National Semiconductor

ORIGINAL

DT1056/DT1057 DIGITALKER™ Standard Vocabulary Kit

General Description

The DIGITALKERTM is a speech synthesis system consisting of several N-channel MOS integrated circuits. It contains a speech processor chip (SPC) and speech ROM and when used with external filter, amplifier, and speaker, produces a system which generates high quality speech including the natural inflection and emphasis of the original speech. Male, female, and children's voices can be synthesized.

The SPC communicates with the speech ROM, which contains the compressed speech data as well as the frequency and amplitude data required for speech output. Up to 128k bits of speech data can be directly accessed.

With the addition of an external resistor, on-chip, debounce is provided for use with a switch interface.

An interrupt is generated at the end of each speech sequence so that several sequences or words can be cascaded to form different speech expressions.

The DT1056/DT1057 is a standard DIGITALKER kit encoded with 131 separate and useful words (see the Master Word List Table I) and when used with the DT1050 Standard Vocabulary Kit, provides a library of 274 useful words. The words have been assigned discrete addresses, making it possible to output single words or words concatenated into phrases or even sentences.

The "voice" output of the DT1056/DT1057 is a highly intelligible male voice. The vocabulary is chosen so that it is applicable to many products and markets.

Features

- Easily adaptable to DT1050 Standard Vocabulary Kit
- 131 useful words
- COPSTM and MICROBUSTM compatible
- Designed to be easily interfaced to other popular microprocessors
- Natural inflection and emphasis of original speech
- Addresses 128k bits of ROM directly
- TTL compatible
- On-chip switch debounce for interfacing to manual switches independent of a microprocessor
- Interrupt capability for cascading words or phrases
- Crystal controlled or externally driven oscillator
- Available in complete kit (DT1056) or speech ROMs only (DT1057)

Applications

- Telecommunications
- Appliance
- Automotive
- Teaching aids
- Consumer products
- Clocks
- Language translation
- Annunciators

Typical Applications

Minimum Configuration Using Switch Interface

 ${\tt DIGITALKER^{TM}\ MICROBUS^{TM}\ and\ COPS^{TM}\ are\ trademarks\ of\ National\ Semiconductor\ Corp}$

Absolute Maximum Ratings

Storage Temperature Range Operating Temperature Range V_{CD}-V_{SS}

- 65°C to + 150°C 0°C to 70°C Voltage at Any Pin
Operating Voltage Range, V_{DD}-V_{SS}
Lead Temperature (Soldering, 10 seconds)

12V 7V to 11V 300°C

DC Electrical Characteristics * $T_A = 0$ °C to 70 °C, $V_{DD} = 7V-11V$, $V_{SS} = 0V$, unless otherwise specified.

12V

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIL	Input Low Voltage		- 0.3		0.8	V
V _{IH}	Input High Voltage		2.0		V _{DD}	V
V _{OL}	Output Low Voltage	I _{OL} = 1.6 mA			0.4	\ \
V _{OH}	Output High Voltage	$I_{OH} = -100 \mu\text{A}$	2.4		5.0	V
VILX	Clock Input Low Voltage		- 0.3		1.2	V
V_{iHX}	Clock Input High Voltage		5.5		V _{DD}	V
I _{DD}	Power Supply Current				45	mA
ابر	Input Leakage				± 10	· μ A
lıLx	Clock Input Leakage				± 10	μΑ
Vs	Silence Voltage			0.45 V _{DD}		\ \
Vout	Peak to Peak Speech Output	V _{DD} = 11V		2.0		V
R _{EXT}	External Load on Speech Output	R _{EXT} Connected Between Speech Output and V _{SS}	50			kΩ

AC Electrical Characteristics * T_A = 0 °C to 70 °C, V_{DD} = 7V-11V, V_{SS} = 0V, unless otherwise specified.

Symbol	Parameter	Min	Max	Units
t _{aw}	CMS Valid to Write Strobe	350		ns
t _{csw}	Chio Select ON to Write Strobe	310		ns
taw	Data Bus Valid to Write Strobe	50	•	ns
t _{wa}	CMS Hold Time after Write Strobe	50		ns
twa	Data Bus Hold Time after Write Strobe	100		ns
t.ww	Write Strobe Width (50% Point)	430		ns
t _{red}	ROMEN ON to Valid ROM Data		2	μS
t _{wss}	Write Strobe to Speech Output Delay		410	μS
ft	External Clock Frequency	3.92	4.08	MHz

Note: Rise and fall times (10% to 90%) of MICROBUS signals should be 50 ns maximum.

Timing Waveforms

CMS VALID CS I csw I csw VALID VALID VALID VALID VALID

^{*}SPC characteristics only. ROM characteristics covered by separate data sheet for MM52164.

Timing Waveforms (Continued)

ROM Data Timing

Note 1: ROM Data 1-8 can go valid any time after ADR 0-13 changes, however it must be valid within the tred spec and remain valid until ROMEN goes high.

Functional Description

The following describes the function of all SPC input and output pins.

Note: In the following descriptions, a low represents a logic 0 (0.4V nominal), and a high represents a logic 1 (2.4V nominal).

INPUT SIGNALS

Chip Select (CS): The SPC is selected when CS is low. It is only necessary to have CS low during a command to the SPC. It is not necessary to hold CS low for the duration of the speech data.

Data Bus (SW 1-8): This is an 8-bit parallel data bus which contains the start. I disadress of the speech data.

Data bus inputs SATE SW8 accept an 8-bit binary address which is the address of the word which is to be "spoken" from the DIGITALKER output. See the Master Word List (Table I) for the complete listing of words and their respective addresses. If the entire word list is not used, unused inputs must be connected to Vss.

Command Select (CMS): This line specifies the two commands to the SPC.

CMS Function O Reset interrupt and start speech sequence 1 Reset interrupt only

Write Strobe (\overline{WR}): This line latches the starting address (SW 1-SW 8) into a register. On the rising edge of the \overline{WR} , the SPC starts execution of the command specified by CMS. The command sequence is shown in the timing waveform section. If a command to start a new speech sequence is issued during a speech sequence, the new speech sequence will be started immediately. When connecting \overline{WR} to a switch, it must be a single pole 2 position switch as shown on page 1.

ROM Data (RDATA 1-8): This is an 8-bit parallel data bus which contains the speech data from the speech ROM.

OUTPUT SIGNALS

Interrupt (INTR): This signal goes high at the completion of any speech sequence. It is reset by the next valid command. It is also reset at power up.

ROM Address (ADR 0-ADR 13): This is a 14-bit parallel bus that supplies the address of the speech data to the speech ROM.

ROM Enable (ROMEN): For low power applications, this line can be used to drive a transistor that switches the supply for static speech ROMs. See ROM Data Timing.

Speech Output (Speech Out): These is the analog output that represents the speech data. See frequency response section.

INPUT/OUTPUT SIGNALS

Clock Input/Output (OSC IN, OSC OUT): These two pins connect the main timing reference (crystal) to the SPC.

PHRASE QUALITY

In normal human speech, the brain puts durations of silence between the words to make the sentence flow smoothly. Since several durations of silence are provided in the Master Word List, the actual quality of any phrase can be significantly improved by adding durations of silence (also assigned addresses) between the words. As one thinks about how the phrase is actually spoken, one might assume the approximate duration of silence between each word, and insert the closest duration of silence from the word list. A hint in this area would be that for words beginning with the letters, K, T, P, B, D, and G insert 80 milliseconds silence prior to the words, and for words ending in the same letters as above. 40 milliseconds silence following the word is recommended.

Functional Description (Continued)

TABLE I. DT1056/DT1057* MASTER WORD LIST

	8-Bit Binary		8-Bit Binary		8-Bit Binary Address	
Word	Address	Word	Address	Word		
	SW8 SW1		SW8 SW1		SW8 SW1	
ABORT	0000000	FARAD	00101100	PER	01011000	
ADD	0000001	FAST	00101101	PICO	01011001	
ADJUST	00000010	FASTER	00101110	PLACE	01011010	
ALARM	00000011	FIFTH	00101111	PRESS	01011011	
ALERT	00000100	FIRE	00110000	PRESSURE	01011100	
ALL	00000101	FIRST	00110001	QUARTER	01011101	
ASK	00000110	FLOOR	00110010	RANGE	01011110	
ASSISTANCE	00000111	FORWARD	00110011	REACH	01011111	
ATTENTION	00001000	FROM	00110100	RECEIVE	01100000	
BRAKE	00001001	GAS	00110101	RECORD	01100001	
BUTTON	00001010	GET	00110110	REPLACE	01100010	
BUY	00001011	GOING	00110111	REVERSE	01100011	
CALL	00001100	HALF	00111000	ROOM	01100100	
CAUTION	00001101	HELLO	00111001	SAFE	01100101	
CHANGE	00001110	HELP	00111010	SECURE	01100110	
CIRCUIT	00001111	HERTZ	00111011	SELECT	01100111	
CLEAR	00010000	HOLD	00111100	SEND	01101000	
CLOSE	00010001	INCORRECT	00111101	SERVICE	01101001	
COMPLETE	00010010	INCREASE	00111110	SIDE	01101010	
CONNECT	00010011	INTRUDER	00111111	SLOW	01101011	
CONTINUE	00010100	JUST	01000000	SLOWER	01101100	
COPY	00010101	KEY	01000001	SMOKE	01101101	
CORRECT	00010110	LEVEL	01000010	SOUTH	01101110	
DATE	0010111	LOAD	01000011	STATION	01101111	
DAY	30011000	LOCK	01000100	SWITCH	01110000	
DECREASE	00011001	MEG	01000101		01110001	
DEPOSIT	0011010	MEGA	01000110	TEST	01110010	
DIAL	00011011	MICRO	01000111	TH (NOTE 2)	01110011	
DIVIDE	00011100	MORE	01001000	THANK	01110100	
DOOR	00011101	MOVE	01001001	THIRD	01110101	
EAST	00011110	NANO	01001010	THIS	01110110	
ED (NOTE 1)	00011111	NEED	01001011	TOTAL	01110111	
ED (NOTE 1)	00100000	NEXT	01001100	TURN	01111000	
ED (NOTE 1)	00100001	NO	01001101	USE	01111001	
ED (NOTE 1)	00100010	NORMAL	01001110		01111010	
EMERGENCY	00100011	NORTH	01001111	WAITING	01111011	
END	00100100	NOT	01010000	WARNING	01111100	
ENTER	00100101	NOTICE	01010001	WATER	01111101	
ENTRY	00100110	OHMS	01010010	WEST	01111110	
ER	00100111	ONWARD	01010011	SWITCH	0111111	
EVACUATE	00101000	OPEN	01010100	WINDOW	10000000	
EXIT	00101001	OPERATOR	01010101	YES	1 () 0 0 0 1	
FAIL	00101010	OR	01010110	ZONE	16 30010	
FAILURE	00101011	PASS	01010111		-	
ALOTTE						

