

Unidade 4 - Princípios de Engenharia de Requisitos Parte 2

CERTIFICAÇÃO CPRE-FL

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP

aparecidovfreitas@gmail.com

Bibliografia

- Fundamentos de Engenharia de Requisitos POHL K., RUPP C. IREB 2012
- Software Engineering A Practitioner's Approach Roger S. Pressman Eight Edition 2014
- Software Engineering Ian Sommerville 10th edition 2015
- Engenharia de Software Uma abordagem profissional Roger Pressman McGraw Hill, Sétima Edição - 2011
- Engenharia de Software Ian Sommerville Nona Edição Addison Wesley, 2007
- Requirements Engineering Fundamentals IREB Compliant Klaus Pohl e Chris Rupp CPRE-FL, 1996.

Categorização de Requisitos Modelo de Kano

- Os fatores que determinam a satisfação do cliente são classificados nas seguintes categorias:
 - ✓ Fatores básicos de satisfação: Propriedades evidentes e pressupostas; (auto evidentes e tidas como certas) (conhecimento <u>subconsciente</u>)
 - ✓ Fatores esperados de satisfação: Propriedades explicitamente exigidas do sistema; (conhecimento consciente)
 - ✓ Fatores inesperados de satisfação: Propriedades do sistema que o stakeholder não conhece ou espera, e que ele descobre apenas ao utilizar o sistema - encantamentos. (conhecimento inconsciente)

Modelo de Kano

Fatores Básicos de Satisfação

- Devem ser atendidos pelo sistema de qualquer maneira;
- Do contrário, os stakeholders ficarão decepcionados (dissatisfiers);
- Mesmo se atendidos, não geram uma atitude positiva por parte dos stakeholders;
- São predominantemente influenciados pelos sistemas existentes;
- Assim, técnicas de observação e técnicas centradas em análise de documentos são adequadas para se elicitar esses fatores.

Fatores Esperados de Satisfação

- Correspondem aos requisitos conscientes (explícitos);
- Propriedades conscientemente conhecidas e explicitamente exigidas pelos stakeholders;
- Quando atendidas, os stakeholders ficam contentes e satisfeitos (daí o termo satisfiers), o que é desejável;
- Se algumas dessas propriedades estiverem faltando, provavelmente o stakeholder <u>não</u> aceitará o sistema;
- São comumente elicitados por meio de questionários e entrevistas.

Fatores Inesperados de Satisfação

- Propriedades do sistema cujo valor somente é reconhecido quando o stakeholder pode testar o sistema na prática, ou quando o ER as propõe (*delighters*);
- Correspondem aos fatores inconscientes de conhecimento (ocultos);
- Geram <u>encantamentos</u> dos stakeholders;
- Técnicas de criatividade são as mais indicadas para elicitar esses tipos de fatores.

Técnicas de Elicitação

Têm a finalidade de identificar os requisitos conscientes, inconscientes e subconscientes dos stakeholders.

Quais os fatores que influenciam na escolha das Técnicas de Elicitação ?

Fatores para a escolha da Técnica de Elicitação

- Distinção entre requisitos conscientes, inconscientes e subconscientes;
- Restrições em termos de Tempo e Orçamento, bem como disponibilidade dos stakeholders;
- Experiência do ER;
- Oportunidades e Riscos do Projeto.

Técnicas de Pesquisa

- Partem do pressuposto de que o respondente é capaz de expressar explicitamente seu conhecimento;
- Respondente está comprometido a investir tempo e esforço para a elicitação;
- São geralmente dirigidas pelo ER;
- ER que faz as perguntas;
- Stakeholder pode se esquecer ou ignorar preocupações;
- Baseiam-se em <u>entrevistas</u> ou <u>questionários</u>.

Quais as vantagens e desvantagens da Técnica de Pesquisa baseada em Entrevistas ?

Entrevistas

- ER faz as perguntas para um ou mais Stakeholders;
- ER documenta as respostas;
- Perguntas bem formuladas podem revelar requisitos subconscientes;
- Principal desvantagem: tempo consumido para a elicitação.

Quais as vantagens e desvantagens da Técnica de Pesquisa baseada em Questionários ?

Questionários

- ER pode fazer uso de questões abertas ou fechadas (ex. Múltipla escolha);
- Para grande número de Stakeholders, questionário online é uma opção viável;
- Podem elicitar grande número de informações em curto espaço de tempo;
- Baixo custo;
- Desvantagem: coleta de requisitos que o ER já conhece ou conjectura;
- Não fornecem retroalimentação imediata entre stakeholder e ER.

