Lecture 18 – Normal Forms of Context-Free Grammars COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

• A context-free grammar (CFG) is a 4-tuple:

$$G = (V, \Sigma, S, R)$$

where

- V: a finite set of variables (nonterminals)
- Σ: a finite set of **symbols** (terminals)
- $S \in V$: the start variable
- $R \subseteq V \times (V \cup \Sigma)^*$: a set of **production rules**.
- How to simplify a CFG?

Let's put it in Chomsky normal form (CNF)!

Chomsky Normal Form (CNF)

Definition (Chomsky Normal Form)

A CFG is in **Chomsky normal form (CNF)** if all productions are of the form for some $A, B, C \in V$ and $a \in \Sigma$:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

(If $\epsilon \in L(G)$, then $S \to \epsilon$ is allowed with forbidden S on RHSs.)

$$S \rightarrow 0ABC \mid 1B \mid BB \mid A \rightarrow ABB0 \mid C \mid B \rightarrow 0B \mid 1 \mid C \rightarrow CC \mid \epsilon \mid D \rightarrow 1D \mid AA$$

Is it possible to put this CFG in CNF? Yes!

Contents

1. Chomsky Normal Form (CNF)

Eliminating ϵ -Productions Nullable Variables

Eliminating Unit Productions
Unit Pairs

Eliminating Useless Variables Generating Variables Reachable Variables Putting CFG in CNF

Eliminating ϵ -Productions

Is it possible to eliminate ϵ -productions?

$$A \rightarrow \epsilon$$

However, it is impossible to eliminate when the language of the CFG contains the empty word (i.e., $\epsilon \in L(G)$).

Let's construct a new CFG G' from G such that

$$L(G') = L(G) \setminus \{\epsilon\}$$

by eliminating ϵ -productions:

- Find all nullable variables.
- **2** Construct a new CFG with productions produced by replacing nullable variables with ϵ in all combinations, except for the ϵ -production.

Nullable Variables

Definition (Nullable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is **nullable** if

$$A \Rightarrow^* \epsilon$$

We can inductively define the set of **nullable variables**:

- (Basis Case) If $A \to \epsilon \in R$, then A is nullable.
- (Induction Case) If $A \to X_1 X_2 \cdots X_n \in R$ and X_1, X_2, \dots, X_n are all nullable, then A is nullable.

Eliminating ϵ -Productions – Example

Consider the following CFG:

$$S
ightarrow 0ABC \mid 1B \mid BB$$

 $A
ightarrow ABB0 \mid C$
 $B
ightarrow 0B \mid 1$
 $C
ightarrow CC \mid \epsilon$
 $D
ightarrow 1D \mid AA$

- **1** Find all **nullable variables**: $\{A, C, D\}$
- **2** Construct a new CFG with productions produced by replacing nullable variables with ϵ in all combinations, except for the ϵ -production:

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \mid A \rightarrow ABB0 \mid BB0 \mid C \mid B \rightarrow 0B \mid 1 \mid C \rightarrow CC \mid C \mid C \mid D \rightarrow 1D \mid 1 \mid AA \mid A$$

Eliminating Unit Productions

Is it possible to eliminate unit productions?

$$A \rightarrow B$$

Yes, we can do it by following the steps below:

- 1 Find all unit pairs.
- 2 Construct a new CFG by adding all possible non-unit productions of B to A for each unit pair (A, B).

Unit Pairs

Definition (Unit Pairs)

For a given CFG $G = (V, \Sigma, S, R)$, a pair of variables $(A, B) \in V \times V$ is a **unit pair** if

$$A \Rightarrow^* B$$

We can inductively define the set of unit pairs:

- (Basis Case) (A, A) is a unit pair for all $A \in V$.
- (Induction Case) If (A, B) is a unit pair and $B \to C \in R$, then (A, C) is a unit pair.

Eliminating Unit Productions - Example

After eliminating ϵ -productions:

$$\begin{array}{l} S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \mid C \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \mid C \\ D \rightarrow 1D \mid 1 \mid AA \mid A \end{array}$$

Find all unit pairs:

$$\{(S,S),(A,A),(A,C),(B,B),(C,C),(D,D),(D,A),(D,C)\}$$

2 Construct a new CFG by adding all possible non-unit productions of B to A for each unit pair (A, B):

$$S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0 \mid CC$
 $B \rightarrow 0B \mid 1$
 $C \rightarrow CC$
 $D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0$

Eliminating Useless Variables

What are useless variables?

- Non-generating variables: Variables that cannot derive any word.
- Unreachable variables: Variables unreachable from the start variable.

Is it possible to eliminate useless variables?

Yes, we can do it by following the steps below:

- Find all generating variables.
- Find all reachable variables.
- 3 Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables.

