Lineare Algebra II

Inoffizieller Mitschrieb

Stand: 1. Mai 2018

Vorlesung gehalten von:

Prof. Dr. Amador Martín-Pizarro
Abteilung für Angewandte Mathematik
Albert-Ludwigs-Universität Freiburg

0. Recap

Definition 0.1 – RING

Ein (kommutativer) Ring (mit Einselement) ist eine Menge zusammen mit zwei binären Operationen $+,\cdot$, derart, dass:

- (R, +) ist eine abelsche Gruppe
- (R, \cdot) ist eine kommutative Halbgruppe
- die Dsitributivgesetze:

$$a(x+y) = ax + ay$$

$$(x+y)z = xz + yz)$$

Definition 0.2 – Integritätsbereich

Ein Integritätsbereich ist ein Ring ohne Nullteiler. Also $\forall x,y \in R: x \cdot y = 0 \Rightarrow x = 0 \lor y = 0$

Definition 0.3 – KÖRPER

Ein Körper ist ein Ring der Art, dass

1.
$$1 \neq 0$$

2.
$$\forall x \in K : x \neq 0 \Rightarrow \exists x^{-1} : xx^{-1} = x^{-1}x = 1$$

Bemerkung: Körper sind Integritätsbereiche.

Definition 0.4 – Charakteristik

Sei R ein nicht trivialer Ring
$$(0 \neq 1)$$
. $\varphi : \mathbb{Z} \to R, z \mapsto \begin{cases} \sum_{i=1}^{n} 1 & n >= 0 \\ -\sum_{i=1}^{n} 1 & \text{ansonsten} \end{cases}$

Dann ist φ ein Ringhomomorphismus.

Für den Kern von φ (Ker (φ)) gibt es zwei Möglichkeiten.

1.
$$Ker(\varphi) = \{0\}, p = 0$$

2. $Ker(\varphi) \neq \{0\}$. Dann gibt es ein kleinstes echt positives Element $p \in Ker(\varphi)$.

R hat dann Charakteristik p $(\operatorname{Char}(R)=p).$ Falls R ein Integritaetsbereich ist, dann ist p eine Primzahl.

Beispiele:

$$\mathbb{Z}/n\mathbb{Z} = \{\bar{0}, \dots, \bar{n}\}\$$
 hat Charakteristik n.

Insbesondere enthält jeder Körper mit Charakteristik p
 eine "Kopie" von $\mathbb{Z}/m\mathbb{Z}$:

k hat Charakteristik $p \Rightarrow \mathbb{Z}/p\mathbb{Z} \stackrel{injectiv}{\leftrightarrow} K$.

Hier ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper:

$$a \in \mathbb{Z}/p\mathbb{Z} \setminus \{0\} \Rightarrow \text{es ist a mit p teilerfremd. } 1 = a \cdot b + p \cdot m \Rightarrow \bar{1} = \bar{a} \cdot \bar{b}.$$

Definition 0.5 – POLYNOMRING

Sei K ein Körper. Der Polynomring K[T] in einer Variable R über K ist die Menge formeller Summen der Form:

$$f = \sum_{i=0}^{n} a_i \cdot T^i, n \in \mathbb{N}$$

Der Grad von $f \in K[T]$ ist definiert als:

$$Grad(f) := max(m|m < n \land a_m \neq 0)$$

$$Grad(0) := -1$$

Falls Grad(f) = n und n = 1 heißt das Polynom normiert.

Die Summe und das Produkt von Polynomen sind definiert als:

$$\sum_{i=0}^{n} a_i T^i + \sum_{j=0}^{m} b_j T^j := \sum_{k=0}^{\max(m,n)} (a_k b_k) T^k$$
$$\sum_{i=0}^{n} a_i T^i \cdot \sum_{j=0}^{m} b_j T^j := \sum_{k=0}^{m+j} = c_K T^k, c_k = \sum_i + j = k a_i b_j$$

Bemerkung: K[T] ist ein Integritätsbereich.

Korollar 0.6

Es seien
$$f, g$$
 beide $\neq 0$
 $\Rightarrow \operatorname{Grad}(f \cdot g) = \operatorname{Grad}(f) + \operatorname{Grad}(g) \Rightarrow f \cdot g \neq 0$
 $\operatorname{Grad}(f + g) \leq \max(\operatorname{Grad}(f), \operatorname{Grad}(g))$

Satz 0.7 - Division mit Rest

Gegeben $f, g \in K[T]$, Grad(g) > 0. Dann existieren eindeutige Polynome q, r, so dass $f = g\dot{q} + r$, wobei Grad(r) < Grad(g).

