A project on predicting Agent Bonus for a Life Insurance Industry **CAPSTONE PROJECT** Kumar Siddharth

Table of Contents

Problem Statement	4
Univariate/Bivariate Analysis.	6
Data Engineering	8
Correlation Plot.	
We have used One-Hot and Label Encoding for Nominal values	13
One-Hot Encoding	14
Clustering.	
Model building.	19
Linear Regression	
OLS Model	22
XGBRegressor Model	23
Random forest Model	23
ANN Model	24
Classification Model	25

Problem Statement: Life Insurance Data

- The dataset belongs to a leading life insurance company.
- The company wants to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.

Need of the study/project

- Design appropriate engagement activity for their high performing agents
- Upskill programs for low performing agents.

Understanding business/social opportunity

- More Market Share
- More Profits
- Increase in awareness for Life Insurance
- More lives getting insured

Why is Agent Bonus Important for Company?

- Motivate Agent for More Sales
- Increase Market Share of Company
- Classify Agents into Different Bonus Categories
- Helps in Designing New Products
- · Retain Agents
- Increase Profits for the Company
- Important from Regulation point of view

What Type of problem is this?

- Regression Predictive Modelling
- Regression is the problem of predicting a continuous quantity output.
- Regression predictive modeling is the task of approximating a mapping function (f) from input variables (X) to a continuous output (target) variable (y).
- In this case we are predicting Bonus to be paid to Agent for a policy sold by him.
- Target Variable (Y) = AgentBonus

The below libraries were imported as a first step for the dataset Analysis.

Numpy Version 1.18.5 Pandas Version 1.0.5 Seaborn Version 0.11.2 Matplotlib Version 3.2.2

Overview of the Dataset:

The dataset has been provided for a month

	CustID	AgentBonus	Age	CustTenure	Channel	Occupation	EducationField	Gender	ExistingProdType	Designation	NumberOfPolicy	Marital Status	Mon
0	7000000	4409	22.00	4.00	Agent	Salaried	Graduate	Female	3	Manager	2.00	Single	
1	7000001	2214	11.00	2.00	Third Party Partner	Salaried	Graduate	Male	4	Manager	4.00	Divorced	
2	7000002	4273	26.00	4.00	Agent	Free Lancer	Post Graduate	Male	4	Exe	3.00	Unmarried	
3	7000003	1791	11.00	nan	Third Party Partner	Salaried	Graduate	Fe male	3	Executive	3.00	Divorced	
4	7000004	2955	6.00	nan	Agent	Small Business	UG	Male	3	Executive	4.00	Divorced	

The dataset is comprised of 4520 records with 20 attributes. Attributes are as follow age, gender, AgentBonus, Occupation, Education Field and CustTenure as shown in Fig. 1. The data was in structured format.

The datatype of variables are of int, float and object as shown in Fig.2

Numerical Datatype:

```
['Channel', 'Occupation', 'EducationField', 'Gender', 'ExistingProdType', 'Designation', 'MaritalStatus', 'Complaint', 'Zone', 'PaymentMethod']
```

Categorical Datatype:

['AgentBonus', 'Age', 'CustTenure', 'NumberOfPolicy', 'MonthlyIncome', 'ExistingPolicyTenure', 'SumAssured', 'LastMonthCalls', 'CustCareScore']

Fig.3

The variable CustID has been removed since it does not contribute in the analysis.

The datatype of the variables: Complaint", "ExistingProdType" has been changed to Object since it represents categorical datatype as shown in Fig.3

The dataset does not have any duplicate rows.

			column_name	percent_missing
		Age	Age	5.951327
		MonthlyIncome	MonthlyIncome	5.221239
		CustTenure	CustTenure	5.000000
		ExistingPolicyTenure	ExistingPolicyTenure	4.070796
		SumAssured	SumAssured	3.407080
		CustCareScore	CustCareScore	1.150442
		NumberOfPolicy	NumberOfPolicy	0.995575
		ExistingProdType	ExistingProdType	0.000000
		Designation	Designation	0.000000
		Gender	Gender	0.000000
		Marital Status	MaritalStatus	0.000000
		EducationField	EducationField	0.000000
. Carrie and the carrier and the carr	269	Complaint	Complaint	0.000000
lyIncome enure	236	Occupation	Occupation	0.000000
enure ingPolicyTenure	184	Channel	Channel	0.000000
sured	154	Zone	Zone	0.000000
reScore	52	PaymentMethod	PaymentMethod	0.000000
OfPolicy	45	LastMonthCalls	LastMonthCalls	0.000000
: int64		AgentBonus	AgentBonus	0.000000

```
Column with lowest amount of missings contains 0.0 % missings. Column with highest amount of missings contains 5.951327433628319 % missings.
```

Fig.5

The above variables have high percentage of Null values as mentioned in the Fig 5

Analysis on Variables

We have provided the below analysis with data and plots for each variable of the dataset.

AgentBonus

The variable AgentBonus is used as a dependent variable for the analysis.

count	4520.00		
mean	4077.84		
std	1403.32		
min	1605.00		
25%	3027.75		
50%	3911.50		
75%	4867.25		
max	9608.00		
Name:	AgentBonus,	dtype:	float64

Fig.6

The datatype of the variable is int having 4520 rows without null values.

