

La versión digital de esta tesis está protegida por la Ley de Derechos de Autor del Ecuador.

Los derechos de autor han sido entregados a la "ESCUELA POLITÉCNICA NACIONAL" bajo el libre consentimiento del (los) autor(es).

Al consultar esta tesis deberá acatar con las disposiciones de la Ley y las siguientes condiciones de uso:

- Cualquier uso que haga de estos documentos o imágenes deben ser sólo para efectos de investigación o estudio académico, y usted no puede ponerlos a disposición de otra persona.
- Usted deberá reconocer el derecho del autor a ser identificado y citado como el autor de esta tesis.
- No se podrá obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.

El Libre Acceso a la información, promueve el reconocimiento de la originalidad de las ideas de los demás, respetando las normas de presentación y de citación de autores con el fin de no incurrir en actos ilegítimos de copiar y hacer pasar como propias las creaciones de terceras personas.

Respeto hacia sí mismo y hacia los demás

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

"IMPLEMENTACIÓN DE UN SISTEMA CONTROLADO DE BOMBEO DE PRODUCTOS LIMPIOS DE LA TERMINAL SANTO DOMINGO EP PETROECUADOR GERENCIA DE TRANSPORTE Y ALMACENAMIENTO"

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN ELECTRÓNICA Y CONTROL

PINTO MEDINA PAÚL DAVID pinto2202@gmail.com

SINCHIGUANO CHIRIBOGA CÉSAR AUGUSTO cesarsinchiguano@hotmail.com

DIRECTOR: ING. ANA CABRERA anacabrera.t@gmail.com

CODIRECTOR: DR. ANDRÉS ROSALES androsaco@gmail.com

Quito, Agosto 2012

DECLARACIÓN

Nosotros, Pinto Medina Paúl David y Sinchiguano Chiriboga César Augusto, declaramos bajo juramento que el trabajo aquí descrito es de nuestra autoría; que no ha sido previamente presentada para ningún grado o calificación profesional; y, que hemos consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Paúl Pinto	César Sinchiguano

CERTIFICACIÓN

Certifico que el presente trabajo fue desa bajo mi supervisión.	arrollado por Paúl Pinto y César Sinchiguano
Ing. Ana Cabrera DIRECTOR DEL PROYECTO	Dr. Andrés Rosales CODIRECTOR DEL PROYECTO

AGRADECIMIENTO

Mi agradecimiento de manera especial a todas las personas que han intervenido de manera directa e indirecta en la culminación del presente proyecto. Mis agradecimientos al personal de mantenimiento de la estación El Beatereo de EP-PETROECUADOR y el personal de la estación de productos limpios de Santo Domingo de EP-PETROECUADOR, quienes con su ayuda desinteresada, nos brindaron información y experiencia durante el desarrollo del presente proyecto.

Al Ing. Francisco de la Torre por brindarnos la oportunidad de la realización de este proyecto, y así poder este gran logro en nuestras vidas.

Al Ing. Nicolás Mafla por abrirnos las puertas en la terminal de Santo Domingo y brindarnos los materiales necesarios y las facilidades necesarias para la realización del presente proyecto.

A los buenos compañeros y amigos hechos en la empresa, los cuales nos colaboraron en el avance de este proyecto.

Mi más profundo y sentido agradecimiento a mi familia por brindarme su apoyo incondicional.

A la Ing. Ana Cabrera mi más profundo agradecimiento por ser nuestra guía y por su importante aporte para el desarrollo de esta tesis.

Gracias Dios, padres, hermanos, amigos

Paúl Pinto

AGRADECIMIENTO

Hay mucho por escribir, así que empezaré recordando mis orígenes, porque sería ingrato, ahora que teniendo un oasis lleno de dicha y felicidad, olvidarme de los míos, y es precisamente que a los míos me he de dirigir con mucho respeto, aprecio y honra.

Y uno de los mios, mi señora madre Julia María Chiriboga Rivera, la principal responsable de que yo haya logrado este pequeño triunfo para algunos y grande para muchos, de no ser por ella, no estaría en estos momentos redactando esta pequeña carta, ella que pasando por muchas dificultades, antes, durante y después de mis inicios, nunca dejó de apoyarme, independientemente del apoyo económico, pienso que la mayor ayuda que he recibido de parte de ella, es sus buenos consejos, dicen que las madres solo nos pueden dar, buenos consejos para encaminar a sus hijos por el sendero del bien, pero eso sí, la formación del carácter depende única y exclusivamente de nosotros los hijos.

Y como uno más de sus hijos, estoy en deuda con ella, por ese apoyo incondicional, pero eso no significa que he de prometer lo que aun no tengo, porque de seguro perderé la voluntad para conseguirlo, no me queda más, por el momento que ofrecerle mis más sinceros agradecimientos.

Y como de agradecimiento se trata esta carta, se me viene a la mente la siguiente frase: "Una gran mujer da poco cuando solo dispone de los bienes materiales que posee, pero da mucho cuando se entrega a sí misma", y es precisamente por esa entrega, que me es digno de nombrar a mi otra parte, Vanesa Tatiana Gómez Loor, que de una u otra manera ha hecho posible mi realización como profesional y más aun como persona.

Y como olvidar a las personas de EP-Petroecuador, que me brindaron la confianza al abrirme las puertas de su trabajo y así poder realizar el tan requerido proyecto de titulación. Proyecto de titulación que no sería posible realizarlo, sin la ayuda de la Ing. Ana Cabrera, que con su aporte incondicional, hizo posible realizar mi sueño.

Sinchiguano César

DEDICATORIA

El presente proyecto está dedicado a mi madre, que con sus palabras de aliento en todo momento, buenos y malos me ayudaba a comprometerme más en lo que hacía. Siempre sonreír es su mensaje y ahora es el mío.

A mis hermanos, por el apoyo incondicional en los buenos, malos y re-malos momentos, aunque no existan muchas palabras de cariño entre nosotros, los amo quambras.

A mi mejor amigo que está viendo y cuidándome desde el cielo, por el apoyo desde siempre, que me trató como uno más de sus hijos, sus enseñanzas y aventuras, yo las viví también, Dios le pague Papuguito. A mi abuela que me enseño como ser bueno y desinteresado cuando de ayudar se trata, sin duda gracias a ustedes pase la mejor niñez del mundo.

A mis tíos, quienes creyeron y confiaron en mí, ese apoyo significó y significa mucho.

A mis amigos del cole y la U, porque siempre acolan a lo que sea, por el acole en el laboratorio en los materiales, siempre y cuando haya factura. Por las estudiadas en grupo. Por el terno, las recargas, los préstamos, los arriendos, las carreras, los partidos de fútbol que nunca se dieron, por todo eso y más, gracias panas caravanas.

Para aquellas personas especiales que se llevaron y tienen mi corazón.

A mis profes de la Poli, por sus enseñanzas y guías, por ser más que profesores y convertirse en amigos, gracias.

Paúl Pinto

DEDICATORIA

El esfuerzo es saludable e indispensable pero, sin los resultados no significa nada, y para poder ofrecer resultados, una persona no puede correr y aprender a la vez. Debe permanecer en un lugar durante un tiempo, es por eso que abandone a mi padre, a mi madre y el castillo de mi ciudad, ellos se acostumbraron y yo me acostumbre. ¡Ay de mí! Si no conseguía este objetivo, y para poder merecerlo me toco recorrer senderos lejos del calor de una madre, pero desde la distancia siempre estuvo ahí con sus consejos, sus oraciones y sus bendiciones, por eso y muchas coas más nunca he de olvidar que una mujer da poco cuando solo dispone de los bienes materiales que posee, pero da mucho cuando se entrega a sí misma, es por esa entrega de sacrificio, de espera y de confianza, por el cual me es digno de volver a nombrar a mi querida madre Julia María Chiriboga Rivera, no con la finalidad de dedicarle este trabajo, sino con la finalidad de dedicarle mi victoria.

César Sinchiguano

CONTENIDO

DECLARACIÓN	I
CERTIFICACIÓN	II
AGRADECIMIENTO	III
AGRADECIMIENTO	IV
DEDICATORIA	v
DEDICATORIA	VI
CONTENIDO	
ÍNDICE DE TABLAS	
ÍNDICE DE FIGURAS	
ÍNDICE DE ANEXOS	XVI
RESUMEN	XVII
PRESENTACIÓN	XIX
CAPÍTULO 1	1
DESCRIPCIÓN GENERAL DEL SISTEMA ACTUAL	1
CAPÍTULO 1	2
1.1 GENERALIDADES	2
1.1.1 REFINAMIENTO	3
1.1.2 DISTRIBUCIÓN	3
1.1.2.1 Redes de distribución de combustibles por poliductos	4
1.1.3 ALMACENAMIENTO	6
1.1.4 COMERCIALIZACIÓN DE DERIVADOS	7
1.1.5 TERMINAL DE DESPACHO	8
1.2 TERMINAL DE PRODUCTOS LIMPIOS SANTO DOMINGO	8
1.2.1 ÁREA DE ALMACENAMIENTO	8
1.2.2 DESPACHO Y COMERCIALIZACIÓN	10

1.2.3 SISTEMA DE MEDICION DE COMBUSTIBLE EN LAS ISLAS	16
1.2.3.1 Controlador de carga Accuload III. [5]	17
1.2.3.2 Medidores de desplazamiento positivo. [6]	18
1.2.3.3 Válvula digital electro-hidráulica. [7]	20
1.2.3.4 Filtro de tubería. [8]	22
1.2.4 FUNCIONAMIENTO ACTUAL	23
1.2.5 PRINCIPALES INCONVENIENTES DEL SISTEMA ACTUAL	26
CAPITULO 2	28
DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE CONTROL	28
2.1 DISEÑO DEL SISTEMA DE CONTROL	29
2.1.1 HARDWARE PARA EL SISTEMA DE CONTROL DE VELOCIDAD	29
2.1.1.1 Transmisor de presión	30
2.1.1.2 Actuadores	31
2.1.2 PROGRAMACIÓN PARA EL CONTROL DE VELOCIDAD	32
2.1.2.1 Control PID. [9]	33
2.1.3 PROGRAMACIÓN DEL PLC QUANTUM	34
2.1.3.1 Subrutina para lectura de registros de entrada y salida	35
2.1.3.2 Subrutina para el accionamiento de bombas	37
2.2 INSTALACIÓN	45
2.2.1 INSTALACIÓN DEL TRANSMISOR DE PRESIÓN	45
2.2.1.1 Calibracióntransmisores de presión	48
2.2.2 MONTAJE E INSTALACIÓN DE NUEVE ACTUADORES	50
CAPITULO 3	55
DESARROLLO DE LA HMI	55
3.1 DISEÑO DE LA HMI	56
3.1.1 DISEÑO PARA EL PANEL OPERADOR	56
3.1.1.1 Requerimiento del proceso	57
3.2 HARDWARE	58
3.2.1 DESARROLLO DE LA HMI	60

3.2.1.1	Variables de Vijeo	61
3.2.1.2	Importación de variables	62
3.2.2 PR	OGRAMACION DE LA PANTALLA MAGELIS	62
3.2.3 PAI	NTALLAS DE LA HMI	68
3.2.3.1	Pantalla de Acceso	68
3.2.3.2	Pantalla Menú Principal	69
3.2.3.3	Operación Sistema	70
3.2.3.4	Histórico de Alarmas	73
3.2.3.5	Histórico Actuadores	73
3.2.3.6	Mantenimiento	74
3.2.3.7	Status Red Lan	74
3.3 MODIFI	CACIÓN DE LA HMI PARA SALA DE CONTROL	76
3.3.1 RE	QUERIMIENTOS DEL PROCESO	77
3.3.2 PAI	NTALLAS DE LA HMI	77
3.3.2.1	Pantalla de Acceso	77
3.3.2.2	Pantalla Operación Gasolinas	78
3.3.2.3	Pantalla Operación Diesel	79
CAPITULO 4		83
PRUEBAS Y F	RESULTADOS	83
4.1 NUEVO	SISTEMA DE DESPACHO	84
4.2 PRUEB	AS CON UN BRAZO DE CARGA	84
4.2.1 PR	UEBAS DIESEL 2	84
4.2.1.1	Búsqueda de parámetros controlador PID	87
4.2.1.	1.1 Primer intento	87
4.2.1.	1.2 Parámetros finales del controlador línea Diesel 2	89
4.2.2 PR	UEBAS SÚPER	92
4.2.2.1	Búsqueda de Parámetros Controlador	94
4.2.2.	1.1 Primer intento	94
4.2.2.	1.2 Parámetros finales del controlador línea de Súper	97
4.3 PRUEB	AS CON DOS BRAZOS DE CARGA	99

4.3.1 PF	RUEBAS DIESEL PREMIUM	100
4.3.1.1	Búsqueda de Parámetros Controlador PID	105
4.3.1	.1.1 Primer intento	105
4.3.1	.1.2 Parámetros finales del controlador línea Diesel Premium	112
4.3.2 PF	RUEBAS GASOLINA EXTRA	118
4.3.2.1	Búsqueda de parámetros controlador PID	122
4.3.2	2.1.1 Primer intento	122
4.3.2	2.1.2 Parámetros finales del controlador línea de gasolina Extra	127
CAPITULO 5		133
CONCLUSIO	NES Y RECOMENDACIONES	133
5.1 CONC	LUSIONES	134
5.2 RECO	MENDACIONES	137
REFERENCIA	AS BIBLIOGRÁFICAS:	139

ÍNDICE DE TABLAS

TABLA 1. 1 TANQUES CON SU PRODUCTO DE ALMACENAMIENTO	9
TABLA 1. 2 NOMENCLATURA BRAZOS DE CARGA	
TABLA 1. 3 NOMENCLATURA BOMBAS	12
TABLA 1. 4 VELOCIDADES DE ACUERDO AL NÚMERO DE BRAZOS DE CARGA	
TABLA 1. 5 DATOS DE PLACA DE LOS MOTORES DIESEL 2 Y PREMIUM	
TABLA 1. 6 DATOS DE PLACA DE LOS MOTORES DE EXTRA Y SÚPER	14
TABLA 1. 7 ESPECIFICACIONES GENERALES DEL CONTROLADOR DE CARGA .	
TABLA 1. 8 CARACTERÍSTICAS MEDIDOR DE DESPLAZAMIENTO MODELO F4-	
TABLA 1. 9 ESPECIFICACIONES VÁLVULA MODELO 210 DE SMITH METER	21
TABLA 1. 10 ESPECIFICACIONES FILTRO SMITH METER	23
TABLA 2. 1 CARACTERÍSTICAS DEL TRANSMISOR DE PRESIÓN	30
TABLA 2. 2 ESPECIFICACIONES GENERALES DEL ACTUADOR ROTORK	
ELECTRIC	31
TABLA 2. 3 SET POINT DIESEL 2	37
TABLA 2. 4 SET POINT DIESEL PREMIUM	
TABLA 2. 5 SET POINT PARA EXTRA	
TABLA 2. 6 SET POINT PARA SÚPER	
TABLA 2. 7 VELOCIDAD PARA DIESEL 2	38
TABLA 2. 8 VELOCIDAD PARA DIESEL PREMIUM	38
TABLA 2. 9 VELOCIDAD PARA EXTRA	
TABLA 2. 10 VELOCIDAD PARA SÚPER	
TABLA 2. 11 SEÑAL DE TRANSMISOR DE EXTRA EN FALLA	
TABLA 2. 12 TANSMISOR DE PRESIÓN DE EXTRA CALIBRADO	
TABLA 3. 1 CARACTERÍSTICAS GENERALES DE LA PANTALLA MAGELIS [18]	59
TABLA 3. 2 TIPOS DE VARIABLES DE VIJEO [20]	
TABLA 3. 4 NIVEL DE ACCESO	
TABLA 3. 4 CAMBIOS EN LA HMI	
	, ,
TABLA 4. 1 SISTEMA ANTERIOR AL CONTROL PID	86
TABLA 4. 2 VALORES INICIALES CONTROLADOR PID PARA DIESEL 2	
TABLA 4. 3 PRIMER INTENTO PID PARA DIESEL 2	
TABLA 4. 4 VALORES FINALES CONTROLADOR PARA DIESEL 2	
TABLA 4. 5 DESPACHO DIESEL 2 CON EL SISTEMA FINAL	
TABLA 4. 6 SISTEMA SIN CONTROL LINEA DE SÚPER	
TABLA 4. 7 VALORES INICIALES CONTROLADOR SÚPER	
TABLA 4. 8 VALORES INICIALES CONTROLADOR DESPACHO SÚPER	96
TABLA 4 9 VALORES FINALES CONTROLADOR SÚPER	

TABLA 4. 10 DESPACHO GASOLINA SÚPER	98
TABLA 4. 11 FUNCIONAMIENTO DE DOS BRAZOS PARA DESPACHO DE DIES	EL
PREMIUM, SIN CONTROLADOR	102
TABLA 4. 12 VALORES INICIALES CONTROLADOR DIESEL PREMIUM	105
TABLA 4. 13 VALORES INICIALES CONTROLADOR, DIESEL PREMIUM	108
TABLA 4. 14 VALORES FINALES CONTROLADOR PARA DIESEL PREMIUM	112
TABLA 4. 15 DESPACHO DIESEL PREMIUM	115
TABLA 4. 16 FUNCIONAMIENTO DE DOS BRAZOS PARA DESPACHO DE	
GASOLINA EXTRA, SIN CONTROLADOR	120
TABLA 4. 17 VALORES INICIALES CONTROLADOR GASOLINA EXTRA	122
TABLA 4. 18 VALORES INICIALES CONTROLADOR, GASOLINA EXTRA	124
TABLA 4. 19 VALORES FINALES CONTROLADOR PARA GASOLINA EXTRA	127
TABLA 4. 20 DESPACHOGASOLINA EXTRA	129

