

Schletter, Inc.		20° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	20.62 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- portou	_	-1 000	approd and, nom are contact.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.05	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>765.79</u>	<u>4093.81</u>	k
Compressive Load =	4263.58	<u>4583.65</u>	k
Lateral Load =	<u>350.77</u>	1888.24	k
Moment (Weak Axis) =	<u>0.71</u>	0.39	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 98671.6 in-lbs Resisting Force Required = 1495.02 lbs A minimum 132in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2491.71 lbs to resist overturning. Minimum Width = Weight Provided = 4386.25 lbs Sliding Force = 435.28 lbs Use a 132in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 1088.20 lbs ballast foundation to resist sliding. Resisting Weight = 4386.25 lbs Friction is OK. Additional Weight Required = Cohesion 435.28 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 22in wide x 18in tall 20.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2193.13 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D+	+ 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	- 0.6W	
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1205 lbs	1205 lbs	1205 lbs	1205 lbs	1992 lbs	1992 lbs	1992 lbs	1992 lbs	-343 lbs	-343 lbs	-343 lbs	-343 lbs
FB	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1436 lbs	1436 lbs	1436 lbs	1436 lbs	2189 lbs	2189 lbs	2189 lbs	2189 lbs	-1879 lbs	-1879 lbs	-1879 lbs	-1879 lbs
F _V	187 lbs	187 lbs	187 lbs	187 lbs	791 lbs	791 lbs	791 lbs	791 lbs	720 lbs	720 lbs	720 lbs	720 lbs	-871 lbs	-871 lbs	-871 lbs	-871 lbs
P _{total}	7682 lbs	7881 lbs	8081 lbs	8280 lbs	7027 lbs	7227 lbs	7426 lbs	7625 lbs	8568 lbs	8767 lbs	8967 lbs	9166 lbs	409 lbs	529 lbs	649 lbs	768 lbs
M	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3523 lbs-ft	3523 lbs-ft	3523 lbs-ft	3523 lbs-ft	5395 lbs-ft	5395 lbs-ft	5395 lbs-ft	5395 lbs-ft	1610 lbs-ft	1610 lbs-ft	1610 lbs-ft	1610 lbs-ft
е	0.54 ft	0.52 ft	0.51 ft	0.50 ft	0.50 ft	0.49 ft	0.47 ft	0.46 ft	0.63 ft	0.62 ft	0.60 ft	0.59 ft	3.93 ft	3.04 ft	2.48 ft	2.10 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	269.5 psf	267.2 psf	265.1 psf	263.2 psf	253.2 psf	251.6 psf	250.2 psf	248.9 psf	278.9 psf	276.3 psf	273.8 psf	271.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf

23 in

<u>22 in</u>

Ballast Width

4386 lbs 4586 lbs 4785 lbs 4984 lbs

492.4 psf 480.4 psf 469.5 psf 459.4 psf 443.8 psf 433.9 psf 424.9 psf 416.6 psf 570.8 psf 555.4 psf 541.3 psf 528.4 psf 95.0 psf 74.9 psf 71.6 psf 72.2 psf

24 in

25 in

Maximum Bearing Pressure = 571 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$

Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 1814.1 \text{ ft-lbs}$

Resisting Force Required = 1979.03 lbs S.F. = 1.67

Weight Required = 3298.38 lbs Minimum Width = 22 in in Weight Provided = 4386.25 lbs A minimum 132in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		22 in			22 in			22 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	274 lbs	671 lbs	226 lbs	926 lbs	2704 lbs	889 lbs	97 lbs	196 lbs	50 lbs		
F _V	221 lbs	217 lbs	224 lbs	164 lbs	159 lbs	174 lbs	222 lbs	219 lbs	222 lbs		
P _{total}	5704 lbs	6101 lbs	5657 lbs	6095 lbs	7874 lbs	6058 lbs	1685 lbs	1784 lbs	1637 lbs		
M	886 lbs-ft	878 lbs-ft	894 lbs-ft	668 lbs-ft	665 lbs-ft	701 lbs-ft	883 lbs-ft	875 lbs-ft	887 lbs-ft		
е	0.16 ft	0.14 ft	0.16 ft	0.11 ft	0.08 ft	0.12 ft	0.52 ft	0.49 ft	0.54 ft		
L/6	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft	0.31 ft		
f _{min}	139.1 psf	160.1 psf	135.4 psf	193.9 psf	282.5 psf	186.6 psf	0.0 psf	0.0 psf	0.0 psf		
f _{max}	426.6 psf	445.0 psf	425.6 psf	410.6 psf	498.3 psf	414.2 psf	260.2 psf	253.6 psf	264.5 psf		

Maximum Bearing Pressure = 498 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.280 k	Maximum Axial Load = 3.330 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>44%</u>	Utilization = 45%
Diagonal Strut		
Maximum Axial Load =	1.311 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>18%</u>	
		Struts under compression are shown to demor transfer from the girder. Single M12 bolts are end of the strut and are subjected to double st

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 40.12 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 0.802 in Max Drift, Δ_{MAX} = 0.578 in $0.578 \le 0.802$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 126 \\ \mathsf{J} &= & 0.432 \\ & & 221.673 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.5 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.2 \text{ ksi}$

3.4.16

5.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

Sy=

 $M_{max}Wk =$

1.073 in⁴

45.5 mm

0.599 in³

1.152 k-ft

43.2 ksi

 $\phi F_L =$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

16.2

36.9

0.65

40

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

Bbr -

 $S2 = \frac{k_1 Bbr}{}$

mDbr

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_h} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²

1.88 in² 58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$\varphi F_L St = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

3.4.18

h/t =

$$\begin{array}{rcl} & m = & 0.65 \\ & C_0 = & 27.5 \\ & C_0 = & 27.5 \\ & C_0 = & 27.5 \\ & S_0 = & 27.5 \\ & S_0 = & 27.5 \\ & S_0 = & 27.3 \\ & S_0 = & 27.3 \\ & S_0 = & 27.3 \\ & S_0 = & 27.5 \\ & S_0 = & 0.621 \\ &$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

24.5

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

 $\phi F_i St =$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

$$\left(Bc - \frac{\theta_y}{\theta_x}Fcy\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$32 - 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

