AQUA EFFICIENCY TAP WATER MODULES USER MANUAL

Table of contents

Install the tap water module	Page 3
Hydraulic schematics Instantaneous / Semi-instantaneous	Page 11
Main components	Page 13
Electrical consumptions / Fuses	Page 14
Control box	Page 15
Terminal block location	Page 15
Commissioning & maintenance instructions	Page 18
Trouble Shooting	Page 21
Controller components	Page 22
Display / Keypad	Page 23
Hour & Date settings	Page 24
Temperature setting	Page 25
Technician Menu / Main Menu	Page 26
Material configuration menu	Page 26
S1 SENSOR Menu	Page 27
S2 SENSOR Menu	Page 27
DELTA T(S3-S2) Menu	Page 27
S4 SENSOR Menu	Page 28
Thermal treatment Menu	Page 28
SAFETY function Menu	Page 28
ECO & Booster functions	Page 29
Fooling function Menu	Page 29
PUMPS Menu	Page 29
230V TRIAC output Menu	Page 30
Visualisation/Changes of I/O / Trending Menu	Page 30
Alarm Menu / History	Page 31
Warranty	Page 32

INSTALL AQUAEFFICIENCY UNIT

Our tap water modules are designed for indoor installation in plant rooms where the ambient temperature should always be above 0°c. Max ambient temperature : 40°c. Max. hyg : 85% without condensation

When handling the unit, make sure the actuator or piece of wire are not damaged or stressed.

Dimensions and connection diameters are indicated on the following drawings:

EFP 200 Series Instantaneous

EFP 400 Series Instantaneous

EFP 600 Series Instantaneous

EFP 200 Series SS/DS Semi-Instantaneous

EFP 200 Series DD Semi-Instantaneous

EFP 400 Series SS/DS Semi-Instantaneous

EFP 400 Series DD Semi-Instantaneous

EFP 600/800 Series SS/DS Semi-Instantaneous

EFP 600/800 Series DD Semi-Instantaneous

EFP 900 Series SS/DS Semi-Instantaneous

EFP 900 Series DD Semi-Instantaneous

FUSION BONDED / COPPER BRAZED HEAT EXCHANGERS

EFB/EFF 200 Series IS/ID Instantaneous

EFB/EFF 400 Series IS/ID Instantaneous

EFB/EFF 600 Series IS/ID Instantaneous

EFB/EFF 200 Series SS/DS Semi-Instantaneous

EFB/EFF 200 Series DD Semi-Instantaneous

EFB/EFF 400 Series SS/DS Semi-Instantaneous

EFB/EFF 400 Series DD Semi-Instantaneous

EFB/EFF 600/800 Series SS/DS Semi-Instantaneous

EFB/EFF 600/800 Series DD Semi-Instantaneous

EFB/EFF 900 Series SS/DS Semi-Instantaneous

EFB/EFF 900 Series DD Semi-Instantaneous

Factory fitting of a recirculation pump and a charging pump is not feasible...

INSTALLATION

- The primary water enters the modulating valve port ① and leaves through the fitting ②,
- Cold water enters at bottom part 3 and leaves at the required temperature at high part 4,
- Pipe-up the pressure relief valve S. The secondary circuit should be equipped with a recirculation or a charging pump (6),
- Modules suitable for 230V 1 phase / 50 Hz + Earth,
- Make sure power supply in the field corresponds to the above voltage,
- A fuse protection should be provided on site.
- Alarm indication: Volt Free Contacts (VFCs), 3 Amps maxi, each under 230 V.

Minimum pressure/temperature on primary side: 1.0 barg/7°C, 1.5 barg / 100-110°C Maximum pressure/temperature on primary side: 10 barg /110°C Maximum pressure on secondary side: 10 barg / 110°C

<u>HYDRAULIC SCHEMATICS</u>
The tap water modules should be installed according to the following schematics :

INSTANTANEOUS:

REP	DESIGNATION	REP	DESIGNATION
Α	Primary inlet	PR	Recycling pump (option)
В	Primary outlet	V	Manual gate valve
CW	Cold water inlet	S1	DHW temperature sensor (master)
PRV	Pressure relief valve	S2	Secondary return temperature sensor
HE	Heat Exchanger (FB/CB/PHE)	S3	Primary return temperature sensor
S5	Outdoor temperature sensor	S4	Primary inlet temperature sensor
	(optional)		(optional)

Primary water storage version, to limit available instantaneous heat power.

Whatever type, unit model and production type (Instantaneous or Semi Instantaneous), each pump (or pump motor when double ones) delivers 10% to 100% of the nominal primary pump signal and 25% to 100% of the nominal secondary pump signal, to stick to the actual demand.

SEMI INSTANTANEOUS UNITS:

Type 1 Storage vessel connections (with inside injection pipe)

Type 2 storage vessel connections (with feet)

REP	DESIGNATION	REP	DESIGNATION
Α	Primary Inlet	PR	Installation recycling pump
В	Primary Outlet	V	Manual gate valve
CW	Cold water inlet	VR	Flow setting valve
DC	Drain cock / flooding	S1	DHW temperature sensor (master)
PC	Charging pump	S2	Secondary inlet temperature sensor
PRV	Pressure relief valve	S3	Primary return temperature sensor
S5	Outdoor temperature sensor (optional)	S4	Primary inlet temperature sensor (optional)

SOLARFLOW SCHEMATIC DIAGRAM

REP	DESIGNATION	REP	DESIGNATION
S1	DHW temperature sensor (master)	S3	Primary return temperature sensor
S2	Secondary inlet temperature sensor	S4	Primary inlet temperature sensor (optional)
Pt1	Sonde de température extérieure (optionnelle, pour application chauffage)		

MAIN COMPONENTS* AND TECHNICAL DATA

AQUA EFFICIENCY M6H PRODUCT RANGE & COMPONENTS

3 Different primary sides 4 different secondary sides

AquaEfficie	псу М6Н				Р	rimary Sid	е				Se	condary Sic	le	
	Series	P (Kw)	Flow Rate (m3/h)	Return T°	DN 3 port Valve	Pump type	Pmax (W)	Np	Free P (Kpa)	Flow Rate (m3/h)	НЕ Д Р (Кра)	Pump type	Pmax (W)	Free P (kPa)
EFP 213	200	100	2.2	30	25	Magna 25-60	85	13	38	1.7	11	Magna(N) 25-60	85	52
EFP 217	200	150	3.3	30	25	Magna 25-60	85	17	19	2.6	9	Magna(N) 25-60	85	36
EFP 223	200	200	4.2	28	25	Magna 25-60	85	23	7	3.4	9	Magna(N) 25-60	85	36
EFP 425	400	250	5.5	27	32	Magna 40-100	180	25	32	4.3	9	Magna(N) 25-60	85	29
EFP 429	400	300	6.7	30	32	Magna 40-100	180	29	13	5.2	13	Magna(N) 25-60	85	17
EFP 435	400	350	7.5	29	32	Magna 40-100	180	35	6	6	12	Magna(N) 25-60	85	13
EFP 449	400	400	8	26	32	Magna 40-100	180	49	5	6.9	8	Magna(N) 25-60	85	10
EFP 637	600	450	10.2	31	40	Magna 40-120	450	37	40	7.7	15	Magna(N) 32-80	140	18
EFP 645	600	510	11	30	40	Magna 40-120	450	45	36	8.8	15	Magna(N) 32-80	140	10
	-													
EFP 849	800	550	12.1	30	40	Magna 40-120	450	49	29	9.5	15	Magna(N) 32-100	180	11
EFP 855	800	600	13.2	30	40	Magna 40-120	450	55	20	10.3	14	Magna(N) 32-100	180	6
	-													
EFP 961	900	640	14.1	30	40	Magna 40-120	450	61	10	11	14	Magna(N) 32-120	430	60
EFP 977	900	700	14.7	28	40	Magna 40-120	450	77	7	12	11	Magna(N) 32-120	430	58
EFP 997	900	750	15.1	26	40	Magna 40-120	450	97	7	12.9	11	Magna(N) 32-120	430	58

AquaEfficiency CB/FB 52,	/60/76 H				Р	rimary Sid	е				Se	condary Sig	le	
	Series	P (Kw)	Flow Rate (m3/h)	Return T° (°C)	DN 3 port Valve	Pump type	Pmax (W)	Np	Free P (Kpa)	Flow Rate (m3/h)	НЕ ∆ Р (Кра)	Pump type	Pmax (W)	Free P (kPa)
EFB/EFF 2 6030/5230	200	100	2	25.7	25	Magna 25-60	85	30	37	1.7	13	Magna(N) 25-60	85	32
EFB/EFF 2 6040/5240	200	150	3	26	25	Magna 25-60	85	40	17	2.6	12	Magna(N) 25-60	85	30
EFB/EFF 2 6050/5250	200	190	3.8	26	25	Magna 25-60	85	50	5	3.3	16	Magna(N) 25-60	85	26
EFB/EFF 47640	400	240	5	28	32	Magna 40-100	180	40	51	4.1	6	Magna(N) 25-60	85	32
EFB/EFF 47650	400	340	7.1	28.5	32	Magna 40-100	180	50	17	5.8	8	Magna(N) 25-60	85	17
EFB/EFF 47660	400	390	8.1	28	32	Magna 40-100	180	60	5	6.7	8	Magna(N) 25-60	85	12
EFB/EFF 67670	600	500	11	29.5	40	Magna 40-120	450	70	48	8.6	9	Magna(N) 32-80	140	16
EFB/EFF 8 7680	800	600	13.2	30	40	Magna 40-120	450	80	27	10.3	10	Magna(N) 32-100	180	10
EFB/EFF 9 7690	900	650	14.3	29.5	40	Magna 40-120	450	90	15	11.2	10	Magna(N) 32-120	430	64
EFB/EFF 9 76100	900	690	14.8	29	40	Magna 40-120	450	100	10	11.9	9	Magna(N) 32-120		59

^{*} As per version

Electrical consumptions are given at nominal capacities. This allowing to calibrate fuse protections in the main heating room control box. Effective consumptions will be much more less most of the time, as pump(s) operate at variable speed.