ÍNDICE DE FIGURAS

FIGURA 1. 1 DIAGRAMA DE BLOQUES DEL PROCESO	2
FIGURA 1. 2 CADENA DE SUMINISTRO DE COMBUSTIBLES TÍPICA	4
FIGURA 1. 3 RED DE POLIDUCTOS DE ECUADOR	6
FIGURA 1. 4 DIAGRAMA DE BLOQUES DE ACTIVIDADES REALIZADAS EN LA	
TERMINAL	
FIGURA 1. 5 TANQUES DE ALMACENAMIENTO	9
FIGURA 1. 6 DIAGRAMA DE BLOQUES DEL DESPACHO Y COMERCIALIZACIÓN	
DE COMBUSTIBLES	
FIGURA 1. 7 PATIO DE BOMBAS	.10
FIGURA 1. 8 ISLA DE CARGA	.12
FIGURA 1. 9 ESQUEMA DEL SISTEMA DE DESPACHO Y COMERCIALIZACIÓN	.15
FIGURA 1. 10 ESQUEMA GENERAL DEL SISTEMA DE MEDICIÓN DE	
COMBUSTIBLE	.16
FIGURA 1. 11 ACCULOAD ESTACIÓN SANTO DOMINGO	.17
FIGURA 1. 12 MEDIDOR DE DESPLAZAMIENTO POSITIVO F4-S1	.19
FIGURA 1. 13 MEDIDOR DE DESPLAZAMIENTO POSITIVO EN ISLA DE CARGA	.20
FIGURA 1. 14 VÁLVULA DIGITAL ELECTRO-HIDRÁULICA MODELO 210	.20
FIGURA 1. 15 MODELO ESQUEMÁTICO	.21
FIGURA 1. 16 VÁLVULA DIGITAL ELECTRO-HIDRÁULICA DE LA ISLA DE CARG	ſΑ
	.22
FIGURA 1. 17 FILTRO DE TUBERÍA	.22
FIGURA 1. 18 COMUNICACIÓN ENTRE PLC PRINCIPAL CON PLC'S SECUNDARIC)S
Y RTU	
FIGURA 1. 19 ALINEAMEINTO DE LAS LINEAS DE COMBUSTIBLE	
FIGURA 1. 20 DIAGRAMA ETHERNET	.26
,	
FIGURA 2. 1 EL TRANSMISOR DE PRESIÓN YOKOGAWA	
FIGURA 2. 2 ACTUADOR ROTORK ELECTRIC	
FIGURA 2. 3 DIAGRAMA DE BLOQUE DE UN CONTROL PID	.33
FIGURA 2. 4 SUBRUTINA PARA LECTURA DE REGISTROS DE ENTRADAS Y	
SALIDAS	
FIGURA 2. 5 SUBRUTINA PARA EL CONTROL DE VELOCIDAD	
Figura 2. 6 SUBRUTINA PARA EL CONTROL DE VELOCIDAD DIESEL PREMIUM	
Figura 2. 7 SUBRUTINAPARA EL CONTROL DE VELOCIDAD DE EXTRA	.42
Figura 2. 8 SUBRUTINA PARA EL CONTROL DE VELOCIDAD DE SÚPER	
FIGURA 2. 9 BLOQUE FUNCIONAL PID	.44
FIGURA 2. 10 BANDEJA DE CABLES EN EL PATIO DE BOMBA	
FIGURA 2. 11 TAPONES DE 2 PULGADAS EN LA LÍNEA DE EXTRA Y SÚPER	.46
FIGURA 2. 12 TAPÓN DE 2 PULGADAS EN LA LÍNEA DE DIESEL 2	
FIGURA 2. 13 REDUCCIÓN Y VÁLVULA DE BOLA PARA LA LÍNEA DE SÚPER	
FIGURA 2. 14 DIAGRAMA ELÉCTRICO, DESDE EL TRANSMISOR AL ALTIVAR61 .	
FIGURA 2. 15 CONEXIÓN TRANSMISORES DE PRESIÓN	.47

FIGURA 2. 16 INSTALACIÓN DEL TRANSMISOR DE PRESIÓN	48
FIGURA 2. 17 COMUNICADOR DE CAMPO Y MEDIDOR DE PRESIÓN FLUKE	
FIGURA 2. 18 MONTAJE DE EQUIPO PARA CALIBRACIÓN	
FIGURA 2. 19 SISTEMA DE ALINEAMIENTO MANUAL	
FIGURA 2. 20 ACTUADORES INSTALADOS	
FIGURA 2. 21 SISTEMA ACTUAL DE ALINEAMIENTO	
Figura 2. 22 DIAGRAMA DE FLUJO SISTEMA DESPACHO DIESEL 2 Y PREMIUM	52
Figura 2. 23 DIAGRAMA DE FLUJO SISTEMA DESPACHO GASOLINA EXTRA Y	
SÚPER	53
FIGURA 3. 1 PARTE POSTERIOR DEL PANEL OPERADOR	
FIGURA 3. 2 DISEÑO Y DESCARGA DEL LA HMI	
FIGURA 3. 3 DIAGRAMA ETHERNET	63
FIGURA 3. 4 ADQUISICION DE DATOS DE LOS PLC'S MASTER Y ESCLAVOS	64
FIGURA 3. 5 ENVIO DE DATOS DESDE LA PANTALLA MAGELIS HASTA SISTEM	ſΑ
······································	64
FIGURA 3. 6 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MEGELIS	
(PARTE 1)FIGURA 3. 7 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MAGELIS	65
FIGURA 3. 7 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MAGELIS	
(PARTE 2)	66
FIGURA 3. 8 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MAGELIS	
(PARTE 3)	67
FIGURA 3. 9 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MEGELIS	
(PARTE 4)	68
FIGURA 3. 10 PANTALLA DE ACCESO	
FIGURA 3. 11 PANTALLA MENÚ PRINCIPAL	70
FIGURA 3. 12 PANTALLA OPERACIÓN SISTEMA	
FIGURA 3. 13 PANTALLAS OPERACIÓN DIESEL 2 Y PREMIUM	
FIGURA 3. 14 PANTALLAS DE OPERACIÓN GASOLINA EXTRA Y SÚPER	
FIGURA 3. 15 PANTALLA DEL ESTADO DE VÁLVULAS DEL HMI MAGELIS	
FIGURA 3. 16 PANTALLA DEL ESTADO DEL VARIADOR DE VELOCIDAD DEL H	
MAGELIS	
FIGURA 3. 17 PANTALLA DE HISTÓRICO DE ALARMAS	
FIGURA 3. 18 PANTALLA DE EVENTO ACTUADORES	
FIGURA 3. 19 PANTALLA DE MANTENIMIENTO	
FIGURA 3. 20 PANTALLA ESTADO DE RED	75
FIGURA 3. 21 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC	7.5
QUANTUM (PLC PRINCIPAL)FIGURA 3. 22 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC	/ 3
	7.5
MOMENTUM (PLC PATIO DE BOMBAS)FIGURA 3. 23 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC	/ 3
MOMENTUM (PLC TANQUES)FIGURA 3. 24 MENSAJE DE ERROR DE COMUNICACIÓN CON PLC	/6
FIGURA 3. 25 PANTALLA DE INICIO DE HMI	
FIGURA 3. 27 PANTALLA OPERACIÓN DESPACHO DIESEL	80

FIGURA 3. 28 PANTALLA INFORMACIÓN TANQUES80
FIGURA 3. 29 PANTALLA ESTADO DE ACTUADORES81
FIGURA 3. 30 PANTALLA DE ESTADO DE BOMBAS82
FIGURA 3. 31 PANTALLA ESTADO BOMBA SIN VARIADOR82
FIGURA 4. 1 COMPORTAMIENTO CAUDAL DIESEL 2, ISLA DE CARGA86
FIGURA 4. 2 COMPORTAMIENTO CAUDAL CON NUEVO SISTEMA PARA DIESEL 2
89
FIGURA 4. 3 COMPORTAMIENTO CAUDAL EN LAS ISLAS DE CARGA, DIESEL 291
FIGURA 4. 4 COMPORTAMIENTO CAUDAL SIN CONTROL LINEA DE SÚPER94
FIGURA 4. 5 RESPUESTA SISTEMA PRIMER CONTROLADOR DESPACHO SÚPER .96
FIGURA 4. 6 COMPORTAMIENTO CAUDAL EN ISLAS DE CARGA, SÚPER99
FIGURA 4. 7 COMPORTAMIENTO SISTEMA SIN CONTROLADOR, DIESEL
PREMIUM
FIGURA 4. 8 PRIMER INTENTO CONTROLADOR BRAZO 1, DIESEL PREMIUM109
FIGURA 4. 9 PRIMER INTENTO CONTROLADOR BRAZO 2, DIESEL PREMIUM111
FIGURA 4. 10 DESPACHO BRAZOS DE CARGA 1, DIESEL PREMIUM116
FIGURA 4. 11 DESPACHO BRAZO DE CARGA 2, DIESEL PREMIUM117
FIGURA 4. 12 COMPORTAMIENTO SISTEMA SIN CONTROLADOR, GASOLINA
EXTRA121
FIGURA 4. 13 COMPORTAMIENTO SISTEMA PRIMER INTENTO CONTROLADOR
PID BRAZO DE CARGA 1, EXTRA125
FIGURA 4. 14COMPORTAMIENTO SISTEMA PRIMER INTENTO CONTROLADOR
PID BRAZO DE CARGA 2, EXTRA
FIGURA 4. 15 COMPORTAMIENTO SISTEMA CONTROLADOR PID BRAZO DE
CARGA 2, EXTRA
FIGURA 4. 16 COMPORTAMIENTO SISTEMA CONTROLADOR PID BRAZO DE
CARGA 2, EXTRA

ÍNDICE DE ANEXOS

ANEXO	Α
--------------	---

VARIADOR DE VELOCIDAD ALTIVAR 61

ANEXO B

MOTOR LOGIC PLUS

ANEXO C

PLC QUENTUM

ANEXO D

PLC MOMENTUM

ANEXO E

PLC MOMENTUM

ANEXO F

PLANOS ELÉCTRICOS

ANEXO G

MANUAL DE USUARIO PANTALLA MAGELIS

RESUMEN

El presente proyecto consiste en el diseño e implementación de un sistema de control para las bombas de despacho de combustibles en el *Terminal de Productos Limpios de Santo Domingo de EP-PETROECUADOR*. El sistema cuenta con siete tanques de almacenamiento: cuatro para diesel y tres para gasolinas; cuatro bombas y ocho brazos de carga: uno para diesel 2, tres para diesel Premium, tres para extra y uno para súper. Cuando el sistema está en funcionamiento, dependiendo del producto solicitado, usa un solo tanque a la vez.

El sistema de medición por cada dos brazos se realiza mediante un controlador Accuload III, el cual controla el volumen y flujo del producto mediante válvulas electrohidráulicas y medidores de desplazamiento positivo, y cuando está activado envía señales discretas que ordenan el funcionamiento del sistema.

Un PLC Modicon Quantum actúa como control principal, comunicándose con los PLCs Momentum a través de una red Modbus Plus. Existen dos PLC's Momentum (RTU) por cada bomba, los cuales se encargan del accionamiento en arranque directo o por medio de un variador de velocidad. El control para el variador de velocidad se realiza mediante un lazo cerrado y cuya velocidad está en función del valor que se reciba del transmisor de presión ubicado en cada línea de combustible. El valor recibido es tratado en el PLC, y es uno de los parámetros de un controlador PID, los mismos que son ajustados internamente. Este sistema de control regula el flujo, optimizando el proceso de despacho.

Se desarrolló un HMI en un panel operador tipo touch screen, en el cual se permite la interacción del operador con el sistema, así como una modificación al HMI del Centro de Control ya existente y a través del cual se supervisa el funcionamiento de todo el sistema. En ambas HMI se obtiene información sobre corrientes, velocidades, alarmas, disponibilidades, etc.

Los resultados obtenidos en este proyecto permiten suavizar el cambio de presión en las líneas de combustible producidas al activar o desactivar un brazo de carga, con respecto al antiguo sistema, se logra reducir el golpe de ariete en las tuberías.

PRESENTACIÓN

El presente proyecto fue realizado en el *Terminal de Productos Limpios de Santo Domingo de EP-PETROECUADOR*, con el fin de mejorar y superar los diversos problemas e inconvenientes producidos por una mala regulación del caudal en las líneas de combustible.

Consta de cinco capítulos principales, los mismos que se describen a continuación:

En el primer capítulo, se presenta una breve descripción sobre el refinamiento, distribución, almacenamiento y distribución de combustible, las estaciones y terminales que tiene EP-PETROECUADOR, y además se detalla la situación actual del Terminal de Productos Limpios de Santo Domingo donde se desarrolla el presente proyecto de titulación.

En el segundo capítulo, se explica el diseño e implementación del sistema de control de velocidad a través de la plataforma Concept 2.6 XL con la utilización de un control PID para mantener presión constante en la línea, resolviendo los problemas existentes en el sistema.

El tercer capítulo tiene como objetivo describir la plataforma de desarrollo de la HMI que se utiliza en el presente proyecto para el control y monitoreo de actuadores y bombas del sistema, así como también la modificación de una HMI existente en la planta. Además, se establece la lógica utilizada y se indica la forma de operación del mismo.

En el cuarto capítulo, se presenta las pruebas realizadas para garantizar el funcionamiento del sistema, considerando las necesidades de EP-PETROECUADOR. Además se presentan los resultados obtenidos

En el guito capitulo, se presentan las conclusiones y recomendaciones.

Finalmente, se adjunta los planos y diagramas necesarios para la correcta interpretación del proyecto desarrollado.

CAPÍTULO 1 DESCRIPCIÓN GENERAL DEL SISTEMA ACTUAL

CAPÍTULO 1

DESCRIPCIÓN GENERAL DEL SISTEMA ACTUAL

En el presente capítulo se presenta una breve descripción sobre el refinamiento, distribución, almacenamiento y distribución de combustible, las estaciones y terminales que tiene EP-PETROECUADOR, además se detalla la situación actual del Terminal de Productos Limpios de Santo Domingo donde se desarrolla el presente proyecto de titulación

1.1 GENERALIDADES

La programación de operaciones de provisión, refinamiento, transporte, almacenamiento y comercialización de productos derivados del petróleo es una tarea sumamente compleja e indispensable para lograr un acoplamiento óptimo entre las distintas cadenas de suministro de combustibles. Desde las materias primas, crudos o variedades de petróleo obtenidos en vastas regiones del planeta, hasta los combustibles refinados y sus distintos grados de calidad, los productos de esta sofisticada cadena de valor recorren miles de kilómetros partiendo de su origen hasta alcanzar su destino final.

FIGURA 1. 1 DIAGRAMA DE BLOQUES DEL PROCESO

1.1.1 REFINAMIENTO

Las refinerías de petróleo son las que convierten este recurso natural en una gran variedad de productos refinados de tal manera que sean aptos para cada prestación. Desde combustibles para vehículos, como naftas, diesel y jet-fuel, productos pesados como aceites, parafinas y betunes, hasta productos petroquímicos para la fabricación de polímeros, por mencionar algunos. El mercado de los derivados del petróleo es extremadamente complejo y experimenta un continuo crecimiento.

Por esta razón, resulta muy importante establecer mecanismos eficientes que permita abastecer los productos requeridos, en la cantidad y tiempos que exigen las condiciones cada vez más competitivas de los mercados.

1.1.2 DISTRIBUCIÓN

Los medios de transporte comúnmente utilizados de estos productos refinados son: barcos, trenes, camiones y ductos (Figura 1.2). Pero el transporte principal de productos desde las refinerías hacia los grandes centros de distribución se realiza por tuberías múltiples o poliductos, los mismos que ofrecen ventajas como: costos reducidos, confiabilidad y seguridad. A pesar de ser de los medios más lentos (no más de 10 km/h), operan las 24 horas de los 365 días del año. [1]

Los poliductos son sistemas de cañerías destinados al transporte de hidrocarburos o productos terminados. A diferencia de los oleoductos convencionales dedicados exclusivamente al transporte de petróleo crudo, los poliductos transportan una gran variedad de combustibles ya procesados en la refinería. Normalmente un poliducto de grandes dimensiones contiene cuatro o cinco productos diferentes en distintos puntos de su recorrido, que son entregados en la terminal de recepción o en estaciones intermedias ubicadas a lo largo de la ruta.

FIGURA 1. 2 CADENA DE SUMINISTRO DE COMBUSTIBLES TÍPICA

1.1.2.1 Redes de distribución de combustibles por poliductos

Las redes de distribución de productos refinados a través de poliductos suelen presentar diferentes niveles de complejidad en su configuración. Desde poliductos simples con origen y destino únicos, hasta sistemas con múltiples puntos de inyección y terminales intermedias, ramificaciones e incluso líneas de recirculación. Un ejemplo claro lo podemos encontrar en el poliducto OSBRA de la firma Petrobras (Brasil), que transporta combustibles desde una única refinería en Sao Paulo hacia la capital del país, Brasilia, y en el trayecto entrega combustibles a cuatro localidades de importancia, dispuestas en puntos intermedios a lo largo del recorrido de 955Km.

En nuestro país la red logística de distribución de combustible cuenta con una red de poliductos ubicados estratégicamente e interconectados entre sí (Figura 1.3), que atraviesan las tres regiones del Ecuador Continental. Transportan gasolinas, diesel y gas licuado de petróleo, desde las Refinerías y los terminales marítimos, hasta los centros de despacho y de ahí a las comercializadoras. Son aproximadamente 1300 kilómetros de poliducto, cuya capacidad de bombeo, permite transportar alrededor de 6 millones de galones diarios de combustible, a través de 9 diferentes líneas, que

interconectadas entre sí, abastecen a todos los sectores sociales y productivos del país, tal como se indica a continuación. [2]

POLIDUCTOS

- Esmeraldas Quito Macul
- Quito Ambato
- Shushufindi Quito
- Sto. Domingo Pascuales
- Libertad Manta
- Libertad Pascuales
- Tres Bocas Pascuales
- Tres Bocas Fuel Oil
- Tres Bocas Salitral

ESTACIONES DE POLIDUCTOS:

- Shushufindi Poliducto SH Q
- Quijos Poliducto SH Q
- Osayacu Poliducto SH Q
- Chaloi Poliducto SH Q
- Esmeraldas Poliducto E Q
- Santo Domingo Poliducto E Q
- Faisanes Poliducto E Q
- Corazón Poliducto E Q
- Reductora Beatereo Poliducto E Q

FIGURA 1. 3RED DE POLIDUCTOS DE ECUADOR

1.1.3 ALMACENAMIENTO

El almacenamiento de líquidos como petróleo, nafta, fuel oil, diesel u otros derivados petroquímicos que se pueden conservar a presión y temperatura ambiente, se efectúa normalmente en tanques cilíndricos de fondo plano, techo abovedado, esférico o elipsoidal, y algunas veces flotante, a fin de evitar acumulación de gases inflamables dentro de los mismos, que pueden o no tener incorporado algún sistema de calefacción.

Con el propósito de asegurar el suministro de hidrocarburos a todas las zonas de consumo masivo, EP-PETROCOMERCIAL cuenta con centros de almacenamiento, 8

terminales y 12 depósitos, con instalaciones para la recepción de combustibles y GLP, que son transportados vía poliductos y despachados a través de auto-tanques hacia los sitios de distribución final. Tiene una capacidad de almacenamiento de 2.681.441 barriles en las cuatro regiones naturales del país. [3]

TERMINALES Y DEPÓSITOS:

- Terminal Beatereo
- Terminal Santo Domingo
- Terminal Ambato
- Depósito Riobamba
- Terminal de Gas Oyambaro

1.1.4 COMERCIALIZACIÓN DE DERIVADOS

Los productos que se comercializan en el Ecuador son clasificados en dos grupos, los derivados básicos o de consumo masivo como la gasolina, diesel, GLP y residuo, y los derivados especiales o de consumo dirigido como el combustible de aviación, asfalto, solventes industriales, spray, oil y azufre.

