Exam presentation

Assignment 2.2 and 2.3

Eren Can Gungor¹

¹Technical University of Denmark Digital Communication

December 17, 2016

Eye diagram

- Plot composed by overlaying segments of different bit sequences
- Can be generated with an oscilloscope
- Shows effects of *inter-symbol interference*
- Provides a qualitative measure of the system performance

Eye diagram characteristics

Figure: Eye diagram of baseband antipodal signal

- ${\cal A}$ Difference between high and low levels
- A_j Difference between A and the eye opening
- T_j Deviations from ideal timing
- T_b Bit time period

Eye diagram at different bandwidths

Figure: Eye diagram for normalized bandwidths 0.3, 0.7, 1.2

- Low BW: high amplitude and timing jitter
- High BW: no ISI, chances of higher noise

Eye Diagram Graph

FIGURE 4. An eye diagram can help you interpret a signal and determine the

Q function 2.2

In this part of the assignment we will investigate the Normal (Gaussian) probability density function, Q(u) function and it's relationship with complementary error function. It will also show how these theories will be related to the current communication systems by given assignment questions. Things we will look at are:

- Normal(Gaussian) Probability Density Function
- $lackbox{ } Q(u)$ function
- ullet Q(u) function and it's relationship with complementary error function.

Probability Density Function

Normal distribution/Gaussian distribution is a really important and in fact most commonly used distribution in statistics. It is important because:

- Almost all variables are distributed approximately normally.
 They are approximately close
- Second reason is that statistical tests are derived from normal distribution and also work well if the distribution is approximately normal.
- Another reason is that it is only just characterised by two variables;
 - \blacksquare It's mean μ and and standard deviation σ

For the communication systems; Noise is an error or undesired random disturbance of a useful information in communication channel. The noise is a summation of unwanted or disturbing energy from natural and sometimes man-made-sources.

Gaussian Noise

If we look at simple basic model for the net effect at the receiver of noise in the communication system is to assumed additive, Gaussian noise. In this model we have two signal components one is deterministic signal and the second component is the noise term, and is a quantity drawn from a Gaussian probability distribution with mean 0 and some variance and it is independent of the transmitted signal.

Q2.1 Plotting gaussian pdf and explain important variables

Now we can put our theory in a practice in this given question, we have created the MATLAB file namedgraphingpdf.m which can be accessible from the report file. In this assignment important variables are

```
mu . This is the mean value (\mu) for the normal probability density function.
```

```
sigma This the sensible standard deviation number. (\sigma).
```

```
MAX 50; Maximum x value that x vector will get
```

MIN -50; Minimum x value that x vector will get

Graph for Gaussian PDF

Figure: Normal Gaussian pdf graph with defined intervals

Explanation of Q(u) function

Q(u) function is a important variable for the Gaussian probability density function and cumulative distribution function. If we talk about Q(u) function, there are two important points before we are going to derive the Q(u) function.

The Q(u) function represents the area under the tail of a standard normal random variable and widely tabulated. Some interesting properties of the Q-function are

- Q(0) = 1/2
- $Q(-\infty) = 1$

Linking Q(u) function to Gaussian probability density function and cumulative distribution function

Now we can link Q(u) function to Gaussian probability density function and cumulative distribution function

- The Gaussian probability density function of unit variance and zero mean is $Z(x) = \frac{1}{\sqrt{2\pi}} \exp(\frac{-x^2}{4t})$
- \blacksquare And corresponding cumulative distribution function is $P(x) = \int_{-\infty}^x Z(t) dt$
- The Gaussian *Q* function is defined as:

$$Q(x) = 1 - P(x) = \int_x^{-\infty} Z(t)dt$$

Assignment related question for the Q(u) function

To prove our theory behind, we have constructed the Q(u) function plot that will able to take defined argument values of relevance to the detection problems for digital communication receivers. MATLAB filed called qfunction.m has been created for this assignment. For the next step Two important argument has been chosen for this assignment, those are:

- \blacksquare $R_12 = 0(OrthogonalSignals)$
- $R_12 = -1(AntipodalSignals)$

Graph for Q(u) function assignment

Figure: Plotting Q(u) function relevant to detection problems in digital communication receivers

Relationship between inverse Q(u) function and Complementary Error Function

We know that Q(u) function is :

$$Q(z) = \int_z^\infty \frac{1}{\sqrt{2\pi}} \exp(\frac{-y^2}{2}) dy$$

And we have also learnt that complementary error function(erfc) is:

•
$$erfc(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \exp(-x^2) dx$$

From the limits of the integrals in previously defined Q(z) function and erfc(z) function that we can conclude that Q function is directly related to erfc. Mathmetically by combining Q function and erfc we get the following Q function that directly related to erfc:

$$Q(z) = \frac{1}{2} erfc(\frac{z}{\sqrt{(2)}})$$

MATLAB code for user-defined Q function

We also note that MATLAB does not have built in function. So we have created a MATLAB file that uses erfc function to do the calculations and simulation process related to the Q(u) function. It is accessible from the Source code section under the name of qfn.m.

