CREDIT SCORE CUTOFFS AND PROFIT MAXIMIZATION Presented by:

Kevin Howell Charles Elena

CONTENT

3 How Banks Decide Credit Limit

4 Motivation for RDD

5 RD Design Structure

6 Local Regression

7 Bandwidth Selection

8 Treatment Expectation

9 Profit Implication

10 Validity Check

HOW DO BANKS DECIDE THE CREDIT LIMIT

Source: Moody's, Determining the Optimal Dynamic Credit Card Limit

MOTIVATION FOR RDD

Algorithm approach

- Logistic regression to generate credit score
- Bucketing algorithm to generate buckets and threshold
- Dynamic programming to generate credit limit for each bucket

RDD as Validation

- Is the bucket really accurate?
 - Data source problem
 - Algorithm bias
- Use RDD to validate/optimize the threshold
 - Treatment's effect on default risks & balance
 - Treatment's effect on total profit

Source: Moody's, Determining the Optimal Dynamic Credit Card Limit

RD DESIGN STRUCTURE

This design aims not only to estimate the impact of credit limit assignments on firm profit, through its components: default rate and customer spending, but also to assess whether the current credit score cutoffs are optimally placed.

Running Variable

Credit Score (at period t-1)

Cutoff

710, 786, 830, 860, 880, 890

Derived from bucketing algorithm based on data at period t-1

Treatment

Credit Limit A, B, C, D, E, F

Derived from DP Model

Increasing with credit score bucket

(at period t)

Response Variables

Default Indicator:

$$D_i = egin{cases} 1 & ext{if default} \ 0 & ext{otherwise} \end{cases}$$

Spending (Balance): b_i

Profit Equation:

$$Profit_i = (1-D_i) imes b_i imes r - D_i imes b_i$$
 where r is the profit margin

LOCAL REGRESSION

(Default Indicator Estimation

$$\Pr(D=1\mid X) = \frac{1}{1+\exp(-\eta)}$$

where
$$\eta = lpha_\ell + au T + eta_\ell (X-c) + (eta_r - eta_\ell) T(X-c)$$
 for $c-h \leq X \leq c+h$

Spending & Profit Estimation

$$Y = lpha_\ell + au T + eta_\ell (X-c) + (eta_r - eta_\ell) T(X-c) + arepsilon, \ ext{for } c-h \leq X \leq c+h$$

where X is credit score, T is treatment c is the cutoff point, and $au=lpha_r-lpha_l$

BANDWIDTH SELECTION

A bandwidth that is too small leads to high variance and noisy estimates, while a bandwidth that is too large introduces bias by over-smoothing the data. Leave-One-Out Cross-Validation is used to optimize bandwidth selection, minimizing prediction error and providing robust model generalization.

Window

Only observations with values of X between the median value of X to the left and right of the cutoff could be used to perform the crossvalidation.

Leave-One-Out

Leave observation i out

 $ext{for } X_i < c, ext{estimate regression on} \ (X_i - h \leq X < X_i)$

 $i ext{ for } X_i > c, ext{ estimate regression on} \ (X_i < X \leq X_i + h)$

Cross Validation

$$ext{CV}_Y(h) \ = rac{1}{N} \sum_{i=1}^N (Y_i - \hat{Y}(X_i))^2$$

Optimal Threshold

$$h_{ ext{CV}}^{ ext{opt}} = rg\min_h ext{CV}_Y(h)$$

TREATMENT EXPECTATION

"Calculated Risk-Reward Tradeoff": Default vs Spending

Default Rate

- **Untreated** default rate is expected to be monotonically downard
- **Treatment** of higher credit cap bumps up default rate

Spending

- **Untreated** spending aligns with higher user credibility
- **Treatment** of higher credit cap encourages user spending

^{*}The results presented are based on simulated data for illustrative purposes only.

PROFIT IMPLICATION

"Locating the perfect cutoff": Fine-tuning treatment cutoff

$$Profit = Spending imes [(1 - P_{default}) * r - P_{default}]$$

Pre-cutoff Lift Off

- Treatment effectively raises profit
- Apply partial lift to LHS to raise prior profit

Cutoff Early Adoption

- Treatment effectively raises profit
- Move Cutoff backwards towards intersection

Cutoff Delay

- Treatment effect shows a slow start at cutoff but strong growth at later stage
- Delay cutoff to further capture unrealized profit

^{*}The results presented are based on simulated data for illustrative purposes only.

VALIDITY CHECK

No manipulation

Users cannot precisely control their credit score;

*McCrary density test.

Default rate and spending change gradually with credit score;

Any jump at the threshold suggests treatment effect, not natural variation.

"As Good as Random"

Borrowers near the cutoff are similar in characteristics.

BASELINE COVARIATES

Behavioral

Current balance

Credit utilization ratio

Payment method

Months on book

History of missed or late payments

Previous monthly spending

Demographic

Age

Income

Employment

status

Location

APPENDIX

- 1. How do banks decide credit limits
- 2. Motivation for RDD
- 3. RD design structure
- 4. Local regression
- 5. <u>Bandwith selection</u>
- 6. <u>Treatment expectation</u>
- 7. Profit implication
- 8. <u>Validity check</u>
- 9. <u>Baseline covariates</u>
- 10. *No manipulation
- 11. *McCrary density test
- 12. *Continuity

NO MANIPULATION

- Credit scores are complex and algorithmic: They depend on multiple weighted factors (e.g., payment history, credit utilization, length of credit history), which are not fully transparent the model is a black box.
- Data is reported by lenders with delays: Reporting cycles are typically monthly, meaning recent actions may not reflect immediately.

MCCRARY DENSITY TEST

- Checks for manipulation if distribution of credit scores is continuous at the cutoff.
- It estimates the frequency (density) of observations just below and just above the cutoff.
- No jump = Valid RD

CONTINUITY

Default Rate and Credit Score

- Source: Federal Reserve Bank of Kansas City (2015) Consumer Credit Risk and Pricing
- Finding: Default rates decline steadily as FICO scores increase; no sharp jumps, supporting a smooth relationship.
- Quote: "Higher FICO scores are associated with significantly lower default probabilities in a smooth and monotonic fashion."

Spending and Credit Score

- Source: Chen, Konana, and Menon (2014) The Impact of Credit Scores on Consumer
 Spending Behavior
- Finding: As credit scores improve, consumers show gradual increases in discretionary spending and credit usage.
- Quote: "We find a continuous relationship between consumers' credit scores and their monthly credit card spending."