Fig.7

Check the difference between 75% and Max value as mentioned by the above Fig. looks like there are outliers/extreme values in the Agent Bonus variable. However, as we are not sure if these are real outliers, we will not treat them right now.

Fig.8 Fig.9

The above plot shows the Univariate analysis of the **variable:AgentBonus** and is found to be right skewed. The above plot shows the histplot on Agent Bonus on the logarithmic data.

Age

Fig.10

The Age variable has 269 null values which would be treated later during the Data Engineering.

Fig.11

We have observed that the Age variable has few outliers since the plot is right skewed as shown by Fig.11

The difference between 75% and Max value as mentioned by the above **Fig.10** shows that there are outliers in the variable.

Channel

Online	468
Third Party Partner	858
Agent	3194
Name: Channel, dtype:	int64

Fig.12

The variable: Channel is of categorical datatype.

The above Fig.12 shows the unique count for each category. We have observed that the data for **Channel: Agent** is the highest as compared to another category.

Fig.13

The above plot Fig.13 shows the distribution of the number of channels through which Acquisition of the customer is done.

Fig.14

The Pie plot shows the distribution of categories through which Acquisition of the customer is done.

Fig.15

The above Boxplot shows the impact of Channel on the dependent variable: AgentBonus.

We have observed that there is no impact of the Channel on AgentBonus

Occupation

Free Lancer	2				
Laarge Business	153		Free_Lancer	2	
Large Business	255		Large_Business	408	
Small Business	1918		Small_Business	1918	
Salaried	2192		Salaried	2192	
Name: Occupation,	dtype:	int64	Name: Occupation,	dtype:	int64

Fig.16 Fig.17

The variable: Occupation is a type of category with no null values.

The above Fig.16 shows the unique count for each category. We have observed that the data for **Occupation: Salaried** is the highest as compared to another category.

We have also observed that the categories: "Laarge Business", and "Large Business" represents the same category, so the category: "Laarge Business" is merged with "Large Business"

Fig.17

The above Fig.17 shows the unique count for each category after fixing the category names.

The category: Free_Lancer has the least data with 2 rows.

Fig.18

The above is the count plot of the variable: Occupation

Bivariate Analysis:

Fig.19

We have observed from Fig.19 that the category in Occupation has no visible impact on the dependent variable: AgentBonus except Free_Lancer which has only 2 rows.

EducationField

MBA	74		
UG	230	MBA	74
Post Graduate	252	Post_Graduate	252
Engineer	408	Engineer	408
Diploma	496	Diploma	496
Under Graduate	1190	Under_Graduate	1420
Graduate	1870	Graduate	1870
Name: EducationF	ield, dtype: int64	Name: EducationE	ield dtyne: int64

Fig.20

The above Fig.20 shows that the variable is of Object datatype with no null values.

We have observed that the category name: "UG" & "Under Graduate" are redundant and needs to be merged.

Fig.21

The above plot shows that the Customer who open for the Insurance are the highest whose EducationField is "Graduation" and least for "MBA"

Let's check if being a EducationField has any AgentBonus impact

Fig.22

The above Boxplot shows that the EducationField has no impact on the dependent variable: AgentBonus

Gender

	,,	Name:	Gender,	dtype:	int64
Name: Gen	der, dtype: int64	Male	2688	3	
Male	2688	Female	e 1832	2	
Female	1507	12.04/32			
Fe male	325				

The variable: Gender is a type of category with no null values.

The above Fig.16 shows the unique count for each category. We have observed that the data for **Gender: Male** is the highest as compared to another category.

We have also observed that the categories: "Fe male" & "Female" represents the same category, so the category: "Fe male" is merged with "Female"

Univariate Analysis of Gender

Fig.26 The above Fig.26 shows that Male customers are 59.47% whereas Female are 40.53%

Fig.27

The above Boxplot shows that the **Gender** has no impact on the dependent **variable**: **AgentBonus**

ExistingProdType

Fig.28

The above Fig.28 shows that the variable ExistingProdType is of Object datatype with no null values.

The **ProdType:4** is the most popular among customers and **ProdType:6** is the least.

Let's check if being a ExistingProdType has any AgentBonus impact

Fig.29

We have observed that **ExistingProdTyoe: 1&3** has an impact on AgentBonus. The Median for both the ProdType is less as compared with the dependent variable: AgentBonus.

It means AgentBonus is less for these ProdType.

ExistingProdTyoe: 2,4,5 and 6, has no impact on AgentBonus

ExistingProdTyoe: 6 yields higher AgentBonus

Designation

Exe	127		
VP	226	VP	226
AVP	336	AVP	336
Senior Manager	676	Senior_Manager	676
Executive	1535	Manager	1620
Manager	1620	Executive	1662
Name: Designatio	n, dtype: int64	Name: Designation	n, dtype: int64

Fig.30

The above Fig.28 shows that the variable **Designation** is of Object datatype with no null values.

We have also observed that the categories: "Exe" & "Executive" represents the same category, so the category: "Exe" is merged with "Executive"

Fig.32

The **Designation:Executive** is the most popular among customers and **Designation:VP** is the least. Let's check if being a Designation has any impact on AgentBonus

Fig.33
We have observed that AgentBonus is highest for VP.

