Неоднородные СЛАУ

Совокупность уравнений первой степени, в которых каждая переменная и коэффициенты в ней являются вещественными числами, называется системой линейных алгебраических уравнений (СЛАУ) и в общем случае записывается как:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n \end{cases}$$
(1)

где n — количество уравнений,

m — количество переменных,

 x_{i} – неизвестные переменные системы,

 $a_{_{\!\scriptscriptstyle ij}}$ – коэффициенты системы,

 b_{\cdot} – свободные члены системы.

СЛАУ (1) называется **однородной**, если все свободные члены системы равны 0 $b_1=b_2=...=b_n=0$:

СЛАУ — однородная, если
$$\forall b_{i}=0$$

СЛАУ (1) называется **неоднородной**, если хотя бы один из свободных членов системы отличен от 0:

СЛАУ — однородная, если
$$\exists b \neq 0$$

СЛАУ в матричном виде:

$$A\overrightarrow{w} = b$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_m \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$

где A — матрица системы, w — вектор неизвестных коэффициентов, а b — вектор свободных коэффициентов.

контексте линейных методов. Часть II"

Расширенная матрица системы

Расширенной матрицей системы (A|b) неоднородных СЛАУ называется матрица, составленная из исходной матрицы и вектора свободных коэффициентов:

$$(A|\vec{b}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \\ \end{pmatrix} b_1 b_2 b_2 b_n$$

Над расширенной матрицей неоднородной СЛАУ можно производить все те же действия, что и над обычной, а именно:

- → складывать/вычитать между собой строки/столбцы матрицы;
- → умножать строки/столбцы на константу;
- → менять строки/столбцы местами.

Случаи решения СЛАУ

Существует три случая при решении неоднородных СЛАУ:

1. "Идеальная пара"

Это так называемые определённые системы линейных уравнений, имеющие единственные решения.

2. "В активном поиске"

Неопределённые системы, имеющие бесконечно много решений.

3. "Всё сложно"

Переопределённые системы, которые не имеют точных решений.

Случай "Идеальная пара"

Системы, имеющие только одно решение, называются совместными.

Теорема Кронекера — Капелли:

Неоднородная система линейный алгебраических уравнений Aw = b является совместной тогда и только тогда, когда ранг матрицы системы A равен рангу

Модуль MATH&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

расширенной матрицы системы (A|b) и **равен** количеству независимых переменных m:

$$rk(A) = rk(\overrightarrow{b}) = m \leftrightarrow \exists! \overrightarrow{w} = (w_1 w_2 \dots, w_m)^T$$

Причём решение системы будет равно:

$$\overrightarrow{w} = A^{-1} \overrightarrow{b}$$

Случай "В активном поиске"

Следствие №1 из теоремы Кронекера — Капелли:

Если ранг матрицы системы A **равен** рангу расширенной матрицы системы $(A|\overrightarrow{b})$, но **меньше**, чем количество неизвестных m, то система имеет бесконечное множество решений:

$$rk(A) = rk(A|\overrightarrow{b}) < m \leftrightarrow \infty$$
 решений

Случай "Всё сложно"

Следствие №2 из теоремы Кронекера — Капелли:

Если ранг матрицы системы A меньше, чем ранг расширенной матрицы системы $(A|\overrightarrow{b})$, то система несовместна, то есть не имеет точных решений.

$$rk(A) < (A|\overrightarrow{b}) \leftrightarrow \mathbb{Z}$$
 решений

Можно попробовать найти приблизительное решение — вопрос лишь в том, какое из всех этих решений лучшее.

На этот вопрос отвечает **метод наименьших квадратов**. Согласно ему, наилучшее приблизительное решение вычисляется по формуле:

$$\widehat{\mathbf{W}} = (A^T A)^{-1} \cdot A^T b$$

Решением является ортогональная проекция вектора b на столбцы матрицы A.

