

Universidade do Minho

Escola de Engenharia

Departamento de Produção e Sistemas

Prof. Ana Cristina Braga

ESTATÍSTICA APLICADA

FORMULÁRIO

1° semestre 2013/2014

LEI (2° ano)

MEDIDAS DE LOCALIZAÇÃO	MEDIDAS DE DISPERSÃO
Média	Erro Quadrático Médio
$\overline{x} = \frac{1}{n} \sum_{i} x_{i}$ $\overline{x} \approx \sum_{k} f_{r_{k}} M_{k} = \frac{1}{n} \sum_{k} f_{k} M_{k}$	$EQM = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$
Mediana	Variância
$Med = \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2} \text{com } n \text{ par}$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$
$Med = x_{\left(\frac{n+1}{2}\right)} \text{ com } n \text{ impar}$	$s^{2} \approx \frac{n}{n-1} \sum_{k} f_{r_{k}} (M_{k} - \overline{x})^{2} = \frac{1}{n-1} \sum_{k} f_{k} (M_{k} - \overline{x})^{2}$
$0.5 - F_{r_{A}}^{-}$	Desvio padrão
$Med = LI + \frac{0.5 - F_{r_A}}{F_{r_{Med}} - F_{r_A}} \Delta$	$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$
Moda	Amplitude
$Mod = LI + \frac{d_1}{d_1 + d_2} \Delta$ com $d_1 = f_{Mod} - f_A^ d_2 = f_{Mod} - f_D^+$	$A = X_{(n)} - X_{(1)}$

PROBABILIDADES

$0 \le P(A) \le 1$; $P(S) = 1$; $P(A) + P(\overline{A}) = 1$; $P(\varnothing) = 0$; $P(\overline{A} \cap B) = P(B) - P(A \cap B)$					
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P(A \cap B) = P(A \mid B) \times P(B)$				
$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	$P(B_r \mid A) = \frac{P(B_r).P(A \mid B_r)}{\sum_{i=1}^{k} P(B_i).P(A \mid B_i)}$				

DISTRIBUIÇÕES DE PROBABILIDADE

DISCRETO	CONTÍNUO
• propriedades da f.p.:	• propriedades da f.d.p.:
$1) f(x) \ge 0$	$1) f(x) \ge 0$
$2) \sum_{x} f(x) = 1$	1) $f(x) \ge 0$ 2) $\int_{x} f(x)dx = 1$
 função probabilidade acumulada 	função probabilidade acumulada
$F(x) = P(X \le x) = \sum_{-\infty}^{x} f(x)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$
valor esperado	valor esperado
$E(x) = \sum_{x} x \times f(x)$	$E(x) = \int_{x} x \times f(x) dx$
• variância	• variância
$V(x) = E(x^2) - [E(x)]^2$	$V(x) = E(x^2) - [E(x)]^2$
$V(x) = \sum_{x} (x - \mu)^2 f(x)$	$V(x) = E(x^2) - [E(x)]^2$ $V(x) = \int_x (x - \mu)^2 f(x) dx$

DISCRETAS

Distribuição de Bernoulli

$$f(x) = \pi^{x} (1-\pi)^{1-x} \qquad x = 0 \text{ ou } 1$$

$$\mu = \pi \quad \sigma^{2} = \pi (1-\pi)$$

Distribuição Binomial $B(n,\pi)$

$$f(x) = \binom{n}{x} \pi^x (1-\pi)^{n-x} \quad x = 0,1,2,...,n$$

$$\mu = n\pi \quad \sigma^2 = n\pi (1-\pi)$$

Distribuição Poisson $P(\lambda)$

$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!} \quad x = 0, 1, 2, \dots$$
$$\mu = \lambda \quad \sigma^2 = \lambda$$

Aproximação da Binomial à Poisson

n grande e π muito pequeno $\lambda = n\pi$

CONTÍNUAS

Distribuição Uniforme U(α,β)

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha < x < \beta \\ 0 & \text{outros valores} \end{cases}$$

$$\mu = \frac{\beta + \alpha}{2} \qquad \sigma^2 = \frac{1}{12} (\beta - \alpha)^2$$

