Trees

- File organization
- Expression trees
- Search trees
 - find data faster
 - index into large files or DBs
- Game trees
 - Keep possible next moves
 - (Postponed obligations)
- Encoding/decoding messages
 - o huffman codes
- Priority Qs
 - o items have priorities
 - o tree data structure allows quickest access to highest priority items

height of thee 3. (longest path)

- Binary tree => Empty or has 1 node with 2 children, each child is a binary tree
 itself
- Complete tree have leaves to the left as possible

Representations

- Sequential => Uses array
 - \circ root = A[1]
 - o A[i]'s left child = A[2*i]
 - \circ A[i]'s right child = A[2*i + 1]
 - \circ A[i]'s parent = A[i/2]
 - Problems when tree long and thin and right-heavy
- Linked
 - o node linked to left+right node

- Traversals
 - Breadth First
 - Level Order => ABCDEFG
 - Level by level
 - Depth First
 - Pre Order => ABDECFG
 - root, left, right
 - In order => DBEAFCG
 - left, root, right
 - Post order => DEBFGCA
 - left, right, root

Binary Search Trees

- Left Node Value < Parent Node Value < Right Node Value
- Search: Just do it
 - o If less than current node move left, if larger than current node move right
- Insert: Same as search, until you find an external node
- Delete:
 - o If leaf/external node then just delete
 - o If 1 child => Delete node, promote child
 - o If 2 children
 - Copy largest node from the left subtree
 - Or copy smallest node from right subtree
 - Then delete the copied node from old spot

Full Binary Tree

- Complete binary search tree so that all leafs are on same level
 - Search time and insert time is O(cosn) at worst
 - Height proportional to logn
 - $n = 2^{(n+1)} 1$
 - \circ log2 (n+1) 1 = h
 - $\circ \quad \log(n+1) < \log n + 1$
 - \circ so h < logn
 - any complete BST
 - \blacksquare h = floor(logn)
- Degenerate BST
 - Search time of insert time is O(n) at worst
 - Height proportional to n
 - keep trees optimally balanced for quickest search
 - \circ PROBLEM => algorithm to re-balance them after insert in O(n)

- If tree is stored on disk, each pointer follow means you have to read from the disk
 - o TIME CONSUMING
 - Solution
 - Allow more than one record (Key and data) in each node
 - Each read gets n records
 - Do 1 access
 - Put node into memory (RAM) and search for the desired key in MEMORY (FAST BINARY SEARCH)
- If tree is balanced, fastest insert/search/delete => log(n)

B-tree of order m

- a search (ordered) tree such that
 - o root (can be by itself/ a leaf) has **j** keys
 - $1 \le j \le m-1$
 - Other nodes have
 - At $\underline{\text{least}}$ CEIL(M/2) 1 keys
 - At most M-1 keys
 - All internal nodes have **ONE MORE CHILD** than keys
 - o Leafs
 - No kids
 - All on bottom-most level
 - Bottom-most level is full (none missing)

Order 3 B-tree

- root \Rightarrow 1 or 2 keys
 - \circ M = 3 => ORDER 3 DUHH
 - ROOT HAS J KEYS
 - $1 \le j \le m-1$
 - THIS EXPLAINS WHY ORDER 3 B-TREE MUST HAVE 1 OR 2 KEYS
- Other nodes
 - At <u>least</u> CEIL(3/2) -1 = 2 1 = 1 key
 - $\circ \quad \text{At } \underline{\text{most}} \text{ 3-1} = \mathbf{2} \text{ keys}$
 - so 2-3 kids
 - THIS IS REASON WHY ORDER 3 B-TREE IS OFTEN CALLED 2-3 TREE

Order 15 B-tree => another example

- $\bullet \quad m = 15$
 - $\circ \quad 1 \le j \le m$
 - j can be 1-14 (2-15 kids)
- Others
 - At <u>least</u> CEIL(15/2) 1 to 15 1 keys
 - 7-14 keys, 8-15 kids

Number of levels in B-tree order M with all nodes full?

• T has n keys, p nodes, order $m \Rightarrow p = n/(m-1) \in NUMBER OF NODES$

Insertion

- o always insert INTO AN EXISTING leaf
- if node too full
 - i. move a key
 - ii. or change tree structure
- o To insert "k"
 - i. search for k in tree => If k exists, there's error since don't need to insert again
 - ii. insert (in whatever node x)
 - iii. if x is too full
 - split in half
 - take out middle key and move it up to parent
 - Call parent node x now
 - repeat part iii until finished
- o EXAMPLE: http://www.scs.ryerson.ca/~dwoit/courses/cps305/coursedirPublic305/NOTES/trees/T18.gif

