Beta-Binomial Inference, Part 2

STAT 251, Unit 4B

Overview

Review

Beta-Binomial Inference

Analytically deriving the posterior distribution of $\boldsymbol{\theta}$

Prior Elicitation for the Beta-Binomial setting

Review

Big picture outline for process in remainder of course

- Select likelihood (model)
- Select prior
- Determine posterior distribution
- Make inference with posterior distribution.

Notation

Notation: We will use

- y to generically represent the data,
- \bullet θ to generically represent the *parameters*,
- $f(\mathbf{y}|\theta)$ to represent the *likelihood* of the data given the parameters
- \bullet $\pi(\theta)$ to represent the *prior distribution* of the parameters
- $\pi(\theta|\mathbf{y})$ to represent the *posterior distribution* of the parameters given the observed data.
- f(y) to represent the marginal likelihood of the data—note the marginal likelihood is NOT a function of θ

Key Points from Unit 4A

Familiarity with Binomial distribution Introduction to Beta distribution

Beta-Binomial Inference

Binomial Data

Suppose we have data that are reasonable to assume follow a binomial distribution.

That is, we must have

- the observed data consisting of the total number of successes in a fixed number, n, of trials; and
- each trial must have a constant probability of success, θ (where $\theta \in [0,1]$); and
- each trial outcome is independent of the other trials' outcomes.

Examples of Binomial Data

- The number of free throws made by a basketball player in three attempts.
- The number of defective axles from a random sample of 20 axles produced at a manufacturing plant
- The number of students opposing capital punishment in a random sample of 100 BYU students.

Making Inference with the Binomial Likelihood

Binomial Likelihood:
$$y|\theta$$
 is $f(y|\theta) = \binom{n}{y}\theta^y(1-\theta)^{n-y}$ for $y \in \{0, 1, \dots, n\}$

What do we know about θ ? It represents the probability of any given trial being a "success." Because of this interpretation, it is clear why $0 \le \theta \le 1$.

Technically the binomial distributions depends on two parameters, n and p, but we will always assume n is known when working with the binomial distribution. So we focus entirely on prior and posterior beliefs for p. To fit the general framework we use to describe Bayesian inference—using y to describe the data and θ to describe the parameter(s)—I adopt the convention of using θ to refer to p whenever I work with the binomial distribution.

Some examples:

ullet If Y= the number of free throws made by a basketball player in three attempts, then heta would represent

Some examples:

• If Y= the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent the proportion of all axles produced at the plant that are defective.

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent the proportion of all axles produced at the plant that are defective.
- If Y= the number of students opposing capital punishment in a random sample of 100 BYU students, then θ would represent

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent the proportion of all axles produced at the plant that are defective.
- If Y= the number of students opposing capital punishment in a random sample of 100 BYU students, then θ would represent the proportion of all BYU students that oppose capital punishment.

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent the proportion of all axles produced at the plant that are defective.
- If Y= the number of students opposing capital punishment in a random sample of 100 BYU students, then θ would represent the proportion of all BYU students that oppose capital punishment.

Some examples:

- If Y = the number of free throws made by a basketball player in three attempts, then θ would represent the probability of making a free throw.
- If Y= the number of defective axles from a random sample of 20 axles produced at a manufacturing plant, then θ would represent the proportion of all axles produced at the plant that are defective.
- If Y= the number of students opposing capital punishment in a random sample of 100 BYU students, then θ would represent the proportion of all BYU students that oppose capital punishment.

In any of the above examples, do we know the numerical value of θ ?

Prior Distribution for θ

If θ were known, life would be simple. But because it is not known, we reflect our prior belief about its possible values with a statistical distribution. Then, we will be able to use collected data to update our beliefs.

Prior Distribution for θ

If θ were known, life would be simple. But because it is not known, we reflect our prior belief about its possible values with a statistical distribution. Then, we will be able to use collected data to update our beliefs.

