

Pattern Recognition Chapter 11: Probabilistic Discriminative Classifiers

Prof. Dr.-Ing. Uwe Sörgel soergel@ifp.uni-stuttgart.de

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant Function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

Generative vs. discriminative classifiers

- Generative classifiers:
 - Determine the parameters of the likelihood p(x|C) (training).
 - Determine the prior p(C).
 - Determine p(C|x) with the help of the theorem of Bayes.
 - 'Generative': It is possible to generate synthetic data sets by sampling from the joint distribution $p(\mathbf{x}, C) = p(\mathbf{x}|C) \cdot p(C)$.
- Discriminative classifiers:

 - Direct modelling of p(C|x) separating surfaces
 Focus on the in feature space.
 - In general, this leads to simpler models and, therefore, requires fewer training samples

■ifp

Generative and discriminative classifiers

• Example for the comparison of generative and discriminative models for two classes C^{1} and C^{2} :

This part of $p(x|C^I)$ has very little influence on the result because $p(x|C^2)$ is very small.

The decision based on p(C|x) considers only the threshold or the separating plane in case of higher dimension.

Discriminant function

- Often, one is less interested in a model of the probability density than in a subdivision of the feature space into regions which are assigned to the individual classes.
- Discriminant function: A function $g_i(\mathbf{x})$ that assigns \mathbf{x} to the class C^i if $g_i(\mathbf{x}) > g_j(\mathbf{x})$ for all $i \neq j$.
- Examples:
 - $p(C^i|\mathbf{x})$
 - $p(\mathbf{x}|C^i) \cdot p(C^i)$
- The discriminant function sub-divides the feature space into regions R_i , which are assigned to the class C^i .
- The boundaries of these regions are given by $g_i(\mathbf{x}) = g_i(\mathbf{x})$.

Discriminative methods: Overview

• Probabilistic discriminative classifiers:

Discriminant function is based on $p(C_i|\mathbf{x})$

- Logistic Regression: binary classification
- Generalized linear models
- Non-probabilistic discriminative classifiers:

The discriminant function cannot be interpreted as a probability.

- Decision trees
- Random forests
- Boosting
- Support vector machines
- Artificial neural networks

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant Function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

■ifp

Discriminant function: linear or non-linear function

• The simplest and most common model is a $\frac{\text{linear function}}{\text{feature vectors } \mathbf{x} \text{ of dimension } D$:

$$C(\mathbf{w}, \mathbf{x}) = w_0 + w_1 x_1 + ... + w_D x_D = w_0 + \sum_{i=1}^{D} w_i x_i = w_0 + \mathbf{w}^T \cdot \mathbf{x}$$

- However, by some modifications we can induce **non-linear** elements too (we will see later why this might be beneficial):
- M 1 non-linear basis functions Φ_i to transform input data x:

$$C(\mathbf{w}, \mathbf{x}, \Phi) = w_0 + \sum_{i=1}^{M-1} w_i \Phi_i(\mathbf{x}) = w_0 + \mathbf{w}^T \cdot \mathbf{\Phi}(\mathbf{x})$$

• And/or non-linear transform *f* of outputs:

$$C(\mathbf{w}, \mathbf{x}, \Phi, f) = f\left(w_0 + \sum_{i=1}^{M-1} w_i \Phi_i(\mathbf{x})\right) = f\left(w_0 + \mathbf{w}^T \cdot \mathbf{\Phi}(\mathbf{x})\right)$$

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

■ifp

Logistic sigmoid function

- Distinction of two classes C^{l} , C^{2} (object, background)
- Theorem of Bayes: $p\left(C^{1} \middle| \mathbf{x}\right) = \frac{p\left(\mathbf{x} \middle| C^{1}\right) \cdot p\left(C^{1}\right)}{p\left(\mathbf{x} \middle| C^{1}\right) \cdot p\left(C^{1}\right) + p\left(\mathbf{x} \middle| C^{2}\right) \cdot p\left(C^{2}\right)}$ $= \frac{1}{1 + \frac{p\left(\mathbf{x} \middle| C^{2}\right) \cdot p\left(C^{2}\right)}{p\left(\mathbf{x} \middle| C^{1}\right) \cdot p\left(C^{1}\right)}} = \frac{1}{1 + e^{-a}} \coloneqq \sigma(a)$

with
$$a(\mathbf{x}) = \ln \frac{p(\mathbf{x}|C^1) \cdot p(C^1)}{p(\mathbf{x}|C^2) \cdot p(C^2)} = \ln \frac{p(C^1|\mathbf{x})}{p(C^2|\mathbf{x})}$$

