CORRECTION SÉANCE 9 (11 AVRIL)

Exercice 1.

1) Soit r le rayon de convergence de la série de Taylor de R en z_0 . Par l'absurde, on suppose que $r > \rho$. On considère $f: \mathbb{D}(z_0, r) \to \mathbb{C}$ définie par

$$f(z) = \sum_{n \ge 0} \frac{R^{(n)}(z_0)}{n!} (z - z_0)^n$$

C'est la série de Taylor de R. On a par définition que f est une fonction analytique sur $\mathbb{D}(z_0, r)$, et qui coïncide avec R sur un disque de la forme $\mathbb{D}(z_0, a)$ avec $a \leq r$.

Par hypothèse, R est définie et analytique sur $\mathbb{D}(z_0, \rho)$. Comme f est une autre fonction analytique sur $\mathbb{D}(z_0, \rho) \subset \mathbb{D}(z_0, r)$ qui coïncide avec R sur un ouvert (le disque non vide $\mathbb{D}(z_0, a)$) le principe du prolongement analytique nous donne que R = f sur $\mathbb{D}(z_0, \rho)$. Soit α un pôle de R situé à une distance ρ de z_0 . Par continuité de f sur $\mathbb{D}(z_0, r)$, on a

$$f(\alpha) = \lim_{\substack{z \to \alpha \\ |z - z_0| < \rho}} f(z) = \lim_{\substack{z \to \alpha \\ |z - z_0| < \rho}} R(z)$$

Or, comme R admet un pôle en α , cette dernière limite n'est pas définie, ce qui est une contradiction.

2) On pose f_{λ} la fonction qui à z associe $\frac{1}{z-\lambda}$ pour $z \neq \lambda$. La fonction f_{λ} est développable en série entière en z_0 si et seulement si la fonction $z \mapsto f_{\lambda}(z+z_0)$ est développable en série entière en 0. De plus, on a alors

$$f_{\lambda}(z) = \sum_{n>0} a_n (z+z_0)^n \text{ et } f_{\lambda}(z-z_0) = \sum_{n>0} a_n z^n$$

donc les termes des développements en série entière des deux fonctions sont les mêmes (le cas échéant). Ensuite, on remarque que

$$f_{\lambda}(z+z_0) = \frac{1}{z+z_0-\lambda} = \frac{1}{z-(\lambda-z_0)} = f_{\lambda-z_0}(z)$$

En posant $\mu := \lambda - z_0$, on s'est ramené à montrer que f_{μ} est développable en série entière en 0. On note que, comme $z_0 \neq \lambda$, on a $\mu \neq 0$, et donc f_{μ} est définie en 0. Ensuite, on a

$$f_{\mu}(z) = \frac{1}{z - \mu} = \frac{1}{\mu} \frac{1}{\frac{z}{\mu} - 1} = \frac{-1}{\mu} \sum_{n \ge 0} \left(\frac{z}{\mu}\right)^n$$

C'est le développement en série entière de $z\mapsto \frac{1}{1-z}$ en 0, appliqué à $\frac{z}{\mu}$. De plus, on sait que le rayon de convergence est donné par $|\frac{z}{\mu}|<1$, donc $|z|<|\mu|=|\lambda-z_0|$. On récapitule, on a

$$f_{\lambda}(z+z_0) = f_{\mu}(z) = \frac{-1}{\lambda - z_0} \sum_{n \ge 0} \left(\frac{z}{\lambda - z_0}\right)^n$$
$$f_{\lambda}(z) = \frac{-1}{\lambda - z_0} \sum_{n \ge 0} \left(\frac{z - z_0}{\lambda - z_0}\right)^n = \sum_{n \ge 0} -\frac{1}{(\lambda - z_0)^{n+1}} (z - z_0)^n$$

Et le rayon de convergence est donné par $|z - z_0| < |\lambda - z_0|$, ce qui est bien le résultat voulu : la distance entre z_0 et l'unique pôle λ de la fraction rationnelle f_{λ} .

3) On montre par récurrence sur $n \ge 1$ la propriété suivante :

"La fonction $z \mapsto \frac{1}{(z-\lambda)^n}$ est développable en série entière en z_0 , et le rayon de convergence de la série associée est $|z_0 - \lambda|$."

Sachant qu'on a fait le cas n=1 dans la question précédente. Supposons à présent que le résultat est vrai pour un certain entier $n \ge 1$. La fonction $f: z \mapsto \frac{1}{(z-\lambda)^n}$ est DSE en z_0 avec le bon rayon de convergence. On sait que la dérivée f' de f est aussi DSE en z_0 , et avec le même rayon de convergence. Or, on a

$$f'(z) = \frac{-n}{(z-\lambda)^{n+1}}$$

En multipliant le DSE de f' en z_0 par $\frac{-1}{n}$, on obtient bien que la fonction $z \mapsto \frac{1}{(z-\lambda)^{n+1}}$ est DSE en z_0 , et avec rayon de convergence $|z_0 - \lambda|$ tout comme f.