Beweis: Eindeutigkeit: Angenommen $f = g \cdot q + r = g \cdot q' + r', q \neq q' \lor r \neq r'$.

$$\Rightarrow g(q-q') = r'-r \Rightarrow \operatorname{Grad}(r'-r) = \max(\operatorname{Grad}(r'),\operatorname{Grad}(r)) < \operatorname{Grad}(g) = \operatorname{Grad}(g(q-q')) \Rightarrow \operatorname{Widerspruch} \Rightarrow q = q' \Rightarrow r = r'$$
 Existenz: Induktion auf $\operatorname{Grad}(f)$

$$Grad(f) = 0 \Rightarrow f = g \cdot 0 + f$$

$$Grad(f) = n + 1$$

$$Grad(f) < Grad(g) = m \Rightarrow f = g \cdot 0 + f$$

OBdA.
$$n + 1 = Grad(f) \ge Grad(g) = m > 0$$

$$f = a_{n+1} \cdot T^{n+1} + \hat{f}, \operatorname{Grad}(\hat{f}) \le n, a_{n+1} \ne 0$$

Sei
$$f' = f - b_m^{-1} a_{n+1} T^{n+1-m} \cdot g \Rightarrow \operatorname{Grad}(f') \leq n$$
 Ia: $f' = g \cdot q' + r', \operatorname{Grad}(r') < \operatorname{Grad}(g)$

$$f' = f - b - b^{-1}a_{n+1}Tn + 1 - m \cdot g \Rightarrow f = g(b_n^{-1}a_{n+1}T^{n+1-m} + q') + r' \Rightarrow \operatorname{Grad}(r') < \operatorname{Grad}(g) \qquad \qquad \Box$$

Definition 0.8 – POLYNOM TEILT

$$f, g, q \in K[T], \operatorname{Grad}(g) > 0$$

 $g \text{ teilt } f = g|_f \Leftrightarrow f = g \cdot q$

Definition 0.9 – Nullstellen von Polynomen

$$f \in K[T]$$
 besizt eine Nullstelle $\lambda \in K$ gdw. $(T - \lambda)|_f \Leftrightarrow f(\lambda) = 0$. flässt sich dann schreiben als $f = (T - \lambda)q + r$.

Lemma 0.10

$$f \in K[t], f \neq 0, \operatorname{Grad}(f) = n \Rightarrow f$$
 besitzt höchstens n
 Nullstellen in k.

Beweis:

$$n=0 \Rightarrow f=a_0, a_0 \neq 0$$

n > 0 Falls f keine Nullstellen in K besitzt \Rightarrow ok!

Sonst, sei $\lambda \in K$ eine Nullstelle von f. $f = (T - \lambda) \cdot g$, Grad(g) = n - 1 < n

I.A besitzt g höchstens n - 1 Nullstellen. Jede Nullstelle von f ist entweder λ oder eine Nullstelle von g. \Rightarrow f hat höchstens n Nullstellen.

Definition 0.11 - VIELFACHHEIT EINER NULLSTELLE

 $f \in K[T], f \neq 0, \lambda \in K$ Nullstelle von $f \Rightarrow f = (T - \lambda)^{K_{\lambda}} \cdot g, g(\lambda \neq 0. K_{\lambda})$ ist die Vielfacheit der Nullstelle λ in f.

Definition 0.12

Ein Körper heißt algebraisch abgeschlossen, falls jedes Polynom über K positiven Grades eine Nullstelle besitzt.

Beispiele Ist \mathbb{R} algebraisch abgeschlossen? Nein: $T^2 + 1$.

Bem.: $\mathbb C$ ist algebraisch abgeschlossen.

Bemerkung: Jeder algebraisch abgeschlossene Körper muss unendlich sein. Sei $K = \{\lambda_1, \dots, \lambda_n\}, f = (T - \lambda), \dots, (T - \lambda_n) + 1.$

Lemma 0.13

K ist genau dann algebraisch abgeschlossen, wenn jedes Polynom positiven Grades in lineare Faktoren zerfällt

$$f = T(\lambda_1) \dots (T - \lambda_n).$$

Beweis:

 \Leftarrow trivial

 $\Rightarrow \operatorname{Grad}(f) = n > 0 \Rightarrow f = (T - \lambda_1) \cdot g, \operatorname{Grad}(g) \leq n - 1 < n \overset{I.A.}{\Rightarrow} f = c(T - \lambda_1) \dots (T - \lambda_n)$

