a. Les transformations chimiques

Les molécules et/ou les ions sont transformés en d'autre molécules et/ou ions Exemple : combustion du méthane $CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O$

Exemple 2 : réaction entre solutions acide et basique

Le mélange entre une solution basique et une solution acide conduit à une réaction acidobasique. (carnet labo p36). Il s'agit de la réaction entre les ions H^+ de la solution acide avec les ions HO^- de la solution basique qui conduit toujours à l'équation : $H^+ + HO^- \longrightarrow H_2O$

Exemple 3 : réaction entre un acide et un métal

Le contact entre l'acide chlorhydrique et certains métaux déclenche une transformation chimique. Il y a un échange d'électrons entre les atomes de fer Fe qui perdent deux électrons et deviennent des ions Fe^{2+} solubles dans la solution. Le fer métallique semble donc disparaître. Les ions H^+ dissous dans la solution acide de départ captent ces électrons et se lient par 2 pour former des molécules de dihydrogène H_2 gazeux. Les ions H^+ voient leur quantité diminuer dans la solution qui devient moins acide : Fe + 2 H^+ Fe²⁺ + H_2

1. Identifier la matière : la masse volumique (carnet de labo p57)

La masse volumique est une grandeur physique caractérisant la masse d'un matériau par unité de volume. Elle permet d'identifier le matériau.

Elle se note ρ (« rhô ») et se calcule en divisant la masse m du corps par son volume V:

$$\rho = \frac{m}{V}$$

Dans les unités légales, la masse volumique est en kilogramme par mètre cube : kg/m³.

Dans la pratique, on peut trouver d'autres unités : g/L, kg/L etc...

<u>A connaître</u>: la masse volumique de l'air est: $\rho = 1,3 \text{ g/L}$

la masse volumique de l'eau est : $\rho_{eau} = 1000 \text{ g/L}.$