ANÁLISIS NUMÉRICO III – 2023 Práctico $N^{\underline{O}}$ 1 - Parte II

Objetivos

 Revisión de métodos numéricos para la resolución de ecuaciones diferencias ordinarias con valor inicial y sistemas.

Métodos Multipaso

- 1. Derive la fórmula de segundo orden de Adams-Moulton.
- 2. Use el método de los coeficientes indeterminados para derivar la fórmula de Adams-Bashforth de cuarto orden

$$x_{n+1} = x_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right).$$

3. Calcule la solución de

$$\begin{cases} x' = -2tx^2 \\ x(0) = 1 \end{cases}$$

en [0,1], usando h=0.25 y el método de Adams-Bashforth de cuarto orden junto con el método de Runge-Kutta de cuarto orden. De el valor de x en los puntos 0.25, 0.5, 0.75, 1, y compare estos resultados con los obtenidos de la solución exacta $x(t)=\frac{1}{1+t^2}$.

4. Resuelva el siguiente problema a valor inicial

$$\begin{cases} x' = \frac{t - e^{-t}}{x + e^x} \\ x(0) = 0 \end{cases}$$

en el intervalo [-1,1] con $h=\frac{1}{238}$. Use el método de Runge-Kutta para empenzar. Verifique analíticamente que la solución está dada por la ecuación implícita $x^2-t^2+2e^x-2e^{-t}=0$. Use esta ecuación para proporcionar una verificación de la solución calculada.

Sistemas de ecuaciones diferenciales ordinarias

1. Escriba una rutina para resolver un sistema de ecuaciones usando el método de series de Taylor, incluyendo hasta el término h^3 , con h = 0.01 en el intervalo [-1, 1].

$$\begin{cases} x_1' = t + x_1^2 + x_2 & x_1(-1) = 0.43 \\ x_2' = t^2 - x_1 + x_2^2 & x_2(-1) = -0.69. \end{cases}$$

1

2. Resuelva numéricamente el sistema

$$\begin{cases} x_1' = (-1 - 9c^2 + 12sc)x_1 + (12c^2 + 9sc)x_2 & x_1(0) = -12\\ x_2' = (-12s^2 + 9s)x_1 + (-1 - 9s^2 - 12sc)x_2 & x_2(0) = 6 \end{cases}$$

con c = cos(6t) y s = sen(6t). Integre sobre el intervalo [0, 10] con un paso de h = 0.01. Verifique que la solución exacta es

$$\begin{cases} x'_1 &= e^{-13t}(s-2c) \\ x'_2 &= e^{-13t}(2s+c) \end{cases}$$

y compararla con la solución obtenida.

3. Escriba una rutina que corra el método de Runge-Kutta de orden 4 con longitud de paso h para resolver un sistema de n ecuaciones diferenciales. Testee la rutina al resolver el siguiente problema en el intervalo [1,2] con h=-0.01

$$\begin{cases} x_1' = x_1^{-2} + \log(x_2) + t^2 & x_1(2) = -2 \\ x_2' = e^{x_2} - \cos(x_1) + \sin(t)x_1 - (x_1x_2)^{-3} & x_2(2) = 1. \end{cases}$$

4. Resuelva y grafique la curva resultante en el intervalo [0,5] para la ecuación diferencia ordinaria x'' + 192x = 0 con $x(0) = \frac{1}{6}$, x'(0) = 0. Este sistema corresponde a un sistema de masas de resorte no amortiguada.

Actividad Extra

Inspeccione la función solve_ivp de python (módulo scipy.integrate) para resolver ecuaciones diferenciales a valor inicial. Resuelva los ejercicios 4 (sección Series de Taylor) y 4 (sección métodos de Runge-Kutta) y ejercicios 1 y 2 (sección Sistemas de ecuaciones diferenciales ordinarias)