Definition 0.14 – Vektorraum

Vektorraum V über K ist eine abelsche Gruppe $(V, +, 0_V)$ zusammen mit einer Verknüpfung $K \times V \to V$ $(\lambda, v) \mapsto \lambda v$ die die folgenden Bedingungen erfüllt:

1.
$$\lambda(v+w) = \lambda v + \lambda w$$

2.
$$\lambda(\mu()) = (\lambda\mu)v$$

3.
$$(\lambda + \mu)v = \lambda v + \mu v$$

4. $1_k v = v$

Definition 0.15 – Untervektorraum

Ein Untervektorraum $U \subset V$ ist eine Untergruppe, welche unter der Skalarmultiplikation abgeschlossen ist.

Bemerkung: $\{U_i\}_{i\in I}$ Untervektorräume von $V\Rightarrow\bigcap_{i\in I}U_i$ ist Untervektorraum. Insb. gebenen $M\subset V$ existiert span(M)=< M>= der kleinste Unterraum von V, der M enthält.

$$\operatorname{span}(M) = \sum_{i=1}^{n} \lambda_i m_i, m_i \in M, \lambda_i \in K, n \in \mathbb{N}$$

M ist ein Erzeugendensystem für span(M)

Außerdem gilt:

$$\sum_{i \in I} U_i = \operatorname{span}(\bigcup_{i \in I} U_i)$$

$$M_1 \subset M_2 \Rightarrow \operatorname{span}(M_1) \subset \operatorname{span}(M_2)$$

Definition 0.16 – Lineare Unabhängigkeit

Sei V ein Vektorraum über K. Dann gilt $v_1, \ldots v_n$ sind linear unabhängig falls $\forall \lambda_1, \ldots, \lambda_n \in K : \sum \lambda_i v_i \Rightarrow \lambda_1 = \cdots = \lambda_n = 0 \ M \subset V$ ist linear unabhängig, falls jede endliche Teilmenge von M linear unabhängig ist. Äquivalent dazu ist: M ist linear unabhängig, falls kein Element von M sich als Linearkombination der anderen schreiben lässt.

Definition 0.17 – Basis

Sei $B = \{v_1, \dots, v_n\}, v_i \in V$. Die folgenden Aussagen sind äquivalent und definieren eine Basis:

- 1. B ist ein lineare unabhängiges Erzeugendensystem von V
- 2. Jedes Element von V lässt sich eindeutig als Linearkombination der Elemente in B schreiben.
- 3. B ist ein minimales Erzeugendensystem.
- 4. B ist maximal lineare unabhängig.

Satz 0.18 - Basisergänzungssatz

Sei $M \subset V$ lineare unabhängig, dann gilt $\exists B \subset V$, und B ist eine Basis welche M entält. Insbesondere hat jeder Vektorraum eine Basis. "Je zwei Basen sind in Bijektion".

Definition 0.19 – DIMENSION

V ist endlichdimensional, falls V eine endliche Basis besitzt. Sonst ist V unendlichdimensional. Fall V endlichdimensional ist, ist die Dimension von V definert durch:

$$dim(V) = |B|$$
 mit B beliebeige Basis.

Satz 0.20 - Basisauswahlsatz

Sei $M \subset V$ ein Erzeugendensystem von V, dann gilt $\exists B \subset M$ mit B ist eine Basis von V.

Lemma 0.21

Sei
$$U \subset V$$
 ein Unterraum, dann gilt $\dim(V) < \infty \Rightarrow \dim(U) < \infty$

Lemma 0.22

Die Dimension ist modular: $\dim(U_1 + U_2) + \dim(U_1 \cap U_2) = \dim(U_1) + \dim(U_2)$

Definition 0.23 – Direktes Produkt von Vektorräumen

$$\begin{split} V &= U_1 \oplus U_2 \Leftrightarrow V = U_1 + U_2 \wedge U_1 \cap U_2 = \{0\} \\ V &= \bigoplus_{i \in I} U_i \Leftrightarrow V = \sum_{i \in I} U_i \text{ und die Familie ist transversal: } \{U_i\}_{i \in I} \to U_i \cap (\sum_{j \in I} U_j) = \{0\} \end{split}$$

Definition 0.24 – Komplementär

Sei $U\subset V$ ein Unterverktorraum, dann gilt $\exists \hat{U}\subset V:V=U\oplus \hat{U}.$ \hat{U} heißt dann Komplementär zu U.

