Introduction to Machine Learning Logistic Regression

Prof. Chang-Chieh Cheng
Information Technology Service Center
National Chiao Tung University

Example: A dataset listing features for a number of generators

ID	RPM	VIBRATION	STATUS		ID	RPM	VIBRATION	STATUS
1	568	585	good	-	29	562	309	faulty
2	586	565	good		30	578	346	faulty
3	609	536	good		31	593	357	faulty
4	616	492	good		32	626	341	faulty
5	632	465	good		33	635	252	faulty
6	652	528	good		34	658	235	faulty
7	655	496	good		35	663	299	faulty
8	660	471	good		36	677	223	faulty
9	688	408	good		37	685	303	faulty
10	696	399	good		38	698	197	faulty
11	708	387	good		39	699	311	faulty
12	701	434	good		40	712	257	faulty
13	715	506	good		41	722	193	faulty
14	732	485	good		42	735	259	faulty
15	731	395	good		43	738	314	faulty
16	749	398	good		44	753	113	faulty
17	759	512	good		45	767	286	faulty
18	773	431	good		46	771	264	faulty
19	782	456	good		47	780	137	faulty
20	797	476	good		48	784	131	faulty
21	794	421	good		49	798	132	faulty
22	824	452	good		50	820	152	faulty
23	835	441	good		51	834	157	faulty
24	862	372	good		52	858	163	faulty
25	879	340	good		53	888	91	faulty
26	892	370	good		54	891	156	faulty
27	913	373	good		55	911	79	faulty
28	933	330	good		56	939	99	faulty

Δ: Faulty

- Affine hyperplane
 - For a n-dimensional point $\mathbf{x} = [x_0 \ x_1 \ x_2 \ ... \ x_n]$ in Euclidean space, where $x_0 = 1$
 - Let $\mathbf{w} = [w_0 \ w_1 \ ... \ w_n]$, at least one of the $w_1 \ ... \ w_n$ is non-zero

$$w_1 x_1 + w_2 x_2 + \dots + w_n x_n = -w_0 x_0$$

$$\sum_{j=0}^{n} w_j x_j = \mathbf{w} \cdot \mathbf{x} = 0$$

A hyperplane can separate the space into two half-spaces

$$\mathbf{w} \cdot \mathbf{x} < 0$$
 and $\mathbf{w} \cdot \mathbf{x} > 0$

• The learning model with decision surface

$$M_{\mathbf{w}}(\mathbf{q}) = \begin{cases} 1 & if \ \mathbf{w} \cdot \mathbf{x} \ge 0 \\ 0 & Otherwise \end{cases}$$
 (Negative)

- How to find the decision surface?
 - $M_{\mathbf{w}}(\mathbf{q})$ is not a continuous function \rightarrow not differentiable
 - Gradient descent cannot be used!

Logistic function or sigmoid function

$$L(x) = \frac{1}{1 + e^{-x}}$$

 The standard logistic function for x over a small range of real numbers such as a range contained in [−6, +6].

Hyperbolic tangent

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$=\frac{e^x(1-e^{-2x})}{e^x(1+e^{-2x})}=\frac{1}{1+e^{-2x}}-\frac{e^{-x}}{e^x(1+e^{-2x})}$$

$$= L(2x) - \frac{e^{-2x}}{1 + e^{-2x}} = L(2x) - \frac{e^{-2x} + 1 - 1}{1 + e^{-2x}}$$

$$= 2L(2x) - 1$$

$$L(x) = \frac{1}{2} + \frac{1}{2} \tanh \frac{x}{2}$$

 $https://en.wikipedia.org/wiki/Hyperbolic_function$

The logistic function has the symmetry property

$$L(-x) = \frac{1}{1+e^x} = \frac{e^{-x}}{1+e^{-x}} = \frac{1+e^{-x}-1}{1+e^{-x}}$$
$$= 1 - \frac{1}{1+e^{-x}}$$
$$= 1 - L(x)$$

Rotational symmetry

$$L(x) + L(-x) = \frac{1}{1 + e^{-x}} + \frac{1}{1 + e^{x}}$$
$$= \frac{(1 + e^{x}) + (1 + e^{-x})}{(1 + e^{-x})(1 + e^{x})} = 1$$

