Problem 1

Let V be a vector space, and let $\vec{u}, \vec{v}, \vec{w} \in V$. Prove that if $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$ then $\vec{u} = \vec{v}$.

Proof. Consider $\vec{v}, \vec{u}, \vec{w} \in V$, and assume $\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$.

$\vec{u} \oplus \vec{w} = \vec{v} \oplus \vec{w}$	Assertion
$-\vec{u}\oplus\vec{u}\oplus\vec{w}=-\vec{u}\oplus\vec{v}\oplus\vec{w}$	Axiom 3
$\mathbf{id} \oplus \vec{w} = -\vec{u} \oplus \vec{v} \oplus \vec{w}$	Axiom 5
$ec{w} = (-ec{u} \oplus ec{v}) \oplus ec{w}$	Axiom 4
$\mathbf{id} = -\vec{u} \oplus \vec{v}$	Axiom 4
$ec{v} = -(-ec{u})$	Axiom 5
$\therefore \vec{v} = \vec{u}$	Axiom 5

Problem 2

Prove Theorem B.

Proof. Let $\vec{u} \in V$ and $k \in \mathbb{R}$. Consider $\mathbf{id} = \vec{u}$:

$$\begin{array}{ll} \mathbf{id} \oplus \vec{u} = \vec{u} & \text{Axiom 4} \\ k \odot (\mathbf{id} \oplus \vec{u}) = k \odot \vec{u} \\ k \odot \mathbf{id} \oplus k \odot \vec{u} = k \odot \vec{u} & \text{Axiom 7} \\ \therefore k \odot \mathbf{id} = \mathbf{id} & \text{Axiom 4} \end{array}$$

Problem 3

Prove Theorem D. If $k \odot \vec{u} = id$, then k = 0 and/or u = id

Proof. Consider $k \odot \vec{u} = \mathbf{id}$ and $k \neq 0$. Since $\frac{1}{k} \neq \frac{1}{0}$, $\frac{1}{k}$ is well-defined.

$$k \odot \vec{u} = \mathbf{id}$$
 Assertion
$$\frac{1}{k} \odot k \odot \vec{u} = \frac{1}{k} \odot \mathbf{id}$$

$$(\frac{1}{k} \cdot k) \odot \vec{u} = \frac{1}{k} \odot \mathbf{id}$$
 Axiom 9
$$1 \odot \vec{u} = \mathbf{id}$$
 Thm B
$$\vec{u} = \mathbf{id}$$
 Axiom 10

Now consider $k \odot \vec{u} = \mathbf{id}$ and $\vec{u} \neq \mathbf{id}$. Since k is defined, -k is also defined.

$$k\odot \vec{u} = \mathbf{id} \qquad \qquad \text{Assertion}$$

$$k\odot \vec{u} = \mathbf{id}$$

$$k\odot \vec{u} \oplus (-k)\odot \vec{u} = \mathbf{id} \oplus (-k)\odot \vec{u}$$

$$(k+(-k))\odot \vec{u} = (-k)\odot \vec{u} \qquad \qquad \text{Axiom 8}$$

$$0\odot \vec{u} = (-k)\odot \vec{u}$$

Since $u \neq id$,

$$0 = -k$$
, $\therefore k = 0$

Problem 4

Prove that there does not exist a real vector space of size 2. Show that there cannot be a vector space of size 2.

Proof. Let $V = \{\vec{u}, \vec{v}\}$ be a vectorspace. That is, it satisfies all 10 Axioms.

Axiom 4 states that **id** exist, and is unique, therefore either $\vec{u} = \mathbf{id}$ or $\vec{v} = \mathbf{id}$. Both cannot be **id**, so therefore $\vec{u} \neq \vec{v}$

Without the loss of generality, let $\vec{u} = \mathbf{id}$.

$$\vec{u} \oplus \vec{v} = \vec{v}$$
 Axiom 4 $\mathbf{id} \oplus \vec{v} = \vec{v}$

Now consider Axiom 5: additive inverse exists for all $\vec{u} \in V$.

Consider $-\vec{v} \oplus \vec{v} = \mathbf{id}$. Since $\vec{v} \neq \mathbf{id}$, $-\vec{v} \neq \vec{v}$. Since there is only one other element in V, $-\vec{v} = \vec{u}$ must be true. Remember that $\vec{u} = \mathbf{id}$.

$$\vec{u} \oplus \vec{v} = \vec{u}$$

Therefore we have from Axiom 4 and 5:

$$\vec{u} \oplus \vec{v} = \vec{u}$$
$$\vec{u} \oplus \vec{v} = \vec{v}$$
$$\therefore \vec{u} = \vec{v}$$

However, this contradicts with our assertion that $\vec{u} \neq \vec{v}$.

 \therefore A vector space of size 2 cannot exist.