



# Plant DNA extraction

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

# **Availability of slides**

- All materials are freely available (CC BY) after the lectures:
  - StudIP: LMChemBSc12
  - GitHub: https://github.com/bpucker/teaching
- Questions: Feel free to ask at any time
- Feedback, comments, or questions: b.pucker[a]tu-bs.de

My figures and content can be re-used in accordance with CC BY 4.0, but this might not apply to all images/logos. Some figure were constructed using bioRender.com.



#### Who discovered DNA and when?



### **Discovery of DNA**

- Isolation of DNA by Friedrich Miescher in 1869
  - Working in the castle in Tübingen



# MOLECULAR STRUCTURE OF NUCLEIC ACIDS

A Structure for Deoxyribose Nucleic Acid

WE wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has novel features which are of considerable biological interest.



Friedrich Miescher (1844-1895)



#### **Plant DNA**



- Nucleome: DNA in nucleus (gDNA)
- Plastome: DNA in chloroplast and other plastids (ptDNA)
- Chondrome: DNA in mitochondria (mtDNA)

# What are challenges during DNA extraction?



### **DNA** extraction challenges

- Cell wall
- Contaminations (proteins, specialized metabolites)
- Other nucleic acids (RNAs)
- DNases
- DNA fragmentation



# **Breaking the cell wall**







Ribolyzer



Ultrasonic & heat

# Plant cell composition - potential contaminants

| macromolecule | Percentage of total dry weight | Number of molecules per cell |
|---------------|--------------------------------|------------------------------|
| protein       | 55                             | 3,000,000                    |
| RNA           | 20                             | -                            |
| DNA           | 3                              | -                            |
| lipid         | 9                              | 20,000,000                   |

#### **How to inactivate DNases?**

- Heat
- **EDTA**
- ß-mercaptoethanol
- **Proteases**





#### **DNA** extraction methods

- CTAB
- Edwards
- Kit-based
- Nucleus isolation
- Leaf lysis methods
- Magnetic beads



### **CTAB:** Cetyltrimethylammonium bromide

- High DNA quality (suitable for sequencing)
- Substantial time commitment
- Low material costs





#### **Edwards**

- Good DNA quality (sufficient for PCR)
- Modest time commitment
- Low material costs



leaf sample



leaf disk extraction



grinding



400µL extraction buffer



vortexing



centrifugation



transfer of supernatant and addition of 300µL isopropanol



resolve in  $100\mu L$  TE



Edwards et al., 1991: 10.1093/nar/19.6.1349

#### **Kit-based DNA extraction**

- High DNA purity
- Fragment length and total amount limited
- Modest time commitment
- High material costs



#### **Nucleus** isolation

- Excellent DNA quality
- Very high time commitment
- Modest material costs





# **Leaf lysis methods**

- Low DNA quality/purity; only suitable for immediate use in PCR
- Extremely fast
- Low costs





# **Magnetic beads**

- High DNA quality
- Modest time commitment
- High material costs



### **DNA** precipitation

- Cation necessary to neutralize negative charge of DNA
- Low temperature facilitates flocculation of nucleic acids
- DNA concentration needs to be high enough
- DNA precipitation requires:
  - 35% isopropanol + 0.5M salt
  - 75% ethanol + 0.5M salt



# **Short Read Eliminator (SRE) kit**

- Proprietary salt mixture allows DNA precipitation
- Removal of DNA fragments <10kb</li>
- Depletion of DNA fragments <20kb</li>



# How to assess the DNA quality?



# **DNA** quality check

- Optical inspection
- Agarose gel
- NanoDrop
- Qubit
- qPCR (next lecture)















### **Optical check**

- DNA can be seen in precipitation steps
- Presence of sediment can be checked after centrifugation steps
- White color is often caused by contaminants
- Perfectly clean DNA is almost not visible



# Agarose gel

- Agarose is a special polysaccharide
- DNA moves through the gel from minus (cathode) to plus (anode)
- DNA is separated by size



### **NanoDrop**

- Photometric analysis of nucleic acids
- Nucleic acid absorbance peak at 260nm
- Protein peak absorbance at 280nm (aromatic amino acids)
- OD<sub>260</sub>/OD<sub>230</sub> = small fragment/phenolic compound contamination
- $OD_{260}/OD_{280}$  = protein contamination





#### **Qubit**

- Fluorescence-based (PicoGreen) measurement of nucleic acid concentration
- dsDNA HS Assay: 10pg/μL 100ng/μL
- dsDNA BR Assay: 50pg/μL 200ng/μL







#### **How to store DNA?**



### **DNA** storage

- EDTA in buffer prevents degradation by DNases
- Store at 4°C for up to a week
- Store at -20°C for long term
- High molecular weight DNA should not be frozen to avoid breaks



# Time for questions!



#### **Questions**

- Who discovered DNA?
- 2. What is a plant genome?
- 3. What are challenges during the DNA extraction?
- 4. Which different DNA extraction methods exist?
- 5. What are the important steps of a DNA extraction method?
- 6. How can the DNA quality be checked?
- 7. What is the concept of a DNA quality check method?

