На правах рукописи

# Банкевич Сергей Викторович

# О монотонности интегральных функционалов при перестановках

Специальность 01.01.02— «Дифференциальные уравнения, динамические системы и оптимальное управление»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук, профессор Назаров Александр Ильич

## Оглавление

|       | C                                                             | Стр. |
|-------|---------------------------------------------------------------|------|
| Введе | ние                                                           | 4    |
| Глава | 0. Факты, используемые в диссертации и приводимые             |      |
|       | без доказательств                                             | 8    |
| 0.1   | Свойства меры и функций                                       | 8    |
| 0.2   | Перестановки                                                  | 9    |
| Глава | 1. О неравенстве Пойа-Сегё с весом для монотонной             |      |
|       | перестановки в случае ограниченного роста                     |      |
|       | интегранта по производной                                     | 11   |
| 1.1   | Обозначения                                                   | 11   |
| 1.2   | Условия, необходимые для выполнения неравенства (1.2)         | 12   |
| 1.3   | Доказательство неравенства (1.2) для кусочно линейных функций | 15   |
| 1.4   | О расширении класса функций, для которых выполняется          |      |
|       | неравенство $(1.2)$                                           | 18   |
| 1.5   | Переход к соболевским функциям                                | 22   |
| Глава | 2. О неравенстве Пойа-Сегё для монотонной                     |      |
|       | перестановки и симметризации в общем случае при               |      |
|       | n=1                                                           | 25   |
| 2.1   | Обозначения                                                   | 25   |
| 2.2   | Доказательство неравенства (1.2) для кусочно монотонных весов | 25   |
| 2.3   | Свойства весовой функции                                      | 29   |
| 2.4   | Доказательство неравенства (1.2) для произвольных весов       | 31   |
| 2.5   | Доказательство неравенства (1.2) для функций, закреплённых    |      |
|       | на левом конце                                                | 38   |
| 2.6   | Условия, необходимые для выполнения неравенства (2.1)         | 39   |
| 2.7   | Доказательство неравенства (2.1)                              | 41   |
| Глава | 3. Монотонность функционалов с переменным                     |      |
|       | показателем суммирования                                      | 42   |

|                                                                                | C | Тр |
|--------------------------------------------------------------------------------|---|----|
| 3.1 Обозначения                                                                |   | 42 |
| 3.2 Необходимые условия                                                        |   | 42 |
| 3.3 Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$     |   | 45 |
| 3.4 Некоторые достаточные условия                                              |   | 48 |
| 3.5 Численные оценки функции $B(w,q)$                                          |   | 49 |
| 3.6 Многомерный аналог неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ |   | 54 |
| Список литературы                                                              |   | 55 |

#### Введение

Перестановки играют значимую роль в вариационном исчислении. Впервые симметричная перестановка (симметризация) была введена Штейнером в 1836 году. Штейнер работал над доказательством изопериметрического неравенства (задачей Дидоны) о максимальной площади плоской фигуры с фиксированным периметром. Штейнер доказал ([1]), что если максимум существует, он достигается на круге. Только в 1879 году Вейерштрасс доказал существование максимума методами вариационного исчисления.

Примерно во время появления доказательства в своей книге [Rayleigh] лорд Рэлей сформулировал гипотезу о том, что максимум первого собственного числа задачи Дирихле для оператора Лапласа достигается на окружности (а точнее, предположил, что выполняется некоторая оценка первого собственного числа через меру области). Независимо Фабером (в 1923) и Краном (в 1925) эта оценка была доказана и получила в дальнейшем название неравенства Крана-Фабера. Также в [Rayleigh] была сформулирована гипотеза о минимальном собственном числе задачи о закреплённой пластине, которая была доказана лишь в 1995 года Надирашвили [Nadirashvili].

Впоследствии изучение подобных неравенств начало набирать обороты и в 1951 году привело в выходу классического труда Пойа и Сегё "Изопериметрические неравенства в математической физике" (оригинал - [PS\_book]). В книге приведено и доказано множество соотношений между различными геометрическими и физическими характеристиками областей, такими как уже упомянутые периметр, площадь, основная частота мембраны, основная частота закреплённой пластины, а также моментом инерции, жёсткостью кручения, ёмкостью и другими. Эти соотношения позволяют не только сформулировать утверждения относительно наиболее выгодных форм области с точки зрения разнообразных величин, но и оценить сложные для вычисления величины через те, которые получить просто.

В частности, в книге [PS\_book] доказано так называемое неравенство Пойа-Сегё, состоящее в следующем. Пусть функция  $u \in W^p_1(\mathbb{R}^n)$ , тогда выполнено неравенство

$$\int_{-1}^{1} |\nabla u^{*}(x)|^{p} dx \leqslant \int_{-1}^{1} |\nabla u(x)|^{p} dx,$$

где  $u^*$  — симметричная перестановка функции u. И даже более общее утверждение: для  $u\geqslant 0$  и для любой выпуклой  $F:\mathbb{R}_+\to\mathbb{R}_+$  (здесь и далее  $\mathbb{R}_+=[0,\infty)$ ),  $F\geqslant 0,\ F(0)=0$  выполнено

$$\int_{-1}^{1} F(\nabla u^*(x)) dx \leqslant \int_{-1}^{1} F(\nabla u(x)) dx.$$

Ещё истории про обобщение неравенства. Добавление зависимости от u.

В работе [2] это неравенство обобщается на интегранты с весом при производной. Однако, к сожалению, доказательство в этой работе неполно.

Схема доказательства.

Эффект Лаврентьева.

В первой главе мы изучаем неравенство, аналогичное неравенству из [2], с монотонной перестановкой вместо симметризации.

#### Добавить про закреплённые

Пусть  $\Omega = \omega \times (-1,1)$ , где  $\omega$  — ограниченная область в  $\mathbb{R}^{n-1}$  с липшицевой границей. Обозначим  $x = (x_1, \dots, x_{n-1}, y) = (x', y)$ .

Определим множество  $\mathfrak{F}$  непрерывных функций  $F: \overline{\omega} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+,$  выпуклых и строго возрастающих по третьему аргументу, удовлетворяющих  $F(\cdot,\cdot,0) \equiv 0.$ 

Рассмотрим функционал:

$$J(u) = \int_{\Omega} F(x', u(x), ||\mathcal{D}u||) dx,$$

где  $F \in \mathfrak{F}, \|\cdot\|$  — некоторая норма в  $\mathbb{R}^n$ , симметричная по последней координате,

$$\mathcal{D}u = (a_1(x', u(x))D_1u, \dots, a_{n-1}(x', u(x))D_{n-1}u, a(x, u(x))D_nu)$$

— градиент u с весом (обратите внимание, что только вес при  $D_n u$  зависит от y),  $a(\cdot,\cdot): \overline{\Omega} \times \mathbb{R}_+ \to \mathbb{R}_+$  и  $a_i(\cdot,\cdot): \overline{\omega} \times \mathbb{R}_+ \to \mathbb{R}_+$  — непрерывные функции. Здесь и далее индекс i пробегает от 1 до n-1.

Мы изучаем неравенство

$$J(\overline{u}) \leqslant J(u) \tag{1}$$

В §1.2 мы устанавливаем условия, необходимые для выполнения неравенства (1):

- **Теорема 1.** 1. Если неравенство (1.2) выполняется для некоторой  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес а чётен по y, то есть  $a(x',y,v) \equiv a(x',-y,v)$ .
- ii) Если неравенство (1.2) выполняется для произвольной  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес а удовлетворяет неравенству

$$a(x', s, v) + a(x', t, v) \geqslant a(x', 1 - t + s, v), \qquad x' \in \overline{\omega}, -1 \leqslant s \leqslant t \leqslant 1, v \in \mathbb{R}_+. \tag{2}$$

В §1.3 мы доказываем неравенство (1) для кусочно линейных u:

- **Лемма 1.** Пусть функция  $a(x', \cdot, u)$  чётна и удовлетворяет условию (1.3). Тогда, если u неотрицательная кусочно линейная функция, то  $J(u) \geqslant J(\overline{u})$ .
- В  $\S 1.4$  мы устанавливаем слабую полунепрерывность функционала J и оформляем в виде теоремы рассуждения, которые будем использовать для предельного перехода:
- **Теорема 2.** Пусть  $B \subset A \subset W_1^1(\overline{\Omega})$ . Предположим, что для каждого  $u \in A$  найдётся последовательность  $u_k \in B$  такая, что  $u_k \to u$  в  $W_1^1(\overline{\Omega})$  и  $J(u_k) \to J(u)$ . Тогда
- і) Если для любой функции  $v \in B$  выполнено  $J(v^*) \leqslant J(v)$ , то для любой функции  $u \in A$  будет выполнено  $J(u^*) \leqslant J(u)$ .
- іі) Если для любой функции  $v \in B$  выполнено  $J(\overline{v}) \leqslant J(v)$ , то для любой функции  $u \in A$  будет выполнено  $J(\overline{u}) \leqslant J(u)$ .
- В §1.5 неравенство (1) доказывается для интегрантов с ограниченным ростом по производной:
- **Теорема 3.** Пусть функция  $a(x',\cdot,u)$  чётна и удовлетворяет условию (1.3). Тогда
- i) Неравенство (1.2) верно для произвольной неотрицательной  $u\in Lip(\overline{\Omega}).$
- іі) Предположим, что для любых  $x' \in \overline{\omega}, z \in \mathbb{R}_+, p \in \mathbb{R}$  функция F удовлетворяет неравенству

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

где  $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{n}$ , если q < n, либо  $q^*$  любое в противном случае. Если  $q \leqslant n$ , то дополнительно предположим, что веса а и  $a_i$  ограничены. Тогда неравенство (1.2) верно для произвольной неотрицательной  $u \in W^1_q(\overline{\Omega})$ .

Глава 2 посвящена снятию условия ограниченного роста с интегранта. Это удаётся сделать только в одномерном случае, поэтому далее  $u \in W^1_1[-1,1]$  и

$$J(u) = \int_{-1}^{1} F(u(x), a(x, u(x))|u'(x)|) dx.$$

В статье [3] показано, что для функционалов вида

$$\int_{-1}^{1} F(u(x), u'(x)) dx$$

можно найти последовательность регулярных функций  $u_n$ , приближающих u и в  $W_1^1[-1,1]$ , и в функционале. В §2.2 нам удаётся распространить этот факт на случай функционала J, предполагая монотонность веса.

**Теорема 4.** Пусть функция а непрерывна, чётна, убывает на [0,1] и удовлетворяет неравенству (1.3). Тогда для любой  $u \in W_1^1[-1,1]$  выполнено  $J(a,u^*) \leq J(a,u)$ .

В §2.3 доказано несколько полезных свойств весовых функций, удовлетворяющих необходимым условиям.

В §2.4 с веса снимается требование монотонности и, тем самым, неравенство (1) доказано в наиболее общем виде:

**Теорема 5.** Пусть  $F \in \mathfrak{F}$ , функция  $u \in W_1^1[-1,1]$  неотрицательна, и весовая функция  $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$  непрерывна и допустима для u. Тогда справедливо неравенство (1.2).

В §2.5 мы завершаем доказательство для функций, закреплённых на левом конце.

В §2.6 доказаны необходимые условия в случае симметричной перестановки:

**Теорема 6.** Если неравенство (2.1) выполняется для произвольной  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес a — чётная u выпуклая по первому аргументу функция.

И наконец, в §2.7 мы закрываем пробел в работе [2]:

**Теорема 7.** Пусть  $F \in \mathfrak{F}$ , функция  $u \in W_1^1[-1,1]$  неотрицательна, и непрерывная весовая функция  $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$  чётна и выпукла по первому аргументу. Тогда справедливо неравенство (2.1).

# Глава 0. Факты, используемые в диссертации и приводимые без доказательств

#### 0.1 Свойства меры и функций

Перечислим обозначения функциональных пространств, используемых в работе. Все перечисленные пространства состоят из функций, определённых на множестве  $E \subset \mathbb{R}^n$ .

C(E) — множество непрерывных функций.

 $C^{1}(E)$  — множество непрерывно дифференцируемых функций.

Lip(E) — множество липшицевых функций.

 $L^{1}(E)$  — множество суммируемых функций.

 $W^1_q(E)$  — множество дифференцируемых в соболевском смысле функций, суммируемых в степени q вместе с первыми производными.

 $W_1^1 \; (E) \; - \;$  множество финитных функций из  $W_1^1 (E)$ .

 $L^{p(x)}(E)$  — пространство Орлича. Измеримая функция  $u\in L^{p(x)},$  если интеграл  $\int\limits_E |u(x)|^{p(x)}dx$  конечен. Норма в этом пространстве определяется как

$$||u||_{L^{p(x)}} = \inf\{\alpha > 0 : \int_{E} \left| \frac{u(x)}{\alpha} \right|^{p(x)} dx \le 1\}.$$

**Предложение 1** ([4, теорема 3.5], теорема Тонелли о полунепрерывности). Пусть I — ограниченный интервал на  $\mathbb{R}$  и F(x,u,p) — лагранжиан, удовлетворяющий следующим условиям:

- i) F и  $F_p$  непрерывны по (x, u, p),
- ii) F неотрицательна,
- iii) F выпукла по p.

Тогда функционал  $\int_I F(x,u(x),u'(x))dx$  секвенциально слабо полунепрерывен снизу в  $W^1_1(I)$ .

**Предложение 2** ([5, теорема 3.13]). Пусть X — метрическое локально выпуклое пространство. Если  $\{x_k\}$  — последовательность в X, слабо сходящаяся к некоторому  $x \in X$ , то найдётся последовательность  $\{y_k\}$ , удовлетворяющая условиям:

- $\mathbf{i}$ ) каждый  $y_k$  является выпуклой комбинацией конечного количества  $x_k$ ,
- ii)  $y_k$  сходятся сильно  $\kappa$  x в пространстве X.

**Предложение 3** ([6, §6.6, теорема 1]). Пусть  $f: \mathbb{R}^n \to \mathbb{R}$  — липшицева функция. Тогда для любого  $\varepsilon$  найдётся непрерывно дифференцируемая функция  $\tilde{f}: \mathbb{R}^n \to \mathbb{R}$ , удовлетворяющая

$$\max\{x: \tilde{f}(x) \neq f(x) \text{ unu } \nabla \tilde{f}(x) \neq \nabla f(x)\} < \varepsilon.$$

Более того, для некоторой константы, зависящей только от п, выполнено

$$\sup_{\mathbb{R}^n} |\nabla \tilde{f}(x)| \leqslant C Lip(f),$$

 $r\partial e \ Lip(f) - \kappa$ онстанта липшицевости функции f.

Предложение 4 ([3, лемма 2.7]). Пусть  $\varphi_h : [-1,1] \to \mathbb{R}$  — последовательность липшицевых функций, удовлетворяющих условиям:  $\varphi'_h \geqslant 1$  для почти всех x и всех h,  $\varphi_h(x) \to x$  для почти каждого x. Тогда для любой  $f \in L^1(\mathbb{R})$  выполнено  $f(\varphi_h) \to f$  в  $L^1(\mathbb{R})$ .

**Предложение 5.** [7, теорема 6.19] Для любой  $u \in W_1^1[-1,1]$  и произвольного множества  $A \subset \mathbb{R}$  нулевой меры выполнено u'(x) = 0 для почти всех  $x \in u^{-1}(A)$ .

Предложение 6 ([8, §2.1]). Пусть p(x) — измеримая функция на отрезке [-1,1], удовлетворяющая  $1 \le p(x) \le \sup p(x) < \infty$ . Тогда ступенчатые функции плотны в пространстве Орлича  $L^{p(x)}$ .

## 0.2 Перестановки

Пусть  $\Omega = \omega \times (-1,1)$ , где  $\omega$  — ограниченная область в  $\mathbb{R}^{n-1}$  с липшицевой границей. Обозначим  $x=(x_1,\ldots,x_{n-1},y)=(x',y)$ .

Напомним теорему о послойном представлении измеримой неотрицательной функции u, заданной на  $\overline{\Omega}$  (см. [7, теорема 1.13]). Положим  $\mathcal{A}_t(x') := \{y \in [-1,1]: u(x',y) > t\}$ . Тогда имеет место равенство

$$u(x',y) = \int_0^\infty \mathcal{X} \{ \mathcal{A}_t(x') \}(y) dt,$$

где  $\mathcal{X}{A}$  — характеристическая функция множества A.

Определим симметричную перестановку измеримого множества  $E\subset [-1,1]$  и симметричную перестановку (симметризацию по Штейнеру) неотрицательной функции  $u\in W^1_1(\overline{\Omega})$ :

$$E^* := \left[ -\frac{|E|}{2}, \frac{|E|}{2} \right]; \qquad u^*(x', y) = \int_0^\infty \mathcal{X}\{(\mathcal{A}_t(x'))^*\}(y)dt.$$

В тех же условиях определим монотонную перестановку множества E и функции  $u \in W^1_1(\overline{\Omega})$ :

$$\overline{E} := [1 - \text{meas } E, 1]; \qquad \overline{u}(x', y) = \int_{0}^{\infty} \mathcal{X}\{\overline{\mathcal{A}_{t}(x')}\}(y)dt.$$

Предложение 7 ([2, доказательство теоремы 1]). Пусть  $u_k \to u$  в  $W_1^1(\mathbb{R}^n)$ . Тогда найдётся подпоследовательность  $u_{k_l}$ , для которой  $u_{k_l}^* \to u^*$  в  $W_1^1(\mathbb{R}^n)$ .

Глава 1. О неравенстве Пойа-Сегё с весом для монотонной перестановки в случае ограниченного роста интегранта по производной

#### 1.1 Обозначения

Пусть  $\Omega = \omega \times (-1,1)$ , где  $\omega$  — ограниченная область в  $\mathbb{R}^{n-1}$  с липшицевой границей. Обозначим  $x=(x_1,\ldots,x_{n-1},y)=(x',y)$ .

Определим множество  $\mathfrak{F}$  непрерывных функций  $F: \overline{\omega} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$  (здесь и далее  $\mathbb{R}_+ = [0, \infty)$ ), выпуклых и строго возрастающих по третьему аргументу, удовлетворяющих  $F(\cdot, \cdot, 0) \equiv 0$ .

Рассмотрим функционал:

$$J(u) = \int_{\Omega} F(x', u(x), ||\mathcal{D}u||) dx, \qquad (1.1)$$

где  $F \in \mathfrak{F}, \|\cdot\|$  — некоторая норма в  $\mathbb{R}^n$ , симметричная по последней координате, то есть удовлетворяющая  $\|(x',y)\| = \|(x',-y)\|$ ,

$$\mathcal{D}u = (a_1(x', u(x))D_1u, \dots, a_{n-1}(x', u(x))D_{n-1}u, a(x, u(x))D_nu)$$

— градиент u с весом (обратите внимание, что только вес при  $D_n u$  зависит от  $y), \ a(\cdot, \cdot) : \overline{\Omega} \times \mathbb{R}_+ \to \mathbb{R}_+$  и  $a_i(\cdot, \cdot) : \overline{\omega} \times \mathbb{R}_+ \to \mathbb{R}_+$  — непрерывные функции. Здесь и далее индекс i пробегает от 1 до n-1.

