An Introduction to Machine Learning
Blaine Sundrud

Agenda

- Define key terms and concepts
- Explain the machine learning (ML) pipeline
- Discuss using the ML pipeline to solve a real-world business problem

ML Problem Framing

Is ML the right solution for the business problem?

Business Problem: How to route customers to agent with right skill?

Call center example

ML Pipeline

Three ML problems

- 1. Binary: Two groups
- 2. Multi-class: More than two groups
- 3. Regression: Continuous vales

Types of data

There are three types of data.

From features to prediction

Single data point

Together, the features and the labels make up a single data point.

Representative features

Ratio of features to data points

A general rule of thumb here is you should have 10 times the number of data points as features.

Data Preparation

Role in the data prep phase

Your job in the data prep phase is to *manually* and critically explore your data.

- ? What features are there?
- ? Does it match expectations?
- ? Is there enough information to make accurate prediction?

Role in the data prep phase

Your job in the data prep phase is to *manually* and critically explore your data.

Confirm all labels are relevant to the ML problem.

- ? What features are there?
- ? Does it match expectations?
- ? Is there enough information to make accurate prediction?
- ? Should any labels be excluded?
- ? Are any labels not entirely accurate?
- ? What skills?
- ? Are there similar skills?
- ? Can skills be combined?
- ? What happens for incorrect routes?
- ? Could agent answer questions from incorrect routes?

Data Visualization & Analysis

Choosing the right algorithm

- 1. Supervised
- 2. Unsupervised
- 3. Reinforcement
- 4. Deep Learning

A programmatic analysis

^{*}Percentages are greater than 100% because some callers called about more than one issue.

Data Visualization & Analysis

Supervised algorithms

Unsupervised algorithms

Input/output relationship is known.

Input/output relationship is unknown.

★ Large order from suspicious address

Invention of convolutional neural networks

Feature Selection & Engineering

Feature engineering

Helps to answer questions like:

Do these features make sense for my prediction?

How can I engineer features based on visualizations?

Feature engineering by visualizing data

Location of customers calling about tracking

Feature engineering from our use case

Most recent order	Date/Time of most recent order	Owns a Kindle
hat	01/13/2018, 1PM	yes

Days since last order

72 days

Feature engineering in image classification

Raw Image

High level features

Line = edges

Model Training

A helpful data analysis tool

https://scikit-learn.org/stable/

Types of hyperparameter tuning

- Loss function
- Regularization
- Learning parameters

https://scikit-learn.org/stable/

Bias
The gap between predicted value and actual value

Variance
How dispersed your
predicted values are

Hyperparameter

Hyperparameter

How quickly the model learns the weights

Parameter

Label unknown?

Model Evaluation

Accuracy and precision

Accuracy

Total # Predictions

True Positives

True Positives + False Negatives

Compare your algorithm to others in its class

Supervised

- Regression analysis
- Decision trees
- K-nearest neighbors
- Neural networks

Unsupervised

- K-means clustering
- Anamoly detection
- Neural networks

Reinforcement

- Q-learning
- SARSA

See how the model does with other algorithms

Supervised algorithm

Prediction

Amazon SageMaker

Model production data and re-train

Pre-check

Make sure your new ML solution is compared against your existing baseline in a fair manner

Is the difference significant?

Amazon's intelligent routing solution

Was based on a simple classification task

Is the difference significant?

20%

reduction