TP2 stats

Romain PEREIRA

5 Mars 2018

1. Echantillon, Théorème Central Limite, Estimation Monte Carlo

1.1 Simulation de 1000 échantillon i.i.d gaussien.

```
N <- 1000
n < -c(5, 30, 100)
empirical_mean <- function(vec) {</pre>
  s <- 0
  for (x in vec) {
    s <- s + x
  return (s / (length(vec) - 1))
empirical_var <- function(vec) {</pre>
  m <- empirical_mean(vec)</pre>
  s <- 0
  for (x in vec) {
    s \leftarrow s + (x - m) * (x - m)
  return (s / (length(vec) - 1))
# fonction 'mean_hist'
# 'law' : fonction qui genere un vecteur de taille 'm', e.g: law(42)
# 'title': titre de l'histogramme
# La fonction trace 3 histogrammes de la loi de la moyenne empirique
# sur 'N' echantillons de taille dans 'ns'
mean hist <- function(law, title) {</pre>
  for (nj in n) {
    sample \leftarrow law(nj * N)
    means <- c()
    for (i in 1:N) {
      subsample <- sample [((i-1)*nj + 1): (i * nj)]
      Xni <- empirical_mean(subsample)</pre>
      # vni <- empirical_var(subsample)</pre>
      means <- c(means, Xni)</pre>
    hist(means, xlab=paste("Moyenne empirique, enchantillon de taille n=", nj), main=title, breaks=nj)
  }
}
mean_hist(function(n) { return (rnorm(n, mean=1, sd=2)) }, "Distribution Gausienne N(1, 2)")
```


Moyenne empirique, enchantillon de taille n= 5

Distribution Gausienne N(1, 2)

Moyenne empirique, enchantillon de taille n= 30

Moyenne empirique, enchantillon de taille n= 100

Je pose $S_n = \sum_{i=1}^n X_i$, tel que:: + les X_i i.i.d de même loi + $E[X_i] = \mu + \mathbb{V}[X_i] = \sigma^2$.

D'après le théorème central limite, pour N assez grand, S_n suit approximativement une loi normal $N(n\mu, n\sigma^2)$. En notant la moyenne empirique $\bar{X}_n = \frac{S_n}{n}$, on a:

$$\mathbb{E}[\bar{X}_n] = \mathbb{E}[\frac{S_n}{n}] = \frac{1}{n}\mathbb{E}[S_n] = \mu$$

$$\mathbb{E}[\bar{X}_n] = \mathbb{V}[\frac{S_n}{n}] = \frac{1}{n^2}\mathbb{V}[S_n] = \frac{\sigma^2}{n}$$

Dans notre exemple, les X_i suivent une loi N(1,2).

En notant $(a_n, b_n) = (\text{moyenne}, \text{ecart-type}) = (\mu, \sqrt{\frac{\sigma^2}{n}}) = (1, \frac{2}{\sqrt{n}}), U_n = \frac{\bar{X_n} - a_n}{b_n}$ suit une loi normal centrée réduite N(0, 1).

```
# fonction 'mean_norm_hist'
 'law' : fonction qui genere un vecteur de taille 'm', e.g: law(42)
  'title': titre de l'histogramme
# La fonction trace 3 histogrammes de la loi de la moyenne empirique renormalisé
# sur 'N' echantillons de taille dans 'ns'
mean_norm_hist <- function(law, title) {</pre>
  for (nj in n) {
    sample <- law(nj * N)</pre>
    Xn <- empirical_mean(sample)</pre>
    Un \leftarrow c()
    for (i in 1:N) {
      subsample <- sample [((i-1)*nj + 1): (i * nj)]
                 <- empirical_mean(subsample)</pre>
      ani
                 <- empirical_var(subsample) / sqrt(nj)
      bni
```

```
Uni     <- (Xn - ani) / bni
Un     <- c(Un, Uni)
}
hist(Un, xlab=paste("Moyenne empirique centrée, enchantillon de taille n=", nj), main=title, breaks
}
mean_norm_hist(function(n) { return (rnorm(n, mean=1, sd=2)) }, "Distribution Gausienne N(1, 2)")</pre>
```


4

Moyenne empirique centrée, enchantillon de taille n= 30

Distribution Gausienne N(1, 2)

Moyenne empirique centrée, enchantillon de taille n= 100

Les histogrammes obtenus montrent en effet une loi normale centrée réduite.