S14.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

3.4.9

 $\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_{L} = & \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	V	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-55.629	-55.629	0	0
2	M14	V	-55.629	-55.629	0	0
3	M15	V	-87.418	-87.418	0	0
4	M16	V	-87.418	-87.418	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	127.153	127.153	0	0
2	M14	V	97.484	97.484	0	0
3	M15	V	52.98	52.98	0	0
4	M16	V	52 98	52 98	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	335.479	2	1034.548	1	.95	1	.005	1	0	1	0	1
2		min	-460.837	3	-956.103	3	-65.952	5	297	4	0	1	0	1
3	N7	max	.046	1	1172.799	1	444	12	0	12	0	1	0	1
4		min	071	2	-158.897	3	-269.826	4	543	4	0	1	0	1
5	N15	max	.027	9	3279.677	1_	0	2	0	2	0	1	0	1
6		min	996	2	-589.068	3	-258.747	4	528	4	0	1	0	1
7	N16	max	1385.028	2	3525.888	1	0	3	0	3	0	1	0	1
8		min	-1452.492	3	-3149.082	3	-65.638	5	3	4	0	1	0	1
9	N23	max	.046	1	1172.799	1_	10.395	1	.022	1	0	1	0	1
10		min	071	2	-158.897	3	-263.112	4	531	4	0	1	0	1
11	N24	max	335.479	2	1034.548	1	047	12	0	12	0	1	0	1
12		min	-460.837	3	-956.103	3	-66.509	5	3	4	0	1	0	1
13	Totals:	max	2054.848	2	11220.259	1	0	2						
14		min	-2374.487	3	-5968.149	3	-984.268	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	110.443	1	468.707	1	-6.518	12	0	3	.263	1	0	4
2			min	4.724	12	-480.905	3	-169.933	1	012	1	.011	12	0	3
3		2	max	110.443	1	328.497	1	-5.092	12	0	3	.099	4	.478	3
4			min	4.724	12	-338.435	3	-130.711	1	012	1	.005	12	465	1
5		3	max	110.443	1	188.286	1	-3.667	12	0	3	.051	5	.79	3
6			min	4.724	12	-195.965	3	-91.49	1	012	1	042	1	766	1
7		4	max	110.443	1	48.076	1	-2.241	12	0	3	.026	5	.935	3
8			min	4.724	12	-53.494	3	-52.268	1	012	1	125	1	904	1
9		5	max	110.443	1	88.976	3	816	12	0	3	.004	5	.914	3
10			min	4.724	12	-92.135	1	-21.214	4	012	1	164	1	879	1
11		6	max	110.443	1	231.446	3	26.175	1	0	3	006	12	.728	3
12			min	4.192	15	-232.345	1	-15.853	5	012	1	156	1	689	1
13		7	max	110.443	1	373.917	3	65.396	1	0	3	004	12	.374	3
14			min	-5.468	5	-372.556	1	-13.648	5	012	1	102	1	337	1
15		8	max	110.443	1	516.387	3	104.618	1	0	3	0	10	.18	1
16			min	-17.444	5	-512.766	1	-11.442	5	012	1	049	4	145	3
17		9	max	110.443	1	658.857	3	143.839	1	0	3	.142	1	.86	1
18			min	-29.42	5	-652.977	1	-9.237	5	012	1	06	5	83	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	110.443	1	801.328	3	183.061	1	.005	14	.332	1	1.704	1
20			min	4.724	12	-793.187	1	-106.219	14	012	1	.01	12	-1.682	3
21		11	max	110.443	1	652.977	1	-4.886	12	.012	1	.142	1	.86	1
22			min	4.724	12	-658.857	3	-143.839	1	0	3	.004	12	83	3
23		12	max	110.443	1	512.766	1	-3.461	12	.012	1	.047	4	.18	1
24			min	4.724	12	-516.387	3	-104.618	1	0	3	003	1	145	3
25		13	max	110.443	1	372.556	1	-2.035	12	.012	1	.021	5	.374	3
26			min	4.724	12	-373.917	3	-65.396	1	0	3	102	1	337	1
27		14	max	110.443	1	232.345	1	61	12	.012	1	001	15	.728	3
28			min	3.827	15	-231.446	3	-26.175	1	0	3	156	1	689	1
29		15	max		1	92.135	1	13.047	1	.012	1	006	12	.914	3
30			min	-6.108	5	-88.976	3	-16.569	5	0	3	164	1	879	1
31		16	max	110.443	1	53.494	3	52.268	1	.012	1	004	12	.935	3
32			min	-18.084	5	-48.076	1	-14.363	5	0	3	125	1	904	1
33		17	max	110.443	1	195.965	3	91.49	1	.012	1	0	12	.79	3
34			min	-30.061	5	-188.286	1	-12.158	5	0	3	066	4	766	1
35		18	max	110.443	1	338.435	3	130.711	1	.012	1	.088	1	.478	3
36		1.0	min	-42.037	5	-328.497	1	-9.952	5	0	3	069	5	465	1
37		19	max		1	480.905	3	169.933	1	.012	1	.263	1	0	1
38		10	min	-54.013	5	-468.707	1	-7.747	5	0	3	079	5	0	3
39	M14	1	max	63.806	4	492.609	1	-6.697	12	.006	3	.299	1	0	1
40	IVIT		min	2.018	12	-373.235	3	-174.987	1	01	1	.013	12	0	3
41		2	max	51.83	4	352.398	1	-5.271	12	.006	3	.14	4	.373	3
42			min	2.018	12	-265.379	3	-135.765	1	01	1	.006	12	493	1
43		3		49.863	1	212.188	1	-3.846	12	.006	3	.075	5	.619	3
44		3	max	2.018	12	-157.522	3	-96.544	1	01	1	018	1	822	1
45		4		49.863			1	-2.42	12		3	.04	5	.74	3
46		4	max		12	71.977 -49.666	3	-57.322	1	.006 01	1	108	1	988	1
47		E	min	2.018					12						_
		5	max	49.863	1	58.191	3	995		.006	3	.007	5	.735	3
48		6	min	2.018	12	-68.233	1	-31.218	4	01	1	152	12	99	1
49		6	max	49.863	1	166.047	3	21.121	1	.006	3	006	12	.604	3
50		-	min	-6.586	5	-208.444	1	-24.596	5	01	1	15	1	829	1
51		7	max	49.863	1	273.904	3	60.342	1	.006	3	004	12	.348	3
52			min	-18.562	5	-348.654	1	-22.391	5	01	1	103	1	504	1
53		8	max	49.863	1	381.76	3	99.564	1	.006	3	0	10	0	15
54			min	-30.538	5	-488.865	1	-20.185	5	01	1	079	4	035	3
55		9	max	49.863	1	489.617	3	138.785	1	.006	3	.13	1	.637	1
56			min	-42.514	5	-629.075	1	-17.98	5	01	1_	097	5	543	3
57		10	max	70.182	4	597.473	3	178.007	1	.006	3	.315	1	1.453	1
58			min	2.018	12	-769.286	1	-108.042	14	01	1	.01	12	-1.177	3
59		11	max		4	629.075	1	-4.707	12	.01	1_	.141	4	.637	1
60			min	2.018	12	-489.617	3	-138.785	1_	006	3	.003	12	543	3
61		12	max		1_	488.865	1	-3.282	12	.01	1	.074	5	0	15
62			min	2.018	12	-381.76	3	-99.564	1	006	3	009	1_	035	3
63		13	max		1	348.654	1	-1.856	12	.01	1	.038	5	.348	3
64			min	2.018	12	-273.904	3	-60.342	1	006	3	103	1	504	1
65		14	max		1	208.444	1	431	12	.01	_1_	.006	5	.604	3
66			min	2.018	12	-166.047	3	-31.909	4	006	3	15	1	829	1
67		15	max		1	68.233	1	18.101	1	.01	1	005	12	.735	3
68			min	082	15	-58.191	3	-24.744	5	006	3	152	1	99	1
69		16	max		1	49.666	3	57.322	1	.01	1	003	12	.74	3
70			min	-12.043	5	-71.977	1	-22.538	5	006	3	108	1	988	1
71		17	max		1	157.522	3	96.544	1	.01	1	0	3	.619	3
72			min	-24.02	5	-212.188	1	-20.333	5	006	3	083	4	822	1
73		18			1	265.379	3	135.765	1	.01	1	.117	1	.373	3
74			min		5	-352.398	1	-18.127	5	006	3	1	5	493	1
75		19			1	373.235	3	174.987	1	.01	1	.299	1	0	1
									•						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC			z Shear[lb]		Torque[k-ft]			LC	z-z Mome	
76			min	-47.972	5	-492.609	1	-15.922	5	006	3	119	5	0	3
77	M15	1	max	84.958	5	555.172	1	-6.67	12	.01	1	.298	1	0	2
78			min	-52.556	1	-198.146	3	-174.958	1	005	3	.012	12	0	12
79		2	max	72.982	5	396.418	1	-5.245	12	.01	1	.176	4	.199	3
80			min	-52.556	1	-142.211	3	-135.736	1	005	3	.006	12	555	1
81		3	max		5	237.664	1	-3.819	12	.01	1	.101	5	.332	3
82			min	-52.556	1	-86.276	3	-96.515	1	005	3	018	1	925	1
83		4	max		5	78.91	1	-2.394	12	.01	1	.056	5	.4	3
84		1	min	-52.556	1	-30.341	3	-57.293	1	005	3	108	1	-1.11	1
85		5		37.054	5	25.594	3	968	12	.01	1	.013	5	.403	3
		1 3	max					-39.976			3		1		1
86			min	-52.556	1	-79.844	1		4	005		152		-1.109	
87		6	max		5	81.529	3	21.15	1	.01	1	006	12	.34	3
88			min	-52.556	1	-238.598		-33.34	5	005	3	15	1	923	1
89		7	max	13.102	5	137.465	3	60.372	1	.01	1_	004	12	.212	3
90			min	-52.556	1	-397.352	1	-31.135	5	005	3	103	1	552	1
91		8	max	1.126	5	193.4	3	99.593	1	.01	1	0	10	.019	3
92			min	-52.556	1	-556.106	1	-28.929	5	005	3	103	4	003	9
93		9	max	-2.291	12	249.335	3	138.815	1	.01	1	.13	1	.745	1
94			min	-52.556	1	-714.86	1	-26.724	5	005	3	132	5	239	3
95		10	max	-2.291	12	314.199	14	178.036	1	.01	1	.315	1	1.672	1
96		1	min	-52.556	1	-873.615	1	-112.502	14	005	3	.01	12	562	3
97		11	max		5	714.86	1	-4.734	12	.005	3	.176	4	.745	1
98			min	-52.556	1	-249.335		-138.815	1	01	1	.003	12	239	3
99		12			12	556.106		-3.308	12	.005	3	.003	5	.019	3
		12	max	-2.291			1								
100		10	min	-52.556	1	-193.4	3	-99.593	1	01	1	009	1	003	9
101		13	max		12	397.352	1	-1.883	12	.005	3	.053	5	.212	3
102			min		1	-137.465		-60.372	1	01	1	103	1	552	1
103		14	max	-2.291	12	238.598	1	457	12	.005	3	.01	5	.34	3
104			min	-52.556	1	-81.529	3	-40.687	4	01	1	15	1	923	1
105		15	max	-2.291	12	79.844	1	18.071	1	.005	3	005	12	.403	3
106			min	-54.878	4	-25.594	3	-33.49	5	01	1	152	1	-1.109	1
107		16	max	-2.291	12	30.341	3	57.293	1	.005	3	003	12	.4	3
108			min	-66.854	4	-78.91	1	-31.285	5	01	1	108	1	-1.11	1
109		17	max	-2.291	12	86.276	3	96.515	1	.005	3	0	3	.332	3
110			min	-78.83	4	-237.664	1	-29.079	5	01	1	109	4	925	1
111		18	max		12	142.211	3	135.736	1	.005	3	.117	1	.199	3
112			min		4	-396.418		-26.874	5	01	1	136	5	555	1
113		19	max		12	198.146	3	174.958	1	.005	3	.298	1	0	2
114		13	min	-102.782	4	-555.172	1	-24.668	5	01	1	166	5	0	5
115	M16	1			5	531.44	1	-6.434	12	.011	1	.265	1		1
	IVITO	1	max			-186.164		-170.132			3		12	0	3
116		2		-117.194	_					007					
117		2		71.899	5	372.686	1	-5.009	12	.011	1	.133	4	.185	3
118				-117.194		-130.229		-130.91	1_	007	3	.004	12	527	1
119		3	max		5	213.931	1	-3.583	12	.011	1	.075	5	.304	3
120			min		1	-74.294	3	-91.689	1	007	3	041	1	87	1
121		4	max		5	55.177	1	-2.158	12	.011	1	.041	5	.358	3
122			min	-117.194	1	-18.359	3	-52.467	1	007	3	125	1	-1.027	1
123		5	max	35.97	5	37.576	3	732	12	.011	1	.01	5	.347	3
124			min		1	-103.577	1	-29.123	4	007	3	163	1	998	1
125		6	max		5	93.512	3	25.976	1	.011	1	006	12	.27	3
126			min		1	-262.331	1	-23.668	5	007	3	156	1	785	1
127		7	max		5	149.447	3	65.198	1	.011	1	004	12	.129	3
128				-117.194	1	-421.085	1	-21.462	5	007	3	103	1	386	1
129		8	max	.135	15	205.382	3	104.419	1	.011	1	0	10	.198	1
130		0		-117.194		-579.839		-19.257				071			3
		0	min		12		1		5	007	3		4	078	
131		9	max		12	261.317	3	143.641	1	.011	1	.141	1	.967	1
132			min	-117.194	1	-738.593	1	-17.051	5	007	3	09	5	351	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.849	12	323.444	14	182.862	1	.011	1	.331	1	1.921	1
134			min	-117.194	1	-897.347	1	-110.145	14	007	3	.011	12	688	3
135		11	max	604	15	738.593	1	-4.97	12	.007	3	.141	1	.967	1
136			min	-117.194	1	-261.317	3	-143.641	1	011	1	.004	12	351	3
137		12	max	-4.849	12	579.839	1	-3.544	12	.007	3	.069	4	.198	1
138			min	-117.194	1	-205.382	3	-104.419	1	011	1	004	1	078	3
139		13	max	-4.849	12	421.085	1	-2.119	12	.007	3	.034	5	.129	3
140			min	-117.194	1	-149.447	3	-65.198	1	011	1	103	1	386	1
141		14	max	-4.849	12	262.331	1	693	12	.007	3	.001	5	.27	3
142			min	-117.194	1	-93.512	3	-32.41	4	011	1	156	1	785	1
143		15	max	-4.849	12	103.577	1	13.246	1	.007	3	006	12	.347	3
144			min	-117.194	1	-37.576	3	-24.371	5	011	1	163	1	998	1
145		16	max	-4.849	12	18.359	3	52.467	1	.007	3	004	12	.358	3
146			min	-117.194	1	-55.177	1	-22.165	5	011	1	125	1	-1.027	1
147		17	max	-4.849	12	74.294	3	91.689	1	.007	3	0	12	.304	3
148			min	-117.194	1	-213.931	1	-19.96	5	011	1	09	4	87	1
149		18	max	-4.849	12	130.229	3	130.91	1	.007	3	.089	1	.185	3
150			min	-117.194	1	-372.686	1	-17.754	5	011	1	102	5	527	1
151		19	max	-4.849	12	186.164	3	170.132	1	.007	3	.265	1	0	1
152			min	-122.506	4	-531.44	1	-15.548	5	011	1	121	5	0	5
153	M2	1	max	1029.442	1	2.07	4	1.029	1	0	3	0	3	0	1
154			min	-853.381	3	.507	15	-62.957	4	0	4	0	1	0	1
155		2	max	1029.821	1	2.037	4	1.029	1	0	3	0	1	0	15
156			min	-853.097	3	.499	15	-63.286	4	0	4	016	4	0	4
157		3	max	1030.2	1	2.003	4	1.029	1	0	3	0	1	0	15
158			min	-852.813	3	.491	15	-63.616	4	0	4	032	4	001	4
159		4	max		1	1.97	4	1.029	1	0	3	0	1	0	15
160			min	-852.528	3	.483	15	-63.945	4	0	4	049	4	002	4
161		5		1030.959	1	1.937	4	1.029	1	0	3	.001	1	0	15
162			min	-852.244	3	.475	15	-64.275	4	0	4	065	4	002	4
163		6		1031.338	1	1.903	4	1.029	1	0	3	.001	1	0	15
164			min	-851.959	3	.467	15	-64.604	4	0	4	082	4	003	4
165		7	_	1031.717	1	1.87	4	1.029	1	0	3	.002	1	0	15
166			min	-851.675	3	.46	15	-64.934	4	0	4	098	4	003	4
167		8		1032.097	1	1.836	4	1.029	1	0	3	.002	1	0	15
168			min	-851.39	3	.452	15	-65.263	4	0	4	115	4	004	4
169		9		1032.476	1	1.803	4	1.029	1	0	3	.002	1	0	15
170			min	-851.106	3	.444	15	-65.593	4	0	4	132	4	004	4
171		10	_	1032.855	1	1.77	4	1.029	1	0	3	.002	1	001	15
172		1	min	-850.821	3	.436	15	-65.922	4	0	4	149	4	004	4
173		11		1033.234	1	1.736	4	1.029	1	0	3	.003	1	001	15
174			min		3	.428	15	-66.251	4	0	4	166	4	005	4
175		12		1033.614	1	1.703	4	1.029	1	0	3	.003	1	001	15
176			min		3	.42	15	-66.581	4	0	4	183	4	005	4
177		13		1033.993	1	1.669	4	1.029	1	0	3	.003	1	001	15
178			min		3	.412	15	-66.91	4	0	4	2	4	006	4
179		14		1034.372	1	1.636	4	1.029	1	0	3	.003	1	002	15
180			1	-849.684	3	.405	15	-67.24	4	0	4	217	4	006	4
181		15		1034.751	1	1.603	4	1.029	1	0	3	.004	1	002	15
182		.	min		3	.397	15	-67.569	4	0	4	234	4	007	4
183		16		1035.131	1	1.569	4	1.029	1	0	3	.004	1	002	15
184			min		3	.389	15	-67.899	4	0	4	251	4	007	4
185		17		1035.51	1	1.536	4	1.029	1	0	3	.004	1	002	15
186			min	-848.83	3	.381	15	-68.228	4	0	4	269	4	007	4
187		18		1035.889	1	1.502	4	1.029	1	0	3	.004	1	002	15
188		10	min		3	.373	15	-68.558	4	0	4	286	4	002	4
189		19		1036.268		1.469	4	1.029	1	0	3	.005	1	002	15
100		10	πιαλ	1000.200		1.TU3		1.023			<u> </u>			.002	10

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
190			min	-848.261	3	.365	15	-68.887	4	0	4	304	4	008	4
191	M3	1	max	290.977	2	8.008	4	1.335	4	0	3	0	1	.008	4
192			min	-417.919	3	1.895	15	.003	12	0	4	022	4	.002	15
193		2	max	290.807	2	7.239	4	1.876	4	0	3	0	1	.005	4
194			min	-418.046	3	1.714	15	.003	12	0	4	021	4	.001	12
195		3	max		2	6.469	4	2.416	4	0	3	0	1	.002	2
196			min	-418.174	3	1.533	15	.003	12	0	4	02	4	0	3
197		4	max	290.466	2	5.699	4	2.957	4	0	3	0	1	0	2
198			min	-418.302	3	1.352	15	.003	12	0	4	019	4	001	3
199		5	max	290.296	2	4.929	4	3.497	4	0	3	0	1	0	15
200		5		-418.43	3	1.171	15	.003	12	0	4	018	4	003	6
		_	min								_		_		
201		6	max		2	4.159	4	4.038	4	0	3	0	1	001	15
202		-	min	-418.557	3	.99	15	.003	12	0	4	016	4	005	6
203		7	max	289.955	2	3.389	4	4.579	4	0	3	0	1	001	15
204			min	-418.685	3	.809	15	.003	12	0	4	014	4	006	6
205		8	max		2	2.619	4	5.119	4	0	3	0	1	002	15
206			min	-418.813	3	.628	15	.003	12	0	4	012	4	007	6
207		9	max	289.614	2	1.849	4	5.66	4	0	3	0	1	002	15
208			min	-418.941	3	.447	15	.003	12	0	4	01	5	008	6
209		10	max	289.444	2	1.079	4	6.2	4	0	3	0	1	002	15
210			min	-419.068	3	.266	15	.003	12	0	4	007	5	009	6
211		11	max		2	.329	2	6.741	4	0	3	0	1	002	15
212			min	-419.196	3	.012	3	.003	12	0	4	005	5	009	6
213		12	max	289.103	2	096	15	7.281	4	0	3	0	1	002	15
214		12	min	-419.324	3	463	6	.003	12	0	4	002	5	009	6
215		13	max		2	277	15	7.822	4	0	3	.002	4	002	15
		13	min	-419.452	3	-1.233	6	.003	12	0	4	0	12	002	6
216		1.1									3				_
217		14	max		2	458	15	8.362	4	0		.005	4	002	15
218		4.5	min	-419.58	3	-2.003	6	.003	12	0	4	0	12	008	6
219		15	max	288.592	2	639	15	8.903	4	0	3	.008	4	002	15
220		1.0	min	-419.707	3	-2.772	6	.003	12	0	4	0	12	007	6
221		16	max		2	82	15	9.444	4	0	3	.012	4	<u>001</u>	15
222			min	-419.835	3	-3.542	6	.003	12	0	4	0	12	006	6
223		17	max	288.252	2	-1.001	15	9.984	4	0	3	.016	4	0	15
224			min	-419.963	3	-4.312	6	.003	12	0	4	0	12	004	6
225		18	max		2	-1.182	15	10.525	4	0	3	.021	4	0	15
226			min	-420.091	3	-5.082	6	.003	12	0	4	0	12	002	6
227		19	max	287.911	2	-1.363	15	11.065	4	0	3	.025	4	0	1
228			min	-420.218	3	-5.852	6	.003	12	0	4	0	12	0	1
229	M4	1	max	1169.733	1	0	1	443	12	0	1	.016	4	0	1
230				-161.197	3	0	1	-268.831	4	0	1	0	12	0	1
231		2		1169.903		0	1	443	12	0	1	0	12	0	1
232				-161.069		0	1	-268.979		0	1	015	4	0	1
233		3		1170.073	1	0	1	443	12	0	1	0	12	0	1
234				-160.941	3	0	1	-269.127	4	0	1	046	4	0	1
235		4		1170.244	1	0	1	443	12	0	1	0	12	0	1
236		-		-160.813		0	1	-269.274		0	1	077		0	1
		-					•						4		_
237		5		1170.414	1	0	1	443	12	0	1	0	12	0	1
238				-160.686	3	0	1_	-269.422	4	0	1_	108	4	0	1
239		6		1170.584	1	0	1	443	12	0	1	0	12	0	1
240					3	0	1	-269.57	4	0	1	139	4	0	1
241		7		1170.755	1_	0	1	443	12	0	1_	0	12	0	1
242				-160.43	3	0	1	-269.717		0	1	17	4	0	1
243		8		1170.925	1	0	1	443	12	0	1	0	12	0	1
244			min	-160.302	3	0	1	-269.865	4	0	1	201	4	0	1
245		9		1171.095	1	0	1	443	12	0	1	0	12	0	1
246				-160.175	3	0	1	-270.013		0	1	232	4	0	1
												_ _			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

