The Structure of Mathematical Expressions

An ARXIV Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 21, 2012

Contents

C	ontei	nts	2	
1	Introduction			
	1.1	Motivation	3	
	1.2	Related Resources	3	
	1.3	Experimental Setup	4	
2	A Study of Mathematical Syntax			
	2.1	Basics	5	
	2.2	Discrete math	5	
	2.3	Continuous math	6	
	2.4	Other fields	11	
3	Dis	cussion	13	
4	Cor	nclusion	15	

Chapter 1

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover their linguistic phenomena. A practical motivation for this study is to provide a foundation for determining the boundary between syntactic and semantic phenomena in said expressions, from the perspective of language modeling. The ultimate goal of this project is to construct a grammar of mathematical expressions, which captures all relevant syntactic properties established in this study, and allows for the semantic analysis necessary to model and observe the semantic relationships.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

EdN:2

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.²

 $^{1}\mathrm{EdNote}$: expand

²EDNOTE: expand

Train1	Differential Geometry
	http://arxmliv.kwarc.info/files/9609/dg-ga.9609012
Train2	Quantum Physics
	http://arxmliv.kwarc.info/files/0910/0910.5733/
Train3	High Energy Physics - Theory
	http://arxmliv.kwarc.info/files/9407/hep-th.9407125/
Train4	Commutative Algebra
	http://arxmliv.kwarc.info/files/0809/0809.4873/
Train5	Statistics Theory
	http://arxmliv.kwarc.info/files/0905/0905.1486/
Train6	General Relativity and Quantum Cosmology
	http://arxmliv.kwarc.info/files/0807/0807.2507/
Train7	Cosmology and Extragalactic Astrophysics
	http://arxmliv.kwarc.info/files/0908/0908.2548
Train8	Exactly Solvable and Integrable Systems
	http://arxmliv.kwarc.info/files/0905/0905.2033
Train9	Geometric Topology
	http://arxmliv.kwarc.info/files/0809/0809.4477
Train10	Algebraic Geometry
	http://arxmliv.kwarc.info/files/0704/0704.0537

Table 1.1: Sandbox of Ten Random ARXIV Papers from Diverse Scientific Subfields

1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel pre-print archive "ARXIV"³, consisting of over 700,000 articles in 37 scientific subfields.

arXiv Sandbox

EdN:4

EdN:3

EdN:5

As a secondary resource, we we will also consult entry-level literature on high-school mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors.⁵

 $^{^3\}mathrm{EdNote}$: cite here

 $^{^4\}mathrm{EdNote}$: Say that, on the ArXIV front, we first start with the train sandbox from Deyan's

⁵EDNOTE: Wikipedia? PEMDAS?

Chapter 2

A Study of Mathematical Syntax

2.1 Basics

Foundations

6 7 8 EdN:6 EdN:7 EdN:8

High School

9 10 EdN:9 EdN:10

2.2 Discrete math

Set Theoretic Notations

EdN:11 EdN:12

Logical Operators

13 EdN:13

 $^{^6\}mathrm{EdNote}\colon$ arithmetic, grouping fences and equality

⁷EDNOTE: basic relations and orderings

⁸EdNote: arithmetic and algebraic sequences?

 $^{^9\}mathrm{EdNote}\colon$ geometry here, otherwise a separate geometry subsection

 $^{^{10}\}mathrm{Ed}\mathrm{Note}\colon$ trigonometry, complex and rational numbers

 $^{^{11}\}mathrm{EdNote}\colon$ elementhood, inclusions, set constructors, overloaded arith ops

 $^{^{12}\}mathrm{EdNote}\colon$ also maps : domains -¿ codomains, xRy notations

 $^{^{13}\}mathrm{EdNote}$: classic logic, HOL, type theories

Combinatorics

EdN:14

14 15

EdN:15

Number Theory

EdN:16

16 17 18 19

EdN:17

EdN:18

EdN:19

Graph Theory

20 21 22

EdN:20

EdN:21

EdN:22

Algebra

 $23\ 24\ 25\ 26$

EdN:23

EdN:24

EdN:25

EdN:26

Functions Theory

EdN:27

27

2.3 Continuous math

Calculus

EdN:28

28

¹⁴EDNOTE: Infinite sums

 $^{{\}rm ^{15}EDNote}:$ binomials, combinations, permutations,

 $^{^{16}\}mathrm{EdNote}$: modulo modifiers

 $^{^{17}\}mathrm{EdNote}$: tuples

 $^{^{18}{}m EdNote}$: divisibility notations $a\mid b$ and b/a

 $^{^{19}\}mathrm{EdNote}$: DLMF sneaky notations

 $^{^{20}\}mathrm{EdNote}$ edge and vertex notations

 $^{^{21}\}mathrm{EdNote}$: incidence and adjacency notations

²²EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory

 $^{^{23}\}mathrm{EdNote}$: vectors

 $^{^{24}\}mathrm{EdNote}\colon$ maps and complements

 $^{^{25}\}mathrm{EdNote}$: groups

²⁶EdNote: lattices

 $^{^{27}{\}rm EDNote}$: talk about associativity of application and composition, ";" and "o" as notation variants, discuss complex examples

 $^{^{28}\}mathrm{EdNote}$: differentials, integrals, limits, remember brownian motion integral notations!

Probability

29 30 EdN:29 EdN:30

Interval Notation and Arithmetic

31 EdN:31

Topology

32 EdN:32

Differential Geometry

Some intro text?

33 EdN:33

 $^{^{29}\}mathrm{EdNote}$: Bayes formula with multiple denotations of P $^{30}\mathrm{EdNote}$: Various conditional and joint probability notations $^{31}\mathrm{EdNote}$: introduce interval notations, then move to interval arithmetic

 $^{^{32}\}mathrm{EdNote}\colon$ manifold constructors and notations

 $^{^{33}\}mathrm{EdNote}\colon$ Complex named enttity: "U(1) Chern-Simons gauge theory."

