Решения задач экзаменационной контрольной работы по физике

Для студентов 2-го курса МФТИ

05 июня 2012г.

ВАРИАНТ А

1А. (Склизков Г.В., Гавриков А.В.) После призмы происходит отклонение луча света на угол $\delta = \alpha \, (n-1)$. Расстояние между изображениями источников $L = 2 \cdot \delta \cdot f$. Угол схождения лучей на экране: $\beta = L/2f = \delta$. Ширина полосы $\Delta x = \lambda/\beta$, следовательно $\beta = 1/N$. $\alpha = 1/(N(n-1)) = 0.035 = 2^\circ$. Максимальное число полос $m = 2\lambda/\Delta\lambda$, откуда $\Delta\lambda = 10$ нм. Видность пятидесятой полосы:

$$V = \sin\!\left(\frac{\Delta k\beta}{2}\,x_{50}\right)\!\!\left/\!\left(\frac{\Delta k\beta}{2}\,x_{50}\right), \qquad x_{50} = 50\cdot N\lambda, \qquad \frac{\Delta k\beta}{2}\,x_{50} = \frac{2\pi\Delta\lambda\cdot50N\lambda}{2N\lambda^2} = \frac{2\pi\Delta\lambda\cdot50}{2\lambda} = \frac{\pi}{2}\,. \qquad \text{Отсюда:}$$

$$V = \sin\left(\frac{\pi}{2}\right) / \left(\frac{\pi}{2}\right) = 0.64$$
. Отметим, что $\delta f = 0.7$ см $> \Delta x \cdot m/2 = 0.57$ см, т.е. число полос

ограничивается именно немонохроматичностью волны, а не границами области интерференции.

2А. (Петухов В.А.) Для осуществления пробоя на расстоянии L от телескопа необходимо, чтобы телескоп фокусировал излучение в эту точку. Интенсивность I в центре пучка в фокусе на расстоянии L равна $W/\tau S_{3\varphi\varphi} = I = cE^2/8\pi$ (модуль вектора Пойнтинга), где $S_{3\varphi\varphi} \approx \pi/4 \cdot (1,22\lambda L/D)^2$ (оценочно считаем, что радиус эффективного сечения вдвое меньше радиуса пятна Эйри, т.е. что максимальная интенсивность в центре пятна вчетверо выше средней). Отсюда $W = (c\tau/32)(1,22\lambda LE/D)^2 = 62$ Дж.

Решения студентов с размером эффективного сечения, равным площади пятна Эйри, или с иным (разумным) их отношением также предлагается считать правильными.

Примечание. Более точно интенсивность в центре пятна и связанный с ней эффективный диаметр можно найти из представления о раскрутке спирали Френеля в фокусе линзы — см. задачу из задания 6.43 и её решение в методическом пособии Францессона. При таком подходе эффективный диаметр пятна равен $(4/\pi)(\lambda L/D)$ $\Rightarrow S_{2\Phi\Phi} = (4/\pi)(\lambda L/D)^2$, $W = (c\tau/2\pi^2)(\lambda LE/D)^2 = 67,5$ Дж.

3А. (Локшин Г.Р.) Неполяризованный свет представляет собой сумму двух некогерентных взаимноперпендикулярно поляризованных волн E_x и E_y с интенсивностью $I_0/2$ каждая. Пусть разрешённое направление поляроида параллельно оси x. Для этой компоненты имеем прозрачный диск в полторы (по

площади) зоны Френеля. Амплитуда этой компоненты в точке P максимальна, если диск вносит фазовую задержку $\Delta \phi = \pi/4 + \pi = (5/4)\pi$. Она равна $A_x = A_0/\sqrt{2} + \sqrt{2}\left(A_0/\sqrt{2}\right) = \left(1+1/\sqrt{2}\right)A_0$, $I_x = \left(1+1/\sqrt{2}\right)^2I_0$. Для компоненты y диск не прозрачен. В т. P имеем пятно Пуассона с интенсивностью $I_0/2$. Результирующая интенсивность $I = I_x + I_y = \left(1+1/\sqrt{2}\right)^2I_0 + I_0/2 = 2\left(1+1/\sqrt{2}\right)I_0$.

