

LÝ THUYẾT MẠCH II

QUÁ TRÌNH QUÁ ĐỘ

Lý thuyết mạch

- Lý thuyết mạch I
 - 1. Thông số mạch
 - 2. Phần tử mạch
 - 3. Mạch một chiều
 - 4. Mạch xoay chiều
 - 5. Mạng hai cửa
 - 6. Mạch ba pha
 - 7. Khuếch đại thuật toán
- Lý thuyết mạch II
 - 1. Quá trình quá độ
 - 2. Mạch phi tuyến
 - 3. Đường dây dài

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Lý thuyết mạch II

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sách tham khảo

- 1. C. K. Alexander, M. N. O. Sadiku. *Fundamentals of Electric Circuits*. McGraw-Hill, 2001
- 2. J. Bird. *Electrical Circuit Theory and Technology*. Newnes, 2003
- 3. Nguyễn Bình Thành, Nguyễn Trần Quân, Phạm Khắc Chương. *Cơ sở kỹ thuật điện*. Đại học & trung học chuyên nghiệp, 1971
- 4. J. W. Nilsson, S. A. Riedel. *Electric Circuits*. Addison-Wesley, 1996
- 5. J. O'Malley. *Theory and Problems of Basic Circuit Analysis*. McGraw-Hill, 1992
- 6. A. L. Shenkman. *Transient Analysis of Electric Power Circuits Handbook*. Springer, 2005
- 7. Nguyễn Công Phương. *Lỗi thường gặp khi làm bài tập Lý thuyết mạch*. Khoa học & Kỹ thuật, 2021.
- 8. Nguyễn Công Phương & Nguyễn Tuấn Ninh. *Giải bài tập Lý thuyết mạch bằng Python*. Khoa học & Kỹ thuật, 2022.
- 9. https://sites.google.com/site/ncpdhbkhn/home

Phương pháp dòng nhánh

VD

$$n_{KD} = 3 - 1 = 2$$

 $n_{KA} = 3 - 2 + 1 = 2$

$$\begin{cases} a: i_1 - i_2 - i_3 = 0 \\ b: i_3 + J - i_4 = 0 \end{cases}$$

$$A: R_1 i_1 + R_2 i_2 = E_1$$

$$B: -R_2 i_2 + R_3 i_3 + R_4 i_4 = E_3$$

Một mạch điện có n_{KD} phương trình KD và n_{KA} phương trình KA, với:

$$n_{KD} = \text{s\acute{o}}_{-}\text{n\acute{u}t} - 1$$

 $n_{KA} = \text{số_nhánh} - \text{số_nút} + 1$ (không kể nguồn dòng, nếu có)

Biến đổi tương đương

$$J = \frac{E}{R}$$

$$E = RJ$$

Lý thuyết mạch II

- I. Quá trình quá độ
 - 1. Giới thiệu
 - 2. Sơ kiện
 - 3. Phương pháp tích phân kinh điển
 - 4. Phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

Giới thiệu (1)

- Tất cả các mạch điện trong Lý thuyết mạch I đều ở trạng thái/chế độ xác lập.
- Chế độ xác lập: mọi thông số trong mạch điện (dòng điện, điện áp, công suất, năng lượng) đều là hằng số (mạch một chiều) hoặc biến thiên chu kỳ (mạch xoay chiều).
- Quá độ (Từ điển tiếng Việt): chuyển từ chế độ này sang chế độ khác.
- Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

Giới thiệu (2)

 Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

Giới thiệu (3)

 Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Giới thiệu (4)

Các phương pháp giải mạch điện quá độ:

- 1. Tích phân kinh điển, và
- 2. Toán tử

Giới thiệu (5)

- Quá trình quá độ xảy ra khi có thay đổi đột ngột về cấu trúc hoặc thông số của các mạch điện quán tính.
- Quán tính: có cuộn dây hoặc/và tụ điện.
- Một số giả thiết đơn giản hóa:
 - Các phần tử lý tưởng (điện trở của cuộn dây bằng 0, điện trở của tụ điện vô cùng lớn),
 - Động tác đóng mở lý tưởng:
 - Thay khóa (K) bằng R,
 - R chỉ nhận các giá trị 0 (khi K đóng) & ∞ (khi K mở),
 - Thời gian đóng mở bằng 0.
 - Luật Kirchhoff luôn đúng.

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giới thiệu (6)

Chế độ cũ	t = 0	Chế độ mới
$a \longleftarrow b$	$a \longrightarrow b$	<i>a</i> • • • <i>b</i>
$R_{ab} o \infty$		$R_{ab} = 0$
a • • • b	$a \longrightarrow b$	<i>a</i> • • • <i>b</i>
$R_{ab} = 0$	l	$R_{ab} o \infty$
$ \begin{array}{c} b 2 \\ \hline c \\ R_{ac} = 0 \end{array} $	$\frac{b}{c}$ $\frac{1}{c}$ $\frac{a}{c}$	$\begin{array}{c} b & 2 & 1 & a \\ \hline \\ c & \\ R_{ac} & \longrightarrow \infty \end{array}$
$R_{bc} ightarrow \infty$		$R_{bc} = 0$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Giới thiệu (7)

Cuộn cảm trong mạch quá độ một chiều

Tụ điện trong mạch quá độ một chiều

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Giới thiệu (7)

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển
- 4. Phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

Sơ kiện (1)

- Định nghĩa: giá trị (& đạo hàm các cấp) ngay sau thời điểm đóng mở của dòng điện qua cuộn cảm & điện áp trên tụ điện.
- $i_L(0)$, $u_C(0)$, $i'_L(0)$, $u'_C(0)$, $i''_L(0)$, $u''_C(0)$, ...
- Việc tính sơ kiện dựa vào:
 - Thông số mạch ngay trước thời điểm đóng mở (chế độ cũ): $i_L(-0)$, $u_C(-0)$,
 - Hai luật Kirchhoff,
 - Hai luật đóng mở.

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (2)

Sơ kiện (3)

Hàm bước nhảy đơn vị 1(t) (hoặc

u(t):

$$1(t) = \begin{vmatrix} 0 & t < 0 \\ 1 & t \ge 0 \end{vmatrix}$$

$$1(t-\tau) = \begin{vmatrix} 0 & t < \tau \\ 1 & t \ge \tau \end{vmatrix}$$

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (4)

Sơ kiện (5)

Hàm Dirac $\delta(t)$

$$\delta(t) = \frac{d}{dt} 1(t) = \begin{vmatrix} 0 & t \le -0 & t \ge +0 \\ \to & -0 < t < +0 \end{vmatrix}$$

$$\int_{-\infty}^{+\infty} \delta(t) = 1$$

$$\delta(t-\tau) = \frac{d}{dt} \mathbf{1}(t-\tau)$$

Sơ kiện (6)

• Luật/quy tắc đóng mở 1: dòng điện trong một cuộn cảm ngay sau khi đóng mở $i_L(+0)$ bằng dòng điện trong cuộn cảm đó ngay trước khi đóng mở $i_L(-0)$

$$i_L(+0) = i_L(-0)$$

• Luật/quy tắc đóng mở 2: điện áp trên một tụ điện ngay sau khi đóng mở $u_C(+0)$ bằng điện áp trên tụ điện đó ngay trước khi đóng mở $u_C(-0)$

$$u_C(+0) = u_C(-0)$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (7)

VD1

$$E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0) ?$$

Chế độ cũ

$$\begin{cases} i_L(-0) = 0 \\ i_L(0) = i_L(-0) \end{cases}$$

$$\rightarrow \boxed{i_L(0) = 0}$$

$$Ri_L + Li_L' = E$$

$$\rightarrow Ri_L(0) + Li'_L(0) = E$$

$$\rightarrow i'_L(0) = \frac{E - Ri_L(0)}{L} = \frac{12 - 0}{2} = \boxed{6 \text{ A/s}}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (8)

VD2

$$E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0) ?$$

$$i_L(0) = i_L(-0)$$

$$= \frac{E}{R/2} = \frac{12}{6/2}$$

$$= \boxed{4 \text{ A}}$$

$$\rightarrow i'_L(0) = \frac{E - Ri_L(0)}{L} = \frac{12 - 6.4}{2} = \boxed{-6 \text{ A/s}}$$

Sơ kiện (9)

VD3

$$E = 12 \text{ VDC}; R = 6 \Omega; C = 1 \mu \text{F. Tính } u_C(0) \& u'_C(0)$$
?

$$u_C(0) = u_C(-0)$$
$$= \boxed{0 \text{ V}}$$

$$Ri_{C} + u_{C} = E$$

$$i_{C} = Cdu_{C} / dt$$

$$\rightarrow RCu'_{C}(0) + u_{C}(0) = E$$

$$\rightarrow u'_{C}(0) = \frac{E - u_{C}(0)}{RC} = \frac{12 - 0}{6.1 \cdot 10^{-6}} = \boxed{2.10^{6} \text{ V/s}}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (10)

VD4

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega;$$

 $C = 1 \mu \text{ F. Tính } u_C(0) \& u'_C(0)$?

Chế độ cũ

$$u_C(0) = u_C(-0)$$
$$= E = \boxed{12 \text{ V}}$$

$$\begin{cases} i_{1} - i_{2} - i_{C} = 0 \\ R_{1}i_{1} + R_{2}i_{2} = E \\ R_{2}i_{2} - u_{C} = 0 \end{cases}$$

$$i_{C} = Cdu_{C} / dt$$

Sơ kiện (11)

VD4

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega;$$

$$C = 1 \mu F$$
. Tính $u_C(0) \& u'_C(0)$?

Chế độ cũ

$$u_C(0) = u_C(-0)$$
$$= E = \boxed{12 \text{ V}}$$

$$(R_1 + R_2)u_C(0) + R_1R_2Cu_C'(0) = R_2E$$

$$\rightarrow u_C'(0) = \frac{R_2E - (R_1 + R_2)u_C(0)}{R_1R_2C}$$

$$= \frac{3.12 - (6+3)12}{6.3.1.10^{-6}} = \boxed{-4.10^6 \text{ V/s}}$$

Sơ kiện (12)

VD5

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính các sơ kiện?}$

Chế độ cũ

$$\begin{cases} i_{L} - i_{C} - i_{2} = 0 \\ R_{1}i_{L} + u_{L} + R_{2}i_{2} = E \\ R_{2}i_{2} - u_{C} = 0 \end{cases}$$

$$u_{L} = 0; i_{C} = 0$$

$$\Rightarrow \begin{cases}
i_L(0) = i_2(0) = \frac{E}{R_1 + R_2} = \frac{12}{20 + 45} = \boxed{0,18 \text{ A}} \\
u_C(0) = R_2 i_2(0) = 45.0,18 = \boxed{8,31 \text{ V}}
\end{cases}$$

Sơ kiện (13)

VD5

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}. \text{Tính các sơ kiện}?$

$$i_L(0) = 0.18 \text{ A}; \ u_C(0) = 8.31 \text{ V}$$

Chế độ mới

$$\begin{cases} R_1 i_L + L i'_L + u_C = E \\ i_L = i_C = C u'_C \end{cases}$$

$$\Rightarrow \begin{cases}
R_1 i_L(0) + L i'_L(0) + u_C(0) = E \\
i_L(0) = C u'_C(0)
\end{cases}$$

$$i_L(0) = Cu_C'(0)$$

$$\Rightarrow \begin{cases}
i'_{L}(0) = \frac{E - R_{1}i_{L}(0) - u_{C}(0)}{L} = \frac{12 - 20.0, 18 - 8, 31}{20.10^{-3}} = \\
u'_{C}(0) = \frac{i_{L}(0)}{C} = \frac{0, 18}{4.10^{-3}} = \boxed{46,15 \text{ V/s}}
\end{cases}$$

$$u'_{C}(0) = \frac{i_{L}(0)}{C} = \frac{0.18}{4 \cdot 10^{-3}} = \boxed{46.15 \text{ V/s}}$$

Sơ kiện (14)

VD5

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính các sơ kiện}?$

- 1. Xét mạch ở chế độ cũ (khóa ở vị trí cũ),
- 2. Tîm $i_L(0) \& u_C(0)$,
- 3. Xét mạch ở chế độ mới (khóa ở vị trí mới),
- 4. Viết hệ phương trình dòng nhánh, thay thế $u_L = Li'_L \& i_C = Cu'_C$,
- 5. Xét hệ phương trình với t = 0,
- 6. Thay số (với $i_L(0)$ & $u_C(0)$ ở bước 2) & giải hệ để có $i'_L(0)$ & $u'_C(0)$.

$$\rightarrow \begin{cases} i'_{L}(0) = 0 \text{ A/s} \\ u'_{C}(0) = 46,15 \text{ V/s} \end{cases}$$

Sơ kiện (15)

VD6

$$e = 60 \sin 100t \text{ V}; R_1 = 20 \Omega; R_2 = 100 \Omega; L = 0, 2 \text{ H};$$

 $C = 0, 4 \text{ mF}. \text{ Tính các sơ kiện?}$

$$\begin{split} \dot{I}_L &= \frac{\dot{E}}{R_1 + j\omega L + \frac{R_2(1/j\omega C)}{R_2 + 1/j\omega C}} \\ &= \frac{60}{20 + j100.0, 2 + \frac{45(1/j100.0, 4.10^{-3})}{45 + 1/j100.0, 4.10^{-3}}} \end{split}$$

=
$$2,30/7,77^{\circ}$$
 A $\rightarrow i_L(t) = 2,30\sin(100t + 7,77^{\circ})$ A

$$i_L(0) = 2,30\sin(100.0 + 7,77^\circ) = 2,30\sin(7,77^\circ) = 0,31 \text{ A}$$

Sơ kiện (16)

VD6

$$e = 60 \sin 100t \text{ V}; R_1 = 20 \Omega; R_2 = 100 \Omega; L = 0,2 \text{ H};$$
 $C = 0,4 \text{ mF}.$ Tính các sơ kiện?

