

associated bundle construction

Canonical name AssociatedBundleConstruction

Date of creation 2013-03-22 13:26:46 Last modified on 2013-03-22 13:26:46

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075) Entry type Definition Classification msc 55R10

Defines associated bundle

Let G be a topological group, $\pi\colon P\to X$ a (right) principal G-bundle, F a topological space and $\rho\colon G\to \operatorname{Aut}(F)$ a representation of G as homeomorphisms of F. Then the fiber bundle associated to P by ρ , is a fiber bundle $\pi_{\rho}\colon P\times_{\rho}F\to X$ with fiber F and group G that is defined as follows:

• The total space is defined as

$$P \times_{\rho} F := P \times F/G$$

where the (left) action of G on $P \times F$ is defined by

$$g \cdot (p, f) := (pg^{-1}, \rho(g)(f)), \quad \forall g \in G, p \in P, F \in F.$$

• The projection π_{ρ} is defined by

$$\pi_{\rho}[p,f] := \pi(p),$$

where [p, f] denotes the G-orbit of $(p, f) \in P \times F$.

Theorem 1. The above is well defined and defines a G-bundle over X with fiber F. Furthermore $P \times_{\rho} F$ has the same transition functions as P.

Sketch of proof. To see that π_{ρ} is well defined just notice that for $p \in P$ and $g \in G$, $\pi(pg) = \pi(p)$. To see that the fiber is F notice that since the principal action is simply transitive, given $p \in P$ any orbit of the G-action on $P \times F$ contains a unique representative of the form (p, f) for some $f \in F$. It is clear that an open cover that trivializes P trivializes $P \times_{\rho} F$ as well. To see that $P \times_{\rho} F$ has the same transition functions as P notice that transition functions of P act on the left and thus commute with the principal G-action on P.

Notice that if G is a Lie group, P a smooth principal bundle and F is a smooth manifold and ρ maps inside the diffeomorphism group of F, the above construction produces a smooth bundle. Also quite often F has extra structure and ρ maps into the homeomorphisms of F that preserve that structure. In that case the above construction produces a "bundle of such structures." For example when F is a vector space and $\rho(G) \subset \mathrm{GL}(F)$, i.e. ρ is a linear representation of G we get a vector bundle; if $\rho(G) \subset \mathrm{SL}(F)$ we get an oriented vector bundle, etc.