ANALISIS MUTU SABUN MANDI CAIR MEREK "Z"

Laporan Praktik Kimia Terpadu Tahun Pelajaran 2018/2019

oleh Kelompok PKT 18, Kelas XIII-3:

Daffa Ikhlasul Amal	15.61.08009
Rahmawati Sulistya	15.61.08182
Siti Mas Melati	15.61.08232
Yudhistira Erbani	15.61.08264

KEMENTERIAN PERINDUSTRIAN REPUBLIK INDONESIA

Pusat Pendidikan dan Pelatihan Industri

Sekolah Menengah Kejuruan - SMAK

Bogor

2018

LEMBAR PERSETUJUAN DAN PENGESAHAN

Analisis Mutu Sabur	Mandi Cair merek	"Z" oleh kelompo	ok PKT 18, XIII-3

Disetujui dan disahkan oleh	
Disetujui oleh,	

R. Rudi Hendrakusuma, S.Pd

NIP. 19650208 198503 1 002

Pembimbing

Disahkan oleh,

Ir.Tin Kartini. M.Si.
NIP.19640416 199403 2 003
Kepala Laboratorium Sekolah Menengah
Kejuruan – SMAK Bogor

KATA PENGANTAR

Laporan praktikum kimia terpadu yang berjudul Analisis Mutu Sabun Mamdi Cair merek "Z" ini disusun untuk memenuhi tugas peserta didik dalam rangkaian mata praktikum kimia terpadu,khususnya peserta didik dilingkungan sekolah menengah kejuruan – SMAK Bogor. Peserta didik yang dimaksud adalah peserta didik kelas XIII yang duduk disemester gasal tahun ajaran 2018/2019. Sabun adalah produk yang sering digunakan dalam kehidupan sehari-hari oleh masyarakat. Tujuan analisis mutu sabun mandi cair merek "Z" ini adalah untuk menganalisis mutu sabun mandi cair tersebut dan menentukan layak atau tidaknya produk berdasarkan Standar Nasional Indonesia (SNI).

Adapun sebagian besar isi panduan ini meliput: Pendahuluan, tinjauan pustaka, metode analisis, hasil dan pembahasan, serta simpulan dansaran. Pendahuluan ini berisi tentang latar belakang, pentingnya produk yang akan dianalisis, dan tujuan dari analisis produk tersebut. Tinjauan pustaka berisi tentang pengertian atau penjelasan dari kata-kata yang terdapat di dalam judul. Metode analisis berisi tentang dasar dari masing-masing parameter yang akan di analisis. Dalam metode analisis terdapat panduan atau cara kerja untuk menganalisis parameter tersebut. Hasil dan pembahasan melampirkan hasil serta penjelasan jika terjadi penyimpangan atau ketidakcocokan antara standar dan hasil. Lalu hasil akhir akan di simpulkan dan diberikan saran untuk analisis selanjutnya.

Tim penyusun mengucapkan puji syukur ke hadirat Tuhan Yang Maha Esa karena telah menganugerahi segala kepandaian dan segala yang baik. Sehingga laporan ini dapat selesai pada waktunya. Penulis menyadari bahwa selama berlangsung penelitian, penyusunan sampai tahap penyelesaian laporan ini yang tak lepas dari bantuan dari berbagai pihak. Oleh karena itu, penulis menyampaikan terima kasih dan penghargaan tanpa batas kepada semua pihak yang telah memberikan arahan, bimbingan dan petunjuk serta motivasi dalam proses penyusunannya yang pantas disampaikan kepada:

 Dwika Riandari, M.Si selaku Kepala Sekolah Menengah Kejuruan – SMAK Bogor

- Ir.Tin Kartini, M.Si selaku kepala laboratorium Sekolah Menengah Kejuruan – SMAK Bogor
- 3. R. Rudi Hendrakusuma, S.Pd selaku pembimbing dari PKT 18
- 4. Para wakil kepala sekolah menengah kejuruan SMAK Bogor
- Semua unsur pendidik dan tenaga kependidikan Sekolah Menengah Kejuruan – SMAK Bogor

Tidak ada gading yang tak retak. Demikian isi sebuah pribahasa Indonesia. Tim penyusun masih membuka pintu kritik dan saran atas laporan ini. Kami menyadari bahwa dalam penulisan laporan ini terdapat banyak sekali kekurangan. Oleh karena itu, kami sangat mengharapkan kritik dan saran yang sifatnya membangun demi kesempurnaan makalah ini. Kritik dan saran tersebut kami gunakan untuk memperbaiki segala kesalahan agar tidak terulang di kemudian hari.

Tim penyusun amat berharap kepada seluruh pembaca dan pengguna laporan ini agar laporan ini dapat bermanfaat secara langsung maupun tidak langsung. Kami berharap agar laporan ini dapat menambah pengetahuan dan wawasan para pembaca. Semoga laporan ini dapat dipahami bagi yang membacanya. Sekiranya laporan ini juga berguna bagi Tim Penyusun maupun pembaca. Demikian yang dapat disampaikan. Atas segala aspirasi dan materi yang diberikan Tim Penyusun ucapkan terima kasih.

Bogor, 28 Desember 2018

Tim Penyusun

DAFTAR ISI

LEMBAR PERSETUJUAN DAN PENGESAHAN	i
KATA PENGANTAR	ii
DAFTARI ISI	iv
DAFTAR TABEL	V
DAFTAR GAMBAR	vi
BAB I PENDAHULUAN	1
A. Latar Belakang	1
B. Pentingnya Produk	2
C. Tujuan	2
BAB II TINJAUAN PUSTAKA	3
A. Analisis	3
B. Mutu	3
C. Sabun	4
BAB III METODE ANALISIS	10
A. Uji Kimia	10
1. Derajat Keasaman (pH)	10
2. Total Bahan Aktif	11
3. Asam Bebas atau Alkali Bebas	14
B. Uji Mikrobiologi	15
Angka Lempeng Total	16
2. Angka Kapang Khamir	17
3. Pemeriksaan Pseudomonas aeruginosa	17
4. Pemeriksaan Staphylococcus aureus	18
5. Pemeriksaan Candida Albicans	19
6. Uji Daya Hambat Sabun terhadap Bahteri Escherichia coli	20
C. Organoleptik	20
1. Uji Hedonik	20
2. Uji Mutu Hedonik	20
ANALISIS KEWIRAUSAHAAN	24
BAB IV HASIL DAN PEMBAHASAN	24
BAB V. SIMPULAN DAN SARAN	24
DAFTAR PUSTAKA	25
LAMPIRAN	26

DAFTAR TABEL

Tabel 1. Tabel Parameter Uji Berdasarkan SNI 4085:2017	10
Tabel 2. Analisis Kewirausahaan	21
Tabel 3 Tabel Hasil Analisis Sabun Mandi Cair	22

DAFTAR GAMBAR

Cambar 1	Sahun	Mandi Cair	1
Gampar i	Sabun	Mandi Cair	 4

BAB I Pendahuluan

A. Latar Belakang

Sabun adalah produk yang digunakan semua orang setiap hari. Semakin beragamnya kebutuhan dan selera konsumen, produk sabun pun kini sangat bervariasi, seperti sabun opaque, sabun cair, dan sabun transparan. Sabun opaque adalah jenis sabun mandi biasa yang berbentuk padat dan tidak transparan, sabun cair adalah sabun mandi yang berbentuk cair, sedangkan sabun transparan adalah jenis sabun untuk muka dan untuk mandi yang dapat menghasilkan busa lebih lembut di kulit dan penampakannya berkilau jika dibandingkan dengan jenis sabun yang lain. Harga sabun transparan relatif lebih mahal dibandingkan dengan sabun lainnya dan dikonsumsi oleh kalangan menengah ke atas (Hambali, 2005).

Sabun yang berkualitas baik dapat dipengaruhi oleh bahan baku yang digunakan, bahan baku utama dalam pembuatan sabun adalah lemak atau minyak yang diperoleh dari bahan-bahan nabati dan hewani. Sabun tersusun dari asam lemak, minyak dan lilin, dimana senyawa tersebut mengandung ikatan tidak jenuh yang akan mudah teroksidasi. Reaksi tersebut ditandai dengan keluarnya bau tengik pada sabun.