Chế độ cũ

$$\dot{I}_L = 2,30/7,77^{\circ}$$
 A

$$\dot{U}_C = \dot{I}_L \frac{R_2(1/j\omega C)}{R_2 + 1/j\omega C}$$

$$=2,30/7,77^{\circ} \frac{45(1/j100.0,4.10^{-3})}{45+1/j100.0,4.10^{-3}}$$

=
$$55,71/-68,20^{\circ}$$
 V $\rightarrow u_C(t) = 55,71\sin(100t-68,20^{\circ})$ V

$$u_C(0) = 55,71\sin(100.0 - 68,20^\circ) = 55,71\sin(-68,20^\circ) = \boxed{-51,72 \text{ V}}$$

Sơ kiện (17)

VD7

$$E_1$$
 = 120 V; E_2 = 40 V; R_1 = 10 Ω ; R_2 = 20 Ω ; R_3 = 30 Ω ; L = 1 H; C = 1 mF. Tính các sơ kiện?

Chế độ cũ

$$\begin{cases} a: i_1 + i_2 - i_3 = 0 \\ R_1 i_1 + R_3 i_3 + u_L = E_1 \\ R_2 i_2 + R_3 i_3 + u_C = E_1 \end{cases}$$

$$i_2 = 0, \ u_I = 0$$

$$\Rightarrow \begin{cases}
i_L(0) = i_1(0) = \frac{E_1}{R_1 + R_3} = \frac{120}{10 + 30} = \boxed{3 \text{ A}} \\
u_C(0) = E_1 - R_3 i_3 = \boxed{30 \text{ V}}
\end{cases}$$

Sơ kiện (18)

VD7

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega; L = 1 \text{ H}; C = 1 \text{ mF. Tính các sơ kiện?}$$

$$\begin{cases} a: i_{1} + i_{2} - i_{3} = 0 \\ R_{1}i_{1} - R_{2}i_{2} - u_{C} + u_{L} = E_{2} \\ R_{2}i_{2} + R_{3}i_{3} + u_{C} = E_{1} - E_{2} \end{cases}$$

$$u_{L} = Li'_{1}, i_{2} = Cu'_{C}$$

$$\Rightarrow \begin{cases}
i_1 + Cu'_C - i_3 = 0 \\
R_1 i_1 - R_2 i_2 - u_C + L i'_1 = E_2 \\
R_2 Cu'_C + R_3 i_3 + u_C = E_1 - E_2
\end{cases}$$

Sơ kiện (19)

VD7

$$E_1$$
 = 120 V; E_2 = 40 V; R_1 = 10 Ω ; R_2 = 20 Ω ; R_3 = 30 Ω ; L = 1 H; C = 1 mF. Tính các sơ kiện?

$$\begin{cases} i_1 + Cu'_C - i_3 = 0 \\ R_1 i_1 - R_2 Cu'_C - u_C + Li'_1 = E_2 \\ R_2 Cu'_C + R_3 i_3 + u_C = E_1 - E_2 \end{cases}$$

$$\Rightarrow \begin{cases}
i_1(0) + Cu'_C(0) - i_3(0) = 0 \\
R_1 i_1(0) - R_2 Cu'_C(0) - u_C(0) + Li'_1(0) = E_2 \\
R_2 Cu'_C(0) + R_3 i_3(0) + u_C(0) = E_1 - E_2
\end{cases}$$

Sơ kiện (20)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$
 $L = 1 \text{ H}; C = 1 \text{ mF}.$ Tính các sơ kiện?

$$\begin{cases} i_{1}(0) + Cu'_{C}(0) - i_{3}(0) = 0 \\ R_{1}i_{1}(0) - R_{2}Cu'_{C}(0) - u_{C}(0) + Li'_{1}(0) = E_{2} \\ R_{2}Cu'_{C}(0) + R_{3}i_{3}(0) + u_{C}(0) = E_{1} - E_{2} \end{cases}$$

$$i_{1}(0) = 3 \text{ A}; \ u_{C}(0) = 30 \text{ V}$$

$$\Rightarrow \begin{cases}
3 + Cu'_{C}(0) - i_{3}(0) = 0 \\
3R_{1} - R_{2}Cu'_{C}(0) - 30 + Li'_{1}(0) = E_{2} \\
R_{2}Cu'_{C}(0) + R_{3}i_{3}(0) + 30 = E_{1} - E_{2}
\end{cases}$$

$$\rightarrow \begin{cases} |i_1'(0) = 24 \text{ A/s} \\ u_C'(0) = -800 \text{ V/s} \end{cases}$$

Sơ kiện (21)

VD8

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$
 $C = 5 \text{ mF}.$ Tính các sơ kiện?

Chế độ cũ

$$u_L = 0; i_C = 0$$

$$i_L(0) = R_1 \frac{J}{R_1 + R_2} = 10 \frac{5}{10 + 20} = \boxed{1,67 \text{ A}}$$

$$u_C(0) = R_2 i_L(0) = 20.1,67 = 33,33 \text{ V}$$

38

Sơ kiện (22)

VD8

$$J$$
 = 5 A (DC); R_1 = 10 Ω ; R_2 = 20 Ω ; L = 2 H; C = 5 mF. Tính các sơ kiện?

$$\begin{cases} a: i_{1} + i_{C} + i_{L} = 0 \\ R_{1}i_{1} - u_{C} = 0 \end{cases} \rightarrow \begin{cases} i_{1} + Cu'_{C} + i_{L} = 0 \\ R_{1}i_{1} = u_{C} \\ u_{C} - u_{L} = 0 \end{cases}$$

$$\Rightarrow \begin{cases}
i_1(0) + Cu'_C(0) + i_L(0) = 0 \\
R_1 i_1(0) = u_C(0) \\
u_C(0) = Li'_L(0)
\end{cases}$$

$$\rightarrow i'_L(0) = 16,67 \text{ A/s}; \ u'_C(0) = -1000 \text{ V/s}$$

Sơ kiện (23)

VD9

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

$$C = 5$$
 mF. Tính các sơ kiện?

Chế độ cũ

$$i_L(0) = i_C = \boxed{0}$$

$$\int i + 2i - i_R - i_L = 0$$

$$R_1 i + R_2 i_R = E$$

$$\rightarrow i_R = 2,4 \text{ A} \rightarrow u_C(0) = R_2 i_R = \boxed{7,2 \text{ V}}$$

$$i + 2i - i_R - i_C = 0$$

$$R_1 i + R_2 i_R = 0$$

$$u_L + u_C - R_2 i_R = 0$$

$$\rightarrow \begin{cases} 3i - i_R - i_L = 0 \\ R_1 i + R_2 i_R = 0 \\ Li'_L + u_C - R_2 i_R = 0 \end{cases}$$

Sơ kiện (24)

VD9

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

C = 5 mF. Tính các sơ kiện?

$$\int 3i - i_R - i_L = 0$$

$$R_1 i + R_2 i_R = 0$$

$$Li'_L + u_C - R_2 i_R = 0$$

$$\int 3i(0) - i_R(0) - i_L(0) = 0$$

$$R_1 i(0) + R_2 i_R(0) = 0$$

$$Li'_{L}(0) + u_{C}(0) - R_{2}i_{R}(0) = 0$$

$$i_L = Cu'_C \to u'_C(0) = \frac{i_L(0)}{C} = \frac{0}{C} = \boxed{0}$$

* BÁCH KHOA

Sơ kiện (25)

$$R_1 = R_2 = 10 \text{ k}\Omega$$
; $C_1 = 20 \text{ \mu}\text{F}$; $C_2 = 100 \text{ \mu}\text{F}$; $E = 4\text{V}$. Tính các sơ kiện của u_r ?

$$\boldsymbol{\varphi}_a(0) = 0; \quad \boxed{\boldsymbol{u}_r(0) = 0}$$

$$\frac{\varphi_b - u_r}{R_2} = C_2 u_r'$$

$$\varphi_a = \varphi_b$$

$$\begin{array}{c|c}
 & a \\
 & t = 0 \\
 & R_1 \\
 & R_2 \\
 & C_2 \\
 & C_2
\end{array}$$

$$\rightarrow \frac{\varphi_a - u_r}{R_2} = C_2 u_r'$$

$$\to \frac{\varphi_a(0) - u_r(0)}{R_2} = C_2 u_r'(0) \to \boxed{u_r'(0) = 0}$$

Sơ kiện (26)

VD11

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 0.2 \text{ H}; C = 0.4 \text{ mF}. \text{ Tính các sơ kiện?}$

Chế độ cũ

$$J = 0$$

$$i_L(0) = \frac{E}{R_1 + R_2} = \frac{120}{10 + 20} = 4 \text{ A}$$

$$u_C(0) = u_{R2} = R_2 \frac{E}{R_1 + R_2} = 20 \frac{120}{10 + 20} = 80 \text{ V}$$

Sơ kiện (27)

VD11

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

$$L = 0.2 \text{ H}$$
; $C = 0.4 \text{ mF}$. Tính các sơ kiện?

$$i_L(0) = 4 \text{ A}; \ u_C(0) = 80 \text{ V}$$

$$a: i_R - i_C - i_L + J = 0$$

$$R_1 i_R + u_C = E$$

$$R_2 i_L + L i_L' - u_C = 0$$

$$\rightarrow \begin{cases} i_R - Cu'_C - i_L + J = 0 \\ R_1 i_R + u_C = E \\ R_2 i_L + Li'_L - u_C = 0 \end{cases}$$

$$R_1 i_R + u_C = E$$

$$R_2 i_L + L i_L' - u_C = 0$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (28)

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

$$L = 0.2 \text{ H}; C = 0.4 \text{ mF. Tính các sơ kiện?}$$

$$i_L(0) = 4 \text{ A}; u_C(0) = 80 \text{ V}$$

$$\begin{cases} i_{R} - Cu'_{C} - i_{L} + J = 0 \\ R_{1}i_{R} + u_{C} = E \\ R_{2}i_{L} + Li'_{L} - u_{C} = 0 \end{cases}$$

$$\Rightarrow \begin{cases}
i_R(0) - Cu'_C(0) - i_L(0) = -J \\
R_1 i_R(0) + u_C(0) = E \\
R_2 i_L(0) + Li'_L(0) - u_C(0) = 0
\end{cases}$$

$$\rightarrow \begin{cases} i'_L(0) = 0 \\ y'_S(0) = 12500 \text{ V/s} \end{cases}$$

Sơ kiện (29)

VD12

$$E = 60 \text{ VDC}; R_1 = 9 \Omega; R_2 = 3 \Omega;$$

$$R_3 = 12 \ \Omega; L_1 = 4 \ H; L_2 = 8 \ H; M = 2 \ H.$$

Tính các sơ kiện?

$$i_1(0) = \frac{E}{R_1 + R_2} = 5 \text{ A}; i_2(0) = 0$$

$$\begin{cases} R_2 i_1 + L_1 i_1' + M i_2' = 0 \\ R_3 i_2 + L_2 i_2' + M i_1' = 0 \end{cases}$$

$$\rightarrow \begin{cases} R_2 i_1(0) + L_1 i_1'(0) + M i_2'(0) = 0 \\ R_3 i_2(0) + L_2 i_2'(0) + M i_1'(0) = 0 \end{cases}$$

$$\rightarrow \begin{cases} i_1'(0) = -4,29 \text{ A/s} \\ i_2'(0) = 1,07 \text{ A/s} \end{cases}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (30)

$$u_C(0) = 12V$$

$$u_1(0) = 30i_1(0) + 20i_2(0)$$

$$u_2(0) = 20i_1(0) + 50i_2(0)$$

$$u_1(0) = 12$$

$$u_2(0) = -10i_2(0)$$

$$\rightarrow |i_1(0) = 0.5143 \,\text{A} = i_L(0)|$$

$$i_1(0) = 5.10^{-3} u_C'(0)$$

$$\rightarrow u_C'(0) = 102,86 \text{ V/s}$$

$$\begin{cases} u_1 = 30i_1 + 20i_2 \\ u_2 = 20i_1 + 50i_2 \\ -u_C + 2i'_1 + u_1 = 0 \end{cases} \rightarrow \begin{cases} u_C - 2i'_1 = 30i_1 + 20i_2 \\ -10i_2 = 20i_1 + 50i_2 \end{cases}$$

$$10i_2 + u_2 = 0$$

$$\rightarrow \begin{cases} u_C(0) - Li_1'(0) = 30i_1(0) + 20i_2(0) \\ -10i_2(0) = 20i_1(0) + 50i_2(0) \end{cases}$$

$$\rightarrow [i'_1(0) = -1,67.10^{-4} \text{ A/s}]$$

$$\mathbf{z} = \begin{bmatrix} 30 & 20 \\ 20 & 50 \end{bmatrix} \begin{bmatrix} 10\Omega \\ u_2 \\ \mathbf{v} \end{bmatrix}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (31)

VD14

$$E = 120 \text{ V}; R_1 = 10 \Omega; R_2 = 30 \Omega; L_1 = 1 \text{ H}; L_2 = 2 \text{ H}.$$

Chế độ cũ

$$i_1(-0) = \frac{E}{R_1} = \frac{120}{10} = 12 \text{ A}$$

$$i_2(-0) = 0$$

$$i_1(-0) \neq i_2(-0)$$

Chế độ mới

$$i_1(0) = i_2(0)$$

$$i_1(-0) \neq i_1(0)$$
?