Agent Bonus as per sequence. **VP** > **AVP** > **Senior_Manager** > **Manager** > **Executive**It means Designation has an impact on the **dependent variable: AgentBonus**

NumberOfPolicy

Fig.34 Fig.35

The variable: NumberOfPolicy has 45 null values which will be treated later.

We have observed from the above Fig.35 that most of the customers has 4 policies

Fig.36

We have observed from the above Fig.36 that customers having 6 policies are having higher Agent Bonus and customers having 1 policy has least impact on AgentBonus

ExistingPolicyTenure

Fig.44 Fig.45

The above Fig.44 shows that the variable **ExistingPolicyTenure** is of int datatype with 184 null values.

We have observed from the above Fig.45 that customers with ExistingPolicyTenure as "1" are the highest.

Let's check if being a ExistingPolicyTenure has any AgentBonus impact

Fig.46
We have observed from the above Fig.46 that the AgentBonus is higher for higher values of ExistingPolicyTenure

Zone

Fig.47

The above Fig.47 shows that the variable **Zone** is of categorical datatype with no null values.

We have also observed that there are high count of customers from **Zone:West** whereas the least is from **Zone:South**

Let's check if being a **Zone** has any **AgentBonus** impact.

Fig.48

Zones: North & West has equal impact on AgentBonus.

Zone: South has the least impact on Bonus.

PaymentMethod

Fig.49

Fig.50

The above Fig.49 shows that the variable **PaymentMethod** is of categorical datatype with no null values.

We have also observed that major customers are having <u>PaymentMethod</u> as Half Yearly Let's check if being a <u>PaymentMethod</u> has any <u>AgentBonus</u> impact

Fig.51

AgentBonus are higher for PaymentMethod: Half Yearly and Yearly.

LastMonthCalls

Fig.52

The above Fig.52 shows that the variable <u>LastMonthCalls</u> is of categorical datatype with no null values.

Customers having LastMonthCalls are the highest

Let's check if being a LastMonthCalls has any AgentBonus impact

Fig.54

There is no visible pattern but AgentBonus is higher for LastMonthCalls:10,11

SumAssured

Fig.60
The above Fig.55 shows that the variable <u>SumAssured</u> is of int datatype with 154 null values.

Fig.61
The variable: SumAssured is having outliers.

The above plot shows that the plot is right skewed.

Let's check the number of outliers per column

FuistingDolisuTenune	24.4	Age	319
ExistingPolicyTenure	214	CustTenure	298
CustTenure	20	NumberOfPolicy	45
SumAssured	17	MonthlyIncome	620
MonthlyIncome	7	ExistingPolicyTenure	529
CustCareScore	0	SumAssured	267
LastMonthCalls	0	LastMonthCalls	970 300
NumberOfPolicy	0	CustCareScore	12
Age	0	dtype: int64	0
dtyne: int64		utype. 11104	

Fig.62

We have imputed the Outlier values in the variable with null values.

Percentage wise calculation of Null Values

MonthlyIncome	0.14
ExistingPolicyTenure	0.12
Age	0.07
CustTenure	0.07
SumAssured	0.06
NumberOfPolicy	0.01
LastMonthCalls	0.00
AgentBonus	0.00
CustCareScore	0.00
dtype: float64	

Fig.63

The above Fig.63 gives the total count of null values which is including the Outlier values imputed by Nulls.

Total null in the dataset is: 2090

KNNImputer

We have used **KNN Imputer** to impute Null values with the parameter: n_neighbors=10 where values is calcula ted for the Null values by using the mean of 10 nearest neighbours

Shape before Outliers Treatment

Fig.62

We have observed that all the variables have outliers

Shape after Outliers Treatment

Fig.63

We have observed from Fig.63 that all the outliers have been treated except the Dependent variable: AgentBonus since it will be used for Prediction and does not require any treatment

SumAssured 0
NumberOfPolicy 0
MonthlyIncome 0
LastMonthCalls 0
ExistingPolicyTenure 0
CustTenure 0
CustCareScore 0
AgentBonus 0
Age 0
dtype: int64

Fig.64

We have observed from the above figure that all the Null values have been treated.

Correlation Plot

Correlation can tell if two variables have a linear relationship, and the strength of that relationship.

Fig.65

We are interested in knowing the relation of other variables with dependent variable: AgentBonus Age, Cust Tenure and monthly income are the highly correlated variables with AgentBonus. Age, Cust Tenure and monthly income are the highly correlated variables with Sum Assured.

Pair Plot of the Variables

Fig.66

We have observed from Fig.19 that the category in Occupation has no visible impact on the dependent variable: **AgentBonus** except **Free_Lancer** which has only 2 rows.

We have observed that the **dependent variable: Agent Bonus** is linearly(**positively correlated**) related to **Cust Tenure**, **Sum Assured**, **Age**, **Montly Income and Customer Tenure**.

Age is also linearly(positively correlated) related to CustTenure and Sum Assured

Data Engineering

Machine learning models require all input and output variables to be numeric.

This means that if your data contains categorical data, you must encode it to numbers before you can fit and evaluate a mode

Numerical data, as its name suggests, involves features that are only composed of numbers, such as integers or floating-point values.

Categorical data are variables that contain label values rather than numeric values.