247 10 r	nax 1171.266	1	_									LC
			0	1	443	12	0	_1_	0	12	0	1
	min -160.047	3	0	1	-270.16	4	0	_1_	263	4	0	1
	nax 1171.436	<u>1</u>	0	1	443	12	0	<u>1</u>	0	12	0	1
	min -159.919	3	0	1	-270.308	4	0	1	294	4	0	1
	nax 1171.606	1_	0	1	443	12	0	_1_	0	12	0	1
252	min -159.791	3	0	1	-270.455	4	0	1	325	4	0	1
253 13 r	max 1171.777	1	0	1	443	12	0	1	0	12	0	1
254	min -159.664	3	0	1	-270.603	4	0	1	356	4	0	1
255 14 r	max 1171.947	1	0	1	443	12	0	1	0	12	0	1
256	min -159.536	3	0	1	-270.751	4	0	1	387	4	0	1
	nax 1172.117	1	0	1	443	12	0	1	0	12	0	1
258	min -159.408	3	0	1	-270.898	4	0	1	418	4	0	1
	nax 1172.288	1	0	1	443	12	0	1	0	12	0	1
	min -159.28	3	0	1	-271.046	4	0	1	449	4	0	1
	nax 1172.458	1	0	1	443	12	0	1	0	12	0	1
	min -159.152	3	Ö	1	-271.194	4	Ö	1	48	4	0	1
	max 1172.629	1	0	1	443	12	0	1	0	12	0	1
	min -159.025	3	0	1	-271.341	4	0	1	511	4	0	1
	nax 1172.799	1	0	1	443	12	0	1	0	12	0	1
	min -158.897	3	0	1	-271.489	4	0	1	543	4	0	1
	nax 3322.94	1	2.282	2	0	1	0	1	0	4	0	1
	min -2807.551	3	.307	12	-63.573	4	0	4	0	1	0	1
	max 3323.319	1	2.256	2	0	1	0	1	0	1	0	12
	min -2807.267	3	.294	12	-63.902	4	0	4	016	4	0	2
	max 3323.698	<u> </u>	2.23	2	03.902	1	0	1	0	1	0	12
	min -2806.982	3	.281	12	-64.232	4	0	4	033	4	001	2
	max 3324.078	<u>3</u> 1	2.204	2		1	0	1	033	1	0	12
		3	.268	12	-64.561	4	0	4	049	4		2
	min -2806.698 nax 3324.457	_	2.178	2		1	_	1	049	1	002	
		1			0	_	0		_		0	12
		3_	.255	<u>12</u>	-64.891	1	0	<u>4</u> 1	066	<u>4</u> 1	002	12
	max 3324.836 min -2806.129	1	2.152	12	0 65.00	4	0		0		0	2
		3	.242		-65.22		0	4	082	4	003	
	max 3325.215 min -2805.844	1	2.126	2	0	1	0	1_1	0	11	0	12
		3	.229	12	-65.55	4	0	4	099	4_	003	2
	nax 3325.595	1_	2.1	2	0	1	0	1_	0	1_	0	12
	min -2805.56	3	.216	12	-65.879	4	0	4	116	4_	004	2
	nax 3325.974	1_	2.074	2	0	1	0	1	0	1_	0	12
	min -2805.276	3	.203	12	-66.209	4	0	4	133	4	004	2
	nax 3326.353	1_	2.048	2	0	1	0	1	0	1_	0	12
	min -2804.991	3	.19	12	-66.538	4	0	4	15	4_	005	2
	nax 3326.733	1_	2.022	2	0	1	0	1	0	1_	0	12
	min -2804.707	3_	.177	12	-66.868	4	0	4	167	4_	006	2
	max 3327.112	1_	1.996	2	0	1	0	1_	0	_1_	0	12
	min -2804.422	3	.164	3	-67.197	4	0	4	184	4	006	2
	nax 3327.491	1_	1.97	2	0	1	0	_1_	0	_1_	0	12
	min -2804.138	3	.144	3	-67.526	4	0	4	202	4	007	2
	max 3327.87	1_	1.944	2	0	1	0	1	0	_1_	0	12
	min -2803.853	3	.125	3	-67.856	4	0	4	219	4	007	2
	nax 3328.25	1_	1.918	2	0	1	0	1	0	1_	00	12
	min -2803.569	3	.105	3	-68.185	4	0	4	236	4	008	2
297 16 r	max 3328.629	1	1.892	2	0	1	0	1	0	1	0	12
298	min -2803.284	3	.086	3	-68.515	4	0	4	254	4	008	2
	max 3329.008	1	1.866	2	0	1	0	1	0	1	0	12
	min -2803	3	.066	3	-68.844	4	0	4	271	4	009	2
	nax 3329.387	1	1.84	2	0	1	0	1	0	1	0	12
	min -2802.716	3	.047	3	-69.174	4	0	4	289	4	009	2
	max 3329.767	1	1.814	2	0	1	0	1	0	1	0	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
304			min	-2802.431	3	.027	3	-69.503	4	0	4	307	4	009	2
305	M7	1_	max	1254.02	2	8.022	6	1.196	4	0	_1_	0	1	.009	2
306			min	-1308.328	3	1.882	15	0	1	0	4	022	4	0	12
307		2	max		2	7.252	6	1.737	4	0	1	0	1	.007	2
308			min	-1308.456	3	1.701	15	0	1	0	4	021	4	0	3
309		3	max		2	6.482	6	2.277	4	0	1	0	1	.004	2
310			min	-1308.584	3	1.52	15	0	1	0	4	02	4	002	3
311		4	max		2	5.712	6	2.818	4	0	1	0	1	.002	2
312			min	-1308.711	3	1.339	15	0	1	0	4	019	4	003	3
313		5	max		2	4.942	6	3.358	4	0	1	0	1	0	2
314			min	-1308.839	3	1.158	15	0	1	0	4	018	4	005	3
315		6	max	1253.168	2	4.172	6	3.899	4	0	1	0	1	001	15
316			min	-1308.967	3	.977	15	0	1	0	4	016	4	005	3
317		7	max	1252.998	2	3.402	6	4.439	4	0	1	0	1	001	15
318			min	-1309.095	3	.796	15	0	1	0	4	015	4	006	3
319		8	max	1252.827	2	2.632	6	4.98	4	0	1	0	1	002	15
320			min	-1309.222	3	.615	15	0	1	0	4	013	4	007	4
321		9	max	1252.657	2	1.862	6	5.52	4	0	1	0	1	002	15
322			min	-1309.35	3	.416	12	0	1	0	4	011	4	008	4
323		10	max	1252.487	2	1.248	2	6.061	4	0	1	0	1	002	15
324			min	-1309.478	3	.116	12	0	1	0	4	008	4	009	4
325		11	max	1252.316	2	.648	2	6.602	4	0	1	0	1	002	15
326			min	-1309.606	3	326	3	0	1	0	4	005	4	009	4
327		12		1252.146	2	.048	2	7.142	4	0	1	0	1	002	15
328			min	-1309.733	3	776	3	0	1	0	4	003	4	009	4
329		13	max		2	29	15	7.683	4	0	1	0	4	002	15
330		10	min	-1309.861	3	-1.226	3	0	1	0	4	0	1	009	4
331		14	max		2	471	15	8.223	4	0	1	.004	4	002	15
332		17	min	-1309.989	3	-1.988	4	0.223	1	0	4	0	1	008	4
333		15		1251.635	2	652	15	8.764	4	0	1	.007	4	002	15
334		13	min	-1310.117	3	-2.758	4	0.704	1	0	4	0	1	002	4
335		16		1251.465	2	833	15	9.304	4	0	1	.011	4	001	15
336		10	min	-1310.244	3	-3.528	4	0	1	0	4	.011	1	006	4
337		17		1251.294	2	-1.014	15	9.845	4	0	1	.015	4	001	15
338		17	min	-1310.372	3	-4.298	4	0	1	0	4	.015	1	004	4
339		18		1251.124	2	-4.296 -1.195	15	10.385	4		1	.02	4	0	15
		10				-5.068			1	0			1		
340		10	min	-1310.5	3		15	10.026		0	4	0		002	4
341		19	max		2	-1.376		10.926	4	0	11	.024	4	0	1
342	MO	4	min	-1310.628	3	-5.838	4	0	•	0	4	0		0	
343	<u>M8</u>	1		3276.611	1	0	1	0	1	0	1	.015	4	0	1
344				-591.367	3	0	1	-261.502		0	1	0	1	0	1
345		2		3276.781	1	0	1	0	1	0	1	0	1	0	1
346		0	min		3_	0	1	-261.649		0	1_4	015	4	0	1
347		3		3276.951	1	0	1	0	1	0	1	0	1	0	1
348		A		-591.112	3	0	1	-261.797		0	1	045	4	0	1
349		4		3277.122	1	0	1	0	1	0	1	0	1	0	1
350				-590.984	3	0	1	-261.945		0	1_	075	4	0	1
351		5		3277.292	1_	0	1	0	1	0	1	0	1	0	1
352				-590.856	3_	0	1	-262.092		0	1	105	4	0	1
353		6		3277.462	1_	0	1	0	1	0	1	0	1	0	1
354				-590.729	3	0	1	-262.24	4	0	1	135	4	0	1
355		7		3277.633	_1_	0	1	0	1_	0	1	0	1	0	1
356			min		3	0	1	-262.388		0	1	165	4	0	1
357		8		3277.803	1_	0	1	0	1	0	1	0	1	0	1
358				-590.473		0	1	-262.535		0	1	196	4	0	1
359		9		3277.973		0	1	0	1	0	1_	0	1	0	1
360			min	-590.345	3	0	1	-262.683	4	0	1	226	4	0	1

