

표준 수학 함수들

다양한 표준 수학 함수를 사용하여 수학 계산을 합니다.

Ⅲ │ 이 모듈의 연습 문제를 풀 때, 많이 생각해보고, 너무 버거우면 구글 검색에게 물어보세요.

표현식에서, 표준 연산자를 사용하여 표준 수학 함수를 사용할 수 있다. 함수를 사용할 때에는 인자^{argument}와 결과값의 타입에 주의해야 정확한 결과를 얻을 수 있다.

델파이 언어에 있는 표준 함수들

함수	계산	입력 매개변수 (Input Parameter)	결과값 타입	예문
ABS(X)	숫자의 절대값을 반환	X — REAL 또는 INTEGER 값	매개변수와 같은 타입	ABS(2,0) = 2,0000e+00;
SQR(X)	숫자의 제곱값을 반환	X — REAL 또는 INTEGER 값	매개변수와 같은 타입	SQR(3) = 9; SQR(-2.0) = 4.0000e+00;
SQRT(X)	숫자의 제 곱근 을 반환	X — REAL 또는 INTEGER 값	REAL	SQRT(16) = 4.0000e+00; SQRT(25.0) = 5.0000e+00;
EXP(X)	숫자의 거듭제곱값 을 반환	X — REAL 또는 INTEGER 값	REAL	EXP(0) = 1.00000e + 00; EXP(-1.0) = 3.67879e - 01;
LN(X)	지수 함수 값을 반환	X — REAL 또는 INTEGER 값	REAL	LN(1) = 0.00000e+00 LN(7.5) = 2.01490e+00

함수	계산	입력 매개변수 (Input Parameter)	결과값 타입	예문
SIN(X)	사인 값을 반환	X — REAL 또는 INTEGER 값, 라디안에서	REAL	SIN(0) = 0.00000e+00; SIN(1.0) = 8.41471e-01
COS(X)	코사인 값을 반환	X — REAL 또는 INTEGER 값, 라디안에서	REAL	COS(0) = 1.00000e+00; COS(1.0) = 8.41471e-01
ARCTAN(X)	적분 값을 반환	X — REAL 또는 INTEGER 값	REAL	ARCTAN(0) = 0.0000e+00 ARCTAN(-1.0) = -7.8539e-01
ROUND(X)	실수를 반올림하여 만든 정수 값을 반환	X — REAL	INTEGER	ROUND(3.1) = 3; ROUND(-3.1) = -3; ROUND(3.8) = 4; ROUND(-3.8) = -4; 주의: 소수점 아래가 .5 인 경우 가장 가까운 짝수로 된다 ROUND(3.5) = 4; ROUND(2.5) = 2;
TRUNC(X)	소수점 아래를 버리고 정수 부분만 반환	X — REAL	INTEGER	TRUNC(3.1) = 3; TRUNC(-3.1) = -3 ; TRUNC(3.8) = 3;
INT(X)	소수점 아래를 버리고 정수 부분만 반환	X — REAL	REAL	INT(3.1) = 3.00000E+00 $INT(-3.1) = -3.00000E+00$ $INT(3.8) = 3.00000E+00$

실습

Exercise 1.

실수를 가지고, 정수 부분과 소숫점 아래 부분을 나누어 표시하자.

Exercise 2.

지구가 완전한 공 모양이고 반지름 R=6350km 라고 가정할 때, 현재 위치와 그 위치에서 보이는 지평선까지 거리를 구하는 프로그램을 작성해보자. 현재 위치에서 위로 높이 올라 갈수록, 보이는 수평선까지의 거리는 멀어진다.

Tip | 열심히 생각해보다가 잘 안되면 구글에게 '수평선 거리 계산'이라고 물어보세요. 구글에게 물어보는 것이 창피한 것이 아닙니다. 프로그래머 역시 문제를 해결하기 위해 구글 검색의 도움을 많이 받습니다. 중요한 것은 '내가 생각하면서 프로그래밍을 한다'는 것입니다.

Exercise 3.

키보드를 통해서 입력된 숫자 3개의 합과 곱을 계산하여 표시하자.

Exercise 4.

삼각형의 세 꼭지점 좌표가 정해지면 둘레와 면적을 표시하자.

Exercise 5.

나무로부터 떨어진 거리와 그 곳에서 나무의 꼭대기를 보는 각도가 주어지면 나무의 키를 계산하자. 결과는 다음과 같이 표시되어야 한다.

나무의 키는: 2 m 87 cm