Properties of Matter and Their Measurements

Physical Properties

• **Physical properties** can be measured or observed without changing the identity or composition of the substance.

Examples: Colour, odour, melting point, boiling point, etc.

Chemical Properties

Chemical properties require a chemical change to occur.

Examples: Acidity, basicity, combustibility, etc.

Units of Measurement

Fundamental Units: Mass, length, and time are fundamental quantities, and their units are known as fundamental units.

There are seven basic units of measurement for the quantities:

- 1. Length
- 2. Mass
- 3. Time
- 4. Temperature
- 5. Amount of substance
- 6. Electric current
- 7. Luminous intensity

Basic Physical Quantity	Symbol for Quantity	Name of SI Unit	Symbol for SI Unit
Length	1	metre	m
Mass	m	kilogram	Н
Time	El abs. Com	second	s
Electric current CBS	ELabs, com	ampere	A
I hermodynamic	T	kelvin	K
temperature Amount			
of substance	n	mole	mol
Luminous intensity	K	candela	cd

SI-System (International System of Units)

This is the most commonly used system of measurement worldwide. It defines units for all seven basic quantities.

Definitions of Basic SI Units:

1. **Metre (m)**: Length of the path travelled by light in vacuum during 1/299,792,458 of a second.

- 2. **Kilogram (kg)**: Unit of mass, equal to the mass of the international prototype of the kilogram.
- 3. **Second (s)**: Duration of 9,192,631,770 periods of radiation corresponding to the transition between two hyperfine levels of the ground state of cesium-133 atom.
- 4. **Kelvin (K)**: Thermodynamic temperature unit, equal to 1/273.16 of the temperature of the triple point of water.
- 5. **Ampere (A)**: Constant current that, if maintained in two parallel conductors 1 meter apart, produces a force of 2 x 10^{-7} N per meter of length between them.
- 6. **Candela (cd)**: Luminous intensity, in a given direction, from a source emitting monochromatic radiation of frequency 540 x 10¹² Hz with a radiant intensity of 1/683 watt per steradian.
- 7. **Mole (mol)**: Amount of substance containing as many elementary entities as atoms in 0.012 kg of carbon-12.

Fig. 1.1 Analytical balance.

Mass and Weight

• **Mass**: Amount of matter present in a substance. It is constant and can be measured using an analytical balance.

SI Unit: Kilogram (kg).

• **Weight**: Force exerted by gravity on an object. It varies with changes in gravity.

Volume

- **Volume**: Space occupied by matter. In SI units, it is expressed as cubic meter (m³). Popular unit: Litre (L), though not an SI unit. *Mathematical conversion*: 1 L = 1000 mL = 1000 cm³ = 1 dm³.
- **Measuring Devices**: Volume of liquids can be measured using burettes, pipettes, cylinders, and measuring flasks.

Fig. 1.2 Some volume measuring devices.

Temperature

Temperature can be measured using three scales:

- 1. **Celsius Scale (°C)**: Calibrated from 0°C (freezing point of water) to 100°C (boiling point of water).
- 2. **Fahrenheit Scale (°F)**: Calibrated from 32°F to 212°F.
- 3. **Kelvin Scale (K)**: SI scale. Temperature in Kelvin is shown with the symbol **K**.

Relationship between Kelvin Scale and Celsius Scale:

ed to Ceisius scale as follows.

$$K = ^{\circ}C + 273.15$$

Density

• **Density**: Amount of mass per unit volume. *SI Unit*: kg/m³, but often expressed as g/cm³ in chemistry.

Density

- SI unit for density is devied from the base units for mass and volume CBSELabs.com
 - kg/m³
 - · Units are large for laboratory use
 - g/cm³ or g/mL
- · Physical property of a substance
 - · Doesn't depend on amount of sample
 - · As mass increases, volume increases (proportional)
 - · Ratio of mass to volume is constant
 - · Helps to identify a substance

Uncertainty in Measurements

All scientific measurements involve some degree of error or uncertainty, which can arise due to:

- 1. Skill and accuracy of the worker.
- 2. Limitations of measuring instruments.