Luật đóng mở tổng quát

Sơ kiện (32)

• Luật/quy tắc đóng mở tổng quát l: tổng từ thông trong một vòng kín ngay sau khi đóng mở $\Sigma\Psi(+0)$ bằng tổng từ thông trong vòng kín đó ngay trước khi đóng mở $\Sigma\Psi(-0)$

$$\sum \Psi(+0) = \sum \Psi(-0)$$

• Luật/quy tắc đóng mở tổng quát 2: tổng điện tích ở một đỉnh ngay sau khi đóng mở $\Sigma q(+0)$ bằng tổng điện tích ở đỉnh đó ngay trước khi đóng mở $\Sigma q(-0)$

$$\sum q(+0) = \sum q(-0)$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (33)

VD14

$$E = 100 \text{ V}; R_1 = 10 \Omega; R_2 = 30 \Omega; L_1 = 4 \text{ H}; L_2 = 1 \text{ H}.$$

Chế độ cũ

$$i_1(-0) = E / R_1 = 10 \text{ A}; \ i_2(-0) = 0$$

$$\sum \psi(-0) = L_1 i_1(-0) + L_2 i_2(-0)$$

$$\sum \psi(0) = L_1 i_1(0) + L_2 i_2(0) = L_1 i_1(0) + L_2 i_1(0)$$

$$\sum \psi(-0) = \sum \psi(0)$$

$$\rightarrow i_1(0) = \frac{L_1 i_1(-0) + L_2 i_2(-0)}{L_1 + L_2} = \frac{4.10 + 2.0}{4 + 1} = \boxed{8 \text{ A}} = i_2(0)$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (34)

$$E = 100 \text{ V}; R_1 = 10 \Omega; R_2 = 30 \Omega; L_1 = 4 \text{ H}; L_2 = 1 \text{ H}.$$

 $i(0) = 8 \text{ A}$

$$(R_1 + R_2)i + (L_1 + L_2)i' = E$$

$$\rightarrow (R_1 + R_2)i(0) + (L_1 + L_2)i'(0) = E$$

$$\rightarrow i'(0) = \frac{E - (R_1 + R_2)i(0)}{L_1 + L_2} = \frac{100 - (10 + 30)8}{4 + 1} = \boxed{-44 \text{ A/s}}$$

Sơ kiện (35)

VD15

$$E = 120 \text{ V}; R = 10 \Omega; C_1 = 1 \text{ mF}; C_2 = 2 \text{ mF}.$$

Chế độ cũ

$$Ri_R + u_{C1}(-0) = E$$

$$i_R = 0 \rightarrow u_{C1}(-0) = E = 120 \text{ V}$$

$$u_{C2}(-0) = 0$$

$$\sum q(-0) = C_1 u_{C1}(-0) + C_2 u_{C2}(-0) = C_1 u_{C1}(-0)$$

$$\sum_{i=0}^{n} q(0) = C_{1}u_{C1}(0) + C_{2}u_{C2}(0) = (C_{1} + C_{2})u_{C1}(0)$$

$$\sum q(-0) = \sum q(0) \to C_1 u_{C1}(-0) = (C_1 + C_2) u_{C1}(0)$$

$$\rightarrow u_{C1}(0) = \frac{C_1 u_{C1}(-0)}{C_1 + C_2} = \frac{1.120}{1+2} = \boxed{40 \text{ V}} = u_{C2}(0)$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sơ kiện (36)

VD15

$$E = 120 \text{ V}; R = 10 \Omega; C_1 = 1 \text{ mF}; C_2 = 2 \text{ mF}.$$

$$u_{C1}(0) = u_{C2}(0) = 40 \text{ V}$$

$$\begin{cases} i_R = i_1 + i_2 \\ Ri_R + u_{C1} = E \end{cases}$$

$$\Rightarrow \begin{cases} i_R = C_1 u'_{C1} + C_2 u'_{C2} = C_1 u'_{C1} + C_2 u'_{C1} = (C_1 + C_2) u'_{C1} \\ Ri_R + u_{C1} = E \end{cases}$$

$$\rightarrow \begin{cases} i_R(0) = (C_1 + C_2)u'_{C1}(0) \\ Ri_R(0) + u_{C1}(0) = E \end{cases}$$

$$\rightarrow R(C_1 + C_2)u'_{C1}(0) + u_{C1}(0) = E$$

$$\rightarrow u'_{C1}(0) = \frac{E - u_{C1}(0)}{R(C_1 + C_2)} = \frac{120 - 40}{10(1+2)10^{-3}} = \boxed{2666,67 \text{ V/s}}$$

53

Sơ kiện (37)

- Định nghĩa: giá trị (& đạo hàm các cấp) ngay sau thời điểm đóng mở của dòng điện qua cuộn cảm & điện áp trên tụ điện.
- $i_L(0)$, $u_C(0)$, $i'_L(0)$, $u'_C(0)$, $i''_L(0)$, $u''_C(0)$, ...
- Thường tính bằng phương pháp dòng nhánh.
- Sơ kiện PHẢI là số thực.
- Sơ kiện KHÔNG PHẢI là số phức.
- Sơ kiện KHÔNG PHẢI là hàm số.

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển
- 4. Phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

Phương pháp tích phân kinh điển (1)

Nghiệm quá độ

$$x(t) = x_{xl}(t) + x_{td}(t)$$

Nghiệm xác lập

$$x_{xl}(t)$$

Nghiệm tự do

$$X_{td}(t)$$

Phương pháp tích phân kinh điển (2)

$$E = 24 \text{ VDC}$$
; $R = 25 \Omega$; $L = 5 \text{ H}$; $C = 50 \text{ mF}$.

1.
$$i_L(0) = 0$$
; $i'_L(0) = 4.8$ A/s;

2.
$$i_{xl}(t) = 0;$$

a)
$$LCs^2 + RCs + 1 = 0,$$

 $\Rightarrow s_1 = -4, s_2 = -1;$

b)
$$i_{td}(t) = Ae^{-4t} + Be^{-t}$$
;

4.
$$A = -1.6$$
; $B = 1.6$;

5.
$$i(t) = 0 - 1.6e^{-4t} + 1.6e^{-t}$$
 A

- 1. Tính các sơ kiện;
- 2. Tìm nghiệm xác lập $x_{xl}(t)$;
- 3. Tìm nghiệm tự do:
- a) lập phương trình đặc trưng & giải;
- b) viết nghiệm tự do $x_{td}(t)$;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Phương pháp tích phân kinh điển (3)

- 1. Tính các sơ kiện (đã có ở phần trước);
- 2. Tìm nghiệm xác lập (dùng các phương pháp (dòng nhánh, thế nút, dòng vòng, xếp chống, mạng một cửa, mạng hai cửa,...) trong Lý thuyết mạch I);
- 3. Tîm nghiệm tự do:
 - a) Lập phương trình đặc trưng & giải;
 - b) Viết nghiệm tự do;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Lập phương trình đặc trưng (1)

$$E = 24 \text{ VDC}$$
; $R = 25 \Omega$; $L = 5 \text{ H}$; $C = 50 \text{ mF}$.

$$Ri_{td} + u_L + u_C = 0$$

$$\rightarrow Ri_{td} + Li'_{td} + \frac{1}{C} \int i_{td} dt = 0$$

$$i_{td} = Ae^{st}$$

$$\rightarrow RAe^{st} + LAse^{st} + \frac{A}{Cs}e^{st} = 0$$

$$\to R + Ls + \frac{1}{Cs} = 0$$

$$\rightarrow LCs^2 + RCs + 1 = 0$$

Lập phương trình đặc trưng (2)

VD1

$$E = 24 \text{ VDC}$$
; $R = 25 \Omega$; $L = 5 \text{ H}$; $C = 50 \text{ mF}$.

$$Ri_{td} + Li'_{td} + \frac{1}{C} \int i_{td} dt = 0 \rightarrow \underbrace{LCs^2 + RCs + 1 = 0}$$

Cách 2

$$Z_{ab} = R + Ls + \frac{1}{Cs} = 0 \rightarrow \boxed{LCs^2 + RCs + 1 = 0}$$

Lập phương trình đặc trưng (3)

$$E = 24 \text{ VDC}$$
; $R = 25 \Omega$; $L = 5 \text{ H}$; $C = 50 \text{ mF}$.

- 1. Xét mạch điện ở trạng thái mới (khóa đã chuyển sang vị trí mới);
- 2. Tắt (các) nguồn độc lập (nếu có);
- 3. Toán tử hóa các phần tử:

$$\left(R \to R; L \to Ls; C \to \frac{1}{Cs}\right);$$

- 4. Chọn hai điểm bất kỳ sát nhau a & b, tính tổng trở vào $Z_{ab}(s)$;
- 5. Cho $Z_{ab}(s) = 0 \rightarrow p/tr$ đặc trưng.

$$Z_{ab} = R + Ls + \frac{1}{Cs} = 0 \longrightarrow LCs^2 + RCs + 1 = 0$$

Lập phương trình đặc trưng (4)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega; L = 1 \text{ H}; C = 1 \text{ mF}.$$

$$Z_{ab} = R_1 + Ls + \frac{R_3 \left(R_2 + \frac{1}{Cs}\right)}{R_3 + R_2 + \frac{1}{Cs}} = \frac{s^2 + 42s + 800}{s + 20}$$

$$Z_{ab} = 0 \rightarrow \boxed{s^2 + 42s + 800 = 0}$$

$$Z_{cd} = R_2 + \frac{1}{Cs} + \frac{R_3(R_1 + Ls)}{R_3 + R_1 + Ls} = \frac{50(s^2 + 42s + 800)}{s(s + 40)}$$

$$Z_{ef} = R_3 + \frac{(R_1 + Ls)\left(R_2 + \frac{1}{Cs}\right)}{R_1 + Ls + R_2 + \frac{1}{Cs}} = \frac{50(s^2 + 42s + 800)}{s^2 + 30s + 1000}$$

Lập phương trình đặc trưng (5)

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$
 $C = 5 \text{ mF}.$

$$Z_{ab} = \frac{1}{Cs} + \frac{R_1 Ls}{R_1 + Ls} = \frac{10(s+10)^2}{s(s+5)}$$

$$Z_{ab} = 0 \rightarrow 10(s+10)^2 = 0$$

Lập phương trình đặc trưng (6)

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}.$

$$\begin{cases} i + 2i - i_2 - i_3 = 0 \\ R_1 i + L i_3' + \frac{1}{C} \int i_3 dt = 0 \\ R_1 i + R_2 i_2 = 0 \end{cases}$$

$$i = A_1 e^{st}, \ i_2 = A_2 e^{st}, \ i_3 = A_3 e^{st}$$

$$\rightarrow \begin{cases}
3A_{1}e^{st} - A_{2}e^{st} - A_{3}e^{st} = 0 \\
R_{1}A_{1}e^{st} + LsA_{3}e^{st} + \frac{1}{Cs}A_{3}e^{st} = 0
\end{cases}
\rightarrow \begin{cases}
3 & -1 & -1 \\
R_{1} & 0 & Ls + \frac{1}{Cs} \\
R_{1} & R_{2} & 0
\end{cases}
\begin{bmatrix}
A_{1}e^{st} \\
A_{2}e^{st} \\
A_{3}e^{st}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

Lập phương trình đặc trưng (7)

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}.$

$$\begin{bmatrix} 3 & -1 & -1 \\ R_1 & 0 & Ls + \frac{1}{Cs} \\ R_1 & R_2 & 0 \end{bmatrix} \begin{bmatrix} A_1 e^{st} \\ A_2 e^{st} \\ A_3 e^{st} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$i, i_2, i_3 \neq 0$$

$$\rightarrow s^2 + 0.6s + 100 = 0$$

Lập phương trình đặc trưng (8)

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 0.2 \text{ H}; C = 0.4 \text{ mF}.$

$$Z_{bc} = \frac{1}{Cs} + \frac{R_1(R_2 + Ls)}{R_1 + R_2 + Ls}$$
$$= \frac{10s^2 + 3500s + 375000}{s(s+150)} \Omega$$

Lập phương trình đặc trưng (9)

$$E = 60 \text{ VDC}; R_1 = 9 \Omega; R_2 = 3 \Omega;$$

 $R_3 = 12 \Omega; L_1 = 4\text{H}; L_2 = 8\text{H}; M = 2\text{H}.$

$$\begin{cases} R_2 i_1 + L_1 i_1' + M i_2' = 0 \\ R_3 i_2 + L_2 i_2' + M i_1' = 0 \end{cases}$$

$$i_1 = A_1 e^{st}, i_2 = A_2 e^{st}$$

$$\Rightarrow \begin{cases} R_2 A_1 e^{st} + L_1 s A_1 e^{st} + M s A_2 e^{st} = 0 \\ M s A_1 e^{st} + R_3 A_2 e^{st} + L_2 s A_2 e^{st} = 0 \end{cases}$$

$$\rightarrow \begin{bmatrix} (R_2 + L_1 s) & Ms \\ Ms & (R_3 + L_2 s) \end{bmatrix} \begin{bmatrix} A_1 e^{st} \\ A_2 e^{st} \end{bmatrix} = 0$$

$$i_1, i_2 \neq 0$$

$$\rightarrow \begin{vmatrix} (R_2 + L_1 s) & Ms \\ Ms & (R_3 + L_2 s) \end{vmatrix} = 0 \quad \rightarrow (L_1 L_2 - M^2) s^2 + (L_1 R_3 + L_2 R_2) s + R_2 R_3 = 0$$

$$\rightarrow 28 s^2 + 72 s + 36 = 0$$

Lập phương trình đặc trưng (10)