В этой главе мы рассматриваем следующее неравенство:

$$J(\overline{u}) \leqslant J(u) \tag{1.2}$$

Мы устанавливаем необходимые для выполнения неравенства условия на весовую функцию *а*. Также мы доказываем неравенство при необходимых условиях и дополнительном ограничении на рост интегранта по производной.

#### 1.2 Условия, необходимые для выполнения неравенства (1.2)

**Теорема 8.** 1. Если неравенство (1.2) выполняется для некоторой  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес а чётен по y, то есть  $a(x',y,v) \equiv a(x',-y,v)$ .

ii) Если неравенство (1.2) выполняется для произвольной  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес а удовлетворяет неравенству

$$a(x', s, v) + a(x', t, v) \geqslant a(x', 1 - t + s, v), \qquad x' \in \overline{\omega}, -1 \leqslant s \leqslant t \leqslant 1, v \in \mathbb{R}_+.$$
(1.3)

Доказательство. Ясно, что достаточно доказать утверждения теоремы для каждого x' в отдельности. Поэтому далее в этом доказательстве мы по сути рассматриваем одномерный случай u=u(y), a=a(y,u),

$$J(u) = \int_{-1}^{1} F(u(y), |a(y, u(y))u'(y)|) dy.$$

і) Предположим, что  $a(y,v)\not\equiv a(-y,v)$ . Тогда найдутся такие  $y_0\in (-1,1)$  и  $v_0\in \mathbb{R}_+,$  что

$$a(y_0, v_0) < a(-y_0, v_0).$$

Поэтому существует  $\varepsilon > 0$  такое, что

$$a(y,v) < a(-y,v)$$
, для всех  $y_0 - \varepsilon \leqslant y \leqslant y_0$ ,  $v_0 \leqslant v \leqslant v_0 + \varepsilon$ ,

и можно взять следующую функцию:

$$\begin{cases} u_1(y) = v_0 + \varepsilon, & y \in [-1, y_0 - \varepsilon] \\ u_1(y) = v_0 + y_0 - y, & y \in (y_0 - \varepsilon, y_0) \\ u_1(y) = v_0, & y \in [y_0, 1] \end{cases}$$

Тогда  $\overline{u_1}(y) = u_1(-y)$  и

$$J(u_{1}) - J(\overline{u_{1}})$$

$$= \int_{y_{0}-\varepsilon}^{y_{0}} F(v_{0} + y_{0} - y, a(y, v_{0} + y_{0} - y)) dy - \int_{-y_{0}}^{-y_{0}+\varepsilon} F(v_{0} + y_{0} + y, a(y, v_{0} + y_{0} + y)) dy$$

$$= \int_{y_{0}}^{y_{0}} (F(v_{0} + y_{0} - y, a(y, v_{0} + y_{0} - y)) - F(v_{0} + y_{0} - y, a(-y, v_{0} + y_{0} - y))) dy < 0,$$

что противоречит предположениям теоремы. Утверждение (i) доказано.

іі) Предположим, что условие (1.3) не выполняется. Тогда в силу непрерывности функции a найдутся такие  $-1\leqslant s\leqslant t\leqslant 1,\ \epsilon,\delta>0$  и  $v_0\in\mathbb{R}_+,$  что для любых  $0\leqslant y\leqslant \epsilon$  и  $v_0\leqslant v\leqslant v_0+\epsilon$  справедливо неравенство

$$a(s+y,v) + a(t-y,v) + \delta < a(1-t+s+2y,v).$$

Рассмотрим функцию  $u_2$  (см. рис. 1.2):

$$\begin{cases} u_{2}(y) = v_{0}, & y \in [-1, s] \cup [t, 1] \\ u_{2}(y) = v_{0} + y - s, & y \in [s, s + \varepsilon] \\ u_{2}(y) = v_{0} + \varepsilon, & y \in [s + \varepsilon, t - \varepsilon] \\ u_{2}(y) = v_{0} + t - y, & y \in [t - \varepsilon, t] \end{cases}$$
(1.4)



Рисунок 1.1 — График  $u_2$ 

Тогда

$$\begin{cases} \overline{u_2}(y) = v_0, & y \in [-1, 1 - t + s] \\ \overline{u_2}(y) = v_0 + \frac{y - (1 - t + s)}{2}, & y \in [1 - t + s, 1 - t + s + 2\varepsilon] \\ \overline{u_2}(y) = v_0 + \varepsilon, & y \in [1 - t + s + 2\varepsilon, 1] \end{cases}$$

(см. рис. 1.2).



Рисунок 1.2 — График  $\overline{u_2}$ 

Имеем

$$J(a, \overline{u_2}) = \int_0^{2\varepsilon} F(u_2(1 - t + s + z), \frac{a(1 - t + s + z, u_2(1 - t + s + z))}{2}) dz$$

$$= \int_0^{\varepsilon} 2F(v_0 + y, \frac{a(1 - t + s + 2y, v_0 + y)}{2}) dy$$

$$0 \le J(a, u_2) - J(a, \overline{u_2}) = \int_0^{\varepsilon} \left(F(v_0 + y, a(s + y, v_0 + y)) + F(v_0 + y, a(t - y, v_0 + y))\right)$$

$$- 2F(v_0 + y, \frac{a(1 - t + s + 2y, v_0 + y)}{2})) dy$$

$$< \int_0^{\varepsilon} \left(F(v_0 + y, a(s + y, v_0 + y)) + F(v_0 + y, a(t - y, v_0 + y))\right)$$

$$- 2F(v_0 + y, \frac{a(s + y, v_0 + y) + a(t - y, v_0 + y) + \delta}{2})) dy =: \Delta J.$$

Рассмотрим теперь функцию  $F(v,p)=p^{\alpha}$ . Очевидно, что при  $\alpha=1$  выполнено неравенство

$$\frac{F(v,p) + F(v,q)}{2} - F\left(v, \frac{p+q}{2} + \frac{\delta}{2}\right) < 0.$$
 (1.5)

В нашем случае p,q могут принимать значения на компакте [0,M], где

$$M = \max_{(y,v)} a(y,v), \qquad (y,v) \in [-1,1] \times u_2([-1,1]).$$

Значит найдётся и  $\alpha > 1$  такое, что неравенство (1.5) будет выполняться. Например, подходит любое  $1 < \alpha < (\log_2 \frac{2M}{M+\delta})^{-1}$ .

Тем самым, мы подобрали строго выпуклую по второму аргументу функцию F, для которой  $\Delta J \leqslant 0$ . Это противоречие доказывает утверждение (ii).

**Замечание 1.** Пусть  $a(x', \cdot, v)$  чётна. Тогда условие (1.3) эквивалентно субаддитивности функции  $a(x', 1 - \cdot, v)$ . В частности, если неотрицательная функция а чётна и вогнута по у, она удовлетворяет (1.3).

**Теорема 9.** Если неравенство (1.2) выполняется для произвольной  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, закреплённой на левом конце: u(-1) = 0, то вес а удовлетворяет неравенству (1.3).

 $\mathcal{A}$ оказательство. Будем следовать схеме доказательства пункта 2 теоремы 8. Мы ставим дополнительное ограничение s > -1 (ввиду непрерывности весовой функции от этого требования легко потом избавиться). Также в качестве функции  $u_3$  берём функцию, возрастающую от нуля на отрезке [-1,s], а на отрезке [s,1] совпадающую с  $u_2$  из теоремы 8. Тогда функция  $\overline{u_3}$  на отрезке [-1,s] совпадает с  $u_3$ , а на отрезке [s,1] совпадает с  $\overline{u_2}$ . Тем самым,  $J(u_3) - J(u_2) = J(\overline{u_3}) - J(\overline{u_2})$ , и рассуждения теоремы 8 начиная с вычисления  $\Delta J$  полностью повторяются.

# 1.3 Доказательство неравенства (1.2) для кусочно линейных функций

**Лемма 2.** Пусть а удовлетворяет (1.3).

і) Для любых  $x' \in \overline{\omega}, -1 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n \leqslant 1, v \in \mathbb{R}_+$  выполнены следующие неравенства

$$\sum_{k=1}^{n} a(x', t_k, v) \geqslant a(x', 1 - \sum_{k=1}^{n} (-1)^k t_k, v), \qquad \text{для чётных } n,$$

$$\sum_{k=1}^{n} a(x', t_k, v) \geqslant a(x', -\sum_{k=1}^{n} (-1)^k t_k, v), \qquad \text{для нечётных } n.$$

**ii)** Предположим дополнительно, что функция а чётна. Тогда для всех  $x' \in \overline{\omega}$ ,  $-1 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n \leqslant 1$ ,  $v \in \mathbb{R}_+$  также выполнены следующие неравенства

$$\sum_{k=1}^n a(x',t_k,v)\geqslant a(x',-1+\sum_{k=1}^n (-1)^k t_k,v), \qquad \qquad \text{ для чётных } n,$$
 
$$\sum_{k=1}^n a(x',t_k,v)\geqslant a(x',\sum_{k=1}^n (-1)^k t_k,v), \qquad \qquad \text{ для нечётных } n.$$

Доказательство. і) Будем доказывать по индукции. Для n=1 утверждение тривиально. Пусть теперь n чётное. Тогда, по предположению индукции,

$$\sum_{k=1}^{n-1} a(x', t_k, v) \geqslant a(x', -\sum_{k=1}^{n-1} (-1)^k t_k, v).$$

Значит

$$\sum_{k=1}^{n-1} a(x', t_k, v) + a(x', t_n, v) \ge a(x', -\sum_{k=1}^{n-1} (-1)^k t_k, v) + a(x', t_n, v)$$

$$\ge a(x', 1 - \sum_{k=1}^{n} (-1)^k t_k, v).$$

В случае нечётного n воспользуемся предположением индукции в следующем виде:

$$\sum_{k=2}^{n} a(x', t_k, v) \geqslant a(x', 1 + \sum_{k=2}^{n} (-1)^k t_k, v).$$

Тогда

$$a(x', t_1, v) + \sum_{k=2}^{n} a(x', t_k, v) \ge a(x', t_1, v) + a(x', 1 + \sum_{k=2}^{n} (-1)^k t_k, v)$$

$$\ge a(x', t_1 - \sum_{k=2}^{n} (-1)^k t_k, v) = a(x', -\sum_{k=1}^{n} (-1)^k t_k, v).$$

іі) Доказательство этой части очевидно.

**Лемма 3.** Пусть функция  $a(x',\cdot,u)$  чётна и удовлетворяет условию (1.3). Тогда, если u — неотрицательная кусочно линейная функция, то  $J(u) \geqslant J(\overline{u})$ .

Доказательство. Обозначим через A множество точек  $x \in \overline{\Omega}$ , на которых функция u имеет изломы, объединённое с  $\partial \Omega$ . Это множество замкнуто. Возьмём

$$U_1 := \{ (x', u(x', y)) : (x', y) \in \Omega \} \qquad U_2 := \{ (x', u(x', y)) : (x', y) \in A \}$$
$$U := U_1 \setminus U_2.$$

Множество  $U_2$  замкнуто. Поскольку функция u кусочно линейна, множество  $U_1$  открыто. Тем самым, множество U тоже открыто и может быть представлено в виде объединения конечного числа связных непересекающихся открытых множеств  $G_j$ . Обозначим  $m_j$  число решений уравнения  $u(x',y)=u_0$  (это число постоянно для  $(x',u_0)\in G_j$ , поскольку количество решений может меняться только при переходе через множество  $U_2$ ). Легко видеть, что эти прообразы являются линейными функциями аргумента (x',u):  $y=y_k^j(x',u), k=1,\ldots,m_j$ , и  $D_n y_k^j(x',u(x',y))=\frac{1}{D_n u(x',y)}$ . Мы будем считать, что  $y_1^j(x',u)< y_2^j(x',u)<\cdots< y_{m_j}^j(x',u)$ .

Уравнение  $\overline{u}(x',\overline{y})=u$  задаёт  $\overline{y}$  как функцию  $(x',u)\in G_j$ . Её можно выразить через  $y_k^j$  (в частности,  $\overline{y}$  кусочно линейна):

$$u(x',-1) < u$$
  $m_j$  чётно  $\overline{y} = 1 - \sum_{k=1}^{m_j} (-1)^k y_k^j$   $m_j$  нечётно  $\overline{y} = -\sum_{k=1}^{m_j} (-1)^k y_k^j$   $u(x',-1) > u$   $m_j$  чётно  $\overline{y} = -1 + \sum_{k=1}^{m_j} (-1)^k y_k^j$   $m_j$  нечётно  $\overline{y} = \sum_{k=1}^{m_j} (-1)^k y_k^j$ 

Отсюда ясно, что

$$D_n \overline{y}(x', u(x', y)) = \frac{1}{D_n \overline{u}(x', y)} = \sum_{k=1}^{m_j} |D_n y_k^j(x', u(x', y))|$$

и  $D_i\overline{u}(x',y)=\pm\sum_{k=1}^{m_j}(-1)^kD_iy_k^j(x',u(x',y))$ , где знак перед правой частью зависит только от j.

Тогда

$$J(u) = \sum_{j=1}^{N} \int_{G_{j}} F(x', u(x), ||a_{i}(x', u(x))D_{i}u(x), a(x, u(x))D_{n}u(x)||) dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} \sum_{k=1}^{m_{j}} F\left(x', u, \frac{||a_{i}(x', u)D_{i}y_{k}^{j}(x', u), a(x', y_{k}^{j}(x', u), u)||}{|D_{n}y_{k}^{j}(x', u)|}\right)$$

$$\times |D_{n}y_{k}^{j}(x', u)| dx' du, \quad (1.7)$$

$$J(\overline{u}) = \sum_{j=1}^{N} \int_{G_{j}} F(x', \overline{u}, ||a_{i}(x', \overline{u}(x))D_{i}\overline{u}(x), a(x, \overline{u}(x))D_{n}\overline{u}(x)||)dx$$

$$= \sum_{j=1}^{N} \int_{u(G_{j})} F\left(x', \overline{u}, \frac{||a_{i}(x', \overline{u})D_{i}\overline{y}(x', \overline{u}), a(x', \overline{y}(x', \overline{u}), \overline{u})||}{\sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})|}\right)$$

$$\times \sum_{k=1}^{m_{j}} |D_{n}y_{k}^{j}(x', \overline{u})|dx'd\overline{u}. \quad (1.8)$$

Зафиксируем j, x' и u и обозначим  $b_k = |D_n y_k^j|, c_{ki} = D_i y_k^j, \overline{c}_i = D_i \overline{y},$   $y_k = y_k^j(x',u), \overline{y} = \overline{y}(x',u), m = m_j$ . Тогда справедлива следующая цепочка неравенств:

$$\sum_{k=1}^{m} b_{k} F\left(\frac{\|a_{i}c_{ki}, a(y_{k})\|}{b_{k}}\right) \stackrel{a}{\geqslant} F\left(\frac{\sum_{k=1}^{m} \|a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{b}{=} F\left(\frac{\sum_{k=1}^{m} \|(-1)^{k} a_{i}c_{ki}, a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k} \stackrel{c}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} ((-1)^{k} a_{i}c_{ki}, a(y_{k}))\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$= F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} a_{i}c_{ki}, \sum_{k=1}^{m} a(y_{k})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{e}{\geqslant} F\left(\frac{\|\sum_{k=1}^{m} (-1)^{k} c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}$$

$$\stackrel{e}{=} F\left(\frac{\|\pm a_{i} \sum_{k=1}^{m} (-1)^{k} c_{ki}, a(\overline{y})\|}{\sum_{k=1}^{m} b_{k}}\right) \sum_{k=1}^{m} b_{k}. (1.9)$$

Здесь в переходе (a) применено неравенство Йенсена, в переходах (b) и (e) использована чётность нормы, в (c) использовано неравенство треугольника, в (d) — лемма 2 и чётность веса a по y.

Из (1.9) видно, что подынтегральное выражение в (1.7) не меньше подынтегрального выражения в (1.8). Тем самым, доказательство завершено.

**Лемма 4.** Пусть функция  $a(x',\cdot,u)$  удовлетворяет условию (1.3). Тогда, если u — неотрицательная кусочно линейная функция, удовлетворяющая  $u(\cdot,-1)\equiv 0,\ mo\ J(u)\geqslant J(\overline{u}).$ 

Доказательстве. Заметим, что в доказательстве леммы 3 мы используем чётность веса только в переходе (d) цепочки неравенств (1.9). Поскольку при  $u(\cdot, -1) \equiv 0$  всегда выполнено u(x', -1) < u, с учётом соотношений (1.6) лемма 2 как раз обеспечивает требуемые для перехода (d) неравенства.

## 1.4 О расширении класса функций, для которых выполняется неравенство (1.2)

Следующее утверждение более или менее стандартно и близко к теореме Тонелли (предложение 1). Однако, в нашем случае множество  $\{u:J(u)<\infty\}$  даже не является выпуклым подмножеством  $W_1^1(\overline{\Omega})$ . Поэтому здесь мы приводим полное доказательство для удобства читателя.

**Лемма 5.** Пусть функция а непрерывна. Тогда функционал J(u) слабо полунепрерывен снизу в  $W_1^1(\overline{\Omega})$ .

Доказательство. Пусть  $u_m \to u$  в  $W_1^1(\overline{\Omega})$ . Обозначим  $J_{lim} = \underline{\lim} J(u_m) \geqslant 0$ . Наша задача — доказать  $J(u) \leqslant J_{lim}$ . Если  $J_{lim} = \infty$ , то утверждение тривиально, поэтому можно считать  $J_{lim} < \infty$ . Переходя к подпоследовательности, добиваемся  $J_{lim} = \lim J(u_m)$ . Из слабой сходимости  $u_m \to u$  заключаем, что найдётся  $R_0$  такое, что  $\|u_m\|_{W_1^1(\overline{\Omega})} \leqslant R_0$ . Более того, переходя к подпоследовательности, можно считать, что  $u_m \to u$  в  $L^1(\overline{\Omega})$  и  $u_m(x) \to u(x)$  почти всюду. Тогда по теореме Егорова для любого  $\varepsilon$  найдётся множество  $G_\varepsilon^1$  такое, что  $|G_\varepsilon^1| < \varepsilon$  и  $u_m \Rightarrow u$  в  $\Omega \setminus G_\varepsilon^1$ .

