- Homework 3

 1 a) Show explicitly that matrix $A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ is an orthogonal matrix.
- b) Show explicitly that under the transformation $\{\mathbf{e}',\mathbf{f}'\}=\{\mathbf{e},\mathbf{f}\}A_{\varphi}$ an orthonormal basis transforms to an orthonormal one.
- c) Show that for orthogonal matrix A_{φ} defined above the following relations are satisfied:

$$A_{\varphi}^{-1} = A_{\varphi}^{T} = A_{-\varphi}, \qquad A_{\varphi} \cdot A_{\theta} = A_{\varphi+\theta}.$$

2 Let \mathbf{e}, \mathbf{f} be orthonormal basis in Euclidean space \mathbf{E}^2 . Consider a vector

$$\mathbf{n}_{\varphi} = \mathbf{e}\cos\varphi + \mathbf{f}\sin\varphi.$$

Let A be a linear orthogonal operator acting on the space \mathbf{E}^2 such that $A(\mathbf{e}) = \mathbf{n}_{\omega}$. We know that $\det A = \pm 1$ since A is orthogonal operator.

In the case if det A=1, find the image $A(\mathbf{f})$ of vector \mathbf{f} and an image $A(\mathbf{x})$ of an arbitrary vector $\mathbf{x} = a\mathbf{e} + b\mathbf{f}$, write down the matrix of operator A in the basis \mathbf{e}, \mathbf{f} and explain geometrical meaning of the operator A.

[†] How the answer will change if det A = -1?

3 Let \mathbf{e}, \mathbf{f} be an orthonormal basis in Euclidean space \mathbf{E}^2 .

Consider a vector $\mathbf{N} = \mathbf{e} + \mathbf{f}$ in \mathbf{E}^2 .

Let A be an orthogonal operator acting on the space \mathbf{E}^2 such that $A\mathbf{N} = \mathbf{N}$. (N is eigenvector of A with eigenvalue 1.) Suppose that A is not identity operator.

- a) Find an action of operator A on the vector $\mathbf{R} = \mathbf{e} \mathbf{f}$ in \mathbf{E}^2 .
- b) Write down the matrix of operator A in the basis e, f.
- c) Explain geometrical meaning of the operator A.

4 Let $\{e, f, g\}$ be an orthonormal basis in Euclidean space E^3 . Consider a linear operator P in \mathbf{E}^3 such that

$$\mathbf{e}' = P(\mathbf{e}) = \mathbf{e}, \quad \mathbf{f}' = P(\mathbf{f}) = \frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}, \quad \mathbf{g}' = P(\mathbf{g}) = -\frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}.$$

Write down the matrix of operator P in the basis $\{e, f, g\}$ to the order

Show that P is an orthogonal operator.

Show that orthogonal operator P preserves the orientation of \mathbf{E}^3 .

Find an axis of the rotation and the angle of the rotation.

5 Consider a linear operator P_1 in \mathbf{E}^3 such that it transforms the orthonormal basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ into the orthonormal basis $\{\mathbf{f}, \mathbf{e}, \mathbf{g}\}$:

$$P_1(\mathbf{e}) = \mathbf{f}, \quad P_1(\mathbf{f}) = \mathbf{e}, \quad P_1(\mathbf{g}) = \mathbf{g}.$$

Consider also a linear orthogonal operator P_2 such that it is the reflection operator with respect to the plane spanned by vectors \mathbf{e} and \mathbf{f} .

Do operators P_1 , P_2 preserve orientation?

Does operator $P = P_2 \circ P_1$ preserve orientation?

Find eignevector of operator P

Show that P is rotation operator.