VD7

$$\begin{cases} u_{1} = 30i_{1} + 20i_{2} \\ u_{2} = 20i_{1} + 50i_{2} \\ 2i'_{1} + \frac{1}{5 \cdot 10^{-3}} \int i_{1}dt + u_{1} = 0 \\ 10i_{2} + u_{2} = 0 \\ i_{1} = A_{1}e^{st}, \quad i_{2} = A_{2}e^{st} \\ u_{1} = B_{1}e^{st}, \quad u_{2} = B_{2}e^{st} \end{cases}$$

 $10A_2e^{st} + B_2e^{st} = 0$

Lập phương trình đặc trưng (11)

$$\begin{cases} 30A_1e^{st} + 20A_2e^{st} - B_1e^{st} = 0\\ 20A_1e^{st} + 50A_2e^{st} - B_2e^{st} = 0\\ \left(2s + \frac{1}{5 \cdot 10^{-3}s}\right)A_1e^{st} + B_1e^{st} = 0\\ 10A_2e^{st} + B_2e^{st} = 0 \end{cases}$$

$$\rightarrow \begin{bmatrix}
30 & 20 & -1 & 0 \\
20 & 50 & 0 & -1 \\
2s + \frac{1}{5 \cdot 10^{-3} s} & 0 & 1 & 0 \\
0 & 10 & 0 & 1
\end{bmatrix} \begin{bmatrix}
A_1 e^{st} \\
A_2 e^{st} \\
B_1 e^{st} \\
B_2 e^{st}
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$$

Phương pháp tích phân kinh điển (3)

- 1. Tính các sơ kiện (đã có ở phần trước);
- 2. Tìm nghiệm xác lập (dùng các phương pháp (dòng nhánh, thế nút, dòng vòng, xếp chống, mạng một cửa, mạng hai cửa,...) trong Lý thuyết mạch I);
- 3. Tîm nghiệm tự do:
 - a) Lập phương trình đặc trưng & giải;
 - b) Viêt nghiệm tự do;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Viết nghiệm tự do (1)

Nghiệm thực đơn
$$s = a$$
: $x(t) = Ae^{at}$

Nghiệm thực lặp
$$s_1 = s_2 = a$$
: $x(t) = (A + Bt)e^{at}$

Nghiệm phức liên hợp
$$s_{1,2} = \alpha \pm j\omega$$
: $x(t) = (A\cos\omega t + B\sin\omega t)e^{\alpha t}$
$$= Me^{\alpha t}\cos(\omega t + \theta)$$

Viết nghiệm tự do (2)

VD1

VD2

$$10(s+10)^{2} = 0$$

$$\rightarrow s_{1} = s_{2} = -10$$

$$\rightarrow x(t) = (A+Bt)e^{-10t}$$

$$S_{1,2} = -21,00 \pm j18,95$$

$$\Rightarrow x(t) = (A\cos 18,95t + B\sin 18,95t)e^{-21t}$$

$$= Me^{-21t}\cos(18,95t + \theta)$$

Phương pháp tích phân kinh điển (3)

- 1. Tính các sơ kiện (đã có ở phần trước);
- 2. Tìm nghiệm xác lập (dùng các phương pháp (dòng nhánh, thế nút, dòng vòng, xếp chống, mạng một cửa, mạng hai cửa,...) trong Lý thuyết mạch I);
- 3. Tîm nghiệm tự do:
 - a) Lập phương trình đặc trưng & giải;
 - b) Viết nghiệm tự do;
- 4. Tìm các hằng số tích phân (*dựa vào sơ kiện & nghiệm xác lập*);
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Tìm các hằng số tích phân

$$\begin{cases} x(t=0) = x(0) \\ x'(t=0) = x'(0) \end{cases} \rightarrow A, B$$

$$0,25s^2 + 1,25s + 1 = 0; i(0) = 0,18 \text{ A}; i'(0) = 0; i_{xl}(t) = 0$$

$$s_1 = -1$$
; $s_2 = -4 \rightarrow i_{td}(t) = Ae^{-t} + Be^{-4t}$

$$\rightarrow i(t) = i_{xl}(t) + i_{td}(t) = 0 + Ae^{-t} + Be^{-4t} = Ae^{-t} + Be^{-4t}$$

$$\begin{cases} i(t=0) = (Ae^{-t} + Be^{-4t}) \Big|_{t=0} = A + B = 0,18 \\ i'(t=0) = (-Ae^{-t} - 4Be^{-4t}) \Big|_{t=0} = -A - 4B = 0 \end{cases} \rightarrow \begin{cases} A = 0,24 \\ B = -0,06 \end{cases}$$

Phương pháp tích phân kinh điển (4)

$$E=12$$
 VDC; $R_1=20$ Ω ; $R_2=45$ Ω ; $L=20$ mH; $C=4$ mF. Tính dòng quá độ?

$$i_L(0) = 0.18 \text{ A}; i'_L(0) = 0$$

$$LCs^2 + R_1Cs + 1 = 0$$

- ✓ 1. Tính các sơ kiện;
- ✓ 2. Tìm nghiệm xác lập $x_{xl}(t)$;
 - 3. Tîm nghiệm tự do:
- $| a \rangle$ lập phương trình đặc trưng & giải;
- ✓ b) viết nghiệm tự do $x_{td}(t)$;
 - 4. Tìm các hằng số tích phân;
 - 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

$$\rightarrow (20.10^{-3})(4.10^{-3})p^2 + 20(4.10^{-3})s + 1 = 0 \rightarrow s_1 = -987, 3; s_2 = -12,66$$

$$\rightarrow i_{td}(t) = Ae^{-987,3t} + Be^{-12,66t}$$

Phương pháp tích phân kinh điển (5)

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$
 $C = 4 \text{ mF}.$ Tính dòng quá độ?

$$i_L(0) = 0.18 \text{ A}; i'_L(0) = 0$$

$$i_{rl}(t) = 0; i_{rd}(t) = Ae^{-987,3t} + Be^{-12,66t}$$

$$i(t) = i_{xl}(t) + i_{td}(t)$$

$$= 0 + Ae^{-987,3t} + Be^{-12,66t}$$

$$= Ae^{-987,3t} + Be^{-12,66t}$$

$$\begin{cases} i(0) = A + B = 0.18 \\ i'(0) = -987, 3A - 12, 66B = 0 \end{cases}$$

- ✓ 1. Tính các sơ kiện;
- ✓ 2. Tìm nghiệm xác lập $x_{xl}(t)$;
 - 3. Tìm nghiệm tự do:
- $| a \rangle$ lập phương trình đặc trưng & giải;
- ✓ b) viết nghiệm tự do $x_{td}(t)$;
- ✓ 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Phương pháp tích phân kinh điển (6)

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}. \text{Tính dòng quá độ?}$

$$i(t) = -0.0023e^{-987.3t} + 0.1823e^{-12.66t}$$
 A

Phương pháp tích phân kinh điển (7)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$u_C(0) = 30 \text{ V}; \ u'_C(0) = -800 \text{ V/s}$$

$$a: i_1 + i_2 - i_3 = 0$$

$$R_1 i_1 - R_2 i_2 - u_C + u_L = E_2$$

$$R_2 i_2 + R_3 i_3 + u_C = E_1 - E_2$$

$$u_L = 0; \ i_2 = 0$$

$$s^2 + 42s + 800 = 0 \rightarrow s_{1,2} = -21,00 \pm j18,95$$

$$\rightarrow u_{td}(t) = e^{-21t} (A\cos 18,95t + B\sin 18,95t)$$

$$\rightarrow u_C(t) = u_{xl}(t) + u_{td}(t)$$

$$=-10+e^{-21t}(A\cos 18,95t+B\sin 18,95t)$$

Phương pháp tích phân kinh điện (8)

VD2
$$E_{1} = 120 \text{ V}; E_{2} = 40 \text{ V}; R_{1} = 10 \Omega; R_{2} = 20 \Omega; R_{3} = 30 \Omega;$$

$$L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_{C}(t)?$$

$$u_{C}(0) = 30 \text{ V}; u'_{C}(0) = -800 \text{ V/s}$$

$$u_{C}(t) = -10 + e^{-21t} (A\cos 18,95t + B\sin 18,95t)$$

$$u_{C}(0) = -10 + e^{-21.0} (A\cos 0 + B\sin 0) = -10 + A = 30$$

$$A = 40 \rightarrow u_{C}(t) = -10 + e^{-21t} (40\cos 18,95t + B\sin 18,95t)$$

$$u'_{C}(t) = -21e^{-21t} (40\cos 18,95t + B\sin 18,95t)$$

$$u_C'(t) = -21e^{-21t} (40\cos 18,95t + B\sin 18,95t)$$

$$+e^{-21t}(-18,95.40\sin 18,95t+18,95B\cos 18,95t)$$

$$\rightarrow u_C'(0) = -21e^{-21.0}(40\cos 0 + B\sin 0) + e^{-21.0}(-18,95.40\sin 0 + 18,95B\cos 0)$$
$$= -21.40 + 18,95B = -800 \rightarrow B = 2,11$$

$$\rightarrow u_C(t) = -10 + e^{-21t} (40,00\cos 18,95t + 2,11\sin 18,95t) \text{ V}$$

Phương pháp tích phân kinh điện (9)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$u_C(t) = -10 + e^{-21t} (40,00\cos 18,95t + 2,11\sin 18,95t) \text{ V}$$

Phương pháp tích phân kinh điển (10)

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF. Tính } i_L(t)$?

$$i_L(0) = 1,67 \text{ A}; \ i'_L(0) = 16,67 \text{ A/s}$$

$$i_{xl}(t) = 0$$

$$10(s+10)^2 = 0 \rightarrow s_1 = s_2 = -10$$

$$\rightarrow i_{td}(t) = (A + Bt)e^{-10t}$$

$$i'_{L}(t) = Be^{-10t} - 10(A + Bt)e^{-10t}$$

$$\rightarrow i'_L(0) = B - 10A = B - 16,67 = 16,67 \rightarrow B = 33,33$$

Phương pháp tích phân kinh điển (11)

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF. Tính } i_L(t)$?

$$i_{t}(t) = (1,67+33,33t)e^{-10t}$$
 A

Phương pháp tích phân kinh điển (12)

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}. \text{ Tính } u_C(t)$?

$$u_C(0) = 7.2 \text{ V}; \ u'_C(0) = 0$$

$$u_{xl}(t) = 0$$

$$2s^2 + 1, 2s + 200 = 0 \rightarrow s_{1,2} = -0, 30 \pm j10, 00$$

$$\rightarrow u_{td}(t) = (A\cos 10t + B\sin 10t)e^{-0.30t}$$

$$\to u_C(t) = u_{xl}(t) + u_{td}(t) = (A\cos 10t + B\sin 10t)e^{-0.30t}$$

$$u_C(0) = (A\cos 10.0 + B\sin 10.0)e^{-0.30.0} = A = 7.2$$

$$u_C'(0) = (-72\sin 10.0 + 10B\cos 10.0)e^{-0.30.0} - 0.30(7, 2\cos 10.0 + B\sin 10.0)e^{-0.30.0}$$
$$= 10B - 0.30.7, 2 = 0 \rightarrow B = 0.22$$

$$\rightarrow |u_C(t)| = (7, 2\cos 10t + 0, 22\sin 10t)e^{-0.30t} \text{ V}$$

Phương pháp tích phân kinh điển (13)

VD4

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF. Tính } u_C(t)$?

$$u_C(t) = (7, 2\cos 10t + 0, 22\sin 10t)e^{-0.30t}$$
 V

Phương pháp tích phân kinh điển (14)

VD5

$$R_1 = R_2 = 10 \text{ k}\Omega$$
; $C_1 = 20 \text{ \mu F}$; $C_2 = 100 \text{ \mu F}$; $E = 4\text{V}$. Tính $u_r(t)$?

$$u_r(0) = 0; \ u'_r(0) = 0$$

Tất cả các dòng xác lập đều bằng 0

$$\rightarrow u_{xl} = \varphi_b = \varphi_a = 4 \text{ V}$$

$$\frac{\varphi_{b} - u_{r}}{R_{2}} = C_{2}u'_{r}$$

$$\varphi_{b} = \varphi_{a}$$

$$\Rightarrow \frac{\varphi_{a} - u_{r}}{R_{2}} = C_{2}u'_{r}$$

$$\Rightarrow \varphi_{a} = u_{r} + R_{2}C_{2}u'_{r}$$

$$\frac{E - \varphi_{a}}{R_{1}} = C_{1}\varphi'_{a}$$

Phương pháp tích phân kinh điển (15)

$$R_1 = R_2 = 10 \text{ k}\Omega$$
; $C_1 = 20 \text{ \mu}\text{F}$; $C_2 = 100 \text{ \mu}\text{F}$; $E = 4\text{V}$. Tính $u_r(t)$?