Sabun adalah garam natrium atau kalium dari asam lemak yang berasal dari minyak nabati atau lemak hewani. Sabun yang digunakan sebagai pembersih dapat berwujud padat (keras), lunak dan cair. Sabun mandi termasuk kedalam sabun pembersih.

Sabun mandi adalah produk yang sering digunakan dalam kehidupan sehari-hari.Pada jaman sekarang masyarakat lebih memilih sabun mandi cair dibandingkan sabun mandi batang, karena dinilai lebih higienis.Selain itu juga masyarakat lebih memilih sabun mandi dengan merek terkenal karena dinilai memiliki kualitas yang bagus dibandingkan dengan merek yang tidak terkenal. Maka dari itu kami melakukan analisis mutu terhadap sabun mandi cair merek "Z" yang jarang diminati oleh masyarakat namun sudah cukup lama beredar. Sabun "Z" ini merupakan salah satu sabun dengan merek "private label" yaitu suatu produk yang memiliki merek sesuai dengan supermarket yang menjual produk

tersebut. Analisis ini dilakukan dengan tujuan untuk mengetahui mutu produk yang dianalisis memiliki kelayakan pakai atau tidak.

B. Pentingnya Produk

Saat ini, sabun mandi sudah menjadi keperluan sehari-hari bagi masyarakat, tidak terbatas usia maupun jenis kelamin. Masyarakat kini lebih memilih sabun mandi cair dibandingkan sabun mandi batang, karena dinilai lebih higienis. Sabun mandi cair merupakan produk manufaktur yang dikeluarkan oleh banyak perusahaan dengan berbagai merek. Masyarakat bebas memilih merek sabun apa saja yang ingin mereka gunakan dalam kehidupan sehari-hari. Dalam memilih produk, masyarakat umumnya lebih memilih produk sabun yang terkenal dan memiliki harga yang lebih tinggi dibandingkan produk yang kurang terkenal. Oleh karena itu kami melakukan analisis mutu terhadap sabun mandi cair merek"Z" yang jarang diminati oleh masyarakat namun sudah cukup lama beredar.

C. Tujuan

Tujuan analisis yang dilakukan oleh kelompok PKT 18 adalah untuk :

- 1. Mengetahui mutu produk yang dianalisis memiliki kelayakan pakai atau tidak
- 2. Mengaplikasikan ilmu-ilmu yang telah didapatkan
- 3. Memenuhi tugas mata pelajaran Praktik Kimia Terpadu Kelas XIII

BAB II Tinjauan Pustaka

A. Analisis

Terdapat beberapa definisi mengenai analisis, yaitu :

1. Menurut Kamus Besar Bahasa Indonesia (2002:43)

"Analisis adalah penguraian suatu pokok atas berbagai bagiannya dan penelahaan bagian itu sendiri serta hubungan antar bagian untuk memperoleh pengertian yang tepat dan pemahaman arti keseluruhan".

2. Menurut Komaruddin (2001:53)

"Analisis adalah kegiatan berfikir untuk mengutamakan suatu keseluruhan menjadi komponen sehingga dapat mengenal tanda-tanda komponen, hubungannya satu sama lain dan fungsi masing-masing dalam satu keseluruhan yang terpadu".

Dari data diatas dapat disimpulkan bahwa analisis adalah kegiatan berfikir untuk menguraikan suatu pokok menjadi bagian-bagian atau komponen sehingga dapat diketahui ciri atau tanda tiap bagian, Kemudian hubungan satu sama lain serta fungsi masing-masing bagian dari keseluruhan.

B. Mutu

Pengertian mutu dapat berbeda-beda tergantung pada rangkaian perkataan atau kalimat dimana istilah mutu ini dipakai, dan orang yang mempergunakannya. Dalam perusahaan pabrik, istilah mutu diartikan sebagai faktor-faktor yang terdapat dalam suatu barang atau hasil yang menyebabkan barang atau hasil tersebut sesuai dengan tujuan apa barang atau hasil itu dimaksudkan atau dibutuhkan (Assuari, 1999).

C. Sabun

Gambar 1 Sabun Mandi Cair

1. Pengertian Sabun

Sabun adalah garam natrium dan kalium dari asam lemak yang berasal dari minyak nabati atau lemak hewani. Sabun yang digunakan sebagai pembersih dapat berwujud padat (keras), lunak dan cair. Dewan Standarisasi Nasional menyatakan bahwa sabun adalah bahan yang digunakan untuk tujuan mencuci dan mengemulsi, terdiri dari asam lemak dengan rantai karbon C12-C18 dan sodium atau potassium (DSN, 1994). Suatu molekul sabun mengandung suatu rantai hidrokarbon panjang plus ion. Bagian hidrokarbon dari molekul itu bersifat hidrofobik dan larut dalam zat-zat non polar. Sedangkan ujung ion bersifat hidrofilik dan larut dalam air. Karena adanya rantai hidrokarbon, sebuah molekul sabun secara keseluruhan tidaklah benar-benar larut dalam air. Namun sabun mudah tersuspensi dalam air karena membentuk misel (micelles), yakni segerombol (50 - 150) molekul yang rantai hidrokarbonnya mengelompok dengan ujung- ujung ionnya yang menghadap ke air. (Ralph J. Fessenden, 1992).

Sabun diproduksi dan diklasifikasikan menjadi beberapa grade mutu. Sabun dengan grade mutu A diproduksi oleh bahan baku minyak atau lemak yang terbaik dan mengandung sedikit atau tidak mengandung alkali bebas. Sabun dengan grade B diperoleh dari bahan baku minyak atau lemak dengan kualitas yang lebih rendah dan mengandung sedikit alkali, namun kandungan alkali tersebut tidak menyebabkan iritasi pada kulit. Sedangkan sabun dengan kualitas

C mengandung alkali bebas yang relatif tinggi berasal dari bahan baku lemak atau minyak yang berwarna gelap. (Kamikaze, 2002).

2. Sejarah Sabun

Sejarah Sabun tak ada catatan pasti, kapan nenek moyang kita mulai memakai sabun. Konon, tahun 600 SM masyarakat Funisia di mulut Sungai Rhone sudah membuat sabun dari lemak kambing dan abu kayu khusus. Mereka juga membarterkannya dalam berdagang dengan bangsa Kelt, yang sudah bisa membuat sendiri sabun dari bahan serupa. Pliny (23 - 79) menyebut sabun dalam Historia Naturalis, sebagai bahan cat rambut dan salep dari lemak dan abu pohon beech yang dipakai masyarakat di Gaul, Prancis. Tahun 100 masyarakat Gaul sudah memakai sabun keras. Ia juga menyebut pabrik sabun di Pompei yang berusia 2000 tahun, yang belum tergali. Di masa itu sabun lebih sebagai obat. Baru belakangan ia dipakai sebagai pembersih, seperti kata Galen, ilmuwan Yunani, di abad II.Tahun 700-an di Italia membuat sabun mulai dianggap sebagai seni. Seabad kemudian muncul bangsa Spanyol sebagai pembuat sabun terkemuka di Eropa. Sedangkan Inggris baru memproduksi tahun 1200-an. Secara berbarengan Marseille, Genoa, Venice, dan Savona menjadi pusat perdagangan karena berlimpahnya minyak zaitun setempat serta deposit soda mentah. Akhir tahun 1700-an Nicolas Leblanc, kimiawan Prancis, menemukan, larutan alkali dapat dibuat dari garam meja biasa. Sabun pun makin mudah dibuat, alhasil ia terjangkau bagi semua orang. Di Amerika Utara industri sabun lahir tahun 1800-an. Pengusaha-pengusahanya mengumpulkan sisa-sisa lemak yang lalu dimasak dalam panci besi besar. Selanjutnya, adonan dituang dalam cetakan kayu. Setelah mengeras, sabun dipotong-potong, dan dijual dari rumah ke rumah. Begitupun, baru abad XIX sabun menjadi barang biasa, bukan lagi barang mewah.

