Capítulo 4: ¿Qué podemos leer de un código de barras?

4.1.1 Exponentes característicos

4.2 Profundidad y aproximación de la frontera

Haydeé Peruyero

19 de octubre de 2023

Contenidos

4.1.1 Exponentes característicos

S. 4.2 Profundidad y aproximación de la frontera

Sea E un espacio vectorial de dimensión finito sobre $\mathbb F$ con $\dim E=L.$

Sea E un espacio vectorial de dimensión finito sobre $\mathbb F$ con dim E=L.

Definición 4.1.5 La función $c: E \to \mathbb{R} \cup \{-\infty\}$ es llamada **exponente característico** si

Sea E un espacio vectorial de dimensión finito sobre $\mathbb F$ con dim E=L.

Definición 4.1.5 La función $c: E \to \mathbb{R} \cup \{-\infty\}$ es llamada **exponente característico** si

 $\overline{1.\ c(0)=-\infty,\ c(v)}\in\mathbb{R}$ para todo v
eq 0,

Sea E un espacio vectorial de dimensión finito sobre $\mathbb F$ con dim E=L.

Definición 4.1.5 La función $c: E \to \mathbb{R} \cup \{-\infty\}$ es llamada **exponente característico** si

- 1. $c(0) = -\infty$, $c(v) \in \mathbb{R}$ para todo $v \neq 0$,
- 2. $c(\lambda v) = c(v)$ para todo $\lambda \in \mathbb{F} \setminus \{0\}$,

Sea E un espacio vectorial de dimensión finito sobre $\mathbb F$ con dim E=L.

Definición 4.1.5 La función $c: E \to \mathbb{R} \cup \{-\infty\}$ es llamada **exponente característico** si

- 1. $c(0) = -\infty$, $c(v) \in \mathbb{R}$ para todo $v \neq 0$,
- 2. $c(\lambda v) = c(v)$ para todo $\lambda \in \mathbb{F} \setminus \{0\}$,
- 3. $c(v_1 + v_2) \le \max\{c(v_1), c(v_2)\}$ para todo $v_1, v_2 \in E$.

Sea E un espacio vectorial de dimensión finito sobre \mathbb{F} con dim E=L.

Definición 4.1.5 La función $c: E \to \mathbb{R} \cup \{-\infty\}$ es llamada **exponente característico** si

- 1. $c(0) = -\infty$, $c(v) \in \mathbb{R}$ para todo $v \neq 0$,
- 2. $c(\lambda v) = c(v)$ para todo $\lambda \in \mathbb{F} \setminus \{0\}$,
- 3. $c(v_1 + v_2) \le \max\{c(v_1), c(v_2)\}$ para todo $v_1, v_2 \in E$.

Ejercicio 4.1.6 Sea $c: E \to \mathbb{R} \cup \{-\infty\}$ el exponente característico. Verificar que para cualquier $\alpha \in \mathbb{R}$, el conjunto $\{v: c(v) < \alpha\}$ es un subespacio de E. Deducir que c admite a lo más dim E distintos valores reales.

Observación: Cada exponente característico corresponde a una **bandera** de espacios vectoriales

$$\{0\} = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \ldots \subsetneq E_k = E$$
,

donde dim $E_i = p_i$, y $0 = p_0 < p_1 < p_2 < \ldots < p_k = L$, con la propiedad de que existen constantes $\alpha_1 < \alpha_2 < \ldots < \alpha_k$, tales que $c \big|_{E_i \setminus E_{i-1}} = \alpha_i$.

Observación: Cada exponente característico corresponde a una **bandera** de espacios vectoriales

$$\{0\} = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \ldots \subsetneq E_k = E$$
,

donde dim $E_i = p_i$, y $0 = p_0 < p_1 < p_2 < \ldots < p_k = L$, con la propiedad de que existen constantes $\alpha_1 < \alpha_2 < \ldots < \alpha_k$, tales que $c \big|_{E_i \setminus E_{i-1}} = \alpha_i$.

El multiconjunto que consiste de cada α_i junto con sus multiplicidades $p_i - p_{i-1}$ se llama el **espectro de** c, y se denotará por spec(c).

