MÉTODO DE FORD-FULKERSON E O PROBLEMA DO FLUXO MÁXIMO

PROJETO DE ALGORITMOS II

Alunos:

Renan Barros Rodrigo Almeida

TÓPICOS

- Problema computacional
- 2. Técnica de solução
- 3. Análise de complexidade do algoritmo
- 4. Pseudocódigo
- Implementação

O Problema Computacional

O que é o Problema do Fluxo Máximo?

- O problema do fluxo máximo busca determinar a maior quantidade de fluxo que pode ser enviada de uma fonte para um sorvedouro em uma rede de fluxo.
- Aplicações práticas:
 - Redes de comunicação
 - Logística e transporte 🚚
 - Alocação de recursos

Definição Formal

Uma rede de fluxo é um grafo direcionado G = (V, E) onde:

- Cada aresta (u, v) tem uma capacidade c(u, v) que limita o fluxo.
- Existe uma fonte s e um sorvedouro t.
- O objetivo é encontrar um fluxo f que:
 - ∘ Respeite a capacidade das arestas: $0 \le f(u, v) \le c(u, v)$
 - Obedeça a conservação do fluxo (exceto na fonte e no sorvedouro).
 - Maximize o fluxo total enviado de s para t.

Técnica de Solução

- Como funciona o Método de Ford-Fulkerson?
 - Criar uma rede residual
 - Encontrar um caminho aumentador
 - Aumentar o fluxo pelo menor valor disponível
 - Atualizar a rede residual
 - Repetir até não haver mais caminhos disponíveis

Exemplo

Exemplo

Análise de Complexidade

Qual a eficiência do algoritmo?

- No pior caso, pode ser infinito com números irracionais X
- Se as capacidades forem inteiras, tempo máximo de O(EF)

Pseudocódigo

RETORNAR fluxo_maximo

FIM FORD-FULKERSON

```
INICIO FORD-FULKERSON(grafo, origem, destino)
 fluxo_maximo + 0 // Inicializa o fluxo máximo
 ENQUANTO existir caminho aumentador (origem, destino, caminho)
   fluxo_caminho ← INFINITO
   v ← destino
   // Encontra a menor capacidade no caminho aumentador
   ENQUANTO v ≠ origem
     u ← caminho[v]
     fluxo_caminho + MIN(fluxo_caminho, capacidade(u, v))
     v ← caminho[v]
   FIM ENQUANTO
   // Atualiza a rede residual
   v ← destino
   ENQUANTO v ≠ origem
     u ← caminho[v]
     capacidade(u, v) ← capacidade(u, v) - fluxo_caminho
     capacidade(v, u) + capacidade(v, u) + fluxo_caminho // Fluxo reverso
     v + caminho[v]
   FIM ENQUANTO
   fluxo_maximo ← fluxo_maximo + fluxo_caminho // Adiciona fluxo ao total
 FIM ENQUANTO
```


Pseudocódigo

Função Busca-Aumentante(origem, destino, caminho, visitado) visitado[origem] ← Verdadeiro SE origem = destino ENTÃO Retornar Verdadeiro

```
PARA cada vértice v no grafo

SE visitado[v] = Falso E capacidade(origem, v) > 0 ENTAO

caminho[v] ← origem

SE Busca-Aumentante(v, destino, caminho, visitado) ENTÃO

Retornar Verdadeiro

FIM SE

FIM SE

FIM PARA
```

Retornar FALSO # Nenhum caminho encontrado FIM Função

