10

15

WHAT IS CLAIMED IS:

1. A method of treating or preventing osteoporosis, bone resorption or other bone disease in a vertebrate mammal, comprising the step of administering to a mammal in need of such treatment, an effective amount of a compound of formula I

I

or pharmaceutical acceptable salts thereof wherein:

G is

- N

. "

 R_1 is

20

- a) H,
- b) NH₂,
- c) NH-C₁₄ alkyl,
- d) C₁₄ alkyl,
- e) -OC₁₄ alkyl,

25

- f) -S C₁₋₄ alkyl,
- g) C₁₄ alkyl substituted with 1-3 F, 1-2 Cl, CN or -COOC₁₄ alkyl,
- h) C₃₋₆ cycloalkyl,
- i) N(C₁₋₄ alkyl)₂ or
- j) $N(CH_2)_{2-5}$;

A is

30

a)

15

20

c) R₄₆ R₄₃

d) a 5-membered heteroaromatic moiety having one to three atoms selected from the group consisting of S, N, and O, wherein the 5-membered heteroaromatic moiety is bonded via a carbon atom,

wherein the 5-membered heteroaromatic moiety can additionally have a fused-on benzene or naphthyl ring,

wherein the heteroaromatic moiety is optionally substituted with one to three R_{48} ,

e) a 6-membered heteroaromatic moiety having at least one nitrogen atom,
wherein the heteroaromatic moiety is bonded via a carbon atom,

wherein the 6-membered heteroaromatic moiety can additionally have a fused-on benzene or naphthyl ring,

wherein the heteroaromatic moiety is optionally substituted with one 25 to three $R_{55},$

f) a β -carbolin-3-yl, or indolizinyl bonded via the 6-membered ring, optionally substituted with one to three R_{55} ,

g) R₇₄ R₇₅ R₇₆ , or

h)

- wherein R₂ is
 - H, a)
 - F, b)
 - Cl, c)
 - Br, d)
 - C₁₋₃ alkyl, e)
- 10 NO₂, or f)
 - R_2 and R_3 taken together are -O-(CH₂)_h-O-; g)

 R_3 is

- $-S(=O)_i R_4$ a)
- $-S(=O)_2-N=S(O)_jR_5R_6$ b)
- $-SC(=O)R_7$, c) 15
 - $-C(=O)R_8$ d)
 - $-C(=O)R_9$, e)
 - $-C(=O)NR_{10}R_{11}$,
 - f)
 - $-C(=NR_{12})R_8$, g)
- $-C(R_8)(R_{11})-OR_{13}$ h) 20
 - $-C(R_9)(R_{11})-OR_{13}$, i)
 - $-C(R_8)(R_{11})-OC(=O)R_{13}$ j)
 - $-C(R_9)(R_{11})-OC(=O)R_{13}$ k)
 - $-NR_{10}R_{11}$, 1)
 - $-N(R_{10})-C(=O)R_7$ m)
- 25 $-N(R_{10})-S(=O)_iR_7$ n)
 - $-C(OR_{14})(OR_{15})R_8$, o)
 - $-C(R_8)(R_{16})-NR_{10}R_{11}$, or p)
 - C_{1-8} alkyl substituted with one or more =0 other than at alpha q) position, -S(=O) $_{i}R_{17}$, -NR $_{10}R_{11}$, C $_{2.5}$ alkenyl, or C $_{2.5}$ alkynyl;

R4 is 30

- C_{14} alkyl optionally substituted with one or more halos, OH, CN, a) $NR_{10}R_{11}$, or $-CO_2R_{13}$,
- C₂₄ alkenyl, b)

- c) $-NR_{16}R_{18}$,
- d) - N_3 ,
- e) $-NHC(=O)R_7$,
- f) $-NR_{20}C(=O)R_7$,
- g) $-N(R_{19})_2$,
- h) $-NR_{16}R_{19}$, or
- i) $-NR_{19}R_{20}$,

R₅ and R₆ at each occurrence are the same or different and are

- a) C_{1.2} alkyl, or
- b) R_5 and R_6 taken together are -(CH₂)_k-;
- 10 R₇ is C₁₋₄ alkyl optionally substituted with one or more halos;

R₈ is

5

- a) H, or
- b) C_{1.8} alkyl optionally substituted with one or more halos, or C_{3.8} cycloalkyl;