EP-PETROCOMERCIAL es la empresa filial a EP-PETROECUADOR encargada de la comercialización de derivados de petróleo en el país, que también tiene como tareas el transporte, almacenamiento y distribución de estos derivados. La distribución y venta de derivados al consumidor final la realizan las comercializadoras bajo su marca a través de una red de distribuidores a lo largo del territorio nacional, estas operadoras son controladas y calificadas por la Dirección Nacional de Hidrocarburos (DNH). [4]

1.1.5 TERMINAL DE DESPACHO

Las terminales de despacho son plantas de almacenamiento, donde se acopian los combustibles enviados desde las refinerías. Además de los grandes tanques de almacenaje, un elemento central de estas terminales es el Laboratorio de Control de Calidad, permitiendo asegurar que todas las partidas de combustible que se despachan en la planta estén dentro de las especificaciones requeridas. Aquí los camiones cisterna se abastecen de los distintos productos que serán entregados a las estaciones de servicio ubicadas en todo el país.

1.2 TERMINAL DE PRODUCTOS LIMPIOS SANTO DOMINGO

En el Terminal se realizan básicamente cuatro actividades que son: la recepción de productos, el almacenamiento, despacho, y la comercialización de gasolina extra, gasolina súper, diesel 2 y diesel Premium.

FIGURA 1. 4 DIAGRAMA DE BLOQUES DE ACTIVIDADES REALIZADAS EN LA TERMINAL

1.2.1 ÁREA DE ALMACENAMIENTO

El Terminal dispone de un área de tanques estacionarios verticales, debidamente identificados de acuerdo al producto que contienen. Cada tanque tiene instalado un sistema de medición a través de sensores que miden nivel, temperatura, presión y

agua, además poseen cubetos o diques diseñados para contener el producto del tanque en caso de producirse un derrame.

FIGURA 1. 5 TANQUES DE ALMACENAMIENTO

Tanque No.	Producto	Tipo de Techo	
TS-6-600	GAS.	FLOTANTE	
	SUPER		
TS-09-625	GAS.	FLOTANTE	
	EXTRA	ILOTANIL	
TS-11-725	GAS.	FLOTANTE	
	EXTRA	FLOTANTE	
TS-09-675	DIESEL 2	FIJO	
TS-12-750	DIESEL 2	FIJO	
TS-10-700	DIESEL	FIJO	
	PREMIUM		
TS-08-650	DIESEL	RESERVA	
13-00-030	PREMIUM	RESERVA	

TABLA 1. 1 TANQUES CON SU PRODUCTO DE ALMACENAMIENTO.

1.2.2 DESPACHO Y COMERCIALIZACIÓN

Para el despacho del combustible se trabaja con cuatro bombas verticales de 1000 gpm cada una, las mismas que se encuentran ubicadas en el patio de bombas, son las encargadas de extraer el combustible desde los tanques de almacenamiento y llevarlo hasta las islas de carga.

FIGURA 1. 6DIAGRAMA DE BLOQUES DEL DESPACHO Y COMERCIALIZACIÓN DE COMBUSTIBLES

FIGURA 1. 7 PATIO DE BOMBAS

En las islas de carga se encuentran los tanqueros que esperan por el combustible deseado. El terminal de productos limpios Santo Domingo posee dos islas de carga. La isla de carga 1 es para el despacho de Diesel 2, Diesel Premium, gasolina Extra y

Súper mientras que la Isla de carga 2 se utiliza para la distribución de Diesel Premium y Extra.

La Isla de carga 1 contiene cuatro mangueras para la descarga de productos antes mencionados hacia los tanqueros, mientras que la isla de carga 2 utiliza cuatro mangueras para el despacho de Extra y Diesel Premium. Dichas mangueras se las conoce como brazos de carga, los cuales son utilizados dependiendo de la demanda de tanqueros en ese instante. En la tabla 1.2 se muestra la nomenclatura utilizada de cada uno de los brazos de carga y el producto que cada uno despacha.

BRAZO	PRODUCTO
BC_5201	Súper
BC_5202	Diesel 2
BC_5203	Extra
BC_5204	Diesel Premium
BC_5205	Extra
BC_5206	Diesel Premium
BC_5207	Extra
BC_5208	Diesel Premium

TABLA 1. 2 NOMENCLATURA BRAZOS DE CARGA

En la figura 1.8, se puede apreciar las islas de carga existentes en la terminal de productos limpios de Santo Domingo.

FIGURA 1. 8 ISLA DE CARGA

El sistema contiene bombas verticales para el despacho de producto. Las bombas utilizadas son las encargadas de elevar, transferir e impulsar el producto desde los tanques hacia los brazos de carga aumentando la presión del combustible. Son cuatro bombas que están en servicio y cuyo funcionamiento depende del número de brazos activados.

BOMBA	# BRAZOS	PRODUCTO
P-5101	1	Diesel 2
P-5102	3	Diesel Premium
P-5103	0	Extra (fuera de servicio)
P-5104	1	Súper
P-5105	3	Extra

TABLA 1. 3 NOMENCLATURA BOMBAS

Cada bomba trabaja en escalones de velocidad dependiendo de los brazos activados, por ejemplo para la bomba P-5102 que transporta Diesel Premium, en el instante que tiene un brazo de carga trabaja a la velocidad de 1500 rpm en cambio cuando ingresa el segundo brazo su velocidad cambia a 1800 rpm y esto continúa con el tercer brazo. Las velocidades de trabajo para cada una de las bombas se muestran en la tabla 1.4

BOMBA	# BRAZOS	Velocidad [rpm]
P-5101	1	1750
	1	1500
P-5102	2	1800
	3	1800
	1	1500
P-5105	2	1800
	3	1800
P-5104	1	1750

TABLA 1. 4 VELOCIDADES DE ACUERDO AL NÚMERO DE BRAZOS DE CARGA

Debido a la variación de velocidad que tiene el sistema, se utiliza variadores Altivar 61¹, y como el proceso es crítico, en caso de falla tiene un Bypass para permitir el arranque directo para esto se utiliza Motor Logic Plus ² como medio de protección.

Los datos de placa de las bombas verticales, para el envío de combustible desde los tanques hacia los brazos de carga se muestran en las tablas 1.5 y 1.6

Motor 60HP		Motor 50HP	
Serie	K10-TM03923-002	Serie	
Voltaje	460 V	Voltaje	460 V

¹Las características principales se encuentran en el Anexo A

² Las características principales se encuentran en el Anexo B

Motor 60HP		Motor 50HP	
Corriente	69 A	Corriente	58 A
Potencia	60 HP	Potencia	50 HP
Frecuencia	60 Hz	Frecuencia	60 Hz
Velocidad máxima	1780 rpm	Velocidad máxima	1775 rpm
Numero de fases	3	Numero de fases	3

TABLA 1. 5DATOS DE PLACA DE LOS MOTORES DIESEL 2 Y PREMIUM

Motor 60HP		Motor 50HP	
Serie	K10-TM03813-002	Serie	
Voltaje	460 V	Voltaje	460 V
Corriente	69 A	Corriente	58 A
Potencia	60 HP	Potencia	50 HP
Frecuencia	60 Hz	Frecuencia	60 Hz
Velocidad máxima	1780 rpm	Velocidad máxima	1775 rpm
Numero de fases	3	Numero de fases	3

TABLA 1. 6DATOS DE PLACA DE LOS MOTORES DE EXTRA Y SÚPER

A continuación se presenta el esquema de todo el sistema de despacho y comercialización.

FIGURA 1. 9 ESQUEMA DEL SISTEMA DE DESPACHO Y COMERCIALIZACIÓN

1.2.3 SISTEMA DE MEDICION DE COMBUSTIBLE EN LAS ISLAS

El sistema de medición de combustible consta de una válvula manual para dar mantenimiento al brazo, un filtro para eliminar partículas no deseadas, un medidor de desplazamiento positivo Smith Meter modelo F4-S1, una válvula de control Smith Meter modelo 210 por cada brazo y un controlador de carga "Accuload III" de la misma marca por cada par de brazos, que son los encargados de controlar el flujo y medir la cantidad de volumen a ser despachado.

La medición de volumen se lo realiza a través del medidor de desplazamiento positivo, el cual envía una señal digital hacia el "Accuload III", el mismo que maneja la apertura y cierre de válvulas. En la figura 1.10 se presenta el esquema general del sistema de medición para un par de brazos.

FIGURA 1. 10 ESQUEMA GENERAL DEL SISTEMA DE MEDICIÓN DE COMBUSTIBLE

1.2.3.1 Controlador de carga Accuload III. [5]

El Smith Meter Accuload III es un instrumento basado en tecnología de multiprocesadores que puede ser configurado de acuerdo a las necesidades de la aplicación. Proporciona el poder, la flexibilidad y la capacidad de configuración requeridas por las actuales terminales. Ofrece una amplia variedad de configuraciones de brazos de carga, combinando los brazos de mezcla con brazos de un solo producto, maximizando la eficiencia y el rendimiento del producto transferido. Además, ofrece una multitud de configuraciones de mezcla de productos.

En el despacho se lo utiliza para regular el caudal y medir el volumen de combustible a ser despachado por los distintos brazos de carga. Es capaz de controlar dos brazos a la vez. Accuload III tiene memoria Flash que permite una fácil actualización del firmware, además de poseer una gran capacidad de almacenamiento.

FIGURA 1. 11 ACCULOAD ESTACIÓN SANTO DOMINGO

Operación	Uno o dos brazos
Teclado	Encapsulado, protegido contra el ambiente
Display	Cristal liquido, 240*64 pixeles
Entradas/salidas	Configurables

Operación	Uno o dos brazos
Entradas digitales	Cinco de: 90 a 280 Vac
	Seis de: 5 a 28 Vdc
Salidas digitales	Once de: 90 a 280 Vac
Salidas digitales	Tres de: 24 Vdc
Puerto de comunicación	Ethernet 10/100 Base TRJ-45
Procesamiento	Algebraico/ booleano
	 Control válvula de bloqueo
	 Compensación y corrección de presión y
Características	temperatura
	Control de flujo
	 Operación en modo stand/alone
	 Auto detección de hardware
Protección	A prueba de explosión

TABLA 1. 7 ESPECIFICACIONES GENERALES DEL CONTROLADOR DE CARGA

1.2.3.2 Medidores de desplazamiento positivo. [6]

Estos medidores son giratorios y de desplazamiento positivo. La carcasa es labrada a precisión y contiene un rotor que gira sobre rodamientos de bolitas, e incluye álabes distribuidos en forma pareja. Al fluir el líquido a través del medidor, el rotor y los álabes (paletas) giran alrededor de una leva fija, haciendo que estos se desplacen hacia afuera. El movimiento sucesivo de los álabes forma una cámara de medición de volumen exacto entre dos de los álabes, el rotor, la carcasa, y las tapas inferior y superior. Cada rotación del rotor produce una serie continua de estas cámaras cerradas. Ni los álabes, ni el rotor, hacen contacto con las paredes estacionarias de la cámara de medición.

FIGURA 1. 12MEDIDOR DE DESPLAZAMIENTO POSITIVO F4-S1

Una de las características sobresalientes del medidor Smith es el hecho de que el flujo pasa sin perturbaciones durante la medición. No se desperdicia energía agitando innecesariamente el líquido.

El medidor de desplazamiento empleado en la terminal es F4-S1 cuyas características se muestran en la tabla 1.8

Tasa de flujo continua	600 GPM
Tasa de flujo intermitente	720 GPM
Viscosidad máxima	400 mPa*s ⁴
Temperatura	-29 a65°C
Presión de trabajo Max.	150 PSI

TABLA 1. 8CARACTERÍSTICAS MEDIDOR DE DESPLAZAMIENTO MODELO F4-S1

FIGURA 1. 13 MEDIDOR DE DESPLAZAMIENTO POSITIVO EN ISLA DE CARGA

1.2.3.3 Válvula digital electro-hidráulica. [7]

La válvula modelo 210 de Smith Meter consiste básicamente de una válvula con dos solenoides para el control. El solenoide normalmente abierto (N.O) y el normalmente cerrado (N.C.) están colocados en la posición río arriba y río abajo, respectivamente, del lazo de control.

FIGURA 1. 14 VÁLVULA DIGITAL ELECTRO-HIDRÁULICA MODELO 210.

Cuando los dos solenoides están energizados, la presión corriente arriba del lazo de control es cerrada permitiendo al fluido desahogarse corriente abajo, lo cual causa que la válvula se abra. Inversamente, cuando los dos solenoides están desenergizados la presión río arriba del lazo de control cierra la válvula

Energizando únicamente el solenoide N.O. (normalmente abierta) se bloquea al fluido dentro de la tapa de la válvula, lo que mantiene un flujo constante mientras las condiciones de operación no cambian. Cuando las condiciones de operación o el set point cambian un controlador debe proporcionar las señales adecuadas para ajustar el flujo.

FIGURA 1. 15 MODELO ESQUEMÁTICO

Entre cada solenoide y la válvula se encuentra un dispositivo de control de respuesta, generalmente una válvula de bola. Este dispositivo es utilizado para afinar la taza de apertura y cerrado de la válvula; además permite realizar ajustes dependiendo de la viscosidad y presión del producto.

Voltaje de los solenoides	120 Vac +0%, 50/60 Hz
Viscosidad Máxima	40 mPa-s
Rango de temperatura	-29 a65°C
Max. Presión de operación	115 psig (793 kPa)

TABLA 1. 9ESPECIFICACIONES VÁLVULA MODELO 210 DE SMITH METER

FIGURA 1. 16VÁLVULA DIGITAL ELECTRO-HIDRÁULICA DE LA ISLA DE CARGA

1.2.3.4 Filtro de tubería. [8]

Los componentes de un sistema de medición necesitan protección contra posibles daños producidos por suciedades y escombros. Los filtros proveen esta protección para aplicaciones con medidores de turbina y desplazamiento positivo de 4 y más pulgadas.

Protege el sistema de medición de la suciedad y de otros materiales extraños, garantiza que el fluido esté libre de aire y gases para una óptima precisión de la medición.

FIGURA 1. 17FILTRO DE TUBERÍA

Presión de trabajo máxima	285 PSI
Temperatura	-29 a260°C
Canasta	
Malla	Plato perforado 304 SS
Tamaño de las aperturas	Agujeros de 1/8" en centros de 3/16"
Área de apertura	40%
Caída de presión	2.5 PSI

TABLA 1. 10ESPECIFICACIONES FILTRO SMITH METER

1.2.4 FUNCIONAMIENTO ACTUAL

En el control del sistema intervienen el PLC Moticon Quantum³ que controla la operación del cuarto de control de motores (CCM) y se encarga del control del sistema en general. Además se tiene dos PLC's Telemecanique Momentum⁴ que reciben información vía Modbus/Ethernet de los actuadores de los tanques y del patio de bombas. Finalmente se tiene dos RTU⁵ por cada bomba, que solamente sirven para conocer las necesidades del sistema, es decir si se necesita arranque directo o mediante variador. El operador puede seleccionar de manera local o remota el tipo de arranque, como también puede elegir el sentido de giro.

En la figura 1.18 se observa el tipo de comunicación entre el PLC principal o máster con cada uno de los PLC's esclavos y las RTU del sistema.

³ Las características principales se encuentran en el Anexo C

⁴ Las características principales se encuentran en el Anexo D

⁵ Las características principales se encuentran en el Anexo E

Considerando lo anteriormente explicado se puede decir que el funcionamiento del sistema es de la siguiente manera: la línea de combustible destinada al despacho, se activa cuando el operador programa la cantidad a ser despachada en el Accuload, el cual controla dos brazos de carga con distintos productos. En el momento que un brazo de carga es activado, la Accuload envía una señal de activación al PLC principal, al recibir esta señal el PLC activa la bomba por medio de un variador de velocidad, además controla que los distintos actuadores que se encuentran a lo largo de la línea de combustible estén alineados, es decir listos para llevar el producto desde el tanque de almacenamiento hacia la isla de carga.

FIGURA 1. 19 ALINEAMEINTO DE LAS LINEAS DE COMBUSTIBLE

Existe una HMI desarrollada para 4 computadores ubicados en la sala de control, y en las mismas se visualizan pantallas diferentes que forman parte del proceso, tal como se visualiza en la figura 1.20

FIGURA 1. 20 DIAGRAMA ETHERNET

En la PC principal donde se tiene acceso al proceso en general, se observa la información de bombas, variador y estado de brazos como también el nivel de los tanques de almacenamiento. Las primeras cuatro variables pueden ser manipuladas por el operador respectivo con una clave de acceso. La información que se despliega en las distintas HMI provienen del PLC principal y PLC's secundarios, así como de las Accuload III presentes en las islas de carga.

1.2.5 PRINCIPALES INCONVENIENTES DEL SISTEMA ACTUAL

El sistema actual tiene algunas falencias que el presente proyecto debe resolver, las cuales son:

Al trabajar con valores de velocidades de manera escalonada, se presentan los famosos golpes de ariete, para aliviar este problema, EP-PETROECUADOR, procede a implementar un sistema de tuberías con la finalidad de permitir una recirculación de fluido y así poder aliviar dichos golpes ariete, pero aun así el problema existe, claro en menor grado pero existe.

Debido a estos golpes hidráulicos, se presentan constantemente problemas en el variador, como por ejemplo, variador en falla (inactividad del dispositivo electrónico) dejándolo fuera de servicio, aquí la solución por parte de EP-Petroecuador, es activar las bombas en modo Bypass, es decir en un arranque directo, haciendo más evidente o notorio los golpes hidráulicos, y peor aún, trabajando a velocidades nominales, para toda las combinaciones posibles del requerimiento de los brazos. Al hacer esto el sistema de medición Accuload III, después de poco tiempo detecta o tiene un sobre flujo, parando el despacho.

Además a consecuencia de estos golpes hidráulicos, se produce la disminución de la vida útil de la bomba, al exigirle trabajar a velocidades nominales.

Debido a la pérdida de caudal por la recirculación de fluido, y a los golpes hidráulicos producido por el trabajo escalonado de las bombas, se presenta el problema fundamental a solucionar, el de mantener un caudal constante, independientemente de la combinación de los brazos.

El alineamiento de tuberías de los distintos productos limpios, aún se lo hace de manera manual en la mitad del patio de bombas, existe un esfuerzo físico, el alineamiento se lo realiza dos veces al día, además la HMI implementada en la sala de control no se encuentra actualizada.

Si la comunicación de la sala de control falla, no existe una HMI de respaldo, que permita realizar el mismo trabajo, al suceder esto la apertura o cierre de actuadores se lo hace de manera local.

El presente proyecto de titulación resuelve estos problemas con el diseño e implementación de un sistema de control adecuado.

CAPÍTULO 2 DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE CONTROL

CAPÍTULO 2

DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE CONTROL

El presente capítulo se enfoca en explicar el diseño e implementación del sistema de control de velocidad a través de la plataforma Concept 2.6 XL con la utilización de un control PID para mantener presión constante en la línea, resolviendo los problemas existentes en el sistema.

