TEST REPORT

Reference No. WTU18S04108362W FCC ID..... 2AHAK-E2SW3918 Applicant KUNSHAN KONKA ELECTRONIC CO.,LTD Address No.189 East Qianjin Road, KUNSHAN Jiangsu 215300 CHINA Manufacturer 1..... KUNSHAN KONKA ELECTRONIC CO.,LTD Address: No.189 East Qianjin Road, KUNSHAN Jiangsu 215300 CHINA Manufacturer 2..... Element TV company LP Address 392 US Highway 321 Bypass North WINNSBORO SC 29180 USA Product Name LCD TV Model No. ELSJ4016, ELST4017, E2SW3918 Standards..... FCC CFR47 Part 15 C Section 15.247: 2017 Date of Receipt sample..... : 2018-05-22 Date of Test..... 2018-05-22 to 2018-06-08

Remarks:

Date of Issue

Test Result

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by: Approved by:

2018-06-08

Pass

Jack Wen / Test Engineer

Philo Zhong / Manager

rlo zhoux

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

2.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	A2LA	EMCD \ RED	-
Taiwan	(Certificate No.: 4243.01)	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

		Page
1	COVER PAGE	
2	LABORATORIES INTRODUCTION	
	2.1 TEST FACILITY	
3	CONTENTS	
4	REPORT REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T	
	5.2 DETAILS OF E.U.T	
	5.4 TEST MODE	
6	EQUIPMENT USED DURING TEST	
Ů	6.1 EQUIPMENTS LIST	
	6.2 MEASUREMENT UNCERTAINTY	
	6.3 TEST EQUIPMENT CALIBRATION	
7	TEST SUMMARY	12
8	CONDUCTED EMISSION	13
	8.1 E.U.T. OPERATION	
	8.2 EUT SETUP	
	8.3 MEASUREMENT DESCRIPTION	
Δ.	8.4 CONDUCTED EMISSION TEST RESULT	
9		
	9.1 EUT OPERATION	
	9.3 SPECTRUM ANALYZER SETUP	
	9.4 Test Procedure	19
	9.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	9.6 SUMMARY OF TEST RESULTS	
10	BAND EDGE MEASUREMENT	
	10.1 TEST PRODUCE	-
11	10.2 TEST RESULT BANDWIDTH MEASUREMENT	
11		
	11.1 TEST PROCEDURE: 11.2 TEST RESULT:	
12	MAXIMUM PEAK OUTPUT POWER	
12	12.1 Test Procedure:	
	12.2 TEST ROCEDORE	-
13	POWER SPECTRAL DENSITY	
	13.1 TEST PROCEDURE:	
	13.2 TEST RESULT:	
14	ANTENNA REQUIREMENT	60
15	RF EXPOSURE	
	15.1 REQUIREMENTS	
	15.2 THE PROCEDURES / LIMIT	
	15.3 MPE CALCULATION METHOD	62
16	PHOTOGRAPHS - TEST SETUP PHOTOS	63

Reference No.: WTU18S04108362W Page 5 of 75

	RADIATED EMISSION	
17	FOGRAPHS - CONSTRUCTIONAL DETAILS	
	 EUT – EXTERNAL VIEW	66

Reference No.: WTU18S04108362W Page 6 of 75

4 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTU18S04108362W	2018-05- 22	2018-05-22 to 2018-06-08	2018-06-08	Original	-	Valid

Reference No.: WTU18S04108362W Page 7 of 75

5 General Information

5.1 General Description of E.U.T

Product Name: LCD TV

Model No.: ELSJ4016, ELST4017, E2SW3918

Model Difference: Only the model names are different.

Operation Frequency: 802.11b/g/n HT20/n HT40: 2412MHz ~ 2462MHz

RF output power 16.87dBm

The Oscillator: 40MHz

Antenna Gain: ANT1: 0dBi, ANT2: 0dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.,

HT40:150Mbps max.)

