\usepackage{fvextra} \DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}

\RecustomVerbatimEnvironment{verbatim}{Verbatim}{ showspaces = false, showtabs = false, breaksymbolleft={}, breaklines }

Your Title

PS4: Due Sat Nov 2 at 5:00PM Central. Worth 100 points.

We use (*) to indicate a problem that we think might be time consuming.

Style Points (10 pts)

Please refer to the minilesson on code style here.

Submission Steps (10 pts)

- 1. This problem set is a paired problem set.
- 2. Play paper, scissors, rock to determine who goes first. Call that person Partner 1.
 - Partner 1 (name and cnet ID):
 - Partner 2 (name and cnet ID):
- 3. Partner 1 will accept the ps4 and then share the link it creates with their partner. You can only share it with one partner so you will not be able to change it after your partner has accepted.
- 4. "This submission is our work alone and complies with the 30538 integrity policy." Add your initials to indicate your agreement: **__** **__**
- 5. "I have uploaded the names of anyone else other than my partner and I worked with on the problem set **here**" (1 point)
- 6. Late coins used this pset: **__** Late coins left after submission: **__**
- 7. Knit your ps4.qmd to an PDF file to make ps4.pdf,
 - The PDF should not be more than 25 pages. Use head() and re-size figures when appropriate.
- 8. (Partner 1): push ps4.qmd and ps4.pdf to your github repo.
- 9. (Partner 1): submit ps4.pdf via Gradescope. Add your partner on Gradescope.
- 10. (Partner 1): tag your submission in Gradescope

Important: Repositories are for tracking code. Do not commit the data or shapefiles to your repo.

The best way to do this is with <code>.gitignore</code>, which we have covered in class. If you do accidentally commit the data, Github has a <code>guide</code>. The best course of action depends on whether you have pushed yet. This also means that both partners will have to download the initial raw data and any data cleaning code will need to be re-run on both partners' computers.

Download and explore the Provider of Services (POS) file (10 pts)

1. What are the Variables I pulled?

```
import pandas as pd
import altair as alt
import os
import geopandas as gpd
import warnings
warnings.filterwarnings("ignore")
```

```
# Reading dataset
path = "/Users/tsaili-ting/Uchicago/Year2/Y2Fall/Python2/problem-set-4-gena-ting"

path_2016 = os.path.join(path, "pos2016.csv")
pos2016 = pd.read_csv(path_2016)

#variable pull

pos2016.columns
```

- 1. Provider Category, 2. Provider Category sub, 3. City, 4. Hospital Name, 5. CMS Number, 6. Termination code, 7. Termination or Expiration Date, 8. ZIP code
- 2. a. How many hospitals are reported in this data?

```
pos2016_s = pos2016.loc[(pos2016["PRVDR_CTGRY_CD"]==1)&(pos2016["PRVDR_CTGRY_SBTYP_CD"]==
len(pos2016_s)
```

7245

The number of short-term hospital in the dataset is 7245.

b.Does this number make sense? Cross-reference with other sources and cite the numberyou compared it to.

However, according to American Hospital Association(https://www.aha.org/statistics/fast-facts-us-hospitals), there are only 5129 community hospital. Citing that "Excluded are hospitals not accessible by the general public, such as prison hospitals or college infirmaries." in AHA's number.

3. Plot the number of observations in your dataset by year.

```
# Read 2017,18,19 dataset
path_2017 = os.path.join(path, "pos2017.csv")
path_2018 = os.path.join(path, "pos2018.csv")
path_2019 = os.path.join(path, "pos2019.csv")
```

```
pos2017 = pd.read_csv(path_2017)
pos2018 = pd.read_csv(path_2018,encoding="latin1")
pos2019 = pd.read_csv(path_2019,encoding="latin1")
```

```
# filter only short term hospital
pos2017_s = pos2017.loc[(pos2017["PRVDR_CTGRY_CD"]==1)&(pos2017["PRVDR_CTGRY_SBTYP_CD"]==
pos2018_s = pos2018.loc[(pos2018["PRVDR_CTGRY_CD"]==1)&(pos2018["PRVDR_CTGRY_SBTYP_CD"]==
pos2019_s = pos2019.loc[(pos2019["PRVDR_CTGRY_CD"]==1)&(pos2019["PRVDR_CTGRY_SBTYP_CD"]==
```

```
# Add a column represent the fisical year, and append data

pos2016_s["Year"] = "2016"
pos2017_s["Year"] = "2017"
pos2018_s["Year"] = "2018"
pos2019_s["Year"] = "2019"

# Append the dataset
pos_combine = pd.concat([pos2016_s, pos2017_s, pos2018_s, pos2019_s], ignore_index=True)
```


