Quantum N = 3, d= 3 Chem-Sim ons matter theories in harm onic superspace

I.L. Buchbinder

Department of Theoretical Physics, Tomsk State Pedagogical University, 634041 Tomsk, Russia, E-mail: joseph@tspu.edu.ru

E.A. Ivanov

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia E-m ail: eivanov@theor.jinr.ru

O.Lechtenfeld

Institut fur Theoretische Physik, Leibniz Universitat Hannover, 30167 Hannover, Germany, E-mail: lechtenf@itp.uni-hannover.de

N.G.Pletnev

Department of Theoretical Physics, Institute of Mathematics, Novosibirsk, 630090, Russia, E-mail: pletnev@math.nsc.ru

I.B . Sam sonov

Laboratory of M athem atical Physics, Tom sk Polytechnic University, 634050 Tom sk, Russia, E-m ail: samsonov@mph.phtd.tpu.edu.ru

B.M. Zupnik

Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia E-m ail: zupnik@theor.jinr.ru

A bst ract: We develop the background eld method for studying classical and quantum aspects of N = 3, d = 3 Chem-Sim ons and matter theories in N = 3 harm onic superspace. As one of the immediate consequences, we prove a nonrenormalization theorem implying the ultra-violet niteness of the corresponding supergraph perturbation theory. We also derive the general hypermultiplet and gauge super eld propagators in a Chem-Sim ons background. The leading supergraphs with two and four external lines are evaluated. In contrast to the non-supersymmetric theory, the leading quantum correction to the massive charged hypermultiplet proves to be the super Yang-Mills action rather than the Chem-Sim ons one. The hypermultiplet mass is induced by a constant triplet of central charges in the N = 3, d = 3 Poincare superalgebra.

K eyw ords: Extended Supersym m etry, Superspaces, Supersym m etric G auge T heory, C hern-Sim ons T heories.

C ontents

1.	Introduction		1
2.	Field models in $N = 3$, $d= 3$ harm onic superspace		3
	2.1	Gauge theory in standard $N = 3$ superspace	3
	2.2	Gauge theory in $N = 3$ harm onic superspace	3
	2.3	N = 3 super Yang-M ills and Chem-Sim ons models	6
	2.4	N = 3 hypermultiplets	7
3.	Background eld quantization		9
	3.1	The background eld m ethod for $N = 3$ Chem-Sim ons theory	9
	3.2	Adding hyperm ultiplets	13
	3.3	G auge and hyperm ultiplet propagators	14
	3.4	N = 3, $d = 3$ nonrenorm alization theorem	16
	3.5	General structure of the on-shelle ective action	17
	3 . 6	E ective action in the one-loop approximation	19
4.	Exam ples of supergraph com putations		19
	4.1	Hypermultiplet two-point function	19
	4.2	Gauge and ghost super eld two-point functions	21
	4.3	Vanishing of tadpoles and hypermultiplet self-energy	23
5.	N =	3 supersym m etry w ith central charges	25
	5.1	M assive hyperm ultiplet m odel	25
	5.2	N = 3 SYM as a quantum correction in the massive hypermultiplet model	27
	5.3	Hypermultiplet self-interaction induced by quantum corrections	28
6.	D iscussion		31
Α.	. A ppendix. $N = 3$ harm onic superspace conventions		32
R e	R eferences		

1. Introduction

Three-dim ensional extended supersymmetric gauge theories attract much attention due to their remarkable relationships with string/M theory. In this paper we develop a generic procedure for constructing quantum elective actions of N=3, d=3 supergauge theories in terms of unconstrained harmonic super elds.

The harm onic superspace approach [1,2,3,4] is a powerful tool for studying eld theories with extended supersymmetry in diverse dimensions. In particular, the N = 3, d= 3 harm onic superspace was introduced in [5]. Recently [6], we applied this approach to the three-dimensionalN = 3 supersymmetric Chem-Simons and matter models which are building blocks of the N = 6 and N = 8 supersymmetric Aharony-Bergman-Jaeris-Maldacena (ABJM) [7] and Bagger-Lambert-Gustavsson (BLG) [8] theories. The manifestly N = 3 supersymmetric o-shell formulation of these theories was constructed for the rst time. The ABJM and BLG models are currently of great interest, because they describe the world-volume dynamics of M2 branes in superstring theory and so open a way for studying the AdS $_4$ /CFT $_3$ correspondence.

Superspace form ulations are most advantageous for studying the quantum aspects of supersym metric eld theories because they make manifest one or another amount of the underlying supersym metries. Based on this general feature, it is natural to expect that the N=3, d=3 harm onic superspace approach may prove very fruitful for quantum computations in the N=6 or N=8 superconformal models including the ABJM and BLG ones. However, there is very limited experience in quantizing N=3, d=3 Chem-Simonsormatter models directly in harmonic superspace [5] (as opposed to e.g. N=2, d=4 supersymmetric theories [2, 3, 4]). The aim of the present paper is to partially lithis gap by working out the basic steps of the appropriate quantization procedure.

We develop the background eld method for a general N=3 Chem-Sim ons matter theory and use it to prove a nonrenormalization theorem which guarantees the quantum niteness of such a theory. We derive the super eld propagators in these models and use them for the calculation of leading supergraphs with two and four external gauge and matter legs. These diagram sbring to light some interesting facts about the quantum theory. First, the leading quantum correction in the massive charged hypermultiplet generates the N=3 super Yang-Mills action rather than the Chem-Simons term. This result is rather unexpected in comparison with N=0 three-dimensional electrodynamics in which a single massive fermion generates the Chem-Simons action as a leading contribution to the extive action [9]. Second, the four hypermultiplet one-loop diagram produces a quartic hypermultiplet self-interaction. Like in the four-dimensional case [10], such a contribution is possible only in a model of massive charged hypermultiplets, with the hypermultiplet mass being induced by the central charge of the N=3; d=3 Poincare superalgebra.

The paper is organized as follows. In Section 2 we review the formulation of the N=3 hypermultiplet and Chem-Sim ons models in N=3 harmonic superspace. In Section 3 we develop the background eld method for a general N=3 Chem-Sim ons matter theory, prove the nonrenormalization theorem and discuss the general structure of the quantum elective action. In Section 4 we consider some one-loop quantum computations in the case of vanishing background eld. In Section 5 we study the realization of N=3 supersymmetry with a central charge. This leads us to the massive hypermultiplet model, whose quantum aspects we consider as well. The nall Section 6 contains a discussion of our results as well as prospects of their further applications to three-dimensional models with extended supersymmetry. In the Appendix we collect technical details of the N=3, d=3 harmonic superspace approach.

2. Field models in N = 3, d = 3 harm onic superspace

The basic aspects of the N=3, d=3 harm onic superspace were worked out for the rst time in [5]. In this paper we follow the notations used in our recent paper [6]. They are collected in the Appendix.

2.1 Gauge theory in standard N = 3 superspace

To begin with, we consider the gauge theory in standard N=3, d=3 superspace with coordinates (x; i^{j}) and covariant spinor derivatives D^{ij} given by (A.10). Following the standard geometric approach to gauge theories in superspace, we start by dening the super eld connections for the space-time and spinor derivatives,

$$r^{ij} = D^{ij} + V^{ij}; \quad r = 0 + V :$$
 (2.1)

The main super eld constraint for these super eld connections is given by [5]

$$fr^{ij}; r^{kl}g = ir \quad (\mathbf{W}^{ik}\mathbf{W}^{jl} + \mathbf{W}^{il}\mathbf{W}^{jk}) \quad \frac{1}{2}\mathbf{W}^{ik} + \mathbf{W}^{ik}\mathbf{W}^{ik} + \mathbf{W}^{jk}\mathbf{W}^{ik} + \mathbf{W}^{jk}\mathbf{W}^{ik}); \quad (2.2)$$

where $W^{ij} = W^{(ij)}$ is a super eld strength for these gauge connections. Using the Bianchi identities one can check that the commutators of other covariant derivatives do not involve new tensors except W^{ij} and its derivatives,

$$[r ; r^{ij}] = " F^{ij} + " F^{ij};$$
 (2.3)

$$[r ; r] = "F_{()} + "F_{()} + "F_{()} + "F_{()};$$
 (2.4)

w here

$$F^{ij} = \frac{i}{4} (r^{ik} W_k^j + r^{jk} W_k^i); \qquad F_{()} = \frac{1}{24} (r^{ik} W_k^j + r^{ik} W_k^j) : \qquad (2.5)$$

M oreover, the B ianchi identities lead to the following o -shell constraint for W ij ,

$$r^{(ij}W^{kl)} = 0$$
: (2.6)

In the next subsection we will show how this constraint is resolved within the harm onic superspace approach.

2.2 Gauge theory in N = 3 harm onic superspace

The N=3 harm onic superspace is param etrized by the following coordinates ¹

$$z = fx$$
; $^{++}$; 0 ; $u_{i} q$; (2.7)

where = $^{ij}u_iu_j$, 0 = $^{ij}u_i^+u_j$ and u_i are the SU (2)=U (1) harm onic coordinates subjected to the constraints $u^+^iu_i^- = 1$, $u^+^iu_i^+ = 0$, $u^-^iu_i^- = 0$. The harm onic projections

 $^{^{1}}$ N ote that in [5] the N = 3, d= 3 harm onic superspace with O (3)=O (2) harm onics was introduced.

of the covariant spinor derivatives r^{ij} and the super eld strengths W ij are de ned as follows

$$r^{++} = u_{i}^{+} u_{j}^{+} r^{ij}; \quad r^{-} = u_{i} u_{j} r^{ij}; \quad r^{0} = u_{i}^{+} u_{j} r^{ij};$$

$$W^{++} = u_{i}^{+} u_{j}^{+} W^{ij}; \quad W^{-} = u_{i} u_{j} W^{ij}; \quad W^{0} = u_{i}^{+} u_{j} W^{ij}; \quad (2.8)$$

There are obvious relations between the harm onic super eld strengths,

(a)
$$e^{+}W^{+} = 0$$
; (b) $W^{0} = \frac{1}{2}e^{0}W^{+}$; $W^{0} = e^{0}W^{0} = \frac{1}{2}(e^{0})^{2}W^{+}$; (2.9)

where harm onic derivatives in the central basis @ are de ned in Appendix. In terms of the above harm onic projections, the anticom mutation relations (2.2) can be rewritten as

$$fr^{++};r$$
 $g = 2ir + 2"$ $W^{0};$ $fr^{0};r^{0}g = ir$;
 $fr^{++};r^{0}g = "W^{++};$ $fr^{0};r^{0}g = "W";$ (2.10)

while the harm onic projections of the constraint (2.6) are given by

$$r^{++}W^{++} = 0;$$
 (2.11)

$$r W = 0; r W^{++} + 4r^0W^0 + r^{++}W = 0;$$

$$r^{0}W^{++} + r^{++}W^{0} = 0; \quad r^{0}W + r \quad W^{0} = 0;$$
 (2.12)

The relations (2.11) and (2.12) are none other than the B ianchi identities for the super eld strengths W $^{++}$, W $^{-}$, W $^{-0}$. It is important to realize that the whole set of the constraints (2.12) can be produced from the relation (2.11) by the successive action of the harm onic derivative @ . Thus eq. (2.11) is the basic constraint. As will be clear soon, it is nothing else as the G rassm ann analyticity condition, and it can be solved by passing to the analytic basis in N = 3;d=3 harm onic superspace and to an analytic gauge fram e.

An important feature of the N=3, d=3 harm onic superspace is the existence of an analytic subspace in it. This subspace is closed under the N=3 supersymmetry and is parametrized by the following coordinates

$$A = (x_A; ++; 0; u_i);$$
 (2.13)

w here

$$x_A = (_m) x_A^m = x + i(_{++}^{++} + _{++}^{++})$$
: (2.14)

The analytic basis of N = 3, d = 3 harm onic superspace (as opposed to the original, central basis $(x ; ^{ij})$) is de ned as the coordinate set

$$z_A = f_A; q:$$
 (2.15)

In the analytic basis the G rassmann derivative D $^{++}$ becomes short, D $^{++} = \frac{\theta}{\theta}$. O ther G rassmann and harmonic derivatives in this basis are given by expressions (A 17), (A 18). The existence of the analytic subspace is crucial for constructing super eld actions, as it

allows one to de nethe analytic (short) super elds, which are independent of the coordinate

 $D^{++}_{A} = 0$) A = A(A): (2.16)

As soon as the harm onic variables u_i appear on equal footing with the other superspace coordinates, there is a set of the harm onic derivatives ℓ^{++} , ℓ^{-} , ℓ^{0} given by (A.13). Clearly, these derivatives do not receive any gauge connections in the original gauge frame (\ frame"), since the gauge transformations in it are associated with the harm onic-independent, gauge algebra valued super eld parameter = (z), e.g.,

$$W^{ij} ! e W^{ij}e ; e^{++} = e = 0 : (2.17)$$

However, in order to be able to deal with the manifestly analytic super elds (2.16) in non-trivial representations of the gauge group, one should de ne another gauge fram e (\ fram e") in which the gauge group is represented by the analytic super eld transform ations,

$$_{A}$$
 ! $_{A}^{0} = e$ $_{A}$; $_{D}^{++} = 0$: (2.18)

Having two dierent representations of the same gauge group, one with the harm onic-independent gauge parameter—and another with the analytic gauge parameter—, one can de ne the invertible \bridge" e , = (z;u), which transforms as

$$e^{\circ} = e e e ;$$
 (2.19)

and thus relates the and fram es [1]:

$$A() = e \qquad A; \qquad A() ! \qquad A() = e \qquad A()$$
 (2.20)

Respectively, the Grassmann and harmonic gauge covariant derivatives in the and frames are related as

$$r_{()}^{++} = e \quad r_{()}^{++} = D_{()}^{++}; \quad r_{()}^{-} = e \quad r_{()}^{-} = e \quad r_{()}^{0} = e \quad r_{()}^{$$

$$r_{()} = e D e = D + V ; V = e (D e);$$
 (2.22)

where D are the analytic-basis harm onic derivatives de ned in (A 17). Hereafter, we om it the subscript (), assuming that we will always make use of the frame.

