인공지능보안 기말 프로젝트

10팀 인공지능학부 20223175 배세은, 20223201 임혜진

Index

01

데이터셋 설명 02

feature 중요도 분석 03

이상탐지에 시도해 본 알고리즘 04

알고리즘 정리 및 선택 05

팀원의 역할

06

느낀점

01 데이터 셋 설명

- 1. Pima Indians diabetes Database : Pima Indian 혈통의 21세 이상인 여성의 데이터
 - 당뇨병과 관련이 높은 feature들로 이루어진 데이터 셋
 - feature 대부분이 연속적 실수 값을 가지는 변수이기 때문에 이상 탐지에 알맞은 데이터셋이라고 판단

- 2. 당뇨병은 신체적 지표와 직접적으로 관련이 있는 질병
 - 다양한 feature들을 통해 당뇨병의 종합적 원인을 탐지하고 분석해보기 위함

01 Goal

당뇨병 데이터셋 => 의료데이터 의료데이터에서 중요한 지표 : Recall 우리 데이터셋에서 recall이 나타내는 것 당뇨병인데 정상으로 판정하는 것 -> 위험한 상황 거짓양성으로 판단하는 비율이 높더라도 당뇨병을 놓치는 것이 없도록 하는 것이 중요!

01 Upsampling

- 1. 기존 데이터셋 비율로는 이상탐지 task가 불가능하다고 판단 -> 정상 데이터셋을 업샘플링 시켜 당뇨병 데이터가 이상치로 판단될 만큼의 비율로 억지로 만듦
- 2. 업샘플링 시키면 정상 데이터가 **복사**됨 -> 2개의 feature에 평균 0, 표준편차 0.01인 **노이즈 추가**

500:268 -> 5591:268

```
원래 클래스 분포:
Outcome
0 500
1 268
Name: count, dtype: int64
업샘플링 후 데이터 크기: (5859, 8)
업샘플링 후 클래스 분포:
Outcome
0 5591
1 268
Name: count, dtype: int64
```

```
from sklearn.model_selection import train_test_split
from imblearn.over_sampling import RandomOverSampler
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np
X = diabetes_data.drop('Outcome', axis=1)
y = diabetes_data['Outcome']
print('원래 클래스 분포:\n', y.value_counts())
# 정상데이터 비율을 95%로 업생플림해서 이상치 탈지 테스크를 수행할 수 있게 할
curr_ratio = y.value_counts(normalize=True)[0]
# 업생플림 해야 하는 비율 계산
sampling_strategy_value = (ratio * (1 - curr_ratio)) / (curr_ratio * (1 - ratio))
sampling_strategy = {0: int(y.value_counts()[0] * (1 + sampling_strategy_value))}
# RandomOverSampler 객체 생성
ros = RandomOverSampler(sampling_strategy=sampling_strategy, random_state=42)
# 오버샐플림 적용
X_resampled, y_resampled = ros.fit_resample(X, y)
y_resampled_series = pd.Series(y_resampled)
# X_resampled을 pandas DataFrame으로 변환
X_resampled_df = pd.DataFrame(X_resampled, columns=X.columns)
# 노이즈 추가
# noise = np.random.normal(loc=0, scale=0.01, size=X_resampled.shape)
# X_resampled = X_resampled + noise
# BMI와 DiabetesPedigreeFunction 열에 노이즈 추가
noise_bmi = np.random.normal(loc=0, scale=0.01, size=X_resampled.shape[0])
noise_dpf = np.random.normal(loc=0, scale=0.01, size=X_resampled.shape[0])
X_resampled_df['BMI'] += noise_bmi
X_resampled_df['DiabetesPedigreeFunction'] += noise_dpf
# 결과 출력
print("업샘플링 후 데이터 크기:", X_resampled_df.shape)
print("업샘플링 후 클래스 분포:\n", y_resampled_series.value_counts())
```

