Formal Languages Homework 3

Liam Dillingham

February 15, 2019

1 Problem 2.5.2

Consider the following $\epsilon\text{-NFA}$

	ϵ	a	b	c
$\rightarrow p$ q	$\begin{cases} q, r \end{cases}$	Ø { p}	$\{q\}$ $\{r\}$	$\{r\}$ $\{p,q\}$

1.1 a) Compute the ϵ -closure of each state

$$\begin{split} ECLOSE(p) &= \{p,q,r\}. \\ ECLOSE(q) &= \{p,q,r\}. \\ ECLOSE(r) &= \emptyset. \end{split}$$

1.3 c) Convert the automaton to an NFA

2 Problem 3.1.1

Write regular expressions for the following languages:

2.1 a) The set of strings over alphabet $\{a,b,c\}$ containing at least one a and at least one b

$$(a+b+c)^*(a(a+b+c)^*b+b(a+b+c)^*a)(a+b+c)^*$$

2.2 b) The set of 0's and 1's whose tenth symbol from the right end is 1

2.3 c) The set of strings of 0's and 1's with at most one pair of consecutive 1's $(0+10)^*1(0+10)^*$

3 Problem 3.1.2

Write regular expressions for the following languages:

3.1 a) The set of all strings of 0's and 1's such that every pair of adjacent 0's appears before any pair of adjacent 1's

$$(0+01)^*(1+01)^*$$

3.2 b) The set of strings of 0's and 1's whose number of 0's is divisible by five (1*01*01*01*01*01*)*

4 Problem 3.1.4

Give English descriptions of the languages of the following regular expressions:

4.1 a)
$$(1+\epsilon)(00^*1)^*0^*$$
.

Set of strings that have no consecutive 1's.

4.2 b)
$$(0*1*)*000(0+1)*$$
.

Set of strings with at least 3 consecutive 0's.

4.3 c)
$$(0+10)*1*$$
.

The set of strings such that there are no consecutive 1's.