Hyper turning Parameter

for ML Algorithm

Dataset = 50_Startup

1. Multiple Linear Regression - R^2 value = 0.935

2. Support Vector Machine

C-Support Vector Classification.

C: float, default=1.0

Kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'} or callable, default='rbf'

S. No	Hyper parameter 'c'	Linear R ² value	rbf R ² value	Poly R ² value	Sigmoid R ² value
1	10	-9774	-0.057	-7.853	-0.052
2	100	-7624	-0.057	-7.853	-0.018
3	1000	-2028	-0.059	-7.372	-0.322
4	2000	-2795	-0.055	-2.446	-1.729
5	3000	-2381	-0.050	-4.164	-3.489

Here R² value is not upto mark.

This model is **Not Good** for this data.

3. Decision Tree

Criterion: {"squared_error", "friedman_mse", "absolute_error", "poisson"},

default="squared_error"

Splitter: {"best", "random"}, default="best"

max_features: int, float or {"sqrt", "log2", "auto"}, default=None

s.	Criterion	Splitter	max_features	R ² value
No				
1				0.916
2	squared_error	best		0.882
3	squared_error	best	sqrt	0.234
4	squared_error	best	Log2	0.638
5	squared_error	best	auto	0.903
6	squared_error	random		0.845
7	squared_error	random	sqrt	0.473
8	squared_error	random	Log2	0.216
9	squared_error	random	auto	0.281
10	friedman mse	best		0.926
11	friedman_mse	best	sqrt	0.925
12	friedman_mse	best	Log2	-0.236
13	friedman_mse	best	auto	0.921
14	friedman mse	random		0.904
15	friedman_mse	random	sqrt	0.746
16	friedman mse	random	Log2	0.458
17	friedman_mse	random	auto	0.861
18	absolute_error	best		0.935
19	absolute_error	best	sqrt	0.560
20	absolute_error	best	Log2	0.561
21	absolute_error	<mark>best</mark>	<mark>auto</mark>	0.941
22	absolute error	random		0.934
23	absolute error	random	sqrt	0.713
24	absolute_error	random	Log2	0.629
25	absolute error	random	auto	0.925
26	poisson	best		0.712
27	poisson	best	sqrt	0.896
28	poisson	best	Log2	0.701
29	poisson	best	auto	0.926
30	poisson	random		0.879
31	poisson	random	sqrt	0.847
32	poisson	random	Log2	0.156
33	poisson	random	auto	0.933

Here **R² value** is upto mark.

This model (absolute error, best, auto) is **Good** for this data.

4. Random Forest

n_estimators: int, default=100

 $\label{lem:constraint} \textbf{Criterion: } \{\textit{"squared_error", "absolute_error", "friedman_mse", "poisson"\}, \\$

default="squared_error"

max_features : {"sqrt", "log2", None,auto}, int or float, default=1.0 random_state: int, RandomState instance or None, default=None

S. No n_estimators		Criterion	max_featur	R ²	
1	100	aguared error	es	value 0.941	
2	100	squared_error	aamt	0.762	
		squared_error	sqrt		
3	100	squared_error	Log2	0.787	
4	<mark>100</mark>	<pre>squared_error</pre>	<mark>auto</mark>	0.948	
5	50	squared_error		0.934	
6	50	squared_error	sqrt	0.817	
7	50	squared_error	Log2	0.826	
8	50	squared_error	auto	0.945	
9	20	squared_error		0.944	
10	20	squared_error	sqrt	0.713	
11	20	squared_error	Log2	0.784	
12	20	squared_error	auto	0.935	
13	100	absolute_error		0.942	
14	100	absolute_error	sqrt	0.840	
15	100	absolute_error	Log2	0.811	
16	100	absolute_error	auto	0.942	
17	50	absolute_error		0.944	
18	50	absolute_error	sqrt	0.777	
19	50	absolute_error	Log2	0.829	
20	50	absolute_error	auto	0.935	
21	20	absolute_error		0.933	
22	20	absolute_error	sqrt	0.819	
23	20	absolute_error	Log2	0.783	
24	20	absolute_error	auto	0.927	
25	100	friedman_mse		0.940	
26	100	friedman_mse	sqrt	0.802	
27	100	friedman_mse	Log2	0.798	
28	100	friedman_mse	auto	0.943	
29	50	friedman_mse		0.941	
30	50	friedman_mse	sqrt	0.820	
31	50	friedman_mse	Log2	0.782	
32	50	friedman_mse	auto	0.934	
33	20	friedman_mse		0.926	
34	20	friedman_mse	sqrt	0.861	
35	20	friedman_mse	Log2	0.678	
36	20	friedman_mse	auto	0.909	
37	100	poisson		0.934	
38	100	poisson	sqrt	0.833	
39	100	poisson	Log2	0.781	
40	100	poisson	auto	0.939	
41	50	poisson		0.937	
42	50	poisson	sqrt	0.695	
43	50	poisson	Log2	0.757	
44	50	poisson	auto	0.944	
45	20	poisson		0.928	
46	20	poisson	sqrt	0.825	
47	20	poisson	Log2	0.764	

48	20	poisson	auto	0.941
----	----	---------	------	-------

Here R² value is upto mark. 0.948
This model (100, squared_error, auto) is Good for this data.