CSP 571 Data Preparation and Analysis

Quiz - 2

Question 1	
Resampling methods can be used for the following:	
o a. Model selection	
O b. Neither model assessment nor model selection.	
○ c. Model assessment	
o d. Both model assessment and model selection.	
Question 2	
In logistic regression, the log-odds ratio of the response	variable is modeled as:
Non-Parametric	
Linear	
○ None of the Above	
O Non-Linear	
Question 3	
Linear regression models cannot be applied to qualitativ	e response variables directly as categorical responses lack:
O Distance Measures	
○ Coloring	
None of the Above	
Ordering	
Question 4	
Estimation of coefficients $\boldsymbol{\beta}_0, \boldsymbol{\beta}_1$ within simple logistic re	gression involves a likelihood function that is subsequently:
○ Set to 0	
○ None of the Above	
Maximized	
○ Minimized	
Question 5	
The LDA classifier attempts to use a linear discriminant function to a	proximate the following decision boundary (and associated classifier):
○ kNN	
O Both of the Above	
Bayes	
None of the Δhove	

Question 6

Linear Discriminant Analysis (LDA) allows for separation of observations into K classes, all of which have a shared
○ Skewness
\circ μ
○ Kurtosis
\bullet σ^2
Question 7
The bootstrap method involves sampling from a set of observations
 a, in the original order of the observations.
b, with replacement.
 c. without any values appearing more than once.
o d, without replacement.
Question 8
When using leave-one-out cross-validation (LOOCV) for a data set consisting of n observations with d features, the size of each training set for the procedure will be
○ a. <i>n</i> + 1
○ b. <i>d</i> − 1
\bigcirc c. $d+1$
Question 9
The estimate of test error from leave-one-out cross-validation will have a lower bias than k-fold cross-validation, but will also have a higher variance due to all trained models being highly biased.
a, biased. ▶, correlated.
○ c. optimal.
○ d, diversified.
Question 10
For k-fold cross-validation, each training set will be the following size:
\bigcirc a. k
○ b. <u>n</u>
\overline{k}
$ \bullet $ c. $\frac{n}{k}(k-1)$
$\frac{1}{k}(k-1)$
\bigcirc d. $n-k$