Python Assessment

Code ▼

Calibration, Scoring, & Impact Analyses

Number of Questions Attempted

Time spent on Python Quiz

Python 30-Question Quiz - Time to Complete (mins)

n <int></int>	min <dbl></dbl>	q1 <dbl></dbl>	avg <dbl></dbl>	med <dbl></dbl>	q3 <dbl></dbl>	max <dbl></dbl>
406	1.18	23.1675	33.45458	30.25	41.5725	90.72
1 row						

Time spent on Python Quiz, by Claim

Time spent on Python Quiz, by Question

Analytic Sample

Exclusion Criteria:

- test/fake accounts
- · attempted all questions
- total time to complete > 15min (30s per question)

The proportion of candidates who completed the Python Language Quiz of those who attempted it is 0.875.

The proportion of candidates who have a valid attempted is 0.838 of those who attempted the quiz.

Classical Test Theory Analysis

Item mean is an indicator of item difficulty. Items with extremely low or high means are indicators of poorly performing items as they are overly difficult or easy, respectively, for test taskers. (parallels IRT item difficulty parameter)

Item-total correlation is the correlation between a score on a particular item and the performance on the rest of the test. High item-total correlations would indicate that test takers who score well on the overall test generally also performed well on the individual item. Low or negative item-total correlations are indicators of poor item performance as they suggest that test takers who score well on the overall test score lower on the individual item. This kind of item performance would suggest that the item may be measuring something different than the other items on the test or the item may be keyed in the wrong direction. (parallels IRT item discrimination parameter)

Alpha-deleted is a measure of the test reliability (internal consitency) - a measure of domain sampling and the impact of a flawed items if a

particular item is removed. Alpha gives an estimate of average inter-item correlation among the items. An indicator of poor item performance is if once an item is removed then the overall test reliability is greatly improved.

Items are flagged to be reviewed or removed if:

- Item means are outside of the range 0.20 and 0.80 indicating really easy or difficult items
- Item-total correlations are less than 0.20; the larger the better indicating may be measuring something different from the rest of the test
- Alpha-deleted increase if the item is removed from the test indicating may be measuring something different from the rest of the test or is adding random noise (unsystematic variation) to the overall test.

Overall Python Reliability is: 0.815

df_blueprint\$question_id	flag	claim	name	target	n_candidates	item_mean	item_total_correlation	alpha_de
1296	<=	Claim 1	lang_python_01	for loops	389	0.900	0.335	(
1297	<=	Claim 1	lang_python_02	lamda function	389	0.856	0.445	(
1298		Claim 1	lang_python_03	variable	389	0.725	0.324	(
1299	<=	Claim 1	lang_python_04	strings	389	0.830	0.249	(
1300		Claim 1	lang_python_05	String	389	0.697	0.367	(
1301		Claim 1	lang_python_06	zip	389	0.779	0.258	(
1302		Claim 2	lang_python_07	classes	389	0.712	0.465	(
1303	<=	Claim 2	lang_python_08	classes	389	0.851	0.312	(
1304		Claim 2	lang_python_09	iterators	389	0.607	0.269	(
1305	<=	Claim 2	lang_python_10	NA	389	0.913	0.288	(
1306		Claim 2	lang_python_11	string	389	0.751	0.312	(
1307	<=	Claim 2	lang_python_12	classes	389	0.853	0.414	(
1308	<=	Claim 2	lang_python_13	dictionary-comprehension	389	0.856	0.411	(
1309		Claim 3	lang_python_14	dictionary	389	0.545	0.492	(
1310	<=	Claim 3	lang_python_15	list-comprehension	389	0.859	0.395	(
1311		Claim 3	lang_python_16	read-json	389	0.530	0.381	(
1312		Claim 3	lang_python_17	static-method	389	0.702	0.414	(
1313		Claim 3	lang_python_18	write-file	389	0.622	0.211	(
1314	<=	Claim 4	lang_python_19	function args	389	0.802	0.409	(
1315	<=	Claim 4	lang_python_20	error-handing	389	0.913	0.216	(
1316	<=	Claim 4	lang_python_21	import-module	389	0.866	0.397	(

df_blueprint\$question_id	flag	claim	name	target	n_candidates	item_mean	item_total_correlation	alpha_del
1317		Claim 4	lang_python_22	name-main	389	0.769	0.268	(
1318	<=	Claim 4	lang_python_23	name-space	389	0.974	0.327	(
1319		Claim 4	lang_python_24	requirements-txt	389	0.728	0.458	(
1320		Claim 5	lang_python_25	datetime	389	0.452	0.259	(
1321	<=	Claim 5	lang_python_26	flask	389	0.879	0.286	(
1322		Claim 5	lang_python_27	numpy	389	0.483	0.249	(
1323		Claim 5	lang_python_28	numpy	389	0.645	0.283	(
1324	<=	Claim 5	lang_python_29	requests	389	0.620	0.187	(
1325		Claim 5	lang_python_30	pandas	389	0.373	0.251	(