Derivative of logistic function

$$\frac{dL(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = L(x)(1-L(x))$$

$$\frac{dL(-x)}{dx} = L(-x)(1 - L(-x))$$

• Since L(-x) = 1 - L(x)

$$\frac{dL(-x)}{dx} = \frac{dL(x)}{dx}$$

Indefinite integral of logistic function

$$\int L(x)dx = x + \ln(1 + e^{-x})$$

$$= x + \ln(e^{-x}e^{x} + e^{-x})$$

$$= x + \ln(e^{-x}) + \ln(e^{x} + 1)$$

$$= \ln(e^{x} + 1)$$

The learning model with logistic function

$$M_{\mathbf{w}}(\mathbf{x}) = L(\mathbf{w} \cdot \mathbf{x})$$

$$= \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$\mathbf{x} = [x_0 \ x_1 \ x_2 \ ... \ x_n] \text{ and } x_0 = 1$$

$$P(\text{target} = \text{negative}|\mathbf{q}) = M_{\mathbf{w}}(\mathbf{q})$$

 $P(\text{target} = \text{positive}|\mathbf{q}) = 1 - M_{\mathbf{w}}(\mathbf{q})$

it should be closed to 1.0

it should be closed to 0.0

- Error function
 - Let y be the labeled target for each training data instance x
 - y = 1.0 if the target is negative
 - Otherwise y = 0.0
 - L2-norm error =

$$\sum_{i=1}^{m} \frac{1}{2} \left(y - M_{\mathbf{w}}(\mathbf{x}_i) \right)^2$$

$$\frac{\partial \sum_{i=1}^{m} \frac{1}{2} (y_i - M_{\mathbf{w}}(\mathbf{x}_i))^2}{\partial w_j}$$

• Let m = 1

Chain rule
$$F(x) = f(g(x))$$

F'(x) = f'(g(x))g'(x)

$$\frac{\partial \frac{1}{2} (y - M_{\mathbf{w}}(\mathbf{x}))^{2}}{\partial w_{j}} = (y - M_{\mathbf{w}}(\mathbf{x})) \frac{\partial (y - M_{\mathbf{w}}(\mathbf{x}))}{\partial w_{j}} = (y - L(\mathbf{w} \cdot \mathbf{x})) \frac{\partial (y - L(\mathbf{w} \cdot \mathbf{x}))}{\partial w_{j}}$$

$$= (y - M_{\mathbf{w}}(\mathbf{x})) \frac{\partial (-L(\mathbf{w} \cdot \mathbf{x}))}{\partial w_{j}} \frac{\partial (\mathbf{w} \cdot \mathbf{x})}{\partial w_{j}}$$

$$= (y - M_{\mathbf{w}}(\mathbf{x})) \frac{\partial (-L(\mathbf{w} \cdot \mathbf{x}))}{\partial w_{j}} x_{j}$$

• Since
$$\frac{dL(\mathbf{x})}{d\mathbf{x}} = L(\mathbf{x})(1 - L(\mathbf{x}))$$

$$(y - L(\mathbf{w} \cdot \mathbf{x})) \frac{\partial (-L(\mathbf{w} \cdot \mathbf{x}))}{\partial w_j} x_j = -(y - M_{\mathbf{w}}(\mathbf{x}))L(\mathbf{w} \cdot \mathbf{x})(1 - L(\mathbf{w} \cdot \mathbf{x}))x_j$$

$$= -(y - M_{\mathbf{w}}(\mathbf{x}))M_{\mathbf{w}}(\mathbf{x})(1 - M_{\mathbf{w}}(\mathbf{x}))x_j$$

• For m > 1

$$\frac{\partial \sum_{i=1}^{m} \frac{1}{2} (y_i - M_{\mathbf{w}}(\mathbf{x}_i))^2}{\partial w_j}$$

$$= \sum_{i=1}^{m} -(y_i - M_{\mathbf{w}}(\mathbf{x}_i)) M_{\mathbf{w}}(\mathbf{x}_i) (1 - M_{\mathbf{w}}(\mathbf{x}_i)) x_{ij}$$

To minimize error

$$w_j' = -\frac{\partial \sum_{i=1}^m \frac{1}{2} (y_i - M_{\mathbf{w}}(\mathbf{x}_i))^2}{\partial w_j}$$

•
$$\rightarrow$$
 $w'_j = \sum_{i=1}^m (y_i - M_{\mathbf{w}}(\mathbf{x}_i)) M_{\mathbf{w}}(\mathbf{x}_i) (1 - M_{\mathbf{w}}(\mathbf{x}_i)) x_{ij}$

• Therefore, increasing w_j by w'_j can let total error to approach zero

$$w_j = w_j + \alpha w_j'$$

α: learning rate

- All feature values should be normalized.
- Normalized to [-1.0, 1.0] or [0.0. 1.0]
 - Normalization is done to have the same range of values for each of the inputs to a learning model.
 - This can guarantee stable convergence of weight and biases.

