- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2014

						1																					1
_				(Co	ogno	me)				_	_			(:	Non	ie)				(N	ume	ero	di	ma	tric	ola)	_

1	00000
2	0000
3	00000
4	
5	
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
7	
8	00000
9	00000
10	00000

1. Data $f(x) = x^{|\log(x)|}$. Allora f'(e) è uguale a A: $\log(2e)$ B: 2 C: $3e^3$ D: 1 E: N.A.

2. L'integrale

$$\int_{0}^{2} |x^{2} - 1| dx$$

vale

A: N.A. B: 2 C: 2/3 D: 1/2 E: 0

3. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}$$

valgono

A: $\{-1,-1,+\infty.,N.E\}$ B: $\{-\infty,N.E.,1,N.E.\}$ C: $(-\infty,N.E,+\infty,N.E.)$ D: $\{-1,N.E,1.,N.E\}$ E: N.A.

4. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x g(t) \, dt$ è continua sono A: $|b| \leq 1$ B: b = 1 C: $b \in \mathbb{R}$ D: $b \leq 1$ E: N.A.

5. La retta tangente al grafico di $y(x)=\sin(\log(x))$ nel punto $x_0=1$ vale A: 1+x B: x-1 C: $\frac{\sin(\log(x))}{x}$ D: x E: N.A.

6. Sia y la soluzione di $y'(x) = \sin(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 0 B: $\sin(\log(y(x)))$ C: N.A. D: 1 E: N.E.

7. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-3}} - e)$$

A: N.E. B: 2e C: N.A. D: 3e E: 0

8. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: $(1/4, \pi)$ B: $(1/(2\sqrt{2}), \pi/4)$ C: $(1/(2\sqrt{2}), \pi)$ D: (4, 0) E: N.A.

9. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \beta$$

A: $\beta \in (0, +\infty)$ B: $\beta \in \mathbb{R}$ C: Nessun valore di β D: $\beta \in]0,1[$ E: N.A.

10. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \log(n^2)}{e^n} (x - 1/e)^n$$

vale

A: 1/e B: e C: $+\infty$ D: N.A. E: 1

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2014

ī	ī	ī	ı	ı		1	ı	ı	l		ı	ī	1	ī		ı	1	1	ī						ı	1 1
				(Co	ogno	me)								(N	lome)					(N	ume	ro d	li ma	atric	ola)

1	00000
2	0000
3	00000
4	00000
5	
6	
7	00000
8	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
9	
10	00000

- 1. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x g(t) \, dt$ è continua sono A: $b \leq 1$ B: $|b| \leq 1$ C: N.A. D: $b \in \mathbb{R}$ E: b = 1
- 2. Sia y la soluzione di $y'(x) = \sin(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: $\sin(\log(y(x)))$ B: 0 C: N.A. D: 1 E: N.E.
- 3. La retta tangente al grafico di $y(x)=\sin(\log(x))$ nel punto $x_0=1$ vale A: N.A. B: x-1 C: $\frac{\sin(\log(x))}{x}$ D: 1+x E: x
- 4. L'integrale

$$\int_0^2 |x^2 - 1| \, dx$$

vale

A: 2/3 B: 1/2 C: 0 D: 2 E: N.A.

- 5. Modulo e argomento del numero complesso $z=\left(1+i\right)^{-3}$ sono A: $(1/4,\pi)$ B: $(1/(2\sqrt{2}),\pi/4)$ C: $(1/(2\sqrt{2}),\pi)$ D: (4,0) E: N.A
- 6. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}\$$

valgono

A: $\{-\infty, N.E., 1, N.E.\}$ B: $(-\infty, N.E, +\infty, N.E.)$ C: $\{-1, N.E, 1., N.E\}$ D: N.A. E: $\{-1, -1, +\infty, N.E\}$

- 7. Data $f(x) = x^{|\log(x)|}$. Allora f'(e) è uguale a A: 2 B: 1 C: N.A. D: $\log(2e)$ E: $3e^3$
- 8. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \log(n^2)}{e^n} (x - 1/e)^n$$

vale

A: 1 B: e C: N.A. D: $+\infty$ E: 1/e

9. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-3}} - e)$$

A: N.A. B: N.E. C: 3e D: 2e E: 0

10. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \beta$$

A: Nessun valore di β B: $\beta \in \mathbb{R}$ C: $\beta \in]0,1[$ D: $\beta \in (0,+\infty)$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2014