Из равномерной сходимости  $u_m$  следует существование такого K, что для каждого m>K неравенство  $|u_m|\leqslant |u|+\varepsilon$  выполнено для аргументов из  $\Omega\setminus G_{\varepsilon}^1$ . Возьмём  $G_{\varepsilon}^2=\{x\in\Omega\setminus G_{\varepsilon}^1:|u(x)|\geqslant \frac{R_0+\varepsilon}{\varepsilon}\}$ . Тогда

$$R_0 \geqslant \int_{\Omega} |u(x)| dx \geqslant \int_{G_{\varepsilon}^2} |u(x)| dx \geqslant \int_{G_{\varepsilon}^2} \frac{R_0 + \varepsilon}{\varepsilon} dx = |G_{\varepsilon}^2| \frac{R_0 + \varepsilon}{\varepsilon}.$$

То есть  $|G_{\varepsilon}^2| \leqslant \varepsilon \frac{R_0}{R_0 + \varepsilon} < \varepsilon$ . Тем самым, последовательность  $u_m$  равномерно сходится и равномерно ограничена вне множества  $G_{\varepsilon} := G_{\varepsilon}^1 \cup G_{\varepsilon}^2$ .

Из непрерывности F и a следует, что для произвольных  $\varepsilon$  и R найдётся такое  $N(\varepsilon,R)$ , что если  $x\in\Omega\setminus G_{\varepsilon},\,|M|\leqslant R$  и  $m>N(\varepsilon,R)$ , то

$$|F(u_m(x), a(x, u_m(x))M) - F(u(x), a(x, u(x))M)| < \varepsilon.$$

Рассмотрим множества  $E_{m,\varepsilon} := \{x \in \Omega : |u'_m(x)| \geqslant \frac{R_0}{\varepsilon}\}$ . Имеем

$$R_0 \geqslant \int_{\Omega} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} |u'_m(x)| \, dx \geqslant \int_{E_{m,\varepsilon}} \frac{R_0}{\varepsilon} \, dx = \frac{R_0}{\varepsilon} |E_{m,\varepsilon}|.$$

Поэтому  $|E_{m,\varepsilon}| \leq \varepsilon$ .

Теперь можно ввести  $L_{m,\varepsilon} := \Omega \setminus (E_{m,\varepsilon} \cup G_{\varepsilon})$ . Тогда  $|L_{m,\varepsilon}| \geqslant 2 - 3\varepsilon$ .

Зафиксируем  $R:=\frac{R_0}{\varepsilon},\ N(\varepsilon):=N(\varepsilon,\frac{R_0}{\varepsilon})$ . Для любых  $\varepsilon>0,\ x\in L_{m,\varepsilon}$  и  $m>N(\varepsilon)$  получим

$$\left| F(u_m(x), a(x, u_m(x))|u'_m(x)|) - F(u(x), a(x, u(x))|u'_m(x)|) \right| < \varepsilon,$$

откуда

$$\int_{L_{m,\varepsilon}} \left| F(u_m(x), a(x, u_m(x)) | u'_m(x) |) - F(u(x), a(x, u(x)) | u'_m(x) |) \right| dx < 2\varepsilon. \quad (1.10)$$

Возьмём  $\varepsilon_j = \frac{\varepsilon}{2^j} \ (j \geqslant 1), \ m_j = N(\varepsilon_j) + j \to \infty$  и  $L_\varepsilon = \bigcap L_{m_j,\varepsilon_j}$ . Тогда  $\sum \varepsilon_j = \varepsilon$  и, тем самым,  $|\Omega \setminus L_\varepsilon| < 3\varepsilon$ . Поскольку из (1.10) следует

$$\int_{L_{\varepsilon}} \left| F(u_{m_j}(x), a(x, u_{m_j}(x)) | u'_{m_j}(x) |) - F(u(x), a(x, u(x)) | u'_{m_j}(x) |) \right| dx < 2\varepsilon_j,$$

мы получаем

$$J_{lim} = \lim J(u_{m_j}) = \lim \int_{\Omega} F(u_{m_j}(x), a(x, u_{m_j}(x)) | u'_{m_j}(x) |) dx$$

$$\geqslant \underline{\lim} \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x)) | u'_{m_j}(x) |) dx =: \underline{\lim} J_{\varepsilon}(u'_{m_j}).$$

Наш новый функционал

$$J_{\varepsilon}(v) = \int_{\Omega} \chi_{L_{\varepsilon}}(x) F(u(x), a(x, u(x))|v(x)|) dx$$

выпуклый. Вновь переходя к подпоследовательности  $u_k$ , можно считать, что  $\varliminf J_{\varepsilon}(u'_{m_j}) = \varliminf J_{\varepsilon}(u'_k)$ . Так как  $u'_k \to u'$  в  $L^1$ , по предложению 2 можно подобрать последовательность выпуклых комбинаций  $u'_k$ , которые будут сходиться к u' сильно. А именно: найдутся  $\alpha_{k,l} \geqslant 0$  для  $k \in \mathbb{N}, l \leqslant k$  такие, что  $\sum_{l=1}^k \alpha_{k,l} = 1$  для каждого k и  $w_k := \sum_{l=1}^k \alpha_{k,l} u'_l \to u'$  в  $L^1$ . Кроме того, очевидно, можно потребовать, чтобы минимальный индекс l ненулевого коэффициента  $\alpha_{k,l}$  стремился к бесконечности при  $k \to +\infty$ . Тогда

$$\lim J_{\varepsilon}(u'_k) = \lim \sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l).$$

В силу выпуклости  $J_{\varepsilon}$  имеем

$$\sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u_l') \geqslant J_{\varepsilon}(w_k).$$

Наконец, поскольку  $w_k \to u'$  в  $L^1(\overline{\Omega})$ , переходя к подпоследовательности, можем считать, что  $w_k(x) \to u'(x)$  почти всюду. Кроме того, так как для  $x \in L_{\varepsilon}$  выполнено  $|u_j'(x)| < \frac{R_0}{\varepsilon}$ , то и  $|w_k(x)| < \frac{R_0}{\varepsilon}$ . Значит,

$$F(u(x), a(x, u(x))|w_k(x)|) \leqslant \max_{(x,M)} F(u(x), a(x, u(x))M) < \infty,$$

где максимум берется по компактному множеству  $(x, M) \in \overline{\Omega} \times [-\frac{R_0}{\varepsilon}, \frac{R_0}{\varepsilon}]$ . Поэтому применима теорема Лебега, и мы получаем  $\lim J_{\varepsilon}(w_k) = J_{\varepsilon}(u')$ . Таким образом,

$$J_{lim} \geqslant \lim J_{\varepsilon}(u'_k) = \lim \sum_{l=1}^k \alpha_{k,l} J_{\varepsilon}(u'_l) \geqslant \underline{\lim} J_{\varepsilon}(w_k) = J_{\varepsilon}(u').$$

Ввиду произвольности  $\varepsilon > 0$  имеем  $J_{lim} \geqslant J(u)$ .

**Теорема 10.** Пусть  $B \subset A \subset W_1^1(\overline{\Omega})$ . Предположим, что для каждого  $u \in A$  найдётся последовательность  $u_k \in B$  такая, что  $u_k \to u$  в  $W_1^1(\overline{\Omega})$  и  $J(u_k) \to J(u)$ . Тогда

- і) Если для любой функции  $v \in B$  выполнено  $J(v^*) \leqslant J(v)$ , то для любой функции  $u \in A$  будет выполнено  $J(u^*) \leqslant J(u)$ .
- **ii)** Если для любой функции  $v \in B$  выполнено  $J(\overline{v}) \leqslant J(v)$ , то для любой функции  $u \in A$  будет выполнено  $J(\overline{u}) \leqslant J(u)$ .

Доказательство. і) Возьмём некоторую  $u \in A$  и для неё найдём приближающую последовательность  $\{u_k\} \subset B$ . По условию  $J(u_k^*) \leqslant J(u_k) \to J(u)$ . По предложению 7 найдётся подпоследовательность  $u_{k_l}$ , для которой

$$u_{k_l}^* \to u^* \text{ in } W_1^1(\overline{\Omega}).$$

Из леммы 5 получаем

$$J(\overline{u}) \leqslant \underline{\lim} J(u_{k_l}^*) \leqslant \lim J(u_{k_l}) = J(u).$$

іі) Поскольку  $\overline{u_k}(x) = u_k^*(\frac{x-1}{2})$  и  $\overline{u}(x) = u^*(\frac{x-1}{2})$ , из сходимости  $u_k \to u$  в  $W_1^1(\overline{\Omega})$  также следует сходимость  $\overline{u_{k_l}} \to \overline{u}$  в  $W_1^1(\overline{\Omega})$  для некоторой подпоследовательности  $u_{k_l}$ . Тем самым, рассуждения из доказательства предыдущего пункта могут быть дословно повторены.

Следствие 1. Пусть вес а непрерывен, и неравенство (1.2) верно для неотрицательных кусочно линейных функций и. Тогда оно верно для всех неотрицательных липшицевых функций.

Доказательство. Из предложения 3 следует, что любая липшицева функция u может быть приближена последовательностью  $u_k \in C^1(\overline{\Omega})$  в следующем смысле:

$$u_k \rightrightarrows u, \qquad u'_k \to u' \text{ II.B.}, \qquad |u'_k| \leqslant const.$$

Тогда по теореме Лебега  $u_k \to u$  в  $W_1^1(\overline{\Omega})$  и  $J(u_k) \to J(u)$ . В свою очередь,  $u_k$  могут быть аналогичным образом приближены кусочно линейными функциями. Применив лемму 3 и теорему 10, получаем требуемое.

#### 1.5 Переход к соболевским функциям

**Теорема 11.** Пусть функция  $a(x',\cdot,u)$  чётна и удовлетворяет условию (1.3). Тогда

- і) Неравенство (1.2) верно для произвольной неотрицательной  $u\in Lip(\overline{\Omega}).$
- **ii)** Предположим, что для любых  $x' \in \overline{\omega}, z \in \mathbb{R}_+, p \in \mathbb{R}$  функция F удовлетворяет неравенству

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

где  $\frac{1}{q^*} = \frac{1}{q} - \frac{1}{n}$ , если q < n, либо  $q^*$  любое в противном случае. Если  $q \leqslant n$ , то дополнительно предположим, что веса а и  $a_i$  ограничены. Тогда неравенство (1.2) верно для произвольной неотрицательной  $u \in W^1_q(\overline{\Omega})$ .

Доказательство. і) Мы можем приблизить липшицевы u кусочно линейными функциями  $u_k$  вместе с производными почти всюду. Поскольку  $u_k$  равномерно ограничены вместе с производными, то и  $F(x', u_k(x), \|\mathcal{D}u_k\|)$  равномерно ограничены. Тогда мы можем воспользоваться теоремой Лебега, получив  $u_k \to u$  в  $W_1^1(\overline{\Omega})$  и  $J(u_k) \to J(u)$ . Воспользовавшись теоремой 10, получаем требуемое.

іі) Рассмотрим произвольную  $u \in W_q^1(\overline{\Omega})$ . Для неё можно построить последовательность кусочно линейных функций  $u_k$ , приближающих её в  $W_q^1(\overline{\Omega})$ . Действительно, поскольку  $\partial\Omega\in Lip$ , u можно продолжить финитным образом на внутренность большого шара в  $\mathbb{R}^n$  и приблизить гладкими финитными функциями. Далее шар триангулируется, и значения функции линейно интерполируются. Очевидно, в процессе все функции остаются неотрицательными.

Тогда, ввиду теоремы 10, достаточно добиться  $J(u_k) \to J(u)$ . Доказательство этой сходимости можно свести к теореме Красносельского о непрерывности оператора Немыцкого (см. [9, гл. 5, §17]). Однако для удобства читателя мы приводим здесь рассуждение целиком.

Покажем, что веса  $a_i(x',u(x))$  и a(x,u(x)) ограничены. Если  $q \leqslant n$ , то это выполнено по предположению теоремы. Если же нет, то  $W_q^1(\overline{\Omega})$  вкладывается в  $C(\overline{\Omega})$ , тем самым,  $u_k(x)$  равномерно ограничены, а значит, и  $a_i(x',u_k(x))$  и  $a(x,u_k(x))$  равномерно ограничены. Поэтому  $\|\mathcal{D}u_k(x)\| \leqslant C_1 |\nabla u_k(x)|$ . То есть,

$$F(x', u_k(x), ||\mathcal{D}u_k(x)||) \le C_2(1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q).$$

Рассмотрим множества  $A_m$ , состоящие из  $x \in \overline{\Omega}$ , для которых при всех  $k \geqslant m$  выполнено  $1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q \leqslant 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q)$ . Очевидно, что  $A_m \subset A_{m+1}$ . Переходя к подпоследовательности, можем считать, что  $u_k \to u$  и  $\nabla u_k \to \nabla u$  почти всюду. А значит  $|A_m| \to |\overline{\Omega}|$ . Тогда

$$\mathcal{X}{A_k}F(x', u_k(x), \|\mathcal{D}u_k(x)\|) \le 2(1 + |u(x)|^{q^*} + |\nabla u(x)|^q),$$

И

$$\mathcal{X}\{A_k\}F(x',u_k(x),\|\mathcal{D}u_k(x)\|) \to F(x',u(x),\|\mathcal{D}u(x)\|)$$

почти всюду. По теореме вложения  $\|u_k\|_{q^*} \leqslant C_3 \|u_k\|_{W_q^1}$ . Тем самым, мы нашли суммируемую мажоранту и получаем  $\int_{A_k} \mathcal{X}\{A_k\} F(x',u_k(x),\|\mathcal{D}u_k(x)\|) dx \to J(u)$  по теореме Лебега .

Теперь оценим остаток:

$$\int_{\Omega \setminus A_k} F(x', u_k(x), \|\mathcal{D}u_k(x)\|) dx \leq \int_{\Omega \setminus A_k} C_2 (1 + |u_k(x)|^{q^*} + |\nabla u_k(x)|^q) dx 
\leq C_4 \Big( \int_{\Omega \setminus A_k} (1 + |u(x)|^{q^*} + |\nabla u(x)|^q) dx 
+ \int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) dx \Big).$$

Первое слагаемое стремится к нулю по абсолютной непрерывности интеграла. Для второго слагаемого выполнено

$$\int_{\Omega \setminus A_k} (1 + |u(x) - u_k(x)|^{q^*} + |\nabla (u - u_k)(x)|^q) dx$$

$$\leq (|\Omega \setminus A_k| + ||u - u_k||_{W_q^1}^{q^*} + ||u - u_k||_{W_q^1}^q) \to 0.$$

Тем самым, сходимость  $J(u_k) \to J(u)$  доказана.

**Теорема 12.** Пусть функция  $a(x',\cdot,u)$  удовлетворяет условию (1.3). Тогда

і) Неравенство (1.2) верно для произвольной неотрицательной  $u \in Lip(\overline{\Omega}), \ y$ довлетворяющей  $u(\cdot, -1) \equiv 0.$ 

іі) Предположим, что для любых  $x' \in \overline{\omega}, z \in \mathbb{R}_+, p \in \mathbb{R}$  функция F удовлетворяет неравенству

$$F(x', z, p) \le C(1 + |z|^{q^*} + |p|^q),$$

 $z\partial e \ rac{1}{q^*} = rac{1}{q} - rac{1}{n}, \ ecnu \ q < n, \ nuбо \ q^*$  любое в противном случае. Если  $q \leqslant n, \ mo$  дополнительно предположим, что веса а и  $a_i$  ограничены. Тогда неравенство (1.2) верно для произвольной неотрицательной  $u \in W^1_q(\overline{\Omega}), \ y$ довлетворяющей  $u(\cdot,-1)\equiv 0.$ 

Доказательство теоремы дословно повторяет доказательство теоремы 11.

Глава 2. О неравенстве Пойа-Сегё для монотонной перестановки и симметризации в общем случае при n=1

#### 2.1 Обозначения

В этой главе мы рассматриваем одномерный случай задачи из первой главы. Тем самым, пропадают весовые коэффициенты  $a_i$ , вес a=a(x,v):  $[-1,1]\times\mathbb{R}_+\to\mathbb{R}_+$ ,  $\mathfrak{F}$  — множество непрерывных функций  $F:\mathbb{R}_+\times\mathbb{R}_+\to\mathbb{R}_+$  выпуклых и строго возрастающих по второму аргументу, удовлетворяющих  $F(\cdot,0)\equiv 0$ . Рассматриваемый функционал имеет вид:

$$J(a, u) = \int_{-1}^{1} F(u(x), a(x, u(x))|u'(x)|) dx.$$

Также мы будем использовать обозначение

$$J(B, a, u) = \int_{B} F(u(x), a(x, u(x))|u'(x)|) dx.$$

Мы снимаем требование ограничения роста, стоящее в теореме 11, и также доказываем аналогичный результат для симметричной перестановки, устанавливая необходимые и достаточные условия для выполнения неравенства

$$J(u^*) \leqslant J(u). \tag{2.1}$$

Мы продолжаем ссылаться на условие (1.3), однако оно приобретает следующий вид:

$$a(s, v) + a(t, v) \ge a(1 - t + s, v), \qquad s, t : -1 \le s \le t \le 1, v \in \mathbb{R}_+.$$
 (2.2)

### 2.2 Доказательство неравенства (1.2) для кусочно монотонных весов

В этом параграфе мы получим неравенство (1.2) при дополнительном условии монотонности весовой функции при  $x \in [-1,0]$  и при  $x \in [0,1]$ .

**Лемма 6.** Пусть a — непрерывная функция,  $a(\cdot,u)$  возрастает на [-1,0] u убывает на [0,1] для всех  $u\geqslant 0$ . Тогда для любой функции  $u\in W^1_1[-1,1]$ ,  $u\geqslant 0$ , найдётся последовательность  $\{u_k\}\subset Lip[-1,1]$ , удовлетворяющая

$$u_k \to u \ e \ W_1^1[-1,1] \quad u \quad J(a,u_k) \to J(a,u).$$
 (2.3)

Для доказательства мы модифицируем схему теоремы 2.4 из [3], в которой аналогичный факт доказывается для интегрантов, не зависящих от свободной переменной. Частично доказательство совпадает доказательством в [3], но для удобства читателя мы приводим здесь его полностью.

Доказательство леммы 6. Можно считать, что  $J(a, u) < \infty$ .

Мы докажем утверждение для функционала

$$J_1(u) = \int_0^1 F(u(x), a(x, u(x))|u'(x)|) dx.$$

Вторая часть с интегрированием по [-1,0] сводится к  $J_1$  заменой переменной.

Для  $h \in \mathbb{N}$  покроем множество  $\{x \in [0,1]: |u'(x)| > h\}$  открытым множеством  $A_h$ . Не умаляя общности, можно считать, что  $A_{h+1} \subset A_h$  и  $|A_h| \to 0$  при  $h \to \infty$ .

