MAS242 해석학 II Notes

한승우

November 2, 2023

CONTENTS

CHAPTER	DIFFERENTIATION	PAGE 2	_
1.1	Higher order partial derivatives	2	
1.2	Extreme Values of differentiable Functions	3	
CHAPTER	Inverse Function Theorem	Page 5	
2.1	Jacobian	5	
2.2	The Inverse Function Theorem	5	
2.3	Implicit Function Theorem	7	
2.4	Applications of IMFT: Lagrange's Method	9	
CHAPTER	Series of Vectors	Page 11	
3.1	Preliminaries	11	
3.2	Finite Dimensional Banach Spaces	12	
3.3	Conditional Convergence	13	
3.4	The Cauchy Product	14	

Chapter 1

Differentiation

1.1 Higher order partial derivatives

Definition 1.1.1

Given $f: U \to \mathbb{R}$ where U is an open set in \mathbb{R}^m , define $\partial_{ij} \triangleq \partial_i(\partial_j f)(x)$ for each $i, j \in [m]$ to be *2nd order partial derivatives*. Any higher order partial derivatives can be defined inductively.

Definition 1.1.2: C^k -regularity

 $f: U \to \mathbb{R}$ is C^k -regular if all partial derivatives up to order k and they are continuous.

Theorem 1.1.1

 $f: U(\subseteq \mathbb{R}^2) \to \mathbb{R}$ is C^2 at a point $c \in U$, i.e., $\exists \delta > 0$, f is C^2 in $B_{\delta}(c)$. Then, $\partial_{12} f(c) = \partial_{21} f(c)$.

Proof. Let $|h| < \delta$. Define $A(h) \triangleq f(c_1 + h_1, c_2 + h_2) - f(c_1 + h_1, c_2) - f(c_1, c_2 + h_2) + f(c_1, c_2)$. Define $u(x_1) \triangleq f(x_1, c_2 + h_2) - f(x_1, c_2)$ and $v(x_2) \triangleq f(c_1 + h_1, x_2) - f(c_1, x_2)$. Note that u and v are differentiable.

Then, $A(h) = u(c_1 + h_1) - u(c_1)$ and $A(h) = v(c_2 + h) - v(c_2)$. By MVT, $\exists c_1^* \in (c_1, c_1 + h_1)$ and $c_2^* \in (c_2, c_2 + h_2)$ s.t. $A(h) = u'(c_1^*)h_1 = h_1(\partial_1 f(c_1^*, c_2 + h) - \partial_1 f(c_1^*, c_2)) = h_1 h_2 \partial_{21} f(c_1^*, c_2^*)$ Similarly, $\exists c_1^{**}, c_2^{**}$ such that $A(h) = h_1 h_2 \partial_{12} f(c_1^{**}, c_2^{**})$. $\partial_{21} f(c_1^*, c_2^*) = \partial_{12} f(c_1^{**}, c_2^{**})$. Hence, as $|h| \to 0$, due to the continuity, $\partial_{21}(c) = \partial_{12}(c)$.

Corollary 1.1.1

Suppose $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ is C^k at $c \in U$. Then $\partial_{j_1 j_2 \cdots j_k} f(c) = \partial_{j'_1 j'_2 \cdots j'_k}$ where $j'_1 \cdots$ are a permutation of $j_1 \cdots$.

1.2 Extreme Values of differentiable Functions

Definition 1.2.1: Hessian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}$ be C_2 in U. Suppose $p \in U$ is a critical point of f, i.e., $\nabla f(p) = 0$. Define

$$\mathcal{H}f(x) \triangleq \begin{pmatrix} \partial_{11}f(x) & \partial_{21}f(x) & \cdots & \partial_{m1}f(x) \\ \partial_{12}f(x) & \partial_{22}f(x) & \cdots & \partial_{m2}f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{1m}f(x) & \partial_{2m}f(x) & \cdots & \partial_{mm}f(x) \end{pmatrix}.$$

(Sometimes $\mathcal{H}f(x) = D^2f(x)$.)

Define $D(x) = \det \mathcal{H}f(x)$. (Note that $\mathcal{H}f(x)$ is symmetric when f is C^2 by the theorem above.)

Theorem 1.2.1 2nd-order derivative test for two variable functions.

When m = 2 and f is C^2 , a critical point p is

- a local maximum if D(p) > 0 and $\partial_{11} f(p) > 0$ (or $\partial_{22} f(p) > 0$).
- a local minimum if D(p) > 0 and $\partial_{11} f(p) < 0$ (or $\partial_{22} f(p) < 0$).
- a saddle point if D(p) < 0.

The test fails when D(p) = 0.

Proof. Given a unit vector $\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2$, $D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} = u_1 \partial_1 f + u_2 \partial_2 f$, and thus

$$D_{\mathbf{u}}^{2}f = (u_{1}\partial_{1} + u_{2}\partial_{2})(u_{1}\partial_{1}f + u_{2}\partial_{2}f) = u_{1}^{2}\partial_{11}f + u_{1}u_{2}(2\partial_{12}f) + u_{2}^{2}\partial_{22}f.$$

WLOG, $u_1 \neq 0$. Set $z = u_2/u_1$. Then,

$$D_{\mathbf{u}}^{2}f(p) = u_{1}^{2}(\partial_{11}f(p) + 2\partial_{12}f(p)z + \partial_{22}f(p)z^{2}).$$

Note that, if D(p) > 0, $D_{\mathbf{u}}^2 f(p)$ has no real root.

- If D(p) > 0 and $\partial_{11} f(p) < 0$, Then, $D^2 \mathbf{u} < 0$ for all unit vector \mathbf{u} .
- If D(p) > 0 and $\partial_{11}f(p) > 0$, Then, $D^2\mathbf{u} > 0$ for all unit vector \mathbf{u} .
- If D(p) < 0, D_u²f(p) has different signs depending on u.
 For general m?

$$D_{\mathbf{u}}(D_{\mathbf{u}}f) = D_{\mathbf{u}} \sum_{j=1}^{m} \partial_{j} f u_{j} = \sum_{j=1}^{m} ((\nabla \partial_{j} f) \cdot \mathbf{u}) u_{j} = \sum_{j=1}^{m} \sum_{k=1}^{m} u_{k} u_{j} \partial_{kj} f.$$

Hence,

$$D_{\mathbf{u}}^{2}f(p) = \mathbf{u}^{\mathrm{T}} \cdot D^{2}f(p) \cdot \mathbf{u}$$

Since $D^2f(p)$ is symmetric, its eigenvalues $\lambda_1, \dots, \lambda_m$ exists and they are real numbers. Also, there exists an $m \times m$ orthogonal matrix \mathcal{O} such that $D^2f(p) = \mathcal{O}\Lambda(p)\mathcal{O}^T$ where $\Lambda(p)$ is the diagonal matrix with entries are the eigenvalues.

