Q: 1 Implement this distance function in the 'naiveReconstruction' script.

Bunny-500 using Naive Reconstruction

Bunny-1000 using Naive Reconstruction

□ □ ⊕ ∅ ± ☆ ⋒ ■ ■

Isosurface

Sphere using Naive Reconstruction

Q:2 Implement this distance function in the 'mlsReconstruction' script. You will also need to compute an estimate of $(1/\beta^2)$.

Figure | Beta | $(1/\beta^2)$ Bunny-500 | 0.001446 | 478259.28 Bunny-1000 | 0.010302 | 9422.30 Sphere | 0.434697 | 5.29

Bunny-500 for MIs Reconstruction

Bunny-500 has holes in it:

Bunny-1000 for MIs Reconstruction

Bunny-1000 has no holes for MIs Reconstruction

Sphere for MIs Reconstruction:

Q:3 Implement the above implicit function in the 'rbfReconstruction' script. Include in your report the value of ϵ yielding the best reconstruction results

Best ε: 1e-4

Bunny-500 for Rbf Reconstruction:

Bunny-1000 for Rbf Reconstruction

Sphere for Rbf Reconstruction:

Q:4 Implement the above DeepRBF network in the 'train.py', "model.py' and 'util.py' scripts.

Bunny-500 for DeepRBF:

Bunny-1000 for DeepRBF:

Sphere for DeepRBF:

120

20