Example

- $\alpha = 0.02$
- Initial Weights $\mathbf{w} = \begin{bmatrix} -2.9456 & -1.0147 & -2.161 \end{bmatrix}$

Target			Squared		/	/	
ID	LEVEL	Pred.	Error	Error	w_0	W_1	W_2
1	1	0.5570	0.4430	0.1963	0.1093	-0.1093	0.1093
2	1	0.5168	0.4832	0.2335	0.1207	-0.1116	0.1159
3	1	0.4469	0.5531	0.3059	0.1367	-0.1134	0.1197
4	1	0.4629	0.5371	0.2885	0.1335	-0.1033	0.1244
					ı		
65	0	0.0037	-0.0037	0.0000	0.0000	0.0000	0.0000
66	0	0.0042	-0.0042	0.0000	0.0000	0.0000	0.0000
67	0	0.0028	-0.0028	0.0000	0.0000	0.0000	0.0000
68	0	0.0022	-0.0022	0.0000	0.0000	0.0000	0.0000
			Sum	24.4738	2.7031	-0.7015	1.6493
Sun	n of squar	ed errors	(Sum/2)	12.2369			

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

Example

- After the 1st iteration, all w are updated once,
- $\mathbf{w} = \begin{bmatrix} -2.8924 & -1.0287 & -2.194 \end{bmatrix}$

	TARGET			Squared	/	/	/
ID	LEVEL	Pred.	Error	Error	W_0	W_1	W_2
1	1	0.5817	0.4183	0.1749	0.1018	-0.1018	0.1018
2	1	0.5414	0.4586	0.2103	0.1139	-0.1053	0.1094
3	1	0.4704	0.5296	0.2805	0.1319	-0.1094	0.1155
4	1	0.4867	0.5133	0.2635	0.1282	-0.0992	0.1194
					1		
65	0	0.0037	-0.0037	0.0000	0.0000	0.0000	0.0000
66	0	0.0043	-0.0043	0.0000	0.0000	0.0000	0.0000
67	0	0.0028	-0.0028	0.0000	0.0000	0.0000	0.0000
68	0	0.0022	-0.0022	0.0000	0.0000	0.0000	0.0000
			Sum	24.0524	2.7236	-0.6646	1.6484
Sun	n of squar	ed errors	(Sum/2)	12.0262			

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

- Modeling non-linear relationships
- Example: Grass growth on Irish farms during July 2012.

ID	Rain	GROWTH	ID	RAIN	GROWTH		ID	RAIN	GROWTH
1	2.153	14.016	12	3.754	11.420		23	3.960	10.307
2	3.933	10.834	13	2.809	13.847		24	3.592	12.069
3	1.699	13.026	14	1.809	13.757		25	3.451	12.335
4	1.164	11.019	15	4.114	9.101		26	1.197	10.806
5	4.793	4.162	16	2.834	13.923		27	0.723	7.822
6	2.690	14.167	17	3.872	10.795		28	1.958	14.010
7	3.982	10.190	18	2.174	14.307		29	2.366	14.088
8	3.333	13.525	19	4.353	8.059		30	1.530	12.701
9	1.942	13.899	20	3.684	12.041		31	0.847	9.012
10	2.876	13.949	21	2.140	14.641		32	3.843	10.885
11	4.277	8.643	22	2.783	14.138	_	33	0.976	9.876

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

- The data scattering cannot be separated into two spaces
- Even the linear regression cannot be used

