# 圏と表現論 演習問題

## @naughiez

## Contents

| 2 | 表現  |             |  |  |  |  |  |      |  |      |  |  |  |  |  |  |  |  | • | 1 |
|---|-----|-------------|--|--|--|--|--|------|--|------|--|--|--|--|--|--|--|--|---|---|
|   | 2.2 | 多元環と線形圏の加群圏 |  |  |  |  |  | <br> |  | <br> |  |  |  |  |  |  |  |  |   | 2 |



## 第2章表現

## § 2.2 多元環と線形圏の加群圏

 $\mathbb{k}$  を可換体(可換環でもよい)とする. また,左加群の圏を  $\operatorname{Mod}(X)$ ,右加群の圏を  $\operatorname{Mod}(X^{\operatorname{op}})$  で表す.

#### **PROBLEM 2.2.6**

A を多元環,M を左 A 加群とする。I を集合とし,M の部分加群族  $(M_i)_{i\in I}$  を考える。 このとき,部分空間  $\bigcap_{i\in I} M_i$  と  $\sum_{i\in I} M_i$  はともに M の部分加群となる。

#### Proof. 交叉が部分加群:

元  $m \in \bigcap_{i \in I} M_i$  と  $a \in A$  を任意に取る.このときすべての  $i \in I$  について  $m \in M_i$  で, $M_i$  は M の部分加群 だから  $am \in M_i$ .よって  $am \in \bigcap_{i \in I} M_i$  が分かる.

## 和が部分加群:

 $\sum_{i \in I} M_i$  の元

$$\sum_{i \in I} m_i \quad (m_i \in M_i, i \in I)$$

を任意に取ると、有限個の  $i \in I$  を除いて  $m_i = 0$  だから、 $am_i \neq 0$  なる  $i \in I$  も有限個である.ただし  $a \in A$ . よって和  $\sum_{i \in I} am_i \in M$  が定義でき、各  $M_i$  が部分加群だから  $am_i \in M_i$  であり、 $\sum_{i \in I} am_i \in \sum_{i \in I} M_i$  となる.

#### **PROBLEM 2.2.8**

A を多元環とし,M を左 A 加群とする.部分集合  $S \subset M$  について,S を含む最小の部分加群を  $\langle S \rangle$  と書き,S で生成された M の部分加群と呼ぶ.このとき次を示せ.

- i) 部分集合  $S \subset M$  に対して、 $\langle S \rangle = \sum_{m \in S} Am$ .
- ii) 次は同値:
  - a) M は A 上有限生成である;
  - b) 有限個の M の元  $m_1, ..., m_n \in M$  が存在して  $M = Am_1 + \cdots + Am_n$  と書ける;
  - c) ある自然数  $n \in \mathbb{N}$  に対して全射準同型  $A^{\coprod n} \to M$  が存在する.

iii) A が  $\mathbb{k}$  上有限次元(有限生成)ならば,M が A 上有限生成であることと, $\mathbb{k}$  上有限次元であることは同値である.

#### Proof. (i)

まず、任意の $m \in S$  に対して $m = 1m \in Am$ であるから、 $\langle S \rangle \subset \sum_{m \in S} Am$ が成り立つ.

逆に、S を含む任意の部分加群  $L \subset M$  を取ると、各  $m \in S$  に対して  $m \in L$  だから  $Am \subset L$ . よって  $\sum_{m \in S} Am \subset L$  となり、 $\sum_{m \in S} Am \subset \langle S \rangle$  が従う.

(ii)

- $(a) \iff (b)$
- (i) より明らか.
- $(b) \Longrightarrow (c)$

有限個のMの元 $m_1,...,m_n \in M$ によって $M = \sum_{1 \leq i \leq n} Am_i$ と書けたとする。各 $1 \leq i \leq n$ に対して $A_i \coloneqq A$ とおき, $A^{\sqcup n} = \coprod_{1 \leq i \leq n} A_i$ とする。

このとき、全射準同型  $\phi: A^{\coprod n} \to M$  が

$$\sum_{1 \le i \le n} a_i \mapsto \sum_{1 \le i \le n} a_i m_i \quad (a_i \in A_i, i \in I)$$

によって定義できる.

