陕西科技大学 试题纸 A

课程	运	等学				学期]	<u> 2016–</u>	-2017	<u>—2</u>	
班级			_	8号 _				姓名	占		
题号	_	二	三	四	五.	六	七	八	九	+	总分
得分											
阅卷人											
一、辨析是	题,正在	确的打	√ , ¹	错误的	为打×	并改正	(毎是	03分	,共1	5分)	
1. 线性规	划无解	是指	无最优	论解.							()
2. 在目标	:规划 核	莫型中:	,正偏	差变量	量应耳	汉正值,	负偏差	差变量 。	应取负	值.	()
3. 原问题	5. 与对保	禺问题	都有口	可行解	,则 <u>-</u>	二者都」	具有最	优解.			()
4. 连通多	多重图是	是欧拉	图,当	i且仅i	当图	中恰有萨	两个奇	点.			()
5. 矩阵对	付策的角	解必唯	;─.								()
二、选择是	题(每)	题 3 分	,共	15 分)						
1. 已知某	线性规	划的	目标函	i数为	max :	$z = 3x_1 -$	⊢ x ₂ , ½	內東方	程全対	Ы≤,	x ₃ ,x ₄ 为松
弛变量,清	表中的(解代入	目标	函数后	5得 <i>z</i>	g = 6,	则正确	的是	()	
					x_1	x_2	<i>x</i> ₃	X	1		
		х ₃	3	2	0	0	1	1/	5		
		x_1		а	1	b	0	1			
			o j		0	-5	с	d	<u>'</u>		

(A) a=1; (B) b=2; (C) c=3; (D) d=4.

- 2. 作为目标规划模型的目标函数,下列表达式逻辑错误的是()
- (A) $\max z = d^+ + d^-$

(B) $\max z = d^+ - d^-$

(C) $\min z = d^+ + d^-$

- (D) $\min z = d^+ d^-$
- 3. 某修理店只有一个修理工人,来修理的顾客到达次数服从 Poisson 分布,平 均每小时4人,修理时间服从负指数分布,平均需要6分钟,则修理店空闲时间 概率为()
- (A) $\frac{1}{5}$ (B) $\frac{2}{5}$ (C) $\frac{3}{5}$ (D) $\frac{4}{5}$

- 4. 设矩阵对策的赢得矩阵为 $\begin{bmatrix} 2 & 2 & 1 \\ 3 & 4 & 4 \\ 2 & 1 & 6 \end{bmatrix}$,则最优策略的对策值为(
 - (A) 1
- (B) 2
- (C) 3 (D) 4
- 5. 设有网络计划图如下,其中包含的错误有()个。

- (A) 1
- (B) 2
- (D) 4
- 三、(本题 15 分)分别用图解法和单纯形法求解下面的线性规划。

$$\max z = 2x_1 + x_2$$

$$\begin{cases}
5x_2 \le 15 \\
6x_1 + 2x_2 \le 24 \\
x_1 + x_2 \le 5 \\
x_1, x_2 \ge 0
\end{cases}$$

四、(本题 10 分)已知线性规划

$$\max z = -5x_1 + 5x_2 + 13x_3$$

$$\begin{cases}
-x_1 + x_2 + 3x_3 \le 20 \\
12x_1 + 4x_2 + 10x_3 \le 90 \\
x_1, x_2, x_3 \ge 0
\end{cases}$$

的最终单纯形表如下:

X_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅
x_2	20	-1	1	3	1	0
<i>x</i> ₅	10	16	0	-2	-4	1
(σ_{j}	0	0	-2	- 5	0

试分析: (1) 当约束条件②的右端项由 90 变为 70 时, 最优解有何变化;

(2) 约束条件②的右端项在什么范围内取值,最优解不变。

五、(本题 10 分)已知线性规划如下:

$$\max z = 2x_1 + x_2 + 5x_3 + 6x_4$$

$$s.t. \begin{cases} 2x_1 + x_3 + x_4 \le 8 \\ 2x_1 + 2x_2 + x_3 + 2x_4 \le 12 \end{cases}$$

$$x_j \ge 0, j = 1, 2, 3, 4$$

其对偶问题的最优解为 $y_1^* = 4$, $y_2^* = 1$.

(1) 写出对偶问题的模型; (2) 利用对偶问题的性质, 求原问题的最优解。 六、(本题 15 分) 已知某运输问题的单位运价表如下表所示。

٠.	777 日州人之間刊起前十世之所以第十七///710										
		销地 A	销地 B	销地C	销地 D	产量					
	产地1	10	6	7	12	4					
	产地 2	16	10	5	9	9					
	产地3	5	4	10	10	4					
	销量	5	2	4	6						

试用 Vogel 法求出初始调运方案,并做最优性检验。

七、(共14分)完成下列各题:

(1)(本小题 6 分)用 Dijkstra 方法求点 v₁ 到点 v₆的最短路。

(2) (本小题 8 分) 下面网络中, 弧 (v_i, v_j) 上所标数字 (c_{ij}, f_{ij}) 分别表示容量和流量, 试求 v_s 到 v_t 的最大流, 并指出最小截集。

八、(本题6分)写出下面问题的动态规划的基本方程:

$$\max z = \sum_{i=1}^{n} \phi_i(x_i)$$

$$\begin{cases} \sum_{i=1}^{n} x_i = b , (b > 0) \\ x_i \ge 0, i = 1, 2, \dots, n \end{cases}$$

参考答案

一、辨析题,正确的打√,错误的打×并改正(每题3分,共15分)

1. 线性规划无解是指无最优解. (×)

改正: 线性规划无解是指无可行解.