The number of possible values is often limited to a fixed set.

Categorical variables are often called nominal.

• Nominal Variable (Categorical). Variable comprises a finite set of discrete values with no relationship between values.

'Channel', 'MaritalStatus', 'EducationField', 'Zone', 'PaymentMethod' are nominal variables in the dataset.

We have used One-Hot and Label Encoding for Nominal values.

We have also dropped the first column during One Hot Encoding to avoid Multiicollinearity.

One-Hot Encoding

For categorical variables where no ordinal relationship exists, the integer encoding may not be enough, at best, or misleading to the model at worst.

Ordinal Variable. Variable comprises a finite set of discrete values with a ranked ordering between values.

In ordinal encoding, each unique category value is assigned an integer value.

Occupation and Designation are ordinal variables in the dataset

In Occupation, we have used label encoding

We have given higher values for the category having higher order

Free_Lancer 0 Salaried 1 Small_Business 2 Large_Business 3

In Designation, we have ordered in the below sequence. Executive 0

```
Manager 1
Senior_Manager 2
AVP 3
VP 4
```

Fig.69

After Encoding, the data set has 29 columns with 4520 rows. The number of variables increased from 10 to 29.

The continuous variables in the data set are on different scale and would affect the model, so we have done the scaling on the dataset using **StandardScaler**

StandardScaler standardizes a feature by subtracting the mean and then scaling to unit variance. Unit variance means dividing all the values by the standard deviation. **StandardScaler** makes the mean of the distribution 0.

About 68% of the values will lie be between -1 and 1.

Scaled Dataset

Fig.70

Clustering

We have applied clustering on the data

Hierarchical Clustering

Hierarchical clustering, also known as hierarchical cluster analysis, is an algorithm **that groups similar objects into groups called clusters.**

Dendogram for last 10 values.

Cluster 1:

	Age	CustTenure	NumberOfPolicy	MonthlyIncome	ExistingPolicyTenure	SumAssured	LastMonthCalls	CustCare Score	AgentBonus	clusters
count	1797.00	1797.00	1797.00	1797.00	1797.00	1797.00	1797.00	1797.00	1797.00	1797.00
mean	10.71	10.55	3.43	20107.18	2.55	491297.63	3.75	3.31	3297.66	1.00
std	5.76	5.80	1.47	2317.98	1.60	167311.95	3.08	1.26	934.91	0.00
min	2.00	2.00	1.00	16009.00	1.00	168536.00	0.00	1.00	1605.00	1.00
25%	6.00	6.00	2.00	17886.00	1.00	363656.00	2.00	3.00	2531.00	1.00
50%	10.00	10.00	3.00	20159.00	2.00	467478.00	3.00	3.00	3191.00	1.00
75%	14.00	14.00	5.00	21430.00	4.00	595790.00	7.00	4.00	3958.00	1.00
max	35.00	32.00	6.00	28744.00	9.00	1184400.00	17.00	5.00	7468.00	1.00

Cluster 2:

	Age	CustTenure	NumberOfPolicy	MonthlyIncome	ExistingPolicyTenure	SumAssured	LastMonthCalls	CustCare Score	AgentBonus	clusters
count	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00	407.00
mean	22.34	21.84	3.56	27625.55	4.56	925338.18	6.34	3.36	6723.50	2.00
std	9.78	8.64	1.36	1639.95	1.81	157287.50	4.44	1.30	1195.14	0.00
min	4.00	5.00	1.00	17130.20	1.00	432089.00	0.00	1.00	3324.00	2.00
25%	14.00	16.00	3.00	27226.70	3.70	817471.00	2.00	3.00	5874.00	2.00
50%	22.90	22.80	3.60	28403.10	4.50	947087.00	7.00	3.00	6648.00	2.00
75%	31.00	28.00	5.00	28621.10	5.45	1035245.50	10.00	4.00	7591.00	2.00
max	39.00	37.00	6.00	29009.00	9.00	1201184.00	17.00	5.00	9608.00	2.00

<u>Cluster 2</u>: High Earning customers having higher choice of Sum assured, Policy tenure leading to higher Agent Bonus

<u>Cluster 3</u>: Medium Earning customers having medium choice of Sum assured, Policy tenure leading to higher A gent Bonus

<u>Cluster 1</u>: Lowest Earning customers having medium choice of Sum assured, Policy tenure leading to higher Ag ent Bonus

3.1 Model Building

The dataset has been split to Training and Testing Set in 70:30 ratio.