 $(c) \Longrightarrow (b)$ 

ある自然数  $n\in\mathbb{N}$  と全射準同型  $\phi:A^{\coprod n}\to M$  が存在したとする. 各  $1\leqslant i\leqslant n$  に対して  $A_i\coloneqq A$  とおき,  $A^{\coprod n}=\coprod_{1\leqslant i\leqslant n}A_i$  とする.

このとき、各 $1 \le i \le n$  に対して $m_i := \phi(1_i)$  とおけば

$$M = \phi\left(A^{\sqcup n}\right) = \sum_{1 \leq i \leq n} \phi\left(A_i\right) = \sum_{1 \leq i \leq n} Am_i.$$

ただし、 $1_i \in A_i$  は  $A_i$  の単位元を表す.

(iii) *M* を **k** 上有限生成だとすると, 多元環 **k** について (ii) を用いて,

$$M = \mathbb{k}m_1 + \cdots + \mathbb{k}m_n$$

なる元  $m_1, ..., m_n \in M$  が存在し, $M = \Bbbk m_1 + \cdots + \Bbbk m_n \subset Am_1 + \cdots + Am_n \subset M$  より  $M = Am_1 + \cdots + Am_n$  を得る.よって M は A 上有限生成.

逆に M が A 上有限生成ならば有限個の元  $m_1, ..., m_n \in M$  を用いて  $M = Am_1 + \cdots + Am_n$  と書ける.同様に A が  $\mathbb{k}$  上有限生成だから,有限個の元  $a_1, ..., a_\ell \in A$  によって  $A = \mathbb{k} a_1 + \cdots + \mathbb{k} a_\ell$  と書ける.

すると

$$M = \sum_{1 \le i \le n} Am_i = \sum_{1 \le i \le n} \sum_{1 \le j \le \ell} \mathbb{k} a_j m_i$$

となるから、M は  $\mathbb{k}$  上有限生成である.

#### **PROBLEM 2.2.12**

A を多元環とする。圏  $\mathsf{Mod}(A)$  の射が、写像の意味で単射であることと、圏の意味でモノ射であることは同値であることを示せ、また、写像の意味で全射であることと、圏の意味でエピ射であることも同値であることを示せ、

*Proof.* 圏 Mod(A) における射  $f: M \to N$  を任意に取る.

#### 単射ならばモノ射:

射 f を単射とし、ある射  $g,h:L \to M$  について  $f \circ g = f \circ h$  が成り立ったとする.

このとき任意の  $m \in L$  に対して f(g(m)) = f(h(m)) であり、f が単射だから g(m) = h(m)). よって g = h となり、f はモノ射.

#### モノ射ならば単射:

M の部分空間  $\operatorname{Ker} f \subset M$  は部分加群であり、二つの射

$$\ker f: \operatorname{Ker} f \to M, \qquad m \mapsto m,$$
 
$$0: \operatorname{Ker} f \to M, \qquad m \mapsto 0$$

が存在する. 今  $f \circ \ker f = 0 = f \circ 0$  であり、f がモノ射だから  $\ker f = 0$  を得る. よって  $\ker f = 0$  となり、f は単射.

#### 全射ならばエピ射:

射 f を全射とし、ある射  $g,h: N \to L$  について  $g \circ f = h \circ f$  が成り立ったとする.

このとき f が全射だから任意の  $n \in N$  に対して n = f(m) なる  $m \in M$  が存在し, g(n) = g(f(m)) = h(f(m)) = h(n). よって g = h となり, f はエピ射.

#### エピ射ならば全射:

N の部分空間  $\operatorname{Im} f \subset N$  は部分加群であり、商加群  $\operatorname{Coker} f = N/\operatorname{Im} f$  を考えると、二つの射

が存在する. 今  $\operatorname{coker} f \circ f = 0 = 0 \circ f$  であり、f がエピ射だから  $\operatorname{coker} f = 0$  を得る. よって  $N = \operatorname{Im} f$  となり、f は全射.

#### **PROBLEM 2.2.13**

A を多元環とする. 圏 Mod(A) において、直積と直和がそれぞれ積と余積になることを示せ.

*Proof.* I を小集合, $(M_i)_{i \in I}$  を A 加群の族とする.