3. Komposisi Sabun

Sabun konvensional yang dibuat dari lemak dan minyak alami dengan garam alkali serta sabun mandi saat ini yang dibuat dari bahan sintetik, biasanya mengandung surfaktan, pelumas, antioksidan, deodorant, warna, parfum, pengontrol pH, dan bahan tambahan khusus.

a. Surfaktan

Surfaktan adalah molekul yang memiliki gugus polar yang suka air (hidrofilik) dan gugus non polar yang suka minyak (lipofilik) sehingga dapat mempersatukan campuran yang terdiri dari minyak dan air yang bekerja menurunkan tegangan permukaan. Surfaktan merupakan bahan terpenting dari sabun. Lemak dan minyak yang dipakai dalam sabun berasal dari minyak kelapa (asam lemak C12), minyak zaitun (asam lemak C16-C18), atau lemak babi. Penggunaan bahan berbeda menghasilkan sabun yang berbeda, baik secara fisik maupun kimia. Ada sabun yang cepat berbusa tetapi terasa airnya kasar dan tidak stabil, ada yang lambat berbusa tetapi lengket dan stabil. Jenis bahan surfaktan pada syndet dewasa ini mencapai angka ribuan (Anonima, 2013; Wasitaatmadja, 1997).

b. Pelumas

Untuk menghindari rasa kering pada kulit diperlukan bahan yang tidak saja meminyaki kulit tetapi juga berfungsi untuk membentuk sabun yang lunak, misal: asam lemak bebas, fatty alcohol, gliserol, lanolin, paraffin lunak, cocoa butter, dan minyak almond, bahan sintetik ester asam sulfosuksinat, asam lemak isotionat, asam lemak etanolamid, polimer JR, dan carbon resin (polimer akrilat).Bahan-bahan selain meminyaki kulit juga dapat menstabilkan busa dan berfungsi sebagai peramas (plasticizers) (Wasitaatmadja, 1997).

c. Antioksidan dan Sequestering Agents

Antioksidan adalah senyawa atau zat yang dapat menghambat, menunda, mencegah, atau memperlambat reaksi oksidasi meskipun dalam konsentrasi yang kecil. Untuk menghindari kerusakan lemak terutama bau tengik, dibutuhkan bahan penghambat oksidasi, misalnya stearil hidrazid dan butilhydroxy toluene (0,02%-0,1%). Sequestering Agents dibutuhkan untuk mengikat logam berat yang mengkatalis oksidasi EDTA. EHDP (ethanehidroxy-1-diphosphonate) (Anonimb, 2013; Wasitaatmadja, 1997)

d. Deodorant

Deodorant adalah suatu zat yang digunakan untuk menyerap atau mengurangi bau menyengat. Deodorant dalam sabun mulai dipergunakan sejak tahun 1950, namun oleh karena khawatir efek samping, penggunaannya dibatasi. Bahan yang digunakan adalah TCC (trichloro carbanilide) dan 2-hidroxy 2,4,4- trichlodiphenyl ester (Anonim, 2013; Wasitaatmadja, 1997).

e. Warna

Kebanyakan sabun mandi berwarna cokelat, hijau biru, putih, atau krem. Pewarna sabun dibolehkan sepanjang memenuhi syarat dan peraturan yang ada, pigmen yang digunakan biasanya stabil dan konsentrasinya kecil sekali (0,01- 0,5%). Titanium dioksida 0,01% ditambahkan pada berbagai sabun untuk menimbulkan efek berkilau. Akhir-akhir ini dibuat sabun tanpa warna dan transparan (Wasitaatmadja, 1997).

f. Parfum

Isi sabun tidak lengkap bila tidak ditambahkan parfum sebagai pewangi. Pewangi ini harus berada dalam pH dan warna yang berbeda pula. Setiap pabrik memilih bau dan warna sabun bergantung pada permintaan pasar atau masyarakat pemakainya. Biasanya dibutuhkan wangi parfum yang tidak sama untuk membedakan produk masing-masing (Wasitaatmadja, 1997).

g. Pengontrol pH

Penambahan asam lemak yang lemah, misalnya asam sitrat, dapat menurunkan pH sabun (Wasitaatmadja, 1997).

h. Bahan Tambahan Khusus

Menurut Wasitaatmadja (1997), berbagai bahan tambahan untuk memenuhi kebutuhan pasar, produsen, maupun segi ekonomi dapat dimasukkan ke dalam formula sabun. Dewasa ini dikenal berbagai macam sabun khusus, misalnya:

- 1. Superfatty yang menambahkan lanolin atau paraffin.
- 2. Transparan yang menambahkan sukrosa dan gliserin.
- 3. Deodorant, yang menambahkan triklorokarbon, heksaklorofen, diklorofen, triklosan, dan sulfur koloidal.
- 4. Antiseptik (medicated = carbolic) yang menambahkan bahan antiseptic, misalnya: fenol, kresol, dan sebagainya.
- 5. Sabun bayi yang lebih berminyak, pH netral, dan noniritatif.
- 6. Sabun netral, mirip dengan sabun bayi dengan konsentrasi dan tujuan yang berbeda.
- 7. Apricot, dengan sabun menambahkan apricot atau monosulfiram

4. Fungsi Sabun

Kotoran yang menempel pada kulit umumnya adalah minyak, lemak dan keringat. Zat-zat ini tidak dapat larut dalam air karena sifatnya yang non polar. Sabun digunakan untuk melarutkan kotoran-kotoran pada kulit tersebut. Sabun memiliki gugus non polar yaitu gugus –R yang akan mengikat kotoran, dan gugus –COONa yang akan mengikat air karena sama-sama gugus polar.

Sehingga kotoran dapat lepas karena terikat pada sabun dan sabun terikat pada air (Qisti, 2009).

BAB III Metode Analisis dan Analisis Kewirausahaan

A. Metode Analisis

Dalam melakukan Analisis Total Sabun Mandi Cair merek "Z", berikut adalah tabel parameter yang akan diujikan, sesuai dengan SNI 4085-2017:

Tabel 1. Parameter uji berdasarkan SNI 4085-2017

No	Kriteria Uji	Satuan	Persyaratan	
1	pH	-	4,0-10,0	
2	Total bahan aktif	% fraksi massa	min. 15,0	
3	Alkali bebas (dihitung sebagai NaOH)	% fraksi massa	maks. 0,1	
4	Asam lemak bebas (dihitung sebagai asam oleat)	% fraksi massa	maks. 4	
5	Cemaran mikroba			
5.1	Angka lempeng total (ALT)	koloni/g atau koloni/ml	maks. 1×10^3	
5.2	Angka kapang dan khamir	maks. 1×10^3		
5.3	Pseudomonas aeruginosa	Pseudomonas aeruginosa per 0,1 g atau per 0,1 ml		
5.4	Staphylococcus aureus	per 0,1 g atau per 0,1 ml	Negatif	
5.5	Candida albicans	per 0,1 g atau per 0,1 ml	Negatif	
6.	Uji daya hambat terhadap bakteri Escherichia coli*	cm	-	
7.	Uji organoleptik*			
7.1	Uji hedonik	-	-	
7.2	Uji mutu hedonik	-	-	

CATATAN

Alkali bebas atau asam lemak bebas merupakan pilihan tergantung pada sifatnya asam atau basa. **KETERANGAN**

1. Uji Kimia

a. Derajat Keasaman (pH)

Prinsip:

Pengukuran pH berdasarkan aktivitas ion hidrogen secara potensiometri dengan menggunakan pH meter.

- a. Persiapan Larutan Contoh Uji
 - 1. Timbang $(1 \pm 0,001)$ g contoh dan pindahkan ke dalam labu ukur 1000 ml;

^{*:} Uji tambahan diluar SNI

- 2. Isi sebagian labu dengan air suling bebas CO₂ dan aduk hingga contoh uji terlarut;
- 3. Tambahkan air suling bebas CO₂ hingga tanda tera, tutup labu ukur dan homogenkan;
- 4. Tuang larutan ke dalam piala gelas;
- 5. Diamkan larutan untuk mencapai kesetimbangan pada suhu ruang (25 ± 2.0)°C.

b. Prosedur

- 1. Kalibrasi pH meter dengan larutan standar buffer;
- 2. Bilas dengan air suling bebas CO₂ dan keringkan elektroda dengan tisu;
- 3. Celupkan elektroda ke dalam larutan contoh uji sambil diaduk;
- 4. Catat hasil pembacaan pH pada tampilan pH meter.

b. Total Bahan Aktif

a. Penentuan Bahan yang Larut dalam Etanol

Prinsip:

Contoh dilarutkan dalam etanol dan bobot dari bahan yang larut dalam etanol akan diperoleh.

