Quick solvers for endomorphisms of modules

Chris Liu, Colorado State University Joint work with James B. Wilson and Josh Maglione

April 29, 2023

Simultaneous Sylvester System

Given
$$A_i \in K^{s \times b}$$
, $B_i \in K^{a \times t}$, $C_i \in K^{a \times b}$

Find X, Y satisfying $\forall i \in \{1, \dots, c\}$

Endomorphism of modules

 $\blacktriangleright \ \Omega$ a matrix algebra over K with n generators.

Endomorphism of modules

- $lackbox{}\Omega$ a matrix algebra over K with n generators.
- $ightharpoonup M = \langle M_1, \dots, M_n \rangle$ an Ω-module, $M_i \in K^{d imes d}$.

Endomorphism of modules

- $ightharpoonup \Omega$ a matrix algebra over K with n generators.
- $M = \langle M_1, \dots, M_n \rangle$ an Ω -module, $M_i \in K^{d \times d}$.

$$\operatorname{End}_{\Omega}(M) = \{ X \in \operatorname{End}_{K}(M) \mid \forall A \in \Omega, XA = AX \}$$
$$= \{ X \in K^{d \times d} \mid \forall i \in [n], XM_{i} = M_{i}X \}$$

Other Applications

Adjoints

$$\begin{split} t: K^n \times K^n &\to K^n \text{ bilinear, } t(u,v) = (u^\intercal T_1 v, \dots, u^\intercal T_n v) \\ \mathrm{Adj}(t) &= \{ (\varphi,\psi) \in \mathrm{End}(K^n) \times \mathrm{End}(K^n)^{\mathsf{op}} \mid t(\varphi(\cdot),\cdot) = t(\cdot,\psi(\cdot)) \} \\ &= \{ (X,Y) \in K^{n \times n} \times K^{n \times n} \mid \forall i \in [n], T_i X = Y^\intercal T_i \} \end{split}$$

Other Applications

Adjoints

$$t: K^n \times K^n \to K^n \text{ bilinear, } t(u,v) = (u^\intercal T_1 v, \dots, u^\intercal T_n v)$$

$$\operatorname{Adj}(t) = \{ (\varphi,\psi) \in \operatorname{End}(K^n) \times \operatorname{End}(K^n)^{\operatorname{op}} \mid t(\varphi(\cdot),\cdot) = t(\cdot,\psi(\cdot)) \}$$

$$= \{ (X,Y) \in K^{n \times n} \times K^{n \times n} \mid \forall i \in [n], T_i X = Y^\intercal T_i \}$$

▶ Wedderburn complements

$$\left\langle \begin{bmatrix} B_i & C_i \\ & A_i \end{bmatrix} \right\rangle \sim \left\langle \begin{bmatrix} B_i & \\ & A_i \end{bmatrix} \right\rangle$$

if there exists X such that $XA_i - B_iX = C_i$

Other Applications

Adjoints

$$t: K^n \times K^n \to K^n$$
 bilinear, $t(u,v) = (u^\intercal T_1 v, \dots, u^\intercal T_n v)$

$$Adj(t) = \{ (\varphi, \psi) \in End(K^n) \times End(K^n)^{op} \mid t(\varphi(\cdot), \cdot) = t(\cdot, \psi(\cdot)) \}$$
$$= \{ (X, Y) \in K^{n \times n} \times K^{n \times n} \mid \forall i \in [n], T_i X = Y^{\mathsf{T}} T_i \}$$

▶ Wedderburn complements

$$\left\langle \begin{bmatrix} B_i & C_i \\ & A_i \end{bmatrix} \right\rangle \sim \left\langle \begin{bmatrix} B_i & \\ & A_i \end{bmatrix} \right\rangle$$

if there exists X such that $XA_i - B_iX = C_i$

Engineering applications in control theory, PDEs, and robotics

- $ightharpoonup O(n^6)$, breaks on my laptop after n=50
- Schneider conjectures can do no better than $O(n^6)$
- n = 1000 means 10^{18} FLOPs, exascale computing

Squeezing 5 indices into a single matrix should be a

crime.