- $\mathbf{x} = [x_0 \ x_1 \ x_2 \ ... \ x_n]$, where $x_0 = 1$
- $\mathbf{w} = [w_0 \ w_1 \ ... \ w_b], \ k > 0$

$$y = w_0 \phi_0(\mathbf{x}) + w_1 \phi_1(\mathbf{x}) + \dots + w_k \phi_b(\mathbf{x})$$

$$=\sum_{j=0}^b w_j \phi_j(\mathbf{x})$$

$$= \mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x})$$

where Φ is a series of basis functions to transform x

• Example:

$$\phi_0(x) = 1$$

$$\phi_1(x) = x$$

$$\phi_2(x) = x^2$$

Using gradient descent, we have

$$\mathbf{w} = [0.3707 \quad 0.8475 \quad 1.717]$$

Logistic regression model using basis functions

$$M_{\mathbf{w}}(\mathbf{x}) = L(\mathbf{w} \cdot \mathbf{\Phi}(\mathbf{x}))$$

$$= \frac{1}{1 + e^{-\sum_{j=0}^{k} w_j \phi_j(\mathbf{x})}}$$

 Example: A dataset showing participants' responses to viewing 'positive' and 'negative' images measured on the EEG P20 and P45 potentials.

ID	P20	P45	TYPE		ID	P20	P45	TYPE
1	0.4497	0.4499	negative	_	26	0.0656	0.2244	positive
2	0.8964	0.9006	negative		27	0.6336	0.2312	positive
3	0.6952	0.3760	negative		28	0.4453	0.4052	positive
4	0.1769	0.7050	negative		29	0.9998	0.8493	positive
5	0.6904	0.4505	negative		30	0.9027	0.6080	positive
6	0.7794	0.9190	negative		31	0.3319	0.1473	positive
		:					:	

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

• Example:

+: Positive

Δ: Negative

• Basis function:

$$\phi_0(x_0, x_1) = 1$$

$$\phi_1(x_0, x_1) = x_0$$

$$\phi_2(x_0, x_1) = x_1$$

$$\phi_3(x_0, x_1) = x_0^2$$

$$\phi_4(x_0, x_1) = x_1^2$$

$$\phi_5(x_0, x_1) = x_0^3$$

$$\phi_6(x_0, x_1) = x_1^3$$

$$\phi_7(x_0, x_1) = x_0x_1$$

3rd-order polynomial surface

Gradient descent

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

Example: A dataset of customers of a large national retail chain

ID	SPEND	FREQ	TYPE		ID	SPEND	FREQ	TYPE
1	21.6	5.4	single	-	28	122.6	6.0	business
2	25.7	7.1	single		29	107.7	5.7	business
3	18.9	5.6	single					
4	25.7	6.8	single					
					47	53.2	2.6	family
		:			48	52.4	2.0	family
26	107.9	5.8	business		49	46.1	1.4	family
27	92.9	5.5	business	_	50	65.3	2.2	family

Example: A dataset of customers of a large national retail chain

O: Single

+: Family

Δ: Business

- Given the *r* target levels $T = \{t_1 \ t_2 \ ... \ t_r\}$
- *r* logistic regression models:
 - → Each of them is a one-versus-all separation

$$M_{\mathbf{w}_1}(\mathbf{x}) = L(\mathbf{w}_1 \cdot \mathbf{x})$$

$$M_{\mathbf{w}_2}(\mathbf{x}) = L(\mathbf{w}_2 \cdot \mathbf{x})$$

...

$$M_{\mathbf{w}_r}(\mathbf{x}) = L(\mathbf{w}_r \cdot \mathbf{x})$$

 To combine the outputs of these different models, we normalize the result of each logistic model:

$$M'_{\mathbf{w}_k}(\mathbf{x}) = \frac{M_{\mathbf{w}_k}(\mathbf{x})}{\sum_{c=1}^r M_{\mathbf{w}_c}(\mathbf{x})}$$

 To verify each step of gradient descent, we can compute the L2 error of all training data instances

$$E(M_{\mathbf{w}_k}, \mathbf{X}) = \frac{1}{2} \sum_{i=1}^{m} \left(y_i - M'_{\mathbf{w}_k}(\mathbf{x}_i) \right)^2$$

• where y_i is 0 if the target of \mathbf{x}_i is t_k ; otherwise y_i is 1.

