

Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

Рабочий протокол и отчёт по лабораторной работе № 5

Цель работы. Вычислить момент инерции маятника Обербека

Задачи, решаемые при выполнении работы.

- Измерить массы грузов
- Измерить диаметр шкива
- Измерить высоту, с которой опускаются грузы
- Измерить время, за которое опускаются грузы с различной массой (маятник без грузов)
- Найти зависимость $\varepsilon(m)$ и с помощью экстраполяции определить m_o
- Вычислить момент инерции маятника без грузов
- \bullet Вычислить момент инерции маятника с грузами при различных расстояниях r
- Сделать выводы

Объект исследования. Аддитивность момента инерции I

Метод экспериментального исследования. Измерение момента инерции

Рабочие формулы и исходные данные.

$$I = \frac{gD^2}{8x}(m - m_0)t^2$$
 (1)

$$\varepsilon = \frac{4x}{Dt^2} \tag{2}$$

$$\Delta \varepsilon = \sqrt{\frac{16}{D^2 t^4} \Delta x^2 + \frac{16x^2}{D^4 t^4} \Delta D^2 + \frac{64x^2}{D^2 t^6} \Delta t^2}$$
 (3)

$$M_{\text{comp.}} = \frac{m_0 g D}{2} \tag{4}$$

$$I = \tilde{I} + 4\overline{m}_1 r^2 \tag{5}$$

где \tilde{I} - момент инерции барабана; D - диаметр шкива; x - высота, с которой спускается груз; t -время спуска груза; m - масса спускаемого груза; m_0 - масса груза, которая компенсирует момент силы трения (определяется косвенно)

Таблица 1: Измерительные приборы

Наименование	Тип прибора	Используемый	Погрешность
		диапазон	прибора
Линейка	Аналоговый	5 - 60 cm	0,1 см
Штангенциркуль	Цифровой	50 - 70 MM	0,02 мм
Электронные	Цифровой	1 - 150 г	0,01 г
весы			

Результаты прямых измерений и их обработки.

- D = 63,37 mm
- x = 45, 5 cm
- Маятник без грузов на стержнях

m , Γ	t, c
46,45	5,356
95,75	3,847
145,05	3,140
194,35	2,785

Рис. 1: Схема установки

• Маятник с грузами \overline{m}_1 на стержнях, расположенные на расстояние r от оси вращения:

r, cm	m , Γ	t, c
27	95,75	6,941
22	95,75	6,142
17	95.75	5.063

Погрешности измерений.

- $\Delta m=0,01\ {\rm f}$
- $\Delta t = 0,001 \text{ c}$
- $\Delta x = 1 \text{ cm}$
- $\Delta D = 0,02 \text{ mm}$
- $\Delta r = 1 \text{ cm}$

Расчет результатов косвенных измерений.

- Вычисление то
 - Пользуясь формулой (2), находим ε :

$$\varepsilon_1 = \frac{4 \cdot 0,455}{63,37 \cdot 10^{-3} \cdot (5,356)^2} \approx 1 \ (c^{-2})$$

$$\varepsilon_{2} = \frac{4 \cdot 0,455}{63,37 \cdot 10^{-3} \cdot (3,847)^{2}} \approx 1,94 \text{ (c}^{-2}\text{)}$$

$$\varepsilon_{3} = \frac{4 \cdot 0,455}{63,37 \cdot 10^{-3} \cdot (3,140)^{2}} \approx 2,91 \text{ (c}^{-2}\text{)}$$

$$\varepsilon_{4} = \frac{4 \cdot 0,455}{63,37 \cdot 10^{-3} \cdot (2,785)^{2}} \approx 3,7 \text{ (c}^{-2}\text{)}$$

— Пользуясь формулой (3), находим погрешность $\Delta \varepsilon$:

$N_{\overline{0}}$	$\Delta \varepsilon$, c ⁻²
1	0,02
2	0,04
3	0,06
4	0,08

– В итоге:

$N_{\overline{0}}$	m , Γ	ε, c^{-2}
1	$46,45 \pm 0,01$	$1,00 \pm 0,02$
2	$95,75 \pm 0,01$	$1,94 \pm 0,04$
3	$145,05 \pm 0,01$	$2,91 \pm 0,06$
4	$194,35 \pm 0,01$	$3,70 \pm 0,08$

