机器学习导论 (2024 春季学期)

六、支持向量机

主讲教师: 赵鹏

大纲

- 硬间隔支持向量机
- 核方法
- 软间隔支持向量机

大纲

- 硬间隔支持向量机
- 核方法
- 软间隔支持向量机

线性分类器回顾

在样本空间中寻找一个超平面,将不同类别的样本分开

线性分类器回顾

将训练样本分开的超平面可能有很多,哪一个更好呢?

"正中间"的: 鲁棒性最好, 泛化能力最强

形式化

线性可分样本集: $\{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$

线性超平面: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

线性分类器: $x \mapsto sign(w^{\top}x + b)$

- 任意点 x_0 到超平面距离为 $r(x_0) = \frac{|\boldsymbol{w}^{\top} x_0 + b|}{\|\boldsymbol{w}\|}$
- 最大化样本中相较超平面的最小距离

$$\max_{\boldsymbol{w},b} \min_{i \in [m]} \frac{\left| \boldsymbol{w}^{\top} \boldsymbol{x_i} + b \right|}{\|\boldsymbol{w}\|}$$

s.t.
$$y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 0, i \in [m].$$

"正中间"的: 鲁棒性最好, 泛化能力最强

注意到分子分母对(w,b)缩放同倍数不影响

不妨缩放之使得 $\min_{i \in [m]} y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) = 1$

$$\max_{oldsymbol{w},b} \; rac{1}{\|oldsymbol{w}\|}$$

s.t.
$$y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) \ge 1, i \in [m].$$

间隔(margin)与支持向量(support vector)

超平面方程: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

支持向量机基本型

最大间隔: 寻找参数 \boldsymbol{w} 和 b , 使得间隔最大

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \quad \frac{1}{\|\boldsymbol{w}\|}$$

s.t.
$$y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) \ge 1, i \in [m].$$

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^{\top} \mathbf{x}_i + b) \ge 1, i \in [m].$$

支持向量机分析: 对偶问题 $\left| \underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \right| \frac{1}{2} \|\boldsymbol{w}\|^2$

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right) \ge 1, \ i \in [m].$

拉格朗日乘子法

■第一步:引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{m} \alpha_i \left(1 - y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right)\right)$$

■第二步: 令 $L(\boldsymbol{w}, b, \boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i , \quad 0 = \sum_{i=1}^{m} \alpha_i y_i$$

■ 第三步:回代可得

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\top} \boldsymbol{x}_j$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \quad \alpha_i \geqslant 0, \quad i \in [m].$$

支持向量机分析: 对偶问题

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right) \ge 1, \ i \in [m].$

最终模型:
$$f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

回顾KKT条件性质

KKT Conditions

• If f_i are convex, h_i are affine, $\tilde{x}, \tilde{\lambda}, \tilde{\nu}$ satisfy

$$\begin{split} f_i(\widetilde{x}) &\leq 0, \qquad i \in [m] \\ h_j(\widetilde{x}) &= 0, \qquad j \in [n] \\ &\underbrace{\widetilde{\lambda}_i^\star \geq 0, \quad i \in [m]}_{} \\ &\underbrace{\widetilde{\lambda}_i^\star f_i(\widetilde{x}) = 0, \quad i \in [m]}_{} \\ \nabla f_0(\widetilde{x}) + \sum_{i=1}^m \widetilde{\lambda}_i^\star \nabla f_i(\widetilde{x}) + \sum_{i=1}^n \widetilde{\nu}_j^\star \nabla h_j(\widetilde{x}) = 0 \end{split}$$

 \Longrightarrow Then, \widetilde{x} and $\widetilde{\lambda}$, $\widetilde{\nu}$ are primal and dual optimal, with strong du

Sufficient Condition For any *convex* optimization problem wi differentiable objective and constraint functions, as points that satisfy the KKT conditions are primand dual optimal, and they enjoy strong duality.

KKT Conditions

• Suppose strongly duality holds

$$f_{0}(x^{\star}) = g(\lambda^{\star}, \nu^{\star})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x) + \sum_{j=1}^{n} \nu_{j}^{\star} h_{j}(x) \right)$$

$$= f_{0}(x^{\star}) + \sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x^{\star}) + \sum_{j=1}^{n} \nu_{j}^{\star} h_{j}(x^{\star})$$

$$= f_{0}(x^{\star})$$

$$= f_{0}(x^{\star})$$

$$\int_{0}^{\infty} \mathbf{F}(x^{\star}) dx dx$$

- Equality in the third line implies x^\star minimizes $L(x,\lambda^\star,\nu^\star)$

- Equality in the last line implies $\sum_{i=1}^m \lambda_i^\star f_i(x^\star) = 0$

