# 目录

| 1        | 实数结构                        | 4   |
|----------|-----------------------------|-----|
|          | 1.1 域结构                     | 4   |
|          | 1.2 完备偏序结构                  | 4   |
|          | 1.3 完备度量空间结构                | 5   |
|          | 1.4 度量诱导的拓扑结构               | 6   |
|          | 1.5 实数公理                    | 6   |
| 2        | 实数构造                        | 7   |
|          | 2.1 序视角下的实数                 | 7   |
|          | 2.2 度量空间视角下的实数              | 10  |
|          | 2.3 通常拓扑视角下的实数              | 10  |
| 3        | 实数列                         | 11  |
| J        | 3.1 数列极限                    |     |
|          | 3.2 发散数列                    |     |
|          | 3.3 无穷大量和无穷小量               |     |
|          | 3.4 待定型极限                   |     |
|          | 3.5 常用重要极限                  |     |
|          | (17 ML                      | 4.0 |
| 4        | 级数                          | 18  |
|          | 4.1 级数                      |     |
|          | 4.2 重排                      |     |
|          | 4.3 正项级数的收敛判别法              |     |
|          | 4.4 任意项级数的收敛判别法             | 21  |
| <b>5</b> | 函数极限                        | 23  |
|          | 5.1 函数极限和Heine定理            |     |
|          | 5.2 函数的连续性                  |     |
|          | 5.3 函数的一致连续性                | 29  |
| 6        | 一元微分和导数                     | 30  |
|          | 6.1 一元微分和导数                 | 30  |
|          | 6.2 七类基本初等函数的导数             | 32  |
|          | 6.3 高阶微分/导数                 | 33  |
|          | 6.4 函数凸性与Jenson不等式          | 34  |
| 7        | 微分中值定理                      | 35  |
|          | 7.1 微分中值定理                  |     |
|          | 7.2 待定型函数极限的计算和L'Hospital法则 |     |
|          | 7.3 常用等价无穷大/小量              |     |
|          | 7.4 Taylor展开式               |     |

目录 2

| 8         | 不定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41         |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|           | 8.1 原函数与不定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41         |
|           | 8.2 不定积分计算方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42         |
|           | 8.3 基本初等函数的不定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43         |
|           | 8.4 有理函数的不定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47         |
|           | 8.5 一阶线性微分方程                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 9         | 定积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48         |
|           | 9.1 Riemann和与Riemann积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48         |
|           | 9.2 Darboux 定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50         |
|           | 9.3 Lebesgue 定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52         |
|           | 9.4 积分中值定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53         |
|           | 9.5 反常积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53         |
|           | 9.6 定积分的应用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <b>10</b> | 函数列与函数项级数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5</b> 6 |
|           | 10.1 函数列                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56         |
|           | 10.2 函数项级数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 59         |
|           | 10.3 幂级数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61         |
|           | the contract of the contract o |            |
| 11        | 实 Fourier 分析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63         |
|           | 11.1 周期函数的 Fourier 级数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|           | 11.2 Fourier 级数收敛定理                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|           | 11.3 Cesaro 和                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|           | 11.4 平方均值逼近                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71         |
| 19        | $\mathbb{R}^n$ 上的函数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72         |
| 14        | 12.1 $\mathbb{R}^n$ 上函数的极限                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|           | 12.1 M 工函数的恢修                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|           | 12.2 多几函数赶续性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ( 2        |
| <b>13</b> | 多元微分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>7</b> 3 |
|           | 13.1 多元微分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73         |
|           | 13.2 微分 1-形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|           | 13.3 高阶偏导数                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|           | 13.4 微分 k-形式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|           | 13.5 空间曲线描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|           | 13.6 空间曲面描述                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|           | 16.0 工阀面面加建                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10         |
| 14        | 多重积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>7</b> 9 |
|           | 14.1 矩形区域上的二重积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79         |
|           | 14.2 换元积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80         |
|           | 14.3 多元积分运用                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| <b>15</b> | 曲线积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81         |
|           | 15.1 第一类曲线积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81         |
|           | 15.2 第二类曲线积分                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81         |

| 15.3 曲面积分                | 82        |
|--------------------------|-----------|
| 16 场论         16.1 向量场表征 | <b>83</b> |

1 实数结构 4

## 1 实数结构

Bourbaki 学派认为数学由三类基本结构搭建而成: 代数结构, 序结构与拓扑结构.

#### 1.1 域结构

见线性代数或抽象代数.

#### 1.2 完备偏序结构

广义的序结构包含了更加普适的抽象的理论框架, 在数学分析中我们仅使用最为基本, 直观的部分:

#### 定义 1.2.1 偏序关系 (Partial Order)

设 S 是一个集合,  $\leq$  是 S 上的一个二元关系, 则称  $\leq$  为 S 上的一个偏序关系 (Partial Order), 若 它满足:

(1) 反身性:

$$\forall a \in S, a \leq a$$

(2) 反对称性:

$$\forall a, b \in S, a \le b \land b \le a \implies a = b$$

(3) 传递性:

$$\forall a,b,c \in S, a \leq b \land b \leq c \implies a \leq c$$

#### 定义 1.2.2 有界集 (Bounded Set)

设偏序结构  $(S, \leq)$ , 子集  $X \subseteq S$ , 则:

(1) 称元素  $a \in S$  为 X的一个上界 (Upper Bound), 若:

$$\forall x \in S, x \leq a$$

(2) 称元素  $b \in S$  为 X的一个下界 (Lower Bound), 若

$$\forall x \in S, b \leq x$$

子集  $X \subseteq S$  称为是**有界(Bounded)**的, 若其同时拥有上, 下界.

注意: 上/下界不唯一, 且上/下界不一定在该子集内.

#### 定义 1.2.3 全序集/线序集 (Linearly Ordered Set)

设偏序结构  $(S, \leq)$ , 则若任意两个元素  $a, b \in S$  都满足  $a \leq b$  或  $b \leq a$ , 则称  $(S, \leq)$  为全序集 (Total Order Set)或线序集 (Linearly Ordered Set).

#### 定义 1.2.4 上/下确界 (Supremum/Infimum)

设全序结构  $(S, \leq)$ , 子集  $X \subseteq S$ , 则:

(1) 集合 X 最小的上界 a 称为是 X 的一个上确界 (Supremum), 记为  $a = \sup(X)$ :

$$a = \sup(X) \iff \forall a'(a' \in S)$$
 的上界),  $a \leq a'$ 

1 实数结构 5

(2) 集合 X 最大的下界 b 称为是 X 的一个下确界 (Infimum), 记为  $a = \inf(X)$ :

$$b = \inf(X) \iff \forall b'(b' \in S), b \geq b'$$

#### 定义 1.2.5 完备偏序 (Complete Partial Order)

序结构  $(S, \leq)$  被称为是**完备 (Complete)**的, 若 S 的任何有上/下界的子集有上/下确界:

$$\forall X \subseteq S(X \text{ 有上界}), \exists a = \sup(X) \in S$$

$$\forall X \subseteq S(X \ \text{有下界}), \exists b = \inf(X) \in S$$

#### 1.3 完备度量空间结构

#### 定义 1.3.1 度量空间 / 距离空间 (Metric Space)

设 S 为一个集合, P 是一个有序加法群, 函数  $d: S^2 \to P$  称为是 S 上的一个**度量 (Metric)/距离 (Distance)**, 若 d 满足:

(1)

$$d(x,y) = 0 \iff x = y$$

(2)交换性:

$$\forall x, y \in S, d(x, y) = d(y, x)$$

(3)三角不等式:

$$\forall x, y, z \in S, d(x, y) + d(y, z) \ge d(x, z)$$

此时称结构 (S,d) 为一个度量空间/距离空间(Metric Space).

#### 定义 1.3.2 Cauchy 列 / 收敛点列 (Cauchy Sequence / Convergent Sequence)

度量空间 (S,d) 中的点列称为是**收敛 (Convergent)**的,或**Cauchy** 的,若在充分远处任意两项的距离足够小:

$$\forall \varepsilon \in P^+, \exists N \in \mathbb{N}, \forall n_1, n_2 > N, d(x_{n_1}, x_{n_2}) < \varepsilon$$

#### 定义 1.3.3 开球 (Open Ball)

度量空间 (S,d) 上一个以  $x_0 \in S$  为中心,  $r \in P$  为半径的开球定义为以下集合:

$$\mathcal{B}(x_0, r) := \{ x | d(x, x_0) < r \}$$

#### 定义 1.3.4 点列极限 (Limit of a Sequence)

称度量空间 (S,d) 中的点列  $\{x_n\}$  拥有**极限 (Limit)** a, 若点列在充分远处可以被控制在以某点为中心的开球之内:

$$\exists a \in P, \forall \varepsilon \in P^+, \exists N \in \mathbb{N}, \forall n > N, a_n \in \mathcal{B}(a, \varepsilon)$$

记作:

$$\lim_{n \to +\infty} x_n = a$$

1 实数结构 6

### 定义 1.3.5 完备度量空间 (Complete Metric Space)/Banach 空间 (Banach Space)

Banach 内容:

$$\forall \{x_n\} : \mathbb{N} \to S(\{x_n\}$$
是 Cauchy 列),  $\exists a \in S, \lim_{n \to +\infty} x_n = a$ 

## 1.4 度量诱导的拓扑结构

### 定义 1.4.1 拓扑空间 (Topological Space)

见拓扑学.

#### 定义 1.4.2 度量诱导的拓扑 ()

在度量空间 (S,d) 中, S 的子集  $X \in \mathcal{P}(S)$  被认为是开集当且仅当 X 中任何点都拥有一个包含于 X 的开球:

$$\mathcal{T} := \{ X \in \mathcal{P}(S) | \forall x \in X, \exists \delta \in P^+, \mathcal{B}(x, \delta) \subseteq X \}$$

此时称拓扑 T 为由度量 d 诱导的拓扑.

#### 定义 1.4.3 邻域 (Neighbourhood)

在拓扑空间  $(S, \mathcal{T})$  中:

子集  $X \subseteq S$  称为是点  $x \in X$  的一个**邻域 (Neighbourhood)**, 记为 U(x), 若它有包含 x 的开子集:

$$\exists O \in \mathcal{T}, x \in O \subseteq X$$

x 的一个**去心邻域 (Deleted Neighbourhood)**是除去 x 自身之后的子集, 记作  $\overset{\circ}{U}(x)$ :

$$\overset{\circ}{U}(x) = U(x) - \{x\}$$

任何包含 x 的开集是 x 的一个**开邻域 (Open Neighbourhood)**. 由于 x 的任何邻域总有一个开邻域子集, 方便起见, 我们默认以后提到的邻域总是开邻域:

$$X = U(x) \iff x \in X, X \in \mathcal{T}$$

#### 1.5 实数公理

#### 公理 1.1 实数公理 ()

下述结构被认为是实数结构 (Real Number Structure), 记作 R:

- (1) 序结构: ℝ 应具有完备全序结构:
  - (1.1) 偏序性
  - (1.2) 全序性
  - (1.3) 完备性
- (2) 代数结构: ℝ 应具有域结构:
  - (2.1) 加法交换群
  - (2.2) 乘法交换群
  - (2.3) 加法与乘法的兼容性 (分配律)
  - (2.4) 加法与偏序关系的兼容性

- (2.5) 乘法与偏序关系的兼容性
- (3) 拓扑结构: ℝ 应具有由完备度量空间诱导的拓扑结构:
  - (3.1) 基于序关系建立的度量空间
  - (3.2) 度量与代数运算的兼容性
  - (3.3) 度量完备性
  - (3.4) 度量诱导的拓扑空间

## 2 实数构造

ZFC集合论下的公理体系不仅要求我们对数学概念给出定义, 还必须给出相应概念在公理规定的数学操作下的构造. 本章我们仅在有理数集构造的前提下给出实数集在不同视角下的数种构造方式.

#### 2.1 序视角下的实数

### 定义 2.1.1 Dedekind 切割 (Dedekind Cut)

集合偶  $(A, B)(A, B \subsetneq \mathbb{Q})$  称为是  $\mathbb{Q}$  的一个**Dedekind 切割**, 记作 A|B, 若:

(1) A 与 B 的并铺满 ℚ:

$$A \cup B = \mathbb{Q}$$

(2) A 与 B 的交为空:

$$A \cap B = \emptyset$$

(3) A 中元素严格小于 B 中元素:

$$\forall a \in A, \forall b \in B, a < b$$

#### 性质 2.1.1.1 ()

对 A 中极大元  $a = \max A$  与 B 中极小元  $b = \min B$  的存在情况进行分类:

(1)

 $\not\exists a, \not\exists b$ 

(2)

 $\exists a, \not\exists b$ 

(3)

 $\nexists a, \exists b$ 

(4)

 $\exists a, \exists b$ 

分别称为第一, 二, 三, 四类分割, 则:

- (1) 第四类分割不存在.
- (2) 可以建立第二, 三类分割与 ℚ 间的等价关系.

#### 证明:

(1)

$$\exists a, \exists b \Longrightarrow a < b$$
 
$$a < \frac{a+b}{2} < b, \frac{a+b}{2} \in \mathbb{Q}$$
 
$$\frac{a+b}{2} \notin A \cup B$$

与  $A \cup B = \mathbb{Q}$  矛盾.  $\square$ 

(2)

构造映射 f: 全体第二类分割  $\to \mathbb{Q}:$ 

$$f(A|B) := \max A$$

下证  $\forall a \in \mathbb{Q}$ , 有且仅有一个第二类分割满足  $\max A = a$ : 设 A|B, A'|B'是第二类分割,  $\max A = \max A' = a$ .

$$A = A' = \{r | r \in \mathbb{Q}, r \le a\}$$
 
$$B = \mathbb{Q} - A = \mathbb{Q} - A' = B'$$
 
$$\Longrightarrow \max A = \max A' \Longrightarrow A | B = A' | B'$$
 
$$\Longrightarrow f^{-1}(a) = A | B(\max A = a, a \in \mathbb{Q})$$

即 f 是双射.

对于第三类分割同理. 设 g: 全体第三类分割  $\rightarrow \mathbb{Q}$  是双射,有  $f^{-1} \circ g$ : 全体第二类分割  $\rightarrow$  全体第三类分割是双射.  $\square$ 

### 定义 2.1.2 实数集 (Real Number Set)

将全体 Dedekind 切割与全体有理数集在等价关系之下的商集定义为**实数集**, 记作  $\mathbb{R}$ .  $\mathbb{R} - \mathbb{Q}$  称为无理数集 (Irrational Numbers)

在 Dedekind 切割构造下,每个第二,三类切割对应一个有理数,每个第一类切割对应一个无理数. 对于实数上其他结构的构造暂略.

#### 定义 2.1.3 扩充实数集 (Extended Real Number Set)

负无穷大(Negative Inifinity) 定义囊括了正负无穷大的实数集为扩充实数集 🖟:

$$\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty, -\infty\}$$

## 定理 2.1.4 确界存在定理 ()

由 Dedekind 切割得到的实数集是完备偏序的.

证明:

#### 定理 2.1.5 单调有界数列收敛定理 ()

单调有界数列收敛:

$$\forall \{a_n\} (\forall n \in \mathbb{N}^*, a_n \le a_{n+1} \land \exists M \in \mathbb{R}, \forall n \in \mathbb{N}^*, a_n \le M), \exists a \in \mathbb{R}, \lim_{n \to +\infty} a_n = a$$
$$\forall \{b_n\} (\forall n \in \mathbb{N}^*, b_n \ge b_{n+1} \land \exists m \in \mathbb{R}, \forall n \in \mathbb{N}^*, b_n \le m), \exists b \in \mathbb{R}, \lim_{n \to +\infty} b_n = b$$

证明:

### 定理 2.1.6 Cauchy-Cantor 闭区间套定理 ()

设  $\{a_n\}, \{b_n\}$  是实数序列, 满足:

 $\{a_n\}$  单调增,  $\{b_n\}$  单调减, 且  $\{a_n\}$  各项小于等于  $\{b_n\}$  各项:

$$\forall n \in \mathbb{N}^*, a_n \le a_{n+1} \le b_{n+1} \le b_n$$

$$(\mathbb{R}[a_{n+1},b_{n+1}]\subseteq [a_n,b_n])$$

则:

(1) 存在介于两数列之间的数:

$$\exists C \in \mathbb{R}, \forall n \in \mathbb{N}^*, a_n \le C \le b_n$$

$$\left(\mathbb{R}\mathbb{I}\bigcap_{n=1}^{+\infty}[a_n,b_n]\neq\varnothing\right)$$

 $(2) \{a_n\}, \{b_n\}$ 收敛:

$$\exists a, b \in \mathbb{R} : \lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} b_n = b$$

进一步地, 若  $\{a_n\}$  与  $\{b_n\}$  可以无限靠近:

$$\lim_{n \to +\infty} d(a_n, b_n) = 0$$

则:

(1) 介于两数列间的数唯一:

$$\exists$$
 唯一的  $C \in \mathbb{R}, \forall n \in \mathbb{N}^*, a_n \leq C \leq b_n$ 

$$\left(\mathbb{RI}\bigcap_{n=1}^{+\infty}[a_n,b_n]=\{C\}\right)$$

(2) 两数列极限相等, 且为 C:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = C$$

证明:

#### 2.2 度量空间视角下的实数

#### 定义 2.2.1 实数集 (Real Number Set)

对 Q 上的全体 Cauchy 列建立等价关系: 若将两数列合并后仍为 Cauchy 列,则认为它们等价. 将全体 Cauchy 列关于该等价关系的商集定义为实数集.

#### 定理 2.2.2 Cauchy收敛定理 ()

在实数集中任意Cauchy列收敛.

#### 2.3 通常拓扑视角下的实数

#### 定义 2.3.1 通常拓扑 (Regular Topology)

由实数上的一般度量 d(x,y) = |x-y| 诱导得到的拓扑称为实数上的**通常拓扑**:

$$\mathcal{T} = \{ X \in \mathcal{P}(\mathbb{R}) | \forall x \in X, \exists \delta \in \mathbb{R}^+, \mathcal{B}(x, \delta) \subseteq X \}$$

#### 定理 2.3.2 开集结构定理 ()

通常拓扑下的开集恰是全体有限个或可数个开区间的无交并:

$$\forall O \in \mathcal{T}, \exists \{(a_n, b_n)\} (\forall n \in \mathbb{N}^*, b_n < a_{n+1}), O = \bigcup_{i=1}^n (a_i, b_i) (n \in \mathbb{N} \cup \{+\infty\})$$

#### 证明:

证明有限个或可数个开区间的无交并是开集是容易的: 开区间是开集, 于是开区间的任意并都是开集.

现证明任何开集都能表示成有限个或可数个开区间的无交并:

考虑全体有理数. 对于开集内的有理数, 考虑其向一侧"伸展"的最大长度. 再证明任何两个有理数"伸展"得到的开区间要么相同, 要么不相交. 于是可以写出由全体有理数"伸展"得到的开区间的无交并, 它是原开集的一个子集.

现在只需证明它就是开集本身. 假设开集中仍有未被上述集合囊括的元素, 那么其一定是无理数, 它必有一个开邻域包含于原开集. 这个开邻域中必然有有理数, 于是这个无理数也必然包含于某一个有理数"伸展"得到的开区间内, 矛盾. □

#### 推论 2.3.2.1 闭集结构定理 ()

通常拓扑下的闭集必能表示为有限个或可数个闭区间或单点集的无交并.

#### 证明:

闭集是补集是开集, 先将开集表示为有限个或可数个开区间的并, 再取出区间各端点即可用单点集与闭集的有限或可数并表示闭集.□

#### 定理 2.3.3 Heine-Borel 有限开覆盖定理 ()

ℝ 上有界闭集的任何开集覆盖有有限子覆盖:

该定理拓扑形式的广义结论: Hausdorff 空间上的紧集与有界闭集等价.

## 3 实数列

### 3.1 数列极限

### 定义 3.1.1 数列极限 (Limit of a Sequence)

一个实数序列  $\{a_n\}$  称为是**收敛(Converge)**的, 若:

$$\exists a \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+, \forall n > N, a_n \in \mathcal{B}(a, \varepsilon)$$

其中常数 a 称为数列  $\{a_n\}$  在  $n \to +\infty$  处的**极限(limit)**, 记作:

$$\lim_{n \to +\infty} a_n = a$$

实数序列  $\{a_n\}$  称为是**发散(Diverge)**的, 若:

$$\nexists \lim_{n \to +\infty} a_n$$

#### 性质 3.1.1.1 收敛数列的极限唯一 ()

$$\lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} a_n = a' \Longrightarrow a = a'$$

证明:

$$\lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} a_n = a'$$

$$\Longrightarrow \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, a_n \in U(a, \varepsilon), a_n \in U(a', \varepsilon)$$

$$\varepsilon := \frac{|a - a'|}{2} > 0 \Longrightarrow U(a, \varepsilon) \cap U(a', \varepsilon) = \varnothing$$

与  $\forall n > N, a_n \in U(a, \varepsilon) \cap U(a', \varepsilon)$  矛盾.  $\square$ 

#### 性质 3.1.1.2 数列极限的四则运算 ()

设 
$$\lim_{n\to+\infty} a_n = A$$
,  $\lim_{n\to+\infty} b_n = B$ , 则:

$$\lim_{n \to +\infty} (a_n + b_n) = A + B$$

$$\lim_{n \to +\infty} (a_n \cdot b_n) = A \cdot B$$

若  $B \neq 0$ , 则:

$$\lim_{n \to +\infty} \left(\frac{a_n}{b_n}\right) = \frac{A}{B}$$

#### 性质 3.1.1.3 收敛数列有界性 ()

内容:

$$\lim_{n \to +\infty} a_n = a \in \mathbb{R} \Longrightarrow \exists m, M \in \mathbb{R} : \forall n \in \mathbb{Z}^+, m \le a_n \le M$$

证明:

$$\lim_{n \to +\infty} a_n = a \Longrightarrow \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, a_n \in U(a, \varepsilon)$$
$$m := \min(\min_{1 \le n \le N} (\{a_n\}), a - \varepsilon)$$
$$M := \max(\max_{1 < n < N} (\{a_n\}), a + \varepsilon) \square$$

#### 性质 3.1.1.4 收敛数列保序性 ()

内容:

$$\lim_{n \to +\infty} a_n = a > b = \lim_{n \to +\infty} b_n \Longrightarrow \exists N \in \mathbb{Z}^+ : \forall n > N, a_n > b_n$$
$$\lim_{n \to +\infty} a_n = a \ge b = \lim_{n \to +\infty} b_n \iff \exists N \in \mathbb{Z}^+ : \forall n > N, a_n > b_n$$

#### 证明:

(1) 充分性:

$$\lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} b_n = b \Longrightarrow \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, a_n \in U(a, \varepsilon), b_n \in U(b, \varepsilon)$$

$$\mathfrak{R}\varepsilon = \frac{a-b}{2}$$

$$\Longrightarrow \exists N \in \mathbb{Z}^+ : \forall n > N, a_n > \frac{a+b}{2} > b_n \square$$

(2) 必要性:

不妨设a¡b, 由前反证. □

#### 性质 3.1.1.5 夹逼定理 (Sandwich Theorem)

内容:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = a(a \in \mathbb{R} \cup \{+\infty, -\infty\})$$
$$\exists N \in \mathbb{Z}^+ : \forall n > N, a_n \le c_n \le b_n \Longrightarrow \lim_{n \to +\infty} c_n = a$$

证明:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = a \Longrightarrow \forall \varepsilon \in \mathbb{R}^+, \exists N' \in \mathbb{Z}^+ : \forall n > N', a_n, b_n \in U(a, \varepsilon)$$
$$N'' := \max(N, N')$$
$$\forall n > N'', c_n \in [a_n, b_n] \subseteq U(a, \varepsilon)$$

