(19)日本国特新 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-128094

(43)公開日 平成6年(1994)5月10日

(51)Int.CL.5

識別記号 庁内整理番号 FΙ

技術表示箇所

C30B 29/36

A 7821-4G

審査請求 未請求 請求項の数3(全 4 頁)

(21)出願番号

特願平4-306100

(22)出願日

平成 4年(1992)10月19日

(71)出願人 000004581

日新製鋼株式会社

東京都千代田区丸の内3丁目4番1号

(72)発明者 前田 泰宏

東京都立川市曙町三丁目5番3号 日新製

鋼株式会社半導体研究センター内

(74)代理人 弁理士 小橋 信淳 (外1名)

(54) 【発明の名称】 炭化ケイ素単結晶の製造方法

(57)【要約】

【目的】 Si粒子や炭素粒子の混入がない高品質の炭 化ケイ素単結晶を昇華法で製造する。

【構成】 ルツボ1内の炭化ケイ素原料粉末2をヒータ 5による加熱で昇華させる。昇華初期にプロバン等の炭 素成分ガスを結晶領域域に導入し、後期にシラン等のケ イ素成分ガスを導入することによって、炭化ケイ素原料 粉末2から発生する昇華ガスの経時的な成分変動を相殺 する。昇華ガスは、炭化ケイ素単結晶6として下蓋3に 取り付けた種結晶の上に成長する。

【効果】 組成が一定化された昇華ガスから結晶成長が 行われるため、得られた炭化ケイ素単結晶6は、Si社 子や炭素粒子の混入がなく、化学量論的に純粋で高品質 の製品となる。

1

【特許請求の範囲】

【請求項1】 炭化ケイ素原料を昇華させ種結晶の上に 炭化ケイ素単結晶を成長させる際、昇華反応の経過に伴 った昇華ガスの経時的な成分変動を相殺するケイ素成分 ガス及び/又は炭素成分ガスを成長反応域に導入するこ とを特徴とする炭化ケイ素単結晶の製造方法。

【請求項2】 ケイ素成分ガスがシラン、テトラメチル シラン, テトラエチルシラン, テトラノルマルプロピル シラン、テトラブチルシランの1種又は2種以上である 請求項1記載の製造方法。

【請求項3】 炭素成分ガスがメタン、エタン、プロパ ン、アセチレン等の炭化水素系ガスである請求項1記載 の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、品質が安定した長尺の 炭化ケイ素単結晶を昇華法によって製造する方法に関す る。

[0002]

【従来の技術】炭化ケイ素単結晶は、広いエネルギー禁 20 制帯幅をもち、熱的及び化学的にも安定した性質を示す 半導体材料であることから、従来のケイ素質半導体材料 に置き換わる材料として注目されている。現在のとこ ろ、炭化ケイ素単結晶は、炭化ケイ素粉末を原料とした 昇華法によって作製されている。 昇華法においては、図 1に示すように、黒鉛製のルツボ1上部に炭化ケイ素の 原料粉末2を入れ、下部に種結晶を取り付けた下蓋3を 配置する。或いは、ルツボ1の上蓋に種結晶を張り付 け、下部に原料粉末2を配置することもある。通常、1 バッチ当り20~30g程度の原料粉末2が使用されて 30 いる。

【0003】ルツボ1の上部に原料粉末2を配置する場 合、ルツボ1の内部を多孔質の黒鉛板4で仕切り、黒鉛 板4の上に原料粉末2を装入する。そして、ルツボ1を 取り巻くヒータ5により、種結晶側が原料粉末2側より も低くした温度勾配を付けて原料粉末2を加熱する。 ヒ ータ5としては、抵抗加熱方式, 高周波誘導加熱方式等 が採用されている。

【0004】原料粉末2は、ヒータ5で2400℃近傍 の高温に加熱されることにより昇華し、Si、Si2 C, SiC2, SiC等の昇華ガスになる。昇華ガス は、温度勾配が付けられているルツボ1の内部を流下 し、下蓋3に取り付けられている種結晶の上に降り注 ぐ。昇華ガスは、種結晶近傍が200℃近傍の温度に保 持されているので、炭化ケイ素単結晶6として約0.5 ~2mm/時の成長速度で種結晶の上に成長する。

[0005]