 \Rightarrow Other expressions $\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0$ $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0$

This is also called "Complementary Slackness"

支持向量机分析: 对偶问题

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right) \ge 1, \ i \in [m].$

最终模型:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

解的特性:

KKT条件:

$$\begin{cases} \alpha_i \ge 0 \\ 1 - y_i f(\boldsymbol{x}_i) \le 0 \\ \alpha_i (1 - y_i f(\boldsymbol{x}_i)) = 0 \end{cases} \quad \text{where } \alpha_i = 0 \text{ sign}$$

解的稀疏性:训练完成后,最终模型仅与支持向量有关

"支持向量"

由对偶问题及KKT条件分析可知:

对于任意
$$i \in [m]$$
 必有 $\alpha_i = 0$ 或 $y_i f(\boldsymbol{x}_i) = 1$

解的稀疏性: 训练完成后, 最终模型仅与支持向量有关

支持向量机(Support Vector Machine, SVM) 因此而得名

算法核心复杂度主体与支持向量个数有关

对偶问题的求解

对偶问题

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\top} \boldsymbol{x}_j$$

s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0, \quad \alpha_i \geqslant 0, \quad i \in [m].$$

仍然是一个二次规划(QP)问题,可以用一般的QP solver进行求解计算/存储复杂度均与样本总数 m 有关

利用结构特性可以做得更快

SMO (Sequential Minimal Optimization) [Platt, 1998]

对偶问题的求解 - SMO方法

基本思路:不断执行如下两个步骤直至收敛

- 第一步: 选取一对需更新的变量 α_i 和 α_j
- ullet 第二步:固定 α_i 和 α_j 以外的参数,求解对偶问题更新 α_i 和 α_j

仅考虑 α_i 和 α_j 时,对偶问题的约束 $0=\sum_{i=1}^m \alpha_i y_i$ 变为

$$\alpha_i y_i + \alpha_j y_j = c, \quad \alpha_i \geqslant 0, \quad \alpha_j \geqslant 0$$

用 α_i 表示 α_i ,代入对偶问题

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\top} \boldsymbol{x}_j$$
 有闭式解!

对任意支持向量 (\boldsymbol{x}_s,y_s) 有 $y_sf(\boldsymbol{x}_s)=1$,由此可解出 b

为提高鲁棒性,通常使用所有支持向量求解的平均值

大纲

- 硬间隔支持向量机
- 核方法
- 软间隔支持向量机

特征空间映射

若不存在一个能正确划分两类样本的超平面,怎么办?

将样本从原始空间映射到一个更高维的特征空间, 使样本在这个特征空间内线性可分

如果原始空间是有限维(属性数有限), 那么一定存在一个高维特征空间使样本可分

在特征空间中

记样本 \boldsymbol{x} 映射后向量为 $\phi(\boldsymbol{x})$,划分超平面对应模型为 $f(\boldsymbol{x}) = \boldsymbol{w}^{\top}\phi(\boldsymbol{x}) + b$

原始问题

$$\min_{\boldsymbol{w},b} \ \frac{1}{2} \|\boldsymbol{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^{\top}\phi(\mathbf{x}_i) + b) \ge 1, i = 1, 2, ..., m.$$

对偶问题

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
, $\alpha_i \ge 0$, $i = 1, 2, ..., m$

预测

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{\infty} \alpha_i y_i \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}) + b$$

¹ 只以内积 形式出现

核函数 (kernel function)

基本思路:设计核函数 $\kappa\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \phi\left(\boldsymbol{x}_{i}\right)^{\top} \phi\left(\boldsymbol{x}_{j}\right)$

绕过显式考虑特征映射、以及计算高维内积的困难

Mercer 定理: 若一个对称函数所对应的核矩阵半正定,则

它就能作为核函数来使用

定理 6.1 (核函数) 令 \mathcal{X} 为输入空间, $\kappa(\cdot, \cdot)$ 是定义在 $\mathcal{X} \times \mathcal{X}$ 上的对称 函数, 则 κ 是核函数当且仅当对于任意数据 $D = \{x_1, x_2, ..., x_m\}$, "核矩阵" (kernel matrix) **K** 总是半正定的:

$$\mathbf{K} = egin{bmatrix} \kappa(oldsymbol{x}_1, oldsymbol{x}_1) & \cdots & \kappa(oldsymbol{x}_1, oldsymbol{x}_j) & \cdots & \kappa(oldsymbol{x}_1, oldsymbol{x}_m) \ dots & \ddots & dots & \ddots & dots \ \kappa(oldsymbol{x}_i, oldsymbol{x}_1) & \cdots & \kappa(oldsymbol{x}_i, oldsymbol{x}_j) & \cdots & \kappa(oldsymbol{x}_i, oldsymbol{x}_m) \ dots & \ddots & dots & \ddots & dots \ \kappa(oldsymbol{x}_m, oldsymbol{x}_1) & \cdots & \kappa(oldsymbol{x}_m, oldsymbol{x}_j) & \cdots & \kappa(oldsymbol{x}_m, oldsymbol{x}_m) \ \end{pmatrix}.$$

