

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A61L 9/00, 9/16, B01D 53/04, 53/32	A1	(11) International Publication Number: WO 91/00708
		(43) International Publication Date: 24 January 1991 (24.01.91)

(21) International Application Number: PCT/US90/03968	(22) International Filing Date: 11 July 1990 (11.07.90)	(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), HU, IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent), SU.
(30) Priority data: 378,088 11 July 1989 (11.07.89) US 526,603 22 May 1990 (22.05.90) US		
(71) Applicant: SHYDAR ADVANCED AIR CLEANING SYSTEMS, INC. [US/US]; 40-18 Bell Boulevard, Bay-side, NY 11361 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>
(72) Inventor: SHONFELD, David ; 203-34 28th Avenue, Bay-side, NY 11360 (US).		
(74) Agents: BIERMAN, Jordan, B. et al.; Bierman and Muserlian, 757 Third Avenue, New York, NY 10017 (US).		

(54) Title: AN AIR CLEANING UNIT

(57) Abstract

An air cleaning unit effectively removes pollutants from the air. The air cleaning unit is relatively compact and can be powered by a standard electrical socket. The air cleaning unit can function as an illuminating light and fragrance dispenser also. The air cleaning unit has a filter (60) and an electromagnetic field creator (82) through which a fan (100) forces air.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
DE	Germany	LU	Luxembourg	TD	Chad
DK	Denmark			TG	Togo
				US	United States of America

3

4

5

6

7

8

9

AN AIR CLEANING UNIT

10

11

12 This application is a continuation-in-part of
13 application serial no. 378,088 filed July 11, 1989.

14

15 Background of the Invention

16

17 This invention relates to an air cleaning unit,
18 and more particularly to an air cleaning unit which
19 can effectively remove pollutants from the air, is
20 relatively compact, can be powered by a standard
21 electrical socket and which can have other functions
22 as well, such as light illumination and the dispensing
23 of fixed amounts of fragrance into the air.

24 Numerous patents have issued in which air cleaning
25 units are taught and described. These teachings are
26 documented in, for example, U.S. Pat. No. 4,376,642
27 issued March 15, 1983 to Biotech Electronics Ltd.;
28 U.S. Pat. No. 3,735,560 issued May 29, 1973 to D.C.
29 Wellman; U.S. Pat. No. 3,783,588 issued January 8,
30 1974 to M. Hundis; U.S. Pat. No. 3,861,894 issued
31 January 21, 1975 to R.C. Marsh; U.S. Pat. No.
32 4,114,082 issued September 19, 1978 to J.H. Newell;
33 U.S. Pat. No. 4,133,653 issued January 9, 1979 to C.W.

-2-

1 Soltis; U.S. Pat. No. 4,215,682 issued August 1980 to
2 Kubik et. al.; U.S. Pat. No. 3,744,216 issued July 10,
3 1973 to Halloran; U.S. Pat. No. 3,841,840 issued
4 October 15, 1974 to Hundhausen; U.S. Pat. No.
5 3,587,210 issued June 28, 1971 to Shriner; U.S. Pat.
6 No. 4,133,652 issued January 9, 1979 to Ishikawa
7 et. al.; U.S. Pat. No. 3,191,362 issued June 29, 1965
8 to Bourgeois; U.S. Pat. No. 3,853,529 issued December
9 10, 1974 to Boothe et. al.; U.S. Pat. No. 3,828,530
10 issued August 13, 1974 to Peters; U.S. Pat. No.
11 3,860,404 issued January 14, 1975 to Jochimski; U.S.
12 Pat. No. 2,790,510 issued April 30, 1957 to J.G.
13 Brabec; U.S. Pat. No. 4,261,712 issued April 14, 1981
14 to Kinkade, U.S. Pat. No. 3,804,942 issued April 16,
15 1974 to Takashki; U.S. Pat. No. 4,252,547 issued
16 February 24, 1981 to Johnson; German Pat No. DT2732859
17 issued February 1, 1979 to Wagner; French Pat. No.
18 1,193,100 issued October 30, 1959; and U.S.S.R. Pat.
19 No. 606,602 issued May 25, 1978. Pat. No. 4,069,026
20 issued January 17, 1978 to Sim et. al. teaches a
21 method for producing electrostatically spun fibers.