IRT Analysis

Unidimensional Model

```
Iteration: 1, Log-Lik: -6666.943, Max-Change: 2.64229
Iteration: 2, Log-Lik: -5775.218, Max-Change: 0.29082
Iteration: 3, Log-Lik: -5730.990, Max-Change: 0.20993
Iteration: 4, Log-Lik: -5701.905, Max-Change: 0.19018
Iteration: 5, Log-Lik: -5680.953, Max-Change: 0.16530
Iteration: 6, Log-Lik: -5665.510, Max-Change: 0.14111
Iteration: 7, Log-Lik: -5654.032, Max-Change: 0.12041
Iteration: 8, Log-Lik: -5645.481, Max-Change: 0.10499
Iteration: 9, Log-Lik: -5639.119, Max-Change: 0.09050
Iteration: 10, Log-Lik: -5634.405, Max-Change: 0.07736
Iteration: 11, Log-Lik: -5630.930, Max-Change: 0.06576
Iteration: 12, Log-Lik: -5628.384, Max-Change: 0.05564
Iteration: 13, Log-Lik: -5622.014, Max-Change: 0.00982
Iteration: 14, Log-Lik: -5621.975, Max-Change: 0.00598
Iteration: 15, Log-Lik: -5621.951, Max-Change: 0.00406
Iteration: 16, Log-Lik: -5621.907, Max-Change: 0.00206
Iteration: 17, Log-Lik: -5621.904, Max-Change: 0.00166
Iteration: 18, Log-Lik: -5621.903, Max-Change: 0.00134
Iteration: 19, Log-Lik: -5621.900, Max-Change: 0.00041
Iteration: 20, Log-Lik: -5621.900, Max-Change: 0.00027
Iteration: 21, Log-Lik: -5621.900, Max-Change: 0.00021
Iteration: 22, Log-Lik: -5621.900, Max-Change: 0.00008
Calculating information matrix...
mirt(data = py_resp_wide[mask_analytic_sample, -c(1:2)], model = model,
   SE = TRUE)
Full-information item factor analysis with 1 factor(s).
Converged within 1e-04 tolerance after 22 EM iterations.
mirt version: 1.32.1
M-step optimizer: nlminb
EM acceleration: Ramsay
Number of rectangular quadrature: 61
Latent density type: Gaussian
Information matrix estimated with method: Oakes
Second-order test: model is a possible local maximum
Condition number of information matrix = 19.5315
Log-posterior = -5621.898
Estimated parameters: 60
DIC = 11363.8
G2 (1073741763) = 6488.2, p = 1
RMSEA = 0, CFI = NaN, TLI = NaN
```

IRT Item Parameters

	a	b	g	u
1314	1.255	-1.297	0	1
1303	1.012	-1.893	0	1
1311	1.088	-0.021	0	1
1296	1.106	-2.219	0	1
1308	1.402	-1.542	0	1
1302	1.426	-0.744	0	1
1297	1.620	-1.413	0	1
1310	1.259	-1.674	0	1
1307	1.387	-1.534	0	1
1306	0.810	-1.416	0	1
1316	1.294	-1.702	0	1
1300	0.980	-0.891	0	1
1325	0.607	1.032	0	1

	а	b	g	u
1319	1.334	-0.852	0	1
1298	0.950	-1.081	0	1
1317	0.703	-1.750	0	1
1324	0.448	-1.017	0	1
1321	0.861	-2.448	0	1
1323	0.620	-0.928	0	1
1313	0.547	-0.854	0	1
1318	1.255	-3.106	0	1
1309	1.785	-0.042	0	1
1299	0.697	-2.348	0	1
1322	0.574	0.236	0	1
1304	0.702	-0.568	0	1
1315	0.699	-3.429	0	1
1301	0.714	-1.814	0	1
1320	0.617	0.446	0	1
1312	1.193	-0.791	0	1
1305	0.968	-2.613	0	1

