

Diode Applications

1.LOAD-LINE ANALYSIS

$$+E-V_D-V_R=0$$

$$E = V_D + I_D R$$

$$I_D = \frac{E}{R}\Big|_{V_D = 0 \text{ V}}$$

$$V_D = E\Big|_{I_D = 0 \text{ A}}$$

2. SERIES DIODE CONFIGURATIONS

FIG. 8 Series diode configuration.

Reversing the diode

Determining the state of the diode

for the "off" diode

$$V_D = V_K$$

$$V_R = E - V_K$$

$$I_D = I_R = \frac{V_R}{R}$$

3.PARALLEL AND SERIES—PARALLEL CONFIGURATIONS

Si

4.AND/ORGATES

(1) $E = 10 \text{ V} \circ$ Si

Positive logic OR gate.

5.Half-WAVE RECTIFICATION

$$V_{\rm dc} = 0.318 \, V_m$$
 half-wave

Nonconduction region $(T/2 \rightarrow T)$.

FIG.

Effect of VK on half-wave rectified signal.

$$V_{\rm dc} \cong 0.318(V_m - V_K)$$

6.FULL-WAVE RECTIFICATION

$$V_{\rm dc} = 0.636 V_m$$

full-wave

FIG.

Full-wave bridge rectifier.

Conduction path for the positive region of vi-

Conduction path for the negative region of vi-

FIG.

Determining $V_{o_{\max}}$ for silicon diodes in the bridge configuration.

 $V_{\rm dc} \cong 0.636(V_m - 2V_K)$

Bipolar Junction Transistors (BJT)

Transistor Construction

FIG.
The first transistor. (Courtesy of AT&T Archives and History Center.)

FIG.

Types of transistors: (a) pnp;

(b) npn.

Transistor Operation

Biasing a transistor: (a) forward-bias; (b) reverse-bias.

One p-n junction of a transistor is reverse-biased, whereas the other is forward biased.

FIG.

Majority and minority carrier flow of a pnp
transistor.

 $I_E = I_C + I_B$

FIG.

Notation and symbols used with the common-base configuration: (a) pnp transistor; (b) npn transistor.

Q1. Determine the current I for each of the configurations of Figure. using the approximate equivalent model for the diode.

- (a) I = 0 mA; diode reverse-biased.
- (b) $V_{20\Omega} = 20 \text{ V} 0.7 \text{ V} = 19.3 \text{ V}$ (Kirchhoff's voltage law) $I(20 \Omega) = \frac{19.3 \text{ V}}{20 \Omega} = 0.965 \text{ A}$ $V(10 \Omega) = 20 \text{ V} - 0.7 \text{ V} = 19.3 \text{ V}$ $I(10 \Omega) = \frac{19.3 \text{ V}}{10 \Omega} = 1.93 \text{ A}$ $I = I(10 \Omega) + I(20 \Omega)$ = 2.895 A(c) $I = \frac{10 \text{ V}}{10 \Omega} = 1 \text{ A}$; center branch open

Q2. Determine V_0 and I_D for the networks of Figure.

Solution

(a) Diode forward-biased, Kirchhoff's voltage law (CW): $-5 \text{ V} + 0.7 \text{ V} - V_o = 0$ $V_o = -4.3 \text{ V}$

$$I_R = I_D = \frac{|V_o|}{R} = \frac{4.3 \text{ V}}{2.2 \text{ k}\Omega} = 1.955 \text{ mA}$$

(b) Diode forward-biased,

$$I_D = \frac{8 \text{ V} + 6 \text{ V} - 0.7 \text{ V}}{1.2 \text{ k}\Omega + 4.7 \text{ k}\Omega} = 2.25 \text{ mA}$$
$$V_o = 8 \text{ V} - (2.25 \text{ mA})(1.2 \text{ k}\Omega) = 5.3 \text{ V}$$

Q3. Determine the level of V_0 for each network of Figure.

Solution

(a)
$$V_o = \frac{10 \text{ k}\Omega(12 \text{ V} - 0.7 \text{ V} - 0.3 \text{ V})}{2 \text{ k}\Omega + 10 \text{ k}\Omega} = 9.17 \text{ V}$$

(b)
$$V_o = 10 \text{ V}$$

$\mathbf{Q4}$. Determine \mathbf{V}_{01} and \mathbf{V}_{02} for the networks of Figure.

Solution

(a)
$$V_{o_1} = 12 \text{ V} - 0.7 \text{ V} = 11.3 \text{ V}$$

 $V_{o_2} = 1.2 \text{ V}$

(b)
$$V_{o_1} = \mathbf{0} \mathbf{V}$$

 $V_{o_2} = \mathbf{0} \mathbf{V}$

Q5. Determine V_0 and I_D for the networks of Figure.

