Maximum-Likelihood Detection in DWT Domain Image Watermarking using Laplacian Modeling

by T. M. Ng and H. K. Garg

Valentin Mees Max Stiefel

Signal Processing Group Institute of Telecommunications Technische Universität Darmstadt

Outline

Outline

Experimental Results

- Daubechies filter used for DWT
- three-level pyramid decomposition
- watermark embedding in high resolution subbands LH₃, HL₃, HH₃
- embedding strength α constant \rightarrow chosen that PSNR = 45dB
- each subband B has $N_B = 4096$ coefficients

Experimental Results

- blind detection is used
- estimation of μ_i and σ_i from watermarked image:

$$\hat{\mu}_i = \frac{1}{N_B} \sum_{y \in B} y$$

$$\hat{\sigma}_i = \frac{1}{N_B - 1} \sum_{y \in B} (y - \hat{\mu}_i)^2$$

Peppers

Lena

Harbour

F16

with y as DWT coefficient in B of watermarked image