PROGRAMACIÓ ESTRUCTURADA

Bàtxelor en informàtica

Concepte

La programació estructurada consisteix en una sèrie de normes per crear programes. Existeixen tres principis bàsics (esquemes) de programació: la seqüenciació, la presa de decisions i la iteració. Combinant de forma correcta aquests principis bàsics, podem elaborar qualsevol programa.

Aquests principis bàsics donen lloc a unes estructures bàsiques amb les seves diferents variants:

Sequenciació

L'estructura seqüencial enumera les accions en l'ordre en que s'han d'executar. Cada acció podrà ésser una acció elemental o una acció composta (seqüència d'accions que pot incloure altres estructures).

En pseudocodi representarem l'estructura sequencial de la seguent forma:

ACCIO_1 ACCIO_2 ACCIO N

On les accions s'executaran segons l'ordre en que apareixen, és a dir, primer acció ACCIO_1, desprès acció ACCIO_2, desprès acció I finalment acció ACCIO_N.

Un exemple quotidià d'estructura sequencial és la que seguim per rentar-nos les mans.

INICI_SEQUÈNCIA

Obrir l'aixeta

Mullar-se les mans

Ficar sabó

Fregar les mans

Treure el sabó

Tancar l'aixeta

Eixugar-se les mans

FI SEQUÈNCIA

Presa de decisions

Estructura condicional simple

L'estructura condicional simple permet que un conjunt d'accions s'executin només si es compleix una condició.

En pseudocodi representarem l'estructura condicional simple de la següent forma

Estructura condicional simple

Després d'executar-se les Instruccions anteriors, s'avalua la condició i quan aquesta és certa s'executaran les Instruccions a executar quan la condició és verdadera abans de les Instruccions posteriors que s'executen sempre. Si el resultat de l'avaluació de la condició és falsa no s'executen les accions Instruccions a executar quan la condició és verdadera i desprès de les Instruccions anteriors s'executen passa a executar-se les Instruccions posteriors.

Un exemple quotidià d'estructura condicional simple és el que seguim quan ens aturem a ficar benzina

SI vull ficar benzina LLAVORS

Cercar una benzinera
Entrar a la benzinera
Situar-se davant del sortidor adequat
Treure el tap de la benzina
Omplir el dipòsit
Pagar
Incorporar-se a la carretera
FI_SI

Fixeu-vos que quan la condició "vull ficar benzina" és falsa no s'executa el bloc d'accions situades entre FI i FI_SI, senzillament continuaríem el viatge.

Estructura condicional doble

.

Aquesta estructura permet que s'executin un bloc d'accions quan es compleix una condició i un altre bloc diferent quan no es compleix la condició.

En pseudocodi representarem l'estructura condicional doble de la següent forma

Estructura condicional doble

Després d'avaluar la condició s'executaran les Instruccions a executar quan la condició és verdadera quan la condició és certa. Si la condició és falsa s'executaran Instruccions a executar quan la condició és falsa. Fixeu-vos que sempre s'executarà un dels blocs, ja que si no s'executa el bloc corresponent al SI s'executarà el bloc de l'ALTRAMENT.

Bàtxelor en informàtica

Un exemple quotidià d'estructura condicional doble és la forma d'actuar en funció de si es tracta d'un dia festiu o laborable.

.

SI És dia laborable LLAVORS Anar a treballar

ALTRAMENT

Planificar dia lliure

FI_SI

.

Estructura alternativa múltiple

Aquesta estructura permet que en funció del valor que pren una determinada variable s'executi un bloc d'accions definit en cada cas.

En pseudocodi representarem l'estructura alternativa de la següent forma

SEGONS_SIGUI Variable **FER**

Valor 1: {ACCIO_A}

Valor 2 :{ACCIO_B}

•••••

Valor N: {ACCIO N}

FI_SEGONS_SIGUI

Compara la variable amb els diferents valors del cos (Valor1, Valor 2, ...) del SEGONS_SIGUI, si troba alguna coincidència passa a executar el bloc d'accions corresponent i abandona l'estructura alternativa. Si no hi ha cap coincidència no s'executa cap dels blocs d'accions.

Si incorporem un ALTRAMENT dins del SEGONS_SIGUI les accions corresponents a l'altrament s'executaran si la variable no coincideix amb cap dels valors explicitats.

Un exemple quotidià d'estructura alternativa és l'activitat que durem a terme un dia de vacances d'estiu a la platja en funció del temps meteorològic

SEGONS_SIGUI Temps **FER**

Sol: Prendre el sol a la platja

Vent: Fer surf

Plou: escoltar musica

ALTRAMENT

Jugar a la petanca

FI_SEGONS_SIGUI

Estructura iterativa

La iteració permet que un conjunt d'accions s'executin un determinat nombre de vegades.

Imatge de Wikimedia Commons

Iterativa indeterminada

En aquest cas no és imprescindible conèixer de vell antuvi el nombre de vegades que s'ha de repetir el conjunt d'accions. Diferenciarem dos casos: amb condició inicial i amb condició final.

Amb condició inicial (MENTRE)

Primer s'avalua la condició, si el resultat és veritat s'executa el bloc d'accions i es torna a avaluar la condició. Si el resultat de l'avaluació és fals s'abandona la iteració.

En pseudocodi representarem l'estructura iterativa amb condició inicial de la següent forma

Estructura iterativa MENTRE

Bàtxelor en informàtica

Cal assegurar-se que alguna de les **Instruccions dins del bucle** modifica la condició de tal manera que a cada iteració s'està més a prop de que la condició prengui valor fals. De no ser així ens trobaríem en una iteració infinita (bucle infinit).

En acabar la iteració sempre es complirà la negació de la condició de la iteració.

Un exemple quotidià d'estructura iterativa indeterminada amb condició inicial és l'activitat que duem a terme quan ens mengem un plat de sopa

MENTRE Queda sopa i tinc gana FER
Omplir la cullera
Atansar la cullera a la boca
Deixar la sopa a la boca
Mastegar
Engolir
FI_MENTRE

Fixeu-vos que en finalitzar la iteració (desprès del FI_MENTRE) es complirà la negació de la condició d'entrada a la iteració, és a dir, deixem de menjar sopa ja sigui per que no queda sopa o be no tinc gana.

Fixeu-vos també que pot ser que el bloc d'accions no s'executi cap vegada. Això és dona quan la condició d'entrada és falsa. És a dir, si no hi ha sopa o be no tinc gana.

Amb condició final (REPETEIX ..FINS QUE)

En aquest cas la comparació es realitza desprès de la seqüència d'accions i segon el resultat de l'avaluació de la condició s'abandona la iteració o es repeteix la seqüència. En aquest cas la seqüència d'accions s'executarà sempre com a mínim una vegada (la primera abans de cada comparació).

En pseudocodi representarem l'estructura iterativa amb condició inicial de la següent forma

Estructura iterativa REPETEIX

En el cas que la iteració es repeteixi més d'una vegada cal assegurar-se que alguna de les **Instruccions dins del bucle** modifica la condició de tal manera que a cada iteració s'està més a prop de que la condició prengui valor veritat. De no ser així ens trobaríem en una iteració infinita.

També cal adonar-se que el bloc d'accions de la iteració s'executa com a mínim una vegada (la primera).

En acabar la iteració sempre es complirà la condició de la iteració.

Un exemple quotidià d'estructura iterativa indeterminada amb condició final pot ser l'activitat que duem a terme quan ens mengem un plat de sopa

REPETEIX

Omplir la cullera Atansar la cullera a la boca Deixar la sopa a la boca Mastegar

Engolir

FINS_QUE No queda sopa o no tinc gana

Fixeu-vos que en aquest cas al menys ens menjarem una cullerada de sopa fet que no tenia per que donar-se en l'estructura MENTRE.

Una altra observació és que la condició del FINS_QUE és el complement (negació) de la condició del MENTRE.

Fonaments de Programació Iteració d'un nombre fix de repeticions

Bàtxelor en informàtica

En aquest cas es coneix de vell antuvi el nombre de vegades que s'ha de fer la iteració. Tenim varis dissenys possibles que es caracteritzen per incorporar un comptador al s'assigna un valor inicial i que podrà incrementar-se o decrementar-se; la iteració s'abandonarà quan el comptador arribi al valor desitjat (topall).

Un dels dissenys possible és l'estructura MENTRE

Inicialitzar comptador

MENTRE No topall del comptador FER

{ACCIONS}

Incrementar/decrementar comptador

FI_MENTRE

Un exemple quotidià d'estructura repetitiva seria l'activitat d'escriure un determinat nombre de targes de felicitacions de Nadal.

