ADS502-Assignment-2.1-R.R

DDY

2021-07-11

```
# Assignment 2.1 [R]
# University of San Diego
# ADS 502
# Dingyi Duan

# For Exercises 21-30, continue working with the
bank_marketing_training
# data set. Use either Python or R to solve each problem.

# 21. Produce the following graphs. What is the strength of each graph?
Weakness?
# a. Bar graph of marital.

library(ggplot2)
bank_train <- read.csv(file = "C:/Users/DDY/Desktop/2021-Spring-textbooks/ADS-502/Module2/Website Data
Sets/bank_marketing_training.csv")
ggplot(bank_train, aes(marital)) + geom_bar() + coord_flip()</pre>
```


b. Bar graph of marital, with overlay of response.

ggplot(bank_train, aes(marital)) + geom_bar(aes(fill = response)) +
coord_flip()

22. Using the graph from Exercise 21c, describe the relationship between marital and response.

In divorced and married status, the response of "yes" rate is the same and the lowest among all;

For unknown status, the response of "yes" rate is in between single and divorced/married;

Response rate of "yes" is the highest for single marital status

23. Do the following with the variables marital and response.

a. Build a contingency table, being careful to have the correct variables

representing the rows and columns. Report the counts and the column percentages.

```
t.v1 <- table(bank train$response, bank train$marital)</pre>
t.v2 <- addmargins(A = t.v1, FUN = list(total = sum), quiet = TRUE)
# table without total
t.v1
##
##
         divorced married single unknown
##
              2743
                     14579
                              6514
                                        50
     no
              312
                      1608
                                         7
##
                              1061
     yes
```

```
# table with total
t.v2
##
##
           divorced married single unknown total
                              6514
##
               2743
                      14579
                                        50 23886
     no
##
     yes
                312
                       1608
                              1061
                                         7 2988
                              7575
##
               3055
                      16187
                                        57 26874
     total
t.v1 pct <- round(prop.table(t.v1, margin = 2)*100, 1)
t.v2_pct <- addmargins(A = t.v1_pct, FUN = list(total = sum),quiet =</pre>
TRUE)
# percentage table
t.v1_pct
##
##
         divorced married single unknown
##
                            86.0
                                    87.7
     no
             89.8
                     90.1
                            14.0
                                    12.3
             10.2
                      9.9
##
     yes
# b. Describe what the contingency table is telling you.
# For response of "no", 'married' has the most percentage;
# For response of "yes", 'single' has the most percentage.
# 24. Repeat the previous exercise, this time reporting the row
percentages. Explain the
# difference between the interpretation of this table and the previous
contingency table.
# swap cols and rows
t.v1_r <- table(bank_train$marital, bank_train$response)</pre>
t.v2 r <- addmargins(A = t.v1 r, FUN = list(total = sum), quiet = TRUE)
t.v1_r
##
##
                      yes
                 no
##
     divorced 2743
                      312
##
     married 14579 1608
##
     single
               6514 1061
##
     unknown
                 50
                        7
t.v2_r
##
##
                      yes total
                 no
##
     divorced 2743
                     312 3055
##
     married 14579 1608 16187
##
     single 6514 1061 7575
```

```
##
     unknown
                 50
                        7
              23886 2988 26874
##
     total
t.v1_r_pct \leftarrow round(prop.table(t.v1_r, margin = 1)*100, 1)
t.v2_r_pct <- addmargins(A = t.v1_r_pct, FUN = list(total = sum), quiet</pre>
= TRUE)
t.v1_r_pct
##
##
                no yes
     divorced 89.8 10.2
##
##
     married 90.1 9.9
##
     single
              86.0 14.0
##
     unknown 87.7 12.3
# This time the row percentage shows the ratio in each marital status
of response of "yes" and "no";
# In "divorced", 89.79% responded "no" and 10.21% responded "yes";
# In "married", 90.07% responded "no" and 9.93% responded "yes";
# In "single", 85.99% responded "no" and 14.01% responded "yes";
# In "unknown", 87.72% responded "no" and 12.38% responded "yes";
# Overall, more people recompensed "no" than "yes".
# The difference between this two tables is one is from the perspective
of
# response while the other is
# from the perspective of marital status.
### 25. Produce the following graphs. What is the strength of each
graph? Weakness?
# a. Histogram of duration.
ggplot(bank_train, aes(duration)) + geom_histogram(color="black")
## `stat bin()` using `bins = 30`. Pick better value with `binwidth`.
```


b. Histogram of duration, with overlay of response.