01 Scaling

```
#데이터 표준화
scaler = StandardScaler()
scaler.fit(X_resampled_df)
df_scaled = scaler.transform(X_resampled_df)
df_scaled = pd.DataFrame(df_scaled)
x_df_scaled = df_scaled.copy()
df_scaled['target'] = y_resampled_series
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
0	6	148	72	35	0	33.594516	0.635887	50
1	1	85	66	29	0	26.589290	0.353829	31
2	8	183	64	0	0	23.299810	0.656766	32
3	1	89	66	23	94	28.092085	0.165441	21
4	0	137	40	35	168	43.102573	2.291617	33
	***			***			***	
5854	0	67	76	0	0	45.296447	0.206386	46
5855	2	84	50	23	76	30,402283	0.956763	21
5856	1	91	54	25	100	25.193243	0.249070	23
5857	1	143	86	30	330	30.102953	0.889361	23
5858	3	84	72	32	0	37.196561	0.283054	28

	0	1	2	3	4	5	6	7
0	0.878776	1.347385	0.191504	1.008811	-0.690661	0.391390	0.665672	1.593833
1	-0.772522	-0.980475	-0.133061	0.607274	-0.690661	-0.501722	-0.272016	-0.029753
2	1.539295	2.640640	-0.241249	-1.333488	-0.690661	-0.921105	0.735084	0.055699
3	-0.772522	-0.832674	-0.133061	0.205737	0.232080	-0.310127	-0,898302	-0.884272
4	-1,102782	0.940933	-1.539507	1.008811	0.958493	1,603593	6.170071	0.141151
	***	***		***	***	-		
5854	-1.102782	-1.645578	0.407880	-1,333488	-0.690661	1.883294	-0.762185	1.252026
5855	-0.442263	-1.017425	-0.998566	0.205737	0.055385	-0.015595	1.732409	-0.884272
5856	-0.772522	-0.758774	-0.782190	0.339583	0.290978	-0.679707	-0.620282	-0.713368
5857	-0.772522	1.162634	0.948820	0.674197	2.548748	-0.053757	1.508335	-0.713368
5858	-0.112003	-1.017425	0.191504	0.808042	-0.690661	0.850622	-0.507302	-0.286109

02 Feature Importance 분석

- 상관계수
- Logistic Regression
- Random Forest

02 Feature Importance 분석- 상관계수

```
# 상관계수 분석

#각 특성과 라벨 간의 상관계수 계산

correlation_matrix = X_resampled_df.corrwith(y_resampled_series)

print(correlation_matrix)

#시각화

plt.figure(figsize=(12, 6))

sns.heatmap(correlation_matrix.to_frame(), annot=True, cmap='coolwarm', linewidths=0.5)

plt.title('Correlation with Outcome')

plt.show()
```


02 Feature Importance 분석- Logistic Regression

```
# 로지스틱 회귀를 이용한 피처 중요도 분석
#max_iter으로 모델의 최대 반복 횟수를 설정
log_reg = LogisticRegression(max_iter=10000)
#로지스틱 회귀 모델 훈련
log_reg.fit(X_resampled, y_resampled)
#회귀 계수를 통해 특성 중요도 계산
importance = log_reg.coef_[0] #훈련된 모델의 계수 가져옴
feature_importance = pd.Series(importance, index=X.columns).sort_values(ascending=False)
#각 계수를 특성 이름과 매칭 시켜 Series로 변환
#특성 중요도 시각화
plt.figure(figsize=(12, 6)) #그림의 크기 설정
feature_importance.plot(kind='bar') #bar차트로 특성 중요도 시각화
plt.title('Feature Importance using Logistic Regression')
plt.xlabel('Features')
plt.ylabel('Importance')
plt.show()
```


02 Feature Importance 분석- Random Forest

```
# 랜덤 포레스트를 이용한 피처 중요도
#랜덤 포레스트 모델 초기화
rf_model = RandomForestClassifier(random_state=42) #재현성을 위해 random_state = 42로 설정
#랜덤 포레스트 모델 훈련
rf_model.fit(X_resampled, y_resampled)
#특성 중요도 계산
importance = rf_model.feature_importances_
#특성 중요도를 Series로 변환하고 정렬
feature_importance = pd.Series(importance, index=X.columns).sort_values(ascending=False)
#특성 중요도 시각화
plt.figure(figsize=(12, 6))
feature_importance.plot(kind='bar')
plt.title('Feature Importance using Random Forest')
plt.xlabel('Features')
plt.ylabel('Importance')
plt.show()
```


Features

03 이상탐지

- Isolation Forest
- OneClass SVM
- Random Forest
- EllipticEnvelop (가우시안)
- AutoEncoder

03-1 Isolation Forest