- 1. Timbang $(5 \pm 0,001)$ g contoh (S), masukkan ke dalam erlenmeyer 300ml;.
- 2. Tambahkan 100 ml etanol (99,5%), hubungkan dengan pendingin tegak kemudian panaskan selama 30 menit di atas penangas air sambil sesekali diaduk;
- 3. Saring larutan hangat dengan menggunakan penyaring gelas dan bilas sisa larutan yang menempel pada erlenmeyer dengan 50 ml etanol (95%);
- 4. Dinginkan filtrat sampai suhu ruang;
- 5. Pindahkan filtrat ke dalam labu ukur 250 ml dan tambahkan etanol (95%) sampai tanda tera;

- 6. Ambil dengan pipet volumetri 100 ml dan pindahkan ke gelas piala 200 ml yang telah diketahui bobot kosongnya;.
- 7. Panaskan di atas penangas air untuk menghilangkan etanolnya;
- 8. Keringkan di dalam oven $(105 \pm 2)^{\circ}$ C selama 1 jam
- 9. Dinginkan dalam desikator sampai bobot tetap lalu timbang.
- 10. Hitung kadar bahan yang larut dalam etanol.

Perhitungan:

$$C_{\text{et}} = \frac{A}{S \times (\frac{100}{250})} \times 100$$

Keterangan:

C_{et} = bahan yang larut dalam etanol, % fraksi massa;

A = sisa bahan setelah pengeringan,g;

S = bobot contoh,g;

 $\left(\frac{100}{250}\right) = \left(\frac{volume\ filtrat\ yang\ dipipet,ml}{volume\ akhir\ contoh,ml}\right)$

b. Penentuan Bahan yang Larut dalam Petroleum Eter

Prinsip:

Larutan contoh dengan campuran air-etanol diekstraksi dengan petroleum eter untuk memperoleh bahan yang larut dalam petroleum eter.

- 1. Timbang ($10 \pm 0,001$) g contoh dan masukkan ke dalam erlenmeyer 300 ml;
- 2. Larutkan dalam 200 ml larutan campuran air etanol;
- 3. Saring jika ada bahan yang tidak larut;
- 4. Tambahkan 5 ml larutan natrium hidroksida 0,5 mol/l , tambahkan beberapa tetes larutan indikator fenolftalein untuk memastikan bahwa larutan telah basa:
- Pindahkan ke corong pemisah 500 ml, ekstrak tiga kali dengan masingmasing 50 ml petroleum eter. Jika emulsi semakin banyak, tambahkan sedikit etanol untuk menghilangkannya;

- 6. Pada lapisan petroleum eter cuci tiga kali dengan masing-masing 30 ml larutan campuran air-etanol, dan cuci dua kali dengan masing-masing 30 ml air suling;
- 7. Keringkan dengan natrium sulfat anhidrat sampai tidak ada lapisan air;
- 8. Saring menggunakan kertas saring kering ke dalam erlenmeyer 300 ml yang telah diketahui bobotnya, bilas kertas saring dengan petroleum eter;
- 9. Panaskan larutan dalam penangas air untuk menguapkan petroleum eter, biarkan erlenmeyer di dalam desikator sampai suhu ruang;
- 10. Alirkan udara kering ke dalam erlenmeyer untuk menghilangkan sisa petroleum eter sampai bau petroleum eter hilang;
- 11. Timbang sampai bobot tetap;
- 12. Hitung kadar bahan yang larut dalam petroleum eter.

Perhitungan:

$$C_{pe} = \frac{A}{S} \times 100$$

Keterangan:

C_{pe} = bahan yang larut dalam petroleum eter, % fraksi massa;

A = jumlah yang terekstraksi dalam petroleum eter, g;

S = bobot contoh,g.

Perhitungan Total Bahan Aktif

Keterangan:

Total bahan aktif, % fraksi massa;

C_{et} = bahan yang larut dalam etanol, % fraksi massa;

C_{pe} = bahan yang larut dalam petroleum eter, % fraksi massa;

c. Alkali Bebas atau Asam Lemak Bebas

Prinsip:

Filtrat hasil penyaringan sabun dengan etanol netral dititrasi dengan larutan standar asam jika dengan indikator fenolftalein ternyata larutan bersifat alkali atau dititrasi dengan larutan standar alkali jika dengan indikator fenolftalein ternyata larutan bersifat asam.

Cara Kerja:

- 1. Larutkan $(5\pm0,01)$ g contoh (b) dengan 200 ml etanol netral ke dalam erlenmeyer tutup asah 250 ml, panaskan di atas sampai sabun terlarut seluruhnya;
- 2. Tempatkan kertas saring atau cawan gooch pada corong di atas erlenmeyer 250 ml yang sudah di rangkai dengan pompa vakum;
- 3. Saat sabun terlarut seluruhnya, tuang cairan ke kertas saring atau cawan gooch;
- 4. Lindungi larutan dari karbondioksida dan asap asam selama proses dengan menutupnya menggunakan kaca arloji;
- 5. Cuci residu pada kertas saring atau cawan gooch dengan etanol netral sampai seluruhnya bebas sabun;
- 6. Tuang cairan cucian tadi ke kertas saring atau cawan gooch;
- 7. Panaskan filtrat:
- 8. Saat hampir mendidih, masukan 0,5 ml indikator fenolftalein 1%;
- Jika larutan tersebut bersifat asam (penunjuk fenolftalein tidak berwarna), titrasi dengan larutan standar koh sampai timbul warna merah muda yang stabil;
- Jika larutan tersebut bersifat alkali (penunjuk fenolftalein berwarna merah), titrasi dengan larutan standar HCl sampai warna merah tepat hilang;
- 11. Hitung menjadi NaOH jika alkali atau menjadi asam oleat jika asam.

Perhitungan:

Alkali bebas =
$$\frac{40 \times V \times N}{b} \times 100$$

Asam lemak bebas =
$$\frac{282 \times V \times N}{b} \times 100$$

Keterangan;

V = volume penitar yang digunakan, ml;

N = normalitas penitar yang digunakan;

b = bobot contoh,mg;

40 = berat ekuivalen NaOH;

282 = berat ekuivalen asam oleat $(C_{18}H_{35}O_2)$

2. Uji Mikrobiologi

a. Angka Lempeng Total (ALT)

Prinsip:

Perhitungan jumlah bakteri cara tuang ini dilakukan dengan pengenceran contoh dan blanko kemudian dari masing-masing pengenceran dipipet ke dalam cawan petri dan dituang mediaPlate Count Agar (PCA)kemudian diinkubasipada suhu 37°C selama 24 jam. Hitung jumlah koloni dengan *colony counter*.

- 1. Disiapkansampel kemasan yang sudah disanitasi dengan alkohol 70%;
- Dibuat pengenceran 10⁻¹dengan cara menimbang 7,5 gram sampel dengan erlenmeyer 100 mL kemudian dilarutkan dengan 75 ml Buffered Pepton Water (BPW)
- 3. Dipipet 9 ml Buffered Pepton Water (BPW) ke masing masing tabung : blanko, 10^{-2} , 10^{-3} ;
- 4. Dipipet 1 ml Buffered Pepton Water (BPW) dari tabung blanko ke dalam petri (blanko);
- 5. Dipipet 1 ml contoh dari tabung pengenceran 10^{-1} kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-1} Dan duplo (D) 10^{-1} ;
- 6. Dipipet 1 ml contoh dari tabung pengenceran 10^{-1} ke dalam tabung pengenceran 10^{-2} , lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-2} Dan duplo (D) 10^{-2} ;

- 7. Dipipet 1 ml contoh dari tabung pengenceran 10^{-2} ke dalam tabung pengenceran 10^{-3} , lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-3} Dan duplo (D) 10^{-3} ;
- 8. Dituangkan media Plate Count Agar (PCA) bersuhu 40 45°C sebanyak $\pm 15 \ ml$, dihomogenkan dan tunggu sampai beku;
- 9. Diinkubasi pada suhu 37°C selama 24 jam;
- 10. Dihitung jumlah koloni bakteri dengan colony counter.

b. Angka Kapang dan Kamir

Prinsip:

Perhitungan jumlah kapang kamir cara tuang ini dilakukan dengan pengenceran contoh dan blanko kemudian dari masing-masing pengenceran dipipet ke dalam cawan petri dan dituang media Potato Dextrose Agar (PDA) keemudian diinkubasi pada suhu 28°C selama 3-5 hari. Hitung jumlah koloni kapang khamir dengan *colony counter*.

