Predicting electronic screening for fast Koopmans spectral functionals

Edward Linscott^{1,2}, Yannick Schubert³, Sandra Luber³, and Nicola Marzari^{1,2,4}

¹Center for Scientific Computing, Theory and Data, Paul Scherrer Institute, Switzerland ²National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Paul Scherrer Institute, Switzerland ³Department of Chemistry, University of Zurich, Switzerland ⁴Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne, Switzerland

Summary

- Koopmans functionals are powerful orbital-density-dependent functionals that predict spectral properties as accurately as state-of-the-art GW¹⁻⁴
- they rely on parameters to capture electronic screening
- we construct a ML framework to predict these parameters
- minimal training data is required to achieve desirable accuracy

1. What are screening parameters?

$$\alpha_i = \frac{\langle n_i | \varepsilon^{-1} f_{\text{Hxc}} | n_i \rangle}{\langle n_i | f_{\text{Hxc}} | n_i \rangle}$$

- can be computed ab initio⁵⁻⁷
- are the vast majority of Koopmans' computational cost
- must be accurate; if $\psi_i({\bf r}) = \sum_i U_{ij} \varphi_j({\bf r})$ then

$$\Delta\varepsilon_{i\in\text{occ}} = \sum_{j} \alpha_{j} U_{ij} U_{ji}^{\dagger} \bigg(-E_{\text{Hxc}} \big[\rho - n_{j} \big] + E_{\text{Hxc}}[\rho] - \int d\boldsymbol{r} v_{\text{Hxc}}[\rho](\boldsymbol{r}) n_{j}(\boldsymbol{r}) \bigg)$$

2. How can machine learning help?

or train on a small cell and deploy on a larger cell (N.B. not a general-purpose model)

3. Our machine learning framework

$$\rho_i(\mathbf{r}) \to p^i_{n_1 n_2 l k_1 k_2} \to \alpha_i$$

Descriptors are power spectrum decompositions^{8,9} of orbital densities

 $p_{n_1 n_2 l, k_1 k_2}^i = \pi \sqrt{\frac{8}{2l+1}} \sum_m c_{n_1 l m, k_1}^{i*} c_{n_2 l m, k_2}^i$

 $c_{nlm,k}^i = \int \mathrm{d} \boldsymbol{r} g_{nl}(\boldsymbol{r}) Y_{lm}(\boldsymbol{\theta}, \boldsymbol{\varphi}) n_i(\boldsymbol{r} - \boldsymbol{R}_i)$

Network is just ridge regression!

References

- 1. I. Dabo et al. Phys. Rev. B 82, 115121 (2010)
- 2. N. L. Nguyen, N. Colonna, A. Ferretti & N. Marzari. *Phys. Rev. X* 8, 21051 (2018)
- 3. N. Colonna, N. L. Nguyen, A. Ferretti & N. Marzari. J. Chem. Theory Comput. 15, 1905–1914 (2019)
- 4. E. B. Linscott *et al. J. Chem. Theory Comput.* **19**, 7097–7111 (2023)
- 5. R. De Gennaro, N. Colonna, E. Linscott & N. Marzari. *Phys. Rev. B* **106,** 35106 (2022)
- 6. N. Colonna, N. L. Nguyen, A. Ferretti & N. Marzari. *J. Chem. Theory Comput.* **14,** 2549–2557 (2018)
- 7. N. Colonna, R. De Gennaro, E. Linscott & N. Marzari. J. Chem. Theory Comput. 18, 5435–5448 (2022)
- 8. A. P. Bartók, R. Kondor & G. Csányi. *Phys. Rev. B* **87**, 184115 (2013)
- 9. L. Himanen *et al. Comput. Phys. Commun.* **247**, 106949 (2020)

4. Results

- accurate to $\mathcal{O}(10~\text{meV})$ cf. typical E_q accuracy of $\mathcal{O}(100~\text{meV})$
- speed-ups from $\mathcal{O}(10)$ to $\mathcal{O}(100)$ times!
- ridge-regression on one snapshot more accurate than oneshot

5. Takeaways

- lightweight ML can predict Koopmans screening parameters
- more generally, predicting electronic response can be done efficiently with frozen-orbital approximations and ML
- try it now with koopmans! (koopmans-functionals.org)