Analysis II

Ferrulli Massimiliano

25 febbraio 2024

Indice

	The vector space \mathbb{R}^n		
	1.1	Operations	2
	1.2	Euclidean Norm on \mathbb{R}^n	2
	1.3	Topology on \mathbb{R}^n	3
	1.4	Convergence of sequences in \mathbb{R}^n	5
	1.5	Paths and Path-Connected Sets	7
2 Al	Alle	gati	8
	2.1	Dimostrazione 1	8

1 The vector space \mathbb{R}^n

1.1 Operations

Addition and scalar multiplications are defined as follows:

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$
$$\lambda \mathbf{x} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$$
$$\lambda \mathbf{x} + \mathbf{y} = \lambda \mathbf{x} + \lambda \mathbf{y}$$

Scalar product, $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, in the vector space \mathbb{R}^n is defined as:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k y_k = \mathbf{x}^{\mathsf{T}} \mathbf{y} = (x_1 \cdots x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

The scalar product satisfies the following properties:

- 1. Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0 \,\forall x \text{ with } \langle \mathbf{x}, \mathbf{x} \rangle = 0 \stackrel{\text{iff}}{\longleftrightarrow} x = 0$
- 2. Simmetry: $\langle x, y \rangle = \langle y, x \rangle$
- 3. Bilinearity: $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \ \forall x, y, z \in \mathbb{R}^n \ \text{and} \ \forall \alpha, \beta \in \mathbb{R}$

1.2 Euclidean Norm on \mathbb{R}^n

The function $\|\cdot\|_2 : \mathbb{R}^n \to \mathbb{R}$ is defined by

$$\|x\|_2 = \sqrt{\langle x, x \rangle} = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}$$

The Euclidean norm on \mathbb{R}^n has the following properties:

- 1. Non-negativity: $\|\mathbf{x}\|_2 \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$, with eequality $\stackrel{\text{iff}}{\longleftrightarrow} \mathbf{x} = \mathbf{0}$.
- 2. Homogeneity: $\|\lambda \cdot \mathbf{x}\|_2 = |\lambda| \cdot \|\mathbf{x}\|_2$ for all $\lambda \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^n$
- 3. Triangle inequality: $\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2 \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (also called Cauchy Schwartz inequality)

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$
 (Angle Formula)

if x and y are orthogonal then:

$$||x + y||_2^2 = ||x||_2^2 + ||y||_2^2$$
 (Pythagoras)

Definition:

The Euclidean distance on \mathbb{R}^n is the function $d(.,.): \mathbb{R}^n \times \mathbb{R}^n \to [0,\infty)$ given by:

$$d(\mathbf{x}, \mathbf{y}) := \|x - y\|_2 = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

This function outputs the distance between two points in \mathbb{R}^n and it satisfies the following 3 properties:

- 1. Non-negativity: $d(\mathbf{x}, \mathbf{y}) \ge 0$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with equality $\stackrel{\text{iff}}{\longleftrightarrow} \mathbf{x} = \mathbf{y}$.
- 2. Symmetry: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- 3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$.

1.3 Topology on \mathbb{R}^n

Definition: Open Ball

Let $\mathbf{a} \in \mathbb{R}^n$ and r > 0. The set

$$B(a, r) = \{x \in \mathbb{R}^n : d(x, a) < r\}$$

is called the open ball of radius r centered at \boldsymbol{a} .

If and are two distinct points then: if $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{x} \neq \mathbf{y}$ then we can find a sufficiently small open ball centered in \mathbf{x} and another centered in \mathbf{y} such that the two balls don't touch. Open balls are open sets¹

Definition: Open set

A subset $U \subseteq \mathbb{R}^n$ is open if $\forall \mathbf{x} \in U \exists \varepsilon > 0$: the open ball $B(x, \varepsilon)$ is contained in U.

Example of an open set:

1. if a < b are real numbers then the interval

$$(a, b) = \{x \in \mathbb{R} : a < x < b\}$$

is an open set.

Proof: take $r = min\{x - a, b - x\}$ (both a and b are strictly positive), the minimum is positive and the ball $B(x, r) = \{y \in \mathbb{R} : |x - y| < r\}$ is a subset of (a, b). As \mathbf{x} is arbitrary, that works $\forall \mathbf{x} \in (a, b)$ and so it satisfies the definition of an open set.

