Introduction

- What is image segmentation?
 - Technically speaking, image segmentation refers to the decomposition of a scene into different components (thus to facilitate the task at higher levels such as object detection and recognition)
 - Scientifically speaking, segmentation is a hypothetical middle-level vision task performed by neurons between low-level and high-level cortical areas
- There is no ground truth to a segmentation task (an example is given in the next slide)

Dilemma

What do we mean by "DIFFERENT" objects?

Another example: when we look at trees at a close distance, we consider each of them as a different object; but as we look at trees far away, they merge into one coherent object (woods) **Applications:** Finding tumors, veins, etc. in medical images, finding targets in satellite/aerial images, finding people in surveillance images, summarizing video, etc.

• Methods: Thresholding, K-means clustering, etc.

Overview of Segmentation Techniques

Edge-based

Color-based

Texture-based

Disparity-based

Motion-based

Document images

Medical images

Range images

Biometric images

Texture images

Segmentation strategy

Edge-based

- Assumption: different objects are separated by edges (grey level discontinuities)
- The segmentation is performed by identifying the grey level gradients
- The same approach can be extended to color channels

Region-based

- Assumption: different objects are separated by other kind of perceptual boundaries
 - neighborhood features
- Most often texture-based
 - Textures are considered as instantiations of underlying stochastic processes and analyzed under the assumptions that stationarity and ergodicity hold
- Method
 - Region-based features are extracted and used to define "classes"

3

Edge-based Techniques

Image Segmentation

Contour-based

- Discontinuity
 - The approach is to partition an image based on abrupt changes in gray-scale levels.
 - The principal areas of interest within this category are detection of isolated points, lines, and edges in an image.

Region-based

- · Similarity, homogeneity
- The principal approaches in this category are based on
 - thresholding,
 - region growing
 - region splitting/merging
 - clustering in feature space

Thresholding

- Image model
 - The objects in the image differ in the graylevel distribution
 - · Simplest: object(s)+background
 - The spatial (image domain) stochastic parameters (i.e. mean, variance) are sufficient to characterize each object category
 - · rests on the ergodicity assumption
 - Easily generalized to multi-spectral images (i.e. color images)

7

Thresholding

- Individual pixels in an image are marked as "object" pixels if their value is greater than some threshold value and as "background" pixels otherwise → threshold above
 - assuming an object to be brighter than the background
 - Variants
 - threshold below, which is opposite of threshold above;
 - threshold inside, where a pixel is labeled "object" if its value is between two thresholds
 - · threshold outside, which is the opposite of threshold inside
 - Typically, an object pixel is given a value of "1" while a background pixel is given a value of "0." Finally, a binary image is created by coloring each pixel white or black, depending on a pixel's label.

Region-Filling

IOT PICOIOT P or Printolor Print lor Printing or Printing Printing **Printing**

Color-Based Techniques

- Color representations
 - Device dependent: RGB (displaying) or CMYK (printing)
 - Device independent: CIE XYZ or CIELAB (L*a*b*)

Color Space Conversion

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{b_{21}} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.595716 & -0.274453 & -0.321263 \\ 0.211456 & -0.522591 & 0.311135 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Clustering: Clustering is a grouping

Cont.

 "You need to know the question you are trying to answer"

- Jason Bell (2015)

[1] Bell, 2015, Machine Learning: Hands-On for Developers and Technical Professionals

How to make computer do this automatically for us?

Cont.

Mathematics is the language in which God has written the universe.

(Galileo Galilei)

Cont.

K-Means Clustering

- Partition the data points into K clusters randomly. Find the centroids of each cluster.
- For each data point:
 - Calculate the distance from the data point to each cluster.
 - Assign the data point to the closest cluster.
- 3. Recompute the centroid of each cluster.
- 4. Repeat steps 2 and 3 until there is no further change in the assignment of data points (or in the centroids).

lge	Height 185 (2) 170 (3) 168 (179 (5) 182 (6) 180 (180 (180 (180 (177 (180 (180 (180 (180 (180 (180 (180 (180	With an Example ms Hight T2 56 60 68 72 77 71 70 84 88 67 76 an Distance		Quickest Way Ever 170,56) ord (alculatem :- 170+168, 60+56) = (169,58)	= 4.48
$\frac{(X_0 - X_c)^2 + (Y - Y_c)^2}{\text{Scroll for details}} = \frac{(X_1, 4, 5, 6, 7, 8, 9, 10, 11)}{(X_0 - X_c)^2 + (Y - Y_c)^2}$					2,3 } ##

Quiz

- When should K-means stop iterating?
- Always when all the points have been classified in the right clusters
- Only when a certain number of iterations have been reached
- When the centroids and thus the boundaries changes no more than a small tolerance value

Instead of 2D, kmeans can be applied to 3D color space RGB or L*a*b*

Texture-based Techniques

What is Texture?

No one exactly knows.

In the visual arts, **texture** is the perceived surface quality of an artwork.

Disparity-based Techniques

Motion Segmentation

Use of Motion In Segmentation

Take the difference between a reference image and a subsequent image to determine the still elements image components.

abc

FIGURE 10.50 Building a static reference image. (a) and (b) Two frames in a sequence. (c) Eastbound automobile subtracted from (a) and the background restored from the corresponding area in (b). (Jain and Jain.)

Document Segmentation

- Document images consist of texts, graphics, photos and so on
- Document
 segmentation is useful
 for compression, text
 recognition
- Adobe and Xerox are the major players

Medical Image Segmentation

- Medical image analysis can be used as preliminary screening techniques to help doctors
- Partial Differential Equation (PDE) has been used for segmenting medical images

active contour model (snake)

Range Image Segmentation

Biometric Image Segmentation

- For fingerprint, face and iris images, we also need to segment out the region of interest
- Various cues can be used such as ridge pattern, skin color and pupil shape
- Robust segmentation could be difficult for poor-quality images