R₉ is C₁₄ alkyl substituted with one or more

- 15 a) $-S(=O)R_{17}$,
 - b) -OR₁₃,
 - c) $-OC(=O)R_{13}$
 - d) $-NR_{10}R_{11}$, or
 - e) C_{1.5} alkenyl optionally substituted with CHO;
- 20 R₁₀ and R₁₁ at each occurrence are the same or different and are
 - a) H,
 - b) C₁₄ alkyl, or
 - c) C₃₋₈ cycloalkyl;

 R_{12} is

- $_{25}$ a) -NR₁₀R₁₁,
 - b) $-OR_{10}$; or
 - c) $-NHC(=O)R_{10}$;

R₁₃ is

- a) H. or
- b) C₁₋₄ alkyl;
- R_{14} and R_{15} at each occurrence are the same or different and are
 - a) C₁₄ alkyl, or
 - b) R_{14} and R_{15} taken together are -(CH)₁-;

Compare of the fill fill of the contract of

- H, a)
- C₁₄ alkyl, or b)
- c) C₃₋₈ cycloalkyl;

 R_{17} is

- 5
- C14 alkyl, or
- C₃₋₈ cycloalkyl; b)

 R_{18} is

- a) H,
- b) C14 alkyl,
- C24 alkenyl, c)
- 10 d) C₃₄ cycloalkyl,
 - $-OR_{13}$ or e)
 - f) -NR₂₁R₂₂;

 R_{19} is

The third facilities are supplied to the suppl

- a) Cl,
- b) Br, or 15
 - c) I;

 R_{20} is a physiologically acceptable cation;

 $R_{21} \ \text{and} \ R_{22}$ at each occurrence are the same or different and are

- a)
- C14 alkyl, or b) 20
 - -NR₂₁R₂₂ taken together are -(CH_2)_m-; c)

wherein R_{23} and R_{24} at each occurrence are the same or different and are

- H, a)
- b) F,
- CI, c)
- 25 C₁₋₂ alkyl, d)
 - e) CN
 - OH, f)
 - C₁₋₂ alkoxy, g)
 - h) nitro, or
 - i) amino;

Q is

30

a)

5

d)

f)

g)

h)

10

15

20

25

30

j) B Z

5

10

m) a diazinyl group optionally substituted with X and Y,

n) a triazinyl group optionally substituted with X and Y,

o) a quinolinyl group optionally substituted with X and Y,

p) a quinoxalinyl group optionally substituted with X and Y,

q) a naphthyridinyl group optionally substituted with X and Y,

r)

$$A^1 \xrightarrow{A^2} (CH_2)_n$$
 $Z^1 \xrightarrow{N}$

s)

30 **t**)

v)

Q and R24 taken together are

wherein Z^1 is

- a) $-CH_2$ -,
- b) $-CH(R^{104})-CH_{2}$,
- c) -C(O)-, or
- d) $-CH_2CH_2CH_2$ -;

10

15

5

wherein Z² is

- a) $-O_2S$ -,
- b) -O-,
- c) $-N(R^{107})$ -,
- d) -OS-, or
 - e) -S-;

wherein Z3 is

- a) $-O_2S$ -,
- b) -O-,
- c) -OS-, or
- ²⁰ d) -S-;

wherein A^1 is

- a) H-, or
- b) CH₃;

wherein A² is

- 25
- a) H-,
- b) HO-,
- c) CH₃-,
- d) CH₃O-,
- e) $R^{102}O-CH_2-C(O)-NH-$
- f) R¹⁰³O-C(O)-NH-,
- g) (C_1-C_2) alkyl-O-C(O)-,
 - h) HO-CH₂-,
 - i) CH₃O-NH-,
 - j) (C₁-C₃)alkyl-O₂C-

- k) CH_3 -C(O)-,
- l) CH_3 -C(O)- CH_2 -,

m)

, or

5

n)

 A^1 and A^2 taken together are:

a)

15

b) o=

, or

c)

wherein R^{102} is

- a) H-,
- b) CH₃-,
- c) phenyl-CH₂-, or
- d) $CH_3C(O)$ -;

25 wherein R¹⁰³ is

- a) (C₁-C₃)alkyl-, or
- b) phenyl-;

wherein R¹⁰⁴ is

- a) H-, or
- b) HO-;

 30 wherein R^{105} is

- a) H-,
- b) (C₁-C₃)alkyl-,

- c) $CH_2 = CH-CH_2$, or
- d) CH_3 -O- $(CH_2)_2$ -;

wherein R^{106} is

- a) CH_3 -C(O)-,
- b) H-C(O)-,
- c) Cl₂CH-C(O)-,
- d) $HOCH_2$ -C(O)-,
- e) CH₃SO₂-,
- f) R¹¹⁵ S C(O)-
- 10