Then, we can write $D_{\mathbf{u}}^2 f(p) = \mathbf{u} \mathcal{O} \Lambda(p) \mathcal{O}^{\mathsf{T}} \mathbf{u}^{\mathsf{T}} = (\mathbf{u} \mathcal{O}) \Lambda(p) = (\mathbf{u} \mathcal{O})^{\mathsf{T}}$. Since \mathcal{O} is orthogonal, $\mathbf{u} \mathcal{O}$ is another arbitrary unit vector.

Theorem 1.2.2 Generalized 2nd order partial derivatives test

When f is C^2 , a critical point p is

• a local maximum if all eigenvalues of $D^2 f(p)$ are negative.

- a local minimum if all eigenvalues of D²f(p) are positive.
 a saddle point if there are both negative eigenvalues and positive eigenvalues.
 The test fails when there are zero eigenvalues.

Chapter 2

Inverse Function Theorem

Jacobian 2.1

Definition 2.1.1: Jacobian

Let $f: U(\subseteq \mathbb{R}^m) \to \mathbb{R}^n$ be differentiable. The function $J_f: U \to \mathbb{R}$ defined by

$$J_{\mathbf{f}}(\mathbf{x}) = \det \begin{bmatrix} \partial_1 f_1(\mathbf{x}) & \cdots & \partial_n f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_1 f_n(\mathbf{x}) & \cdots & \partial_n f_n(\mathbf{x}) \end{bmatrix}$$

is called the *Jacobian* of f at x.

Lemma 2.1.1

If $f: V(\subseteq \mathbb{R}^n) - \mathbb{R}$ and $g: U \to V$ are differentiable, then

$$J_{f \circ g}(\mathbf{x}) = J_f(\mathbf{g}(\mathbf{x})) \cdot J_{\mathbf{g}}(\mathbf{x}).$$

Note:-

The linear mapping df(c) is invertible if and only if $J_f(c)$ is nonzero.

2.2 The Inverse Function Theorem

Lemma 2.2.1 Contraction Mapping Principle

Let (X,d) be a complete metric space. Let $\varphi: X \to X$. Suppose that there exists $M \in$ [0,1) such that $d(\varphi(x_1),\varphi(x_2)) \leq Md(x_1,x_2)$. (We call it a contraction mapping.) Then, there uniquely exists $x_* \in X$ such that $\varphi(x_*) = x_*$.

Proof. Fix any $x_0 \in X$. Since $\{x_j\}_{j \in \mathbb{Z}_+}$, where $x_j = \varphi(x_{j-1})$ for each $j \in \mathbb{Z}_+$, is continuous. It converges to some x_* . As φ is continuous, we have $\varphi(x_*) = x_*$. The uniqueness follows trivially.

🛉 Note:- 🛉

- For each $v \in \mathbb{R}^n \setminus \{0\}$, $|Av| = |v| \cdot |A\frac{v}{|v|}| \le ||A||_L \cdot |v|$. The result is trivial when v = 0. For each $u \in \mathbb{R}^n$ with |u| = 1, $|ABu| \le ||A||_L ||Bu| \le ||A||_L ||B||_L$. Hence, $||AB||_L = ||A|| ||B||$.
- Given invertible $A \in L(\mathbb{R}^n.\mathbb{R}^n)$, $A^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is linear. Moreover, $||A||_L > 0$.

Lemma 2.2.2

Given two linear mappings $A, B : \mathbb{R}^n \to \mathbb{R}^n$ with invertibility of A,

$$||A-B||_L \cdot ||A^{-1}||_L < 1 \implies B$$
 is invertible.

Proof. Let $||A^{-1}||_L = 1/\alpha$ and $||B - A||_L = \beta$ so that $\beta < \alpha$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$\alpha |\mathbf{x}| = \alpha |A^{-1}A\mathbf{x}| \le \alpha ||A^{-1}|| \cdot |A\mathbf{x}|$$

= $|A\mathbf{x}| \le |(A - B)\mathbf{x}| + |B\mathbf{x}| \le \beta |\mathbf{x}| + |B\mathbf{x}|$;

hence $(\alpha - \beta)|\mathbf{x}| \leq |B\mathbf{x}|$ where $\mathbf{x} \in \mathbb{R}^n$ is arbitrary. As $\alpha > \beta$, it holds that $B\mathbf{x} = 0 \implies \mathbf{x} = 0$.

Corollary 2.2.1

The set $\Omega \subseteq L(\mathbb{R}^n, \mathbb{R}^n)$ of invertible linear transformations is open.

Lemma 2.2.3

The mapping from Ω onto Ω defined by $A \mapsto A^{-1}$ is continuous.

Proof. Let *A* and *B* be invertible linear transformations from \mathbb{R}^n to \mathbb{R}^n . Let $||A^{-1}|| = 1/\alpha$ and $||B-A||_L = \beta$. We have $(\alpha-\beta)|\mathbf{x}| \le |B\mathbf{x}|$ by the same reasoning as in the proof of Lemma 2.2.2. Hence, the following holds.

$$\forall \mathbf{v} \in \mathbb{R}^n, (\alpha - \beta)|B^{-1}\mathbf{v}| \leq |BB^{-1}\mathbf{v}| = |\mathbf{v}|$$

This shows that $||B^{-1}||_L \le (\alpha - \beta)^{-1}$.

Hence, we have

$$||B^{-1} - A^{-1}||_L \le ||B^{-1}||_L ||A - B||_L ||A^{-1}||_L \le \frac{\beta}{\alpha(\alpha - \beta)}.$$

This implies that $||B^{-1} - A^{-1}||_L \to 0$ as $B \to A$.

Theorem 2.2.1 Inverse Function Theorem

Let $\mathbf{f}: E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $\mathbf{c} \in E$. Suppose that $J_{\mathbf{f}}(\mathbf{c}) \neq 0$. Then, the following hold.

