Algebra and Analytic Geometry lecture

Philip Policki

9th October 2020

1 Sets of numbers

- Natural Numbers $N = \{1, 2, 3, 4, ...\}$
- Integers $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Rational Numbers $Q = \{\frac{p}{q}; q, p \subset Z, q \neq 0\}$
- \bullet Real Numbers RAny distance from 0 on the number line

2 Operation law on numbers

- 1. Commutative law a + b = b + a
 - ab = ba

2. Associative law

$$(a+b) + c = a + (b+c) (ab)c = a(cb) a(b+c) = ab + bc$$

For $\{N, Z, Q, R\}$ all the laws listed above are true

3 Divisibility

A|B if there is a $c \subset N$

4 Prime Numbers

A natural number $\neq 1$ is called a prime if it has only two divisors, namely 1 and itself.

 $Examples: 2, 3, 5, 7, \dots$

4.1 Theorem

Every natural number can be uniquely (up to orders of factors) described as a product of prime numbers.

Example: 24 = 2*2*2*3

Principle of Mathematical Induction 5

Law for proving statements

If $p_1, p_2, ..., p_k$ are statements and:

- 1. p_1 is true
- 2. if p_k is true, then p_{k+1} is also true

Example:

6 Binomial formula

Newtons formula for expanding powers of sums

$$(x+y)^1 = x+y$$

$$(x+y)^2 = x^2 + 2xy + y^2$$

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + x^2$$

 $(x+y)^1 = x+y$ $(x+y)^2 = x^2 + 2xy + y^2$ $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + x^2$ $(x+y)^4 = To \text{ difficult to remember or to expand}$

6.1 Theorem

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^{n-n}b^n$$

This can be simplified to:

$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$

6.2Find a given coefficient of a given equation

Question: Find the coefficient of x^4 in $(2x - \frac{1}{x})^6$

$$(2x - \frac{1}{x})^6 = (2x + \frac{-1}{x})^6$$

$$\sum_{k=0}^{6} {6 \choose k} (2x)^{6-k} (\frac{-1}{x})^k$$

To calculate 'k' to substitute it into the equation we have to have only one x so: $2^{6-k}x^{6-k}-x^{-k}->x^{6-k-k}->x^{6-2k}$

Based on that and the fact that we want to get the coefficient of x^4 we do the following:

$$6 - 2k = 4$$

$$k = 1$$

So we substitute and we get:

$$\binom{6}{1}2x^{6-1}*(\frac{-1}{x})^1 = \frac{6!}{5!}2x^5*\frac{-1}{x} = 6*2x^5*\frac{-1}{x} = -12x^4$$

Therefore the answer is -12