Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores Aula 15

Processadores Pentium evolução

Processadores Pentium

- 1. Pentium I
- 2. Pentium Pro
- 3. Pentium MMX
- 4. Pentiums II e III
- 5. Pentium 4
- 6. Tabela comparativa

1. Pentium 1

- Introduzido em 1993
- Quinta geração da arquitetura x86 de microprocessadores Intel
- Conjunto de instruções e registradores similares ao 486
- Barramentos de dados internos e externos de 64 bits
- Dois pipelines inteiros paralelos
- Unidade de ponto flutuante, com pipeline próprio
- Previsão dinâmica de desvios
- Caches separadas para dados e instruções
- Unidade de controle microprogramada

Pentium 1 : Organização

Pentium 1: Organização

Pentium 1: Intel P5 Microarchitecture

- Empregado nos processadores Pentium inciais
- Pode executar até 2 instruções simultaneamente
- Instruções enviadas ao pipeline em ordem se as duas próximas instruções possuem uma dependência de despacho, somente uma instrução (pipe) será executada e a segunda unidade de execução (pipe) ficará sem uso naquele ciclo de relógio. 6

Pentium 1 - Pipelines

- Instruções podem ser buscadas, decodificadas e executadas em paralelo nos pipelines U e V
- Cada pipeline tem sua própria ALU para inteiros
- Pipeline U é mais completo e mais complexo
- Paralelismo não permite a quebra na ordem de execução das instruções

Pentium 1 - Operação dos Pipelines

- Verificar se duas instruções consecutivas podem ser executadas em paralelo
 - se forem operações simples, i.e. não requerem microcódigo e podem ser executadas num ciclo de máquina
 - se a 2^a instrução não depende de resultado da 1^a
- Sendo possível, cada instrução é enviada para um pipeline
- Não sendo possível
 - 1^a instrução vai para pipe U
 - 2ª instrução é comparada contra 3ª instrução para identificar possível paralelismo
 - não sendo possível, 2^a instrução também vai para U

Pentium 1 - Processamento de Desvios

- Previsão dinâmica baseada em histórico, coletado pelo BTB Branch Target Buffer
- 2 buffers de prefetch com 32 bytes cada
 - a cada momento, um buffer está processando instruções em endereços consecutivos até encontrar desvio
- Se BTB prevê que desvio não ocorre, prefetch continua sequencialmente no mesmo buffer prefetch
- Se o BTB prevê que o desvio ocorre, o segundo buffer começa o prefetch de instruções no novo endereço
- Se a previsão estava incorreta, os pipelines são esvaziados e a instrução correta é buscada

Pentium 1 - Unidade de Ponto Flutuante

- Possui circuitos dedicados para soma, multiplicação e divisão
- Somas e multiplicações são executadas em 3 ciclos
 - 486 precisava 10 a 15 ciclos
- Pipeline de 8 estágios, sendo os 4 primeiros idênticos aos dos pipes U e V
- Instrução FP inicia nos pipes U e V para a busca simultânea de 2 operandos de 64 bits
 - não é possível paralelismo entre instrução FP e outras instruções

Pentium 1 - Memória Cache

- Caches separadas de dados e instruções, 8 K cada
- Ambas são 2-way set-associativas
- Código auto-modificável ainda é possível
 - mecanismo de coerência entre caches
- Cache de dados têm duas portas, permitindo 2 acessos simultâneos pelos 2 pipes inteiros
- Cache de dados é entrelaçada, com 8 bancos, cada banco contendo "palavras" de 4 bytes
 - acessos simultâneos pelos 2 pipes devem se referir a bancos distintos
- Mecanismo de write-back

Pentium 1: estágios

- The Pentium's basic integer pipeline is five stages long, with the stages broken down as follows:
 - Prefetch/Fetch: Instructions are fetched from the instruction cache and aligned in prefetch buffers for decoding.
 - <u>Decode1</u>: Instructions are decoded into the Pentium's internal instruction format. Branch prediction also takes place at this stage.
 - Decode2: Same as above, and microcode ROM kicks in here, if necessary. Also, address computations take place at this stage.
 - Execute: The integer hardware executes the instruction.
 - Write-back: The results of the computation are written back to the register file.