#### 3.2 发散数列

#### 定义 3.2.1 ()

对于给定的点 P 和点集 S 聚点(Accumulation Point),若其满足:

$$\forall \varepsilon, \exists \{x_n\}, \forall i \in \mathbb{N}^*, x_i \in \mathbb{S}, x_i \in U_{\varepsilon}(\dot{P})$$

即, 对于P的任意小邻域 U(P), 都存在无限多个属于 S 且不等于 P 的点在 U(P) 内

### 性质 3.2.1.1 ()

任意数列存在至少一个聚点

由Bolzano-Weiestrass定理可得

### 定义 3.2.2 ()

下极限(Lower Limit)/上极限 Upper Limit

#### 性质 3.2.2.1 ()

内容:

$$\underline{\lim}_{n \to \infty} x_n + \underline{\lim}_{n \to \infty} y_n \le \underline{\lim}_{n \to \infty} (x_n + y_n) \le \underline{\lim}_{x \to \infty} x_n + \overline{\lim}_{x \to \infty} y_n \tag{1}$$

$$\underline{\lim}_{n \to \infty} x_n + \overline{\lim}_{n \to \infty} y_n \le \overline{\lim}_{n \to \infty} (x_n + y_n) \le \overline{\lim}_{x \to \infty} x_n + \overline{\lim}_{x \to \infty} y_n \tag{2}$$

$$\underline{\lim}_{n \to \infty} x_n \cdot \underline{\lim}_{n \to \infty} y_n \le \underline{\lim}_{n \to \infty} (x_n y_n) \le \underline{\lim}_{x \to \infty} x_n \cdot \overline{\lim}_{x \to \infty} y_n \tag{3}$$

$$\underline{\lim}_{n \to \infty} x_n \cdot \underline{\lim}_{n \to \infty} y_n \le \underline{\lim}_{n \to \infty} (x_n y_n) \le \underline{\lim}_{x \to \infty} x_n \cdot \underline{\lim}_{x \to \infty} y_n \tag{4}$$

#### 3.3 无穷大量和无穷小量

#### 定义 3.3.1 ()

数列  $\{a_n\}$  称为是一个正无穷大量(Positive Infinity), 若:

$$\forall M \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, a_n > M$$

记作

$$\lim_{n \to +\infty} a_n = +\infty$$

数列  $\{a_n\}$  称为是一个负无穷大量(Negative Infinity), 若:

$$\forall M \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, a_n < -M$$

记作

$$\lim_{n \to +\infty} a_n = -\infty$$

数列  $\{a_n\}$  称为是一个无穷大量(Infinity), 若:

$$\forall M \in \mathbb{R}^+, \exists N \in \mathbb{Z}^+ : \forall n > N, |a_n| > M$$

记作

$$\lim_{n \to +\infty} a_n = \infty$$

数列  $\{a_n\}$  称为是一个无穷小量(Infinitesimal), 若:

$$\lim_{n \to +\infty} a_n = 0$$

#### 性质 3.3.1.1 ()

涉及无穷大量的四则运算法则部分适用:

#### 定义 3.3.2 ()

无穷大量  $\{a_n\}$  称为是  $\{b_n\}$  的**高阶无穷大量**, 若:

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = \infty \vee \lim_{n\to +\infty} \frac{b_n}{a_n} = 0$$

无穷大量  $\{a_n\}$  称为是  $\{b_n\}$  的**低阶无穷大量**, 若:

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = \infty \vee \lim_{n \to +\infty} \frac{a_n}{b_n} = 0$$

无穷大量  $\{a_n\}$  称为是  $\{b_n\}$  的**同阶无穷大量**, 若:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = c \in (\mathbb{R} - \{0\})$$

无穷大量  $\{a_n\}$  称为是  $\{b_n\}$  的**等价无穷大量**, 若:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$$

记为  $a_n \sim b_n$ .

无穷小量  $\{a_n\}$  称为是  $\{b_n\}$  的**高阶无穷小量**, 若:

$$\lim_{n\to +\infty}\frac{a_n}{b_n}=0\vee \lim_{n\to +\infty}\frac{b_n}{a_n}=\infty$$

记为  $a_n = o(b_n)$ .

无穷小量  $\{a_n\}$  称为是  $\{b_n\}$  的**低阶无穷小量**, 若:

$$\lim_{n\to +\infty} \frac{b_n}{a_n} = \infty \vee \lim_{n\to +\infty} \frac{b_n}{a_n} = 0$$

记为  $b_n = o(a_n)$ .

无穷小量  $\{a_n\}$  称为是  $\{b_n\}$  的**同阶无穷小量**, 若:

$$\lim_{n\to +\infty}\frac{a_n}{b_n}=c\in (\mathbb{R}-\{0\})$$

无穷小量  $\{a_n\}$  称为是  $\{b_n\}$  的**等价无穷小量**, 若:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$$

记为  $a_n \sim b_n$ .

## 性质 3.3.2.1 ()

同阶无穷大/小量关系与等价无穷大/小量关系是等价关系.

#### 待定型极限 3.4

#### 定理 3.4.1 Stolz-Cesaro定理 ()

$$S_n := \sum_{i=1}^n a_i$$
  $T_n := \sum_{i=1}^n b_i$   $b_i \neq 0$ 

$$(1) \stackrel{*}{\longrightarrow} \underline{\Xi}: \lim_{n \to +\infty} T_n = +\infty \underline{\Xi} b_n > 0$$

那么在以下情况下: (其余部分情况可转化为下列情况) 
$$(1) \stackrel{*}{\underset{\infty}{\longrightarrow}} \underline{\mathbb{Q}}: \lim_{n \to +\infty} T_n = +\infty \underline{\mathbb{Q}}b_n > 0$$
 
$$(2) \stackrel{0}{\underset{0}{\longrightarrow}} \underline{\mathbb{Q}}: \lim_{n \to +\infty} T_n = 0, \lim_{n \to +\infty} S_n = 0 \underline{\mathbb{Q}}, b_n < 0 (n > 1)$$
 有:

$$\lim_{n \to +\infty} \frac{S_n}{T_n} = \lim_{n \to +\infty} \frac{a_n}{b_n}$$

证明( $\frac{*}{\infty}$ 型): 由极限定义:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = k \iff \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{N} (\forall n > N, \frac{a_n}{b_n} \in (k - \varepsilon, k + \varepsilon))$$

$$\stackrel{n > N}{\Longrightarrow} a_n \in ((k - \varepsilon)b_n, (k + \varepsilon)b_n)$$

$$\sum_{i=1}^{N} a_i := A_N, \sum_{i=1}^{N} b_i := B_N$$

$$S_n := \sum_{i=1}^{n} a_i = \sum_{i=1}^{N} a_i + \sum_{i=N+1}^{n} a_i$$

$$\Longrightarrow S_n \in \left( A_N + (k - \varepsilon) \sum_{n=N+1}^{n} b_n, A_N + (k + \varepsilon) \sum_{n=N+1}^{n} b_n \right)$$

$$\iff S_n \in (A_N + (k - \varepsilon)(T_n - B_N), A_N + (k + \varepsilon)(T_n - B_N))$$

$$\overset{T_n \geq 0}{\Longrightarrow} \frac{S_n}{T_n} \in \left(\frac{A_N - (k - \varepsilon)B_N}{T_n} + (k - \varepsilon), \frac{A_N - (k + \varepsilon)B_N}{T_n} + (k + \varepsilon)\right)$$

取 N' 使 $T_n > 2B_N$ 

$$\therefore \frac{S_n}{T_n} \in (k - 2\varepsilon, k + 2\varepsilon)$$

证明(
$$\frac{0}{0}$$
型): 易证,  $\frac{a_1}{b_1} \leq \frac{a_2}{b_2}$ 且  $b_1$ ,  $b_2 > 0$ 时, 不等式  $\frac{a_1}{b_1} \leq \frac{a_1 + a_2}{b_1 + b_2} \leq \frac{a_2}{b_2}$  恒成立. 由定义

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = k \iff \forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{N} (\forall n > N, \frac{a_n}{b_n} \in (k - \varepsilon, k + \varepsilon))$$

归纳得, 当  $b_i > 0, i \in \mathbb{Z}$  时

$$\frac{S_n - S_N}{T_n - T_N} \in (k - \varepsilon, k + \varepsilon), N < n$$

由  $\lim_{n\to +\infty} T_n \lim_{n\to +\infty} S_n = 0$ ,再令N足够大 既证

### 3.5 常用重要极限

定理 3.5.1 ()

内容:

$$\lim_{n\to +\infty} \left(1+\frac{1}{n}\right)^n$$
 收敛

证明:

$$e_n := \left(1 + \frac{1}{n}\right)^n$$

运用单调有界数列收敛定理:

(1) 证明  $e_n$  单调增:

$$e_n = \left(1 + \frac{1}{n}\right)^n \le \left(1 + \frac{1}{n+1}\right)^{n+1} = e_{n+1}$$

由基本不等式知:

$$\left(1+\frac{1}{n}\right)^n \times 1 \le \left(\frac{n \times \left(1+\frac{1}{n}\right)+1}{n+1}\right)^{n+1} = \left(1+\frac{1}{n+1}\right)^{n+1}$$

(2) 证明  $e_n$  有上界:

$$e_n = \left(1 + \frac{1}{n}\right)^n \le \left(1 + \frac{1}{n}\right)^{n+1} = \frac{1}{\left(1 - \frac{1}{n+1}\right)^{n+1}}$$

注意到  $\left(1 - \frac{1}{n+1}\right)^{n+1}$  可与 (1) 同理证明是单调减的, 于是上式右式单调增.

$$\implies e_n \le \left(1 + \frac{1}{1}\right)^{1+1} = 4\square$$

定义 3.5.2 ()

上述极限值称为**自然常数(Natural Constant)**或**Napier常数(Napier's Constant)**, 记为 e.

定理 3.5.3 ()

e的估计:

$$\forall m \in \mathbb{N}, \exists n \in \mathbb{N}(S_m \leq e_n \leq S_n)$$

证明:

右侧显然.

## 定理 3.5.4 ()

e是无理数.

#### 证明:

运用反证法.

假设 e 是有理数, 则可设:

$$e = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots := \frac{q}{p} \quad (p, q \in \mathbb{N}^*)$$

$$\implies p! + \frac{p!}{2!} + \dots + \frac{p!}{p!} + \frac{p!}{(p+1)!} + \dots = q(p-1)!$$

$$\forall k = 1, 2, \dots, p, \Longrightarrow k! | p!$$

$$p! + \frac{p!}{2!} + \dots + \frac{p!}{p!} \in \mathbb{Z}$$

$$\frac{p!}{(p+1)!} + \frac{p!}{(p+2)!} + \dots \in \mathbb{Z}$$

$$\frac{p!}{(p+1)!} + \frac{p!}{(p+2)!} + \dots = \frac{1}{p+1} + \frac{1}{(p+1)(p+2)} + \dots$$

$$< \frac{1}{p+1} + \frac{1}{(p+1)^2} + \dots$$

$$= \frac{\frac{1}{p+1}}{1 - \frac{1}{p+1}}$$

$$= \frac{1}{p} \le 1.$$

矛盾.

### 性质 3.5.4.1 ()

内容:

$$\lim_{n \to +\infty} (1 - \frac{1}{n})^n = \frac{1}{e}$$

#### 定理 3.5.5 ()

内容:

$$\exists \lim_{n \to +\infty} n \sin \frac{360^{\circ}}{n}$$

#### 定义 3.5.6 ()

上述极限称为圆周率, 记为  $\pi$ .

 $\pi \approx 3.14159265 \cdots$ 

#### 4.1 级数

### 定义 4.1.1 无穷级数 (Infinite Series)

称无穷和式

$$\sum_{n=1}^{+\infty} a_n$$

为一个无穷级数 (Infinite Series), 简称级数 (Series). 称

$$S_n = \sum_{i=1}^n a_i$$

为该级数的 n 次**部分和 (Partial Sum)**. 称级数**收敛 (Converge)**, 若其部分和数列收敛; 否则称 其**发散 (Diverge)**.

若级数收敛, 其值定义为:

$$\sum_{n=1}^{+\infty} a_n := \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{i=1}^{n} a_i$$

级数与 n 次部分和之差称为其 n 次**余和 (Remainder)**, 记作  $r_n := \sum_{n=1}^{+\infty} a_n - S_n$ .

### 性质 4.1.1.1 级数运算的线性性 ()

级数 
$$\sum_{n=1}^{+\infty} a_n$$
 与  $\sum_{n=1}^{+\infty} b_n$  收敛,  $k, l \in \mathbb{R} \Longrightarrow \sum_{n=1}^{+\infty} (ka_n + lb_n)$  收敛.

#### 性质 4.1.1.2 收敛级数项的可结合性 ()

对收敛级数的项任意加括号后仍收敛. 且若结合为一项的原级数各项符号相同, 结合后级数和不变.

## 性质 4.1.1.3 收敛级数的项必为无穷小量 ()

$$\sum_{n=1}^{+\infty} a_n \, \, \text{ by } \Longrightarrow \lim_{n \to +\infty} a_n = 0.$$

#### 反例 4.1.2 各项为无穷小量的级数未必收敛 ()

以下级数称为**调和级数 (Harmonic Series)**, 它是发散的:

$$\sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$$

#### 性质 4.1.2.1 级数的敛散性与前有限项无关()

#### 定理 4.1.3 数项级数的 Cauchy 收敛原理 ()

即部分和数列  $\{S_n\}$ 的 Cauchy 收敛原理.

#### 例 4.1.4 几何级数 ()

等比数列的级数和称为**几何级数**. 当公比 q 满足 |q| < 1 时, 几何级数收敛.

$$\sum_{n=1}^{+\infty} aq^{n-1} = \frac{a}{1-q}$$

#### 4.2 重排

#### 定义 4.2.1 ()

称级数  $\sum_{n=1}^{+\infty} a_n$  绝对收敛(Absolutely Converge), 若级数  $\sum_{n=1}^{+\infty} |a_n|$  收敛; 否则称其条件收敛 (Conditionally Converge)

## 性质 4.2.1.1 绝对收敛级数正项和与负项和收敛 ()

设级数  $\sum_{n=1}^{+\infty} a_n$  绝对收敛, 则:

n=1 (1) 各正项的级数和收敛:

$$\sum_{n > 0} a_n$$
 收敛

(2) 各负项的级数和收敛:

$$\sum_{a_n < 0} a_n$$
 收敛

#### 性质 4.2.1.2 绝对收敛蕴含收敛 ()

内容:

$$\sum_{n=1}^{+\infty} |a_n| \,\, 收敛 \Longrightarrow \sum_{n=1}^{+\infty} a_n \,\, 收敛$$

### 定义 4.2.2 重排级数/更序级数 (Rearrangement Series)

设  $f: \mathbb{N}^* \to \mathbb{N}^*$  是一个  $\mathbb{N}^*$  上的置换,则级数  $\sum_{n=1}^{+\infty} a_{f(n)}$  称为是级数  $\sum_{n=1}^{+\infty} a_n$  的**重排级数或更序级数**. 仅改变有限个元素位置的置换不会改变级数和,但在改变无限个元素位置的置换下,绝对收敛级数与条件收敛级数性质不同. 这揭示了其命名的由来.

#### 定理 4.2.3 绝对收敛级数重排不变 ()

因此绝对收敛级数也称无条件收敛级数 (Unconditionally Convergent Series).

#### 定理 4.2.4 Riemann 重排定理 ()

条件收敛级数在重排下可收敛于任何极限,或者发散.

设级数  $\sum_{n=1}^{+\infty} a_n$  条件收敛,

#### 4.3 正项级数的收敛判别法

#### 定理 4.3.1 正项级数的比较判别法 ()

设正项级数  $\sum_{n=1}^{+\infty} a_n$ ,  $\sum_{n=1}^{+\infty} a_n$ , 若有限项之后有  $a_n \leq b_n$  恒成立, 则:

(1)

$$\sum_{n=1}^{+\infty} b_n$$
 收敛  $\Longrightarrow \sum_{n=1}^{+\infty} a_n$  收敛

(2)

$$\sum_{n=1}^{+\infty} a_n$$
 发散  $\Longrightarrow \sum_{n=1}^{+\infty} b_n$  发散

极限形式: 设正项级数  $\sum_{n=1}^{+\infty} a_n$ ,  $\sum_{n=1}^{+\infty} a_n$ , 设  $l := \lim_{n \to +\infty} \frac{a_n}{b_n}$ , 则:

(1) 若  $0 < l < +\infty$ , 则:

$$\sum_{n=1}^{+\infty} a_n$$
 收敛/发散  $\iff \sum_{n=1}^{+\infty} b_n$  收敛/发散

(2) 若 l = 0, 则:

$$\sum_{n=1}^{+\infty} b_n$$
 收敛  $\Longrightarrow \sum_{n=1}^{+\infty} a_n$  收敛

(3) 若  $l = +\infty$ , 则:

$$\sum_{n=1}^{+\infty} a_n$$
 发散  $\Longrightarrow \sum_{n=1}^{+\infty} b_n$  发散

#### 推论 4.3.1.1 正项级数的 Cauchy 判别法 ()

Cauchy 判别法是将正项级数与几何级数比较的结果.

设正项级数  $\sum_{n=1}^{+\infty} a_n$ , 则:

- (1) 若  $\exists q \in (0,1)$ , 使得在有限项后有  $a_n \leq q^n$ 恒成立, 则级数  $\sum_{n=1}^{+\infty} a_n$  收敛.
- (2) 若对无穷多个 n 有  $a_n \ge 1$ , 则级数  $\sum_{n=1}^{+\infty} a_n$  发散.

极限形式: 设正项级数  $\sum_{n=1}^{+\infty} a_n$ ,  $\overline{\lim}_{n\to+\infty} \sqrt[n]{a_n} = q$ , 则:

(1)

$$q < 1 \Longrightarrow \sum_{n=1}^{+\infty} a_n$$
 收敛

(2)

$$q > 1 \Longrightarrow \sum_{n=1}^{+\infty} a_n$$
 发散

q=1 时无法判断级数的敛散性.

### 推论 4.3.1.2 正项级数的 D'Alembert 判别法 ()

D'Alembert 判别法同样是将正项级数与几何级数比较的结果.

设正项级数  $\sum_{n=1}^{+\infty} a_n$ , 则:

(1) 若在有限项后有  $\frac{a_n}{a_{n-1}} \le q < 1$  恒成立, 则级数  $\sum_{n=1}^{+\infty} a_n$  收敛;

(2) 若在有限项后有  $\frac{a_n}{a_{n-1}} \ge 1$  恒成立, 则级数  $\sum_{n=1}^{+\infty} a_n$  发散.

极限形式: 设正项级数  $\sum_{n=1}^{+\infty} a_n$ , 则:

(1)

$$\varlimsup_{n\to +\infty} \frac{a_n}{a_{n-1}} < 1 \Longrightarrow \sum_{n=1}^{+\infty} a_n$$
 收敛

(2)

$$\varliminf_{n\to +\infty} \frac{a_n}{a_{n-1}} < 1 \Longrightarrow \sum_{n=1}^{+\infty} a_n ~$$
 发散

### 4.4 任意项级数的收敛判别法

#### 定理 4.4.1 Leibniz 定理 ()

满足下列条件的交错级数  $\sum_{n=1}^{+\infty} (-1)^n a_n (a_n \ge 0)$  称为 Leibniz 型级数:

(1)  $a_n$  单调减:

$$\forall n \in \mathbb{N}^*, a_n \ge a_{n+1}$$

(2)

$$\lim_{n \to +\infty} a_n = 0$$

则有:

- (1) Leibniz 型级数条件收敛.
- (2) Leibniz 型级数的 n 次余和与余和第一项符号相同:

$$r_n a_{n+1} \ge 0$$

(3) Leibniz 型级数的 n 次余和绝对值不超过余和第一项绝对值相同:

$$|r_n| \le |a_{n+1}|$$

#### 定理 4.4.2 Abel 变换 ()

设有限数列  $\{a_n\},\{b_n\},\,B_n:=\sum\limits_{i=1}^nb_i.$  则有:

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n-1} ((a_i - a_{i+1})B_i) + a_n B_n$$

其几何意义可以通过系列矩形的不同面积求法来表示:



#### 引理 4.4.3 Abel 引理 ()

若数列  $\{a_n\}$ ,  $\{b_n\}$  满足:

- $(1) \{|a_n|\}$  单调;
- (2)  $B_n := \sum_{i=1}^n b_i$ , { $|B_n|$ } 有上界 M.

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le M(|a_1| + 2|a_m|)$$

### 定理 4.4.4 Abel 判别法 ()

若数列  $\{a_n\}$ ,  $\{b_n\}$  满足:

- (1)  $\{a_n\}$  单调有界; (2)  $\sum_{n=1}^{+\infty} b_n$  收敛.

则级数  $\sum_{n=1}^{+\infty} a_n b_n$  收敛.

#### 定理 4.4.5 Dirichlet 判别法 ()

若数列  $\{a_n\}$ ,  $\{b_n\}$  满足:

- (1)  $\{a_n\}$  单调收敛于 0; (2)  $\sum_{i=1}^{n} b_i$  有界.

则级数  $\sum_{n=1}^{+\infty} a_n b_n$  收敛.

## 定义 4.4.6 Cauchy 乘积 (Cauchy Product)

设收敛级数  $\sum_{n=1}^{+\infty} a_n = A$  与  $\sum_{n=1}^{+\infty} b_n = B$ , 定义二者的 Cauchy 乘积为如下级数:

$$\sum_{n=1}^{+\infty} \sum_{k=1}^{n} a_k b_{n+1-k}$$

### 定理 4.4.7 Mertens 定理 (Mertens' Theorem)

设收敛级数  $\sum\limits_{n=1}^{+\infty}a_n=A$  与  $\sum\limits_{n=1}^{+\infty}b_n=B$ , 则: 两级数中至少有一个绝对收敛  $\Longrightarrow$  它们的 Cauchy 乘积收敛.

#### 定理 4.4.8

若两级数的 Cauchy 乘积收敛,则其级数和为原来级数和的积.

