Introdução à Computação

Prof.: Heron Aragão Monteiro

Introdução à Computação

- Livro-texto
 - Elementos de Eletrônica Digital
 - Idoeta e Capuano

Bases Computacionais

- Decimal
- Binário
- Octal
- Hexadecimal

- Base Binária
 - Algarismos
 - 0
 - 1
 - Nomenclatura
 - 1 dígito binário: bit Blnary digiT
 - 4 dígitos binários: nibble
 - 8 dígitos binários: byte
 - Notação
 - 101011₂

- Conversão do Sistema Binário para o Decimal
 - Ponto de partida: decomposição de número decimal
 - Exemplo: 594
 - Conversão de binário para decimal
 - Escreve o binário com notação exponencial
 - Base binária
 - Obtém o decimal correspondente
 - Exemplo: converter 1101₂ para decimal
 - Para estudar
 - Exercícios resolvidos: 1.2.1.1

- Conversão do Sistema Decimal para o Binário
 - Método das divisões sucessivas pela base (2)
 - Exemplos
 - Converter 47 para binário
 - Converter 23 para binário
 - Converter 400 para binário
 - Para estudar
 - Exercícios resolvidos: 1.2.2.1

- Conversão de Números Binários Fracionários para Decimais
 - Mesmo método da conversão de inteiros
 - Notação polinomial
 - Exemplo
 - Converter para decimal: 101,101
 - Para estudar
 - Exercícios resolvidos: 1.2.3.1

- Conversão de Números Decimais Fracionários para Binários
 - Parte inteira: método das divisões sucessivas
 - Parte fracionária: método das multiplicações sucessivas
 - Exemplos
 - Converter para decimal: 8,375
 - Converter para decimal: 4,8
 - Para estudar
 - Exercícios resolvidos: 1.2.4.1

- Sistema Octal de Numeração
 - Algarismos
 - 0a7
 - Notação
 - 2175₈
 - 101011₈

- Conversão do Sistema Octal para o Decimal
 - Escreve o octal com notação exponencial
 - Base oito
 - Obtém o decimal correspondente
 - Exemplo: converter 137₈ para decimal
 - Para estudar
 - Exercícios resolvidos: 1.3.1.1

- Conversão do Sistema Decimal para o Octal
 - Método das divisões sucessivas pela base (8)
 - Exemplos
 - Converter 38 para octal
 - Converter 102 para octal
 - Converter 413 para octal
 - Para estudar
 - Exercícios resolvidos: 1.3.2.1

- Conversão do Sistema Octal para Binário
 - Cada octal corresponde aos seguintes números binários
 - 0 000
 - 1 001
 - 2 010
 - 3 011
 - 4 100
 - 5 101
 - 6 110
 - 7 111
 - Método: troca o octal pelo grupo de binários correspondentes
 - Exemplo: converter 3015₈ para binário.
 - Para estudar:
 - Exercícios resolvidos: 1.3.3.1

- Conversão do Sistema Binário para Octal
 - Método: troca cada grupo de três binários pelo octal correspondente
 - Começar o agrupamento da direita para a esquerda
 - Caso necessário, preencher com zeros para completar um grupo de três dígitos binários
 - Exemplo: converter 1001110101₂ para octal.
 - Para estudar:
 - Exercícios resolvidos: 1.3.4.1

- Sistema Hexadecimal de Numeração
 - Algarismos
 - 0 a 9 e as letras A, B, C, D, E, F
 - Notação
 - A532₁₆
 - 2175₁₆
 - 101011₁₆

- Conversão do Sistema Hexadecimal para o Decimal
 - Escreve o octal com notação exponencial
 - Base dezesseis
 - Trocar a letra pelo decimal respectivo
 - Obtém o decimal correspondente
 - Exemplo: converter 53F₁₆ para decimal
 - Para estudar
 - Exercícios resolvidos: 1.4.1.1

