

REPASO DE INTEGRAL DE RIEMANN

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 01) 11.ENERO.2023

Sea $f:[a,b]\to\mathbb{R}$ limitada, con $m\le f(x)\le M$, para todo $x\in[a,b]$. Recordemos que una partición (finita) P del intervalo [a,b] es un conjunto finito

$$P = \{t_0, t_1, t_2, \dots, t_n\},\$$

con $a = t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_n = b$. En este caso, la partición consiste de n intervalos $I_j = [t_{j-1}, t_j]$, para $j = 1, 2, \ldots, n$. Para cada $i = 1, 2, \ldots, n$, definimos

$$m_i = \inf_{[t_{i-1},t_i]} f, \qquad \mathsf{y} \qquad M_i = \sup_{[t_{i-1},t_i]} f.$$

La suma inferior de Darboux s(P,f) y la suma superior de Darboux S(P,f) de la función f, asociadas a la partición P, se definen por

$$s(P,f) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}), \qquad S(P,f) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}).$$

Teorema

 $f:[a,b] \to \mathbb{R}$ limitada. Para toda partición P, $m(b-a) \le \mathsf{s}(\mathsf{P},f) \le \mathsf{S}(\mathsf{P},f) \le \mathsf{M}(b-a)$.

Prueba:

Para cada $i=1,2,\ldots,n$, $m_i\leq f(x)\leq M_i$, de modo que $m_i(t_i-t_{i-1})\leq M_i(t_i-t_{i-1})$. Sumando sobre cada i, obtenemos

$$\mathsf{S}(\mathsf{P},f) = \sum_{i=1}^n m_i(t_i - t_{i-1}) \leq \sum_{i=1}^n \mathsf{M}_i(t_i - t_{i-1}) = \mathsf{S}(\mathsf{P},f).$$

Sean P,Q particiones de [a,b]. Recordemos que Q es un **refinamiento** de P si $P \subseteq Q$ (Q tiene al menos los mismos puntos de P). En este caso, decimos que Q es **más fina** que P, o también decimos que P es **menos fina** (coarse) que Q.

Teorema

Sea $f:[a,b]\to\mathbb{R}$ limitada, P, Q particiones de [a,b], con P \subseteq Q. Entonces

$$s(P,f) \leq s(f,Q) \leq S(f,Q) \leq S(P,f).$$

Prueba: Consideramos el caso simple en que el refinamiento añade sólo un punto, digamos $Q=P\cup\{x\}=\{t_0,t_1,\ldots,t_{j-1},x,t_j,\ldots,t_n\}=\{x_0,x_1,\ldots,x_{n+1}\}.$ Esto es, $x_i=t_i$ para $i=0,1,\ldots,j-1$, $x_j=x$ y $x_i=t_{i-1}$ para $i=j+1,\ldots,n+1$. Definamos $\widetilde{m}_i=\inf_{[x_{i-1},x_i]}f$ y $\widetilde{M}_i=\sum_{[x_{i-1},x_i]}f$. Entonces

$$s(Q,f) = \sum_{i=1}^{n-1} \widetilde{m}_i(x_i - x_{i-1})$$

$$= \sum_{i=1}^{j-1} m_i(t_i - t_{i-1}) + \underbrace{\widetilde{m}_j(x - t_{i-1}) + \widetilde{m}_{j+1}(t_j - x)}_{\geq m_j(t_j - t_{j-1})} + \sum_{i=j+1}^{n} m_i(t_i - t_{i-1})$$

$$\geq \sum_{i=1}^{n} m_i(t_i - t_{i-1}) = s(P,f).$$

Un argumento similar con supremo, en lugar de ínfimo, muestra que $S(Q,f) \leq S(P,f)$. Para el caso general, si $Q = P \cup \bigcup_{j=1}^k \{x_j\}$, basta aplicar el argumento anterior a cada uno de los puntos x_j . \square

Una **cadena** de refinamientos de una partición P de [a,b], es una secuencia de particiones

$$P \subseteq P_1 \subseteq P_2 \subseteq \ldots \subseteq P_k \subseteq \ldots$$

Del teorema y la propiedad anteriores, podemos deducir que si $\{P_k\}_{k\geq 1}$ es una cadena de refinamientos de P, entonces, para cualquier función limitada $f:[a,b]\to\mathbb{R}$ vale

$$s(P,f) \leq s(P_1,f) \leq \ldots \leq s(P_k,f) \leq \ldots \leq s(P_k,f) \leq \ldots \leq s(P_1,f) \leq s(P,f).$$

En particular:

- La secuencia de sumas inferiores $s(f, P_k)$ es monótona no-decreciente, y está limitada superiormente por M(b-a). Luego, converge (a su supremo).
- La secuencia de sumas superiores $S(f, P_k)$ es monótona no-creciente, y está limitada inferiormente por m(b-a). Luego, converge (a su ínfimo).

