Math 3100 Assignment 4

Subsequences and Completeness

Due at 5:00 pm on Friday the 8th of February 2019

1. Evaluate following limits or explain why they do not exist. Be sure to justify your answer.

(a)
$$\lim_{n \to \infty} \left(\frac{2n+1}{3-n}\right)^3$$
 (b) $\lim_{n \to \infty} \left((-1)^n + \frac{1}{n}\right)$ (c) $\lim_{n \to \infty} \frac{\cos(n)}{n^2}$ (d) $\lim_{n \to \infty} \frac{n!+n}{2^n+3n!}$ (e) $\lim_{n \to \infty} \frac{n+\log(n)}{n+1}$

- 2. (a) Let $x_1 = 0$ and $x_{n+1} = \frac{2x_n + 1}{x_n + 2}$ for all $n \in \mathbb{N}$.
 - i. Find x_2 , x_3 , and x_4 .
 - ii. Prove that $\{x_n\}$ converges and find the value of its limit.
 - (b) Let $a_1 = \sqrt{2}$, and define

$$a_{n+1} = \sqrt{2 + a_n}$$

for all $n \geq 1$. Prove that $\lim_{n \to \infty} a_n$ exists and equals 2.

Hint: For both parts try to apply the Monotone Convergence Theorem

- 3. (a) Prove that if $\{a_n\}$ is increasing, then every subsequence of $\{a_n\}$ is also increasing.
 - (b) Let $\{x_n\}$ be a sequence of real numbers. Prove that $\{x_n\}$ contains a subsequence converging to x if and only if for all $\varepsilon > 0$ there exist infinitely many terms from $\{x_n\}$ that satisfy $|x_n - x| < \varepsilon$.
- 4. Let $A, B \subseteq \mathbb{R}$ which are non-empty, bounded above.
 - (a) Show that if $A \subseteq B$, then $\inf(B) \le \inf(A) \le \sup(A) \le \sup(B)$.
 - (b) Show that if $\sup A < \sup B$, then there must exist $b \in B$ that is an upper bound for A.
 - (c) Prove that if $\sup(A) \notin A$, then there exists a sequence $\{a_n\}$ of points in A such that

$$\lim_{n \to \infty} a_n = \sup(A).$$

5. Let $\{x_n\}$ be a bounded sequence of real numbers and

 $S = \{x \in \mathbb{R} : \text{ there exists a subsequence of } \{x_n\} \text{ that converges to } x\}.$

- (a) Carefully explain why both $\sup S$ and $\inf S$ exist. The value of $\sup S$ is called the *limit superior* of $\{x_n\}$ is usually denoted by $\limsup_{n\to\infty} x_n$, while the value of $\inf S$ is called the *limit inferior* of $\{x_n\}$ is usually denoted by $\liminf_{n\to\infty} x_n$
- (b) Argue why $\lim_{n\to\infty} x_n$ exists if and only if $\lim_{n\to\infty} \inf x_n = \limsup_{n\to\infty} x_n$. In this case all three share the same value.
- (c) Prove that if $\beta > \limsup_{n \to \infty} x_n$, then there exists an N such that $x_n < \beta$ whenever n > N.
- (d) * Let $\alpha := \limsup_{n \to \infty} x_n$. Prove that there exists a subsequence of $\{x_n\}$ that converges α .