We'll use the beta distribution to describe our prior beliefs about θ when working with the binomial likelihood.

$$\pi(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)}$$

Technical note: The gamma function, $\Gamma(u)$, has an interesting and useful property. For any integer value of u such that $u\geq 1$, then $\Gamma(u)=(u-1)!$. For example, $\Gamma(6)=5!=120$, and $\Gamma(3)=2!=2$. In general, the gamma function exhibits the recursive property that for $u\in (1,\infty)$, then $\Gamma(u)=(u-1)\Gamma(u-1)$.

Why use the Beta distribution?

- It has the right support for a parameter that represents the probability of a success.
 - That is, $Binomial(n, \theta)$ requires that $\theta \in [0, 1]$, and the support of the Beta distribution is also [0, 1].
- It is a **conjugate** prior distribution for θ when the binomial likelihood is assumed. That is, a binomial likelihood for $y|\theta$ coupled with a beta prior distribution for θ produces a (different) beta posterior distribution for $\theta|y$.

Analytically deriving the posterior

distribution of θ

Detailed Derivation

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

Detailed Derivation

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

$$=\underbrace{\frac{\prod(\theta), \text{ because }\theta \sim Beta(a,b)}{\Gamma(a+b)} \underbrace{\frac{f(y|\theta), \text{ because }y|\theta \sim Binomial(n,\theta)}{\binom{n}{y}\theta^y(1-\theta)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}}}_{\binom{n}{y}t^y(1-t)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}dt}$$

$$\underbrace{\frac{\prod(a+b)}{\Gamma(a)\Gamma(b)}t^{a-1}(1-t)^{b-1}\mathbb{1}_{\{0\leq t\leq 1\}}\binom{n}{y}t^y(1-t)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}dt}_{f(y), \text{ because }f(y)=\int\pi(\theta)f(y|\theta)d\theta}$$

Detailed Derivation

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

$$= \underbrace{\frac{\Gamma(\theta), \text{ because } \theta \sim Beta(a,b)}{\Gamma(a)\Gamma(b)}}_{\pi(a)\Gamma(b)} \underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{\{0 \leq \theta \leq 1\}}}_{\{0 \leq t \leq 1\}} \underbrace{\frac{n}{y} \theta^y (1-\theta)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}}}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{0 \leq t \leq 1\}} \binom{n}{y} t^y (1-t)^{n-y} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0,1,\dots,n\}\}} \underbrace{\frac{\Gamma(y)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1} \mathbb{1}_{\{y \in \{0,1,\dots,n\}\}} dt}_{\{y \in \{0$$

 $-\frac{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{\{0\leq\theta\leq1\}}\binom{n}{y}\theta^{y}(1-\theta)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}}{\int \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}t^{a-1}(1-t)^{b-1}\mathbb{1}_{\{0\leq t\leq1\}}\binom{n}{y}t^{y}(1-t)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}dt}$

$$\pi(\theta|y) = \frac{\theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)} \theta^{y} (1-\theta)^{n-y}}{\int t^{a-1} (1-t)^{b-1} \mathbb{1}_{(0 \le t \le 1)} t^{y} (1-t)^{n-y} dt}$$

$$\pi(\theta|y) = \frac{\theta^{a-1}(1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)} \theta^{y} (1-\theta)^{n-y}}{\int t^{a-1}(1-t)^{b-1} \mathbb{1}_{(0 \le t \le 1)} t^{y} (1-t)^{n-y} dt}$$
$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1} \mathbb{1}_{(0 \le \theta \le 1)}}{\int_{0}^{1} t^{a+y-1} (1-t)^{b+n-y-1} dt}$$

$$\pi(\theta|y) = \frac{\theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{(0\leq\theta\leq1)}\theta^{y}(1-\theta)^{n-y}}{\int t^{a-1}(1-t)^{b-1}\mathbb{1}_{(0\leq t\leq1)}t^{y}(1-t)^{n-y}dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}\mathbb{1}_{(0\leq\theta\leq1)}}{\int_{0}^{1}t^{a+y-1}(1-t)^{b+n-y-1}dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}\mathbb{1}_{(0\leq\theta\leq1)}}{\frac{\Gamma(a+y)\Gamma(b+n-y)}{\Gamma(a+b+n)}\underbrace{\int_{0}^{1}\frac{\Gamma(a+b+n)}{\Gamma(a+y)\Gamma(b+n-y)}t^{a+y-1}(1-t)^{b+n-y-1}dt}}_{=1}$$