Logistic sigmoid function $5 (a) = \frac{1}{1+e^{-a}}$

Logistic sigmoid function I

- Originally, this is a generative model, because it is based on the theorem of Bayes.
- $a(\mathbf{x})$ is the negative logarithm of the ratio of the posterior probabilities.
- From now on: Consideration of $a(\mathbf{x})$ without Bayesian interpretation.
- Simple models for a(x):
 linear or quadratic functions
- Logistic sigmoid ("S-shaped") function:

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

Logistic sigmoid function II

- The sigmoid function is useful to model various kinds of processes
 - Growth of population, for example, bacteria:
 - Initially only few individuals, then exponential rise, later slow down and eventually convergence to carrying capacity (the latter defined as the environment's maximal load).
 - Economic process
 - Models diffusion of an innovation through its life cycle (railway, electric power, light bulbs, cars, air travel, transistor, PC, internet, GPS...)
 - · Nobel Memorial Prize in Economic Sciences 2000 for Daniel L. McFadden
 - Pattern recognition
 - Neural networks: non-linear activation function of an "artificial neuron"

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

 $https://en.wikipedia.org/wiki/Diffusion_of_innovations$

■ifp

Logistic regression

• (Unrealistic) assumption: The features of \mathbf{x} are normally distributed with mean values $\boldsymbol{\mu}_1$ and $\boldsymbol{\mu}_2$ and identical covariance matrices $\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \boldsymbol{\Sigma}$.

$$a(\mathbf{x}) = \ln \frac{p(\mathbf{x}|C^{1}) \cdot p(C^{1})}{p(\mathbf{x}|C^{2}) \cdot p(C^{2})} =$$

$$= -\frac{1}{2} (\mathbf{x} - \mathbf{\mu}_{1})^{T} \cdot \mathbf{\Sigma}^{-1} \cdot (\mathbf{x} - \mathbf{\mu}_{1}) + \frac{1}{2} (\mathbf{x} - \mathbf{\mu}_{2})^{T} \cdot \mathbf{\Sigma}^{-1} \cdot (\mathbf{x} - \mathbf{\mu}_{2}) + \ln p(C^{1}) - \ln p(C^{2}) =$$

$$= (\mathbf{\mu}_{1} - \mathbf{\mu}_{2})^{T} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{x} - \frac{1}{2} \mathbf{\mu}_{1}^{T} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{\mu}_{1} + \frac{1}{2} \mathbf{\mu}_{2}^{T} \cdot \mathbf{\Sigma}^{-1} \cdot \mathbf{\mu}_{2} + \ln p(C^{1}) - \ln p(C^{2}) =$$

$$\mathbf{w} \mathbf{T}^{*} \mathbf{x} \qquad \mathbf{w} \mathbf{0}$$

• Thus $a(\mathbf{x})$) is a linear function of the features!

$$p(C^{1}|\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^{T} \cdot \mathbf{x} + w_{0})}} = \sigma(a(\mathbf{x})) = \sigma(\mathbf{w}^{T} \cdot \mathbf{x} + w_{0})$$

lifp

Logistic regression: Parameters

• In the binary case, we have

$$p(C^{2}|\mathbf{x}) = 1 - p(C^{1}|\mathbf{x}) \quad \text{und} \quad 1 - \sigma(a) = \sigma(-a)$$

$$p(C^{1}|\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^{T} \cdot \mathbf{x} + w_{0})}} \quad \text{und} \quad p(C^{2}|\mathbf{x}) = \frac{1}{1 + e^{(\mathbf{w}^{T} \cdot \mathbf{x} + w_{0})}}$$

