Running head: EPISTEMIC STATE-BASED ACTION ANTICIPATION	Running	r head:	EPISTEMIC	STATE-BASED	ACTION	ANTICIPATIO
---	---------	---------	-----------	-------------	--------	-------------

1

- Action Anticipation Based on an Agent's Epistemic State in Toddlers and Adults
- The ManyBabies2 Consortium¹
- 1 See author note

Author Note

- 5 The ManyBabies2 Consortium consists of Tobias Schuwerk
- 6 (Ludwig-Maximilians-Universität München), Dora Kampis* (University of Copenhagen),
- 7 Renée Baillargeon (University of Illinois at Urbana-Champaign), Szilvia Biro (Leiden
- 8 University), Manuel Bohn (Max Planck Institute for Evolutionary Anthropology), Krista
- 9 Byers-Heinlein (Concordia University), Sebastian Dörrenberg (University of Bremen),
- 10 Cynthia Fisher (University of Illinois at Urbana-Champaign), Laura Franchin (University
- of Trento), Tess Fulcher (University of Chicago), Isa Garbisch (University of Göttingen),
- Alessandra Geraci (University of Trento), Charlotte Grosse Wiesmann (Max Planck
- 13 Institute for Human Cognitive and Brain Sciences), J. Kiley Hamlin (University of British
- ¹⁴ Columbia), Daniel Haun (Max Planck Institute for Evolutionary Anthropology) Robert
- 15 Hepach (University of Oxford), Sabine Hunnius (Radboud University Nijmegen), Daniel C.
- 16 Hyde (University of Illinois at Urbana-Champaign), Petra Kármán (Central European
- University), Heather L Kosakowski (MIT), Ágnes M. Kovács (Central European
- ¹⁸ University), Anna Krämer (University of Salzburg), Louisa Kulke
- 19 (Friedrich-Alexander-University Erlangen-Nürnberg), Crystal Lee (Princeton University),
- ²⁰ Casey Lew-Williams (Princeton University), Ulf Liszkowski (Universität Hamburg), Kyle
- 21 Mahowald (University of California, Santa Barbara), Olivier Mascaro (Integrative
- Neuroscience and Cognition Center, CNRS UMR8002/University of Paris), Marlene Meyer
- 23 (Radboud University Nijmegen), David Moreau (University of Auckland), Josef Perner
- ²⁴ (University of Salzburg), Diane Poulin-Dubois (Concordia University), Lindsey J. Powell
- ²⁵ (University of California, San Diego), Julia Prein (Max Planck Institute for Evolutionary
- ²⁶ Anthropology), Beate Priewasser (University of Salzburg), Marina Proft (Universität
- 27 Göttingen), Gal Raz (MIT), Peter Reschke (Brigham Young University), Josephine Ross
- ²⁸ (University of Dundee), Katrin Rothmaler (Max Planck Institute for Human Cognitive and
- ²⁹ Brain Sciences), Rebecca Saxe (MIT), Dana Schneider (Friedrich-Schiller-University Jena,
- Germany), Victoria Southgate (University of Copenhagen), Luca Surian (University of

- Trento), Anna-Lena Tebbe (Max Planck Institute for Human Cognitive and Brain
- Sciences), Birgit Träuble (Universität zu Köln), Angeline Sin Mei Tsui (Stanford
- University), Annie E. Wertz (Max Planck Institute for Human Development), Amanda
- Woodward (University of Chicago), Francis Yuen (University of British Columbia),
- Amanda Rose Yuile (University of Illinois at Urbana-Champaign), Luise Zellner
- ³⁶ (University of Salzburg), Lucie Zimmer (Ludwig-Maximilians-Universität München),
- Michael C. Frank (Stanford University), and Hannes Rakoczy (University of Göttingen).
- ³⁸ Correspondence concerning this article should be addressed to The ManyBabies2
- Consortium, Leopoldstr. 13, 80802 München, Germany. E-mail:
- tobias.schuwerk@psy.lmu.de

41 Abstract

Do toddlers and adults engage in spontaneous Theory of Mind (ToM)? Evidence from

anticipatory looking (AL) studies suggests they do. But a growing body of failed

replication studies raised questions about the paradigm's suitability, urging the need to test

the robustness of AL as a spontaneous measure of ToM. In a multi-lab collaboration we

examine whether 18- to 27-month- olds' and adults' anticipatory looks distinguish between

47 two basic forms of epistemic states: knowledge and ignorance. In toddlers [ANTICIPATED

n = 520 50% FEMALE] and adults [ANTICIPATED n = 408, 50% FEMALE], we found

⁴⁹ [SUPPORT/NO SUPPORT] for epistemic state-based action anticipation. Future research

can probe whether this conclusion extends to more complex kinds of epistemic states, such

as true and false beliefs.

52

Keywords: anticipatory looking; spontaneous Theory of Mind; replication

Word count: 10243

Action Anticipation Based on an Agent's Epistemic State in Toddlers and Adults

The capacity to represent epistemic states, known as Theory of Mind (ToM) or 55 mentalizing, plays a central role in human cognition (Dennett, 1989; Frith & Frith, 2006; 56 Premack & Woodruff, 1978). Although ToM has been under intense scrutiny in the past decades, its nature and ontogeny are still the subjects of much controversy. At the heart of these debates are questions about the reliability of the tools used to measure ToM (Baillargeon, Buttelmann, & Southgate, 2018; e.g., Poulin-Dubois et al., 2018), among others, anticipatory looking (AL) paradigms. To address this issue, in a collaborative long-term project we assess the robustness of infants' and adults' tendency to spontaneously take into account different kinds of epistemic states — what they perceive, know, think, or believe — when predicting others' behaviors. This paper reports the first foundational step of this project, which focuses on the most basic epistemic state ascription: the capacity to distinguish between knowledgeable and ignorant individuals. Simple forms of knowledge attribution (such as tracking what other individuals have seen or experienced) are typically assumed to develop early and to operate spontaneously throughout the lifespan (Liszkowski, Carpenter, & Tomasello, 2007; e.g., Luo & Baillargeon, 2007; O'Neill, 1996; Phillips et al., 2021). Thus, evaluating whether ToM measures are sensitive to the knowledge-ignorance distinction is a crucial test case to assess 71 their robustness. The present paper investigates this question in an AL paradigm including 18-27-month-old infants and adults.

In the following sections we first establish the background and scientific context of
this study, namely the reliability and replicability of spontaneous ToM measures. We then
introduce a novel way to approach these issues: a large-scale collaborative project targeting
the replicability of ToM findings. Finally, we outline the rationale of the present study
which uses an AL paradigm to test whether infants and adults distinguish between two
basic forms of an agent's epistemic state: knowledge and ignorance.

Spontaneous Theory of Mind tasks

105

Humans are proficient at interpreting and predicting others' intentional actions. 81 Adults as well as infants expect agents to act persistently towards the goal they pursue 82 Woodward & Sommerville (2000), and anticipate others' actions based on their goals even 83 before goals are achieved - that is, humans engage in goal-based action anticipation (for review, see Elsner & Adam, 2021; but see Ganglmayer, Attig, Daum, & Paulus, 2019). To predict others' actions, however, it is essential to consider their epistemic state: what they perceive, know, or believe. A number of seminal studies using non-verbal spontaneous measures have suggested that infants, toddlers, older children, and adults show action anticipation and action understanding not only based on other agents' goals (what they want) but also on the basis of their epistemic status (what they perceive, know, or believe). These studies suggest that from infancy onwards, humans spontaneously engage in ToM or mentalizing. For example, studies using violation of expectation methods have demonstrated that infants look longer in response to events in which an agent acts in ways that are incompatible with their (true or false) beliefs, compared to events in which they act in belief-congruent ways (Onishi & Baillargeon, 2005; Surian, Caldi, & Sperber, 2007; Träuble, Marinović, & Pauen, 2010). Other studies have employed more interactive tasks requiring the child to play, communicate, or cooperate with experimenters and, for 97 example, give an experimenter one of several objects as a function of their epistemic status. Such studies have shown that toddlers spontaneously adjust their behavior to the experimenter's beliefs (Buttelmann, Carpenter, & Tomasello, 2009; Király, Oláh, Csibra, & 100 Kovács, 2018; Knudsen & Liszkowski, 2012; Southgate, Johnson, Karoui, & Csibra, 2010). 101 The largest body of evidence for spontaneous ToM comes from studies using AL 102 tasks. In such tasks, participants see an agent who acts in pursuit of some goal (typically, 103 to collect a certain object) and has either a true or a false belief (for example, regarding 104 the location of the target object). A number of studies have shown that infants, toddlers,

older children, neurotypical adults, and even non-human primates anticipate (indicated by 106 looks to the location in question) that an agent will go where it (truly or falsely) believes 107 the object to be rather than, irrespective of the actual location of the object (Gliga, Jones, 108 Bedford, Charman, & Johnson, 2014; Grosse Wiesmann, Friederici, Singer, & Steinbeis, 109 2017; Hayashi et al., 2020; Kano, Krupenye, Hirata, Tomonaga, & Call, 2019; Krupenye, 110 Kano, Hirata, Call, & Tomasello, 2016; Meristo et al., 2012; Schneider, Lam, Bayliss, & 111 Dux, 2012; Schneider, Slaughter, Bayliss, & Dux, 2013; Senju et al., 2010; Senju, 112 Southgate, Snape, Leonard, & Csibra, 2011; Senju, Southgate, White, & Frith, 2009; 113 Surian & Franchin, 2020; Thoermer, Sodian, Vuori, Perst, & Kristen, 2012). These studies 114 have revealed converging evidence for spontaneous ToM across the human lifespan and 115 even in other primate species. 116

Across the different measures, the majority of early works on spontaneous ToM in 117 infants and toddlers have reported positive results in the second year of life, and a few 118 studies even within the first year (Kovács, Téglás, & Endress, 2010; Luo & Baillargeon, 119 2010; Southgate & Vernetti, 2014), yielding a rich body of coherent and convergent 120 evidence (for reviews see e.g., Barone, Corradi, & Gomila, 2019; Kampis & Southgate, 121 2020; Scott & Baillargeon, 2017). This growing body of literature has led to a theoretical 122 transformation of the field. In particular, findings with young infants have paved the way 123 for novel accounts of the development and cognitive foundations of ToM. The previous consensus was that full-fledged ToM emerges only at around age 4, potentially as the result 125 of developing executive functions, complex language skills and other factors (e.g., Perner, 126 1991; Wellman & Cross, 2001). In contrast, the newer accounts proposed that some basic 127 forms of ToM may be phylogenetically more ancient and may develop much earlier in 128 ontogeny (e.g., Baillargeon, Scott, & He, 2010; Carruthers, 2013; Kovács, 2016; Leslie, 129 2005). 130

Recently, however, a number of studies have raised uncertainty regarding the
empirical foundations of the early-emergence theories, as we review below. In the following

sections, we present an overview of the current empirical picture of early understanding of
epistemic states and then introduce ManyBabies2 (MB2), a large-scale collaborative
project exploring the replicability of ToM in infancy, of which the current study constitutes
the first step.

