Robotica: Hexapod

I. van Alphen, S. van Doesburg, E. Salsbach, M. Visser 24 januari 2016

Inhoudsopgave

1	Inleiding								
2	Opdrachtdefinitie								
3	Theoretisch kader								
4	Specificaties 4.1 Noodzakeljke specificaties	6 6 7							
5	Ontwerp 5.1 Het ontwerpen in Inventor 5.2 De simulatieomgeving 5.3 Hardware 5.3.1 XBee USB module 5.4 Controller board 5.5 Software 5.5.1 Lopen 5.5.2 Informatieverwerker 5.5.3 Aansturen servomotoren 5.5.4 Communicatie protocol	8 9 10 11 11 11 12 13 15 19							
6	Resultaten 2								
7	Discussie en resultaten 22								
8	Conclusies 2								
9	Aanbevelingen								
10	0 Onderzoeks opzet								
11	1 Bijlage								
12	2 Bibliografie								

1 Inleiding

Deze opdracht betreft het ontwikkelen van de besturing en simulatie van een hexapod robot.[?] De robot die gebruikt gaat worden is de PhantomX AX Hexapod van TrossenRobotics. [?].

In de huidige situatie wordt een hexapod handmatig met een afstandbediening bestuurd en kent geen vorm van intelligentie. Ter voorbereiding op het werken met kunstmatige intelligentie, is er voor gekozen om een simulatiemodel van de robot te ontwikkelen. Om praktische informatie te verzamelen is er een koppeling nodig tussen het simulatie model en de hardware van de robot. Met behulp van deze koppeling kan er onderzoek gedaan worden naar bijvoorbeeld efficiënte looppatronen en zelf lerende functies.

Het verslag is opgebouwd uit het onderzoek naar een hexapod met daarbij de hoofdvraag en deelvragen. Gevolgd door de specificaties en de implementatie van het ontwerp.

2 Opdrachtdefinitie

De hexapod is momenteel alleen te besturen met behulp van een afstandbediening. De huidige besturingssoftware op de robot is niet in staat naast de afstandbediening om externe commando's te verwerken. Daarnaast kent het in de huidige toestand geen vorm van intelligentie. Zo heeft de robot momenteel geen besef van wat zich in zijn directe omgeving bevindt.

Als voorbereiding op het werken met kunstmatige intelligentie op de robot, is er voor gekozen om een simulatiemodel voor en van de robot te ontwikkelen. De redenen hiervoor zijn onder andere dat er in een model oneindig veel verschillende situaties voor de robot gecreeërd kunnen worden. Hiernaast is het simuleren van de hexapod sneller dan real-time testen en is er minder kans op schade van het materieel. Bovendien kan het vanuit financieël oogpunt in situaties nuttig zijn om niet met de echte hardware van de robot te werken. Door een real-time koppeling te maken tussen het simulatiemodel en de hardware van de robot is het mogelijk in staat om meer informatie te verzamelen om de intelligentie te verbeteren.

Het uiteindelijke doel is om in een simulatieomgeving de bewegingseigenschappen van de robot te optimaliseren om deze software vervolgens te testen op het echte model. Er moet dus onderzocht worden hoe een ontwikkelingsomgeving opgezet kan worden waarbij er een koppeling is tussen een simulatie en de robot zelf. Daarnaast moet de robot extern te besturen zijn met behulp van een computer. De robot en het simulatiemodel moeten de mogelijkheid hebben om de stand van de servomotoren real-time naar elkaar over te brengen. Om beschadiging te voorkomen moet het in staat kunnen zijn om fouten te detecteren. De onderlinge poten zouden niet met elkaar in contact moeten komen. Het onderzoeken van het gedrag van een hexapod is van belang om uiteindelijk de hexapod zelf lerende functies te geven.

3 Theoretisch kader

- Inhoudelijke verkenning, kennis benodigd voordat met het ontwerp gestart kan worden (o.a. normen en regelgeving)
- Relevante onderzoeksvragen worden hierin uitgewerkt
- $\bullet\,$ Welke literatuur en/of theorieën zijn relevant en wat betekent dit voor het ontwerp
- Overzicht van bestaande oplossingen van het probleem en waarom voldoen deze in dit specifieke geval wel/niet.

4 Specificaties

Voor de specificaties van dit project, is het van belang een onderscheid te maken tussen functionaliteiten die noodzakelijk of gewenst zijn bij het ontwerp. De noodzakelijke functies moeten in ieder geval geïmplementeerd worden, terwijl het overige optioneel is, afhankelijk van de tijdrestrictie.