Llegir N
MENTRE N>0 FER
Escriure una tarja de felicitació
N ← N -1
FI_MENTRE

Una altra possibilitat, sempre i quan tinguem la seguretat que la iteració s'hagi d'executar com a mínim una vegada, és utilitzar l'estructura REPETEIX.

Inicialitzar comptador

REPETEIX

{ACCIONS}

Incrementar/decrementar comptador

FINS_QUE Topall comptador

El mateix exemple anterior seria:

Llegir N

REPETEIX

Escriure una tarja de felicitació
N ← N -1

FINS_QUE N=0

Un tercer disseny és l'estructura DES_DE

DES_DE Variable ← Valor_inicial FINS Valor final INCREMENT +/- 1 FER {ACCIONS}

FI_DES_DE

Bàtxelor en informàtica

En ésser una expressió nova, comentarem el seu funcionament. En primer lloc s'assigna a la variable de control de la iteració el valor inicial, es comprova si no supera el valor final que de ser cert s'executen el bloc d'accions de la iteració, s'incrementa/decrementa la variable torna a comprovar si se supera el valor final i així successivament fins que la variable de control superi per excés (si s'incrementa) o per defecte (si es decrementa) el valor final.

El mateix exemple de les felicitacions de Nadal mitjançant l'estructura DES DE seria:

Llegir N

DES_DE C ←1 FINS N Increment 1 FER

Escriure una tarja de felicitació

FI_DES_DE

ALGORISME

Seqüència ordenada i finita de les accions que s'han de dur a terme per a dur a terme per a realitzar un treball o resoldre un problema, des de l'entrada de dades fins a la sortida de resultats inclòs el procés.

Un exemple quotidià d'algorisme és una recepta de cuina (passos a seguir per obtenir un determinat plat cuinat)

Procés: manipulació de les entrades per tal d'assolir els resultats de sortida **Acció**: Cadascuna de les parts en que dividim un treball (procés). Diferenciarem dos tipus d'accions:

Acció primitiva (o simple), quan el seu enunciat és suficient per a què el processador pugui executar-la sense informació complementària.

Acció composta, és l'acció formada per un conjunt d'accions simples

CARACTERÍSTIQUES

• Finitud: número finit d'accions

Definibilitat: sense ambigüitats

• **Eficient**: correcte i amb el mínim de recursos

REPRESENTACIO D'ALGORISMES

Existeixen diferents maneres de representar els algorismes:

Llenguatge natural

• Diagrames de Nassi/ Shneiderman

Bàtxelor en informàtica

Fonaments de Programació

- Taules de decisió
- Ordinogrames
- Pseudocodi

Essent les de més amplia difusió les dues últimes, els ordinogrames històricament i el pseudocodi més actual (és que utilitzarem nosaltres)

PSEUDOCODI

El pseudocodi descriu el flux del programa utilitzant un llenguatge restringit i la notació algebraica. El pseudocodi segueix una sèrie de convencions:

- 1. Indicació clara del principi i fi de les seqüències
- 2. Us de paraules clau en majúscules
- 3. Alineació a l'esquerra de les accions d'una mateixa següència
- 4. Sagnar les accions que es troben sota el control d'una anterior

Una de les avantatges del pseudocodi és que s'adapta de forma natural a les estructures bàsiques de programació i la tècnica del disseny descendent per refinaments successius.

Paraules clau

```
INICI_SEQUÈNCIA..... FI_SEQUÈNCIA

SI ..... LLAVORS ..... FISI

SI..... LLAVORS ..... ALTRAMENT.... FI_SI

SEGONS_SIGUI .... FER ... FI_SEGONS_SIGUI

MENTRE ..... FI .... FI_MENTRE

REPETEIX ... FINS_QUE

DES_DE ..... FINS.... INC .... FER ... FI_DES_DE
```

Accions bàsiques

Entrada

Permet emmagatzemar en una determina variable un valor que entrarem pel teclat Llegir Nom de la variable

Exemple: Llegir A, espera l'entrada d'un valor pel teclat (finalitza amb enter) i l'emmagatzema a la variable de nom A

Sortida

Permet mostrar per pantalla el contingut d'una variable

Escriu Nom de la variable

i també mostrar un missatge

Escriu "Missatge"

Exemples: Escriu A, mostra el contingut e la variable A.

En canvi Escriu "A" mostra el caràcter A per la pantalla

Assignació

Permet afectar a una variable amb el valor d'una expressió

Es representa mitjançant el símbol ← i afecta a la variable de l'esquerra del símbol ← amb el valor de l'expressió de la dreta del símbol ←.

Exemple

A ← B	La variable A pren per valor el contingut de la variable
A ← B + 2	La variable A pren per valor, el valor de la variable B incrementada dues unitats

OPERADORS

Aritmètics

Nom	Símbol	Exemple
Suma	+	3+9=12
Resta	-	3-9=-6
Producte	•	4 . 5=20
Divisió	/	6/5=1,2
Quocient enter	П	9 5=1
Resta de la divisió entera	a R	9 R5=4

. . . .

La resta d'operadors coincideixen amb els comunament utilitzats en la terminologia matemàtica.

Lògics

Nom	Símbol
I lògic	1
O lògic	Ο
Negació	NO

Bàtxelor en informàtica

Fonaments de Programació OBJECTES I DADES

Els llenguatges de programació estan dissenyats per a manipular entitats d'informació anomenades dades.

Quan parlarem de dades farem referència a qualsevol seqüència de caràcter amb la que opera un ordinador. Parlarem de **dades numèriques** (naturals, enters o reals) amb les que podrem fer diferents operacions aritmètiques i **dades alfanumèriques** (cadenes de caràcters numèrics i/o alfabètics) que no suporten operacions aritmètiques.

Els objectes d'un programa són els elements mitjançant els quals podem emmagatzemar i tractar les dades.

Les entitats d'informació poden tenir un contingut constant o variable al llarg del programa, però com en el més general dels casos podran variar el seu contingut, l'argot informàtic els hi dona el nom de variables, encara que es reserva la possibilitat de definir algunes d'elles com a constants dins d'un programa.

Així podem definir una **CONSTANT** com un objecte el contingut del qual no varia al llarg d'un programa i una **VARIABLE** com un objecte el contingut del qual pot variar al llarg del programa.

El programador podrà manipular els objectes que associarem a una zona de memòria on s'emmagatzemaran les dades amb una certa despreocupació de la representació interna d'aquestes dades.

En un objecte diferenciarem:

Identificador: És el nom que identifica l'objecte i serveix per a diferenciar-lo de qualsevol altre.

Tipus: classe a la que pertany. Indica la forma en que ha d'emmagatzemar-se el valor de la variable a l'ordinador.

Domini: conjunt de valors que pot agafar que depèn de la representació interna

Operadors: conjunt d'operadors permesos

Valor: informació que conté, en un determinat instant

Per un objecte determinat l'identificador, el tipus, el domini i els operadors són fixes, l'únic que pot variar és el contingut –el valor- (i només en objectes variables).

Fonaments de Programació TIPUS D'OBJECTES

Bàtxelor en informàtica

Elementals

Parlarem d'objectes elementals quan un objecte (variable o constant) només pot emmagatzemar un sol valor en un determinat instant. Són objectes elementals les de tipus:

Enter: permet emmagatzemar un subconjunt dels nombres enters (Ex. 10, -200, 10500)

Natural: per emmagatzemar un subconjunt dels nombres enters positius (Ex. 24, 800)

Real: per emmagatzemar un subconjunt dels reals (Ex. 3.24, 234800, -705,65) **Caràcter:** per emmagatzemar qualsevol caràcter d'un determinat alfabet **Lògic:** per tractar objectes que només poden prendre dos valors (veritat o fals).

Estructurats

Són objectes que poden emmagatzemar varis valors en un mateix instant. Si els valor que emmagatzema són tots del mateix tipus parlarem d'objectes estructurats homogenis i si no són del mateix tipus parlarem d'objectes estructurats heterogenis.

DECLARACIÓ DELS OBJECTES

Un programa consta de dues parts: l'entorn i l'algorisme

A la part de **l'entorn** és on es declaren els objectes, és a dir, definim tots els objectes que intervenen en l'algorisme. En la declaració hi farem constar si es tracta d'objectes d'entrada i/o sortida (E/S), com identifiquem l'objecte (IDENTIFICADOR), de quin tipus d'objecte es tracta (TIPUS) i una breu descripció de l'objecte (DESCRIPCIÓ).

ENTORN

E/S IDENTIFICADOR TIPUS DESCRIPCIÓ

A la part de l'algorisme és on es representa el procés sobre les dades. És a dir, com a partir de les dades d'entrada podem arribar a obtenir les dades de sortida.

