

In air

Computes gradient of loss function at output & distributes gradient backward through all layers.

Results in updated neuron weights & biases

 Leads to improved neural outputs

$$L = (1/n) \Sigma |\hat{y} - y|^2$$

Predicted values can be changed

Labels cannot be changed

Optimizing Neural Networks

Optimizing Neural Networks

Which parameters does ŷ depend on?

- W²₂
- O₁
- W^2_{22}
- O₂
- b₂

Optimizing Neural Networks

Can not update w_{11}^1 , w_{12}^1 etc, directly due to their dependencies

Back Propagation: A systematic way of updating weights and biases across all layers to minimize the loss function.

$$y = W_{21}^2 * O_1 + W_{22}^2 * O_2 + b_{21}$$

$$\frac{\mathrm{d}L}{\mathrm{d}\hat{y}} = 2(\hat{y} - y)$$

$$\frac{dL}{dw_{21}^2} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{dw_{21}^2} = 2(\hat{y} - y) * O_1$$

$$\frac{dL}{dw_{22}^2} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{dw_{22}^2} = 2(\hat{y} - y) * O_2$$

$$\frac{dL}{db_{21}} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{db_{21}} = 2(\hat{y} - y)$$

Calculate how Loss get affected by O₁ & O₂

$$\frac{dL}{dO_1} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{dO_1}$$

$$\frac{dL}{dO_2} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{dO_2}$$

$$o_1 = sigmoid (w_{11}^1 * i_1 + w_{21}^1 * i_2 + b_{11})$$

$$o_2$$
 = sigmoid($w_{12}^1 * i_1 + w_{22}^1 * i_2 + b_{12}$)

Determine how $\mathbf{w_{11}^1}$, $\mathbf{w_{21}^1}$, $\mathbf{b_{11}}$, $\mathbf{w_{12}^1}$ $\mathbf{w_{22}^1}$ and $\mathbf{b_{12}}$ are affecting loss function

Focus on parameters associated with $O_1: W_{11}^1, W_{21}^1, b_{11}$

$$\frac{dL}{dw_{11}^{1}} = \frac{dL}{dO_{1}} * \frac{dO_{1}}{dw_{11}^{1}}$$

$$\frac{dL}{dw_{21}^{1}} = \frac{dL}{dO_{1}} * \frac{dO_{1}}{dw_{21}^{1}}$$

$$\frac{dL}{db_{11}} = \frac{dL}{dO_1} * \frac{dO_1}{db_{11}}$$

$$o_1 = sigmoid (w_{11}^1 * i_1 + w_{21}^1 * i_2 + b_{11})$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sigma(x) = \sigma(x) \cdot \left(1 - \sigma(x)\right)$$

$$\sigma'' = \frac{\mathrm{d}}{\mathrm{d}x}\sigma(x) = \sigma(x)\cdot (1-\sigma(x))$$

$$\frac{dl}{dw_{11}^1} = 2(\hat{y} - y) \cdot w_{21}^2 \cdot \sigma''(w_{11}^1 i_1 + w_{21}^1 i_2 + b_{11}).i_1$$

$$\frac{dl}{dw_{21}^1} = 2(\hat{y} - y) \cdot w_{21}^2 \cdot \sigma''(w_{11}^1 i_1 + w_{21}^1 i_2 + b_{11}). i_2$$

$$\frac{dl}{db_{11}} = 2(\hat{y} - y) \cdot w_{21}^2 \cdot \sigma''(w_{11}^1 i_1 + w_{21}^1 i_2 + b_{11})$$

Finalizing Neural Network Training

Use the gradients to update weights & biases across the network.

Updation Formulas

Weights: Input Layer

$$w_{11}^{1}(\text{new}) = w_{11}^{1} - \eta \frac{\partial L}{\partial w_{11}^{\bar{I}}}$$

$$w_{12}^{1}(\text{new}) = w_{12}^{1} - \eta \frac{\partial L}{\partial w_{12}^{1}}$$

$$w_{21}^{1}(\text{new}) = w_{21}^{1} - \eta \frac{\partial L}{\partial w_{21}^{1}}$$

$$w_{22}^{1}(\text{new}) = w_{22}^{1} - \eta \frac{\partial L}{\partial w_{22}^{1}}$$

Weights: From Hidden Layer

$$w_{11}^2(\text{new}) = w_{11}^2 - \eta \frac{\partial L}{\partial w_{11}^2}$$

$$w_{21}^2(\text{new}) = w_{21}^2 - \eta \frac{\partial L}{\partial w_{21}^2}$$

Bias Terms

$$b_{11}(\text{new}) = b_{11} - \eta \frac{\partial L}{\partial b_{11}}$$

$$b_{12}(\text{new}) = b_{12} - \eta \frac{\partial L}{\partial b_{12}}$$

$$b_{21}(\text{new}) = b_{21} - \eta \frac{\partial L}{\partial b_{21}}$$

In air