Knowledge Graph Completion With TransE vs Boltzmann Machines

AUTHORS

Liam Brandt Roman Mishchuk

AFFILIATIONS

Technical University of Munich, TUM school of Computation, Information and Technology Bachelor Practical course in Data Engineering

Advisor: M.Sc. Tim Schwabe

This project aims to explore ways to improve recommendation algorithms by using knowledge graph completion methods.

Approach

- Analyze and Split Data
- Train Models on Data
- **Evaluate Models**

Hyper-Parameter Tuning

Boltzmann Machine Hits@3 on 15% of Data 94% 92% 89% 89% 84% **Optimizing** 84% 80% 77% 75% 74% 75% 77% 76% h200 h300 h350 h350 h351 h352 h353 h354 h355 h356 h360 h370 h375 h380 h400 h500 h600

lr.05 lr.05 lr.045 lr.05 lr.045 lr.05 lr.05

Dimension & Learning Rate

Results:

TransE embeddings of movies and persons

Model Parameters

Conclusion

Training of TransE was far easier to handle and we were able to get it to perform better than Boltzmann With 9% of the original dataset, TransE can recreate it with 95% AUC score and 79% Hits@3

Future Work

We would attempt to improve the Boltzmann machine further to see if it could outperform TransE with more modifications

References

R. Salakhutdinov, A. Mnih, and G. Hinton, "Restricted Boltzmann machines for collaborative filtering," in Proceedings of the 24th International Conference on Machine Learning, 2007, pp. 791-798. doi: 10.1145/1273496.1273596.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, "Translating Embeddings for Modeling Multi-relational Data," in Advances in Neural Information Processing Systems, 2013, vol. 26. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa 24680a88d2f9-Paper.pdf