house_price_prediction

March 11, 2021

1 House Sales in King County, USA

1.0.1 Predict house price using regression

W tym zadaniu będziemy szacować ceny domów.

```
import numpy as np
import pandas as pd
import xgboost as xg
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error as MSE
from sklearn import preprocessing
import xgboost as xgb
from xgboost.sklearn import XGBRegressor
import datetime
from sklearn.model_selection import GridSearchCV
```

```
[4]: df = pd.read_csv('kc_house_data.csv')
df
```

[4]:	id	date	price	bedrooms	bathrooms	\
0	7129300520	20141013T000000	221900.0	3	1.00	
1	6414100192	20141209T000000	538000.0	3	2.25	
2	5631500400	20150225T000000	180000.0	2	1.00	
3	2487200875	20141209T000000	604000.0	4	3.00	
4	1954400510	20150218T000000	510000.0	3	2.00	
	•••	•••				
216	508 263000018	20140521T000000	360000.0	3	2.50	
216	6600060120	20150223T000000	400000.0	4	2.50	
216	510 1523300141	20140623T000000	402101.0	2	0.75	
216	311 291310100	20150116T000000	400000.0	3	2.50	
216	512 1523300157	20141015T000000	325000.0	2	0.75	
	sqft_living	g sqft_lot floo	rs waterfro	ont view	grade \	
0	1180	5650 1	.0	0 0	7	
1	2570	7242 2	.0	0 0	7	
2	770	10000 1	.0	0 0	6	
3	1960	5000 1	.0	0 0	7	

4	16	80	8080	1.0			0	0	•••	8		
•••	•••	•••	•••			•••	•••					
21608		30	1131	3.0			0		•••	8		
21609		310	5813	2.0			0		•••	8		
21610		20	1350	2.0			0	0	•••	7		
21611		00	2388	2.0			0	0		8		
21612	10	20	1076	2.0			0	0	•••	7		
	sqft_abov	e saft	_basemer	nt. vr	_built	vr	renov	ated	zipc	ode	lat	\
0	118	_	_babomor	0	1955	<i>y</i> = _	1 0110 0	0	_	178	47.5112	`
1	217		40		1951			1991		125	47.7210	
2	77		10	0	1933			0		028	47.7379	
3	105		91		1965			0		136	47.5208	
4	168		01	0	1987			0		074	47.6168	
	100				1501				30	014	47.0100	
 21608	 153	80	•••	0	2009	•••	•	 0	 92	103	47.6993	
21609	231			0	2014			0		146	47.5107	
21610				0	2014			0		144	47.5107	
21611	1020 1600			0	2003			0		027	47.5345	
21612	102			0	2004			0		144	47.5941	
21012	102	.0		U	2000			U	30	144	41.0341	
	long	sqft_liv	ving15	sqft_]	lot15							
0	-122.257		1340		5650							
1	-122.319		1690		7639							
2	-122.233		2720		8062							
3	-122.393		1360		5000							
4	-122.045		1800		7503							
•••	•••			•••								
21608	-122.346		1530		1509							
21609	-122.362		1830		7200							
21610	-122.299		1020		2007							
21611	-122.069		1410		1287							
21612	-122.299		1020		1357							

[21613 rows x 21 columns]

Dataframe zawiera dane typu : -

Dane zawierają takie dane jak: - id - unikalne id domu - date - data sprzedaży domu - price - cena sprzedanego domu

- bedrooms
- bathrooms liczba łazienek, gdzie 0.5 znaczy łazienka bez prysznica
- \bullet sqft_living
- \bullet sqft_lot
- $\bullet\,$ sqft_above powierzchnia domu nad powierzchnią ziemi

- sqft basement
- yr_built
- yr_renovated
- floors liczba pięter
- waterfront Zmienna określająca czy mieszkanie wychodziło na nabrzeże
- view ocena widoku [0, 4]
- condition stan mieszkania [1, 5]
- grade ocena zgodności budynku z projektem i jakości wykonania [1, 13]
- zipcode
- lat Szerokość geograficzna
- long Długość geograficzna
- sqft_living15 powierzchnia mieszkań najbliższych 15 sąsiadów
- sqft_lot15 powierzchnia ziemi najbliższych sąsiadów

Możemy wyszczególnić w tych danych 4 kategorie: - dane ogólne - specyfikacja domu - dane które są wyznaczane przez ludzi - dane o okolicy domu

Wynika stąd, że dane typu "id" powinny zostać usunięte z tego względu, że mogą powodować szum, z drugiej strony w id może być ukryta jakaś informacja, z której model mógłby wywnioskować cenę. Aby przygotować dane należy też udostępnić datę sprzedaży w bardziej przystępny format.

```
[8]: df.groupby(['condition']).count()
```