2. The infinite interval (a, ∞) and $(-\infty, b)$ are also open but the intervals

$$(a, b] = \{x \in \mathbb{R} : a < x \le b\}$$
 and $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$

 $^{^{1}}$ An open set is a set with the property that if \mathbf{x} is a point in the set then all points that are sufficiently near to it also belong to the set.

are not open sets.

3. the rectangle $(a, b) \times (c, d) = \{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$ is an open set.

Definition: Closed Set

A subset $C \subseteq \mathbb{R}^n$ is closed if its complement \mathbb{R}^n C is open.

<u>Convention:</u> The empty set and the space \mathbb{R}^n are the only two spaces both open and closed at the same time.

Definition: Closed Ball

Let $\mathbf{a} \in \mathbb{R}^n$ and r > 0. The set

$$\overline{B(\mathbf{a},r)} = {\mathbf{x} \in \mathbb{R}^n : d(\mathbf{x},\mathbf{a}) \le r}$$

is called the closed ball of radius r centered at a and it is a closed set. Example of a closed set:

- 1. The closed interval $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ is a closed set and its complementary $\mathbb{R}[a,b] = (-\infty,a) \cup (b,\infty)$ is an open set.
- 2. Infinite intervals with closed boundary $[a, \infty)$ and $(-\infty, b]$ are closed sets.
- 3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
- 4. Any set consisting of only finitely many points is a closed set.

Propositions:

- \cdot if $U \subseteq \mathbb{R}^n$ is open and $C \subseteq \mathbb{R}^n$ is closed then $U \subset \mathbb{R}^n$ is open. (Open Closed = Open)
- \cdot if $U \subseteq \mathbb{R}^n$ is closed and $C \subseteq \mathbb{R}^n$ is open then U C is closed. (Closed Open = Closed.)
- \cdot if $U_1, \dots U_k \subseteq \mathbb{R}^n$ are open then $U_1 \cup \dots \cup U_k$ and $U_1 \cap \dots \cap U_k$ are open.
- \cdot if $C_1, \dots C_k \subseteq \mathbb{R}^n$ are open then $C_1 \cup \dots \cup C_k$ and $C_1 \cap \dots \cap C_k$ are closed².

Definition: Let S be a subset of \mathbb{R}^n and **x** a point in \mathbb{R}^n

- · We call **x** an interior point of S if $\exists r > 0$: the ball B(x, r) is contained in S.
- · We call **x** an exterior point of S if $\exists r > 0$: the ball B(x, r) has empty intersection with S
- · We call \mathbf{x} an boundary point of S if $\exists r > 0$: the ball B(x,r) if it is neither an interior point neither an exterior point. \mathbf{x} is a boundary point if $\forall r > 0$ the ball B(x,r) has non empty intersection with S without being entirely contained in S.

(a) Schematic for the 3 types of points

²intersezione e unione di sottoinsiemi chiusi (rispettivamente aperti) danno un sottoinsieme ancora chiuso (rispettivamente aperto).

Definition: Interior

The set of all interior points of a set S is called the interior of S and it is denoted by $\mathring{\mathbf{S}}$ and it's the largest open set contained inside of S

Definition: Boundary

The set of all boundary points of a set S is called the boundary of S and we use ∂S to denote it Definition: Closure

The closure of S is denoted by \overline{S} and it's the set of points $\mathbf{x} \in \mathbb{R}^n$ with the property that $\forall r > 0$, $B(x,r) \cap S \neq \emptyset$. The closure of S is the union of all its interior points and boundary points. \mathring{S} is the smallest closed set that contains S.

$$\mathring{S} \subseteq \overline{S} \subseteq S$$

$$\mathring{S} = S \cap \partial S \qquad \overline{S} = S \cup \partial S \qquad \partial S = \overline{S} \cap \mathring{S}$$

(a) Schematic for the 3 types of points

Corollary:

- · A set S is open $\stackrel{\text{iff}}{\longleftrightarrow} S = \mathring{S}$
- · A set S is closed $\stackrel{\text{iff}}{\longleftrightarrow} S = \overline{S}$