Beispiele

$$K^2$$
 ist ein K-VR. $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ist eine Basis.

$$U = \operatorname{span}\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
). $K^2 = U \oplus \operatorname{span}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$). $K^2 = U \oplus \operatorname{span}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Definition 0.25 – Lineare Abbildungen

$$F: V \to W$$
 ist linear, falls gilt: $F(\lambda v + \mu u) = \lambda F(v) + \mu F(u)$

Definition 0.26 - KERN UND BILD

$$Ker(F) = \{ v \in V | F(v) = 0 \}$$

$$Im(F) = \{ w \in W | \exists v \in V : F(V) = w \}$$

Ker(F) ist ein Untervektorraum von V, Im(F) ist ein Untervektorraum von W.

Lemma 0.27

Falls B eine Basis von V ist, ist F(B) ein Erzeugendensystem von Im(F). F ist injektiv genau dann wenn $Ker(F) = \{0\}$.

Lemma 0.28

V endlichdimensional:
$$dim(V) = dim(Ker(F)) + dim(Im(F))$$
.
 $V/Ker(f) \cong Im(F)$.

Bemerkung: V, W endlichdimensional, $\{v_1,\ldots,v_n\}$ Basis von V $V\cong K^n, v_i\mapsto e_i$.

Definition 0.29 – Matrix

Sei $F: V \to W, \dim(V) = n, \dim(W) = m, \{v_1, \dots, v_n\}$ Basis von V, $\{w_1, \dots, w_n\}$ Basis von W. $K^n \cong V \xrightarrow{F} W \cong K^m$. Dadurch wird durch F und die beiden Basen eine Abbildung von K^n nach K^m definiert. Diese Diese Abbildung kann durch eine Matrix A dargestellt werden.

$$\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \mapsto A \Big(\lambda_1, \vdots \lambda_n \Big)$$

$$F(v_j) = \sum_{i=1}^m a_{ij} w_i$$

$$F(v_1), \dots, F(v_n)$$

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} \text{ ist die mxn Matrix A.}$$

Definition 0.30 - Rang einer Matrix

$$Rg(A) = \dim(\text{span}(\text{Spaltenvektoren})) = \dim(\text{span}(\text{Zeilenvektoren}))$$

 $F: V \to W$ linear. $Rg(F) = Rg(A) = \dim(\text{Im}(F))$, mit A eine beliebige darstellende Matrix von F.

Satz 0.31 - NORMALFORM

Es seien V, W endlichdimensional. Dann existieren Basen $\{v_1, \dots, v_n\}$ von V, $\{w_1, \dots, w_n\}$ von W, so dass

$$\text{die darstellende Matrix von F der Form} \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \end{pmatrix} \text{ ist.}$$

Beweis: Sei U = Ker(F) und $\{v_{r+1}, \ldots, v_n\}$ eine Basis von U. Sei U' ein Komplement von U in V $\Rightarrow V = U \oplus U'$. Sei $\{v_1, \ldots, v_r\}$ eine Basis von U'. $B = \{v_1, \ldots, v_n\}$ ist eine Basis von V. Im(F) hat $\{F(v_1), \ldots, F(v_r)\}$ als Basis.

 $\sum_{i=1}^{n} \lambda_i F(v_i) = 0 \Rightarrow F(\sum_{i=1}^{n} \lambda_i v_i) = 0 \Rightarrow \sum_{i=1}^{n} \lambda_i v_i) \in U \land \sum_{i=1}^{n} \lambda_i v_i) \in U' \Rightarrow \sum_{i=1}^{n} \lambda_i v_i) = 0 \Rightarrow \lambda_1 = \dots \lambda_n = 0.$ Ergänze $\{F(v_1), \dots, F(v_r)\}$ zu einer Basis $B' = \{w_1, \dots, w_m\}$ von W. $F(v_1), \dots, F(v_r), F(v_{r+1}), \dots, F(v_n)$

$$\begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$$

Definition 0.32 – Invertierbarkeit von Matrizen

 $A \in M_{n \times n}(K)$ ist invertierbar, fall es eine Matrix $B \in M_{n \times n}(K)$ gibt, so dass $A \cdot B = B \cdot A = Id_n$. B wird dann als A^{-1} bezeichnet.

 $GL(n,k) = Gl_n(K) = \{A \in M_{n \times n}(K) \text{ invertierbar}\}$ ist eine Gruppe.

 $A \in GL_k(n) \Leftrightarrow \operatorname{rg}(A) = n$ (Eine Matrix ist genau dann invertierbar, wenn sie regulär ist).