2.1 DISEÑO DEL SISTEMA DE CONTROL

Con la finalidad de satisfacer la necesidades descritas anteriormente, EP-Petroecuador resuelve adquirir 5 transmisores de presión de la marca Yokogawa de 0 a 250 [PSI], para que trabaje en conjunto con los equipos ya existentes como son variadores de velocidad de la marca Altivar 61, Plc Quantum y Momentum, bombas de 1000 [GPM] para implementar un sistema de control de bombeo. Entonces, el sistema debe cumplir los siguientes objetivos.

- Controlar la velocidad de las bombas de acuerdo al número de brazos de carga activos.
- Monitorear y controlar a través de una HMI el estado de actuadores y bombas.

2.1.1 HARDWARE PARA EL SISTEMA DE CONTROL DE VELOCIDAD

Para el desarrollo del hardware se toma como base los equipos existentes en EP-PETROECUADOR y se añaden los equipos necesarios para cumplir con las soluciones propuestas. Estos equipos son los transmisores de presión y actuadores.

2.1.1.1 Transmisor de presión

El terminal de productos limpios de Santo Domingo, disponía de 5 transmisores de presión de la marca Yokogawa EJX530a, los mismos que fueron utilizados en la implementación del presente proyecto, y cuyas características se detallan en la tabla 2.1.

FIGURA 2. 1 EL TRANSMISOR DE PRESIÓN YOKOGAWA

Modelo	EJX530A, YOKOGAWA
Stilo	S2
Suffix	EBS7N-012EN/FC1/D1
Rango	0 a 250 PSI
Alimentación	10.5[V] a 30[V]
Señal Salida	4 a 20 mA

TABLA 2. 1 CARACTERÍSTICAS DEL TRANSMISOR DE PRESIÓN

2.1.1.2 Actuadores

El actuador eléctrico de marca Rotork Electric es el encargado de realizar la apertura o cierre de las válvulas, se encuentran instaladas a lo largo de cada una de las líneas de succión y bombeo, para así dejar pasar o no el producto proveniente de los diferentes tanques; de igual manera funcionan en los tanques para la entrada y salida del producto.

Nombre	Actuador eléctrico
Marca	ROTORK ELECTRIC
Modelo	IQ10
Torque	34 Nm
Velocidad	43 rpm
Potencia	0.148 HP
Voltaje	460 Vac
Numero de fases	3
Corriente nominal	0.58 A
Frecuencia	60 Hz
Peso	27 Kg

TABLA 2. 2 ESPECIFICACIONES GENERALES DEL ACTUADOR ROTORK ELECTRIC [9]

FIGURA 2. 2 ACTUADOR ROTORK ELECTRIC

2.1.2 PROGRAMACIÓN PARA EL CONTROL DE VELOCIDAD

El sistema está encaminado a gobernar la velocidad de las bombas con el fin de aumentar o reducir el caudal requerido por cada uno de los brazos, o combinaciones de los mismos para mantener un caudal constante en las líneas de combustible.

Debido a los cambios bruscos de presión presente, en la activación o desactivación de los brazos de cargas, se implementa una lógica basada en los criterios de un control PID, este algoritmo es lo suficientemente confiable para las necesidades requeridas.

Los controladores PID se aplican en forma casi general a la mayoría de los sistemas de control, en particular, cuando el modelo matemático de la planta no se conoce o no es fácil obtener su modelo matemático, y por lo tanto, no se pueden emplear métodos de diseño analítico.

2.1.2.1 Control PID. [10]

Un controlador PID corrige la diferencia entre el valor medido y el valor que se quiere obtener calculando el error y luego sacando una acción correctiva con el fin de ajustar la salida del proceso dentro del valor deseado.

La idea básica del controlador PID es simple y similar a la toma de decisiones del ser humano que se basa en su conocimiento del pasado, presente y en su capacidad para predecir el futuro. El controlador PID surge como consecuencia de la combinación de tres acciones básicas de control; acción proporcional, acción integral y acción derivativa.

- La acción proporcional que genera una reacción al error presente.
- La acción integral que genera una reacción basada en la suma de errores recientes.
- La componente derivativa que representa la predicción a futuros errores, reaccionando de acuerdo a la tasa de variación actual del error.

FIGURA 2. 3 DIAGRAMA DE BLOQUE DE UN CONTROL PID

- u(t) es la señal de control
- e(t) es el error entre la referencia y el valor real
- Kp es la ganancia proporcional
- Ki es la ganancia integral

Kd es la ganancia derivativa

Para lograr este propósito se utiliza la misma plataforma de programación que tiene EP-Petroecuador siendo esta, Concept 2.6 XL, para la programación de PLC's de la familia Schneider Electric.

Se debe mencionar que el PLC Quantum existente en la empresa no tiene módulo de entradas analógicas, por lo cual se utiliza cada uno de los variadores de velocidad Altivar 61 como un medio para recibir la información y enviarla hacia al PLC a través de comunicación MODBUS PLUS.

2.1.3 PROGRAMACIÓN DEL PLC QUANTUM

Para lograr una mayor comprensión y facilitar futuras modificaciones, el nuevo programa desarrollado en el PLC está estructurado por subrutinas, interrelacionadas entre sí. Cada subrutina se refiere al control de las bombas de los distintos productos de acuerdo al número de brazos de carga activados como también al caudal existente enviado por el Accuload III, con el fin de mantenerlo constante.

Las subrutinas que forman parte de la estructura del programa son:

- Subrutina "Lectura de Entradas y Salidas"
- Subrutina "Control de Velocidad para la bomba de Diesel 2"⁶
- Subrutina "Control de Velocidad para la bomba de Diesel Premium"
- Subrutina "Control de Velocidad para la bomba de Extra"
- Subrutina "Control de Velocidad para la bomba de Súper"

A continuación, se procede a explicar la función de cada subrutina y representar sus algoritmos de control mediante diagramas de flujo.

⁶ Para conocimiento de la empresa la bomba de Diesel 2 es conocida como unidad 4A.

⁷ La bomba de Diesel Premium es conocida como unidad 5A.

⁸ La bomba de Extra es conocida como unidad 6A

⁹ La bomba de Súper es conocida como unidad 7A

2.1.3.1 Subrutina para lectura de registros de entrada y salida

La siguiente subrutina existente con anterioridad en el PLC máster, permite administrar los registros de memoria para la adquisición de datos provenientes de diferentes fuentes.

- Datos provenientes de los variadores de velocidad a través de Modbus Plus tales como: potencia, voltaje, corriente y velocidad del motor y entradas digitales, finalmente un registro de estado del variador.
- Entradas digitales, cableadas directamente al PLC Principal (Máster), que corresponden al estado de los brazos.
- Datos provenientes de las RTU's mediante comunicación Modbus Plus, que corresponden a las salidas y entradas digitales de los plc's Momentum, como selectores de mando, contactos auxiliares del contactor y relés encargados de activar y desactivar los contactores de aislamiento.
- Datos provenientes de los 2 plc's Mometum.

El proyecto actual cambia dicha subrutina añadiendo la siguiente adquisición de datos:

- Señales analógicas provenientes de los transmisores que pasan a través de los variadores de velocidad con comunicación Modbus Plus.
- Recepción de datos de la pantalla touch Magelis.

En la figura 2.5, se tiene la subrutina de los transmisores de presión, estos valores son tratados para visualizar la presión de cada línea de producto.

FIGURA 2. 4SUBRUTINA PARA LECTURA DE REGISTROS DE ENTRADAS Y SALIDAS

2.1.3.2 Subrutina para el accionamiento de bombas

El programa anteriormente implementado en EP-Petroecuador cuenta con el algoritmo de control para arranque directo y mediante variador tal y como se menciona en el capitulo anterior.

El proyecto actual modifica el accionamiento con variador haciéndolo dependiente de la señal recibida por los transmisores de presión para mantener el caudal constante. El transmisor está calibrado de 0 a 250 PSI, conectado a una entrada analógica del mismo y a través de la red Modbus Plus se envía el dato al PLC. Si el dato que recibe el PLC se encuentra en el rango 0 a 79 PSI (fuera de este rango el transmisor presenta falla), esta subrutina realiza el control de velocidad mediante el regulador PID, caso contrario solo se regula la velocidad de acuerdo al número de brazos activados.

Para el primer modo de funcionamiento, es decir con el controlador PID, los parámetros de entrada del mismo está dado por un set point que depende del número de brazos activados como se indica en las siguientes tablas.

# brazos	Set Point (PSI)
0	0
1	35.78

TABLA 2. 3 SET POINT DIESEL 2

# brazos	Set Point (PSI)
0	0
1	38.75
2	43.75
3	40.63

TABLA 2. 4 SET POINT DIESEL PREMIUM

# brazos	Set Point (PSI)
0	0
1	39.06
2	45.62
3	42.18

TABLA 2. 5 SET POINT PARA EXTRA

# brazos	Set Point (PSI)
0	0
1	45.78

TABLA 2. 6 SET POINT PARA SÚPER

Para el segundo modo de funcionamiento, es decir cuando el transmisor esté apagado o presente falla, da un valor menor a 0 o mayor a 79 PSI, en este caso la velocidad se obtiene según el número de brazos activados.

# brazos	Velocidad (rpm)
0	0
1	1350

TABLA 2. 7 VELOCIDAD PARA DIESEL 2

# brazos	Velocidad (rpm)	
0	0	
1	1350	
2	1700	
3	1800	

TABLA 2. 8 VELOCIDAD PARA DIESEL PREMIUM

# brazos	Velocidad (rpm)	
0	0	
1	1400	
2	1600	
3	1750	

TABLA 2. 9 VELOCIDAD PARA EXTRA

# brazos	Velocidad (rpm)
0	0
1	1725

TABLA 2. 10 VELOCIDAD PARA SÚPER

En las figuras siguientes se presenta el diagrama de flujo de las subrutinas para cada una de las bombas.

FIGURA 2. 5 SUBRUTINA PARA EL CONTROL DE VELOCIDAD DIESEL 2

FIGURA 2. 6 SUBRUTINA PARA EL CONTROL DE VELOCIDAD DIESEL PREMIUM

Figura 2. 7 SUBRUTINAPARA EL CONTROL DE VELOCIDAD DE EXTRA

Figura 2. 8 SUBRUTINA PARA EL CONTROL DE VELOCIDAD DE SÚPER

Para el desarrollo del programa se utiliza el bloque funcional PID que contiene CONCEPT 2.6XL cuyos parámetros se establece en base a procedimientos experimentales.

FIGURA 2. 9 BLOQUE FUNCIONAL PID

Para este tipo de controlador se comienza con la componente derivada prefijada en 0 y se deshabilita la entrada integral del bloque. Con el sistema funcionando, se aumenta la ganancia proporcional hasta apreciar una vibración considerable de la bomba, conocida como ganancia crítica. A partir de esto se varía la ganancia hasta ½ de la crítica para obtener oscilaciones lentas.

Posteriormente, se habilita la entrada integral del bloque y se la incrementa lentamente hasta acercarse al set point requerido, disminuyendo las oscilaciones anteriores. Después se aumenta la banda derivativa en pequeños pasos, para mejorar el tiempo de respuesta. Posteriormente, se puede aumentar normalmente la ganancia proporcional con la finalidad de obtener mejores resultados en el control, es decir logrando un tiempo de establecimiento de 10 segundos con pocas oscilaciones, ningún sobrepico y errores de posición pequeños.

2.2 INSTALACIÓN

Para la instalación de los equipos necesarios para el funcionamiento del nuevo sistema de control, se realizó el tendido de cable armado, el mismo que sirve de medio físico para la comunicación entre los transmisores de presión y los variadores de velocidad. Para los nueve actuadores en el patio de carga se instaló el cable requerido para datos, como también para su energización.

El tendido de cable se lo realizó una parte bajo tierra (en el patio de bombas) debido a seguridad y otra a través de una bandeja existente que va desde el patio de bombas hasta el CCM.

FIGURA 2. 10 BANDEJA DE CABLES EN EL PATIO DE BOMBA

2.2.1 INSTALACIÓN DEL TRANSMISOR DE PRESIÓN

La instalación del transmisor de presión se la realizó en dos partes.

• La primera etapa constituyó en reconstruir una parte de la tubería que se la utilizaba en otro sistema cuyo diámetro era de 2 1/2 pulgada. Esta reconstrucción constó de la disminución de este diámetro hasta ½ pulgada

para la colocación exitosa del transmisor que poseía este diámetro. En la figura 2.11, se observa el lugar donde se instaló los transmisores de presión.

FIGURA 2. 11 TAPONES DE 2 PULGADAS EN LA LÍNEA DE EXTRA Y SÚPER

FIGURA 2. 12 TAPÓN DE 2 PULGADAS EN LA LÍNEA DE DIESEL 2

En la figura 2.13, se visualiza la instalación del transmisor con su respectiva válvula de bloqueo tipo bola, incluido los manómetros.

FIGURA 2. 13 REDUCCIÓN Y VÁLVULA DE BOLA PARA LA LÍNEA DE SÚPER.

 La segunda parte consta del cableado del transmisor, así como su conexión a la entrada analógica del variador Altivar 61. En el anexo F se detalla el diagrama de conexión eléctrica del variador, en cada una de las unidades de despacho.

FIGURA 2. 14 DIAGRAMA ELÉCTRICO, DESDE EL TRANSMISOR AL ALTIVAR61

FIGURA 2. 15 CONEXIÓN TRANSMISORES DE PRESIÓN

FIGURA 2. 16 INSTALACIÓN DEL TRANSMISOR DE PRESIÓN.

2.2.1.1 Calibración transmisores de presión [11]

La calibración de los transmisores de presión YOKOGAWA se lo hace a través del comunicador de campo "field communicator" de la misma marca, además se puede cambiar las unidades de visualización y los valores superior e inferior de medición.

FIGURA 2. 17COMUNICADOR DE CAMPO Y MEDIDOR DE PRESIÓN FLUKE

Para calibrar los transmisores de presión primero se genera y comparan los límites superior e inferior del rango del transmisor, y después se hace lo mismo con diferentes presiones recomendadas en las especificaciones técnicas del transmisor. Se compara la entrada es decir la presión ingresada, la misma que es visualizada en el medidor Fluke, con la salida que muestra el transmisor y el mostrado por el comunicador de campo, si estos no concuerdan se setea nuevos valores al transmisor a través del comunicador de campo. [12]

Cuando existe un problema en los transmisores de presión, debido generalmente a la mala manipulación en la instalación de estos ó por problemas en la fuente como caída de voltaje, este arroja un mensaje "AL. 30, RANGE" (fuera de rango), la señal que recibe el transmisor cambia, pero ésta no sale de los límites, ocasiona falla en el control. Es por esto que se calibró para un rango de funcionamiento de 0 a 75 PSI.

FIGURA 2. 18MONTAJE DE EQUIPO PARA CALIBRACIÓN

A continuación se presenta un ejemplo de calibración del transmisor en la línea de extra.

# Brazo	Valor transmisor	PSI
1	9340	83.44
2	9470	85.47
3	9470	85.47

TABLA 2. 11 SEÑAL DE TRANSMISOR DE EXTRA EN FALLA

Presión simulada	Presión medida
5	4.98
15	15.02
30	30.1
45	45.11
60	60.2
75	75.02

TABLA 2. 12TANSMISOR DE PRESIÓN DE EXTRA CALIBRADO

2.2.2 MONTAJE E INSTALACIÓN DE NUEVE ACTUADORES

La instalación de nueve actuadores de la marca ROTORK (especificados anteriormente), en la figura 2.19, se observa el sistema de alineamiento de productos limpios de forma manual.

FIGURA 2. 19 SISTEMA DE ALINEAMIENTO MANUAL

En la figura 2.20, se observa los 9 actuadores que serán instalados en la línea de bombeo.

FIGURA 2. 20 ACTUADORES INSTALADOS

En el capítulo 1 se presentó el alineamiento de tuberías manual, en la figura 2.21, se observa el nuevo sistema, para el alineamiento de productos limpios

FIGURA 2. 21 SISTEMA ACTUAL DE ALINEAMIENTO

En las figura 2.22, se presenta los diagramas los diagramas de flujo del sistema para el despacho de diesel 2 y diesel premium, en la figura 2.23 se presenta los diagramas de flujo de gasolina extra y súper, en los mismos constan todos los elementos presentes en el sistema de despacho.

Este capítulo explicó exclusivamente la primera parte de la solución que es el diseño e implementación del sistema de control de velocidad para mantener presión constante en la línea, el siguiente capítulo provee información acerca del monitoreo y control a través de una HMI.

CAPÍTULO 3 DESARROLLO DE LA HMI

CAPÍTULO 3

DESARROLLO DE LA HMI

El presente capítulo tiene como objetivo describir la plataforma de desarrollo de la HMI que se utiliza en el presente proyecto para el control y monitoreo de actuadores y bombas del sistema como también la modificación de una HMI existente en la planta. Además, se establece la lógica utilizada y se indica la forma de operación del mismo.

3.1 DISEÑO DE LA HMI

EP-Petroecuador necesita una HMI en el cuarto de control de motores y además necesita la modificación de la HMI existente en la sala de control, es por esto que se explica primero la HMI diseñada y después la modificada.

3.1.1 DISEÑO PARA EL PANEL OPERADOR

Una interfaz entre el proceso y el usuario es importante para que este se vuelva didáctico, y fácil de entender, es por esto que se procede a realizar una HMI en la cual se pueda visualizar la respuesta que el controlador presenta a cambios de variable, de forma clara y sencilla. Esta HMI permite:

- Representar procesos. El proceso se representa en el panel operador y
 cambia periódicamente en función del estado de las variables asociadas. Si
 alguna variable se modifica, la representación de esta en el panel se actualiza
 e indica el cambio.
- Manejar procesos. El operador puede interactuar con el proceso a través de la interfaz gráfica de usuario. Puede realizar control sobre elementos que interfieren en el proceso.

- Emitir avisos. Si durante el proceso se producen estados críticos, automáticamente se emite un aviso.
- Archivar valores de proceso y avisos. El sistema HMI puede archivar avisos y valores de proceso, de esta forma se los puede documentar.
- Archivar tiempos de apertura y cierre de actuadores. El sistema HMI
 puede archivar los tiempos en que se abren o cierran los actuadores de patio
 de bombas y tanques, de esta forma se los puede documentar, para realizar
 una inspección general.

3.1.1.1 Requerimiento del proceso

El desarrollo de la HMI se basa en el cumplimiento de los requerimientos de EP-PETROECUADOR y es muy similar a la HMI existente en la sala de control. Los requerimientos son los siguientes:

La HMI debe colocarse directamente en los tableros de control, es decir en el cuarto de control de motores (CCM). En el momento que la HMI existente en la sala de control, no responda, el jefe de operaciones puede acceder fácilmente a esta nueva HMI.

Además se requiere controlar el modo de funcionamiento del proceso, sea de manera automática o local, en cuyo caso la HMI debe activar o desactivar actuadores tanto de tanques como del patio de bombas.