Examples:

1.4 Convergence of sequences in \mathbb{R}^n

<u>Definition:</u> sequences in \mathbb{R}^n

A sequence of elements of \mathbb{R}^n is a function $k\mapsto k$ that associates to every $k\in\mathbb{N}$ an element $\mathbf{x}_i\in\mathbb{R}^n$

<u>Convention:</u> We denote $(k)_{k \in \mathbb{N}}$ a sequence in \mathbb{R}^n and we can consider each coordinate as an individual sequence.

$$(\mathbf{x}_k)_{k\in\mathbb{N}} = \begin{pmatrix} (x_{1,k})_{k\in\mathbb{N}} \\ \vdots \\ (x_{n,k})_{k\in\mathbb{N}} \end{pmatrix}$$

<u>Definition:</u> Convergent sequence

A sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ of points in \mathbb{R}^n converges to a point $\mathbf{x} \in \mathbb{R}^n$ if $\forall \varepsilon > 0 \exists N > 1$: when $k \ge N$, then $d(\mathbf{x}_k, \mathbf{x}) < \varepsilon$.

<u>Convention:</u> We call **x** the limit of $(\mathbf{x}_k)_{k \in \mathbb{N}}$ and write:

$$\lim_{k\to\infty}\mathbf{x}_k=\mathbf{x}$$

- · If the limit exists, then it's unique.
- · A sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ converges to $\mathbf{x} \stackrel{\text{iff}}{\longleftrightarrow}$ the distance $d(\mathbf{x}_k, \mathbf{x})$ converges to 0.

$$\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x} \longleftrightarrow \lim_{k \to \infty} d(\mathbf{x}_k, \mathbf{x}) = 0$$

· A sequence converges to $\mathbf{x} \overset{\text{iff}}{\longleftrightarrow}$ each coordinate of $(\mathbf{x}_k)_{k \in \mathbb{N}}$ converges to the respective coordinate of \mathbf{x}

$$(\mathbf{x}_{k})_{k \in \mathbb{N}} = \begin{pmatrix} (x_{1,k})_{k \in \mathbb{N}} \\ \vdots \\ (x_{n,k})_{k \in \mathbb{N}} \end{pmatrix} \quad \text{and} \quad \mathbf{x} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$\lim_{k \to +\infty} \mathbf{x}_{k} = \mathbf{x} \iff \lim_{k \to +\infty} x_{i,k} = x_{i} \quad \forall i = 1, \dots, n$$

Theorem: Vector space arithmetic of limits of sequences

Let $(\mathbf{x}_k)_{k\in\mathbb{N}}$ and $(\mathbf{y}_k)_{k\in\mathbb{N}}$ be sequences in \mathbb{R}^n and let $(\lambda_k)_{k\in\mathbb{R}}$ be a sequence in \mathbb{R} . (i) If $(\mathbf{x}_k)_{k\in\mathbb{N}}$ and $(\mathbf{y}_k)_{k\in\mathbb{N}}$ both converge then so does $(\mathbf{x}_k + \mathbf{y}_k)_{k\in\mathbb{N}}$ and

$$\lim_{k \to +\infty} \mathbf{x}_k + \mathbf{y}_k = \lim_{k \to +\infty} \mathbf{x}_k + \lim_{k \to +\infty} \mathbf{y}_k.$$

(ii) If $(\mathbf{x}_k)_{k\in\mathbb{N}}$ and $(\lambda_k)_{k\in\mathbb{N}}$ both converge then so does $(\lambda_k \mathbf{x}_k)_{k\in\mathbb{N}}$ and

$$\lim_{k \to +\infty} \lambda_k \mathbf{x}_k = \left(\lim_{k \to +\infty} \lambda_k\right) \cdot \left(\lim_{k \to +\infty} \mathbf{y}_k\right).$$