4.1 Noodzakeljke specificaties

Het primair doel van dit project is om een verbinding te creëren tussen een fysieke robot hexapod en een simulatiemodel. De verbinding tussen hexapod en de computer dient draadloos te zijn ten gunste van de bewegingsvrijheid van de robot. De datasnelheid van moet ook vastgesteld worden om de hexapod zo responsief mogelijk te maken. De hexapod moet aangestuurd kunnen worden door het simulatiemodel in het programma VREP. Veranderingen aan de stand van de poten moeten direct terug te zien zijn in het simulatiemodel. Het model moet in ieder geval bestaan uit een body en 6 ledematen. Ieder ledemaat moet onderverdeeld worden in drie hoofdcomponenten die gescheiden zijn door gewrichten en ook door middel van een gewricht zijn verbonden aan de body. Verder moeten de afmetingen en verhoudingen tot een halve centimeter nauwkeurigheid overeenkomen met de hexapod. Om te voorkomen dat de hexapod zichzelf kan beschadigen is het noodzakelijk dat de maximale bewegingsvrijheid van de gewrichten (per situatie) wordt uitgerekend of ingesteld. Zodat de poten onderling niet met elkaar botsen of dat de bekabeling beschadigd raakt.

4.2 Gewenste specificaties

Er zijn een veel mogelijkheden wat betreft additionele functies die geïmplementeerd kunnen worden. In deze subsectie zijn een aantal functionaliteiten opgesomd die mogelijk geïmplementeerd kunnen worden, maar die niet noodzakelijk zijn voor het uiteindelijke eindproduct.

- De hexapod is er zich van bewust als hij ondersteboven is geplaatst, en kan de stand van zijn poten daarop aanpassen. Wanneer de hexapod horizontaal gepositioneerd wordt, dan zorgt dit systeem er voor dat alle poten op of richting de ondergrond zijn geplaatst.
- Is in staat om zijn poten in- en uit te strekken, zodat het eenvoudig opgeborgen en opgezet kan worden.
- De spin kan muren en/of objecten detecteren en zijn looproute hier op aanpassen.
- Met een beperking aan een of meerdere poten is het in staat om het standaard looppatroon aan te passen.
- Kan zijn looppatroon aanpassen indien nodig, afhankelijk van het gewicht van de eventuele ballast.
- Eventuele functionaliteiten zoals aan/uit, stand van poten en bewegingen via de computer kunnen activeren bijvoorbeeld via een console.

4.3 Testplan

Om te kijken of de specificaties gehaald zijn wordt er als eerst gekeken naar de noodzakelijke specificaties. Deze specificaties zijn geprobeerd zo op te stellen dat deze in ieder geval haalbaar zijn. De haalbaarheid van de gewenste specificaties zijn voor lastig in te schatten omdat dit veelal buiten onze huidige kennis is en daarom kan het blijken dat een of meerdere specificaties te makkelijk of te lastig zijn opgesteld naar mate het onderzoek vordert. In dat geval zal er samen met de begeleider gekeken worden of er een alternatieve specificatie mogelijk is. Of de resultaten wel of niet voldoen aan de eisen kan in veel gevallen objectief beoordeeld worden door te kijken naar de exacte eisen en de bijbehorende resultaten. Echter is dit bij sommige specificaties niet mogelijk en zal dit met logische redenering en duidelijke uitleg worden ondersteund. Dit betekent dat de resultaten goed gedocumenteerd worden zodat het bij de conclusie duidelijk is wanneer de specificaties gehaald zijn. Bij twijfel of een specificatie gehaald is zal dit met de begeleider besproken worden.

5 Ontwerp

Het ontwerp en de hexapod zijn onder te verdelen in verschillende delen: harden software. De hardware bestaat uit de hexapod en de hiervoor (zelf) ontwikkelde elektronica. Om de hardware te kunnen gebruiken zijn er ook verschillende programma's geschreven. Om een beeld van te krijgen van de samenhang van het ontwerp met hard- en software zijn er twee blokschema's gemaakt. Eén schema beperkt zich tot de hexapod en het andere schema tot de externe computer(s). In figuur 1 en 2 is deze informati te vinden.

Figuur 1: Versimpelde weegave in een blokschema van de samenhang van de verschillende systemen en programma's op de hexapod.

