Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar **Naměřeno:** 18. března 2025

Obor: F Skupina: Út 14:00 Testováno:

Úloha č. 10: Rutherfordův experiment

1. Úvod

Ernst Rutherford na základě tohoto experimentu poprvé navrhl, že se atom skládá z nabitého jádra a obalu kolem něj. Principem pokusu bylo měření úhlu χ o který se vychýlí alfa částice na velmi tenké zlaté folii, přibližně $t=0.4~\mu m$. Důležitým předpokladem bude, že na tak malé tloušťce může statisticky dojít jen k jediné interakci s některým atomem folie. Velká většina částic jen proletí.

Podle tehdejšího Thompsonova modelu by v takovém případě nemělo být možné, aby se částice vychýlila o víc než několik desetin stupně. Výsledek experimentu byl ale jiný. Některé alfa částice se dokonce úplně obrátili a letěli zpět ke zdroji, což vyžaduje obrovskou sílu působící na částici na velmi malé oblasti. Tuto sílu našel Rutherford právě v maličkém jádře atomu, ke kterému se tak α -částice může přiblížit na nepatrnou vzdálenost, protože obalem jen proletí. Cílem praktika je ověřit, že míra rozptylování částic odpovídá tomuto modelu.

V druhé části praktika budu ověřovat, jestli se rozpad atomu americia řídí Poissonovým rozdělením.

2. Teorie rozptylu

Na obrázku 1 je schéma Rutherfordova modelu. Myšlená α -částice přilétá k jádru pod tzv. záměrnou vzdáleností b a působením Coulombovy síly se vychyluje od původní trajektorie o úhel χ . Dá se ukázat, že ať je náboj jádra Ze kladný, nebo záporný, bude mezi těmito veličinami platit vztah

$$b = \frac{Ze^2}{4\pi\varepsilon_0 E} \cot \frac{\chi}{2},\tag{1}$$

kde $E = \frac{1}{2}mv_0^2$ je celková energie systému. Z toho důvodu nelze tímto experimentem určit znaménko náboje jádra, pouze potvrdit jeho existenci a koncentrovanost.

Obrázek 1: Schéma rozptylu α -částice.

3. Postup měření

Uspořádání experimentu je znázorněné na obrázku 2. Ze zdroje α -částic vyletuje do všech směrů v pravidelném množství N_0 částic za jednotku času a ty které se trefí na proužek folie mají nějakou šanci se odrazit k detektoru. S uvážením vztahu (1) by se mělo jejich celkové množství za jednotku času řídit vztahem

$$n = K \frac{\cos \alpha \cos \beta}{r_1^2 r_2^2 \sin^4 \frac{\chi}{2}},\tag{2}$$

kde K je konstanta daná experimentálním uspořádáním. Pro ověření tohoto vztahu nejdřív vyjádřím pravou stranu jako koeficient ω v vynásobené konstantou K a změřím, jestli je tato závislost opravdu lineární.

$$n = K\omega \tag{3}$$

Obrázek 2: Experimentální uspořádání aparatury

3.1. Poissonovo rozdělení

Rozpad atomů je čistě náhodný proces, takže by se měl i řídit Poissonovým rozdělením

$$P(n) = \frac{\lambda^n}{n!} e^{-\lambda},\tag{4}$$

kde P(n) je pravděpodobnost, že dojde k n rozpadům za časový interval a λ je střední hodnota počtu zaznamenaných rozpadů během měřícího intervalu. Ověření, že rozpady opravdu odpovídají tomuto rozdělení proběhne následovně. Dlouhé měření rozpadů rozdělím na N stejných časových úseků délky T a pro každý zjistím počet zaznamenaných částic n a střední hodnotu $\lambda = \bar{n}$. Četnost všech n označím jako K(n), pro které by mělo přibližně plait $NP(n) \approx K(n)$.