$$\pi(\theta|y) = \frac{\theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{(0\leq\theta\leq1)}\theta^{y}(1-\theta)^{n-y}}{\int t^{a-1}(1-t)^{b-1}\mathbb{1}_{(0\leq t\leq1)}t^{y}(1-t)^{n-y}dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}\mathbb{1}_{(0\leq\theta\leq1)}}{\int_{0}^{1}t^{a+y-1}(1-t)^{b+n-y-1}dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1}\mathbb{1}_{(0\leq\theta\leq1)}}{\frac{\Gamma(a+y)\Gamma(b+n-y)}{\Gamma(a+b+n)}}\underbrace{\int_{0}^{1}\frac{\Gamma(a+b+n)}{\Gamma(a+y)\Gamma(b+n-y)}t^{a+y-1}(1-t)^{b+n-y-1}dt}_{=1}$$

$$= \frac{\Gamma(a+b+n)}{\Gamma(a+y)\Gamma(b+n-y)}\theta^{a+y-1}(1-\theta)^{b+n-y-1}\mathbb{1}_{(0\leq\theta\leq1)}$$

$$\pi(\theta|y) = \frac{\theta^{a-1}(1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)} \theta^{y} (1-\theta)^{n-y}}{\int t^{a-1}(1-t)^{b-1} \mathbb{1}_{(0 \le t \le 1)} t^{y} (1-t)^{n-y} dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1} \mathbb{1}_{(0 \le \theta \le 1)}}{\int_{0}^{1} t^{a+y-1} (1-t)^{b+n-y-1} dt}$$

$$= \frac{\theta^{a+y-1}(1-\theta)^{b+n-y-1} \mathbb{1}_{(0 \le \theta \le 1)}}{\frac{\Gamma(a+y)\Gamma(b+n-y)}{\Gamma(a+b+n)}} \underbrace{\int_{0}^{1} \frac{\Gamma(a+b+n)}{\Gamma(a+y)\Gamma(b+n-y)} t^{a+y-1} (1-t)^{b+n-y-1} dt}_{=1}$$

$$= \frac{\Gamma(a+b+n)}{\Gamma(a+y)\Gamma(b+n-y)} \theta^{a+y-1} (1-\theta)^{b+n-y-1} \mathbb{1}_{(0 \le \theta \le 1)}$$

Note, this is the pdf of the Beta($a^* = a + y, b^* = b + n - y$) distribution. That is, when $\theta \sim \text{Beta}(a, b)$ and $y|\theta \sim \text{Binomial}(n, \theta)$, then $\theta|y \sim \text{Beta}(a + y, b + n - y)$.

A math trick

To derive the posterior distribution, we also could have used a helpful property: whenever two statistical distributions are proportional to each other, they must be equal to each other.

If we recognize that $\pi(\theta|y)$ is PROPORTIONAL to some particular distribution, we know the posterior must BE that distribution.

• Why? Let $D_1(\theta)$ be the posterior distribution, and let $D_2(\theta)$ be some known distribution. Because the total probability for a distribution must be 1, then the only possibility for $D_1(\theta) \propto D_2(\theta)$, $D_1(\theta)$ a density, and $D_2(\theta)$ a density is for $D_1 = D_2$.

As a function of θ ,

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

$$\propto \pi(\theta)f(y|\theta)$$

As a function of θ ,

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

$$\propto \pi(\theta)f(y|\theta)$$

$$= \underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{\{0\leq\theta\leq1\}}}_{\theta\sim Beta(a,b)}\underbrace{\binom{n}{y}\theta^y(1-\theta)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}}_{y|\theta\sim Binomial(n,\theta)}$$

