姓名: 罗淦

学号: 2200013522

题目. 1. 证明 \mathbb{R}^n 中两点距离满足三角不等式:对于 $\forall x,y,z\in\mathbb{R}^n$,有 $|x-z|\leq |x-y|+|y-z|$

解答. 设 $a_i = x_i - y_i, b_i = y_i - z_i$, 要证: $|x - z| \le |x - y| + |y - z|$, 即

$$|\boldsymbol{x} - \boldsymbol{z}| \le |\boldsymbol{x} - \boldsymbol{y}| + |\boldsymbol{y} - \boldsymbol{z}| \iff \sqrt{\sum_{i=1}^{n} (a_i + b_i)^2} \le \sqrt{\sum_{i=1}^{n} a_i^2} + \sqrt{\sum_{i=1}^{n} b_i^2}$$

$$\iff \sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} \iff \vec{a} \cdot \vec{b} \le |\vec{a}| \cdot |\vec{b}|$$

题目的注记. 直接硬证有点困难,尝试对要证明的结论做等价变形.

题目. 2. 若 $\lim_{k\to\infty} |x_k| = +\infty$, 则称 \mathbb{R}^n 中的点列 $\{x_k\}$ 趋于 ∞ . 现在设点列 $\{x_k = (x_1^k, x_2^k, \cdots, x_n^k)\}$ 趋于 ∞ , 试判断下列命题是否正确:

- (1) 对于 $\forall i (1 \leq i \leq n)$, 序列 $\{x_i^k\}$ 趋于 ∞ ;
- (2) $\exists i_0 (1 \leq i_0 \leq n)$, 序列 $\{x_{i_0}^k\}$ 趋于 ∞ .
- **解答.** (1) 不正确, 反例: $\mathbf{x}^k = (k, 0, 0, \dots, 0)$, 那么对 $2 \le i \le n$, 有 $x_i^k \equiv 0$.
- (2) 不正确, 反例: 记 $t \equiv k \pmod{n}$, 设 x^k 的第t个元素是k其余为0, 那么满足条件, 但 $\forall i, 1 \leq i \leq n$, 都有 x_i^k 在充分大的K后无限次取0,因此不可能趋于 ∞ .

题目. 3. 求下列集合的聚点集:

- (1) $E = \left\{ \left(\frac{q}{p}, \frac{q}{p}, 1 \right) \in \mathbb{R}^3 : p, q \in \mathbb{N} \ \exists \vec{x}, \ \exists \ q$
- (2) $E = \left\{ \left(\ln \left(1 + \frac{1}{k} \right)^k, \sin \frac{k\pi}{2} \right) : k = 1, 2, \dots \right\};$
- (3) $E = \left\{ \left(r \cos \left(\tan \frac{\pi}{2} r \right), r \sin \left(\tan \frac{\pi}{2} r \right) \right) \in \mathbb{R}^2 : 0 \leqslant r < 1 \right\}.$

解答. $(1)E' = \{(x, x, 1) | x \in [0, 1]\};$

- $(2) \ln(1+\frac{1}{k})^k \sim (\frac{1}{k}-\frac{1}{2k^2}+o(\frac{1}{k^2}))^k \to 1(k\to\infty)$. $\sin\frac{k\pi}{2}$ 的聚点集是 $\{-1,0,1\}$. 因此 $E'=\{(1,-1),(1,0),(1,1)\}$;
- $(3)E' = \{(x,y)|x^2 + y^2 = 1\} \cup E$. 因为 $\lim_{r\to 1} r \cos(\tan \frac{\pi}{2}r)$ 极限并不存在,但分析渐进性质可以知道, $\tan \frac{\pi}{2}r \to \infty$,将 $\tan \frac{\pi}{2}r$ 看成一个以半径r为自变量的角度参数,那么当半径 $r \to 1$ 的时候,角度会转无数圈,单位圆周成为聚点集. 又因为E本身是连续曲线,所以 $\forall x \in E, x$ 当然是E的聚点. \square

题目. 4. 求下列集合的内部、外部、边界及闭包:

- (1) $E = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z = 1\}$;
- (2) $E = \{(x,y) \in \mathbb{R}^2 : x > 0, x^2 + y^2 2x > 1\}.$

解答. (1) "一张纸".

