

Scientific Computing

Parallele Algorithmen

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

Algorithm (Tridiagonal system)

1. Eliminate in each diagonal block subdiagonal elements.

- 1. Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.
- 3. Eliminate elements in superdiagonal blocks.

Algorithm (Tridiagonal system)

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.
- 3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns x_5 , x_{10} , x_{15} , x_{20} .

Algorithm (Tridiagonal system)

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.
- 3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns x_5 , x_{10} , x_{15} , x_{20} .

Algorithm (Tridiagonal system)

- Eliminate in each diagonal block subdiagonal elements.
- Eliminate in each diagonal block superdiagonal elements from third last row on.
- 3. Eliminate elements in superdiagonal blocks.

Results in a tridiagonal subsystem with unknowns x_5 , x_{10} , x_{15} , x_{20} . If data are stored rowwise only one communication to neighbouring processor neccessary.

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.

Consider $F(x) := \frac{1}{2}x^TAx - b^Tx$ where A is symmetric and positiv definite. Hence, $\nabla F = \frac{1}{2}(A + A^T)x - b = Ax - b$

 $cc, vr = {}_{2}(A + A) \wedge b = A \wedge b$

Input: Initial guess x^0 $r^0 := h - Ax^0$

Iteration:
$$k = 0, 1, \dots$$

$$x^{k+1} := x^k + \lambda_{opt}(x^k, r^k) r^k$$
 % Update x^k

$$r^{k+1} := b - Ax^{k+1}$$
 % Compute residual

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.

Consider $F(x) := \frac{1}{2}x^TAx - b^Tx$ where A is symmetric and positiv definite. Hence, $\nabla F = \frac{1}{2}(A + A^T)x - b = Ax - b$

Input: Initial guess x^0 $r^{0} := h - Ax^{0}$

Iteration:
$$k = 0, 1, \dots$$

$$x^{k+1} := x^k + \lambda_{opt}(x^k, r^k) r^k$$
 % Update x^k

$$r^{k+1} := b - Ax^{k+1}$$
 % Compute residual

Using $r^{k+1} = b - Ax^{k+1}$

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.

Consider $F(x) := \frac{1}{2}x^TAx - b^Tx$ where A is symmetric and positiv definite.

Hence, $\nabla F = \frac{1}{2}(A + A^T)x - b = Ax - b$

Input: Initial guess x^0 $r^{0} := h - Ax^{0}$

Iteration:
$$k = 0, 1, \ldots$$

$$\lambda = 0, 1, \dots$$

$$x^{k+1} := x^k + \lambda_{opt}(x^k, r^k) r^k$$
 % Update x^k

$$r^{k+1} := b - Ax^{k+1}$$
 % Compute residual

Using
$$r^{k+1} = b - Ax^{k+1} = b - A(x^k + \lambda_{opt}(x^k, r^k)) r^k$$

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.

Consider $F(x) := \frac{1}{2}x^TAx - b^Tx$ where A is symmetric and positiv definite.

Hence, $\nabla F = \frac{1}{2}(A + A^T)x - b = Ax - b$

Input: Initial guess x^0

$$r^0 := b - Ax^0$$

Iteration:
$$k = 0, 1, \ldots$$

$$x^{k+1} := x^k + \lambda_{opt}(x^k, r^k) r^k$$
 % Update x^k

$$r^{k+1} := b - Ax^{k+1}$$
 % Compute residual

Using $r^{k+1} = b - Ax^{k+1} = b - A(x^k + \lambda_{opt}(x^k, r^k)) = r^k - \lambda_{opt}(x^k, r^k) Ar^k$ gets

Steepest Descent

The steepest descent method minimizes a differentiable function F in direction of steepest descent.

Consider $F(x) := \frac{1}{2}x^TAx - b^Tx$ where A is symmetric and positiv definite. Hence, $\nabla F = \frac{1}{2}(A + A^T)x - b = Ax - b$

Input: Initial guess x^0

$$r^0 := h - Ax^0$$

Iteration:
$$k = 0, 1, \dots$$

$$x^{k+1} := x^k + \lambda_{opt}(x^k, r^k) r^k$$
 % Update x^k

$$r^{k+1} := r^k - \lambda_{out}(x^k, r^k) A r^k$$
 % Compute residual

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x + \lambda p)$$

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x + \lambda p)$$

= $\frac{1}{2} \langle x + \lambda p, A(x + \lambda p) \rangle - \langle b, x + \lambda p \rangle$

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x + \lambda p)$$

$$= \frac{1}{2} \langle x + \lambda p, A(x + \lambda p) \rangle - \langle b, x + \lambda p \rangle$$

$$= \frac{1}{2} \langle x, Ax \rangle - \langle b, x \rangle + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x + \lambda p)$$

$$= \frac{1}{2} \langle x + \lambda p, A(x + \lambda p) \rangle - \langle b, x + \lambda p \rangle$$

$$= \frac{1}{2} \langle x, Ax \rangle - \langle b, x \rangle + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

$$= F(x) + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x) + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

$$f(\lambda) = F(x) + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

If
$$p \neq 0$$
, $\langle p, Ap \rangle > 0$.

