Amendments to the Claims

(Previously Presented) A compound of formula I:

wherein:

 $Ar^{l} \ is \ a \ cyclic \ group \ optionally \ substituted \ with \ one to \ five \ groups \ selected \ from \ C_{l}-C_{s} \ alkyl, \ C_{2}-C_{8} \ alkenyl, \ C_{2}-C_{8} \ alkynyl, \ hydroxy, \ C_{l}-C_{8} \ alkoxy, \ C_{l}-C_{8} \ alkylaryl, \ phenyl, \ aryl, \ -O-aryl, \ heteroaryl, \ cycloalkyl, \ C_{l}-C_{8} \ alkylcycloalkyl, \ cyano, \ -(CH_{2})_{n}NR^{6}R^{6}, \ C_{l}-C_{8} \ haloalkyl, \ C_{l}-C_{8} \ haloalkoxy, \ halo, \ (CH_{2})_{n}COR^{6}, \ (CH_{2})_{n}NR^{5}SO_{2}R^{6}, \ -(CH_{2})_{n}C(O)NR^{6}R^{6}, \ heterocyclic, \ and \ C_{l}-C_{8} \ alkylheterocyclic; \ wherein \ the \ cycloalkyl, \ phenyl, \ aryl, \ and \ heterocyclic \ groups \ are \ each \ optionally \ substituted \ with \ one \ to \ three \ groups \ independently \ selected \ from \ hydroxy, \ C_{l}-C_{8} \ alkoxyalkyl, \ C_{l}-C_{8} \ haloalkoxy, \ C_{l}-C_{8} \ alkyl, \ halo, \ C_{l}-C_{8} \ haloalkyl, \ nitro, \ cyano, \ amino, \ carboxamido, \ phenyl, \ aryl, \ alkylheterocyclic, \ heterocyclic, \ and \ oxo;$

 L^1 is a bond, $-CH_2$, $-CH_2CH_2$, $-SCH_2$, $-CCH_2$, $-CH_2SCH_2$, $-CH_2OCH_2$ -, $-OCH_2CH_2SCH_2$ -, or a divalent linker represented by the formula X_2 - $(CR^3R^4)_m$ - X_3 where X_2 is attached to Ar^1 and X_3 is attached to Ar^2 wherein R^3 and R^4 are independently selected from a bond, hydrogen, C_1 - C_8 alkyl, C_2 - C_8 alkylene, C_2 - C_8 alkyln, phenyl, aryl, C_1 - C_8 alkylaryl; wherein the alkyl, alkenyl, phenyl, and aryl groups are optionally substituted with one to five substitutents independently selected from oxo, nitro, eyano, C_1 - C_8 alkyl, aryl, halo, hydroxy, C_1 - C_8 alkoxy, C_1 - C_8 halaoalkyl, $(CH_2)_nC(O)R^6$, and $(CH_2)_nCONR^6R^6$; X_2 is independently oxygen, -CH, $-CONH(CR^3R^4)_m$, $-NHCO(CR^3R^4)_m$, $-(CR^3R^4)_m$, $-CHR^6$, $-NR^5$, S. SO, SO₂, $-O(CR^3R^4)_m$, or $-S(CR^3R^4)_m$;

X₃ is independently oxygen, -C, -CH, -CHR⁶, -(CR³R⁴)_m, -NR⁵, S, SO, or SO₂;

 Ar^2 is a 5-member monocyclic heterocyclic aromatic group or positional isomer thereof, having 1, 2, or 3 heteroatoms independently selected from nitrogen, oxygen and sulfur; and wherein Ar^2 is optionally substituted with one to three substitutents independently selected from C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, hydroxy, C_1 - C_8 alkoxy, C_1 - C_8 alkylaryl, phenyl, aryl, C_3 - C_8 cycloalkyl, C_1 - C_8 alkyleycloalkyl, cyano, C_1 - C_8 haloalkyl, halo, $(CH_2)_nC(O)R^6, (CH_2)_nC(O)OR^6, (CH_2)_nNR^5SO_2R^6, (CH_2)_nC(O)NR^6R^6, \text{ and } C_1\text{--}C_8$ alkylheterocyclic;

Ar3 is an optionally substituted bicyclic aromatic or non-aromatic group;

 L^2 is $-CH_{2^-}$, $-CH_2CH_{2^-}$ or a divalent linker represented by the formula X_4 - $(CR^3R^4)_m$ - X_5 ; wherein X_4 is selected from the group consisting of C, -CH, CHR^6 , -CO, O, $-NR^5$, -NC(O)-, -NC(S), $-C(O)NR^5$ -, $-NR^6C(O)NR^6$, $-NR^6C(S)NR^6$, $-SO_2NR^7$, $-NRSO_2R^7$, and $-NR^6C(NR^5)NR^6$.

 X_3 is selected from the group consisting of O, $-CH_2$, -CH, $-O(CR^3R^4)m$, $NR^3(CR^3R^4)m$, SO, SO₂, S, and SCH₂; wherein the group X_4 - $(CR^3R^4)m$ - X_3 imparts stability to the compound of formula (1) and may be a saturated or unsaturated chain or divalent linker;

