Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same.

As a data scientist, you must develop a model which will predict the insurance charges.

1.) Identify your problem statement

Here the problem statement is to predict the insurance charges based on the input data given by the client. Since the i/p is in numerical formal we can use MACHINE LEARNING for providing the solution. Also, since the requirement is clear and we have both the i/p and o/p data handy this will come under SUPERVISED LEARNING. Further the o/p is numerical and hence we would go ahead with REGRESSION

2.) Tell basic info about the dataset (Total number of rows, columns)

The dataset that has been provided:

- Column→ 6
 - o 4- numerical
 - 2 categorical
- Rows → 1000+

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

Since the data is NOMINAL, we should be using **ONE-HOT ENCODING** to update to numerical format for our Python code to handle it

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

Used all the 4 algorithms as below:

- Multiple linear regression
- SVM
- Decision Tree
- Random forest

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

MLR			
R_score	0.7894		

SVM						
С	Linear-	poly-	rbf-	sigmoid-R_score		
values	R_score	R_score	R_score			
0.01	-0.0888	-0.0895	-0.0896	-0.0895		
0.1	-0.0809	-0.0883	-0.089	-0.0882		
1	-0.0101	-0.0756	-0.0833	-0.0754		
10	0.4624	0.03871	-0.0322	0.0393		
100	0.6288	0.6179	0.32	0.5276		

Decision Tree				
Criterion	Splitter	R_score		
squared_error	best	0.6892		
friedman_mse	best	0.6861		
absolute_error	best	0.6903		
poisson	best	0.6732		
squared_error	random	0.7055		
friedman_mse	random	0.6814		
absolute_error	random	0.7394		
poisson	random	0.6324		

Random forest				
n_estimators	Criterion	R_score		
100	squared_error	0.8519		
100	friedman_mse	0.8537		
100	absolute_error	0.8521		
100	poisson	0.8389		
50	squared_error	0.8556		
50	friedman_mse	0.8518		
50	absolute_error	0.8533		
50	poisson	0.8397		

6.) Mention your final model, justify why u have chosen the same.

The final chosen model would be Random forest with (n_estimators=50 and Criterion=squared_error) since it has the highest r_score value of 0.8556 so far