距離空間

自分のための定義, 定理, 証明まとめ.

- 定義 1 (収束). 距離空間 (X,d) において, 点列 $\{a_i\}_{i\in\mathbb{N}}$ が $a\in X$ に収束するとは, $\forall \varepsilon>0,\ \exists N\in\mathbb{N},\ \forall n>N,\ d(a_n,a)<\varepsilon.$
- 定義 2 (収束列). 距離空間 (X,d) において、点列 $\{a_i\}_{i\in\mathbb{N}}$ が収束列であるとは、 $\exists a \in X, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ d(a_n,a) < \varepsilon.$
- 定義 3 (Cauchy 列). 距離空間 (X,d) において、点列 $\{a_i\}_{i\in\mathbb{N}}$ が Cauchy 列 であるとは、 $\forall \varepsilon>0,\ \exists N\in\mathbb{N},\ \forall m, \forall n>N,\ d(a_m,a_n)<\varepsilon.$

定義 4 (点列コンパクト). 距離空間 (X,d) が<u>点列コンパクト</u>であるとは、任意の点列が収束部分列を持つ空間のことである.

定義 5 (完備). 距離空間 (X,d) が<u>完備</u>であるとは、X における任意の Cauchy 列が収束 することである.

定義 6 (全有界). 距離空間 (X,d) が<u>全有界</u>であるとは、任意の $\varepsilon > 0$ に対して、X の有限個の点、 $x_1, x_2, x_3, \ldots, x_n$ を選んで、

$$X = \bigcup_{k=1}^{n} N(x_1; \varepsilon)$$

となるようにできることである.ただし, $N(a,\varepsilon)$ は,点 a の ε 近傍,すなわち $N(a;\varepsilon):=\{x\in X\mid d(a,x)<\varepsilon\}$ のことである.

命題 7. 距離空間 (X, d) が

「点列コンパクト」⇒「全有界」かつ「完備」

であることを示せ.

証明. X から、点列 $\{a_i\}_{i\in\mathbb{N}}$ を取ってくる。今、X は点列コンパクト空間なので、以下のような、部分列 $\{a_{k(i)}\}_{i\in\mathbb{N}}$ を収束させるような狭義単調増加函数

$$k: \mathbb{N} \to \mathbb{N}$$

が存在する. □

位相空間論についてのある問題

以下,いろいろ問題がありすぎる.

定義 8. $\forall U \in \mathcal{O}$ になんらかの正の実数 $\operatorname{size}(U) \in \mathbb{R}_{\geq 0}$ (U の<u>サイズ</u>と呼ぶことにする.) が付与された位相空間 (X, \mathcal{O} , size) が<u>全有界</u>であるとは,任意の E > 0 に対して, $n \in \mathbb{N}$ が存在して,それぞれのサイズが E 以下であるような U_1, U_2, \ldots, U_n が存在し,その合併が X の (有限) 開被覆になっていることである.

↑これもどうかと思うよ.

定義 9. 位相空間 (X,\mathcal{O}) について、点 $p \in X$ の近傍とは、点 p を含む X の開集合 U を含む部分集合 V のことをいう.

定義 10. 位相空間 (X, \mathcal{O}) において, $\underline{\text{AM}} \{a_i\}_{i \in \mathbb{N}}$ が点 a に収束すると,a の任意の近傍 U に対して, $\exists N \in \mathbb{N}$, $\forall n \geq N \Longrightarrow a \in U$ が成り立つことである.

定義 11. 位相空間 (X, \mathcal{O}) が<u>点列コンパクト</u>であるとは、任意の点列が収束部分列を持つことである。

定義 12. 位相空間 (X,\mathcal{O}) が<u>完備</u>であるとは、 $\forall i \in \mathbb{N}, \ a_i \in X$ なる任意の点列 $\{a_i\}_{i \in \mathbb{N}}$ が 収束することである.

この設定で以下を証明しないさい。逆も成り立つ場合、それを証明せよ。

命題. 位相空間 (X, \mathcal{O}) について,

「点列コンパクト」 ⇒ 「全有界」かつ「完備」