

LOGISTIC REGRESSION- PART 2

LECTURE 47

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

Logit

- LHS range improves from {0, 1} to [0, 1], however still cannot match
 RHS
- Can we bring RHS range to [0,1]?
 - Nonlinear approach
- Typically, a nonlinear function of the following form is used to perform the required transformation

$$P = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}}$$

This function is called *logistic response function*

- Logit
 - Rearrange the previous equation as below:

$$\frac{P}{1-P} = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

LHS is expression for *odds*, another measure of class membership

$$odds = \frac{P}{1 - P}$$

- Odds of belonging to a class is defined as ratio of probability of class 1 membership to probability of class 0 membership
 - This metric is popular in sports, horse racing, gambling, and many other areas

- Logit
 - Previous equation can be rewritten as

$$odds = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}$$

- Range is now (0, ∞)
- Take log on both sides of previous equation

$$\log(odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- Standard logistic model
- Now, LHS and RHS both have same range $(-\infty, \infty)$
- Log(odds) is called logit
 - Logit is used as the outcome variable in the model instead of categorical Y

- Odds and logit can be written as a function of probability of class 1 membership
 - Open RStudio

- In logistic regression model, we predict the logit values and therefore corresponding probability of a categorical outcome
 - Predicted probabilities values become the basis for classification
 - A prediction model for classification task

- Estimation Technique
 - Least squares method used in multiple linear regression cannot be used
 - Non-linear formulation of logistic regression
 - Maximum likelihood method is used
 - Estimates are optimized in order to maximize the likelihood of obtaining the observations used in training the model
 - Less robust than estimation techniques used in linear regression
 - Reliability of estimates
 - Outcome variable categories should have adequate proportion
 - Adequate sample size w.r.t no. of estimates

- Estimation Technique
 - Maximum likelihood method is used
 - Collinearity issues similar to linear regression
- Interpretation of Results
 - Logit model
 - Additive factor (β)
 - If β < 0, increase in x => decrease in logit values
 - If β > 0, increase in x => increase in logit values
 - For any value of x, interpretative statements of results are same

Thanks...