22 Conventional air cleaning units are, for the most
23 part, limited to accomplishing only certain air
24 filtering or purifying tasks, large apparatus' that
25 cannot easily fit within the available space, and
26 cannot be employed to perform anything other than
27 certain particular limited functions.

28 It would be advantageous, and an improvement over
29 prior art air cleaning units, to have an air cleaning
30 unit which can effectively filter and purify air, is
31 relatively compact, is powered by a standard
32 electrical socket and which can have other functions,
33 such as light illumination and the dispensing of

1 controlled amounts of fragrance into the air. No air
2 cleaning unit taught by the prior art can accomplish
3 all of the following tasks: collect particles,
4 sterilize air, act on organic gases including carbon
5 monoxide and remove poisonous gases from the air, in
6 addition to providing light and dispensing fragrance.
7 The air cleaning unit of this invention accomplishes
8 all of these tasks effectively.

9 This improvement is achieved by passing air to be
10 purified through a new filtering means in the air
11 cleaning unit which filtering means comprises a means
12 for creating an electromagnetic field. The filtering
13 means is adapted to collect particles, namely, dust,
14 pollen, cigarette smoke and other submicron
15 particulate contaminations, and to oxidize and ionize
16 certain substances in the air namely, fumes and
17 pollutants. A light source, contained in one
18 embodiment of the unit, which has a wide wavelength
19 spectrum (i.e., it has frequencies from far UV-C to far
20 Infra Red) further enhances the effectiveness of the
21 unit by emitting heat and UV wavelengths. The heat
22 causes various reactions occurring in the unit to move
23 forward more rapidly. The UV wavelengths have
24 germicidal properties to destroy and kill
25 microorganisms.

26

27 Summary of the Invention

28

29 The present invention is directed to providing an
30 air cleaning unit which can effectively remove
31 pollutants from the air, is relatively compact, is
32 powered by a standard electrical socket, and which can
33 have other functions as well, such as light

-4-

1 illumination and the dispensing of fixed amounts of
2 fragrance into the air.

3 In an illustrative embodiment of the invention,
4 the filter means comprising an electromagnetic field
5 created by current flowing along a coiled wire and
6 further comprising a new filter, in combination with a
7 light source, create an environment in a housing,
8 forming a semi-enclosed volume, which effectively
9 filters and purifies air passing through the air
10 cleaning unit by removing particulates and by
11 oxidizing or breaking certain pollutants in the air to
12 less harm pollutants. The air is moved across the
13 filter means by a fan means contained within the body
14 of the housing.

15

16 Brief Description of the Drawings

17

18 The foregoing and other features of the present
19 invention will be more readily apparent from the
20 following detailed description of the invention in
21 which:

22 Fig. 1. is an exploded cross-sectional view of the
23 housing of the air cleaner unit;

24 Fig. 2. is an exploded view, partially in
25 cross-section, of the internal components of the air
26 cleaning unit;

27 Fig. 3. is an exploded view of, partially in
28 cross-section, of the housing of the air cleaner unit
29 and of the layout thereof, showing how said components
30 fit within said housing;

31 Fig. 4. and Fig. 5 are sectional views of
32 preferred embodiments of a filter which can be used in
33 the air cleaning unit;

1 Fig. 6. is a perspective view of a light source
2 used in the air cleaning unit and wire coiled around
3 said light source, said coiled wire being in parallel
4 with said source;

5 Fig. 7. is a perspective view of a light source
6 and wire coiled around said light source, said coiled
7 wire being in parallel with said light source, and
8 said coiled wire having an additional coil in series;

9 Fig. 8. is a perspective view of a light source
10 used in the air cleaning unit and a wire coiled around
11 said light source, said coiled wire being in series to
12 said light source;

13 Fig. 9. is a perspective view of a light source
14 and wire coiled around said light source, said coiled
15 wire being in series with said light source and said
16 coiled wire having an additional coil in series;

