Assignment 4 Solution

6.18
$$x^3 + 8x^2 + 2x - 50 = 0$$

 $x(0) = 1$

$$J(i) = \frac{df}{dx}\Big|_{x=x(i)} = [3x^2 + 16x + 2]_{x=x(i)}$$

In the general form:

$$x(i+1) = x(i) + \frac{1}{3x(i)^2 + 16x(i) + 2} \times (-x(i)^3 - 8x(i)^2 - 2x(i) + 50)$$

Using x(0) = 1, we arrive at

i	0	1	2	3	4	5
X	1	2.857	2.243	2.129	2.126	2.126
ε	1.857	0.215	0.051	0.0018	2.0E-6	

After 5 iterations, $\varepsilon < 0.001$.

$$\therefore x = 2.126$$

The textbook uses $\frac{x(i+1)-x(i)}{x(i)} < \varepsilon$ as the stopping criterion. You can also use $x(i+1)-x(i) < \varepsilon$ or $f(x(i+1)) < \varepsilon$ as discussed in class.

$$\mathbf{x}^{0} = \begin{bmatrix} 1.0 \\ 0.5 \end{bmatrix} \qquad stopping \ condition: \ \varepsilon = 0.005$$

$$\mathbf{F}(\mathbf{x}) = \begin{bmatrix} e^{x_{1}x_{2}} - 1.2 \\ \cos(x_{1} + x_{2}) - 0.5 \end{bmatrix} \qquad \mathbf{J}(\mathbf{x}) = \begin{bmatrix} x_{2}e^{x_{1}x_{2}} & x_{1}e^{x_{1}x_{2}} \\ -\sin(x_{1} + x_{2}) & -\sin(x_{1} + x_{2}) \end{bmatrix}$$

Find the next value of X using:

- $J(X^{(K)}).(X^{(K+1)}-X^{(K)})=-F(X^{(K)}).$ Solve the system of linear equations to get $(X^{(K+1)}-X^{(K)}).$ Then, using values of $X^{(K)}$, you can calculate $X^{(K+1)}$
- Alternatively, you can find the inverse of the Jacobian, and use: $X^{(K+1)} = X^{(K)} J(X^{(K)})^{-1} F(X^{(K)})$ to calculate $X^{(K+1)}$ directly.

К	X(k)	F(X (k))	J(X ^(k))	X (k+1)	$\left\ F\big(X^{(k)}\big)\right\ $	Another iteration?
1	$\begin{bmatrix} 1\\0.5\end{bmatrix}$	$\begin{bmatrix} 0.4487 \\ -0.4293 \end{bmatrix}$	[0.8244 1.6487] [-0.9975 -0.9975]	[0.6836] [0.386]	0.4487	ANOTHER
2	[0.6836] [0.386]	$\begin{bmatrix} 0.102 \\ -0.0196 \end{bmatrix}$	[0.5026 0.8901] [-0.877 -0.877]	[0.8956] [0.1518]	0.102	ANOTHER
3	[0.8956] [0.1518]	$\begin{bmatrix} -0.0544 \\ -0.0001 \end{bmatrix}$	$\begin{bmatrix} 0.1739 & 1.026 \\ -0.8661 & -0.8661 \end{bmatrix}$	[0.8315] [0.2157]	0.054	ANOTHER
4	[0.8315] [0.2157]	$\begin{bmatrix} -0.0036 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0.2580 & 0.9949 \\ -0.866 & -0.866 \end{bmatrix}$	[0.8267] [0.2205]	0.0036	ANOTHER
5	[0.8267] [0.2205]	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0.2646 & 0.992 \\ -0.866 & -0.866 \end{bmatrix}$	[0.8267] [0.2206]	0.000	Nope!

b) Same problem but setting $x^0 = \begin{bmatrix} 1.0 \\ 2.0 \end{bmatrix}$

K	X (k)	F(X ^(k))	J(X ^(k))	X(k+1)	$\left\ F\big(X^{(k)}\big)\right\ $	Another iteration?
1	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 6.1891 \\ -1.49 \end{bmatrix}$	[14.7781 7.3891] [-0.1411 -0.1411]	$\begin{bmatrix} 10.7207 \\ -18.2791 \end{bmatrix}$	6.189	S S S S S S S S S S S S S S S S S S S
2	[10.7207] [-18.2791]	$\begin{bmatrix} -1.2 \\ 0.2087 \end{bmatrix}$	[0 0] [0.9566]			

Cannot proceed anymore since J(x) is not invertible.

