Markov Decision Processes (MDP)

Prof. Subrahmanya Swamy

RL Framework

- 1. Agent observes the state
- 2. Takes an action
- 3. Environment puts the agent in a new state &
- 4. Also gives a reward based on taken action

Goal:

Learn policy to maximize the cumulative reward $\sum_{t} R_{t}$

How do we mathematically model the State transitions and Rewards?

Independent Random Variables

- A sequence of coin tosses X_1, X_2, X_3, \dots Head: 1, Tail: 0, Bias of coin: p_h
- Knowledge of X_1 does not help in predicting X_2
- $\mathbb{P}(X_2 = 1 | X_1 = 0) = p_h$
- $\mathbb{P}(X_2 = 1 | X_1 = 1) = p_h$

Markov Chain

- A sequence of coin tosses $X_1, X_2, X_3, ...$
- If coin lands in
 - Head: Win 1 rupee
 - Tail: Lose 1 rupee

- Y₁ Y₂ =
- Define Y_t = total money accumulated till time t
- Y_1, Y_2, Y_3, \dots are dependant RVs

•
$$\mathbb{P}(Y_5 = 1 | Y_4 = 3) = 0$$

• $\mathbb{P}(Y_5 = 1) | Y_4 = 0) = \frac{1}{2}$

Markov Chain

• Y_1, Y_2, Y_3, \dots satisfy Markov property!

• Markov Property: Given the present, the future is independent of the past!

•
$$\mathbb{P}(Y_5 = 1 | Y_4 = 2, Y_3 = 3) = \frac{1}{2}$$

• $\mathbb{P}(Y_5 = 1 | Y_4 = 2, Y_3 = 1) = \frac{1}{2}$

•
$$\mathbb{P}(Y_5 = 1 | Y_4 = 2, Y_3 = 1) = \frac{1}{2}$$

$$P(Y_5 - = 0 | Y_4 = 2) = 0$$

$$\frac{3}{4} = \frac{1}{4}$$

$$P=1/2$$

$$P(T) = 0$$

Markov Chain Specification $(S, P_{SS'})$

- $S \rightarrow State space \{E, A\}$
- • $(P_{SS'}) \rightarrow Transition probabilty$

$$\bullet \ \mathbb{P}(S_{t+1} = s' \mid S_t = s)$$

Markov Decision Process (MDP)

Introduce action to convert Markov Chain into MDP

- Actions: How much money to bet (A_t) in the game when I have Y_t money?
- If $Y_t = 3$, then possible actions are $\{1,2,3\}$.

$$R_{s}^{a} = E[R_{t+1}|S_{t}=S_{1}^{3}]$$

$$A_{t}=a$$

$$A_{t}=a$$

$$S_{t+1}(S_{t}=S_{1})$$

$$A_{t}=a$$

Episodic and Continuing MDPs

Terminal state in Tic-Tac-Toe

- Episodic
 - There exists a special state called the terminal state
 - The episode ends at the terminal state
 - Eg: Board games

- Continuous
 - No terminal state exists
 - The task continues forever
 - Eg: Portfolio management
 - Every day, decide which shares to buy/sell

Discount Factor in MDP

- Episodic task:
- Total Reward (Return) $G_t \neq R_{t+1} + R_{t+2} + ... + R_T$
- Bounded Returns if each $R_i \leq M$
- Continuing task:
- $G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots$ $G_t = \sum_{i=t+1}^{\infty} R_i \text{ could become unbounded even if each } R_i \leq M$
- Solution: Discount factor $\gamma \in (0,1)$
- $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$
- $G_t = \sum_{i=0}^{\infty} \gamma^i R_{t+1+i} \le \frac{M}{1-\gamma}$ (Bounded)
- High $\gamma \sim 1 \Rightarrow$ Long-term planning
- Low $\gamma \sim 0 \Rightarrow$ Short-term planning

MDP Specification $(S, A, R_s^a, P_{ss'}^a, \gamma)$

- $S \rightarrow State\ space\ (incl.\ terminal\ states\ if\ any)$
- $A \rightarrow Action space$
- R_s^a \rightarrow Expected Rewards
- $\mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- $P_{ss'}^a \rightarrow Transition probabilties$
- $\mathbb{P}(S_{t+1} = s') S_t = s, A_t = a)$
- $\gamma \in (0,1) \rightarrow Discount\ factor$