Please contact your Alfa Laval distributor for spare parts and note serial number and model designation: some components are specific to our tap water modules

This product is in compliance with following EEC norms:

- Pressure Equipment Directives (PED) 97/23/CE
- ➤ Low Voltage Directive (LVD) 73/23/EEC followed by 2006/95/EEC
- Following norms have been applied:

EN 60335-1 partly

EN 60204-1 partly

ELECTRICAL CONSUMPTIONS

MAX Electrical consumptions INSTANTANEOUS 230V 1 Phase + Earth Common for PHE, FB and CB HE types

MAX Electrical consumptions SEMI-INSTANTANEOUS 230V 1 Phase + Earth Common for PHE, FB and CB HE types

Series	Version			I (A)*
200	IS	Magna 25-60	100	1.1
200	ID	2xMagna 25-60	185	1.7
	•	•		5
400	IS	Magna 40-100	195	1.75
400	ID	2xMagna 40-100	375	3
	•	•		-
600	IS	Magna 40-120	465	2.5
600	ID	2xMagna 40-120	915	4.5
	-	-		-
800	IS	Magna 40-120	465	2.5
800	ID	2xMagna 40-120	915	4.5
	-	-		
900	IS	Magna 40-120	465	2.5
900	ID	2xMagna 40-120	915	4.5

Series	Version	Primary Pump	Secondary	Pmax	//A*
series	version	type	Pump type	(W)*	I (A)*
200	SS	Magna 25-60	Magna 25-60N	185	1.1
200	DS	2xMagna 25-60	Magna 25-60N	270	2.3
200	DD	2xMagna 25-60	2xMagna 25-60N	270	2.3
400	SS	Magna 40-100	Magna 25-60N	265	2.35
400	DS	2xMagna 40-100	Magna 25-60N	460	3.6
400	DD	2xMagna 40-100	2xMagna 25-60N	460	3.6
600	SS	Magna 40-120	Magna 32-80N	605	3.5
600	DS	2xMagna 40-120	2xMagna 32-80N	1055	5.5
600	DD	2xMagna 40-120	2xMagna 32-80N	1055	5.5
	•	-			
800	SS	Magna 40-120	Magna 32-100N	645	<i>3.7</i> 5
800	DS	2xMagna 40-120	Magna 32-100N	1095	5.75
800	DD	2xMagna 40-120	2xMagna 32-100N	1095	5.75
				•	
900	SS	Magna 40-120	Magna 32-120N	895	4.3
900	DS	2xMagna 40-120	Magna 32-120N	1345	6.3
900	DD	2xMagna 40-120	2xMagna 32-120N	1345	6.3

^{*} Total max consumption including actuator + controller. 230V AC 50Hz+Earth power supply

Read carefully controller's instructions on next pages before servicing the unit.

Power supply the control box 230V 50 Hz + Earth, using electric protection in the main electric power box. Micro 3000 box is a secondary control box.

Human protections and protection against short circuits and over intensity must be installed in the main electric box.

FUSES

Only authorized people should operate on the unit. Cut off electrical supply of the unit before working on it.

The power boards are fitted with a set of fuses to protect the different components against overload. Please refer to the chart below :

Fuse	FU1	FU2	FU3	FU4	FU5
Protection	PUMP 1	PUMP 2	PUMP 3	PUMP 4	Power card
Size	6.3 x 32				
Rating	2,5 A	2,5 A	2,5 A	2,5 A	250 mA
Voltage	250 V				

Extra fuses are included in the control box for quick servicing.

WIRING ACTUATORS

Following actuator's brand and type, terminals labels are different and indicated here:

Wiring to actuator as per brandmark											
Raccordement a	u servomot	eur selon m	narque								
24V 0V 0-10V											
Siemens	G	G0	Υ								
Samson 5824/5825	L	N/N+12	13								
Sauter AVM125	01	MM	03								
Sauter AVF125	01+06	MM	03								
Sauter AR30W	2	1	3								

Samson 5824/5825 : shunt between N and 12 terminal.

CONTROL BOX

TERMINAL BLOCK LOCATION

The schematics below show the general components' implantation on the printed circuit board CY9_318.

230 volts terminal is on the bottom left side and Inputs/Outputs terminal on the bottom right side.

PUMPS' NUMBER

The pumps' configuration & connections are factory made, but in case of servicing, you have to identify pumps:

Codification	Meaning	Connected pump(s)
EFxxxxxIS	Instantaneous S ingle	P1
EFxxxxxID	Instantaneous D ouble	P1 + P2
EFxxxxxSS	Semi-instantaneous Single / Single	P1 + P3
EFxxxxxDS	Semi-instantaneous D ouble / S ingle	P1+P2+P3
EFxxxxxDD	Semi-instantaneous D ouble / D ouble	P1 + P2 + P3 + P4

If you want to add a recycling pump (Instantaneous ONLY), this one should be connected to P3.

PUMP TYPE: FIXED OR VARIABLE SPEED

AquaEfficiency uses variable speed pumps. In the case you use or add a constant speed pump (Class A recycling pump for example), you have to configure the pump type on the power board by the mean of selector on the right side of the PCB as indicated on the picture:

PUMP WIRING

We show here how to connect the primary pump P1

There is no polarity on ipsothermic contacts

Whatever the application, never exceed 8A continuous load pumps (AC3 class) under 230V AC

If you use AC1 class load (Cos $\Phi \ge 0.95$), never exceed 20A under 230V AC

Whatever the application, never exceed 8A continuous load pumps (AC3 class) under 230V AC. If you use AC1 class load ($Cos\Phi \ge 0.95$), never exceed 20A under 230V AC

There is no polarity on ipsothermic contacts

0 volt (terminal 26) to be connected to 0 volt (or \perp) of pump's terminal

0-10 volts signal (terminal 27) to be connected to 0-10V signal input of pump's terminal

ACTUATOR WIRING

The 0V contact is common with 0-10V signal and 24V AC actuator power supply.

Some actuators have 4 terminals to wire:

- > 0 Volt
- > 0-10 volts (signal)
- "Neutral" of 24V AC power supply
- > "Phase" of 24V AC power supply

In this case, just shunt the 0V and Neutral inside the actuator wiring box.

SENSORS'WIRING

Temperature sensors are real or simulated thanks to micro switches. The affected sensors are S1...S6 and Pt1 & Pt2. If a sensor is not present, corresponding micro switch must be "ON". If the sensor is present and wired, put the micro switch on "OFF" position.

S1: Secondary outlet sensor (DHW)

S2: Secondary inlet sensor (CW/Recycling)

S3: Primary outlet sensor

S4: Primary inlet sensor (optional)

S5: Outdoor temp sensor (heating application only or AquaEfficiency combined with AlfaStore B unit)

S1...S5 are NTC20k temperature sensors.

SOLARFLOW ONLY

In the Solarflow application, an extra sensor Pt1 is needed. When Tpt1 \geq (Ts2+ Δ Trecup min), the unit is activated and regulates like standard AquaEfficiency.

If not, the unit is placed in standby mode: Primary pumps only are stopped and valve is closed until Tpt1 increases again. All other AquaEfficiency functions operational.

This mode is activated in the "Configuration Menu", where you can also define $+\Delta$ Trecup min (5°C default value).

Please refer to the Solar menu on next pages.

Pt1 is a Pt1000 type temperature sensor.

ALFASTORE A (ALFAPILOT ON/OFF)

In this application, an extra sensor Pt1 is needed. When Tpt1 \geq (Ts2+ Δ Trecup min), the function is activated and opens wide a second control valve wired on AO4 output, extra actuator. All other AquaEfficiency functions operational.