Replicability of Spontaneous Theory of Mind Tasks

A number of failures to replicate findings from spontaneous ToM tasks have recently 138 been published with infants, toddlers, and adults [e.g., Burnside, Ruel, Azar, and 139 Poulin-Dubois (2018); Dörrenberg, Rakoczy, and Liszkowski (2018); Grosse Wiesmann et 140 al. (2017); Wiesmann, Friederici, Disla, Steinbeis, and Singer (2018); Kampis, Karman, 141 Csibra, Southgate, and Hernik (2021); Kulke, Duhn, Schneider, and Rakoczy (2018); Kulke, 142 Johannsen, and Rakoczy (2019); Kulke & Rakoczy, 2017, Kulke and Rakoczy (2018), Kulke 143 and Rakoczy (2019); Kulke, Reiß, Krist, and Rakoczy (2018); Kulke, Wübker, and Rakoczy 144 (2019); Kulke and Hinrichs (2021); Powell, Hobbs, Bardis, Carey, and Saxe (2018); 145 Priewasser, Rafetseder, Gargitter, and Perner (2018); Priewasser, Fowles, Schweller, and 146 Perner (2020); Schuwerk, Priewasser, Sodian, and Perner (2018); for overviews, see Barone 147 et al., 2019; Kulke & Rakoczy, 2018]. Besides conceptual replications, many of these studies 148 involve more direct replication attempts with the original stimuli and procedures. One of these was a two-lab replication attempt of one of the most influential AL studies [Southgate 150 et al., 2007. This failure to replicate is especially notable not only because of the influence 151 of the original finding of the field, but also because of the large sample size and the 152 involvement of some of the original authors (Kampis et al., 2021). Additional unpublished replication failures have also been reported. Kulke and Rakoczy (2018) examined 65 published and non-published studies including 36 AL studies (replications of Schneider et 155 al., 2012; Southgate et al., 2007; Surian & Geraci, 2012; and Low & Watts, 2013), as well 156 as studies using other paradigms, and classified them as a successful, partial, or 157 non-replication, depending on whether all, some, or none of the original main effects were 158

found. Although no formal analysis of effect size was carried out, overall, non-replications and partial replications outnumbered successful replications, regardless of the method used. 160 In addition to the failure to replicate spontaneous anticipation of agents' behaviors based 161 on their beliefs, many of the replication studies revealed an even more fundamental 162 problem of spontaneous AL procedures: a failure to adequately anticipate an agent's action 163 in the absence of a belief. That is, researchers did not find evidence for spontaneous 164 anticipation of agents' behaviors based on their goals, even in the initial familiarization 165 trials of the experiments, where the agent's beliefs do not play any role yet (e.g., Kampis et 166 al., 2020; Kulke, Reiß, et al., 2018; Schuwerk et al., 2018). The familiarization trials are 167 designed to convey the goal of the agent, as well as the general timing and structure of 168 events, to set up participants' expectations in the test trials where the agent's epistemic 169 state is then manipulated. Typically, the last familiarization trial can also be used to probe participants' spontaneous action anticipation; and test trials can only be meaningfully 171 interpreted if there is evidence of above-chance anticipation in the familiarization trials. In several AL studies many participants had to be excluded from the main analyses for failing 173 to demonstrate robust action anticipation during the familiarization trials (e.g., Kampis et 174 al., 2020; Kulke, Reiß, et al., 2018; Schuwerk et al., 2018; Southgate et al., 2007). This 175 raises the possibility that these paradigms may not be suitable for reliably eliciting 176 spontaneous action prediction in the first place (for discussion see Baillargeon et al., 2018). 177 In sum, in light of the complex and mixed state of the evidence, it currently remains 178 unclear whether infants, toddlers, and adults engage in spontaneous ToM. This calls for 179 systematic, large-scale, a priori designed multi-lab study that stringently tests for the 180 robustness, reliability, and replicability of spontaneous measures of ToM. 181

General Rationale of MB2

To this end, ManyBabies 2 (MB2) was established as an international consortium dedicated to investigating infants' and toddlers' ToM skills. The main aim is to test the

replicability and thus reliability of findings from spontaneous ToM tasks. In the long-term, 185 MB2 will build on the initial findings and the aim will be extended to include testing the 186 validity of these experimental designs and addressing theoretical accounts of spontaneous 187 ToM. MB2 operates under the general umbrella of ManyBabies (MB), a large-scale 188 international research consortium founded with the aim of probing the reliability of central 189 findings from infancy research. In particular, MB projects bring together large and 190 theoretically diverse groups of researchers to tackle pressing questions of infant cognitive 191 development, by collaboratively designing and implementing methodologies and 192 pre-registered analysis plans (Frank et al., 2017). The MB2 consortium involves authors of 193 original studies as well as authors of both successful and failed replication studies, and 194 researchers from very different theoretical backgrounds. It thus presents a case of true 195 "adversarial collaboration" (Mellers et al., 2001).

197 Rationale of the Present Study

Based on both theoretical and practical considerations, the current paper presents 198 the first foundational step in MB2, focusing on AL measures. It investigates whether 199 toddlers and adults anticipate (in their looking behavior) how other agents will act based 200 on their goals (i.e., what they want) and epistemic status (i.e., what they know or do not 201 know). From a practical perspective, we focus on AL since it is a child-friendly and widely 202 used method that is also suitable for humans across the lifespan and even other species. 203 Additionally, as AL is screen-based and standardizable, identical stimuli can be presented 204 in different labs. From a theoretical perspective, given the mixed findings with AL tasks reviewed in the previous section, we take a systematic and bottom-up approach. First, we probe whether AL measures are suitable for measuring spontaneous goal-directed action anticipation. With the aim to improve the low overall rates of anticipatory looks in recent 208 studies, we designed new, engaging stimuli to test whether these are successful in eliciting 200 spontaneous action anticipation. Second, in case reliably elicited action anticipation can be 210

found: we probe whether toddlers and adults take into account the agent's epistemic status in their spontaneous goal-based action anticipation. That is, do they track whether the 212 agent saw or did not see a crucial event, and therefore whether this agent does or does not 213 know something? In the current study we focus on the most basic form of tracking the 214 epistemic status of agents: considering whether they had access to relevant information, 215 and whether they are thus knowledgeable or ignorant. We reasoned that only after 216 establishing whether a context can elicit spontaneous tracking of an agent's epistemic 217 status in a more basic sense (i.e., the agent's knowledge vs. ignorance) is it eventually 218 meaningful to ask whether this context also elicits more complex epistemic state tracking 219 (i.e., the agent's beliefs). Answering these first two questions in the present study will 220 allow us, in the long run, to address a third set of questions in subsequent studies, probing 221 the nature of the representations and cognitive mechanisms involved in infant ToM. Do 222 toddlers and adults engage in full-fledged belief-ascription in their spontaneous goal-based 223 action anticipation? What kind of epistemic states do toddlers and adults spontaneously attribute to others in their action anticipation (e.g., Horschler et al., 2020; Phillips et al., 225 2020)? Do the results that prove replicable really assess ToM, or can they be interpreted in 226 alternative ways such as behavioral rules, associations, or simple perceptual preferences (see, e.g., Heyes, 2014; Perner & Ruffman, 2005)? The present study lays the foundation 228 for investigating these questions. Regarding the knowledge-ignorance distinction, many 229 accounts in developmental and comparative ToM research have argued for the ontogenetic 230 and evolutionary primacy of representing what agents witness and represent, relative to 231 more sophisticated ways of representing how agents represent (and potentially 232 mis-represent) objects and situations (e.g., Apperly & Butterfill, 2009; Flavell, 1988; 233 Kaminski et al., 2008; Martin & Santos, 2016; Perner, 1991; Phillips et al., 2020). For 234 example, it is often assumed that young children and non-human primates may be capable 235 of so-called "Level I perspective-taking" (understanding who sees what) but only human 236 children from around age 4 may finally develop capacities for "Level II perspective-taking" 237

