

Combined Preference-Based & Absolute Reward Signals for RLHF Fine-tuning

Master Thesis

Table of Content

- 1 Background
- 2 Motivation
- 3 Research Objective

4 Research Method

Background

Reinforcement Learning from Human Feedback (RLHF)

Step

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

This data is used to train our reward model.

best to worst.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Background

Result of RLHF Fine-tuning

RealToxicity		Dataset TruthfulQA	
GPT	0.233	GPT	0.224
Supervised Fine Tuning	0.199	Supervised Fine Tuning	0.206
Supervised Fine-Tuning	0.199	Supervised Fine-Tuning	
InstructGPT	0.196	InstructGPT	0.413
API Dataset		API Dataset	
		AFIDalasel	
Hallucinations		Customer Assistant Approp	riate
Hallucinations GPT	0.414		oriate 0.811
	0.414	Customer Assistant Approp	
GPT		Customer Assistant Approp	0.811

Design Science Research Methodology

Research Method - Motivation

- Preference rank dataset
- Loss function by Ouyang et al. 2022

$$loss(\theta) = -\frac{1}{\binom{K}{2}} \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[log \left(\sigma \left(r_{\theta}(x, y_w) - r_{\theta}(x, y_l) \right) \right) \right]$$

Sample from reward modelling dataset (Köpf et al. 2023)

Research Method - Motivation

- Effectively maximize
 - Probability(Logit 1 > Logits)
 - Mean Resposne A is preferred over B
- Preference reward is implicitly learned
- Doesn't consider each response independently

Research Method - Motivation

- Consider each response independently and learn to provide feedback directly
- Softmax layer to constrain the predicted score
- Loss function: Binary cross entropy

Prompt: Why will open assistant... Response A: Because I will be truly open.... Absolute quality score: 0.833

Sample from reward modelling dataset (Köpf et al. 2023)

Research Method - Objective

- How do preference and absolute reward modelling impact the performance and generalisability of RLHF models on various datasets?
- What is the effect of varying the relative weights of preference-based and absolute reward signals during the RL fine-tuning process?
- What is the response quality and training efficiency of the \gls{RLHF} model, when using only preference-based reward, only absolute reward or a combination of both?

Research Method - Design & Development

Reward Modelling

Preference reward model

- Train from preference ranked data
- Implicity learn to provide feedback
- Custom loss function

Abs reward model

- Trained using absolute feedback dataset
- Directly learn to provide feedback
- Binary cross entroy loss

Research Method - Demonstration

The proposed solution will be demonstrated by training and fine-tuning several variants of the RLHF model. The variants include:

	Preference reward model	Abs reward model
CRS-RLHF		
Preference-RLHF (baseline)		X
Abs-RLHF	X	
SFT (baseline)	X	×

Research Method - Evaluation

GPT4 Evaluation

- 100 prompts sampled from
 - OASST
 - Koala
 - Vicuna
 - Helpful_base
- Evaluate RLHF + SFT
- Pairwise competition using GPT4

Human Evaluation

- 25 prompts sampled from
 - OASST
 - Koala
 - Vicuna
 - Helpful_base
- Evaluate only RLHF
- Preference ranking
- Repeat it 3 time to reduce variability

Research Method

Communication & Contribution

- Communication through
 - Research paper
 - Presentation
 - Open-source models (on HuggingFace)
 - Code Repository
- Contribution:
 - Evaluate the impact of reward signals
 - Enhance the quality of responses

Discussion - Which reward model genralize better?

GPT4 aggrement

AmeerAli Khan | Web & Data Science

Discussion - Which reward model genralize better?

Aggrement Result

- GPT4 Agreement on final_eval dataset.
- Human Agreement on OASST eval dataset.
- Discrepancy in performance.

Discussion - Which reward model genralize better ?

Agreement on indvidual dataset

- GPT4 Agreement on individual dataset
- Preference only perform good on OASST
- Abs model general perform well except on OASST

Discussion - Which reward model genralize better ?

- Observation
 - Preference reward model performs better when prompts and generated response style is same as OASST dataset.
 - Abs reward model is able to consistently provide roboust signal but under fit on OASST due to noise.

- Hypothesis:
 - Implicit learning learn feature which are specific to a particular dataset.
 - Explict learning learn objective features aplicable to other dataset.

Discussion - Impact of varying weight of each model?

- Combining reward score from both reward models.
- Train several RLHF model

	Preference reward weight	Abs reward weight
ABS_RLHF	0	1
CRS_RLHF_025	0.25	0.75
CRS_RLHF_0625	0.625	0.375
Prefernce_RLHF	1	0

Discussion - Impact of varying weight of each model?

Discussion - Comparative analysis

GPT4 Evaluation

Model (vs)	Preference_Rlhf	Abs_Rlhf	Crs_rlhf_025	SFT
Preference_Rlhf	-	34%	39%	29%
Abs_Rlhf	66%	-	63%	45%
Crs_rlhf_025	61%	37%	-	39%
SFT	71%	55%	61%	-

Discussion - Comparative analysis

IWVI

Human Evaluation

- Average winning point
 - Preference_RLHF → 0.54
 - Abs_RLHF \rightarrow 0.79
 - CRS_RLHF_025 → 0.66
- High correlation with GPT4 evaluation

Model (vs)	Group 1	Group 2	Group 3
Preference_Rlhf	0.63	0.48	0.52
Abs_Rlhf	0.73	0.87	0.78
Crs_Rlhf_025	0.63	0.65	0.7

Individual dataset win rate

Individual dataset win rate

Individual dataset win rate

Model (vs)	Preference_Rlhf	Abs_Rlhf	Crs_rlhf_025	SFT
Preference_Rlhf	-	34%	39%	29%
Abs_Rlhf	66%	-	63%	45%
Crs_rlhf_025	61%	37%	-	39%
SFT	71%	55%	61%	-

- SFT is better than RLHF
- Contrary to the work of Ouyang et al. (2022); Askell et al. (2021); Bai et al. (2022),

Confidence Interal with 95% confidence

Model (vs)	Preference_RLHF	CRS_RLHF_025	SFT
Abs_RLHF	66% ± 9.33%	63% ± 9.33%	45% ± 9.8%
Preference_RLHF		39% ± 9.6%	29% ± 8.93%

Conclusion

- Absolute reward model provide more roboust reward
- Model train purely with absolute reaward model perfrom better
- Combine both reward model work better for preference RLHF
- Abs_RLHF model better than all

Summary

- Background
- Motivation
- DSRM
- Discuss Abs generalize better than preference
- Discussion combining preference and Abs result into worsen the performance.
- Discussion RLHF model trained with absolute reward model perform best but not against SFT

References

- Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D., Henighan, T., Jones, A., Joseph, N., Mann, B., DasSarma, N., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Kernion, J., Ndousse, K., Olsson, C., Amodei, D., Brown, T., Clark, J., ... Kaplan, J. (2021). A General Language Assistant as a Laboratory for Alignment (arXiv:2112.00861). arXiv. https://doi.org/10.48550/arXiv.2112.0086
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). *Training language models to follow instructions with human feedback* (arXiv:2203.02155; Version 1). arXiv. https://doi.org/10.48550/arXiv.2203.02155
- Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A Design Science Research Methodology for Information Systems Research. *Journal of Management Information Systems*, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

AmeerAli Khan

alikhan@uni-Koblenz.de