L'algorisme s'inclourà entre les paraules clau:

INICI_SEQÜÈNCIA

Entrada de dades

Processament de dades (tractament de les dades d'entrada per arribar a obtenir els resultats de sortida)

Sortida de resultats

FI SEQÜÈNCIA

PROGRAMACIÓ EN PSEUDOCODI

Bàtxelor en informàtica

1. Programa que determina el màxim de tres números enters.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N1	Enter	Primer número
Е	N2	Enter	Segon número
Е	N3	Enter	Tercer número
S	Max	Enter	Màxim dels tres números

ALGORISME

INICI_SEQÜÈNCIA

Llegir N1, N2, N3

Max ← N1

SI N2 > Max LLAVORS

Max ← N2

FI_SI

SI N3> Max **LLAVORS**

Max ← N3

FI_SI

Escriu "El màxim és " Max

FI_SEQÚÈNCIA

Bàtxelor en informàtica

2. Expresseu en pseucodi les següents accions:

Incrementar A una unitat

$$A \leftarrow A + 1$$

Decrementar B dues unitats

$$B \leftarrow B - 2$$

Sumar A i B i emmagatzemar el resultat en B

$$B \leftarrow A + B$$

Resteu tres unitats a B i guardeu el resultat en C

$$C \leftarrow B - 3$$

Intercanviar els valors de dues variables

Bàtxelor en informàtica

- 3. Tenint en compte que A emmagatzema un número de quatre xifres (abcd) Dissenyeu l'algorisme que fa que:
 - i) B emmagatzemi les dues primeres xifres (milers i centenes –ab-)
 - ii) C emmagatzemi les dues ultimes (desenes i unitats -cd-)
 - iii) D emmagatzemi l'última xifra (unitats –d-)
 - iv) E emmagatzemi la segona xifra (centenes –b-)
 - v) F emmagatzemi la tercera xifra (desenes -c-)
 - vi) H emmagatzemi la primera xifra (milers –a-)
 - vi) G emmagatzemi el producte de les quatre xifres i escrigui el resultat

Bàtxelor en informàtica

4. Dissenyeu l'algorisme del càlcul de l'àrea d'un rectangle.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	Altura	Real	Altura del rectangle
Е	Base	Real	Base del rectangle
S	Àrea	Real	Àrea del rectangle

INICI_SEQÜÈNCIA

Llegir Base

Llegir Altura

Àrea ←Base • Altura

Escriu "L'àrea del rectangle és ", Àrea

FI_SEQÜÈNCIA

I si també volem calcular el perímetre i la diagonal del rectangle?

Bàtxelor en informàtica

5. Una fàbrica de pilotes de tennis fa l'embalatge d'acord amb les comandes dels clients utilitzant els següents tipus d'embalatges:

tipus G amb capacitat de 200 pilotes

tipus M amb capacitat de 50 pilotes

tipus P amb capacitat de 10 pilotes.

Les quantitats encarregades per cada client són sempre múltiples de 10.

Dissenyeu un algorisme que entrant el nombre de pilotes que demana el client, ens digui quin nombre de cada tipus d'embalatge utilitzarem, de forma que el nombre total de caixes sigui mínim.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	QNT	Natural	Nombre de pilotes pendents d'empaquetar
S	G	Natural	Nombre de caixes de 200 necessàries
S	M	Natural	Nombre de caixes de 50 necessàries
S	Р	Natural	Nombre de caixes de 10 necessàries

INICI_SEQÜÈNCIA

Llegir QNT

G ← QNT || 200

QNT ← QNT |R 200

M ← QNT || 50

QNT ← QNT |R 50

P ← QNT || 10

Escriu "Caixes Grans: ", G

Escriu "Caixes Mitjanes:", M

Escriu "Caixes Petites:", P

FI_SEQÜÈNCIA

I si no hi hagués la restricció de que el nombre de pilotes és múltiple de 10?

6. Ens demanen de resoldre (automatitzar) el tornar canvi dels caixers del país de barrufets de manera que entrant l'import de la compra i els diners que lliura el client s'informi a l'empleat de la quantitat de bitllets i/o monedes de cada tipus que ha de tornar de canvi de manera que aquest sigui mínim. Dissenyeu l'algorisme que permeti solucionar el problema del canvi.

Considereu que al país dels barrufets només existeixen bitllets 500 i 100 barrufos i monedes de 50, 25, 5 i 1 barrufos.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	IMP	Natural	Import de la compra
Е	PAG	Natural	Diners amb que paga la compra
	CNV	Natural	Canvi que manca per tornar en cada moment
S	B500	Natural	Número de bitllets de 500
S	B100	Natural	Número de bitllets de 100
S	M50	Natural	Número de monedes de 50
S	M25	Natural	Número de monedes de 25
S	M5	Natural	Número de monedes de 5
S	M1	Natural	Número de monedes d'1

INICI_SEQÜÈNCIA

Llegir IMP

Llegir PAG

CNV←PAG-IMP

B500 ← CNV || 500

CNV ← CNV | R 500

B100 ← CNV || 100

CNV ← CNV |R 100

M50 ← CNV || 50

CNV ← CNV |R 50

M25 ← CNV || 25

CNV ← CNV |R 25

M5 ← CNV || 5

CNV ← CNV |R 5

 $M1 \leftarrow CNV$

Escriu B500, B100

Escriu M50, M5, M1

FI_SEQÜÈNCIA

7. Dissenyeu l'algorisme que entrant un nombre de tres xifres, ens en retorni la suma.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	NUM	Natural	Número a tractar
	U	Natural	Xifra de les unitats
	D	Natural	Xifra de les desenes
	С	Natural	Xifra de les centenes
S	SUM	Natural	Suma de les xifres
	AUX	Natural	Auxiliar

INICI_SEQÜÈNCIA

Llegir NUM

U ←NUM |R 10

AUX ← NUM || 10

D ←AUX |R 10

C ← AUX || 10

SUM \leftarrow U + D + C

Escriu "La suma de les xifres és ", SUM

8. Dissenyeu un algorisme que entrant l'any de naixement ens digui quin any fareu o heu fet 18 anys i l'edat que tindreu l'any 2030.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	AN	Natural	Any de naixement
S	A18	Natural	Anys dels 18 anys
S	E2030	Natural	Edat que tindreu l'any 2030

INICI_SEQÜÈNCIA

Llegir AN

A18 ←AN + 18

E2030 ←2030 – AN

Escriu "Els 18 anys a l'any ", A18

Escriu "L'any 2030 compliràs ", E2030

FI_SEQÜÈNCIA

Bàtxelor en informàtica

9. Imagineu una determinada civilització que es regeix pel calendari lunar, any de 13 mesos (llunes) de 28 dies cadascun. Dissenyeu l'algorisme que permeti calcular els dies transcorreguts entre dues dates d'un mateix any.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	DE	Natural	Dia d'entrada
E	ME	Natural	Mes d'entrada
Е	DS	Natural	Dia sortida
Е	MS	Natural	Mes sortida
S	DT	Natural	Dies transcorreguts
	А	Natural	Dies de la data d'entrada a final de mes
	В	Natural	Dies dels mesos sencers entre ambdues
			dates
	С	Natural	Dies de principi de mes a la data de sortida

Llegir DE, ME Llegir DS, MS

 $A \leftarrow 28 - DE$ $B \leftarrow (MS - ME - 1) \cdot 28$ $C \leftarrow DS$ $DT \leftarrow A + B + C$ Escriu DT FI_SEQÜÈNCIA

Funciona quan el mes d'entrada i de sortida coincideixen? Quines modificacions caldria fer en el cas que no funcionés correctament?

A) Resoleu-lo comptant els dies que hi ha de principi d'any a la data de sortida (B a l'esquema), de principi d'any a la data d'entrada (A de l'esquema) i fent la diferència (B-A) d'ambdós valors

B) Resoleu-lo fent restant als dies de l'any (364) la suma dels dies transcorreguts de principi d'any a la data d'entrada (A) amb els dies transcorreguts des de la segona data a final d'any. És a dir, 364- (A+B).

Bàtxelor en informàtica

10. Considerant el mateix calendari lunar dissenyeu l'algorisme que permeti calcular els dies que separen dues dates d'anys diferents.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	DE, ME, AE	Natural	Dia, mes i any inicial
Е	DS, MS, AS	Natural	Dia, mes i any final
S	DT	Natural	Dies transcorreguts
	Α	Natural	Dies de la data d'entrada a final d'any
	В	Natural	Dies de principi d'any a la data de sortida
	С	Natural	Dies corresponents a anys sencers

INICI_SEQÜÈNCIA

Llegir DE,ME,AE Llegir DS,MS,AS

$$C \leftarrow (AS - AE - 1) \cdot 364$$

$$A \leftarrow (28 - DE) + (13 - ME) \cdot 28$$

$$DT \leftarrow A + B + C$$

Escriu "Han transcorregut ",DT," dies"

FI_SEQÜÈNCIA

Fixeu-vos que el nombre d'anys sencers (de l'1/1 al 28/13) sempre és: AS-AE-1

Funcionaria per calcular la diferència de dies entre dues dates del mateix any?.