Let $x, p \in \mathbb{R}^n$. What is the optimal $\lambda_{opt}(x, p)$ in steepest descent method: Consider the following minimization problem:

$$f(\lambda) \stackrel{!}{=} \min$$
 with $f(\lambda) := F(x + \lambda p)$

Then, with $F(x) = \frac{1}{2}\langle x, Ax \rangle - \langle b, x \rangle$ we get

$$f(\lambda) = F(x) + \lambda \langle p, Ax - b \rangle + \frac{1}{2} \lambda^2 \langle p, Ap \rangle$$

If $p \neq 0$, $\langle p, Ap \rangle > 0$.

Hence, from $0 \stackrel{!}{=} f'(\lambda) = \langle p, Ax - b \rangle + \lambda \langle p, Ap \rangle$ we obtain

$$\lambda_{opt}(x,p) = \frac{\langle p, b - Ax \rangle}{\langle p, Ap \rangle}.$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$ightharpoonup x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

2D Problem

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$b = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$x^0 = \begin{pmatrix} 8 \\ -3 \end{pmatrix}$$

Steepest Descent

copost Boscont

Input: Initial guess x^0

$$r^0 := b - Ax^0$$

Iteration: $k = 0, 1, \ldots$

$$\lambda_{opt} := \frac{\langle r^k, r^k \rangle}{\langle r^k, Ar^k \rangle}$$
$$x^{k+1} := x^k + \lambda_{opt} r^k$$

 $r^{k+1} := r^k - \lambda_{opt} A r^k$

2 matrix-vector-products, 2 inner products, and 2 saxpy's per iteration

Is it possible save one matrix-vector-product?

Steepest Descent

Input: Initial guess x^0

 $r^0 := b - Ax^0$

Iteration:
$$k = 0, 1, \dots$$

$$a^k := Ar^k$$

$$\lambda_{opt} := \frac{\langle r^k, r^k \rangle}{\langle r^k, a^k \rangle}$$

$$x^{k+1} := x^k + \lambda_{opt} r^k$$

$$r^{k+1} := r^k - \lambda_{opt} a^k$$

1 matrix-vector-products, 2 inner products, and 2 saxpy's per iteration

Numbering

How can vectors be given?

Numbering

How can vectors be given?

► Full value at each node, e.g. given

$$u_{\ell} = (1, 1, 1, 1)^{T}$$
 $u_{r} = (1, 1, 1, 1)^{T}$.

How can vectors be given?

Full value at each node, e.g. given

$$u_{\ell} = (1, 1, 1, 1)^{T}$$
 $u_{r} = (1, 1, 1, 1)^{T}$.

Using incidence matrices C_{ℓ} and C_{r} .

$$C_{\ell} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad C_{r} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Numbering

global numbering

How can vectors be given?

Full value at each node, e.g. given

$$u_{\ell} = (1, 1, 1, 1)^{T}$$
 $u_{r} = (1, 1, 1, 1)^{T}$.

Using incidence matrices C_{ℓ} and C_{r} .

$$C_\ell = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad C_r = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Note

$$u_{\ell}: \quad \begin{pmatrix} 1\\0\\1\\1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0&0&1&0\\0&0&0&0\\0&1&0&0\\0&0&0&1\\1&0&0&0\\0&0&0&0 \end{pmatrix} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

How can vectors be given?

▶ Full value at each node, e.g. given

$$u_{\ell} = (1, 1, 1, 1)^{T}$$
 $u_{r} = (1, 1, 1, 1)^{T}$.

Hence

$$u = C_{\ell}(1,1,1,1)^{T} + C_{r}(1,1,1,1)^{T}$$

$$= (1,0,1,1,1,0)^{T} + (0,1,1,1,0,1)^{T}$$

$$= (1,1,2,2,1,1)^{T} \neq (1,1,1,1,1,1)^{T}$$

resp.

$$u = C_{\ell}u_{\ell} + C_{r}u_{r}$$

global numbering 6

How can vectors be given?

- ▶ Full value at each node be given.
- ▶ Value is given after assembling all data, e.g. given

$$u_{\ell} = (1, \frac{1}{2}, 1, \frac{1}{2})^{T}$$
 $u_{r} = (1, \frac{1}{2}, \frac{1}{2}, 1)^{T}$

results in

$$u = C_{\ell}u_{\ell} + C_{r}u_{r}$$

$$= (1, 0, \frac{1}{2}, \frac{1}{2}, 1, 0)^{T} + (0, 1, \frac{1}{2}, \frac{1}{2}, 0, 1)^{T}$$

$$= (1, 1, 1, 1, 1, 1)^{T}$$

Types of Vectors

Two types of vectors, depending on the storage type:

type I:
$$\overline{u}$$
 is stored on P_k as restriction $\overline{u}_k = C_k \overline{u}$.
'Complete' value accessable on P_k .

type II: \underline{r} is stored on P_k as \underline{r}_k , s.t.

type II:
$$\underline{r}$$
 is stored on P_k as \underline{r}_k , s.t.
$$\underline{r} = \sum_{k=1}^{p} C_k^T \underline{r}_k.$$

Nodes on the interface have only a part of the full value.

