

Annika Hamachers & Andrej Galic

German Police University, Institute of Communication Science

Profiling Malignant Rhetoric.

Linking cognitive linguistics and machine learning algorithms to evaluate the emotionality of populist discourse.

Who we are

German Police University

(Münster, North Rhine-Westphalia) special higher learning institution for police officers with university status (doctorate)

Joint Project: X-SONAR

"Extremist Engagement in Social Media Networks: Identifying, Analyzing and Preventing Processes of Radicalization"

Concentrate/bundle existing ressentiments within society Intensifying them (vgl. Wodak 2016)

wide range of feelings, which include nostalgia, fear, helplessness, hatred, vindictiveness, ecstasy, melancholy, anger, fear, indignation, envy, spite and resentment (Minogue 1969, Taggart 2000, etc.)

fear of social decline / loss of social status (vgl. Manow 2019)

contributing to the forming of collective identities (We vs. The Others) (vgl. Demertzis 2006, Wodak 2016)

- intensifying emotions can lead to "vigilante terrorism" (vgl. Quent 2016); Chemnitz demonstrations 2018 (chivvy on migrants)
 - vigilante justice out of the majority against marginalized groups (Quent 2015, Quent 2016a, Quent 2016b)
- only a few are violent, but often initiated by many others who advocate/support that violence (Krüpper/Zick/Krause 2015: 42f.)
- "populist protests are a platform zu transform anger to hate and to intensify it and instrumentalize it for political demands (Quent 2017: 59)
- "growing anger of the silent majority?"
 - when justifiable anger is combined with prejudices, anger becomes hate that again reinforces violent potential (vgl. Quent 2017: 58)

 intensifying emotions can lead to "vigilante terrorism" (vgl. Quent 2016); Chemnitz demonstrations 2018 (chivvy on migrants)

vigilante justice out of the majority against marginalized groups (Quent 2015, Quent 2016a, Quent 2016b)

- intensifying emotions can lead to "vigilante terrorism" (vgl. Quent 2016); Chemnitz demonstrations 2018 (chivvy on migrants)
 - vigilante justice out of the majority against marginalized groups (Quent 2015, Quent 2016a, Quent 2016b)
- only a few are violent, but often initiated by many others who advocate/support that violence (Krüpper/Zick/Krause 2015: 42f.)
- "populist protests are a platform zu transform anger to hate and to intensify it and instrumentalize it for political demands (Quent 2017: 59)
- "growing anger of the silent majority?"
 - when justifiable anger is combined with prejudices, anger becomes hate that again reinforces violent potential (vgl. Quent 2017: 58)

Does the emotionalization of populist language actually trigger violent action?

The 'ACONDI' Hypothesis

Matsumoto and colleagues (2012; 2015) could demonstrate a drastic increase in expressions of *Anger*, *CONtempt*, and *DIsgust* in the political rhetoric precendent to violent events (as compared to non-violent campaign outcomes).

Source: Matsumoto et al. 2012

The 'ACONDI' Hypothesis

[T]he combination of the emotions of anger, contempt, and disgust (ANCODI) produce[s] a more volatile mix than any one of these emotions alone, and thus their presence in speeches and behavior predicts intergroup hostility and political violence [...].

These emotions function through the ability of anger to motivate action, of contempt to motivate devaluation of others, and of disgust to motivate the elimination of others.

Hypotheses

H1: Right-wing populist discourses convey the emotions anger, disgust, and contempt to a greater amount than non-populist discourses.

H2a: An increase in expressions of anger, disgust, and contempt by right-wing populists correlates with/precedes an increase in *violent action* (protests).

H2b: An increase in expressions of anger, disgust, and contempt by right-wing populists correlates with/precedes an increase in *violent language* expressed on social media.

Dictionary-Based Word Count Analyses

The rational:

The words we use in daily life reflect what we are paying attention to, what we are thinking about, what we are trying to avoid, how we are feeling, and how we are organizing and analysing our worlds.