Schletter, Inc. HCV

Job Number : Model Name : Standard PVMax Racking System Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3278.144	1	0	1	0	1	0	1	0	1	0	1
362			min	-590.218	3	0	1	-262.831	4	0	1	256	4	0	1
363		11	max	3278.314	1	0	1	0	1	0	1	0	1	0	1
364			min	-590.09	3	0	1	-262.978	4	0	1	286	4	0	1
365		12	max	3278.484	1	0	1	0	1	0	1	0	1	0	1
366			min	-589.962	3	0	1	-263.126	4	0	1	316	4	0	1
367		13	max	3278.655	1	0	1	0	1	0	1	0	1	0	1
368			min	-589.834	3	0	1	-263.273	4	0	1	347	4	0	1
369		14	max	3278.825	1	0	1	0	1	0	1	0	1	0	1
370			min	-589.707	3	0	1	-263.421	4	0	1	377	4	0	1
371		15	max	3278.995	1	0	1	0	1	0	1	0	1	0	1
372			min	-589.579	3	0	1	-263.569	4	0	1	407	4	0	1
373		16	max	3279.166	1	0	1	0	1	0	1	0	1	0	1
374			min	-589.451	3	0	1	-263.716	4	0	1	437	4	0	1
375		17	max	3279.336	1	0	1	0	1	0	1	0	1	0	1
376			min	-589.323	3	0	1	-263.864	4	0	1	468	4	0	1
377		18	max	3279.506	1	0	1	0	1	0	1	0	1	0	1
378			min		3	0	1	-264.012	4	0	1	498	4	0	1
379		19	max	3279.677	1	0	1	0	1	0	1	0	1	0	1
380			min	-589.068	3	0	1	-264.159	4	0	1	528	4	0	1
381	M10	1		1029.442	1	1.983	6	041	12	0	1	0	1	0	1
382			min		3	.448	15	-63.503	4	0	5	0	3	0	1
383		2		1029.821	1	1.949	6	041	12	0	1	0	10	0	15
384			min	-853.097	3	.44	15	-63.832	4	0	5	016	4	0	6
385		3	max	1030.2	1	1.916	6	041	12	0	1	0	12	0	15
386			min	-852.813	3	.432	15	-64.162	4	0	5	033	4	0	6
387		4	max		1	1.882	6	041	12	0	1	0	12	0	15
388			min	-852.528	3	.424	15	-64.491	4	0	5	049	4	001	6
389		5		1030.959	1	1.849	6	041	12	0	1	0	12	0	15
390		_ J	min	-852.244	3	.416	15	-64.82	4	0	5	066	4	002	6
391		6		1031.338	1	1.816	6	041	12	0	1	0	12	0	15
392			min	-851.959	3	.409	15	-65.15	4	0	5	082	4	002	6
393		7	+	1031.717	1	1.782	6	041	12	0	1	0	12	0	15
394			min	-851.675	3	.401	15	-65.479	4	0	5	099	4	003	6
395		8		1032.097	1	1.749	2 6	041	12	0	1	0	12	0	15
396		0	min	-851.39	3	.393	15	-65.809	4	0	5	116	4	003	6
397		9	_	1032.476	1	1.715	6	041	12	0	1	0	12	0	15
398		-	min		3	.385	15	-66.138	4	0	5	133	4	004	6
399		10		1032.855	1	1.682	6	041	12	0	1	0	12	0	15
400		10	min		3	.377	15	-66.468	4	0	5	15	4	004	6
401		11		1033.234		1.649	6	041	12	0	1	0	12	004	15
402		11	min		3	.369	15	-66.797	4	0	5	167	4	005	6
403		12		1033.614	1	1.615	6	041	12	0	1	0	12	003	15
404		14	min		3	.362	15	-67.127	4	0	5	184	4	005	6
405		13		1033.993	1	1.582	6	041	12	0	1	0	12	003 001	15
406		13	min		3	.354	15	-67.456	4	0	5	201	4	005	6
407		14		1034.372	1	1.548	6	041	12	0	1	0	12	003	15
408		14		-849.684	3	.346	15	-67.786	4	0	5	219	4	006	6
409		15		1034.751	1	1.515	6	041	12	0	1	0	12	006 001	15
410		10			3	.338	15	-68.115	4	0	5	236	4	001	
411		16	min	1035.131	1	1.482	6	041	12	0	<u> </u>	236 0	12	006 001	15
411		16	_												
		47	min			.33	<u>15</u>	<u>-68.445</u>	4	0	5	254	4	007	15
413		17		1035.51	1	1.448	6	041	12	0	1	0	12	002	15
414		4.0	min		3	.322	15	-68.774	4	0	5	271	4	007	6
415		18		1035.889	1	1.415	6	041	12	0	1	0	12	002	15
416		40	min		3	.314	15	-69.103	4	0	5	289	4	007	6
417		19	max	1036.268	1	1.381	6	041	12	0	1	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-848.261	3	.307	15	-69.433	4	0	5	307	4	008	6
419	M11	1	max	290.977	2	7.955	6	1.293	4	0	1	0	12	.008	6
420			min	-417.919	3	1.859	15	081	1	0	4	022	4	.002	15
421		2	max	290.807	2	7.185	6	1.833	4	0	1	0	12	.005	6
422			min	-418.046	3	1.678	15	081	1	0	4	021	4	0	15
423		3	max	290.637	2	6.415	6	2.374	4	0	1	0	12	.002	2
424			min	-418.174	3	1.497	15	081	1	0	4	02	4	0	3
425		4	max		2	5.645	6	2.914	4	0	1	0	12	0	2
426			min	-418.302	3	1.316	15	081	1	0	4	019	4	001	3
427		5	max	290.296	2	4.875	6	3.455	4	0	1	0	12	0	15
428			min	-418.43	3	1.135	15	081	1	0	4	018	4	003	4
429		6	max	290.126	2	4.105	6	3.995	4	0	1	0	12	001	15
430			min	-418.557	3	.954	15	081	1	0	4	016	4	005	4
431		7	max	289.955	2	3.335	6	4.536	4	0	1	0	12	002	15
432			min	-418.685	3	.773	15	081	1	0	4	014	4	006	4
433		8	max	289.785	2	2.565	6	5.076	4	0	1	0	12	002	15
434		<u> </u>	min	-418.813	3	.592	15	081	1	0	4	012	4	008	4
435		9	max		2	1.795	6	5.617	4	0	1	0	12	002	15
436		<u> </u>	min	-418.941	3	.411	15	081	1	0	4	01	4	009	4
437		10	max	289.444	2	1.025	6	6.157	4	0	1	0	12	003	15
438		10	min	-419.068	3	.23	15	081	1	0	4	008	4	002	4
439		11	max	289.274	2	.329	2	6.698	4	0	1	0	12	002	15
440			min	-419.196	3	.012	3	081	1	0	4	005	4	002	4
441		12		289.103	2	132	15	7.239	4		1	005 0	12	002	15
442		12	max	-419.324			4	081	1	0	4	002	4	002	4
443		13	min	288.933	<u>3</u> 2	516 313	15	7.779	4	0	1	.002	5	009	15
		13	max							_					
444		4.4	min	-419.452	3	-1.286	4	081	1	0	4	0	1	009	4
445		14	max		2	494	15	8.32	4	0	1	.005	5	002	15
446		4.5	min	-419.58	3	-2.056	4	081	1	0	4	0	1	008	4
447		15	max	288.592	2	675	15	8.86	1	0	1	.008	5	002	15
448		4.0	min	-419.707	3	-2.826	4	081		0	4	0	1	007	4
449		16	max	288.422	2	856	15	9.401	4	0	1	.012	4	001	15
450		47	min	-419.835	3	-3.596	4	081	1_	0	4	0	1_	006	4
451		17	max	288.252	2	-1.037	15	9.941	4	0	1	.016	4	001	15
452		40	min	-419.963	3	-4.366	4	081	1	0	4	0	1	004	4
453		18	max	288.081	2	-1.218	15	10.482	4	0	1	.02	4	0	15
454		40	min	-420.091	3	-5.136	4	081	1	0	4	0	1	002	4
455		19	max		2	-1.399	15	11.022	4	0	1	.025	4	0	1
456			min	-420.218	3	-5.906	4	081	1	0	4	0	1	0	1
457	M12	1			1_	0	1	10.777	1	0	1	.015	4	0	1
458				-161.197	3	0	1	-263.097	4	0	1	0	1	0	1
459		2		1169.903	1_	0	1	10.777	1	0	1	0	1	0	1
460		_		-161.069		0	1	-263.245		0	1	015	4	0	1
461		3		1170.073	1_	0	1	10.777	1	0	1	.002	1	0	1
462				-160.941	3	0	1	-263.392		0	1	045	4	0	1
463		4		1170.244	1_	0	1	10.777	1	0	1	.003	1	0	1
464				-160.813	3	0	1	-263.54	4	0	1	075	4	0	1
465		5		1170.414	_1_	0	1	10.777	1_	0	1_	.004	1	0	1
466				-160.686	3	0	1	-263.688		0	1	106	4	0	1
467		6		1170.584	_1_	0	1	10.777	1_	0	1	.006	1	0	1
468				-160.558	3	0	1	-263.835	4	0	1	136	4	0	1
469		7		1170.755	_1_	0	1	10.777	1	0	1_	.007	1	0	1
470				-160.43	3	0	1	-263.983		0	1	166	4	0	1
471		8		1170.925	1_	0	1	10.777	1	0	1	.008	1	0	1
472				-160.302	3	0	1	-264.131		0	1	196	4	0	1
473		9		1171.095	_1_	0	1	10.777	1	0	1	.009	1	0	1
474			min	-160.175	3	0	1	-264.278	4	0	1	227	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1171.266	_1_	0	1	10.777	1	0	_1_	.011	_1_	0	1
476			min	-160.047	3	0	1	-264.426	4	0	_1_	257	4	0	1
477		11	max	1171.436	_1_	0	1	10.777	1	0	_1_	.012	_1_	0	1
478			min	-159.919	3	0	1	-264.574	4	0	1	287	4	0	1
479		12		1171.606	_1_	0	1_	10.777	1	0	_1_	.013	_1_	0	1
480			min	-159.791	3	0	1	-264.721	4	0	1_	318	4	0	1
481		13	max	1171.777	<u>1</u>	0	1	10.777	1	0	<u>1</u>	.014	_1_	0	1
482			min	-159.664	3	0	1	-264.869	4	0	1	348	4	0	1
483		14	max	1171.947	_1_	0	1	10.777	1	0	_1_	.016	1_	0	1
484			min	-159.536	3	0	1	-265.016	4	0	1	379	4	0	1
485		15	max	1172.117	1	0	1	10.777	1	0	1	.017	1	0	1
486			min	-159.408	3	0	1	-265.164	4	0	1	409	4	0	1
487		16	max	1172.288	1	0	1	10.777	1	0	1	.018	1	0	1
488			min	-159.28	3	0	1	-265.312	4	0	1	44	4	0	1
489		17	max	1172.458	1	0	1	10.777	1	0	1	.019	1	0	1
490			min	-159.152	3	0	1	-265.459	4	0	1	47	4	0	1
491		18	max	1172.629	1	0	1	10.777	1	0	1	.02	1	0	1
492			min	-159.025	3	0	1	-265.607	4	0	1	501	4	0	1
493		19	max	1172.799	1	0	1	10.777	1	0	1	.022	1	0	1
494			min	-158.897	3	0	1	-265.755	4	0	1	531	4	0	1
495	M1	1	max		1	480.892	3	53.993	5	0	1	.263	1	0	3
496			min	-7.747	5	-467.388	1	-110.313	1	0	3	079	5	012	1
497		2	max	170.427	1	479.883	3	55.234	5	0	1	.205	1	.235	1
498			min	-7.518	5	-468.734	1	-110.313	1	0	3	05	5	253	3
499		3	max	247.673	3	517.07	1	-3.271	15	0	3	.147	1	.471	1
500			min	-155.346	2	-341.878	3	-109.544	1	0	1	022	5	496	3
501		4	max	248.041	3	515.724	1	-2.435	15	0	3	.089	1	.198	1
502			min	-154.856	2	-342.887	3	-109.544	1	0	1	024	5	316	3
503		5	max		3	514.378	1	-1.6	15	0	3	.031	1	003	15
504			min	-154.366	2	-343.897	3	-109.544	1	0	1	026	5	134	3
505		6	max	248.776	3	513.032	1	764	15	0	3	001	12	.047	3
506			min	-153.876	2	-344.906	3	-109.544	1	0	1	032	4	345	1
507		7	max	249.143	3	511.686	1	.072	15	0	3	004	12	.23	3
508			min	-153.386	2	-345.916	3	-109.544	1	0	1	084	1	615	1
509		8	max	249.511	3	510.34	1	1.208	5	0	3	004	12	.412	3
510			min	-152.896	2	-346.925	3	-109.544	1	0	1	142	1	885	1
511		9	max	259.977	3	32.07	2	50.345	5	0	9	.083	1	.483	3
512		1 3	min	-83.553	2	.406	15	-159.432	1	0	3	13	5	-1.008	1
513		10	max		3	30.724	2	51.587	5	0	9	0	12	.469	3
514		10	min	-83.063	2	0	5	-159.432	1	0	3	104	4	-1.017	1
		11							-	_		004	_		-
515 516		11		260.712 -82.573	3	29.378 -1.674	4	52.828 -159.432	5	0	<u>9</u> 3	004	<u>12</u> 4	.456 -1.025	3
517		12	min		<u>2</u> 3	222.54	3		5		<u>ာ</u> 1	.14	_ 4 _	.397	3
517		12	max			-544.1	1	145.058 -106.94	1	0	3	194			1
		12	min		5	221.53		146.299		0			5	905	
519		13		271.503	3_5	-545.446	3		5	0	1	.084		.28	3
520		1.4	min		5		1	-106.94		0	3	117	5	618	_
521		14		271.871	3_	220.521	3	147.54	5	0	1	.027	1	.163	3
522		4.5	min	-58.143	5	-546.792	1	-106.94	1	0	3	04	<u>5</u>	329	1
523		15		272.238	3_	219.511	3	148.782	5	0	1	.038	5_	.047	3
524		40	min	-57.915	5_	-548.138	1	-106.94	1	0	3	029	1_	04	1
525		16	max		3_	218.502	3	150.023	5	0	1	.117	5_	.249	1
526			min	-57.686	5	-549.484	1	-106.94	1	0	3	086	1_	069	3
527		17	max		<u>3</u>	217.492	3	151.265	5	0	1	.197	5_	.539	1
528			min		<u>5</u>	-550.83	1	-106.94	1	0	3	142	_1_	184	3
529		18	max		_5_	534.033	1	-4.849	12	0	5	.173	5	.27	1
530				-170.619	<u>1</u>	-185.19	3	-123.832		0	1_	203	<u>1</u>	091	3
531		19	max	15.548	5	532.687	_1_	-4.849	12	0	5	.121	5	.007	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-170.129	1	-186.199	3	-122.591	4	0	1	265	1	011	1
533	M5	1	max	366.114	1	1602.606	3	95.218	5	0	1	0	1_	.024	1
534			min	12.624	12	-1578.442	1	0	1	0	4	179	4	0	3
535		2	max	366.604	1	1601.596	3	96.459	5	0	1	0	_1_	.858	1
536			min	12.869	12	-1579.788	1	0	1	0	4	129	4	846	3
537		3	max	796.399	3	1590.21	1	39.76	4	0	4	0	1	1.654	1