2 3 3 2

local numbering

Let matrices on both subdomains be given, for example:

$$A_{\ell} = \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \quad A_{r} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 3 & -7 & 2 \\ -2 & -9 & 4 & 0 \\ 3 & 7 & 1 & 5 \end{pmatrix}$$

Let matrices on both subdomains be given, for example:

$$A_{\ell} = \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \quad A_{r} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 3 & -7 & 2 \\ -2 & -9 & 4 & 0 \\ 3 & 7 & 1 & 5 \end{pmatrix}$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_r ?

Let matrices on both subdomains be given, for example:

$$A_{\ell} = \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \quad A_{r} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 3 & -7 & 2 \\ -2 & -9 & 4 & 0 \\ 3 & 7 & 1 & 5 \end{pmatrix}$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_r ?

Use incidence matrices C_{ℓ} and C_{r} .

$$C_{\ell} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad C_{r} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Let matrices on both subdomains be given, for example:

$$A_{\ell} = \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \quad A_{r} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 3 & -7 & 2 \\ -2 & -9 & 4 & 0 \\ 3 & 7 & 1 & 5 \end{pmatrix}$$

How to construct matrix A w.r.t global numbering from A_{ℓ} and A_{r} ?

Use incidence matrices C_{ℓ} and C_r .

$$C_\ell = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad C_r = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Now we get $A = C_{\ell}A_{\ell}C_{\ell}^{T} + C_{r}A_{r}C_{r}^{T}$.

$$A = C_{\ell} A_{\ell} C_{\ell}^{T} + C_{r} A_{r} C_{r}^{T}$$

$$A = C_{\ell}A_{\ell}C_{\ell}^{T} + C_{r}A_{r}C_{r}^{T}$$

$$= \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} + \dots$$

$$A = C_{\ell} A_{\ell} C_{\ell}^{T} + C_{r} A_{r} C_{r}^{T}$$

$$= \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 & -2 \\ -3 & 4 & -7 & 3 \\ 4 & 3 & 6 & 0 \\ 5 & -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} + \dots$$

$$= \begin{pmatrix} 6 & 0 & 3 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -7 & 0 & 4 & 3 & -3 & 0 \\ 1 & 0 & -2 & 2 & 5 & 0 \\ 3 & 0 & 1 & -2 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & -2 & 4 & -9 & 0 & 0 \\ 0 & 1 & -7 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 6 & 0 & 3 & 0 & 4 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ -7 & -2 & 4+4 & -9+3 & -3 & 0 \\ 1 & 1 & -7-2 & 3+2 & 5 & 2 \\ 3 & 0 & 1 & -2 & 2 & 0 \\ 0 & 3 & 1 & 7 & 0 & 5 \end{pmatrix}$$

ge 11 Scientific Computing | 11. Januar 2007 | Funken /

Types of Matrices

There are two types of matrices:

type I: 'Complete' (but not all) entries are accessable on P_k .

type II: The matrix is stored in a distrubuted manner similiar to type II.

$$A = \sum_{k=1}^{p} C_k A_k C_k^T$$

where A_k belongs to processor P_k , resp. to the subdomain Ω_i .

Converting Type

Obviously, addition, subtraction (and similiar operations) of vectors can be done without communication, if they are of the same type.

Converting from type I to type II needs communication. Mapping is not unique, e.g.

$$\underline{u}_i = C_i \left(\sum_{k=1}^p C_k C_k^T \right)^{-1} C_k^T \overline{u}_k$$

Converting from type II to type I needs communication.

$$\bar{r}_i = C_i \sum_{k=1}^p C_k^T \underline{r}_k$$

The inner product of two vectors \overline{u} , \underline{r} of different type needs only one reduce-communication.

$$\langle \overline{u}, \underline{r} \rangle$$

The inner product of two vectors \overline{u} , r of different type needs only one reduce-communication.

$$= \overline{u}^T \sum_{k=1}^p C_k^T \underline{r}_k$$

The inner product of two vectors \overline{u} , r of different type needs only one reduce-communication.

$$\langle \overline{u}, \underline{r} \rangle$$

$$= \overline{u}^T \sum_{k=1}^p C_k^T \underline{r}_k$$

$$= \sum_{k=1}^p \overline{u}^T C_k^T \underline{r}_k$$

Inner Product

The inner product of two vectors \overline{u} , \underline{r} of different type needs only one reduce-communication.

$$\langle \overline{u}, \underline{r} \rangle$$

$$= \overline{u}^T \sum_{k=1}^p C_k^T \underline{r}_k$$

$$= \sum_{k=1}^p \overline{u}^T C_k^T \underline{r}_k$$

$$= \sum_{k=1}^p \langle C_k \overline{u}, \underline{r}_k \rangle$$

Inner Product

The inner product of two vectors \overline{u} , \underline{r} of different type needs only one reduce-communication.

$$= \overline{u}^T \sum_{k=1}^p C_k^T \underline{r}_k$$

$$= \sum_{k=1}^p \overline{u}^T C_k^T \underline{r}_k$$

$$= \sum_{k=1}^p \langle C_k \overline{u}, \underline{r}_k \rangle$$

$$= \sum_{k=1}^p \langle \overline{u}_k, \underline{r}_k \rangle$$

 $\langle \overline{u}, r \rangle$

▶ type II - matrix × type I - vector result is a type II vector, no communication!!! Consider $A = \sum_{k=1}^{p} C_k A_k C_k^T$.