Bemerkung: Sei A regulär. Dann besitz ein Gleichungssystem der Form $A \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ die Eindeutige

Lösung,
$$A^{-1} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
.

Bemerkung: A ist regulär genau dann wenn A sich durch elementare Zeilenoperationen in Id_n überführen lässt.

 $E_{i,j}$ sei Die Matrix, die an der Stelle ij 1 ist, ansonsten 0.

Elementare Zeilenoperationen sind:

Multiplikation der Zeile i mit λ : $\mathrm{Id}_n + (\lambda - 1)E_{i,j}$.

Addieren von λ mal der iten Zeilten zur jten: $Id_n + \lambda E_{i,j}$.

Vertauschung der i-ten und j-ten Zeile: $Id_n - E_{ii} - E_{jj} + E_{j,i} + E_{i,j}$

Bemerkung: Das inverse einer Matrix lässt sich durch nutzen dieser elementaren Zeilenoperationen nach z.B. dem Gauß-Jordan Verfahren errechnen:

$$\left(\begin{array}{c|c}A & Id_n\end{array}\right) \overset{Zeilenoperationen}{\to} \left(\begin{array}{c|c}Id_n & A^{-1}\end{array}\right)$$

Die linke Hälfte der Ergebnis Matrix enthält dann A^{-1} , denn:

$$B_m \dots B_2 B_1 A = Id_n \Rightarrow B_m \dots B_1 = A^{-1}$$

Definition 0.33 – ÜBERGANGSMATRIZEN

Es sei dim(V) = n und $\{v_1, \ldots, v_n\}$, $\{v'_1, \ldots, v'_n\}$ Basen von V. Weiterhin sei $F: V \to V, v_i \mapsto v'_i$. Dann gilt:

$$v_i' = \sum_{ij} s_{ij} v_j$$
 und die darstellende Matrix S von F, $S = \begin{pmatrix} s_{11} & \dots & s_{1m} \\ \vdots & \ddots & \vdots \\ s_{n1} & \dots & s_{nm} \end{pmatrix}$ ist regulär.

Definition 0.34

Zwei (mxn) Matrizen A, A' sind äquivalent, falls es reglare matrizen $T \in GL_m(K)$, $s \in GL_n(K)$ gibt, so dass $A' = T^{-1} \cdot A \cdot S$.

 $A, A' \in M_{n \times n}(K)$ sind ähnlich, fall es $S \in GL_n(K)$ gibt, so dass $A' = s^{-1} \cdot A \cdot S$.

Bemerkung: Ähnlichkeit ist eine Äquivalenzrelation auf $M_{n\times n}(K)$.

Definition 0.35 – Determinante

 $detK^n \to K$ ist eine multilineare alternierende Abildung der Art, dass $det(e_1, \dots, e_n) = 1$.

 $A \in M_{n \times n}(K)$

 $A = (a_1|a_2|\dots|a)n) \Rightarrow det(a_1, a_2, \dots, a_n) = det(A).$

 $A = (a_i j), det(a_i j) = \sum sign(\pi) \cdot \prod_{i=1}^n a_{\pi(i)i}$ mit $sign(\pi) = -1^{\text{Anzahl der Fehlstände von } \pi}$ bzw. Anzahl von Faktoren von π als Produkt von Transpositionen.

Eigenschaften von Determinanten:

- 1. $det(A \cdot B) = det(A) det(B)$
- 2. A ist genau dann invertierbar, wenn $det(A) \neq 0$
- 3. $\det(A^-1) = \det(A)^{-1}$
- 4. $\det(A^T) = \det(A)$

Bemerkung: $Id_n + (-\operatorname{Id}_n)$ ist nicht invertierbar, also $\exists A, B : det(A+B) \neq det(A) + det(B)$

Satz 0.36 - Laplacescher entwicklichungssats

Sei j_0 ein Spaltenindex

 $det(A) = \sum_{i=1}^n (-1)^{i+j_0} a_{ij_o} det(A_{j_0i})$ wobe
i A_{j_0i} die Matrix ohne Zeile j_0 und Spalte i
ist.

Satz 0.37 - Cramersche Regel

$$(a_1|\dots|a_n) = A, A\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$
 Falls A regul—'ar ist, gibt es eine einzige LÓsung zum System: $\lambda_j = \frac{\det(a_1,\dots,a_{j-1},b_j,a_{j+1},\dots,a_n)}{\det(A)}$

Definition 0.38 – Determinante eines Homomorphismus

Sei $F: V \to V$. det(F) = det(A) woei A eine Darstellungmatrix von F bezgl. einer Baiss $\{v_1, \dots, v_n\}$.