Antenna installation : Integrated Antenna

5.2 Details of E.U.T

Ratings: Input Power: AC 120V~ 50/60Hz, 75W

Reference No.: WTU18S04108362W Page 8 of 75

5.3 Channel List

WIFI

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequenc y (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

Reference No.: WTU18S04108362W Page 9 of 75

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Marianum Daali Outrut Davian	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Dayyar Crackral Daneity	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Fraguency Dange	802.11g	54 Mbps	1/11	TX
Frequency Range	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmiller Spundus Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

6 Equipment Used during Test

6.1 Equipments List

	Conducted Emissions Test Site 1#							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-12	2018-09-11		
2.	LISN	R&S	ENV216	101215	2017-09-12	2018-09-11		
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-12	2018-09-11		
Conducted Emissions Test Site 2#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11		
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11		
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11		
4.	4. Cable LARGE		RF300	-	2017-09-12	2018-09-11		
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	EMC Analyzer	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13		
2	LARGE LOOP ANTENNA	Com-power	AL-130R	10160007	2018-04-17	2019-04-16		
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2018-04-08	2019-04-07		
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11		
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2018-04-08	2019-04-07		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-09-14	2018-09-13		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-12	2019-04-11		
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2018-04-12	2019-04-11		
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#				
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	2018-04-12	2019-04-11		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-08	2019-04-07		
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2018-04-12	2019-04-11		

4	Cable	HUBER+SUHNER	CBL2	525178	2018-04-12	2019-04-11	
RF Conducted Testing							
Item Equipment		Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11	

6.2 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
	± 5.03 dB (30M~1000MHz)	
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)	
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	

6.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TES T CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTU18S04108362W Page 12 of 75

7 Test Summary

Test Items	Test Requirement	Result
	15.247	
Radiated Emissions	15.205(a)	С
	15.209(a)	
Conducted Emissions	15.207(a)	С
Bandwidth	15.247(a)(2)	С
Maximum Peak Output Power	15.247(b)(3),(4)	С
Power Spectral Density	15.247(e)	С
Band Edge	15.247(d)	С
Antenna Requirement	15.203	С
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	С
Note: C=Compliance; NC=Not Compliance;	NT=Not Tested; N/A=N	ot Applicable.

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013,ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Only the worst case (WIFI transmitting mode) test data were record in the report.

Live line:

Reference No.: WTU18S04108362W Page 15 of 75

Neutral line:

Reference No.: WTU18S04108362W Page 16 of 75

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013,ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIIIL.	Limit						
_	Field Strength		Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0 ° to 360 °

BUT

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	łz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTU18S04108362W Page 19 of 75

9.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.
- 8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTU18S04108362W Page 20 of 75

9.6 Summary of Test Results

Only the worst case ANT1 were record in the report.

Test Frequency: 9kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0 1 1	FCC F 15.247/2		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	11b: Low Channel 2412MHz									
486.09	12.81	PK	165	2.0	Н	21.09	33.90	45.00	-11.10	
486.09	12.22	PK	267	1.9	V	21.09	33.31	45.00	-11.69	
4824.00	50.49	PK	194	1.7	V	-1.05	49.44	74.00	-24.56	
4824.00	42.74	Ave	194	1.7	V	-1.05	41.69	54.00	-12.31	
7236.00	46.19	PK	17	1.9	Н	1.34	47.53	74.00	-26.47	
7236.00	41.24	Ave	17	1.9	Н	1.34	42.58	54.00	-11.42	
2340.97	46.70	PK	192	2.0	V	-13.19	33.51	74.00	-40.49	
2340.97	39.59	Ave	192	2.0	V	-13.19	26.40	54.00	-27.60	
2371.07	42.78	PK	180	1.7	Н	-13.15	29.63	74.00	-44.37	
2371.07	36.08	Ave	180	1.7	Н	-13.15	22.93	54.00	-31.07	
2498.61	43.19	PK	93	1.6	V	-13.08	30.11	74.00	-43.89	
2498.61	37.25	Ave	93	1.6	V	-13.08	24.17	54.00	-29.83	

