3 ACIDO-BASICITÉ ET COMPLEXATION

3.1 Propriétés acides du cation

Certains cations métalliques possèdent des propriétés acides : ils peuvent réagir avec l'eau, capter un ion hydroxyde et libérer un proton \mathcal{H}^+ :

$$Fe^{3+} + 2H_2O = [Fe(OH)]^{2+} + H_3O^{+}$$

Le couple $\text{Fe}^{3+}/[\text{Fe}(\text{OH})]^{2+}$ est un couple acido-basique caractérisé par un p $K_A=3,7$. Il s'agit d'une écriture simplifiée. En réalité c'est le cation complexé par l'eau qui réagit :

$${\rm [Fe(H_2O)_6]^{3+} + H_2O = \! [Fe(H_2O)_5(OH)]^{2+} + H_3O^+}$$

Ces propriétés acides sont dues à la forte charge du cation : il attire les électrons des liaisons O-H présentes dans les ligands aqua H_2O et polarise très fortement les atomes d'hydrogène. Plus le caton est petit et chargé, plus le complexe hexaaqua est acide.

3.2 Ligands basiques, destruction du complexe en milieu acide

3.2.1 Réaction prépondérante généralisée

Supposons deux équilibres réalisés simultanément en solution aqueuse dont les constantes d'équilibre sont respectivement notées K_1^0 et K_2^0 :

$$A = B + C$$

$$B + D = E$$

A et D sont introduits initialement à des concentrations $c_{0,A}$ et $c_{0,D}$ du même ordre de grandeur. Si $K_1^0 << K_2^0$, l'espèce B est présente en très faible quantité : elle est consommée plus fortement par le second équilibre qu'elle n'est produite par le premier. On peut écrire les tableaux d'avancement des deux équilibres, en introduisant les avancement volumique x_1 et x_2 :

$$egin{array}{cccccc} A & = & B & + & C \ ext{\'etat initial} & c_{0,A} & & 0 & & 0 \ ext{\'etat final} & c_{0,A} - x_1 & & x_1 & & x_1 \end{array}$$

$$\begin{array}{cccccc} & D & + & B & = & E \\ \text{état initial} & c_{0,D} & & 0 & & 0 \\ \text{état final} & c_{0,D} - x_2 & & x_1 - x_2 & & x_2 \end{array}$$

L'approximation de la **réaction prépondérante généralisée** consiste à considérer que la concentration de l'espèce B est nulle, ainsi $x_1 = x_2 = x$, et on a donc un équilibre simplifié :

3.2.2 Application aux réactions de complexation

Les ligands L sont des molécules ou des ions qui ont souvent des propriétés basiques. Ils sont donc susceptibles de réagir avec l'eau :

$$L + H_2O = LH^+ + HO^ K_B$$

Considérons un complexe ML où L est un ligand basique. Ce complexe est engagé dans un équilibre de dissociation de constante K_d :

$$ML = M + L$$

En présence d'eau, si $K_B >> K_d$, l'espèce L est minoritaire et n'intervient plus dans l'équilibre lorsqu'on applique l'approximation de la réaction prépondérante généralisée :

$$ML + H_2O = M + LH^+ + HO^-$$

En milieu acide, c'est à dire en présence de protons H⁺, on ajoute l'équilibre suivant :

$$H^{+} + HO^{-} = H_{2}O$$
 $\frac{1}{K_{e}}$

La réaction prépondérante généralisée, s'écrit donc en milieu acide :

$$ML + H^+ = M + LH^+ \qquad K_d \frac{K_B}{K}$$

Il s'agit d'une réaction mettant en jeu simultanément les propriétés complexantes et les propriétés basiques du ligand. Cette réaction traduit la compétition en solution entre l'affinité du ligand L pour l'ion métallique M et l'affinité du ligand L pour le proton H^+ .

Exemple : Le complexe $[\text{FeF}]^{2+}$ est caractérisé par la constante de dissociation $K_d=10^{-5}$. Lors d'un ajout d'acide fort, le complexe réagit : les ions fluorure F^- ont un rôle basique, le couple HF/F^- est caractérisée par une constante d'acidité $K_A=10^{-3,2}$. Le complexe $[\text{FeF}]^{2+}$ intervient dans l'équilibre de dissociation suivant :

$$[\text{FeF}]^{2+} = \text{Fe}^{3+} + \text{F}^{-}$$
 $K_d = 10^{-5}$

Cet équilibre forme des ions fluorure en solution qui peuvent réagir avec l'acide fort selon la réaction suivante :

$$H_3O^+ + F^- = H_2O + HF$$
 $\frac{1}{K_A} = 10^{3,2}$

La réaction chimique peut se traduire par la **réaction prépondérante généralisée**, qui est la somme des deux équilibres précédents :

$${
m H_3O^+ + [FeF]^{2+} = Fe^{3+}H_2O + HF}$$
 $K^0 = \frac{K_d}{K_A} = 10^{-5+3.2} = 10^{-1.8}$

Ainsi on voit que la dissociation du complexe est plus importante en présence d'un acide fort.

3.3 Influence de la complexation sur la force d'un acide

Inversement l'acidité d'un acide HL est augmentée par l'ajout d'un cation métallique M^+ susceptible de se complexer fortement avec le ligand L^- . L'action de l'eau sur l'acide HL s'écrit :

$$HL + H_2O = H_3O^+ + L^ K_A < 1$$

Et la formation du complexe ML s'écrit :

$$M^+ + L^- = ML \qquad \beta > 1$$

La réaction prépondérante généralisée s'écrit donc :

$$HL + H_2O + M^+ = H_3O^+ + ML$$
 $K^0 = K_A\beta > K_A$

Exemple : Considérons l'acide borique HBO_2 . Il est très difficile de doser cet acide par de la soude en utilisant un suivi pH-métrique. En effet le couple HBO_2/BO_2^- a un p $K_A = 9, 3$, ce qui est trop élevé pour observer un saut de pH lors du titrage. Une solution consiste à ajouter un ligand (le mannitol symbolisé par Ma) possédant la proriété de former un complexe avec les ions borate BO_2^- :

$${\rm BO_2}^- + 2Ma {=} [Ma_2 {\rm BO_2}]^- \qquad \qquad \beta = 10^{4,7}$$

Ainsi, l'action de l'acide dans l'eau en présence de mannitol est décrite par la **réaction prépondérante** généralisée :

$$\text{HBO}_2 + \text{H}_2\text{O} + 2Ma = [Ma_2\text{BO}_2]^- + \text{H}_3\text{O}^+$$
 $K^0 = K_A\beta = 10^{-9.3+4.7} = 10^{-4.6}$

Le titrage de l'acide borique par la soude est rendu possible par le mannitol : l'acide borique a maintenant un pK_A apparent égal à 4,6. Ceci permet d'observer le saut de pH. On parle de dosage d'acide très faible par exaltation d'acidité.