Лабораторная работа № 4

РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ ДЛЯ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО ТИПА

Цель работы: получить навык численного решения краевых задач для уравнений гиперболического типа на примере начально-краевой задачи для линейного одномерного уравнения переноса и линейного одномерного неоднородного волнового уравнения.

Место для уравнения.

Задания на лабораторную работу

І. Начально-краевая задача для уравнения переноса

Рассматривается простейшая линейная одномерная задача для уравнения переноса:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = f(x, t), \quad x \in (a, b), t > 0, t < T; \tag{1}$$

$$u(0,x) = \varphi(x), \qquad x \in [a,b]; \tag{2}$$

$$u(t,a) = \psi_0(t), \qquad t > 0;$$
 (3)

Параметры задачи выбираются в соответствии с индивидуальным заданием (Таблица 1). Начальное и граничные условия, а также функция f(x,t) восстанавливаются по заданному точному решению.

Задача 1 (2 балла).

- 1) Написать вычислительную программу на языке программирования C++ решения задачи (1)-(3) с использованием явной конечно-разностной схемы с шаблоном «левый уголок» на равномерной пространственно-временной сетке.
- 2) Непосредственными расчетами продемонстрировать условную устойчивость схемы и справедливость условия устойчивости.
- 3) Исследовать зависимость решения от величины шагов сетки по пространственной и временной переменным посредством сравнения с построенным аналитическим решением. Построить графики зависимости погрешности, оцениваемой в равномерной норме по пространственной переменной, от времени и шагов сетки.

Задача 2 (2 балла).

- 1) Написать вычислительную программу на языке программирования C++ решения задачи (1)-(3) с использованием неявной конечно-разностной схемы с шаблоном «левый уголок» (схема «бегущего счета») на равномерной пространственно-временной сетке.
- 2) Выполнить сравнение точности получаемого решения по двум схемам с использованием точного решения. Построить графики погрешностей как функций координат и времени, а также графики норм погрешностей как функций шагов сетки.

Индивидуальные задания к задаче 1

Таблица 1

Nº	а	b	T	С	Точное решение $u(x,t)$ ЭТО НЕ $f(x,t)$
1	0	5	2	3	$\frac{3}{16}\sin(x+t) - \frac{1}{4}\cos(x+t)x - 3t-x $
2	0	5	3	1	$t - \sin(t - x), x < 1,$ $t + 1 - x - \sin(t - x), x \ge 1$
3	0	5	5	1	$e^{x-5} + e^{-9(x-t-1)^2}$
4	0	4	3	1	$-\frac{1}{5}\cos(5t) + e^{-9(x-t-1)^2}$
5	0	4	3	2	$\cos(\pi(x-2t)) + 1, x < 2$ $0, x < 2t$
6	0	2	3	1	$-e^{-t} + \sin(x - t) + \cos(5x - 5t)$
7	0	2	10	1	$\frac{1}{6}\sin(t+5x) + \sin(x-t)$
8	0	1	2	3	$t^3 - t^2x + \sin(3x - 9t)$
9	0	2	3	1	$1+tx-e^{x-t-1}$
10	0	2	2	1	$\frac{t^2}{2} + \sin(x - t) + e^{-9(x - t)^2}$

II. Начально-краевая задача для волнового уравнения

Рассматривается начально-краевая задача для линейного одномерного волнового уравнения с источником:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(t, x), \quad x \in (0, 1), t > 0;$$
(5)

$$u(0,x) = \varphi_0(x), \qquad x \in [0,1];$$
 (6)

$$u_t'(0,x) = \varphi_1(x), \qquad x \in [0,1];$$
 (7)

$$\alpha_0 u(t,0) + \beta_0 u_x(t,0) = \psi_0(t), \qquad t > 0;$$
 (8)

$$\alpha_1 u(t, 1) + \beta_1 u_x(t, 1) = \psi_1(t), \qquad t > 0.$$
 (9)

Параметры задачи выбираются в соответствии с индивидуальным заданием (Таблица 2). Аналитическое решение задачи строится по формуле Даламбера для всей оси x, функции $\psi_0(t)$, $\psi_1(t)$ вычисляются по аналитическому решению для заданного в таблице вида граничных условий.