• ROTATION WITH SIBLING ==

- o only works if sibling not too full
- o only immediate left or right sibling

Deletion

- o From leaf => EXTERNAL NODE
 - You can delete key **EASILY** if there are enough keys => Just remove
 - grab keys from for left/right sibling if you can't do above ^^
 - if can't, collapse nodes/push key down from parent node
 - may have have to collapse more nodes working up towards root

- Non-leaf => NOT EXTERNAL NODE
 - replace key by inorder successor (predecessor)
 - must be in a leaf
 - delete the key from leaf as above

HUFFMAN CODING

- Data compression with trees to encode/decode messages
 - o use 0/1s to encode data
 - o minimize lengths of encodings
 - o used in parts of: MP3, JPEG algorithms
- Steps
 - o get "frequency" for each character
 - most used to least character
 - Sort the characters from most to least =====>
 - Create tree
 - http://www.scs.ryerson.ca/~dwoit/courses/cps305/coursedirPublic305/NOTES/trees/T22.gif
 - http://www.scs.ryerson.ca/~dwoit/courses/cps305/coursedirPublic305/NOTES/trees/T23.gif

Tries

- Data structure used for storage/retrieval of data
- Organization in `tree`based on individual characters in key
- Height
 - Worst case: O(m)
 - = m = # chars in key
 - o average case: O(m)

- Examples of Tries
 - o Key serial ids (9 digits)
 - o tries are 2x faster than 2-3 tree

279 (1096) (1096

Search: 80224 37778 50021

Insert: 86903 86917

Implementation of tries

- each node has m fields (m = chrs in key)
- fast (ram)
- may waste space
- each internal node is a linked list

Applications of tries

- prefix completion (autocomplete)
- dictionaries
- replacing BSTs, hash tables in some cases
 - o because worst case trie lookup O(m)
 - vs O(n) BST
 - vs O(n) hash
 - hash tables not enumerable

Heaps ===========

- Complete binary tree
- each node has <= it's parent key
 - sorting property
- Applications
 - Priority Queues
 - o Sorting algorithms => Heap sort
 - Graphing algorithms
 - Selection algorithms
 - quickly find max/min/median/ kth largest item
- How to remove max (highest priority) item
 - o take largest value from root of tree and delete it
 - o take smallest value, right-most leaf on bottom level and put at root
 - o restore sort property by bubbling (exchanging) new root ke into correct position

Build Heap from N unsorted Items

- Put items in complete BT structure
- Establish sort property
 - o for each node, N, in reverse-level-order reheapify (H,N)
- O(n) to build heap

Heap Implementation

- linked nodes
- Array
 - o efficient use of space (no "holes" in array)
 - sequential binary tree
- fast (RAM)
- space = size of N

HASH TABLES

- Examples
 - Associated arrays
 - Database indexing
 - Caches
 - Sets
 - Object representation
 - o Unique data representation
- O(1) instead of O(logn) (BST/B-tree/binary search) or O(m) (trie)
- goes directly from key to record in table
 - o assume to be randomly accessed
- If keys are integers they can be mapped to an array table
- What problems are there that can be solved via hash tables?
 - o wasted space for SID (9 digits) need table (array) size 1,000,000,000
- Solution for above is to convert key into integer in desired range
- Hash function => h(k) converts the key, k, into an index (slot # for table)
- Collision: When h(k1) = h(k2)
- Collision resolution: produce what do after collision to find empty slow for key

Hash Functions

- Truncation => h(2647983) = 983
 - o problem => may cut off unique part of the key => collision

- Folding
 - o partition k into sections and recombine
 - Example
 - \circ k = 782146
 - 782+146 = 928 or 982+641 = 1423 => truncate if have too
 - Table size must be power of 10
- Division
 - $\circ h(k) = mod(K, M) => M = table size$
 - o best results when M is a prime (less collision and covers table well)

key	M=13 (prime)	M=12	
558	127		6	will tend to get multiples of
723	8		3	factors of 12.
692	3		8	1.5.4: 214=8
876	5 1	Collisions	0	3: 313=9 etc
574	2	Collis	10	
9 45	9 (9	
716	1)	8	←
201	6		9	←
946	10		10	←

Collision Resolution

• Open addressing

- Linear probe
 - Insert: If k gets hashed into full slot, s, put it in next empty slot upward =>s-1, s-2...
 - If hit bottom of table (slot 0), wrap around top or keep going
 - Retrieval: do h(k) = s
 - if k not in slow s, look in s-1,s-2... (with wrapping) until
 - k found
 - o hit empty slow (not found)
 - Table full when m-1 slots occupied
 - Problem => Primary clustering
 - a few keys randomly near each other tend to collect into clusters
 - clusters combine into bigger clusters
- Double hashing
 - no primary clustering (only random ones)
 - Instead going down by one, every collision go down by some other amount
 - The probe decrement p(k)

■ When h(k1) = h(k2), k1 follows different probe sequence than k2

Key	h(Key)	D.H. Probe Ses	L.P. Probe Sequence
914	5	97, 88,79	4,3,2,
712	5	99, 92, 85	4, 3, 2

