\bigwedge	1ath 135 - Undecidable Problems	
Note Titl		3/1/2010
	λ	
	Announcements	
-	1010	
	- Most the will be posted that - Nort the will be posted later today (due next wed. for Fri.)	
	- Nort the will be posted later today	
	due next wed or Fri	
	(The row ref	
	- Second oxam will be in ~3 weeks	
	seeme oxan will be in	

-

Last time: Algorithm Complexity We use big-O. (a count primitive operations) - processer independent - worst case - language independent Ne saw O(n), $O(n^2)$

The Halting Problem Undecidable problems

(and of 3.1)

Q: Can we write a program which accepts
as input another program & input,
then decides if the program will
run forever or halt on that input.

(So if it contains infinite loop, will run forever, for example, & our program will say that.)

Note: Our program can't just run
The input program.

Why?

If I simulate the other program

a it runs for ever than

50 do I.

Ihm: The halting problem is undecidable.

(that is, no program to solve it gan exist!) Pf: by contradiction Assume H(P, I) takes P (a program)

I (an input) + outputs "Walts"

or "rung Forever". Any program is just a strung of bits. So H 15 also a program. H(H, I) H(P,P)

Muned) Design a program that uses H,

K(P) calls H(P,P).

If H(P,P) says "loop Parever", K will

Nalt.

If H(P,P) says "halt", K will loop

Forever. depends on H(K,K).

If it says "halt" then K(K)either way, readled a contradiction. a

Recurrence Relations (4.3-4.4)
- Use then to model country problems
- Useful for vunture analysis of recursive aborithms (more next) time)
aborthms (more next) time)
- To solve:
· unrolling
\rightarrow a modern \rightarrow
· more advanced techniques.
Such as Master thin by characteristic
more advanced techniques Such as Master thin by characteristic egn method (after break)

Consider a sequence of numbers: Closed form inductive Dm: $a_0 = 0$ $a_n = a_{n-1} + 2$

Another example: Fibonacci numbers f_0 f_1 f_2 f_3 f_4 f_5 f_6 f_9 f_9 ... f_n : 0 1 1 2 3 5 8 13 21 34 ... Recursive DEn? fn = fn-1 + fn-2 Closed form? $f_n = (1+J5)^n - (1-J5)^n$

$$F(n) = n \cdot F(n-1)$$

$$n' = n (n-1)$$

$$A(n) = a^{n}$$

$$A(n) = a \cdot A(n-1)$$

$$A(n) = a^{n-1}$$

Compound interest · Po=\$1,000 (initial investment) · make 6% interest per year How much will you have after nyears? Recursive Dm: Po=1,000 - $P_{n} = (1.06)^{n}(1,000)$

Claim:
$$P_n = (1.06)^n P_0 = (1.06)^n (1,000)$$
 $P_0 = (1.06)^n P_0 = (1.06)^n (1,000)$

base case: $n = 0$ $P_0 = 1000$
 $(1.06)^n 1000 = 1-1000 = 1000$
 $1nd hp: Assume P_{n-1} = (1.06)^{n-1} (1000)$
 $1nd step; Consider P_n.$
 $1nd step; Consider P_n.$

If I can take stairs

I or 2 at a time, how

many different ways are

there to climb the stairs! Let Cn= # ways to climb n Stairs Base cases:

Think recursively!

First step: What are my Choices? $C_{n-1} + C_{n-2} = (C_{n-2} + C_{n-3}) + (C_{n-3} + C_{n-4})$ Fibonacci numbers!