Deep Deterministic Policy Gradient (DDPG)

Insoon Yang

Department of Electrical and Computer Engineering Seoul National University

• Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

• Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

Probability that action a is selected given the current state is s

Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

Probability that action a is selected given the current state is s

Stochastic policy

Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

Probability that action a is selected given the current state is s

Stochastic policy

Deterministic policy:

$$a = \mu(s)$$

Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

Probability that action a is selected given the current state is s

Stochastic policy

Deterministic policy:

$$a = \mu(s)$$

Action that is selected given the current state is s

• Stochastic (randomized) policy:

$$\pi(a|s) = \operatorname{Prob}(a_t = a|s_t = s)$$

Probability that action a is selected given the current state is s

Stochastic policy

Deterministic policy:

$$a = \mu(s)$$

Action that is selected given the current state is s

So far we considered stochastic policy gradient

Stochastic policy gradient:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \bigg(\sum_{t=0}^{T} \nabla_{\theta} \log \underbrace{\underline{\pi_{\theta}(a_{t}^{i}|s_{t}^{i})}}_{\text{stochastic policy}} \bigg) \bigg(\sum_{t=0}^{T} r(s_{t}^{i}, a_{t}^{i}) \bigg)$$

So far we considered stochastic policy gradient

Stochastic policy gradient:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \bigg(\sum_{t=0}^{T} \nabla_{\theta} \log \underbrace{\pi_{\theta}(a_{t}^{i} | s_{t}^{i})}_{\text{stochastic policy}} \bigg) \bigg(\sum_{t=0}^{T} r(s_{t}^{i}, a_{t}^{i}) \bigg)$$

(Online) Actor-critic algorithm:

- **1** Take action $a \sim \pi_{\theta}(a|s)$, and observe (s, a, s', r);
- ② Fit $v_{\phi}^{\pi}(s)$ using target $r + \gamma v_{\phi}^{\pi}(s')$;
- Svaluate Advantage $A^\pi(s,a) = r + \gamma v_\phi^\pi(s') - v_\phi^\pi(s);$
- Estimate SG $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi}(s,a)$;
- **5** Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;

But deterministic policy looks simpler

But deterministic policy looks simpler

Q) Can we use deterministic policy?

But deterministic policy looks simpler

- Q) Can we use deterministic policy?
 - Yes, Deterministic policy gradient (DPG)

Deterministic Policy Gradient Algorithms

David Silver
DeepMind Technologies, London, UK
Guy Lever
University College London, UK
Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller
DeepMind Technologies, London, UK

DAVID@DEEPMIND.COM

GUY.LEVER@UCL.AC.UK

*@DEEPMIND.COM

Towards deterministic policy gradient

ullet Parameterize deterministic policy μ by parameter vector θ : $\mu_{ heta}$

Towards deterministic policy gradient

- ullet Parameterize deterministic policy μ by parameter vector θ : $\mu_{ heta}$
- Idea: Move the policy in the direction of $\nabla_{\theta}Q^{\mu^k}$ (Critic's Q-function)

Towards deterministic policy gradient

- Parameterize deterministic policy μ by parameter vector θ : μ_{θ}
- ullet Idea: Move the policy in the direction of $abla_{ heta}Q^{\mu^k}$ (Critic's Q-function)

$$\theta \leftarrow \theta + \alpha \mathbb{E}_{s \sim \rho^{\mu k}} \left[\nabla_{\theta} Q^{\mu^k}(s, \mu_{\theta}(s)) \right],$$

where

$$\rho^{\mu}(s') := \int \sum_{t=1}^{\infty} \gamma^t p_0(s) p(s \to s', t, \mu) ds$$

denotes the discounted state visitation distribution

Applying chain rule

$$\begin{split} \theta &\leftarrow \theta + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\nabla_\theta Q^{\mu^k}(s, \underbrace{\mu_\theta(s)}) \right] \\ &= \theta + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\underbrace{\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu^k}(s, a)|_{a = \mu_\theta(s)}}_{\text{chain rule}} \right] \end{split}$$

Applying chain rule

$$\begin{split} \theta &\leftarrow \theta + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\nabla_\theta Q^{\mu^k}(s, \underbrace{\mu_\theta(s)}) \right] \\ &= \theta + \alpha \mathbb{E}_{s \sim \rho^{\mu^k}} \left[\underbrace{\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu^k}(s, a)|_{a = \mu_\theta(s)}}_{\text{chain rule}} \right] \end{split}$$

Q) Does it work? Is it valid?

Deterministic Policy Gradient Theorem

Yes, it's valid!

Deterministic Policy Gradient Theorem

Yes, it's valid!

• Performance objective:

$$J(\theta) := \mathbb{E}\bigg[\sum_{t=0}^{\infty} \gamma^t r(s_t, \underbrace{\mu_{\theta}(s_t)}_{\text{deterministic policy}})\bigg] = \mathbb{E}_{s \sim \rho^{\mu_{\theta}}}[r(s, \mu_{\theta}(s))]$$

Deterministic Policy Gradient Theorem

Yes, it's valid!

