

COEXISTENCE OF MANY SPECIES IN RANDOM ECOSYSTEMS

by Carlos A. Serván, et al. (2018)

FRANCESCO FONTANA

francesco.fontana.10@studenti.unipd.it

April 29, 2022

TABLE OF CONTENT

1) INTRODUCTION

- Basic concepts and goals
- Stability & Feasibility
- Food web example

2) DISTRIBUTION

- First intuition
- Some simulations
- > Adding correlation

3) STRUCTURE ADDITION

- > Some types of structure
- Simulations with structure

4) ROLE OF MEAN $(\neq 0)$

- ► Multivariate normal distribution
- >Adding structure

5) Conclusions

- Discussion
- Related application & future work
- > Summary
- **BACKUP SLIDES**

INTRODUCTION

Starting from Generalized Lotka-Volterra (GLV) population dynamics:

$$\frac{dX_i(t)}{dt} = X_i(t) \left(r_i + \sum_j A_{ij} X_j(t) \right) \qquad i \in [1, 2, \dots, n]$$
 [1]

n: # of different species

 X_i : *i-esim species abundance*

 r_i : *i-esim growth rate*

 A_{ij} : interaction matrix of species

PROBLEMS:

- difficult to manage with a lot of species → parameters fine tuning
- we observe only a portions (*pruned by dynamics*) instead of the entire species' pool

DIFFERENT PERSPECTIVE

What is the probability that *all* the species in a community cohexist?

Probability of finding k species (out of n) after the dynamic evolution

BASIC CONCEPTS & GOALS

GOAL: Finding the probability to have **k** species, after that the dynamic has evolved, starting

from $oldsymbol{n}$ interacting populations and $oldsymbol{random}$ parameters.

We need two important feature:

COHEXISTANCE

STABILITY

BASIC CONCEPTS & GOALS

GOAL: Finding the probability to have **k** species, after that the dynamic has evolved, starting

from \boldsymbol{n} interacting populations and \boldsymbol{random} parameters.

We need two important feature:

COHEXISTANCE

STABILITY

J

Dynamic evolution = *species pruning*

Stationary solution (Equilibria)

BASIC CONCEPTS & GOALS

GOAL: Finding the probability to have k species, after that the dynamic has evolved, starting

from n interacting populations and random parameters.

We need two important feature:

COHEXISTANCE

1

Caused by what?
Any impact due to the structure?

We'll see later on...

STABILITY

J

Dynamic evolution = *species pruning*

1

Stationary solution (Equilibria)

Stationary solution of GLV [1]:
$$x_i^* \left(r_i + \sum_j A_{ij} x_j \right) = 0$$
 for $i \in [1, 2, ..., n]$ [2]

$$\Rightarrow x^* = -A^{-1} r$$
 [3]

Stationary solution of GLV [1]:
$$x_i^* \left(r_i + \sum_i A_{ij} x_i \right) = 0$$
 for $i \in [1, 2, ..., n]$ [2]

$$\Rightarrow x^* = -A^{-1} r$$
 [3]

Equilibrium stability

Lyapunov stability:

diagonally stable interaction matrix A

DEFINITION: A generic matrix A is L yapunov diagonally stable (LDS) if there exists a positive diagonal matrix D such that $(DA + A^TD)$ is negative definite.

Stationary solution of GLV [1]:
$$x_i^* \left(r_i + \sum_i A_{ij} x_i \right) = 0$$
 for $i \in [1, 2, ..., n]$ [2]

$$\Rightarrow x^* = -A^{-1} r$$
 [3]

Equilibrium stability

Lyapunov stability:

diagonally stable interaction matrix A

DEFINITION: A generic matrix A is L yapunov diagonally stable (LDS) if there exists a positive diagonal matrix D such that $(DA + A^TD)$ is negative definite.

Assuming interaction matrix *A negative defined* \Rightarrow *D* could be the identity matrix \mathbb{I}_n

$$D = \mathbb{I}_n \implies eigenvalues(A + A^T) < 0$$

Stationary solution of GLV [1]:
$$x_i^* \left(r_i + \sum_j A_{ij} x_j \right) = 0$$
 for $i \in [1, 2, ..., n]$ [2]

$$\Rightarrow x^* = -A^{-1} r$$
 [3]

Equilibrium stability

diagonally stable interaction matrix A

DEFINITION: A generic matrix A is L yapunov diagonally stable (LDS) if there exists a positive diagonal matrix D such that $(DA + A^TD)$ is negative definite.