$$u_r(0) = 0; \ u'_r(0) = 0; \ u_{xl} = 4$$

$$\frac{E - (u_r + R_2 C_2 u_r')}{R_2} = C_1 (u_r' + R_2 C_2 u_r'')$$

$$t = 0 \quad R_1$$

$$C_1$$

$$C_2$$

$$u_r$$

$$\rightarrow R_2^2 C_1 C_2 u_r'' + R_2 (C_1 + C_2) u_r' + u_r = E \rightarrow 0, 2u_r'' + 1, 2u_r' + u_r = 4$$

$$\rightarrow u_r(t) = u_{xl}(t) + u_{td}(t) = 4 + Ae^{-t} + Be^{-5t}$$

$$u_r(0) = 4 + A + B = 0 u_r'(0) = -A - 5B = 0$$
 \Rightarrow
$$\begin{cases} A = -5 \\ B = 1 \end{cases} \Rightarrow u_r(t) = 4 - 5e^{-t} + e^{-5t} \text{ V}$$

Phương pháp tích phân kinh điển (16)

$$R_1 = R_2 = 10 \text{ k}\Omega$$
; $C_1 = 20 \text{ }\mu\text{F}$; $C_2 = 100 \text{ }\mu\text{F}$; $E = 4\text{V}$. Tính $u_r(t)$?

$$u_r(t) = 4 - 5e^{-t} + e^{-5t} \text{ V}$$

Phương pháp tích phân kinh điển (17)

$$e = 60 \sin 100t \text{ V}; j = 5 \sin(100t + 30^{\circ}) \text{ A}; R = 20 \Omega;$$

$$L = 0,2 \text{ H}; C = 0,4 \text{ mF. Tính } i(t)$$
?

$$i_0(t) = j(t) \rightarrow i(0) = 5\sin(100.0 + 30^\circ) = 2.5 \text{ A}$$

$$\dot{U}_0 = \dot{J} \frac{1}{j\omega C} = \frac{5/30^{\circ}}{j100.0, 4.10^{-3}} = 125/-60^{\circ} \text{ V}$$

$$\rightarrow u_0(t) = 125 \sin(100t - 60^\circ) \text{ V}$$

$$\rightarrow u_C(0) = 125 \sin(100.0 - 60^\circ) = -108,25 \text{ V}$$

$$Ri + Li' + u_C = e = 60 \sin 100t$$

$$\rightarrow Ri(0) + Li'(0) + u_c(0) = 60\sin(100.0) = 0$$

$$\rightarrow i'(0) = -\frac{Ri(0) + u_C(0)}{L} = -\frac{20.2, 5 - 108, 25}{0, 2} = -291, 25 \text{ A/s}$$

Phương pháp tích phân kinh điển (18)

$$e = 60 \sin 100t \text{ V}; j = 5 \sin(100t + 30^{\circ}) \text{ A}; R = 20 \Omega;$$

$$L = 0,2$$
 H; $C = 0,4$ mF. Tính $i(t)$?

$$i_L(0) = 2.5 \text{ A}; \ i'_L(0) = -291.25 \text{ A/s}$$

$$\dot{I}_{xl} = \frac{E}{R + j\omega L + 1/j\omega C}$$

$$= \frac{60}{20 + j100.0, 2 + 1/(j100.0, 4.10^{-3})} = 2.91/14.04^{\circ} \text{ A}$$

$$\rightarrow i_{xl}(t) = 2.91\sin(100t + 14.04^{\circ}) \text{ A}$$

$$Z_{ab} = R + Ls + \frac{1}{Cs} = \frac{LCs^2 + RCs + 1}{Cs}$$

$$\rightarrow LCs^2 + RCs + 1 = 0 = 8.10^{-5} s^2 + 0,008s + 1$$

$$\rightarrow s = -50 \pm j100 \rightarrow i_{td}(t) = (A\cos 100t + B\sin 100t)e^{-50t}$$

Phương pháp tích phân kinh điển (19)

$$e = 60 \sin 100t \text{ V}; \ j = 5 \sin (100t + 30^{\circ}) \text{ A}; R = 20 \ \Omega;$$

$$L = 0, 2 \text{ H}; \ C = 0, 4 \text{ mF. Tính } i(t)?$$

$$i_{L}(0) = 2, 5 \text{ A}; \ i'_{L}(0) = -291, 25 \text{ A/s}$$

$$i_{xl}(t) = 2, 91 \sin (100t + 14, 04^{\circ}) \text{ A}$$

$$i_{td}(t) = (A \cos 100t + B \sin 100t)e^{-50t} \text{ A}$$

$$\rightarrow i(t) = i_{xt}(t) + i_{td}(t) = 2,91\sin(100t + 14,04^{\circ}) + (A\cos 100t + B\sin 100t)e^{-50t}$$

$$i(0) = 2.91\sin(14.04^{\circ}) + A = 2.5 \rightarrow A = 1.79$$

$$i'(t) = 291\cos(100t + 14,04^{\circ}) + (-100A\sin 100t + 100B\cos 100t)e^{-50t}$$
$$-50e^{-50t}(A\cos 100t + B\sin 100t)$$

$$i'(0) = 291\cos(14,04^{\circ}) + 100B - 50A = -291,25 \rightarrow B = -4,84$$

$$\rightarrow i(t) = 2.91\sin(100t + 14.04^{\circ}) + (1.79\cos 100t - 4.84\sin 100t)e^{-50t} A$$

Phương pháp tích phân kinh điển (20)

$$e = 60 \sin 100t \text{ V}; j = 5 \sin(100t + 30^{\circ}) \text{ A}; R = 20 \Omega;$$

$$L = 0.2 \text{ H}; C = 0.4 \text{ mF. Tính } i(t)$$
?

$$i(t) = 2.91\sin(100t + 14.04^{\circ}) + (1.79\cos 100t - 4.84\sin 100t)e^{-50t} \text{ A}$$

Phương pháp tích phân kinh điển (21)

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

$$L = 0.2 \text{ H}; C = 0.4 \text{ mF. Tính } i_L(t)$$
?

$$i_L(0) = 4 A; i'_L(0) = 0$$

$$\varphi_b = 0 \rightarrow \varphi_a = \frac{J + E / R_1}{1 / R_1 + 1 / R_2} = 113,33 \text{ V}$$

$$i_{xl} = \frac{\varphi_a}{R_2} = \frac{113,33}{20} = 5,67 \,\text{A}$$

$$10s^2 + 3500s + 375000 \rightarrow s_{1,2} = -175 \pm j82,92$$

$$i_{td}(t) = (A\cos 82, 92t + B\sin 82, 92t)e^{-175t}$$

$$i_L(t) = i_{xt} + i_{td}(t) = 5,67 + (A\cos 82,92t + B\sin 82,92t)e^{-175t}$$

Phương pháp tích phân kinh điển (22)

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

$$L = 0.2 \text{ H}; C = 0.4 \text{ mF. Tính } i_L(t)?$$

$$i_L(0) = 4 \text{ A}; i'_L(0) = 0$$

$$i_L(t) = 5,67 + (A\cos 82,92t + B\sin 82,92t)e^{-175t}$$

$$i_L(0) = 5,67 + A = 4 \rightarrow A = -1,67$$

$$i'_{L}(t) = (-82,92A\sin 82,92t + 82,92B\cos 82,92t)e^{-175t}$$
$$-175(A\cos 82,92t + B\sin 82,92t)e^{-175t}$$

$$i'_L(0) = 82,92B - 175A = 0 \rightarrow B = -3,52$$

$$\rightarrow i_L(t) = \boxed{5,67 - (1,67\cos 82,92t + 3,52\sin 82,92t)e^{-175t} \text{ A}}$$

Phương pháp tích phân kinh điển (23)

$$E = 100 \text{ V}; \ R_1 = 10 \ \Omega; \ R_2 = 30 \ \Omega; \ L_1 = 4 \text{ H}; \ L_2 = 1 \text{ H}.$$
 Tính i_1 ?

$$i_1(0) = 8 \text{ A}; \ i_1'(0) = -44 \text{ A/s}$$

$$i_{1xl} = \frac{E}{R_1 + R_2} = \frac{100}{10 + 30} = 2,5 \text{ A}$$

$$R_1 + R_2 + L_1 s + L_2 s = 0$$

$$s = -(R_1 + R_2) / (L_1 + L_2) = -8$$

$$i_{1td} = Ae^{-8t}$$

$$i_1 = i_{1xt} + i_{1td} = 2,5 + Ae^{-8t}$$

$$i_1(0) = 2, 5 + A = 8 \rightarrow A = 5, 5$$

$$i_1 = 2, 5 + 5, 5e^{-8t}$$
 A

Phương pháp tích phân kinh điển (24)

$$E = 120 \text{ V}; R = 10 \Omega; C_1 = 1 \text{ mF}; C_2 = 2 \text{ mF}. \text{ Tính } u_{C1}?$$

$$u_{C1}(0) = 40 \text{ V}; \ u'_{C1}(0) = 2666,67 \text{ V/s}$$

$$Ri_R + u_{C1xl} = E$$

$$i_R = 0 \to u_{C1xl} = E = 120 \text{ V}$$

$$R + \frac{\frac{1}{C_1 s} \cdot \frac{1}{C_2 s}}{\frac{1}{C_1 s} + \frac{1}{C_2 s}} = \frac{30s + 1000}{3s} = 0 \rightarrow s = -33,33$$

$$u_{C1td} = Ae^{-33,33t} \rightarrow u_{C1} = u_{C1xl} + u_{C1td} = 120 + Ae^{-33,33t}$$

$$u_{C1}(0) = 120 + A = 40 \rightarrow A = -80$$

$$\to u_{C1}(t) = 120 - 80e^{-33,33t} \text{ V}$$

Phương pháp tích phân kinh điển (25)

$$E=60 \text{ VDC}; R_1=9 \ \Omega; \ R_2=3 \ \Omega;$$
 $R_3=12 \ \Omega; L_1=4 \ \text{H}; \ L_2=8 \ \text{H}; M=2 \ \text{H}.$ Tính $i_2(t)$?

$$i_2(0) = 0; i'_2(0) = 1,07 \text{ A/s}$$

$$i_{2xl} = 0$$

$$28s^2 + 72s + 36 = 0$$

$$\rightarrow s_1 = -1.89; \ s_2 = -0.68$$

$$28s^2 + 72s + 36 = 0$$
 $\rightarrow s_1 = -1,89; \ s_2 = -0,68$ $\rightarrow i_{2td} = Ae^{-1,89t} + Be^{-0,68t}$

$$i_2 = i_{2xl} + i_{2td} = 0 + Ae^{-1.89t} + Be^{-0.68t}$$

$$\begin{cases} i_2(0) = A + B = 0 \\ i'_2(0) = -1,89A - 0,68B = 1,07 \end{cases} \rightarrow \begin{cases} A = -0,88 \\ B = 0,88 \end{cases}$$

$$\rightarrow \left| i_2 = 0.88(e^{-0.68t} - e^{-1.89t}) A \right|$$

Phương pháp tích phân kinh điển (26)

VD11

Tính $i_1(t)$?

$$i_1(0) = 0,5143 \text{ A}$$

$$i_1'(0) = -1,67.10^{-4} \text{ A/ s}$$

$$i_{1xl} = 0$$

$$120s^2 + 1400s + 12000 = 0$$

$$\rightarrow s_{1,2} = -5,83 \pm j8,12$$

$$\rightarrow s_{1,2} = -5,83 \pm j8,12$$
 $\rightarrow i_{1td} = Ae^{-5,83t}\cos(8,12t + \theta)$

$$i_1 = i_{1xl} + i_{1td} = 0 + Ae^{-5,83t}\cos(8,12t + \theta)$$

$$\begin{cases} i_1(0) = A\cos\theta = 0.5143 \\ i'_1(0) = -5.83A\cos\theta - 8.12A\sin\theta = -1.67.10^{-4} \end{cases} \rightarrow \begin{cases} A = 0.63 \\ \theta = -35.68^{\circ} \end{cases}$$

$$\rightarrow |i_1(t) = 0.63e^{-5.83t}\cos(8.12t - 35.68^{\circ}) \text{ A}|$$

Phương pháp tích phân kinh điển (27)

- 1. Tính các sơ kiện;
- 2. Tìm nghiệm xác lập $x_{xl}(t)$;
- 3. Tîm nghiệm tự do:
- a) lập phương trình đặc trưng & giải;
- b) viết nghiệm tự do $x_{td}(t)$;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển
- 4. Phương pháp toán tử
 - a) Biến đổi thuận Laplace
 - b) Biến đổi ngược Laplace
 - c) Sơ đồ toán tử
 - d) Giải bài toán quá độ bằng phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Giải bài toán quá độ

Biến đổi thuận Laplace (1)

$$X(s) = L[x(t)] = \int_{-0}^{\infty} x(t)e^{-pt}dt$$

$$= \lim_{\tau \to \infty} \int_{-0}^{\tau} x(t)e^{-pt}dt$$

$$s = \sigma + j\omega$$
; s : toán tử Laplace

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Biến đổi thuận Laplace (2)

x(t)	$\delta(t)$	1(<i>t</i>)	e^{-at}	t	te^{-at}	sin at	cosat
X(s)	1	$\frac{1}{s}$	$\frac{1}{s+a}$	$\frac{1}{s^2}$	$\frac{1}{(s+a)^2}$	$\frac{a}{s^2 + a^2}$	$\frac{p}{s^2 + a^2}$

