LISTING OF THE CLAIMS

The following is a listing of claims pending in this case.

1. **(Previously Presented)** A method of fabricating a tunnel junction of a vertical cavity surface emitting laser (VCSEL), comprising:

locating a substrate in an MOCVD chamber;

setting a temperature of the MOCVD chamber between 500 °C and 650 °C; and

growing a tunnel junction including $GaAs(I-x)Sb_x$ on the substrate using an MOCVD process in which a source of Ga, a source of Sb, and a source of As are present.

- 2. (Original) The method according to claim 1, wherein x has a value corresponding to a ratio of As to Sb.
 - 3. (Original) The method according to claim 2, wherein the value of x is 0.5.
 - 4. (Original) The method according to claim 2, wherein the value of x is less than 0.5.
- 5. **(Original)** The method according to claim 1, wherein the source of Ga is TMGa or TEGa, and the source of Sb is TMSh.
- 6. (Original) The method according to claim 1, wherein the source of As is AsH₃ or TBAs.
- 7. (Original) The method according to claim 1, further including carbon doping the GaAs(1-x)Sbx using CCl4 or CBr4.
 - 8. (Previously Presented) A tunnel junction having a p-doped $GaAs(l_x)Sb_x$ layer.
- 9. (Previously Presented) The tunnel junction according to claim 8, wherein the p-doped $GaAs(_{1-x})Sb_x$ layer is doped with carbon with a concentration greater than $1x10^{19}$ cm⁻³.

Application No. 10/078,473 Docket No. 15436.438.1 Reply to Office Action mailed March 28, 2005

- 10. **(Previously Presented)** The tunnel junction according to claim 9, further including an n-doped layer of InP, AlInAs, AlInGaAs, or InGaAsP.
- 11. (Previously Presented) The tunnel junction according to claim 10, wherein the n-doped layer is doped with a concentration greater than $5x10^{19}$ cm⁻³, wherein the $GaAs(_{1-x})Sb_x$ layer is doped with a concentration greater than $5x10^{19}$ cm⁻³, and wherein the tunnel junction is less than about 10 nanometers thick.
- 12. **(Previously Presented)** The tunnel junction according to claim 10, wherein the n-doped layer is InP, and wherein x has a value of 0.5.
 - 13. **(Original)** A vertical cavity surface emitting laser, comprising: an active region having a plurality of quantum wells, and. a tunnel junction over said active region, wherein said tunnel junction includes a GaAs(_{1-x})Sb_x layer.
- 14. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 13, further including an n-type bottom spacer adjacent the active region, and an n-type bottom DBR adjacent the n-type bottom spacer.
- 15. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 13, further including an n-type top spacer adjacent the tunnel junction and an n-type top DBR adjacent the n-type top spacer.
- 16. (Previously Presented) The vertical cavity surface emitting laser according to claim 13, wherein the $GaAs(l_{-x})Sb_x$ layer is grown by MOCVD.
- 17. (Previously Presented) The vertical cavity surface emitting laser according to claim 13, wherein the $GaAs(_{l-x})Sb_x$ layer is doped with carbon with a concentration greater than $5xl0^{19}$ cm⁻³.

Application No. 10/078,473 Docket No. 15436.438.1 Reply to Office Action mailed March 28, 2005

- 18. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 13, wherein said active region includes InGaAsP or AlInGaAs.
- 19. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 18, wherein said tunnel junction includes an n-type InP layer.
- 20. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 13, wherein x is 0.5.
- 21. **(Previously Presented)** The vertical cavity surface emitting laser according to claim 13, wherein the tunnel junction has a thickness of less than about 10 nm.