核函数 (kernel function)

基本思路:设计核函数 $\kappa\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \phi\left(\boldsymbol{x}_{i}\right)^{\top} \phi\left(\boldsymbol{x}_{j}\right)$

绕过显式考虑特征映射、以及计算高维内积的困难

Mercer 定理: 若一个对称函数所对应的核矩阵半正定,则

它就能作为核函数来使用

任何一个核函数,都隐式地定义了一个RKHS (Reproducing Kernel Hilbert Space, 再生核希尔伯特空间)

"核函数选择"成为决定支持向量机性能的关键!

核函数

常用核函数

名称	表达式	参数
线性核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = (oldsymbol{x}_i^{\mathrm{T}} oldsymbol{x}_j)^d$	$d \ge 1$ 为多项式的次数
高斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}{2\sigma^2}\right)$	$\sigma > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\sigma}\right)$	$\sigma > 0$
Sigmoid 核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

基本经验:文本数据常用线性核,

可通过函数组合得到:

情况不明时可先尝试高斯核

若 κ_1 和 κ_2 是核函数,则对任意正数 γ_1 、 γ_2 和任意函数 g(x),

均为核函数
$$\begin{cases} \gamma_1 \kappa_1 + \gamma_2 \kappa_2 \\ \kappa_1 \otimes \kappa_2(\boldsymbol{x}, \boldsymbol{z}) = \kappa_1(\boldsymbol{x}, \boldsymbol{z}) \kappa_2(\boldsymbol{x}, \boldsymbol{z}) \\ \kappa(\boldsymbol{x}, \boldsymbol{z}) = g(\boldsymbol{x}) \kappa_1(\boldsymbol{x}, \boldsymbol{z}) g(\boldsymbol{z}) \end{cases}$$

大纲

- 硬间隔支持向量机
- ■核方法
- 软间隔支持向量机

软间隔

现实中很难确定合适的核函数,使训练样本在特征空间中线性可分 即便貌似线性可分,也很难断定是否是因过拟合造成的

引入软间隔 (soft margin), 允许在一些样本上不满足约束

优化目标

"硬间隔"支持向量机基本型

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right) \ge 1, i \in [m].$

"软间隔"基本思路:

最大化间隔的同时, 让 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1$ 约束违背程度尽可能少

□ 引入 "松弛变量" (slack variables)

 $\xi_1, \xi_2, \dots, \xi_m$,其中 $\xi_i \geq 0$ 度量第i个约束违背程度

优化目标

"硬间隔"支持向量机基本型

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i \left(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b\right) \ge 1, i \in [m].$

"软间隔"支持向量机优化式

$$\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m \xi_i$$
s.t.
$$y_i \left(\boldsymbol{w}^\top \boldsymbol{x}_i + b \right) \ge 1 - \xi_i$$

$$\xi_i \ge 0, \ i \in [m].$$

"软间隔"支持向量机

优化目标

$$\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m \xi_i$$

s.t. $y_i \left(\boldsymbol{w}^\top \boldsymbol{x}_i + b \right) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i \in [m].$

可等价地写为:

$$\min_{\boldsymbol{w},b} \ \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{m} \max (0, 1 - y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b))$$

hinge损失
$$\ell_{\text{hinge}}(z) = \max(0, 1-z)$$

软间隔支持向量机

原始问题

$$\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m \xi_i$$
s.t. $y_i \left(\boldsymbol{w}^\top \boldsymbol{x}_i + b \right) \ge 1 - \xi_i, \ \xi_i \ge 0, \ i \in [m].$

对偶问题

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$
 与"硬间隔SVM"的区别 s.t. $\sum_{i=1}^{m} \alpha_i y_i = 0$, $0 \leqslant \alpha_i \leqslant C$, $i = 1, 2, \ldots, m$.

