Proposé par : Hajer Msolly & Fridhi Zied

Lycée Ahmed NourEddine Sousse 4^{ème}Sciences Informatiques 1+2

Durée : x H

Révision BAC 2023 n°02

Avril 2023

Algorithmique & Programmation

Exercice n°1:

La figure ci-contre représente la courbe de la fonction \mathbf{f} définie par $f(\mathbf{x}) = \frac{1}{x}$ sur l'intervalle $]\mathbf{0}, +\infty[$.

Etant donné que $\int_1^a \frac{1}{x} dx \begin{cases} <1 \text{ si } a < e \\ =1 \text{ si } a = e \\ >1 \text{ si } a > e \end{cases}$

On remarque que la surface délimitée par les deux droites d'équations $\mathbf{x} = \mathbf{1}$ et $\mathbf{x} = \mathbf{a}$, l'axe des abscisses et la courbe $\mathbf{f}(\mathbf{x})$, varie selon la valeur de l'abscisse \mathbf{a} du point \mathbf{M} (la surface hachurée dans la Figure).

Cette surface sera égale à 1 lorsque la valeur de a est égale au nombre d'Euler e.

Travail demandé:

Ci-dessous une partie d'un algorithme de la fonction **Surface**, qui permet de calculer la surface hachurée en fonction de l'abscisse \mathbf{a} du point \mathbf{M} et en utilisant la méthode des rectangles à gauche.

N.B : **n** représente le nombre de rectangles.

1) Compléter les vides de l'algorithme de la fonction **Surface** par les trois instructions convenables à partir de la liste d'instructions suivante :

 $x \leftarrow 1$ $S \leftarrow S + 1/x$ S * h $S \leftarrow S + \frac{1}{2}*(1/x + \frac{1}{(x + h)})$ S * n * h

2) En faisant appel à la fonction **Surface**, écrire un algorithme d'une fonction **Calcul** (a, n) permettant de déterminer une valeur approchée du nombre d'Euler e, qui correspond à une valeur de la surface proche de 1 avec une précision de 10⁻⁴.

N.B: On pourra calculer le nombre d'Euler e en variant l'abscisse a par pas de 10^{-4} .

Exercice n°2:

Soit l'algorithme ci-dessous de la fonction **Rectangle** permettant de calculer, en utilisant la méthode des rectangles, l'aire résultante de la fonction $f(x) = \frac{6}{1+x}$ sur l'intervalle [a, b] subdivisé en N rectangles.

Fonction Rectangle (a,b : Réel , N :Entier) : Réel
Début
h ←(b-a)/n
S ←0
x←a
Pour i de 1 à n faire
$S \leftarrow S + 6/(1+x)$
$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{h}$
Fin Pour
Retourner S * h
Fin

Travail demandé:

Pour chacune des questions suivantes, valider chaque proposition par V si la réponse est correcte ou F dans le cas contraire.

1)	La fonction Rectangle permet de calculer l'aire résultante de la courbe de la fonction f sur un intervalle [a, b] selon la méthode des :							
	Rectangles à gauche Rectangles du point milieu Rectangles à droite							
2)	2) Pour les valeurs a=1 , b=5 et N=4 , le résultat retourné par la fonction Rectangle est :							
	5.5 7.5 10.12							
3) Pour appliquer la méthode des trapèzes au lieu de la méthode des rectangles, on remplace l'instruction de calcul de la somme S par :								
	$S \leftarrow S + (6(1+x) + 6/(1+x+h))/2$ $S \leftarrow S + 6/(1+x+h)/2$ $S \leftarrow S + (6(1+x) - 6/(1+x+h))/2$							

Exercice n°3:

Soient les deux fonctions f et g définies comme suit :

- $f(x) = x \text{ avec } x \in IR$
- g(x)=cos(x) avec $x \in IR$
- 1. Ecrire un algorithme d'une fonction Calcul (epsilon) permettant de calculer une valeur approchée, à epsilon près de p tel que cos(p)=p.
- 2. Soit le graphique représentant les courbes des deux fonctions f et g et de la droite x=p.

Ecrire un algorithme d'une fonction **Surface** (**epsilon**) qui permet de calculer une valeur approchée, à epsilon près, de l'aire délimitée par les deux courbes des deux fonctions \mathbf{f} et \mathbf{g} , l'axe des ordonnés et la droite \mathbf{x} = \mathbf{p} (l'aire hachurée dans la **figure ci-dessus**).

Exercice n°4:

Afin de calculer le coût de la réalisation d'un lac artificiel, un paysagiste a besoin de déterminer sa surface, qui est représenté par l'air S délimitée par les courbes de deux fonctions f et g qui se croisent

en deux points A et B, ayant respectivement les abscisses -1 et 2/3 comme le montre la figure.

Les deux fonctions f et g sont définies par :

*
$$f(x) = x^2 + 2x + 1$$

* $g(x) = -5 * x^2 + 5$

Travail demandé :

Ecrire un algorithme d'un module permettant de déterminer une valeur approchées de l'aire **S** délimitée par les deux courbes des deux fonctions **f** et **g** définies dans l'intervalle [A, B]

 $A = \int_0^3 f(x) dx$

Exercice n°5:

On considère la fonction continue, f définie dans IR par $f(x)=x^2$. On veut comparer la méthode des trapèzes et celle des rectangles dans le calcul approximatif de l'aire A, donnée par la formule $A = \int_0^3 f(x) dx$ et de chercher, dans l'intervalle [0,3], laquelle des deux méthodes qui converge la première vers l'aire exacte à epsilon près, sachant que l'aire exacte est égale à 9.