4. a. Plot the number of unique hospitals in your dataset per year.

```
# aggregate by year and calculate the unique number
unique_hospital = pos_combine.groupby('Year')['PRVDR_NUM'].nunique().reset_index()
```

```
alt.Chart(unique_hospital).mark_bar().encode(
    x=alt.X('Year:N', title="Year"),
    y=alt.Y('PRVDR_NUM:Q', title="Number of Unique Observations")
    ).properties(
    title='Number of Observations over Year'
)
```

Number of Observations over Year

b.

```
pos_combine.groupby("Year").agg(NumberOfHospital = ("Year","count")).reset_index()
```

	Year	NumberOfHospital
0	2016	7245
1	2017	7260
2	2018	7277
3	2019	7282

unique_hospital

	Year	PRVDR_NUM
0	2016	7245

	Year	PRVDR_NUM
1	2017	7260
2	2018	7277
3	2019	7282

They are exactly the same number, meaning each row is a unique hospital.

Identify hospital closures in POS file (15 pts) (*)

1.

```
years = ["2016", "2017", "2018", "2019"]
data = \{\}
for year in years:
    file_path = os.path.join(path, f"pos{year}.csv")
   df = pd.read_csv(file_path, encoding='ISO-8859-1')
   data[year] = df[(df["PRVDR_CTGRY_CD"] == 1) & (df["PRVDR_CTGRY_SBTYP_CD"] == 1)]
closures = []
for i, year in enumerate(years[:-1]):
    current year data = data[year]
   next_year_data = data[years[i + 1]]
   merged_data = current_year_data.merge(
        next year data[['PRVDR NUM']],
        on='PRVDR_NUM',
        how='left',
        indicator=True
    )
    closed_hospitals = merged_data[
        (merged_data['_merge'] == 'left_only') |
        (merged data['TRMNTN EXPRTN DT'].notna())
   1
    closures.extend(
        closed_hospitals[['FAC_NAME', 'ZIP_CD', 'PRVDR_NUM']].assign(Year_Closed=years[i
    )
closures_df = pd.DataFrame(closures)
print(f"Total suspected closures: {len(closures df)}")
print(closures_df)
```

Total suspected closures: 11606

FAC_NAME ZIP_CD PRVDR_NUM \

11/2/24, 4:25 PM Your Title NORTH JACKSON HOSPITAL 35740.0 010004 1 HARTSELLE MEDICAL CENTER 35640.0 010009 2 MARSHALL MEDICAL CENTER NORTH 35976.0 010010 3 SOUTHWEST ALABAMA MEDICAL CENTER 36784.0 010015 4 FAIRVIEW MEDICAL CTR 36108.0 010017

	111	• • •	
11601	SELECT SPECIALTY HOSPITAL DALLAS DOWNTOWN	75246.0	670100
11602	SELECT SPECIALTY HOSPITAL DALLAS (GARLAND)	75042.0	670101
11603	VICTORY MEDICAL CENTER BEAUMONT LP	77706.0	670104
11604	HERMAN DRIVE SURGICAL HOSPITAL LP	77004.0	670105
11605	CONTINUECARE HOSPITAL AT MEDICAL CENTER ODESSA	79761.0	670111

Year_Closed
2017
2017
2017
2017
2017
2019
2019
2019
2019

[11606 rows x 4 columns]

