ME 5107: Numerical Methods in Thermal Engineering

Instructor

- Dr. Pallab Sinha Mahapatra (Batch I)
 # FF4, Fluid Systems Laboratory
 pallab@iitm.ac.in
- Dr. Krithika Narayanaswamy (Batch II)
 # 203, Thermodynamics and Combustion Engineering Lab krithika@iitm.ac.in

General information

- Batchwise roll list is here
- 10 credit course
- 2 lecture hours per week: 'C' slot
 - Mondays 10-10:50 AM
 - Fridays 12–12:50 PM
 - Venue: CRC 203 (Batch I), CRC 204 (Batch II)
- 1 lab hour per week
 - Monday 2-5 PM (Batch I), Wednesday 2-5 PM (Batch II)
 - Venue: HPCF-B
- Announcements via google groups: (nmte_2023-group@smail.iitm.ac.in)
- In case you are not added to the group already, you can find the group when you login via smail. Search for "NMTE_2023" or "nmte_2023-group@smail.iitm.ac.in". Click on it and request to be added to the group.

Learning Outcomes

- Implement solution procedures for solving linear and non-linear algebraic equations, ordinary differential equations (ODEs), and partial differential equations (PDEs) on a computer.
- Acquire working knowledge of computational complexity, accuracy, stability, and errors in solution procedures.

Syllabus

- 1. Solution to Linear Algebraic Equations
 - (a) Gaussian elimination
 - (b) LU decomposition
 - (c) Pivoting strategies
 - (d) Operation Count
 - (e) Matrix inversion
 - (f) Special cases
 - i. Tridiagonal systems
 - ii. Block tridiagonal systems
 - (g) Well conditioned and Ill conditioned system
 - (h) Matrix and Vector norms
 - (i) Condition Number and its implications
- 2. Solution to Non-linear Algebraic Equations
 - (a) Bisection, Newton-Raphson, and Secant method
 - (b) System of non-linear equations
- 3. Basics of finite difference method
 - (a) Discretization of spatial and time derivatives using Taylor's series
 - (b) Truncation error and order of discretization
 - (c) Fourier (von Neumann) accuracy analysis
- 4. Solution to Ordinary Differential Equations
 - (a) Initial Value problems
 - i. Euler explicit and implicit methods
 - ii. Runge-Kutta method
 - iii. Predictor-Corrector methods
 - (b) Boundary value problem
 - i. Shooting method
 - ii. Direct method
 - (c) Stiff problems
- 5. Solution to Partial Differential Equations
 - (a) Classification of PDEs and characteristics of a PDE
 - (b) Solution to Elliptic Partial Differential Equations
 - i. Physical problems governed by elliptic PDE's
 - ii. Five-point and nine-point discretization of Poisson's equation
 - iii. Iterative methods
 - A. Point Iterative methods Jacobi, Gauss-Seidel, and SOR
 - B. Detailed theory of the convergence of iterative methods
 - C. Global Iterative methods Steepest Descent and Conjugate Gradient (if time permits)
 - (c) Solution to Parabolic Partial Differential Equations (if time permits)
 - i. Physical problems governed by parabolic PDE's
 - ii. Operator splitting and ADI methods

Suggested Textbooks

- Matrix Computations G. H. Golub, Johns Hopkins University Press
- Numerical Recipes W. H. Press et al.
- Numerical Solution of Partial Differential Equations: Finite Difference Methods G. D. Smith, Oxford University Press, (1985)
- Engineering numerical analysis Parviz Moin (2nd edition, 2010), Cambridge University Press.
- ullet Introduction to Numerical Analysis Kendall Atkinson
- Numerical methods for scientists and engineers J. Hoffman and S. Frankel, CRC Press
- Numerical Mathematics and Computing W. Cheney and D. Kincaid, International Thomson Publishing Company
- Applied Numerical Analysis C. Gerald and P. Wheatley, Addison-Wesley
- Analysis of Numerical Methods E. Isaacson and H. B. Keller, John Wiley & Sons

Pre-requisites

- Knowledge of Engineering Mathematics
 - Basics of matrix algebra
 - Basics of ODEs and PDEs
- Familiarity with C++
- No consent of teacher required

Grading Policy

- Assignments -20%
 - Theoretical
 - Computational
- Quiz 1 Theory 15%
- Quiz 2 Theory 15%
- Final exam
 - Theoretical 40%
 - Computational 10%
- Attendance as per Institute norm