	Receiver	Detector	Turn	RX An	tenna	Corrected	Commonts	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Mid	dle Chan	nel 2437	7MHz			
486.09	14.33	PK	73	1.5	Н	21.09	35.42	45.00	-9.58
486.09	12.40	PK	328	1.7	V	21.09	33.49	45.00	-11.51
4874.00	49.46	PK	308	1.1	V	-0.63	48.83	74.00	-25.17
4874.00	44.24	Ave	308	1.1	V	-0.63	43.61	54.00	-10.39
7311.00	45.24	PK	250	1.4	Н	2.21	47.45	74.00	-26.55
7311.00	42.79	Ave	250	1.4	Н	2.21	45.00	54.00	-9.00
2312.66	46.99	PK	30	1.8	V	-13.19	33.80	74.00	-40.20
2312.66	37.18	Ave	30	1.8	V	-13.19	23.99	54.00	-30.01
2389.36	43.14	PK	221	1.1	Н	-13.14	30.00	74.00	-44.00
2389.36	36.60	Ave	221	1.1	Н	-13.14	23.46	54.00	-30.54
2485.71	43.87	PK	149	1.8	V	-13.09	30.78	74.00	-43.22
2485.71	36.88	Ave	149	1.8	V	-13.09	23.79	54.00	-30.21

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)) (dB) (dI	(dBµV/m)	(dBµV/m)	(dB)
			11b: Hi	gh Chanr	nel 2462	MHz			
486.09	13.82	PK	186	1.2	Н	21.09	34.91	45.00	-10.09
486.09	12.56	PK	323	1.9	V	21.09	33.65	45.00	-11.35
4924.00	50.34	PK	36	1.9	V	-0.25	50.09	74.00	-23.91
4924.00	44.75	Ave	36	1.9	V	-0.25	44.50	54.00	-9.50
7386.00	48.22	PK	263	1.6	Н	2.85	51.07	74.00	-22.93
7386.00	41.31	Ave	263	1.6	Н	2.85	44.16	54.00	-9.84
2325.23	45.94	PK	128	1.0	V	-13.19	32.75	74.00	-41.25
2325.23	39.99	Ave	128	1.0	V	-13.19	26.80	54.00	-27.20
2373.12	42.63	PK	116	2.0	Н	-13.14	29.49	74.00	-44.51
2373.12	36.95	Ave	116	2.0	Н	-13.14	23.81	54.00	-30.19
2488.55	42.60	PK	198	1.3	V	-13.09	29.51	74.00	-44.49
2488.55	38.44	Ave	198	1.3	V	-13.09	25.35	54.00	-28.65

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Compated	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Lov	w Channe	el 2412N	ЛНz			
486.09	13.92	PK	323	1.4	Н	21.09	35.01	45.00	-9.99
486.09	13.82	PK	157	1.9	V	21.09	34.91	45.00	-10.09
4824.00	51.66	PK	256	1.1	V	-1.06	50.60	74.00	-23.40
4824.00	48.37	Ave	256	1.1	V	-1.06	47.31	54.00	-6.69
7236.00	47.10	PK	125	1.1	Н	1.35	48.45	74.00	-25.55
7236.00	46.46	Ave	125	1.1	Н	1.35	47.81	54.00	-6.19
2328.94	46.88	PK	3	1.7	V	-13.19	33.69	74.00	-40.31
2328.94	40.00	Ave	3	1.7	V	-13.19	26.81	54.00	-27.19
2361.76	42.18	PK	200	1.5	Н	-13.14	29.04	74.00	-44.96
2361.76	36.34	Ave	200	1.5	Н	-13.14	23.20	54.00	-30.80
2489.77	44.21	PK	344	1.9	V	-13.08	31.13	74.00	-42.87
2489.77	37.04	Ave	344	1.9	V	-13.08	23.96	54.00	-30.04