Линейная регрессия по МНК

Рассматривается задача регрессии:

у – целевая переменная

контексте линейных методов. Часть II"

$$x_{_1}$$
, $x_{_2}$, ..., $x_{_k}$ — признаки/ факторы/ регрессоры

В задаче регрессии есть N наблюдений — это обучающая выборка или датасет, представленный в виде таблицы. В столбцах таблицы располагаются векторы признаков x_j .

$$\vec{y} \in \mathbb{R}^{N}$$

$$\vec{x_{1}}, \vec{x_{2}}, \dots, \vec{x_{k}} \in \mathbb{R}^{N}$$

$$\begin{pmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{pmatrix}, \quad \begin{pmatrix} x_{11} \\ x_{12} \\ \dots \\ x_{1N} \end{pmatrix}, \dots, \begin{pmatrix} x_{k1} \\ x_{k2} \\ \dots \\ x_{kN} \end{pmatrix}$$

В качестве регрессионной модели будем использовать модель линейной регрессии:

$$y = \underset{0}{w} + \underset{1}{w} \underset{1}{x} + \underset{2}{w} \underset{2}{x} + \ldots + \underset{k}{w} \underset{k}{x},$$
 или
$$y = (\underset{0}{w}, \underset{1}{w}, \ldots, \underset{k}{w}) - \text{веса (коэффициенты уравнения линейной регрессии), а } \vec{x} = (1, \underset{1}{x}, \underset{2}{x}, \ldots, \underset{k}{x})^{T}.$$

Мы пытаемся найти такие веса w, чтобы для каждого наблюдения наше равенство было выполнено. Таким образом получается N уравнений на k+1неизвестную.

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{pmatrix} = w_0 \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} + w_1 \begin{pmatrix} x_{11} \\ x_{12} \\ \dots \\ x_{1N} \end{pmatrix} + \dots + w_k \begin{pmatrix} x_{k1} \\ x_{k2} \\ \dots \\ x_{kN} \end{pmatrix}$$

Или в привычном виде систем уравнений:

$$\begin{cases} w_0 1 + w_1 x_{11} + \dots + w_k x_{k1} = y_1 \\ w_0 1 + w_1 x_{12} + \dots + w_k x_{k2} = y_2 \\ \dots \\ w_0 1 + w_1 x_{1N} + \dots + w_k x_{kN} = y_N \end{cases}$$

Как правило, N гораздо больше k (количество строк в таблице с данными намного больше количества столбцов таблицы), и система переопределена, значит точного решения не имеется, поэтому можно найти только приближённое.

Модуль MATH&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

Полученной СЛАУ можно дать геометрическую интерпретацию. Если представить каждое наблюдение на графике в виде точки (см. рисунок ниже), то уравнение линейной регрессии будет задавать прямую. Приравняв уравнение прямой к целевому признаку, мы требуем, чтобы эта прямая проходила через все точки в нашем наборе данных. Конечно же, это условие не может быть выполнено полностью, так как в данных всегда присутствует какой-то шум и идеальной прямой (гиперплоскости) не получится, но зато можно построить приближённое решение.

Составим матрицу системы A (матрицу наблюдений), записав в столбцы все наши регрессоры, включая регрессор константу:

$$A = egin{pmatrix} 1 & x_{11} & \dots & x_{k1} \\ 1 & x_{12} & \dots & x_{k2} \\ \dots & \dots & \dots & \dots \\ 1 & x_{1N} & \dots & x_{kN} \end{pmatrix} \quad N \text{ строк}$$

k+1 столбец

Итоговая формула для оценки коэффициентов модели линейной регрессии: $\stackrel{\hat{\rightarrow}}{w} = \begin{pmatrix} x & x \\ A & A \end{pmatrix}^{-1} \stackrel{T}{A}^{y}$

$$\stackrel{\hat{\rightarrow}}{w} = \left(\stackrel{T}{A} \stackrel{-1}{A} \stackrel{T}{y} \right)$$

Предсказание будет строиться следующим образом:
$$\hat{y}_{NEW} = \hat{w}_0 + \hat{w}_1 x_{1,NEW} + ... + \hat{w}_k x_{k,NEW}$$
 или
$$\hat{y}_{NEW} = (\hat{w}, \hat{x}_{NEW})$$

Проблемы в классической МНК-модели

Если матрица A вырождена или близка к вырожденной, то хорошего решения у классической модели не получится. Такие данные называют **плохо** обусловленными.

