Lecture #5: Bitcoin Mining

Recap: Bitcoin miners

Bitcoin depends on miners to:

- Store and broadcast the blockchain
- Validate new transactions
- Vote(by hash power) on consensus

Lecture 5.1 The task of Bitcoin miners

Setting the mining difficulty

Every two weeks, compute:

Next difficulty = previous difficulty * (2 weeks)/(time to mine last 2016 blocks)

Lecture 5.2 Mining hardware

SHA-256

- General purpose hash function
- Published in 2001
- Designed by NSA
- Reamins unbroken cryptographically
- SHA-3 (replacement) under standardization

CPU mining

Throughput on a high-end PC = $10-20 \text{ MHz} \sim 2^24$

GPU mining

- GPUs designed for high-performance graphics
 - High parallelism
 - High throughput

Advantages:

- Easily available, easy to set up
- Parallel ALUs
- Bit-specific instructions
- Can drive many from 1 CPU
- Can overlock!

Disadvantages:

- Poor utilization of hardware
- Poor cooling

- Large power draw
- Few boards to hold multiple GPUs

Throughput on a good card = $20 - 200 \text{ Mhz} \sim 2^27$

FPGA mining

• Field Programmable Gate Area

Advantages:

- Higher performance than GPUs
 - Excellent performance than GPUs
- Better cooling
- Extensive customization, optimization

Disadvantages:

- Higher power draw than GPUs designed for
 - Frequent malfunctions, errors
- Poor optimization of 32-bit adds
- Fewer hobbyists with sufficient expertise
- More expensive than GPUs
- Marginal performance/cost advantage over GPUs

Throughput on a good card = 100 - 1000MHz $\sim 2^30$

Bitcoin ASICs mining

Lecture 5.3 Energy consumption & ecology

Estimating energy usage: top-down

- Each block worth approximately US\$15,000
- Approximately \$25/s generated
- Industrial electricity(US): \$0.03/MJ
 - o \$0.10/kWh

Upperbound on electricity consumed: 900 MJ/s = 900 MW

Estimating energy usage: bottom-up

• Best claimed efficiency: 1GHz/W

• Network hash rate: 150,000,000 GHz

• (Excludes cooling, embodied energy)

Lower bound on electricity consumed: 150 MW

Lecture 5.4 Mining pools

Goal: pool participants all attempt to mine a block with the same coinbase recipient

• Send money to key owned by pool manager

Distribute revenues to members based on how much work they have performed

• Minus a cut for pool manager

Mining shares

Idea: prove work with "near-valid blocks" (shares)

Are mining pools a good thing?

- Pros
 - Make mining more predictable
 - o Allow small miners to participate
 - More miners using updated validation software
- Cons
 - Lead to centralization
 - o Discourage miners from running nodes

Lecture 5.5 Mining incentives and strategies

Game-theoretic analysis of mining

Forking attacks

- Certainly possible if alpha > 0.5
 - May be possible with less
 - Avoid block collisions
- Attack is detectable
- Might be reversed
- Might crash exchange rate

Block-withholding attack(selfish mining) Punitive forking Feather-Forking

Summary

Miners are free to implement any strategy

Very little non-default behavior in the wild No complete game-heretic model exists