Distribuição Exponencial $EN(1/\theta)$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0\\ 0 & outros \end{cases}$$

$$\mu = \theta \quad \sigma^2 = \theta^2$$

Distribuição Normal $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\mu = \mu \quad \sigma^2 = \sigma^2$$
$$Z = \frac{X - \mu}{\sigma}$$

Aproximação da Binomial à Normal

Condições
$$\begin{cases} n\pi > 5 \\ n(1-\pi) > 5 \end{cases}$$
$$\mu = n\pi$$
$$\sigma^2 = n\pi(1-\pi)$$

<u>Correcção de Yates</u>

$$P(X \le x) \approx P(X < x + 0.5)$$

$$P(Y \ge y) \approx P(Y > y - 0.5)$$

INTERVALOS DE CONFIANÇA E TESTES DE HIPÓTESES PARA UMA AMOSTRA

Parâmetro a estimar	Tipo de População	Dimensão da amostra	Conhece σ ?	E.T ~ Distribuição	Intervalo de Confiança	Notas
	Normal	Qualquer	Sim	$Z = \frac{\overline{x} - \mu}{\sigma \sqrt{n}} \sim N(0, 1)$	$\overline{x} - z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{(1-\alpha/2)} \frac{\sigma}{\sqrt{n}}$	$Z_{(1-lpha/2)}$: quantil da tabela acumulada da Normal padrão à esquerda
Média μ	Qualquer	n≥30	Não	$Z = \frac{\overline{x} - \mu}{\sqrt[s]{n}} \sim N(0, 1)$	$\overline{x} - z_{(1-\alpha/2)} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{(1-\alpha/2)} \frac{s}{\sqrt{n}}$	Estimador do desvio padrão: $\sigma \approx s$ (1)
	Normal	n < 30	Não	$T = \frac{\overline{x} - \mu}{\sqrt[s]{\sqrt{n}}} \sim t_{n-1}$	1 V	
Proporção binomial π	Binomial	n > 30 (2)	-	$Z = \frac{p - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}} \sim N(0, 1)$	$p - z_{(1-\alpha/2)} \sqrt{\frac{p(1-p)}{n}} < \pi < p + z_{(1-\alpha/2)} \sqrt{\frac{p(1-p)}{n}}$	Estimador da proporção binomial $\pi \approx p = \frac{x}{n}$
Variância $oldsymbol{\sigma}^2$	População Normal			$Q = \frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$	$\frac{(n-1)s^2}{\chi^2_{(\alpha/2),n-1}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{(1-\alpha/2),n-1}}$	

INTERVALOS DE CONFIANCA E TESTES DE HIPÓTESES PARA DUAS AMOSTRAS

Parâmetro a estimar	Tipo de População	Dimensão da amostra	Conhece σ ?	E.T ~ Distribuição	Intervalo de Confiança	Notas
Diferença entre as médias $\mu_1 - \mu_2$	Normais	Quaisquer	$\sigma_1^{}$ e $\sigma_2^{}$ Sim	$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$	$(\overline{x}_1 - \overline{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
	Quaisquer	$n_1 \ge 30 \text{ e } n_2 \ge 30$	$\sigma_1^{}$ e $\sigma_2^{}$ Não	$Z = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim N(0, 1)$	$(\overline{x}_1 - \overline{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Estimadores dos desvios padrão: $\sigma_1 \approx s_1$, $\sigma_2 \approx s_2$
	Normais	$n_1 < 30 \text{ e } n_2 < 30$	σ_1 e σ_2 Não e $\sigma_1^2 = \sigma_2^2$	$T = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{GL}$	$(\overline{x}_1 - \overline{x}_2) \pm t_{(\alpha/2),GL} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$GL = n_1 + n_2 - 2$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
	Normais Amostras dependentes	$n_1 < 30 \text{ e } n_2 < 30$	σ_1 e σ_2 Não	$T = \frac{\overline{D}_i - \left(\mu_1 - \mu_2\right)}{\frac{s_{D_i}}{\sqrt{n}}} \sim t_{(n-1)}$	$\overline{D}_{i} - t_{(n-1), \frac{\sigma_{2}}{2}} \cdot \frac{s_{D_{i}}}{\sqrt{n}} < \mu_{1} - \mu_{2} < \overline{D}_{i} + t_{(n-1), \frac{\sigma_{2}}{2}} \cdot \frac{s_{D_{i}}}{\sqrt{n}}$	$S_{D_i} = S_{n-1}$ para $D_i = X_{1i} - X_{2i}$
Diferença de proporções $\pi_1 - \pi_2$	Binomial	$n_1 \ge 30 \text{ e } n_2 \ge 30$	-	$Z = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}} \sim N(0, 1) $ (3)	$(p_1 - p_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	Estimadores das proporções binomiais (4) $p_1 = \frac{x_1}{n_1} e \ p_2 = \frac{x_2}{n_2}$
Razão de variâncias σ_1^2 / σ_2^2	Normais	Quaisquer	-	$F = rac{s_1^2}{\sigma_1^2} \sim F_{v_1, v_2} \ \sigma_2^2$	$\frac{s_1^2}{s_2^2} \frac{1}{F_{(\alpha/2),\nu_1,\nu_2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \frac{1}{F_{(1-\alpha/2),\nu_1,\nu_2}}$	$v_1 = n_1 - 1 \text{ e } v_2 = n_2 - 1$ $\frac{1}{F_{(1-\alpha/2),v_1,v_2}} = F_{(\alpha/2),v_2,v_1}$