Squeezing 5 indices into a single matrix should be a

Came from a tensor problem, discovered as a tensor

crime.

solution, implement as a tensor algorithm.

Tensor Notation

$$(MN)_{ij} = (M \times_b N)_{ij} = \sum_{k=1}^b M_{ik} N_{kj}$$

Tensor Notation

$$(M \times_b N)_{ijk} = \sum_{l=1}^b M_{il} N_{ljk}$$

Simultaneous Sylvester System: $X \times_s A + B \times_t Y = C$

Tensor Network Diagrams

Tensor Network Diagrams

Sylvester Equation (1884)

$$XA + BX = C$$

Sylvester Equation (1884)

$a_{11} + b_{11}$	• • • •	b_{1n}		a_{1n}			X_{11}		C_{11}
i	٠	:			٠		:		:
b_{n1}		$a_{11} + b_{nn}$				a_{1n}	X_{n1}		C_{n1}
			٠				:	=	:
a_{n1}				$a_{nn} + b_{11}$		b_{1n}	X_{1n}		C_{1n}
	٠			•	٠	:	:		:
		a_{n1}		b_{n1}	• • •	$a_{nn} + b_{nn}$	X_{nn}		C_{nn}

 n^2 variables in n^2 equations. Naively, ${\cal O}(n^6)$ as well

Row operations on this matrix

Bartels-Stewart (1972)

Act on left and right

Bartels-Stewart (1972)

Bartels-Stewart (1972)

$$E^*AE = \begin{bmatrix} * & & \\ \vdots & \ddots & \\ * & \cdots & * \end{bmatrix}, F^*BF = \begin{bmatrix} * & \cdots & * \\ & \ddots & \vdots \\ & & * \end{bmatrix}$$

Computing E, F is $O(n^3)$

Simultaneous Sylvester System

Row operations on this matrix

Slice operations on A and B

B=0 case solved

 ${\cal A}=0$ case solved

QuickSylver

y_{11}	• • •	y_{1r_A}	y_{1r_A+1}	• • •	y_{1b}			
:	٠	÷	:	٠	:		$Y_{\leq r_A}$	$Y_{>r_A}$
y_{t1}	• • •	y_{tr_A}	y_{tr_A+1}		y_{tb}	,		

same data as

$$\mathcal{A} = [A_{*1*}^{\mathsf{T}} \cdots A_{*r_{A}*}^{\mathsf{T}}]^{\mathsf{T}}, \mathcal{A}^{\#}\mathcal{A} = I_s, \mathcal{A}^{\perp}\mathcal{A} = 0$$

$$\begin{array}{|c|c|c|c|c|} \hline \mathcal{A}^{\#} & & & & \\ \hline \mathcal{A}^{\bot} & & & & \\ \hline -A_{*r_A+1*}^{\intercal} \mathcal{A}^{\#} & I_c & & & \\ \hline & \cdots & & \ddots & \\ \hline -A^{\intercal} & \mathcal{A}^{\#} & & & I_c \\ \hline \end{array}$$

Instead of solving

Solve this instead

$$E(\Box + \Box)$$

$$= F(E(\Box))$$

$$E \times_{bc} (X \times_s A + B \times_t Y) = E \times_{bc} C$$

$$F \times_{ac} E \times_{bc} (X \times_s A + B \times_t Y) = F \times_{ac} E \times_{bc} C$$

Solve linear system for $Y_{\leq r_A}$

 $abc-sa-b(t-r_A)$ equations in tr_A variables. If $r_A\approx s/c$ and s,c are O(n), equation of O(n) variables, solved in $O(n^3)$.

Back-substitute for $Y_{>r_A}$

Total of $t(b-r_A)$ coefficients to calculate, each costing $2(r_A+r_B)c$, is $O(n^3)$ under same assumptions.

Back-substitute for X

Total of sa coefficients to calculate, each costing $2(r_A+r_B)c$, is $O(n^3)$ under same assumptions.

