INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

4 - RELAÇÕES

- 4.1) Relações e Dígrafos
- 4.2) Caminhos em Relações e Dígrafos
- 4.3) Propriedades de Relações
- 4.4) Relações de Equivalência
- 4.5) Manipulação e Fecho de Relações
- 4.5) Fecho de Relações (transitivo)

- Construção com várias interpretações e muitas aplicações importantes.
- Suponha que R é uma relação sobre um conjunto A e que R não é transitiva.
 - O fecho transitivo de R é simplesmente a relação de conectividade R^{∞} .

PROPRIEDADES DA TRANSITIVIDADE

- Vimos que, geometricamente, a transitividade por ser descrita como:
 - se a e c estão conectados por um caminho de tamanho 2 em R, também o estão por um caminho de tamanho 1
 - ou: se $a R^2 c$, então a R c
 - ou seja: $R^2 \subseteq R$ (como subconjuntos de $A \times A$)
- O Teorema a seguir generaliza esta caracterização geométrica da transitividade...

PROPRIEDADES DA TRANSITIVIDADE

- Teorema: Uma relação R é transitiva se e somente se satisfaz à seguinte propriedade:
 - Se existe um caminho de comprimento > 1 do vértice a para o b, também existe um caminho de comprimento 1 de a para b (a R b)
- Algebricamente: "R é transitiva sse $R^n \subseteq R$ para todo $n \ge 1$ ".
- Prova: indução sobre n.

Teorema 1: Seja R uma relação sobre um conjunto A. Então R[∞] é o fecho transitivo de R.

Prova (1/3):

- $a R^{\infty} b \Leftrightarrow \text{existe um caminho em } R \text{ de } a \text{ para } b$
- Note que R^{∞} é certamente transtitiva, pois:
 - se $a R^{\infty} b$ e $b R^{\infty} c$:
 - · existem em R dois caminhos: $a \rightarrow b$ e $b \rightarrow c$
 - · logo: existe um caminho de a para c em R
 - · de modo que: $a R^{\infty} c$
- Falta mostrar que R^{∞} é a menor relação transitiva que contém R (\Rightarrow)

Teorema 1: (\mathbb{R}^{∞} é o fecho transitivo de \mathbb{R} .)

Prova (2/3):

- (Ou seja, precisamos ainda mostrar que:

 - ullet então: $R^{\infty} \subseteq S$)
- Propriedade da transitividade (teorema visto):
 - ullet se S é transitiva, então $S^n \subseteq S$ para todo n
 - ("a e b conectados por caminho de comprimento $n \Rightarrow a S b$ ")
 - $Arr segue que: S^{\infty} = \bigcup_{n=1}^{\infty} S^n \subseteq S$

Teorema 1: (\mathbb{R}^{∞} é o fecho transitivo de \mathbb{R} .)

Prova (3/3):

- (Ou seja, precisamos ainda mostrar que:

 - ullet então: $R^{\infty} \subseteq S$)
- Propriedade da transitividade (teorema visto):
 - ullet se S é transitiva, então $S^n \subseteq S$ para todo n
 - ullet ("a e b conectados por caminho de comprimento $n \Rightarrow a S b$ ")
 - Arr segue que: $S^{\infty} = \bigcup_{n=1}^{\infty} S^n \subseteq S$
- Também é verdade que: se $R \subseteq S$, então $R^{\infty} \subseteq S^{\infty}$
 - $oldsymbol{\mathfrak{D}}$ pois: todo caminho em R também é um caminho em S
- Juntando tudo, vemos que:
 - ullet se $R\subseteq S$ e se S é transitiva sobre A, então: $R^\infty\subseteq S^\infty\subseteq S$
 - ightharpoonup ou seja, R^{∞} é a menor de todas as relações transitivas que contêm R.