538			min	-575.514	2	-1106.625	3	0	1	0	1	079	4	-1.658	3
539		4	max	796.766	3	1588.864	1	41.002	4	0	4	0	1	.815	1
540			min	-575.024	2	-1107.635	3	0	1	0	1	058	4	-1.074	3
541		5	max	797.134	3	1587.518	1	42.243	4	0	4	0	1	.009	9
542			min	-574.534	2	-1108.644	3	0	1	0	1	036	4	489	3
543		6	max	797.501	3	1586.172	1	43.485	4	0	4	0	1	.096	3
544			min	-574.044	2	-1109.654	3	0	1	0	1	013	5	861	1
545		7	max	797.869	3	1584.826	1	44.726	4	0	4	.01	4	.682	3
546			min	-573.554	2	-1110.663	3	0	1	0	1	0	1	-1.697	1
547		8	max	798.236	3	1583.48	1	45.967	4	0	4	.034	4	1.268	3
548			min	-573.065	2	-1111.673	3	0	1	0	1	0	1	-2.533	1
549		9	max	816.894	3	105.958	2	161.685	4	0	1	0	1	1.462	3
550			min	-431.174	2	.407	15	0	1	0	1	18	4	-2.865	1
551		10	max	817.261	3	104.612	2	162.926	4	0	1	0	1	1.414	3
552		1.0	min	-430.684	2	.001	15	0	1	0	1	094	5	-2.895	1
553		11	max	817.629	3	103.266	2	164.168	4	0	1	0	1	1.367	3
554			min	-430.194	2	-1.497	6	0	1	0	1	01	5	-2.924	1
555		12	max		3	709.468	3	204.184	4	0	1	0	1	1.199	3
556		12	min	-288.312	2	-1697.643	1	0	1	0	4	279	4	-2.605	1
557		13	max	836.74	3	708.459	3	205.425	4	0	1	0	1	.825	3
558		13	min	-287.822	2	-1698.989	1	0	1	0	4	17	4	-1.708	1
559		14		837.108	3	707.449	3	206.667	4	0	1	0	1	.451	3
		14	max		2	-1700.335	1	0	1		4	062	4		1
560		15	min	-287.333			-	•	-	0				812	
561 562		15	max min	837.475 -286.843	2	706.44 -1701.681	3	207.908	4	0	4	.048	<u>4</u> 1	.133 004	13
		16				705.43	3	209.15		0	_				$\overline{}$
563		16	max		3	-1703.027	1		4	0	1	.158	4_	.984	1
564		47	min	-286.353	2		•	0	<u> </u>	0	4	0	1_4	294	3
565		17	max	838.21	3	704.421	3	210.391	4	0	1	.268	4	1.883	1
566		40	min	-285.863	2	-1704.373	1	0	1	0	4	0	1_4	666	3
567		18	max	-13.035	12	1803.488	1	0	1	0	4	.277	4_	.974	1
568		40	min	-366.22	1	-633.714	3	-35.971	5	0	1	0	1_	348	3
569		19	max	-12.79	12	1802.142	1	0	1	0	4	.26	4	.022	1
570	1.10		min	-365.73	1	-634.724	3	-34.729	5	0	1	0	1_	014	3
571	M9	1	max	169.937	1	480.892	3	110.313	1	0	3	011	12	0	3
572			mın	6.518	12	-467.388		4.724	12	0	4	263	1_	012	1
573		2	max		1	479.883	3	110.313	1	0	3	009	12	.235	1
574			min	6.763	12	-468.734		4.724	12	0	4	205	1_	253	3
575		3		247.673	3	517.07	1	109.544	1	0	1	006	12	.471	1
576			min	-155.346	2	-341.878	3	4.681	12	0	3	147	1_	496	3
577		4		248.041	3	515.724	1	109.544	1	0	1	004	12	.198	1
578					2	-342.887	3	4.681	12	0	3	089	1_	316	3
579		5	max	248.408	3	514.378	1	109.544	1_	0	1	001	12	003	15
580				-154.366	2	-343.897	3	4.681	12	0	3	036	4	134	3
581		6		248.776	3	513.032	1	109.544	1	0	1	.026	_1_	.047	3
582				-153.876	2	-344.906	3	4.681	12	0	3	024	5	345	1
583		7	max	249.143	3	511.686	1	109.544	1	0	1	.084	1	.23	3
584			min	-153.386	2	-345.916	3	4.681	12	0	3	017	5	615	1
585		8	max	249.511	3	510.34	1	109.544	1	0	1	.142	1	.412	3
586			min	-152.896	2	-346.925	3	4.681	12	0	3	011	5	885	1
587		9	max	259.977	3	32.07	2	159.432	1	0	3	003	12	.483	3
588			min	-83.553	2	.412	15	6.697	12	0	9	158	4	-1.008	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	260.345	3	30.724	2	159.432	1	0	3	.001	1	.469	3
590			min	-83.063	2	.006	15	6.697	12	0	9	103	4	-1.017	1
591		11	max	260.712	3	29.378	2	159.432	1	0	3	.085	1	.456	3
592			min	-82.573	2	-1.628	6	6.697	12	0	9	066	5	-1.025	1
593		12	max	271.136	3	222.54	3	181.718	4	0	3	006	12	.397	3
594			min	-49.148	10	-544.1	1	4.409	12	0	1	242	4	905	1
595		13	max	271.503	3	221.53	3	182.96	4	0	3	003	12	.28	3
596			min	-48.74	10	-545.446	1	4.409	12	0	1	146	4	618	1
597		14	max	271.871	3	220.521	3	184.201	4	0	3	001	12	.163	3
598			min	-48.331	10	-546.792	1	4.409	12	0	1	049	4	329	1
599		15	max	272.238	3	219.511	3	185.443	4	0	3	.049	4	.047	3
600			min	-47.923	10	-548.138	1	4.409	12	0	1	.001	12	04	1
601		16	max	272.605	3	218.502	3	186.684	4	0	3	.147	4	.249	1
602			min	-47.515	10	-549.484	1	4.409	12	0	1	.003	12	069	3
603		17	max	272.973	3	217.492	3	187.925	4	0	3	.246	4	.539	1
604			min	-47.106	10	-550.83	1	4.409	12	0	1	.006	12	184	3
605		18	max	-6.68	12	534.033	1	117.321	1	0	1	.241	4	.27	1
606			min	-170.619	1	-185.19	3	-85.252	5	0	3	.008	12	091	3
607		19	max	-6.435	12	532.687	1	117.321	1	0	1	.265	1	.007	3
608			min	-170.129	1	-186.199	3	-84.011	5	0	3	.011	12	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.101	1	.005	3	8.073e-3	1	NC	1	NC	1
2			min	601	4	01	3	002	2	-8.638e-4	3	NC	1	NC	1
3		2	max	0	1	.253	3	.046	1	9.33e-3	1	NC	5	NC	2
4			min	601	4	135	1	02	5	-8.863e-4	3	957.545	3	5818.144	1
5		3	max	0	1	.466	3	.109	1	1.059e-2	1	NC	5	NC	3
6			min	601	4	322	1	023	5	-9.088e-4	3	529.168	3	2364.947	1
7		4	max	0	1	.595	3	.164	1	1.184e-2	1	NC	5	NC	3
8			min	601	4	427	1	016	5	-9.313e-4	3	416.206	3	1559.407	1
9		5	max	0	1	.625	3	.193	1	1.31e-2	1	NC	5	NC	3
10			min	601	4	437	1	003	5	-9.538e-4	3	396.722	3	1324.615	1
11		6	max	0	1	.557	3	.187	1	1.436e-2	1	NC	5	NC	3
12			min	601	4	353	1	.008	15	-9.763e-4	3	443.926	3	1367.934	1
13		7	max	0	1	.413	3	.147	1	1.562e-2	1	NC	5	NC	3
14			min	601	4	196	1	.01	10	-9.988e-4	3	595.704	3	1735.674	1
15		8	max	0	1	.229	3	.087	1	1.687e-2	1	NC	4	NC	3
16			min	601	4	011	9	.004	10	-1.021e-3	3	1052.425	3	2973.66	1
17		9	max	0	1	.167	1	.027	1	1.813e-2	1	NC	4	NC	1
18			min	601	4	.005	15	003	10	-1.044e-3	3	3451.492	3	9442.513	4
19		10	max	0	1	.243	1	.014	3	1.939e-2	1	NC	3	NC	1
20			min	601	4	013	3	009	2	-1.066e-3	3	1771.588	1	NC	1
21		11	max	0	12	.167	1	.027	1	1.813e-2	1	NC	4	NC	1
22			min	601	4	.005	15	016	5	-1.044e-3	3	3451.492	3	NC	1
23		12	max	0	12	.229	3	.087	1	1.687e-2	1	NC	4	NC	3
24			min	601	4	011	9	016	5	-1.021e-3	3	1052.425	3	2973.66	1
25		13	max	0	12	.413	3	.147	1	1.562e-2	1	NC	5	NC	3
26			min	601	4	196	1	005	5	-9.988e-4	3	595.704	3	1735.674	1
27		14	max	0	12	.557	3	.187	1	1.436e-2	1	NC	5	NC	3
28			min	601	4	353	1	.006	15	-9.763e-4	3	443.926	3	1367.934	1
29		15	max	0	12	.625	3	.193	1	1.31e-2	1	NC	5	NC	3
30			min	601	4	437	1	.012	12	-9.538e-4	3	396.722	3	1324.615	1
31		16	max	0	12	.595	3	.164	1	1.184e-2	1	NC	5	NC	3
32			min	601	4	427	1	.01	12	-9.313e-4	3	416.206	3	1559.407	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			
33		17	max	0	12	.466	3	.109	1	1.059e-2	_1_	NC	5_	NC	3
34			min	601	4	322	1	.008	12	-9.088e-4	3	529.168	3	2364.947	1
35		18	max	0	12	.253	3	.046	1	9.33e-3	_1_	NC	<u>5</u>	NC	2
36			min	601	4	135	1	.003		-8.863e-4	3	957.545	3	5818.144	1
37		19	max	0	12	.101	1	.005	3	8.073e-3	1_	NC	_1_	NC	1
38		_	min	601	4	01	3	002	2	-8.638e-4	3	NC	1_	NC	1
39	M14	1	max	0	1	.142	3	.004	3	5.083e-3	_1_	NC	1_	NC	1
40			min	461	4	33	1	001	2	-2.576e-3	3_	NC	1_	NC	1
41		2	max	0	1	.388	3	.032	1	6.123e-3	1_	NC	_5_	NC	2
42			min	<u>461</u>	4	687	1	028	5	-3.151e-3	3	705.264	1_	8459.67	1
43		3	max	0	1	.594	3	.088	1	7.163e-3	1_	NC	<u>15</u>	NC	3
44			min	4 <u>61</u>	4	<u>993</u>	1	034	5	-3.726e-3	3	380.172	1_	2933.882	1
45		4	max	0	1	735	3	.141	1	8.203e-3	1_	NC	<u>15</u>	NC	3
46		_	min	<u>461</u>	4	<u>-1.211</u>	1	022	5	-4.3e-3	3	286.018	1_	1814.208	
47		5	max	0	1	.798	3	.172	1	9.243e-3	1_	9260.991	<u>15</u>	NC 4 400 405	3
48		_	min	<u>461</u>	4	<u>-1.324</u>	1	003	5	-4.875e-3	3	253.515	1_	1488.125	
49		6	max	0	1	.782	3	.17	1	1.028e-2	1_	9228.063	<u>15</u>	NC 4500,000	3
50		+ -	min	461	4	-1.332	1	.012	12	-5.45e-3	3	251.622	1_	1503.082	1
51		7	max	0	1	.701	3	.137	1	1.132e-2	1_	NC	15	NC	3
52			min	461	4	<u>-1.251</u>	1	.01	10	-6.025e-3	3	273.635	1_	1877.365	1
53		8	max	0	1	.585	3	.082	1	1.236e-2	1_	NC 200,000	<u>15</u>	NC 0474 COC	3
54			min	461	4	-1.118	1	.004	10	-6.6e-3	3	320.032	1_	3174.636	
55		9	max	0	1	.473	3	.039	4	1.34e-2	1_	NC 205 404	<u>15</u>	NC CEOO COO	1
56		40	min	4 <u>61</u>	4	984	1	002	10	-7.174e-3	3	385.481	1_	6528.983	
57		10	max	0	1	.421	3	.013	3	1.444e-2	1	NC 400,000	5	NC NC	1
58		44	min	461	4	92	1	008	2	-7.749e-3	3	426.906	1_	NC NC	•
59		11	max	0	12	.473	3	.026	1	1.34e-2	1	NC 205 404	<u>15</u>	NC 0000 000	1
60		40	min	<u>461</u>	4	<u>984</u>	1	028	5	-7.174e-3	3	385.481		9298.292	
61		12	max	0	12	.585	3	.082	1	1.236e-2	1	NC 220,022	<u>15</u>	NC 2474 C2C	3
62 63		13	min	<u>461</u> 0	12	<u>-1.118</u> .701	3	032 .137	<u>5</u>	-6.6e-3 1.132e-2	<u>3</u> 1	320.032 NC	<u>1</u> 15	3174.636 NC	3
64		13	max	461	4	-1.251	1	02	5	-6.025e-3	3	273.635	1	1877.365	
65		14	min	461 0	12	.782	3	<u>02</u> .17	1	1.028e-2	<u>3</u> 1	9227.713	15	NC	3
66		14	max	461	4	-1.332	1	0	15	-5.45e-3	3	251.622	1	1503.082	1
67		15		461 0	12	<u>-1.332</u> .798	3	.172	1	9.243e-3	<u>3</u> 1	9260.55	15	NC	3
68		15	max	461	4	-1.324	1	.011	12	-4.875e-3	3	253.515	1	1488.125	
69		16	max	0	12	.735	3	.141	1	8.203e-3	1	NC	15	NC	3
70		10	min	461	4	-1.211	1	.009	12	-4.3e-3	3	286.018	1	1814.208	
71		17	max	0	12	.594	3	.088	1	7.163e-3	<u> </u>	NC	15	NC	3
72		17	min	461	4	993	1	.006	12	-3.726e-3	3	380.172	1	2933.882	1
73		18	max	0	12	.388	3	.04		6.123e-3		NC	5		2
74		10	min	461	4	687	1	.002	10	-3.151e-3		705.264	1	6290.567	4
75		19		0	12	.142	3	.004	3	5.083e-3	1	NC	1	NC	1
76		10	min	461	4	33	1	001	2	-2.576e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.145	3	.004	3	2.163e-3	3	NC	1	NC	1
78	11110	•	min	381	4	33	1	001	2	-5.186e-3	1	NC	1	NC	1
79		2	max	0	12	.296	3	.032	1	2.649e-3	3	NC	5	NC	2
80			min	381	4	721	1	039	5	-6.253e-3	1	643.818	1	6217.04	5
81		3	max	0	12	.426	3	.088	1	3.135e-3	3	NC	15	NC	3
82			min	381	4	-1.054	1	048	5	-7.32e-3	1	347.806	1	2926.034	
83		4	max	0	12	.521	3	.142	1	3.621e-3	3	NC	15	NC	3
84			min	381	4	-1.289	1	034	5	-8.387e-3	1	262.656	1	1810.468	
85		5	max	0	12	.573	3	.172	1	4.107e-3	3	9271.126	15	NC	3
86			min	381	4	-1.406	1	008	5	-9.454e-3	1	234.172		1485.368	
87		6	max	0	12	.582	3	.17	1	4.593e-3	3	9240.17	15	NC	3
88		Ť	min	381	4	-1.404	1	.011	12	-1.052e-2	1	234.483	1	1500.218	
89		7	max	0	12	.555	3	.137	1	5.079e-3	3	NC	15	NC	3
		•		-	-										