${\sf QuickSylver}$

$\label{eq:QuickSylver-What actually happens} QuickSylver-What actually happens$

A zoo of tensor software

ID	Package Name	Functionality					Tensor Type	Platform	Language
110	r ackage rvanie	DatM	EWOps	SpecCon	Con	Decomp	Tensor Type	1 Ideloi III	Language
0	Acrotensor [28]	-	_	√	√	_	D	C, G	C++
1	AdaTM [54]	-	-	✓	-	✓	S	C	C
2	Boost.uBlas.Tensor [6]	✓	✓	✓	✓	-	D	C	C++
3	BTAS [73]	✓	✓	✓	✓	✓	nan	C	C++
4	COGENT [48]	-	-	✓	✓	-	D	G	Python \rightarrow CUDA
5	COMET [86]	-	-	✓	✓	-	S	C	$C++ \rightarrow C++$
6	CoTenGra [34]	-	-	✓	✓	-	D	C, D, G	Python
7	CP-CALS [75]	-	-	✓	-	✓	D	C, G	C++, Mat ⁱ
8	CSTF [9]	-	-	-	-	✓	S	D	Scala
9	CuTensor [64]	✓	✓	√	✓	-	D	G	C, CUDA
10	cuTT [41]	✓	-	-	-	_	D	G	C++, CUDA
11	Cyclops [81]	✓	✓	✓	✓	_	S, D	C, D, G	C++
12	D-Tucker [43]	-	-	-	_	✓	D	C	Matlab
13	DFacTo [15]	-	-	-	-	✓	S	C, D	C++
14	Eigen Tensor [16]	✓	✓	✓	✓	_	D	C, G	C++
15	ExaTN [60]	✓	✓	✓	✓	✓	D	C, D, G	C++, Py ⁱ
16	Fastor [74]	✓	✓	✓	✓	-	D	C	C++
17	FTensor [52]	✓	✓	✓	✓	-	D	C	C++
18	Genten [72]	-	-	-	-	✓	D, S	C, G	C++
19	GigaTensor [45]	-	-	-	-	✓	S	C, D	Unknown
20	HPTT [85]	✓	-	-	-	-	D	C	C++, Python ⁱ , C ⁱ
21	ITensor [29]	-	✓	✓	✓	✓	D, BS	C, G ^x	C++, Julia
22	libtensor [42]	-	-	✓	✓	-	D, BS	C	C++
23	Ltensor [2]	-	-	✓	✓	-	D	C	C++
24	MATLAB [58]	✓	✓	✓	✓	-	D	C	Matlab
25	MultiArray [30]	✓	-	-	-	-	D	C	C++
26	multiway [38]	-	-	-	-	✓	D	C	R
27	N-way toolbox [4]	_	-	_	_	✓	D	C	Matlab
28	NCON [69]	-	-	✓	✓	_	D	C	Matlab
29	netcon [70]	-	-	✓	√	-	D	C	Matlab

With ITensor

Results

- $lacksquare A,B,C\in K^{500 imes500 imes500}$ solved on my laptop in about 20 seconds
- Thinner tensor requires solving bigger dense system. (i.e $A,B,C\in K^{400\times 400\times 20}$ solved on my laptop in about 80 seconds)

Results

- ▶ $A, B, C \in K^{500 \times 500 \times 500}$ solved on my laptop in about 20 seconds
- Thinner tensor requires solving bigger dense system. (i.e $A,B,C\in K^{400\times 400\times 20}$ solved on my laptop in about 80 seconds)
- ► Features for free: contraction sequence optimization, concurrency, GPUs
- Caveat: ITensor do not support finite fields, so below are done with Float64.

Next steps

- ▶ Implement bits of the tensor network abstractions in Magma
- QuickSylver in Magma for module endomorphisms

Next steps

- Implement bits of the tensor network abstractions in Magma
- QuickSylver in Magma for module endomorphisms
- Generalize to higher valence and derivations
- Investigate into tensor computation software (survey paper lists 79 packages!!)

Tensor problems deserve tensor solutions.

