Course Name: MATHEMATICS – II

Webpage: https://sites.google.com/view/lecma10002

Instructor: Dr. Jitendra Kumar (Dept. of Mathematics)

http://www.facweb.iitkgp.ac.in/~jkumar/

Syllabus:

- Linear Algebra (11 Lectures)
- Numerical Analysis (9 Lectures)

• Integral Calculus (11 Lectures)

Vector Calculus (9 Lectures)

Linear Algebra (11 Lectures)

Algebra of matrices – Solution of system of linear equations – Gauss Elimination

Vector spaces, basis and dimension, linear dependence and independence of vectors, rank of a matrix and its properties, Solution of system of equations using rank concept

Linear Transformations – Matrix representation of linear transformations

Hermitian, Skew Hermitian and Unitary matrices, eigenvalues, eigenvectors and eigenvalues of Hermitian, Skew Hermitian and Unitary matrices

Similarity of matrices & Diagonalization - Applications

Numerical Analysis (9 Lectures)

Iterative method for solution of system of linear equations: Jacobi and Gauss Seidel method

Solution of transcendental equations: Bisection, Fixed point Iteration, Newton-Raphson methods

Interpolation: Finite differences, interpolation, error in interpolation polynomial, Newton's forward and backward interpolation formulae, Lagrange's interpolation and error estimates

Numerical integration: Trapezoidal rule and Simpson's 1/3rd rule and their geometrical interpretation.

Integral Calculus (11 Lectures)

Convergence of improper integrals, test of convergence. Beta and Gamma functions with their elementary properties

Differentiation of integrals with variable limits - Leibnitz rule

Double integrals, Change in order of integration, Change of variables in double integrals - Jacobians of transformations

Triple integrals, change of order, change of variables

Applications of Multiple Integrals - Computations of surfaces, area and volumes

Vector Calculus (9 Lectures)

Scalar and vector fields, level surfaces; limit, continuity and differentiability of vector functions, Curves and Arc-Length

Directional derivative, Gradient, Curl and Divergence and geometrical Interpretation

Line and surface integrals, theorems of Green, Gauss and Stokes

Literature

• E. **Kreyszig**: Advanced Engineering Mathematics

• S. Narayan and R. K. Mittal: Integral Calculus

• N. Piskunov: Differential and Integral Calculus, Volume I & II

Lecture Notes

Linear Algebra

- ☐ System of Linear Equation Introduction
- **☐** Solution Geometrical Interpretation
- ☐ Solution of the System Gauss Elimination
- **☐** Consistency of Solution

Matrix form:
$$A x = b A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

m equations and n unknowns

A system of equation is **consistent** if it has at least one solution, and **inconsistent** if it has no solution.

Consider
$$x + 2y = 4$$
 (L_1)

$$x - y = 1 \qquad (L_2)$$

OR
$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Case of Unique Solution

System of Linear Equations (vectors interpretation)

$$x + 2y = 4 \qquad x - y = 1$$

OR

$$\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

OR

$$x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

The vector $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ can only be produced by ONE linear combination of col-1 & col-2. Hence this is the case of unique solution.

Consider
$$x - y = 1$$
 (L_1)

$$-x + y = 2 \qquad (L_2)$$

Lines do not intersect.

Case of No Solution

System of Linear Equations (vectors interpretation)

Consider
$$x - y = 1$$
 $-x + y = 2$

$$x\begin{bmatrix} 1 \\ -1 \end{bmatrix} + y\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

It is not possible to produce $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by any linear combination of col-1 & col-2. Hence this is the case of no solution.

Consider
$$x - y = 2$$
 (L_1) $-x + y = -2$ (L_2)

Both are the same equation. Any point on the line is a solution of the given system

Case of Infinitely Many Solutions

System of Linear Equations (vectors interpretation)

$$x - y = 2 \qquad -x + y = -2$$

$$x\begin{bmatrix} 1 \\ -1 \end{bmatrix} + y\begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

The vector $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ can be produced by many linear combinations of col-1 & col-2. Hence this is the case of infinitely many solution.

Summary:

System of Linear Equations

- Unique Solution
- Infinitely Many Solutions
- No Solution

System of Linear Equations: Solution Methods

- Method of Determinants: Cramer's rule
- Matrix Inversion Method: $Ax = b \Rightarrow x = A^{-1}b$

direct method (exact solution)

- Gauss Elimination Method
- Iterative Method Jacobi & Gauss-Seidel method solution

System of Linear Equations: Gauss Elimination Method

Elementary Row Operations

- Interchange of *i*-th and *j*-th rows $(R_i \leftrightarrow R_j)$
- Multiplication of the *i*-th row by a nonzero number λ ($R_i \leftarrow \lambda R_i$)
- Addition of λ times the j-th row to the i-th row $(R_i \leftarrow R_i + \lambda R_j)$

Gauss Elimination: Example - 1

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + 3x_2 + x_3 = 7$
 $x_1 + 2x_2 + 3x_3 = 9$

$$x_1 + x_2 + x_3 = 4$$

 $x_2 - x_3 = -1$
 $x_2 + 2x_3 = 5$

$$x_1 + x_2 + x_3 = 4$$
$$x_2 - x_3 = -1$$
$$3x_3 = 6$$

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 2 & 3 & 1 & 7 \\ 1 & 2 & 3 & 9 \end{bmatrix}$$

Augmented Matrix

$$R_2 \leftarrow R_2 - 2R_1$$

$$R_3 \leftarrow R_3 - R_1$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & 2 & 5 \end{bmatrix}$$

$$R_3 \leftarrow R_3 - R_2$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$

Gauss Elimination: Example - 1

$$x_1 + x_2 + x_3 = 4$$

 $x_2 - x_3 = -1$
 $3x_3 = 6$

$$[A|b] \sim \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 3 & 6 \end{bmatrix}$$
 Echelon form

Solution:

$$x_3 = 2$$

 $x_2 = -1 + 2 = 1$
 $x_1 = 4 - 1 - 2 = 1$

Back substitution:

$$x_3 = 2$$

 $x_2 = -1 + x_3 = 1$
 $x_1 = 4 - x_2 - x_3 = 1$

Number of Pivots = Number of Unknowns ⇒ Unique Solution

OR every column has a pivot