La HMI debe monitorear el proceso en todo momento, estados de bomba, posición y estado de actuadores, información de variadores, etc., de una manera didáctica y simple. Además se necesita la creación de históricos sobre apertura y cierre de actuadores, debido a que el control de actuadores de tanques es compartido por personal de operación de poliductos.

Otro requerimiento es la seguridad, primero la HMI debe contar con niveles de acceso, con el fin de limitar o restringir el acceso al sistema. Segundo, se necesita el despliegue de alarmas con respecto a falla de bombas.

3.2 HARDWARE

Para el cumplimiento de los requisitos anteriormente citados, se desarrolla la HMI en la pantalla táctil Magelis XBT-G4320.

Esta pantalla es un panel operador que permite tener acceso y controlar recursos externos, es decir visualiza e incorpora fácilmente la información. A continuación se presentan las características de la pantalla Magelis.

Marca	Schneider Telemecanique	
Modelo	XBT G4320	
Display	LCD, 256 colores con pantalla Touch	
Display	de 5.7"	
Canacidad do Momoria	8 Mb en memoria EPROM para	
Capacidad de Memoria	aplicación 512 Kb de SRAM	
Número máximo de páginas de aplicación	720 en aplicación	
Numero maximo de pagmas de aplicación	512 en alarmas	
Variables por pagina 64		
	Alfanumérica	
	Bitmap	
Representaciones de variables	Bargraph	
Nepresentaciones de variables	Indicador	
	Potenciómetro	
	selector	
Recetas	125 registros máximo con 50000	
Νουσιασ	valores máximos	

Curvas	16	
Reloj en tiempo real	Acceso al reloj del PC	
Relé de alarma	Si	
Puerto de comunicación	RS 232 C/ RS 485 / RS 422	
	UNI- TELWAY, MDBUS, AEG y para	
Protocolos descargables	marcas de PLC: ALLEN BRADLEY,	
riotocolos descaigables	GE FANUC, OMRON, SIEMENS	
	Modbus Plus	
Redes y bus	Fipio/ Fipway	
	Ethernet 10/ 100 TCP/ IP	
Puerto de impresora	RS 232 C	
Sistema operative	MAGELIS	
Gestión	De mensajes sonoros / de ventanas	
Gestion	múltiples	
Alimentación	24 VDC	
Consumo	28 W	
Temperature de funcionamiento	0 – 50° C	
Procesador	CPU 100 Mhz RISC.	
Zona táctil	Película resistiva 32 x 24 células	

TABLA 3. 1 CARACTERÍSTICAS GENERALES DE LA PANTALLA MAGELIS

En la figura se puede ver los puertos de comunicación del panel operador XBT-G4330 Magelis.

FIGURA 3. 1PARTE POSTERIOR DEL PANEL OPERADOR

3.2.1 DESARROLLO DE LA HMI

Para la programación de la pantalla táctil MagelisXBT-G4330 se utiliza Vijeo-Designer versión 4.6, el cual es un software de creación de proyectos de interfaz hombre máquina que permite configurar las pantallas que se utilizan con propósitos de control y visualización de procesos, esto se lo realiza mediante la creación de gráficos funcionales y animaciones que cumplan los requerimientos del operador.

FIGURA 3. 2 DISEÑO Y DESCARGA DEL LA HMI

Vijeo está compuesto por dos aplicaciones de software: Vijeo-Designer el mismo que permite el desarrollo de pantallas, es decir es donde se van a desarrollar las aplicaciones HMI, y Vijeo-Designer Runtime que es el encargado de la ejecución y visualización del proyecto. [13]

3.2.1.1 Variables de Vijeo

Una variable es una dirección de memoria a la cual se designa un nombre. Hay 6 tipos de variables elementales (discreto, entero, flotante, cadena, bloque entero, bloque flotante, y también el tipo de escritura).

DISCRETO	Almacena un valor de 0 o 1	
ENTERO	Las variables enteras internas pueden almacenar de -2147483648 a -2147483648	
FLOTANTE	Almacena un valor numérico de -3.4028e38 a +- 3.4028e38 o de -1.1754e-38 a +1.1754e-38	
Cadena	Almacena de 2 a 100 caracteres.	
Estructura	Las estructuras, al igual que las matrices, actúan como carpetas que almacenan múltiples variables.	

TABLA 3. 2 TIPOS DE VARIABLES DE VIJEO

Viejo utiliza las variables para comunicarse con los dispositivos. También se pueden definir variables internas que utilizará únicamente como referencia para facilitara la realización de operaciones.

3.2.1.2 Importación de variables

Las funciones de importación y exportación permiten adquirir variables de otros sistemas como por ejemplo desde un PLC. Para realizar la importación desde Concept se procede de la siguiente manera:

Primero se exporta y guarda las variables de concept con extensión ".ccn", esta extensión es reconocida por Vijeo, las variables son identificadas con el nombre, tipo (discreto, entero, flotante, cadena, etc.) y la dirección de registro en el PLC.

Segundo se importa las variables en Vijeo, en la barra de menú escoger "Variables" y después "importar variable", se busca y selecciona el archivo ".ccn" anteriormente obtenido y al aceptar; se despliegan las variables en el navegador, listas para ser utilizarlas.

3.2.2 PROGRAMACION DE LA PANTALLA MAGELIS

El cumplimiento de los requerimientos se los realiza a través de subrutinas de control:

- Comunicación con el PLC Quantum (Master) y los PLC Momentum (esclavos).
- 2. Monitoreo y control a través de la pantalla táctil Magelis.

La comunicación se la realiza a través de Ethernet tal como lo indica el diagrama.

FIGURA 3. 3 DIAGRAMA ETHERNET

Las dos subrutinas se explican a través de los diagramas de flujo presentados en las figuras siguientes:

FIGURA 3. 4 ADQUISICION DE DATOS DE LOS PLC'S MASTER Y ESCLAVOS

FIGURA 3. 5 ENVIO DE DATOS DESDE LA PANTALLA MAGELIS HASTA SISTEMA

FIGURA 3. 6 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MEGELIS (PARTE 1)

FIGURA 3. 7 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MAGELIS (PARTE 2)

FIGURA 3. 8 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MAGELIS (PARTE 3)

FIGURA 3. 9 MONITOREO Y CONTROL A TRAVÉS DE LA PANTALLA MEGELIS (PARTE 4)

3.2.3 PANTALLAS DE LA HMI

Con el fin de cubrir los requerimientos, la HMI dispone de varios tipos de pantallas. Pantalla de acceso, pantallas principales, pantallas secundarias, pantallas de información, pantallas de operación.

3.2.3.1 Pantalla de Acceso

Esta pantalla es la primera en aparecer al iniciar la HMI, en esta se ingresa el nombre del usuario (mantenimiento, jefe de patio, operador) y la clave de acceso, aquí se determina el grado de intervención en el proceso.

USUARIO	NIVEL DE ACCESO	ACCIÓN	
Operador	Bajo	Visualización	
Jefe de Patio	Medio	Visualización y monitoreo	
Mantenimiento	Alto	Visualización, monitoreo y control	

TABLA 3. 3 NIVEL DE ACCESO

El primer acceso es el operador, el mismo que solo puede visualizar el proceso de una manera general; el segundo acceso es para el encargado del despacho (jefe de patio) que tiene acceso a las pantallas de operación; y el tercer acceso para las personas de mantenimiento que tiene acceso a todas las pantallas y control de actuadores en tanques y patio de bombas. Los niveles de acceso superiores tienen acceso a los inferiores.

La identificación es necesaria si se desea provocar acciones en el sistema, como obtener información de los elementos, y tener control de apertura o cierre de actuadores. El intento de realizar cualquier acción sin una identificación válida no producirá ningún efecto.

FIGURA 3. 10 PANTALLA DE ACCESO

3.2.3.2 Pantalla Menú Principal

Este acceso permite abrir un submenú para tener acceso a: operación del sistema, histórico de alarmas, histórico actuadores, mantenimiento y estado red LAN (calidad de comunicación entre PLC's).

FIGURA 3. 11 PANTALLA MENÚ PRINCIPAL

3.2.3.3 Operación Sistema

Esta pantalla tiene acceso a los distintos procesos de despacho de combustible, muestra en todo momento el proceso de despacho y dependiendo del nivel de acceso, muestra información de los elementos que intervienen en dicho proceso.

FIGURA 3. 12 PANTALLA OPERACIÓN SISTEMA

Al acceder a cualquier de las operaciones del sistema se despliega una nueva pantalla en la cual se visualiza el despacho de combustible de manera directa, se puede apreciar el tipo de combustible que está siendo despachado y el número de brazos que están activos. En la figura 3.13 se muestra la pantalla de operación de diesel Premium y diesel 2.

FIGURA 3. 13 PANTALLAS OPERACIÓN DIESEL 2 Y PREMIUM

En la figura 3.14 la pantalla de operación de gasolinas extra y súper.

FIGURA 3. 14 PANTALLAS DE OPERACIÓN GASOLINA EXTRA Y SÚPER

Además desde estas pantallas se puede obtener información adicional del estado de válvulas, para esto se debe presionar sobre el símbolo de la válvula correspondiente, aparece una ventana en donde se observa ubicación, identificación, posición, torque, estado actual.

FIGURA 3. 15 PANTALLA DEL ESTADO DE VÁLVULAS DEL HMI MAGELIS

De igual manera sucede con las bombas y variadores, en ellas aparece el identificador del variador, corriente, voltaje, torque y potencia usada, alarmas de falla de comunicación, alarma de pérdida de fases, alarma de giro inverso, y estado del variador (listo, corriendo, mantenimiento y falla).

FIGURA 3. 16 PANTALLA DEL ESTADO DEL VARIADOR DE VELOCIDAD DEL HMI MAGELIS

3.2.3.4 Histórico de Alarmas

Es la pantalla destinada para la visualización de alarmas de niveles críticos, así como también fallos en las bombas. La visualización se la realiza mediante el cambio de color en indicaciones ubicadas dentro de esta pantalla, en esta se registra la fecha, hora, la variable y mensaje que facilita reconocer el tipo de falla. Las alarmas producidas en un periodo de tiempo son almacenadas para que puedan ser revidas para futuros informes. Se puede navegar en el archivo mediante botones que facilitan el desplazamiento. Además cuenta con opciones de quitar alarma para los fallos generales.

FIGURA 3. 17 PANTALLA DE HISTÓRICO DE ALARMAS

3.2.3.5 Histórico Actuadores

Es la pantalla está destinada para la supervisión sobre la apertura y cierre de actuadores tanto en el patio de bombas como en tanques, en esta pantalla se registra la fecha, hora, la variable y mensaje que facilita reconocer la ubicación del actuador. Estos eventos son almacenados para que puedan ser revidas por el jefe de patio, para futuros informes.

FIGURA 3. 18 PANTALLA DE EVENTO ACTUADORES

3.2.3.6 Mantenimiento

En esta ventana se tiene acceso a los registros de eventos, una manera fácil de acceder al menú de configuración de la pantalla, además se puede realizar un reset a las claves: operador y jefe de patio.

FIGURA 3. 19 PANTALLA DE MANTENIMIENTO

3.2.3.7 Status Red Lan

Esta pantalla muestra los elementos conectados al PLC principal (Quantum), es decir conexión con PLC de control de actuadores de tanques (Momentum) y PLC de

control actuadores de patio de bombas (Momentum). Cuando uno de estos elementos es desconectado o falla su comunicación la pantalla muestra que elemento falló, además de mostrar un mensaje en la parte inferior del programa. La pantalla recibe información directa del PLC principal es por tal razón que si este falla, la pantalla mostrará error de comunicación general presentándose los tres mensajes a la vez.

FIGURA 3. 20 PANTALLA ESTADO DE RED

En la figura 3.21 se muestra el mensaje de falla de comunicación con el PLC principal.

FIGURA 3. 21 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC QUANTUM (PLC PRINCIPAL)

En la figura 3.22 y 3.23 se muestra el mensaje de falla de comunicación entre pantalla Magelis con PLC secundarios (tanques y patio de bombas).

FIGURA 3. 22 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC MOMENTUM (PLC PATIO DE BOMBAS)

FIGURA 3. 23 MENSAJE DE ERROR DE COMUNICACIÓN MAGELIS CON PLC MOMENTUM (PLC TANQUES)

Además de estos mensajes, navegando por las otras pantallas, estas mostraran una pequeña figura de advertencia que indica perdida de comunicación.

FIGURA 3. 24 MENSAJE DE ERROR DE COMUNICACIÓN CON PLC

Para mayor comprensión del funcionamiento de la HMI de la sala de control en el anexo G, se muestra el manual de usuario.

3.3 MODIFICACIÓN DE LA HMI PARA SALA DE CONTROL

EP-Petroecuador tiene una HMI principal, la cual desde su desarrollo ha presentado información de nivel de tanques, control de actuadores, información de variadores y bombas de todo el sistema. La animación de las figuras así como la información de los elementos del proceso es de forma continua y rápida.

La información sobre velocidad del despacho [gal/min] viene directamente desde los medidores de las islas ACCULOAD III, y si existe sobrepresión en los brazos de

carga el sistema enviará un aviso y parará el sistema. Lo que hace que la HMI centralice el control total del despacho.

Esta HMI se encuentra desarrollada en la plataforma INTOUCH 9.5 el cual es un software de visualización que permite crear aplicaciones de interfaz hombre-máquina para automatización industrial, control de procesos y monitoreo supervisado.

3.3.1 REQUERIMIENTOS DEL PROCESO

La HMI existente se la debe actualizar debido al incremento de actuadores como también a la instalación de la nueva bomba de la línea de extra. En la tabla 3.4 se resume los nuevos requerimientos para la HMI.

Cambios necesarios		
Pantalla	Acción	
Operación gasolinas	 Actualización control y visualización actuadores patio de bombas Actualización control bomba extra Animación de tuberías. 	
Operación diesel	Actualización control y visualización actuadores patio de bombas	

TABLA 3. 4 CAMBIOS EN LA HMI

Una vez efectuados los cambios requeridos por el sistema, para tener control sobre los nuevos elementos instalados, se presentan las pantallas finales de la HMI.

3.3.2 PANTALLAS DE LA HMI

3.3.2.1 Pantalla de Acceso

Esta pantalla permite que solo el personal calificado ingrese al sistema de control, mediante una ventana de acceso que obliga a ingresar el tipo de usuario y una

clave. Una vez validado el tipo de usuario y clave se habilita el menú inferior en el cual se tiene acceso a toda la operación del proceso.

FIGURA 3. 25 PANTALLA DE INICIO DE HMI

En el gráfico se muestra:

- **Encabezado:** Detalla información general del espacio en disco, RAM disponible, historial de actividades, fecha, hora y usuario.
- Ingreso: Permite el ingreso al sistema con usuario y contraseña.
- Menú Inferior: Este menú se tiene las distintas opciones que ofrece el HMI
 una vez ingresado. como son operación del sistema, información general del
 proceso, nivel de tanques, alarmas, paro de emergencia.

3.3.2.2 Pantalla Operación Gasolinas

En esta pantalla se muestra el estado de la operación en general, como son: nivel de tanques, funcionamiento de bombas (encendido o apagado, con o sin variador),

estado de actuadores tanto de tanques como patio de bombas, animación en la grafica de las tuberías.

Cada tanque y producto está identificado con un color distinto además de poseer la nomenclatura correspondiente, además se tiene información, textual y numérica, referente al estado de bombas, válvulas, tanques de almacenamiento, variadores de velocidad; y en la parte inferior sobre la condición de operación de las bombas.

FIGURA 3. 26 PANTALLA OPERACIÓN DESPACHO GASOLINAS

3.3.2.3 Pantalla Operación Diesel

Esta pantalla, tiene una configuración muy similar a la anterior, pero corresponde al proceso de despacho de Diesel 2 y Diesel Premium.

FIGURA 3. 27 PANTALLA OPERACIÓN DESPACHO DIESEL

Al pulsar sobre cualquiera de los tanques de almacenamiento, se abre una pantalla diferente donde se muestra el tanque en su totalidad, su identificación, nivel de producto, variación de nivel, temperatura del producto, densidad, nivel de agua en el tanque, etc. Además presenta estado e identificación de actuadores de las válvulas de entrada y salida de cada tanque.

FIGURA 3. 28 PANTALLA INFORMACIÓN TANQUES

Al pulsar sobre al actuador se muestra una pantalla emergente. Desde esta pantalla se puede tener control de cierre o apertura, adamas de acceder a información referente a posición, torque, ubicación, identificación, etc.

FIGURA 3. 29 PANTALLA ESTADO DE ACTUADORES

De igual manera, al pulsar sobre cualquiera de las bombas se muestra una pantalla emergente que contiene información sobre la bomba como: velocidad, voltaje, corriente, potencia, tiempo de operación, ubicación, identificación, etc., así como estado de variador.

FIGURA 3. 30 PANTALLA DE ESTADO DE BOMBAS

Cuando la bomba trabaja sin variador al pulsar sobre la bomba se visualiza información de su estado, tiempo de operación, velocidad, alarmas, es decir, una información general.

FIGURA 3. 31 PANTALLA ESTADO BOMBA SIN VARIADOR

En conclusión, se tiene una HMI en la plataforma INTOUCH 9.5 y otra con Vijeo a través de una pantalla táctil para el control y monitoreo continuo del sistema. La segunda HMI permite un respaldo de la HMI principal la cual es solamente accesible al personal de mantenimiento y personal de mantenimiento.

CAPÍTULO 4 PRUEBAS Y RESULTADOS

CAPÍTULO 4

PRUEBAS Y RESULTADOS

Este capítulo tiene como objetivo presentar las pruebas realizadas para garantizar el funcionamiento del sistema, considerando las necesidades de EP-PETROECUADOR. Además se presentan los resultados obtenidos.

4.1 NUEVO SISTEMA DE DESPACHO

Después de la correcta instalación de equipos y de la programación del sistema de control se procedió a realizar las pruebas de funcionamiento.

Las pruebas fueron divididas en dos partes: la primera fue en los productos que disponían de solo un brazo de carga como son la línea de Diesel 2 y de gasolina súper, y la segunda en aquello que tenían tres brazos de carga como son las línea de diesel Premium y gasolina extra.

4.2 PRUEBAS CON UN BRAZO DE CARGA

Estas pruebas fueron realizadas con un envio de 500 galones por cada producto. Durante el funcionamiento se evaluó el control implementado, a través del dato visualizado por el Accuload.

4.2.1 PRUEBAS DIESEL 2

En tabla 4.1 se indica los datos obtenidos de caudal, para el envio de 500 galones de Diesel 2 con la utilización de un solo brazo de carga sin el control PID. La medición y toma de datos se lo realizó directamente en las islas de carga, a través de las Accuload.