Борьба с вырожденностью матрицы ${}^{T}A$ часто сводится к устранению «плохих» (зависимых) признаков. Для этого анализируют корреляционную матрицу признаков или матрицу их значений.

Особенности Linear Regression из sklearn

В реализации линейной регрессии в sklearn предусмотрена борьба с плохо определёнными (близкими к вырожденным и вырожденными) матрицами.

Для этого используется метод под названием сингулярное разложение (SVD). Суть метода заключается в том, что в OLS-формуле используется не сама матрица A, а её диагональное представление из сингулярного разложения, которое гарантированно является невырожденным.

Однако данный метод только оберегает от ошибки при обращении плохо обусловленных и вырожденных матриц, но не гарантирует получения корректных коэффициентов линейной регрессии.

Стандартизация векторов

В линейной алгебре под стандартизацией вектора $\stackrel{\rightarrow}{\underset{x}{\to}} ^n$ понимается операция, которая проходит в два этапа:

1) Центрирование вектора — операция приведения среднего к 0: $\vec{x}_{cent} = \vec{x} - \vec{x}_{mean}$

2) Нормирование вектора — операция приведения диапазона вектора к масштабу от -1 до 1 путём деления центрированного вектора на его длину:

$$\vec{x}_{st} = \frac{\vec{x}_{cent}}{|\vec{x}_{cent}|}$$

где x — вектор, составленный из среднего значения вектора x, а ||x| ||

SKILLFACTORY

Курс Профессия Data Science

Модуль MATH&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

В результате стандартизации вектора всегда получается новый вектор, длина которого равна 1:

$$||\vec{x}|| = 1$$

До стандартизации мы прогоняли регрессию y на регрессоры x , x_1 , ..., x_2 и x_3 константу. Всего получалось k+1 коэффициентов: $\vec{y}=w_0+w_1\vec{x}_1+w_2\vec{x}_2+...+w_k\vec{x}_k$,

$$\vec{y} = w_0 + w_1 \vec{x} + w_2 \vec{x} + \dots + w_k \vec{x},$$

После стандартизации мы прогоняем регрессию стандартизованного у на стандартизованные регрессоры БЕЗ константы:

$$\vec{y}_{st} = w_1 \vec{x}_{1st} + w_2 \vec{x}_{2st} + \dots + w_k \vec{x}_{st}$$

Для того чтобы проинтерпретировать оценки коэффициентов линейной регрессии (понять, каков будет прирост целевой переменной при изменении фактора на 1 условную единицу), нам достаточно построить линейную

регрессию в обычном виде без стандартизации и получить обычный вектор w. Однако, чтобы корректно говорить о том, какой фактор оказывает на прогноз большее влияние, нам нужно рассматривать стандартизированную оценку вектора коэффициентов \vec{w} .

Корреляционная матрица

Корреляционная матрица C — это матрица выборочных корреляций между факторами регрессий.

$$C = corr(X)$$

Выборочная корреляция – это корреляция, вычисленная на ограниченной выборке.