Plus n est grand, plus la loi moyenne empirique renormalisé semble suivre une loi N(0, 1). (cf Théorème Central Limite)

1.2 Loi de Pareto

<- 1.0

alpha <- 2.5

Soit X une variable aléatoire suivant une loi de Pareto $P(a,\alpha), \alpha > 2$. Alors, $\mathbb{E}[X] = \frac{\alpha a}{\alpha-1}$ et $\mathbb{V}[X] =$

mean_hist(function(n) { return (rpareto(n, m=a, s=alpha)) }, "Distribution suivant une loi de Pareto P(

Distribution suivant une loi de Pareto P(1.0, 2.5)

Distribution suivant une loi de Pareto P(1.0, 2.5)

Distribution suivant une loi de Pareto P(1.0, 2.5)

mean_norm_hist(function(n) { return (rpareto(n, m=a, s=alpha)) }, "Distribution suivant une loi de Pare

Distribution suivant une loi de Pareto P(1.0, 2.5)

Moyenne empirique centrée, enchantillon de taille n= 5

Distribution suivant une loi de Pareto P(1.0, 2.5)

Moyenne empirique centrée, enchantillon de taille n= 30

Distribution suivant une loi de Pareto P(1.0, 2.5)

Plus n est grand, plus la loi moyenne empirique renormalisé semble suivre une loi N(0, 1) (bien qu'elle possède de nombreuses valeurs 'à droite' faisant penser à une allure exponentielle).

1.3 Loi de Poisson

Soit X une variable aléatoire suivant une loi de Poisson $P(\lambda)$. Alors, $\mathbb{E}[X] = \lambda$ et $\mathbb{V}[X] = \lambda$ mean_hist(function(n) { return (rpois(n, lambda=1)) }, "Distribution suivant une loi de Poisson P(1)")

Moyenne empirique, enchantillon de taille n= 5

Distribution suivant une loi de Poisson P(1)

Moyenne empirique, enchantillon de taille n= 30

mean_norm_hist(function(n) { return (rpois(n, lambda=1)) }, "Distribution suivant une loi de Poisson P(

Moyenne empirique centrée, enchantillon de taille n= 5

Distribution suivant une loi de Poisson P(1)

Moyenne empirique centrée, enchantillon de taille n= 30

De même, plus n est grand, plus la loi moyenne empirique renormalisé semble suivre une loi N(0, 1).

1.4 Méthode d'expérimentation

On note $X = (X_1, ..., X_n)$ pour $n \in \mathbb{R}$, un échantillon de taille n (simulable 'facilement')

On suppose que tous les X_i son i.i.d, et suivent la même loi.

Soit $T:\Omega^n\to\mathbb{R}$ une statistique sur un echantillon de taille n.

On peut trouver une approximation de l'espérance $\mathbb{E}[T(X)]$ en utilisant le protocole suivant:

- 1. Fixer $N \in \mathbb{N}, N \gg 1$.
- 2. Générer N échantillons de taille n, notés $X^i = (X_1^i, ..., X_n^i)$ avec $1 \le i \le N$
- 3. Je pose
- $\bar{T}_N = \frac{1}{N} \sum_{i=1}^N T(X^i)$ Lorsque N devient grand, d'après le théorème central limite (même raisonnement qu'en $\mathbf{1.1}$): $-(1): \mathbb{E}[\bar{T}_N] \xrightarrow[N\gg 1]{} \mathbb{E}[T(X)]$

 - $(2): \mathbb{V}[\bar{T}_N] \xrightarrow[N \gg 1]{I \times J} \frac{1}{N} \mathbb{V}[T(X)] \xrightarrow[N \to +\infty]{} 0$
- 4. Donc d'après (1) et (2), on a $\overline{T}_n \xrightarrow[N \to +\infty]{\mathbb{L}^2} \mathbb{E}[T(X)] = cste$.

Autrement dit, la moyenne empirique (entant que variable aléatoire), tends (en norme 2) vers la v.a constante $\mathbb{E}[T(X)].$

La moyenne empirique est une bonne estimation de l'espérance quand elle est effectué sur un grand nombre d'échantillon.