【発明が解決しようとする課題】原料粉末2が昇華し、 単結晶として成長する過程で、昇華ガスの組成に変動が 生じ易い。大きな変動要因の一つに、昇華反応の不均一 50 ボ1の下部に炭化ケイ素原料粉末2を配置する場合、ル

性に由来するものがある。炭化ケイ素の昇華反応は、ル ツボ1に収容されている原料粉末2の量に比例した量の 昇華ガス成分を発生させるものではなく、昇華の初期に Siが過剰な蒸気となり、次いでCが過剰な蒸気にな

【0006】このような昇華ガスの成分変動は、当然の ことながら単結晶の成長過程に悪影響を及ぼす。たとえ ば、Si粒子の析出やCの取り込み等が結晶面で発生 し、得られた炭化ケイ素単結晶に結晶欠陥、転位等が導 10 入される原因となる。したがって、化学量論的に純粋で 高品質の単結晶を成長させるためには、常に組成が一定 した蒸気が結晶成長面に降り注ぐようにすることが必要 である。

【0007】本発明は、このような要求に応えるべく案 出されたものであり、炭化ケイ素原料粉末からの昇華ガ スとは別個にケイ素成分ガス及び/又は炭素成分ガスを 結晶成長域に送り込むことにより、安定した条件下で高 品質の炭化ケイ素単結晶を成長させることを目的とす る。

[0008]

【課題を解決するための手段】本発明の炭化ケイ素単結 晶製造方法は、その目的を達成するため、炭化ケイ素原 料を昇華させ種結晶の上に炭化ケイ素単結晶を成長させ る際、昇華反応の経過に伴った昇華ガスの経時的な成分 変動を相殺するケイ素成分ガス及び/又は炭素成分ガス を成長反応域に導入することを特徴とする。ケイ素成分 ガスとしては、シランSiH4, Si2 H6, テトラメ チルシランSi (CH3)4, テトラエチルシランSi (C2 H5)4 テトラノルマルプロピルシランSi (n-C₃ H₇)₄ , テトラブチルシランS i (C₄ H₉)₄ 等が 使用される。炭素成分ガスとしては、メタンCH4, エ タンC2 H6 、プロパンC3 H8 、アセチレンC2 H2 等の炭化水素系ガスが使用される。ケイ素成分ガスや炭 素成分ガスは、アルゴン等の不活性ガスをキャリアとし て成長反応域に導入される。

【0009】昇華法を実施する設備の基本的な構造は、 図2に示すように、断熱性ライニングが施されたチャン バー7内にルツボ1及びヒータ5をセットし、減圧排気 及び不活性ガス導入によりチャンバー7内を適当な減圧 下に保持する。本発明においては、チャンバー7の外部 からルツボ1の内部に通じたガス供給管8を設け、ガス 供給管8を介してケイ素成分ガス及び/又は炭素成分ガ スをルツボ1の内部に送り込む。ガス供給管8として は、チャンバー7内の200℃を超える高温雰囲気に **曝されることから、黒鉛質、タングステン等の耐高温材** 料で作ることが好ましい。

【0010】ガス供給管8は、図2では、炭化ケイ素原 料粉末2の上方でルツボ1内に開口している。しかし、 本発明はこれに拘束されるものではなく、たとえばルツ

ツボ1内の下方にガス供給管8を開口させる。

【0011】ガス供給管8とルツボ2の上蓋9との間の シールが問題となる場合、ガス供給管8及び上蓋9を一 体成形することができる。ガス供給管8がチャンバー7 を貫通する部分を水冷フランジ等で断熱するとき、チャ ンバー7外側のガス供給管8には、半導体工業用配管と して通常使用されているステンレス顕管、石英管等を用 いることができる。

【0012】ヒータ5による加熱でルツボ2が所定温度 に到達すると、炭化ケイ素原料粉末2の昇華が始まり、 昇華ガスが発生する。昇華ガスは、ルツボ2内を流下し て下蓋3に取り付けた種結晶の上に降り注ぎ、単結晶6 として成長する。この昇華の進行に応じて、キャリアガ スと共に炭素成分ガスをルツボ1内に導入する。 昇華の 継続に従って、原料粉末2に炭素が過剰に残留し始め る。この状態になったとき、炭素成分ガスの供給を停止 し、ケイ素成分ガスの供給を開始する。そして、所定時 間経過後に加熱を停止し、結晶成長を終了させる。