5

- g) $F_2CHC(O)$ -,
- h) $N \sim N C(O)$
- i) H₃C-C(O)-O-CH₂-C(O)-,
- j) H-C(O)-O-CH₂-C(O)-,
 - k) (O)-
 - l) HC≡C-CH₂O-CH₂-C(O)-, or
 - m) phenyl-CH₂-O-CH₂-C(O)-;
- 20 wherein R¹⁰⁷ is
 - a) $R^{102}O-C(R^{110})(R^{111})-C(O)-$,
 - b) R¹⁰³O-C(O)-,
 - c) R¹⁰⁸-C(O)-,
- 25 d) OH

 - f) H₃C-C(O)-(CH₂)₂-C(O)-,
- 30 g) R^{109} - SO_2 -,
 - ь)

- i) $HO-CH_2-C(O)-$,
- j) R^{116} - $(CH_2)_2$ -,
- k) R^{113} -C(O)-O-CH₂-C(O)-,
- 1) $(CH_3)_2N-CH_2-C(O)-NH-$,
- 5 m) $NC-CH_2-$,
 - n) F_2 -CH-CH₂-, or
 - o) $R^{150}R^{151}NSO_2$

wherein R108 is

- a) H-,
- b) (C_1-C_4) alkyl,
- 10 c) aryl - $(CH_2)_p$,
 - d) ClH₂C-,
 - e) Cl₂HC-,
 - f) FH₂C-,
 - g) F_2HC_- ,
- 15 h) (C₃-C₆)cycloalkyl, or
 - i) CNCH₂-.

wherein R109 is

- a) $alkylC_1-C_4$,
- b) -CH₂Cl
- c) $-CH_2CH=CH_2$,
- d) aryl, or
- e) -CH₂CN;

wherein R^{110} and R^{111} are independently

- a) H-,
- b) CH₃-; or
- 25 wherein R¹¹² is

20

30

- a) H-,
- b) $CH_3O-CH_2O-CH_2-$, or
- c) HOCH₂-;

wherein R¹¹³ is

- a) CH_3 -,
- b) HOCH₂-,
- c) (CH₃)₂N-phenyl, or
- d) $(CH_3)_2N-CH_2-;$

wherein R114 is

- a) HO-,
- b) CH₃O-,
- c) H_2N_- ,
- d) CH₄O-C(O)-O-,
- e) CH_3 -C(O)-O- CH_2 -C(O)-O-,
 - f) phenyl-CH₂-O-CH₂-C(O)-O-,
 - g) $HO-(CH_2)_2-O-$,
 - h) $CH_3O-CH_2-O-(CH_2)_2-O-$, or
 - i) CH₃O-CH₂-O-; wherein R¹¹³ is
 - a) CH_{3} -,
- b) HOCH₂-,
 - c) (CH₃)₂N-phenyl, or
 - d) $(CH_3)_2N-CH_2-;$

wherein R¹¹⁵ is

- a) H-, or
- 15 b) Cl-;

wherein R116 is

- a) HO-
- b) CH₃O-, or
- c) F;

wherein R¹⁵⁰ and R¹⁵¹ are each H or alkyl C₁-C₄ or R¹⁵⁰ and R¹⁵¹ taken together with the nitrogen atom to which each is attached form a monocyclic heterocyclic ring having from 3 to 6 carbon atoms;

B is an unsaturated 4-atom linker having one nitrogen and three carbons; M is

- a) H,
- b) C₁₋₈ alkyl,
 - c) C₃₋₈ cycloalkyl,
 - d) $-(CH_2)_mOR_{13}$, or
 - e) $-(CH_2)_h-NR_{21}R_{22}$;

Z is

25

- a) O,
- 30 b) S, or
 - c) NM;

W is

a) CH,

- b) N, or
- c) S or O when Z is NM;

Y is

5

15

25

- a) H,
- b) F,
 - c) Cl,
 - d) Br,
 - e) $C_{1.3}$ alkyl, or
 - f) NO_2 ;

