Engenharia de Reatores Químicos – IQD0048 Semestre 2023/1 – Turma T01 – Prof. Alexandre Umpierre

Exercícios Propostos 3

- 1) A Tabela 1 apresenta a concentração de um traçador alimentado com um pulso em um reator de tanque agitado de 1325 L. Avalie o ajuste do modelo de volume de troca e determine a conversão esperada para a reação $2A \rightarrow 3B$ para uma alimentação de 25 L/min com 1,3 mol/L de A. A taxa de geração de B é dada por $r_B = 0.46 \, (\text{mol/L})^{-0.3} \, \text{min}^{-1} c_A^{1.3}$.
- 2) Um reator de tanque agitado de 2 L foi alimentado com 0,15 L/min com 1145 mg/L de um traçador. A Tabela 2 apresenta a concentração do traçador à saída do reator. Avalie o ajuste do modelo de volume morto e by-pass e determine a conversão esperada para a reação $2A \rightarrow B$ para uma alimentação de 0,15 L/min com 0,87 mol/L de A. A taxa de geração de B é dada por $r_B = 0,63 \text{ (mol/L)}^{-0,4}\text{min}^{-1}c_A^{1,4}$.
- 3) Determine a conversão de A em $A \rightarrow B$ em um reator tubular cujo comportamento pode ser descrito pelo modelo de CSTR's em série. A constante cinética é dada por $k = 0.25 \; (\text{mol/L})^{-0.7} \, \text{s}^{-1}$. Assuma que a concentração inicial seja 1 mol/L. A Tabela 3 apresenta a concentração registrada à saída do reator de um traçador injetado como pulso na alimentação.
- 4) Uma reação de segunda ordem é conduzida em um reator de tanque agitado de 1000 L. A alimentação tem 25 L/min com 8 mol/L e a constante cinética é 0,01 (mol/L)⁻¹min⁻¹. Estimar a conversão esperada assumindo os modelos de segregação e mistura completa. A Tabela 5 apresenta os dados do ensaio com traçador.

Tabela 1. Concentração c de traçador à saída do reator em função do tempo t.

Tabela 2. Concentração c de traçador à saída do reator em função do tempo t.

Tabela 3. Concentração c de traçador à saída do reator em função do tempo t.

t (min)	c (mg/L)	t
0	1988	0
20	1070	2
40	593,2	4
60	358,4	6
80	225,6	8
100	156,95	1
120	109,6	1
140	89,9	1
160	62,4	1
180	53,4	1
200	39,1	2

t (min)	c (mg/L)
0	115,8
2	254,3
4	388,8
6	496,4
8	568,7
10	676,2
12	743,5
14	771,4
16	837,0
18	881,0
20	899,1

t (a)	a (ma/I)
<i>t</i> (s)	c (mg/L)
0	0,004
14	0
28	0,007
42	0,061
56	0,167
70	0,305
84	0,428
98	0,482
112	0,475
126	0,414
140	0,343
154	0,275
168	0,193
182	0,132
196	0,087
210	0,06
224	0,039
238	0,022
252	0,014
266	0,010
280	0

Tabela 4. Concentração c de traçador à saída do reator em função do tempo t.

t (mim)	c (mg/L)
0	112
5	95,8
10	82,2
15	70,6
20	60,9
30	45,6
40	34,5
50	26,3
70	15,7
100	7,67
150	2,55
200	0,90