Толщина диска:
$$\frac{2\pi}{\lambda}(n-1)d = \frac{5}{4}\pi + 2\pi m \implies d = \frac{(m+\frac{5}{8}\lambda)}{n-1}, \quad m = 0, 1,$$

4А. (Козел С.М.) 1. Разность хода $\Delta = 2\frac{r^2}{2R} = \frac{r^2}{R}$; интенсивность $I(r) \sim 1 - \cos k \frac{r^2}{R}$; на фотоплёнке $\rho = 2r$; $I_{\phi}(\rho) \sim 1 - \cos k \frac{\rho^2}{AR}$. Число колец $(r \le r_0)$: $\frac{r^2}{R} = m\lambda$; $m = \frac{r^2}{AR} = 200$.

- 2. Ширина Δl крайнего кольца на фотоплёнке : $2\rho d\rho = 4Rdm\lambda$; $d\rho = \Delta l$; dm = 1; $2\rho = 4r_0 \Rightarrow \Delta l = \frac{R\lambda}{r_0} = 5\cdot 10^{-3}$ см. Условие разрешения глаза: $\frac{\Delta l}{L} \ge 1,22\frac{\lambda}{d_{sp}}$; $\frac{\Delta l}{L} = 2\cdot 10^{-4}$; $1,22\frac{\lambda}{d_{sp}} = 1,22\cdot 10^{-4}$; т.е. разрешение возможно, но на пределе.
- 3. Просвечивание фотоплёнки (голограммы): $E \sim I_{\Phi}(\rho) \sim 1 \underbrace{\frac{1}{2} \exp \left(ik \frac{\rho^2}{4R}\right)}_{\text{мижное изображение}} \underbrace{\frac{1}{2} \exp \left(-ik \frac{\rho^2}{4R}\right)}_{\text{describes unoffp}}$. Мнимое

и действительное изображения находятся на расстоянии 2R от голограммы.

5А. (Миславский В.В.) Пластинка из РьТе будет играть роль эталона Фабри-Перо. Энергетический коэффициент отражения поверхностей (за счет Френелевского отражения) $r = \left(\frac{n-1}{n+1}\right)^2 \approx 0.5$. Разрешающая способность интерферометра (добротность) $R = \frac{2\pi L n \sqrt{r}}{\lambda (1-r)} = 1.03 \cdot 10^4$. Ширина максимума пропускания (ширина резонанса) $\delta \lambda_s = \lambda/R$; $\delta v_s = c \delta \lambda_s/\lambda^2$. Отсюда длительность импульса $\tau = \frac{1}{\delta v} = \frac{\lambda^2}{c \delta \lambda} = \frac{\lambda R}{c} \approx 166 \, nc$.

Решения студентов с оценкой добротности без \sqrt{r} также предлагается считать правильными (τ \approx 240 пс).

ВАРИАНТ Б

1Б. (Склизков Г.В., Гавриков А.В.) Т.к. ширина полосы не зависит от положения экрана, то источник находится в фокусе линзы. Угол схождения лучей на экране $\alpha = 2\delta \cdot (n-1)$. Ширина интерференционной полосы $\Delta x = \lambda/\alpha = \underline{50}$ мкм. Наибольшая ширина области пересечения волн будет на расстоянии $L = D/(2\alpha) = \underline{25}$ см.

Видность при использовании протяжённого источника $V=\sin\left(\frac{kb\Omega}{2}\right)/\left(\frac{kb\Omega}{2}\right)$, где Ω — апертура интерференции, b — размер источника. Если экран находится на расстоянии L от бипризмы, то лучи, интерферирующие на экране, проходят через бипризму на расстоянии D/2 друг от друга. Поэтому $b\Omega=(D/2)\psi=(D/2)\cdot(b/f)$, где ψ — угловой размер источника. Таким образом, $V=\sin\left(\frac{kDb}{4f}\right)/\left(\frac{kDb}{4f}\right)=0,64$, т.е. $\frac{kDb}{4f}=\frac{\pi}{2}$, откуда $b=\lambda f/D=40$ мкм = $\frac{4\cdot 10^{-3}}{2}$ см. Отметим, что $\psi=10^{-4}<<\delta$.

2Б. (Петухов В.А.) Решение аналогично задаче с "лазеромобилем" (2A). $D=1,22\lambda L E_0(c\tau/32W)^{0.5}=3,74$ м. Если решать более точно, то 1,22 нужно заменить на $4/\pi$ и получится D=3,90 м.