En el contexto de los módulos de persistencia y códigos de barras esta construcción es como sigue:

En el contexto de los módulos de persistencia y códigos de barras esta construcción es como sigue:

Dado un módulo de persistencia (V,π) , podemos definir el mapeo $c:V_{\infty}\to\mathbb{R}$ por

$$c(v) = \inf\{s: v \in \operatorname{im}(\pi_{s,\infty})\}$$

donde $V_{\infty} := V_t$ para $t \gg 0$.

En el contexto de los módulos de persistencia y códigos de barras esta construcción es como sigue:

Dado un módulo de persistencia (V,π) , podemos definir el mapeo $c:V_{\infty}\to\mathbb{R}$ por

$$c(v) = \inf\{s: v \in \operatorname{im}(\pi_{s,\infty})\}$$

donde $V_{\infty} := V_t$ para $t \gg 0$.

Ejercicio 4.1.7

- 1. La función c es un exponente característico.
- 2. El espectro de c consiste de los puntos finales de las barras infinitas en $\mathcal{B}(V)$ junto con sus multiplicidades.

Consideremos el módulo de persistencia de Morse V = V(f) asociado a la función de Morse $f: X \to \mathbb{R}$ en una variedad cerrada X.

- Consideremos el módulo de persistencia de Morse V = V(f) asociado a la función de Morse $f: X \to \mathbb{R}$ en una variedad cerrada X.
- ▶ El espacio vectorial terminal V_{∞} es simplemente $H_*(M)$.

- Consideremos el módulo de persistencia de Morse V = V(f) asociado a la función de Morse $f: X \to \mathbb{R}$ en una variedad cerrada X.
- \blacktriangleright El espacio vectorial terminal V_{∞} es simplemente $H_*(M)$.
- ▶ El exponente característico inducido $c_f: H_*(M) \to \mathbb{R}$ es llamado un **invariante espectral**.

- Consideremos el módulo de persistencia de Morse V = V(f) asociado a la función de Morse $f: X \to \mathbb{R}$ en una variedad cerrada X.
- ightharpoonup El espacio vectorial terminal V_{∞} es simplemente $H_*(M)$.
- ▶ El exponente característico inducido $c_f: H_*(M) \to \mathbb{R}$ es llamado un invariante espectral.
- ▶ El valor $c_f(A)$ para $A \in H_*(M)$ es, intuitivamente, el mínimo valor crítico tal que los subconjuntos de nivel correspondientes contienen un representante (completo) de A.

- Consideremos el módulo de persistencia de Morse V = V(f) asociado a la función de Morse $f: X \to \mathbb{R}$ en una variedad cerrada X.
- ▶ El espacio vectorial terminal V_{∞} es simplemente $H_*(M)$.
- ▶ El exponente característico inducido $c_f: H_*(M) \to \mathbb{R}$ es llamado un invariante espectral.
- ▶ El valor $c_f(A)$ para $A \in H_*(M)$ es, intuitivamente, el mínimo valor crítico tal que los subconjuntos de nivel correspondientes contienen un representante (completo) de A.
- ► El **espectro** de *c_f* consiste en los llamados valores críticos homológicamente esenciales de *f*, los cuales son casos especiales de los valores críticos min-max.

Contenidos

4.1.1 Exponentes característicos

S. 4.2 Profundidad y aproximación de la frontera

Profundidad de la frontera

Definición 4.2.1 Sea $\mathcal B$ un código de barras. La longitud de la barra finita más larga en $\mathcal B$ se llama la **profundidad de la frontera** de $\mathcal B$ y se denota por $\beta(\mathcal B)$.

Profundidad de la frontera

Definición 4.2.1 Sea $\mathcal B$ un código de barras. La longitud de la barra finita más larga en $\mathcal B$ se llama la **profundidad de la frontera** de $\mathcal B$ y se denota por $\beta(\mathcal B)$. Si un código de barras consiste de solo barras infinitas entonces definimos β como cero.

