanda a leitura a partr do estado atual com o símbolo da fita.

• Representação gráfica de uma FITA.

Autômato Finito Determinístico (AFD) - ESTADO

• Representação gráfica de um **ESTADO**.

Autômato Finito Determinístico (AFD) - ESTADO INICIAL

• Representação gráfica de um ESTADO INICIAL.

Autômato Finito Determinístico (AFD) - ESTADO FINAL

• Representação gráfica de um ESTADO FINAL.

Autômato Finito Determinístico (AFD) - TRANSIÇÃO

• Representação gráfica de uma TRANSIÇÃO.

- Para uma palavra ser aceita pelo AFD, deve-se:
 - Processar toda ela.
 - Terminar em um estado final;
- Pode ter mais de um estado final:
- Não pode ter função de transição com o mesma símbolo partindo do mesmo estado.

- Exemplo de um AFD simples:
- L = {abc}

- Exemplo da palavra abc para o AFD:
- L = {abc}

- Exemplo da palavra abc para o AFD:
- L = {abc}

- Exemplo da palavra abc para o AFD:
- L = {abc}

- Exemplo da palavra abc para o AFD:
- L = {abc}

- Exemplo da palavra abbc para o AFD:
- L = {abc}

- Exemplo da palavra abbc para o AFD:
- L = {abc}

- Exemplo da palavra abbc para o AFD:
- L = {abc}

- Exemplo da palavra abbc para o AFD:
- L = {abc}

- Exemplo de um AFD simples:
- L = {abbc}

- Exemplo de um AFD simples:
- L = {abbbc}

- Exemplo de um AFD simples:
- $L = \{ab^n c | n > 0\}$

- Exemplo de um AFD simples:
- L = $\{a^{2n}|n>0\}$

- Exemplo de um AFD simples:
- $L = \{a^{2n} | n \ge 0\}$

- Exemplo de um AFD simples:
- L = $\{a^{3n}|n>0\}$

- Exemplo de um AFD simples:
- $L = \{a^n | n \in \text{impar}\}$

- A descrição formal de um AFD deve possuir:
 - E =Conjunto de estados.
 - \sum = Conjunto finitos de símbolos.
 - i = Estado inicial.
 - F =Conjunto de estados finais.
 - $\delta = \text{Função de transição}$.
- AFD = $\{E, \sum, i, F, \delta\}$

- $E = \{q0,q1,q2\}$
- $\sum = \{a,b\}$
- i = q0
- $F = \{q2\}$
- $\delta = ?$

- $\delta(q0,a) = q1$
- $\delta(q1,a) = q1$
- $\delta(q1,b) = q2$
- $\delta(q2,b) = q2$

- $E = \{q0,q1,q2,q3\}$
- $\sum = \{0,1\}$
- *i* = q0
- $F = \{q3\}$
 - $\delta(q0,0) = q1$
 - $\delta(q1,1) = q1$
 - $\delta(q1,0) = q2$
 - $\delta(q2,1) = q3$

- $E = \{q0,q1,q2,q3\}$
- $\sum = \{a,b,c,d\}$
- i = q0
- $F = \{q3\}$
- $\delta(q0,c) = q1$
- $\delta(q1,a) = q1$
- $\delta(q1,d) = q1$
- $\delta(q1,b) = q2$
- $\delta(q2,a) = q3$

- $E = \{q0,q1,q2,q3\}$
- $\sum = \{a,b,c,d\}$
- *i* = q0
- $F = \{q3\}$

- $\delta(q0,c) = q1$
- $\delta(\mathsf{q1,a}) = \mathsf{q1}$
- $\bullet \ \delta(\mathsf{q1,d}) = \mathsf{q1}$
- $\delta(q1,b) = q2$
- $\delta(q2,a) = q3$
- $\delta(q3,b) = q0$
- $\delta(q3,c) = q1$

- L = {abbcd}
- $L = \{aacd^n | n > 0\}$
- $L = \{a^nbc^m | n > 0, m > 0\}$
- L = $\{d^{2n}c^mab|n>0, m>0\}$

 $\bullet \ \mathsf{L} = \{\mathit{abbcd}\}$

• $L = \{aacd^n | n > 0\}$

• L = $\{a^nbc^m|n>0, m>0\}$

• L = $\{d^{2n}c^mab|n>0, m>0\}$

• Qual a linguagem do AFD? (Desafio)

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2023