AM 1 - Ficha 6 Resolução Teoremas da Continuidade e Função Inversa

Felipe Pinto - 61387 26/04 - 2021.1

Conteúdo

I Questões		2
Questão 1 $ \text{Q1 - c)} \cos(1/x) x/(x+1) = \sin(x)/x x \in (0,\infty) \text{ Refazer} . $		2 2
Questão 3		2
Q3 - a)		2
Q3 - b)		2
Q3 - c) $\exists f_{(x)} \in \mathbb{R} : f_{(x)} \in \mathbb{I} \forall x \in \mathbb{Q} \dots \dots \dots \dots$		
Q3 - d) $f_{(x)} \in \mathbb{R} : \cdots$		3
Questão 7		3
Q7 - a) $h_{(x)} = \ln(\sqrt{x-1} + 1)$ $h_{(x)} : [1, \infty) \to \mathbb{R}$		3
(i) $h_{(x)}$ é injetiva		3
$(ii) \qquad I = \mathrm{CD}_{h_{(x)}} \dots \dots \dots \dots \dots \dots \dots \dots$		3
(iii) h^{-1}		3

Parte I

Questões

Questão 1

Q1 - c)
$$\cos(1/x) x/(x+1) = \sin(x)/x$$
 $x \in (0, \infty)$ **Refazer**

$$\iff f_{(x)} = \frac{x}{x+1} \cos(1/x) - \frac{\sin(x)}{x} \implies$$

$$\implies \lim_{x \to 0^+} f_{(x)} = 0 - 1 = -1 < 0;$$

$$\lim_{x \to \infty} f_{(x)} = 1 - 0 = 1 > 0$$

. . .

Questão 3

Não, como o ontradomionio é $\mathbb{R}\setminus\{0\}$ para quaisquer a<0< b existem $\{a',b\}\in\mathbb{R}$:

$$f_{(a')} = a \quad e \quad f_{(b')} = b$$

Portanto $f_{(a')} < 0 < f_{(b')}$

Não existe pois ela possui termos maiores e menores que zero, e como é continua zero deve ser incluso.

$$Q3 - b$$

Q3 - c)
$$\exists f_{(x)} \in \mathbb{R} : f_{(x)} \in \mathbb{I} \quad \forall x \in \mathbb{Q}$$

sim:

$$c_{(x)} = x + \sqrt{2}$$

. . .

Q3 - d)
$$f_{(x)} \in \mathbb{R} : \cdots$$

sim,

$$d_{(x)} = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Questão 7

Q7 - a)
$$h_{(x)} = \ln(\sqrt{x-1} + 1)$$
 : $[1, \infty) \mapsto \mathbb{R}$

(i) $h_{(x)}$ é injetiva

$$\iff x_1 = x_2 \quad \forall \{x_1, x_2\} \in [1, \infty) : h_{(x_1)} = h_{(x_2)} \implies \\ \implies \ln(\sqrt{x_1 - 1} + 1) = \ln(\sqrt{x_2 - 1} + 1) \implies |x_1 - 1| = |x_2 - 1|; \\ \{x_1, x_2\} \in [1, \infty) \implies x_1 = x_2$$

- (ii) $I = CD_{h_{(x)}}$
- (iii) h^{-1}

$$\iff x = \ln\left(\sqrt{h_{(x)}^{-1} - 1} + 1\right) \implies h_{(x)}^{-1} = (e^x - 1)^2 - 1$$

 $\therefore h_{(x)}^{-1} = (e^x - 1)^2 - 1 : [0, \infty) \mapsto [1, \infty)$