TRƯỜNG BẠI HỌC BÁCH KHOA HÀ NỘI

Biến đổi thuận Laplace (3)

Tính chất	x(t)	X(s)
1. Tỉ lệ biên độ	Ax(t)	AX(s)
2. Cộng/trừ	$x_1(t) \pm x_2(t)$	$X_1(s) \pm X_2(s)$
3. Tỉ lệ thời gian	x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right)$
4. Dịch thời gian	$x(t-a)1(t-a), a \ge 0$ $x(t)1(t-a), a \ge 0$	$e^{-as}X(s)$ $e^{-as}L[x(t+a)]$
5. Dịch tần số	$e^{-at}x(t)$	X(s+a)
6. Vi phân	$d^n x(t) / dt^n$	$s^{n}X(s) - s^{n-1}x(-0) - s^{n-2}x^{(1)}(-0) \dots$
7. Nhân với <i>t</i>	$t^n x(t)$	$(-1)^n d^n X(s) / ds^n$
8. Chia cho t	x(t) / t	$\int_{s}^{\infty} X(\lambda) d\lambda$
9. Tích phân	$\int_0^t x(\lambda)d\lambda$	X(s)/s
10. Nhân chập	$x_1(t) * x_2(t) = \int_0^t x_1(\lambda) x_2(t - \lambda) d\lambda$	$X_1(s)X_2(s)$

Biến đổi thuận Laplace (4)

VD1

Tìm ảnh Laplace của $x(t) = 5 + e^{-10t} - \cos 20t$?

$$x_{1}(t) \pm x_{2}(t) \to X_{1}(s) \pm X_{2}(s)$$

$$\to X(s) = L[5] + L[e^{-10t}] - L[\cos 20t]$$

$$Ax(t) \to AX(s)$$

$$\to L[5] = 5L[1]$$

$$L[1] = \frac{1}{s}$$

$$L[e^{-10t}] = \frac{1}{s+10}$$

$$L[\cos 20t] = \frac{s}{s^{2} + 20^{2}} = \frac{s}{s^{2} + 400}$$

Biến đổi thuận Laplace (5)

Biến đổi thuận Laplace (6)

• Dùng bảng các cặp biến đổi (có sẵn) và tính chất của biến đổi thuận Laplace để tìm ảnh Laplace X(s) từ gốc thời gian x(t).

x(t)	$\delta(t)$	1(t)	e^{-at}	t	te^{-at}	sin at	cos at
X(s)	1	$\frac{1}{s}$	$\frac{1}{s+a}$	$\frac{1}{s^2}$	$\frac{1}{(s+a)^2}$	$\frac{a}{s^2 + a^2}$	$\frac{p}{s^2 + a^2}$

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển

4. Phương pháp toán tử

- a) Biến đổi thuận Laplace
- b) Biến đổi ngược Laplace
- c) Sơ đồ toán tử
- d) Giải bài toán quá độ bằng phương pháp toán tử

II. Mạch phi tuyến

III. Đường dây dài

Biến đổi ngược Laplace (1)

$$L^{-1}[X(s)] = x(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} X(s) e^{st} ds$$

$$X(s) = \frac{N(s)}{D(s)} = \frac{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}$$

Biến đổi ngược Laplace (2)

$$X(s) = \frac{s+8}{s(s+2)(s+4)^2} = \frac{K_1}{s} + \frac{K_2}{s+2} + \frac{K_3}{(s+4)^2} + \frac{K_4}{s+4}$$
$$\rightarrow x(t) = K_1 + K_2 e^{-2t} + K_3 t e^{-4t} + K_4 e^{-4t}$$

x(t)	$\delta(t)$	1(<i>t</i>)	e^{-at}	t	te^{-at}	sin at	cosat
X(s)	1	$\frac{1}{s}$	$\frac{1}{s+a}$	$\frac{1}{s^2}$	$\frac{1}{(s+a)^2}$	$\frac{a}{s^2 + a^2}$	$\frac{p}{s^2 + a^2}$

- Tính K_1, K_2, K_3, K_4 ?
- Cách tính phụ thuộc vào kiểu nghiệm của mẫu số:
 - Nghiệm thực phân biệt,
 - Nghiệm thực lặp (kép),
 - Nghiệm phức.

Biến đổi ngược Laplace (3), nghiệm thực phân biệt

$$X(s) = \frac{N(s)}{D(s)} = \frac{K_1}{s+s_1} + \frac{K_2}{s+s_2} + \dots + \frac{K_i}{s+s_i} + \dots + \frac{K_n}{s+s_n}$$

$$\to (s+s_i) \frac{N(s)}{D(s)} = \frac{K_1(s+s_i)}{s+s_1} + \frac{K_2(s+s_i)}{s+s_2} + \dots + \frac{K_i(s+s_i)}{s+s_i} + \dots + \frac{K_n(s+s_i)}{s+s_n}$$

$$\to (s+s_i) \frac{N(s)}{D(s)} = \frac{K_1(s+s_i)}{s+s_1} + \frac{K_2(s+s_i)}{s+s_2} + \dots + K_i + \dots + \frac{K_n(s+s_i)}{s+s_n}$$

$$\to \left[(s+s_i) \frac{N(s)}{D(s)} \right]_{s=-s_i} = \left[\frac{K_1(s+s_i)}{s+s_1} + \frac{K_2(s+s_i)}{s+s_2} + \dots + K_i + \dots + \frac{K_n(s+s_i)}{s+s_n} \right]_{s=-s_i}$$

$$\to \left[(s+s_i) \frac{N(s)}{D(s)} \right]_{s=-s_i} = 0 + 0 + \dots + K_i + \dots + 0$$

$$\to K_i = \left[(s + s_i) \frac{N(s)}{D(s)} \right]_{s = -s_i}$$

TRƯƠNG BẠI HỌC BÁCH KHOA HÀ NỘI

Biến đổi ngược Laplace (4), nghiệm thực phân biệt

$$X(s) = \frac{25s^2 + 300s + 640}{s(s+4)(s+8)} = \frac{K_1}{s} + \frac{K_2}{s+4} + \frac{K_3}{s+8} = \frac{20}{s} + \frac{10}{s+4} - \frac{5}{s+8}$$

$$K_1 = \frac{25s^2 + 300s + 640}{\left[(s+4)(s+8) \right]_{s=0}} = \frac{25.0^2 + 300.0 + 640}{(0+4)(0+8)} = 20$$

$$K_2 = \frac{25s^2 + 300s + 640}{s(s+4)(s+8)} \bigg|_{s=-4} = \frac{25(-4)^2 + 300(-4) + 640}{(-4)(-4+8)} = 10$$

$$K_3 = \frac{25s^2 + 300s + 640}{s(s+4)(s+8)} = \frac{25(-8)^2 + 300(-8) + 640}{(-8)(-8+4)} = -5$$

$$\to x(t) = 20 + 10e^{-4t} - 5e^{-8t}$$

TRƯỚNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Biến đổi ngược Laplace (5), nghiệm thực phân biệt

$$X(s) = \frac{20s + 120}{2s^2 + 8s + 6} = \frac{10s + 60}{s^2 + 4s + 3} = \frac{10p + 60}{(s+1)(s+3)} = \frac{K_1}{s+1} + \frac{K_2}{s+3}$$

$$K_1 = \frac{10s + 60}{(s+3)} \Big|_{p=-1} = \frac{10(-1) + 60}{-1 + 3} = 25$$

$$K_2 = \frac{10s + 60}{(s+1)(s+3)} \bigg|_{p=-3} = \frac{10(-3) + 60}{-3 + 1} = -15$$

$$\rightarrow x(t) = 25e^{-t} - 15e^{-3t}$$

Biến đổi ngược Laplace (6), nghiệm thực lặp

$$X(s) = \frac{N_1(s)}{[D_1(s)](s+s_1)^n} = \frac{K_{11}}{(s+s_1)} + \frac{K_{12}}{(s+s_1)^2} + \dots + \frac{K_{1n}}{(s+s_1)^n} + \dots$$

$$\left[(s+s_1)^n X(s) \right]_{s=-s_1} = K_{1n}$$

$$\left. \left\{ \frac{d}{ds} \left[(s + s_1)^n X(s) \right] \right\} \right|_{s = -s_1} = K_{1n-1}$$

$$\left\{ \frac{d^2}{ds^2} [(s+s_1)^n X(s)] \right\}_{s=-s_1} = (2!) K_{1n-2}$$

$$K_{1j} = \left\{ \frac{1}{(n-j)!} \frac{d^{n-j}}{ds^{n-j}} [(s+s_1)^n X(s)] \right\}_{s=-s_1}$$

Biến đổi ngược Laplace (7), nghiệm thực lặp

$$X(s) = \frac{10s^2 + 34s + 27}{s(s+3)^2} = \frac{K_{11}}{s+3} + \frac{K_{12}}{(s+3)^2} + \frac{K_2}{s} = \frac{7}{s+3} - \frac{5}{(s+3)^2} + \frac{3}{s}$$

$$K_{12} = \frac{10s^2 + 34s + 27}{s + 32} \bigg|_{s=-3} = -5$$

$$K_{11} = \left[\frac{d}{ds} \left(\frac{10s^2 + 34s + 27}{s + 3} \right) \right]_{s=-3} = \frac{s(20s + 34) - (10s^2 + 34s + 27)}{s^2} \bigg|_{s=-3} = 7$$

$$K_2 = \frac{10s^2 + 34s + 27}{(s+3)^2} \Big|_{s=0} = 3$$

$$\rightarrow x(t) = 3 + 7e^{-3t} - 5te^{-3t}$$

Biến đổi ngược Laplace (8), nghiệm thực lặp

$$X(s) = \frac{5(s+3)}{(s+1)(s+2)^2} = \frac{K_{11}}{s+2} + \frac{K_{12}}{(s+2)^2} + \frac{K_2}{s+1} = \frac{-10}{s+2} - \frac{5}{(s+2)^2} + \frac{10}{s+1}$$

$$K_{12} = \frac{5(s+3)}{(s+1)(s+2)^2} \bigg|_{s=-2} = -5$$

$$K_{11} = \left[\frac{d}{ds} \left(\frac{5(s+3)}{(s+1)(s+2)^2} \right) \right]_{s=-2} = \frac{(s+1)5 - (5s+15)}{(s+1)^2} \bigg|_{s=-2} = -10$$

$$K_2 = \frac{5(s+3)}{(s+2)^2} \Big|_{s=-1} = 10$$

$$\rightarrow x(t) = 10e^{-t} - 10e^{-2t} - 5te^{-2t}$$

Biến đổi ngược Laplace (9), nghiệm phức

$$X(s) = \frac{N_1(s)}{[D_1(s)](s + \alpha - j\beta)(s + \alpha + j\beta)} = \frac{K_1}{s + \alpha - j\beta} + \frac{K_1^*}{s + \alpha + j\beta} + \dots$$

$$\left[(s + \alpha - j\beta)X(s) \right]_{s = -\alpha + j\beta} = K_1 = \left| K_1 \right| \underline{/\theta}$$

$$K_1^* = \left| K_1 \right| \underline{/-\theta}$$

$$X(s) = \frac{\left| K_1 \right| \underline{/-\theta}}{s + \alpha - j\beta} + \frac{\left| K_1 \right| \underline{/-\theta}}{s + \alpha + j\beta} + \dots = \frac{\left| K_1 \right| e^{j\theta}}{s + \alpha - j\beta} + \frac{\left| K_1 \right| e^{-j\theta}}{s + \alpha + j\beta} + \dots$$

$$\Rightarrow x(t) = \left| K_1 \right| e^{j\theta} e^{-(\alpha - j\beta)t} + \left| K_1 \right| e^{-j\theta} e^{-(\alpha + j\beta)t} + \dots = \left| K_1 \right| e^{-\alpha t} \left[e^{j(\beta t + \theta)} + e^{-j(\beta t + \theta)} \right] + \dots$$

$$e^{j\phi} = \cos \phi + j \sin \phi$$

$$\Rightarrow x(t) = \left| K_1 \right| e^{-\alpha t} \left[\cos(\beta t + \theta) + j \sin(\beta t + \theta) + \cos(-\beta t - \theta) + j \sin(-\beta t - \theta) \right] + \dots$$

$$= \left[2 \left| K_1 \right| e^{-\alpha t} \cos(\beta t + \theta) + \dots \right]$$

Biến đổi ngược Laplace (10), nghiệm phức

$$X(s) = \frac{4s^2 + 76s}{(s+2)(s^2 + 6s + 25)} = \frac{K_1}{s+3-j4} + \frac{K_2}{s+3+j4} + \frac{K_3}{s+2}$$
$$= \frac{10/-53,1^{\circ}}{s+3-j4} + \frac{10/53,1^{\circ}}{s+3+j4} - \frac{8}{s+2}$$

$$K_{1} = \frac{4s^{2} + 76s}{(s+2)(s+3+j4)} \bigg|_{s=-3+j4} = 10/-53,1^{\circ}$$

$$K_3 = \frac{4s^2 + 76s}{(s+2)(s^2 + 6s + 25)} \bigg|_{s=-2} = -8$$

$$\rightarrow x(t) = 2.10e^{-3t}\cos(4t - 53.1^{\circ}) - 8e^{-2t} = 20e^{-3t}\cos(4t - 53.1^{\circ}) - 8e^{-2t}$$