2. Moyenne et dispersion.

2.1 Inégalité de Bienaymé Tchebychev

Soit X une variable aléatoire admettant un moment d'ordre 2 (et donc un moment d'ordre 1). L'inégalité de Bienaymé-Tchebychev affirme: $\forall \alpha \in \mathbb{R}_+^*, \mathbb{P}(|X - \mathbb{E}[X]| \ge \alpha) \le \frac{1}{\alpha^2} \mathbb{V}[X]$

Pour une loi Gaussienne $N(\mu,\sigma^2),$ on a : $\mathbb{P}(|X-\mu| \geq \alpha) \leq \frac{\sigma^2}{\alpha^2}$

Pour une loi de Poisson $P(\lambda)$, on a : $\mathbb{P}(|X - \lambda| \ge \alpha) \le \frac{\lambda}{\alpha^2}$

2.2 Estimation par Monte Carlo.

```
(a) \mathbb{P}(|X - \mu| \ge \delta) = \mathbb{E}[1_{\{|X - \mu| \ge \delta\}}] = \mathbb{E}[Z], en posant Z = 1_{\{|X - \mu| \ge \delta\}}
```

(b) On estime $\mathbb{E}[Z]$ par la moyenne empirique $\bar{Z}_N = \frac{1}{N} \sum_{i=1}^N T(Z^i)$:

```
# effectue une estimation de Monte Carlo sur une loi Gaussienne, de Pareto, et de Poisson.
# N : nombre d'echantillon pour la moyenne
# delta : verifiant (a)
# (mu, sigma) : paramètre de la loi Gausienne
# (a, alpha) : paramètre de la loi de Pareto
# (lambda) : paramètre de la loi de Poisson
# renvoie une liste contenant :
           - les distributions générées
            - la moyenne empirique de ces distributions
#
            - les distributions transformées Z (voir (a))
            - les espérances empirique de Z, approximation de (a)
estimate_monte_carlo <- function(N, delta, mu, sigma, a, alpha, lambda) {
  # On genere des distributions
           <- list("Gauss" = rnorm(N, mu, sigma), "Pareto" = rpareto(N, a, alpha),
                   "Poisson" = rpois(N, lambda))
                                                    "Pareto" = alpha*a/(alpha - 1),
  XN_means <- list("Gauss" = mu,</pre>
                   "Poisson" = lambda)
           <- list()
  ZN_means <- list()</pre>
  # Pour chaque distributions
  for (distrib in names(XN)) {
    # on recupere la distribution
             <- XN[[distrib]]
    XNi_mean <- XN_means[[distrib]]</pre>
    # on génère la variable aléatoire Z correspondante
    ZN[[distrib]] <- unlist(lapply(XNi, function(xi) {</pre>
                               if (abs(xi-XNi_mean) >= delta) {
                                 return (1)
                               }
                               return (0)
                             }))
    ZN_means[[distrib]] <- empirical_mean(ZN[[distrib]])</pre>
  }
  return (list("XN" = XN, "XN_means" = XN_means, "ZN" = ZN, "ZN_means" = ZN_means))
```

On obtient selon les différentes lois: $\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta_{=1}) = \dots$

```
N <- 1e5
estimation <- estimate_monte_carlo(N, delta=1, mu=0, sigma=1, a=1.0, alpha=2.5, lambda=1)
estimation[["ZN_means"]]</pre>
```

```
## $Gauss
## [1] 0.3172032
##
## $Pareto
## [1] 0.6775368
##
## $Poisson
## [1] 0.6306863
```

La moyenne empirique est une variable aléatoire, et on a montré que $\mathbb{E}[\bar{Z}_N] = \mathbb{E}[Z]$ et $\mathbb{V}[\bar{Z}_N] = \frac{1}{N}\mathbb{V}[Z]$.

Donc d'après le théorème de Bienaymé Tchebichev, la précision de notre estimation

$$\mathbb{P}(|X - \mu| \ge \delta) = \mathbb{E}[Z] \simeq \bar{Z}_N$$

est donné par:

$$\forall \delta \geq 0, \mathbb{P}[|\bar{Z}_N - \mathbb{E}[Z]| \geq \delta] \leq \frac{1}{\delta * N} \mathbb{V}[Z]$$

(c) Application numérique:

```
markov_sup <- function(Z, N, delta) {
  return (var(Z) / (delta * N));
}
delta <- 1e-4</pre>
```

On a fixé plus tôt $N = 10^5$. On fixe $\delta = 10^{-4}$.

