

- It is an finite automata where there exists 0, 1 or more transitions on a state for a given input symbol.
- A nondeterministic finite automata (NFA) has the power to be in several states at once.
- This ability is often expressed as an ability to "guess" something about its input.
- NFA is more useful when the automaton is used to search for all possible solutions.

• When the automaton is used to search for certain sequences of characters (e.g., keywords) in a long text string, it is helpful to "guess" that we are at the beginning of one of those strings and use a sequence of states to do nothing but check that the string appears, character by character.

• Example: Design an NFA for the language of strings with 'aba' as substring.

o Definition of Nondeterministic Finite Automata:

A finite automata is a 5 tuple. It is the machine $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q Non empty set of finite number of states.
- Σ Non empty set of finite number of symbols or Finite input alphabet.
- δ State transition function, defined as δ : $Q \times \Sigma \to 2^Q$ one or more states (power set of Q).
- q_0 It is initial or start state, $q_0 \in Q$.
- $F F \subseteq Q$, It is set of Final or Accepting states.

Example: Let $\Sigma = \{0, 1\}$. Design an NFA for the language of strings end with '01'.

An NFA accepting all strings that end in 01

Example: Let $\Sigma = \{0, 1\}$. Design an NFA for the language of strings begin with either '00' or '11'.

Example: Let $\Sigma = \{0, 1\}$. Design an NFA for the language of strings end with either '00' or '11'.

• Acceptance of a string by NFA: A string is said to be accepted by NFA, if there exists at least one path that takes NFA from initial state to the final state.

- Step 1: The initial state of DFA is same as the initial state of NFA.
- Step 2: Apply every input symbol on the initial state of DFA following the transitions in NFA. Use the following rules:

$$\delta(q_0, a) = \{q_1, q_2, , ..., q_i\}$$
 then $\delta'(q_0', a) = [q_1, q_2, , ..., q_i]$

• Step 3: Apply every input symbol on the new states obtained by step2 by using the following rule.

δ'([q₁, q₂, ..., q_i], a) = [p₁, p₂, , ..., p_j]
if and only if
$$\delta(\{q_1, q_2, ..., q_i\}, a) = \{p_1, p_2, ..., p_j\}$$

 $\delta(\{(q_1, a) \cup (q_2, a) \cup ..., (q_i, a)\} = \{p_1, p_2, ..., p_i\}$

- Step 4: Repeat step3 until no more new states are generated.
- Step 5: The final states of DFA are going to be those states which contains at least one final state of NFA.

• Example 1: Convert the following NFA to DFA.

• Solution: Transition table of NFA.

• Transition table of DFA.

$$\frac{\delta'}{-} \begin{cases} 0 \\ - > [\gamma_0] \\ [\gamma_0, \gamma_1] \\ [\gamma_0, \gamma_1] \\ [\gamma_0, \gamma_1, \gamma_2] \\ [\gamma_0, \gamma_1, \gamma_2] \\ [\gamma_0, \gamma_1, \gamma_2] \\ [\gamma_0, \gamma_2] \\ [\gamma_0, \gamma_1, \gamma_2] \\ [\gamma_0, \gamma_2] \\ [\gamma_0, \gamma_2] \end{cases}$$

• Transition diagram of DFA.

• Transition table of DFA with final states.

$$\frac{\delta'}{\Rightarrow} \begin{bmatrix} 0 \\ -\Rightarrow [\gamma_0] \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_1 \end{bmatrix} \begin{bmatrix} \gamma_0 \end{bmatrix}$$

$$\begin{bmatrix} \gamma_0, \gamma_1 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_1, \gamma_2 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_1, \gamma_2 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_2 \end{bmatrix}$$

$$\frac{1}{\Rightarrow} [\gamma_0, \gamma_1, \gamma_2] \begin{bmatrix} \gamma_0, \gamma_1, \gamma_2 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_2 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_2 \end{bmatrix}$$

$$\frac{1}{\Rightarrow} [\gamma_0, \gamma_1, \gamma_2] \begin{bmatrix} \gamma_0, \gamma_2 \end{bmatrix} \begin{bmatrix} \gamma_0, \gamma_2 \end{bmatrix}$$

• Transition diagram of DFA with final states.

• Example 2: Convert the following NFA to DFA.

o Solution: Transition table of NFA.