Biến đổi ngược Laplace (11), nghiệm phức

$$X(s) = \frac{5(s+2)}{s(s^2+4s+5)} = \frac{K_1}{s+2-j} + \frac{K_2}{s+2+j} + \frac{K_3}{s}$$

$$= \frac{1,12/-153,4^{\circ}}{s+2-j} + \frac{1,12/153,4^{\circ}}{s+2+j} + \frac{2}{s}$$

$$K_1 = \frac{5(s+2)}{s(s+2+j)}\Big|_{s=-2+j} = 1,12/-153,4^{\circ}$$

$$K_3 = \frac{5(s+2)}{\left| \frac{1}{3}(s^2+4s+5) \right|_{s=0}} = 2$$

$$\rightarrow x(t) = 2.1,12e^{-2t}\cos(t - 153,4^{\circ}) + 2 = 2 + 2,24e^{-2t}\cos(t - 153,4^{\circ})$$

Biến đổi ngược Laplace (12)

$$\frac{K}{s+a} \longleftrightarrow Ke^{-at}$$

$$\frac{K}{(s+a)^2} \longleftrightarrow Kte^{-at}$$

$$\frac{K/\theta}{s+\alpha-j\beta} + \frac{K/-\theta}{s+\alpha+j\beta} \longleftrightarrow 2Ke^{-\alpha t}\cos(\beta t + \theta)$$

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển

4. Phương pháp toán tử

- a) Biến đổi thuận Laplace
- b) Biến đổi ngược Laplace
- c) Sơ đồ toán tử
- d) Giải bài toán quá độ bằng phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

VD1

$$E=12$$
 VDC; $R_1=20$ Ω ; $R_2=45$ Ω ; $L=20$ mH; $C=4$ mF. Tính dòng quá độ?

$$i_L(-0) = 0,18 \text{ A}; \ u_C(-0) = 8,31 \text{ V}$$

Chế độ mới:

 $R_1 i \leftrightarrow R_1 I(s)$

$$R_{1}i + Li' + u_{C} = E \iff L[R_{1}i + Li' + u_{C}] = L[E]$$

$$\implies L[R_{1}i] + L[Li'] + L[u_{C}] = L[E]$$

$$i \iff I(s)$$

$$x'(t) \leftrightarrow sX(s) - x(-0) \rightarrow i' \leftrightarrow sI(s) - i_L(-0) \rightarrow Li' \leftrightarrow LsI(s) - Li_L(-0)$$

$$i = Cu'_C \leftrightarrow I(s) = C[sU_C(s) - u_C(-0)] \rightarrow U_C(s) = \frac{I(s)}{Cs} + \frac{u_C(-0)}{s}$$

Sơ đồ toán tử (2)

$$E=12$$
 VDC; $R_1=20$ Ω ; $R_2=45$ Ω ; $L=20$ mH; $C=4$ mF. Tính dòng quá độ?

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

$$R_{1}i + Li' + u_{C} = E$$

$$E \leftrightarrow \frac{E}{s}$$

$$R_1 i \leftrightarrow R_1 I(s)$$

$$Li' \leftrightarrow sI(s) - i_L(-0)$$

$$u_C \leftrightarrow \frac{I(s)}{Cs} + \frac{u_C(-0)}{s}$$

$$\to R_1 I(s) + Ls I(s) - Li_L(-0) + \frac{I(s)}{Cs} + \frac{u_C(-0)}{s} = \frac{E}{s}$$

Sơ đồ toán tử (3)

$$E=12$$
 VDC; $R_1=20$ Ω ; $R_2=45$ Ω ; $L=20$ mH; $C=4$ mF. Tính dòng quá độ?

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

$$R_1 i + L i' + u_C = E$$

$$\uparrow$$

$$R_1I(s) + LsI(s) - Li_L(-0) + \frac{I(s)}{Cs} + \frac{u_C(-0)}{s} = \frac{E}{s}$$

$$\rightarrow \left(R_1 + Ls + \frac{1}{Cs}\right)I(s) = \frac{E}{s} + Li_L(-0) - \frac{u_C(-0)}{s}$$

$$\rightarrow \left(20 + 20.10^{-3} s + \frac{1}{4.10^{-3} s}\right) I(s) = \frac{12}{s} + 20.10^{-3}.0, 18 - \frac{8,31}{s}$$

$$\rightarrow I(s) = \frac{9s + 9225}{50(s^2 + 1000s + 12500)} \text{ A} \rightarrow i(t) = -0,0023e^{-987,3t} + 0,1823e^{-12,66t} \text{ A}$$

Sơ đồ toán tử (4)

$$I(s) = \frac{9s + 9225}{50(s^2 + 1000s + 12500)}$$
A

Biến đổi ngược Laplace

$$i(t) = -0.0023e^{-987.3t} + 0.1823e^{-12.66t}$$
 A

Sơ đồ toán tử (5)

Miền thời gian

$$\begin{array}{c}
i(t) & R \\
\hline
 & u(t)
\end{array}$$

$$u(t) = Ri(t)$$

$$Ax(t) \to AX(s)$$

$$I(s)$$
 R
 $U(s)$

$$\rightarrow U(s) = RI(s)$$

Sơ đồ toán tử (6)

Miền thời gian

$$i(-0) \xrightarrow{L} i(t)$$

$$u(t)$$

$$u(t) = Li'(t)$$

$$Ax'(t) \to A[sX(s) - x(-0)]$$

$$Li(-0) \xrightarrow{Ls} I(s)$$

$$U(s)$$

Sơ đồ toán tử (7)

Miền thời gian

$$\underbrace{u(t)}$$

$$\begin{array}{c|c}
\underline{u(-0)} & \boxed{\frac{1}{Cs}} \\
\hline
U(s) & & \\
\hline
U(s) & & \\
\hline
U(s) & & \\
\hline
\end{array}$$

$$i(t) = Cu'(t)$$

$$Ax'(t) \to A[sX(s) - x(-0)]$$

$$\rightarrow I(s) = C[sU(s) - u(-0)]$$

$$\rightarrow \frac{U(s)}{Cs} = \frac{1}{Cs} \frac{1}{I(s)} + \frac{u(-0)}{s}$$

Sơ đồ toán tử (8)

$$\begin{array}{c|c}
 & i_1(t) \\
 & i_2(t) \\
 & L_2 u_2(t) \\
 & i_1(-0) \\
\end{array}$$

$$u_1(t) = L_1 i_1'(t) + M i_2'(t)$$

$$u_2(t) = L_2 i_2'(t) + M i_1'(t)$$

$$L_{1}i_{1}(-0) + Mi_{2}(-0) \underbrace{Ms} L_{2}i_{2}(-0) + Mi_{1}(-0)$$

$$U_{1}(s) L_{1}s$$

$$L_{2}s U_{2}(s)$$

Sơ đồ toán tử (9)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sơ đồ toán tử (10)

TRƯỚNG BẠI HỌC BÁCH KHOA HÀ NỘI

Sơ đồ toán tử (11)

		Tổng quát	Một chiều	Xoay chiều	Quá độ
•-	$i \xrightarrow{R} u$	u = Ri	u = Ri	$\dot{U}=R\dot{I}$	U(s) = RI(s)
•	$\xrightarrow{L} \stackrel{i}{\longrightarrow}$	u = Li'	u = 0	$\dot{U} = j\omega L\dot{I}$	U(s) = LsI(s) - Li(-0)
•-	$ \begin{array}{c} C & \downarrow i \\ \hline u \end{array} $	i = Cu'	i = 0	$\dot{U} = \frac{1}{j\omega C}\dot{I}$	$U(s) = \frac{I(s)}{Cs} + \frac{u(-0)}{s}$

Lý thuyết mạch II

I. Quá trình quá độ

- 1. Giới thiệu
- 2. Sơ kiện
- 3. Phương pháp tích phân kinh điển

4. Phương pháp toán tử

- a) Biến đổi thuận Laplace
- b) Biến đổi ngược Laplace
- c) Sơ đồ toán tử
- d) Giải bài toán quá độ bằng phương pháp toán tử
- II. Mạch phi tuyến
- III. Đường dây dài

Giải bài toán quá độ bằng phương pháp toán tử (1)

KD/KA:
$$X_1(s) + X_2(s) + ... + X_n(s) = 0$$

Giải bài toán quá độ bằng phương pháp toán tử (2)

$$E=12$$
 VDC; $R_1=20$ Ω ; $R_2=45$ Ω ; $L=20$ mH; $C=4$ mF. Tính dòng quá độ?

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

- 1. Tính $i_{\rm L}(-0)$ & $u_{\rm C}(-0)$ khi khóa ở vị trí $\underline{\bf c\tilde{u}}$,
- 2. Toán tử hoá sơ đồ mạch điện khi khóa ở vị trí **mới** (sơ đồ toán tử),
- 3. Giải sơ đồ toán tử (bằng một trong số các phương pháp giải mạch một chiều) để tìm thông số X(s),
- 4. Tìm gốc thời gian x(t) từ ảnh X(s).

$$I(s) = \frac{\frac{E}{s} + Li_L(-0) - \frac{u_C(-0)}{s}}{R_1 + Ls + \frac{1}{Cs}} = \frac{\frac{4. \text{ Tim goe that gian } x(t) \text{ tu aim } X(s).}{0.18s + 184.50} \text{ A}$$

$$\Rightarrow i(t) = -0.0023e^{-987.3t} + 0.1823e^{-12.66t} \text{ A}$$

Cách 1

Giải bài toán quá độ bằng phương pháp toán tử (3)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$i_L(-0) = 3 \text{ A}; u_C(-0) = 30 \text{ V}$$

$$fa: I_1(s) + I_2(s) - I_3(s) = 0$$

$$\frac{(R_1 + Ls)I_1(s)}{(R_2 + \frac{1}{Cs})}I_2(s) = \frac{E_2}{s} + \frac{u_C(-0)}{s} + Li_L(-0)$$

$$\left(R_2 + \frac{1}{Cs}\right)I_2(s) + R_3I_3(s) = \frac{E_1}{s} - \frac{u_C(-0)}{s} - \frac{E_2}{s}$$

$$\rightarrow I_2(s) = -\frac{4(s+40)}{5(s^2+42s+800)} \text{ A}$$

$$\rightarrow |u_C(t)| = -10 + e^{-21t} (40,00\cos 18,95t + 2,11\sin 18,95t) \text{ V}$$

Giải bài toán quá độ bằng phương pháp toán tử (4)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$
 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$i_L(-0) = 3 \text{ A}; u_C(-0) = 30 \text{ V}$$

$$\varphi_{a}(s) = \frac{\frac{E_{2}}{S} + \frac{u_{C}(-0)}{S} + \frac{E_{1}}{S}}{R_{1} + Ls} + \frac{R_{2} + \frac{1}{Cs}}{R_{2} + \frac{1}{Cs}} + \frac{R_{3}}{R_{3}}}{\frac{1}{R_{1} + Ls} + \frac{1}{R_{2} + \frac{1}{Cs}} + \frac{1}{R_{3}}}$$

$$= \frac{54s^2 + 1500s + 24000}{s(s^2 + 42s + 800)}$$
 V

Giải bài toán quá độ bằng phương pháp toán tử (5)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$
 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$i_L(-0) = 3$$
 A; $u_C(-0) = 30$ V

$$\left(R_{1} + Ls + R_{2} + \frac{1}{Cs}\right)I_{d}(s) - \left(R_{2} + \frac{1}{Cs}\right)I_{x}(s) =$$

$$= Li_{L}(-0) + \frac{E_{2}}{s} + \frac{u_{C}(-0)}{s}$$

$$-\left(R_{2} + \frac{1}{Cs}\right)I_{d}(s) + \left(R_{2} + R_{3} + \frac{1}{Cs}\right)I_{x}(s) =$$

$$= \frac{E_{1}}{s} - \frac{E_{2}}{s} - \frac{u_{C}(-0)}{s}$$

Giải bài toán quá độ bằng phương pháp toán tử (6)

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?
 $i_L(-0) = 3 \text{ A}; u_C(-0) = 30 \text{ V}$ Cách 3

$$I_d(s) = \frac{3(s^2 + 50s + 800)}{s(s^2 + 42s + 800)} A; I_x(s) = \frac{11s^2 + 590s + 12000}{5s(s^2 + 42s + 800)} A$$

$$\rightarrow I_2(s) = I_x(s) - I_d(s) = -\frac{4(s+40)}{5(s^2+42s+800)}$$
 A

Giải bài toán quá độ bằng phương pháp toán tử (7)

VD2

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$i_L(-0) = 3 \text{ A}; u_C(-0) = 30 \text{ V}$$

$$E(s) = \frac{\frac{-Li_L(-0)}{R_1 + Ls} + \frac{E_1/s}{R_3}}{\frac{1}{R_1 + Ls} + \frac{1}{R_3}} = \frac{30}{s} \text{ V}$$

$$Z(s) = \frac{(R_1 + Ls)R_3}{R_1 + Ls + R_3}$$
$$= \frac{30s + 300}{s + 40} \Omega$$

Cách 4

Giải bài toán quá độ bằng phương pháp toán tử (8)

VD2

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$i_L(-0) = 3 \text{ A}; u_C(-0) = 30 \text{ V}$$

$$E(s) = \frac{30}{s} \text{ V}; \ Z(s) = \frac{30s + 300}{s + 40} \Omega$$

$$I_2(s) = \frac{E(s) - E_2(s) - \frac{u_C(-0)}{s}}{R_2 + Z(s) + \frac{1}{Cs}}$$
$$= -\frac{4(s+40)}{5(s^2 + 42s + 800)} A$$