Definition 0.39 – Adjunte Matrix

Sei A eine $n \times n$ Matrix, dann ist die Adjunte von A adj $(A) = (\gamma_{ij})$ mit $\gamma_{ij} = (-1)^{i+j} \det(A_{ij})$

Bemerkung: Sei c_i die j-te Zeile von adj(A). Sei weiterhing a_i die i-te Spalte von A.

$$\gamma_{j1}, \dots, \gamma_{jn} \cdot \begin{pmatrix} a_{1i} \\ vdots \\ a_{ni} \end{pmatrix} = \sum_{k=1}^{n} \gamma_{jk} a_{ki} = \sum_{k=1}^{n} (-1)^{j+n} a_{ki} \det(A_{jk}) \stackrel{\text{Laplacescher Entw. Satz}}{=} \det(a_1, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_n) = \begin{cases} \det(A) & j = i \\ 0 & j \neq i \end{cases}$$

Angenommen A ist regulär.

$$adj(A) \cdot A = det(A) \cdot Id_n \Rightarrow \frac{\operatorname{adj}(A)}{\det(A) \cdot A} = \operatorname{Id}_n = A^{-1} \cdot A \Rightarrow \frac{\operatorname{adj}(A)}{\det(A)} = A^{-1} \Rightarrow A \cdot \operatorname{adj}(A) = det(A)Id_n$$

0.1 Diagonalisiserbarkeit

Sei V ein Vektorraum, $\{U_i\}_{i=1}^k$ Unterräume von V.

$$V = \bigoplus_{i=1}^k U_i \Leftrightarrow V = \sum_{i=1}^n U_i \wedge U_i \bigcap (\sum_{j=1}^k U_i) = 0$$

Äquivalent dazu ist, dass jeder Vektor $v \in V$ sich eindeutig als Linearkombination von Vektoren $\bigcup_{j=i}^k B_j$ schreiben lässt, woebi B_j eine Basis von U_i ist.

Definition 0.40 – EIGENWERTE UND -VEKTOREN

Ein Endomorphismus $F: V \to V$ besitzt einen Eigenvektor, falls es ein $v \in V \setminus \{0\}$, so dass $F(V)\lambda \cdot v$ für ein $\lambda \in K$. Falls $F(v) = \lambda v$ ist λ eindeutig bestimmt durch F und v. λ ist dann ein Eigenwert von F.

Definition 0.41 – EIGENRÄUME

 $\lambda \in K, FV \to V$ Endomorphismus.

 $V(\lambda) = \{v \in V | F(v) = \lambda v\}$, der Eigeneraum zu λ is ein UVR.

Bemerkung: λ ist ein Eigenwet von F gdw, $dim(V(\lambda)) \geq 1$.

Bemerkung: Falls $\lambda_1, \ldots, \lambda_k$ verschiedene Eigenwerte von $F \Rightarrow V(\lambda_i) \cap \sum_{j=1, j \neq i}^k V(\lambda_j) = \{0\}$

Definition 0.42 – DIAGONALISISERBARKEIT

Sei V ein endlichdimensionaler Vektorraum. $F: V \to V$ Endomorphismus. Bzw. eine Matrix $A: K^n \to K^n$. F ist diagonalisierbar, falls $V = \bigoplus_{i=1}^k V('lb), \lambda$ verschiedene Eigenwerte von F.

Äquivalent dazu, wenn V eine basis von Eigenwerten von F besitzt. Äquivalent dazu, wenn F bezüglich

Aquivalent dazu, wenn V eine basis von Eigenwerten von F be einer Basis von V die Darstellungsmatrix
$$\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$
 hat.

Äquivalentz dazu, für Matrizen: A ist diagonalisierbar gdw.es eine reguläre Matrix S gibt, sodaß $S^{-1}AS =$

$$\begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

Satz 0.43

$$A \in M_{n \times n}(K), \lambda \in K$$

 λ ist ein Eigenwert von A gdw. $\lambda Id_n - A$ nicht regulär ist. $\Leftrightarrow det(\lambda \cdot Id_n - A) = 0$

Definition 0.44 - Charakteristisches Polynom

Das charakteristische Polynom einer Matrix $A \in M_{nxn}(K)$ ist $\xi_{A(T)} = det(T \cdot Id_n - A)$

