# Note del corso

# Machine Learning per la fisica applicata e fisica delle alte energie

Raviola Alessio

19 ottobre 2022

## 1 Introduzione

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

L'impostazione del corso è di tipo *probabilistico* (statistical learning). Le quantità non note sono trattate come **variabili aleatorie** (RANDOM VARIABLES) a cui viene associata una **distribuzione di probabilità** (PROBABILITY DISTRIBUTION) che descrive il set (pesato) di valori che la variabile può assumere.

Abbiamo tre tipi di machine learning:

- SUPERVISED LEARNING;
- UNSUPERVISED LEARNING;
- REINFORCEMENT LEARNING;

il corso si focalizza sui primi due tipi.

## 1.1 Supervised learning

Il **compito** T consiste nell'imparare una mappa f dagli input  $x \in X$  agli output  $y \in Y$ . Gli **input** x sono chiamati FEATURES (o COVARIATES o PREDICTORS) e sono in genere costituiti da un vettore reale con dimensione fissata, ovvero abbiamo  $X \equiv \mathbb{R}^D$ . Gli **output** sono chiamati LABEL (o TARGET o RESPONSE).

L'esperienza E consiste in un TRAINING SET  $\mathcal{D}$  di N coppie input-output:

$$\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N,$$
(1)

dove N è detta sample size.

La **performance** dipenda dal compito T.

#### 1.1.1 Classificazione

Problemi comuni in machine learning sono quelli di **classificazione**. In un problema di questo tipo lo spazio degli output C è un set *non ordinato* di label  $y = \{1, 2, \dots, C\}$  dette CLASSES. Quello che chiede il problema è di predire una classe dato un input, problemi di questo tipo sono detti di PATTERN RECOGNITION<sup>1</sup>.

**Esempio 1.1** (Classificazione specie di iris). In generale in IMAGE CLASSIFICATION gli input X sono immagini, quindi:

$$X = R^D, \quad D = C \times D_1 \times D_2, \tag{2}$$

 $<sup>^1</sup>$ Se abbiamo solo due classi, i.e. solo due output, allora il problema si dice di CLASSIFICAZIONE BINARIA

| Index | sl [cm] | sw [cm] | pl [cm] | pw [cm] | Label      |
|-------|---------|---------|---------|---------|------------|
| 0     | 5.1     | 3.5     | 1.4     | 0.2     | Setosa     |
| 1     | 4.9     | 3.0     | 1.4     | 0.2     | Setosa     |
| :     | :       | :       | :       | :       | :          |
| 50    | 7.0     | 3.2     | 4.7     | 1.4     | Versicolor |
| :     | :       | :       | :       | :       | :          |
| 150   | 5.9     | 3.0     | 5.1     | 1.8     | Virginica  |

Tabella 1: Design matrix del training set per classificazione specie di iris.

ove C=3 sono i canali RGB. E cerchiamo una mappa

$$f: X \longrightarrow Y$$
 (3)

che ci dica a quale delle classi appartenenti a Y l'immagine appartiene. Per le specie di iris però i botanisti hanno individuato 4 caratteristiche numeriche: lunghezza e larghezza del sepalo e del petalo; dunque abbiamo  $X=\mathbb{R}^4$ . Supponiamo che il traning set sia una collezione di 150 esempi delle 3 specie, 50 per ognuna. I dati possono essere raccolti in una matrice detta DESIGN MATRIX come TABULAR DATA - come in Tabella 1.

Se abbiamo N elementi nel training set, ognuno con dimensione  $D = \dim X + \dim Y$ , allora abbiamo:

- BIG DATA se  $N \gg D$ , ovvero se il numero di elementi è molto superiore alla loro dimensione;
- WIDE DATA se  $D \gg N$ , ovvero se la dimensione degli elementi è molto superiore al loro numero.

Una buona idea è fare una *esplorazione dei dati* (EXPLOATORY DATA ANALYSIS) per vedere se ci sono dei pattern ovvi, ad esempio tramite grafici. Per grandi basi dati (big data) possiamo procedere mediante DIMENSIONALITY REDUCTION:

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = \begin{cases} p_l < 2.45 \,\text{cm} & \text{Setosa} \\ \text{Altrimenti} & \begin{cases} p_w < 1.75 \,\text{cm} & \text{Versicolor} \\ \text{Altrimenti} & \text{Virginica} \end{cases} \end{cases}$$
 DECISION TREE, (4)

ove  $\theta$  è detto THRESHOLD PARAMETER. Questo decision tree è visualizzato in Figura 1. La performance può essere quindi misurata con il MISCALSSIFICATION RATE:

$$\mathcal{L}(\theta) \equiv \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(y_n \neq f(\boldsymbol{x_n}, \boldsymbol{\theta})), \qquad (5)$$

dove  $\mathbb{I}(e)$  è l'indicatore binario

$$\mathbb{I}(e) = \begin{cases} 
1 \text{ se } e \text{ è vero} \\ 
0 \text{ se } e \text{ è falso} 
\end{cases}$$
(6)

Nel caso in cui alcuni errori di classificazione siano più dannosi di altri posso definire una less function  $l(y, \hat{y})$  e ridefinire il misclassification rate come l'EMPIRICAL RISK:

$$\mathcal{L}(\theta) \equiv \frac{1}{N} \sum_{n=1}^{N} l(y_n, f(\boldsymbol{x_n}, \boldsymbol{\theta})).$$
 (7)

Un modo che abbiamo per definire il TRAINING (o MODEL FITTING) è modificare questo rischio empirico, ovvero trovare  $\hat{\theta}$  tale che

$$\mathcal{L}(\hat{\theta}) = \min[\mathcal{L}(\theta)]. \tag{8}$$



Figura 1: Decision tree per problema di classificazione specie di iris.

