Implementing Multiple Regression Models in Excel

Vitthal Srinivasan
CO-FOUNDER, LOONYCORN
www.loonycorn.com

Overview

Implement multiple regression in Excel Interpret results of a multiple regression Carry out multiple regression in Excel to include categorical variables

Implementing Multiple Regression In Excel

Regression Functions in Excel

We already have used several different functions for simple regression and forecasting

Multiple Regression in Excel

linest

$$y = A + B_1x_1 + B_2x_2$$

logest

$$y = A \times B_1^{x_1} \times B_2^{x_2}$$

```
=linest(known_y's,[known_x's],[const],[stats])
```

$$y = A + B_{S&P500}x_1 + B_{USO}x_2$$

$$x_1$$
 = Returns on S&P 500

```
=linest(known_y's,[known_x's],[const],[stats])
```

DATE	XOM
2016-12-01	1.5%
2016-11-01	-0.9%
2006-01-01	0.5%

=linest(known_y's,[known_x's],[const],[stats])

S&P 500	USO
1.2%	2.5%
-1.1%	-4%
0.7%	2.3%
	1.2% -1.1%

```
=linest(known_y's,[known_x's],[const],[stats])

TRUE

If TRUE

y = A + Bx

else

y = Bx
```

```
=linest(known_y's,[known_x's],[const],[stats])
```

TRUE

If TRUE, detailed regression statistics are displayed

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	d _f	
ESS	RSS	

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Buso	Bs&P500	A
	SE _{S&P500}	SEA
R ²	SER	
ESS	RSS	

Intercept A

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Buso	B _{S&P500}	A
SEuso		SEA
R ²	SER	
ESS	RSS	

Coefficients (in reverse order from formula)

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Buso	Bs&P500	A
SE _{USO}	SE _{S&P500}	SEA
R ²	SER	
ESS	RSS	

Standard Errors

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Buso Bs&p500 A

SEuso SEs&p500 SEA

R2 SER

F df

ESS RSS

R² (not adjusted-R²)

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Standard Error of Regression

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

F-statistic

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Degrees of freedom = n - k - 1

n = number of points

k = number of
explanatory variables

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Buso	Bs&P500	A
R ²	SER	
F	d _f	
ESS	RSS	

Explained Sum of Squares

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Buso	Bs&P500	A
R ²	SER	
F	df	
ESS	RSS	

Residual Sum of Squares

Array formula: Ctrl+Shift +Enter is awkward

Adjusted R² not reported, F-statistic not interpreted

Coefficients reported in reverse order

Missing values not handled gracefully

Interpreting Results of a Multiple Regression

Interpreting Results of a Multiple Regression

Adjusted R² Residuals F-statistic

Standard Errors
of coefficients

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	df	
ESS	RSS	

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Buso	Bs&P500	A
SE _{USO}	SE _{S&P500}	SEA
R ²	SER	
ESS	RSS	

Standard Errors

Population and Sample

Population

All data points out there in the universe

Sample

A subset of the population

Representative Samples

Population

Unbiased Sample

Biased Sample

The regression line is based on a sample, not on the population

The regression line is based on a sample, not on the population

The regression line is based on a sample, not on the population

Different Samples, Different Fits

Conducting regression on different samples will yield different values of A and B

Sampling Distributions

Plotting A (or B) from millions of samples yields a bell curve

This is known as the sampling distribution

Different Samples, Different Fits

Sample Regression Line

$$y = A + Bx$$

Population Regression Line

$$y = \alpha + \beta x$$

We will never know the values of the population parameters α and β

Sampling Distributions

Sampling Distribution of α

α is the population parameter, A is the sample parameter

Sampling Distribution of β

β is the population parameter, B is the sample parameter

The sampling distributions are normal, and population mean is equal to sample mean

The sample parameters A and B are our 'best' estimates for population parameters α and β

Sampling Distributions

Sampling Distribution of α

α is the population parameter, A is the sample parameter

Sampling Distribution of β

β is the population parameter, B is the sample parameter

The sampling distributions are normal, and population mean is equal to sample mean

Normal Distribution

Average (mean) is μ Standard deviation is σ

Standard Errors

Sampling Distribution of α

α is the population parameter, A is the sample parameter

Sampling Distribution of β

 β is the population parameter, B is the sample parameter

Standard error of a regression parameter is the standard deviation of the sampling distribution

Strong Cause-effect Relationship

Residuals are small, standard errors are small

Weak Cause-effect Relationship

Residuals are large, standard errors are large

Standard Errors and Residuals

Low Standard Error

High confidence that parameter coefficient is well estimated

High Standard Error

Low confidence that parameter coefficient is well estimated

The smaller the residuals, the smaller the standard errors and the better the quality of the regression

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$

 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
$$y_n = A + Bx_n$$

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

Residuals

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

RSS = Variance(e)

Residual Variance (RSS)

Easily calculated from regression residuals

$SE(\alpha)$, $SE(\beta)$ can be found from RSS

Estimate Standard Errors from RSS

Exact formulae are not important - reported by Excel, R...