Generating Variables

Definition (Generating Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **generating** variable if for some $w \in \Sigma^*$,

$$A \Rightarrow^* w$$

We can inductively define the set of **generating variables**:

- (Basis Case) There is no basis case.
- (Induction Case) If $A \to \alpha \in R$ and α contains only symbols or generating variables, then A is a generating variable.

Reachable Variables

Definition (Reachable Variables)

For a given CFG $G = (V, \Sigma, S, R)$, a variable $A \in V$ is a **reachable** variable if there exists a derivation:

$$S \Rightarrow^* \alpha A\beta$$

We can inductively define the set of reachable variables:

- (Basis Case) The start variable S is reachable variable.
- (Induction Case) If $A \in V$ is a reachable variable and $A \to \alpha \in R$, then all variables in α are reachable variables.

Eliminating Useless Variables – Example

After eliminating ϵ -productions and unit productions:

$$\begin{array}{l} S \rightarrow 0ABC \mid 0BC \mid 0AB \mid 0B \mid 1B \mid BB \\ A \rightarrow ABB0 \mid BB0 \mid CC \\ B \rightarrow 0B \mid 1 \\ C \rightarrow CC \\ D \rightarrow 1D \mid 1 \mid AA \mid ABB0 \mid BB0 \end{array}$$

- **1** Find all **generating variables**: $\{S, A, B, D\} C$ is non-generating.
- **2** Find all **reachable variables**: $\{S, A, B, C\} D$ is unreachable.
- 3 Construct a new CFG by removing all productions that contain non-generating variables or come from unreachable variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

Putting CFG in CNF

Our goal is to put a CFG in Chomsky normal form (CNF) consisting of:

$$A \rightarrow BC$$
 OR $A \rightarrow a$

(If $\epsilon \in L(G)$, then $S \to \epsilon$ is allowed with forbidden S on RHSs.)

We can put a CFG in CNF by following the steps below:

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables.
- **3** Arrange so that all RHSs whose length is greater than 1 consist only of variables. To do so, if terminal a appears in a RHS, then replace it with a new variable A and add a production $A \rightarrow a$.
- **4** Replace all RHSs whose length is greater than 2 with a chain of variables. To do so, if $A \to X_1 X_2 \cdots X_n$ is a production with n > 2, then replace it with a sequence of productions:

$$A \rightarrow X_1 A_1$$
 $A_1 \rightarrow X_2 A_2$ \cdots $A_{n-2} \rightarrow X_{n-1} X_n$

6 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$).

Putting CFG in CNF – Example 1

- **1** If S on RHSs, add a new start variable S' and a production $S' \to S$.
- **2** Eliminate ϵ -productions, unit productions, and useless variables:

$$S \rightarrow 0AB \mid 0B \mid 1B \mid BB$$

 $A \rightarrow ABB0 \mid BB0$
 $B \rightarrow 0B \mid 1$

3 Arrange so that all RHSs whose length > 1 consist only of variables:

$$S \rightarrow XAB \mid XB \mid YB \mid BB \quad X \rightarrow 0$$

 $A \rightarrow ABBX \mid BBX \quad Y \rightarrow 1$
 $B \rightarrow XB \mid 1$

4 Replace all RHSs whose length > 2 with a chain of variables:

5 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$): **No.**

Putting CFG in CNF – Example 2

Let's put the following CFG in CNF:

$$S
ightarrow aSb \mid \epsilon$$

1 If S on RHSs, add a new start variable S' and a production $S' \to S$.

$$S' o S$$
 $S o aSb \mid ab$

2 Eliminate ϵ -productions, unit productions, and useless variables:

$$S'
ightarrow aSb \mid ab$$
 $S
ightarrow aSb \mid ab$

3 Arrange so that all RHSs whose length > 1 consist only of variables:

$$S' \rightarrow ASB \mid AB$$
 $S \rightarrow ASB \mid AB$ $A \rightarrow a$ $B \rightarrow b$

4 Replace all RHSs whose length > 2 with a chain of variables:

$$S' \rightarrow AS_1 \mid AB \quad S \rightarrow AS_1 \mid AB \quad S_1 \rightarrow SB \quad A \rightarrow a \quad B \rightarrow b$$

5 If ϵ is in the original CFG, add a production $S \to \epsilon$ (or $S' \to \epsilon$): **Yes.**

$$S'
ightarrow \epsilon \mid AS_1 \mid AB \quad S
ightarrow AS_1 \mid AB \quad S_1
ightarrow SB \quad A
ightarrow a \quad B
ightarrow b$$

Summary

1. Chomsky Normal Form (CNF)

Eliminating ϵ -Productions Nullable Variables

Eliminating Unit Productions
Unit Pairs

Eliminating Useless Variables Generating Variables Reachable Variables

Putting CFG in CNF

Next Lecture

• Properties of Context-Free Languages

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr