COPYRIGHT@BIOMENTORS CLASSES ONLINE, MUMBAI

MOTION IN A PLANE

Projectile motion -

- Initial velocity $u_x = u \cos \theta$, $u_y = u \sin \theta$
- ➤ Acceleration a_x = 0, a_y = -g

Equation of trajectory: It describes the path of particle

$$y = x \tan \theta - \frac{1}{2} \frac{gx^2}{u^2 \cos^2 \theta}$$

Displacement of particle:

$$\vec{r} = (u\cos\theta)t\hat{i} + (u\sin\theta)t - \frac{1}{2}gt^2)\hat{j}$$

Instantaneous velocity:

$$\vec{V} = V_x \hat{\imath} + V_y \hat{\jmath}, \ \left| \vec{V} \right| = \sqrt{u^2 + g^2 t^2 - 2u \sin\theta \, gt}$$

Time of flight: The time taken to complete the motion

$$T = \frac{2 u \sin \theta}{g}$$

Ascent time: (ta) the time required to reach max height

$$t_a = \frac{T}{2} = (t_d)$$
 Descent time

Maximum Height:

$$H_{max} = \frac{u_y^2}{2g} = \frac{u^2 \sin^2 \theta}{2g}$$

Range: The maximum horizontal distance covered

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{u \cos \theta. 2. u \sin \theta}{g} = \frac{2. U_x. U_y}{g}$$

Maximum Range: For range to be max, $\theta = 45^{\circ}$

$$R_{max} = \frac{u^2 \cdot \sin(2 \times 45^\circ)}{g} = \frac{u^2}{g}$$

NOTE: Range will be same for complementary angles, θ and $90 - \theta$

Relation between range and height:

$$\tan \theta = \frac{4H}{R}$$

NOTE: For complementary angles of projection θ and $90^{\circ} - \theta$ Ratio of maximum height

$$\frac{H_1}{H_2} = \tan^2 \theta$$

Change in velocity:

$$\begin{aligned} \Delta V &= V_f - V_i \\ \overrightarrow{V}_i &= \overrightarrow{u}_i = u \cos \theta \, \hat{\imath} + u \sin \theta \, \hat{\jmath} \\ \Delta \overrightarrow{V} &= -gt \, \hat{\jmath} \end{aligned}$$

Change in velocity in complete projectile:

$$\Delta \vec{\mathbf{v}} = \mathbf{v_f} - \mathbf{u_i} = -2\mathbf{u}\sin\theta\,\mathbf{i}$$

Equation of trajectory:

$$\Delta \vec{v} = v_f - u_i = -2u\sin\theta \, \hat{i} \qquad y = x\tan\theta - \frac{1}{2} \frac{gx^2}{u^2\cos^2\theta} = x\tan\theta \left[1 - \frac{x}{R}\right]$$

HORIZONTAL PROJECTILE MOTION

Horizontal	Vertical
$u_x = u$	u _y = 0
V _x =?	V _y =?
$S_x = x$	$S_y = -y$
$a_x = 0$	$a_y = -g$
$t_x = t$	$t_v = t$

$$T = \sqrt{\frac{2H}{g}}$$

Equation of trajectory:

$$y = \frac{gx^2}{2u^2}$$

Instantaneous velocity:

$$\vec{V} = u\hat{i} - gt\hat{j}$$

Displacement of particle -

$$|\vec{r}| = \sqrt{(ut)^2 + \left(\frac{1}{2}gt^2\hat{j}\right)^2}$$

$$\alpha = \tan^{-1} \left(\frac{gt}{2u} \right)$$

$$R = u. \int_{g}^{2H}$$

$$|\vec{V}| = \sqrt{u^2 + (gt)^2}$$

$$\emptyset = \tan^{-1} \left[\frac{V_y}{V_x} \right]$$

$$\emptyset = \tan^{-1} \left[\frac{gt}{u} \right]$$