4) Le polynôme Q est nécessairement scindé car $\mathbb C$ est algébriquement clos. On peut donc écrire

$$Q(z) = A(z - \lambda_1)^{m_1} \cdots (z - \lambda_k)^{m_k}$$

où A est le coefficient dominant de Q, et les λ_i sont les racines de Q, respectivement de multiplicité m_k . Par le théorème de décomposition en éléments simples des fractions rationnelles, on peut écrire

$$R(z) = \frac{P(z)}{Q(z)} = E(z) + \sum_{i=1}^{k} \left(\sum_{j=1}^{m_i} \frac{\lambda_{i,j}}{(z - \lambda_k)^j} \right)$$

où E est un polynôme (quotient dans la division euclidienne de P par Q), et les $\lambda_{i,j}$ sont des nombres complexes. Comme E est un polynôme, il est développable en série entière en z_0 avec un rayon de convergence infini. Les autres fractions rationnelles sont développables en série entière en z_0 avec un rayon de convergence $|z_0 - \lambda_k|$ d'après les questions précédentes. La somme de toutes ces séries entières est le développement en série entière de R en z_0 , qui lui est donc égal, avec rayon de convergence $\min_k |z_0 - \lambda_k|$, soit bien la distance de z_0 au pôle de R le plus proche.

5) Pour la première, l'unique pôle est 2, et |1-2|=1, le rayon de convergence du DSE de la première fonction en 1 est donc 1. Pour la deuxième, les pôles sont 0 et -1, à une distance respective 1 et 2 de 1, le rayon de convergence du DSE de la deuxième fonction est donc aussi 1. La troisième fonction n'est pas une fraction rationnelle.

Exercice 2. On rappelle que $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ s'annule si et seulement si $e^{iz} = e^{-iz}$. On a

$$e^{iz} = e^{-iz} \Leftrightarrow e^{2iz} = 1$$
$$\Leftrightarrow 2iz \in 2i\pi\mathbb{Z}$$
$$\Leftrightarrow z \in \pi\mathbb{Z}$$

Donc les zéros de $z \mapsto \sin(z)$ sont exactement les $k\pi$ pour $k \in \mathbb{Z}$. On reprend la fonction f que l'on considère, on a

$$f(z) = 0 \Leftrightarrow \frac{\pi}{1 - z} \in \pi \mathbb{Z}$$
$$\Leftrightarrow 1 - z \in \left\{ \frac{1}{n} \mid n \in \mathbb{Z}^* \right\}$$
$$\Leftrightarrow z \in \left\{ 1 - \frac{1}{n} \mid n \in \mathbb{Z}^* \right\}$$

On constate que ce dernier ensemble admet 1 pour points d'accumulation. En effet, la suite 1-1/n se trouvant dans l'ensemble converge vers 1, donc tout voisinage de 1 contient un point de la forme 1-1/n (pour n assez grand) qui n'est pas égal à 1.

Seulement voila, 1 ne se trouve pas dans l'ouvert de définition de f. Donc ça ne contredit pas le théorème des zéros isolés. Dans le disque unité ouvert U, $\{1-1/n \mid n \in \mathbb{Z}^*\}$ est bien une partie localement finie (=fermée et discrète), qui n'a pas de points d'accumulation.

Exercice 3.

1) On pose $X = \{\frac{e^{it}}{2} \mid t \in \mathbb{R}\} \subset \mathbb{D}(0,1)$. Topologiquement, X est le cercle de centre 0 et de rayon 1/2. En fait, tout $x \in X$ est un point d'accumulation de X, mais on se contentera de le montrer pour 1/2. On considère la suite réelle $(1/n)_{n \in \mathbb{N}}$ qui tends vers 0. Comme la fonction exponentielle est continue, la suite $e^{i/n}/2$ converge vers $e^0/2 = 1/2$, tout en se trouvant dans X. Il faut encore montrer qu'elle n'est jamais égale à 1/2. On a $e^{i/n} = e^0$ si et seulement si $i/n \in 2i\pi\mathbb{Z}$, ce qui n'arrive jamais pour $n \ge 1$ donc tout va bien.

On voit que la fonction $f_0: z \mapsto z$ est telle que $f_0(e^{it}/2) = e^{it}/2$ pour tout $t \in \mathbb{R}$. Soit maintenant f une fonction analytique respectant l'hypothèse. La fonction $f - f_0$ est analytique et respecte $(f - f_0)(e^{it}/2) = 0$ pour tout $t \in \mathbb{R}$, autrement dit $f - f_0$ est identiquement nulle sur X. Comme X admet un point d'accumulation dans $\mathbb{D}(0,1)$, on en déduit que $f - f_0$ est identiquement nulle sur $\mathbb{D}(0,1)$ par le principe des zéros isolés. Donc $f = f_0$ sur $\mathbb{D}(0,1)$.

Nous avons montré que $f_0: z \mapsto z$ est l'unique fonction analytique sur $\mathbb{D}(0,1)$ qui respecte l'hypothèse.

2) On pose $X = \{1/n \mid n \in \mathbb{N}^*\}$. Comme 1/n est une suite qui converge vers 0, tout voisinage de 0 dans $\mathbb{D}(0,1)$ contient un point de X différent de 0 (un 1/n pour n assez grand). On a donc que 0 est un point d'accumulation de X dans $\mathbb{D}(0,1)$.

