

Derek Nowrouzezahrai

derek@cim.mcgill.ca

General Eigendecomposition

Recall – Eigenvectors & eigenvalues

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Recall – Eigenvectors & eigenvalues

$$\mathbf{Av}_i = \lambda_i \mathbf{v}_i$$
eigenvector

where

$$\mathbf{A} \in \mathbb{R}^{n \times n}, \ \lambda \in \mathbb{R}$$

$$\mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \neq 0$$

Old News: linear maps can be interpreted as geometric transformations

In general, any combination of these transformation, and in any dimension

$$\mathbf{A}\mathbf{v}_i \neq \lambda_i \mathbf{v}_i$$

$$\mathbf{A}\mathbf{v}_i \neq \lambda_i \mathbf{v}_i$$

$$\mathbf{A}\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$

$$\mathbf{A}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$$

$$\mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{v}_2$$

$$\mathbf{A}\mathbf{v}_2 = \lambda_2\mathbf{v}_2$$


```
\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i
```


$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$

Eigenvectors of non-singular matrices

For non-singular matrices A:

- there are exactly n distinct eigenvalue/eigenvector pairs
- the eigenvectors \mathbf{v}_i form a basis for \mathbf{R}^n
 - the basis is not necessarily orthogonal

Therefore, a matrix with the v_i as its columns

$$\mathbf{v} = \begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \end{pmatrix}$$

has rank n (i.e., full rank) and so is non-singular

Eigenvectors of non-singular matrices

$$\mathbf{v} = \begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{pmatrix}$$

The matrix V has interesting geometric properties:

- noting that $\mathbf{V}^{-1}\mathbf{v}_i$ is the i^{th} column of $\mathbf{V}^{-1}\mathbf{V} = \mathbf{I}$, we have $\mathbf{V}^{-1}\mathbf{v}_i = \mathbf{e}_i$

From this, we can show that $V^{-1}AV = diag(\lambda_1, ..., \lambda_n) \equiv \Lambda$

- can use the \mathbf{v}_i to form two change of bases that diagonalize \mathbf{A}
- the direction of \mathbf{v}_i (and not its magnitude) is most important
 - ullet it is not uncommon to normalize the ${f v}_i$ by convention

Eigendecomposition

From this diagonalization of A — namely $V^{-1}AV = \Lambda$ — we can derive the eigendecomposition of A by rearranging for A as:

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$

matrix with eigenvectors

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

diagonal matrix with eigenvalues

The **eigendecomposition** expresses a general linear transformation **A** as the product of three transforms:

$$A =$$

The **eigendecomposition** expresses a general linear transformation **A** as the product of three transforms:

$$A =$$

change of basis (not necessarily orthogonal!)

The **eigendecomposition** expresses a general linear transformation **A** as the product of three transforms:

non-uniform scale change of basis (not necessarily orthogonal!)

The **eigendecomposition** expresses a general linear transformation A as the product of three transforms:

Eigendecomposition of a Symmetric A

For symmetric A, we can find (unit) eigenvectors – with unique eigenvalues – that are mutually orthonormal

- here, the change of basis V only has a rotation component
- so $V^{-1}=V^T$, the diagonalization is $V^TAV=\Lambda$, and the eigendecomposition is $A=V\Lambda V^T$

Summary and Further Interpretation

The eigendecomposition uses V (and its inverse) to isolate the non-uniform scaling effects of the transform \mathbf{A}

- this allows us to reason about the repetitive application of A
 - $A \cdot A \cdot A \cdot \cdots A$ (repeated k times) performs a transformation with the same eigenvectors, but with scaled eigenvalues

If
$$A = V\Lambda V^{-1}$$
 then $A^k = V\Lambda^k V^{-1}$

• V transforms the space spanned by the eigenvectors into a coordinate system that aligns the directions that shrink/grow (as a result of the application of A) about e_i

Summary and Further Interpretation

The eigendecomposition of non-singular A has only non-zero eigenvalues

Given the eigendecomposition of a non-singular A, we can compute the (eigendecomposition of the) inverse of A as

If
$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$
 then $\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{-1}$

We haven't yet discussed **how to determine** (i.e., **compute**) the eigendecomposition...

Computing an Eigendecomposition

Computing an Eigendecomposition

Algebraically, we can express the eigenvalues as the solutions to the following *characteristic equation*: $det(\mathbf{A} - \lambda \mathbf{I}) = 0$

- we can arrive at this degree-n characteristic polynomial $p(\lambda)$ by isolating for eigenvalues in $\mathbf{A}\mathbf{v}_i=\lambda_i\mathbf{v}_i$

The roots of a polynomial of degree > 4 cannot be expressed in closed form [Abel 1824]

- what are the pragmatic implications of this mathematical limitation?