Αū

▶ type II - matrix × type I - vector result is a type II vector, no communication!!! Consider $A = \sum_{k=1}^{p} C_k A_k C_k^T$.

$$A\overline{u} = \sum_{k=1}^{p} C_k A_k C_k^T \overline{u}$$

▶ type II - matrix × type I - vector result is a type II vector, no communication!!! Consider $A = \sum_{k=1}^{p} C_k A_k C_k^T$.

$$A\overline{u} = \sum_{k=1}^{p} C_k A_k C_k^T \overline{u} = \sum_{k=1}^{p} C_k \underbrace{A_k \overline{u}_k}_{\underline{r}_k}$$

Matrix-Vector Multiplications

▶ type II - matrix × type I - vector result is a type II vector, no communication!!! Consider $A = \sum_{k=1}^{p} C_k A_k C_k^T$.

$$A\overline{u} = \sum_{k=1}^{p} C_k A_k C_k^T \overline{u} = \sum_{k=1}^{p} C_k \underbrace{A_k \overline{u}_k}_{\underline{r}_k} = \underline{r}$$

type II - matrix × type II - vector type conversion neccessary, needs communication

Steepest Descent

Parallel Version

Input: Initial guess \overline{x}^0

$$\underline{r}^0 := \underline{b} - A\overline{x}^0$$

$$\overline{w}^0 := \sum_{\ell=1}^p C_\ell^T \underline{r}^0$$
Iteration: $k = 0, 1, ...$

 $a^k := A\overline{w}^k$

$$\lambda := \frac{\langle \overline{w}^k, \underline{r}^k \rangle}{\langle \overline{w}^k, \underline{a}^k \rangle}$$

$$\overline{x}^{k+1} := \overline{x}^k + \lambda \, \overline{w}^k$$

$$\underline{r}^{k+1} := \underline{r}^k - \lambda \, \underline{a}^k$$

$$\overline{w}^k := \sum_{\ell=1}^p C_\ell^T \underline{r}^k$$

Only two allreduce-communications and one vector accumulation per iteration necessary!

Different Indizes

1. I nodes in interior of subdomains $[N_I = \sum_{j=1}^p N_{I,j}].$

- 1. I nodes in interior of subdomains $[N_I = \sum_{j=1}^{p} N_{I,j}].$
- 2. **E** nodes in interior of subdomains-edges $[N_E = \sum_{j=1}^{n_e} N_{E,j}]$. (n_e number of subdomain-edges)

- 1. I nodes in interior of subdomains $[N_I = \sum_{j=1}^p N_{I,j}].$
- 2. **E** nodes in interior of subdomains-edges $[N_E = \sum_{j=1}^{n_e} N_{E,j}]$. (n_e number of subdomain-edges)
- 3. **V** crosspoints, i.e. endpoints of subdomain-edges $[N_V]$

- 1. I nodes in interior of subdomains $[N_I = \sum_{i=1}^p N_{I,j}].$
- 2. **E** nodes in interior of subdomains-edges $[N_E = \sum_{j=1}^{n_e} N_{E,j}]$. (n_e number of subdomain-edges)
- 3. **V** crosspoints, i.e. endpoints of subdomain-edges $[N_V]$
- 4. **E** and **V** are often denoted as coupling nodes with index **C** $[N_C = N_E + N_V]$

Communication

1. Communication only neccessary for nodes on the coupling boundaries.

Communication

- Communication only neccessary for nodes on the coupling boundaries.
- $2. \ \, {\sf Global} \,\, {\sf communication} \,\, {\sf for} \,\, {\sf crosspoints}.$

Communication

- Communication only neccessary for nodes on the coupling boundaries.
- 2. Global communication for crosspoints.
- Only communication to the neighbouring subdomain for edge-nodes.

Communication

- 1. Communication only necessary for nodes on the coupling boundaries.
- 2. Global communication for crosspoints.
- 3. Only communication to the neighbouring subdomain for edge-nodes.
- 4. Not all nodes have to be 'touched' for a vector accumulation

$$\overline{w} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}$$

Communication

- 1. Communication only neccessary for nodes on the coupling boundaries.
- 2. Global communication for crosspoints.
- 3. Only communication to the neighbouring subdomain for edge-nodes.
- 4. Not all nodes have to be 'touched' for a vector accumulation

$$\overline{w} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}$$

 Split into communication between neighbouring subdomains and one global communication for all crosspoints.

Numerical Example

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

Numerical Example

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

resp.

$$\langle r^m, r^{m+1} \rangle$$

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

resp.

$$\langle r^m, r^{m+1} \rangle = \langle r^m, r^m \rangle - \frac{\langle r^m, b - Ax^m \rangle}{\langle r^m, Ar^m \rangle} \langle r^m, Ar^m \rangle = 0$$

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

resp.

$$\langle r^m, r^{m+1} \rangle = \langle r^m, r^m \rangle - \frac{\langle r^m, b - Ax^m \rangle}{\langle r^m, Ar^m \rangle} \langle r^m, Ar^m \rangle = 0$$

but not $r^m \perp r^{m+2}$.

