Math. - ES 2

vendredi 17 juin 2022 - Durée 4 h

EXERCICE 1

On considère la série de terme général $u_n = \frac{1}{n^3 - n}$, pour $n \ge 2$.

- 1. Montrer que la série $\sum u_n$ est convergente.
- 2. Décomposer en éléments simples la fraction rationnelle $F = \frac{1}{X^3 X}$.
- 3. En déduire la somme de la série $\sum_{n>2} u_n$.

EXERCICE 2

On considère la fonction F définie sur [0,1[par

$$F(x) = \int_0^x \frac{t^3}{(1-t)(1+t^2)} dt$$

- 1. Justifier que F est dérivable sur [0,1] et donner l'expression de F'(x) pour $x \in [0,1]$.
- 2. Décomposer en éléments simples la fraction rationnelle $\frac{X^3}{(1-X)(1+X^2)}$, et en déduire l'expression de F(x) pour $x \in [0,1[$.
- **3.** Effectuer un $DL_3(0)$ de F(x).
- 4. Retrouver le résultat précédent à l'aide d'un équivalent de F'(x) au voisinage de 0.

EXERCICE 3

Soient $n \in \mathbb{N}^*$ et (S_n) définie par :

$$\forall n \in \mathbb{N}^*, \ S_n = \sum_{k=1}^n \frac{1}{k}$$

1. a. A l'aide d'une comparaison somme - intégrale, montrer que :

$$\forall n \in \mathbb{N}^*, \ln(n+1) \le S_n \le 1 + \ln(n)$$

- **b.** En déduire un encadrement de $\frac{S_n}{\ln(n)}$ pour $n \geq 2$, puis un équivalent de S_n au voisinage de $+\infty$.
- **2.** On pose :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

- **a.** Montrer que la série de terme général u_n est convergente. On note γ sa somme.
- **b.** Montrer que :

$$S_n = \ln(n) + \gamma + o(1)$$

3. Donner la nature de la série $\sum_{n\geq 1} \frac{\ln(n)}{n^2 S_n}$.

PROBLÈME

Dans tout le problème, N désigne un nombre entier supérieur ou égal à 3.

Un mobile se déplace sur les points d'abscisse $0, 1, \dots, N$ d'un axe gradué selon les règles suivantes :

- à l'instant 0, il se trouve en un des points d'abscisse $0, 1, \dots, N$;
- pour tout entier i compris au sens large entre 1 et (N-1), si le mobile est au point d'abscisse i à un instant n $(n \in \mathbb{N})$, alors il se trouve à l'instant (n+1) au point d'abscisse (i+1) avec la probabilité $\frac{i}{N}$, et au point d'abscisse (i-1) avec la probabilité $\frac{N-i}{N}$;
- si le mobile se trouve à l'origine à un instant n $(n \in \mathbb{N})$, il reste à l'origine à l'instant suivant;
- si le mobile se trouve au point d'abscisse N à un instant n $(n \in \mathbb{N})$, il reste en ce point à l'instant suivant.

I. Étude d'une suite de variables aléatoires

Dans cette première partie, le mobile se trouve au point d'abscisse 1 à l'instant initial 0.

Pour tout entier naturel n, on note X_n la variable aléatoire qui donne l'abscisse du mobile à l'instant

$$n$$
; de plus, on définit la matrice colonne U_n par :
$$U_n = \begin{pmatrix} \mathbb{P}(X_n = 0) \\ \mathbb{P}(X_n = 1) \\ \vdots \\ \mathbb{P}(X_n = N) \end{pmatrix}$$

où $\mathbb{P}(X_n = k)$ désigne la probabilité de l'événement $(X_n = k)$.

1. Reproduire et compléter le schéma ci-dessous par les probabilités conditionnelles manquantes (au nombre de 5) indiquées par un cadre vide.

- **2.** Déterminer la loi de probabilité de X_1 , X_2 et X_3 (on pourra remarquer que, pour X_3 , il convient de distinguer les cas N=3 et $N\geqslant 4$).
- **3. a.** Pour tout n de \mathbb{N} et tout entier k compris au sens large entre 0 et N, exprimer chacune des probabilités $\mathbb{P}(X_{n+1}=k)$ en fonction des probabilités $\mathbb{P}(X_n=0)$, $\mathbb{P}(X_n=1)$, ..., $\mathbb{P}(X_n=N)$. Lorsque $N \geq 4$, on sera amené à distinguer les cas k=0, k=1, $2 \leq k \leq N-2$, k=N-1 et k=N.
 - **b.** En déduire une matrice M telle que, pour tout entier naturel n, on ait : $U_{n+1} = M U_n$ On précisera clairement la valeur et la position des termes non nuls de la matrice M.

