3º Q - Lista Final Cálculo Numérico Juliana Berbert (juliana.berbert@ufabc.edu.br) March 27, 2025

Lista de Exercícios - Cálculo Numérico

Discuta e apresente, conforme orientações dadas em aula e em meu site, a resolução numérica dos problemas abaixo. Use gráficos sempre que possível e comente os resultados!

Question 1.

Encontre a raiz da função y(x) dada pelos pontos abaixo. Use interpolação de Lagrange sobre (a) três e (b) quatro pontos consecutivos.

X	0	0.5	1	1.5	2	2.5	3
y(x)	1.8421	2.4694	2.4921	1.9047	0.8509	-0.4112	-1.5727

Question 2.

Encontre um polinômio p de grau no máximo 2 que satisfaça as condições: $p(-1)=-32,\,p(2)=1,\,p(4)=3.$

Question 3.

Com os mesmos dados da questão anterior, encontre um modelo exponencial $y = ae^{bx}$ que se ajuste melhor aos dados, utilizando mínimos quadrados.

Question 4.

Seja $f(x) = \frac{(x-2)^2}{(x+3)^3}$. Estime $A = \int_0^1 f(x) dx$ pela regra dos trapézios e pela regra de Simpson usando os valores tabelados:

Question 5.

Utilize a fórmula teórica do erro da regra dos trapézios para estimar o erro cometido ao calcular a integral da questão anterior.

Question 6.

Calcule novamente a integral anterior, agora no intervalo de [0, 1,75]. Compare os resultados da regra dos trapézios e de Simpson. Use os valores tabelados:

x	f(x)		
0.00	1.4815×10^{-1}		
0.25	8.9213×10^{-2}		
0.50	5.2478×10^{-2}		
0.75	2.9630×10^{-2}		
1.00	1.5625×10^{-2}		
1.25	8.2150×10^{-3}		
1.50	4.0100×10^{-3}		
1.75	2.1000×10^{-3}		

Question 7.

Considere a EDO $y'(x) = -2xy^2$, com y(0) = 1. Estime a solução numérica no intervalo [0,1] usando o método de Euler com h = 0,1.

Question 8.

Resolva novamente a EDO da questão anterior usando o método de Runge-Kutta de $2^{\underline{a}}$ ordem (RK2) com h=0,1.

Question 9.

Compare graficamente as soluções obtidas por Euler e RK2 com a solução exata $y(x) = \frac{1}{1+x^2}$. Comente as diferenças observadas.

Question 10.

Considere os dados experimentais de crescimento de uma população. Ajuste um modelo adequado (linear, polinomial ou exponencial) e discuta qual representa melhor os dados. Use gráficos. Considere os dados a seguir:

Ano	População (milhares)
2000	120
2002	125
2004	130
2006	138
2008	147
2010	160
2012	172
2014	185
2016	199
2018	214
2020	230
2022	248
2024	267