Обозначим  $v_h$  неотрицательную непрерывную функцию, заданную на [0,1], совпадающую с u на множестве  $[0,1]\setminus A_h$ , и линейную на интервалах, составляющих  $A_h$ . Тогда  $v_h\to u$  в  $W_1^1[-1,1]$ . Теперь изменим  $v_h$  так, чтобы сделать их липшицевыми.

Представим  $A_h = \bigcup_k \Omega_{h,k}$ , где  $\Omega_{h,k} = (b_{h,k}^-, b_{h,k}^+)$ . Обозначим

$$\alpha_{h,k} := |\Omega_{h,k}|, \quad \beta_{h,k} := v_h(b_{h,k}^+) - v_h(b_{h,k}^-) = u(b_{h,k}^+) - u(b_{h,k}^-).$$

Тогда  $v_h' = \frac{\beta_{h,k}}{\alpha_{h,k}}$  в  $\Omega_{h,k}$ . Заметим, что

$$\sum_{k} |\beta_{h,k}| \leqslant \int_{A_h} |u'| \, dx \leqslant ||u'||_{L^1[-1,1]} < \infty,$$

а значит,  $\sum_{k} |\beta_{h,k}| \to 0$  при  $h \to 0$  по теореме Лебега.

Определим функцию  $\varphi_h \in W^1_1[0,1]$  следующим образом:

$$\varphi_h(0) = 0$$

$$\varphi'_h = 1 \qquad \qquad \text{B } [0,1] \setminus A_h,$$

$$\varphi'_h = \max\left(\frac{|\beta_{h,k}|}{\alpha_{h,k}}, 1\right) \quad \text{B } \Omega_{h,k}.$$

Заметим, что  $\int_0^1 |\varphi_h'| \, dx \leqslant 1 + \sum_k |\beta_{h,k}| < \infty.$  Покажем, что  $\varphi_h' \to 1$  в  $L^1(0,1)$ :

$$\int |\varphi_h' - 1| \, dx = \sum_k \left( \max\left(\frac{|\beta_{h,k}|}{\alpha_{h,k}}, 1\right) - 1 \right) \alpha_{h,k} \leqslant \sum_k |\beta_{h,k}| \to 0.$$

Отсюда следует, что  $\phi_h$  удовлетворяет условиям предложения 4.

Рассмотрим теперь  $\varphi_h^{-1}:[0,1]\to [0,1]$  — ограничение обратной к  $\varphi_h$  функции на [0,1]. Тогда  $0\leqslant (\varphi_h^{-1})'\leqslant 1$  и

$$\varphi_h^{-1}(0) = 0$$
 $(\varphi_h^{-1})' = 1$ 
 $B [0, 1] \setminus \varphi_h(A_h),$ 
 $(\varphi_h^{-1})' = \min\left(\frac{\alpha_{h,k}}{|\beta_{h,k}|}, 1\right)$ 
 $B [0, 1] \cap \varphi_h(\Omega_{h,k}).$ 

Возьмём  $u_h = v_h(\varphi_h^{-1})$ . Заметим, что  $u_h(0) = u(0)$ , и

$$u'_h = v'_h(\varphi_h^{-1}) \cdot (\varphi_h^{-1})' = u'(\varphi_h^{-1})$$

$$u'_h = v'_h(\varphi_h^{-1}) \cdot (\varphi_h^{-1})' = \operatorname{sign} \beta_{h,k} \cdot \min\left(1, \frac{|\beta_{h,k}|}{\alpha_{h,k}}\right)$$

$$\operatorname{B} [0,1] \setminus \varphi_h(A_h),$$

$$\operatorname{B} [0,1] \cap \varphi_h(\Omega_{h,k}).$$

Тем самым,  $u_h$  липшицева, поскольку u' ограничена в  $[0,1] \setminus A_h$ .

Покажем, что  $u_h \to u$  в  $W_1^1[0,1]$ . Для этого достаточно оценить

$$||u'_h - u'||_{L^1} \leqslant \int_{[0,1]\setminus\varphi_h(A_h)} |u'_h - u'| + \int_{[0,1]\cap\varphi_h(A_h)} |u'_h| + \int_{[0,1]\cap\varphi_h(A_h)} |u'| =: P_h^1 + P_h^2 + P_h^3.$$

$$P_h^1 = \int_{[0,1]\backslash \varphi_h(A_h)} |u'(\varphi_h^{-1}) - u'| \, dx = \int_{\varphi_h^{-1}([0,1])\backslash A_h} |u' - u'(\varphi_h)| \, dz \leqslant \int_{[0,1]} |u' - u'(\varphi_h)| \, dz.$$

В силу предложения 4,  $P_h^1 \to 0$ . Далее,

$$P_h^2 \leqslant |\varphi_h(A_h)| = \sum_k |\varphi_h(\Omega_{h,k})| = \sum_k \max(|\beta_{h,k}|, \alpha_{h,k}) \leqslant \sum_k \alpha_{h,k} + \sum_k |\beta_{h,k}| \to 0.$$

Наконец,  $P_h^3 \to 0$  по абсолютной непрерывности интеграла, и утверждение доказано.

Осталось показать, что  $J_1(u_h) \to J_1(u)$ .

$$J_{1}(u_{h}) = \int_{[0,1]\backslash \varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx$$

$$+ \int_{[0,1]\cap \varphi_{h}(A_{h})} F(u_{h}(x), a(x, u_{h}(x))|u'_{h}(x)|) dx =: \hat{P}_{h}^{1} + \hat{P}_{h}^{2}.$$

Поскольку  $u \in W_1^1[0,1]$ , имеем  $u \in L_\infty([0,1])$ . Обозначим  $||u||_\infty = r$ , тогда  $||u_h||_\infty < 2r$  при достаточно больших h. Кроме того,  $|u_h'| \leqslant 1$  почти всюду в  $\varphi_h(A_h)$ . Тогда  $\hat{P}_h^2 \leqslant M_F |\varphi_h(A_h)| \to 0$ , где

$$M_F = \max_{[-2r,2r]\times[-M_a,M_a]} F; \quad M_a = \max_{[0,1]\times[-2r,2r]} a.$$

Далее,

$$\hat{P}_{h}^{1} = \int_{[0,1]\backslash \varphi_{h}(A_{h})} F(u(\varphi_{h}^{-1}(x)), a(x, u(\varphi_{h}^{-1}(x))|u'(\varphi_{h}^{-1}(x))(\varphi_{h}^{-1})'|)) dx$$

$$= \int_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) dz$$

$$= \int_{[0,1]} F(u(z), a(\varphi_{h}(z), u(z))|u'(z)|) \chi_{\varphi_{h}^{-1}([0,1])\backslash A_{h}} dz.$$

Последнее равенство, вообще говоря, не имеет смысла, так как  $\varphi_h(z)$  может принимать значения вне [0,1]. Определим a(z,u)=a(1,u) при z>1, теперь выражение корректно. Заметим, что  $\chi_{\varphi_h^{-1}([0,1])\backslash A_h}$  возрастают, так как множества  $\varphi_h^{-1}([0,1])$  возрастают и  $A_h$  убывают, то есть  $\varphi_{h_1}^{-1}([0,1]) \subset \varphi_{h_2}^{-1}([0,1])$  и  $A_{h_1} \supset A_{h_2}$  при  $h_1 \leqslant h_2$ . На отрезке [0,1] (и даже  $\varphi_h([0,1])$ ) функция a убывает, а также  $\varphi_h(z)$  убывает по h, значит  $a(\varphi_h(z))$  будет расти по h. В таком случае можно применить теорему о монотонной сходимости и получить

$$\hat{P}_h^1 \to \int_{[0,1]} F(u(z), a(z, u(z))|u'(z)|) dz.$$

**Замечание 2.** Очевидно, что те же рассуждения с закреплением функции u на левом конце можно провести на любом интервале  $[x_0, x_1]$ , где вес а

убывает по x. То есть можно получить последовательность  $\{u_h\}$ , удовлетворяющую

$$u_h(x_0) = u(x_0); u_h \to u \in W_1^1[x_0, x_1];$$

$$\int_{x_0}^{x_1} F(u_h(x), a(x, u_h(x))|u_h'(x)|) \to \int_{x_0}^{x_1} F(u(x), a(x, u(x))|u'(x)|).$$

Aналогично, если а возрастает по x, можно аппроксимировать и c закреплением на правом конце.

**Следствие 2.** Пусть функция а непрерывна, чётна, убывает на [0,1] и удовлетворяет неравенству (1.3). Тогда для любой  $u \in W^1_1[-1,1]$  выполнено  $J(a,u^*) \leqslant J(a,u)$ .

Доказательство. Неравенство немедленно следует из теоремы 10 и леммы 6.

#### 2.3 Свойства весовой функции

Здесь мы получаем несколько следствий из условия (1.3) на вес. Для удобства в пределах этого параграфа мы опускаем второй параметр веса: a(x,v)=a(x); очевидно, что все полученные свойства буду выполняться для любых v.

**Лемма 7. і)** Пусть функция а удовлетворяет условию (1.3). Если найдётся такое  $x_0 \in [-1,1]$ , что  $a(x_0) = 0$ , то либо  $a \equiv 0$  на  $[x_0,1]$ , либо множество нулей функции а периодично на  $[x_0,1]$ , причем период нацело делит  $1-x_0$ .

ii) Пусть функция а удовлетворяет условию (1.3) и чётна. Если найдётся такое  $x_0 \in [-1,1]$ , что  $a(x_0) = 0$ , то либо  $a \equiv 0$ , либо функция а периодична на отрезке [-1,1], причем период нацело делит  $1-x_0$ .

Доказательство. і) Прежде всего, заметим, что если для некоторых  $s\leqslant t$  выполнено a(s)=a(t)=0, то неравенство (1.3) влечёт

$$0 = a(s) + a(t) \ge a(1 - (t - s)) \ge 0,$$

то есть a(1-(t-s))=0. Подставив  $s=t=x_0$ , получаем a(1)=0.

Точно так же, если  $s \le 1 - t$  и a(s) = a(1 - t) = 0, то a(s + t) = 0.

Тем самым, множество нулей функции a симметрично на отрезке  $[x_0, 1]$ , и если  $a(s) = a(s + \Delta) = 0$  ( $\Delta \ge 0$ ), то  $a(s + k\Delta) = 0$ , для  $s + k\Delta \le 1$ . Отсюда следует, что множество корней либо периодично на отрезке  $[x_0, 1]$ , либо совпадает с ним.

ii) Периодичность нулей функции a следует из её чётности и из первой части утверждения леммы. Обозначим расстояние между соседними нулями за  $\Delta$ .

Тогда для  $-1\leqslant x\leqslant 1-\Delta$  выполнено

$$a(x) = a(x) + a(1 - \Delta) \geqslant a(x + \Delta).$$

С другой стороны,  $-1\leqslant -(x+\Delta)\leqslant 1-\Delta$ , и

$$a(x+\Delta) = a(-(x+\Delta)) + a(1-\Delta) \geqslant a(-x) = a(x).$$

Tem самым, 
$$a(x) = a(x + \Delta)$$
.

**Лемма 8.** Пусть функции  $a_1$  и  $a_2$  удовлетворяют неравенству (1.3). Тогда функции  $\max(a_1(x), a_2(x))$  и  $a_1(x) + a_2(x)$  тоже ему удовлетворяет.

Доказательство. Положим  $a(x) = \max(a_1(x), a_2(x))$ . Тогда

$$a(1-t+s) = \max(a_1(1-t+s), a_2(1-t+s)) \leqslant \max(a_1(s) + a_1(t), a_2(s) + a_2(t))$$
  
$$\leqslant \max(a_1(s), a_2(s)) + \max(a_1(t), a_2(t)) = a(s) + a(t).$$

Утверждение для функции 
$$a(x) = a_1(x) + a_2(x)$$
 очевидно.  $\square$ 

**Лемма 9.** Пусть функция а удовлетворяет неравенству (1.3),  $k \in \mathbb{N}$ . Тогда кусочно линейная функция  $a_k$ , интерполирующая функцию а по узлам  $(-1+\frac{2i}{k})$ ,  $i=0,1,\ldots,k$ , тоже удовлетворяет неравенству (1.3).

Доказательство. 1. Пусть  $s=-1+\frac{2i}{k},\,t=-1+\frac{2j}{k}$ . Тогда неравенство выполняется для  $a_k$ , потому что оно выполняется для a, а в этих точках они совпадают.

**2.** Пусть теперь 
$$s = -1 + \frac{2i}{k}$$
, и  $t \in [-1 + \frac{2j}{k}, -1 + \frac{2(j+1)}{k}]$ .

Рассмотрим линейную функцию  $h_1(t)=a_k(1-t+s)-a_k(t)-a_k(s)$ . Из части 1 следует  $h_1(-1+\frac{2j}{k})\leqslant 0$  и  $h_1(-1+\frac{2(j+1)}{k})\leqslant 0$ . Значит, поскольку  $h_1$ 

линейна,  $h_1(t) \leqslant 0$ . Тем самым, неравенство выполняется для любого  $s = -1 + \frac{2i}{k}$  и  $t \in [-1,1]$ .

**3.** Пусть *s* и *t* удовлетворяют соотношению  $1 - t + s = \frac{2j}{k}$ .

Рассмотрим функцию  $h_2(y)=a_k(\frac{2j}{k})-a_k(s+y)-a_k(t+y)$ . Если взять  $y_0$  такое, что  $s+y_0$  — один из узлов, то  $t+y_0$  — тоже узел. Следовательно  $h_2(y_0)=a(\frac{2j}{k})-a(s+y_0)-a(t+y_0)\leqslant 0$ . Поскольку  $h_2$  линейна между подобными  $y_0$ , получаем  $h_2(y)\leqslant 0$  для всех допустимых y.

4. Наконец, для произвольного  $t \in [-1,1]$  рассмотрим  $h_3(s) = a_k(1-t+s) - a_k(t) - a_k(s)$ . Заметим, что если s или 1-t+s являются узлами, то из частей 2 и 3 следует  $h_3(s) \leq 0$ . Поскольку  $h_3$  линейна между такими s, имеем  $h_3(s) \leq 0$  для всех допустимых s, что завершает доказательство.

#### 2.4 Доказательство неравенства (1.2) для произвольных весов

В этом параграфе мы избавимся от условия монотонности веса по x. Будем это делать в несколько этапов.

Для начала отметим, что все свойства функции a существенны лишь в окрестности графиков функций u,  $\overline{u}$ . Более того, все рассуждения этого параграфа будет построены так, чтобы использовать свойства веса только в окрестности графика u.

Мы вводим несколько ограничений на весовую функцию. Каждое следующее, будучи добавленным к предыдущим, задаёт более узкий класс весов.

- (H1) a(x,v) чётна по x и удовлетворяет неравенству (1.3), а также  $J(a,u)<\infty$ .
- (H2) На множестве  $v \in [\min u(x), \max u(x)]$ , для которых  $a(\cdot, v) \not\equiv 0$ , количество нулей функций  $a(\cdot, v)$  ограничено константой, не зависящей от v.
- (H3) Если  $a(x_0,u(x_0))=0$  для некоторого  $x_0$ , то  $a(\cdot,u(x_0))\equiv 0$ . Кроме того, выполнено  $\lim_{k\to\infty}D_k(a,U(a))=0$ , где

$$U(a) := \{ v \in [\min u(x), \max u(x)] : a(\cdot, v) \not\equiv 0 \},$$

$$D_k(a, U) := \sup_{v \in U} \frac{\max_{|x_1 - x_2| \leq \frac{2}{k}} |a(x_1, v) - a(x_2, v)|}{\min_{\text{dist}(x, u^{-1}(v)) \leq \frac{2}{k}} a(x, v)}.$$
(2.4)

- (H4) Найдётся такое чётное k, что  $a(\cdot,v)$  линейны для каждого v на участках  $[-1+\frac{2i}{k},-1+\frac{2(i+1)}{k}].$
- (H5) Множество  $v \in \mathbb{R}$ , для которых  $a(\cdot, v)$  имеет участки постоянства, отличается от множества  $v \in \mathbb{R}$  таких, что  $a(\cdot, v) \equiv 0$ , лишь на множество меры 0.
- (H6) Отрезок [-1,1] можно разбить на конечное число промежутков, на каждом из которых в v-окрестности графика u(x) вес a не меняет монотонности по x.
- (H7) Пусть  $x_1 < x_2 < x_3$ , и на  $[x_1, x_2]$  вес  $a(\cdot, v)$  в v-окрестности графика функции u убывает, а на  $[x_2, x_3]$  возрастает. Тогда в некоторой окрестности точки  $u(x_2)$  имеем  $a(\cdot, v) \equiv 0$ .

Вес, удовлетворяющий условию (H1), мы будем называть допустимым для заданной функции u(x).

Теперь мы можем сформулировать основное утверждение главы.

**Теорема 13.** Пусть  $F \in \mathfrak{F}$ , функция  $u \in W_1^1[-1,1]$  неотрицательна, и весовая функция  $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$  непрерывна и допустима для u. Тогда справедливо неравенство (1.2).

Мы докажем неравенство (1.2) при условиях (H1) - (H7), а затем будем постепенно избавляться от них.

Для доказательства нам потребуются следующая

- **Лемма 10.** Пусть  $u \in W_1^1[-1,1]$  неотрицательна. И пусть замкнутое множество  $W \subset \mathbb{R}_+$  таково, что множество всех  $v \in W$ , для которых  $a(\cdot,v) \not\equiv 0$ , имеет меру ноль. Тогда найдётся возрастающая последовательность весов  $\mathfrak{b}_\ell$  такая, что
  - 1)  $\mathfrak{b}_{\ell}(\cdot,v) \Longrightarrow a(\cdot,v)$  dis normu  $\operatorname{scex} v$ ;
- 2)  $\mathfrak{b}_{\ell}(\cdot,v)\equiv 0$  для кажедого v в некоторой (зависящей от  $\ell$ ) окрестности W;
  - 3)  $J(\mathfrak{b}_{\ell}, u) \to J(a, u) \ u \ J(\mathfrak{b}_{\ell}, \overline{u}) \to J(a, \overline{u}).$

**Замечание 3.** *Если а допустимы для и, то и*  $\mathfrak{b}_{\ell}$  *тоже.* 

Доказательство. Возьмём  $\rho(d) := \min(1, \max(0, d)),$ 

$$\mathfrak{b}_{\ell}(x,v) := a(x,v) \cdot \rho(\ell \operatorname{dist}(v,W) - 1) \leqslant a(x,v).$$

Вес  $\mathfrak{b}_{\ell}$  равен нулю в  $\left(\frac{1}{\ell}\right)$ -окрестности W. Кроме того,  $\mathfrak{b}_{\ell} \equiv a$  вне  $\left(\frac{2}{\ell}\right)$ -окрестности W, а также  $\mathfrak{b}_{\ell}(x,v)$  возрастает по  $\ell$ . Тем самым ,  $\mathfrak{b}_{\ell}(\cdot,v) \rightrightarrows a(\cdot,v)$  для почти всех v. По теореме о монотонной сходимости имеем  $J(u^{-1}(\mathbb{R}_+ \setminus W), \mathfrak{b}_{\ell}, u) \nearrow J(u^{-1}(\mathbb{R}_+ \setminus W), a, u)$ .