Выборочная корреляция отражает линейную взаимосвязь между факторами xи \vec{x} , реализации которых представлены в выборке.

$$c_{ij} = corr(\vec{x}_i, \vec{x}_j) = \frac{\sum_{l=1}^{n} (\vec{x}_{il} - x_{i_{mean}})(\vec{x}_{jl} - x_{j_{mean}})}{\sqrt{\sum_{l=1}^{n} (\vec{x}_{il} - x_{i_{mean}})^2 \cdot \sum_{l=1}^{n} (\vec{x}_{jl} - x_{j_{mean}})^2}}$$

SKILLFACTORY

Курс Профессия Data Science

Модуль МАТН&МL-2 "Линейная алгебра в контексте линейных методов. Часть II"

Из вычисленных c_{ij} составляется матрица корреляций \mathcal{C} . Если факторов k штук, то матрица \mathcal{C} будет квадратной размера $dim(\mathcal{C})=(k,k)$:

$$C = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1k} \\ c_{21} & c_{22} & \dots & c_{2k} \\ \dots & \dots & \dots & \dots \\ c_{k1} & c_{k2} & \dots & c_{kk} \end{pmatrix}$$

Матрица корреляций совпадает с матрицей Грама, вычисленной для стандартизированных векторов $\vec{x}_{1_{cr}}$ и $\vec{x}_{2_{st}}$:

$$C = G(\vec{x}_{1,st}, \vec{x}_{2,st})$$

По свойству скалярного произведения корреляция является косинусом угла между центрированными векторами $\overset{\rightarrow}{x_i}$ и $\overset{\rightarrow}{x_j}$:

$$c_{ij} = corr(\vec{x}_i, \vec{x}_j) = \cos(\widehat{\vec{x}_{i_{cent}}}, \widehat{\vec{x}_{j_{cent}}}) = \frac{(\vec{x}_{i_{cent}}, \vec{x}_{j_{cent}})}{\|\vec{x}_{i_{cent}}\| \cdot \|\vec{x}_{j_{cent}}\|}$$

В NumPy матрица корреляций вычисляется функцией np.corrcoef().

B Pandas матрица корреляций вычисляется методом **corr()**, вызванным от имени DataFrame.

Свойства корреляции:

- ightarrow Если корреляция $c_{ij}=1$, значит векторы $\overset{
 ightarrow}{x_i}$ и $\overset{
 ightarrow}{x_j}$ пропорциональны и сонаправлены.
- ightharpoonup Если корреляция $c_{ij} = -1$, значит векторы \overrightarrow{x}_i и \overrightarrow{x}_j пропорциональны и противонаправлены.
- ightharpoonup Если корреляция $c_{ij} = 0$, значит векторы $\overrightarrow{x_i}$ и $\overrightarrow{x_j}$ ортогональны друг другу и, следовательно, являются линейно независимыми.

Во всех остальных случаях между факторами $\vec{x_i}$ и $\vec{x_j}$ существует какая-то линейная взаимосвязь, причём чем ближе модуль коэффициента корреляции к 1, тем сильнее эта взаимосвязь.

контексте	линейных	методов.	Часть II"

Сила связи	Значение коэффициента корреляции	
Отсутствие связи или очень слабая связь	0+/- 0.3	
Слабая связь	+/- 0.3+/- 0.5	
Средняя связь	+/- 0.5+/- 0.7	
Сильная связь	+/- 0.7+/- 0.9	
Очень сильная или абсолютная связь	+/- 0.9+/-1	

Коллинеарность и мультиколлинеарность

→ Чистая коллинеарность

Некоторые факторы являются линейно зависимыми между собой. Это ведёт к уменьшению ранга матрицы факторов. Корреляции между зависимыми факторами близки к +1 или -1. Матрица корреляции вырождена. Такие случаи очень редко встречаются на практике, но если вы таковые заметите, можете смело избавляться от одного из факторов.

→ Мультиколлинеарность

Формально линейной зависимости между факторами нет, и матрица факторов имеет максимальный ранг. Однако корреляции между мультиколлинеарными факторами по-прежнему близки к +1 или -1, и матрица корреляции практически вырождена, несмотря на то что имеет максимальный ранг.