Snapshot of Dataset after splitting:

Training Set:

The Training Set has 3164 rows and 19 columns. We have dropped **custid** column since it is insignificant in the model building

	Age	CustTenure	NumberOfPolicy	MonthlyIncome	ExistingPolicyTenure	SumAssured	LastMonthCalls	CustCare Score	AgentBonus	Channel
2461	12.00	16.00	3.00	20742.00	4.00	480800.00	1.00	4.00	3941.00	Third_Party_Partner
3681	31.00	15.00	5.00	23398.00	4.00	617707.00	2.00	4.00	5148.00	Agent
1309	15.00	6.00	1.00	16232.00	6.00	453360.00	0.00	5.00	3084.00	Agent
4254	5.00	16.00	2.00	23536.00	1.00	282197.00	8.00	3.00	2589.00	Online
1335	8.00	17.00	1.00	17269.00	6.00	750165.00	1.00	5.00	4145.00	Agent
)
2895	6.00	10.00	5.00	21658.00	8.00	610756.00	5.00	2.00	3249.00	Agent
2763	14.00	5.00	4.00	20976.00	7.00	316318.00	10.00	5.00	2727.00	Agent
905	12.00	12.00	1.00	19285.00	3.00	493696.00	7.00	1.00	3857.00	Agent
3980	5.00	5.00	5.00	17130.20	2.00	915352.00	9.00	3.00	4948.00	Agent
235	14.00	16.00	2.00	17097.00	2.00	415000.20	4.00	3.00	2736.00	Online
3164 r	ows ×	19 columns								

Fig.8

Testing Set:

The Training Set has 1356 rows and 19 columns. We have dropped **custid** column since it is insignificant in the model building

Channe	AgentBonus	CustCare Score	LastMonthCalls	SumAssured	ExistingPolicyTenure	MonthlyIncome	NumberOfPolicy	CustTenure	Age	
Third_Party_Partner	5689.00	2.00	4.00	785082.00	1.00	22756.00	2.00	23.00	11.00	610
Agen	6558.00	1.00	6.00	1200156.00	4.80	27782.60	1.00	7.00	20.00	1519
Agen	2431.00	3.00	8.00	430218.00	4.00	18697.00	1.00	15.00	7.00	1620
Third_Party_Partner	4491.00	5.00	7.00	884697.00	4.00	21385.00	4.00	22.00	13.00	2031
Agen	2416.00	2.00	0.00	253707.00	1.00	17259.00	3.00	14.00	12.00	494
Third_Party_Partner	5176.00	5.00	14.00	553879.00	2.00	28758.00	5.00	31.00	5.00	2124
Third_Party_Partner	2379.00	1.00	4.00	421065.00	4.00	23789.00	6.00	7.00	12.00	3220
Agen	2221.00	1.00	2.00	410811.00	1.00	18505.00	3.00	7.30	11.00	1851
Agen	2486.00	1.00	2.00	390365.00	1.00	17760.00	4.00	10.00	7.80	1065
Agen	4562.00	3.00	2.00	807495.00	7.00	26836.00	2.00	18.00	9.00	462

Fig.9

3.1.1 Multiple Linear Regression using statsmodels

Ordinary least squares Linear Regression.

<u>LinearRegression</u> fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the observed targets in the dataset, and the targets predicted by the linear approximation.

Regression coefficients

The coefficient value represents the mean change in the response given a one unit change in the predictor. For example, if a coefficient is +3, the mean response value increases by 3 for every one unit change in the predictor.

If Age increases by 1 unit, the dependent variables: AgentBonus increases by 20 as per above model.

If sum Assured increases by 1 unit, the dependent variables: AgentBonus increases by 20 as per above model.

The column: P>|t| gives the value of probabilities of significance for the independent variable.

We have observed that the **Pvalue** of the **variables:** <u>Age,CustTenure,MonthlyIncome,ExistingPolicyTenure</u> and <u>SumAssured</u> etc are 0 and it means that these variables are significant in model building.

In statistics, the <u>Jarque–Bera</u> test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K.

Prob(JB): 1.58e-17

Inference from Jarque-Bera test

It means that the model is reliable.

Variance inflation factor (VIF) is a measure of the amount of multicollinearity in a set of multiple regression variables. Mathematically, the VIF for a regression model variable is equal to the ratio of the overall model variance to the variance of a model that includes only that single independent variable.

Values of VIF that exceed 5 are often regarded as indicating multicollinearity.

We have excluded the variables having VIF score more than 5 to avoid multicollinearity.

VIF Score of variables before removing

```
Age VIF = 1.33
CustTenure VIF =
NumberOfPolicy VIF = 1.12
MonthlyIncome VIF = 2.19
ExistingPolicyTenure
                                   VIF =
SumAssured VIF = 1.83
LastMonthCalls VIF = 1.2
CustCareScore VIF = 1.03
Channel_Online VIF = 1.05
Channel_Third_Party_Partner VIF = 1.04
MaritalStatus_Married VIF = 1.92
MaritalStatus_Single VIF = 1.93
EducationField_Engineer VIF = 16.85
EducationField_Graduate VIF = 17.75
EducationField_MBA VIF = 2.01
EducationField_Post_Graduate VIF = 4.46
EducationField_Under_Graduate VIF = 2.71
Zone_North VIF = 18.43
Zone_South VIF = 1.12
Zone_West VIF = 18.39
PaymentMethod_Monthly VIF = 9.53
PaymentMethod_Quarterly VIF = 1.42
PaymentMethod_Yearly VIF = 2.37
Occupation_Large_Business VIF = 143.6
Occupation_Salaried VIF = 402.8
Occupation_Small_Business VIF = 411.91
ExistingProdType_2 VIF = 2.23
ExistingProdType_3 VIF = 29.95
ExistingProdType_4 VIF = 35.66
ExistingProdType_5 VIF = 20.52
ExistingProdType_6 VIF = 4.75
Gender_Male VIF = 1.03
Designation_Executive VIF = 4.83
Designation_Manager VIF = 3.98
Designation_Senior_Manager VIF =
Designation_VP VIF = 1.6
Complaint_1 VIF = 1.01
```

Fig.18

We have removed the varibales having VIF score more than 5.