• Performance objective:

$$J(\theta) := \mathbb{E}\bigg[\sum_{t=0}^{\infty} \gamma^t r(s_t, \underbrace{\mu_{\theta}(s_t)}_{\text{deterministic policy}})\bigg] = \mathbb{E}_{s \sim \rho^{\mu_{\theta}}}[r(s, \mu_{\theta}(s))]$$

• Deterministic policy gradient:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{s \sim \rho^{\mu}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu}(s, a) |_{a = \mu_{\theta}(s)} \right]$$

Deterministic Actor-Critic algorithm

Initialize
$$\underbrace{\theta}_{\text{actor net critic net}}$$
 ;

- **1** Take action $a = \mu_{\theta}(s)$, and observe $\{(s, a, s', r)\}$;
- ② Fit $Q_\phi^\mu(s,a)$ using target $r + \gamma Q_\phi^\mu(s',\mu_\theta(s'))$;
- $\textbf{S} \ \, \mathsf{Estimate} \ \, \nabla_{\theta} J(\theta) \approx \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\phi}^{\mu}(s,a)|_{a=\mu_{\theta}(s)};$
- Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;

Deterministic Actor-Critic algorithm

Initialize
$$\underbrace{\theta}_{\text{actor net critic net}}$$
 ;

- **1** Take action $a = \mu_{\theta}(s)$, and observe $\{(s, a, s', r)\}$;
- § Fit $Q^{\mu}_{\phi}(s,a)$ using target $r + \gamma Q^{\mu}_{\phi}(s',\mu_{\theta}(s'))$;
- Stimate $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q_{\phi}^{\mu}(s,a)|_{a=\mu_{\theta}(s)};$
- Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;
- Q) Any issue?

Deterministic Actor-Critic algorithm

Initialize
$$\underbrace{\theta}_{\text{actor net critic net}}$$
 ;

- **1** Take action $a = \mu_{\theta}(s)$, and observe $\{(s, a, s', r)\}$;
- § Fit $Q^{\mu}_{\phi}(s,a)$ using target $r + \gamma Q^{\mu}_{\phi}(s',\mu_{\theta}(s'));$
- **Solution** Estimate $\nabla_{\theta}J(\theta) \approx \nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q_{\phi}^{\mu}(s,a)|_{a=\mu_{\theta}(s)};$
- **1** Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;
- Q) Any issue?
 - On-policy: sample inefficient

ullet Use any (behavior) policy: eta(s)

- Use any (behavior) policy: $\beta(s)$
- Modified objective (value function of μ_{θ} averaged over ρ^{β}):

$$J_{\beta}(\theta) = \int \rho^{\beta}(s)v^{\mu_{\theta}}(s)ds = \int \rho^{\beta}(s)Q^{\mu_{\theta}}(s,\mu_{\theta}(s))ds$$

- Use any (behavior) policy: $\beta(s)$
- Modified objective (value function of μ_{θ} averaged over ρ^{β}):

$$J_{\beta}(\theta) = \int \rho^{\beta}(s)v^{\mu_{\theta}}(s)ds = \int \rho^{\beta}(s)Q^{\mu_{\theta}}(s,\mu_{\theta}(s))ds$$

Modified policy gradient:

$$\nabla_{\theta} J_{\beta}(\theta) = \int \rho^{\beta}(s) \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu_{\theta}}(s, a) |_{a = \mu_{\theta}(s)} + \nabla_{\theta} Q^{\mu_{\theta}}(s, a) |_{a = \mu_{\theta}(s)} \right] ds$$

- Use any (behavior) policy: $\beta(s)$
- Modified objective (value function of μ_{θ} averaged over ρ^{β}):

$$J_{\beta}(\theta) = \int \rho^{\beta}(s)v^{\mu_{\theta}}(s)ds = \int \rho^{\beta}(s)Q^{\mu_{\theta}}(s,\mu_{\theta}(s))ds$$

Modified policy gradient:

$$\nabla_{\theta} J_{\beta}(\theta) = \int \rho^{\beta}(s) \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu_{\theta}}(s, a) |_{a = \mu_{\theta}(s)} + \nabla_{\theta} Q^{\mu_{\theta}}(s, a) |_{a = \mu_{\theta}(s)} \right] ds$$

Approximation (drop the second term):

$$\nabla_{\theta} J_{\beta}(\theta) \approx \int \rho^{\beta}(s) \nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu_{\theta}}(s, a)|_{a = \mu_{\theta}(s)} ds$$
$$= \mathbb{E}_{s \sim \rho^{\beta}} \left[\nabla_{\theta} \mu_{\theta}(s) \nabla_{a} Q^{\mu_{\theta}}(s, a)|_{a = \mu_{\theta}(s)} \right]$$

Off-Policy Deterministic Actor-Critic algorithm

Initialize θ, ϕ ;

