§5. Комплексная степень числа *е*. Формула Эйлера. Показательная форма комплексного числа

Определение 5.1. Пусть z = x + iy. Число $e^x(\cos y + i\sin y)$ называют *комплексной степенью* числа e или экспонентой от z и обозначают через $\exp z$ или e^z . Таким образом, операция возведения числа e в комплексную степень z = x + iy определяется формулой:

$$e^z = e^x(\cos y + i\sin y). \tag{5.1}$$

Например, $e^{2+3i} = e^2(\cos 3 + i \sin 3)$, $e^{\pi i/2} = \cos(\pi/2) + i \sin(\pi/2) = i$,

$$e^{\pi i} = \cos \pi + i \sin \pi = -1$$
.

При $z = i \varphi$ из (5.1) следует равенство:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi, \tag{5.2}$$

которое называется формулой Эйлера.

Свойства комплексной степени числа е

1.
$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$
, $e^{z_1-z_2}=\frac{e^{z_1}}{e^{z_2}}$.

- **2.** Если $z = x + 0 \cdot i$, то $e^z = e^{x + 0 \cdot i} = e^x$, т.е. для вещественных значений z комплексная степень числа e есть степень с вещественным показателем;
 - 3. Для любого комплексного числа z справедливо равенство:

$$e^{z+2\pi ni}=e^z$$
, $n\in\mathbb{Z}$.

Предоставим читателю, используя определение 5.1, доказать эти свойства.

Пусть $z \in \mathbb{C}$, $z \neq 0$. Запишем это число в тригонометрической форме: $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \arg z$. Отсюда и из формулы Эйлера (5.2) вытекает следующее представление числа z:

$$z = re^{i\varphi}$$
,

которое называют показательной формой комплексного числа z.

Правила действий с комплексными числами, представленными в показательной форме

1. Пусть z_1 и z_2 — отличные от нуля комплексные числа, $z_1=r_1e^{i\phi_1}$, $z_2=r_2e^{i\phi_2}$ (здесь $r_1=\mid z_1\mid$, $r_2=\mid z_2\mid$, $\phi_1=\arg z_1$, $\phi_2=\arg z_2$). Тогда:

$$z_1 \cdot z_2 = r_1 \cdot r_2 e^{i(\varphi_1 + \varphi_2)}; \ \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}.$$

- **2.** Пусть $z \in \mathbb{C}$, $z \neq 0$, $n \in \mathbb{Z}$. Тогда $z^n = r^n e^{in\varphi}$, где r = |z|, $\varphi = \arg z$.
- **3.** Пусть $a \in \mathbb{C}, \ a \neq 0, \ n \in \mathbb{N}, \ n \geq 2$. Тогда числа z_k ,

$$z_k = \sqrt[n]{\rho} \cdot e^{i\frac{\psi + 2k\pi}{n}}, k = 0, 1, 2, ..., n-1,$$

где $\rho = |a|$, $\psi = \arg a$, есть корни степени n из числа a (здесь $\sqrt[n]{\rho}$ есть арифметическое значение корня, т.е. $\sqrt[n]{\rho} > 0$).

Эти правила следуют из правил действий с комплексными числами записанных в тригонометрической форме.

Замечание 5.1. Формула Эйлера (5.2) позволяет получить выражения $\cos \varphi$ и $\sin \varphi$, где $\varphi \in \mathbf{R}$, через чисто мнимую степень e. Действительно, заменив в (5.2) φ на $-\varphi$, с учетом свойства чётности косинуса и нечётности синуса имеем:

$$e^{-i\varphi} = \cos\varphi - i\sin\varphi. \tag{5.3}$$

Рассмотрев равенства (5.2) и (5.3) как систему относительно $\cos \varphi$ и $\sin \varphi$, найдём из неё $\cos \varphi$ и $\sin \varphi$:

$$\cos \varphi = \frac{1}{2} (e^{i\varphi} + e^{-i\varphi}); \quad \sin \varphi = \frac{1}{2i} (e^{i\varphi} - e^{-i\varphi}).$$
 (5.4)