## 5 函数极限

### 5.1 函数极限和Heine定理

#### 定义 5.1.1 函数极限 ()

称函数 f 在  $x_0$  的**左极限**为 a, 若 f 在  $x_0$  的一个左邻域内有定义,且:

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+ (\forall x \in U^-(x_0, \delta), f(x) \in U(a, \varepsilon))$$

记作

$$\lim_{x \to x_0 -} f(x) = a$$

称函数 f 在  $x_0$  的**右极限**为 b, 若 f 在  $x_0$  的一个右邻域内有定义,且:

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+ (\forall x \in U^+(x_0, \delta), f(x) \in U(b, \varepsilon))$$

记作

$$\lim_{x \to x_0 +} f(x) = b$$

称函数 f 在  $x_0$  的极限为 c, 若:

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+ (\forall x \in \overset{\circ}{U}(x_0, \delta), f(x) \in U(c, \varepsilon))$$

记作

$$\lim_{x \to x_0} f(x) = c$$

函数极限的等价定义:

$$\lim_{x \to x_0} f(x) := \lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = c$$

#### 定理 5.1.2 Heine定理 ()

内容:

$$\lim_{x \to x_0} f(x) = a \iff \forall \{x_n\} : \lim_{n \to +\infty} x_n = x_0, \lim_{n \to +\infty} f(x_n) = a$$

#### 证明:

证明:

(1)

$$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon_1 \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+ (\forall x \in \overset{\circ}{U}(x_0, \delta), f(x) \in o(a, \varepsilon_1))$$

$$\lim_{n \to +\infty} x_n = x_0 \iff \forall \varepsilon_2 \in \mathbb{R}^+, \exists N_2 \in \mathbb{Z}^+ (\forall n > N_2, x_n \in o(x_0, \varepsilon_2))$$

$$\lim_{n \to +\infty} f(x_n) = a \iff \forall \varepsilon_3 \in \mathbb{R}^+, \exists N_3 \in \mathbb{Z}^+ (\forall n > N_3, f(x_n) \in o(a, \varepsilon_3))$$

(2)充分性:

$$\lim_{x \to x_0} f(x) = a$$

$$\varepsilon_1 := \varepsilon_3, \varepsilon_2 := \delta$$

$$\exists N = \max\{N_1, N_2\} (\forall n > N, x_n \in \mathring{U}(x_0, \delta) \Longrightarrow f(x_n) \in U(a, \varepsilon_3))$$

$$\Longrightarrow \lim_{n \to +\infty} f(x_n) = a$$

(3)必要性: 运用反证法. 假设:

$$\lim_{x \to x_0} f(x) \neq a; \forall \{x_n\} : \lim_{n \to +\infty} x_n = x_0, \lim_{n \to +\infty} f(x_n) = a$$

$$\lim_{x \to x_0} f(x) \neq a \iff \exists \varepsilon_1 \in \mathbb{R}^+ : \forall \delta \in \mathbb{R}^+, \exists x \in \overset{\circ}{U}(x_0, \delta) : f(x) \notin U(a, \varepsilon_1)$$

不妨设 f 在  $\overset{\circ}{U}(x_0, \delta_0)$  内有定义,

$$\delta_i := \frac{\delta_0}{i} \Longrightarrow \forall i \in \mathbb{N}^*, \exists x_i \in \overset{\circ}{U}(x_0, \delta_0)(f(x) \notin o(a, \varepsilon_1))$$

如此取得无穷数列  $\{x_n\}$ :

$$\forall \varepsilon_2 \in \mathbb{R}^+, N := \left[\frac{1}{\varepsilon_2}\right] + 1, \forall n > N, |x_n - x_0| < \frac{1}{\left\lceil \frac{1}{\varepsilon_2} \right\rceil + 1} < \varepsilon_2 \Longrightarrow \lim_{n \to +\infty} x_n = x_0$$

又 
$$\lim_{n \to +\infty} f(x_n) \neq a$$
, 与  $\forall \{x_n\} : \lim_{n \to +\infty} x_n = x_0, \lim_{n \to +\infty} f(x_n) = a$  矛盾.  $\square$ 

由Henie定理,可以立得等价于数列极限性质的函数极限性质:

#### 性质 5.1.2.1 函数极限的唯一性 ()

若  $\lim_{x \to x_0} f(x)$  存在, 则它是唯一的.

#### 性质 5.1.2.2 函数极限的局部有界性 ()

函数  $f: D \to \mathbb{R}$  在  $x_0$  处极限存在  $\Longrightarrow \exists U(x_0) \subseteq D: f$  在  $U(x_0)$  上有界.

#### 性质 5.1.2.3 夹逼定理 (迫敛性) ()

设函数 f,g 与 h 在  $x_0$  的一个邻域内满足

$$f(x) \le h(x) \le g(x)$$
.

则

$$\lim_{x\to \mathbf{x}_0} f(x) = \lim_{x\to \mathbf{x}_0} g(x) = l \Longrightarrow \lim_{x\to \mathbf{x}_0} h(x) = l.$$

#### 性质 5.1.2.4 函数极限的保序性 ()

函数 f,g 在  $x_0$  的一个去心邻域内满足  $f(x) \leq g(x), x_0$  处极限存在,则

$$\lim_{x \to \mathbf{x}_0} f(x) \le \lim_{x \to \mathbf{x}_0} g(x).$$

#### 证明:

证: 设  $\lim_{x \to x_0} f(x) = A$ ,  $\lim_{x \to x_0} g(x) = B$ , 则对  $\forall \varepsilon > 0$ , 分别  $\exists \delta_1, \delta_2 > 0$  s.t. 当  $0 < |x - x_0| < \delta_1$  时有  $A - \varepsilon < f(x)$ , 当  $0 < |x - x_0| < \delta_2$  时有  $g(x) < B + \varepsilon$ . 因此, 令  $\delta = \min\{\delta', \delta_1, \delta_2\}$ ,则当  $0 < |x - x_0| < \delta$  时,不等式  $f(x) \le g(x)$  与上两式同时成立,于是有  $A - \varepsilon < f(x) \le g(x) < B + \varepsilon$ , 从而  $A < B + 2\varepsilon$ . 再根据  $\varepsilon$  的任意性可以推出  $A \le B$ ,证毕.  $\square$ 

#### 性质 5.1.2.5 函数极限的保号性 ()

内容:

$$f: D \to \mathbb{R}, \lim_{x \to x_0} f(x) = A > 0 \Longrightarrow \forall 0 < r < A, \exists \overset{\circ}{U}(x_0) \ s.t. \forall x \in \overset{\circ}{U}(x_0), f(x) > r > 0.$$

#### 证明:

设 A>0, 对任意  $r\in(0,A)$ , 取  $\varepsilon=A-r$ , 则根据函数极限定义, 存在  $\delta>0$ , 使得对一切  $x\in U(x_0,\delta)$  有

$$r = A - \varepsilon < f(x),$$

故证毕, 对于 A < 0 的情形可以类似地证明. □

### 性质 5.1.2.6 ()

有限常数极限关于四则运算不变:

$$\lim_{x \to \mathbf{x}_0} f(x) = A, \lim_{x \to \mathbf{x}_0} g(x) = B \Longrightarrow \begin{cases} \lim_{x \to \mathbf{x}_0} \left( f(x) \pm g(x) \right) &= A \pm B \\ \lim_{x \to \mathbf{x}_0} \left( f(x) \cdot g(x) \right) &= A \cdot B \\ \lim_{x \to \mathbf{x}_0} \left( \frac{f(x)}{g(x)} \right) &= \frac{A}{B} \left( B \neq 0 \right) \end{cases}$$

当然, 我们也可以得到函数极限形式的Cauchy收敛定理:

#### 定理 5.1.3 Cauchy收敛定理 ()

函数 f 在  $x_0$  处极限存在 $\Longleftrightarrow \forall \varepsilon > 0, \exists \delta > 0$   $s.t, \forall x_1, x_2 \in \overset{\circ}{U}(x_0, \delta), |f(x_1) - f(x_0)| < \varepsilon.$ 

#### 例 5.1.4 Riemann 函数 ()

内容:

$$R(x) = \begin{cases} 1, & x = 0\\ \frac{1}{q}, & x = \frac{p}{q}, \ p, q \in \mathbb{N}^*, \ (p, q) = 1\\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

则 $\forall x_0 \in \mathbb{R}, \lim_{x \to x_0} R(x) = 0.$ 

#### 证明:

R(x+1) = R(x), ∴ 只需证  $x \in [0,1]$  的情况; 又只需证  $x_0$  为有理数. ∵  $\forall \varepsilon > 0$ ,取  $q_0 > \frac{1}{\varepsilon}$ ,则  $(x_0 - 1, x_0 + 1)$  上分母小于  $q_0$  的数只有有限个,记其中离  $x_0$  最近的为  $x_N$ ,取  $0 < \delta < |x_N - x_0|$ ,则  $0 < |x - x_0| < \delta$  时, $|R(x) - 0| < \frac{1}{q_0} < \varepsilon$ ,∴  $\lim_{x \to x_0} R(x) = 0$ . □

### 定理 5.1.5 复合函数的极限 ()

设  $\lim_{x\to x_0} f(x) = l$ ,  $\lim_{t\to t_0} g(t) = x_0$ . 如果在  $t_0$  的某个邻域  $U(t_0)$  内  $g(t) \neq x_0$ , 则

$$\lim_{t \to t_0} f(g(t)) = l.$$

#### 5.2 函数的连续性

#### 定义 5.2.1 连续 (Continuous)

称 f 在  $x_0$  点是**连续(Continuous)**的, 若 f 在  $x_0$  的一个邻域内有定义, 且:

$$\lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = f(x_0)$$

称 f 在  $x_0$  点**左连续**, 若 f 在  $x_0$  的一个左邻域内有定义, 且:

$$\lim_{x \to x_0 -} f(x) = f(x_0)$$

称 f 在  $x_0$  点**右连续**, 若 f 在  $x_0$  的一个右邻域内有定义, 且:

$$\lim_{x \to x_0 +} f(x) = f(x_0)$$

#### 性质 5.2.1.1 连续函数的局部有界性 ()

 $f: D \to \mathbb{R}$ 在  $x_0 \in D$  处连续  $\Longrightarrow \exists U(x_0) \subseteq D: f$  在  $U(x_0)$  上有界.

## 性质 5.2.1.2 函数的四则运算保持连续性 ()

 $f_1: D_1 \to \mathbb{R}, f_2: D_2 \to \mathbb{R}$ 在  $x_0 \in D_1 \cap D_2$  处连续  $\Longrightarrow$  在  $x_0$  处有:  $f_1 + f_2, f_1 \cdot f_2, \frac{f_1}{f_2}(f_2(x_0) \neq 0)$ 均 在  $x_0$  处连续.

#### 性质 5.2.1.3 函数的复合保持连续性 ()

 $f: X \to Y, g: Y \to \mathbb{R}(X, Y \subseteq \mathbb{R})$ , 设 f(a) = b, f在 a 处连续, g在 b 处连续, 则  $g \circ f$  在 a 处连续.

#### 定义 5.2.2 不连续点 (Discontinuity)

称  $x_0$  是 f 的一个第一类间断点/不连续点, 若:

$$\exists \lim_{x \to x_0-} f(x), \lim_{x \to x_0+} f(x)$$

称  $x_0$  是 f 的一个第二类间断点/不连续点, 若

$$\nexists \lim_{x \to x_0 -} f(x) \lor \nexists \lim_{x \to x_0 +} f(x)$$

其中称  $x_0$  是 f 的一个可去间断点/不连续点(Removable Discontinuity), 若:

$$\lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = a$$

但  $f(x_0)$  无定义或  $f(x_0) \neq a$ .

称  $x_0$  是 f 的一个跳跃间断点/不连续点(Jump Discontinuity), 若

$$\lim_{x \to x_0 -} f(x) \neq \lim_{x \to x_0 +} f(x)$$

#### 定义 5.2.3 连续函数 (Continuous Function)

函数  $f: D \to \mathbb{R}$  称为在开区间  $(a,b) \subseteq D$  上**连续**, 若  $\forall x \in (a,b)$ , f在 x 处连续. f称为在  $[a,b] \subseteq D$  上连续, 若 f 在 (a,b) 上**连续**, 在 a 处右连续, 在 b 处左连续.

#### 性质 5.2.3.1 反函数的连续性 ()

If  $y, f(x) \in C[a, b]$  and f(x) 严格递增,  $f(a) = \alpha$ ,  $f(b) = \beta$ . 则  $x = f^{-1}(y) \exists 且 f^{-1}(y) \in C[\alpha, \beta]$ .

#### 证明:

先证  $\{f(x) \mid x \in [a,b]\} = [\alpha,\beta] \Leftrightarrow \forall y \in (\alpha,\beta), \exists x \in (a,b), f(x_0) = y,$ 

$$x_0 := \sup\{x \in [a, b] \mid f(x) < y\} := \sup S,$$

$$\lim_{\delta \to 0} f(a+\delta) = f(a) < y \Rightarrow \text{If } 0 << \delta < 1, f(a+\delta) < y.$$

又 f 严格递增  $\Rightarrow x \in [a, a + \delta)$  时,  $f(x) < f(a + \delta) < y$ ,  $\therefore x_0 \ge a + \delta$ ,

 $\therefore x_0 > a$ , 同理  $x_0 < b$ ,  $\therefore x_0 \in (a, b)$ , 此时  $\forall x \in (a, x_0), f(x) < y$ ,

$$\forall x \in (x_0, b), f(x) > y \Rightarrow \lim_{x \to x_0^-} f(x) \le y \le \lim_{x \to x_0^+} f(x), \ \ \ \ \ \ \lim_{x \to x_0} f(x) = f(x_0),$$

$$\therefore f(x_0) = y.$$

下证  $f^{-1}(y) \in C[\alpha, \beta] \Leftrightarrow \forall y_0 \in [\alpha, \beta], \forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |y - y_0| < \delta$  时,

$$|f^{-1}(y) - f^{-1}(y_0)| < \varepsilon.$$

 $\exists x_0 = f^{-1}(y_0), x = f^{-1}(y), y \in (\alpha, \beta),$ 

 $\mathbb{R} \quad 0<\varepsilon<<1, y_0-\varepsilon, y_0+\varepsilon\in(\alpha,\beta), \\ \mathbb{id} \quad \delta_1=y_0-f(x_0-\varepsilon)>0, \\ \delta_2=f(x_0+\varepsilon)-y_0>0, \\ \delta_2=f(x_0+\varepsilon)-y_0>0, \\ \delta_2=f(x_0+\varepsilon)-y_0>0, \\ \delta_3=f(x_0+\varepsilon)-y_0>0, \\ \delta_3=f(x_0+\varepsilon)-y_0>$ 

取  $\delta = \min\{\delta_1, \delta_2\},$  当  $|y - y_0| < \delta$  时,

$$f(x_0 - \varepsilon) = y_0 - \delta_1 \le y_0 - \delta < y < y_0 + \delta \le y_0 + \delta_1 = f(x_0 + \varepsilon),$$

又 
$$x = f^{-1}(y)$$
严格递增,  $x = f^{-1}(y)$   $x_0 + \xi$ , 即  $|f^{-1}(y) - x_0| < \xi$ .  $\Box$ 

#### 定理 5.2.4 Bolzano-Cauchy介值定理 ()

设函数  $f:[a,b] \to \mathbb{R}(a < b)$  在 [a,b] 上连续, 且  $f(a) \cdot f(b) < 0 \Longrightarrow \exists x_0 \in (a,b)(f(x_0) = 0)$ .

#### 证明:

运用反证法. 假设  $\forall x \in (a,b), f(x) \neq 0$ , 则可如下归纳构造闭区间族  $\mathcal{D}$ :

$$\mathcal{D} := \{D_{i,j} | D_{i,j} = [\frac{1}{2^i}(ja + (2^i - j)b), \frac{1}{2^i}((2^i - j)a + jb)], i, j \in \mathbb{N}, 1 \le j \le 2^i\}$$

可作如下断言:

$$\exists x_1, x_2 \in D_{i,j}(f(x_1)f(x_2) < 0) \Longrightarrow \exists x'_1, x'_2 \in D_{i+1,j'} \subseteq D_{i,j}(f(x'_1)f(x'_2) < 0)$$

这是因为只有  $D_{i+1,2i-1}$  和  $D_{i+1,2i}$  符合条件, 有:

$$D_{i+1,2j-1} \cup D_{i+1,2j} = D_{i,j} \wedge D_{i+1,2j-1} \cap D_{i+1,2j} = \{x_{i,j}\}$$

$$x_{i,j} \neq 0 \Longrightarrow x_{i,j} > 0 \lor x_{i,j} < 0$$

这意味着假若断言不正确,则  $f(D_{i+1,2j-1})$  和  $f(D_{i+1,2j})$  内所有元素均必须与  $x_{i,j}$  同号,与断言条件矛盾,故断言正确.

选择符合条件的  $D_{i+1,j'}$ , 记作  $D_{i+1}$ . 记  $D_0 = D_{0,1}$ , 令 i 遍历  $\mathbb{N}$ , 得到闭区间序列 $\mathcal{D}' = \{D_i | i \in \mathbb{N}\}$  容易验证  $\mathcal{D}'$  是区间长度收敛于 0 的闭区间套, 由Cauchy-Cantor闭区间套定理, 有:

$$\bigcap_{i\in\mathbb{N}} \mathcal{D}' = \{x_0\} \subseteq [a,b]$$

不妨设  $f(x_0) > 0$ , 则:

$$\forall D_i \in \mathcal{D}', \exists \xi_i \in D_i(f(\xi_i) < 0) \Longrightarrow \lim_{n \to +\infty} \xi_n = x_0$$

由Heine定理,  $\lim_{n\to+\infty} f(\xi_n) = f(\lim_{n\to+\infty} \xi_n) = f(x_0) > 0$ , 与  $f(\xi_i) < 0$  矛盾.  $\square$ 

#### 定理 5.2.5 Weiestrass最值定理 ()

定义在闭区间上的连续函数  $f:[a,b]\to\mathbb{R}$  在 [a,b] 上有界, 且值域有最值:

$$\exists x_M \in [a, b](f(x_M) = f_{\max}([a, b])), \exists x_m \in [a, b](f(x_m) = f_{\min}([a, b]))$$

#### 证明:

运用反证法. 不妨假设 f 无上界, 即  $\forall M \in \mathbb{R}^+, \exists x \in [a,b] : f(x) > M$ .

令 M 遍历  $\mathbb{N}$ , 得到数列  $\{x_n\}(\forall n \in \mathbb{N}, f(x_n) > n)$ .

即有 
$$\lim_{n \to \infty} f(x_n) = +\infty$$

由Bolzano-Weiestrass定理, 可以选出  $\{x_n\}$  的一个收敛子列  $\{x'_n\}$ .

设 
$$\lim_{n\to+\infty} = x_0$$
, f连续, 可由Heine定理得  $\lim_{n\to+\infty} f(x_n) = f(\lim_{n\to+\infty} x_n) = f(x_0)$ 

于是  $f(x_0) = +\infty$ , 无意义, 矛盾.

即 f 在 [a,b] 上有上界, 同理可证其有下界.

下运用连续函数的拓扑性质证明确界在值域内:

f是连续的, [a,b]是闭的  $\Longrightarrow f([a,b])$  是闭的.

又 f([a,b]) 有界,  $\exists \sup f([a,b])$ ,  $\inf f([a,b])$ .

$$\forall U(\sup f([a,b])), \exists x_1 \in [a,b](f(x_1) \in U(\sup f([a,b])))$$

$$\forall U(\inf f([a,b])), \exists x_2 \in [a,b](f(x_2) \in U(\inf f([a,b])))$$

由Bolzano-Cauchy介值定理知:

$$\forall C \in [f(x_1), f(x_2)], \exists x \in [a, b] : f(x) = C$$

$$\Longrightarrow \forall C \in (\inf f([a, b]), \sup f([a, b])), \exists x \in [a, b] : f(x) = C$$

$$\Longrightarrow (\inf f([a, b]), \sup f([a, b])) \subseteq f([a, b])$$

$$f([a, b]) \cap ((-\infty, \inf f([a, b])) \cup (\sup f([a, b]), +\infty)) = \emptyset$$

于是 f([a,b]) 只能是以  $\inf f([a,b]), \sup f([a,b])$  为端点的区间. 而这其中, 只有  $[\inf f([a,b]), \sup f([a,b])]$  是闭的.

$$\implies f([a,b]) = [\inf f([a,b]), \sup f([a,b])] \square$$

#### 5.3 函数的一致连续性

定义 5.3.1 ()

称 f 在区间 D 上一致连续(Uniformly Continuous), 若:

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+ : \forall x_1, x_2 \in D : |x_1 - x_2| < \delta, |f(x_1) - f(x_2)| < \varepsilon$$

### 定理 5.3.2 Cantor-Heine 一致连续性定理 ()

定义在闭区间上的连续函数一致连续.

#### 证明:

(反证法) 若 f 在 [a,b] 不一致连续, 即

$$\exists \varepsilon_0 > 0, s_n, t_n \in [a, b], |s_n - t_n| \to 0 \text{ s.t.} |f(s_n) - f(t_n)| \ge \varepsilon_0 \tag{1}$$

由列紧性,  $\exists s_{k_n} \to s \in [a,b]$ , 此时  $|t_{k_n} - s_{k_n}| + |s_{k_n} - s| \to 0$ ,  $\therefore t_{k_n} \to s$ .

$$\Longrightarrow \lim_{n \to \infty} f(s_{k_n}) = \lim_{n \to \infty} f(t_{k_n}) = f(s) \Longrightarrow \lim_{n \to \infty} |f(s_{k_n}) - f(t_{k_n})| = 0,$$

与(1)矛盾. □

## 6 一元微分和导数

#### 6.1 一元微分和导数

#### 定义 6.1.1 ()

设函数  $f: D \to \mathbb{R}(D \subseteq \mathbb{R})$  在  $x_0 \in D$  处连续, 且在  $x_0$  的一个邻域  $\overset{\circ}{U}(x_0, \delta)$  内有定义. 记 y = f(x), 称函数 f 在  $x_0$  处可微(Differentiable)或可导, 若:

$$\exists k \in \mathbb{R} (\exists \delta_0 \in \mathbb{R}^+ (x \in \overset{\circ}{U}(x_0, \delta_0) \Longrightarrow y - y_0 = k(x - x_0) + o(x - x_0)))$$

记  $\Delta y = y - y_0, \Delta x = x - x_0$ , 上式写作:

$$\Delta y = k\Delta x + o(\Delta x)$$

称该式的线性主部确定了 y 在  $x_0$  处的一个微分(Differential), 记为

$$dy = kdx$$

其中常数 k 称为 f 在  $x_0$  处的**导数(Derivative)**或微**商**, 记为

$$f'(x_0) = k = \frac{\mathrm{d}y}{\mathrm{d}x}$$

#### 性质 6.1.1.1 ()

内容:

函数 
$$f$$
 在  $x_0$  处可微  $\iff$   $\exists \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$  
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

#### 性质 6.1.1.2 ()

函数  $f: D \to \mathbb{R}$  在  $x_0 \in \mathbb{R}$  处可微  $\Longrightarrow f$  在  $x_0$  处连续.

#### 证明:

 $f: D \to \mathbb{R}$ 在  $x_0 \in \mathbb{R}$  处可微  $\iff \exists k \in \mathbb{R} (\exists \delta_0 \in \mathbb{R}^+ (\forall |\Delta x| < \delta_0 \Longrightarrow \Delta y = k\Delta x + o(\Delta x)))$ 

$$\iff \forall \varepsilon_1 \in \mathbb{R}^+, \exists \delta_1 \in \mathbb{R}^+ (\forall |\Delta x| < \delta_1 \Longrightarrow \Delta y - k\Delta x < \varepsilon_1 \Delta x)$$

f在  $x_0$  处连续  $\iff \forall \varepsilon_2 \in \mathbb{R}^+, \exists \delta_2 \in \mathbb{R}^+ (\forall |\Delta x| < \delta_2 \Longrightarrow |\Delta y| < \varepsilon_2)$ 

$$|\Delta y| < |(k + \varepsilon_1)\Delta x| \le (|k| + \varepsilon_1)|\Delta x|(|\Delta x| < \delta_1)$$

只需确保  $|\Delta x| < \frac{\varepsilon_2}{|k| + \varepsilon_1}$ , 即令 $\delta_2 := \min \left\{ \delta_1, \frac{\varepsilon_2}{|k| + \varepsilon_1} \right\} \Longrightarrow |\Delta y| < \varepsilon_2 \square$ 

#### 定义 6.1.2 ()

称函数  $f: D \to \mathbb{R}(D \subseteq \mathbb{R})$  在  $D' \subseteq D$  上可微(Differentiable)或可导, 若  $\forall x_0 \in D'$ , f在  $x_0$  处可

微.

 $f': D' \to \mathbb{R}$ 是一个以  $x_0$  为自变量的函数, 称为 f 在 D' 上的**导函数(Derivative Function)**.