4. Dans cette question 4, et elle seule, on pose
$$N = 3$$
. On admet que $M = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{2}{3} & 1 \end{pmatrix}$.

Soit u l'endomorphisme de \mathbb{R}^4 dont M est la matrice dans la base canonique \mathscr{C} , et soit \mathscr{B} la famille (u_1, u_2, u_3, u_4) où $u_1 = (1, 0, 0, 0), u_2 = (1, -1, -1, 1), u_3 = (1, -2, 2, -1), u_4 = (0, 0, 0, 1).$

a. Démontrer que \mathscr{B} est une base de \mathbb{R}^4 , puis déterminer la matrice D de u dans la base \mathscr{B} . Expliciter alors une matrice P telle que :

$$M = PDP^{-1}$$

- **b.** Calculer P^{-1} (le détail des calculs devra figurer sur la copie).
- **c.** Expliciter la deuxième colonne de la matrice M^n $(n \in \mathbb{N})$.
- **d.** Pour tout n de \mathbb{N} , déduire de la question précédente la loi de X_n . Vérifier que l'on a : $\lim_{n \to +\infty} \mathbb{P}(X_n = 0) = \frac{3}{4}$ et $\lim_{n \to +\infty} \mathbb{P}(X_n = 3) = \frac{1}{4}$.

II. Étude de l'arrêt du mobile

Pour tout entier i compris au sens large entre 0 et N, on note :

- $-p_i$ la probabilité que le mobile finisse par s'arrêter au point d'abscisse N en partant initialement du point d'abscisse i;
- $-q_i$ la probabilité que le mobile finisse par s'arrêter au point d'abscisse 0 en partant initialement du point d'abscisse i.

D'autre part, on dira qu'une (N+1)-liste $(u_0, u_1, ..., u_N)$ de nombres réels possède la propriété (\mathscr{P}) si :

pour tout entier i compris au sens large entre 1 et
$$(N-1)$$
, $u_i = \frac{i}{N}u_{i+1} + \frac{N-i}{N}u_{i-1}$.

- **1. a.** Préciser les valeurs de p_0 , p_N , q_0 et q_N .
 - **b.** Justifier d'une phrase que la (N+1)-liste $(p_0, p_1, ..., p_N)$ possède la propriété (\mathscr{P}) .
- **2.** Soit $(u_0, u_1, ..., u_N)$ une (N+1)-liste de nombres réels possédant la propriété (\mathcal{P}) .
 - **a.** Exprimer $u_{i+1} u_i$ en fonction de $u_i u_{i-1}$ $(1 \le i \le N 1)$. En déduire que la suite $(u_i)_{0 \le i \le N}$ est monotone.
 - **b.** Que peut-on dire des nombres $u_0, u_1, ..., u_N$ si $u_0 = u_N$?
- 3. En quoi peut-on parler de linéarité de la propriété (P)?
- **4.** On pose : $a_0 = 0$ et, pour tout entier i compris au sens large entre 1 et N : $a_i = \sum_{k=0}^{i-1} {N-1 \choose k}$.
 - **a.** Calculer a_N ; vérifier que $(a_0, a_1, ..., a_N)$ possède la propriété (\mathscr{P}) .
 - **b.** En considérant les nombres $p_i \frac{a_i}{2^{N-1}}$ $(0 \le i \le N)$, déterminer une expression de p_i $(1 \le i \le N)$.
- 5. En se référant à la description de l'expérience aléatoire étudiée, justifier que, pour tout entier i compris au sens large entre 0 et N, on a l'égalité : $q_i = p_{N-i}$. En déduire qu'il est quasi-certain que le mobile finisse par s'arrêter en l'un des deux points d'abscisse 0 ou N.
- 6. On reprend dans cette question les notations de la partie I.
 - a. Justifier que p_1 est la probabilité de l'événement $\bigcup_{n=0}^{+\infty} (X_n = N)$. On admet que : $p_1 = \lim_{n \to +\infty} \mathbb{P}(X_n = N)$.
 - **b.** Vérifier la cohérence entre les valeurs de p_1 et q_1 d'une part, et le résultat de I. 4. d) d'autre part (question dans laquelle N est égal à 3).

Fin de l'énoncé