Definición

Sea $f:[a,b]\to\mathbb{R}$ función limitada. Definimos la **integral inferior** de Darboux por

$$\int_a^b f = \int_a^b f(t) dt = \sup_P s(P,f) = \limsup_{||P|| \to 0} s(P,f).$$

De la misma forma, definimos la **integral superior** de Darboux de f como

$$\int_a^b f = \int_a^b f(t) dt = \inf_P S.(P, f) = \liminf_{||P|| \to 0} s(P, f).$$

Sean $f,g:[a,b] o \mathbb{R}$ limitadas. Valen las siguientes afirmaciones:

- i) Para toda partición P de [a,b], $s(P,f) \leq \int_a^b f$ y $\int_a^{\bar{b}} f \leq S(P,f)$.
- ii) Dado $\varepsilon >$ 0, existen particiones \underline{P} y \overline{P} de [a,b] tales que

$$\int_a^b f - \mathsf{s}(\underline{P}, f) < arepsilon, \qquad \mathsf{y} \qquad \mathsf{S}(\overline{P}, f) - \int_a^{\overline{D}} ^b < arepsilon.$$

iii)
$$\int_{\underline{a}}^{b} f = \int_{\underline{a}}^{c} f + \int_{\underline{c}}^{b} f y \int_{\overline{a}}^{b} f = \int_{\overline{a}}^{c} f + \int_{\overline{c}}^{\overline{b}} f.$$

$$\mathsf{iv)} \ \ \underline{\int} f + \underline{\int} \, g \leq \underline{\int} (f+g) \leq \int (f+g) \leq \bar{\int} (f+g) \leq \bar{\int} f + \bar{\int} \, g.$$

$$\text{ V) } f \leq g \quad \Longrightarrow \quad \int f \leq \int g \text{ y } \bar{\int} f \leq \bar{\int} g.$$

Definición

Una función limitada $f:[a,b] o\mathbb{R}$ es **Darboux-integrable** si $\int_a^b f=\int_a^{ar{b}} f.$

Teorema

Sea $f:[a,b] \to \mathbb{R}$ limitada. Las siguientes son equivalentes:

- i) f es Darboux-integrable.
- ii) Para todo $\varepsilon >$ 0, existen particiones P, Q de [a, b] tales que $S(P,f) s(Q,f) < \varepsilon$.
- iii) Para todo $\varepsilon >$ 0, existe una partición P de [a,b] tal que $S(P,f)-s(P,f)< \varepsilon$.
- iv) Para todo $\varepsilon > 0$, existe una partición $P = \{t_0, t_1, \dots, t_n\}$ de [a, b] tal que

$$\mathcal{O}_P(f) = \sum_{i=1}^n \omega_i(t_i - t_{i-1}) < \varepsilon.$$

El número $\omega_i = M_i - m_i$ se llama la oscilación de f sobre el subintervalo $[t_{i-1}, t_i]$.

Integral de Riemann

Recordemos que si $f:[a,b]\to\mathbb{R}$ es limitada, una **suma de Riemann** de f sobre la partición $P=\{t_0,t_1,\ldots,t_n\}$ es una suma de la forma

$$\sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}), \text{ con } t_{i-1} \le \xi_i \le t_i.$$

Recordemos también que

Definición

f es **Riemann-integrable** si el límite $\lim_{|P|\to 0} \sum_{i=1}^{n} f(\xi_i)(t_i-t_{i-1})$ existe, (para cualquier partición P y cualquier elección válida de los ξ_i).

En ese caso, escribimos dicho límite como $\int_a^b f = \int_a^b f(t) dt$.

Integral de Riemann

Nota: $||P|| = \sup(t_i - t_{i-1})$ es la **norma** de la partición P.

Teorema (Equivalencia entre Riemann y Darboux)

Sea $f:[a,b] \to \mathbb{R}$ limitada. f es Darboux-integrable f es Riemann-integrable.

Prueba: Ejercicio!

Integral de Riemann

Ejemplo: La función de Dirichlet

Para cualquier partición P de [a,b], los subintervalos $[t_{i-1},t_i]$ siempre contienen racionales e irracionales. Luego, $m_i=0$ y $M_i=1$, para todo i, de modo que s(P,f)=0 e S(P,f)=b-a=1, para toda partición P.

S(P,f)=b-a=1, para toda partición P.

Portanto, $\int_0^1 f(t) dt = 0$ e $\int_0^1 f(t) dt = 1$, por lo que f no es Riemann integrable.