- 1. Disiapkan botol contoh yang sudah disanitasi dengan alkohol 70%;
- 2. Dibuat pengenceran 10^{-1} dengan cara menimbang 7,5 gram sampel pada erlenmeyer 100 mL kemudian dilarutkan dengan 75 mL
- 3. Dipipet 9 ml Buffered Pepton Water (BPW) ke masing masing tabung : blanko, 10^{-2} , 10^{-3} ;
- Dipipet 1 ml Buffered Pepton Water (BPW) dari tabung blanko ke dalam petri (blanko);
- 5. Dipipet 1 ml contoh dari tabung pengenceran 10^{-1} kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-1} Dan duplo (D) 10^{-1} ;
- 6. Dipipet 1 ml contoh dari tabung pengenceran 10^{-1} ke dalam tabung pengenceran 10^{-2} , lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-2} Dan duplo (D) 10^{-2} ;
- 7. Dipipet 1 ml contoh dari tabung pengenceran 10^{-2} ke dalam tabung pengenceran 10^{-3} , lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-3} Dan duplo (D) 10^{-3} ;

- 8. Dituangkan media Potato Dextrose Agar (PDA) bersuhu $40-45^{\circ}$ C sebanyak $\pm 15 \ ml$, dihomogenkan dan tunggu sampai beku;
- 9. Diinkubasi pada suhu 28°C selama 3-5 hari;
- 10. Dihitung jumlah koloni bakteri dengan colony counter.

c. Pemeriksaan Pseudomonas aeruginosa

Prinsip:

Bakteri patogen adalah bakteri yang dapat menimbulkan penyakit, untuk mengetahui keberadaan *Pseudomonas aeruginosa*yang merupakan bakteri patogen dapat diidentifikasi dengan media Cetrimide Agar (CA) atau Pseudomonas Agar (PA) dimana bila hasilnya positif maka disekeliling koloni terdapat daerah biru hijau.

Cara Kerja:

- 1. Siapkan media selektif steril cetrimide agar (ca) ± 40°C;
- 2. Tuangkan media selektif ke dalam cawan petri sebanyak \pm 15 ml (1/3 tinggi cawan petri) secara merata dan tunggu hingga media membeku;
- 3. Dipipet 9 ml buffered pepton water (bpw) ke dalam tabung reaksi;
- 4. Dipipet 1 ml sampel ke dalam tabung yang berisi buffered pepton water (bpw) lalu dihomogenkan;
- Ambil satu mata ose hasil campuran buffered pepton water (bpw) dan sampel;
- 6. Goreskan pada cawan petri yang berisi media selektif secara aseptik;
- 7. Masukkan ke dalam inkubator pada suhu 30-35°C selama 24 jam (posisi terbalik):
- 8. Amati dan catat hasilnya.

d. Pemeriksaan Staphylococcus aureus

Prinsip:

Bakteri patogen adalah bakteri yang dapat menimbulkan penyakit, untuk mengetahui keberadaan *Staphylococcus aureus* yang merupakan bakteri patogen dapat diidentifikasi dengan media Mannitol Salt Agar (MSA) dimana bila hasilnya positif maka koloni kuning dikelilingi zona kuning.

Cara Kerja:

- 1. Siapkan media selektif steril Mannitol Salt Agar (MSA) ± 40 °C;
- 2. Tuangkan media selektif ke dalam cawan petri sebanyak \pm 15 ml (1/3 tinggi cawan petri) secara merata dan tunggu hingga media membeku:
- 3. Dipipet 9 ml Buffered Pepton Water (BPW) ke dalam tabung reaksi;
- 4. Dipipet 1 ml sampel ke dalam tabung yang berisi Buffered Pepton Water (BPW) lalu dihomogenkan;
- 5. Ambil satu mata ose hasil campuran Buffered Pepton Water (BPW) dan sampel;
- 6. Goreskan pada cawan petri yang berisi media selektif secara aseptik;
- 7. Masukkan ke dalam inkubator pada suhu 30-35°C selama 24 jam (posisi terbalik);
- 8. Amati dan catat hasilnya.

e. Pemeriksaan Candida albicans

Prinsip:

Candida albicans dapat tumbuh pada media Potato Dextrose Agar (PDA) dengan koloni berbentuk seperti pasta krim lembut berwarna putih.

- 1. Disiapkan sampel kemasan yang sudah disanitasi dengan alkohol 70%;
- Dibuat pengenceran 10⁻¹ dengan cara menimbang 7,5 gram sampel pada erlenmeyer 100 mL kemudian dilarutkan dengan 75 mLBuffered Pepton Water (BPW)
- 3. Dipipet 1 ml contoh dari tabung pengenceran 10^{-1} kemudian dimasukkan ke dalam petri steril simplo (S) 10^{-1} Dan duplo (D) 10^{-1} ;
- 4. Dituangkan media Plate Dextrose Agar (PDA) bersuhu $40-45^{\circ}$ C sebanyak $\pm 15 \ ml$, dihomogenkan dan tunggu sampai beku;
- 5. Diinkubasi pada suhu 28°C selama 3-5 hari;
- 6. Amati dan catat hasilnya.

f. Uji Daya Hambat Sabun terhadap Bakteri Escherichia coli

Prinsip:

Uji daya hambat sabun terhadap bakteri *Escherichia coli* dilakukan untuk mengetahui seberapa besar kemampuan suatu sabun mandi cair untuk dapat menghambat pertumbuhan bakteri *E.Coli*. Uji daya hambat ini menggunakan media PCA yang kemudian dilubangi lalu diteteskan masing-masing konsentrasi sabun dengan pengenceran tertentu pada lubang tersebut kemudian di inkubasi pada suhu 37°C selama 24 jam.

- 1. Disiapkan alat dan bahan yang dibutuhkan.
- 2. Dipipet 1 mL suspensi bakteri E.coli kedalam erlenmeyer yang sudah berisi media PCA kemudian dihomogenkan.
- Dituangkan 15 mL media PCA tersebut kedalam cawan petri steril dengan takaran menggunakan gelas ukur steril kemudian dihomogenkan dan dibiarkan beku.
- 4. Dilubangi permukaan media yang telah beku sebanyak 5 buah lubang dengan menggunakan pipa kaca steril.
- 5. Ditetesi masing-masing satu tetes larutan sabun 10%, 5%, 2,5% kemudianuntuk kontrol negatif berupa air suling steril dan kontrol positif berupa antiseptik cair.Masing-masing larutan 10%, 5%, 2,5%, kontrol positif dan kontrol negatif ditetesi sebanyak 2 teteskedalam lubang yang telah dibuat.
- 6. Diinkubasi dengan suhu 37°C selama 24 Jam dengan posisi pinggan petri tidak dibalik (tutup pinggan petri tidak dibalik).
- 7. Diukur zona bening yang berada disekitar lubang sebagai zona hambat.

3. Uji Organoleptik

a. Uji Hedonik

Prinsip:

Tingkat kesukaan konsumen terhadap suatu produk berbeda- beda. Uji Hedonik Kesukaan dapat dilakukan dengan cara membandingkan produk yang dianalisis dengan produk lain yang telah beredar di pasaran. Pengujian ini dilakukan oleh panelis tidak terlatih dengan kriteria tertentu. Sehingga, dapat diketahui kesukaan atau ketidaksukaan terhadap suatu produk.

b. Uji Mutu Hedonik

Prinsip:

Uji Mutu Hedonik dapat dilakukan dengan cara membandingkan produk yang dianalisis dengan produk lain yang telah beredar dipasaran dengan menggunakan skala hedonik. Pengujian ini dilakukan oleh panelis tidak terlatih dengan kriteria tertentu. Sehingga, dapat diketahui kualitas (baik atau buruk) suatu produk.