Bemerkung: λ ist ein eigenwert von $A \Leftrightarrow \xi_A(\lambda) = 0$

$$\begin{aligned} \mathbf{Beispiel} &\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \\ \xi_{A(T)} &= T^2 + 1 = \det(\begin{pmatrix} T & -1 \\ 1 & T \end{pmatrix}) \end{aligned}$$

$$\xi_{A(T)} = T^2 + 1 = \det\begin{pmatrix} T & -1 \\ 1 & T \end{pmatrix}$$

Bemerkung: A und A' ähnlich, $A' = s^{-1}AS \Rightarrow \xi_A(T) = \xi_{A'}(T)$. Insebsondere können wir über das charakteritische Polynom eines Endomorphismus reden.

$$A \in M_{nxn}(K), \xi_A(T) = T^n + b_{n-1}T^{n-1} + \dots + b_o$$
 wobei $b_0 = (-1)^n det(A), b_n - 1 = -Tr(A) = -\sum_{i=1}^n a_{ii}$

Korollar 0.45

Ein Endomorphismus $F: V \to V$ mit $\dim(V) = n < \infty$ kann höchstens n viele Eigenwerte besizten.

Korollar 0.46

 $F:V\to V$ mit $\dim(V)=n<\infty$ mit verschiedenen Eigenwerten $(\lambda_1,\ldots,\lambda_n)$ ist diagonalisierbar, gdw. $n = \sum_{i=1}^k d_i, d_i = \dim(V(\lambda_i)).$ d_i heißt geometrische Vielfachheit von λ_i .

Beweis:

 \Rightarrow

F ist diag. gdw. V eine Basis aus Eigenvektoren besitzt, welche aus $\bigcup_{i=1}^{n} B_i$ besteht, $|B_I| = di = dim(V\lambda_i)$, $n = |B| = \sum_{i=1}^{k} |B_i|$

 $n = \sum d_i \Rightarrow \dim(\sum_{i=1}^k (V(\lambda_i))) = n \Rightarrow V = \sum_{i=1}^k (V(lb_i))$ da die Eigenräume tranversal sind, und ein Vektorraum nur einen UVR der dimension dim(V) hat, sich selbst.

Definition 0.47 – Algebraische Vielfachheit

Es seien $F: V \to V$ ein Endomorphismus, $dim(V) = n < \infty, \lambda \in K$ Eigenwert $\Rightarrow \xi_F(\lambda) = 0$. Dann gilt $\xi_F(T) = (T - \lambda)^K G(T)$, $G(\lambda) \neq 0$. k ist die algebraische Vielfachheit von λ , bzw. ord $_{\lambda}(F)$.

Bemerkung: $\operatorname{ord}_{\lambda}(F) \geq \dim(V(\lambda))$

Beweis: Sei v_1, \ldots, v_k eine Basis von $V(\lambda)$. Wir erweitern sie zu einer Basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ von V. Die Darstellungsmatrix M von F bzwg. B ist dann

$$\{F(v_1),\ldots,F(v_k),F(v_{k+1}),F(v_n)\}.$$

$$\begin{pmatrix} \lambda & & 0 \\ & \ddots & \\ 0 & & \lambda & C_2 \\ & 0 & \end{pmatrix}$$

Wobei $C_2 \in Mat_{n-k \times k}(K)$.

$$\xi_F(T) = \det(TId_n - M) = (T - \lambda)^k \cdot \det(TId_{n-k} \cdot C_1)$$

 $\Rightarrow \operatorname{ord}_{\lambda}(F) \geq K$. Wobei $\det(TId_{n-k} \cdot C_1) = 0$ sein kann.

Lemma 0.48

Sei V endlichdimensional, $F: V \to V$ ein Endomorphismus, U ein F-Invarianter Unterraum $(F(U) \subset U)$. $F': V/U \to V/U$ ist eine lineare Abbildung, $\bar{V} \mapsto F(\bar{V})$. F' ist woldefiniert, linear und es gilt $\xi_F(T) =$ $\xi_{F|_U}(T) \cdot \xi_{F'}(T)$

Beweis:

F' ist wohldefiniert;

$$\bar{v}_1 = \bar{v} \stackrel{zZ}{\Rightarrow} F'(v_1) = F(v) \ \bar{v}_1 = \bar{v} \Rightarrow v_1 = v + (v_1 - v), v_1 - v \in U$$

$$\Rightarrow F(v_1) = F(v) + F(v_1 - v), F(v_1 - v) \in U \Rightarrow F(\bar{v}_1) = F(\bar{v})$$

Restklassen sind linear und F ist linear $\Rightarrow F'$ ist linear.