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

resp.

$$\langle r^m, r^{m+1} \rangle = \langle r^m, r^m \rangle - \frac{\langle r^m, b - Ax^m \rangle}{\langle r^m, Ar^m \rangle} \langle r^m, Ar^m \rangle = 0$$

but not $r^m \perp r^{m+2}$. We loose all our information!!!

There exists a better algorithm for symmetric and positive definite matrices, as they arise in the finite element method!!!

Notice the following properties of the algorithm

$$r^{m} \perp r^{m+1} = r^{m} - \lambda_{opt}(x^{m}, r^{m}) A r^{m} = r^{m} - \frac{\langle r^{m}, b - A x^{m} \rangle}{\langle r^{m}, A r^{m} \rangle} A r^{m}$$

resp.

$$\langle r^m, r^{m+1} \rangle = \langle r^m, r^m \rangle - \frac{\langle r^m, b - Ax^m \rangle}{\langle r^m, Ar^m \rangle} \langle r^m, Ar^m \rangle = 0$$

but not $r^m \perp r^{m+2}$. We loose all our information!!!

There exists a better algorithm for symmetric and positive definite matrices, as they arise in the finite element method!!! The CG-algorithm.

Preconditioned Conjugate Gradient Method

Solve Ax = b (A, W sym, + def), W^{-1} 'easy' to compute, s.t. $W^{-1}A \approx I$ (e.g. $W^{-1} = I$, $W^{-1} = k$ -iterations of Jacobi/Gauss-Seidel)

```
Input: Initial guess x^0
```

$$r^{0} := b - Ax^{0}$$
 $p^{0} := W^{-1}r^{0}$
 $\sigma_{0} := \langle p^{0}, r^{0} \rangle$

Iteration: $k = 0, 1, ...$ (as long as $k < n, r^{k} \neq 0$)
 $a^{k} := Ap^{k}$
 $\lambda_{opt} := \frac{\sigma_{k}}{\langle a^{k}, p^{k} \rangle}$
 $x^{k+1} := x^{k} + \lambda_{opt} r^{k}$
 $r^{k+1} := r^{k} - \lambda_{opt} a^{k}$
 $q^{k+1} := W^{-1}r^{k+1}$
 $\sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$
 $p^{m+1} := q^{m+1} + \frac{\sigma_{k+1}}{\sigma} p^{k}$

```
Input: Initial guess x^0
r^0 := h - Ax^0
p^0 := W^{-1}r^0
\sigma_0 := \langle p^0, r^0 \rangle
Iteration: k = 0, 1, ... (as long as k < n, r^k \neq 0)
a^k := Ap^k, \lambda_{opt} := \frac{\sigma_k}{\langle a^k, p^k \rangle}
x^{k+1} := x^k + \lambda_{opt} p^k
r^{k+1} := r^k - \lambda_{opt} a^k
q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle
p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_{k}} p^{k}
```

```
Input: Initial guess \overline{x}^0
r^{0} := h - Ax^{0}
p^0 := W^{-1}r^0
\sigma_0 := \langle p^0, r^0 \rangle
Iteration: k = 0, 1, ... (as long as k < n, r^k \neq 0)
a^k := Ap^k, \lambda_{opt} := \frac{\sigma_k}{\langle a^k, p^k \rangle}
x^{k+1} := x^k + \lambda_{opt} p^k
r^{k+1} := r^k - \lambda_{out} a^k
q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle
p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k
```

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}$$

$$p^{0} := W^{-1}r^{0}$$

$$\sigma_0:=\langle p^0,r^0\rangle$$

Iteration: k = 0, 1, ... (as long as k < n, $r^k \neq 0$) $a^k := Ap^k$, $\lambda_{opt} := \frac{\sigma_k}{(a^k p^k)}$

$$x^{k+1} := x^k + \lambda_{opt} p^k$$

$$r^{k+1} := r^k - \lambda_{opt} a^k$$

$$q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$$
 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$

```
Input: Initial guess \overline{x}^0
r^0 := b - A\overline{x}^0
\overline{w}^0 := \sum_{\ell=1}^p C_\ell^T r^0
p^0 := W^{-1}r^0
\sigma_0 := \langle p^0, r^0 \rangle
Iteration: k = 0, 1, ... (as long as k < n, r^k \neq 0)
a^k := Ap^k, \lambda_{opt} := \frac{\sigma_k}{\langle a^k, p^k \rangle}
x^{k+1} := x^k + \lambda_{opt} p^k
r^{k+1} := r^k - \lambda_{out} a^k
q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle
p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k
```

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}$$

$$\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}$$

$$\underline{p}^{0} := W^{-1} \overline{w}^{0}$$

$$\sigma_0 := \langle p^0, r^0 \rangle$$

$$a^k := Ap^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle a^k, p^k \rangle}$$

 $x^{k+1} := x^k + \lambda_{opt} p^k$

$$r^{k+1} := r^k - \lambda_{opt} a^k$$

$$r^{\kappa+1} := r^{\kappa} - \lambda_{opt} a^{\kappa}$$

$$q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$$
 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_{k+1}} p^{k}$

