

GEOMETRÍA Capítulo 7

SEGMENTOS PROPORCIONALES

MOTIVATING | STRATEGY

1. PROPORCIÓN ÁUREA

sección áurea, se halla presente en la naturaleza, el arte y la arquitectura. Los griegos la conocieron en el estudio del cuerpo humano y la utilizaron, en la escultura y la arquitectura y la definieron como una característica fundamental en su estética.

También llamada

Razón geométrica de dos segmentos

Se denomina razón geométrica de dos segmentos, al cociente de las longitudes de los segmentos expresados en la misma unidad. *Ejemplo:*

 $\frac{2}{3}$: razón geométrica de \overline{AB} y \overline{CD}

Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.

Razón geométrica de dos segmentos

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

Ejemplo:

 $\frac{2}{3}$: razón geométrica de \overline{AB} y \overline{CD}

Segmentos proporcionales

Si la razón geométrica de 2 segmentos es igual a la de otros dos, dichos pares de segmentos son proporcionales.

Teorema de Tales

Si:
$$\overrightarrow{L_1} /\!\!/ \overrightarrow{L_2} /\!\!/ \overrightarrow{L_3}$$

$$\frac{a}{b} = \frac{m}{n}$$

Corolario de Tales

SEGMENTOS PROPORCIONALES

Teorema de la Bisectriz

SEGMENTOS PROPORCIONALES

SEGMENTOS PROPORCIONALES

1. En la figura, si $\stackrel{\longleftarrow}{L_1}$ // $\stackrel{\longleftarrow}{L_2}$ // $\stackrel{\longleftarrow}{L_3}$, calcule el valor de x.

Resolución:

- Piden: x
- Aplicamos teorema de Tales

$$\frac{a}{b} = \frac{9b}{a}$$

$$a^2 = 9b^2$$

$$a = 3b$$

$$\frac{3\cancel{b}}{\cancel{b}} = \frac{x}{8}$$

$$3(8) = x$$

$$x = 24$$

2. En la figura, calcule el valor de x.

Resolución

- Piden: x
- Aplicamos el corolario de Tales

Resolución

- Piden: AD
- A ABC: Isósceles

$$BC = AC = 12$$

Aplicamos el teorema

$$\frac{1}{12} = \frac{x}{12-x}$$

$$12 - x = 2x$$

$$12 = 3x$$

$$4 = x$$

4. En la figura, calcule el valor de x.

Resolución

- Piden: x
- Se prolonga AB.
- ABC: por teorema del ángulo externo.
- Aplicamos el teorema:

5. En un triángulo ABC, recto en B, la mediana AM y las cevianas interiores BN y CS se intersecan en P. Si SB = 3, AN = 2 y NC = 6, calcule la m∢BCA.

Resolución

- Piden m∢BCA.
- Aplicando el teorema de Ceva

$$(n)(a)(6) = (3)(a)(2)$$

 $n = 1$

△ ABC: Notable de 30°
 v 60°

6. En la figura el triángulo ABC representa el contorno de un jardín donde I es su incentro. AB = 8m, BC = 10m y AC = 6m. Luego se traza el \overline{DE} // \overline{AC} para dividir al jardín en dos partes, para cultivar flores de diferente color. Calcule la longitud del \overline{BD} .

Resolución

- Piden: BD
- Se traza $\overline{\mathrm{BL}}$
- △ABC: Teorema del incentro

$$\frac{BI}{IL} = \frac{8+10}{6}$$

$$\frac{BI}{IL} = 3$$

 △ABL: Corolario de Tales

$$\frac{BI}{IL} = \frac{x}{8-x}$$

$$3 = \frac{x}{8-x}$$

$$3(8-x) = x$$

$$24 - 3x = x$$

$$24 = 4x$$

$$BD = 6 \text{ m}$$

7. La estructura de la baranda de un puente tiene el diseño que se muestra en la figura, tal que los triángulos ABC, CDE y EFG son equiláteros. Calcule el valor de x.

Resolución

AB // CD // EF (Ángulos correspondientes)

BC // DE // FG (Ángulos correspondientes)

Igualando (1) y (2)
$$\frac{4}{x} = \frac{x}{3}$$