Teorema 4.2.2 Para un código de barras \mathcal{B} escribamos las barras de longitud finita en orden decreciente:

$$\beta_1 \ge \beta_2 \ge \dots \tag{1}$$

Siguiendo los resultados de Usher y Zhang, afirmamos que la función β_k es Lipschitz en el espacio de los códigos de barras con constante Lipschitz igual a 2. Vamos a usar la convención de que si \mathcal{B} tiene menos de k barras finitas, entonces $\beta_k(\mathcal{B})=0$.

ightharpoonup Supongamos que cualesquiera dos códigos de barras $\mathcal B$ y $\mathcal C$ están δ -emparejados.

- ▶ Supongamos que cualesquiera dos códigos de barras \mathcal{B} y \mathcal{C} están δ -emparejados.
- Es suficiente probar la desigualdad

$$\beta_k(\mathcal{B}) - \beta_k(\mathcal{C}) \le 2\delta$$
 . (2)

- ightharpoonup Supongamos que cualesquiera dos códigos de barras $m {\cal B}$ y $m {\cal C}$ están δ-emparejados.
- Es suficiente probar la desigualdad

$$\beta_k(\mathcal{B}) - \beta_k(\mathcal{C}) \le 2\delta$$
 . (2)

Fijemos un δ -emparejamiento. Si $\beta_k(\mathcal{B}) \leq 2\delta$, la desigualdad (2) se cumple.

- ▶ Supongamos que cualesquiera dos códigos de barras \mathcal{B} y \mathcal{C} están δ -emparejados.
- Es suficiente probar la desigualdad

$$\beta_k(\mathcal{B}) - \beta_k(\mathcal{C}) \le 2\delta$$
 . (2)

- ▶ Fijemos un δ -emparejamiento. Si $\beta_k(\mathcal{B}) \leq 2\delta$, la desigualdad (2) se cumple.
- Entonces vamos a suponer que

$$\beta_k(\mathcal{B}) > 2\delta \ . \tag{3}$$

Cualquier δ -emparejamiento μ nos deja en particular lo siguiente:

Cualquier δ -emparejamiento μ nos deja en particular lo siguiente:

Después de remover de ambos códigos de barras algunas de las barras de longitud $< 2\delta$, vamos a emparejar el resto de tal forma que las diferencias de longitudes en cada par sea menor que 2δ .

Cualquier δ -emparejamiento μ nos deja en particular lo siguiente:

- Después de remover de ambos códigos de barras algunas de las barras de longitud $< 2\delta$, vamos a emparejar el resto de tal forma que las diferencias de longitudes en cada par sea menor que 2δ .
- Denotemos las longitudes de los intervalos emparejados, en orden decreciente, como

$$b_1 \geq b_2 \geq \cdots \geq b_N$$
,

$$c_1 \geq c_2 \geq \cdots \geq c_N$$
.

▶ Por el Lema del Emparejamiento, si pensamos en que emparejamos las longitudes más que las barras, el emparejamiento óptimo es el monótono.

- Por el Lema del Emparejamiento, si pensamos en que emparejamos las longitudes más que las barras, el emparejamiento óptimo es el monótono.
- En particular,

$$|b_k-c_k|<2\delta\;, (4)$$

ya que esta cota en la diferencia de las longitudes es cierta también para μ , la cual podría no ser el emparejamiento óptimo en términos de las longitudes.

- Por el Lema del Emparejamiento, si pensamos en que emparejamos las longitudes más que las barras, el emparejamiento óptimo es el monótono.
- En particular,

$$|b_k - c_k| < 2\delta , (4)$$

ya que esta cota en la diferencia de las longitudes es cierta también para μ , la cual podría no ser el emparejamiento óptimo en términos de las longitudes.

Por (3), ninguna barra más larga que la k-ésima en la lista (1) es removida y así $b_k = \beta_k(\mathcal{B})$.

- Por el Lema del Emparejamiento, si pensamos en que emparejamos las longitudes más que las barras, el emparejamiento óptimo es el monótono.
- En particular,

$$|b_k - c_k| < 2\delta , (4)$$

ya que esta cota en la diferencia de las longitudes es cierta también para μ , la cual podría no ser el emparejamiento óptimo en términos de las longitudes.

