

Seminar 1: Terminology

Feedback control

Feedback control

Please, split into groups of three.

Problems related terminology

System

Objective

Minimize the time it takes to reach your destination.

Discrete time vs. Continuous time

Discrete time vs. Continuous time

$$f: \mathbb{R}^n \times \mathbb{U} \to \mathbb{R}^n$$

State dynamics function

Continuous:

$$\frac{\partial}{\partial t}x(t) = f(x(t), u(t))$$

Discrete:

$$x_{t+1} = f(x_t, u_t)$$

State transition function

Discrete state space vs. Continuous state space

Continuous state space

Discrete state space

Discrete state space

$$x_{t+1} = f(x_t, u_t),$$
$$f: \mathbb{Z} \times \mathbb{U} \to \mathbb{Z}$$

Discrete action space vs. Continuous action space

Discrete action space vs. Continuous action space

Continuous

Discrete

Discrete action space with continuous time and state space

Continuous action space with discrete time and state space

Continuous action space with discrete time and state space

$$x_{t+1} = f(x_t, u_t) + \lceil \sigma(x_t, u_t) \xi_t \rceil,$$

$$f: \mathbb{Z} \times \mathbb{U} \to \mathbb{Z},$$

$$\sigma: \mathbb{Z} \times \mathbb{U} \to \mathbb{R},$$

$$\xi_t \sim \mathcal{N}(0, 1)$$

Stochastic vs. Deterministic

Stochastic systems

Stochastic systems

Pretty much anything

Stochastic systems

Continuous state space

Discrete state space

Continuous time

$$dX_t = f(X_t, U_t) dt + \sigma(X_t, U_t) dW_t,$$

$$W_t - \text{semimartingale.}$$

birth rates \rightarrow $0 \qquad 1 \qquad 2 \qquad \dots \qquad n-1 \qquad n$

death rates

Discrete time

$$x_{t+1} \sim \mathcal{F}(x_t, u_t)$$

Full information vs. Partial information

Full information vs. Partial information

Observation
$$\stackrel{?}{=}$$
 State

Full information vs. Partial information

Full information

Observation = **State**

Partial information

Observation
$$\neq$$
 State

Partial information examples

 $\rho(\cdot)$ – feedback policy.

Full information

$$u(t) := \rho(x(t))$$

Partial information

$$u(t) := \rho(g(x(t)))$$

$$u(t) := \rho(x(t) + \xi_t), \ \xi \sim \mathcal{N}(\mu, \sigma^2)$$

Stationary vs. Non-stationary

Stationary vs. Non-stationary

Non-stationary

$$x_{t+1} := f(x_t, u_t, t)$$

Stationary

$$x_{t+1} = f(x_t, u_t)$$

Non-stationary --> stationary

$$x_{t+1} := f(x_t, u_t, t) \longrightarrow \begin{cases} x_{t+1} = f(x_t, u_t, y_t) \\ y_{t+1} = y_t + 1 \end{cases}$$

Example of a non-stationary system

Example of a non-stationary system

Cost vs. Reward

Cost vs. Reward

Cost — Minimize

Reward — Maximize

Finite horizon vs. Infinite horizon

Finite horizon vs. Infinite horizon

Finite-horizon

You optimize the objective over a finite time frame.

Infinite-horizon

You optimize the objective over an infinite time frame. (As if your RL agent were to run for all eternity)

Running vs. Terminal

Running vs. Terminal

$$J(\cdot, \cdot)$$
 – total objective.

Running objective

$$J(x(\cdot), u(\cdot)) := \int_{t_1}^{t_2} r(x(t), u(t)) dt + T(x(t_2))$$

$$J(x_{\cdot}, u_{\cdot}) := \sum_{i=t_1}^{t_2} r(x_i, u_i) + T(x_{t_2})$$

Terminal objective

Terminal objective

Running objective

Running objective

Running --> Terminal

$$\mathbf{x}_{t+1} = f(x_t, u_t),$$
 $\mathbf{x}_{t+1} = f(x_t, u_t),$ $\mathbf{x}_{t+1} = f(x_t, u_t),$ $\mathbf{x}_{t+1} = j_t + r(x_t, u_t),$

Terminal --> Running

A&Q