18.02 Practice Exam 2B Thursday, Mar. 15, 2006 1:05–1:55

Problem 1.

Let $f(x,y) = xy - x^3$.

- a) Sketch the level curve of f(x, y) passing through the origin. Indicate the sign of f in the regions delimited by the level curve.
- b) The function f has a critical point at the origin. Use your sketch to determine the type of critical point.
- c) Find the gradient of f at P:(1,1).
- d) Give an approximate formula telling how small changes Δx and Δy produce a small change Δw in the value of w = f(x, y) at the point (x, y) = (1, 1).

Problem 2. (15 points)

On the topographical map below, the level curves for the height function h(x, y) are marked (in feet); adjacent level curves represent a difference of 100 feet in height. A scale is given.

- a) Estimate to the nearest .1 the value at the point P of the directional derivative $\left(\frac{dh}{ds}\right)_{\hat{u}}$, where \hat{u} is the unit vector in the direction of $\hat{\mathbf{i}} + \hat{\mathbf{j}}$.
- b) Mark on the map a point Q at which $h=2200, \frac{\partial h}{\partial x}=0$ and $\frac{\partial h}{\partial y}<0$. Estimate to the nearest .1 the value of $\frac{\partial h}{\partial y}$ at Q.

Problem 3. (10 points)

Find the equation of the tangent plane to the surface $x^3y + z^2 = 3$ at the point (-1, 1, 2).

Problem 4. (25 points: 5,5,5,10)

A rectangular box is placed in the first octant as shown, with one corner at the origin and the three adjacent faces in the coordinate planes. The opposite point P:(x,y,z) is constrained to lie on the paraboloid $x^2 + y^2 + z = 1$. Which P gives the box of greatest volume?

a) Show that the problem leads one to maximize $f(x,y) = xy - x^3y - xy^3$, and write down the equations for the critical points of f.

- b) Find a critical point of f which lies in the first quadrant (x > 0, y > 0).
- c) Determine the nature of this critical point by using the second derivative test.
- d) Instead of substituting for z, one could also use Lagrange multipliers to maximize the volume V = xyz with the same constraint. Write down the three equations involving the multiplier λ that one would need to solve.

Problem 5. (10 points)

Let w = f(u, v), where u = xy and v = x/y. Using the chain rule, express $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ in terms of x, y, f_u and f_v .

Problem 6. (15 points)

Suppose that $x^2y + xz^2 = 5$, and let $w = x^3y$. Express $\left(\frac{\partial w}{\partial z}\right)_y$ as a function of x, y, z, and evaluate it numerically when (x, y, z) = (1, 1, 2).