### 直積が積:

 $M \coloneqq \prod_{i \in I} M_i$  とおく. 各  $i \in I$  について  $\pi_i : M \to M_i$  を標準射影とする.

A 加群 N と準同型の族  $(\rho_i:N\to M_i)_{i\in I}$  が与えられたとき、準同型  $f:N\to M$  が

$$f(n) := (\rho_i(n))_{i \in I} \quad (n \in N)$$

によって定まる. このとき図式



は各 $i \in I$  について可換になる.

逆にある準同型  $g: N \to M$  存在してすべての  $i \in I$  に対して上の図式を可換にできたならば、等式

$$\pi_i(g(n)) = \rho_i(n) = \pi_i(f(n)) \quad (n \in N, i \in I)$$

より、g(n) の第 i 成分と f(n) の第 i 成分は各  $i \in I$  で等しくなり、g(n) = f(n) が言える. よって g = f. 直和が余積:

 $M\coloneqq\coprod_{i\in I}M_i$  とおく. 各  $i\in I$  について  $\sigma_i:M_i\to M$  を標準入射とする.

A 加群 N と準同型の族  $(\tau_i:M_i\to N)_{i\in I}$  が与えられたとき、準同型  $f:M\to N$  が

$$f(m) := \sum_{i \in I} \tau_i(m_i) \quad (m \in M_i)$$

によって定まる. このとき図式



は各 $i \in I$  について可換になる.

逆にある準同型  $g: M \to N$  が存在してすべての  $i \in I$  に対して上の図式を可換にできたならば、等式

$$g(\sigma_i(m)) = \tau_i(m) = f(\sigma_i(m)) \quad (m \in M_i, i \in I)$$

より、任意の $m \in M$ に対して $g(m) = \sum_{i \in I} g(\sigma_i(m_i)) = \sum_{i \in I} f(\sigma_i(m_i)) = f(m)$ となる。よってg = f.

#### **PROBLEM 2.2.15**

A を多元環,  $M \in Mod(A)_0$  とする. このとき次が同値であることを示せ.

- i) 圏 Mod(A) において、 $M \cong M_1 \coprod M_2$  (外部直和) ならば  $M_1 = 0$  または  $M_2 = 0$ .
- ii) M の部分加群  $M_1, M_2 \subset M$  に対して,  $M = M_1 \oplus M_2$  (内部直和) ならば  $M_1 = 0$  または  $M_2 = 0$ .

*Proof.* (i)  $\Longrightarrow$  (ii)

 $M=M_1\oplus M_2$  なる部分加群  $M_1,M_2\subset M$  が存在すれば、内部直和の定義より、 $M\cong M_1\sqcup M_2$  となる. よって  $M_1=0$  または  $M_2=0$ .

 $(ii) \Longrightarrow (i)$ 

A 加群  $M_1, M_2$  が存在して  $M \cong M_1 \coprod M_2$  となったとする.この同型を  $\phi: M_1 \coprod M_2 \to M$  とおけば, $\phi(M_1)$  と  $\phi(M_2)$  はともに M の部分加群で, $M = \phi(M_1) \oplus \phi(M_2)$  となる.実際, $M = \phi(M_1 \coprod M_2) = \phi(M_1) + \phi(M_2)$  で, $\phi(M_1) \cap \phi(M_2) = \phi(M_1 \cap M_2) = 0$  である.

よって  $\phi(M_1) = 0$  または  $\phi(M_2) = 0$  となるが、 $\phi$  は単射だから  $M_1 = 0$  または  $M_2 = 0$ .

#### **PROBLEM 2.2.19**

 $\mathcal{C}$  を線形圏とする。圏  $\operatorname{Mod}(\mathcal{C})$  の射が,写像の族の意味で単射であることと,圏の意味でモノ射であることは同値であることを示せ。また,写像の族の意味で全射であることと,圏の意味でエピ射であることも同値であることを示せ。

Proof. 圏 Mod(C) における射  $\alpha: M \to N$  を任意に取る. **PROBLEM 2.2.12** で  $A = \mathbb{R}$  としたものを断り無く使う.

#### 単射ならばモノ射:

射  $\beta$ , $\gamma$ : $L \rightarrow M$  が存在して  $\alpha \circ \beta = \alpha \circ \gamma$  となったとする.