#### 性质 6.1.2.1 ()

设 f,g 在 D 上可导, 则:

$$(f+g)'(x) = f'(x) + g'(x)$$

#### 性质 6.1.2.2 ()

设 f 在 D 上可导, 则:

$$\forall k \in \mathbb{R}, (kf)'(x) = kf'(x)$$

#### 性质 6.1.2.3 ()

设 f,g 在 D 上可导, 则:

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$

#### 性质 6.1.2.4 ()

设 f,g 在 D 上可导, 则:

$$(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

#### 性质 6.1.2.5 ()

一阶微分的形式不变性:

设 y 是关于 u 的函数, u是关于 x 的函数,  $u = u_0|_{x=x_0}$ ;

设 y 在  $u_0$  处可微且  $dy = k du|_{u=u_0}$ , u在  $x_0$  处可微且  $du = l dx|_{x=x_0}$ , 则:

$$\mathrm{d}y = kl\mathrm{d}x|_{x=x_0}$$

证明:

$$dy = k du|_{u=u_0} \iff \Delta y = k \Delta u + o(\Delta u)$$

$$du = l dx|_{x=x_0} \iff \Delta u = l \Delta x + o(\Delta x)$$

$$\implies \Delta y = k[l \Delta x + o(\Delta x)] + o(\Delta u)$$

$$= kl \Delta x + ko(\Delta x) + o(k \Delta x + o(\Delta x))$$

$$= kl \Delta x + o(\Delta x)$$

即

$$\mathrm{d}y = kl\mathrm{d}x|_{x=x_0}\square$$

### 性质 6.1.2.6 复合函数求导链式法则

$$(f \circ g)'(x) = [f' \circ g(x)] \cdot g'(x)$$

#### 证明:

由一阶微分形式不变性可立即得到.□

#### 性质 6.1.2.7 ()

反函数求导法则:

设 y=f(x) 在包含  $x_0$  的区间 I 上连续且严格单调, 若它在  $x_0$  处可导, 且  $f'(x_0)\neq 0$  , 那么它的反函数  $x=f^{-1}(y)$  在  $y_0=f(x_0)$  处可导, 且

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

#### 性质 6.1.2.8 ()

奇函数的导函数是偶函数, 偶函数的导函数是奇函数.

### 6.2 七类基本初等函数的导数

在基本初等函数的定义域内,有:

例 6.2.1 ()

常数函数导数:

$$C' = 0$$

例 6.2.2 ()

幂函数导数:

$$(x^a)' = ax^{a-1}(a \neq 0)$$

### 例 6.2.3 ()

指数函数导数:

$$(a^x)' = (\ln a)x^a (a \in \mathbb{R}^+ - \{1\})$$

特别地,

$$(e^x)' = e^x$$

#### 例 6.2.4 ()

对数函数导数:

$$(\log_a x)' = \frac{1}{(\ln a)x}$$

特别地,

$$(\ln x)' = \frac{1}{x}$$

例 6.2.5 ()

三角函数导数:

$$\sin' x = \cos x$$
  $\cos' x = -\sin x$   $\tan' x = \sec^2 x$   
 $\csc' x = -\csc x \cot x$   $\sec' x = \tan x \sec x$   $\cot' x = -\csc^2 x$ 

#### 例 6.2.6 ()

反三角函数导数:

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}} \qquad \arccos' x = -\frac{1}{\sqrt{1 - x^2}} \qquad \arctan' x = \frac{1}{1 + x^2}$$
 
$$\arccos' x = -\frac{1}{|x|\sqrt{x^2 - 1}} \qquad \arccos' x = -\frac{1}{|x|\sqrt{x^2 - 1}} \qquad \arccos' x = -\frac{1}{1 + x^2}$$

#### 例 6.2.7 ()

双曲函数导数:

$$\sinh' x = \cosh x \quad \cosh' x = \sinh x \quad \tanh' x =$$

### 6.3 高阶微分/导数

#### 定义 6.3.1 高阶微分/导数 ()

设函数 y = f(x) 在  $x_0$  可微, 将  $dy = k_1 dx|_{x=x_0}$  视为 y 的一阶微分; 设  $d^{n-1}y = k_{n-1} dx^{n-1}|_{x=x_0}$  是 y 在  $x_0$  处的 n-1 阶微分  $(n \in \mathbb{Z}^+ - \{1\})$ , 若

$$\exists k_n \in \mathbb{R}(\mathrm{d}^n y) := \mathrm{d}(\mathrm{d}^{n-1} y) = \mathrm{d}(k_{n-1} \mathrm{d} x^{n-1}) = k_n \mathrm{d} x^n|_{x=x_0}$$

称 y 在  $x_0$  处 n 阶可微/可导, 并称上式为 y 在  $x_0$  处的 n 阶微分;

称  $k_n = \frac{\mathrm{d}^n y}{\mathrm{d} x^n}(x_0)$  为 y 在  $x_0$  处的 n 阶导数.

 $k_n$ 是一个关于  $x_0$  的函数, 称为 y 的 n **阶导函数**, 可归纳地记为 $f^{(n)} := (f^{(n-1)})'$ 

#### 定理 6.3.2 Leibniz公式 ()

函数  $u \times v \times uv$  在区间  $I \perp n$  阶可导, 则

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}.$$

#### 证明:

(自然语言) 这里我们不使用归纳法证明, 而是探讨其组合意义及与二项式定理的关系:

我们知道,  $u^{(1)}v$  可以由 uv 求一次导得到, 而  $u^{(2)}v$  可以由  $u^{(1)}v$  再求一次导得到;

我们记  $u^{(2)}v$  得到的过程为  $u \cdot u$  (或2个 " u 变换");

一般地, 任意的  $u^{(n-k)}v^{(k)}$  可以由 (n-k) 个 " u 变换"和 k 个 " v 变换"的过程得到, 可以记作 类似 "  $u \cdot v \cdot u \cdot \cdots \cdot v$  "的形式;

不难发现, 这样得到的过程序列中 u 、 v 的顺序可以任意交换, 所有不同顺序的过程存在且唯一, 因此, 由组合数的定义知,  $u^{(n-k)}v^{(k)}$  的系数为  $C_n^k$ .

#### 6.4 函数凸性与Jenson不等式

#### 定义 6.4.1 ()

设函数 f 在区间 I 上有定义,如果  $\forall x_1, x_2 \in I, x_1 \neq x_2$ ,以及  $\forall \lambda_1, \lambda_2 > 0$ ,且  $\lambda_1 + \lambda_2 = 1$ ,都有

$$f(\lambda_1 x_1 + \lambda_2 x_2) \le \lambda_1 f(x_1) + \lambda_2 f(x_2),$$

则称 f 为 I 上的**凸函数**. 如果上述不等式对  $\forall x_1 \neq x_2$  及  $\lambda_1, \lambda_2 > 0$  ( $\lambda_1 + \lambda_2 = 1$ ) 不等号总成立,则称 f 为 I 上的**严格凸函数**.

#### 定理 6.4.2 Jenson不等式 ()

设 f 在区间 I 上是凸函数, 则对任何  $x_1, x_2, \cdots, x_n \in I$ , 以及  $\lambda_1, \lambda_2, \cdots, \lambda_n > 0$ , 且  $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$ , 都有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

若 f 是 I 上的严格凸函数, 则当  $x_1, x_2, \cdots, x_n$  不全相等时, 有

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) < \sum_{i=1}^{n} \lambda_i f(x_i).$$

#### 证明:

(数学归纳法) n = 2 时由定义成立; 设  $n = k \ge 2$  时命题成立, 下证 n = k + 1 时命题也成立: 设  $x_1, x_2, \dots, x_{k+1} \in I, \lambda_1, \lambda_2, \dots, \lambda_{k+1} > 0$ , 且

$$\lambda_1 + \lambda_2 + \dots + \lambda_{k+1} = 1.$$

令

$$\mu_i = \frac{\lambda_i}{1 - \lambda_{k+1}}$$
  $(i = 1, 2, \dots, k).$ 

易见  $\mu_i > 0$   $(i = 1, 2, \dots, k)$  且  $\mu_1 + \mu_2 + \dots + \mu_k = 1$ . 这时还有

$$\mu_1 x_1 + \mu_2 x_2 + \dots + \mu_k x_k \in I.$$

于是

$$f\left(\sum_{i=1}^{k+1} \lambda_i x_i\right) = f\left((1 - \lambda_{k+1}) \sum_{i=1}^k \mu_i x_i + \lambda_{k+1} x_{k+1}\right)$$

$$\leq (1 - \lambda_{k+1}) f\left(\sum_{i=1}^k \mu_i x_i\right) + \lambda_{k+1} f(x_{k+1})$$

$$\leq (1 - \lambda_{k+1}) \sum_{i=1}^k \mu_i f(x_i) + \lambda_{k+1} f(x_{k+1})$$

$$= \sum_{i=1}^{k+1} \lambda_i f(x_i).$$

由归纳原理, 命题对  $\forall n \in \mathbb{N}^*$  成立.  $\square$  f为严格凸函数时, 易知当且仅当  $x_1 = x_2 = \cdots x_n$  时取等.

7 微分中值定理 35

#### 定理 6.4.3 ()

切线判别法:

函数 f 在区间 I 上是凸函数, 当且仅当对任何  $(x_1,x_2) \subset I$  及任何  $x \in (x_1,x_2)$ , 有

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

f 是 I 上的严格凸函数, 当且仅当式中出现的都是严格的不等号.

#### 定理 6.4.4 ()

导数判别法:

设函数 f 在 [a,b] 上连续, 在 (a,b) 上二阶可导,

则 f 在 [a,b] 上为凸函数  $\iff$   $f'' \ge 0$  在 (a,b) 上成立;

严格当且仅当 f'' 在 (a,b) 的任何开的子区间内不恒等于 0.

#### 例 6.4.5 幂平均不等式 ()

设  $a_1, a_2, \dots, a_n$  是 n 个不全相等的正数, 定义

$$f(x) = \begin{cases} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n}\right)^{\frac{1}{x}}, & x \neq 0, \\ \sqrt[n]{a_1 a_2 \cdots a_n}, & x = 0. \end{cases}$$

则f 在  $(-\infty, +\infty)$  上严格递增. 特别地:

$$\lim_{x \to +\infty} \left( \frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right)^{\frac{1}{x}} = \max\{a_1, a_2, \dots, a_n\},\$$

$$\lim_{x \to -\infty} \left( \frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right)^{\frac{1}{x}} = \min\{a_1, a_2, \dots, a_n\}.$$

## 7 微分中值定理

### 7.1 微分中值定理

#### 定义 7.1.1 极值点 (Extremum)

设  $f: D \to \mathbb{R}$ , D是  $x_0$  的一个邻域, 点  $x_0$  称为是  $f: D \to \mathbb{R}$  的一个**极大值点(Local Maximum)**,  $f(x_0)$ 称为是 f 的一个**极大值(Local Maximum Value)**, 若:

$$\exists U(x_0) \subseteq D(\forall x \in U(x_0), f(x) \leq f(x_0))$$

类似地可定义(严格)极大/小值(点)的概念, 统称为(严格)极值(点).

#### 定理 7.1.2 Rolle中值定理 ()

设函数 f(x) 在 [a,b](a < b) 上连续, 在 (a,b) 上可微, f(a) = f(b), 则  $\exists x_0 \in (a,b)(f'(x_0) = 0)$ .

证明:

7 微分中值定理 36

f在 [a,b] 上连续  $\Longrightarrow f$  在 [a,b] 上有界.

$$\implies \exists x_1, x_2 : f(x_1) = \sup_{x \in [a,b]} f(x), f(x_2) = \inf_{x \in [a,b]} f(x)$$

1'若

$$\sup_{x \in [a,b]} f(x) = \inf_{x \in [a,b]} f(x)$$

则 f 在 [a,b] 上为常值函数, 显然有  $f'(x) = 0(x \in (a,b))$  ; 2'若

$$\sup_{x \in [a,b]} f(x) \neq \inf_{x \in [a,b]} f(x)$$

则  $f(x_1) > f(a) = f(b)$  或  $f(x_2) < f(a) = f(b)$ . 不妨设  $f(x_1) > f(a) = f(b)$ , 则  $x_1 \neq a, b$ .

$$\implies x_1 \in (a,b) \Longrightarrow \exists f'(x_1)$$

#### 引理 7.1.3 ()

Fermat引理: 设函数 f(x) 在  $x_0$  连续可微, 且  $x_0$  是 f 的一个极值点, 则  $f'(x_0) = 0$ .

证明:

不妨设  $x_0$  是 f 的一个极大值点.

f在  $x_0$  可微  $\Longrightarrow f'(x_0)$  存在.

运用反证法. 假设  $f'(x_0) = k \neq 0$ , 不妨设 k > 0, 则:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = k > 0$$

$$\implies \forall \varepsilon > 0, \exists \delta \in \mathbb{R}^+ \left( \forall \Delta x < \delta \Longrightarrow \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \in U(k, \varepsilon) \right)$$

$$\varepsilon := \frac{k}{2}, \exists \delta \in \mathbb{R}^+ : \Delta x := \frac{\delta}{2}, \frac{f(x_0 + \frac{\delta}{2}) - f(x_0)}{\frac{\delta}{2}} > \frac{k}{2} > 0$$

$$f(x_0 + \frac{\delta}{2}) > f(x_0) + \frac{k\delta}{4} > f(x_0)$$

与  $x_0$  是 f(x) 的一个极大值点矛盾.

对于 k < 0 或  $x_0$  是极小值点的情况同理可证.  $\square$ 

 $x_1$ 是 f 在 [a,b] 上的一个最值点, 它必是极值点.

$$\implies f'(x_1) = 0$$

对于  $f(x_2)$  < f(a) = f(b) 时的情况同理. □

#### 定理 7.1.4 ()

Lagrange中值定理: 设函数 f(x) 在 [a,b](a < b) 上连续, 在 (a,b) 上可微, 则:

$$\exists x_0 \in [a, b], f'(x_0) = \frac{f(a) - f(b)}{a - b}$$

证明:

$$k := \frac{f(a) - f(b)}{a - b}$$

$$\varphi(x) := f(x) - kx(x \in [a, b])$$

37

 $\therefore y = kx$ 在  $\mathbb{R}$  上连续可微,  $\Longrightarrow g$ 在 [a,b] 上连续, 在 (a,b) 上可微.

$$\varphi(a) = f(a) - a \cdot \frac{f(a) - f(b)}{a - b} = f(b) - b \cdot \frac{f(a) - f(b)}{a - b} = \varphi(b)$$

根据Rolle中值定理,  $\exists x_0 \in (a,b), \varphi'(x_0) = 0$ 

$$\therefore f'(x) = \varphi'(x) + k, \Longrightarrow f'(x_0) = k \square$$

#### 推论 7.1.4.1 ()

设函数  $f: D \to \mathbb{R}$  在开区间 (a,b) 上连续可微, 且  $\forall x \in (a,b) \Longrightarrow f'(x) > (\geq, <, \leq)0$ , 则 f 在 (a,b) 上(严格)增(减).

#### 定理 7.1.5 Cauchy中值定理 ()

设函数  $f,g:[a,b]\to\mathbb{R}$  在 [a,b] 上连续, 在 (a,b) 上可导, 且  $g'(x)\neq 0$ , 则:

$$\exists \xi \in (a,b), \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(\xi)}{g'(\xi)}$$

#### 证明:

考虑对  $\frac{f(x)-f(b)}{g(x)-g(b)} - \frac{f(a)-f(b)}{g(a)-g(b)}$  进行变形

$$\varphi(x) := f(x) - f(b) - \frac{f(a) - f(b)}{g(a) - g(b)} (g(x) - g(b))$$
$$\therefore \varphi'(x) = f'(x) - \frac{f(a) - f(b)}{g(a) - g(b)} g'(x),$$
$$\varphi(a) = \varphi(b) = 0$$

由Rolle中值定理,  $\exists \xi \in (a,b), \varphi'(\xi) = 0$ 

$$\therefore \exists \xi \in (a,b), \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(\xi)}{g'(\xi)}$$

#### 定理 7.1.6 Darboux中值定理 ()

若函数 f 在 [a,b] 上可导,则有:

- (1) f' 可取到 f'(a) 到 f'(b) 间的任意值
- (2) f' 没有第一类间断点(跳跃点)

#### 证明:

(1):

先证:若 f'(a)f'(b) < 0,则  $\exists \xi \in (a,b), f(\xi) = 0$ .不妨设f'(a) > 0

: 
$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} > 0$$

由极限保号性:

$$\therefore \exists \delta > 0, x \in (a, a + \delta), \frac{f(x) - f(a)}{x - a} > 0$$

即 f(a) 不为最大值,同理,f(b) 不为最大值 再由确界存在定理, 因 f 在 [a,b] 连续, f 必有最大最小值 由Fermat引理即证:

$$exists\xi \in (a,b), f(\xi) = 0$$

取  $g = f - \gamma, \gamma \in (\min\{f'(a), f'(b)\}, \max\{f'(a), f'(b)\}),$ 可证口

假设  $x_0$  是 f 的第一类间断点, 则 $f'(x_0+), f'(x_0-)$ 3

$$f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

再由Lagrange中值定理

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} f'(\xi) = f'(x_0 + 1)$$

故  $f'(x_0) = f'(x_0+)$ ,同理,  $f'(x_0) = f'(x_0-)$ ,矛盾!  $\square$ 

#### 待定型函数极限的计算和L'Hospital法则 7.2

#### 定理 7.2.1 L'Hospital法则 ()

设 f,g 在  $x_0$  的一个邻域 D 内有定义, 且在  $x_0$  处可微, 则:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

其中 
$$f,g$$
 为下述其一: 
$$(1) \stackrel{*}{\underset{\infty}{\longrightarrow}} \mathbb{Z}$$
 
$$(2) \stackrel{0}{\underset{0}{\longrightarrow}} \mathbb{Z}: \lim_{x \to +\infty} f(x) = 0, \lim_{x \to +\infty} g(x) = 0$$
且 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ 日

#### 证明:

设  $x + \Delta x \in D$ , 由Cauchy中值定理, 有:

$$\exists \xi \in (x, x + \Delta x)(\vec{\mathbb{R}}(x + \Delta x, x)), \frac{f'(\xi)}{g'(\xi)} = \frac{f(x + \Delta x) - f(x)}{g(x + \Delta x) - g(x)}$$

补充定义 $f(x_0) = g(x_0) = 0$ 

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{f'(\xi)}{g'(\xi)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

# 7.3 常用等价无穷大/小量

例 7.3.1 ()

内容:

$$(1+x)^a - 1 \sim ax|_{x\to 0}$$

例 7.3.2 ()

内容:

$$\sin x \sim x|_{x\to 0}$$

证明:

根据L'Hospital法则得:

$$\lim_{n \to +\infty} \frac{\sin x}{x} = \lim_{n \to +\infty}$$

例 7.3.3 ()

内容:

$$\tan x \sim \left(x + \frac{1}{6}x^3\right)|_{x \to 0}$$

例 7.3.4 ()

内容:

$$e^x \sim 1 + x|_{x\to 0}$$

例 7.3.5 ()

内容:

$$\ln x \sim x - 1|_{x \to 1}$$

# 7.4 Taylor展开式

#### 定义 7.4.1 Taylor多项式 ()

设函数  $f: \mathbb{R} \to \mathbb{R}$  在  $x_0$  的一个邻域  $U(x_0)$  内连续且 n 次可微, 则称以下多项式为 f 在  $x_0$  处的 n 阶Taylor多项式, 记作  $P_{n,x_0}(x)$  :

$$P_{n,x_0}(x) := \sum_{i=0}^n \left( \frac{1}{i!} \cdot \frac{\mathrm{d}^i f}{\mathrm{d}x^i} (x - x_0)^i \right) \qquad (0! := 1, x \in U(x_0))$$

 $R_{n,x_0}(x) := f(x) - P_{n,x_0}(x)$ 称为 f 在  $x_0$  处的 n 阶余项.

#### 定理 7.4.2 Peano (Peano remainder)

内容:

$$\lim_{x \to x_0} \frac{R_{n,x_0}(x)}{(x - x_0)^n} = 0$$

# 其中 $R_{n,x_0}(x) = f(x) - T_n(f,x_0;x)$ ,只有定性判断, 称为**Peano余项**

#### 证明:

用数学归纳法, (1) n=1 时,  $\lim_{x\to x_0} \frac{R_{n,x_0}(x)}{(x-x_0)^n} = 0$  显然成立 (2)若 n=k 时成立, 则 n=k+1 时也成立, 证明如下: 由L'Hospital法则,  $T'_{k+1}(f,x_0;x) = T_k(f',x_0;x)$ 得到

$$\lim_{x \to x_0} \frac{f(x) - T_{k+1}(f, x_0; x)}{(x - x_0)^{k+1}} = \frac{1}{k+1} \lim_{x \to x_0} \frac{f'(x) - T_k(f', x_0; x)}{(x - x_0)^k} = 0$$

Q.E.D.

# 定理 7.4.3 Lagrange余项(Lagrange remainder)与Cauchy余项 (Cauchy remainder) 内容:

$$R_{n,x_0}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

$$R_{n,x_0}(x) = \frac{f^{(n+1)}(\xi)}{n!} (x - \xi)^n (x - x_0)$$

以上两式分别为Lagrange余项、Cauchy余项,一般来说,两式中  $\xi$  不同.除了下述方法,Lagrange余项与Cauchy余项还可以作为Peano余项的延伸,由积分余项  $R_{n,x_0}(x) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt$  利用积分中值定理直接推导出来.

证明:

$$T_n(f, x_0; x) = \sum_{k=0}^{n} \left( \frac{1}{k!} \cdot \frac{\mathrm{d}^k f}{\mathrm{d}x^k} (x - x_0)^k \right)$$

<math> <math>

$$F'(t) = \frac{f^{(n+1)}(t)}{n!} (x-t)^n$$

考虑到 F(x)=f(x),得积分余项  $R_{n,x_0}(x)=\frac{1}{n!}\int_{x_0}^x(x-t)^nf^{(n+1)}(t)dt$ .分别将  $f^{(n+1)}(t)$ ,  $(x-t)^n$  利用积分中值定理提出,即有Lagrange余项与Cauchy余项

#### 定义 7.4.4 Taylor级数 (Taylor Series)

内容:

$$f(x) = \sum_{n=0}^{\infty} \left( \frac{1}{n!} \cdot \frac{\mathrm{d}^n f}{\mathrm{d} x^n} (x - x_0)^n \right) \qquad (0! := 1, x \in U(x_0))$$

上式称为Taylor级数, 在有限范围内, 该级数与原函数相等

#### 8.1 原函数与不定积分

# 定义 8.1.1 原函数/反导函数 (Antiderivative)

区间  $D \subseteq \mathbb{R}$  上的函数 F 称为函数 f 的一个原函数, 若  $F'(x) = f(x)|_{x \in D}$ .

#### 性质 8.1.1.1 原函数之差为常数 ()

设  $F_1: D \to \mathbb{R}, F_2: D \to \mathbb{R}$  是  $f: D \to \mathbb{R}$  的原函数, 有  $F_1(x) - F_2(x) = C \in \mathbb{R}$ .

#### 证明:

f 原函数之差的导函数是 f 的原函数的导函数之差, 即零函数.

$$F_1'(x) = F_2'(x) = f(x) \Longrightarrow (F_1 - F_2)'(x) \equiv 0$$

可运用 Lagrange 中值定理反证原函数之差为常值函数:

运用反证法. 假设  $F_1 - F_2$  非常值函数, 则:

$$\exists x_1, x_2 \in D : (F_1 - F_2)(x_1) \neq (F_1 - F_2)(x_2)$$

 $F_1, F_2$ 在 D 上有导函数  $f \Longrightarrow F_1, F_2$  在 D 上连续.

