Informe de Avance: 06 de Marzo 2019

A continuación se presentan los avances realizados para el trabajo de tesis durante el periódo de Enero-Febero del año 2019. Se separan los alcances del trabajo en 4 secciones: los resultados para Høvsøre y Bolund, la tesis como documento y la preparación de los papers.

1. Detalle de Actividades

1.1. Resultados Høvsøre

Background: Se estaban realizando diversas pruebas para hallar la configuración que diera la solución mas cercana a los datos medidos de la manera mas real posible. Lo último que se vió fue ir modificando el modelo de capa límite, el c_k y el z_0 , ya que las últimas soluciones no captaban el giro de la componente ν del viento en la capa límite.

Luego de varias pruebas se determinó que lo que hacía que se perdiera el giro de ν era el valor del z_0 . Un cambio en el valor del z_0 no es posible ya que este es un dato medido en campaña y queremos mantenernos lo mas fiel posible a esto. Lo que se realizó fue definir un área dentro del dominio mas interior donde se le asigna el valor del z_0 encontrado en la campaña (lo cuál es lógico porque se desconoce en el resto de los dominios y por lo tanto habrá que confiar en la BBDD de LU).

Se echó a correr entonces una simulación (final) con modelo de PBL MYNN y $c_k = 0.3$.

Los resultados mostraron mejoras con respecto a los anteriores y se cree que se deberían mantener y realizar con estos la asimilación de datos. Sobre el giro, existe un déficit en el valor de la coordenada ν , sin embargo la tendencia es clara y es la misma.

Se acogieron algunos comentarios con respecto a los gráficos.

1.2. Resultados Bolund

Background: Las simulaciones de este caso estaban detenidas debido al uso del servidor por otros estudiantes. El último día donde la universidad estuvo abierta (18/01/2019) se logró dejar operativo un nuevo servidor con 32 cores, el cuál, luego de algunas pruebas, fue puesto a trabajar lo antes posible en este caso.

Acutalmente se está corriendo una simulación para este caso. Las características son:

- Se simulan 9 horas del día 29/12/2007, partiendo desde las 06:00
- Este día presenta atmósfera neutra y un viento de 240° según mediciones.
- Se utilizan los parámetros definidos según la prueba en terreno plano, es decir, el z_0 se asigna solo a la zona de simulación del dominio mas interior, un modelo de pared MYNN, se utiliza un c_k de 0,2 pensando que puede ser un buen valor intermedio, refinamiento de la malla cerca de la superficie y el límite de la coordenada de presión se fija en $p_t = 30000$ [kPa].
- El refinamiento de la malla y el valor del límite de la coordenada de presión, permitieron fijar la cantidad de elementos verticales como $n_z = 40$. Esto considera los esfuerzos anteriores para disminuir este valor y así reducir los tiempos de cálculo.

Se estima que la simulación podrá tardar cerca de 35 días. Para el momento en el que se redacta este informe (04/03/2019) ya han pasado 20.

Ya se tienen algunos resultados preliminares de esta simulación los cuales se mostraran en persona debido a la facilidad de mostrarlos y ahorro de papel.

Figura 1.1: (a) Componente \mathfrak{u} de la velocidad en el primer nivel de la coordenada vertical $(z_1 = 5,25 \text{ [m]})$ para el tiempo 2010-09-08 15:00:00. (b) Idéntico al anterior pero para la componente \mathfrak{v} . (c) Magnitud V del viento.

Observación: Se recortaron algunos datos de los bordes del dominio debido a que se veían algunos comportamientos debido al terreno que no afectaban la zona central. Ahora se muestra solo la zona central.

Figura 1.2: Serie de tiempo para la rapidez instantánea del viento V a distintos niveles verticales. La linea continua corresponde a lo datos simulados y la linea punteada a los datos medidos en el mástil.

Figura 1.3: Serie de tiempo para la dirección del viento en los primeros 10 niveles del modelo. En linea continua están los valores medidos y sus correspondientes alturas se ven en la legenda.

Figura 1.4: Ciclo diurno-nocturno del perfil de temperatura. (a) Resultados cada 20 minutos del perfil de θ en los primeros 21 niveles del modelo. (b) Corresponde al detalle del perfil dentro de la capa límite atmosférica.

Figura 1.5: Comparación de la simulación con la simulación de Peña et. al. (linea punteada) y valores medidos para (a) componente $\mathfrak u$ de la velocidad del viento, (b) componente $\mathfrak v$ y (c) magnitud de la velocidad del viento. Los datos corresponden a promedios temporales entre las 14:00 y 15:50, y han sido rotados de tal forma que su dirección sea 0° a los $10 \mathrm{m}$.

1.3. Redacción Tesis

La introducción ya está terminada. Se ha redactado gran parte del estado del arte y se espera tenerlo listo lo antes posible (en este momento falta solo una sección). Lo que es marco teórico y descripción del código no se ha avanzado.

1.4. Redacción Papers

Debido al trabajo en la redacción de la tesis y el posproceso de los resultados de las simulaciones no se ha trabajado en esto, y probablemente se esperará a tener todos los resultados para continuar esto.

2. Listado de tareas pendientes

Tarea	Dificultad
Ejecutar simulación Høvsøre con DA	*
Configurar y ejecutar simulación DA para Bolund	***
Extraer y plotear data experimental Bolund	*
Programar interpolación en serie de tiempo Bolund	*
Hacer gráfico en corte Bolund	**
Suavizar gráficos de espectros	**
Rehacer y revisar gráficos de 2do orden	**
Traspasar streamplot y quiverplot a η_1	*
Hacer gráfico de detalle malla Bolund	*
Redacción Tesis	**
Redacción Paper	**