BASIC LOGICAL OPERATIONS

Logical constants - 0,1.

Variabler - X, Y, ₹.

(Court) op (Courst) -> Prop defined by the truth tables.

(Comt) op (Variable)
$$\rightarrow$$
 $X+0=X$ | $X\cdot 0=0$
 $X+1=1$ | $X\cdot 1=X$ (Identity)

NOT

$$(x')' = x \Rightarrow Odd No. of compliments - x'$$

Even No. of compliments - x.

TWO VARIABLES

$$X + Y = Y + X$$
. \Rightarrow ('OR' is commutative)
 $X \cdot Y = Y \cdot X$ \Rightarrow ('.' is commutative)

Evaluation Scheme

$$(X+Y)+Z=X+(Y+Z)$$
. \Rightarrow '+' is Associative.
= $X+Y+Z$

TRUTH TABLE

	, (2°)	(2')	(2°)				
$(x y \neq)_2$	X	. 4	1 7	x + y	4+2	(x+4)+Z	x + (y + z)
0	0	0	0				
1	0	0	1				
2	0	(0				
3	0	1	1				
4	r	0	0				
5	1	0	1	The Winds			
6	1	, /	0				
#	1	, (1				

$$X \cdot Y \cdot Z = (X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \Rightarrow ' \cdot '$$
 is Associative.

THREE VARIABLES & TWO OPERATIONS

$$X \cdot (Y+Z) = X \cdot Y + X \cdot Z \Rightarrow ' \cdot '$$
 is distributive over the op.'+'.

 $X + (Y \cdot Z) = (X+Y)(X+Z) \Rightarrow ' + '$ is distributive over ' \cdot'.

 $X + (Y+Z) = (X+Y)(X+Z) \Rightarrow ' + '$ is distributive over ' \cdot'.

 $X + (Y+Z) = (X+Y)(X+Z) \Rightarrow ' + ' + '$ is distributive over ' \cdot'.

 $X + (Y+Z) = (X+Y)(X+Z) \Rightarrow (X+Y) = (X+Y+Z) \Rightarrow (X+Y+Z) \Rightarrow$

```
Boolean Algebra (George Proole)
  A set of elements 3 (....) along with two operators.
                                           (本,口)
→ The set & is closed under * if x, y e & & x xy € &
         " under O if x,y & & & x Dy & &
 Commutative law
   nxy = yxx;
      र न भ = भ न र .
 * is distributive over II => 21 * (y I) 3) = (x * y) I] (x * z)
 日""本当然日(岁秋3) = (火口岁) * (火口多)
 Invene
 For every & ES there is an element & such that
  22 A X = 1
  2 日花 = 0.
Identity.
Identity element for
                  * (say 0) > x * 0 = 0 * x = x.
                  [] (8ay 1) => x [] = 1 [] x = x.
 (0,1) (+,.)
     Y + \( \bar{x} = 1
      x. x = 0
```

SIMPLIFICATION THEOREMS

$$\rightarrow$$
 x + xy = x. \rightarrow x(1+y) = x.1

$$xy + x'y = y \Rightarrow (x + x')y = ..y.$$

DEMORGAN'S LAW

$$F'(x, y, 3, 0, 1, +, \cdot) = F(x', y', 3', 1, 0, \cdot, +)$$