Поиск околостабильного распределения с нижней границей квоты

Кирилл Захаров

СП6ГЭУ

2021

Постановка задачи

Пусть заданы множества:

 $A = \{a_1, ..., a_n\}$ - множество студентов $C = \{c_1, ..., c_m\}$ - множество компаний E - множество всех пар (a_i, c_i)

И заданы границы квот:

 u_i - верхняя граница квоты компании c_i l_i - нижняя граница квоты компании c_i

Пусть r_{ij} - ранг компании c_j в списке предпочтений студента a_i Будем говорить, что студент a_i предпочитает компанию c_i компании c_k , если $r_{ij} < r_{ik}$

Пусть s_{ij} - оценка студента a_i в компании c_i Будем говорить, что компания c_j предпочитает студента a_i студенту a_k , если $s_{ij} \geqslant s_{kj}$

Постановка задачи

Определение

Распределение называется \pmb{c} табильным если для любой пары студент-компания, не входящей в распределение, т.е. $(a_i, c_j) \notin E$, либо студент назначен в более предпочитаемую им компанию или компания заполнена студентами с такой же или более высокой оценкой.

Постановка задачи. Пример

Пример

$$R = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix}$$

Первый студент предпочитает 3 компанию, второй студент 1 компанию и третий предпочитает 2.

Ограничения

 $x \in \{0, 1\}$

Базовые ограничения

$$\sum_{j:(a_i,c_j)\in E} x_{ij} \leqslant 1 \qquad \forall i=1,...,n$$
 (1)

$$\sum_{i:(a_i,c_j)\in E} x_{ij} \leqslant u_j \qquad \forall j=1,...,m$$
 (2)

Ограничение для стабильности

$$\left(\sum_{k:r_{ik}\leqslant r_{ij}} x_{ik}\right) u_j + \sum_{h:(a_h,c_j)\in E, s_{hj}\geqslant s_{ij}} x_{hj} \geqslant u_j \qquad \forall (a_i,c_j)\in E \quad \textbf{(3)}$$

Целевая функция

$$\sum_{(a_i, c_j) \in E} r_{ij} \cdot x_{ij} \to \min \tag{4}$$

Ограничения на распределение

Пусть $\mathcal{T}=\{T^1,...,T^p\}$ - множество типов студентов $t(a_i)$ - тип студента a_i l_j^k,u_j^k - нижняя и верхняя границы квоты компании c_j

$$\sum_{i:t(a_i)=T^k,(a_i,c_j)\in E} x_{ij} \leqslant u_j^k \qquad \forall j=1,...,m \text{ if } T^k \in \mathcal{T}$$

$$\sum_{i:t(a_i)=T^k,(a_i,c_j)\in E} x_{ij} \geqslant l_j^k \qquad \forall j=1,...,m \text{ if } T^k \in \mathcal{T}$$

$$(5)$$

Релаксация. Способ 1

Пусть $d_{ij} \geq 0 \in \mathbb{R}$ - переменная дефицита

Новые ограничения

$$\left(\sum_{k:r_{ik}\leqslant r_{ij}} x_{ik}\right) u_j + \sum_{h:(a_h,c_j)\in E, s_{hj}\geqslant s_{ij}} x_{hj} + d_{ij} \geqslant u_j \qquad \forall (a_i,c_j)\in E$$
(7)

Целевая функция

$$\sum_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}} d_{ij} \to \min \tag{8}$$

*Полученное решение называется распределением с минимальным дефицитом

Релаксация. Способ 2

Пусть $d_{ij} \in \{0,1\}$ Новые ограничения

$$\left(\sum_{k:r_{ik}\leqslant r_{ij}} x_{ik}\right) u_j + \sum_{h:(a_h,c_j)\in E, s_{hj}\geqslant s_{ij}} x_{hj} + d_{ij} \cdot u_j \geqslant u_j \qquad \forall (a_i,c_j)\in E$$
(9)

Целевая функция

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le m}} d_{ij} \to \min \tag{10}$$

*Полученное решение называется **околостабильным распределением**

Реализация

```
Ранги r_{ii}
  Распределение
[[1., 0., 0., 0., 0.],
                         [[2, 5, 1, 4, 3],
[0., 0., 0., 1., 0.],
                        [3, 4, 5, 2, 1],
[0., 0., 0., 0., 1.],
                         [4, 3, 5, 2, 1],
[1., 0., 0., 0., 0.],
                       r1, 3, 2, 5, 41,
[0., 0., 0., 0., 1.],
                       [4, 5, 2, 3, 1],
[1., 0., 0., 0., 0.],
                          [1, 4, 3, 2, 5],
[0., 0., 0., 1., 0.],
                          [2, 5, 4, 1, 3],
[0., 0., 0., 1., 0.],
                         [2, 3, 5, 1, 4],
[0., 1., 0., 0., 0.],
                          [5, 1, 2, 3, 4],
[0., 0., 1., 0., 0.],
                         [3, 5, 1, 4, 2],
[0., 0., 0., 0., 1.],
                         [5, 2, 4, 3, 1].
[0., 0., 0., 0., 1.],
                       [3, 4, 2, 5, 1],
[0., 0., 1., 0., 0.],
                       [4, 5, 1, 3, 2],
[0., 0., 1., 0., 0.],
                       [5, 4, 1, 2, 3],
[1., 0., 0., 0., 0.],
                       [1, 2, 4, 5, 3],
[0., 0., 1., 0., 0.],
                        [5, 2, 1, 3, 4],
[0., 1., 0., 0., 0.],
                         [3, 1, 4, 5, 2],
[0., 0., 0., 0., 1.],
                        [3, 2, 5, 4, 1],
[0., 0., 1., 0., 0.],
                        [2, 5, 1, 3, 4],
[1., 0., 0., 0., 0.],
                         [1, 4, 5, 3, 2],
[0., 1., 0., 0., 0.],
                       [4, 2, 1, 3, 5],
[0., 0., 0., 1., 0.],
                       [5, 2, 4, 1, 3],
[0., 1., 0., 0., 0.],
                      [4, 1, 3, 5, 2],
[0., 0., 0., 0., 1.],
                         [5, 4, 3, 2, 1],
[0., 0., 0., 0., 1.]]
                          [5, 4, 1, 2, 3]]
```

Реализация

```
array([ 2, 7, 5, 8, 4, 3, 10, 10, 8, 4, 10, 5, 11, 8, 6, 5,
                    7, 4, 5, 4])
1-й способ:
             array([ 1, 6, 4, 7, 3, 2, 9, 9, 7, 3, 9, 4, 10, 7, 5, 4,
2-й способ:
                    6, 3, 3, 31)
```