Forecasting Future Walmart Sales using KNN Regression

Muhammad Salman – 100995527 - Masters of Engineering in Electrical and Computer Engineering

Seyedeh Marziyeh Zamiri – 101214196 - Masters of Engineering in Electrical and Computer Engineering

Professor Mikhail Genkin, DATA 5000 Y – March 30th, 2021

Introduction

- Walmart Data set imported from Kaggle
- Comprised of three main CSV files containing correlation of different features, based on data pulled from 45 different store locations, with a number of departments in each store
- Features vary from numerical values, such as amount of sales, to boolean True/False for if a week contains a holiday or not
- Goal is to build/train a model that can predict future Walmart sales based on a specific store/department and date

Figure 1: Sample Walmart Store

Dataset

- Relevant CSVs within the dataset are listed below, along with the features within each one
- features.csv: Store #, Date, Local Temperature, Local Fuel Price, Markdown/Discounts, CPI index, Unemployment Index, and if the current week is a holiday
- *stores.csv*: Store#, Type of Store, and size of store by number of products
- *train.csv*: Store#, Department#, Date, Weekly Sales, and if the current week is a holiday

2	1	1 2/5/2010	24924.5	FALSE	2	1 A	151315	2	1 #####	42.31	2.572 NA NA NA	NA NA	211	8.106	FALSE
3	1	1 #######	46039.49	TRUE	3	2 A	202307	3	1 #####	38.51	2.548 NA NA NA	NA NA	211	8.106	TRUE
4	1	1 ########	41595.55	FALSE	4	3 B	37392	4	1 #####	39.93	2.514 NA NA NA	NA NA	211	8.106	FALSE
5	1	1 #######	19403.54	FALSE	5	4 A	205863	5	1 #####	46.63	2.561 NA NA NA	NA NA	211	8.106	FALSE
6	1	1 3/5/2010	21827.9	FALSE	6	5 B	34875	6	1 #####	46.5	2.625 NA NA NA	NA NA	211	8.106	FALSE
7	1	1 ########	21043.39	FALSE	7	6 A	202505	7	1 #####	57.79	2.667 NA NA NA	NA NA	211	8.106	FALSE
8	1	1 ########	22136.64	FALSE	8	7 B	70713	8	1 #####	54.58	2.72 NA NA NA	NA NA	211	8.106	FALSE
9	1	1 ########	26229.21	FALSE	9	8 A	155078	9	1 #####	51.45	2.732 NA NA NA	NA NA	211	8.106	FALSE
10	1	1 4/2/2010	57258.43	FALSE	10	9 B	125833	10	1 #####	62.27	2.719 NA NA NA	NA NA	211	7.808	FALSE
11	1	1 4/9/2010	42960.91	FALSE	11	10 B	126512	11	1 #####	65.86	2.77 NA NA NA	NA NA	211	7.808	FALSE
12	1	1 ########	17596.96	FALSE	12	11 A	207499	12	1 #####	66.32	2.808 NA NA NA	NA NA	210	7.808	FALSE
13	1	1 ########	16145.35	FALSE	13	12 B	112238	13	1 #####	64.84	2.795 NA NA NA	NA NA	210	7.808	FALSE
14	1	1 ########	16555.11	FALSE	14	13 A	219622	14	1 #####	67.41	2.78 NA NA NA	NA NA	210	7.808	FALSE
15	1	1 5/7/2010	17413.94	FALSE	15	14 A	200898	15	1 #####	72.55	2.835 NA NA NA	NA NA	210	7.808	FALSE
16	1	1 ########	18926.74	FALSE	16	15 B	123737	16	1 #####	74.78	2.854 NA NA NA	NA NA	210	7.808	FALSE
17	1	1 ########	14773.04	FALSE	17	16 B	57197	17	1 #####	76.44	2.826 NA NA NA	NA NA	211	7.808	FALSE
18	1	1 ########	15580.43	FALSE	18	17 B	93188	18	1 #####	80.44	2.759 NA NA NA	NA NA	211	7.808	FALSE
19	1	1 6/4/2010	17558.09	FALSE	19	18 B	120653	19	1 #####	80.69	2.705 NA NA NA	NA NA	211	7.808	FALSE
20	1	1 ########	16637.62	FALSE	20	19 A	203819	20	1 #####	80.43	2.668 NA NA NA	NA NA	211	7.808	FALSE
21	1	1 #######	16216.27	FALSE	21	20 A	203742	21	1 #####	84.11	2.637 NA NA NA	NA NA	211	7.808	FALSE
22	1	1 ########	16328.72	FALSE	22	21 B	140167	22	1 #####	84.34	2.653 NA NA NA	NA NA	211	7.808	FALSE
23	1	1 7/2/2010	16333.14	FALSE	23	22 B	119557	23	1 #####	80.91	2.669 NA NA NA	NA NA	211	7.787	FALSE
24	1	1 7/9/2010	17688.76	FALSE	24	23 B	114533	24	1 #####	80.48	2.642 NA NA NA	NA NA	211	7.787	FALSE
25	1	1 ########	17150.84	FALSE	25	24 A	203819	25	1 #####	83.15	2.623 NA NA NA	NA NA	211	7.787	FALSE
26	1	1 ########	15360.45	FALSE	26	25 B	128107	26	1 #####	83.36	2.608 NA NA NA	NA NA	211	7.787	FALSE
27	1	1 ########	15381.82	FALSE	27	26 A	152513	27	1 #####	81.84	2.64 NA NA NA	NA NA	211	7.787	FALSE
28	1	1 8/6/2010	17508.41	FALSE	28	27 A	204184	28	1 #####	87.16	2.627 NA NA NA	NA NA	212	7.787	FALSE
29	1	1 ########	15536.4	FALSE	29	28 A	206302	29	1 #####	87	2.692 NA NA NA	NA NA	212	7.787	FALSE
30	1	1 #######	15740.13	FALSE	30	29 B	93638	30	1 #####	86.65	2.664 NA NA NA	NA NA	212	7.787	FALSE
31	1	1 ########	15793.87	FALSE	31	30 C	42988	31	1 #####	85.22	2.619 NA NA NA	NA NA	212	7.787	FALSE
32	1	1 9/3/2010	16241.78	FALSE	32	31 A	203750	32	1 #####	81.21	2.577 NA NA NA	NA NA	212	7.787	FALSE
33	1	1 #######	18194.74	TRUE	33	32 A	203007	33	1 #####	78.69	2.565 NA NA NA	NA NA	211	7.787	TRUE
34	1	1 #######	19354.23	FALSE	34	33 A	39690	34	1 #####	82.11	2.582 NA NA NA	NA NA	212	7.787	FALSE
35	1	1 ########	18122.52	FALSE	35	34 A	158114	35	1 #####	80.94	2.624 NA NA NA	NA NA	212	7.787	FALSE
36	1	1 #######	20094.19	FALSE	36	35 B	103681	36	1 #####	71.89	2.603 NA NA NA	NA NA	212	7.838	FALSE
37	1	1 #######	23388.03	FALSE	37	36 A	39910	37	1 #####	63.93	2.633 NA NA NA	NA NA	212	7.838	FALSE
38	1	1 ########	26978.34	FALSE	38	37 C	39910	38	1 #####	67.18	2.72 NA NA NA	NA NA	212	7.838	FALSE
39	1	1 #######	25543.04	FALSE	39	38 C	39690	39	1 #####	69.86	2.725 NA NA NA	NA NA	212	7.838	FALSE
40	1	1 #######	38640.93	FALSE	40	39 A	184109	40	1 #####	69.64	2.716 NA NA NA	NA NA	212	7.838	FALSE
41	1	1 ########	34238.88	FALSE	41	40 A	155083	41	1 #####	58.74	2.689 NA NA NA	NA NA	212	7.838	FALSE
42	1	1 #######	19549.39	FALSE	42	41 A	196321	42	1 #####	59.61	2.728 NA NA NA	NA NA	212	7.838	FALSE