'AgentBonus','EducationField_Engineer','Occupation_Small_Business','ExistingProdType_4','EducationField_G raduate','Zone_North','Zone_West','PaymentMethod_Monthly','Occupation_Salaried','Occupation_Small_Busin ess','ExistingProdType 3','ExistingProdType 4','ExistingProdType 5'

AgentBonus is removed since it is a dependent variable.

```
Age VIF = 1.32
CustTenure
                  VIF =
NumberOfPolicy VIF = 1.05
MonthlyIncome VIF = 1.9
ExistingPolicyTenure
SumAssured VIF = 1.82
LastMonthCalls VIF = 1.2
CustCareScore VIF = 1.02
Channel_Online VIF = 1.05
Channel_Third_Party_Partner VIF = 1.04
MaritalStatus_Married VIF = 1.91
MaritalStatus_Single VIF = 1.92
EducationField_MBA VIF = 1.03
EducationField_Post_Graduate VIF = 1.05
EducationField_Under_Graduate VIF = 1.1
Zone_South VIF = 1.01
PaymentMethod_Quarterly VIF = 1
PaymentMethod Yearly VIF = 1.09
Occupation_Large_Business VIF = 1.07
ExistingProdType_2 VIF = 1.09
ExistingProdType_6 VIF = 1.08
Gender_Male VIF = 1.02
Designation_Executive VIF =
Designation_Manager VIF = 3.93
Designation_Senior_Manager VIF = 2.66
Designation_VP VIF = 1
Complaint_1 VIF = 1.01
```

No. of variables with VIF > 5 and therefore not used for modelling is 19 No. of variables with VIF < 5 and therefore used for modelling is 18

Linear Regression using statsmodels with Encoded categorical variables and scaled continuous variables

We have built the OLS Regression model using only significant variable with scaled data.

Dep. Variable:	AgentBonus	R-squared	:		0.815		
Model:	OLS			0.814			
	east Squares	F-statistic:		1542.			
	16 Oct 2021	Prob (F-statistic):			0.00		
Time:		Log-Likel	ihood:		821.6		
No. Observations:	3164				3663.		
Df Residuals:	3154	BIC:			3724.		
Df Model:	9						
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975	
Intercept	-8.674e-17		-1.13e-14	1.000	-0.015	0.01	
Age	0.1205	0.009	13.712	0.000	0.103	0.13	
CustTenure	0.1177	0.009	13.466	0.000	0.101	0.13	
MonthlyIncome	0.2222	0.010	21.513	0.000	0.202	0.24	
ExistingPolicyTenure	0.0522	0.008	6.585	0.000	0.037	0.06	
SumAssured	0.5544	0.010	53.801	0.000	0.534	0.57	
Designation_Executive	-0.1849		-11.578		-0.216	-0.15	
Designation_Manager	-0.2401	0.015	-15.973	0.000	-0.270	-0.21	
Designation_Senior_Manage	r -0.1646	0.012	-13.262	0.000	-0.189	-0.14	
Designation_VP	0.0540	0.010	5.630	0.000	0.035	0.07	
Omnibus:	72,433	Durbin-Wa	tcon:		1.994		
Prob(Omnibus):	0.000				7.043		
Skew:	0.370				6e-17		
Kurtosis:	3.190	Cond. No.		1.0	5.11		
Warnings:							

Fig.23

Plot of Predicted data with Actual Test data

Since this is regression, plot the predicted y value vs actual y values for the test data

A good model's prediction will be close to actual leading to high R and R2 values

This is a good model since model's prediction is close to actual leading to high R and R2 values

Fig.23

Regression Output:

```
(-0.0) * Intercept + (0.12) * Age + (0.12) * CustTenure + (0.22) * MonthlyIncome + (0.05) * ExistingPolicyTenure + (0.55) * SumAssured + (-0.18) * Designation_Executi ve + (-0.24) * Designation_Manager + (-0.16) * Designation_Senior_Manager + (0.05) * Designation VP +
```

Inference

When Age increases by 1 unit, AgentBonus increases by 0.12 units, keeping all other predictors constant.

similarly, when Monthly Income increases by 1 unit, AgentBonus increases by 0.22 units, keeping all other predictors constant.

There are also some negative co-efficient values, for instance, **Designation_Executive** has its corresponding co-efficient as -0.18. This implies, when Designation is Executive, the **AgentBonus** decreases by 0.18 units, keeping all other predictors constant.

	Train	Test		Test
Models	RMSE	RMSE	Training Score	Score

OLS Regression Model(Without Scaling/Encoding)	601.51	625.23		
Linear Regression Model(Without Scaling/With				
Encoding)	601.51	625.23	0.81	0.79
OLS Regression Model(Without Scaling/With Encoding)	601.51	625.23		
OLS Regression Model(after treating multicollinearity)	604.39	622.48		
Linear Regression Model(With Scaling/With Encoding)	<mark>0.427</mark>	<mark>0.447</mark>	<mark>0.81</mark>	<mark>0.80</mark>
OLS Regression Model(No multicollinearity/with				
scaling)	0.430	0.444		

We do not see much improvement in the RMSE scores

<u>Train/Test Score(R Square)</u>: 81% of the variation in the AgentBonus is explained by the predictors in the model for train set and 80% for Test Set.