It is crucial that the derivative r^{++} in the fram e becomes short while the harm onic derivatives acquire gauge connections. Owing to the commutation relation $[D^{++};r^{++}]=0$, the super eld V^{++} is analytic,

$$D^{++}V^{++} = 0$$
: (2.23)

The algebra of harm onic derivatives $[r^{++};r] = D^0$ leads to the harm onic zero-curvature equation,

$$D^{++}V$$
 $D^{-+}V^{++} + [V^{++}; V^{-}] = 0;$ (2.24)

²W e would equally choose the central-basis form of the harm onic derivatives in (221), because there is no direct correlation between the superspace bases and the gauge frames.

which de nes the gauge prepotential V as a function of V^{++} . An explicit solution of this equation can be represented by the series [11],

$$V (z;u) = \int_{n=1}^{x^{1}} (1)^{n} du_{1} ::: du_{n} \frac{V^{++}(z;u_{1})V^{++}(z;u_{2}) ::: V^{++}(z;u_{n})}{(u^{+}u_{1}^{+})(u_{1}^{+}u_{2}^{+}) ::: (u_{n}^{+}u^{+})} : (2.25)$$

It is important that not only the prepotential V , but the gauge connections for the G rassmann derivatives, as well as the super eld strengths in (2.10), can be expressed through V^{++} . In particular,

$$[r ; D^{++}] = 2r^{0}) V^{0} = \frac{1}{2}D^{++}V ;$$
 (2.26)

$$fD^{++};r^{0}g = W^{++}$$
) $W^{++} = \frac{1}{4}D^{++}D^{++}V$; (2.27)

where V is a function of V^{++} given by (2.25). The equations (2.9b), being rewritten in the frame, read

$$W^{0} = \frac{1}{2}r \quad W^{++}; \quad W = r \quad W^{0} = \frac{1}{2}(r)^{2}W^{++}:$$
 (2.28)

The equation (2.11), when written in the $\,$ frame, just means the analyticity of the super eld strength W $^{++}$,

$$D^{++}W^{++} = 0$$
) $W^{++} = W^{++} (_{\lambda})$: (2.29)

As a result, the super eld constraint (2.11) for W $^{++}$ is solved by using the representation of the gauge group and the analytic basis (2.15) in the harmonic superspace. However, the relation $Q^{++}W^{++} = 0$, eq. (2.9a), which, in the frame, just states that W^{++} is hom ogeneous of degree 2 in u_i^+ , becomes non-trivial in the frame:

$$r^{++}W^{++} = 0$$
: (2.30)

In particular, this constraint encodes the Bianchi identity for the gauge eld component of the gauge super eld strength.

2.3 N = 3 super Yang-M ills and Chern-Sim ons models

As shown in the previous subsection, the N=3, d=3 gauge theory is described by the super eld strengths W^{++} , W^{-0} , W^{-0} , W^{-0} , which can be expressed through the single analytic gauge prepotential V^{++} . Since the super eld W^{-++} is analytic, eq. (2.29), it can be used for constructing the actions directly in the analytic subspace. In particular, the super Yang-M ills (SYM) and Chem-Sim ons actions are given by [5]

$$S_{SYM} = \frac{1}{\alpha^2} tr d^{(4)}W^{++}W^{++};$$
 (2.31)

$$S_{CS} = \frac{ik}{4} tr \int_{n-2}^{x^4} \frac{(1)^n}{n} d^3x d^6 du_1 ::: du_n \frac{V^{++}(z; u_1) ::: V^{++}(z; u_n)}{(u_1^+ u_2^+) ::: (u_n^+ u_1^+)} : (2.32)$$

Here g is the Yang-M ills coupling constant with the mass dimension [g] = 1=2 while k is the (integer) Chem-Sim ons level. The rules of integration over the analytic and full N = 3 superspaces are given in the Appendix. Both SYM and Chem-Sim ons actions are invariant under the following gauge transform ations

$$V^{++}$$
! $V^{++0} = e r^{++} e$; (2.33)

or, in the in nitesimal form,

$$V^{++} = r^{++} = D^{++} \qquad V^{++}; \; 1; \qquad (2.34)$$

where is an analytic gauge parameter.

One can partly x the gauge freedom by passing to the Wess-Zum ino gauge, in which

$$V_{WZ}^{++} = 3(^{++})^{2}u_{k}u_{1}^{k1}(x_{A}) + 2^{++} {}^{0}A (x_{A}) + 2(^{0})^{2} {}^{++} (x_{A})$$

$$+ 3(^{++})^{2} {}^{0}u_{k}u_{1}^{k1}(x_{A}) + 3i(^{++})^{2}(^{0})^{2}u_{k}u_{1}X^{k1}(x_{A}) :$$
 (2.35)

Such a form of the gauge prepotential is most suitable for deriving the component structure of the SYM and Chem-Sim ons actions 3

$$S_{SYM} = \frac{1}{g^{2}} tr d^{3}x k_{1} k_{1} + \frac{1}{4}f f i @ \frac{i}{2} k_{1} @ k_{1} X^{k_{1}} X^{k_{1}} + interaction;$$

$$S_{CS} = \frac{k}{4} tr d^{3}x k_{1}^{k_{1}} X^{k_{1}} \frac{2i}{3} i_{j} [k_{i}; k_{j}] + \frac{i}{2} \frac{i}{4} k_{1}^{k_{1}}$$

$$\frac{1}{2}A @ A i_{6}^{k_{1}} A A ; A];$$
(2.36)

where f = Q A + Q A

Since the SYM model in three-dimensional space-time involves the dimensionful coupling constant, it is not superconformal. In contrast, the Chem-Sim ons theory has dimensionless coupling constant and therefore is superconformal. In this paper we will be basically interested in quantum aspects of superconformal models; so our main focus will be on the N=3 Chem-Sim ons gauge theory, rather than on N=3 SYM. One more class of N=3 superconformal theories we shall study is those of matter hypermultiplets.

2.4 N = 3 hyperm ultiplets

There are two basic types of the hypermultiplet in four dimensions: the qhypermultiplet and the ! hypermultiplet. They describe the same physical degrees of freedom, though with dierent assignments with respect to the R symmetry SU (2) group. Quite analogously, both these types of hypermultiplets exist in three-dimensional space-time too. In particular, the q-hypermultiplet consists of a SU (2) doublet of complex scalars f^i and a doublet of complex spinors i on shell. These elds appear in the component expansions of the complex analytic super eld q^+ as

$$q^{+} = u_{i}^{+} f^{i} + (^{++} u_{i}^{-} u_{i}^{+})^{i} 2i(^{++} 0) e^{A} f^{i}u_{i} + aux. elds:$$
 (2.38)

In the component eld formulation such actions were obtained in [12].

The free hypermultiplet action has the well known form,

$$S_q = d^{(4)}q^+ D^{++}q^+; q^+ = q^+; q^+ = q^+;$$
 (2.39)

which yields the following free action for the physical components upon eliminating an in nite tower of the auxiliary elds:

$$S_{q,phys} = d^3x (f_i f^i + \frac{i}{2} i e^{-i}) :$$
 (2.40)

The !-hypermultiplet collects on shell a real scalar $^\prime$, a triplet of real scalars $^\prime$ $^{(ij)}$, a and a triplet of real spinors (ij) which appear in the component expansion real spinor of a real analytic super eld! as

$$! = \frac{1}{2}' + \frac{1}{p - 2}'^{ij} u_{i}^{+} u_{j} + \frac{i}{p - 2}^{0} + \frac{i^{p} - 3}{2}^{0} + \frac{i^{p} - 3}{2}^{$$

The free super eld action

$$S_! = d^{(4)}D^{++}!D^{++}!; \quad ! = !;$$
 (2.42)

gives the standard kinetic terms for the physical component elds,
$$S_{!\,phys} = \frac{1}{2} d^3x \, (' \, ' + '^{ij} \, '_{ij} + i \, @ \, + i^{ij} \, @ \, _{ij}) \, ; \qquad (2.43)$$

The minimal gauge interaction of hypermultiplets can be implemented by promoting the at harm onic derivative D $^{++}$ to the gauge covariant one r $^{++}$ = D $^{++}$ + V $^{++}$:

$$S_q = \int_{7}^{2} d^{(4)}q^+ r^{++}q^+;$$
 (2.44)

$$S_! = d^{(4)}r^{++}!r^{++}!$$
: (2.45)

For the time being we do not specify the representation of gauge group on the matter elds. We only notice that there is a dierence between the q and ! hypermultiplet m odels in this aspect: since the! hyperm ultiplet is described by a real super eld, it can be naturally placed into a real representation, e.g. the adjoint representation, while the q hypermultiplet is well suited for putting it into a complex representation of the gauge group, e.g. the fundam ental one. A ctually, there is a duality-sort transform ation between two types of the hypermultiplet [3], so this di erence between them is, to some extent, conventional.

Apart from the minimal gauge interaction, one can consider the hypermultiplet selfinteraction. For the model with a single q hypermultiplet there exists the unique possibility to construct a quartic SU $(2)_R$ invariant super eld potential 4

$$S_4 = d^{(4)} (q^+ q^+)^2; [] = 1:$$
 (2.46)

⁴To prevent a possible confusion, let us recall that such q super eld \potentials", after passing to the physical component elds, give rise to the sigma-model terms for the latter rather than to a scalar potential and Yukawa-type ferm ionic couplings [13]. However, these component potential terms can appear as an e ect of presence of central charges in the supersym metry algebra.

In Section 5.3 we will show that the self-interaction (2.46) em erges as a leading quantum correction in the model of massive charged hypermultiplet.

3. Background eld quantization

The background eld method is a powerful tool for studying the general structure of the quantum elective actions in gauge theories. The basic advantage of this method is that it gives an opportunity to evaluate the elective action with preserving the classical gauge invariance on all steps of quantum computations. The idea of the background eld method consists in splitting the initial elds into the classical and quantum parts and xing the gauge symmetry only for the quantum elds in the generating functional for the elective action. For supersymmetric eld models the concrete realizations of such a splitting is a non-trivial task which requires a special study in every case. For N=1, d=4 supergauge theories the background eld method is discussed in [14], [15]. For N=2, d=4 supersymmetric theories formulated in terms of (constrained) N=2 super elds such a method was worked out in [16]. For the N=2, d=4 supergauge theories in harmonic superspace this method was developed in [17], [18]. Subsequently, it was successfully applied for studying quantum aspects of these models.

In this section we formulate the background eld method for the N=3, d=3 Chem-Sim ons matter theory with the following general action

$$S = S_{CS} + S_{q}; \qquad (3.1)$$

where the Chem-Sim ons and hypermultiplet actions are given by eqs. (2.32), (2.44).5

3.1 The background eld m ethod for N = 3 C hern-Sim ons theory

The background eld m ethod for the N=3, d=3 Chem-Sim ons theory is analogous in some points to the one for the N=2, d=4 SYM theory [17], because the harm onic superspace classical actions in both theories bear a close resemblance to each other.

The classical action in the N = 3 Chern-Sim ons theory (2.32) is invariant under the gauge transformations (2.34). We split the gauge super eld V $^{++}$ into the background' V $^{++}$ and quantum ' $^{++}$ parts,

$$V^{++} ! V^{++} + v^{++};$$
 (3.2)

w here

$$\frac{1}{2} = \frac{ik}{4} : \tag{3.3}$$

Then, the in nitesim algauge transform ations (2.34) can be realized in two di erent ways: (i) Background transform ations

$$V^{++} = D^{++} \qquad [V^{++};] = r^{++}; \qquad \vec{v}^{+} = [; v^{++}]; \qquad (3.4)$$

 $^{^{5}\}text{H}$ ere we do not consider the N = 3 SYM theory (2.31) since we concentrate on the conformally invariant models.

(ii) Quantum transform ations

$$V^{++} = 0; \qquad v^{++} = \frac{1}{2}r^{++} \qquad [v^{++};]:$$
 (3.5)

Here the covariant harm onic derivative r^{++} involves the background super eld V^{++} . Upon the splitting (3.2), the C hern-Sim ons action (2.32) can be rewritten as (see [19] for details of such a derivation in the N=2; d= 4 case)

$$S_{CS}[V^{++} + v^{++}] = S_{CS}[V^{++}]$$
 $\frac{1}{2}$ tr $\frac{Z}{V^{++}W^{++}(V^{++})} + S_{CS}[V^{++};v^{++}];$ (3.6)

where W $^{++}$ (V $^{++}$) is dened in (2.27) and

$$S_{CS}[V^{++};v^{++}] = tr \frac{X^{\frac{1}{2}}}{n} \frac{()^{n-2}}{n} Z^{\frac{1}{2}} d^{9}zdu_{1} ::: du_{n} \frac{v^{++}(z;u_{1}) ::: v^{++}(z;u_{n})}{(u_{1}^{+}u_{2}^{+}) ::: (u_{n}^{+}u_{1}^{+})} : (3.7)$$

We introduced $v^{++} = e^-v^{++}e^-$, with the bridge super eld—being constructed from the background gauge super eld V^{++} by the rule (2.22). The action (3.7) implicitly depends on the background super eld V^{++} via the bridge super eld—which is a complicated function of V^{++} . Every term—in (3.6) is manifestly invariant under the background gauge transform ations (3.4). The second term—in (3.6) is responsible for the Chem-Sim ons equation of motion for the background gauge super eld which is none other than W^{++} (V^{++}) = 0. This term—is not essential while constructing the e-ective action.

W ithin the background eld m ethod, it is necessary to x the gauge only with respect to the quantum gauge transform ations (3.5). The corresponding gauge-xing function is

$$F^{(4)} = r^{++} v^{++};$$
 (3.8)

or, being rewritten in the frame,

$$F^{(4)} = D^{++} v^{++} = e \quad (r^{++} v^{++}) e = e \quad F^{(4)} e :$$
 (3.9)

Under the quantum gauge transform ations (3.5) this function is transform ed as

$$F^{(4)} = \frac{1}{-e} \text{ fr}^{++} (r^{++} + [v^{++};]) \text{ge} :$$
 (3.10)

The corresponding Faddeev-Popov determ inant

$$_{FP}[V^{++};v^{++}] = Detr^{++}(r^{++}+v^{++})$$
 (3.11)

can be represented by a path integral $^{\rm R}$ D bD c exp (iS $_{\rm FP}$) with two ghost super elds b, c in the adjoint representation of the gauge group and with the ghost-eld action

$$S_{FP} = tr d^{(4)}br^{++}(r^{++}c+ [v^{++};c]):$$
 (3.12)

Putting all these ingredients together, we obtain the following representation for the ective action,

$$e^{i cs V^{++}]} = e^{iScs V^{++}]} \quad Dv^{++}DbDce^{i Scs V^{++} N^{++}] + iS_{FP}bx N^{++} N^{++}]} \quad \mathbb{F}^{(4)} \quad f^{(4)}];$$
(3.13)

where $f^{(4)}$ is an arbitrary Lie algebra valued analytic function and $F^{(4)}$ $f^{(4)}$] is the proper functional delta-function which xes the gauge.