B. Analisis Kewirausahaan

Tabel 2. Analisis Kewirausahaan

Metode Analisis	Parameter	Prediksi Biaya Analisis (Rp)
	Uji pH	Rp. 42.900
	Kadar asam lemak bebas	Rp. 144.100
	Kadar bahan terlarut	Rp. 699.600
Kimia	Kadar bahan terlarut dalam etanol	Rp. 160.600
	Kadar bahan terlarut dalam petroleum eter	Rp. 539.000
	Angka lempeng total (ALT)	Rp. 66.222
	Angka kapang dan khamir	Rp. 63.220
	Pemeriksaan Pseudomonas aeruginosa	Rp. 53.042
Mikrobiologi	Pemeriksaan Staphylococcus aureus	Rp. 54.124
	Pemeriksaan Candida albicans	Rp. 50.842
	Uji daya hambat sabun terhadap bakteri Escherichia coli	Rp. 53.042
	Total Biaya	Rp. 1.227.110

BAB IV Hasil dan Pembahasan

Berikut ini adalah hasil analisis mutu sabun mandi cair merk "Z" yang dibandingkan dengan SNI 4085:2017

Tabel 3. Hasil Analisis Sabun Mandi Cair dibandingkan dengan SNI 4085:2017

No.	Kriteria Uji	Persyaratan	Hasil	Keterangan
1.	рН	4,0-10,0	8,06	Sesuai SNI
2.	Total bahan aktif	min. 15,0%	26,14%	Sesuai SNI
3.	Asam lemak bebas (dihitung sebagai asam oleat)	maks. 4%	0,92%	Sesuai SNI
4.	Cemaran mikroba			
4.1.	Angka lempeng total (ALT)	maks. 1 × 10³ koloni/g atau koloni/ml	$< 1 \times 10^3$ koloni/g	Sesuai SNI
4.2.	Angka kapang dan kamir	maks. 1 × 10 ³ koloni/g atau koloni/ml	$< 1 \times 10^3$ koloni/g	Sesuai SNI
4.3.	Pseudomonas aeruginosa	Negatif per 0,1 g atau per 0,1 ml	Negatif per 0,1 g	Sesuai SNI
4.4.	Staphylococcus aureus	Negatif per 0,1 g atau per 0,1 ml	Negatif per 0,1 g	Sesuai SNI
4.5.	Candida albicans	Negatif per 0,1 g atau per 0,1 ml	Negatif per 0,1 g	Sesuai SNI
5.	Uji daya hambat - High $(10\%) = 2,3$ cm terhadap bakteri (beda terhadap standa Escherichia coli * $26,4\%$)		Digunakan antiseptik cair sebagai standar dengan konsentrasi 2,5% dan zona	
			Medium (5%) = 2,1 cm (beda terhadap standar $35,3\%$)	hambat terukur sebesar 3,0 cm
			Low (2,5%) = 2,0 cm (beda terhadap standar 40%)	
6.	Uji organoleptik*			
6.1.	Uji hedonik	-	Bentuk disukai Bau sangat disukai	Uji dilakukan terhadap 30 orang
6.2.	Uji mutu hedonik	-	Warna disukai Bentuk sangat homogen Bau khas Warna khas	panelis Uji dilakukan terhadap 28 orang panelis

CATATAN

Alkali bebas atau asam lemak bebas merupakan pilihan tergantung pada sifatnya asam atau basa. ${\bf KETERANGAN}$

*: Uji tambahan

Berdasarkan hasil analisis, pada uji organoleptik yaitu uji hedonik atau kesukaan terhadap 30 orang panelis tidak terlatih ternyata, sabun mandi cair

yang dianalisis cukup disukai oleh masyarakat. Uji hedonik ini kami lakukan dengan cara sabun mandi cair yang kami analisis dibandingkan dengan sabun mandi cair yang sudah cukup terkenal di masyarakat.

Pada uji kimia, yaitu penentuan asam/alkali bebas terdapat proses penyaringan sampel sabun. Pada saat proses penyaringan ini harus ditutup dengan kaca arloji agar CO₂ tidak masuk atau terjerap dalam sampel sabun karena apabila CO₂ ini terjerap dapat menyebabkan CO₂ tersebut bereaksi dengan alkali dalam sampel sehingga membentuk Na₂CO₃ yang bisa mempengaruhi pH yang nantinya berakibat pada hasil kadar yang diperoleh. Hal ini pun berlaku pada penggunaan air bebas CO₂ dalam uji pH. Adapun asam lemak yang dihitung sebagai asam lemak bebas ialah asam lemak yang tidak bereaksi dengan basa dan juga asam lemak berlebih yang sengaja ditambahkan pada produk tersebut.

Sabun mandi cair yang dianalisis dengan konsentrasi pengenceran 10% juga memiliki kemampuan menghambat bakteri *Escherichia coli* yang mendekati kemampuan antiseptik cair dengan konsentrasi 2,5% dalam menghambat bakteri *Escherichia coli* (dengan beda sebesar 26,4%). Hal ini didasarkan atas uji daya hambat sabun terhadap bakteri *Escherichia coli* yang telah dilakukan.

BAB V Simpulan dan Saran

Kesimpulan

Berdasarkan analisis terhadap sabun mandi cair merek "Z" didapatkan hasil bahwa semua parameter uji sesuai dengan SNI 4085:2017 tentang "Sabun Mandi Cair", sehingga produk yang dianalisis layak digunakan.

Saran

Kepada masyarakat diharapkan untuk tidak melihat kualitas suatu produk dari terkenal atau tidaknya produk tersebut.

Daftar Pustaka

Badan Standarisasi Nasional. 2017. SNI 4085:2017 Sabun Mandi Cair Jakarta: Badan Standarisasi Nasional.

http://eprints.polsri.ac.id/4060/3/File%203%20%28BAB%20II%29.pdf

http://erepo.unud.ac.id/17474/3/1105315032-3-Bab%20II.pdf

http://repository.unand.ac.id/22551/3/bab%201.pdf

https://repository.widyatama.ac.id/xmlui/bitstream/handle/10364/516/bab2.pdf?sequence=4

Priantieni, Eunike Yanny dan Agustine, Hadiati. 2016. *Panduan Keterampilan Berkomunikasi*. Bogor: SMK – SMAK Bogor

Tim Penulis Bahan Departemen Pendidikan Nasional.2005. *Pedoman Unsur Ejaan Bahan Indonesia yang Disempurnakan*. Jakarta: Balai Pustaka

Yusah, Masyitah, Rahman Arief, dkk. 2017. *Analisis Organoleptik*. Kementerian Perindustrian Pusdiklat Industri Sekolah Menengah Kejuruan (SMK) SMAK Bogor.