As a function of θ ,

$$\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$$

$$\propto \pi(\theta)f(y|\theta)$$

$$= \underbrace{\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{\{0\leq\theta\leq1\}}}_{\theta\sim Beta(a,b)}\underbrace{\binom{n}{y}\theta^{y}(1-\theta)^{n-y}\mathbb{1}_{\{y\in\{0,1,\dots,n\}\}}}_{y|\theta\sim Binomial(n,\theta)}$$

$$\propto \theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{\{0\leq\theta\leq1\}}\theta^{y}(1-\theta)^{n-y}$$

$$= \theta^{(a+y)-1}(1-\theta)^{(b+n-y)-1}\mathbb{1}_{\{0\leq\theta\leq1\}}$$

As a function of θ , $\pi(\theta|y) = \frac{\pi(\theta)f(y|\theta)}{f(y)}$ $\propto \pi(\theta) f(y|\theta)$ $= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)} \binom{n}{v} \theta^{y} (1-\theta)^{n-y} \mathbb{1}_{(y \in \{0,1,\dots,n\})}$ $v|\theta \sim Binomial(n,\theta)$ $\theta \sim Beta(a,b)$ $\propto \theta^{a-1}(1-\theta)^{b-1}\mathbb{1}_{(0<\theta<1)}\theta^{y}(1-\theta)^{n-y}$ $= \theta^{(a+y)-1}(1-\theta)^{(b+n-y)-1}\mathbb{1}_{(0<\theta<1)}$ $\propto \frac{\Gamma((a+y)+(b+n-y))}{\Gamma(a+y)\Gamma(b+n-y)}\theta^{(a+y)-1}(1-\theta)^{(b+n-y)-1}\mathbb{1}_{(0\leq\theta\leq1)}$ $= \frac{\Gamma(a^{\star}+b^{\star})}{\Gamma(a^{\star})\Gamma(b^{\star})}\theta^{a^{\star}-1}(1-\theta)^{b^{\star}-1}\mathbb{1}_{(0\leq\theta\leq1)}$

The posterior dist. is $\theta|y \sim Beta(a^* = a + y, b^* = b + n - y)$.

Beta-Binomial Result-Very Important!

IF WE HAVE

• a binomial likelihood (that is, the model for $y|\theta$ is $f(y|\theta) = \binom{n}{y}\theta^y(1-\theta)^{n-y}$ for $y \in \{0,1,\ldots,n\}$)

AND

• a beta distribution for the prior distribution of θ (i.e., $\pi(\theta) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1} \mathbb{1}_{(0 \le \theta \le 1)}$),

THEN

• the posterior distribution, $\pi(\theta|y)$, will be another beta distribution (which can be written as $Beta(a^*, b^*)$, where $a^* = a + y$ and $b^* = b + (n - y)$).

Definition of Conjugacy

We say a prior distribution is **conjugate** for a given likelihood if the posterior distribution must be in the same family of distributions as the prior distribution if the given likelihood is assumed.

Beta prior and binomial likelihood \Rightarrow beta posterior—The beta prior is conjugate for the binomial likelihood!

Having a Beta(4,10) prior on $\theta \equiv$ probability of success, and then observing 11 successes in 25 trials, produces a Beta(15, 24) posterior for $\theta | \mathbf{y}$.

That is,

• if I (with justification) select the $Binomial(25, \theta)$ likelihood for the observed data (y number of successes in 25 trials); and

Having a Beta(4,10) prior on $\theta \equiv$ probability of success, and then observing 11 successes in 25 trials, produces a Beta(15, 24) posterior for $\theta | \mathbf{y}$.

That is,

- if I (with justification) select the $Binomial(25, \theta)$ likelihood for the observed data (y number of successes in 25 trials); and
- if I (with justification) select the Beta(4,10) prior distribution for the model parameter (θ is the probability of success for each trial); and

Having a Beta(4,10) prior on $\theta \equiv$ probability of success, and then observing 11 successes in 25 trials, produces a Beta(15, 24) posterior for $\theta | \mathbf{y}$.

That is,

- if I (with justification) select the $Binomial(25, \theta)$ likelihood for the observed data (y number of successes in 25 trials); and
- if I (with justfication) select the Beta(4,10) prior distribution for the model parameter (θ is the probability of success for each trial); and
- if the observed data are y = 11 successes in the 25 total trials; **then**

Having a Beta(4,10) prior on $\theta \equiv$ probability of success, and then observing 11 successes in 25 trials, produces a Beta(15, 24) posterior for $\theta | \mathbf{y}$.

