

I. Theoretical

Marks and Channels

II.

Practical

Central Tendency & Dispersion

Week 4 Nov 3, 2015

Feedback

Pluses:

- Theoretical topics
- Practical examples
- Time for questions
- Demos with Tableau
- Good sense of humor(?)

Deltas:

- More hands-on practicing
- Give files ahead of time
- Better email response
- Earlier video postings
- Go slower & don't jump around (demos)
- In-Class comments are hard to hear
- More Tableau resources

I.

Theoretical

Marks and Channels

II.

Practical

Central Tendency & Dispersion

Week 4 Nov 3, 2015

Channels: Expressiveness Types and Effectiveness Ranks

Group →1 ↓Period		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
														n .e				
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Interactive Periodic Table of Elements with Variable Sizing

Size By

Source: http://en.wikipedia.org/wiki/List of elements

Th

Ac

Pa

Np

Pu

Am

Cm

Bk

Cf

Fm

Md

Nο

Source: http://en.wikipedia.org/wiki/List_of_elements

Interactive Periodic Table of Elements with Variable Sizing

Source: http://en.wikipedia.org/wiki/List_of_elements

Expressiveness, Effectiveness and Accuracy

The **expressiveness principle** dictates that the visual encoding should express all of, and only, the information in the dataset attributes. The most fundamental expression of this principle is that ordered data should be shown in a way that our perceptual system intrinsically senses as ordered. Conversely, unordered data should not be shown in a way that perceptually implies an ordering that does not exist.

The **effectiveness principle** dictates that the importance of the attribute should match the salience of the channel; that is, its noticeability. In other words, the most important attributes should be encoded with the most effective channels in order to be most noticeable, and then decreasingly important attributes can be matched with less effective channels.

- Munzner, Tamara. Visualization Analysis and Design. CRC Press, 09/2014. VitalBook file.

The citation provided is a guideline. Please check each citation for accuracy before use.

Expressiveness: Does this work?

How Much the Seattle Seahawks Spend On....

Effectiveness: Is it easier to tell relative **height** or **weight**?

Cleveland & McGill's Results

Which is bigger?

How much bigger?

Which is darker?

How much darker?

Which is longer?

How much longer?

A word on Color Hue and Color Saturation

What's wrong with this?

Top 10: Growth in Number of Finishers in 2014 vs. 1970 by Country (non-US)

	Italy (1,880)	Germany (1,756)	Canada (1,338)	Australia (1,041)		
France (2,963)			Netherlands (1,182)	Sweden (911)		
	United Kingd	om (1,567)	Mexico (1,067)	Switzerland (775)		

What's wrong with this?

A California Road-Trip

miles of roads, by county and type

Improved

A California Road-Trip

miles of roads, by county and type

Sales Superstore Regional Dashboard: Single Color Palette

The Color Channels: Rules of Thumb

- 1. DON'T use the same color hue for two different variables
- 2. DON'T use the same color saturation for different magnitudes of the same variable
- 3. DON'T use too many color encodings on one dashboard
- 4. When possible, DO use one and only one color encoding per view

"Preattentive" Processing

Find the box with the red circle

Find the box with the red circle

Find the box with the red circle

Find the boundary line

Use of Preattentive Features

Target detection:

 users rapidly and accurately detect the presence or absence of a "target" element with a unique visual feature within a field of distractor elements

Boundary detection:

 users rapidly and accurately detect a texture boundary between two groups of elements, where all of the elements in each group have a common visual property

Region tracking:

• users track one or more elements with a unique visual feature as they move in time and space, and

Counting and estimation:

 users count or estimate the number of elements with a unique visual feature.

I.

Theoretical

Marks and Channels

II.

Practical

Central Tendency & Dispersion

Week 4 Nov 3, 2015

Measures of Central Tendency

What does "typical" look like?

