CPC 2023: Introduction to Computational Psychiatry

Klaas Enno Stephan

From differential diagnosis to nosology

Stephan: Translational Neuromodeling & Computational Psychiatry, in prep.

>3,000 clinical tests in medicine

1 diagnostic instrument in psychiatry

Contemporary psychiatric classifications: ICD and DSM

International Classification of Diseases (ICD):

- curated by the World Health Organization (WHO)
- freely available
- presently in its 11th revision (ICD-11)

Diagnostic and Statistical Manual of Mental Disorders (DSM)

- published by the American Psychiatric Association (APA)
- approx. \$90 (September 2023)
- presently: fifth edition (DSM-5; 2013); text revision (TR) published in 20

both schemes

- define mental disorders as syndromes
- reflect the consensus (or compromise) of expert committees
- are descriptive (without reference to mechanisms)

DSM-5: Schizophrenia

- Positive symptoms:
 - Delusions
 - Hallucinations
 - Disorganized speech
- Grossly disorganized or catatonic behavior
- Negative symptoms (e.g., flat affect, anhedonia, avolition, asociality)
- + social or occupational dysfunction
- + continuous signs of the disturbance for at least six months

delusions hallucinations

different symptoms, same diagnosis

disorganized speech negative symptoms

disorganized symptoms

same diagnosis

delusions hallucinations

delusions hallucinations

(at least one pos. symptom) over ≥ 1 month

≥ 2 symptoms

Heterogeneity of psychiatric disorders

polygenetic basis
gene-environment interactions
environmental variation

variability in clinical trajectory and treatment response

multiple disease mechanisms

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

Developing computational assays of neuronal and cognitive processes

Translational Neuromodeling & Computational Psychiatry

Application to brain activity and behaviour of individual patients

Differentiating patients
 based on inferred mechanisms

- disease mechanism A
- disease mechanism B
- disease mechanism C

4 Individual prediction

A taxonomy of computational clinical neuroscience

Generative models and "computational assays"

measured brain activity y

generative model m

hidden neuronal parameters θ

Example: Dynamic causal models (DCMs)

Generative models and "computational assays"

observed symptoms or behaviour y

generative model m

hidden algorithmic parameters θ

Example: Hierarchical Gaussian Filter (HGF)

$$\Delta belief \propto \frac{precision_{input}}{precision_{pred}} \times PE$$

The basis of generative modeling: Bayes' rule

The Reverend Thomas Bayes (1702-1761)

"... the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence."

Wikipedia

Generative models as a concept for brain function: the "Bayesian brain" hypothesis

neuronal states

environm. states others' mental states bodily states

perception = inference = inversion of a generative model

The "Two Cultures of Computational Psychiatry"

- explanation: generative models
 - data-generating process is of central interest
 - goal: identify the mechanisms underlying observations (e.g. clinical symptoms, brain activity)
- prediction: machine learning (ML)
 - data-generating process is treated as a black box
 - goal: prediction of clinically relevant outcomes, e.g. treatment response, remission, relapse

The "Two Cultures of Computational Psychiatry" ... and Generative Embedding as their bridge

- explanation: generative models
 - data-generating process is of central interest
 - goal: identify the mechanisms underlying observations (e.g. clinical symptoms, brain activity)
- prediction: machine learning (ML)
 - data-generating process is treated as a black box
 - goal: prediction of clinically relevant outcomes, e.g. treatment response, remission, relapse
- generative embedding:
 - applies ML to estimated quantities from generative models

Generative embedding

high-dimensional data

generative model

mechanistic interpretation

theory-driven dimensionality reduction

posterior densities → features for machine learning

Brodersen et al. 2011, *PLoS Comp. Biol.* Brodersen et al. 2014, *NeuroImage Clinical*

Computational assays: key clinical questions

SYMPTOMS

(behavioural or physiological data)

MECHANISMS

(computational, physiological)

CAUSES

(aetiology)

- differential
 diagnosis: deciding
 between alternative
 disease mechanisms
- Stratification / subgroup detection into mechanistically distinct subgroups
- **3 prediction** of clinical trajectories and treatment response

Stephan: Translational Neuromodeling & Computational Psychiatry, in prep.