^{*}DT1056 is a complete kit including MM54134 SPC, DT1057 is SSR5 and SSR6 speech ROMs only.

Note 1: "ED" is a suffix that can be used to make any present tense word become a past tense word. The way we say "ED," however does vary from one word to the next. For that reason, we have offered 4 different "ED" sounds, it is suggested that each "ED" be tested with the desired word for best quality results. Address 31 "ED," should be used with words ending in "T" or "D," such as exit or load. Address 34 "ED," should be used with words ending with soft sounds such as ask. Address 33 "ED," should be used with all other words.

Note 2: TH s a suffix that can be added to words like six, seven, eight to form adjective words like sixth, seventh, eighth.

Note 3: "UTH sia suffix that can be added to words like twenty, thirty forty to form adjective words like thirtieth letc

Note 4: Address 130 is the last legal address in this particular word list. Exceeding address 130 will produce pieces of unintelligible invalid speech data

Crystal Circuit Information Typical Crystal Oscillator Network External Clock input (4.0 MHz) SPC EXTERNAL CLOCK Min TO CIRCUIT 100 ns txH 100 ns TXL R1 C1 C2 R2 Crystal 10-30 pF 40-60 pF 1M 1.5k 4.0 MHz (4.0 MHz crystal manufactured by Electro Dynamics Corp. P/N HC18-20 pF) **SPC Block and Connection Diagrams** CONTROL WORD REGISTER MUX ◆ ADR 0~13 ADDRESS REGISTER PHONEME 80M мих ADDRESS REGISTER DMOD GAIN AND CONTROL WORD FREQUENCY REGISTER REGISTER REGISTER • 0sc ⇔ PROGRAMMABLE 15 -FREQUENCY DECODER **▶** 0%0 JU1 CONTROL ► BOME? 00010 MS INTR ◀ SPEECH OUT CONVERTER PROGRAMMABLE GAIN AMPLIFIER **Dual-In-Line Package Dual-In-Line Package** V_{CC} (4.75V-5.25V) 40 VDD A7 -OSC IN OSC OUT SPEECH OUT 23 A8 ADR 13 (MSB) ĊŚ WŘ ADR 12 36 A5 -ROMEN ADR 11 35 ADR 10 INTR 34 ADR 9 CMS 33 20 CS1 (A13) ADA 8 A3 SW 8 (MSB) 32 ADR 7 SW 7 19 A10 31 SPC MM52164* A2 -ADR 6 SW 6 (MM54104) 30 ADR 5 18 A11 SW 5 AND 29 ADR 4 SW 4 28 17 08 ADR 3 SW 3 ADR 2 SW 2 26 16 07 ADRI SW 1 (LSB) 01 -25 ADRO (LSB) RDATA 0 (LSB) 15 06 02 - RDATA 7 (MSB) ADATA 1 18 23 - RDATA 6 14 05 RDATA 2 19 22 0.3 - RDATA 5 RDATA 3 20 ٧ss RDATA 4 TOP VIEW * For specific ROM device information, see MM52164 data sheet.

