Kari Palmier CSC 425 - Final Project

New York Stock Exchange Time Series Analysis Project

Introduction

- I was interested in how to utilize time series analysis to analyze and make predictions on a real world stock dataset
- The dataset I chose was the Kaggle New York Stock Exchange dataset from 1/4/2010 through 12/30/2016.
 - Kaggle dataset was for S&P 500 companies
 - ► Kaggle provided files with stock prices, fundamentals, and security information (company address, sector, etc)
 - Kaggle csv data file used had data that had been adjusted to account for any splits - used adjusted close prices
 - Used security information to select stocks to analyze based on sector (chose technology stocks)
- I selected several technology stocks to analyze before choosing a final one for modeling
 - Apple, Cisco, Alphabet Class C, Alphabet Class A, HP Inc., Intel Corp, Microsoft Corp, Nvidia Corp., Oracle Corp, Red Hat Inc., Texas Instruments, Western Digital, Xerox Corp, Yahoo Inc.

- Evaluated stocks at daily, weekly, and monthly granularity
 - Daily stocks had 1762 data points each
 - Weekly stocks had 587 data points each
 - Monthly stocks had 84 data points each
 - Generated weekly data by averaging value per week
 - Assigned date to Friday of week
- Evaluated normality using Jacque Bera test (p val > 0.05 = normal)
- Evaluated autocorrelation using Ljung Box test (p val > 0.05 = no autocorrelation)
- Evaluated stationarity using Augmented Dickey Fuller zero mean no trend, constant mean no trend, and constant mean with trend tests (p val < 0.05 = stationary series)
- Plotted time series data versus time, ACF, PACF, and normal probability plots
- Plotted CCF of each time series versus the rest

- Performed several transformations on stock adjusted close prices in order to evaluate stationarity and normality
 - Log transformation of adjusted close prices
 - Still exhibited a time trend for all granularities
 - Difference of adjusted close prices
 - Exhibited stationarity for most granularities and stocks
 - Only a half of the monthly granularities were normal
 - No daily or weekly were normal
 - Difference of log transformed adjusted close prices
 - ► Similar results as difference of adjusted close prices
 - Gross returns from adjusted close prices
 - ▶ Aug. Dickey Fuller showed non-stationary behavior for all granularities
 - Simple returns from adjusted close prices
 - Exhibited stationarity for most granularities and stocks
 - Most monthly and some weekly were normal

- Chose to use weekly granularity due to the number of points
 - ▶ 587 split into 80% training, 20% testing:
 - 470 training and 117 testing
 - Monthly only had 84 total points not enough for a good split
- Chose to use the simple return time series transformation
 - Had most normal and stationary results for weekly granularity
- Chose to model Apple stock
 - Had normal behavior and was stationary at weekly granularity
 - Had well behaved ACF and PACF plots
 - Had limited autocorrelation (first lag only)
 - Had possibility of other stocks being used to predict it (from CCF)
 - Was an interesting stock to me to evaluate

Scatterplot vs. time is non-stationary with positive trend

Apple Daily Closing Price Plots

AAPL Time Series Return

Histogram also shows thick tails

AAPL Simple Return Vs. Time

Scatterplot vs. time shows stationarity

AAPL Simple Return Return

Histogram shows normal distribution

Apple Simple Return Plots

ACF shows 1 significant autocorrelation at lag 1

PACF a few lags over confidence limits

* Values are very low magnitude so could be noise

► Apple simple return time series test results

					Weekly	Weekly	Weekly	
					Simple	Simple	Simple	
Number		Weekly	Weekly	Weekly	Return	Return	Return	
of Lags	Weekly	Simple	Simple	Simple	No	Constant	Constant	
used in	Simple	Return	Return	Return	Intercept	Intercept,	Intercept	
Ljung	Return JB	Kurtosis	Skewness	Ljung	No Trend	No Trend	With Trend	
Box and	Test P	Test P	Test P	Box Test	DF Test P	DF Test P	DF Test P	
ADF Tests	Value	Value	Value	P Value	Value	Value	Value	
5 Lags	0.5421	0.2734	0.6999	1.68E-03	0.01	0.01	0.01	
10 Lags	0.5421	0.2734	0.6999	4.84E-03	0.01	0.01	0.01	
25 Lags	0.5421	0.2734	0.6999	2.38E-03	0.01572	0.06898	0.2343	

