URG on Kondo Model

April 4, 2021

Contents

1	Questions	2
2	Formulation	3
3	Particle, hole sectors (Left GFs) 3.1 Particle Sector	3 4 4
4	Decoupling $q\beta$, $q\bar{\beta}$ 4.1 Scaling Equations	5

1 Questions

- What is the motivation behind the choice of the initial condition $\tau_{q\uparrow} = -\tau_{q\downarrow} = \frac{1}{2}$? Does that choice not violate the SU(2) symmetry of the model? Why not take a more symmetric choice like $\tau_{q\beta} = \tau_{q\bar{\beta}} = \frac{1}{2}$ for $q\beta$ below fermi level and -1/2 for above it?
- If we follow your notes and try to derive the equations with just the initial configuration $\tau_{q\uparrow} = -\tau_{q\downarrow} = \frac{1}{2}$, we end up with a field-like term αS_d^z in ΔH , which violates SU(2). However, if we also add the ΔH from the initial state with \uparrow and \downarrow flipped, then we lose the field term.
- On setting $J_z = J_t$, we do not get $\Delta J_z = \Delta J_t$.

2 Formulation

$$H = \sum_{k\alpha} \epsilon_k \tau_{k\alpha} + J_z S_d^z \sum_{kk'} \left(c_{k\uparrow}^{\dagger} c_{k'\uparrow} - c_{k\downarrow}^{\dagger} c_{k'\downarrow} \right)$$

$$+ J_t \sum_{kk'} \left(S_d^{\dagger} c_{k\downarrow}^{\dagger} c_{k'\uparrow} + S_d^{-} c_{k\uparrow}^{\dagger} c_{k'\downarrow} \right)$$

$$= H^D + H^i + H^I$$

$$(2.1)$$

$$H^{D} = \sum_{k\alpha} \epsilon_k \tau_{k\alpha} + J_z S_d^z \sum_{k\beta} \beta \tau_{k\beta}$$
 (2.2)

$$H^{i} = J_{z} S_{d}^{z} \sum_{kk' \neq q} \beta \left(c_{k\beta}^{\dagger} c_{k'\beta} - c_{k\bar{\beta}}^{\dagger} c_{k'\bar{\beta}} \right) (1 - \delta_{kk'})$$

$$+ J_t \sum_{k' \neq q, k} \left(c_{d\beta}^{\dagger} c_{d\bar{\beta}} c_{k\bar{\beta}}^{\dagger} c_{k'\beta} + c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{k'\beta}^{\dagger} c_{k\bar{\beta}} \right)$$
 (2.3)

$$H^{I} = J_{t} \sum_{k \neq q} \left(c_{d\beta}^{\dagger} c_{d\bar{\beta}} c_{k\bar{\beta}}^{\dagger} c_{q\beta} + c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\bar{\beta}} \right)$$

$$+ J_z S_d^z \beta \sum_{k \neq q} \left(c_{k\beta}^\dagger c_{q\beta} + c_{q\beta}^\dagger c_{k\beta} \right) \tag{2.4}$$

$$=c_{q\beta}^{\dagger}T_{q\beta}+T_{q\beta}^{\dagger}c_{q\beta}$$

where

$$T_{q\beta} = J_z S_d^z \beta \sum_{k \neq q} c_{k\beta} + J_t c_{d\bar{\beta}}^{\dagger} c_{d\beta} \sum_{k \neq q} c_{k\bar{\beta}}$$
 (2.5)

The transformed hamiltonian is

$$UHU^{\dagger} = H^{D} + H^{i} + \underbrace{c_{q\beta}^{\dagger} T_{q\beta} \eta}_{\text{Particle}} + \underbrace{\eta_{0} c_{q\beta}^{\dagger} T_{q\beta}}_{\text{Hole}}$$
(2.6)

where $\eta_0 = -\eta$

3 Particle, hole sectors (Left GFs)

For simpler calculations, take H^D in the green's functions of η , η_0 as

$$H^{D} = \epsilon_{q} \tau_{q\beta} + \beta J_{z} S_{d}^{z} \left(\tau_{q\beta} - \tau_{q\bar{\beta}} \right) \tag{3.1}$$