Solution

(a) Both diodes forward-biased
 Si diode turns on first and locks in 0.7 V drop.

$$I_R = \frac{12 \text{ V} - 0.7 \text{ V}}{4.7 \text{ k}\Omega} = 2.4 \text{ mA}$$

 $I_D = I_R = 2.4 \text{ mA}$
 $V_o = 12 \text{ V} - 0.7 \text{ V} = 11.3 \text{ V}$

(b) Right diode forward-biased:

$$I_D = \frac{20 \text{ V} + 4 \text{ V} - 0.7 \text{ V}}{2.2 \text{ k}\Omega} = 10.59 \text{ mA}$$

 $V_o = 20 \text{ V} - 0.7 \text{ V} = 19.3 \text{ V}$

$\mathbf{Q6}$. Determine $\mathbf{V_0}$ and $\mathbf{I_D}$ for the networks of Figure.

Solution

(a) Si diode "on" preventing GaAs diode from turning "on": $I = \frac{1 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = \frac{0.3 \text{ V}}{1 \text{ k}\Omega} = \mathbf{0.3 \text{ mA}}$ $V_o = 1 \text{ V} - 0.7 \text{ V} = \mathbf{0.3 \text{ V}}$

(b)
$$I = \frac{16 \text{ V} - 0.7 \text{ V} - 0.7 \text{ V} + 4 \text{ V}}{4.7 \text{ k}\Omega} = \frac{18.6 \text{ V}}{4.7 \text{ k}\Omega} = 3.96 \text{ mA}$$

 $V_o = 16 \text{ V} - 0.7 \text{ V} - 0.7 \text{ V} = 14.6 \text{ V}$

Q7. Determine Vo₁, Vo₂, and _I for the network of Figure.

Solution

Both diodes forward-biased:

$$V_{o_1} = \mathbf{0.7} \text{ V}, V_{o_2} = \mathbf{0.7} \text{ V}$$

$$I_{1 \text{ k}\Omega} = \frac{20 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = \frac{19.3 \text{ V}}{1 \text{ k}\Omega} = 19.3 \text{ mA}$$

$$I_{0.47 \text{ k}\Omega} = 0 \text{ mA}$$

$$I = I_{1 \text{ k}\Omega} - I_{0.47 \text{ k}\Omega} = 19.3 \text{ mA} - 0 \text{ mA}$$

$$= \mathbf{19.3 \text{ mA}}$$

Q8. Determine V_0 and I_D for the network of Figure.

Solution

Superposition:
$$V_{o_1}(9.3 \text{ V}) = \frac{1 \text{ k}\Omega(9.3 \text{ V})}{1 \text{ k}\Omega + 2 \text{ k}\Omega} = 3.1 \text{ V}$$

$$V_{o_2}(8.8 \text{ V}) = \frac{16 \text{ k}\Omega(8.8 \text{ V})}{1 \text{ k}\Omega + 2 \text{ k}\Omega} = 2.93 \text{ V}$$

$$V_o = V_{o_1} + V_{o_2} = 6.03 \text{ V}$$

$$I_D = \frac{9.3 \text{ V} - 6.03 \text{ V}}{2 \text{ k}\Omega} = 1.635 \text{ mA}$$

Q9. Determine V_a for the negative logic OR gate of Figure.

Solution

The Si diode with -5 V at the cathode is "on" while the other is "off". The result is $V_o = -5$ V + 0.7 V = **-4.3** V

Q11. Determine the level of V_0 for the gate of Figure.

Solution

Since all the system terminals are at 10 V the required difference of 0.7 V across either diode cannot be established. Therefore, both diodes are "off" and

$$V_o = +10 \text{ V}$$

as established by 10 V supply connected to 1 k Ω resistor.

Q10. Determine V_0 for the negative logic AND gate of Figure.

Solution

0~V at one terminal is "more positive" than -5~V at the other input terminal. Therefore assume lower diode "on" and upper diode "off".

The result:

$$V_o = 0 \text{ V} - 0.7 \text{ V} = -0.7 \text{ V}$$

The result supports the above assumptions.

Q12. Determine Vo for the configuration of Figure.

Solution

The Si diode requires more terminal voltage than the Ge diode to turn "on". Therefore, with 5 V at both input terminals, assume Si diode "off" and Ge diode "on".

The result: $V_o = 5 \text{ V} - 0.3 \text{ V} = 4.7 \text{ V}$

The result supports the above assumptions.

Q13. Assuming an ideal diode, sketch v_i , v_d , and i_d for the half-wave rectifier of Figure. The input is a sinusoidal waveform with a frequency of 60 Hz. Determine the profit value of v_i from the given dc level.

Solution

$$V_{\text{dc}} = 0.318 \ V_m \Rightarrow V_m = \frac{V_{\text{dc}}}{0.318} = \frac{2 \text{ V}}{0.318} = 6.28 \text{ V}$$

$$I_m = \frac{V_m}{R} = \frac{6.28 \text{ V}}{2 \text{ k}\Omega} = 3.14 \text{ mA}$$

Q14. Repeat Problem 13 with a silicon diode ($V_K = 0.7 \text{ V}$).