(understanding how a given situation may appear to different agents; Flavell et al., 1981). 238 Empirically, many studies using verbal and/or interactive measures have indicated that 239 children may engage in knowledge-ignorance and related distinctions before they engage in 240 more complex forms of meta-representation (e.g., Flavell et al., 1981; Hogrefe et al., 1986; 241 Moll & Tomasello, 2006; O'Neill, 1996; though for some findings indicating Level II 242 perspective-taking at an early age see Scott & Baillargeon, 2009; Buttelmann et al., 2015; 243 Buttelmann & Kovács, 2019; Kampis et al., 2020; Scott, Richman, & Baillargeon, 2015), 244 and that non-human primates seem to master knowledge-ignorance tasks while not 245 demonstrating any more complex, meta-representational form of ToM (e.g., Hare et al., 246 2011; Kaminski et al., 2008; Karg et al., 2015). The knowledge-ignorance distinction thus 247 appears to be an ideal candidate for assessing epistemic status-based action anticipation in 248 a wide range of populations. To date, however, no study has probed whether or how children's (and adults') spontaneous action anticipation, as indicated by AL, is sensitive to 250 ascriptions of knowledge vs. ignorance. Most studies that have addressed ToM with AL measures have targeted the more sophisticated true/false belief contrast. As reviewed 252 above, the results of those studies yield a mixed picture regarding replicability of the 253 findings. It has been argued that tasks that reliably replicate are ones which can be solved with the more basic knowledge-ignorance distinction, whereas tasks that do not replicate 255 require more sophisticated belief-ascription (Powell et al., 2018)¹, suggesting that only 256 some but not all findings might not be replicable. Based on these considerations, the 257 present study tests whether toddlers and adults engage in knowledge- and ignorance-based 258 AL to probe the most basic form of spontaneous, epistemic state-based action anticipation. 250

¹ For example, some studies have found partial replication results, with patterns of the following kind: participants showed systematic anticipation (or appropriate interactive responses) in true belief trials but showed ooking (or interactive responses) at chance level in the false belief trials (e.g., Dörrenberg et al., 2019; Kulke, Reiß, et al., 2018; Powell et al., 2018). Such a pattern remains ambiguous since it may merely reflect a knowledge-ignorance distinction.

Design and Predictions of the Present Study

The current study presents 18- to 27-month-old toddlers and adults with animated 261 scenarios while measuring their gaze behavior. Testing adults (and not just toddlers) is 262 crucial to address debates about the validity and interpretation of AL measures of ToM 263 throughout the lifespan (e.g., Schneider et al., 2017). Following the structure of previous AL paradigms, participants are first familiarized to an agent repeatedly approaching a 265 target (familiarization trials). AL is measured during familiarization trials to probe whether participants understood the agent's goal and spontaneously anticipate their 267 actions. Subsequently, during test trials the agent's visual access is manipulated, leading 268 them to be either knowledgeable or ignorant about the location of the target. Participants' 269 AL will be measured during test trials to determine whether or not they take into account 270 the agent's epistemic access and adjust their action anticipation accordingly. Participants' 271 looking patterns will be recorded using either lab-based corneal reflection eye-tracking or 272 online recording of gaze patterns. We chose to provide the online testing option to increase 273 the flexibility for data collection given the disruption caused by the Covid-19 pandemic. 274 This option will also provide the opportunity to potentially compare in-lab and online 275 testing procedures (Sheskin et al., 2020). Novel animated stimuli were collectively 276 developed within the MB2 consortium on the basis of previous work (e.g., Clements & 277 Perner, 1994) and based on input from collaborators with experience with both successful 278 and failed replication studies (e.g., Grosse Wiesmann et al., 2017; Surian & Geraci, 2012). 279 These animated 3D scenes feature a dynamic interaction aimed to optimally engage 280 participants' attention: a chasing scenario involving two agents, a chaser and a chasee (see Figures 1 and 2). As part of the chase, the chase enters from the top of an upside-down Y-shaped tunnel with two boxes at its exits. The tunnel is opaque so participants cannot see the chasee after it enters the tunnel, but can hear noises that indicate movement. The chasee eventually exits from one of the arms of the Y, and goes into the box on that side. 285 The chaser observes the chase exit the tunnel and go into a box, and then follows it

through the tunnel. During familiarization trials, the chaser always exits the tunnel on the 287 same side as the chasee, and approaches the box where the chasee is currently located. 288 Thus, if participants engage in spontaneous action anticipation during familiarization 289 trials, they should reliably anticipate during the period when the chaser is in the tunnel 290 that it will emerge at the exit that leads to the box containing the chasee. During test 291 trials, the chasee always first hides in one of the boxes but shortly thereafter leaves its 292 initial hiding place and hides in the box at the other tunnel exit. Critically, the chaser 293 either does (knowledge condition) or does not (ignorance condition) have epistemic access 294 to the chasee's location. During knowledge trials, the chaser observes all movements of the 295 chasee. During *ignorance* trials, the chaser observes the chasee enter the tunnel, but then 296 leaves and only returns once the chasee is already hidden inside the second box. The event 297 sequences in the two conditions are thus identical with the only difference between 298 conditions pertaining to what the chaser has or has not seen. They were designed in this 299 way with the long-term aim to implement, in a minimal contrast design, more complex 300 conditions of false/true belief contrasts with the very same event sequences (true belief 301 conditions will then be identical to the knowledge conditions here, but in false belief 302 conditions the chaser witnesses the chasee's placement in the first box, but then fails to 303 witness the re-location)². Participants' AL (their gaze pattern indicating where they expect

² There is thus a certain asymmetry with regard to the interpretation and the consequences of potentially positive and negative results of the present knowledge-ignorance contrast: in the case of positive results, we can conclude that subjects spontaneously engage in basic epistemic state ascription and can move on to test, with the minimal contrast comparison of knowledge-ignorance vs. false belief-true belief, whether this extends to more complex forms of epistemic state attribution. In the case of negative results, though, we cannot draw firm conclusions to the effect that subjects do not engage in spontaneous epistemic state ascription. More caution is in order since the present knowledge-ignorance contrast has been designed in order to be comparable to future belief contrasts rather than to be the simplest implementation possible. Simpler implementations would then need to be devised that involve fewer steps (i.e. the chasee just goes to one location and this is or is not witnessed by the chasee).

the chaser to appear) will be assessed during the anticipatory period - that is, the period during which the chaser is going through the tunnel and is not visible. There will be two 306 main dependent measures: first looks, and a differential looking score (DLS). The first look 307 measure will be binary, indicating which of the two tunnel exits participants fixate first: 308 the exit where the chase is actually hiding, or the other exit. DLS is a measure of the 300 proportion of time spent looking at the correct tunnel exit during the entire anticipatory 310 period. In two pilot studies (see Methods section), we addressed the foundational question 311 of the current study: whether these stimuli reveal spontaneous goal-directed action 312 anticipation as measured by AL in the above-described familiarization trials (i.e., without a 313 change of location by the chase or manipulation of the chaser's epistemic state). We found 314 that our paradigm indeed elicited action anticipation and exclusion rates due to lack of 315 anticipation were significantly lower relative to previous (original and replication) AL 316 studies. Both toddlers and adults showed reliable anticipation of the chaser's exit at the 317 chasee's location, indicating that in contrast with many previous AL studies the current 318 paradigm successfully elicits spontaneous goal-based action anticipation. Based on these 319 pilot data we concluded that the paradigm is suitable for examining the second and critical 320 question: whether toddlers and adults, in their spontaneous goal-based action anticipation, 321 take into account the agent's epistemic state. We predict that if participants track the 322 chaser's perceptual access and resulting epistemic state (knowledge/ignorance) and 323 anticipate their actions accordingly, they should look more in anticipation to the exit at the 324 chasee's location than the other exit in the knowledge condition, but should not do so (or 325 to a lesser degree; see below) in the *ignorance* condition. We anticipate three potential 326 factors that could influence participant's gaze patterns: Keeping track of the chaser's 327 epistemic status in the *ignorance* condition might either lead to no expectations as to 328 where the chaser will look (resulting in chance level looking between the two exits) or (if 320 participants follow an "ignorance leads to mistakes"-rule, see e.g., Ruffman, 1996) to an 330 expectation that the chaser will go to the wrong location (longer looking to the exit with 331

the empty box; e.g., Fabricius et al., 2010). Either way, participants may still show a 'pull of the real' even in the *ignorance* condition, i.e., reveal a default tendency to look to the 333 side where the chasee is located. But if they truly keep track of the epistemic status of the 334 chaser (knowledge vs. ignorance), they should show this tendency to look to the side where 335 the chase really is in the *ignorance* condition to a lesser degree than in the knowledge336 condition. In sum, the research questions of the present study are the following: First, can 337 we observe in a large sample that toddlers and adults robustly anticipate agents' actions 338 based on their goals in this paradigm, as they did in our pilot study? Second, can we find 339 evidence that they take into account the agent's epistemic access (knowledge vs. ignorance) 340 and adjust their action anticipation accordingly? In addressing these questions, the present 341 study will significantly contribute to our knowledge on spontaneous ToM. It will inform us 342 whether the present paradigm and stimuli can elicit spontaneous goal-based and mental-state-based action anticipation in adults and toddlers, based on a large sample of about 800 participants in total from over 20 labs. In the long run, the present study will lay the foundation for future work to address broader questions of what kind of epistemic states toddlers and adults spontaneously attribute to others in their action anticipation 347 and what cognitive mechanisms allow them to do so.

349 Methods

All materials, and later the collected de-identified data, will be provided on the Open Science Framework (OSF; https://osf.io/jmuvd/). All analysis scripts, including the pilot data analysis and simulations for the design analysis, can be found on GitHub (https://github.com/manybabies/mb2-analysis). We report how we determined our sample size and we will report all data exclusions, all manipulations, and all measures in the study. Additional methodological details can be found in the Supplemental Material.

56 Stimuli

Figures 1 and 2 provide an overview of the paradigm. For the stimuli, 3D animations
were created depicting a chasing scenario between two agents (chaser and chasee) who start
in the upper part of the scene. At the very top of the scene a door leads to outside the
visible scene. Below this area, a horizontal fence separates the space, and thus the lower
part of the space can be reached by the Y-shaped tunnel only. Additional information on
the general scene setup, events, and timings in the familiarization and the test trials, as
well as trial randomization can be found in the Supplemental Material.

