4. The Matrix Inverse

Theorem (Inverse Matrix) Assume that \mathbf{A} is an $\mathbf{n} \times \mathbf{n}$ nonsingular matrix. Form the augmented matrix $\mathbf{M} = [\mathbf{A} \mid \mathbf{I}_{\mathbf{n},\mathbf{n}}]$ of dimension $\mathbf{n} \times 2\mathbf{n}$. Use Gauss-Jordan elimination to reduce the matrix \mathbf{M} so that the identity $\mathbf{I}_{\mathbf{n},\mathbf{n}}$ is in the first \mathbf{n} columns. Then the inverse \mathbf{A}^{-1} is located in columns $\mathbf{n}, \mathbf{n}+1, \ldots, 2\mathbf{n}$. The augmented matrix $\mathbf{M} = [\mathbf{A} \mid \mathbf{I}_{\mathbf{n},\mathbf{n}}]$ looks like:

Example 1. Use Gauss-Jordan elimination to find the inverse of the matrix $\mathbf{A} = \begin{bmatrix} 4 & 0 & 4 & 0 \\ 1 & 4 & 7 & 2 \\ 1 & 5 & 4 & -3 \\ 1 & 3 & 0 & -2 \end{bmatrix}$.

Solution 1.

Example 1. Use Gauss-Jordan elimination to find the inverse of the matrix $\mathbf{A} = \begin{pmatrix} 4 & 6 & 4 & 0 \\ 1 & 4 & 7 & 2 \\ 1 & 5 & 4 & -3 \\ 1 & 3 & 0 & -2 \end{pmatrix}$.

Solution 1. Form the augmented matrix $\mathbf{M} = [\mathbf{A}, \mathbf{I}_{4\times4}]$. using the following steps.

$$\mathbf{M} = \begin{pmatrix} 4 & 8 & 4 & 0 & 1 & 0 & 0 & 0 \\ 1 & 4 & 7 & 2 & 0 & 1 & 0 & 0 \\ 1 & 5 & 4 & -3 & 0 & 0 & 1 & 0 \\ 1 & 3 & 0 & -2 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Then perform Gauss-Jordan elimination.

$$\begin{pmatrix}
4 & 8 & 4 & 0 & 1 & 0 & 0 & 0 \\
1 & 4 & 7 & 2 & 0 & 1 & 0 & 0 \\
1 & 5 & 4 & -3 & 0 & 0 & 1 & 0 \\
1 & 3 & 0 & -2 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 1 & 0 & \frac{1}{4} & 0 & 0 & 0 \\
0 & 2 & 6 & 2 & -\frac{1}{4} & 1 & 0 & 0 \\
0 & 3 & 3 & -3 & -\frac{1}{4} & 0 & 1 & 0 \\
0 & 1 & -1 & -2 & -\frac{1}{4} & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -1 & 2 & \frac{5}{12} & 0 & -\frac{2}{3} & 0 \\
0 & 1 & 1 & -1 & -\frac{1}{12} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 4 & 4 & -\frac{1}{12} & 1 & -\frac{2}{3} & 0 \\
0 & 0 & -2 & -1 & -\frac{1}{6} & 0 & -\frac{1}{3} & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 3 & \frac{19}{48} & \frac{1}{4} & -\frac{5}{6} & 0 \\
0 & 1 & 0 & -2 & -\frac{1}{16} & -\frac{1}{4} & \frac{1}{2} & 0 \\
0 & 0 & 1 & 1 & -\frac{1}{48} & \frac{1}{4} & -\frac{1}{6} & 0 \\
0 & 0 & 0 & 1 & -\frac{5}{24} & \frac{1}{2} & -\frac{2}{3} & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & \frac{49}{48} & -\frac{5}{4} & \frac{7}{6} & -3 \\
0 & 1 & 0 & 0 & -\frac{23}{48} & \frac{3}{4} & -\frac{5}{6} & 2 \\
0 & 0 & 1 & 0 & \frac{3}{16} & -\frac{1}{4} & \frac{1}{2} & -1 \\
0 & 0 & 0 & 1 & -\frac{5}{24} & \frac{1}{2} & -\frac{2}{3} & 1
\end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{49}{48} & -\frac{5}{4} & \frac{7}{6} & -3\\ -\frac{23}{48} & \frac{3}{4} & -\frac{5}{6} & 2\\ \frac{3}{16} & -\frac{1}{4} & \frac{1}{2} & -1\\ -\frac{5}{24} & \frac{1}{2} & -\frac{2}{3} & 1 \end{pmatrix}$$