- Parameters to be learned:
 - Generative view:

$$\Sigma$$
, μ_1 , μ_2 , $p(C^1)$, $p(C^2)$

- \rightarrow With D features: $D \cdot (D+1)/2 + 2 \cdot D + 2$ parameters
- → The number of parameters grows quadratically
- Discriminative view. w, w_0
 - \rightarrow With *D* features: D + I parameters
 - → The number of parameters grows linearly

Logistic regression: Decision boundary

• Class boundary in feature space: $\rho(C^1 \mid \mathbf{x}) = \rho(C^2 \mid \mathbf{x})$

• The decision boundary between the classes is a hyperplane.

© Duda, Hart, Stork, 2001

• Linear discriminative function → Logistic Regression

■ifp

Logistic regression: Decision boundary

- Class boundary in feature space: $\mathbf{w}^T \cdot \mathbf{x} + w_0 = 0$
- Normal vector w: $\mathbf{W} = (\boldsymbol{\mu}_1 \boldsymbol{\mu}_2)^T \cdot \boldsymbol{\Sigma}^{-1}$ depends on the vector between the class centers, direction is also influenced by $\boldsymbol{\Sigma}$.

• Offset w_0 : $w_0 = \sqrt[4]{2} \boldsymbol{\mu}_1^T \cdot \boldsymbol{\Sigma}^{-1} \cdot \boldsymbol{\mu}_1 + \sqrt[4]{2} \boldsymbol{\mu}_2^T \cdot \boldsymbol{\Sigma}^{-1} \cdot \boldsymbol{\mu}_2 + \ln p(C^1) - \ln p(C^2)$

 Changes to the prior lead to a parallel shift of the decision boundary.

© Duda, Hart, Stork, 2001

Logistic regression: Geometrical interpretation

- Decision boundary in feature space: $\varepsilon : \mathbf{w}^T \cdot \mathbf{x} + w_0 = 0$
- For a point \mathbf{x}_p that does not lie on the separating surface:

$$\mathbf{w}^{T} \cdot \mathbf{X}_{p} + W_{0} = \|\mathbf{w}\| \cdot d(\varepsilon, \mathbf{X}_{p})$$

→Interpretation of

$$\rho(C^1 \mid \mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^T \cdot \mathbf{x} + w_0)}}$$

as a sigmoid function applied to the (scaled) distance from the separating surface that maps this distance into the interval [0,1]!

lifp

Universität Stuttgart

Logistic regression: Geometrical interpretation

• Interpretation of ||w||: The larger ||w||, the steeper the sigmoid function.

Universität Stuttgar

■ifp

Logistic regression: Geometrical interpretation

• Interpretation of ||w||: The larger ||w||, the steeper the sigmoid function.

Notion: "Logistic Regression" I

- "Regression": The name refers to the initial purpose namely statistical regression. However, it is rather a classification method since we search for an optimal linear separating surface in feature space.
- Different aims of classification, (unsupervised) clustering and regression:

Notion: "Logistic Regression" II

• "Logistic": The notion was coined about 1835 from Belgium mathematician Adolphe Quetelet, who desired to discriminate the initiale phase of population growth of Belgium from a "logarithmic" (today: exponential) curve:

- The principle that the sigmoid function is applied to a scaled distance to get a probability is often used in other contexts.
- What happens with data that are not linearly separable?

ifp

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

Generative Model: Normal distribution with different covariance matrices

• If the covariance matrices are not identical, the quadratic term in the exponent does not disappear:

$$\begin{split} \rho\!\left(\boldsymbol{C}^{1} \mid \boldsymbol{x}\right) &= \frac{1}{1 + e^{-\left(\boldsymbol{x}^{T}\boldsymbol{W}\cdot\boldsymbol{x} + \boldsymbol{w}^{T}\cdot\boldsymbol{x} + \boldsymbol{w}_{0}\right)}} \\ \text{with} \qquad \boldsymbol{W} &= 1/2 \cdot \left(\boldsymbol{\Sigma}_{2}^{-1} - \boldsymbol{\Sigma}_{1}^{-1}\right) \\ \boldsymbol{w} &= \boldsymbol{\Sigma}_{1}^{-1} \cdot \boldsymbol{\mu}_{1} - \boldsymbol{\Sigma}_{2}^{-1} \cdot \boldsymbol{\mu}_{2} \\ \boldsymbol{w}_{0} &= 1/2 \cdot \boldsymbol{\mu}_{1}^{T} \cdot \boldsymbol{\Sigma}_{1}^{-1} \cdot \boldsymbol{\mu}_{1} + 1/2 \cdot \boldsymbol{\mu}_{2}^{T} \cdot \boldsymbol{\Sigma}_{2}^{-1} \cdot \boldsymbol{\mu}_{2} \\ &+ 1/2 \cdot \ln \left\|\boldsymbol{\Sigma}_{2}^{-1}\right\| - 1/2 \cdot \ln \left\|\boldsymbol{\Sigma}_{1}^{-1}\right\| + \ln p\left(\boldsymbol{C}^{1}\right) - \ln p\left(\boldsymbol{C}^{2}\right) \end{split}$$

• In general, the class boundary is not a hyperplane but a hyperquadric.

Generative Model: Normal distribution with different covariance matrices

Examples for decision boundaries (3D feature vectors)

© Duda, Hart, Stork, 2001

Feature space transformations and generalized linear models

- General formula: $p(C^1 | \mathbf{x}) = \sigma(a(\mathbf{x})) = \frac{1}{1 + e^{-a(\mathbf{x})}}$
- For identical covariance matrices, $a(\mathbf{x})$ was a linear function of the features \mathbf{x} :

$$a(\mathbf{x}) = \mathbf{w}^T \cdot \mathbf{x} + W_0$$

- With increasing complexity of the models for the probability densities, the complexity of $a(\mathbf{x})$ is increased.
 - For example, a quadratic form for normal distributions
- In order still to be able to work with linear functions, one can move on to another feature space:
 - Transformation of the feature space (Feature space mapping)
 - Generalized linear models

Feature space transformations and generalized linear models

- Feature space mapping $\Phi(\mathbf{x}) = [\Phi_1(\mathbf{x}), \Phi_2(\mathbf{x}), ..., \Phi_N(\mathbf{x})]^T$
 - $\Phi_i(\mathbf{x})$: (in principle) arbitrary functions: frequently, polynomials
 - N: Dimension of the transformed feature vector (usually greater than the dimension of x)
 - Frequent choice $\Phi_1(\mathbf{x}) = 1$
 - Example for 2D feature space, i.e. $\mathbf{X} = \begin{bmatrix} X_1, X_2 \end{bmatrix}^T$ $\Phi\left(\mathbf{X}\right) = \begin{bmatrix} 1, X_1, X_2, X_1 \cdot X_2, X_1^2, X_2^2 \end{bmatrix}^T$
 - Instead of using a complex model for $a(\mathbf{x})$:

 Transition into a higher dimensional feature space in which $a(\Phi(\mathbf{x}))$ is linear.
 - ⇒ Generalized linear models

Feature space transformations and generalized linear models

• Generalized Linear Models: $p(C^1 \mid \mathbf{x}) = \sigma(a(\mathbf{x})) = \frac{1}{1 + e^{-a(\mathbf{x})}}$

with
$$a(\mathbf{x}) = \mathbf{w}^T \cdot \Phi(\mathbf{x})$$

and $\Phi(\mathbf{x}) = [\Phi_1(\mathbf{x}), \Phi_2(\mathbf{x}), ..., \Phi_N(\mathbf{x})]^T$.

- Note: Due to $\Phi_1(\mathbf{x}) = 1$, w_0 becomes the first component of \mathbf{w} .
- The example of $\Phi(\mathbf{x}) = (I, x_1, x_2, x_1 \cdot x_2, x_1^2, x_2^2)^T$ leads to a quadratic form for $a(\mathbf{x})$ similar to the normal distribution!
- Assumptions about the distribution of the features are dropped in favor of a choice of a feature space mapping.