This mode is activated in the "Configuration Menu", where you can also define $+\Delta T$ recup min (5°C default value).

Please refer to the Solar menu on next pages.

Pt1 is a Pt1000 type temperature sensor.

ALFAPILOT (ALFASTORE B)

In this application, 2 extra sensors Pt1 and Pt2 are needed. When Tpt1 \geq (Ts2+ Δ Trecup min), the function is activated and opens a second control valve wired on AO4 output, extra actuator. The regulation is proportional at the opposite of AlfaStore A, and operates around a set point compared to the measured temperature on Pt2. All other AquaEfficiency functions are operational.

This mode is activated in the "Configuration Menu", where you can define many specific parameters.

Please refer to the Solar menu on next pages.

Pt1 and Pt2 are Pt1000 type temperature sensors.

230V TRIAC OUTPUT

IBY-PASS function

Some condensing boilers do not accept too low temperature returns or too big primary temperature differentials. AquaEfficiency primary outlet can be around 25°C minimum (during peak taping period especially). If primary inlet temperature is 70°C, that makes a Delta T=45°C.

You have 2 solutions to heat up the primary return temperature if delta T is too high, considering the boiler:

- 1- Install a mixing bottle before the AquaEfficiency primary circuit. In this case use a transfer pump between the boiler and the bottle, considering that its flow rate must be higher than the AquaEfficiency nominal flow rate. This to mix some primary inlet with the primary returns and then to increase the temperature. Such a solution is indicated in our flow charts.
- 2- Install a by-pass before the unit with an electrical 230 Volts normally closed shutting component: electro valve 230V NC, small pump 230V 1A max, or 2 port valve 230V 3 steps signal with return to zero position in case of no power supply. AquaEfficiency is able to pilot this extra component help with an added primary inlet sensor, S4 and the wiring terminal as shown. The "230V Triac Menu" will then have to be configured (see later on). In operating mode, if delta T (S4-S3) is higher than a preset value (that you can change), the triac output is energized to give 230V between N and DO9 terminal, to pilot the by-pass component.

Neutral to be connected on N (terminal 20) and phase on DO9 (terminal 21)

II- 230V CLOCK PULSE FUNCTION

To make another use of the 230V electrical output, you can configure it as a pulse function to activate shortly an electrical drain valve for example. In this configuration, you can program day, week or special days you want this to happen and the pulse duration (can be each Sunday at 10h00 for example and for 5 seconds). Please refer to the "230V Triac Menu" later on.

RELAY 1 CONTACT WIRING (Affectation in Configuration sub menu)

To be connected between IN5 and DO5 (36 & 37 terminals). This contact is **normally open (NO)**.

If a default occurs, it closes.

If you use 230V phase through this contact, do not exceed 2A load.

RELAY 2 CONTACT WIRING (Affectation in Configuration sub menu)

To be connected between IN6 and DO6 (63 & 64 terminals). This contact is **normally open (NO)**

lf a default occurs, it closes.

If you use 230V phase through this contact, do not exceed 2A load.

REMOTE CONTROL

The whole unit can be started or stopped remotely help with a volt free contact connected between BI1 and 0V (72 & 73 terminals).

DO NOT power supply this contact! Volt free contact only

When contact is open, the unit operates normally. If it is closed, primary and secondary pump(s) is(are) stopped and valve(s) get a 0% (0 volt) signal. Controller display remains activated

COMMISSIONING

The installation and use instructions should be respected, and the factory settings be unchanged.

- Rince the pipe works before piping the tap water module up.
 Pipe works may contain solid particles that could block or prevent the 3 or 4 port modulating valve from operating normally,
- Pipe the primary and the secondary of the module,
- Fill-up both sides progressively with water,
- Purge air at high parts,
- · Purge all the pump bodies,
- Switch the power on,
- Check controller setting and enable the required functions,

MAINTENANCE

Our tap water modules do not require frequent inspections or dismantling.

The frequency of the inspections depends on the water hardness, temperature and consumption (Flow rate).

Scaling of the secondary side will be evidenced by :

- A high pressure drop on the secondary side of the exchanger,
- Improper temperature range on the secondary side of the exchanger,
- Low temperature difference between inlet and outlet on the primary side of the exchanger when the control valve is fully open,
- A warning from the controller if the unit is equipped with the scaling control or CIP option (F/B series only).

Disassembling of the exchanger can be done very quickly according to the following procedure:

Maintenance should be operated by qualified and authorized person only Risk of electric shocks: Cut off electrical supply of the unit Burning risk: let the exchanger cool down until a temperature of 40°c approximately is reached on both sides

- Then, isolate primary and secondary hydraulic circuits,
- Open the purge cocks to drop the internal pressure of each sides,

PLATE HEAT EXCHANGERS (P Series)

- Measure the distance between the two frames of the exchanger (Plate pack thickness) and note it down,
- Open the exchanger by unscrewing and removing the frame compression bolts,

To avoid injuries owing to sharp edges, protective gloves should always be worn when handling plates and protective sheets (like the ones for insulation).

- Remove the plates without damaging the gaskets and note their orientation and position,
- Clean the plates using a soft plastic brush and water or a solution of diluted acid in accordance with PHE plate general cleaning instructions.

DO NOT USE hydrochloric acid or any acid that could corrode stainless steel plates

DO NOT USE water with more than 330 ppm CI when making a cleaning solution. Nitric (for calcium carbonate), sulfamic (for calcium sulphate) or citric (for silt) acids can be used. Concentration should not exceed 4% at 60°c. Protective gloves and glasses should always be worn while these operations. Carefully rince the plates with clean water after cleaning.

- Re mount the plates in the same order and at the same position they were before.
- Screw the frames to the same distance they were before (Plate pack thickness dimension).
- It is also important to clean the control sensor pocket.

For further informations please refer to Alfa Laval Instruction Manual Ref. 1644725-01

N → Type nickness T2 0.5mm M3H Ti 0.4mm M3H 0.5mm M3D	3 8.7 8.4 8.7	5 14.5 14	7 20.3 19.6	9 26.1	11	13	15	17												$\overline{}$		$\overline{}$
T2 0.5mm M3H Ti 0.4mm M3H	8.7	14.5	20.3		11	13	15	17												i I		1
T2 0.5mm M3H Ti 0.4mm M3H 0.5mm	8.4	14		26.1					19	21	23	25	27	29	31	33	35	37	39	41	43	45
0.5mm M3H Ti 0.4mm M3H 0.5mm	8.4	14		26.1															\vdash			
M3H Ti 0.4mm M3H 0.5mm	8.4	14			31.9	37.7	43.5	49.3	55.1	60.9	66.7	72.5	78.3	84.1	89.9	95.7	101.5	107.3	113.1	118.9	124.7	130
0.4mm M3H 0.5mm			19.6		01.0	01.1	40.0	40.0	00.1	00.0		72.0	70.0	04.1	00.0	00.7	101.0	107.0	110.1	110.0	124.1	100
0.5mm	8.7	14.5		25.2	30.8	36.4	42	47.6	53.2	58.8	64.4	70	75.6	81.2	86.8	92.4	98	103.6	109.2	114.8	120.4	12
	8.7	115																				
M3D		14.0	20.3	26.1	31.9	37.7	43.5	49.3	55.1	60.9	66.7	72.5	78.3	84.1	89.9	95.7	101.5	107.3	113.1	118.9	124.7	130
																				i l		
0.8mm	9.6	16	22.4	28.8	35.2	41.6	48	54.4	60.8	67.2	73.6	80	86.4	92.8	99.2	105.6	112	118.4	124.8	131.2	137.6	14
T5M	8.7	14.5	20.3	26.1	31.9	37.7	43.5	49.3	55.1	60.9	66.7	72.5	78.3	84.1	89.9	95.7	101.5	107.3	113.1	118.9	124.7	130
0.5mm M6H	8.7	14.5	20.3	20.1	31.9	31.1	43.5	49.3	55.1	60.9	00.7	12.5	78.3	84.1	89.9	95.7	101.5	107.3	113.1	118.9	124.7	130
0.5mm	7.5	12.5	17.5	22.5	27.5	32.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	72.5	77.5	82.5	87.5	92.5	97.5	102.5	107.5	112
M6M						02.0				02.0												
0.5mm	10.5	17.5	24.5	31.5	38.5	45.5	52.5	59.5	66.5	73.5	80.5	87.5	94.5	101.5	108.5	115.5	122.5	129.5	136.5	143.5	150.5	157
M6MD																						
0.75mm	11.25	18.75	26.25	33.75	41.25	48.75	56.25	63.75	71.25	78.75	86.25	93.75	101.25	108.75	116.25	123.75	131.25	138.75	146.25	153.75	161.25	168.
N →	37	39	41	43	45	47	49	51	53	55	57	59	61	63	65	67	69	71	73	75	77	97
Type	37	33	41	40	40	41	45	31	33	33	37	33	01	00	00	07	03	′'	/3	, '3	"	31
T2																						
0.5mm	107.3	113.1	118.9	124.7	130.5														igsquare	لـــــــا		
M3H Ti																				i l		
	103.6	109.2	114.8	120.4	126	131.6	137.2	142.8	148.4	154									$\vdash \vdash$	\vdash		
МЗН	107.3	113.1	118.9	124.7	130.5	136.3	142.1	147.9	153.7	159.5										i l		
0.5mm M3D	107.5	110.1	110.9	124.1	100.0	100.0	142.1	141.3	100.7	100.0												
	118.4	124.8	131.2	137.6	144	150.4	156.8	163.2	169.6	176												
T5M																						
0.5mm	107.3	113.1	118.9	124.7	130.5	136.3	142.1	147.9	153.7	159.5	165.3	171.1	176.9	182.7	188.5	194.3	200.1	205.9	211.7	217.5	223.3	281
М6Н																						
0.5mm	92.5	97.5	102.5	107.5	112.5	117.5	122.5	127.5	132.5	137.5	142.5	147.5	152.5	157.5	162.5	167.5	172.5	177.5	182.5	187.5	192.5	242
M6M	400.5	400 5	440.5	450.5	457.5	4045	474.5	470.5	405.5	400 5	400.5	000 5	040.5	000 5	007.5	0045	044.5	040.5	055.5		000 5	
	129.5	136.5	143.5	150.5	157.5	164.5	171.5	178.5	185.5	192.5	199.5	206.5	213.5	220.5	227.5	234.5	241.5	248.5	255.5	262.5	269.5	339
M6MD 0.75mm 1	138.75	146.25	153.75	161.25	168.75	176.25	183.75	191.25	198.75	206.25	213.75	221 25	228.75	236.25	243.75	251.25	258.75	266.25	273.75	281.25	288.75	363.