3.1 Particle Sector

$$c_{q\beta}^{\dagger} T_{q\beta} \eta = \frac{1}{\omega - H^{D}} c_{q\beta}^{\dagger} T_{q\beta} T_{q\beta}^{\dagger} c_{q\beta}$$

$$= \frac{1}{\omega - H^{D}} \sum_{kk' \neq q} c_{q\beta}^{\dagger} \left(J_{z} S_{d}^{z} \beta c_{k\beta} + J_{t} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{k\bar{\beta}} \right) \left(J_{z} S_{d}^{z} \beta c_{k'\beta}^{\dagger} + J_{t} c_{d\beta}^{\dagger} c_{d\bar{\beta}} c_{k'\bar{\beta}}^{\dagger} \right) c_{q\beta}$$

$$(3.2)$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{1} = J_{z}^{2} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} \beta S_{d}^{z} c_{q\beta}^{\dagger} c_{k\beta} \beta S_{d}^{z} c_{k'\beta}^{\dagger} c_{q\beta}$$

$$= \frac{1}{4} J_{z}^{2} \frac{1}{\omega - \frac{1}{2}\epsilon_{q} - \beta J_{z} S_{d}^{z} \left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} \sum_{kk'\neq q} c_{k\beta} c_{k'\beta}^{\dagger} n_{q\beta}$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{2} = J_{z} J_{t} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} \beta S_{d}^{z} c_{q\beta}^{\dagger} c_{k\beta} c_{d\beta}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{k\bar{\beta}}^{\dagger} c_{q\beta}$$

$$= \frac{1}{2} J_{z} J_{t} \frac{1}{\omega - \frac{1}{2}\epsilon_{q} - \frac{1}{2} J_{z} \left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} c_{d\beta}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{k\bar{\beta}}^{\dagger} c_{k'\bar{\beta}}^{\dagger} n_{q\beta}$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{3} = J_{z} J_{t} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\bar{\beta}}^{\dagger} S_{d}^{z} c_{k'\bar{\beta}}^{\dagger} c_{q\beta}$$

$$= \frac{1}{2} J_{z} J_{t} \frac{1}{\omega - \frac{1}{2}\epsilon_{q} + \frac{1}{2} J_{z} \left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} c_{d\bar{\beta}}^{\dagger} c_{d\beta} \sum_{kk'\neq q} c_{k\bar{\beta}} c_{k'\bar{\beta}}^{\dagger} n_{q\beta}$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{4} = J_{t}^{2} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{q\beta}^{\dagger} c_{k\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{k'\bar{\beta}}^{\dagger} c_{q\beta}$$

$$= J_{t}^{2} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{d\beta}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{d\bar{\beta}} c_{d\bar{\beta}}^{\dagger} c_{k'\bar{\beta}}^{\dagger} c_{q\beta}$$

$$= J_{t}^{2} \frac{1}{\omega - H^{D}} \sum_{kk'\neq q} c_{d\bar{\beta}}^{\dagger} c_{d\beta} c_{d\beta}^{\dagger} c_{d\bar{\beta}}^{\dagger} c_{d$$

3.2 Hole Sector

$$\eta_{0}c_{q\beta}^{\dagger}T_{q\beta} = \frac{1}{\omega' - H^{D}}T_{q\beta}^{\dagger}c_{q\beta}c_{q\beta}^{\dagger}T_{q\beta}
= \frac{1}{\omega' - H^{D}}\sum_{kk'\neq q} \left(J_{z}S_{d}^{z}\beta c_{k'\beta}^{\dagger} + J_{t}c_{d\beta}^{\dagger}c_{d\bar{\beta}}c_{k'\bar{\beta}}^{\dagger}\right)c_{q\beta}c_{q\beta}^{\dagger}\left(J_{z}S_{d}^{z}\beta c_{k\beta} + J_{t}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{k\bar{\beta}}\right)
(3.4)$$

$$\left(\eta_{0}c_{q\beta}^{\dagger}T_{q\beta}\right)_{1} = J_{z}^{2} \frac{1}{\omega' - H^{D}} \sum_{kk'\neq q} \beta S_{d}^{z}c_{k'\beta}^{\dagger}c_{q\beta}\beta S_{d}^{z}c_{q\beta}^{\dagger}c_{k\beta}$$

$$= \frac{1}{4}J_{z}^{2} \frac{1}{\omega' + \frac{1}{2}\epsilon_{q} - \beta J_{z}S_{d}^{z}\left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} \sum_{kk'\neq q} c_{k'\beta}^{\dagger}c_{k\beta}\left(1 - n_{q\beta}\right)$$

$$\left(\eta_{0}c_{q\beta}^{\dagger}T_{q\beta}\right)_{2} = J_{z}J_{t} \frac{1}{\omega' - H^{D}} \sum_{kk'\neq q} \beta S_{d}^{z}c_{k'\beta}^{\dagger}c_{q\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{q\beta}^{\dagger}c_{k\bar{\beta}}$$