[8]:		price	bedro	ooms	bathroo	ns	sqft_livi	ng	sqft_lot	floors	\	
	condition											
	1	30		30		30	30		30	30		
	2	172	172		1	72	172		172	172		
	3	14031	14	4031	140	31	14031		14031	14031		
	4	5679	5679		56	79	5679		5679	5679		
	5	1701	1701		1701		1701		1701	1701		
		waterf	ront	view	grade	s	qft_above		yr_built	yr_reno	vated	\
	condition							•••				
	1		30	30	30		30	•••	30		30	
	2		172	172	172		172	•••	172		172	
	3	1	4031	14031	14031		14031	•••	14031		14031	

```
4
                  5679
                          5679
                                 5679
                                              5679 ...
                                                            5679
                                                                           5679
5
                                 1701
                                              1701
                                                            1701
                                                                            1701
                  1701
                          1701
           zipcode
                       lat
                              long sqft_living15 sqft_lot15
                                                                   year month \
condition
                        30
                                30
                                                30
                                                                     30
1
                 30
                                                             30
                                                                             30
2
                172
                       172
                               172
                                               172
                                                            172
                                                                    172
                                                                            172
3
              14031
                                             14031
                                                                         14031
                     14031
                            14031
                                                          14031
                                                                  14031
4
               5679
                      5679
                              5679
                                              5679
                                                           5679
                                                                          5679
                                                                   5679
5
               1701
                      1701
                              1701
                                              1701
                                                           1701
                                                                   1701
                                                                          1701
             day
condition
1
               30
2
              172
3
           14031
4
            5679
5
             1701
[5 rows x 21 columns]
```

1.0.2 Przeszukiwanie przestrzeni hiperparametrów

```
[28]: xgb1 = XGBRegressor()
      parameters = {'nthread':[1], #when use hyperthread, xgboost may become slower
                    'objective':['reg:squarederror'],
                    'learning_rate': [.03, .04, .05, .06, .07], #so called `eta` value
                    'max_depth': [3, 4, 5, 6, 7],
                    'min_child_weight': [3, 4, 5, 6],
                    'subsample': [0.7],
                    'colsample_bytree': [0.7],
                    'n_estimators': [500, 700, 100]}
      xgb_grid = GridSearchCV(xgb1,
                              parameters,
                              cv = 2,
                              n jobs = 12,
                              verbose=True)
      xgb_grid.fit(X, Y)
      print(xgb_grid.best_score_)
      print(xgb_grid.best_params_)
```

```
Fitting 2 folds for each of 300 candidates, totalling 600 fits
     0.877865911661787
     {'colsample_bytree': 0.7, 'learning_rate': 0.06, 'max_depth': 5,
     'min_child_weight': 6, 'n_estimators': 700, 'nthread': 1, 'objective':
     'reg:squarederror', 'subsample': 0.7}
     1.0.3 Wyznaczone hiperparametry z modelu
[31]: xgb2 = XGBRegressor(colsample_bytree=0.7, learning_rate=0.06, max_depth=5,__
      →min child weight=6, n estimators=700, nthread=1, objective='reg:
       →squarederror', subsample=0.7)
[36]: xgb2.fit(train_X, train_Y)
     score = xgb2.score(train_X, train_Y)
     print("Training score: ", score)
     score = xgb2.score(test_X, test_Y)
     print("Test score: ", score)
     pred = xgb2.predict(test_X)
     rmse = np.sqrt(MSE(test_Y, pred))
     print("RMSE : % f" %(rmse))
     Training score: 0.9711698297228819
     Test score: 0.905722369519171
     RMSE: 113149.749407
[37]: print (test_Y[:10], pred[:10])
     5506
              532500.0
     9279
              410000.0
              782500.0
     16034
     6608
            995000.0
     20359
              279000.0
     8798
            175000.0
     10035 689000.0
     13321
             275000.0
     15842
              465000.0
     12119
              506000.0
     Name: price, dtype: float64 [617686.7 525400.25 869056.5 986680.4 302756.4
     301077.2 696768.8
      419573.34 457880.12 462333.66]
[45]: import matplotlib.pyplot as pyplot
     pyplot.bar(X.columns, xgb2.feature_importances_)
     pyplot.xticks(rotation=90)
     pyplot.show()
```


Wynika stąd, że rzeczą najbardziej wpływającą na cenę domu jest zgodność domu z założeniami konstrukcyjnymi i jakość wykonania, które są ustalane na podstawie czynnika ludzkiego.

Dwoma kolejnymi ważnymi atrybutami domu jest czy dom miał widok na nabrzeże oraz jaka była powierzchnia salonu.

Co ciekawe na powyższym wykresie można zauważyć podwyższony słupek przy szerokości geograficznej. Symbolizuje to lokalizacje, w których ceny są odpowiednio wyższe lub też niższe. Kolejnym atrybutem który pomaga określić cenę jest metraż domów w sąsiedzctwie. Co może wynikać z faktu, że domu w jednej okolicy często bywają do siebie podobne.

Co ciekawe mały wpływ na cenę domu ma fakt czy dom który jest sprzedawany jest zadbany czy też nie, natomiast widać, że stosunkowo mało domów dostało 1 i 2 w tej kategorii. Jest to oceniane przez człowieka i dlatego ta informacja może być zaburzona.

[]: