

Frontiers of Statistics

Emerging applications

- Computer vision
- Recommender systems
- Predictive analytics
- Fraud and anomaly detection
- Risk assessment
- Social and government services

Where Do Data Come From?

Brady T. West

Different Types of Data

- Two key types of data:
 - Organic / Process Data
 - "Designed" Data Collection

Organic / Process Data

- Generated by computerized information system, or extracted from video / audio recordings
- Generated "organically" as the result of some process, often over time

Organic / Process Data

Examples

- Financial or Point-of-sale transactions/
 Stock market exchanges
- Netflix viewing history
- Web browser activity
- Sporting events
- Temperature/pollution sensors

Organic / Process Data

These processes generate massive quantities of data

→"Big Data"

- E.g., baseball games, meals ordered at McDonald's on a given day, changes in temperature on a given day in a particular city
- Processing requires significant computational resources;
 data scientists "mine" these data to study trends
 and uncover interesting relationships

"Designed" Data Collection

Designed to specifically address a stated research objective

- Individuals sampled from a population, interviewed about opinions on a particular topic
- Tweets extracted from Twitter and coded to analyze how often

 people are expressing opinions about a particular topic

"Designed" Data Collection

Common features of "designed" data

- Sampling from populations, administration of carefully designed questions
- Typically data sets much smaller compared to organic/process data sets
- Data collected for very specific reasons,
 rather than simple reflections of ongoing natural process

Will work with both types ~ more on sampling later in this course

Are the Data i.i.d.?

For analyzing data, regardless of source, an important question:

Q: Can the Data be considered i.i.d.?

i = independent and id = identically distributed

Observations on variable of interest are completely independent of all other observations (no correlation!) and arising from a common distribution

i.i.d. Data

- Example: Final exam scores
 from a large Intro to Stats class at a
 university are independent observations
 from a common normal distribution
- Can estimate features of that distribution
 (mean, variance, extreme percentiles), and make inference
 about those features with a certain amount of precision

What if Data are NOT i.i.d.?

Examples

- Students sitting next to each other tend to have similar scores
- Males and females might have different means
- Students from same discussion section may have similar scores

Dependencies and differences need to be accounted for in analysis!

→ Need different analytic procedures

Important Notes

- Need to Ask:
 Can we can apply procedures that assume i.i.d. data?
- Always consider where data came from!

Later in this course:

More on "designed" data collection and the i.i.d. idea!