Math 111C HW1

Zih-Yu Hsieh

April 3, 2025

1 (Not Done)

Question 1 Show, using Eisenstein's criterion, that $f(X) = X^3 - 3X - 1$ is irreducible over \mathbb{Q} . Let α be a root of f in \mathbb{C} . Express $\frac{1}{\alpha}$ and $\frac{1}{\alpha+3}$ as linear combinations of 1, α and α^2 .

Pf:

Consider the ring homomorphism $\phi : \mathbb{Z}[X] \to \mathbb{Z}[X]$ by $\phi(f) = f(X+1)$. Which, ϕ is injective, since if f(X+1) is constantly 0, its leading coefficient $a_n = 0$, which helps us inductively prove that f = 0. Then, for $f(X) = X^3 - 3X - 1$ given above:

$$\phi(f) = f(X+1) = (X+1)^3 - 3(X+1) - 1 = (X^3 + 3X^2 + 3X + 1) - (3X+3) - 1 = X^3 + 3X^2 - 3X + 1 = X^3 + 3X^2 + 3X + 1 = X^3 + 3X + 1 = X^3$$

Then, since leading coefficient is 1, while the rest of the coefficients (namely 3, 0, -3) are divisible by 3, and -3 is not divisible by 3^2 , so by Eisenstein's criterion, $\phi(f) = X^3 + 3X^2 - 3$ is irreducible over \mathbb{Q} . Then, since $\phi(f) = f(X+1)$ is irreducible over \mathbb{Q} , then f itself must also be irreducible:

Suppose not, then there exists d fuck it

Question 2 Let $K = F(\alpha)$, where α is a root of the irreducible polynomial

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

Express $\frac{1}{\alpha}$ in terms of α and the coefficients a_i .

Pf:

First, since f is irreducible in F[x], then f has no zeroes in F. Hence, 0 cannot be a zero of f, so $\alpha \neq 0$. This also implies that $a_0 \neq 0$ (or else if $a_0 = 0$, 0 is a zero of f).

Then, consider K' = F[x]/(f(x)): Since f is an irreducible polynomial over F, then since F[x] is a PID, the ideal (f(x)) is in fact maximal, hence K' = F[x]/(f(x)) is a field.

Now, consider $\overline{x} = x \mod (f(x)) \in K'$: since it satisfies the following:

$$f(\overline{x}) = \overline{x}^n + a_{n-1}\overline{x}^{n-1} + \ldots + a_1\overline{x} + a_0 = \overline{x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0} = 0 \mod(f(x)) \in K'$$

then K' is a field containing a zero of f(x).

Then, consider the ring homomorphism $\phi: K' \to K$, by $\phi(\overline{x}) = \alpha$: Since 0 is not a zero of f, then $\alpha \neq 0 \in F(\alpha)$. Hence, the ring homomorphism ϕ is not the zero map, showing that $\ker(\phi) \neq K'$; then, since K' is a field, while $\ker(\phi) \neq K'$, the map is injective.

Lastly, consider the inverse of $\overline{x} \in K'$: Since $a_0 \neq 0$ in F, then $a_0^{-1} f(x) = a_0^{-1} (x^n + a_{n-1} x^{n-1} + ... + a_1 x) + 1$. Hence, the following is true:

$$0 = a_0^{-1} f(x) \mod (f(x)) = (a_0^{-1} (x^n + a_{n-1} x^{n-1} + \dots + a_1 x) + 1) \mod (f(x))$$

$$\implies \overline{1} = \overline{a_0^{-1} (x^n + a_{n-1} x^{n-1} + \dots + a_1 x)} \in K' = F[x]/(f(x))$$

So, $\overline{1} = \overline{a_0^{-1}(x^n + a_{n-1}x^{n-1} + \ldots + a_1x)} = \overline{x} \cdot \overline{a_0^{-1}(x^{n-1} + a_{n-1}x^{n-2} + \ldots + a_1)}$, hence the inverse of \overline{x} in K' is $\overline{a_0^{-1}(x^{n-1} + a_{n-1}x^{n-2} + \ldots + a_1)}$. Then, since ring homomorphism maps an element's inverse to the output's inverse, then $\phi(\overline{x}) = \alpha$ implies the following:

$$\frac{1}{\alpha} = \alpha^{-1} = \phi((\overline{x})^{-1}) = \phi\left(\overline{a_0^{-1}(x^{n-1} + a_{n-1}x^{n-2} + \dots + a_1)}\right) = a_0^{-1}(\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \dots + a_1)$$

Question 3 Show that $x^4 + 1$ is irreducible over \mathbb{Q} , but not over $\mathbb{Q}(\sqrt{2})$.

