Abstract

kk

1 Uvod

2 Funkcije dveh spemenljivk

Definicija 1. Funkcija dveh neodvisnih spremenljivk je predpis, ki vsakemu paru (x, y) iz podmnožice ravnine predpiše natančno določeno realno število. Je preslikava $R^2 \to R$.

$$f:(x,y)\Rightarrow z=f(x,y)$$

Realno število, ki je prirejeno spremenljivkam v trorazsežnem prostoru pomeni višino nad točko. Upodabljamo lahko le funkcije z do tremimi spremenljivkami, za sistem štirih ali večih spemenljivk pa je upodabljanje nemogoče. Za razliko od funkcij z eno spremenljivko upodabljamo funkcije dveh spremenljivk s ploskvijo, ki ima enačbo u-f(x,y)=0. Spoznali smo nekaj preprostih funkcij, ogledali pa smo si tudi primere zahtevnejših funkcij dveh spremenljivk.

Zgled 1. Funkcija $f(x,y) = x^2 + y^2$ Graf funkcije je dvorazsežni objekt v trorazsežnem prostoru.

Figure 1: Graf funkcije f(x,y)

Zgled 2. Primer zahtevnejše funkcije $g(x,y) = x^2 sin(x) y^3$

Figure 2: Graf funkcije g(x,y)

3 Volumen krogle

Izračunali smo tudi volumen krogle z različnimi metodami:

Zgled 3. Izračun prostornine vrtenine, ki nastane z vrtenjem funkcije $f(x) = \sqrt{(1-x^2)}$.

$$V = \pi \int_{a}^{b} f(x)^{2} dx$$

$$V = \pi \int_{-1}^{1} \sqrt{(1 - x^{2})^{2}} dx = \pi \left(x - \frac{x^{3}}{3}\right) \Big|_{-1}^{1} = \pi \left(1 - \frac{1}{3}\right) - \pi \left(-1 + \frac{1}{3}\right)$$

$$V = \frac{4}{3}\pi$$

4 Računanje determinante reda 2 in 3

Poglejmo si kako se računa determinanta reda 2 in 3. Tukaj so eksplicitne formule za njihov izračun.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

5 Zamenjava spremenljivke v integralu

Najprej se bomo seznanili s primerom zamenjave ene spremenljivke potem pa bomo spoznali še zamenjavo dveh in treh spremenljivk v integralu. Naj bo f zvezna na [a,b] in ϕ zvezno odvedljiva funkcija, ki interval $[\alpha,\beta]$ preslika bijektivno na interval [a,b] tako, da je $\phi(\alpha)=a$ in $\phi(\beta)=b$. Tedaj je

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt$$

Na podoben način lahko zamenjamo več spremenljivk. Naj bo $U \subset \mathbb{R}^n$ odprta množica z volumnom $\neq 0$ in $g: U \to \mathbb{R}^n$ dovolj lepa preslikava.

Izrek 1. Naj bo $|\det Dg(t)| \neq 0$ za vse $t \in U$ in omejena na U. Predpostavimo, da ima g(U) volumen. Za vsako integrabilno funkcijo $f: g(U) \rightarrow \mathbb{R}$ velja:

$$\int_{g(U)} f(x) dV = \int_{U} f(g(t)) |\det Dg(t)| dV$$