不妨设  $x_1 < x_2$ , 由 Lagrange 中值定理,

$$\exists x_0 \in (x_1, x_2) : F'(x_0) = \frac{(F_1 - F_2)(x_2) - (F_1 - F_2)(x_1)}{x_2 - x_1} \neq 0$$

与  $(F_1 - F_2)(x) \equiv 0$  矛盾.  $\square$ 

#### 定义 8.1.2 不定积分 (Indefinite Integral)

求导运算的逆运算, 即求 f 原函数族的过程, 称为 f(x) 的不定积分, 记为:

$$\int f(x)\mathrm{d}x = F(x) + C$$

#### 性质 8.1.2.1 不定积分运算具有线性性 ()

设 f,g 是区间 D 上的函数, 且

$$\exists \int f(x) dx, \int g(x) dx$$

(1)

$$\int (f+g)(x)dx = \int f(x)dx + \int g(x)dx$$

(2) 
$$\forall k \in \mathbb{R}, \int k f(x) dx = k \int f(x) dx$$

#### 证明:

事实上,不定积分运算的线性性是求导运算线性性的直接推论.

设 f,g 在 D 上的原函数族分别为  $F(x) + C_1, G(x) + C_2, 则:$ 

(1)

$$[(F+G)(x) + C_1 + C_2]' = (F+G)'(x) = (f+g)(x)$$

 $\Longrightarrow F + G \not = f + g$  的原函数.

$$\Longrightarrow \int (f+g)(x)dx = \int f(x)dx + \int g(x)dx$$

(2)

$$\forall k \in \mathbb{R}, (kF(x) + kC_1)' = kF'(x) = kf(x)$$

 $\Longrightarrow kF \not = kf$  的原函数.

$$\implies \int kf(x)dx = k \int f(x)dx \square$$

#### 8.2 不定积分计算方法

定理 8.2.1 换元积分公式 (Integration by Substitution)

内容:

$$\int f \circ g(x) \mathrm{d}g(x) = \int f \circ g(x) \cdot g'(x) \mathrm{d}x$$

#### 证明:

换元积分公式是链式求导公式的逆.

设 f 的原函数是 F, 则左式:

$$\int f \circ g(x) dg(x) = F \circ g(x) + C$$
$$(F \circ g(x) + C)' = F' \circ g(x) \cdot g'(x)$$

 $\Longrightarrow F \circ g(x)$ 是  $f \circ g(x) \cdot g'(x)$  的原函数.

$$\implies \int f \circ g(x) \cdot g'(x) dx = F \circ g(x) + C$$

$$\implies \int f \circ g(x) dg(x) = \int f \circ g(x) \cdot g'(x) dx \square$$

# 定理 8.2.2 分部积分公式 (Integration by Parts)

内容:

$$\int f(x)g(x)dx = \int f(x)dx \cdot g(x) - \int (\int f(x)dx \cdot g'(x))dx$$

其中要求两次出现的  $\int f(x) dx$  取带有相同常数项的原函数.

#### 证明:

分部积分公式是导数乘法公式的逆.

$$\int f(x)\mathrm{d}x := F(x) + C_1$$

考虑导数乘法运算公式:

$$(F(x)g(x))' = F'(x)g(x) + F(x)g'(x) = f(x)g(x) + F(x)g'(x)$$

$$\implies f(x)g(x) = (F(x)g(x))' - F(x)g'(x)$$

$$\implies \int f(x)g(x)dx = F(x)g(x) - \int F(x)g'(x)dx$$

$$= \int f(x)dx \cdot g(x) - \int (\int f(x)dx \cdot g'(x))dx \Box$$

## 8.3 基本初等函数的不定积分

#### 例 8.3.1 常数函数的不定积分()

内容:

$$\int a \mathrm{d}x = ax + C$$

特别地, 当 a=1 时:

$$\int \mathrm{d}x = x + C$$

#### 例 8.3.2 幂函数的不定积分 ()

当  $a \neq -1,0$  时:

$$\int x^a \mathrm{d}x = \frac{1}{a+1} x^{a+1} + C$$

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + C$$

# 例 8.3.3 指数函数的不定积分()

内容:

$$\int a^x dx = \frac{1}{\ln a} a^x + C(a \in (\mathbb{R}^+ - \{1\}))$$

特别地, 当 a = e 时:

$$\int e^x \mathrm{d}x = e^x + C$$

#### 例 8.3.4 对数函数的不定积分()

内容:

$$\int \log_a x dx = x \log_a x - \frac{x}{\ln a} + C(a \in (\mathbb{R}^+ - \{1\}))$$

特别地, 当 a = e 时,

$$\int \ln x \mathrm{d}x = x \ln x - x + C$$

证明:

$$\int \ln x dx = \int 1 \cdot \ln x dx$$

$$= x \ln x - \int x (\ln x)' dx$$

$$= x \ln x - \int x \cdot \frac{dx}{x}$$

$$= x \ln x - x + C$$

$$\int \log_a x dx = \int \frac{\ln x}{\ln a} dx$$

$$= \frac{1}{\ln a} \int \ln x dx$$

$$= \frac{x \ln x - x + C}{\ln a}$$

$$= x \log_a x - \frac{x}{\ln a} + C \square$$

# 例 8.3.5 三角函数的不定积分()

内容:

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \tan x dx = -\ln|\cos x| + C$$

$$\int \csc x dx = \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + C$$

$$\int \sec x dx = \frac{1}{2} \ln \frac{1 + \sin x}{1 + \sin x} + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

证明:

$$(\cos x)' = -\sin x \Longrightarrow \int \sin x dx = -\cos x + C$$

$$(\sin x)' = \cos x \Longrightarrow \int \cos x dx = \sin x + C$$

$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx$$
$$= -\int \frac{d\cos x}{\cos x}$$
$$= -\ln|\cos x| +$$

(4) 
$$\int \frac{\mathrm{d}x}{\sin x} = -\int \frac{\mathrm{d}\cos x}{\sin^2 x}$$

$$= -\int \frac{\mathrm{d}\cos x}{1 - \cos^2 x}$$

$$= -\frac{1}{2} \left( \int \frac{\mathrm{d}\cos x}{1 - \cos x} + \int \frac{\mathrm{d}\cos x}{1 + \cos x} \right)$$

$$= -\frac{1}{2} [\ln(1 + \cos x) - \ln(1 - \cos x)] + C$$

$$= \frac{1}{2} \ln \frac{1 - \cos x}{1 + \cos x} + C$$
(5) 
$$\int \frac{\mathrm{d}x}{\cos x} = \int \frac{\mathrm{d}\sin x}{1 + \cos x}$$

$$= \int \frac{\mathrm{d}\sin x}{1 - \sin^2 x}$$

$$= \frac{1}{2} \left( \int \frac{\mathrm{d}\sin x}{1 - \sin x} + \int \frac{\mathrm{d}\sin x}{1 + \sin x} \right)$$

$$= \frac{1}{2} [\ln(1 + \sin x) - \ln(1 - \sin x)] + C$$

$$= \frac{1}{2} \ln \frac{1 + \sin x}{1 + \sin x} + C$$
(6) 
$$\int \cot x \, \mathrm{d}x = \int \frac{\cos x}{\sin x} \, \mathrm{d}x = \int \frac{\mathrm{d}\sin x}{\sin x} = \ln|\sin x| + C$$

#### 例 8.3.6 反三角函数的不定积分()

内容:

$$\int \arcsin x dx = x \arcsin x + \sqrt{1 - x^2} + C$$

$$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C$$

$$\int \arctan x dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C$$

证明:

(1) 
$$\int \arcsin x dx = \int 1 \cdot \arcsin x dx$$

$$= x \arcsin x - \int x \arcsin' x dx$$

$$= x \arcsin x - \frac{1}{2} \int \frac{x}{\sqrt{1 - x^2}} dx$$

$$= x \arcsin x - \frac{1}{2} \int \frac{d(x^2)}{\sqrt{1 - x^2}}$$

$$= x \arcsin x + \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2)$$

$$= x \arcsin x + \sqrt{1 - x^2} + C$$
(2) 
$$\int \arccos x dx = \int 1 \cdot \arccos x dx$$

$$= x \arccos x - \int x \arccos' x dx$$

$$= x \arccos x + \int \frac{x}{\sqrt{1 - x^2}} dx$$

$$= x \arccos x + \frac{1}{2} \int \frac{d(x^2)}{\sqrt{1 - x^2}}$$

$$= x \arccos x - \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2)$$

$$= x \arccos x - \sqrt{1 - x^2} + C$$
(3) 
$$\int \arctan x dx = \int 1 \cdot \arctan x dx$$

$$= x \arctan x - \int x \arctan' x dx$$

$$= x \arctan x - \int \frac{x}{1 + x^2} dx$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(x^2)}{1 + x^2}$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(x^2)}{1 + x^2}$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(x^2)}{1 + x^2}$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(x^2)}{1 + x^2}$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(x^2)}{1 + x^2}$$

# 例 8.3.7 双曲函数的不定积分 ()

内容:

$$\int \sinh x dx = \cosh dx + C$$

$$\int \cosh x dx = \sinh dx + C$$

$$\int \tanh x dx =$$

证明:

$$\cosh'(x) = \sinh x \Longrightarrow \int \sinh x dx = \cosh dx + C$$

$$\sinh'(x) = \cosh x \Longrightarrow \int \cosh x dx = \sinh dx + C$$

$$tanh'(x) =$$

#### 8.4 有理函数的不定积分

#### 定理 8.4.1 代数基本定理 ()

任何复多项式必有复根.

$$\forall f \in \mathbb{C}[x], \exists \xi \in \mathbb{C}, f(\xi) = 0$$

#### 引理 8.4.2 实多项式虚根成对 ()

实多项式根的共轭也是该多项式的根.

$$\forall f \in \mathbb{R}[x], f(\xi) = 0 \Longrightarrow f(\bar{\xi}) = 0$$

#### 定理 8.4.3 实多项式分解定理 ()

不可约实多项式的次数最大为 2,即任何高于二次的实多项式均能分解为一次和二次不可约实多项式之积.

# 定理 8.4.4 部分分式分解 ()

任何有理函数均能分解为一组由以下两类部分分式组成的基的线性组合:

(1)

$$\frac{A}{\left(x-a\right)^{m}}$$

$$\frac{Bx + C}{(x^2 + px + q)^m} (p^2 - 4q < 0)$$

其中三类部分分式的不定积分分别为:

(1)

$$\int \frac{A}{(x-a)^m} dx = \begin{cases} A \ln|x-a| + C & m = 1\\ -\frac{A}{m-1} \cdot \frac{1}{(x-a)^{m-1}} & m > 1 \end{cases}$$

(2)

$$\int \frac{Bx+C}{\left(x^2+px+q\right)^m} dx = \begin{cases} \frac{B}{2} \ln\left(x^2+px+q\right) + \frac{2C-Bp}{\sqrt{4q-p^2}} \arctan\frac{2x+p}{\sqrt{4q-p^2}} + C & m=1\\ \frac{t}{2a^2(m-1)(t^2+a^2)^{m-1}} + \frac{2n-3}{2a^2(m-1)} \int \frac{Bx+C}{\left(x^2+px+q\right)^{m-1}} dx & m>1 \end{cases}$$

$$\left(t := x + \frac{p}{2}; a^2 := q - \frac{p^2}{4}\right)$$

#### 8.5 一阶线性微分方程

# 定义 8.5.1 一阶线性微分方程 ()

形如以下形式的关于  $f: D \to \mathbb{R}$  的一节常微分方程称为关于 f 的**一阶线性微分方程**:

$$\forall x \in D, f'(x) = p(x)f(x) + q(x)$$

当  $q(x) \equiv 0$  时, 称为一阶齐次线性微分方程.

# 定理 8.5.2 一阶齐次线性微分方程的通解 ()

内容:

$$f'(x) = p(x)f(x) \Longrightarrow f(x) = C \exp\left(\int p(t)dt\right)$$

其中不定积分的常数项已经移至外部, 无需再写.

#### 定理 8.5.3 一阶非齐次线性微分方程的通解 ()

# 9 定积分

# 9.1 Riemann和与Riemann积分

## 定义 9.1.1 ()

闭区间 [a,b] 上的一个划分(Partition) P 定义为一个 [a,b] 上的点集:

$$P = \{x_i | a = x_0 \le x_1 \le \dots \le x_n = b\}$$

它决定了一个无冗余的首尾相接的闭覆盖:

$$\{[x_{i-1}, x_i] | x_i \in P, i = 1, 2, \cdots, n\}$$

其中每个小区间  $[x_{i-1}, x_i]$  的长度记为 $\Delta x_i = x_i - x_{i-1}$  其中划分 P 的模(Norm)定义为

$$||P|| = \max_{1 \le i \le n} \{\Delta x_i\}$$

#### 定义 9.1.2 ()

构造点集

$$\Xi = \{\xi_i | \xi_i \in [x_{i-1}, x_i], 1 \le i \le n, i \in \mathbb{N}\}$$

对在闭区间 [a,b] 上有定义的函数 f, 称和式

$$\sum_{i=1}^{n} \Delta x_i f(\xi_i)$$

为 f 在 [a,b] 上, 基于划分 P 与点集  $\Xi$  的**Riemann和(Riemann Sum)**, 记为 $\sigma(P,\Xi)$ 

#### 定义 9.1.3 ()

设在闭区间 [a,b] 上有定义的函数 f, 称 f 在 [a,b] 上**Riemann可积(Riemann Integrable)**, 不致与其他积分混淆时, 简称**可积(Integrable)**, 若其Riemann和可以通过  $||P_n||$  良好控制, 收敛于某一有限量  $I \in \mathbb{R}$ :

$$\lim_{||P_n|| \to 0} \sigma(P, \Xi) = I$$

若存在, 该极限称为 f 在 [a,b] 上的**Riemann积分(Riemann Integral)**值, 记为:

$$\int_{a}^{b} f(x) \mathrm{d}x = I$$

为方便,记

$$\int_{b}^{a} f(x) dx := -\int_{a}^{b} f(x) dx$$

#### 性质 9.1.3.1 闭区间上的连续函数Riemann可积 ()

# 性质 9.1.3.2 在闭区间上无界的函数Riemann不可积 ()

#### 证明:

运用反证法.

假设 f 在闭区间 [a,b] 上无界可积,

$$\forall \varepsilon \in \mathbb{R}^+, \forall ||P|| < \varepsilon, M :=$$

# 例 9.1.4 ()

Dirichlet函数 D(x) 在任何有长度的区间上Riemann不可积.

$$D(x) = \begin{cases} 1 & , x \in \mathbb{Q} \\ 0 & , x \in (\mathbb{R} - \mathbb{Q}) \end{cases}$$

#### 例 9.1.5 ()

Riemann函数 R(x) 在 [0,1] 上可积.

$$\forall x \in \mathbb{Q}, \exists$$
唯一的 $p,q \in \mathbb{Z}: p \geq 0, \gcd(p,q) = 1, x = \frac{p}{q}$ 

$$R(x) = \begin{cases} \frac{1}{q} &, x \in \mathbb{Q} \\ 0 &, x \in (\mathbb{R} - \mathbb{Q}) \end{cases}$$

#### 定理 9.1.6 Newton-Leibniz公式 ()

设函数 f 在闭区间 [a,b] 上 Riemann 可积, 且有原函数  $F \in \mathcal{C}[a,b]$ , 则:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) := F(x) \Big|_{a}^{b}$$

定义 9.1.7 ()

变限积分

#### 9.2 Darboux 定理

#### 定义 9.2.1 ()

设 f 是 [a,b] 上的函数, 且在 [a,b] 上定义了一个划分  $P_n$ , 若:

$$f(\xi_i) = \sup\{f(x) | x \in [x_{i-1}, x_i]\}\$$

则和式  $\sigma(P_n, \Xi_n)$  称为 f 在 [a,b] 上的一个Darboux上和(Upper Darboux Sum), 简称上和(Upper Sum), 记作  $\overline{\sigma}(P_n)$ .

$$\sum_{i=1}^{n} \Delta x_i f(\xi_i)(\xi_i \in [x_{i-1}, x_i] : f(\xi_i) = \inf\{f(x) | x \in [x_{i-1}, x_i]\})$$

称为 f 在 [a,b] 上的一个Darboux下和(Lower Darboux Sum), 简称下和(Lower Sum), 记作  $\underline{\sigma}$ .

#### 性质 9.2.1.1 ()

设 P' 是向 P 插入有限多个新划分点得到的划分, 则上和不增, 下和不减:

$$\overline{\sigma}(P') \leq \overline{\sigma}(P), \underline{\sigma}(P') \geq \underline{\sigma}(P)$$

#### 证明:

不妨先证明只增加一个新分点的情况,由于分点个数是有限的,可以借此归纳证明插入任意有限多个新分点时的情况.

先证明对上和成立:

$$P := \{x_i | a = x_0 \le x_1 \le \dots \le x_n = b\}$$

$$P' := P \cup \{x'\} (x_{j-1} \le x' \le x_j)$$

$$\overline{\sigma}(P) - \overline{\sigma}(P') = (x_j - x_{j-1}) f(\xi_j) - [(x' - x_{j-1}) f(\xi_1') + (x_j - x') f(\xi_2')]$$

其中 
$$\begin{cases} f(\xi_j) = \sup\{f(x)|x_{j-1} \le x \le x_j\} \\ f(\xi_1') = \sup\{f(x)|x_{j-1} \le x \le x'\} &, \text{ ff } f(\xi_1'), f(\xi_2') \le f(\xi_j). \\ f(\xi_2') = \sup\{f(x)|x' \le x \le x_j\} \end{cases}$$

$$\implies (x_j - x_{j-1})f(\xi_j) - [(x' - x_{j-1})f(\xi_1') + (x_j - x')f(\xi_2')] \ge 0$$

$$\implies \overline{\sigma}(P') \le \overline{\sigma}(P)$$

同理可证对下和成立. □

#### 性质 9.2.1.2 ()

设  $P_1, P_2$  是 [a, b] 上两个划分, 有上和大于等于下和:

$$\overline{\sigma}(P_1) \ge \underline{\sigma}(P_2)$$

#### 证明:

构造划分  $P_3 = P_1 \cup P_2$ , 视  $P_3 = P_1 \cup (P_2 - P_1) = P_2 \cup (P_1 - P_2)$ . 根据前一条引理有:

$$\overline{\sigma}(P_1) \ge \overline{\sigma}(P_3), \underline{\sigma}(P_3) \ge \underline{\sigma}(P_2)$$

只需证明  $\overline{\sigma}(P_3) \geq \underline{\sigma}(P_3)$ .

$$f(\xi_i) := \sup\{f(x) | x_{i-1} \le x \le x_i\}, f(\chi_i) := \inf\{f(x) | x_{i-1} \le x \le x_i\}$$

$$\Longrightarrow f(\xi_i) \ge f(\chi_i) \Longrightarrow \sum_{i=1}^n \Delta x_i f(\xi_i) \ge \sum_{i=1}^n \Delta x_i f(\chi_i) \Longrightarrow \overline{\sigma}(P_3) \ge \underline{\sigma}(P_3)$$

$$\Longrightarrow \overline{\sigma}(P_1) \ge \overline{\sigma}(P_3) \ge \underline{\sigma}(P_3) \ge \underline{\sigma}(P_2) \square$$

#### 性质 9.2.1.3 ()

内容:

$$\overline{\sigma}(P) \le (b-a) \sup\{f(x)|x \in [a,b]\}$$
  
 $\underline{\sigma}(P) \le (b-a) \inf\{f(x)|x \in [a,b]\}$ 

证明:

$$M := \sup\{f(x)|x \in [a,b]\}, m := \inf\{f(x)|x \in [a,b]\}$$

$$f(\xi_i) := \sup\{f(x)|x_{i-1} \le x \le x_i\}, f(\chi_i) := \inf\{f(x)|x_{i-1} \le x \le x_i\}$$

$$\Longrightarrow \xi_i \le M, \chi_i \ge m \Longrightarrow \begin{cases} \overline{\sigma}(P) = \sum_{i=1}^n \Delta x_i f(\xi_i) \le M \sum_{i=1}^n \Delta x_i = (b-a)M \\ \underline{\sigma}(P) = \sum_{i=1}^n \Delta x_i f(\chi_i) \ge m \sum_{i=1}^n \Delta x_i = (b-a)m \end{cases}$$

# 定理 9.2.2 Darboux定理 ()

内容:

$$\lim_{||P||\to 0} \overline{\sigma}(P) = \inf\{\overline{\sigma}(P)|\forall P\}, \lim_{||P||\to 0} \underline{\sigma}(P) = \sup\{\underline{\sigma}(P)|\forall P\}$$

# 9.3 Lebesgue 定理

#### 定义 9.3.1 函数的振幅

函数 f 在 D 上的振幅定义为:

$$\omega_f(D) := \sup f(D) - \inf f(D)$$

#### 性质 9.3.1.1 振幅的等价定义 ()

内容:

$$\omega_f(D) = \sup\{f(x_1) - f(x_2) | x_1, x_2 \in D\}$$

#### 定义 9.3.2 单点振幅 ()

函数 f 在  $\xi$  处的振幅定义为:

$$\omega_f(\xi) = \lim_{\delta \to 0+} \omega_f(\mathcal{B}(\xi, \delta))$$

#### 定理 9.3.3 ()

f 在  $\xi$  处连续当且仅当其在  $\xi$  处振幅为零:

$$f \in \mathcal{C}(\xi) \iff \omega_f(\xi) = 0$$

#### 定义 9.3.4 依振幅不连续点 ()

内容:

$$\mathcal{D}_{\delta}(f) = \{x | \omega_f(x) \ge \delta\}$$

#### 定理 9.3.5 ()

内容:

$$\mathcal{D}(f) = \bigcup_{n=1}^{+\infty} D_{\frac{1}{n}}(f)$$

#### 定理 9.3.6 Lebesgue 定理 ()

f 在区间 D 上 Riemann 可积当且仅当  $\mu(\mathcal{D}(f)) = 0$ .

#### 9.4 积分中值定理

#### 定理 9.4.1 积分第二中值定理 (Second Mean Value Theorem of Integral)

若 f 在 [a,b] 上 Riemann 可积,  $g([a,b]) \ge 0$ , 则:

(1) 若 g 在 [a,b] 上递减, ∃ $\xi$  ∈ [a,b], 使:

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\xi} f(x)dx$$

(2) 若 g 在 [a,b] 上递增, ∃η ∈ [a,b], 使:

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\eta}^{b} f(x)dx$$

推广形式: 设 f 在 [a,b] 上 Riemann 可积, g 在 [a,b] 上单调, 则:

$$\exists \xi \in [a,b], \int_a^b f(x)g(x) \mathrm{d}x = g(a) \int_a^\xi f(x) \mathrm{d}x + g(b) \int_\xi^b f(x) \mathrm{d}x$$

#### 9.5 反常积分

#### 定义 9.5.1 反常积分 ()

若 f 在  $[a, +\infty)$  上有定义且以下右式极限收敛,则可定义第一类反常积分:

$$\int_{a}^{+\infty} f(x) dx := \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

类似地可定义其他反常积分:

$$\int_{-\infty}^{b} f(x) dx := -\int_{-b}^{+\infty} f(-x) dx$$
$$\int_{-\infty}^{+\infty} f(x) dx := \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

与级数类似地, 称收敛的反常积分绝对收敛, 若:

$$\int_{a}^{+\infty} |f(x)| \mathrm{d}x$$
 收敛

否则称之为条件收敛.

若对  $f: D \to \mathbb{R}$ , 设  $x_0 \notin D$  是 D 的一个聚点, 且 f 在  $x_0$  的任何邻域内无界, 则称  $x_0$  为 f 的一个**瑕点**.

设  $f:(a,b]\to\mathbb{R}$ , a 是 f 的一个瑕点, 若以下右式收敛, 则可定义**第二类反常积分**, 或称**瑕积分**:

$$\int_{a}^{b} := \lim_{\varepsilon \to 0+} \int_{a+\varepsilon}^{b} f(x) dx$$

同理可对  $[a,b) \to \mathbb{R}$  的函数定义其反常积分的值.