- Vemos que R^{∞} tem diversas interpretações:
 - de um ponto de vista geométrico, é a relação de conectividade
 - especifica quais os vértices que estão conectados (por caminhos) a outros
 - de um ponto de vista algébrico, R^{∞} é o fecho transitivo de R
 - papel importante na teoria de relações de equivalência e na teoria de certas linguagens

- **Exemplo 1 (1/3):** Sejam $A = \{1, 2, 3, 4\}$ e $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Ache o fecho transitivo de R.
 - Método 1: geometricamente, pelo dígrafo de R:

- Arr já que R^{∞} é o fecho transitivo, computamos todos os caminhos:
 - · a partir do vértice 1, temos caminhos para: 2, 3, 4 e 1
 - a partir do vértice 2, temos caminhos para: 2, 1, 3 e 4
 - · o único outro caminho é aquele que vai do vértice 3 para o 4
- assim: $R^{\infty} = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,4)\}$

Exemplo 1 (2/3): Fecho transitivo de $R = \{(1,2), (2,3), (3,4), (2,1)\}$:

Método 2: algebricamente, computando potências da matriz de R:

$$M_R = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight]$$

$$(M_R)_{\odot}^3 = \left[egin{array}{cccc} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{array}
ight],$$

$$(M_R)_{\odot}^3 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad (M_R)_{\odot}^4 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- **Exemplo 1 (3/3):** Fecho transitivo de $R = \{(1,2), (2,3), (3,4), (2,1)\}$:
 - Método 2: algebricamente, computando potências da matriz de R:
 - ho notamos que $(M_R)^n_\odot$ se iguala a: $\left\{ \begin{array}{l} (M_R)^2_\odot \ , \ \ {\rm se} \ n \ \ {\rm \acute{e}} \ \ {\rm par} \\ (M_R)^3_\odot \ , \ \ {\rm se} \ n \ \ {\rm \acute{e}} \ \ {\rm impar} \end{array} \right.$
 - portanto:

$$M_{R^{\infty}} = M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- No exemplo anterior, note que não foi preciso considerar todas as potências R^n para obter R^{∞} .
- O teorema a seguir mostra que isto é verdade sempre que A é finito...

Teorema 2: Seja A um conjunto com |A|=n, e seja R uma relação sobre A. Então: $R^{\infty}=R\cup R^2\cup\cdots\cup R^n$.

• "Potências de R maiores do que n não são necessárias para computar R^{∞} ".

Prova (1/2): sejam $a, b \in A$:

- ullet suponha que $a, x_1, x_2, \dots, x_m, b$ é um caminho de a para b em R
 - ullet ou seja: $(a,x_1),(x_1,x_2),\ldots,(x_m,b)$ estão todos em R
- se x_i e x_j são o mesmo vértice (seja i < j), o caminho pode ser dividido em 3: [um caminho de a para x_i] + [um de x_i para x_j] + [um de x_j para b]
- o caminho do meio é um ciclo, pois $x_i = x_j$:
 - ullet deixando-o fora e unindo os outros, temos um caminho mais curto de a até b:

Periode Teorema 2: Potências de R maiores do que n não são necessárias p/ computar R^{∞} .

Prova (2/2):

- Agora seja $a, x_1, x_2, \dots, x_k, b$ o caminho mais curto de a para b:
 - $oldsymbol{\mathfrak{D}}$ se $a \neq b$, todos os vértices são distintos
 - · (caso contrário, sempre se pode encontrar um caminho mais curto)
 - · portanto, o comprimento deste caminho é $\leq n-1$ (pois |A|=n)
 - $m{\square}$ se a=b, os vértices a,x_1,x_2,\ldots,x_k são distintos
 - \cdot então o comprimento deste caminho é no máximo n
- ou seja, se $a R^{\infty} b$, então:
 - ullet $a R^k b$, para algum k (onde $1 \le k \le n$)
- ullet Portanto: $R^{\infty}=R\cup R^2\cup\cdots\cup R^n$

- Ambos os métodos usados no exemplo 1 apresentam dificuldades:
 - método gráfico:
 - impraticável para conjuntos e relações grandes
 - não pode ser automatizado
 - método matricial:
 - suficientemente sistemático para ser resolvido por um computador
 - mas ineficiente: custo proibitivo para matrizes grandes
- Método mais eficiente para computar fechos transitivos:
 - algoritmo de Warshall...

