3.2.4 カルマンフィルタ (KF) の数学的導出

まずは予測ステップの導出から始める。1 ステップ前の信念 $bel(x_{t-1})$ に、制御 u_t が加わったあとの信念 $\overline{bel}(x_t)$ が計算できる。

$$\overline{bel}(x_t) = \int p(x_t|x_{t-1}, u_t)bel(x_{t-1})dx_{t-1}$$
(1)

$$= \int \mathcal{N}(x_t; A_t x_{t-1} + B_t u_t, R_t) \mathcal{N}(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) dx_{t-1}$$
 (2)

ただし、 $\mathcal{N}(x;\mu,\Sigma)$ は平均 μ 、共分散行列 Σ のガウス分布の x における確率密度を表す。具体的にガウス分布で表示すると

$$\overline{bel}(x_t) = \int \mathcal{N}(x_t; A_t x_{t-1} + B_t u_t, R_t) \mathcal{N}(x_{t-1}; \mu_{t-1}, \Sigma_{t-1}) dx_{t-1}$$

$$= \eta \int \exp\left[-\frac{1}{2} (x_t - (A_t x_{t-1} + B_t u_t))^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t))\right]$$

$$\exp\left[-\frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma^{-1} (x_{t-1} - \mu_{t-1})\right] dx_{t-1}$$
(4)

指数関数の積は肩の和を取ればよい。なので以下のように関数 L_t を使って書き換えられる。

$$\overline{bel}(x_t) = \eta \int \exp[-L_t] dx_{t-1}$$

$$L_t = \frac{1}{2} (x_t - (A_t x_{t-1} + B_t u_t))^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t))$$

$$+ \frac{1}{2} (x_{t-1} - \mu_{t-1})^T \Sigma^{-1} (x_{t-1} - \mu_{t-1})$$
(6)

 x_{t-1} に関する積分を実行するために、 L_t を x_{t-1} によらない項のみを含む部分 $L_t(x_t)$ と、 x_{t-1} による項も含む部分 $L_t(x_{t-1},x_t)$ に分解する($L_t(x_{t-1},x_t)$ は x_{t-1} によらない項を含んでもよい、なので一意な分解ではない)。こうすると、この積分は

$$\overline{bel}(x_t) = \eta \exp[-L_t(x_t)] \int \exp[-L_t(x_{t-1}, x_t)] dx_{t-1}$$
(8)

とかける。この積分だが、 L_t が x_{t-1} に関して 2 次式だったことを思い出すと、 x_{t-1} に関して「平方完成」すればある x_{t-1} によらないベクトル ξ と行列 Ψ を用いて、 $\frac{1}{2}(x_{t-1}-\xi)^T\Psi^{-1}(x_{t-1}-\xi)$ の形に変形できそうである。この形に変形できれば、 $\exp L_t(x_{t-1},x_t)$ の積分は多変量正規分布 $\mathcal{N}(x_{t-1};\xi,\Psi)$ の規格化定数を求める積分と全く同じになり、特に x_t によらない定数になる。

この変形を行うため、あえて $L_t(x_{t-1},x_t)$ は x_{t-1} によらない項を含めても良いことにしている。 $\exp L_t(x_{t-1},x_t)$ の積分を多変量正規分布 $\mathcal{N}(x_{t-1};\xi,\Psi)$ の積分の形にもっていくために、この分布 $\exp L_t(x_{t-1},x_t)$ の頂点の座標 ξ を求める。 頂点 ξ では、 $L_t(x_{t-1},x_t)$ はベクトル x_{t-1} のあらゆる方向に対して微分係数が

0 になっている。なので、 $L_t(x_{t-1},x_t)$ を x_{t-1} の各成分に関して微分したもの(この操作を「 L_t を x_{t-1} で微分」という)がすべて 0 となっている。

 x_{t-1} の第i 成分を $x_{i,t-1}$ とし、実際にこの計算を実行すると

第一項と第二項は和に使われている添字が違うだけで、全く同じ項である。第三項、第四項についても同じである。結局

(共分散行列は対称なので添字を入れ替え、さらに A を転置。第四項も同様)

(14)

$$\frac{\partial L_t}{\partial x_{i,t-1}} = -A_{i\alpha}^T R_{\alpha\gamma,t}^{-1}(x_{\gamma,t} - (A_{\gamma\delta,t} x_{\delta,t-1} + B_{\gamma\delta,t} u_{\delta,t})) + \Sigma_{i\alpha}^{-1}(x_{\alpha,t-1} - \mu_{\alpha,t-1})$$
(15)

が得られるので、行列とベクトルの積を計算してまとめてかくと

$$\frac{\partial L_t}{\partial x_{t-1}} = -A_t^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t)) + \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1})$$
(16)

