TERMODINÁMICA

Examen Intersemestral

Nombre

La figura muestra un dispositivo experimental, consistente en un cilindro con dos pistones, que tiene las siguientes características:

- El diámetro interior del cilindro es de 250 mm.
- Tanto el cilindro como el pistón exterior (β) están perfectamente aislados térmicamente.
- El pistón interior (α) tiene 15 mm de espesor y es de cobre ($\rho = 8960 \text{ kg/m}^3$; c = 0,385 kJ/kg-K). La gran conductividad del cobre permite considerar este pistón como diatermo.
- Ambos pistones pueden deslizar sin rozamiento.
- La presión atmosférica exterior, Po, es de 1 bara.
- En el compartimento A hay 40 g de aire (R = 0,287 kJ/kg-K, γ = 1,4).
- En el compartimento B hay 50 g de una sustancia pura (tablas adjuntas).

En el instante inicial, de equilibrio, los dos pistones están unidos por una barra rígida, cuyo volumen puede despreciarse para los cálculos que se piden, que separa las caras internas de ambos una distancia de 10 cm y en el recinto B la temperatura es de 28 °C.

Súbitamente, por fabricación defectuosa, se rompe la barra que mantiene los pistones unidos a una distancia fija y el sistema evoluciona libremente hasta quedar en un nuevo estado de equilibrio.

Se pide:

- a) Presión del compartimento B en el estado inicial.
- b) Fuerza a la que está sometida la barra en el estado inicial, indicando si es de tracción o compresión.
- c) Temperatura del pistón de cobre (α) en el estado final.
- d) Desplazamientos de los pistones α y β debido al proceso, indicando su sentido.

Tabla de saturación (líquido-vapor)

p [bar]	t [°C]	vf [m3/kg]	Vg [m3/kg]	uf [kJ/kg]	ug [kJ/kg]	hf [kJ/kg]	hf [kJ/kg-K]	sf [kJ/kg-K]	sg [kJ/kg-K]
0,5	-46,51	0,001433	2,17504	-9,54	1288,3	-9,47	1397,1	0,16230	6,36864
1	-33,58	0,001466	1,13812	47,48	1304,1	47,62	1417,9	0,40695	6,12681
1,5	-25,21	0,001489	0,77877	84,85	1313,5	85,08	1430,4	0,56031	5,98616
2	-18,85	0,001507	0,59465	113,45	1320,3	113,75	1439,3	0,67421	5,88652
2,5	-13,66	0,001522	0,48216	136,95	1325,6	137,33	1446,1	0,76569	5,80920
3	-9,231	0,001536	0,40607	157,07	1329,8	157,53	1451,6	0,84257	5,74593
3,5	-5,354	0,001548	0,35107	174,77	1333,4	175,31	1456,3	0,90917	5,69232
4	-1,891	0,001560	0,30940	190,64	1336,4	191,26	1460,2	0,96808	5,64576
4,5	1,249	0,001570	0,27669	205,08	1339,0	205,79	1463,6	1,02102	5,60457
5	4,128	0,001580	0,25031	218,36	1341,4	219,15	1466,5	1,06919	5,56761
7	13,79	0,001615	0,18144	263,26	1348,4	264,39	1475,4	1,22841	5,44858
7,5	15,87	0,001623	0,16979	272,96	1349,7	274,18	1477,1	1,26214	5,42393
8	17,84	0,001630	0,15954	282,21	1350,9	283,51	1478,6	1,29404	5,40079
8,5	19,72	0,001638	0,15046	291,04	1352,1	292,43	1479,9	1,32432	5,37896
9	21,51	0,001645	0,14235	299,51	1353,1	300,99	1481,2	1,35316	5,35830
9,5	23,23	0,001652	0,13507	307,64	1354,0	309,21	1482,3	1,38070	5,33868
10	24,89	0,001659	0,12849	315,47	1354,9	317,13	1483,4	1,40706	5,31998
10,5	26,48	0,001665	0,12252	323,02	1355,6	324,77	1484,3	1,43236	5,30212
11	28,00	0,001672	0,11707	330,32	1356,4	332,16	1485,1	1,45669	5,28503
11,5	29,5	0,001678	0,11208	337,39	1357,0	339,32	1485,9	1,48013	5,26862
12	30,93	0,001684	0,10749	344,25	1357,6	346,27	1486,6	1,50275	5,25284

Tabla de vapor sobrecalentado

1 bar (sat = -33,58°C)						11 bar (sat = 28,00°C)					
T [°C]	v [m³/kg]	u [kJ/kg]	h [kJ/kg]	s [kJ/kg-K]	T [°C]	v [m³/kg]	u [kJ/kg]	h [kJ/kg]	s [kJ/kg-K]		
sat	1,13812	1304,1	1417,9	6,126810	sat	0,11707	1356,4	1485,1	5,28503		
-25	1,18386	1319,0	1437,4	6,200670	30	0,11836	1361,3	1491,4	5,30590		
-20	1,21017	1327,5	1448,5	6,25131	35	0,12153	1373,2	1506,9	5,35639		
-15	1,23628	1336,0	1459,6	6,29469	40	0,12461	1384,7	1521,8	5,40433		
-10	1,26221	1344,4	1470,6	6,33695	45	0,12759	1395,9	1536,2	5,45010		
-5	1,28800	1352,8	1481,6	6,37819	50	0,13051	1406,7	1550,3	5,49401		
0	1,31366	1361,1	1492,5	6,41849	55	0,13337	1417,4	1564,1	5,53631		
5	1,33920	1369,5	1503,4	6,45794	60	0,13617	1427,8	1577,6	5,57720		
10	1,36464	1377,8	1514,2	6,49659	65	0,13892	1438,1	1590,9	5,61683		
15	1,39000	1386,1	1525,1	6,53451	70	0,14164	1448,2	1604,0	5,65535		
20	1,41528	1394,4	1535,9	6,57175	75	0,14432	1458,2	1617,0	5,69288		
25	1,44048	1402,7	1546,7	6,60834	80	0,14697	1468,2	1629,8	5,72949		
30	1,46563	1411,0	1557,5	6,64432	85	0,14959	1478,0	1642,6	5,76529		
35	1,49072	1419,3	1568,3	6,67974	90	0,15218	1487,8	1655,2	5,80034		
40	1,51577	1427,6	1579,2	6,71463	95	0,15475	1497,5	1667,8	5,83470		
45	1,54077	1436,0	1590,0	6,74901	100	0,15730	1507,2	1680,3	5,86842		
50	1,56572	1444,3	1600,9	6,78290	105	0,15983	1516,9	1692,7	5,90156		
55	1,59065	1452,7	1611,8	6,81634	110	0,16234	1526,5	1705,1	5,93416		
60	1,61553	1461,2	1622,7	6,84935	115	0,16483	1536,2	1717,5	5,96624		
65	1,64039	1469,6	1633,6	6,88194	120	0,16731	1545,8	1729,8	5,99785		