Задача З (2 балла).

- 1) Написать вычислительную программу на языке программирования C++ решения задачи (5)-(9) с использованием явной разностной схемы на равномерной пространственно-временной сетке.
- 2) Непосредственными расчетами продемонстрировать условную устойчивость схемы и справедливость условия устойчивости.
- 3) Исследовать зависимость решения от величины шагов сетки по пространственной и временной переменным посредством сравнения с построенным аналитическим решением. Построить графики погрешностей как функций координат и времени, а также графики норм погрешностей как функций шагов сетки.

Задача 4 (2 балла).

- 4) Написать вычислительную программу на языке программирования C++ решения задачи (5)-(9) с использованием неявной разностной схемы с весами на равномерной пространственно-временной сетке.
- 5) Непосредственными расчетами продемонстрировать условную устойчивость схемы и справедливость условия устойчивости.
- 6) Исследовать зависимость решения от величины шагов сетки по пространственной и временной переменным посредством сравнения с построенным аналитическим решением. Построить графики погрешностей как функций координат и времени, а также графики норм погрешностей как функций шагов сетки.

Задача 5 (2 балла).

- 1) Написать вычислительную программу на языке программирования С++ решения задачи (5)-(9) по схеме повышенного порядка аппроксимации на равномерной сетке.
- 2) Выполнить сравнение точности получаемого решения с использованием точного решения. Построить графики погрешностей как функций координат и времени, а также графики норм погрешностей как функций шагов сетки.

Индивидуальные задания к задаче 2

Таблица 2

					таолица 2
№	a^2	f(t,x)	$\varphi_0(x)$	$\varphi_0(x)$	Граничные
в-та					условия
1	1	6	x^2	4 <i>x</i>	$u(t,0), u_x(t,1)$
2	4	xt	x^2	\boldsymbol{x}	$u_{x}(t,0), u(t,1)$
3	1	sin x	sin x	0	$u_{x}(t,0), u(t,1)$
4	1	e^x	sin x	$x + \cos x$	u(t,0),u(t,1)
5	9	sin x	1	1	$u_{x}(t,0),u(t,1)$
6	4	$\sin 3x$	0	0	$u_{x}(t,0)$,
U					$(u-u_x)u(t,1)$
7	1	sin 2t	0	0	$(u-u_x)(t,0)$
/	1				$u_{x}(t,1)$
8	1	6	x^2	4 <i>x</i>	$u_{x}(t,0),u(t,1)$
9	4	xt	x^2	\boldsymbol{x}	$u(t,0), u_{x}(t,1)$
10	1	sin x	sin x	0	$u(t,0), u_{x}(t,1)$
11	1	e^{x}	sin x	$x + \cos x$	$u_{x}(t,0),u(t,1)$
12	9	sin x	1	1	$u_{x}(t,0),u(t,1)$
13	4	$\sin 3x$	0	0	$u_{x}(t,0),u(t,1)$
14	1	sin 2t	0	0	$(u+u_{x})(t,0),$
14					u(t,1)
15	1	sin 2x	0	0	$u_{x}(t,0),u(t,1)$

Теоретическая часть

Номер задачи	Литература				
1	[1] глава Х, §1, п.1,2 [2] Гл.V §5 п.1,3				
2	[1] глава Х, §1, п.1,2 [2] Гл.V §5 п.3				
3	[1] глава XIII, §1, п.2 [2] Гл.V §6 п.1				
4	[2] Гл. V §6 п.1				

- 1. Калиткин Н.Н. Численные методы.
- 2. Самарский А.А. Теория разностных схем

По каждой решенной задаче в обязательном порядке оформляется отчет. Лабораторная работа считается выполненной, если набрано 6 и более баллов.