$$= -\frac{1}{2}J_{z}J_{t} \frac{1}{\omega' + \frac{1}{2}\epsilon_{q} + \frac{1}{2}J_{z}\left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} c_{d\bar{\beta}}^{\dagger}c_{d\beta} \sum_{kk'\neq q} c_{k'\beta}^{\dagger}c_{k\bar{\beta}}\left(1 - n_{q\beta}\right)$$

$$\left(\eta_{0}c_{q\beta}^{\dagger}T_{q\beta}\right)_{3} = J_{z}J_{t} \frac{1}{\omega' - H^{D}} \sum_{kk'\neq q} c_{d\beta}^{\dagger}c_{d\bar{\beta}}c_{k'\bar{\beta}}^{\dagger}c_{q\beta}\beta S_{d}^{z}c_{q\beta}^{\dagger}c_{k\beta}$$

$$= -\frac{1}{2}J_{z}J_{t} \frac{1}{\omega' + \frac{1}{2}\epsilon_{q} - \frac{1}{2}J_{z}\left(\tau_{q\beta} - \tau_{q\bar{\beta}}\right)} c_{d\beta}^{\dagger}c_{d\bar{\beta}} \sum_{kk'\neq q} c_{k'\bar{\beta}}^{\dagger}c_{k\beta}\left(1 - n_{q\beta}\right)$$

$$\left(\eta_{0}c_{q\beta}^{\dagger}T_{q\beta}\right)_{4} = J_{t}^{2} \frac{1}{\omega' - H^{D}} \sum_{kk'\neq q} c_{d\beta}^{\dagger}c_{d\bar{\beta}}c_{k'\bar{\beta}}^{\dagger}c_{q\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\beta}c_{d\bar{\beta}}^{\dagger}c_{d\bar{\beta}}c_{d\bar{\beta}}^{\dagger}c$$

4 Decoupling $q\beta$, $q\bar{\beta}$

We consider the decoupling for the initial condition $\tau_{q\beta} = -\tau_{q\bar{\beta}} = \frac{1}{2}$ with the ansatz $\omega = -\omega'$

What is the motivation behind the initial condition $\tau_{q\beta} = -\tau_{q\bar{\beta}} = \frac{1}{2}$? Can't we take $\tau_{q\beta} = \tau_{q\bar{\beta}} = \frac{1}{2}$ for $q\beta$ below fermi level and -1/2 for above it?

$$c_{q\beta}^{\dagger} T_{q\beta} \eta = \frac{1}{4} J_z^2 \frac{1}{\omega - \frac{1}{2} \epsilon_q - \beta J_z S_d^z} \sum_{kk' \neq q} c_{k\beta} c_{k'\beta}^{\dagger} + \frac{1}{2} J_z J_t \frac{1}{\omega - \frac{1}{2} \epsilon_q - \frac{1}{2} J_z} c_{d\beta}^{\dagger} c_{d\bar{\beta}} \sum_{kk' \neq q} c_{k\beta} c_{k'\bar{\beta}}^{\dagger}$$

$$+ \frac{1}{2}J_{z}J_{t}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} + \frac{1}{2}J_{z}}c_{d\bar{\beta}}^{\dagger}c_{d\beta}\sum_{kk'\neq q}c_{k\bar{\beta}}c_{k'\beta}^{\dagger}$$

$$+ J_{t}^{2}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} + \frac{1}{2}J_{z}}\left(\frac{1}{2} + \bar{\beta}S_{d}^{z}\right)\sum_{kk'\neq q}c_{k\bar{\beta}}c_{k'\bar{\beta}}^{\dagger}$$

$$+ \eta_{0}c_{q\bar{\beta}}^{\dagger}T_{q\bar{\beta}} = -\frac{1}{4}J_{z}^{2}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} - \bar{\beta}J_{z}S_{d}^{z}}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}$$

$$+ \frac{1}{2}J_{z}J_{t}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} + \frac{1}{2}J_{z}}c_{d\beta}^{\dagger}c_{d\bar{\beta}}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\beta}$$

$$+ \frac{1}{2}J_{z}J_{t}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} - \frac{1}{2}J_{z}}c_{d\bar{\beta}}^{\dagger}c_{d\beta}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}$$

$$- J_{t}^{2}\frac{1}{\omega - \frac{1}{2}\epsilon_{q} - \frac{1}{2}J_{z}}\left(\frac{1}{2} - \beta S_{d}^{z}\right)\sum_{kk'\neq q}c_{k'\beta}^{\dagger}c_{k\beta}$$