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Mid	dle Chan	nel 243	7MHz			
486.09	12.96	PK	128	1.3	Н	21.09	34.05	45.00	-10.95
486.09	12.27	PK	83	1.5	V	21.09	33.36	45.00	-11.64
4874.00	49.64	PK	27	1.6	V	-0.62	49.02	74.00	-24.98
4874.00	48.79	Ave	27	1.6	V	-0.62	48.17	54.00	-5.83
7311.00	47.47	PK	350	1.9	Н	2.20	49.67	74.00	-24.33
7311.00	46.28	Ave	350	1.9	Н	2.20	48.48	54.00	-5.52
2340.53	45.16	PK	350	1.3	V	-13.19	31.97	74.00	-42.03
2340.53	37.35	Ave	350	1.3	V	-13.19	24.16	54.00	-29.84
2358.38	43.32	PK	332	1.7	Н	-13.15	30.17	74.00	-43.83
2358.38	38.90	Ave	332	1.7	Н	-13.15	25.75	54.00	-28.25
2494.46	42.31	PK	333	1.3	V	-13.09	29.22	74.00	-44.78
2494.46	38.65	Ave	333	1.3	V	-13.09	25.56	54.00	-28.44

F	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Hiç	gh Chann	el 2462	MHz			
486.09	14.42	PK	56	1.1	Н	21.09	35.51	45.00	-9.49
486.09	13.79	PK	259	1.5	V	21.09	34.88	45.00	-10.12
4924.00	50.76	PK	42	1.4	V	-0.25	50.51	74.00	-23.49
4924.00	46.47	Ave	42	1.4	V	-0.25	46.22	54.00	-7.78
7386.00	47.69	PK	150	1.3	Н	2.86	50.55	74.00	-23.45
7386.00	42.41	Ave	150	1.3	Н	2.86	45.27	54.00	-8.73
2341.77	45.95	PK	261	1.4	V	-13.19	32.76	74.00	-41.24
2341.77	37.63	Ave	261	1.4	V	-13.19	24.44	54.00	-29.56
2377.22	43.91	PK	14	1.6	Н	-13.14	30.77	74.00	-43.23
2377.22	37.14	Ave	14	1.6	Н	-13.14	24.00	54.00	-30.00
2492.33	44.37	PK	290	1.4	V	-13.08	31.29	74.00	-42.71
2492.33	36.04	Ave	290	1.4	V	-13.08	22.96	54.00	-31.04

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n20: Lo	w Chann	el 2412l	MHz			
486.09	14.68	PK	203	1.9	Н	21.09	35.77	45.00	-9.23
486.09	13.51	PK	168	1.5	V	21.09	34.60	45.00	-10.40
4824.00	50.58	PK	231	1.5	V	-1.06	49.52	74.00	-24.48
4824.00	48.90	Ave	231	1.5	V	-1.06	47.84	54.00	-6.16
7236.00	47.07	PK	214	1.5	Н	1.34	48.41	74.00	-25.59
7236.00	45.54	Ave	214	1.5	Н	1.34	46.88	54.00	-7.12
2312.31	46.54	PK	308	1.5	V	-13.19	33.35	74.00	-40.65
2312.31	37.02	Ave	308	1.5	V	-13.19	23.83	54.00	-30.17
2389.91	43.73	PK	5	1.3	Н	-13.14	30.59	74.00	-43.41
2389.91	38.23	Ave	5	1.3	Н	-13.14	25.09	54.00	-28.91
2496.50	43.21	PK	145	2.0	V	-13.08	30.13	74.00	-43.87
2496.50	37.64	Ave	145	2.0	V	-13.08	24.56	54.00	-29.44