The smaller the residuals, the smaller the standard errors and the better the quality of the regression

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	d _f	
ESS	RSS	

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
ESS	RSS	

t-statistics

Buso /	Bs&P500 /	A / SE _A
SE _{USO}	SE _{S&P500}	A/ JLA

Probability of Occurrence

68% within 1 standard deviation of mean

Probability of Occurrence

95% within 2 standard deviations of mean

Probability of Occurrence

99% within 3 standard deviations of mean

Standard Errors

Standard Error of α

α is the population parameter, A is the sample parameter

Standard Error of β

β is the population parameter, B is the sample parameter

Standard error of a regression parameter is the standard deviation of the sampling distribution

Null Hypotheses

What if the population parameter α were actually zero?

Call this the null hypotheses Ho

Null Hypotheses: $\alpha = 0$

If this were actually true, how likely is it that our sample regression would yield the estimate $\alpha = A$?

Why Zero?

Sample Regression Line

$$y = A + Bx$$

Population Regression Line

$$y = \alpha + \beta x$$

If $\alpha = 0$, it is adding no value in the regression line and should just be excluded

Null Hypotheses: $\alpha = 0$

The farther from the mean, the more unlikely that $\alpha = 0$

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	df	
ESS	RSS	

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

t-statistics

Buso /	Bs&P500 /	A / SE _A
SE uso	SE _{SP500}	A / SEA

t-Statistics

t-stat(α) = 0.85

t-stat(α) = A/SE(α)

t-stat(
$$\beta$$
) = 9.01
t-stat(β) = B/SE(β)

We are now testing a hypothesis, that the population parameter is actually zero

t-Statistics

t-stat(α) = A/SE(α)

Is an individual estimate of A or B 'adding value' at all?

t-stat(β) = B/SE(β)

High t-statistic => Yes

The higher the t-statistic of a coefficient, the higher our confidence in our estimate of that coefficient

p-Values

p-value(α) = 0.39

Low t-stat, high p-value

p-value(
$$\beta$$
) = 2 x 10⁻¹⁵ ~ 0

High t-stat, low p-value

Is an individual estimate of α or β 'adding value' at all? low p-value => Yes

The lower the p-value of a coefficient, the higher our confidence in our estimate of that coefficient

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	df	
ESS	RSS	

Multiple Regressing Using linest

$$y = A + B_{S&P500}X_1 + B_{USO}X_2$$

Standard Error of Regression

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

$$y_1 = A + Bx_1$$

 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
$$y_n = A + Bx_n$$

Sample Regression Line

Regression Equation:

$$y = A + Bx$$

Residuals

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

RSS = Variance(e)

Residual Variance (RSS)

Easily calculated from regression residuals

Population Regression Line

Regression Equation:

$$y = \alpha + \beta x$$

Errors

$$y_1 = \alpha + \beta x_1 + \epsilon_1$$

 $y_2 = \alpha + \beta x_2 + \epsilon_2$
 $y_3 = \alpha + \beta x_3 + \epsilon_3$
...

 $y_n = \alpha + \beta x_n + \epsilon_n$

 σ^2 = Variance(ϵ)

Error Variance

Can not be calculated - like all population parameters, can only be estimated from sample

$$SER = \sqrt{\frac{RSS}{n-2}}$$

Standard Error of Regression (SER)

n is the number of points in the regression.

SER provides an unbiased estimator of error variance σ^2

Multiple Regressing Using linest

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	df	
ESS	RSS	

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

F-statistic

x² Distribution

Never mind the fine print about degrees of freedom for now

Null Hypotheses

What if **all** population parameters were zero? i.e. $\beta = \alpha = 0$

Call this the null hypotheses Ho

Null Hypotheses: $\beta = \alpha = 0$

If this were actually true, how likely is it that our sample regression would yield the estimate

$$\beta$$
 = B, α = A?

Why Zero?

Sample Regression Line

$$y = A + Bx$$

Population Regression Line

$$y = \alpha + \beta x$$

If $\alpha = \beta = 0$, our regression line is not adding any value at all

Null Hypotheses: $\alpha = 0$

The farther from the peak, the more unlikely that $\alpha = \beta = 0$

F-Statistic

Does our regression as a whole 'add value' at all?