Input: Initial guess \overline{x}^0

 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0}
\sigma_{0} := \langle \overline{w}^{0}, \underline{p}^{0} \rangle$$
Iteration: $k = 0, 1, \dots$ (as long as $k < n, r^{k} \neq 0$)
$$a^{k} := Ap^{k}, \quad \lambda_{opt} := \frac{\sigma_{k}}{\langle a^{k}, p^{k} \rangle}
x^{k+1} := x^{k} + \lambda_{opt} p^{k}
r^{k+1} := r^{k} - \lambda_{opt} a^{k}$$

 $q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$

Input: Initial guess \overline{x}^0

 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0}
\sigma_{0} := \langle \overline{w}^{0}, \underline{p}^{0} \rangle$$
Iteration: $k = 0, 1, \dots$ (as long as $k < n, r^{k} \neq 0$)
$$\underline{a}^{k} := A\overline{s}^{k}, \quad \lambda_{opt} := \frac{\sigma_{k}}{\langle a^{k}, p^{k} \rangle}
x^{k+1} := x^{k} + \lambda_{opt} p^{k}
r^{k+1} := r^{k} - \lambda_{opt} a^{k}$$

 $q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$

Input: Initial guess \overline{x}^0

 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0}
\sigma_{0} := \langle \overline{w}^{0}, \underline{p}^{0} \rangle$$
Iteration: $k = 0, 1, \dots$ (as long as $k < n, r^{k} \neq 0$)
$$\underline{a}^{k} := A\overline{s}^{k}, \quad \lambda_{opt} := \frac{\sigma_{k}}{\langle \underline{a}^{k}, \overline{s}^{k} \rangle}
x^{k+1} := x^{k} + \lambda_{opt} p^{k}
r^{k+1} := r^{k} - \lambda_{opt} a^{k}$$

 $q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$

Input: Initial guess \overline{x}^0

$$\underline{r}^0 := \underline{b} - A\overline{x}^0
\overline{w}^0 := \sum_{\ell=1}^p C_\ell^T \underline{r}^0
\underline{p}^0 := W^{-1}\overline{w}^0
\overline{s}^0 := \sum_{\ell=1}^p C_\ell^T \underline{p}^0
\sigma_0 := \langle \overline{w}^0, \underline{p}^0 \rangle$$
Iteration: $k = 0, 1, ...$ (as long as $k < n, r^k \neq 0$)

 $\underline{a}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{(a^k \overline{s}^k)}$

$$\begin{split} \overline{x}^{k+1} &:= \overline{x}^k + \lambda_{opt} \, \overline{s}^k \\ r^{k+1} &:= r^k - \lambda_{opt} \, a^k \\ q^{k+1} &:= W^{-1} r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle \\ p^{k+1} &:= q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k \end{split}$$

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} p^{0}$$

$$\sigma_0 := \langle \overline{w}^0, \underline{p}^0 \rangle$$

$$\underline{a}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle \underline{a}^k, \overline{s}^k \rangle}$$
 $\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$
 $r^{k+1} := r^k - \lambda_{opt} a^k$

$$q^{k+1} := W^{-1}r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$$

$$p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$$

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} p^{0}$$

$$\sigma_0 := \langle \overline{w}^0, \underline{p}^0 \rangle$$

$$\underline{\underline{a}}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle \underline{\underline{a}}^k, \overline{s}^k \rangle}$$
 $\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$
 $\underline{r}^{k+1} := \underline{r}^k - \lambda_{opt} \underline{\underline{a}}^k$

$$\overline{w}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}$$

$$q^{k+1} := W^{-1} r^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle$$

$$p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$$

Input: Initial guess \overline{x}^0

$$\underline{r}^0 := \underline{b} - A\overline{x}^0$$
 $\overline{w}^0 := \sum_{\ell=1}^p C_\ell^T \underline{r}^0$
 $\underline{p}^0 := W^{-1} \overline{w}^0$
 $\overline{s}^0 := \sum_{\ell=1}^p C_\ell^T p^0$

$$\sigma_0 := \langle \overline{w}^0, \underline{\rho}^0 \rangle$$

$$\underline{\underline{a}}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle \underline{\underline{a}}^k, \overline{s}^k \rangle}$$

$$\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$$

$$\underline{r}^{k+1} := \underline{r}^k - \lambda_{opt} \underline{\underline{a}}^k$$

$$\begin{array}{l} \overline{w}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{\mathsf{T}} \underline{r}^{k+1} \\ \underline{\underline{q}}^{k+1} := W^{-1} \overline{w}^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, r^{k+1} \rangle \end{array}$$

$$p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$$

Input: Initial guess \overline{x}^0

 $p^{k+1} := q^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} p^k$

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1}\overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0}
\sigma_{0} := \langle \overline{w}^{0}, \underline{p}^{0} \rangle$$
Iteration: $k = 0, 1, \dots$ (as long as $k < n, r^{k} \neq 0$)
$$\underline{a}^{k} := A\overline{s}^{k}, \quad \lambda_{opt} := \frac{\sigma_{k}}{\langle \underline{a}^{k}, \overline{s}^{k} \rangle}
\overline{x}^{k+1} := \overline{x}^{k} + \lambda_{opt} \overline{s}^{k}
\underline{r}^{k+1} := \underline{r}^{k} - \lambda_{opt} \underline{a}^{k}
\overline{w}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{T} r^{k+1}$$

