Note: MVAN: Multi-view Attention Networks for Real Money Trading Detection in Online Games

摘要: RMT (Real Money Trading) 是指在网络游戏中,通过现实世界的金钱交易而交易虚拟资产的行为,这种行为会导致游戏经济的不平衡,本文提出了几种检测RMT的网络: MVAN (multi-graph attention network,从图结构角度)、BAN (behavior attention network,从顶点内容角度)、PAN (portrait attention network,从顶点属性角度)、DSAN (data source attention network,从数据源角度)。

1.介绍

专业的实施RMT的网络罪犯称为gold farming group(GFG),包括gold farmer(专门做任务获取虚拟资产),gold banker(从farmer获取虚拟资产,卖给buyer),gold buyer(使用真实金钱交易的买家)。

RMT检测的阻碍有:

- 1. 过度的人力。在传统的RMT检测中,检测和评估都需要过多的人力
- 2. 标签的不确定性
- 3. 组的检测。传统的方法少有检测不同的gold farmer是否属于一个组
- 4. 概念的变化。新型的RMTer会出现。
- 5. 快速的响应。在快速变化的环境中的匿名检测是个长期存在的问题。

2.数据集描述

1. gamelogs: 时间戳、角色信息、Log ID、目标角色信息、细节信息。

2. 社会图的构建

包括五种图:交易图、设备共享图、友谊图、队伍图、聊天图。

RMTers的特性: **距离聚合**(相近的角色有相似的标签,更容易建立紧密联系)、**结构差异** (RMTer的一阶邻居不同角色类型的数量和普通玩家不同)、**使用扩散**(如果邻居参与RMT,则该点参与RMT的可能性急剧增加)、**关系相关**(一些社交活动比如参与队伍、交友、交流信息、共享设备等和RMT高度相关)

3. 行为序列构建

角色的行为序列由按时间戳排序的事件列表组成,包含一下三种特征:事件ID、区间(一个角色的上一次游戏事件和现在的游戏事件之间的时间)、等级。

以下为三种RMTer的行为序列可视化。不同颜色表示不同的游戏事件。

Figure 4: Behavior sequences of gold farmers are similar to each other, behavior sequences of gold buyers show diversity, while behavior sequences of gold bankers show some repeated trading events.

4. 角色画像的构建

角色画像信息包括性别、等级、职业、揉脸(创建角色外貌)时间、游戏得分、资金等。 不同的RMTer的角色画像信息有以下不同:

揉脸时间: gold farmer的揉脸时间比较短,因为他们专注于游戏里的虚拟资产; gold buyer比较注重游戏角色的外观,所以会花更多时间揉脸。

资产: gold farmer拥有的资产比较少和集中,因为他们会周期性的转移给banker, gold banker 的资产是最多的,gold buyer属于两者之间。

职业: gold farmer的职业集中在四种类别,因为这些职业更容易打怪和完成任务。gold banker的职业集中在两种类别,因为这些职业更容易存活。

等级: gold farmer和gold banker的等级都不高。前者中等,因为等级越高做任务越难;后者等级低,为了节省开销和隐藏身份。gold buyer的等级比较高,因为买家重视角色的成长。

3.MVAN (多角度注意网络): 网络结构角度、顶点内容角度、顶点属性角度、数据源角度。

Figure 6: MVAN: Architecture of the proposed Multi-view Attention Networks.

1. 多图注意网络 (Multi-graph Attention Network)

图注意网络(Graph Attention Network)的邻居顶点有不同的权重,但是忽略了多边的情况和边的权重。

2. 行为注意网络

五个组成部分:任务(quest)抽取器、事件序列编码器、事件等级注意层,任务序列编码器、任务等级注意层。

任务抽取器:输入一个事件区间 -> 聚类行为序列 -> 得到任务序列

事件编码器:输入事件,输出隐藏状态向量。使用双向的LSTM来总结事件之间双向的信息

事件注意:输入隐藏状态向量,输出归一化的重要性权重。

任务编码器:输入任务,使用双向LSTM对任务编码

任务注意:

画像注意网络(顶点属性角度)
由历史的画像经过卷积层和平均池化得到特征向量。

- 4. 数据源注意网络
- 5. 预测和损失函数
- 6. RMT检测的工作流程

Figure 7: Workflow for RMT detection in online games