- (i) There exists a neighborhood U of **a** such that $\mathbf{f}|_{U}$ is bijective and $V \triangleq \mathbf{f}(U)$ is open.
- (ii) The inverse map of $\mathbf{f}|_{U}$ is C^{1} in V.

Proof. Let $A \triangleq d\mathbf{f}(\mathbf{c})$. Define $\lambda \in \mathbb{R}_+$ by $2\lambda \|A^{-1}\|_L = 1$. Since d**f** is continuous, there exists a neighborhood U of **c** such that $\|d\mathbf{f}(\mathbf{x}) - A\|_L < \lambda$ for each $\mathbf{x} \in U$.

Given a point $\mathbf{y} \in \mathbb{R}^n$, we define $\varphi(\cdot; \mathbf{y})$ by

$$\varphi(\cdot; \mathbf{y}) : B_{\delta}(\mathbf{c}) \longrightarrow \mathbb{R}^{n}$$
$$\mathbf{x} \longmapsto \mathbf{x} + A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x}))$$

Note that \mathbf{x} is a fixed point of $\varphi(\cdot; \mathbf{y})$ if and only if $A^{-1}(\mathbf{y} - \mathbf{f}(\mathbf{x})) = 0$, i.e., $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Note also that φ is differentiable and $d\varphi(\mathbf{x}; \mathbf{y}) = \mathrm{Id} - A^{-1} d\mathbf{f}(\mathbf{x}) = A^{-1}(A - d\mathbf{f}(\mathbf{x}))$ for each $\mathbf{x} \in U$.

Hence, for all $\mathbf{x} \in U$,

$$\| d\varphi(\mathbf{x}; \mathbf{y}) \|_{L} = \| A^{-1} (A - d\mathbf{f}(\mathbf{x})) \|_{L} \le \| A^{-1} \|_{L} \cdot \| A - d\mathbf{f}(\mathbf{x}) \|_{L} < 1/(2\lambda) \cdot \lambda = 1/2.$$

Thus, MVT gives

$$|\varphi(\mathbf{x}_1;\mathbf{y}) - \varphi(\mathbf{x}_2;\mathbf{y})| \le \frac{1}{2}|\mathbf{x}_1 - \mathbf{x}_2|$$

whenever $\mathbf{x}_1, \mathbf{x}_2 \in U$. Note that this implies there is at most one fixed point of $\varphi(\cdot; \mathbf{y})$ in U, i.e., $\mathbf{f}|_{U}$ is bijective.

Now, we shall show that $V = \mathbf{f}(U)$ is open. Take any $\mathbf{y}_0 \in V$. There (uniquely) exists $\mathbf{x}_0 \in U$ such that $\mathbf{y}_0 = \mathbf{f}(\mathbf{x}_0)$. Fix any $r \in \mathbb{R}_+$ such that $\overline{B} \subseteq U$ where $B = B_r(\mathbf{x}_0)$. Take any $\mathbf{y} \in B_{\lambda r}(\mathbf{y}_0)$. Then,

$$|\varphi(\mathbf{x}_0; \mathbf{y}) - \mathbf{x}_0| = |A^{-1}(\mathbf{y} - \mathbf{y}_0)| < ||A^{-1}||_L \lambda r = \frac{r}{2}.$$

Moreover, for any $x \in \overline{B}$,

$$|\varphi(\mathbf{x};\mathbf{y}) - \mathbf{x}_0| \le |\varphi(\mathbf{x};\mathbf{y}) - \varphi(\mathbf{x}_0;\mathbf{y})| + |\varphi(\mathbf{x}_0;\mathbf{y}) - \mathbf{x}_0| \le \frac{1}{2}|\mathbf{x} - \mathbf{x}_0| + \frac{r}{2} < r.$$

This directly implies that $\varphi(\overline{B}; \mathbf{y}) \subseteq B \subseteq \overline{B}$. Hence, $\varphi(\cdot, \mathbf{y})$ is a contraction mapping on a complete metric space \overline{B} . By Lemma 2.2.1, there exists a fixed point $\mathbf{x} \in \overline{B}$, which satisfies y = f(x). Thus, $y \in f(\overline{B}) \subseteq f(U) = V$. Hence, $B \subseteq V$, V is open. This proves (i).

Now, let $\mathbf{g}: V \to U$ be the local inverse map of $\mathbf{f}|_{U}$. Take any $\mathbf{y} \in V$ and $\mathbf{y} + \mathbf{k} \in V$. There are unique $x \in U$ and $x + h \in U$ such that y = f(x) and y + k = f(x + h). Then, we have

$$\varphi(\mathbf{x}+\mathbf{h};\mathbf{y}) - \varphi(\mathbf{x};\mathbf{y}) = \mathbf{h} + A^{-1} (\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}+\mathbf{h})) = \mathbf{h} - A^{-1}\mathbf{k},$$

which implies $|\mathbf{h} - A^{-1}\mathbf{k}| \le |h|/2$. Hence, $|A^{-1}\mathbf{k}| \ge |h|/2$ is obtained by the triangle inequality; $|\mathbf{h}| \le 2||A^{-1}||_L |\mathbf{k}| = \lambda^{-1} |\mathbf{k}|.$

Then, since $\|df(\mathbf{x}) - A\|_L \|A^{-1}\|_L < \lambda \cdot 1/(2\lambda) = 1/2$, Lemma 2.2.2 implies that $df(\mathbf{x})$ is invertible. Let $T \triangleq df(x)$. Then, we have

$$g(y+k)-g(y)-T^{-1}k = h-T^{-1}k = -T^{-1}(f(x+h)-f(x)-Th),$$

and thus

$$\frac{|\mathbf{g}(\mathbf{y}+\mathbf{k}) - \mathbf{g}(\mathbf{y}) - T^{-1}\mathbf{k}|}{|\mathbf{k}|} \le \frac{\|T^{-1}\|_L}{\lambda} \cdot \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h}) - \mathbf{f}(\mathbf{x}) - T\mathbf{h}|}{|\mathbf{h}|}.$$

The equation implies that **g** is differentiable on *V*, and that $d\mathbf{g}(\mathbf{y}) = T^{-1} = d\mathbf{f}(\mathbf{g}(\mathbf{y}))^{-1}$. Since dg is a composition of continuous functions, dg itself is continuous.

Let $\mathbf{f}: E(\subseteq \mathbb{R}^n) \to \mathbb{R}^n$ be C^1 in E and $J_{\mathbf{f}}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. Then, for every open set $W \subseteq E$, $\mathbf{f}(W)$ is open.

