NUMERICALIMETHODS

$$\frac{\partial v}{\partial t} + V \cdot \nabla v =$$

$$\nabla \cdot (k\nabla v) + g(v)$$

$$(\lambda + \mu)\nabla(\nabla \cdot u) + \mu\nabla^{2}u = \alpha(3\lambda + 2\mu)\nabla T - \rho b$$
Lecture 3

$$\rho \left(\frac{\partial u}{\partial t} + V \cdot \nabla u \right) =$$

$$- \frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x$$

$$\nabla^2 u = f$$

COAL AMMUAL												
TURNOVER	£60,000		T. 0.5		QUARTE	THE		- CALL OF THE	R THREE	-	CALLANTE	R FOUR
QUARTERLY		QUARTE	M. LATEL	1	QUARKIE:	CIMO		- CINAMIE	K IPBCE		QUAKIE	K PUMK
TURNOVER	£18,000			£20,000			£12,000			£1	0,000	
	APRIL	MAY	JUNE	JULY	AUG	SEPT	ост	NOV	DEC	JAN	FEB	MARCH
MONTHLY												
TURNOVER	£6,000	£6,000	£7,000	£7,000	£7,000	£6,000	£5,500	£4,500	£2,000	£3,000	£3,000	£4,000
SERVICE												
Group training	£600	£600	£600	£800	£800	£800	£700	£500	£0	£600	£600	£600
One-off					l							
Bootcamps	£500	£500	£700		£1,000	£800	£700	£450			_	£500
Fitness holidays	£2,000	£2,000 £200	£2,500 £200			-	£400	£350	-	-		-
Pre 8. post natal Personal training	£200		£2,800			£200 £4,000		£3,000	£1,800	£2,000		£200 £2,500
Online coaching	£2,500	£2,300 £200	£2,800 £200			£200		£3,000	£1,800			£200
CHERC COOKING	2200	LEGG	2200	2200	2200		2200	LLVV		2200		2200
MONTHLY TOTAL	£6,000	£6,000	£7,000	£6,000	£7,000	£6,000	£5,500	£4,500	£2,000	£3,000	£3,000	£4,000
ANNUAL TOTAL		•								•		£60,000
2 3	3	4	2	1	v2 e4	e1 e1 e2	3 e3 e4	e2 v4	b	a		98
$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$	$ \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} $	v3 v4	e2 get	$ \begin{array}{cccc} 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ \downarrow & \begin{array}{c} \downarrow \\ \neq 4 \text{ gets} \end{array} \\ \text{e3 gets into v4 (+1)} \\ \text{y1 (+1) and gets} \end{array} $	<pre>e4 is</pre>	connected ware of and e4 are of de3 are con and gets into v3 (-to v1 (+1)	vith v2 . It get connected wit nected with v	ts in (+1) th v3. All of th	em get in (+1) nem get in (+1) em get in (+1)

NM Dr P V Ramana

Graph	Adjacency Matrix	Incidence Matrix	Kirchhoff Matrix	
	$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 2-1-1 & 0 \\ -1 & 3-1-1 \\ -1-1 & 3-1 \\ 0-1-1 & 2 \end{pmatrix}$	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0
	$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 - 1 - 1 & 0 & 0 & 0 \\ 1 & 0 & 0 - 1 - 1 & 0 \\ 0 & 1 & 0 & 1 & 0 - 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 3-1-1-1\\ 0&3-1-1\\ 0&0&3-1\\ 0&0&0&3 \end{pmatrix}$	0.3
	$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$	(3-1-1-1 0 0) -1 3-1 0-1 0 -1-1 3 0 0-1 -1 0 0 3-1-1 0-1 0-1 3-1 0 0-1-1-1 3)	

