UNDE ELASTICE

APLICAȚII

- 1. Lungimea de undă reprezintă:
- a) distanța parcursă de undă în unitatea de timp;
- b) distanța dintre două puncte pe direcția de propagare a undei pentru care funcția ψ are aceeași valoare;
- c) distanța parcursă de undă într-o perioadă;
- d) distanța minimă dintre suprafețele de egală fază;
- e) distanța minimă dintre două puncte pe direcția de propagare pentru care faza se modifică cu 2π ,
- f) $\lambda = u/v$, v freevență
- 2. În cazul teoriei acusticii sunt adevărate următoarele afirmații:
- a) sunetele sunt unde care produc senzaţii auditive urechii umane şi au frecvenţe cuprinse între 16 şi 20.000 Hz;
- b) undele cu frecvenţa sub 16 Hz se numesc ultrasunete;
- c) undele cu frecvenţa peste 20 kHz se numesc ultrasunete;
- d) undele cu frecventa sub 16 Hz se numesc infrasunete;
- e) nivelul intensității sonore se măsoară în decibeli;
- f) nivelul auditiv se măsoară în beli;
- 3. Unde longitudinale cu frecvenţa $\nu = 500\,Hz$ se transmit într-un mediu elastic al cărui modul de elasticitate este $E = 4,32\cdot10^{10}\,\text{N/m}^2$ şi care are densitatea $\rho = 2700\,\text{kg/m}^3$. Să se determine:
- i) viteza de propagare a undelor în mediul respectiv;
- ii) lungimea de undă;
- iii) distanța între două puncte ale mediului elastic între care diferența de fază este $\Delta \varphi = \pi$.

Rezolvare

i)
$$v = \sqrt{\frac{E}{\rho}} = 4 \cdot 10^3 \,\text{m/s};$$

$$ii) \lambda = \frac{\mathbf{v}}{\nu} = 8\mathbf{m};$$

iii)
$$\Delta \varphi = k \Delta x$$
; $\Delta x = \frac{\lambda}{2\pi} \Delta \varphi = 4$ m.

- 4. O undă transversală se propagă printr-un cablu elastic cu viteza v=15m/s. Perioada vibraţiilor punctelor cablului este T=1,2s, iar amplitudinea A=2cm. Să se calculeze:
- i) lungimea de undă;
- ii) faza φ , elongația y, viteza și accelerația pentru un punct al cablului aflat la distanța x=45m de sursa de oscilatie la momentul t=4s;
- iii) diferența de fază $\Delta \varphi$ a două puncte de pe cablu aflate la distanțele x_1 =20m , respectiv x_2 =24,5m de sursa de unde.

Rezolvare

i)
$$\lambda = vT = 18m$$

ii)
$$\varphi = \omega \left(t - \frac{x}{y} \right) = \frac{2\pi}{T} \left(t - \frac{x}{y} \right) = 1,67\pi$$

y=Asin $\varphi = -1.73$ cm; v= $\omega A \cos \varphi = 5.2$ cm/s; a= $-\omega^2 A \sin \varphi$

iii))
$$\Delta \varphi = k \Delta x = \frac{2\pi}{\lambda} \Delta x = \frac{\pi}{2}$$

5. Dintr-o gară, la momentul $t_0 = 0$, pornește un tren în mișcare uniform accelerată. La momentele $t_1 = 2.4$ s și $t_2 = 28.1$ s, sirena locomotivei emite câte un semnal de scurtă durată și de aceeași frecvență. În gară, sunetele sunt recepționate cu frecvențele $v_{1,R}$ (primul sunet) și $v_{2,R}$ (al doilea sunet). Raportul frecvențelor este $n = v_{1,R}/v_{2,R} = 28.2/27.1$. Temperatura aerului este t = 27 °C iar presiunea atmosferică este $t = 1.013 \cdot 10^6$ N/m². Masa molară a aerului este t = 29 g/mol.