- Conversão do Sistema Decimal para o Hexadecimal
 - Método das divisões sucessivas pela base (16)
 - Para os restos entre 10 e 15, trocar o decimal pela respectiva letra.
 - Exemplos
 - Converter 538 para hexadecimal
 - Converter 64202 para hexadecimal
 - Para estudar
 - Exercícios resolvidos: 1.4.2.1

- Conversão do Sistema Hexadecimal para Binário
 - Cada hexadecimal corresponde aos seguintes números binários

```
0 - 0000
                       8 - 1000
1 - 0001
                       9 - 1001
2 - 0010
                      A - 1010
3 - 0011
                       B - 1011
4 - 0100
                       C - 1100
5 - 0101
                       D - 1101
6 - 0110
                       E - 1110
7 - 0111
                       F - 1111
```

- Método: troca o hexadecimal pelo grupo de binários correspondentes
- Exemplo: converter AE213₈ para binário.
- Para estudar:
 - Exercícios resolvidos: 1.4.3.1

- Conversão do Sistema Binário para Hexadecimal
 - Método: troca cada grupo de quatro binários pelo hexadecimal correspondente
 - Começar o agrupamento da direita para a esquerda
 - Caso necessário, preencher com zeros para completar um grupo de quatro dígitos binários
 - Exemplo: converter 1101110101₂ para hexadecimal.
 - Para estudar:
 - Exercícios resolvidos: 1.4.4.1

- Operações Aritméticas no Sistema Binário
 - Adição
 - Tabuada

```
- 0+0 = 0
```

$$- 0+1 = 1$$

- -1+0=1
- -1+1=10 (Vai um, transporte ou carry)
- Exemplos

```
- 111000 + 111
```

- -1001 + 11
- 10111101011 + 11111
- Para estudar:
 - Exercícios resolvidos: 1.5.1.1

- Operações Aritméticas no Sistema Binário
 - Subtração
 - Tabuada

```
-0-0=0
```

- 0-1 = 11 (Vai um, transporte ou carry)**

```
-1-0=1
```

$$-1-1=0$$

- Exemplos
 - 110111 111
 - 10110101 100
 - 101001011 11111
- Para estudar:
 - Exercícios resolvidos: 1.5.2.1

- Operações Aritméticas no Sistema Binário
 - Multiplicação
 - Tabuada
 - 0x0 = 0
 - -0x1 = 0
 - -1x0 = 0
 - -1x1 = 1
 - Exemplos
 - 110111 * 100
 - 101 * 101
 - 101011 * 111
 - Para estudar:
 - Exercícios resolvidos: 1.5.3.1

- Notação dos Números Binários Positivos e Negativos
 - Convenção: bit mais significativo (mais à esquerda)
 - 0 número positivo
 - 1 número negativo
 - Sinal-módulo ou sinal-magnitude
 - Exemplos
 - Representar +31 e -31
 - Representar -8 e +13 com oito bits
 - Desvantagens
 - Duas representações para o número zero
 - Estudo de sinal nas operações aritméticas

- Notação dos Números Binários Positivos e Negativos
 - Complemento de dois
 - Números positivos
 - Mesma forma de sinal-módulo
 - Números negativos
 - Obtém a representação do número positivo em sinal-módulo
 - Calcula o complemento de um
 - Inverte todos os bits do número
 - Calcula o complemento de dois
 - Soma um ao complemento de um
 - Exemplos:
 - Representar +19 e -12

- Notação dos Números Binários Positivos e Negativos
 - Complemento de dois
 - Motivação
 - Expansão do número de bits
 - Exemplos
 - Representar -8 e +14 com oito bits
 - Vantagens
 - Só uma representação para o número zero
 - Evita estudo de sinal nas operações aritméticas
 - Para estudar
 - Exercícios resolvidos: 1.5.4.1

- Utilização do Complemento de Dois em Operações Aritméticas
 - Para operações de soma com parcelas de sinais diferentes
 - A B interpretado como A + (-B)
 - Calcula-se o complemento de dois de A e B, com mesma quantidade de bits
 - Efetua a soma com A
 - Caso resultado negativo
 - Calcular complemento de dois para avaliar resultado
 - Os números devem ter a mesma quantidade de bits
 - Estouro do número de bits deve ser desconsiderado