TIEMPO(seg)	GPM
0	0
1	15
2	45
3	55
4	123
5	170
6	140
7	180
8	165
9	270
10	310
11	288
12	320
13	312
14	410
15	440
16	430
17	420
18	415
19	425
20	412
21	416
22	418
23	419
24	422
25	417
26	410
27	420
28	410
29	417
30	427
31	410
32	440
33	430
34	420
35	415
36	425
37	412
38	416

TIEMPO(seg)	GPM
39	418
40	419 422
41	
42	417
43	410
44	420
45	410
46	417
47	427
48	410
49	440
50	430
55	416
60	410
65	410
70	425
75	422
80	417
84	430
85	420
90	418
95	420
100	440
105	412
110	417
115	427
120	415
125	419
130	410
135	430
140	416
145	410
150	410
155	425
160	422
165	417
166	427
167	410
168	440

TIEMPO(seg)	GPM
169	430
170	420
175	418
180	420
185	440
190	412
195	417
200	427
205	415
210	419
215	410
220	430
225	416
230	410
235	410
240	425
245	422
250	417
255	420
260	418
265	420
270	440
275	412
280	417
285	427
290	415
295	419
300	410
305	430
310	416
315	410
320	410
321	440
322	430
323	420
324	415
325	425
326	412
327	416

TIEMPO(seg)	GPM
328	418
329	419
330	422
331	417
332	410
333	420
334	410
335	417
336	427
337	410
338	440

TIEMPO(seg)	GPM
339	430
340	420
341	415
342	425
343	412
344	416
345	380
346	400
347	366
348	373
349	365

TIEMPO(seg)	GPM
350	240
351	271
352	288
353	250
354	245
355	125
356	140
357	95
358	75
359	25
360	0

TABLA 4. 1 SISTEMA ANTERIOR AL CONTROL PID

A partir de los valores obtenidos en la tabla anterior, se procedió a graficar la respuesta del sistema. La misma que se aprecia en la figura 4.1.

FIGURA 4. 1 COMPORTAMIENTO CAUDAL DIESEL 2, ISLA DE CARGA

En la figura se aprecian los cambios bruscos de caudal que sufre el despacho al inicio, durante y termino del mismo. El sistema sin PID tiene un tiempo de estabilización de 19 segundos, además tiene sobre impulsos de 25 gpm y oscilatorio. Durante el arranque y cierre del sistema existen cambios bruscos de caudal. Entonces el presente proyecto debe disminuir estos problemas.

4.2.1.1 Búsqueda de parámetros controlador PID

4.2.1.1.1 Primer intento

Para la primera prueba se colocó los siguientes valores en el bloque funcional del PID.

GANANCIA	0.09
TI	10 seg
TS	5 seg

TABLA 4. 2 VALORES INICIALES CONTROLADOR PID PARA DIESEL 2

Con dichos parámetros se obtuvo un comportamiento aceptable al anterior (sin controlador) el mismo que está expresado con una relación de caudal versus tiempo, datos tomados en la isla de carga 1, a través de la Accuload que comanda la apertura y cierre de este brazo.

TIEMPO(seg)	GPM
0	0
1	30
2	60
3	90
4	120
5	150
6	145
7	144
8	143
9	270

TIEMPO(seg)	GPM
10	295
11	290
12	288
13	291
14	410
15	425
16	410
17	420
18	415
19	418

TIEMPO(seg)	GPM
20	412
21	416
22	418
23	419
24	422
25	417
26	410
27	420
28	410
29	417

TIEMPO(seg)	GPM
30	420
31	410
32	420
33	430
34	420
35	415
36	425
37	412
38	416
39	418
40	419
41	422
42	417
43	410
44	420
45	410
46	417
47	427
48	410
49	420
50	430
55	416
60	410
65	410
70	420
75	422
80	417
85	420
90	418
95	420
100	440
105	412
110	417
115	420
120	415
125	419
130	410

TIEMPO(seg)	GPM
135	430
140	416
145	410
150	410
155	422
160	422
165	417
170	420
175	418
180	420
185	440
190	412
195	417
200	427
205	415
210	419
215	410
220	423
225	416
230	410
235	410
240	425
245	422
250	417
255	420
260	418
265	420
270	440
275	412
280	417
285	427
290	415
295	419
300	410
305	430
306	420
307	415

TIEMPO(cog)	CDM
TIEMPO(seg)	GPM
308	413
309	412
310	416
315	410
320	410
325	425
330	422
335	417
336	427
337	410
338	440
339	430
340	420
341	415
342	425
343	412
344	416
345	412
346	418
347	415
348	418
349	415
350	325
351	345
352	343
353	344
354	341
355	125
356	130
357	132
358	75
359	25
360	0

TABLA 4. 3 PRIMER INTENTO PID PARA DIESEL 2

FIGURA 4. 2 COMPORTAMIENTO CAUDAL CON NUEVO SISTEMA PARA DIESEL 2

De lo anterior se observó distintas irregularidades del sistema especialmente en el incremento paulatino del caudal como también en estado estable. Con este primer PID se logró un tiempo de estabilización de 12 segundos y un sobre impulso de 10 gpm. El problema es que en el arranque y paro del sistema existen escalones de funcionamiento demasiado marcados y que en cada paso tiene sobre impulsos de 20 gpm.

4.2.1.1.2 Parámetros finales del controlador línea Diesel 2.

Después de algunas pruebas y modificaciones se obtuvo los parámetros finales del controlador Diesel 2.

GANANCIA	0.009
TI	6 seg
TS	3seg

TABLA 4. 4VALORES FINALES CONTROLADOR PARA DIESEL 2

Con la respuesta del controlador en el sistema, se llegó finalmente a los siguientes resultados, los mismos que son tomados desde la Accuload de la isla de carga 1, datos que se utilizan para graficar y evaluar el comportamiento del sistema.

TIEMPO(seg)	GPM
0	0
1	30
2	60
3	90
4	120
5	150
6	150
7	150
8	150
9	150
10	300
11	300
12	300
13	300
14	300
15	330
16	360
17	390
18	425
19	425
20	425
21	422
22	422
23	420
24	420
25	420
26	420
27	420
28	420
29	420
30	420
31	420
32	420
33	420

TIEMPO(seg)	GPM
34	419
35	419
36	419
37	419
38	419
39	419
40	419
41	419
42	419
43	419
44	419
45	419
46	419
47	419
48	419
49	419
50	419
55	418
60	418
65	417
70	417
75	416
80	416
85	415
90	415
95	416
100	416
105	417
110	417
115	417
120	418
125	418
129	419
130	419
-	

TIEMPO(seg)	GPM
131	419
135	419
140	420
145	420
150	419
155	419
160	419
165	418
170	418
175	417
180	417
185	416
190	416
195	415
200	415
205	415
210	416
215	416
220	417
225	417
230	418
235	418
240	419
245	419
250	420
255	420
260	420
265	419
270	419
275	418
280	418
285	417
290	417
295	416

TIEMPO(seg)	GPM
300	416
305	416
310	415
315	415
320	416
325	416
330	417
335	417
336	417
337	417
338	417

TIEMPO(seg)	GPM
339	417
340	418
341	418
342	418
343	418
344	418
345	419
346	419
347	420
348	420
349	419

TIEMPO(seg)	GPM
350	419
351	418
352	360
353	360
354	240
355	240
356	130
357	130
358	75
359	25
360	0

TABLA 4. 5 DESPACHO DIESEL 2 CON EL SISTEMA FINAL

En la figura 4.3 se observa que el comportamiento del sistema mejoró tanto en apertura, cierre.

FIGURA 4. 3 COMPORTAMIENTO CAUDAL EN LAS ISLAS DE CARGA, DIESEL 2

El sistema logró que el tiempo de estabilización sea de 12 segundos y un sobrepico máximo de 15 gpm. Además durante la apertura y cierre el caudal es lento y sin cambios bruscos de caudal.

Una vez cumplido el objetivo en esta línea se procede al control en la línea de súper.

4.2.2 PRUEBAS SÚPER

Al igual que con diesel 2, las pruebas realizadas para la línea de súper, se procedió de igual manera con el envio de 500 galones, y cuyo comportamiento sin controlador se presenta en la tabla 4.6, estos datos son tomados desde la Accuload, y su comportamiento durante el despacho se muestra en la figura 4.4

TIEMPO(seg)	GPM
0	0
1	60
2	80
3	75
4	60
5	260
6	240
7	366
8	360
9	425
10	435
11	390
12	408
13	413
14	409
15	415
16	410
17	424
18	412
19	408
20	413
21	409

TIEMPO(seg)	GPM
22	416
23	410
24	408
25	413
26	409
27	415
28	410
29	424
30	412
31	408
32	413
33	409
34	416
35	410
36	408
37	413
38	409
39	415
40	410
41	424
42	412
43	408

TIEMPO(seg)	GPM
44	413
45	409
46	416
47	410
48	408
49	413
50	409
55	408
60	408
65	424
70	416
75	415
80	413
85	413
90	412
95	410
100	410
105	409
110	409
115	408
120	408
125	424
	·

TIEMPO(seg)	GPM
130	416
135	415
140	413
145	413
150	412
155	410
156	408
157	413
158	409
159	415
160	410
165	409
170	409
175	408
180	408
185	424
190	416
195	415
200	413
205	413
210	412
215	410
220	410
225	409
230	409

TIEMPO(seg)	GPM
235	408
240	408
245	424
250	416
255	415
260	413
265	413
270	412
275	410
280	410
285	409
286	416
287	410
288	408
289	413
290	409
295	408
300	408
305	424
315	415
320	413
325	413
330	412
335	410
336	408

TIEMPO(seg)	GPM
337	413
338	409
339	415
340	410
341	424
342	412
343	408
344	413
345	409
346	416
347	410
348	416
349	410
350	424
351	413
352	360
353	420
354	395
355	260
356	276
357	144
358	160
359	55
360	67

TABLA 4. 6 SISTEMA SIN CONTROL LINEA DE SÚPER

FIGURA 4. 4 COMPORTAMIENTO CAUDAL SIN CONTROL LINEA DE SÚPER

En la figura anterior se aprecian los cambios bruscos de caudal que sufre el despacho al inicio, durante y termino del mismo. El sistema sin PID tiene un tiempo de estabilización de 25 segundos, además tiene sobre impulsos de 30 gpm y oscilatorio. Durante el arranque y cierre del sistema existen cambios bruscos de caudal. Entonces el presente proyecto debe disminuir estos problemas.

4.2.2.1 Búsqueda de Parámetros Controlador

4.2.2.1.1 Primer intento

Los valores iniciales del controlador PID son presentados en la siguiente tabla.

GANANCIA	0.09
TI	6seg
TS	3seg

TABLA 4. 7 VALORES INICIALES CONTROLADOR SÚPER

Con estos parámetros se obtuvo un comportamiento aceptable al anterior (sin controlador) el mismo que está expresado con una relación caudal versus tiempo, con estos valores en el controlador la resultante del sistema se presenta en la tabla 4.8, y cuyo comportamiento durante el despacho en la isla de carga 1, se indica en la figura 4.5

TIEMPO(seg)	GPM
0	0
1	65
2	115
3	200
4	220
5	220
6	218
7	355
8	370
9	370
10	425
11	425
12	425
13	425
14	420
15	420
16	420
17	420
18	405
19	405
20	405
21	405
22	405
23	400
24	400
25	401
26	401
27	401
28	401
29	401
30	401
31	401

TIEMPO(seg)	GPM
32	401
33	401
34	401
35	402
36	402
37	402
38	402
39	402
40	402
41	402
42	402
43	402
44	402
45	402
46	403
47	403
48	403
49	403
50	403
55	403
60	404
65	404
70	405
75	405
80	406
85	406
90	407
95	407
100	408
105	408
110	409
115	409

TIEMPO(seg)	GPM
120	410
125	410
130	411
135	411
140	412
145	412
150	413
155	413
160	414
165	414
170	415
175	415
180	416
185	416
190	417
195	417
200	418
205	419
210	419
215	419
220	420
225	420
230	419
235	419
240	418
245	418
250	417
255	417
260	416
265	416
270	415
275	415

TIEMPO(seg)	GPM
280	414
285	414
290	413
295	413
300	410
305	409
310	409
315	408
320	408
325	405
330	400
335	400
336	400

TIEMPO(seg)	GPM
337	400
338	400
339	403
340	403
341	403
342	403
343	403
344	403
345	403
346	403
347	410
348	410
349	410

TIEMPO(seg)	GPM
350	413
351	413
352	413
353	413
354	330
355	335
356	210
357	213
358	160
359	65
360	0

TABLA 4. 8VALORES INICIALES CONTROLADOR DESPACHO SÚPER

FIGURA 4. 5 RESPUESTA SISTEMA PRIMER CONTROLADOR DESPACHO SÚPER

En la figura 4.5, se observó que el comportamiento del caudal en la apertura y cierre del despacho, lo hace de una manera escalonada evitando sobre impulsos. Con este

primer PID se logró un tiempo de estabilización de 11 segundos y un sobre impulso máximo de 25 gpm. El problema se presenta en el arranque y paro del sistema existen escalones de funcionamiento demasiado marcados y en cada paso presentan sobre impulsos de 15 gpm. Además para el estado estable no existió mejoría es por tal razón que se procedió a realizar más pruebas para mejorar el control.

4.2.2.1.2 Parámetros finales del controlador línea de Súper

Después de algunas pruebas y modificaciones se obtuvo los parámetros finales del controlador de la línea de Súper.

GANANCIA	0.00120
TI	5seg
TS	2 seg

TABLA 4. 9 VALORES FINALES CONTROLADOR SÚPER

Con la respuesta del controlador en el sistema, se llegó finalmente a los siguientes resultados, los mismos que son tomados desde la Accuload de la isla de carga 1, datos que se utilizan para graficar y evaluar el comportamiento del sistema.

TIEMPO(seg)	GPM
0	0
1	60
2	120
3	180
4	240
5	240
6	240
7	290
8	360
9	360
10	415
11	415

TIEMPO(seg)	GPM
12	415
13	415
14	415
15	414
16	414
17	414
18	414
19	414
20	414
21	414
22	414
23	414

24 414 25 414 26 413 27 413 28 413 29 413 30 413 31 413 32 413 33 413	TIEMPO(seg)	GPM
26 413 27 413 28 413 29 413 30 413 31 413 32 413 33 413	24	414
27 413 28 413 29 413 30 413 31 413 32 413 33 413	25	414
28 413 29 413 30 413 31 413 32 413 33 413	26	413
29 413 30 413 31 413 32 413 33 413	27	413
30 413 31 413 32 413 33 413	28	413
31 413 32 413 33 413	29	413
32 413 33 413	30	413
33 413	31	413
	32	413
24 412	33	413
34 413	34	413
35 413	35	413

TIEMPO(seg)	GPM
36	413
37	412
38	412
39	412
40	412
41	412
42	412
43	412
44	412
45	412
46	411
47	411
48	411
49	411
50	411
55	411
60	410
65	410
70	409
75	409
80	409
85	408
90	408
95	407
100	407
105	406
110	406
115	406
120	405
125	405
130	406
135	406
140	407

TIEMPO(seg)	GPM
145	407
150	408
155	408
160	409
165	409
170	410
175	410
180	411
185	411
190	412
195	412
200	413
205	413
210	414
215	414
220	415
225	415
230	414
235	413
240	411
245	411
250	411
255	408
260	408
265	408
270	408
275	408
280	408
285	408
290	408
295	408
300	408
305	408

TIEMPO(seg)	GPM
310	408
315	408
320	408
325	408
330	408
335	408
336	408
337	408
338	408
339	408
340	408
341	408
342	408
343	408
344	408
345	408
346	408
347	408
348	408
349	408
350	408
351	408
352	408
353	408
354	290
355	290
356	180
357	180
358	65
359	65
360	0

TABLA 4. 10 DESPACHO GASOLINA SÚPER

En la figura 4.6 se observa que el comportamiento del sistema mejoró tanto en apertura y cierre.

FIGURA 4. 6 COMPORTAMIENTO CAUDAL EN ISLAS DE CARGA, SÚPER

El sistema logró que el tiempo de estabilización sea de 12 segundos y un sobre pico máximo de 10gpm. Además durante la apertura y cierre el cambio de caudal es lento y sin cambios bruscos de caudal

Como se puede apreciar el comportamiento del caudal para los productos de diesel 2 y súper que controlan un solo brazo de carga, mejoró de manera exitosa, dando por cumplido nuestro objetivo. Para los productos de diesel Premium y gasolina extra que controlan tres brazos de carga cada uno.

4.3 PRUEBAS CON DOS BRAZOS DE CARGA

En esta ocasión las pruebas se las realiza con el despacho de 500 galones para el brazo 1 y pasado un tiempo 500 galones para el brazo 2, garantizando funcionamiento simultáneo, facilitando evaluación del sistema, para los productos de

diesel Premium y gasolina extra. Durante el funcionamiento se evaluó el control implementado, a través del dato visualizado por el Accuload. Pese a existir tres brazos de carga por cada producto el análisis se realizó con dos brazos de carga, pues en todo el tiempo presente en la terminal, este caso no se daba con mucha frecuencia, debido a la disposición de los mismos o las limitantes que tienen las islas de carga en cuanto a espacio.

4.3.1 PRUEBAS DIESEL PREMIUM

En la presente tabla se observa el comportamiento del sistema cuando entra en funcionamiento uno y dos brazos de carga, sin ningún tipo de controlador.

Estos valores son tomados de las Accuload presentes en las islas de carga.