Solution

Using
$$V_{dc} \cong 0.318(V_m - V_T)$$

2 V = 0.318(V_m - 0.7 V)

Solving:
$$V_m = 6.98 \text{ V} \cong 10:1 \text{ for } V_m: V_T$$

Q15. For the network of Figure, sketch v_0 and determine V_{dc} .

Solution

$$V_m = \sqrt{2} (120 \text{ V}) = 169.68 \text{ V}$$

 $V_{dc} = 0.318 V_m = 0.318 (169.68 \text{ V}) = 53.96 \text{ V}$

Q16. For the network of Figure, sketch v_0 and i_R .

Solution

Diode will conduct when $v_o = 0.7 \text{ V}$; that is,

$$v_o = 0.7 \text{ V} = \frac{1 \text{ k}\Omega(v_i)}{1 \text{ k}\Omega + 1 \text{ k}\Omega}$$

Solving: $v_i = 1.4 \text{ V}$

For $v_i \ge 1.4$ V Si diode is "on" and $v_o = 0.7$ V. For $v_i < 1.4$ V Si diode is open and level of v_o is determined by voltage divider rule:

$$v_o = \frac{1 \text{ k}\Omega(v_i)}{1 \text{ k}\Omega + 1 \text{ k}\Omega} = 0.5 v_i$$

For $v_i = -10 \text{ V}$: $v_o = 0.5(-10 \text{ V})$ = -5 V

When
$$v_o = 0.7 \text{ V}$$
, $v_{R_{\text{max}}} = v_{i_{\text{max}}} - 0.7 \text{ V}$
= $10 \text{ V} - 0.7 \text{ V} = 9.3 \text{ V}$
 $I_{R_{\text{max}}} = \frac{9.3 \text{ V}}{1 \text{ k}\Omega} = 9.3 \text{ mA}$

- **Q17.** A full-wave bridge rectifier with a 120-V rms sinusoidal input has a load resistor of 1 k Ω .
- a. If silicon diodes are employed, what is the dc voltage available at the load?
- b. Determine the required PIV rating of each diode.
- c. Find the maximum current through each diode during conduction.
- d. What is the required power rating of each diode?

Solution

(a)
$$V_m = \sqrt{2} (120 \text{ V}) = 169.7 \text{ V}$$

 $V_{L_m} = V_{l_m} - 2V_D$
 $= 169.7 \text{ V} - 2(0.7 \text{ V}) = 169.7 \text{ V} - 1.4 \text{ V}$
 $= 168.3 \text{ V}$
 $V_{dc} = 0.636(168.3 \text{ V}) = 107.04 \text{ V}$

(b) PIV =
$$V_m$$
(load) + V_D = 168.3 V + 0.7 V = **169** V

(c)
$$I_D(\text{max}) = \frac{V_{L_{\text{nu}}}}{R_L} = \frac{168.3 \text{ V}}{1 \text{ k}\Omega} = 168.3 \text{ mA}$$

(d)
$$P_{\text{max}} = V_D I_D = (0.7 \text{ V}) I_{\text{max}}$$

= $(0.7 \text{ V}) (168.3 \text{ mA})$
= 117.81 mW

 $\mathbf{Q18}$. Draw Determine V_o and the required PIV for the configuration of Figure. In addition, determine the maximum current through each diode.

Solution

$$I_{\text{max}} = \frac{100 \text{ V}}{2.2 \text{ k}\Omega} = 45.45 \text{ mA}$$

Q19. What is the major difference between a bipolar and a unipolar device?

A bipolar transistor utilizes holes and electrons in the injection or charge flow process, while unipolar devices utilize either electrons or holes, but not both, in the charge flow process.

Q20. How must the two transistor junctions be biased for proper transistor amplifier operation?

Forward- and reverse-biased.

Q21. What is the source of the leakage current in a transistor?

The leakage current I_{co} is the minority carrier current in the collector.

Q22. Which of the transistor currents is always the largest? Which is always the smallest? Which two currents are relatively close in magnitude?

 I_E the largest I_B the smallest $I_C \cong I_E$

Q23. If the emitter current of a transistor is 8 mA and I_B is 1/100 of I_C , determine the levels of I_C and I_B . Solution

$$I_B = \frac{1}{100} I_C \Rightarrow I_C = 100 I_B$$

$$I_E = I_C + I_B = 100 I_B + I_B = 101 I_B$$

$$I_B = \frac{I_E}{101} = \frac{8 \text{ mA}}{101} = 79.21 \ \mu\text{A}$$

$$I_C = 100 I_B = 100 (79.21 \ \mu\text{A}) = 7.921 \ \text{mA}$$