 $L_t(x_{t-1},x_t)$ はベクトル x_{t-1} のあらゆる方向に対して微分係数が 0 になっている点 $x_{t-1}=\xi$ を求めた かったのだから、上の式がゼロベクトルと等しいとした方程式を x_{t-1} に関して解けばよい。

実際に変形をはじめるまえにもうひとつ別の量を計算しておく。 $L_t(x_{t-1},x_t)=(x_{t-1}-\xi)^T\Psi^{-1}(x_{t-1}-\xi)$ の形に変形する際のあらたな共分散行列 Ψ だ。 $L_t(x_{t-1},x_t)=rac{1}{2}(x_{t-1}-\xi)^T\Psi^{-1}(x_{t-1}-\xi)$ に変形できる ことを仮定すると、この行列は以下のように計算できる

$$\Psi_{ij}^{-1} = \frac{\partial^2 L_t(x_{t-1}, x_t)}{\partial x_{i,t-1} \partial x_{i,t-1}} = \frac{\partial^2 L_t}{\partial x_{i,t-1} \partial x_{i,t-1}}$$

$$\tag{17}$$

$$(L_t(x_t)$$
 は x_{t-1} で微分してもゼロ) (18)

$$(L_{t}(x_{t}) \, l \, t \, x_{t-1} \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, t \, \tilde{c} \, d \, h \, l \, h \,$$

$$= \frac{1}{2} \frac{\partial}{\partial x_{i,t-1}} \Psi_{j\alpha}^{-1} (x_{\alpha t-1} - \xi_{\alpha}) + \frac{1}{2} \frac{\partial}{\partial x_{i,t-1}} (x_{\alpha t-1} - \xi_{\alpha})^T \Psi_{\alpha j}^{-1}$$
 (20)

$$= \frac{1}{2}(\Psi_{ij}^{-1} + \Psi_{ji}^{-1}) \tag{21}$$

 Ψ は定義から共分散行列で対称行列で、対称行列の逆行列はまた対称行列になる $(1=(AA^{-1})^T=(A^{-1})^TA$ だから、 $A^{-1}=(A^{-1})^T)$ ので両辺は等しい。なので Ψ を求めるため、 L_t をさらにもう一回微分する。

$$\frac{\partial^2 L_t}{\partial x_{t-1}^2} = \frac{\partial}{\partial x_{t-1}} - A_t^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t)) + \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1})$$
 (22)

$$= \frac{\partial}{\partial x_{t-1}} A^T R_t^{-1} A_t x_{t-1} + \frac{\partial}{\partial x_{t-1}} \Sigma_{t-1}^{-1} x_{t-1}$$
 (23)

$$= A^{T} R_{t}^{-1} A_{t} + \Sigma_{t-1}^{-1} = \Psi_{t}^{-1}$$
 (24)

それではいよいよ $L_t(x_{t-1},x_t)$ の x_{t-1} についてあらゆる方向に対して微分係数が 0 になっている点 $x_{t-1} = \xi$ を求める。

$$\frac{\partial L_t}{\partial x_{t-1}} = -A_t^T R_t^{-1} (x_t - (A_t x_{t-1} + B_t u_t)) + \Sigma_{t-1}^{-1} (x_{t-1} - \mu_{t-1}) = 0$$
(25)

$$-A_t^T R_t^{-1} x_t + A_t^T R_t^{-1} A_t x_{t-1} + A_t^T R_t^{-1} B_t u_t + \sum_{t-1}^{-1} x_{t-1} - \sum_{t-1}^{-1} \mu_{t-1} = 0$$
 (26)

$$(A_t^T R_t^{-1} A_t + \Sigma_{t-1}^{-1}) x_{t-1} = A_t^T R_t^{-1} x_t - A_t^T R_t^{-1} B_t u_t + \Sigma_{t-1}^{-1} \mu_{t-1}$$

$$(x_{t-1})$$
 に関する項を左辺にまとめた) (27)

$$\Psi_t x_{t-1}^{-1} x_{t-1} = A_t^T R_t^{-1} (x_t - B_t u_t) + \Sigma_{t-1}^{-1} \mu_{t-1}$$
 (Ψ の定義) (28)

$$x_{t-1} = \Psi_t [A_t^T R_t^{-1} (x_t - B_t u_t) + \Sigma_{t-1}^{-1} \mu_{t-1}]$$
(29)

