Structural Optimization for Large-Scale Problems

Lecture 7: Huge-scale optimization

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Outline

Problems sizes

Random coordinate search

Confidence level of solutions

Sparse Optimization problems

Sparse updates for linear operators

Fast updates in computational trees

Simple subgradient methods

Application examples

Nonlinear Optimization: problems sizes

§ 1 Huge-scale problem

Class	Operations	Dimension	Iter.Cost	Memory	
Small-size	All	$10^0 - 10^2$	$n^4 \rightarrow n^3$	Kilobyte:	10^3
Medium-size	\mathcal{A}^{-1}	$10^3 - 10^4$	$n^3 o n^2$	Megabyte:	10^{6}
Large-scale	Ax	$10^5 - 10^7$	$n^2 \rightarrow n$	Gigabyte:	10 ⁹
Huge-scale	x + y	$10^8 - 10^{12}$	$n o \log n$	Terabyte:	10^{12}

Sources of Huge-Scale problems

- ► Internet (New)
- ► Telecommunications (New)
- ► Finite-element schemes (Old)
- Partial differential equations (Old)

Very old optimization idea: Coordinate Search

Problem: $\min_{x \in \mathbb{R}^n} f(x)$ (f is convex and differentiable).

Coordinate relaxation algorithm

For $k \ge 0$ iterate

- 1. Choose active coordinate i_k .
- 2. Update $x_{k+1} = x_k h_k \nabla_{i_k} f(x_k) e_{i_k}$ ensuring $f(x_{k+1}) \leq f(x_k)$. (e_i is ith coordinate vector in \mathbb{R}^n .)

Main advantage: Very simple implementation.

Possible strategies

- 1. Cyclic moves. (Difficult to analyze.)
- 2. Random choice of coordinate (Why?)
- 3. Choose coordinate with the maximal directional derivative.

Complexity estimate: assume

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad x, y \in \mathbb{R}^n.$$

Let us choose $h_k = \frac{1}{I}$. Then

$$f(x_k) - f(x_{k+1}) \ge \frac{1}{2L} |\nabla_{i_k} f(x_k)|^2 \ge \frac{1}{2nL} ||\nabla f(x_k)||^2$$

 $\ge \frac{1}{2nLR^2} (f(x_k) - f^*)^2.$

Hence,
$$f(x_k) - f^* \le \frac{2nLR^2}{k}$$
, $k \ge 1$. (For Grad.Method, drop n .)

This is the only known theoretical result known for CDM before 2012!

Criticism

Theoretical justification:

- Complexity bounds are not known for the most of the schemes.
- The only justified scheme needs computation of the whole gradient.

 (Why don't use GM?) (为什么不用 full-dimensional gradient method?)

Computational complexity:

- Fast differentiation: if function is defined by a sequence of operations, then $T(\nabla f) \leq 4T(f)$.
- Can we do anything without computing the function's values?

Result: CDM were almost out of the computational practice for decades.

Google problem

Let $E \in \mathbb{R}^{n \times n}$ be an incidence matrix of a graph. Denote $e = (1, \dots, 1)^T$ and

$$\bar{E} = E \cdot \operatorname{diag}(E^T e)^{-1}.$$

Thus, $\bar{E}^T e = e$. Our problem is as follows:

(EX column-stochastic matrix)

Find
$$x^* > 0$$
: $\bar{E}x^* = x^*$.

(x* 1) dominating eigenvector)

Optimization formulation:

$$f(x) \stackrel{\mathrm{def}}{=} \frac{1}{2} \|\bar{E}x - x\|^2 + \frac{\gamma}{2} [\langle e, x \rangle - 1]^2 \rightarrow \min_{x \in \mathbb{R}^n}$$

Huge-scale problems

Main features

- ▶ The size is very big $(n \ge 10^7)$.
- ► The data is distributed in space.
- The requested parts of data are not always <u>available</u>.
- The data may be changing in <u>time</u>.

Consequences

The simplest operations are expensive or infeasible:

- Update of the full vector of variables.
- Matrix-vector multiplication.
- Computation of the objective function's value, etc.