Figuur 2: Versimpelde weegave in een blokschema van de samenhang van de verschillende systemen en programma's op de externe computer.

5.1 Het ontwerpen in Inventor

Het model van de hexapod bestaat uit verschillende componenten. De body bestaat uit twee platen, en elke poot is onder te verdelen in drie componenten. Bovendien hoort bij elk gewricht een motor, in totaal 18 motoren. Als eerste zijn de afmetingen van de spin zo exact mogelijk opgemeten. Er is maar een poot opgemeten, en is in inventor vijf maal gedupliceerd. Het programma inventor geeft de mogelijkheid om met behulp van constraints het voorvlak van elk object te schetsen, en vervolgens uit te breiden tot een driedimensionaalobject. Ook met constraints, is het weer mogelijk om alle objecten bij elkaar te voegen.

Het 3D model van de Robot is gemaakt in het programma Inventor. Hiervoor is gekozen omdat dit al bekend is en gratis te gebruiken voor studenten. Tevens kunnen Inventor bestanden gemakkelijk over worden gezet naar bestanden die leesbaar zijn voor de simulatie software.

Om de robot te reconstrueren in het tekenprogramma moet de robot gezien worden als losse onderdelen. Elk onderdeel moet apart opgemeten worden met alle hoeken en uitsparingen erbij.

Het model is dan ontleed tot losse solids (onderdeel bestaande uit een stuk) die samen te voegen zijn tot de uiteindelijke assembly (model opgebouwd uit meerdere onderdelen). De servomotoren zijn gedowload van website voor motoren, maar de andere onderdelen zijn allemaal getekend. De poten bestaan uit drie sigmenten die worden verbonden met servomotor en tevens op dezelfde manier aan de main body vastzitten.

5.2 De simulatieongeving

Om het inventor bestand te importeren naar V-rep, is het eerst nodig om het model om te zetten naar het STL bestandstype.

Het object wordt initieel in V-rep gezien als geheel object. Met 'divide selected shapes', is het mogelijk om objecten onder te verdelen in zo klein mogelijke stukken. Met behulp van gewrichten worden de 18 pootdelen en de main body met elkaar verbonden. Met de functie 'object/item position/orientation' zijn de objecten en gewrichten op de juiste positie gezet.

Omdat V-rep veel berekeningen moet doen bij het simuleren van complexe objecten, is het niet gunstig om te gaan simuleren met de objecten die geïmporteerd zijn. Het is daarom ook nodig om de vorm van de objecten te vereenvoudigen. Dit kan met 'Morph selection into convex shapes', en dat zorgt er uiteindelijk voor dat simulaties vele malen sneller gaan. Om het uiterlijk van de spin te behouden, worden de geïmporteerde objecten gebruikt als mask. Om dit te bereiken, moet in het 'dynamic properties dialog' venster alles worden uitgevinkt. Dat zorgt ervoor dat het object niet met zijn omgeving reageert, en dat het niet dynamisch gesimuleerd wordt. De convex shapes daarentegen, moeten wel dynamisch zijn en kunnen reageren met de omgeving. Verder worden deze objecten doorzichtig gemaakt.

Voor de positie bepaling en het instellen van de doel coördinaten bij invers kinematica wordt er gebruikt gemaakt van de zogeheten 'dummy-dummy link'. Hierbij worden er dummies bevestigd aan de tip van elke poot, de zogeheten Tip Dummies. Daarnaast worden er evenveel Target Dummies aangemaakt. Via het 'scene object properties dialog', kunnen de Tip Dummies gelinkt worden aan hun corresponderende Target Dummies. Wat belangrijk is voor het simuleren, is dat voor elk object de optie 'invers kinematics mode' aan staat.

Het is belangrijk om de scene hierarchy goed te ordenen, omdat dit bepaald hoe objecten bewegen ten opzichte van elkaar. Dat betekent dat het hoofd-object(de body) bovenaan staat, en dat alle onderliggende objecten geplaatsen moeten worden onder het object waar het aan gekoppeld is. Dit geldt overigens voor de convex shapes. Alle convex shapes zijn overigens met elkaar verbonden door middel van de joints. De mask moet steeds geplaatst worden onder zijn eigen convex shape. Ook de dummies krijgen hun vaste plek. De Tip Dummy komt onder de tip van de poot terecht en de target dummy direct onder de body.

