Modeling the Formation of Rain

in Hi-Performance Erlang

John Tyree Universiteit van Amsterdam

Project Goals

- Believably simulate rain formation
 - Opes it require high humidity?
 - O High wind?
 - O Huge spaces?

- Gain experience in functional programming
 - Erlang and HiPE
 - o Is it suited for what we do?

Nascent clouds

- Vapor
- Condensation nuclei
 - o Air temp @ dewpoint.
 - Salts, pollutants, ash
 - 0.001 0.05 mm diameter¹
 - Negligible gravitational effects

- [Coalescence -> Drop Formation] -> Rain
 - Upper limit: ~4mm

Rain formation in the lower atmosphere.

http://www.ndsu.edu/ndsco/education/thunderstorms/images/CumulusCloud.jpg

How do we model this?

- Domain representation:
 - Synchronized "cellular semi-automata"
 - Multi-scale: Drops < > Clouds

 Apply expert rules based on both large scale meteorology and small scale physics of water droplet interaction

How do we model this?

Large Scale

- Updraft wind force
- Lateral wind force
- Gravitational force
- Relative humidity effects

Small Scale

- Coalescence frequency
- Collision detection
- Terminal Velocity
- Splitting

Rain formation in the lower atmosphere.

http://www.ndsu.edu/ndsco/education/thunderstorms/images/CumulusCloud.jpg

Large Scale

Wind conditions:

- DY = Gravitational Movement Partially stochastic updraft
- DX = Partially stochastic wind speed.

Humidity Conditions:

- "Vapor" continuously added
 - Relative humidity determines density
 - Size range 0.001mm, 0.05mm. ("Rain" at 0.5mm)

Small Scale

Coalescence frequency:

- Difficult to solve numerically
- Used values from literature:
 - Small drops have high rates
 - High size ratios have high rates
 - Very large drops often disintegrate

FIG. 1. Coalescence efficiencies determined from Eq. (16), which relies on efficiencies from BO95 for $d_s < 0.3$ mm, from LL82a for $d_s > 0.5$ mm, and an interpolation formula from S05 between the two. Efficiencies were obtained at a temperature of 20°C and pressure of 1013 hPa.

Source: Jacobson (2010)

Small Scale

Collision detection

Euclidean distance:

$$E = \frac{d^2}{(r_1 + r_2)^2}$$

where

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Source: Intro. To Computational Science

Small Scale

Terminal Velocity:

- From literature:
 - 0.05 mm -> 0.07 m/s
 - $\circ 0.2 \text{ mm} -> 0.7 \text{ m/s}$
 - \circ 1 mm -> 4.0 m/s
- Interpolation between values

Diameter (mm) Velocity (m/s) 0.1 0.27 0.2 0.72 0.3 1.17 0.4 1.62 0.5 2.06 0.6 2.47 0.7 2.87 0.8 3.27 0.9 3.67 1.0 4.03 1.2 4.64 1.4 5.17 1.6 5.65 1.8 6.09 2.0 6.49 2.2 6.90 2.4 7.27 2.6 7.57 2.8 7.82 3.0 8.06 3.2 8.26

Source: Gunn and Kinzer (1949)

Raindrops != Teardrops

Air Resistance vs Cohesion

Simulation implementation

Environment:

- Determine values from literature:
 - Relative Humidity: 1
 - Updraft Speed:
 - Minimum: 0
 - Maximum: >100 km/h
 - Coalescence Efficiency (previously shown)
 - Split frequency distribution:
 - 1.5mm -> approx. 0.5
 - 3mm -> approx. 1
 - Vapor drop size
 - Normally distributed
 - Mean -> 0.025
 - Stddev -> 0.006

Source: http://ncar.ucar.edu/learn-more-about/weather

So is it going to rain or not?

Simulated Clouds

Ratio of lateral wind speed to relative humidity

High Low

No rain -> Light rain -> Medium rain -> Cats and Dogs

Low (or too high)

Strength of updraft

Of course dependent on domain size.

Rain formation in the lower atmosphere.

http://www.ndsu.edu/ndsco/education/thunderstorms/images/CumulusCloud.jpg

Simulated Clouds

Increasing Storm Strength

Lateral Wind (m/s)	5	1	1	1	0.5	0
Relative Humidity	1	0.1	0.5	1	1	1
Updraft (m/s)	2	2	2	2	2	5
Max Drop Radius (mm)	0.4	0.54	0.9	1.2	1.5	2
Avg Max Drop Radius (mm)	0.25	0.3 <i>f</i>	0.65	0.9	1.1	1.5

Not Rain

Rain

Simulation implementation

Problems and work-arounds:

- Clouds are absolutely enormous compared to drops
 - Scale movement down (this was a challenge)
 - Possibly "overlapping" drops to increase drop count
 - Scale lateral wind down significantly
 - What about updraft cycles?

- Erlang doesn't use enormous O(1) access arrays
 - Store drops as a hash table.
 - Aggravates size problem even further.

References

- National Center for Atmospheric Research (2008). "Hail". University Corporation for Atmospheric Research.
- "Numerical Solution to Drop Coalescence/Breakup with a Volume-Conserving, Positive-Definite, and Unconditionally Stable Scheme", M. Z. JACOBSON, Jour. of Atmos. Science 2010
- "The Development of the HiPE system: design and experience report", http://user.it. uu.se/~kostis/Papers/hipe-sttt.pdf

What is Erlang?

- Functional
 - Declarative, not Imperative
- Distributed
 - Abstract processes
 - Message Passing
- High Availability
 - Process monitoring
 - Supervision trees
- Massively Scalable
 - Architecture agnostic
 - VM -> Nodes -> LWPs

Sounds great! Right?

What is Erlang?

- Cross-Platform
 - OBEAM VM
- Light Weight Processes (LWP)
 - New processes cost approx. 300 words
 - Can easily number in the tens of thousands
 - Cheap messaging
 - Single context

Sounds great! Right?

What is Erlang?

Answer:

SLOW

But wait!

What is HiPE?

Hi-performance Erlang!

- Native compilation.
- 5-10 x speedup for number intensive workloads.
- Can beat python in some cases

What is HiPE?

Hi-performance Erlang!

STILL PRETTY SLOW

What is HiPE?

Hi-performance Erlang!

Avoid

QUESTIONS?