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	381	4	<u>-1.305</u>	1	.01	10 -1.159e-2	1	258.404	1_	1873.018	
91		8	max	0	12	.506	3	.082	1 5.565e-3	3	NC	<u>15</u>	NC	3
92			min	381	4	<u>-1.147</u>	1	.004	10 -1.266e-2	1_	308.169	1_	3162.833	
93		9	max	0	12	.455	3	.048	4 6.051e-3	3	NC 200 474	<u>15</u>	NC FOAC OFF	1
94		40	min	381	4	992	1	002	10 -1.372e-2	1_	380.474	1_	5216.355	4
95		10	max	0	1	.431	3	.012	3 6.537e-3	3	NC	5	NC NC	1
96		4.4	min	381	4	919	1	007	2 -1.479e-2	1	427.78	1_	NC NC	1
97		11	max	0	1	.455	3	.026	1 6.051e-3	3	NC 200 474	<u>15</u>	NC CCEC FOO	1
98		40	min	381	4	992	1	038	5 -1.372e-2	1_	380.474	1_	6656.508	
99		12	max	0	1	.506	3	.082	1 5.565e-3	3	NC 200.4C0	<u>15</u>	NC 24C2 P22	3
100		40	min	381	4	<u>-1.147</u>	1	044	5 -1.266e-2	1	308.169	1_	3162.833	
101		13	max	0	1	.555	3	.137	1 5.079e-3	3	NC 250 404	<u>15</u>	NC 1873.018	3
102		4.4	min	381	4	<u>-1.305</u>	1	029	5 -1.159e-2	1_	258.404	1_		
103		14	max	0	1	.582	3	.17	1 4.593e-3	3	9239.911	<u>15</u>	NC 4500 040	3
104		4.5	min	381	4	<u>-1.404</u>	1	002	5 -1.052e-2	1_	234.483	1_	1500.218	1
105		15	max	0	1	.573	3	.172	1 4.107e-3	3	9270.801	<u>15</u>	NC	3
106		4.0	min	381	4	<u>-1.406</u>	1	.011	12 -9.454e-3	1	234.172	1_	1485.368	1
107		16	max	0	1	.521	3	.142	1 3.621e-3	3	NC OCO CEC	<u>15</u>	NC	3
108		47	min	381	4	-1.289	1	.009	12 -8.387e-3	1_	262.656	1_	1810.468	
109		17	max	0	1	.426 -1.054	3	.088	1 3.135e-3 12 -7.32e-3	<u>3</u>	NC	<u>15</u>	NC 2026 024	3
111		10	min	381	1			.006			347.806 NC	<u>1</u> 5	2926.034	2
		18	max	0		.296	3	.051	4 2.649e-3	3			NC	
112		40	min	381	1	721	1	.002	10 -6.253e-3	1_	643.818	1_	4933.914	4
113		19	max	0		.145	3	.004	3 2.163e-3	3	NC	1_	NC NC	1
114	MAC	4	min	381	4	33	1	001	2 -5.186e-3	1_	NC NC	1_	NC NC	1
115	M16	1	max	0	12	.099	1	.003	3 3.78e-3	3	NC NC	1_	NC NC	1
116		2	min	15	4	048	3	001	2 -7.598e-3	1	NC NC	1_	NC NC	2
117		2	max	0	12	.042	3	.045	1 4.485e-3	3	NC 020.052	5	NC COO	4
118			min	15	4	172	1	03	5 -8.738e-3	1_	930.853	1_	5856.623	1
119 120		3	max	0 15	12	.113	3	.108	1 5.19e-3	<u>3</u>	NC 510.267	<u>5</u> 1	NC	3
121		1	min		12	387		037	5 -9.879e-3		518.367 NC	5	2372.675 NC	3
122		4	max	0 1 <i>F</i>	4	.151 511	3	.163	1 5.894e-3 5 -1.102e-2	3	413.585	<u> </u>	1561.705	-
			min	15	12		1	027		1		•		1
123		5	max	0		.151	3	.192	1 6.599e-3	3	NC	5	NC 1224 CCE	3
124		-	min	15	4	<u>525</u>	1	009	5 -1.216e-2	1_	404.327	1_	1324.665	1
125		6	max	0	12	.115	3	.187	1 7.304e-3	3	NC	5	NC	3
126		7	min	15	12	432	1	.008	15 -1.33e-2	1	474.536	1_	1365.749	
127			max	0		.049	3	.148	1 8.009e-3	<u>3</u>	NC 700 447	<u>5</u> 1	NC	3
128		0	min	15	4	261	2	.011	12 -1.444e-2 1 8.714e-3		708.417		1728.328	
129 130		8	max	0 15	12	.001 066	13	.088 .005	1 8.714e-3 10 -1.558e-2	3	NC	3	NC 2942.07	3
131		9	min	0	12	.151	1	.005			NC	4	NC	2
132		9	max		4	099	3	002	4 9.418e-3 10 -1.672e-2	3	4845.526	1	7222.543	
133		10	min	15	1	.237	1	.002 .01		<u>1</u>	NC		NC	1
		10	max	0 1 <i>F</i>	4		3			<u>3</u>		<u>5</u> 1		1
134 135		11	min max	15 0	1	13 .151	1	007 .028	2 -1.786e-2 1 9.418e-3	3	1822.389 NC	4	NC NC	2
		11		15	4	099	3	024	5 -1.672e-2	1	4845.526	1	9869.748	
136		12	min									_		
137		12	max	0 1 <i>F</i>	1	.001	13	.088		3	NC 1733.789	2	NC	3
138		12	min	15	4	066		025	5 -1.558e-2				2942.07	2
139		13	max	0 15	1	.049 261	3	.148	1 8.009e-3	3	NC 709 417	5_1	NC 1728.328	3
140		4.4	min		4			012	5 -1.444e-2	1	708.417	1_		
141		14	max	0	1	.115	3	.187	1 7.304e-3	3	NC 474 526	5	NC 1265 740	3
142		4.5	min	15	4	432	1	.006	15 -1.33e-2	<u>1</u>	474.536	1_	1365.749	
143		15	max	0 1 <i>F</i>	1	.151	3	.192	1 6.599e-3	3	NC	5_1	NC	3
144		10	min	15	4	<u>525</u>	1	.011	12 -1.216e-2	<u>1</u>	404.327	1_	1324.665	
145		16	max	0	1	.151	3	.163	1 5.894e-3	3	NC 442 F0F	5	NC 1561 705	3
146			min	15	4	511	1	.009	12 -1.102e-2	1	413.585	1_	1561.705	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.113	3	.108	1	5.19e-3	3	NC	5_	NC	3
148			min	149	4	387	1	.007	12	-9.879e-3	1_	518.367	_1_	2372.675	1
149		18	max	.001	1	.042	3	.046	4	4.485e-3	3_	NC	5	NC	2
150		40	min	149	4	172	1	.003	10	-8.738e-3	1_	930.853	1_	5519.972	4
151		19	max	.001	1	.099	1	.003	3	3.78e-3	3_	NC NC		NC NC	1
152	MO	4	min	149	4	048	3	001	2	-7.598e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.006	1	.003	2	.008	1	1.381e-3	5_	NC NC	1	NC 07.00	2
154			min	005	3	006	3	<u>565</u>	4	-2.29e-4	1_	NC NC	<u>1</u> 1	97.93	4
155		2	max	.005	1	.002	2	.008	1	1.483e-3	5_4	NC NC		NC 400,000	2
156 157		2	min	004	3	006	2	<u>519</u> .007	1	-2.136e-4	1_	NC NC	<u>1</u> 1	106.669 NC	2
		3	max	.005	3	.002	3		4	1.585e-3 -1.982e-4	5_1	NC NC	1		4
158		1	min	004		006	2	473			1_	NC NC		117.053 NC	2
159		4	max	.005	1	.001		.006	1	1.687e-3	5_1		1		
160		E	min	004	3	006	3	427	4	-1.828e-4		NC NC	•	129.513	4
161 162		5	max	.004	3	0 005	3	.006 383	1	1.788e-3	<u>5</u> 1	NC NC	<u>1</u> 1	NC 144.631	2
163		6	min	004 .004	1	<u>005</u> 0	2	.005	1	-1.674e-4 1.89e-3	•	NC NC	+	NC	1
164		10	max	003	3	005	3	339	4	-1.52e-4	<u>5</u> 1	NC NC	1	163.217	4
165		7	min		1				1	1.992e-3		NC NC	1		1
166		-	max	.004	3	0	3	.004 297	4	-1.367e-4	<u>5</u> 1	NC NC	1	NC	
167		8	min	003 .003	1	<u>005</u> 0	15	.004	1	2.094e-3	<u> </u>	NC NC	1	186.42 NC	1
168		-	max	003	3	005	3	256	4	-1.213e-4	1	NC NC	1	215.917	4
169		9	min	.003	1	005 0	15	.003	1	2.2e-3	4	NC NC	+	NC	1
170		9	max	003	3	005	3	218	4	-1.059e-4	1	NC NC	1	254.23	4
		10			1	<u>005</u> 0	15	.003	1	2.307e-3	_	NC NC	1	NC	1
171 172		10	max	.003 002	3	004	3	181	4	-9.05e-5	<u>4</u> 1	NC NC	1	305.306	4
173		11	min	.002	1	004 0	15	.002	1		•	NC NC	+	NC	1
			max		3					2.414e-3	<u>4</u> 1	NC NC	1	375.604	_
174 175		12	min	002	1	004	15	<u>147</u>	1	-7.511e-5 2.522e-3	•	NC NC	1		1
176		12	max min	.002 002	3	0 004	3	.002 116	4	-5.973e-5	<u>4</u> 1	NC NC	1	NC 476.302	4
177		13	max	.002	1	004 0	15	.001	1	2.629e-3	4	NC NC	1	NC	1
178		13	min	002	3	003	3	088	4	-4.434e-5	1	NC	1	628.163	4
179		14	max	.002	1	<u>003</u> 0	15	_ 088 _	1	2.737e-3	4	NC	1	NC	1
180		14	min	001	3	003	3	063	4	-2.896e-5	1	NC	1	873.462	4
181		15		.001	1	003 0	15	<u>003</u> 0	1	2.844e-3	4	NC	1	NC	1
182		15	max min	001	3	002	3	042	4	-1.357e-5	1	NC	1	1309.768	
183		16	max	0	1	0	15	0	1	2.952e-3	4	NC	1	NC	1
184		10	min	0	3	002	6	025	4	-2.023e-7	3	NC	1	2207.274	
185		17	max	0	1	<u>002</u> 0	15	<u>023</u> 0	1	3.059e-3	4	NC	1	NC	1
186		17	min	0	3	001	6	012	4	5.503e-7	12	NC	1	4570.601	4
187		18	max	0	1	0	15	0	1	3.167e-3		NC	1	NC	1
188		10	min	0	3	0	6	004	4	1.216e-6	12	NC	1	NC	1
189		19	max	0	1	0	1	<u>.00+</u>	1	3.274e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	1.882e-6	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.972e-7	12	NC	1	NC	1
192	IVIO	-	min	0	1	0	1	0	1	-7.707e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.016	4	1.079e-5	1	NC	1	NC	1
194			min	0	2	002	6	0	12	-8.724e-5	5	NC	1	NC	1
195		3	max	0	3	0	15	.03	4	5.999e-4	4	NC	1	NC	1
196		J	min	0	2	003	6	0	12	1.496e-6	12	NC	1	NC	1
197		4	max	0	3	001	15	.044	4	1.285e-3	4	NC	1	NC	1
198			min	0	2	005	6	0	12	2.543e-6	12	NC	1	8617.972	4
199		5	max	0	3	002	15	.057	4	1.97e-3	4	NC	1	NC	1
200			min	0	2	002	6	0	12	3.59e-6	12	NC	1	7390.55	5
201		6	max	.001	3	007	15	.069	4	2.656e-3	4	NC	1	NC	1
202			min	0	2	002	6	0	12	4.636e-6	12	NC	1	6848.374	
203		7	max	.001	3	003	15	.081	4	3.341e-3	4	NC	1	NC	1
200			παλ	.001	J	.002	IU	.001		U.U-16-3		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
204			min	0	2	01	6	0	12	5.683e-6	12	9082.49	6	6718.377	
205		8	max	.001	3	002	15	.092	4	4.026e-3	4	NC	1_	NC	1
206			min	0	2	011	6	0	12	6.73e-6		8115.637	6	6912.69	5
207		9	max	.002	3	003	15	.102	4	4.712e-3	4	NC	2	NC 7407.047	1
208		40	min	<u>001</u>	2	012	6	0	12	7.777e-6	12	7539.713	6	7437.247	5
209		10	max	.002	3	003	15	.112	12	5.397e-3	4	NC 7253.115	3	NC	5
210		11	min	001	3	013	6	<u>0</u> .121		8.823e-6	12	NC	6	8379.469 NC	
			max	.002	2	003	15		4	6.082e-3 9.87e-6	4	7213.156	<u>3</u>	9948.217	5
212 213		12	min	001 .002	3	013 003	15	<u> </u>	1 <u>2</u>		<u>12</u> 4	NC	2	NC	1
214		12	max min	002	2	003 012	6	13 0	12	6.767e-3 1.092e-5		7419.628	6	NC NC	1
215		13	max	.002	3	012	15	.14	4	7.453e-3	4	NC	1	NC NC	1
216		13	min	002	2	003 012	6	0	12	1.196e-5	12	7916.766	6	NC	1
217		14	max	.002	3	002	15	.149	4	8.138e-3	4	NC	1	NC	1
218		14	min	002	2	002 011	6	149 0	12	1.301e-5	12	8816.602	6	NC NC	1
219		15	max	.002	3	002	15	.158	4	8.823e-3	4	NC	1	NC	1
220		13	min	002	2	002	6	0	12	1.406e-5	12	NC	1	NC	1
221		16	max	.003	3	00 3	15	.168	4	9.508e-3	4	NC	1	NC	1
222		10	min	002	2	008	1	0	12	1.51e-5	12	NC	1	NC	1
223		17	max	.003	3	008	15	.179	4	1.019e-2	4	NC	1	NC	1
224		11/	min	002	2	006	1	0	12	1.615e-5	12	NC	1	NC	1
225		18	max	.002	3	0	15	.19	4	1.013c 3	4	NC	1	NC	1
226		10	min	002	2	005	1	0	12	1.72e-5	12	NC	1	NC	1
227		19	max	.002	3	0	5	.202	4	1.156e-2	4	NC	1	NC	1
228		13	min	003	2	003	1	0	12	1.824e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	12	2.056e-5	1	NC	1	NC	3
230	1011		min	0	3	004	3	202	4	-7.457e-4	4	NC	1	122.815	4
231		2	max	.003	1	.002	2	0	12	2.056e-5	1	NC	1	NC	3
232			min	0	3	003	3	186	4	-7.457e-4	4	NC	1	133.654	4
233		3	max	.002	1	.002	2	0	12	2.056e-5	1	NC	1	NC	3
234			min	0	3	003	3	169	4	-7.457e-4	4	NC	1	146.547	4
235		4	max	.002	1	.002	2	0	12	2.056e-5	1	NC	1	NC	2
236			min	0	3	003	3	153	4	-7.457e-4	4	NC	1	162.029	4
237		5	max	.002	1	.002	2	0	12	2.056e-5	1	NC	1	NC	2
238			min	0	3	003	3	137	4	-7.457e-4	4	NC	1	180.826	4
239		6	max	.002	1	.001	2	0	12	2.056e-5	1	NC	1	NC	2
240			min	0	3	003	3	122	4	-7.457e-4	4	NC	1	203.947	4
241		7	max	.002	1	.001	2	0	12	2.056e-5	1	NC	1	NC	2
242			min	0	3	002	3	107	4	-7.457e-4	4	NC	1	232.821	4
243		8	max	.002	1	.001	2	0	12	2.056e-5	1	NC	1	NC	2
244			min	0	3	002	3	092	4	-7.457e-4	4	NC	1	269.534	4
245		9	max	.002	1	.001	2	0	12	2.056e-5	1	NC	1	NC	2
246			min	0	3	002	3	078	4	-7.457e-4	4	NC	1	317.228	4
247		10	max	.001	1	.001	2	0	12	2.056e-5	1	NC	1	NC	2
248			min	0	3	002	3	065	4	-7.457e-4	4	NC	1	380.811	4
249		11	max	.001	1	0	2	0	12	2.056e-5	_1_	NC	_1_	NC	1
250			min	0	3	002	3	053	4	-7.457e-4	4	NC	1_	468.318	4