ACF of squared Apple simple returns shows no ARCH effect

AAPL Absolute Simple Return

ACF of absolute of Apple simple returns shows no ARCH effect

	Squared	Absolute of				
	Weekly	Weekly				
	Simple	Simple				
	Return	Return				
Number	Ljung Box	Ljung Box				
of Lags	Test P	Test P				
Used	Value	Value				
5 Lags	0.3021	0.5932				
10 Lags	0.4175	0.1939				
25 Lags	0.8155	0.66				

Ljung Box Tests indicate no ARCH effect (no autocorrelation)

Modeling

- Ran auto.Arima on Apple simple return time series
 - Recommended MA(1) model
 - Recommendation matches ACF with lag 1 significance
- After auto. Arima, ran several different models using the following procedure
 - Created model using Arima function
 - Performed coefficient test using coeftest
 - Performed Jacque Bera normality test on model residuals
 - Generated the polynomial roots of the model
 - Performed Ljung Box test of residuals with the 5, 10, and 25 Lags
 - Performed Augmented Dickey Fuller zero mean no trend test, constant mean no trend test, and constant mean with trend tests
 - Plotted residuals versus time, normal probability plot of residuals, and ACF of residuals
 - Performed back testing with 80% training, 20% testing

- Modeled MA(1), AR(1) and ARMA(1) to compare results
 - ► Had similar BIC values and back testing MAPE values
 - Jacque Bera test showed all residuals were normal
 - All Augmented Dickey Fuller tests showed residuals were all stationary
 - Ljung Box tests showed residuals were white noise for all lags (AR was not for lag of 25)
- Modeled MA(1) with X regressors of other stocks to see their impact
 - Used all additional time series at current time (no delay) from CCF plots
 - Initially added Cisco, Alphabet Class C, Alphabet Class A, Oracle Corp, Red Hat Inc., Texas Instruments, Yahoo Inc.
 - Eliminated all non-significant stocks one by one
 - Result was model with Alphabet Class C, Oracle Corp., and Texas Instruments
 - Residuals were not normal even though BIC values were lower than no regressors
 - Modeled with all combinations of final 3 stocks none had normal residuals

Model results for all models

									Residual	Residual			
					Residual	Residual	Residual	Residual	Const	Const			
				Residual	Ljung	Ljung	Ljung	No Interc	Interc No	Interc W	Model	Residual	
		All		JB	Box 5	Box 10	Box 25	No Trend	Trend DF	Trend DF	Back	QQ Plot	
	Model	Coefs	Model	Normal	Lag Test	Lag Test	Lag Test	DF Test P	Test P	Test P	Testing	Tail	
Model Name	Order	Sig?	BIC	Test	P Val	P Val	P Val	Value	Value	Value	MAPE	Behavior	X Regressors
Apple_SimpleRtn_All_ARIMA_0_0_1_X_Regs	1	No	-1624.05	0.1802	0.2268	0.00038	0.00175	0.01	0.01	0.01	1.10053	Thick	CSCO, GOOG, GOOGL, ORCL, RHT, TXN, YHOO
Apple_SimpleRtn_ARIMA_0_0_1	1	Yes	-1541.1	0.8009	0.2332	0.2131	0.1382	0.01	0.01	0.01	1.22655	None	None
Apple_SimpleRtn_ARIMA_1_0_0	1	Yes	-1537.3	0.8532	0.06947	0.0827	0.04285	0.01	0.01	0.01	1.124128	None	None
Apple_SimpleRtn_ARIMA_1_0_1	2	Yes	-1538.4	0.7367	0.6798	0.3961	0.1991	0.01	0.01	0.01	1.205954	None	None
Apple_SimpleRtn_No_GOOGL_ARIMA_0_0_1_X_Regs	1	No	-1630	0.1805	0.2265	0.00038	0.00175	0.01	0.01	0.01	1.093953	Thick	CSCO, GOOG, ORCL, RHT, TXN, YHOO
Apple_SimpleRtn_No_GOOGL_RHT_ARIMA_0_0_1_X_Regs	1	No	-1635.8	0.1803	0.2315	0.00038	0.00158	0.01	0.01	0.01	1.092434	Thick	CSCO, GOOG, ORCL, TXN, YHOO
Apple_SimpleRtn_No_GOOGL_RHT_YHOO_ARIMA_0_0_1_X_Regs	1	No	-1641.2	0.1304	0.2472	0.00032	0.00107	0.01	0.01	0.01	1.056037	Thick	CSCO, GOOG, ORCL, TXN
Apple_SimpleRtn_W_GOOG_ARIMA_0_0_1_X_Regs	1	Yes	-1611.3	0.6467	0.0697	0.00131	0.00157	0.01	0.01	0.01	1.013589	Thick	GOOG
Apple_SimpleRtn_W_GOOG_ORCL_ARIMA_0_0_1_X_Regs	1	Yes	-1635.9	0.3465	0.2372	0.00123	0.00328	0.01	0.01	0.01	1.154316	Thickish	GOOG, ORCL
Apple_SimpleRtn_W_GOOG_ORCL_TXN_ARIMA_0_0_1_X_Regs	1	Yes	-1644.3	0.167	0.271	0.00055	0.00268	0.01	0.01	0.01	1.074363	Thick	GOOG, ORCL, TXN
Apple_SimpleRtn_W_GOOG_TXN_ARIMA_0_0_1_X_Regs	1	Yes	-1638.2	0.1603	0.1435	0.00033	0.00192	0.01	0.01	0.01	0.985778	Thick	GOOG, TXN
Apple_SimpleRtn_W_ORCL_ARIMA_0_0_1_X_Regs	1	Yes	-1603.2	0.5477	0.5438	0.03175	0.04749	0.01	0.01	0.01	1.295805	Thin	ORCL
Apple_SimpleRtn_W_TXN_ARIMA_0_0_1_X_Regs	1	Yes	-1608.8	0.3794	0.2543	0.00438	0.01671	0.01	0.01	0.01	1.098201	Thickish	TXN
Apple_SimpleRtn_W_TXN_ORCL_ARIMA_0_0_1_X_Regs	1	Yes	-1624.3	0.3557	0.5025	0.00522	0.01566	0.01	0.01	0.01	1.158269	Thickish	ORCL, TXN

