

3 Questions	Total Marks: 300.0
3 Programming Questions	
1. Valid Chess Board	+ 100.0
2. Optimal Connectivity	+ 100.0
3. Optimal Grouping	+ 100.0

Question 1

Max. Marks 100.00

Valid Chess Board

You are given a tiled chart paper of N rows and M columns. There are a total of $N\times M$ tiles in it. Each tile is colored either black or white. Now, you need to count how many ways are there to cut valid chessboards of size 8×8 out of this chart paper.

Notes

- 1. One chessboard is different from another if either of them contains at least one tile which is different from another chessboard.
- 2. The chess board formation should have distinct colors of adjacent cells i.e. Black/White alternative (regular chessboard rules apply).

Input Format

The first line contains two space-separated integers N and M as input. In the next N lines, you are given a string of M characters. Each character is either 0 or 1. If it is 0 then the tile color is