2. Q2의 결과를 작성한 코드와 함께 출력하세요. (20점)

Image Captioning with LSTMs

In the previous exercise you implemented a vanilla RNN and applied it to image captioning. In this notebook you will implement the LSTM update rule and use it for image captioning.

In [1]:

```
# As usual, a bit of setup
   import time, os, json
3
   import numpy as np
   import matplotlib.pyplot as plt
6
   from cs231n.gradient check import eval numerical gradient, eval numerical gradi
7
   from cs231n.rnn layers import *
8 | from cs231n.captioning solver import CaptioningSolver
   from cs231n.classifiers.rnn import CaptioningRNN
   from cs231n.coco utils import load coco data, sample coco minibatch, decode cap
10
   from cs231n.image utils import image from url
11
12
13
   %matplotlib inline
   plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
14
   plt.rcParams['image.interpolation'] = 'nearest'
15
   plt.rcParams['image.cmap'] = 'gray'
16
17
18 | # for auto-reloading external modules
19 | # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipyth
   %load ext autoreload
20
   %autoreload 2
21
22
23
   def rel error(x, y):
24
       """ returns relative error """
25
        return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

Load MS-COCO data

As in the previous notebook, we will use the Microsoft COCO dataset for captioning.

In [2]:

```
# Load COCO data from disk; this returns a dictionary
# We'll work with dimensionality-reduced features for this notebook, but feel
# free to experiment with the original features by changing the flag below.
data = load_coco_data(pca_features=True)

# Print out all the keys and values from the data dictionary
for k, v in data.items():
    if type(v) == np.ndarray:
        print(k, type(v), v.shape, v.dtype)

else:
    print(k, type(v), len(v))
```

```
val_urls <class 'numpy.ndarray'> (40504,) <U63
train_urls <class 'numpy.ndarray'> (82783,) <U63
idx_to_word <class 'list'> 1004
val_features <class 'numpy.ndarray'> (40504, 512) float32
train_image_idxs <class 'numpy.ndarray'> (400135,) int32
train_features <class 'numpy.ndarray'> (82783, 512) float32
train_captions <class 'numpy.ndarray'> (400135, 17) int32
word_to_idx <class 'dict'> 1004
val_captions <class 'numpy.ndarray'> (195954, 17) int32
val_image_idxs <class 'numpy.ndarray'> (195954,) int32
```

LSTM

If you read recent papers, you'll see that many people use a variant on the vanilla RNN called Long-Short Term Memory (LSTM) RNNs. Vanilla RNNs can be tough to train on long sequences due to vanishing and exploding gradients caused by repeated matrix multiplication. LSTMs solve this problem by replacing the simple update rule of the vanilla RNN with a gating mechanism as follows.

Similar to the vanilla RNN, at each timestep we receive an input $x_t \in \mathbb{R}^D$ and the previous hidden state $h_{t-1} \in \mathbb{R}^H$; the LSTM also maintains an H-dimensional *cell state*, so we also receive the previous cell state $c_{t-1} \in \mathbb{R}^H$. The learnable parameters of the LSTM are an *input-to-hidden* matrix $W_x \in \mathbb{R}^{4H \times D}$, a *hidden-to-hidden* matrix $W_h \in \mathbb{R}^{4H \times H}$ and a *bias vector* $b \in \mathbb{R}^{4H}$.

At each timestep we first compute an activation vector $a \in \mathbb{R}^{4H}$ as $a = W_x x_t + W_h h_{t-1} + b$. We then divide this into four vectors $a_i, a_f, a_o, a_g \in \mathbb{R}^H$ where a_i consists of the first H elements of a, a_f is the next H elements of a, etc. We then compute the input gate $g \in \mathbb{R}^H$, forget gate $f \in \mathbb{R}^H$, output gate $o \in \mathbb{R}^H$ and block input $g \in \mathbb{R}^H$ as

$$i = \sigma(a_i)$$
 $f = \sigma(a_f)$ $o = \sigma(a_o)$ $g = \tanh(a_g)$

where σ is the sigmoid function and tanh is the hyperbolic tangent, both applied elementwise.

Finally we compute the next cell state c_t and next hidden state h_t as

$$c_t = f \odot c_{t-1} + i \odot g$$
 $h_t = o \odot \tanh(c_t)$

where \odot is the elementwise product of vectors.

In the rest of the notebook we will implement the LSTM update rule and apply it to the image captioning task.

In the code, we assume that data is stored in batches so that $X_t \in \mathbb{R}^{N \times D}$, and will work with *transposed* versions of the parameters: $W_x \in \mathbb{R}^{D \times 4H}$, $W_h \in \mathbb{R}^{H \times 4H}$ so that activations $A \in \mathbb{R}^{N \times 4H}$ can be computed efficiently as $A = X_t W_x + H_{t-1} W_h$

LSTM: step forward

Implement the forward pass for a single timestep of an LSTM in the <code>lstm_step_forward</code> function in the file <code>cs231n/rnn_layers.py</code>. This should be similar to the <code>rnn_step_forward</code> function that you implemented above, but using the LSTM update rule instead.

Once you are done, run the following to perform a simple test of your implementation. You should see errors on the order of e-8 or less.

In [5]:

