Simulation einer Multikapillarsäule Abschlussvortrag Diplomarbeit

Elisabeth Böhmer

Technische Universität Dortmund Fakultät für Informatik Lehrstuhl 11

22. September 2015

Betreuer: Prof. Dr. Sven Rahmann Prof. Dr. Jörg Rahnenführer

- Einleitung
- ② Gaschromatographie
- 3 2-Zustände Modell
- 4 3-Zustände Modell
- 5 Zusammenfassung und Ausblick

Worum geht es?

Verfahren zur Auftrennung von Stoffgemischen

2-Zustände Modell 3-Zustände Modell Zusammenfassung und Ausblick

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Varianten:
 - Flüssigchromatographie
 - Gaschromatographie

Allgemeines zur Chromatographie

- Verfahren zur Auftrennung von Stoffgemischen
- Verteilung der Analyten zwischen mobiler und stationärer Phase
- Varianten:
 - Flüssigchromatographie
 - Gaschromatographie
 - Gepackte Säulen
 - Kapillarsäulen

O mobile Phase Analyt

stationäre Phase

O mobile Phase Analyt

stationäre Phase

○ mobile Phase ■ Analyt

stationäre Phase

Lösung

O mobile Phase Analyt

stationäre Phase

mobile Phase Analyt stationäre Phase

Adsorption

O mobile Phase Analyt

stationäre Phase

Nach Durchlaufen der Säule

Einleitung

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

Nach Durchlaufen der Säule

- Detektion der austretenden Substanzen
- Detektion der Menge, keine Unterscheidung der Substanzen
- Spektrogramm aus mehreren Peaks

- Alternativ: Weitere Analyse durch zum Beispiel
 - Massenspektrometrie (MS)
 - ▶ Ionen-Mobilitäts-Spektrometrie (IMS)

Charakteristika der Peaks

Peak charakterisiert durch:

Lage des Maximums

Peak charakterisiert durch:

- Lage des Maximums
- Form
 - Idealfall: Gaußkurve
 - Abweichung: Fronting, Tailing
 - Quartilskoeffizient

Charakteristika der Peaks

Peak charakterisiert durch:

- Lage des Maximums
- Form
 - Idealfall: Gaußkurve
 - Abweichung: Fronting, Tailing
 - Quartilskoeffizient
- Breite
 - ▶ IQR

Gesucht:

 Entsprechung von Peakcharakteristika zu Simulationsparametern

$$F:[0,1]^x\to\mathbb{R}^y$$

$$y = 3$$

 \boldsymbol{x} je nach Modell

TODO Unbekannte Funktion

Prinzip:

Modell:

Modell für die Chromatographie

Prinzip:

Einleitung

• 2 Phasen: stationär und mobil

Modell:

• 2 Zustände: s und m

Modell für die Chromatographie

Prinzip:

- 2 Phasen: stationär und mobil
- Wechsel dazwischen, bzw. Verweilen in der Phase

Modell:

- ullet 2 Zustände: s und m
- Wechselwahrscheinlichkeiten
 - \triangleright $s \rightarrow s : p_s$
 - $\triangleright s \rightarrow m: 1-p_s$
 - $ightharpoonup m : p_m$
 - $m \rightarrow s: 1-p_m$

Simulationseckdaten

	МСС	Simulation
Länge der Säule	20 cm	1000 Raumschritte
	1 Raumschritt $\equiv 0.2$ mm	
Durch aufzeit Trägergas	$0.1 \text{ s} \equiv 2 \text{ m/s}$ 1 Zeitschritt \equiv	1000 Zeitschritte 0,1 ms
Geschwindigkeit Trägergas	2 m/s	1 Raumschritt / Zeitschritt
Dauer des Experiments	240 s	2 400 000 Zeitschritte

TODO Tabelle

Grenzen des 2-Parameter Modells

• Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten

Grenzen des 2-Parameter Modells

- Zu späten Zeitpunkten wird Minimalbreite nicht unterschritten
- Peaks nur als Gaußkurven, kein Tailing
 - ► Eigentlich "perfekt", aber nicht realistisch

Weitere mögliche Modelle

• Bisher keine Unterscheidung zwischen Adsorption und Lösung

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - Keine Übergänge zwischen den stationären Zuständen

- Bisher keine Unterscheidung zwischen Adsorption und Lösung
- Weiterer stationärer Zustand
 - Keine Übergänge zwischen den stationären Zuständen

Neuer Zustand als Zwischenzustand

Zusammenfassung

Ausblick