华东师范大学期末试卷 (A)

2009 - 2010 学年第 二 学期

课程名称:	高等数学 A
VK/1±/11/1/1\)	可分数十八

学生姓名: _____

学 号:

专 业: _____

年级/班级: 2009 级

课程性质:公共必修.

 =	111	四	五.	六	七	八	总分	阅卷人签名

一、填空题 (28分, 每题4分)

- 1. 由方程 $xyz = e^z$ 所确定的隐函数 z = z(x, y) 的全微分=_______.
- 2. 设 f(u,v) 为可微函数, $z = f(xe^y, x^2y)$, 则 $\frac{\partial z}{\partial y} =$ _______.
- 3. 设 Σ 是球面 $x^2 + y^2 + z^2 = R^2$,则曲面积分 $\iint_{\Sigma} (x^2 + y^2 + z^2) dS = _____.$
- 4. D 是圆域 $x^2 + y^2 \le 4$,二重积分 $\iint_D (\sin x \cos y + 2) d\sigma =$ _______.
- 5. 设u = u(x, y, z) 具有连续的二阶导数,则 rot(gradu) = _____.
- 6. 正项级数 $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ 收敛还是发散______.

二、计算题 (49分,每题7分)

- 1. 讨论函数 $f(x, y) = \begin{cases} xy \frac{x^2 y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在 (0,0) 处的连续性.
- 2. 求函数 $z(x, y) = -2x^2 2y^2 2xy + 14x + 16y 1$ 的极值和极值点.
- 3. 计算 $I = \oint_L (z-y)dx + (x-z)dy + (x-y)dz$, 其中 $L \neq x^2 + y^2 = 1$ 与 x-y+z=2的

交线,从z正向往负向看时L为顺时针方向.

求 $S(-\frac{11}{2})$.

5. 求函数
$$f(x) = \frac{1}{3x - x^2}$$
 在 $x = 1$ 处的幂级数展开式和收敛域.

6. 求方程
$$e^{\frac{y}{x}}(x-y)dx + x(1+e^{\frac{y}{x}})dy = 0$$
 的通解.

7. 求二阶方程
$$y'' - 2y' + y = 2x^2$$
 的通解。

三、综合题(23分)

1. (7分) 若 f(x, y) 在矩形区域 $D: 0 \le x \le 1, 0 \le y \le 1$, 上连续, 且

$$x(\iint\limits_{D} f(x,y)dxdy)^{2} = f(x,y) - \frac{1}{2}, \quad \Re f(x,y)$$

- 2. (8 分) 判断级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n-\ln n}$ 的收敛性,若收敛,指出是条件收敛还是绝对收敛.
- 3. (8分)设f(u)在 $(0,+\infty)$ 上二阶可导,函数 $z = f(\sqrt{x^2 + y^2})$ 满足微分方程

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

- (1) 证明 f(u) 满足的微分方程 $f'' + \frac{1}{u}f' = 0$;
- (2) 求(1) 中方程满足初始条件 f(1) = 0, f'(1) = 1 的特解.

华东师范大学期末试卷 (B)

2009 - 2010 学年第 二 学期

课程名称:	高等数学 A
VIV1 = 1 1 1 1 1 1 1 1	101 71 87 1 11

学生姓名:

学 号:

专 业: _____

年级/班级: 2009级

课程性质:公共必修.

 <u> </u>	111	四	五.	六	七	八	总分	阅卷人签名

一、填空题(28分,每题4分)

1.
$$\% f(x, y) = x^2 + y^2$$
, $\% grad f(1, 2) =$.

2. 设
$$(3x^2y^2-2xy^2)dx+(2x^3y+ax^2y+1)dy$$
是函数 $f(x,y)$ 的全微分,则 $a=$ _____.

4. 设
$$L: x^2 + y^2 = R^2 (R > 0)$$
,则第一型曲线积分 $\oint_L \sqrt{x^2 + y^2} ds = ______.$

5. 设
$$\vec{A} = (e^{xy}, \sin(xy), \cos(xz^2))$$
,散度 $\operatorname{div} \vec{A} = \underline{}$

7. 方程
$$x(y^2-1)dx + y(x^2-1)dy = 0$$
 通解为 ______.

二、计算题(49分,每小题7分)

1. 设函数
$$z = f(u,v)$$
 有二阶连续偏导数, $u = xy$, $v = x^2 + y^2$, 计算 $\frac{\partial^2 z}{\partial x^2}$

2. 求过曲面
$$z - e^z + 2xy = 3$$
上点 $(1, 2, 0)$ 的切平面方程.

3. 计算
$$\oint\limits_L ydx+zdy+xdz$$
,其中 L 是 $x^2+y^2+z^2=1$ 与 $x+y+z=0$ 的交线,从 z 正向

往负向看时 L 为逆时针方向.

4. 求 $\ln x$ 在 x = 2 处的幂级数展开式,并指出其收敛域.

5. 设周期为
$$2\pi$$
 的周期函数 $f(x) = \begin{cases} x + 2\pi, & -\pi < x < 0 \\ x, & 0 \le x < \pi \end{cases}$ 的傅里叶级数为

 $\frac{a_0}{2}\sum_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)$. 求上述傅里叶级数的和函数 g(x),并求 $g(2\pi)$

6. 求一阶方程 y' + 2xy = 4x 的通解

7. 求方程
$$(\frac{xy}{\sqrt{1+x^2}} + 2xy - \frac{y}{x})dx + (\sqrt{1+x^2} + x^2 - \ln x)dy = 0$$
 的通解。

三、综合题(23分)

1. (7 分) 设 f(x, y) 在矩形区域 D: $0 \le x \le 1$, $0 \le y \le 1$ 上连续,且满足关系式

$$f(x,y) = \frac{y^2}{1+x^2} + 2(x+y) \iint_D f(x,y) d\sigma, \quad \text{$\vec{x} \iint_D f(x,y) d\sigma$ in \vec{a}.}$$

- 2. (8分) 求级数 $\sum_{n=1}^{\infty} (2n+1)x^n$ 的和函数.
- 3. (8分) 求方程 $y'' 4y = 4x^2$ 的通解及满足 $y(0) = -\frac{1}{2}$, y'(0) = 2 的特解.