The Trev tutor

A relation R on a set X is a subset of X*X. If (a,b) ER, we write XRy

"X is related to y" Predicate logic R (x, y) Rxy

Exemple:

(4,3) 463 G(4,3) yes true

Reflexive a equality is just the relation b/w two things 4 in our subset X

Symmetric for all elements $\forall x \forall y \times Ry \Rightarrow y Rx$ X and yTransitive

Transitive

Transitive

Transitive

YXYY VZ XRY NYRZ > XRZ

1<22<3 - 1<3

Note: These do note hold for everything, these one properties used to describe certain relationships, they don't enterce relationships,

Examples

no Symm? 3 = 4 = 4 < 3? ~ not true

yes Trens? 1 = 2, 2 < 3 7 1 < 3? a < b, b < (-0 a < (?

X-y \$0 ? xRy x-y +0

No Refl? XRX -X -X +O : But we know any # minus itself is always zero so this projecty con't be truc

Yes Symm? 4-3 #0, 3-4 #0? ~ seems like this is the com

But lets try something else?

What it x and y are the same number?

(4-4 ≠0), → 4-4 ≠0?

(if the first port is folse, symm still holds

X-y to y-2 to -> x-2 to?

What about X=y?

Whatsso Refl. X=x

Symm x=y > y=x

Trens X=y A Y=Z + X=Z

Crecter on Equivolence Class

Anything that satisfie there I proporties is considered in equivalence

Exemple X 7 y

Ref 1 no X ≠x

Sym? you x + y N y + z -> x + z?

exemple X=2, y=1, z=2 2+1, 1+2 + 2+7

Claim isnt Trac

Relations Exemples exemple 1 1 Interrection Prove: if R, and R2 are reflexive, then R, n R2 is reflexive. 1st step some experience (x,x) & R, R2 thetr in both Rl md R2 2nd step then we know that (x,x) & R, n R2 in the interesting intercection of rland ra RINRy is reflexive ble it's in both and 3 these step: ble its tree for any arbitrary poir A We picked the intersection is reflexive ~ X is never related to itself Exemple 2: If tx, (xx) &R then R is irreflerive (i) Give an example where R is irreflexive and transitive, but < 05 7 not symmetric. X < Y) X > Y Doer it satisfy there conditions?

A X is never soins to be less than Healt

Transitive? X < Y & Y & Z & X & Z & Y & X & Y

A not symmetric by X & Y and Y could be less than X V

(ii) Show that if Ris transitive and symmetric, it connect be irreflexive.

x Ry A yRz > xRz x Ry + yRx

Assume XRy then by symm yRX -D XRX

if Rie transitive and symmetric than its

-

Pertiel Orders

Equivalence Relations

- 1.) Reflexive
- a, aRa

6

- 2.) Symmetric
- ab alb b Ra
- 3) Transitive
- aRbonbRc aRc

b related to (

Question

Suppose R is on equivalence relation on some set X.

for each X2X, let [x] = {y|xRy}

Then [x] = [y]

cr [x] 1 [y] = Ø

Functions

$$t: (X) \xrightarrow{\bullet} (A)$$

yEY such that f (x) = y

XEX v & Yill of dagin f(x) = (y)

imaje

CODOMAIN

Big Picture

$$f(x) = x^2$$
 Z

XEZ

y & Z

maps integer into a positive inteser

Codoman: Z

Range: Ex2/ Nx is on interer}

Cherecteristic Function

Kind of like truth tebles o

A = { a, b, c, ... }

motions

= j (h(z)) er if which in

I ralled dient will at + 4 X = V

Injective, Surjective, Bijective Functions

Injective (one-to-one)

function from x to y

Motor without

X' going to different y Velver then X2 Volve

Prove Equation is Injective:

Show f(x) = 3x-2 is injective X +x2 => f(x) +f(x)

1(x1) = 1(x3) => x1 = x3

$$f(x_1) = f(x_2) \sim Assume$$

3x, -2 = 3x2 -2-7 3x, = 3x2

x, = X2

proven it's injective Injective or one-to-one

a ecsiar to prove

Is f(x) = x2 injective?