Figure 1. Timeline of the familiarization trials.

Familiarization Trials. All participants will view four familiarization trials (for an 364 overview of key events see Figure 1). During familiarization trials, after a brief chasing 365 introduction, the chase enters an upside-down Y-shaped tunnel with a box at both of its 366 exits. The chasee then leaves the tunnel through one of the exits and hides in the box on 367 the corresponding side. Subsequently, the chaser enters the tunnel (to follow the chasee), and participants' AL to the tunnel exits is measured before the chaser exits on the side the chase is hiding, as an index of their goal-based action anticipation. In these familiarization 370 trials, if participants engage in spontaneous action anticipation, they should reliably 371 anticipate that the chaser should emerge at the tunnel exit that leads to the box where the 372 chase is. After leaving the tunnel, the chaser approaches the box in which the chase is 373

hiding and knocks on it. Then, the chasee jumps out of the box and the two briefly interact.

Familiarization Phase Pilot Studies. In a pilot study with 18- to 375 27-month-olds (n = 65) and adults (n = 42), seven labs used in-lab corneal reflection 376 eye-tracking to collect data on gaze behavior in the familiarization phase. A key 377 desideratum of our paradigm is that it should produce sufficient AL, as a low rate of AL in previous studies has led to high exclusion rates. The goals of the pilot study were to 1) 379 estimate the level of correct goal-based action predictions in the familiarization phase, 2) 380 determine the optimal number of familiarization trials, 3) check for issues with perceptual 381 properties of stimuli (e.g., distracting visual saliencies), and 4) test the general procedure 382 including preprocessing and analyzing raw gaze data from different eye-tracking systems. 383 We found that the familiarization stimuli elicited a relatively high proportion of 384 goal-directed action anticipations, but we were concerned about the effects of some minor 385 properties of the stimulus (in particular, a small rectangular window in the tunnel tube 386 that allowed participants to see the agents at one point on their path to the tunnel exits). 387 In a second pilot study with 18- to 27-month-olds (n = 12, three participating labs), slight 388 changes of stimulus features (the removal of the window in the tube; temporal changes of 389 auditory anticipation cue) did not cause major changes in the AL rates. Sixty-eight percent 390 of toddlers' first looks in the first pilot, 69% of toddlers' first looks in the second pilot, and 391 69% of adults' first looks were toward the correct area of interest (AOI) during the 392 anticipatory period. The average proportion of looking towards the correct AOI during the 393 anticipatory period was 70.7% ($\text{CI}_{95\%} = 67.6\%$ - 73.8%) in toddlers in the first pilot, 70.5% 394 $(\mathrm{CI}_{95\%}=62.8\%$ - 78.2%) in the second pilot for tod dlers, and 75.3% (CI $_{95\%}=71.0\%$ -395 79.5%) in adults. In Bayesian analyses, we found strong evidence that toddlers and adults looked more towards the target than towards the distractor during the anticipation period. 397 Based on conceptual and practical methodological considerations while also considering 398 previous studies, we decided to include four trials in the final experiment. The pilot data 399 results of the toddlers supported this decision insofar as we observed a looking bias towards

the correct location already in trials 1-4, without additional benefit of trials 5-8. Further, 401 prototypical analysis pipelines were established for combining raw gaze data from different 402 eye-trackers. In short, we developed a way to resample gaze data from different 403 eye-trackers to be at a common Hz rate and to define proportionally correct AOIs for 404 different screen dimensions with the goal to merge all raw data into one data set for 405 inferential statistics. The established analysis procedure is described further in the Data 406 Preprocessing section below. In sum, we concluded that this paradigm sufficiently elicits 407 goal-directed action predictions, an important prerequisite for drawing any conclusion on 408 AL behavior in the test trials of this study. A detailed description of the two pilot studies 400 can be found in the Supplemental Material. 410

Test Trials. All participants will see two test trials, one knowledge and one 411 ignorance trial. However, in line with common practice in ToM studies, the main 412 comparison concerns the first test trial between-participants to avoid potential carryover 413 effects. In addition, in exploratory analyses, we plan to assess whether results remain the 414 same if both trials are taken into account and whether gaze patterns differ between the two 415 trials (see Exploratory Analyses). If the results remain largely unchanged across the two 416 trials, it may suggest that future studies could increase power by including multiple test 417 trials. In test trials, the chasee first hides in one of the boxes, but shortly thereafter the 418 chase leaves this box and hides in the second box, at the other tunnel exit. Critically, the 419 chaser either witnesses (knowledge condition) or does not witness (ignorance condition) 420 from which tunnel exit the chase exited and thus where the chase is currently hiding (for 421 an overview, see Figure 2). In the knowledge trials, the chaser observes all movements of the chasee. The chaser leaves for a brief period of time after the chasee entered the tunnel, 423 but it returns before the chasee exits the tunnel. Therefore, no events take place in the chaser's absence. In the *ignorance* trials, the chaser sees the chasee enter the tunnel, but 425 then leaves. Therefore, the chaser does not see the chase entering either box and only 426 returns once the chase is already hidden in the final location. Finally, the chaser enters

the tunnel but does not appear in either exit. Rather, the scene "freezes" for four seconds and participants' AL is measured. Thus, the knowledge and ignorance conditions are 420 matched for the chaser leaving for a period of time, but they differ in whether they warrant 430 the chaser's epistemic access to the location of the chasee. No outcome is shown in either 431 test trials. When designing the knowledge and ignorance condition, we aimed at keeping all 432 events and their timings parallel, except the crucial manipulation. We show the same 433 events in both conditions. Where possible, all events also have the same duration. In the 434 case of the chaser's absence in the knowledge condition, there were two main options, both 435 with inevitable trade-offs. First, we could have increased the duration of the chaser's 436 absence in the knowledge condition to match the duration of the chaser's absence in both 437 conditions. Yet, this would potentially disrupt the flow of events, such as keeping track of 438 the chasee's actions and the general scene dynamics, since nothing would happen for a substantial amount of time. Second, the chaser can be absent for a shorter time in the knowledge than in the ignorance condition, in which case the flow of events – the chasee's actions and the general scene dynamics – remains natural. We chose the second option because we reasoned that the artificial break in the knowledge condition could disrupt the participant's tracking of the chaser's epistemic state, thus being a confound that would be more detrimental than the difference in the duration of absence. Further, the current 445 contrast has the advantage that the chasee's sequence and timing of actions are identical in 446 both conditions, thus minimizing the difference between conditions. Finally, with the 447 current design, the duration of the chaser's absence will be closely matched in the later 448 planned false belief - true belief contrast, because in the future false belief condition, the 440 chaser has to be absent for fewer events (because the chaser witnesses the first hiding 450 events after the chase reappeared at the other side of the tunnel). 451

Trial Randomization. We will vary the starting location of the chasee (left or right half of the upper part of the scene) and the box the chasee ended up (left or right box) in both familiarization and test trials. The presentation of the familiarization trials

Figure 2. Schematic overview of stimuli and conditions of the test trials.

Note. After the familiarization phase, participants know about the agent's goal (chaser wants to find chasee), perceptual access (chaser can see what happens on the other side of the fence), and situational constraints (boxes can be reached by walking through the forking tunnel). In the knowledge condition, the chaser witnesses the chasee walking through the tunnel and jumping in and out of the first box. While the chasee is in the box, the chaser briefly leaves the scene through the door in the back and returns shortly after. Subsequently, the chaser watches the chasee jumping out of the box again and hiding in the second box. In the ignorance condition, the chaser turns around and stands on the other side of the door in the back of the scene, thus unable to witness any of the chasee's actions. The chaser then returns and enters the tunnel to look for the chasee. During the test phase (4 seconds still frame), AL towards the end of the tunnels is measured.

will be counterbalanced in two pseudo-randomized orders. Each lab signs up for one or two
sets of 16-trial-combinations, for each of their tested age groups.

Lab Participation Details

Time-Frame. The contributing labs will start data collection as soon as they are
able to once our Registered Report receives an in-principle acceptance. The study will be
submitted for Stage 2 review within one year after in-principle acceptance (i.e., post-Stage
1 review). We anticipate that this time window gives the individual labs enough flexibility
to contribute the committed sample sizes; however, if this timeline needs adjusting due to
the Covid-19 pandemic this decision will be made prior to any data analysis.

Participation Criterion. The participating labs were recruited from the MB2 consortium. In July 2020, we asked via the MB2 listserv which labs plan to contribute how many participants for the respective age group (toddlers and/or adults). The Supplemental Material provides an overview of participating labs. Each lab made a commitment to collecting data from at least 16 participants (toddlers or adults), but we will not exclude any contributed data on the basis of the total sample size contributed by that lab. Labs will be allowed to test using either in-lab eye-tracking or online methods.

Ethics. All labs will be responsible for obtaining ethics approval from their
appropriate institutional review board. The labs will contribute de-identified data for
central data analysis (i.e., eye-tracking raw data/coded gaze behavior, demographic
information). Video recordings of the participants will be stored at each lab according to
the approved local data handling protocol. If allowed by the local institutional review
board, video recordings will be made available to other researchers via the video library
DataBrary (https://nyu.databrary.org/).

