Курс "Теория случайных процессов". Домашнее задание номер 9.

Стационарность. Эргодичность. Крайний срок сдачи - 10 декабря 2019 г., 12:10

1. Определим процесс

$$X_t = \sum_{k=1}^n \psi_k(t) Z_k,$$

где $Z_1, ..., Z_n$ - последовательность i.i.d. случайных величин со стандартным нормальным распределением, и, кроме того,

- (i) $\psi_k(t) = t^k, k = 1..n;$
- (ii) $\psi_k(t) = \cos(kt)$, если k чётное, и $\psi_k(t) = \sin(kt)$, если k нечётное, k = 1..n. Число n чётное.

Определите, является ли процесс X_t стационарным в каждом из случаев.

- 2. Обозначим через $\varepsilon_1, \varepsilon_2...$ последовательность независимых стандартных нормальных случайных величин, и через α, β положительные константы. Определите, является ли следующие процессы стационарными в широком смысле и эргодическими (t=1,2,...):
 - (i) $X_t = \varepsilon_1 + \cos(\varepsilon_2)$;
 - (ii) $X_t = \varepsilon_t + \alpha t$;
 - (iii) $X_t = \varepsilon_t + e^{-\beta t}$;
 - (iv) $X_t = \varepsilon_t + e^{-\beta t} + \alpha t^2$.

3. Обозначим через X_t случайный процесс с постоянным математическим ожиданием и ковариционной функцией

$$K(t,s) = e^{-\alpha|t-s|},$$

где $\alpha>0$ - константа. Известно, что случайная величина ξ имеет положительную дисперсию. Определите, является ли эргодическим процесс $Y_t=X_t+\xi$.

4. Про процесс Y_t известно, что

$$\mathbb{E}[Y_t] = \alpha + \beta t, \quad \operatorname{cov}(Y_t, Y_{t+h}) = e^{-\lambda h}, \quad \forall t > 0, h \ge 0,$$

где $\lambda>0,\ \alpha,\beta$ - некоторые константы. Определите, является ли эргодическим процесс

$$X_t := Y_{t+1} - Y_t$$
.

- 5^* . Является ли Броуновское движение (рассмотренное в целочисленные моменты времени t = 0, 1, 2, ...) эргодическим процессом?
- 6*. В условиях задачи 2, определите, является ли случайный процесс

$$X_t = \varepsilon_t + \alpha t/(t+1)$$

эргодическим.