ı	ı	1	ī	ı	I	ı	1	1	l	l	l		ı		I	ı	ĺ	ı	ı	ı	l	1	1	I	1	1	1	ı	ı	1 1
L	\perp												J																	
					(Co	ogno	me)											(N	ome)					(N	ume	ro d	li ma	atric	cola)

1	00000
2	0000
3	00000
4	00000
5	0000
6	
7	
8	00000
9	00000
10	0000

- 1. Data $f(x) = x^{|\log(x)|}$. Allora f'(e) è uguale a A: 2 B: N.A. C: $\log(2e)$ D: 1 E: $3e^3$
- 2. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}\$$

valgono

A: $(-\infty, N.E, +\infty, N.E.)$ B: $\{-\infty, N.E., 1, N.E.\}$ C: $\{-1, N.E, 1., N.E\}$ D: N.A. E: $\{-1, -1, +\infty., N.E\}$

- 3. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: $(1/(2\sqrt{2}), \pi)$ B: (4,0) C: $(1/(2\sqrt{2}), \pi/4)$ D: $(1/4, \pi)$ E: N.A.
- 4. L'integrale

$$\int_0^2 |x^2 - 1| \, dx$$

vale

A: 2/3 B: 0 C: 2 D: 1/2 E: N.A.

5. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \beta$$

A: Nessun valore di β B: $\beta \in]0,1[$ C: N.A. D: $\beta \in \mathbb{R}$ E: $\beta \in (0,+\infty)$

6. La retta tangente al grafico di $y(x) = \sin(\log(x))$ nel punto $x_0 = 1$ vale

A: N.A. B: $\frac{\sin(\log(x))}{x}$ C: x D: x-1 E: 1+x

- 7. Sia y la soluzione di $y'(x) = \sin(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: $\sin(\log(y(x)))$ B: N.E. C: 0 D: 1 E: N.A.
- 8. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-3}} - e)$$

A: 2e B: 3e C: N.E. D: N.A. E: 0

9. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \log(n^2)}{e^n} (x - 1/e)^n$$

vale

A: 1/e B: e C: $+\infty$ D: N.A. E: 1

10. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \geq 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x g(t) \, dt$ è continua sono

A: b = 1 B: $b \in \mathbb{R}$ C: N.A. D: $|b| \le 1$ E: $b \le 1$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

30 giugno 2014

			(Co	gnon	ne)						(N	lome)			(N	lume	ro d	i ma	trico	la)

1	00000
2	00000
3	0000
4	00000
5	
6	
7	
8	00000
9	00000
10	0000

1. L'integrale

$$\int_{0}^{2} |x^{2} - 1| \, dx$$

vale

A: 1/2 B: 2 C: 0 D: 2/3 E: N.A.

- 2. Sia y la soluzione di $y'(x) = \sin(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: 1 B: 0 C: $\sin(\log(y(x)))$ D: N.E. E: N.A.
- 3. La retta tangente al grafico di $y(x)=\sin(\log(x))$ nel punto $x_0=1$ vale A: x-1 B: N.A. C: x D: $\frac{\sin(\log(x))}{x}$ E: 1+x
- 4. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(e^{\frac{x}{x-3}} - e)$$

A: N.A. B: 3e C: 0 D: 2e E: N.E.

5. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4} = \beta$$

A: Nessun valore di β B: $\beta \in (0, +\infty)$ C: N.A. D: $\beta \in \mathbb{R}$ E: $\beta \in]0, 1[$

- 6. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x < 2 \\ 1 & \text{per } x \ge 2. \end{cases}$ Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \pi + \int_0^x g(t) \, dt$ è continua sono
- A: $b \in \mathbb{R}$ B: $b \le 1$ C: $|b| \le 1$ D: b = 1 E: N.A.
- 7. Data $f(x) = x^{|\log(x)|}$. Allora f'(e) è uguale a A: 1 B: N.A. C: $3e^3$ D: 2 E: $\log(2e)$
- 8. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \frac{n \log(n^2)}{e^n} (x - 1/e)^n$$

vale

A: 1 B: $+\infty$ C: e D: 1/e E: N.A.

