Statistical Computing with R Masters in Data Science 503 (S2) First Batch, SMS, TU, 2021

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Public Health Informatics

Patan Academy of Health Sciences, Lalitpur, Nepal

Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal

Faculty, FAIMER Fellowship in Health Professions Education, India/USA.

Unit 1: R Software for Basic Programming [7 hrs.]

- R software, Statistics, Big Data and Data Science.
- Downloading and installing R software in Windows, Linux and Unix systems.
- Variables, Data types, Vectors, Lists and Matrix in R. Factors, Data Frames and Dealing with missing values in R.
- Logical statements, Loops, Functions and Pipes in R. Coding and naming conventions in R.
- Reproducible Analysis: Markdown Language, YAML Language; R Markdown/knitr document in R IDE (RStudio).
- Profiling and optimizing codes/scripts in R.

Review Preview

• R installation

R Studio installation

• R console

R objects

• R functions

• R plots

Summary statistics

Frequencies

Multiple Response Frequencies

R Consoles:

R version 4.0.2 (2020-06-22) -- "Taking Off Again" Copyright (C) 2020 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[R.app GUI 1.72 (7847) x86_64-apple-darwin17.0]

[Workspace restored from /Users/mac/.RData] [History restored from /Users/mac/.Rapp.history]

mac — R — 80×24

Basic Mathematical Operations in R console: https://rstudio-education.github.io/hopr/basics.html

```
R Console
STOP
     unexpected input in "3 % 6"
```


Files	Plots Packages	Help Viewer			
O	nstall 📵 Update		Q		
	Name	Description		Version	
Syst	em Library				
	abind	Combine Multidimensional Arrays		1.4-5	● ⊗
	ade4	Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Science		1.7-16	● ⊗
	aplpack	Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others			● ❷
	arm	Data Analysis Using Regression and Multilevel/Hierarchical Models		1.11-2	₩ ⊗
	askpass	Safe Password Entry for R, Git, and SSH	1.1	● ❷	
	assertthat	Easy Pre and Post Assertions	0.2.1	● ❷	
	aweek	Convert Dates to Arbitrary Week Definitions		1.0.2	● ❷
	backports Reimplementations of Functions Introduced Since R-3.0.0		1.2.1	● ⊗	
✓	base	The R Base Package		4.0.2	
	base64enc	Tools for base64 encoding		0.1-3	● ❷
	ВН	Boost C++ Header Files		1.72.0-3	● 🛇
	bit	Classes and Methods for Fast Memory–Effici Boolean Selections	ent	4.0.4	● ❷
	bit64	A S3 Class for Vectors of 64bit Integers		4.0.5	₩ 😵

Mathematical operator in R Studio:

R objects:

- Arrays: x and y defined in session 1, can be of any dimension
- Matrices: cbind of x and y (try it on your own and get class)
- Lists: Array with Strings, Integers, Numbers, Matrices, Boolean etc.)
- Data frame (data.frame to work with up to 1-2 gb data)
- Data table (data.table to work with more than 2 gb data)

Can we "transform" to make it "linear"?

- Yes, we can!
- We can log transform the y and x variables and check it again
- Let us define z as log(y) in r as follows:
- df\$z <- log(df\$y)
- Let us plot the scatterplot again as:
- plot(df\$x, df\$z)
- How does the graph look now?

Scatterplot of x and log(y)

Exercise1: Scatterplot of log(x) and log(y)

Summary statistics of z variable:

- > summary(z)
- Min. 1st Qu. Median Mean 3rd Qu. Max.
- 1.000 2.750 3.000 3.407 4.000 7.000

What is "O" shown in the box and whisker plot? Why is it important in the statistical analysis?

Factors and attributes in R:

• Factor is used to create and store categorical variable in R like Gender (Male/Female), Blood group (A, B, AB, O) and Blood Rh factor (Positive/Negative) etc.

- > gender <- factor(c("male", "female", "female", "male")
- > typeof(gender) #datatype
- > attributes(gender) #Levels and class
- > unclass(gender) #Check how it is stored in R

```
gender <- factor(c("male", "female", "female", "male"))</pre>
typeof (gender)
## "integer"
attributes(gender)
## $levels
## [1] "female" "male"
##
## $class
## [1] "factor"
```

You can see exactly how R is storing your factor with unclass:

```
unclass(gender)
## [1] 2 1 1 2
## attr(,"levels")
## [1] "female" "male" https://rstudio-education.github.io/hopr/r-objects.html#attributes
```