- Por (3), ninguna barra más larga que la k-ésima en la lista (1) es removida y así $b_k = \beta_k(\mathcal{B})$.
- Por otro lado, $c_k \leq \beta_k(\mathcal{C})$ ya que algunas barras más largas que c_k pudieron ser borradas.

- Por el Lema del Emparejamiento, si pensamos en que emparejamos las longitudes más que las barras, el emparejamiento óptimo es el monótono.
- En particular,

$$|b_k - c_k| < 2\delta , (4)$$

ya que esta cota en la diferencia de las longitudes es cierta también para μ , la cual podría no ser el emparejamiento óptimo en términos de las longitudes.

- Por (3), ninguna barra más larga que la k-ésima en la lista (1) es removida y así $b_k = \beta_k(\mathcal{B})$.
- Por otro lado, $c_k \leq \beta_k(\mathcal{C})$ ya que algunas barras más largas que c_k pudieron ser borradas.
- ▶ Por (4),

$$\beta_k(\mathcal{B}) - \beta_k(\mathcal{C}) \leq b_k - c_k \leq 2\delta$$
,

lo cual nos deja (2).

R-complejo filtrado

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

R-complejo filtrado

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

Definición 4.2.3 Un \mathbb{R} -complejo filtrado (C, ∂) sobre \mathbb{F} consiste de los siguientes datos:

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

Definición 4.2.3 Un \mathbb{R} -complejo filtrado (C, ∂) sobre \mathbb{F} consiste de los siguientes datos:

▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

- ▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.
- ▶ Para todo $\lambda \in \mathbb{R}$, un subespacio $C^{\lambda} \subseteq C$, tal que

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

- ▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.
- ▶ Para todo $\lambda \in \mathbb{R}$, un subespacio $C^{\lambda} \subseteq C$, tal que
 - 1. $C^{\lambda} \subseteq \overline{C^{\mu}}$ para cualquier $\lambda < \mu$ en \mathbb{R} ,

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

- ▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.
- ▶ Para todo $\lambda \in \mathbb{R}$, un subespacio $C^{\lambda} \subseteq C$, tal que
 - 1. $C^{\lambda} \subseteq \overline{C^{\mu}}$ para cualquier $\lambda < \mu$ en \mathbb{R} ,
 - 2. $\cap_{\lambda \in \mathbb{R}} C^{\lambda} = \{0\}, \cup_{\lambda \in \mathbb{R}} C^{\lambda} = C$,

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

- ▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.
- ▶ Para todo $\lambda \in \mathbb{R}$, un subespacio $C^{\lambda} \subseteq C$, tal que
 - 1. $C^{\lambda} \subseteq C^{\mu}$ para cualquier $\lambda < \mu$ en \mathbb{R} ,
 - 2. $\cap_{\lambda \in \mathbb{R}} C^{\lambda} = \{0\}, \cup_{\lambda \in \mathbb{R}} C^{\lambda} = C$
 - 3. Para cualquier $\lambda \in \mathbb{R}$, $\partial C^{\lambda} \subseteq \bigcup_{\mu < \lambda} C^{\mu}$.

La noción de profundidad de la frontera fue introducida por M. Usher en el contexto de complejos filtrados.

Definición 4.2.3 Un \mathbb{R} -complejo filtrado (C, ∂) sobre \mathbb{F} consiste de los siguientes datos:

- ▶ Un \mathbb{F} -espacio vectorial de dimensión finita C con un mapeo lineal $\partial: C \to C$, tal que $\partial^2 = 0$.
- ▶ Para todo $\lambda \in \mathbb{R}$, un subespacio $C^{\lambda} \subseteq C$, tal que
 - 1. $C^{\lambda} \subseteq C^{\mu}$ para cualquier $\lambda < \mu$ en \mathbb{R} ,
 - 2. $\cap_{\lambda \in \mathbb{R}} C^{\lambda} = \{0\}, \cup_{\lambda \in \mathbb{R}} C^{\lambda} = C,$
 - 3. Para cualquier $\lambda \in \mathbb{R}$, $\partial C^{\lambda} \subseteq \bigcup_{\mu < \lambda} C^{\mu}$.