a)
$$Y[1,1] = 2 - j4 + 3 - j6 = 5 - j10 = 11.18 [-63.43^{\circ}]$$

$$Y[2,2] = 2 - j4 = 4.47 [-63.43^{\circ}]$$

$$Y[3,3] = 3 - j6 = 6.71 [-63.43^{\circ}]$$

$$Y[2,1] = Y[1,2] = -2 + j4 = 4.47 [116.57^{\circ}]$$

$$Y[3] = Y[3,1] = -3 + j6 = 6.71 [116.57^{\circ}]$$

$$Y[2,3] = Y[3,2] = 0$$

b) at bus 2,
$$P_{\text{open},2} - P_{\text{load},2} - P_{\text{branch},2} = 0$$

1.5 - 0 - $P_{\text{branch},2} = 0$

Sbanch,
$$2 = \sqrt{2} \cdot \overline{1}_{12}^*$$

$$= \sqrt{2} \cdot \left[(\overline{7}_2 - \overline{7}_1) \cdot \overline{7}_{12} \right]^*$$
This is the Pbranch equation with Y expressed in polar coordinates.

$$= \sqrt{2} \cdot \overline{7}_{12}^* \cdot \overline{7}_{2}^* - \sqrt{2} \cdot \overline{7}_{12}^* = \sqrt{2} \cdot \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \sqrt{2} \cdot \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^*$$

$$= (\sqrt{2})^2 \cdot \overline{7}_{12} \cdot \overline{7}_{12}^* - \overline{7}_{12}^* - \overline{7}_{12}^* \cdot \overline{7}_{12}^* - \overline{7}_$$

Please note the Y₁₂ and Y[1,2]

difference between reminder $Y_{12} = 2-j4 = 4.47 \left[-63.43^{\circ} \right]$

$$0 = 1.5 - 0 - (1.1)^{2}(4.47)\cos(+63.43^{\circ}) + (1)(1.1)(4.47)\cos(8+63.43^{\circ})$$

solve for
$$\delta_2$$
: $\delta_2 = 15.795^\circ$

$$P_{branch, 3} = (V_3)^2 (Y_{13}) \cdot \cos(-\theta_{13})$$

$$- Y_1 \cdot Y_3 \cdot Y_{13} \cdot \cos(\delta_3 - \delta_1 - \theta_{13})$$

$$(i) = -1.5 - 0 - (\sqrt{3})(6.71)\cos(63.43^{\circ}) + (1)\sqrt{3}(6.71)\cos(53 + 63.43^{\circ}) = 0$$

$$Q_{\text{branch},3} = (V_3)^2 (Y_{13}) \sin(-\Theta_{13}) - Y_1 V_3 Y_{13} \sin(\delta_3 - \delta_1 - \Theta_{13})$$

$$0.8 - 0 - (\frac{1}{3})^{2} (6.71) \sin(63.43^{\circ}) + (1) \frac{1}{3} (6.71) \sin(8_{3} + 63.43^{\circ}) = 0$$
(ii)

Solve (i) & (ii) to get by & 83, painfully!

$$v_3 = 0.9723 \text{ pu}$$
 $\delta_3 = -15.1^\circ$

d)
$$P_{branch,1} = (Y_1)^2 (Y_{12}) \cos(-\Theta_{12}) - Y_1 \cdot Y_2 \cdot Y_{12} \cos(S_1 - S_2 - \Theta_{12})$$

+ $(Y_1)^2 (Y_{13}) \cos(-\Theta_{13}) - Y_1 \cdot Y_3 \cdot Y_{13} \cos(S_1 - S_3 - \Theta_{13})$

dug in an values,

6.30

6.25-j18.695	-5.00 + j15.00	-1.25 + j3.75	0	0
-5.00 + j15.00	12.9167 – <i>j</i> 38.665	-1.6667 + j5.00	-1.25 + j3.75	-5.00 + j15.00
-1.25 + j3.75	-1.6667 + j5.00	8.7990 – <i>j</i> 32.2294	-5.8824+ <i>j</i> 23.5294	0
0	-1.25 + j3.75	-5.8824+ <i>j</i> 23.5294	9.8846-j36.4037	-2.7523 + j9.1743
0	-5.00 + j15.00	0	-2.7523 + j9.1743	7.7523 – <i>j</i> 24.1443

6.31 First, we need to find the per-unit shunt admittance of the added capacitor.

75 Mvar =
$$0.75$$
 p.u.

To find Y, we use the relation

$$S = V^2 Y$$

$$Y = \frac{S}{V^2} = \frac{0.75}{1^2} = 0.75 \text{ p.u.}$$

Now, we can find Y_{44}

$$\begin{split} Y_{44} = & \frac{1}{0.08 + j0.24} + \frac{1}{0.01 + j0.04} + \frac{1}{0.03 + j0.10} \\ & + j \frac{0.05 + 0.01 + 0.04}{2} + j0.75 \\ = & 9.8846 - j35.6537 \end{split}$$