(1) O desvio padrão σ , sendo desconhecido, é estimado através de $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2}$; (2) Proporção para amostras de pequena dimensão necessário recorrer à solução exata através da distribuição binomial; (3) e (4) No teste à diferença de proporções se $H_0: \pi_1 - \pi_2 = 0$, a E.T. passa a ser: $Z = \frac{(p_1 - p_2)}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1), \text{ com } p = \frac{x_1 + x_2}{n_1 + n_2}.$

PLANEAMENTO COMPLETAMENTE ALEATÓRIO

H₀: Não existem diferenças significativas na variável resposta devido aos diferentes tratamentos

$$\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$$
 ou $\alpha_j = 0$ com $j = 1, 2, ..., k$

H₁: Pelo menos 2 tratamentos são diferentes ($\alpha_i \neq 0$ para pelo menos um valor de j).

R.R: F > c

Tabela ANOVA

Fonte de variação	Soma dos Quadrados	Graus de liberdade	Média dos Quadrados	Estatística de teste, F
Tratamentos	СОТ	k-1	MOT	
(Entre grupos)	SQT	K-1	MQT	
Resíduos	COD	Σ	MOD	F = MQT/MQR
(dentro dos grupos)	SQR	Σn_j - k	MQR	•
Total	STQ	N - 1		

$$SQT = \sum_{j=1}^{k} \frac{T_{.j}^{2}}{n_{i}} - \frac{T^{2}}{N} \qquad STQ = \sum_{j=1}^{k} \sum_{i=1}^{n_{j}} y_{ij}^{2} - \frac{T^{2}}{N} \qquad STQ = SQT + SQR \qquad N = \sum_{j=1}^{k} n_{j}$$

Intervalos de confiança para diferenças entre pares de médias de tratamentos i e j com i $i \neq j = 1, 2, ..., k$

$$\left(\bar{y}_{i} - \bar{y}_{j}\right) - t_{\left(N - k, \alpha/2\right)} \cdot \sqrt{MQR} \cdot \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{j}}} \leq \mu_{i} - \mu_{j} \leq \left(\bar{y}_{i} - \bar{y}_{j}\right) + t_{\left(N - k, \alpha/2\right)} \cdot \sqrt{MQR} \cdot \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{j}}}$$

PLANEAMENTO COM BLOCOS ALEATÓRIOS

H₀₁: Não existem diferenças significativas na variável resposta devido aos diferentes tratamentos

$$\mu_{1.} = \mu_{2.} = \mu_{3.} = ... = \mu_{k.}$$
 ou $\alpha_{j} = 0$ com $j = 1, 2, ..., k$

 H_{11} : Pelo menos 2 tratamentos são diferentes ($\alpha_j \neq 0$ para pelo menos um valor de j).