Participants. In a preliminary expression of interest, 26 labs signed up to
contribute a minimal sample size of 16 toddlers and/or adults. Based on this information,

```
we expect to recruit a total sample of 520 toddlers (ages 18-27 months) and 408 adults
480
   (ages 18-55 years). To avoid an unbalanced age distribution in the toddlers sample, labs
481
   will sign up for testing at least one of two age bins (bin 1: 18-22 months, bin 2: 23-27
482
   months), and will be asked to ensure approximately equal distribution of participants' age
483
   in their collected sample if possible. They will be asked to try to ensure that the mean age
484
   of their sample lies in the middle of the range of the chosen bin and that participant ages
485
   are distributed across their whole bin. Both for adults and toddlers, basic demographic
486
   data will be collected on a voluntary basis with a brief questionnaire (see Supplemental
487
   Material for details). The requested demographic information that is not used in the
488
   registered confirmatory and/or exploratory analyses of this study will be collected for
480
   further potential follow-up analyses in spin-off projects within the MB framework. After
490
   completing the task, adult participants will be asked to fill a funneled debriefing
   questionnaire. This questionnaire asks what the participant thinks the purpose of the
   experiment was, whether the participant had any particular goal or strategy while watching
   the videos, and whether the participant consciously tracked the chaser's epistemic state.
   Additionally, we collect details regarding each testing session (see Supplemental Material).
495
   ## Warning: There was 1 warning in `summarise()`.
496
   ## i In argument: `age years = (as.numeric(age years))[1]`.
497
   ## i In group 593: `lab_id = "socialcogUmiami"` and `unique_participant_id =
498
          "socialcogUmiami-UMIA012-adults".
   ##
499
   ## Caused by warning:
500
   ## ! NAs introduced by coercion
501
   ## Warning: There was 1 warning in `summarise()`.
502
   ## i In argument: `age years = (as.numeric(age years))[1]`.
503
   ## i In group 593: `lab id = "socialcogUmiami"` and `unique participant id =
504
   ##
         "socialcogUmiami-UMIA012-adults".
505
```

```
## Caused by warning:
507 ## ! NAs introduced by coercion
```

509

529

508

Of the initial sample (toddlers: N = 852, adults: N = 829), participants will be 510 excluded from the main confirmatory analyses if (1) they did not complete the full 511 experiment, (2) the toddler participants' caregivers interfered with the procedure, e.g. by 512 pointing at stimuli or talking to their child, (3) the experimenter made an error during 513 testing that was relevant to the procedure, (4) technical problems occurred. The individual 514 labs will determine whether and to which extent participant exclusion criteria 1-4 apply 515 and add this information to the participant protocol sheet they provide. This set of 516 exclusions will leave a total of XYZ toddlers and XYZ adults whose data will be analyzed. 517 Of these, participants will be excluded sequentially if (5) their data is missing on more 518 than one familiarization trial, or (6) their data is missing on the first test trial. If multiple 519 reasons for exclusion are applicable to a participant, the criteria will be assigned in the 520 order above (for details on exclusions, see Supplemental Material). Our final dataset will 521 consist of 1173 participants, with an overall exclusion rate of XYZ% (toddlers: XYZ%, 522 adults: XYZ%). Tables 1 A. and B. show the distribution of included participants across 523 labs, eye-tracking methods, and ages. A final sample of 509 toddlers (XX% female) that will have been tested in 36 labs (mean lab sample size = 16.97, SD = 5.80, range: 6 - 34) will be analyzed. The average age of toddlers in the final sample will be NA months (SD: 526 NA, range: NA - NA). The final sample size of included adults will be N = 618 (XX%) 527 female), tested in 594 labs (mean lab sample size = 22, SD = 12.64, range: 8 - 65). Their 528

mean age will be 24.16 years (SD: 7.84, range: 17 - 69).

30 Apparatus and Procedure

Eye-tracking Methods. We expect that participating labs will use one of three
types of eye-tracker brands to track the participant's gaze patterns: Tobii, EyeLink, or
SMI. Thus, apparatus setup will slightly vary in individual labs (e.g., different sampling
rates and distances at which the participants are seated in front of the monitor).

Participating labs will report their eye-tracker specifications and study procedure alongside
the collected data. To minimize variation between labs, all labs using the same type of
eye-tracker will use the same presentation study file specific to that eye-tracker type. The
Supplemental Material will provide an overview of employed eye-trackers, stimulus
presentation softwares, sampling rates and screen dimensions.

Online Gaze Recording. To allow for the participation of labs that do not have access to an eye-tracker, or are not able to invite participants to their facilities due to current restrictions regarding the COVID-19 pandemic, labs can choose to collect data via online testing. Specifically, labs may choose to manually code gaze direction during stimulus presentation on a frame-by-frame basis from video recordings of a camera facing the participant (e.g., a webcam). Labs that choose to collect data virtually will utilize the platform of their choice (e.g., LookIt, YouTube, Zoom, Labvanced, etc.). Further, labs may also choose to use webcam eye-tracking with tools like WebGazer.js (Papoutsaki et al., 2016). In our analyses, we control for and quantify potential sources of variability due to these different methods.

Testing Procedure. Toddlers will be seated either on their caregiver's lap or in a
highchair. The distance from the monitor will depend on the data collection method.

Caregivers will be asked to refrain from interacting with their child and close their eyes
during stimulus presentation or wear a set of opaque sunglasses. Adult participants will be
seated on a chair within the respective appropriate distance from the monitor. Once the
participant is seated, the experimenter will initiate the eye-tracker-specific calibration

procedure. Additionally, we will present another calibration stimulus before and after the presentation of the task. This allows for evaluating the accuracy of the calibration procedure across labs (cf., Frank et al., 2012).

559 General Lab Practices

To ensure standardization of procedure, materials for testing practices and instructions will be prepared and distributed to the participating labs. Each lab will be responsible for maintaining these practices and report all relevant details on testing sessions (for details see the Supplemental Material).

Videos of Participants. As with all MB projects, we strongly encourage labs to record video data of their own lab procedures and each testing session, provided that this is in line with regulations of the respective institutional ethics review board and the given informed consent. Participating labs that cannot contribute participant videos will be asked to provide a video walk-through of their experimental set-up and procedure instead.

If no institutional ethics review board restrictions occur, labs are encouraged to share video recordings of the test sessions via DataBrary.

Design Analysis

Here we provide a simulation of the predicted findings because a traditional
frequentist power analysis is not applicable for our project for two reasons. First, we use
Bayesian methods to quantify the strength of our evidence for or against our hypotheses,
rather than assessing the probability of rejecting the null hypothesis. In particular, we
compute a Bayes factor (BF; a likelihood ratio comparing two competing hypotheses),
which allows us to compare models. Second, because of the many-labs nature of the study,
the sample size will not be determined by power analysis, but by the amount of data that
participating labs are able to contribute within the pre-established timeframe. Even if the

effect size is much smaller than what we anticipate (e.g., less than Cohen's d = 0.20), the 580 results would be informative as our study is expected to be dramatically larger than any 581 previous study in this area. If, due to unforeseen reasons, the participating labs will not be 582 able to collect a minimum number of 300 participants per age group within the proposed 583 time period, we plan to extend the time for data collection until this minimum number is 584 reached. Or in contrast, if the effect size is large (e.g., more than Cohen's d = 0.80), the 585 resulting increased precision of our model will allow us to test a number of other 586 theoretically and methodologically important hypotheses (see Results section). Although 587 we did not determine our sample size based on power analysis, here we provide a 588 simulation-based design analysis to demonstrate the range of BFs we might expect to see, 589 given a plausible range of effect sizes and parameters. We focus this analysis on our key 590 analysis of the test trials (as specified below), namely the difference in AL on the first test trial that participants saw. We describe below the simulation for the child sample, but 592 based on our specifications, we expect that a design analysis for adult data would produce similar results. We first ran a simulation for the first look analysis. In each iteration of our 594 simulation, we used a set of parameters to simulate an experiment, using a first look 595 (described below) as the key measure. For the key effect size parameter for condition 596 (knowledge vs. ignorance), we sampled a range of effect sizes in logit space spanning from 597 small to large effects (Cohen's d = 0.20 - 0.80; log odds from 0.36 - 1.45). For each 598 experiment, the betas for age and the age x condition interaction were sampled uniformly 599 between -0.20 and 0.20. The age of each participant was sampled uniformly between 18 600 and 27 months and then centered. The intercept was sampled from a normal distribution 601 (1, 0.25), corresponding to an average looking proportion of 0.73. Lab intercepts and the 602 lab slope by condition were set to 0.1, and other lab random effects were set to 0 as we do 603 not expect them to be meaningfully non-zero. These values were chosen based on pilot 604 data (average looking proportion), but also to have a large range of possible outcomes (lab 605 intercept, age and age x condition interaction). We are confident that the results would be 606

robust to different choices. We then used these simulated data to simulate an experiment 607 with 22 labs and 440 toddlers and computed the resulting BFs, as specified in the analysis 608 plan below. We adopted all of the priors specified in the results section below³. We ran 349 609 simulations and, in 72% of them, the BF showed strong evidence in favor of the full model 610 (BF > 10); in 6% the BF showed substantial evidence (10 > BF > 3); it was inconclusive 611 14% of the time (1/10 > BF > 3), and in 8% of cases the null model was substantially 612 favored (see Figure 3). In none of the simulations the BF was < 1/10. Thus, under the 613 parameters chosen here for our simulations, it is likely that the planned experiment is of 614 sufficient size to detect the expected effect. We also ran a design analysis for the 615 proportional looking analysis. We used the same experimental parameters (number of labs. 616 participants, ages, etc.). For generating simulated data, we drew the condition effect from 617 a uniform distribution between .05 and .20 (in proportion space). The age and age:condition effects were drawn from uniform distributions between -.05 and .05. Sigma, the overall noise in the experiment, was drawn from a uniform distribution between .05 and .1. The intercept was drawn from a normal distribution with mean .65 and a standard 621 deviation of .05. The by-lab standard deviation for the intercept and condition slope was 622 set to .01. Priors were as described in the main text. We ran 119 simulations, and in all 623 119 we obtained a BF greater than 10, suggesting that, under our assumptions, the study 624 is well-powered. 625

Data Preprocessing

Eye-tracking. Raw gaze position data (x- and y-coordinates) will be extracted in the time window starting from the first frame at which the chaser enters the tunnel until

³ After the design analysis, additional labs expressed their interest in contributing data, which is why the anticipated sample sizes and the numbers this design analysis is based on differ. Given the uncertainty in determining the final sample size in this project, we kept the design analysis as is to have a more conservative estimate of the study's power.