2. Pentium Pro

- Organização (micro-arquitetura) P6
- Introduzido em 1995
- Organização híbrida CISC / RISC
- Front-end e back-end são CISC
 - instruções IA (Intel Architecture) externamente
- Instruções IA são internamente decodificadas e transformadas em "micro-instruções RISC"
- Processador RISC executa as micro-instruções
 - estágios de despacho e execução
 - super-escalaridade
- Pipeline de 12 estágios ("superpipelining")
- Pode decodificar, executar e completar até 3 instruções por ciclo
- Endereços estendidos para 36 bits
 - endereçamento até 64 GBytes

Pentium Pro

- Cache em dois níveis
- Caches internas (L1) separadas
 - cache de dados com 8 KB, 2-way set-associativa
 - cache de instruções com 8 KB, 4-way set-associativa
- Cache externa (L2) unificada
 - 256 KB ou 512 KB

Intel P6 Microarchitecture

- Used in the Pentium Pro, II, and III processors
- 3 instruction decoders, which break each CISC instruction (macro-op) into equivalent micro-operations (µops) for the Out-of-Order Execution unit
- 12 stage instruction pipeline utilized in this architecture

Visão geral da micro-arquitetura P6

INF

Micro-Arquitetura Arquitetura P6

Funcionamento geral

- Instruções IA são buscadas na memória na ordem estrita do programa
- Cada instrução IA é decodificada e transformada em 1 ou mais "micro-instruções RISC" de tamanho fixo
- As micro-instruções são colocadas no "instruction pool" na ordem estrita do programa
- Despacho fora-de-ordem e terminação fora-de-ordem
- Micro-instruções terminadas são escritas de volta no "instruction pool"
- Instruções são "retiradas" do "instruction pool" na ordem estrita do programa
 - resultados são então gravados na memória ou no banco de registradores IA
 - ordem estrita necessária para atendimento de interrupções

3. Pentium MMX

- MMX Math Matrix Extensions
- Novas instruções e novos tipos de dados para operações matriciais e vetoriais
- Metodologia SIMD Single Instruction Multiple Data
 - 1 única instrução executa a mesma operação sobre um vetor de dados
- 8 registradores MMX de 64 bits cada, compostos de 8 operandos de 1 byte
- Instruções MMX manipulam registradores MMX
- Código deve ser recompilado para executar instruções MMX

Pentium MMX - Exemplo

- Soma de 2 imagens de 1024 x 768 pixels, cada pixel tendo tamanho de 1 byte
- Solução convencional, com processamento sequencial
 - 1.572.864 leituras
 - 786.432 somas
 - **786.432** escritas
- Solução MMX, com processamento SIMD
 - cada instrução trata 8 pixels por vez
 - tempo total é dividido por 8

4. Pentiums II e III

- Pentium II = Pentium Pro com as seguintes modificações
 - módulo MMX
 - caches primárias de dados e instruções aumentadas para 16 KB
 - cache secundária de 256 KB, 512 KB ou 1 MB
- Pentium III
 - extensão Streaming SIMD SSE
 - novo conjunto de registradores de 128 bits
 - operações SIMD em dados de ponto flutuante, precisão simples

Estágios Pentium III

Pipeline Pentium III

- IFU1, IFU2, IFU3 fetch
 - estágio IFU2 pré-decodifica instruções de branch e faz previsão dinâmica de desvios
 - estágio IFU3 alinha instruções IA
- DEC1, DEC2 decodificação
 - pode decodificar até 3 instruções IA em paralelo
 - 2 instruções simples geram 1 única micro-instrução cada
 - 1 instrução complexa gera até 4 micro-instruções
 - instruções IA mais complexas são transformadas em uma seqüência mais longa de micro-instruções no MIS
 - micro-instruções com 118 bits
- RAT, ROB renomeação de registradores
 - buffer interno de 40 registradores, usado circularmente
 - colocam micro-instruções no "instruction pool" (Reservation Station) de 20 posições

Pipeline Pentium III

- DIS despacho
 - seleciona instruções para execução
 - verifica disponibilidade dos operandos e das unidades funcionais
 - despacho fora-de-ordem
- EX execução
 - 7 unidades funcionais em paralelo
 - 2 unidades para micro-instruções STORE
 - 1 unidade para micro-instruções LOAD
 - 2 unidades para micro-instruções inteiras
 - 2 unidades para micro-instruções de ponto flutuante
 - terminação fora-de-ordem das micro-instruções
- RET retirada
 - retira micro-instruções do "instruction pool" na ordem do programa
 - escreve registradores IA e memória