Structure of the Google Problem

Let ua look at the gradient of the objective:

$$abla_i f(x) = \langle a_i, g(x) \rangle + \gamma [\langle e, x \rangle - 1], \ i = 1, \ldots, n,$$
 $g(x) = \bar{E}x - x \in \mathbb{R}^n, \quad (\bar{E} = (a_1, \ldots, a_n)).$

Main observations:

- The coordinate move $x_+ = x h_i \nabla_i f(x) e_i$ needs $O(p_i)$ a.o. (p_i) is the number of nonzero elements in a_i .)

We can use them for choosing the step sizes $(h_i = \frac{1}{d_i})$.

Reasonable coordinate choice strategy? Random!

Random coordinate descent methods (RCDM)

&z RCDM

 $\min_{x \in \mathbb{R}^N} f(x)$, (f is convex and differentiable)

Main Assumption:

$$|f_i'(x+h_ie_i)-f_i'(x)| \leq L_i|h_i|, \quad h_i \in R, \ i=1,\ldots,N,$$

where e; is a coordinate vector. Then 关系if coordinate 的 descent temma

$$f(x+h_ie_i) \leq f(x)+f'_i(x)h_i+\frac{L_i}{2}h_i^2. \quad x \in \mathbb{R}^N, \ h_i \in \mathbb{R}.$$

Define the coordinate steps: $T_i(x) \stackrel{\text{def}}{=} x - \frac{1}{L_i} f_i'(x) e_i$. Then,

$$f(x) - f(T_i(x)) \ge \frac{1}{2L_i} [f'_i(x)]^2, \quad i = 1, \dots, N.$$

Random choice for coordinates

We need a special random counter \mathcal{R}_{α} , $\alpha \in \mathbb{R}$:

$$Prob[i] = p_{\alpha}^{(i)} = L_i^{\alpha} \cdot \left[\sum_{j=1}^N L_j^{\alpha}\right]^{-1}, \quad i = 1, \dots, N.$$

Note: \mathcal{R}_0 generates uniform distribution.

Method $RCDM(\alpha, x_0)$

- For $k \ge 0$ iterate:

 1) Choose $i_k = \mathcal{R}_{\alpha}$.

 2) Update $x_{k+1} = T_{i_k}(x_k)$.

Complexity bounds for RCDM

We need to introduce the following norms for $x, g \in \mathbb{R}^N$:

$$\|x\|_{\alpha} = \left[\sum_{i=1}^{N} L_{i}^{\alpha} [x^{(i)}]^{2}\right]^{1/2}, \quad \|g\|_{\alpha}^{*} = \left[\sum_{i=1}^{N} \frac{1}{L_{i}^{\alpha}} [g^{(i)}]^{2}\right]^{1/2}.$$

After k iterations, $RCDM(\alpha, x_0)$ generates random output x_k , which depends on $\xi_k = \{i_0, \ldots, i_k\}$. Denote $\phi_k = E_{\xi_{k-1}} f(x_k)$.

Theorem. For any $k \geq 1$ we have

弟人次迭代的函数值期望

$$\phi_k - f^* \le \frac{2}{k} \cdot \left[\sum_{j=1}^N L_j^{\alpha} \right] \cdot R_{1-\alpha}^2(x_0),$$

where
$$R_{\beta}(x_0) = \max_{x} \left\{ \max_{x_* \in X^*} \|x - x_*\|_{\beta} : f(x) \leq f(x_0) \right\}$$
.

Interpretation

Denote
$$S_{\alpha} = \sum_{i=1}^{N} L_{i}^{\alpha}$$
.

1. $\alpha = 0$. Then $S_0 = N$, and we get

$$\phi_k - f^* \leq \frac{2N}{k} \cdot R_1^2(x_0).$$

Note

- We use the metric $||x||_1^2 = \sum_{i=1}^N L_i[x^{(i)}]^2$.
- ▶ Matrix with diagonal $\{L_i\}_{i=1}^N$ can have its norm equal to n.
- Hence, for GM we can guarantee the same bound.

 But its cost of iteration is much higher!

Interpretation

2. $\alpha = \frac{1}{2}$. Denote

$$D_{\infty}(x_0) = \max_{x} \left\{ \max_{y \in X^*} \max_{1 \le i \le N} |x^{(i)} - y^{(i)}| : f(x) \le f(x_0) \right\}.$$

Then, $R_{1/2}^2(x_0) \leq S_{1/2}D_{\infty}^2(x_0)$, and we obtain

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^N L_i^{1/2}\right]^2 \cdot D_\infty^2(x_0).$$

Note:

- ► For the first order methods, the worst-case complexity of minimizing over a box does depend on *N*.
- Since $S_{1/2}$ can be bounded, RCDM can be applied in situations when the usual GM fails.

