

SRM Institute of Science and Technology College of Engineering and Technology

SET-B

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu.

Academic Year: 2022-2023 (ODD)

Test: CLAT-3 Date: 19/11/22

Course Code & Title: 18ECC204J-Digital Signal Processing Duration: 10:00-11:40 AM

Max. Marks: 50 Year & Sem: III /V

Cours	Course Articulation Matrix: (to be placed)															
	18ECC204J – Digital															
	Signal Processing	Gr	Graduate Attributes							PSO						
S.	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
No.	(COs)															
1	Summarize the	3	-	-	1	-	-	-	-	-	-	-	-	-	-	2
	concepts of A//D and															
	D/A converters.															
2	Explain the concepts	-	2	-	-	-	-	-	-	-	-	-	-	-	1	
	of DFT with its															
	efficient computation															
	by using FFT															
	algorithm.															
3	Develop FIR filters	† -	2	3	-	-	-	-	-	-	-	-	-	-	-	3
_	using several methods		_													_
4	Construct IIR filters	+		3					_	_			_	_	_	3
-	0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-		3	-	-	-	ļ -	-	-	-	· .	-	-	-	3
	using several methods															
5	Discuss the basics of	-	2	-	-	-	-	-	-	-	-	-	-	-	1	-
	multirate DSP and its															
	applications.															
6	Design digital filter	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-
	and multi rate signal															
	processing for real															
	time signals															
	unic signais															

	Part-A (5 x 10 marks= 50 Marks) Answer any 5								
Q. No	Question	Marks	BL	co	PO				
1	i) Design an analog Butterworth filter that satisfies the following constraints $0.9 \le H(j\Omega) \le 1; 0 \le \Omega \le 0.2\pi$ $ H(j\Omega) \le 0.2; 0.4\pi \le \Omega \le \pi$	9	3	4	3				
	ii) The magnitude response of Butterworth filter as the frequency increases.a) Remains constantb) Increases monotonically	1	1	4	1				

	c) Decreases monotonically				
	d) Increases exponentially				
2	i) Apply bilinear transformation to $H(s) =$				
_	1) Approximated transformation to $H(S) = \frac{2}{2}$ with T-1 see and find $H(T)$				
	$\frac{\frac{1}{2}}{(s+1)(s+2)}$ with T=1 sec and find $H(Z)$.	9	3	4	3
	''\ TDI				
	ii) The poles of Chebyshev filter lie on				
	a) Unit circle b) Ellipse				
	c) Parabola	1	1	4	1
	d) Hyperbola	1	_	-	_
	, , ,				
3	i) Determine the order and transfer function of	9	3	4	3
	the filter using Chebyshev approximation for				
	the following specifications. $\alpha_p = 3bB, \alpha_s = 16dB, f_p = 1KHz \text{ and } f_s$				
	$\omega_p = 3bb, \omega_s = 10ab, j_p = 1KHz \ and \ j_s$ $= 2KHz.$				
	- ZNIIZ.				_
	ii) The impulse invariance method is	1	1	4	1
	unsuccessful for implementing				
	a) Low pass filter				
	b) High pass filter				
	c) Band stop filter				
	d) Band pass filter			_	
4	i) Discuss the steps involved in converting	9	3	5	2
	sampling rate by a factor of I/D.				
	ii) If $x[n] = [1, 2, 3, 4]$ then $y[n]=x[n/2]$ will				
	be	1	1	_	1
	a) [1, 2]	1	1	5	1
	b) [1, 0, 2, 0, 3, 0, 4, 0]				
	c) [1, 2, 0, 0]				
	d) [1, 2, 3, 4, 0, 0, 0, 0]	_		_	_
5	i) Realize M-branch decimator using polyphase	9	3	6	2
	structure.				
	ii) A two-channel subband coding filter bank is	4	_		4
	also called as	1	1	6	1
	a) Quadrature-mirror filter bank				
	b) Analysis filter bank				
	c) Synthesis filter bank				
	d) Alias free filter bank				
6	i) Discuss two practical applications of	9	3	6	2
U	multirate DSP with suitable block diagram.	7	3	U	4
	manage 251 with salable block diagram.				
	ii) Anti-alias filter is to be kept	1	1	5	1
	a) before down sampler	1	1	3	1

	b) after down sampler				
	c) after up sampler				
	d) before up sampler				
7	i) Convert the single pole lowpass filter with	5	3	4	3
	system function $H(Z) = \frac{0.5(1+Z^{-1})}{1-0.302Z^{-2}}$ into				
	bandpass filter with upper and lower cutoff				
	frequencies ω_u and ω_l respectively. The				
	lowpass filter has 3 dB bandwidth $\omega_p = \frac{\pi}{6}$,	4	3	5	2
	$\omega_{\rm u} = \frac{3\pi}{4}$ and $\omega_{\rm l} = \frac{\pi}{4}$.	7	3	3	4
	ii) Show that the transpose of a factor-of-M				
	decimator is a factor-of-M interpolator if the				
	transpose of a factor-of-M downsampler is a				
	factor-of-M upsampler.	1	1	6	1
	iii) filter is used to remove the image spectrum that is introduced due to the addition				
	of zero samples between successive data				
	points.				
	a) Anti-aliasing				
	b) Band pass				
	c) Band stop				
	d) Anti-imaging				

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Name of the Student: Register No.:

	Part- A (5 x 10 mark = 50 Marks)								
Q. No	СО	PO	Maximum mark	Marks obtained	Total				
1 i)	4	3	9						
1 ii)	4	1	1						
2 i)	4	3	9						
2 ii)	4	1	1						
3 i)	4	3	9						
3 ii)	4	1	1						
4 i)	5	2	9						
4 ii)	5	1	1						
5 i)	6	2	9						
5 ii)	6	1	1						
6 i)	6	2	9						
6 ii)	5	1	1						
7 i)	4	3	5						
7 ii)	5	2	4						
7 iii)	6	1	1						

Consolidated Marks:

CO	Max.Marks	Marks Scored	PO	Max.Marks	Marks Scored
CO4	25		PO1	7	
CO5	10		PO2	31	
CO6	15		PO3	32	
Total	50		Total	70	

Signature of the Course Teacher

Signature of the Course Co-ordinator

Signature of the Academic Advisor

Evaluation Sheet