The following table is from "Atomic Transition Probabilities," 1966.

The data is for hydrogen atoms.

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(\sec^{-1})$
1s - 2p $ 1s - 3p $ $ 1s - 4p $ $ 1s - 5p $ $ 1s - 6p$	1215.67 1025.72 972.537 949.743 937.804	0 0 0 0	82259 97492 102824 105292 106632	2 2 2 2 2	6 6 6 6	$\begin{array}{c} 6.265 \times 10^8 \\ 1.672 \times 10^8 \\ 6.818 \times 10^7 \\ 3.437 \times 10^7 \\ 1.973 \times 10^7 \end{array}$
2p - 3s $2p - 4s$ $2p - 5s$ $2p - 6s$	6562.86 4861.35 4340.48 4101.75	82259 82259 82259 82259	97492 102824 105292 106632	6 6 6	2 2 2 2	$\begin{array}{c} 6.313 \times 10^{6} \\ 2.578 \times 10^{6} \\ 1.289 \times 10^{6} \\ 7.350 \times 10^{5} \end{array}$
2s - 3p $2s - 4p$ $2s - 5p$ $2s - 6p$	6562.74 4861.29 4340.44 4101.71	82259 82259 82259 82259	97492 102824 105292 106632	2 2 2 2	6 6 6	$\begin{array}{c} 2.245 \times 10^{7} \\ 9.668 \times 10^{6} \\ 4.948 \times 10^{6} \\ 2.858 \times 10^{6} \end{array}$
2p-3d $2p-4d$ $2p-5d$ $2p-6d$	6562.81 4861.33 4340.47 4101.74	82259 82259 82259 82259	97492 102824 105292 106632	6 6 6	10 10 10 10	$\begin{array}{c} 6.465 \times 10^{7} \\ 2.062 \times 10^{7} \\ 9.425 \times 10^{6} \\ 5.145 \times 10^{6} \end{array}$

The 2-3 transitions emit the bright red H- α line.

Transition	λ (Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^6
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^{7}

 A_{ki} is the spontaneous emission rate for $k \to i$.

For H- α we have k=3 and i=2.

Let us compute A_{ki} for H- α and see if the results match the table.

The orbital names correspond to the following angular momenta.

Letter	Angular momentum ℓ
s	0
p	1
d	2

Because of the magnetic quantum number m_ℓ there are multiple ways for each orbital transition to occur. $(m_\ell = 0, \pm 1, \dots, \pm \ell)$

There are three transitions for $3s \to 2p$.

$$\psi_{3,0,0} \to \psi_{2,1,1} \psi_{3,0,0} \to \psi_{2,1,0} \psi_{3,0,0} \to \psi_{2,1,-1}$$

There are three transitions for $3p \rightarrow 2s$.

$$\psi_{3,1,1} \to \psi_{2,0,0}$$

$$\psi_{3,1,0} \to \psi_{2,0,0}$$

$$\psi_{3,1,-1} \to \psi_{2,0,0}$$

Finally, there are fifteen transitions for $3d \rightarrow 2p$.

For each H- α line, an average A_{ki} is obtained by summing A_{ki} for individual transitions and dividing by the number of distinct initial states.

For example, $3d \rightarrow 2p$ has five distinct initial states, so the divisor is five.

 A_{ki} is computed from the following formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

For wave functions ψ in spherical coordinates we have the following transition amplitudes.

$$x_{ki} = \int \psi_k^* (r \sin \theta \cos \phi) \, \psi_i \, dV$$
$$y_{ki} = \int \psi_k^* (r \sin \theta \sin \phi) \, \psi_i \, dV$$
$$z_{ki} = \int \psi_k^* (r \cos \theta) \, \psi_i \, dV$$

Using Eigenmath we obtain

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$

which is very close to the values shown in the table.

Some of the $|r_{ki}|^2$ are zero, indicating forbidden transitions.

The following tables show $|r_{ki}|^2$ for each transition (multiply all by a_0^2).

Each row is an initial state ψ_i and each column is a final state ψ_k .

	$\psi_{2,1,1}$	$\psi_{2,1,0}$	$\psi_{2,1,-1}$
$\psi_{3,0,0}$	0.293534	0.293534	0.293534
		$\psi_{2,0,0}$	
	$\psi_{3,1,1}$	3.13103	
	$\psi_{3,1,0}$	3.13103	
	$\psi_{3,1,-1}$	3.13103	
	,	,	,
	$\psi_{2,1,1}$	$\psi_{2,1,0}$	$\psi_{2,1,-1}$
$\psi_{3,2,2}$	9.01737	0	0
$\psi_{3,2,1}$	4.50868	4.50868	0
$\psi_{3,2,0}$	1.50289	6.01158	1.50289
$\psi_{3,2,-1}$	0	4.50868	4.50868
$\psi_{3,2,-2}$	$_{2}$ 0	0	9.01737