```
N, D, H = 3, 4, 5
   x = np.linspace(-0.4, 1.2, num=N*D).reshape(N, D)
   prev h = np.linspace(-0.3, 0.7, num=N*H).reshape(N, H)
   prev c = np.linspace(-0.4, 0.9, num=N*H).reshape(N, H)
   Wx = np.linspace(-2.1, 1.3, num=4*D*H).reshape(D, 4 * H)
   Wh = np.linspace(-0.7, 2.2, num=4*H*H).reshape(H, 4*H)
7
   b = np.linspace(0.3, 0.7, num=4*H)
9
   next h, next c, cache = lstm step forward(x, prev h, prev c, Wx, Wh, b)
10
   expected next h = np.asarray([
11
                                   0.32240467,
12
       [ 0.24635157, 0.28610883,
                                                 0.35525807,
                                                              0.38474904],
13
       [ 0.49223563, 0.55611431,
                                   0.61507696,
                                                 0.66844003,
                                                              0.7159181 ],
14
       [ 0.56735664, 0.66310127,
                                   0.74419266,
                                                 0.80889665,
                                                              0.858299
                                                                        ]])
15
   expected next c = np.asarray([
                                                 0.51014116, 0.56717407],
16
       [ 0.32986176, 0.39145139,
                                   0.451556,
       [ 0.66382255, 0.76674007,
                                                              1.08751345]
17
                                   0.87195994,
                                                 0.97902709,
18
       [ 0.74192008, 0.90592151,
                                   1.07717006,
                                                 1.25120233,
                                                             1.42395676]])
19
   print('next h error: ', rel error(expected next h, next h))
20
   print('next_c error: ', rel_error(expected_next_c, next_c))
```

next_h error: 5.7054131967097955e-09 next_c error: 5.8143123088804145e-09

LSTM: step backward

Implement the backward pass for a single LSTM timestep in the function <code>lstm_step_backward</code> in the file <code>cs231n/rnn_layers.py</code>. Once you are done, run the following to perform numeric gradient checking on your implementation. You should see errors on the order of <code>e-7</code> or less.

In [6]:

```
np.random.seed(231)
2
3
   N, D, H = 4, 5, 6
4 \mid x = np.random.randn(N, D)
   prev h = np.random.randn(N, H)
   prev_c = np.random.randn(N, H)
   Wx = np.random.randn(D, 4 * H)
   Wh = np.random.randn(H, 4 * H)
9
   b = np.random.randn(4 * H)
10
11
   next h, next c, cache = lstm step forward(x, prev h, prev c, Wx, Wh, b)
12
13
   dnext h = np.random.randn(*next h.shape)
14
   dnext c = np.random.randn(*next c.shape)
15
16
   fx h = lambda x: lstm step forward(x, prev h, prev c, Wx, Wh, b)[0]
17
   fh h = lambda h: lstm step forward(x, prev h, prev c, Wx, Wh, b)[0]
   fc_h = lambda c: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
19
   fWx h = lambda Wx: lstm step forward(x, prev h, prev c, Wx, Wh, b)[0]
20
   fWh_h = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[0]
21
   fb h = lambda b: lstm step forward(x, prev h, prev c, Wx, Wh, b)[0]
22
23
   fx c = lambda x: lstm step forward(x, prev h, prev c, Wx, Wh, b)[1]
24
   fh_c = lambda h: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
   fc c = lambda c: lstm step forward(x, prev h, prev c, Wx, Wh, b)[1]
26
   fWx_c = lambda Wx: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
27
   fWh_c = lambda Wh: lstm_step_forward(x, prev_h, prev_c, Wx, Wh, b)[1]
   fb c = lambda b: lstm step forward(x, prev h, prev c, Wx, Wh, b)[1]
28
29
30
   num grad = eval numerical gradient array
31
32
   dx num = num grad(fx h, x, dnext h) + num grad(fx c, x, dnext c)
33
   dh_num = num_grad(fh_h, prev_h, dnext_h) + num_grad(fh_c, prev_h, dnext_c)
34
   dc num = num grad(fc h, prev c, dnext h) + num grad(fc c, prev c, dnext c)
   dWx_num = num_grad(fWx_h, Wx, dnext_h) + num_grad(fWx_c, Wx, dnext_c)
35
36
   dWh num = num grad(fWh h, Wh, dnext h) + num grad(fWh c, Wh, dnext c)
37
   db_num = num_grad(fb_h, b, dnext_h) + num_grad(fb_c, b, dnext_c)
38
39
   dx, dh, dc, dWx, dWh, db = lstm_step_backward(dnext_h, dnext_c, cache)
40
41
   print('dx error: ', rel_error(dx_num, dx))
                      , rel_error(dh_num, dh))
   print('dh error: '
42
   print('dc error: '
43
                      , rel_error(dc_num, dc))
   print('dWx error: ', rel_error(dWx_num, dWx))
print('dWh error: ', rel_error(dWh_num, dWh))
45
   print('db error: ', rel_error(db_num, db))
```

```
dx error: 6.335119419831213e-10
dh error: 3.3963756540159307e-10
dc error: 1.5221723979041107e-10
dWx error: 2.1010960934639614e-09
dWh error: 9.712296180612259e-08
db error: 2.4915214652298706e-10
```

LSTM: forward

In the function <code>lstm_forward</code> in the file <code>cs231n/rnn_layers.py</code>, implement the <code>lstm_forward</code> function to run an LSTM forward on an entire timeseries of data.

When you are done, run the following to check your implementation. You should see an error on the order of e-7 or less.

In [7]:

```
N, D, H, T = 2, 5, 4, 3
 1
   x = np.linspace(-0.4, 0.6, num=N*T*D).reshape(N, T, D)
   h0 = np.linspace(-0.4, 0.8, num=N*H).reshape(N, H)
   Wx = np.linspace(-0.2, 0.9, num=4*D*H).reshape(D, 4 * H)
5
   Wh = np.linspace(-0.3, 0.6, num=4*H*H).reshape(H, 4*H)
   b = np.linspace(0.2, 0.7, num=4*H)
7
8
   h, cache = lstm forward(x, h0, Wx, Wh, b)
9
10
   expected h = np.asarray([
                                  0.01882671,
11
    [[ 0.01764008,
                    0.01823233,
                                               0.0194232 ],
12
     [ 0.11287491,
                    0.12146228,
                                  0.13018446,
                                               0.13902939],
13
     [ 0.31358768,
                    0.33338627,
                                  0.35304453,
                                               0.37250975]],
    [[ 0.45767879,
14
                    0.4761092,
                                  0.4936887,
                                               0.51041945],
                                               0.7346449 ],
15
     [ 0.6704845,
                    0.69350089.
                                  0.71486014.
     [ 0.81733511, 0.83677871,
                                  0.85403753,
                                               0.86935314]])
16
17
   print('h error: ', rel error(expected h, h))
```

h error: 8.610537452106624e-08

LSTM: backward

Implement the backward pass for an LSTM over an entire timeseries of data in the function $lstm_backward$ in the file $cs231n/rnn_layers.py$. When you are done, run the following to perform numeric gradient checking on your implementation. You should see errors on the order of e-8 or less. (For dWh , it's fine if your error is on the order of e-6 or less).

In [10]:

```
from cs231n.rnn layers import lstm forward, lstm backward
    np.random.seed(231)
 3
 4
   N, D, T, H = 2, 3, 10, 6
 5
 6
   x = np.random.randn(N, T, D)
 7
   h0 = np.random.randn(N, H)
   Wx = np.random.randn(D, 4 * H)
 9
   Wh = np.random.randn(H, 4 * H)
10
   b = np.random.randn(4 * H)
11
12
   out, cache = lstm forward(x, h0, Wx, Wh, b)
13
   dout = np.random.randn(*out.shape)
14
15
   dx, dh0, dWx, dWh, db = 1stm backward(dout, cache)
16
17
18
   fx = lambda x: lstm forward(x, h0, Wx, Wh, b)[0]
    fh0 = lambda \ h0: lstm \ forward(x, h0, Wx, Wh, b)[0]
19
    fWx = lambda Wx: lstm_forward(x, h0, Wx, Wh, b)[0]
20
    fWh = lambda Wh: lstm forward(x, h0, Wx, Wh, b)[0]
22
    fb = lambda b: lstm forward(x, h0, Wx, Wh, b)[0]
23
24
    dx num = eval numerical gradient array(fx, x, dout)
25
    dh0 num = eval numerical gradient array(fh0, h0, dout)
26
    dWx num = eval numerical gradient array(fWx, Wx, dout)
27
    dWh num = eval numerical gradient array(fWh, Wh, dout)
    db num = eval numerical gradient array(fb, b, dout)
28
29
   print('dx error: ', rel_error(dx_num, dx))
30
   print('dh0 error: ', rel_error(dh0_num, dh0))
   print('dWx error: ', rel_error(dWx_num, dWx))
print('dWh error: ', rel_error(dWh_num, dWh))
print('db error: ', rel_error(db_num, db))
```

dx error: 6.9939005453315376e-09 dh0 error: 1.5042762239853887e-09 dWx error: 3.2262954818402093e-09 dWh error: 2.698465344563659e-06 db error: 8.23664986941212e-10

INLINE QUESTION

Recall that in an LSTM the input gate i, forget gate f, and output gate o are all outputs of a sigmoid function. Why don't we use the ReLU activation function instead of sigmoid to compute these values? Explain.

Your Answer: LSTM의 input, forget, and output gate는 단지 활성화만을 목적으로 설계한 것이 아니라 memory의 역활을 모델링을 하기 위해서 설계 했기 때문에 잊어지거난 기억을 해야 정도를 시뮬레이션을 하기 위함으로 sigmoid 함수를 사용했다.

LSTM captioning model

Now that you have implemented an LSTM, update the implementation of the loss method of the CaptioningRNN class in the file cs231n/classifiers/rnn.py to handle the case where self.cell type is lstm. This should require adding less than 10 lines of code.

Once you have done so, run the following to check your implementation. You should see a difference on the order of e-10 or less.

In [11]:

```
N, D, W, H = 10, 20, 30, 40
   word to idx = {'<NULL>': 0, 'cat': 2, 'dog': 3}
3
   V = len(word to idx)
   T = 13
4
5
6
   model = CaptioningRNN(word to idx,
7
              input dim=D,
8
              wordvec dim=W,
9
              hidden dim=H,
10
              cell type='lstm',
              dtype=np.float64)
11
12
13
   # Set all model parameters to fixed values
   for k, v in model.params.items():
14
15
     model.params[k] = np.linspace(-1.4, 1.3, num=v.size).reshape(*v.shape)
16
17
   features = np.linspace(-0.5, 1.7, num=N*D).reshape(N, D)
18
   captions = (np.arange(N * T) % V).reshape(N, T)
19
20
   loss, grads = model.loss(features, captions)
   expected loss = 9.82445935443
21
22
23
   print('loss: ', loss)
   print('expected loss: ', expected loss)
24
   print('difference: ', abs(loss - expected_loss))
25
```

loss: 9.824459354432264 expected loss: 9.82445935443 difference: 2.2648549702353193e-12

Overfit LSTM captioning model

Run the following to overfit an LSTM captioning model on the same small dataset as we used for the RNN previously. You should see a final loss less than 0.5.

In [12]:

```
1
    np.random.seed(231)
 2
 3
    small data = load coco data(max train=50)
 4
 5
    small lstm model = CaptioningRNN(
 6
              cell type='lstm',
 7
              word to idx=data['word to idx'],
 8
              input dim=data['train features'].shape[1],
 9
              hidden dim=512,
10
              wordvec dim=256,
              dtype=np.float32,
11
12
            )
13
14
    small lstm solver = CaptioningSolver(small lstm model, small data,
15
               update rule='adam',
16
               num epochs=50,
17
               batch size=25,
18
               optim config={
19
                  'learning rate': 5e-3,
20
               },
21
               lr decay=0.995,
22
               verbose=True, print every=10,
23
             )
24
25
    small lstm solver.train()
26
27
    # Plot the training losses
28
   plt.plot(small lstm solver.loss history)
29
   plt.xlabel('Iteration')
30
   plt.ylabel('Loss')
   plt.title('Training loss history')
31
32
   plt.show()
```

```
(Iteration 1 / 100) loss: 79.551150

(Iteration 11 / 100) loss: 43.829101

(Iteration 21 / 100) loss: 30.062617

(Iteration 31 / 100) loss: 14.020163

(Iteration 41 / 100) loss: 6.005515

(Iteration 51 / 100) loss: 1.849015

(Iteration 61 / 100) loss: 0.637901

(Iteration 71 / 100) loss: 0.281864

(Iteration 81 / 100) loss: 0.234179

(Iteration 91 / 100) loss: 0.123387
```


LSTM test-time sampling

Modify the sample method of the CaptioningRNN class to handle the case where self.cell_type is lstm . This should take fewer than 10 lines of code.

When you are done run the following to sample from your overfit LSTM model on some training and validation set samples. As with the RNN, training results should be very good, and validation results probably won't make a lot of sense (because we're overfitting).

In [13]:

```
for split in ['train', 'val']:
2
        minibatch = sample_coco_minibatch(small_data, split=split, batch_size=2)
        gt_captions, features, urls = minibatch
3
4
       gt captions = decode captions(gt captions, data['idx to word'])
 5
6
        sample captions = small lstm model.sample(features)
 7
        sample captions = decode captions(sample captions, data['idx to word'])
8
9
        for gt_caption, sample_caption, url in zip(gt_captions, sample_captions, ur
            plt.imshow(image from url(url))
10
            plt.title('%s\n%s\nGT:%s' % (split, sample caption, gt caption))
11
12
            plt.axis('off')
13
            plt.show()
```

train

a man standing on the side of a road with bags of luggage <END> GT:<START> a man standing on the side of a road with bags of luggage <END>

train
a man <UNK> with a bright colorful kite <END>
GT:<START> a man <UNK> with a bright colorful kite <END>

val
a person <UNK> with a <UNK> of a <UNK> <END>
GT:<START> a sign that is on the front of a train station <END>

val
a cat sitting with a <UNK> <END>
GT:<START> a car is parked on a street at night <END>

