BASI DI DATI

A.A. 2023-2024

Il anno Ingegneria delle Tecnologie Informatiche (9 CFU)

III anno Ingegneria Informatica, Elettronica e delle Telecomunicazioni percorso Ingegneria dei Sistemi Software (6 CFU)

Contatti docente

Stefano Cagnoni

Ricevimento: dopo la lezione o su appuntamento (Sede Scientifica Pal. 1, I Piano, Telefono : 0521 / 905731)

Email: stefano.cagnoni@unipr.it

Sito del corso: su Elly

https://elly2023.dia.unipr.it/course/view.php?id=303

(slide: bdXX-2024.pdf introduzione, mod. relazionale bdPXX-2024.pdf progettazione, normalizzazione bdAXX-2024.pdf tecniche avanzate)

Programma del Corso

Teoria dei DBMS e SQL (I prova scritta)

- Dati e DBMS
- DBMS relazionali
- SQL

Elementi Avanzati

- Transazioni
- Basi di Dati NoSQL

Progettazione di basi di dati (Il prova scritta, 12/6/2024)

Modello Entità/Relazione

- Traduzione da modello E/R a modello relazionale
- Normalizzazione

in rosso *corsivo*:

solo per LINTINF

Testi Consigliati

Libro di testo

Atzeni, Ceri, Fraternali, Paraboschi, Torlone
 Basi di Dati, 6a ed., McGraw-Hill 2023

Testi utilizzabili per consultazione

- Welling, Thomson
 MySQL Tutorial
 Pearson Education Italia, 2004
- Russell
 Learning MySQL and MariaDB
 Heading in the Right Direction with MySQL and Mariadb
 O'Reilly, 2015

Calendario e modalità esame

Martedì 13.30-15.30 Mercoledì 8.30-10.30 Giovedì 10.30-12.30

Modalità di esame: due prove scritte e un breve progetto

Prima prova scritta SQL + Teoria

Seconda prova scritta Progettazione

Voto complessivoMedia delle due prove con voto minimo

ammissibile pari a 15 (voto max. 33)

La media deve comunque essere >= 18

Progetto finale Breve progetto di una base di dati interrogabile

da web o inserita in un'applicazione mobile o

distribuita: «bonus» da -2 (non realizzato) a +3.

NB

- La media oltre 30 conta solo per la lode. Con media >30 ma senza progetto, voto finale = 28!
- Il progetto può essere l'estensione di un progetto svolto per altri esami (es. Programmazione di sistemi mobili, Sistemi distribuiti)

Calendario e modalità esame

Prove intermedie

I: seconda metà di aprile

II: 12 giugno

Prove scritte nelle sessioni di esame:

Appelli 25/6 22/7 12/9 ...

Sarà possibile svolgere in ogni appello, in alternativa:

- I parte (Mod. Relazionale e SQL)
- II parte (Progettazione)
- I + II parte (stesso tempo; le domande di entrambe le prove eccetto due)

Scopo (pratico) del corso

Nel corso vedremo (parzialmente in parallelo):

- Come progettare una base di dati sulla base delle specifiche che vengono fornite. (progettazione concettuale progettazione logica normalizzazione)
- Come gestire e interrogare la base di dati, una volta che è stata realizzata e «popolata».
 (modello relazionale, linguaggio SQL)
- 3. Come gestire gli accessi concorrenti alla base di dati da parte di più utenti, ma in modo sicuro (nel senso della correttezza del risultato) (*transazioni*)
- 4. Esempi di DB non relazionali (NoSQL) <rosso = solo LINTINF>

Cronologia degli argomenti

Mod. relazionale / SQL	Progettazione
	Progettazione Concettuale
DBMS+Modello Relazionale	
SQL	
	Progettazione Logica
	Normalizzazione
Transazioni	
DBMS NoSQL	

Strumenti di studio/esercitazione

Teoria

Testo di Atzeni et al. (teoria ed esercizi)