The Linear Regression model is easy to interpret by the users since the coefficients of the Linear Regression output model

XGBRegressor Model:

We have used Grid Search with below parameters to tune the model with multiple values.

The **Grid Search** method is a basic tool for hyperparameter optimization. The Grid Search Method considers several hyperparameter combinations and chooses the one that returns a lower error score.

We have built a base model without tuning.

Model Score/Validation:

Models	Train RMSE	Test RMSE	Training Score	Test Score
XGBRegressor Base Model(Unscaled Data)	141.65	498.43	0.98	0.87
XGBRegressor Base Model(Scaled Data)	141.65	498.61	0.98	0.87

Fig.20

Feature Importance Ranking:

Feature importance ranking

1.SumAssured(0.645731)
2.MonthlyIncome(0.196975)
3.Age(0.651108)
4.CustTenure(0.043030)
5.ExistimgPolicyTenure(0.009742)
6.LastMonthCalls(0.007753)
7.Designation_VP(0.007199)
8.NumberOfPolicy(0.005554)
9.CustCareScore(0.004390)
10.Designation_Senior_Manager(0.003897)
11.Gender_Male(0.001549)
12.MaritalStatus_Married(0.001532)
13.ExistimgProdType_4(0.001507)
14.PaymentMethod_Yearly(0.001433)
15.Channel_Third_Party_Partner(0.001390)
16.Complaint_1(0.001311)
17.Channel_Online(0.001290)
18.Designation_Manager(0.001284)
19.EducationField_Under_Graduate(0.001098)
20.MaritalStatus_Single(0.001093)
21.ExistingProdType_3(0.001093)
22.ExistingProdType_3(0.001093)
23.Zone_West(0.000989)
24.Zone_North(0.000899)
25.EducationField_Graduate(0.000881)
26.Occupation_Small_Business(0.000860)
27.Designation_Executive(0.000889)
28.Occupation_Salaried(0.000881)
28.Occupation_Salaried(0.000830)
30.EducationField_Post_Graduate(0.000670)
31.ExistingProdType_2(0.000542)
32.PaymentMethod_Monthly(0.000520)
33.Occupation_Large_Business(0.000522)
34.ExistingProdType_6(0.000505)
35.PaymentMethod_Quarterly(0.000220)
36.EducationField_MBA(0.000120)
37.Zone_South(0.0008045)

Model Validation:

We have observed that RMSE for Training set has reduced drastically.

We have observed that RMSE for Testing set has reduced drastically.

The performance of the model on the training dataset is significantly better than the performance on the test dataset, hence it is overfitting in both the case for the model

Model with Scaled Data:

```
{'colsample_bytree': 0.8, 'learning_rate': 0.03, 'max_depth': 7, 'n_estimators': 200, 'subsample': 0.8}
```

Model Scores:

	Train	Test	Training	Test
Models	RMSE	RMSE	Score	Score
OLS Regression Model(Without Scaling/Encoding)	601.51	625.23		
Linear Regression Model(Without Scaling/With				
Encoding)	601.51	625.23	0.81	0.79
OLS Regression Model(Without Scaling/With Encoding)	601.51	625.23		
OLS Regression Model(after treating multicollinearity)	604.39	622.48		
Linear Regression Model(With Scaling/With Encoding)	0.427	0.447	0.81	0.8
OLS Regression Model(No multicollinearity/with				
scaling)	0.43	0.444		
XGBRegressor with Grid Search(Unscaled Data)	236.19	474.2	0.97	0.88
XGBRegressor with Grid Search(scaled Data)	235.82	474.72	0.95	0.88

We have observed that the Training Score for XGBRegressor with Grid Search(Unscaled Data) increased by 0.02 but the Testing score remained same.

The performance of the model on the training dataset is significantly better than the performance on the test dataset, hence it is overfitting in both the case for the model

Random Forest Model

Random Forest Regression is a supervised learning algorithm that uses ensemble learning method for regression.. A Random Forest operates by constructing several decision trees during training time and outputting the mean of the classes as the prediction of all the trees.

We have used Grid Search with below parameters to tune the model with multiple values.

Random Forest with Grid Search

Random Forest on Scaled Data

The best parameter chosen by the Grid search is as follows.

```
{'max_depth': 8, 'max_features': 7, 'min_samples_leaf': 30, 'min_sample
s_split': 90, 'n_estimators': 200}
```

Model Scores:

	Train	Test		Test
Models	RMSE	RMSE	Training Score	Score
Random forest(Unscaled Data)	614.94	649.81	0.80	0.78
Random forest(Scaled Data)	609.64	645.27	0.81	0.78

<u> Inference:</u>

The model built by Random Forest has a lower score but it is neither overfitting nor underfitting.

The Training score is marginally higher as compared to the Testing Score. It is a good model.RMSE is higher for the model.

ANN Model with Grid Search

We have used Grid Search with below parameters to tune the model with multiple values.