Как и в 2А, решения с вдвое большими диаметрами предлагается считать правильными.

3Б. (Кобякин А.С.) После первого поляроида выходит линейно поляризованный свет с интенсивностью $I_1 = I_0/2 = E_1^2$. Углы между направлением вектора напряженности и осями пластинки равны $a/2 = 30^\circ$ и 90° — $a/2 = 60^\circ$. Таким образом, проекции амплитуды на оси пластинки

равны $E_x = E_1 \sin(\alpha/2)$ и $E_y = E_1 \cos(\alpha/2)$. Интерферирующие проекции этих проекций на разрешённое направление второго поляроида — $E_1 \sin^2(\alpha/2) = E_1/4$ и $E_1 \cos^2(\alpha/2) = 3E_1/4$.

Пластинка создает разность фаз $\pm \frac{2}{3}\pi$ (\pm — т.к. главная ось не определена как быстрая или медленная) . Полная разность фаз между интерферирующими волнами $\Delta \varphi = \pm \frac{2}{3}\pi + \pi$ ($+\pi$ — т.к. проекции на разрешенное направление второго поляроида имеют разные знаки). В результате интерференции получившаяся интенсивность $I = E_1^2 \left(\frac{9}{16} + \frac{1}{16} - \frac{2}{16} \sqrt{9} \cos \frac{2}{3}\pi \right) = \frac{13}{16} E_1^2 = \frac{13}{32} I_0$.

4Б. (Локтин Г.Р.) Положение плоскостей саморепродукции (самовоспроизведения периодической структуры) для линий λ_1 и λ_2 : $z_1 = \frac{2d^2}{\lambda_1} m_1$, $z_2 = \frac{2d^2}{\lambda_2} m_2$. При условии $z_1 = z_2$ m_1 -плоскость для линии λ_1 совпадает с m_2 -плоскостью для линии λ_2 , откуда $\frac{m_1}{m_2} = \frac{\lambda_1}{\lambda_2} = \frac{600}{450} = \frac{4}{3}$, т.е. при $m_1 = 4$ и $m_2 = 3$ плоскости z_1 и z_2 совпадают, при этом изображение в оранжевом цвете совпадает с изображением в синем цвете, интенсивность максимальна и равна сумме интенсивностей $I = I_{\rm op} + I_{\rm син}$. $z = \frac{2d^2}{6 \cdot 10^{-5}} \cdot 4 = 53,3$ см.

5Б. (Миславский В.В.) Толщина эталона будет выбираться из 2-х условий. С одной стороны, чтобы дисперсионная область $\Delta \nu_3$ была больше половины ширины линии усиления лазера $\Delta \nu_0$: $\Delta \nu_3 \geq \frac{\Delta \nu_0}{2}$. Тогда, если один из максимумов пропускания эталона будет совпадать с максимумом линии усиления, соседние максимумы пропускания эталона выйдут за пределы контура усиления. С другой стороны, ширина максимума пропускания эталона Фабри-Перо $\delta \nu_3$ должна быть меньше межмодового расстояния $\Delta \nu = \frac{c}{2L}$. Из условия $\Delta \nu_3 = \frac{c}{2\pi L_3} \geq \frac{\Delta \nu_0}{2}$ получим $L_3 \leq \frac{c}{n\Delta \nu_0} \approx 5,71\, cm$. $\delta \nu_3 = \frac{\nu}{R}$, где $R = \frac{2\pi L_3 n\sqrt{r}}{\lambda(1-r)}$ — разрешающая способность (добротность) эталона. Из условия $\delta \nu_2 = \frac{c(1-r)}{2\pi L_3 n\sqrt{r}} \leq \frac{c}{2L}$ получим оценку $L_3 \geq \frac{L(1-r)}{m\sqrt{r}} \approx 1,66\, cm$. Таким образом, оценка даёт $1,66\, cm \leq L_3 \leq 5,71\, cm$.

Учитывая условие, что на оптической длине эталона должно укладываться целое число полуволн т.е. $L_3=m\lambda/2n$, где m — целое число, можно найти одно из значений $L_3=3.7~cm$.

Как и в задаче 5A, решения студентов с оценкой добротности без \sqrt{r} также предлагается считать правильными.