

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI WORK INTEGRATED LEARNING PROGRAMMES

COURSE HANDOUT

Part A: Content Design

	<u>. </u>	
Course Title	Natural Language Processing	
Course No(s)	DSECLZG525	
Credit Units	3 units	
Course Author	Prof. Vijayalakshmi and Dr. Chetana Gavankar	
Version No	4.0	
Date	August 2020	

Course Objectives

No	Course Objective
CO1	To learn the fundamental concepts and techniques of natural language processing (NLP)
CO2	To learn computational properties of natural languages and the commonly used algorithms for processing linguistic information
CO3	To apply NLP techniques in state of art applications
CO4	To learn implementation of NLP algorithms and techniques

Text Book(s)

T1	Speech and Language processing: An introduction to Natural Language Processing, Computational Linguistics and speech Recognition by Daniel Jurafsky and James H. Martin[3rd edition]
Т2	Natural language understanding[2 nd edition] by James Allen

Reference Book(s) & other resources

Handbook of Natural Language Processing, Second Edition—NitinIndurkhya, F R1 Damerau, Fred J. Damerau	
R2	Natural Language Processing with Python by Steven Bird, Ewan Klein, Edward Lopper

Modular Content Structure

1. Introduction to Natural Language Understanding

- 1.1 The Study of Language.
- 1.2 Applications of Natural Language Understanding.
- 1.3 Evaluating Language Understanding Systems.
- 1.4 The Different Levels of Language Analysis.
- 1.5 Representations and Understanding.
- 1.6 The Organization of Natural Language Understanding Systems.

2. N-gram Language Models

- 2.1 N-Grams
- 2.2 Evaluating Language Models
- 2.3 Generalization and Zeros
- 2.4 Smoothing
- 2.5 The Web and Stupid Backoff

3. Part-of-Speech Tagging

- 3.1 (Mostly) English Word Classes
- 3.2 The Penn Treebank Part-of-Speech Tag set
- 3.3 Part-of-Speech Tagging
- 3.4 Markov Chains
- 3.5 The Hidden Markov Model
- 3.6 HMM Part-of-Speech Tagging
- 3.7 Part-of-Speech Tagging for Morphological Rich Languages

4. Hidden Markov Models

- 4.1 The Hidden Markov Model
- 4.2 Likelihood Computation: The Forward Algorithm
- 4.3 Decoding: The Viterbi Algorithm
- 4.4 HMM Training: The Forward-Backward Algorithm
- 4.5 Maximum Entropy Markov Models
- 4.6 Bidirectionality

5. Grammars and Parsing.

- 5.1 Grammars and Sentence Structure.
- 5.2 What Makes a Good Grammar
- 5.3 A Top-Down Parser.
- 5.4 A Bottom-Up Chart Parser.
- 5.5 Top-Down Chart Parsing.
- 5.6 Finite State Models and Morphological Processing.
- 5.7 Grammars and Logic Programming.
- 5.8 Parsing

6. Statistical Constituency Parsing

- 6.1 Probabilistic Context-Free Grammars
- 6.2 Probabilistic CKY Parsing of PCFGs
- 6.3 Ways to Learn PCFG Rule Probabilities
- 6.4 Problems with PCFGs
- 6.5 Improving PCFGs by Splitting Non-Terminals
- 6.6 Probabilistic Lexicalized CFGs
- 6.7 Probabilistic CCG Parsing

6.8 Evaluating Parsers

7. Dependency Parsing

- 7.1 Dependency Relations
- 7.2 Dependency Formalisms
- 7.3 Dependency Treebanks
- 7.4 Transition-Based Dependency Parsing
- 7.5 Graph-Based Dependency Parsing
- 7.6 Evaluation

8. Word sense and word net

- 8.1 Word Senses
- 8.2 Relations between Senses
- 8.3 WordNet: A Database of Lexical Relations
- 8.4 Word Sense Disambiguation
- 8.5 Alternate WSD algorithms and Tasks
- 8.6 Using Thesauruses to Improve Embeddings
- 8.7 Word Sense Induction

9. Statistical Machine translation

- 9.1 Introduction
- 9.2 Approaches
- 9.3 Language Models
- 9.4 Parallel Corpora
- 9.5 Word Alignment
- 9.6 Phrase Library
- 9.7 Translation Models.
- 9.8 Search Strategies

10. Semantic web ontology

- 10.1 Introduction
- 10.2 Ontology and Ontologies
- 10.3 Ontology Engineering
- 10.4 Ontology Learning
- 10.5 State of the Art

11. Question Answering

- 11.1 IR-based Factoid Question answering
- 11.2 Knowledge-based Question Answering
- 11.3 Using multiple information sources: IBM's Watson
- 11.4 Evaluation of Factoid Answers

12 Dialogue Systems and Chatbots

- 12.1 Properties of Human Conversation
- 12.2 Chatbots
- 12.3 GUS: Simple Frame-based Dialogue Systems
- 12.4 The Dialogue-State Architecture
- 12.5 Evaluating Dialogue Systems
- 12.6 Dialogue System Design

13. Sentiment analysis

- 13.1 The Problem of Sentiment Analysis
- 13.2 Sentiment and Subjectivity Classification
- 13.3 Document-Level Sentiment Classification
- 13.4 Feature-Based Sentiment Analysis
- 13.5 Sentiment Analysis of Comparative Sentences

Learning Outcomes:

No	Learning Outcomes			
LO1	Should have a good understanding of the field of natural language processing.			
LO2	Should have an algorithms and techniques used in this field.			
LO3	Should also understand the how natural language processing is used in Machine translation and Information extraction.			