■ifp

Examples of feature space mappings I

• In higher dimensional feature space the data can be better separated.

Examples of feature space mappings II

• In higher dimensional feature space the data can be better separated.

■ifp

Examples of feature space mappings III

- Examples of feature space transformations with $\mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}^T$
 - Quadratic expansion: $\Phi(\mathbf{x}) = \begin{bmatrix} 1, x_1, x_2, x_1 \cdot x_2, x_1^2, x_2^2 \end{bmatrix}^T$
 - Cubic expansion : $\Phi(\mathbf{x}) = \begin{bmatrix} 1, x_1, x_2, x_1 \cdot x_2, x_1^2, x_2^2, x_1^2 \cdot x_2, x_1 \cdot x_2^2, x_1^3, x_2^3 \end{bmatrix}^T$
 - Kernel function ("Kernel logistic regression"):

$$\Phi(\mathbf{x}) = [k(\mathbf{x}, \mathbf{x}_1), k(\mathbf{x}, \mathbf{x}_2), ..., k(\mathbf{x}, \mathbf{x}_N)]^T$$
 with kernel function

$$k(\mathbf{x}_n, \mathbf{x}_m) = e^{\frac{\|\mathbf{x}_n - \mathbf{x}_m\|^2}{2 \cdot \sigma^2}}$$

as a measure for the "distance" of a point from the training points \boldsymbol{x}_{n}

- → very flexible
- \rightarrow needs hyper-parameter σ .

Feature space mapping

- Using a feature space mapping, linear models can also be applied to problems where the classes are not linearly separable.
- **Disadvantage**: Increase of the number N of parameters:
 - Polynomial expansion: with *D* features (incl. $\Phi_1(\mathbf{x}) = 1$), order *G*:

$$N = {D + G - 1 \choose G} = \frac{(D + G - 1)!}{(D - 1)! \cdot G!}$$

- $G = 2 \rightarrow N = D \cdot (D+1) / 2$
- $G = 3 \rightarrow N = D \cdot (D+1) \cdot (D+2) / 6$
- Kernel function: *N* is equal to the number of training points (we center a kernel at each training point and need to determine a weight for each).
- Could be problematic for feature spaces with D > 10.

■ifp

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

Logistic regression: Training

- Given:
 - Functional model of feature space mapping
 - N points \mathbf{x}_i with known binary class indicator $t_i \in \{0,1\}$
 - t_i : Indicator variable that shows whether \mathbf{x}_i belongs to C^I ($t_i = 1$) or not ($t_i = 0$)
 - All the indicator variables t_i can be collected in a vector t.
- Wanted:
 - Parameter vector w of the generalized linear model

$$\rho(C^1 \mid \mathbf{x}) = \frac{1}{1 + e^{-[\mathbf{w}^T \cdot \mathbf{\Phi}(\mathbf{x})]}}$$

■ifp

Logistic regression: Maximum likelihood training l

• Determine w such that $p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_1, ..., \mathbf{x}_N) \rightarrow \max$ with

$$y_n = \rho(C^1 \mid \mathbf{x}_n) = \frac{1}{1 + e^{-[\mathbf{w}^T \cdot \Phi(\mathbf{x}_n)]}}$$
 und $\rho(C^2 \mid \mathbf{x}_n) = 1 - y_n$

• Result:
$$\rho(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^N y_n^{t_n} \cdot (1 - y_n)^{(1 - t_n)}$$

because
$$p(C^1|\mathbf{x}_n) > p(C^2|\mathbf{x}_n) \rightarrow y_n > (1-y_n)$$
 for $t_n = I$ (i.e., y_n contributes) and $p(C^2|\mathbf{x}_n) > p(C^1|\mathbf{x}_n) \rightarrow (1-y_n) > y_n$ for $t_n = 0$ (i.e., $(1-y_n)$ contributes)

- Instead of the maximization of $p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_{l}, \dots \mathbf{x}_{N})$:
 - Minimization of the negative log-likelihood:

$$E(\mathbf{w}) = -\ln p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_1, ..., \mathbf{x}_N) \rightarrow \min$$