17 Each of Figures 6-9 show a base upon which the
18 light source and coiled wire can be located.

19 Fig. 10. is a top view of one embodiment of the
20 printed circuit upon which a light source, coiled wire
21 and base are located;

22 Fig. 11. is a cross-sectional view of a fragrance
23 dispenser to be used with the air cleaning unit at any
24 strategic location in the air cleaning unit;

25 Fig. 12. is a top view of said fragrance dispenser;

26 Fig. 13. is a bottom view of the base of said
27 fragrance dispenser; and

28 Fig. 14. is a cross-sectional view of the
29 fragrance dispenser and filter, showing how said
30 fragrance dispenser can be adapted to fit into a
31 filter used in the air cleaning unit.

32 Fig. 15. is a cross-sectional view, partially in
33 section, of the air cleaning unit.

-6-

1 Description Of Illustrative Embodiments

2

3 Figure 1 shows the external structure of the air
4 cleaning unit. Upper housing 20 contains perforations
5 22 for the passage of air into or out of chamber 24
6 located in the upper housing. Upper housing 20 is
7 detachably engaged with mid-housing 30. Mid-housing
8 30 forms a cylindrically shaped chamber 32 open from
9 both sides. Mid-housing 30 is detachably engaged with
10 a frusto-conical shaped lower housing 40 with neck
11 41. Lower housing 40 has perforations 42 for the
12 passage of air out of or into the lower housing. Neck
13 41 is adapted to fit into socket 50. Socket 50, with
14 threading 52, is a conventional light bulb socket
15 which can be screwed into a conventional light
16 fixture.

17 Upper housing 20, mid-housing 30 and lower housing
18 40 are made of a transparent, or semi-transparent,
19 material such as plastic or glass which is
20 contaminated with UV absorbant material, which,
21 however, allows other light wavelengths to pass
22 through the material, to illuminate the area. The
23 ideal material is an unbreakable plastic with high
24 resistance properties to prevent electric shock. The
25 number of housing parts contained in the air cleaner
26 unit housing can, of course, vary. The multi-part
27 housing permits any combination of colors to be used
28 for the housing, that is, each part of the housing may
29 have a different color. It also allows control of the
30 color of the light emitted from the air cleaning unit.

31 Figure 2 depicts the internal components of the
32 air cleaning unit. A preferred embodiment of filter 60
33 contains wire mesh 62, which is a conductive material,

-7-

1 preferably iron, and activated carbon granuals 64
2 encased in said wire mesh 62. On the top end of
3 filter 60 there can be a sponge-like material 66 which
4 can contain a means which acts as an indicator by
5 changing color when the filter needs to be replaced.
6 Sponge-like material 66 can also simply be coated with
7 said color indicating means. Filter 60 can have any
8 shape but a shape which fits within and is
9 co-extensive with chamber 22 of upper housing 20 is
10 preferred. Filter 60 sits on holder 70, which holds
11 filter 60 in position within upper housing 20. Holder
12 70 is adapted to allow air to freely flow into or out
13 of chamber 32 of mid-housing 30. Holder 70 has a
14 vertical extension 72 whose lower end is in contact
15 with switch activator 96 located on switch 94 in the
16 operating air cleaning unit. When vertical extension
17 72 is in contact with switch activator 96, the switch
18 is closed and electric current can pass through switch
19 94. If vertical extension 72 is moved from such a
20 position, such as when the air cleaning unit is taken
21 apart, switch 94 is opened and current ceases to flow
22 past the switch. This prevents electric shock and is
23 an important safety feature.

24 Figure 2 also depicts coiled wire 82 and light
25 source 84, both positioned on base 86. Base 86 is a
26 heat resistant ceramic-like material. Base 86 is
27 positioned on printed circuit 90. Switch 94 and
28 switch activator 96 are also positioned on printed
29 circuit 90. Printed circuit 90 is located above fan
30 100 comprising impeller 102 and motor 104 for
31 operating the fan. Motor 104 has electrical wires 106
32 for connecting it to current. The motor operates on
33 either high or low voltage and on either AC or DC

-8-

1 power. The fan have one or more impellers 102 which,
2 when circulating, move air from perforations 22 in
3 upper housing 20, through chamber 22 and then through
4 chamber 32, into lower housing 40, and finally out of
5 perforations 42 located in lower housing 40, or vice
6 versa.

