Rotor routing on 2-manifolds

Taro Shima Nicholas Tomlin

Brown University

SUMS, March 2016

Definition of rotor routing

- Definition of rotor routing
- \bullet Rotor routing on \mathbb{Z}^2

- Definition of rotor routing
- Rotor routing on \mathbb{Z}^2
- Recurrence and transience

- Definition of rotor routing
- ullet Rotor routing on \mathbb{Z}^2
- Recurrence and transience
- Rotor routing on other 2-manifolds

- Definition of rotor routing
- Rotor routing on \mathbb{Z}^2
- Recurrence and transience
- Rotor routing on other 2-manifolds
- Visualizations and experimental results

Rotor routing is a deterministic version of the <u>random walk</u>.

Definition (Rotor)

An arrow pointing from one vertex to another.

Definition (Rotor)

An arrow pointing from one vertex to another.

2 \longrightarrow 1

Definition (Rotor Configuration)

An assignment of a single rotor to every vertex on a graph.

Definition (Rotor Configuration)

An assignment of a single rotor to every vertex on a graph.

Definition (Rotor Configuration)

An assignment of a single rotor to every vertex on a graph.

Definition (Rotor Mechanism)

Given a set of possible rotors \mathcal{E} starting at a given point, a rotor mechanism is a cyclic permutation of \mathcal{E} .

Definition (Rotor Configuration)

An assignment of a single rotor to every vertex on a graph.

Definition (Rotor Mechanism)

Given a set of possible rotors \mathcal{E} starting at a given point, a rotor mechanism is a cyclic permutation of \mathcal{E} .

Definition (Rotor Walk)

A traversal of a particle along a initial rotor configuration. The particle follows the direction of rotors, which then change direction according to the rotor mechanism.

Rotor routing on $\ensuremath{\mathbb{Z}}^2$

Rotor routing on \mathbb{Z}^2

Definition (Rotor mechanism on \mathbb{Z}^2)

There are four possible rotors starting at a given point:

$$\mathcal{E} = \{ North, East, South, West \}.$$

Rotors turn counter-clockwise, repeatedly cycling through ${\cal E}.$

Rotor routing on \mathbb{Z}^2

Definition (Rotor mechanism on \mathbb{Z}^2)

There are four possible rotors starting at a given point:

$$\mathcal{E} = \{\textit{North}, \textit{East}, \textit{South}, \textit{West}\}.$$

Rotors turn counter-clockwise, repeatedly cycling through ${\cal E}.$

Definition (Recurrence)

A walk is recurrent if it visits each point infinitely many times.

Definition (Recurrence)

A walk is recurrent if it visits each point infinitely many times.

- Random walk on \mathbb{Z} , \mathbb{Z}^2
- \bullet Repeated rotor walks on $\mathbb{Z},\,\mathbb{Z}^2$ with single-direction configuration

Definition (Recurrence)

A walk is recurrent if it visits each point infinitely many times.

- Random walk on \mathbb{Z} , \mathbb{Z}^2
- ullet Repeated rotor walks on \mathbb{Z} , \mathbb{Z}^2 with single-direction configuration

Definition (Transience)

A walk is transient if it visits each point finitely many times.

Definition (Recurrence)

A walk is recurrent if it visits each point infinitely many times.

- Random walk on \mathbb{Z} , \mathbb{Z}^2
- \bullet Repeated rotor walks on $\mathbb{Z},\,\mathbb{Z}^2$ with single-direction configuration

Definition (Transience)

A walk is transient if it visits each point finitely many times.

- Random walk on \mathbb{Z}^d where $d \geq 3$
- \bullet Repeated rotor walks on \mathbb{Z}^3 with single-direction configuration

Theorem (Angel-Holroyd 2011)

Given a rotor mechanism and a configuration, a single rotor walk is either recurrent for every starting vertex, or transient for every starting vertex.

Theorem (Angel-Holroyd 2011)

Given a rotor mechanism and a configuration, a single rotor walk is either recurrent for every starting vertex, or transient for every starting vertex.

Corollary

Given a rotor mechanism, two rotor configurations differing at only finitely many vertices are either both recurrent or both transient.

Corollary

Given a rotor mechanism, two rotor configurations differing at only finitely many vertices are either both recurrent or both transient.

Proof

We need only consider two rotor configurations r, r' differing at only one vertex v, such that a single rotation of the rotor at v produces r' from r. If r is recurrent, a rotor walk started at v produces r' with the particle moved to some other vertex. By the aforementioned theorem, r' must also be recurrent.

Random configuration on \mathbb{Z}^2

Random configuration on \mathbb{Z}^2

Conjecture (Levine-Peres 2015)

Given a random configuration of rotors on \mathbb{Z}^2 , a rotor walk on that configuration is recurrent with probability 1.

Random configuration on $\ensuremath{\mathbb{Z}}^2$

Random Rotor Configuration

Random Walk

Definition (2-manifold)

A topological space whose points all have open disks as neighborhoods.

Definition (2-manifold)

A topological space whose points all have open disks as neighborhoods.

Some 2-manifolds:

- Cylinder
- Möbius strip
- Torus

- Sphere
- Klein bottle
- Real projective plane

Definition (Compactness)

If a space is compact, every open cover has a finite sub-cover.

Definition (Compactness)

If a space is compact, every open cover has a finite sub-cover.

Non-compact 2-manifolds:

- Plane
 - Cylinder
 - Möbius strip

Definition (Compactness)

If a space is compact, every open cover has a finite sub-cover.

Non-compact 2-manifolds:

- Plane
 - Cylinder
 - Möbius strip

Compact 2-manifolds:

- Torus
- Sphere
- Klein bottle
- Real projective plane

A gluing diagram shows how edges of a polygon are connected to create a surface. When a particle hits an edge that is associated to another, the particle "reappears" on the associated edge.

Conjecture

Repeated rotor walks on the Möbius strip, cylinder, and plane will eventually create congruent octagonal patterns for the single-direction configuration.

Conjecture

Repeated rotor walks on the Möbius strip, cylinder, and plane will eventually create congruent octagonal patterns for the single-direction configuration.

Plane

Mobius Strip

Observation

For any rotor configuration and rotor mechanism, a rotor walk on a compact surface eventually results in a finite loop of configurations.

Future work

- Testing alternate configurations, including different lattices and transient configurations.
- Experimenting with rotor routing in higher dimensions.
- Developing a predictive model for surface type based on loop length on compact surfaces.