

Outline

- Introduction
- Overview of Dataset
- Model Design
- Results and Discussion
- Future Studies

1. INTRODUCTION TO

EMOTION RECOGNITION

Introduction

Real-time interaction

- Recommender systems
- Security (Driving)

Emotion Detection System

2. OVERVIEW OF

DATASET

Overview of Dataset

- **Dataset:** https://github.com/muxspace/facial_expressions
- Raw data format: (picture, label)
 - **Picture:** 350x350 pixel. Mostly Grayscale, a few RGB with different dimension.
 - Label: { 'anger', 'contempt', 'disgust', 'fear', 'happiness', 'neutral', 'sadness', 'surprise' }
 - Example:

, 'happiness'

Visualizing Data Features

<matplotlib.axes._subplots.AxesSubplot at 0x1a23203c18>

Preprocessing of Dataset

- Resizing: reshape the pictures into 32x32 pixel size
 - Reduce input data sizes while change resolution
 - o Restricted data as square, so rectangular pictures are stretched/compressed
- Channel Matching: transfer pictures into 3-channel RGB
- Input Format:
 - Logistic & Random Forest: 13690x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
 - ConvNet Models: 4D numpy array of dimension (sample_size, 32,32,3), sample_size = 500. Here we
 used the first 500 data from our dataset, as the computational cost is high especially for our laptops.

3. DIVE INTO

MODEL DESIGN

Model Overview

- Logistic regression
 - o model = LogisticRegression(solver = 'lbfgs', multi_class = 'multinomial', penalty='l2', C = 2e10, max_iter = 1e7)
- KNN
- Decision Tree
- Random Forest
- CNN with different architectures
 - VGG (VGG11, VGG13, VGG19)
 - GoogLeNet
 - SEResNet (SEResNet18, SEResNet34)
 - InceptionV3
 - MobileNet

Model Design - GoogLeNet

22 Layer Network

- Inception architecture: how an optimal local sparse structure in a convolutional vision network can be approximated and covered by readily available dense components.
- Judiciously applying dimension reductions and projections wherever the computational requirements would increase too much otherwise — rectified linear activation.
- Allow for increasing the number of the units at each stage significantly without an uncontrolled blow-up in computational complexity.

Model Design - Inception V3

42 Layer Network

- Factorizing Convolutions with Larger Filter Size
 - smaller

asymmetric

- Utility of Auxiliary Classifiers
 - promote stable learning and convergence
 - accuracy reaches slightly higher plateau by the end of training
 - regularizer

♦ Efficient Grid Size Reduction

- Label Smoothing Regularization(LSR)
 - Consider cross entropy: $\ell = -\sum_{k=1}^K \log(p(k))q(k)$. Minimizing the loss may cause overfitting and reduces the model adaptability.
 - o Introducing $q'(k|x)=(1-\epsilon)\delta_{k,y}+\epsilon u(k)$, which is a mixture of original ground-truth distribution and fixed distribution u(k) with assigned weights.

$$H(q', p) = -\sum_{k=1}^{K} \log p(k) q'(k) = (1 - \epsilon) H(q, p) + \epsilon H(u, p)$$

Good Performance on Low Resolution Input

0

Receptive Field Size	Top-1 Accuracy (single frame)				
79×79	75.2%				
151×151	76.4%				
299×299	76.6%				

Model Design - Mobile Net

- Built on depthwise separable convolutions, except first layer which is full convolution
- MobileNets use both batchnorm and ReLU nonlinearities for both layers.
- Small architecture and low latency
- Width multiplier: $\alpha \in (0, 1]$
 - give thinner models
 - reduce computational cost
 - \circ reduce the number of parameters quadratically(α^2)
- Resolution Multiplier: $\rho \in (0, 1]$
 - reducing representation
 - reducing computational cost by ρ^2

Model Design - SENet

General SENet

Model Design - SEResnet

Key idea: Give each channel a weight

4. CONTINUE WITH

RESULTS & DISCUSSIONS

Training Phase - ConvNets

- Use the first 500 labeled images with each 32x32, RGB channel.
- Train test split ratio: 2:1.
- Train for 30 epoches, learning rate = 0.001, batch size = 100.
- **Early stopping:** when test loss increases for 3 consecutive epoches.
- Loss function: Cross Entropy Loss
 - loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
- Learning rate update: Adam
 - optimizer = tf.keras.optimizers.Adam(args.lr)

Madal	Best Test				
Model	Accuracy				
Logistic Regression	72.2%				
KNN	61.0%				
Random Forest	71.5%				
Decision Tree	60.1%				
VGG11,13,18	64.2%				
GoogLeNet	63.6%				
InceptionV3	63.6%				
MobileNet	63.6%				
SEResNet18	75.8%				
SEResNet34	71.5%				

Logistic regression

Actual anger -	13	0	2	0	18	32	2	7
Actual contempt -	0	0	0	0	2	0	0	0
Actual disgust -	2	0	16	0	17	12	19	2
Actual fear -	0	0	1	0	4	3	0	0
Actual happiness -	43	1	29	1	1312	375	40	45
Actual neutral -	57	0	16	0	344	1709	62	117
Actual sadness -	5	0	8	0	30	35	9	4
Actual surprise -	Predicted anger &	dicted contempt 😞	Predicted disgust to the same of the same	Predicted fear 😞	dicted happiness 단	Predicted neutral 원	redicted sadness &	redicted surprise 😾

- 1500

1200

- 900

- 600

- 300

-0

Random Forest

Actual anger -	0	0	0	0	31	39	1	3
Actual contempt -	0	0	0	0	0	2	0	0
Actual disgust -	1	0	5	0	39	21	2	0
Actual fear -	0	0	0	0	5	3	0	0
Actual happiness -	0	0	2	0	1406	438	0	0
Actual neutral -	0	0	2	0	451	1851	0	1
Actual sadness -	0	0	3	0	32	52	3	1
Actual surprise -	Predicted anger 🗢	edicted contempt 👄	Predicted disgust	Predicted fear 😞	dicted happiness 🛱	Predicted neutral 5	redicted sadness 😞	Predicted surprise a

- 1600

- 1200

800

- 400

- 0

5. ABOUT

FUTURE WORKS

Future Works

- Dataset not even
 - Solution: Use Bootstrap
- Dataset labels are similar
 - Solution: Design more labels and train with unambiguous images

