Parameterized and Runtime-tunable Snapshot Isolation in Distributed Transactional Key-value Stores

Hengfeng Wei, Yu Huang, Jian Lu

Nanjing University, China

September 19, 2017

Parameterized and Runtime-tunable Snapshot Isolation

RVSI: Relaxed Version Snapshot Isolation

Experimental Evaluation

Parameterized and Runtime-tunable Snapshot Isolation

RVSI: Relaxed Version Snapshot Isolation

Experimental Evaluation

Impacts of RVSI specification on the *transaction abort rates* in various scenarios

Impacts of RVSI specification on the *transaction abort rates* in various scenarios

What about performance?

- Not done yet in this work
- ▶ RVSI-MS and RVSI-MP protocols in CHAMELEON are simple

CHAMELEON prototype on Aliyun:

- 3 datacenters ¹
- 3 nodes in each datacenter
- Partition & Replication
- ► Clients in our lab ²

¹Located in East China, North China, and South China, respectively.

²Located in East China.

³https://github.com/hengxin/aliyun-ping-traces ← 🗗 → ← 🛢 → 🐧 💆 🛷 🗬

CHAMELEON prototype on Aliyun:

- 3 datacenters ¹
- 3 nodes in each datacenter
- Partition & Replication
- ► Clients in our lab ²

(One-way) delays among nodes ³:

Within datacenter: $1\sim 2\mathrm{ms}$

Across datacenters: $15 \sim 25 \text{ms}$

Clients to nodes: $15 \sim 20 \text{ms}$

¹Located in East China, North China, and South China, respectively.

²Located in East China.

³https://github.com/hengxin/aliyun-ping-traces

Three categories of workload parameters for experiments on Aliyun.

Parameter	Value	Explanation
#keys	$25 = 5 \text{ (rows)} \times 5 \text{ (columns)}$	
#clients	5, 10, 15, 20, 25, 30	
#txs/client	1000	
#ops/tx	\sim Binomial(20, 0.5)	
rwRatio	1:2, 1:1, 4:1	#reads/#writes
zipfExponent	1	parameter for
ZipitZpolielit		Zipfian distribution
minInterval	0ms	
maxInterval	10ms	min/max/mean
meanInterval	5ms	inter-transaction time
(1- 1- 1-)	(1,0,0) (1,1,0) (1,1,1)	
(k_1, k_2, k_3)	(2,0,0) (2,0,1) (2,1,1)	

Three categories of workload parameters for experiments on Aliyun.

Parameter	Value	Explanation
#keys	$25 = 5 \text{ (rows)} \times 5 \text{ (columns)}$	
#clients	5, 10, 15, 20, 25, 30	
#txs/client	1000	
#ops/tx	\sim Binomial(20, 0.5)	
rwRatio	1:2, 1:1, 4:1	#reads/#writes
zipfExponent	1	parameter for Zipfian distribution
minInterval	0ms	
maxInterval	10ms	min/max/mean
meanInterval	5ms	inter-transaction time
(k_1, k_2, k_3)	(1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,0,1) (2,1,1)	

- "vc-aborted": RVSI version constraints violated
- "wcf-aborted": the WCF property violated

https://github.com/hengxin/chameleon-transactional-kystore

- "vc-aborted": RVSI version constraints violated
- "wcf-aborted": the WCF property violated

Transaction abort rates due to "vc-aborted" are sensitive to different values of k_1 , k_2 , or k_3 ,

 $^{^1}$ https://github.com/hengxin/chameleon-transactional-kystore

- "vc-aborted": RVSI version constraints violated
- "wcf-aborted": the WCF property violated

Transaction abort rates due to "vc-aborted" are sensitive to different values of k_1 , k_2 , or k_3 , but those due to "wcf-aborted" are not.

https://github.com/hengxin/chameleon-transactional-kystore

- "vc-aborted": RVSI version constraints violated
- "wcf-aborted": the WCF property violated

Transaction abort rates due to "vc-aborted" are sensitive to different values of k_1 , k_2 , or k_3 , but those due to "wcf-aborted" are not.

$$h \in \mathsf{RVSI} \iff h \in k_1\text{-BV} \cap k_2\text{-FV} \cap k_3\text{-SV} \cap \mathsf{WCF}.$$

- "vc-aborted": RVSI version constraints violated
- "wcf-aborted": the WCF property violated

Transaction abort rates due to "vc-aborted" are sensitive to different values of k_1 , k_2 , or k_3 , but those due to "wcf-aborted" are not.

$$h \in \mathsf{RVSI} \iff h \in k_1\text{-BV} \cap k_2\text{-FV} \cap k_3\text{-SV} \cap \mathsf{WCF}.$$

We report the results under the read-frequent workloads ¹.

¹https://github.com/hengxin/chameleon-transactional-kystore

The transaction abort rates due to "vc-aborted"

The transaction abort rates due to "vc-aborted" can be greatly reduced by slightly increasing the values of k_1 , k_2 , or k_3 :

$$vc(1,0,0) = 0.1994 \implies vc(2,1,1) = 0.0091 \quad (\# \text{clients} = 30)$$

Most "vc-aborted" transactions abort because of violating k_2 -FV.

$$fv(1,0,0) = 0.1889 \implies fv(2,0,0) = 0.1866 \implies fv(1, 1,0) = 0.0064$$

Question: when does k_1 for k_1 -BV take effect?

It seems that k_1 -BV has *little* impact on the transaction abort rates.

Question: when does k_1 for k_1 -BV take effect?

It seems that k_1 -BV has *little* impact on the transaction abort rates.

It may be the case in the Aliyun scenarios.

What about other scenarios?

Types Values (ms) Explanation

Types	Values (ms)	Explanation
issueDelay	5, 8, 10, 12, 15, 20	delays between clients and replicas

_	Types	Values (ms)	Explanation
	replDelay	5, 10, 15, 20, 30	delays between masters and slaves

Types	Values (ms)	Explanation
2pcDelay	10, 20, 30, 40, 50	delays among masters

When the "issueDelay" gets shorter, the impacts of k_1 -BV have begun to emerge.

 k_2 -FV: In the Aliyun scenarios, most transactions have been aborted because of violating k_2 -FV.

 k_2 -FV: In the Aliyun scenarios, most transactions have been aborted because of violating k_2 -FV.

 k_1 -BV: In controlled experiments, the impacts of k_1 -BV emerge when the "issueDelay" gets shorter.

 k_2 -FV: In the Aliyun scenarios, most transactions have been aborted because of violating k_2 -FV.

 k_1 -BV: In controlled experiments, the impacts of k_1 -BV emerge when the "issueDelay" gets shorter.

 k_3 -SV: Complex and challenging (involving multiple data items)