

CONCOURS D'ENTREE EN 1ère ANNEE – SESSION DE SEPTEMBRE 2019

EPREUVE DE MATHEMATIQUES

Durée 3h00 - Coefficient 4

EXERCICE 1: 5 Points

Afin d'équiper les élèves des groupes scolaires de la commune, une municipaliste achète auprès d'un grossiste des stylos-billes de trois marques différentes A, B et C.

40% des stylos commandés sont de marque A, et 15% de ces stylos sont défectueux.

35% des stylos commandés sont de marque B, et 10% de ces stylos sont défectueux.

25% de ces stylos commandés sont de marque C, et 5% de ces stylos sont défectueux.

On choisit au hasard un stylo dans le stock de la municipalité.

1- Construire un arbre pondéré décrivant la situation étudiée.

1 pt

2- Déterminer la probabilité que le stylo choisi soit défectueux.

2pt

3-Le stylo choisi est en bon état de fonctionnement. Quelle est la probabilité, au centième près, qu'il soit de marque C ? 2 pt

EXERCICE 2: 5 Points

Le tableau ci-dessous représente la taille x (en centimètres) et la pointure y (en centimètres) de 10 élèves choisis au hasard dans une classe de terminale.

x	150	159	158	160	165	168	170	172	175	171
у	40	41	43	43	42	44	44	44.5	44.5	44

- 1- Construire le nuage de points de cette série statistique.
- 1 pt
- 2- Déterminer les coordonnées du point moyen G et le placer dans le même repère.

 0.75pt
- 3- Calculer la covariance de la série (x;y) et les variances de x et de y. 0.75pt
- 4- Calculer le coefficient de corrélation linéaire.

- 1pt
- 5- Utiliser la méthode des moindres carrés pour déterminer une équation cartésienne de l'ajustement linéaire de y en x.
 1pt
- 6- En déduire la pointure d'un élève dont la taille est de 163 cm.
- 0.5pt

EXERCICE 3: 5 Points

On considère la suite (U_n) définie par : $U_0=0$; $U_1=1$ et pour tout entier naturel n, $U_{n+2}=5U_{n+1}-4U_n$.

1) Calculer les termes U_2 ; U_3 ; U_4 de la suite (U_n)

- 0.75pt
- 2) a- A l'aide du raisonnement par récurrence, montrer que pour tout entier naturel n, $U_{n+1}=4U_n+1$.
 - **b-** Montrer que pour tout entier naturel n, U_n est un entier naturel.
- 0.5pt
- 3) Soit (V_n) la suite definie pour tout entier naturel n par : $V_n = U_n + \frac{1}{3}$.
- **a-** Montrer que (V_n) est une suite géométrique dont on déterminera le premier terme V_0 et la raison. **0.5pt**
- **4-** Soit la fonction f définie par $f(x) = (2x + 1)e^{-x} + 1$.

On considère les équations différentielles (E) et (E') suivantes :

(E'):
$$3y'' + 2y' - y = 0$$
 et (E): $3y'' + 2y' - y = -8e^{-x} - 1$

a) Vérifier que f est solution de (E).

0.5pt

- b) Montrer qu'une fonction g est solution de (E) si et seulement si g-f est solution de (E')

 1.25pt
- c) Résoudre alors l'équation (E') et en déduire les solutions de (E).

1 pt

EXERCICE 4: 5 Points

On désigne par g la fonction définie sur \mathbb{R} par $g(x) = \frac{e^x}{1+e^x}$

On note (C) la courbe représentative de g dans un repère orthonormal $(0, \vec{\imath}, \vec{j})$ (Unité graphique : 4cm)

1-a) Etudier les variations de g et dresser son tableau de variation.

1 pt

b) Construire la courbe de (C) et ses asymptotes éventuelles.

1pt

- **2-** On considère les points M et M' de la courbe (C) d'abscisses respectives \mathbf{x} et $-\mathbf{x}$
 - a) Déterminer les coordonnées du point A milieu du segment[MM']. 0.5pt
 - b) Que représente le point A pour la courbe (C)?

0.25pt

- **3-** soit $n \in \mathbb{N} \setminus \{0\}$. On désigne par D_n le domaine du plan limité par la droite d'équation y=1, la courbe (C) et les droites d'équations x=0 et x=n. A_n désigne l'aire du domaine D_n exprimée en unité d'aire.
 - a) Calculer A_n en fonction de n.

0.5pt

b) Etudier la convergence de la suite (A_n)

0.5pt

4-

- a) Déterminer les réels a et b tels que $\frac{e^{2x}}{(1+e^x)^2} = \frac{ae^x}{1+e^x} + \frac{be^x}{(1+e^x)^2}$ 0.5pt
- **b)** Exprimer en fonction de α , $V(\alpha) = \int_{\alpha}^{0} \frac{e^{2x}}{(1+e^{x})^{2}} dx$. **0.5 pt**
- c) Calculer la limite $V(\alpha)$ lorsque α tend $-\infty$.