That is,

- if I (with justification) select the $Binomial(25, \theta)$ likelihood for the observed data (y number of successes in 25 trials); and
- if I (with justfication) select the Beta(4,10) prior distribution for the model parameter (θ is the probability of success for each trial); and
- if the observed data are y = 11 successes in the 25 total trials; **then**
- the posterior distribution is the Beta(4 + 11 = 15, 10 + 25 11 = 24) distribution.

Posterior Summaries

posterior mean =
$$E(\theta|\mathbf{y}) = \int \theta \pi(\theta|\mathbf{y}) d\theta = \frac{a^*}{a^*+b^*} = \frac{15}{39} = 0.3846$$

$$\frac{a^{\star}b^{\star}}{(a^{\star}+b^{\star})^{2}(a^{\star}+b^{\star}+1)} = \frac{15(24)}{(15+24)^{2}(15+24+1)} = \frac{360}{60840} = 0.00592$$

95% posterior credible interval: (0.237, 0.536)

A (posterior) **credible interval** is an interval with 95% posterior probability of containing θ .

Interpretation of Beta-binomial Prior, Posterior

Common interpretations of *a* and *b* in the beta prior distribution are as the number of "prior successess" and "prior failures," respectively.

That is, prior beliefs are expressed as though one had already observed a observations' worth of successes and b observations' worth of failures.

But note that (1) it might be more accurate to consider having a-1 and b-1 observations' worth of "prior successes" and "prior failures," and that (2) a and b need not be integer valued in the prior distribution!

The motivation for this interpretation

- y observed data successes; (n y) observed data failures.
- Every increase of 1 in observed successes leads to an increase of 1 in a*
- Likewise, whenever a increases by 1, a^* increases by 1.
- Posterior has a* = a + y = "prior successes" + observed data successes;

The motivation for this interpretation

- y observed data successes; (n y) observed data failures.
- Every increase of 1 in observed successes leads to an increase of 1 in a*
- Likewise, whenever a increases by 1, a^* increases by 1.
- Posterior has a* = a + y = "prior successes" + observed data successes;
- Likewise, if (n y) increases by 1, effect on b^* is same as if b had increased by 1.
- Posterior has $b^* = b + (n y) =$ "prior failures" + observed data failures.

This yields the *data augmentation* interpretation (as described in Christensen et al. 2011).

Comprehension Questions

Which distribution represents a more "informative" prior? Similarly, which distribution has a larger value for a + b?

Comprehension Questions

Which distribution represents a more "informative" prior? Similarly, which distribution has a larger value for a + b?

Comprehension Questions (cont)

Which distribution has a larger mean? (Similarly, which distribution has a>b?)

Comprehension Questions (cont)

Which distribution has a larger mean? (Similarly, which distribution has a > b?)

What happens if a = b?

Beta-binomial Example

Christensen et al. (2011, pp. 22–27) gave a hypothetical example for inference on $\theta=$ proportion of U.S. transportation workers who are on the influence of drugs while working. I am amending this example (though I heartily recommend the original to you). Suppose that my prior is $\theta \sim Beta(1.4, 23.6)$.

- 1. Graph this prior distribution in R. (use dbeta)
- 2. What is the (prior) mean of θ according to this prior?
- 3. What is the maximum a priori estimate of θ ? (prior mode)
- 4. What is a 95% credible interval for the prior value of θ ? (use *qbeta* twice to get the 2.5th and 97.5th percentiles)

Beta-binomial Example–Solutions

1. Graph this prior $(\theta \sim Beta(1.4, 23.6))$

```
plot(tt<-seq(0,1,length.out=1001), dbeta(tt,1.4,23.6),
    main="Beta(1.4, 23.6) Prior Distribution",
    xlab=expression(theta), type="l", ylab=
    expression(paste(pi, "(", theta, ")", sep="")))</pre>
```