On voit que la fonction $f_0: z \mapsto z^2$ est telle que $f(1/n) = 1/n^2$ pour tout $n \ge 1$. Soit maintenant f une fonction analytique respectant l'hypothèse. La fonction $f - f_0$ est analytique et respecte $(f - f_0)(1/n) = 0$ pour tout $n \ge 1$, autrement dit $f - f_0$ est identiquement nulle sur X. Comme X admet un point d'accumulation dans $\mathbb{D}(0,1)$, on en déduit que $f - f_0$ est identiquement nulle sur $\mathbb{D}(0,1)$ par le principe des zéros isolés. Donc $f = f_0$ sur $\mathbb{D}(0,1)$.

Nous avons montré que $f_0: z \mapsto z^2$ est l'unique fonction analytique sur $\mathbb{D}(0,1)$ qui respecte l'hypothèse.

3) On considère la fonction $g: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ définie par

$$g(z) = \frac{z}{1+z}$$

Pour $m \in \mathbb{N}^*$, on a

$$g\left(\frac{1}{m}\right) = \frac{1/m}{1+1/m} = \frac{1}{m+1}$$

Ensuite, g est analytique (c'est une fraction rationnelle), et $g(z) \in \mathbb{D}(0,1) \Leftrightarrow |z| < |z+1|$, autrement dit si z est strictement plus proche de 0 que de -1. On pose

$$H = \{ z \in \mathbb{C} \mid \Re e(z) > -1/2 \}$$

L'ensemble $H \cap \mathbb{D}(0,1)$ contient les ensembles $X_e = \{1/2n \mid n \geqslant 1\}$ et $X_o = \{1/(2n+1) \mid n \geqslant 0\}$. L'application g nous intéresse car elle donne une bijection entre X_e et $X_o \setminus 1$, et une bijection entre X_o et $X_e \setminus \{1/2\}$. Les deux ensembles X_e et X_o ont tous deux 0 comme point d'accumulation (même méthode que pour la suite 1/n).

Supposons qu'il existe f analytique sur $\mathbb{D}(0,1)$ respectant l'hypothèse. Pour tout $z=1/2n\in X_e$, on a

$$f(z) = 1/n$$
 et $f(g(z)) = f(1/(2n+1)) = 1/n$

Donc, les fonctions f et $f \circ g$, toutes deux analytiques sur $H \cap \mathbb{D}(0,1)$, coïncident sur l'ensemble X_e . Comme ce dernier admet un point d'accumulation dans $H \cap \mathbb{D}(0,1)$, on a $f = f \circ g$ sur $H \cap \mathbb{D}(0,1)$ par le principe des zéros isolés. Cependant, pour $z = 1/(2n+1) \in X_o$, on a

$$f(z) = 1/n$$
 et $f(g(z)) = f(1/2(n+1)) = 1/n + 1$

ce qui contredit le fait que $f = f \circ g$ sur $H \cap \mathbb{D}(0,1)$. On aboutit à une contradiction, et il n'existe donc pas de fonction f analytique sur $\mathbb{D}(0,1)$ respectant l'hypothèse.

Exercice 6.

- 1) Comme f est continue sur D, il en va de même de |f|. Comme D est compact (fermé borné dans un espace vectoriel de dimension finie), |f| est bornée et atteint ses bornes sur D.
- 2) Par la question précédente, on peut considérer $a \in D$ tel que $|f(a)| = \max_{z \in D} |f(z)|$. Si a se trouve sur le bord du disque, il n'y a rien à démontrer. Si a se trouve à l'intérieur du disque, alors f est constante sur D par le

principe du maximum. Dans ce cas, pour tout point x du bord du disque, on a $|f(a)| = |f(x)| = \max_{z \in D} |f(z)|$ et le maximum est atteint sur le bord du disque.

3) Prenons K un compact. Si l'intérieur K^o est vide, alors $K = \partial K$ et le résultat est trivial. Ensuite, supposons que K^o est non vide. Comme K est compact, il existe $a \in K$ tel que $|f(a)| = \max_{z \in K} |f(z)|$. Si $a \in \partial K$, le résultat est obtenu. Sinon, on a $a \in K^o$, et on peut considérer $\mathbb{D}(a,r) \subset K^o$. Comme K est un fermé qui contient $\mathbb{D}(a,r)$, on a $\overline{\mathbb{D}(a,r)} \subset K$ (définition de l'adhérence).

Par le principe du maximum appliqué à f sur $\mathbb{D}(a,r)$, on trouve que f est constante égale à f(a) sur $\overline{\mathbb{D}(a,r)}$, en particulier sur $\mathbb{D}(a,r)$. Par le principe du prolongement analytique, la fonction f est constante égale à f(a) sur toute la composante connexe C de $\mathbb{D}(a,r)$ dans K^o (ce dernier n'est pas forcément connexe). Par prolongement par continuité, on a f constante égale à f(a) sur \overline{C} . Comme il existe un point de \overline{C} se trouvant sur ∂K , le résutlat est obtenu.