Interpretation

3. $\alpha = 1$. Then $R_0(x_0)$ is the size of the initial level set in the standard Euclidean norm. Hence,

$$\phi_k - f^* \leq \frac{2}{k} \cdot \left[\sum_{i=1}^N L_i \right] \cdot R_0^2(x_0) \equiv \frac{2N}{k} \cdot \left[\frac{1}{N} \sum_{i=1}^N L_i \right] \cdot R_0^2(x_0).$$

Rate of convergence of GM can be estimated as

$$f(x_k)-f^*\leq \frac{\gamma}{k}R_0^2(x_0),$$

where γ satisfies condition $f''(x) \leq \gamma \cdot I$, $x \in \mathbb{R}^N$.

Note: maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as that of *RCDM*.

§ 3 RCDM \$5 confidence level

Minimizing the strongly convex functions

Theorem. Let $f(\cdot)$ be strongly convex with respect to $\|\cdot\|_{1-\alpha}$ with convexity parameter $\sigma_{1-\alpha} > 0$.

Then, for $\{x_k\}$ generated by $RCDM(\alpha, x_0)$ we have

$$\phi_k - \phi^* \leq \left(1 - \frac{\sigma_{1-\alpha}}{S_{\alpha}}\right)^k (f(x_0) - f^*).$$

Proof: Let x_k be generated by RCDM after k iterations.

Let us estimate the expected result of the next iteration.

$$f(x_{k}) - E_{i_{k}}(f(x_{k+1})) = \sum_{i=1}^{N} p_{\alpha}^{(i)} \cdot [f(x_{k}) - f(T_{i}(x_{k}))]$$

$$\geq \sum_{i=1}^{N} \frac{p_{\alpha}^{(i)}}{2L_{i}} [f'_{i}(x_{k})]^{2} = \frac{1}{2S_{\alpha}} (\|f'(x_{k})\|_{1-\alpha}^{*})^{2}$$

$$\geq \frac{\sigma_{1-\alpha}}{S_{\alpha}} (f(x_{k}) - f^{*}).$$

It remains to compute expectation in ξ_{k-1} .

Confidence level of the answers

Note: We have proved that the expected values of random $f(x_k)$ are good.

Can we guarantee anything after a single run?

Confidence level: Probability $\beta \in (0,1)$, that some statement about random output is correct.

Main tool: Markov inequality $(\xi \ge 0)$:

$$Prob\left[\xi \geq T\right] \leq \frac{E(\xi)}{T}.$$

Our situation:

$$Prob\left[f(x_k)-f^*\geq\epsilon\right] \leq \frac{1}{\epsilon}[\phi_k-f^*] \leq 1-\beta.$$

We need $\phi_k - f^* \le \epsilon \cdot (1 - \beta)$. Too expensive for $\beta \to 1$?

Regularization technique

Consider $f_{\mu}(x) = f(x) + \frac{\mu}{2} ||x - x_0||_{1-\alpha}^2$. It is strongly convex.

Therefore, we can obtain $\phi_k - f_\mu^* \le \epsilon \cdot (1 - \beta)$ in

$$O\left(\frac{1}{\mu}S_{\alpha}\ln\frac{1}{\epsilon\cdot(1-\beta)}\right)$$
 iterations.

Theorem. Define $\alpha=1$, $\mu=\frac{\epsilon}{4R_0^2(x_0)}$, and choose

$$k \geq 1 + rac{8S_1R_0^2(x_0)}{\epsilon} \left[\ln rac{2S_1R_0^2(x_0)}{\epsilon} + \ln rac{1}{1-eta}
ight].$$

Let x_k be generated by $RCDM(1, x_0)$ as applied to f_μ . Then

$$Prob(f(x_k) - f^* \le \epsilon) \ge \beta.$$

Note: $\beta = 1 - 10^{-p} \Rightarrow \ln 10^p = 2.3p$.

Implementation details: Random Counter

Given the values L_i , $i=1,\ldots,N$, generate efficiently random $i\in\{1,\ldots,N\}$ with probabilities $Prob\left[i=k\right]=L_k/\sum\limits_{j=1}^NL_j$.