En fonction des loi de X précèdentes, notre estimation de $\bar{Z}_N \simeq \mathbb{E}[Z]$ vérifie:

```
\mathbb{P}[|\bar{Z}_N - \mathbb{E}[Z]| \ge \delta] = \mathbb{P}(\bar{Z}_N \notin [\mathbb{E}[Z] - \delta; \mathbb{E}[Z] + \delta]) \le \dots
```

```
XN <- estimation[["XN"]]
ZN <- estimation[["ZN"]]
for (distrib in names(XN)) {
   print(paste(distrib, ":", markov_sup(ZN[[distrib]], N, delta)))
}</pre>
```

```
## [1] "Gauss : 0.0216586325863259"
## [1] "Pareto : 0.021848528395284"
## [1] "Poisson : 0.0232925066850668"
```

Remarques:

- Plus δ est 'petit' devant 1, plus notre précision est incertaine. (la probabilité que notre estimation soit dans l'invervalle $[\mathbb{E}[Z] \delta; \mathbb{E}[Z] + \delta]$ s'éloigne de 1)
- Plus N est 'grand' devant 1, plus notre précision est probable. (la probabilité que notre estimation soit dans l'invervalle $[\mathbb{E}[Z] \delta; \mathbb{E}[Z] + \delta]$ tends vers 1)
- Plus $\mathbb{V}[Z]$ est 'grande' devant δ , plus notre précision est incertaine. (la probabilité que notre estimation soit dans l'invervalle $[\mathbb{E}[Z] \delta; \mathbb{E}[Z] + \delta]$ s'éloigne de 1)

Voici les bornes obtenus pour différentes valeurs de δ et σ :

```
# Majoration par l'inégalité de Markov, de la probabilité que
# la moyenne obtenu s'écarte à +- epsilon prêt de l'espérance:
for (delta in c(1e-4, 1e-2, 1)) {
 for (sigma in c(1, 10, 100)) {
   estimation <- estimate_monte_carlo(N, delta, mu=0, sigma, a=1.0, alpha=2.5, lambda=1)
   XN <- estimation[["XN"]]</pre>
   ZN <- estimation[["ZN"]]</pre>
   print("----")
   print(paste("Pour delta=", delta, " et sigma=", sigma, sep=""))
   for (distrib in names(XN)) {
     print(paste(distrib, ":", markov_sup(ZN[[distrib]], N, delta)))
   }
 }
}
## [1] "-----
## [1] "Pour delta=1e-04 et sigma=1"
## [1] "Gauss : 7.99943999439995e-06"
## [1] "Pareto : 1e-06"
## [1] "Poisson : 0.0232180071800718"
## [1] "----"
## [1] "Pour delta=1e-04 et sigma=10"
## [1] "Gauss : 0"
## [1] "Pareto : 4.9997999979998e-06"
## [1] "Poisson : 0.0232477860378604"
## [1] "----"
## [1] "Pour delta=1e-04 et sigma=100"
## [1] "Gauss : 0"
## [1] "Pareto : 3.99987999879998e-06"
## [1] "Poisson : 0.023310493094931"
## [1] "----"
## [1] "Pour delta=0.01 et sigma=1"
## [1] "Gauss : 7.86719377193772e-06"
## [1] "Pareto : 2.39426394263942e-06"
## [1] "Poisson : 0.000232443424334243"
## [1] "----"
## [1] "Pour delta=0.01 et sigma=10"
## [1] "Gauss : 9.19162791627916e-07"
## [1] "Pareto : 2.40421594215942e-06"
## [1] "Poisson: 0.000232551915519155"
## [1] "----"
## [1] "Pour delta=0.01 et sigma=100"
## [1] "Gauss : 9.999099999999e-08"
## [1] "Pareto : 2.50372493724937e-06"
## [1] "Poisson : 0.0002322467599676"
## [1] "----"
## [1] "Pour delta=1 et sigma=1"
## [1] "Gauss : 2.16531462814628e-06"
## [1] "Pareto : 2.17573369333693e-06"
## [1] "Poisson : 2.32302681426814e-06"
## [1] "----"
## [1] "Pour delta=1 et sigma=10"
## [1] "Gauss : 7.43056374563745e-07"
```

```
## [1] "Pareto : 2.178142300423e-06"
## [1] "Poisson : 2.32217432574326e-06"
## [1] "------"
## [1] "Pour delta=1 et sigma=100"
## [1] "Gauss : 7.78845538455385e-08"
## [1] "Pareto : 2.16859966099661e-06"
## [1] "Poisson : 2.32699555395554e-06"
(d) Inégalité de Chernoff.
```

Soit X une variable aléatoire admettant une fonction génératrice.