Esercizi e materiale aggiuntivo disponibile online

https://novella.mheducation.com/sites/8838656541/information_center_view0/

Pratica (da installare sul proprio PC)

Client MySQL (es. MySQL Workbench, PHPMyAdmin)

Server MySQL (utilizzabile da remoto anche quello didattico)

Server web con supporto PHP (es. APACHE)

XAMPP, LAMP, EasyPHP, ecc. integrano tutti questi strumenti

Basi di Dati

Informazione: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere

Dato: ciò che è immediatamente presente alla conoscenza, prima di ogni elaborazione; (in informatica) elemento di informazione costituito da simboli che devono essere elaborati

(dal Vocabolario della Lingua Italiana, Istituto dell'Enciclopedia Italiana)

Base di Dati: collezione di dati, utilizzati per rappresentare le informazioni di interesse per un sistema informativo

Un Database Management System (DBMS) è un sistema software che si interpone fra le applicazioni e la memoria di massa in cui si trovano collezioni di dati

La finalità di un DBMS è l'estensione delle funzionalità del file system, in modo da offrire:

- nuove modalità di accesso ai dati
- condivisione dei dati
- gestione più sofisticata dei file

DBMS (MySQL/MariaDB), Server Web (APACHE) e interprete PHP sono integrati nel pacchetto XAMPP, scaricabile da https://www.apachefriends.org/it/download.html

L'applicazione risiede sulla macchina dell'utente e può essere scritta in qualsiasi linguaggio dotato di una API per connettersi, come nel caso di un browser, a un server web (protocollo HTTP) e/o a un server SQL.

DBMS: indipendenza dei dati

Il nuovo strato che il DBMS viene a creare fra memoria di massa e applicazioni consente di conservare e gestire i dati in modo **indipendente** dalle applicazioni stesse

Normalmente le applicazioni accedono a dati *locali* gestendoli attraverso file che *appartengono* alle applicazioni stesse

In presenza di un DBMS, i dati non appartengono ad una specifica applicazione, ma le diverse applicazioni vi accedono attraverso di esso

Le basi di dati gestite dai DBMS sono collezioni di dati:

Grandi

possono avere notevoli dimensioni (fino a centinaia di Terabyte) e devono quindi necessariamente risiedere nella memoria secondaria

Condivise

applicazioni ed utenti diversi devono potere accedere ai dati

Persistenti

Il tempo di vita dei dati va oltre la durata dell'esecuzione delle singole applicazioni

Un DBMS deve garantire:

- Affidabilità
- Privatezza dei dati
- Efficienza
- Efficacia

Affidabilità

Un DBMS deve garantire di poter mantenere intatto il suo contenuto, anche in caso di malfunzionamento

L'integrità dei dati è affidata a procedure di **backup** (salvataggio) e **recovery** (recupero) dei dati, o alla loro **duplicazione** nei casi più critici

Privatezza dei dati

Ogni utente, abilitato a utilizzare la base di dati attraverso una procedura di riconoscimento, può accedere ad insiemi limitati di dati e compiere solo certe operazioni su di essi

Efficienza

Un DBMS deve operare e fornire risposte agli utenti in tempi accettabili, utilizzando una quantità il più possibile limitata di risorse

L'efficienza dipende essenzialmente dalle tecniche utilizzate per l'implementazione del DBMS e dalla buona progettazione della base di dati

Si misura (come in tutti i sistemi informatici) in termini di *tempo di esecuzione* (tempo di risposta) e *spazio di memoria* (principale e secondaria) occupato

Efficacia

Capacità di un DBMS di rendere produttive le attività degli utenti, cioè di consentire la realizzazione di basi di dati che risolvano in modo efficace i problemi degli utenti

Concetto generico, qualitativo e non legato a specifiche funzionalità del DBMS. Non esistono criteri oggettivi per valutarla