Solution: a) Trivial \Rightarrow O(N) operations.

b). Assume $N=2^p$. Define p+1 vectors $S_k \in \mathbb{R}^{2^{p-k}}$, $k=0,\ldots,p$:

$$S_0^{(i)} = L_i, i = 1, \ldots, N.$$

$$S_k^{(i)} = S_{k-1}^{(2i)} + S_{k-1}^{(2i-1)}, i = 1, \dots, 2^{p-k}, k = 1, \dots, p.$$

Algorithm: Make the choice in p steps, from top to bottom.

If the element i of S_k is chosen, then choose in S_{k-1} either 2i or 2i-1 in accordance to probabilities $\frac{S_{k-1}^{(2i)}}{S_k^{(i)}}$ or $\frac{S_{k-1}^{(2i-1)}}{S_k^{(i)}}$.

Difference: for $n = 2^{20} > 10^6$ we have $p = \log_2 N = 20$.

多4 Sparse problem 如何加速

Sparse problems

 $\min_{x \in Q} f(x)$, where Q is closed and convex in Problem:

 \mathbb{R}^N , and

 $ightharpoonup f(x) = \Psi(Ax)$, where Ψ is a simple convex function:

$$\Psi(y_1) \geq \Psi(y_2) + \langle \Psi'(y_2), y_1 - y_2 \rangle, \quad y_1, y_2 \in \mathbb{R}^M,$$

 $ightharpoonup A: \mathbb{R}^N o \mathbb{R}^M$ is a *sparse* matrix.

Let $p(x) \stackrel{\text{def}}{=} \#$ of nonzeros in x. Sparsity coefficient: $\gamma(A) \stackrel{\text{def}}{=} \frac{p(A)}{MN}$.

Example 1: Matrix-vector multiplication

- ightharpoonup Computation of vector Ax needs p(A) operations.
- Initial complexity MN is reduced in $\gamma(A)$ times.

Gradient Method

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q(x_k - hf'(x_k))$, $k \ge 0$.

Main computational expenses

- ightharpoonup Projection onto a simple set Q needs O(N) operations.
- ▶ Displacement $x_k \to x_k hf'(x_k)$ needs O(N) operations.
- $f'(x) = A^T \Psi'(Ax)$. If Ψ is simple, then the main efforts are spent for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with *full* matrices, we accelerate in $\gamma(A)$ times.

Note: For Large- and Huge-scale problems, we often have $\gamma(A) \approx 10^{-4} \dots 10^{-6}$. **Can we get more?**

Sparse updating strategy

Main idea

- After update $x_+ = x + d$ we have $y_+ \stackrel{\text{def}}{=} Ax_+ = \underbrace{Ax}_{V} + Ad$.
- ► What happens if *d* is *sparse*?

Denote
$$\sigma(d) = \{j : d^{(j)} \neq 0\}$$
. Then $y_+ = y + \sum_{j \in \sigma(d)} d^{(j)} \cdot Ae_j$.

Its complexity, $\kappa_A(d) \stackrel{\text{def}}{=} \sum_{j \in \sigma(d)} p(Ae_j)$, can be VERY small!

$$\kappa_{A}(d) = M \sum_{j \in \sigma(d)} \gamma(Ae_{j}) = \gamma(d) \cdot \frac{1}{p(d)} \sum_{j \in \sigma(d)} \gamma(Ae_{j}) \cdot MN$$

$$\leq \gamma(d) \max_{1 \leq j \leq m} \gamma(Ae_{j}) \cdot MN.$$

If
$$\gamma(d) \leq c\gamma(A)$$
, $\gamma(A_j) \leq c\gamma(A)$, then $\kappa_A(d) \leq c^2 \cdot \gamma^2(A) \cdot MN$

Expected acceleration: $(10^{-6})^2 = 10^{-12} \implies 1 \text{ sec } \approx 32\,000 \text{ years}$

When it can work?

- Simple methods: No full-vector operations! (Is it possible?)
- Simple problems: Functions with sparse gradients.

