本科目不得使用計算機

本科目試題共2頁

Part I Discrete Mathematics

- 1. Answer the following questions (6% each)
 - (i) What is the value of $3^{2003} \mod 99$?
 - (ii) A regular graph is a simple graph that every vertex has the same degree. What is the number of vertices for a regular graph with degree 4 having 20 edges?
 - (iii) Calculate the number of solutions of $x_1+x_2+x_3+x_4=10$ for (1) $x_i \in Z^+$ and (2) $x_i \in N=\{0,1,2,3,...\}$ respectively, where $i \in \{1,2,3,4\}$.
 - (iv) $\{a_n\}$, n=1,2,3,..., is a sequence of integers satisfying $a_n=2a_{n-1}+f(n)$, with $a_1=1$. Please give a general solution for f(n)=1 and f(n)=n respectively.
 - (v) In a binary tree, that is, every node could have at most 2 child nodes. What is the range of the number of nodes if the height of this tree is 4?
- 2. True or false (2% each for a correct answer, -1% for each wrong answer)
 - (a) The set {1,2,3,12,18,36} under the "divide" relation is not a Poset..
 - (b) Adjacency matrices can be used to represented directed pseudographs.
 - (c) If both P and Q are propositions, then $P \rightarrow Q \equiv \neg P \lor Q$, where represents the logical equivalent relation.
 - (d) Let P and Q be propositions. The implication of " $P \rightarrow Q$ " is true if P is false and Q is true.
 - (e) If a relation is antisymmetric, then it must also be symmetric.
 - (f) Assume that the relation R is defined on $\{1,2,3,4\}$ as $R=\{(1,1),(1,2),(2,1),(2,2)\}$. Then, R is a reflexive relation.
 - (g) The minimum number of numbers must be selected from {1,2,3,4,5,6} to guarantee that at least one pair of these numbers add up 7 is 5.
 - (h) Hypercube Q_3 is a plannar graph.
 - (i) Let m be a positive integer and let a and b be intergers. Then,(a+b) mod m = (a mod m) + (b mod m)
 - (j) There is a vertex cut with n-1 vertices in a complete graph K_n , where n >2.

本科目不得使用計算機

本科目試題共2頁

Part II Linear Algebra

1. Let A be an $m \times n$ matrix with rank r such that

$$Ax = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 has no solution and $Ax = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ has exactly one solution. For each

of the following statements, indicate whether the statement is true or false, respectively. (1 % each) If the statement is true, briefly state why it is true. If the statement is false, give a counterexample or explain why it is false. (4 % each)

- (a) n = r.
- (b) $det(A^TA) = det(AA^T)$.
- (c) $A^T A$ is invertible.
- (d) AA^T is positive definite.
- (e) $A^Ty = c$ has at least one solution for every $c \in \mathbb{R}^3$.
- 2. Find the closest straight line y = cx + d to the following 5 points: (6 %) (x, y) = (-2, 0), (-1, 0), (0, 1), (1, 1), (2, 1).

3. Let
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A. (3 %)
- (b) Is A diagonalizable? Justify your answer. (6 %)
- 4. Let $u_1 = (3, 1, -1)$, $u_2 = (1, -2, 1)$, and the set $U = span\{u_1, u_2\}$.
 - (a) Find the orthogonal complement of U. (5%)
 - (b) Find the point in U that is closest to the vector (2, 2, 8). (5%)