FUSIONNED BONDED OR BRASED (F/B Series)

For these heat exchangers, use the Alfa Laval CIP kit, with compatible cleaning products. Be sure the heat exchanger has been insulated, using primary and secondary gate valves

Unscrew the specific caps located at the opposite of primary and secondary ports.

We recommend you the use of Alfa Laval CIP 20 type with specific cleaning liquid. Different types are available, especially for fooling or lime scaling: AlfaPhos for example. Use a neutralization solution before cleaning with clear water (AlfaNeutra for example).

- Circulators and pumps do not require any specific maintenance. Check annually that no leaks are
 detected level with the rotative seal when external motor pumps are used. Measure electric motor current
 drawn.
- The control valves do not require any specific maintenance. Annually check that no leaks are detected level with the sliding rod seal package.
- The electrical panel does not require any specific maintenance. Annually check electrical connection tightenings.

TROUBLE SHOOTING

FINDINGS	PROBABLE CAUSES	REMEDIES
Pump not operating	Locked rotor or damaged	Force to rotate. Replace if
		required
	Corresponding led is not lit	Replace Power Board
	Pump relay damaged	Replace Power Board
	Pump protection fuse blown High Alarm condition detected	Check then replace if necessary Clear alarm then reset system
	No voltage to control board	Check power supply cable and
	terminals	fuses,
	No voltage to pump motor	Check protection fuse on main
	terminals	board, cable condition and
		connections
	Controller improperly set	Contact After Sales Service
Low temp alarm condition	Primary pump stopped	See above
	Too low primary temperature	Check for a closed valve in the
		primary
	Too high tap water flow rate (SI)	Reduce buffer vessel charging
		flow rate
	Set point too high	Before to most boss below
Madulating valve does not	3 way valve remains closed	Refer to next box below
Modulating valve does not operate	Damaged or broken actuator Broken or improperly tightened	Test then replace if necessary Check then replace if necessary
Operate	coupling	Check then replace it necessary
	Valve blocked	Replace
	No signal from the controller	Check then replace if necessary
	Supply wires improperly	Check wires, re-tighten
	tightened	connections
	Actuator stroke restricted	Dismount then clean the valve
High alarm condition	Charging pump stopped (SI	Refer to "Pump not operating"
detected	versions)	above
	Low recirculation flow rate (I	Check and fix problem
	versions)	Ob sale and sat the controller
	Alarm differential too low Modulating valve not closing	Check and set the controller
	Too much differential of pressure	Refer to previous box above Check the way the TWM is piped-
	across the modulating valve	up. Mixing arrangement should be
	doross the modulating valve	used
Correct temperatures across	Excessive exchanger scaling at	Open and clean the exchanger
the exchanger not obtained.	the primary or secondary side	according to cleaning
		instructions
Valve and pumps operating satisfactorily	Primary pipe work obstructed or	Inspect primary pipe work.
Satisfactority	strainer upstream clogged	Clean strainer on the primary side
	Isolation valve closed	Open isolation valves
	Air presence in the primary	Purge. Check no high parts where
	Farancia and a company	air could be trapped exist
	Excessive pressure drops	Check pipe size is suitable for
Tomporatura dana nat	Recirculation flow rate exceeds	nominal flow rate
Temperature does not increase in the buffer vessel	charging flow rate.	Check and measure charging and recirculation flow rates. Adjust
and the tap water value is		when necessary.
correct.		Recirculation FR < 0.6 x Charging
		FR
	•	

CONTROLLER COMPONENTS

Following components are located behind the front metal plate. If you need to remove it and access internal components, remove the 4 front screws.

The control system consists in three main components:

- Power board CY9-318,
- Micro 3000 Controller,
- Main switch.

KEYPAD / DISPLAY

KEYPAD / DISPLAY

KEY	FUNCTION
	Rotative button to scroll into menus and to change values. To activate the line or parameter it is on, just press the button. If you have access to the submenu/parameter, it will be black grounded and then you can press the button to access the sub-menu/change parameter. Otherwise, you just pass on it.
C	At the opposite, to exit press this key
3	To access to the technician menu. REQUIRES A PASSWORD
	Press at any time to come back to home screen
\triangle	Alarm menu
1	Not used
2	Not used
A1	Relay 1 activated (assignment in configuration sub-menu)
A2	Relay 2 activated (assignment in configuration sub-menu)
Tx _	Data transmission in COM mode
Rx _	Data reception in COM mode
	Alarm light
9	Controller energized

HOME SCREEN

The display shows the following information:

Access to other menus by rolling the wheel.

COMMAND SYMBOLS

Auto

Datapoint is in automatic operation and can be switched into manual operation.

Manual

Datapoint in manual operation and can be switched into automatic operation.

Today function

Datapoint value can be overridden for a particular time period within the next 24 hours. Datapoint must have a daily time program assigned.

Time Program

Datapoint has a daily time program assigned. Daily time program can be selected and edited.

Edit

Item (datapoint, time program etc.) can be edited.

Add

Item (datapoint, time program etc.) can be added to a list e.g.a datapoint can be put to a list of trended datapoints.

Deleted

Item can be deleted

Enable/disable

Checked: item is enabledUnchecked: item is disabled

DATE & TIME SET

ACTION	DISPLAY
Rotate the wheel counterclockwise up to the 1rst display line.	18-09-2012 16:47 A T_Secondary_Out (0) 60.2 °C S1_PID_Setpoint (0) 60.0 °C
Then press the wheel. The screen looks like this:	Date / Time Date: 18-09-2012 Time: 16:49 Format: 31-12-2009 Daylight Saving Time
Date setting Press the wheel to change the year that is flashing now Increase or decrease the value by rotation. When done, press the wheel again to set next parameter Do the same for month and day	+ Enter (push)
Time setting Set hour then minutes	Date / Time Date: 18-09-2012 Time: 16:55 Format: 31-12-2009 Daylight Saving Time
Date Format Choose between yyyy-mm-dd, mm-dd-yyyy, dd-mm-yyyy, dd.mm.yyyy, dd/mm/yyyy	Date / Time Date: 18-09-2012 Time: 16:56 Format: 31-12-2009 Daylight Saving Time
Daylight Saving Time Hour change between winter/summertime is automatic, but you can redefine and change dates, or disable this function.	Date / Time Date: 18-09-2012 Time: 16:56 Format: 31-12-2009 Daylight Saving Time

SAVE MODIFICATIONS Once you have validated a setting by pressing the wheel, changes are updated. You can press or to go back to home screen

CHANGING THE TEMPERATURE(S)' SETPOINT(S)

You can set:

- Identical / Different daily temperatures (unlimited periods possible),
- Holidays' periods (useful for school for example)
- Special days (holidays' periods for example) during the year with specific set points

<u>Temperatures setting must be in accordance with country's legislation (e.g. EN, ISO....norms or recommandations).</u>

TECHNICIAN MENU (both access levels)

To get total access level, it is necessary to enter the password. This is how to do:

MAIN MENU

CONFIGURATION SUB-MENU

This menu is not accessible from end-user access level. You must enter the "3333" code

You can activate connected sensors. S1, S2, S3 are present on standard AquaEfficiency and SolarFlow units. Only S4 is optional. If you use the control box as an AlfaPilot in stand alone mode (no AquaEfficiency connected), then you can disable S1 and S2. Nethertheless, this is not mandatory.