R.R: $F_1 > c_1$

H₀₂: Não existem diferenças significativas na variável resposta devido aos diferentes blocos

$$\mu_1 = \mu_2 = \mu_3 = ... = \mu_b$$
 ou $\beta_i = 0$ com $i = 1, 2, ..., b$

 H_{12} : Pelo menos 2 blocos são diferentes ($\beta_i \neq 0$ para pelo menos um valor de i).

R.R: $F_2 > c_2$

Tabela ANOVA

Fonte de variação	Soma dos Quadrados	Graus de liberdade	Média dos Quadrados	Estatística de teste, F	
Tratamentos (colunas)	SQT	k-1	MQT	E - MOT/MOD	
Blocos (linhas)	SQB	b-1	MQB	$F_1 = MQT/MQR$	
Resíduos (dentro dos grupos)	SQR	(k-1)(b-1)	MQR	$F_2 = MQB/MQR$	
Total	STO	N - 1		•	

$$SQT = \frac{1}{b} \sum_{i=1}^{k} T_{.j}^{2} - \frac{T^{2}}{N} \qquad SQB = \frac{1}{k} \sum_{i=1}^{b} T_{i.}^{2} - \frac{T^{2}}{N} \quad STQ = \sum_{i=1}^{k} \sum_{i=1}^{n_{i}} y_{ij}^{2} - \frac{T^{2}}{N} \quad STQ = SQT + SQB + SQR \quad N = k.b$$

TESTES DO "BOM AJUSTE" DO QUI-QUADRADO

Probabilidades completamente especificadas na hipótese nula

$$H_0$$
: $p_1 = p_{10}$, $p_2 = p_{20}$, ..., $p_k = p_{k0}$ e $p_{10} + p_{20} + ... + p_{k0} = 1$

R.R: Q > c
$$\cos c = \chi_{k-1,\alpha}^2$$

Probabilidades não estão completamente especificadas na hipótese nula

H₀: As probabilidades correspondentes das classes provêm de uma distribuição da família.....

R.R: Q > c com c =
$$\chi^2_{g.l.,\alpha}$$

g.l. = n^{o} de celas – 1 – n^{o} de parâmetros estimados

$$Q = \sum_{i=1}^{k} \frac{(f_i - e_i)^2}{e_i} \text{ com } e_i = n.p_i$$

Estimadores para a regressão linear e simples

$$\boldsymbol{\beta_0} : \hat{\boldsymbol{\beta}_0} = \frac{1}{n} \sum_{i} Y_i = \overline{Y} \qquad \boldsymbol{\beta_1} : \hat{\boldsymbol{\beta}_1} = \frac{\sum_{i} \left(X_i - \overline{X} \right) Y_i}{\sum_{i} \left(X_i - \overline{X} \right)^2} = \frac{s_{XY}}{s_{xx}}$$

$$\sigma^{2} : s^{2} = \frac{1}{n-2} \sum_{i} \hat{e}_{i}^{2} = \frac{1}{n-2} \sum_{i} \left\{ Y_{i} - \left[\hat{\beta}_{0} + \hat{\beta}_{1} \cdot \left(X_{i} - \overline{X} \right) \right] \right\}^{2}$$

$$r^{2} = \frac{\hat{\beta}_{1}^{2}.s_{XX}}{s_{YY}} = \frac{\hat{\beta}_{1}^{2}.\sum_{i} (X_{i} - \overline{X})^{2}}{\sum_{i} (Y_{i} - \overline{Y})^{2}}$$

Intervalos de Confiança

Os limites do intervalo de confiança bilateral a $(1-\alpha)100\%$ para β_0 , são dados por

$$\hat{\beta}_0 \pm t_{n-2,(\alpha/2)} \cdot \frac{s}{\sqrt{n}}$$

Os limites do intervalo de confiança bilateral a $(1-\alpha)100\%$ para β_0 , são dados por

$$(\hat{\beta}_0 - \bar{X}.\hat{\beta}_1) \pm t_{n-2,(\frac{\alpha}{2})}.s.\sqrt{\frac{1}{n} + \frac{\bar{X}^2}{s_{XX}}}$$

Os limites do intervalo de confiança bilateral a $(1-\alpha)100\%$ para β_1 , são dados por

$$\hat{\beta}_1 \pm t_{n-2,(\frac{\sigma}{2})} \cdot \frac{s}{\sqrt{s_{XX}}}$$