To cast (3.13) in a more useful form, we average it with the following weight factor

$$V^{++} = \frac{i}{2} \operatorname{tr} d^{9} z du_{1} du_{2} f^{(4)} (z; u_{1}) \frac{(u_{1} u_{2})}{(u_{1}^{+} u_{2}^{+})^{3}} f^{(4)} (z; u_{2}) ; \qquad (3.14)$$

where is an arbitrary parameter. The functional $[V^{++}]$ can be found from the condition

$$1 = [V^{++}] \quad \text{D} f^{(4)} \exp \frac{i}{2} \text{tr} \quad d^9 z du_1 du_2 f^{(4)} (z; u_1) \frac{(u_1 u_2)}{(u_1^+ u_2^+)^3} f^{(4)} (z; u_2) : (3.15)$$

Hence,

$${}^{1}\mathbb{N}^{++}] = {}^{2}\mathbb{D}f^{(4)}\exp \frac{i}{2}\operatorname{tr}^{2}d_{1}^{(4)}d_{2}^{(4)}f^{(4)}(_{1})A(_{1};_{2})f^{(4)}(_{2})$$

$$= \mathbb{D}\operatorname{et}^{1=2}\hat{A}; \qquad (3.16)$$

where \hat{A} is some analytic Lie algebra valued operator with the kernel A ($_1$; $_2$). To compute D et \hat{A} , we represent it by a functional integral over the analytic supereds,

and perform the following change of functional variables

$$^{(4)} = (r^{++})^2$$
; Det $^{(4)} = Det(r^{++})^2$: (3.18)

Then we obtain

w here

$$\hat{} = \frac{1}{8} (D^{++})^2 (r^{-})^2 : \qquad (3.20)$$

As a result, $[V^{++}]$ can be formally written as

$$[V^{++}] = D \operatorname{et}_{(0;0)}^{1=2} (r^{++})^2 D \operatorname{et}_{(4;0)}^{1=2} \hat{;}$$
 (3.21)

w here

$$D et_{(0;0)}^{1=2} (r^{++})^{2} = D e^{iS_{NK}[iV^{++}]};$$

$$S_{NK}[iV^{++}] = \frac{1}{2}tr d^{(4)}r^{++}r^{++}$$
(3.22)

and

$$Det_{(4;0)}^{1} = D^{(4)}D e^{i\int d^{(4)}(4)^{4}} : \qquad (3.23)$$

The analytic realbosonic super eld plays the role of Nielsen-Kallosh ghost in this theory. The classical action for this super eld coincides with the !-hypermultiplet action (2.45).

Upon averaging (3.13) with the weight factor (3.14) we arrive at the following pathintegral representation for the elective action

$$e^{i c s N^{++}} = e^{i S_{CS} N^{++}} (D et_{(4:0)}^{1=2}) D v^{++} D b D c D e^{i S_{Q} [v^{++};b;c; N^{++}]};$$
(3.24)

w here

$$S_{Q}[v^{++};b;c;;V^{++}] = S_{CS}[V^{++};v^{++}] + S_{GF}[V^{++};v^{++}] + S_{FP}[b;c;V^{++};v^{++}] + S_{NK}[;V^{++}];$$
 (3.25)

Here S_{GF} [v⁺⁺; V⁺⁺] is the gauge-xing contribution to the quantum action given by

$$S_{GF} [V^{++}; v^{++}] = \frac{1}{2} tr d^{9}z du_{1} du_{2} (D^{++} v^{++} (z; u_{1})) \frac{(u_{1} u_{2})}{(u_{1}^{+} u_{2}^{+})^{3}} (D^{++} v^{++} (z; u_{2}))$$

$$= \frac{1}{2} tr d^{9}z du_{1} du_{2} \frac{v^{++} (z; u_{1}) v^{++} (z; u_{2})}{(u_{1}^{+} u_{2}^{+})^{2}}$$

$$= \frac{1}{2} tr d^{(4)} v^{++} \hat{v}^{++} : (3.26)$$

Let us consider the sum of quadratic in v^{++} parts of S $_{\text{CS}}$ and S $_{\text{GF}}$,

$$\frac{1}{2} 1 + \frac{1}{2} \text{ tr} d^{9}z du_{1} du_{2} \frac{v^{++}(z; u_{1})v^{++}(z; u_{2})}{(u_{1}^{+}u_{2}^{+})^{2}} \frac{1}{2} \text{tr} d^{-(4)}v^{++} \hat{v}^{++} : (3.27)$$

The rst term in (3.27) vanishes at = 1, and we will adopt this choice in what follows. As a result, we arrive at the following nalrepresentation for the excitive action

$$e^{i cs [V^{++}]} = e^{iS_{Cs} [V^{++}]} (Det_{(4,0)}^{1=2}) Dv^{++} DbD dD e^{i(S_{2} [v^{++};b;c; V^{++}] + S_{int} [v^{++};b;c;V^{++}])};$$
(3.28)

where

$$S_{2}[v^{++};b;c;;V^{++}] = \frac{1}{2}tr d^{(4)}v^{++}v^{++} + tr d^{(4)}b(r^{++})^{2}c$$

$$+ \frac{1}{2}tr d^{(4)}(r^{++})^{2}; \qquad (3.29)$$

$$S_{int}[v^{++};b;c;V^{++}] = tr d^{(1)^{n-n-2}} d^{9}zdu_{1} :::du_{n} \frac{v^{++}(z;u_{1}) :::v^{++}(z;u_{n})}{(u_{1}^{+}u_{2}^{+}) :::(u_{n}^{+}u_{1}^{+})}$$

$$tr d^{(4)}r^{++}b[v^{++};c]: \qquad (3.30)$$

The equations (3.28) { (3.30) completely determ ine the structure of perturbative expansion for the elective action in the pure N=3 Chem-Sim ons theory in a manifestly supersymmetric and gauge invariant form.

3.2 Adding hyperm ultiplets

Now we include into considerations the q-hypermultiplet supereld with the following classical action Z

$$S_q = d^{(4)}q^+ (r^{++} + v^{++})q^+;$$
 (3.31)

where r^{++} is the covariant harm onic derivative with the background gauge super eld V^{++} . Here we do not specify the representation of the gauge group on the hypermultiplet. We split the hypermultiplet super elds into the background q^+ , and quantum q^+ parts,

$$q^{+} ! q^{+} + q^{+}; q^{+} ! q^{+} + q^{+}:$$
 (3.32)

Upon such a splitting, the classical action (3.31) can be rewritten as a sum of the following four pieces

$$S_q = S_q[q^+; q^+; V^{++}] + S_{lin} + S_2 + S_{int};$$
 (3.33)

where $S_q[q^+;q^+;V^{++}]$ is given by (2.44) and is constructed solely from the classical elds, while the term S_{lin} is linear in the quantum elds,

$$S_{lin} = d^{(4)} (q^+ r^{++} q^+ + q^+ r^{++} q^+ + q^+ v^{++} q^+);$$
 (3.34)

This term can be om itted since it does not contribute to the elective action. The pieces S_2 and S_{int} in (3.33) correspond, respectively, to that part of the action which is quadratic in the quantum super elds, and to the interaction term:

$$S_{2} = \begin{array}{c} Z \\ d (q^{+} r^{++} q^{+} + q^{+} v^{++} q^{+} + q^{+} v^{++} q^{+}); \\ 7. \end{array}$$
 (3.35)

$$S_{int} = d^{(4)}q^+v^{++}q^+$$
: (3.36)

Now we can generalize the generating functional for the elective action (328) to the Chem-Simonsmatter theory,

$$e^{i c s [V^{++} q^{+} q^{+}]} = e^{i (S_{C s} [V^{++}] + S_{q} [q^{+} q^{+}; V^{++}])} (D e^{i (q^{+}; Q^{+})})$$

$$Z$$

$$D v^{++} D b D c D D q^{+} D q^{+} e^{i (S_{2} + S_{int})}; \qquad (3.37)$$

where

$$S_{2} = \frac{1}{2} \operatorname{tr} d^{(4)} v^{++} \hat{v}^{++} + \operatorname{tr} d^{(4)} b (r^{++})^{2} c + \frac{1}{2} \operatorname{tr} d^{(4)} (r^{++})^{2} + d^{(4)} (q^{+} r^{++} q^{+} + q^{+} v^{++} q^{+} + q^{+} v^{++} q^{+});$$
(3.38)

$$S_{int} = tr \frac{x^{i}}{n} \frac{(1)^{n-n-2}}{n} Z^{i} d^{9}zdu_{1} :::du_{n} \frac{v^{++}(z;u_{1}) :::v^{++}(z;u_{n})}{(u_{1}^{+}u_{2}^{+}) :::(u_{n}^{+}u_{1}^{+})} + d^{(4)}q^{+}v^{++}q^{+} tr d^{(4)}r^{++}b[v^{++};c]:$$
(3.39)

The treatment of the! hypermultiplet within the background eld method is quite analogous to the above q hypermultiplet consideration.

3.3 Gauge and hyperm ultiplet propagators

It is seen from the action (3.38) that the gauge and hypermultiplet propagators are dened by the equations

$$hv^{++}(1)v^{++}(2)i = G^{(2;2)}(1/2) : \hat{G}^{(2;2)}(1/2) = \hat{A}^{(2;2)}(1/2);$$
 (3.40)

$$\text{lq}^{+}$$
 (1) q^{+} (2) $\text{i} = \text{G}^{(1;1)}$ (1½) : r^{++} G (1;1) (1½) = $\text{A}^{(3;1)}$ (1½); (3.41)

h! (1)! (2)
$$i = G^{(0;0)}(1;2)$$
: $(r^{++})^2 G^{(0;0)}(1;2) = {}^{(4;0)}_A(1;2)$; (3.42)

where the analytic delta-function is given by

$${}_{A}^{(4 \text{ qq})}(1;2) = \frac{1}{4}D_{(1)}^{++}D_{(1)}^{++}D_{(1)}^{++} {}^{9}(z_{1} z_{2})^{(qqq)}(u_{1};u_{2}); \qquad (3.43)$$

Here $(q_{1}q_{2})$ (u_{1} ; u_{2}) is the standard harm onic delta-function [4].

The solutions of the equations (3.40), (3.41) and (3.42) are given by the following expressions

$$G^{(2;2)}(1\mathcal{P}) = \frac{1}{2} \hat{A}^{(2;2)}(1\mathcal{P}); \tag{3.44}$$

$$G^{(1;1)}(1;2) = \frac{1}{12} (D_{(1)}^{++})^2 (D_{(2)}^{++})^2 W_{(1)}^0 \frac{e^{-(1)} e^{-(2)} (2_1 - 2_2)}{(u_1^+ u_2^+)^3};$$
(3.45)

$$G^{(0;0)}(1;2) = \frac{1}{12} (D_{(1)}^{++})^2 (D_{(2)}^{++})^2 W_{(1)}^0 \frac{e^{-(1)} e^{-(2)} (z_1 - z_2) (u_1 u_2)}{(u_1^+ u_2^+)^3}; \quad (3.46)$$

w here

$$W^{0} = W^{0} + \frac{1}{4}^{+} + \frac{1}{2}r^{0} r^{0}$$
 (3.47)

The operator ^ was introduced in (3.20). It has the following basic commutation relations with the G rassmann and harmonic derivatives

$$\mathbb{D}^{++}; \hat{} = 0; \qquad [r^{++}; \hat{}] \stackrel{(q)}{=} (1 \quad q) \mathbb{W}^{++} \stackrel{(q)}{=} :$$
 (3.48)

W hen acting on the analytic super elds, the operators $^{^{^{^{2}}}}$ can be represented as

$$^{\circ} = (r^{\circ})^{2} W^{\circ} W^{++} r ; \qquad (3.49)$$

$$^{\circ} = r^{m} r_{m} + 3W^{++} W + (W^{\circ})^{2} ((r^{\circ})^{2} W^{\circ}) + (D^{++} W) r^{\circ} 2W^{\circ} (r^{\circ})^{2}$$

$$2 (r^{\circ} W^{++}) r^{\circ} r \qquad 2W^{++} (r^{\circ})^{2} r \qquad 2W^{++} r^{\circ} r + W^{\circ} W^{++} r$$

$$+ 3W^{++} W^{\circ} r \qquad ((r^{\circ})^{2} W^{++}) r + W^{++} W^{++} (r^{\circ})^{2} ; \qquad (3.50)$$

Since the expression (3.50) starts with the square $r^m r_m$, the operator $1=^2$ in (3.44) is well de ned as a power series expansion around $r^m r_m$.

The hypermultiplet propagators (3.45) and (3.46) involve the operator

$$^{\hat{}} = \frac{1}{6} (D^{++})^2 W^{0} (r^{-})^2; \qquad (3.51)$$

where W 0 is dened in (3.47). This operator $^{\circ}$ reveals the following basic properties

$$\mathbb{D}^{++};^{\hat{}}] = 0;$$
 $\mathbb{F}^{++};^{\hat{}}]_{A}^{(q)} = (1 \quad q) \quad (\mathbb{F}^{0})^{2}W^{++} + W^{0};W^{++}]_{A}^{(q)};$ (3.52)

where $A^{(q)}$ is some analytic supereld. With making use of these properties, the operator in application to the analytic superelds is reduced to

$$\hat{f} = r^{m} r_{m} + \frac{1}{4} f W^{ij}; W_{ij} g + \frac{1}{2} W^{++}; W] + (D^{++} W) r^{0} + (r^{0} W^{++}) r$$

$$((r^{0})^{2} W^{++}) r + W^{++}; W^{0}] r \qquad ((r^{0})^{2} W^{0}) :$$

$$(3.53)$$

The expression (3.53) starts with r $^{\rm m}$ r $_{\rm m}$, hence the operator $^{\rm -1}$ is well de ned as a power series expansion.

