Rappel: un nombre premier est premier avec tous les nombres qu'il ne divise pas.

Exercice: Si un entier est premier avec deux entiers, il est premier avec leur produit.

Sol: Soit a un entier premier avec b et c. D'après le théorème de Bézout, il existe deux entiers u et v tels que au+bv = 1 et des entiers u' et v' tels que au' + cv = 1. On effectue le produit membre à membre. On obtient : (au + bv)(au' + cv') = 1 \Leftrightarrow $a^2uu'+acuv'+abvu'+bcvv'=1 \Leftrightarrow a(auu'+cuv'+bvu')+bc(vv')=1$. Comme auu' + cuv' + bv u'

et v v ' sont des entiers, on en déduit que a et bc sont premiers entre eux

Exemple 4 est premier avec 9 et avec 35, donc 4 est premier avec 315.

Théorème de Gauss (Théorème fondamental de l'arithmétique)

Soient a, b et c trois entiers. Si a divise le produit bc et si a est premier avec b, alors a divise c.

Démonstration

Si a est premier avec b, il existe u et v tels que : au + bv = 1. On en déduit : acu + bcv = c. Or, a divise acu et bc par hypothèse, donc a divise c.

Exemple: Soient a et b deux entiers tels que 5a = 14b. 14 divise le produit 5a, les entiers 14 et 5 sont premiers entre eux, donc 14 divise a. De même, 5 divise b.

Corollaires

- 1. Si un entier est divisible par des entiers a et b premiers entre eux, alors il est divisible par leur produit ab.
- 2. Si un entier <u>premier</u> divise un produit de facteurs ab, alors il divise au moins un des facteurs a et b.

Démonstration

- **1.** Soit n entier divisible par a et b. Il existe des entiers k et k ' tels que n = ka et n = k ' b donc n = ka = k ' b. a divise donc k ' b. Comme a et b sont premiers entre eux, on en déduit (d'après le théorème de Gauss) que a divise k ' donc il existe q tel que k ' q a. On a alors q ab et q est divisible par ab.
- **2**. Soit p un nombre premier divisant ab.

Si p divise a, alors la condition est vérifiée.

Supposons que p ne divise pas a. Alors a et p sont premiers entre eux (d'après la propriété précédente « <u>Un nombre premier est premier avec tous les nombres qu'il ne divise pas</u>. ») comme p divise ab, alors p divise b d'après le théorème de Gauss.

Exemple 1 : Résoudre une équation 7x + 5y = 0. dans \mathbb{Z}^2

Cette équation s'écrit 7x = -5y. 7 et -5 sont premiers entre eux. 7 divise -5y donc 7 divise y d'après le théorème de Gauss. Ainsi y = 7k avec k entier.

En reportant : $7x = -5 \times 7k$ d'où x = -5k. Les solutions sont les couples (-5k; 7k) où $k \in \mathbb{Z}$.

Exemple 2 : Déterminer les entiers x et y tels que 5x + 7y = 1

On remarque que $5 \times 3 - 2 \times 7 = 1$ donc on peut prendre $x_0 = 3$ et $y_0 = -2$. Le couple (3; -2) est une solution particulière de notre équation.

Alors: $5x + 7y = 1 \Leftrightarrow 5x + 7y = 5 \times 3 - 2 \times 7 \Leftrightarrow 5(x - 3) = 7(-y - 2)$.

5 divise 7(-y-2); 5 et 7 sont premiers entre eux. D'après le théorème de Gauss, on en déduit que 5 divise -y-2. Par conséquent : -y-2=5k, $k\in \mathbb{Z}$, donc y=-2-5k.

On reporte dans l'équation 5(x-3) = 7(-y-2). On obtient : $5(x-3) = 7 \times 5k$ d'où x-3 = 7k soit x = 3 + 7k. Les solutions sont de la forme (3+7k; -2-5k), $k \in \mathbb{Z}$.

Fonction d'Euler

Remarque: i est inversible modulo $n \to il$ existe k tel que $k*i \equiv 1 \mod(n) \to il$ existe k' tel que k*i-1=k'*n

 \rightarrow k*i + k'*n =1 \rightarrow D'après Bézout pgcd(i,n)=1

Définition

Le groupe multiplicatif \mathbb{Z}_{n}^{*} est l'ensemble des entiers inversibles modulo n :

$$\mathbb{Z}^*_n = \{i \in \mathbb{Z}_n \mid pgcd(i, n) = 1\}$$

Si p est premier alors $\mathbb{Z}_{p}^{*}=\{1,2,...,p-1\}$

Définition

La fonction d'Euler $\varphi(n)$ représente le nombre d'éléments dans $\mathbb{Z}_n^*: \varphi(n) = |\mathbb{Z}_n^*| \to \varphi(n)$ est le nombre d'éléments de \mathbb{Z}_n^* (={0,..., n - 1}) qui sont premiers avec n

Si p est premier alors alors $\phi(n)=p-1$

Théorème

Soit
$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 l'unique factorisation de n. Alors $\varphi(n) = \prod (p_i^{e_i-1}(p_i-1))$

Si p et q sont premiers alors $\varphi(pq) = (p-1)(q-1)$ (ici $e_1 = e_2 = 1$ et $p_1 = p$, $p_2 = q$)

Lemme

p est premier et soit $k \in \{1,2, \dots p-1\}$ Alors p divise C_p^k : démonstration via Théorème de Gauss

Petit théorème de Fermat

- 1. p est un nombre premier, a est un entier Alors $a^p \equiv a \mod(p)$.
- 2. De plus si p^a=1 alors $a^{p-l} \equiv 1 \mod(p)$

Démonstration : Théorème de Gauss & Formule du binôme de Newton pour raisonner par récurrence :