X is

- 10 a) H,
 - b) -CN,
 - c) OR_{27} ,
 - d) halo,
 - e) NO_2 ,
 - f) tetrazoyl,
 - g) -SH,
 - h) $-S(=O)_iR_4$,
 - i) $-S(=O)_2-N=S(O)_jR_5R_6$,
 - j) -SC(=O)R₇,
 - k) $-C(=O)R_{25}$,
- 20 l) $-C(=O)NR_{27}R_{28}$,
 - m) $-C(=NR_{29})R_{25}$,
 - n) $-C(R_{25})(R_{28})-OR_{13}$,
 - o) $-C(R_{25})(R_{28})-OC(=O)R_{13}$,
 - p) $-C(R_{28})(OR_{13})-(CH_2)_h-NR_{27}R_{28}$,
 - q) $-NR_{27}R_{28}$,
 - r) $-N(R_{27})C(=O)R_7$,
 - s) $-N(R_{27})-S(=O)_iR_7$,
 - t) $-C(OR_{14})(OR_{15})R_{28}$,
 - u) $-C(R_{25})(R_{16})-NR_{27}R_{26}$, or
- v) C_{1.8} alkyl substituted with one or more halos, OH, =O other than at alpha position, -S(=O)_iR₁₇, -NR₂₇R₂₈, C_{2.5} alkenyl, C_{2.5} alkynyl, or C_{3.8} cycloalkyl;

 R_4 , R_5 , R_6 , R_7 , R_{13} , R_{14} , R_{15} , R_{16} , and R_{17} are the same as defined above; R_{25} is

a) H,

c) C_{2.5} alkenyl optionally substituted with CHO, or CO₂R₁₃;

 R_{26} is

5

10

20

- a) R_{28} , or
- b) NR₂₇N₂₈;

 R_{27} and R_{28} at each occurrence are the same or different and are

- a) H,
- b) C₁₋₈ alkyl,
- c) C₃₋₈ cycloalkyl,
- d) $-(CH_2)_mOR_{13}$,
 - e) $-(CH_2)_h-NR_{21}R_{22}$, or
 - f) R_{27} and R_{28} taken together are -(CH₂)₂O(CH₂)₂-, -(CH₂)_hCH(COR₇)-, or -(CH₂)₂N(CH₂)₂(R₇);

 R_{29} is

- 15 a) $-NR_{27}R_{28}$
 - b) $-OR_{27}$ or
 - c) $-NHC(=O)R_{28}$;

wherein R_{30} is

- a) H,
- b) C_{1.8} alkyl optionally substituted with one or more halos, or
 - c) $C_{1.8}$ alkyl optionally substituted with one or more OH, or $C_{1.6}$ alkoxy;

wherein E is

- a) NR₃₉,
- b) $-S(=O)_i$, or
- c) O;

 25 R_{38} is

- a) H,
- b) C₁₋₆ alkyl,
- c) $-(CH_2)_q$ -aryl, or
- d) halo;

30 R₃₉ is

- a) H,
- b) C₁₋₆ alkyl optionally substituted with one or more OH, halo, or -CN,
- c) $-(CH_2)_{q}$ -aryl,
- d) -CO₂R₄₀,

- e) -COR₄₁,
- f) $-C(=O)-(CH_2)_q-C(=O)R_{40}$,
- g) $-S(=O)_2-C_{1-6}$ alkyl,
- h) $-S(=O)_2-(CH_2)_q$ -aryl, or
- i) $-(C=O)_i$ -Het;

 R_{40} is

5

- a) H,
- b) C₁₆ alkyl optionally substituted with one or more OH, halo, or -CN,
- c) $-(CH_2)_q$ -aryl, or
- d) $-(CH_2)_{q}-OR_{42};$

10 R₄₁ is

- a) C_{1.6} alkyl optionally substituted with one or more OH, halo, or -CN,
- b) -(CH₂)_g-aryl, or
- c) $-(CH_2)_q-OR_{42}$;

 R_{42} is

15

25

- a) H,
- b) C_{1.6} alkyl,
 - c) -(CH₂)_q-aryl, or
 - d) $-C(=O)-C_{1-6}$ alkyl;

aryl is

- 20 a) phenyl,
 - b) pyridyl, or
 - c) napthyl; a to c optionally substituted with one or more halo, -CN, OH, SH, C₁₋₆ alkyl, C₁₋₆ alkoxy, or C₁₋₆ alkylthio;

wherein R43 is

- a) H,
- b) C₁₋₂ alkyl,
- c) F, or
- d) OH;

R44 is

- a) H,
- 30 b) CF₃,
 - c) C₁₃ alkyl optionally substituted with one or more halo,
 - d) phenyl optionally substituted with one or more halo,
 - e) R_{44} and R_{45} taken together are a 5-, 6-, or 7-membered ring of the formula,

or

5

f) R_{44} and R_{45} taken together are -(CH₂)_k-, when R_{46} is an electron-withdrawing group;

 $R_{\mbox{\tiny 45}}$ and $R_{\mbox{\tiny 46}}$ at each occurrence are the same or different and are