The total suspected closure amount is 11606 hospitals. 2.

```
sorted_closures = closures_df.sort_values(by='FAC_NAME').head(10)
sorted_closures[['FAC_NAME', 'Year_Closed']]
print(sorted_closures[['FAC_NAME', 'Year_Closed']])
```

```
FAC NAME Year Closed
3002
         (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL
                                                             2017
         (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL
6849
                                                             2018
10756
         (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL
                                                             2019
6927
                 (CLOSED) BAPTIST HOSPITAL FOR WOMEN
                                                             2018
                 (CLOSED) BAPTIST HOSPITAL FOR WOMEN
10838
                                                             2019
6851
           (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY
                                                             2018
           (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY
3004
                                                             2017
           (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY
10758
                                                             2019
3030
       (CLOSED) BAPTIST MEMORIAL HOSPITAL LAUDERDALE
                                                             2017
6877
       (CLOSED) BAPTIST MEMORIAL HOSPITAL LAUDERDALE
                                                             2018
```

FAC_NAME Year_Closed

3002 (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL 2017 6849 (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL 2018 10756 (CLOSED) BAPTIST HICKMAN COMMUNITY HOSPITAL 2019 6927 (CLOSED) BAPTIST HOSPITAL FOR WOMEN 2018 10838 (CLOSED) BAPTIST HOSPITAL FOR WOMEN

2019 6851 (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY 2018 3004 (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY 2017 10758 (CLOSED) BAPTIST HOSPITAL OF ROANE COUNTY 2019 3030 (CLOSED) BAPTIST MEMORIAL HOSPITAL LAUDERDALE 2018

3. a.

```
active hospitals by zip = {}
for year, df in data.items():
   active by zip = df[df['TRMNTN EXPRTN DT'].isna()].groupby('ZIP CD')['PRVDR NUM'].coun
   active_hospitals_by_zip[year] = active_by_zip
potential mergers = []
for _, row in closures_df.iterrows():
    zip code = row['ZIP CD']
    closure_year = row['Year_Closed']
    closure year str = str(closure year)
    next_year_str = str(int(closure_year) + 1)
   if closure_year_str in active_hospitals_by_zip and next_year_str in active_hospitals_
        current_count = active_hospitals_by_zip[closure_year_str].get(zip_code, 0)
        next_count = active_hospitals_by_zip[next_year_str].get(zip_code, 0)
        if current count == next count:
            potential_mergers.append(row)
potential_mergers_df = pd.DataFrame(potential_mergers)
print(f"Number of suspected closures that may be mergers/acquisitions: {len(potential_mer
print(potential mergers df[['FAC NAME', 'ZIP CD', 'Year Closed']])
```

Number of suspected closures that may be mergers/acquisitions: 7625

	FAC_NAME	ZIP_CD	Year_Closed
0	NORTH JACKSON HOSPITAL	35740.0	2017
1	HARTSELLE MEDICAL CENTER	35640.0	2017
2	MARSHALL MEDICAL CENTER NORTH	35976.0	2017
3	SOUTHWEST ALABAMA MEDICAL CENTER	36784.0	2017
4	FAIRVIEW MEDICAL CTR	36108.0	2017

7678	SELECT SPECIALTY HOSPITAL DALLAS DOWNTOWN	75246.0	2018
7679	SELECT SPECIALTY HOSPITAL DALLAS (GARLAND)	75042.0	2018
7680	VICTORY MEDICAL CENTER BEAUMONT LP	77706.0	2018
7681	VICTORY MEDICAL CENTER HOUSTON, LP	77004.0	2018

7682 CONTINUECARE HOSPITAL AT MEDICAL CENTER ODESSA 79761.0

[7625 rows x 3 columns]

Number of suspected closures that may be mergers/acquisitions: 7625 b.

```
active hospitals by zip = {}
for year, df in data.items():
   active_by_zip = df[df['TRMNTN_EXPRTN_DT'].isna()].groupby('ZIP_CD')['PRVDR_NUM'].coun
    active_hospitals_by_zip[year] = active_by_zip
filtered_closures = []
for _, row in closures_df.iterrows():
    zip_code = row['ZIP_CD']
    closure_year = row['Year_Closed']
    closure year str = str(closure year)
    next_year_str = str(int(closure_year) + 1)
   if closure_year_str in active_hospitals_by_zip and next_year_str in active_hospitals_
        current count = active hospitals by zip[closure year str].qet(zip code, 0)
        next_count = active_hospitals_by_zip[next_year_str].get(zip_code, 0)
        if current_count > next_count:
            filtered_closures.append(row)
filtered closures df = pd.DataFrame(filtered closures)
print(f"Total filtered suspected closures: {len(filtered closures df)}")
print(filtered_closures_df[['FAC_NAME', 'ZIP_CD', 'Year_Closed']])
```