#### 定义 9.5.2 Cauchy 主值 ()

54

#### 定理 9.5.3 ()

 $f \geq 0$ , 则反常积分  $\int_a^{+\infty}$  收敛当且仅当  $\int_a^A f(x) dx$  在  $x \geq a$  上有界.

#### 定理 9.5.4 反常积分的比较判别法 ()

设对充分大的 x, 有  $0 \le f(x) \le g(x)$ , 则:

$$\int_{a}^{+\infty} g(x) dx \, \psi \, dx \Longrightarrow \int_{a}^{+\infty} f(x) dx \, \psi \, dx$$

极限形式: 设 f, g 在  $x \ge a$  时非负,  $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = l$ , 则:

(1)  $0 < l < +\infty$  时:

$$\int_{a}^{+\infty} f(x) \mathrm{d}x$$
 收敛  $\iff \int_{a}^{+\infty} g(x) \mathrm{d}x$  收敛

(2) l=0 时,

 $(3) l = +\infty 时,$ 

类似地可对瑕积分写出比较判别法及其极限形式.

#### 定理 9.5.5 反常积分的级数表示 ()

设  $f: \mathbb{R}_{\geq a} \to \mathbb{R}_{\geq 0}$ . 若  $\exists A_n: \mathbb{N}^* \to \mathbb{R}(A_{n+1} > A_n)$  使得级数

$$\sum_{n=1}^{+\infty} \int_{A_n}^{A_{n+1}} f(x) \mathrm{d}x$$

收敛,则有:

$$\int_{a}^{+\infty} f(x) dx = \sum_{n=1}^{+\infty} \int_{A_n}^{A_{n+1}} f(x) dx$$

#### 定理 9.5.6 反常积分的 Cauchy 收敛原理 ()

任意反常积分收敛当且仅当: 积分绝对值可通过限制区间充分远控制.

$$\int_{a}^{+\infty} f(x) \mathrm{d}x \, \, \psi \, \, \& \qquad \forall \varepsilon \in \mathbb{R}^{+}, \exists M > a, \forall x_{1}, x_{2} > M, \left| \int_{x_{1}}^{x_{2}} f(x) \mathrm{d}x \right| < \varepsilon$$

类似地可对瑕积分写出 Cauchy 收敛原理.

#### 推论 9.5.6.1 绝对收敛蕴含条件收敛 ()

内容:

对瑕积分也有类似的结论.

#### 引理 9.5.7 反常积分的 Abel 引理 ()

设 f 在 [a,b] 上可积, g 在 [a,b] 上单调, 则:

$$\forall \xi \in [a, b], \left| \int_{a}^{\xi} f(x) dx \right| \leq M \Longrightarrow \left| \int_{a}^{b} f(x) g(x) dx \right| \leq M(|g(a)| + 2|g(b)|)$$

#### 定理 9.5.8 反常积分的 Dirichlet 判别法 ()

若 f, g 满足:

- (1) g 在  $[a, +\infty)$  上单调, 且  $\lim_{x \to +\infty} g(x) = 0$ ;
- (2)  $\int_a^x f(\xi) d\xi$  在  $(a, +\infty)$  上有界. 则反常积分  $\int_a^{+\infty} f(x)g(x) dx$  收敛.

#### 定理 9.5.9 反常积分的 Abel 判别法 ()

若 f, g 满足:

(1) g 在  $[a, +\infty)$  上单调有界; (2)  $\int_a^{+\infty} f(x) dx$  收敛. 则反常积分  $\int_a^{+\infty} f(x) g(x) dx$  收敛.

#### 定积分的应用 9.6

#### 定理 9.6.1 直角坐标系下平面图形的面积 ()

介于直线 x = a, x = b, y = 0 和曲线  $y = f(x) \ge 0$  之间的曲边梯形面积可表示为:

$$S = \int_{a}^{b} f(x) \mathrm{d}x$$

#### 推论 9.6.1.1 极坐标下平面图形的面积 ()

介于射线  $\theta = \alpha$ ,  $\theta = \beta$  和极坐标曲线  $\Gamma : \rho = r(\theta)(\alpha \le \theta \le \beta)$  所围成区域的面积可表示为:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) \mathrm{d}\theta$$

#### 定理 9.6.2 $(\mathbb{R}^n,\mathcal{L})$ ()

在 n 维欧氏距离空间中, 对于由参数  $t \in [\alpha, \beta]$  确定的曲线

$$\Gamma : \begin{cases} x_1 &= x_1(t) \\ x_2 &= x_2(t) \\ &\vdots \\ x_n &= x_n(t) \end{cases} (t \in [\alpha, \beta])$$

其曲线长度为:

$$\int_{\alpha}^{\beta} \sqrt{\sum_{i=1}^{n} \left(\frac{\mathrm{d}x_i}{\mathrm{d}t}(t)\right)^2} \mathrm{d}t$$

推论 9.6.2.1 平面极坐标系下曲线弧长 ()

内容:

$$S(\Gamma) = \int_{\alpha}^{\beta} \sqrt{(r(\theta))^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}(\theta)\right)^2} \,\mathrm{d}\theta$$

定理 9.6.3 空间区域的体积 ()

内容:

$$V = \int_{a}^{b} S(z) \mathrm{d}z$$

推论 9.6.3.1 旋转体体积 ()

内容:

$$V = \pi \int_{a}^{b} f^{2}(x) \mathrm{d}x$$

定理 9.6.4 旋转曲面面积 ()

内容:

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + \left(\frac{\mathrm{d}f}{\mathrm{d}x}(x)\right)^{2}} \mathrm{d}x$$

# 10 函数列与函数项级数

#### 10.1 函数列

定义 10.1.1 逐点收敛 (Pointwise Convergence)

设  $\{f_n\}$  是 D 上的一个函数列, 对  $x_0 \in D$ , 若数列  $\{f_n(x_0)\}$  收敛, 则称函数列  $f_n$  在点  $x_0$  处**收敛**. 若  $\{f_n\}$  在 D 内的每一点都收敛, 则称  $\{f_n\}$  在 D 上**逐点收敛**.

定义 10.1.2 函数的一致距离 (Uniform Distance)

设函数  $f_1, f_2: D \to \mathbb{R}$ , 定义它们之间的**一致距离**  $d(f_1, f_2)$  为:

$$d(f_1, f_2) := \sup_{x \in D} |f_1(x) - f_2(x)|$$

性质 10.1.2.1 一致距离是合法的距离函数 ()

证明:

(1) 
$$d(f_1, f_2) = 0 \iff \sup_{x \in D} |f_1(x) - f_2(x)| = 0 \iff \forall x \in D, f_1(x) = f_2(x)$$

(2) 
$$d(f_1, f_2) = \sup_{x \in D} |f_1(x) - f_2(x)| = \sup_{x \in D} |f_2(x) - f_1(x)| = d(f_2, f_1)$$

(3)  

$$d(f_1, f_3) = \sup_{x \in D} |f_1(x) - f_3(x)| \le \sup_{x \in D} (|f_1(x) - f_2(x)| + |f_2(x) - f_3(x)|)$$

$$\le \sup_{x \in D} |f_1(x) - f_2(x)| + \sup_{x \in D} |f_2(x) - f_3(x)| = d(f_1, f_2) + d(f_2, f_3) \square$$

# 定义 10.1.3 一致收敛 (Uniform Convergence)

称定义在 D 上的函数列  $\{f_n\}$  在 D 上**一致收敛** 于函数 f, 记为  $f_n \underset{D}{\rightrightarrows} f$ , 若在一致距离定义下函数 点列收敛:

$$\lim_{n \to +\infty} d(f_n, f) = 0$$

## 性质 10.1.3.1 一致收敛的 $\varepsilon$ - $\delta$ 语言等价定义 ()

内容:

$$\forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{N}, \forall n > N, \forall x \in D, |f_n(x) - f(x)| < \varepsilon$$

#### 性质 10.1.3.2 一致收敛蕴含逐点收敛 ()

# 性质 10.1.3.3 函数列的 Cauchy 收敛原理 ()

设 D 上的函数列  $\{f_n\}$ , 则  $\{f_n\}$  在 D 上一致收敛当且仅当:

$$\forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{N}, \forall n_1, n_2 > N, |f_{n_1}(x) - f_{n_2}(x)| < \varepsilon$$

#### 证明:

套用一般度量空间中点列的 Cauchy 收敛原理即可. □

#### 性质 10.1.3.4 一致收敛保持逐点连续性 ()

若函数列  $\{f_n\}$  的每一项都在点 x 处连续, 且在 x 的某一邻域 U(x) 上一致收敛于 f, 则 f 在 x 处连续.

证明:

$$f_n \underset{D}{\Longrightarrow} f$$

$$\implies \forall \varepsilon > 0, \exists N, \forall n > N, \forall x \in U(x), |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

即, n 足够大时,  $|f_n(x) - f(x)|$  足够小

又因为  $f_n$  在 x 处连续,  $\exists \delta > 0, \forall x \in U(x), \forall n > N, |x - x_0| < \delta \Rightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$  故, 对于任何  $x_0 \in U_\delta(x)$ :

$$|f(x) - f(x_0)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(x_0)|$$

$$+ |f_{n_0}(x_0) - f(x_0)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \square$$

#### 性质 10.1.3.5 一致收敛与 Riemann 积分算子交换性 ()

设 [a,b] 上的 Riemann 可积函数序列  $\{f_n\}$  在 [a,b] 上一致收敛于 f, 则 f 也在 [a,b] 上 Riemann 可积, 且:

$$\lim_{n \to +\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$$

#### 证明:

由 Lebesgue 定理,  $f_i$  在 [a,b] 上 Riemann 可积  $\Longrightarrow f_i$  在 [a,b] 上的不连续点集  $D_i$  零测. 由一致收敛保持连续性, 若  $\forall i \in \mathbb{N}^*$ ,  $f_i$  在 x 处连续, 则 f 也在 x 处连续. 于是 f 的不连续点集 D 是各项不连续点集之并的子集:

$$D \subseteq \bigcup_{i=1}^{+\infty} D_i$$

由 Lebesgue 测度的可数可加性, D 也是零测的:

$$\mu(D) \le \sum_{i=1}^{+\infty} \mu(D_i) = 0 \Longrightarrow \mu(D) = 0$$

即 f 在 [a,b] 上 Riemann 可积.  $\square$ 

#### 性质 10.1.3.6 一致收敛与微分算子交换性 ()

若函数列  $f_n$  满足:

- (1)  $\forall n \in \mathbb{N}, f_n$  在 [a, b] 上有连续的导函数;
- (2) 函数列  $\{f'_n\}$  在 [a,b] 上一致收敛于函数 g;
- $(3) \exists x_0 \in [a,b], \{f_n(x)\}$  收敛,

则  $\exists$  连续可微函数 f, 函数列  $\{f_n\}$  在 [a,b] 上一致收敛于 f, 且  $\forall x \in [a,b]$ , f'(x) = g(x)

#### 证明:

逆用关于定积分的结论即证.□

#### 定理 10.1.4 Dini 定理 (Dini's Theorem)

设 [a,b] 上的连续函数列  $\{f_n\}$ , 若  $\forall x \in [a,b]$ , 数列  $\{f_n(x)\}$  单调收敛于 f(x), 则  $\{f_n\}$  在 [a,b] 上一致收敛于 f.

#### 证明:

运用反证法.

假设  $\exists \varepsilon \in \mathbb{R}^+, \forall N \in \mathbb{N}, \exists n > N, \sup_{x \in [a,b]} |f_n(x) - f(x)| \ge \varepsilon,$ 构造数列  $x_N, f_N(x_N) = \sup_{x \in [a,b]} f_N(x).$ 

 $f_N(x_N)$  是单调减少的, 而  $x_N$  有收敛子列  $x_{i_n}$ , 设其极限为  $x_0$ , 有:

$$f_{i_n}(x_{i_n}) \ge \varepsilon$$

这与  $\lim_{n\to+\infty} f_n(x_0) = 0$  矛盾.  $\square$ 

# 反例 10.1.5 不单调收敛的连续函数列未必一致收敛()

内容:

$$f_n(x) = \begin{cases} nx & 0 \le x \le \frac{1}{n} \\ 2 - nx & \frac{1}{n} < x \le \frac{2}{n} \\ 0 & \frac{2}{n} < x \le 1 \end{cases}$$

#### 反例 10.1.6 By Abel ()

内容:

$$\sum_{n=1}^{+\infty} \frac{\sin nx}{n} = \frac{\pi - x}{2} (\mathbf{x} \in (0, 2\pi))$$

#### 定义 10.1.7 逐点有界与一致有界 (Pointwise Boundedness and Uniform Boundedness)

设  $\{f_n\}$  是 D 上的函数列,则称  $\{f_n\}$  在 D 上**逐点有界**,若在 D 中每一点  $\{f_n(x)\}$  均有界.

称  $\{f_n\}$  在 D 上**一致有界**, 若数列  $\sup_{x \in D} f_n(x)$  有界.

#### 10.2 函数项级数

#### 定义 10.2.1 函数项级数 ()

设  $\{f_n\}$  是定义在 D 上的函数列, 则称无穷和式  $\sum\limits_{n=1}^{+\infty}f_n(x)$  为**函数项级数**, 和式  $S_n:=\sum\limits_{n=1}^{n}f_i(x)$  为该 级数的部分和.

若函数列  $S_n$  在 D 上一致收敛于 S(x), 则称该级数在 D 上**一致收敛** 于 S(x).

#### 性质 10.2.1.1 函数项级数的 Cauchy 收敛原理 ()

定义在 D 上的函数项级数  $\sum_{n=1}^{+\infty} f_n(x)$  在 D 上一致收敛当且仅当:

$$\forall \varepsilon \in \mathbb{R}^+, \exists N \in \mathbb{N}, \forall n_1, n_2 > N(n_1 < n_2), \forall x \in D, \left| \sum_{i=n_1}^{n_2} f_i(x) \right| < \varepsilon$$

10 函数列与函数项级数

#### 性质 10.2.1.2 ()

函数项级数一致收敛当且仅当其通项一致收敛于 0.

#### 性质 10.2.1.3 ()

若各项连续的级数  $\sum_{n=1}^{+\infty} f_n(x)$  在 D 上一致收敛于 S(x), 则 S(x) 在 D 上连续.

#### 性质 10.2.1.4 一致收敛级数与积分算子交换性 ()

若函数项级数  $\sum\limits_{n=1}^{+\infty}f_n$  在 [a,b] 上一致收敛于 S(x), 且  $\forall n\in\mathbb{N}, f_n$  在 [a,b] 上 Riemann 可积, 则 S(x) 在 [a,b] 上 Riemann 可积, 且有:

$$\int_{a}^{b} \left( \sum_{n=1}^{+\infty} f_n(x) \right) dx = \sum_{n=1}^{+\infty} \int_{a}^{b} f_n(x) dx$$

# 性质 10.2.1.5 一致收敛级数与微分算子交换性 ()

#### 定理 10.2.2 Weiestrass 判别法 ()

若函数项级数能够被收敛的正项级数控制,则其一致收敛:

对于 D 上的函数项级数  $\sum_{n=1}^{+\infty} f_n(x)$  若  $\exists$  收敛正项级数  $\sum_{n=1}^{+\infty} a_n$ , 使得:

$$\forall n \in \mathbb{N}^*, \forall x \in D, |f_n(x)| \le a_n$$

则该级数在 D 上一致收敛.

证明:

$$\forall x \in D, |f_n(x)| \le a_n \Longrightarrow \sup_{x \in D} |f_n(x)| \le a_n$$

# 定义 10.2.3 优级数 (Majorant Series)

收敛正项级数  $\sum_{n=1}^{+\infty} a_n$  称为是 D 上函数项级数  $\sum_{n=1}^{+\infty} f_n(x)$  的**优级数**, 若:

$$\forall n \in \mathbb{N}^*, \forall x \in D, f_n(x) \le a_n$$

#### 性质 10.2.3.1 最小优级数的确界构造 ()

若 D 上一致收敛的函数项级数  $\sum\limits_{n=1}^{+\infty}f_n(x)$  在 D 上存在优级数, 该函数项级数的最小优级数为:

$$\sum_{n=1}^{+\infty} \sup_{x \in D} f_n(x)$$

## 定理 10.2.4 函数项级数的 Dirichlet 判别法 ()

设函数项级数  $\sum_{n=1}^{+\infty} f_n g_n$  在 D 上满足:

- $(1) \forall x \in D,$ 数列  $\{g_n(x)\}$  单调;
- $(2) \{g_n\}$  一致收敛于 0;
- (3) 函数项级数  $\sum_{n=1}^{+\infty} f_n$  的部分和在 D 上一致有界.

#### 定理 10.2.5 函数项级数的 Abel 判别法 ()

设函数项级数  $\sum_{n=1}^{+\infty} f_n g_n$  在 D 上满足:

- (1)  $\forall x \in D$ , 数列  $\{g_n(x)\}$  单调;
- (2)  $\{g_n\}$  在 D 上一致有界;
- (3) 函数项级数  $\sum_{n=1}^{+\infty} f_n$  在 D 上一致收敛.

#### 10.3 幂级数

# 定义 10.3.1 幂级数 (Power Series)

具有形式  $\sum_{n=0}^{+\infty} a_n (x-x_0)^n$  的级数称为**幂级数**. 使幂级数收敛的全体 x 组成的集合称为幂级数的**收敛** 域 (Convergence Domain)

一般令  $x_0 := 0$ .

#### 性质 10.3.1.1 幂级数收敛域是关于原点对称的区间()

若幂级数在  $x = x_0 \neq 0$  处收敛, 则其在  $(-|x_0|, |x_0|)$  上绝对收敛;

若幂级数在  $x = x_0$  处发散, 则其在  $(-\infty, -|x_0|) \cup (|x_0|, +\infty)$  上发散.

于是幂级数的收敛域是关于原点对称的区间 (开闭不确定).

#### 证明:

(1) 若幂级数  $\sum_{n=0}^{+\infty} a_n x^n$  在 x = a 处收敛, 则  $\exists M \in \mathbb{R} +, \forall n \in \mathbb{N}^*, |a_n x_0^n| \leq M$ .

$$\forall x, |x| < |x_0| \Longrightarrow \sum_{n=0}^{+\infty} |a_n x^n| \left| \frac{x}{x_0} \right|^n \le M \sum_{n=0}^{+\infty} \left| \frac{x}{x_0} \right|^n$$

于是原幂级数在  $(-|x_0|, |x_0|)$  上绝对收敛.

(2) 运用反证法, 套用前面结论即证. □

#### 定义 10.3.2 收敛半径 (Convergence Radius)

幂级数的收敛域总是一个关于 x = 0 对称的区间, 其半径称为该幂级数的**收敛半径**.

#### 定理 10.3.3 Cauchy-Hadamard 定理 ()

幂级数的收敛半径可通过以下公式计算:

设幂级数  $f(x) := \sum_{n=0}^{+\infty} a_n x^n$ , 记:

$$R := \frac{1}{\overline{\lim_{n \to +\infty} \sqrt[n]{|a_n|}}}$$

则:

- (1)  $R=0 \Longrightarrow f$  只在 0 处收敛;
- (2)  $R = +\infty \Longrightarrow f$  在  $\mathbb{R}$  上绝对收敛;
- (3)  $R \in \mathbb{R}^+ \Longrightarrow f$  在 (-R,R) 上绝对收敛, 在  $(-\infty,-R) \cup (R,+\infty)$  上发散.

#### 证明:

由 Cauchy 判别法即证.□

#### 推论 10.3.3.1

幂级数收敛半径与各系数符号无关.

#### 反例 10.3.4 幂级数敛散性在收敛区间端点处不确定 ()

以下三个幂级数的收敛半径均为 1, 但在  $x = \pm 1$  时敛散性各不相同:

- (1)  $\sum_{n=1}^{+\infty} \frac{x^n}{n}$  在 -1 处条件收敛, 在 1 处发散; (2)  $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$  在 ±1 处均绝对收敛;
- (3)  $\sum_{n=1}^{+\infty} nx^n$  在 ±1 处均发散.

#### 定理 10.3.5 幂级数在收敛区间的内闭一致收敛性 ()

设幂级数的收敛半径为  $R \in \mathbb{R}^+$ , 则  $\forall r \in (0, R)$ , 幂级数在 [-r, r] 上一致收敛.

#### 证明:

设幂级数为  $\sum_{n=0}^{+\infty} a_n x^n$ , 其收敛半径为 R.

$$\forall r \in (0, R), \forall x \in [-r, r], |a_n x^n| \le |a_n| r^n$$

右式构成收敛优级数, 由 Weiestrass 判别法知幂级数在 [-r, r] 上一致收敛.  $\square$ 

#### 推论 10.3.5.1 ()

幂级数在收敛区间内部是解析的.

#### 证明:

一致收敛保持连续性与可微性, 于是保证解析性. □

# 推论 10.3.5.2 幂级数与积分算子可交换 ()

内容:

$$\int_0^x \sum_{n=0}^{+\infty} a_n x^n dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

且积分得到的函数收敛半径与原幂级数相同.

#### 定理 10.3.6 Abel 第二定理 ()

若幂级数在收敛区间端点处收敛,则和函数在该点处单侧连续.

#### 定理 10.3.7 Tauber 定理 ()

#### 定理 10.3.8 幂级数乘法 ()

设级数  $\sum_{n=0}^{+\infty} a_n x^n$  与  $\sum_{n=0}^{+\infty} b_n x^n$  收敛半径为 R, 则:

$$\forall x \in (-R, R), \left(\sum_{n=0}^{+\infty} a_n x^n\right) \left(\sum_{n=0}^{+\infty} b_n x^n\right) = \sum_{n=0}^{+\infty} c_n x^n \left(\forall n \in \mathbb{N}, c_n = \sum_{i=0}^n a_i b_{n-i}\right)$$

#### 证明:

由 Cauchy 乘积即证.□

# 11 实 Fourier 分析

#### 11.1 周期函数的 Fourier 级数

约定本节讨论的函数均为周期为  $2\pi$  且在  $[-\pi,\pi]$  上 Riemann 可积且反常积分绝对收敛的实值函数. 其全体记为  $\mathbf{R}[-\pi,\pi]$ .

# 定义 11.1.1 Riemann 可积函数的正交性 ()

在函数内积的定义下, 两个 Riemann 可积函数 f 与 g 称为是在 D 上正交的当且仅当:

$$\int_{D} fg \mathrm{d}x = 0$$

#### 定义 11.1.2 三角函数系 ()

以下实函数族称为三角函数系:

$$\{1,\cos(nx),\sin(nx)\}_{n\geq 1}$$

#### 性质 11.1.2.1 三角函数系的正交性 ()

三角函数系中任意两个不同的函数在  $[-\pi,\pi]$  上正交, 相同的函数在  $[-\pi,\pi]$  上内积为  $2\pi$ :

$$\forall f, g \in \{1, \cos(nx), \sin(nx)\}_{n \ge 1}, \begin{cases} f \neq g \Longrightarrow \int_{-\pi}^{\pi} fg dx = 0\\ \int_{-\pi}^{\pi} f^2 dx = 2\pi \end{cases}$$

## 定义 11.1.3 函数的 Fourier 级数 ()

Fourier 级数 内容:

$$\mathcal{F}[f] := \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos nx + b_n \sin nx)$$

若  $\mathcal{F}[f]$  与三角函数系中任何函数在  $[-\pi,\pi]$  的内积和 f 与之的内积相等:

$$\forall \varphi \in \{1, \cos(nx), \sin(nx)\}_{n \ge 1}, \int_{-\pi}^{\pi} \mathcal{F}[f]\varphi dx = \int_{-\pi}^{\pi} f\varphi dx$$

Fourier 系数

#### 定理 11.1.4 Fourier 系数计算 ()

函数的 Fourier 系数可由如下公式计算得到:

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx & (n \in \mathbb{N}) \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx & (n \in \mathbb{N}^*) \end{cases}$$

#### 证明:

由  $\mathbf{R}[-\pi,\pi]$  中三角函数的正交性:

$$\int_{-\pi}^{\pi} \mathcal{F}[f] \cos nx dx = \int_{-\pi}^{\pi} a_n \cos^2 nx dx = \pi a_n,$$
$$\int_{-\pi}^{\pi} \mathcal{F}[f] \sin nx dx = \int_{-\pi}^{\pi} b_n \sin^2 nx dx = \pi b_n$$

代回定义式,

$$\forall \varphi \in \{1, \cos nx, \sin nx\}_{n \ge 1}, \int_{-\pi}^{\pi} \mathcal{F}[f] \varphi dx = \int_{-\pi}^{\pi} f \varphi dx$$

得:

$$\begin{cases} a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx dx \\ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \sin nx dx \end{cases}$$

#### 推论 11.1.4.1 特殊的 Fourier 级数 ()

奇函数的 Fourier 级数是正弦级数, 偶函数的 Fourier 级数是余弦级数.