Logistic regression: Maximum likelihood training II

• Negative log-likelihood $E(\mathbf{w})$:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left[t_n \cdot \ln(y_n) + (1 - t_n) \cdot \ln(1 - y_n) \right] \rightarrow \min$$

- As y_n depends on w, $E(\mathbf{w})$ is a non-linear function of w.
- Therefore, the minimum of $E(\mathbf{w})$ can only be determined iteratively.
- Initial values w^{θ} : e.g. random numbers
- E(w) is concave and has a single minimum
- Determination of the minimum: **gradient** $\nabla E(\mathbf{w}) = 0$

ifp

Logistic regression: Maximum likelihood training III

• Newton-Raphson method: using the initial values w^{t-1}:

$$\mathbf{w}^{\tau} = \mathbf{w}^{\tau-1} - \mathbf{H}^{-1} \cdot \nabla E(\mathbf{w}^{\tau-1})$$

• Gradient
$$\nabla E(\mathbf{w})$$
: $\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \cdot \Phi(\mathbf{x}_n)$

- Interpretation: $(y_n t_n)$ can be considered as classification error for the training point:
- $\nabla E(\mathbf{w})$: Sum of the feature vectors weighted by $(y_n t_n)$
- Hesse-Matrix $\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n \cdot (1 y_n) \cdot \Phi(\mathbf{x}_n) \cdot \Phi(\mathbf{x}_n)^T$

Maximum likelihood training: Discussion

- Hesse-Matrix is positive definite → inverse exists
- In order to avoid numerical problems:
 - Scaling of the features:
 - Determination of mean value μ and standard deviation σ of all features from the training data.
 - Shift by μ , scaling with 1 / σ
 - → Features all have the same range of values
 - The same scaling has to be applied for training and classification!
- ML has the tendency to overfit the classifier to the training data:
 - For example, |w| might become very large → sigmoid approximates step function!
 - ML provides no means to enforce certain desired behavior (i.e., apply knowledge!)
 - → Baysian method, which here is equivalent to regularization with prior for w.

■ifp

Logistic regression: Training with regularization I

- MAP: Maximization of $p(\mathbf{w} \mid \mathbf{t}, \mathbf{x}_1, ..., \mathbf{x}_N) = p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_1, ..., \mathbf{x}_N) \cdot p(\mathbf{w})$
- $p(\mathbf{t} | \mathbf{w}, \mathbf{x}_1, ..., \mathbf{x}_N)$ corresponds to the Likelihood (as with ML)
- Prior $p(\mathbf{w})$:
 - Sigmoid slope depends on the size of the numerical values of the coefficients w_i in w:
 - The larger $|w_i|$, the steeper the sigmoid function.
 - For w_i → ∞ the sigmoid function becomes a step function.

Logistic regression: Training with regularization II

$$p(\mathbf{w} \mid \mathbf{t}, \mathbf{x}_1, ..., \mathbf{x}_N) = p(\mathbf{t} \mid \mathbf{w}, \mathbf{x}_1, ..., \mathbf{x}_N) \cdot p(\mathbf{w}) \rightarrow \text{max}$$

- To keep the numerical values of w small:
- Prior $p(\mathbf{w})$: Normal distribution with expectation value $\mathbf{0}$ and covariance matrix $\sigma^2 \cdot \mathbf{I}$
- Corresponds to regularization in adjustment theory.
- Requires hyper-parameter σ , which is either fixed by the user or determined via a procedure such as cross-validation.
- Negative logarithm (excluding constant terms):

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left[t_n \cdot \ln(y_n) + (1 - t_n) \cdot \ln(1 - y_n) \right] + \frac{\mathbf{w}^T \cdot \mathbf{w}}{2 \cdot \sigma^2} \rightarrow \min$$

■ifp

Logistic regression: Training with regularization III

Minimization of

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left[t_n \cdot \ln(y_n) + (1 - t_n) \cdot \ln(1 - y_n) \right] + \frac{\mathbf{w}^T \cdot \mathbf{w}}{2 \cdot \sigma^2} \rightarrow \min$$

leads to the numerical values of w that are as small as possible.

