Research Paper Comparison: Two Approaches to Drug-Resistant Epilepsy Prediction

Connectivity-Based Machine Learning vs Convolutional Neural Networks

EXECUTIVE SUMMARY

This document compares two cutting-edge approaches for predicting drug-resistant epilepsy (DRE) in newly diagnosed patients. Both papers achieve excellent results but use fundamentally different methodologies:

Paper 1 (Connectivity Approach): 91.5% accuracy using brain network connectivity features

Paper 2 (CNN Approach): 99% accuracy using automatic feature extraction from raw EEG signals

PAPER OVERVIEW COMPARISON

Paper 1 (Machine Learning/Connectivity) vs Paper 2 (CNN)		
Aspect	Paper 1 (ML/Connectivity)	Paper 2 (CNN)
Approach	Manual feature extraction + Traditional ML	Automatic feature extraction + Deep Learning
Data Size	139 patients	101 patients
Features	216 network connectivity features	Raw EEG signals (automatic extraction)
Key Method	Phase Lag Index + Tree Bagger	1D CNN + Clinical features
Best Accuracy	91.5%	99%
Sensitivity	97%	96%
Specificity	81%	72%
Focus	Brain network connectivity	Raw signal patterns

Fondamental Differences:

1. Feature Extraction Philosophy:

- Paper 1:"Let's calculate specific brain connectivity measures that we know are important"
- Paper 2:"Let the AI figure out what patterns are important from raw data"

2. Data Representation:

- Paper 1: Converts $EEG \rightarrow$ Connectivity matrices \rightarrow Graph theory metrics
- Paper 2: Uses raw EEG signals → CNN learns patterns directly

3. Interpretability:

- Paper 1: We know WHY it works (frontotemporal theta connectivity)
- Paper 2:We know THAT it works, but CNN features are "black box"

CNN Architecture Explanation (Paper 2):

7-Layer CNN Structure:

```
Input EEG Signal (90 seconds)

U

[Convolutional Layer 1] - Kernel: 5×10, ReLU activation

U

[Convolutional Layer 2] - Kernel: 5×10, ReLU activation

U

[Flatten Layer] - Converts 2D to 1D

U

[Fully Connected Layer 1] - Dense connections

U

[Fully Connected Layer 2] - Dense connections

U

[Fully Connected Layer 3] - Dense connections

U

[Fully Connected Layer 4] - Dense connections, Softmax output

U

Output: DRE Probability
```

Detailed Layer Breakdown and Visuals

Input Layer:

Layer 1-2: Convolutional Layers

- Purpose: Extract local patterns from EEG signals
- Kernel Size: 5×10 (5 time points \times 10 channels)

- Function: Detects specific EEG patterns like spikes, waves, frequency changes
- Activation: ReLU (Rectified Linear Unit) f(x) = max(0,x)

Convolutional

Kernel: 5×10, Filters: 32

Params: 1,632

Technical Details:

Activation: ReLU
Parameters: 1,632

Dimensions: Kernel: 5×10, Filters: 32

Function:

Extracts local temporal-spatial features from EEG signals using 32 filters

앟

Conv Layer 2

Second convolutional layer with ReLU

Convolutional

Kernel: 5×10, Filters: 64 Params: 10,304

Technical Details:

Activation: ReLU
Parameters: 10,304

Dimensions: Kernel: 5×10, Filters: 64

Function:

Further feature extraction with increased filter depth for complex pattern recognition

Layer 3: Flatten Layer

- Purpose: Convert 2D feature maps to 1D vector

- Function: Prepares data for fully connected layers

- Example: $[64 \times 128]$ matrix \rightarrow [8192] vector

Flatten

1D Vector Params: 0

Technical Details:

Activation: None Parameters: 0

Dimensions: 1D Vector

Function:

Reshapes multi-dimensional feature maps into a single vector for dense layers

Layer 4-7: Fully Connected Layers

- Purpose: Learn complex relationships between extracted features

- Function: Combine low-level patterns into high-level decisions

- Output: Softmax function gives probability of DRE

(£)

Dense Layer 1

First fully connected layer

Fully Connected

128 neurons Params: Variable

Technical Details:

Activation: ReLU

Parameters: Variable

Dimensions: 128 neurons

Function:

Dense connections learn complex relationships between extracted features

Fully Connected

64 neurons Params: 8,256

Technical Details:

Activation: ReLU
Parameters: 8,256
Dimensions: 64 neurons

Function:

Further abstraction and feature combination for final classification

(£)

(1)

Dense Layer 3

Third fully connected layer

Fully Connected

32 neurons Params: 2,080

Technical Details:

Activation: ReLU
Parameters: 2,080

Dimensions: 32 neurons

Function:

Final feature processing before

classification output

Final Layer:

<u>.lı</u>

Output Layer

Classification output with Softmax

Output

2 classes (DRE/Non-DRE)

Params: 66

Technical Details:

Activation: Softmax

Parameters: 66

Dimensions: 2 classes (DRE/Non-DRE)

Function:

Produces probability distribution over DRE

and Non-DRE classes

Implementation recommendations

Phase 1: Start with Connectivity Approach (Paper 1)

- Implement Phase Lag Index calculation
- Focus on frontotemporal electrode regions
- Use theta band (4-8 Hz) analysis
- Apply Tree Bagger ensemble learning
- Target: 91.5% accuracy with interpretable results

Phase 2: Add CNN Capabilities (Paper 2)

- Implement 7-layer CNN architecture
- Extract automatic features from raw EEG
- Combine with clinical variables
- Target: 99% accuracy with automated processing

Phase 3: Hybrid Approach

- Combine connectivity features with CNN features
- Use ensemble methods for final prediction
- Maintain interpretability while maximizing accuracy
- Target: >95% accuracy with clinical understanding

A python example of the hybrid approach: