Cálculo Diferencial e Integral I

6ª Ficha de problemas

Funções reais. Diferenciabilidade

1. Determine os seguintes limites:

a)
$$\lim_{x \to 0} \frac{10^x - 5^x}{x}$$
 b) $\lim_{x \to 0^+} \frac{x^2 \sin(\frac{1}{x})}{\sin x}$ c) $\lim_{x \to 0^+} \frac{e^{-\frac{1}{x}}}{x}$ d) $\lim_{x \to +\infty} x^{\frac{1}{x-1}}$

2. Calcule

$$a) \lim_{x \to +\infty} (\ln x)^{\frac{1}{x}} \quad b) \lim_{x \to 0^{+}} (\sec x)^{\sin x} \quad c) \lim_{x \to 0^{+}} \frac{\ln x}{x^{2} e^{\ln^{2} x}} \quad d) \lim_{x \to 0} (\operatorname{ch} x)^{\coth x}$$

- 3. Seja $f: \left[-\frac{1}{2}, \frac{1}{2}\right] \to \mathbb{R}$ tal que $f(x) = \arctan(x^2) + 1$
 - a) Determine o polinómio de Taylor de 2° grau em potências de x.
 - b) Determine um majorante para o erro que se comete em [-1/2, 1/2] ao aproximar f pelo polinómio indicado em a).
- 4. Prove que se $g: \mathbb{R} \to \mathbb{R}$ é três vezes diferenciável e se g'''(x) > 0, $\forall x \in \mathbb{R}$, então g não pode ter mais do que dois pontos de extremo local. Admitindo agora que g tem de facto extremos locais em α e β , com $\alpha < \beta$, indique se $g(\alpha)$ e $g(\beta)$ são máximos ou mínimos da função. Justifique.

Escreva a fórmula de Taylor para g e com resto de Lagrange de segunda ordem e aproveite-a para mostrar que $g(x) > g(\beta)$ para $x > \beta$.

- 5. Seja $f : \mathbb{R} \to \mathbb{R}, f(x) = |x|e^{1-x^2}$
 - a) Estude a função f do ponto de vista da continuidade e da diferenciabilidade. Em cada ponto em que f não seja diferenciável, calcule as derivadas laterais.
 - b) Complete o estudo da função f, considerando em particular os aspectos seguintes: crescimento, extremos, concavidade, inflexões e assíntotas. Esboce o gráfico da função f.