	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n20: Mid	dle Chan	nel 243	7MHz			
486.09	13.17	PK	62	1.5	Н	21.09	34.26	45.00	-10.74
486.09	13.66	PK	339	1.2	V	21.09	34.75	45.00	-10.25
4874.00	50.37	PK	253	1.2	V	-0.61	49.76	74.00	-24.24
4874.00	48.41	Ave	253	1.2	V	-0.61	47.80	54.00	-6.20
7311.00	47.65	PK	199	1.5	Н	2.21	49.86	74.00	-24.14
7311.00	45.35	Ave	199	1.5	Н	2.21	47.56	54.00	-6.44
2338.89	46.81	PK	125	1.3	V	-13.19	33.62	74.00	-40.38
2338.89	39.56	Ave	125	1.3	V	-13.19	26.37	54.00	-27.63
2377.34	43.34	PK	201	1.1	Н	-13.14	30.20	74.00	-43.80
2377.34	36.33	Ave	201	1.1	Н	-13.14	23.19	54.00	-30.81
2492.34	42.43	PK	78	1.5	V	-13.09	29.34	74.00	-44.66
2492.34	37.29	Ave	78	1.5	V	-13.09	24.20	54.00	-29.80

	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carrantad	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	/) (dB) (dBμV/m	(dBµV/m)	(dBµV/m)	(dB)
			n20: Hiç	gh Chann	el 2462	MHz			
486.09	12.91	PK	107	1.9	Н	21.09	34.00	45.00	-11.00
486.09	13.45	PK	172	1.5	V	21.09	34.54	45.00	-10.46
4924.00	50.65	PK	322	1.4	V	-0.24	50.41	74.00	-23.59
4924.00	48.86	Ave	322	1.4	V	-0.24	48.62	54.00	-5.38
7386.00	47.37	PK	245	1.4	Н	2.83	50.20	74.00	-23.80
7386.00	45.05	Ave	245	1.4	Н	2.83	47.88	54.00	-6.12
2324.85	45.06	PK	59	1.3	V	-13.19	31.87	74.00	-42.13
2324.85	39.48	Ave	59	1.3	V	-13.19	26.29	54.00	-27.71
2363.13	42.82	PK	93	1.5	Н	-13.14	29.68	74.00	-44.32
2363.13	37.74	Ave	93	1.5	Н	-13.14	24.60	54.00	-29.40
2492.98	42.96	PK	323	1.1	V	-13.08	29.88	74.00	-44.12
2492.98	37.85	Ave	323	1.1	V	-13.08	24.77	54.00	-29.23

	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			N40: Lo	w Chann	el 2422	MHz			
486.09	13.50	PK	346	1.7	Н	21.09	34.59	45.00	-10.41
486.09	13.11	PK	141	1.5	V	21.09	34.20	45.00	-10.80
4844.00	50.74	PK	177	1.3	V	-1.06	49.68	74.00	-24.32
4844.00	48.56	Ave	177	1.3	V	-1.06	47.50	54.00	-6.50
7266.00	48.27	PK	167	1.7	Н	1.34	49.61	74.00	-24.39
7266.00	42.83	Ave	167	1.7	Н	1.34	44.17	54.00	-9.83
2321.98	46.35	PK	112	1.3	V	-13.19	33.16	74.00	-40.84
2321.98	37.24	Ave	112	1.3	V	-13.19	24.05	54.00	-29.95
2381.30	44.79	PK	72	1.7	Н	-13.15	31.64	74.00	-42.36
2381.30	37.08	Ave	72	1.7	Н	-13.15	23.93	54.00	-30.07
2491.04	43.75	PK	107	1.4	V	-13.08	30.67	74.00	-43.33
2491.04	37.26	Ave	107	1.4	V	-13.08	24.18	54.00	-29.82

