컴퓨팅 집약적 엣지 서비스 제공을 위한 서버 컴퓨팅 모듈 기술

㈜케이티엔에프 홍영찬이사 (ychong@ktnf.co.kr)

2021. 07. 08

SMART FACTORY

열악하고 다양한 현장

통신의 불안정

돌발상황 대처 (실시간)

독자 또는 협업 작업

IT 인력부족 대안

비용절감

Real time application

The communication delay is shortened by executing real-time applications near to the edge-servers.

초저지연

M2M/ big data applications

The network bandwidth is reduced by local data processing of M2M or big data applications.

대규모 데이터 필터링

Improve the user's experience

Offloading computation intensive processing from the user's device to edge servers.

컴퓨팅 오프로딩

출처: Frost Perspective on Edge Computing in Asia-Pacific, 2018)

• **엣지의 환경 요소 고려** 기기와 가까운 곳에서 실시간 저지연으로 **데이터를 전처리, 저장, 분석** ⇒ 실내/외 환경 감내

45% of IoT-created data will be stored, processed, analyzed, and acted upon close to or at the edge of the network. [출처: International Data Corporation (IDC), by 2019]

• 설치될 위치에 따라 환경 조건은 열악하며 다름.

MIL-STD-810G. 고온

설계 유형	위치	주위 공기 ℃ (°F)	유도2/ °C (°F)
기본 고온	미국 남서부, 멕시코 북서부, 호주의 중부와 서부, 아프리카의 사하라 사막 이남, 남미, 스페인 남부, 아시아	30~43	30~63
(A2)	남서부와 중남부인 고온건조 범주에서 바깥쪽의 확장하는 세계의 대부분	(86~110)	(86~145)
고온 건조	아시아 남서부와 중남부, 미국 남서부, 아프리카의 사	32~49	33~71
(A1)	하라 사막 이남, 호주의 중부와 서부, 멕시코 북서부	(90~120)	(91~160)

Factory 장비

좁은 공간 (온도, 먼지 등)

고온주기 (기본고온. A2)

			* */	
	주위 공기 조건		유도된 조건 (비동작)	
일중 시간	온도3/ °C (°F)	습도2/ % RH	온도3/ °C (°F)	습도2/ % RH
0100	33 (91)	36	33 (91)	36
0200	32 (90)	38	32 (90)	38
0300	32 (90)	41	32 (90)	41
0400	31 (88)	44	31 (88)	44
1100	41 (106)	21	51 (124)	14
1200	42 (107)	18	57 (134)	8
1300	43 (109)	16	61 (142)	6
1400	43 (110)	15	63 (145)	6
1500	43 (110)	14	63 (145)	5
1600	43 (110)	14	62 (144)	6
1700	43 (109)	14	60 (140)	6
1800	42 (107)	15	57 (134)	6

고온주기 (고온건조, A1)

	주위 공기 조건		유도된 조건 (비동작)	
일중 시간	온도3/ °C (°F)	습도2/ % RH	온도3/ °C (°F)	습도2/ % RH
0100	35 (95)	6	35 (95)	6
0200	34 (94)	7	34 (94)	7
0300	34 (93)	7	34 (94)	7
0400	33 (92)	8	33 (92)	7
1000	41 (106)	5	51 (124)	3
1100	43 (110)	4	56 (133)	2
1200	44 (112)	4	63 (145)	2
1300	47 (116)	3	69 (156)	1
1400	48 (118)	3	70 (158)	1
1500	48 (119)	3	71 (160)	1
1600	49 (120)	3	70 (158)	1
1700	48 (119)	3	67 (153)	1
1800	48 (118)	3	63 (145)	2

1. 엣지컴퓨팅 사용현장 - 고려사항

• 엣지컴퓨팅의 6가지 주요 이슈 키워드

출처 : 슈나이더일렉트릭

출처: Frost Perspective on Edge Computing in Asia-Pacific, 2018)

가혹한산업현장에 강인하고 엣지에서 요구되는 저지연데이터 처리와 저장역할에 따라가변적으로 확장· 재구성이 가능한 섀시 구조에 "컴퓨팅 모듈+스토리지 모듈 + 시스템 SW"기능이 통합된 어플라이언스 형태의 컴퓨팅 시스템

• 중앙 데이터센터는 스마트기기 데이터 처리에 100ms이상 지연이 있으나 로컬 엣지서버에서 처리 시 10ms 이내 응답 가능

가혹한산업현장에도운영가능하며,가변적으로확장가능 (시스템SW포함)

클라우드 엣지 SW 플랫폼

클라우드·엣지분산 협업을 기반으로 응답속도 민감형 서비스를 지원

「엣지서버시스템」 추진일정

4차년도(2023) 1차년도(2020) 2차년도(2021) 3차년도(2022) 엣지서버시스템 요구사항 정의 및 엣지서버 시스템 프로토타입개발 엣지서버시스템시제품개발 및 엣지서버 통합시스템제작 및 규격설계 세부과제 연동 검증 시범서비스 및 공인인증시험 엣지서버 백플레인 엣지서버 시스템 규격 프로토타입개발 설계 클라우드엣지 엣지서버시스템시제품 스위치모듈및네트워크 연동테스트 수요처 개발및검증 엣지서버시스템 모듈프로토타입개발 시범서비스 백플레인/네트워크설계 통힙시스템 시작품제작 시스템원격관리및제어 시스템Endosure 시스템Endosure설계및 공인인증 기술시제품화 규격 프로토타입개발 프로토타입 시제품 개발 목업개발 시험 시범서비스 설계 개발 및 및 세부과제 세부과제통합연동검증 시스템 관리및제어모듈 시스템 관리및제어기술 통합 검증 연동 (세부1, 2,3) H/W및펌웨어개발 설계 사업화 추진 컴퓨팅모듈프로토타입개발 컴퓨팅 /스토리지모듈 군용 서버 컴퓨팅모듈기술설계 Stand-alone엣지서버개발 시제품검증 스마트 팩토리 스토리지 모듈프로토타입 시스템SW모듈확장기술 MEC 엣지컴퓨팅 스토리지 모듈기술설계 개발 시장 개발 서버 시장 시스템SW개발 시스템SW기술설계 Stand-alone엣지서버사업화 엣지서버시스템사업화

KTNF

1) 열악한 환경 고려 - 러기드시스템

2) 서비스환경에 따라 확장·재구성이 가능한 - Scale-up / Scale-out 구조 (네트워크)

설비투자 필요, 고정식

설비투자 없음, 이동식

3. 결론

엣지컴퓨팅 6가지 주요 키워드에 비춰본 개발 현황

- 열악한 환경을 위해
- \Rightarrow (Locality)
- 러기드 서버 시스템 (-21℃~63℃, IP5 등)
- 이동성이 고려된 시스템 구조 (Half Rack size)
- 서비스환경에 따라 확장·재구성을 위해 ⇒ (Scalability, Bandwidth)
- Scale-up / Scale-out 구조 (4 node 시스템)
- 고성능 확장 네트워크 구조
- 저지연 서비스를 위해
- \Rightarrow (Latency)
- 고성능 컴퓨팅 모듈: 고성능(프로세스+메모리+인터페이스)
- 연산 분산 및 협업, AI 모듈 적용
- 관리의 수월성을 위해
- ⇒ (Availability)
- 샤시 관리 모듈을 이용한 컴퓨팅 모듈과 시스템 관리
- 원격관리SW를 통한 멀티 시스템 원격 관리
- 안정성 확보를 위한 이중화 구조 채택

엣지컴퓨팅의 6가지 주요 이슈 키워드

감사합니다

Thank you