Разобьем множество W на два:  $W_1:=\{v\in W:a(\cdot,v)\equiv 0\}$  и  $W_2=W\backslash W_1.$  Тогда

$$J(u^{-1}(W_1), \mathfrak{b}_{\ell}, u) = J(u^{-1}(W_1), a, u),$$
  
$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), \mathfrak{b}_{\ell}(x, u(x)) | u'(x) |) dx.$$

При этом, по предложению 5, почти всюду на  $u^{-1}(W_2)$  выполнено u'(x) = 0. То есть

$$J(u^{-1}(W_2), \mathfrak{b}_{\ell}, u) = \int_{x \in u^{-1}(W_2)} F(u(x), 0) dx = 0.$$

Аналогично  $J(u^{-1}(W_2), a, u) = 0$ , откуда  $J(\mathfrak{b}_{\ell}, u) \to J(a, u)$ . Вторая часть пункта 3) доказывается так же.

Перейдем к доказательству теоремы 13.

**Шаг 1.** Пусть  $u \in W_1^1[-1,1]$ , u вес а удовлетворяет условиям (H1) – (H7). Тогда выполняется неравенство (1.2).

Разобьем отрезок [-1,1] на отрезки  $\Delta_k = [\hat{x}_k, \hat{x}_{k+1}]$ , состоящие из двух частей. В левой части каждого отрезка вес a будет возрастать по x в окрестности графика u(x), в правой же будет убывать. Согласно замечанию 2 на каждом таком отрезке можно повторить схему из леммы 6, приближая функцию u лип-шицевыми функциями  $u_n$ . Это даёт  $J(\Delta_k, a, u_n) \to J(\Delta_k, a, u)$ .

Однако при такой аппроксимации функции  $u_n$  могут иметь разрывы в точках  $\hat{x}_k$ .

Заметим теперь, что согласно условию (H7) можно выбрать точки  $\hat{x}_k$  так, что  $a\equiv 0$  в (x,v)-окрестности точек  $(\hat{x}_k,u(\hat{x}_k))$ .

Изменим теперь функции  $u_n$  в окрестности точек  $\hat{x}_k$  на линейные, сделав  $u_n$  непрерывными на [-1,1]. В силу вышесказанного, интегралов  $J(\Delta_k,a,u_n)$  это не изменит, и мы получаем  $J(a,u_n) \to J(a,u)$  и  $u_n \to u$  в  $W_1^1[-1,1]$ .

По теореме 10 получаем (1.2).

**Шаг 2.** Пусть вес а удовлетворяет условиям (H1) - (H6). Тогда выполняется неравенство (1.2). Применим лемму 10. В качестве множества W возьмем множество всех v, при которых происходит переход графика u(x) из промежутка, в котором вес убывает по x, в промежуток, в котором вес возрастает. Очевидно, получившиеся функции  $\mathfrak{b}_{\ell}$  удовлетворяют (H1)-(H7). Из шага 1 имеем  $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$ . Переходя к пределу, получаем требуемое неравенство (1.2).

**Шаг 3.** Пусть вес а удовлетворяет условиям (H1) - (H5). Тогда выполняется неравенство (1.2).

Рассмотрим абсциссы точек излома функции a и ординаты, для которых a имеет участки постоянства. Эти абсциссы и ординаты определяют деление прямоугольника  $[-1,1] \times [\min u(x), \max u(x)]$  на более мелкие, внутри которых вес a не меняет монотонности. Однако, количество мелких прямоугольников может оказаться бесконечным. Кроме того, если функция пересекает горизонтальную границу прямоугольника, монотонность в v-окрестности точки пересечения может меняться.

Возьмем множество W точек v, для которых вес a имеет участки постоянства по x. В соответствии с (H5) множество  $v \in W$ , для которых  $a(\cdot,v) \not\equiv 0$ , имеет нулевую меру.

Применив лемму 10, построим последовательность весов  $\mathfrak{b}_{\ell}$ . У каждого из них количество участков монотонности конечно, поскольку между соседними по v участками строгой монотонности присутствует полоса нулевых значений веса шириной по крайней мере  $\frac{2}{k}$ .

Тем самым, вес  $\mathfrak{b}_\ell$  может менять монотонность вдоль графика u либо в точках  $x=-1+\frac{2i}{k}$ , либо в тех местах, где график пересекает полосу нулевых значений веса. Ясно, что таких пересечений может быть лишь конечное число, поскольку  $\int |u'|$  увеличивается как минимум на  $\frac{2}{\ell}$  во время такого перехода, а  $u' \in L^1[-1,1]$ .

Мы получили, что  $\mathfrak{b}_{\ell}$  удовлетворяют (H1)-(H6). Из шага 2 имеем  $J(\mathfrak{b}_{\ell},\overline{u})\leqslant J(\mathfrak{b}_{\ell},u)$ . Переходя к пределу, получаем (1.2).

**Шаг 4.** Пусть вес а удовлетворяет условиям (H1) - (H3). Тогда выполняется неравенство (1.2).

Предположим, что функция a удовлетворяет (H1)-(H3), в частности  $J(a,u)<\infty.$ 

Зафиксируем произвольное четное k. По точкам  $a(-1+\frac{2i}{k},v)$  для каждого v построим кусочно линейную по x интерполяцию. Получившаяся функция

 $a_k(x,v)$  непрерывна, четна по x и по лемме 9 удовлетворяет неравенству (1.3). Кроме того,  $a_k \to a$  при  $k \to \infty$ , причем сходимость равномерная на компактах. Однако неравенство  $a_k(x,u(x)) \leqslant a(x,u(x))$  не обязано выполняться, и потому веса  $a_k$  могут не быть допустимыми для u.

Возьмем  $\mathfrak{c}_k := (1 - D_k(a_k, U(a_k)))a_k$ , где  $D_k$  определены в (2.4). Числа  $D_k(a_k, U(a_k))$  положительны и стремятся к нулю, поэтому  $\mathfrak{c}_k \to a$  при  $k \to \infty$ . Покажем, что  $\mathfrak{c}_k(x, u(x)) \leqslant a(x, u(x))$ . Возьмем некоторое число  $x \in [-1 + \frac{2i}{k}, -1 + \frac{2(i+1)}{k}] =: [x_i, x_{i+1}]$ . Тогда  $\mathfrak{c}_k(x, u(x)) \leqslant \max(\mathfrak{c}_k(x_i, u(x)), \mathfrak{c}_k(x_{i+1}, u(x)))$ , поскольку  $\mathfrak{c}_k$  кусочно линейны по x. Далее,

$$\mathbf{c}_{k}(x_{i}, u(x)) = (1 - D_{k}(a_{k}, U(a_{k}))) \cdot a(x_{i}, u(x))$$

$$\leq a(x_{i}, u(x)) - \frac{a(x_{i}, u(x)) - a(x, u(x))}{a(x_{i}, u(x))} \cdot a(x_{i}, u(x)) = a(x, u(x)).$$

Аналогично,  $\mathfrak{c}_k(x_{i+1}, u(x)) \leqslant a(x, u(x))$ . Тем самым,  $\mathfrak{c}_k(x, u(x)) \leqslant a(x, u(x))$  для любого x, и  $\mathfrak{c}_k$  являются допустимыми для u. То есть функции  $\mathfrak{c}_k$  удовлетворяют (H1) - (H4).

При заданном  $k \in \mathbb{N}$ , будем приближать функцию  $\mathfrak{c}_k =: \mathfrak{c}$  весами, удовлетворяющими (H1) - (H5). Рассмотрим вспомогательную функцию  $\Lambda(x) = 1 - |x|$ , удовлетворяющую условию (1.3).

Возьмем

$$t(v) := D_k(\mathfrak{c}, U(\mathfrak{c})) \cdot \max\{\tau \geqslant 0 : \forall x \in u^{-1}(v) \quad \tau \Lambda(x) \leqslant \mathfrak{c}(x, u(x))\}.$$

Функция t зависит от k, но мы будем опускать это в записи.

Ясно, что максимальное  $\tau$  равно нулю только если  $c(\cdot,v)\equiv 0$ , иначе нарушается условие (H3). Функция t может не быть непрерывной. Однако, несложно видеть, что она полунепрерывна снизу. Возьмем теперь

$$\tilde{t}(v) := \inf_{w \in u([-1,1])} \{ t(w) + |v - w| \}.$$

Очевидно, что  $\tilde{t}\leqslant t$ , и множества нулей функций t и  $\tilde{t}$  совпадают.

Покажем, что  $\tilde{t}$  непрерывна (и даже липшицева). Зафиксируем некоторое  $v_1$ . Тогда найдутся сколь угодно малое  $\varepsilon > 0$  и  $w_1 \in u([-1,1])$ , удовлетворяющие  $\tilde{t}(v_1) = t(w_1) + |v_1 - w_1| - \varepsilon$ . Для любого  $v_2$  имеем  $\tilde{t}(v_2) \leqslant t(w_1) + |v_2 - w_1|$ . И, тем самым,  $\tilde{t}(v_2) - \tilde{t}(v_1) \leqslant |v_1 - v_2| + \varepsilon$ . В силу произвольности  $v_1$ ,  $v_2$  и  $\varepsilon$ , получаем, что  $\tilde{t}$  непрерывна.

При  $\alpha \in [0,1]$  функция  $\mathfrak{d}_{\alpha}(x,v) := \mathfrak{c}(x,v) + \alpha \Lambda(x)\tilde{t}(v)$  чётна по x, удовлетворяет неравенству (1.3) согласно лемме 8, и не превосходит a(x,v) по построению функции  $\tilde{t}$ . Таким образом,  $\mathfrak{d}_{\alpha}$  — допустимый вес. И теперь очевидно, что  $\mathfrak{d}_{\alpha}$  удовлетворяет условиям (H1) - (H4).

Покажем, что для почти всех  $\alpha \in [0,1]$  выполнено следующее условие.  $\mathfrak{d}_{\alpha}$  не имеет горизонтальных участков, за исключением v, для которых  $\mathfrak{d}_{\alpha}(\cdot,v) \equiv 0$ , и множества меры ноль. Введём обозначение для множества  $\alpha$ , «плохих» на участке  $[x_i, x_{i+1}]$ :

$$A_i := \left\{ \alpha \in [0, 1] : \\ \max\{v \in [\min u, \max u] : \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v))}{\frac{2}{k}} + \alpha \chi_i \tilde{t}(v) = 0 \right\} > 0 \right\},$$

где  $\chi_i = 1$  если  $[x_i, x_{i+1}] \subset [0, 1]$ , и  $\chi_i = -1$ , если  $[x_i, x_{i+1}] \subset [-1, 0]$ .

Рассмотрим функцию

$$h_i(v) = \frac{\mathfrak{c}(x_{i+1}, v) - \mathfrak{c}(x_i, v)}{\tilde{t}(v)}$$
 при  $\tilde{t}(v) \neq 0$  при  $\tilde{t}(v) = 0$ .

Тогда  $\operatorname{card}(A_i) = \operatorname{card}(\{\alpha \in [0,1] : \operatorname{meas}\{v \in [\min u, \max u] : h_i(v) \pm \frac{2}{k}\alpha = 0\} > 0\})$ . Значит  $\operatorname{card}(A_i) \leqslant \aleph_0$ , а также  $\operatorname{card}(\cup_i A_i) \leqslant \aleph_0$ . Тем самым, найдётся последовательность весов  $\mathfrak{d}_{\alpha_j} \searrow \mathfrak{c}$ , удовлетворяющих (H1) - (H5).

Из шага 3 имеем  $J(\mathfrak{d}_{\alpha_j},\overline{u})\leqslant J(\mathfrak{d}_{\alpha_j},u)$ . Переходя к пределу, получаем  $J(\mathfrak{c},\overline{u})\leqslant J(\mathfrak{c},u)$ .

Далее, при  $x \in [-1, 1]$  имеем

$$F(u(x), \mathfrak{c}_k(x, u(x))|u'(x)|) \to F(u(x), a(x, u(x))|u'(x)|)$$
(2.5)

при  $k \to \infty$ . Кроме того, F(u(x), a(x, u(x))|u'(x)|) является суммируемой мажорантой для левой части соотношения (2.5). По теореме Лебега о мажорируемой сходимости, получаем  $J(\mathfrak{c}_k, u) \to J(a, u)$ . Поскольку  $J(\mathfrak{c}_k, \overline{u}) \leqslant J(\mathfrak{c}_k, u)$ , теорема 10 даёт неравенство (1.2).

**Шаг 5.** Пусть вес а удовлетворяет лишь условию (H1). Тогда выполняется неравенство (1.2).

Будем строить приближение для a весами, удовлетворяющими (H1) – (H2). Воспользуемся леммой 10 с множеством  $W = \{v \in \mathbb{R}_+ : a(\cdot, v) \equiv 0\}$ .

Введём обозначение

$$Z_a(v) := \{x \in [-1, 1] : a(x, v) = 0\}.$$

Заметим, что множества  $Z_{\mathfrak{b}_{\ell}}(v)$  совпадают либо с  $Z_a(v)$ , либо с [-1,1].

Покажем, что  $\mathfrak{b}_{\ell}$  удовлетворяет (H2). Действительно, в противном случае найдётся последовательность  $v_m$ , для которой  $m < \operatorname{card}(Z_{\mathfrak{b}_{\ell}})(v_m) < \infty$ . После перехода к подпоследовательности имеем  $v_m \to v_0$ . Из части 2 леммы 7 следует, что множества  $Z_{\mathfrak{b}_{\ell}}(v_m) = Z_a(v_m)$  периодические с периодом не более  $\frac{2}{m-1}$ . Возьмем некоторый  $x \in [-1,1]$ . Для каждого m найдётся  $x_m$  такой, что  $|x-x_m| \leq \frac{1}{m-1}$  и  $a(x_m,v_m) = 0$ . Но  $a(x_m,v_m) \to a(x,v_0)$ . Тем самым,  $a(x,v_0) = 0$ . Отсюда  $Z_a(v_0) = [-1,1]$ . Но это означает, что для дюбого v, для которого

Отсюда  $Z_a(v_0)=[-1,1]$ . Но это означает, что для любого v, для которого  $|v-v_0|\leqslant \frac{1}{\ell}$ , выполнено  $\mathfrak{b}_\ell(\cdot,v)\equiv 0$ , что противоречит  $\mathrm{card}(Z_{\mathfrak{b}_\ell})(v_m)<\infty$ .

Зафиксируем теперь  $\ell \in \mathbb{N}$ , обозначим  $\mathfrak{b}_{\ell} =: \mathfrak{b}$  и приблизим функцию  $\mathfrak{b}$  весами, удовлетворяющими (H1)-(H3). Из (H2) следует, что найдётся множество  $T \subset [-1,1]$  состоящее из конечного числа элементов, такое, что если  $x \not\in T$  и  $\mathfrak{b}(x,v)=0$  для некоторого v, то  $\mathfrak{b}(\cdot,v)\equiv 0$ .

Вновь воспользуемся леммой 10 с множеством  $W=u(T)\cup \overline{u}(T)$ . Полученные при помощи леммы веса  $\mathfrak{c}_j$  удовлетворяют (H1)-(H2), поскольку отличаются от  $\mathfrak{b}$  лишь домножением на непрерывный множитель, меньший единицы и зависящий только от v.

Из непрерывности u следует, что для достаточно больших k найдутся j=j(k) такие, что

$$u\Big(\Big\{x\in[-1,1]:dist(x,T)\leqslant\frac{4}{k}\Big\}\Big)\subset\Big\{v\in\mathbb{R}_{+}:dist(v,u(T))\leqslant\frac{1}{2j}\Big\},$$

и  $j(k)\to\infty$  при  $k\to\infty$ . Отсюда  $\min_{dist(x,u^{-1}(v))\leqslant \frac{2}{k}}c_j(x,v)>0$  для всех  $v\in U(c_j)$ . Более того, при  $v\in U(c_j)$ 

$$\frac{\max\limits_{\substack{|x_{i}-x_{i+1}|\leqslant\frac{2}{k}}}|\mathfrak{c}_{j}(x_{i},v)-\mathfrak{c}_{j}(x_{i+1},v)|}{\min\limits_{\substack{\text{dist}(x,u^{-1}(v))\leqslant\frac{2}{k}}}\mathfrak{c}_{j}(x,v)}=\frac{\max\limits_{\substack{|x_{i}-x_{i+1}|\leqslant\frac{2}{k}}}|\mathfrak{b}(x_{i},v)-\mathfrak{b}(x_{i+1},v)|}{\min\limits_{\substack{\text{dist}(x,u^{-1}(v))\leqslant\frac{2}{k}}}\mathfrak{b}(x,v)}.$$

При этом, знаменатель второй дроби при  $v \in U(\mathfrak{c}_j)$  отделен от нуля. Тем самым,  $D_k(\mathfrak{c}_i, U(\mathfrak{c}_i))$  ограничена.

Поскольку  $D_k$  не меняется при домножении первого аргумента на коэффициент, не зависящий от x, и  $U(\mathfrak{c}_j) \nearrow U(\mathfrak{b})$ , имеем

$$D_k(\mathfrak{c}_i, U(\mathfrak{c}_i)) = D_k(\mathfrak{b}, U(\mathfrak{c}_i)) \leqslant D_k(\mathfrak{b}, U(\mathfrak{b})) \to 0$$

при  $k \to \infty$ .

Таким образом, веса  $\mathfrak{c}_{j(k)}$  удовлетворяют (H1)-(H3). Из шага 4 имеем  $J(\mathfrak{c}_{j(k)}, \overline{u}) \leqslant J(\mathfrak{c}_{j(k)}, u)$ . Переходя к пределу, получаем  $J(\mathfrak{b}_{\ell}, \overline{u}) \leqslant J(\mathfrak{b}_{\ell}, u)$ , а затем и неравенство (1.2).

Тем самым, теорема 13 доказана. □

# 2.5 Доказательство неравенства (1.2) для функций, закреплённых на левом конце

Рассмотрим теперь случай, когда функция u удовлетворяет дополнительному условию u(-1) = 0.