2018

Total filtered suspected closures: 42

	FAC_NAME	ZIP_CD Y	ear_Closed
125	FLORENCE COMMUNITY HEALTHCARE	85132.0	2017
252	LONG BEACH COMMUNITY MEDICAL CENTER	90804.0	2017
575	ST MARYS HOSPITAL INC	33407.0	2017
594	METROPOLITAN HOSPITAL OF MIAMI	33126.0	2017
769	SEMPERCARE HOSPITAL OF AUGUSTA	30901.0	2017
906	ST MARY HOSPITAL INC	62301.0	2017
937	MEMORIAL HOSPITAL	62233.0	2017
946	ILLINOIS VETERANS HOME	62301.0	2017
1340	BOSSIER MEDICAL CENTER	71111.0	2017
1434	BOSSIER SPECIALTY HOSPITAL	71111.0	2017
1830	HANCOCK MEDICAL HOSPITAL	39521.0	2017
1901	MCCUNE BROOKS HOSPITAL	64836.0	2017
2143	METHODIST HOSPITAL	68131.0	2017

2172	CONTINUECARE HOSPITAL OF CARSON TAHOE INC	89703.0	2017
2334	LAKE SHORE HOSPITAL	14081.0	2017
2419	JOHN UMSTEAD HOSPITAL	27509.0	2017
2523	AFFINITY MEDICAL CENTER - MASSILLON CAMPUS	44646.0	2017
2678	CITY OF FAITH HOSPITAL	74137.0	2017
3044	(CLOSED) TRINITY HOSPITAL	37061.0	2017
3214	VISTA HOSPITAL OF DALLAS	75042.0	2017
3455	SEMPERCARE HOSPITAL OF LONGVIEW	75601.0	2017
3759	SELECT SPECIALTY HOSPITAL FOX VALLEY	54904.0	2017
3819	SELECT SPECIALTY HOSPITAL DALLAS (GARLAND)	75042.0	2017
4034	MT ZION HOSP & MED CTR OF THE UCSF	94115.0	2018
4123	PACIFIC COAST HOSPITAL	94115.0	2018
5218	WOMEN'S AND CHILDREN'S HOSPITAL	70508.0	2018
5271	SOUTHPARK COMMUNITY HOSPITAL	70508.0	2018
5314	PROVIDENT HOSP	21215.0	2018
5321	LIBERTY MED CENTER	21215.0	2018
5657	LAIRD HOSPITAL	39365.0	2018
6528	AMERICAN TRANSITIONAL HOSPITAL	73112.0	2018
6935	LANDMARK MEDICAL CENTER	79902.0	2018
6938	SOUTHWESTERN GENERAL HOSPITAL	79902.0	2018
6948	ST EDWARD HOSPITAL	76520.0	2018
6979	MILAM REGIONAL MEDICAL CENTER	76520.0	2018
6992	DALLAS/FORT WORTH MEDICAL CENTER	75051.0	2018
7081	HAMILTON GENERAL HOSPITAL	76531.0	2018
7239	LANDMARK MED CTR	79902.0	2018
7245	SOUTHWESTERN GENERAL HOSPITAL	79902.0	2018
7253	CENTRAL TEXAS HOSPITAL	76520.0	2018
7301	SCCI HOSPITAL EL PASO	79902.0	2018
7651	EL PASO LTAC HOSPITAL	79902.0	2018

Total filtered suspected closures: 42

C.

```
sorted_filtered_closures = filtered_closures_df.sort_values(by='FAC_NAME').head(10)
print(sorted_filtered_closures[['FAC_NAME', 'ZIP_CD', 'Year_Closed']])
```