On se propose d'écrire un programme qui permet de :

- Stocker dans un fichier d'enregistrements "Calcul.dat", pour chaque nombre de subdivisions, le nombre lui-même, l'aire trouvée par la méthode des rectangles et l'aire trouvée par la méthode des trapèzes.

N.B: Le traitement s'arrête lorsque l'aire calculée par l'une de deux méthodes converge vers l'aire exacte à epsilon prés $(10^{-3} \le epsilon \le 10^{-1})$.

 Afficher le contenu du fichier "Calcul.dat", la méthode qui converge la première vers l'aire exacte à epsilon près, le nombre de subdivisions et l'aire calculée correspondants.

- 1) Ecrire l'algorithme du programme principal en le décomposant en modules.
- 2) Ecrire l'algorithme de chaque module envisagé.

Exercice n°6:

Le but du problème est de déterminer une valeur approchée de l'intégrale $\mathbf{I} = \int_1^2 e^{-x^2} dx$

On se propose d'utiliser deux méthodes et d'en dégager la différence entre les deux valeurs approchées trouvées.

On choisit dans les deux cas, un entier N tel que 100 < N < 1000. N sera le nombre de subdivisions qu'on va utiliser dans les deux méthodes.

1) Méthode des trapèzes.

On utilise la méthode des trapèzes pour déterminer une première valeur approchée I_1 de I.

2) Méthode d'une subdivision aléatoire.

Soit V un tableau de n+1 réels tel que V[0] = 1 et V[N] = 2

On remplit les autres éléments du tableau **V** par **n-1** réels distincts générés au hasard de l'intervalle [1,2] ausens strict. Ensuite, on trie le tableau **V** par ordre croissant en utilisant une méthode de tri.

On aura formé ainsi une suite $(X_i)_{0 \le i \le N}$ où $X_i = V[i]$

On définit les sommes S1 et S2 par :

$$S1 = \sum_{i=0}^{n-1} (x_{i+1} - x_i) * f(x_i)$$

$$S2 = \sum_{i=0}^{n-1} (x_{i+1} - x_i) * f(x_{i+1}) \text{ avec } f(x) = e^{-x^2}$$

Une valeur approchée de $\mathbf{I} = \int_1^2 e^{-x^2} \ dx$ est égale à $\mathbf{I}_2 = \frac{\mathbf{S}\mathbf{1} + \mathbf{S}\mathbf{2}}{\mathbf{2}}$

On se propose d'écrire un programme qui calcule $\int_1^2 e^{-x^2} dx$ par les deux méthodes comme expliqué ci-dessus et affiche les deux approchées ainsi que la valeur absolue de leur différence.

Travail demandé:

- 1. Ecrire un algorithme modulaire pour le problème.
- 2. Ecrire l'algorithme de chaque module envisagé.

Exercice n°7:

Partie A:

On se propose d'écrire un programme permettant de :

- remplir une matrice carrée M de taille $(n \ x \ n)$ selon le principe décrit ci-dessous. n est un entier donné $(5 \le n \le 10)$

remplir, à partir de M, un fichier texte nommé diagonal.txt situé sur la racine du disque dur C:

Le remplissage de la matrice M et du fichier diagonal.txt est décrit ci-dessous :

- le remplissage de la matrice M, doit tenir compte des règles suivantes :
 - La première ligne de la matrice M est remplie, d'une façon aléatoire (au hasard), par des chiffres de 1 à 9.
 - A partir de la deuxième ligne de la matrice M, un élément quelconque M[l,c] est déterminé en faisant la somme des éléments de la ligne (l-1), en commençant à partir de l'élément M[l-1,c]
 - Le nombre de cases remplies pour une ligne l est :
 n l+1.

	1	2	3	4	5	6
1	2	5	1	8	3	1
2	20	18	13	12	4	
3	67	47	29	16		
4	159	92	45			
5	296	137				
6	433					

Exemple: (voir la figure ci-contre)

$$M[2,1] = 2 + 5 + 1 + 8 + 3 + 1 = 20$$

$$M[3, 4] = 12 + 4 = 16$$

- 2) Chaque ligne du fichier **diagonal.txt** contiendra les éléments de **M** se trouvant sur une diagonale droite, en commençant par celle à gauche et de haut en bas, de telle sorte que :
 - La ligne N°1 du fichier contient M [1, 1] c'est à dire 2
 - La ligne N°2 du fichier contient M [1, 2] suivi de M [2, 1] c'est-à-dire 520
 - La ligne N°3 du fichier contient M [1, 3] suivi de M [2, 2] suivi de M [3, 1] c'est-à-dire

11867

......

Pour l'exemple précédant, le contenu du fichier diagonal.txt sera comme suit :

2 520 11867 81347159 3122992296 141645137433

Partie B:

Réaliser l'interface graphique comme illustré dans l'annexe au dessous :

