

Université de Paris UFR de Mathématiques et Informatique 45 rue des Saints-Pères 75006 Paris

Analyse 3 - Contrôle no. 1

Durée : 30 minutes - Les documents ne sont pas autorisés

NOM:	PRENOM:
NUMERO ETUDIANT :	

Questions de cours :

(1) Donner la définition de la borne inférieure d'un sous-ensemble A de \mathbb{R} (sous réserve de son existence).

Solution. La borne inférieure d'un ensemble est (si elle existe) le plus grand de ses minorants.

(2) Soit $A\subseteq\mathbb{R}$ admettant une borne inférieure. Enoncer la caractérisation de la borne inférieure de A par les ε :

Solution. Soit $m \in \mathbb{R}$. Alors $m = \inf(A)$ si et seulement si

- (1) m est un minorant de A
- (2) Pour tout $\varepsilon > 0$, il existe $a \in A$ tel que $m \leq a < m + \varepsilon$.

Exercice 1. Soient a et b deux réels strictement positifs. Soit A le sous ensemble de \mathbb{R} donné par

$$A = \left\{ (-1)^n a - \frac{b}{n}, \ n \geqslant 1 \right\}.$$

Déterminer, s'ils existent, la borne supérieure, la borne inférieure, le maximum, le minimum de A. Vous donnerez des justifications précises à vos affirmations.

Solution. On a

$$A = \left\{a - \frac{b}{2p}, \ p \geqslant 1\right\} \cup \left\{-a - \frac{b}{2p+1}, \ p \geqslant 0\right\}$$

Comme a>0 et b>0, a est un majorant de A et il existe une suite d'éléments de A (la suite $\left(a-\frac{b}{2p}\right)_{p\geqslant 1}$) qui converge vers a. Par caractérisation séquentielle de la borne supérieure, ceci est exactement dire que $\sup(A)$ existe et vaut a. Par contre $a\notin A$ et donc A n'admet pas de maximum. De plus, les deux suites $\left(a-\frac{b}{2p}\right)_{p\geqslant 1}$ et $\left(-a-\frac{b}{2p+1}\right)_{p\geqslant 0}$ étant croissantes, elles sont minorées par leur premier élément, dont le minimum est -a-b, qui est donc le minimum de A (et donc aussi sa borne inférieure).

Exercice 2. Soit I un intervalle non vide, majoré et non minoré, sans maximum. Le but de cet exercice est de montrer que $I =]-\infty, a[$ pour un certain $a \in \mathbb{R}$.

(1) Justifier l'existence de $a := \sup(I)$, borne supérieure de I.

Solution. I est un ensemble non vide et majoré, donc admet une borne supérieure (axiome du même nom).

(2) Montrer que $I \subseteq]-\infty, a[.$

Solution. Soit $x \in I$. Comme a est un majorant de I, on a $x \leq a$. Or l'égalité x = a est impossible, puisque cela signifierait que $a \in I$ et donc que I admettrait un maximum. Donc x < a et donc $x \in]-\infty, a[$.

(3) Montrer que $]-\infty, a[\subseteq I \text{ (indication : pour } x < a, \text{ on pour a introduire } \varepsilon = \frac{a-x}{2} > 0).$

Solution. Soit x < a. Par caractérisation de la borne supérieure par les ε , pour $\varepsilon = \frac{a-x}{2} > 0$, il existe $y \in I$ tel que $x < \frac{a+x}{2} = a - \varepsilon < y \leqslant a$. De plus, I est non minoré, donc x n'est pas un minorant de I: il existe donc $z \in I$ tel que z < x.

Conclusion : nous avons trouvé $z \in I$, $y \in I$ tels que z < x < y. Comme I est un intervalle, nous avons $x \in I$, ce qu'il fallait montrer.