Notemos que como C es de dimensión finita, existen $\lambda_- < \lambda_+$ en \mathbb{R} , tal que $C^{\lambda} = 0$ para cualquier $\lambda \leq \lambda_-$ y $C^{\lambda} = C$ para cualquier $\lambda \geq \lambda_+$.

Profundidad de la frontera

Definición 4.2.4 La **profundidad de la frontera** de un complejo filtrado (C, ∂) está definida como

$$b(C,\partial) = \inf\{\alpha \ge 0 \mid \forall \lambda \in \mathbb{R}, \ (\operatorname{im} \partial) \cap C^{\lambda} \subseteq \partial(C^{\lambda+\alpha})\} \ . \tag{5}$$

Profundidad de la frontera

Definición 4.2.4 La profundidad de la frontera de un complejo filtrado (C, ∂) está definida como

$$b(C,\partial) = \inf\{\alpha \ge 0 \mid \forall \lambda \in \mathbb{R}, \ (\operatorname{im} \partial) \cap C^{\lambda} \subseteq \partial(C^{\lambda+\alpha})\} \ . \tag{5}$$

En otras palabras, $b(C, \partial)$ es el $\alpha \ge 0$ más pequeño con la propiedad de que siempre que tengamos una frontera $x \in C$, podemos encontrar un elemento cuya frontera es x al **buscar hacia arriba** en la filtración no más que α .

Profundidad de la frontera

Definición 4.2.4 La **profundidad de la frontera** de un complejo filtrado (C, ∂) está definida como

$$b(C,\partial) = \inf\{\alpha \ge 0 \mid \forall \lambda \in \mathbb{R}, \ (\operatorname{im} \partial) \cap C^{\lambda} \subseteq \partial(C^{\lambda+\alpha})\} \ . \tag{5}$$

En otras palabras, $b(C, \partial)$ es el $\alpha \geq 0$ más pequeño con la propiedad de que siempre que tengamos una frontera $x \in C$, podemos encontrar un elemento cuya frontera es x al **buscar hacia arriba** en la filtración no más que α . Notemos que trivialmente $b(C, \partial) \leq \lambda_+ - \lambda_-$.

Entonces podemos conectar está noción en nuestro contexto al notar que $\{H_*(C^{\lambda})\}_{\lambda}$ es un módulo de persistencia.

Entonces podemos conectar está noción en nuestro contexto al notar que $\{H_*(C^{\lambda})\}_{\lambda}$ es un módulo de persistencia.

Ejercicio 4.2.5 Usando la definición de profundidad de frontera β de un código de barras, mostrar que para un \mathbb{Z} -graduado \mathbb{R} -complejo simplicial (C, ∂) se cumple que:

$$\beta\Big(\mathcal{B}\big(\{H_*(\mathcal{C}^\lambda)\}_\lambda\big)\Big)=b(\mathcal{C},\partial)$$
.

Aproximando funciones en S^2

Ejemplo 4.2.6 Consideremos la función de Morse $f: S^2 \to \mathbb{R}$.

Aproximando funciones en S^2

Ejemplo 4.2.6 Consideremos la función de Morse $f: S^2 \to \mathbb{R}$. Queremos saber que tan bien puede ser aproximada por una función de Morse g en la esfera, la cual tiene exactamente dos puntos críticos, y tal que las dos funciones tienen los mismos máximos y mínimos.

Aproximando funciones en S^2

Ejemplo 4.2.6 Consideremos la función de Morse $f: S^2 \to \mathbb{R}$. Queremos saber que tan bien puede ser aproximada por una función de Morse g en la esfera, la cual tiene exactamente dos puntos críticos, y tal que las dos funciones tienen los mismos máximos y mínimos.

La función f es la función altura en la esfera con forma de corazón y la función g es cualquier función de Morse en la esfera con exactamente dos puntos críticos y con los mismos máximos y mínimos que f.

Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.

- Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.
- Para cuantificar que tan bien podemos aproximar g con f, vamos a examinar los códigos de barras correspondientes a dichas módulos.

- Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.
- Para cuantificar que tan bien podemos aproximar g con f, vamos a examinar los códigos de barras correspondientes a dichas módulos.
- Vamos a considerar la homología de Morse con coeficientes en \mathbb{Z}_2 .

- Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.
- Para cuantificar que tan bien podemos aproximar g con f, vamos a examinar los códigos de barras correspondientes a dichas módulos.
- Vamos a considerar la homología de Morse con coeficientes en \mathbb{Z}_2 .
- Sea $x_1 \in S^2$ el punto mínimo, x_2 el punto silla, x_3 el máximo local y x_4 el máximo global de f.

- Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.
- Para cuantificar que tan bien podemos aproximar g con f, vamos a examinar los códigos de barras correspondientes a dichas módulos.
- Vamos a considerar la homología de Morse con coeficientes en \mathbb{Z}_2 .
- Sea $x_1 \in S^2$ el punto mínimo, x_2 el punto silla, x_3 el máximo local y x_4 el máximo global de f.
- Los índices de Morse de los puntos críticos de la esfera con forma de corazón son

$$ind(x_1) = 0$$
, $ind(x_2) = 1$, $ind(x_3) = ind(x_4) = 2$.

- Consideremos los módulos de persistencia de la homología de Morse con respecto a esas funciones.
- ▶ Para cuantificar que tan bien podemos aproximar g con f, vamos a examinar los códigos de barras correspondientes a dichas módulos.
- Vamos a considerar la homología de Morse con coeficientes en \mathbb{Z}_2 .
- Sea $x_1 \in S^2$ el punto mínimo, x_2 el punto silla, x_3 el máximo local y x_4 el máximo global de f.
- Los índices de Morse de los puntos críticos de la esfera con forma de corazón son

$$\operatorname{ind}(x_1) = 0$$
, $\operatorname{ind}(x_2) = 1$, $\operatorname{ind}(x_3) = \operatorname{ind}(x_4) = 2$.

Vamos a calcular la homología de Morse H(t) de los subconjuntos de nivel $\{f < t\}$:

Vamos a calcular la homología de Morse H(t) de los subconjuntos de nivel $\{f < t\}$:

- Para $t > a_4$:
 - $\qquad \qquad H_2(t) = \mathbb{Z}_2\langle x_3 + x_4 \rangle \text{ (ya que } x_3 x_4 \in \ker \partial),$
 - $ightharpoonup H_1(t) = 0$ (ya que x_2 es un punto frontera),
 - $\vdash H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$

Vamos a calcular la homología de Morse H(t) de los subconjuntos de nivel $\{f < t\}$:

- Para $t > a_4$:
 - \vdash $H_2(t) = \mathbb{Z}_2\langle x_3 + x_4 \rangle$ (ya que $x_3 x_4 \in \ker \partial$),
 - $ightharpoonup H_1(t) = 0$ (ya que x_2 es un punto frontera),
 - $H_0(t) = \mathbb{Z}_2 \langle x_1 \rangle.$
- ▶ Para $t \in (a_3, a_4)$:
 - \vdash $H_2(t) = 0$ (ya que $\partial x_3 = x_2$ es no cero),
 - \vdash $H_1(t) = 0$ (ya que $\partial x_2 = 0$ y $\partial x_3 = x_2$),
 - $H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$

- ▶ Para $t \in (a_2, a_3)$:
 - $\vdash H_2(t) = 0,$

 - $\blacktriangleright \ \overline{H_0(t)} = \mathbb{Z}_2\langle x_1 \rangle.$

- ▶ Para $t \in (a_2, a_3)$:
 - $\vdash H_2(t) = 0,$

 - $H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$
- ▶ Para $t \in (a_1, a_2)$:
 - $H_2(t) = H_1(t) = 0$
 - $H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$

- ightharpoonup Para $t \in (a_2, a_3)$:
 - $\vdash H_2(t) = 0,$

 - $\blacktriangleright \ H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$
- ▶ Para $t \in (a_1, a_2)$:
 - $\vdash H_2(t) = H_1(t) = 0,$
 - $\blacktriangleright \ H_0(t) = \mathbb{Z}_2\langle x_1 \rangle.$
- ▶ Para $t < a_1$: H(t) = 0.

