Rapport de TP 4MMAOD : Génération de patch optimal "Question 2 : Modélisation par Bellman"

GOUTTEFARDE Léo (groupe 5) PIELLARD Jérémie (groupe 2)

6 novembre 2015

Modélisation du problème général par équation de Bellman

Données

- On cherche à créer un patch P minimal qui transforme un fichier F_1 de n lignes en un fichier F_2 de m lignes.
- On note $F_1(i)$, la ligne $i \in 1 \cdots n$ du fichier 1 et $F_2(j)$ la ligne $j \in 1 \cdots m$ du fichier 2.
- On définit $L(F_i(j))$ comme le nombre de caractères de la ligne $F_i(j)$ (incluant le caractère de fin de ligne).
- Soit (i, j) l'état dans lequel on a utilisé les i premières lignes du fichier F_1 de départ pour générer les j premières lignes du fichier de sortie.
- Soit C_{ij}^* le coût optimal du patch transformant les i premières lignes du fichier F_1 d'entrée en les j premières lignes du fichier de sortie.

Variables

On introduit les variables suivantes :

- u_{ij} : décision à l'état (i, j)
- h_{ij} : coût de substitution de la ligne $F_1(i)$ par la ligne $F_2(j)$. Vaut 0 si $F_1(i) = F_2(j)$, $10 + L(F_2(j))$ sinon

On introduit les variables binaires (de valeur 1 ou 0) suivantes :

- s_{ij} : modélise la substitution (ou non) de la ligne $F_1(i)$ par la ligne $F_2(j)$
- d_i : modélise la destruction (ou non) de la ligne $F_1(i)$
- D_i^w : modélise la destruction (ou non) des m lignes de la ligne k à la ligne k+m-1 de F_1
- a_j : modélise l'ajout (ou non) de la ligne $F_2(j)$

Objectif

Pour tout état (i, j), il y a 4 opérations possibles :

- 1. Ajout [+] : aller vers l'état (i, j + 1), en ajoutant la ligne B_j au fichier F_1 d'entrée. Coût = $10 + L_i^B$
- 2. Substitution [=] : aller vers l'état (i+1, j+1), en substituant la ligne $F_1(i)$ par la ligne $F_2(j)$. Coût = 0 si $F_1(i) = F_2(j)$, $10 + L_j^B$ sinon.
- 3. Destruction simple [d] : aller vers l'état (i+1,j) en détruisant la ligne i du fichier d'entrée. Coût = 10
- 4. Destruction multiple [D] : aller vers l'état $(i+w,j),\ w\in 2\cdots n$ en détruisant les lignes $i\cdots i+w-1$ du fichier d'entrée. Coût = 15

Ainsi on obtient l'équation de Bellman suivante :

```
C_{ij}^*(a_j, s_{ij}, d_i, D_i^w, u_{ij}) = \min( 10 + C_{i+1,j}^*(a_j, s_{i+1,j}, d_{i+1}, D_{i+1}^w, u_{ij}), 
15 + C_{i+k,j}^*(a_j, s_{i+k,j}, d_{i+k}, D_{i+k}^w, u_{i+k,j}), 
h_{ij} + C_{i+1,j+1}^*(a_{j+1}, s_{i+1,j+1}, d_{i+1}, D_{i+1}^w, u_{i+1,j+1}), 
10 + L(F_2(j)) + C_{i,j+1}^*(a_{j+1}, s_{i,j+1}, d_i, D_i^w, u_{i,j+1})
```