Item Fit Statistics (S-X2): p-val < 0.05 <=> generally indicaties model misfit

claim	name	target	item	S_X2	df.S_X2	RMSEA.S_X2	p.S_X2 flag
Claim 4	lang_python_19	function args	1314	12.469	16	0.000	0.711
Claim 2	lang_python_08	classes	1303	21.259	17	0.025	0.215
Claim 3	lang_python_16	read-json	1311	18.999	14	0.030	0.165
Claim 1	lang_python_01	for loops	1296	10.124	16	0.000	0.860
Claim 2	lang_python_13	dictionary-comprehension	1308	12.141	15	0.000	0.668
Claim 2	lang_python_07	classes	1302	12.187	15	0.000	0.665
Claim 1	lang_python_02	lamda function	1297	14.605	15	0.000	0.480
Claim 3	lang_python_15	list-comprehension	1310	18.852	15	0.026	0.220
Claim 2	lang_python_12	classes	1307	31.498	15	0.053	0.008 <=
Claim 2	lang_python_11	string	1306	9.343	17	0.000	0.929
Claim 4	lang_python_21	import-module	1316	14.703	15	0.000	0.473
Claim 1	lang_python_05	String	1300	18.774	17	0.016	0.342
Claim 5	lang_python_30	pandas	1325	21.868	16	0.031	0.147
Claim 4	lang_python_24	requirements-txt	1319	11.348	15	0.000	0.728
Claim 1	lang_python_03	variable	1298	21.760	17	0.027	0.194
Claim 4	lang_python_22	name-main	1317	20.987	18	0.021	0.280
Claim 5	lang_python_29	requests	1324	22.347	19	0.021	0.267
Claim 5	lang_python_26	flask	1321	9.823	17	0.000	0.911
Claim 5	lang_python_28	numpy	1323	23.426	17	0.031	0.136
Claim 3	lang_python_18	write-file	1313	27.796	17	0.040	0.047 <=
Claim 4	lang_python_23	name-space	1318	9.235	6	0.037	0.161
Claim 3	lang_python_14	dictionary	1309	11.257	12	0.000	0.507
Claim 1	lang_python_04	strings	1299	6.918	18	0.000	0.991

claim	name	target	item	S_X2	df.S_X2	RMSEA.S_X2	p.S_X2 flag
Claim 5	lang_python_27	numpy	1322	26.147	17	0.037	0.072
Claim 2	lang_python_09	iterators	1304	15.889	17	0.000	0.532
Claim 4	lang_python_20	error-handing	1315	20.123	16	0.026	0.215
Claim 1	lang_python_06	zip	1301	19.058	18	0.012	0.388
Claim 5	lang_python_25	datetime	1320	22.801	16	0.033	0.119
Claim 3	lang_python_17	static-method	1312	22.723	16	0.033	0.121
Claim 2	lang_python_10	NA	1305	9.999	16	0.000	0.867

Items are flagged with '<=' to be reviewed or removed if p-value < 0.05. This indicates poor fit of 2PL model.

IRT Plots

Item Local-Dependence Plots - Residual Dependencies given a unidimensional model:

Item Characteristic Curves (Tracelines), by Claims

Claim 2: Container Objects

0.4

0.2

0.0

Item Information Curves by Claims

Claim 2: Container Objects

Calibration Sample Characteristics

Generalist - Overall Level

Generalist - Prog Prob Solving Levels

Scoring

Distributions & Correlations

Correlations - Python vs Quiz

Avg. SE

Equating/Linking Scores

In order to get language assessment SkillEstimates on the same scale as the the other quizzes, it requires being able to produce item parameters or IRT-ability estimates on the same scale as the other assessments.

The equating/linking design available is a *Single Group* Design where the same candidates have taken both a previous core quiz and a language assessement. Therefore, there are limited methodolgies available to link the two scales together (plus with a limited sample size).

Three approaches explored are:

- Mean Method
- Linear Method
- Equipercentile Method

Mean Method

Result: Programmatic Problem Solving Scales score produce smaller linking error

Badges - Test Characteristic Curve

Badges - Quiz Level, by Badge

Language Levels, Quiz Levels

Linear Method

Result: Programmatic Problem Solving Scales score produce smaller linking error

Badges - Test Characteristic Curve

Badges - Quiz Level, by Badge

Overall Levels by Language Badges

Language Levels, Quiz Levels

Percentile Method