DS2020 Introduction to Artificial Intelligence

Lab 4 - Sudoku SAT Solver

Roll No.	Name
112301013	K V S Bharath
142301013	K Srirama Srikar

0. Executing the python file

Run the main.py python file, if need be to use a file (other than p.txt) as input, go to the if __name__=="__main__" conditional statement at the end of the program and make the function call something similar to solve_sudoku(filename). Upon executing the python file we get an output stating Solutions written to output.txt.

Refer to output.txt to check the solutions.

1. Encoding Sudoku as a Boolean SAT Problem

Each Sudoku grid is a 9×9 matrix, where each cell contains a number from 1 to 9. To formulate this as a SAT problem, we define **Boolean variables** to represent possible values in each cell.

Boolean Variable Representation

Define a Boolean variable $X_{r,c,v}$, where:

- -r = Row index (0 to 8)
- -c = Column index (0 to 8)
- -v = Digit (1 to 9)

and, $X_{r,c,v}$ is a Boolean variable that is **True** if digit v is placed in cell (r,c).

Variable Encoding: Each variable $X_{r,c,v}$ is encoded as a single integer using the formula:

$$X_{r,c,v} = 81(r) + 9(c) + v$$

This ensures each variable is uniquely represented by a number between 1 and 729.

Variable Decoding: Each variable is decoded as a tuple of three integers by using the formula:

$$(r, c, v) = ((var - 1)/81, ((var - 1)\%81)/9, (var - 1)\%9 + 1)$$

Where var is the variable encoding for an any value in any row and any column.

2. Generating CNF Clauses

We create six sets of CNF clauses:

1. Each cell contains at least one value

$$(X_{r,c,1} \vee X_{r,c,2} \vee \ldots \vee X_{r,c,9})$$

For every (r, c), we generate a clause ensuring at least one number is assigned.

2. Each cell contains at most one value

$$(\neg X_{r,c,v} \lor \neg X_{r,c,w})$$

For every (r, c) and for all pairs $v \neq w$, we generate clauses preventing multiple numbers in a single cell.

3. Each row contains all values

$$(X_{r,0,v} \vee X_{r,1,v} \vee ... \vee X_{r,8,v})$$

For every r and v, we generate a clause ensuring that each number appears in every row.

4. Each column contains all values

$$(X_{0,c,v} \lor X_{1,c,v} \lor ... \lor X_{8,c,v})$$

For every c and v, we generate a clause ensuring that each number appears in every column.

5. Each 3×3 subgrid contains all values

For each block $(block_r, block_c)$, and for each value $v \in \{1, 2, ..., 9\}$, we enforce the constraint:

 $\forall (r_1, c_1), (r_2, c_2) \in \text{Block}, (r_1, c_1) \neq (r_2, c_2) : \neg X_{r_1, c_1, v} \vee \neg X_{r_2, c_2, v}$ and we end up with the below condition for a particular block

$$\bigwedge_{(r_1,c_1)\neq (r_2,c_2)} (\neg X_{r_1,c_1,v} \lor \neg X_{r_2,c_2,v})$$

This ensures that the same number v does not appear twice in any 3×3 block. Thus, as a 3×3 block has 9 values and we do not have any repetitions, we end up having all the values in a block.

6. Fixed values from the puzzle input

If a cell at (r,c) already contains a number v, we directly add: $(X_{r,c,v})$

3. Solving the CNF with pycosat

We use pycosat to solve the generated CNF in the solve_sudoku() function The logic is something similar to the below code

import pycosat

solution = pycosat.solve(cnf_clauses)

else:

print(solution)

Note that we have defined an additional is_valid function to ckeck the validity of sudoku solution which requires the use of numpy. The way to use that function is mentioned in the solve_sudoku function at around line 152.