The **Grid Search** method is a basic tool for hyperparameter optimization. The Grid Search Method considers several hyperparameter combinations and chooses the one that returns a lower error score.

```
Best Parameter chosen by grid Search.{'activation': 'relu', 'hidden_layer_sizes':
324, 'max_iter': 1000, 'solver': 'adam', 'tol': 0.01}
```

Model Score

	Train	Test		Test
Models	RMSE	RMSE	Training Score	Score
ANN Model(Scaled Data)	478.49	610.97	0.88	0.80

Inference:

We have observed that the Training score by ANN Model is higher than the Testing set, so the model is overfitting

Model Comparison:

	Train	Test		Test
Models	RMSE	RMSE	Training Score	Score
OLS Regression Model(Without Scaling/Encoding)	601.51	625.23		
Linear Regression Model(Without Scaling/With				
Encoding)	601.51	625.23	0.81	0.79
OLS Regression Model(Without Scaling/With Encoding)	601.51	625.23		
OLS Regression Model(after treating multicollinearity)	604.39	622.48		
Linear Regression Model(With Scaling/With Encoding)	0.427	0.447	0.81	0.80
OLS Regression Model(No multicollinearity/with				
scaling)	0.43	0.444		
XGBRegressor Base Model(Unscaled Data)	141.65	<mark>498.43</mark>	<mark>0.98</mark>	<mark>0.87</mark>
XGBRegressor Base Model(Scaled Data)	141.65	<mark>498.61</mark>	<mark>0.98</mark>	<mark>0.87</mark>
XGBRegressor with Grid Search(Unscaled Data)	<mark>236.19</mark>	<mark>474.2</mark>	<mark>0.97</mark>	<mark>0.88</mark>
XGBRegressor with Grid Search(scaled Data)	<mark>235.82</mark>	<mark>474.72</mark>	<mark>0.95</mark>	<mark>0.88</mark>
Random forest(Scaled Data without Grid Search)	173.76	484.91	0.98	0.87
Random forest(Unscaled Data with Grid Search)	614.94	649.81	0.80	0.78
Random forest(Scaled Data)	609.64	645.27	0.81	0.78
ANN Model(Scaled Data without Grid Search)	1063.27	1090.87	0.42	0.39
ANN Model(Scaled Data with Grid Search)	478.49	610.97	0.88	0.80
DecisionTreeRegressor(Unscaled Data)		709.24	1	0.74
DecisionTreeRegressor(Unscaled Data with grid Search)			0.86	0.82
DecisionTreeRegressor(scaled Data with grid Search)			0.86	0.82

Inference:

We have observed that out of all the models <u>Linear Regression and XGBRegressor has low RMSE value</u> which means that the observed data points are close to the model's predicted values.

XGBRegressor Base Model has outperformed as compared to other models.

We have observed that RMSE is lowest among the model with higher Training/Testing score.

The model is over-fitting since training score is higher but it is with in allowed limit.

The difference in score is 0.11

XGBRegressor with Grid search has also performed well.

Train/Test Score(R Square): 98% of the variation in the AgentBonus is explained by the predictors in the model for train set and 87% for Test Set.

Linear Regression model has also lower RMSE values and model score of 0.80

End user can understand linear Regression model since it provides the coefficient values which helps in understanding the effect of Independent variables on the **dependent variable:AgentBonus**.

Implication on the business

The above model would help to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.

Recommendations on Dataset

The below recommendations can help in increasing Agent Bonus which would in turn increase the sales of the company.

- Agent should focus more on customers with **Designation as VP/AVP** to gain higher bonus.
- Agents should sell a greater number of policies to customers to raise the bonus amount.
- Agents need to get reliable customers who can stay in the policy for a longer duration. This can be
 done by having through verification of customers like customer's past performance, Bank statement
 etc.
- Agents need to explore more on South and East zone since it may help in getting more business
 opportunity. The company should arrange for campaign in these zones to increase the awareness on
 importance of having Insurance.
- Since Age is positively correlated with Agent Bonus
- · , so Agents should focus on more Aged customers.
- Agents should focus on customers having higher Income.
- Agents should sell policies of higher Sum Assured which can raise the Bonus Amount.
- Agents should acquire **more Freelancer/Large Business** customers since they are in unorganized sector and may need Insurance policies. The company can customize the Insurance plan according to this sector. Like reducing the Sum Assured/Premium amount which can be affordable.
- It has been observed that the **Agent Bonus increases with higher Existing Policy tenure** of the customer.

Recommendations for Under performing Agents

- We have set the benchmark that company has classified Agents as performers whose Agent Bonus value is in Top 50 Percentile and upskill who falls under lower 50 percentile (Agent Bonus<3911).
- The company should try to encourage Agents to explore more of **South/East zone** by providing **higher rewards**. This can increase Sales productivity of the company.
- Agents should try **to convince Freelancer/Large Business** since they are in unorganized sector. If the Agent can convince large business, then they may sell policies in bulk for all of its employees.
- Agent should try to sell policies to VP/AVP and higher Income groups.
- Agents needs to target more aged people since it may help in enhancing Agent bonus.
- Agents should have communication/follow ups with its old customers through call/mail since it has
 been observed that Customer's tenure yields higher Bonus. The company can also take the feedback
 of the existing customers to design new products, so that the existing customers can be retained and
 Agent Bonus could be maximised.

