10.6
$$(f^{n+1}(x))' = (n+1) f^n(x) \cdot f'(x)$$

Si $n+1\neq 0$, c'est-à-dire si $n\neq -1$, on peut diviser cette équation par n+1: $f^n(x)\cdot f'(x)=\frac{1}{n+1}\left(f^{n+1}(x)\right)'=\left(\frac{1}{n+1}\,f^{n+1}(x)\right)'$

Ainsi $\frac{1}{n+1} f^{n+1}(x)$ est une primitive de $f^n(x) \cdot f'(x)$.

C'est pourquoi
$$\int f^n(x) \cdot f'(x) dx = \frac{1}{n+1} f^{n+1}(x)$$
.

Analyse : primitives Corrigé 10.6