-no other x that siver

the some y

$$f(x_1) = f(x_2)$$
take the $x_1^2 = x_2^2$
square root
$$\pm x_1 = \pm x_2$$

does it equal? No Y Why? 3/c of the # work on a document

Z+Z+3

+ X , = - X 2

Example 3 x-3 not injective ?

-no other x-volve should sive you the y-volve -but -3 and 3 both sive the y-veloc of 9

Lyche C - reposit, Wilcon Constant Surjective (onto) Love to the Constitution Let f: x y f is surjective iff HyzY, 3xx X such that fun =y Codumain = rense - For ell possible volves of Y there is some X that gives you Y Freeze Squetia is Injective: Show f(x) = 5x+2 is surjective for txe IR. What about tx & Z? E real numbers A= +(x) if we pick y=0 x=-2/5 showever with y=1 $\chi = \frac{-1}{5}$ L Get EQ in y= 5x+2 f: Z > Z terms of x] y-2=5x7-5 = x y=(5) - (x=3/5) & Z not in the integers Not in the range Let, say we have f: IR 7 Z X any ral #'s Y only intescr

Yes sob surjective ?

I syl a or tou

Bijective : Injective AND Surjective

for f: X + Y, Each XEX maps to exactly one unique YEY

What does this say about 1x1 and 1y1?

Size Size

The toke of Localy = [x]

Size of domain is equal to the codomain

Inverse

Given f: X + y, we define

Inverse the inverse of $f^{-1}: y \rightarrow X$

Find the inverse of f(x) = 5x + 2implies

bijective of injective

bijective prun

Terjective

When you prove a function is surjective, you always set the inverse Quartic Strange of the strange of t

Size at dencin is equal to the codomin

withold you x of more

Three the inverte of

The state of the s

Sandy was a series of

300 31 3 3 3 300 G

しか

Function Examples Give an Example of a function fix + B and Air = A whom f(A, 0, Ag) + f(A.) is the function injective? What is the rense? Reg = yzonx. a.) f: IR + IR Where f(x) = ex f(x) = f(y) -> x = y E = (1)7 813 - A Prove ex= & (0)7 ronge of function (B) . A Ine = Ine YES V (0, +00) (83- (A)7 X= y FE3- (sA)7 could be foctored g: Z > Z Where J(x) = x2 - x (x-1) (x+1) A A A ... *P*-7 $\frac{g(0)}{g(1)} = 0^{3} - 0 + \frac{1}{3} - \frac{1}{3$ in lo domen We have two elements in the domain mapping to leach other, therefore not injective

Rense? {n3-n|n \ Z}

8

Give on Example of . function f: A + B and A, A = A where f(A, n A2) = f(A,) n f(A2) Pagasy at si balled Southager and and intersection

$$f(1) = 3$$

$$f(2) = 3$$

$$f(A_1) - \xi_3$$

 $f(A_2) - \xi_3$

P When you put the empty set empty into a function you set the

Set empty set book

Not Equal to

 $f(A_1) \cap f(A_2) = \{33 \cap \{3\} = \{3\}$

- To prove work with simple sets

Surjective Function Exemples

Show that $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = x^3$ is surjective

$$\lambda = X_3$$

from volves of X

Jy EIR

Yes, Surjective

is the Cube rod of y in the real #5?

Yes it is, we can put in any y

in and get on X bak

Let /A/=4 end /B/=6

i) How many functions f: A > B are there?

ii) How many are injective?

$$4! \left(\frac{6}{4} \right) = \frac{6! \, 4!}{2! \, 4!} = \frac{6!}{2!}$$

Everything in av domain must map to something in our Codomain.

iii) How many ore surjective?

range, we cont do that we can only
map do 4 things.

9.