5.3 Hardware

Aan het begin van het project is overwogen om de hardware, op de servomotoren na, te vervangen voor zelf ontworpen hardware. Uiteindelijk is besloten om de focus meer op de software kant te leggen en gebruik te maken van de aanwezige hardware. Er was echter nog een module nodig om de informatie van een XBee module te verwerken. Een XBee module met USB verbinding is te koop alleen relatief duur. Naar aanleiding van de hoge kosten is besloten zelf een module te ontwerpen met USB en XBee aansluiting.

5.3.1 XBee USB module

Op de printplaat zijn aansluitingen aanwezig voor een XBee module. De communicatielijnen van de XBee zijn verbonden met een FTDI IC. Dit IC verwerkt binnenkomende en uitgaande informatie en beschikt over een USB driver die herkent kan worden door een computer. Ter beveiliging van de USB bus en de printplaat zelf is er ook een component geplaatst die voorkomt dat er statische spanning op de bus komt. Er zijn een aantal indicatie LED's aanwezig die aangeven of de XBee module actief is en of er informatie wordt ontvangen of verstuurd.

Figuur 3: Schema van de XBee USB module

5.4 Controller board

De hexapod bestaat uit 18 servomotoren die aangestuurd worden door een arbotiX robocontroller board (zie figuur 5). Deze controller bestaat uit een AT-Mega644P, een XBee module, servo connectoren en wat algemene in en outputs voor onderandere UART verbindingen.

Figuur 4: Printplaat layout van de XBee USB module

5.5 Software

In dit hoofdstuk wordt de software van het project besproken. De software is onder te verdelen in diverse programma's met andere doeleinden.

5.5.1 Lopen

Wanneer de spin in de fysieke wereld moet lopen, en de koppeling tussen simulatie en de robot is gemaakt, moet het simulatie model ook een loop beweging uitvoeren. Hiervoor is een LUA programma geschreven, wat er voor zorgt dat het simulatiemodel zich voortbeweegt door de ruimte. Het programma wordt uitgevoerd binnen de simulatieomgeving zelf.

Het programma is geïnspireerd op het programma van de AntRobot, een standaard robot uit de V-REP bibliotheek. Deze robot komt qua fysieke kenmerken redelijk overeen met de hexapod. Dit model heeft ook een lichaam met daaraan zes poten welke op dezelfde wijze kunnen scharnieren als de hexapod. Dit maakt de beweging van de poten vrijwel identiek. Daarnaast maakt dit model eveneens gebruik van 'Inversed Kinematics', wat voor het toepassen van bepaalde aspecten van dit programma op de hexapod ideaal is.

Het ontwerp van de code is hetzelfde gebleven, alleen zijn er bepaalde aanpassingen gemaakt waardoor het toepasbaar is voor de hexapod. Het volledige programma is te vinden in de bijlage.

Voor de testfase van het project is er voor gekozen om het model repeterende bewegingen te laten maken. In het huidige programma loopt de robot daarom ook een aantal seconden rechtdoor om vervolgens een bocht te maken naar rechts. Deze beweging wordt oneindig lang herhaald.

- 1 Analog port headers
- 2 Left motor/encoder headers
- · 3 Dual motor driver, max current 1A
- 4 Right motor/encoder headers
- 5 I2C header
- 6 ATMEGA644P
- 7 Power selection header
- 8 FTDI serial0/programming
- 9 Digital port headers
- 10 Reset Switch
- · 11 Serial1 header (also J1)
- · 12 Prototyping headers and user led
- 13 XBEE socket
- 14 In-system programming (ISP)
- 15 3 Bioloid headers
- 16 Power terminals

Figuur 5: Robocontroller overzicht

5.5.2 Informatieverwerker

Zoals in de opdracht staat omschreven, is het de bedoeling dat de fysieke robot aangestuurd kan worden door het simulatie model. Om dit te kunnen realiseren is er informatie nodig vanuit de simulatie. Het simulatiemodel is zo opgebouwd dat het overeenkomt met het fysieke model. Door deze overeenkomsten zouden de modellen het zelfde gedrag moeten vertonen bij gebruik van dezelfde parameters van de gewrichten.

De koppeling van simulatie naar de robot kan alleen worden gemaakt wanneer de simulatie in V-REP is gestart. In een Python programma wordt de verbinding gemaakt met de simulatieomgeving. Met behulp van de onderstaande regels code wordt deze verbinding tot stand gebracht. Het is eventueel ook mogelijk om het simuleren op een andere computer te doen dan de computer waarop het informatieverwerkende programma op draait(zie regel 190).

