EXPERIMENT NUMBER: 2

EXPERIMENT NAME: Design of a 1-bit Comparator

AIM: To design a 1-bit Comparator using logic gates and to verify it.

APPARATUS REQUIRED:

S1. No.	COMPONENT	SPECIFICATION	QUANTITY
1.	AND GATE	IC 7408	1
2.	X-OR GATE	IC 7486	1
3.	NOT GATE	IC 7404	1
4.	IC TRAINER KIT	-	1
5.	CONNECTING WIRES	-	AS REQUIRED

THEORY:

1-Bit Comparator is a combinational logical circuit that compares two single bits A and B. Result of the comparison is produced at the output. As there can be three different possibilities of result – (i) A>B (ii) A<B or (iii) A=B, there are three outputs of a comparator. Depending upon the applied input bits, any one of the three conditions is satisfied and thus the corresponding output goes HIGH, other two outputs remain LOW.

TRUTH TABLE:

INPUTS		OUTPUTS			
A	В	X (A <b)< th=""><th>Y (A=B)</th><th>Z (A>B)</th></b)<>	Y (A=B)	Z (A>B)	
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

1

0

0

CIRCUIT DIAGRAM OF A 1 BIT COMPARATOR:

DESIGN PROCEDURE:

- 1. Truth table of the One bit comparator is prepared.
- 2. K-map for each output variable present in the truth tables is drawn.
- 3. Simplified expression for each output variable is obtained.
- 4. Circuit diagram is drawn as per the simplified expressions of the output variables obtained in step 3.

PRACTICAL PROCEDURE:

- 1. ICs are placed properly on the bread board of the IC trainer kit.
- 2. Connections are made as per the designed circuit diagram.
- 3. Power supply to the board is turned ON.
- 4. Circuit is verified as per the truth table of the circuit.

Student's worksheet-1

Student's observation and conclusion:

- In this figure we can see a combinational logic circuit with two inputs (A, B) and three outputs (X, Y, Z).
- When A=0 and B=0, the output Y i.e. (A=B) is LOW the other two output Z i.e. (A>B) and X i.e. (A<B) remains HIGH.
- The Boolean expression of each gate is $X=(\overline{A},B)$, $Z=(A,\overline{B})$, $Y=\overline{(A+B)}$.

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature:

Phell

Date:19/08/2020

Student's worksheet 2

Student's observation and conclusion:

- In this figure we can see a combinational logic circuit with two inputs (A, B) and three outputs (X, Y, Z).
- When A=0 and B=1, the output X i.e. (A<B) is HIGH the other two output Z i.e. (A>B) and Y i.e. (A=B) remains LOW.
- The Boolean expression of each gate is $X=(\overline{A},B)$, $Z=(A,\overline{B})$, $Y=\overline{(A+B)}$.

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature:
Date:19/08/2020

Filedh

Student's worksheet-3

Student's observation and conclusion:

- In this figure we can see a combinational logic circuit with two inputs (A, B) and three outputs (X, Y, Z).
- When A=1 and B=0, the output Z i.e. (A>B) is HIGH the other two output X i.e. (A<B) and Y i.e. (A=B) remains LOW.
- The Boolean expression of each gate is $X=(\overline{A},B)$, $Z=(A,\overline{B})$, $Y=\overline{(A+B)}$.

Name: Rishabh Chauhan

Reg. No.: 201900307

Polith Digital Signature:

Date:19/08/2020

Student's worksheet-4

Student's observation and conclusion:

- In this figure we can see a combinational logic circuit with two inputs (A, B) and three outputs (X, Y, Z).
- When A=1 and B=1, the output Y i.e. (A=B) is HIGH the other two output Z i.e. (A>B) and X i.e. (A<B) remains LOW.
- The Boolean expression of each gate is $X=(\overline{A},B)$, $Z=(A,\overline{B})$, $Y=\overline{(A+B)}$.

Name: Rishabh Chauhan Reg. No.: 201900307

Digital Signature:

Date:19/08/2020