- a) an electron-withdrawing group,
- b) H,
- 10
- c) CF₃,
- d) C_{1.3} alkyl optionally substituted with one halo,
- e) phenyl, provided at least one of R_{45} or R_{46} is an electron-withdrawing group, or
- f) R_{45} and R_{46} taken together are a 5-, 6-, 7-membered ring of the formula

15

U is

20

- a) CH₂,
- b) O,
- c) S, or
- d) NR₄₇;

 R_{47} is

25

- a) H, or
- b) C₁₋₅ alkyl;

wherein R48 is

- a) carboxyl,
- b) halo,
- c) -CN,

30

- d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) -NO₂,

- i) C_{1.6} alkoxycarbonyl,
- j) C₁₋₆ alkythio,
- k) C_{1.6} acyl,
- 1) $-NR_{49}R_{50}$,
- m) $C_{1.6}$ alkyl optionally substituted with OH, $C_{1.5}$ alkoxy, $C_{1.5}$ acyl, or -NR₄₉R₅₀,
- n) C_{2-8} alkenylphenyl optionally substituted with one or two R_{51} ,
- o) phenyl optionally substituted with one or two R_{51} ,
- p) a 5-, or 6-membered (un)saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R_{51} , or

15 R49 and R50 at each occurrence are the same or different and are

- a) H,
- b) C_{1.4} alkyl,
- c) C₅₋₆ cycloalkyl, or
- d) R₄₉ and R₅₀ taken together with the nitrogen atom is a 5-, 6membered saturated heterocyclic moiety which optionally has a

 further hetero atom selected from the group consisting of S, N, and O,
 and can in turn be optionally substituted with, including on the
 further nitrogen atom, C₁₋₃ alkyl, or C₁₋₃ acyl;

 R_{61} is

- a) carboxyl,
- 25 b) halo,
 - c) -CN,
 - d) mercapto,
 - e) formyl,
 - f) CF₃,
 - g) -NO₂,
- C_{1-6} alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
 - k) C_{1-6} acyl,

- m) phenyl,
- n) $-C(=O)NR_{52} R_{53}$,
- o) $-NR_{49}R_{50}$,
 - p) $-N(R_{52})(-SO_2R_{54}),$
 - q) $-SO_2-NR_{52}R_{53}$, or
 - r) $-S(=O)_{i}R_{54};$

 $R_{\rm 52}$ and $R_{\rm 53}$ at each occurrence are the same or different and are

- a) H,
- 10 b) C_{1.6} alkyl, or
 - c) phenyl;

 R_{64} is

- a) C₁₄ alkyl, or
- b) phenyl optionally substituted with C_{14} alkyl;
- wherein R₅₅ is
 - a) carboxyl,
 - b) halo,
 - c) -CN,
 - d) mercapto,
 - e) formyl,
- 20 f) CF₃,
 - g) -NO₂,
 - h) C₁₋₆ alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
 - j) C_{1.6} alkythio
- 25 k) C₁₋₆ acyl,
 - 1) $-NR_{56}R_{57}$,
 - m) C_{1.6} alkyl optionally substituted with OH, C_{1.5} alkoxy, C_{1.5} acyl, or
 -NR₅₆R₅₇,
 - n) C_{2-8} alkenylphenyl optionally substituted with one or two R_{58} ,
 - o) phenyl optionally substituted with one or two R₅₈,
- p) a 5- or 6-membered (un)saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with one or two R_{58} , or

q) O (CH₂)_i

 R_{56} and R_{57} at each occurrence are the same or different and are

- a) H,
- b) formyl,
- c) C₁₄ alkyl,
- d) C₁₄ acyl,
- e) phenyl,
- f) C₃₋₆ cycloalkyl, or
- g) R₅₆ and R₅₇ taken together with the nitrogen atom is a 5-, 6-membered saturated heterocyclic moiety which optionally has a further hetero atom selected from the group consisting of S, N, and O, and can in turn be optionally substituted with, including on the further nitrogen atom, phenyl, pyrimidyl, C₁₋₃ alkyl, or C₁₋₃ acyl;
- $_{15}$ R_{58} is

30

- a) carboxyl,
- b) halo,
- c) -CN,
- d) mercapto,
- e) formyl,
- 20 f) CF₃,
 - g) -NO₂,
 - h) C₁₋₆ alkoxy,
 - i) C₁₋₆ alkoxycarbonyl,
 - j) C₁₋₆ alkythio,
- 25 k) C_{1-6} acyl,
 - l) phenyl,
 - m) C_{1-6} alkyl optionally substituted with OH, azido, C_{1-5} alkoxy, C_{1-5} acyl, $-NR_{65}R_{66}$, $-SR_{67}$, $-O-SO_2R_{68}$, or

