Theorem If X is an exponential random variable, then $X^{1/\beta}$ is a Weibull random variable.

 ${f Proof}$ Let the random variable X have the exponential distribution with probability density function

$$f_X(x) = \frac{1}{\alpha} e^{-x/\alpha}$$
 $x > 0$.

The transformation $Y=g(X)=X^{1/\beta}$ is a 1–1 transformation from $\mathcal{X}=\{x\,|\,x>0\}$ to $\mathcal{Y}=\{y\,|\,y>0\}$ with inverse $X=g^{-1}(Y)=Y^{\beta}$ and Jacobian

$$\frac{dX}{dY} = \beta Y^{\beta - 1}.$$

By the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$= \frac{1}{\alpha} \beta y^{\beta - 1} e^{-y^{\beta}/\alpha}$$

$$= \frac{\beta}{\alpha} y^{\beta - 1} e^{-y^{\beta}/\alpha} \qquad y > 0,$$

which is the probability density function of a Weibull random variable.

APPL verification: The APPL statements

yield the probability density function given above.