ニューラルネットワーク(U-Net)による数式検出プログラム 実行説明書

0) 準備

- 1. Anaconda Prompt を立ち上げる:
 Windowsメニュー → Anaconda3 (64-bit) → Anaconda Prompt
- 2. > cd C:\Users\admin\Desktop\MigratingU-net

1)訓練用データの準備

ページ画像とアノテーションファイルからU-net学習用の画像セットを生成する

実行フォルダ

Desktop\MigratingU-net\1_MakeTrainData

実行プログラム

GTDB_DataCreation_Unet.py

プログラムの動作

指定されたアノテーションCSVファイルを読み込み、ファイル内で指定されているページ画像ファイルを入力する。画像の前処理、解像度変更、指定サイズへの切り出しを行い、学習用の原画像・教師画像ペアを出力する。

実行方法

python GTDB_DataCreation_Unet.py [-h|—help] [—outimg-dir=<out image dir>] [—window-height=<height>] [—scale=<scale>] [—stride=<stride>] [—area-csv= <area_type_CSV>] <GTDB_csv_file> <GTDB_imageDir> <output Data Dir>

引数とオプションの意味

<GTDB csv file>: アノテーションファイル 1 ジャーナルあたり 1 ファイル <GTDB_imageDir>: ページ画像が格納されているフォルダ 1 ページあたり 1 ファイル, PNG形式が望ましい

<ouput Data Dir>: 学習用データ出力用ディレクトリ 指定されたディレクトリ内に, images (入力画像), groundtruth (教師データ)が存在する必要がある. -h or —help :ヘルプメッセージ表示

—outimg-dir : 前処理後のページ画像を保存するフォルダを指定

―window-height : 学習用画像の縦横サイズを指定

—scale :画像解像度の拡大・縮小率

―stride : 学習用小領域を切り出すステップ幅

—area-csv:未使用

実行コマンドの例

> cd 1_MakeTrainData

> python GTDB_DataCreation_Unet.py --outimg-dir="..\data\UnetData512_150dpi\imgs" --window-height="512" --scale="0.25" --stride="256" ..\data\GTDB_eng-2\Bergweiler83.csv ..\data\GTDB_eng-2 ..\data\UnetData512_150dpi

2) U-net の学習

実行フォルダ

Desktop\MigratingU-net\2_training

実行プログラム

train_Unet.py

プログラムの動作

指定されたディレクトリないの画像を訓練用データセットとして、 画像変換U-netを学習する.

実行方法

python train_Unet.py [dataDir] [window_size] [layer num] [output file]

引数とオプションの意味

dataDir: 1) で作成した学習用データの格納されているディレクトリ

Window_size: 学習する画像のサイズ

Layer_num: U-net の深さ 画像サイズ = 2^Layer_num が最大

Output file: 学習したU-netの重みを保存するファイル (.hdf5 の拡張子をつけてくだ

さい)

実行コマンドの例

> cd ..\2_training

> python train_Unet.py ..\data\UnetData512_150dpi 512 9 ..\model\unet.hdf5 * このコマンド例では、学習済みのニューラルネットワークは ..\model\unet.hdf5 に保存されます.

3)数式検出(画像変換)

学習したモデルを用いて数式検出用の画像変換を行う.

実行フォルダ

Desktop\MigratingU-net\3_predicting

実行プログラム

MathExtraction_Unet.py

プログラムの動作

指定された画像ファイルに対して、学習済みU-netを用いて画像変換を行う。

実行方法

python MathExtraction_Unet.py [input image] [output image] [window size] [layer num] [U-net weight]

引数とオプションの意味

Input image: 入力画像ファイル

Output image: 変換後の画像ファイル

Window size: 切り出す小領域サイズ, 2) における window size と同じ値を指定す

る

Layer num: U-net の深さ 2) における layer_num と同じ値を指定する

U-net weight: 2) で保存したU-netの重みファイル

実行コマンドの例

> cd ..\3_predicting

> python MathExtraction_Unet.py ..\data\GTDB-

- ..\data\Results\ActaM_1970_038.png 512 9 ..\model\unet.hdf5
- * このコマンド例では、検出結果画像は ..\data\Results\ActaM_1970_038.png に保存されます.