Main Menu			
T_Secondary_Out	Read Only		
S1_PID_Setpoint	Read Only		
T_Secondary_Inlet	Read Only		
T_Primary_Outlet	Read Only		
T_Primary_Inlet	Read Only		
T_Renewable1	Read Only		
T_Renewable2	Read Only		
T_Outdoor	Read Only		
Configuration	Sub Menu		
S1 Menu Sec.Outlet	Sub Menu		
S2 Menu Sec.Inlet	Sub Menu		
Delta T (S3-S2)	Sub Menu		
S4 Menu Prim Inlet	Sub Menu		
S5 Menu Outdoor T	Sub Menu		
Thermal Treatment	Sub Menu		
SAFETY Function	Sub Menu		
Eco Booster Fcts	Sub Menu		
Fooling Function	Sub Menu		
Pumps Menu	Sub Menu		
Solar Menu	Sub Menu		
Aquaprot_Heating	N/A		
230V triac Menu	Sub Menu		
Auto Test	Sub Menu		
Clear Alarm(s)	Sub Menu		

Display	Default Value	Description	
S1 Activated	Keep 1	0/1 Not activated / Activated sensor	
S2 Activated	Set to 1	0/1 Not activated / Activated sensor	
S3 Activated	Set to 1	0/1 Not activated / Activated sensor	
S4 Activated	Keep 0	0/1 Not activated / Activated sensor	
Activer loi CH S5	Keep 0	0/1 Not activated / Activated sensor	
Cooling Mode AO1	Keep 0	0=Heating Mode / 1=Cooling Mode	
P1P2 Nbr of Pumps	0/1/2	0/1/2 as per equipement	
P3P4 Nbr of Pumps	0/1/2	0/1/2 as per equipement	
ModBus Factor	1	1100 to display decimals on modbus values 1=No decimal (integer values, ex : 58°C) 10=0.1 decimals (ex : 58.3°C) 100=0.01 decimals (ex : 58.36°C)	
Relay 1 Function	1	0=No action 1=General Default (GD) 2=High temp Alarm (HA) 3=Eco function (E)	
Relay 2 Function	2	4=Booster function (B) 5=Thermal Treatment (TT) 6=Pump Fault (PF)	

		7=Tank loaded (TL)	
Renewable Config	0	0=Not used	
		1=SolarFlow (SF)	
		2=AlfaStore A (AA) (also called AlfaPilot On/Off)	
		3=AlfaPilot (AP) (also labelled AlfaStore B)	
APilot Inverted	0	0/1 Allows to reverse the Valve #2 signal for AlfaPilot (AO4)	
		If AlfaPilot mode is used, set to « 1 », due to standard component used	
PC distrib	i	i/E : internal / External for Modbus use	
ALAFALAVAL_Version	xx	Software version	

If S5 Active heating=1, the secondary outlet temperature set point (called "S1_PID_Setpoint" in the main list) will be calculated by an heat curve, function of the outdoor temperature (S5 sensor needed). See later on for the heat curve parameters.

If S5_Active_Heating =1, the heating mode is activated, with heat curve for calculated output setpoint on S1

Both relays 1 and 2 are programmable: you can choose their affectation

Last 3 lines define the renewable mode. You can find back these settings in the solar menu for reading only.

SENSOR 1 MENU

As S1 is the master sensor, you find into this menu main control loop parameters

	S1 Menu Sec.Outlet		
뒫	SP_T_Sec_Outlet 🕀+🎖	60°C	DHW Setpoint
AN LEV	Delta T S1 HiAlm	10°C	0-50
) E	High T Alarm Tempo	1 min	0-60
TECHN	High Alarm Auto Reset	0	0/1
S F	High_Alm_Reset	Off	Off/On
VALUES'CHANGES IF TECHNICIAN LEVEI	P_Main Prop Band	20 (-100 à 100)	In general 20 <p<40°c Negative values in cooling</p<40°c
LUES	l Main Integral	50	0-120
VAI	D Main Derivative	2 sec	0-50

Change value in clock program(③) or 1 time change(②)

High Temperature Alarm if Ts1 ≥ SP_T_Sec_Outlet+Delta Ts1 HiAlm

High temp alarm is effective after this temporisation

0=MANUAL alarm clear / 1=AUTO alarm clear

Put ON to clear an high temp alarm, then put Off

¬P to be less reactive

¬P to be more reactive (be carreful of "pumping" effect)

¬I to be less reactive

¬I to be less reactive

SENSOR 2 MENU, SECONDARY INLET TEMPERATURE SENSOR

You find here anticipation parameters when temperature suddenly increases or decreases. Action is signal change on control valve and primary pump(s) speed.

The Delta T (S1-S2) function is for variable charging pump units only. When S2 approaches S1 value, an auxiliary control loop reduces charging pump speed down to a minimum settable value (see below); At the opposite, if temperature on S2 decreases, the pump speed will increase.

	S2 Menu	S2 Menu Sec Inlet		
Delta T (S1-S2) vit P3P4	8°C	320		
P Band DT(S1-S2)	5°C	420		
DZ_GS2 enk/s	0.5	Do not change		
Inverted output	0	Set 1 if cooling mode		
Min Speed P3P4	25	20 - 100%		
	P Band DT(S1-S2) DZ_GS2 enk/s Inverted output	Delta T (S1-S2) vit P3P4 8°C P Band DT(S1-S2) 5°C DZ_GS2 enk/s 0.5 Inverted output 0		

Secondary charging Pump speed regulation approaching the temperature setpoint.

Extra electrical energy savings by keeping minimum speed for recycling loop when tank is loaded.

Anticipation on ctrl valve+prim.pump signal, depending of temperature gradient on S2 (ex: quick temp. Loss if tappping =open ctrl valve + accelerate primary pump to save HE+S1 time cst) reverse anticipation action (for cooling mode only)

Minimal speed if DHW setpoint almost reached (secondary charging pumps only)

To disable the gradient function, disable S2 in the "Configuration" menu.

DELTA T (S3-S2) MENU

This function limits the primary return temperature, acting on primary pump signal (speed). It acts like a setting valve, limiting the primary flow rate.

	Delta T (S3-S2)				
	Added control loop on delta T Primary Outlet-Secondary Inlet.				
GES IF LEVEL	Action on primary pump speed only				
N I	Delta T(S3-S2)	20 K	0-100°C (keep around 25)		
VALUES'CHANGES TECHNICIAN LEVE	DD Dalka T C2 C2	10.K	Da wat shawa		
씩 포	BP Delta T S3-S2	10 K	Do not change		
VALL	Intégrale DT S3-S2	2 sec	Do not change		
	S3 activated	1	0/1		

If cooling mode, disable the function by inputting 0 on « S3 activated » line.

DT ctrl loop to influence primary return temp.

If you want a small action on DT ctrl loop, set >30

Value 0-100°C. Big value=Low influence Value 0-50. Big value=Low influence

1=Activated function/ 0=Disabled function It is a copy from Configuration Menu

S4 MENU PRIMARY INLET SENSOR

If a sensor S4 is connected at the primary inlet, another anticipation function can be activated. When temperature suddenly increases or decreases, an action signal is sent to control valve and primary pump(s) speed.

Anticipation on ctrl valve+prim.pump signal, depending of temperature gradient on S4 (ex: boiler temp. Loss if tappping =open ctrl valve + accelerate primary pump to save HE+S1 time cst) reverse anticipation action (for cooling mode only)

THERMAL TREATMENT FUNCTION

See explanations bellow

Thermal treatment activates by defining a clock setting (On or Off)

SAFETY FUNCTION

Note that in case of high temperature alarm, primary pump(s) are stopped

		SAFETY Func	tion	
뜨 교	This function activates the 4 pumps' power relays at the same time without			
	considering ipsothermic contac	considering ipsothermic contacts' inputs.		
Ž	Furthermore, you can define th	e voltage sent t	o the 0-10V pumps'signal, then	
H A	to choose pumps'speed (for variable speed pumps)			
S'C	You can enble this function from base access level.			
Iÿ∓				
VALUES'CHANGE IF TECHNICIAN LEVEL	SAFETY_Speed	75%	5-100%	
> F	SAFETY FCT	Off	Off/On	

In case of high temperature alarm on S1, primary pump(s) is(are) stopped, even if the function is activated.

