(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-356038

(43)公開日 平成4年(1992)12月9日

(51) Int.Cl.*		識別記号	庁内整理番号	FI	技術表示箇所
G 0 3 B	33/12		7316-2K		
`,	27/10		7610-2K		
H04N	9/31	С	9187-5C		

審査請求 未請求 請求項の数2(全 5 頁)

(22)出願日 平成	戈 3年(1991)1月17日		パイオニア株式会社
	メラ 十(1951) I 月 I / ロ	,	東京都目黒区目黒1丁目4番1号
•		(72)発明者	
•		·	埼玉県入間郡鶴ケ島町富士見6丁目1番1 号 パイオニア株式会社総合研究所内
		(74)代理人.	弁理士 石川 泰男 (外1名)

(54) 【発明の名称】 色分解・合成光学系

(57)【要約】 (修正有)

【目的】 ダイクロイックミラーを斜めに透過する光に 生じる非点収差を低減することができる色分解・合成光 学系を提供することを目的とする。

【構成】 複数のダイクロイックミラーを光の主光軸 3 上に連接して、白色光を赤・緑・青の各色光に分解し、また赤・緑・青の各色光を所定の色光に合成する色分解・合成光学系において、複数のダイクロイックミラーのうち第1のダイクロイックミラー1とこれに相隣る第2のダイクロイックミラー 2 との各ダイクロイック面 4 1、42が上記主光軸 3 の光入射側として配設され、ダイクロイックミラー1が上記主光軸 3 に乗直な第1の軸 3 1を含み且つ上記主光軸 3 に対して所定角度 θ に 傾斜させた平面内に配設させたる構成をとる。

1; 第1のダイクロイックミラー 2: 第2のダイクロイックミラー

3:主光极

31: お1の軸

32; 第2の軸

【特許請求の範囲】

【請求項1】 異なる色光ごとに入射光を透過・反射す る複数のダイクロイックミラーを上記透過する光の主光 軸上に連接し、当該複数のダイクロイックミラーにより 白色光を赤・緑・青の各色光に分解し、赤・緑・青の各 色光を所定の色光に合成する色分解・合成光学系におい て、複数のダイクロイックミラーのうち第1のダイクロ イックミラー(1)とこれに相構る第2のダイクロイッ クミラー(2)との各ダイクロイック面(41、42) が上記主光軸(3)の光入射側として配設され、上記第 1のダイクロイックミラー(1)が上記主光軸(3)に 垂直な第1の軸(31)を含み且つ上記主光軸(3)に 対して所定角度 (θ ₁) 傾斜させた平面内に配設され、 上記第2のダイクロイックミラー (2)を上記主光軸 (3) 及び第1の軸(31)に各々垂直な第2の軸(3 2) を含み且つ上記主光軸 (3) に対して所定角度 (θ :) 傾斜させた平面内に配設させることを特徴とする色 分解・合成光学系。

【請求項2】 上記請求項1記載の色分解・合成光学系において、上記主光軸(3)をz軸、第1の軸(31)をy軸及び第2の軸(32)をx軸とするx-y-z三次元座標中で、上記第1のダイクロイックミラー(1)の法線ベクトルを(sin θ_1 、0、cos θ_1)となるように配設され、上記第2のダイクロイックミラー(2)の法線ベクトルを(0、sin θ_2 、cos θ_2)となるように配設されることを特徴とする色分解・合成光学系。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は液晶プロジェクションテレビ等で使用されるダイクロイックミラーを用いた色分解・合成光学系に関し、特に傾斜配置のダイクロイックミラーを透過する光に生じる非点収差の低減を図ったものである。

[0002]

【従来の技術】ダイクロイックミラーを用いて白色光を赤、緑、青の3色に分解する色分解光学系や赤、緑、青の3色の光を合成する色合成光学系は、液晶プロジェクションテレビなどに採用されている。図4には液晶プロジェクションテレビに適用した例を示す。同図において、10は白色光源であり、白色光源10の前方には色分解光学系を構成する2枚のダイクロイックミラー11、12は、図4ないし第5図に示すが高いに、白色光源10から入射する白色光Wの光軸に対して所定角度傾斜させ、且つ互いに平行に配設されている。また、ダイクロイックミラー11、12にはそれで、東色光B、赤色光Rを反射するもので、白色光源10傾のガラス基板面に誘導体多層膜からなるダイクロイック面が形成されている。

【0003】前記白色光源10から出射した白色光Wのうちの青色光Bはダイクロイックミラー11により反射され、残りの赤色光R、緑色光Gはダイクロイックミラー11を透過する。次いで、この透過光のうち赤色光Rはダイクロイックミラー12によって反射され、緑色光Gのみが透過する。こうして、白色光Wは3色に分離さ

【0004】これら各色光R、G、Bは、それぞれの画像信号に応じて光透過率が変化する液晶セル15R、15G、15Bを通過することによって各色の画像が形成される。そして、これら各色光の画像は、色合成光学系を構成する2枚の同様に平行配置のダイクロイックミラー16、17により合成された後、投影レンズ18によってスクリーン上に投影される。なお、13はミラー、14はコンデンサーレンズである。