De no funcionar com seria un programa únic que funcioni per a tots els casos?

11. Donat el següent algorisme

Vegem com evolucionaran les diferents variables pels valors d'entrada : 1 7 3

Α	В	С	Χ	A <b< th=""><th>A<c< th=""><th>B<c< th=""><th>ACCIONS</th><th>COMENTARIS</th></c<></th></c<></th></b<>	A <c< th=""><th>B<c< th=""><th>ACCIONS</th><th>COMENTARIS</th></c<></th></c<>	B <c< th=""><th>ACCIONS</th><th>COMENTARIS</th></c<>	ACCIONS	COMENTARIS
1	7	3					1	
				SI			2	S'executaran les
								accions 3,4,5
			1				3	
7							4	
	1						5	
					NO		6	Salta les accions 7,8,9
						SI		S'executaran les
								accions 11, 12 i 13
			1				11	
	3						12	
		1	1				13	
							14	Mostra en pantalla els últims valors de cada variable A=7, B=3 i C= 1

Bàtxelor en informàtica

Fonaments de Programació

12. Donat el següent algorisme:

INICI_SEQUÈNCIA Llegir A, B, C (1) $D \leftarrow 0$ (2) SI A>B LLAVORS (3) $X \leftarrow A$ (4) A←B (5) B←X (6) **ALTRAMENT** D**←**1 (7) FI_SI SI A>C LLAVORS (8) $X \leftarrow A$ (9) $A \leftarrow C$ (10)c←x (11)**ALTRAMENT** D**←**D+1 (12)FI SI SI B>C LLAVORS (13) $X \leftarrow A$ (14)B←C (15) $C \leftarrow X$ (16)**ALTRAMENT** D**←**0 (17)FI-SI Escriu A, B, C, D (18)FI_SEQUÈNCIA

Bàtxelor en informàtica

Vegem com evolucionaran les diferents variables pels valors d'entrada 2 10 5

Α	В	С	D	Х	A>B	A>C	B>C	ACCIÓ	COMENTARIS
2	10	5						1	
			0					2	
					NO				Salta les accions 4,5 i
									6 i passa a executar-
								3	se l'ALTRAMENT
									(acció 7)
			1					7	
						NO			Salta les accions 9,10
								8	i 11
			2					12	
							SI	13	S'executen les
									accions 14, 15 i 16 i
									salta l'acció 17
				2				14	
	5							15	
		2						16	
								18	Mostra els continguts
									de les variables A=2,
									B=5, C=2, D=2

Com evolucionaran les variables pels valors d'entrada 10, 2 i 5?

NOTA: |n| representa el valor absolut d'N

14. Donat el següent algorisme, digueu sota quines condicions s'executaran els blocs d'accions (A,B,...G) i com evolucionaran les diferents variables pels valors d'entrada 7 5 3

Bàtxelor en informàtica

Α	В	С	N	BLOC	A>B	A>C	COMENTARIS
7	5	3	0	Α			
					SI		S'executa B, (C o D) i
							E. No s'executa F
			2	В			
						SI	S'executa C i no
							s'executa D
8		5	3	С			
	13			Е			
				G			Mostra el contingut
							de les variables A=8,
							B=13 i C=5

Com evolucionaran les variables pels valors d'entrada:

- a) 6, 5, 8
- b) 3, 4, 9?

Bàtxelor en informàtica

15. Donat el següent algorisme, com evolucionen les variables pels valors d'entrada 3, 7 i 2?

INICI_SEQUÈNCIA

Llegir A, B, C

SEGONS_SIGUI A FER

1: (2)

$$B \leftarrow B + A$$
 (3)

 $C \leftarrow B - C$ (4)

2 a 4: (5)

 $C \leftarrow C + A$ (6)

 $B \leftarrow C - B$ (7)

5: (8)

 $B \leftarrow 0$ (9)

 $C \leftarrow 0$ (10)

FI_SEGONS_SIGUI

Escriu A, B, C (11)

FI_SEQUÈNCIA

Α	В	С	ACCIÓ	A=1?	A>=2 i A<=4?	COMENTARIS
3	7	2	1			
			2	NO		Salta accions 3 i 4
			5		SI	S'executen 6 i 7 i surt del SEGONS_SIGUI
		5	6			
	-2		7			
			11			Mostra el contingut de les variables A, B i C. A=3, B=-2, C=5

Com evolucionarien les variables pels valors d'entrada 1,3 i 5? I per 6, 2 i 8?

Com escriuríeu un algorisme equivalent canviant l'estructura alternativa múltiple per la condicional?

Bàtxelor en informàtica

16. Analitzeu el següent algorisme.

S'executa sempre i quan A>B

INICI_SEQÜENCIA

Llegir A, B, C SI A>B LLAVORS

 $A \leftarrow A - B$

SEGONS SIGUI A FER

1: A ← A – B

2: A ← A + B

3: A ← B + C

FI_SEGONS_SIGUI

ALTRAMENT

A ← B+C

SEGONS_SIGUI A **FER**

1 a 3: $A \leftarrow B - C$

 $B \leftarrow C - B$

 $C \leftarrow A + B$

4: B ← B + C

ALTRAMENT

 $A \leftarrow B + C$

 $C \leftarrow B$

FI_SEGONS_SIGUI

FI_SI

 $A \leftarrow A + B - C$

 $B \leftarrow A - B + C$

 $C \leftarrow A - B - C$

Escriu A, B, C

FI_SEQÜENCIA

S'executa sempre i quan A<=B

S'executa sempre i quan A<=B i per a qualsevol valor d'A diferent d'1, 2, 3, 4

Com evolucionaran les variables pels valors d'entrada 7, 5, 3? I pels valors 2, 4, 2?

I pels valors 4, 3, 0?

I per 0, 1, 2?

17. Dissenyeu un algorisme que donat un nombre enter determini si és positiu, negatiu o nul.

ENTORN

	E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Ī	Е	Num	Natural	Número a analitzar

Bàtxelor en informàtica

18. Dissenyeu un algorisme que determini si un número enter és múltiple de cinc analitzant la xifra de les unitats.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ	
Е	Num	Natural	Número a analitzar	

19. Dissenyeu l'algorisme que permeti calcular l'import a pagar en un pàrquing que funciona de les 8 del matí a les 10 de la nit tenint en compte que es cobra a K € (constant ja definida) l'hora o fracció.

ENTORN (solució 1)

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	HE	Natural	Hora d'entrada
Е	ME	Natural	Minut d'entrada
E	HS	Natural	Hora de sortida
	HP	Natural	Hores completa d'estada la pàrquing
	MP	Natural	Minuts que passen de les hores completes
Е	MS	Natural	Minut de sortida
S	IMP	Natural	Import a pagar
	FRC	Natural	Nombre de fraccions

INICI_SEQÜÈNCIA

```
Llegir HE, ME Llegir HS, MS

SI MS < ME LLAVORS

HS ←HS − 1

MS←MS + 60

FI_SI

FRC ←HS − HE

MP ← MS − ME

SI MP > 0 LLAVORS

FRC←FRC + 1

FI_SI

IMP←FRC • K

Escriu 'L'import total és', IMP
```

FI_SEQÜÈNCIA

SOLUCIÓ 2	SOLUCIÓ 3
	INICI_SEQÜÈNCIA
	Llegir HE ,ME, HS, MS
INICI_SEQÜÈNCIA Llegir HE, ME, HS, MS	MinEnt ← HE • 60 + ME
FRC ←HS – HE	MinSort ← HS • 60 + MS
SI MS>ME LLVORS	MinP ← MinSort – MinEnt
FRC←FRC + 1	FRC ← MinP 60
FI_SI	SI MinP R 60 >0 LLAVORS
IMP←FRC• K	FRC←FRC + 1
Escriu 'L'import total és', IMP	FI_SI
FI_SEQÜÈNCIA	IMP←FRC• K
	Escriu 'L'import total és', IMP
	FI SEQÜÈNCIA

Bàtxelor en informàtica

ENTORN (solució 2)

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
	MinEnt	Natural	Minut del dia a l'entrada
	MinSort	Natural	Minut del dia a la sortida
	MinP	Natural	Minuts d'estada al pàrquing