- Utilização do Complemento de Dois em Operações Aritméticas
 - Para operações de soma com parcelas de sinais iguais (**)
 - A + B ou (-A) + (-B)
 - Calcula-se o complemento de dois das parcelas, com a mesma quantidade de bits
 - Efetua a soma
 - Estouro do número de bits deve ser desconsiderado

(**) Este assunto não está no livro texto

- Utilização do Complemento de Dois em Operações Aritméticas
 - Para operações de soma com parcelas de sinais iguais (**)
 - Faz-se uma análise do sinal da soma, que deve ser o mesmo das parcelas
 - Se sinal da soma diferente, implica em overflow
 - Solução: expansão do número de bits das parcelas
 - Exemplos
 - Verifique se há overflow nas operações abaixo e corrija se necessário
 - 15 + 5
 - -30 + -8

(**) Este assunto não está no livro texto

- Para fixação do capítulo
 - Exercícios propostos: 1.6

- Introdução
 - George Boole 1854
 - Propôs Álgebra de Boole
 - Claude Shannon 1938
 - Utilizou a Álgebra de Boole em circuitos

- Funções Lógicas E, OU, NÃO, NE, NOU
 - Também chamadas de funções booleanas
 - São usados dois estados distintos:
 - 0
 - 1

- Função E ou AND
 - Efetua a multiplicação lógica de duas ou mais variáveis
 - Representação
 - S=A.B
 - Circuito

Tabela verdade

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

- Função E ou AND
 - Porta lógica

Porta com mais de duas entradas

- Função OU ou OR
 - Efetua a soma lógica de duas ou mais variáveis
 - Representação
 - S=A+B

Tabela verdade

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

- Função OU ou OR
 - Porta lógica

Porta com mais de duas entradas

- Função NÃO ou NOT
 - Efetua a inversão do valor lógico de uma variável
 - Representação
 - $S = \overline{A}$
 - Circuito

Tabela verdade

Α	S
0	1
1	0

- Função NÃO ou NOT
 - Porta lógica

Não há portas com mais de uma entrada

Capítulo 2

- Função NÃO E, NE ou NAND
 - Efetua a o inverso da função E
 - Representação
 - $S = (\overline{A \cdot B})$
 - Tabela verdade

ίO
ĺ(

Α	s e
В	
Α	
в ———	s

В	S
0	1
1	1
0	1
1	0
	0 1 0

Capítulo 2

- Função NÃO OU, NOU ou NOR
 - Efetua a o inverso da função E
 - Representação
 - $S = (\overline{A + B})$
 - Tabela verdade

 Represen 	tação
------------------------------	-------

Α	
В	s s
Α	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
В	

В	S
0	1
1	0
0	0
1	0
	0 1 0

- Expressões Booleanas Obtidas de Circuitos Lógicos
 - Exemplo

- Para estudar
 - Exercícios resolvidos: 2.3.1

- Circuitos Obtidos de Expressões Booleanas
 - Exemplo
 - Expressão

$$- S = (A+B).C.(B+D)$$

Circuito

- Para estudar
 - Exercícios resolvidos: 2.4.1

- Tabelas da Verdade Obtidas de Expressões Booleanas
 - Procedimento
 - Montar o quadro de possibilidades símbolos proposicionais
 - Montar colunas para os membros das expressões (subfórmulas)
 - Preencher as colunas com os resultados
 - Montar uma coluna para o resultado final
 - Preencher essa coluna com o resultado final

- Tabelas da Verdade Obtidas de Expressões Booleanas
 - Exemplo
 - Obter a tabela verdade da expressão

$$S = A \cdot \overline{B} \cdot C + A \cdot \overline{D} + \overline{A} \cdot B \cdot D$$

