

Winning Space Race with Data Science

Tomasz Szymański 31-01-2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - a) data collection:
 - data scraping of the Space X launches of Wikipedia webpage,
 - Space X public API,
 - b) Exploratory Data Analysis: SQL queries, Matplotlib and Seaborn graphs, an interactive Plotly dashboards and Folium maps
 - c) few various machine learning models (logistic regression, decision tree, KNN, SVN) to predict successful landings
- Summary of all results
 - a) All models give similar results about 0,78
 - b) Seems that more data is required to improve accuracy as seems that results are overpredicted.

Introduction

Project background and context

- Space exploration became more and more common,
- Space X becomes the cheapest way to launch rackets to space, as the Space X reuse the Stage 1 (part) of rocket.
- Space X launch costs 62 millions \$ while others cost 165 millions \$

• Problem:

- How to predict if launch will be completed successfully,
- What machine learning models should be used,
- What data are necessary to predict launch correctly

Methodology

Executive Summary

- Data collection methodology:
 - Data was got from Space X and wikipedia
- Perform data wrangling
 - · Pandas and NumPy ware used to clean and analyse data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Scikit-Learn was used to create Machine Learning models and GridSearchCV for tuning

Data Collection

SpaceX API Calls:

- Space X has public API, where you can find information about launches coordinates, rocket, Payload mass, outcome of the mission etc.
- to obtain data from HTTP web page, get request was used.

Scraping SpaceX launch data Wikipedia page

- Wikipedia contains data from past SpaceX launches.
- to get these data, Beautiful Soup library was used.

Data Collection – SpaceX API

 GitHub URL of SpaceX API calls notebook:

https://github.com/monas1975/IBM data science s paceX project/blob/main/Data Collect API.ipynb

Data Collection - Scraping

GitHub URL of SpaceX API calls notebook:

https://github.com/monas1975/IBM data science spaceX project/blob/main/Data c ollection with Web Scrapping.ipynb

Data Wrangling

• GitHub URL:

https://github.com/monas1975/IBM data science spaceX project/blob/main/Data wran gling.ipynb

EDA with Data Visualization

• Graph drawn:

- FlightNumber vs. PayloadMass (scatterplot),
- FlightNumber vs LaunchSite (scatterplot),
- Payload vs Launch Site (scatterplot),
- relationship between success rate and orbit type (barplot),
- FlightNumber and Orbit type (scatterplot),
- Payload and Orbit type (scatterplot),
- launch success yearly trend (lineplot)

• GitHub URL:

https://github.com/monas1975/IBM_data_science_spaceX_project/blob/main/EDA_with_Visualization_lab.ipynb

EDA with SQL

- summarize the SQL queries performer:
 - the names of the unique launch sites in the space mission,
 - records (5) where launch sites begin with the string 'CCA',
 - total payload mass carried by boosters launched by NASA (CRS),
 - average payload mass carried by booster version F9 v1.1,
 - date when the first successful landing outcome in ground pad was achieved,
 - the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000,
 - List the total number of successful and failure mission outcomes,
 - List the names of the booster versions which have carried the maximum payload mass,
 - List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015,
 - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order
- GitHub URL: https://github.com/monas1975/IBM data science spaceX project/blob/main/Exploratory Analysis with SQL.ipynb

Build an Interactive Map with Folium

- Elements added to map:
 - circle and marker for each launch site, added as point of attention at map,
 - marker cluster easy way to show number of launches at each site,
 - mouse position- to get coordinates,
 - polly lines (lines between site and coastline)

• GitHub:

https://github.com/monas1975/IBM data science spaceX project/blob/main/Interactive Visual Analytics with Folium lab.ipynb

Build a Dashboard with Plotly Dash

- The purpose of adding interactive dashboard was to give the users opportunity to decide which information would like to see.
- Features add to dashboard:
 - dropdown menu to let select launch site and information related,
 - interactable bar for payload mass,
 - scatter plot that show correlation between payload mass and landing result,
 - piechart to show proportion between successful landing and unsuccessful.
- GitHub URL:

Predictive Analysis (Classification)

• GitHub URL:

https://github.com/monas1975/IBM data science spaceX project/blob/main/Machine Learning Prediction lab.ipynb

Interactive analytics demo in screenshots

- Results from interactive dashboard depends on users' inputs,
- Pie chart shows proportion between successful and unsuccessful landings for sites,
- Scatter plot shows how payload mass impact on outcome of landings.

