Equations

March 6, 2018

1 Inline

1.1 Like normal text

The formula is $a^2 + b^2 = c^2$.

The formula is $a^2+b^2=c^2$.

1.2 Emphasized in normal text

The formula is

$$a^2 + b^2 = c^2.$$

The formula is $$a^2+b^2=c^2.$$

The formula is $[a^2+b^2=c^2.]$

2 Big equations

2.1 Without numbering

$$a^2 + b^2 = c^2$$

\$\$... \$\$

 $\setminus begin\{equation * \} ... \setminus end\{equation * \}$

 $\setminus begin\{align*\}... \setminus end\{align*\}$

 $\setminus [\ldots \setminus]$

2.2 With numbering

$$a^2 + b^2 = c^2 (1)$$

\begin{equation}...\end{equation}

\begin{align } ... \ end{align}

2.3 With more than one line

$$x = \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$
$$= -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^4 - q}$$
$$= 4$$

 $\operatorname{begin} \{ \operatorname{align} \} \dots \setminus \operatorname{end} \{ \operatorname{align} \}$

 $\backslash begin\{align*\}...\backslash end\{align*\}$

 $x\&=\frac{p}{2}\pm \frac{\left(\left(\frac{p}{2}\right)^2-q\right)}{\&=-\frac{p}{2}\pm \left(\frac{p}{2}\right)^4-q}\\ \&=4$

3 Mathematical fonts

3.1 The fonts

- Normal: A, B, C, a, b, c, 1, 2, 3
- \mathnormal{\ldots}: A, B, C, a, b, c, 1, 2, 3
- \mathrm{...}: A, B, C, a, b, c, 1, 2, 3
- \mathit{...}: A, B, C, a, b, c, 1, 2, 3
- $\mathbb{A}, B, C, a, b, c, 1, 2, 3$
- \mathsf{...}: A, B, C, a, b, c, 1, 2, 3
- \mathtt{...}: A, B, C, a, b, c, 1, 2, 3
- $\mathbb{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, 1, 2, 3$ (It requires the package amsfonts)
- \mathbb{...}: $\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}, \mathbb{C}, \mathbb{D}, \mathbb{C}, \mathbb{D}$ (It requires the package amsfonts)
- $\mathbb{A}, \mathcal{B}, \mathcal{C}$
- $\mbox{mathscr}\{\ldots\}$: $\mathscr{A}, \mathscr{B}, \mathscr{C}$ (It requires the package mathrsfs)

3.2 Font styling

- Make bold: $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ (\boldsymbol{...})
- Add color: k = x-2 ({\color{red}...}, \mathbin{\color{blue}{...}})
- Bonus: Render text in math mode: text (\text{text})

3.3 Accents

- a', a^{\prime}: a'
- a'', a^{\prime\prime}: a''
- \hat{a}: â
- \bar{a}: \bar{a}
- \grave{a}: à
- \acute{a}: \acute{a}
- \dot{a}: à
- \ddot{a}: *ä*
- \dddot{a}: *\ai*
- \overrightarrow{AB}: \overrightarrow{a}
- \overleftarrow{AB}: \overleftarrow{a}
- \overline{a}: \overline{a}
- \check{a}: ă
- \breve{a}: ă
- \sqrt{a} : \vec{a}
- \not{a}: /a
- \tilde{a}: \tilde{a}
- \underline{a}: \underline{a}
- \mathring{a}: å
- \widehat{AAA}: \widehat{AAA}
- \widetilde{AAA}: \widetilde{AAA}
- \stackrel\frown{AAA}: \widehat{AAA}

3.4 Dots

• \dots: ...

• \ldots: ...

• \cdots: ···

• \vdots: :

• \ddots: ··

• \iddots: · · (It requires the package mathdots)

Code	Output	Description
$A_1,A_2,\dotsc,$	$A_1, A_2, \ldots,$	for "dots with commas"
$A_1+\dotsb+A_N$	$A_1 + \cdots + A_N$	for "dots with binary operators/relations"
$A_1 \setminus dotsm A_N$	$A_1 \cdots A_N$	for "multiplication dots"
\int_a^b \dotsi	$\int_a^b \cdots$	for "dots with integrals"
$A_1\$ A_1\dotso A_N	$A_1 \dots A_N$	for "other dots" (none of the above)

3.5 Symbols

Code	Symbol	Code	Symbol	Code	Symbol
<	<	>	>	=	=
\leq	\leq	\geq	\geq	\doteq	÷
\11	«	\gg	>>	\equiv	=
\subset	\subset	\supset	\supset	\approx	\approx
\subseteq	\subseteq	\supseteq	\supseteq	\cong	\cong
\not\subseteq	⊈	\not\supseteq	⊉	\simeq	\simeq
\sqsubset		\sqsupset		\sim	\sim
\sqsubseteq		\sqsupseteq	\supseteq	\propto	\propto
\preceq	\prec	\succeq	\succ	\neq	\neq

