$a_0(1950)$

VALUE (MeV)

FVTS

$$I^{G}(J^{PC}) = 1^{-}(0^{++})$$

COMMENT

Created: 5/30/2017 17:22

OMITTED FROM SUMMARY TABLE

Needs confirmation. Seen in $\gamma\gamma\to\eta_c(1S)\to K\overline{K}\pi$ by LEES 16A with significance 2.5 σ in $K_S^0K^\pm\pi^\mp$ and 4.2 σ in $K^+K^-\pi^0$. Spin-2 explanation $(a_2(1950))$ is not compatible with data.

a₀(1950) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1931±14±22	12k	1,2 LEES	16A	BABR	$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$

• • • We do not use the following data for averages, fits, limits, etc. • •

DOCUMENT ID

$a_0(1950)$ WIDTH

VILUE (IVICV)	LVIJ	DOCUMEN	WI ID	TECIV	COMMENT
271±22± 29	12k	1,2 LEES	16A	BABR	$\gamma \gamma \rightarrow \eta_{c}(1S) \rightarrow K\overline{K}\pi$
● ● We do not	use the	following dat	a for averag	es, fits,	limits, etc. • • •
$265 \pm 36 \pm 110$	8k	¹ LEES	16A	BABR	$\gamma \gamma \rightarrow \eta_{C}(1S) \rightarrow K_{S}^{0} K^{\pm} \pi^{\mp}$

265
$$\pm$$
36 \pm 110 8k 1 LEES 16A BABR $\gamma\gamma\to\eta_{\mathcal{C}}(1S)\to K_{\mathcal{S}}^0K^\pm\pi^\mp$ 274 \pm 28 \pm 30 4k 1 LEES 16A BABR $\gamma\gamma\to\eta_{\mathcal{C}}(1S)\to K^+K^-\pi^0$

a₀(1950) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	KK	seen

a₀(1950) BRANCHING RATIOS

$\Gamma(KK)/\Gamma_{\text{total}}$						Γ_1/Γ
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
seen	12k	¹ LEES	16A	BABR	$\gamma\gamma \rightarrow ~\eta_{c}\left(1S\right) \rightarrow$	$K\overline{K}\pi$

¹ From a model-independent partial wave analysis.

a₀(1950) REFERENCES

LEES 16A PR D93 012005 J.P. Lees et al. (BABAR Collab.)

¹ From a model-independent partial wave analysis fit to a relativistic Breit-Wigner function with a floating width.

 $^{^2}$ WEighted average of the $K_S^0\,K^\pm$ and $K^+\,K^-$ decay modes.

 $^{^{1}}$ From a model-independent partial wave analysis fit to a relativistic Breit-Wigner function with a floating mass.

² Weighted average of the $K_S^0 K^{\pm}$ and $K^+ K^-$ decay modes.