udb-

Exposición Semana 13

Jesús Guaygua, Valeria Molina y Luis Vásquez

Universidad de Las Américas

Programación III

Luis Aguas

1 de julio de 2025

Tema

Uso de Grafos en Simulación de Tráfico Espacial

Introducción

La simulación del tráfico espacial es un campo emergente dentro de la ingeniería aeroespacial y la computación. Con el aumento de satélites, estaciones y vehículos espaciales, se ha vuelto necesario organizar el tráfico en el espacio exterior con el fin de evitar colisiones entre objetos en órbita, garantizar rutas seguras, mejorar la logística y establecer una comunicación eficiente entre distintas agencias.

En este contexto, los grafos se convierten en una herramienta fundamental para modelar y analizar trayectorias, puntos de encuentro y recursos compartidos en el espacio, ya que ofrecen una forma clara de representar conexiones y trayectorias espaciales, y diseñar y simular rutas orbitales, redes de comunicación satelital y mecanismos de evasión de colisiones (López, 2023).

Además, su uso permite representar nodos (como estaciones espaciales, vehículos espaciales o satélites) y aristas (rutas entre nodos), de tal forma que facilita la toma de decisiones en entornos complejos y dinámicos.

Objetivos

- Comprender cómo se representan rutas espaciales mediante grafos.
- Aplicar grafos dirigidos para simular el tráfico orbital.
- Modelar redes satelitales multicapa con grafos no dirigidos.
- Visualizar las trayectorias y conexiones mediante una interfaz gráfica en Java.

Conceptos clave

- **Grafo:** estructura matemática compuesta por nodos (vértices) y conexiones (aristas).

- **Grafo dirigido:** útil para representar trayectorias con sentido, como órbitas o rutas de vuelo.
- Algoritmos de búsqueda de caminos: como Dijkstra o A*, que permiten encontrar rutas óptimas entre nodos (Tomás *et al.*, 2023).
- **Modelado de trayectorias espaciales:** los nodos pueden ser satélites, estaciones espaciales o puntos orbitales; las aristas representan las rutas posibles que puede tomar una nave.

Grafo multicapa

Este grafo muestra cómo diferentes agencias están conectadas para distintas funciones espaciales.

```
import java.util.*;

class GrafoMulticapa {
    private Map<String, List<String>> red = new HashMap<>();

public void agregarNodo(String nombre) {
        red.putIfAbsent(nombre, new ArrayList<>());
    }

public void conectar(String a, String b) {
        red.get(a).add(b);
        red.get(b).add(a); // conexión bidireccional
    }

public void mostrarRed() {
        for (String nodo : red.keySet()) {
            System.out.println(nodo + " \times " + red.get(nodo));
        }
    }

public static void main(String[] args) {
        GrafoMulticapa grafo = new GrafoMulticapa();
        grafo.agregarNodo("NASA-Comunicación");
        grafo.agregarNodo("ESA-Ciencia");
```

```
grafo.agregarNodo("JAXA-Recursos");

grafo.conectar("NASA-Comunicación", "ESA-Ciencia");
 grafo.conectar("ESA-Ciencia", "JAXA-Recursos");

grafo.mostrarRed();
}
```

Grafo dirigido para rutas orbitales

Este grafo simula un tráfico espacial simple entre tres órbitas.

```
import java.util.*;
class TraficoEspacial {
    Map<String, List<String>> rutas = new HashMap<>();
    public void agregarRuta(String origen, String destino) {
        rutas.putIfAbsent(origen, new ArrayList<>());
        rutas.get(origen).add(destino);
    public void mostrarRutas() {
        for (String nodo : rutas.keySet()) {
            System.out.println("Desde " + nodo + " hacia: " +
rutas.get(nodo));
    public static void main(String[] args) {
        TraficoEspacial sim = new TraficoEspacial();
        sim.agregarRuta("Orbita A", "Orbita B");
        sim.agregarRuta("Orbita B", "Orbita C");
        sim.mostrarRutas();
    }
```

Aplicaciones prácticas

- Rutas Orbitales: Planificación de trayectorias de satélites en diferentes niveles orbitales.

- **Evitar colisiones:** Analizando rutas cruzadas para detectar y prevenir trayectorias que se intersectan.
- Redes de comunicación satelital: Simulación de capas de comunicación entre satélites y estaciones.
- Colaboración internacional: Modelar interacciones entre agencias (NASA, ESA, JAXA, etc.).

Conclusión

El uso de grafos en la simulación de tráfico espacial permite modelar sistemas complejos con múltiples nodos y rutas. Los grafos son herramientas versátiles para modelar el tráfico espacial, permitiendo representar trayectorias, detectar posibles colisiones y organizar redes de comunicación. Su implementación en Java con estructuras simples permite simular estos sistemas de manera educativa, abriendo paso a desarrollos más complejos con interfaces visuales e inteligencia artificial para la toma de decisiones. Además, con ayuda de algoritmos como Dijkstra, se pueden encontrar trayectorias óptimas y seguras.

Estas herramientas no solo tienen aplicaciones prácticas en la industria aeroespacial, sino también en simuladores, educación y planificación de misiones. En el futuro, su importancia crecerá con la expansión de la actividad humana en el espacio.

Referencias

López, S. (2023). Gestión del tráfico espacial. Una solución para la futura sostenibilidad de las actividades espaciales. https://cedaeonline.com.ar/2023/11/16/gestion-del-trafico-espacial-una-solucion-para-la-futura-sostenibilidad-de-las-actividades-espaciales/

Tomás, V., Hernández, J. & Núñez, F. (2023). Propuesta para Encontrar una ruta más Corta en un Entorno de Búsqueda 2D. *Ciencia Latina Revista Científica Multidisciplinar*, 7(4), 6798-6810. https://doi.org/10.37811/cl_rcm.v7i4.7440

Bibliografía

Aguas Bucheli, L. F. (2024b). Estructuras de Datos para Todos: Ejercicios y Teoría con Java. Our Knowledge Publishing.

Aguas Bucheli, L. F. (2023a). Dominando la Programación Orientada a Objetos con Java en NetBeans. Our Knowledge Publishing.

Aguas Bucheli, L. F. (2023b). Manos a la Obra: Prácticas de Laboratorio en Estructuras de Datos. Our Knowledge Publishing.

Bloch, J. (2018). Effective Java (3rd ed.). Addison-Wesley.

Horstmann, C. S. (2018). Core Java Volume I--Fundamentals (11th ed.). Prentice Hall.

Sierra, K., & Bates, B. (2014). Head First Java. O'Reilly Media.