Cách 4

Giải bài toán quá độ bằng phương pháp toán tử (8)

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$
 $C = 5 \text{ mF. Tính } i_L(t)$?

$$i_L(-0) = 1,67 \text{ A}; \ u_C(-0) = 33,33 \text{ V}$$

$$\varphi_a(s) = \frac{\frac{u_C(-0)/s}{1/(Cs)} - \frac{Li_L(-0)}{Ls}}{\frac{1}{R_1} + \frac{1}{1/(Cs)} + \frac{1}{Ls}} = \frac{33,33s - 333,34}{(s+10)^2} \text{ V}$$

$$I_L(s) = \frac{Li_L(-0) + \varphi_a(s)}{Ls} = \frac{1,67s + 50}{(s+10)^2} A$$

$$\rightarrow |i_L(t) = (1,67+33,33t)e^{-10t} \text{ A}|$$

Giải bài toán quá độ bằng phương pháp toán tử (9)

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}. \text{ Tính } u_C(t)$?

$$i_L(-0) = 0; \ u_C(-0) = 7,2 \text{ V}$$

$$\begin{cases} \varphi_a(s) = \frac{2I(s) + \frac{u_C(-0)/s}{Ls + 1/(Cs)}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{Ls + 1/(Cs)}} \\ I(s) = -\frac{\varphi_a(s)}{R} \end{cases}$$

$$\to \varphi_a(s) = \frac{108}{25s^2 + 15s + 2500} \text{ V}$$

$$\to I_L(s) = \frac{\varphi_a(s) - u_C(-0)/s}{Ls + 1/(Cs)} = \frac{-18}{5s^2 + 3s + 500} \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (10)

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}. \text{ Tính } u_C(t)$?

$$i_L(-0) = 0; \ u_C(-0) = 7,2 \text{ V}$$

$$I_L(s) = \frac{-18}{5s^2 + 3s + 500} \text{ A}$$

$$U_C(s) = \frac{1}{Cs} I_L(s) + \frac{u_C(-0)}{s}$$
$$= \frac{7,2s+4,32}{s^2+0,60s+100} V$$

$$\rightarrow u_C(t) = 7, 2e^{-0.30t} \cos(10t - 1.72^{\circ}) \text{ V}$$

Giải bài toán quá độ bằng phương pháp toán tử (11)

$$e = 60 \sin 100t \text{ V}; \ j = 5 \sin(100t + 30^{\circ}) \text{ A}; R = 20 \Omega;$$

 $L = 0, 2 \text{ H}; \ C = 0, 4 \text{ mF. Tính } i(t)?$
 $i_L(0) = 2, 5 \text{ A}; \ u_C(0) = -108, 25 \text{ V}$

$$I(s) = \frac{\frac{60.100}{s^2 + 100^2} + Li_L(-0) - \frac{u_C(-0)}{s}}{R + Ls + \frac{1}{Cs}}$$
$$= \frac{1,25(2s^3 + 433s^2 + 44000s + 4330000)}{(s^2 + 10^4)(s^2 + 100s + 12500)} A$$

$$\frac{Lp}{u_{C}(-0)} \underbrace{Li_{L}(-0)}_{p}$$

$$\frac{1}{Cp} \underbrace{I(p)}_{R} \underbrace{E(p)}_{p}$$

$$\rightarrow |i(t) = 2.91\sin(100t + 14.04^{\circ}) + 2.05e^{-50t}\cos(100t - 28.8^{\circ}) \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (12)

$$E = 120 \text{ V}; J = 5.1(t) \text{ A}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$

 $L = 0.2 \text{ H}; C = 0.4 \text{ mF}. \text{ Tính } i_L(t)$?

$$i_L(-0) = 4 \text{ A}; \ u_C(-0) = 80 \text{ V}$$

$$\varphi_a(s) = \frac{\frac{E/s}{R_1} + \frac{u_C(-0)/s}{1/Cs} - \frac{Li_L(-0)}{R_2 + Ls} + \frac{J}{s}}{\frac{1}{R_1} + \frac{1}{1/Cs} + \frac{1}{R_2 + Ls}}$$

$$= \frac{80s^2 + 40500s + 4250000}{s(s^2 + 350s + 37500)} V$$

$$I_L(s) = \frac{Li_L(-0) + \varphi_a(s)}{R_2 + Ls} = \frac{4s^2 + 1400s + 212500}{s(s^2 + 350s + 37500)}$$
 A

$$\rightarrow i_L(t) = 5,67 - (1,67\cos 82,92t + 3,52\sin 82,92t)e^{-175t} \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (13)

$$E = 60 \text{ VDC}; R_1 = 9 \Omega; R_2 = 3 \Omega;$$

 $R_3 = 12 \Omega; L_1 = 4 \text{ H}; L_2 = 8 \text{ H}; M = 2 \text{ H}.$
Tính $i_2(t)$?

$$i_1(-0) = \frac{E}{R_1 + R_2} = 5 \text{ A}; i_2(-0) = 0$$

$$E_1 = L_1 i_1(-0) + M i_2(-0)$$

$$E_2 = L_2 i_2(-0) + M i_1(-0)$$

Giải bài toán quá độ bằng phương pháp toán tử (14)

$$E = 60 \text{ VDC}; R_1 = 9 \Omega; R_2 = 3 \Omega;$$

 $R_3 = 12 \Omega; L_1 = 4 \text{H}; L_2 = 8 \text{H}; M = 2 \text{H}.$
Tính $i_2(t)$?

$$i_1(-0) = \frac{E}{R_1 + R_2} = 5 \text{ A}; i_2(-0) = 0$$

$$E_1 = L_1 i_1(-0) + M i_2(-0)$$

$$E_2 = L_2 i_2 (-0) + M i_1 (-0)$$

$$U_{1M}(s) = MsI_2(s); U_{2M}(s) = MsI_1(s)$$

$$\begin{cases} (R_2 + L_1 s)I_1(s) + MsI_2(s) = E_1 \\ MsI_1(s) + (R_3 + L_2 s)I_2(s) = E_2 \end{cases}$$

$$\rightarrow I_2(s) = \frac{15}{2(7s^2 + 18s + 9)} \text{ A} \qquad \rightarrow \left[i_2(t) = 0.8838(e^{-0.6796t} - e^{-1.8918t}) \text{ A}\right]$$

Giải bài toán quá độ bằng phương pháp toán tử (15)

$$E = 60 \text{ VDC}; R_1 = 9 \Omega; R_2 = 3 \Omega;$$

 $R_3 = 12 \Omega; L_1 = 4 \text{ H}; L_2 = 8 \text{ H}; M = 2 \text{ H}.$
Tính $i_2(t)$?

$$i_1(-0) = i_3(-0) = \frac{60}{12} = 5A;$$
 $i_2(-0) = 0$

$$\varphi_b(s) = 0$$

$$\Rightarrow \varphi_a(s) = \frac{\frac{10}{2s+3} - \frac{10}{2s}}{\frac{1}{2s+3} + \frac{1}{2s} + \frac{1}{6s+12}}$$

$$I_2(s) = \frac{-\varphi_a(s)}{6s+12} = \frac{15}{2(7s^2+18s+9)}$$
 A

$$\rightarrow i_2(t) = 0.8838(e^{-0.6796t} - e^{-1.8918t}) \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (16)

VD8

Tính
$$i_1(t)$$
?

Cách 1

$$u_C(0) = 12V$$

$$\begin{cases} u_1(0) = 30i_1(0) + 20i_2(0) \\ u_2(0) = 20i_1(0) + 50i_2(0) \\ u_1(0) = 12 \\ u_2(0) = -10i_2(0) \end{cases}$$

$$\rightarrow i_1(0) = 0,5143 \,\text{A} = i_L(0)$$

$$\begin{cases} U_1(s) = 30I_1(s) + 20I_2(s) \\ U_2(s) = 20I_1(s) + 50I_2(s) \\ \left(2s + \frac{200}{s}\right)I_1(s) + U_1(s) = 1,03 + \frac{12}{s} \\ U_2(s) = -10I_2(s) \end{cases}$$

$$\rightarrow I_1(s) = \frac{0.515s + 6}{s^2 + 11.667s + 100} A$$

$$\rightarrow i_1(t) = 0,6334e^{-5,83t}\cos(8,12t - 35,6^{\circ}) \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (17)

VD8

Cách 2

$$u_C(0) = 12V$$

$$R_{td} = 10 + \frac{(30+10)20}{30+10+20} = 23,33\Omega$$

$$i_1(0) = \frac{12}{23,33} = 0,5143 \,\text{A} = i_L(0)$$

$$I_1(s) = \frac{1,03 + \frac{12}{s}}{\frac{200}{s} + 2s + 23,33}$$
$$= \frac{0,515s + 6}{s^2 + 11,667s + 100} A$$

$$\rightarrow i_1(t) = 0,6334e^{-5,83t}\cos(8,12t - 35,6^{\circ}) \text{ A}$$

Giải bài toán quá độ bằng phương pháp toán tử (19)

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; R_3 = 10 \Omega;$$

$$L = 20 \text{ mH}; C = 4 \text{ mF. Tính } i_L(t)$$
?

$$0 \le t < 1 \,\text{ms}: i(t) = -0,0023e^{-987,3t} + 0,1823e^{-12,66t} \text{ A}$$

$$u_C(t) = 12 + 0,0018e^{-987,3t} - 3,69e^{-12,66t} \text{ V}$$

$$i(t=10^{-3}) = 0.18 \text{ A}; \ u_C(t=10^{-3}) = 8.36 \text{ V}$$

Giải bài toán quá độ bằng phương pháp toán tử (20)

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; R_3 = 10 \Omega;$$

$$L = 20 \text{ mH}; C = 4 \text{ mF. Tính } i_L(t)$$
?

$$t \ge 1 \,\text{ms}$$
: $i(t = 10^{-3}) = 0.18 \,\text{A}$; $u_C(t = 10^{-3}) = 8.36 \,\text{V}$

$$I(p) = \frac{E/s + Li(10^{-3}) + u_C(10^{-3})/s}{R_1 + R_3 + Ls + 1/Cs} = \frac{9s + 9100}{50(s^2 + 1500s + 12500)} \text{ A}$$

$$\rightarrow i(t) = 0,0583e^{-1491,6t} + 0,1217e^{-8,38t}$$
 A

Giải bài toán quá độ bằng phương pháp toán tử (21)

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; R_3 = 10 \Omega;$$

$$L = 20 \text{ mH}; C = 4 \text{ mF. Tính } i_L(t)$$
?

$$0 \le t < 1 \,\text{ms}: i(t) = -0.0023e^{-987.3t} + 0.1823e^{-12.66t} \text{ A}$$

$$t \ge 1 \text{ms}:$$
 $i(t) = 0.0583e^{-1491.6(t-10^{-3})} + 0.1217e^{-8.38(t-10^{-3})}$ A

TRUÖNG BAI HOC **BÁCH KHOA HÀ NỘI**

Giải bài toán quá độ bằng phương pháp toán tử (22)

$$E = 100 \text{ V}; R_1 = 10 \Omega; R_2 = 30 \Omega; L_1 = 4 \text{ H}; L_2 = 1 \text{ H}.$$

Tính i_1 ?
 $i_1(-0) = 10 \text{ A}; i_2(-0) = 0$

$$I_1(s) = \frac{Li_1(-0) + \frac{E}{s}}{L_1s + R_1 + L_2s + R_2} = \frac{8s + 25}{s(s+8)} A \qquad \Rightarrow \boxed{i_1(t) = 2, 5 + 5, 5e^{-8t} A}$$

$$\rightarrow i_1(t) = 2,5+5,5e^{-8t}$$
 A

Giải bài toán quá độ bằng phương pháp toán tử (23)

$$E = 120 \text{ V}; R = 10 \Omega; C_1 = 1 \text{ mF}; C_2 = 2 \text{ mF}. \text{ Tính } u_{C1}?$$

$$u_{C1}(-0) = 120 \text{ V}; u_{C2}(-0) = 0$$

$$U_{C1}(s) = \varphi_a(s) = \frac{\frac{u_{C1}(-0)/s}{R} + \frac{E/s}{1/(C_1 s)}}{\frac{1}{R} + \frac{1}{1/(C_1 s)} + \frac{1}{1/(C_2 s)}} = \frac{40s + 4000}{s(s + 33, 33)} \text{ V}$$

$$\rightarrow u_{C1}(t) = 120 - 80e^{-33,33t} \text{ V}$$

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

Quá trình quá độ

- 1. Tính các sơ kiện;
- 2. Tìm nghiệm xác lập $x_{xl}(t)$;
- 3. Tìm nghiệm tự do:
- a) lập phương trình đặc trưng & giải;
- b) viết nghiệm tự do $x_{td}(t)$;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

- 1. Tính $i_L(-0)$ & $u_C(-0)$ khi khóa ở vị trí $\mathbf{c\tilde{u}}$,
- 2. Toán tử hoá sơ đồ mạch điện khi khóa ở vị trí **mới** (sơ đồ toán tử),
- 3. Giải sơ đồ toán tử (bằng một trong số các phương pháp giải mạch một chiều) để tìm thông số X(s),
- 4. Tìm gốc thời gian x(t) từ ảnh X(s).