- Para estudar
 - Exercícios resolvidos: 2.5.1

- Expressões Booleanas Obtidas de Tabelas Verdade
 - Forma Normal Disjuntiva
 - Escolher as linhas da tabela cuja saída é igual a 1
 - Montar cada subfórmula como multiplicação lógica
 - Os símbolos proposicionais com valor lógico zero devem ser negados
 - Unir todas as subfórmulas pela soma lógica

- Expressões Booleanas Obtidas de Tabelas Verdade
 - Forma Normal Conjuntiva
 - Escolher as linhas da tabela cuja saída é igual a 0
 - Montar cada subfórmula como soma lógica
 - Os símbolos proposicionais com valor lógico um devem ser negados
 - Unir todas as subfórmulas pela multiplicação lógica

Capítulo 2

- Expressões Booleanas Obtidas de Tabelas Verdade
 - Exemplo
 - Tabela Verdade
 - Forma Normal Disjuntiva

$$-S = \overline{A} \cdot \overline{B} + A \cdot \overline{B}$$

Forma Normal Conjuntiva

$$-S=(A+\overline{B}).(\overline{A}+\overline{B})$$

- Para estudar
 - Exercícios resolvidos: 2.6.1

Α	В	S
0	0	1
0	1	0
1	0	1
1	1	0

Capítulo 2

Bloco Lógico OU EXCLUSIVO

- Tem a função de fornecer o valor lógico 1 quando apenas uma de suas entradas for igual a 1
- Tabela verdade

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Representação

Capítulo 2

Bloco Lógico COINCIDÊNCIA

- Tem a função de fornecer o valor lógico 1 quando as suas duas entradas tiverem valores iguais
- Tabela verdade

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Representação

- Para estudar
 - Exercícios resolvidos: 2.7.4

- Equivalência entre Blocos Lógicos
 - Inversor a partir de uma porta NE

Inversor a partir de uma porta NOU

NOU a partir de inversores e porta E

- Equivalência entre Blocos Lógicos
 - OU a partir de inversores e porta NE

NE a partir de inversores e uma porta OU

E a partir de inversores e uma porta NOU

- Equivalência entre Blocos Lógicos
 - Para estudar
 - Exercícios resolvidos: 2.8.6

- Para fixação do capítulo
 - Exercícios propostos: 2.9

Variáveis

- Cada um dos diferentes símbolos proposicionais representado por uma letra
- Podem assumir apenas um dos valores booleanos
 - 0 ou 1

Expressões

- Sentenças matemáticas compostas de termos cujas variáveis são booleanas
- A ligação dos termos e das variáveis se dá por meio das funções lógicas
- Podem assumir apenas um dos valores booleanos
 - 0 ou 1

- Postulados da complementação
 - Se $A=0 \rightarrow \overline{A}=1$
 - Se $A=1 \rightarrow \overline{A}=0$
- Identidade da complementação
 - $-\overline{\overline{A}} = A$

- Postulados da adição
 - -0+0=0
 - -0+1=1
 - -1+0=1
 - $_{-}$ 1+1=1
- Identidades da adição
 - A + 0 = A
 - -A+1=1
 - -A+A=A
 - $-A+\overline{A}=1$

- Postulados da multiplicação
 - -0.0=0
 - -0.0=0
 - -1.0=0
 - -1.1=1
- Identidades da multiplicação
 - -A.0=0
 - -A.1=A
 - -A.A=A
 - $-A.\overline{A}=0$

- Propriedade comutativa
 - Adição
 - A + B = B + A
 - Multiplicação
 - A.B=B.A
- Propriedade associativa
 - Adição
 - A + (B+C) = (A+B) + C = A+B+C
 - Multiplicação
 - A.(B.C)=(A.B).C=A.B.C

- Propriedade distributiva
 - A.(B+C)=A.B+A.C
 - Tabela verdade para verificação
- Teoremas de De Morgan
 - $-(\overline{A.B}) = \overline{A} + \overline{B}$
 - $(\overline{A+B})=\overline{A}.\overline{B}$

- Identidades auxiliares
 - A+A.B=A
 - -(A+B).(A+C)=A+B.C
 - $A + \overline{A} \cdot B = A + B$

