ALGORITMI E STRUTTURE DATI

Prof. Manuela Montangero

A.A. 2022/23

Programmazione Dinamica

Problema dello zaino senza ripetizione

"E' vietata la copia e la riproduzione dei contenuti e immagini in qualsiasi forma.

E' inoltre vietata la redistribuzione e la pubblicazione dei contenuti e immagini non autorizzata espressamente dall'autore o dall'Università di Modena e Reggio Emilia."

SENZA RIPETIZIONE

Nei sottoproblemi si deve tenere conto degli item già scelti

Un sottoproblema ha:

- una ridotta capacità dello zaino
- una ridotta scelta di item

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ e per ogni j = 1, 2, ..., n definiamo

K(w,j)= massimo valore ottenibile con zaino di capacità $w\leq W$ potendo scegliere solo tra gli oggetti $1,2,\ldots,j$

SENZA RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ e per ogni j = 1, 2, ..., n definiamo

K(w,j)= massimo valore ottenibile con zaino di capacità $w\leq W$ potendo scegliere solo tra gli oggetti $1,2,\ldots,j$

SE j NON sta nella soluzione ottima per K(w, j)

$$K(w,j) = K(w,j-1)$$

massimo valore ottenibile con zaino di capacità w, potendo scegliere tra gli item 1,2,...,i

massimo valore ottenibile con zaino di capacità w, potendo scegliere tra gli item 1,2,...j-1

SENZA RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ e per ogni j = 1, 2, ..., n definiamo

K(w,j)= massimo valore ottenibile con zaino di capacità $w\leq W$ potendo scegliere solo tra gli oggetti $1,2,\ldots,j$

SE j sta nella soluzione ottima per K(w, j), allora $w_j \leq w$ e

$$K(w, j) = v_j + K(w - w_j, j - 1)$$

massimo valore ottenibile con zaino di capacità w, potendo scegliere tra gli item 1,2,...,j

Valore dell'item j massimo valore ottenibile con zaino di capacità $w-w_{j'}$

potendo scegliere tra gli item 1,2,...j-1

SENZA RIPETIZIONE

SOTTOPROBLEMA:

Per ogni $w \in N$ tale che $w \leq W$ e per ogni j = 1, 2, ..., n definiamo

K(w,j)= massimo valore ottenibile con zaino di capacità $w\leq W$ potendo scegliere solo tra gli oggetti $1,2,\ldots,j$

SE non sappiamo se j sta o no nella soluzione ottima per K(w,j), proviamo entrambe le alternative e teniamo la migliore

$$K(w, j) = \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \text{ se } w_j \le w \end{cases}$$

SENZA RIPETIZIONE

$$K(w, j) = \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \text{ se } w_j \le w \end{cases}$$

$$w = 0,1,2,..., W$$

 $j = 0,1,2,...,n$

Abbiamo bisogno di una matrice (W+1)x(n+1)

w\j	0	1	 	 n
0				
1				
2				
W-1				
W				

SENZA RIPETIZIONE

$$K(w, j) = \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \text{ se } w_j \le w \end{cases}$$

Per calcolare K(w, j) abbiamo bisogno di valori che si trovano:

- nella colonna precedente (j-1)
- nelle righe precedenti ($w w_i$)

Riempiamo la matrice colonna per colonna, sinistra verso destra, e per ogni colonna, dall'alto verso il basso

SENZA RIPETIZIONE

$$K(w, j) = \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \text{ se } w_j \le w \end{cases}$$

Abbiamo bisogno di inizializzare la prima riga e la prima colonna

CASI BASE:

$$- K(0,j) = 0 \ \forall j = 0,1,...,n$$

-
$$K(0,j) = 0 \quad \forall j = 0,1,...,n$$

- $K(w,0) = 0 \quad \forall w = 0,1,...,W$

Massimo valore ottenibile con uno zaino di capacità zero

> Massimo valore ottenibile con una selezione vuota di item

νΔi	0		: 4	i		n
w\j	U		j-1	J		n
0	0	0	0	0	0	0
1	0					
	0					
w-w_j	0					
	0					
w	0					
	0					
W-1	0					
W	0					

SENZA RIPETIZIONE

$$K(w, j) = \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \text{ se } w_j \le w \end{cases}$$

Abbiamo bisogno di inizializzare la prima riga e la prima colonna

Dove troviamo nella matrice la soluzione al problema originale?

