离散数学

图论

5.4最短路径,关键路径与着色

最短路径,关键路径与着色

- 带权图
- 最短路径与Dijkstra标号法
- 项目网络图与关键路径
- 着色问题

最短路径

- 带权图 $G=\langle V,E,w\rangle$, 其中 $w:E\to \mathbb{R}$. $\forall e\in E,w(e)$ 称作e的权. $e=(v_i,v_j)$, 记 $w(e)=w_{ij}$. 若 v_i,v_j 不相邻,记 $w_{ij}=\infty$.
- 通路L的 ∇ : L的所有边的权之和, 记作 $\nu(L)$.
- · u和v之间的最短路径: u和v之间权最小的通路.

例
$$L_1=v_0v_1v_3v_5$$
, $w(L_1)=10$, $L_2=v_0v_1v_4v_5$, $w(L_2)=12$, $L_3=v_0v_2v_4v_5$, $w(L_3)=11$.

标号法(E.W.Dijkstra, 1959)

- 设带权图 $G=\langle V,E,w\rangle$, 其中 $\forall e\in E,w(e)\geq 0$.
- 设 $V=\{v_1,v_2,...,v_n\}$, 求 v_1 到其余各顶点的最短路径
- 1. \diamondsuit $l_1 \leftarrow 0, p_1 \leftarrow \lambda, l_i \leftarrow +\infty, p_i \leftarrow \lambda, j=2,3,...,n, P=\{v_1\}, T=V-\{v_1\}, k\leftarrow 1, t\leftarrow 1.$ / λ 表示空
- 2. 对所有的 $v_j \in T \coprod (v_k, v_j) \in E$ 令 $l \leftarrow \min\{l_j, l_k + w_{kj}\},$ 若 $l = l_k + w_{kj}, 则 令 l_j \leftarrow l, p_j \leftarrow v_k.$
- 3. $求 l_i = \min\{l_j | v_j \in T_t\}$. $\diamondsuit P \leftarrow P \cup \{v_i\}, T \leftarrow T \{v_i\}, k \leftarrow i$.
- 4. 令t←t+1,
 若t<n,则转2.

Dijkstra标号法实例

• 例 求 ν ₀ 到 ν ₅ 的 最短路径

t	v_0	v_1	v_2	v_3	v_4	v_5
1	$(0,\lambda)^*$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
2		$(1,v_0)^*$	$(4,v_0)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$	$(+\infty,\lambda)$
3			$(3,v_1)^*$	$(8,v_1)$	$(6,v_1)$	$(+\infty,\lambda)$
4				$(8,v_1)$	$(4,v_2)^*$	$(+\infty,\lambda)$
5				$(7,v_4)^*$		$(10,v_4)$
6						$(9,v_3)*$

 v_0 到 v_5 的最短路径: $v_0v_1v_2v_4v_3v_5$, $d(v_0,v_5)=9$

关键路径问题

- 由雷明顿-兰德公司(Remington- Rand)的JE克里(JE Kelly)和杜邦公司的MR沃尔克(MR Walker)在1957年提出的,用于对化工工厂的维护项目进行日程安排。
- 它适用于有很多作业而且必须按时完成的项目。
- •对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径(Critical Path),组成关键路径的活动称为关键活动。

项目网络图

- 项目网络图:表示项目的活动之间前后顺序一致的带权有向图.边表示活动, 边的权是活动的完成时间,顶点表示事项(项目的开始和结束、活动的开始和 结束).
- •要求:(1)有一个始点(入度为0)和一个终点(出度为0).
 - (2) 任意两点之间只能有一条边.

- (3) 没有回路.
- (4) 每一条边始点的编号小于终点的编号.

例

活动	A	В	C	D	E	F	G	Н	Ι	J	K	L
紧前活动	_	_	_	A	A	A,B	A,B	A,B	C,H	D,F	E,I	G,K
时间(天)	1	2	3	4	3	4	4	2	4	6	1	1

关键路径

- 关键路径: 项目网络图中从始点到终点的最长路径
- 关键活动: 关键路径上的活动设 $D=<V,E,W>,V=\{1,2,...,n\},1$ 是始点,n是终点.
- (1)事项i的最早开始时间ES(i): i最早可能开始的时间,即从始点到i的最长路径的长度.

$$ES(1)=0$$

$$ES(i)=\max\{ES(j)+w_{ii}|< j,i>\in E\}, i=2,3,...,n$$

(2)事项i的最晚完成时间LF(i): 在不影响项目工期的条件下, 事项i最晚必须完成的时间.

