

Bölüm **7**

Derin Öğrenme Tabanlı Modern Dil Modelleri

Derin Öğrenme Tabanlı Modern Dil Modelleri

- Word Embeddings (Kelimelerin Vektör Temsilleri)
- Recurrent Neural Networks (RNN)
- Long Short-Term Memory (LSTM)
- Transformers Modelleri: BERT, GPT, LLAMA

Word Embeddings

- Word embeddings, kelimeleri sayısal vektörlerle ifade eden bir yöntemdir.
- Bu temsiller, kelimeler arasındaki anlamsal ilişkileri öğrenmeyi sağlar.
- Aynı anlamda veya benzer anlamda kullanılan kelimeler, vektör uzayında birbirine yakın olur.

- Neden kelimeleri vektörlerle temsil etmeliyiz?
 - Dilsel Anlamı Yakalama
 - Matematiksel İşlemler
 - Verimli Temsil

https://informatics.ed.ac.uk/news-events/news/news-archive/king-man-woman-queen-the-hidden-algebraic-struct

- Word2Vec Nedir?
 - Özellikleri ve Avantajları
 - Anlamsal yakınlıkları kelime komşuluklarına göre öğrenir.
 - Kelimeler arasında anlamlı matematiksel işlemler yapmayı sağlar.
 - Kim Geliştirdi?
 - Google, Tomas Mikolov ve ekibi.
 - Kullanılan Veri Seti: Google News corpus.
 - Kaynak: Haber metinleri
 - Büyüklük: Yaklaşık 100 milyar kelime
 - Kapsam: Siyaset, ekonomi, spor, teknoloji, vb.
 - Kelimeler ve Kelime Çiftleri: 3 milyonun üzerinde farklı kelime ve kelime çifti

- Word2Vec Nedir?
 - Temel Modelleri: CBOW (Continuous Bag of Words) ve Skip-gram.

Example Sentence: The cat sat on the mat.

- FastText Nedir?
 - Özellikleri ve Avantajları
 - Kelimeleri karakter seviyesinde de öğrenir, nadir kelimeler için daha güçlü bir modeldir.
 - Kim Geliştirdi?
 - Facebook AI.
 - Kullanılan Veri Seti
 - Wikipedia, Common Crawl gibi büyük veri setleri.

Word2Vec ve FastText Karşılaştırma

Özellik	Word2Vec	FastText
Temel Yöntem	Kelimeler arasındaki komşuluğu kullanır	Kelimeleri karakter düzeyinde temsil eder
Kapsam	Sabit kelime vektörleri	Alt-kelime bilgisiyle nadir kelimeleri daha iyi öğrenir
Kim Geliştirdi?	Google	Facebook
Kullanılan Veri	Google News Corpus	Wikipedia, Common Crawl

- Vektör Uzayı ve Anlam Yakınlığı Nedir?
 - Kelimelerin vektör temsilleri, anlamlarına göre vektör uzayında konumlandırılır.
 - Anlamca benzer kelimeler (örneğin, "kedi" ve "köpek") vektör uzayında birbirine yakın olurken, farklı anlamdaki kelimeler (örneğin, "kedi" ve "araba") uzakta yer alır.
 - Yakınlık ve uzaklık ayrımı Kosinüs Benzerliği ile yapılabilir.

• Benzerliklerin Görselleştirilmesi (t-SNE, PCA)

- Zaman Serisi ve Sekans Verisi
- Standart Sinir Ağları Zaman Serilerinden Neden Yetersiz
- RNN Nedir?
- RNN Mimarisi Nedir ve RNN Nasıl Çalışır?
- Vanishing Gradient Problemi
- RNN ile NLP Alanında Yapılan Uygulamalar

- Zaman Serisi ve Sekans Verisi Nedir?
 - Zaman Serisi Verisi
 - Sekans Verisi (Sıralı Veri)
 - Doğal Dil
 - DNA Dizileri

Speech recognition

Sentiment classification

"There is nothing to like in this movie."

DNA sequence analysis

AGCCCCTGTGAGGAACTAG

https://aiml.com/what-does-sequential-data-mean-which-models-are-best-suited-for-handling-sequential-data/

- Dil ve Zaman Serisi Verilerinde Dizisel Bağımlılık Nedir?
 - **Dizisel Bağımlılık**: Zaman serisi ve dil verilerinde, her bir öğe (kelime veya veri noktası) sırasıyla önceki öğelere bağımlıdır.
 - **Doğal Dil Örneği**: Cümlede bir kelimenin anlamı, önceki kelimelerle ilişkili olabilir. Örneğin, "Ben kahve **içiyorum**." cümlesinde "içiyorum" kelimesinin anlamı, önceki kelimelerden etkilenir.
 - Zaman Serisi Örneği: Hava sıcaklığının yarın ne olacağı, bugünkü ve önceki günlerin sıcaklığına bağlı olabilir.