ggplot(bank_train, aes(duration)) + geom_histogram(aes(fill = response), color="black")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

binned barchart

ggplot(bank_train, aes(duration_binned)) + geom_bar(aes(fill =
response), position = 'fill')


```
# For Exercises 14-20, work with the adult ch6 training and
adult ch6 test data
# sets. Use either Python or R to solve each problem.
# 14. Create a CART model using the training data set that predicts
income using
# marital status and capital gains and losses. Visualize the decision
tree
# (that is, provide the decision tree output). Describe the first few
splits in the decision tree.
adult_training <- read.csv(file = "C:/Users/DDY/Desktop/2021-Spring-</pre>
textbooks/ADS-502/Module2/Website Data Sets/adult_ch6_training")
colnames(adult_training)[1] <- "MaritalStatus"</pre>
# change income and marital status to factors
adult_training$Income <- factor(adult_training$Income)</pre>
adult_training$MaritalStatus <- factor(adult_training$MaritalStatus)</pre>
library(rpart); library(rpart.plot)
# build decision tree
DT_CART <- rpart(formula = Income ~ MaritalStatus +</pre>
Cap_Gains_Losses,data =
                   adult_training, method = "class")
rpart.plot(DT_CART)
```



```
?rpart.plot
## starting httpd help server ...
## done
# using type = 4 to label each branch with its specific value, instead
of a
# yes/no at the top of the split
#extra = 2 to add the correct classification proportion to each node.
rpart.plot(DT_CART, type = 4, extra = 2)
```



```
# create a data frame that includes the predictor variables of the
records you
# wish to classify
X = data.frame(MaritalStatus = adult_training$MaritalStatus,
               Cap Gains Losses =
                 adult training$Cap Gains Losses)
# Once you have the predictor variables you wish to classify, use the
predict()
# command.
predIncomeCART = predict(object = DT_CART, newdata = X,type = "class")
# 15. Develop a CART model using the test data set that utilizes the
same target
# and predictor variables. Visualize the decision tree. Compare the
decision trees.
# Does the test data result match the training data result?
adult_test <- read.csv(file = "C:/Users/DDY/Desktop/2021-Spring-
textbooks/ADS-502/Module2/Website Data Sets/adult ch6 test")
# run through the same process using test dataset
colnames(adult_test)[1] <- "MaritalStatus"</pre>
adult test$Income <- factor(adult test$Income)</pre>
adult_test$MaritalStatus <- factor(adult_test$MaritalStatus)</pre>
```


rpart.plot(DT_CART_test, type = 4, extra = 2)


```
X_test = data.frame(MaritalStatus = adult_test$MaritalStatus,
               Cap Gains Losses =
                 adult_test$Cap_Gains_Losses)
predIncomeCART_test = predict(object = DT_CART_test, newdata = X_test,
                         type = "class")
# The decision tree of test dataset matches the one with training
dataset.
# 16. Use the training data set to build a C5.0 model to predict income
using
# marital status and capital gains and losses. Specify a minimum of 75
cases per
# terminal node. Visualize the decision tree. Describe the first few
splits in the decision tree.
library(C50)
# run c5.0 algo
C5 <- C5.0(formula = Income ~ MaritalStatus + Cap Gains Losses,
           data = adult_training, control = C5.0Control(minCases=75))
plot(C5)
```



```
#predict(object = C5, newdata = X)
```

17. How does your C5.0 model compare to the CART model? Describe the similarities and differences.

Similarities: Both CART and C50 follow the similar logic of test conditions;

Differences: CART starts the split with marital status and goes on with Cap_Gains_Losses

while c50 starts with Cap_Gains_Losses and goes on with marital
status; Different

number of nodes and different ways of displaying classes for the leaf nodes.

For the following exercises, work with the bank_reg_training and the # bank_reg_test data sets. Use either Python or R to solve each problem.

34. Use the training set to run a regression predicting Credit Score, # based on Debt-to-Income Ratio and Request Amount. Obtain a summary of the model.

