Work on this page will not be graded. You can detach this page.

Expectation Theory: $i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \dots + i_{t+(n-1)}^e}{n}$

Liquidity Premium Theory: $i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+1}^e + \dots + i_{t+(n-1)}^e}{n} + l_{nt}$

 i_{nt} : interest rate on a n-year bond at year t (in %);

 i_t : interest rate on a 1-year bond at year t (in %);

 $i_{t+1}^e\colon$ interest rate on a 1-year bond expected for year t+1 at year t (in %);

 l_{nt} : liquidity premium for the n-year bond at year t (in %)

Monetary base: MB=C+R

Monetary base: $MB=BR + MB_n$

M1: M1=C+D

currency-to-deposit ratio: $c = \frac{C}{D}$

excess reserves-deposit ratio: $er = \frac{ER}{D}$

required reserves ratio: $rr = \frac{RR}{D}$

reserves: R = ER + RR

Checkable deposits: $D = \frac{1}{rr} \times R$

Change in checkable deposits: $\Delta D = \frac{1}{rr} \times \Delta R$

money multiplier: $m = \frac{1+c}{c+rr+er}$ Money supply: $M = m \times MB$

Change in money supply: $\Delta M = m \times \Delta MB$

MB: monetary base; C: currency in circulation;

R: reserves; BR: borrowed reserves;

 MB_n : non-borrowed monetary base; D: checkable deposits;

RR: requires reserves; ER: excess reserves;

 ΔM : change in M; ΔMB : change in MB;

 ΔD : change in D; ΔR : change in R

Work on this page will not be graded. You can detach this page.