Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский Политехнический университет Петра Великого Физико-Механический институт

Лабораторная 7

Выполнил студент гр. 5030102/20101:	Бугайцев М.В.	
Преподаватель:	Баженов А. Н.	
Работа принята:	Дата	

Содержание

1	Введение	2
2	Постановка задачи 2.1 Метод решения	2
3	Результаты 3.1 3.2	2 2 2
4	Практическая часть 4.1 Генерация данных и расчёт интервалов 4.2 Зависимость индексов Жаккара от сдвига	3 3
5	Заключение	7

1 Введение

2 Постановка задачи

Сгенерировать 2 выборки X_1 и X_2 мощностью n=1000. Средние и ширины выборок должны отличаться, например

$$X_1 = N(0, 0.09), \quad X_2 = N(1, 0.11),$$
 (1)

где $N(m,\sigma)$ — нормальное распределение.

Для выборок X_1 и X_2 найти внутренние и внешние оценки:

$$Inn X_i = [Q_{1/4}, Q_{3/4}], (2)$$

$$Out X_i = [\min X_i, \max X_i]. \tag{3}$$

Здесь $Q_{1/4}, Q_{3/4}$ — первый и третий квартили.

Определить параметр сдвига a:

$$X_1 + a = X_2. (4)$$

2.1 Метод решения

Варьировать параметр сдвига a и вычислять 2 меры совместности:

$$J_{\text{Inn}} = \frac{\text{Inn}X_1 \wedge \text{Inn}X_2}{\text{Inn}X_1 \vee \text{Inn}X_2},\tag{5}$$

$$J_{\text{Out}} = \frac{\text{Out}X_1 \wedge \text{Out}X_2}{\text{Out}X_1 \vee \text{Out}X_2},\tag{6}$$

Здесь J — индекс Жаккара, \land, \lor — минимум и максимум по включению.

3 Результаты

3.1

Построить графики $J_{\text{Inn}}(a)$, $J_{\text{Out}}(a)$.

3.2

Найти оценки:

$$a_{\rm Inn} = \arg\max_{a} J_{\rm Inn},\tag{7}$$

$$a_{\text{Out}} = \arg\max_{a} J_{\text{Out}}.$$
 (8)

4 Практическая часть

4.1 Генерация данных и расчёт интервалов

Результаты генерации выборок и расчёта внутренних и внешних интервалов представлены в таблице 1:

Таблица 1: Внутренние и внешние интервалы выборок X_1 и X_2

		Нижний	Верхний
X_1	inn	-0.063	0.055
X_1	out	-0.274	0.248
X_2	$_{ m inn}$	0.928	1.069
X_2	out	0.671	1.349

Рис. 1: Гистограмма выборки

4.2 Зависимость индексов Жаккара от сдвига

Расчёт индексов Жаккара для различных значений параметра a сохранён в таблице 2:

Таблица 2: Значения индексов Жаккара при варьировании параметра a

a	J_{inn}	J_{out}
-1.0	-0.879	-0.542
-0.8	-0.866	-0.504
-0.6	-0.851	-0.46
-0.4	-0.831	-0.407
-0.2	-0.806	-0.341
0.0	-0.772	-0.26
0.2	-0.723	-0.156
0.4	-0.647	-1.819×10^{-2}
0.6	-0.514	0.174
0.8	-0.221	0.459
1.0	0.835	0.77
1.2	-0.209	0.544
1.4	-0.51	0.228
1.6	-0.645	1.949×10^{-2}
1.8	-0.721	-0.129
2.0	-0.771	-0.239
2.2	-0.805	-0.325
2.4	-0.831	-0.393
2.6	-0.85	-0.449
2.8	-0.866	-0.495
3.0	-0.879	-0.534

Рис. 2: Графики $J_{\rm Inn}(a)$ и $J_{\rm Out}(a)$

Таблица 3: Значения индексов Жаккара при варьировании параметра a

a	J_{inn}	J_{out}
0.9	0.115	0.661
0.905	0.139	0.672
0.91	0.165	0.684
0.915	0.192	0.696
0.92	0.220	0.708
0.925	0.249	0.720
0.93	0.280	0.733
0.935	0.313	0.745
0.94	0.347	0.758
0.945	0.383	0.770
0.95	0.421	0.770
0.955	0.462	0.770
0.96	0.504	0.770
0.965	0.549	0.770
0.97	0.597	0.770
0.975	0.648	0.770
0.98	0.703	0.770
0.985	0.761	0.770
0.99	0.823	0.770
0.995	0.835	0.770
1.0	0.835	0.770
1.005	0.835	0.770
1.01	0.835	0.770
1.015	0.824	0.770
1.02	0.762	0.770
1.025	0.704	0.770
1.03	0.649	0.770
1.035	0.598	0.770
1.04	0.550	0.770
1.045	0.505	0.770
1.05	0.463	0.770
1.055	0.422	0.770
1.06	0.384	0.770
1.065	0.348	0.770
1.07	0.314	0.770
1.075	0.281	0.770
1.08	0.250	0.770
1.085	0.221	0.770
1.09	0.192	0.770
1.095	0.165	0.770
1.1	0.140	0.770
1.105	0.115	0.759
1.11	0.092	0.746
1.115	0.069	0.733
1.12	0.047	0.721
1.125	$0.026 \\ 0.006$	0.709
1.13 1.135	-0.013	0.697 0.685
1.135	-0.013 -0.031	0.685 0.673
1.14 1.145	-0.031 -0.049	0.661
1.145 1.15	-0.049	0.650
1.10	-0.000	0.000

Рис. 3: Графики $J_{\mathrm{Inn}}(a)$ и $J_{\mathrm{Out}}(a)$

$$j_{\rm inn} = 0.835, a = [0.995, 1.01]$$
и $j_{\rm out} = 0.77, a = [0.945, 1.1]$

5 Заключение

В данной работе была проведена оценка индексов Жаккара для различных интервалов и исследована их зависимость от параметра сдвига. Результаты, представленные в таблицах 1 и 2, показали различия в значениях индексов для внутренних и внешних интервалов.

Максимальные значения индексов Жаккара были достигнуты при параметрах $j_{\rm inn}=0.835, a=[0.995,1.01]$ и $j_{\rm out}=0.77, a=[0.945,1.1]$. График зависимостей индексов, представленный на рисунке 3, иллюстрирует изменения индексов в зависимости от параметра a.