Code	Symbol	Code	Symbol	Code	Symbol
\parallel		\not\parallel	V	\pm	
\agnormalise	\asymp	\bowtie	\bowtie	\mp	干
\vdash	\vdash	\dashv	\dashv	\times	×
\in	\in	\ni	∋	\div	÷
\smile	\smile	\frown		\ast	*
\models	=	\notin	∉	\star	*
\perp	Τ.	\mid	Ì	\dagger	†
\prec	\prec	\succ	<u>`</u>	\ddagger	‡

Code	Symbol	Code	Symbol	Code	Symbol	
\cap	\cap	\diamond	♦	\oplus	\oplus	
\cup	\cup	\bigtriangleup	\triangle	\ominus	\ominus	
\uplus	\forall	\bigtriangledown	∇	\otimes	\otimes	
\sqcap	П	\triangleleft	⊲	\oslash	\oslash	
\sqcup	\sqcup	\triangleright	\triangleright	\odot	\odot	
\vee	\vee	\bigcirc	\bigcirc	\circ	0	
\wedge	\wedge	\bullet	•	\setminus	\	
\cdot	•	\wr	}	\aggreen	П	

Code	Symbol	Code	Symbol
\exists	3	\rightarrow, \to	\rightarrow
\not\exists	Æ	\leftarrow, \gets	\leftarrow
\forall	\forall	\mapsto	\mapsto
\neg	\neg	\implies	\Longrightarrow
\subset	\subset	\Rightarrow	\Rightarrow
\supset	\supset	\leftrightarrow	\leftrightarrow
\in	\in	\iff	\iff
\n	∉	\Leftrightarrow	\Leftrightarrow
\ni	€	\top	Τ
\not\ni	∌	\bot	\perp
\land	\wedge	\emptyset	Ø
\lor	\vee		

\land \lor	\ \	\empty	set	Ø
Code	Symbol	Code	Symbol	
\mid		\1		
\{	{	\}	}	
\uparrow	†	\Uparrow	1	
\downarrow	\downarrow	\Downarrow	\Downarrow	
/	/	\backslash	\	
\langle	<	\rangle	>	
\lceil	Ĺ	\rceil	j	
\n	∉	\rfloor	j	

Code	Symbol	Code	Symbol	Code	Symbo
A,\alpha	A, α	I,\iota	I,ι	P,\rho	P, ρ
B,\beta	B, β	K,\kappa	K, κ	\Sigma,\sigma	Σ, σ
\Gamma,\gamma	Γ, γ	\Lambda,\lambda	Λ,λ	T,\tau	T, au
\Delta,\delta	Δ, δ	M,\mu	M, μ	\Upsilon,\upsilon	Υ, υ
E,\epsilon	E,ϵ	N,\nu	N, u	\Phi,\phi	Φ, ϕ
Z,\zeta	Z,ζ	\Xi,\xi	Ξ, ξ	X,\chi	X, χ
H,\eta	H, η	0,0	O, o	\Psi,\psi	Ψ, ψ
\Theta,\theta	Θ, θ	\Pi,\pi	Π,π	\Omega,\omega	Ω, ω

Code	Symbol	Code	Symbol
\partial	∂	\imath	\imath
\eth	eth	\jmath	Ĵ
\hbar	\hbar	\ell	ℓ
\Re	\Re	\nabla	∇
\Im	3	\Box	
\wp	\cosh	\infty	∞
\aleph	×		

Code	Symbol	Code	Symbol
\sin	\sin	\arcsin	arcsin
\cos	\cos	\arccos	arccos
\tan	an	\arctan	\arctan
\cot	\cot	\csc	\csc
\sinh	\sinh	\sec	sec
\cosh	\cosh		
\tanh	anh		
\c	\coth		

4 Matrices

Name	Delimiter
matrix	$egin{array}{cc} a & b \\ c & d \end{array}$
pmatrix	$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$
bmatrix	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
Bmatrix	$ \left\{ $
vmatrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$
Vmatrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

A matrix in text must be set smaller: $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)$ to not increase leading in a portion of text.

5 Examples

5.1 Solve a formula

$$x = \frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$
$$= -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^4 - q}$$
$$= 4$$

5.2 Different cases

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

5.3 Unsorted

$$\left(\begin{array}{c} n \\ r \end{array}\right) = \frac{n!}{r!(n-r)!}$$

$$\left(\frac{x^2}{y^3}\right)$$

$$P\left(A=2\left|\frac{A^2}{B}>4\right)\right)$$

$$\left\{\frac{x^2}{y^3}\right\}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \big(kg(x) \big)$$

$$a$$
 b a

$$g \quad h \quad i$$

$$\begin{array}{ccc} -1 & 3 \\ 2 & -4 \end{array} = \begin{array}{ccc} -1 & 3 \\ 2 & -4 \end{array}$$

$$\begin{array}{c|c}
1 & 2 \\
\hline
3 & 4
\end{array}$$

$$M = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & 0\\ \frac{5}{6} & 0 & \frac{1}{6}\\ 0 & \frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

$$M = \begin{matrix} x & y \\ A & 1 & 0 \\ 0 & 1 \end{matrix}$$

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(22-24)^2}{24} + \frac{(26-24)^2}{24} = \frac{1}{3}$$

