代数结构 代数运算

基本概念

设X是一个非空集合,从 X^n 到X上的函数f称为集合X上的n元代数运算,称n为该运算的阶

在X上的二元运算满足:

X上的任意两个元素都可以进行这种运算,且运算的结果唯一 X上任意两个元素的运算结果都属于X

二元运算的性质

交換律: x * y = y * x

结合律: (x*y)*z = x*(y*z)

• 分配律: $x \circ (y * z) = (x \circ y) * (x \circ z)$

幂等律: x ∘ x = x

二元运算中的特殊元

设*为非空集合X上的二元运算 如果存在元素 $e_l(\vec{u}e_x) \in X$ 都有 $e_l*x=x(\vec{u}x*e_x=x)$ 称 $e_l(\vec{u}e_r)$ 为左单位元(右单位元)

左、右零元和左、右逆元(同理)

若左、右单位元都存在,则必相等且唯一

若x * y = x * z则y = z(左消去律), y * x = z * x则y = z(右消去律)

对于群|G|>1,零元与单位元相等

代数系统

基本概念

非空集合G上的k个代数运算 $f_1, f_2, f_3, \ldots, f_k(f_i \mathbb{R}_n \mathbb{R}_$

1. 若 $\phi: G \to H$ 是满射,则称 ϕ 为满同态

2. 若 $\phi: G \to H$ 是单射,则称 ϕ 为单同态

3. 若 $\phi: G \to H$ 是双射,则称 ϕ 为同构

定理:设 $<G,*>,<H,\cdot>$ 是代数系统,*,·是二元运算, ϕ 是从G到H的同态映射

- 1. ·是 $\phi(G)$ 上的运算,即 $<\phi(G)$, · >是代数系统
- 2. 如果*在G上满足交换律,则·在 $\phi(G)$ 上满足交换律
- 3. 如果*在G上满足结合律,则·在 $\phi(G)$ 上满足结合律
- 4. 如果e是< G, * >的单位元,则 $\phi(e)$ 是 $< \phi(G)$, · >的单位元
- 5. 如果 θ 是< G, * >的零元,则 $\phi(\theta)$ 是 $< G, \cdot >$ 的零元

群

基本概念

设<G,*>是代数系统,*是二元运算,如果在G上运算*满足结合律,则称<G,*>为半群。如果G中关于运算*还有单位元e存在,则称<G,*>为有幺半群。

设< G, * >为有幺半群,如果对于G中的任何元素x都有逆元,则称< G, * >为群。进一步如果满足交换律,则称为交换群(阿贝尔群)。

幂运算

定义在半群中,
$$x^n = \begin{cases} x & n=1 \\ x^{n-1} * x & n \geq 2 \end{cases}$$

- $ullet \ orall m,n\in Z, x^mst x^n=x^{m+n}, (x^m)^n=x^{mst n}$
- $\forall x, y \in G, (x * y)^{-1} = y^{-1} * x^{-1}$
- $(x_1 * x_2 * x_3 \dots x_n)^{-1} = x_n^{-1} * \dots * x_2^{-1} * x_1^{-1}$

群的性质

对于一个有限群,该群的元素个数称为该群的阶数,记为|G|,阶数为1的群为平凡群,只含有一个单位元。

对于G中的元素, $x^n = e$ 则称x为n次元,记作|x| = n

群的判断

(方程的唯一可解性)设< G, * >为半群,则< G, * >是群的充分必要条件是对于 $\forall a, b \in G$,方程a * x = b和方程x * a = b在G中有唯一解。

群元素次数

设< G, * >是群,e为其单位元, $a \in G$ 的次数为n,有以下定理:

- $|a| = |a^{-1}|$
- $a^k = e$ 的充要条件是k是n的倍数,即n|k
- a^k 的次数等于 $\frac{lcm(k,n)}{k}$,lcm(k,n)为k和n的最小公倍数
- $s=t \mod n$, $\mathbb{N}a^s=a^n$

设<G,*>是群,a, $b \in G$ 是有限元,则:

- $|b^{-1}ab| = |a|$
- |a * b| = |b * a|

设< G, * >是群,令C是G的所有元素可交换的元素构成的集合,称为G的中心。

子群与陪集

设<G,*>是群,H是G的非空子集,如果H对二元运算*构成群,则称H是G的群

万能判定:

设< G, *>是群,H是G的非空子集,则H为G的子群的充分必要条件是, $orall a, b \in H$,有 $a * b^{-1} \in H$

设< G, *>是群, $\forall a \in G, 则H = < a > = \{a^k, k \in Z\}$ 称为a生成的子群

陪集

设< G, * >是群,H为其子群。对 $a \in G$,称集合 $aH = \{a * h | h \in H\}$ 为子群H相应元素a的左陪集,右陪集同理

所有 (右) 左陪集构成G的一个划分。

拉格朗日定理

设有限群<G,*>则 $|G|=[G:H]\times |H|$,即子群的阶数一定是子群结束的因子

正规子群和商群

不考

设< G, * >是群,H是其子群,如果 $\forall a \in G$ 都有aH = Ha,称H为G的正规子群。

判定

- H是正规子群当且仅当 $\forall \in G$, $h \in H$,都有 $a*h*a^{-1} \in H$
- H是正规子群当且仅当 $\forall a \in G$,都有 $aHa^{-1} = H$

循环群,置换群

设< G,* >是群,若存在 $a \in G$,使得 $\exists a \in G, \forall x \in G$ 都有 $x = a^k (k \in Z)$,则称< G,* >为循环群,a为这个循环群的生成元

- 循环群的子群也是循环群
- 每个正因子d含有d阶子群