Determinați accelerația trenului.

Rezolvare:

Viteza sunetului în aer este: $u = \sqrt{\frac{\gamma p}{\rho}}$, densitatea aerului este: $\rho = \frac{p \cdot M}{RT}$, deci $u = \sqrt{\frac{\gamma RT}{M}}$; u = 347 m/s.

Se produce efectul Doppler. Receptorul se află în stație, în repaus, deci $v_R = 0$. La momentele $t_{1,2}$ viteza sursei (a trenului) este $v_{S,1} = at_1$, respectiv $v_{S,2} = at_2$ (a-accelerație). Pulsația sunetului recepționat este:

$$\omega_R = \omega_S \qquad \frac{u - v_R \cos \alpha}{u - v_S \cos \alpha} = \omega_S \frac{u}{u - v_S \cos \alpha}; \qquad \omega_S = 2\pi v_S; \ \omega_R = 2\pi v_R.$$

Ținând seama de orientarea vitezelor $\alpha = \pi$. (conform figurii 1), formula frecvenței sunetului recepționat:

$$v_R = v_S \frac{u}{u + v_S}; \quad v_{1,R} = v_S \frac{u}{u + v_{S,1}}, \quad v_{2,R} = v_S \frac{u}{u + v_{S,2}}.$$

$$\begin{pmatrix} \vec{u} & \vec{v}_s \\ R & \vec{v}_s \\ S \\ \text{suprafeţe de unda} \end{pmatrix}$$

Figura 1. Orientarea vitezelor.

Raportul frecvențelor sunetelor recepționate, după înlocuiri conduce la formula:

$$n = \frac{u + at_2}{u + at_1}$$
, $a = \frac{u(n-1)}{t_2 - nt_1}$, $a = 0.66$ m/s².

- 6. Sunetul produs de o sursă punctiformă are nivelul auditiv $N_{a,2} = 30$ foni la distanța $d_2 = 30$ m față de sursă. Să se calculeze:
- 1) intensitatea acustică a sunetului la distanța d_2 ;
- 2) nivelul auditiv la distanța $d_1 = 16$ m față de sursă;
- 3) distanța maximă la care sunetul se mai aude.

Se cunoaște $I_{a,0} = 10^{-12} \,\text{W/m}^2$ iar sunetul emis este cel normal, $v = 10^3 \,\text{Hz}$.

Rezolvare:

1) Nivelul auditiv este: $N_{\rm a2}=10$ lg $I_{\rm a,2}/I_{\rm a,0}$, deci $N_{\rm a2}/10$ =lg $I_{\rm a,2}/I_{\rm a,0}$, se obține 3= $lg~I_{\rm a,2}+12$ $I_{\rm a2}=10^{-9}~{\rm W/m}^2$.

2) Sunetul fiind cel normal intensitățile sonoră și auditivă au aceeași valoare, $I_a = I_s$.

Pe de altă parte, intensitatea sonoră este egală cu raportul dintre puterea sursei și suprafața sferei de rază d pe care o străbate energia sonoră în unitatea de timp: $I_s = P/(4 \pi d^2)$.

Pe sfera de rază d_2 nivelul auditiv este:

$$N_{a,2} = 10 \lg \frac{P}{4 \pi d_2^2 \cdot I_{a,0}} = 10 \lg \frac{P}{4 \pi I_{a,0}} - 20 \lg d_2;$$

adică:

$$10 \lg \frac{P}{4\pi I_{a2}} = N_{a2} + 20 \lg d_2.$$

Pe sfera de rază d_1 nivelul auditiv este:

$$N_{a,1} = 10 \lg \frac{I_{a,1}}{I_{a,o}} = 10 \lg \frac{P}{4 \pi I_{a,o} d_1^2} = 10 \lg \frac{P}{4 \pi I_{a,o}} - 20 \lg d_1.$$

