Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	10 October 2022		
Team ID	PNT2022TMID20847		
Project Name	Detecting Parkinson's Disease using Machine		
	Learning		
Maximum Marks	4 Marks		

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)		
FR-1	User Accessibility	The accessibility is given to the doctors for the purpose		
		of identification of the disease.		
FR-2	HOG	Sub task:		
		 Image preprocessing 		
		Feature descriptor		
		Hog is highly accurate.		
FR-3	Random Forest Algorithm	This ML algorithm is used to diagnose the PD severity		
		from the handwriting of an individual		
FR-4	EHR Encryption	If malware gets into a server, encrypting sensitive data		
		items will reduce the amount of valuable information it		
		can steal.		
FR-5	Spiral and wave image inputs	These inputs help in distinguishing a healthy individual		
		from a Parkinson's affected individual.		

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description			
NFR-1	Usability	This model is useful in detecting the disease at an			
		early stage and helps in taking preventive measures.			
NFR-2	Security	Data encryption protects information on servers.			
		Patients are better protected from identity theft.			
NFR-3	Reliability	Random Forest Algorithm is used in this model			
		because the accuracy obtained is greater than any			
		other ML algorithm.			
NFR-4	Performance	Due to early detection of the disease, the symptoms			
		can be controlled and the cost of illness is greatly			
		reduced.			
NFR-5	Availability	Currently, there is no cure for Parkinson's disease.			
		Using this model early detection is possible			
NFR-6	Scalability	Both random forest and hog are highly scalable in			
		nature			