## **Outline- Ch.22.4 Part II**

- 1. Deoxynucleotide biosynthesis and regulation
- 2. Salvage pathways and nucleotide catabolism

## Nucleotide biosynthesis: birds-eye view



# Making deoxyribonucleotides: ribonucleotide reductase (RNR)

- Synthesized from NDPs via free radical mechanism
- Several different classes of enzymes that utilize different cofactors and free radical generating mechanisms
  - E. coli Class I (aerobic) binuclear iron center, Tyrosine radical, 5 Cysteines
- Reactive cysteine pair provides H to replace 2'-OH

#### *E. coli* RNR is a tetramer ( $\alpha$ and $\beta$ subunits)



## *E. coli* RNR is a tetramer ( $\alpha$ and $\beta$ subunits)



## **Proposed RNR reaction mechanism**



### Active RNR must be regenerated after reaction



### Regulation of *E. coli* RNR

## Close up of active site GDP bound to *E. coli* RNR.

Cys 439 is thiyl radical

Cys 225 and 462 undergo oxidation and reduction during the RNR reaction.

If Cys225-Cys462 disulfide bond:

- 1) movement of C225 S
- 2) won't allow 2'OH of NDP to enter active site



Regulation #1: oxidized enzyme can't bind S

## Regulation of E. coli RNR



Figure 22-44
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation #2: activity site

Regulation #3: specificity site

## Inactivation of RNR by dATP



## Nucleotide biosynthesis: birds-eye view



### Formation of dTMP by methylation of dUMP



Figure 22-43

Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W.H. Freeman and Company

## Tetrahydrofolate: A one-carbon carrier



## Tetrahydrofolate: A one-carbon carrier



#### Formation of dTMP by methylation of dUMP



## Formation of dTMP is target of many drugs



#### 5-FU is suicide inhibitor of TS

- Forms E-FU covalent intermediate
- Can't abstract Fluorine: STUCK.
- very toxic

## Nucleotide biosynthesis: birds-eye view



#### Salvage pathways of nucleotide synthesis



### Salvage pathways of nucleotide synthesis

#### **Purine PRTases:**

GMP + PPi

#### Deficiency in HXGPRT: Lesch-Nyhan syndrome

Guanine + PRPP

- sex-linked, male
- by age 2- signs of mental/physical delay and hostile behavior
- age >2- develop gout, self-destructive, chew off fingers/lips
- underscores importance of purine salvage in mammals

### Nucleotide degradation: purine catabolism



- Nucleotides converted to free base (point of entry into salvage also, but most tissues catabolize)
- Deficiency in ADA: SCIDS
  Adenosine → dATP
  "Bubble boy" syndrome

### Nucleotide degradation: purine catabolism



#### Nucleotide degradation: purine catabolism



### Nucleotide degradation: purine catabolism



Inhibit xanthine oxidase:

- no xanthine to uric acid
- excrete: X and HX (more soluble)
- inhibits both urate formation and purine synthesis



Gertrude Elion (1918–1999) and George Hitchings (1905–1998) Unnumbered 22 p894

## Nucleotide degradation: purine catabolism

Other uses for allopurinol:

#### Antiparasite:

*Plasmodium* and *Leishmania* no *de novo* pathways; very active purine salvage

#### Treatment of Lesch-Nyhan:

relieves gout symptoms, but NOT neurological defects!