Figure 3. Effect sizes of simulated experiments.

Note. Ordered by effect size (from left to right), 95% credible intervals for the key effect (in logit space) for our simulated experiments that use first look as the dependent variable.

the last frame before it exits the tunnel in the last familiarisation trial and in the test trial. For data collected from labs using a binocular eye-tracker, gaze positions of the left and the 630 right eye will be averaged. We will use the peekds R package 631 (http://github.com/langcog/peekds) to convert eye-tracking data from disparate trackers 632 into a common format. Because not all eye-trackers record data with the same frequency or regularity, we will resample all data to be at a common rate of 40 Hz (samples per second). We will exclude individual trials if more than 50% of the gaze data is missing (defined as 635 off-screen or unavailable point of gaze during the whole trial, not just the anticipatory 636 period). Applying this criterion would have caused us to exclude 4\% of the trials in our 637 pilot data, which inspection of our pilot data suggested was an appropriate trade-off 638

between not excluding too much usable data and not analyzing trials which were 639 uninformative. For each monitor size, we will determine the specific AOIs and compute 640 whether the specific x- and y-position for each participant, trial, and time point fall within 641 their screen resolution-specific AOIs. Our goal is to determine whether participants are 642 anticipating the emergence of the chaser from one of the two tunnel exits. Thus, we defined 643 AOIs on the stimulus by creating a rectangular region around the tunnel exit that is D 644 units from the top, bottom, left, and right of the boundary of the tunnel exit, where D is 645 the diameter of the tunnel exits. We then expanded the sides of the AOI rectangles by 25%in all directions to account for tracker calibration error. Our rationale was that, if we made 647 the AOI too small, we might fail to capture anticipations by participants with poor 648 calibrations. In contrast, if we made the regions too large, we might capture some fixations 649 by participants looking at the box where the chasee actually is. On the other hand, these chasee looks would not be expected to vary between conditions and so would only affect our baseline level of looking. Thus, the chosen AOIs aim at maximizing our ability to capture between-condition differences. For an illustration of the tunnel exit AOIs see Figure 4. We 653 are not analyzing looks to the boxes, since they can less unambiguously be interpreted as 654 epistemic state-based action predictions and because we observed few anticipatory looks to 655 the boxes in the pilot studies. For more detailed information about the AOI definition 656 process see the description of the pilot study results in the Supplemental Material. 657

Manual Coding. For data gathered without an eye-tracker (e.g., videos of participants gathered from online administration), precise estimation of looks to specific AOIs will not be possible. Instead, videos will be coded for whether participants are looking to the left or the right side of the screen (or "other/off screen"). In our main analysis, during the critical anticipatory window, we will treat these looks identically to looks to the corresponding AOI. See exploratory analyses for analysis of data collected online.

Temporal Region of Interest. For familiarization trials, we define the start of the anticipatory period (total length = 4000 ms) as starting 120 ms after the first frame

Figure 4. Illustration of Areas of Interest (AOIs) for gaze data analysis during the anticipatory period.

Note. The light green rectangles show the dimensions of the AOIs used for the analysis of AL during the test period.

after which the chaser has completely entered the tunnel and lasting until 120 ms after the first frame at which the chaser is visible again (we chose 120 ms as a conservative value for cutting off reactive saccades; cf., Yang et al., 2002). For test trials, we define the start of the anticipatory period in the same way, with a total duration of 4000 ms.

Dependent Variables. We define two primary dependent variables: 1. First look.

First saccades will be determined as the first change in gaze occurring within the

anticipatory time window that is directed towards one of the AOIs. The first look is then

the binary variable denoting the target of this first saccade (i.e., either the correct or

incorrect AOI) and is defined as the first AOI where participants fixated at for at least 150

ms, as in Rayner et al. (2009). The rationale for this definition was that, if participants are

looking at a location within the tunnel exit AOIs before the anticipation period, they

might have been looking there for other reasons than action prediction. We therefore count

only looks that start within the anticipation period because they more unambiguously 678 reflect action predictions. This further prevents us from running into a situation where we 679 would include a lot of fixations on regions other than the tunnel exit AOIs because 680 participants are looking somewhere else before the anticipation period begins. 2. 681 Proportion DLS (also referred to as total relative looking time; Senju et al., 2009). We 682 compute the proportion looking (p) to the correct AOI during the full 4000 ms anticipatory 683 window (correct looking time / (correct looking time + incorrect looking time)), excluding 684 looks outside of either AOI. 685

Analyses

687

Confirmatory Analyses.

As discussed in the Methods section, we will adopt a Bayesian analysis 688 strategy so as to maximize our ability to make inferences about the presence or absence of 689 a condition effect (i.e., our key effect of interest). In particular, we will fit Bayesian mixed 690 effects regressions using the package brms in R (Bürkner, 2017). This framework allows us 691 to estimate key effects of interest while controlling for variability across grouping units (in 692 our case, labs). To facilitate interpretation of individual coefficients, we will report means 693 and credible intervals. For key inferences in our confirmatory analysis, we will use the 694 bridge sampling approach (Gronau et al., 2017) to compute BFs comparing different 695 models. As the ratio of the likelihood of the observed data under two different models, BFs 696 will allow us to quantify the evidence that our data provide with respect to key 697 comparisons. For example, by comparing models with and without condition effects, we can quantify the strength of the evidence for or against such effects. Bayesian model comparisons require the specification of proper priors on the coefficients of individual 700 models. Here, for our first look analysis, we will use a set of weakly informative priors that 701 capture the expectation that the effects that we will observe (of condition and, in some 702 cases, trial order) are modest. For coefficients, we will choose a normal distribution with 703

mean of 0 and SD of 2. Based on our pilot testing and the results of MB1, we assume that 704 lab and participant-level variation will be relatively small, and so for the standard 705 deviation of random effects (i.e., variation in effects across labs and, in the case of the 706 familiarization trials, participants) we will set a Normal prior with mean of 0 and SD of 707 0.1. We will set an LKJ(2) prior on the correlation matrix in the random effect structure, a 708 prior that is commonly used in Bayesian analyses of this type (Bürkner, 2017). Because the 700 BF is sensitive to the choice of prior, we will also run a secondary analysis with a less 710 informative prior: fixed effect coefficients chosen from a normal distribution with mean 0 711 and SD of 3, and random effect standard deviations drawn from a normal prior with a 712 mean of 0 and SD of 0.5. With respect to the specification of random effects, we will follow 713 the approach advocated by Barr et al. (2013), that is, specifying the maximal random effect 714 structure justified by our design. Since we are interested in lab-level variation, we will fit random effect coefficients for fixed effects of interest within labs (e.g., condition within 716 lab). Further, where there is participant-level repeated measure data (e.g., familiarization trials), we will fit random effects of participants. For the proportional looking score 718 analysis, we will use a uniform prior on the intercept between -0.5 and 0.5 (corresponding 710 to proportional looking scores between 0 and 1: the full possible range). For the priors on the fixed effect coefficients, we will use a normal prior with a mean of 0 and an SD of 0.1. 721 Because these regressions are in proportion space, 0.10 corresponds to a change in 722 proportion of 10%. For the random effect priors, we will use a normal distribution with 723 mean 0 and standard deviation .05. The LKJ prior will be specified as above. 724

Familiarization Trials. Figure XYZ will show the proportion of total relative looking time (non-logit transformed) and proportion of first looks for toddlers and adults plotted across familiarization trials and test trials. Our first set of analyses will examine data from the four familiarization trials and will ask whether participants anticipated the chaser's reappearance at one of the tunnel exits. In our first analysis, we are interested in whether participants engage in AL during the familiarization trials. To quantify the level

of familiarization, we will fit Bayesian mixed effect models predicting target looks based on trial number (1-4) with random effects for lab and participants and random slopes for trial number for each. In R formula notation (which we adopt here because of its relative concision compared with standard mathematical notation), our base model is as follows:

 $measure \sim 1 + trialnumber + (trialnumber|lab) + (trialnumber|participant)$

We will fit a total of four instances of this model, one for each age group (toddlers vs. adults) and dependent measure (proportion looking score vs. first look). First look 736 models will be fitted using a logistic link function. The proportion looking score models 737 will be Gaussian. Our key question of interest is whether overall anticipation is higher than 738 chance levels on the familiarization trial immediately before the test trials, in service of 739 evaluating the evidence that participants are attentive and making predictive looks 740 immediately prior to test. To evaluate this question across the four models, we will code 741 trial number so that the last trial before the test trials (trial 4) is set to the intercept, 742 allowing the model intercept to encode an estimate of the proportion of correct 743 anticipation immediately before test. We then will fit a simpler model for comparison

 $measure \sim 0 + trialnumber + (trialnumber|lab) + (trialnumber|participant),$

which includes no intercept term. We will then compute the BF comparing this model to
the full model. This BF quantifies the evidence for an anticipation effect for each group
and measure.

Test Trials. We will focus our confirmatory analysis on the first test trial (see
Exploratory Analysis section for an analysis of both trials). Our primary question of
interest is whether AL differs between conditions (knowledge vs. ignorance, coded as -.5/.5)
and by age (in months, centered). For child participants, we will fit models with the
specification:

 $measure \ 1 + condition + age + condition : age + (1 + condition + age + condition : age | lab).$

For adult participants, we will fit models with the specification

measure 1 + condition + (1 + condition | lab).