Soluzione: K(W, n)

Massimo valore ottenibile con uno zaino di capacità W e selezione tra gli oggetti 1,2,...,n

w\j	0		j-1	j		n
0	0	0	0	0	0	0
1	0					
	0					
w-w_j	0					
	0					
w	0					
	0					
W-1	0					
W	0					

SENZA RIPETIZIONE

Per calcolare il valore della soluzione ottima di tutti i sottoproblemi

```
Max_val_zaino(n, w_1, ..., w_n, v_1, ..., v_n)
for j = 0 to n do
 K[0,j] := 0
for w = 0 to W do
                                        Non è possibile scegliere l'item
                                          j perché troppo grande
 K[w, 0] := 0
for j = 1 to n do
 for w = 1 to W do
  if w_j > w
   then K[w,j] := K[w,j-1]
   else K[w,j] := \max\{K[w,j-1],v_j + K[w-w_j,j-1]\}
return K[W,n]
```

Costo computazionale $O(W \cdot n)$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				
6	0				
7	0				
8	0				
9	0				
10	0				

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j-1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j-1) \\ v_j + K(w-w_j, j-1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0			
2	0	0			
3	0	0			
4	0	0			
5	0	0			
6	0				
7	0				
8	0				
9	0				
10	0				

$$j = 1, w_1 = 6, v_1 = 30$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0			
2	0	0			
3	0	0			
4	0	0			
5	0	0			
6	0	₹ 30			
7	0				
8	0				
9	0				
10	0				

$$j = 1, w_1 = 6, v_1 = 30$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0			
2	0	0			
3	0	0			
4	0	0			
5	0	0			
6	0	30			
7	0	√ 30			
8	0	30			
9	0	30			
10	0	↓ 30			

$$j = 1, w_1 = 6, v_1 = 30$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j-1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j-1) \\ v_j + K(w-w_j, j-1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0			
4	0	0			
5	0	0			
6	0	30			
7	0	30			
8	0	30			
9	0	30			
10	0	30			

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0 \	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0	14		
4	0	0			
5	0	0			
6	0	30			
7	0	30			
8	0	30			
9	0	30			
10	0	30			

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0 ,	0		
2	0	0	0		
3	0	0	14		
4	0	0	14		
5	0	0	14		
6	0	30			
7	0	30			
8	0	30			
9	0	30			
10	0	30			

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0	14		
4	0	0	14		
5	0	0	14		
6	0	30	→ 30		
7	0	30			
8	0	30			
9	0	30			
10	0	30			

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0	14		
4	0	0	14		
5	0	0	14		
6	0	30	→ 30		
7	0	30 —	→ 30		
8	0	30 —	→ 30		
9	0	30			
10	0	30			

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0		
2	0	0	0		
3	0	0	14		
4	0	0	14		
5	0	0	14		
6	0	30	→ 30		
7	0	30	→ 30		
8	0	30	→ 30		
9	0	30	44		
10	0	30	44		

$$j = 2, w_2 = 3, v_2 = 14$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j-1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j-1) \\ v_j + K(w-w_j, j-1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	
2	0	0	0	0	
3	0	0	14 —	→ 14	
4	0	0	14		
5	0	0	14		
6	0	30	30		
7	0	30	30		
8	0	30	30		
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0 \	0	0
1	0	0	0	0	
2	0	0	0	0	
3	0	0	14 —	14	
4	0	0	14	16	
5	0	0	14		
6	0	30	30		
7	0	30	30		
8	0	30	30		
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30		
7	0	30	30		
8	0	30	30		
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30 —	→ 30	
7	0	30	30		
8	0	30	30		
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30 —	30	
7	0	30	30	30	
8	0	30	30		
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14 \	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30 —	3 0	
7	0	30	30	30	
8	0	30	30	30	
9	0	30	44		
10	0	30	44		