[0005]

れる。

【発明が解決しようとする課題】上記のように、ダイクロイックミラーは入射光線に対して傾けて使用されるため、ダイクロイックミラーの透過光に非点収差を生じる。即ち、図6ないし図7に示すように、ガラス等の平行平面板19に、斜めに光が入射すると、主光線と平行平面板19の法線とを含む平面に平行な平面状光線束と垂直な平面状光線束とは異なった位置(非点隔差AS)に焦点をつくる。

【0006】この透過による非点収差は、従来のように 平行配置のダイクロイックミラーではダイクロイックミ ラーを透過する毎に非点収差が増加してしまう。図5の 場合には、青色光Bは反射のみで非点収差は生じない が、赤色光Rはダイクロイックミラー11の透過による 30 非点収差を持ち、緑色光Gはダイクロイックミラー11 と12により非点収差を持つことになる、非点収差は投 影画像のポケ等となって現われる。

【0007】本発明の目的は、上記の従来技術の問題点を解消すべくなされたもので、ダイクロイックミラーを 斜めに透過する光に生じる非点収差を低減することができる色分解・合成光学系を提供することにある。

[0008]

【課題を解決するための手段】図1は本発明に係る色分解・合成光学系の原理説明図を示す。同図において本発明の色分解・合成光学系は、異なる色光ごとに入射光を透過・反射する複数のダイクロイックミラーを上記透過する光の主光軸上に連接し、当該複数のダイクロイックミラーにより白色光を赤・緑・青の各色光に分解し、赤・緑・青の各色光を所定の色光に合成する色分解・合成光学系において、複数のダイクロイックミラーのうち第1のダイクロイックミラーとこれに相隣る第2のダイクロイックミラーとの各ダイクロイック面が上記主光軸の光入射側として配設され、上記第1のダイクロイックミラーが上記主光軸に垂直な第1の軸を含み且つ上記主光軸に対して所定角度傾斜させた平面内に配設され、上記

destronationes e e constante e no como a como Aleiro de la Penid e de destrono Anto Antago com

第2のダイクロイックミラーを上記主光軸及び第1の軸に各々垂直な第2の軸を含み且つ上記主光軸に対して指定角度傾斜させた平面内に配設させてなるものである。

[0009]

【作用】第1のダイクロイックミラーに白色光を入射すると、赤、緑、青のいずれか1色のみが反射され、残りの色光は透過する。この透過光は第2のダイクロイックミラーに入射し、このうちの1色の光は第2のダイクロイックコイックミラーの2枚の透明基板を透過し、残りの1色の光は第2のダイクロイックミラー内の2枚の透明基板間のダイクロイック面で反射される。

【0010】第2のダイクロイックミラーは、第1のダイクロイックミラーの回転傾斜の軸とは垂直な軸まわりに回転傾斜されているので、第1のダイクロイックミラーの主光線と法線を含む平面は第2のダイクロイックミラーの主光線と法線を含む平面とほぼ直交するようになり、第2のダイクロイックミラーの透過光に生じた非点隔差は第1のダイクロイックミラーの透明基板を通過することによって生ずる非点隔差と逆方向となり、打ち消される。

【0011】色合成の場合は第1、第2のダイクロイックミラーに上記とは逆方向に3色の光を入射すればよい。

[0012]

【実施例】以下に本発明の実施例を添付図面に基づいて 説明する。図2は本発明の一実施例を示すもので、図に おいて1は第1のダイクロイックミラーであり、2は第 2のダイクロイックミラーである。第1、第2のダイク ロイックミラー1、2を透過する光の光軸3を2軸とす ると、第1のダイクロイックミラー1は、図示によう 30 に、Z軸に垂直な位置よりy軸のまわりにheta1 回転して 傾斜させた状態にあり、一方、第2のダイクロイックミ ラー2は2軸の垂直な位置よりx軸のまわりに $heta_2$ 回転 して傾斜させた状態にある。即ち、第1のダイクロイッ クミラー1の法線ベクトルを(s1nheta110、COS $heta_1$) としたとき、第2のダイクロイックミラー2の法 線ベクトルが(0、 $sin\theta₂$ 、 $COS\theta₂$)となるよ うに配置する。このように配置すると、第1、第2のダ イクロイックミラー1、2のガラス基板を透過する光の 非点量は打ち消し合う方向となる。

【0013】第20ダイクロイックミラー2は、図2ないし図3に示すように、2枚のガラス基板21、22を組み合わせたもので、ガラス基板21、22間には誘導体多層膜からなるダイクロイック面4が形成されている。この実施例ではダイクロイック面4は赤色光Rを反射するものとなっている。また、第1のダイクロイックミラー1には、第2のダイクロイックミラー2とは反対側の面に青色光Bを反射するダイクロイックミラー面が形成されている。

【0014】第1のダイクロイックミラー1に白色光W 50

が入射すると、青色光 B は反射され、赤色光 R、緑色光 G が透過して第2のダイクロイックミラー2に入射する。このうち、赤色光 R はガラス基板 21 を透過し、ダイクロイック面4で反射され、再びガラス基板 21 を透過して出てゆく。また、緑色光 G はガラス基板 21 、22 を透過してゆく。