#### 证明:

显然, 奇函数在  $[-\pi,\pi]$  上积分为零, 考虑到奇函数乘偶函数得奇函数 故奇函数的 Fourier 级数 cos 项系数  $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cos nx dx$  为零, 其Fourier 级数是正弦级数 偶函数的 Fourier 级数 sin 项系数  $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f \sin nx dx$  为零, 其Fourier 级数是余弦级数

#### 定义 11.1.5 $\mathbf{R}[a,b]$ ()

我们把在[a,b]上可积且绝对可积的实函数全体记为 $\mathbf{R}[a,b]$ 

#### 定理 11.1.6 Riemann-Lebesgue 引理 ()

设 f 在 D 上可积且绝对可积, 则:

$$\lim_{n \to +\infty} \int_a^b f(x) \cos nx \mathrm{d}x = \lim_{n \to +\infty} \int_a^b f(x) \sin nx \mathrm{d}x = 0$$

#### 证明:

我们分两类讨论, 先考虑 f 在 D 上正常可积, 此时 f 有界, 记

$$|f(x)| \le M \tag{1}$$

对于  $\forall n,$  对区间 [a,b] 做 k 等分,令  $k=\sqrt{n}$  (事实上,只需赋值的次数小于1),  $\{x_0,x_1,\cdots,x_k\}$  k等分点,记 $\Delta x=\frac{b-a}{k}$ 

由正常可积,则有:

$$\forall \varepsilon, \exists k, \sum_{i=1}^{k} w_i \delta x < \frac{\varepsilon}{2} \tag{2}$$

其中,  $w_i$  为 f 在  $[x_{i-1}, x_i]$  上的振幅 注意到

$$\left| \cos nx \right| \le 1,$$

$$\left| \int_{x_{i-1}}^{x_i} \cos nx \right| = \frac{1}{n} |\sin nx_i - \sin x_{i-1}| \le \frac{2}{n}$$
(3)

故:

$$\int_{a}^{b} f(x) \cos nx dx$$

$$= \sum_{i=1}^{k} \int_{x_{i-1}}^{x_{i}} f(x) \cos nx dx$$

$$= \sum_{i=1}^{k} \int_{x_{i-1}}^{x_{i}} (f(x) - f(x_{i-1})) \cos nx dx - f(x_{i-1}) \sum_{i=1}^{k} \int_{x_{i-1}}^{x_{i}} \cos nx dx$$

由(1)式确定的k,对第一项代入(1)式,再对第二项代入(1)式(2)式得:

$$=\sum_{i=1}^k w_i \delta x - \frac{2kM}{n}$$
 再取 $n>\frac{4M}{\varepsilon},$  得:

综上, f 在 D 上正常可积时:

$$\lim_{n \to +\infty} \int_{a}^{b} f(x) \cos nx dx = 0$$

再设 f 在 [a,b] 上反常绝对可积.不妨设 b 是 f 唯一的瑕点.那么对任意的  $\varepsilon > 0$ ,存在  $\eta > 0$ ,使得

$$\int_{b-n}^{b} |f(x)| \, \mathrm{d}x < \frac{\varepsilon}{2}$$

由于 f 在  $[a, b-\eta]$  上Riemann可积,由刚才证明的结果知,存在  $n_0 > 0$ ,当  $n > n_0$  时,有

$$\left| \int_{a}^{b-\eta} f(x) \cos nx \, \mathrm{d}x \right| < \frac{\varepsilon}{2}$$

于是当  $n > n_0$  时,有

$$\left| \int_{a}^{b} f(x) \cos nx dx \right| \leq \left| \int_{a}^{b-\eta} f(x) \cos nx dx \right| + \int_{b-\eta}^{b} |f(x)| dx < \varepsilon$$

特别的, 当  $b = +\infty$  时, f在  $(a, +\infty)$  上绝对可积,

$$\forall \varepsilon > 0, \exists A_0 > a, \int_{A_0}^{+\infty} |f(x)| \mathrm{d}x < \frac{\varepsilon}{2}$$

又因  $\lim_{n\to+\infty} \int_a^{A_0} f(x) \cos nx dx = 0$  所以存在  $n_0 > 0$ , 当  $n > n_0$  时,有  $\left| \int_a^{A_0} f(x) \cos nx dx \right| < \frac{\varepsilon}{2}$  于是,当  $n > n_0$  时,有

$$\left| \int_{a}^{+\infty} f(x) \cos nx \, \mathrm{d}x \right| \leqslant \left| \int_{a}^{A_0} f(x) \cos nx \, \mathrm{d}x \right| + \int_{A_0}^{+\infty} |f(x)| \, \mathrm{d}x < \varepsilon$$

综上, f 在 D 上可积且绝对可积,则

$$\lim_{n \to +\infty} \int_{a}^{b} f(x) \cos nx dx = 0$$

同理, f 在 D 上可积且绝对可积,则

$$\lim_{n \to +\infty} \int_{a}^{b} f(x) \sin nx dx = 0$$

# 推论 11.1.6.1 可积且绝对可积实函数的 Fourier 系数收敛于 0 () 内容:

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = 0$$

# 11.2 Fourier 级数收敛定理

#### 反例 11.2.1 Fourier 级数未必收敛于原函数 ()

存在 Fourier 级数不逐点收敛于自身的函数:

$$\exists f \in \mathbf{R} \left[ -\pi, \pi \right], \exists x \in \left[ -\pi, \pi \right], f(x) \neq \mathcal{F}[f](x)$$

#### 证明:

运用反证法.

假设结论成立, 任取  $f \in \mathbf{R}[-\pi,\pi]$ , 任取  $x_0 \in [-\pi,\pi]$ , 构造 g:

$$g := \begin{cases} f(x) & x \neq x_0 \\ f(x) + 1 & x = x_0 \end{cases}$$

有  $\mathcal{F}[f] = \mathcal{F}[g]$ , 但  $f(x_0) \neq g(x_0)$ , 矛盾!  $\square$ 

#### 反例 11.2.2 连续函数的 Fourier 级数未必收敛于自身 ()

Du Bois-Reymond 1876.

#### 定理 11.2.3 局部化定理 (Localization Theorem)

函数的 Fourier 级数在某点的收敛性只与该点附近的函数性质有关:

设函数 f,g 在  $x_0$  的一个邻域  $U(x_0)$  内相等, 则 f 与 g 的 Fourier 级数在  $x_0$  处的敛散性相同.

证明:

$$\begin{split} S_n(x_0) &= \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos k x_0 + b_k \sin k x) \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left( \frac{1}{2} + \sum_{k=1}^n \cos k (x - x_0) \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \left( f(x) \cdot \frac{\sin \left( n + \frac{1}{2} \right) (x - x_0)}{2 \sin \frac{1}{2} (x - x_0)} \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{x_0 - \pi}^{x_0 + \pi} \left( f(x) \cdot \frac{\sin \left( n + \frac{1}{2} \right) (x - x_0)}{2 \sin \frac{1}{2} (x - x_0)} \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \left( f(x + x_0) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{0}^{\pi} \left( f(x + x_0) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x + \frac{1}{\pi} \int_{0}^{\pi} \left( f(x + x_0) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{0}^{\pi} \left( f(x_0 - x) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x + \frac{1}{\pi} \int_{0}^{\pi} \left( f(x_0 + x) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x \\ &= \frac{1}{\pi} \int_{0}^{\pi} \left( (f(x_0 + x) + f(x_0 - x)) \cdot \frac{\sin \left( n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right) \mathrm{d}x \\ \forall \delta \in (0, \pi) &= \frac{1}{\pi} \int_{0}^{\delta} (*) \mathrm{d}x + \frac{1}{\pi} \int_{\delta}^{\pi} (*) \mathrm{d}x \\ &= \frac{f(x_0 + x) + f(x_0 - x)}{2 \sin \frac{x}{2}} \in \mathbf{R} [\delta, \pi] \Longrightarrow \lim_{n \to +\infty} \int_{\delta}^{\pi} (*) \mathrm{d}x = 0 \\ \mathcal{M} \vec{m} \ S_n(x_0) \ \text{ $\mathfrak{M}$ 微 性 \emptyset \ \end{substitute} \ \vec{m} \in (0, \pi) \ \vec{m} \ \vec{m} \ \vec{m} \in (0, \pi) \ \vec{m} \$$

#### 定义 11.2.4 Dirichlet 积分与 Dirichlet 核 ()

Dirichlet 核 内容:

$$D_n(x) = \frac{\sin\left(n + \frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)}$$

证明:

# 定义 11.2.5 Lipschitz 条件 ()

Lipschitz 条件 内容:

$$\exists \delta, L \in \mathbb{R}^+, \exists \alpha \in (0, 1], \forall t \in (0, \delta], \begin{cases} \left| f(x_0 + t) - \lim_{x \to x_0 +} f \right| \le Lt^{\alpha} \\ \left| f(x_0 - t) - \lim_{x \to x_0 -} f \right| \le Lt^{\alpha} \end{cases}$$

#### 定理 11.2.6 Fourier 级数收敛性的 Lipschitz 条件判定 ()

若 f 在  $[-\pi,\pi]$  上可积且绝对可积,则:

$$f$$
 在  $x_0$  附近满足  $\alpha$  阶 Lipschitz 条件  $\Longrightarrow \mathcal{F}[f](x_0) = \frac{\lim_{x \to x_0 +} f(x) + \lim_{x \to x_0 -} f(x)}{2}$ 

#### 证明:

根据Dini判别法, 取 $s = (f(x_0 + 0) + f(x_0 - 0))/2$ 

$$\frac{\varphi(t)}{t} = \frac{f(x_0 + t) - f(x_0 + 0)}{t} + \frac{f(x_0 - t) - f(x_0 - 0)}{t}$$

因为 f 在  $x_0$  附近满足  $\alpha$  阶Lipschitz条件,所以

$$\left|\frac{\varphi(t)}{t}\right| \leqslant \frac{2L}{t^{\alpha}} \quad (0 < t \leqslant \delta)$$

因此  $\alpha = 1$  时,  $\varphi(t)/t$  在  $[0, \delta]$  有界,  $\alpha > 1$  时,  $\varphi(t)/t$  在  $[0, \delta]$  上绝对可积,从而Dini判别法的条件成立,得:

$$\mathcal{F}[f](x_0) = \frac{\lim_{x \to x_0 +} f(x) + \lim_{x \to x_0 -} f(x)}{2}$$

#### 推论 11.2.6.1 Dini 判别法 ()

内容:

$$\forall s \in \mathbb{R}, \varphi_s(t) := f(x_0 + t) + f(x_0 - t) - 2s$$

若  $\exists \delta \in \mathbb{R}^+, \frac{\varphi_s(t)}{t}$  在  $[0, \delta]$  上可积且绝对可积, 则 f 的 Fourier 级数在  $x_0$  处收敛于 s.

#### 定理 11.2.7 Fourier 级数收敛性的可微性判定 ()

内容:

$$\forall f \in \mathbf{F}[-\pi,\pi]$$

- (1) f 在  $x_0$  处广义左右导数存在且有限,  $\Longrightarrow \mathcal{F}[f](x_0) = \frac{\lim_{x \to x_0 +} f(x) + \lim_{x \to x_0 -} f(x)}{2}$
- (2) f 在  $x_0$  处左右导数存在且有限,  $\Longrightarrow \mathcal{F}[f](x_0) = f(x_0)$

#### 证明:

设 f 在  $x_0$  处有两个有限的单侧导数,从而存在  $\delta > 0$ , 当  $0 < \iota < \delta$  时, 有

$$| f(x_0 + t) - f(x_0) | \le Lt, \quad | f(x_0 - t) - f(x_0) | \le Lt$$

这说明 f 在  $x_0$  的附近满足 1 阶Lipschitz条件, 而在其他几种情况下也能推出同样的结论根据Dini判别法, 取 $s = (f(x_0 + 0) + f(x_0 - 0))/2$ 

$$\frac{\varphi(t)}{t} = \frac{f(x_0 + t) - f(x_0 + 0)}{t} + \frac{f(x_0 - t) - f(x_0 - 0)}{t}$$

因为 f 在  $x_0$  附近满足1阶Lipschitz条件,所以

$$\left| \frac{\varphi(t)}{t} \right| \leqslant 2L \quad (0 < t \leqslant \delta)$$

因此  $\varphi(t)/t$  在  $[0,\delta]$  上绝对可积,从而Dini判别法的条件成立, 得:

$$\mathcal{F}[f](x_0) = \frac{\lim_{x \to x_0 +} f(x) + \lim_{x \to x_0 -} f(x)}{2}$$

#### 推论 11.2.7.1 ()

f 在  $[-\pi,\pi]$  上可微  $\Longrightarrow \mathcal{F}[f] = f$ .

#### 定义 11.2.8 奇/偶性延拓 ()

即对定义在 $(0,\pi)$ 上的函数f,利用公式f(x) = -f(x)来补充 $(-\pi,0)$ 上的定义。这时,f是 $(-\pi,\pi)$ 上的奇函数,有:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0$$
$$b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

偶性延拓同理。

#### 11.3 Cesaro 和

#### 定义 11.3.1 Cesaro 和与 Cesaro 收敛 / 均值收敛 ()

称无穷级数  $\sum_{n=1}^{+\infty} a_n$  的部分和数列  $\{S_n\}$  的**Cesaro 和**为:

$$\sigma_n := \frac{1}{n} \sum_{k=1}^n S_k$$

Cesaro 收敛

#### 性质 11.3.1.1 一般收敛强于 Cesaro 收敛 ()

收敛级数 Cesaro 收敛.

#### 证明:

运用 Stolz-Cesaro 定理即证.

# 定理 11.3.2 Fejer 定理 ()

设  $f \in \mathbf{R}[-\pi,\pi]$ , 则

#### 定理 11.3.3 ()

# 11.4 平方均值逼近

# 定义 11.4.1 $\mathbf{R}^2[a,b]$ ()

我们把在[a,b]上可积且平方可积的实函数全体记为 $\mathbf{R}^2[a,b]$ ,显然 $\mathbf{R}^2[a,b]$ 是 $\mathbf{R}[a,b]$ 的子空间

# 定义 11.4.2 内积 (Inner Product)

对任意的 $f, g \in \mathbf{R}^2[a, b]$ , 我们称积分

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x) dx$$

为f与g的**内积**。内积有以下性质:

- 1.  $\langle f, g \rangle = \langle g, f \rangle$
- 2.  $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$
- 3.  $\langle f, \alpha g \rangle = \alpha \langle f, g \rangle$
- 4.  $\langle f, f \rangle \geq 0$ , 且当且仅当f = 0时取等号

# 定义 11.4.3 范数 (Norm)

#### 定理 11.4.4 Parseval 等式 ()

设  $f \in \mathbf{R}^2[a,b]$ ,  $\{\varphi_k\}$  是一个规范正交系,  $\{c_k\}$  是关于  $\varphi_k$  的 Fourier 系数, 则:

(1)

$$\forall n \in \mathbb{N}^*, \alpha_0, \dots, \alpha_n \in \mathbb{R}, \left\| f - \sum_{k=0}^n \alpha_k \varphi_k \right\| \ge \left\| f - \sum_{k=0}^n c_k \varphi_k \right\|$$

(2)

$$\left\| f - \sum_{k=0}^{n} c_k \varphi_k \right\|^2 = \|f\|^2 - \sum_{k=0}^{n} c_k^2$$

(3)

$$\sum_{k=0}^{+\infty} c_k^2 \le \|f\|^2$$

12  $\mathbb{R}^n$  上的函数 72

#### 推论 11.4.4.1 ()

对于一个三角级数,存在一个唯一的可积且绝对可积的函数f使其 Fourier 系数 $\{c_n\}$ 为该三角级数(在标准正交系下)的系数,当且仅当  $\sum_{k=0}^n c_k^2 < +\infty$ 

# 12 $\mathbb{R}^n$ 上的函数

#### 12.1 $\mathbb{R}^n$ 上函数的极限

#### 定义 12.1.1 极限 (Limit)

设  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^m$ ,  $x_0 \in cl(D)$ , 称 f 在  $x_0$  处有**极限** y, 若 ||f(x) - y|| 能够通过  $||x - x_0||$  控制:

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \forall \boldsymbol{x} \in (\mathcal{B}\left(\boldsymbol{x}_0, \delta\right) - \{\boldsymbol{x}_0\}), f(\boldsymbol{x}) \in \mathcal{B}\left(\boldsymbol{y}, \varepsilon\right)$$

记作:

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} f(\boldsymbol{x}) = \boldsymbol{y}$$

#### 性质 12.1.1.1 多元函数极限的点列等价判定()

设  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^m$ ,  $x_0 \in D$ , 则 f 在  $x_0$  处有极限 y 当且仅当任何收敛于  $x_0$  的点列的像收敛于 y:

$$\lim_{oldsymbol{x} o oldsymbol{x}_0} = oldsymbol{y} \iff \left( orall \{oldsymbol{x}_i\}_{i \in \mathbb{N}^*}, \lim_{n o + \infty} oldsymbol{x}_n = oldsymbol{x}_0 \implies \lim_{n o + \infty} f(oldsymbol{x}_n) = oldsymbol{y} 
ight)$$

#### 性质 12.1.1.2 多元函数极限保持代数结构 ()

#### 性质 12.1.1.3 多元函数极限复合稳定 ()

#### 定理 12.1.2 Cauchy 收敛原理 ()

# 12.2 多元函数连续性

定义 12.2.1 ()

设  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^m$ ,  $\boldsymbol{x}_0 \in D$ ,

#### 13.1 多元微分

#### 定义 13.1.1 切空间 (Tangent Space)

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^m$ ,  $x_0 \in D$ , 定义 f 在  $x_0$  处的**切空间**为在陪集  $\mathbb{R}^n + x_0$  上赋予  $\mathbb{R}^n$  的线性运算得到的线性空间, 记作  $T_{x_0} \mathbb{R}^n$ :

$$T_{\boldsymbol{x}_0} \mathbb{R}^n := (\mathbb{R}^n + \boldsymbol{x}_0, +_{\boldsymbol{x}_0}, \cdot_{\boldsymbol{x}_0})$$

#### 定义 13.1.2 可微性 (Differentiable)

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}^m$ ,  $x_0 \in D$ ,  $x_0 \in D$ , 称 f 在  $x_0$  处可微, 若存在切空间上的线性映射  $\mathcal{T}: T_{x_0} \mathbb{R}^n \to \mathbb{R}^m$ , 使得在  $x_0$  附近  $\mathcal{T} + f(x_0)$  与 f 足够接近:

$$\|\mathcal{T}(x) + f(x_0) - f(x)\| = o(\|x\|)$$

称  $\mathcal{T}$  在  $\mathbb{R}^n$  标准基下的矩阵表示为 f 在  $\mathbf{x}_0$  处的 Jacobi 矩阵, 记作  $\mathbf{J}f(\mathbf{x}_0)$ .

#### 性质 13.1.2.1 可微性蕴含连续性 ()

若 f 在  $x_0$  处可微, 则 f 在  $x_0$  处连续.

#### 定义 13.1.3 偏导数 (Partial Derivative)

定义 f 在  $x_0$  处对  $x_i$  的偏导数为:

$$\lim_{\delta \to 0} \frac{f(\boldsymbol{x} + \delta \boldsymbol{e}_i) - f(\boldsymbol{x})}{\delta}$$

记作:

$$\frac{\partial f}{\partial \boldsymbol{x} i}(\boldsymbol{x}_0)$$

将  $f \mapsto (x \mapsto \frac{\partial f}{\partial x})$  称为偏导算子.

## 性质 13.1.3.1 可微性蕴含偏导数存在 ()

若 f 在  $x_0$  处可微, 则 f 在  $x_0$  处对 x 各个分量的偏导数均存在.

#### 性质 13.1.3.2 Jacobi 矩阵的偏导数表示 ()

若 f 在  $x_0$  处可微, Jacobi 矩阵可用各个偏导数表示:

$$oldsymbol{J} f(oldsymbol{x_0}) = egin{bmatrix} rac{\partial f}{\partial oldsymbol{x}.1}(oldsymbol{x}_0) & rac{\partial f}{\partial oldsymbol{x}.2}(oldsymbol{x}_0) & \cdots & rac{\partial f}{\partial oldsymbol{x}.n}(oldsymbol{x}_0) \end{bmatrix}$$

#### 定理 13.1.4 各个偏导连续蕴含可微性 ()

若 f 在  $x_0$  处对 x 各个分量的偏导数均连续, 则 f 在  $x_0$  处可微.

#### 反例 13.1.5 可微函数未必有连续偏导数 ()

此函数在 (0,0) 处可微, 但各个偏导数在 (0,0) 处均不连续:

$$f(x,y) := \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

#### 定义 13.1.6 方向导数 (Directional Derivative)

设  $D \subseteq \mathbb{R}^n$ ,  $f : \mathbb{R}^n \to \mathbb{R}$ ,  $\mathbf{x}_0 \in D$ ,  $\mathbf{x}_0 \notin D$  的一个紧致点,  $\mathbf{u} \in \mathbb{R}^n$ ,  $\|\mathbf{u}\| = 1$ , 定义 f 在  $\mathbf{x}_0$  处沿  $\mathbf{u}$  的方向导数为:

 $\lim_{\delta \to 0} \frac{f(\boldsymbol{x}_0 + \delta \boldsymbol{u}) - f(\boldsymbol{x}_0)}{\delta}$ 

记作:

$$rac{\partial f}{\partial m{u}}(m{x}_0)$$

#### 性质 13.1.6.1 切空间同构于方向导数算子空间 ()

#### 定理 13.1.7 链式法则 ()

设开集  $D_g \subseteq \mathbb{R}^m$ ,  $g: D_g \to \mathbb{R}^n$ ,  $\mathbf{x}_0 \in D_g$ , g 在  $\mathbf{x}_0$  处可微; 开集 $D_f \subseteq g(D_g)$ ,  $f: D_f \to \mathbb{R}^k$ , f 在  $g(\mathbf{x}_0)$  处可微, 则  $f \circ g$  在  $\mathbf{x}_0$  处可微, 且:

$$\boldsymbol{J}(f \circ g)(\boldsymbol{x}_0) = \boldsymbol{J}f(g(\boldsymbol{x}_0)) \cdot \boldsymbol{J}g(\boldsymbol{x}_0)$$

#### 定理 13.1.8 隐函数定理 (Implicit Function Theorem)

设开集  $D \subseteq \mathbb{R}^n \times \mathbb{R}$ , 连续函数  $F: D \to \mathbb{R}$ , 若  $(\boldsymbol{x}_0, y_0) \in D$  是 F 的一个零点,  $\frac{\partial F}{\partial y}(\boldsymbol{x}_0, y_0) \neq 0$ , 则  $\exists (\boldsymbol{x}_0, y_0)$  的开邻域  $I \times J \subseteq D$  与函数  $f: I \to J$ , 使:

- (1)  $\forall \boldsymbol{x} \in I, \exists$  唯一的  $y \in J, F(\boldsymbol{x}, y) = 0, f(\boldsymbol{x}) = y.$
- (2)

$$f(\boldsymbol{x}_0) = y_0$$

(3) f 在 I 上连续.