5. Pentium 4

- Freqüências de 1.8 a 3.06 GHz
- Hyper-Threading na versão de 3.06 GHz
- Micro-Arquitetura NetBurst
- Pipeline com o dobro da profundidade da organização P6
- Advanced Dynamic Execution
 - superescalaridade, execução fora-de-ordem
 - janela de 128 instruções
 - pode manipular até 48 loads e 24 stores no pipeline
- Previsão de desvios
 - envolve 10 estágios do pipeline
 - algoritmo de previsão mais avançado, melhora de 33% na previsão em relação à organização P6
 - branch target buffer de 4 KB

Estágios Pentium 4

Fetch	Fetch	Decode	Decode				Control of the Contro	100 CO 10	
			Decode	Decode	Rename	ROB Rd	Rdy/Sch	Dispatch	Exec
Basi	c Per	ntium	4 Pr	ocess	SOF IVI	ispre	aictioi	1 Pip	eline

27

Intel NetBurst MicroArchitecture

- New architecture used for the Intel Pentium IV and Pentium Xeon processors

Visão geral da micro-arquitetura NetBurst

Pentium 4

- Barramento de 533 MHz resulta em 4.2 GB/s
- Cache de dados L1 de 8 KB
- Trace cache de 12 KB
 - micro-ops já decodificadas, armazenadas segundo ordem de execução
 - elimina necessidade de decodificação e instruções fora do caminho dos desvios
- Advanced Transfer Cache L2 de 512 KB
 - transfere 32 bytes a cada ciclo de relógio
 - conjunto associativa, 8-way
 - integrada na mesma pastilha
- Extensão *Streaming SIMD 2* (SSE2)
 - 144 novas instruções aritméticas sobre dados de 128 bits
 - aritmética inteira e de ponto flutuante precisão dupla

Hyper-Threading

Hyper-Threading

- Aumenta desempenho em aplicações rodando em sistemas operacionais *multi-threaded* ou aplicações *single-thread* em sistemas operacionais *multi-tasking*
- Dois ou mais processadores lógicos
- Cada processador lógico tem seu próprio *estado arquitetural* e pode executar uma *thread* específica
 - registradores de dados, de segmento, de controle
- Processadores lógicos compartilham núcleo de processamento
 - pipeline superescalar e barramento do sistema

6. Tabela Comparativa

processador	ano	frequência inicial	transist.	registradores	data bus	espaço endereçam.	caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	não
286	1982	12,5 MHz	134 K	16 GP	16	16 MB	não
386 DX	1985	20 MHz	275 K	32 GP	32	4 GB	não
486 DX	1989	25 MHz	1,2 M	32 GP 80 FPU	32	4 GB	L1 2 x 8 KB
Pentium	1993	60 MHz	3,1 M	32 GP 80 FPU	64	4 GB	L1 2 x 16 KB
Pentium Pro	1995	200 MHz	5,5 M	32 GP 80 FPU	64	64 GB	L1 2 x 16 KB L2 256 ou 512 KB
Pentium II	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1 2 x 32 KB L2 256 ou 512 KB
Pentium III	1999	500 MHz	8,2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1 2 x 32 KB L2 512 KB

Processadores Mais Recentes

processador	ano	organização	frequência inicial	transist.	caches
Pentium III Pentium III Xeon	1999	P6	700 MHz	28 M	L1 3 KB L2 256 KB
Pentium 4	2000	NetBurst	1,5 GHz	42 M	L1 dados 8 KB trace cache 12 Kuops L2 256 KB
Xeon	2001	NetBurst	1,7 GHz	42 M	L1 dados 8 KB trace cache 12 Kuops L2 256 KB
Xeon	2002	NetBurst Hyper-Thread	2,2 GHz	55 M	L1 dados 8 KB trace cache 12 Kuops L2 512 KB
Xeon MP	2002	NetBurst Hyper-Thread	1,6 GHz	108 M	L1 dados 8 KB trace cache 12 Kuops L2 256 KB L3 1 MB
Pentium 4	2002	NetBurst Hyper-Thread	3,06 GHz		L1 dados 8 KB trace cache 12 Kuops L2 256 KB

FIM