MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 1)

1. Encontrar dos números complejos cuyo cubo sea

$$z_0 := -11 - 2i$$
.

2. Se define la transformación $T:\mathbb{C}\to\mathbb{C}$ como $T(z)=z^3$. Calcula la imagen por T de la región comprendida entre las rectas y=x,y=-x y x=1. Representa gráficamente la región inicial y la final. Encuentra un lugar geométrico cuya imagen vía T sea una circunferencia.

MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 2)

- 1. Se consideran los números complejos $z_1 := 4 i$, $z_2 := 2 + 5i$ y $z_3 := i$ y el triángulo \mathcal{T} que los tiene por vértices. ¿Es \mathcal{T} isósceles? ¿Es \mathcal{T} rectángulo?
- 2. Se define la transformación $T: \mathbb{C} \to \mathbb{C}$ como $T(z) := z(\overline{z} + \mathbf{i})$. Calcula $T^{-1}(\{0\})$. ¿Es T inyectiva? Para cada $z := x + y\mathbf{i} \in \mathbb{C}$, calcula la parte real y la parte imaginaria de T(z). Describe los conjuntos

$$\{z \in \mathbb{C} : \text{Re } T(z) = 0\} \text{ y } \{z \in \mathbb{C} : \text{Im } T(z) = 0\}.$$

Representa ambos conjuntos y su intersección.

MATEMÁTICAS BÁSICAS Cuarta entrega (Tipo 3)

- 1. Dada la función $f: \mathbb{C} \to \mathbb{C}, z \mapsto \frac{z}{1+\mathtt{i}}$, donde $\mathtt{i} = \sqrt{-1}$, se definen las funciones $f^2 := f \circ f$ y $f^k := f \circ f^{k-1}$ para cada entero $k \geq 3$.
 - (1) Demostrar que $f^n(z) = \frac{z}{(1+i)^n}$, para cada $n \in \mathbb{N}^+$.
 - (2) Hallar el menor entero positivo n tal que $s_n := \sum_{k=1}^n f^k(i)$ es un número real y calcular s_n para dicho valor de n.
 - (3) Hallar $z^{1/5}$ donde $f^{300}(z) = i$.