Técnicas de Criatividade

- Tem a finalidade de desenvolver requisitos inovadores;
- Podem esboçar uma visão inicial do sistema;
- Podem elicitar <u>fatores inesperados de satisfação</u> (delighters);
- Em geral, não são adequadas para estabelecer requisitos precisos sobre comportamento do sistema;
- Dentre as técnicas, cita-se: brainstorming e mudança de perspectiva.

Brainstorming

- Ideias são coletadas durante certo período de tempo, geralmente com grupos de 5 a 10 pessoas;
- Ideias são documentadas por um moderador, sem serem discutidas, julgadas ou comentadas inicialmente;
- Participantes usam ideias de outros participantes para desenvolver ou modificar ideias existentes;
- Em outro tempo, as ideias coletadas são submetidas à uma análise rigorosa;
- Vantagem: grande número de ideias são coletadas em curto espaço de tempo;
- Desvantagem: Menos eficaz quando a dinâmica do grupo é confusa ou quando há membros muito dominantes no grupo.

Brainwriting

- Corresponde ao método 6-3-5;
- Seis participantes, cada um escreve três ideias numa folha de papel;
- Essa folha é repassada aos outros membros, que comentam e desenvolvem as ideias recebidas, processo que se repete 5 vezes.

Mudança de Perspectiva

Técnica conhecida por "Seis chapéus do pensamento" [DeBono, 2006]

- Cada chapéu representa uma perspectiva adotada, uma após a outra, por cada participante;
- As soluções daí resultantes abordam o problema a partir de perspectivas diferentes;
- Técnica benéfica quando stakeholders estão obstinadamente presos à suas opiniões;
- Difícil de ser aplicada se os requisitos exigem um nível de detalhamento muito grande, pois isso tornaria a técnica muito cansativa.

Técnicas baseadas em Documentos

- Reutilizam soluções e experiências feitas com sistemas existentes;
- Ao substituir-se um sistema legado, essa técnica assegura que a funcionalidade completa do sistema possa ser identificada;
- Devem ser combinadas com outras técnicas de elicitação para que novos requisitos possam ser identificados;
- Fazem parte dessa técnica:
 - Arqueologia do Sistema: Extração de informações a partir da documentação ou código do sistema legado;
 - <u>Leitura baseada em perspectiva</u>: Foca-se em partes específicas da documentação do sistema, a partir de uma perspectiva específica, por exemplo: do implementador ou do testador.
 - Reutilização: Consulta-se documentação de requisitos que foram compilados anteriormente e reutiliza-os.

Técnicas de Observação

- ER observa os stakeholders enquanto trabalham;
- ER documenta todos os passos e elicita os processos que o sistema deverá suportar, bem como potenciais erros, riscos e questões em aberto;
- Técnica apropriada para elicitar requisitos detalhados e <u>fatores básicos de satisfação</u> (<u>dissatisfiers</u>), pois o ER pode identificar fatores considerados óbvios, ou aqueles que os stakeholders apenas conhecem no subconsciente.
- Permite que o ER se familiarize com a linguagem do domínio, o que simplifica o processo de elicitação.

Técnicas de Apoio

- Mapas Mentais
- Workshop
- CRC Class Responsability Collaboration
- Gravações de áudio e vídeo
- Modelagem de Casos de Uso
- Protótipos

Documentação de Requisitos

Na Engenharia de Requisitos, informações levantadas durante as diversas atividades devem, obrigatoriamente, ser documentadas.

O que é Especificação de Requisitos ?

Especificação de Requisitos

É uma coleção de requisitos <u>representada de forma sistemática</u>, tipicamente para um sistema ou componente, atendendo a determinados critérios.

Quais as razões para se documentar requisitos ?

Razões para se documentar Requisitos

- Requisitos formam a base para o desenvolvimento do sistema;
- Requisitos tem <u>relevância legal</u>;
- Documentos de requisitos são complexos;
- Requisitos devem ser acessíveis para todas as partes envolvidas.

Tipos de Documentação

- Requisitos para um sistema podem ser documentados a partir de três perspectivas diferentes. (Estrutural (dados), Funcional, Comportamental);
- Essas perspectivas são complementares (uma não substitui a outra...);
- Na prática, tanto <u>linguagem natural</u> (texto) quanto a <u>modelagem conceitual</u> são utilizadas para esse fim, ou muitas vezes, emprega-se uma <u>combinação</u> apropriada entre as duas.

