CSE 575 Statistical Machine Learning

Lecture 19 YooJung Choi Fall 2022

Principal component analysis

Maximum variance formulation:

Maximize
$$\mathbf{u}_1^T \mathbf{\Sigma} \mathbf{u}_1$$
 s.t. $\|\mathbf{u}_1\|^2 = 1$, where $\mathbf{\Sigma} = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T$
Maximize $\mathbf{u}_i^T \mathbf{\Sigma} \mathbf{u}_i$ s.t. $\|\mathbf{u}_i\|^2 = 1$ and $\mathbf{u}_i^T \mathbf{u}_i$ $\forall j < i$, sequentially for each subsequent i

Principal component analysis

Minimum error formulation: minimize the reconstruction error

$$J(\mathbf{x}, \tilde{\mathbf{x}}) = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

where $\tilde{\mathbf{x}}_n$ is a reconstruction from an M-dimensional latent space

Principal component analysis

Minimum error formulation: minimize the reconstruction error

$$J(\mathbf{x}, \tilde{\mathbf{x}}) = \frac{1}{N} \sum_{n=1}^{N} ||\mathbf{x}_n - \tilde{\mathbf{x}}_n||^2$$

where $\tilde{\mathbf{x}}_n$ is a reconstruction from an M-dimensional latent space

• Let $\mathbf{w}_1, ..., \mathbf{w}_D$ be orthonormal basis vectors. Then

$$\mathbf{x}_n = \sum_{i=1}^D (\mathbf{x}_n^T \mathbf{w}_i) \mathbf{w}_i$$

Reconstructed from an M-dimensional subspace,

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^{M} (\mathbf{x}_n^T \mathbf{w}_i) \mathbf{w}_i + \sum_{i=M+1}^{D} b_i \mathbf{w}_i$$

To show equivalence to maximum variance formulation:

- 1) Show $b_i = \boldsymbol{\mu}^T \mathbf{w}_i$ to minimize $J(\mathbf{x}, \tilde{\mathbf{x}})$
- 2) Show $J(\mathbf{x}, \tilde{\mathbf{x}}) = \sum_{i=M+1}^{D} \mathbf{w}_i^T \mathbf{\Sigma} \mathbf{w}_i$

Linear in \mathbf{x}_n

Dim. Reduction with MLPs

- Consider an MLP with D input units, M hidden units, and D output units (M < D)
- Given an input x, want the network to output x as closely as possible
- Minimize the sum-of-squares error:

Dim. Reduction with MLPs

- Suppose the activation functions are linear
- Then $E(\mathbf{W}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}(\mathbf{x}_n, \mathbf{W}) \mathbf{x}_n||^2$ has a global minimum, which performs a projection onto the subspace spanned by the *M principal components*

(True even with nonlinear hidden units)

M-dim projection

Note: the vectors are not necessarily orthogonal or normalized $\mathbf{w}^{[1]}\mathbf{x}$ $\mathbf{y} = \mathbf{w}^{[2]}(\mathbf{w}^{[1]}\mathbf{x})$ D-dim reconstruction

inputs hidden outputs

Autoencoders

• With additional hidden layers (using nonlinear activation functions), the network performs *nonlinear dimensionality reduction*

Autoencoders

• With additional hidden layers (with nonlinear activation functions), the network performs *nonlinear dimensionality reduction*

Midterm 2 logistics

- Written exam, Wednesday 11/9, in-class
- Closed book.
- One single-sided letter-sized cheat sheet (with your name on it).
- No computers. Basic calculator allowed.
- Covers all materials. Focus on the following topics:
 - Support vector machines
 - Neural networks
 - Bayesian networks, Gaussian mixtures, EM
 - K-means
 - Dimension reduction

Project presentations

- Each group gets a 15-minute slot including Q&A (hard limit). Prepare to speak for 10-12 minutes. All members in your group need to present.
- Sign up for your presentation slot at https://links.asu.edu/CSE575-F22
- Submit your slides by noon on the day of presentation
- 10% of total grade. You will be graded on:
 - Problem description & motivation
 - Methodology used
 - Comparison with existing work
 - Lesson learned
 - Clarity of presentation
 - Q&A (both as presenters and audience)