

A wormup exercise	3
Question: How much of an ice berg is to water, assuming that the ice berg freely flooting.	elau "S
If you know how to do this, consider writing answer starting with $\frac{dP}{dt} = \int Applied Loads dS$	an in an
If not, Starl with a free body diagram,	
And remember that the vertical (y) momentum balance depends on forces acting the in the ver direction.	tical
Anguer -89(H-x) Force Balance: -89 HW AZ + Swg H, 1 1 T 8wg Hw => Hw = 8: H Sg	w WAZ=(
(Obviously W and DZ concel, but they allowe to do a force-rather than a stress Galance.)	d us

Application to LGM Morroines

Suppose mass balance rates follow

Now consider eleution based Is ex 1x

Coordinates

Surface elevation is h = H(x) + Bo + Bx

At' equilibrium, $\int_{0}^{L} \dot{m} dx = 0 \Rightarrow \int_{0}^{\infty} J(x) dx + (B_{0} - E)L + \frac{1}{2}BL^{2} = 0$

 $= \frac{2}{B} \left(\frac{B_o - E + H}{B_o - E + T_o/ggB} \right)$ $= \frac{2}{B} \left(\frac{B_o - E + T_o/ggB}{B_o - E + T_o/ggB} \right)$

So then $\frac{\Delta L}{\Delta E} \approx \frac{dL}{dE} = \frac{2}{-\beta}$

Consider the Middle Teten Glacret (photo in slides).

ΔL ≈-5 Km, -β≈ 1Km = 0.2,

△(ELA) ~ 500 m

Global mean LGM DELA ~ 1 Km