Acquisition and Analysis of Biosignals DTEK0042

Introduction to Biosignals

Iman Azimi, Ph.D. (Tech.)

Email: iman.azimi@utu.fi

Biosignals

- ☐ What is a biosignal?
- ☐ Why is it important?
- ☐ How is it used?
- ☐ For which applications?
- ☐ How is it collected?
- ☐ How is it categorized?

Biosignals

- ☐ What is a biosignal?
- ☐ Why is it important?
- ☐ How is it used?
- ☐ For which applications?
- How is it collected?
- How is it categorized?

Physiological systems and processes

- ☐ Living organisms include many component systems
 - Cardiovascular
 - Muscular
 - Nervous
- ☐ Physiological processes are complex phenomena, including nervous or hormonal stimulation and control
- □ An educational source for learning more: https://www.innerbody.com/htm/body.html

https://www.innerbody.com/image/cardov.html https://www.innerbody.com/image/musfov.html

Physiological process and biosignals

- ☐ Most **physiological processes** are accompanied by or manifest themselves as **signals** that reflect their nature and activities.
- ☐ Diseases or defects in a physiological system change the process and the biosignals.
- ☐ In such situations, the biosignals are different from the normal condition.

First example: body temperature

Most infections cause a rise in the body temperature (BT)

A single measurement of BT \Rightarrow x

☐ A scalar which shows the BT at a certain instant of time

Continuous measurement of BT => x(t)

☐ A signal which shows the BT as a function of time

But, our measurement is discrete $\Rightarrow x(n)$

$$x(n) = [x_1 x_2 x_3 ... x_N]$$

E.g., to detect a disease: if the value of BT is higher than a threshold (e.g., 37°C)

Rangayyan, R. M. Biomedical signal analysis. 2nd Edition, Vol. 33. John Wiley & Sons, 2015.

Second example: blood pressure

Blood pressure (BP) shows the pressure on the walls of the vessels

- ☐ Systolic BP: the pressure when the heart beats
- ☐ Diastolic BP: the pressure when the heart muscle relaxes

Measurements of the BP => x(n)

$$x(n) = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \dots & x_{1,N} \\ x_{2,1} & x_{2,2} & x_{2,3} & \dots & x_{2,N} \end{bmatrix}$$

Rangayyan, R. M. Biomedical signal analysis. 2nd Edition, Vol. 33. John Wiley & Sons, 2015.

Third example: vital signs (1)

Vital signs are the measurements of the body functions.

Vital signs include:

- Heart rate
- Blood pressure
- Respiration rate (Breathing rate)
- Body temperature

They indicate the health condition of a patient => good or critical

Third example: vital signs (2)

- Monitoring of vital signs allows early-detection of health deterioration or death.
- ☐ Early Warning Score (EWS) is a scoring method used in hospitals for assessment of patients' conditions.
- ☐ Higher scores are statistically linked to increased likelihood of health deterioration.

Physiological parameters	3	2	1	0	1	2	3
Respiration rate (breaths/minute)		0-8		9-14	15-20	21-29	30+
Oxygen saturation (%)	0%-84%	85%-89%	90%-94%	95%-100%			
Temperature (oC)		0-35		35.1-38.0		38.1-39.5	39.6+
Systolic BP (mmHg)	0-69	70-80	81-100	101-149	150-169	170-179	180+
Heart rate (beats/minute)	0-39	40-50	51-59	60-100	101-110	111-129	130+
Level of consciousness				A	V	P	U

^{*} A=Alert, V=response to voice, P=response to pain, U=unresponsive

Alam, N., et al. "The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review." Resuscitation 85.5 (2014): 587-594.

Biosignals

- What is a biosignal?
- ☐ Why is it important?
- ☐ How is it used?
- ☐ For which applications?
- How is it collected?
- How is it categorized?

In-hospital applications

Biosignals are acquired in hospitals to monitor the health conditions of patients.

Hospital equipment

- E.g., ECG Machines
- Stationary and Wired

In summary:

https://healthnewshub.org/eastern-ct/healthy-living/causes-irregular-heartbeat/

Out-of-hospital monitoring

- ☐ Health monitoring is not limited to hospital settings anymore
- ☐ People can benefit from healthcare services at-home.
 - Reduce hospital stays
 - Reduce healthcare costs
- ☐ Advancements in recent technologies enables **remote**, **continuous**, and **long-term** monitoring of individuals.

More "Things" are being connected

- ☐ Home/daily-life devices
- □ Business and Public infrastructure
- ☐ Health-care

. . .

Sensor devices are becoming widely available

- ☐ Small
- ☐ Light
- ☐ Energy efficient
- □ Wireless
- ☐ Programmable

Telehealth applications

Biosignals are acquired remotely to monitor user's health, well-being, and lifestyle.

Wearable electronics

- Anywhere
- □ Anytime

In summary:

Biosignals

- What is a biosignal?
- ☐ Why is it important?
- ☐ How is it used?
- For which applications?
- ☐ How is it collected?
- **☐** How is it categorized?

Types of biosignals

- ☐ There are many types of biosignals with different origins.
- ☐ They are collected from different body regions.
- ☐ They are collected using different sensors
 - Electrodes / Electric potential sensors
 - Pressure sensors
 - Optical sensors
 - ...
- In general, the biosignals can be classified according to their:
 - Existence
 - Dynamic
 - Origin

Giannakakis, G, et al. "Review on psychological stress detection using biosignals." IEEE Transactions on Affective Computing (2019).

Existence of biosignal

1. Permanent biosignals

 Exist without any artificial impact, trigger, or excitation from outside the body are available at any time

2. Induced biosignals

- Artificially triggered, excited, or induced
- When the artificial impact is over, the induced biosignal decays

Dynamic of biosignal

- 1. Static biosignals
 - carries information in its steady-state level
- 2. Dynamic biosignals
 - has extensive changes in the time domain, with dynamic processes including physiological information of interest

Origin of biosignal (1)

- 1. Electric biosignals
 - ☐ Reflect electrical activity
 - Electrocardiogram (ECG)
 - Electromyogram (EMG)
 - Electroencephalogram (EEG)
- 2. Magnetic biosignals
 - ☐ Reflect magnetic field induced by nonstationary currents
 - Magnetocardiogram (MCG)

Origin of biosignal (2)

- 3. Mechanic biosignals
 - □ Reflect body deformations or local body vibrations
 - Seismocardiogram (SCG)
 - Mechanorespirogram (MRG)
- 4. Optic biosignals
 - ☐ Light absorption and scattering
 - Photoplethysmogram (PPG)

Origin of biosignal (3)

- 5. Acoustic biosignals
 - ☐ Diverse body sounds
 - Phonocardiogram (PCG)
 - The speech signal
- 6. Chemical biosignals
 - □ Reflect chemical composition and its temporal changes
 - Cortisol (stress hormone)

Origin of biosignal (4)

- 7. Thermal biosignals
 - ☐ Heat loss and heat absorption
 - Body core temperature
- 8. Others
 - Pressure
 - Blood pressure
 - ☐ Skin resistance / conductance
 - Electrodermal activity (EDA)
 - **.**..

Thermal

Summary

In this session, we learned:

□ Basic definitions of biosignals

□ The role of biosignals in health applications

□ Different types of biosignals

In the next session, we will learn:

□ The origin of biosignals

□ The acquisition of biosignals (nervous and muscular systems)

Thank You

Questions?