7 Figure 3 depicts both the internal and external
8 components of the air cleaning unit and how they are
9 positioned relative to each other. Motor 104 fits
10 into neck 41 of lower housing 40. Neck 41 fits into
11 socket 50. Fan 100 fits entirely into the chamber
12 formed by lower housing 40. Fan 100 should be
13 positioned as low as possible inside lower housing
14 40. Impellers 102 are designed for maximum efficiency
15 within the chamber formed by lower housing 40.
16 Printed circuit 90 is adapted to fit on the upper end
17 of lower housing 40. Switch 94, base 86, light
18 element 84 and coiled wire 82, all of which sit on
19 printed circuit 90, are located in chamber 32 of mid
20 housing 30. Holder 70 is adapted to fit on the upper
21 end of mid housing 30. Filter 60, which sits on
22 holder 70, is located in chamber 22 formed by upper
23 housing 20. Alternatively, the filter may be held in
24 place by any attachment means in the upper housing,
25 and vertical extension 72 can protrude from the upper
26 housing, thereby obviating the need for holder 70.

27 In a preferred embodiment of the invention, air is
28 purified as follows: air is drawn through perforations
29 22 into filter 60 by the movement of impellers 102.
30 Activated carbon 64 in filter 60 absorbs certain
31 pollutants and reacts with other pollutants. The
32 efficiency of the activated carbon to react with
33 pollutants is increased by the heat emitted from a
34 light source, this is especially the case when the

-9-

1 activated carbon works by chemically reacting with the
2 pollutants. Wire mesh 62 in filter 60 blocks
3 particles. More particles are blocked when the wire
4 mesh has a higher density. Wire mesh 62 can be any
5 metal or metal oxide, but is ideally iron, zinc oxide
6 or copper oxide. Sponge-like material 66 on top of
7 filter 60 is designed to collect fine particles and to
8 contain a color indicator means which tells the user
9 when filter 60 needs to be replaced. The purification
10 of air by filter 60 is enhanced by induced current in
11 the wire mesh caused by the electromagnetic field
12 creating means and also by heat emitted from the light
13 source. That is, the induced current in wire mesh 62
14 and heat catalyze oxidation and other chemical
15 reactions in filter 60, thereby allowing for the
16 conversion of certain poisonous gases into less
17 harmful gas. Thus, reactions such as the following
18 take place: $\text{CO} + \text{H}_2\text{O} \longrightarrow \text{H}_2 + \text{CO}_2$. The reaction
19 rate is increased by wire mesh 62, which acts as a
20 catalyst, as follows:

23

24 Additionally, the induced current in wire mesh 62
25 improves the ability of activated carbon 64 to react
26 with gases.

27 As air passes out of filter 60 and enters mid
28 housing chamber 32, certain UV radiation wavelengths
29 emitted by light source 84 kill microorganisms. Heat
30 in chamber 32 generated by light source 84 increases
31 the efficiency of the UV wavelengths on microorgan-
32 isms. Additionally, UV wavelengths and heat catalyze
33 oxidation and other chemical reactions in the air
34 cleaning unit. For instance, the following reaction

-10-

1 takes place under the conditions found in chamber 32:
2 $2\text{NO}_2 + \text{UV} + \text{heat} \longrightarrow 2\text{NO} + \text{O}_2$. Heat also catalyzes
3 reactions such as $2\text{O}_3 + \text{Heat} \longrightarrow 3\text{O}_2$. Heat in
4 chamber 32 also increases the ionization of gases,
5 thereby increasing the effect that certain UV
6 wavelengths have on microorganisms and increasing
7 oxidation reactions.

