ESTADÍSTICA FORMULARIO

Intervalos de confianza (una muestra)

Media de una pob. normal (σ conocida): $\left[\bar{x} \mp z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$

Media de una pob. normal (σ desconocida): $\left[\bar{x} \mp t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}\right]$

Media de una pob. general (σ desconocida): $\left[\bar{x} \mp z_{\alpha/2} \frac{s}{\sqrt{n}}\right]$ (n grande)

Proporción: $\left[\hat{p} \mp z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$ (n grande)

Parámetro λ de una distribución de Poisson: $\left[\bar{x} \mp z_{\alpha/2} \sqrt{\frac{\bar{x}}{n}}\right]$ (n grande)

Varianza de una pob. normal:

$$\left[\frac{(n-1)s^2}{\chi^2_{n-1;\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{n-1;1-\alpha/2}}\right]$$

Intervalos de confianza (dos muestras)

Diferencia de medias (pob. normales, muestras independientes, varianzas iguales):

$$\left[(\bar{x} - \bar{y}) \mp t_{m+n-2;\alpha/2} s_p \sqrt{\frac{1}{m} + \frac{1}{n}} \right],$$

donde

$$s_p^2 = \frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}$$

Diferencia de medias (pob. normales, datos emparejados): $\left[\bar{d} \mp t_{n-1,\alpha/2} \frac{s_d}{\sqrt{n}}\right], (d_i = x_i - y_i).$

Diferencia de proporciones:

$$\left[(\hat{p}_1 - \hat{p}_2) \mp z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{m} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n}} \right] \quad (m \text{ y } n \text{ grandes})$$

Contrastes para la media de una pob. normal

$$H_0: \mu \le \mu_0 \quad R = \left\{ \frac{\bar{x} - \mu_0}{s / \sqrt{n}} > t_{n-1,\alpha} \right\}.$$

$$H_0: \mu \ge \mu_0 \ R = \left\{ \frac{\bar{x} - \mu_0}{s / \sqrt{n}} < -t_{n-1,\alpha} \right\}.$$

$$H_0: \mu = \mu_0 \quad R = \left\{ \frac{|\bar{x} - \mu_0|}{s/\sqrt{n}} > t_{n-1,\alpha/2} \right\}.$$

Contrastes para una proporción (n grande)

$$H_0: p \le p_0 \quad R = \left\{ \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} > z_\alpha \right\}$$

$$H_0: p \ge p_0 \quad R = \left\{ \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} < -z_\alpha \right\}$$

$$H_0: p = p_0 \ R = \left\{ \frac{|\hat{p} - p_0|}{\sqrt{\frac{p_0(1 - p_0)}{n}}} > z_{\alpha/2} \right\}$$

Contrastes para el parámetro de una dist. de Poisson (n grande)

$$H_0: \lambda \le \lambda_0 \quad R = \left\{ \frac{\bar{x} - \lambda_0}{\sqrt{\lambda_0/n}} > z_\alpha \right\}$$

$$H_0: \lambda \ge \lambda_0 \quad R = \left\{ \frac{\bar{x} - \lambda_0}{\sqrt{\lambda_0/n}} < -z_\alpha \right\}$$

$$H_0: \lambda = \lambda_0 \quad R = \left\{ \frac{|\bar{x} - \lambda_0|}{\sqrt{\lambda_0/n}} > z_{\alpha/2} \right\}$$

Contrastes para la varianza de una pob. normal

$$H_0: \sigma \le \sigma_0 \ R = \left\{ \frac{(n-1)s^2}{\sigma_0^2} \ge \chi_{n-1;\alpha}^2 \right\}.$$

$$H_0: \sigma \ge \sigma_0 \ R = \left\{ \frac{(n-1)s^2}{\sigma_0^2} \le \chi^2_{n-1;1-\alpha} \right\}.$$

$$H_0: \sigma = \sigma_0 \ R = \left\{ \frac{(n-1)s^2}{\sigma_0^2} \notin (\chi^2_{n-1;1-\alpha/2}, \chi^2_{n-1;\alpha/2}) \right\}$$

Contrastes para dos medias (muestras independientes, varianzas iguales)

$$H_0: \ \mu_1 = \mu_2 \ R = \left\{ \frac{|\bar{x} - \bar{y}|}{s_p \sqrt{\frac{1}{m} + \frac{1}{n}}} > t_{m+n-2,\alpha/2} \right\}.$$

$$H_0: \ \mu_1 \le \mu_2 \quad R = \left\{ \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{m} + \frac{1}{n}}} > t_{m+n-2,\alpha} \right\}$$

Contrastes para dos medias (datos emparejados)

$$H_0: \ \mu_1 = \mu_2 \quad R = \left\{ \frac{|\bar{d}|}{S_d/\sqrt{n}} > t_{n-1;\alpha/2} \right\}, \text{ donde } d_i = x_i - y_i.$$

$$H_0: \ \mu_1 \le \mu_2 \quad R = \left\{ \frac{\bar{d}}{S_d/\sqrt{n}} > t_{n-1;\alpha} \right\}.$$

Contrastes para dos proporciones (m y n grandes):

$$H_0: p_1 = p_2 \quad R = \left\{ \frac{|\hat{p}_1 - \hat{p}_2|}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} > z_{\alpha/2} \right\}.$$

$$H_0: p_1 \le p_2 \quad R = \left\{ \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\bar{p}(1-\bar{p})\left(\frac{1}{m} + \frac{1}{n}\right)}} > z_{\alpha} \right\}, \text{ donde}$$

$$\bar{p} = \frac{m\hat{p}_1 + n\hat{p}_2}{m+n}.$$

Contraste para dos varianzas de pob. normales

$$H_0: \sigma_1^2 = \sigma_2^2 \ R = \left\{ \frac{s_1^2}{s_2^2} \notin (F_{m-1,n-1,1-\alpha/2}, F_{m-1,n-1,\alpha/2}) \right\}$$