Do both predictors belong in the model?

bank_reg_train = read.csv(file ='C:/Users/DDY/Desktop/2021-Springtextbooks/ADS-502/Module2/Website Data Sets/bank_reg_training')

```
bank reg test = read.csv(file = 'C:/Users/DDY/Desktop/2021-Spring-
textbooks/ADS-502/Module2/Website Data Sets/bank reg test')
# run the model
model01 <- lm(formula = Credit.Score ~ Debt.to.Income.Ratio</pre>
+Request.Amount,
              data = bank_reg_train)
# display the summary table
summary(model01)
##
## Call:
## lm(formula = Credit.Score ~ Debt.to.Income.Ratio + Request.Amount,
##
       data = bank_reg_train)
##
## Residuals:
       Min
                1Q Median
                                       Max
                                3Q
## -279.13 -25.11
                   10.87
                             39.93 175.32
##
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                                                        <2e-16 ***
## (Intercept)
                         6.685e+02 1.336e+00 500.27
                                                        <2e-16 ***
## Debt.to.Income.Ratio -4.813e+01 4.785e+00 -10.06
                                                        <2e-16 ***
## Request.Amount
                         1.075e-03 6.838e-05
                                                15.73
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66 on 10690 degrees of freedom
## Multiple R-squared: 0.02839,
                                  Adjusted R-squared: 0.02821
## F-statistic: 156.2 on 2 and 10690 DF, p-value: < 2.2e-16
# 35. Validate the model from the previous exercise.
model02 <- lm(formula = Credit.Score ~ Debt.to.Income.Ratio +</pre>
Request.Amount,
              data = bank_reg_test)
summary(model02)
##
## Call:
## lm(formula = Credit.Score ~ Debt.to.Income.Ratio + Request.Amount,
##
       data = bank_reg_test)
##
## Residuals:
       Min
                10 Median
                                30
                                       Max
## -288.16 -24.49
                     11.08
                             39.47 199.84
##
## Coefficients:
```

```
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         6.655e+02 1.328e+00 501.26
                                                        <2e-16 ***
                                                        <2e-16 ***
## Debt.to.Income.Ratio -5.214e+01 4.826e+00 -10.80
                       1.302e-03 6.849e-05 19.01 <2e-16 ***
## Request.Amount
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 65.78 on 10772 degrees of freedom
## Multiple R-squared: 0.03845,
                                  Adjusted R-squared: 0.03827
## F-statistic: 215.4 on 2 and 10772 DF, p-value: < 2.2e-16
# Validation complete.
# 36. Use the regression equation to complete this sentence: "The
estimated Credit Score equals.."
# The estimated Credit Score equals y = 668.4562 - 48.1262* Debt-to-
Income Ratio + 0.0011* Request Amount
# 37. Interpret the coefficient for Debt-to-Income Ratio.
# The coefficient for Debt-to-Income Ratio is negative which means the
Lower the
# Debt-to-Income Ratio, the higher the credit score.
# 38. Interpret the coefficient for Request Amount.
# The coefficient for Request Amount is positive which means the higher
the
# Request Amount, the higher the credit score.
# 39. Find and interpret the value of s.
# Residual standard error: 65.78 on 10772 degrees of freedom. The size
of model
# prediction error is 65.8 (66), that is the difference between the
actual
# credit score and of which predicated from the model.
# 40. Find and interpret Radj2 . Comment.
# The adjusted R squared value is modified version of R-squared that
has been
# adjusted for the number of predictors in the model. It increases when
the new
# term improves the model more than would be expected by chance. It
decreases
# when a predictor improves the model by less than expected. The R-
adj^2 is 0.028
# from the model. This means that 2.8% of the variability in Credit
Score is
# accounted for by the predictors Debt-to-Income Ratio and Request
Amount.
```

```
# 41. Find MAE Baseline and MAE Regression, and determine whether the
regression
# model outperformed its baseline model.
# use the predicators from the test dataset to predict
X test <- data.frame(Debt.to.Income.Ratio =</pre>
bank_reg_test$Debt.to.Income.Ratio,
                      Request.Amount = bank_reg_test$Request.Amount)
# y predicated using the model from the test dataset
ypred <- predict(object = model02, newdata = X test)</pre>
# compare to the actual targets from the test dataset
ytrue <- bank reg test$Credit.Score</pre>
library(MLmetrics)
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:base':
##
##
       Recall
# mean absolute error for regression
MAE_Regression = MAE(y_pred = ypred, y_true = ytrue)
# mean absolute error for baseline using the formula
Compute the MAE for the baseline model, as follows:
                        MAE_{Baseline} = \frac{\sum |y - \overline{y}|}{|y - \overline{y}|}
y_y_bar = abs(bank_reg_test$Credit.Score -
mean(bank_reg_test$Credit.Score))
MAE Baseline = sum(y y bar)/length(y y bar)
MAE Regression
## [1] 48.01625
MAE Baseline
## [1] 48.60024
# So the MAE_Regression is 48.02 and the MAE_Baseline is 48.60.
# Since MAE_Regression < MAE_Baseline, thus, our regression model
outperformed its baseline model.
```