	FAC_NAME	ZIP_CD	Year_Closed
3044	(CLOSED) TRINITY HOSPITAL	37061.0	2017
2523	AFFINITY MEDICAL CENTER - MASSILLON CAMPUS	44646.0	2017
6528	AMERICAN TRANSITIONAL HOSPITAL	73112.0	2018
1340	BOSSIER MEDICAL CENTER	71111.0	2017
1434	BOSSIER SPECIALTY HOSPITAL	71111.0	2017
7253	CENTRAL TEXAS HOSPITAL	76520.0	2018
2678	CITY OF FAITH HOSPITAL	74137.0	2017
2172	CONTINUECARE HOSPITAL OF CARSON TAHOE INC	89703.0	2017
6992	DALLAS/FORT WORTH MEDICAL CENTER	75051.0	2018
7651	EL PASO LTAC HOSPITAL	79902.0	2018

FAC_NAME ZIP_CD Year_Closed

3044 (CLOSED) TRINITY HOSPITAL 37061.0 2017 2523 AFFINITY MEDICAL CENTER - MASSILLON CAMPUS 44646.0 2017 6528 AMERICAN TRANSITIONAL HOSPITAL 73112.0 2018 1340 BOSSIER MEDICAL CENTER 71111.0 2017 1434 BOSSIER SPECIALTY HOSPITAL 71111.0 2017 7253 CENTRAL TEXAS HOSPITAL 76520.0 2018 2678 CITY OF FAITH HOSPITAL 74137.0 2017 2172 CONTINUECARE HOSPITAL OF CARSON TAHOE INC 89703.0 2017 6992 DALLAS/FORT WORTH MEDICAL CENTER 75051.0 2018 7651 EL PASO LTAC HOSPITAL 79902.0 2018

Download Census zip code shapefile (10 pt)

1. a.

- gz_2010_us_860_00_500k.dbf: It's an Attribute Table. This file contains attribute data for each shape (e.g., names, population, or other data related to each spatial feature). It's essentially a database in a table format and is essential for linking spatial features to their descriptive information.
- gz_2010_us_860_00_500k.shp: It's a Shapefile. It contains the geometry data or spatial
 information. such as the points, lines, or polygons that make up the shape of each feature in
 the dataset.
- o gz_2010_us_860_00_500k.xml: It's a Metadata File. This file includes metadata, such as a description of the data, its source, creation date, and other details about the dataset.
- gz_2010_us_860_00_500k.prj: It's a Projection File. This file holds information about the coordinate system and projection. It ensures that the shapefile aligns properly on a map with other spatial data.
- o gz_2010_us_860_00_500k.shx: It's a Shape Index File. This index file is used to facilitate quick access to the geometries in the .shp file. It provides the spatial index of the geometry, helping software read specific features quickly without searching through the entire .shp file.

```
b.
```

- o gz_2010_us_860_00_500k.dbf: 6.4MB
- o gz_2010_us_860_00_500k.shp: 837.5MB
- o gz_2010_us_860_00_500k.xml: 16KM
- o gz_2010_us_860_00_500k.prj: 165bytes
- o gz_2010_us_860_00_500k.shx: 265KB

2.

```
# read the shapefile
filepath = "/Users/tsaili-ting/Uchicago/Year2/Y2Fall/Python2/problem-set-4-gena-ting/gz_2
data = gpd.read_file(filepath)
type(data)
```

 ${\tt geopandas.geodataframe.GeoDataFrame}$

```
# select Texas zip code, import pandas as pd
data['ZCTA5'] = data['ZCTA5'].astype(int)

# Filter Texas ZIP code range (73301 - 88595)
texas_shp = data[((data['ZCTA5'] >= 75000) & (data['ZCTA5'] <= 80000)) | (data['ZCTA5'] =</pre>
```

```
# calculate number of hospital under each zip code in 2016
pos2016_count = pos2016_s.groupby("ZIP_CD").agg(count = ("FAC_NAME","count")).reset_index
# filter Texas
pos2016_count_tx = pos2016_count[(pos2016_count['ZIP_CD'] >= 73301) & (pos2016_count['ZIP_CD']
```

```
# merge shape and hospital by zip code

texas_merged = texas_shp.merge(pos2016_count_tx, left_on='ZCTA5', right_on='ZIP_CD', how=

texas_merged['count'] = texas_merged['count'].fillna(0)

texas_merged = texas_merged.drop(columns=['ZIP_CD', 'index'])
```

```
# create choropleth of the number of hospitals by zip code in Texas
texas_merged.plot(column="count", cmap = "Blues",legend=True).set_axis_off()
```