Assuming interaction matrix *A negative defined* \Rightarrow *D* could be the identity matrix \mathbb{I}_n

$$D = \mathbb{I}_n \implies eigenvalues(A + A^T) < 0$$

LDS imply that ∃ **globally attractive** fixed point

Non-invasible solution

GOAL: <u>Distribution</u> of non-invasible fixed point?

FEASIBILITY

DEFINITION: A system is feasible if all abundances at equilibrium are positive

$$\implies x_i^* > 0, \ \forall i$$

STABILITY & FEASIBILITY how are related to COEXISTANCE?

- Feasibility is necessary
- Stability, if added, completes the hypothesis to study coexistence

FEASIBILITY

DEFINITION: A system is feasible if all abundances at equilibrium are positive

$$\Rightarrow x_i^* > 0, \ \forall i$$

STABILITY & FEASIBILITY how are related to COEXISTANCE?

- Feasibility is necessary
- Stability, if added, completes the hypothesis to study coexistence

Given these conditions, it's possible to find an *analytical* solution for P(k|n)!

FOOD WEB EXAMPLE

Considering the GLV system of equations [1], the dynamic evolves with:

- $\checkmark r_i > 0$ grow in isolation (producers)
- $\checkmark r_i < 0 \rightarrow \text{grow with interactions } (consumers)$
- ✓ Random interactions Aij

$$r_i$$
, A_{ij} $(j \neq i)$
Simmetric $\mathcal{N}(0,1)$

Simmetric Gaussian Distribution

 A_{ii} (diagonal) $\mathcal{N}(0,1)+oldsymbol{d}$

d < 0 (LDS)

Example: matrix $A_{(5x5)}$ with $d=-5$							
-4,550	-0,265	-0,546	-1,028	-0,685			
-0,882	-4,419	-0,753	1,939	1,078			
1,540	0,133	-4,531	0,137	2,646			
0,301	-0,332	0,796	-5,374	1,440			
-0,298	1,109	2,137	-0,253	-4,389			

Easy Model → Uncoupled Logistic Equation

- Suppose that species do not interact with each other \rightarrow A off-diagonal terms = 0
- For LDS $\rightarrow A_{ii} < 0$, $\forall i$.
- If p_i is the probability that $r_i > 0$, and the stationary solution is [3] ($x_i^* = -A^{-1} r_i$)

Easy Model → Uncoupled Logistic Equation

- Suppose that species do not interact with each other \rightarrow A off-diagonal terms = 0
- For LDS $\rightarrow A_{ii} < 0$, $\forall i$.
- If p_i is the probability that $r_i > 0$, and the stationary solution is [3] ($x_i^* = -A^{-1} r_i$)

$$P_{NI} = \prod_{i \in \{S\}_k} p_i \prod_{i \notin \{S\}_k} (1 - p_i)$$

Probability to have a non-invasible solution x^* with k positive components

If r_i distribution is <u>symmetric</u>

$$\rightarrow p_i = \frac{1}{2} \Longrightarrow P_{NI} = \frac{1}{2^n}$$

Easy Model → Uncoupled Logistic Equation

- Suppose that species do not interact with each other \rightarrow A off-diagonal terms = 0
- For LDS $\rightarrow A_{ii} < 0$, $\forall i$.
- If p_i is the probability that $r_i > 0$, and the stationary solution is [3] ($x_i^* = -A^{-1} r_i$)

$$P_{NI} = \prod_{i \in \{S\}_k} p_i \prod_{i \notin \{S\}_k} (1 - p_i)$$

Probability to have a non-invasible solution x^* with k positive components

If r_i distribution is $\underline{symmetric}$

$$\rightarrow p_i = \frac{1}{2} \Longrightarrow P_{NI} = \frac{1}{2^n}$$

Binomial distribution

$$\Rightarrow P(k|n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{2^n}$$

... but is *Binomial* also when species interact??

Binomial distribution

$$\Rightarrow P(k|n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{2^n}$$

... but is *Binomial* also when species interact??

YES

For a *feasible equilibrium*: $\Rightarrow x^* = -A^{-1} r$

Due to simmetry, 2^n possible sign patterns for x^* that are equally probable.

Hence it holds: $\rightarrow P(n|n) = \frac{1}{2^n}$

Binomial distribution

$$\Rightarrow P(k|n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{2^n}$$

... but is *Binomial* also when species interact??

YES

For a <u>feasible equilibrium</u>: $\Rightarrow x^* = -A^{-1} r$

Due to simmetry, 2^n possible sign patterns for x^* that are equally probable.