- 2. 在目标规划模型中,正偏差变量应取正值,负偏差变量应取负值. (×) 改正: 在目标规划模型中,正、负偏差变量都取正值.
- 3. 原问题与对偶问题都有可行解,则二者都具有最优解. (✓)
- 4. 连通多重图是欧拉图, 当且仅当图中恰有两个奇点. (×) 改正: 连通多重图是欧拉图, 当且仅当图中无奇点.
- 5. 矩阵对策的解必唯一. (×)

改正: 矩阵对策的解未必唯一.

- 二、选择题(每题 3 分, 共 15 分) B A C C B
- 三、(本题 15 分)

......图解法 5 分,化标准型 3 分,每个表格 2 分,结论 1 分。最优解 X=(7/2, 3/2, 15/2, 0, 0) ; 最优值 Z=17/2.

C_B	基	c_{j}	2	1	0	0	0
		b	x_1	x_2	χ_3	χ_4	x_5
0	x_3	15	0	5	1	0	0
0	χ_4	24	6	2	0	1	0
0	<i>x</i> ₅	5	1	1	0	0	1
C_j - Z_j			2	1	0	0	0

		$\mathbf{c}_{\mathbf{j}}$	2	1	0	0	0			c_{j}	2	1	0	0	0
C_{B}	基	b	x_I	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	C_{B}	基	b	x_1	x_2	x_3	X_4	x_5
0	x_3	15	0	5	1	0	0	0	x_3	15/2	0	0	1	5/4	-15/2
2	x_I	4	1	2/6	0	1/6	0	2	x_{I}	7/2	1	0	0	1/4	-1/2
0	<i>x</i> ₅	1	0	4/6	0	-1/6	1	1	x_2	3/2	0	1	0	-1/4	3/2
	C_j - Z_j		0	1/3	0	-1/3	0		C_j - Z_j	i	0	0	0	-1/4	-1/2

四、(本题10分,每问5分)

(1) 当约束条件②的右端项由 90 变为 70 时, 最优解为(0, 5, 5, 0, 0);

X_B	b	x_1	x_2	x_3	x_4	χ_5		
x_2	5	23	1	0	- 5	3/2		
<i>x</i> ₃	5	-8	0	1	2	— 1/2		
σ _j		-16	0	0	-1	-1		

(2) 约束条件②的右端项大于等于80时,最优解不变。

五、(本题 10 分)

对偶问题的模型为

min
$$\omega = 8y_1 + 12y_2$$

$$\begin{cases} 2y_1 + 2y_2 \ge 2 \\ 2y_2 \ge 1 \\ y_1 + y_2 \ge 5 \\ y_1 + 2y_2 \ge 6 \\ y_1, y_2 \ge 0 \end{cases}, \qquad (4 \%)$$

利用对偶问题的性质,可知 $(x_1^*, x_2^*)=(0,0)$,3分

于是有
$$\begin{cases} x_3 + x_4 = 8 \\ x_3 + 2x_4 = 12 \end{cases}$$
,解之得 $(x_3^*, x_4^*) = (4, 4)$,

原问题的最优解为(0,0,4,4)..3分

六、(本题 15 分)

用 Vogel 法求得初始解见下表 (......8分):

	销地 A	销地 B	销地C	销地 D	产量
产地1	1	2	1		4
产地 2			3	6	9
产地3	4				4
销量	5	2	4	6	

	钥里	Э	2	4	Ö		
由位势法做最	最优性检验	之, 可知上	走表为最优	比解。		7分	•
七、(共14分	〉,第一小	题 6 分,	第二小是	题8分)			
(1) v1 到 v 最短路 (2) 一条可	为: v ₁	$\rightarrow v_2$	5	O .	••••	丁增加 2,	
再无可增广镇	连,因此最	大流为1	1.		••••		4 分
最小截集为{	$(v_s, v_1), (v_s, v_1)$	$(v_2), (v_3, v_6)$			•••	•••••	4 分
八、(本题6	分)						
基本方程为:		$\max_{0 \le x_i \le s_k} \{ \phi_k (\max_{x_n = s_n} \phi_n (x_n) \} $		$(s_k - x_k),$ $(s_{n+1}) = 0$	k = n, n - 1	1,…,1	4 分
状态转移方程	z为: s,	$s_1 = s_k - \lambda$ $s_1 = b$	c _k				2 分