Calculate zip code's distance to the nearest hospital (20 pts) (*)

```
# import zipfile

# zip_path = "C:\\Users\\madig\\Documents\\Github\\Year 2024-2025\\problem-set-4-gena-tin
# extract_path = "C:\\Users\\madig\\Documents\\Github\\Year 2024-2025\\problem-set-4-gena

# with zipfile.ZipFile(zip_path, 'r') as zip_ref:
# zip_ref.extractall(extract_path)

# print("Shapefile unzipped successfully!")
```

1.

```
import geopandas as gpd

filepath2 = "/Users/tsaili-ting/Uchicago/Year2/Y2Fall/Python2/problem-set-4-gena-ting/gz_
zips_all = gpd.read_file(filepath2)

zips_all_centroids = zips_all.copy()
zips_all_centroids['geometry'] = zips_all_centroids.centroid

print("Dimensions of zips_all_centroids:", zips_all_centroids.shape)
print("Columns and first few rows of zips_all_centroids:")
print(zips_all_centroids.head())
```

```
Dimensions of zips_all_centroids: (33120, 6)
Columns and first few rows of zips_all_centroids:
          GEO ID ZCTA5
                         NAME
                               LSAD CENSUSAREA
                                                                   geometry
  8600000US01040 01040 01040 ZCTA5
                                          21.281 POINT (-72.64107 42.21257)
1 8600000US01050 01050 01050 ZCTA5
                                          38.329 POINT (-72.86985 42.28786)
                                           5.131 POINT (-72.71162 42.35349)
  8600000US01053 01053 01053 ZCTA5
3
  8600000US01056 01056 01056 ZCTA5
                                          27.205 POINT (-72.45805 42.19215)
  8600000US01057 01057 01057 ZCTA5
                                                  POINT (-72.3243 42.09165)
                                          44.907
```

The resulting GeoDataFrame, zips_all_centroids, has dimensions of (number of rows, number of columns), where each row represents a ZIP Code Tabulation Area (ZCTA) centroid in the U.S. Based on the data, it likely has rows for each ZIP code centroid in the dataset (e.g., thousands of rows) and six columns as shown in the data.

Columns:

GEO_ID: A unique geographic identifier for each ZCTA. ZCTA5: The 5-digit ZIP code. NAME: The ZIP codes name, identical to ZCTA5. LSAD: Legal/Statistical Area Description, indicating that each row represents a "ZCTA5" (5-digit ZIP Code Tabulation Area). CENSUSAREA: The land area of each ZCTA in square miles. geometry: A Point geometry representing the centroid location of each ZIP code area, with coordinates in latitude and longitude.

```
import time
from shapely.ops import nearest_points
import geopandas as gpd
import time
texas prefixes = list(range(75001, 80000)) + list(range(88510, 88596)) + [73301, 73960, 7]
new mexico prefixes = range(87001, 88500)
oklahoma prefixes = range(73001, 74900)
arkansas_prefixes = range(71601, 72900)
louisiana_prefixes = range(70001, 71500)
zips_texas_centroids = zips_all_centroids[zips_all_centroids['ZCTA5'].astype(int).isin(te
zips_texas_borderstates_centroids = zips_all_centroids[
    zips_all_centroids['ZCTA5'].astype(int).isin(texas_prefixes) |
    zips all centroids['ZCTA5'].astype(int).isin(new mexico prefixes) |
    zips_all_centroids['ZCTA5'].astype(int).isin(oklahoma_prefixes) |
    zips all centroids['ZCTA5'].astype(int).isin(arkansas prefixes) |
    zips_all_centroids['ZCTA5'].astype(int).isin(louisiana_prefixes)
1
texas_unique_zips = zips_texas_centroids['ZCTA5'].nunique()
borderstates_unique_zips = zips_texas_borderstates_centroids['ZCTA5'].nunique()
print(f"Number of unique ZIP codes in Texas: {texas_unique_zips}")
print(f"Number of unique ZIP codes in Texas and bordering states: {borderstates_unique_zi
```

```
Number of unique ZIP codes in Texas: 1935
Number of unique ZIP codes in Texas and bordering states: 3992
```