Assignment 2.3

In assignment three, we will look into optimising our filter by using the ${\cal Q}$ function and error functions that we have learnt from the part 2 of this Assignment. The important things we will specifically look in these chapter are:

- Additive White Gaussian Noise for Matched Filter
- Matched Filter
- Correlator Filter
- Noise and Shape related problems in Matched Filter

Additive White Gaussian Noise for Matched Filter

For a working principle, The signal is multiplied by a locally stored reference copy ,and integrated over time. To understand the principles of a matched filter receiver for binary data in white Gaussian noise, thus using the so called AWGN (Additive White Gaussian Noise) model. We have firstly introduced the figure below.

Figure: AWGN for Matched Filter

Principles of AWGN for Matched Filter

Received signal y(t) should be passed through matched filters $s_1(T-t)$ and $s_2(T-t)$ and their difference must be sampled at t=T and then a decision should be according to the optimal threshold value. $s_1(t)$ and $s_2(t)$ are original signals corresponds to binary data and $s_1(t) < s_2(t)$ is assumed. Optimal threshold value is $\frac{E_2-E_1}{2}$ where E_2 and E_1 signal energies which are finite. It can be shown to be the optimal detector if

Another example on how system works for AWGN Matched Filter

Figure: Working Principle of AWGN Matched Filter

Assignment Questions that related to the Matched Filter

There are several questions that has been done in regards to the Matched Filter. The first question was understanding how c8ce1 works.

Firstly, code was not working properly so we have changed it and there were not enough explanation for the process and what it does.

Basically code was calculating delay estimate, power in both reference vector and measurement vector, finding max for the cross-correlation matrix by using sine waves.

Creating a User Defined Q function

To run our code for assignments 3.4 and 3.5 we have created a user defined qfn function. The code has been created as a qfn.m which can be accessible from the report.

Question 3.4 and 3.5

For the questions 3.4 and 3.5 we have modified and changed the ce9e1.m MATLAB script. Code was broken and it was only taken 4 inputs. We have modified in a way that it can take up 8 inputs also we have graphed with given 8 correlation coefficients. Those were; [-1, -0.75, -0.5, 0, 0.5, 0.75, 0.8, 0.995]. To prove that we did correct calculation and simulation graph in the next slight can be seen.

Graph with 8 Correlation Coefficient Inputs

Figure: P_E over N_o graph for 8 correlation coefficient Inputs

Matched filter by a Correlator

Matched filter receiver is an optimum receiver structure in terms of minimum probability of error in communication systems.

Derivation of the optimality of the structure is given in the book. Block diagram of matched filter output for binary data in AWGN data is given in figure below which is taken from the book page 409.

Figure: Correlator matched Filter

Cross-Correlation Functionality

- $r_k(t) = s_m(t) + n_k(t)$
- lacksquare $\int_0^T s_m(t) f_k(t)$ for the values of k=1,2,3,4,5,...

Now our signal has been represented by the $s_m(t)$ and the n(k) (random variables as noise)

Now the signal can be represent r(t) as

$$r(t) = \sum_{k=1}^{N} = s_m(t)f_k(t) + n(t)' + \sum_{k=1}^{N} = n_k(t)f_k(t)$$

$$\sum_{k=1}^{N} = r_k(t) f_k(t)$$

As we can see that n(t)' is irrelevant to which signal is going to transmitted. The decision will be made upon entirely on correlator output and the basis functions.

Deriving Matched Filter Functions

Now we can compare with Matched filter output. For matched filter, we use N bank linear filters. Impulse responses of the N filters are;

 $\ \ \, \blacksquare \, \, h_k(t) = f_k(T-t)$ for invertals between , 0 < t < T

The output filters become:

$$y_k(t) = \int_0^T r(\tau) f_k(T - \tau) d(\tau)$$

•
$$\int_0^T r(\tau) f_k(T-t+\tau) d(\tau)$$
 for the $k=1,2,3,4,5,...N$

If we sample outputs of the linears at t=T

•
$$y_k(T) = \int_0^T r(\tau) f_k(\tau) d(\tau)$$
 which will eventually become r_k

Hence our theoritical approach has been proved by mathematical derivation of matched filter and cross-correlator. Both have same output even though calculations have been done in a different way for both.

Noise on the timing Synchronization in The Receiver

It is possible that the exact arrival time of received signal can be in error. That causes the sampling at wrong instances of matched filter output. That means receiver is no longer an optimal receiver because system samples output different point rather than it's maximum. That will cause a decrease of the amplitude of sampled signal and therefore, signal to noise ratio will also decrease. As a result probability of error become larger in timing synchronization errors.

