These are some notes I have taken from Gerald B. Folland's *A Course in Abstract Harmonic Analysis*, with some other textbooks for various sources.

Basic Properties of Topological Groups

Definition: A *topological group* is a group G with a topology such that the operation

$$m: G \times G \to G$$

 $(x,y) \mapsto xy$

is continuous with respect to the product topology on $\mathsf{G} \times \mathsf{G}$ and the operation

$$i: G \to G$$

 $x \mapsto x^{-1}$

is continuous with respect to the topology on G.

For a topological group G, we denote the unit element as 1_G, and we set

$$Ax = \{yx \mid y \in A\}$$

$$xA = \{xy \mid y \in A\}$$

$$A^{-1} = \{y^{-1} \mid y \in A\}$$

$$AB = \{xy \mid x \in A, y \in B\}$$

for all subsets A, B \subseteq G and elements $x \in G$.

Definition: A subset $A \subseteq G$ is called *symmetric* if $A = A^{-1}$.

Proposition: Let G be a topological group.

- (i) The topology of G is invariant under translations and inversion; that is, if U is open, then xU, Ux, U^{-1} , AU, UA are open for any $x \in G$ and subset $A \subseteq G$.
- (ii) For every neighborhood U of 1_G , there is a symmetric neighborhood V of 1_G such that $VV \subseteq U$.
- (iii) If H is a subgroup of G, so is \overline{H} .
- (iv) Every open subgroup of G is closed.
- (v) If A and B are compact sets in G, so is AB.

Proof.

(i) This is equivalent to the separate continuity of $(x, y) \mapsto xy$ and $x \mapsto x^{-1}$; furthermore,

$$AU = \bigcup_{x \in A} xU$$

$$UA = \bigcup_{x \in A} Ux.$$

- (ii) Since $(x,y) \mapsto xy$ is continuous at 1_G , then for every neighborhood U of 1_G , there are neighborhoods $W_1, W_2 \subseteq U$. We may take $V = W_1 \cap W_2 \cap W_1^{-1} \cap W_2^{-1}$.
- (iii) For $x, y \in \overline{H}$, there are nets $(x_{\alpha})_{\alpha} \to x$ and $(y_{\alpha})_{\alpha} \to y$; since $(x_{\alpha}y_{\alpha}) \to xy$ and $(x_{\alpha}^{-1})_{\alpha} \to x^{-1}$ by continuity of the operations, we have $xy, x^{-1} \in \overline{H}$.

- (iv) If H is open, then so are all the cosets xH; since $G \setminus H$ is the union of all the cosets of H except for H itself, $G \setminus H$ is open, so H is closed.
- (v) Since $A \times B$ is compact, and AB is the continuous image of $A \times B$ under $(x, y) \mapsto xy$, we have AB is compact.

Now, if H is a subgroup of G, we let G/H be the space of left cosets of H, and $q: G \to G/H$ is the canonical quotient map, we may impose the quotient topology on G/H, meaning that $U \subseteq G/H$ is open if and only if $q^{-1}(U)$ is open. Thus, q maps open sets in G to open sets in G/H, as if $V \subseteq G$ is open, $q^{-1}(q(V)) = VH$ is also open, so q(V) is open.

Proposition: Let H be a subgroup of a topological group G.

- (i) If H is closed, then G/H is Hausdorff.
- (ii) If G is locally compact, so is G/H.
- (iii) If H is normal, then G/H is a topological group.

Proof.

- (i) If $\overline{x} = q(x)$ and $\overline{y} = q(y)$ are distinct points in G/H, and since H is closed, xHy^{-1} is a closed set that does not contain 1_G . There is a symmetric neighborhood U of 1_G such that $UU \cap xHy^{-1} = \emptyset$; since $U = U^{-1}$ and H = HH (H is a subgroup), we have $1_G \notin UxH(Uy)^{-1} = (UxH)(UyH)^{-1}$, so $UxH \cap UyH = \emptyset$. Therefore, q(Ux) and q(Uy) are disjoint neighborhoods of \overline{x} and \overline{y} .
- (ii) If U is a compact neighborhood of 1_G , q(Ux) is a compact neighborhood of q(x) in G/H.
- (iii) If $x, y \in G$, and U is a neighborhood of G/H, continuity of multiplication in G implies that there are neighborhoods V of x and W of y such that $VW \subseteq q^{-1}(U)$. We see that q(V) and q(W) are neighborhoods of q(x) and q(y) such that $q(V)q(W) \subseteq U$, meaning multiplication is continuous in G/H. Similarly, inversion is continuous.