251		12	max	.001	1	0	2	0	12	2.056e-5	<u>1</u>	NC	<u>1</u>	NC	1
252			min	0	3	001	3	042	4	-7.457e-4	4	NC	1_	593.643	4
253		13	max	0	1	0	2	0	12	2.056e-5	_1_	NC	_1_	NC	1
254			min	0	3	001	3	032	4	-7.457e-4	4	NC	1_	782.581	4
255		14	max	0	1	0	2	0	12	2.056e-5	1_	NC	1_	NC	1
256			min	0	3	001	3	023	4	-7.457e-4	4	NC	1_	1087.614	4
257		15	max	0	1	0	2	0	12	2.056e-5	1_	NC	_1_	NC	1
258			min	0	3	0	3	015	4	-7.457e-4	4	NC	1_	1629.735	
259		16	max	0	1	0	2	0	12	2.056e-5	_1_	NC	_1_	NC	1
260			min	0	3	0	3	009	4	-7.457e-4	4	NC	1_	2743.456	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	2.056e-5	1	NC	1_	NC	1
262			min	0	3	0	3	004	4	-7.457e-4	4	NC	1_	5669.297	4
263		18	max	0	1	0	2	0	12	2.056e-5	1	NC	1	NC	1
264			min	0	3	0	3	001	4	-7.457e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.056e-5	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-7.457e-4	4	NC	1	NC	1
267	M6	1	max	.018	1	.013	2	0	1	1.456e-3	4	NC	3	NC	1
268	1410		min	015	3	019	3	57	4	0	1	4142.076	2	97.044	4
269		2	max	.017	1	.012	2	0	1	1.556e-3	4	NC	3	NC	1
270			min	014	3	018	3	524	4	0	1	4566.953	2	105.705	4
271		3		.016	1	.011	2	<u>524</u> 0	1	1.656e-3	4	NC	3	NC	1
		3	max												
272		-	min	013	3	017	3	477	4	0	1_	5084.403	2	115.997	4
273		4	max	.015	1	.01	2	0	1	1.757e-3	4_	NC	1_	NC	1
274		_	min	012	3	016	3	431	4	0	1_	5722.603	2	128.347	4
275		5_	max	.014	1	.008	2	0	1_	1.857e-3	4	NC	_1_	NC	1
276			min	012	3	015	3	386	4	0	1_	6521.725	2	143.331	4
277		6	max	.013	1	.007	2	0	1	1.957e-3	4	NC	<u>1</u>	NC	11
278			min	011	3	014	3	342	4	0	1	7540.675	2	161.754	4
279		7	max	.012	1	.006	2	0	1	2.057e-3	4	NC	1	NC	1
280			min	01	3	013	3	3	4	0	1	8868.776	2	184.754	4
281		8	max	.011	1	.005	2	0	1	2.157e-3	4	NC	1	NC	1
282			min	009	3	012	3	259	4	0	1	NC	1	213.992	4
283		9	max	.01	1	.004	2	0	1	2.257e-3	4	NC	1	NC	1
284		Ť	min	008	3	011	3	22	4	0	1	NC	1	251.972	4
285		10	max	.009	1	.003	2	0	1	2.358e-3	4	NC	1	NC	1
286		10	min	007	3	01	3	183	4	0	1	NC	1	302.607	4
287		11		.008	1	.003	2	<u>105</u> 0	1	2.458e-3		NC	1	NC	1
			max								4_				1
288		40	min	007	3	009	3	149	4	0	1_1	NC NC	1_	372.302	4
289		12	max	.007	1	.002	2	0	1	2.558e-3	4_	NC	_1_	NC 470 445	1
290		10	min	006	3	008	3	117	4	0	<u>1</u>	NC	1_	472.145	4
291		13	max	.006	1	.001	2	0	1	2.658e-3	4	NC	_1_	NC	1
292			min	005	3	007	3	089	4	0	_1_	NC	1_	622.731	4
293		14	max	.005	1	00	2	0	1	2.758e-3	_4_	NC	_1_	NC	1
294			min	004	3	006	3	064	4	0	1	NC	1_	866.002	4
295		15	max	.004	1	0	2	0	1	2.859e-3	4	NC	1_	NC	1
296			min	003	3	005	3	043	4	0	1	NC	1	1298.785	4
297		16	max	.003	1	0	2	0	1	2.959e-3	4	NC	1	NC	1
298			min	002	3	003	3	025	4	0	1	NC	1	2189.298	4
299		17	max	.002	1	0	2	0	1	3.059e-3	4	NC	1	NC	1
300			min	002	3	002	3	012	4	0	1	NC	1	4535.364	4
301		18	max	0	1	0	2	0	1	3.159e-3	4	NC	1	NC	1
302		10	min	0	3	001	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	<u>.001</u>	1	<u>004</u>	1	3.259e-3	4	NC	1	NC	1
304		13	min	0	1	0	1	0	1	0.2036-0	1	NC	1	NC	1
305	M7	1		0	1	0	1	0	1	0	+	NC NC	1	NC NC	1
	IVI /		max	0	1	0	1	0	1	-7.655e-4	4	NC NC	1	NC NC	1
306			min						•				•		
307		2	max	0	3	0	15	.016	4	0	1_1	NC NC	1_	NC NC	1
308			min	0	2	002	3	0	1	-9.605e-5	4_	NC	1_	NC	1
309		3	max	.001	3	0	15	.03	4	5.734e-4	4	NC	_1_	NC	1
310			min	001	2	004	3	0	1	0	1_	NC	1_	NC	1
311		4	max	.002	3	001	15	.044	4	1.243e-3	4	NC	_1_	NC	1
312			min	002	2	006	3	0	1	0	1	NC	1_	8138.135	4
313		5	max	.003	3	002	15	.057	4	1.912e-3	4	NC	1	NC	1
314			min	002	2	007	3	0	1	0	1	NC	1	6944.786	4
315		6	max	.003	3	002	15	.069	4	2.582e-3	4	NC	1	NC	1
316			min	003	2	009	4	0	1	0	1	NC	1	6403.42	4
317		7	max	.004	3	002	15	.08	4	3.251e-3	4	NC	1	NC	1
U 17		<u> </u>	man	1001		.002			<u> </u>	J 0		.,0			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	004	2	01	4	0	1	0	1_	9173.392	4	6243.857	
319		8	max	.004	3	003	15	.091	4	3.92e-3	4	NC	_1_	NC	1
320			min	004	2	012	4	0	1	0	_1_	8190.612	4_	6376.054	
321		9	max	.005	3	003	15	.101	4	4.59e-3	4	NC	1	NC CZOO COA	1
322		40	min	005	2	<u>013</u>	4	<u> </u>	1	0	1_1	7604.587	4_	6793.991	4
323		10	max	.006	3	003	15		4	5.259e-3	4	NC	1_1	NC 7557.96	4
324 325		11	min	005	3	013	15	0 .12	4	0	1_1	7311.699 NC	<u>4</u> 1	NC	1
326			max	.006 006	2	003 013	4	0	1	5.929e-3	<u>4</u> 1	7268.238	4	8817.35	4
327		12	max	.007	3	013	15	.129	4	6.598e-3	4	NC	1	NC	1
328		12	min	007	2	003 013	4	0	1	0.5966-5	1	7473.546	4	NC NC	1
329		13	max	.008	3	003	15	.137	4	7.268e-3	4	NC	1	NC	1
330		13	min	007	2	012	4	0	1	0	1	7971.852	4	NC	1
331		14	max	.008	3	003	15	.146	4	7.937e-3	4	NC	1	NC	1
332		17	min	008	2	011	4	0	1	0	1	8875.695	4	NC	1
333		15	max	.009	3	002	15	.155	4	8.606e-3	4	NC	1	NC	1
334		10	min	009	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.01	3	002	15	.165	4	9.276e-3	4	NC	1	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	.175	4	9.945e-3	4	NC	1	NC	1
338			min	01	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.011	3	0	15	.185	4	1.061e-2	4	NC	1	NC	1
340			min	01	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.011	3	0	15	.197	4	1.128e-2	4	NC	1	NC	1
342			min	011	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.01	2	0	1	0	1	NC	1_	NC	1
344			min	001	3	011	3	197	4	-7.953e-4	4	NC	1_	126.119	4
345		2	max	.007	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
346			min	001	3	011	3	181	4	-7.953e-4	4	NC	1_	137.253	4
347		3	max	.007	1	.009	2	0	1	0	_1_	NC	_1_	NC	1
348			min	001	3	01	3	165	4	-7.953e-4	4	NC	1_	150.497	4
349		4	max	.007	1	.008	2	0	1	0	1	NC	1_	NC	1
350			min	001	3	01	3	149	4	-7.953e-4	4	NC	1_	166.4	4
351		5	max	.006	1	.007	2	0	1	0	1	NC	1_	NC	1
352			min	001	3	009	3	134	4	-7.953e-4	4_	NC NC	1_	185.709	4
353		6	max	.006	1	.007	2	0	1	7.0525.4	1	NC NC	1_1	NC 200,450	1
354		7	min	001	3	008	2	<u>118</u>	1	-7.953e-4	4	NC NC	1	209.458	4
355		/	max	.005	3	.006	3	0 104	4	0 -7.953e-4	<u>1</u> 4	NC NC	1	NC 239.117	1
356 357		8	min	<u> </u>	1	008 .006	2	104 0	1	0	_ 4 _	NC NC	1	NC	1
358		0	max min	0	3	007	3	09		-7.953e-4		NC NC	1	276.829	
359		9	max	.004	1	.005	2	09	1	0	1	NC	1	NC	1
360		3	min	0	3	006	3	076	4	-7.953e-4	4	NC	1	325.819	4
361		10	max	.004	1	.005	2	<u>.070</u>	1	0	1	NC	1	NC	1
362		10	min	0	3	006	3	063	4	-7.953e-4	4	NC	1	391.131	4
363		11	max	.003	1	.004	2	<u>.000</u>	1	0	1	NC	1	NC	1
364			min	0	3	005	3	052	4	-7.953e-4	4	NC	1	481.017	4
365		12	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
366			min	0	3	004	3	041	4	-7.953e-4	4	NC	1	609.75	4
367		13	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
368			min	0	3	004	3	031	4	-7.953e-4	4	NC	1	803.827	4
369		14	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	003	3	022	4	-7.953e-4	4	NC	1	1117.158	4
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	015	4	-7.953e-4	4	NC	1	1674.03	4
			1111111												
373 374		16	max	.001 0	1	.002	3	009	1	0 -7.953e-4	1	NC NC	1	NC 2818.067	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.001	2	0	1	0	1_4	NC	1	NC	1
376		10	min	0	3	001	3	004	4	-7.953e-4	4	NC NC	1_	5823.589	4
377		18	max	0	1	0	2	0	1	0	1_	NC NC	1	NC NC	1
378		10	min	0	3	0	3	001	4	-7.953e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
380	1440	-	min	0	1	0	1	0	1	-7.953e-4	4	NC NC	1_	NC NC	1
381	<u>M10</u>	1_	max	.006	1	.003	2	0	12	1.461e-3	4	NC	1	NC 07.454	2
382			min	005	3	006	3	<u>57</u>	4	1.01e-5	12	NC NC	_1_	97.154	4
383		2	max	.005	1	.002	2	0	12	1.561e-3	4	NC NC	1_	NC 405,005	2
384			min	004	3	006	3	523	4	9.434e-6	12	NC NC	1_	105.825	4
385		3	max	.005	1	.002	2	0	12	1.66e-3	4	NC	1	NC 440.400	2
386		-	min	004	3	006	3	<u>477</u>	4	8.769e-6	12	NC	_1_	116.129	4
387		4	max	.005	1	.001	2	0	12	1.759e-3	4	NC	1_	NC	2
388			min	004	3	006	3	431	4	8.103e-6	12	NC	1_	128.493	4
389		5	max	.004	1	0	2	0	12	1.859e-3	4	NC	1_	NC	2
390		_	min	004	3	005	3	386	4	7.437e-6	12	NC	1_	143.495	4
391		6	max	.004	1	0	2	0	12	1.958e-3	4_	NC	1_	NC	1
392		_	min	003	3	005	3	342	4	6.772e-6	12	NC	_1_	161.939	4
393		7	max	.004	1	0	2	0	12	2.057e-3	4	NC	1_	NC	1
394			min	003	3	005	3	299	4	6.106e-6	12	NC	1_	184.965	4
395		8	max	.003	1	0	2	0	12	2.156e-3	4_	NC	1	NC	1
396			min	003	3	005	3	258	4	5.441e-6	12	NC	_1_	214.238	4
397		9	max	.003	1	0	10	0	12	2.256e-3	4	NC	_1_	NC	1
398			min	003	3	005	3	219	4	4.775e-6	12	NC	1	252.262	4
399		10	max	.003	1	001	10	0	12	2.355e-3	4_	NC	_1_	NC	1_
400			min	002	3	004	3	183	4	4.109e-6	12	NC	1_	302.957	4
401		11	max	.002	1	001	15	0	12	2.454e-3	4_	NC	_1_	NC	1
402			min	002	3	004	3	148	4	3.444e-6	12	NC	1	372.735	4
403		12	max	.002	1	001	15	0	12	2.553e-3	4	NC	1_	NC	1
404			min	002	3	004	3	117	4	2.778e-6	12	NC	1	472.698	4
405		13	max	.002	1	0	15	0	12	2.653e-3	4	NC	_1_	NC	1
406			min	002	3	003	4	089	4	2.112e-6	12	NC	1	623.467	4
407		14	max	.002	1	0	15	0	12	2.752e-3	4	NC	_1_	NC	1
408			min	001	3	003	4	064	4	1.447e-6	12	NC	1	867.04	4
409		15	max	.001	1	0	15	0	12	2.851e-3	4	NC	1_	NC	1
410			min	001	3	003	4	043	4	7.81e-7	12	NC	1	1300.372	4
411		16	max	0	1	0	15	0	12	2.951e-3	4	NC	1	NC	1
412			min	0	3	002	4	025	4	-1.813e-6	1	NC	1	2192.056	4
413		17	max	0	1	0	15	0	12	3.05e-3	4	NC	1	NC	1
414			min	0	3	002	4	012	4	-1.72e-5	1	NC	1	4541.398	4
415		18	max	0	1	0	15	0	12		4	NC	1_	NC	1
416			min	0	3	0	4	004	4	-3.258e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	3.248e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-4.797e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.509e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-7.626e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.016	4	-4.495e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-9.11e-5	4	NC	1	NC	1
423		3	max	0	3	0	15	.03	4	5.804e-4	4	NC	1	NC	1
424			min	0	2	004	4	0	1	-3.667e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.044	4	1.252e-3	4	NC	1	NC	1
426			min	0	2	006	4	0	1	-6.254e-5	1	NC	1	8372.29	4
427		5	max	0	3	002	15	.057	4	1.923e-3	4	NC	1	NC	1
428			min	0	2	007	4	001	1	-8.842e-5	1	NC	1	7167.02	4
429		6	max	.001	3	002	15	.069	4	2.595e-3	4	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.143e-4	1	NC	1	6632.812	4
431		7	max	.001	3	003	15	.08	4	3.266e-3	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	0	2	011	4	002	1	-1.402e-4	1_	8763.091	4	6496.338	4
