Esame di Laurea in Informatica

Implementazione di modelli di programmazione matematica per problemi di bin packing

Daniel Rossi 18 Dicembre 2018

Introduzione

SOFTWARE SUPPORTO DECISIONALE

- agevolazione degli operatori;
- operatori meno esperti;
- aumento della produttività;
- informazioni sullo stato dei trasporti;
- stima di costi e profitti.

Introduzione

L'azienda ha sviluppato un'euristica per l'ottimizzazione dello spazio occupato dalle merci nel container del camion.

Proposta di stage

Scopo

Lo scopo dello stage è quello di realizzare dei modelli di programmazione lineare per la risoluzione dello **Strip Packing Problem** da usare per valutare l'euristica aziendale

- 2D: versione 2D;
- 2DR: versione 2D con rotazione;
- 2DRS: versione 2D con rotazione e sequenza di scarico;
- **3D**: versione 3D con rotazione e sovrapposizione.

Modello matematico

min D

s.t.
$$l_{ij} + l_{ji} + b_{ij} + b_{ji} \ge 1$$
 $i < j$ $i, j \in I$ $i, j, j \in I$ $i, j, j \in I$ $i, j \in I$ $i, j \in I$

Bin Packing Problem

Insieme I

Si consideri un insieme $I = \{1, \dots, n\}$ di oggetti aventi dimensioni w_i , d_i e h_i con $i \in I$

insieme J

Si consideri un insieme $J = \{1, ..., m\}$ di contenitori di uguale dimensione W, D e H.

Diamo per ipotesi $w_i \leq W$, $d_i \leq D$ e $h_i \leq H$.

Obiettivo

Minimizzare il numero di contenitori J che riescano a contenere tutti gli oggetti dell'insieme I.

Strip Packing Problem

Differenze dal precedente problema:

- Numero di contenitori: singolo contenitore;
- Dimensioni: profondità infinita;

Obiettivo

Minimizzare i metri lineari occupati rispetto la profondità del contenitore.

Sistema di riferimento

Convenzioni adottate:

Elenco modelli

Modello 2D e 2DR

Modello 2D

Limiti delle soluzioni

Modello 2DR

Ottimalità della soluzione

Modello 2DRS

Vie di scarico

Deve essere presente almeno una via di scarico per ciascun pacco

Stabilità generale

Le soluzione del modello non implementano la stabilità generale

Modello 3D

Stabilità degli oggetti

Garantita sovrapponendo solo un oggetto

Oggetti stackable

In generale nei test non tutti gli oggetti erano sovrapponibili

Errori confronto

Objective value

Metri lineari minimizzati dal modello e dall'euristica:

- Objective modello: *Obj_m*
- Objective euristica: *Obj_h*

Errore assoluto:

$$\epsilon_a = Obj_h - Obj_m$$

Errore relativo:

$$\epsilon_r = \frac{\epsilon_a}{Obi_m} \cdot 100$$