Dynamic Programming

Lecture 9

Timothy Kim GWU CSCI 6212

All-Pairs Shortest Path

- Input: Directed Graph
- Output: Shortest distances between all possible source-destination pair vertices
- Reduce the problem to n'dijkstra's
 - $O(n \cdot m \log n)$
 - If G is sparse: $O(n^2 \log n)$
 - If G is dense: O(n³ log n)
 - What about negative edges?

Possible solutions

- For negative edges reduce the problem to n-Bellman-Ford
 - \bullet O(n·m·n)
 - If G is sparse: O(n³)
 - If G is dense: $O(n^4)$
- Can we do better?

Floyd-Warshall Algorithm

- Principle of optimality
 - Key point: order the vertices $V = \{1, 2, ..., n\}$ (similar to Knapsack)
- Notation
 - $V^k = \{1, 2, ..., k\}$
- Suppose G has no negative cycle
 - Fix a source, $i \in V$,
 - Fix a destination, $j \in V$,
 - Fix a value, $k \in \{1, 2, ..., n\}$
- Let $P = shortest i-j path with internal nodes in <math>V^k$

Principle of optimality

- Case 1: if k is not internal to P
 - P is the shortest cycle free i—j path using V^{k-1}
- Case 2: if k is internal to P
 - $P_1 = \text{shortest } i \rightarrow k \text{ path, with } V_{k-1}$
 - $P_2 = \text{shortest } k \rightarrow j \text{ path, with } V_{k-1}$

Recurrence

- $A_{i,j,k} = length of the shortest i \rightarrow j path with internal node V^k$
- $A_{i,j,k} = \min \{ A_{i,j,k-1}, A_{i,k,k-1} + A_{k,j,k-1} \}$
- For all possible values of i,j,k

Algorithm

```
1. A = 3d-Array(i, j, k)
2. A[i,j,0] = if (i == j) \rightarrow 0
               if (i,j) \in E \rightarrow Length[i,j]
              else → ∞
5. for k = 1 to n:
6. for i = 1 to n:
7. for j = 1 to n:
8.
         A[i,j,k] = min(A[i,j,k-1],
                          A[i,k,k-1] + A[k,j,k-1])
```

Negative cycle?

• If A[i,i,n] < 0 for at least one $i \in V$ then there must be a negative cycle.

• When calculating A[i,i,n], the second case must've produced a negative

value.

Reconstruction?

• We need to keep track how many vertices we used to generate the shortest path in order to back track.

•B[i,j] = max label of an internal node on a shortest i - j path.

```
1. A = 3d-Array(i, j, k)
2. B = 2d-Array
3. A[i,j,0] = if (i == j) \rightarrow 0
              if (i,j) \in E \rightarrow Length[i,j]
           else → ∞
6. for k = 1 to n:
7. for i = 1 to n:
8. for j = 1 to n:
9. case1 = A[i,j,k-1]
10. case2 = A[i,k,k-1] + A[k,j,k-1]
11. if (case1 < case):
12. A[i,j,k] = case1
13. else:
         A[i,j,k] = case2
14.
15.
           B[i,j] = k
```

APSP Comparison

	Sparse	Dense	Note
n·Dijkstra's	O(n² log n)	O(n³ log n)	Non-negative edges
n-Bellman-Ford	O(n³)	O(n ⁴)	Negative Edges
Floyd-Warshall	O(n³)	O(n³)	Negative Edges

Johnson's Algorithm

- We just want to Dijkstra's because it's so fast. But we have to deal with negative edges.
- Can we get rid of them?
- Idea 1: shift the value to eliminate the negatives.
 - It works if two paths have same # of edges

Getting Rid of negative edges

- Idea 2:
 - Fix a P_v for each $v \in V$.
 - For every e = (u,v) of G, $c'_e = c_e + P_u + P_v$
 - Given a path, P: s \rightarrow t, L = Σ c
 - Note, Σ c'_e = Σ c_e + P_u + P_v
 - Then $L' = L + P_s P_t$
 - This preserves shortest path!
- •Only if we can find {Pv} that will make every path length non-negative...

Johnson's Algorithm

- Algorithm Reduction
 - 1 invocation of Bellman-Ford to get rid of negative edges O(mn)
 - n invocation of Dijkstra to find all shortest paths O(n m log n)
- Bellman-Ford to rid of negative edges:
 - -Add a starting vertex S and create n edges between S and all other vertices with edge length of 0.
 - -Call Bellman-Ford to find the shortest paths using S as the source.
 - -P_v = length of the shortest path from Bellman-Ford
- But does it work?

Proof

- Claim: for every edge e \in G, c'_e = c_e + P_u + P_v is non-negative
- Proof:
 - -Fix an edge (u,v)
 - $P_{u} = length of shortest path S \rightarrow u$
 - $P_v = length \ of \ shortest \ path \ S \rightarrow v$
 - -Let P = a shortest $S \to u$ path in G'
 - $P + (u,v) = S \rightarrow v \text{ path with length } P_u + c_{u \rightarrow v}$

$$P_{v} \le P_{u} + c_{u \to v}$$

$$c'_{u \rightarrow v} = c_{u \rightarrow v} + P_u - P_v \ge 0$$

Johnson's Algorithm

- 1) $G' = \{S + V, n \text{ edges with 0 length from S to } v + E\}$ O(n)
- 2) Run Bellman-Ford on G' with S as source, if negative cycle is detected then halt O(mn)
- 3) For each $v \in G$, $P_v = \text{length of shortest path } S \rightarrow v \text{ in } G'$, and for all $e \in G$, calculate the new length: $c'_e = c_e + P_u P_v = O(m)$
- 4) For each vertex u of G, run Dijkstra in G with {c'_e} using u as source: d'(u,v) O(n m log n)
- 5) For each pair of $u,v \in G$, $d(u,v) = d'(u,v) P_u + P_v$ $O(n^2)$

APSP Comparison

	Raw	Sparse	Dense	Note
n-Dijkstra's	O(n m log n)	O(n² log n)	O(n³ log n)	Non-negative edges
n-Bellman-Ford	O(n m n)	O(n³)	O(n ⁴)	Negative Edges
Floyd-Warshall	O(n ³)	O(n ³)	O(n ³)	Negative Edges
Johnson's	O(n m log n)	O(n² log n)	O(n³ log n)	Negative Edges