Implementing Boolean Functions with Multiplexers

- The most common applications of a multiplexer is its use for implementation of combinational logic Boolean functions
- The simplest technique for doing so is to employ a 2n-to-1 MUX to implement an n-variable Boolean function..
- The input lines corresponding to each of the minterms present in the Boolean function are made equal to logic '1' state.
- The remaining minterms that are absent in the Boolean function are disabled by making their corresponding input lines equal to logic '0'.

26-09-2015

8-to-1 MUX for implementing the Boolean function given by the equation

$$f(A, B, C) = \sum 2, 4, 7$$

26-09-2015

Cascading Multiplexer Circuits

- A multiple number of devices of a given size can be used to construct multiplexers that can handle a larger number of input channels
- For instance, 8-to-1 multiplexers can be used to construct 16-to-1 or 32-to-1 or even larger multiplexer circuits.

Example 8.3

- Design a 16-to-1 multiplexer using two 8-to-1 multiplexers having an active LOW ENABLE input.
- Two 8-to-1 multiplexers having an ENABLE input.
 - The ENABLE input is taken as the fourth selection variable occupying the MSB position.
 - Figure shows the complete logic

Implementing Functions Using Decoders

- Any n-variable logic function can be implemented using a single n-to-2ⁿ decoder to generate the minterms
 - OR gate forms the sum.
 - The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.

- Any combinational circuit with n inputs and m outputs can be implemented with an n-to- 2^n decoder with m OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Implementing Functions Using Decoders

• Example: Full adder

 $S(x, y, z) = \Sigma (1,2,4,7)$ $C(x, y, z) = \Sigma (3,5,6,7)$

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Standard MSI Binary Decoders Example

74138 (3-to-8 decoder)

- (a) Logic circuit.
- (b) Package pin configuration.
- (c) Function table.

	Inp	uts				Outputs								
Er	able		Sele	et	Ì									
GI	<u>G2</u> *	C	В	A	10	¥1	7.5	1'3	1.1	¥5	16	17		
Н	L	L	L	L	L	н	Н	Н	Н	Н	Н	Н		
H	L	L	L	H	Н	L	H	H	H	H	H	H		
H	L	L	H	L	н	H	L	H	H	H	H	H		
H	L	L	H	H	Н	H	H	L	H	H	H	H		
H	L	Н	L	L	Н	H	H	H	L	H	H	H		
H	L	Н	L	H	Н	H	H	H	H	L	H	H		
H	L	H	H	L	Н	H	H	H	H	H	L	H		
H	L	Н	H	H	Н	H	H	H	H	H	H	L		
×	H	×	×	×	Н	H	H	H	H	H	H	Н		
L	×	×	×	×	H	H	H	H	H	H	H	H		
				$\overline{G2}$	* = ($\overline{G2A}$	+ G	$\overline{2B}$						
						(c)								

Building a Binary Decoder with NAND Gates

- Start with a 2-bit decoder
 - Add an enable signal (E)

Note: use of NANDs

only one 0 active!

(a) Logic diagram

(b) Truth table

Fig. 4-19 2-to-4-Line Decoder with Enable Input

Use two 3 to 8 decoders to make 4 to 16 decoder

- Enable can also be active high
- In this example, only one decoder can be active at a time.
- x, y, z effectively select output line for w

Fig. 4-20 4×16 Decoder Constructed with Two 3×8 Decoders

BCD Display or 7 segment

	deci mal	Α	В	С	D	а	b	С	d	е	f	g
	0	0	0	0	0	1	1	1	1	1	1	0
	1	0	0	0	1	0	1	1	0	0	0	0
	2	0	0	1	0	1	1	0	1	1	0	1
	3	0	0	1	1	1	1	1	1	0	0	1
	4	0	1	0	0	0	1	1	0	0	1	1
	5	0	1	0	1	1	0	1	1	0	1	1
	6	0	1	1	0	1	0	1	1	1	1	1
	7	0	1	1	1	1	1	1	0	0	0	0
	8	1	0	0	0	1	1	1	1	1	1	1
	9	1	0	0	1	1	1	1	1	0	1	1
	10	1	0	1	0	Х	Χ	X	Х	Χ	Χ	Х
	11	1	0	1	1	Х	Χ	Х	Х	Χ	Х	Х
	12	1	1	0	0	Х	Χ	X	Х	Χ	Х	Х
	13	1	1	0	1	Х	Х	Χ	Х	Χ	Χ	Х
	14	1	1	1	0	X	Х	Х	Х	Χ	Х	Х
-09 <u>-</u>	15 2015	1	1	1	1	Х	Χ	Χ	Χ	Χ	Х	Х

$$b = \overline{B} + \overline{C}\overline{D} + CD$$

$$c = B + \overline{C} + D$$

$$\mathbf{d} = \mathbf{B}\mathbf{\bar{D}} + \mathbf{\bar{B}C} + \mathbf{B}\mathbf{\bar{C}D} + \mathbf{A}$$
26-09-2015

$$e = \overline{B}\overline{D} + C\overline{D}$$

$$f = A + \overline{C}\overline{D} + B\overline{C} + B\overline{D}$$

 $g = A + B\overline{C} + \overline{B}C + C\overline{D}$ 26-09-2015