	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			N40: Mid	dle Chan	nel 243	7MHz			
486.09	14.48	PK	25	1.1	Н	21.09	35.57	45.00	-9.43
486.09	13.16	PK	291	1.3	V	21.09	34.25	45.00	-10.75
4874.00	49.06	PK	277	1.1	V	-0.62	48.44	74.00	-25.56
4874.00	48.47	Ave	277	1.1	V	-0.62	47.85	54.00	-6.15
7311.00	47.37	PK	35	2.0	Н	2.21	49.58	74.00	-24.42
7311.00	43.85	Ave	35	2.0	Н	2.21	46.06	54.00	-7.94
2348.04	46.59	PK	89	1.2	V	-13.19	33.40	74.00	-40.60
2348.04	38.64	Ave	89	1.2	V	-13.19	25.45	54.00	-28.55
2379.77	43.05	PK	171	1.2	Н	-13.16	29.89	74.00	-44.11
2379.77	38.03	Ave	171	1.2	Н	-13.16	24.87	54.00	-29.13
2488.14	43.42	PK	98	1.2	V	-13.08	30.34	74.00	-43.66
2488.14	37.47	Ave	98	1.2	V	-13.08	24.39	54.00	-29.61

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	0	FCC Part 15.247/209/205	
				Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
N40: High Channel 2452MHz									
486.09	14.22	PK	139	1.8	Н	21.09	35.31	45.00	-9.69
486.09	13.01	PK	321	1.9	V	21.09	34.10	45.00	-10.90
4904.00	50.88	PK	21	1.4	V	-0.24	50.64	74.00	-23.36
4904.00	44.32	Ave	21	1.4	V	-0.24	44.08	54.00	-9.92
7356.00	48.80	PK	346	1.3	Н	2.85	51.65	74.00	-22.35
7356.00	42.86	Ave	346	1.3	Н	2.85	45.71	54.00	-8.29
2348.14	45.28	PK	295	1.5	V	-13.19	32.09	74.00	-41.91
2348.14	39.47	Ave	295	1.5	V	-13.19	26.28	54.00	-27.72
2371.57	43.55	PK	11	1.9	Н	-13.14	30.41	74.00	-43.59
2371.57	38.68	Ave	11	1.9	Н	-13.14	25.54	54.00	-28.46
2497.57	44.77	PK	224	1.4	V	-13.08	31.69	74.00	-42.31
2497.57	36.98	Ave	224	1.4	V	-13.08	23.90	54.00	-30.10

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTU18S04108362W Page 32 of 75

10 **Band Edge Measurement**

Test Requirement: FCC CFR47 Part 15 Section 15.247 Test Method: 558074 D01 DTS Meas Guidance V04

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

> frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits

specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

10.2 Test Result

Only the worst case ANT1 were record in the report.

Test result plots shown as follows:

TX 11b: Band edge-right side

Reference No.: WTU18S04108362W Page 37 of 75

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

11.2 Test Result:

ANT1:

Operation mode	6dB	Bandwidth (MHz)	99%	Bandwidth (N	ИHz)
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11b	10.060	10.060	10.060	14.052	14.116	14.180
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11g	16.367	16.367	16.367	16.467	16.467	16.567
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11n HT20	17.569	17.569	17.569	17.569	17.623	17.677
	Channel 3	Channel 6	Channel 9	Channel 3	Channel 6	Channel 9
TX 11n HT40	36.120	36.120	36.120	35.898	35.898	36.118

ANT2:

Operation mode	6dB	Bandwidth (MHz)	99%	Bandwidth (N	ИHz)
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11b	10.060	10.060	10.060	12.679	12.487	12.838
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11g	16.367	16.367	16.367	16.467	16.367	16.467
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11
TX 11n HT20	17.569	17.569	17.569	18.808	17.569	17.623
	Channel 3	Channel 6	Channel 9	Channel 3	Channel 6	Channel 9
TX 11n HT40	36.120	36.120	36.120	35.898	35.898	35.898

ANT1:

ANT2:

Reference No.: WTU18S04108362W Page 50 of 75

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

12.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

ANT1:

Test mode :TX 11b			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
16.34	16.34 16.30 16.35		
Limit: 1W/30dBm			

Test mode :TX 11g			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
15.32 15.45 15.24			
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
15.50 15.58 15.34			
Limit: 1W/30dBm			