Hence it holds:
$$\rightarrow P(n|n) = \frac{1}{2^n}$$

Defining $D_k = (-1)^{\delta_{ik}} \delta_{ij} \implies (D_k A D_k) D_k x^* = -D_k r$ Since there is the simmetry hypothesis:

$$(D_k A D_k) \rightarrow$$
 same distribution of A
 $D_k r \rightarrow$ same distribution of r

DISTRIBUTION

Binomial distribution

$$\Rightarrow P(k|n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{2^n}$$

... but is *Binomial* also when species interact??

YES

For a <u>feasible equilibrium</u>: $\Rightarrow x^* = -A^{-1} r$

Due to simmetry, 2^n possible sign patterns for x^* that are equally probable.

Hence it holds: $\rightarrow P(n|n) = \frac{1}{2^n}$

Defining $D_k = (-1)^{\delta_{ik}} \delta_{ij} \implies (D_k A D_k) D_k x^* = -D_k r$ Since there is the simmetry hypothesis:

$$\begin{array}{ccc} (D_k A D_k) & \to \\ D_k r & \to \end{array}$$

same distribution of A same distribution of r

 D_k just flips the sign of the k-th component of x^*

⇒ applying repeatedly we can connect any two sign patterns of solutions

Binomial distribution

$$\Rightarrow P(k|n) = \binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \frac{1}{2^n}$$

... but is *Binomial* also when species interact??

YES

For a *feasible equilibrium*: $\Rightarrow x^* = -A^{-1} r$

Due to simmetry, 2^n possible sign patterns for x^* that are equally probable.

Hence it holds: $\rightarrow P(n|n) = \frac{1}{2^n}$

Defining $D_k = (-1)^{\delta_{ik}} \delta_{ij} \implies (D_k A D_k) D_k x^* = -D_k r$ Since there is the simmetry hypothesis:

$$(D_k A D_k) \rightarrow$$
 same distribution of A
 $D_k r \rightarrow$ same distribution of r

 D_k just flips the sign of the k-th component of x^* \Rightarrow applying repeatedly we can connect any two sign patterns of solutions

P(k|n) is the same as before

SOME SIMULATIONS

FIGURE 1: Simulations of the number of coexisting species **k** with 10000 iterations, for systems with different initial value **n** of species.

The dots are the expected values given by the Binomial distribution

ADDING CORRELATION

FIGURE 2: Simulations of the number of coexisting species k with 10000 iterations, for systems with n = 10 starting species, for different value of correlation ρ .

STRUCTURE ADDITION

- ➤ *G*: adjacency matrix of an undirected graph (*structure*)
- $\triangleright M = G \circ A \leftrightarrow \text{Hadamard (entry-wise) product}$
- $\triangleright D(G \circ A)D = G \circ (DAD)$ for D diagonal
- \triangleright Recalling: $Dk = (-1)^{\delta_{ik}} \delta_{ij} \rightarrow D_k AD_k$ has the same distribution of A
 - $\rightarrow D_k r$ has the same distribution of r
- \triangleright Distribution of M remains invariant to $D_k M D_k$

Adding Network Structure <u>Does not Change</u> The Overall Probability Distribution

SOME TYPES OF STRUCTURE

Fixed matrix

Power law

2 blocks

FIGURE 3: Examples of 3 types of symmetric interaction matrix.

TOP: position of non-zero coefficients.

BOTTOM: LDS matrices where more negative values of A_{ij} are darker.

SIMULATIONS WITH STRUCTURE

FIGURE 4: Simulations of the number of coexisting species k with 10000 iterations, for systems with n = 10 starting species, for different types of interaction matrix.

Role of Mean $(\neq 0)$

Now, we'll introduce *Interacting Competitors*, so that: $\blacksquare A_{ij} < 0$, $\forall i,j$

- $r_i \sim \mathcal{N}(\gamma, 1)$ with $\gamma \neq 0$

In particular for the interaction matrix *A*:

$$A_{ij} = \mu = \frac{\widehat{\mu}}{n} < 0$$

$$A_{ii} = d_i = \alpha < 0$$

INTER-SPECIFIC INTERACTION (COMPETITIVE)

$$A_{ii} = d_i = \alpha < 0$$

INTRA-SPECIFIC INTERACTION

Values used in the simulations:

$$(\mu = -0.5; \alpha = -1)$$

ROLE OF MEAN $(\neq 0)$

FIGURE 4: Simulations of the number of coexisting species k with 10000 iterations, for systems with n = 10 starting species, for different types of interaction matrix.