Part B: Contact Session Plan

Academic Term	2020			
Course Title	Natural Language processing			
Course No	DSECLZG525			
Lead Instructor Dr. Chetana Gavankar				

Course Contents

Contact session	List of Topic Title (from content structure in Part A)	Topic # (from content structure in Part A)	Text / Ref Book / External resource
1	 Introduction The Study of Language. Applications of Natural Language Understanding. Evaluating Language Understanding Systems. The Different Levels of Language Analysis. Representations and Understanding. The Organization of Natural Language Understanding Systems. 	Chapter1	T2
2	 N-Grams Language models Evaluating Language Models Generalization and Zeros Smoothing The Web and Stupid Backoff 	Chapter 3	T1
3	Part-of-Speech Tagging	Chapter8	T1 and class notes

4	 Part-of-Speech Tagging Markov Chains The Hidden Markov Model HMM Part-of-Speech Tagging Part-of-Speech Tagging for Morphological Rich Languages Hidden Markov Model Algorithms Likelihood Computation: The Forward Algorithm Decoding: The Viterbi Algorithm HMM Training: The Forward-Backward Algorithm Maximum Entropy Markov Model Bidirectionality 	Appendix chapter A	T1 and class notes
5	 Grammars and Parsing Grammars and Sentence Structure. What Makes a Good Grammar A Top-Down Parser. A Bottom-Up Chart Parser. Top-Down Chart Parsing. Finite State Models and Morphological Processing. Grammars and Logic Programming. Parsing 	Chapter3	T2
6	 Statistical Constituency Parsing Probabilistic Context-Free Grammars Probabilistic CKY Parsing of PCFGs Ways to Learn PCFG Rule Probabilities Problems with PCFGs Improving PCFGs by Splitting Non-Terminals Probabilistic Lexicalized CFGs Probabilistic CCG Parsing Evaluating Parsers 	Chapter 14	T1
7	 Dependency Parsing Dependency Relations Dependency Formalisms Dependency Treebanks Transition-Based Dependency Parsing Graph-Based Dependency Parsing Evaluation 	Chapter 19	T1 and class notes
8	Review of session 1 to session 7		

0		Cl. 15	TD1
9	 Word sense and word net Word Senses Relations between Senses WordNet: A Database of Lexical Relations Word Sense Disambiguation Alternate WSD algorithms and Tasks Using Thesauruses to Improve Embeddings Word Sense Induction 	Chapter15	T1
10	Statistical Machine translation Introduction Approaches Language Models Parallel Corpora Word Alignment Phrase Library Translation Models Search Strategies	Chapter 17	R1
11	Semantic web ontology Introduction Ontology and Ontologies Ontology Engineering Ontology Learning	Chapter 24	R1 and class notes
12	 Question Answering IR-based Factoid Question answering Knowledge-based Question Answering Using multiple information sources: IBM's Watson Evaluation of Factoid Answers 	Chapter 25	Т1
13	 Dialogue Systems and Chatbots Properties of Human Conversation Chatbots GUS: Simple Frame-based Dialogue Systems The Dialogue-State Architecture Evaluating Dialogue Systems Dialogue System Design 	Chapter 26	T1
14	Sentiment analysis The Problem of Sentiment Analysis Sentiment and Subjectivity Classification Document-Level Sentiment Classification Feature-Based Sentiment Analysis Sentiment Analysis of Comparative Sentences	Chapter 26	R1
15	NLP Tools and State of Art Areas		
16	Review of session 9 to session 15		

Evaluation Scheme

Evaluation Component	Name (Quiz, Lab, Project, Midterm exam, End semester exam, etc)	Type (Open book, Closed book, Online, etc.)	Weight	Duration	Day, Date, Session, Time
EC – 1	Quiz		5%		To be announced
EC – 2	Assignment		15%		To be announced
EC - 3	Mid-term Exam	Open book	30%		To be announced
EC – 4	End Semester Exam	Open book	50%		To be announced

Important Information

Syllabus for Mid-Semester Test (Closed Book): Topics in Weeks 1-8 (1-18 Hours) Syllabus for Comprehensive Exam (Open Book): All topics given in plan of study

Notes

- Quiz and Assignments timelines will be announced on the canvas portal.
- **Deadlines for evaluation components will NOT be extended** and the student is requested not to wait for the deadline to start working on Quiz/Assignment
- Syllabus for Mid-Semester Test (Closed Book): Topics in Session Nos. 1 to 8
- Syllabus for Comprehensive Exam (Open Book): All topics (Session Nos. 1 to 16)
- Strictly NO MAKEUPS for Quiz and Assignments and all submissions after the announced deadlines will not be considered for evaluation.
- All assignments will be subjected to plagiarism check, and if violated will be subject to disciplinary action apart from nullifying all the marks/grades assigned.

Important links and information:

<u>Canvas:</u> Students are expected to visit the Canvas portal on a regular basis and stay up to date with the latest announcements and deadlines.

<u>Contact sessions:</u> Students should attend the online lectures as per the schedule provided. Evaluation Guidelines:

- 1. EC-1 consists of Assignments and Quizzes. Announcements regarding the same will be made in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 3. For Open Book exams: Use of prescribed and reference text books, in original (not photocopies) is permitted. Class notes/slides as reference material in filed or bound form is permitted. However, loose sheets of paper will not be allowed. Use of calculators is permitted in all exams. Laptops/Mobiles of any kind are not allowed. Exchange of any material is not allowed.
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam. The genuineness of the reason for absence in the Regular Exam shall be assessed prior to giving permission to appear for the Make-up Exam. Make-Up Test/Exam will be conducted only at selected exam centres.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the lectures, and take all the prescribed evaluation components such as Assignment/Quiz, Mid-Semester Test and Comprehensive Exam according to the evaluation scheme provided in the handout.