For the vanishing background eld the propagators (3.44), (3.45) and (3.46) take very $\sin ple$ form,

$$G_0^{(2;2)}(1\mathcal{P}) = \frac{1}{2} (D^0)^2 A_{A}^{(2;2)}(1\mathcal{P}); \tag{3.54}$$

$$G_0^{(1;1)}(1;2) = \frac{1}{16} (D_{(1)}^0)^2 (D_{(1)}^{++})^2 (D_{(2)}^{++})^2 \frac{{}^9(z_1 z_2)}{(u_1^+ u_2^+)^3};$$
 (3.55)

$$G_0^{(0;0)}(1/2) = \frac{1}{16} (D_{(1)}^0)^2 (D_{(1)}^{++})^2 (D_{(2)}^{++})^{2-9} (z_1 - z_2) \frac{(u_1 u_2)}{(u_1^+ u_2^+)^3} :$$
 (3.56)

Notice that the free q-and !-hypermultiplet propagators are, respectively, antisymmetric and symmetric with respect to interchanging their arguments,

$$G_0^{(1;1)}(1;2) = G_0^{(1;1)}(2;1); G_0^{(0;0)}(1;2) = G_0^{(0;0)}(2;1): (3.57)$$

We will use these free propagators in the next Section where some examples of quantum computations within this approach will be presented.

An alternative representation for the free propagators (3.54), (3.55) and (3.56) is given by

$$G_0^{(2;2)}(1;2) = \frac{1}{2 i^{2}} \frac{1}{2} [(_{1}^{++})^{2} 2(u_{1}^{+}u_{2})^{2}(_{1}^{++})^{++}) + (u_{1}^{+}u_{2})^{4}(_{2}^{++})^{2}]^{(2;2)}(u_{1};u_{2});$$

$$(3.58)$$

$$G_0^{(1;1)}(1;2) = \frac{1}{2} i^{\frac{(u_1^+ u_2^+)}{2}}; (3.59)$$

$$G_0^{(0;0)}(1/2) = \frac{1}{2} \frac{(u_1^+ u_2^+) (u_1 u_2)}{2};$$
 (3.60)

w here

$$= x_{A 1} x_{A 2} 2i_{1}^{0(0)} \frac{2i}{(u_{1}^{+}u_{2}^{+})} (u_{1}u_{2})_{1}^{++(0)} \frac{1}{2} (u_{1}u_{2}^{+})_{1}^{++(0)} (u_{1}u_{2}^{+})_{1}^{++(0)}$$

$$(u_{1}^{+}u_{2})_{1}^{0(0)} \frac{1}{2} + (u_{1}^{+}u_{2}^{+})_{1}^{++(0)} + (u_{1}^{+}u_{2}^{+})_{2}^{0(0)} \frac{1}{2}$$

$$(3.61)$$

is m anifestly analytic N = 3 supersym m etric interval.

The quantization of the N=3, d=3 super eld theories was considered for the rst time in the formalism with the 0 (3)=0 (2) harmonics in [5].

It is well known that the —function for Chem-Sim ons coupling in an arbitrary Chem-Sim ons matter theory is trivial [20], the divergences may occur only in the sector of matter elds. As for supersymmetric Chem-Sim ons matter theory, one can hope that the supersymmetry may reduce the degree of such divergences or even ensure their full cancellation like in the N=4, d=4 SYM theory. The nonrenormalization properties of some N=1 and N=2 Chem-Sim ons matter theories were discussed in [23]. It was shown that in the general case such N=1 and N=2 theories with scale-invariant superpotentials are not free of UV divergences, but for some particular superpotentials, when the supersymmetry is enhanced to N=6 or N=8, the cancellation of such divergences may occur [24].

Here we prove the nonrenormalization theorem in general N=3 Chem-Simonsmatter theory. The general statement is as follows: The elective action in the N=3 Chem-Simonsmodel (2.32) with arbitrary number of q and! hypermultiplets (2.44), (2.45) in an arbitrary representation of gauge group is completely nite, in the sense that super eld Feynman diagrams contributing to the elective action show up no any UV quantum divergences.

This statement is very similar to the nonrenormalization theorem for the N=2, d=4 supergauge theory [18] which provides the niteness of this theory beyond one loop. In fact, this analogy is even deeper: the form of the Chem-Simons action (2.32) is similar to the N=2, d=4 SYM action (there is a dimensionless coupling constant in both cases), the only difference being in the fact that the integration is now performed over the three-dimensional space-time. The form of classical harmonic super eld Lagrangians for the q and! hypermultiplets is completely the same as in four dimensions. The details of the background eld method for the N=3 Chem-Simons theory given in the previous section are analogous to those in the N=2; d=4 case [17]. Therefore one can follow all the steps of proving the four-dimensional N=2 nonrenormalization theorem in [18] to arrive at the same conclusion in the N=3, d=3 Chem-Simons-matter theory. Of course, the gauge and matter propagators in N=3, d=3 theory are slightly different from their four-dimensional counterparts, and this should be taken into account in the proof of the nonrenormalization theorem in the considered case. In what follows we compute the super cial degree of divergences in this theory and prove that the UV divergences are absent.

For calculating the super cial degree of divergence we need to know the structure of super eld propagators for the matter and gauge super elds. Within the background eld method these propagators are given by the expressions (3.45), (3.46) and (3.44), respectively. However, for computing the super cial degree of divergence it is suicient to know the free propagators (3.55), (3.56) and (3.54) since all terms which complement these propagators to the gauge covariant form are only able to diminish the degree of divergence of a diagram.

Let us consider som e background- eld dependent supergraph G with L loops, P propagators and N_{mat} external matter legs. In the process of computation of the contribution of such a graph N_D covariant spinor derivatives may hit the external legs as a result of integration by parts, thereby reducing the degree of divergence of the diagram. Like in the

N = 2, d= 4 gauge theory, the super cial degree of divergence! (G) of this graph is given by

! (G) = 3L 2P + (2P
$$N_{mat}$$
 3L) $\frac{1}{2}N_D = N_{mat}$ $\frac{1}{2}N_D$: (3.62)

Here 3L is the contribution of loop momenta, 2P comes from the factors propagators while another 2P corresponds to the operators $(D^{++})^2 (D^0)^2$ standing in the num erators of the propagators. We point out that the number 2P in the term within round brackets in (3.62) is decreased by the number N $_{mat}$ because each external m atter leg e ectively takes one $(D^{++})^2$ operator to restore full superspace m easure by the rule (A 23). A nother negative contribution 3L in this term appears since for each loop we have to apply the identity (4.4) which reduces the number of the covariant spinor derivatives. Thus we see that any diagram with external matter legs is automatically nite. For the diagrams without external matter legs, the last contribution $\frac{1}{2}N_D$ in (3.62) plays the crucial role. This contribution appears when N_D covariant spinor derivatives hit the background gauge super eld V^{++} . In full analogy with the N=2, d=4 supergauge theory, one can argue that $N_D > 0$ as a result of using the background eld m ethod. Indeed, within the background eld method the result of computing any diagram automatically comes out in a gauge covariant form. In other words, it is expressed in term softhe covariant super eld strengths W ij given in (2.2) and their covariant spinor derivatives. These derivatives are expressed in terms of the gauge super eld V + + with some number of covariant spinor derivatives on it (see, e.g., (226), (227)). This means that these derivatives should be e ectively taken o from the propagators, thereby decreasing the super cial degree of divergence of the resulting graph by the number N $_{\rm D}$. As a result, we arrive at the inequality ! (G) < 0, which proves the UV niteness of all quantum diagrams in the model under consideration. Som e exam ples of such one-loop quantum computations will be presented in Section 4, just to con m the proof given here. It is worthwhile to forewarn that all calculations in Section 4 will be performed with massless propagators for both the matter and the gauge super elds, which may lead to infrared divergences like in (4.10). However, such divergences autom atically disappear if one studies the contributions to the e ective action within the background eld method, when all the propagators are e ectively massive. This com pletes our argum ents towards the quantum niteness of the N = 3 C hem-S in onsm attertheory.

3.5 General structure of the on-shelle ective action

For sim plicity, we discuss the general structure of low-energy on-shell e ective action in the Abelian Chem-Sim ons theory interacting with q hypermultiplet, 6

$$S = {^{2}} d^{(4)} (\frac{1}{2} V^{++} W^{++} + q^{+} D^{++} q^{+} + q^{+} V^{++} q^{+}) :$$
 (3.63)

The classical equations of motion are given by

$$r^{++}q^{+} = 0; \quad r^{++}q^{+} = 0; \quad W^{++} = q^{+}q^{+};$$
 (3.64)

 $^{^6}$ Here we om it the Chem-Sim ons coupling constant for simplicity.

These equations mean that in the frame the hypermultiplet super elds are linear in harmonics,

$$q^{+} = u_{i}^{+} q^{i}; q^{+} = u_{i}^{+} q^{i}; (3.65)$$

while the gauge super eld strength reads

$$W^{ij} = q^{(i}q^{j)}$$
: (3.66)

In general, the on-shelle ective action can be written as a sum of two terms expressed as integrals over the analytic subspace and full superspace,

$$Z$$
 Z $= S + = S + d^{(4)}L_{analytic} + d^{9}zL_{fill}$: (3.67)

Here S is the classical action, while corresponds to the quantum corrections. Since the model (3.63) is scale invariant and there is no room for the conformal anomaly, as soon as there are no any divergences, the elective action should be scale-invariant as well. However, there exist no any other scale invariant analytic superspace invariants except for the terms of the classical action (3.63). Therefore the elective action should receive non-trivial contributions only in the form of integrals over the full superspace,

$$Z = d^{9}zL(q^{i};q^{i};W^{ij};...); (3.68)$$

where dots stand for the term s with various gauge covariant derivatives of the super elds q^i , q^i and W^{ij} while L is some scale-independent gauge invariant function of its arguments. The gauge invariance of the elective action (3.68) is ensured by the use of the background led method.

We should take into account that on shell all the super eld strengths W ^{ij} in (3.68) are expressed through the hypermultiplet super elds by virtue of (3.66). Therefore, on shell the low-energy elective action can depend on the hypermultiplet super elds and their derivatives of arbitrary order,

$$z = d^{9}z L (q^{i}; q^{i}; D^{ij}q^{k}; D^{ij}q^{k}; Q^{i}; Q^{i}; Q^{i}; ...;) :$$
 (3.69)

In principle, one can look for the pure potential-like terms in the elective action, i.e., terms containing no derivatives. However, such terms cannot appear in the elective action (3.69). Indeed, there is the unique SU (2) invariant independent super eld combination q^iq_i , but any Lagrangian depending only on q^iq_i would involve a scale, $L = L(q^iq_i =)$, [] = 1. Therefore, the expansion of the elective action starts from the terms with derivatives. For instance, the following terms are admissible in the full superspace Lagrangian,

$$\frac{D^{ij}q^kD_{ij}q_k}{(q^iq_i)^2}; \quad \frac{D^{ij}q^kD_{ij}q_k}{(q^iq_i)^2}; \quad \frac{D^{ij}q^kD_{ij}q_k}{(q^iq_i)^2}:$$
(3.70)

Further hints concerning the possible structure of the low-energy e ective action can be gained from the explicit quantum super eld computations.

3.6 E ective action in the one-loop approximation

Let us turn back to the general non-Abelian Chem-Sim ons theory interacting with some number of q hypermultiplets with the action (3.1). Within the background eld method the elective action is given by the generating functional (3.37). The one-loop contributions to the elective action are defined by the quadratic action (3.38),

The rst term in (3.71) corresponds to $(Det_{(4;0)})$ in (3.37) while the second term $\frac{1}{2}Tr_{-1}$, $\ln(r^{++})^2$ is responsible for the contributions from the ghost super edge.

 $\frac{i}{2} T\, r_{A\,d} \ln{(r^{\,++}\,)^2}$ is responsible for the contributions from the ghost super elds which are in the adjoint representation of the gauge group. The last matrix term in (3.71) appears from the second line of (3.38) and it takes into account both the hypermultiplet and gauge super eld contributions. Making the Cartan-Iwasawa decomposition of this matrix, we can rewrite the elective action in the following form

$$^{(1)} = \frac{i}{2} Tr_{(2;2)} \ln ^{\circ} \frac{i}{2} Tr_{(4;0)} \ln ^{\circ} \frac{i}{2} Tr_{Ad} \ln (r^{++})^{2} + \frac{i}{2} Tr \ln H ; \qquad (3.72)$$

where the operator H is given by

The expression (3.72) is the starting point for the one-loop perturbation theory in the general N = 3 C hem-S in ons m atter theory.

4. Exam ples of supergraph com putations

4.1 Hypermultiplet two-point function

Let us consider the q-hyperm ultiplet e ective action in the case of Abelian gauge super eld

$$_{\text{hyp}} = i \text{Tr} \ln (D^{++} + V^{++}) = \sum_{n=2}^{N^{1}} _{\text{hyp;n}}; \qquad _{\text{hyp;n}} = i \frac{(1)^{n+1}}{n} \text{Tr} \frac{1}{D^{++}} V^{++} \stackrel{n}{:} (4.1)$$

Explicitly, the two-point function 2 depicted in Fig. 1a, is given by

$$_{\text{hyp;2}} = \frac{i}{2} \overset{\text{Z}}{\text{d}}_{1} \overset{\text{(4)}}{\text{d}}_{2} \overset{\text{(4)}}{\text{G}}_{0} \overset{\text{(1;1)}}{\text{(1;2)}} \overset{\text{(2)}}{\text{(2)}} \overset{\text{(1;1)}}{\text{(2)}} \overset{\text{(2)}}{\text{(2)}} \overset{\text{(1)}}{\text{(2)}} \overset{\text{(42)}}{\text{(42)}}$$

Next, we apply the expression (3.55) for the propagator and use two $(D^{++})^2$ operators to restore the full N = 3 harm onic superspace measure by the rule (A 23),

$$_{\text{hyp;2}} = \frac{i}{32} \left[\frac{z}{32} \right]^{2} d^{3}x_{1} d^{6} d^{3}x_{2} d^$$

Figure 1: Hypermultiplet, gauge super eld and ghost contributions to 2.