Полиномиальная регрессия

Полином (многочлен) от k переменных x_1 , x_2 , ..., x_k — это выражение (функция) вида:

$$P(x_1, x_2, ..., x_k) = \sum_{i} w_i x_1^{i_1} x_2^{i_2} ... x_k^{i_k}$$

Когда переменная всего одна, полином будет записываться так:

$$P(x) = \sum_{i} w_{i} x^{i} = w_{0} + w_{1} x^{1} + w_{2} x^{2} + \dots + w_{k} x^{k}$$

Полином степени k способен описать абсолютно любую зависимость. Для этого ему достаточно задать набор наблюдений — точек, через которые он должен пройти (либо приблизительно пройти). Вопрос стоит только в степени

этого полинома — k. Например, на рисунке ниже представлены три полинома: первой степени — линейная регрессия, второй степени — квадратичная регрессия и третьей степени — кубическая регрессия.

Цель обучения модели полиномиальной регрессии всё та же, что и для линейной регрессии: найти такие коэффициенты w, при которых ошибка между построенной функцией и обучающей выборкой была бы наименьшей из возможных.

Тогда мы хотим, чтобы для полинома степени k (от одной переменной) выполнялась система уравнений:

$$\begin{cases} w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k = y_1 \\ w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k = y_2 \\ \dots \\ w_0 + w_1 x + w_2 x^2 + \dots + w_k x^k = y_N \end{cases}$$

Обычно количество точек в обучающей выборке N значительно больше, чем степень полинома k, а значит перед нами переопределённая СЛАУ относительно с k+1 неизвестной — w, Точных решений у системы практически никогда не будет, но зато мы умеем решать её приближенно:

$$\overrightarrow{w} = \left(\overrightarrow{A} \overrightarrow{A}\right)^{-1} \overrightarrow{A} \overrightarrow{y}$$

Для создания полиномиальных признаков в библиотеке sklearn используется класс **PolynomialFeatures**.

Модуль МАТН&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

Возможна ситуация, когда какие-то сгенерированные полиномиальные факторы могут линейно выражаться через другие факторы. Тогда ранг корреляционной матрицы будет меньше числа факторов и поиск по классическому МНК алгоритму не будет успешным.

В sklearn для решения последней проблемы предусмотрена защита — **использование сингулярного разложения матрицы** A. Однако данная защита не решает проблемы неустойчивости коэффициентов регрессии.

Полиномиальная регрессия очень склонна к переобучению: чем выше степень полинома, тем сложнее модель и тем выше риск переобучения.

Регуляризация

Регуляризация — это способ уменьшения переобучения моделей машинного обучения путём намеренного увеличения смещения модели, чтобы уменьшить её разброс.

Цели регуляризации:

- → Предотвратить переобучение модели.
- → Включить в функцию потерь штраф за переобучение.
- \rightarrow Обеспечить существование обратной матрицы $\left(A^{T}A\right)^{-1}$.
- → Не допустить огромных коэффициентов модели.

Идея регуляризации состоит в наложении ограничения на вектор весов. Часто также говорят "наложение штрафа за высокие веса". В качестве штрафа принято использовать норму вектора весов.

где
$$\|\overrightarrow{y} - A\overrightarrow{w}\|^2 o \min$$

$$\left(\|\overrightarrow{y} - A\overrightarrow{w}\|^2 o \min \left(\|\overrightarrow{w}\|_{L_p}\right)^p \le b\right)$$

— норма вектора порядка p>1, которая определяется как:

$$\|\vec{w}\|_{L_{p}} = \sqrt{\sum_{i=0}^{p} |w_{i}|^{p}}$$

Записанная система эквивалентна:

квивалентна.
$$L(w, \alpha) = \|y - Aw\|^{2} + \alpha(\|w\|_{L_{p}}^{p}) \rightarrow min$$

SKILLFACTORY

Курс Профессия Data Science

Модуль МАТН&МL-2 "Линейная алгебра в контексте линейных методов. Часть II"

где $L(\vec{w}, \alpha)$ — функция Лагранжа, которая зависит не только от вектора весов модели \vec{w} , но и от некоторой константы $\alpha \ge 0$ — множителя Лагранжа (коэффициент регуляризации).

