CENG 424

Logic for Computer Science

Fall 2023 - Homework 1

First-Order Logic

Due date: 22 October 2023, Sunday, 23:59 (No Late Allowed!)

1 Specifications

- 1. Your work must be on PDF file preferably outputted by a \LaTeX file.
- 2. The homework must be submitted before the deadline. There is no late submission policy.
- 3. This is an individual homework. All solutions must be your own, otherwise is considered as cheating.

2 Questions

- 1. Draw truth tables to show which of the following pairs of expressions are logical equivalences.
 - (a) $A \to B$ and $\neg(A \land \neg B)$
 - (b) $A \leftrightarrow B$ and $(\neg A \lor B) \land (\neg B \lor A)$
 - (c) $A \rightarrow (\neg A \rightarrow B)$ and ${\bf 1}$
 - (d) $(A \lor \neg B) \to C$ and $(\neg A \land B) \lor C$
- 2. Convert each of the following logical forms to conjunctive normal form (CNF):
 - (a) $A \wedge (\neg A \rightarrow A)$
 - (b) $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$
 - (c) $(A \rightarrow (B \lor \neg C)) \land \neg A \land B$
- 3. Construct a semantic tableaux (use only rules defined in section 4) to show that the following logical forms mutually consistent or not.

$$\neg A \wedge B, \quad \neg (B \wedge C), \quad C \vee D, \quad \neg (\neg A \to D)$$

3 Submission

Please submit a PDF file named hw1_e1234567.pdf to gradescope.com, where 1234567 refers to your student identification number.

4 Semantic Tableaux

If a tableau contains;

- 1. $A \wedge B$: it can be extended to form a new tableau by adding both A and B below to the branch containing $A \wedge B$.
- 2. $A \vee B$: it can be extended to form a new tableau by adding two new branches, one containing A and the other containing B.
- 3. A \rightarrow B: it can be extended to form a new tableau by adding two new branches, one containing \neg A and the other containing B.
- 4. A \leftrightarrow B: it can be extended to form a new tableau by adding two new branches, one containing A \land B and the other containing \neg A \land \neg B.
- 5. $\neg\neg A$: it can be extended to form a new tableau by adding A below to the branch containing $\neg\neg A$.
- 6. $\neg(A \land B)$: it can be extended to form a new tableau by adding two new branches, one containing $\neg A$ and the other containing $\neg B$.
- 7. $\neg(A \lor B)$: it can be extended to form a new tableau by adding both $\neg A$ and $\neg B$ below to the branch containing $\neg(A \lor B)$.
- 8. $\neg(A \to B)$: it can be extended to form a new tableau by adding both A and $\neg B$ below to the branch containing $A \land B$.
- 9. $\neg(A \leftrightarrow B)$: it can be extended to form a new tableau by adding two new branches, one containing $A \land \neg B$ and the other containing $\neg A \land B$.
- 10. Finally, and most importantly, whenever a logical form A and its negation $\neg A$ appear in a branch of a tableau, an inconsistency is indicated in that branch and it is said to be 'closed', i.e. it is not further extended. This is because A and $\neg A$ cannot both be true at the same time.