To shrink down the loop over G rassm ann variables to a point we apply the identity

⁶
$$(_{1} _{2}) (D_{1}^{++})^{2} (D_{2}^{++})^{2} (D_{2}^{0})^{2} (z_{2} z_{1}) = 16 (u_{1}^{+} u_{2}^{+})^{4} (z_{1} z_{2});$$
 (4.4)

and pass to the momentum representation for the super elds,

$$_{\text{hyp;2}} = \frac{1}{16} \frac{Z}{(2)^3} d^6 \frac{du_1 du_2}{(u_1^+ u_2^+)^2} \frac{1}{p^2} ((D_1^0)^2 V^{++} (p; ; u_1)) V^{++} (p; ; u_2) : \tag{4.5}$$

In the Abelian case the relation (225) between V ++ and V becomes very simple,

U sing this relation, the expression (4.5) can be rewritten as

$$hyp;_{2} = \frac{i}{16} Z d^{3}xd^{6} du ((D^{0})^{2}V^{++} (x; ;u)) = V (x; ;u)$$

$$= \frac{i}{16} d^{(4)} ((D^{0})^{2}V^{++}) = W^{++} : (4.7)$$

By 1= we denote a non-local operator which acts as the multiplication by 1= p^2 in the momentum representation. Finally, it is easy to see that (4.7) is non other than the Abelian SYM action with the insertion of the non-local operator 1= ,

$$_{\text{hyp;2}} = \frac{i}{16}^{Z} d^{(4)}W^{++} \frac{1}{P-W}^{++} :$$
 (4.8)

A sim ilar result was obtained in the non-supersym metric Chem-Sim ons matter theory [26], as well as in studying quantum corrections in BLG theory [24].

As a result, the leading contribution to the hypermultiplet elective action given by the two-point function reproduces the SYM action with the insertion of non-local operator $\frac{p}{1}$. Of course, such a non-local operator appears because we do our computations in the massless theory in which the momentum integral $\frac{d^3k}{k^2(p+k)^2}$ is plagued by the infrared divergence at small p. At zero external momentum, p=0, one can regularize this integral by introducing the parameter as a cut-o at small k,

$$\frac{d^{3}k}{(2)^{3}} \frac{1}{k^{2} (p+k)^{2}} \stackrel{\text{local lim}}{=} \stackrel{\text{!t}}{=} \frac{Z}{(2)^{3}} \frac{d^{3}k}{k^{4}} \stackrel{\text{!}}{=} \frac{i}{2^{2}} \frac{Z}{i} \frac{d^{3}k}{k^{2}} = \frac{i}{2^{2}} \frac{1}{2^{2}} : \tag{4.9}$$

Then, the action (4.8) in the local lim it is given by

$$_{\text{hyp;2}} = \frac{1}{4^{2}} \, \text{d}^{(4)} W^{++} W^{++} : \qquad (4.10)$$

A Itematively, to avoid the regularization of the momentum integral (4.9), one can consider the model of massive hypermultiplet interacting with the Abelian gauge supereld. Such a model is studied in Section 5.

One can easily generalize the result (4.8) to the case of a hypermultiplet in some representation R of non-Abelian gauge group G,

$$_{\text{hyp;2}} = \text{T (R)} \frac{i}{16} \, d^{(4)} W_0^{++a} \frac{1}{p} W_0^{++a} :$$
 (4.11)

Here, $\operatorname{tr}(T_R^a T_R^b) = T(R)^{ab}$, T(adjoint) = 1, and W_0^{++a} is the linear in V^{++} part of the full non-Abelian super eld strength W^{++a} .

4.2 G auge and ghost super eld two-point functions

The next example of quantum computations is represented by the diagrams b) and c) at Fig. 1 which make the leading two-point contributions to the functional integral (3.28). To study the pure gauge super eld diagram a) it is su cient to consider the Chem-Simons action (2.32) up to the cubic term,

$$S = S_{2} + S_{gf} + S_{3} = \frac{ik}{8} tr d^{-(4)}V^{++} (D^{0})^{2}V^{++}$$

$$\frac{ik}{24} tr d^{9}zdu_{1}du_{2}du_{3} \frac{V^{++}(z;u_{1})[V^{++}(z;u_{2});V^{++}(z;u_{3})]}{(u_{1}^{+}u_{2}^{+})(u_{2}^{+}u_{3}^{+})(u_{3}^{+}u_{1}^{+})}$$

$$(4.12)$$

Let us expand the gauge super elds over the generators T $^{\rm a}$ of gauge group G , V $^{++}$ = V $^{++}{}^{\rm a}$ T $^{\rm a}$, so that

$$[V^{++}(z;u_1);V^{++}(z;u_2)] = V^{++a}(z;u_1)V^{++b}(z;u_2)f^{abc}T^c;$$
 (4.13)

where fabc are the structure constants. As a result, the action (4.12) is rewritten as

$$S = \frac{ik}{8} \sum_{\substack{(4,4) \\ 24}}^{Z} d^{(4)}V^{++a} (D^{0})^{2}V^{++a}$$

$$= \frac{ik}{24} f^{abc} \sum_{\substack{(4,14) \\ 24}}^{Z} d^{9}zdu_{1}du_{2}du_{3} \frac{V^{++a}(z;u_{1})V^{++b}(z;u_{2})V^{++c}(z;u_{3})}{(u_{1}^{+}u_{2}^{+})(u_{2}^{+}u_{3}^{+})(u_{3}^{+}u_{1}^{+})} :$$

$$= \frac{ik}{8} \sum_{\substack{(4,14) \\ (4,14$$

The contribution of this action to the one-loop e ective action in the N=3 Chem-Sim ons theory is as follows

$$c_{S} = \frac{i}{2} \text{Tr ln} \quad \overset{\text{ab}}{\underset{A}{}} \stackrel{(2;2)}{\underset{A}{}} (1 \cancel{2}) \quad f^{\text{abc}} \frac{1}{16} (0 \cancel{0})^{2} (0$$

We single out in (4.15) the two-point contribution,

$$c_{S;2} = \frac{i}{16} \int_{0}^{abc} f^{bad} d_{1}^{(4)} d_{2}^{(4)} du_{3} du_{4}$$

$$\frac{1}{2} \left(D_{(1)}^{0} \right)^{2} \left(D_{(1)}^{++} \right)^{2} \left(D_{(2)}^{++} \right)^{2} (z_{1} - z_{2}) \frac{V^{++c}(z_{1}; u_{3})}{(u_{1}^{+} u_{2}^{+}) (u_{2}^{+} u_{3}^{+}) (u_{3}^{+} u_{1}^{+})}$$

$$\frac{1}{2} \left(D_{(2)}^{0} \right)^{2} \left(D_{(2)}^{++} \right)^{2} \left(D_{(1)}^{++} \right)^{2} (z_{2} - z_{1}) \frac{V^{++d}(z_{2}; u_{4})}{(u_{2}^{+} u_{1}^{+}) (u_{1}^{+} u_{4}^{+}) (u_{1}^{+} u_{2}^{+})} : (4.16)$$

Further computations are analogous to those performed in the previous subsection: we restore the full superspace measure by the rule (A 23) and shrink down the loop over the G rassm ann variables to a point using the identity (4.4),

$$c_{S;2} = \frac{i}{4} f^{abc} f^{abd} d^{3}x_{1} d^{3}x_{2} d^{6} du_{1} du_{2} du_{3} du_{4} \frac{1}{3} (x_{1} x_{2}) \frac{1}{3} (x_{2} x_{1})$$

$$\frac{V^{++d} (x_{2}; ; u_{4}) (D^{0}_{(1)})^{2} V^{++c} (x_{1}; ; u_{3}) (u_{1}^{+} u_{2}^{+})^{2}}{(u_{2}^{+} u_{3}^{+}) (u_{3}^{+} u_{1}^{+}) (u_{1}^{+} u_{4}^{+}) (u_{4}^{+} u_{2}^{+})} : \qquad (4.17)$$

To compute the harm onic integrals, we apply the following identity

$$du_1 du_2 \frac{(u_1^+ u_2^+)^2}{(u_2^+ u_3^+)(u_3^+ u_1^+)(u_1^+ u_4^+)(u_4^+ u_2^+)} = 2 \frac{(u_3 u_4)}{(u_3^+ u_4^+)} :$$
 (4.18)

Passing to the momentum representation and computing the momentum integral, we nd

$$c_{S;2} = \frac{1}{16} f^{abc} f^{abd} \frac{Z}{(2)^3} d^6 du_1 du_2 \frac{1}{p^2} (D_{(1)}^0)^2 V^{++c} (p; ; u_1) V^{++d} (p; ; u_2) \frac{(u_1 u_2)}{(u_1^+ u_2^+)} : (4.19)$$

This expression is non-local only in the harm onic variables.

Finally, we consider the ghost eld action (3.12) which can be rewritten for the vanishing background eld as

$$S_{gh} = d^{(4)} b^a D^{++} D^{++} c^a + f^{abc} b^a D^{++} V^{++b} c^c$$
(4.20)

The one-loop e ective action for the ghost super elds reads (m inus sign is due to the odd statistics of ghost super elds)

$$gh = iTr ln \xrightarrow{ab}_{A} (0;4) (1;2) + f^{abc}V^{++c}(2)D^{++}_{(2)}G^{(0;0)}_{0}(1;2) : (4.21)$$

 ${\tt W}$ e need only the two-point contribution depicted in Fig. 1c,

$$hg_{i}^{2} = \frac{i}{2} d_{(1)}^{(4)} d_{(2)}^{(4)} f^{abc} f^{bad} V^{++d} (1) V^{++c} (2) D_{(2)}^{++} G_{0}^{(0;0)} (1/2) D_{(1)}^{++} G_{0}^{(0;0)} (2/1) : (4.22)$$

Further we assume that the structure constants are normalized in such a way that $f^{abc}f^{bad} = ^{cd}$, i.e., T (adjoint) = 1. Om itting the details of computations (which are analogous to those in the previous subsection), we obtain

$$_{hg;2} = \frac{1}{16}^{Z} \frac{d^{3}p}{(2)^{3}} d^{6} du_{1} du_{2} \frac{1}{p^{2}} (D_{(1)}^{0})^{2} V^{++a} (p; ; u_{1}) V^{++a} (p; ; u_{2}) \frac{(u_{1} u_{2}^{+}) (u_{1}^{+} u_{2}^{+})}{(u_{1}^{+} u_{2}^{+})^{2}} : (4.23)$$

Now we sum up the gauge and ghost super elds two-point contributions (4.19), (4.23),

$$gauge;2 = cs;2 + gh;2$$

$$= \frac{1}{16} \frac{Z}{(2)^3} d^6 du_1 du_2 \frac{(D_{(1)}^0)^2 V^{++a} (p; ; u_1) V^{++a} (p; ; u_2)}{P \overline{p^2} (u_1^+ u_2^+)^2}; (4.24)$$

where the following identity has been used

$$\frac{(u_1 u_2^+) (u_1^+ u_2^-)}{(u_1^+ u_2^+)^2} = \frac{(u_1 u_2)}{(u_1^+ u_2^+)} = \frac{1}{(u_1^+ u_2^+)^2} : \tag{4.25}$$

The expression (424) can be rewritten in the analytic superspace,

$$gauge;2 = \frac{i}{16} Z d^{(4)} W_0^{++a} \frac{1}{P} W_0^{++a}; \qquad (4.26)$$

where W $_0^{++a}$ is the linear in V $^{++}$ part of the full non-A belian super eld strength W $^{++a}$.

Note that the hypermultiplet two-point function (4.11) has exactly the same form, but opposite sign. Hence, these two contributions cancel out each other if one takes n hypermultiplet q_i^+ in representations R_i , providing that n = 1. For instance, one q-hypermultiplet in the adjoint representation is su cient for these two contributions to cancel each other.

A sim ilar cancellation between the hyperm ultiplet and gauge super eld two-point functions plays the important role in the N=2, d=4 gauge theory [3], where it is the manifestation of quantum UV niteness of the N=4, d=4 SYM theory. However, in our case this cancellation is not of the same signicance as for the four-dimensional models, because all quantum contributions are now divergenceless. The term (4.26) does not contribute to the Chem-Sim onselective action since it vanishes on the classical equations of motion for the pure gauge super elds. Moreover, this term is gauge-variant. This was explained in [27] for non-supersymmetric Chem-Sim ons theory, but this is true in our case too. Recall that we work in the Ferm i-Feynman gauge, = 1, while the authors of [26, 24] used the Landau gauge = 0 for which the contributions of the form (4.26) are absent in the pure Chem-Sim ons theory.

4.3 Vanishing of tadpoles and hypermultiplet self-energy

Now we shall consider the tadpole as well as hypermultiplet self-energy diagrams depicted in Fig. 2 and show that their contributions vanish as a consequence of the properties of Grassmann and harmonic distributions.

The vanishing of the pure gauge super eld diagram a) at Fig. 2 is obvious. Indeed, the gauge super eld propagator (3.54) involves four G rassmann derivatives acting on the delta function,

$$G_0^{(2;2)}(1;2) = \frac{1}{4} (D^0)^2 (D^{++})^{2} (z_1 z_2)^{(2;2)} (u_1;u_2) : \qquad (4.27)$$

Therefore it vanishes at the coincident points due to the de cit of G rassm ann derivatives. By the same reason vanish similar tadpole diagrams with more vector legs outgoing from a single point.

Figure 2: Tadpoles and hypermultiplet self-energy diagram.

The diagram s on Fig. 2b), 2c) vanish because of the properties of harm onics. Indeed, the hypermultiplet propagator (3.55) has six G rassmann derivatives which are necessary to kill all G rassmann variables of the G rassmann delta function,

$$(0)_{(1)}^{0})^{2} (0)_{(1)}^{++})^{2} (0)_{(2)}^{++})^{2} \frac{{}^{6} (1)_{(1)}^{2}}{(u_{1}^{+} u_{2}^{+})^{3}} = 16 (u_{1}^{+} u_{2}^{+})_{\frac{1}{2}u_{1}=u_{2}}^{+} = 0 :$$
 (4.28)

The similar identity can be obtained for the !-hypermultiplet propagator (3.56) which is responsible for the ghost eld contribution depicted in Fig. 2b).