• The multinomial logistic model then is

$$M(\mathbf{x}) = \arg\max_{t_k \in T} M'_{\mathbf{w}_k}(\mathbf{x})$$

Example

```
Single(0): M_{\mathbf{w}_1}(\mathbf{x}) = L([0.7993 -15.9 9.5974] \cdot \mathbf{x})

Family(+): M_{\mathbf{w}_2}(\mathbf{x}) = L([3.6526 -0.58 17.5886] \cdot \mathbf{x})
```

Business(Δ): $M_{\mathbf{w}_3}(\mathbf{x}) = L([4.6419 \ 14.94 \ 6.9457] \cdot \mathbf{x})$

Example

•
$$\mathbf{q} = [1 \quad 25.67 \quad 6.12] \rightarrow \text{normalize} \rightarrow \mathbf{q} = [1 \quad -0.7279 \quad 0.4789]$$

$$Single(0): M_{\mathbf{w}_1}(\mathbf{q}) = 0.9999$$

$$Family(+): M_{\mathbf{w}_2}(\mathbf{q}) = 0.01278$$

Business(
$$\Delta$$
): $M_{w_3}(\mathbf{q}) = 0.0518$

$$Single(0): M'_{\mathbf{w}_1}(\mathbf{q}) = 0.9393$$

$$Family(+): M_{\mathbf{w}_2}(\mathbf{q}) = 0.0120$$

Business(
$$\Delta$$
): $M_{\mathbf{w}_3}(\mathbf{q}) = 0.0487$

Softmax

$$M_{\mathbf{w}_k}(\mathbf{x}) = \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

$$M(\mathbf{x}) = \arg\max_{t_k \in T} M_{\mathbf{w}_k}(\mathbf{x})$$

- But, what is the error function for minimizing with gradient descent?
 - Cross Entropy

Multinomial targets

$$precision(l) = \frac{TP(l)}{TP(l) + FP(l)}$$

$$recall(l) = \frac{TP(l)}{TP(l) + FN(l)}$$

where l is a target level

Average class accuracy

$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} recall_l$$

Harmonic average class accuracy

$$\frac{1}{|levels(t)|} \sum_{l \in levels(t)} \frac{1}{\text{recall}_l}$$

Harmonic average of *n* numbers:

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

Multinomial targets

• Example: bacterial species identification

ID	Target	Prediction		ID	Target	Prediction
1	durionis	fructosus	_	16	ficulneus	ficulneus
2	ficulneus	fructosus		17	ficulneus	ficulneus
3	fructosus	fructosus		18	fructosus	fructosus
4	ficulneus	ficulneus		19	durionis	durionis
5	durionis	durionis		20	fructosus	fructosus
6	pseudo.	pseudo.		21	fructosus	fructosus
7	durionis	fructosus		22	durionis	durionis
8	ficulneus	ficulneus		23	fructosus	fructosus
9	pseudo.	pseudo.		24	pseudo.	fructosus
10	pseudo.	fructosus		25	durionis	durionis
11	fructosus	fructosus		26	pseudo.	pseudo.
12	ficulneus	ficulneus		27	fructosus	fructosus
13	durionis	durionis		28	ficulneus	ficulneus
14	fructosus	fructosus		29	fructosus	fructosus
15	fructosus	ficulneus		30	fructosus	fructosus

- Multinomial targets
 - Example: bacterial species identification

		Prediction				Recall
		'durionis' 'ficulneus' 'fructosus' 'pseudo.'				
	'durionis'	5	0	2	0	0.714
Target	'ficulneus'	0	6	1	0	0.857
Target	'fructosus'	0	1	10	0	0.909
	'pseudo.'	0	0	2	3	0.600
	Precision	1.000	0.857	0.667	1.000	

Harmonic average class accuracy

$$\frac{1}{\frac{1}{4}\left(\frac{1}{0.714} + \frac{1}{0.857} + \frac{1}{0.909} + \frac{1}{0.600}\right)} = \frac{1}{1.333} = 75.000\%$$

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

Logistic Regression in sklearn

- Example of iris
 - https://github.com/jameschengcs/ml/blob/master/logistic.py

```
import numpy as np
from sklearn import linear_model, datasets
iris = datasets.load iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target
logreg = linear model.LogisticRegression(C=1e5)
logreg.fit(X, Y)
# Create test data
x_{min}, x_{max} = X[:, 0].min() - .5, X[:, 0].max() + .5
y \min, y \max = X[:, 1].\min() - .5, X[:, 1].\max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y min, y max, h))
Z = logreg.predict(np.c [xx.ravel(), yy.ravel()])
```

Sepal length

Prediction scores

- all classification prediction models return a score
- score ≥ threshold → Positive
- otherwise → Negative

