Relación de Equivalencia y Orden

Ronald Mas, Angel Ramirez

2 de junio de 2021

Contenido

- Relación de equivalencia
- Relación de orden parcial y total
- Ordenamiento por inclusión parcial y total

Relación de equivalencia

Dado el conjunto $A \neq \emptyset$. Una relación \sim definida sobre A decimos que es una **relación de equivalencia** si cumple las siguientes propiedades:

- Reflexiva Si para todo $a \in A$ se tiene $(a, a) \in \sim$.
- ii) Simétrica Si $(a, b) \in \sim$ entonces $(b, a) \in \sim$.
- ii) Transitiva Si $(a, b) \in \sim y (b, c) \in \sim$ entonces $(a, c) \in \sim$.

Notaciones:

- Escribimos $a \sim b$ en vez de $(a, b) \in \sim$.
- Usamos R, \sim, \equiv , etc para denotar a un relación de equivalencia.

Relación de equivalencia

Dado el conjunto $A \neq \emptyset$. Una relación \sim definida sobre A decimos que es una **relación de equivalencia** si cumple las siguientes propiedades:

- i) Reflexiva Si para todo $a \in A$ se tiene $(a, a) \in \sim$.
- ii) Simétrica Si $(a, b) \in \sim$ entonces $(b, a) \in \sim$.
- iii) Transitiva Si $(a,b) \in \sim y (b,c) \in \sim \text{ entonces } (a,c) \in \sim.$

Notaciones

- Escribimos $a \sim b$ en vez de $(a, b) \in \sim$.
- Usamos R, \sim, \equiv , etc para denotar a un relación de equivalencia.

Relación de equivalencia

Dado el conjunto $A \neq \emptyset$. Una relación \sim definida sobre A decimos que es una **relación de equivalencia** si cumple las siguientes propiedades:

- i) Reflexiva Si para todo $a \in A$ se tiene $(a, a) \in \sim$.
- ii) Simétrica Si $(a, b) \in \sim$ entonces $(b, a) \in \sim$.
- iii) Transitiva Si $(a, b) \in \sim y (b, c) \in \sim \text{ entonces } (a, c) \in \sim.$

Notaciones:

- Escribimos $a \sim b$ en vez de $(a, b) \in \sim$.
- Usamos R, \sim, \equiv, etc para denotar a un relación de equivalencia.

Para $A = \mathbb{Z}$ se define la relación \sim sobre A como:

$$x \sim y \leftrightarrow x + y$$
 es un número par.

En efecto

- Reflexiva: x + x = 2x, para todo $x \in \mathbb{Z}$. \checkmark
- Simétrica: Si x+y=2k para algún $k\in\mathbb{Z}$ entonces y+x=2k para algún $k\in\mathbb{Z}$. \checkmark
- Transitiva: Si x + y = 2k y y + z = 2r para algunos $k, r \in \mathbb{Z}$ entonces x + z = 2k + 2r 2y es par. $\sqrt{}$

Por tanto \sim es una relación de equivalencia.

Para $A = \mathbb{Z}$ se define la relación \sim sobre A como:

$$x \sim y \leftrightarrow x + y$$
 es un número par.

En efecto:

- Reflexiva: x + x = 2x, para todo $x \in \mathbb{Z}$. \checkmark
- Simétrica: Si x+y=2k para algún $k\in\mathbb{Z}$ entonces y+x=2k para algún $k\in\mathbb{Z}$. \checkmark
- Transitiva: Si x + y = 2k y y + z = 2r para algunos $k, r \in \mathbb{Z}$ entonces x + z = 2k + 2r 2y es par. \checkmark

Por tanto \sim es una relación de equivalencia.

Para $A = M_{2\times 2}(\mathbb{Z})$ se define la relación \sim sobre A como:

$$A \sim B \leftrightarrow det(A - B) = 0$$

En efecto

- Reflexiva: det(A A) = 0, para todo $A \in M_{2 \times 2}(\mathbb{Z})$. \checkmark
- Simétrica: Si det(A B) = 0 entonces $det(B A) = (-1)^2 . det(A B) = 0. \checkmark$
- Transitiva: Si det(A B) = 0 y det(B C) = 0 entonces det(A C) = 0. \times

Considera:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 5 & 9 \end{bmatrix} \text{ y } C = \begin{bmatrix} 7 & 8 \\ 5 & 9 \end{bmatrix}.$$

Por tanto \sim no es una relación de equivalencia.