- Standart Sinir Ağları Sekans Verilerinde Neden Yetersizdir?
 - Sabit Girdi/Çıktı
 - Zaman Bağımlılığı
 - Geçmiş Bilgiyi Kaybetme

https://www.researchgate.net/figure/Comparison-between-artificial-neural-network-ANN-and-recurrent-neural-network-RNN_fig5_344946727

- RNN'ler, sekans verilerini işlemek için özel olarak tasarlanmış sinir ağlarıdır.
- Her zaman adımında, önceki zaman adımındaki bilgiyi saklayarak ve sonraki adımlarla bu bilgiyi güncelleyerek çalışırlar.
- RNN'in Temel Özellikleri
 - Zaman Boyutunda Tekrar
 - Sekans Verisi İçin Uygun

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

RNN Mimarisi Nedir ve Nasıl Çalışır?

- Ağ Yapısı
- Zaman Boyutunda Tekrar Yapısı

Adımlar:

- 1. Girdi: Dizideki bir öğe (örneğin, bir kelime).
- 2. Gizli Durum: Önceki adımda üretilen bilgi.
- 3. Çıktı: Girdi ve gizli duruma dayanarak üretilen çıktı.

Gizli Durum Denklemi:

- $h_t = f(W \cdot x_t + U \cdot h_{t-1} + b)$
- $y_t = g(V \cdot h_t)$

 h_t : Şu andaki gizli durum

 x_t : Şu andaki giriş

 h_{t-1} : Önceki gizli durum

 y_t : Çıktı

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/

Vanishing Gradient Sorunu Nedir?

- Vanishing Gradient Sorunu, RNN'lerde eğitim sırasında ortaya çıkan bir problemdir.
- Geriye dönük hata yayılımı (backpropagation) sırasında, gradyanlar çok küçük hale gelir ve bu, uzun süreli bağımlılıkların öğrenilmesini zorlaştırır.

Neden Oluşur?

- Her zaman adımında zincirleme türev alınır.
- Derin ağlarda bu türevler zaman içinde küçülebilir ve neredeyse sıfıra yaklaşır.
- Bu durumda, önceki adımlardaki bilginin etkisi kaybolur.

Sonuç

Kısa dönem bağımlılıkları öğrenir, ancak uzun dönem bağımlılıkları öğrenmekte zorlanır.

RNN ile NLP Alanında Yapılan Uygulamalar

- Dil Modelleme
- Makine Çevirisi
- Duygu Analizi
- Konuşma Tanıma
- Metin Üretimi

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

- LSTM Nedir?
- LSTM'in RNN Üzerindeki İyileştirmesi
- LSTM Mimarisi, Bileşenleri ve İşleyişi
- LSTM Kullanım Alanları
- RNN vs LSTM

Long Short-Term Memory (LSTM)

- Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN) türlerinden biridir.
- Uzun vadeli bağımlılıkları öğrenebilmek için özel olarak tasarlanmıştır.
- LSTM'nin Ana Amacı
 - Zaman bağımlı verilerde uzun dönem bağımlılıkları öğrenmek.
 - Geleneksel RNN'lerin yaşadığı vanishing gradient sorununu çözmek için geliştirilmiştir.

LSTM'in RNN Üzerindeki İyileştirmesi Nedir?

- RNN'lerde Yaşanan Sorunlar
 - Vanishing Gradient Sorunu
 - Uzun Vadeli Bağımlılıkları Öğrenememe
- LSTM'nin Çözümü
 - Hücre Durumu (Cell State)
 - Kapılar (Gates)

LSTM Mimarisi, Bileşenleri ve İşleyişi Nedir?

- LSTM'in Bileşenleri
 - Hücre Durumu (Cell State)
 - Giriş Kapısı (Input Gate)
 - Unutma Kapısı (Forget Gate)
 - Çıkış Kapısı (Output Gate)

- LSTM'in İşleyişi
 - Unutma Kapısı
 - Giriş Kapısı
 - Hücre Durumunun Güncellenmesi
 - Çıkış Kapısı

LSTM Formülleri:

- Forget Gate (Unutma Kapısı): $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$
- Input Gate (Giriş Kapısı): $i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$
- Output Gate (Çıkış Kapısı): $o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$
- ullet Cell State Update (Hücre Durumu Güncellemesi): $C_t = f_t \cdot C_{t-1} + i_t \cdot ilde{C}_t$

https://mlarchive.com/deep-learning/understanding-long-short-term-memory-networks/

LSTM Kullanım Alanları

- Doğal Dil İşleme (NLP)
- Konuşma Tanıma
- Zaman Serisi Tahmini
- Müzik ve Metin Üretimi
- Video İşleme

