Лекция 8

0371 Кузнецова Елизавета 26 October 2021

Длины путей в графе

Определение 1. Длина путей в графе - количество ребер в пути.

Пример:

Рис. 1: Пример

АВСDF - путь длины 4 (4 ребра) от A до F ACEDF - длина 4 ACDF - длина 3 ABCEDF - длина 5

Определение 2. Расстояние между вершинами - минимальная длина пути между вершинами или $+\infty$, если пути нет

Обозначение:d(X,Y) - расстояние от X до Y Пример: d(A,F)=3

Определение 3. Диаметр графа - максимальное расстояние между вершинами графа

Пример:

Рис. 2: Диаметр графа - 4

Определение 4. Для каждой вершины графа G = (V, E) можсно посчитать тах расстояние до других вершин

 $(v) = \max\{d(V, s) | s \in V\}$

Paduyc: $r(G) = min\{d(V, s) | s \in V\}$

Вершины, на которых достигается минимум - это центр

Рис. 3: Диаметр графа - 2

Центров может быть несколько

Рис. 4: 4 центра

Утверждение: В $G = (V, E) \ d(G) \le 2r(G)$

Доказательство. Пусть с - центр графа $u,v\in V,\,d(c,u)\leq r$

Рис. 5: дерево

$$\Rightarrow d(u,v) \le 2r \Rightarrow d(G) = maxd(u,v) \le 2r$$

Утверждение: В дереве ≤ 2 центров Пусть их 3

Рис. 6:

Построим пути между c_1 В c_2 , потом c_2 и c_3 (в дереве ровно 1 путь между вершинами).

Рис. 7:

$$r(c_0) < r(c_1) = r(c_2) = r(c_3) = r(G) = r$$

Замечание: Будем дальше иногда использовать ориентированные графы G=(V,E)

Ребра в ориентированном графе иногда называют дугами $E \in \{(u,v)$ - упорядоченная пара $\}$ Пример:

Рис. 8: c_0 - вершина развилки

Замечание: У ребер будут веса G=(V,E) вес - это $f:E \to \mathbf{R}$

Рис. 9: Ориентированные графы

Расстояние на графе с весами считается как минимум суммы весов по всем путям

Рис. 10: Графы с весами

Рис. 11: Графы с весами

$$\begin{aligned} &d(A,B)=?\\ &d(ACDB)=1+4+2=7\\ &d(ACDEFB)=1+4+3+1+5=14\\ &d(AEFB)=2+1+5=8\\ &d(AEDB)=2+3+2=7\\ &min=7\\ &\Rightarrow d(A,B)=7 \end{aligned}$$

Замечание: Расстояние во взвешенном графе не всегда существует

Рис. 12:

$$d(F,G)=4$$

$$d(G,F)=+\infty$$

$$d(A,B)=?$$

$$d(ADCEB)=1-5+2+1=-1$$

$$d(ADCEDCEB)=1=5+2+2=5+2+1=-2$$
 и т.д.
$$min=-\infty$$

Утверждение: В графе есть все расстояния \Leftrightarrow в графе нет цикла отрицательной длины

Доказательство. Если есть цикл $<0\Rightarrow \forall$ две вершины этого расстояния не имеют расстояния или $-\infty$

Если нет расстояния, т.е. для u,v есть пути сколь угодно маленькие. Пусть есть путь длиннее n=|V| ребер \Rightarrow повтор вершин в пути - это будет отрицательный цикл

Как хранятся графы в компьютере

- 1. Матрица смежности таблица вершины х вершины $a(i,j) = \{ 0,$ если нет ребра
- 1, если есть ребро

Рис. 13:

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	0
4	1	0	0	0

Симметрична для неориентированного графа Для графов с весами: a(i,j)= вес ребра іј или $+\infty$, если нет

Рис. 14:

	1	2	3	4
1	$+\infty$	15	$+\infty$	$+\infty$
2	10	$+\infty$	21	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	14
4	$+\infty$	42	$+\infty$	$+\infty$

- 2. Списки смежности: для каждой верщины хранят список соседей
- 1: 2(15)
- 2: 1(10), 3(21)
- 3:4(14)
- 4:2(42)

Память $\approx |E|$ - количество ребер

3. Неявные способы: умеем вычислять всех соседей \forall вершины.

Пример: Зададим обход конем шахматной доски

Рис. 15:

Граф: вершины - клетки 64 штуки

Ребра - вершины через ход коня

Можно для любой клетки посчитать, куда можно попасть. Задача: даны 2 вершины u,v, найти d(u,v) и путь, на котором достигается это расстояние.

Замечание: оказывается, что найти путь от u До v это то же самое, что искать путь от u до всех вершин.

Алгоритм Форда-Беллмена

Дано $G=(v,E), u\in V,$ найти расстояние d(u,v) для $\forall v\in V$

Будем писать d(V) = d(u, v), т.к. и не меняется.

Будем хранить в массиве d текущие найденные расстояния.

В началеЖ $d(u) = 0, d(v) = +\infty$, если v=u

Релаксация ребра $e = (v_1 v_2)$

Если $d(v_1) + f(v_1v_2) < d(v_2) \Rightarrow d(v_2) = d(v_1) + f(v_1v_2)$

Алгоритм: повторяем n-1 раз. Перебираем все ребра е и каждое релаксируем.

В неориентированном графе ребро в две сторон, т.е. две релаксации на ребро.

Пример:

Рис. 16:

	A	В	С	D
	0	$+\infty$	$+\infty$	$+\infty$
AB	0	1	$+\infty$	$+\infty$
AC	0	1	5	$+\infty$
AD	0	1	5	10
AB	0	1	3	10
CD	0	1	3	6

Ответ:

$$d(A) = 0$$

$$d(B) = 1$$

$$d(C) = 3$$

$$d(D) = 6$$

Ответ: d(A) = 0 d(B) = 1 d(C) = 3 d(D) = 6 Время работы $pprox |V| * |E| \le |V|^3$