```
import numpy as np
import pandas as pd
import matplotlib.pyplot as mtp
%matplotlib inline

from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

dataset=pd.read_csv("/content/drive/MyDrive/Personal/Studies/MSC Data Science Material/SEM2/ML/Practical/data_set/student_scores.csv")

dataset

□→		Hours	Scores	7
	0	2.5	21	•
	1	5.1	47	
	2	3.2	27	
	3	8.5	75	
	4	3.5	30	
	5	1.5	20	
	6	9.2	88	
	7	5.5	60	
	8	8.3	81	
	9	2.7	25	
	10	7.7	85	
	11	5.9	62	
	12	4.5	41	
	13	3.3	42	
	14	1.1	17	
	15	8.9	95	
	16	2.5	30	
	17	1.9	24	
	18	6.1	67	
	19	7.4	69	
	20	2.7	30	
	21	4.8	54	
	22	3.8	35	
	23	6.9	76	
	24	7.8	86	

x=dataset.iloc[:,:1].values
x

[8.9], [2.5], [1.9], [6.1],

```
[2.7],
             [4.8],
             [3.8],
             [6.9],
             [7.8]])
y=dataset.iloc[:,1].values
     array([21, 47, 27, 75, 30, 20, 88, 60, 81, 25, 85, 62, 41, 42, 17, 95, 30,
            24, 67, 69, 30, 54, 35, 76, 86])
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test= train_test_split(x,y, test_size=1/3, random_state=0)
x_train
     array([[1.1],
             [5.1],
             [7.7],
             [3.3],
             [8.3],
             [9.2],
             [6.1],
             [3.5],
             [2.7],
             [5.5],
             [2.7],
             [8.5],
             [2.5],
             [4.8],
             [8.9],
             [4.5]])
x_test
     array([[1.5],
             [3.2],
             [7.4],
             [2.5],
             [5.9],
             [3.8],
             [1.9],
             [7.8],
             [6.9]])
y_train
     array([17, 47, 85, 42, 81, 88, 67, 30, 25, 60, 30, 75, 21, 54, 95, 41])
y_test
     array([20, 27, 69, 30, 62, 35, 24, 86, 76])
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()
regressor.fit(x_train,y_train)

▼ LinearRegression

      LinearRegression()
y pred=regressor.predict(x test)
mtp.scatter(x_train,y_train, color="green")
mtp.plot(x_test,y_pred, color="red")
mtp.title("STUDENT SCORE (Hours vs Scores)")
mtp.xlabel("Hours")
mtp.ylabel("Score")
mtp.show()
```

STUDENT SCORE (Hours vs Scores)

print(regressor.coef_)

[9.69062469]

from sklearn import metrics
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test,y_pred))
print("Mean Squared Error:", metrics.mean_squared_error(y_test,y_pred))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(y_test,y_pred)))

Mean Absolute Error: 4.691397441397446 Mean Squared Error: 25.463280738222593 Root Mean Squared Error: 5.046115410711748

dataset.shape

(25, 2)

dataset.describe()

		Hours	Scores	
С	ount	25.000000	25.000000	
r	nean	5.012000	51.480000	
	std	2.525094	25.286887	
	min	1.100000	17.000000	
	25%	2.700000	30.000000	
	50%	4.800000	47.000000	
	75%	7.400000	75.000000	
	max	9.200000	95.000000	

✓ 0s completed at 11:11 PM