Listing 1: main.py - python informatieverwerker - Verbinding maken met de simulatieomgeving.

Zodra het programma is gestart en de verbinding tussen de twee programma's tot stand is gebracht, worden de hoeken van de servomotoren uitgelezen. De hoeken worden ten opzichte van een bovenliggend object in de hirarchie van het model berekend. Om dit te verduidelijken is er als voorbeeld een afbeelding gemaakt van drie objecten die aan elkaar zijn verbonden.

Figuur 6: Voorbeeld van een child/parent hierarchie van drie met elkaar verbonden objecten. De hoek tussen de parent en child is de hoek die nodig is in het programma.

De hoekverandering is dan in het geval van de hexapod altijd over één van de drie dimensionale assen. Het uitlezen van de hoeken gebeurt met behulp van een programma wat per gewricht de hoek uitleest. Door gebruik te maken van de remote-API van V-REP is het extern aanroepen van functies mogelijk. De verkregen hoek wordt door de functie teruggegeven in radialen. In de onderstaande code wordt de hoek verkregen en omgerekend naar graden. Vervolgens wordt er nog een correctiefactor toegepast, omdat de toegepaste servomotoren op de hexapod 1023 stappen kunnen maken in plaats van 360.

```
def GetObjectAngle(handle_parent, handle_child, angleId):
    servoEulerAngles = []
    eulerAngles = vrep.simxGetObjectOrientation(clientID,
        handle_child, handle_parent, vrep.simx_opmode_streaming)[1]
    angle = math.floor(((eulerAngles[angleId] + math.pi) / (2 * math.pi) ) * 1023)

return angle
```

Listing 2: main.py - python informatieverwerker - functie om de hoek tussen twee objecten op te vragen.

Tabel 1: Instructie pakket van master naar servo.

ĺ	0xFF	0xFF	ID	Length	Instruction	Parameter0	Parameters-n	Checksum	

Naast de verbinding met het simulatieprogramma is er een externe draadloze verbinding nodig met de hexapod. Deze draadloze communicatie verloopt met behulp van het ZigBee protocol. Een zelf ontworpen printplaat met daarop een XBee module en een USB aansluiting moet worden aangesloten op de computer waarop het informatieverwerkende programma draait.

Het programma maakt verbinding met de COM poort van de computer waarop de printplaat met XBee module is aangesloten. Vervolgens wordt er met behulp van verschillende functies een verbinding tot stand gebracht. Zie hiervoor de volledige code die als bijlage is te vinden.

5.5.3 Aansturen servomotoren

De servomotoren die gebruikt zijn de Dynamixel AX-18F. Deze motoren werken op 12 volt en kunnen maximaal 2,2 ampere aan stroom gebruiken. Voor het aansturen gebruiken de motoren een eigen serieel protocol.

Het protocol werkt met een master die steeds een pakket over de communicatie bus stuurt en mogelijk een pakket terug kan krijgen. Elk pakket is gericht aan één, meerdere of alle motoren (slaves). De inhoud van een instructie pakket (master naar servo) bestaat uit de informatie uit tabel 1.

Twee maal '0xFF 0xFF' geeft het begin van een pakket aan. Wanneer dit ontvangen wordt weet iedereen van de bus dat er een pakket aankomt.

Een 'ID' geeft het ontvangers ID aan. Elke servo heeft een uniek ID die gebruikt kan worden. Verder is er een speciaal BROADCAST id waar elke servo naar luistert.

LENGTH bevat de lengte van het pakketje. Hierdoor weet te ontvanger hoeveel parameters hij kan verwachten

INSTRUCTION is het type pakket. Dit kan een READ, WRITE of SYNC-WRITE zijn. Bij READ word er een waarde uitgelezen, Bij WRITE een waarde weggeschreven en bij SYNCWRITE kan er bij meerdere Servo motoren tegelijk worden geschreven.

PARAMETER0 is het lees/schrijf adres PARAMETER-N is alle data die weggeschreven moet worden. Bij en SYNCWRITE instructie bevat dit de servo ID's en DATA per servo zodat meerdere servo tegelijk beschreven kunnen worden.

CHECKSUM bevat een checksum van het gehele pakket zodat gecontroleerd kan worden of alles goed doorgekomen is.

Een Status pakket (Servo naar master) bestaat uit de volgende stukken data: 0xFF 0xFF ID LENGTH ERROR PARAMETER-N CHECKSUM 0xFF 0xFF geeft het begin van een pakket aan. Wanneer dit ontvangen wordt weet iedereen dat er een pakket aankomt.