$L_{\!\scriptscriptstyle \gamma}$ -регуляризация

 L_2 -регуляризация (Ridge), или регуляризация по Тихонову — это регуляризация, в которой порядок нормы p=2.

Тогда оптимизационная задача в случае $L_{_{2}}$ -регуляризации будет иметь вид:

$$\|\vec{w}\|_{L_{2}} = \sqrt{\sum_{i=0}^{k} |w_{i}|^{2}} = \sqrt{\sum_{i=0}^{k} (w_{i})^{2}}$$

$$\{\|\vec{y} - A\vec{w}\|^{2} \to \min \{ \|\vec{y} - A\vec{w}\|^{2} \to \min \}$$

$$\{\|\vec{y} - A\vec{w}\|^{2} \to \min \}$$

$$\{\|\vec{y} - A\vec{w}\|^{2} + \alpha \sum_{i=0}^{k} (w_{i})^{2} \to \min \}$$

$$\|\vec{y} - A\vec{w}\|^{2} + \alpha \sum_{i=0}^{k} (w_{i})^{2} \to \min \}$$

У данной задачи даже есть аналитическое решение, полученное математиком Тихоновым:

$$\hat{\vec{W}}_{ridge} = (\vec{A}^T A + \alpha E)^{-1} \vec{Ay}$$

где E — единичная матрица размера dim(I) = (k+1, k+1) вида:

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

B sklearn $L_{\!\!\!2}$ -регуляризация реализована в классе **Ridge** из модуля linear_model.

Перед использованием рекомендуется произвести стандартизацию/нормализацию данных.

контексте линейных методов. Часть II"

$L_{_{\!\scriptscriptstyle 1}}$ -регуляризация

 L_1 -регуляризацией, или Lasso (Least Absolute Shrinkage and Selection Operator), называется регуляризация, в которой порядок нормы p=1.

Тогда оптимизационная задача в случае L_1 -регуляризации будет иметь вид:

$$\|\vec{w}\|_{L_{1}} = \sqrt{\sum_{i=0}^{1} |w_{i}|^{1}} = \sum_{i=0}^{k} |w_{i}|$$

$$\{\|\vec{y} - A\vec{w}\|^{2} \to \min \} \longleftrightarrow \begin{cases} \|\vec{y} - A\vec{w}\|^{2} \to \min \\ \sum_{i=0}^{k} |w_{i}| \le b \end{cases}$$

$$\|\vec{y} - A\vec{w}\|^{2} + \alpha \sum_{i=0}^{k} |w_{i}| \to \min$$

Можно показать, что данная задача имеет аналитическое решение, однако в реализации sklearn оно даже не заявлено как возможное для использования в связи с нестабильностью взятия производной от функции модуля, поэтому мы не будем его рассматривать.

В sklearn L_1 -регуляризация реализована в классе Lasso, а заданная выше оптимизационная задача решается алгоритмом координатного спуска (Coordinate Descent).

Перед использованием рекомендуется произвести стандартизацию/нормализацию данных.

Elastic-Net

Elastic-Net — это комбинация из L_1 - и L_2 -регуляризации.

Идея Elastic-Net состоит в том, что мы вводим ограничение как на норму весов порядка p=1, так и на норму порядка p=2.