Bàtxelor en informàtica

20. En una botiga de queviures es venen ous en capses de 12, i també en venen d'escadussers. N'hi ha de tres qualitats "A" a 3 € la dotzena, "B" a 2.5 i "C" a 2. Els escadussers cal pagar-los a 0.3, 0.25, 0.2 € la unitat respectivament. Dissenyeu l'algorisme d'automatització de la venda d'ous de tal manera que entrant la quantitat d'ous i el tipus ens digui quantes capses (dotzenes) i quants ous escadussers cal lliurar al client així com l'import de la compra.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	NO	Natural	Nombre d'ous que desitja comprar
Е	TPO	Caràcter	Tipus d'ous
S	ND	Natural	Nombre de dotzenes que ha de lliurar
S	NE	Natural	Nombre d'ous escadusser que ha de lliurar
	PD	Real	Preu de la dotzena segons tipus
	PE	Real	Preu de l'escadusser segons tipus
S	IMP	Real	Import de la compra

INICI_SEQÜÈNCIA

Llegir NO, TPO ND ←NO || 12

NE ←NO |R12

SEGONS SIGUI TPO FER

'A': PD ←3 PE ←0,3

'B': PD **←**2,5

PE **←**0,25

'C': PD ←2 PE ←0,2

FI SEGONS SIGUI

Escriu "Dotzenes: ",ND

Escriu "Escadussers: ", NE

IMP ←(ND • PD)+(NE • PE)

FI SEQÜÈNCIA

Aquesta estructura ens permet assignar a PD el preu de la dotzena i a PE el preu dels escadussers en funció del tipus d'ous (TPO) seleccionats

I si volgués fer-ho amb una estructura condicional en lloc de l'alternativa múltiple?

> M'agradaria que si el cost dels escadussers és igual o superior al d'una dotzena lliuri i cobri una dotzena completa en lloc dels escadussers corresponents.

Bàtxelor en informàtica

21. Una infermera treballa en el servei d'urgència nocturn d'un hospital, entra a treballar entre les 0h i les 4h de la matinada i surt, com a molt tard, a les 12 del migdia. Les seves entrades i sortides del treball, encara que no són fixes, sempre tenen lloc a hores exactes. Les hores treballades fins a les 8 del matí (hores nocturnes) les cobra a 25 €/hora i les altres (hores diürnes) a 20 €/hora. Dissenyeu l'algorisme que permeti calcular els honoraris de la infermera en funció de l'hora d'entrada i de sortida així com el nombre d'hores de cada tipus treballades.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	HE	Natural	Hora d'entrada
Е	MS	Natural	Hora de sortida
S	HD	Natural	Nombre d'hores diürnes
S	IMP	Natural	Import a pagar

Bàtxelor en informàtica

- 22. Dissenyeu un algorisme que entrant la longitud de tres segments (ordenats de gran a petit) ens digui quin tipus de triangle podrem formar:
 - -triangle impossible
 - -triangle equilàter
 - -triangle isòsceles
 - -triangle escalè
 - -triangle rectangle isòsceles
 - -triangle rectangle escalè

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	Α	Natural	Segment més llarg
E	В	Natural	Segment mitjà
E	С	Natural	Segment més curt

INICI_SEQÜÈNCIA

Llegir A, B, C

SI (A > (B+C)) LLAVORS

Escriu "Triangle Impossible"

ALTRAMENT

Escriu "Triangle"

SI ((A=B) I (B=C)) LLAVORS

Escriu "equilàter"

ALTRAMENT

SI $(A^2 = B^2 + C^2)$ LLAVORS

Escriu "rectangle"

FI_SI

SI ((A<>B) I (B<>C)) **LLAVORS**

Escriu "escalè"

ALTRAMENT

Bàtxelor en informàtica

23. Dissenyeu l'algorisme que permeti donar solució a una equació de segon grau entrant els valors dels seus coeficients.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	Α	Real	Coeficient d'X ²
Е	В	Real	Coeficient d'X
E	С	Real	Terme independent
S	X1	Real	Primera solució
S	X2	Real	Segona solució
	DSCR	Real	Discriminant

INICI_SEQÜÈNCIA

Llegir A, B, C

SI A = 0 LLAVORS

Escriu "No es tracta d'una equació de segon grau"

ALTRAMENT

DSCR \leftarrow B² – (4 • A •C)

SI DSCR < 0 **LLAVORS**

Escriu "No té solució real"

ALTRAMENT

$$X1 \leftarrow (-B + \sqrt{DSCR}) / (2 \cdot A)$$

$$X2 \leftarrow (-B - \sqrt{DSCR} / (2 \cdot A))$$

Escriu "Primera solució ",X1

Escriu "Segona solució ",X2

FI_SI FI SI

FI_SI FI_SEQÜÈNCIA I si volem obtenir també les solucions imaginàries?

Bàtxelor en informàtica

24. Dissenyeu un algorisme que analitzi el signe del producte de dos números enters *no nuls* sense calcular-ne el producte. És a dir, analitzant el signe dels factors.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	N1	Enter	Multiplicant
E	N2	Enter	Multiplicador
S	SG	Caràcter	Signe del producte

Bàtxelor en informàtica

25. Dissenyeu un algorisme que determini el signe de la suma de dos enters sense calcular-la (és a dir, analitzant el signe dels sumands) i considerant que el resultat de la suma és diferent de zero.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	N1	Enter	Primer sumand
E	N2	Enter	Segon sumand
S	SG	Caràcter	Signe de la suma

Bàtxelor en informàtica

Considerem que durant l'any en curs ha fet o farà

26. Dissenyeu l'algorisme que permeti calcular l'edat en anys d'una persona entrant la data de naixement i la data actual en la forma dia-mes-any.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	DN	Natural	Dia de naixement
E	MN	Natural	Mes de naixement
Е	AN	Natural	Any de naixement
Е	DA	Natural	Dia actual
Е	MA	Natural	Mes actual
Е	AA	Natural	Any actual
S	Edat	Natural	Edat actual

Edat anys. Aquesta és l'edat màxima i només INICI_SEQÜÈNCIA caldrà ajustar-la si encara no ha complert els anys. Llegir DN, MN, AN Llegir DA, MA, AA Edat ← AA – AN SI MA<MN LLAVORS Edat ← Edat −1 **ALTRAMENT** SI (MA = MN) LLAVORS SI (DA < DN) LLAVORS Edat ← Edat – 1 FI_SI FI SI FI SI Escriu "Tens ", Edat ," anys" FI_SEQÜÈNCIA I per a què doni un missatge de felicitació en el cas que en la data actual compleixi anys?

Bàtxelor en informàtica

27. Dissenyeu un algorisme que determini si un any és bixest o no. En el calendari gregorià, un any és bixest si és múltiple de 4 a excepció dels anys seculars que són el que finalitzen amb dos zeros i que les dues primers xifres no són divisibles per 4. Exemples:

1975 no bixest (no és divisible per 4)

1992 bixest (divisible per 4)

2000 bixest (finalitza amb 00 i no és secular)

2100 no bixest (finalitza amb 00 i és secular).

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	ANY	Natural	Any que volem analitzar
	MC	Natural	Grup milers centenes de l'any

INICI_SEQÜÈNCIA

Llegir ANY

SI ANY | R 4=0 LLAVORS

SI ANY |R 100=0 LLAVORS

 $MC \leftarrow ANY \mid \mid 100$

SI (MC |R4 = 0) LLAVORS Escriu "És bixest"

ALTRAMENT

Escriu "No és bixest'

FI_SI

ALTRAMENT

Escriu " És bixest"

FI SI

ALTRAMENT

Escriu "No és bixest"

FI_SI FI SEQÜÈNCIA

L'any en curs finalitza amb dos zeros (és

múltiple de 100)

Bàtxelor en informàtica

28. En el país dels barrufets es regeixen pel següent calendari: l'any té 13 mesos, cada mes té 13 dies llevat del mes 7è. que té 14 dies els anys que són múltiples de cinc. Dissenyeu un algorisme, que entrant una data de la forma dia-mes-any, analitzi si és correcta o no.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	D	Natural	Dia
E	M	Natural	Mes
E	Α	Natural	Any

Bàtxelor en informàtica

- 29. Dissenyeu un algorisme que permeti calcular el salari setmanal d'un empleat de l'empresa XYZ S.A. segons el criteri següent:
- * Les primeres 40 hores es paguen a 18 €/hora
- * Les hores que passen de 40 fins a les 60 es paguen a 30 €/hora
- * Les hores que passen de 60 es paguen a 50 €/hora.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	Н	Natural	Hores treballades
	НО	Natural	Hores ordinàries (fins a 40)
	HE	Natural	Hores extraordinàries (entre les 40 i les 60)
	HSE	Natural	Hores superextraordinàries (superiors a 60)
S	IMP	Natural	Salari setmanal

INICI_SEQÜÈNCIA

Llegir H

HE \leftarrow 0

HSE ← 0

SEGONS_SIGUI H FER

0 a 40 : HO ← H 41 a 60: HO ← 40

HE ←H-40

ALTRAMENT

HO ← 40

HE **←** 20

HSE ←H-60

FI_SEGON_SIGUI

IMP ← (HO •18)+(HE • 30)+(HSE • 50)

Escriu "El salari setmanal és de ", IMP

FI_SEQÜÈNCIA

I si el preu de les hores varia en funció de la categoria (A,B,C): el preu de les hores per a la categoria A és la de l'enunciat, per a la B és un 20% superior a la de la categoria A i per a la C és un 20% superior a la B?