The hypermultiplet self-energy diagram requires a more careful consideration. Up to a numerical factor, it is given by

Now we restore the full superspace measure and shrink down the -loop using the identity

We have exactly six Grassmann derivatives for this identity. As a result,

In principle, the harm onic distribution $\frac{(u_1^+ u_2^-)}{(u_1^+ u_2^+)}$ (2;2) $(u_1;u_2)$ in (4.31) is potentially dangerous due to the problem of coincident harm onic singularities. But this problem is resolved here by passing to the analytic subspace and using the resulting (D ++)² operator to produce extra harm onic factors,

The factor $(u_1^+ u_2^+)^2$ in the rhs. of (4.32) cancels the denominator of the harmonic distribution in (4.31) and gives zero due to the identity $(u_1^+ u_2^+)^{-(-2;2)} (u_1;u_2) = 0$. As a result, the hypermultiplet self-energy contribution vanishes, qq = 0.

5. N = 3 supersym m etry w ith central charges

The N = 3 superalgebra without central charges is generated by the operators (A 10) with the anticommutation relations (A 12). In this section we shall study an extension of this superalgebra by the central charge operators Z^{ij} . The relations (A 12) are replaced by the following ones

$$fQ^{ij};Q^{kl}g = i(^{nik} n^{jl} + ^{nil} n^{jk}) @ \frac{1}{2} (^{nik} Z^{jl} + ^{njk} Z^{il} + ^{njl} Z^{ik} + ^{njl} Z^{ik}) : (5.1)$$

The operators Z^{ij} commute with all other generators except those of the R-symmetry SU(2) algebra. We will show that just this modiled N=3 superalgebra is inherent in the massive hypermultiplet model, in analogy with the four-dimensional case [10, 28, 29].

5.1 M assive hyperm ultiplet model

Let us consider the Abelian version of the q-hypermultiplet model (2.44)

$$S_{m} = d^{(4)}q^{+} (D^{++} + V_{0}^{++})q^{+};$$
 (5.2)

with the background gauge super eld given by

$$V_0^{++} = 3(^{++})^2 u_i u_j Z^{ij}; \qquad Z^{ij} = Z^{ji} = \text{const};$$
 (5.3)

One can easily not the relevant bridge super eld $_{
m 0}$,

$$0 = 3^{++} {}^{0}u_{k} u_{1} Z^{k1} + {}^{0}u_{k}^{+} u_{1}^{+} Z^{k1} + {}^{++} u_{k}^{+} u_{1} Z^{k1} + {}^{2}({}^{0})^{2}u_{k}^{+} u_{1} Z^{k1}; \quad (5.4)$$

as a solution of the equation

$$D^{++} + V_0^{++} = e^{-0}D^{++}e^{-0}$$
: (5.5)

Now, using the relations (2.22), we obtain the connections for the covariant spinor derivatives

$$D^{ij} = D^{ij} + V_0^{ij}; V_0^{ij} = \frac{1}{2}^{ik} Z_k^j + \frac{1}{2}^{jk} Z_k^i : (5.6)$$

These derivatives satisfy the following anticommutation relations

$$fD^{ij};D^{kl}g = i(^{nik},^{jl} + ^{nil},^{jk})@ + \frac{1}{2},^{nik},^{jl} + ^{njk},^{jl} + ^{njk},^{jl},^{jk} + ^{njl},^{jk}): (5.7)$$

The original supercharges (A.10) do not anticom mute with (5.6). However, one can de ne the modied supercharges

$$Q^{ij} = Q^{ij} \quad V_0^{ij} = Q^{ij} \quad \frac{1}{2}^{ik} Z_k^j \quad \frac{1}{2}^{jk} Z_k^i;$$
 (5.8)

so that Q ij anticom m ute w ith (5.6), i.e. $fQ^{ij};D^{kl}g=0.0$ ne can easily check that the operators Q ij satisfy the anticom m utation relations of N = 3 superalgebra w ith central charges (5.1). The central charge operators are realized as the multiplication by the constants Z ij .

It is worth noting that these constant central charges explicitly break the R-sym m etry SU(2) down to U(1) SU(2).

It is a non-trivial task to show that the equations of motion in the model (5.2) lead to the mass-shell condition for the hypermultiplet super eld q^+ . To this end we introduce the following notation

$$Z^{++} = u_i^+ u_i^+ Z^{ij}; \quad Z = u_i u_i Z^{ij}; \quad Z^0 = u_i^+ u_i Z^{ij}$$
 (5.9)

and

$$\mathbf{r}^{++} = \mathbf{D}^{++} + \mathbf{V}_{0}^{++}; \quad \mathbf{r} = \mathbf{D} + \mathbf{V}_{0};$$
 (5.10)

w here

$$V_0 = D$$
 $_0 = 2^{++}$ $Z + 4(^0)^2Z$ 4 $^0Z^0 + (^0Z^{++})^2Z^{++}$: (5.11)

The equation of motion in the model (52) has the following important corollaries

$$\mathbf{r}^{+} \mathbf{q}^{+} = 0;$$
) $(\mathbf{r}^{-})^{2} \mathbf{q}^{+} = 0;$) $(\mathbf{D}^{+})^{2} (\mathbf{r}^{-})^{2} \mathbf{q}^{+} = 0:$ (5.12)

Hence, each operator from the set

$$(D^{++})^2 (D^0)^2 (\mathbf{r})^2 ; (D^{++})^2 (\mathbf{r})^2 (D^{++})^2 (\mathbf{r})^2 ; (D^{++})^2 (\mathbf{r})^2$$
 (5.13)

annihilates the super eld q^+ on-shell. Here $D^0=D^0+Z^{00}$ $\frac{1}{2}Z^{00}$ $\frac{1}{2}Z^{00}$ B ased on the important identity for these operators

$$\frac{1}{12} (D^{++})^{2} (D^{0})^{2} (\mathbf{r})^{2} + \frac{1}{192} (D^{++})^{2} (\mathbf{r})^{2} (D^{++})^{2} (\mathbf{r})^{2} + \frac{1}{6} (D^{++})^{2} Z^{0} (\mathbf{r})^{2} = + \frac{1}{2} Z^{ij} Z_{ij}; \quad (5.14)$$

which holds in application to the analytic super elds, we derive the mass-shell condition for the hypermultiplet super eld,

$$(+m^2)q^+ = 0; m^2 = \frac{1}{2}Z^{ij}Z_{ij}:$$
 (5.15)

Thus we have demonstrated that the model (5.2) does describe the massive hypermultiplet model with the mass squared being equal to the square of the central charge operators. All these considerations are analogous to those in the four-dimensional q-hypermultiplet model. Minor complications stem from the fact that in the three-dimensional case the central charge Z^{ij} has SU(2) indices. It is obvious that such a central charge indeed breaks the SU(2) R-symmetry of the N=3 superalgebra down to U(1).

The propagator of the massive hypermultiplet can be easily deduced from the full hypermultiplet propagator (3.45) by choosing the background super eld strengths to be constant, W $^{ij} = Z^{ij}$,

$$G_{m}^{(1;1)}(1;2) = \frac{1}{48} \frac{1}{+m^{2}} (D_{(1)}^{++})^{2} (D_{(2)}^{++})^{2} (D_{(2)}^{0})^{2} + 3Z^{0} Z^{++} \mathbf{r}_{(1)} (D_{(1)}^{++})^{2} (D_{(1)}^{+})^{3};$$

$$(5.16)$$

where the mass m is de ned in (5.15).

5.2 N = 3 SYM as a quantum correction in the massive hypermultiplet model

It is well known that the standard C hem-S im ons action appears as a result of computation of the one-loop two-point diagram with a massive ferm ion inside and two vector elds on the external legs [9]. Naively, one could expect that the N=3 supersymmetric version of the C hem-S im ons theory (2.32) can also be derived from the massive hypermultiplet two-point function of the form depicted in Fig. 1a. Surprisingly, such a computations in the N=3 supersymmetric theory yields the N=3 SYM action rather than the C hem-S im ons one.

Indeed, consider the model of massive q-hypermultiplet interacting with the background Abelian gauge super eld V $^{++}$,

$$S_{\text{hyp},m} = d^{-(-4)}q^{+} (D^{++} + V_{0}^{++} + V^{++})q^{+};$$
 (5.17)

where V_0^{++} is given by (5.3). The action (5.17) is invariant with respect to the following Abelian gauge transform ations

$$V^{++} = D^{++}$$
; $q^{\dagger} = q^{\dagger}$; $q^{\dagger} = q^{\dagger}$; (5.18)

being an analytic super eld gauge parameter. The formal expression for the massive hypermultiplet two-point function is given by

$$_{2} = \frac{i}{2}^{Z} d_{(1)}^{(4)} d_{(2)}^{(4)} G_{m}^{(1;1)} (1/2) V^{++} (2) G_{m}^{(1;1)} (2/1) V^{++} (1);$$
 (5.19)

where the massive propagator is dened in (5.16). Subsequent computations are rather similar to those performed in subsection 4.1 for the massless hypermultiplet, modulo complications related to the fact that the expression for the massive hypermultiplet propagator is more involved as compared to the massless one. As a result, we obtain

$$_{2} = \frac{i}{2} \frac{1}{(2)^{6}} Z^{2} d^{3}pd^{6} duV (p; ;u) (D^{0})^{2}V^{++} (p; ;u) Z^{2} d^{3}k \frac{1}{k^{2} m^{2}} \frac{1}{(k+p)^{2} m^{2}} :$$
(5.20)

Computing the momentum integral at zero momenta p, we deduce the local part of the two-point function in the form

$$_{2} = \frac{1}{16 \text{ m}} Z^{2} d^{9}zduV (D^{0})^{2}V^{++} = \frac{1}{16 \text{ m}} Z^{2} d^{(4)}W^{++}W^{++}; (5.21)$$

As a result, we obtain the N=3 SYM action as a quantum correction in the massive hypermultiplet model.

The reason why the Chem-Sim ons term does not appear becomes clear in the component elds from ulation. The hypermultiplet super eld q^+ contains the spinor i which is a doublet of the SU (2) R-sym metry group. That part of the massive hypermultiplet action (5.17) which involves the spinor eld i interacting with the vector eld is given by

$$S = \frac{1}{2}^{Z} d^{3}x(^{i} iD _{i} + ^{i} Z_{ij} ^{j}); \qquad (5.22)$$

where $D = \emptyset + iA$. One can choose the fram e with respect to broken SU (2) rotations (acting on the doublet indices) in such a way that the central charge matrix takes the following form

$$Z_{j}^{i} = \begin{array}{c} & \text{im} & 0 \\ 0 & \text{im} \end{array} \qquad (5.23)$$

The spinors 1 and 2 decouple from each other and the action (5.22) can now be rewritten as a sum of two standard actions of the massive 3D spinors with the opposite masses,

$$S = S_{Z}^{1}; m + S_{Z}^{2}; m ;$$
 (5.24)

$$S[;m] = \frac{i}{2} d^3x (D m) :$$
 (5.25)

Each of the spinors in (5.24) m akes the same contribution to the one-loop two-point function, modulo the sign (see, e.g., [9])

$${}_{2}[A;m] = \frac{1}{8} \frac{m}{m} \int_{1}^{Z} d^{3}x \, m_{mnp} A^{m} \, e^{n} A^{p} + \frac{1}{48 \, m} \int_{1}^{Z} d^{3}x \, F_{mn} F^{mn}; \qquad (5.26)$$

where $F_{m\,n}=\emptyset_m\,A_n$ \emptyset_nA_m . Therefore the Chem-Sim ons term s cancel each other in the full two-point function for the action (5.24) and so the leading contribution is given by the M axwell term,

$$_{2}[A;m] + _{2}[A;m] = \frac{1}{24 \text{ in } j} \quad d^{3}x F_{mn} F^{mn} :$$
 (5.27)

The action (521) is none other than a supersymmetric generalization of (527).

The absence of the Chem-Sim onsterm in the hypermultiplet low-energy elective action can be also understood from simple parity reasoning. Indeed, the hypermultiplet classical action (2.44) is even with respect to the P-relection while the Chem-Sim onsone (2.32) is odd (see [6] for details). Since there are no any divergences in the one-loop computation (which, if existing, might produce an anomaly), the resulting hypermultiplet elective action should be also P-even. Hence, the Chem-Sim onsterm cannot occur in the hypermultiplet elective action.

5.3 Hypermultiplet self-interaction induced by quantum corrections

It is known that the quartic hypermultiplet self-interaction (2.46) appears as a leading quantum correction in the model of N=2, d=4 massive hypermultiplet interacting with the dynamical Abelian gauge super eld [10]. In this section we will show that a similar phenomenon takes place in the N=3, d=3 gauge theory too.

The classical action of the model under consideration is given by

$$S_{CS;Ab} + S_{hypm}; (5.28)$$

where $S_{CS;Ab}$ is the Abelian Chem-Sim ons action,

$$S_{CS;Ab} = \frac{ik}{8}^{Z} d^{(4)}V^{++}W^{++};$$
 (5.29)

Figure 3: Four hyperm ultiplet contributions.

while S_{hypm} is given by (5.17). The quartic hypermultiplet self-interaction (2.46) appears from the local parts of the diagram s depicted in Fig. 3. G iven the propagators for the gauge super eld (3.54) and for the massive hypermultiplet (5.16), we represent these contributions as follows

$$\begin{array}{lll}
\overset{A}{4} & = & \frac{i}{4} \overset{Z}{d_{1}} \overset{(4)}{d_{2}} \overset{(4)}{d_{3}} \overset{(4)}{d_{3}} \overset{(4)}{d_{4}} \overset{(4)}{q^{+}} \overset{(1)}{q^{+}} \overset{(2)}{q^{+}} \overset{(3)}{q^{+}} \overset{(4)}{q^{+}} & \\
& & G_{n\underline{Z}}^{(1;1)} \overset{(1;2)}{D_{2}} \overset{(2;2)}{0} \overset{(2;2)}{0} \overset{(2;2)}{Q_{3}} \overset{(2;2)}{D_{3}} \overset{(4;1)}{D_{3}} \overset{(2;2)}{0} \overset{(4;1)}{D_{3}} ; & (5.30) \\
\overset{B}{4} & = & \frac{i}{4} & d_{1}^{(4)} \overset{(4)}{d_{2}} \overset{(4)}{d_{3}} \overset{(4)}{d_{3}} \overset{(4)}{d_{4}} \overset{(4)}{q^{+}} \overset{(1)}{q^{+}} \overset{(2)}{Q_{3}} \overset{(2;2)}{Q_{3}} \overset{(2;2)}{Q_{3}} \overset{(2;2)}{D_{3}} & (5.31) \\
& & G_{m}^{(1;1)} \overset{(1;2)}{D_{3}} \overset{(2;2)}{0} \overset{(2;2)}{0} \overset{(2;2)}{D_{3}} \overset{(2;2)}{D_{3}} \overset{(2;2)}{D_{3}} \overset{(2;2)}{D_{3}} \overset{(2;2)}{D_{3}} & (3;1) ; & (5.31) \\
\end{array}$$

Further computations for ${}^{A}_{4}$ and ${}^{B}_{4}$ follow the same line. Therefore we consider in detail only computation of ${}^{A}_{4}$.