Corollary: If G is T1, then G is Hausdorff, and if G is not T1, then $\overline{\{1_G\}}$ is a closed normal subgroup, and $G/\overline{\{1_G\}}$ is a Hausdorff topological group.

Proof. Since singletons are closed in any T1 space, the first assertion follows from part (i) in the previous proposition by taking $H = \{1_G\}$.

To see the second assertion, we note that $\overline{\{1_G\}}$ is a subgroup, and it is the smallest closed subgroup of G; it is normal, as otherwise we would obtain a smaller closed subgroup by intersection with one of the conjugates, meaning the result follows from parts (i) and (iii) in the previous proposition by taking $H = \overline{\{1_G\}}$.

Thus, without loss of generality, we may assume that a topological group is Hausdorff (else take $G/\overline{\{1_G\}}$), and when we talk about locally compact groups, we are talking about topological groups that are locally compact and Hausdorff.

Proposition: Every locally compact group G has a subgroup G_0 that is open, closed, and σ -compact.

Proof. Let U be a symmetric compact neighborhood of 1_G , let $U_n = \prod_{i=1}^n U_i$, and let

$$G_0 = \bigcup_{n=1}^{\infty} U_n$$
.

Then, G_0 is the group generated by U, so it is a subgroup; G_0 is open since U_{n+1} is a neighborhood of U_n for all n, and so G_0 is closed as all open subgroups are closed. Finally, since each U_n is a finite product of compact subsets of G, G_0 is σ -compact.

We thus see that G_0 is the disjoint union of cosets of G_0 , meaning G is a disjoint union of σ -compact spaces. In particular, if G is connected, then G is necessarily σ -compact.

Definition: Let $f: G \to \mathbb{C}$ be a function. The *translates* of f via $y \in G$ are defined by

$$L_{y} f(x) = f(y^{-1}x)$$

$$R_{y} f(x) = f(xy).$$

Note that the maps $y \mapsto L_y$ and $y \mapsto R_y$ are group homomorphisms.

The function f is called left/right uniformly continuous if

$$\begin{aligned} \left\| \mathbf{L}_{y} \mathbf{f} - \mathbf{f} \right\|_{u} &\to 0 \\ \left\| \mathbf{R}_{y} \mathbf{f} - \mathbf{f} \right\|_{u} &\to 0 \end{aligned}$$

as $y \rightarrow 1_G$ respectively.

Proposition: If $f \in C_c(G)$, then f is left and right uniformly continuous.

Proof. We will prove this for $R_u f$.

If $f \in C_c(G)$, and $\varepsilon > 0$, then for every $x \in K = \text{supp}(f)$, there is a neighborhood U_x of 1_G such that

$$|f(xy) - f(x)| < \frac{1}{2}\varepsilon$$

for any $y \in U_x$. Similarly, there is a symmetric neighborhood V_x of 1_G such that $V_xV_x \subseteq U_x$; the sets xV_x cover K, so there exist $x_1, \ldots, x_n \in K$ such that $K \subseteq \bigcup_{j=1}^n x_j V_{x_j}$.

Let $V = \bigcap_{j=1}^n V_{x_j}$. If $x \in K$, then there is some j such that $x_j^{-1}x \in V_{x_j}$, so $xy = x_j \Big(x_j^{-1}x\Big)y \in x_j U_{x_j}$, so

$$|f(xy) - f(x)| \le |f(xy) - f(x_j)| + |f(x_j) - f(x)|$$

$$< \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$$

$$= \varepsilon,$$

for any $y \in V$, meaning that $\|R_y f - f\|_u < \varepsilon$. Similarly, if $xy \in K$, then $|f(xy) - f(x)| < \varepsilon$; meanwhile, if $x, xy \notin K$, then f(x) = f(xy) = 0, so we are done.