Para $A = M_{2\times 2}(\mathbb{Z})$ se define la relación \sim sobre A como:

$$A \sim B \leftrightarrow det(A - B) = 0$$

En efecto

- Reflexiva: det(A A) = 0, para todo $A \in M_{2 \times 2}(\mathbb{Z})$. \checkmark
- Simétrica: Si det(A B) = 0 entonces $det(B A) = (-1)^2 . det(A B) = 0 . \checkmark$
- Transitiva: Si det(A B) = 0 y det(B C) = 0 entonces det(A C) = 0.

Considera:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = \begin{bmatrix} 1 & 2 \\ 5 & 9 \end{bmatrix}$$
 y $C = \begin{bmatrix} 7 & 8 \\ 5 & 9 \end{bmatrix}$.

Por tanto \sim no es una relación de equivalencia.

Clase de equivalencia y conjunto cociente

Definición

Sea R una relación de equivalencia definida sobre el conjunto $A \neq \emptyset$, definamos la clase de equivalencia de $a \in A$ como:

$$R[a] = \{b \in A : bRa\}.$$

Definición

Sea R una relación de equivalencia definida sobre el conjunto $A \neq \emptyset$, definamos el conjunto cociente

$$\frac{A}{R} = \{R[a] : a \in A\}$$

Observaciones

- Usamos $R[x], [x], \overline{x}$, etc para denotar la clase de equivalencia de x.
- La relación de equivalencia tiene la propiedad de particionar el conjunto A.

Clase de equivalencia y conjunto cociente

Definición

Sea R una relación de equivalencia definida sobre el conjunto $A \neq \emptyset$, definamos la clase de equivalencia de $a \in A$ como:

$$R[a] = \{b \in A : bRa\}.$$

Definición

Sea R una relación de equivalencia definida sobre el conjunto $A \neq \emptyset$, definamos el conjunto cociente

$$\frac{A}{R} = \{R[a] : a \in A\}$$

Observaciones:

- Usamos $R[x], [x], \overline{x}, etc$ para denotar la clase de equivalencia de x.
- La relación de equivalencia tiene la propiedad de particionar el conjunto A.

Ejemplo: Del ejemplo 1) se tiene que:

•
$$[0] = [\pm 2] = [\pm 4] = \cdots$$

•
$$[\pm 1] = [\pm 3] = [\pm 5] = \cdots$$

Luego se tiene: $\frac{\mathbb{Z}}{\sim} = \{[0], [1]\}$

Es decir se tiene:

Propiedades

Para toda relación R en X con $X \neq \emptyset$, se tiene:

- 1) $R[x] \neq \emptyset$, para todo $x \in X$.
- 2) Para todo par de elementos $x, y \in X$ se cumple:

$$R[x] = R[y] \circ R[x] \cap R[y] = \emptyset.$$

3) Si R y S son relaciones de equivalencia sobre X y $R[x] = S[x], \forall x \in X$ entonces R = S.

Prueba:

1) Como R es reflexiva se tiene que $x \in R[x]$, $\forall x \in X$, luego R[x] es no nulo.

Continua Prueba:

- 2) Sean $x, y \in X$ se presenta dos casos:
 - a) Si x R y, entonces veamos que $R[x] \subseteq R[y]$. Sea $z \in R[x]$ entonces x R z, por ser R simétrica z R x, luego por ser R transistiva z R y, de donde se concluye que $z \in R[y]$. La otra inclusión es similar.
 - b) Si x no esta relacionado con y, supomgamos que $R[x] \cap R[y] \neq \emptyset$ entonces existe $z \in X$ tal que x R z y y R z, luego por ser R simétrica y transitiva se tiene x R y lo cual es una contradicción.
- 3) Sea $(x,y) \in R$ entonces $y \in R[x] = S[x]$ entonces $(x,y) \in S$. La otra inclusión es similar.