## 2 Richiami di probabilità

Abbiamo diverse definizioni di probabilità.

**Definizione Frequentistica** La probabilità di un evento è il rapporto tra il numero di casi favorevoli e il numero di casi possibili.

**Definizione Soggettiva** La probabilità di un evento è il prezzo che un individuo ritiene equo pagare per ricevere 1 se l'evento si verifica e 0 altrimenti.

Definizione Bayesiana La probabilità di un evento è l'incertezza con cui l'evento si verifica.

**Definizione Assiomatica** Kolmogorov nel 1933 costruisce la teoria della probabilità a partire da degli assiomi.

L'incertezza può essere di due tipi:

aleatoria ovvero è una data uncertanty;

epistemica ovvero è una MODEL UNCERTANTY;

## 2.1 Proprietà della probabilità

Chiamiamo Pr(A) la probabilità dell'evento A, allora abbiamo le seguenti proprietà.

Proprietà 2.1.1 (Joint probability). Se A e B sono due eventi indipendenti, allora:

$$Pr(A \wedge B) \equiv Pr(A, B) = Pr(A) \cdot Pr(B). \tag{9}$$

**Proprietà 2.1.2** (Union probability). Anche detta regola di unione esclusione. Se A e B sono due eventi indipendenti, allora:

$$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B). \tag{10}$$

Proprietà 2.1.3 (Conditional probability).

$$\Pr(A|B) = \frac{\Pr(A,B)}{\Pr(A)}.$$
(11)

Se i due eventi sono indipendenti questa si riduce a Pr(A|B) = Pr(A).

Proprietà 2.1.4 (Conditional independece).

$$Pr(A, B|C) = Pr(A|C) \cdot Pr(B|C)$$
(12)

#### 2.2 Random variables

Rappresentiamo con X una variabile di cui non conosciamo il valore e la chiamiamo variabile casuale (RANDOM VARIABLE). Il set dei valori che X può assumere è detto spazio di sampling (SAMPLING SPACE). Un evento è dunque un set di risultati dato un sampling space definito.

Se la variabile è **discreta** abbiamo un sampling space numerabile e la PMF (PROBABILITY MASS FUNCTION):

$$p(x) \equiv \Pr(X = x). \tag{13}$$

Se invece la variabile è **continua** abbiamo un samplig space non numberabile e la CDF (CUMULATIVE DISTRIBUTION FUNCTION):

$$P(x) \equiv \Pr(X \le x), \tag{14}$$

da cui possiamo definire la PDF (PROBABILITY DENSITY FUNCTION):

$$p(x) \equiv \frac{d}{dx} P(x), \qquad (15)$$

da cui segue:

$$\Pr\left(a \le X \le b\right) = \int_{a}^{b} p\left(x\right) = P\left(b\right) - P\left(a\right) \tag{16}$$

$$\Longrightarrow \Pr\left(x \le X \le x + dx\right) \approx p\left(x\right). \tag{17}$$

Se la CDF P(x) è monotona crescente allora la sua inversa  $P^{-1}(q)$  è detta quantile. Il valore  $x_q = P^{-1}(q)$  è il valore per cui  $\Pr(X \le x_q) < q$ , ovvero il quantile q della distribuzione P.

Se abbiamo due variabili casuali X e Y allora possiamo definire la JOINT DISTRIBUTION:

$$p(x,y) = p(X = x, Y = y) \equiv p(X = x \land Y = y).$$
 (18)

Se le due variabili sono indipendenti e con cardinalità finita possiamo definire la distribuzione marginale (MARGINAL DISTRIBUTION) come:

$$p(X = x) = \sum_{y} p(X = x, Y = y),$$
 (19)

altrimenti se sono dipendenti la distribuzione condizionale (CONDITIONAL DISTRIBUTION) come:

$$p(Y = y|X = x) = \frac{p(X = x, Y = y)}{p(X = x)}$$

$$\Rightarrow p(x,y) = p(y|x) \cdot p(x),$$
(20)

da cui segue la **chain rule**:

$$p(x_1, D) = p(x_1) p(x_2|x_1) p(x_3|x_1, x_2) \cdots p(x_D|p_{1:D-1}).$$
(21)

Due variabili si dicono MARGINALMENTE INDIPENDENTI se

$$X \perp Y \iff p(X,Y) = p(X)p(Y), \tag{22}$$

mentre si dicono condizionalmente indipendenti se

$$X \perp Y \iff p(X, Y|Z) = p(X|Z) p(Y|Z).$$
 (23)

### 2.3 Momenti di una distribuzione