O ALGORITMO DE WARSHALL (1/8)

- Seja R uma relação sobre um conjunto $A = \{a_1, a_2, \dots, a_n\}$.
- Se x_1, x_2, \ldots, x_m é um caminho em R, então:
 - todo vértice $\neq x_1$ e $\neq x_m$ é um **vértice interno** do caminho
- **▶** Para $1 \le k \le n$, definimos a seguinte **matriz Booleana** W_k :
 - W_k tem um 1 na posição i, j sse:
 - existe um caminho de a_i para a_i
 - cujos vértices internos (se existirem) vêm de $\{a_1, a_2, \dots, a_k\}$

O ALGORITMO DE WARSHALL (2/8)

- Seja R uma relação sobre um conjunto $A = \{a_1, a_2, \dots, a_n\}$.
- Se x_1, x_2, \ldots, x_m é um caminho em R, então:
 - todo vértice $\neq x_1$ e $\neq x_m$ é um **vértice interno** do caminho
- **▶** Para $1 \le k \le n$, definimos a seguinte **matriz Booleana** W_k :
 - W_k tem um 1 na posição i, j sse:
 - existe um caminho de a_i para a_j
 - cujos vértices internos (se existirem) vêm de $\{a_1, a_2, \dots, a_k\}$
- Já que todo vértice deve vir do conjunto $\{a_1, a_2, \ldots, a_n\}$, segue que:
 - a matriz W_n tem um 1 na posição i, j sse:
 - ullet algum caminho em R conecta a_i a a_j
 - ou seja: $W_n=M_{R^\infty}$

O ALGORITMO DE WARSHALL (3/8)

- ullet Se definimos W_0 como M_R , teremos uma seqüência W_0,W_1,\ldots,W_n
 - ullet cujo primeiro termo é M_R
 - e o último é $M_{R^{\infty}}$
- A seguir, veremos como computar cada matriz W_k a partir da sua antecessora W_{k-1} :
 - ullet o que permitirá começar com a matriz de R
 - e avançar passo-a-passo
 - ullet até que, em n passos, alcançaremos a matriz de R^{∞} .
- ullet Note que as matrizes W_k <mark>são diferentes das potências</mark> da matriz M_R
 - ullet esta diferença resulta em uma economia considerável de passos na computação do fecho transitivo de R...

O ALGORITMO DE WARSHALL (4/8)

- ullet Suponha que $W_k = [t_{ij}]$ e que $W_{k-1} = [s_{ij}]$.
- Se $t_{ij} = 1$, então deve haver um caminho de a_i para a_j
 - cujos vértices internos vêm de $\{a_1, a_2, \dots, a_k\}$
- Se o vértice a_k não é interno deste caminho, então todos os vértices internos virão, na verdade, de $\{a_1, a_2, \dots, a_{k-1}\}$
 - e, neste caso: $s_{ij} = 1$

O ALGORITMO DE WARSHALL (5/8)

Agora, se a_k é um vértice interno do caminho, a situação é:

- Como na prova do Teor 2, podemos assumir que todos os vértices internos são distintos.
- Logo, a_k aparece apenas uma vez no caminho
 - daí: todos os vértices internos dos subcaminhos 1 e 2 devem vir de $\{a_1, a_2, \dots, a_{k-1}\}$
 - o que significa que: $s_{ik} = 1$ e $s_{kj} = 1$

O ALGORITMO DE WARSHALL (6/8)

ullet Resumindo, sendo $W_k = [t_{ij}]$ e $W_{k-1} = [s_{ij}]$, temos que:

 $t_{ij} = 1$ se e somente se:

- (1) $s_{ij} = 1$, ou:
- (2) $s_{ik} = 1$ e $s_{kj} = 1$.