【0013】炭素成分ガス及びケイ素成分ガスの流量、 去に蓄積したデータに基づき制御することができる。な お、炭素成分ガス及びケイ素成分ガスは、原料粉末2の 昇華温度、昇華速度等の条件に応じて、双方同時に或い は異なる流量比で導入してもよい。たとえば、未反応の 炭素分が多い原料粉末を使用するとき、ケイ素成分ガス の導入と同時期に適量の炭素成分ガスを導入する。

[0014]

【作 用】昇華反応の進行に応じて炭素成分ガス及びケ イ素成分ガスを補充しながら炭化ケイ素単結晶6を成長 させるとき、原料粉末2から発生した昇華ガスの経時的 30 な成分変動が相殺され、一定化された昇華ガスからの結 晶成長が可能となる。そのため、得られた炭化ケイ素単 結晶6は、結晶欠陥等の原因となるSi粒子や炭素粒子 等の混入がなく、高純度、高品質の製品になる。

[0015]

【実施例】黒鉛製ルツボ1の下蓋3の台座に種結晶を載 せ、ルツボ1の上部に多孔質黒鉛板4を装着して炭化ケ イ素原料粉末2を収容した。ここで、チャンバー7を貫 通するフランジに取り付けた黒鉛製のガス供給管8を上 蓋9を介してルツボ1の内部に臨ませた装置を使用し た。ガス供給管8は、チャンバー7外側でステンレス鋼 製の配管を介してガス供給系に接続した。

【0016】チャンバー7内を排気し、不活性ガスの導 入によって減圧不活性雰囲気にした後、ヒータ7に通電 して加熱を開始した。ルツボ1内が2200℃に達した

とき、原料粉末2から昇華ガスが発生し始めた。そこ で、炭素成分ガスとしてプロパンを、流量15m1/分 でキャリアガスと共にルツボ1内に導入した。このと き、チャンバー1内が所定の減圧雰囲気に維持されるよ うに、キャリアガスの流量を調整した。

【0017】昇華開始から3時間経過した時点で、ケイ 素成分ガスとしてシランを流量15m1/分でプロパン に加えてルツボ1内に導入した。プロパン及びシランの 同時導入を 1時間継続した後、プロバンの供給を停止 10 し、シランガスのみを同じ流量で導入しながら昇華反応 を3時間推続した。全工程を通して、チャンバー7内 は、キャリアガスの流量制御によって一定の減圧雰囲気 に維持された。

【0018】昇華工程を終えた後、ヒータ5を切り、結 晶成長を終了させた。得られた炭化ケイ素単結晶6は、 直径20mm及び高さ5mmのサイズをもっていた。こ の炭化ケイ素単結晶6を高さ方向に順次スライスし、結 晶成長の初期、中期及び後期に作製された試験片を切り 出した。各試験片の表面及び内部を顕微鏡観察したとこ 導入時間等は、使用する炭化ケイ素原料粉末について過 20 ろ、従来の昇華法で得られた単結晶に発生していたSi 粒子や炭素粒子の結晶内への混入は、何れの試験片につ いても観察されなかった。また、化学量論的に純粋で且 つ高品質の単結晶であった。

[0019]

【発明の効果】以上に説明したように、本発明において は、炭化ケイ素原料粉末の昇華が進行するに応じてケイ 素成分ガス及び/又は炭素成分ガスを結晶成長域に送り 込み、昇華ガスの時系列的な成分変動を相殺している。 これにより、一定化された昇華蒸気が結晶成長面に降り 注ぎ、炭化ケイ素単結晶が成長する。したがって、従来 のように結晶内に取り込まれるSi 社子や炭素粒子がな く、高品質の炭化ケイ素単結晶が得られる。

【図面の簡単な説明】

【図1】 従来の炭化ケイ素原料粉末を使用した単結晶 製造装置

【図2】 本発明に従ってケイ素成分ガス及び炭素成分 ガスを結晶成長域に送り込むガス供給管を組み込んだ単 結晶製造装置

【符号の説明】

上蓋

2 炭化ケイ素原料粉末 40 1 黒鉛製のルツボ 3 ルツボの下蓋 4 多孔質の黒鉛板 5 ヒータ 6 炭化ケイ素単結晶 7 チャンバー 8 ガス供給管