(Pennebaker, 2010)

- → focused analyses of the words used in a given text allow us to draw conclusions about the personality, thoughts, feelings, and intentions of the author
- → WC techniques already successfully applied to analyses of radical contents (e.g. Chalothorn & Ellmann, 2013; Cohen, Kaati, & Shresta, 2016; Pennebaker & Chung, 2008;)
- → LIWC (Linguistic Inquiry and Word Count) as 'gold standard' in dictionary-based text analysis with a scientific foundation/validation

The LIWC

contains >7000 terms, coded for 68 categories

```
emotions_LIWC.txt 🗵 님 LIWC_German.txt 🗵
    01 Pronoun
    02
       I
    03
       Self
    05
       You
       Other
    07
       Negate
       Assent
       Article
       Preps
    11 Numbers
13
   12 Affect
   13 Positiveemotion
14
   14 Positivefeeling
16
    15
       Optimism
    16 Negativeemotion
       Anxiety
19
    18
       Anger
20
        Sad
    19
       Cognitivemechanism
22
    21 Cause
    22 Insight
   23 Discrepancy
    24 Inhibition
26
    25 Tentative
    26 Certain
28
    31 Social
    32 Communication
    33 Otherreference
    34 Friends
32
    35 Family
33
    36 Humans
```

34

37 Time

849 a	egolten	38					
	egoren 38						
,	egossen	38					
_	egraben	38					
	egriffen	38					
_	egrinst*	12	13				
	egrübelt*	20	22				
_	egruebelt;		22				
_	ehabt 38						
2858 q	ehaenselt	12	16	31	32	38	
2859 q	ehaessig*	12	16	18			
2860 q	ehalt* 39	47	49	56			
2861 q	ehalten	38					
2862 q	ehaltserho	ehun	ıq*	47	49		
2863 q	ehaltserhö	huno	*	47	49		
2864 g	ehaltssche	eck*	47	49	56		
865 g	ehangen	38					
2866 g	ehänselt	12	16	31	32	38	
2867 g	ehässig*	12	16	18			
2868 g	ehasst*	12	16	18			
2869 g	ehaßt* 12	16	18				
2870 g	ehauen 38						
2871 g	ehe 39	46					
2872 g	eheißen	38					
2873 g	ehemmt*	12	16	20	24		
2874 g	ehen 46						
2875 g	ehindert*	12	16	20	24		
2876 g	ehirn* 60	61					
2877 g	ehoben 38						
2878 g	ehofft*	12	13	15	20	23	
2879 g	eholfen	38					
2880 q	eholt 38						

The LIWC

CF	CG	CH	CI	CJ	CK	CL	CM	CN
Anxiety LIWC	Anger LIWC	Sad LIWC	Social LIWC	Friends LIWC	Family LIWC	Past LIWC	Present LIWC	Future LIWC A
abschreck*	aerger*	versäum*	abgelehnt	arbeitskolleg	adoptivkind*	angeregt*	versäum*	zielstrebig* a
aengst*	aersche	abgestumpft	abgerufen	begleiter*	angehoerige ³	steuert	abbreche	bald* a
angst*	aggress*	allein	abgesagt	begleitpersor	angehörige*	beeinflusst	abbrich*	demnächst r
ängst*	androh*	alleine	ablehn*	bekannte*	bruder*	entschloss*	abfaehrst	morgen s
aufgeregt*	anekel*	aufgab*	abrief*	bekanntscha	brüder*	abbrach*	abfaehrt	übermorgen v
aufreg*	angedroht*	aufgebe*	abruf*	brieffreund*	brueder*	abflog	abfahre	uebermorgeiz
bang*	angeekelt*	aufgegeben*	absag*	busenfreund	cousin*	abfuhr*	abfährst	werde b
befuercht*	angekotzt*	aufgib*	adoptivkind*	exfreund*	ehefrau	abgab*	abfährt	werden e
beklemm*	ankotz*	bedauer*	aerger*	feundin*	ehegatte*	abgebrocher	abfliege	werdet a
beklommen*	ärger*	bedaure*	aeussere	freund*	ehemaenner	abgefahren	abfliegst	wird a
besorg*	arsch*	bedrückend*	aeussern	freunde*	ehemann*	abgeflogen	abfliegt	wirst a
beunruhig*	ärsche	bedrueckend	aeusserte*	freundin*	ehemänner*	abgegeben	abgebe	zukuenftig* a
demuetig*	aufgelehnt*	beklommen*	aeusserung*	gaeste*	ehepartner*	abgelaufen	abgib*	zukunft* a
demütig*	auflehn*	bekuemmert	andeute	gast*	einzelkind*	abgelehnt	ablaeuf*	zukünftig* a
erniedrig*	aufstand	bekümmert*	andeuten	gäste*	eltern*	abgeliefert	abläuf*	NA a
erpress*	ausfallend*	bemitleid*	andeutest	gefaehrte*	enkel*	abgenomme	ablaufe	NA a
erschrak*	ausflipp*	benachteilig*	andeutete*	gefaehrtin*	ex*	abgepackt	ableb*	NA a
erschrecke	ausgenutzt*	bereu*	andeutung*	gefährte*	familie*	abgereist	abliefere	NA a