$$LF(n)=ES(n)$$

$$LF(i)=\min\{LF(j)-w_{ij}|< i,j>\in E\}, i=n-1,n-2,...,1$$

关键路径(续)

- (3) 活动 $\langle i,j \rangle$ 的最早开始时间ES(i,j): $\langle i,j \rangle$ 最早可能开始时间.
- (4) 活动 $\langle i,j \rangle$ 的最早完成时间EF(i,j): $\langle i,j \rangle$ 最早可能完成时间.
- (5) 活动 $\langle i,j \rangle$ 的最晚开始时间LS(i,j): 在不影响项目工期的条件下, $\langle i,j \rangle$ 最晚必须开始的时间.
- (6) 活动 $\langle i,j \rangle$ 的最晚完成时间LF(i,j): 在不影响项目工期的条件下, $\langle i,j \rangle$ 最晚必须完成的时间.
- (7) 活动 $\langle i,j \rangle$ 的缓冲时间SL(i,j): 活动 $\langle i,j \rangle$ 的最晚开始时间与最早开始时间的差,也是活动 $\langle i,j \rangle$ 的最晚完成时间与最早完成时间的差。

显然,
$$ES(i,j) = ES(i)$$
, $EF(i,j) = ES(i) + w_{ij}$, $LF(i,j) = LF(j)$, $LS(i,j) = LF(j) - w_{ij}$, $SL(i,j) = LS(i,j) - ES(i,j) = LF(i,j) - EF(i,j)$

例(续)

• 事项的最早开始时间

$$ES(1)=0$$

$$ES(2)=\max\{0+1\}=1$$

$$ES(3)=\max\{0+2,1+0\}=2$$

$$ES(4)=\max\{0+3,2+2\}=4$$

$$ES(5)=\max\{1+3,4+4\}=8$$

$$ES(6)=\max\{2+4,8+1\}=9$$

$$ES(7)=\max\{1+4,2+4\}=6$$

$$ES(8)=\max\{9+1,6+6\}=12$$

例(续)

• 事项的最晚完成时间

$$LF(8)=12$$

$$LF(7)=\min\{12-6\}=6$$

$$LF(6)=\min\{12-1\}=11$$

$$LF(5)=\min\{11-1\}=10$$

$$LF(4)=\min\{10-4\}=6$$

$$LF(3)=\min\{6-2,11-4,6-4\}=2$$

$$LF(2)=\min\{2-0,10-3,6-4\}=2$$

$$LF(1)=\min\{2-1,2-2,6-3\}=0$$

例(续)

活动	A	В	C	D	E	F	G	Н	I	J	K	L
ES	0	0	0	1	1	2	2	2	4	6	8	9
EF	1	2	3	5	4	6	6	4	8	12	9	10
LF	2	2	6	6	10	6	11	6	10	12	11	12
LS	1	0	3	2	7	2	7	4	6	6	10	11
SL	1	0	3	1	6	0	5	2	2	0	2	2

• 总工期:12天

关键路径: v₁v₃v₇v₈
 关键活动: B,F,J

着色

- 定义 设无向图G无环,对G的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图G的一种点着色,简称着色.若能用k种颜色给G的顶点着色,则称G是k-可着色的.
- 图的着色问题: 用尽可能少的颜色给图着色.
- 例1

例

• 例2

应用

- 有n项工作,每项工作需要一天的时间完成.有些工作由于需要相同的人员或设备不能同时进行,问至少需要几人或几天才能完成所有的工作?
- 计算机有k个寄存器, 现正在编译一个程序, 要给每一个变量分配一个寄存器. 如果两个变量要在同一时刻使用, 则不能把它们分配给同一个寄存器. 如何给变量分配寄存器?
- 无线交换设备的波长分配. 有n台设备和k个发射波长, 要给每一台设备分配一个波长. 如果两台设备靠得太近, 则不能给它们分配相同的波长, 以防止干扰. 如何分配波长?

例

• 例3 学生会下设6个委员会,第一委员会={张,李,王},第二委员会={李,赵,刘},第三委员会={张,刘,王},第四委员会={赵,刘,孙},第五委员会={张,王},第六委员会={李,刘,王}.每个月每个委员会都要开一次会,为了确保每个人都能参加他所在的委员会会议,这6个会议至少要安排在几个不同时间段?

至少要4个时段

第1时段:一,四

第2时段:二,五

第3时段:三

第4时段:六

作业

- P138
- 5.19
- 5.20
- 5.22

问题?