TIEMPO	brazo 1 GPM	brazo2 GPM
(seg)	B1	B2
0	0	0
1	123	0
2	130	0
3	171	0
4	190	0
5	230	0
6	258	0
7	257	0
8	388	0
9	405	0
10	404	0
11	420	0
12	430	0
13	390	0
14	413	0
15	419	0
16	421	0
17	418	0
18	420	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
19	410	0
20	414	0
21	418	0
22	412	0
23	420	0
24	411	0
25	380	0
26	435	0
27	413	0
28	420	0
29	422	0
30	418	0
31	427	0
32	413	0
33	427	0
34	423	0
35	409	0
36	415	0
37	410	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
38	408	0
39	412	0
40	410	0
41	409	0
42	411	0
43	418	0
44	408	0
45	420	0
46	430	0
47	390	0
48	413	0
49	419	0
50	421	0
55	418	0
60	435	0
65	427	0
70	415	0
75	409	0
80	430	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
85	418	0
90	412	0
95	413	0
100	413	0
105	410	0
110	411	0
115	390	0
120	420	0
125	420	0
130	420	0
135	427	0
140	408	0
144	411	0
145	418	0
150	413	0
155	410	0
160	411	0
165	422	0
170	423	0
175	412	0
180	408	0
185	419	0
190	414	0
195	380	0
200	418	0
205	409	0
210	410	0
215	420	0
220	421	0
225	418	0
230	435	0
235	427	0
236	413	0
237	427	0
238	423	0
239	409	0
240	445	0
		•

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
241	430	123
242	444	145
243	432	148
244	447	240
245	437	268
246	442	240
247	438	360
248	434	333
249	441	360
250	423	412
251	411	410
252	380	413
253	435	411
254	413	410
255	420	409
256	422	411
257	418	410
258	427	413
259	413	411
260	427	410
261	423	409
262	409	426
263	420	423
264	411	413
265	380	415
266	435	420
267	413	413
268	420	411
269	422	410
270	418	409
271	427	411
272	413	410
273	413	413
274	427	411
275	423	410
276	409	409
277	420	426

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
278	411	423
279	380	413
280	435	423
281	413	413
282	420	415
283	422	420
284	418	413
285	427	411
286	413	410
287	413	409
288	427	411
289	423	410
290	409	413
295	413	423
300	413	420
305	420	411
310	420	409
315	413	413
320	411	410
321	380	409
322	435	411
325	422	411
330	427	413
331	423	423
332	409	413
333	420	415
334	411	420
335	380	413
336	435	411
337	413	410
338	420	409
339	422	411
340	418	410
341	427	413
342	413	411
343	410	410
344	408	409

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
345	412	426
346	410	423
347	409	413
348	411	423
349	418	413
350	408	435
351	380	433
352	388	422
353	389	434
354	390	424
355	255	435
356	267	433
357	268	422
358	175	434
359	124	424
360	65	437
361	0	409
362	0	426
363	0	423
364	0	413
365	0	413
366	0	411
367	0	410
368	0	409
369	0	411
370	0	410
375	0	426
380	0	410
385	0	411
390	0	413
395	0	411
400	0	409
405	0	411
410	0	413

TIEMPO	brazo 1 GPM	brazo2 GPM
(seg)	B1	B2
415	0	423
420	0	409
425	0	410
430	0	413
435	0	410
440	0	426
445	0	410
450	0	411
455	0	413
460	0	411
465	0	409
470	0	411
475	0	413
480	0	423
485	0	409
490	0	410
495	0	413
500	0	410
505	0	426
510	0	410
515	0	411
520	0	413
525	0	411
530	0	409
535	0	411
540	0	413
545	0	423
550	0	409
555	0	410
560	0	413
565	0	410
570	0	426
575	0	410
580	0	411

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
585	0	413
590	0	411
595	0	409
600	0	411
605	0	413
610	0	423
615	0	409
620	0	410
625	0	413
630	0	410
635	0	426
640	0	410
645	0	411
650	0	413
655	0	411
660	0	409
665	0	410
666	0	409
667	0	426
668	0	423
669	0	413
670	0	409
671	0	426
672	0	423
673	0	413
674	0	349
675	0	180
676	0	223
677	0	75
678	0	66
679	0	0
680	0	0

TABLA 4. 11 FUNCIONAMIENTO DE DOS BRAZOS PARA DESPACHO DE DIESEL PREMIUM, SIN CONTROLADOR

En la figura 4.7 se observa una activación en secuencia del despacho, brazo 1 con 500 galones y tiempo después brazo 2 con 500 galones. Esta prueba permitió conocer inconvenientes en respuesta estable durante despacho simultáneo en los brazos de carga.

FIGURA 4. 7 COMPORTAMIENTO SISTEMA SIN CONTROLADOR, DIESEL PREMIUM

En la figura 4.7 se aprecian los cambios bruscos de caudal que sufre el despacho al inicio, durante y termino del mismo. Analizando la entrada de un solo brazo de carga: El sistema sin PID tiene un tiempo de estabilización de 20 segundos, además tiene sobre impulsos de 25 gpm y oscilatorio. Cuando entra en funcionamiento el segundo brazo de carga el set point cambia como se lo ha expuesto en el capítulo 1, el tiempo de establecimiento es de 20 segundos y un sobre pico de 10 gpm y oscilatorio. Durante el arranque y cierre del sistema existen cambios bruscos de caudal. Entonces el presente proyecto debe disminuir estos problemas.

Una vez establecido el problema se procedió a colocar un controlador, y evaluar su respuesta, como resultado se presenta un controlador PID.

4.3.1.1 Búsqueda de Parámetros Controlador PID

4.3.1.1.1 Primer intento

Los valores iniciales del controlador, son presentados en la siguiente tabla.

GANANCIA	0.00003
TI	4
TS	1

TABLA 4. 12 VALORES INICIALES CONTROLADOR DIESEL PREMIUM

Con estos valores en el controlador la resultante del sistema se presenta en la tabla 4.13 que representan el comportamiento del caudal en las islas de carga. Dichos valores son tomados desde la Accuload, gracias a estos valores en la figura 4.8 se puede apreciar el comportamiento de una manera más sencilla.

TIEMPO (seg)	brazo 1 GPM B1	
0	0	0
1	65	0

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
2	165	0
3	167	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
4	175	0
5	267	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
6	268	0
7	265	0
8	390	0
9	388	0
10	430	0
11	430	0
12	430	0
13	430	0
14	430	0
15	429	0
16	428	0
17	427	0
18	426	0
19	425	0
20	424	0
25	419	0
30	414	0
35	411	0
40	416	0
45	421	0
50	424	0
55	419	0
60	414	0
65	411	0
70	416	0
75	421	0
80	424	0
85	419	0
90	414	0
95	410	0
100	412	0
105	417	0
110	422	0
115	425	0
120	422	0
125	417	0
130	412	0

TIE 400	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
135	410	0
140	411	0
145	416	0
150	421	0
155	425	0
160	423	0
165	418	0
170	413	0
175	410	0
180	413	0
185	418	0
190	423	0
195	424	0
200	419	0
205	414	0
210	410	0
215	410	0
220	415	0
225	420	0
230	425	0
235	425	0
240	422	0
241	421	123
242	420	124
243	419	220
244	418	225
245	417	290
246	416	293
247	415	390
248	414	393
249	413	420
250	412	419
251	411	418
252	410	417
253	410	416
254	410	415
255	410	414

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
256	410	413
257	410	412
258	410	411
259	410	410
260	411	409
261	411	408
262	411	407
263	411	406
264	411	405
265	411	404
266	412	403
267	413	402
268	414	403
269	415	404
270	416	405
271	417	406
272	416	407
273	415	408
274	414	409
275	413	410
276	412	411
277	411	412
278	410	413
279	409	414
280	408	415
281	407	416
282	406	415
283	405	414
284	406	413
285	407	412
286	408	411
287	409	410
288	410	409
289	411	408
290	412	407
291	413	406
292	414	405

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
293	415	406
294	416	407
295	415	408
296	414	409
297	413	410
298	412	411
299	411	412
300	410	413
301	409	414
302	408	415
303	407	416
304	406	415
305	405	414
306	406	413
307	407	412
308	408	411
309	409	410
310	410	409
311	411	408
312	412	407
313	413	406
314	414	405
315	415	406
316	416	407
317	415	408
318	414	409
319	413	410
320	412	411
321	411	412
322	410	413
323	409	414
324	408	415
325	407	416
326	406	415
327	405	414
328	406	413
329	407	412

	h 1	J
TIENADO	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
330	408	411
331	409	410
332	410	409
333	411	408
334	412	407
335	413	406
336	414	405
337	415	405
338	416	405
339	415	405
340	414	405
345	409	410
350	408	415
355	255	410
360	65	405
365	0	405
370	0	409
375	0	414
380	0	415
385	0	413
390	0	408
395	0	405
400	0	405
405	0	410
410	0	415
415	0	415
420	0	414
425	0	409
430	0	405
435	0	405
440 445	0	409 414
		414
450 455	0	415
460 465	0	410
465	0	405 405
470	0	405

	brazo 1	
TIEMPO	GPM	GPM
(seg)	B1	B2
475	0	408
480	0	413
485	0	415
490	0	415
495	0	411
500	0	406
505	0	405
510	0	407
515	0	412
520	0	415
525	0	415
530	0	412
535	0	407
540	0	405
545	0	406
550	0	411
555	0	416
560	0	415
565	0	413
570	0	408
575	0	405
580	0	405
585	0	410
590	0	415
595	0	415
600	0	414
605	0	409
610	0	405
615	0	405
620	0	409
625	0	414
630	0	415
635	0	415
640	0	410
645	0	405
650	0	405
655	0	408

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
660	0	413
665	0	412
666	0	411
667	0	410
668	0	409
669	0	408

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
670	0	407
671	0	406
672	0	405
673	0	404
674	0	403
675	0	402

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
676	0	247
677	0	246
678	0	36
679	0	35
780	0	0

TABLA 4. 13 VALORES INICIALES CONTROLADOR, DIESEL PREMIUM

FIGURA 4. 8 PRIMER INTENTO CONTROLADOR BRAZO 1, DIESEL PREMIUM

En la figura 4.8, se observó que el comportamiento del caudal en la apertura y cierre del despacho, lo hace de una manera escalonada evitando sobre impulsos. Con este primer PID se logró un tiempo de estabilización de 10 segundos y un sobre impulso máximo de 25 gpm para un solo brazo de carga. Cuando se presenta un funcionamiento simultáneo es decir dos brazo de carga el tiempo de establecimiento es de 15 segundos con un sobre impulso máximo de 25 gpm. El problema se presenta en el arranque y paro del sistema existen escalones de funcionamiento demasiado marcados y en cada paso presentan sobre impulsos de 25 gpm. Además para el estado estable no existió mejoría es por tal razón que se procedió a realizar más pruebas para mejorar el control.

Como el resultado no es el esperado, el sistema para el caso de diesel Premium entra a modificaciones.

4.3.1.1.2 Parámetros finales del controlador línea Diesel Premium

En la tabla siguiente se presentan los valores finales del controlador PID para diesel Premium.

GANANCIA	0.004545
TI	3
TS	6

TABLA 4. 14 VALORES FINALES CONTROLADOR PARA DIESEL PREMIUM

Después de algunas pruebas y modificaciones, se obtuvo los parámetros finales del controlador para Diesel Premium.

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
0	0	0
1	65	0
2	165	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
3	167	0
4	175	0
5	267	0

	brazo 1	brazo2
	GPM	GPM
(seg)	B1	B2
6	268	0
7	265	0
8	390	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
9	388	0
10	430	0
11	430	0
12	430	0
13	430	0
14	430	0
15	429	0
16	428	0
17	427	0
18	426	0
19	425	0
20	424	0
21	423	0
22	422	0
23	421	0
24	420	0
25	419	0
26	418	0
27	417	0
28	416	0
29	415	0
30	414	0
31	413	0
32	412	0
33	412	0
34	412	0
35	412	0
36	412	0
37	412	0
38	412	0
39	412	0
40	412	0
41	412	0
42	412	0
43	412	0
44	412	0
45	411	0

TIEMPO	brazo 1 GPM	brazo2 GPM
(seg)	B1	B2
46	411	0
47	411	0
48	411	0
49	411	0
50	411	0
55	411	0
60	410	0
65	410	0
70	410	0
75	411	0
80	411	0
85	412	0
90	412	0
95	413	0
100	413	0
105	414	0
110	415	0
115	415	0
120	416	0
125	416	0
130	417	0
135	417	0
140	418	0
145	418	0
150	419	0
155	419	0
160	420	0
165	420	0
170	421	0
175	422	0
180	422	0
185	423	0
190	424	0
195	424	0
200	425	0
205	425	0
210	423	0

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
215	423	0
220	422	0
225	422	0
230	421	0
235	421	0
236	421	0
237	420	0
238	420	0
239	420	0
240	420	0
241	419	123
242	418	124
243	417	220
244	416	225
245	415	290
246	414	293
247	413	390
248	412	393
249	411	420
250	410	419
251	409	418
252	408	417
253	407	416
254	406	415
255	405	414
256	405	413
257	405	412
258	405	411
259	405	410
260	405	409
261	406	408
262	407	407
263	408	406
264	409	405
265	410	404
266	411	403
267	412	402
		·

	brazo 1	brazo2
TIEMPO	GPM	GPM
(seg)	B1	B2
268	413	403
269	414	403
270	415	403
271	415	403
272	415	403
273	415	403
274	415	403
275	415	403
276	415	403
277	415	403
278	415	404
279	415	404
280	415	404
281	415	404
282	415	404
283	415	404
284	415	404
285	414	404
290	414	405
295	413	406
300	413	406
305	412	407
310	412	407
315	411	408
320	410	408
325	410	409
330	409	409
335	409	410
340	408	410
341	408	410
342	408	410
343	408	410
344	408	411
345	408	411
346	408	411
347	408	411
348	408	411

TIEMPO	brazo 1	
(seg)	GPM B1	GPM B2
349	408	411
350	408	411
351	380	412
352	388	412
353	389	412
354	390	412
355	255	412
356	267	412
357	268	412
358	175	412
359	124	412
360	65	413
361	0	413
362	0	413
363	0	413
364	0	413
365	0	413
369	0	413
370	0	413
375	0	412
380	0	411
385	0	410
390	0	409
395	0	408
400	0	408
405	0	407
410	0	406
415	0	406
420	0	405
425	0	405
430	0	406
435	0	407
440	0	407
445	0	408
450	0	408
455	0	409
460	0	409

TIENADO	brazo 1	brazo2
TIEMPO (seg)	GPM	GPM
	B1	B2 410
465 470	0	410
470	0	410
480	0	411
485	0	411
490	0	412
495	0	413
500	0	413
505	0	414
510	0	415
515	0	415
520	0	414
525	0	414
530	0	413
535	0	413
540	0	413
545	0	412
550	0	412
555	0	411
560	0	411
565	0	411
570	0	410
575	0	410
580	0	409
585	0	409
590	0	408
595	0	408
600	0	407
605	0	407
610	0	406
615	0	406
620	0	405
625	0	405
630	0	406
635	0	406
640	0	407
645	0	407
0-13		707

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
650	0	408
655	0	408
660	0	409
665	0	409
666	0	410
670	0	410

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
671	0	410
672	0	390
673	0	389
674	0	389
675	0	245
676	0	247

TIEMPO (seg)	brazo 1 GPM B1	brazo2 GPM B2
677	0	246
678	0	36
679	0	35
780	0	0

TABLA 4. 15 DESPACHO DIESEL PREMIUM

FIGURA 4. 10 DESPACHO BRAZOS DE CARGA 1, DIESEL PREMIUM

FIGURA 4. 11 DESPACHO BRAZO DE CARGA 2, DIESEL PREMIUM

El sistema logró que el tiempo de estabilización sea de 12 segundos y un sobre pico máximo de 15 gpm cuando entra en funcionamiento el primer brazo de carga. Al entrar el segundo brazo de carga y funcionando simultáneamente el tiempo de establecimiento es de 15 segundos y un sobre impulso máximo menor a 5 gpm. Además durante la apertura y cierre el caudal es lento y sin cambios bruscos de caudal.

Una vez cumplido con el objetivo y analizando la respuesta del controlador PID, el comportamiento del sistema ha sido satisfactorio, es por tal razón se procedió al análisis del sistema despacho del último producto gasolina Extra.

4.3.2 PRUEBAS GASOLINA EXTRA

En la presente tabla se observa el comportamiento del sistema cuando entra en funcionamiento uno y dos brazos de carga dos brazos de carga, sin ningún tipo de controlador. Al igual que la línea de Diesel Premium, las pruebas se las realizó para dos brazos, es decir con despacho de 1000 y 500 galones.

En la tabla 4.16 se presenta el comportamiento del sistema sin controlador. Estos son tomados desde las Accuload presentes en las dos islas de carga, en la figura 4.10 se graficó el comportamiento sin ningún controlador.

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
0	0	0
1	125	0
2	132	0
3	173	0
4	192	0
5	232	0
6	260	0
7	259	0
8	390	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
9	407	0
10	406	0
11	422	0
12	432	0
13	392	0
14	415	0
15	421	0
16	423	0
17	420	0

brazo 1	brazo2
GPM B1	GPM B2
422	0
412	0
416	0
420	0
414	0
422	0
413	0
382	0
437	0
	422 412 416 420 414 422 413 382

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
27	415	0
28	422	0
29	424	0
30	420	0
31	429	0
32	415	0
33	429	0
34	425	0
35	411	0
36	417	0
37	412	0
38	410	0
39	414	0
40	412	0
41	411	0
42	413	0
43	420	0
44	410	0
45	422	0
46	432	0
47	392	0
48	415	0
49	421	0
50	423	0
51	420	0
52	422	0
53	412	0
54	416	0
55	420	0
60	437	0
65	429	0
70	417	0
75	411	0
80	432	0
85	420	0
90	414	0
95	415	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)	GF WI DI	GF IVI DZ
100	415	0
105	412	0
110	413	0
115	392	0
120	422	0
125	422	0
130	422	0
135	429	0
140	410	0
145	420	0
150	415	0
155	412	0
160	413	0
165	424	0
170	425	0
175	414	0
180	410	0
185	421	0
190	416	0
195	382	0
200	420	0
205	411	0
210	412	0
215	422	0
220	423	0
225	420	0
230	437	0
235	429	0
236	415	0
237	429	0
238	425	0
239	411	0
240	447	0
241	432	128
242	446	150
243	434	153
244	449	245

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
245	439	273
246	444	245
247	440	365
248	436	338
249	443	365
250	425	417
251	413	415
252	382	418
253	437	416
254	415	415
255	422	414
260	429	415
265	382	420
270	420	414
275	425	415
280	437	428
285	429	416
290	411	418
295	415	428
300	415	425
305	422	416
310	422	414
315	415	418
320	413	415
325	424	416
330	429	418
335	382	418
340	420	415
345	414	431
346	412	428
347	411	418
348	413	428
349	420	418
350	410	440
351	382	438
352	390	427
353	391	439

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)	202	420
354	392	429
355	257	440
356	269	438
357	270	427
358	177	439
359	126	429
360	67	442
361	0	414
362	0	431
363	0	428
364	0	418
365	0	418
366	0	416
367	0	415
368	0	414
369	0	416
370	0	415
375	0	431
380	0	415
385	0	416
390	0	418
395	0	416
400	0	414
405	0	416
410	0	418
415	0	428
420	0	414
425	0	415
430	0	418
435	0	415
440	0	431

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
445	0	415
450	0	416
455	0	418
460	0	416
465	0	414
470	0	416
475	0	418
480	0	428
485	0	414
490	0	415
495	0	418
500	0	415
505	0	431
510	0	415
515	0	416
520	0	418
525	0	416
530	0	414
535	0	416
540	0	418
545	0	428
550	0	414
555	0	415
560	0	418
565	0	415
570	0	431
575	0	415
580	0	416
585	0	418
590	0	416
595	0	414

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
600	0	416
605	0	418
610	0	428
615	0	414
620	0	415
625	0	418
630	0	415
635	0	431
640	0	415
645	0	416
650	0	418
655	0	416
660	0	414
665	0	415
666	0	414
667	0	431
668	0	428
669	0	418
670	0	414
671	0	431
672	0	428
673	0	418
674	0	354
675	0	185
676	0	228
677	0	80
678	0	71
679	0	0
780	0	0

TABLA 4. 16FUNCIONAMIENTO DE DOS BRAZOS PARA DESPACHO DE GASOLINA EXTRA, SIN CONTROLADOR

FIGURA 4. 12 COMPORTAMIENTO SISTEMA SIN CONTROLADOR, GASOLINA EXTRA

En la figura 4.10 se aprecian los cambios bruscos de caudal que sufre el despacho al inicio, durante y termino del mismo. Analizando la entrada de un solo brazo de carga: El sistema sin PID tiene un tiempo de estabilización de 10 segundos, además tiene sobre impulsos de 20 gpm y oscilatorio. Cuando entra en funcionamiento el segundo brazo de carga el set point cambia como se lo ha expuesto en el capítulo 1, el tiempo de establecimiento es de 20 segundos y un sobre pico de 15 gpm y oscilatorio. Durante el arranque y cierre del sistema existen cambios bruscos de caudal. Entonces el presente proyecto debe disminuir estos problemas.