• The gradient has to be extended compared to the ML method :

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \cdot \mathbf{\Phi}(\mathbf{x}_n) + \frac{1}{\sigma^2} \cdot \mathbf{w}$$

• This is also true for the Hesse Matrix:

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} \left[y_n \cdot (1 - y_n) \cdot \mathbf{\Phi}(\mathbf{x}_n) \cdot \mathbf{\Phi}(\mathbf{x}_n)^T \right] + \frac{1}{\sigma^2} \cdot \mathbf{I}$$

This means, in the main diagonal, the weights of the direct observations for **w** are added (as in the case of regularization in adjustment).

Logistic regression: Example

Two classes, two features: linearly separable case posterior probabilities

The sharp boundaries suggest a higher security of the classification in the border region than is actually achieved → Overfitting!

Contents

- Generative vs. discriminative classifiers
- Linear Discriminant function
- Logistic Regression
- Generalized Linear Models
- Training
- Multi-class Problems

■ifp

Transition to multi-class problems

• The posterior probability $p(C^k|\mathbf{x})$ for each class C^k can be modelled using the

$$p(C^{k}|\mathbf{x}) = \frac{e^{(\mathbf{a}_{k}(\mathbf{x}))}}{\sum_{j} e^{(\mathbf{a}_{j}(\mathbf{x}))}}$$

with
$$a_k(\mathbf{x}) = \ln p(\mathbf{x}|C^k) + \ln p(C^k)$$

- Assumptions about $p(\mathbf{x}|C^k)$ and $p(C^k)$ lead to models for $a_k(\mathbf{x})$
- Again, feature space mapping can help to obtain linear models:

$$\mathbf{a}_{k}(\mathbf{x}) = \mathbf{a}_{k}(\Phi(\mathbf{x})) = \mathbf{w}_{k}^{T} \cdot \Phi(\mathbf{x})$$

• In training, one parameter vector \mathbf{w}_k per class has to be determined.

Multi-class logistic regression: Training

• Softmax function:
$$\rho(C^k \mid \mathbf{x}_n) = \frac{\exp[\mathbf{w}_k^T \cdot \mathbf{\Phi}(\mathbf{x}_n)]}{\sum_{j=1}^M \exp[\mathbf{w}_j^T \cdot \mathbf{\Phi}(\mathbf{x}_n)]} = y_{nk}$$

- Training: Class label C_n is given for each training point \mathbf{x}_n
- Maximum Likelihood training is similar to the two-class case: the negative loglikelihood has to be minimized:

$$E(\mathbf{w}_1, \dots \mathbf{w}_M) = -\sum_{n=1}^{N} \sum_{k=1}^{M} t_{nk} \cdot \ln(y_{nk}) \rightarrow \min$$

with the binary indicator variables $t_{nk} = \begin{cases} 1 & \text{if } C_n = C^k \\ 0 & \text{otherwise} \end{cases}$

■ifp

Multi-class logistic regression: Maximum likelihood training

• Again, the Newton-Raphson can be applies: Using the current values from the previous iteration, the weights are updated according to \mathbf{w}^{r-l} from the previous iteration, the weights are updated according to

$$\mathbf{w}^{\tau} = \mathbf{w}^{\tau-1} - \mathbf{H}^{-1} \cdot \nabla E(\mathbf{w}^{\tau-1})$$

- · The parameter vectors are not independent
 - \rightarrow One parameter vector must be declared to be constant, e.g. $\mathbf{w}_{I}^{T} = (0, \dots 0)^{T}$
- w₁ is not changed in the optimization procedure
 - → The parameter vector \mathbf{w} to be determined if \mathbf{M} classes are to be discerned becomes: $\mathbf{w} = (\mathbf{w}_2^T, ..., \mathbf{w}_M^T)^T$