Relación de orden parcial

Dado el conjunto $A \neq \emptyset$ y una relación \leq definida sobre A. Decimos que \leq es una **relación de orden parcial** si cumple las siguientes propiedades:

- i) Reflexiva Si para todo $a \in A$ se tiene $(a, a) \in \underline{\prec}$.
- ii) Antisimétrica Si $(a, b) \in \preceq$ y $(b, a) \in \preceq$ entonces a = b.
- iii) Transitiva Si $(a, b) \in \preceq$ y $(b, c) \in \preceq$ entonces $(a, c) \in \preceq$.

Notaciones

- Escribimos $a \leq b$ en vez de $(a, b) \in \leq$.
- Usamos las letras R, \leq, \prec, etc para denotar a un relación de orden.

Relación de orden parcial

Dado el conjunto $A \neq \emptyset$ y una relación \leq definida sobre A. Decimos que \leq es una **relación de orden parcial** si cumple las siguientes propiedades:

- i) Reflexiva Si para todo $a \in A$ se tiene $(a, a) \in \preceq$.
- ii) Antisimétrica Si $(a, b) \in \preceq$ y $(b, a) \in \preceq$ entonces a = b.
- iii) Transitiva Si $(a, b) \in \preceq$ y $(b, c) \in \preceq$ entonces $(a, c) \in \preceq$.

Notaciones:

- Escribimos $a \leq b$ en vez de $(a, b) \in \leq$.
- Usamos las letras R, \leq, \prec, etc para denotar a un relación de orden.

Relación de orden total o lineal

Decimos que ≤ es una relación de orden total o lineal si cumple:

- i) \leq es una relación de orden parcial.
- ii) Para todo $a, b \in A$ se tiene que $(a, b) \in \preceq$ o $(b, a) \in \preceq$

Observación

 Los elementos de A que cumplan la propiedad ii) se denominan elementos comparables caso contrario serán elementos no comparables.

Definición

Sea (X, \leq) un conjunto ordenado, decimos que un elemento $x \in X$ es un predecesor inmediato del elemento $y \in X$ si:

- \bullet $x \prec y$.
- No existe $t \in X$ tal que $x \prec t \prec y$.

Denotamos la relación de un predecesor inmediato como <.

Relación de orden total o lineal

Decimos que ≤ es una relación de orden total o lineal si cumple:

- i) \leq es una relación de orden parcial.
- ii) Para todo $a, b \in A$ se tiene que $(a, b) \in \preceq$ o $(b, a) \in \preceq$

Observación:

 Los elementos de A que cumplan la propiedad ii) se denominan elementos comparables caso contrario serán elementos no comparables.

Definición

Sea (X, \preceq) un conjunto ordenado, decimos que un elemento $x \in X$ es un predecesor inmediato del elemento $y \in X$ si:

- \bullet $x \prec y$.
- No existe $t \in X$ tal que $x \prec t \prec y$.

Denotamos la relación de un predecesor inmediato como ⊲.

Proposición

Sea (X, \preceq) un conjunto ordenado finito. Entonces para todo $x, y \in X$, se tiene que $x \prec y$ si y sólo si existen elementos $\{x_i\}_{i=1}^k \subset X$ tal que

$$x \triangleleft x_1 \triangleleft \cdots \triangleleft x_k \triangleleft y$$

Demostración.

Para k = 0 se tiene que $x \triangleleft y$.

La ida queda como tarea, veamos la vuelta:

Si $x \triangleleft x_1 \triangleleft \cdots \triangleleft x_k \triangleleft y$ entonces $x \preceq x_1 \preceq \cdots \preceq x_k \preceq y$ y por la transitividad de \preceq se tiene que $x \preceq y$.

Para $A = \mathbb{N}$ definamos la relación | sobre A como:

$$a|b \leftrightarrow \text{existe } k \in \mathbb{N} \text{ tal que } b = ak.$$

- Reflexiva: $a|a, \forall a \in A.\checkmark$
- Antisimétrica: Si a|b y b|a entonces existen r, s ∈ N tal que b = ra y a = sb, luego sb = a = sra. Al simplificar a se tiene sr = 1 lo que implica que s = r = 1, por tanto a = b.√
- Transitiva: Si a|b y b|c entonces existen $r, s \in \mathbb{N}$ tal que b = ra y c = sb, luego c = sra, por tanto $a|c. \checkmark$

Decimos que | es una relación de orden parcial pero no total ya que existen elementos no comparables como por ejemplo 2 y 3.