Una vez conocido la respuesta del sistema sin controlador PID, se procedió a implementar dicho controlador, para cumplir con los alcances de mejorar el despacho.

4.3.2.1 Búsqueda de parámetros controlador PID

4.3.2.1.1 Primer intento

Los valores iniciales del controlador son presentados en la siguiente tabla.

Ganancia	0.0037
TI	3.7
TS	1

TABLA 4. 17VALORES INICIALES CONTROLADOR GASOLINA EXTRA

Con estos valores en el controlador la resultante del sistema se presenta en la tabla 4.18 los valores obtenidos desde las Accuload presentes en las islas de carga.

	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
0	0	0
1	68	0
2	168	0
3	170	0

	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
4	178	0
5	270	0
6	271	0
7	268	0

	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
8	393	0
9	391	0
10	433	0
11	433	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
12	433	0
13	433	0
14	433	0
15	432	0
16	431	0
17	430	0
18	429	0
19	428	0
20	427	0
21	426	0
22	425	0
23	424	0
24	423	0
25	422	0
26	421	0
27	420	0
28	419	0
29	418	0
30	417	0
31	416	0
32	415	0
33	414	0
34	413	0
35	414	0
36	415	0
37	416	0
38	417	0
39	418	0
40	419	0
41	420	0
42	421	0
43	422	0
44	423	0
45	424	0
46	425	0
47	426	0
48	427	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)	420	0
49	428	0
50	427	0
51	426	0
52 53	425 424	0
54	423	0
55	422	0
60	417	0
65	414	0
70	419	0
75	424	0
80	427	0
85	422	0
90	417	0
95	413	0
100	415	0
105	420	0
110	425	0
115	428	0
120	425	0
125	420	0
130	415	0
135	413	0
140	414	0
145	419	0
150	424	0
155	428	0
160	426	0
165	421	0
170	416	0
175	413	0
180	416	0
185	421	0
190	426	0
195	427	0
200	422	0
205	417	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
210	413	0
215	413	0
220	418	0
225	423	0
230	428	0
235	428	0
236	428	0
237	428	0
238	427	0
239	426	0
240	425	0
241	424	127
242	423	128
243	422	224
244	421	229
245	420	294
246	419	297
247	418	394
248	417	397
249	416	424
250	415	423
251	414	422
252	413	421
253	413	420
254	413	419
255	413	418
256	413	417
257	413	416
258	413	415
259	413	414
260	414	413
261	414	412
262	414	411
263	414	410
264	414	409
265	414	408
270	419	409

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg) 275	416	414
280	411	419
285	410	416
290	415	411
295	418	412
300	413	417
305	408	418
310	413	413
315	418	410
320	415	415
325	410	420
330	411	415
335	416	410
340	417	409
345	412	414
350	411	419
351	383	418
352	391	417
353	392	416
354	393	415
355	258	414
356	270	413
357	271	412
358	178	411
359	127	410
360	68	409
361	0	409
362	0	409
363	0	409
364	0	409
365	0	409
370	0	413
375	0	418
380	0	419
385	0	417
		١٠,

	1 -	1 -
1	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg) 390	0	412
395	_	409
400	0	409
405	0	414
410	0	419
415	0	419
420	0	418
425	0	413
430	0	409
435	0	409
440	0	413
445	0	418
450	0	419
455	0	419
460	0	414
465	0	409
470	0	409
475	0	412
480	0	417
485	0	419
490	0	419
495	0	415
500	0	410
505	0	409
510	0	411
515	0	416
520	0	419
525	0	419
530	0	416
535	0	411
540	0	409
545	0	410
550	0	415
565	0	417
570	0	412
580	0	409

	brazo 1	brazo2
TIEMPO	GPM B1	
(seg)	GI III DI	GI III DE
585	0	414
590	0	419
595	0	419
600	0	418
605	0	413
610	0	409
615	0	409
620	0	413
625	0	418
630	0	419
635	0	419
640	0	414
645	0	409
650	0	409
655	0	412
660	0	417
665	0	416
666	0	415
667	0	414
668	0	413
669	0	412
670	0	411
671	0	410
672	0	409
673	0	408
674	0	407
675	0	406
676	0	251
677	0	250
678	0	40
679	0	39
780	0	4

TABLA 4. 18 VALORES INICIALES CONTROLADOR, GASOLINA EXTRA

FIGURA 4. 13 COMPORTAMIENTO SISTEMA PRIMER INTENTO CONTROLADOR PID BRAZO DE CARGA 1, EXTRA

FIGURA 4. 14COMPORTAMIENTO SISTEMA PRIMER INTENTO CONTROLADOR PID BRAZO DE CARGA 2, EXTRA

En la figura 4.11, se observó que el comportamiento del caudal en la apertura y cierre del despacho, lo hace de una manera escalonada evitando sobre impulsos. Con este primer PID se logró un tiempo de estabilización de 10 segundos y un sobre impulso máximo de 10 gpm para un solo brazo de carga. Cuando se presenta un funcionamiento simultáneo es decir dos brazo de carga el tiempo de establecimiento es de 15 segundos con un máximo sobre impulso de 15 gpm. El problema se presenta en el arranque y paro del sistema existen escalones de funcionamiento demasiado marcados y en cada paso presentan sobre impulsos de 15 gpm. Además para el estado estable no existió mejoría es por tal razón que se procedió a realizar más pruebas para mejorar el control.

4.3.2.1.2 Parámetros finales del controlador línea de gasolina Extra

En la tabla siguiente se presentan los valores finales del controlador PID para gasolina extra Premium

GANANCIA	0.0026
TI	2,5
TS	3

TABLA 4. 19 VALORES FINALES CONTROLADOR PARA GASOLINA EXTRA

Con la respuesta del controlador en el sistema, se llegó finalmente a los siguientes resultados, estos fueron tomados desde las Accuload presentes en las islas de carga.

	brazo 1	brazo2
TIEMPO (seg)	GPM B1	GPM B2
0	0	0
1	67	0
2	167	0
3	169	0
4	177	0
5	269	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
6	270	0
7	267	0
8	392	0
9	390	0
10	432	0
11	432	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
12	432	0
13	432	0
14	432	0
15	431	0
16	430	0
17	429	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
18	428	0
19	427	0
20	426	0
21	425	0
22	424	0
23	423	0
24	422	0
25	421	0
26	420	0
27	419	0
28	418	0
29	417	0
30	416	0
31	415	0
32	414	0
33	414	0
34	414	0
35	414	0
36	414	0
37	414	0
38	414	0
39	414	0
40	414	0
41	414	0
42	414	0
43	414	0
44	414	0
45	413	0
46	413	0
47	413	0
48	413	0
49	413	0
50	413	0
55	413	0
60	412	0
65	412	0
70	412	0

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)	442	
75	413	0
80	413	0
85	414	0
90	414	0
95	415	0
100	415	0
105	416	0
110	417	0
115	417	0
120	418	0
125	418	0
130	419	0
135	419	0
140	420	0
145	420	0
150	421	0
155	421	0
160	422	0
165	422	0
170	423	0
175	424	0
180	424	0
185	425	0
190	426	0
195	426	0
200	427	0
205	427	0
210	425	0
215	425	0
220	424	0
225	424	0
230	423	0
235	423	0
236	423	0
237	422	0
238	422	0
239	422	0

	brazo 1	brazo2
TIENADO		
TIEMPO (seg)	GPM B1	GPM B2
240	422	0
241	421	128
242	420	129
243	419	225
244	418	230
245	417	295
246	416	298
247	415	395
248	414	398
249	413	425
250	412	424
251	411	423
252	410	422
253	409	421
254	408	420
255	407	419
256	407	418
257	407	417
258	407	416
259	407	415
260	407	414
261	408	413
262	409	412
263	410	411
264	411	410
265	412	409
270	417	408
275	417	408
280	417	409
285	416	409
290	416	410
295	415	411
300	415	411
305	414	412
310	414	412
315	413	413
320	412	413

=======================================	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg) 325	412	414
330	411	414
335	411	415
336	411	415
337	410	415
338	410	415
339	410	415
340	410	415
341	410	415
342	410	415
343	410	415
344	410	416
345	410	416
346	410	416
347	410	416
348	410	416
349	410	416
350	410	416
351	382	417
352	390	417
353	391	417
354	392	417
355	257	417
356	269	417
357	270	417
358	177	417
359	126	417
360	67	418
361	0	418
362	0	418
363	0	418
364	0	418
380	0	416
395	0	413
400	0	413

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
405	0	412
410	0	411
415	0	411
420	0	410
425	0	410
430	0	411
435	0	412
440	0	412
445	0	413
450	0	413
455	0	414
460	0	414
465	0	415
470	0	415
475	0	416
480	0	416
485	0	417
490	0	417
495	0	418
500	0	418
505	0	419
510	0	420
515	0	420
520	0	419
525	0	419
530	0	418
535	0	418
540	0	418
545	0	417
550	0	417
570	0	415
575	0	415
580	0	414
595	0	413
600	0	412

	brazo 1	brazo2
TIEMPO	GPM B1	GPM B2
(seg)		
605	0	412
610	0	411
615	0	411
620	0	410
625	0	410
630	0	411
635	0	411
640	0	412
645	0	412
650	0	413
655	0	413
660	0	414
661	0	414
662	0	414
663	0	414
664	0	414
665	0	414
666	0	415
667	0	415
668	0	415
669	0	415
670	0	415
671	0	415
672	0	395
673	0	394
674	0	394
675	0	250
676	0	252
677	0	251
678	0	41
679	0	40
780	0	0

TABLA 4. 20 DESPACHOGASOLINA EXTRA

FIGURA 4. 15COMPORTAMIENTO SISTEMA CONTROLADOR PID BRAZO DE CARGA 2, EXTRA

FIGURA 4. 16COMPORTAMIENTO SISTEMA CONTROLADOR PID BRAZO DE CARGA 2, EXTRA

El sistema logró que el tiempo de estabilización sea de 12 segundos y un sobre pico máximo de 10gpm cuando entra en funcionamiento el primer brazo de carga. Al entrar el segundo brazo de carga y funcionando simultáneamente el tiempo de establecimiento es de 15 segundos y un sobre impulso máximo menor a 10gpm. Además durante la apertura y cierre el caudal es lento y sin cambios bruscos de caudal.

Una vez cumplido con el objetivo y analizando la respuesta del controlador PID, el comportamiento del sistema es satisfactorio, por tal razón se da por cumplido con los objetivos del presente proyecto.

En el presente capítulo se presentó las pruebas efectuadas en el sistema de despacho de productos limpios de Santo Domingo y los resultados obtenidos.

CAPÍTULO 5 CONCLUSIONES Y RECOMENDACIONES

CAPÍTULO 5

CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

De las pruebas realizadas y los resultados obtenidos se puede obtener las conclusiones siguientes:

- Se comprobó el correcto funcionamiento del sistema de bombeo desarrollado en la Terminal de Productos Limpios de Santo Domingo, cumpliendo así con los objetivos propuestos inicialmente en el presente proyecto.
- Se implementó un sistema de control automático cuyo objetivo es mantener el caudal en un valor fijo durante el despacho, esta acción se debe llevar a cabo con el fin de maximizar el tiempo y cubrir una mayor demanda.
- Se implementó un sistema de control automático para el sistema de despacho de productos limpios, que considera la realidad constructiva y condiciones de operación de la terminal en base a una lógica fundamentada en los criterios de un control PID. Se demostró que este algoritmo es lo suficientemente confiable para las necesidades del sistema.
- La depuración y calibración del sistema implementado no fue una labor fácil por la imposibilidad de realizar constantemente ensayos y pruebas, debido al tiempo de operación de la terminal.
- Con la imposibilidad o dificultad en obtener la función de transferencia de la planta, el controlador se calibró de acuerdo a la dinámica de la planta, mediante ajuste por ensayo y error, el cual si bien requiere de cierta experiencia, sigue siendo válido y particularmente, se torna necesario cuando no se tiene mayor idea del modelo del proceso.

- El desarrollo de este proyecto ha permitido conocer en profundidad el uso de los controladores y software para los PLC's Quantum y Momentum de la marca Schneider. Es así que se ha empleado el programa Concept 2.6 XL para programar, configurar e inspeccionar el funcionamiento de los autómatas empleados en el sistema de despacho.
- El desarrollo de este proyecto permitió conocer a profundidad el uso de la pantalla táctil Magelis de Schneider Electric, empleando el programa Vijeo Designer y Runtime para programar, configurar e inspeccionar el funcionamiento de todas las variables utilizadas en el sistema de bombeo. Esta labor fue muy importante ya que pocas personas en la terminal conocen acerca de este lenguaje de programación, además de existir escasa información sobre el mismo.
- Las HMI desarrolladas en el cuarto de control y en la terminal constituyen un sistema confiable, seguro y de fácil uso. Son una herramienta primordial para la detección anticipada de posibles fallas o alarmas y permiten poner en marchas los correctivos necesarios.
- Se instaló nueve actuadores en el patio de bombas que facilitan el alineamiento de los distintos productos, desde los tanques de almacenamiento hasta las islas de carga.
- Se aumentaron pantallas en la HMI ubicada en la sala de control para tener control sobre los actuadores instalados, además se estableció una lógica de animación en las tuberías de las pantallas de gasolinas y diesel.
- Las pruebas realizadas mostraron que el sistema de control redujo el tiempo de establecimiento y los sobre picos. Antes de la implementación del sistema, el tiempo de establecimiento era de 25 segundos y existían sobre picos de 25 gpm, mientras que con el sistema actual, el tiempo de establecimiento es de 10 segundos y los sobre picos son de 10 gpm.

- Con respecto a los resultados obtenidos, la implementación del sistema fue exitosa y cumple con todos los requerimientos de la planta; además se logró que el tiempo de despacho entre camiones se reduzca, pues al llegar a la estabilización de caudal en un menor tiempo, se garantiza que el despacho sea óptimo.
- Con el nuevo sistema de control, se logró incrementar el caudal en los brazos de carga a velocidades inferiores comparadas con la del sistema anterior.
- Para desarrollar una correcta capacitación en el uso de la pantalla Magelis, se desarrolló un manual de usuario, además de realizarse charlas de capacitación para que el personal involucrado en esta área se familiarice con la operación del sistema.
- La opinión y sugerencia de operadores, supervisores fue de suma importancia en las distintas fases del proyecto, por lo cual el proyecto consideró la opinión de los mismos para brindar un sistema que cumpla con las expectativas del usuario.
- La cooperación del personal de la terminal fue muy útil, ya que se permitió el uso de los distintos materiales que intervienen en este proyecto. Gracias a todos estos trabajos realizados se puede garantizar que el control implementado y las modificaciones en la HMI funcionan correctamente de acuerdo a las condiciones de diseño específicas y requeridas por el personal de mantenimiento y en sí por la empresa

5.2 RECOMENDACIONES

De la experiencia adquirida durante la elaboración de este proyecto, se tiene las siguientes recomendaciones:

- Para sistema de control en lazo cerrado, como es el caso del control de velocidad de los distintos productos, es recomendable utilizar algún procedimiento de sincronización, manual o automática, para determinar los parámetros del regulador, ya que en la práctica resulta muy complicado determinar la función de transferencia de la planta.
- Para la búsqueda de los parámetros de regulador PID, existen diferentes métodos de sintonización, el más práctico es el método del tanteo, pero existe una alternativa recomendable como lo es el bloque funcional autotune, el mismo que determina automáticamente los parámetros requeridos por el regulador, pero no se debe usar más de uno, por motivos de consumo de recursos de memoria. Estos métodos son experimentales, no analíticos debido a que no se conoce el modelo matemático de la planta.
- Para descargar por primera vez la aplicación de Vijeo Designer, es recomendable hacerlo mediante cable USB, con el objetivo de generar cambios en el direccionamiento IP que viene por defecto, una vez que la terminal operador tenga direccionamiento lógico, se puede integrar a la red WAN, y proceder a realizar cambios desde la vía Ethernet.
- Las modificaciones desde el panel operador, en el control y la parametrización del sistema deben realizarse únicamente por personas capacitadas para el propósito, ya que los cambios mal realizados influyen directamente en el correcto funcionamiento del sistema.

- Para realizar cualquier modificación en las pantallas de Intouch, se debe conocer los pixeles de la pantalla del computador, con esto se puede saber el tamaño de las pantallas.
- Antes de poner en funcionamiento un nuevo sistema, es recomendable e importante analizar los cambios que se van a implementar, al igual que realizar pruebas preliminares, evitando paros innecesarios en la planta.
- En todo proyecto se recomienda que el manual de usuario sea realizado de tal manera que constituya un documento claro y conciso, para que cualquier persona pueda entender el objetivo del proyecto y usarlo de la forma correcta.

REFERENCIAS BIBLIOGRÁFICAS:

- [1] http://bibliotecavirtual.unl.edu.ar:8180/tesis/bitstream/1/148/1/tesis1.pdf
- [2]http://www.petrocomercial.com/wps/documentos/noticias/Transparencia/Ley %20de%20Hidrocarburos.pdf
- [3]http://www.petrocomercial.com/wps/portal/documentos/Comercializadora/Re dPoliductos.pdf
- [4]http://www.petrocomercial.com/wps/portal/!ut/p/c0/04_SB8K8xLL9MSSzPy8 xBz9CP0os_!QAN9AQzcPIwMDdwtzA08DLy9jYxN3Q08TY_2CbEdFADg1oU U!/
- [5] Smith Meter Inc., Accuload III, installation operation, october 1996
- [6] Smith Meter Inc., Medidor de Desplazamiento Positivo con Alabes giratorios, Instalación/Operación/Mantenimiento, Modelo F4, abril 2010.
- [7] Smith Meter Inc., Valves Model 210 Digital Electro-Hydraulic Set-Stop Specifications, 1996-10
- [8] Smith Meter Inc., Pipeline Stainers Specifications, 1996-06
- [9] MAZZONE, VIRGINIA, "Controladores PID", Artículo Técnico, Universidad Nacional de Quilmes, Departamento de Automatización y Control Industrial, 2002
- [10]http://www2.emersonprocess.com/siteadmincenter/PM%20Asset%20Optim ization%20Documents/ProductReferenceAndGuides/475_ru_usermanual.pdf
- [11]http://www.fluke.com/fluke/eces/Products/750-Series?gclid=CJCG3rLupbECFQLpnAod9xVmdg
- [12]http://rotork.com/IQ10.pdf