• Differential diagnosis: inferring synaptic processes

$$y(t) = h(x(t)) + \epsilon$$

Images: Pereira et al. 2021, NeuroImage

- inhibitory interneurons
- excitatory interneurons
- pyramidal cells

AMPA, NMDA, GABA, receptors

$$C\dot{V} = \sum_{i} g_{i} \left(V_{i}^{0} - V\right)$$

$$\dot{g}_{k} = \kappa \left(u_{ij} - g_{k}\right)$$

$$u_{ij} = \gamma_{ij} \sigma \left(\mu_{V}^{(j)} - V_{R}, \Sigma^{(j)}\right)$$

 u_{ij} = presynaptic input from ensemble j to i σ = CDF of presynaptic depolarization density around threshold potential V_R

NMDA receptor antibody encephalitis

29 patients with NMDAR-antibody encephalitis18 control patients (with inflammatory/metabolic encephalopathy)

3 Prediction: two-year outcome in depression

N=85 MDD patients from NESDA study (Schmaal et al. 2015, Biol. Psychiatry)

Three distinct trajectories:

chronic (CHR): n = 15 gradually improving (IMP): n = 31 remission (REM): n = 39

emotional faces > scrambled faces

DCM + BMA (emotional face processing)

3 Prediction: two-year outcome in depression

3 Prediction: two-year outcome in depression

B Prediction: depressive symptoms within next 3 years

B Prediction: depressive symptoms within next 3 years

rsfMRI data from UKB (N=906):

- N=453 with indication for ≥1 depressive episode
- N=453 w/o depressive episode
- 1:1 matching for 7 criteria (age, sex, comorbidities)
- 80/20 split into training and test sets

3 Prediction: depressive symptoms within next 3 years

Generative embedding (55 IC rDCM + sigmoid SVM): Predictive performance on **held-out test set**

3 Prediction: future problem use of stimulants

- 88 occasional stimulant users
- "determine whether individual differences in the neural representation of the need to stop in an inhibitory task can predict the development of problem use (i.e. abuse or dependence)"
- fMRI (stop-signal task), Bayesian Hidden Markov Model
- prediction error (PE) activity from 4 brain regions predicted problem use 3 years later
- prediction based on computational variables: sensitivity 62%, specificity 83%
- outperformed predictions based on clinical variables and conventional fMRI analyses

UPE = unsigned PE SPE = signed PE

Final remark: What exactly do we mean by "computational"?

- often used in computational psychiatry:
 levels of analysis for an information-processing system (David Marr):
 - computational level: what problem does the system solve?
 - algorithmic level: which representations and operations are used?
 - implementational level: how is the system physically realized?
- this is in conflict with the classical concept of "computation" from computer science
 - "computation" = finite sequence of operations (algorithm) that transform an input set into an output set
- a better terminology might be to replace the "computational level" with "teleological" or "purpose" level

CPC 2023

http://www.translationalneuromodeling.org/cpcourse/

- 9th international edition
- originated from our local courses on Computational Psychiatry since 2012
- in hybrid mode since 2022
- key features
 - clinical, methodological & application topics
 - covers models of both neurophysiology and behaviour
 - practical exercises with different open source toolboxes
 - >40 presenters from >20 international institutions
 - >350 registered participants

CPC 2023

Further reading: reviews on computational psychiatry

- Bennett D, Silverstein SM, Niv Y (2019) The Two Cultures of Computational Psychiatry. JAMA Psychiatry 76: 563-564.
- Frässle S, Yao Y, Schöbi D, Aponte EA, Heinzle J, Stephan KE (2018) Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science 9: e1460.
- Friston KJ, Stephan KE, Montague R, Dolan RJ (2014) Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry 1: 148-158.
- Huys Q, Maia T, Frank M (2016) Computational psychiatry as a bridge between neuroscience and clinical applications. Nat. Neurosci. 19: 404-413
- Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn. Sci. 16, 72–80.
- Petzschner FH, Weber LAE, Gard T, Stephan KE (2017) Computational Psychosomatics and Computational Psychiatry: Toward a joint framework for differential diagnosis. Biological Psychiatry 82: 421-430.
- Stephan KE, Mathys C (2014) Computational Approaches to Psychiatry. Current Opinion in Neurobiology 25:85-92.
- Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015) Translational Perspectives for Computational Neuroimaging. Neuron 87: 716-732.
- Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A (2017) Computational Neuroimaging Strategies for Single Patient Predictions. NeuroImage 145:180-199
- Wang XJ, Krystal JH (2014) Computational psychiatry. Neuron 84: 638-654.

Once again, a very warm welcome – we hope you will enjoy the CPC 2023!

http://www.translationalneuromodeling.org/cpcourse/