Investigation on imbalanced Cox regression based on simulations

Jing Wang

University of Connecticut

April 15, 2024

Overview

- Background and paper review
 - Existing researches on highly imbalanced logistic regression
 - Survival data
- Effects of imbalance on Cox regression
 - Simulation setup
 - Effects of imbalance
 - Implication of the results
- Balancing data with sampling
 - Methodology
 - Simulation results
 - Computational complexity
- 4 Conclusions

Background

- Imbalanceness is an issue for binary response
- Recent years many techniques have been developed to rebalance the data from both statistics and machine learning perspective.
- Survival analysis can also suffer imbalance issue
- Research on imbalance survival analysis is rarely touched by researchers.

Logistic regression

- Logistic regression is a wildly used statistical model for binary data
- ullet For a $y \in \{0,1\}$ and $oldsymbol{x}$, logistic regressions assume that

$$\mathbb{P}(y=1|\mathbf{x}) = \frac{e^{\alpha + \mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}}}{1 + e^{\alpha + \mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}}}$$

- For this model
 - ► Response y: Yes or No, Have a disease or Not have a disease
 - ► Covariate x: Age, Height, Weight, etc.
 - α : Intercept, β : coefficients of x.

Highly imbalanced logistic regression

- What if $\mathbb{P}(y=1)$ is very small (For example 0.5%)?
 - rare diseases, war, disaster
 - Resultant data is highly imbalanced: rare 1 and large amount of 0
- Wang (2020) proposes the following adjusted logistic regression to model highly imbalanced binary data:

$$\mathbb{P}(y=1|\mathbf{x}) = \frac{e^{\alpha + \mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}}}{1 + e^{\alpha + \mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}}}$$

• Assume that β is fixed and $\alpha \to -\infty$ as $N \to \infty$, then

$$\mathbb{P}(y=1)\to 0,$$

and

$$\frac{N_1}{N} = \frac{N_1}{N_0 + N_1} = \mathbb{P}(y = 1)\{1 + o_p(1)\} \to 0.$$

Estimation of highly imbalanced logistic regression

• Denoting $\mathbf{z} = (1, \mathbf{x}^{\mathrm{T}})^{\mathrm{T}}$ and $\mathbf{\theta} = (\alpha, \boldsymbol{\beta}^{\mathrm{T}})^{\mathrm{T}}$, the MLE estimator:

$$\hat{\boldsymbol{\theta}} = \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \{ y_i \boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\theta} - \log(1 + e^{\boldsymbol{z}_i^{\mathrm{T}} \boldsymbol{\theta}}) \}$$

is asymptotic normal:

$$\hat{m{ heta}} - m{ heta}_0 pprox m{N} \left(m{0}, rac{m{V}_f}{m{N}_1}
ight).$$

For regular logistic regression, we usually have

$$\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0 \approx N\left(\mathbf{0}, \frac{\boldsymbol{V}_f}{N}\right)$$

• Information in data is essentially determined by N_1 instead of N.

Methods to balance the data

- Imbalanceness may cause many issues in data analysis
- ullet If imbalance rate is low, to get enough N_1 , needs large amount of N
- In practice, imbalanceness may cause computational instability.
- In machine learning, under-sample and over-sampling is used.

Methods to balance the data

Under-sampling

- If $y_i = 1$, include (y_i, x_i) into the sample
- If $y_i = 0$, include (y_i, x_i) with probability ρ

Over-sampling

- If $y_i = 1$, include (y_i, \mathbf{x}_i) into the sample 1 + v times, where $v \sim Poisson(\lambda)$
- If $\delta_i = 0$, include (y_i, x_i) only once

Methods to balance the data

 Wang (2020) also propose two estimators based on resultant balanced data set: weighted and unweighted estimator

Weighted method

- ullet Taking samples with under- (or over-) sampling with ho (or λ)
- If using under-sampling, weighting 0's with $\frac{1}{\rho}$,
- ullet If using over-sampling, weighting 1's with $1/(1+\lambda)$
- Apply weighted logistic regression on sample

Unweighted method

- ullet Taking samples with under- (or over-) sampling with ho (or λ)
- $oldsymbol{ullet}$ Directly apply logistic regression on the sample and obtain $\hat{oldsymbol{ heta}}_u$
- Adjust $\hat{\alpha} = \hat{\alpha}_u + \log(\rho)$ or $\hat{\alpha} = \hat{\alpha}_u + \log(1 + \lambda)$.

