# CSC 461: Machine Learning Fall 2024

### Feature transformation

Prof. Marco Alvarez, Computer Science University of Rhode Island

# Scaling

Min-max scaling

$$\tilde{x} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Standardization

$$\tilde{x} = \frac{x - \mu}{\sigma}$$

#### MinMaxScaler()

#### StandardScaler()

| [[-1.54757414 |             |             | -0.01789141]<br>1.64600941]  |
|---------------|-------------|-------------|------------------------------|
| [ 0.89102753  | -1.92494389 | -0.19663876 | -1.16294143]<br>-0.87667893] |
|               |             |             | 0.41150235]]                 |

### Data transformation

#### Definition

- converting or mapping data from its raw form into a format that better suits the learning algorithms
- crucial step in the machine learning pipeline that can significantly improve model performance

### ► Why?

- meet algorithm assumptions
- handle non-linear relationships
- scale features appropriately
- handle different data types

## Categorical transformations

### One-hot encoding

- converts categorical variables into binary vectors
- each category becomes a column, only one column contains 1, the rest are 0

```
[['red'] [[0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
['red'] [0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
['red'] [0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
```

### ▶ Label encoding

- converts categorical values into numerical by assigning a unique integer to each category

```
[['red'] [[2]
['green'] [1]
['blue'] [0]
['red'] [2]
['green'] [1]
['blue'] [0]
['red'] [2]
['green'] [1]
['green'] [1]
```

### Non-linear transformations

### **→** Motivation

- data is not always "linear"



$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \qquad \overset{\mathbf{\Phi}}{\rightarrow} \qquad \mathbf{z} = \begin{bmatrix} \Phi_1(\mathbf{x}) \\ \vdots \\ \Phi_{\tilde{d}}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} z_1 \\ \vdots \\ z_{\tilde{d}} \end{bmatrix}$$

input space  $\mathcal{X} = \mathbb{R}^d$ 

feature space 
$$\mathcal{Z} = \mathbb{R}^{\tilde{d}}$$

### Non-linear transformations

• k-th order polynomial features on one variable

$$\mathbf{x} = [x] \qquad \qquad \mathbf{z} = \begin{bmatrix} x^0 \\ x^1 \\ \vdots \\ x^k \end{bmatrix}$$

|       | Polyn | PolynomialFeatures(degree=4) |              |       |          |            |  |  |  |
|-------|-------|------------------------------|--------------|-------|----------|------------|--|--|--|
| [[ 7] | [[    | 1.                           | 7.           | 49.   | 343.     | 2401.]     |  |  |  |
| [ 22] | [     | 1.                           | 22.          | 484.  | 10648.   | 234256.]   |  |  |  |
| [-38] | [     | 1.                           | -38.         | 1444. | -54872.  | 2085136.]  |  |  |  |
| [-67] | [     | 1.                           | -67 <b>.</b> | 4489. | -300763. | 20151121.] |  |  |  |
| [ 0]] | [     | 1.                           | 0.           | 0.    | 0.       | 0.]]       |  |  |  |





### Non-linear transformations

▶ k-th order polynomial features on two variables

er polynomial features on two variable
$$\mathbf{z} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_1 \\ x_1 x_2 \\ x_2^2 \end{bmatrix} \text{ degree k=2}$$

#### PolynomialFeatures(degree=2)

| 79]  | [[ | 1. | 77.  | 79.  | 5929. | 6083.  | 6241.] |
|------|----|----|------|------|-------|--------|--------|
| -23] | [  | 1. | -46. | -23. | 2116. | 1058.  | 529.]  |
| -87] | [  | 1. | 97.  | -87. | 9409. | -8439. | 7569.] |
| 26]  | [  | 1. | 53.  | 26.  | 2809. | 1378.  | 676.]  |
| -8]] | [  | 1. | 41.  | -8.  | 1681. | -328.  | 64.]]  |

### Data transformation

### Best Practices

[[ 77 [-46

- transform after splitting data
- fit transformers on training data only
- handle missing values before transformation and use appropriate imputation
- use pipelines to ensure reproducibility and to prevent data leakage

### Non-linear transformations

- k-th order polynomial features on d variables
  - "all polynomial combinations of the features with degree less than or equal to the specified degree"

### Issues:

- be aware of computational cost
- be aware of overfitting

### • Alternatives?

- use other non-linear functions: logarithmic, power, etc.

# **Embeddings**

### Vector representations

- embeddings transform discrete data (words, images, audio code) into continuous vector spaces, capturing semantic and syntactic meaning
- key properties of embedding spaces:
  - similar items cluster together
  - meaningful vector arithmetic (e.g., king man + woman ≈ queen)
  - fixed dimensionality (typically 256-4096 dimensions)

#### Foundation models

- large models trained on massive datasets
- can produce high-quality embeddings that capture complex semantic and syntactic relationships

### Applications

- similarity search, classification, generation, machine translation