Proof. This directly follows from (i) of Theorem 2.2.1.

Implicit Function Theorem 2.3

Definition 2.3.1

- If $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, let us write (\mathbf{x}, \mathbf{y}) for the point $(x_1, \dots, x_n, y_1, \dots, y_m) \in \mathbb{R}^{n+m}$. • Every $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ can be split into $A_x \in L(\mathbb{R}^n)$ and $A_y \in L(\mathbb{R}^m, \mathbb{R}^n)$ where
- $A(\mathbf{h}, \mathbf{k}) = A_x \mathbf{h} + A_y \mathbf{k}$ for each $\mathbf{h} \in \mathbb{R}^n$ and $\mathbf{k} \in \mathbb{R}^m$.

Lemma 2.3.1

If $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and if A_x is invertible, then

$$\forall \mathbf{k} \in \mathbb{R}^m, \ \exists ! \mathbf{h} \in \mathbb{R}^n, \ A(\mathbf{h}, \mathbf{k}) = \mathbf{0}.$$

Proof.
$$A(\mathbf{h}, \mathbf{k}) = A_x \mathbf{h} + A_y \mathbf{k} = \mathbf{0}$$
 if and only if $\mathbf{h} = -(A_x)^{-1} A_y \mathbf{k}$.

Theorem 2.3.1 Implicit Function Theorem

Let $\mathbf{f}: E \to \mathbb{R}^n$ be a C^1 mapping where E is an open set in \mathbb{R}^{n+m} . Let $(\mathbf{a}, \mathbf{b}) \in E$ satisfy f(a,b) = 0. Let A = df(a,b) and suppose A_x is invertible. Then, there exist open sets $U \subseteq \mathbb{R}^{n+m}$ and $W \subseteq \mathbb{R}^m$ that satisfy the following.

- (i) $(\mathbf{a}, \mathbf{b}) \in U$ and $\mathbf{b} \in W$.
- (ii) $\forall \mathbf{y} \in W$, $\exists ! \mathbf{x} \in \mathbb{R}^n$, $(\mathbf{x}, \mathbf{y}) \in U \land \mathbf{f}(\mathbf{x}, \mathbf{y}) = 0$. (iii) If the unique \mathbf{x} in (ii) is denoted by $\mathbf{g}(\mathbf{y})$, then $\mathbf{g} : W \to \mathbb{R}^n$ is C^1 on W.
- (iv) Moreover, $dg(b) = -(A_x)^{-1}A_y$.

Proof. Define $F: E \to \mathbb{R}^{n+m}$ by $F(x,y) \triangleq (f(x,y),y)$. Then, F is C^1 . Since f(a,b) = 0, if $r(h,k) \triangleq$ $\mathbf{f}(\mathbf{a} + \mathbf{h}, \mathbf{b} + \mathbf{k}) - A(\mathbf{h}, \mathbf{k})$, we have $\lim_{\mathbf{h} \to \mathbf{0}} |\mathbf{r}(\mathbf{h}, \mathbf{k})|/|(\mathbf{h}, \mathbf{k})| = 0$. Hence, from

$$F(a+h,b+k)-F(a,b)=(f(a+h,b+k),k)=(A(h,k),k)+(r(h,k),0),$$

it is obtained that $dF(\mathbf{a}, \mathbf{b})(\mathbf{h}', \mathbf{k}') = (A(\mathbf{h}', \mathbf{k}'), \mathbf{k}')$ for each $(\mathbf{h}', \mathbf{k}') \in \mathbb{R}^{n+m}$. If $dF(\mathbf{a}, \mathbf{b})(\mathbf{h}', \mathbf{k}') = \mathbf{0}$, then $\mathbf{k}' = 0$ and $A(\mathbf{h}', \mathbf{0}) = \mathbf{0}$; thus $\mathbf{h}' = \mathbf{0}$ as A_x is invertible. Hence, $d\mathbf{F}(\mathbf{a}, \mathbf{b})$ is invertible; Theorem 2.2.1 can be applied to **F** at (**a**, **b**).

By Theorem 2.2.1, there exists a neighborhood $U \subseteq E$ of (\mathbf{a}, \mathbf{b}) such that $\mathbf{F}|_U$ is bijective, $\mathbf{F}(U)$ is open, and its inverse is C^1 . Let $W \triangleq \{\mathbf{y} \in \mathbb{R}^m \mid (\mathbf{0}, \mathbf{y}) \in \mathbf{F}(U)\}$. W is open as $\mathbf{F}(U)$ is open. Noting that $\mathbf{b} \in W$, we finish the proof for (i).

Take any $y \in W$. Then, there exists $(x, y) \in U$ such that F(x, y) = (0, y); thus f(x, y) = 0. If \mathbf{x}, \mathbf{x}' are two such point corresponding to \mathbf{y} , then

$$F(x', y) = (f(x', y), y) = (0, y) = (f(x, y), y) = F(x, y).$$

However, as **F** being injective, $\mathbf{x} = \mathbf{x}'$. This proves (ii).

Let $V \triangleq \mathbf{F}(U)$. Let $\mathbf{G}: V \to U$ be the inverse of \mathbf{F} , which is C^1 by Theorem 2.2.1. Hence, for each $y \in W$, from F(g(y), y) = (0, y), we have (g(y), y) = G(0, y). This directly shows that **g** is C^1 as well. This proves (iii).

Let $\Phi: W \to U$ be defined by $\Phi(y) = G(0, y) = (g(y), y)$, which is C^1 , indeed. Then, $d\Psi(y) = (dg(y), I_m)$. Differentiating both sides of the equality $f(\Phi(y)) = 0$, we get

$$df(\Phi(y)) d\Phi(y) = 0.$$

Putting $\mathbf{y} := \mathbf{b}$, as $\Phi(\mathbf{b}) = (\mathbf{a}, \mathbf{b})$, we get $Ad\Phi(\mathbf{b}) = 0$, or

$$A_{\nu} d\mathbf{g}(\mathbf{b}) + A_{\nu} = 0,$$

i.e.,
$$d\mathbf{g}(\mathbf{b}) = -(A_x)^{-1}A_y$$
.