• Transition table of DFA.

• Transition diagram of DFA.

• Transition table of DFA with final states.

• Transition diagram of DFA with final states.

• Theorem: Let 'L' be a set accepted by a non deterministic finite automata then there exists a DFA which accepts 'L'.

o Proof:

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be the NFA which accepts 'L'.
- Let us define a DFA M' = (Q', Σ , δ ', q_0 ', F') be an DFA which accepts 'L'.
- The initial state of DFA is same as initial state of NFA.

$$q_0' = [q_0]$$

 $Q' = 2^Q$

The states of the DFA are subsets of the set of states of NFA.

- \circ [q₁, q₂, , ..., q_i] is an individual state in DFA, where q₁, q₂, , ..., q_i are separate states in NFA.
- The final states of DFA are those states which contains at least one final state of NFA.
- The transition function δ' is defined as $\delta'([q_1, q_2, ..., q_i], a) = [p_1, p_2, ..., p_j]$ if and only if $\delta(\{q_1, q_2, ..., q_i\}, a) = \{p_1, p_2, ..., p_j\}.$
- Now let us prove that the language accepted by the NFA and DFA are equal.
- o For this we need to prove that every string accepted by NFA is accepted by DFA.

- Let us apply the Mathematical Induction on the length of string 'x', to show that there are similar type of transitions in both NFA and DFA after processing string 'x'.
- That is, we need to prove that $\delta'(q_0', x) = [q_1, q_2, , ..., q_i]$ iff $\delta(q_0, x) = \{q_1, q_2, , ..., q_i\}.$
- Basis step: Consider a string of length 0 $\delta(q_0, \epsilon) = q_0$, $\delta'(q_0', \epsilon) = q_0'$, we know that $q_0' = [q_0]$.

- This means that on a string of length 0, both NFA and DFA are having similar type of transitions. Hence Basis step is proved.
- o Inductive Hypothesis: Let us assume that for strings of length 'k' both NFA and DFA are having similar type of transitions.

$$\delta'(q_0', x) = [p_1, p_2, , ..., p_j]$$
iff
$$\delta(q_0, x) = \{p_1, p_2, , ..., p_j\}.$$

o Inductive Step: We need to prove that for a string of length (k+1) also, NFA and DFA will be having similar type of transitions.

• i.e., we required to prove that

$$\begin{split} \delta'(q_0', \, xa) &= [r_1, \, r_2, \, , \, ..., \, r_k] \\ iff \\ \delta(q_0, \, xa) &= \{r_1, \, r_2, \, , \, ..., \, r_k\}. \end{split}$$

- Let us consider, $\delta'(q_0', xa) = \delta'(\delta'(q_0', x), a)$ = $\delta'([p_1, p_2, , ..., p_i], a)$
- From Inductive Hypothesis,

$$\delta'(q_0', x) = [p_1, p_2, , ..., p_j]$$
iff $\delta(q_0, x) = \{p_1, p_2, , ..., p_j\}.$

$$\delta'([p_1,\,p_2,\,,\,...,\,p_j]\,\,,\,a) = [r_1,\,r_2,\,,\,...,\,r_k]\,\,(\because \,from \,\,the \\ definition \,\,of \,\,DFA)$$
 iff $\delta(\{p_1,\,p_2,\,,\,...,\,p_j\},\,a) = \{r_1,\,r_2,\,,\,...,\,r_k\}.$

• From the definition

$$\begin{split} &\delta(\delta(q_0,\,x),\,a) = \{r_1,\,r_2,\,,\,...,\,r_k\} \\ &\delta(q_0,\,xa) = \{r_1,\,r_2,\,,\,...,\,r_k\}. \end{split}$$

Hence proved.

- Now we need to prove that every string 'x' accepted by NFA is also accepted by DFA.
- If x is accepted by NFA $\delta(q_0, x) \in F$,
- \circ i.e., one of the states q_1, q_2, \dots, q_i must be accepted by NFA.

- Form the definition, if one of the states of $\delta(q_0, x) = \{q_1, q_2, \dots, q_i\}$ is a final state then $[q_1, q_2, \dots, q_i]$ is a final state in DFA which implies that x is accepted by DFA.
- Hence language accepted by NFA and DFA are equal.