Tanish Ambrishkumar Mishra

+17633499925 - Worcester, MA - tamishra@wpi.edu

GitHub: https://github.com/expert-amateur

EDUCATION

Worcester Polytechnic Institute

Master of Science in Robotics Engineering (In progress)

Worcester, Massachusetts 2022-2024

GPA: 3.80/4.00

Sardar Patel College of Engineering (University of Mumbai)

Bachelor of Technology in Mechanical Engineering

Mumbai, India 2018-2022

Capstone Project: Design and Development of an Autonomous Cooking System

CPI: 8.95/10.00 (Class Representative)

TECHNICAL SKILLS

Programming Languages: Python, C/C++, Java, Arduino

- Software: ROS/ROS2, Gazebo, WeBots, ADAMS, SolidWorks, AUTOCAD, CURA (3D Printing)
- PLC Programming (Representation in STL, LAD and FBD), Fast Prototyping, 3D Printing, Control Circuit Design

WORK EXPERIENCE

Void Robotics September-December 2023 Months

Robotics Software Intern

Enhanced autonomous delivery robot navigation accuracy by integrating NMEA and F9P GPS systems.

- Leveraged Micro ROS for real-time communication, improving control and system reliability.
- Collaborated effectively in a cross-functional team, contributing to the overall performance of the project.

The Innovation Story, Mumbai Robotics Teaching Intern

October-December 2021

2.5 Months Devised a robotics syllabus for 8th-10th graders in local schools including requisite physics and math along with robotics-specific knowledge.

Designed and fabricated a modular mobile pick and place robot for teaching purposes.

Bridgestone India Pvt Ltd Mechanical Execution System (MES) Intern June-July 2021

1.5 Months

Hands-on training experience in MES with emphasis on principles of IOT and Industry 4.0

Prepared an internship report to be utilized for training future interns.

PROJECTS

Design and development of an autonomous cooking system (Undergraduate Capstone Project)

January-June 2022

- Collaborated in a team of 3 to build a 5 DOF Robot arm from scratch including CAD Modelling, Electronic circuits, and Control algorithms along with subsidiary systems to enable cooking actions.
- Applied different software at various levels of development including SolidWorks, Ansys and WeBots (to simulate the system along with the control algorithm).

Impact Launching (Kicking) Mechanism for a Mobile Robot

September 2019- June 2020

- Designed, engineered, simulated, and methodically validated a precision-oriented mechanism for propelling an object (football) over a 15-meter distance
- Employed a variety of software applications, including SolidWorks, Ansys, Adams, and Webots, at various stages of the development process
- Personally introduced design adjustments, supported by meticulous hand calculations, which played a pivotal role in achieving the designated 15-meter

Soft Gripper Fabrication and Testing on a Soft Robot @ WPI MER Lab

June-August 2023

- Fabricated a soft finger gripper for a soft robot
- Devised a mounting and actuation system for the same with emphasis on modularity and weight using a press fit design via Solidworks
- Fabricated the mount and subsidiary parts using 3D printing and tested the same.
- Added components to the design to improve grip stability without significant increase in weight

SCARA Robot Control using ROS2 and Gazebo.

November-December 2022

- Collaborated in a team of 3 to implement a velocity-based and a position-based controller for a 3DOF SCARA Robot built from scratch.
- Used PID control to minimize error in the desired position/velocity.
- Used a ROS service to accept position/velocity values from terminal and apply it to the robot, using analytical inverse kinematics for the former and Jacobian for the latter, both evaluated from scratch.

Pick and place on a UR5e robot using ROS.

October-December 2022

- Collaborated in a team of 5 to implement pick and place operations on a real UR5e robot.
- Used the ur_robot_driver ROS library to interface with the robot through a static network address.
- Derived the forward kinematic equations from scratch using PoE notation and used Newton-Raphson method to numerically solve inverse kinematics.

RRT Based Motion Planner for pick and place on a UR5e robot

March-April 2023

- Implemented a MATLAB simulation of RRT based motion planning on UR5e in the presence of obstacles
- Used the robotics toolbox for importing an accurate robot model
- Sampled points in Cartesian space and used inverse kinematics for pose estimation to perform collision detection

ACHIEVEMENTS

- **Publications:**
 - Mepani, M. M., Gala, K. B., Mishra, T. A., Bhole, K. S., Gholave, J., & Daingade, S. (2022). Design of robot arm for domestic culinary assistance. Materials Today: Proceedings, 68, 1930-1945.
 - Bhoir, A. A., Mishra, T. A., Narayan, J., & Dwivedy, S. K. (2023). Machine Learning Algorithms in Human Gait Analysis. In Encyclopedia of Data Science and Machine Learning (pp. 922-937). IGI Global.
- DD-Robocon: Collaborated in a team of 20 students to earn National Rank 1 in Round 1 in 2019 and 2021. Rank 9 attained in the Final Round in 2019 and 2020, special prize for Best Solution Idea, 2019.
- **National Engineering Olympiad:** National Rank 8 in 2019.
- NPTEL course 'Speaking Effectively': Top 1% Nationally
- AMCAT: 99th Percentile in Quantitative Ability (Advanced), 97th Percentile in Logical Ability
- FTC (FIRST Tech Challenge): Achieved Rank 3 in the National robotics competition and participated in the Asia-Pacific Invitationals in 2015 held at Sydney, Australia.