Dictionary-Based Word Count Analyses

SPONSORED BY THE

- Thin ideology? (host ideology)
 People centrism, restoration of sovereignty, anti-elitism
 (following Canovan, Mudde, Taggart, Schmitt, Puhle, Werz, etc.)
- Main focus on authoritarian populism (vgl. Zürn 2018) with extremist characteristics

illiberal (constraining minority rights) anti-pluralistic (charismatic leadership) anti-multilateral (national sovereignty)

Cleavage: Communitarianism vs. Cosmopolitanism

The "intellectual" network of the New Right in Germany

"New Right" Education

- 'Institut für Staatspolitik' (think-tank)
- Publishing company 'Antaios Verlag'
- Newspaper ('Junge Freiheit')
- Magazines ('Compact', 'Sezession')

close linkage to the party "AfD" 11,5% in the German Bundestag (91 of 701 seats)

- self entitled "true press"
- self positioning against mainstream media

Götz Kubitschek

one of the most important protagonists of the Neue Rechte publisher, journalist and right-wing political activist; founder of "Ifs"

Jürgen Elsässer

Chief editor of "Compact Magazin" changing from radical left (antiimperialistic) to positions of the New Right (PEGIDA, AfD)

plus interconnected Facebook fanpages (by 'like')

Applying the LIWC & NRC

The different assumedly populist outcomes were explored with help of the R package 'quanteda' (Benoit et al., 2018).

Applying the LIWC & NRC

Shortcomings of WC techniques

- existing emotion dictionaries tend to differ a lot
- existing emotion dictionaries do not withstand validity checks

Shortcomings of WC techniques

- existing emotion dictionaries tend to differ a lot
- existing emotion dictionaries do not withstand validity checks

SPONSORED BY THE

Shortcomings of WC techniques

- existing emotion dictionaries tend to differ a lot
- existing emotion dictionaries do not withstand validity checks

- → reason: existing dictionaries are not 'domain-specific' for populism
- → future aim: develope strategies to enhance the existing dictionaries

How to create domain-specific dictionaries

word frequency analyses

(terms, n-Grams, hashtags, tf-idf)

genze gemacht genzels lieber natürlich deutsche müssen deutsche müssen gesagt vers wäre recht flagegehen religionen leute frau glaubenwahrheitjahren hölle glaubt tun gut glauben verschen glaubt tun gut glauben verschen menschen selber mensch erde geschrieben geschrieben geschrieben geschrieben geschrieben geschrieben geschrieben geschrieben selber mensch geschrieben geschrieb

unsupervised topic modeling

expert coding

wegen

target material

(posts, tweets, online articles)

additional material

(manifestos, books, cover texts)

SPONSORED BY THE

Unsupervised Topic Modeling (Text *Clustering***)**

- data are not labelled in advance
- the algorithms has to learn associations totally 'on its own'
- output is a *clustering* of text
- can be done 'quick'n'dirty', good for broad topic exploration
- no possibility to include theoretical or prior empirical knowledge of the researcher

Unsupervised Topic Modeling (Text *Clustering*)

Latent Dirichlet Allocation (LDA) (Blei et al. 2003)

- topic modeling generally applies a statistical model of the distribution of words in a text
- LDA assumes specific words to appear more frequently to appear in certain document as compared to other documents, if it is about a particular topic, compared to other documents
- analysis performed in KNIME (Berthold et al., 2008)

- data are split into a 'labelled' training in advance
- the algorithms has to figure out the rules underlying that labeling
- output is a classification probability of text
- labelling (usually) is a very tedious task (some hundred labelled documents necessary)
- labelling can reflect the knowledge of the researcher