Again, we will fit models with a logistic link for first look analyses and with a standard 754 linear link for DLS. In each case, our key BF will be a comparison of this model with a 755 simpler "null" model that does not include the fixed effect of condition but still includes other terms. We will take a BF > 3 in favor of a particular model as substantial evidence 757 and a BF > 10 in favor of strong evidence. A BF < 1/3 will be taken as substantial 758 evidence in favor of the simpler model, and a BF < 1/10 as strong evidence in favor of the simpler model. For the model of data from toddlers, we additionally are interested in whether the model shows changes in AL with age. We will assess evidence for this by computing BFs related to the comparison with a model that does not include an 762 interaction between age and condition as fixed effects 763

 $measure\ 1 + condition + age + (1 + condition + age + condition : age | lab).$

These BFs will capture the evidence for age-related changes in the difference in action 764 anticipation between the two conditions. It is important to note that in the case of a null 765 effect, there are two main explanations: (1) toddlers and adults in our study do not 766 distinguish between knowledgeable and ignorant agents when predicting their actions. (2) 767 The method used is not appropriate to reveal knowledge/ignorance understanding. By 768 using Bayesian analyses, we are able to better evaluate the first of these two possibilities: 769 The BF provides a measure of our statistical confidence in the null hypothesis, i.e., no 770 difference between experimental conditions, given the data in ways that standard null hypothesis significance testing does not. In other words, instead of merely concluding that we did not find a difference between conditions, we would be able to find no/anecdotal/moderate/strong/very strong/extreme evidence for the null hypothesis that our participants did not distinguish between knowledgeable and ignorant agents when 775 predicting their actions (Schönbrodt & Wagenmakers, 2018). We therefore consider this 776

analysis an important addition to our overall analysis strategy. Yet, even our Bayesian
analyses are not able to rule out the second possibility that participants may well show
such knowledge/ignorance understanding with different methods, or that this ability may
not be measurable with any methods available at the current time. Addressing this
alternative explanation warrants follow up experiments.

82 Exploratory Analyses

WE LIST POTENTIAL EXPLORATORY ANALYSES HERE TO SIGNAL OUR 783 INTEREST AND INTENTIONS BUT DO NOT COMMIT TO THEIR INCLUSION, 784 DUE TO LENGTH AND OTHER CONSIDERATIONS 1. Spill-over: we will analyze 785 within-participants data from the second test trial that participants saw, using exploratory 786 models to assess whether (1) findings are consistent when both trials are included (overall 787 condition effect), (2) whether effects are magnified or diminished on the second trial (order 788 main effect), and (3) whether there is evidence of "spillover" - dependency in anticipation 789 on the second trial depending on what the first trial is (condition x order interaction 790 effect). 2. We will explore whether condition differences vary for participants who show 791 higher rates of anticipation during the four familiarization trials. For example, we might 792 group participants according to whether they did or did not show correct AL at the end of 793 the familiarization phase, defined as overall longer looking at the correct AOI than the 794 incorrect AOI on average in trials 3 and 4 of the familiarization phase. 3. In analyses 795 introducing model terms for certain measurement characteristics (e.g., types of eye-tracker 796 manufacturers, screen dimensions), we will quantify potential variability between different in-lab data acquisition methods (cf., ManyBabies Consortium, 2020). If we have a sufficiently large sample of participants tested with online sources (e.g., contributions of at least 32 participants), we will conduct a separate analysis with a model term for online 800 participants that estimates whether condition effects are different in this population. We 801 will further report whether exclusion rates are different for this population. 4. If we 802

observe substantial looking (defined *post hoc* by evaluating scatter plot videos of gaze data)
to the boxes as well as the tunnel exit AOIs, we will conduct an exploratory analysis using
tighter AOIs around tunnel exits and boxes, asking whether box and tunnel looking vary
separately by age or by condition. In particular, we expect that the difference in AL
between the two conditions will be bigger for the tunnel exits than for the box (as looks to
the correct box might indicate looks to the target, which is in the same box for both
conditions, rather than action anticipation).

Results

General Discussion

The current large-scale, multi-lab study set out to examine whether toddlers and adults engage in spontaneous ToM. In particular, we used an anticipatory looking paradigm to explore whether 18- to 27-month-old toddlers and adults distinguish between two basic forms of epistemic states: knowledge and ignorance. Our call for participation resulted in contributions from xyz labs, representing a total of xyz toddlers from xyz countries and xyz adults from xyz countries, of which xyz were included in the final sample used for analysis (see Table 1). We begin our discussion by summarizing the principal results of the study with respect to confirmatory analysis and then discuss limitations of the study as well as future directions.

Conclusion

References

- Baillargeon, R., Buttelmann, D., & Southgate, V. (2018). Invited commentary:

 Interpreting failed replications of early false-belief findings: Methodological and
 theoretical considerations. Cognitive Development, 46, 112–124.
- Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief understanding in infants.

 Trends in Cognitive Sciences, 14(3), 110–118.
- Barone, P., Corradi, G., & Gomila, A. (2019). Infants' performance in

 spontaneous-response false belief tasks: A review and meta-analysis. Infant

 Behavior and Development, 57, 101350.
- Burnside, K., Ruel, A., Azar, N., & Poulin-Dubois, D. (2018). Implicit false belief
 across the lifespan: Non-replication of an anticipatory looking task. *Cognitive Development*, 46, 4–11.
- Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show false belief understanding in an active helping paradigm. *Cognition*, 112(2), 337–342.
- Carruthers, P. (2013). Mindreading in infancy. Mind & Language, 28(2), 141–172.
- Csibra, G., & Gergely, G. (2007). 'Obsessed with goals': Functions and mechanisms of teleological interpretation of actions in humans. *Acta Psychologica*, 124(1), 60–78.
- Dennett, D. C. (1989). The intentional stance. MIT press.
- Dörrenberg, S., Rakoczy, H., & Liszkowski, U. (2018). How (not) to measure infant theory of mind: Testing the replicability and validity of four non-verbal measures. *Cognitive Development*, 46, 12–30.
- Elsner, B., & Adam, M. (2021). Infants' goal prediction for simple action events:

 The role of experience and agency cues. *Topics in Cognitive Science*, 13(1),

 45–62.
- Frank, M. C., Bergelson, E., Bergmann, C., Cristia, A., Floccia, C., Gervain, J., ...

- Yurovsky, D. (2017). A collaborative approach to infant research: Promoting reproducibility, best practices, and theory-building. *Infancy*, 22(4), 421–435. https://doi.org/10.1111/infa.12182
- Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. *Neuron*, 50(4), 531–534.
- Ganglmayer, K., Attig, M., Daum, M. M., & Paulus, M. (2019). Infants' perception
 of goal-directed actions: A multi-lab replication reveals that infants anticipate
 paths and not goals. *Infant Behavior and Development*, 57, 101340.
- Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naive theory of rational action. *Trends in Cognitive Sciences*, 7(7), 287–292.
- Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56(2), 165–193.
- Gliga, T., Jones, E. J., Bedford, R., Charman, T., & Johnson, M. H. (2014). From
 early markers to neuro-developmental mechanisms of autism. *Developmental*Review, 34(3), 189–207.
- Grosse Wiesmann, C., Friederici, A. D., Singer, T., & Steinbeis, N. (2017). Implicit
 and explicit false belief development in preschool children. *Developmental*Science, 20(5), e12445.
- Hayashi, T., Akikawa, R., Kawasaki, K., Egawa, J., Minamimoto, T., Kobayashi,

 K., ... others. (2020). Macaques exhibit implicit gaze bias anticipating others'

 false-belief-driven actions via medial prefrontal cortex. *Cell Reports*, 30(13),

 4433–4444.
- Kampis, D., Karman, P., Csibra, G., Southgate, V., & Hernik, M. (2021). A two-lab direct replication attempt of southgate, senju and csibra (2007). Royal Society

 Open Science, 8(8), 210190.
- Kampis, D., & Southgate, V. (2020). Altercentric cognition: How others influence our cognitive processing. *Trends in Cognitive Sciences*, 24(11), 945–959.

- Kano, F., Krupenye, C., Hirata, S., Tomonaga, M., & Call, J. (2019). Great apes use self-experience to anticipate an agent's action in a false-belief test.
- Proceedings of the National Academy of Sciences, 116(42), 20904–20909.
- Király, I., Oláh, K., Csibra, G., & Kovács, Á. M. (2018). Retrospective attribution of false beliefs in 3-year-old children. *Proceedings of the National Academy of Sciences*, 115(45), 11477–11482.
- Knudsen, B., & Liszkowski, U. (2012). 18-month-olds predict specific action
 mistakes through attribution of false belief, not ignorance, and intervene
 accordingly. *Infancy*, 17(6), 672–691.
- Kovács, Á. M. (2016). Belief files in theory of mind reasoning. Review of Philosophy and Psychology, 7, 509–527.
- Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others' beliefs in human infants and adults. *Science*, 330(6012), 1830–1834.
- Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. *Science*, 354(6308), 110–114.
- Kulke, L., Duhn, B. von, Schneider, D., & Rakoczy, H. (2018). Is implicit theory of mind a real and robust phenomenon? Results from a systematic replication study. *Psychological Science*, 29(6), 888–900.
- Kulke, L., & Hinrichs, M. A. B. (2021). Implicit theory of mind under realistic social circumstances measured with mobile eye-tracking. *Scientific Reports*, 11(1), 1215.
- Kulke, L., Johannsen, J., & Rakoczy, H. (2019). Why can some implicit theory of
 mind tasks be replicated and others cannot? A test of mentalizing versus
 submentalizing accounts. *PloS One*, 14(3), e0213772.
- Kulke, L., & Rakoczy, H. (2018). Implicit theory of mind—an overview of current replications and non-replications. *Data in Brief*, 16, 101–104.