**Теорема 14.** Пусть  $F \in \mathfrak{F}$ , функция  $u \in W_1^1[-1,1]$  неотрицательна, u(-1) = 0, весовая функция  $a : [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$  непрерывна и удовлетворяет неравенству (1.3). Тогда справедливо неравенство (1.2).

- (H1') a(x,v) удовлетворяет неравенству (1.3), а также  $J(a,u)<\infty$ .
- (H7') Выполнено условие (H7), и  $a(\cdot,v)\equiv 0$  в некоторой v-окрестности нуля.

**Шаг 1.** Пусть  $u \in W_1^1[-1,1]$ , выполнено u(-1) = 0, u вес а удовлетворяет условиям (H1'), (H2) - (H6), (H7'). Тогда выполняется неравенство (1.2).

Для доказательства будем приближать функцию u так же, как и в первом шаге доказательства теоремы 13, с заменой u в некоторой окрестности точки x=-1 на линейную так, чтобы  $u_n(-1)=0$ .

**Шаг 2.** Пусть вес а удовлетворяет условиям (H1'), (H2) - (H6). Тогда выполняется неравенство (1.2).

Для доказательства добавим в множество W из второго шага доказательства теоремы 13 точку 0 и повторим рассуждение.

Дальнейшие шаги проходят без изменений.

#### 2.6 Условия, необходимые для выполнения неравенства (2.1)

Нам потребуется вспомогательная

**Лемма 11.** Если для функции  $a \in C([-1,1] \times \mathbb{R}_+)$  выполнено соотношение

$$a(s,v) + a(t,v) \ge a\left(\frac{s-t}{2},v\right) + a\left(\frac{t-s}{2},v\right), \quad s,t \in [-1,1], \ v \in \mathbb{R}_+$$
 (2.6)

то она чётна и выпукла по первому аргументу.

Доказательство. Предположим для начала, что  $a(\cdot,v)\in C^1[-1,1]$  при каждом v. Зафиксируем произвольные  $s\in [-1,1]$  и  $v\in \mathbb{R}_+$  и рассмотрим функцию

$$b(x) := a(s, v) + a(x, v) - a(\frac{s - x}{2}, v) - a(\frac{x - s}{2}, v) \geqslant 0.$$

x = -s является точкой минимума функции b, поскольку b(-s) = 0. Значит,

$$b'(-s) = a'_x(-s, v) + \frac{1}{2}a'_x(s, v) - \frac{1}{2}a'_x(-s, v) = 0,$$

то есть  $a_x'(s,v)=-a_x'(-s,v).$  Тем самым, функция  $a(\cdot,v)$  четна.

Рассмотрим теперь случай произвольной непрерывной a.

Продолжим a(x,v):=a(-1,v) при x<-1 и a(x,v):=a(1,v) при x>1. Рассмотрим усреднение функции:

$$a_{\rho}(x,v) = \int_{\mathbb{R}} \omega_{\rho}(z) a(x-z,v) dz = \int_{\mathbb{R}} \omega_{\rho}(z) a(x+z,v) dz,$$

где  $\omega_{
ho}(z)$  — усредняющее ядро с радиусом ho. Тогда для  $-1+
ho\leqslant s,t\leqslant 1ho$ 

$$a_{\rho}(s,v) + a_{\rho}(t,v) - a_{\rho}(\frac{s-t}{2},v) - a_{\rho}(\frac{t-s}{2},v) = \int_{\mathbb{R}} \omega_{\rho}(z) \left( a(s-z,v) + a(t+z,v) - a(\frac{s-t}{2}-z,v) - a(\frac{t-s}{2}+z,v) \right) dz \ge 0.$$

Значит функция  $a_{\rho}(\cdot,v)$  чётна на  $[-1+\rho,1-\rho]$ . Переходя к пределу при  $\rho\to 0$ , получаем, что функция  $a(\cdot,v)$  чётна.

Наконец, для любых s, t и v имеем

$$a(s,v) + a(t,v) = a(s,v) + a(-t,v) \ge 2a(\frac{s+t}{2},v).$$

**Теорема 15.** Если неравенство (2.1) выполняется для произвольной  $F \in \mathfrak{F}$  и произвольной кусочно линейной u, то вес a — чётная u выпуклая по первому аргументу функция.

Доказательство. Докажем, что в условиях теоремы выполнено неравенство (2.6). Отсюда, ввиду леммы 11, будет следовать утверждение теоремы.

Предположим, что неравенство (2.6) не выполнено. Тогда найдутся  $-1 \leqslant s < t \leqslant 1$ ,  $\varepsilon, \delta > 0$  ( $2\varepsilon < t - s$ ) и  $v_0 \in \mathbb{R}_+$ , такие, что для любого  $0 \leqslant z \leqslant \varepsilon$  и любого  $v_0 \leqslant v \leqslant v_0 + \varepsilon$  выполнено

$$a(s+z,v+z) + a(t-z,v+z) + 2\delta < a\Big(\frac{s-t}{2} + z,v+z\Big) + a\Big(\frac{t-s}{2} - z,v+z\Big). \eqno(2.7)$$

Рассмотрим функцию  $u_2$ , введенную в (1.4). Тогда

$$\begin{cases} u_2^*(x) = v_0, & x \in [-1, \frac{s-t}{2}] \cup [\frac{t-s}{2}, 1] \\ u_2^*(x) = v_0 + x - \frac{s-t}{2}, & x \in [\frac{s-t}{2}, \frac{s-t}{2} + \varepsilon] \\ u_2^*(x) = v_0 + \varepsilon, & x \in [\frac{s-t}{2} + \varepsilon, \frac{t-s}{2} - \varepsilon] \\ u_2^*(x) = v_0 + \frac{t-s}{2} - x, & x \in [\frac{t-s}{2} - \varepsilon, \frac{t-s}{2}]. \end{cases}$$

Отсюда получаем

$$0 \leqslant J(a, u_{2}) - J(a, \overline{u_{2}})$$

$$= \int_{0}^{\varepsilon} F(u_{2}(s+z), \frac{a(s+z, u_{2}(s+z))}{\varepsilon}) dz + \int_{0}^{\varepsilon} F(u_{2}(t-z), \frac{a(t-z, u_{2}(t-z))}{\varepsilon}) dz$$

$$- \int_{0}^{\varepsilon} F(u_{2}^{*}(\frac{s-t}{2}+z), \frac{a(\frac{s-t}{2}+z, u_{2}^{*}(\frac{s-t}{2}+z))}{\varepsilon}) dz$$

$$- \int_{0}^{\varepsilon} F(u_{2}^{*}(\frac{t-s}{2}-z), \frac{a(\frac{t-s}{2}-z, u_{2}^{*}(\frac{t-s}{2}-z))}{\varepsilon}) dz =: \Delta J.$$

Возьмем  $F(v,p):=f(p):=p+\gamma p^2$ , где  $\gamma>0$ . Тогда

$$\Delta J = \int_0^{\varepsilon} \left( f\left(\frac{a(s+z, v_0+z)}{\varepsilon}\right) + f\left(\frac{a(t-z, v_0+z)}{\varepsilon}\right) - f\left(\frac{a\left(\frac{s-t}{2}+z, v_0+z\right)}{\varepsilon}\right) - f\left(\frac{a\left(\frac{t-s}{2}-z, v_0+z\right)}{\varepsilon}\right) \right) dz.$$

Обозначим

$$M = \max_{(x,v)} a(x,v), \qquad (x,v) \in [-1,1] \times u_2([-1,1]).$$

Если взять  $\gamma:=\frac{\delta/\epsilon}{(M/\epsilon)^2}>0$ , то для  $p\leqslant \frac{M}{\epsilon}$  имеем  $p\leqslant f(p)\leqslant p+\frac{\delta}{\epsilon}$ , и

$$\Delta J \leqslant \frac{1}{\varepsilon} \int_0^{\varepsilon} \left( a(s+z, v_0 + z) + a(t-z, v_0 + z) + 2\delta - a(\frac{s-t}{2} + z, v_0 + z) - a(\frac{t-s}{2} - z, v_0 + z) \right) dz < 0$$

(последнее неравенство следует из (2.7)).

Тем самым, мы пришли к противоречию, что завершает доказательство.

## 2.7 Доказательство неравенства (2.1)

**Теорема 16.** Пусть  $F \in \mathfrak{F}$ , функция  $u \in W_1^1[-1,1]$  неотрицательна, и непрерывная весовая функция  $a: [-1,1] \times \mathbb{R}_+ \to \mathbb{R}_+$  чётна и выпукла по первому аргументу. Тогда справедливо неравенство (2.1).

Доказательство. Для липшицевых функций u утверждение теоремы доказано в [2]. Таким образом, необходимо лишь перейти к  $W_1^1$ -функциям.

Структура выпуклого по x веса гораздо проще структуры веса, который мы рассматривали для случая монотонной перестановки. Выпуклый вес убывает при x < 0 и возрастает при x > 0 независимо от v. Тем самым, мы сразу входим в условия (H6) из теоремы 13. Чтобы войти в условия (H7), применим лемму 10 с множеством  $W = \{u(0)\}$ . Это дает нам возможность сразу воспользоваться шагом 1 доказательства, получив неравенство (2.1) в общем виде. Заметим, что шаг 1 использует лишь условия (H1), (H6), (H7), так что нет нужды проверять остальные.

## Глава 3. Монотонность функционалов с переменным показателем суммирования

#### 3.1 Обозначения

В этой главе мы рассматриваем обобщения неравенства (2.1) на случай функционалов с переменным показателем суммирования в интегранте:

$$\mathcal{J}(u) = \int_{-1}^{1} |u'(x)|^{p(x)} dx, \qquad \mathcal{I}(u) = \int_{-1}^{1} (1 + |u'(x)|^2)^{\frac{p(x)}{2}} dx.$$

Здесь  $p(x) \geqslant 1$  — непрерывная функция на отрезке  $[-1,1], u \in \overset{o}{W}_1^1$   $[-1,1], u \geqslant 0$ . Мы используем обозначение  $f_{\pm} = \max(\pm f,0)$ .

#### 3.2 Необходимые условия

**Теорема 17.** Пусть  $\mathcal{J}(u^*) \leqslant \mathcal{J}(u)$  выполнено для любой кусочно линейной функции  $u \geqslant 0$ . Тогда  $p(x) \equiv const$ .

Доказательство. Рассмотрим  $x_0 \in (-1,1)$ . Для любых  $\alpha > 0$  и  $\epsilon > 0$ , удовлетворяющих  $[x_0 - \epsilon, x_0 + \epsilon] \subset [-1,1]$ , определим функцию

$$u_{\alpha,\varepsilon}(x) = \alpha(\varepsilon - |x - x_0|)_+.$$

Тогда  $u_{\alpha,\varepsilon}^*(x) = \alpha(\varepsilon - |x|)_+$ , и

$$\mathcal{J}(u_{\alpha,\varepsilon}) = \int_{x_0-\varepsilon}^{x_0+\varepsilon} \alpha^{p(x)} dx, \qquad \mathcal{J}(u_{\alpha,\varepsilon}^*) = \int_{-\varepsilon}^{\varepsilon} \alpha^{p(x)} dx.$$

Возьмём неравенство

$$\frac{\mathcal{J}(u_{\alpha,\varepsilon}^*)}{2\varepsilon} \leqslant \frac{\mathcal{J}(u_{\alpha,\varepsilon})}{2\varepsilon},$$

и перейдём к пределу при  $\varepsilon \to 0$ . Поскольку p непрерывна, мы получим  $\alpha^{p(0)} \leqslant \alpha^{p(x_0)}$ . При  $\alpha > 1$  и  $\alpha < 1$  это даёт  $p(0) \leqslant p(x_0)$  и  $p(0) \geqslant p(x_0)$  соответственно.

**Теорема 18.** Если неравенство  $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$  выполняется для всех кусочно линейных  $u \geqslant 0$ , то р чётна и выпукла. Более того, выпукла следующая функция:

$$K(s,x) = s(1+s^{-2})^{\frac{p(x)}{2}}, \quad s > 0, \ x \in [-1,1].$$

 $\mathcal{A}$ оказательство. Возьмём две точки  $-1 < x_1 < x_2 < 1$  и рассмотрим финитную кусочно линейную функцию с ненулевой производной лишь в окрестностях  $x_1$  и  $x_2$ . А именно, для произвольных s,t>0 и достаточно малого  $\varepsilon>0$ 

$$\begin{cases} u_{\varepsilon}(x) = 0, & x \in [-1, x_1 - s\varepsilon] \cup [x_2 + s\varepsilon, 1] \\ u_{\varepsilon}(x) = \varepsilon + \frac{x - x_1}{s}, & x \in [x_1 - s\varepsilon, x_1 + s\varepsilon] \\ u_{\varepsilon}(x) = 2\varepsilon, & x \in [x_1 + s\varepsilon, x_2 + s\varepsilon] \\ u_{\varepsilon}(x) = \varepsilon + \frac{x_2 - x}{t}, & x \in [x_2 - t\varepsilon, x_2 + t\varepsilon]. \end{cases}$$



Рисунок  $3.1 - \Gamma$ рафик  $u_{\varepsilon}$ 

Тогда

$$\begin{cases} u_{\varepsilon}^*(x) = 0, & x \in [-1, \frac{x_1 - x_2}{2} - \frac{s + t}{2}\varepsilon] \cup [\frac{x_2 - x_1}{2} + \frac{s + t}{2}\varepsilon, 1] \\ u_{\varepsilon}^*(x) = \varepsilon + \frac{2x - (x_2 - x_1)}{s + t}, & x \in [\frac{x_1 - x_2}{2} - \frac{s + t}{2}\varepsilon, \frac{x_1 - x_2}{2} + \frac{s + t}{2}\varepsilon] \\ u_{\varepsilon}^*(x) = 2\varepsilon, & x \in [\frac{x_1 - x_2}{2} + \frac{s + t}{2}\varepsilon, \frac{x_2 - x_1}{2} - \frac{s + t}{2}\varepsilon] \\ u_{\varepsilon}^*(x) = \varepsilon + \frac{(x_2 - x_1) - 2x}{s + t}, & x \in [\frac{x_2 - x_1}{2} - \frac{s + t}{2}\varepsilon, \frac{x_2 - x_1}{2} + \frac{s + t}{2}\varepsilon]. \end{cases}$$



Рисунок  $3.2 - \Gamma$ рафик  $u_{\varepsilon}^*$ 

Множества, на которых  $u'_{\varepsilon}=0$  и  $u_{\varepsilon}^{*'}=0$  имеют одинаковую меру. Поэтому неравенство  $\mathcal{I}(u_{\varepsilon}^*)\leqslant \mathcal{I}(u_{\varepsilon})$  эквивалентно следующему:

$$\int_{x_1-s\varepsilon}^{x_1+s\varepsilon} \left(1 + \frac{1}{s^2}\right)^{\frac{p(x)}{2}} dx + \int_{x_2-t\varepsilon}^{x_2+t\varepsilon} \left(1 + \frac{1}{t^2}\right)^{\frac{p(x)}{2}} dx$$

$$\geqslant \int_{\frac{x_1-x_2}{2} - \frac{s+t}{2}\varepsilon}^{\frac{s+t}{2}\varepsilon} \left(1 + \frac{1}{\left(\frac{s+t}{2}\right)^2}\right)^{\frac{p(x)}{2}} dx + \int_{\frac{x_2-x_1}{2} - \frac{s+t}{2}\varepsilon}^{\frac{x_2-x_1}{2} + \frac{s+t}{2}\varepsilon} \left(1 + \frac{1}{\left(\frac{s+t}{2}\right)^2}\right)^{\frac{p(x)}{2}} dx.$$

Разделим это неравенство на  $2\varepsilon$  и устремим  $\varepsilon \to 0$ , получив в пределе

$$s\left(1+\frac{1}{s^{2}}\right)^{\frac{p(x_{1})}{2}}+t\left(1+\frac{1}{t^{2}}\right)^{\frac{p(x_{2})}{2}}$$

$$\geqslant \frac{s+t}{2}\left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(\frac{x_{1}-x_{2}}{2})}{2}}+\frac{s+t}{2}\left(1+\frac{1}{\left(\frac{s+t}{2}\right)^{2}}\right)^{\frac{p(\frac{x_{2}-x_{1}}{2})}{2}}. (3.1)$$

Для начала, положим s=t в неравенстве (3.1). Получаем

$$(1 + \frac{1}{s^2})^{\frac{p(x_1)}{2}} + (1 + \frac{1}{s^2})^{\frac{p(x_2)}{2}} \geqslant (1 + \frac{1}{s^2})^{\frac{p(\frac{x_2 - x_1}{2})}{2}} + (1 + \frac{1}{s^2})^{\frac{p(\frac{x_1 - x_2}{2})}{2}}.$$
 (3.2)

Обозначим  $\sigma := \frac{1}{s^2}$  и применим разложение по Тейлору к неравенству (3.2) в точке  $\sigma = 0$ :

$$\sigma p(x_1) + \sigma p(x_2) \geqslant \sigma p(\frac{x_2 - x_1}{2}) + \sigma p(\frac{x_1 - x_2}{2}) + r(\sigma),$$

где  $r(\sigma) = o(\sigma)$  при  $\sigma \to 0$ . Таким образом, для любых  $x_1, x_2 \in [-1, 1]$  имеем

$$p(x_1) + p(x_2) \ge p(\frac{x_2 - x_1}{2}) + p(\frac{x_1 - x_2}{2}).$$

По лемме 11 получаем, что p чётна и выпукла.

Теперь подставим  $-x_2$  вместо  $x_2$  в (3.1). Поскольку p чётна, получаем  $K(s,x_1)+K(t,x_2)\geqslant 2K(\frac{s+t}{2},\frac{x_1+x_2}{2}).$ 

## 3.3 Доказательство неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$

В этом параграфе мы показываем, что необходимые условия, установленные в теореме 18, являются также и достаточными.

**Лемма 12.** Пусть m — чётное положительное число,  $s_k > 0$  (k = 1 ... m),  $-1 \le x_1 \le ... \le x_m \le 1$ . Тогда, если K(s,x) чётна по x и выпукла по совокупности аргументов, то

$$\sum_{k=1}^{m} K(s_k, x_k) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m} s_k, \frac{1}{2}\sum_{k=1}^{m} (-1)^k x_k\right). \tag{3.3}$$

Доказательство. Заметим, что неравенство (3.3) равносильно такому же неравенству для функции M(s,x)=K(s,x)-s. Также заметим, что M убывает по s, поскольку M выпукла по s и

$$M_s(s,x) = (1 + \frac{1}{s^2})^{\frac{p(x)}{2} - 1} (1 + \frac{1}{s^2} - \frac{p(x)}{s^2}) - 1 \to 0$$
 при  $s \to \infty$ .