Haar Measure

Definition: We define a subset of $C_c(G)$ to be

$$C_c^+(G) = \{ f \in C_c(G) \mid f \ge 0, f \ne 0 \}.$$

Definition: A left/right Haar measure on G is a nonzero Radon measure μ on G such that $\mu(xE) = \mu(E)$ for every Borel $E \subseteq G$ and all $x \in G$.

Proposition: Let μ be a Radon measure on the locally compact group G, and let $\widetilde{\mu}(E) = \mu(E^{-1})$. Then, the following hold:

- (a) μ is a left Haar measure if and only if $\widetilde{\mu}$ is a right Haar measure.
- (b) μ is a left Haar measure if and only i $\int L_y f d\mu = \int f d\mu$ for all $f \in C_c^+(G)$ and every $y \in G$.

Proof. The result in (a) follows from basic properties of the inverse.

To see (b), note that for any Radon measure μ , one has $\int L_y f \ d\mu = \int f \ d\mu_y$, where $\mu_y(E) = \mu(yE)$, which follows from approximation via simple functions. Thus, if μ is a Haar measure, then $\int L_y f \ d\mu = \int f \ d\mu$ for all $f \in C_c^+(G)$, so it holds for all $f \in C_c(G)$. The measure μ is unique from the Riesz–Markov–Kakutani Representation Theorem.

Now, our focus turns to the question of establishing the existence and (essential) uniqueness of the Haar measure.

Theorem: Every locally compact group G possesses a left Haar measure λ .

Proof. We will construct λ as a linear functional on $C_c(G)$.

Let $f, \phi \in C_c^+(G)$. We define $(f : \phi)$ to be the infimum of all such finite sums $\sum_{i=1}^n c_i$ such that

$$f \leqslant \sum_{j=1}^{n} c_{j} L_{x_{j}} \phi$$

for some $x_1, \ldots, x_n \in G$. Such a value necessarily exists as $\operatorname{supp}(f)$ can be covered by some finite number of translates of $\phi^{-1}(1/2\|\phi\|_{\mathfrak{U}}, \infty)$, meaning that $(f : \phi) \leq 2N\|f\|_{\mathfrak{U}}/\|\phi\|_{\mathfrak{U}}$. We see the following:

- (i) $(f : \phi) = (L_y f : \phi);$
- (ii) $(f_1 + f_2 : \phi) \le (f_1 : \phi) + (f_2 : \phi)$;
- (iii) $(cf : \phi) = c(f : \phi)$ for any $c \ge 0$;
- (iv) $(f_1 : \phi) \leq (f_2 : \phi)$ whenever $f_1 \leq f_2$;
- (v) $(f : \phi) \ge ||f||_1 / ||\phi||_1$;
- (vi) $(f : \phi) \leq (f : \psi)(\psi : \phi)$ for any $\psi \in C_c^+(G)$.

To see (vi), notice that if $f \leq \sum_{i=1}^n c_i L_{x_i} \phi$ and $\psi \leq \sum_{j=1}^m b_j L_{y_j} \phi$, then $f \leq \sum_{i=1}^n \sum_{j=1}^m c_i b_j L_{x_j y_j} \phi$.

We fix a function $f_0 \in C_c^+(G)$, and define

$$I_{\varphi}(f) = \frac{(f : \varphi)}{(f_0 : \varphi)}.$$

This functional is left-invariant, subadditive, homogeneous, and monotone, and also satisfies

$$(f_0:f)^{-1} \le I_{\phi}(f) \le (f:f_0).$$

Now, I_{Φ} is not necessarily additive, but on a neighborhood it is very close to being so.

Lemma: If $f_1, f_2 \in C_c^+(G)$, and $\varepsilon > 0$, then there is a neighborhood V of 1_G such that $I_{\varphi}(f_1) + I_{\varphi}(f_2) \le I_{\varphi}(f_1 + f_2) + \varepsilon$ whenever supp $(\varphi) \subseteq V$.

Proof of Lemma. Fix $g \in C_c^+(G)$ such that g = 1 on $supp(f_1 + f_2)$, and let δ be a (to be determined) positive number. Let $h = f_1 + f_2 + \delta g$, and let $h_i = f_i/h$ for each i; note that $h_i = 0$ whenever $f_i = 0$.

Then, we see that $h_i \in C_c^+(G)$, so there is a neighborhood V of 1_G such that $|h_i(x) - h_i(y)| < \delta$ for each i and all y such that $y^{-1}x \in V$.