- Simplificação Algébrica de Expressões Booleanas
 - Consiste em simplificar as expressões booleanas utilizando a Álgebra de Boole
 - Exemplo

• Simplificar
$$S = ABC + A \overline{C} + A \overline{B}$$
 $S = A(BC + \overline{C} + \overline{B})$ $S = A[BC + (\overline{C} + \overline{B})]$ $S = A[BC + (\overline{C} + \overline{B})]$ $S = A[BC + (\overline{BC})]$ $S = A[1]$ $S = A$

- Simplificação Algébrica de Expressões Booleanas
 - Exemplo
 - Simplificar $S = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, B \, \overline{C} + A \, \overline{B} \, C$ $S = \overline{A} \, \overline{C} \, (\overline{B} + B) + A \, \overline{B} \, C$ $S = \overline{A} \, \overline{C} + A \, \overline{B} \, C$
 - Para estudar
 - Exercícios resolvidos: 3.8.1

- Mapa de Karnaugh
 - Mintermos e Maxtermos
 - Identificação
 - Representação
 - Formas Normais
 - Conjuntiva
 - Disjuntiva

- Mapa de Karnaugh
 - Preenchimento do mapa
 - Para duas variáveis
 - Para três variáveis
 - Para quatro variáveis
 - Regras de simplificação
 - Para duas variáveis
 - Para três variáveis
 - Para quatro variáveis

- Mapa de Karnaugh
 - Obtenção das expressões simplificadas
 - Mintermos
 - Maxtermos
 - Condições Irrelevantes
 - Para estudar
 - Exercícios resolvidos: 3.9.4 e 3.9.6.1
- Para fixação do capítulo
 - Exercícios propostos: 3.10
 - Não fazer 3.10.13, 3.10.16, 3.10.17 e 3.10.18

Circuitos Combinacionais (1)

Capítulo 4

Definição

 São circuitos que dependem exclusivamente das combinações das variáveis de entrada

O circuito pode ser obtido pelo processo abaixo:

- Circuito com duas variáveis
 - Controle de cruzamento

Condições:

- Trânsito só na rua B → sinal 2 aberto
- Trânsito só na rua A → sinal 1 aberto
- Trânsito nas duas ruas → sinal 1 aberto preferencial

Circuito com duas variáveis

- Controle de cruzamento
 - Variáveis de entrada
 - Existência de carro na rua A: A
 - Existência de carro na rua B: B
 - Variáveis de saída
 - Verde do sinal 1 aceso: V₁
 - Verde do sinal 2 aceso: V₂
 - Vermelho do sinal 1 aceso: V_{m1}
 - Vermelho do sinal 2 aceso: V_{m2}

- Circuito com duas variáveis
 - Controle de cruzamento
 - Tabela verdade

A	В	Vi	V_{mt}	V	V _{m2}
0	0	0	1	1	0
0	1	0	1	1	0
1	0	1	0	0	1
1	1	1	0	0	1

← suposição

Circuito com duas variáveis

- Controle de cruzamento
 - Simplificação
 - As expressões para V₁ e V_{m2} são idênticas
 - As expressões para V₂ e V_{m1} são idênticas

$$-V_1 = V_{m2} = A$$

$$-V_2=V_{ml}=\bar{A}$$

Circuito

- Circuito com três variáveis
 - Controle de amplificador
 - Condições
 - O toca-discos tem maior prioridade
 - O tocas fitas tem prioridade intermediária
 - O rádio tem prioridade inferior

- Circuito com três variáveis
 - Controle de amplificador
 - Variáveis de entrada: A, B e C
 - Variáveis de saída: S_A, S_B e S_C
 - Tabela Verdade

Α	В	С	SA	SB	SC
0	0	0	X	X	Χ
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	0	0

- Circuito com três variáveis
 - Controle de amplificador
 - Simplificação

Circuito

- Circuito com quatro variáveis
 - Intercomunicadores
 - Estudar (4.2.3)
- Para estudar
 - Exercícios resolvidos: 4.2.4
- Para fixação do capítulo
 - Exercícios propostos: 4.3