R₆₉——NH-CO-O-

- n) $-C(=O)NR_{59}R_{50}$
 - o) $-NR_{56}R_{57}$,
 - p) $-N(R_{59})(-SO_2R_{54})$,

- r) $-S(=O)_i R_{54}$
- s) $-CH=N-R_{61}$, or
- t) $-CH(OH)-SO_3R_{64}$;
- 5 R₅₄ is the same as defined above;

 R_{so} and R_{so} at each occurrence are the same or different and are

- a) H,
- b) C₁₋₆ alkyl,
- c) phenyl, or
- d) tolyl;
- 10 R₆₁ is
- a) OH,
- b) benzyloxy,
- c) $-NH-C(=O)-NH_2$,
- d) $-NH-C(=S)-NH_2$, or
- e) -NH-C(=NH)-NR₆₂R₆₃;

 $R_{\rm 62}$ and $R_{\rm 63}$ at each occurrence are the same or different and are

- a) H, or
- b) C₁₄ alkyl optionally substituted with phenyl or pyridyl;

R₆₄ is

30

- a) H, or
- b) a sodium ion;

R₆₅ and R₆₆ at each occurrence are the same or different and are

- a) H,
- b) formyl,
- c) C₁₄ alkyl,
- 25 d) C₁₄ acyl,
 - e) phenyl,
 - f) C₃₋₆ cycloalkyl,
 - g) R₅₅ and R₅₆ taken together are a 5-, 6-membered saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with, including on the nitrogen atom, phenyl, pyrimidyl, C_{1.3} alkyl, or C_{1.3} acyl,
 - h) $-P(O)(OR_{70})(OR_{71})$, or
 - i) $-SO_2-R_{72}$;

R₆₇ is

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

10

15

 R_{68} is C_{1-3} alkyl;

 R_{69} is

a) C_{1-6} alkoxycarbonyl, or

b) carboxyl;

 $R_{70} \ \text{and} \ R_{71}$ at each occurrence are the same or different and are

- a) H, or
- b) C₁₋₃ alkyl;

 20 R_{72} is

25

- a) methyl,
- b) phenyl, or
- c) tolyl;

wherein K is

- a) O, or
- b) S;

 $R_{73},\,R_{74},\,R_{75},\,R_{76},\,$ and R_{77} at each occurrence are the same or different and are

- a) H,
- b) carboxyl,
- c) halo,
- 30 d) -CN,
 - e) mercapto,
 - f) formyl,
 - g) CF₈,

- h) -NO₂,
- i) C₁₋₆ alkoxy,
- j) C₁₋₆ alkoxycarbonyl,
- k) C_{1-6} alkythio,
- C_{1-6} acyl,
- m) $-NR_{78}R_{79}$,
- n) C_{1-6} alkyl optionally substituted with OH, C_{1-5} alkoxy, C_{1-5} acyl, $-NR_{78}R_{79}$, $-N(phenyl)(CH_2-CH_2-OH)$, $-O-CH(CH_3)(OCH_2CH_3)$, or $-O-phenyl-[para-NHC(=O)CH_3]$,
- o) $C_{2.8}$ alkenylphenyl optionally substituted with R_{51} ,
- p) phenyl optionally substituted with R_{51} , or
 - q) a 5-, or 6-membered (un)saturated heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, optionally substituted with R₅₁;

R₅₁ is the same as defined above;

- R₇₈ and R₇₉ at each occurrence are the same or different and are
 - a) H,
 - b) C₁₋₄ alkyl,
 - c) phenyl, or
- d) R₇₈ and R₇₉ taken together with the nitrogen atom is a 5-, 6membered saturated heterocyclic moiety which optionally has a

 further hetero atom selected from the group consisting of S, N, and O,
 and can in turn be optionally substituted with, including on the
 further nitrogen atom, C₁₋₃ alkyl, or C₁₋₃ acyl;

wherein T is

- a) O,
- b) S, or
- c) SO₂;

 R_{75} , R_{76} , and R_{77} are the same as defined above;

 R_{80} is

25

- a) H,
- b) formyl,
- c) carboxyl,
 - d) C₁₋₆ alkoxycarbonyl,
 - e) C₁₋₈ alkyl,
 - f) C₂₋₈ alkenyl,

- 68 -

wherein the substituents (e) and (f) can be optionally substituted with OH, halo, C_{1.5} alkoxy, C_{1.5} acyl, C_{1.5} alkylthio or C_{1.5} alkoxycarbonyl, or phenyl optionally substituted with halo,