UID No.	Protagonists	Occupation	Monthly Income	Without war- Mart Monthly Expenditure on Kirana	Monthly Savings
1	Gupta	Kirana store owner	Rs. 364	Rs. 237	Rs. 127
2	Mambani	Big Business Owner	Rs. 1,000	Rs. 650	Rs. 350
3	Sharma	Works for Mambani	Rs. 400	Rs. 260	Rs. 140
4	Verma	Works for Mambani	Rs. 350	Rs. 228	Rs. 123
5	Gokhale	Works for Mambani	Rs. 300	Rs. 195	Rs. 105
6	Reddy	Works for Mambani	Rs. 250	Rs. 163	Rs. 88
7	Ghose	Works for Mambani	Rs. 200	Rs. 130	Rs. 70
8	Kumar	Works for Mambani	Rs. 150	Rs. 98	Rs. 53
9	Singh	Works for Gupta	Rs. 100	Rs. 65	Rs. 35
10	ABC	NREGA/Unemployed	Rs. 50	Rs. 33	Rs. 18
Sub-Total			Rs. 2,800	Rs. 1,820	Rs. 980
Grand	1		Rs. 3,164	Rs. 2,057NM	Rs. 1,107

Total

Table 1: COST STRUCTURE FOR AN ONLINE GROCERY START-UP THAT EVENTUALLY SHUT DOWN

Deliveries/Day	500	1,000	2,000
Basket size (₹)	1,000	1,400	1,500
Gross margin (%)	17	19	22
Gross margin (₹)	170	266	330
Warehousing cost (₹)	25	25	20
Delivery van (₹)	102	84	68
Delivery van (%)	10.2	6	4.5
Manpower cost/delivery (₹)	145	125	110
Manpower (%)	14.5	8.9	7.3
Other expenses (₹)	10	14	14
Contribution/delivery (₹)	-112	18	118

v Hamana

Convenience Store Inventory List

Inventory ID	Name	Description 🔻	Unit Price	Quantity in Stock	Inventory Value	Reorder Level	Reorder Time in Days
IN0001	Item 1	Desc 1	\$51.00	25	\$1,275.00	29	13
IN0002	Item 2	Desc 2	\$93.00	132	\$12,276.00	231	4
IN0003	Item 3	Desc 3	\$57.00	151	\$8,607.00	114	11
IN0004	Item 4	Desc 4	\$19.00	186	\$3,534.00	158	6
IN0005	Item 5	Desc 5	\$75.00	62	\$4,650.00	39	12
IN0006	Item 6	Desc 6	\$11.00	5	\$55.00	9	13
IN0007	Item 7	Desc 7	\$56.00	58	\$3,248.00	109	7
IN0008	Item 8	Desc 8	\$38.00	101	\$3,838.00	162	3
IN0009	Item 9	Desc 9	\$59.00	122	\$7,198.00	82	3
IN0010	Item 10	Desc 10	\$50.00	175	\$8,750.00	283	8
IN0011	Item 11	Desc 11	\$59.00	176	\$10,384.00	229	1
IN0012	Item 12	Desc 12	\$18.00	22	\$396.00	36	12
IN0013	Item 13	Desc 13	\$26.00	72	\$1,872.00	102	9
IN0014	Item 14	Desc 14	\$42.00	62	\$2,604.00	83	2
IN0015	Item 15	Desc 15	\$32.00	46	\$1,472.00	23	15
IN0016	Item 16	Desc 16	\$90.00	96	\$8,640.00	180	3
IN0017	Item 17	Desc 17	\$97.00	57	\$5,529.00	98	12
IN0018	Item 18	Desc 18	\$12.00	6	\$72.00	7	13
IN0019	Item 19	Desc 19	\$82.00	143	\$11,726.00	164	12
IN0020	Item 20	Desc 20	\$16.00	124	\$1,984.00	113	14
IN0021	Item 21	Desc 21	\$19.00	112	\$2,128.00	75	11
IN0022	Item 22	Desc 22	\$24.00	182	\$4,368.00	132	15

	A	В	C	D	Е	F
	and the second second	Type (from drop				
1	Master Ingredient List	down menu)	Brand	Price	Size	Per unit
2	can red beans	Canned Good	Walmart	0.5	15.5	\$0.0323
3	spaghetti sauce	Canned Good	Hunts	1.08	26.5	\$0.0408
4	can diced tomatoes big	Canned Good	Walmart	0.97	28	\$0.0346
5	tomato soup	Canned Good	Walmart	0.58	10.8	\$0.0537
6	chili seasoning	Misc	Walmart	0.5	1	\$0.5000
7	1 lb ground beef	Freezer	Walmart	3.72	1	\$3.7200
8	corn chips	Snacks	Santitas	2	16	\$0.1250
9	mushroom soup	Canned Good	Walmart	0.92	10.5	\$0.0876
10	onion soup mix	Misc	Walmart	0.86	1	\$0.8600
11	can black beans	Canned Good	Walmart	0.48	15.2	\$0.0316

. .

