6 (a) Define the coulomb.

_____[1]

(b) A resistor X is connected to a cell as shown in Fig. 6.1.

Fig. 6.1

The resistor is a wire of cross-sectional area A and length *l*. The current in the wire is *I*.

Show that the average drift speed v of the charge carriers in X is given by the equation

$$v = \frac{I}{nAe}$$

where e is the charge on a charge carrier and n is the number of charge carriers per unit volume in X.

[3]

(c) A 12V battery with negligible internal resistance is connected to two resistors Y and Z, as shown in Fig. 6.2.

Fig. 6.2

The resistors are made from wires of the same material. The wire of Y has a diameter d and length l . The wire of Z has a diameter $2d$ and length $2l$.	
(i)	Determine the ratio
	average drift speed of the charge carriers in \boldsymbol{Y} average drift speed of the charge carriers in \boldsymbol{Z}
(ii)	ratio =
	$\frac{\text{resistance of Y}}{\text{resistance of Z}} = 2.$
	[2]
(iii)	Determine the potential difference across Y.
	potential difference =
(iv)	Determine the ratio $\frac{\text{power dissipated in Y}}{\text{power dissipated in Z}}.$
	votio [41
	ratio =[1]