		Pred-		Out-				Pred-		Out-
ID	Target	iction	Score	come		ID	Target	iction	Score	come
7	ham	ham	0.001	TN		5	ham	ham	0.302	TN
11	ham	ham	0.003	TN		14	ham	ham	0.348	TN
15	ham	ham	0.059	TN		17	ham	spam	0.657	FP
13	ham	ham	0.064	TN		8	spam	spam	0.676	TP
19	ham	ham	0.094	TN		6	spam	spam	0.719	TP
12	spam	ham	0.160	FN		10	spam	spam	0.781	TP
2	spam	ham	0.184	FN		18	spam	spam	0.833	TP
3	ham	ham	0.226	TN		20	ham	spam	0.877	FP
16	ham	ham	0.246	TN		9	spam	spam	0.960	TP
1	spam	ham	0.293	FN	_	4	spam	spam	0.963	TP

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

spam is positive and ham is negative in this case

Target is spam and prediction is also spam→TP
Target is spam and but prediction is ham→FN
Target is ham and prediction is also ham→TN
Target is ham and but prediction is spam →FP

Prediction scores

- How well the distributions of scores produced by the model for different target levels are separated?
- Which model is better?
 - Model 1

Model 2

Performance

- Prediction scores
 - Threshold increases TPR decreases
 - TP rate (TPR) = TP / (TP + FN)
 - Threshold = 0.0 → Every thing is positive → FN = 0
 - Threshold increases TNR increases
 - TN rate (TNR) = TN / (TN + FP)
 - Threshold = 0.0 → No negative → TN = 0

Performance

- Different thresholds generate different performances
- Example:

(a) Threshold: 0.75

		Prediction		
		'spam'	'ham'	
Target	'spam'	4	4	
Target	'ham'	2	10	

(b) Threshold: 0.25

		Prediction		
		'spam'	'ham'	
Taract	'spam'	7	2	
Target	'ham'	4	7	

Performance

Changing values of TPR and TNR

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

TP rate (TPR) = TP / (TP + FN)
TN rate
$$(TNR)$$
 = TN / (TN + FP)

ROC Curve

Receiver operating characteristic curve (ROC curve)

Figuring by: John D. Kelleher, et al, "Fundamentals of Machine Learning for Predictive Data Analytics - Algorithms, Worked Examples, and Case Studies," MIT Press, 2015.

ROC Curve

- ROC index
 - Given a set of thresholds $T = \{t_1, t_2, ..., t_m\}$

$$R = \sum_{i=2}^{m} \frac{(FPR(t_i) - FPR(t_{i-1}))(TPR(t_i) + TPR(t_{i-1}))}{2}$$

• R is above 0.7 that indicates a strong model; otherwise, weak model

ROC Curve

• ROC curve

Definition

$$H(p,q) = -\sum_{x} p(x)\log q(x)$$

- where p and q are two probabilities over the same underlying set of events measures
 - for example:
 - $p \in \{p(\text{Positive}), p(\text{Negative})\}$
 - and also $q \in \{q(Positive), q(Negative)\}$

Cross entropy can be an error function for logistic regression

$$H(p,q) = -\sum_{x} p(x) \log q(x)$$

- p: target of training data
 - $p \in \{p(\text{Positive}) = y, p(\text{Negative}) = 1 y\}$
- q: The prediction of model
 - $q \in \{q(\text{Positive}) = M_{\mathbf{w}}(\mathbf{x}), q(\text{Negative}) = 1 M_{\mathbf{w}}(\mathbf{x})\}$

$$H(p,q) = -y \log M_{\mathbf{w}}(\mathbf{x}) - (1-y) \log(1 - M_{\mathbf{w}}(\mathbf{x}))$$

- 100 % accuracy
 - y = 1 and $M_{\mathbf{w}}(\mathbf{x})$ also predicts 1

$$H(p,q) = -1\log 1 - (1-1)\log(1-1) = \mathbf{0}$$

• y = 0 and $M_{\mathbf{w}}(\mathbf{x})$ also predicts 0

$$H(p,q) = -0\log 0 - (1-0)\log(1-0) = \mathbf{0}$$

- 50 % accuracy
 - y = 1 and $M_{\mathbf{w}}(\mathbf{x})$ predicts 0.5

$$H(p,q) = -1\log 0.5 - (1-1)\log(1-0.5) = -\log 0.5 > 0$$

• y = 0 and $M_{\mathbf{w}}(\mathbf{x})$ predicts 0.5

$$H(p,q) = -0\log 0.5 - (1-0)\log(1-0.5) = -\log 0.5 > 0$$

Accuracy and cross entropy are in inverse proportion

For m training data instances

$$G(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} -y_i \log M_{\mathbf{w}}(\mathbf{x}_i) - (1 - y_i) \log(1 - M_{\mathbf{w}}(\mathbf{x}_i))$$

- where $M_{\mathbf{w}}(\mathbf{x}) = L(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$
- Finding a w such that G(w) is minimum
- G(w) is convex
 - A function f(x) is convex if $\frac{d^2 f(x)}{dx} \ge 0$
 - $\frac{d^2G(\mathbf{w})}{d\mathbf{w}} \ge 0$
 - The minimum of $G(\mathbf{w})$ is existed and unique.