LAMPIRAN

Organoleptik

Rekapitulasi Hasil Uji Hedonik Mutu Pada Sabun Mandi Cair Merek "Z"

N _a	Nama Danalia	Ber	ntuk	Ва	au	Wa	ırna
No.	Nama Panelis	281	385	281	385	281	385
1	Noviantoro S	7	6	7	6	5	6
2	Dhiya F	5	5	6	5	5	6
3	Samsul Maulana	5	6	5	6	7	5
4	Aliefi Mutiara Syafitri	5	5	7	5	6	6
5	Ratu Belva	6	5	7	4	6	4
6	Krisna Arya W	5	5	7	6	5	4
7	Rayhan Akbar	6	6	7	5	6	6
8	Zikri Aulia Rahman	5	6	5	6	6	6
9	Dinda N A	4	4	5	6	5	6
10	Az Zahra P R	6	7	7	6	7	6
11	Nurfaridah	5	6	5	6	6	5
12	Xaviera Fidela	6	7	6	5	7	4
13	Dhytho A	6	6	6	4	3	7
14	Salashati Julia A	5	5	5	4	5	4
15	M Herdi Pratama	5	6	3	6	3	5
16	Cicilia R	5	3	3	5	4	6
17	Nabila Putri	5	5	6	4	3	5
18	Khairy Yunda M	6	5	5	6	5	5
19	Nailah Ibtisam	5	5	6	5	6	5
20	Nafilah Ikram N	6	6	5	7	5	7
21	Vina Hamidah Putri	4	4	4	5	4	5
22	Fajar Priyono	5	6	5	6	4	5
23	Shaufika Hidayati	5	5	6	4	6	4
24	Shafwa	5	7	6	5	6	6
25	Anastasia Segari	6	7	5	7	6	7
26	Akela G Pahu	6	5	4	7	7	5
27	Arrafli I F M	7	7	7	7	7	7
28	Delia Dwi A	3	4	4	5	4	6
	Jumlah	149	154	154	153	149	153
	Rata-Rata	5,3	5,5	5,5	5,5	5,3	5,5
	Pembulatan	5	6	6	5	5	5

Rekapitulasi Hasil Uji Hedonik Mutu Pada Sabun Mandi Cair Merek "Z"

No. Nome Denelle		Bentuk		Bau		Warna	
No.	Nama Panelis	281	385	281	385	281	385
1	Marchela I	4	4	3	2	3	3
2	Vina Hamidah Putri	4	3	2	4	2	3
3	Nabila Putri W P	5	5	5	4	4	4
4	Salmita Lutfiah	2	3	2	4	4	2
5	Nurmuna S P	3	4	2	5	3	5
6	Boyque Van Allen	4	4	4	5	5	5
7	Velliana Intan M A	5	5	4	4	5	4
8	Salashati J	3	3	3	5	3	3
9	Faqih M Azhar	3	3	4	3	4	2
10	Nanda Tasqia Amaranti	4	4	5	4	4	3
11	Hera Aulia H P	3	3	4	4	3	3
12	Shaufika Hidayati	4	3	4	3	4	3
13	Irfa Aldina Musfiroh	3	4	2	4	3	4
14	Ben Eliot H	4	3	4	4	4	4
15	Natasya D R	3	2	2	3	4	3
16	Sifathul Jannah	3	3	3	4	2	3
17	M Reza Al Harris	3	4	4	4	4	3
18	Alyaa F Maulida A	5	4	5	4	4	5
19	Favian Daffa	3	3	4	3	4	5
20	Nada Alya	5	5	2	5	2	4
21	Puji Ayu N S	3	3	4	3	4	3
22	Olivia T P	4	4	4	5	5	5
23	Mellyawati An Dana	4	4	2	4	4	4
24	Salsabila F	4	2	2	3	2	4
25	Dhiyah P	3	3	3	4	3	4
26	M Nirwan Habibi	4	3	2	5	3	4
27	M Sofi Husaini U	4	4	3	5	4	5
28	Ratu Belva	4	4	3	4	2	4
29	Nurul Bunga K	4	4	4	2	3	3
30	Pandu Putra P	3	4	4	5	3	2
	Jumlah	110	107	99	118	104	109
	Rata-Rata	3,7	3,6	3,3	3,9	3,5	3,6
Pembulatan		4	4	3	4	3	4

Kimia

1.Uji pH

Suhu Pengukuran : 27°C

Pengulangan	pH Terbaca
Pertama	8,06
Kedua	8,06
Ketiga	8,04
Keempat	8,07
Kelima	8,08

2. Total Bahan Aktif

a. Penentuan Bahan yang Larut dalam Etanol

Data Penimbangan

Bobot	Simplo	Duplo	
Bobot sampel + wadah	68,1232 gram	69, 5728 gram	
Bobot kosong	63, 1905 gram	64,5721 gram	
Bobot Sampel	4, 9327 gram	5,0007 gram	

Data Pengamatan

Bobot	Simplo	Duplo
Cawan Kosong	64,0805 gram	63,8683 gram
Pengulangan I	64,6361 gram	64,3907 gram
Pengulangan II	64,6388 gram	64,3957 gram
Pengulangan III	64,6473 gram	64,3977 gram
Pengulangan IV	64,6475 gram	64,4050 gram
Pengulangan V	64,6488 gram	64,4057 gram
Pengulangan VI	64,6496 gram	64,4062 gram
Pengulangan VII	64,6504 gram	64,4075 gram
Pengulangan VIII	64,6512 gram	64,4066 gram
Pengulangan IX	64,6518 gram	64,4079 gram
Pengulangan X	64,6523 gram	64,4082 gram
Pengulangan XI	64,6525 gram	64,4088 gram
Pengulangan XII	64,6530 gram	64,4092 gram
Pengulangan XIII	64,6553 gram	64,4095 gram
Pengulangan XIV	64,6563 gram	64,4097 gram
Pengulangan XV	64,6569 gram	64,4100 gram
Pengulangan XVI	64,6576 gram	64,4105 gram
Pengulangan XVII	64,6578 gram	64,4106 gram
Pengulangan XVIII	64,6580 gram	64,4107 gram

Perhitungan

$$C = \frac{250 \times A}{S}$$

C simplo =
$$\frac{250 \times 0,5775}{4,9327}$$
 = 29,27 %

C duplo =
$$\frac{250 \times 0,5424}{5,0007}$$
 = 27,12 %

b. Penentuan Bahan yang Larut dalam Petroleum Eter

Data Penimbangan

Bobot	Simplo	Duplo
Bobot sampel + wadah	75,5035 gram	75,3770 gram
Bobot kosong	64,8469 gram	65,505 gram
Bobot Sampel	10,6566 gram	9,8720 gram

Data Pengamatan

Bobot	Simplo	Duplo
Cawan Kosong	109,0829 gram	107,7496 gram
Pengulangan I	109,6069 gram	107,9526 gram
Pengulangan II	109,5950 gram	107,9465 gram
Pengulangan III	109,5859 gram	107,9430 gram
Pengulangan IV	109,5708 gram	107,9164 gram
Pengulangan V	109,5582 gram	107,9133 gram
Pengulangan VI	109,5480 gram	107,9104 gram
Pengulangan VII	109,5360 gram	107,9074 gram
Pengulangan VIII	109,5263 gram	107,9048 gram
Pengulangan IX	109,5170 gram	107,8968 gram
Pengulangan X	109,5092 gram	107,8805 gram
Pengulangan XI	109,5015 gram	107,8822 gram
Pengulangan XII	109,4944 gram	107,8823 gram
Pengulangan XIII	109,4866 gram	107,8821 gram
Pengulangan XIV	109,4803 gram	107,8820 gram
Pengulangan XV	109,4736 gram	107,8821 gram
Pengulangan XVI	109,4652 gram	107,8820 gram
Pengulangan XVII	109,3798 gram	107,8819 gram
Pengulangan XVIII	109,3797 gram	107,8819 gram
Pengulangan XIX	109,3797 gram	107,8819 gram
Pengulangan XX	109,3791 gram	107,8818 gram
Pengulangan XXI	109,3790 gram	107,8818 gram
Pengulangan XXII	109,3789 gram	107,8818 gram

Perhitungan

$$C = \frac{A}{S} \times 100 \%$$

C simplo =
$$\frac{0,296}{10,6566} \times 100 \% = 2,78 \%$$

C duplo =
$$\frac{0,1322}{9,8720} \times 100 \% = 1,34 \%$$

Perhitungan Total Bahan Aktif

Total bahan aktif = Cetanol - C petroleum eter

Simplo =
$$29,27 \% - 2,78 \% = 26,49 \%$$

Duplo = $27,12 \% - 1,34 \% = 26,78 \%$

3. Asam Lemak Bebas

Data Penitaran

Pengulangan	Bobot Contoh	Penitar	Normalitas Penitar	Volume Penitar	Indikato r	Warna Titik Akhir
Simplo	4887,5 mg	KOH 0,1 N	0,0928 N	1,7 ml	PP	Merah muda
Duplo	4295,2 mg	(alkohol is)	0,002011	1,52 ml		seulas