Figure 2: Snapshot of Three CSV files, Train, Stores, Features (Left to Right)

Methodology

Data Cleaning

- Once data was imported using Excel, all following data analysis was done using Python
- The first step was to load the data using the Pandas package, and import the CSV table as a data frame
- We proceeded to remove N/A data, as can be seen in the CSV screenshots in the Dataset section
- Once completed, all three data frames were merged into one, named main
- The main data frame was created by merging on common features between the three data frames, such as Store# and Date

Figure 3: Code to Load CSV and Clean Data

Data Exploration

- The next step was to explore the data and observe strong correlation between features
- The three sets that were observed were: Type of Store vs. Weekly Sales, Type of Store vs. Size of Store, Is Holiday vs. Weekly Sales

Observations

- Type of Store vs. Weekly Sales: Weak correlation, Type C seems to have least amount of sales, no strong difference between A and B
- Type of Store vs. Size of Store: Strong Correlation, A is largest, B is second largest, C is smallest
- Is Holiday vs. Weekly Sales: Some correlation, with slightly more sales when there was a holiday, however not as much as expected

Figure 4: Type of Store vs. Size of Store

Data Modelling

- In order to model the data, a machine learning model is normally selected
- We will select the K Nearest Neighbors Regression model
- Regression models allow a solid value to be predicted based on a series of dependent variables, such as we have in our case, since we are predicting future sales per store and department at certain dates
- The KNN approach will allow features to be classified based on their similarities as described with input data. Hence, predicted values will be classified based on how much their data resembles points in the dataset
- This modelling can be done in python using scikit-learn library in Python
- Yet to be finalized

Results

- No final results currently yielded
- Mention if trained model is successful

Conclusion

- Concluding remarks
- Explain how this model could help predict and forecast future sales for department stores

References

[1] Kaggle.com. 2014. Walmart Recruiting - Store Sales Forecasting | Kaggle. [online] Available at: https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting/data [Accessed 31 January 2021].

Acknowledgments

We would like to thank the organizers of Data Day for allowing us to present our Walmart Forecaster Project, as a part of the DATA 5000 course.

We would also like to thank Professor Michael Genkin for his dedication and support during the semester, as well as Professor Komeili and Professor Velazquez for teaching the course.