1. Montrons par récurrence que pour tout $a \in \{0,1,2,...p-1\}$ on $a^p \equiv a \mod(p)$: initialisation vrai pour a=0

supposons vrai pour a et montrons que la formule est vraie pour a+1 :

formule de newton $\rightarrow (a+1)^p = \sum_{k=0}^p C_p^k a^k = a^p + \sum_{k=1}^{p-1} C_p^k a^k + 1$. D'après le lemme précédent on $C_p^k \equiv 0 \mod(p)$ et $a^p \equiv a \mod(p)$ (hypothèse) donc $(a+1)^p \equiv a+1 \mod(p)$

2. p divise $a^p - a$ d'après 1 (car p est premier). Comme $a^p - a = a * (a^{p-1} - 1)$ et a^p=1 alors d'après théorème de Gauss alors p divise $a^{p-1} - 1$ donc $a^{p-1} \equiv 1 \mod (p)$

Exemple: 7 est premier et ne divise pas 12, donc $12^6 - 1$ est divisible par 7.

Remarque (Grand Théorème de Fermat (1650 \rightarrow 1995-2002): Soit $n \ge 3$ Les solutions de l'équation $x^n + y^n = z^n$ avec $x, y, z \in \mathbb{Z}$, vérifient toutes xyz = 0.

Théorème: Théorème d'Euler

Soient p et q deux nombres premier distincts et n=pxq. Pour tout $a\in\mathbb{Z}$ tel que $pgcd(a,n)\equiv 1$ alors $a^{(p-1)(q-1)}\equiv 1 \mod(n)$ ($a^{\varphi(n)}\equiv 1 \mod(n)$ avec $\varphi(n)=(p-1)(q-1)$

Définition: Inverse modulo

Soit $a \in \mathbb{Z}$. On dit que $x \in \mathbb{Z}$ est l'inverse de a modulo n si $a.x \equiv 1 \mod(n)$

Proposition

a admet un inverse modulo $n \Leftrightarrow pgcd(a,n) \equiv 1$

Propriété 1

Soit p et q deux nombres premiers. $\varphi(n) = (p-1)(q-1)$ est la fonction indicatrice d'Euler

Si e, tel que $1 < e < \varphi(n)$, est premier avec $\varphi(n)$ alors il existe d unique tel que $1 < d < \varphi(n)$ et vérifiant $e \ d \equiv 1 \ mod \ (\varphi(n))$ ($d \ est \ l$ 'inverse $d \ e \ modulo \ \varphi(n)$)

Démonstration:

a) existence : Si e et $\varphi(n)$ sont premiers entre eux, il existe d'après le théorème de Bézout il existe deux entiers relatifs u_0 et v_0 tels que $u_0e+v_0\varphi(n)=1$. Par la suite (u, v) est solution de $ue+v\varphi(n)=1$ \to $u_0e+v_0\varphi(n)=ue+v\varphi(n)$ \to $(u-u_0)e=(v_0-v)\varphi(n)$ (*) \to e divise v_0-v donc il existe $k\in\mathbb{Z}$ tel que $v=v_0+ke$ en remplaçant $v-v_0$ par ke dans (*) on obtient $u=u_0+k\varphi(n)$ **

le nombre **d** recherché sera la plus petite valeur de u de ** en choisissant la valeur adéquate de k.

Unicité : d est unique car s'il en existait un autre
$$d'$$
 , on aura $de=1-v \varphi(n)$ et $d'e=1-v'\varphi(n)$ et donc $e(d-d')=(v'-v)\varphi(n)$ donc $\varphi(n)$ divise e(d-d')

Comme e est premier avec $\varphi(n)$ alors, d'après le théorème de **Gauss**, $\varphi(n)$ divise d-d' $d-d'\equiv 0 \mod(\varphi(n))$. Mais comme on a $1< d< \varphi(n)$ et $1< d'< \varphi(n)$ alors d=d' .

Propriété 2

Dans les conditions de la propriété 1 et si p et q sont différents (n=p.q) et si $b \equiv a^e \mod(n)$ alors $b^d \equiv a \mod(n)$.

Démonstration:

Si $b \equiv a^e mod(n)$ alors $b^d \equiv a^{ed} mod(n)$. comme $ed \equiv 1 \, mod(\varphi(n))$ alors il existe un entier k > 0 tel que $ed = 1 + k \, \varphi(n)$. On obtient donc $a^{ed} = a^{1+k \, \varphi(n)} \rightarrow a^{ed} = a^{1+k(1-p)(1-q)}$ $\rightarrow a^{ed} = a((a^{p-1})^{q-1})^k$ (*).

Si a est divisible par p alors de façon évidente $a^{ed} \equiv a \equiv 0 \mod(p)$ ((car p divise $a \rightarrow il$ existe p tel que $a \equiv p$. $p \rightarrow a \equiv 0 \mod(p) \rightarrow a^{ed} \equiv a.a.a.a..a(ed fois) \mod(p) \equiv 0 \mod(p)$))

Si a n'est pas divisible par p alors d'après le petit théorème de Fermat, $a^{p-1} \equiv 1 \mod(p)$ d'où $a^{ed} \equiv a \mod(p)$ d'après (*).

De même $a^{ed} \equiv a \mod(q)$.

Il existe donc deux entiers k et k' tels que $a^{ed} = a + k p$ et $a^{ed} = a + k' q \rightarrow k p = k' q$ \rightarrow p|k'q et comme p et q sont premiers et donc premiers entre eux alors p|k' \rightarrow il existe k'' tel que k'=k''.p \rightarrow $a^{ed} = a + k' q = a + k'' pq = a + k'' n$ donc $a^{ed} \equiv a \mod(\varphi(n))$.

$$\rightarrow$$
 $b^d \equiv a^{ed} \mod(n) \equiv a \mod(n)$