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(24-31.1)^2}{31.1} + \frac{(22-14.9)^2}{14.9} + \frac{(76-68.9)^2}{68.9} + \frac{(26-33.1)^2}{33.1} = 7.22$$

$$P(x) = \frac{N!}{x!(N-x)!} \pi^x (1-\pi)^{N-x}$$

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\bar{x} = \frac{(\sum x)}{n}$$

$$\bar{x} = \frac{(\sum x)}{n}$$

skew =
$$\sum \frac{(X - \mu)^3}{\sigma^3}$$

sum of squared errors (SS) = $\sum (x_i - x_{\text{mean}})^2 = 7366.625 \text{kg}^2$

variance of the sample (SS/N) =
$$\frac{\sum (x_i - x_{\text{mean}})^2}{N} = 736.66 \text{kg}^2$$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}}$$

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{N}$$

$$t = \frac{|\bar{x}_{\text{sample}} - \bar{x}_{\text{population}}|}{s_{\bar{x}}} = \frac{4}{4.92} = 0.81$$

$$s = \sqrt{\frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

$$SS(T) = \sum \left(x - \frac{\sum x}{N}\right)^2 = \sum x^2 - \frac{\left(\sum x\right)^2}{N}$$

$$F = \frac{\text{betweenGroup variance}}{\text{withinGroup variance}} = \frac{\text{treatment variance} + \text{error variance}}{\text{withinGroup variance}} = \frac{\sigma_{\text{between}}^2}{\sigma_{\text{within}}^2} = \frac{s_{\text{between}}^2}{s_{\text{within}}^2}$$

$$SS_{between} = \sum \left[\frac{\left(\sum x_j\right)^2}{n_j} \right] - \frac{\left(\sum x_{ij}\right)^2}{N}$$

$$\eta^2 = \frac{\text{SS}_{\text{between}}}{\text{SS}_{\text{total}}}$$
$$f = \sqrt{\frac{\eta^2}{1 - \eta^2}}$$

$$\int_{a}^{b} x^{2} dx$$

$$sum_{n=1}^{\infty} 2^{-n} = 1$$

$$\prod_{i=a}^{b} f(i)$$

$$\lim_{x \to \infty} f(x)$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\frac{1+\frac{a}{b}}{1+\frac{1}{1+\frac{1}{a}}}$$

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cdots}}}$$

$$A = \frac{\pi r^2}{2}$$
$$= \frac{1}{2}\pi r^2$$

$$2x - 5y = 8$$
$$3x + 9y = -12$$

$$x=y$$
 $w=z$ $a=b+c$
$$2x=-y$$
 $3w=\frac{1}{2}z$ $a=b$
$$-4+5x=2+y$$
 $w+2=-1+w$ $ab=cb$

$$2x - 5y = 8$$
$$3x^2 + 9y = 3a + c$$

$$f(x) = x^{2} + 3x + 2$$

$$\Rightarrow \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} \begin{pmatrix} b_{1,1} \\ b_{2,1} \\ b_{3,1} \end{pmatrix} = \begin{pmatrix} c_{1,1} = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \end{pmatrix} \begin{pmatrix} b_{1,1} \\ b_{2,1} \\ b_{3,1} \end{pmatrix} = a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ c_{2,1} = a_{2,1}b_{1,1} + a_{2,2}b_{2,1} + a_{2,3}b_{3,1} \\ c_{3,1} = a_{3,1}b_{1,1} + a_{3,2}b_{2,1} + a_{3,3}b_{3,1} \end{pmatrix}$$

$$A_{m \times n} * B_{n \times p} = C_{m \times p}$$
$$A_{3 \times 3} * B_{3 \times 1} = C_{3 \times 1}$$

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1*2+0*0+3*0 & 1*0+0*1+3*0 & 1*0+0*0+3*1 \\ 0*2+1*0+4*0 & 0*0+1*1+4*0 & 0*0+1*0+4*1 \\ 0*2+0*0+1*0 & 0*0+0*1+1*0 & 0*0+0*0+1*1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ b \end{pmatrix}_{h} = \begin{pmatrix} 2 * 0 + 0 * 0 + 3 * 1 \\ 0 * 0 + 1 * 0 + 4 * 1 \\ 0 * 0 + 0 * 0 + 1 * 1 \end{pmatrix}_{h} = \begin{pmatrix} 3 \\ 4 \\ 1 \\ b \end{pmatrix}_{h} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}_h = \begin{pmatrix} x \\ sh_y * x + y \\ 1 \end{pmatrix}_h$$

$$\begin{array}{c|cccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}$$

1	2	3
4	5	6
7	8	9

1	2	3
4	5	6
7	8	9