O ALGORITMO DE WARSHALL (7/8)

ullet Resumindo, sendo $W_k = [t_{ij}]$ e $W_{k-1} = [s_{ij}]$, temos que:

 $t_{ij} = 1$ se e somente se:

(1)
$$s_{ij} = 1$$
, ou:

(2)
$$s_{ik} = 1$$
 e $s_{kj} = 1$.

- Esta é a base para o algoritmo de Warshall:
 - (1) se W_{k-1} tem um 1 em i, j, W_k também vai ter
 - (2) um novo 1 pode ser inserido na posição i, j de W_k sse:
 - ullet a coluna k de W_{k-1} tem um 1 na posição i, e:
 - ullet a linha k de W_{k-1} tem um 1 na posição j

O ALGORITMO DE WARSHALL (8/8)

- Procedimento para computar W_k a partir de W_{k-1} :
 - ▶ Passo 1: Transferir para W_k todos os 1's que estão em W_{k-1} .
 - Passo 2: Listar:
 - as posições p_1, p_2, \ldots , na coluna k de W_{k-1} que valem 1
 - ullet as posições q_1,q_2,\ldots , na linha k de W_{k-1} que valem 1
 - Passo 3: Colocar 1's em todas as posições p_i, q_j de W_k
 - se eles já não estiverem lá.

- **Exemplo 2 (1/3):** Seja $R = \{(1,2), (2,3), (3,4), (2,1)\}$ sobre $A = \{1,2,3,4\}$:
 - Neste caso, n=4 e:

$$egin{aligned} W_0 &= M_R = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix} \end{aligned}$$

- **●** Primeiro, vamos encontrar W_1 ($\Rightarrow k = 1$):
 - $ightharpoonup W_0$ tem 1's na posição 2 da coluna 1 e na posição 2 da linha 1
 - ightharpoonup portanto, W_1 é simplesmente W_0 com um novo 1 na posição 2,2:

$$W_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- **Exemplo 2 (2/3):** Seja $R = \{(1,2), (2,3), (3,4), (2,1)\}$ sobre $A = \{1,2,3,4\}$:
 - Arr W₁, por sua vez, tem 1's nas posições 1 e 2 da coluna 2 e 1, 2 e 3 da linha 2:
 - Arr para obter W_2 , devemos colocar 1's nas posições 1,1; 1,2; 1,3; 2,1; 2,2 e 2,3 da matriz W_1 (se já não estiverem lá):

$$W_2 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- A coluna 3 de W_2 tem 1's nas posições 1 e 2 e a linha 3 tem um 1 na posição 4:
 - logo, para obter W_3 , devemos inserir 1's nas posições 1,4 e 2,4 de W_2 :

$$W_3 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- **Exemplo 2 (3/3):** $R = \{(1,2), (2,3), (3,4), (2,1)\}$ sobre $A = \{1,2,3,4\}$:
 - Arr tem 1's nas posições 1, 2 e 3 da coluna 4 e não tem 1's na linha 4.
 - ullet Logo, não há mais 1's a inserir e: $M_{R^\infty}=W_4=W_3$
 - (Mesmo resultado obtido no exemplo 1.)

• O procedimento ilustrado no exemplo anterior leva ao seguinte algoritmo para computar a matriz ("FECHO"), do fecho transitivo de uma relação R representada pela matriz $N \times N$ MAT:

Algoritmo WARSHALL:

```
FECHO \leftarrow MAT

FOR K=1 TO N

FOR J=1 TO N

FECHO[I,J] \leftarrow FECHO[I,J] \lor (FECHO[I,K] \land FECHO[K,J])
```

- m extstyle extstyle
 - um passo = "um teste + uma atribuição"
- Nota: o cálculo pelas matrizes:

$$M_{R^{\infty}} = M_R \vee (M_R)^2_{\odot} \vee \cdots \vee (M_R)^n_{\odot}$$

- exige n-1 produtos booleanos de matrizes $n \times n$
- o que é feito em $(n-1).n^3$ passos
- ullet levando a uma complexidade de cerca de n^4 passos