Mean, Median and Mode

$$3, 7, 10, 8, 31, 10, 2$$
Mean (avg) = $\frac{3+7+10+8+31+10+2}{7} = \frac{71}{7}$
10.14

7 numbers

Median = $2, 3, 7, 8, 10, 10, 31$
 k

middle

Mode $3, 7, 10, 8, 31, 10, 2$

Comparing measures of central tendency

Measures of Dispersion

The Standard Deviation

Quartiles

Visualizing Variation

Data: https://www.dropbox.com/s/ou7ig770kq5gajw/DiceRoll.xlsx?dl=0

2015 Seahawks Roster

Δ	Α	В	С	D	Е	F	G	Н	1	J
1	No	Player	Avg Salary	Pos	Status	Height (in)	Weight (lbs)	Birthdate	Exp	College
2	56	Cliff Avril	\$ 7,125,000	DE	ACT	75	260	4/8/1986	8	Purdue
3	78	Alvin Bailey	\$ 497,000	G	ACT	75	320	8/26/1991	3	Arkansas
4	89	Doug Baldwin	\$ 4,333,333	WR	ACT	70	189	9/21/1988	5	Stanford
5	72	Michael Bennett	\$ 7,125,000	DE	ACT	76	274	11/13/1985	7	Texas A&M
6	68	Justin Britt	\$ 886,733	OG	ACT	78	325	5/29/1991	2	Missouri
7	30	Bryce Brown	\$ 660,000	RB	ACT	72	220	5/14/1991	4	Kansas State
8	28	Marcus Burley	\$ 465,000	DB	ACT	71	185	7/16/1990	3	Delaware
9	31	Kam Chancellor	\$ 7,000,502	SS	ACT	75	232	4/3/1988	6	Virginia Tech
10	55	Frank Clark	\$ 933,056	DE	ACT	75	272	6/14/1993	0	Michigan
11	40	Derrick Coleman	\$ 495,000	FB	ACT	72	233	10/18/1990	4	UCLA
12	52	Brock Coyle	\$ 511,000	MLB	RES	73	243	10/12/1990	2	Montana
13	95	Demarcus Dobbs	\$ 825,000	DE	ACT	74	282	11/30/1987	5	Georgia
14	79	Garry Gilliam	\$ 514,000	Т	ACT	77	306	11/26/1990	2	Penn State
15	63	Mark Glowinski	\$ 656,423	OG	ACT	76	310	5/3/1992	0	West Virginia
16	88	Jimmy Graham	\$ 10,000,000	TE	ACT	79	265	11/24/1986	6	Miami (Fla.)
17	49	Clint Gresham	\$ 901,667	LS	ACT	75	260	8/24/1986	6	Texas Christian
18	4	Steven Hauschka	\$ 2,850,000	К	ACT	76	210	6/29/1985	8	North Carolina State
19	84	Cooper Helfet	\$ 465,000	TE	ACT	75	239	6/2/1989	4	Duke
20	97	Jordan Hill	\$ 691,035	DT	ACT	73	303	2/8/1991	3	Penn State
21	51	Bruce Irvin	\$ 2,335,550	OLB	ACT	75	260	11/1/1987	4	West Virginia
22	7	Tarvaris Jackson	\$ 1,500,000	QB	ACT	74	225	4/21/1983	10	Alabama State

Data: https://www.dropbox.com/s/po2qfa9oo6a4k6j/SeahawksRoster2014.xlsx?dl=0

Normal: Heights of Seahawk Players

Non-normal: Seahawk Salaries

Adding a Cumulative Distribution Plot

Box Plots: Salary by Position Group

The "Equiplot"

Equiplot: Inequalities in Infant Mortality by Income

Infant mortality level and disparities across income groups and trends from 1991 to 2010 Hover the mouse over any dot and/or line for addition information, including summary disparity measures such as absolute and relative differences

http://healthintelligence.drupalgardens.com/content/equiplot-chart-display-equity-data

Variation over time: Control Charts

Don't "hit them over the head" with variation

Average Only

Data Points

Bands

Circle Histograms

Box Plot

Exercise: How Tall are We?

Find the mean, median, mode, standard deviation, and quartiles

Visualize Class Heights

Form: http://bit.ly/1iByFRM

Data: http://bit.ly/10m0avb

Named by Fortune ONE OF THE SMARTEST BOOKS OF ALL TIME

FOLED BY RANDOMNESS

The Hidden Role of Chance in Life and in the Markets

NASSIM NICHOLAS TALEB
SECOND EDITION, UPDATED BY THE AUTHOR

Two types of variation

Week 4 Homework

- Read the chapters for the Week 5 Lecture:
 - Munzner, Visualization Analysis & Design, Ch. 6
 - Jones, Communicating Data with Tableau, Ch. 8
- Visualization
 - Find (or create) a data set and create a visualization that clearly shows measures of central tendency and variation