- Retrieving
 - Search for 7/2
 - try 5, 99, 92, 85.... until
 - o empty slot => Not found
 - o found
- Deleting record in open addressing
 - delete key/record but set flag in spot to indicate "Keep searching"

- o Problems with open addressing
 - fixed m
 - if more records than m
 - o allocate larger table
 - o rehash all records
 - keep searching can flag around most of the table, forcing us to search through most of the table in order to conclude not found

• Separate chaining

- o table entry contains pointer to linked list
- h(k) = slot = add record to linked list for slot
- PROS
 - delete = no effect on later retrievals
 - table size < open address and less need to reallocate to larger one
- o CONS
 - More space (links)
 - List too long ⇒ efficiency drops
- o General rule of thumb ⇒ If records > pointers = win
- Improvements
 - insert at front
 - keep list ordered/tree (faster search)

Hashing with buckets

- Divide table into equal sized sub-tables (buckets)
- initially hash into bucket using h(k)
- within bucket, keep the items ordered
- o to retrieve: h(k) and then binary search in bucket
- o If bucket full, use different collision resolution policty
 - linear probe
 - double hash
 - chaining
 - keep pointer with each bucket to "overflow area" where rest of items are
- Not as efficient as other collision res policies when hash table in memory
- good performance on disk
 - Each probe required a disk read (EXPENSIVE)
 - with bucket, 1 read => loaded into memory then do a binary search

Analysis of Hashing

- Performance based on load factor(fullness of table), not # keys in table
 O(1)
 load f <= 50%
 - Keys not integers => Convert them
 - concatenation
 - converting from base X
 - \circ then apply h(k), p(k)
- Collisions likely? YES

GO TO H-14

- P(N) = collision probability
- Q(N) = no collision probability

Sorting Applications

- Examples
 - Commercial apps
 - o operating system research
 - o simulations
 - o graph algorithms
 - o huffman compression
 - o order statistics
 - o sorting animations
- Sorting Efficiency
 - # of comparisons \Rightarrow best average case = O(nlogn)
 - data moves \Rightarrow best average case = O(n)
- Insertion sort types
 - o start with empty containers
 - o insert 1 by 1
 - o tree sort, insertion sort
- Address-type
 - o items not compared to each other
 - o categorized based on specific properties
 - o radix sort, prox map sort
- Priority q
 - o insert items into PQ
 - o remove 1 by 1 \Rightarrow get sorted order
 - heapsort, selection sort
- Div and conquer
 - o divide unsorted part into 2 parts
 - o sort each part and recombine
 - quicksort mergesort
- Diminishing increment type: Shellsort
- Transposition-type: bubble sort

INSERTION SORT

- division in 2 parts ⇒ LHS sorted, not RHS
- each step:
 - o get next value X from right side
 - o find the right spot in the left hand side it should go
 - remove it from right side
 - $\circ \quad insert \ X$
- Comparisons
 - Worst case \Rightarrow O(n^2)
 - $\circ \quad \text{Average} \Rightarrow O(n^2)$
 - $\circ \quad Best \Rightarrow O(n)$
- Data moves
 - $\circ \quad \text{Worst} \Rightarrow O(n^2)$
 - $\circ \quad \text{Average} \Rightarrow O(n^2)$
 - \circ Best \Rightarrow O(n)

QUICKSORT

- Comparison
 - $\circ \quad \text{best case is when pivot is in middle, list is equally half} \Rightarrow \! O(nlogn)$
 - Worst case is when pivot is at the end \Rightarrow O(n^2)

HEAP SORT ====Push to left

- binary tree
- parent value >= kid
- all levels full except last
- comparisons and data moves similar
 - Worst case and average \Rightarrow O(nlogn)
- RADIX SORT ======>
 - radix is base
 - no comparisons only moves
 - O(n
 - n passes ⇒ number of max digits

• $r \Rightarrow \# \text{ of keys}$

Tree sort

• unsorted array into BST

placed using inorder algorithm

Comparisons

 $\circ \quad \text{best/avg} \Rightarrow O(\text{nlogn})$

 $\circ \quad \text{worst} \Rightarrow O(n^2)$

• data moves \Rightarrow O(n)

Merge sort

- Steps
 - o list has only item return
 - o divide list in half
 - o mergesort each half
 - o merge the two halves back into one
- All cases \Rightarrow O(nlogn)
- generally proved that for any comparison-based sort, fastest average comparison is O(nlogn

STABILITY

- if preserves relative order of equal keys
- STABLE: insertion, merge, radix, BSTS
- UNSTABLE: quicksort, heapsort

BEST SORT

• http://www.scs.ryerson.ca/dwoit/courses/cps305/coursedirPublic305/NOTES/sorting/S12.gif