Considerant que H és un nombre natural

tindrem que H>60

30. Dissenyeu un algorisme que a partir de dues dates escrigui la que és posterior.

SOLUCIÓ I

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	D1	Natural	Dia primera data
Е	M1	Natural	Mes primera data
Е	A1	Natural	Any primera data
Е	D2	Natural	Dia segona data
Е	M2	Natural	Mes segona data
Е	A2	Natural	Any segona data

```
INICI_SEQÜÈNCIA
             Llegir D1, M1, A1
             Llegir D2, M2, A2
                                                              A1<=A2
             SI A1 > A2 LLAVORS
                    Escriu D1, M1, A1
             ALTRAMENT
                    SI A1 < A2 LLAVORS
                                                           A1=A2
                           Escriu D2, M2, A2
                    ALTRAMENT
                          SI M1 > M2 LLAVORS
                                                              A1=A2 i M1<=M2
A1=A2 | M1=M2
                                 Escriu D1, M1, A1
                           ALTRAMENT -
                                 SI M1 < M2 LLAVORS
                                        Escriu D2, M2, A2
                                 ALTRAMENT
                                        SI D1>D2 LLAVORS
                                              Escriu D1, M1, A1
                                        ALTRAMENT
                                              SI D1<D2 LLAVORS
A1=A2 | M1=M2 | D1<=D2
                                                     Escriu D2, M2, A2
                                              ALTRAMENT
                                                     Escriu "Són iguals"
                                              FI_SI
                                        FI_SI
                                 FI_SI
                           FI_SI
                    FI SI
             FI_SI
       FI_SEQÜÈNCIA
```

SOLUCIÓ II

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	D1	Natural	Dia primera data
Е	M1	Natural	Mes primera data
Е	A1	Natural	Any primera data
Е	D2	Natural	Dia segona data
Е	M2	Natural	Mes segona data
E	A2	Natural	Any segona data
	Р	Natural	Controla el tipus de data (1 si es posterior la
			primera data, 2 si és posterior la segona i 0 si
			són iguals)

```
INICI_SEQÜÈNCIA
       Llegir D1, M1, A1
       Llegir D2, M2, A2
       P← 1
       SI A1 < A2 LLAVORS
              P←2
       ALTRAMENT
              SI A1 = A2 LLAVORS
                     SI M1 < M2 LLAVORS
                            P \leftarrow 2
                     ALTRAMENT
                            SI M1 = M2 LLAVORS
                                   SI D1 < D2 LLAVORS
                                          P \leftarrow 2
                                   ALTRAMENT
                                          SI D1 = D2 LLAVORS
                                                P ←0
                                          FI_SI
                                  FI_SI
                            FI_SI
                     FI_SI
              FI_SI
       FI SI
       SEGONS_SIGUI P FER
              0: Escriu "són iguals"
              1: Escriu D1, M1, A1, " és posterior a la data ", D2, M2, A2
              2: Escriu D2, M2, A2, " és posterior a la data ", D1, M1, A1
       FI_SEGONS_SIGUI
FI_SEQÜÈNCIA
```

Analitzarem quins resultats obtindrem a l'aplicar als següents algorismes els valors: 7 3

```
(A)
INICI SEQÜENCIA
       Llegir A, B
                                        (1)
        C \leftarrow 0
                                        (2)
        MENTRE C \le 3 FER (3)
                A \leftarrow A - B
                                        (4)
                B \leftarrow A + B
                                        (5)
        FI MENTRE
                                        (6)
        Escriu A, B
                                        (7)
FI_SEQÜENCIA
```

Es compleix la condició d'entrada al bucle ja que C=0 amb la qual cosa C<=3. Ara bé com que la variable C no es modifica dins del bucle sempre es complirà la condició d'entrada al bucle (C<=3) per la qual cosa ens trobarem en un **bucle infinit** (les accions 4 i 5 s'executaran infinitament).

```
(B)

INICI_SEQÜENCIA

Llegir A, B

C ← 5

MENTRE C <= 3 FER

A ← A -B

B ← A + B

FI_MENTRE

Escriu A, B

FI_SEQÜENCIA
```

En aquesta cas la iteració no s'executa cap vegada ja que inicialment C=5 i no es compleix la condició d'entrada al bucle, per la qual cosa els valors de sortida coincideixen amb els d'entrada.

(C)

```
INICI_SEQÜENCIA
        Llegir A, B
                                           (1)
        C \leftarrow 1
                                           (2)
        MENTRE C <= 3 FER
                                           (3)
                 A \leftarrow A - B
                                           (4)
                 B \leftarrow A + B
                                           (5)
                 C \leftarrow C + 1
                                           (6)
        FI_MENTRE
                                           (7)
        Escriu A, B
                                           (8)
FI_SEQÜENCIA
```

Bàtxelor en informàtica

Α	В	С	C<=3?	ACCIÓ	COMENTARIS
7	3			1	
		1		2	
			SI	3	S'executa el bucle (accions 4,5,6)
4				4	
	7			5	
		2		6	
				7	Tanca el bucle (retorna a l'acció 3)
			SI	3	Es torna executar el bucle
-3	4	3		4,5,6	
				7	Tanca el bucle
			SI	3	Es torna a executar el bucle
-7	-3	4		4,5,6	
				7	Tanca el bucle
			NO	3	Abandona el bucle
				8	Mostra el contingut de les variables A=-7, B=-3

(D)

INICI_SEQÜENCIA Llegir A, B (1) MENTRE A > B FER (2) $A \leftarrow A - B$ (3) $B \leftarrow A + B$ (4) FI_MENTRE (5) Escriu A, B (6) FI_SEQÜENCIA

Α	В	С	A>B?	ACCIONS	COMENTARIS
7	3			1	
			SI	2	Passa a executar-se el bucle
4				3	
	7			4	
				5	Tanca el bucle
			NO	2	Abandona el bucle
				6	Mostra el contingut de les
					variables, A=4 i B=7

(E)

INICI_SEQÜENCIA
Llegir A, B (1)
REPETEIX $A \leftarrow A - B (2)$ $B \leftarrow A + B (3)$ FINS_QUE A>B (4)
Escriu A, B (5)
FI_SEQÜENCIA

Α	В	С	A>B?	ACCIÓ	COMENTARIS
7	3			1	
4				2	
	7			3	
			NO	4	Torna a executar el bucle
-3	4			2,3	
			NO		Torna a executar-se el bucle
-7	-3			2,3	
			NO		Torna a executar-se el bucle
-4	-7			2,3	
			SI	4	Abandona el bucle
				5	Mostra el contingut de les
					variables A=-4, B= -7

(F)

INICI_SEQÜENCIA	
Llegir A, B	(1)
DES_DE C \leftarrow 2 FINS 4 INCREMENT 1 FER	(2)
A ← A − B	(3)
B ← A + B	(4)
FI_DES_DE	(5)
Escriu A, B	(6)
FI_SEQÜENCIA	

Α	В	С	C<=4?	ACCIÓ	COMENTARIS
7	3			1	
		2	SI	2	S'inicialitza el controlador del bucle i passa a executar-se
4	7			3,4	
		3		5	Tanca el bucle incrementant el controlador
			SI	2	Torna a executar-se el bucle
-3	4			3,4	
		4		5	Tanca el bucle incrementant el controlador
			SI	2	Passa a executar-se el bucle
-7	-3			3,4	
		5		5	Tanca el bucle incrementant el controlador
			NO	2	Abandona el bucle
				6	Mostra el contingut de les variables A=-7, B=-3

(G)

INICI_SEQÜENCIA	
Llegir A, B	(1)
DES_DE C \leftarrow 5 FINS 3 INC -1 FER	(2)
A ← A −B	(3)
B ← A + B	(4)
Escriu A, B	(5)
FI_DES_DE	(6)
FI SEQÜENCIA	

Α	В	С	C>=3?	ACCIÓ	COMENTARIS
7	3			1	
		5	SI	2	Inicialitza el controlador del
					bucle i passa a executar-se
4	7			3,4	
				5	Mostra el contingut de les
					variables A=4, B=7
		4		6	Tanca el bucle decrementant el controlador
			SI	2	Torna a executar el bucle
			31		Torria a executar el bucie
-3	4			3,4	
				5	Mostra el contingut de les
					variables A=-3, B=4
		3		6	Tanca el bucle i decrementa el
					controlador
			SI	2	Torna a executar-se el bucle
-7	-3			3,4	
				5	Mostra el contingut de les
					variables A=-7, B= -3
		2		6	Tanca el bucle decrementant el
					controlador
			NO	2	Abandona el bucle

Fixeu-vos que com l'acció 5 (Escriu A,B) es troba dins del bucle s'executa tantes vegades (en aquest cas 3) com vegades s'executa el bucle.