Definition 2.3.2: C^1 **-norm**

Suppose $\varphi: \mathbb{R}^n \to \mathbb{R}$ is C^1 . Then,

$$\begin{split} & \|\varphi\|_{C^0(\overline{\Omega})} \triangleq \sup_{\mathbf{x} \in \Omega} |\varphi(\mathbf{x})| \\ & \|\varphi\|_{C^1(\overline{\Omega})} \triangleq \|\varphi\|_{C^0(\overline{\Omega})} + \sum_{i=1}^n \|\partial_j \varphi\|_{C^0(\overline{\Omega})}. \end{split}$$

This is only for Example 2.3.1.

Example 2.3.1 (Level Sets)

Define $\Omega \triangleq \{(x_1,x_2) \in \mathbb{R}^2 \mid |x_2| \leq 1\}$. Given two constants, $a,b \in \mathbb{R}$ with a < b, define $\overline{\varphi}(x_1,x_2) = ax_1$ and $\overline{\psi}(x_1,x_2) = bx_1$. Then, $\Gamma_0 = \{\mathbf{x} \in \Omega \mid \overline{\varphi}(\mathbf{x}) - \overline{\psi}(\mathbf{x}) = 0\} = \{\mathbf{x} \in \Omega \mid x_1 = 0\}$.

Suppose that $\varphi, \psi \colon \Omega \to \mathbb{R}$ satisfy

$$\|\varphi - \overline{\varphi}\|_{C^1(\overline{\Omega})} + \|\psi - \overline{\psi}\|_{C^1(\overline{\Omega})} \le \frac{1}{4}|a - b|.$$

Then, what would be the expression for $\Gamma = \{ \mathbf{x} \in \Omega \mid \varphi(\mathbf{x}) - \psi(\mathbf{x}) = 0 \}$?

Observe that $(\varphi - \psi) = (\varphi - \overline{\varphi}) + (\overline{\varphi} - \overline{\psi}) + (\overline{\psi} - \psi)$ and thus $|(\varphi - \psi)(x_1, x_2) - (a - b)x_1| \le |a - b|/4$. This implies $\lim_{x_1 \to \pm \infty} (\varphi - \psi)(x_1, x_2) = \mp \infty$. Hence, for every $x_2 \in [-1, 1]$, there exists $x_1^* \in \mathbb{R}$ such that $(\varphi - \psi)(x_1^*, x_2) = 0$.

Moreover, $\partial_1(\varphi - \psi) = \partial_1(\varphi - \overline{\varphi}) + (a - b) + \partial_1(\overline{\psi} - \psi)$, and thus $|\partial_1(\varphi - \psi)| \ge \frac{3}{4}|a - b| > 0$. Hence, the x_1^* in the previous paragraph is unique. This means that $\Gamma = \{(f(x_2), x_2) \mid x_2 \in \mathbb{R}\}$ for some f.

 $(\varphi-\psi)(f(x_2),x_2)-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=-(\overline{\varphi}-\overline{\psi})(f(x_2),x_2)=(b-a)f(x_2).$ Hence,

$$f(x_2) = \frac{(\varphi - \overline{\varphi})(f(x_2), x_2) - (\psi - \overline{\psi})(f(x_2), x_2)}{b - a}.$$

This is the implicit representation of f. Moreover, $|f(x_2)| = \frac{|b-a|/4}{|b-a|} = 1/4$.

2.4 Applications of IMFT: Lagrange's Method

Theorem 2.4.1 Optimization Under Multiple Constraints

Let $f, g_1, g_2, \dots, g_k \colon E \to \mathbb{R}$ be C^1 where E is an open set in \mathbb{R}^n and n > k. Let $Z \triangleq \bigcap_{j=1}^k \{ \mathbf{z} \in \mathbb{R}^n \mid g_j(\mathbf{z}) = 0 \}$. Suppose $\mathbf{z}_0 \in Z$ is a local maximum point with respect to f on Z. Suppose also that

$$\Delta \triangleq \det \begin{bmatrix} \partial_1 g_1(\mathbf{z}_0) & \cdots & \partial_1 g_k(\mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_k g_1(\mathbf{z}_0) & \cdots & \partial_k g_k(\mathbf{z}_0) \end{bmatrix} \neq 0.$$

9

Then, there exists $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$ such that $\nabla f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \nabla g_m(\mathbf{z}_0)$.

Proof. Since $\Delta \neq 0$, there exists a unique solution $(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$ for the linear system

$$\begin{bmatrix} \partial_1 g_1(\mathbf{z}_0) & \cdots & \partial_1 g_k(\mathbf{z}_0) \\ \vdots & \ddots & \vdots \\ \partial_k g_1(\mathbf{z}_0) & \cdots & \partial_k g_k(\mathbf{z}_0) \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix} = \begin{bmatrix} \partial_1 f(\mathbf{z}_0) \\ \vdots \\ \partial_k f(\mathbf{z}_0) \end{bmatrix}.$$

For each point $\mathbf{z}=(z_1,\cdots,z_n)\in\mathbb{R}^n$, let $\mathbf{x}=(z_1,\cdots,z_k)$ and $\mathbf{y}=(z_{k+1},\cdots,z_n)$. Let

 $\mathbf{z}_0 = (\mathbf{x}_0, \mathbf{y}_0)$. Let $\mathbf{g}: E \to \mathbb{R}^k$ be defined by $\mathbf{g}(\mathbf{z}) = (g_1(\mathbf{z}), \cdots, g_k(\mathbf{z}))$. Since \mathbf{g} is C^1 , $\mathbf{g}(\mathbf{z}_0) = 0$, and $(d\mathbf{g}(\mathbf{z}_0))_x$ is invertible, by Theorem 2.3.1, there exists an open neighborhood $W \subseteq \mathbb{R}^{n-k}$ of \mathbf{y}_0 and a C^1 function $\mathbf{s}: W \to \mathbb{R}^k$ such that $\mathbf{g}(\mathbf{s}(\mathbf{y}), \mathbf{y}) = \mathbf{0}$ for each $y \in W$. Note that $s(y_0) = x_0$.

Define $F: W \to \mathbb{R}$ by $\mathbf{y} \mapsto f(\mathbf{s}(\mathbf{y}), \mathbf{y})$. As \mathbf{z}_0 is a local maximum point, so is \mathbf{y}_0 . Hence, $\nabla F(\mathbf{y}_0) = \mathbf{0}$. For each $j \in [k]$, define $G_j : W \to \mathbb{R}$ by $\mathbf{y} \mapsto g_j(\mathbf{s}(\mathbf{y}), \mathbf{y})$. As $(\mathbf{s}(\mathbf{y}), \mathbf{y}) \in Z$, we have $G_i = 0$ for each $j \in [k]$. Thus, $\nabla G_i(\mathbf{y}) = \mathbf{0}$.