Examples

- 1. Quadratic function $f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$. The gradient f'(x) = Ax b, $x \in \mathbb{R}^N$, is *not* sparse even if A is sparse.
- 2. Piece-wise linear function $g(x) = \max_{1 \le i \le m} [\langle a_i, x \rangle b^{(i)}]$. Its subgradient $f'(x) = a_{i(x)}$, $i(x) : f(x) = \langle a_{i(x)}, x \rangle b^{(i(x))}$, can be sparse if a_i is sparse!

But: We need a fast procedure for updating max-operations.

Fast updates in short computational trees

Def: Function f(x), $x \in \mathbb{R}^n$, is *short-tree representable*, if it can be computed by a short binary tree with the height $\approx \ln n$.

Let $n=2^k$ and the tree has k+1 levels: $v_{0,i}=x^{(i)}$, $i=1,\ldots,n$. Size of the next level halves the size of the previous one:

$$v_{i+1,j} = \psi_{i+1,j}(v_{i,2j-1},v_{i,2j}), \quad j=1,\ldots,2^{k-i-1}, \ i=0,\ldots,k-1,$$

where $\psi_{i,j}$ are some bivariate functions.

$V_{k,1}$									
$V_{k-1,1}$				$V_{k-1,2}$					
•••			• • •						
V _{2,1}						<i>V</i> ₂ ,	n/4		
V_1	.,1	V _{1,2}			•	$V_{1,n}$	/2-1	$V_{1,}$	n/2
<i>V</i> _{0,1}	<i>V</i> _{0,2}	<i>V</i> _{0,3}	<i>V</i> _{0,4}			$V_{0,n-3}$	$V_{0,n-2}$	$V_{0,n-1}$	<i>V</i> _{0,<i>n</i>}

Main advantages

Important examples (symmetric functions)

$$f(x) = \|x\|_p, \quad p \ge 1, \quad \psi_{i,j}(t_1, t_2) \equiv [|t_1|^p + |t_2|^p]^{1/p},$$
 $f(x) = \ln\left(\sum_{i=1}^n e^{x^{(i)}}\right), \quad \psi_{i,j}(t_1, t_2) \equiv \ln\left(e^{t_1} + e^{t_2}\right),$
 $f(x) = \max_{1 \le i \le n} x^{(i)}, \quad \psi_{i,j}(t_1, t_2) \equiv \max\{t_1, t_2\}.$

- ▶ The binary tree requires only n-1 auxiliary cells.
- ▶ Its value needs n-1 applications of $\psi_{i,j}(\cdot,\cdot)$ (\equiv operations).
- If x_+ differs from x in one entry only, then for re-computing $f(x_+)$ we need only $k \equiv \log_2 n$ operations.

Thus, we can have pure subgradient minimization schemes with Sublinear Iteration Cost

.

Simple subgradient scheme with sublinear iteration cost & 32 methods

I. Problem:
$$f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$$
, where

- ▶ Q is a closed and convex and $||f'(x)|| \le L(f)$, $x \in Q$,
- \triangleright the optimal value f^* is known.

Consider the following optimization scheme (B.Polyak, 1967): (f* E**)

$$x_0 \in Q$$
, $x_{k+1} = \pi_Q \left(x_k - \frac{f(x_k) - f^*}{\|f'(x_k)\|^2} f'(x_k) \right)$, $k \ge 0$.

Denote $f_k^* = \min_{0 \le i \le k} f(x_i)$. Then for any $k \ge 0$ we have:

$$||f_k^* - f^*|| \le \frac{|L(f)||x_0 - \pi_{X_*}(x_0)||}{(k+1)^{1/2}},$$

 $||x_k - x^*|| \le ||x_0 - x^*||, \quad \forall x^* \in X_*.$

Proof:

Let us fix $x^* \in X_*$. Denote $r_k(x^*) = ||x_k - x^*||$. Then

$$r_{k+1}^{2}(x^{*}) \leq \left\| x_{k} - \frac{f(x_{k}) - f^{*}}{\|f'(x_{k})\|^{2}} f'(x_{k}) - x^{*} \right\|^{2}$$

$$= r_{k}^{2}(x^{*}) - 2 \frac{f(x_{k}) - f^{*}}{\|f'(x_{k})\|^{2}} \langle f'(x_{k}), x_{k} - x^{*} \rangle + \frac{(f(x_{k}) - f^{*})^{2}}{\|f'(x_{k})\|^{2}}$$

$$\leq r_{k}^{2}(x^{*}) - \frac{(f(x_{k}) - f^{*})^{2}}{\|f'(x_{k})\|^{2}} \leq r_{k}^{2}(x^{*}) - \frac{(f_{k}^{*} - f^{*})^{2}}{L^{2}(f)}.$$

From this reasoning, $||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2$, $\forall x^* \in X^*$.