Тогда

$$\sum_{k=1}^{m} M(s_k, x_k) \geqslant M(s_1, x_1) + M(s_m, x_m) \stackrel{a}{\geqslant} 2M(\frac{s_1 + s_m}{2}, \frac{x_m - x_1}{2}) \geqslant$$

$$\stackrel{b}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{x_m - x_1}{2}) \stackrel{c}{\geqslant} 2M(\frac{1}{2} \sum_{k=1}^{m} s_k, \frac{1}{2} \sum_{k=1}^{m} (-1)^k x_k).$$

Неравенство (a) следует из того, что M чётна по x и выпукла, (b) — из убывания M по s, (c) — из возрастания M по x при  $x\geqslant 0$ .

**Лемма 13.** Пусть функция K(s,x) чётна по x и выпукла по совокупности аргументов. Тогда  $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$  для любой кусочно линейной функции  $u \in W_1^1$  [-1,1].

Доказательство. Обозначим  $L \subset [-1,1]$  множество точек излома функции u (включая концы отрезка). Возьмём  $U = u([-1,1]) \setminus u(L)$ , множество значений функции u без образов точек излома. Это множество представляется в виде объединения конечного числа непересекающихся интервалов  $U = \cup_j U_j$ . Заметим, что для каждого j множество  $u^{-1}(U_j)$  разбивается на чётное число интервалов (обозначим это количество  $m_j$ ), на каждом из которых функция u совпадает с

некоторой линейной функцией  $y_k^j, k=1,\ldots,m_j$ . Для удобства считаем, что носители  $y_k^j$  для каждого j идут по порядку, то есть  $\sup dom(y_k^j) \leqslant \inf dom(y_{k+1}^j)$ . Обозначим  $b_k^j = |y_k^{j\prime}(x)|$ . Также обозначим

$$Z = \max\{x \in (-1,1)|u'(x) = 0\} = \max\{x \in (-1,1)|u^{*'}(x) = 0\}.$$

Тогда

$$\mathcal{I}(u) - Z = \sum_{j} \int_{u^{-1}(U_j)} (1 + u'^2(x))^{\frac{p(x)}{2}} dx = \sum_{j} \sum_{k} \int_{dom(y_k^j)} (1 + y_k^{j'^2}(x))^{\frac{p(x)}{2}} dx =$$

$$= \sum_{j} \int_{U_j} \sum_{k} \frac{1}{b_k^j} (1 + b_k^{j^2})^{\frac{p((y_k^j)^{-1}(y))}{2}} dy = \sum_{j} \int_{U_j} \sum_{k} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) dy.$$

Любая точка  $y \in U$  имеет два прообраза относительно функции  $u^*$ , поэтому на множестве U можно определить  $(u^*)^{-1}: U \to [0,1]$ . Для каждого j можно выразить  $(u^*)^{-1}$  и модуль её производной на участке  $U_j$  следующим образом:

$$(u^*)^{-1}(y) = \frac{1}{2} \sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y);$$

$$|((u^*)^{-1})'(y)| = \frac{1}{|u^{*'}((u^*)^{-1}(y))|} = \frac{1}{2} \sum_{k=1}^{m_j} \frac{1}{b_k^j} =: \frac{1}{b_j^*}.$$

Ввиду чётности  $u^*$  имеем

$$\mathcal{I}(u^*) - Z = 2 \int_{(u^*)^{-1}(U)} (1 + u^{*\prime 2}(x))^{\frac{p(x)}{2}} dx =$$

$$= 2 \int_{U} |((u^*)^{-1})'(y)| \cdot \left(1 + \frac{1}{((u^*)^{-1})'(y)^2}\right)^{\frac{p((u^*)^{-1}(y))}{2}} dy =$$

$$= 2 \sum_{j} \int_{U_j} \frac{1}{b_j^*} (1 + b_j^{*2})^{\frac{1}{2}p\left(\frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right)} dy =$$

$$= 2 \sum_{j} \int_{U_j} K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_j^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right) dy.$$

Зафиксируем j и y. Тогда для доказательства леммы достаточно выполнения

$$\sum_{k=1}^{m_j} K\left(\frac{1}{b_k^j}, (y_k^j)^{-1}(y)\right) \geqslant 2K\left(\frac{1}{2}\sum_{k=1}^{m_j} \frac{1}{b_k^j}, \frac{1}{2}\sum_{k=1}^{m_j} (-1)^k (y_k^j)^{-1}(y)\right).$$

Но это неравенство обеспечивается леммой 12.

Теперь можно доказать неравенство для функций u общего вида.

**Теорема 19.** Пусть р чётна, а K выпукла по совокупности переменных. Тогда для любой функции  $u \in W_1^1$  [-1,1] выполнено  $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ .

Доказательство. Без потери общности предполагаем, что  $I(u) < \infty$ . По предложению 6 существует последовательность кусочно постоянных функций  $v_k$ , сходящаяся к u' в пространстве Орлича  $L^{p(x)}$ . Обозначим  $u_k$  первообразные  $v_k$ , удовлетворяющие  $u_k(-1)=0$ .

Легко видеть, что  $u_k \rightrightarrows u$ , а значит  $\varepsilon_k := -\inf u_k \to 0$ . Определим  $\delta_k$  через соотношение:

$$\int_{-1}^{-1+\delta_k} (v_k)_- = \varepsilon_k \tag{3.4}$$

и возьмём

$$\tilde{v}_k = (v_k)_+ - (v_k)_- \cdot \chi_{[-1+\delta_k,1]}.$$

Мы утверждаем, что  $\|\tilde{v}_k - v_k\|_{L^{p(x)}[-1,1]} \to 0$ . Действительно, ввиду (3.4) мера множества

$$\mathcal{A}_k = \{ x \in [-1, -1 + \delta_k] : (v_k)_- \geqslant \sqrt{\varepsilon_k} \}$$

стремится к 0 при  $k \to \infty$ . Поскольку  $v_k \to u'$  в  $L^{p(x)}$ , имеем

$$\|(v_k)_-\|_{L^{p(x)}(\mathcal{A}_k)} \leqslant \|u'\|_{L^{p(x)}(\mathcal{A}_k)} + \|v_k - u'\|_{L^{p(x)}(\mathcal{A}_k)} \to 0.$$

Поскольку

$$\|(v_k)_-\|_{L^{p(x)}([-1,-1+\delta_k]\setminus\mathcal{A}_k)}\to 0,$$

имеем

$$\|\tilde{v}_k - v_k\|_{L^{p(x)}[-1,1]} = \|(v_k)_-\|_{L^{p(x)}[-1,-1+\delta_k]} \to 0,$$

как и заявлено.

Обозначим  $\tilde{u}_k$  первообразную  $\tilde{v}_k$ , удовлетворяющую  $\tilde{u}_k(-1)=0$ . По построению  $\tilde{u}_k\geqslant 0$ . Положим  $\tilde{\varepsilon}_k=\tilde{u}_k(1)\to 0$ , определим  $\tilde{\delta}_k$  через соотношение

$$\int_{1-\tilde{\delta}_k}^1 (\tilde{v}_k)_+ = \tilde{\varepsilon}_k$$

и обозначим

$$\hat{v}_k = (\tilde{v}_k)_+ \cdot \chi_{[-1,1-\tilde{\delta}_k]} - (\tilde{v}_k)_-.$$

Используя те же рассуждения, получаем  $\|\hat{v}_k - \tilde{v}_k\|_{L^{p(x)}[-1,1]} \to 0$ .

Обозначим  $\hat{u}_k$  первообразную  $\hat{v}_k$ , удовлетворяющую  $\hat{u}_k(-1)=0$ . По построению  $\hat{u}_k\geqslant 0,\ \hat{u}_k(1)=0$  и  $\hat{u}_k'\to u'$  в  $L^{p(x)}[-1,1].$ 

Из вложения  $L^{p(x)}[-1,1] \mapsto L^1[-1,1]$  следует  $\hat{u}_k \to u$  в  $W_1^1[-1,1]$ . Далее, поскольку  $|\sqrt{1+x^2}-\sqrt{1+y^2}| \leqslant |x-y|$  для любых x и y, из сходимости  $\hat{u}_k' \to u'$  в  $L^{p(x)}$  следует  $\mathcal{I}(\hat{u}_k) \to \mathcal{I}(u)$ .

По предложению 7 из сходимости  $\hat{u}_k \to u$  в  $W_1^1$  [-1,1] следует слабая сходимость  $\hat{u}_{k_l}^* \to u^*$  в  $W_1^1$  [-1,1]. Кроме того, по предложению 1 функционал  $\mathcal I$  секвенциально слабо полунепрерывен снизу. Поэтому

$$\mathcal{I}(u^*) \leqslant \liminf_{k} \mathcal{I}(\hat{u}_{k_l}^*) \leqslant \lim_{k} \mathcal{I}(\hat{u}_{k_l}) = \mathcal{I}(u).$$

#### 3.4 Некоторые достаточные условия

Условие выпуклости функции K на самом деле есть некоторое условие на функцию p. Вычисление показывает, что всегда  $\partial_{ss}^2 K > 0$ , а также если p выпукла, то и  $\partial_{xx}^2 K \geqslant 0$ . Поэтому выпуклость K равносильна выполнению неравенства  $\det(K'') \geqslant 0$  в смысле мер.

Прямое вычисление приводит к

$$\det(K'') = \frac{(1+w)^{q-1}}{4}$$
 ×  $\Big(w(wq+1)(q+1)\ln(1+w)(q'^2\ln(1+w)+2q'')-q'^2((1-qw)\ln(1+w)-2w)^2\Big),$  где  $q=q(x)=p(x)-1$  и  $w=w(s)=\frac{1}{s^2}.$ 

Поэтому неравенство  $\det(K'')\geqslant 0$  даёт следующее неравенство на функцию q:

$$qq'' \geqslant q'^2 \mathcal{B}(q), \tag{3.5}$$

где  $\mathcal{B}(q) \equiv \sup_{w>0} B(w,q)$  и

$$B(w,q) = \frac{q(4w - (w+3)\ln(w+1)) - \frac{w-1}{w}\ln(w+1) + 4\frac{w}{\ln(w+1)} - 4}{2(qw+1)} \cdot \frac{q}{q+1}.$$

Следующее утверждение проверяется прямым счётом.

**Лемма 14.** Пусть  $q \ge 0$  — непрерывная функция на [-1,1]. Тогда неравенство  $qq'' \ge q'^2 \mathcal{M}$  в смысле распределений при  $\mathcal{M} \in (0,1)$  равносильно выпуклости функции  $q^{1-\mathcal{M}}$ .

Сформулируем теперь простые достаточные условия для выполнения неравенства  $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$ :

**Теорема 20.** Пусть  $p(x) \geqslant 1 -$ чётная непрерывная функция на [-1, 1].

- і) Если функция  $(p(x)-1)^{0.37}$  выпукла, то неравенство  $\mathcal{I}(u^*)\leqslant \mathcal{I}(u)$  выполнено для любой неотрицательной  $u\in W_1^1$  [-1,1].
- іі) Если  $p(x) \leqslant 2.36$  для всех  $x \in [-1,1]$  и функция  $\sqrt{p(x)-1}$  выпукла, то неравенство  $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$  выполнено для любой неотрицательной  $u \in \overset{\circ}{W}^1_1$  (-1,1).

Доказательство. Следующие неравенства доказаны в параграфе 3.5:

$$\sup_{q\geqslant 0} \mathcal{B}(q) = \limsup_{q\to +\infty} \mathcal{B}(q) \leqslant 0.63; \tag{3.6}$$

$$\sup_{0 \leqslant q \leqslant 1.36} \mathcal{B}(q) \leqslant 0.5. \tag{3.7}$$

По лемме 14 неравенство (3.5) следует для обоих пунктов теоремы. Применение теоремы 19 завершает доказательство.

## **3.5** Численные оценки функции B(w,q)

Для доказательства неравенства (3.6) мы делим положительный квадрант  $(w,q) \in \mathbb{R}_+ \times \mathbb{R}_+$  на пять участков, см. рис. 3.3:

$$R_1 = [0, 6] \times [0, 1], \quad R_2 = [0, 1] \times [1, \infty], \quad R_3 = [1, 4] \times [1, \infty],$$
  
 $R_4 = [6, \infty] \times [0, 1], \quad R_5 = [4, \infty] \times [1, \infty].$ 

На каждом из участков мы доказываем неравенство численно-аналитическим методом.

Для  $(w,q) \in R_1$  мы строим кусочно постоянную функцию  $B_1(w,q)$ , оценивающую B(w,q) сверху. Для этого мы делим  $R_1$  на прямоугольники

$$Q \equiv \{w_0 \leqslant w \leqslant w_1; \quad q_0 \leqslant q \leqslant q_1\} \subset R_1$$



Рисунок 3.3 - K доказательству неравенства (3.6)

и находим постоянное значение  $B_1$  на каждом из них, заменяя члены формулы для B(w,q) их экстремальными значениями в этом прямоугольнике:

$$B(w,q) = \frac{q(4w - (w+3)\ln(w+1)) - (1 - \frac{1}{w})\ln(w+1) + 4\frac{w}{\ln(w+1)} - 4}{2(qw+1)} \cdot \frac{q}{q+1}$$

$$= \frac{[4qw] - [q(w+3)\ln(w+1)] - [\ln(w+1)] + [\frac{\ln(w+1)}{w}] + [4\frac{w}{\ln(w+1)}] - 4}{[2(qw+1)]} \cdot [\frac{q}{q+1}]$$

$$\stackrel{(*)}{\leqslant} \frac{[4q_1w_1] - [q_0(w_0+3)\ln(w_0+1)] - [\ln(w_0+1)] + [\frac{\ln(w_0+1)}{w_0}] + [4\frac{w_1}{\ln(w_1+1)}] - 4}{[2(q_0w_0+1)]}$$

$$\times [\frac{q_1}{q_1+1}] =: B_1|_Q.$$

Неравенство (\*) вытекает из монотонности в  $R_1$  каждой из функций, заключённых в квадратные скобки, по обеим переменным.

Для  $(w,q)\in R_2$  мы полагаем  $r=\frac{1}{q}$  и строим кусочно постоянную функцию  $B_2(w,r)$ , оценивающую  $B(w,\frac{1}{r})$  сверху. Для каждого прямоугольника

$$Q \equiv \{w_0 \leqslant w \leqslant w_1; \quad \frac{1}{r_1} \leqslant q = \frac{1}{r} \leqslant \frac{1}{r_0}\} \subset R_2$$

берём

$$B(w, \frac{1}{r}) = \left( \left[ 4\left(\frac{w}{\ln(w+1)} - 1\right)r \right] + \left[ 3\left(w - \ln(w+1)\right) \right] - \left[w \ln(w+1)\right] - \left[r \ln(w+1)\right] + \left[w\right] + \left[r \frac{\ln(w+1)}{w}\right] \right) / \left( \left[ 2\left(w + r\right) \right] \cdot \left[1 + r\right] \right)$$

$$\leq \left( \left[ 4\left(\frac{w_1}{\ln(w_1+1)} - 1\right)r_1 \right] + \left[ 3\left(w_1 - \ln(w_1+1)\right) \right] - \left[w_0 \ln(w_0+1)\right] - \left[r_0 \ln(w_0+1)\right] + \left[w_1\right] + \left[r_1 \frac{\ln(w_0+1)}{w_0}\right] \right) / \left( \left[ 2\left(w_0 + r_0\right) \right] \cdot \left[1 + r_0\right] \right) =: B_2|_Q.$$

Аналогично, для  $(w,q) \in R_4$  мы полагаем  $v=\frac{1}{w}$  и строим кусочно постоянную функцию  $B_4(v,q)$ , оценивающую  $B(\frac{1}{v},q)$  сверху. Для каждого прямоугольника

$$Q \equiv \{\frac{1}{v_1} \leqslant w = \frac{1}{v} \leqslant \frac{1}{v_0}; \quad q_0 \leqslant q \leqslant q_1\} \subset R_4$$

берём

$$B(\frac{1}{v},q) = \left( [4q] - [q(1+3v)\ln(\frac{1}{v}+1)] - [v\ln(\frac{1}{v}+1)] + [v^2\ln(\frac{1}{v}+1)] \right)$$

$$+ \left[ \frac{4}{\ln(\frac{1}{v}+1)} \right] - [4v] / \left( [2(v+q)] \right) \times \left[ \frac{q}{q+1} \right]$$

$$\leq \left( [4q_1] - [q_0(1+3v_0)\ln(\frac{1}{v_0}+1)] - [v_0\ln(\frac{1}{v_0}+1)] + [v_1^2\ln(\frac{1}{v_1}+1)]$$

$$+ \left[ \frac{4}{\ln(\frac{1}{v_1}+1)} \right] - [4v_0] / \left( [2(v_0+q_0)] \right) \times \left[ \frac{q_1}{q_1+1} \right] =: B_4|_Q.$$

Наконец, для  $(w,q) \in R_5$  мы используем обозначения  $v = \frac{1}{w}$ ,  $r = \frac{1}{q}$  и строим кусочно постоянную функцию  $B_5(w,r)$ , оценивающую  $B(\frac{1}{v},\frac{1}{r})$  сверху. Для каждого прямоугольника

$$Q \equiv \{ \frac{1}{v_1} \leqslant w = \frac{1}{v} \leqslant \frac{1}{v_0}; \quad \frac{1}{r_1} \leqslant q = \frac{1}{r} \leqslant \frac{1}{r_0} \} \subset R_5$$

берём

$$B(\frac{1}{v}, \frac{1}{r}) = \frac{\left[\frac{4r}{\ln(\frac{1}{v}+1)}\right] + \left[4(1-rv)\right] - \left[\left(r(v-v^2) + 3v + 1\right)\ln(\frac{1}{v}+1)\right]}{2(1+r)(1+rv)}$$

$$\leq \frac{\left[\frac{4r_1}{\ln(\frac{1}{v_1}+1)}\right] + \left[4(1-r_0v_0)\right] - \left[\left(r_0(v_1-v_1^2) + 3v_1 + 1\right)\ln(\frac{1}{v_1}+1)\right]}{2(1+r_0)(1+r_0v_0)} =: B_5|Q.$$

Оценочные функции  $B_1$ ,  $B_2$ ,  $B_4$ ,  $B_5$  были вычислены с 15 значащими цифрами на достаточно мелких разбиениях на прямоугольники. Были получены следующие результаты.

| Участок | Шаг разбиения по $w(v)$ | Шаг разбиения по $q(r)$ | Неравенство           |
|---------|-------------------------|-------------------------|-----------------------|
| $R_1$   | $6 \cdot 10^{-2}$       | $10^{-1}$               | $B_1 \leqslant 0.51$  |
| $R_2$   | $10^{-2}$               | $10^{-2}$               | $B_2 \leqslant 0.617$ |
| $R_4$   | $2 \cdot 10^{-2}$       | $10^{-1}$               | $B_4 \leqslant 0.50$  |
| $R_5$   | $2\cdot 10^{-3}$        | $10^{-2}$               | $B_5 \leqslant 0.605$ |

Во всех случаях было получено  $B(w,q) \leq 0.62$ .