Documentação de Requisitos com Linguagem Natural

- É a forma de documentação de requisitos mais aplicada na prática;
- Vantagem: Stakeholders <u>não precisam aprender nova notação</u>;
- Entretanto, pode resultar em requisitos ambíguos.

Documentação de Requisitos com Modelos Conceituais

- Estão associadas à cada perspectiva;
- Pode-se retratar os requisitos de forma mais <u>compacta</u>;
- Apresentam menor grau de ambiguidade;
- No entanto, exige conhecimentos específicos de modelagem de software.

Diagramas - Modelos Conceituais

- Diagrama de Caso de Uso.
- Diagrama de Classes.
- Diagrama de Atividades.
- Diagrama de Estados

Estruturas Padronizadas de Documentos

- RUP Rational Unified Process [Kruchten,2001];
- Norma IEEE standard 830-1998;
- Modelo-V [V-Modell 2004] Ministério do Interior da Alemanha.

Estruturas Padronizadas de Documentos

- Padrão ISO **29148:2011** sugere que o documento de requisitos tenha 5 partes:
 - ✓ Informação introdutória e descrição geral do software;
 - ✓ Lista de documentos referenciados;
 - ✓ Lista de requisitos especificados;
 - ✓ Medidas planejadas para verificação;
 - ✓ Apêndices.

Estrutura do Documento de Requisitos

As seguintes questões deveriam ser abordadas por qualquer estrutura de documento de Especificação de Requisitos:

- Introdução
- Finalidade
- Cobertura do Sistema
- Stakeholder
- Definições, acrônimo e abreviações
- Referências
- Visão Geral
- Ambiente do Sistema
- Descrição da Arquitetura
- Funcionalidades do Sistema
- Usuários e público-alvo
- Restrições
- Pressupostos
- Requisitos
- Apêndices
- Índice

Usos do Documento de Requisitos

- Planejamento
- Análise e Projeto
- Implementação
- Teste
- Gerenciamento de Mudanças
- Uso do sistema e manutenção
- Gerenciamento do Contrato

Critérios de Qualidade para o Documento de Requisitos

IEEE 830-1998

- Não-ambiguidade e consistência;
- Estrutura clara;
- Modificabilidade e extensibilidade;
- Completude [IEEE-1998];
- Rastreabilidade [IEEE-1998].

Critérios de Qualidade para o Documento de Requisitos

IEEE 830-1998

Os critérios de qualidade definidos na norma IEEE 830-1998 podem ser aplicados tanto para requisitos individuais como para documentos completos de requisitos

- Acordado
- Priorizado
- Não-ambíguo
- Válido e atualizado
- Correto
- Consistente
- Verificável
- Realizável
- Rastreável
- Completo
- Compreensivel

Regras fundamentais para a Legibilidade de Requisitos

- Frases Curtas e parágrafos curtos;
- Formular apenas um requisito por frase.

Glossário

- Uma causa frequente de <u>conflitos</u> na Engenharia de Requisitos ocorre quando pessoas envolvidas no processo de desenvolvimento de Software têm diferentes interpretações de termos.
- Um glossário é uma coleção de definição de termos, apresentando os seguintes elementos:
 - Termos técnicos do contexto
 - ✓ Abreviações e acrônimos
 - ✓ Conceitos do dia-a-dia
 - ✓ Sinônimos
 - ✓ Homônimos

- Tem que ser gerenciado de forma centralizada;
- Deve-se eleger quem fará a manutenção do glossário;
- Deve ser atualizado de forma constante;
- Deve ser acessível;
- Seu uso deve ser obrigatório;
- Deve conter a origem dos termos;
- Precisa ser acordado entre as partes interessadas;
- Deve ter uma estrutura consistente.

Documentação de Requisitos com Linguagem Natural

- Requisitos elicitados são frequentemente documentados usando linguagem natural;
- É mais facilmente compreendida pelos stakeholders;
- Não exige preparação dos stakeholders para compreender a especificação.

Efeitos da Linguagem Natural

- É inerentemente <u>ambígua</u>.
- Requisitos podem se manisfestar de forma diferente em cada pessoa ("Efeitos Transformacionais")

Efeitos Transformacionais

- Nominalização;
- Substantivos sem indicador de referência;
- Quantificadores universais;
- Condições especificadas de forma incompleta;
- Verbos de processo especificados de forma incompleta.

Nominalização

- Um processo (às vezes de longa duração) é convertido em um evento (singular)
- Dessa forma, todas as informações necessárias para descrever o processo acuradamente são perdidas.