Suppose $\phi \in C_c^+(G)$ and supp $(\phi) \subseteq V$. If $h \leq \sum_{j=1}^n c_j L_{x_j} \phi$, then

$$f_i(x) = h(x)h_i(x)$$

$$\leq \sum_{j=1}^{m} c_{j} \phi \left(x_{j}^{-1} x\right) h_{i}(x)$$

$$\leq \sum_{j=1}^{m} c_{j} \phi \left(x_{j}^{-1} x\right) \left(h_{i}\left(x_{j}\right) + \delta\right),$$

since $|h_i(x) - h_i(x_j)| < \delta$ whenever $x_i^{-1}x \in \text{supp}(\phi)$. Since $h_1 + h_2 \le 1$, we have

$$(f_{1}: \phi) + (f_{2}: \phi) \leq \sum_{j=1}^{m} c_{j} (h_{1}(x_{j}) + \delta) + \sum_{j=1}^{m} c_{j} (h_{2}(x_{j}) + \delta)$$

$$\leq \sum_{j=1}^{m} c_{j} (1 + 2\delta).$$

Taking the infimum of all such sums, we have

$$I_{\phi}(f_1) + I_{\phi}(f_2) \le (1 + 2\delta)I_{\phi}(h)$$

 $\le (1 + 2\delta)(I_{\phi}(f_1 + f_2) + \delta I_{\phi}(g))$

Thus, by taking δ small enough such that

$$2\delta(f_1 + f_2 : f_0) + \delta(1 + 2\delta)(g : f_0) < \varepsilon$$
,

we obtain our desired result.

Now, for each $f \in C_c^+(G)$, let X_f be the interval $[(f_0 : f)^{-1}, (f : f_0)]$, and let X be the Cartesian product of all such X_f . We see that X is a compact Hausdorff space consisting of functions from $C_c^+(G)$ into $(0, \infty)$ with the value at f equal to X_f . Thus, $I_{\Phi}(f) \in X_f$ for each $\Phi \in C_c^+(G)$ via the established bound.

Now, for each $V \in \mathcal{N}_{1_G}$, we let K(V) be the closure in X of the set $\{I_{\varphi} \mid supp(\varphi) \subseteq V\}$. The sets K(V) have the finite intersection property, as

$$\bigcap_{j=1}^{n} K(V_{j}) \supseteq K\left(\bigcap_{j=1}^{n} V_{j}\right),$$

so by compactness, there is $I \in X$ such that I is in every K(V). This means that every neighborhood of I contains a I_{φ} with supp (φ) arbitrarily small, so for every neighborhood V of I_{G} , any $\varepsilon > 0$, and any $f_{1}, \ldots, f_{n} \in C_{c}^{+}(G)$, there is $\varphi \in C_{c}^{+}(G)$ such that supp $(\varphi) \subseteq V$, $\left|I(f_{j}) - I_{\varphi}(f_{j})\right| < \varepsilon$ for all j, meaning that I commutes with left translation, addition, and multiplication by positive scalars.

Any $f \in C_c(G)$ can be written as $f = (g_1 - h_1) + i(g_2 - h_2)$ where each of g_i , h_i are positive. We thus extend $I(f) = (I(g_1) - I(h_1)) + i(I(g_2) - I(h_2))$, which gives a nonzero positive linear functional on $C_c(G)$, so by the Riesz–Markov–Kakutani Representation Theorem, we have a measure λ associated to I.

Proposition: If λ is a left Haar measure, and U is a nonempty open set, then $\lambda(U) > 0$, and $\int f d\lambda > 0$ for all $f \in C^+_c(G)$.

Proof. Let U be nonempty, open, and $\lambda(U) = 0$. Then, $\lambda(xU) = 0$ for all x, and since any compact set K can be covered by finitely many such translates, $\lambda(K) = 0$ for each compact set K, meaning that $\lambda(G) = 0$ by inner regularity, contradicting λ being nonzero.

Now, if
$$f \in C_c^+(G)$$
, then $U = \{x \mid f(x) > \frac{1}{2} \|f\|_u \}$ is open, and $\int f d\lambda > \frac{1}{2} \|f\|_u \lambda(U) > 0$.