これで無事、 $L_t(x_{t-1},x_t)$ としてほしい形が求まった。すなわち

$$L_t(x_{t-1}, x_t) \tag{30}$$

$$= \frac{1}{2}(x_{t-1} - \xi)^T \Psi_t^{-1}(x_{t-1} - \xi)$$

$$= \frac{1}{2}(x_{t-1} - \Psi_t[A_t^T R_t^{-1}(x_t - B_t u_t) + \Sigma_{t-1}^{-1} \mu_{t-1}])^T \Psi_t^{-1}$$
(31)

$$(x_{t-1} - \Psi_t[A_t^T R_t^{-1} (x_t - B_t u_t) + \Sigma_{t-1}^{-1} \mu_{t-1}])$$
(32)

である。実際ここで求めた $L_t(x_{t-1},x_t)$ を使って $L_t(x_t)=L_t-L_t(x_{t-1},x_t)$ が x_{t-1} を含まない形になっているか確認しておく。本書の通りこれには具体的に計算してみてもよいが、 $\frac{\partial}{\partial x_{t-1}}[L_t-L_t(x_{t-1},x_t)]$ が x_{t-1} に関して恒等的に 0 に等しいことを示す方法もある。

このノートでは $\frac{\partial L_t}{\partial x_{t-1}}$ と $\frac{\partial L_t(x_{t-1},x_t)}{\partial x_{t-1}}$ が等しいことを示すことで、上記の事実を示す。 $\frac{\partial L_t}{\partial x_{t-1}}$ は前に計算したので、 $\frac{\partial L_t}{\partial x_{t-1}}$ を計算すればよい。

$$\frac{\partial L_t}{\partial x_{t-1}} = \frac{\partial}{\partial x_{t-1}} \frac{1}{2} (x_{t-1} - \xi)^T \Psi_t^{-1} (x_{t-1} - \xi)$$
(33)

$$= \frac{1}{2} \frac{\partial x_{t-1}}{\partial x_{t-1}}^T \Psi_t^{-1}(x_{t-1} - \xi) + \frac{1}{2} (x_{t-1} - \xi)^T \Psi_t^{-1} \frac{\partial x_{t-1}}{\partial x_{t-1}}$$
(積の微分、ch0 のノート参照) (34)

$$= \Psi_t^{-1}(x_{t-1} - \xi) \quad (\Psi$$
は対称行列) (35)

=
$$\Psi_t^{-1} x_{t-1} - \Psi_t^{-1} \Psi_t [A_t^T R_t^{-1} (x_t - B_t u_t) + \Sigma_{t-1}^{-1} \mu_{t-1}]$$
 (ξ の定義)

=
$$(A^T R_t^{-1} A_t + \Sigma_{t-1}^{-1}) x_{t-1} - A_t^T R_t^{-1} (x_t - B_t u_t) - \Sigma_{t-1}^{-1} \mu_{t-1}$$
 (Ψ の定義)

$$= -A^{T} R_{t}^{-1} (x_{t} - (A_{t} x_{t-1} + B_{t} u_{t})) + \Sigma_{t-1}^{-1} (x_{t-1} - u_{t-1})$$

$$(38)$$

これは $\frac{\partial L_t}{\partial x_{t-1}}$ と等しいので、 $\frac{\partial}{\partial x_{t-1}}[L_t-L_t(x_{t-1},x_t)]$ は 0(定数関数) となる。よって $L_t-L_t(x_{t-1},x_t)$ は x_{t-1} によらない。

これで無事に L_t を分解できた。信念の計算に戻ると $\int \exp L_t(x_{t-1},x_t)dx_{t-1}$ を定数にとることができたので

$$\overline{bel}(x_t) = \eta \exp[-L_t(x_t)] \int \exp[-L_t(x_{t-1}, x_t)] dx_{t-1}$$
(39)

$$= \eta \exp[-L_t(x_t)] \tag{40}$$

と簡単に書き直せる。1 行目と2 行目で η を取り替えている。信念の計算には $L_t(x_t)$ が必要である。せっかくなので L_t を愚直に展開して $L_t(x_{t-1},x_t)$ を引く以外の方法で計算してみる。

 $L_t(x_t)$ は x_{t-1} によらないので $L_t-L_t(x_{t-1},x_t)$ はどの x_{t-1} で計算してもよい。なので $x_{t-1}=\xi$ で計算すると、 $L_t(x_{t-1},x_t)=0$ なので、展開して差し引くまでもまく $L_t(x_t)=L_t$ になる。つまり、 L_t に $x_{t-1}=\xi$ を代入すればよい。

$$L_{t}(x_{t}) = \frac{1}{2}(x_{t} - (A_{t}\xi + B_{t}u_{t}))^{T}R_{t}^{-1}(x_{t} - (A_{t}\xi + B_{t}u_{t})) + \frac{1}{2}(\xi - \mu_{t-1})^{T}\Sigma_{t}^{-1}(\xi - \mu_{t-1})$$

$$(41)$$