Beta-binomial Example-Solutions

1. Graph this prior $(\theta \sim Beta(1.4, 23.6))$

```
plot(tt<-seq(0,1,length.out=1001), dbeta(tt,1.4,23.6),
    main="Beta(1.4, 23.6) Prior Distribution",
    xlab=expression(theta), type="l", ylab=
    expression(paste(pi, "(", theta, ")", sep="")))</pre>
```

2. What is the (prior) mean of θ according to this prior? a/(a+b)=1.4/25=0.056

Beta-binomial Example-Solutions

1. Graph this prior $(\theta \sim Beta(1.4, 23.6))$

```
plot(tt<-seq(0,1,length.out=1001), dbeta(tt,1.4,23.6),
    main="Beta(1.4, 23.6) Prior Distribution",
    xlab=expression(theta), type="l", ylab=
    expression(paste(pi, "(", theta, ")", sep="")))</pre>
```

- 2. What is the (prior) mean of θ according to this prior? a/(a+b)=1.4/25=0.056
- 3. What is the maximum a priori estimate of θ ? (prior mode) (a-1)/(a+b-2) = 0.4/23 = 0.0174

Beta-binomial Example-Solutions

1. Graph this prior ($\theta \sim Beta(1.4, 23.6)$)

```
plot(tt<-seq(0,1,length.out=1001), dbeta(tt,1.4,23.6),
    main="Beta(1.4, 23.6) Prior Distribution",
    xlab=expression(theta), type="l", ylab=
    expression(paste(pi, "(", theta, ")", sep="")))</pre>
```

- 2. What is the (prior) mean of θ according to this prior? a/(a+b)=1.4/25=0.056
- 3. What is the maximum a priori estimate of θ ? (prior mode) (a-1)/(a+b-2) = 0.4/23 = 0.0174
- 4. What is a 95% credible interval for the prior value of θ ? (use *qbeta* twice to get the 2.5th and 97.5th percentiles)

```
c(qbeta(.025, 1.4, 23.6), qbeta(.975, 1.4, 23.6))
## [1] 0.00364109 0.17181657
```

Beta-binomial Example (cont.)

Recall that my prior distribution for θ is Beta(1.4, 23.6). Suppose that a sample of workers revealed the following:

Under Influence?											
No	No	No	Yes	No	Yes	No	No	No	No	Yes	No

Table 1: My adaptation of a hypothetical example from Christensen et al. (2011, pp. 22-27)

- What is the posterior distribution for $\theta|y$?
- Plot the posterior distribution. (dbeta)
- What is the posterior mean for $\theta|y$?
- What is the maximum a posteriori estimate of $\theta|y$? (posterior mode)
- What is a 95% credible interval for $\theta|y$? (use qbeta twice)
- How well does the posterior agree with the prior?

Prior Elicitation for the Beta-

Binomial setting

Prior Elicitation

How to select a and b for the Beta distribution? Some options:

• If you don't have much information at all about θ , can use $\mathbf{a} = \mathbf{b} = 1$. This corresponds to a uniform prior distribution: all values between 0 and 1 are considered equally likely.

Prior Elicitation

How to select a and b for the Beta distribution? Some options:

- If you don't have much information at all about θ, can use
 a = b = 1. This corresponds to a uniform prior distribution:
 all values between 0 and 1 are considered equally likely.
- Translate your prior belief into a observations' worth of successes and b observations' worth of failures.

Prior Elicitation

How to select a and b for the Beta distribution? Some options:

- If you don't have much information at all about θ, can use
 a = b = 1. This corresponds to a uniform prior distribution:
 all values between 0 and 1 are considered equally likely.
- Translate your prior belief into a observations' worth of successes and b observations' worth of failures.
- Give an expected prior mean and expected prior standard deviation, then solve for a and b.

$$E(\theta) = \frac{a}{a+b}$$
 and $S.D.(\theta) = \sqrt{\frac{ab}{(a+b)^2(a+b+1)}}$

Keep in mind: the ratio of a to b will affect the mean, and the size of a+b will affect how informative your prior is.

Reference

Christensen, R., Johnson, W.O., Branscum, A.J., and Hanson, T.E. (2011). *Bayesian Ideas and Data Analysis*. Boca Raton: CRC Press.