Figuur 7: Elke servomotor heeft een eigen ID, het nummer is bepaald aan de hand van de positie.

ID geeft het ontvangers ID aan. Elke servo heeft een uniek ID die gebruikt kan worden. Verder is er een speciaal BROADCAST id waar elke servo naar luistert.

LENGTH bevat de lengte van het pakketje. Hierdoor weet te ontvanger hoeveel parameters hij kan verwachten

ERROR geeft een binaire code terug met de fouten die op dat moment actief zijn in de servo. Zo een fout kan bijvoorbeeld zijn: Overbelasting, Checksum fout, Ingangspanning fout.

PARAMETER-N geeft de data terug die door de instructie pakket is opgevraagd

CHECKSUM bevat een checksum van het gehele pakket zodat gecontroleerd kan worden of alles goed doorgekomen is.

Implementatie Het controller board werkt met een ATMega644P waarbij de Servo connectoren direct aangesloten zijn op een UART ingang van de atmega. De servo-bus werkt met een enkele seriele lijn en dat betekent dat zowel de verzend als de ontvang kant via dezelfde lijn werkt. Daarom moet elke keer wanneer data verzonden wordt de atmega uart ontvang hardware uitgezet worden en elke keer wanneer er data ontvangen wordt de atmega uart verzend hardware uit worden gezet.

De AX18FWrite functie werkt vrij vanzelfsprekend. De UART Tx module wordt aangezet, de transmit buffer wordt leeg gehaald en vervolgens wordt de buffer weer gevuld met informatie van het pakketje. Op het eind wordt nog een checksum toegevoegd en de Tx module weer uitgezet.

```
* Writes to the Servo
47
   * @param id
                    Servo identifier
   * @param address Servo memory write address
49
   * @param data
                    Data to write to memory
50
   * @param length Length of data
51
52
  void AX18FWrite(unsigned char id, unsigned char address, unsigned
53
      char *data, unsigned char length) {
55
    // Enable Uart Tx so we can send
    uart1_RxDisable();
56
    uart1_clearTxBuffer();
57
    uart1_TxEnable();
58
59
    uart1_putc(AX_START);
60
    uart1_putc(AX_START);
61
62
    uart1_putc(id);
    uart1_putc(length + 3);
63
    uart1_putc(AX_WRITE_DATA);
64
    uart1_putc(address);
65
66
    for (unsigned char i = 0; i < length; i++) {
67
68
      uart1_putc(data[i]);
69
70
    uart1_putc(generateTxChecksum(id, address, data, length));
71
    //_delay_us (500)
72
    uart1_TxWaitDisable();
73
```