High F-statistic => Yes

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{s\&P500}x_1 + B_{USO}x_2$$

Buso	B _{S&P500}	A
SEuso	SE _{S&P500}	SEA
R ²	SER	
F	d _f	
ESS	RSS	

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

F-statistic

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1 + B_{USO}x_2$$

Degrees of freedom = n - k - 1

n = number of points

k = number of
explanatory variables

F-Statistic to p-Value

=
$$fdist(F, n-d_f-1, d_f)$$

p-values and t-statistics tell us whether individual parameter coefficients are 'good'

The F-statistic tells us whether a entire regression line is 'good'

Demo

Implement multiple regression in Excel

```
=linest(known_y's,[known_x's],[const],[stats])
```

$$y = A + B_{S&P500}X_1$$

y = Returns on Exxon stock (XOM)

 x_1 = Returns on S&P 500

```
=linest(known_y's,[known_x's],[const],[stats])
```

DATE	XOM
2016-12-01	1.5%
2016-11-01	-0.9%
2006-01-01	0.5%

```
=linest(known_y's,[known_x's],[const],[stats])
```

DATE	S&P 500
2016-12-01	1.2%
2016-11-01	-1.1%
2006-01-0	0.7%

```
=linest(known_y's,[known_x's],[const],[stats])

TRUE

If TRUE

y = A + Bx

else

y = Bx
```

```
=linest(known_y's,[known_x's],[const],[stats])
```

TRUE

If TRUE, detailed regression statistics are displayed

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1$$

Bs&P500	A
SE _{S&P500}	SEA
R ²	SER
F	df
ESS	RSS

$$y = A + B_{S&P500}X_1$$

Bs&P500	A
SE _{S&P500}	SEA
R ²	SER
F	df
ESS	RSS

Intercept A

$$y = A + B_{S&P500}X_1$$

Slope

Bs&P500	Α
SE _{S&P500}	SEA
R ²	SER
F	df
ESS	RSS

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1$$

Standard Errors

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1$$

R² (not adjusted-R²)


```
=linest(known_y's,[known_x's],[const],[stats])

y = A + B_{S\&P500}x_1
```


Standard Error of Regression

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1$$

F-statistic

```
=linest(known_y's,[known_x's],[const],[stats])

y = A + B_{S\&P500}X_1
```


Degrees of freedom = n - k - 1

n = number of
points

k = number of
explanatory variables

=linest(known_y's,[known_x's],[const],[stats])

$$y = A + B_{S\&P500}x_1$$

Explained Sum of Squares

```
=linest(known_y's,[known_x's],[const],[stats])

y = A + B_{S\&P500}x_1
```


Residual Sum of Squares

Extending Multiple Regression to Categorical Variables

A Simple Regression

Proposed Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

A Simple Regression

Not a great fit - regression line is far from all points!

A Simple Regression

We can easily plot a great fit for males...

A Simple Regression

...and another great fit for females

A Simple Regression

Two lines - same slope, different intercepts

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$D = 0$$
 for males

$$y = A_1 + (A_2 - A_1)D + Bx$$

$$= A_1 + B_X$$

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 1 for females

$$y = A_1 + (A_2 - A_1) + Bx$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

Combined Regression Line:

$$y = A_1 + (A_2 - A_1)D + Bx$$

D = 0 for males

= 1 for females

The data contained 2 groups, so we added 1 dummy variable

Given data with k groups, set up k-1 dummy variables, else multicollinearity occurs

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + Bx$$

 $D_1 = 1$ for males

= 0 for females

 $D_2 = 1$ for females

= 0 for males

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + B_X$$

$$D_1 = 1$$
 for males

$$D_1 = 1$$
 for males $D_2 = 0$ for males

$$y = A_1x1 + A_20 + Bx$$

$$= A_1 + B_X$$

Regression Line For Males:

$$y = A_1 + Bx$$

Regression Line For Females:

$$y = A_2 + Bx$$

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + B_X$$

$$D_1 = 0$$
 for females $D_2 = 1$ for females

$$y = A_1 \times O + A_2 \times I + B \times$$

$$= A_2 + B_X$$

Original Regression Equation:

$$y = A + Bx$$

Height of individual

Average height of parents

Combined Regression Line:

$$y = A_1D_1 + A_2D_2 + Bx$$

 $D_1 = 1$ for males

= 0 for females

 $D_2 = 1$ for females

= 0 for males

Given data with k groups, set up k-1 dummy variables and an intercept, <u>or</u> k dummy variables with no intercept

Demo

Perform regression with categorical variables in Excel

Ease of Prototyping

Excel is an awesome prototyping tool

Robustness and Reuse

R

Use **R for regression**: It makes sense whatever your use-case

Summary

Implemented multiple regression in Excel

Interpreted results of a multiple regression

Carried out multiple regression in Excel to include categorical variables