31. Dissenyeu un algorisme que escrigui la taula de multiplicar d'un número qualsevol.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Natural	Número del qual volem generar la taula
	Υ	Natural	Controlador del bucle

INICI_SEQÜÈNCIA

Llegir N

DES_DE Y ←0 FINS 10 INC 1 FER

Escriu N, 'x ', Y, ' = ', N •Y

FI_DES_DE

FI_SEQÜÈNCIA

32. Dissenyeu un algorisme que permeti llistar tots els números de tres xifres que siguin múltiples de tres i de cinc a la vegada.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
S	X	Natural	Número que s'avalua

Bàtxelor en informàtica

33. Dissenyeu un algorisme que calculi la potència d'un número natural pel mètode de productes successius.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	NUM	Natural	Base de la potència
Е	EXP	Natural	Exponent
S	POT	Natural	Potència

I si també vull que

Bàtxelor en informàtica

34. Dissenyeu un algorisme que permeti calcular la divisió entera i la resta d'aquesta divisió de dos números naturals mitjançant restes successives.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	DD	Natural	Dividend
Е	DR	Natural	Divisor
S	Q	Natural	Quocient enter

35. Dissenyeu un algorisme que permeti determinar si un número N és primer. NOTA: direm que un número és primer quan només es divisible per ell mateix i per la unitat.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Natural	Número que s'analitza
	SN	Natural	Flac de control

SOLUCIÓ 1	SOLUCIÓ 2
INICI_SEQÜÈNCIA	INICI_SEQÜÈNCIA
Llegir N	Llegir N
SN ←Fals	SN ← Fals
X ← 2	DES_DE $X \leftarrow 2$ FINS $N-1$ INC 1 FER
MENTRE ((SN =fals) i (X <= N −1)) FER	SI N R X = 0 LLAVORS
SI N R X = 0 LLAVORS	SN ← Veritat
SN ← Veritat	FI_SI
FI_SI	FI_DES_DE
X ← X + 1	SI SN = Fals LLAVORS
FI_MENTRE	Escriu N," és primer"
SI SN = Fals LLAVORS	ALTRAMENT
Escriu N," és primer"	Escriu N," no és primer"
ALTRAMENT	FI_SI
Escriu N," no és primer"	FI_SEQÜÈNCIA
FI_SI	
FI_SEQÜÈNCIA	

Bàtxelor en informàtica

36. Tenint en compte el calendari lunar (13 mesos de 28 dies), dissenyeu un algorisme que, entrant una data, ens digui quina data serà quan hagin passat un determinat nombre de dies. Considereu que després de sumar els dies a la data inicial la data que obtenim és una data del mateix any.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	D	Natural	Dia inicial
Е	M	Natural	Mes inicial
Е	DT	Natural	Dies transcorreguts
S	DF	Natural	Dia final
S	MF	Natural	Mes final

SOLUCIÓ 1	SOLUCIÓ 2
INICI_SEQÜÈNCIA	INICI_SEQÜÈNCIA
Llegir D,M,DT	Llegir D, M, DT
DF ← D	DF ← D
MF ← M	MF ← M
MENTRE DT > 28 FER	SI (DT > (28 – D)) LLAVORS
DT ← DT – 28	DT ← DT – (28 – D)
MF ← MF + 1	MF ← MF +1
FI_MENTRE	MENTRE DT > 28 FER
DF ← DF + DT	DT ← DT – 28
SI DF>28 LLAVORS	MF ← MF + 1
DF ← DF – 28	FI_MENTRE
MF ← MF + 1	DF ← DT
FI_SI	ALTRAMENT
Escriu "Data resultant ", DF, MF	DF ← D + DT
FI_SEQÜÈNCIA	FI_SI
	Escriu " Data resultant ", DF, MF
	FI_SEQÜÈNCIA

Bàtxelor en informàtica

37. Imagineu la sèrie 1 3 7 15 31 ..., dissenyeu un algorisme que permeti llistar els N primers termes de la sèrie.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Natural	Nombre de termes que s'han de mostrar
S	TS	Natural	Terme de la sèrie
	СТ	Natural	Controlador de la iteració

INICI_SEQÜÈNCIA

Llegir N

TS ← 0

DES_DE CT ← 1 FINS N INC 1 FER

TS ← (TS • 2) + 1

Escriu TS

FI_DES_DE

FI_SEQÜÈNCIA

De l'anàlisi dels elements de la sèrie ens adonem que cada element és una unitat superior al doble de l'anterior.

38. Dissenyeu un algorisme que calculi el factorial d'un número N amb N>=1.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Natural	Número del que es calcula el factorial
S	FAC	Natural	Factorial del número
	Х	Natural	Controlador de la iteració

39. Dissenyeu un algorisme que permeti generar els N (amb N>=2) primers termes de la sèrie de Fibonacci 0 1 1 2 3 5 8 13 ...

NOTA: cada nou element, llevat dels dos primers, s'obté com a suma dels dos anteriors.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Natural	Nombre de termes que s'han de mostrar
	ACT	Natural	Terme actual
	ANT	Natural	Anterior de l'actual
S	NS	Natural	Número següent

40. Dissenyeu un algorisme que permeti fer una llista de les taules de multiplicar de l'1 al 9 deixant dues línies entre taules.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
	Р	Natural	Control de quina taula esta llistant
	Q	Natural	Control dins de cada taula

- 41. En el país dels barrufets existeix un esport semblant al tennis que es regeix per les següents regles: i) La competició es juga al millor de cinc sets (el primer que guanya a tres sets)
 - ii) Guanya un set el primer jugador que guanya cinc jocs
 - iii) Per guanyar un joc cal fer fallar cinc vegades el contrari.

Dissenyeu un algorisme que determini el guanyador d'un partit.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	Р	Caràcter	Identifica qui puntua
	SA	Natural	Sets del jugador A
	SB	Natural	Sets del jugador B
	JA	Natural	Jocs d'A
	JB	Natural	Jocs de B
	PA	Natural	Punts d'A
	PB	Natural	Punts de B

```
INICI_SEQÜÈNCIA
       SA \leftarrow 0 SB \leftarrow 0
       REPETEIX
               JA \leftarrow 0 JB \leftarrow 0
               REPETEIX
                      PA \leftarrow 0 PB \leftarrow 0
                      REPETEIX
                              Llegir P
                              SEGONS SIGUI P FER
                                      'A': PA←PA + 1
                                      'B': PB ←PB + 1
                              FI SEGONS SIGUI
                      FINS_QUE ((PA=5) O (PB =5))
                      SI PA = 5 LLAVORS
                              JA ←JA + 1
                                                          I si vull que mostri la
                       ALTRAMENT
                                                          puntuació (punts jocs i sets) en
                              JB ←JB + 1
                                                          cada moment? És a dir, que
                      FI SI
                                                          simuli un marcador electrònic.
               FINS_QUE ((JA = 5) O (JB = 5))
               SI JA = 5 LLAVORS
                      SA \leftarrow SA + 1
               ALTRAMENT
                      SB \leftarrow SB + 1
               FI SI
       FINS_QUE ((SA=3) O (SB = 3))
       SI SA = 3 LLAVORS
               Escriu "Ha guanyat A"
       ALTRAMENT
               Escriu "Ha guanyat B"
       FI SI
FI_SEQÜÈNCIA
```

42. En un partit de bàsquet es poden fer cistelles d'un punt (tirs lliures), de dos punts (des de menys de 6.25 m), de tres punts (des de més de 6.25) i també es poden fer zero punts (errar el tir). Dissenyeu un algorisme que, entrant el tipus de cistella (0,1,2,3), al final del partit ens doni l'estadística del nombre de cistelles de cada tipus així com la puntuació final.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	PUNT	Natural	Identifica el tipus de cistella
	C0	Natural	Comptador de tirs errats
	C1	Natural	Comptador de cistelles d'1 punt
	C2	Natural	Comptador de dobles
	C3	Natural	Comptador de triples
S	PT	Natural	Punts totals

INICI SEQÜÈNCIA

C0 ← 0

C1 ← 0

C2 ← 0

C3 ← 0

REPETEIX

Llegir PUNT

SEGONS_SIGUI PUNT FER

 $0: C0 \leftarrow C0 + 1$

1: C1 C1 + 1

2: C2 C2 + 1

3: C3 ← C3 + 1

FI_SEGONS_SIGUI

FINS_QUE PUNT = 4

Escriu 'Tirs errats ', CO

Escriu 'Cistelles de 1 ', C1

Escriu 'Dobles ', C2

Escriu 'Triples', C3

 $PT \leftarrow C1 + (C2 \cdot 2) + (C3 \cdot 3)$

Escriu 'Puntuació final ',PT

FI_SEQÜÈNCIA

I si vull que gestioni les cistelles i puntuació de cadascun dels dos equips mostrant el marcador de punts en tot moment i no només la final del partit?

