素数

定理 8 (Eratosthenes): 若正整数 $n \ge 2$, 且所有不大于 \sqrt{n} 的素数都不整除 n, 则 n 为素数.

定理 9: 素数有无穷多个.

定义: $\pi(n)$ 为不大于 n 的素数个数.

素数定理(PNT): $\pi(n) \sim \frac{n}{\log n}$,这里 $\log n$ 即 $\ln n$. (第二章中证明)

定理 10: PNT $\iff p_n \sim n \log n$, 这里 p_n 是第 n 个素数

证明: " \Longrightarrow ": 由 p_n 的定义知, $\pi(p_n) = n$

由 PNT,

$$\lim_{n \to +\infty} \frac{\pi(n)}{\frac{n}{\log n}} = 1$$

$$\lim_{n \to +\infty} \frac{\pi(p_n)}{\frac{p_n}{\log p_n}} = 1$$

$$\lim_{n \to +\infty} \frac{n \log p_n}{p_n} = 1$$

两边取对数,得:

$$\lim_{n \to +\infty} \log n + \log(\log p_n) - \log p_n = 0$$

$$\lim_{n \to +\infty} \log p_n \left(\frac{\log n}{\log p_n} + \frac{\log(\log p_n)}{\log p_n} - 1 \right) = 0$$

显然

$$\lim_{n \to +\infty} \log p_n = +\infty$$

$$\lim_{n \to +\infty} \frac{\log(\log p_n)}{\log p_n} = 0$$

故

$$\lim_{n \to +\infty} \frac{\log n}{\log p_n} = 1$$

$$\lim_{n \to +\infty} \frac{p_n}{n \log n} = \lim_{n \to +\infty} \frac{p_n}{n \log p_n} \cdot \frac{\log p_n}{\log n} = \lim_{n \to +\infty} \frac{p_n}{n \log p_n} = 1$$

"←": 类似可证

Q: 有没有函数的结果均为素数?

定理 11: 若 $f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ 是一个非常数多项式且 $a_k > 0$,则对无穷多个 n,有 f(n) 为合数.

证明: 假设对 $\forall x \geq N_0$, 都有 $f(x) \geq 2$. 记 $f(N_0) = y$

对所有 c > 1,

$$f(N_0 + cy) = a_k(N_0 + cy)^k + a_{k-1}(N_0 + cy)^{k-1} + \dots + a_1(N_0 + cy) + a_0$$
$$= f(N_0) + yg(c)$$
$$= y(1 + g(c))$$

为合数.

定义: $2^p - 1$ 称为梅森数,其中的素数称为梅森素数.

定义: 若 $\sigma(n) = 2n$, 则称 n 为完美数.

定理 12: 所有的偶完美数都为 $2^{n-1}(2^n-1)$ 的形式,这里 $n \ge 2$ 且 2^n-1 为梅森素数.

证明: (后续从作业中补充)

定义: $2^{2^n} + 1$ 称为费马数.

Q: 是否有正的取值都包含无穷多个素数的函数?

定理 13 (Dirichlet): 对互素的正整数 a,b, f(x) = ax + b 包含无穷多个素数.