L'inégalité de Chernoff donne:

```
\forall \delta \in \mathbb{R}, \forall \epsilon \in \mathbb{R}_{+}^{*},
\mathbb{P}(X - \mathbb{E}[X] \ge \delta) \le e^{-\epsilon \delta} \mathbb{E}[e^{(X - \mathbb{E}[X])\epsilon}]
\mathbb{P}(X - \mathbb{E}[X] \le -\delta) \le e^{-\epsilon \delta} \mathbb{E}[e^{(X - \mathbb{E}[X])\epsilon}]
Donc,
\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le 2e^{-\epsilon \delta} \mathbb{E}[e^{(X - \mathbb{E}[X])\epsilon}]
```

Pour une variable Gaussienne $N(\mu, \sigma^2)$, on a: $\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le 2e^{\frac{-\delta^2}{2\sigma^2}}$

Pour une variable de Poisson $P(\lambda)$, on a: $\mathbb{P}(|X - \mathbb{E}[X]| \ge \delta) \le 2e^{\frac{-\delta^2}{2(\lambda + \delta)}}$

```
# Majoration par l'inégalité de Chernoff, de la probabilité que
# la moyenne obtenu s'écarte à +- delta prêt de l'espérance:
for (delta in c(1e-4, 1e-2, 1, 10)) {
    for (sigma in c(1, 10, 100)) {
        estimation <- estimate_monte_carlo(N, delta, mu=0, sigma, a=1.0, alpha=2.5, lambda=1)
        XN <- estimation[["XN"]]
        ZN <- estimation[["ZN"]]
        print("------")
        print(paste("Pour delta=", delta, " et sigma=", sigma, sep=""))
        print(paste("Gaussienne", ":", 2.0 * exp(-delta * delta / (2 * sigma))))
        print(paste("Poisson", ":", 2.0 * exp(-delta * delta / (2 * (delta + 1)))))
    }
}</pre>
```

```
## [1] "----"
## [1] "Pour delta=1e-04 et sigma=1"
## [1] "Gaussienne : 1.99999999"
## [1] "Poisson : 1.99999990001"
## [1] "----"
## [1] "Pour delta=1e-04 et sigma=10"
## [1] "Gaussienne : 1.999999999"
## [1] "Poisson : 1.999999990001"
## [1] "-----
## [1] "Pour delta=1e-04 et sigma=100"
## [1] "Gaussienne : 1.9999999999"
## [1] "Poisson : 1.99999990001"
## [1] "----"
## [1] "Pour delta=0.01 et sigma=1"
## [1] "Gaussienne : 1.99990000249996"
## [1] "Poisson : 1.99990099254971"
```

```
## [1] "----"
## [1] "Pour delta=0.01 et sigma=10"
## [1] "Gaussienne : 1.999990000025"
## [1] "Poisson : 1.99990099254971"
## [1] "----"
## [1] "Pour delta=0.01 et sigma=100"
## [1] "Gaussienne : 1.99999900000025"
## [1] "Poisson : 1.99990099254971"
  [1] "----"
## [1] "Pour delta=1 et sigma=1"
## [1] "Gaussienne : 1.21306131942527"
## [1] "Poisson : 1.55760156614281"
## [1] "----"
## [1] "Pour delta=1 et sigma=10"
## [1] "Gaussienne : 1.90245884900143"
## [1] "Poisson : 1.55760156614281"
## [1] "----"
  [1] "Pour delta=1 et sigma=100"
## [1] "Gaussienne : 1.99002495838536"
## [1] "Poisson : 1.55760156614281"
## [1] "----"
## [1] "Pour delta=10 et sigma=1"
## [1] "Gaussienne : 3.85749969592784e-22"
## [1] "Poisson : 0.0212306929239533"
## [1] "----"
## [1] "Pour delta=10 et sigma=10"
## [1] "Gaussienne : 0.0134758939981709"
## [1] "Poisson : 0.0212306929239533"
## [1] "-----"
## [1] "Pour delta=10 et sigma=100"
## [1] "Gaussienne : 1.21306131942527"
## [1] "Poisson: 0.0212306929239533"
Pour \delta petit devant la variance, la borne tends vers 2... ce qui n'apporte pas d'informations utiles.
2.3.
2.4.
(a)
theta <- 0
for (n in c(20, 100, 1000, 10000)) {
 cauchy <- rcauchy(n, location=theta, scale=1)</pre>
        <- empirical_mean(cauchy)</pre>
 print(paste("n=", n, " ; la moyenne empirique calculé est: ", m, sep=""))
## [1] "n=20 ; la moyenne empirique calculé est: -0.322681600247578"
## [1] "n=100 ; la moyenne empirique calculé est: 1.70315796697599"
## [1] "n=1000 ; la moyenne empirique calculé est: 0.336946731837079"
```