433		8	max	.001	3	003	15	.09	4	3.938e-3	4_	NC	<u>1</u>	NC	1
434			min	0	2	012	4	002	1	-1.66e-4	1_	7851.293	4	6670.169	4
435		9	max	.002	3	003	15	.101	4	4.609e-3	4	NC	2	NC	1
436			min	001	2	013	4	002	1	-1.919e-4	1	7310.332	4	7156.402	4
437		10	max	.002	3	003	15	.11	4	5.281e-3	4	NC	3	NC	1
438			min	001	2	013	4	003	1	-2.178e-4	1	7045.48	4	8032.673	4
439		11	max	.002	3	003	15	.119	4	5.952e-3	4	NC	3	NC	1
440			min	001	2	014	4	003	1	-2.437e-4	1	7017.546	4	9485.761	4
441		12	max	.002	3	003	15	.128	4	6.624e-3	4	NC	2	NC	1_
442			min	002	2	013	4	004	1	-2.696e-4	1	7227.833	4	NC	1
443		13	max	.002	3	003	15	.137	4	7.295e-3	4	NC	1_	NC	1
444			min	002	2	013	4	004	1	-2.954e-4	1	7720.54	4	NC	1
445		14	max	.003	3	003	15	.146	4	7.967e-3	4	NC	1	NC	1
446			min	002	2	011	4	005	1	-3.213e-4	1	8605.859	4	NC	1
447		15	max	.003	3	002	15	.155	4	8.638e-3	4	NC	1	NC	1
448			min	002	2	01	4	005	1	-3.472e-4	1	NC	1	NC	1
449		16	max	.003	3	002	15	.165	4	9.31e-3	4	NC	1	NC	1
450			min	002	2	008	4	006	1	-3.731e-4	1	NC	1	NC	1
451		17	max	.003	3	002	15	.175	4	9.981e-3	4	NC	1	NC	1
452			min	002	2	006	1	007	1	-3.989e-4	1	NC	1	NC	1
453		18	max	.003	3	0	15	.186	4	1.065e-2	4	NC	1	NC	1
454			min	002	2	005	1	007	1	-4.248e-4	1_	NC	1_	NC	1
455		19	max	.004	3	0	15	.198	4	1.132e-2	4	NC	1_	NC	1
456			min	003	2	003	1	008	1	-4.507e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-9.635e-7	12	NC	1	NC	3
458			min	0	3	004	3	198	4	-7.564e-4	4	NC	1	125.492	4
459		2	max	.003	1	.002	2	.007	1	-9.635e-7	12	NC	1	NC	3
460			min	0	3	003	3	182	4	-7.564e-4	4	NC	1	136.566	4
461		3	max	.002	1	.002	2	.007	1	-9.635e-7	12	NC	1	NC	3
462			min	0	3	003	3	166	4	-7.564e-4	4	NC	1	149.74	4
463		4	max	.002	1	.002	2	.006	1	-9.635e-7	12	NC	1_	NC	2
464			min	0	3	003	3	15	4	-7.564e-4	4	NC	1_	165.559	4
465		5	max	.002	1	.002	2	.005	1	-9.635e-7	12	NC	1	NC	2
466			min	0	3	003	3	134	4	-7.564e-4	4	NC	1	184.765	4
467		6	max	.002	1	.001	2	.005	1	-9.635e-7	12	NC	1	NC	2
468			min	0	3	003	3	119	4	-7.564e-4	4	NC	1	208.389	4
469		7	max	.002	1	.001	2	.004	1	-9.635e-7	12	NC	1	NC	2
470			min	0	3	002	3	104	4	-7.564e-4	4	NC	1	237.891	4
471		8	max	.002	1	.001	2	.004	1	-9.635e-7	12	NC	1	NC	2
472			min	0	3	002	3	09	4	-7.564e-4	4	NC	1	275.403	4
473		9	max	.002	1	.001	2	.003	1	-9.635e-7	12	NC	1_	NC	2
474			min	0	3	002	3	077	4	-7.564e-4	4	NC	1	324.134	4
475		10	max	.001	1	.001	2	.003	1	-9.635e-7	12	NC	1	NC	2
476			min	0	3	002	3	064	4	-7.564e-4	4	NC	1	389.1	4
477		11	max	.001	1	0	2	.002	1	-9.635e-7	12	NC	1	NC	1
478			min	0	3	002	3	052	4	-7.564e-4	4	NC	1	478.51	4
479		12	max	.001	1	0	2	.002	1	-9.635e-7	12	NC	1	NC	1
480			min	0	3	001	3	041	4	-7.564e-4	4	NC	1	606.561	4
481		13	max	0	1	0	2	.001	1	-9.635e-7	12	NC	1	NC	1
482			min	0	3	001	3	031	4	-7.564e-4	4	NC	1	799.608	4
483		14	max	0	1	0	2	0	1	-9.635e-7	12	NC	1	NC	1
484			min	0	3	001	3	022	4	-7.564e-4	4	NC	1	1111.274	_
485		15	max	0	1	0	2	0	1	-9.635e-7	12	NC	1	NC	1
486		l .	min	0	3	0	3	015	4	-7.564e-4	4	NC	1	1665.182	
487		16	max	0	1	0	2	0	1	-9.635e-7	12	NC	1	NC	1
488		1	min	0	3	0	3	009	4	-7.564e-4	4	NC	1	2803.118	
			11/11/1					.000		, 1.00 TO T		.,,		_000.110	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	-9.635e-7	12	NC	1_	NC	1
490			min	0	3	0	3	004	4	-7.564e-4	4	NC	1_	5792.566	4
491		18	max	0	1	0	2	0	1	-9.635e-7	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-7.564e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-9.635e-7	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-7.564e-4	4	NC	1	NC	1
495	M1	1	max	.005	3	.101	1	.601	4	1.752e-2	1	NC	1	NC	1
496	.,,,,		min	002	2	01	3	0	12	-1.95e-2	3	NC	1	NC	1
497		2	max	.005	3	.05	1	.583	4	9.28e-3	4	NC	3	NC	1
498			min	002	2	005	3	006	1	-9.647e-3	3	2223.036	1	NC	1
499		3	max	.005	3	.006	3	.565	4	1.48e-2	4	NC	5	NC	1
500		- 3	min	002	2	006	1	009	1	-1.729e-4	1	1062.676	1	7295.677	5
		1					_								1
501		4	max	.004	3	.027	3	.547	4	1.303e-2	4_	NC 000 470	5_	NC 5004 004	-
502		_	min	002	2	071	1	008	1	-3.431e-3	3	663.178	1_	5094.894	
503		5_	max	.004	3	.053	3	.528	4	1.126e-2	4_	NC 474 044	<u>15</u>	NC	1
504			min	002	2	14	1	005	1	-6.767e-3	3	474.044	_1_	3984.534	5
505		6	max	.004	3	.082	3	.51	4	1.45e-2	_1_	NC	<u>15</u>	NC	_1_
506			min	001	2	207	1	002	1	-1.01e-2	3	370.616	1_	3323.935	5
507		7	max	.004	3	.111	3	.49	4	1.939e-2	_1_	9683.113	15	NC	1
508			min	001	2	267	1	0	12		3	309.933	1_	2882.437	4
509		8	max	.004	3	.134	3	.47	4	2.429e-2	1	8599.544	15	NC	1
510			min	001	2	316	1	0	12	-1.677e-2	3	274.199	1_	2574.457	4
511		9	max	.004	3	.15	3	.448	4	2.671e-2	1	8034.912	15	NC	1
512			min	001	2	346	1	0	1	-1.678e-2	3	255.655	1	2395.488	4
513		10	max	.004	3	.155	3	.424	4	2.75e-2	1	7863.026	15	NC	1
514			min	001	2	356	1	0	12	-1.458e-2	3	250.097	1	2348.325	4
515		11	max	.004	3	.152	3	.397	4	2.829e-2	1	8034.713	15	NC	1
516			min	001	2	346	1	0	12	-1.238e-2	3	255.942	1	2411.651	4
517		12	max	.004	3	.139	3	.369	4	2.668e-2	1	8599.09	15	NC	1
518		12	min	001	2	315	1	001	1	-1.024e-2	3	275.098	1	2603.71	4
519		13	max	.004	3	.118	3	.337	4	2.146e-2	1	9682.242	15	NC	1
520		13	min	001	2	266	1	0	1	-8.199e-3	3	312.168	1	3072.219	
		4.4													4
521		14	max	.004	3	.092	3	.303	4	1.624e-2	1	NC OZE 444	<u>15</u>	NC 4004 004	1
522		4.5	min	001	2	204	1	0	12	-6.154e-3	3	375.444	1_	4034.061	4
523		15	max	.004	3	.062	3	.268	4	1.102e-2	1_	NC 1217	<u>15</u>	NC T 12	1
524			min	001	2	136	1	0	12	-4.109e-3	3	484.047	<u>1</u>	6103.546	
525		16	max	.003	3	.031	3	.234	4	9.788e-3	_4_	NC	5_	NC	1
526			min	001	2	067	1	0	12	-2.064e-3	3	684.357	1_	NC	1
527		17	max	.003	3	.002	3	.203	4	1.082e-2	4	NC	5	NC	1
528			min	001	2	004	2	0	12	-1.87e-5	3	1110.824	1_	NC	1
529		18	max	.003	3	.05	1	.175	4	1.017e-2	_1_	NC	4	NC	1
530			min	001	2	024	3	0	12	-3.293e-3	3	2345.703	1_	NC	1
531		19	max	.003	3	.099	1	.149	4	2.011e-2	1	NC	1_	NC	1
532			min	001	2	048	3	001	1	-6.692e-3	3	NC	1	NC	1
533	M5	1	max	.014	3	.243	1	.601	4	0	1	NC	1	NC	1
534			min	009	2	013	3	0	1	-3.194e-6	4	NC	1	NC	1
535		2	max	.014	3	.119	1	.587	4	7.587e-3	4	NC	5	NC	1
536		_	min	009	2	005	3	0	1	0	1	918.862	1	NC	1
537		3	max	.014	3	.021	3	.57	4	1.494e-2	4	NC	15	NC	1
538			min	009	2	023	1	0	1	0	1	429.628	1	5964.644	4
539		4	max	.014	3	.077	3	.551	4	1.217e-2	4	9121.389	15	NC	1
540		4	min	009	2		1	.551	1	0	1	260.761	1		
		E				195	3	_		9.406e-3		6386.097		4464.517	4
541		5	max	.014	3	.154		.531	4		4		<u>15</u>	NC 2711 104	1
542			min	009	2	383	1	0	1	0	1_	182.309	1_	3711.194	
543		6	max	.013	3	.242	3	.511	4	6.638e-3	4_	4918.289	<u>15</u>	NC 2014 F07	1
544			min	008	2	<u>571</u>	1	0	1	0	1_	140.226	1_	3244.597	4
545		7	max	.013	3	.327	3	.49	4	3.87e-3	4	4070.301	<u> 15</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio L) LC
546			min	008	2	742	1	0	1	0	1_	115.919	1 2902.83	4
547		8	max	.013	3	.399	3	.469	4	1.103e-3	4		5 NC	1
548			min	008	2	879	1	0	1	0	1_	101.786		
549		9	max	.013	3	.445	3	.448	4	0	1_		5 NC	1
550		40	min	008	2	<u>965</u>	1	0	1	-2.008e-6	5	94.541		
551		10	max	.012	3	.462	3	.424	4	0 -1.923e-6	1		5 NC 1 2364.423	1 4
552		11	min	008 .012	3	<u>994</u> .451	3	0 .397	4	0	<u>5</u> 1		1 2364.423 5 NC	1
553 554		+	max	008	2	964	1		1	-1.839e-6	5	94.657		•
555		12	max	.012	3	- <u>.964</u> .412	3	0 .37	4	7.742e-4	4		5 NC	1
556		12	min	007	2	876	1	3 <i>1</i>	1	0	1	102.168		
557		13	max	.011	3	.349	3	.338	4	2.718e-3	4		5 NC	1
558		13	min	007	2	736	1	0	1	0	1	116.914		-
559		14	max	.011	3	.269	3	.302	4	4.662e-3	4		5 NC	1
560		17	min	007	2	561	1	.302	1	0	1	142.463		
561		15	max	.011	3	.181	3	.266	4	6.606e-3	4		5 NC	1
562			min	007	2	371	1	0	1	0.0000	1	187.153		
563		16	max	.011	3	.091	3	.23	4	8.55e-3	4		5 NC	1
564			min	007	2	182	1	0	1	0	1	271.584		1
565		17	max	.01	3	.007	3	.197	4	1.049e-2	4		5 NC	1
566			min	007	2	012	1	0	1	0	1	455.866		1
567		18	max	.01	3	.122	1	.171	4	5.329e-3	4	NC 5	5 NC	1
568			min	007	2	065	3	0	1	0	1	988.984	I NC	1
569		19	max	.01	3	.237	1	.15	4	0	1	NC ·	I NC	1
570			min	007	2	13	3	0	1	-1.591e-6	4	NC ·	I NC	1
571	M9	1	max	.005	3	.101	1	.601	4	1.95e-2	3	NC [*]		1
572			min	002	2	01	3	001	1	-1.752e-2	1	NC ¹	I NC	1
573		2	max	.005	3	.05	1	.586	4	9.647e-3	3		NC	1
574			min	002	2	005	3	0	12	-8.517e-3	1	2223.036	110	1
575		3	max	.005	3	.006	3	.569	4	1.49e-2	_4_	NC !		1
576			min	002	2	006	1	0	12	-1.367e-5	<u>10</u>	1062.676		4
577		4	max	.004	3	.027	3	<u>.551</u>	4	1.168e-2	5	NC !		1
578		-	min	002	2	071	1	0	12	-4.719e-3	1_	663.178		
579		5	max	.004	3	.053	3	.531	4	8.77e-3	5_		5 NC	1
580			min	002	2	14	1	0	12	-9.611e-3	1_	474.044	. 01011010	
581		6	max	.004	3	.082	3	.511	4	1.01e-2	3		5 NC	1
582		7	min	001	3	207	3	0	12	-1.45e-2	3	370.616		
583			max	.004	2	.111	1	.49	1	1.344e-2	<u>3</u>		5 NC I 2877.185	1
584 585		8	min	001 .004	3	267 .134	3	0 .469	4	-1.939e-2 1.677e-2	3	000.000	5 NC	1
586		0	max min		2	316	1	<u>.469</u>		-2.429e-2				
587		9	max	.004	3	.15	3	.448	4	1.678e-2	3		5 NC	1
588		-	min	001	2	346	1	0	12	-2.671e-2	1	255.655		_
589		10	max	.004	3	.155	3	.424	4	1.458e-2	3		5 NC	1
590		10	min	001	2	356	1	0	1	-2.75e-2	1	250.097		
591		11	max	.004	3	.152	3	.397	4	1.238e-2	3		5 NC	1
592			min	001	2	346	1	0	1	-2.829e-2	1	255.942		
593		12	max	.004	3	.139	3	.369	4	1.024e-2	3		5 NC	1
594		<u> </u>	min	001	2	315	1	0	12	-2.668e-2	1	275.098		_
595		13	max	.004	3	.118	3	.337	4	8.199e-3	3		5 NC	1
596			min	001	2	266	1	0	12	-2.146e-2	1	312.168		4
597		14	max	.004	3	.092	3	.302	4	6.154e-3	3		5 NC	1
598			min	001	2	204	1	002	1	-1.624e-2	1	375.444		5
599		15	max	.004	3	.062	3	.266	4	6.177e-3	5		5 NC	1
600			min	001	2	136	1	005	1	-1.102e-2	1	484.047		5 5
601		16	max	.003	3	.031	3	.23	4	8.323e-3	5	NC !	5 NC	1
602			min	001	2	067	1	008	1	-5.794e-3	1	684.357	I NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.003	3	.002	3	.198	4	1.053e-2	4	NC	5	NC	1
604			min	001	2	004	2	008	1	-5.718e-4	1	1110.824	1	NC	1
605		18	max	.003	3	.05	1	.172	4	4.944e-3	5	NC	4	NC	1
606			min	001	2	024	3	006	1	-1.017e-2	1	2345.703	1	NC	1
607		19	max	.003	3	.099	1	.15	4	6.692e-3	3	NC	1	NC	1
608			min	001	2	048	3	0	12	-2.011e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.