MA(1), AR(1), and ARMA(1) model results for Apple simple return series

										Residual		
								Residual	Residual	Constant		
					Residual		Residual	No	Constant	Intercept		
				Residual	Ljung	Residual	Ljung	Intercept,	Intercept,	With	Model	Model
			Model	JB	Box 5	Ljung Box	Box 25	No Trend	No Trend	Trend DF	Back	Back
	Model	Model	AR Poly	Normal	Lag Test	10 Lag	Lag Test	DF Test P	DF Test P	Test P	Testing	Testing
Model Name	Order	BIC	Roots	Test	P Val	Test P Val	P Val	Value	Value	Value	RMSE	MAPE
Apple Simple Return MA(1)	1	-1541.1		0.8009	0.2332	0.2131	0.1382	0.01	0.01	0.01	0.02457	1.22655
Apple Simple Return AR(1)	1	-1537.3	-4.7888	0.8532	0.06947	0.0827	0.04285	0.01	0.01	0.01	0.02467	1.124128
Apple Simple Return ARMA(1)	2	-1538.4	3.4426	0.7367	0.6798	0.3961	0.1991	0.01	0.01	0.01	0.02489	1.205954

- Forecasted results with horizon set to 10 for all three models
 - ► MA(1) converged to the mean after 1 step ahead as expected
 - AR(1) and ARMA(1) essentially converged to the mean after 1 step ahead as well (were within 0.0002 of mean after 1 step ahead)
 - ▶ Back testing MAPE values were all within 0.1 of each other (negligible)
- Due to similarity in results, chose to use MA(1) model for final model
 - Probability plot showed smallest tails (they were all close)

► MA(1) Model Residual Plots

Model residuals vs. time shows stationarity

► MA(1) Model Forecasting Plots

Backtest Observed and Forecasted Validation Points

Back testing observed values and forecasted values

Forecasts from MA(1) Model of Apple Simple Returns

Apple simple returns last 100 points with 10 forecasted values

Conclusions

- MA(1) model best captured behavior of Apple simple returns
- MA(1) model was found to be adequate for predictions
 - ► MA(1) is stationary and residuals passed all required tests
- 1-step ahead forecast shows increase in future week
 - Recommendation would be to buy the stock
- MA(1) model equation:

```
Xt = 0.0041 + at - 0.2634 * at - 1
```

- Limitations of study:
 - Model can only be used to forecast 1 step ahead due to model order of 1
 - ► Model only apply to Apple stocks from 1/4/2010 to 1/6/2017 (one week after end of data one step ahead forecast)
 - Data was averaged over each week
 - Variation between days was removed by taking average

