ECE408 / CS483 / CSE408 Summer 2024

Applied Parallel Programming

Lecture 16: Machine Learning and Deep Learning

What Will You Learn Today?

- application areas for machine learning
- basic strategy for machine learning applications
- extension to deep learning (mostly a research pitch)
- concept of a multi-layer perceptron

Perspective is Important

Chips are cheaper than ever.

Unlike humans, digital systems offer

- high-speed computation,
- low capital investment (purchase vs. training a human), and
- negligible operations cost (no salary!).

If computer outperforms (or even matches) a human, use a computer.

Industry has done so for 40-50 years now.

Evolution of Computer Power/Cost

Computing has evolved under the premise that some day, computing machines will be able to mimic general human intelligence.

From a computing power perspective, Moore's Law has fueled the idea of the intelligent machine. Hardware has gotten 2x faster every 18 months.

The software, though, has been a vexing open question.

https://jetpress.org/volume1/moravec.htm

Hans Moravec, 1997

What is Machine Learning?

machine learning: important method of building applications whose logic is not fully understood

Typically by example:

- use labeled data (matched input-output pairs)
- to represent desired relationship.

Iteratively adjust program logic to produce desired/approximate answers (called training).

Types of Learning Tasks

- classification
 - Map each input to a category
 - Ex: object recognition, chip defect detection
- regression
 - Numerical prediction from a sequence
 - Ex: predict tomorrow's temperature
- transcription
 - Unstructured data into textual form
 - Ex: optical character recognition

More Advanced Learning Tasks

translation

 Convert a sequence of symbols in one language to a sequence of symbols in another

structured output

- Convert an input to a vector with important relationships between elements
- Ex: natural language sentence into grammatical structure

others

Anomaly detection, synthesis, sampling, imputation, denoising, density estimation, genetic variant calling

Test Cycle Time is Important

You've all written code...

- code, test, code, test, code, test
- integrate, test, test, test
- and test again!

But how long is the code, test cycle? Depends what you're building.

What's your longest?

Your Cycle Times are Probably Small

In college, 10k lines took ½ hour to compile on my PC. In grad. school, 100k lines took

- ½ hour to compile on my workstation, or
- 2 minutes on our cluster (research platform).

In ECE435 (networking lab), students needed

- ½ hour to reinstall Linux after a bad bug.
- (Ever had a good bug?)

Gene sequencing / applications can take two weeks.

We're all a little spoiled...

Why Machine Learning Again?

In 2007, programmable GPUs accelerated the training cycle.

Today, new chip designs for learning applications have further accelerated.

Led to a resurgence of interest

- in Computer Vision, Speech Recognition, Document Translation, Self Driving Cars, Data Science...
- all tasks that human brains solve regularly, but for which we have struggled to express solutions systematically.

Why Machine Learning Now?

Computing Power

 GPU computing hardware and programming interfaces such as CUDA has enabled very fast research cycle of deep neural net training

• Data

- Lots of cheap sensors, cloud storage, IoT, photo sharing, etc.

Needs

 Autonomous Vehicles, Smart Devices, Security, Societal Comfort with Tech, Health Care

Many Problems are Still Hard

Speed is not a panacea.

- Many tasks still require human insight
 - for network structure and feature selection
 - for effective input and output formats, and
 - for production of high-quality labeled data.
- Other trends sometimes help: ubiquitous computing enables crowdsourcing, for example.

Many Problems Have Systematic Solutons

Example: building a Boolean function from a truth table.

a	ь	С	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

What if We Lack a Truth Table?

- Make enough observations to construct a rule
 - $-000 \to 0$
 - $-011 \rightarrow 0$
 - $-100 \to 1$
 - $-110 \rightarrow 0$
- If we cover all input patterns,
 we can construct a truth table!

Many Problems are Too Large

- The logic formulation of a 32x32-pixel (small) image recognition problem involves
 - 1024*8 bit input,
 - which will have a truth table of 2^{8196} entries
- If we managed to collect and label 1 billion ($\sim 2^{32}$) images as training data
 - We cover only $2^{32} / 2^{8196} = 1 / 2^{8164}$ of the truth table
 - Solution learning processes that exploits features

Features in our logic example

Input			
a	ь	С	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Feature 1: bit patterns with odd number of 1's result in output 1 Feature 2: bit patterns with even number of 1's result in output 0

Types of Problems

Types of Problems

Algorithm complexity, parallelism, and data bandwidth)

Chess as an AI Success (1)