内部 $E^o = \emptyset$

外部 $(E^c)^o = \mathbb{R}^n \setminus \{(x, y, 1) | x \ge 0, y \ge 0\}$ (注意要把包含0的部分也去掉)

边界 $\partial E = \overline{E} = \{(x, y, 1) | x \ge 0, y \ge 0\}.$

 $(2) x^2 + y^2 - 2x > 1 \iff (x-1)^2 + y^2 > (\sqrt{2})^2$, 即扣去一个开圆盘留下的区域. 又x > 0, 只看x正半轴的部分.

内部 $E^o=E=\{(x,y)|x>0,x^2+y^2-2x>1\}$ 外部 $(E^c)^o=\mathbb{R}^3\setminus\{(x,y)|x\geq0,x^2+y^2-2x\geq1\}$ (补集的内部,把E补成闭集之后扣掉) 边界 $\partial E=\{(x,y)|x^2+y^2-2x=1\}\cup\{(0,y)|y^2\geq1\}$ 闭包 $\overline{E}=\{(x,y)|x\geq0,x^2+y^2-2x\geq1\}.$

题目. 5. 设 $\{(x_k, y_k)\} \subset \mathbb{R}^2$ 是一个点列, 判断如下命题是否为真: 点列 $\{(x_k, y_k)\}$ 在 \mathbb{R}^2 中有聚点的充分必要条件是 $\{x_k y_k\}$ 在 \mathbb{R} 中有聚点.

解答. 下面是错误的分析:

 $\{(x_k, y_k)\}$ 有聚点 \iff 存在子列收敛 $\{(x_{n_k}, y_{n_k})\} \rightarrow (a, b) \Rightarrow \{x_{n_k}y_{n_k}\} \rightarrow ab \iff \{x_ky_k\}$ 有聚点. 反例, 既不充分也不必要:

(1) $\{(0,\frac{1}{k})\}$ 有极限(当然有聚点)(0,0), 但0· $\frac{1}{k}$ = 0是单点集, 单点集没有聚点(这是我没有想到的)

 $\{(x_n,y_n)\}$ 有聚点 不能推出 $\{x_ny_n\}$ 有聚点

(2) $\{(k+1,\frac{1}{k})\}$ 没有聚点(因为x之间至少差了1!), 而 $\{\frac{k+1}{k}\}$ 有极限(有聚点)1.

 $\{x_ny_n\}$ 有聚点 不能推出 $\{(x_n,y_n)\}$ 有聚点

题目的注记. 极限点不一定是聚点, 因为极限点可以是整个序列取单点集: $1 \rightarrow 1$ 而聚点的要求是: 一定要有无穷多个点(这是定义的区别)

题目. 6. 设 $E \subset \mathbb{R}^n$, 证明:

- (1) $\bar{E} = E^{\circ} \cup \partial E$;
- (2) $E' = \bar{E}'$

解答,证明等号,左边属于右边,右边属于左边.

(1) 方法一: $(\overline{E})^c = (E^c)^o = (E^o \cup \partial E)^c \Rightarrow \overline{E} = E^o \cup \partial E$.

方法二: 先证明 $\overline{E} \subset E^o \cup \partial E$. 任取 $x \in \overline{E}$, 如果 $x \in E^o$, 当然有 $x \in E^o \cup \partial E$; 如果 $x \notin E^o$, 那么 $x \in E \setminus E^o$ 就是 ∂E , 因此有 $\overline{E} \subset E^o \cup \partial E$. 再证明 $E^o \cup \partial E \subset \overline{E}$.

(2) $E' \subset \overline{E}'$ 很好证明, 因为 $E \subset \overline{E}$, 所以E'中任取一点 $x \in E'$, 一定是E中子列的极限点, 当然也就是 \overline{E} 中子列的极限点, 因此 $x \in \overline{E}'$, 因此 $E' \subset \overline{E}'$.