ECO & BOOSTER FUNCTIONS

IF TECHNICIAN LEVEL	You can activate 1 or the other func ECO : Activates a temporisation as shystérésis valve' and DHW is higher After this temporisation, the start/s OR primary cst speed pumps' power	ction or both at soon as valve is than Setpoint - top contact of p	closed less than "Eco Hysteresis" parameter orimary variable speed pumps	
Ŧ	Booster: If DHW temperature is dropping down faster than "Booster Gradiant",			
Œ	the second primary pump (if existing	g) is energized, t	o increase the primary flow	
<u> </u>	rate. Function stops when DHW temperature is back to the setpoint value			
	and after "Booster Tempo" parame	ter		
Š	1:Eco 2:Boo 3:EcoB	0	None/Eco/Booster/Eco+Booster	
₹	Fct_Selection	Normal	Normal/Eco/Boost/EcoBoost	
<u>5</u>	Eco Delay	5 min	1-30 min	
/ALUES'CHANGE	Eco Hysteresis	5°C	1-20°C	
]	Valve Hyseteresis 4% 1-10%			
▼	Booster Delay 2 sec 0-30 sec			
	Booster Gradient	1°C/s	1 à 5°C/sec	

As a reminder

S5 MENU- OUTDOOR TEMPERATURE

This sub-menu allows to adjust the heat curve parameters: slope + ambient temperature influence on clock program. To be effective, you MUST have selected S5 Active Heating=1 in the Configuration menu.

The weather-compensated controller requires a heating curve for each heating circuit to determine the correct flow temperature setpoint according to outside air temperature. The heating curve graph indicates the relationship between outside air temperature and associated flow temperature. 2.25 100 2.00 80 1.50 /flow 70 1.25 60 1.00 0.75 0.50 For radiator heating systems, a heating curve slope 1.6 and curvature 1.33 is the default setting. The higher the curvature value, the more pronounced the curvature. Recommended curvature values are: Floor heating systems 1.1 (with a slope of 0.8 and maximum limit of flow temperature set to highest value, for example, 50) Standard radiatorsor panel-type radiators 1.3 • Convectors 1.4 through 1.6

FOOLING FUNCTION

IANGE ICIAN L	Activates an alarm if heat exc	Fooling Function	
S'CF HN EVE	Fooling alm activ	0	0/1
	Fooling_alarm	Normal/Default	
/ALL	SP_Fooling	65°C	60-80

0=Disabled / 1=Enabled READ ONLY Depends of HE type + Primary temerature inlet

PUMPS'MENU

P1 or P2 Working time See P12 Permut Hour If diff reached at this time, pump shift Don't care of permutation day+hour

Time to start P2(P1) before stopping P1(P2), to let the other pump start

P1 or P2 Working time See P12 Permut Hour If diff reached at this time, pump shift Don't care of permutation day+hour

Time to start P2(P1) before stopping P1(P2), to let the other pump start

To clear a pump default, set to On, then Off Copy from the Clear alarm(s) menu

SOLAR MENU

AquaEfficiency can be coupled with a SolarFlow or AlfaPilot working mode, allowing to take benefit of a solar energy with primary storage tank installation or alternative energy recovering installation. This using the same control box.

The Micro 3000 combined with extra sensors can pilot a second 0-10V signal valve actuator, allowing to direct the outlet primary flow towards the primary storage vessel or towards the boiler (or heat generator). This distribution can be binary (open OR closed valve) in AlfaStore A configuration or proportional in AlfaStore B (=AlfaPilot) configuration. Note that AlfaStore A needs 1 extra sensor (Renewable1) and AlfaStore B needs 2 extra sensors (Renewable1+2) + optionally outdoor temperature sensor S5.

Config selection

Depending of used valve type, it is sometimes necessary to invert the opening/closing travel. AlfaStore B=On

Use a negative value for a cooling mode Heating mode=Positive value (5-50°C)

For AlfaStore B, setpoint relative to Srenewable 2(Pt2) and regulation around this setpoint via AO4 signal output (Valve No.2)

INTERNAL

Solar Flow Only

An added sensor Pt1 is necessary and will have to be placed before the primary inlet, in a primary storage buffer vessel (solar for example) In this mode, the unit will be placed in stand by (valve closed+pump stopped) until Pt1>=S2+DT Recup_Min When primary temperature is hot enough, the unit will be started normally and will regulate on secondary outlet temperature, S1

AlfaStore A Only

An added on/off control valve (Valve No. 2 wired on AO4) associated to S3 and Pt1 sensors allows the alfaStore A mode
An added sensor Pt1 is necessary and will have to be placed before the primary inlet, in a primary storage buffer vessel (solar for example)
As soon as S3>(Pt1+DT Recup_Min), valve 2 wide opens (continuous 10 volts signal), diverting the primary return flow towards primary vessel
and then to send hot water towards the generator (boiler for example) to reduce energy consumption

AlfaStore B Only

An added control valve (Valve No.2 wired on AO4) associated to S3, Pt1 and Pt2 sensors allows the alfaStore B mode

Added sensor Pt1 is necessary and will have to be placed before the primary inlet, in a primary storage buffer vessel (solar for example). Pt2 on the generator (boiler) inlet As soon as S3>(Pt1+DT Recup_Min), valve 2 regulates proportionnaly around Distrib_Setpoint

If an outdoor sensor is connected on S5 input, Distrib_Setpoint value can be higher, due to heat curve result. You don't have to activate S5 in the "Configuration" Menu.

230V TRIAC MENU

2 different Operating modes: If Multi P is On, you must set ByPass S4S3 to Off. If Multi P is Off, you can set ByPass S4S3 to On

AUTOTEST MENU

This sub-menu allows to test analogic and digital outputs. It is possible to run an automatic sequence or to test manually each output individually.

In case of Auto test (automatic sequence), it is possible to reduce or increase tests' temporizations. Pump, valve and relays test times can be adjusted individually. The time test value will impact on the total auto test time sequence.

CLEAR ALARM(S) MENU

Z	20	2	Cle			
ATIO	וב או הקילו	EN C	This menu allows to clear alarm(s)			
\simeq	SSIBI		High_Alm_Reset	Off	Off/On	Put On to clear alarm, then put Off
MODIF	PO PV	₹₩	Pump-Fault_Reset	Off	Off/On	Put On to clear alarm, then put Off

CHANGE PASSWORD

If you want to change the actual password, do not forget to remember it, by a way or another. If lost, you can't access to the technician level and only the S1 temperature setpoint can be changed. All other parameters are then either read only, or hidden (configuration menu for example).

Note that to change the password, you must already have the technician level (Level 3). If you don't have Press on "Login Installer" before and enter the current password.

Press key to access to Service Menu, go to "Login Installer" line then enter the password if not done before accessing this menu then press the wheel to validate	Service Menue Continue Login Installer
Click on "Change Password" then	Enter your Password **** Next Change Password
Level 2 password is not use in the program. Go directly to Level 3 line and then click on the password to change it	Change Password Level 2: 2222 Level 3: 3333 Installer Service

SERVICE MENU

OPERATING HOURS

You can check operating hours of some parameters.

Tou can check operating notifs of some parameters.	
Press Ney to access to Service Menu, then click on "Continue"	Service Menue Continue Login Installer
Select "Operating Hours" menu	Service Operating Hours Trending Interface Config
If it is the 1 st time you access to this menu, the list is empty. Otherwise, you will read	
already selected variables.	Operating Hours(h)
To add a variable you want to trend, click on logo Then, select in the list the points you want to trend.	Activate Oper. Hours Cmd Distant
See the points' list in the following table	Therm_Protec_P1 Therm_Protec_P2 Therm_Protec_P3
Example: We want to record the primary pump 1 operating hours. We will select "Cmd_P1" into the list and click on it with the wheel.	Activate Oper. Hours Therm_Protec_P4 Cmd_P1 Cmd_P2
Then do not forget to tick it, otherwise the point won't be in the list	Cmd_P1 Operating Hours: ☑
When you go back in the menu (key), you can now see the list with "Cmd_P1" parameter, and on the right side, the operating hours.	Operating Hours(h) + Cmd_P1 0
If you want more details, click on this line to make appear another screen Here you can read that P1 has been operating less than 1 hour, has been switched 1 time and is actually On.	Cmd P1 Operating Hours: Hours: 0 Switches: 1 Status: On
Proceed the same way to add extra variables.	

Variables' list :

Name	Description
Cmd_Distant	Binary input (VFC) to remotely Start/Stop the unit
Therm_Protec P1	Ipsothermic input from P1 pump
Therm_Protec P2	Ipsothermic input from P2 pump
Therm_Protec P3	Ipsothermic input from P3 pump
Therm_Protec P4	Ipsothermic input from P4 pump
Cmd_P1	P1 command. 1=On / 0=Off. It is the Start/Stop input of the pump
Cmd_P2	P2 command. 1=On / 0=Off. It is the Start/Stop input of the pump
Cmd_P3	P3 command. 1=On / 0=Off. It is the Start/Stop input of the pump
Cmd_P4	P4 command. 1=On / 0=Off. It is the Start/Stop input of the pump
Eco	Function Eco activated
Booster	Functyion Booster activated
High_Temp_Alarm	High temperature alarm on S1 sensor
Main_Alarm	General Alarm
Triac_Output	230v Triac output state.
AFF_leg_active	Thermal treatment activated
Multi_P	230V Triac pulse
SAFETY_FCT	The safety function state
Tank load	Tank loaded
ThTr_Activated	Thermal treatment running

TRENDING

You can record a lot of different variables listed in the table below. It can be temperatures' measurement, valves or pumps' signals, ipsothermic contacts, alarms, thermal treatments....