- Minimizing cross entropy by gradient descent
 - Let \ln be the logarithm and $L = M_{\mathbf{w}}(\mathbf{x}_i)$

$$g_i(L) = -y_i \ln L - (1 - y_i) \ln (1 - L)$$

• Then,
$$G(L) = \frac{1}{m} \sum_{i=1}^{m} g_i(L)$$

$$\frac{\partial g_i(L)}{\partial L} = \frac{\partial (-y_i \ln L)}{\partial L} + \frac{\partial (-(1-y_i)\ln(1-L))}{\partial L}$$

$$= \frac{-y_i}{L} + \frac{1-y_i}{1-L}$$

$$= \frac{L-y_i}{L(1-L)}$$

$$\frac{d\ln x}{dx} = \frac{1}{x}$$

Minimizing cross entropy by gradient descent

let
$$\mathbf{u} = \mathbf{w} \cdot \mathbf{x}$$

$$\frac{\partial g_i(L)}{\partial \mathbf{u}} = \frac{\partial g_i(L)}{\partial L} \frac{L}{\partial \mathbf{u}}$$

$$\frac{dL(x)}{dx} = L(x)(1 - L(x))$$

$$\frac{\partial g_i(L)}{\partial \mathbf{u}} = \frac{L - y_i}{L(1 - L)}L(1 - L)$$
$$= L - y_i$$

$$= M_{\mathbf{w}}(\mathbf{x}_i) - y_i$$

Then, we have

$$\frac{\partial g_i(L)}{\partial w_j} = (L - y_i)x_{ij}$$

$$\frac{\partial g}{\partial w_j} = \frac{dg}{d\mathbf{u}} \frac{d\mathbf{u}}{dw_j}$$

$$\frac{\partial G(L)}{\partial w_j} = \frac{1}{m} \sum_{i=1}^{m} (L - y_i) x_{ij}$$

Convex

$$\frac{\partial^2 g_i(L)}{\partial \mathbf{u}} = \frac{\partial (L - y_i)}{\partial \mathbf{u}} \qquad \frac{\partial^2 g_i(L)}{\partial w_j} = x_{ij} \frac{\partial (L - y_i)}{\partial w_j}$$
$$= L(1 - L) \qquad = x_{ij}^2 L(1 - L)$$

$$\frac{dL(\mathbf{u})}{dw_j} = \frac{dL(\mathbf{u})}{d\mathbf{u}} \frac{d\mathbf{u}}{dw_j}$$

• Because $0.25 \ge L(1-L) \ge 0$, the cross entropy error function is convex

Derivative of Softmax

$$S_{\mathbf{w}_k}(\mathbf{x}) = \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

$$\frac{\partial S_{\mathbf{w}_k}(\mathbf{x})}{\partial \mathbf{w}_k} = \frac{\partial \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}}{\partial \mathbf{w}_k}$$

$$\frac{d\frac{f(x)}{g(x)}}{dx} = \frac{\frac{df(x)}{dx}g(x) - f(x)\frac{dg(x)}{dx}}{g(x)g(x)}$$

$$\frac{de^x}{dx} = e^x$$

$$\frac{\partial S_{\mathbf{w}_k}(\mathbf{x})}{\partial \mathbf{w}_k} = \frac{\partial \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}}{\partial \mathbf{w}_k} \qquad \frac{d(e^{x_1} + e^{x_2} + \dots + e^{x_k} + \dots + e^{x_n})}{dx_k} = e^{x_k}$$

$$= \frac{e^{\mathbf{w}_k \cdot \mathbf{x}} \sum_{c=1}^{r} e^{\mathbf{w}_c \cdot \mathbf{x}} - e^{\mathbf{w}_k \cdot \mathbf{x}} e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^{r} e^{\mathbf{w}_c \cdot \mathbf{x}} \sum_{c=1}^{r} e^{\mathbf{w}_c \cdot \mathbf{x}}}$$

