Visualizing distributions 2

Claus O. Wilke

last updated: 2021-01-18

Reminder: Density estimates visualize distributions

Mean temperatures in Lincoln, NE, in January 2016:

date	mean temp
2016-01- 01	24
2016-01- 02	23
2016-01- 03	23
2016-01- 04	17
2016-01- 05	29
2016-01- 06	33
2016-01- 07	30
2016-01- 08	25

Reminder: Density estimates visualize distributions

Mean temperatures in Lincoln, NE, in January 2016:

date	mean temp
2016-01- 01	24
2016-01- 02	23
2016-01- 03	23
2016-01- 04	17
2016-01- 05	29
2016-01- 06	33
2016-01- 07	30
2016-01- 08	25

How can we compare distributions across months?

A bad idea: Many overlapping density plots

Another bad idea: Stacked density plots

Somewhat better: Small multiples

Instead: Show values along y, conditions along x

A boxplot is a crude way of visualizing a distribution.

How to read a boxplot

If you like density plots, consider violins

A violin plot is a density plot rotated 90 degrees and then mirrored.

How to read a violin plot

For small datasets, you can also use a strip chart

Advantage: Can see raw data points instead of abstract representation.

Horizontal jittering may be necessary to avoid overlapping points.

For small datasets, you can also use a strip chart

Advantage: Can see raw data points instead of abstract representation.

Horizontal jittering may be necessary to avoid overlapping points.

For small datasets, you can also use a strip chart

Advantage: Can see raw data points instead of abstract representation.

Horizontal jittering may be necessary to avoid overlapping points.

We can also jitter points into violins

Such plots are called sina plots, to honor Sina Hadi Sohi.

But maybe there's hope for overlapping density plots?

How about we stagger the densities vertically?

Vertically staggered density plots are called ridgelines

Notice the single fill color. More colors would be distracting.

Making these plots in ggplot

Plot type	Geom	Notes
boxplot	<pre>geom_boxplot()</pre>	
violin plot	<pre>geom_violin()</pre>	
strip chart	<pre>geom_point()</pre>	<pre>Jittering requires position_jitter()</pre>
sina plot	<pre>geom_sina()</pre>	From package ggforce
ridgeline	<pre>geom_density_ridges()</pre>	From package ggridges

all others but the ridgeline: both categorical and interval variables are exchangeable for x and y axis ridgeline: categorical on y, numerical on x

Examples: Boxplot

```
ggplot(lincoln_temps, aes(x = month, y = mean_tempty
geom_boxplot(fill = "skyblue")
```


Examples: Violins

```
ggplot(lincoln_temps, aes(x = month, y = mean_tempty
geom_violin(fill = "skyblue")
```


Examples: Strip chart (no jitter)

ggplot(lincoln_temps, aes(x = month, y = mean_temps, geom_point(size = 0.75) # reduce point size to

Examples: Strip chart (w/jitter)

```
ggplot(lincoln_temps, aes(x = month, y = mean_tempty
geom_point(size = 0.75, # reduce point size to
    position = position_jitter(
        width = 0.15, # amount of jitter in horizon
        height = 0 # amount of jitter in vertical
    )
)
```


Examples: Sina plot

```
library(ggforce) # for geom_sina()

ggplot(lincoln_temps, aes(x = month, y = mean_temptor geom_violin(fill = "skyblue", color = NA) + # volume geom_sina(size = 0.75) # sina jittered points in
```


Examples: Ridgeline plot

```
library(ggridges) # for geom_density_ridges

ggplot(lincoln_temps, aes(x = mean_temp, y = month
    geom_density_ridges()
```


Further reading

- Fundamentals of Data Visualization:
 Chapter 7: Visualizing many distributions at once
- ggplot2 reference documentation: geom_boxplot(), geom_violin(), position_jitter()
- ggforce reference documentation: geom_sina()
- ggridges reference documentation: geom_density_ridges()