【0015】図6に示すように、屈折率nのガラス平板が厚さt、傾き角 θ であるときには、非点隔差ASは、【0016】

0 【数1】

$$AS = \frac{t (n^{2}-1) \sin^{2} \theta}{\sqrt{n^{2}-\sin^{2} \theta} \times (n^{2}-\sin^{2} \theta)}$$

【0017】となる。第1のダイクロイックミラー1の ようにY軸まわりに回転した透明基板を透過した光のY ・軸方向の焦点は、X軸方向の焦点にくらべ非点隔差AS だけ近くにある。逆に第2のダイクロイックミラー2の ようにX軸まわりに回転した透明基板を透過した光の焦 点はX軸方向の方がY軸方向にくらべ近くにできること 20 となる。ここで、緑色光Gは第1のダイクロイックミラ - 1 および第2のダイクロイックミラー2のガラス基板 21、22を透過し、赤色光Rは第1のダイクロイック ミラー2および第2のダイクロイックミラー2のガラス 基板2」を2回透過しており、第1、第2のダイクロイ ックミラー1、2は透過による非点量を打ち消す配置な ので、第1、第2のダイクロイックミラー1、2の傾き 角 θ ι、 θ 2 及びガラス基板の厚さを調整することで、 緑色光G、赤色光Rの非点収差を打ち消すことができ る。

30 【0018】(具体例) 具体的には、第1のダイクロイックミラー1のガラス基板として光学用ガラスのBKー7(N $_4$ = 1.51633)を用い、その厚さ $_1$ = 2 [mm] 傾き角 $_1$ = 42° とすると、第1のダイクロイックミラー1の透過による非点隔差ASは、(1)式よりAS=0.46180となる。

【0019】一方、第2のダイクロイックミラー2のガラス基板21、21の材質をBK-7とし、傾き角θ2=45°としたとき、第1のダイクロイックミラー1の非点隔差ASをキャンセルするには、ガラス基板21、40 22の厚さt21、t22を次のようにする。この場合、AS=0.26917×tとなる。従って、赤色光Rではガラス基板21を2回通過するので、

0. 4618 = 0. $26917 \times 2t_{21}$

となり、 $t_{21}=0$. 85782 [mm] とすればよい。また、緑色光Gはガラス基板 2_1 、 2_2 を1回ずつ通過するので、

0. 4618=0. $26917\times (t_{21}+t_{22})$ となり、 $t_{22}=0$. 85782 ($t_{21}+t_{22}$) とすれば非点収差を消すことができる。

【0020】なお、上記実施例において、第1のダイク

ロイックミラー1は青色光Bを反射するものであった が、赤色光尺あるいは緑色光Gを反射するものでも勿論 よく、その場合、第2のダイクロイックミラー2のダイ クロイック面4は第1のダイクロイックミラー1とは異 なるいずれかの色光を反射するものを用いる。また、上 記実施例では、色分解光学系について述べたが、例えば 各色光R、G、Bの進む向きを逆にとれば、図2の第 1、第2のダイクロイックミラー1、2が色合成光学系 となる。

[0021]

【発明の効果】以上の説明から明らかなように、本発明 によれば、第1、第2のダイクロイックミラーをそれら ミラーの面の法線がほぼ直交し且つ両ミラー間を光が透 過できる配置とすると共に第2のダイクロイックミラー のダイクロイックミラー面を2枚の透明基板間に形成し たので、第1と第2のダイクロイックミラーを透過する 毎に生じる各色光の非点収差をそれぞれ相殺させて低減 することができる。従って、本発明の色分解・合成光学 系を液晶プロジェクションテレビやカラーテレビなどに 用いれば、ダイクロイックミラーに伴う画像のポケ等を 20 14…コンデンサーレンズ 防止することができる。

【図面の簡単な説明】

【図1】本発明の色分解・合成光学系の原理説明図であ

【図2】色分解・合成光学系の一実施例を示す斜視図で

ある.

【図3】同光学系に用いられている第2のダイクロイッ クミラーの部分断面図である。

6

【図4】従来の色分解・合成光学系を液晶プロジェクシ ョンテレビに適用した例を示す概略構成図である。

【図5】図3の色分解・光学系の斜視図である。

【図6】ガラス等の平行平面板に斜めに光が入射すると こき生ずる非点収差を説明するための説明図である。

【図7】ガラス等の平行平面板に斜めに光が入射すると 10 こき生ずる非点収差を説明するための説明図である。

【符号の説明】

1…第1のダイクロイックミラー

2…第2のダイクロイックミラー

21、22…ガラス基板

3 …光軸

4…ダイクロイック面

10…白色光源

11、12、16、17…ダイクロイックミラー

13…ミラー

15R、15G、15B…液晶セル

18…投影レンズ

19…平行平面板

31…第1の軸

32…第2の軸

【図1】

「: 格」のダイクロイックミラー

2: \$2のダイクロイックミラー

9;主光線

91: 影の動

32; 第2の軸

【図3】

[图6]