Corollary: Assume X_* has recession direction d_* . Then

$$||x_k - \pi_{X_*}(x_0)|| \le ||x_0 - \pi_{X_*}(x_0)||, \quad \langle d_*, x_k \rangle \ge \langle d_*, x_0 \rangle.$$

(Proof: consider $x^* = \pi_{X_*}(x_0) + \alpha d_*$, $\alpha \geq 0$.)

Constrained minimization

II. Problem:
$$\min_{x \in Q} \{ f(x) : g(x) \le 0 \}$$
, where

- Q is closed and convex,
- f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If
$$g(x_k) > h \|g'(x_k)\|$$
, then (A): $x_{k+1} = \pi_Q \left(x_k - \frac{g(x_k)}{\|g'(x_k)\|^2} g'(x_k) \right)$, else (B): $x_{k+1} = \pi_Q \left(x_k - \frac{h}{\|f'(x_k)\|} f'(x_k) \right)$.

Let $\mathcal{F}_k \subseteq \{0, \dots, k\}$ be the set (B)-iterations, and $f_k^* = \min_{i \in \mathcal{F}_k} f(x_i)$.

Theorem: If $k > ||x_0 - x^*||^2/h^2$, then $\mathcal{F}_k \neq \emptyset$ and

$$f_k^* - f(x) \le hL(f), \quad \max_{i \in \mathcal{F}_k} g(x_i) \le hL(g).$$

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take $h = \frac{\epsilon}{\max\{L(f), L(g)\}}$. Then we need to decide on the number of steps N (easy!).

Note: The standard advice is $h = \frac{R}{\sqrt{N+1}}$ (much more difficult!)

- 2. Constants L(f), L(g) are not known
 - Start from a guess.
 - Restart from scratch each time we see the guess is wrong.
 - The guess is doubled after restart.
- 3. Tracking the record value f_k^*

Double run. Other ideas are welcome!

Application examples

Observations:

- 1. Very often, Large- and Huge- scale problems have repetitive sparsity patterns and/or limited connectivity.
 - Social networks.
 - Mobile phone networks.
 - Truss topology design (local bars).
 - Finite elements models (2D: four neighbors, 3D: six neighbors).
- 2. For p-diagonal matrices $\kappa(A) \leq p^2$.

Nonsmooth formulation of Google Problem

Main property of spectral radius $(A \ge 0)$

If
$$A \in \mathbb{R}^{n \times n}_+$$
, then $\rho(A) = \min_{x \geq 0} \max_{1 \leq i \leq n} \frac{1}{x^{(i)}} \langle e_i, Ax \rangle$.

The minimum is attained at the corresponding eigenvector.

Since $\rho(\bar{E}) = 1$, our problem is as follows:

$$f(x) \stackrel{\mathrm{def}}{=} \max_{1 \leq i \leq N} [\langle e_i, \bar{E}x \rangle - x^{(i)}] \rightarrow \min_{x \geq 0}.$$

Interpretation: Maximizing the self-esteem!

Since $f^* = 0$, we can apply Polyak's method with sparse updates.

Additional feature: the optimal set X^* is a *convex cone*.

If $x_0 = e$, then the whole sequence is separated from zero:

$$\langle x^*, e \rangle \leq \langle x^*, x_k \rangle \leq \|x^*\|_1 \cdot \|x_k\|_{\infty} = \langle x^*, e \rangle \cdot \|x_k\|_{\infty}.$$

Goal: Find $\bar{x} \geq 0$ such that $\|\bar{x}\|_{\infty} \geq 1$ and $f(\bar{x}) \leq \epsilon$.

(First condition is satisfied automatically.)

Computational experiments: Iteration Cost

We compare Polyak's GM with sparse update (GM_s) with the standard one (GM).

Setup: Each agent has exactly p random friends. Thus, $\kappa(A) \approx p^2$.

Iteration Cost: $GM_s \approx p^2 \log_2 N$, $GM \approx pN$.