Practical Eigendecomposition

We take advantage of the matrix power property of the eigendecomposition to build an iterative, numerical algorithm for computing eigenvalue/eigenvector pairs

$$\mathbf{A}^k = \mathbf{V} \mathbf{\Lambda}^k \mathbf{V}^{-1} \quad \mathbf{\Lambda}^k =$$

$$\Lambda^{\kappa} =$$

- as $k \rightarrow \infty$, the value of the largest eigenvalue λ_1^k dominates over that of the remaining eigenvalues

Power method

We can show that by repetitively applying A to any vector x, the resulting product will converge to the eigenvector associated with the largest eigenvalue: $\int_{A}^{b} k$

$$\mathbf{A}^{k}\mathbf{x} = \underbrace{(\mathbf{A} \cdot \ldots \cdot \mathbf{A})}_{k \gg 1 \text{ times}} \mathbf{x} \approx \mathbf{V} \widehat{\mathbf{\Lambda}} \mathbf{V}^{-1} \mathbf{x} \qquad \widehat{\mathbf{\Lambda}} = \begin{bmatrix} 0 & & & \\ & \ddots & & \\ & & & 0 \end{bmatrix}$$

A naive implementation of this *iterative* algorithm is:

```
x = np.random.random(A.shape[0])
for i in range(num_iterations):
    x = A @ x
```

Power method

$$\mathbf{A}^{k}\mathbf{x} = \underbrace{(\mathbf{A} \cdot \ldots \cdot \mathbf{A})}_{k \gg 1 \text{ times}} \mathbf{x} \approx \mathbf{V} \widehat{\mathbf{\Lambda}} \mathbf{V}^{-1} \mathbf{x} \qquad \widehat{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_{1}^{k}, 0, \ldots, 0)$$

A more robust algorithm computes a sequence of normalized vectors $\frac{\mathbf{A}\mathbf{x}}{\|\mathbf{A}\mathbf{x}\|'} \frac{\mathbf{A}^2\mathbf{x}}{\|\mathbf{A}^2\mathbf{x}\|'} \frac{\mathbf{A}^3\mathbf{x}}{\|\mathbf{A}^3\mathbf{x}\|'} \dots$ which converges to \mathbf{v}_1

```
x = np.random.random(A.shape[0])
for i in range(num_iterations):
    x = A @ x
    x /= np.linalg.norm(x)
```

Power method – iteration

Power method

We can similarly obtain an estimate of the eigenvector associated to the **smallest** eigenvalue by computing the sequence $\frac{\mathbf{A}^{-1}\mathbf{x}}{\|\mathbf{A}^{-1}\mathbf{x}\|'} \frac{\mathbf{A}^{-2}\mathbf{x}}{\|\mathbf{A}^{-2}\mathbf{x}\|'} \frac{\mathbf{A}^{-3}\mathbf{x}}{\|\mathbf{A}^{-3}\mathbf{x}\|'}$ which converges to \mathbf{v}_n since

$$\mathbf{A}^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^{-1}$$

and as before, as $k \to \infty$, now the value of the **inverse of the smallest eigenvalue** $1/\lambda_n^k$ dominates over that of the remaining eigenvalues (of the inverse matrix)

Power method – inverse iteration

Eigendecomposition pragmatics...

The power method will only converge if your initial guess is not (numerically) orthogonal to the eigenvector

- in practice, you may run the iteration many times to sanity check
- it only converges if a single, dominant eigenvalue exists
- if eigenvalues are not well spaced, iterations may be unstable

Power method (and the inverse method) only approximate the eigenvectors associated to the largest and smallest eigenvalues

- getting other eigenvectors requires more advanced techniques

More gotchas....

Eigendecomposition pragmatics...

The details of more advanced eigendecomposition algorithms are beyond the scope of this course, but a few things to keep in mind if you pursue this avenue in the future:

- we've only discussed eigenvalue-eigenvector **pairs** $(\mathbf{v}_i, \lambda_i)$ but things are more complicated: the pair is really a **triple** $(\mathbf{v}_i, \mathbf{w}_i, \lambda_i)$
 - where not only do we have the usual $\mathbf{A}\mathbf{v}_i = \lambda_i\mathbf{v}_i$ where the \mathbf{v}_i are referred tp more generally as right eigenvectors but we also have $\mathbf{w}_i^T\mathbf{A} = \lambda_i\mathbf{w}_i^T$ where the left eigenvectors \mathbf{w}_i must also satisfy an additional constraint w.r.t. the eigenvalue λ_i

Eigenanalysis Summary

Generally speaking, you can rely on existing algorithms for eigendecomposition

- unless you go into research in this area, or
- if you only require the eigenvector associated to largest/ smallest unique eigenvalue, if it exists

Just as important to understanding what an eigendecomposition represents is getting a sense of the many places it can be applied

- we will discuss several applications of eigendecomposition in, e.g., overdetermined model fitting, dimensionality reduction, and (very briefly) solving systems of differential equations