Códigos

- Exemplos de códigos existentes na eletrônica digital:
 - Código BCD Binary Code Decimal
 - Usado para conversão de decimal para binário de quatro dígitos

Decimal	BDC 8421	BDC 7421	BDC 5211	BDC 2421
0	0000	0000	0000	0000
1	0001	0001	0001	0001
2	0010	0010	0011	0010
3	0011	0011	0101	0011
4	0100	0100	0111	0100
5	0101	0101	1000	1011
6	0110	0110	1001	1100
7	0111	1000	1011	1011
8	1000	1001	1101	1110
9	1001	1010	1111	1111

Códigos

- Código excesso 3
 - Consiste na transformação, em binário, do decimal somado em três unidades

Decimal		V 7.60		
	A	В	C	D
0	0	0	1	1
1	0	1	0.	0.
2	0	1	0	1
3	0 -	. 1	1	0
. 4	0	1	1	1
.5	1	0	0	0
6 -	1	0	0	1
7.	1	. 0	1	0
8	1	0	1	1
9	1	1	0	0

- Códigos
 - Código Gray
 - Tem como principal característica a mudança de apenas um bit entre um número e outro

Decimal		Gr	ay	
	A	В	C	D
0	0	0	0	0
1	0	0	0	1
2	0	0.	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	. 1	0	0
8	î	1	0	0
9	1	1	0	1
10	1	1	1	1
11	1	1	1	0
12	1	0	1	0
13	1	. 0	1	1
14	1	0	0	1
15	1	0	0	0

- Códigos
 - Código 2 entre 5
 - Possui sempre dois bits iguais a 1 dentro dos cinco bits.

Decimal		2	entre	5	
	A	В	C	D	E
0	0	0	0	1	1
1	0	0	1	0	1
2	0	0	1	1	0
3	0	1	0	0	1
4	0	1	0	1	0
5	0	1	1	0	0
-6	1	0	0	0	1
7	1	0	0	1	0
8	1	0	1	0	0
9	1	1	0	0	0

- Códigos
 - Código Johnson
 - Utilizado na construção do contador Johnson

Decimal		J	ohnso	n	
	A	В	C	D	E
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	1
3	0	0	1	1	1
4	0	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0
7	1	1	1	0	0
8	1	1.	0	0	0
9	1	0	0	0	0

- Codificadores e Decodificadores
 - Codificadores são circuitos combinacionais que permitem a passagem de um código conhecido para um código desconhecido
 - Decodificadores fazem o processo inverso
 - Porém essa diferenciação depende de um referencial
 - No geral esses circuitos podem ser chamados de decodificadores

- Codificador decimal/binário
 - Entrada consiste de um conjunto de chaves numeradas (0 a 9)
 - Saída composta por tantos fios quantas forem as quantidades de bits da saída
 - Estrutura geral

Por convenção a chave fechada equivale ao nível lógico 0

- Codificador decimal/binário
 - Decimal → BCD 8421
 - Tabela Verdade

Chave	A	В	C	D
. Ch0	0	0	0	0
Ch1	0	0	0	1
Ch2	0	0	1	0
Ch3	0	0	1	1
Ch4	0	1	0	0
Ch5	0	1	0	1
Ch6	0	1	1	0
Ch7	0	1	1	1
Ch8	1	0	0	0
Ch9	1.	0	0	1

A saída A será 1 se Ch8 ou Ch9 for acionada

A saída B será 1 para Ch4, Ch5, Ch6 ou Ch7

A saída C será 1 para Ch2, Ch3, Ch6 ou Ch7

A saída D será 1 para Ch1, Ch3, Ch5, Ch7 ou Ch9

- Codificador decimal/binário
 - Decimal → BCD 8421
 - Circuito

Chave	A	В	C	D
. Ch0	0	0	0	0
Ch1	0	0	0	1
Ch2	0	0	1	0
Ch3	0	0	1	1
Ch4	0	1	0	0
Ch5	0	1	0	1
Ch6	0	1	1	0
Ch7	0	1	1	1
Ch8	1	0	0	0
Ch9	1.	0	0	1