另一方面, 来证明 $\overline{E}' \subset E'$.根据书上对闭包的定义, $\overline{E} = E \cup E'$, 因此 $\overline{E}' = E' \cup (E')'$, 因此只需要证明 $(E')' \subset E'$.

方法一:根据极限点的定义, $\forall x \in (E')', \forall \delta > 0$, s.t. $U_0(x, \frac{\delta}{2}) \cap E' \neq \varnothing$; $\forall x' \in U_0(x, \frac{\delta}{2}) \cap E'$ (注意,取自上面的交集),因为 $x' \in E'$,所以 $\forall \delta > 0$, s.t. $U_0(x', \frac{\delta}{2}) \cap E \neq \varnothing$. 即 $|x - x'| < \frac{\delta}{2}$,且 $\exists x'' \in U_0(x', \frac{\delta}{2}) \cap E$, s.t. $|x' - x''| < \frac{\delta}{2}$,从而根据三角不等式, $|x - x''| < \delta$,即 $U_0(x, \delta) \cap E \neq \varnothing$. 由 δ 的任意推出 $x \in E' \Rightarrow (E')' \subset E'$.

方法二: 根据极限点的定义, $\forall x \in (E')', \exists \{x_n\} \in E', \quad s.t. \quad x_n \to x. \quad \mathbb{D} \forall \delta > 0, \exists N_1 > 0, \quad s.t. \forall n > N_1, \quad |x - x_n| < \frac{\delta}{2}. \quad \text{任取一个满足} |x - x_n| < \frac{\delta}{2}. \quad \text{的x}_{n_0}, \quad \text{因为} x_{n_0} \in E', \exists \{y_n\} \in E, \quad s.t. \quad y_n \to x_{n_0}, \quad \text{即对上面相同的} \delta > 0, \exists N_2 > 0, \forall n > N_2, s.t. \quad |x_{n_0} - y_n| < \frac{\delta}{2}. \quad \text{任取上述满足条件的一个} y_{n_1}, \quad \text{通过 三角不等式得到} |x - y_{n_1}| \leq |x - x_{n_0}| + |x_{n_0} - y_{n_1}| < \delta, \forall n \geq N_1 + N_2, \quad \text{得证.} \qquad \Box$

题目的注记. (1) 书中的定义是: $\overline{E} = E \cup E'$, 另一种定义: $\partial E = \overline{E} \setminus E^o$, 即 $\overline{E} = E^o \cup \partial E$ (2) 导集的理解:

- $\forall x \in E', \exists \{x_n\} \in E, \quad s.t. \quad x_n \to x.$ (作为一个子列的极限点, 可以从这个角度得到方法二)
- $\forall x \in E', \forall \delta > 0$, s.t. $U_0(x, \delta) \cup E \neq \emptyset$. (从邻域的角度)

题目. 7. 设 $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ 为 \mathbb{R}^n 的一族集合, 证明:

- (1) 当 Λ 为有限指标集时, 成立 $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} \subseteq \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}, \bigcap_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subseteq (\bigcap_{\lambda \in \Lambda} A_{\lambda})^{\circ}$;
- (2) 对任意的指标集, 成立 $\bigcup_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subseteq (\bigcup_{\lambda \in \Lambda} A_{\lambda})^{\circ}$, $\overline{\bigcap_{\lambda \in \Lambda} A_{\lambda}} \subseteq \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$.

解答. (1) $A_{\lambda} \subset \overline{A_{\lambda}}$, 故 $\bigcup_{\lambda \in \Lambda} A_{\lambda} \subset \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$, 所以 $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} \subset \overline{\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}}$, 又因为指标集有限, 因此 $\overline{\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}} = \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$, 第一部分得证.

 $\overline{m} \bigcap_{\lambda \in \Lambda} A_{\lambda}^{o} = (\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}^{c}})^{c} \subset (\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}^{c}})^{c} = (\bigcap_{\lambda \in \Lambda} A_{\lambda})^{o}.$

(2) $\overline{A_{\lambda}}$ 闭集,无穷闭集的交还是闭集, $\bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$ 是闭集,因此有 $\overline{\bigcap_{\lambda \in \Lambda} A_{\lambda}} \subset \overline{\bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}} = \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$. $\overline{\prod_{\lambda \in \Lambda} A_{\lambda}^c} = (\bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}^c})^c \subset (\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}^c})^c = (\bigcap_{\lambda \in \Lambda} A_{\lambda})^o$

题目. 8. 设 $E \subset \mathbb{R}^n$, 证明:

- (1) E' 是闭集;
- (2) ∂E 是闭集.