Sei $\{u_1,\ldots,u_k\}$ eine Basis von U. erweitert zu $\{u_1,\ldots,u_k,v_{k+1},\ldots,v_n\}$ sei sie eine Basis von V.

Bemerkung: $\{v_{k+1}, \dots, \bar{v_n}\}$ ist eine Basis von V/U. Bew. Einfach.

Darstellungsmatrix H von F bzgl. B:

$$\begin{array}{c} u_1 \\ \vdots \\ u_k \\ v_{k+1} \\ \vdots \\ v_n \end{array} \left(\begin{array}{c} A \\ \vdots \\ \vdots \\ 0 \\ \dots \\ 0 \end{array} \right) C_2 \\ \min A, C_1, C_2 \text{ Matrizen.}$$

$$\begin{split} &\xi_F(T) = \det(TId_n - H) = \det(TId_n - \begin{pmatrix} A & C_2 \\ 0 & C_1 \end{pmatrix}) \\ &= \det(\begin{pmatrix} T_id_k - A & -C_2 \\ 0 & T_Id_{n-k} - C_1 \end{pmatrix}) = \det(T_id_k - A)\cot\det(T_En - k - C_1) \\ &\text{A ist die Darstellungsmatrix von } F|_U \text{ bezüglich } \{u_1, \dots, u_k\} \Rightarrow \det(TId_k - A) = \xi_{F|_U}(T) \end{split}$$

 C_1 ist die Darstellungmatrixvon F' bzg. $\{v_{k+1}, \ldots, \bar{v_n}\}$

$$\Rightarrow \det(T\operatorname{Id}_{n-k} - C_1) = \xi_{F'}(T)$$

Satz 0.49

Sei K ein Körper, $dim(V) < \infty, F : V \to V$ ein Endomorphismus so gilt:

F Diagonalisierbar gdw $\xi_F(T) = (T - \lambda_1)^{k_1} \dots (T - \lambda_n)^{k_n}$ in Linearfaktoren zerfällt, wobei für jeden Faktor $\lambda_1, \ldots, \lambda_n \ T - \lambda_i \ \text{gilt } \operatorname{ord}_{lb_i}(F) = \dim(V(\lambda_i)).$

Beweis:

 \Rightarrow

Sei $b = \{v_1, \dots, v_n\}$ eine Basis von Eigenvektoren. Seien $\lambda_1, \dots, \lambda_r$ die verschiedenen Eigenwerte. Ordne nun B um so dass

 $v_1, \ldots, v_{d_1} \in V(\lambda_i), v_{d_1+1}, \ldots, v_{d_1+d_2} \in V(\lambda_2), \ldots, v_{d_1+\cdots+d_{r-1}}, \ldots, v_{d_1+\cdots+d_r} \in V(\lambda_r) \text{ mit } d_i = dim(V(\lambda_i)).$ Die Darstellungsmatrix von F bzgl. B:

$$\begin{pmatrix}
F(v_1), \dots, F(v_{d_1}), \dots F(v_r) \\
\lambda_1 \\
\vdots \\
\lambda_1 \\
\lambda_r \\
\vdots \\
\lambda_r
\end{pmatrix}$$

Wobei d_i viele λ_i auf der Diagonale sind

 $\xi_F(T) = \det(T \operatorname{Id}_n - A) = (T - \lambda_1)^{d_1} \dots T(-\lambda_r)^{d_t} ((T - \lambda_2)^{d_2} \dots T(-\lambda_r)^{d_t})(\lambda_1) \neq 0 \Rightarrow d_i = \operatorname{ord}_{\lambda_I}(F), \operatorname{da}_{\lambda_I}(F)$ die λ_i verschieden sind.

$$\xi_F(T) = (T - \lambda_i)^{d_1} \dots (T - \lambda_r)^{d_r}$$

F ist diag $\Leftrightarrow n = dim(V) = \sum d_i$

Definition 0.50

Eine Matrix $A \in M_{n \times n}(K)$ ist diagonalisierbar, wenn sie ähnlich zu einer oberen Dreiecksmatrix ist:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ & \ddots & \vdots \\ 0 & & a_{nn} \end{pmatrix}$$

Satz 0.51

 $F:V\to V$ ist diagonalisierbar gdw. $\xi_F(t)$ in Linearfaktoren zerfällt $\xi_F(T)=(T-\lambda_1)\dots(T-\lambda_n)$.