

데이터시각화 - Seaborn

CONTENTS

- A. Seaborn는 무엇인가?
- B. Seaborn 설치
- C. Seaborn Charts
- D. Seaborn 데이터 분석을 위한 차트

Seaborn는 무엇인가?

- ❖ Seaborn is a Python data visualization library based on matplotlib
- ❖ It provides a high-level interface for drawing attractive and informative statistical graphics

❖ Statistical Estimation

Average of values

❖ Statistical Estimation

Linear Regression Model

❖ Distributional representations

■ Histograms or kernel density estimation

❖ Plots for categorical data

Swarm plot, kernel density estimation for underlying distribution

- **❖** Multivariate views on complex datasets
 - Easy coding for complex graphs

Plotly 설치

- ❖ Jupyter Notebook을 실행합니다.
- ❖ 명령 프롬프트(CMD)를 실행하고 다음 명령어를 사용합니다.
 - pip install seaborn
- ❖ 다른 라이브러리 또한 설치해야 합니다.
 - Numpy, scipy, matplotly, pandas
- ❖ plotly 라이브러리 버전을 확인합니다.

```
import seaborn //Importing seaborn library print(seaborn.__version__) //Printing library version
```

Data

Dataset

titanic.csv

import pandas as pd

titanic_df = pd.read_csv("D:/titanic.csv")

Data

info()

- Provides essential details about your dataset
 - titanic_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 895 entries, 0 to 894
Data columns (total 12 columns):
Passengerld 895 non-null int64
Survived
            895 non-null int64
Pclass
           895 non-null int64
Name
            895 non-null object
        895 non-null object
sex
           718 non-null float64
Age
           895 non-null int64
SibSp
           895 non-null int64
Parch
Ticket
           895 non-null object
Fare
           884 non-null float64
Cabin
           204 non-null object
Embarked
              893 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 66.5+ KB
```


Seaborn Charts

countplot()

- Show the counts of observations in each category using bars
 - data dataset for plotting
 - x, y inputs for plotting data

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt

#importing dataset
titanic = sns.load_dataset("titanic")

#plotting chart
sns.countplot(x='sex', data=titanic)
plt.show()
```

countplot()

- Show the counts of observations in each category using bars
 - data dataset for plotting
 - x, y inputs for plotting data

- countplot()
 - hue visualize the data of different categories in one plot
 - palette colors to use for the different levels of the hue variable

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load_dataset("titanic")
#plotting chart
sns.countplot(x='sex',
         data=titanic,
         hue="embark town",
         palette="Blues")
plt.show()
```

❖ Seaborn palette colors

countplot()

- hue visualize the data of different categories in one plot
- palette colors to use for the different levels of the hue variable

	Passenger	Survived	Pclass	Name
	1	0	3	Braund, M
	2	1	1	Cumings,
	3	1	3	Heikkinen
	4	1	1	Futrelle, N
	5	0	3	Allen, Mr.
	6	0	3	Moran, Mi
	7	0	1	McCarthy,

countplot()

You can add options like title, label names and legend location

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load dataset("titanic")
#plotting chart x축이 plcass이고 hue는 x축 안에서 survived (생존자)를 카운팅하는 것
sns.countplot(x='pclass', data=titanic, hue='survived', palette="husl")
plt.title("Survived by Passanger Class")
plt.xlabel("Passenger Classes")
plt.ylabel("Number of Passengers")
plt.legend(loc='best')
plt.show()
```

- countplot()
 - plt.legend(loc='best')
 - upper left, upper right, lower left, lower right, etc (Default value 'best')

loc의 값을 upper right, upper left, lower left, lower right로 변경해보자

Bar Plot

- barplot()
 - Unlike count plot, bar plots must include x and y axis variables

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load dataset("titanic")
#plotting chart Deck 별 요금
sns.barplot(x='deck', y='fare', data=titanic, palette="pastel")
plt.title("Fare prices by Deck")
plt.show()
```

Bar Plot

barplot()

- Show point estimates and errors as rectangular bars
 - You can disable error bars with the option: errorbar=None
 - You can add bar labels with option: bar_label()

Errorbar의 옵션을 None으로 바꿔보고 bar_label을 추가해보자

histplot()

- Univariate or bivariate histograms to show distributions of datasets
 - sns.histplot(x='age', data = titanic)

histplot()

- Example of bivariate histograms with title and label names
- kde kernel density estimation

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load_dataset("titanic")
#plotting chart 나이대별 성별 분포
sns.histplot(x='age', data = titanic, hue='sex', kde = True)
plt.title("Number of Passengers by Age")
plt.xlabel("Age")
plt.ylabel("Number of Passengers")
plt.show()
```

histplot()