- **1** Take action $a = \beta(s)$, and observe $\{(s, a, s', r)\}$;
- ② Fit $Q_{\phi}^{\mu}(s,a)$ using target $r + \gamma Q_{\phi}^{\mu}(s',\mu_{\theta}(s'))$; (No problem?)
- $\textbf{ Stimate } \nabla_{\theta}J(\theta) \approx \nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q_{\phi}^{\mu}(s,a)|_{a=\mu_{\theta}(s)};$
- **9** Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;

Off-Policy Deterministic Actor-Critic algorithm

Initialize θ, ϕ ;

- **1** Take action $a = \beta(s)$, and observe $\{(s, a, s', r)\}$;
- ② Fit $Q_{\phi}^{\mu}(s,a)$ using target $r + \gamma Q_{\phi}^{\mu}(s',\mu_{\theta}(s'))$; (No problem?)
- $\textbf{ Stimate } \nabla_{\theta}J(\theta) \approx \nabla_{\theta}\mu_{\theta}(s)\nabla_{a}Q_{\phi}^{\mu}(s,a)|_{a=\mu_{\theta}(s)};$
- **1** Update $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;
 - Advantage: Sample efficiency
 - Disadvantage: Bias

Can we combine it with DQN?

Can we combine it with DQN?

Why not? Deep deterministic policy gradient (DDPG)

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

Timothy P. Lillicrap; Jonathan J. Hunt; Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra Google Deepmind London, UK {countzero, jjhunt, apritzel, heess, etcm, tassa, davidsilver, wierstra} @ google.com

ABSTRACT

We adapt the ideas underlying the success of Deep Q-Learning to the continuous action domain. We present an actor-critic, model-free algorithm based on the deterministic policy gradient that can operate over continuous action spaces. Using the same learning algorithm, network architecture and hyper-parameters, our algorithm robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole swing-up, dexterous manipulation, legged locomotion and car driving. Our algorithm is able to find policies whose performance is competitive with those found by a planning algorithm with full access to the dynamics of the domain and its derivatives. We further demonstrate that for many of the tasks the algorithm can learn policies "end-to-end": directly from raw pixel inputs.

Best of Both Worlds

- Actor: Deterministic policy gradient
 - Simple
 - 2 Continuous control

Best of Both Worlds

- Actor: Deterministic policy gradient
 - Simple
 - Continuous control
- Critic: DQN
 - Off-policy (sample efficient)
 - Experience replay (minimize correlations between samples)
 - Target network (consistency)

Why not stochastic policy gradient + DQN?

• DQN is computationally inefficient to use with stochastic policies

Why not stochastic policy gradient + DQN?

- DQN is computationally inefficient to use with stochastic policies
- Q) Why?

Why not stochastic policy gradient + DQN?

- DQN is computationally inefficient to use with stochastic policies
- Q) Why?

When computing target, it requires integral over action:

$$y_j^- := r_j + \gamma \int \pi_{\theta}(a|s_j') Q_{\phi^-}^{\pi}(s_j', a) da$$

DDPG algorithm

- Initialize critic network Q_{ϕ} and actor network μ_{θ} with ϕ and θ ;
- Initialize target networks Q_{ϕ^-} , μ_{θ^-} with $\phi^- \leftarrow \phi$ and $\theta^- \leftarrow \theta$;
- for episode = 1:M
 - Initialize a random process ${\cal N}$ for exploration;
 - Receive initial state s_0 ;
 - for t = 1 : T
 - **①** Execute action $a_t = \mu_{\theta}(s_t) + \mathcal{N}_t$ and store (s_t, a_t, s_{t+1}, r_t) in **Buffer**;
 - **2** Sample a minibatch $\{(s_i, a_i, s_{i+1}, r_i)\}$ from **Buffer**;
 - **3** Set target $y_i^- := r_i + \gamma Q_{\phi^-}(s_{i+1}, \mu_{\theta^-}(s_{i+1}));$
 - Update the critic network by minimizing $L(\phi) := \frac{1}{N} \sum_{i} (Q_{\phi}(s_{i}, a_{i}) y_{i})^{2};$
 - **1** Update the actor network by using deterministic policy gradient: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \mu_{\theta}(s_{i}) \nabla_{a} Q_{\phi}(s_{i}, a)|_{a = \mu_{\theta}(s_{i})}$
 - **1** Update the target networks: $\phi^- \leftarrow \tau \phi + (1-\tau)\phi^-$, and $\theta^- \leftarrow \tau \theta + (1-\tau)\theta^-$ with small τ ;

Advantages and Disadvantages

Advantages:

- Can handle continuous spaces (policy gradient)
- Sample efficiency (off-policy)
- Minimize correlations between samples (experience replay)
- Consistency (slowly changing target networks)

Advantages and Disadvantages

Advantages:

- Can handle continuous spaces (policy gradient)
- Sample efficiency (off-policy)
- Minimize correlations between samples (experience replay)
- Consistency (slowly changing target networks)

Disadvantages:

Exploration

DDPG results