 $q^{k+1} := W^{-1}\overline{w}^{k+1}, \quad \sigma_{k+1} := \langle q^{k+1}, \overline{w}^{k+1} \rangle$

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}
\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}
\underline{p}^{0} := W^{-1} \overline{w}^{0}
\overline{s}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{0}
\sigma_{0} := \langle \overline{w}^{0}, p^{0} \rangle$$

$$\underline{\underline{a}}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle \underline{a}^k, \overline{s}^k \rangle}$$

$$\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$$

$$\underline{\underline{r}}^{k+1} := \underline{\underline{r}}^k - \lambda_{opt} \underline{\underline{a}}^k$$
$$\overline{\underline{w}}^{k+1} := \sum_{\ell=1}^p C_\ell^T \underline{r}^{k+1}$$

$$w^{k+1} := \sum_{\ell=1}^{\ell} \mathsf{C}_{\ell} \ \underline{r}^{k+1} := W^{-1} \overline{w}^{k+1}, \quad \sigma_{k+1} := \langle \underline{q}^{k+1}, \overline{w}^{k+1} \rangle$$

$$\underline{p}^{k+1} := \underline{q}^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} \underline{p}^k$$

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}$$

$$\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}$$

$$p^{0} := W^{-1} \overline{w}^{0}$$

$$\underline{p}^0 := VV^{-1}W^0$$

$$\overline{s}^0 := \sum_{\ell=1}^p C_\ell^T p^0$$

$$\sigma_0 := \langle \overline{w}^0, \underline{\rho}^0 \rangle$$

$$\underline{\underline{a}}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle \underline{a}^k, \overline{s}^k \rangle}$$

 $\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$

$$\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \overline{s}^k$$
$$\underline{r}^{k+1} := \underline{r}^k - \lambda_{opt} \underline{a}^k$$

$$\overline{w}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{k+1}
\underline{q}^{k+1} := W^{-1} \overline{w}^{k+1}, \quad \sigma_{k+1} := \langle \underline{q}^{k+1}, \overline{w}^{k+1} \rangle
\underline{p}^{k+1} := \underline{q}^{k+1} + \frac{\sigma_{k+1}}{\sigma} \underline{p}^{k}$$

$$\overline{s}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{T} p^{k+1}$$

Input: Initial guess \overline{x}^0

$$\underline{r}^{0} := \underline{b} - A\overline{x}^{0}$$

$$\overline{w}^{0} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{r}^{0}$$

$$p^{0} := W^{-1} \overline{w}^{0}$$

$$\frac{p}{\overline{s}^0} := vv \quad w$$

$$\overline{s}^0 := \sum_{\ell=1}^p C_\ell^T p^0$$

$$\sigma_0 := \langle \overline{w}^0, \underline{p}^0 \rangle$$

$$\underline{a}^k := A\overline{s}^k, \quad \lambda_{opt} := \frac{\sigma_k}{\langle a^k \ \overline{s}^k \rangle}$$

$$\overline{x}^{k+1} := \overline{x}^k + \lambda_{opt} \, \overline{s}^k$$

$$\underline{\underline{r}}^{k+1} := \underline{\underline{r}}^k - \lambda_{opt} \underline{\underline{a}}^k$$
$$\overline{\underline{w}}^{k+1} := \sum_{\ell=1}^p C_\ell^T \underline{\underline{r}}^{k+1}$$

$$\underline{q}^{k+1} := W^{-1}\overline{w}^{k+1}, \quad \sigma_{k+1} := \langle \underline{q}^{k+1}, \overline{w}^{k+1} \rangle$$
$$\underline{p}^{k+1} := \underline{q}^{k+1} + \frac{\sigma_{k+1}}{\sigma_k} \underline{p}^k$$

$$\overline{s}^{k+1} := \sum_{\ell=1}^{p} C_{\ell}^{T} \underline{p}^{k+1}$$

A and W^{-1} are given as type II 'matrices'.

▶ storage needed for 7 vectors (plus A and W^{-1})

- ▶ storage needed for 7 vectors (plus A and W^{-1})
- ▶ 2 vector accumulations (per iteration)

- ▶ storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- ► 2 allreduce-operations

- ▶ storage needed for 7 vectors (plus A and W^{-1})
- 2 vector accumulations (per iteration)
- ► 2 allreduce-operations
- ▶ 1 'local' application of A and W^{-1}
- ▶ 1 local application of A and VV

- ▶ storage needed for 7 vectors (plus A and W^{-1})
- ▶ 2 vector accumulations (per iteration)
- ▶ 2 allreduce-operations
- ▶ 1 'local' application of A and W^{-1}
- ▶ 2 inner products and 3 saxpy-operations
 - 2 littler products and 5 saxpy-operations

- ▶ storage needed for 7 vectors (plus A and W^{-1})
- ▶ 2 vector accumulations (per iteration)
- ▶ 2 allreduce-operations
- ▶ 1 'local' application of A and W⁻¹
- ▶ 2 inner products and 3 saxpy-operations
- How should we choose W^{-1} ???