(s, sl)

$$P_{3,4}^{1} = P$$
 $P_{3,4}^{2} = P$
 $P_{3,6}^{2} = P$
 $P_{3,6}^{2} = P$

Optimal Policy

- Policy:
 - \longrightarrow Deterministic: $\pi(s): S \to \mathcal{A}$ Which action to take in state s
 - \rightarrow Stochastic: $\pi(a \mid s)$ In state s, with what probability to take action a
- Why stochastic policies?
- Partially observed states
 - Exploration

- Optimal Policy:
 - π that maximizes the expected return $\mathbb{E}_{\pi}[G_t \mid S_t = s]$ from any state s

How to model your problem as an MDP?

Maze Solving Problem: To reach the goal in the shortest path!

- How to formulate this maze-solving problem as an MDP?
 - States?
 - Actions?
 - Rewards?
 - Transition Probabilities?
 - Discount factor?

How to model your problem as an MDP?

Rewards

 $R_t = -1$ on all transitions

Discount Factor

$$\gamma = 1$$

$$T(s) \rightarrow a$$

Verify that optimal policy = shortest path

$$P^{R} = 1$$

$$3,4$$

Exercise

- Alternate MDP formulation for the Maze problem
- Instead of giving -1 reward per each step, can we give 0 reward for every action except for the final action that leads us to the Goal State?

- Does the optimal policy of this alternate MDP learn the shortest path?
- Hint: What discount factor will help here?

$$y = 0.9$$

 $0 + y \cdot 1 = 0.9.$
 $\rightarrow 9t = 0 + y \cdot 0 + y^2 \cdot 1 = 0.81$

Bellman Equations

Prof. Subrahmanya Swamy

Outline

- MDP Dynamics R_s^a, P_{ss}^a
- Policy Dynamics R_S^{π} , P_{SS}^{π}
- Value Function $V_{\pi}(s)$
- Action-Value Function $Q_{\pi}(s,a)$
- Bellman Equations

MDP Dynamics $(R_s^a, P_{ss'}^a)$

Transition Probability

- $P_{SS'}^a = \mathbb{P}(S_{t+1} = s' \mid S_t = s, A_t = a)$
- Example: $P_{3,5}^2 = p^2$

Expected Reward

- $R_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- Example:

$$R_3^2 = 2 p - 2 (1 - p)$$

= $4p - 2$
= -1 (if $p = \frac{1}{4}$)

Policy Dynamics $(R_s^{\pi}, P_{ss}^{\pi})$

Transition Probability

•
$$P_{ss'}^{\pi} = \mathbb{P}(S_{t+1} = s' \mid S_t = s, A_t \sim \pi)$$

$$= \sum_{a} \pi(a \mid s) P_{ss'}^{a}$$

Expected Reward

•
$$R_s^{\pi} = \mathbb{E}[R_{t+1} \mid S_t = s, A_t \sim \pi]$$
• $= \sum_{\alpha} \pi(a \mid s) R_{sat}^{\alpha}$

$$= \sum_{a} \pi(a \mid s) \ R_{ss'}^{a}$$

$$\int_{0}^{1} TT(a=1|S=2) = \frac{1}{4}$$

$$\int_{0}^{1} TT(a=2|S=2) = \frac{1}{8}$$

$$= \frac{1}{8}$$

$$= \frac{1}{8}$$

Value Function $(V_{\pi}(s))$

The expected return for following policy π starting from state s

Action-Value Function $(Q_{\pi}(s, a))$

The expected return for taking action α in current state s and then following policy π from the next state

$$Q_{\pi}(s,a) := \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$V_{\pi}[S_{t}]$$

$$V_{\pi}[S_{t}]$$

$$V_{\pi}[S_{t}]$$

$$V_{\pi}[S_{t}]$$

$$V_{\pi}[S_{t}]$$

$$V_{\pi}[S_{t}]$$