Functions in R: Built-in functions

- round()
 - round(3.1415)
 - 3
- factorial()
 - factorial(3)
 - 6
 - $3! = 3 \times 2 \times 1$
- mean()
 - mean(1:6)
 - =(1+2+3+4+5+6)/6=3.5

```
round()
round(3.1415, digits = 2)
3.14
```

```
die <- 1:6
sample(x = die, size = 1)
sample(x = die, size = 2)
sample(x = die, size = 2, replace = TRUE)</pre>
```

mean(die)
mean(round(die))

User-defined function:

- my_function <- function() {}
- Where,
- my_function = name of the function e.g. roll (roll the die)

• function() = telling R that it is a user-defined function

- { = We need to start our code after this braces
- } = We need to close our codes before this braces

User-defined function: roll()

```
roll <- function() {
        die <- 1:6
        dice <- sample(die, size = 2, replace = TRUE)
        sum(dice)
}</pre>
```

First roll: roll()

Second roll: roll()

Third roll: roll()

User-defined function: roll2()

```
roll2 <- function(dice = 1:6) {
    dice <- sample(dice, size = 2, replace = TRUE)
    sum(dice)
}</pre>
```

First roll: roll2()

Second roll: roll2()

Third roll: roll2()

User-defined function: roll3(dice = ?:?)

```
roll3 <- function(dice) {
         dice <- sample(dice, size = 2, replace = TRUE)
         sum(dice)
}</pre>
```

First roll: roll3(dice = 1:6)

Second roll: roll3(dice = 1:12)

Third roll: roll3(dice = 1:24)

Questions/queries?

Import "covnep_252days.csv" data in R Studio: I recommend the "readr" package

Then get this chart in R Studio:

Cumulative COVID-19 cases in Nepal: First 252 days since onset at 23/01/2021

Then get summary of "totalCases" variable:

> summary(covnep_252days\$totalCases)

•	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
•	0	2	963	13376	19340	77816

What is the problem with this result?

The minimum value can't be 0 as first case was detected on 23 Jan 2020 (first case in the data) so the minimum cumulative case must be 1. What to do now?

Then get this chart in R Studio:

Histogram of covnep_252days\$newCases

Then get summary of "newCases" variable and interpret the result carefully:

> summary(covnep_252days\$newCases)

Import "SAQ8.sav" data in R Studio and get frequencies of q01, q03, q06 & q08 variables:

Statistics makes me cry						
		Frequen		Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	270	10.5	10.5	10.5	
	Agree	1338	52.0	52.0	62.5	
	Neither	735	28.6	28.6	91.1	
	Disagree	187	7.3	7.3	98.4	
	Strongly disagree	41	1.6	1.6	100.0	
	Total	2571	100.0	100.0		

Standard deviations excite me						
		Frequen		Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	497	19.3	19.3	19.3	
	Agree	672	26.1	26.1	45.5	
	Neither	878	34.2	34.2	79.6	
	Disagree	448	17.4	17.4	97.0	
	Strongly disagree	76	3.0	3.0	100.0	
	Total	2571	100.0	100.0		

I have little experience of computers					
		Frequen		Valid	Cumulative
		су	Percent	Percent	Percent
Valid	Strongly agree	702	27.3	27.3	27.3
	Agree	1127	43.8	43.8	71.1
	Neither	344	13.4	13.4	84.5
	Disagree	252	9.8	9.8	94.3
	Strongly disagree	146	5.7	5.7	100.0
	Total	2571	100.0	100.0	

I have never been good at mathematics						
		Frequen		Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	383	14.9	14.9	14.9	
	Agree	1487	57.8	57.8	72.7	
	Neither	482	18.7	18.7	91.5	
	Disagree	147	5.7	5.7	97.2	
	Strongly disagree	72	2.8	2.8	100.0	
	Total	2571	100.0	100.0		

Hint: Base R does not have any function for it! You can write your own function?

'count' function included in the 'plyr' package is very helpful

• install.packages("plyr") #Install the 'plyr' package

• library(plyr) #Load the 'plyr' package

• count(SAQ8, 'q01') #It will give you the frequencies

How to get percentage? #Individual assignment

Import "MR_drugs.xls" file in R Studio and get the following table: MR variables are binary!

\$Income Frequencies							
		Re					
		N	Percent	Percent of Cases			
Income - Multiple Response ^a	inco1	226	12.8%	23.5%			
1.03601.30	inco2	607	34.5%	63.0%			
	inco3	293	16.6%	30.4%			
	inco4	50	2.8%	5.2%			
	inco5	82	4.7%	8.5%			
	inco6	151	8.6%	15.7%			
	inco7	352	20.0%	36.6%			
Total		1761	100.0%	182.9%			
a. Dichotomy group tabulated at value 1.							

Question/queries?

Thank you!

@shitalbhandary