1. feladat 6 pont

- (a) Döntse el, hogy a következő állítások igazak vagy hamisak (helyes válasz: fél pont, nincs válasz/helytelen válasz: 0 pont). **2 pont**
 - (1) Ha z komplex szám, akkor $z \cdot \overline{z}$ valós. I H
 - (2) Ha az R relációra $R \subseteq A \times A$, ahol A egy egyelemű halmaz, akkor R tranzitív. I H
 - (3) Egy részbenrendezett halmazban legfeljebb egy minimális elem létezhet. I H
 - (4) Ha f függvény, akkor f^{-1} injektív függvény. I H
- (b) Határozza meg az $R = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid 2x-5=3y\} \subseteq \mathbb{Z} \times \mathbb{Z}$ reláció értelmezési tartományát és az $R^{-1}(\{3,4,5\})$ inverz képet. **2 pont**
- (c) Konstruáljon az $\{1,2,3\}$ halmazon olyan R relációt mely nem szimmetrikus, nem antiszimmetrikus és nem tranzitív. **2 pont**

2. feladat 10 pont

- (a) Igazolja, hogy az $R \subseteq \mathbb{Z} \times \mathbb{Z}$, $R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y x \text{ oszthat\'o 7-tel } \}$ reláció ekvivalencia
esztályok? **5 pont**
- (b) Adjon meg olyan nem üres A, B és C halmazokat, amelyekre teljesül a következő összefüggés: $(A \cup B) \cap C = A \cup (B \cap C)$. **2 pont**
- (c) Igazolja, hogy tetszőleges A,B és C halmazok esetén igaz a következő összefüggés: $A\setminus (B\cap C)=A\Delta(A\cap B\cap C)$. **3 pont**

3. feladat 5 pont

Legyen $R \subseteq \mathbb{R} \times \mathbb{R}$, $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y=7\}$ és $S \subseteq \mathbb{R} \times \mathbb{R}$, $S = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y=8\}$. Határozza meg az $S \circ R$ és $R \circ S$ kompozíciót.

4. feladat 5 pont

(a) Döntse el a következő függvényekről, hogy injektívek-e. 3 pont

$$f_1: \mathbb{Z} \to \mathbb{R}, f_1(x) = (x - 1/3)^2$$

 $f_2: \mathbb{R} \to \mathbb{R}, f_2(x) = x^6 - 8x^3 + 16$

(b) Döntse el, hogy az $f: \mathbb{R}_0^+ \to \mathbb{R}, \ f(x) := -2\sqrt{|x-13|}$ függvény injektív-e, illetve szürjektív-e. **2 pont**

5. feladat 7 pont

A trigonometrikus alak segítségével számítsa kizértékét trigonometrikus és algebrai alakban is, majd adja meg az összes olyan w komplex számot trigonometrikus alakban, melyekre $w^4=z,$ ahol $z=\frac{\left(\sqrt{3}-i\right)^{12}}{(1+i)^{32}}.$

6. feladat – komplex 7 pont

Ábrázolja a Gauss-számsíkon a következő halmazokat:

- (a) $\{z \in \mathbb{C} \mid 2 \operatorname{Re}(z) + 2 \operatorname{Im}(z) = 2 \wedge \operatorname{Im}(z) < 5\}$ 3 pont
- (b) $\{z \in \mathbb{C} \mid |z-1| = |z+1|\}$ 4 pont

6. feladat – relációs 7 pont

- (a) Adjunk meg egy olyan $f: \{1,2,3,4\} \rightarrow \{1,2,3,4\}$ függvényt, mely függvényként injektív, relációként pedig szimmetrikus. **3 pont**
- (b) Legyen R szimmetrikus reláció. Igazoljuk, hogy ekkor $R \circ R$ is szimmetrikus reláció. 4 pont