- g) an aromatic moiety having 6 to 10 carbon atoms optionally substituted with carboxyl, halo, -CN, formyl, CF₃, -NO₂, C_{1.6} alkyl, C_{1.6} alkoxy, C_{1.6} acyl, C_{1.6} alkylthio, or C_{1.6} alkoxycarbonyl;
- h) $-NR_{81}R_{82}$,
- i) -OR₉₀,
- j) $-S(=O)_{i}-R_{91}$,
- k) $-SO_2-N(R_{92})(R_{93})$, or
- 10 a radical of the following formulas:

 R_{s_1} and R_{s_2} at each occurrence are the same or different and are

- a) H,
- b) C₃₋₆ cycloalkyl,
- c) phenyl,
 - d) C₁₋₆ acyl,
 - e) C_{1.8} alkyl optionally substituted with OH, C_{1.6} alkoxy which can be substituted with OH, a 5-, or 6-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, phenyl optionally substituted with OH, CF₃, halo, -NO₂, C_{1.4} alkoxy, -NR₈₃R₈₄, or

25

20

30

V is

a) O,

g)

c) NR₈₇;

 R_{83} and R_{84} at each occurrence are the same or different and are

- a) H, or
- b) C₁₄ alkyl;

 R_{85} is

5

- a) OH,
- b) C₁₄ alkoxy, or
- c) $-NR_{88}R_{89}$;

 R_{86} is

10 a) H, or

b) C_{1.7} alkyl optionally substituted with indolyl, OH, mercaptyl, imidazoly, methylthio, amino, phenyl optionally substituted with OH, -C(=O)-NH₂, -CO₂H, or -C(=NH)-NH₂;

15 R₈₇ is

- a) H,
- b) phenyl, or
- c) C_{1.6} alkyl optionally substituted by OH;

R₈₈ and R₈₉ at each occurrence are the same or different and are

- a) H,
- 20

25

- b) C₁₋₅ alkyl
- c) C_{3.6} cycloalky, or
- d) phenyl;

 R_{90} is

a) C_{1.8} alkyl optionally substituted with C_{1.5} alkoxy or C_{1.6} hydroxy, C_{3.6} cycloalkyl, a 6-membered aromatic optionally benzo-fused heterocyclic moiety having one to three nitrogen atoms, which can in turn be substituted with one or two -NO₂, CF₃, halo, -CN, OH, C_{1.5} alkyl, C_{1.5} alkoxy, or C_{1.5} acyl;

b) N-(CH₂)_t-

- c) phenyl, or
- d) pyridyl;

10

15

20

30

- a) C_{1.16} alkyl,
- b) C₂₋₁₆ alkenyl,
 wherein the substituents (a) and (b) can be optionally substituted with
 C₁₋₆ alkoxycarbonyl, or a 5-, 6-, 7-membered aromatic heterocyclic
 moiety having one to three atoms selected from the group consisting of
 S, N, and O,
 - c) an aromatic moiety having 6 to 10 carbon atoms, or
 - d) a 5-, 6-, 7-membered aromatic heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O, wherein the substituents (c) and (d) can be optionally substituted with carboxyl, halo, -CN, formyl, CF₃, -NO₂, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ acyl, C₁₋₆ alkylthio, or C₁₋₆ alkoxycarbonyl;

 R_{92} and R_{93} at each occurrence are the same or different and are

- a) H,
- b) phenyl,
 - c) C₁₋₆ alkyl, or
 - d) benzyl;

R₉₄ and R₉₅ at each occurrence are the same or different and are

- a) H,
- b) OH,
- c) C_{1.6} alkyl optionally substituted with -NR₈₃ R₈₄, or
- d) R_{94} and R_{95} taken together are =0;

R₉₆ is

- a) an aromatic moiety having 6 to 10 carbon atoms,
- b) a 5-, or 6-membered aromatic optionally benzo-fused

 heterocyclic moiety having one to three atoms selected from the group consisting of S, N, and O,

 wherein the substituents (a) and (b) which can in turn be substituted with one or three -NO₂, CF₃, halo, -CN, OH, phenyl, C₁₋₅ alkyl, C₁₋₅ alkoxy, or C₁₋₅ acyl,
 - c) morpholinyl,
 - d) OH,
 - e) C_{1.6} alkoxy,
 - f) -NR₈₃R₈₄,
 - g) $-C(=O)-R_{97}$, or

h) 0

R₉₇ is

5

- a) morpholinyl,
- b) OH, or
- c) C₁₋₆ alkoxy;

h is 1, 2, or 3;

i is 0, 1, or 2;

j is 0 or 1;

10 k is 3, 4, or 5;

l is 2 or 3;

m is 4 or 5;

n is 0, 1, 2, 3, 4, or 5;

p is 0, 1, 2, 3, 4, or 5; with the proviso that n and p together are 1, 2, 3, 4, or 5;

q is 1, 2, 3, or 4;

r is 2, 3, or 4;

t is 0, 1, 2, 3, 4, 5, or 6;

u is 1 or 2;

30

w is 0, 1, 2, or 3.