$$= \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}} \left(1 - \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}\right)$$

$$= S_{\mathbf{w}_k}(\mathbf{x})(1 - S_{\mathbf{w}_k}(\mathbf{x}))$$

similar to the logistic function

Derivative of Softmax

$$\frac{\partial S_{\mathbf{w}_k}(\mathbf{x})}{\partial \mathbf{w}_l} = \frac{\partial \frac{e^{\mathbf{w}_k \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}}{\partial \mathbf{w}_l}$$
$$= \frac{0 - e^{\mathbf{w}_k \cdot \mathbf{x}} e^{\mathbf{w}_l \cdot \mathbf{x}}}{\sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}} \sum_{c=1}^r e^{\mathbf{w}_c \cdot \mathbf{x}}}$$
$$= -S_{\mathbf{w}_k}(\mathbf{x}) S_{\mathbf{w}_l}(\mathbf{x})$$

Cross entropy of Softmax

$$g_i(S) = -\sum_{c=1}^r y_{ic} \ln S_{\mathbf{w}_c}(\mathbf{x}_i)$$

$$G(S) = \sum_{i=1}^{m} \sum_{c=1}^{r} (-y_{ic} \ln S_{\mathbf{w}_c}(\mathbf{x}_i))$$

Derivative of g

$$\frac{\partial g_{i}(S)}{\partial \mathbf{w}_{k}} = -\sum_{c=1}^{r} \frac{\partial y_{ic} \ln S_{\mathbf{w}_{c}}(\mathbf{x}_{i})}{\partial \mathbf{w}_{k}} = -\sum_{c=1}^{r} y_{ic} \frac{\partial \ln S_{\mathbf{w}_{c}}(\mathbf{x}_{i})}{\partial \mathbf{w}_{k}} = -\sum_{c=1}^{r} \frac{y_{ic}}{S_{\mathbf{w}_{c}}(\mathbf{x}_{i})} \frac{\partial S_{\mathbf{w}_{c}}(\mathbf{x}_{i})}{\partial \mathbf{w}_{k}}$$

$$= -\frac{y_{ik}}{S_{\mathbf{w}_{k}}(\mathbf{x}_{i})} \frac{\partial S_{\mathbf{w}_{k}}(\mathbf{x}_{i})}{\partial \mathbf{w}_{k}} - \sum_{c \neq k}^{r} \frac{y_{ic}}{S_{\mathbf{w}_{c}}(\mathbf{x}_{i})} \frac{\partial S_{\mathbf{w}_{c}}(\mathbf{x}_{i})}{\partial \mathbf{w}_{k}} \qquad \frac{d \ln x}{dx} = \frac{1}{x}$$

$$= -\frac{y_{ik}}{S_{\mathbf{w}_{k}}(\mathbf{x}_{i})} S_{\mathbf{w}_{k}}(\mathbf{x}_{i}) \left(1 - S_{\mathbf{w}_{k}}(\mathbf{x}_{i})\right) - \sum_{c \neq k}^{r} \frac{y_{ic}}{S_{\mathbf{w}_{c}}(\mathbf{x}_{i})} \left(-S_{\mathbf{w}_{k}}(\mathbf{x}_{i})S_{\mathbf{w}_{c}}(\mathbf{x}_{i})\right)$$

$$= -y_{ik} + y_{ik}S_{\mathbf{w}_{k}}(\mathbf{x}_{i}) + \sum_{c \neq k}^{r} y_{ic}S_{\mathbf{w}_{k}}(\mathbf{x}_{i})$$

$$= -y_{ik} + S_{\mathbf{w}_{k}}(\mathbf{x}_{i}) \sum_{c=1}^{r} y_{ic}$$

$$F(x) = f(g(x))$$

$$F'(x) = f'(g(x))g'(x)$$

$$= S_{\mathbf{w}_{k}}(\mathbf{x}_{i}) - y_{ik}$$

• Derivative of G

$$\frac{\partial G(S)}{\partial \mathbf{w}_k} = \sum_{i=1}^m \left(S_{\mathbf{w}_k}(\mathbf{x}_i) - y_{ik} \right)$$
 similar to the logistic function

Logistic Regression in tensorflow

- Example of MNIST
 - https://github.com/jameschengcs/ml/blob/master/logistic_tf.py