- data are split into a 'labelled' training in advance
- the algorithms has to figure out the rules underlying that labeling
- output is a classification probability of text

```
> head(class_emo_n,25)
      ANGER
                                                                                                                         BEST FIT
 [1.] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352"
                                                                                                      "2.78695866252273" NA
 [2,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094"
                                                                                                      "2.78695866252273" NA
 [3,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094"
 [4,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352"
 [5,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352"
                                                                                                      "2.78695866252273" NA
 [6,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094"
     "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094"
 [8,] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352
                                                                                                      "2.78695866252273" NA
 [9.] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094"
                                                                                                      "2.78695866252273" NA
[10.] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352"
                                                                                                      "2.78695866252273" NA
[11.] "1.46871776464786" "3.09234031207392" "2.06783599555953" "1.02547755260094" "1.7277074477352"
                                                                                                      "2.78695866252273" NA
```


- data are split into a 'labelled' training in advance
- →the algorithms has to figure out the rules underlying that labeling
- output is a classification probability of text
- labelling (usually) is a very tedious task (some hundred labelled documents necessary)
- labelling can reflect the knowledge of the researcher

Using the dictionaries to create labelled data

	row_names	text	enotion	larity
1	27	schulleiterin limit "deutsche kinder geflüchtetenklassen integrieren" vorsitzende	anger	utral
2	258	aggressive bürger null toleranz statt schlagstöcke dortmund aggressiven bürgern übe	anger	gative
3	367	richtig apothekerin erteilt kopftuch klare absage genau vorfälle irritation wut sor	anger	gative
4	515	besteht hoffnung spanien schiebt ceutagrenzstürmer ab mittwoch heer asylsuchender ü	anger	gative
5	578	aggressive migranten landfriedensbruch straftatbestand mehr wilden westen massensch	anger	gative
6	719	wordfall susanna immer schlimmere details kommen ans tageslicht tragische fall 14jä	anger	gative
7	744	herzlich willkommen beim livestream afd-großdemonstration branderburger tor	anger	sitive

Naïve Bayes Classification

- NB treats the words of a text as feature of underlying concepts, organizes them as vectors, and returns the words/features which it found the most crucial for making the classification decisons
- analysis performed in R with the 'sentiment' package

```
deutschen
                    hetzt schloss riskieren gür integriert
  fingerabdrücke tag a disgust 38 sollten sinti tor
hirnrissig vollkommen drei immerkröchlendorff spanien
      fear völlig f. Sgabsprache schlagstöcke infrastruktur bereits wurdeflieht schiebt vorgehen innerhalb mehr umgehend ertappten erteilt
                          blanke los pf toleranz
    besten merkel kanzlerin thrillerszenen
  alternative umfrage belästigt stättendrogenkonsum
                       lauteinsatzkräfte schwerzaubertwut
weitere unserem berichte gruppe marokkanische migranten
                                                  unknown
   bewachung krozingen<sub>lassen</sub>
      sadness flughäfen müssen
           flüchtlingshelferspurwech
           grundschülerin contempt
 ungarn inzwischen winter
```


Naïve Bayes Classification

- NB treats the words of a text as feature of underlying concepts, organizes them as vectors, and returns the words/features which it found the most crucial for making the classification decisons
- analysis performed in R with the 'sentiment' package

```
ngos kriminalpolizei
0702 dürfte 06
0 nordafrikanis
                                                    update
                                                                                 anger
                                                  deutsche asylbewerber
                                                       bitte bader<sub>muslime</sub>
   sadness
                                                                              contempt
```

SPONSORED BY THE

Discussion

Future steps:

- try other aggregates of the data corpus
- try other supervised algorithms that make less simplistic assumptions (Hvitfeldt, 2019), e.g.
 - support vector machines
 - neural networks
 - random trees
- replace tools (especially the 'sentiment' package)

General concerns/theoretical shortcomings:

- Problems of data validity
 - limits of textual analysis (excludes photos, memes, info graphs etc.)
 - irony, sarcasm, stance, negation
 - embeddedness of online material → 'recursiveness' of social media discourses
- definitory exclusion: populism ≠ extremism

Keeping up with traditions...

Thank you for your attention!

Questions, comments, remarks?