Number of unique ZIP codes in Texas: 1935 Number of unique ZIP codes in Texas and bordering states: 3992

```
hospital_counts_2016 = pos2016.groupby('ZIP_CD').size().reset_index(name='hospital_count'
hospital_counts_2016 = hospital_counts_2016[hospital_counts_2016['hospital_count'] > 0]

zips_texas_borderstates_centroids['ZCTA5'] = zips_texas_borderstates_centroids['ZCTA5'].a
hospital_counts_2016['ZIP_CD'] = hospital_counts_2016['ZIP_CD'].astype(int)

zips_withhospital_centroids = zips_texas_borderstates_centroids.merge(
    hospital_counts_2016, left_on='ZCTA5', right_on='ZIP_CD', how='inner'
)

print(zips_withhospital_centroids.head())
```

```
NAME
          GEO ID
                  ZCTA5
                                 LSAD
                                       CENSUSAREA \
  8600000US70003 70003
                         70003 ZCTA5
                                            7.019
1
  8600000US70032 70032
                         70032 ZCTA5
                                            1.748
  8600000US70039 70039
                         70039 ZCTA5
                                           12,126
3
  8600000US70043 70043
                         70043 ZCTA5
                                            7.775
  8600000US70047 70047
                         70047 ZCTA5
                                           10.756
                    geometry ZIP_CD
                                      hospital count
  POINT (-90.21397 29.99864)
                               70003
                                                   8
                                                   2
  POINT (-89.99779 29.95816)
                               70032
  POINT (-90.38906 29.88151)
                               70039
                                                   1
  POINT (-89.96276 29.94804)
                               70043
                                                  15
4 POINT (-90.36588 29.96953)
                                                   5
                               70047
```

We are using an inner merge to retain only rows that exist in both zips_texas_borderstates_centroids (Texas and bordering state ZIP code centroids) and hospital_counts_2016 (ZIP codes with at least one hospital in 2016), ensuring the final GeoDataFrame, zips_withhospital_centroids, contains only relevant ZIP codes with hospitals. The merge is performed on the ZIP code columns: ZCTA5 from zips_texas_borderstates_centroids and ZIP_CD from hospital_counts_2016.

4. a.

```
zips_texas_sample = zips_texas_centroids.head(10)
start_time = time.time()

distances = []
for _, texas_zip in zips_texas_sample.iterrows():
    nearest_hospital = zips_withhospital_centroids.distance(texas_zip.geometry).idxmin()
    nearest_distance = texas_zip.geometry.distance(zips_withhospital_centroids.loc[neares distances.append(nearest_distance)

end_time = time.time()

elapsed_time = end_time - start_time

sample_size = len(zips_texas_sample)
total_size = len(zips_texas_centroids)
estimated_total_time = (elapsed_time / sample_size) * total_size

print(f"Time taken for 10 ZIP codes: {elapsed_time:.2f} seconds")
print(f"Estimated time for entire join: {estimated_total_time:.2f} seconds")
```

Time taken for 10 ZIP codes: 0.10 seconds Estimated time for entire join: 19.65 seconds

Time taken for 10 ZIP codes: 0.25 seconds Estimated time for entire join: 47.69 seconds b.

```
zips_texas_centroids = zips_texas_centroids.to_crs(epsg=3857)
zips_withhospital_centroids = zips_withhospital_centroids.to_crs(epsg=3857)

start_time_full = time.time()

full_distances = []
for _, texas_zip in zips_texas_centroids.iterrows():

    nearest_hospital = zips_withhospital_centroids.distance(texas_zip.geometry).idxmin()
    nearest_distance = texas_zip.geometry.distance(zips_withhospital_centroids.loc[neares full_distances.append(nearest_distance)

end_time_full = time.time()

actual_full_time = end_time_full - start_time_full
print(f"Actual time taken for full calculation: {actual_full_time:.2f} seconds")
```