Анализ B(w,q) в  $R_3$  приходится производить более аккуратно. Мы снова берём  $r=\frac{1}{q}$  и утверждаем, что  $B(w,\frac{1}{r})$  убывает по r. Для доказательства мы строим кусочно постоянную функцию  $B_3(w,r)$ , оценивающую  $\partial_r B(w,\frac{1}{r})$  сверху. Для каждого прямоугольника

$$Q \equiv \{w_0 \leqslant w \leqslant w_1; \quad \frac{1}{r_1} \leqslant q = \frac{1}{r} \leqslant \frac{1}{r_0}\} \subset R_2$$

берём

$$\partial_{r}B(w,\frac{1}{r}) = \left( \left[ 4\frac{w}{\ln(w+1)} \right] \left[ w - r^{2} \right] + 4\left( \left[ r^{2} \right] - \left[ 2rw + w^{2} + 2w \right] \right) \right.$$

$$\left. + \left( \left[ r^{2} + 2r(3+w) + 4 + 3w + w^{2} \right] - \left[ \frac{r^{2}}{w} \right] \right) \left[ \ln(w+1) \right] \right) \right/ \left( \left[ 2(1+r)^{2}(w+r)^{2} \right] \right)$$

$$\leq \left( \left[ 4\frac{w_{1}}{\ln(w_{1}+1)} \right] \left[ w_{1} - r_{0}^{2} \right] + 4\left( \left[ r_{1}^{2} \right] - \left[ 2r_{0}w_{0} + w_{0}^{2} + 2w_{0} \right] \right.$$

$$\left. + \left( \left[ r_{1}^{2} + 2r_{1}(3+w_{1}) + 4 + 3w_{1} + w_{1}^{2} \right] - \left[ \frac{r_{0}^{2}}{w_{1}} \right] \right) \left[ \ln(w_{1}+1) \right] \right) \right/ \left( \left[ 2(1+r_{0})^{2}(w_{0}+r_{0})^{2} \right] \right)$$

$$=: B_{5}|_{Q}.$$

Функция  $B_5$  была вычислена на достаточно мелком разбиении с 15 значащими цифрами. Был получен следующий результат.

| Участок | Шаг разбиения по w | Шаг разбиения по <i>r</i> | Неравенство           |
|---------|--------------------|---------------------------|-----------------------|
| $R_3$   | $5 \cdot 10^{-3}$  | $10^{-3}$                 | $B_3 \leqslant -0.08$ |

Тем самым, поскольку в  $B_3$  есть точки, в которых значение функции B больше 0.62, мы получаем, что  $B(w, \frac{1}{r})$  достигает максимума в  $R_3$  при r=0.

Для нахождения максимума мы берём

$$B(w, \infty) = 2 - \frac{1}{2}(\ln(w+1) + 3\frac{\ln(w+1)}{w})$$

и утверждаем, что  $B(w,\infty)$  вогнута при  $w\in [1,4]$ . Чтобы доказать это, мы строим кусочно постоянную функцию  $B_\infty(w)$ , оценивающую  $\partial^2_{ww}B(w,\infty)$  сверху. На каждом отрезке  $[w_0,w_1]\subset [1,4]$  берём

$$\partial_{ww}^{2} B(w, \infty) = \frac{\frac{[w(w^{2}+9w+6)]}{[(w+1)^{2}]} - [6\ln(w+1)]}{[2w^{3}]} \\ \leqslant \frac{\frac{[w_{1}(w_{1}^{2}+9w_{1}+6)]}{[(w_{0}+1)^{2}]} - [6\ln(w_{0}+1)]}{[2w_{0}^{3}]} =: B_{\infty}|_{[w_{0},w_{1}]}.$$

Функция  $B_{\infty}(w)$  была вычислена на достаточно мелком разбиении с 15 значащими цифрами. Был получен следующий результат.

| Участок                     | Шаг разби         | ения Неравенство             |
|-----------------------------|-------------------|------------------------------|
| $1 \leqslant w \leqslant 4$ | $3 \cdot 10^{-3}$ | $B_{\infty} \leqslant -0.13$ |

Тем самым, точка максимума единственна. С использованием стандартных численных методов было получено, что максимум достигается при

$$w \approx 1.816960565240$$
,

причём

$$\max B(w, \infty) \approx 0.627178211634.$$

Неравенство (3.6) доказано.

Для доказательства неравенства (3.7) мы делим  $(w,q) \in \mathbb{R}_+ \times [0,1.36]$  на четыре участка, см. рис. 3.4:

$$R_6 = [0, 3] \times [0, 1.36], \quad R_7 = [3, 5] \times [0, 1.3],$$
  
 $R_8 = [3, 5] \times [1.3, 1.36], \quad R_9 = [5, \infty] \times [0, 1.36].$ 



Рисунок 3.4 - K доказательству неравенства (3.7)

На этих участках мы используем кусочно постоянные функции  $B_1$  и  $B_4$ , введённые ранее. Значения функций были вычислены при достаточно мелком разбиении с 15 значащими цифрами. В  $R_8$  потребовался шаг разбиения меньше  $10^{-5}$ , поэтому мы повторили вычисления с 18 значащими цифрами. Был получен следующий результат.

| Участок | Шаг разбиения по $w(v)$ | у) Шаг разбиения по q | Неравенство             |
|---------|-------------------------|-----------------------|-------------------------|
| $R_6$   | $3 \cdot 10^{-3}$       | $1.36 \cdot 10^{-3}$  | $B_1 \leqslant 0.498$   |
| $R_7$   | $2 \cdot 10^{-3}$       | $1.3 \cdot 10^{-3}$   | $B_1 \leqslant 0.498$   |
| $R_8$   | $2 \cdot 10^{-4}$       | $6 \cdot 10^{-6}$     | $B_1 \leqslant 0.49996$ |
| $R_9$   | $2 \cdot 10^{-3}$       | $1.36 \cdot 10^{-2}$  | $B_4 \leqslant 0.4992$  |

Доказательство завершено.

## 3.6 Многомерный аналог неравенства $\mathcal{I}(u^*) \leqslant \mathcal{I}(u)$

В этом параграфе функция  $u\in \overset{\circ}{W}_1^1$   $(\overline{\Omega})$ , где  $\Omega=\omega\times(-1,1)$ . Как и в первой главе, мы используем обозначения x=(x',y), где  $x'\in \overline{\omega},\,y\in [-1,1]$ .

Введём многомерный аналог функционала  $\mathcal{I}$ :

$$\widehat{\mathcal{I}}(u) = \int_{\Omega} (1 + |\nabla u(x)|^2)^{\frac{p(x)}{2}} dx.$$

**Теорема 21.** Если  $\widehat{\mathcal{I}}(u^*) \leqslant \widehat{\mathcal{I}}(u)$  для любой неотрицательной функции  $u \in W_1^1$   $(\overline{\Omega})$ , то p(x',y) не зависит от y.

Доказательство. Для начала, мы докажем, что, аналогично теореме 18, p должна быть чётной и выпуклой по y, а функция

$$\mathcal{K}_{x'}(c,d,y) = c\left(1 + \frac{1+d^2}{c^2}\right)^{\frac{p(x',y)}{2}}$$

должна быть выпуклой по совокупности аргументов на  $[-1,1] \times \mathbb{R} \times \mathbb{R}_+$ . Действительно, рассмотрим две точки

$$x_1 = (x'_0, y_1), x_2 = (x'_0, y_2),$$
 где  $x'_0 \in \omega, -1 < y_1 < y_2 < 1.$ 

Зададим функцию  $u\in W_1^1(\overline{\Omega})$  с ненулевым градиентом только в окрестностях  $x_1,x_2$  и в окрестности боковой границы цилиндра с осью  $[x_1,x_2]$  следующим образом

$$u(x) = \min\left(\left(\frac{y - y_1}{c_1} + (x' - x_0') \cdot \mathbf{b}_1'\right)_+, \left(\frac{y_2 - y}{c_2} + (x' - x_0') \cdot \mathbf{b}_2'\right)_+, \delta(w - |x' - x_0'|)_+, h\right).$$

Здесь параметры  $c_1, c_2 > 0$  — обратные производные по y в «основаниях» цилиндра,  $\mathbf{b}_1', \mathbf{b}_2' \in \mathbb{R}^{n-1}$  — градиенты по x' в «основаниях» цилиндра,  $\delta > 0$  — модуль градиента на боковой поверхности цилиндра, w > 0 — радиус цилиндра, а h > 0 — максимальное значение функции.

Зафиксировав  $y_1, y_2, c_1, c_2, \mathbf{b}'_1, \mathbf{b}'_2$ , мы выбираем h и  $\delta$  как функции малого параметра w. Мы требуем  $\varkappa \equiv \frac{h}{\delta} := \frac{w}{2} \ (\varkappa -$ ширина бокового слоя с ненулевой производной).

Левое основание носителя u задаётся системой

$$\frac{y - y_1}{c_1} + (x' - x_0') \cdot \mathbf{b}_1' = 0; \qquad |x' - x_0'| \leqslant w.$$

То есть это (n-1)-мерный вытянутый эллипсоид вращения с большой полуосью  $\sqrt{w^2+c_1^2w^2|\mathbf{b}_1'|^2}$  и радиусом w. Значит  $\nabla u=(\mathbf{b}_1',\frac{1}{c_1})$  на множестве  $A_1$ , которое является усечённым конусом с этим эллипсоидом в основании. Прямое вычисление показывает

$$\operatorname{meas} A_1 = C_1 \delta c_1 w^n$$

(здесь и далее C с индексом или без — некоторые константы, зависящие только от n).

Аналогично  $\nabla u = (\mathbf{b}_2', -\frac{1}{c_2})$  на множестве  $A_2$ , meas  $A_2 = C_1 \delta c_2 w^n$ .

После симметризации на «основаниях»  $\nabla u^* = (\frac{c_1\mathbf{b}_1' + c_2\mathbf{b}_2'}{c_1 + c_2}, \pm \frac{2}{c_1 + c_2})$ . Тем самым, множества  $A_1$  и  $A_2$  переходят в  $A_1'$  и  $A_2'$ , и выполнено

meas 
$$A'_1 = \text{meas } A'_2 = C_1 \delta \frac{c_1 + c_2}{2} w^n$$
.

Далее обозначим за  $A_{\delta}$  боковой слой с ненулевым градиентом. Прямая оценка даёт

meas 
$$A_{\delta} \leq C((y_2 - y_1)w^{n-1} + (c_1|\mathbf{b}_1'| + c_2|\mathbf{b}_2'|)w^n).$$

Также обозначим

$$Z = \max\{x \in \Omega \mid \nabla u(x) = 0\} = \max\{x \in \Omega \mid \nabla u^*(x) = 0\}.$$

При  $\frac{1}{c_1}=\frac{1}{c_2}=w^2$ ,  $\delta=w^4$  и  $\mathbf{b}_1'=\mathbf{b}_2'=0$  из предположений теоремы следует

$$0 \leqslant (\widehat{\mathcal{I}}(u) - Z) - (\widehat{\mathcal{I}}(u^*) - Z) \leqslant ((1 + w^4)^{\frac{p(\bar{x}_1)}{2}} - 1) \cdot \operatorname{meas} A_1$$

$$+ ((1 + w^4)^{\frac{p(\bar{x}_2)}{2}} - 1) \cdot \operatorname{meas} A_2 + ((1 + w^8)^{\frac{P}{2}} - 1) \cdot \operatorname{meas} A_\delta$$

$$- ((1 + w^4)^{\frac{p(\hat{x}_1)}{2}} - 1 + (1 + w^4)^{\frac{p(\hat{x}_2)}{2}} - 1) \cdot \operatorname{meas} A'_1$$

$$\leqslant w^4 (\frac{p(\bar{x}_1)}{2} + \frac{p(\bar{x}_2)}{2} + o(w)) C_1 w^{n+2} + w^8 (\frac{P}{2} + o(w)) (y_2 - y_1) C w^{n-1}$$

$$- w^4 (\frac{p(\hat{x}_1)}{2} + \frac{p(\hat{x}_2)}{2} + o(w)) C_1 w^{n+2}.$$

Здесь  $P = \max p(x',y), \ \bar{x}_1 \in A_1, \ \bar{x}_2 \in A_2, \ \hat{x}_1 \in A_1', \ \hat{x}_2 \in A_2'.$  Мы переходим к пределу при  $w \to 0$  и получаем

$$0 \leqslant p(x_0', y_1) + p(x_0', y_2) - p(x_0', \frac{y_1 - y_2}{2}) - p(x_0', \frac{y_2 - y_1}{2}).$$

Применив лемму 11, получаем, что p чётна и выпукла по y.

Теперь зафиксируем произвольные положительные  $c_1, c_2, d_1$  и  $d_2$ , положим  $\mathbf{b}_1' = \frac{d_1}{c_1} \mathbf{e}, \ \mathbf{b}_2' = \frac{d_2}{c_2} \mathbf{e}$  (здесь  $\mathbf{e}$  — некоторый единичный вектор в гиперплоскости x') и возьмём  $\delta = w^2$ . Тогда получаем

$$0 \leqslant (\widehat{\mathcal{I}}(u) - Z) - (\widehat{\mathcal{I}}(u^*) - Z) \leqslant \left(\frac{1}{c_1} \mathcal{K}_{\bar{x}'_1}(c_1, d_1, \bar{y}_1) - 1\right) \cdot \operatorname{meas} A_1$$

$$+ \left(\frac{1}{c_2} \mathcal{K}_{\bar{x}'_2}(c_2, d_2, \bar{y}_2) - 1\right) \cdot \operatorname{meas} A_2 + \left((1 + w^4)^{\frac{P}{2}} - 1\right) \cdot \operatorname{meas} A_{\delta}$$

$$- \left(\frac{2}{c_1 + c_2} \mathcal{K}_{\hat{x}'_1}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_1) - 1\right) \cdot \operatorname{meas} A'_1$$

$$- \left(\frac{2}{c_1 + c_2} \mathcal{K}_{\hat{x}'_2}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_2) - 1\right) \cdot \operatorname{meas} A'_2$$

$$\leqslant \left(\mathcal{K}_{\bar{x}'_1}(c_1, d_1, \bar{y}_1) + \mathcal{K}_{\bar{x}'_2}(c_2, d_2, \bar{y}_2)\right) C_1 w^{n+2} + \left(\frac{P}{2} + o(w)\right) C(y_2 - y_1) w^{n+3}$$

$$- \left(\mathcal{K}_{\hat{x}'_1}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_1) + \mathcal{K}_{\hat{x}'_2}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \hat{y}_2)\right) C_1 w^{n+2}.$$

Здесь  $P = \max p(x',y), \ (\bar{x}_1',\bar{y}_1) \in A_1, \ (\bar{x}_2',\bar{y}_2) \in A_2, \ (\hat{x}_1',\hat{y}_1) \in A_1', \ (\hat{x}_2',\hat{y}_2) \in A_2'.$  Мы переходим к пределу при  $w \to 0$  и получаем

$$\mathcal{K}_{x_0'}(c_1, d_1, y_1) + \mathcal{K}_{x_0'}(c_2, d_2, y_2)$$

$$\geqslant \mathcal{K}_{x_0'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \frac{y_1 - y_2}{2}) + \mathcal{K}_{x_0'}(\frac{c_1 + c_2}{2}, \frac{d_1 + d_2}{2}, \frac{y_2 - y_1}{2}).$$

Отсюда следует, что  $\mathcal{K}_{x_0'}$  выпукла, поскольку она чётна по y.

Наконец, заметим (здесь мы опускаем для краткости x' в записи  $\mathcal{K}_{x'}$ ), что

$$\mathcal{K}(c,d,y) = K(\frac{c}{\sqrt{1+d^2}}, y) \cdot \sqrt{1+d^2},$$

где функция K введена в теореме 18. Прямое вычисление показывает, что

$$\det(\mathcal{K}''(c,d,y)) = \frac{1}{(1+d^2)^{\frac{3}{2}}} \cdot \left[ (\partial_{yy}^2 K \partial_{ss}^2 K - (\partial_{sy}^2 K)^2)(K - s\partial_s K) - \partial_{ss}^2 K (\partial_y K)^2 d^2 \right]$$

(здесь  $s=\frac{c}{\sqrt{1+d^2}}$ ). То есть если  $\partial_y K\not\equiv 0$ , можно выбрать достаточно большое d, чтобы получить  $\det(\mathcal{K}''(c,d,y))<0$  и, тем самым, противоречие.

#### Список литературы

- 1. Steiner, J. Einfache Beweise der isoperimetrischen Haupts atze / J. Steiner // J. Reine Angew. Math. 1838. T. 18. C. 281—296.
- 2. Brock, F. Weighted Dirichlet-type inequalities for Steiner symmetrization / F. Brock // Calc. Var. and PDEs. 1999. Vol. 8, no. 1. P. 15—25.
- 3. Alberti, G. Non-occurrence of gap for one-dimensional autonomous functionals / G. Alberti, F. Serra Cassano // Proceedings of "Calc. Var., Homogen. and Cont. Mech." / ed. by G. Bouchitté, G. Buttazzo, P. Suquet. Singapore, 1994. P. 1—17.
- 4. *Буттацио*, Д. Одномерные вариационные задачи. Введение / Д. Буттацио, М. Джаквинта, С. Гильдебрандт. Новосибирск : Научная книга, 2002. 246 с.
- 5. Рудин, У. Функциональный анализ / У. Рудин. М. : Мир, 1975. 444 с.
- 6. Эванс, Л. Теория меры и тонкие свойства функций / Л. Эванс, Р. Ф. Гариепи. Новосибирск : Научная книга, 2002. 216 с.
- 7.  $\mathit{Либ},\ \mathit{Э}.\ \mathsf{Анализ}\ /\ \mathit{Э}.\ \mathsf{Либ},\ \mathsf{M}.\ \mathsf{Лосс}.\ -\ \mathsf{Новосибирск}:\ \mathsf{Научная}\ \mathsf{книга},\ 1998.\ -\ 276\ \mathsf{c}.$
- 8. *Шарапудинов*, *И. И.* Некоторые вопросы теории приближений в пространствах Лебега с переменным показателем / И. И. Шарапудинов. Владикавказ : ЮМИ ВНЦ РАН и РСО-А, 2012. 267 с. (Итоги науки. Юг России. Математическая монография ; 5).
- 9. Интегральные операторы в пространствах суммируемых функций / М. А. Красносельский [и др.]. М. : Наука, 1966. 500 с.