43. A l'entrada del recinte d'un festival de rock es deixa un ordinador engegat perquè cada persona que ho desitgi entri la seva edat (no sabem de bell antuvi quantes persones utilitzarà l'ordinador).

Dissenyeu un algorisme que en finalitzar el festival (el procés finalitza en entrar l'edat 0) ens digui:

- La mitjana d'edat dels qui han utilitzat l'ordinador.
- Quants tenen una edat superior o igual a 50 anys.
- L'edat del més gran així com el nombre de persones que tenen aquesta edat.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E	EDAT	Natural	Edat de cada persona que entra al recinte
	SUM	Natural	Acumuladors de les edats
S	Q50	Natural	Comptador d'assistents de més de 50 anys
S	MIT	Real	Mitjana d'edat dels assistents
S	QME	Natural	Nombre de persones amb edat màxima
S	ME	Natural	Edat del més gran en cada moment

```
INICI_SEQÜÈNCIA
SUM ← 0
```

Q50 ← 0

ME ← 0 =

REPETEIX

Llegir EDAT

 $CT \leftarrow CT + 1$

 $\mathsf{SUM} \leftarrow \mathsf{SUM} + \mathsf{EDAT}$

SI EDAT ≥ 50 LLAVORS

Q50 ← Q50 + 1

FI_SI

SI EDAT > ME LLAVORS

ME ← EDAT

QME ← 1

ALTRAMENT

SI EDAT = ME **LLAVORS**

QME ←QME + 1

FI SI

FI-SI

FINS QUE EDAT= 0

 $MIT \leftarrow SUM / (CT - 1)$

Escriu "La mitjana d'edat és ",MIT

Escriu "Persones més grans o iguals a 50 anys ",Q50

Escriu "L'edat del més gran és ",ME

Escriu "L'han tingut ",QME," persones"

FI SEQÜÈNCIA

Podem inicialitzar el més gran a zero (ME=0) ja que en ser l'edat un nombre natural tenim la seguretat que el primer que entri superarà aquesta edat i serà el més gran relatiu. Això no funcionaria per a nombres enters.

44. Dissenyarem un programa que simuli un rellotge digital (amb precisió de segons) durant un determinat nombre de segons.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
E/S	H,M,S	Natural	Hora, minut i segon que marca el rellotge
Е	QS	Natural	Nombre de segons que ha de funcionar

45. Dissenyeu un algorisme que permeti calcular l'arrel quadrada entera d'un natural.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	X	Natural	Nombre que s'avalua
S	R	Natural	Arrel quadrada entera

Q **←**0

MENTRE $Q^2 \le X$ **FER**

 $Q \leftarrow Q + 1$

FI_MENTRE

Q←Q−1 Fi_seqüència Al sortir del MENTRE tindrem sempre Q² > X

Es podria resoldre ficant com a condició del MENTRE Q² < X?

46. Dissenyeu un algorisme que calculi en nombre el vegades que surt l'enter més gran i més petit d'una sèrie d'enters no nuls entrats pel teclat. L'entrada finalitza amb un zero.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	N	Enter	Número que s'avalua
S	MG	Enter	Valor més gran relatiu
S	MP	Enter	Valor més petit relatiu
S	Qmg	Natural	Nombre de vegades que es repeteix el més
			gran
S	Qmp	Natural	Nombre de vegades que es repeteix el més
			petit

```
INICI_SEQÜÈNCIA
      Llegir A
      MG ← A
      MP \leftarrow A
      Qmg ← 1
      Qmp ← 1
      MENTRE A <> 0 FER
             SI A > MG LLAVORS
                                                                      I si també volem
                     MG \leftarrow A
                                                                      conèixer en quin lloc de
                     Qmg ← 1
                                                                      la sèrie apareix per
              ALTRAMENT
                                                                      primera vegada
                    SI A = MG LLAVORS
                                                                      l'element més gran i per
                           Qmg ← Qmg + 1
                                                                      última vegada l'element
                    FI_SI
                                                                      més petit?
              FI_SI
              SI A < MP LLAVORS
                     MP \leftarrow A
                     Qmp ← 1
              ALTRAMENT
                    SI A = MP LLAVORS
                           Qmp ← Qmp + 1
                    FI_SI
              FI_SI
              Llegir A
      FI_MENTRE
      Escriu "El més gran és ", MG, " Freqüència ", Qmg
```

Escriu "El més petit és ", MP, " Freqüència ", Qmp

FI_SEQÜÈNCIA

47. Dissenyeu un algorisme que generant un número a l'atzar de màxim dues xifres, es pugui endevinar donant com a pista "massa gran", "massa petit".

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
	NA	Natural	Nombre generat a l'atzar
Е	Num	Natural	Nombre que es proposa

INICI_SEQÜÈNCIA

NA ← Atzar (0..99)

REPETEIX

Llegir NUM

SI Num > NA **LLAVORS**

Escriu "Massa Gran"

ALTRAMENT

SI Num < NA LLAVORS

Escriu "Massa Petit"

ALTRAMENT

Escriu "Encertat!!!"

FI_SI

FI_SI

FINS_QUE NA = Num

FI_SEQÜÈNCIA

I si volem que doni "pistes" més precises?

Per exemple "QUASI" quan la diferència sigui de màxim 5 unitats.

I si a més vull que comptabilitzi el nombre d'intents que s'han necessitat per endevinar-lo i en funció d'aquest doni un missatge?

48. Una banyera té una aixeta per on entren A litres per minut i un desguàs per on surten B litres per minut. En començar hi havia L litres. Dissenyeu un algorisme que calculi minut a minut, la quantitat d'aigua de la banyera fins que o bé es buidi o bé sobreïxi.

NOTA: la capacitat de la banyera és de 250 litres.

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
Е	Α	Natural	Litres que entren per minut
Е	В	Natural	Litres que surten per minut
Е	L	Natural	Volum inicial
S	Х	Natural	Temps en minuts

```
INICI_SEQÜÈNCIA
       Llegir A,B,L
       X ←1
       MENTRE (L <=250) I (L>0) FER
              L \leftarrow L + A - B
               Escriu 'Minut ',X,' Litres: ',L
              X \leftarrow X + 1
       FI MENTRE
       SI L > 250 LLAVORS
               Escriu "Sobreïxis al cap de", X, 'Minuts'
       ALTRAMENT
               Escriu "Buida al cap de", X, 'Minuts'
                                                        Us heu adonat que el
       FI_SI
                                                        missatge de l'últim minut
FI SEQÜÈNCIA
                                                        pot ser erroni?
                                                        Com ho podria solucionar?
```

Bàtxelor en informàtica

49. El "joc dels llumins" consisteix en que dos jugadors A i B s'alternen per treure 1, 2 o 3 llumins d'un conjunt inicial d'11 llumins, perdrà el qui està obligat a prendre l'últim. Una estratègia guanyadora per al jugador A (ordinador) consisteix en prendre'n dos la primera vegada i la diferència entre quatre i el nombre de llumins agafats per B en la jugada anterior, a les següents jugades.

Dissenyeu un algorisme que simuli aquest joc.

ENTORN

E/S	IDENTIFICADOR	TIPUS	DESCRIPCIÓ
S	NLL	Natural	Nombre de llumins que queden
	NO	Natural	Llumins que "agafa" l'ordinador
	NU	Natural	Llumins que "agafa" l'usuari del joc

INICI_SEQÜÈNCIA

NLL **←**11

Escriu NLL

NO **←**2

Escriu "Agafo ", NO , " llumins"

NLL ← NLL - NO

Escriu "Queden ", NLL " llumins"

REPETEIX

Escriu "Quants Ilumins agafes?"

Llegir NU

NLL←NLL – NU

 $NO \leftarrow 4 - NU$

Escriu " Agafo ", NO, " llumins"

NLL ← NLL – NO

Escriu " Queden ", NLL, " llumins"

FINS_QUE NLL = 1

Escriu " Vinga agafa l'últim que has perdut"

FI_SEQÜÈNCIA

Podem acabar escrivint aquest missatge, ja que l'ordinador sempre guanyarà (coneix i aplica l'estratègia guanyadora)