Pf:

If consider $x^4 + 1 \in \mathbb{Z}[x]$, if we do a substitution $x \mapsto (x+1)$, then we get the following:

$$(x^4 + 1) \mapsto (x + 1)^4 + 1 = (x^4 + 4x^3 + 6x^2 + 4x + 1) + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$$

Notice that since leading coefficient 1 is not divisible by 2, the other coefficients 4, 6, 4, 2 are divisible by 2, while the constant term 2 is not divisible by 2^2 , then by Eisenstein's criterion, $(x+1)^4+1$ is irreducible over \mathbb{Q} . Hence, the original polynomial x^4+1 is also irreducible over \mathbb{Q} .

Now, consider $x^4 + 1$ over $\mathbb{Q}(\sqrt{2})$: since $\sqrt{2}$ is an element in the given field, then the following is a factorization of $x^4 + 1$:

$$((x^2+1)-\sqrt{2}x)((x^2+1)+\sqrt{2}x) = (x^2+1)^2 - (\sqrt{2}x)^2 = (x^4+2x^2+1) - (2x^2) = x^4+1$$

Since $x^4 + 1$ can be factored into smaller degree nonconstant polynomial, this indicates $x^4 + 1$ is reducible over $\mathbb{Q}(\sqrt{2})$.

Question 4

Question 5

Question 6

Question 7 Let E/F be a field extension, and let $\alpha \in E$. Show that multiplication by α is a linear transformation of E considered as a vector space over F. When is this linear transformation non-singular?

Pf:

To verify the multiplication by α being a linear transformation of E as a vector space over F, consider all $f, g \in E$, and scalar $\lambda \in F$:

By distributive property of multiplication, we know $\alpha(f+g)=\alpha f+\alpha g$; similarly, since E is a field, the multiplication is commutative, hence $\alpha(\lambda f)=\lambda(\alpha f)$, showing that the multiplication is in fact a linear transformation of E as a vector space over F.

Now, suppose α as a linear transformation is non-singular (i.e. invertible), which we'll verify that such transformation is non-singular iff $\alpha \neq 0$:

- \Longrightarrow : Suppose $\alpha \neq 0$, then $\alpha^{-1} \in E$ exists since E is a field. Based on the fact that multiplication of any element in E is a linear transformation of E, any $f \in E$ satisfies $\alpha^{-1}(\alpha f) = \alpha(\alpha^{-1}f) = f$, which α^{-1} as a linear transformation over E composes with α to be identity on both sides, this shows that α^{-1} is the inverse transformation of α , hence α is non-singular.
- \Leftarrow : We'll prove the contrapositive. Suppose $\alpha=0$, then since all nonzero $f\in E$ satisfies $\alpha f=0$, then the transformation α is not injective, hence non-invertible. This shows that α is a singular linear transformation. Then, the contrapositive states that if α is non-singular, the $\alpha\neq 0$.

The above two implication states that α as a linear transformation is non-singular, iff $\alpha \neq 0$.

Question 8 Let E/F be a field extension, and let p(x) be an irreducible polynomial over F. Show that if the degree of p(x) and [E:F] are coprime, then p(x) has no zeros in E.

Pf:

We'll prove the contrapositive. Given that p(x) is irreducible over F, then it has no zero in F. Hence, $p(0) \neq 0$.

Suppose p(x) has a zero in E, say $\alpha \in E$. Then, since $p(\alpha) = 0$, $\alpha \neq 0$.

First, we'll consider the ring K' = F[x]/(p(x)): Since $p(x) \in F[x]$ is irreducible, and F[x] is a PID, the ideal $(p(x)) \subset F[x]$ is in fact maximal. Hence, K' = F[x]/(p(x)) is a field.

Now, given that $p(x) = a_n x^n + ... + a_1 x + a_0$, since $\overline{x} = x \mod(p(x)) \in K'$ satisfies the following:

$$p(\overline{x}) = a_n \overline{x}^n + \dots + a_1 \overline{x} + a_0 = (a_n x^n + \dots + a_1 x + a_0) \mod(p(x)) = p(x) \mod(p(x)) = 0 \in K'$$

Hence, p(x) has a zero over the field K'.

Then, consider the ring homomorphism $\phi: K' \to E$ given by $\phi(\overline{x}) = \alpha$: since $\alpha \neq 0$ in E and $\overline{x} \neq 0$ in K', then such ring homomorphism is nonzero, hence $\ker(\phi) \neq K'$. Now, because K' is a field, then it enforces ϕ to be injective. Then, since $K' \cong \phi(K') \subseteq E$, this shows that K' is isomorphic to a subfield of E. Hence, E/K' is also a field extension.

Question 9

Question 10