Exemplo: Nominalização

"Em caso de crash do sistema, será realizado um restart do sistema"

- Os termos crash do sistema e restart descrevem, respectivamente, processos que deveriam ser analizados com maior precisão...
- Termos nominalizados não devem deixar qualquer margem de interpretação dos processos e deve representar o processo de forma precisa, incluindo quaisquer exceções que possam ocorrer, bem como todos os parâmetros de entrada e saída.
- Portanto, as nominalizações devem ser evitadas. Se presentes, deve-se examinar se foram suficientemente detalhadas em outra parte do Documento de Requisitos e, portanto, devem estar claras para todos os Stakeholders.

Substantivos sem indicador de Referência

- Substantivos especificados de forma incompleta;
- Linguistas referem-se a isso como a falta de um indicador de referência.

Exemplo: Substantivos sem indicador de referência

"Os dados deverão ser exibidos para o usuário no terminal"

- Quais dados ?
- Qual usuário ?
- Qual terminal, exatamente ?
- Requisito deveria ser: "O sistema deve exibir os dados de faturamento para o usuário cadastrado no terminal em que ele estiver logado"

Quantificadores Universais

- Especificam quantidades e frequências. Agrupam um conjunto de objetos e fazem uma declaração sobre o comportamento desse grupo; Utilizam os seguintes termos: Nunca, Sempre, Não, Nenhum, Cada, Todos, Alguns, Nada;
- Existe o risco do comportamento ou da propriedade especificada, não se aplicar à todos os objetos do conjunto especificado.

Exemplo: Quantificadores universais

' O sistema deverá mostrar <u>todos</u> os dados em <u>cada</u> submenu"

- Nesse casos, é preciso fazer as seguintes perguntas:
- Realmente em cada submenu?
- Realmente todos os conjuntos de dados ?
- Quantificadores universais podem facilmente ser identificados por meio de "palavras-gatilho" (trigger words) tais como: nunca, sempre, nenhum, cada, todos, alguns ou nada.

Condições especificadas de forma incompleta

- Requisitos contendo condições especificam o comportamento que deve ocorrer quando a condição for atendida. Empregam os termos Se.. Então, No caso de , Se ... , Em função de ;
- Mas, também devem especificar o comportamento quando a <u>condição não for</u> <u>atendida</u> (essa parte costuma faltar nas especificações)

Exemplo: Condições especificadas de forma incompleta

O sistema do restaurante deverá oferecer todas as bebidas para um cliente registrado com mais de 20 anos"

- Que bebidas o sistema vai oferecer para um cliente que tenha 20 anos ou menos ?
- Se essa questão for esclarecida, o requisito poderá ser formulado como segue:
- " O sistema do restaurante deverá oferecer:

Todas as bebidas não alcoólicas para qualquer usuário registrado com menos de 21 anos. Todas as bebidas, inclusive as alcoólicas, para qualquer usuário registrado acima de 20 anos."

Verbos de processo especificados de forma incompleta

- Alguns verbos de processo requerem mais de um substantivo para serem especificados de forma completa. Por exemplo, o verbo "transmitir" exige pelo menos três suplementos para ser considerado completo: O que é transmitido, de onde é transmitido e para onde é transmitido;
- Isso pode ser evitado, na maioria das vezes, se os requisitos passarem a ser formulados na voz ativa e não na voz passiva.

Exemplo: Verbos de processo especificados de forma incompleta

" Para logar um usuário, os dados de login são inseridos"

- O requisito foi formulado na voz passiva. Não está claro quem vai inserir os dados de login.
- Também não está claro onde e como isso será feito.
- Se esse requisito fosse especificado na voz ativa, a formulação poderia ser:

"O sistema deve permitir ao usuário inserir seu username e senha usando o teclado do terminal"

Requisitos com o uso de Templates

- Fornecem uma abordagem simples para se reduzir os efeitos transformacionais de linguagem ao se documentar requisitos.
- Fornecem o apoio para que o ER possa obter alta qualidade e não-ambiguidade sintática, com baixo custo e tempo otimizado.

O que é Template de Requisitos ?

Template de Requisitos

• É um padrão para a <u>estrutura sintática</u> de requisitos individuais.

Modelagem, Validação e Gestão de Requisitos

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP

O que significa documentar Requisitos com o uso de Modelos ?

Documentação de Requisitos com Modelos

- Na prática, os requisitos são frequentemente documentados por meio da linguagem natural;
- Entretanto, cada vez mais Requisitos tem sido documentados com o emprego de modelos;
- Modelos de requisitos são utilizados <u>adicionalmente</u> à documentação de requisitos em linguagem natural e substituem parcialmente requisitos que seriam documentados em linguagem natural.