- С помощью метода наименьших квадратов находим m_0 :

$$f(k,b) = (\varepsilon_1 - (km_1 + b))^2 + (\varepsilon_2 - (km_2 + b))^2 + (\varepsilon_3 - (km_3 + b))^2 + (\varepsilon_4 - (km_4 + b))^2$$

$$\begin{cases} \frac{\partial f}{\partial k} = -2m_1(\varepsilon_1 - km_1 - b) - 2m_2(\varepsilon_2 - km_2 - b) - 2m_3(\varepsilon_3 - km_3 - b) - 2m_4(\varepsilon_4 - km_4 - b) = 0 \\ \frac{\partial f}{\partial b} = -2(\varepsilon_1 - km_1 - b) - 2(\varepsilon_2 - km_2 - b) - 2(\varepsilon_3 - km_3 - b) - 2(\varepsilon_4 - km_4 - b) = 0 \end{cases}$$

$$\begin{cases} 2(m_1\varepsilon_1 + m_2\varepsilon_2 + m_3\varepsilon_3 + m_4\varepsilon_4) - 2k(m_1^2 + m_2^2 + m_3^2 + m_4^2) - 2b(m_1 + m_2 + m_3 + m_4) = 0\\ 2(\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4) - 2k(m_1 + m_2 + m_3 + m_4) - 8b = 0 \end{cases}$$

$$\begin{cases} (2,75 \pm 0.03) - (0,140274 \pm 0,000019)k - (0,96320 \pm 0,00008)b = 0\\ (19,1 \pm 0,4) - (0,96320 \pm 0,00008)k - 8b = 0 \end{cases}$$

$$\begin{cases} k = 18,5297 \pm 2,3345 \\ b = 0,1565 \pm 0,3246 \end{cases}$$

$$m_0 = -\frac{b}{k}$$

$$m_0 = (-8 \pm 18) \cdot 10^{-3} \text{ кг}$$

По формуле (4):

$$M_{\text{COIID.}} = (-2 \pm 6) \cdot 10^{-3} \text{ H} \cdot \text{M}$$

ullet Момент инерции барабана $ilde{I}$ (1):

m , Γ	t, c	\tilde{I} , kg·m ²
46,45	5,356	$(17 \pm 6) \cdot 10^{-3}$
95,75	3,847	$(16,6\pm 2,9)\cdot 10^{-3}$
145,05	3,140	$(16,3\pm1,8)\cdot10^{-3}$
194,35	2,785	$(17,0\pm 1,6)\cdot 10^{-3}$

$$194,35 \mid 2,785 \mid (17,0 \pm \tilde{I}) \approx (17 \pm 6) \cdot 10^{-3} \text{ Kg} \cdot \text{M}^2$$

Окончательные результаты.

• Момент инерции маятника по формуле (5):

Таблица 2

1400111144 2		
r, cm	r, cm I , kg·m ²	
27	$(5,0\pm0,8)\cdot10^{-2}$	
22	$(4,0\pm0,8)\cdot10^{-2}$	
17	$(3,0\pm0,8)\cdot10^{-2}$	

• Момент инерции маятника по формуле (1)

Таблица 3

r, cm	I , кг \cdot м 2
27	$(5,4\pm0,8)\cdot10^{-2}$
22	$(4,2\pm0,7)\cdot10^{-2}$
17	$(2,9\pm0,5)\cdot10^{-2}$

Выводы и анализ результатов. Мы косвенно измерили момент инерции маятника Обербека двумя способами, пользуясь формулами (1) и (5). И, к счастью, погрешности этих значений перекрываются. Это означает, что формула (5) верна по отношению к формуле (1), а из этого следует, что момент инерции - аддитивная величина.

В наших вычислениях встречается одна неприятность: m_0 имеет отрицательное значение. Так выходит из-за того, что экстраполируя m_0 получается большая погрешность, и вдобавок момент силы сопротивления очень мал, около $2 \cdot 10^{-3} \; \text{H} \cdot \text{M}$ (соответственно m_0 в окрестности нуля).

Стоит также отметить, что в погрешности не было учтено, что в действительности зависимость $\varepsilon(m)$ не линейная: $\varepsilon(m) = \frac{mgR - M_{\rm conp}}{\bar{I} + mR^2}$. Но в нашем опыте слагаемое mR^2 мало, что позволяет нам использовать линейную экстраполяцию для нахождения m_0 .