- Example of bivariate histograms with title and label names
- kde kernel density estimation

histplot()

 Overlapping bars can be hard to visually resolve. A different approach would be to draw polygon

```
sns.histplot(x='age',
data = titanic,
hue='sex',
element = 'poly')
```

- Other options include
 - element{"bars", "step", "poly"}

- histplot()
 - element = 'poly'

Element 속성 값을 다른 값으로 변경해보자

Distribution Plot

displot()

Shows the univariate or bivariate distribution of data

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load_dataset("titanic")
#plotting chart
sns.displot(titanic, x='age', kind='kde', hue='pclass')
plt.title("Distribution of Passengers by Age")
plt.xlabel("Age")
plt.ylabel("Density")
plt.show()
```

Distribution Plot

- displot()
 - kind includes hist, kde, ecdf

Kind를 다른 값으로 변경해보자

Distribution Plot

displot()

sns.displot(titanic, x='age', kind='kde', hue='pclass', multiple='stack')

Facet Grids

FacetGrid()

• Multi-plot grid for plotting conditional relationships

```
#importing library
import seaborn as sns
import matplotlib.pyplot as plt
#importing dataset
titanic = sns.load dataset("titanic")
#plotting chart
sns.displot(titanic, x='age', kind='kde', hue='pclass')
g = sns.FacetGrid(titanic,
         col="pclass",
         row="survived",
         hue='sex')
g.map(sns.kdeplot, "age", shade = True)
```

Facet Grids

FacetGrid()

- Two steps
 - Step 1: Create a basic plot with the layout

Facet Grids

- FacetGrid()
 - Two steps
 - Step 2: Use map() function to apply plotting functions

boxplot()

- Draw a box plot to show distributions with respect to categories
 - sns.boxplot(y='fare', data=titanic)

boxplot()

- You can create multiple boxes in a single plot
 - sns.boxplot(x = 'class', y='fare', data=titanic)

violinplot()

- Draw a patch representing a KDE
 - sns.violinplot(y='fare', x = 'class', data=titanic)

swarmplot()

- Draw a categorical scatterplot with points adjusted to be nonoverlapping
 - sns.swarmplot(y='fare', x = 'class', data=titanic)

- scatterplot()
 - Draw a scatter plot with possibility of several semantic groupings
 - sns.scatterplot(x='age', y = 'fare', data = titanic)

scatterplot()

- You can include hue option to show different categories in one plot
 - sns.scatterplot(x='age', y = 'fare', data = titanic, hue = 'sex')

- scatterplot()
 - size variable that will produce points with different sizes
 - sns.scatterplot(x='age', y = 'fare', data = titanic, hue = 'sex', size = 'who')

scatterplot()

- You can change the style of markers
 - sns.scatterplot(x='age', y = 'fare', data = titanic, hue = 'sex', style = 'who')

- Plot data and regression model
 - sns.lmplot(x='age', y = 'fare', data = titanic)

- You can include hue option to show different categories in one plot
 - sns.lmplot(x='age', y = 'fare', data = titanic, hue = 'survived')

Joint Plot

jointplot()

- Draw a plot of two variables with bivariate and univariate graphs
 - sns.jointplot(x='age', y='fare', data=titanic)

Joint Plot

jointplot()

- Draw a plot of two variables with bivariate and univariate graphs
 - sns.jointplot(x='age', y='fare', data=titanic, hue='sex')

Joint Plot

jointplot()

- You can also draw the distribution graph
 - sns.jointplot(x='age', y='fare', data=titanic, kind="kde")

다른 kind를 적용해보자

Heat Plot

heatmap()

- Plot rectangular data as a color-encoded matrix
 - titanic_corr = titanic.corr()
 - sns.heatmap(data = titanic_corr)

Heat Plot

heatmap()

- annot=True to show the labels on the heatmap
 - titanic_corr = titanic.corr()
 - sns.heatmap(data = titanic_corr, annot=True)

Homework for Lecture 6

Perform the following

- Use on of the dataframes provided by Seaborn
- Apply basic charts
 - Bar and scatter charts
- Apply statistical charts
 - Boxplot, violin and joint plots
- Study at least two more by yourself and apply it to the dataset
- Add a detailed explanation for each graph

감사합니다