 R^1 and R^2 are independently hydrogen, $C_1\text{-}C_8$ alkyl, $C_2\text{-}C_8$ alkenyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_8$ alkylaryl, $-C(O)C_1\text{-}C_8$ alkyl, $-C(O)OC_1\text{-}C_8$ alkyl, $C_1\text{-}C_8$ alkyleycloalkyl, $(CH_2)_nC(O)OR^5$, $(CH_2)_nC(O)R^5$, $(CH_2)_nC(O)R^5$, $(CH_2)_nC(O)R^5$, $(CH_2)_nC(O)R^5$, and $(CH_2)_nNSO_2R^5$; wherein each of the alkyl, alkenyl, aryl are each optionally substituted with one to five groups independently selected from $C_1\text{-}C_8$ alkyl, $C_2\text{-}C_8$ alkenyl, phenyl, and alkylaryl; and wherein R^1 and R^2 may combine together, and with the nitrogen atom to which they are attached or with 0, 1, 2 or 3 atoms adjacent to the nitrogen atom to form a nitrogen containing heterocycle which may have 1, or 2 substituents independently selected from $C_1\text{-}C_8$ alkyl, $C_2\text{-}C_8$ alkenyl, $C_3\text{-}C_8$ cycloalkyl, $C_1\text{-}C_8$ alkylaryl, $-C(O)C_1\text{-}C_8$ alkyl, $-C(O)C_1\text{-}C_8$

 R^5 is hydrogen, CN, C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_5 - C_8 alkylaryl, $(CH_2)_nNSO_2C_1$ - C_8 alkyl, $(CH_2)_nNSO_2$ phenyl, $(CH_2)_nNSO_2$ aryl, $-C(O)C_1$ - C_8 alkyl, or $-C(O)OC_1$ - C_8 alkyl; and R^6 and R^6 are each independently hydrogen, C_1 - C_8 alkyl, phenyl, aryl, C_1 - C_8 alkylcycloalkyl, or C_3 - C_8 cycloalkyl;

R⁷ is hydrogen, C₁-C₈ alkyl, phenyl, aryl, C₁-C₈alkylaryl, or C₃-C₈cycloalkyl, and wherein m is an integer from 1 to 8; and n is an integer from 0 to 8;

or a pharmaceutically acceptable salt, solvate, racemate, or enantiomer diastereomer or mixture of diastereomers thereof.

 (Original) A compound according to Claim 1 wherein the group Ar¹ is selected from the group consisting of: phenyl, benzothiophene, benzofuran, or naphthyl.

- (Original) A compound according to Claim 1 wherein the group L¹ is a linker selected from the group consisting of: -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -SCH₂-, -OCH₂-, -CH₂SCH₂-, -CH₂OCH₂-, or -OCH₂CH₂SCH₂-.
- (Original) A compound according to Claim 1 wherein Ar³ is an aromatic group selected from the group consisiting of: indole, naphthyl, tetrahydronaphthyl, isoindolinone, isoquinolone, benzothiophene, or benzofuran.
- (Original) A compound of Claim 1 wherein Ar² is a 4 or 5 member aromatic group selected from the group consisting of: oxazole, oxadiazole, or furan.
- 6. (Original) A compound according to Claim 1 wherein the linker (L^2) is: $-CH_{2^*}, -CH_2CH_{2^*},$ or $-CH_2CH_2CH_{2^*}$.
- (Original) A compound according to Claim I wherein R¹ and R² combine with the nitrogen atom to form piperidinyl, pyrrolidinyl, azepine, or azetidinyl.
- (Original) A compound according to Claim 1 wherein R¹ and R² are independently selected from the group consisting of hydrogen, methyl, ethyl, propyl, isopropyl, methylcyclopentane, methylcyclohexane, phenyl, benzyl, cyclopentyl, cyclohexyl, methylcyclopropane and methylcyclobutane.
 - 9. (Cancelled)
 - (Cancelled)
 - 11. (Cancelled)
- 12. (Original) A compound according to Claim I wherein at least one of L^1 and L^2 has a chain length of 3 to 5 atoms.
- 13. (Previously Presented) A compound selected from the group consisting of: Dimethyl-(6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-benzofuran-2-ylmethyl}-amine oxalate,
- Dimethyl-{5-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-benzofuran-2-

vlmethyl}-amine oxalate,

{1-Methanesulfonyl-5-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-2-ylmethyl}-dimethyl-amine,

Dimethyl-{5-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-2-ylmethyl}-amine oxalate.

{1-Methanesulfonyl-6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-2-ylmethyl}-dimethyl-amine.

Dimethyl-{6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-2-ylmethyl}-amine.

Dimethyl-{1-methyl-6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-2-ylmethyl}-amine oxalate,

Dimethyl-{5-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-3-

ylmethyl}-amine oxalate,

Dimethyl-{6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-1H-indol-3-vlmethyl}-amine maleate.

Dimethyl-{6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-naphthalen-2-ylmethyl}-amine,

 $\hbox{2-}(2-Phenoxy-ethyl sulfanyl methyl)-5-(6-pyrrolidin-1-yl methyl-naphthalen-2-yl)-$

[1,3,4]oxadiazole maleate,

 $1-\{6-[5-(2-phenoxy-ethylsulfanylmethyl)-[1,3,4]oxadiazol-2-yl]-naphthalen-2-ylmethyl\}-piperidine,\\$

 $2-(2-piperidinoethyl)-5-\{2-[((2-phenoxyethyl)thio)methyl]-1,3,4-oxadiazol-5-yl\} is oin dolinlone.\\$

and pharmaceutically acceptable salt, solvate, enatiomer, prodrug, diastereomer or mixture thereof.

(Original) A compound selected from the group consisting of:

Serial No. 10/575,815

or pharmaceutically acceptable salt, racemate, solvate, enantioner or diastereomeror mixture of diastereomers thereof.

- 15. (Cancelled)
- 16. (Cancelled)
- (Previously Presented) A method of treating obesity and Related Diseases comprising administering to a patient in need thereof a compound of Claim 1.
 - 18. (Cancelled)
- (Previously Presented) A pharmaceutical formulation comprising a compound of Claim 1 and a pharmaceutical carrier.
 - 20. (Cancelled)