Statistical Rethinking Capítulo 2

Richard McElreath

Canicas en una bolsa

Posibilidades

$$(1) [0000], (2) [0000], (3) [0000], (4) [0000], (5) [0000]$$

Observación
 Oo

¿Conclusiones sobre el sistema real?

Conjetura

Combinaciones posibles (1era toma)

Combinaciones posibles (2da toma)

Combinaciones posibles (3ra toma)

 Combinaciones posibles consistentes con la observación

Conteos

Conjetura	Maneras de producir ●○●
[0000]	$0 \times 4 \times 0 = 0$
[0000]	$1 \times 3 \times 1 = 3$
[••00]	$2 \times 2 \times 2 = 8$
	$3 \times 1 \times 3 = 9$
	$4 \times 0 \times 4 = 0$

Nueva observación: •

Datos actualizados
 O

- Opciones:
 - Contar de nuevo
 - Actualizar conteos

Conteo actualizado

Maneras de		Conteo	
Conjetura	producir 🔵	anterior	Conteo nuevo
[0000]	0	0	$0 \times 0 = 0$
[•000]	1	3	$3 \times 1 = 3$
[••00]	2	8	$8 \times 2 = 16$
[•••0]	3	9	$9 \times 3 = 27$
	4	0	$0 \times 4 = 0$

Actualizando conteos

- Si para cada conjetura:
 - (1) Hay $M_{\rm prior}$ maneras de producir observación $D_{\rm prior}$
 - (2) Una observación nueva $D_{\rm nuevo}$ tiene $M_{\rm nuevo}$ maneras de ser producida
- Entonces:
 - (3) Las maneras de producir $D_{
 m nuevo}$ habiendo observado $D_{
 m prior}$ anteriormente es $M_{
 m prior}$ x $M_{
 m nuevo}$

Información (más) prior

Puede venir antes de las observaciones

(Conteo de		
Conjetura	fábrica		
[0000]	0		
[•000]	3		
[••00]	2		
[• • • • 0]	1		
	0		

Actualizando conteos (de nuevo)

		Conteo de	2
Conjetura	Conteo prior	fábrica	Conteo nuevo
[0000]	0	0	$0 \times 0 = 0$
[0000]	3	3	$3 \times 3 = 9$
[••00]	16	2	$16 \times 2 = 32$
[0000]	27	1	$27 \times 1 = 27$
	0	0	$0 \times 0 = 0$

 Los valores de los conteos son importantes sólo cuando se comparan entre sí

```
plausibilidad de [•000] después de observar •0•

maneras de que [•000] produzca •0•

x

plausibilidad prior de[•000]
```

Proporción de canicas azules: p

plausibilidad de p después de observar D_{nuevo} maneras de que p produzca D_{nuevo} \times plausibilidad prior de p

Normalizando, obtenemos probabilidades

plausibilidad de p después de observar $D_{\text{nuevo}} =$

maneras de que p produzca $D_{nuevo} \times plausibilidad prior de <math>p$ suma de productos

Normalizando, obtenemos probabilidades

	Maneras de			
Composición posible	p	producir los datos	Plausibilidad	
[0000]	0	0	0	
[0000]	0.25	3	0.15	
[0000]	0.5	8	0.40	
	0.75	9	0.45	
	1	0	0	

Formalizando

- Parámetro: p (posible explicación de los datos)
- Verosimilitud: Número relativo de maneras en las que algún valor de p puede explicar los datos
- Plausibilidad prior: probabilidad prior
- Plausibilidad actualizada: probabilidad posterior

Construyendo un Modelo Bayesiano

- (1) Historia para los datos: Motivar el modelo narrando cómo se generan los datos
- (2) Actualizar: Educar el modelo alimentándolo con los datos
- (3) Evaluar: Todos los modelos estadísticos requieren supervisión, lo que puede llevar a una revisión del modelo

Agua/Tierra

Agua/Tierra

Datos: W L W W W L W L W

Historia para los datos

- (1) La verdadera proporción de superficie cubierta por agua es p
- (2) Cada lanzamiento del globo tiene una probabilidad p de producir una observación de agua (W) y una probabilidad 1-p de producir una observación de tierra (L)
- (3) Cada lanzamiento de globo es independiente de los otros

Actualizar

El proceso de inferencia

- (1) El número de maneras en que cada conjetura puede producir una observación
- (2) El número acumulado de maneras en que cada conjetura puede producir todos los datos
- (3) La plausibilidad inicial para cada conjetura

Verosimilitud

- Escogemos una expresión matemática que pueda explicar (generar) las observaciones
- En este caso hay dos opciones para cada dato
- Cada lanzamiento es independiente de los otros
- La probabilidad p de observar W es la misma en todos los lanzamientos
- -> Distribución binomial

Verosimilitud

 Probabilidad de que dado un valor de p, haya un número w de observaciones de W en n lanzamientos

$$\Pr(w|n,p) = \frac{n!}{w!(n-w)!} p^w (1-p)^{n-w}$$

Prior

 Todos los valores en el rango [0,1] son igualmente probables

$$\Pr(p) = \frac{1}{1-0} = 1$$

- Prior débilmente informativo/a
- Al actualizar, la posterior se vuelve la prior de la estimación siguiente

Prior: Línea punteada

Posterior

 Objetivo: Dados los datos (!) ¿cuál es la probabilidad de que el parámetro tenga cierto valor?

• Regla de Bayes (obviando n):

$$Pr(p|w) = \frac{Pr(w|p) Pr(p)}{Pr(w)}$$

Posterior

$$Posterior = \frac{Verosimilitud \times Prior}{Verosimilitud promedio}$$

$$Pr(w) = E(Pr(w|p)) = \int Pr(w|p) Pr(p) dp$$

Sirve para que la probabilidad posterior sume 1

Estimación de Posterior

- Grid (fuerza bruta)
- Maximum Likelihood Estimation (frecuentista)
- Monte Carlo (eficiente)
- Markov Chain Monte Carlo (muy eficiente)

Máxima Verosimilitud

- Aproximación no bayesiana (frecuentista)
- Optimización (hallar el máx/min de la posterior)
- Valor óptimo p = 2/3
- ¿Por qué?