1. Decrypt using the Playfair cipher:

M	I/J	N	Е	W
Α	S	В	C	D
F	G	Н	K	L
О	P	Q	R	T
U	V	W	Y	Z

Intermediate value is:

I = PREVFHOWSAENAEUYERWNOUYES (X is removed from end)

Since there are 25 characters, and no padding was necessary, then the transposition cipher most likely has 5×5 rows/columns:

I = PREVF HOWSA ENAEU YERWN OUYES

or

P	Η	Е	Y	O
R	O	N	E	U
E	W	A	R	Y
V	S	E	W	E
F	A	U	N	S

Consider the first character of each block: PHEYO.

How can those letters be re-arranged to make a 4-letter word? Since the last letter of m is not a vowel, then of "FAUNS" the last character of the first row must end with 'P', 'Y' or 'O'.

If it ends with 'P' we have 'HEYO' remaining. The 4 letter words: ? If it ends with 'Y' we have 'PHEO' remaining. The 4 letter words: 'hope', ? If it ends with 'O' we have 'PHEY' remaining. The 4 letter words: ? So, if the first 5 characters are 'HOPEY' then the key must be 25134 giving:

Η	O	P	E	Y
O	U	R	N	E
W	Y	E	A	R
S	E	V	E	W
A	S	F	U	N

Message m = HOPE YOUR NEW YEARS EVE WAS FUN

- 2. Proof: We will prove this by Mathematical Induction
 As a base case, clearly 4¹ ≡ 4 mod 12.

 Now suppose that 4^k ≡ 4 mod 12. Then 4^{k+1} ≡ 4(4^k) mod 12.

 By assumption, 4^k ≡ 4 mod n, so 4^{k+1} ≡ 4² mod 12. And 4² ≡ 16 ≡ 4 mod 12.

 This shows that for any n ∈ N, 4n ≡ 4 mod 12.
- 4. The key space of the affine is $24 \times 45 = 1080$
- 5. If the key length is small i.e. 3 or 4 characters, then Kasiski method can be used for Hill cipher also.
- 6. P(a) = 1/2, P(b) = 1/3, therefore P(c) = 1/6. $P(k_1) = 3/4$, $P(k_2) = 1/4$. $P(x/a) = P(k_1) \cdot P(x/E_{k_1}(a)) + P(k_2) \cdot P(x/E_{k_2}(a)) = 3/4 \cdot 0 + 1/4 \cdot 0 = 0$, Similarly, P(x/b) = 0, P(x/c) = 1. $P(y/a) = P(k_1) \cdot P(y/E_{k_1}(a)) + P(k_2) \cdot P(y/E_{k_2}(a)) = 3/4 \cdot 0 + 1/4 \cdot 1 = 1/4$, P(y/b) = 3/4, P(y/c) = 0. $P(z/a) = P(k_1) \cdot P(z/E_{k_1}(a)) + P(k_2) \cdot P(z/E_{k_2}(a)) = 3/4 \cdot 1 + 1/4 \cdot 0 = 3/4$, P(z/b) = 1/4, P(z/c) = 0.

$$P(x) = P(k_1) \cdot P(c) + P(k_2) \cdot P(c) = 3/4 \cdot 1/6 + 1/4 \cdot 1/6 = 1/6$$

$$P(y) = P(k_1) \cdot P(b) + P(k_2) \cdot P(a) = 3/4 \cdot 1/3 + 1/4 \cdot 1/2 = 3/8$$

$$P(z) = P(k_1) \cdot P(a) + P(k_2) \cdot P(b) = 3/4 \cdot 1/2 + 1/4 \cdot 1/3 = 11/24$$

By Bayes theorem

$$P(a/x) = \frac{P(a)P(x/a)}{P(x)}$$

$$P(a/x) = \frac{(1/2) \times 0}{1/6} = 0$$
, $P(b/x) = 0$ and $P(c/x) = 1$
 $P(a/y) = 1/3$, $P(b/y) = 2/3$, and $P(c/y) = 0$
 $P(a/z) = 9/11$, $P(b/z) = 2/11$, and $P(c/z) = 0$
So, there is no perfect secrecy.

7. Total characters = 26(a-z) + 26(A-Z) + 10(0-9) = 62
Passwords which can be formed without using any digit = 62 - 10 (0-9) = 52
Passwords must be between 5 characters to 7 characters with at least one digit
Possible number of passwords is

$$\sum_{k=5}^{7} 62^k - \sum_{k=5}^{7} 52^k = 3.5 \times 10^{12} - 1.048 \times 10^{12} = 2.45 \times 10^{12}$$

Time required to crack = Total number of possible passwords \times rate \times accuracy

$$= 2.45 \times 10^{12} \times \frac{1}{2500000} \times 0.75 = 735000 \text{ Secs} = 8.5 \text{ days}$$

8. Let *r* be the remainder on dividing *n* by $\lambda(n)$. i.e. $n = r + u \lambda(n)$.

We also know $\lambda(n)$ divides $\varphi(n)$. Therefore let $\varphi(n) = v \lambda(n)$.

$$n - \varphi(n) = r \mod \lambda(n)$$
. i.e. $p + q - 1 = r \mod \lambda(n)$.

Therefore, p and q are roots of $x^2 - (r + 1)x + n = 0$

Here $r = 589 \mod 90 = 49$.

$$x^2 - 50x + 589 = 0 \implies x = 31, 19$$
 which are the factors of 589.

9. We have that (xy/q) = (x/q)(y/q). Since each of the Legendre symbols in this equality assumes the value 1 or -1, it follows that at least one of them must be equal to 1. Hence at least one of x, y, or xy must be a quadratic residue modulo q.

10.
$$c^{e^k} \mod n = c \Longrightarrow \left(c^{e^{k-1}}\right)^e \mod n = m^e \quad \because c = m^e$$

$$\Longrightarrow c^{e^{k-1}} = m \mod n$$

- 11. The Diophantine equation $x^2 + py + a = 0$ is equivalent to the quadratic congruence $x^2 \equiv -a \pmod{p}$. This quadratic congruence has a solution if and only if (-a/p) = 1.
- 12. Here, in this question lg means \[\lfloor \lfloor \rfloor \lfloor \rfloor \rfloor

Using Divisions Primes $p_1, \ldots, p_t < B$ divide x. Divide x by all the p_i .

Also, p_i^2 , p_i^3 , etc. until does not work.

When you are done you've B-factored the number or not.

Using Subtraction Primes $p_1, \ldots, p_t < B$ divide x.

Do
$$d = \lg(x) - \lg(p_1) - \lg(p_2) - \cdots - \lg(p_t)$$

If $d \sim 0$ then we think *x* is B smooth.

If far from 0 then declare DO NOT DIVIDE!