(4)

$$\forall \boldsymbol{x} \in I, f'(x) = -\frac{\frac{\partial F}{\partial \boldsymbol{x}}(\boldsymbol{x}, f(\boldsymbol{x}))}{\frac{\partial F}{\partial y}(\boldsymbol{x}, f(\boldsymbol{x}))}$$

#### 13.2 微分 1-形式

#### 定义 13.2.1 余切空间 (Cotangent Space)

设  $D \subseteq \mathbb{R}^n$ ,  $f : \mathbb{R}^n \to \mathbb{R}$ ,  $x_0 \in D$ ,  $x_0 \notin D$  的一个紧致点, f 在  $x_0$  处可微, 定义 f 在  $x_0$  处的**余切空间**为  $T_{x_0} \mathbb{R}^n$  的对偶空间, 记作  $T_{x_0}^* \mathbb{R}^n$ .

#### 定义 13.2.2 对偶基 ()

将 f 在  $x_0$  处的余切空间在切空间的标准基  $\{e_i\}_{i=1}^n$  下的对偶基  $\{e_i \mapsto \delta_i^j\}_{j=1}^n$  记作  $\{d(x.j)\}_{j=1}^n$ .

# 性质 13.2.2.1 余切空间元素是微分 1-形式 ()

余切空间中的每个泛函是一个微分 1-形式.

#### 13.3 高阶偏导数

# 反例 13.3.1 偏导算子可能不交换()

以下函数满足  $\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$ :

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

#### 定理 13.3.2 偏导算子交换条件()

设  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $\mathbf{x}_0 \in D$ , 若 f 在  $\mathbf{x}_0$  一个邻域内的各个偏导数存在, 且混合偏导数  $\frac{\partial^2 f}{\partial x_i \partial x_j}$  在  $\mathbf{x}_0$  处连续, 则:

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(\boldsymbol{x}_0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{x}_0)$$

#### 定义 13.3.3 极值点 (Local Extremum Point)

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $x_0 \in D$ , 称  $x_0$  是 f 的一个**极大值点 (Local Maximum Point)**, 若 在  $x_0$  的一个邻域内, f 在  $x_0$  处取得最大值:

$$\exists \delta > 0, \forall x \in \mathcal{B}(x_0, \delta), f(x) < f(x_0)$$

称  $x_0$  是 f 的一个**极小值点 (Local Minimum Point)**, 若在  $x_0$  的一个邻域内, f 在  $x_0$  处取得最大值:

$$\exists \delta > 0, \forall x \in \mathcal{B}(x_0, \delta), f(x) \geq f(x_0)$$

#### 定理 13.3.4 Fermat 引理 (Fermat's Lemma)

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $\mathbf{x}_0 \in D$ , 若  $\mathbf{x}_0$  是 f 的一个极值点, 且 f 在  $\mathbf{x}_0$  处可微, 则 f 在  $\mathbf{x}_0$  处的各个偏导数均为零:

$$\forall i \in \{1, 2, \dots, n\}, \frac{\partial f}{\partial x.i}(x_0) = 0$$

此时称  $x_0$  是 f 的一个驻点 (Stationary Point).

#### 定义 13.3.5 Hesse 方阵 (Hessian Matrix)

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $x_0 \in D$ , 若 f 在  $x_0$  处可微, 定义 f 在  $x_0$  处的 **Hesse 方阵**为:

$$m{H}f(m{x}_0) := egin{bmatrix} rac{\partial^2 f}{\partial m{x}.1^2}(m{x}_0) & rac{\partial^2 f}{\partial m{x}.1\partial m{x}.2}(m{x}_0) & \cdots & rac{\partial^2 f}{\partial m{x}.1\partial m{x}.n}(m{x}_0) \ rac{\partial^2 f}{\partial m{x}.2\partial m{x}.1}(m{x}_0) & rac{\partial^2 f}{\partial m{x}.2\partial m{x}.2}(m{x}_0) & \cdots & rac{\partial^2 f}{\partial m{x}.2\partial m{x}.n}(m{x}_0) \ dots & dots & dots & \ddots & dots \ rac{\partial^2 f}{\partial m{x}.n\partial m{x}.1}(m{x}_0) & rac{\partial^2 f}{\partial m{x}.n\partial m{x}.2}(m{x}_0) & \cdots & rac{\partial^2 f}{\partial m{x}.n^2}(m{x}_0) \end{bmatrix}$$

# 性质 13.3.5.1 二阶偏导连续蕴含 Hesse 方阵对称性 ()

若 f 在  $x_0$  的一个邻域内各个二阶偏导数存在且连续,则 Hesse 方阵是对称阵.

#### 定理 13.3.6 Hesse 方阵极值判定 ()

设开集  $D \subseteq \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $x_0 \in D$ , 若  $x_0$  是 f 的一个极值点, 且 f 在  $x_0$  处可微, 则:

- (1) 若 Hesse 方阵在  $x_0$  处严格正定, 则  $x_0$  是 f 的一个极小值点.
- (2) 若 Hesse 方阵在  $x_0$  处严格负定, 则  $x_0$  是 f 的一个极大值点.

#### 反例 13.3.7 Hesse 方阵不定无法判定极值情况 ()

若 f 在  $x_0$  处的 Hesse 方阵非严格正 / 负定, 则无法判定  $x_0$  是否取极值.

#### 定理 13.3.8 Lagrange 乘数法 (Lagrange Multiplier Method)

设开集  $D \subseteq \mathbb{R}^m \times \mathbb{R}^n$ ,  $f: D \to \mathbb{R}$ ,  $\Phi_i(\boldsymbol{x}, \boldsymbol{y}) = 0 (1 \le i \le m)$ , f 在  $(\boldsymbol{x}_0, \boldsymbol{y}_0)$  处取极值, 则:

$$\exists \boldsymbol{\lambda} \in \mathbb{R}^m, F(\boldsymbol{x}, \boldsymbol{y}) := f(\boldsymbol{x}, \boldsymbol{y}) + \sum_{i=1}^m \boldsymbol{\lambda}.i\Phi_i(\boldsymbol{x}, \boldsymbol{y}), \frac{\partial F}{\partial *}(\boldsymbol{x}_0, \boldsymbol{y}_0) = 0$$

# 13.4 微分 k-形式

#### 定义 13.4.1 外积 / 楔积 (Wedge Product)

外积是定义在余切空间上的反对称双线性映射, 记作 · ∧ · , 若它满足以下泛性质:

(1) 反对称性:

$$\forall \boldsymbol{u}, \boldsymbol{v} \in T_{\boldsymbol{x}_0}^* \mathbb{R}^n, \boldsymbol{u} \wedge \boldsymbol{v} = -\boldsymbol{v} \wedge \boldsymbol{u}$$

(2) 双线性性:

$$\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in T_{\boldsymbol{x}_0}^* \mathbb{R}^n, \forall \alpha, \beta \in \mathbb{R}, \boldsymbol{u} \wedge (\alpha \boldsymbol{v} + \beta \boldsymbol{w}) = \alpha (\boldsymbol{u} \wedge \boldsymbol{v}) + \beta (\boldsymbol{u} \wedge \boldsymbol{w})$$

(3) 结合性:

$$\forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in T^*_{\boldsymbol{x}_0} \, \mathbb{R}^n, \boldsymbol{u} \wedge (\boldsymbol{v} \wedge \boldsymbol{w}) = (\boldsymbol{u} \wedge \boldsymbol{v}) \wedge \boldsymbol{w}$$

由结合性可归纳地定义多重外积.

#### 性质 13.4.1.1 外积由泛性质在同构意义下唯一确定 ()

若有两种外积运算 · / · 和 · / · , 满足上述泛性质, 则它们在同构意义下相等.

#### 性质 13.4.1.2 1-形式与自身的外积为零 ()

设  $d(\boldsymbol{x}.i)$  是一个 1-形式, 则  $d(\boldsymbol{x}.i) \wedge d(\boldsymbol{x}.i) = 0$ .

#### 性质 13.4.1.3 多重外积的行列式表示 ()

#### 定义 13.4.2 微分 k-形式 (Differential Form)

设  $k \in \mathbb{N}$ , f 在  $x_0$  处的一个微分 k 形式定义为一个对偶基的 k 重外积的线性组合:

$$\omega = \sum_{i_1 < i_2 < \dots < i_k} \omega_{i_1, i_2, \dots, i_k} d(\boldsymbol{x}.i_1) \wedge d(\boldsymbol{x}.i_2) \wedge \dots \wedge d(\boldsymbol{x}.i_k)$$

#### 定义 13.4.3 外微分 (Exterior Derivative)

设 $\omega$ 是一个微分k-形式,线性表示为:

$$\omega = \sum_{i_1 < i_2 < \dots < i_k} \omega_{i_1, i_2, \dots, i_k} d(\boldsymbol{x}.i_1) \wedge d(\boldsymbol{x}.i_2) \wedge \dots \wedge d(\boldsymbol{x}.i_k)$$

定义  $\omega$  的**外微分**为如下一个微分 (k+1)-形式:

$$d\omega = \sum_{i_1 < i_2 < \dots < i_k} \left( \sum_{j=1}^n \frac{\partial \omega_{i_1, i_2, \dots, i_k}}{\partial \boldsymbol{x}. j} \, d(\boldsymbol{x}. j) \right) \wedge d(\boldsymbol{x}. i_1) \wedge d(\boldsymbol{x}. i_2) \wedge \dots \wedge d(\boldsymbol{x}. i_k)$$

# 13.5 空间曲线描述

#### 定义 13.5.1 $\mathbb{R}^3$ 中的光滑曲线 (Smooth Curve in $\mathbb{R}^3$ )

函数  $\Gamma: [a,b] \to \mathbb{R}^3$  称为是一条光滑曲线, 若:

- (1)  $\Gamma$  在 [a,b] 上可微;
- (2)

$$\forall t \in [a, b], \frac{\mathrm{d}\Gamma(t)}{\mathrm{d}t} \neq \mathbf{0}$$

#### 定义 13.5.2 弧长 (Arc Length)

设  $\Gamma: [a,b] \to \mathbb{R}^3$  是一条光滑曲线, 定义  $\Gamma$  在 [a,b] 上的弧长为:

$$\int_{a}^{b} \left\| \frac{\mathrm{d}\Gamma}{\mathrm{d}t} \right\| \mathrm{d}t$$

#### 性质 13.5.2.1 弧长是关于参量严格递增的函数 ()

设  $\Gamma: [a,b] \to \mathbb{R}^3$  是一条光滑曲线,  $\Gamma$  在 [a,t] 上的弧长关于 t 严格递增.

#### 定义 13.5.3 曲率 (Curvature)

设  $\Gamma: [a,b] \to \mathbb{R}^3$  是一条光滑曲线,  $t_0 \in [a,b]$ , 定义  $\Gamma$  在  $t_0$  处的**曲率**为: 记作  $\kappa(t_0)$ .

#### 性质 13.5.3.1 曲率的导函数计算 ()

 $\kappa(t_0)$  可通过  $\Gamma'(t_0)$  与  $\Gamma''(t_0)$  表示:

$$\kappa(t_0) := \frac{\|\Gamma'(t_0) \times \Gamma''(t_0)\|}{\|\Gamma'(t_0)\|^3}$$

#### 性质 13.5.3.2 曲率的弧长参数表示 ()

设  $\Gamma:[a,b]\to\mathbb{R}^3$  是一条以弧长为参数的光滑曲线,则:

$$\kappa(t_0) = \|\Gamma''(t_0)\|$$

#### 定义 13.5.4 曲率半径 (Radius of Curvature)

曲率半径定义为与曲线在某点曲率相同的圆的半径,记作  $R(t_0)$ .

#### 性质 13.5.4.1 曲率半径是曲率的倒数 ()

# 13.6 空间曲面描述

定义 13.6.1 参数曲面 ()

定义 13.6.2 隐式曲面 ()

定义 13.6.3 切平面 ()

定义 13.6.4 法向量 ()

定义 13.6.5 第一基本量 ()

定义 13.6.6 正则点 / 奇点 ()

定义 13.6.7 正则曲面 ()

14 多重积分 79

# 14 多重积分

# 14.1 矩形区域上的二重积分

#### 定义 14.1.1 分割()

设  $D = [a,b] \times [c,d], a = x_0 < x_1 < \dots < x_n = b, c = y_0 < y_1 < \dots < y_m = d$ , 则称 D 的子集族  $I := \{[x_{i-1},x_i] \times [y_{j-1},y_j] | 1 \le i \le n, 1 \le j \le m\}$  为 D 上的一个分割. 分割的宽度定义为各个分块长宽的最大值:

$$||I|| := \max\{x_i, y_j\}$$

分块面积定义为:

$$\sigma([x_{i-1}, x_i] \times [y_{i-1}, y_i]) := (y_i - y_{i-1})(x_i - x_{i-1})$$

#### 定义 14.1.2 Riemann 和 ()

设  $D = [a, b] \times [c, d]$ ,  $I \in D$  上的一个分割,  $\Xi$  是一个取值集, 其各个元素满足  $\xi_i \in I_i$ . 则称下式为 f 在 D 上关于分割 D 和取值  $\Xi$  的**Riemann** 和:

$$\sum_{I_i \in I} f(\xi_i) \sigma(I_i)$$

#### 定义 14.1.3 二重积分()

称函数 f 在矩形区域  $D=[a,b]\times[c,d]$  上 Riemann 可积, 若 Riemann 和在分割宽度趋于零时收敛于某一极限:

$$\exists A \in \mathbb{R}, \lim_{\|I\| \to 0} \sum_{I_i \in I} f(\xi_i) \sigma(I_i) = A$$

若 D 不是矩形区域,则称 f 在 D 上 Riemann 可积,若在 D 的任何矩形子集上 Riemann 可积,此时可将 D 扩充为矩形区域,并将扩充部分函数值赋值为 0,定义积分值为扩充后的积分值. 此时 A 称为 f 在 D 上的**二重积分**,记作:

$$\iint_D f(x,y) dx dy \vec{y} \iint_D f d\sigma$$

#### 性质 14.1.3.1 Riemann 可积函数有界性 ()

#### 性质 14.1.3.2 Riemann 可积函数线性性 ()

#### 性质 14.1.3.3 Riemann 积分保序性 ()

#### 定理 14.1.4 二重积分的 Darboux 定理 ()

14 多重积分 80

#### 定理 14.1.5 Lebesgue 定理 ()

设 f 在  $D = [a, b] \times [c, d]$  上有界, 则 f 在 D 上 Riemann 可积当且仅当 f 在 D 上的不连续点集零 测.

若 D 不是矩形区域, 则若 f 在 D 上的不连续点集与  $\partial D$  均零测, 则 f 在 D 上 Riemann 可积.

# 定理 14.1.6 二重积分计算 ()

设 f 在  $D = [a, b] \times [c, d]$  上可积, 若  $\forall x \in [a, b], f$  在 [c, d] 上可积, 则:

$$\iint_D f(x,y) dxdy = \int_a^b \left( \int_c^d f(x,y) dy \right) dx$$

#### 推论 14.1.6.1 累次积分可交换的充分条件()

设 f 在  $D = [a, b] \times [c, d]$  上可积,  $\forall x \in [a, b]$ , f 在 [c, d] 上可积,  $\forall y \in [c, d]$ , f 在 [a, b] 上可积, 则:

$$\iint_D f(x,y) dx dy = \int_a^b \left( \int_c^d f(x,y) dy \right) dx = \int_c^d \left( \int_a^b f(x,y) dx \right) dy$$

#### 反例 14.1.7 矩形区域上的 Riemann 可积函数未必存在单次积分 ()

#### 反例 14.1.8 累次积分存在且可交换的函数未必 Riemann 可积 ()

# 定理 14.1.9 Minkowski 不等式 ()

设非负连续函数 f 在  $D = [a, b] \times [c, d]$  上 Riemann 可积,  $p \ge 1$ , 则:

$$\left(\int_a^b \left(\int_c^d f(x,y) dy\right)^p\right)^{\frac{1}{p}} \le \int_c^d \left(\int_a^b f^p(x,y) dx\right)^{\frac{1}{p}} dy$$

等号成立当且仅当 p=1 或  $\exists u,v:\mathbb{R}\to\mathbb{R}, \forall x\forall y, f(x,y)=u(x)v(y).$ 

#### 14.2 换元积分

#### 定理 14.2.1 ()

内容:

$$\iiint_{S} f du dv dw = \iiint_{S} f \cdot |\det(J)| dx dy dz$$

$$J := \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$$

15 曲线积分 81

#### 14.3 多元积分运用

#### 定义 14.3.1 面积 ()

平面点集  $S \subseteq \mathbb{R}^2$  称为是**有面积**的, 若  $(x,y) \mapsto 1$  在 S 上 Riemann 可积. S 的**面积**定义为:

$$\int_{S} d\sigma$$

#### 性质 14.3.1.1 零面积集的等价定义 ()

面积为 0 的集合可被面积和可控的有限个闭矩形覆盖:

$$S \subseteq \mathbb{R}^2 \land \int_S d\sigma = 0 \implies \forall \varepsilon \in \mathbb{R}^+, \exists n \in \mathbb{N}, \exists I, B \subseteq \bigcup_{I \land I_i \in I} \sigma(I_i) < \varepsilon$$
$$(I = \{I_i | 1 \le i \le n, I_i = [a_i, b_i] \times [c_i, d_i]\}, \sigma(I_i) := (b_i - a_i)(d_i - c_i))$$

# 15 曲线积分

# 15.1 第一类曲线积分

#### 定义 15.1.1 第一类曲线积分 ()

记作:

$$\int_{\Gamma} f(x, y, z) \mathrm{d}s$$

#### 定理 15.1.2 ()

设  $\Gamma$  是  $\mathbb{R}^3$  上的连续曲线,  $\mathbf{r}: [\alpha, \beta] \to \Gamma$  是描述  $\Gamma$  的参数方程,  $f: \Gamma \to \mathbb{R}$  连续, 则:

$$\int_{\varGamma} f \mathrm{d} s = \int_{\alpha}^{\beta} f \circ \boldsymbol{r}(t) \| \boldsymbol{r}'(t) \| \mathrm{d} t$$

#### 推论 15.1.2.1 ()

设  $\Gamma$  是  $\mathbb{R}^2$  上的连续曲线,  $y: [\alpha, \beta] \to \mathbb{R}$  是描述  $\Gamma$  的方程,  $f: \Gamma \to \mathbb{R}$  连续, 则:

$$\int_{\Gamma} f \mathrm{d}s = \int_{\alpha}^{\beta} f(x, y(x)) \sqrt{1 + (\varphi'(x))^2} \mathrm{d}x$$

#### 15.2 第二类曲线积分

# 定义 15.2.1 第二类曲线积分 ()

设  $\Gamma$  是  $\mathbb{R}^3$  上的连续曲线,  $\mathbf{F}: \Gamma \to \mathbb{R}^3 := (F_1, F_2, F_3)$  是连续向量场, 则称下式为  $\mathbf{F}$  在  $\Gamma$  上的**第** 二类曲线积分:

$$\int_{\Gamma} \mathbf{F}(r) \cdot d\mathbf{r} := \int_{\Gamma} (F_1 dx + F_2 dy + F_3 dz)$$

15 曲线积分 82

#### 性质 15.2.1.1 第二类曲线积分的参数方程表示()

$$\int_{\Gamma} \boldsymbol{F}(r) \cdot d\boldsymbol{r} = \int_{\Gamma} \boldsymbol{F}(r) \cdot \boldsymbol{r}(t) dt$$

#### 性质 15.2.1.2 第二类曲线积分的幅角表示 ()

设  $\Gamma$  是  $\mathbb{R}^3$  上的连续曲线,  $\mathbf{F}: \Gamma \to \mathbb{R}^3 := (F_1, F_2, F_3)$  是连续向量场,  $\theta_1, \theta_2, \theta_3$  是  $\mathbf{r}(t)$  与 x, y, z 轴的夹角, 则:

$$\int_{\Gamma} \mathbf{F}(r) \cdot d\mathbf{r} = \int_{\Gamma} (F_1(\mathbf{r}(t)) \cos \theta_1 + F_2(\mathbf{r}(t)) \cos \theta_2 + F_3(\mathbf{r}(t)) \cos \theta_3) dt$$

#### 定理 15.2.2 Green 定理 (Green's Theorem)

设  $\Gamma$  是  $\mathbb{R}^2$  上的连续曲线,  $\mathbf{F}: \Gamma \to \mathbb{R}^2 := (F_1, F_2)$  是连续向量场, 则:

$$\int_{\Gamma} \mathbf{F}(r) \cdot d\mathbf{r} = \iint_{S} \left( \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) d\sigma$$

#### 推论 15.2.2.1 Green 定理的幅角表示 ()

设  $\Gamma$  是  $\mathbb{R}^2$  上的连续曲线,  $\mathbf{F}: \Gamma \to \mathbb{R}^2 := (F_1, F_2)$  是连续向量场,  $\theta_1, \theta_2$  是  $\mathbf{r}(t)$  的单位外法向量与 x, y 轴的夹角, 则:

$$\int_{\Gamma} (F_1(\boldsymbol{r}(t))\cos\theta_1 + F_2(\boldsymbol{r}(t))\cos\theta_2) \mathrm{d}t =$$

#### 定理 15.2.3 $\mathbb{R}^2$ 上单连通区域上路径积分与路径无关的条件()

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$

#### 15.3 曲面积分

#### 定义 15.3.1 正则曲面的面积 ()

设正则曲面  $\Sigma \subseteq \mathbb{R}^3$  有参数方程  $\mathbf{r} : \Delta \to \mathbb{R}^3 (\Delta \subseteq \mathbb{R}^2)$ , 定义  $\Sigma$  的面积为:

$$\sigma(\Sigma) := \iint_{\Delta} \| \boldsymbol{r}_u \times \boldsymbol{r}_v \| \mathrm{d}u \mathrm{d}v$$

#### 定理 15.3.2 ()

内容:

$$\sigma(\Sigma) = \iint_{\Delta} \sqrt{EG - F^2} du dv$$

#### 定理 15.3.3 Gauss 公式 (Gauss's Theorem)

Stokes 定理的 ℝ³ 版本.

# 16 场论

# 16.1 向量场表征

定义 16.1.1 梯度 (Gradient)

当 m=1 时,  $Jf(x_0)$  亦称为 f 在  $x_0$  处的梯度, 记作  $\nabla f(x_0)$ .

定义 16.1.2 Nabla 算子 (Nabla Operator)

对全体在  $x_0$  处可微的  $D \to \mathbb{R}$  的函数, 将映射  $f \mapsto (x_0 \mapsto Jf(x_0))$  称为 Nabla 算子, 记作  $\nabla$ .

性质 16.1.2.1 Nabla 算子的偏导算子表示 ()

对全体在  $x_0$  处可微的  $D \to \mathbb{R}$  的函数, Nabla 算子可用偏导算子表示:

$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x \cdot 1} & \frac{\partial}{\partial x \cdot 2} & \cdots & \frac{\partial}{\partial x \cdot n} \end{bmatrix}$$

定义 16.1.3 散度 (Divergence)

性质 16.1.3.1 散度的 Nabla 算子表示 ()

定理 16.1.4 散度定理 ()

定义 16.1.5 旋度 (Curl)

性质 16.1.5.1 旋度的 Nabla 算子表示 ()