	Expression	Meaning	Syntax	
1.	$(\mathcal{V}/\mathcal{Z},k\omega)$	symplectic torus	circumfix constructor	
	Discussion: [Train1]			
2.	Z	self-dual lattice	atom abbreviation	
	Discussion: [Train1]			
3.	(\mathcal{V},ω)	symplectic vector space	circumfix constructor	
	Discussion: [Train1]			
4.	$Lag(\mathcal{V})$	Lagrangian Grassmannian	circumfix constructor	
	Discussion: [Train1]			
5.	$Lag_4(\mathcal{V})$	4-fold covering space	applicative constructor	
	Discussion: [Train1]			
6.	\mathcal{M}_{Σ}	moduli space	scripted constructor	
	Discussion: [Train1]			
7.	Σ	Riemann surface	atom variable	
	Discussion: [Train1]			
8.	$H^1(\Sigma;\mathbb{R})$	chomology space	applicative constructor	
	Discussion: [Train1]			
9.	$H^1(\Sigma;\mathbb{R})/H^1(\Sigma;\mathbb{Z})$	torus	applicative constructor	
	Discussion: [Train1]			
10.	(M,ω)	symplectic manifold	circumfix constructor	
	Discussion: [Train1]			
11.	$f \in \mathcal{C}^{\infty}(M)$	smooth function	modified atom	
	Discussion: [Train1]			
12.	X_f	field	scripted constructor	
	Discussion: [Train1]			
13.		interior product	complex infix operator	
	Discussion: Formed via \mathop in TEX, [Train1]			
14.	$[\omega] \in H^2(M;\mathbb{R})$	cohomology class	modified complex object	
	Discussion: [Train1]			
15.	(\cdot,\cdot)	hermitian metric	notation pattern	
	Discussion: [Train1]			

Table 2.1: Differential Geometry Notations, Part $\boldsymbol{1}$

	Expression	Meaning	Syntax				
16.	$-2\pi i \omega$	curvature of ∇	arithmetic expression				
	Discussion: [Train1]						
17.	$(\mathcal{L}, abla)$	prequantum line bundle	circumfix constructor				
	Discussion: [Train1]						
18.	$U \subset M$	open subset	modified atom				
	Discussion: [Train1]						
19.	$\mathcal{L} _{U}$	restricted line bundle	modified atom				
Discussion: postfix restriction via " $ _U$ ", [Train1]							
20.	$s \in \Gamma(U; \mathcal{L})$	nonzero section	modified atom				
	Discussion: [Train1]						
21.	$\nabla s = -2\pi \mathrm{i}\thetas$	equation	relation				
	Discussion: [Train1]						
22.	$\omega _U = d\theta$	equation	relation				
	Discussion: [Train1]						
23.	T_xM	bundle	applicative constructor				
	Discussion: invisible infix bundle-form	ning operator, [Train1]					
24.	$\omega _{\mathcal{P}_x} \equiv 0$	equivalence	relation				
	Discussion: [Train1]						
25.	$\dim \mathcal{P}_x = \frac{1}{2} \dim T_x M$	equality	relation				
Discussion: dim has lower precedence than invisible bundle-formation, [Train1]							
26. $[X,Y] \in \mathcal{X}_{\mathcal{P}}(M)$ com		commutator is in set	relation				
	Discussion: used as verb phrase in ser	ntence, [Train1]					
27.	$ abla^{\mathcal{P}}$	covariant differentiation	scripted prefix op				
	Discussion: big op?, [Train1]						
28.	$\nabla^{\mathcal{P}}: \mathcal{X}_{\mathcal{P}}(M) \times \mathcal{X}_{\mathcal{P}}(M) \longrightarrow \mathcal{X}_{\mathcal{P}}(M)$ $(X, Y) \longmapsto \nabla_X^{\mathcal{P}} Y,$	domain specification	typing modifier				
	Discussion: alignment splits type statement, trailing comma [Train1]						
29. $(\nabla_X^{\mathcal{P}} Y) \perp \omega = X \perp d(Y \perp \omega)$. definit		definitional assignment	relation				
	Discussion: trailing dot, [Train1]						
30.	$\Pi_{\mathcal{P}}:M\to M/\mathcal{P}$	canonical projection map	typed modifier				
	Discussion: [Train1]						

Table 2.2: Differential Geometry Notations, Part 2 $\,$

	Expression	Meaning	Syntax
31.	T^g	g-dimensional torus	complex object
	Discussion:	script means dimensionality	y[Train1]
32.			
	Discussion:	[Train1]	
33.			
	Discussion:	[Train1]	
34.			
	Discussion:	[Train1]	
35.			
	Discussion:	[Train1]	
36.			
	Discussion:	[Train1]	
37.			
	Discussion:	[Train1]	
38.			
	Discussion:	[Train1]	
39.			
	Discussion:	[Train1]	
40.			
	Discussion:	[Train1]	
41.			
	Discussion:	[Train1]	
42.			
	Discussion:	[Train1]	
43.			
	Discussion:	[Train1]	
44.			
	Discussion:	[Train1]	
45.			
	Discussion:	[Train1]	
-			

Table 2.3: Differential Geometry Notations, Part 3 $\,$

Other fields 2.4

Quantum Physics

34 35 : EdN:34 EdN:35

 $^{^{34}{\}rm EDNote}$: Bra-ket notation $^{35}{\rm EDNote}$: computer science, biology, chemistry...

Chapter ${\mathcal Z}$

Discussion

Chapter 4

Conclusion