RNN vs LSTM

Özellik	RNN	LSTM	
Uzun Dönem Bağımlılık	Uzun vadeli bağımlılıkları öğrenmede zayıf	Uzun vadeli bağımlılıkları etkili bir şekilde öğrenir	
Vanishing Gradient	Vanishing Gradient sorunu yaşar	Bu sorunu çözer, uzun vadeli bağımlılıkları tutar	
Kapılar (Gates)	Kapılar yok, yalnızca basit bir yapı	Giriş, unutma ve çıkış kapıları ile bilgi akışını kontrol eder	
Hafıza Yönetimi	Hafızayı verimli bir şekilde yönetemez	Hücre durumu sayesinde hafızayı verimli bir şekilde yönetir	
Kullanım Alanları	Kısa sekanslarda veya küçük veri setlerinde daha hızlı olabilir	Uzun dizilerde daha etkili ve geniş çapta kullanılır	

Transformers

Transformers

- Transformers Nedir?
- BERT
- GPT
- LLAMA
- Transformers Modelleri Karşılaştırma

Transformers

- NLP devrimi
- Attention is All You Need
- Bağlamı Daha İyi Anlama
- Paralel İşleme Yeteneği
- Çeşitli NLP Görevlerinde Kullanım
- Önceden Eğitilmiş Modellerin Yeniden Kullanımı

Transformers Modelleri: BERT

- BERT, dil anlama ve metin işleme görevleri için kullanılan bir dil modelidir.
- BERT, metni hem soldan sağa hem de sağdan sola okuyarak bağlamı anlamaya çalışır. (hem geçmişe hem de geleceğe bakar)
- Metni anlamak için kullanılır, örneğin, soru-cevaplama ve metin sınıflandırma.

Transformers Modelleri: BERT Mimarisi

- **Transformer Encoder**
 - BERT, transformer mimarisinin sadece encoder kısmını kullanır.
 - Transformer, dikkat (attention) mekanizmasına dayanan bir modeldir.
- İki Aşamalı Eğitim
 - Ön Eğitim (Pre-training)
 - Masked Language Modeling (MLM)
 - Next Sentence Prediction (NSP)
 - ince Ayar (Fine-tuning)

Fine-Tuning

Transformers Modelleri: BERT Özellikleri

- Çift Yönlü (Bidirectional)
- Transfer Öğrenme
- Transformer Encoder Kullanımı

Transformers Modelleri: GPT

- GPT, metin üretme ve dil modelleme için kullanılan bir dil modelidir.
- GPT, metni sadece soldan sağa doğru okur ve bir kelimeyi tahmin etmek için önceki kelimelere dayanır.
- Metin üretme, öykü yazma, yaratıcı içerik oluşturma gibi görevlerde kullanılır.

 $https://www.researchgate.net/figure/Conceptual-architecture-of-a-GPT-model_fig1_370853178$

Transformers Modelleri: GPT Mimarisi

- Transformer Decoder
- Otokorelasyonlu (Autoregressive) Yaklaşım
- Tek Aşamalı Eğitim

https://bea.stollnitz.com/blog/gpt-transformer/

Transformers Modelleri: GPT Özellikleri

- Tek Yönlü (Unidirectional)
- Metin Üretimi
- Transfer Öğrenme
- Çok Büyük Modeller

BERT vs GPT

BERT

Encoder

GPT

Decoder

Transformers Modelleri: LLAMA

- LLaMA, Meta (eski adıyla Facebook) tarafından geliştirilen büyük dil modelleri ailesidir.
- LLaMA, büyük veri kümeleri üzerinde eğitilmiş olup, GPT-3 gibi modellerle kıyaslandığında daha az parametre ile benzer performans sağlamayı hedefler.

https://medium.com/@pranjalkhadka/llama-explained-a70e71e706e9

Transformers Modelleri: LLAMA Mimarisi

- Transformer Tabanlı
- Hafif ve Verimli
- Daha Küçük ve Daha Hızlı

https://medium.com/@sayedebad.777/mastering-llama-a-deep-dive-into-meta-ais-revolutionary-model-07886186480b

Transformers Modelleri: LLAMA Özellikleri

- Verimli Eğitim
- Araştırmacı Odaklı
- Model Boyutları

Transformers Modelleri Karşılaştırma

Özellik	BERT	GPT	LLaMA
Eğitim Yönü	Çift yönlü (bidirectional)	Tek yönlü (unidirectional)	Çift yönlü
Kullanılan Transformer	Encoder	Decoder	Encoder + Decoder
Ana Görev	Metin anlama ve sınıflandırma	Metin üretimi ve dil modelleme	Hem metin üretimi hem metin anlama
Eğitim Görevleri	Masked Language Modeling, NSP	Language Modeling	Language Modeling
Kullanım Alanları	Soru-cevap, duygu analizi, NER	Metin üretimi, hikaye yazma, sohbet	NLP araştırmaları, düşük kaynaklı cihazlarda kullanım
Öne Çıkan Özellik	Çift yönlü bağlam öğrenme	Büyük metin üretimi, otokorelasyonlu	Verimlilik ve parametre açısından optimize edilmiş