Predictive analysis results

 Predictive analysis results : all models have similar accuracy
 0.78, but logistic regression has the worst 0.72

Flight Number vs. Launch Site

• "CCAFS SLC 40" is the most often used platform. Amount of successful landing increase as flight numbers increases

Payload vs. Launch Site

- Most of the launches have payload below 7500kg
- Most of the launches with payload over 8000 were successful

Success Rate vs. Orbit Type

- - There were any launch to SO orbit,
 - All other orbits have success rate over 50%
 - Orbits: ES-L1, GEO,HEO,SSO are the orbit with success rate = 100%
 - GTO is the orbit with the lower success rate

Flight Number vs. Orbit Type

• There was an orbit type changes with flight number increase

Payload vs. Orbit Type

- There is the correlation between the payload and orbit chosen.
- The launches with very high payload mass was to VLEO orbit

Launch Success Yearly Trend

- Success rate increase year by year
- Launches between 2010 and 2013 completed unsuccessfully
- The maximum of success rate was in 2019
- In 2018 the success rate drop down to 0.6

All Launch Site Names

• In dataset there are 4 unique launch sites names

Launch Site Names Begin with 'CCA'

In [20]: %sql SELECT * FROM RHF71790.SPACEXDATASE WHERE launch_site like 'CCA%' LIMIT 5;

* ibm_db_sa://rhf71790:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb Done.

Out[20]:

Ī	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	None	0	LEO	SpaceX	Success	Failure (parachute)
- 1	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	None	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
- 1	2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	None	525	LEO (ISS)	NASA (COTS)	Success	No attempt
- 1	2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	None	500	LEO (ISS)	NASA (CRS)	Success	No attempt
- 1	2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	None	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• 5 records where launch sites begin with `CCA`

Total Payload Mass

The total payload carried by boosters from NASA is 45596 kg

Average Payload Mass by F9 v1.1

• The average payload mass carried by booster version F9 v1.1 is 2534 kg

First Successful Ground Landing Date

 The first successful landing outcome on ground pad was on 22nd of December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

```
In [34]: %sql SELECT DISTINCT booster_version FROM RHF71790.SPACEXDATASE WHERE landing_outcome LIKE 'Success (drone ship)' AND (payload_mass_kg_>4000 AND payload_mass_kg_<6000);

* ibm_db_sa://rhf71790:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqblod8lcg.databases.appdomain.cloud:32536/bludb
Done.

booster_version
F9 FT B1021.2
F9 FT B1022
F9 FT B1026
```

 There are four boosters version with payload mass between 4000 and 6000 kg that have successfully landed on drone ship

Total Number of Successful and Failure Mission Outcomes

There were 99 successful mission and only 1 failure.

Boosters Carried Maximum Payload

• List the names of the booster versions which have carried the maximum payload mass

2015 Launch Records

```
In [39]: %sql SELECT date, booster_version, launch_site, landing_outcome FROM RHF71790.SPACEXDATASE WHERE landing_outcome LIKE 'Failure (drone ship)' And YEAR(DATE) =2015;

* ibm_db_sa://rhf71790:***@764264db-9824-4b7c-82df-40d1b13897c2.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32536/bludb
Done.

Out[39]: DATE booster_version | launch_site | landing_outcome |
2015-01-10 | F9 v1.1 B1012 | CCAFS LC-40 | Failure (drone ship) |
2015-04-14 | F9 v1.1 B1015 | CCAFS LC-40 | Failure (drone ship) |
```

• The failed landing outcomes in drone ship in 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20

Location of launch sites

• All launch sites are located at coastline

Folium Map – landing outcomes

• Florida – on the right screen shoot we see: 3 successful outcomes and 4 unsuccessful

Folium Map – distance to coastline

Successful lunches –all sites

KSC LC-39A is the site with the highest number of successful launches ~42%

KSC LC-39A – site with highest success ratio

~77% of launches at KSC LC-39A was complited successfuly.

Payload impact on successful launches

Payload mass over 5500kg has negative impact on successful launches, any completed successfully.

In payload range between 2500 – 5500 kg, the biggest number of successful launches was for FT booster.

Classification Accuracy

- Models SVM, Tree and knn have same accuracy, equal 0.78
- Model Ir (logistic regression) has the worse accuracy 0.72
- All models have quite high accuracy

Confusion Matrix

- Knn confusion matrix,
- All unsuccessfull landing (4) was predicted correctly,
- 4 successfull landing was predicted wronlgy,
- 10 successfull landings was predicted correctly

Conclusions

- The purpose of this project was to predict if the Stage 1 of the Falcon rocket land successfully or unsuccessfully,
- These information are required by Space Y (competitor of Sapce X) that want to send rocket cheaper than Space X,
- Launches data was received from Wikipedia and API of Space X
- Models build in this project are able to predict outcome of landings with accurance about 0.78

Appendix

• Git hub:

https://github.com/monas1975/IBM data science spaceX project

• IBM data science coure by Coursera:

https://www.coursera.org/professional-certificates/ibm-data-science