- 9. Modulo e argomento del numero complesso $z = (1+i)^{-3}$ sono A: N.A. B: $(1/4, \pi)$ C: $(1/(2\sqrt{2}), \pi/4)$ D: $(1/(2\sqrt{2}), \pi)$ E: (4, 0)
- 10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R}: \ x^4 - x^2 > -\frac{\pi}{2}\}$$

valgono

A: N.A. B: $(-\infty, N.E, +\infty, N.E.)$ C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-1, -1, +\infty., N.E\}$ E: $\{-1, N.E, 1., N.E\}$

30 giugno 2014

										1										
			(Co	gnor	ne)						(No	me)			(N	ume	ro d	i ma	trice	ola)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 giugno 2014

		1																						
	•	_		(Co	gnoi	me)			_	_			(No	me)			_	(N	ume	ro d	li ma	atric	cola)	_

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 giugno 2014

_	(Cognome)										-	(Nome)									•	(N	(Numero di matricola)									

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 giugno 2014

(Cognome)										-			(No	me)		 	•	(N	lume	ro d	i ma	atric	ola)					

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

30 giugno 2014

PARTE B

1. Studiare, il grafico della funzione

$$f(x) = \frac{x^2 + |x|}{x + 1}.$$

Soluzione: Per prima cosa osserviamo che la funzione non è definita per x=-1 e

$$f(x) = \begin{cases} x & x \ge 0\\ \frac{x^2 - x}{x + 1} & x < 0, \ x \ne \{-1\} \end{cases}$$

Inoltre

$$f'(x) = \begin{cases} 1 & x > 0 \\ \frac{x^2 + 2x - 1}{(x+1)^2} & x < 0, \ x \neq \{-1\}. \end{cases}$$

Per x < 0 la derivata si annulla solo per $x_0 = -1 - \sqrt{2}$ (l'altra soluzione è positiva) e la funzione non risulta derivabile per x = 0, infatti $f'_+(0) = 1$, mentre $f'_-(0) = -1$. Inoltre f' > 0 per $x < -1 - \sqrt{2}$, mentre f' < 0 per $-1 - \sqrt{2} < x < 0$, $x \ne -1$. Quindi in $x_0 = -1 - \sqrt{2}$ si ha un punto di massimo locale, mentre la funzione è decrescente in $\{-1 - \sqrt{2}\} < x < -1 \cup \{-1 < x < 0\}$. Quindi 0 è punto di minimo locale, anche se f'(0) non esiste.

Per concludere

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$

e in x = -1 si ha un asintoto verticale

$$\lim_{x \to -1^{-}} f(x) = -\infty$$
 $\lim_{x \to -1^{+}} f(x) = +\infty$

2. Risolvere l'equazione complessa

$$e^z = \frac{e}{2}(-1 + i\sqrt{3})$$

Soluzione: Osserviamo che $e^{a+ib} = e^a(\cos(b) + i\sin(b))$, quindi dobbiamo trovare a e b reali in modo che

$$e^{a+ib} = e^a(\cos(b) + i\sin(b)) = e\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right),$$

Figura 1: Grafico di $f(x) = \frac{x^2 + |x|}{x+1}$

da cui necessariamente a=1, mentre $b=2\pi/3$ a cui possiamo aggiungere multipli interi dell'angolo giro, da cui la soluzione

$$z = 1 + i\left(\frac{2\pi}{3} + 2k\pi\right) \qquad k \in \mathbb{Z}.$$

3. Studiare il limite

$$\lim_{y\to 0^+}\frac{y^y-1}{y}$$

Soluzione: Il limite è del tipo $\frac{0}{0}$, applicando l'Hopital, si deve studiare il limite

$$\lim_{y \to 0^+} \frac{y^y(\log(y) + 1)}{1} = -\infty.$$

Il limite richiesto pertanto esiste ed assume lo stesso valore

$$\lim_{y\to 0^+}\frac{y^y-1}{y}=-\infty.$$

4. Sia f(x) una funzione continua in]0,1[, non necessariamente non negativa tale che

$$\lim_{x \to 0^+} f(x)\sqrt{\sin(x)} = 2.$$

Dire, motivando la risposta se è vero che l'integrale

$$\int_0^1 f^2(x) \, dx$$

esiste ed è finito. Cosa si può dire se inoltre f > 0?

Soluzione: Se la funzione f non ha segno assegnato, può avvicinandosi a x=1 assumere in valore assoluti numeri arbitrariamente grandi. Quindi f^2 può avere in x=1 singolarità non integrabili, indipendentemente dal comportmento a 0. Inoltre anche supponendo che f sia positiva e limitata in un intorno di x=1, dall'ipotesi si ha che $f(x)=O(1/\sqrt{x})$ per $x\to 0^+$. Quindi

$$f^2(x) = O\left(\frac{1}{x}\right)$$

in un intorno destro di zero, e pertanto risulta non integrabile.