8 The current flowing through coiled wire 82 causes
9 an electromagnetic field around the coil. The
10 electromagnetic field causes ionization of gases.
11 Furthermore, the electromagnetic field causes current
12 to be induced in wire mesh 62 of filter 60. That is,
13 the current flowing through coiled wire 82, by
14 induction, causes induced current to flow in wire mesh
15 62 of filter 60. Ionization caused in chamber 32 and
16 at and around filter 60 have at least two major
17 purposes: 1) ionization per se causes the breakdown
18 of certain harmful pollutants and 2) ionization of
19 gases increases the rate of oxidation. The efficiency
20 of the air cleaning unit can be increased by
21 increasing the frequency of the current (such as by
22 chopping AC voltage). This is so because increased
23 current causes an increase in the electromagnetic
24 field, thereby increasing ionization of air. It
25 should be noted that air purification occurs in two
26 stages -- at chamber 24 which contains filter 60 and
27 at chamber 32. The purified air is forced out of the
28 housing through perforations 42.

29 Figure 4 depicts one of many possible filters that
30 can be used with the air cleaning unit, this filter
31 being a preferred filter. The filter comprises a wire
32 mesh 62 and activated carbon 64 contained within said
33 wire mesh. The wire mesh 62 and activated carbon are

-11-

1 encased in a screen net of metal fibers 68. A
2 sponge-like material 66 is located on the top
3 semicircular portion of filter 60. The sponge-like
4 material may be impregnated or coated with a means
5 which acts as an indicator and changes color when the
6 filter needs to be replaced. The indicator means may
7 be located in any location within the housing of the
8 air cleaning unit or it can even be attached to the
9 outside structure of the housing. Sponge-like
10 material 66 has electrical isolated properties and is
11 covered with casing 69 made of nonconductive isolated
12 fibers.

13 Figure 5 depicts another possible filter
14 comprising a wire mesh 62 and activated carbon 64
15 contained therein, all encased in a screen net of
16 metal fibers 68. In even another embodiment not shown
17 in the drawings, filter 60 can consist of activated
18 carbon 64 attached to acrylic fibers, said acrylic
19 fibers being in a shape similar to wire mesh 62. The
20 activated carbon and acrylic filters are enclosed in a
21 net of acrylic fibers. Alternatively, the acrylic
22 fibers, both in the mesh and in the net, can also be
23 coated with catalyzing materials such as metal
24 oxides. Moreover, catalytic materials in the form of
25 granuales can also be attached to the acrylic fibers.
26 Filter 60, of course, can consist of any combination
27 of wire mesh, acrylic fibers and coated acrylic
28 fibers. The shape of the filter is variable. It can
29 even be shaped to have a donut-shaped hole which
30 permits insertion of a fragrance dispenser within the
31 hole, as shown in Fig. 14.

32 Figure 6 shows one of four possible electrical
33 configurations of coiled wire 82 and light source 84.
34 Figures 6 and 7 show light source 84 and coiled wire

-12-

1 82 connected in parallel. Pins 87 connect the coiled
2 wire to a current source. Pins 89 connect the light
3 source to a current source. Figure 7 differs from
4 Fig. 6 in that it contains an additional coiled wire
5 88 in series. Additional coiled wire 88 increases the
6 electromagnetic field created because current flows
7 through each of coiled wire 82 and coiled wire 88,
8 thereby increasing the induction occurring in the air
9 cleaning unit. Fig. 8 and Fig. 9 show coiled wire 82
10 and light source 84 connected in series. Thus pins 87
11 and 89 connect both the coiled wire and light source
12 to a current source. Fig. 9 differs from Fig. 8 in
13 that it contains an additional coiled wire 88 in
14 series for the same purpose as that shown in Fig. 7.