Let $\mathbf{s} = (s_1, s_2, \dots, s_k)$ where each $s_i : W \to \mathbb{R}$. Since

$$\nabla F(\mathbf{y}) = \mathrm{d}f(\mathbf{s}(\mathbf{y}), \mathbf{y}) \, \mathrm{d}(\mathbf{s}(\mathbf{y}), \mathbf{y})$$

$$= \begin{bmatrix} \partial_1 s_1(\mathbf{y}) & \partial_2 s_1(\mathbf{y}) & \cdots & \partial_{n-k} s_1(\mathbf{y}) \\ \partial_1 s_2(\mathbf{y}) & \partial_2 s_2(\mathbf{y}) & \cdots & \partial_{n-k} s_2(\mathbf{y}) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 s_k(\mathbf{y}) & \partial_2 s_k(\mathbf{y}) & \cdots & \partial_{n-k} s_k(\mathbf{y}) \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

 $\nabla F(\mathbf{y}_0) = \mathbf{0}$ implies

$$\partial_{k+j} f(\mathbf{z}_0) + \sum_{i=1}^k \partial_i f(\mathbf{z}_0) \partial_j s_i(\mathbf{y}_0) = 0$$

for each $j \in [n-k]$. Similarly, $\nabla G_m(\mathbf{y}_0) = \mathbf{0}$ for each $m \in [k]$ implies that

$$-\lambda_m \left[\partial_{k+j} g_m(\mathbf{z}_0) + \sum_{i=1}^k \partial_i g_m(\mathbf{z}_0) \partial_j s_i(\mathbf{y}_0) \right] = 0$$

for each $j \in [n-k]$ and $m \in [k]$.

Adding the k+1 equations together for each $j \in [n-k]$,

$$0 = \left[\partial_{k+j} f(\mathbf{z}_0) - \sum_{m=1}^k \lambda_m \partial_{k+j} g_m(\mathbf{z}_0)\right] + \sum_{i=1}^k \left[\partial_i f(\mathbf{z}_0) - \sum_{m=1}^k \lambda_m \partial_i g_m(\mathbf{z}_0)\right] \partial_j s_i(\mathbf{y}_0).$$

By the definition of $\lambda_1, \dots, \lambda_k$, we are left with only

$$\partial_j f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \partial_j g_m(\mathbf{z}_0)$$

for each $j \in \{k+1, \dots, n\}$. For $j \in [k]$, the same equation holds by the definition of $\lambda_1, \dots, \lambda_k$. Hence, we have $\nabla f(\mathbf{z}_0) = \sum_{m=1}^k \lambda_m \nabla g_m(\mathbf{z}_0)$.

Chapter 3

Series of Vectors

3.1 Preliminaries

Definition 3.1.1: Normed Vector Space

Let *V* be a (real/complex) vector space equipped with a norm $\|\cdot\|$, i.e., the space $(V, \|\cdot\|)$ satisfies the following properties.

- (i) $0 \in V$
- (ii) $\|\mathbf{x}\| \ge 0$ for all $x \in V$ and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$. (positive definiteness)
- (iii) $\|\beta \mathbf{x}\| = |\beta| \cdot \|\mathbf{x}\|$ for all $\mathbf{x} \in V$ and $\beta \in \mathbb{R}$. (absolute homogeneity)
- (iv) $\|\mathbf{x}_1 + \mathbf{x}_2\| \le \|\mathbf{x}_1\| + \|\mathbf{x}_2\|$ for all $\mathbf{x}_1, \mathbf{x}_2 \in V$. (triangle inequality)

Note:-

Note that $(V, \|\cdot\|)$ is naturally a metric space with the metric function $d(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_2\|$.

Definition 3.1.2: Banach Space

A normed vector space $(V, \|\cdot\|)$ is called a *Banach space* if, for every Cauchy sequence $\{x_j\}_{j\in\mathbb{N}}$, there exists a unique $\mathbf{x}_* \in V$ such that $\lim_{n\to\infty} \|\mathbf{x}_n - \mathbf{x}_*\| = 0$.

Example 3.1.1

Let *A* be a compact subset of \mathbb{R}^n . $(V, \|\cdot\|)$ where $V = \{f : A \to \mathbb{R} \mid f \text{ is continuous}\}$ and $\|f\| = \sup_{x \in A} |f(x)|$ forms a Banach space.

🛉 Note:- 🛉

A Banach space is a normed vector space whose naturally induced metric space is complete.

Definition 3.1.3: Series

Let $(V, \|\cdot\|)$ be a normed vector space. Given a sequence $\{x_j\}_{j\in\mathbb{N}}\subseteq V$, define $S_k\triangleq\sum_{j=1}^k x_j$ for each $k\in\mathbb{N}$. Then, each S_k is called a *partial sum* of $\{x_j\}$. If $\{S_k\}_{k\in\mathbb{N}}$ converges to S_k with respect to $\|\cdot\|$, then we write

$$S_* = \sum_{j=1}^{\infty} x_j.$$

If the limit S_* exists, we symbolically say that " $\sum_{j=1}^{\infty} x_j$ converges."

Lemma 3.1.1

Let $(V, \|\cdot\|)$ be a normed vector space. Let $\{x_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. If a series $\sum_{j=1}^{\infty}x_j$ converges, then $\lim_{k\to\infty}\|\mathbf{x}_k\|=0$.

Proof. $\{S_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence. Hence, $\lim_{k\to\infty} \|\mathbf{x}_k\| = \lim_{k\to\infty} \|S_{k+1} - S_k\| = 0$.

Lemma 3.1.2

Let $(V, \|\cdot\|)$ be a Banach space. Let $\{x_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. A series $\sum_{j=1}^\infty x_j$ converges if and only if $\{S_k\}_{k\in\mathbb{N}}$ is Cauchy.

Proof. The definition of Banach spaces.

3.2 Finite Dimensional Banach Spaces

Theorem 3.2.1 Comparison Test

Given two real sequence $\{a_j\}$ and $\{b_j\}$, suppose $0 \le a_j \le b_j$ for all $j \ge k_0$ where $k_0 \in \mathbb{N}$ is a fixed constant. Then, if $\sum_{j=1}^{\infty} b_j$ converges, then $\sum_{j=1}^{\infty} a_j$ converges.