```
from sklearn.ensemble import IsolationForest
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
# Glucose 및 DiabetesPediareeFunction 특성만 선택
X_train_subset = X_train[['Glucose', 'DiabetesPedigreeFunction']]
X_test_subset = X_test[['Glucose', 'DiabetesPedigreeFunction']]
# Isolation Forest 모델 훈련
iso_forest = IsolationForest(contamination=0.095, random_state=42)
iso_forest.fit(X_train_subset)
# 이상치 예측
y_pred_test = iso_forest.predict(X_test_subset)
# 이진 분류에서는 이상치를 양성 클래스(1)로 설정
y_true_binary = (y_test == 1)
y_pred_binary = (y_pred_test == -1)
# 혼동 행렬 생성
cm = confusion_matrix(y_true_binary, y_pred_binary)
print("Confusion Matrix:")
print(cm)
# 성능 지표 계산
accuracy = accuracy_score(y_true_binary, y_pred_binary)
precision = precision_score(y_true_binary, y_pred_binary)
recall = recall_score(y_true_binary, y_pred_binary)
f1 = f1_score(y_true_binary, y_pred_binary)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1 Score:", f1)
```

```
Confusion Matrix:

[[1008 105]

[ 37 22]]

Accuracy: 0.878839590443686

Precision: 0.1732283464566929

Recall: 0.3728813559322034
```

F1 Score: 0.23655913978494622

03-2 One Class SVM

```
# 특성 선택
X_train_subset = X_train[['Glucose', 'DiabetesPedigreeFunction']]
X_test_subset = X_test[['Glucose', 'DiabetesPedigreeFunction']]
# One-Class SVM 모델 정의
oc_svm = OneClassSVM()
# 랜덤 서치를 위한 하이퍼파라미터 그리드 설정
param_dist = {
    'nu': [0.01, 0.05, 0.1, 0.2, 0.5], # nu의 후보값들
    'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], # 커널 종류
    'gamma': ['scale', 'auto', 0.01, 0.1, 1, 10] # gamma의 후보값들
# 성능 평가를 위한 사용자 정의 스코어 함수 정의
def custom_scorer(y_true, y_pred):
   # 이진 분류에서는 이상치를 양성 클래스(1)로 설정
   y_true_binary = (y_true == 1)
   y_pred_binary = (y_pred == -1)
    return f1_score(y_true_binary, y_pred_binary)
scorer = make_scorer(custom_scorer, greater_is_better=True)
# 랜덤 서치 객체 생성
random_search = RandomizedSearchCV(oc_svm,
                                 param_distributions=param_dist,
                                 n_iter=50, scoring=scorer,
                                 refit=True, cv=5, random_state=42)
# 랜덤 서치 모델 훈련
random_search.fit(X_train_subset, y_train)
```

```
Best Parameters: {'nu': 0.05, 'kernel': 'rbf', 'gamma': 1}
Confusion Matrix:
[[1042 71]
[ 31 28]]
Accuracy: 0.9129692832764505
Precision: 0.28282828282828
Recall: 0.4745762711864407
F1 Score: 0.35443037974683544
```

03-3 Random Forest

```
# Glucose, DiabetesPedigreeFunction 특성 선택
X_train_RFC = X_train[['Glucose', 'DiabetesPedigreeFunction']]
X_test_RFC = X_test[['Glucose', 'DiabetesPedigreeFunction']]
# 랜덤 포레스트 모델 정의
rf_model = RandomForestClassifier(random_state=42)
# 랜덤 서치를 위한 하이퍼파라미터 범위 설정
param_dist = {
    'n_estimators': [50, 100, 200, 300],
    'max_depth': [None, 10, 20, 30, 40, 50],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': ['auto', 'sgrt', 'log2'],
    'bootstrap': [True, False]
# 랜덤 서치 객체 생성
random_search = RandomizedSearchCV(estimator=rf_model,
                                  param_distributions=param_dist.
                                  n_iter=100, scoring='accuracy',
                                  cv=5, random_state=42,
                                  n_jobs=-1, verbose=2)
# 랜덤 서치 모델 훈련
random_search.fit(X_train_RFC, y_train)
# 최적의 파라미터 출력
print("Best Parameters: ", random_search.best_params_)
# 최적의 모델로 테스트 데이터에 대한 예측 수행
best_rf_model = random_search.best_estimator_
y_pred_test_RFC = best_rf_model.predict(X_test_RFC)
```