(iii) If $(\mathbf{x}_k)_{k\in\mathbb{N}}$ and $(\mathbf{y}_k)_{k\in\mathbb{N}}$ both converge then so does $(\langle \mathbf{x}_k, \mathbf{y}_k \rangle)_{k\in\mathbb{N}}$ and

$$\lim_{k \to +\infty} \langle \mathbf{x}_k, \mathbf{y}_k \rangle = \left\langle \lim_{k \to +\infty} \mathbf{x}_k, \lim_{k \to +\infty} \mathbf{y}_k \right\rangle$$

Definition: Cauchy sequences

A sequence $(\mathbf{x}_k)_{k \in \mathbb{N}}$ is a Cauchy sequence if $\forall \varepsilon > 0 \exists N > 1$: $k, l \ge N$ implies $d(\mathbf{x}_k, \mathbf{x}_l) < \varepsilon$ and so it means that evey Cauchy sequence is a convergent sequence and viceversa.

<u>Proposition:</u> Let $S \subseteq \mathbb{R}^n$ be a non empty set and suppose $\mathbf{x} \in \partial S$ (Boundary set), then \exists a sequence of elements $\in S$, $\mathbf{x}_1, \mathbf{x}_2 \cdots \in S$,:

$$\lim_{k\to\infty}\mathbf{x}_k=\mathbf{x}$$

Proposition:

Let $C \subseteq \mathbb{R}^n$ be a closed set and let $(\mathbf{x}_k)_{k \in \mathbb{N}}$ be a sequence of elements in C. if $(\mathbf{x}_k)_{k \in \mathbb{N}}$ converges then the limit $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}$ must belong to C.

Definition: Bounded set

A subset $E \subseteq \mathbb{R}^n$ is bounded if it is contained in a ball of finite radius centered at the origin:

$$E \subseteq B(0, r)$$
 for some $R < \infty$

A closed set don't need to be bounded, $[0,\infty)$ by convention is closed but not bounded.

Definition: Compact set:

A subset $C \subseteq \mathbb{R}^n$ is compact if it is closed and bounded.

Definition: Subsequence

A subsequence $(\mathbf{x}_k)_{k \in \mathbb{R}}$ is any sequence of the form $(\mathbf{x}_{k_i})_{i \in \mathbb{R}}$ where $(k_i)_{i \in \mathbb{R}}$ is a strictly increasing sequence of positive integers.

If a sequence converges then any subsequence of it converges to the same limit.

Theorem: Bolzano-Weierstrass theorem in \mathbb{R}^n

Let $C \subseteq \mathbb{R}^n$ be compact. Any sequence $(\mathbf{x}_k)_{k \in \mathbb{R}}$ of elements in C possesses a convergent subsequence $(\mathbf{x}_{k_i})_{i \in \mathbb{R}}$ whose limit is in C.

<u>Definition</u>: Bounded sequence in \mathbb{R}^n

A sequence $(\mathbf{x}_k)_{k \in \mathbb{R}}$ is bounded if $\exists C > 0 : \|\mathbf{x}_k\|_2 \le C \ \forall k \in \mathbb{N}$ (C a constant).

Every convergent sequence is bounded but non viceversa, for example $x_k = (-1)^k$ is bounded but not convergent.

Corollary (Consequence of the previous definition and bolzano-Weierstrass theorem)

Each bounded sequence $(\mathbf{x}_k)_{k \in \mathbb{R}}$ in \mathbb{R}^n has a convergent susbequence $(\mathbf{x}_{k_i})_{i \in \mathbb{R}}$

1.5 Paths and Path-Connected Sets

Definition: Path

Let $I \subseteq \mathbb{R}^n$ be an interval. A path (or curve) in \mathbb{R}^n is a function $f: I \to \mathbb{R}^n$ with:

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

where $f_i:I\to\mathbb{R}$ is continuos $\forall i=1,\cdots,n$. A path is a vector with every component as a continuos function from an interval I to \mathbb{R}

Definition: Path connected sets

Let $E \subseteq \mathbb{R}^n$. We say E is <u>path-connected</u> if $\forall \mathbf{x}, \mathbf{y} \in E \exists$ a path $f : [0,1] \to E$ with $f(0) = \mathbf{x}$ and $f(1) = \mathbf{y}$.

 $f: [0,1] \to E$ means that $Im(f) \subseteq E$.

2 Allegati

2.1 Dimostrazione 1