

GEOMETRÍA Capítulo 1

TRIÀNGULOS

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y, por lo tanto, el conocimiento de sus teoremas, clases, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

TRIÁNGULOS

<u>Definición</u>: Es aquella figura geométrica formada al unir 3 puntos no colineales mediante segmento de recta.

- **VÉRTICES**: A, B y C
- LADOS : \overline{AB} , \overline{BC} y \overline{AC}

TEOREMAS

$$\alpha + \beta + \theta = 180^{\circ}$$

$$\omega + \phi + \gamma = 360^{\circ}$$

$$\omega = \alpha + \beta$$

$$\phi = \alpha + \theta$$

$$\gamma = \beta + \theta$$

Teorema de la correspondencia

Teorema de la existencia

Si: $\beta < \alpha$

donde: c < b < a

Clasificación

1. Según las medidas de los lados.

∆ Escaleno

Δ Isósceles

Δ Equilátero

2.Clasificación según las medidas de sus ángulos.

∆ Rectángulo

∆ Oblicuángulo

∆ Acutángulo

∆ Obtusángul

0

1. En la figura, halle el valor de x.

2. Halle el valor de x, si AB = AC

Resolución

- Piden: x
- ABC: Isósceles

$$4x + 3x + 3x = 180^{\circ}$$

 $10x = 180^{\circ}$

$$x = 18^{\circ}$$

3. Las longitudes de los lados de un triángulo son 6 y 13. Calcule la diferencia entre el máximo y el mínimo valor entero que puede tomar la longitud del tercer lado.

Resolución

- Piden: x máx x min
- Por teorema de la existencia.

$$x = 8;9;10;...16;17;18$$

$$x_{máx} - x_{min} = 10$$

4. Halle el valor de x.

Resolución

- Piden: x
- Por teorema:

$$7x + 5x + 120^{\circ} = 360^{\circ}$$

 $12x = 240^{\circ}$

$$x = 20^{\circ}$$

5. En la figura, AB = AC = CD. Halle el valor de x.

6. En un ∆ABC, en ĀB se ubica el punto D, tal que AD = DC = BC y m≰BCD = 40°. Halle m≰DAC.

7. En la figura, halle el valor de x.

Resolución

- Piden: x
- ∆ADE:

$$x + \alpha = \beta$$

$$x = \beta - \alpha \qquad \dots (1)$$

ABCD:

$$2\alpha + 70^{\circ} = 2\beta + 50^{\circ}$$

 $20^{\circ} = 2\beta - 2\alpha$
 $10^{\circ} = \beta - \alpha$... (2)

Reemplazando 2 en 1.

$$x = 10^{\circ}$$

8. Se muestra el piso de una pileta en forma de región ΔABC. Del punto P se distribuye agua por tubos hacia los puntos A, B y C. Si el perímetro del piso es 16 m, determine el menor número entero de metros de tubo, que se deben comprar para hacer dichas conexiones.