Listing 3: AX18ServoDriver.c - AX18Write functie

De Read functie is iets uitgebreider omdat het de data echt moet kunnen analyseren. Eerst wordt een pakket verzonden naar de servo met een aanvraag voor data. Dit gebeurd op dezelfde manier zoals in de AX18FWrite functie. Daarna wacht de functie tot er data terug komt van de Servo. Elke byte die dan terug komt wordt in een state machine gestopt die alles byte voor byte analyseert. Zo zijn state 1 en state 2 de start bytes. Wanneer een andere byte dan de start byte is gevonden wordt de state weer naar 0. De rest van de states zijn ook duidelijk.

```
* Reads from the servo
120
                       Servo identifier
121
   * @param id
   * @param address Servo memory read address
   * @param buffer Buffer to save data
* @param length Length to read
123
   * @return
                       Error occurred, return 0 on success, 1 on error
125
126
   unsigned char AX18FRead(unsigned char id, unsigned char address,
       unsigned char *buffer, unsigned char length) {
128
     unsigned char checksum = generateRxRequestChecksum(id, length,
129
       address);
     // Enable Uart Tx so we can send
131
     uart1_clearTxBuffer();
132
     uart1_TxEnable();
133
     uart1_RxDisable();
134
```

```
135
      uart1_putc(AX_START);
136
      \verb"uart1-putc"(AX\_START");
137
      uart1_putc(id);
138
      uart1_putc(4);
139
      uart1_putc(AX_READ_DATA);
140
141
      uart1_putc(address);
      uart1_putc(length);
142
      uart1_putc(checksum);
143
144
      uart1_TxWaitDisable();
145
      uart1_RxEnable(); // TEMP
146
147
      // Wait for response
148
149
      while (uart1\_canRead() \le 0);
      //_delay_us (TX_READ_DELAY_TIME);
151
      unsigned char RxState = 0, RxDataCount = 0, RxServoId = 0,
152
        RxLength \,=\, 0\,, \;\; RxError \,=\, 0\,, \;\; RxChecksum \,=\, 0\,, \;\; Error \,=\, 0\,;
153
      // Wait a couple of micro seconds to receive some data
154
      // Loop trough all received bytes
155
156
      while (uart1\_canRead() > 0) {
        //printf("Buffer size: %d\r\n", uart1_canRead())
      \begin{array}{c} \text{char c} = \text{uart1\_getc();} \\ \text{printf("(\%d): } 0\text{x\%x}\r\n", \text{ RxState, c);} \end{array}
158
159
        switch(RxState) {
160
161
           // 1) First Start byte
162
           case 0:
163
             if(c = AX.START) {
164
                \hat{R}xState = 1;
166
167
           break;
168
           // 2) Second start byte
169
170
           case 1:
             if ( c == AX_START) {
171
172
                RxState = 2;
              } else {
                RxState = 0;
174
175
           break;
176
177
178
           // 3) Id byte
           case 2:
179
180
              if ( c != AX.START) {
                \hat{R}xServoId = c;
181
                RxState = 3;
182
              } else {
                RxState = 0;
184
                Error = 1;
185
186
           break;
187
188
           // 4) Length byte
189
           case 3:
190
191
             {\rm RxLength} \, = \, c \, ;
              RxState = 4;
192
           break;
193
194
           // 5) Error byte
195
```

```
case 4:
196
            RxError = c;
197
            RxState = 5;
198
          break;
200
          // Data bytes and checksum byte
201
202
          case 5:
            if(RxDataCount >= RxLength - 2) {
203
              RxChecksum = c;
204
              RxState = 6;
205
              break;
206
207
            printf("Data (%d): 0x%x\r\n", RxDataCount, c);
208
            buffer [RxDataCount++] = c;
209
210
211
          // There is no state 6 unless we got more data then expected
212
          case 6:
213
214
            Error = 1;
          break;
215
216
217
218
219
        Check if packet is correct by comparing the checksum
220
     if (generateRxChecksum(RxServoId, RxError, address, buffer, length
221
         != RxChecksum) {
        Error = 1;
222
223
224
     printf("error: 0x%x\r\n", RxError);
225
226
     return Error;
227
228
229 }
```

Listing 4: AX18ServoDriver.c - AX18Read functie

5.5.4 Communicatie protocol

Om de robot draadloos aan te sturen wordt er gebruik gemaakt van XBee modules. Deze modules werken via een serië ele verbinding. XBee bevat de mogelijkheid om de serië ele data in data pakketten te versturen om zo individuele pakketten te kunnen onderscheiden. Echter maken wij daar geen gebruik van om het geheel wat simpeler te houden. Dit betekent dat er één continuë stroom van data is die geanalyseerd moet worden om losse data berichten te onderscheiden.

Dit wordt gedaan op dezelfde manier zoals de servo motoren worden aangestuurd. Het pakket begint wanneer er vier start bytes zijn gevonden. Daarna komt de lengte van de data, het commando, de data zelf en als laatst een checksum om het gehele pakket te controleren op fouten. Zie tabel 2. Deze pakketten kunnen op dit moment nog één kant op worden gestuurd (van de Computer naar de spin) maar dit is later gemakkelijk uit te breiden om ook de andere kant op te gaan op dezelfde manier zoals bij de servo motoren het geval is.

Implementatie Bij de implementatie van het communicatie protocol is geprobeerd het systeem zo robuust mogelijk te maken. De communicatie over de

byte nr	Example value	meaning
0-3	0x5A - 0x3C - 0x42 - 0x99	Start bytes
4	0x02	Data length
5	0x00	Command
6-(6+length)	0x60	Additional data
7+length	0xFF	Checksum (length, command and data)

Tabel 2: XBee pakket

XBee werkt als een seriele lijn waar een lange stream aan data uitkomt. Omdat de XBee ook met buffers werkt en bij draadloos verkeer alle bytes niet altijd aankomen en opnieuw verzonden moeten worden kan het voorkomen dat de er soms 1 byte binnenkomt en soms 25 bytes. Elke byte moet verwerkt worden en bytes die een tijd later aankomen kunnen nog horen bij een pakket die eerder is begonnen.