Methods to balance the data

Wang (2020) proved the following results

- For all the 4 methods, the asymptotic variances are of order $\frac{1}{N_1}$.
- Both under- and over-sampling will cause information loss
- For under-sampling, when $e^{\alpha}/\rho \rightarrow 0$, no information loss
- For over-sampling, when $\lambda = 0$ or ∞ , no information loss
- For under-sampling, unweighted estimator with bias correction is more efficient
- For over-sampling, weighted estimator is more efficient
- Under-sampling can also extend to non-uniform sampling probabilities, see Wang et al. (2021).

Survival data and Cox regression

- In statistics, survival analysis studies time to a certain event
 - ► Time to death (Survival time), marriage,...
 - Time to develop a certain diseases
 - Time to malfunctions of a machine
- For survival analysis, due to practical issues, for example, limited resources, data usually suffer censorings
 - A study follows a large amount of patients for 5 years for a certain disease. However, some patients never develop that diseases in this 5 years. Then, for those patients, we only know their $t_i > 5$.

Survival data and Cox regression

- A survival data set usually contains three parts (t_i, δ_i, x_i)
 - t_i: observed survival time
 - ▶ δ_i : indicator of event. If $\delta = 1$, event is observed, if $\delta = 0$, censoring is observed.
 - x_i : covariates related to t_i , for example, age, height, weight,...
- A popular model for survival data is the Cox model:

$$h(t|\mathbf{x}) = h_0(t)e^{\mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}}.$$

- \blacktriangleright h(t|x) called hazard function, which is the risk of event at time t.
- $h_0(t)$ is the baseline hazard function
- ► Covariates *x* affect survival time through affecting hazard function.

Survival data and Cox regression

• In Cox model, we do not assume a specific form of $h_0(t)$ and thus, there is no intercept term α in Cox model because

$$h(t|\mathbf{x}) = h_0(t)e^{\alpha + \mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}} = \tilde{h}_0(t)e^{\mathbf{x}^{\mathrm{T}}\boldsymbol{\beta}},$$

where $\tilde{h}_0(t) = h_0(t)e^{\alpha}$ and thus α is not estimable.

- From the above reason, we usually focus more on estimating coefficients β .
- Note that the lower $h_0(t)$, the lower risk of event and thus the lower rate of observed events.

Background

Some question about survival analysis

- Data imbalance can be an issue for survival data.
- Sometimes, censored data points may be hundred times of events

For example, in practice

- Observed data collected from a successfully organ transplant
 - Death rate maybe too low
- Realtime surveillance for rare diseases with modern wearable devices
 - ▶ Time to catch the disease will have too much censors

For imbalance survival data, some questions need to be answered

- How imbalance influence Cox regression?
- Is method for balancing binary data can be apply to survival data?
- We use simulation to investigate these problems

Simulation setup

- There are three covariates in our simulations: age (x_1) , treatment (x_2) and biomarker (x_3) in our simulation.
 - $X_1 \sim \text{Normal}(\mu = 30, \sigma = 2)$
 - $X_2 \sim \text{Bernoulli}(0.5)$
 - $X_3 \sim \text{Normal}(\mu = 10, \sigma = 1)$
- The hazard function of Cox model is

$$h(t|x_1,x_2,x_3) = h_0(t)e^{\beta_1x_1+\beta_2x_2+\beta_3x_3},$$

where
$$\beta_1 = -0.1$$
, $\beta_2 = -1$, and $\beta_3 = 0.5$

Simulation setup

- We let $h_0(t) = \lambda \gamma t^{\gamma 1}$ ($\lambda > 0$ and $\gamma > 0$) in our simulation.
 - $\gamma = 1.5$
 - ▶ $\log(\lambda) \in (\log(1 \times 10^{-7}), \log(1.4 \times 10^{-4}))$
 - ***** We equally select five λ in log scale
 - * Reduce the event rate $(\frac{N_1}{N})$ from 50% to 0.5%.
- The sample size (N) we tried in our simulations are: 600, 1000, 5000.