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30 —	30	
7	0	30	30	30	
8	0	30	30	30	
9	0	30	44	→ 44	
10	0	30	44 —	→ 44	

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0 \	0	
2	0	0	0	0	
3	0	0	14	14	
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30	→ 30	
7	0	30	30	30	
8	0	30	30 _	30	
9	0	30	44	→ 44	
10	0	30	44	46	

$$j = 3, w_3 = 4, v_3 = 16$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 —	→ 14
4	0	0	14	16	
5	0	0	14	16	
6	0	30	30	30	
7	0	30	30	30	
8	0	30	30	30	
9	0	30	44	44	
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 —	→ 14
4	0	0	14	16 —	→ 16
5	0	0	14	16	
6	0	30	30	30	
7	0	30	30	30	
8	0	30	30	30	
9	0	30	44	44	
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 🗸	→ 14
4	0	0	14	16	→ 16
5	0	0	14	16	23
6	0	30	30	30	
7	0	30	30	30	
8	0	30	30	30	
9	0	30	44	44	
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 🔻	→ 14
4	0	0	14	16	→ 16
5	0	0	14	16	23
6	0	30	30	30 —	→ 30
7	0	30	30	30 —	→ 30
8	0	30	30	30	
9	0	30	44	44	
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 🔻	→ 14
4	0	0	14	16	→ 16
5	0	0	14	16	23
6	0	30	30	30 🔽	→ 30
7	0	30	30	30 \(\simeg\)	30
8	0	30	30	30	39
9	0	30	44	44	
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE	
1	6	30	
2	3	14	
3	4	16	
4	2	9	

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 🔻	→ 14
4	0	0	14	16	→ 16
5	0	0	14	16	23
6	0	30	30	30 _	→ 30
7	0	30	30	30	30
8	0	30	30	30	39
9	0	30	44	44 —	→ 44
10	0	30	44	46	

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

$$W = 10$$

item	PESO	VALORE	
1	6	30	
2	3	14	
3	4	16	
4	2	9	

$$K(w, j) = \begin{cases} K(w, j - 1) \text{ se } w_j > w \\ \max \begin{cases} K(w, j - 1) \\ v_j + K(w - w_j, j - 1) \end{cases} \end{cases}$$

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14 🗸	→ 14
4	0	0	14	16	→ 16
5	0	0	14	16	23
6	0	30	30	30 _	→ 30
7	0	30	30	30 \(\simeg\)	30
8	0	30	30	30	39
9	0	30	44	44 —	→ 44
10	0	30	44	46	4 6

$$j = 4, w_4 = 2, v_4 = 9$$

ESEMPIO

SENZA RIPETIZIONE

W = 10

item	PESO	VALORE
1	6	30
2	3	14
3	4	16
4	2	9

w\j	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	9
3	0	0	14	14	14
4	0	0	14	16	16
5	0	0	14	16	23
6	0	₹ 30	→ 30 \	30	30
7	0	30	30	30	30
8	0	30	30	30	39
9	0	30	44	44	44
10	0	30	44	46	4 6

NO

Valore massimo ottenibile = 46

con quali oggetti?

1 e 3 —> peso 10

NO

PROBLEMA:

INPUT: Zaino di capacità $W \ge 0$

n item (oggetti) $i_1, i_2, ..., i_n$

PESI item $w_1, w_2, ..., w_n \in N$

VALORE item $v_1, v_2, ..., v_n \in N$

 ${f OUTPUT}$: selezione degli oggetti che abbia peso totale minore o uguale a W e che massimizzi il valore totale degli oggetti selezionati

0/1 o INTERO

un oggetto o non viene selezionato, o viene selezionato per intero

FRAZIONARIO

un oggetto può essere frazionato in parti più piccole e solo una parte può essere selezionata

> Si risolve in tempo polinomiale con un algoritmo greedy

