Задача

Условие

Дана плоскость α , прямая b, прямая a, и точка A. Причем $a \subset \alpha, b \perp \alpha, A \in b, \alpha$. Докажите, что |ba| = |Aa|.

Решение

Пусть точка B – проекция точки A на прямую a. Докажем, что |AB| – расстояние между b и a.

Доказательство. Рассмотрим на прямой b точку Q, не равную A. Пусть плоскость $(AQB) = \beta$. Тогда $\beta \perp \alpha$, поскольку $AQ \perp \alpha$. Заметим, что прямая $c \subset \beta, B \in c$ перпендикулярна a (поскольку содержится в β). А значит, что, поскольку β содержит в себе два перпендикуляра c и AB, β – плоскость перпендикуляров к прямой a в точке B. А значит, что |BQ| – расстояние между точкой Q и a. А, поскольку треугольник ABQ прямоугольный, QB > AB. То есть AB – расстояние между b и a.