- Easy to formalize
 - 64 locations, 32 pieces
 - Well-defined, allowable moves
- Score each leaf in a tree of possible board positions
- Proceed down path that results in best position

2-ply game tree for tic-tac-toe

Chess as an AI Success (2)

Deep Blue defeated Gary Kasparov in 1997

- Hard to perform
 - − ~30 legal moves per position
 - 1,015 moves for 10-ply lookahead
 - 30 years of compute at 1M positions/sec
- Heuristics, pruning, parallel search, fast computers

Cyc: Extending Rule-based Systems to the Real World

- Comprehensive ontology and knowledge base of common sense
- Cyc reasons about formal statements about the world

Cyc: A Simple Example

Cyc: FredWhileShaving

Cyc: FredWhileShaving

Types of Problems

The "Machine Learning" Approach

Challenge

Hard to formalize the problem.

Solution

Don't formalize the problem.

Let the machine learn from

experience.

Classic Machine Learning

- Humans choose features
- Learn how features are associated with outputs

You may have heard of...

- Naïve Bayes: features as independent contributors to output
- Logistic Regression:
 - learn how to weight each feature's contribution to output,
 - usually through gradient descent*

*more on this topic later in these slides

Data Representation is important!

Data Representation is important!

Different Features for Different Tasks

Which Data Features are Relevant

- Detecting a car in an image
- Cars have wheels → presence of a wheel?
- Can we describe pixel values that make up a wheel?
 - Circle-shaped?
 - Dark around perimeter?

Which Data Features are Relevant

- Detecting a car in an image
- Cars have wheels → presence of a wheel?
- Can we describe pixel values that make up a wheel?
 - Circle-shaped?
 - Dark around perimeter?
- But what about?
 - Occlusion, perspective, shadows, white-walled tires, ...

Identify Factors of Variation that Explain Data

- Unobserved objects or forces that affect observed quantities
- Mental constructs that provide simplifying explanations or inferred causes
- Ex: speech
 - Age, sex, accent, words being spoken
- Ex: car
 - Position, color, angle of sun
- Many factors influence each piece of observed data

Representation Learning Approach

Challenge

Solution

Which data features are relevant?

Learn the features too!

(Looking ahead)

Deep Learning: a deep hierarchy of features

Machine Learning

• Ability to acquire knowledge by extracting patterns from data

Deep Learning

A type of representation learning

 Representations expressed in terms of other representations

Deep Learning Approach

Challenge	Solution
Hard to formalize the problem?	Don't formalize the problem
Which data features are relevant?	Let the machine learn from experience
	Hierarchy of concepts to capture simple and complicated features
	Learn the hierarchy too!

Let's Look at Classification

In a classification problem, we model

- a function mapping an input vector to a set of C categories: $F: \mathbb{R}^N \to \{1, ..., C\}$,
- where the function *F* is unknown.

We approximate F using a set of functions f

- parametrized by a (large) set of weights, θ
- that map from a vector of N real values*
 to an integer value representing a category:
- for category i, $prob(i) = f(x, \theta)$

*floating-point values

Perceptron is a Simple Example

• Example: a perceptron

$$y = sign(W \cdot x + b)$$
 $\Theta = \{W, b\}$

The neuron

- Dot product:
- Scalar addition:

One Perceptron is not Enough

Some functions are non-linear.

What can we do?

- FALSE
- TRUE

Multiple Layers Solve More Problems

What if input dimensions are AND and OR?

A	В	OR	AND	XOR
0	0	-1	-1	-1
0	1	1	-1	1
1	0	1	-1	1
1	1	1	1	-1

AND =
$$sign(x[0] + x[1] - 1.5)$$

OR = $sign(x[0] + x[1] - 0.5)$ XOR = $sign(2 * OR - AND - 2)$

Generalize to Fully-Connected Layer

Linear Classifier: Input vector $\mathbf{x} \times$ weight vector \mathbf{w} to produce scalar output \mathbf{y}

Fully-connected:
Input vector $x \times$ weight
matrix w to produce
vector output y

Multilayer Terminology

How Can We Choose the Right Weights?

- Look at some observed data?
- Pick some random values?
- Start with something that partially works?
- With enough *labeled* data, we can automatically *encode* the relationship between inputs and outputs.

Forward and Backward Propagation

- Forward (inference)
 - Given parameters θ and input x, produce label y
- Backward (training)
 - Need a way to assess correctness (loss function)
 - Example: $(x y)^2$
 - Find θ , such that loss is minimized over all input data

Forward Propagation (Inference)

Backward Propagation (Training)

QUESTIONS?