- 20 2. The method according to claim 1 wherein said mammal is a human.
 - 3. The method according to claim 1 wherein the compound is administered in the range of about 0.1 to about 100 mg/kg of mammal body weight/day.
- 4. The method according to claim 1 wherein the compound is administered orally, nasally, parenterally, topically, transdermally, or rectally.
 - 5. The method according to claim 1 wherein said compound is selected from the group consisting of:

(S)-trans-[[3-[3-Fluoro-4-(tetrahydro-1-oxido-2H-thiopyran-4-yl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thiourea; and

(S)-N-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thio-acetamide, thiomorpholine S-oxide; and

pharmaceutically acceptable salts thereof.

5

- 6. The method according to claim 1 wherein said mammal is not suffering from an antibacterial infection.
- 7. A method of treating or preventing osteoporosis, bone resorption or other bone disease in a vertebrate mammal, comprising the step of administering to a mammal in need of such treatment, an effective amount of a compound of formula II

15

20

30

$$Z_{2} \xrightarrow{\text{N-N-C-R}^{1}} N \xrightarrow{\text{N-N-C-R}^{1}} (II)$$

wherein Z_2 is $-O_2S_-$, $-O_-$, $-N(R^{107})_-$, $-OS_-$, or $-S_-$; w is 0, 1, 2, or 3;

R²³ and R²⁴ are the same or different and can be H or F; and

R¹ is H, NH₂, NHalkylC₁-C₄; N(alkylC₁-C₄)₂; ·NCH₂)₂ ·NCH₂ ·NCH₂)₂ ·NCH₂ ·NCH

alkylC₁-C₄; OalkylC₁-C₄; SalkylC₁-C₄; alkylC₁-C₄ substituted with 1-3F, 1-2Cl,

25 CN, or -COOalkyl C_1 - C_4 , or cycloalkyl C_3 - C_6 , wherein in each occurrence of the alkyl group may be straight or branched; and R^{107} is

- a) $R^{102}O-C(R^{110})(R^{111})-C(O)-$,
- b) $R^{103}O-C(O)-$,
- c) R^{108} -C(O)-,
 - d) R^{109} -SO₂-,
 - e) NC-CH₂-,
 - f) FCHCH₂-, or

20

25

wherein R¹⁰² is H, CH₃-, phenyl-CH₂-, or CH₃C(O); each of R¹¹⁰ and R¹¹¹ is selected from H or CH₃; R¹⁰³ is alkylC₁-C₃ or phenyl; R¹⁰⁸ is H, alkylC₁-C₄, aryl(CH₂)_{0.5}, CNCH₂-, ClCH₂-, Cl₂HC-, FH₂C-, F₂HC-, or cycloalkylC₃-C₆; R¹⁵⁰ and R¹⁵¹ are the same or different and are selected from H, alkylC₁-C₄, or R¹⁵⁰ and R¹⁵¹ taken together with the nitrogen to which each is attached forms a monocyclic heterocyclic ring having from 3 to 6 carbon atoms.

- 10 8. The method according to claim 7 wherein said mammal is a human.
 - 9. The method according to claim 7 wherein the compound is administered in the range of about 0.1 to about 100 mg/kg of mammal body weight/day.
- 15 10. The method according to claim 7 wherein the compound is administered orally, nasally, parenterally, topically, transdermally, or rectally.
 - 11. The method according to claim 7 wherein said compound is selected from the group consisting of:

(S)-trans-[[3-[3-Fluoro-4-(tetrahydro-1-oxido-2H-thiopyran-4-yl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thiourea; and

(S)-N-[[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5-oxazolidinyl]methyl]thio-acetamide, thiomorpholine S-oxide; and

pharmaceutically acceptable salts thereof.

12. The method according to claim 7 wherein said mammal is not suffering from an antibacterial infection.

13. The use of a compound of formula (I) or formula (II) to prepare a medicament for treating or preventing osteoporosis, bone resorption or other bone disease in a mammal.

5