- Kulke, L., & Rakoczy, H. (2019). Testing the role of verbal narration in implicit theory of mind tasks. *Journal of Cognition and Development*, 20(1), 1–14.
- Kulke, L., Reiß, M., Krist, H., & Rakoczy, H. (2018). How robust are anticipatory looking measures of theory of mind? Replication attempts across the life span.

 Cognitive Development, 46, 97–111.
- Kulke, L., Wübker, M., & Rakoczy, H. (2019). Is implicit theory of mind real but hard to detect? Testing adults with different stimulus materials. Royal Society

 Open Science, 6(7), 190068.
- Leslie, A. M. (2005). Developmental parallels in understanding minds and bodies.

 Trends in Cognitive Sciences, 9(10), 459–462.
- Liszkowski, U., Carpenter, M., & Tomasello, M. (2007). Pointing out new news, old
 news, and absent referents at 12 months of age. *Developmental Science*, 10(2),
 F1–F7.
- Luo, Y., & Baillargeon, R. (2007). Do 12.5-month-old infants consider what objects others can see when interpreting their actions? *Cognition*, 105(3), 489–512.
- Luo, Y., & Baillargeon, R. (2010). Toward a mentalistic account of early
 psychological reasoning. Current Directions in Psychological Science, 19(5),
 301–307.
- ManyBabies Consortium. (2020). Quantifying sources of variability in infancy
 research using the infant-directed-speech preference. Advances in Methods and
 Practices in Psychological Science, 3(1), 24–52.
- Meristo, M., Morgan, G., Geraci, A., Iozzi, L., Hjelmquist, E., Surian, L., & Siegal,
 M. (2012). Belief attribution in deaf and hearing infants. *Developmental*Science, 15(5), 633–640.
- O'Neill, D. K. (1996). Two-year-old children's sensitivity to a parent's knowledge state when making requests. *Child Development*, 67(2), 659–677.
- Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false

- beliefs? Science, 308(5719), 255–258.
- Perner, J. (1991). Understanding the representational mind. The MIT Press.
- Phillips, J., Buckwalter, W., Cushman, F., Friedman, O., Martin, A., Turri, J., ...
- Knobe, J. (2021). Knowledge before belief. Behavioral and Brain Sciences, 44, e140.
- Poulin-Dubois, D., Rakoczy, H., Burnside, K., Crivello, C., Dörrenberg, S.,
- Edwards, K., ... others. (2018). Do infants understand false beliefs? We don't
- know yet—a commentary on baillargeon, buttelmann and southgate's
- commentary. Cognitive Development, 48, 302–315.
- Powell, L. J., Hobbs, K., Bardis, A., Carey, S., & Saxe, R. (2018). Replications of
- implicit theory of mind tasks with varying representational demands. Cognitive
- Development, 46, 40–50.
- Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind?
- Behavioral and Brain Sciences, 1(4), 515-526.
- Priewasser, B., Fowles, F., Schweller, K., & Perner, J. (2020). Mistaken max
- befriends duplo girl: No difference between a standard and an acted-out false
- belief task. Journal of Experimental Child Psychology, 191, 104756.
- Priewasser, B., Rafetseder, E., Gargitter, C., & Perner, J. (2018). Helping as an
- early indicator of a theory of mind: Mentalism or teleology? Cognitive
- Development, 46, 69–78.
- Schneider, D., Lam, R., Bayliss, A. P., & Dux, P. E. (2012). Cognitive load disrupts
- implicit theory-of-mind processing. Psychological Science, 23(8), 842–847.
- Schneider, D., Slaughter, V. P., Bayliss, A. P., & Dux, P. E. (2013). A temporally
- sustained implicit theory of mind deficit in autism spectrum disorders.
- 954 Cognition, 129(2), 410–417.
- Schuwerk, T., Priewasser, B., Sodian, B., & Perner, J. (2018). The robustness and
- generalizability of findings on spontaneous false belief sensitivity: A replication

- attempt. Royal Society Open Science, 5(5), 172273.
- Scott, R. M., & Baillargeon, R. (2017). Early false-belief understanding. *Trends in Cognitive Sciences*, 21(4), 237–249.
- Senju, A., Southgate, V., Miura, Y., Matsui, T., Hasegawa, T., Tojo, Y., ... Csibra,
 G. (2010). Absence of spontaneous action anticipation by false belief attribution
 in children with autism spectrum disorder. *Development and Psychopathology*,

 22(2), 353–360.
- Senju, A., Southgate, V., Snape, C., Leonard, M., & Csibra, G. (2011). Do

 18-month-olds really attribute mental states to others? A critical test.

 Psychological Science, 22(7), 878–880.
- Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in asperger syndrome. *Science*, 325(5942), 883–885.
- Southgate, V., Johnson, M. H., Karoui, I. E., & Csibra, G. (2010). Motor system
 activation reveals infants' on-line prediction of others' goals. *Psychological*Science, 21(3), 355–359.
- Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. *Cognition*, 130(1), 1–10.
- Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs by 13-month-old infants. *Psychological Science*, 18(7), 580–586.
- Surian, L., & Franchin, L. (2020). On the domain specificity of the mechanisms
 underpinning spontaneous anticipatory looks in false-belief tasks. *Developmental*Science, 23(6), e12955.
- Thoermer, C., Sodian, B., Vuori, M., Perst, H., & Kristen, S. (2012). Continuity from an implicit to an explicit understanding of false belief from infancy to preschool age. *British Journal of Developmental Psychology*, 30(1), 172–187.
- Träuble, B., Marinović, V., & Pauen, S. (2010). Early theory of mind competencies:

- Do infants understand others' beliefs? Infancy, 15(4), 434–444.
- Wellman, H. M., & Cross, D. (2001). Theory of mind and conceptual change. *Child*Development, 72(3), 702–707.
- Wiesmann, C. G., Friederici, A. D., Disla, D., Steinbeis, N., & Singer, T. (2018).
- Longitudinal evidence for 4-year-olds' but not 2-and 3-year-olds' false
- belief-related action anticipation. Cognitive Development, 46, 58–68.
- Woodward, A. L., & Sommerville, J. A. (2000). Twelve-month-old infants interpret action in context. *Psychological Science*, 11(1), 73–77.

 $\label{eq:labeleq:la$

Lab	N collected	N included	Sex (N Female)	Mean Age (years)	Method
CorbitLab	18	15	14	20	In-lab
DevlabAU	20	20	15	25	In-lab
MEyeLab	56	53	39	24	In-lab
SkidLSDLab	11	8	3	22	In-lab
ToMcdlSalzburg	33	32	23	27	In-lab
UIUCinfantlab	39	33	25	19	In-lab
$\operatorname{affcogUTSC}$	23	16	7	21	web-based
babyLeidenEdu	24	16	12	23	In-lab
babylabBrookes	69	65	49	22	In-lab
babylabINCC	20	18	12	31	In-lab
babylabMPIB	16	16	11	27	In-lab
babylabNijmegen	22	16	14	24	In-lab
babylabTrento	16	16	9	22	In-lab
babylabUmassb	34	15	12	20	In-lab
babyuniHeidelberg	16	16	14	22	In-lab
beinghumanWroclaw	19	16	9	33	web-based
careylabHarvard	18	16	12	20	In-lab
${\it child devlab Ashoka}$	NA	16	NA	NA	
collabUIOWA	16	16	10	19	In-lab
gaugGöttingen	34	32	21	34	In-lab
jmuCDL	32	32	22	19	In-lab
${\bf kids dev Uniof New castle}$	20	16	8	38	In-lab
labUNAM	20	13	9	22	In-lab
lmuMunich	31	30	23	22	In-lab
mecdmpihcbs	19	19	10	28	In-lab
social cog Umiami	20	16	10	19	In-lab
sociocognitivelab	20	17	11	32	In-lab

Table 2

Lab and participant information.

Lab	N collected	N included	Sex (N Female)	Mean Age (months)	Method
CorbitLab	14	10	5	22	In-lab
DevlabAU	18	17	8	19	In-lab
SkidLSDLab	10	8	4	24	In-lab
ToMcdlSalzburg	20	15	9	22	In-lab
UIUCinfantlab	22	16	9	22	In-lab
babyLeidenEdu	18	15	9	23	In-lab
babylabBrookes	19	18	11	22	In-lab
babylabChicago	18	15	6	20	In-lab
babylabINCC	17	16	10	22	In-lab
babylabNijmegen	23	18	8	23	In-lab
babylabOxford	27	22	9	24	In-lab
babylabTrento	18	17	10	23	In-lab
babylabUmassb	7	6	2	20	In-lab
babylingOslo	20	17	8	23	In-lab
babyuniHeidelberg	17	15	6	24	In-lab
beinghumanWroclaw	24	15	8	24	web-base
careylabHarvard	17	15	7	22	In-lab
cecBYU	16	15	5	22	In-lab
childdevlabAshoka	16	10	6	23	In-lab
gaugGöttingen	29	23	11	23	In-lab
gertlabLancaster	24	20	10	23	In-lab
infantcogUBC	NA	22	NA	NA	
irlConcordia	19	14	6	22	In-lab
${\bf kids dev Uniof New castle}$	17	16	10	23	In-lab
kokuHamburg	22	16	8	26	In-lab
labUNAM	20	14	8	22	In-lab
lmuMunich	49	34	23	22	In-lab
mecdmpihcbs	29	17	10	23	In-lab
saxelab	36	21	5	23	web-base

Table 2 continued

Lab	N collected	N included	Sex (N Female)	Mean Age (months)	Method
unicph	47	32	19	22	In-lab