根据 KKT 条件可知,最终模型仅与支持向量有关, 也即采用hinge 损失函数后仍保持了 SVM 解的稀疏性

理解"软间隔"支持向量机

"软间隔"支持向量机优化目标:

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{m} \ell_{\text{hinge}} \left(y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) \right)$$

hinge损失
$$\ell_{\text{hinge}}(z) = \max(0, 1-z)$$

可以认为是0/1损失优化问题的"凸放松"

hinge损失是0/1损失的上界,且性质较好

$$\min_{\boldsymbol{w},b} \ \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{m} \ell_{0/1} \left(y_i(\boldsymbol{w}^{\top} \boldsymbol{x}_i + b) \right)$$

$$0/1$$
损失 $\ell_{0/1}(z) = \mathbf{1}[z < 0]$

替代损失 (surrogate loss)

- 采用替代损失函数,是在解决困难问题时的常见技巧
- 求解替代函数得到的解是否仍是原问题的解?理论上称为替代损失的"一致性" (consistency)问题

正则化 (regularization)

统计学习模型 (例如 SVM) 的更一般形式

- □正则化可理解为"罚函数法" 通过对不希望的结果施以惩罚,使得优化过程趋向于希望目标
- □从贝叶斯估计的角度,则可认为是提供了模型的先验概率

如何使用SVM 解决自己特定的任务?

以回归学习为例

基本思路: 允许模型输出与实际输出间存在 2ε 的差别

ε-不敏感(insensitive)损失函数

落入 2ε 间隔带的样本不计算损失

支持向量回归 (SVR)

原始问题

$$\min_{\boldsymbol{w},b,\xi_{i},\hat{\xi}_{i}} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{m} (\xi_{i} + \hat{\xi}_{i})$$
s.t. $f(\boldsymbol{x}_{i}) - y_{i} \leqslant \epsilon + \xi_{i}$,
$$y_{i} - f(\boldsymbol{x}_{i}) \leqslant \epsilon + \hat{\xi}_{i}$$
,
$$\xi_{i} \geqslant 0, \ \hat{\xi}_{i} \geqslant 0, \ i = 1, 2, \dots, m$$

对偶问题

$$\max_{\boldsymbol{\alpha}, \hat{\boldsymbol{\alpha}}} \sum_{i=1}^{m} y_i (\hat{\alpha}_i - \alpha_i) - \epsilon (\hat{\alpha}_i + \alpha_i) - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (\hat{\alpha}_i - \alpha_i) (\hat{\alpha}_j - \alpha_j) \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

s.t.
$$\sum_{i=1}^{m} (\hat{\alpha}_i - \alpha_i) = 0 , \quad 0 \leqslant \alpha_i, \hat{\alpha}_i \leqslant C$$

预测
$$f(\mathbf{x}) = \sum_{i=1}^{\infty} (\hat{\alpha}_i - \alpha_i) \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + b$$

现实应用中

如何使用SVM?

- 入门级—— 实现并使用各种版本SVM
- 专业级—— 尝试、组合核函数
- 专家级—— 根据问题而设计目标函数、替代损失、 进而……

根据当前任务"度身定制"是关键

表示定理 (Representer Theorem)

无论SVM还是SVR, 学得模型总能表示成核函数的线性组合

更一般的结论(表示定理): 对于任意单调递增函数 $\Omega:[0,\infty]\mapsto\mathbb{R}$ 和任意非负损失函数 $\ell:\mathbb{R}^m\mapsto[0,\infty]$,优化问题

$$\min_{h \in \mathbb{H}} F(h) = \Omega(\|h\|_{\mathbb{H}}) + \ell(h(\boldsymbol{x}_1), h(\boldsymbol{x}_2), \dots, h(\boldsymbol{x}_m))$$
 的解总可写为 $h^*(\boldsymbol{x}) = \sum_{i=1}^m \alpha_i \kappa(\boldsymbol{x}, \boldsymbol{x}_i)$

核方法 (Kernel methods)

基于表示定理能得到很多线性模型的"核化"(kernelized)版本

例如 KLDA (Kernelized LDA):

将样本映射到高维特征空间,然后在此特征空间中做线性判别分析

$$\max_{\boldsymbol{w}} J(\boldsymbol{w}) = \frac{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{b}^{\phi} \boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{w}^{\phi} \boldsymbol{w}}$$

$$\int h(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_{i} \kappa(\boldsymbol{x}, \boldsymbol{x}_{i})$$

$$\max_{\alpha} J(\alpha) = \frac{\alpha^{\mathrm{T}} \mathbf{M} \alpha}{\alpha^{\mathrm{T}} \mathbf{N} \alpha}$$

"核技巧" (kernel trick) 是机器学习中处理非线性 问题的基本技术之一

SVM 与统计学习简史

1963: Vapnik 提出支持向量的概念

1968: Vapnik 和 Chervonenkis 提出 VC 维

1974:提出结构风险最小化原则

... ... 苏联解体前一年(1990), Vapnik 来到美国

1995: Support Vector Network 文章发表

1995: 《The Nature of Statistical Learning》出版

1998: SVM 在文本分类上取得巨大成功

1998: 《Statistical Learning Theory》出版

... ...

-- V. Vapnik

V. Vapnik (1936-)

前往第七站.....

