STA 1013 : Statistics through Examples

Lecture 16: Probabilities for the standard normal distribution

Hwiyoung Lee

October 9, 2019

Department of Statistics, Florida State University

Warm up problems

Find the Probability from the given z score

Find the area of the shaded region. The graph depicts the standard normal distribution N(0,1)

Find the z score from the given Probability

Find the indicated z score. The graph depicts the standard normal distribution N(0,1)

Left tail

Right tail

•
$$P(Z > z) = 1 - P(Z \le z)$$

- P(Z=z)=0. Therefore
 - $P(Z \leqslant z) = P(Z < z)$
 - $P(Z \geqslant z) = P(Z > z)$

•
$$P(a < Z < b) = P(Z < b) - P(Z < a)$$

$$P(a < Z < b) = P(Z < b) - P(Z < a)$$

Examples

$$Z \sim N(0,1)$$

Find

- P(0.5 < Z < 1.5)
- P(a < Z < 0.8416) = 0.5
- P(-0.5244 < Z < b) = 0.3

$$Z \sim N(0,1)$$
, find $P(a < Z < 0.8416) = 0.5$

- 1. fine P(Z < 0.8416) = (use normalcdf)
- 2. find P(Z < a) = P(Z < 0.8416) P(a < Z < 0.8416) =
- 3. find a such that P(Z < a) =

$$Z \sim N(0,1)$$
, find $P(-0.5244 < Z < b) = 0.3$

- 1. fine P(Z < -0.5244) = _____ (use normalcdf)
- 2. find P(Z < b) = P(Z < -0.5244) + P(-0.5244 < Z < b) =
- 3. find b such that P(Z < b) =

Critical value

Critical value z_{α} : the z score with an area of α to its right.

- For the standard normal distribution, a critical value is a z score separating unlikely values from those that are likely to occur.
- α : small number (probability)

Some important critical values

- $z_{0.025} = 1.96$
- $z_{0.05} = 1.645$

We can find critical values With our calculator

• $z_{0.025}$: invnorm(0.975.0,1)

• $z_{0.05}$: invnorm(0.95,0,1)

Some important critical values

- $z_{0.025} = 1.96$, $-z_{0.025} = -1.96$
- $z_{0.05} = 1.645$, $-z_{0.05} = -1.645$

Since the standard normal distribution is symmetric about $\boldsymbol{0}$

- P(-1.96 < Z < 1.96) = 0.95
- P(-1.645 < Z < 1.645) = 0.9

Absolute value

Graph of the absolute value function

Basic absoulte value inequalities

1. If |X| = K, then X = K or X = -K

2. If $|X| \ge K$, then $X \ge K$ or $X \le -K$

3. If $|X| \leq K$, then $-K \leq X \leq K$

 $Z \sim N(0,1)$, and Z is symmetric about 0

1.
$$P(|Z| \ge z) = P(Z \le -z \text{ or } Z \ge z) = P(Z \le -z) + P(Z \ge z)$$

2.
$$P(|Z| \leqslant z) = P(-z \leqslant Z \leqslant z)$$

Note :
$$P(|Z| \geqslant z) = 1 - P(|Z| \leqslant z)$$

Conversely, $P(|Z| \leqslant z) = 1 - P(|Z| \geqslant z)$

$$Z \sim N(0,1)$$

1.
$$P(|Z| \le z) = 0.90$$

2.
$$P(|Z| \ge z) = 0.05$$

$$Z \sim N(0,1)$$
, Find $P(|Z| \le z) = 0.90$

- Step1. $P(-z \le Z \le z) = 0.9$
- Step2. $P(Z \le -z) + P(Z \ge z) = 0.1$
- Step3. $P(Z\leqslant -z)=P(Z\geqslant z)=0.05$ (: Symmetric about 0)

Find $z_{0.05}$

$$Z \sim N(0,1)$$
, Find $P(|Z| \geqslant z) = 0.05$

Step1.
$$P(Z \le -z) + P(Z \ge z) = 0.05$$

Step2.
$$P(Z \le -z) = P(Z \ge z) = 0.025$$

Find $z_{0.025}$

Mistakes in Exam

$$X \sim N(0,1)$$
, Find $P(|X| \leqslant x) = 0.90$

- Common mistake : x = 1.282 ? (Wrong !!)
- Because,

$$P(|X| \le 1.282) = P(-1.282 \le X \le 1.282) = 0.8!!$$

My guess

LSQA: Liberal Studies Quantitative Assessment

- Topics :
 - Normal distribution
 - Central Limit theorem
- 6 Questions
- Test date
 - Option 1 : Oct 18 (Fri)
 - Option 2 : Oct 21 (Mon)