UNIVERSIDADE DO ESTADO DE SANTA CATARINA CAMPUS CCT

DANIEL ALEXSANDRO ABRÃO, THUANY MURARO SOARES

ATIVIDADE AVALIATIVA - DECODIFICADOR DISPLAY 7 SEGMENTOS

JOINVILLE

31/10/2022

Proposta de trabalho:

Neste trabalho, foi proposto que realizássemos a implementação de um contador síncrono em BCD, através da utilização de flip-flop 's. Foi-se colocado em prática o ensinamento de aulas anteriores, juntamente com a documentação base fornecida nessa atividade para que fosse possível assim, obter sucesso e registrar o funcionamento do contador.

Introduzindo a CI

O que seria a CI CD4511?

O CD4511 é um decodificador BCD de 4 bits, para displays Catodo Comum, que utiliza a tecnologia CMOS (Complementary Metal-Oxide-Semiconductor). Tal componente recebe em seus pinos de entrada (nomeados A,B,C e D) os dados em código binário e os decodifica para código decimal, sendo possível a sua exibição nos Displays de 7 Segmentos.

No entanto, ele possui uma limitação, podendo apenas trabalhar com a decodificação de 0 a 9. Podemos analisar abaixo, a tabela verdade com os valores decodificados:

Entrada (BCD/Binário)				Saídas 7 segmentos							Display
D	С	В	Α	а	b	с	d	е	f	g	Display
0	0	0	0	1	1	1	1	1	1	0	
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2
0	0	1	1	1	1	1	1	0	0	1	3
0	1	0	0	0	1	1	0	0	1	1	4
0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	0	0	1	1	1	1	1	5
0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	1	1	1	0	0	1	1	9

Tabela 1 - tabela verdade do decodificador CD4511

Para que fique ainda mais clara a compreensão, abaixo temos uma ilustração que mostra como funcionam as saídas energizadas, indo de a até g .

Figura 1 - ilustração de saídas do display de 7 segmentos

O Display de 7 Segmentos é empregado na maioria das vezes a partir de circuitos digitais como CI 's, microcontroladores e outros processos que trabalham em sistema binário, cujo sistema é representado apenas por dois níveis lógicos, 0 e 1, denominados bit. Devido às inúmeras aplicações que possuem grandezas digitais para serem exibidas, é fundamental para muitos projetos fazer o uso de codificadores/decodificadores.

Gerando o Circuito no software Tinkercad, chegamos ao seguinte resultado:

Figura 2 - montagem do circuito no software Tinkercad

Como pode-se visualizar, as interconexões das CI 's de Flip-Flop, juntamente com as de AND, fornecem saídas que servem de entradas para o decodificador, que por sua vez, envia a frequência para os segmentos do contador. Já a CI NAND fica com a função de energizar as portas clear das CI's de Flip-Flop (74HC73).

Abaixo, está elencada uma tabela que demonstra quais foram as Cl's que utilizamos, acompanha em seguida das quantidades que foram necessárias de cada uma.

Cl's Utilizadas	Quantidades				
74HC73 (Flip-Flop)	2				
74HC08 (AND)	1				
74HC11 (AND de 3 entradas)	1				
74HC00 (NAND)	1				
CD4511 (Decodificador)	1				

Tabela 2 - demonstração da especificação e da quantidade de CI's utilizadas

Observação: A quantificação está sendo feita com base em número de componentes, logo, uma CI de Flip-Flop, por mais que possua a primeira e a segunda parte em uso, será contabilizada como um componente.

Quanto às saídas esperadas, para que fosse de mais fácil visualização, registramos as ocorrências em uma ilustração, a qual possui em sua representação as tais saídas decorrentes de cada clock e cada flip-flop que foram utilizados para que fosse possível a montagem desse contador BCD.

Figura 3 - Exemplificação de como devem ser as saídas esperadas em cada Clock e Flip-Flop

Outro ponto que pode ser analisado, seria o diagrama do sinal de tal circuito, que pode ser representado de acordo com a figura abaixo:

Figura 4 - Diagrama do sinal

O decodificador BCD CD 4511 faz a decodificação recebendo nos pinos de entrada A1, A2, A3, A0 os números em binários para código decimal.

Utilizando a tabela verdade podemos observar como o circuito lógico é montado, cada entrada dos segmentos que criam com uma combinação de ORs e ANDs para termos os resultados desejados no display.

Figura 5 - Decodificador CD4511

Figura 6 - Display

O CD4511 faz a sua decodificação utilizando suas entradas e as transformando. Cada saída, cada pino de saída a-g manda as informações obtidas para suas conexões de entrada nos segmentos do display que escreve a informação decimal.

Figura 7 - Expressão do decodificador

Expressão lógica para cada saída a-g:

Figura 8 - Saída a (A + C + BD + B'D')

Figura 9 - Saída b (B' + CD + C'D')

Figura 10 - Saída c (B + C' + D)

Figura 11 - Saída d (A + B'D' + CB' + CD' + BC'D)

Figura 12 - Saída e (B'D' + CD')

Figura 13 - Saída f(A + C'D' + C'B + BD')

Figura 14 - Saída g(A + BC' + B'C + BD')