解答. (1) 即证明: $E' = \overline{E'}$, 而 $\overline{E'} = E' \cup (E')'$, 显然 $E' \subset \overline{E'}$, 又根据6题的结论, $(E')' \subset E'$, 得证. (2) 即证明: $\partial E = \overline{\partial E} = \partial E \cap (\partial E)'$, 即证明 $(\partial E)' \subset \partial E$.

方法一: E^o 是开集, $(E^c)^o$ 是开集, 那么 $E^o \cup (E^c)^o$ 是开集, 那么 $\mathbb{R}^n \setminus (E^o \cup (E^c)^o) = \partial E$ 是闭集 (边界E理解成, 既不属于E的内部 E^o , 也不属于补集的内部 $(E^c)^o$ 的部分).

方法二: (直接证明(∂E)' $\subset \partial E$.) 考虑 $\partial E = \overline{E} \setminus E^o$, 那么(\overline{E})' $= (\partial E)$ ' $\cup (E^o)$ ', 根据第六题的结论, (\overline{E}) ' $= \overline{E}$, 因此 $\overline{E} = \partial E \cup E^o = (\partial E)$ ' $\cup (E^o)$ ', 因此 $\forall x \in (\partial E)$ ', 只可能属于 ∂E 或者 E^o . 采用反证法, 若 $x \in E^o$, 根据极限点定义, $\forall \delta > 0, U_0(x, \delta) \cap \partial E \neq \varnothing$, 但根据 E^o 是开集的定义, 充分小的 δ 可以使 $U_0(x, \delta) \subset E^o \Rightarrow U_0(x, \delta) \cap \partial E = \varnothing$, 矛盾.

题目的注记. (1) $(E')' \subset E'$, $(\partial E)' \subset \partial E$.

- (2) $\overline{E} = \partial E \cup E^o = E \cup E'$
- (3) 问题: $\overline{E} = \partial E \cup E^o$ 的两边取导集, 还是可以得到等式(\overline{E})' = (∂E) ' \cup (E^o)'. 但是如果写成 $\partial E = \overline{E} \setminus E^o$, 还可以两边取导集吗?
 - **题目.** 10. 构造 \mathbb{R}^2 中单位圆盘 $\Delta = \{(x,y): x^2 + y^2 < 1\}$ 内的一个点列 $\{(x_k,y_k)\}$,使得它的点构成的集合的聚点集恰为单位圆周 $\partial \Delta$.
- 解答. 考虑 $\{(r_k \cos \theta_k, r_k \sin \theta_k)\}$, 当 $r_k \to 1$ 时, 趋于 $(\cos \theta, \sin \theta)$, 借鉴3(3)的思想, 构造 θ 序列作为r的函数, 使得 $r \to 1$ 的过程中, $\theta \to \infty$. 例如: $\{(r_k \cos(\tan \frac{\pi}{2} r_k), r_k \sin(\tan \frac{\pi}{2} r_k))\}$, 其中 $r_k = \frac{k}{k+1}$, i.e., $\{(\frac{k}{k+1} \cos(\tan \frac{k\pi}{2(k+1)}), \frac{k}{k+1} \sin(\tan \frac{k\pi}{2(k+1)}))\}$.

和前面的3的区别是,因为我这里构造的是离散点列而不是连续的线,所以不用担心E本身也是导集的子集.

题目的注记.问题: 除了构造 $r_k \to 1$ 的同时, θ_k 可以与 r_k 独立地定义, 如果 θ_k 的定义只是保证趋于有限($\cos \theta, \sin \theta$), 那么只能保证聚点是 $\partial \Delta$ 的有限点, 即使以可列方式组合之后成大序列, 还是不能遍历不可数集, 那么 θ_k 的定义必须保证趋于(∞, ∞)吗?