DISEQUAZIONI #6

3C Liceo Scientifico

10 ottobre 2022

Ultime osservazioni sui sistemi

Ultime osservazioni sui sistemi

 Se una disequazione di un sistema è impossibile, allora l'intero sistema è impossibile.
[Esempio a p. 20]

 Se una disequazione di un sistema è sempre verificata, questa può essere rimossa dal sistema.
[Esempio a p. 19]

Scritture equivalenti

Scritture equivalenti

► La parentesi graffa è equivalente alla congiunzione ∧:

$$\begin{cases} x^2 \le 1 \\ 2x - 1 > 0 \end{cases} \iff x^2 \le 1 \land 2x - 1 > 0$$

Scritture equivalenti

► La parentesi graffa è equivalente alla congiunzione ∧:

$$\begin{cases} x^2 \le 1 \\ 2x - 1 > 0 \end{cases} \iff x^2 \le 1 \land 2x - 1 > 0$$

► Una doppia disequazione è equivalente a un sistema:

$$3 \le x^2 \le 5 \quad \Longleftrightarrow \quad \begin{cases} x^2 \ge 3 \\ x^2 \le 5 \end{cases}$$

Espressioni irrazionali (1)

L'espressione $\sqrt{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n pari)

Espressioni irrazionali (1)

L'espressione $\sqrt{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n pari)

ightharpoonup è definita solo per i valori di x tali che $A(x) \geq 0$ (Condizione di esistenza)

Espressioni irrazionali (1)

L'espressione $\sqrt{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n pari)

- ightharpoonup è definita solo per i valori di x tali che $A(x) \geq 0$ (Condizione di esistenza)
- ▶ è non negativa per qualsiasi valore (consentito) di x:

$$\sqrt{A(x)} \ge 0$$
 per ogni x tale che $A(x) \ge 0$

Espressioni irrazionali (2)

L'espressione $\sqrt[3]{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n dispari)

Espressioni irrazionali (2)

L'espressione $\sqrt[3]{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n dispari)

ightharpoonup è definita per tutti i valori di x per cui esiste A(x) (Condizione di esistenza non necessaria)

Espressioni irrazionali (2)

L'espressione $\sqrt[3]{A(x)}$ (oppure $\sqrt[n]{A(x)}$ con n dispari)

- ightharpoonup è definita per tutti i valori di x per cui esiste A(x) (Condizione di esistenza non necessaria)
- ha lo stesso segno di A(x): in generale può essere positiva, negativa o nulla.

Strategia risolutiva (in generale)

Strategia risolutiva (in generale)

1. Individuare le condizioni di esistenza

Strategia risolutiva (in generale)

- 1. Individuare le condizioni di esistenza
- 2. Eliminare le radici dall'equazione mediante opportuni elevamenti a potenza

Strategia risolutiva (in generale)

- 1. Individuare le condizioni di esistenza
- 2. Eliminare le radici dall'equazione mediante opportuni elevamenti a potenza
- 3. Risolvere l'equazione (razionale) ottenuta e scartare le soluzioni che non soddisfano le C.E.

► Se *n* è un intero positivo dispari, allora

$$A(x) = B(x) \iff A(x)^n = B(x)^n$$

ightharpoonup Se n è un intero positivo dispari, allora

$$A(x) = B(x) \iff A(x)^n = B(x)^n$$

Ad esempio, l'equazione irrazionale $\sqrt[3]{x^2 - 1} = 2$ è equivalente all'equazione $x^2 - 1 = 8$ (ottenuta elevando al cubo i 2 membri)

► Se *n* è un intero positivo dispari, allora

$$A(x) = B(x) \iff A(x)^n = B(x)^n$$

Ad esempio, l'equazione irrazionale $\sqrt[3]{x^2 - 1} = 2$ è equivalente all'equazione $x^2 - 1 = 8$ (ottenuta elevando al cubo i 2 membri)

► Se n è pari e A(x) e B(x) sono non negativi, allora

$$A(x) = B(x) \iff A(x)^n = B(x)^n$$

Controesempi

In generale, <u>non è possibile elevare al quadrato</u> entrambi i membri di un'equazione:

$$2x + 1 = 3 \iff (2x + 1)^2 = 9$$

Controesempi

In generale, <u>non è possibile elevare al quadrato</u> entrambi i membri di un'equazione:

$$2x + 1 = 3 \iff (2x + 1)^2 = 9$$

Prima di poter effettuare questo passaggio bisogna dedurre delle condizioni che garantiscano che i due membri siano non negativi:

$$2x + 1 = 3 \iff \begin{cases} 2x + 1 \ge 0 \\ (2x + 1)^2 = 9 \end{cases}$$