

Efficient genetic K-Means clustering for health care knowledge discovery

A. Alsayat and H. El-Sayed, 2016, IEEE

• How can we improve clustering accuracy in healthcare data?

• How can we reduce sensitivity to hyperparameter selection?

Other Methods

K-Means

- Unsupervised
- Groups data into k clusters by assigning points to the nearest centroid and updating centroids repeatedly.
- Limitations:
 - 1) Hard to determine the optimal k,
 - 2) Sensitive to initial centroid placement
 - 3) Sensitive to outliers

DBSCAN

- Unsupervised
- Requires parameters: ε
 (neighborhood radius) and MinPts
 (minimum points)
- Limitations:
 - 1) Hard to determine the parameters,
 - 2) Clusters must have uniform density

Methods

- Self Organizing Map (SOM)
- Genetic Algorithm
- K-Means Clustering

"We propose an **efficient K-Means** clustering algorithm which uses the **SOM** method to discover the optimal segments number in the data as a preprocessing step"

Solution

Self Organizing Map

Unsupervised Artificial Neural Network

Maps high-dimensional data onto a lower-dimensional grid

Groups similar data points close together to preserve topology and reveal natural clusters.

Estimates the number of meaningful clusters (k) based on node density

Solution

Genetic Algorithm

Unsupervised evolutionary algorithm

Explores many possible cluster center combinations

Starts with SOM vectors as initial guidance

Selects the best centers by minimizing distance to data points

Solution

Optimized K-Means

After identifying the optimal number of clusters using SOM

After estimating the initial cluster centers with a Genetic Algorithm

we applied K-Means to achieve improved results

Preprocessing Heart

Heart Disease Dataset			
Attribute Name	Description		
age	age in years		
sex	patient gender		
cp	chest pain type		
trestbps	resting blood pressure		
chol	serum cholestoral		
fbs	fasting blood sugar		
restecg	resting electrocardiographic results		
thalach	maximum heart rate		
exang	exercise induced angina		
oldpeak	ST depression		
slope	he slope of the peak exercise ST segment		
ca	number of major vessels		
thal	exercise test		
num	diagnosis of heart disease		

```
heart_cleaned.csv
age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,
slope,ca,target,thal_fixed,thal_normal,thal_reversible
63,1,1,145,233,1,2,150,0,2.3,3,0,0,True,False,False
67,1,4,160,286,0,2,108,1,1.5,2,3,1,False,True,False
5 67,1,4,120,229,0,2,129,1,2.6,2,2,0,False,False,True
```

- 303 patients
- 13 variables related to heart disease diagnosis
- came with target
- "thal": One-hot encoding and dummy variables

Preprocessing Liver

Liver Disease Dataset		
Attribute Name	Description	
mcv	mean corpuscular volume	
alkphos	alkaline phosphotase	
sgpt	alamine aminotransferase	
sgot	aspartate aminotransferase	
gammagt	gamma-glutamyl transpeptidase	
drinks	alcoholic beverages drunk per day	
selector	class label for liver disease	

```
1 mcv,alkphos,sgot,sgpt,gammagt,target
2 92,93,28,22,123,1
3 86,77,19,25,18,0
4 88,74,25,31,15,0
5 92,67,14,15,14,1
```

- 345 patients ->341 (removeing duplicates)
- 5 blood test variables related to liver disease, and how much cups of alcohol
- target: drinks more than 5 is sick
- deleted 'selector'
- shuffled

Selector

Article

) oto

B. Cluster Evaluation

As explained in Section IV-B, a weighted average accuracy was determined for the clustering output using class labels. For example, in the liver disease dataset, the variable "selector" is the class which tells whether patient is normal or infected. To evaluate each cluster, we presume that each cluster represents the most frequent class present in it, and then the accuracy

Important note: The 7th field (selector) has been widely misinterpreted in the past as a dependent variable representing presence or absence of a liver disorder. This is incorrect [1]. The 7th field was created by BUPA researchers as a train/test selector. It is not suitable as a dependent

drinks > 5

It appears that drinks>5 is some sort of a selector on this database.

SOM + Genetic K-Means

Fig 2: Heatmaps

341/10 = ~35 - ~6x6 = 36 neuron

Reveals relationships between variables

SOM + Genetic K-Means

Fig 3: Clusters

7 clusters

5 clusters

SOM + Genetic K-Means

Fig 4: Density plot

Theirs

Highlight what makes cluster I unique compared to the other clusters.

PCA: Clusters and True Health Status Cluster PC2 Sick (1 = yes) PC1

Results

	Cluster	Total	Sick_Count	Sick_Percent
	<int></int>	<int></int>	<int></int>	<db1></db1>
1	2	9	6	66.7
2	3	39	22	56.4
3	1	52	16	30.8
4	6	53	15	28.3
5	5	5	1	20
6	4	119	19	16.0
7	7	64	6	9.38

Results

Theirs

k	
$\sum (n_i *$	Accuracy))/N
i=1	

	Weighted Classification Accuracy (%)		
Dataset	SOM Genetic K-Means	K-Means	DBSCAN
Liver Disease	73.84 (k=5)	69.15	67.66
Heart Disease	69.90 (k=4)	66.27	61.45

	Weighted Classific			
Dataset	SOM Genetic K-Means	K-Means	DBSCAN	
Liver Disease	77.42% (Estimated k=7)	69.86% (k=40)	66.87% (eps	=1.4, min_samples=1)
Heart Disease	83.39% (Estimated k=6)	82.39% (k=20)	78.74% (eps	=3, min_samples=1)

Ours

SOM-Genetic K-Means achieved higher accuracy, leading to more accurate treatment suggestions.

Project Breakdown

Dataset Preparation

- Find and download the datasets.
- Clean data.

Baseline Clustering

- Run K-Means clustering- Choose appropriate k values.
- Run DBSCAN- Find eps and min_samples.

Advanced Clustering

- Implement Self-Organizing Maps (SOM)- Train SOM on the dataset.
- Apply Genetic K-Means- Use SOM output as input for clustering.

Evaluate performances

- Compare K-Means, DBSCAN and SOM-Genetic-Kmeans's results.
- Generate visualizations- using graphs and plots.

Present conclusions

• Summarize findings and write conclusions

Bibliography

THE ARTICLE:

A. Alsayat and H. El-Sayed, "Efficient genetic K-Means clustering for health care knowledge discovery," 2016 IEEE 14th International Conference on Software Engineering Research, Management and Applications (SERA), Towson, MD, USA, 2016, pp. 45-52, doi: 10.1109/SERA.2016.7516127.

https://ieeexplore.ieee.org/document/7516127

DATASET 1: liver disease

04

Reference Article:

- Richard Forsyth and Roy Rada. 1986. Machine learning: applications in expert systems and information retrieval. Halsted Press, USA.
- https://dl.acm.org/doi/abs/10.5555/6736
- Erzs´ ebet Mer´enyi, Michael J Mendenhall, and Patrick ODriscoll. Ad vances in self-organizing maps and learning vector quantization

THANKYOUS