Press Ney to access to Service Menu, then click on "Continue"	Service Menue Continue Login Installer
Select "Trending" menu	Service Operating Hours Trending Interface Config Time Program
Then this click on line	Trending Points in Trend Display Trend Buffer
If it is the 1 st time you access to this menu, the list is empty. Otherwise, you will read already selected variables. To add a variable you want to trend, click on logo	Points in Trend
Then, select in the list the points you want to trend. See the points' list in the following table Example: We want to record the Secondary outlet temperature (please refer to table below). We select S1 into the list. Go to "S1" and click on it with the wheel.	Set Points in Trend Pilot_Signal Pt1 Pt2 S1
Then validate the point recording by ticking it (otherwise the point is in the list but is not recorded) There are 2 ways to record 1- Record only on temperature change (recommended method). This saves memory and allows a longer sampling period compared to method 2. Select the record hysteresis. In our case, we want to record every 1°C temperature change. You can change the hysteresis value by clicking on it.	Trend Log: Trend Hyst: Trend Cycle: Omin
2- Record on a time base, whatever the temperature changes or not. Note that this method consumes memory, especially if you select a low time base. Here we have selected a 10 minutes time base recording (1 record every 10 minutes).	Trend Log: Trend Hyst: Trend Cycle: 10min
If you to use method 1, set "Trend cycle" to zero. If you want to use method 2, set "Trend Hyst" to zero.	

DISPLAY TREND BUFFER

Press Ney to access to Service Menu, then click on "Continue"	Service Menue Continue Login Installer
Select "Trending" menu	Service Operating Hours Trending Interface Config Time Program
Then this click on "Display Trend Buffer" line	Trending Points in Trend Display Trend Buffer
Select the variable you want to read (S1 in our case)	Trend Buffer S1
You can read Date/Time and number of records actually in memory Click on it	S1 21-09 14:07 60
Then you can read Date, Time and the value at this moment (we are pointing here S1=58°C on 21 st of September at 14h22).	\$1 21-09 14:22 58 21-09 14:22 60 21-09 14:22 59 21-09 14:22 57

INPUT / OUPUTS VISUALISATION

Press key to access to Service Menu and select "Continue" or "Login Installer" to access to technician level. Scroll down to "Point Data" line

You can from Point Data sub-menu, read or change binary or analog outputs to start/stop a pump, open/close control valve or activate the 230V triac output for example.

ALARMS MENU

FACTORY RESET

Press both and for 5 seconds. Display appears as shown here. rotating the wheel, select the last line (program name with a star at the end). Press the wheel a few seconds and the program will start after 1 minute. Settings are now factory settings. Adjust if necessary the pumps' number and sensors influence in the configuration menu.

MODBUS COMMUNICATION

The controller includes a MODBUS SLAVE communication protocol. Connection between BMS (building management system) and Micro 3000 requires 2 polarized wires on C+ and C-, respectively labeled 25 and 26 on controller C Bus terminal. Cable shield connection is not mandatory, but can be done help with 24 terminal. To do this, it is necessary to unscrew the front panel (4 screws at each box angle).

Rules to respect:

Max length between BMS and farer control box: 500 meters

Connection continuity (C+ and C-) has to be done directly on the controller C Bus terminal, without using derivation boxes. Respecting this, there are 2 wires per terminal, except the farer control box.

MODBUS POINTS' LIST:

MODBUS MODBUS:

Speed / Vitesse : 38400 PARAMETERS /
PARAMETERS Stop bit / Bit de stop:
Parity / Parité: 8 None / Aucune Mode: RTU

In case of multiple controllers, change ModBus slave number En cas d'echangeur en cascade changer le $\ensuremath{\text{N}}^\circ$ d' esclave du mode bus

ModBus Points (English)	Points ModBus (Français)	MODBUS adress** Adresse ModBus**	71	Sub-type Sous-type	Mode	Value Valeur	Comment Commentaire

		R	ead Only d	igital / Le	cture se	eule Digitaux	
PD_Cmd_P1	PD_Cmd_P1	15	HR _16	BOOL	R	0=Off, 1=On	Command(e) P1
PD_Cmd_P2	PD_Cmd_P2	16	HR _16	BOOL	R	0=Off, 1=On	Command(e) P2
PD_Cmd_P3	PD_Cmd_P3	17	HR _16	BOOL	R	0=Off, 1=On	Command(e) P3
PD_Cmd_P4	PD_Cmd_P4	18	HR _16	BOOL	R	0=Off, 1=On	Command(e) P4
PriP1_Alarm_On	PriP1_Alarme_Ma	19	HR _16	BOOL	R	0=OK, 1=Alarm	P1 Fault / Défaut P1
PriP2_Alarm_On	PriP2_Alarme_Ma	20	HR _16	BOOL	R	0=OK, 1=Alarm	P2 Fault / Défaut P2
SecP3_Alarm_On	SecP3_Alarme_Ma	23	HR _16	BOOL	R	0=OK, 1=Alarm	P3 Fault / Défaut P3
SecP4_Alarm_On	SecP4_Alarme_Ma	24	HR _16	BOOL	R	0=OK, 1=Alarm	P4 Fault / Défaut P4
PD_High_Alarm	PD_Alarme_Hte	27	HR_16	BOOL	R	0=OK, 1=Alarm	S1 High Temp Alarm/Alarme haute S1
PD_Main_Alarm	PD_Alarme_Synt	28	HR_16	BOOL	R	0=OK, 1=Alarm	General default / Défaut synthèse
Fooling_Alarm	Alarme_Encrasst	30	HR_16	BOOL	R	0=OK, 1=Alarm	Fooling alarm (S3) / Alarme encrassement (S3)
ThermTr_Alarm	Alarme_TrTh	32	HR_16	BOOL	R	0=OK, 1=Alarm	Therm.Treat. Failed / Echec traitement therm.
PD_Triac_Output	PD_Sortie_Triac	33	HR _16	BOOL	R	0=Off, 1=On	230V Triac output / Sortie triac 230V
SAFETY_FCT	FCT_SECOURS	35	HR_16	BOOL	R	0=Off, 1=On	Safety function / Fonction Secours
AFF_Leg_active	AFF_TrTh_actif	36	HR_16	BOOL	R	0=Off, 1=On	Therm.Treat. On going / Trait. Therm. En cours
Remote_Control_Rev	Contrl_Distant_Inv	37	HR_16	BOOL	R	0=Off, 1=On	Remote control / Contrôle distant
PC_Distrib_Com	PC_Distrib_Com	38	HR_16	BOOL	R	0=Internal, 1=External	AlfaPilot external setpoint/Consigne AlfaPilot externe
AFF_FD20	AFF_FD20	39	HR_16	BOOL	R	0=Off, 1=On	Heating mode / Mode chauffage
AFF_FD22	AFF_FD22	40	HR_16	BOOL	R	0=Off, 1=On	Cooling mode / Mode froid
BoostMode	BoostMode	41	HR_16	BOOL	R	0=Off, 1=On	Booster Function / Fonction Booster
EcoMode	EcoMode	42	HR_16	BOOL	R	0=Off, 1=On	Eco Mode / Mode Eco
PD_Pumps_fault	PD_defaut_pompes	43	HR_16	BOOL	R	0=Off, 1=On	Synthese Pump(s) fault / Synthèse Défaut pompe(s
Tank_load	Charge_ballon	44	HR_16	BOOL	R	0=Off, 1=On	Tank load / Charge ballon
		(16 k	oit integer/Entier	16 bit)*			