15 A preferred embodiment of light source 84 is a
16 replaceable halogen bulb because it emits a wide
17 spectrum of wavelengths and a great amount of heat. A
18 halogen bulb is also preferred because of its small
19 dimension, long life expectancy and high ratio of
20 light/power to save energy. As can be seen, coiled
21 wire 82 surrounds light source 84. The number of
22 turns in the coil are variable and are calculated to
23 absorb the maximum heat from the bulb and to allow
24 maximum illumination from the bulb. Coiled wire 82
25 serves many purposes. It absorbs heat thereby
26 protecting the housing of the air cleaner unit and
27 other components from over-heating. It also serves to
28 cool light source 84. It protects the air cleaning
29 unit from electric surges. It prolongs the lifetime
30 of light source 84 because the coiled wire resists
31 quick current changes which occur when one switches
32 the light on and off. It creates an electromagnetic
33 field in chamber 32, which causes ionization of gases

-13-

1 in chamber 32 and which catalyzes oxidation and other
2 reactions in chamber 32. It also induces current in
3 wire mesh 62 of filter 60. The induced current in
4 wire mesh 62 ionizes gases and also thereby catalyzes
5 oxidation and other reactions in chamber 24. Coiled
6 wire 82 can be made of many different metals but the
7 preferred metals are nickel and copper. These two
8 metals are particularly effective catalysts for the
9 reactions which take place in the air cleaning unit.
10 Coiled wire 82 can also be made of any substance and
11 then simply coated with a substance which will act as
12 a strong catalyst. The surface of coiled wire 82 can
13 be smooth. In a preferred embodiment, however, the
14 surface of coiled wire 82 is rough. A rough surface
15 has a larger surface area which absorbs more heat. A
16 rough surface also has sharp angles which increases
17 the electromagnetic field and thereby the ionization
18 in the air surrounding the coiled wire.

19 Figure 10 depicts a top view of printed circuit
20 90, also shown in Figures 2 and 3. Apertures 92 are
21 adapted to permit pins 87 and 89 to connect to a
22 current source. Apertures 98 are adapted to permit
23 switch 94 to connect to a current source.

24 The air cleaning unit can be made with or without
25 an optional fragrance dispenser. Figure 11 shows a
26 housing for dispensing fragrance into the air that is
27 passing through the air cleaning unit. Figure 12
28 shows a top view of cover 120 of said fragrance
29 housing having an air regulator means 122 which
30 regulates the passage of air into fragrance chamber
31 132. As cover 120 is rotated to the right, opening
32 124 becomes wider over space 131 in the upper portion
33 136 of fragrance housing 130, thus permitting a larger

-14-

1 amount of air into fragrance chamber 132. A larger
2 amount of air in fragrance chamber 132 causes
3 fragrance to move into capillary pipe 134. Thus, the
4 amount of fragrance dispensed can be regulated in
5 controlled measured amounts. The fragrance moves
6 through capillary pipe 134 into base 140 in the lower
7 portion of fragrance housing 130. Figure 13 shows a
8 bottom view of base 140. Sponge-like material or
9 other absorbant material 142 absorbs the fragrance
10 traveling through capillary pipe 134. As air passes
11 through the air cleaner unit, it comes into contact
12 with sponge-like material or other absorbant material
13 142 containing fragrance causing diffusion of
14 fragrance into the air. Thus, the air which passes
15 out of the air cleaner unit through perforations 42
16 can contain fragrance. Although fragrance housing 130
17 can be located at various strategic places within the
18 air cleaning unit, in the preferred embodiment of the
19 invention, fragrance housing 130 is located within
20 filter 60. Threading 138 lodges fragrance housing 130
21 securely into place.

22 As can be seen in Figure 14, fragrance dispenser
23 130 is positioned in filter 60 so that air can pass
24 into opening 131 and so that sponge-like material or
25 other absorbant material 142 is exposed to air passing
26 out of filter 60, to permit diffusion of fragrance
27 into the air. Fragrance dispenser 130 can be made
28 with the same material used in making the housing for
29 the air cleaning unit.

30 Figure 15 is a cross-sectional view, partially in
31 section, of the air cleaning unit described above.

32 While the invention has been particularly shown
33 and described with reference to preferred embodiments

-15-

1. thereof, it will be understood by those skilled in the
2 art that various changes in form and details may be
3 made therein without departing from the spirit and
4 scope of the invention.

