Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Testul 11

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(0,6+0,8):0,7-0,25\cdot 4=1,4:0,7-1=$	3р
	=2-1=1	2p
2.	f(2)=-1, $f(4)=3$ și $f(a)=2a-5$, unde a este număr real	3 p
	$2a-5-(-1)=2\cdot 3 \Leftrightarrow 2a-4=6$, de unde obţinem $a=5$	2p
3.	$x^2 - 7 = 3^2 \Rightarrow x^2 - 16 = 0$	3 p
	x = -4 sau $x = 4$, care convin	2p
4.	Mulțimea A are 20 de elemente, deci sunt 20 de cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $2n$ este multiplu de 10 sunt 5 , 10 , 15 și 20 , deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{4}{20} = \frac{1}{5}$	1p
5.	$OA = 10 \Rightarrow MA = 5$, $OB = \sqrt{a^2 + 16}$, unde a este număr real	3 p
	$\sqrt{a^2+16}=5 \Leftrightarrow a^2-9=0$, de unde obţinem $a=-3$ sau $a=3$	2p
6.	AC = 5	2p
	$\sin B = \frac{AC}{BC} = \frac{5}{13}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 4 & 3 \\ 1 & 3 \end{vmatrix} = 4 \cdot 3 - 3 \cdot 1 =$	3p
	=12-3=9	2p
b)	$B(1) = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}, B(-1) = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \Rightarrow B(1) \cdot B(-1) = \begin{pmatrix} -2 & -3 \\ 1 & -1 \end{pmatrix}$	3p
	$A + B(1) \cdot B(-1) = \begin{pmatrix} 4 & 3 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} -2 & -3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 2B(0)$	2p
c)	$B(1) + B(2) + B(3) + \dots + B(9) = \begin{pmatrix} 3+5+7+\dots+19 & 1+2+3+\dots+9 \\ 9 & 2+3+4+\dots+10 \end{pmatrix} = 9 \begin{pmatrix} 11 & 5 \\ 1 & 6 \end{pmatrix}$	3p
	$9\begin{pmatrix} 11 & 5 \\ 1 & 6 \end{pmatrix} = 9\begin{pmatrix} 2x+1 & x \\ 11 & x+1 \end{pmatrix}, \text{ de unde obținem } x = 5$	2p
2.a)	$2 \circ 6 = \frac{2+6}{2} - \frac{2 \cdot 6}{3} =$	3p
	=4-4=0	2p

b)	$x \circ 6 = \frac{6 - 3x}{2}$, pentru orice număr real x	2p		
	$\frac{6-3x}{2}$ = 6, de unde obținem $x = -2$	3р		
c)	$m \circ (3m) = -m^2 + 2m$, pentru orice număr întreg m	2p		
	$-m^2 + 2m \ge 2m - 3 \Leftrightarrow -m^2 + 3 \ge 0$ și, cum m este număr întreg, obținem $m = -1$ sau $m = 0$ sau $m = 1$	3р		

SUBIECTUL al III-lea

(30 de puncte)

JUDIE	BIECT OL al III-lea (50 de pun	
1.a)	$f'(x) = \frac{4x^3}{2} - 6x^2 + 0 =$	3p
	$=2x^3-6x^2==2x^2(x-3), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f'(x)}{x^2 e^x} = \lim_{x \to +\infty} \frac{2(x-3)}{e^x} = \lim_{x \to +\infty} \frac{(2(x-3))'}{(e^x)'} =$	3p
	$=\lim_{x\to+\infty}\frac{2}{e^x}=0$	2p
c)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 3 \text{ și } f'(x) \le 0$, pentru orice $x \in (-\infty, 3] \Rightarrow f$ este descrescătoare pe $(-\infty, 3]$, $f'(x) \ge 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este crescătoare pe $[3, +\infty)$	3 p
	$f(x) \ge f(3)$, pentru orice $x \in \mathbb{R}$ și, cum $f(3) = -\frac{21}{2}$, rezultă că $f(x) \ge -\frac{21}{2}$, pentru orice număr real x	2p
2.a)	$\int_{0}^{2} f(x) dx = \int_{0}^{2} (2x+1) dx = (x^{2} + x) \Big _{0}^{2} =$	3p
	=(4+2)-(0-0)=6	2p
b)	$\int_{0}^{1} \frac{1}{f(x)} dx = \int_{0}^{1} \frac{1}{2x+1} dx = \frac{1}{2} \int_{0}^{1} \frac{(2x+1)'}{2x+1} dx = \frac{1}{2} \ln(2x+1) \Big _{0}^{1} =$	3p
	$= \frac{1}{2}\ln 3 - \frac{1}{2}\ln 1 = \frac{1}{2}\ln 3$	2p
c)	$\int_{-a}^{a} \frac{1}{x^2 + 2f(x) + 2} dx = \int_{-a}^{a} \frac{1}{(x+2)^2} dx = -\frac{1}{x+2} \Big _{-a}^{a} = \frac{2a}{4-a^2}, \text{ pentru orice } a \in (0,2)$	3 p
	$\frac{2a}{4-a^2} = \frac{2}{3} \Rightarrow a^2 + 3a - 4 = 0 \text{ si, cum } a \in (0,2), \text{ obținem } a = 1$	2p