La moyenne empirique donne des valeurs très différentes selon 'n', et ne semble pas converger.

(b) Une variable aléatoire X suivant une loi de Cauchy $C(\theta)$ n'admet pas d'espérance:

[1] "n=10000 ; la moyenne empirique calculé est: -2.98878886388578"

$$f_X(x,\theta) = \frac{1}{\pi} \frac{1}{1+(x-\theta)^2}$$
, et quand $x \to +\infty$, $x f_X(x,\theta) \sim \frac{1}{x}$, donc:
$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} |x f_X(x,\theta)| dx$$
 diverge.

Donc le théorème central limite ne s'applique pas: il n'y a pas d'espérance, donc la moyenne empirique ne converge pas.

Ceci s'explique par le fait que la probabilité d'obtenir une valeur éloigné de θ (la médiane) est trop elévé pour que la moyenne converge.

(c) La médiane d'une loi de Cauchy $C(\theta)$ est θ .

Si l'on sait qu'un phénomène suit une loi de Cauchy, il est possible de déterminer son paramètre θ en suivant ce protocole:

- 1. Fixer $n \in \mathbb{N}, n \gg 1$.
- 2. Générer un échantillon de taille n.
- 3. Trier les valeurs de cette échantillon par ordre croissant. (ou décroissant)
- 4. La valeur au centre de l'échantillon trié (en $\frac{n}{2}$) est un estimateur de θ .

Application:

```
theta <- 0
for (theta in c(-1, 0, 1)) {
    print("-----")
    print(paste("theta=", theta, sep=""))
    for (n in c(20, 100, 1000, 10000)) {
        cauchy <- rcauchy(n, location=theta, scale=1)
        sorted <- sort(cauchy)
        print(paste("la médiane de l'échantillon n=", n, " vaut:", sorted[n / 2 + 1], sep=""))
    }
}</pre>
```

```
## [1] "-----"
## [1] "theta=-1"
## [1] "la médiane de l'échantillon n=20 vaut:-1.0085773619437"
## [1] "la médiane de l'échantillon n=100 vaut:-0.968412784989428"
## [1] "la médiane de l'échantillon n=1000 vaut:-1.06308593380296"
## [1] "la médiane de l'échantillon n=10000 vaut:-1.03062276390339"
## [1] "-----"
## [1] "theta=0"
## [1] "la médiane de l'échantillon n=20 vaut:0.132882341777964"
## [1] "la médiane de l'échantillon n=100 vaut:-0.151914773973725"
## [1] "la médiane de l'échantillon n=1000 vaut:-0.0227109894865033"
## [1] "la médiane de l'échantillon n=10000 vaut:-0.00575708000002459"
## [1] "-----"
## [1] "theta=1"
## [1] "la médiane de l'échantillon n=20 vaut:0.955603243825675"
## [1] "la médiane de l'échantillon n=100 vaut:0.883086179584292"
## [1] "la médiane de l'échantillon n=1000 vaut:0.956111277067289"
## [1] "la médiane de l'échantillon n=10000 vaut:0.976645768137792"
```

Les valeurs obtenus par la simulation sont en accord avec celle attendu par notre protocole.