-16-

1 WHAT IS CLAIMED IS:

2

3 1. An air cleaning unit for moving air
4 therethrough comprising:

5 a) a housing forming a semi-closed volume;

6 b) an inlet and an outlet of said housing for the
7 passage of air into said inlet, through said housing,
8 and out of said outlet;

9 c) a fan means positioned within said semi-closed
10 volume for causing air to flow from said inlet to said
11 outlet;

12 d) a filter means positioned within said
13 semi-closed volume, between said inlet and said
14 outlet, for removing pollutants from the air flowing
15 from said inlet to said outlet, said filter means
16 comprising a means for creating an electromagnetic
17 field in said housing, said fan means further causing
18 air to flow through said filter means; and

19 e) means for connecting said fan means and said
20 electromagnetic field creating means to a power supply.

21

22 2. An air cleaning unit as in claim 1 wherein
23 said electromagnetic field creating means is a wire
24 through which current may flow.

25

26 3. An air cleaning unit as in claim 2 further
27 comprising a light source.

28

29 4. An air cleaning unit as in claim 3 wherein
30 said wire is coiled around said light source.

31

32 5. An air cleaning unit as in claim 4 wherein
33 said wire coiled around said light source are
34 connected in series.

35

-17-

1 6. An air cleaning unit as in claim 1 wherein
2 said filter means further comprises a filter.

3

4 7. An air cleaning unit as in claim 6 wherein
5 said filter comprises mesh means for trapping
6 pollutants.

7

8 8. An air cleaning unit as in claim 7 wherein
9 said mesh means is acrylic fibers coated with a
10 catalytic material.

11

12 9. An air cleaning unit as in claim 7 wherein
13 said mesh means is a wire mesh.

14

15 10. An air cleaning unit as in claim 7 wherein
16 said filter further comprises activated carbon
17 contained within said mesh means.

18

19 11. An air cleaning unit as in claim 6 wherein
20 said filter comprises a sponge-like material attached
21 to said filter, said sponge-like material containing
22 an indicator means for determining when said filter
23 needs replacement.

24

25 12. An air cleaning unit as in claim 6 wherein
26 said filter comprises a fragrance dispensing means
27 contained within said filter.

28

29 13. An air cleaning unit as in claim 6 wherein
30 said electromagnetic field creating means is a wire
31 through which current may flow.

32

33 14. An air cleaning unit as in claim 13 further
34 comprising a light source.

35

-18-

1 15. An air cleaning unit as in claim 14 wherein
2 said wire is coiled around said light source.

3

4 16. An air cleaning unit as in claim 15 wherein
5 said wire coiled around said light source are
6 connected in series.

7

8 17. An air cleaning unit as in claim 7 wherein
9 said electromagnetic field creating means is a wire
10 through which current may flow.

11

12 18. An air cleaning unit as in claim 17 further
13 comprising a light source.

14

15 19. An air cleaning unit as in claim 18 wherein
16 said wire is coiled around said light source.

17

18 20. An air cleaning unit as in claim 19 wherein
19 said wire coiled around said light source are
20 connected in series.

21

22 21. An air cleaning unit as in claim 8 wherein
23 said electromagnetic field creating means is a wire
24 through which current may flow.

25

26 22. An air cleaning unit as in claim 21 further
27 comprising a light source.

28

29 23. An air cleaning unit as in claim 22 wherein
30 said wire is coiled around said light source.

31

32 24. An air cleaning unit as in claim 23 wherein
33 said wire coiled around said light source are
34 connected in series.

35

-19-

1 25. An air cleaning unit as in claim 9 wherein
2 said electromagnetic field creating means is a wire
3 through which current may flow.

4

5 26. An air cleaning unit as in claim 25 further
6 comprising a light source.

7

8 27. An air cleaning unit as in claim 26 wherein
9 said wire is coiled around said light source.

10

11 28. An air cleaning unit as in claim 27 wherein
12 said wire coiled around said light source are
13 connected in series.

14

15 29. An air cleaning unit as in claim 10 wherein
16 said electromagnetic field creating means is a wire
17 through which current may flow.

18

19 30. An air cleaning unit as in claim 29 further
20 comprising a light source.

21

22 31. An air cleaning unit as in claim 30 wherein
23 said wire is coiled around said light source.