ROLE OF MEAN $(\neq 0)$

FIGURE 4: Simulations of the number of coexisting species k with 10000 iterations, for systems with n = 10 starting species, for different types of interaction matrix.

Since $r_i \sim \mathcal{N}(\gamma, 1)$ with $\gamma \neq 0$. \Rightarrow solution $x^* = -A^{-1} r$ follow a *multivariate normal distribution*

Since $r_i \sim \mathcal{N}(\gamma, 1)$ with $\gamma \neq 0$. \Rightarrow solution $x^* = -A^{-1} r$ follow a *multivariate normal distribution*

P(k|n) can be written as double integral (**BAD BEAST**)

COMPUTED NUMERICALLY

with many approximations: **saddle-point** [for $n \gg 1$], Hubbard-Stratonovich, FFT, Stirling,...

Since $r_i \sim \mathcal{N}(\gamma, 1)$ with $\gamma \neq 0$. \Rightarrow solution $x^* = -A^{-1} r$ follow a *multivariate normal distribution*

P(k|n) can be written as double integral (**BAD BEAST**)

with many approximations: **saddle-point** [for $n \gg 1$], Hubbard-Stratonovich, FFT, Stirling,...

 \downarrow

$$P(k|n,\alpha,\hat{\mu},\gamma) = \frac{n(q+u)-1}{\sqrt{2\pi nq(1-q)K(\boldsymbol{\sigma},n)}}e^{nF(\boldsymbol{\sigma})+G(\boldsymbol{\sigma})}$$

[4]

•
$$q = \frac{k}{n}$$
 • $u = \frac{\alpha}{\hat{\mu}} = \frac{\alpha}{n\mu}$ • $\sigma = (q, u, v)$ • $v = \frac{\gamma(\alpha - \mu)}{\alpha - \mu + k\mu}$

The *mode* of the distribution is:

$$u = \frac{\alpha}{\hat{\mu}} = \frac{e^{-\left[\Phi^{-1}(1-q^*)\right]^2/2} - \sqrt{2\pi} \, q^* \, \Phi^{-1}(1-q^*)}{\sqrt{2\pi} \left[\Phi^{-1}(1-q^*) + \gamma\right]}$$
[5]

where:
$$\Phi^{-1}(q) = \sqrt{2} \operatorname{erf}^{-1}(2q - 1)$$

A simple relation arises for the curve that separates <u>left</u> and <u>right-skewed distributions</u> by choosing:

$$q^* = 1/2 \implies \Phi^{-1} \to 0$$

$$\downarrow$$

$$u = \frac{1}{\sqrt{2\pi}\gamma} \implies \frac{\alpha\gamma}{\mu} = \frac{n}{\sqrt{2\pi}}$$
 [6]

...WITH STRUCTURE

...WITH STRUCTURE

CONCLUSIONS

FOOD WEB \longrightarrow sampled A_{ij} and r_i independently \downarrow generation of " \underline{bad} " species $(r_i < 0 \& A_{ij} < 0)$ \downarrow surely EXTINCTED! \Longrightarrow $\underline{CORRELATION}$

FIGURE 6: LEFT: $\Re(z)$ vs $\Im(z)$ parts of eigenvalues (z) of interaction matrix $A \dots^*$ **RIGHT:** Growth rates distribution \dots^*

*...before and after the dynamics has reached equilibrium. (initial n = 3000 species; survived k = 1525 species).

Francesco Fontana 35 of 38

RELATED APPLICATION & FUTURE WORK

APPLICATIONS

- Application to local communities composed of subsets of the same pool of species (*metacommunities*): model the distribution of the number of species found in local patches
- Application to microbial communities (assembly)

RELATED APPLICATION & FUTURE WORK

APPLICATIONS

- Application to local communities composed of subsets of the same pool of species (*metacommunities*): model the distribution of the number of species found in local patches
- Application to microbial communities (*assembly*)

FUTURE WORK

- Consider stronger form of networks, in which also the non-zero coefficient have a pattern
- Relaxing LDS condition → very challenging
- Understanding the process of assembly in which communities are built

SUMMARY

SUMMARIZING:

- ✓ Large communities can stably coexist thanks to the selection imposed by the dynamical pruning of a large species pool
- ✓ Successfully tested many different structures, no particular impact from network once stability is reached

MEAN = 0

- $\triangleright P(k|n) = Bin(n, \frac{1}{2})$
- ➤ No differences caused by the network

$MEAN \neq 0$

 \triangleright P(k|n) not binomial

➤ Little effect due to network