

hxyan.2015@gmail.com | github.com/hxyan2020

STRATEGY & ECONOMIC RATIONALE

The investment universe consists of currencies from developed countries (the Euro area, Austral ia, Canada, Denmark, Japan, New Zealand, Norway, Sweden, Switzerland, and the United Kingdom).

The average forward discount (AFD) is calculated for this basket of currencies (each currency h as an equal weight). The average 3-month rate could be used instead of the AFD in the calculation. The AFD is then compared to the 3-month US Treasury rate.

The investor goes long on the US dollar and goes short on the basket of currencies if the 3-mon th US Treasury rate is higher than the AFD. The investor goes short on the US dollar and long on the basket of currencies if the 3-month US Treasury rate is lower than the AFD. The portfolio is rebalanced monthly.

BUY	SELL	
goes long on the US dollar	goes short on the basket of currencies if the 3-mont h US Treasury rate is high er than the AFD	

PARAMETER & VARIABLES

PARAMETER	VALUE		
MARKETS	Currency		
TRADED			
FINANCIAL INSTRUMENTS	CFDs, forwards, futures, swaps		
REGION	Global		
PERIOD OF REBALANCING	Monthly		
NO. OF TRADED INSTRUMENTS	10		
WEIGHTING	Equal weighting		
LOOKBACK PERIODS	3 months		
LONG/SHORT	Long & Short		

ALGORITHM

```
Not Over Thinking – where I share my journey to algorithmic trading and investments in shortest words possible
                         "CME_EC1" : "OECD/KEI_IR3TIB01_EA19_ST_M",# Euro FX Futures,
Continuous Contract #1
                         "CME JY1" : "OECD/KEI IR3TIB01 JPN ST M", # Japanese Yen Futures,
Continuous Contract #1
                         "CME_MP1" : "OECD/KEI_IR3TIB01_MEX_ST_M", # Mexican Peso Futures,
Continuous Contract #1
                         "CME_NE1" : "OECD/KEI_IR3TIB01_NZL_ST_M", # New Zealand Dollar
Futures, Continuous Contract #1
                         "CME_SF1" : "SNB/ZIMOMA"
                                                                    # Swiss Franc Futures,
Continuous Contract #1
                         }
        for symbol in self.symbols:
            data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
            data.SetFeeModel(CustomFeeModel())
            data.SetLeverage(5)
            # Interbank rate data.
            cash_rate_symbol = self.symbols[symbol]
            self.AddData(QuandlValue, cash rate symbol, Resolution.Daily)
        self.treasury_rate = self.AddData(QuandlValue, 'FRED/DGS3MO',
Resolution.Daily).Symbol
    def OnData(self, data):
        fd = \{\}
        for future_symbol, cash_rate_symbol in self.symbols.items():
            if cash_rate_symbol in data and data[cash_rate_symbol]:
                if self.Securities[future_symbol].GetLastData() and (self.Time.date() -
self.Securities[future symbol].GetLastData().Time.date()).days < 5:</pre>
                    cash rate = data[cash rate symbol].Value
                    # Update cash rate only once a month.
                    fd[future symbol] = cash rate
        if len(fd) == 0: return
        afd = np.mean([x[1] for x in fd.items()])
        if self.Securities[self.treasury_rate].GetLastData() and (self.Time.date() -
self.Securities[self.treasury_rate].GetLastData().Time.date()).days < 5:</pre>
            treasuries_3m_rate = self.Securities[self.treasury_rate].Price
            count = len(self.symbols)
            if treasuries 3m rate > afd:
                # Long on the US dollar and goes short on the basket of currencies.
                for symbol in self.symbols:
                    self.SetHoldings(symbol, -1 / count)
            else:
                # Short on the US dollar and long on the basket of currencies.
                for symbol in self.symbols:
                    self.SetHoldings(symbol, 1 / count)
```

```
Not Over Thinking – where I share my journey to algorithmic trading and investments in shortest words possible
```

```
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
    def GetSource(self, config, date, isLiveMode):
        return
SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(confi
g.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
    def Reader(self, config, line, date, isLiveMode):
        data = QuantpediaFutures()
        data.Symbol = config.Symbol
        if not line[0].isdigit(): return None
        split = line.split(';')
        data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
        data['back_adjusted'] = float(split[1])
        data['spliced'] = float(split[2])
        data.Value = float(split[1])
        return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
   def __init__(self):
        self.ValueColumnName = 'Value'
# Custom fee model.
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))
```


Fig 1. Overall Performance

PSR	0.000%	Sharpe Ratio	0.129
Total Trades	2081	Average Win	0.07%
Average Loss	-0.06%	Compounding Annual Return	0.846%
Drawdown	26.000%	Expectancy	0.365
Net Profit	21.653%	Loss Rate	39%
Win Rate	61%	Profit-Loss Ratio	1.23
Alpha	0.002	Beta	0.091
Annual Standard Deviation	0.058	Annual Variance	0.003
Information Ratio	-0.319	Tracking Error	0.158
Treynor Ratio	0.083	Total Fees	\$74.74
Estimated Strategy Capacity	\$0	Lowest Capacity Asset	CME_AD1.QuantpediaFutures 2S
Portfolio Turnover	0.16%		

Fig 2. Performance Metrics

Fig 3. Drawdown

Fig 4. Assets Sales Volume