CSC 4780/6780 Mice Analysis

October 25, 2022

Here is the contingency table:

Gene	No Cancer	Has Cancer	
J	93	37	130
\mathbf{R}	20	1	21
K	34	5	39
	147	43	190

Here are the conditional proportions:

Gene	No Cancer	Has Cancer	
J	71.5%	28.5%	68.4%
\mathbf{R}	95.2%	4.8%	11.1%
K	87.2%	12.8%	20.5%
	77.4%	$\boldsymbol{22.6\%}$	

Here are the expected counts of the genes and cancer were independent:

Gene	No Cancer	Has Cancer	
J	100.6	29.4	130
\mathbf{R}	16.2	4.8	21
K	30.2	8.8	39
	77.4%	22.6%	

$$X^2 = 8.4972$$

There are 2 degrees of freedom, so the p-value is given by:

$$p = 0.014284171167428195$$

It is unlikely that we would see these number if the genes and cancer were independent.