```
Best Parameters: {
    'n_estimators': 50,
    'min_samples_split': 2,
    'min_samples_leaf': 2,
    'max_features': 'sqrt',
    'max_depth': 40, 'bootstrap': False}
```

Accuracy: 0.9633105802047781 Precision: 0.8872667472143911 Recall: 0.6757199202034507 F1 Score: 0.7375413379163086

03-4 EllipticEnvelop (가우시안)

```
from sklearn.covariance import EllipticEnvelope
# Glucose feature마 학습에 사용
X_train = X_train[[1]]
X_{\text{test}} = X_{\text{test}}[[1]]
# Elliptic Envelope 모델 초기화
elliptic_env = EllipticEnvelope(contamination=0.04) # contamination은 이상치 비율
# Elliptic Envelope 모델을 학습
elliptic_env.fit(X_train)
# 예측 (1: 정상치, -1: 이상치)
predictions = elliptic_env.predict(X_test)
# 예측 결과를 0 (정상치)와 1 (이상치)로 변환
predictions = np.where(predictions == 1, 0, 1)
# 예측 결과를 새로운 열로 추가
elliptic_X_test = X_test.copy()
elliptic_X_test['anomaly'] = predictions
```

```
Confusion Matrix:

[[1070 43]

[ 43 16]]

Accuracy: 0.9266211604095563

Precision: 0.2711864406779661

Recall: 0.2711864406779661

F1 Score: 0.2711864406779661
```

03 - 5 Autoencoder

모델구조

Layer (type)	Output Shape	Param #
input_layer_7 (InputLayer)	(None, 8)	0
dense_28 (Dense)	(None, 15)	135
dense_29 (Dense)	(None, 7)	112
dense_30 (Dense)	(None, 7)	56
dense_31 (Dense)	(None, 8)	64

```
Total params: 367 (1.43 KB)

Trainable params: 367 (1.43 KB)

Non-trainable params: 0 (0.00 B)
```

모델학습

-> train시에 normal 데이터로만 학습

```
# 모델 학습
nb_{epoch} = 500
batch_size = 64
autoencoder.compile(optimizer='adam',
                   loss='mean_squared_error',
                   metrics=['accuracy'])
history = autoencoder.fit(X_train_normal, X_train_normal, # train시에 정상 데이터만으로 학습
                   epochs=nb_epoch,
                   batch_size=batch_size,
                   shuffle=True,
                   validation_data=(X_test, X_test), # validation시에는 정상 + 비정상 데이터로 검증
                   verbose=1).history
autoencoder.compile(metrics=['accuracy'],
                   loss='mean_squared_error',
                   optimizer='adam')
cp = ModelCheckpoint(filepath="/kaggle/working/autoencoder_classifier.keras",
                              save_best_only=True,
                              verbose=0)
```

03-5 Autoencoder


```
# test data = reconstruction error \mbox{M}\mbox{$\dot{C}$}
reconstructions = autoencoder.predict(X_test)
reconstruction_errors = np.mean(np.square(X_test - reconstructions), axis=1)
# \mbox{M}\mbox{P}\mbox{$\dot{C}$} \mbox{0}\mbox{$\dot{C}$} \mbo
```


Confusion Matrix:

[[1043 70]

[46 13]]

Accuracy: 0.9010238907849829

Precision: 0.1566265060240964

Recall: 0.22033898305084745

F1 Score: 0.18309859154929578

04 이상탐지 결과

- Isolation Forest 0.37
- OneClass SVM 0.47
- Random Forest 0.68
- EllipticEnvelop (가우시안) 0.27
- AutoEncoder 0.22

05 역할 분담

- 배세은
 - 데이터 업샘플링
 - 이상탐지
 - 발표 자료 제작 및 발표
- 임혜진:
 - 피처 중요도 분석
 - 이상탐지
 - 발표 자료 제작 및 발표

프로젝트를 통해 배운 점 - 임혜진

프로젝트를 통해 배운 점 - 배세은

감사합니다