

主要内容:

- 微处理器的一般构成及工作原理;
- 8088微处理器的结构;
- 8088微处理器的内部寄存器;
- 8088微处理器的引脚;
- 8088微处理器对内存的管理;

§2.1 微型机概述

- •微处理器的功能;
- •微处理器的基本组成。

功能

是计算机系统的核心 根据指令实现各种相应的运算 实现数据的暂存 实现与存储器和接口的信息通信

内部寄存器组

组成

运算器

控制器

()

§2.2 8088CPU的内部编程结构

• 8088内部由两部分组成:

执行单元(EU)

功能上 总线接口单元 (BIU)

指令执行的一般过程

取指令 指令译码 读取操作数 执行指令 存放结果

EU:指令译码、指令执行。

BIU: CPU与存储器和I/O设备间传递数据。

段首地址

段基地址(16位)

• 物理地址由段基地址和偏移地址组成

段首地址

偏移地址

<u>物理地址=段基地址×16+偏移地址</u>

物理地址

- · 段基地址 =6000H
- 段首地址 —————60000H

• 偏移地址 —— 0009H

- 物理地址 ______60009H
- 逻辑地址

(6000H: 0009H)

总线接口单元 BIU

功能:

- 从内存中取指令到指令预取队列
- 负责与内存或输入/输出接口之间的数据传送

组成:

- (1)4个段地址寄存器
 - CS代码段 DS数据段 ES扩展段 SS堆栈段
- · (2)指令指针寄存器IP
- (3) 20位物理地址加法器和总线控制电路
- (4) 6个字节的指令队列缓冲器

4434

串行和并行方式的指令流水线

<u>串行工作方式:</u>

EU和BIU交替工作,按顺序完成上述指令执行过程。

并行工作方式:

8088以前的CPU菜用串行工作方式:

CPU	取指令1	分析 指令1	执行 指令1	取指令2	分析 指令2	执行 指令2
BUS	忙碌			忙碌		

并行工作方式

8088CPU采用并行工作方式

CPU	取指令1 BIU	分析 指令1	执行 指令1			
		取指令2 BIU	分析 指令2	执行 指令2		
			取指令3 BIU	分析 指令3	执行 指令3	
BUS	忙碌	忙碌	忙碌	忙碌	忙碌	

· 指令预取队列的存在使EU和BIU两个 部分可同时进行工作,从而

提高了CPU的效率;

降低了对存储器存取速度的要求

段首地址

段基地址(16位)

• 物理地址由段基地址和偏移地址组成

段首地址

偏移地址

<u>物理地址=段基地址×16+偏移地址</u>

执行单元 EU

功能 —— 指令的执行

- 指令译码
- 指令执行
- 暂存中间运鼻结集ALU中完成
- 保存运算结果特征 —— 在通用寄存器中

→ 在标志寄存器FLAGS

中

组

成:

(1) 16位ALU

- 通用寄存器组: AX BX CX DX SP BP SI DI
- (3) 16位标志寄存器 FLAGS
- (4) EU控制电路

教材第46页 图2-6图

§2.3 8088的内部寄存器

• 含14个16位寄存器,按功能可分为三类

8个通用寄存器

4个段寄存器

2个控制寄存器

深入理解:每个寄存器中数据的含义

1.通用寄存器

数据寄存器(AX, BX, CX, DX) 地址指针寄存器(SP, BP) 变址寄存器(SI, DI)

- 仅4个16位数据寄存器可分为8个8位寄存器:
- AX AH, AL
- \bullet BX \longrightarrow BH, BL
- $CX \longrightarrow CH$, CL
- $DX \longrightarrow DH$, DL

- · AX: 累加器。所有I/O指令都通过AX与接口传送信息,中间运算结果也多放于AX中;
- BX:基址寄存器。在间接寻址中用于存放基地址; TMA
- CX: 计数寄存器。用于在循环或串操作指令中存放计数值;
- DX:数据寄存器。在间接寻址的I/O指令中存放 I/O端口地址;在32位乘除法运算时,存放
 - 高16位数。

1.通用寄存器

数据寄存器 (AX, BX, CX, DX) 地址指针寄存器 (SP, BP) 变址寄存器 (SI, DI)