	Read Only Analogic / Lecture seule Analogiques										
PA10 Speed P1P2	PA10 Vitesse P1P2	45	HR 16	int16	R	%	Primary pump signal / Signal pompe primaire				
PA10_Speed_P1P2 PA10 Speed P3P4	PA10_Vitesse_P1P2 PA10_Vitesse_P3P4	46	HR 16	int16	R	%	Secondary pump signal / Signal pompe secondaire				
			_	int16			71 1 0 0 1 1				
PA10_valve1	PA10_Vanne1	47	HR_16		R	%	Control vlave 1 signal / Signal servomoteur 1				
PA10_valve2	PA10_Vanne2	48	HR_16	int16	R	%	Control vlave 2 signal / Signal servomoteur 2				
PC_AStoreB	PC_AStoreB	49	HR_16	int16	R	°C	AlfaPilot Setpoint / Consigne AlfaPilot				
S1_10	S1_10	50	HR_16	int16	R	°C	Sensor 1 measurement / Mesure Sonde S1				
S2_10	S2_10	51	HR_16	int16	R	°C	Sensor 2 measurement / Mesure Sonde S2				
S3_10	S3_10	52	HR_16	int16	R	°C	Sensor 3 measurement / Mesure Sonde S3				
S4_10	S4_10	53	HR_16	int16	R	°C	Sensor 4 measurement / Mesure Sonde S4				
S5_10	S5_10	54	HR_16	int16	R	°C	Sensor 5 measurement / Mesure Sonde S5				
S6_10	S6_10	55	HR_16	int16	R	°C	Sensor 6 measurement / Mesure Sonde S6				
pt1_10	pt1_10	56	HR_16	int16	R	°C	Sensor Pt1 measurement / Mesure Sonde Pt1				
pt2_10	pt2_10	57	HR_16	int16	R	°C	Sensor Pt2 measurement / Mesure Sonde Pt2				
DT_recup_min10	DT_Recup_Min10	61	HR_16	int16	R	°C	Min DT energy recov / Delta T min récup énergie				
S1_PID_SP_10	PC_S1_PID_10	62	HR_16	int16	R	°C	Calculated S1 setpoint / Pt de consigne calculé S1				
SP_T_Amb_S5_10	PC_T_Amb_S5_10	63	HR_16	int16	R	°C	Ambiant temp. Setpoint / Consigne T ambiante				
						0=no Option 1=Solar Flow	0=Pas d' Option (type AquaFirst, AquaEfficiency) 1=Solar Flow				
Solar_Option_Ana	Solar_Option_Ana	64	HR_16	int16	R	2=Alfa_store A 3=AlfaPilot (Alfa_Store B) 4=Aqua_Heating	2=Alfa_store A 3=AlfaPilot (Alfa_Store B) 4=Aqua_Heating				
		(16 b	it integer/Entier 1	16 bit)*			-				

Read-Write digital / Lecture-Ecriture Digitaux										
High Alm Reset	Reset Alm Hte	201	HR 16	BOOL	R/W	1=Reset fault. Pulse point necessary 30 seconds On/Off				
Pump fault Reset	Reset_Def_Ppes	202	HR_16	BOOL	R/W	1=Acquittement. Point impulsionnel On/Off pendant 30 secondes				
(16 bit integer/Entier 16 bit)*										

	Read-Write Analogic / Lecture-Ecriture Analogiques											
DeltaT_ByPass	DeltaT_Bipasse	210	HR_16	int16	R/W	°C	Delta T bypass (S4-S3) / Delta T bipasse (S4-S3)					
SP_T_Sec_Outlet	Consigne_S1	211	HR_16	int16	R/W	°C	S1 fixed setpoint (DHW) / Consigne fixe S1 (ECS)					
PC_Distrib_distant	PC_Distrib_distant	212	HR_16	int16	R/W	°C	AlfaPilot external setpoint / Consigne externe AlfaPilot					
ThTr_setpoint	PC_TrTh	213	HR_16	int16	R/W	°C	Thermal treatment setpoint / Consigne trait. thermique					
(16 bit integer/Entier 16 bit)*												

^{*} For some supervisors, it is necessary to implement BOOL as int16
** For some supervisors, remove 1 to adress number (ex: S1_10 adress=49)

^{*} Sur certains superviseurs, renseigner les digitaux comme entiers 16 bit
** Sur certains superviseurs, enlever 1 au numéro du point modbus (ex: S1_10 à l'adresse 49)

			C	OMMISSIO	NNING REP	ORT			
Installatio	on								
	Tightening	dimension	control						
	Air vent po								
	Settling Pot		on primary	,					
	Boiler Bren	•							
	Mixing bott		•						
	_	•		rect (Semi Ir	ıstantaneou	ıs) installa	tions		
	Close drain					/			
	Primary co								
	Secondary	•	v:						
	Accessibilit		•	ents					
Configura	ation menu	,							
· ·	Sensors								
	Pumps								
	Solar menu	J							
	Other								
	Primary Pu	mps:	1	Accept				Accept	
	•	Pump 1		0-10V sign:		Pump 2		0-10V sign:	
	Secondary	•		Accept		I. ab =		Accept	
	•	Pump 3		0-10V sign:		Pump 4		0-10V sign:	
		•	trol for pur	nps on powe	r plate]. ab .			
	T T	Pump1	trorror par	Pump2	ii piace	Pump3		Pump4	
	Sensors' sw	•	ntrol	· · ·		· · ·			
		Pt1	Pt2	S1	S2	S3	S4	S5	S6
	Control val	ve working							
Settings					_				
	DHW secor	ndary outle	et T° setting	g: S1					
	PID setting			_					
	High alarm	setting			Manual			Auto	
	Thermal Tr	eatment		Type		Setting		Time	
	Efficiency [Delta T set	ting: S3-S2						
	Eco function								
	Booster fu	nction acti	vation						
	Other func		ated						
	Relay 1 fun								
	Relay 2 fun								
	Trending ar	-							
	Primary ou			-					
		_		r AlfaPilot / I	PT1-S2 for S	olarFlow			
	Remote con								
	0 V connecti	ons wired	or not						
Other cor	<u> </u>	. mit:							
Unit ID N	ition of the ເ 。		Company	lamo	Inctallation	o cito		Data	
טווונ וט א		installer /	Company N	iame	Installatio	ıı site		Date	
					<u> </u>				

			С	OMMISSION	NNING REP	ORT			
Installatio	on								
	Tightening o	dimension	control						
	Air vent pos	ition							
	Settling Pot	Pot presence on primary							
	_	er Brend, installation and power							
		ng bottle required / Presence							
	_	ing valve presence on Indirect (Semi Insta				us) installa	itions		
	Close drain			•		,			
	Primary cor								
	•	econdary conformity:							
	Accessibility		•	ents					
Configura	ation menu	,	•						
	Sensors								
	Pumps								
	Solar menu								
	Other								
	Primary Pur	nps:		Accept				Accept	
	•	Pump 1		0-10V sign:		Pump 2		0-10V sign:	
	Secondary F	•		Accept]. ab =		Accept	
	•	Pump 3		0-10V sign:		Pump 4		0-10V sign:	
		•	trol for nur	nps on powe	r nlate			O 10V 3igi1.	
	_	Pump1	itioi ioi pui	Pump2	plate	Pump3		Pump4	
	Sensors' sw	•	ntrol	1 amp2		- unips			
	_	Pt1	Pt2	S1	S2	S3	S4	S5	S6
	Control val	e workin	g		<u> </u>				
Settings			5		1				
	DHW secon	dary outle	et T° setting	g: S1					
	PID setting	,		,					
	High alarm	setting			Manual			Auto	
	Thermal Tre	•		Туре		Setting		Time	
	Efficiency D	elta T set	ting: S3-S2	1 ,,				.	I
	Eco functio		_		1				
	Booster fun	ction acti	ivation						
	Other funct	ions activ	ated						
	Relay 1 fund	ction							
	Relay 2 fund	ction							
	Trending and/or Modbus value activated								
	Primary out	et Pt2, T°	and PID set	tting: Pt2					
	Delta T Rec	ov setting	: PT1-S3 fo	r AlfaPilot / F	T1-S2 for	SolarFlow			
Volt free	Remote cont	act wired	or not						
TRIAC 23	0 V connect <u>ic</u>	ons wired	or not						
Other cor	mments:								
Identifica	ation of the u	nit:							
Unit ID N	° I	nstaller /	Company N	lame	Installatio	n site		Date	
						· · ·			

WARRANTY

Our equipment comes with a 12-month warranty from the date of shipment. This may be extended to 6 months from the date of commissioning of the equipment, subject to commissioning report being mailed to Alfa Laval. The warranty period is limited to 18 months from the actual date of shipment from the factory.

The manufacturer's liability is limited to the replacement of any defective part that cannot be repaired. No other financial compensation may be claimed in any case under the warranty

The nature and probable cause of the defect must be reported to the manufacturer before any action is taken. The defective part should then be returned to our Lentilly factory in France for assessment unless written agreement to proceed otherwise has been obtained from Alfa Laval. The results of the assessment can only state whether or not the terms of the warranty apply

Exclusional factors:

Non-compliance with the guidelines for installation, configuration and maintenance: Over pressures, water-hammer, scaling, noncompliant water quality

Also excluded from the warranty:

- Fitting costs, refitting costs, packaging, transport, and any accessories or equipment not manufactured by Alfa Laval, which will only be covered by any warranties issued by said third-party manufacturers.
- Any damage caused by connection errors, insufficient protection, misapplication or faulty or careless operations.
- Equipment disassembled or repaired by any other party than Alfa Laval.

Defaulted payment will lead to all operational warranties covering the equipment delivered being terminated.

SPARE PARTS

Only replace any defective part with the original spare part. Please contact your local Alfa Laval agency.

HOW TO CONTACT ALFA LAVAL

Our contact details are updated on our website www.alfalaval.com.