Proof. Let $S_k = \sum_{j=k_0}^k a_j$ and $T_k = \sum_{j=k_0}^\infty b_j$. Then, $0 \le S_n - S_m = \sum_{j=m+1}^n a_j \le \sum_{j=m+1}^n b_j = T_n - T_m$ whenever $n \ge m \ge k_0$. As $\{T_k\}_{k \in \mathbb{N}}$ is Cauchy, $\{S_k\}_{k \in \mathbb{N}}$ is Cauchy as well. As $(\mathbb{R}, \|\cdot\|)$ is a Banach space, $\sum a_j$ converges.

Theorem 3.2.2 Absolute Convergence Test

Let $(V, \|\cdot\|)$ be a Banach space. Let $\{\mathbf{x}_j\}_{j\in\mathbb{N}}\subseteq V$ be a sequence. If $\sum_{j=1}^{\infty}\|\mathbf{x}_j\|$ converges (in \mathbb{R}), then $\sum_{j=1}^{\infty}\mathbf{x}_j$ converges.

Proof. Let $S_k = \sum_{j=1}^k \mathbf{x}_j \in V$ and $T_k = \sum_{j=1}^k \|\mathbf{x}_j\| \in \mathbb{R}$. Then, $\|S_n - S_m\| = \|\sum_{j=m+1}^n \mathbf{x}_j\| \le \sum_{j=m+1}^n \|\mathbf{x}_j\| = T_n - T_m$ whenever $n \ge m$. As $\{T_k\}$ is Cauchy, $\{S_k\}$ is Cauchy as well. Hence, $\sum \mathbf{x}_j$ converges.

Theorem 3.2.3 Summation by Parts

Let $\{a_j\}$ and $\{b_j\}$ be two real sequences. If $\sum a_j$ converges and $\{b_j\}$ is monotonic and convergent, then $\sum_{j=1}^{\infty} a_j b_j$ converges.

Proof. Let $S_k = \sum_{j=1}^k a_j b_j \in V$ and $A_k = \sum_{j=1}^k a_j \in \mathbb{R}$. $(A_0 = 0.)$ Then, $S_k = \sum_{j=1}^k (A_j - A_{j-1}) b_j = 0$ $\sum_{j=1}^{k} A_j b_j - \sum_{j=0}^{k} A_0 b_{j+1} + A_k b_{k+1} = A_k b_{k+1} - \sum_{j=1}^{k} A_j (b_{j+1} - b_j).$ Let $T_k = \sum_{j=1}^k |A_j(b_{j+1} - b_j)|$. Then, whenever n < m, we have

$$0 \le T_m - T_n \le M \sum_{j=n+1}^m |b_{j+1} - b_j| = M|b_{m+1} - b_{n+1}| \to 0,$$

 $\{T_k\}$ is Cauchy, and thus converges; $\{S_k\}$ converges as well.

Conditional Convergence 3.3

Definition 3.3.1: Conditional Convergence

Given a real sequence $\{a_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}$, if $\sum a_j$ converges, and if $\sum |a_j|$ does not converge, then we say that $\sum a_i$ converges conditionally.

Theorem 3.3.1 Alternating Series Test

Let $\{a_j\}_{j\in\mathbb{N}}\subseteq\mathbb{R}$ be a real sequence. If $a_j\geq 0$ for all $j\in\mathbb{N}$, and if $\lim_{j\to\infty}a_j=0$, then $\sum (-1)^{j} a_{j}$ converges.

Proof. MAS101.

Example 3.3.1

 $\sum (-1)^j/j$ conditionally converges.

Note:-

Given, a real sequence $\{a_i\}$, we shall use the following definition for now.

For $j \in \mathbb{N}$, define

$$a_j^+ \triangleq \frac{|a_j| + a_j}{2} = \begin{cases} a_j & \text{if } a_j \ge 0\\ 0 & \text{if } a_j < 0 \end{cases}$$
 and $a_j^- \triangleq \frac{|a_j| - a_j}{2} = \begin{cases} 0 & \text{if } a_j \ge 0\\ -a_j & \text{if } a_j < 0 \end{cases}$.

Then, $a_j^+, a_j^- \ge 0$, $|a_j| = a_j^+ + a_j^-$, and $a_j = a_j^+ - a_j^-$.

Lemma 3.3.1

- Let $\{a_j\}_{j\in\mathbb{N}}$ be a real sequence. (i) If $\sum a_j$ converges absolutely, then both $\sum a_j^+$ and $\sum a_j^-$ converge. Moreover, $\sum a_j = \sum a_j^+ \sum a_j^-$. (ii) If $\sum a_j$ converges conditionally, then both $\sum a_j^+$ and $\sum a_j^-$ diverge.

Proof.

- (i) By the definition of a_i^+ and a_i^- .
- (ii) If one of $\sum a_j^+$ or $\sum a_j^-$ converges, since $a_j = a_j^+ a_j^-$, the other converges as well. If they both converge, as $|a_j| = a_j^+ + a_j^-$, $\sum a_j$ converges absolutely.

Definition 3.3.2: Rearrangement of Series

Let $\phi: \mathbb{N} \to \mathbb{N}$ be bijective. Given a sequence $\{a_i\}_{i\in\mathbb{N}}$, the series $\sum a_{\phi(i)}$ is called a rearrangement of $\sum a_i$.

Theorem 3.3.2 Riemann's Rearrangement Theorem

Let $\{a_j\}_{j\in\mathbb{N}}$ be a conditionally convergent real sequence. Then, for any given $-\infty\leq$ $\alpha \le \beta \le \infty$ ($\pm \infty$ is allowed for α and β), there exists a rearrangement $\phi : \mathbb{N} \to \mathbb{N}$ such that $\liminf_{k\to\infty} \sum_{i=1}^k a_{\phi(j)} = \alpha$ and $\limsup_{k\to\infty} \sum_{j=1}^k a_{\phi(j)} = \beta$.

Proof. Let $\{P_j\}_{j\in\mathbb{N}}$ and $\{Q_j\}_{j\in\mathbb{N}}$ be nonnegative terms and absolute value of negative terms of $\{a_i\}_{i\in\mathbb{N}}$. Then, since they differ from $\{a_i^+\}$ and $\{a_i^-\}$ by zero terms, they are also divergent by Lemma 3.3.1.