このとき各  $x \in C_0$  に対して  $\alpha_x \circ \beta_x = \alpha_x \circ \gamma_x$  が成り立つ.  $\alpha$  は単射だから  $\alpha_x$  も単射,従ってモノ射となり,  $\beta_x = \gamma_x$  を得る. よって  $\beta = \gamma$  となり, $\alpha$  はモノ射.

#### モノ射ならば単射:

部分空間族  $(\operatorname{Ker}(\alpha_x) \subset M(x))_{x \in \mathcal{C}_0}$  によって定義される M の部分加群を  $\operatorname{Ker}\alpha$  と表す.  $\operatorname{Ker}\alpha = 0$  を言えばよい.

包含射  $\operatorname{Ker} \alpha \to M$  を  $\sigma = (\sigma_x : \operatorname{Ker} \alpha_x \to M(x))_{x \in \mathcal{C}_0}$  とする.このとき  $\alpha \circ \sigma = 0 = \alpha \circ 0$  であり, $\alpha$  はモノ射 だから  $\sigma = 0$ . よって  $\operatorname{Ker} \alpha = 0$  となり,各  $\alpha_x$  は単射である.

#### 全射ならばエピ射:

射  $\beta$ ,  $\gamma$ :  $N \to L$  が存在して  $\beta \circ \alpha = \gamma \circ \alpha$  となったとする.

このとき各  $x \in C_0$  に対して  $\beta_x \circ \alpha_x = \gamma_x \circ \alpha_x$  が成り立つ.  $\alpha$  は全射だから  $\alpha_x$  も全射, 従ってエピ射となり,  $\beta_x = \gamma_x$  を得る. よって  $\beta = \gamma$  となり,  $\alpha$  はエピ射.

#### エピ射ならば全射:

商空間族  $(N(x) \to \mathsf{Coker}(\alpha_x))_{x \in \mathcal{C}_0}$  によって定義される N の商加群を  $\mathsf{Coker}\,\alpha$  と表す. $\mathsf{Coker}\,\alpha = 0$  を言えばよい.

射影射  $N \to \operatorname{Coker} \alpha$  を  $\pi = (\pi_x : N(x) \to \operatorname{Coker} \alpha_x)_{x \in \mathcal{C}_0}$  とする.このとき  $\pi \circ \alpha = 0 = 0 \circ \alpha$  であり, $\alpha$  は エピ射だから  $\pi = 0$ .よって  $\operatorname{Coker} \alpha = 0$  となり,各  $\alpha_v$  は全射である.

## **PROBLEM 2.2.23**

C を線形圏とし, $M \in \operatorname{Mod}(\mathcal{C})_0$  とする.I を集合とし,M の部分加群族  $(M_i)_{i \in I}$  を考える. このとき,部分空間の族  $\bigcap_{i \in I} M_i \coloneqq (\bigcap_{i \in I} M_i(x))_{x \in \mathcal{C}_0}$  と  $\sum_{i \in I} M_i \coloneqq (\sum_{i \in I} M_i(x))_{x \in \mathcal{C}_0}$  はそれぞれ M の部分加群を定めることを示せ. *Proof.* 圏  $\mathcal{C}$  の任意の射  $f: x \rightarrow y$  について

$$M(f)\left(\bigcap_{i\in I}M_i(x)\right)\subset\bigcap_{i\in I}M_i(y),$$
  
 $M(f)\left(\sum_{i\in I}M_i(x)\right)\subset\sum_{i\in I}M_i(y)$ 

がそれぞれ成り立つことを示せばよい.

### 交叉が部分加群:

任意の  $i \in I$  に対して、 $M_i$  は M の部分加群だから  $M(f)(M_i(x)) \subset M_i(y)$  となる. よって  $M(f)(\bigcap_{i \in I} M_i(x)) \subset \bigcap_{i \in I} M(f)(M_i(x)) \subset \bigcap_{i \in I} M_i(y)$  が言える.

## 和が部分加群:

任意の  $i \in I$  に対して、 $M_i$  は M の部分加群だから  $M(f)(M_i(x)) \subset M_i(y)$  となる. よって  $M(f)(\sum_{i \in I} M_i(x)) = \sum_{i \in I} M(f)(M_i(x)) \subset \sum_{i \in I} M_i(y)$  が言える.