Practical debugging strategies

 run parallel program on single process, tests most of functionality, such as I/O

- run parallel program on single process, tests most of functionality, such as I/O
- ▶ run parallel program with two processes,

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024

- ▶ run parallel program on single process,
 - tests most of functionality, such as $\ensuremath{I/O}$
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024
- ▶ use 'printf'-debugger

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024
- use 'printf'-debugger
- ▶ put fflush(stdout); after every printf

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- for point-to-point communication, print data being sent and received

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- ▶ for point-to-point communication, print data being sent and received
- prefix each message with the process rank, sort by rank! messages received from different processes do not necessarily arrive in chronological order

Practical debugging strategies

- run parallel program on single process, tests most of functionality, such as I/O
- run parallel program with two processes,
 or more, such that all functionality can be exercised
- run with smallest problem size that exercises all functionality solving a 4 × 4-system is the same as 1024 × 1024
- use 'printf'-debugger
- put fflush(stdout); after every printf
- ▶ for point-to-point communication, print data being sent and received
- prefix each message with the process rank, sort by rank! messages received from different processes do not necessarily arrive in chronological order
- ▶ make sure that all the data structures have been set up correctly

Most frequent sources of trouble

Sequential programming

1. interface problems (types, storage of pointers to data)

Sequential programming

- 1. interface problems (types, storage of pointers to data)
- 2. pointer and dynamical memory management

Sequential programming

- 1. interface problems (types, storage of pointers to data)
- 2. pointer and dynamical memory management
- 3. logical and algorithmic bugs

Sequential programming

- 1. interface problems (types, storage of pointers to data)
- 2. pointer and dynamical memory management
- 3. logical and algorithmic bugs

Parallel programming

1. communication

Sequential programming

- 1. interface problems (types, storage of pointers to data)
- 2. pointer and dynamical memory management
- 3. logical and algorithmic bugs

- 1. communication
- 2. races

Sequential programming

- 1. interface problems (types, storage of pointers to data)
- 2. pointer and dynamical memory management
- 3. logical and algorithmic bugs

- 1. communication
 - 2. races
 - 2. Taces
 - 3. deadlocks

Races

Definition: A race produces an unpredictable program state and behavior due to un-synchronized concurrent executions.

Most often data races occur, which are caused by unordered concurrent accesses of the same memory location from multiple processes.

Example: 'triangle inequality'

Effect: non-deterministic, non-reproducable program running

Deadlock I

Т	ime	Process A	Process B
	1	MPI_Send to B, tag $= 0$	local work
	2	MPI_Send to B, $tag=1$	local work
	3	local work	MPI_Recv from A, tag $=1$
	4	local work	MPI_Recv from A, tag $=0$

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $= 0$	local work
2	MPI_Send to B, $tag=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	MPI_Recv from A, tag $= 0$

► The program will deadlock, if system provides no buffer.

'arallel Numerical Algorithms

Communication with MPI

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $= 0$	local work
2	MPI_Send to B, $tag=1$	local work
3	local work	<code>MPI_Recv</code> from A, tag $=1$
4	local work	MPI_Recv from A, tag $= 0$

- ▶ The program will deadlock, if system provides no buffer.
- ▶ Process A is not able to send message with tag=0.

Deadlock I

Time	Process A	Process B
1	MPI_Send to B, tag $= 0$	local work
2	MPI_Send to B, tag $=1$	local work
3	local work	MPI_Recv from A, tag $=1$
4	local work	$ exttt{MPI_Recv from A, tag} = 0$

- ▶ The program will deadlock, if system provides no buffer.
- Process A is not able to send message with tag=0.
- ▶ Process B is not able to receive message with tag=1.

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

▶ The program will deadlock, if system provides no buffer.

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

- ► The program will deadlock, if system provides no buffer.
- ▶ Process A and Process B are not able to send messages.

Deadlock II

Time	Process A	Process B
1	MPI_Send to B	MPI_Send to A
2	MPI_Recv from B B	MPI_Recv from A

- The program will deadlock, if system provides no buffer.
- ▶ Process A and Process B are not able to send messages.
- ► Order communications in the right way!

Example: Exchange of messages

```
if (myrank == 0) {
    MPI_Send( sendbuf, 20, MPI_INT, 1, tag, communicator);
    MPI_Recv( recvbuf, 20, MPI_INT, 1, tag, communicator, &status);
}
else if (myrank == 1) {
    MPI_Recv( recvbuf, 20, MPI_INT, 0, tag, communicator, &status);
    MPI_Send( sendbuf, 20, MPI_INT, 0, tag, communicator);
}
```

- ▶ This code succeeds even with no buffer space at all !!!
- ▶ Important note: Code which relies on buffering is considered unsafe !!!

- ► MPE is a software package for MPI programmers.
- useful tools for MPI programs, mainly performance visualization
- ▶ latest version is called MPE2
- current tools are:
 - 1. profiling libraries to create logfiles
 - 2. postmortem visualization of logfiles when program is executed
 - 3. shared-display parallel X graphics library
 - 4. . . .