Nivelul auditiv la distanța d_1 de la sursa sonoră:

$$N_{a,1} = N_{a2} + 20 \lg \frac{d_2}{d_1}; \quad N_{a,1} = 36 \text{ foni }.$$

3) Sunetul se aude până la distanța x pentru care $N_{\rm a}=0$; adică:

$$10 \lg \frac{p}{4\pi x^2 I_{a,0}} = 0 \text{ sau } 10 \lg \frac{p}{4\pi I_{a,0}} = 20 \lg x$$

20 lg
$$x = N_{a,2} + 20$$
 lg d_2 sau $N_{a,2} + 20$ lg $\frac{d_2}{x} = 0$.

Înlocuind cu datele problemei se obține:

$$\lg d_2/x = -1.6$$
; $d_2/x = 10^{-1.6}$; $x = 949$ m.

7. O sursă de unde plane oscilează după legea $y(t) = 2\sin(750\pi t)$ (cm). Să se determine distanța x față de sursă la care elongația este $y = \sqrt{2}$ cm la momentul $t = 2 \cdot 10^{-2}$ s, viteza de propagare a undei fiind u = 375 m/s.

Rezolvare:

Ecuația undei plane va fi dată de relația:

$$y(x,t) = A\sin(\omega t - kx),$$

unde numărul de undă k este dat de relația:

$$k = \frac{\omega}{u} = 2\pi \text{ m}^{-1}.$$

Pentru cazul particular al problemei rezultă:

$$\sqrt{2} = 2\sin(750\pi \cdot 2 \cdot 10^{-2} - 2\pi x).$$

$$15 - 2x = \frac{1}{4}$$
; $x = 7,37$ m.

Probleme propuse

- 1. 2. Pentru aer se cunosc: p=1 atm, $\gamma=1,4$, $\rho=1,3$ kg/m³. Viteza de propagare a sunetului prin compresii și dilatări rapide ale aerului este:
- a) 330 dm/s; b) $1,97 \cdot 10^6 \text{ dm/min}$; c) $1,18 \cdot 10^2 \text{ km/h}$; d) 328 m/s;
- e) 3.10^8 m/s; f) răspunsul a) este corect.
- 2. Într-o bară de oțel, $E = 2 \cdot 10^{11} \, \text{N/m}^2$, $\rho = 7,89 \, \text{g/cm}^3$, se propagă unde plane longitudinale cu frecvența $\nu = 700 \, \text{Hz}$ și amplitudinea $A = 3,1 \, \text{mm}$.

Determinati:

- 1) funcția de undă $\psi = \psi(x,t)$;
- 2) diferența de fază $\Delta \alpha$ pentru două puncte de pe direcția de propagare, distanța între ele fiind $\Delta x = 2,2$ m;
- 3) diferența de fază $\Delta \alpha$ ce corespunde la două stări pentru mișcarea de vibrație a aceleiași particule, atinse la două momente între care intervalul de timp este $\Delta t = 8$ s.
- **3.** Un automobil se deplasează într-o mișcare rectilinie uniformă cu viteza v = 90 km/h. La un moment dat, claxonul automobilului emite un sunet de scurtă durată cu frecvența $v_S = 660$ Hz. În fața și în spatele vehicolului se află câte un observator în repaus.

Calculați diferența între frecvențele sunetelor recepționate de cei doi observatori. ($u_{aer} = 340 \text{ m/s}$).

- **4**. În timpul vorbirii nivelul mediu auditiv este *N*a = 40 foni. Să se afle:
- 1) Nivelul auditiv al pragului senzației dureroase în raport cu pragul de audibilitate;.
- 2) Raportul $I/I_{a,0}$ care arată de câte ori vorbim mai tare decât este necesar pentru a ne auzi. Se cunosc: $I_{a,0} = 10^{-12} \text{ W/m}^2$ și $I_{\text{max}} = 100 \text{ W/m}^2$.