Let $\{\alpha_\ell\}_{\ell\in\mathbb{N}}$ and $\{\beta_\ell\}_{\ell\in\mathbb{N}}$ be real sequences such that $\lim_{\ell\to\infty}\alpha_\ell=\alpha$ and $\lim_{\ell\to\infty}\beta_\ell=\beta$. Let $k_1, m_1 \in \mathbb{N}$ be the smallest integers such that

- $S_1 \triangleq P_1 + \dots + P_{k_1} > \beta_1$ and
- $T_1 \triangleq S_1 (Q_1 + \cdots + Q_{m_1}) < \alpha_1$.

Inductively, define $\{k_\ell\}_{\ell\in\mathbb{N}}$ and $\{m_\ell\}_{\ell\in\mathbb{N}}$ by

- $k_{\ell+1} \triangleq \min \left\{ k \in \mathbb{N}_{>k_{\ell}} \mid T_{\ell} + \sum_{j=k_{\ell}+1}^{k} P_{j} > \beta_{\ell+1} \right\}$
- $S_{\ell+1} \triangleq T_{\ell} + \sum_{j=k_{\ell}+1}^{k_{\ell+1}} P_{j}$
- $m_{\ell+1} \triangleq \min \left\{ m \in \mathbb{N}_{>m_{\ell}} \mid S_{\ell+1} \sum_{j=m_{\ell}+1}^{m} Q_j < \alpha_{\ell+1} \right\}$

• $T_{\ell+1} \triangleq S_{\ell+1} - \sum_{j=m_{\ell}+1}^{m_{\ell+1}} Q_j$ • or each $\ell \in \mathbb{N}$. As $k_{\ell} \to \infty$ and $m_{\ell} \to \infty$ as $\ell \to \infty$, this construction gives the natural rearrangement $\phi: \mathbb{N} \to \mathbb{N}$.

By the construction, we have $|S_{\ell} - \beta_{\ell}| \leq P_{k_{\ell}}$ and $|T_{\ell} - \alpha_{\ell}| \leq Q_{m_{\ell}}$ for each $\ell \in \mathbb{N}$. As $P_j, Q_j \to 0$ as $j \to \infty$, we have $S_\ell \to \beta$ and $T_\ell \to \alpha$ as $\ell \to \infty$; α and β are cluster points of $\left\{\sum_{j=1}^{k} a_{\phi(j)}\right\}_{k\in\mathbb{N}}$ (as long as they are finite).

Moreover, for every sufficiently large $n \in \mathbb{N}$, we have $k_{\ell} + m_{\ell} \le n < k_{\ell+1} + m_{\ell+1}$ for some $\ell \in \mathbb{N}$, and thus $\min\{T_{\ell}, T_{\ell+1}\} \leq \sum_{j=1}^{n} a_{\phi(j)} \leq S_{\ell+1}$. This, or some more rigorous explanation using arbitrary $\varepsilon \in \mathbb{R}_+$, implies that there do not exist cluster points smaller than α or greater than β .

3.4 The Cauchy Product

Definition 3.4.1: Cauchy Product

Given two real sequences $\{a_j\}_{j=0}^{\infty}$ and $\{b_j\}_{j=0}^{\infty}$, define

$$C_k \triangleq \sum_{j=0}^k a_j b_{k-j}.$$

The series $\sum_{k=1}^{\infty} C_k$ is called the *Cauchy product* of $\sum_{j=0}^{\infty} a_j$ and $\sum_{j=0}^{\infty} b_j$.

Let $\{a_j\}_{j=0}^{\infty}$ and $\{b_j\}_{j=0}^{\infty}$ be two real sequences. Let $\sum_{k=0}^{\infty} C_k$ be the Cauchy product of them.

(i) If ∑a_j converges absolutely, and if ∑b_j converges, then ∑C_k converges to (∑a_j)(∑b_j).
 (ii) If both ∑a_j and ∑b_j converges absolutely, ∑C_k converges absolutely as well.

Proof. (ii) directly follows from the inequality $\sum_{k=0}^{n} |C_k| \le \left(\sum_{j=0}^{n} |a_j|\right) \left(\sum_{j=0}^{n} |b_j|\right)$ as long as (i) is proven.

Let $S_n \triangleq \sum_{k=0}^n C_k$, $A_n \triangleq \sum_{j=0}^n a_j$, and $B_n \triangleq \sum_{j=0}^n b_j$. Let $B \triangleq \lim_{n \to \infty} B_n$ and $\mu_n \triangleq B_n - B$. Then,

$$S_n = \sum_{k=0}^n C_k = \sum_{k=0}^n \sum_{j=0}^k b_{k-j} = \sum_{j=0}^n a_j \sum_{k=j}^n b_{k-j}$$

$$= \sum_{j=0}^n a_j B_{n-j} = \sum_{j=0}^n a_j (B + \mu_{n-j}) = B \sum_{j=0}^n a_j + \sum_{j=0}^n a_j \mu_{n-j}.$$

Claim. $\lim_{n\to\infty}\sum_{j=0}^n a_j\mu_{n-j}=0.$

Take any $\varepsilon \in \mathbb{R}_+$ so there exists $N \in \mathbb{N}$ such that

- $|\mu_n| < \varepsilon$ for all $n \ge N$ (by $\mu_n \to 0$) and $\sum_{j=n+1}^m |a_j| < \varepsilon$ for all $m > n \ge N$ (by $\sum_{j=0}^k |a_j|$ being Cauchy). As μ_n converges, there exists $\mu^* \triangleq \sup_{n \in \mathbb{N}} |\mu_n|$. Let $K_n \triangleq \sum_{j=0}^n a_j \mu_{n-j}$. Whenever n > 2N,

$$|K_n| \le \sum_{j=0}^n |a_j| \cdot |\mu_{n-j}| = \sum_{j=0}^{N-1} |a_j| \cdot |\mu_{n-j}| + \sum_{j=N}^n |a_j| \cdot |\mu_{n-j}|$$

$$\le \varepsilon \sum_{j=0}^{N-1} |a_j| + \mu^* \sum_{j=N}^n |a_j| \le \varepsilon \left[\sum |a_j| + \mu^* \right].$$

Hence, $\lim_{n\to\infty} K_n = 0$; thus $\lim_{n\to\infty} S_n = (\sum a_j)(\sum b_j)$.