 $\log_2 10^3 \approx 10$, $\log_2 10^6 \approx 20$, $\log_2 10^9 \approx 30$. NB:

N	$\kappa(A)$	GM_s	GM
1024	1632	3.00	2.98
2048	1792	3.36	6.41
4096	1888	3.75	15.11
8192	1920	4.20	139.92
16384	1824	4.69	408.38

Time for 10^4 iterations (p = 32) Time for 10^3 iterations (p = 16)

N	$\kappa(A)$	GM_s	GM
131072	576	0.19	213.9
262144	592	0.25	477.8
524288	592	0.32	1095.5
1048576	608	0.40	2590.8

1 sec \approx 100 min!

Convergence of GM_s : Medium Size

Let N = 131072, p = 16, $\kappa(A) = 576$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
$1.0 \cdot 10^5$	0.1100	16.44
$3.0 \cdot 10^{5}$	0.0429	49.32
$6.0 \cdot 10^{5}$	0.0221	98.65
$1.1 \cdot 10^6$	0.0119	180.85
$2.2 \cdot 10^{6}$	0.0057	361.71
$4.1 \cdot 10^6$	0.0028	674.09
$7.6 \cdot 10^6$	0.0014	1249.54
$1.0\cdot 10^7$	0.0010	1644.13

Dimension and accuracy are sufficiently high, but the time is still reasonable.

Convergence of GM_s : Large Scale

Let N = 1048576, p = 8, $\kappa(A) = 192$, and L(f) = 0.21.

Iterations	$f - f^*$	Time (sec)
0	2.000000	0.00
$1.0 \cdot 10^5$	0.546662	7.69
$4.0 \cdot 10^5$	0.276866	30.74
$1.0 \cdot 10^6$	0.137822	76.86
$2.5 \cdot 10^6$	0.063099	192.14
$5.1 \cdot 10^6$	0.032092	391.97
$9.9 \cdot 10^{6}$	0.016162	760.88
$1.5 \cdot 10^7$	0.010009	1183.59

Final point \bar{x}_* : $\|\bar{x}_*\|_{\infty} = 2.941497$, $R_0^2 \stackrel{\text{def}}{=} \|\bar{x}_* - e\|_2^2 = 1.2 \cdot 10^5$.

Theoretical bound: $\frac{L^2(f)R_0^2}{\epsilon^2}=5.3\cdot 10^7$. Time for GM: ≈ 1 year!

Conclusion

- 1. Sparse GM is an efficient and reliable method for solving Large- and Huge- Scale problems with uniform sparsity.
- 2. We can treat also dense rows. Assume that inequality $\langle a, x \rangle \leq b$ is dense. It is equivalent to the following *system*:

$$y^{(1)} = a^{(1)} x^{(1)}, \quad y^{(j)} = y^{(j-1)} + a^{(j)} x^{(j)}, \quad j = 2, \dots, n,$$

 $y^{(n)} \leq b.$

We need new variables $y^{(j)}$ for all nonzero coefficients of a.

- Introduce p(a) additional variables and p(A) additional equality constraints. (No problem!)
- Hidden drawback: the above equalities are satisfied with errors.
- May be it is not too bad?
- 3. Similar technique can be applied to dense columns.

Theoretical consequences

Assume that $\kappa(A) \approx \gamma^2(A)n^2$. Compare three methods:

- Sparse updates (SU). Complexity $\gamma^2(A)n^2\frac{L^2R^2}{\epsilon^2}\log n$ operations.
- ▶ Smoothing technique (ST). Complexity $\gamma(A)n^2\frac{LR}{\epsilon}$ operations.
- Polynomial-time methods (PT). Complexity $(\gamma(A)n + n^3)n \ln \frac{LR}{\epsilon}$ operations.

There are three possibilities.

- Low accuracy: $\gamma(A) \frac{LR}{\epsilon} < 1$. Then we choose SU.
- ▶ Moderate accuracy: $1 < \gamma(A) \frac{LR}{\epsilon} < n^2$. We choose ST.
- ▶ High accuracy: $\gamma(A) \frac{LR}{\epsilon} > n^2$. We choose PT.

NB: For Huge-Scale problems usually $\gamma(A) \approx \frac{1}{n} \Rightarrow \left| \frac{LR}{\epsilon} \vee n \right|$