Multi-class logistic regression: Maximum likelihood training

Gradient of the negative log-likelihood

(Derivative of *E* by the weight vector of the class *j*):

$$\nabla_{\mathbf{w}_{j}} E(\mathbf{w}_{1}, \dots \mathbf{w}_{M}) = \sum_{n=1}^{N} (y_{nj} - t_{nj}) \cdot \mathbf{\Phi}(\mathbf{x}_{n})$$

Total gradient vector:

$$\nabla E(\mathbf{w}_1, \dots \mathbf{w}_M) = \left[\nabla_{\mathbf{w}_2} E(\mathbf{w}_1, \dots \mathbf{w}_M)^T, \dots, \nabla_{\mathbf{w}_M} E(\mathbf{w}_1, \dots \mathbf{w}_M)^T \right]^T$$

• Again, the gradient can be interpreted as the sum of the (transformed) feature vectors weighted by the "classification error" $(y_{nj} - t_{nj})$.

■ifp

Multi-class logistic regression: Maximum likelihood training

• Hesse matrix **H** also consists of several components:

$$\mathbf{H} = \begin{pmatrix} \mathbf{H}_{22} & \mathbf{H}_{23} & \cdots & \mathbf{H}_{2M} \\ \mathbf{H}_{23}^T & \mathbf{H}_{33} & \cdots & \mathbf{H}_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{2M}^T & \mathbf{H}_{3M}^T & \cdots & \mathbf{H}_{MM} \end{pmatrix}$$

with

$$\mathbf{H}_{jk} = \nabla_{\mathbf{w}_{j}} \nabla_{\mathbf{w}_{k}} \mathbf{E}(\mathbf{w}) = \sum_{n=1}^{N} \mathbf{y}_{nk} \cdot (\mathbf{I}_{nk} - \mathbf{y}_{nj}) \cdot \mathbf{\Phi}(\mathbf{x}_{n}) \cdot \mathbf{\Phi}(\mathbf{x}_{n})^{T}$$

 I_{nk} ... Elements of a unit matrix

• Regularisation: As in the binary case (Gaussian prior with expectation ${f 0}$ and Covariance $\sigma \cdot {f I}$

Multi-class case: Example (ML-Training)

Three classes, two features, not linearly separable, no feature space mapping: development of log-likelihood during training

■ifp

Multi-class case: Example (ML-Training)

Three classes, two features, not linearly separable – quadratic expansion: posterior probabilities

white ... high probability, black ... low probability

- In the areas where the feature distributions overlap, the boundaries are slightly blurred.
- However, in general there is a very clear distinction → Overfitting

59

Multi-class case: Example (ML-Training)

Three classes, two features, not linearly separable – quadratic expansion: development of log-likelihood during training

Multi-class case: Example (ML-Training)

Three classes, two features, not linearly separable – quadratic expansion, training with relatively strong regularization ($\sigma = 2$)

Multi-class case: Example (ML-Training)

Three classes, two features, not linearly separable – quadratic expansion, training with regularization: posterior probabilities

white ... high probability, black ... low probability

- Much smoother transitions, uncertainty of the classification is better represented
- Class boundaries may be regularized too strongly

Discussion

- Discriminative probabilistic methods directly model the posterior probability
 - No assumption about the distribution of data required
 - Basically, boundaries between classes are learned
 - Linear Models with / without feature space transformation
 - · Fewer parameters to be determined
 - Fewer training data is required
 - Can be expanded to multi-class problems
 - Efficient learning / classification
 - Probabilistic output simplifies further processing.

Discussion

- Despite feature space transformation, the functional model can not fit properly to the distribution of the data
 - →Transition to non-probabilistic methods
- High-dimensional feature vectors can lead to a large number of parameters to be learned.
- Numerical problems → scaling of the features in training and during the classification
- ML-Learning: Problem of overfitting → Regularisation
 - → Requires prior for the parameter vector w
 - Hyper-parameter σ (cross validation)

Literatur

- Bishop, C. : Pattern Recognition and Machine Learning. 1st edition, Springer, New York, USA, 2006.
- Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification. 2nd edition, Wiley & Sons, New York, USA, 2001.
- Rottensteiner, Franz, 2014: Skript Bildanalyse II, IPI, Leibniz Universität Hannover

