

इरिसेट

गाड़ी डिटेक्शन प्रयोगशाला

प्रयोग सं : टी डी एल - 22

IRISET TRAIN DETECTION LABORATORY EXPERIMENT NO : TDL - 22

नाम			
Name	:		
अनुक्रमांक		प्राप्तांक	
Roll No	:	 Marks Awarded	:
पाठ्यक्रम			
Course	:		
दिनांक		अनुदेशक के आद्यक्षर	
Date	:	 Instructor Initial	:

DIGITAL AXLE COUNTER (ACS2000) - FRAUSCHER

(RDSO / SPN / 176 / 2013)

- I. **Purpose:** 1. Identification of Sub-systems / Boards
 - (Outdoor & Indoor Equipment)
 - 2. Study of Indications on Sub-systems/ Boards
 - 3. Study of DAC (ACS 2000) FRAUSCHER Configuration
 - 4. Study of Resetting
 - 5. Downloading of Errors & Events
 - 6. Maintenance Log Sheet
 - 7. Study of RSR-180

II. Typical block diagram of ACS2000(Isolated mode)

III.Block diagrams for the different configurations

Block diagram in isolated mode operation for Multi section (3 Track sections)

2. Block diagram in transmission mode operation using Modem with DIOB

3. Block diagram in transmission mode operation using Modem without DIOB

IV. **Evaluation board IMC**

Description of the front panel elements

Figure 2.1: Front panel of the evaluation board IMC

Display when illuminat	ed/operating elements whilst actuated:			
Serial Interface	serial interface			
	IMC GS01: not in use;			
	IMC GS03: Diagnostic connection			
PWR	supply voltage channel 1 present			
Sys1	1system 1 occupied (illuminated) or faulty			
	(flashes)			
A1	output direction 1 1			
B1	output system 1 ¹			
Adjust	required for IMC adjustment			
Test	required to adjust IMC/simulate an occu-			
	pancy of system 1			
V+, GND	2 mm test sockets, voltage corresponds to			
	the analogue wheel sensor current via a 100 Ω shunt			
PWR	supply voltage channel 2 present			
Sys2	system 2 occupied (illuminated) or faulty			
	(flashes)			
A2	output direction 2 ¹			
B2	output system 2 ¹			
Adjust	required for IMC adjustment			
Test	required to adjust IMC/simulate an			
	occupancy of system 2			
V+, GND	2 mm test sockets, voltage corresponds to			
	the analogue wheel sensor current via a			
	100 Ω shunt			
Type key:				
nnn	board identification code beginning with			
	001			
xxyy	xxyyoperating voltage range			
zzversion beginning with 01				

V. Axle counting board ACB

Description of the front panel elements

Displays when illuminated/operating elements whilst actuated:

Type key:

nnn...... board identification code beginning with 001 xx...yy..... operating voltage range zzversion beginning with 01

Front panel of the axle Counting board ACB

VI. **Fuse board SIC**

The fuse board SIC is used to protect the supply voltage for the ACS2000.

Description of the front panel elements

Si1.....fuse for the supply voltage of channel 1

Si2.....fuse for the supply voltage of channel 2

Type key:

nnn..... board identification code beginning with 001 xx...yy..... operating voltage range zz.....version beginning with 01

Front panel of the fuse board SIC

VII. Assignment:

1. Draw the Block Diagram of Frauscher ACS2000 as in TD LAB (5dps-4track sections).

2. What are the different modes of operation in ACS2000.

3. Identify the cable used between track side connection box GAK to the termination rack (KA) of ACS and write the details of the connections.

4. Where are the address/configuration settings provided.

5. Measure the currents of sys1 and sys2 of EB(IMC) with & without wheel (range of current 2.8ma to 5ma without wheel)

S. No	Description	Terminals	Tolerance Range	Actual Readings
1	Power Supply Input V AC	● L ● N PSU	100-240 V AC	230 V AC
2	Power Supply Output/ V DC	● +24 ● - 24 PSU		
2	System -1 R=100 Ω (Current I = V /100)	● V+ ● GND IMC Board	2.8 mA to 5 mA (280 mV to 500 mV)	
3	System -2 R=100 Ω (Current I = V /100)	● V+ ● GND IMC Board	2.8 mA to 5 mA (280 mV to 500 mV)	

Date:

Signature of the Trainee