U 8 2 6

. .

3 1 3 4 H

...

	KINDLE	ково	FLIPKART	ROCKSTAND
Harry Potter Series	Rs. 3.995	Rs. 3,821	n/a	n/a
To Kill a Mockingbird	Rs. 242	Rs. 536	Rs. 102	n/a
The Lord of the Rings	Rs. 376	Rs. 2073	Rs. 376	n/a
The Hobbit	Rs. 207	Rs. 694	n/a	n/a
Pride and Prejudice	Free	Free	Free	Free
The Bible	Free	Free	Free	Free
The Hitchhikers Guide to the Galaxy	Rs. 209	Rs. 260	Rs. 224	n/a
The Hunger Games Trilogy	Rs. 1,088	Rs. 1,873	n/a	n/a
The Catcher in the Rye	n/a	n/a	n/a	n/a
The Chronicles of Narnia	Rs. 2,487	Rs. 2,487	Rs. 2,637	n/a
The Great Gatsby	Free	Rs. 49	Rs. 10	Rs. 25
1984	Rs. 49	Rs. 61	Rs. 10	Rs. 33
Little Women	Free	Rs. 61	Rs. 47	Free
Jane Eyre	Free	Free	Rs. 47	Free
The Stand	Rs. 270	Rs. 327	Rs. 299	n/a
Gone With the Wind	Rs. 49	Rs. 61	Rs. 60	Rs. 33
A Wrinkle in Time	Rs. 225	Rs. 286	Rs. 333	n/a
The Handmaid's Tale	Rs. 253	Rs. 588	Rs. 253	n/a
The Lion, the Witch, and the Wardrobe	Rs. 178	Rs. 387	Rs. 461	n/a
The Alchemist	Rs. 76	Rs. 404	Rs. 77	n/a

NM Dr P V Ramana

0100111101 Vs

Analog Signal

Digital Signal

 $R_1 || R_3$ means the parallel resistance of $R_{\scriptscriptstyle J}$ and $R_{\scriptscriptstyle J}$.

1 26V	35Ω _{27V} 6V
I ₃ 17Ω	28Ω 28V
13V	28Ω 15Ω
21V 35Ω	35Ω 36Ω
87Ω 34Ω	36Ω 15Ω
20V 25Ω	24V 3012 25
I ₇	

	Ohms Law Formulas									
	Known Resistance Current Voltage Powe (R) (I) (V) (P)									
	Current & Resistance			V = IxR	$P = I^2 x R$					
	Voltage & Current	$R = \frac{V}{I}$			P = VxI					
	Power & Current	$R = \frac{P}{I^2}$		$V = \frac{P}{I}$						
Dr	Voltage & Peŧi/st₽≲n		$I = \frac{V}{R}$		$P = \frac{V^2}{7^2}$					
וט	Power & Resistance		$I = \sqrt{\frac{P}{R}}$	V = √PxR						
	Voltage & Power	$R = \frac{V^2}{P}$	I = P							

 NM

Solutions

- Every system of linear equations has either no solutions, exactly one solution, or infinitely many solutions.
- A general system of two linear equations: (Figure 1.1.1)

$$a_1x + b_1y = c_1 (a_1, b_1 \text{ not both zero})$$

 $a_2x + b_2y = c_2 (a_2, b_2 \text{ not both zero})$

- Two lines may be parallel -> no solution
- Two lines may intersect at only one point
 - -> one solution
- Two lines may coincide
 - -> infinitely many solution