- Codificador binário/decimal
 - BCD 8421 → decimal
 - Entrada: bits do código
 - Saída: respectivos bits do código decimal 9876543210
 - Tabela verdade

	BCD	842	1				Códi	go 98	7654	3210			
A	В	С	D	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	. 0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0

- Codificador binário/decimal
 - BCD 8421 → decimal
 - Obtenção da expressão lógica de cada uma das saídas S, via mapa de Karnaugh

- Codificador binário/decimal
 - BCD 8421 → decimal
 - Obtenção da expressão lógica de cada uma das saídas S, via mapa de Karnaugh

- Codificador binário/decimal
 - BCD 8421 → decimal
 - Obtenção da expressão lógica de cada uma das saídas S, via mapa de Karnaugh

- Codificador binário/decimal
 - BCD 8421 → decimal
 - Circuito

$$S_9 = AD$$

$$S_8 = A \overline{D}$$

$$S_7 = BCD$$

$$S_6 = BC\overline{D}$$

$$S_5 = B\overline{C}D$$

$$S_4 = B\overline{C}\overline{D}$$

$$S_3 = \overline{B}CD$$

$$S_2 = \overline{B}C\overline{D}$$

$$S_1 = \overline{A} \, \overline{B} \, \overline{C} \, D$$

$$S_0 = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D}$$

- Projetos de Decodificadores
 - Para passar de um código binário para outro
 - Decodificador de BDC 8421 para Excesso 3
 - Tabela Verdade

,	BCD	842	1		Exce	sso 3	5	
A	В	C	D	S_3	S_2	S_1	S_0	ı
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	l
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

- Projetos de Decodificadores
 - Decodificador de BDC 8421 para Excesso 3
 - Obtenção da expressão lógica de cada uma das saídas S, via mapa de Karnaugh

$$S_3 = A + BD + BC$$

$$S_2 = \overline{B}D + \overline{B}D + B\overline{C}\overline{D}$$

$$S_1 = \overline{C} \, \overline{D} + CD = C \odot D$$

$$S_0 = \overline{D}$$

- Projetos de Decodificadores
 - Decodificador de BDC 8421 para Excesso 3
 - Circuito

$$S_3 = A + BD + BC$$

$$S_2 = \overline{B}D + \overline{B}D + B\overline{C}\overline{D}$$

$$S_1 = \overline{C} \overline{D} + CD = C \odot D$$

$$S_0 = \overline{D}$$

- Projetos de Decodificadores
 - Para estudar
 - Exemplo de decodificador Excesso 3 para BDC 8421 (pág. 194)

- Decodificador para Display de 7 Segmentos
 - Esquema geral do decodificador

- Decodificador para Display de 7 Segmentos
 - Tabela verdade

Characteres	Display	Display BCD 84			21	Código para 7 Segmentos						
		A	B	C	D	а	b	c	d	e	f	g
0	f d c	0	0	0	0	1	1	1	1	1	1	0
. 1	b c	0	0	0	1	0	1	1	0	0	0	0
2	e d b	0	0	1	0	1	1-	0	1	1	0	1
3	g b c	0	0	1	1	1	1	1	1	0	0	1
4	g b	0	1	0	0	0	1	1	0	0	1	1
5	f g c	0	1	0	1	1	0.	1	1	0	1	1
6	f g c	0	1	1	0	1	0	1	1	1	1	1
7	a b	0	1	1	1	1	1	1	0	0	0	0
8	ه ا ا ا	1	0	0	0	1	1	1	1	1	1	1
9	i s b	1	0	0	,1	1	1	1	1	0	1	1