Bit Error Probability in Matched Filter

To find out bit error probability in a system with matched filter, we first need to define threshold. $s_1(T)$ and $s_2(T)$ are the inputs to the matched filter, $s_{01}(T)$ and $s_{02}(T)$ are the outputs of the matched filter. Then the equation becomes

•
$$s_{01}(T) = \int_{-\infty}^{\inf ty} h(\lambda) s_1(T - \lambda) d\lambda$$

$$\int_{-\infty}^{infty} (s_2(T-\lambda) - s_1(T-\lambda)) s_1(T-\lambda) d\lambda$$

Continuing the derivation

and by the equations symmetric to the ones above we get

$$s_{02}(T) = E_2 - \sqrt{E_1 E_2} \rho_{12}$$

Then optimum threshold is the average of s_{01} and s_{02} ,

$$k_{opt} = \frac{1}{2}(E_2 - E_1)$$

We have probability of error equation

$$P_e = P(Error|s_1(t))P(s_1(t)) + P(Error|s_2(t))P(s_2(t)).$$

For the equiprobable symbol selection case we have

$$P_e = P(Error|s_1(t))\frac{1}{2} + P(Error|s_2(t))\frac{1}{2}$$

This can be formed as
$$P_e = Q(\frac{s_{02}(T) - s_{01}(T)}{2\sigma_0})$$

if we make the selection of threshold as k_opt . We put values of s_{01}

and
$$s_{02}$$
 to the equation and it becomes $P_e = Q(\frac{E_1 + E_2 - 2\rho\sqrt{E_1E_2}}{2\sigma_0})$

Link budget model

- A way of estimating the power of a received signal
- Takes into account all the gains and losses of transmitter, channel, and receiver

$$P_R = \left(\frac{\lambda}{4\pi d}\right)^2 \frac{P_T G_T G_R}{L_0};\tag{1}$$

In decibels:

$$P_{R,dB} = 20 \log_{10} \left(\frac{4\pi d}{\lambda} \right) + ERP_{dB} + G_{R,dB} - L_{0,dB};$$
 (2)

Link budget model variables

```
(rac{4\pi d}{\lambda})^2 Free-space loss ERP=P_TG_T Effective radiated power G_R Gain of receiver antenna L_0 Other losses, link budget margin
```

SNR calculation

Signal-to-noise ratio in decibels:

$$SNR_{dB} = P_{R,dB} - P_{int,dB} \tag{3}$$

 P_R Calculated using link budget model

 P_{int} Noise power, proportional to the receiver noise temperature and the transmission bandwidth

P_E calculation

Bit error probability for BSFK transmissions:

$$P_E = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) \tag{4}$$

- I ratio E_b/N_0 derived from $SNR = \rightarrow \frac{E_b}{N_0BT_b}$
- **2** For binary BPSK, $B=2/T_b$
- \blacksquare Factor BT_b is 2, or 3 dB

Impact of d, λ , B

- SNR and P_E are negatively affected by:
 - $\quad \blacksquare \ \, \mathsf{Higher} \,\, \mathsf{distance} \,\, d$
 - \blacksquare Lower wavelength λ
 - Wider bandwidth B (lower influence)

Impact of P_T

 \blacksquare P_E for P_T at 50 W, 5 W, and 500 mW:

Figure: P_E over values of P_T

Alternative modulation: ASK

Amplitude-shift keying

Figure: Bit stream modulated using ASK

- 0-bit represented as 0
- 1-bit represented as $A\cos(2\pi f_c t)$

Alternative modulation: ASK (P_E calculation)

- Correlation coefficients:
 - $\rho_{12} = \frac{1}{\sqrt{E_1 E_2}} \int_{-\infty}^{\infty} s_1(t) s_2(t) dt = 0$
 - $R_{12} = \frac{\sqrt{E_1 E_2}}{E_b} \rho_{12} = 0$
- SNR to E_b/N_0 : conversion factor $BT_b=2$
- Bit error probability:

$$P_E = Q\left(\sqrt{(1 - R_{12})\frac{E_b}{N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \tag{6}$$

Whilst the formula is similar to the one previously introduced for the calculation of P_E in a BPSK transmission, it lacks a 2 term. Therefore, the signal-to-noise radio of a ASK transmission has to be 3dB higher in order to maintain the same performances.

Alternative modulation: FSK

Frequency-shift keying

Figure: Bit stream modulated using FSK

- lacksquare 0-bit represented as $A\cos(\omega_c t)$
- 1-bit represented as $A\cos((\omega_c + \Delta\omega)t)$
- Assumptions: $\omega_c = \frac{2\pi n}{T}$ and $\Delta\omega = \frac{2\pi m}{T}$

Alternative modulation: FSK (P_E calculation)

- Correlation coefficient $R_{12}=\frac{\sqrt{E_1E_2}}{E_b}\rho_{12}=0$
- SNR to E_b/N_0 : conversion factor $BT_b=2.5$
- Bit error probability:

$$P_E = Q\left(\sqrt{(1 - R_{12})\frac{E_b}{N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \tag{7}$$

However, when deriving the Eb/N0 ratio from the signal-to-noise ratio, the required bandwidth is given by 2.5/T, so the factor BTb becomes 2.5, or around 4dB.