31. Prove that

$$\sqrt{3a^2 + ab} + \sqrt{3b^2 + bc} + \sqrt{3c^2 + ca} \le 2(a + b + c)$$

holds for all non-negative real numbers a, b, c.

Hint. Apply the Cauchy-Schwarz inequality.

32. Let $A \in \mathbb{R}^{2\times 3}$, $B \in \mathbb{R}^{3\times 3}$ and $C \in \mathbb{R}^{3\times 2}$ be the matrices as follows:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -7 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & -3 \\ -2 & 1 \\ 0 & 0 \end{pmatrix}$$

Which of the following expressions are well-defined? Compute the result if possible.

(a)
$$A \cdot B$$
 (b) $B \cdot A$ (c) $A \cdot (B \cdot C)$ (d) $C \cdot (B \cdot A)$ (e) $A \cdot (B + C)$ (f) $5 \cdot (A^{\top} + C)$ (g) $B^{\top} \cdot A^{\top}$.

- 33. (a) Give an example to show that the matrix multiplication in $\mathbb{R}^{3\times3}$ is not commutative.
 - (b) Prove that, for all $A, B \in \mathbb{R}^{m \times n}$ and any $\lambda \in \mathbb{R}$,

$$\lambda(A+B) = \lambda A + \lambda B.$$

(c) Prove that, for all $A \in \mathbb{R}^{m \times p}$ and $B, C \in \mathbb{R}^{p \times n}$,

$$A \cdot (B + C) = A \cdot B + A \cdot C.$$

(d) Prove that, for all $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ and $C \in \mathbb{R}^{p \times s}$,

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$
.

(e) Let $I_n \in \mathbb{R}^{n \times n}$ and $I_m \in \mathbb{R}^{m \times m}$ be the identity matrices of order n and m respectively. Prove that for $A \in \mathbb{R}^{m \times n}$,

$$A \cdot I_n = A$$
 and $I_m \cdot A = A$.

(f) Prove that for all $A, B \in \mathbb{R}^{m \times n}$

$$(A+B)^{\top} = A^{\top} + B^{\top}.$$

- 34. Assume you have ordered 4 pizzas and 5 drinks, but you forgot the individual prices. You only know that you have paid total 50 EURO, and that a pizza was 8 EURO more expensive than a drink. How much is a pizza and how much is a drink?
- 35. (a) Which of the following matrices are in row echelon form? Reduced row echelon form? For those matrices which are not in (reduced) row echelon form, explain the reason.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

(b) For each of the following matrices, compute their reduced row echelon forms and ranks.

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & -2 & -4 \\ 2 & 4 & 1 & 2 \\ 1 & 3 & -3 & -3 \end{pmatrix}.$$

36. Find all solutions (x_1, x_2, x_3) in \mathbb{R}^3 of the following systems of linear equations.

(a)

$$x_1$$
 - $x_3 = 2$
 $x_2 + 2x_3 = 5$
 $x_1 + x_2 + x_3 = 7$.

(b)

$$x_1 + 2x_2 - 2x_3 = -4$$
$$2x_1 + 4x_2 + x_3 = 2$$
$$x_2 - x_3 = 1.$$