• We first use simulation to check if imbalance affects Cox regression

Methodology of simulation study

- Generate survival data with different total sample size and event rate
- Apply Cox regression on the generated data
- Iterate S = 200 times and compute empirical MSE, bias and variance

(a) Bias (b) Variance

19 / 35

Relation between MSE and imbalance rate

Convergence rate

$$\log(\mathsf{N} \times \mathsf{MSE}) = -\log(\tau) + \log(\mathsf{K}) \Rightarrow \mathsf{MSE} = \frac{\mathsf{K}}{\tau \, \mathsf{N}} = \frac{\mathsf{K}}{\mathsf{N}_1}$$

Implication of the results

Implication from the simulation

- High imbalance rate will highly inflate MSE
- ullet The amount information is essentially determined by N_1
- For finite sample, highly imbalance data is hard to analyze since observation of event is not sufficient

Implication of the results

Problem in practice and possible solution

- Reasonable estimates may involve massive data because we need large amount of data to observe sufficient events
- For online system or observed data, computation complexity maybe heavy for massive data and too waste to record too much censors
- Sampling may relief imbalance issue and reduce computational burden

Main idea

Similarity between logistic regression and Cox model

Assuming a proportional hazard model $h(t; \mathbf{x}_i) = h_0(t)e^{\mathbf{x}_i^{\mathrm{T}}\boldsymbol{\beta}}$, for survivial data $\{(t_i, \delta_i, \mathbf{x}_i)\}_{i=1}^N$

$$\begin{split} L(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{t}, \boldsymbol{\delta}) &= \prod_{i=1}^{N} e^{-H(t_i)e^{\mathbf{x}_i^{\mathrm{T}}\boldsymbol{\beta}}} \prod_{i=1}^{N} \left\{ h(t_i) \right\}^{\delta_i} \\ &= \prod_{i=1}^{N} \exp \left\{ -e^{\log \int_0^{t_i} h_0(s) \mathrm{d}s + \mathbf{x}_i^{\mathrm{T}}\boldsymbol{\beta}} \right\} \prod_{i=1}^{N} \left\{ e^{\log h_0(t_i) + \mathbf{x}_i^{\mathrm{T}}\boldsymbol{\beta}} \right\}^{\delta_i}. \end{split}$$

Assuming that $h_0(t)$ is very **small**, for example, $\log \int_0^{t_i} h_0(s) \mathrm{d}s \to -\infty$, we have $e^{\log \int_0^{t_i} h_0(s) \mathrm{d}s + \mathbf{x}_i^\mathrm{T} \boldsymbol{\beta}} \approx 0$ and thus

$$\exp\left\{-e^{\log\int_0^{t_i}h_0(s)\mathrm{d}s+\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}}\right\}\approx\frac{1}{1+e^{\log\int_0^{t_i}h_0(s)\mathrm{d}s+\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}}},$$

since $e^{-x} \approx \frac{1}{1+x}$, when $x \to 0$.

Main idea

Similarity between logistic regression and Cox model

Now, we have the likelihood function of $\{(t_i, \delta_i, \mathbf{x}_i)\}_{i=1}^N$ is

$$L(\beta; \boldsymbol{X}, \boldsymbol{t}, \boldsymbol{\delta}) pprox \prod_{i=1}^{N} rac{1}{1 + e^{\log \int_{0}^{t_{i}} h_{0}(s) \mathrm{d}s + \boldsymbol{x}_{i}^{\mathrm{T}} eta}} \prod_{i=1}^{N} \left\{ e^{\log h_{0}(t_{i}) + \boldsymbol{x}_{i}^{\mathrm{T}} eta}
ight\}^{\delta_{i}}.$$

The likelihood function of logistic regression of $\{(y_i, x_i)\}_{i=1}^N$

$$L(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y}) = \prod_{i=1}^{N} \frac{1}{1 + e^{\alpha_i + \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}}} \prod_{i=1}^{N} \left(e^{\alpha_i + \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}} \right)^{y_i},$$

if α_i are different (commonly used as *offset* option in R).

Implication

- The likelihoods are similar for imbalanced survival data
- Maybe methodology for balancing binary data can be used for imbalanced survival data.

Sampling techniques

- Remember that **events** are essential information
- We propose to use under-sampling method because it reduces computational complexity
- Under-sampling is widely used in binary data and proposed in Keret and Gorfine (2023) for survival data

Under-sampling for survivial data

- If $\delta_i = 1$, include $(t_i, \delta_i, \mathbf{x}_i)$ into the sample
- If $\delta_i = 0$, include $(t_i, \delta_i, \mathbf{x}_i)$ with probability ρ

Methodology Sampling techniques

Features of under-sampling

- The resultant sample is of size $N_1 + \rho N_0$
- ullet We can set ho by ourselves to balance the data as we need
- The resultant estimator is usually biased due to different sampling probability between 0 and 1
- Easy to apply to massive data and streaming data

Estimation techniques

To debias Cox regression, we can use weighted method

Weighted method

- ullet For sampled data, we weight censors with $\frac{1}{
 ho}$
- This is essentially approximating the original likelihood and thus should be similar with full data MLE.
- Proposed in Keret and Gorfine (2023).

