0.1 H8 数学選択

6

群 G と $N \triangleleft G$, $H \leq G$ について NH = G, $H \cap N = \{e\}$ ならば半直積 $N \rtimes H \cong G$ である.

 $\boxed{7}$ $(1)f(x^2)=f(x)g(x)$ なる $g(x)\in\mathbb{Q}[x]$ が存在する.f の根 α に対して $f(\alpha^2)=f(\alpha)g(\alpha)=0$ より α^2 も f の根である.f が n 次多項式であるから,異なる根は高々 n 個である.よって $\alpha^{2^m}=\alpha^{2^k}$ となる m>k が存在する.このとき $\alpha^{2^m-2^k}=1$ となるから α は 1 の冪根である.

 α が偶数位数の根であるとする。すなわち $\alpha^{2m}=1$ となる最小の正の整数 m が存在する。このとき $\alpha^m=-1$ となる。また $x^m-1=0$ は α^2 を根にもつ。 f は α^2 の最小多項式であるから $x^m-1=f(x)h(x)$ と なる $h(x)\in\mathbb{Q}[x]$ が存在する。 α を代入すると $-2=\alpha^m-1=f(\alpha)h(\alpha)=0$ となり矛盾する。よって α は奇数位数の根である。

(2)f の根 α, β の位数を s>t とする. $f(x)|(x^t-1)$ であるから $\alpha^t=1$ である. これは s>t であることに 矛盾する. よって f の根は全て位数が等しい.

f の根 α の位数が m であるとする. $f(-\alpha)=0$ なら $(-\alpha)^m=(-1)^m\alpha^m=(-1)^m=1$ となり m は偶数である. これは矛盾.

 $f((-\alpha)^2) = f(\alpha^2) = f(\alpha)g(\alpha) = 0$ であり、 $f((-\alpha)^2) = f(-\alpha)g(-\alpha) = 0$ であるから $g(-\alpha) = 0$ である. $g(-\alpha) = 0$ の次数は f と等しいから最高時の係数に注意すれば $g(x) = (-1)^n f(-x)$ である.

(3) f が奇数位数の冪根の最小多項式であるから f は円分多項式である。オイラーのトーシュエント関数を φ とすると、位数 m の 1 の冪根を解に持つ円分多項式の次数は $\varphi(m)$ である。

 $\varphi(m)\leq 6$ となる奇数 m を考える。1,2,4,8,16,m-1,32 は m と互いに素である。したがって $m\geq 34$ なら $\varphi(m)>6$ である。また $33\geq m\geq 18$ で 3,5,7 のいずれも素因数にもつ数は存在しない。よって $m\geq 18$ なら $\varphi(m)>6$ である。m=1,3,5,7,9 なら $\varphi(m)\leq 6$ であり,m=11,13,15,17 なら $\varphi(m)>6$ である。m=1,3,5,7 に対応する円分多項式は $x-1,x^2+x+1,x^4+x^3+x^2+x+1,x^6+x^5+x^4+x^3+x^2+x+1$ で

ある. m=9 なら $(x^9-1)/(x^3-1)=x^6+x^3+1$ である. この 5 つが求める f(x) である.