Perhitungan

Asam lemak bebas =
$$\frac{282 \times V \times N}{b} \times 100 \%$$

Asam lemak bebas simplo =
$$\frac{282 \times 1.7 \times 0.0928}{4887.5} \times 100 \% = 0.91 \%$$

Asam lemak bebas duplo =
$$\frac{282 \times 1,52 \times 0,0928}{4295,2} \times 100 \% = 0,93 \%$$

Mikrobiologi

1. Angka Lempeng Total

Simplo

Perlakuan		Blanko		
renakuan	10^{-1}	10^{-2}	10^{-3}	Dialiko
Simplo	0	0	0	
Duplo	0	0	0	
Rata-rata Jumlah Simplo dan Duplo	0	0	0	0

Duplo

Perlakuan		Blanko		
Feliakuali	10^{-1}	10-2	10^{-3}	Dialiku
Simplo	0	0	0	
Duplo	0	0	0	
Rata-rata Jumlah Simplo dan Duplo	0	0	0	0

2. Angka Kapang dan Kamir

Simplo

	Pengenceran					Blanko	
Perlakuan	10	-1	10	-2	10	-3	Diariko
	Кр	Kh	Кр	Kh	Kp	Kh	
Simplo	0	0	0	0	0	0	
Duplo	0	0	0	0	0	0	
Rata-rata Jumlah Simplo dan Duplo	0	0	0	0	0	0	0

Duplo

	Pengenceran					Blanko	
Perlakuan	10	₎ -1	10	-2	10) -3	Biariko
	Кр	Kh	Кр	Kh	Кр	Kh	
Simplo	0	0	0	0	0	0	
Duplo	0	0	0	0	0	0	
Rata-rata Jumlah Simplo dan Duplo	0	0	0	0	0	0	0

3. Pemeriksaan Pseudomonas aeruginosa

lania Danaviiaa	Madia	Inkub	oasi	Danaulanan	Heeil	Warna
Jenis Pengujian	Jenis Pengujian Media		Waktu	Pengulangan	Hasil	Koloni
Pseudomonas aeruginosa	Cetrimide Agar 35°C	24 jam	Simplo	(-)	Tidak ditumbuhi koloni bakteri	
aeruginosa				Duplo	(-)	Tidak ditumbuhi koloni bakteri

4. Pemeriksaan Staphylococcus aureus

Jenis Pengujian	Media	Inkubasi		Dongulongon	Haail	Warna
	iviedia	Suhu	Waktu	Pengulangan	Hasil	Koloni
Staphylococcus aureus		35°C	24 jam	Simplo	(-)	Tidak ditumbuhi koloni bakteri
aureus				Duplo	(-)	Tidak ditumbuhi koloni bakteri

5. Pemeriksaan Candida albicans

Jenis	Media	Inku	ıbasi	Hasil	Warna Koloni	
Pengujian	Ivicala	Suhu	Waktu	Hasii	vvairia (Ciorii	
Candida albicans	Potato Dextrose Agar	28°C	5 hari	(-)	Tidak ditumbuhi koloni berwarna putih	

6. Uji Daya Hambat Sabun Terhadap Bakteri *Escherichia coli*

Konsentrasi	High	Medium	Low	Positif (Antiseptik Cair)	Negatif (Air)
Pengenceran	10 %	5 %	2,5 %	2,5 %	-
Diameter Zona Bening	2,3 cm	2,1 cm	2,0 cm	3,0 cm	0 cm

Rincian Analisis Kewirausahaan

1. Uji pH

Nama Bahan	Kebutuhan	Satuan	Harga
Buffer pH 4	5	mL	Rp. 2.000
Buffer pH 7	5	mL	Rp. 2.000
Jasa Analisis			Rp. 35.000
Total Harga			Rp. 39.000
Laba (10%)			Rp. 3.900
Total Biaya Analisis			Rp. 42.900

2. Asam Lemak Bebas

Nama Bahan	Kebutuhan	Satuan	Harga
Alkohol	850	mL	Rp. 54.000
KOH	0,56	gram	Rp. 500
Ind. PP	1	gram	Rp. 29.500
KS no. 41	2	lembar	Rp. 7.000
Jasa Analisis			Rp. 40.000
Total Harga			Rp. 131.000
Laba (10%)			Rp. 13.100
Total Biaya Analisis			Rp. 144.100

3. Bahan Terlarut dalam Ethanol

Nama Bahan	Kebutuhan	Satuan	Harga
EthanolAbsolute	200	mL	Rp. 68.000
Alkohol	400	mL	Rp. 26.000
Kertas Saring	2	lembar	Rp. 2.000
Jasa Analisis			Rp. 50.000
Total Harga			Rp. 146.000
Laba (10%)			Rp. 14.600
Total Biaya Analisis			Rp. 160.600

4. Bahan Terlarut dalam Petroleum Eter

Nama Bahan	Kebutuhan	Satuan	Harga
Air Suling	430	mL	Rp. 4.000
Alkohol	300	mL	Rp. 19.000
Na2SO4 anhidrat	5	Gram	Rp. 1.000
Kertas Saring	2	Lembar	Rp. 2.000
NaOH	10	mL	Rp. 8.000
Petroleum Eter	300	mL	Rp. 406.000
Jasa Analisis			Rp. 50.000
Total Harga			Rp. 490.000
Laba (10%)			Rp. 49.000
Total Biaya Analisis			Rp. 539.000

5. Pemeriksaan Pseudomonas aeruginosa

Nama Bahan	Kebutuhan	Satuan	Harga
Cetrimide Agar	0.69	gram	Rp. 4.000
Buffered Peptone	1.95	gram	Rp. 4.000
Water			
Spirtus	10	mL	Rp. 220
Jasa Analisis			Rp. 40.000
Total Harga			Rp. 48.220
Laba (10%)			Rp. 4.822
Total Biaya Analisis			Rp. 53.042

6. Pemeriksaan Staphylococcus aureus

Nama Bahan	Kebutuhan	Satuan	Harga
Mannitol Salt Agar	1.665	gram	Rp. 5.000
Buffered Peptone	1.95	gram	Rp. 4.000
Water			
Spirtus	10	mL	Rp. 220
Jasa Analisis			Rp. 40.000
Total Harga			Rp. 49.220
Laba (10%)			Rp. 4.922
Total Biaya Analisis			Rp. 54.142

7. Perhitungan Jumlah Bakteri

Nama Bahan	Kebutuhan	satuan	Harga
Plate Count Agar	1.44	gram	Rp. 4.000
Buffered Peptone Water	2.652	gram	Rp. 6.000
Spirtus	10	mL	Rp. 220
Jasa Analisis			Rp. 50.000
Total Harga			Rp. 60.220
Laba (10%)			Rp. 6.022
Total Biaya Analisis			Rp. 66.222

8. Perhitungan Kapang Khamir

Nama Bahan	Kebutuhan	Satuan	Harga
Potato Dextrose Agar	2.34	gram	Rp. 7.000
Buffered Peptone	2.652	gram	Rp. 6.000
Water		-	·
Spirtus	10	mL	Rp. 220
Jasa Analisis			Rp. 50.000
Total Harga			Rp. 63.220
Laba (10%)			Rp. 6.322
Total Biaya Analisis			Rp. 69.542

9. Pemeriksaan Candida albicans

Nama Bahan	Kebutuhan	Satuan	Harga
Potato Dextrose Agar	0.585	gram	Rp. 2.000
Buffered Peptone	1.95	gram	Rp. 4.000
Water			·
Spirtus	10	mL	Rp. 220

Jasa Analisis	Rp. 40.000
Total Harga	Rp. 46.220
Laba (10%)	Rp. 4.622
Total Biaya Analisis	Rp. 50.842

10. Uji Daya Hambat Sabun Terhadap Bakteri Escherichia coli

Nama Bahan	Kebutuhan	Satuan	Harga
Air Suling	170	mL	Rp. 1.500
Nutrient Agar	0.4	gram	Rp. 1.500
Spirtus	10	mL	Rp. 220
Jasa Analisis			Rp. 45.000
Total Harga			Rp 48.220
Laba (10%)			Rp. 4.822
Total Biaya Analisis			Rp. 53.042