E. Camels

time limit per test: 2 seconds memory limit per test: 64 megabytes input: standard input output: standard output

Bob likes to draw camels: with a single hump, two humps, three humps, etc. He draws a camel by connecting points on a coordinate plane. Now he's drawing camels with t humps, representing them as polylines in the plane. Each polyline consists of n vertices with coordinates $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$. The first vertex has a coordinate $x_1 = 1$, the second — $x_2 = 2$, etc. Coordinates y_i might be any, but should satisfy the following conditions:

- there should be t humps precisely, i.e. such indexes j ($2 \le j \le n$ 1), so that $y_{j-1} < y_j > y_{j+1}$,
- there should be precisely t-1 such indexes j ($2 \le j \le n-1$), so that $y_{j-1} > y_j < y_{j+1}$,
- no segment of a polyline should be parallel to the Ox-axis,
- all y_i are integers between 1 and 4.

For a series of his drawings of camels with t humps Bob wants to buy a notebook, but he doesn't know how many pages he will need. Output the amount of different polylines that can be drawn to represent camels with t humps for a given number n.

Input

The first line contains a pair of integers n and t ($3 \le n \le 20$, $1 \le t \le 10$).

Output

Output the required amount of camels with *t* humps.

Examples

Examples	
input	
6 1	
output	
6	

input

4 2

output

0

Note

In the first sample test sequences of y-coordinates for six camels are: 123421, 123431, 123432, 124321, 134321 μ 234321 (each digit corresponds to one value of y_i).