- Decodificador para display de 7 segmentos
 - Simplificação

(a)
$$a = A + C + BD + \overline{B}\overline{D}$$

ou $a = A + C + B \odot D$

(b)
$$b = \overline{B} + \overline{CD} + \overline{CD}$$

ou $b = \overline{B} + \overline{CO}D$

(c)
$$c = B + \overline{C} + D$$

- Decodificador para display de 7 segmentos
 - Simplificação

(d)
$$d = A + \overline{BD} + \overline{BC} + C\overline{D} + B\overline{CD}$$

(e)
$$e = \overline{BD} + \overline{CD}$$

(f)
$$f = A + \overline{CD} + B\overline{C} + B\overline{D}$$

- Decodificador para display de 7 segmentos
 - Simplificação e circuito

(g)
$$g = A + B\overline{C} + \overline{B}C + C\overline{D}$$

ou $g = A + B \oplus C + C\overline{D}$

- Decodificadores
 - Para estudar
 - Exercícios resolvidos: 5.3.5

Capítulo 5

Circuitos Aritméticos

- Meio somador

Α	В	S	Ts
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Capítulo 5

Circuitos aritméticos

Somador completo

Α	В	T _E	S	T _s
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$T_{S} = BT_{E} + AT_{E} + AB$$

- Circuitos aritméticos
 - Somador completo

- Circuitos aritméticos
 - Somador completo a partir de meio somadores

Capítulo 5

- Circuitos aritméticos
 - Meio subtrator
 - Tabela verdade

A	В	s	Ts
0	0	0	0.
0	1	1	. 1
1	. 0	1	0
1	1	0	0

$$(0-0=0 \rightarrow \mathrm{Ts}=0)$$

$$(0 - 1 = 1 \rightarrow Ts = 1)$$

$$(1 - 0 = 1 \rightarrow Ts = 0)$$

$$(1 - 1 = 0 \rightarrow Ts = 0)$$

Circuito

- Circuitos aritméticos
 - Subtrator completo
 - Tabela Verdade

A	В	$T_{\rm E}$	S	$T_{\rm s}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	Q
1	1	0	0	0.
1	1	1	1	1

$$S = \overline{A} \overline{B} T_E + \overline{A} B \overline{T}_E + A \overline{B} \overline{T}_E + A B T_E$$

$$T_S = \overline{A} \overline{B} T_E + \overline{A} B \overline{T}_E + \overline{A} B T_E + AB T_E$$

- Circuitos aritméticos
 - Subtrator completo
 - Circuito

- Circuitos aritméticos
 - Subtrator completo
 - Circuito

- Circuitos aritméticos
 - Subtrator completo a partir de meio subtratores
 - Circuito

Capítulo 5

- Circuitos aritméticos
 - Somador/Subtrator completo
 - Tabela verdade
 - M=0: somador
 - M=1: subtrator

M	A	В	$T_{\rm E}$	S	Ts	
0	0	0	0	0	0	
0	0	0	1	1	0	
0	0	1	0	1	0	0
. 0	0	1	1	0	1	
0	1	0	0	1	0	
0	1	0	1 \	0	1	
0	1	1	0	0	1	
0	1	1	1	1	1	
1	0	.0	0	0	0	
1	0	0	1	1	1	
1	0	1	0	1	1	
1	0	1	1	0	1	
1	1	0	0.	1	0	
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	1	1	

Soma Completa (M = 0)Subtração Completa (M = 1)

- Circuitos aritméticos
 - Somador/Subtrator completo
 - Simplificação

$$S = A\overline{B}\overline{T}_E + \overline{A}\overline{B}T_E + ABT_E + \overline{A}B\overline{T}_E$$

$$S = \overline{A}(\overline{B}T_E + B\overline{T}_E) + A(\overline{B}\overline{T}_E + BT_E)$$

$$S = \overline{A}(B \oplus T_E) + A(B \odot T_E)$$

$$S = \overline{A}(B \oplus T_E) + A(\overline{B} \oplus T_E)$$

$$\therefore S = A \oplus B \oplus T_E$$

- Circuitos aritméticos
 - Somador/Subtrator completo
 - Simplificação

- Circuitos aritméticos
 - Somador/Subtrator completo
 - Circuito

- Para estudar
 - Exercícios resolvidos: 5.4.8

- Para fixação do capítulo
 - Exercícios propostos: 5.6