- ullet If ho is small (usually for imbalanced data), the variance will be inflated
- We give censors more weights, which is not reasonable

Estimation techniques

Remember that we mentioned similarity between logistic regression and Cox regression. Let ν_i denote the indicator that if *i*-th data is sampled. We have

$$\mathbb{P}(y_i = 1 | \mathbf{x}_i, \nu_i = 1) = \frac{\mathbb{P}(\nu_i = 1 | y_i = 1, \mathbf{x}_i) \mathbb{P}(y_i = 1 | \mathbf{x}_i)}{\sum_{t=0}^{1} \mathbb{P}(\nu_i = t | y_i = t, \mathbf{x}_i) \mathbb{P}(y_i = t | \mathbf{x}_i)}$$
$$= \frac{e^{\alpha - \log \rho + \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta}}}{1 + e^{\alpha - \log \rho + \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta}}}$$

The likelihood of sampled data is

$$\prod_{i=1}^{N^*} \mathbb{P}(y_i = 1 | \boldsymbol{x}_i, \nu_i = 1) = \prod_{i=1}^{N^*} \frac{1}{1 + e^{\alpha - \log \rho + \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}}} \prod_{i=1}^{N^*} \left(e^{\alpha - \log \rho + \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{\beta}} \right)^{y_i}$$

Only the intercept term is different

Estimation techniques

- For logistic regression, we only need to adjust intercept term
- ullet For Cox regression, we only estimate eta and do not care $h_0(t)$
- Maybe it is possible to directly apply Cox regression on sampled data

Weighted method

- \bullet Taking samples with negative sampling with user-defined ρ
- Weighting censors with $\frac{1}{\rho}$, apply weighted Cox regression on sample

Unweighted method

- ullet Taking samples with negative sampling with user-defined ho
- Directly apply Cox regression on the sample

Estimation efficiency

(a) MSE

(b) Bias

Consistent inferential results

```
coef exp(coef) se(coef)
         coef exp(coef) se(coef)
                                                             0.8338 0.0866 -2.098 0.0359
                                             age
                                                  -0.1817
               0.82132 0.08813 -2.233 0.0255
     -0.19684
age
                                                  -0.7493 0.4727 0.3846 -1.948 0.0514
                                             trt
trt
     -0.71910 0.48719 0.38426 -1.871 0.0613
                                             biomk 0.1387 1.1488 0.1726 0.804 0.4215
biomk 0.14332 1.15410 0.18204 0.787 0.4311
                                             Likelihood ratio test=9.53 on 3 df, p=0.02298
Likelihood ratio test=9.38 on 3 df, p=0.02466
                                             n= 668, number of events= 31
n= 5000, number of events= 31
```

(a) Full

(b) Unweighted

```
coef exp(coef) se(coef) z p
age -0.18639 0.82995 0.08673 -2.149 0.0316
trt -0.76358 0.46600 0.38457 -1.986 0.0471
biomk 0.14006 1.15034 0.17194 0.815 0.4153

Likelihood ratio test=9.93 on 3 df, p=0.01918
n= 668, number of events= 31
```

(c) Weighted

- When $\frac{N_0}{N_1} = 25$ in resultant sample, inference are also very similar
- We only use 668 observations instead of 5000

Computational complexity

Table: Computational time (in seconds)

Sampling rate	Unweighted	Weighted	Full data
0.02	3.92	4.37	26.65
0.05	4.47	4.73	26.65
0.125	6.38	7.00	26.65

Computational time reduced a lot if use a small sample

 This will be more attractive for massive streaming data if we also use an online version of Cox regression because we can reject a lot of censors without losing too much estimation efficiency

Conclusions

Conclusion for this project:

- Imbalance may cause estimation issue for Cox regression
- Balancing methods for classification can be applied to survival data
- It is even possible to obtain similar results with very small data size when dealing with massive imbalance survival data

Future extension for this project:

- We limited our scope to large scale imbalance data. For finite sample size, it may need other techniques for example, penalization methods
- Nonuniform sampling can be considered
- Combining negative sampling with online updating of Cox regression maybe interesting and of practical interests.

References I

- Keret, N. and Gorfine, M. (2023). Analyzing big ehr data—optimal cox regression subsampling procedure with rare events. *Journal of the American Statistical Association* **0**, 0, 1–14.
- Wang, H. (2020). Logistic regression for massive data with rare events. In *ICML*.
- Wang, H., Zhang, A., and Wang, C. (2021). Nonuniform negative sampling and log odds correction with rare events data. *Advances in Neural Information Processing Systems* **34**.

Thank you!