Om dit allemaal in goede banen te leiden is er een 'XBee_ communication_ processSerialData' functie gemaakt waar de staat van een pakket wordt opgeslagen en het pakket via meerdere stukken opgebouwd kan worden. Deze functie werkt ook met een state machine, het grote verschil is dat het pakket inclusief de ontvang staat globaal opgeslagen wordt. Verder kunnen pakketten worden opgeslagen en direct door worden gegaan met het analyseren van de rest van de data. De pakketten worden opgeslagen in een ringbuffer hierdoor kan de buffer nooit overstromen met te veel data maar zullen de meest oude pakketten verwijderd worden van de buffer zodat de nieuwste pakketten in ieder geval nog uitgelezen kunnen worden.

```
unsigned char XBee_communication_processSerialData(char *data,
       unsigned char length) {
     unsigned char countNewPackets = 0;
121
     for (unsigned char i = 0; i < length; i++) {
122
        unsigned char c = data[i];
123
        //printf("State: %d (0x\%x)\r\n", RxState, c);
124
125
        if(RxState == 0) {
            if (c = PACKET_START_BYTE_1) {
127
              RxState = 1;
128
              } else {
RxState = 0;
129
130
131
          } else if(RxState == 1)
            if (c = PACKET_START_BYTE_2) {
133
              RxState = 2;
134
              } else {
135
136
              RxState = 0;
137
           else if (RxState == 2)
138
            if (c = PACKET_START_BYTE_3) {
139
              RxState = 3;
140
141
              } else {
              RxState = 0;
142
143
          } else if(RxState == 3) {
144
            if (c == PACKET_START_BYTE_4) {
145
              \hat{R}xState = 4;
146
```

```
147
               } else {
148
               RxState = 0;
149
          } else if(RxState == 4) {
150
             RxPacket.length = c;
            {\rm RxChecksum}\ \mid =\ c\ ;
152
             if(RxPacket.length > MAX_DATA_SIZE) {
153
               RxState = 0;
154
             } else {
155
156
               RxState = 5;
          } else if(RxState == 5) {
158
159
             RxPacket.command = c;
             RxChecksum \mid = c;
160
             RxState = 6;
162
            else if (RxState == 6) {
163
             if (RxDataCount < RxPacket.length) {</pre>
               RxPacket.data[RxDataCount++] = c;
165
166
               RxChecksum \mid = c;
167
             if (RxDataCount >= RxPacket.length){
168
               RxState = 7;
170
          } else if(RxState == 7) {
171
172
             RxPacket.checksum = c;
174
             if (RxPacket.checksum == RxChecksum) {
               XBee_communication_saveRxPacket(&RxPacket);
175
               countNewPackets++;
176
177
             } else {
               printf("Checksum failed: 0x%x vs 0x%x\r\n", RxPacket.
178
        checksum, RxChecksum);
180
             RxState \, = \, 0 \, , \; RxChecksum \, = \, 0 \, , \; RxDataCount \, = \, 0 \, ;
181
182
        }
183
185
186
187
     return countNewPackets;
188 }
```

Listing 5: XbeeCom.c - processSerialData functie

- 6 Resultaten
- 7 Discussie en resultaten
- 8 Conclusies
- 9 Aanbevelingen

10 Onderzoeks opzet

Het project bestaat uit twee delen. Het eerste deel heeft als doel de hexapod in de simulatie te verwerken. Het tweede deel is ervoor zorgen dat er een verbinding ontstaat tussen de simulatie en de hexapod. Vanwege de wensen van de opdrachtgever zal er gewerkt worden met het simulatie-programma V-REP en zullen andere softwarepakketten buiten beschouwing worden gelaten.

Daarnaast zal er in de eerste deel gekeken worden naar toepassingen die andere hebben bedacht voor de hexapod. Hieruit is inspiratie te halen voor handige en leuke toepassingen.

Om de verbinding te maken tussen robot en computer dienen er verschillende bronnen te worden geraadpleegd. Een groot deel van die bronnen zal worden voorzien door gebruik te maken van het internet. Verder zal kennis die in de les wordt opgedaan, worden toegepast en de boeken kunnen worden bekeken.

De hexapod is al fysiek aanwezig, wat het testen van geschreven code gemakkelijk maakt. Op deze manier wordt gelijk duidelijk of het geschreven programma functioneert. Tijdens het schrijven van de verschillende functies zal de hexapod fysiek aanwezig zijn om direct het resultaat te ondervinden.

11 Bijlage

12 Bibliografie