O que é Modelo?

Modelo

- Um modelo é uma <u>imagem</u> que abstrai da realidade ou que funciona como uma representação abstrata da realidade a ser criada;
- A modelagem pode ser aplicada a objetos materiais ou imateriais de uma realidade existente ou de uma realidade a ser desenvolvida;
- Um modelo é uma representação abstrata de uma realidade existente ou de uma realidade a ser criada. [Stachowiak, 1973]

Propriedades de Modelos

- Representação da realidade;
- Redução da realidade;
- Pragmatismo (construído para uma finalidade prática e específica)

Linguagens de Modelagem

- Linguagens específicas para construção de modelos conceituais;
- São definidas por sua sintaxe e semântica;
- UML (Unified Modeling Language) é frequentemente utilizada para construir modelos de requisitos;
- UML tornou-se o padrão para a construção de sistemas de software baseada em modelos;

Vantagens dos Modelos de Requisitos

- Informações podem ser percebidas e memorizadas de forma mais rápida e melhor quando quando retratadas de forma gráfica ao invés de usar a linguagem natural.
- Linguagens de modelagem têm um enfoque estritamente definido. (Ex. Planta de Arquitetura, Planta Elétrica, Planta Hidráulica, Planta Estrutural...)

Casos de Uso

O que é Modelo de Caso de Uso?

Modelo de Caso de Uso

- Modela os requisitos funcionais de um sistema;
- Na UML, para a modelagem de caso de uso empregam-se dois conceitos:
 - ✓ Diagramas de Casos de Uso;
 - ✓ Especificações de Casos de Uso

Não diga pouco em muitas palavras, mas sim, muito em poucas. Pitágoras

Diagramas de Caso de Uso

- Descreve de forma <u>esquemática</u> um **cenário** que exibe as <u>funcionalidades</u> do sistema sob ponto de vista do usuário.
- Apresentam o relacionamento das funções de um sistema.
- Apresentam também o relacionamento das funções de um sistema com seu ambiente.

Qual a importância do Diagrama de Caso de Uso?

Diagrama de Caso de Uso

- Direciona diversas tarefas posteriores do ciclo de vida do software;
- Força os desenvolvedores a moldar o sistema de acordo com o usuário.

Quais os elementos essenciais da Modelagem com Caso de Uso?

Elementos essenciais da Modelagem com Caso de Uso

- Casos de Uso
- Atores
- Limites do Sistema
- Relação de Inclusão (Include)
- Relação de Extensão (Extend)
- Relacionamentos entre Atores e Casos de Uso

Exemplo - Diagrama de Caso de Uso UML

Como documentar um caso de uso?

Documento de Caso de Uso

- Descreve, por meio de linguagem natural, a função em linhas gerais do caso de uso;
- Definem as etapas que devem ser executadas pelo ator e pelo sistema;
- Definem Restrições;
- Definem Validações.

Documento de Caso de Uso

- UML não define um formato específico;
- Assim, o formato é bastante flexível;
- Pode-se usar pseudo-código, embora esse procedimento fuja bastante do objetivo do Diagrama de Casos de Uso, que é usar uma linguagem simples, de forma que até mesmo leigos possam entendê-la;
- Fornece a base para o <u>plano de testes</u> do sistema.

Documento de Caso de Uso - Template

Documento de Caso de Uso - Template

Nome do Caso de Uso	
Caso de Uso Geral Ator Principal	
Ator Secundário	
Resumo	
Pré-Condições	
Pós-Condições	
	rincipal
Ações do Ator	Ações do sistema
	ernativo - I
Ações do Ator	Ações do sistema
	ernativo - II
Ações do Ator	Ações do sistema
	Exceção
Ações do Ator	Ações do sistema
Restrições	e Validações

Três Perspectivas sobre Requisitos

- Perspectiva Estrutural: Documentam-se as estruturas de dados de entrada e saída, bem como aspectos estático-estruturais das relações de uso e dependência no contexto do sistema;
- Perspectiva Funcional: Documentam-se as informações do contexto do sistema que estão sendo manipuladas pelo sistema e quais dados estão transmitidos para o contexto do sistema;
- Perspectiva Comportamental: Documentam-se a interação do sistema no contexto com base em estados.