Estado inicial

A: La presión es igual a la atmosférica-1 basa Solo hay que considerar que el confuto $4 \times 1, 8, 84$ es un histór "gordo" rígido. DA= 1bara IA = 28°C = 301.15 K NA = 0,287 x 301.15 = 0.8643 m3/kg Cp-Cv: 0.287; Cp/Cv = 1.4 => Cv = 0.7175 kJ Un= 0.04 kg x 0.7175 kJ x 301,15 K = 8.643 kJ VA1 = 0.04 x 0,8643 = 0,034572 m3 VB = 0.1 × 1 0.252 = 0.004908739 m3 NB = VB = 0.09817473 m3/kg, vapor humedo Para T=28°C ⇒ p=11 bara

v_f = 0.001672 v_g = 0.11707 vu³/kg X = 0.09817473 - 0.001672 = 0.83626. $81 \quad 0.11707 - 0.001672$ Mf = 330.32 ; Mg = 1356.4 kJ/kgUB = Uf + x(Ug-Uf) = 1188.39 kJ/kg UB,= 0.05 × UB = 59.4195 6J Piston:

Puesto que en el interior del compartimento B

hay

!! bara y en el exterior I bara

la barra está soportando esa diferencia de presiones, es decir, está sometida a una fuerza de tracción de

10×105 N × 12 0.252 m2 = 49087N

Instante linal: Tomamos el sistema lonstituido por los dos recintos y los dos pistones. El trabajo contra fuerzas exteriores se deberá vivica y exclusivamente a la variación de volumen total a presión (exterior) constante.

(2) Estado final: Las presiones se ignalarán todas a la presión exterior seconúm supongamos que la temperatura final res T2(C)

La aplicación del primer poincipio nos daría

Q12 = O El sistema está bérnicamente aislado.

W12 = po [VTOTAL_2 - VTOTAL_1]

ΔU12 = U42 B2 - UA1 - UB1 + UB2 - UB1

[JA₂ = 0.04 × 0.7175 × [273.15+ T₂]

TJ_{B₂} = [U(1 bar, T₂°C) si estuviéseus eu

Napor Sobrecalentado ο΄

U(1, bar, ×_{B₂}) · estuviéseus

eu Napor humedo] × 0.05

T[P₂ = 6.5973 × 0.385 × T₂

VTOTAL₂ = 0.04 * 0.287 × (273.15+T₂) +

100

+ 0.05 [U(16ar, ½°C) si V.S. ο΄]

LU(1βar, ×_{B₂}) Si V.H

Vaus a probas on vapor hiemedo en B T2 = 15at (1bar) = -33.58 % Aplicación de primer principio $f(x_{B_2}) \equiv 100 \cdot 0.04 \times 0.287 \times (273.15 - 33.58)$ $-0.034572 + V_{A_2}$ + 0.05 [0.001466 + XB2 (1.13812-0.001466)] + - 0.004908739+ V32 + 0.04 × 0.7175 (273.15-33.58) + + 0.05 [47.48+ XB2 (1304.1-47.48)] --71.1194 =0 De aqui se obtiene directamente XB2 = 3.16 /// la gere significa que en B habra capos sobrecalentado. Se ha ele encontrar 12. Fisicamente al somperse la barra, el confunto tenderá a expansionarse y la tempera-tura a disminuir. Vanos a comenzal probando 25°C y hiego 20°C.

La aplicación de PP ahora queda: f(12) = 100 f 0.04 20.287 (273.15+12) + + 0.05 [v (1 bara, T2)] - 0.034572 --0.0049087394+ + 0.04 x 0.7175 (273.15+ Te) + + 0.05 [u (1,bara, 12)] + 6.5973 x0.385 x 12 - 8.643-59.4195-77.1194=0 [2 10 (m3/kg) 11 (kJ/kg 1 f(T2) 25°C 1.44**04**8 1402, 7 9.6861 1.41528 1394.4 -3.7556 20 7 9.69 Interpolando f(Te)=0 bara Juis puntos de tabla la podemo obtemo 182 = 1.4/528 + 1.44048 - 1.4/528 (21.397-20) $= 1.42232 \text{ m}^{3}/\text{leg}$ $= 0.287 \times (273.15 + 21.397) = 0.84535 \text{ m}^{3}$ 3 VA2 = 0.04× VA2 = 0.033814 m3. DXX = VA2-VA1) -- 0.0154 AXB = (VA2+ VB2-VA, - VB2) (TC0.252) = 1.333 m