Test mode :TX 11n HT40			
Maximum Peak Output Power (dBm)			
2422MHz 2437MHz 2452MHz			
15.72 15.39 15.27			
Limit: 1W/30dBm			

Reference No.: WTU18S04108362W Page 51 of 75

ANT2:

Test mode :TX 11b			
Maximum Peak Output Power (dBm)			
2412MHz 2437MHz 2462MHz			
16.11 16.16 16.26			
Limit: 1W/30dBm			

Test mode :TX 11g			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
15.87 16.19 16.87			
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
15.66 15.41 15.98			
Limit: 1W/30dBm			

Test mode :TX 11n HT40			
Maximum Peak Output Power (dBm)			
2422MHz	2422MHz 2437MHz 2452MHz		
15.22 15.51 15.72			
Limit: 1W/30dBm			

Reference No.: WTU18S04108362W Page 52 of 75

ANT1+ANT2:

Test mode :TX 11b			
Maximum Peak Output Power (dBm)			
2412MHz	2412MHz 2437MHz 2462MHz		
19.24 19.32			
Limit: 1W/30dBm			

Test mode :TX 11g			
Maximum Peak Output Power (dBm)			
2412MHz	2437MHz	2462MHz	
18.61 18.85 19.14			
Limit: 1W/30dBm			

Test mode :TX 11n HT20					
Maximum Peak Output Power (dBm)					
2412MHz 2437MHz 2462MHz					
18.59 18.51 18.68					
Limit: 1W/30dBm					

Test mode :TX 11n HT40					
Maximum Peak Output Power (dBm)					
2422MHz 2437MHz 2452MHz					
18.49 18.46 18.51					
Limit: 1W/30dBm					

Reference No.: WTU18S04108362W Page 53 of 75

13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

13.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

ANT1, ANT2 and ANT1+ANT2 had been tested, Only the worst case ANT1 were record in the

Teport.					
Test mode :TX 11b					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-13.20 -12.91 -13.22					
Limit: 8dBm per 3kHz					

Test mode :TX 11g					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-13.49 -13.66 -14.31					
Limit: 8dBm per 3kHz					

Test mode :TX 11n HT20					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-13.43 -13.87 -14.01					
Limit: 8dBm per 3kHz					

Test mode :TX 11n HT40					
Power Spectral (dBm per 3kHz)					
2422MHz 2437MHz 2452MHz					
-15.22 -16.76 -15.67					
Limit: 8dBm per 3kHz					

14 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has a Integrated Antenna, meets the requirements of FCC 15.203.

ANT 1

ANT 2

Reference No.: WTU18S04108362W Page 61 of 75

15 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

15.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

15.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

(7) Elittile for Geodpatierial 7 Gentrelied Expectate					
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTU18S04108362W Page 62 of 75

15.3 MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

ANT	Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
ANT1	0.00	1.000	16.35	43.15	0.008585	1
ANT2	0.00	1.000	16.87	48.64	0.009677	1

Simultaneously transmitting:

ANT1+ANT2 =0.008585+0.009677=0.018262<1

Result: Compliance

No SAR measurement is required.

16 Photographs – Test Setup Photos

16.1 Radiated Emission

Test frequency Below 30MHz

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

Reference No.: WTU18S04108362W Page 65 of 75

16.2 Conducted Emission

17 Photographs - Constructional Details

17.1 EUT - External View

Reference No.: WTU18S04108362W Page 67 of 75

Reference No.: WTU18S04108362W Page 68 of 75

Reference No.: WTU18S04108362W Page 69 of 75

Reference No.: WTU18S04108362W Page 70 of 75

17.2 EUT – Internal View

Reference No.: WTU18S04108362W Page 71 of 75

Reference No.: WTU18S04108362W Page 72 of 75

Reference No.: WTU18S04108362W Page 73 of 75

Reference No.: WTU18S04108362W Page 74 of 75

Reference No.: WTU18S04108362W Page 75 of 75

=====End of Report=====