-1. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: Präsenzblatt

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1819]
Di. 10-12	CP-03-150	tobias.hoinka@udo.edu, felix.geyer@udo.edu
		und jan.soedingrekso@udo.edu
Di. 16-18	CP-03-150	simone.mender@udo.edu und alicia.fattorini@udo.edu
Mi. 10-12	CP-03-150	$\label{lem:mirco.huennefeld@udo.edu} und \ kevin3.schmidt@udo.edu$

WS 2018/2019

Prof. W. Rhode

Aufgabe 1: Binning

- a) Lesen Sie aus der Datei Groesse_Gewicht.txt die Verteilungen für Größe und Gewicht ein. Sie finden diese Datei im Moodle. Histogrammieren Sie beide Verteilungen in einem Matplotlib Histogramm mit jeweils 5, 10, 15, 20, 30, 50 Bins in einer Figure, gesplittet in 3 × 2 Subplots. Welche Unterschiede stellen Sie fest? Welches Binning erscheint Ihnen als vernünftig? Weshalb?
- b) Was passiert, wenn man Daten von weitaus mehr als 250 Personen verwendet? Inwiefern könnte es sinnvoll sein, bei den beiden Datensätzen unterschiedliche Anzahlen an Bins zu benutzen? Geben Sie eine sinnvolle minimale Bin-Breite an, sowie die Position der Bin-Mitten.
- c) Ziehen sie 10⁵ gleichverteilte ganze Zahlen aus dem Intervall 1-100. Logarithmieren Sie die gezogenen Zahlen und füllen Sie sie dann in ein Histogramm. Wählen Sie auch hier verschiedene Binnings aus (analog zu a)). Welche Effekte machen sich abhängig vom Binning bemerkbar?

Aufgabe 2: Chi-Quadrat

- a) Erzeugen Sie mit der Funktion numpy.random.chisquare 100 Zufallszahlen aus einer Chi-Quadrat-Verteilung mit 5 Freiheitsgraden.
- b) Erstellen Sie mit den zuvor erzeugten Zufallszahlen ein eindimensionales Histogramm mit Fehlerbalken (Die Fehler pro Bin sollen $\sqrt{N_i}$ mit N_i Einträgen pro Bin i sein).
- c) Stellen Sie das Histogramm und die wahre Dichte scipy.stats.chi2.pdf der Verteilung geeignet dar (*Tipp:* Normalisierung)
- d) Nutzen Sie die Methode scipy.stats.chi2.fit um einen Fit an das in a) gezogene Sample durchzuführen (*Hinweis*: Eine solche Fit-Routine wird als *Maximum Likelihood Fit* bezeichnet)

-1. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: Präsenzblatt

WS 2018/2019 Prof. W. Rhode

e) Stellen Sie nun das Histogramm zusammen mit sowohl der gefitteten, als auch der wahren Chi-Quadrat-Verteilung geeignet dar.