(a) No solution

(b) One solution

(c) Infinitely many solutions

Figure 1.1.1

Systems of Linear Equations and Matrices

- Systems of Linear Equations:
 - An Introduction
 - Unique Solutions
 - Underdetermined and Overdetermined Systems
- Matrices
- Multiplication of Matrices
- The Inverse of a Square Matrix

Systems of Linear Equations: An Introduction

 Recall that a system of two linear equations in two variables may be written in the general form

$$ax + by = h$$
$$cx + dy = k$$

where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

Recall that the graph of each equation in the system is a straight line in the plane, so that geometrically, the solution to the system is the point(s) of intersection of the two straight lines L₁ and L₂, represented by the first and second equations of the system.

- Given the two straight lines L_1 and L_2 , one and only one of the following may occur:
 - 1. L_1 and L_2 intersect at exactly one point.

- Given the two straight lines L_1 and L_2 , one and only one of the following may occur:
 - 2. L_1 and L_2 are coincident.

- Given the two straight lines L_1 and L_2 , one and only one of the following may occur:
 - 3. L_1 and L_2 are parallel.

A System of Equations With Exactly One Solution

Consider the system

$$2x - y = 1$$
$$3x + 2y = 12$$

Solving the first equation for y in terms of x, obtain y = 2x - 1

Substituting this expression for y into the second equation yields

$$3x + 2(2x - 1) = 12$$

$$3x + 4x - 2 = 12$$

$$7x = 14$$
NM Dr P V Ramana
$$x = 2$$

- A System of Equations With Exactly One Solution
 - Finally, substituting this value of x into the expression for y obtained earlier gives

$$y = 2x - 1$$
$$= 2(2) - 1$$
$$= 3$$

Therefore, the unique solution of the system is given by x = 2 and y = 3.

A System of Equations With Exactly One Solution

by the two lines represented by the two equations that make up the system intersect at the point (2, 3):

A System of Equations With Infinitely Many Solutions

Consider the system

$$2x - y = 1$$

$$6x - 3y = 3$$

- \mathbf{z} Solving the first equation for y in terms of x, obtain
- Substituting this expression for y into the second equation yields

$$y = 2x - 1$$

$$6x - 3(2x - 1) = 3$$

$$6x - 6x + 3 = 3$$

$$0 = 0$$

which is a true statement.

This result follows from the fact that the second equation is equivalent to the first.

Bxample:

A System of Equations With Infinitely Many Solutions

- Thus, any order pair of numbers (x, y) satisfying the equation y = 2x 1 constitutes a solution to the system.
- By assigning the value t to x, where t is any real number, find that y = 2t 1 and so the ordered pair (t, 2t 1) is a solution to the system.
- The variable i is called a parameter.
- For example:
 - Setting t = 0, gives the point (0, -1) as a solution of the system.
 - Setting t = 1, gives the point (i, 1) as another solution of the system.

A System of Equations With Infinitely Many Solutions

- Since t represents any real number, there are infinitely many solutions of the system.
- Geometrically, the two equations in the system represent the same line, and all solutions of the system are points lying on the line:

A System of Equations That Has No Solution

Consider the system

$$2x - y = 1$$
$$6x - 3y = 12$$

 \bullet Solving the first equation for y in terms of x, obtain

$$y = 2x - 1$$

Substituting this expression for y into the second equation yields

$$6x - 3(2x - 1) = 12$$
$$6x - 6x + 3 = 12$$
$$0 = 9$$

which is clearly impossible.

Thus, there is no solution to the system of equations.

A System of Equations That Has No Solution

 To interpret the situation geometrically, cast both equations in the slope-intercept form, obtaining

y = 2x - 1 and y = 2x - 4 which shows that the lines are parallel.

Graphically:

Introduction

Roots of a single equation: f(x) = 0

A general set of equations:

- n equations,
- n unknowns.

$$\begin{cases} f_1(x_1, x_2, \Lambda \ x_n) = 0 \\ f_2(x_1, x_2, \Lambda \ x_n) = 0 \\ \mathbf{M} & \mathbf{M} \\ f_n(x_1, x_2, \Lambda \ x_n) = 0 \end{cases}$$