Vyhodnocení dál proběhne metodou chi-kvadrátu. V případě, že pro nějaké n platí $NP_j < 5$, pak tyto body sloučím s některým z okolních pro $K_j(n)$ a $P_j(n)$, tak aby byla splněná podmínka. Zbývá spočítat hodnotu χ^2

$$\chi^2 = \sum_{j} \frac{(K_j(n) - NP_j(n))^2}{NP_j(n)}.$$
 (5)

a najít v tabulce hraniční χ^2_{cr} pro požadovanou hladinu spolehlivosti a stupně volnosti $n_{max}-1$. Pokud je $\chi^2 > \chi^2_{cr}$, tak se rozpady Poissonovým rozdělením neřídí.

4. Výsledky měření

Aparatura pro měření byla už připravená a jen jsem odečetl její rozměry. Vzdálenost mezi zdrojem a detektorem byla d=22.7 cm a poloměr zlaté folie v=2 cm. Pro několik poloh f jsem měřil čas, za který na detektor dopadlo 40 částic, a tyto hodnoty uvedl do tabulky 1. Ze vztahu (2) vyplývá, že počet dopadajících částic by měl být symetrický vzhledem ke střední poloze $\frac{d}{2}=11.7$ cm, takže jsem měřil jen jednu stranu.

f (cm)	t (s)	počet částic	$n (s^{-1})$	$\omega \cdot 10^6 \; ({\rm m}^{-4})$
11	91	40	0.440	6.05
12	102	40	0.392	6.02
13	95	40	0.421	5.80
14	107	40	0.374	5.41
15	147	40	0.272	4.86
16	140	40	0.286	4.17
17	90	15	0.167	3.40
18	403	43	0.141	2.58
19	408	38	0.093	1.77
20	455	40	0.088	1.04

Tabulka 1: Změřená data četnosti dopadajících α -částic

Z naměřených hodnot jsem potom podle vztahu (2) vypočítal hodnoty ω a vykreslil je do grafu 1. Fit byl přímkou, ze kterého jsem dostal hodnotu

$$K = (66 \pm 2) \cdot 10^{-8} \text{ m}^4 \text{s}^{-1}$$
 (6)

a s ní vykreslil teoretickou závislost n(f) do grafu 2 i s naměřenými hodnotami. Je vidět, že je opravdu symetrická okolo střední pozice.

Graf 1: Závislost počtu dopadajících částic na ω

Graf 2: Závislost počtu dopadajících částic na f

4.1. Poissonovo rozdělení rozpadu α částic

Folii jsem přesunul doprostřed, aby se zaznamenávalo co nejvíce rozpadů, a po dobu 850 s zapisoval časy detekovaných částic. Podle postupu výpočtu χ -kvadrátu jsem potom sestavil tabulku 2 a vykreslil teoretické Poissonovo rozdělení vůči vypočítanému do grafu 3. Před vyhodnocením musím sloučit řádky pro n = 0 - 2 a n = 8 - 12, aby platili podmínky χ^2 testu, odkud potom podle vztahu (5) vychází

$$\chi^2 = 5.97\tag{7}$$

Hodnota χ_{cr} pro hladinu spolehlivost 0.05 a 12 – 1 = 11 stupňů volnosti je $\chi_{cr}=19.675$, což je větší než χ^2 , takže test vychází pozitivně.

n	K(n)	P(n)	$K(n) \approx P(n) \cdot N$
0	2	0.013	1.7
1	7	0.056	7.3
2	20	0.122	15.9
3	22	0.177	23.0
4	25	0.193	25.0
5	25	0.167	21.8
6	15	0.121	15.8
7	3	0.075	9.79
8	6	0.041	5.32
10	1	0.020	2.57
11	2	0.009	1.12
12	1	0.003	0.44

Tabulka 2: Vyhodnocování testu χ^2 pro N=130 a $\lambda=0.43$ částic s^{-1} .

Graf 3: Poissonovo rozdělení rozpadu α -částic.

5. Závěr

Na aparatuře Rutherfordova experimentu jsem měřil množství částic odražených na velmi tenké zlaté folii o úhly χ , a zjistil, že změřená data se dají vysvětlit Rutherfordovým modelem atomu, zatímco ten Thompsonův toto nedokáže.

Druhým úkolem bylo ověřit, že rozpad atomů na α -částice probíhá podle Poissonova rozdělení. K tomuto účelu jsem použil χ^2 test, který vyšel pozitivně pro hladinu spolehlivosti alespoň 0.05.

Reference

[1] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.