- · SP: 堆栈指针寄存器,其内容为栈顶的 偏移地址;淡有般核类作时。罗伊斯通州有旅游底
- · BP: 基址指针寄存器,存放堆栈段内某一内存单元的偏移地址。必须了被是电栈运军和中间接军

堆栈及堆栈段的使用

• 堆栈: 内存中一个特殊区域,用于存放暂时不用或

需要保护的数据。常用于响应中断或子程序调用。

列: 若已知 (SS) =1000H

(SP) = 0100H

• 则堆栈段的段首地址

= ?10000H

- 栈顶地址=? (())
- 若该段最后一个单元

地址为10200H,则栈底=?√200 □

堆

栈

X

1.通用寄存器

数据寄存器 (AX, BX, CX, DX) 地址指针寄存器 (SP, BP) 变址寄存器 (SI, DI)

BX与BP在应用上的区别

- 作为通用寄存器,二者均可用于存放数据;
- · 作为基址寄存器,BX表示所寻找的数据在数据段;BP则表示数据在堆栈段。

变址寄存器--与数据段相关

• SI: 源变址寄存器

• DI: 目标变址寄存器

 变址寄存器常用于指令的间接寻址或变址 寻址。特别是在串操作指令中,用SI存放 源操作数的偏移地址,而用DI存放目标操 作数的偏移地址。

2.段寄存器

用于存放相应逻辑段的段基地址

64KB

CS: 代码段寄存器。代码段存放指令代码

DS: 数据段寄存器

ES: 附加段寄存器 这两个段存放操作数

SS:堆栈段寄存器

3.控制寄存器

- IP: 指令指针寄存器,其内容为下一条要执行 指令的偏移地址
- FLAGS: 标志寄存器,存放运算结果的特征
 - 6个状态标志位(CF, SF, AF, PF, OF, ZF) 3个控制标志位(IF, TF, DF)

冰夫杨药

CF: 进运机艺运, 最高证述(微) 范, CF=1 0下: 造出成为论, 鼻水运鼻超出粉的鬼的两起 范围, 下二 600万 ZF: 爱椒茄泡, 结果和胖, 2F=| 8下: 罪多数忘记, 当结果最高范为1,5下一 PT一: 奇瑞松忘论: 运解结果中级8盆中1的情感 和島,网PT-=/ AF: 辅助速态成态后。加(城)操作中, 卷 BOTS 图 BIT 中有进位(路位) AFT 避割的友谊 ,TF=1时,CDU处于草乡村的 TF: 陷中的东泛

粉气防工作名式

工下:中断尼许椒灰溢。工下二度中世界以何及可 屏殿中断清洁.

DT: 方面的标志。在数据半操作时确定领 华方面

<u>引脚定义的方法可大致分</u> 为:

```
地址/数据分时复用引脚
              (AD7
—— AD0 等);
地址/状态分时复用引脚(A19
—A16/S3—S6等);
控制总线:
  每个引脚只传送一种信息(RD
  等);
  引脚电平的高低不同的信号
  (IO/M等);
  CPU工作于不同方式有不同的
  名称和定义(WR/LOCK
  等);
  引脚的输入和输出分别传送不
```


地址线和数据线:

AD7--AD0: 低8位地 址和数据信号分时复 用。在传送地址信号 时为单向,传送数据 信号时为双向。

A19--A16: 高4位地址 信号,分时复用。

A15--A8: 输出8位地

址信号。

控制总线—地址数据相关:

WR:写信号;三态输出

RD: 读控制信号、三态输

出; _

IO/M: 为"0"表示访问内

存,为"1"表示访问接口,

三态输出;

DEN: 低电平有效输出

时,表示数据总线具有有效

数据;

ALE: 高电平有效输出

时,表明CPU地址总线上具

Got til Moto

表示CPU当前正在进行读存储器操作

- · 当RESET高电平持续时间大于4个时 钟周期,CPU产生复位状态;
- 恢复起始状态并重新启动, CS=FFFFH, DS、ES、SS、FLAGS、IP及其余寄存器清零, 指令队列清空

控制总线—中断相关:

INTR: 可屏蔽中断 请求输入、高电平有 效

INTR=1,外设提出中断请求

NMI: 非屏蔽中断请 求输入、上升沿触发

与IF无关

INTA: 中断响应输 出, 低电平有效

控制总线—总线保持:

HOLD: 总线保持请求 信号输入,高电平有 效。

当CPU 以外的其他设备要求占用总线时,通过该引脚向CPU发出请求。

HLDA:总线保持响应信号输出,高电平有效。

CPU对HOLD信号的响

8088CPU的两种工作模式

• 8088可工作于两种模式下

最小模式 最大模式

- 最<u>小模式为单处理器模式,</u>控制信号较少, 一般可不必接总线控制器。
- · 最大模式为多处理器模式,控制信号较多, 须通过总线控制器与总线相连。

控制总线—工作模式选择:

8088是工作在最小模式还是最大模式由MN/MIX端状态决

定。一

MN/MX=0工作于最 大模式,反之工作于 最小模式。

最大最小只区别于 24-34引脚括号部分

最小模式下的连接示意图

最大模式下的连接示意图

8086 v.s. 8088

§2.5 8088总线操作时序

- · 时序的概念: CPU各引脚信号在时间上的关系
- 指令周期:从取指令到执行完毕指令所需要的时间。
- 总线周期: CPU从内存(或接口)存取一个字节操作所需要的时间。
- · 时钟周期:CPU的基本时间计量单位,由CPU主频 决定。
- 一个总线周期至少包括4个时钟周期,每个时钟周期叫做一个T状态,T1、T2、T3、T4

- 存储器按字节组织;
- 每个存储单元存放一个字节的信息;
- 每个存储单元都有一个唯一的20位地址 编号,这个地址被称为内存单元的物理 地址。

- (1) 分段管理 每逻辑段64KB
- (2) 每段的段首地址能够被16整除
- (3)每个内存单元的地址用逻辑地址来表示,由段基地址和段内偏移地址两部分构成,可以写成(XXXXXH: YYYYH)的形式
- PA=XXXXH*16+YYYYH

段基地址(16位)

段内偏移地址(16

段首地址

段首的偏移地

段基地址(16位)

物理地址由段基地址和偏移地址组成

偏移地址

<u>物理地址=段基地址×16+偏移地址</u>

物理地址

- 段基地址 =6000H
- · 段首地址 段為地址 的海州地址为60000H
- 偏移地址 → 0009H

- 物理地址 ______60009H
- 逻辑地址

(6000H: 0009H)

数 据 00H 12H

1 TO AND THE REAL PROPERTY OF THE PARTY OF T

例

已知 CS=1055H, DS=250AH, ES=2EF0H SS=8FF0H 某操作数偏移地址=0204H,

画出各段在内存中的分布、段首地址及操作数的物 理地址

。两个不同程序模块第入主态时,成一类性的逻辑模型的义态和现象

2.组织原则

- (1) 若存放8位字节信息,按顺序存放。
- (2)任意两个相邻的内存单元都可以存放一个16位的数据,成为一个字;在一个字中,将字的低位字节存放在低地址上;高位字节存放在高地址上;每个字节都有相应的地址;低位字节的地址为字地址。
- · (3) 若字地址为偶数,为规则存放,存放的字为规则字;反之,。。。

上访问方式

- 对于8086-- 16位DB, 均为字操作
 - (1) 访问字节,读取其所在偶数规则字的值, 省去不需要的8位
 - (2) 访问字时,若为规则字,进行一次访问;若为非规则字,连续读写两个连续的偶地址字。省去不需要的两个半字信息。

· 对于8088—8位DB,均为字节操作,效率高

8088/8086 CPU的特点

• 采用并行流水线工作方式

CPU内 部结构

- —— 通过设置指令预取队列实现
- 对内存空间实行分段管理
 - ——将内存分为4类段并设置地址段寄存器,以实 现对1MB空间的寻址
- 支持多处理器系统

存储器 寻址部

工作模式

主要内容:

- 微处理器的一般构成及工作原理;
- 8088微处理器的结构;
- 8088微处理器的内部寄存器;
- 8088微处理器的引脚;
- 8088微处理器对内存的管理;