First, we do the integration over d $_3^{(4)}$ and d $_4^{(4)}$ using the analytic delta-function in the gauge super eld propagator (3.54) and integrate by parts with respect to one of the $(D^0)^2$ operators,

$${}^{A}_{4} = \frac{4^{2}i}{k^{2}}^{Z} d_{1}^{(4)} d_{2}^{(4)} q^{+} (1) q^{+} (2) \frac{1}{2} G_{m}^{(1;1)} (1;2) [(D_{(2)}^{0})^{2} q^{+} (2) (D_{(1)}^{0})^{2} q^{+} (1) \frac{1}{2} G_{m}^{(1;1)} (2;1)];$$
(5.32)

Next, we have to substitute the massive hypermultiplet propagators (5.16) into this expression. It is important that for deriving the contribution of the form (2.46) it is su cient to take into account only the following term in the massive hypermultiplet propagator (5.16)

$$G_{m}^{(1,1)}(1;2) \qquad \frac{1}{16} \frac{1}{+m^{2}} (D_{(1)}^{++})^{2} (D_{(2)}^{++})^{2} (D_{(1)}^{0})^{2} \frac{{}^{9}(z_{1} z_{2})}{(u_{1}^{+} u_{2}^{+})^{3}} : \qquad (5.33)$$

All other terms in the propagator give rise to higher-order contributions involving derivatives. Substituting (5.33) into (5.32) and restoring the full superspace measure, we obtain

$${}_{4}^{A} = \frac{i^{2}}{4k^{2}}^{Z} d^{9}z_{1}d^{9}z_{2}du_{1}du_{2}q^{+}(2) - \frac{1}{(+m^{2})} - \frac{9(z_{1} z_{2})}{(u_{1}^{+}u_{2}^{+})^{3}}$$
(5.34)

In this expression, every derivative D 0 acts on everything to the right of it. Therefore, there is plenty of term s w ith the derivatives D 0 distributed in di erent ways among them .

However, a non-trivial result can be generated only by those terms where the operator $(D^0)^2$ is present as a whole. For these terms one can apply the identity (4.4) to end up with only one —integration. Two other such operators will produce the box operator by the rule (A.21). As a result, we are left with the following expression

$$\frac{A}{4} = \frac{4^{2}i^{2}}{k^{2}} d^{3}x_{1}d^{3}x_{2}d^{6} \frac{du_{1}du_{2}}{(u_{1}^{+}u_{2}^{+})^{2}} \frac{1}{(+m^{2})^{3}} (x_{1} x_{2}) \frac{1}{+m^{2}} (x_{2} x_{1})$$

$$q^{+} (2)q^{+} (2) (D_{(1)}^{0})^{2} [q^{+} (1)q^{+} (1)] : (5.35)$$

Here the term in the second line depends on dierent x's and u's, but on the same . Next, we pass to the momentum space and compute the momentum integral in the local limit,

$$\frac{d^3p}{p^2(p^2 m^2)^2} = \frac{i^2}{m^3};$$
 (5.36)

thus arriving at

$${}_{4}^{A} = \frac{z}{2m^{3}k^{2}} d^{9}z \frac{du_{1}du_{2}}{(u_{1}^{+}u_{2}^{+})^{2}} q^{+} (z;u_{2})q^{+} (z;u_{2}) (D_{(1)}^{0})^{2} [q^{+} (z;u_{1})q^{+} (z;u_{1})];$$
 (5.37)

The integrand in (5.37) contains a harm onic distribution. We need to single out a local part in this expression in order to get the contribution of the form (2.46). For this purpose we follow the same line as in [10]. We insert the operator $D^0 = [\mathbf{r}^{++}; \mathbf{r}^{-}]$ under the integral and consider only the contribution from the term \mathbf{r}^{++} in this commutator, ⁷

$$\frac{A}{4} = \frac{Z}{2m^{3}k^{2}} Z d^{9}z \frac{du_{1}du_{2}}{(u_{1}^{+}u_{2}^{+})^{2}} q^{+} (z;u_{2})q^{+} (z;u_{2}) \frac{1}{2} D_{(1)}^{0} (D_{(1)}^{0})^{2} [q^{+} (z;u_{1})q^{+} (z;u_{1})]$$

$$= \frac{Z}{2m^{3}k^{2}} Z d^{9}z \frac{du_{1}du_{2}}{(u_{1}^{+}u_{2}^{+})^{2}} q^{+} (z;u_{2})q^{+} (z;u_{2})$$

$$\mathbf{r}_{(1)}^{++} \mathbf{r}_{(1)} (D_{(1)}^{0})^{2} [q^{+} (z;u_{1})q^{+} (z;u_{1})] : (5.38)$$

We integrate by parts with respect to \mathbf{r}^{++} and use the standard equation for the harm onic distributions [4],

$$D_{(1)}^{++} \frac{1}{(u_1^+ u_2^+)^2} = D_{(1)}^{(2; 2)} (u_1; u_2);$$
 (5.39)

which allows us to perform the u_2 integration using the harm onic delta-function,

$${}^{A}_{4} = \frac{Z}{4m^{3}k^{2}} d^{3}xd^{6} du q^{\dagger} q^{\dagger} (\mathbf{r})^{2} (D^{0})^{2} [q^{\dagger} q^{\dagger}]$$

$$= \frac{Z}{4m^{3}k^{2}} d^{(4)} q^{\dagger} q^{\dagger} (D^{++})^{2} (D^{0})^{2} (\mathbf{r})^{2} [q^{\dagger} q^{\dagger}]; \qquad (5.40)$$

From the operator $(\mathbf{r})^2$ we need only the term $(V_0)^2$, where V_0 is given by (5.11). Such a term yields

$$(D^{++})^2 (D^0)^2 (V_0^-)^2 = 32m^2$$
: (5.41)

⁷The second term \mathbf{r} \mathbf{r}^{++} in the commutator contains the operator \mathbf{r}^{++} which hits the hypermultiplet super elds, resulting in the free massive hypermultiplet equations of motion (5.12). Therefore, such terms do not contribute to the on-shell elective action. Moreover, such terms are non-local with respect to the harmonic variables while here we are interested in the local contributions to the elective action.

$${}_{4}^{A} = \frac{2}{m k^{2}} d^{(4)} q^{+} q^{+} q^{+} q^{+} :$$
 (5.42)

One can check that the computation of the second diagram $^{\rm B}_4$ on Fig. 3 yields the same result. Therefore, the nalanswer for $_4$ is as follows

$$_{4} = \frac{4}{m k^{2}} d^{(4)} q^{+} q^{+} q^{+} q^{+} :$$
 (5.43)

It is known that in the N=2, d=4 hypermultiplet model such a quartic self-interaction results in a sigma model for the scalar elds with the target hyper-Kahler Taub-NUT metric [13, 4]. The self-interaction (2.46) gives rise to the same sigma model, but in the three-dimensional space-time.

6. Discussion

In this paper we laid down a basis for the system atic study of the quantum aspects of three-dimensional N=3 supersymmetric gauge and matter models in harmonic superspace. We worked out the background eld method for the general N=3 Chem-Simons matter theory. It is a powerful tool for inding the quantum elective actions directly in N=3, d=3 harmonic superspace, preserving manifest gauge invariance and N=3 supersymmetry at each step of the quantum calculations. The usefulness of this method was illustrated by a simple proof of the N=3, d=3 nonrenormalization theorem. Furthermore, we derived the propagators for the massless and massive hypermultiplets as well as for the Chem-Simons elds in harmonic superspace and employed them to compute the leading terms in the quantum two-point and four-point functions.

The derivation of propagators and the calculation of quantum diagram s in N=3, d=3 harm onic superspace closely m in ic the analogous considerations in the four-dimensional N=2 harm onic superspace approach [3]. However, in contrast to the four-dimensional case, there are no one-loop UV divergences in N=3, d=3 harm onic superspace, and all diagram s are nite. Only IR singularities may appear in the massless hypermultiplet theory, but they can be avoided either by using massive hypermultiplets or by doing all the calculations within the background eld method, where all propagators are electively massive.

The massive hypermultiplet model has some new features in comparison with the four-dimensional theory. As is well known [30], the massive hypermultiplet describes a BPS state, i.e. it respects supersymmetry with a central charge equal to the hypermultiplet mass. The N=2, d=4 superalgebra has a central charge (complex or real) which is a singlet with respect to the R-symmetry group. Therefore, it breaks the U (2) R-symmetry group down to SU (2). In three dimensions, this picture is slightly dierent. The N=3, d=3 superalgebra has a central charge which is a triplet, breaking the SO (3) 'SU (2) R-symmetry group down to SO (2) 'U (1). For this reason, the massive hypermultiplet propagator has a more complicated form (5.16) as compared to the four-dimensional case.

A new feature arises when considering quantum contributions in the massive charged hypermultiplet model. In the N=0 analog of such a model, i.e. three-dimensional electrodynamics, a single massive spinor generates the Chern-Simons action in the one-loop

two-point quantum diagram [9]. A similar feature is pertinent to the N=1 and N=2 m odels [31]. However, the one-loop two-point diagram in the N=3 m assive charged hypermultiplet theory produces the N=3 super Yang-M ills action rather than the Chem-Sim ons one as the leading quantum correction. This may be explained by resorting to a parity argument: the N=3 hypermultiplet is parity-even while the Chem-Sim ons term violates parity. Since no anomaly can appear, the Chem-Sim ons term is prohibited in the hypermultiplet low-energy elective action.

A nother interesting feature of quantum computations is related to the one-loop four-point function with four external hypermultiplets in the model of a massive charged hypermultiplet interacting with a dynamical Chem-Sim onseld. We showed that these quantum diagrams produce, as the leading correction, a quartic hypermultiplet self-interaction which in components yields the Taub-NUT sigma model for the scalar elds. The same phenomenon was observed in the four-dimensional case [10].

Let us outline som e further problem s which can be studied and hopefully solved based on the results of the present work. Its natural continuation is the study of the N=3 super eld low-energy e ective action in the hypermultiplet and the Chem-Sim ons theory. So far, there have not been any attempts to constructing the elective actions in these theories. It is worthwhile to compare this situation with the N=2, d=4 supersymmetric models, in which the hypermultiplet and gauge super elde ective actions have been studied to a large extent (see, e.g., [19,32]). Even more tempting is the application of our quantum techniques to the N=6 and N=8 supersymmetric ABJM and BLG models, in order to describe the quantum-corrected low-energy dynamics of M2 branes in superstring theory. An important related question concerns the composite operators for the hypermultiplet super elds in the ABJM theory. Such operators are relevant for testing the AdS $_4$ /CFT $_3$ version of the general \gravity/gauge" correspondence.

A cknow ledgm ents

IB S. is very grateful to IA.B andos and D.P. Sorokin for useful discussions and to INFN, Sezione di Padova & Dipartimento di Fisica \Galileo Galilei", Universita degli Studi di Padova where this study was started. The present work is partly supported by RFBR grants, projects No 08-02-90490 and No 09-02-91349 and by a DFG grant, project No 436 RUS/113/669. The work of ILB, NGP and IBS is supported also by RFBR grant, project No 09-02-00078, and by a grant for LRSS, project No 2553 2008 2. The work of EAI. and BMZ is partly supported by RFBR grants, projects No 09-02-01209 and No 09-01-93107, and by a grant of the Heisenberg-Landau program. IBS. acknowledges the support from the Dynasty foundation and from the Alexander von Humboldt Foundation. NGP. acknowledges the support from RFBR grant, project No 08-02-00334.

A. Appendix. N = 3 harm onic superspace conventions

Three-dim ensional notation. We use the Greek letters ; ;::: to label the spinorial indices corresponding to the SO (1;2) 'SL (2;R) Lorentz group. The corresponding

gam m a-m atrices can be chosen to be real, in particular,

$$(^{0}) = i_{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; (^{1}) = _{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; (^{2}) = _{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; (A 1)$$

They satisfy the Cli ord algebra

$$f^{m}; {}^{n}g = 2^{mn}; {}^{mn} = diag(1; 1; 1);$$
 (A 2)

and the following orthogonality and completeness relations

$$(^{m})$$
 $(^{n})$ = 2^{mn} ; $(^{m})$ $(_{m})$ = $($ + $)$: (A.3)

We raise and lower the spinor indices with the "-tensor, e.g., ($_{\rm m}$) = " ($_{\rm m}$), " $_{12}$ = 1. The products of two and tree gam ma-matrices are given by

$$\binom{m}{i}\binom{n}{i} = \binom{m}{i}\binom{m}{p};$$
 (A.4)

$$(^{m})(^{n})(^{p}) = ^{mn}(^{p}) + ^{mp}(^{n}) ^{np}(^{m}) + ^{mmnp}; (A.5)$$

where $"_{012} = "^{012} = 1$.