Modelagem de Requisitos na Perspectiva Estrutural

- Diagramas Entidade-Relacionamento
- Diagramas de Classe UML

Modelagem de Requisitos na Perspectiva Funcional

- Diagramas de Fluxo de Dados (DFD)
- Diagramas de Atividades UML

Modelagem de Requisitos na Perspectiva Comportamental

- Diagrama de Estados UML
- Diagramas de Sequência UML

Fundamentos da Validação de Requisitos

- Durante a Engenharia de Requisitos é necessário validar-se a <u>qualidade</u> dos requisitos desenvolvidos;
- O objetivo da Validação de Requisitos é descobrir erros nos requisitos documentados;
- A correção dos erros nos requisitos quando o sistema já está em operação implica em <u>custos</u> <u>significativamente</u> <u>altos</u>;
- Erros críticos em requisitos podem levar ao não cumprimento de acordos contratuais.

Fundamentos da Negociação de Requisitos

- Se não houver consenso entre os stakeholders a respeito dos requisitos, cria-se um conflito;
- A <u>aceitação do sistema é ameaçada</u> por conflitos não resolvidos;
- No pior cenário, um conflito pode causar a <u>retirada de apoio</u> por parte do stakeholder, levando ao fracasso do projeto de desenvolvimento;
- O objetivo da negociação é chegar a uma <u>compreensão</u> comum e <u>acordada</u> dos requisitos do sistema a ser desenvolvido entre todos os stakeholders.

Validação e Negociação de Requisitos

- São atividades realizadas ao longo de todo o processo de Engenharia de Requisitos;
- Portanto, geram trabalhos adicionais e, consequentemente, custos adicionais;
- Entretanto, trazem diversas <u>vantagens</u> tais como: redução do custo global do sistema, aumento da aceitação, estímulo para soluções criativas e inovações.

Aspectos de Qualidade dos Requisitos

- Conteúdo: Todos os requisitos foram elicitados e documentados com o nível apropriado de detalhamento?
- Documentação: Todos os requisitos foram documentados em conformidade com as diretrizes de documentação e especificação previamente determinadas?
- Acordo: Todos os stakeholders concordam com os requisitos documentados e todos os conflitos conhecidos foram resolvidos?

Aspectos de Qualidade "Conteúdo"

- Completude global: Todos os requisitos relevantes para o sistema a ser desenvolvido (ou para o próximo release do sistema) foram documentados?
- Completude individual: Cada requisito contém todas as informações necessárias?
- Rastreabilidade: Todos os relacionamentos relevantes de rastreabilidade foram definidos?
- <u>Exatidão/adequação</u>: Os requisitos refletem acuradamente os desejos e necessidades dos stakeholders?
- Consistência: É possível implementar todos os requisitos definidos para o sistema conjuntamente? Não há contradições?
- Verificabilidade: É possível definir critérios de aceitação e teste com base nos requisitos? Os critérios foram definidos?
- Necessidade: Cada requisito contribui para o cumprimento dos objetivos propostos?

Riscos associados à Qualidade "Documentação"

- Comprometimento das atividades de Desenvolvimento: Formato empregado na documentação pode dificultar as atividades de desenvolvimento;
- Compreensão: Falha na documentação pode causar dificuldade de compreensão dos requisitos;
- Incompletude: Informações relevantes dos requisitos podem não estar documentadas;
- Requisitos ignorados: Se os requisitos não estiverem documentados no ponto onde deveriam, esses requisitos podem passar despercebidos em atividades posteriores.

Aspectos de Qualidade "Documentação"

- Conformidade com o <u>formato</u> da documentação;
- Conformidade com a <u>estrutura</u> da documentação;
- Inteligibilidade;
- Não-ambiguidade;
- Conformidade com as <u>regras</u> de documentação.

Aspectos de Qualidade "Acordo"

- Todos os stakeholders relevantes estão de <u>acordo</u> com cada requisito?
- Todos os stakeholders estão de acordo com cada requisito após o mesmo ter sido alterado?
- Todos os conflitos conhecidos com respeito a requisitos foram resolvidos?

Gestão de Requisitos

- Designar <u>atributos</u> para requisitos (identificadores únicos ao longo de todo o processo de Engenharia de Requisitos);
- Visualização de Requisitos (para manter a complexidade dos requisitos dentro de limites práticos é necessário acessar os requisitos de forma seletiva, filtrando-se os requisitos de acordo com a tarefa atual;
- Priorização de Requisitos
- Rastreabilidade de Requisitos
- Versionamento de Requisitos
- Gerenciamento de <u>Mudanças</u> de Requisitos