$$(4.2)$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{2} + \left(\eta_{0}c_{q\bar{\beta}}^{\dagger}T_{q\bar{\beta}}\right)_{2} = J_{z}J_{t}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}\right)^{2}}c_{d\beta}^{\dagger}c_{d\bar{\beta}}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\beta} \quad (4.3a)$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{3} + \left(\eta_{0}c_{q\bar{\beta}}^{\dagger}T_{q\bar{\beta}}\right)_{3} = J_{z}J_{t}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}\right)^{2}}c_{d\bar{\beta}}^{\dagger}c_{d\bar{\beta}}\sum_{kk'\neq q}c_{k'\beta}^{\dagger}c_{k\bar{\beta}} \quad (4.3b)$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{1} + \left(\eta_{0}c_{q\bar{\beta}}^{\dagger}T_{q\bar{\beta}}\right)_{4} = \frac{J_{t}^{2}\left(\omega - \frac{1}{2}\epsilon_{q}\right) + \frac{1}{2}J_{z}\left(J_{t}^{2} - \frac{1}{2}J_{z}^{2}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}\right)^{2}}\beta S_{d}^{z}\sum_{kk'\neq q}c_{k'\beta}^{\dagger}c_{k\bar{\beta}}$$

$$-\frac{1}{2}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)\left(J_{t}^{2} + \frac{1}{2}J_{z}^{2}\right) + \frac{1}{2}J_{z}J_{t}^{2}}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}\right)^{2}}\sum_{k\neq q}c_{k'\beta}^{\dagger}c_{k\bar{\beta}}$$

$$+\frac{1}{4}J_{z}^{2}\frac{\left(\omega + \frac{1}{2}\epsilon_{q} + \beta\mathbf{J}_{z}\mathbf{S}_{d}^{2}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}\right)^{2}}\sum_{k\neq q}\bar{\beta}S_{d}^{z}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}$$

$$\left(c_{q\beta}^{\dagger}T_{q\beta}\eta\right)_{4} + \left(\eta_{0}c_{q\bar{\beta}}^{\dagger}T_{q\bar{\beta}}\right)_{1} = -\frac{J_{t}^{2}\left(\omega - \frac{1}{2}\epsilon_{q}\right) - \frac{1}{2}J_{z}\left(J_{t}^{2} - \frac{1}{2}J_{z}^{2}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}^{2}\right)}\bar{\beta}S_{d}^{z}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}$$

$$-\frac{1}{2}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)\left(J_{t}^{2} + \frac{1}{2}J_{z}^{2}\right) - \frac{1}{2}J_{z}J_{t}^{2}}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}}$$

$$-\frac{1}{2}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)\left(J_{t}^{2} + \frac{1}{2}J_{z}^{2}\right) - \frac{1}{2}J_{z}J_{t}^{2}}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}}$$

$$-\frac{1}{2}\frac{\left(\omega - \frac{1}{2}\epsilon_{q}\right)\left(J_{t}^{2} + \frac{1}{2}J_{z}^{2}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}^{2}\right)^{2}}\sum_{kk'\neq q}c_{k'\bar{\beta}}^{\dagger}c_{k\bar{\beta}}}$$

$$+J_{t}^{2}\frac{\left(\omega + \frac{1}{2}\epsilon_{q} - \frac{1}{2}J_{z}\right)}{\left(\omega - \frac{1}{2}\epsilon_{q}\right)^{2} - \left(\frac{1}{2}J_{z}^{2}\right)^{2}}\sum_{k\neq q}1$$
(4.3d)

Field terms arise in UHU^{\dagger} if we don't sum Eqs. (4.3) over β

4.1 Scaling Equations

Without summing over β

$$\Delta J_{z\uparrow} = \frac{J_t^2 \left(\omega - \frac{1}{2}\epsilon_q\right) + \frac{1}{2}J_z \left(J_t^2 - \frac{1}{2}J_z^2\right)}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2}$$

$$\Delta J_{z\downarrow} = -\frac{J_t^2 \left(\omega - \frac{1}{2}\epsilon_q\right) - \frac{1}{2}J_z \left(J_t^2 - \frac{1}{2}J_z^2\right)}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2}$$

$$\Delta J_t = J_z J_t \frac{\left(\omega - \frac{1}{2}\epsilon_q\right)}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2}$$
(4.4)

Field term:

$$\frac{1}{4}J_z^2 \frac{\beta J_z S_d^z}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2} \sum_{k \neq q} 1 \tag{4.5}$$

On summing over β

$$\Delta J_t = 2J_z J_t \frac{\left(\omega - \frac{1}{2}\epsilon_q\right)}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2} \tag{4.6}$$

$$\Delta J_z = \frac{J_z \left(J_t^2 - \frac{1}{2}J_z^2\right)}{\left(\omega - \frac{1}{2}\epsilon_q\right)^2 - \left(\frac{1}{2}J_z\right)^2} \tag{4.7}$$

 ΔJ_z doesn't have the same form as ΔJ_t .