SKILI FACTORY

Курс Профессия Data Science

Модуль MATH&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

Тогда оптимизационная задача будет иметь вид:

$$\begin{cases} \|\vec{y} - A\vec{w}\|^2 \to \min \\ \left(\|\vec{w}\|_{L_1}\right)^1 \le b_1 \\ \left(\|\vec{w}\|_{L_2}\right)^2 \le b_2 \end{cases} \leftrightarrow \begin{cases} \|\vec{y} - A\vec{w}\|^2 \to \min \\ \sum_{i=0}^k |w_i| \le b_1 \\ \sum_{i=0}^k (w_i)^2 \le b_2 \end{cases}$$
$$\|\vec{y} - A\vec{w}\|^2 + \alpha \lambda \sum_{i=0}^k |w_i| + \frac{\alpha \cdot (1-\lambda)}{2} \sum_{i=0}^k (w_i)^2 \to \min$$

Аналитического решения у этой задачи нет, поэтому для её решения в sklearn используется координатный спуск, как и для модели Lasso.

В sklearn эластичная сетка реализована в классе ElasticNet из пакета с линейными моделями — linear model. За коэффициент α отвечает параметр **alpha**, а за коэффициент $\lambda - 11$ ratio.

Перед использованием рекомендуется произвести стандартизацию/нормализацию данных.

Геометрическая интерпретация регуляризации

Задача условной оптимизации:

$$\begin{cases} ||\vec{y} - A\vec{w}||^2 \to \min \\ \left(||\vec{w}||_{L_p} \right)^p \le b \end{cases}$$

геометрически означает поиск минимума функции $L(w) = ||y-Aw||^2 = \sum_{i=1}^N (y_i - (x_i, w))^2,$ которая отражает выпуклую поверхность, на пересечении с фигурой, которая образуется функцией $\psi(\vec{w}) = (||\vec{w}||_L)^p,$

ограниченной некоторым числом b.

В случае L_1 -регуляризации выражение $\sum\limits_{i=0}^k |w_i| \leq b$ задаёт в пространстве параметров w внутренность ромба с центром в начале координат:

$$|w_0| + |w_1| + ... + |w_b| = b$$
 — уравнение ромба

Модуль MATH&ML-2 "Линейная алгебра в контексте линейных методов. Часть II"

В случае L -регуляризации выражение $\sum\limits_{i=0}^k \left(w_i\right)^2 \leq b$ задаёт окружность с

центром в начале координат:

$$\left(w_{0}^{2}\right)^{2}+\left(w_{1}^{2}\right)^{2}+...+\left(w_{k}^{2}\right)^{2}=b$$
 — уравнение окружности

Рассмотрим случай, когда фактор всего один (k=1), а в уравнении линейной регрессии присутствуют только два параметра $w_{_0}$ и $w_{_1}$.

Концентрическими кругами обозначены линии равного уровня функции L(w). Для каждого конкретного набора данных она будет иметь разный вид, но смысл будет тем же. Голубой областью обозначены ромб и окружность, которые задаёт L_1 - и L_2 -норма вектора весов соответственно.

Если бы мы использовали классическую линейную регрессию, то МНК приводил бы нас в точку истинного минимума функции L(w) — в центр, из которого исходят концентрические круги. Это была бы некоторая комбинация параметров w_0 и w_1

В случае, когда мы используем модель линейной регрессии с регуляризацией, мы будем пытаться найти такую комбинацию w_0 и w_1 , которая доставляет минимум функции L(w), но при этом не выходит за границы ромба (или

Курс Профессия Data Science **Модуль MATH&ML-2** "Линейная алгебра в контексте линейных методов. Часть II"

окружности). Таким образом, вместо истинного минимума мы находим так называемый **псевдоминимум**.

Заметим, что у ромба вероятность коснуться концентрического круга одной из своих вершин больше, чем у окружности — своей верхней/нижней/правой/левой точкой. Точка касания в вершине ромба — это точка, в которой либо $w_0=0$, либо $w_1=0$. То есть L -регуляризация склонна с большей вероятностью занулять коэффициенты линейной регрессии, чем L_2 -регуляризация.

Величина диагонали ромба и радиуса окружности зависят от величины коэффициента регуляризации α : чем больше α , тем меньше ромб/окружность, а значит тем дальше псевдоминимум будет находиться от истинного минимума, и наоборот.