Código de barras de la esfera con forma de corazón

Observación: Las barras infinitas corresponden a los invariantes espectrales $a_1 = c_f([punto])$ y $a_4 = c_f([S^2])$ (los mínimos y máximos).

Código de barras de la esfera con forma de corazón

Observación: Las barras infinitas corresponden a los invariantes espectrales $a_1 = c_f([punto])$ y $a_4 = c_f([S^2])$ (los mínimos y máximos).

También, las barras finitas tienen longitud $a_3 - a_2$. Lo cual nos da una solución a nuestra pregunta de aproximación.

Observación: En el caso de que $g: S^2 \to \mathbb{R}$ se la función de Morse de S^2 que tiene los mismos mínimos y máximos que f. El código de barras correspondiente $\mathcal{B}(g)$ tiene las mismas dos barras infinitas pero no tiene barras finitas. Aquí $a_1 = \min g$, $a_4 = \max g$.

Código de barras correspondiente a la esfera redonda

Por definición, la profundidad de la frontera de la esfera con forma de corazón es $\beta(\mathcal{B}(f)) = a_3 - a_2$, mientras que $\beta(\mathcal{B}(g)) = 0$.

- Por definición, la profundidad de la frontera de la esfera con forma de corazón es $\beta(\mathcal{B}(f)) = a_3 a_2$, mientras que $\beta(\mathcal{B}(g)) = 0$.
- Notemos que estos valores pueden ser obtenidos también de la descripción alternativa de la profundidad de la frontera.

Regresando a la pregunta de aproximación que vimos al final de la sección 1.4, el **Teorema de Isometría (Teorema 2.2.8)**,

Teorema 4.2.2 y la ecuación

$$d_{int}(V(f), V(g)) \le \inf_{\varphi \in \text{Diff}(M)} \|f - \varphi^* g\|. \tag{6}$$

tenemos que

$$a_3 - a_2 \le 2d_{bot}(\mathcal{B}(f), \mathcal{B}(g)) = 2d_{int}(V(f), V(g)) \le 2\|f - g\|,$$

$$(7)$$

así
$$||f - g|| \ge \frac{1}{2}(a_3 - a_2)$$
.

Regresando a la pregunta de aproximación que vimos al final de la sección 1.4, el **Teorema de Isometría (Teorema 2.2.8)**,

Teorema 4.2.2 y la ecuación

$$d_{int}(V(f), V(g)) \le \inf_{\varphi \in \mathrm{Diff}(M)} \|f - \varphi^* g\|.$$
 (6)

tenemos que

$$a_3 - a_2 \le 2d_{bot}ig(\mathcal{B}(f), \mathcal{B}(g)ig) = 2d_{int}ig(V(f), V(g)ig) \le 2\|f - g\| \ ,$$
 así $\|f - g\| \ge rac{1}{2}(a_3 - a_2).$

Lo cual nos permite cuantificar la obstrucción a la aproximación de $f: S^2 \to \mathbb{R}$ por una función de Morse con exactamente dos puntos críticos.

Regresando a la pregunta de aproximación que vimos al final de la sección 1.4, el **Teorema de Isometría (Teorema 2.2.8)**,

Teorema 4.2.2 y la ecuación

$$d_{int}(V(f), V(g)) \le \inf_{\varphi \in \mathrm{Diff}(M)} \|f - \varphi^* g\|.$$
 (6)

tenemos que

$$a_3 - a_2 \le 2d_{bot}ig(\mathcal{B}(f), \mathcal{B}(g)ig) = 2d_{int}ig(V(f), V(g)ig) \le 2\|f - g\|,$$
 así $\|f - g\| \ge rac{1}{2}(a_3 - a_2).$

Lo cual nos permite cuantificar la obstrucción a la aproximación de $f:S^2\to\mathbb{R}$ por una función de Morse con exactamente dos puntos críticos.

Ejercicio 4.2.7 Encontrar el código de barras para la función altura del círculo con forma de corazón S^1 .