24

25 32. An air cleaning unit as in claim 31 wherein
26 said wire coiled around said light source are
27 connected in series.

28

29 33. An air cleaning unit as in claim 11 wherein
30 said electromagnetic field creating means is a wire
31 through which current may flow.

32

33 34. An air cleaning unit as in claim 33 further
34 comprising a light source.

35

-20-

1 35. An air cleaning unit as in claim 34 wherein
2 said wire is coiled around said light source.

3

4 36. An air cleaning unit as in claim 35 wherein
5 said wire coiled around said light source are
6 connected in series.

7

8 37. An air cleaning unit as in claim 6 further
9 comprising an indicator means for determining when
10 said filter needs replacement.

11

12 38. An air cleaning unit as in claim 1 further
13 comprising a fragrance dispensing means for dispensing
14 fragrance into the air.

15

16 39. An air cleaning unit as in claim 3 wherein
17 said light source is a halogen bulb.

18

19 40. An air cleaning unit as in claim 3 wherein
20 said housing is a transparent material.

21

22 41. An air cleaning unit as in claim 3 wherein
23 said housing is contaminated with a UV wavelength
24 absorbing material.

25

26 42. An air cleaning unit as in claim 38 wherein
27 said fragrance dispensing means comprises:

28 a) a housing;

29 b) a containing means within said housing for
30 containing a reserve of fragrance therein;

31 c) a capillary pipe means for moving fragrance
32 from said containing means to a means for permitting
33 the fragrance to contact air;

-21-

1 d) a means for regulating air pressure in said
2 containing means to force movement of said fragrance
3 into said capillary pipe means and into said air
4 contacting means.

5

6 43. An air cleaning unit as in claim 10 wherein
7 said mesh means is acrylic fibers coated with a
8 catalytic material.

9

10 44. An air cleaning unit as in claim 10 wherein
11 said mesh means is a wire mesh.

12

13 45. An air cleaning unit as in claim 43 wherein
14 said electromagnetic field creating means is a wire
15 through which current may flow.

16

17 46. An air cleaning unit as in claim 45 further
18 comprising a light source.

19

20 47. An air cleaning unit as in claim 46 wherein
21 said wire is coiled around said light source.

22

23 48. An air cleaning unit as in claim 47 wherein
24 said coiled wire and said light source are connected
25 in series.

26

27 49. An air cleaning unit as in claim 44 wherein
28 said electromagnetic field creating means is a wire
29 through which current may flow.

30

31 50. An air cleaning unit as in claim 49 further
32 comprising a light source.

33

-22-

1 51. An air cleaning unit as in claim 50 wherein
2 said wire is coiled around said light source.

3

4 52. An air cleaning unit as in claim 51 wherein
5 said coiled wire and said light source are connected
6 in series.

7

1/3

FIG. 1

FIG. 2

3/3

FIG. 3

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/03968

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ³

According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(5): A61L 9/00, 9/16; B01D 53/04, 53/32
 U.S. CL.: 422/119, 121, 122, 124, 125; 55/126, 279, 385.1, 467

II. FIELDS SEARCHED

Classification System	Minimum Documentation Searched ⁴	Classification Symbols
U.S.	422/4, 22, 119, 121, 122, 124, 125; 55/124, 126, 279 385.1, 385.8, 467, 473	
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched ⁵		

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴

Category *	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No. ¹⁸
X	US, A, 3,744,216 (HALLORAN) 10 July 1973, See the entire document.	1-3, 6, 7, 9 10, 13, 14, 17 18, 25, 26, 29 & 30 4, 5, 8, 11, 12, 15, 16, 19-24, 27, 28 & 31-52
A	US, A, 2,790,510 (BRABEC) 30 April 1957, See figure 1.	
A	US, A, 2,136,254 (SARGENT) 08 November 1938, see figure 1.	

* Special categories of cited documents: ¹⁵

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ²

21 September 1990

Date of Mailing of this International Search Report ²

12 DEC 1990

International Searching Authority ¹

ISA/US

Signature of Authorized Officer ²⁰

JILL JOHNSTON
JILL JOHNSTON