The relations (A 3) are used to convert any vector index into a sym m etric pair of space-time ones, e.g.,

$$x = (_{m}) x^{m}; x^{m} = \frac{1}{2}(_{m}) x;$$
 $e^{m} = \frac{1}{2}(_{m}) e^{m}; e^{m} = \frac{1}{2}(_{m}) e^{m}; (A.6)$

so that

$$e_m x^n = {n \atop m}; e x = + = 2 (x);$$
 (A.7)

Superspace and harm onic conventions. The R-symmetry of N=3 superspace is SO $(3)_R$ 'SU $(2)_R$. Therefore we label the three copies of G rassmann variables by a pair of symmetric SU (2) indices i; j, i.e., $^{ij}=^{ji}$. Thus the N=3 superspace is parametrized by the following real coordinates in the central basis

$$z = (x^{m}; i^{j}); \overline{x^{m}} = x^{m}; \overline{i^{j}} = i_{j}:$$
 (A.8)

The partial spinor derivatives are de ned as follows

$$\frac{0}{0}^{k_1} = k_1 = k_1 = k_2 = k_3 = k_4 =$$

The covariant spinor derivatives and supercharges read

$$D^{kj} = \frac{0}{0} + i^{kj} 0 ; Q^{kj} = \frac{0}{0} i^{kj} 0 : (A.10)$$

They satisfy the following anticommutation relations

fD
ij
;D kl q = $i(^{nik} ^{njl} + ^{nil} ^{njk})$ @ ; (A.11)

$$fQ^{ij};Q^{kl}g = i(\mathbf{u}^{ik}\mathbf{u}^{jl} + \mathbf{u}^{il}\mathbf{u}^{jk})@$$
 : (A 12)

We use the standard harm onic variables u_i param etrizing the coset SU $(2)_R = U(1)_R$ [4]. In particular, the partial harm onic derivatives are

$$e^{++} = u_{i}^{+} \frac{e}{eu_{i}}$$
; $e^{-} = u_{i} \frac{e}{eu_{i}^{+}}$; $e^{0} = e^{++}$; $e^{0} = u_{i}^{+} \frac{e}{eu_{i}^{+}}$ $u_{i} \frac{e}{eu_{i}}$: (A.13)

The harm onic projections of the G rassmann N=3 coordinates and spinor derivatives are dened as follows

The analytic subspace in the full N=3 superspace is parametrized by the following coordinates:

$$A = (x_A; ++; 0; u_i);$$
 (A.15)

w here

$$x_{\lambda} = (m) x_{\lambda}^{m} = x + i(m^{++} + m^{++})$$
: (A.16)

The harm onic and G rassmann derivatives in the analytic coordinates are:

$$D^{++} = Q^{++} + 2i^{++} \circ Q^{A} + \cdots + \frac{Q}{Q^{0}} + 2 \circ \frac{Q}{Q^{0}};$$

$$D = Q \circ 2i \circ Q^{A} + \cdots + \frac{Q}{Q^{0}} + 2 \circ \frac{Q}{Q^{0}};$$

$$D^{0} = Q^{0} + 2^{++} + \frac{Q}{Q^{0}} + 2 \circ \frac{Q}{Q^{0}}; \quad D^{++}; D \quad J = D^{0}; \quad (A.17)$$

$$D^{++} = \frac{\theta}{\theta}$$
; $D^{-} = \frac{\theta}{\theta^{++}} + 2i$ θ^{A} ; $D^{0} = \frac{1}{2} \frac{\theta}{\theta^{0}} + i^{0} \theta^{A}$; (A.18)

where $\textbf{Q}^{A} = \textbf{(}^{m}\textbf{)} \quad \frac{\textbf{Q}}{\textbf{Q}\mathbf{x}_{A}^{m}}$. They satisfy the following relations:

$$fD^{++};D = g = 2iQ^{A}; fD^{0};D^{0}g = iQ^{A};$$
 (A.19)

$$\mathbb{D}$$
 ;D]= 2D $^{\circ}$; \mathbb{D} $^{\circ}$;D]= 2D ; \mathbb{D} ;D $^{\circ}$]= D : (A 20)

Som e useful identities involving these derivatives are as follows,

$$(D^{0})^{2}D^{0} = iD^{0} @ ; D^{0}(D^{0})^{2} = iD^{0} @ ; (D^{0})^{4} = : (A.21)$$

The integration measures over the full and analytic harmonic superspaces are dened by

$$d^{9}z = \frac{1}{16}d^{3}x (D^{++})^{2} (D^{-})^{2} (D^{0})^{2};$$
 (A 22)

$$d^{(4)} = \frac{1}{4}d^3x_A du (D^{(0)})^2; \quad d^9z du = \frac{1}{4}d^{(4)}(D^{(+)})^2; \quad (A 23)$$

where $(D^{++})^2 = D^{++} D^{++}$, etc. W ith such conventions, the superspace integration rules are most simple:

$$Z Z Z d^{3}x f(x) = d^{9}z(^{++})^{2}()^{2}f(x) = d^{(4)}(^{++})^{2}(^{0})^{2}f(x_{A}) (A 24)$$

for som e eld f(x).

W e denote the special conjugation in the N = 3 harm onic superspace by e,

$$(\mathcal{E}_{1}) = u^{-1}; \quad (\mathbf{x}_{\lambda}^{m}) = \mathbf{x}_{\lambda}^{m}; \quad (\mathbf{x}_{\lambda$$

It squares to 1 on the harm onics and to 1 on other superspace coordinates. All bilinear combinations of the G rassm ann coordinates are imaginary

$$\lceil (^{\hat{}+} + 0) \rceil = ^{++0}; \quad \lceil (^{\hat{}+} +)^2 \rceil = ^{++0}; \quad \lceil (^{0})^2 \rceil = ^{0}; \quad (A.26)$$

The conjugation rules for the spinor and harm onic derivatives are

$$(\hat{\mathbb{D}}^{0}) = \mathbb{D}^{0} ; \quad ((\hat{\mathbb{D}}^{0})^{2}) = (\mathbb{D}^{0})^{2} ; \quad ((\hat{\mathbb{D}}^{++}) = \mathbb{D}^{++})$$
 (A 27)

where and ~ are even super elds.

The analytic superspace measure is real, $\hat{d}^{(4)} = d^{(4)}$, while the full superspace measure is in aginary, $\theta^9 z = d^9 z$.

References

- [L] A.Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and supergravity theories in harmonic superspace, Class. and Quant. Grav. 1 (1984) 469.
- [2] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic supergraphs: Green functions, Class. and Quant. Grav. 2 (1985) 601.
- [3] A. Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic supergraphs: Feynman rules and examples, Class. and Quant. Grav. 2 (1985) 617.
- [4] A.S.Galperin, E.A. Ivanov, V.J.Ogievetsky, E.S. Sokatchev, Harmonic Superspace, Cambridge University Press, 2001, 306 p.
- [5] B M . Zupnik, D V . K hetselius, Three-dim ensional extended supersym m etry in harm onic superspace, Yad. Fiz. 47 (1988) 1147 [Sov. J. Nucl. Phys. 47 (1988) 730];

 B M . Zupnik, Harm onic superspaces for three-dim ensional theories, In: Supersym m etries and quantum sym m etries, eds. J. W ess and E. Ivanov, Springer Lect. Notes in Phys. 524 (1998) 116, hep-th/9804167.
- [6] I.L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I.B. Sam sonov, B.M. Zupnik, ABJM models in N=3 harmonic superspace, J. High Energy Phys. 03 (2009) 096, arXiv:0811.4774 [hep-th].
- [7] O.Aharony, O.Bergm an, D.L.Ja eris, J.M. aldacena, N = 6 superconform al Chern-Sim ons-matter theories, M.2-branes and their gravity duals, J. High Energy Phys. 0810 (2008) 091, arXiv:0806.1218 [hep-th].

- [8] J.Bagger, N.Lambert, M odeling multiple M 2's, Phys. Rev. D 75 (2007) 045020,
 hep-th/0611108;
 Gauge sym m etry and supersym m etry of multiple M 2-branes, Phys. Rev. D 77 (2008) 065008,
 arXiv:0711.0955 [hep-th];
 Comments on multiple M 2-branes, J. High Energy Phys. 0802 (2008) 105, arXiv:0712.3738
 [hep-th];
 Three-algebras and N = 6 Chem-Sim ons gauge theories, Phys. Rev. D 79 (2009) 025002,
 arXiv:0807.0163 [hep-th];
 A.Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66,
 arXiv:0709.1260 [hep-th];
 Selfdual strings and loop space Nahm equations, J. High Energy Phys. 0804 (2008) 083,
 arXiv:0802.3456 [hep-th].
- [9] A J. N iem i, G W . Sem eno , A xial-anom aly-induced ferm ion fractionization and e ective gauge-theory actions in odd-dim ensional space-times, Phys. Rev. Lett. 51 (1983) 2077; A N . Redlich, Gauge noninvariance and parity violation of three-dimensional ferm ions, Phys. Rev. Lett. 52 (1984) 18; Parity violation and gauge noninvariance of the e ective gauge eld action in three dimensions, Phys. Rev. D 29 (1984) 2366.
- [10] E.A. Ivanov, S.V. Ketov, B.M. Zupník, Induced hypermultiplet sel nteractions in N = 2 gauge theories, Nucl. Phys. B 509 (1998) 53, hep-th/9706078.
- [11] B M . Zupnik, The action of the supersym m etric N=2 gauge theory in harm onic superspace, Phys. Lett. B 183 (1987) 175.
- [12] H.-C.Kao, K.-M. Lee, Selfdual Chern-Sim ons system s with an N = 3 extended supersym m etry,
 Phys.Rev.D 46 (1992) 4691, hep-th/9205115;
 H.-C.Kao, Selfdual Yang-Mills Chern-Sim ons Higgs system s with an N = 3 extended
 supersym m etry, Phys.Rev.D 50 (1994) 2881.
- [13] A.Galperin, E. Ivanov, V.Ogievetsky, E. Sokatchev, Hyperkahler metrics and harmonic superspace, Commun. Math. Phys. 103 (1986) 515.
- [14] S.J.G ates, M.T.Grisaru, M.Rocek, W. Siegel, Superspace or One Thousand and One Lessons in Supersymmetry, Benjamin/Cummings, Reading, MA, 1983, 548 p.
- [15] I.L.Buchbinder, S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity, IOP Publishing, Bristoland Philadelphia, 1998, 656 p.
- [16] P.S. Howe, K.S. Stelle, P.K. Townsend, Miraculous cancellations in supersymmetry made manifest, Nucl. Phys. B 236 (1984) 125.
- [17] I.L. Buchbinder, E.J. Buchbinder, S.M. Kuzenko, B.A. Ovrut, The background eld method for N = 2 superY ang-Mills theories in harmonic superspace, Phys. Lett. B 417 (1998) 61, hep-th/9704214.
- [18] I.L.Buchbinder, S.M. Kuzenko, B.A. Ovrut, On the D=4, N=2 nonrenormalization theorem, Phys. Lett. B 433 (1998) 335, hep-th/9710142.
- [19] E.J. Buchbinder, B.A. Ovrut, I.L. Buchbinder, E.A. Ivanov, S.M. Kuzenko, Low-energy e ective action in N = 2 supersymmetric eld theories, Phys. Part. Nucl. 32 (2001) 641.

- [20] A N . K apustin, P .I. Pronin, Triviality of beta function in Chem-Sim ons theory with matter elds, Phys. Lett. B 318 (1993) 465;
 A N . K apustin, P .I. Pronin, Nonrenormalization theorem for gauge coupling in (2+1)-dimensions, Mod. Phys. Lett. A 9 (1994) 1925, hep-th/9401053.
- [21] B.M. Zupnik, D.G. Pak, Super eld formulation of the simplest three-dimensional gauge theories and conformal supergravities, Theor. Math. Phys. 77 (1988) 1070.
- [22] S.J.G ates Jr., H.N ishino, Rem arks on N = 2 supersym metric Chem-Sim ons theories, Phys. Lett. B 281 (1992) 72.
- [23] L.V. A vdeev, G.V. Grigoryev, D.I. Kazakov, Renormalizations in abelian Chem-Simons eld theories with matter, Nucl. Phys. B. 382 (1992) 561;
 L.V. A vdeev, D.I. Kazakov, IN. Kondrashuk, Renormalizations in supersymmetric and nonsupersymmetric non-abelian Chem-Simons eld theories with matter, Nucl. Phys. B. 391 (1993) 333.
- [24] A.Gustavsson, One-bop corrections to Bagger-Lambert theory, Nucl. Phys. B 807 (2009) 315, arXiv:0805.4443 [hep-th].
- [25] N.Akerblom, C. Saemann, M. Wolf, Marginal deformations and 3-algebra structures, arXiv:0906.1705 [hep-th].
- [26] W. Chen, G.W. Semeno, Y.-S.Wu, Two-bop analysis of non-Abelian Chem-Simons theory, Phys. Rev. D 46 (1992) 5521, hep-th/9209005.
- [27] R.Pisarski, S.Rao, Topologically massive chromodynamics in the perturbative regime, Phys. Rev.D 32 (1985) 2081.
- [28] I.L. Buchbinder, S.M. Kuzenko, On the o-shellm assive hypermultiplets, Class. and Quant. Grav. 14 (1997) L157, hep-th/9704002.
- [29] B.M. Zupnik, Six-dim ensional supergauge theories in the harm onic superspace, Yad. Fiz. 44 (1986) 512 [Yad. Fiz. 44 (1986) 794].
- [30] S. Ferrara, C. A. Savoy, B. Zum ino, General massive multiplets in extended supersymmetry, Phys. Lett. B 100 (1981) 393.
- [31] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, M. J. Strassler, A spects of N = 2 supersym m etric gauge theories in three-dimensions, Nucl. Phys. B. 499 (1997) 67, hep-th/9703110;
 J. de Boer, K. Hori, Y. Oz, Dynam ics of N = 2 supersym m etric gauge theories in three-dimensions, Nucl. Phys. B. 500 (1997) 163, hep-th/9703100.
- [32] I.L. Buchbinder, E. J. Buchbinder, S.M. Kuzenko, Non-holomorphic elective potential in N = 4 SU (n) SYM, Phys. Lett. B 446 (1999) 216, hep-th/9810239;
 I.L. Buchbinder, E. A. Ivanov, Complete N = 4 structure of low-energy elective action in N = 4 super Yang-Mills theories, Phys. Lett. B 524 (2002) 208, hep-th/0111062;
 I.L. Buchbinder, E. A. Ivanov, A. Yu. Petrov, Complete low-energy elective action in N = 4 SYM: A direct N = 2 supergraph calculation, Nucl. Phys. B 653 (2003) 64, hep-th/0210241;
 I.L. Buchbinder, N.G. Pletnev, Hypermultiplet dependence of one-loop low-energy elective action in the N = 2 superconformal theories, J. High Energy Phys. 0704 (2007) 096, hep-th/0611145.