Actual time taken for full calculation: 3.00 seconds

Actual time taken for full calculation: 2.78 seconds c.

```
meters_to_miles = 0.000621371
zips_texas_centroids = zips_texas_centroids.to_crs(epsg=3857)
zips_withhospital_centroids = zips_withhospital_centroids.to_crs(epsg=3857)
start time full = time.time()
distances_in_miles = []
for _, texas_zip in zips_texas_centroids.iterrows():
    nearest hospital = zips withhospital centroids.distance(texas zip.geometry).idxmin()
    nearest_distance_meters = texas_zip.geometry.distance(zips_withhospital_centroids.loc
    nearest_distance_miles = nearest_distance_meters * meters_to_miles
   distances_in_miles.append(nearest_distance_miles)
end_time_full = time.time()
print("Distances in miles (sample):", distances_in_miles[:10])
actual_full_time = end_time_full - start_time_full
print(f"Actual time taken for full calculation: {actual_full_time:.2f} seconds")
```

Distances in miles (sample): [0.0, 0.0, 0.0, 26.330539013019983, 11.353873106780547, 0.0, 0.0, 11.431828598658223, 0.0, 11.428010050692851]

Actual time taken for full calculation: 2.98 seconds

```
meters_to_miles = 0.000621371

zips_texas_centroids = zips_texas_centroids.to_crs(epsg=3857)
zips_withhospital_centroids = zips_withhospital_centroids.to_crs(epsg=3857)

distances_in_miles = []
for _, texas_zip in zips_texas_centroids.iterrows():

    nearest_hospital = zips_withhospital_centroids.distance(texas_zip.geometry).idxmin()
    nearest_distance_meters = texas_zip.geometry.distance(zips_withhospital_centroids.loc

    nearest_distance_miles = nearest_distance_meters * meters_to_miles
    distances_in_miles.append(nearest_distance_miles)

average_distance = sum(distances_in_miles) / len(distances_in_miles)
print(f"Average distance to the nearest hospital for Texas ZIP codes: {average_distance:.
```

Average distance to the nearest hospital for Texas ZIP codes: 4.55 miles

This is done in miles.

b.

Average distance to the nearest hospital for Texas ZIP codes: 4.55 miles which seems reasonable.

C.

```
import geopandas as gpd
import matplotlib.pyplot as plt

meters_to_miles = 0.000621371

zips_texas_centroids = zips_texas_centroids.to_crs(epsg=3857)
zips_withhospital_centroids = zips_withhospital_centroids.to_crs(epsg=3857)

distances_in_miles = []
for _, texas_zip in zips_texas_centroids.iterrows():
```

```
nearest_hospital = zips_withhospital_centroids.distance(texas_zip.geometry).idxmin()
nearest_distance_meters = texas_zip.geometry.distance(zips_withhospital_centroids.loc

nearest_distance_miles = nearest_distance_meters * meters_to_miles
distances_in_miles.append(nearest_distance_miles)

zips_texas_centroids['distance_to_hospital_miles'] = distances_in_miles

fig, ax = plt.subplots(1, 1, figsize=(7, 7))
zips_texas_centroids.plot(column='distance_to_hospital_miles', cmap='0rRd', linewidth=0.8
ax.set_title("Distance to Nearest Hospital for Texas ZIP Codes")
ax.set_axis_off()
plt.show()
```


Effects of closures on access in Texas (15 pts)

```
# filter the number of closure > 0
texas_closure = texas_closure[
   (texas_closure["2016"] != 0) |
   (texas_closure["2017"] != 0) |
   (texas_closure["2018"] != 0) |
   (texas_closure["2019"] != 0)].reset_index()

texas_closure.head(5)
```

	to don	710.00	0040	0047	0040	0040
Year	index	ZIP_CD	2016	2017	2018	2019
0	11	75042.0	0.0	0.0	1.0	1.0
1	12	75051.0	0.0	0.0	0.0	1.0
2	21	75087.0	0.0	0.0	0.0	1.0
3	49	75231.0	0.0	1.0	1.0	1.0
4	74	75601.0	0.0	0.0	1.0	1.0

```
# merge shape and number of closure hospital by zip code

texas_closure_merged = texas_shp.merge(texas_closure, left_on='ZCTA5', right_on='ZIP_CD',
texas_closure_merged["2019"] = texas_closure_merged["2019"].fillna(0)
```

```
# create choropleth of the number of hospitals by zip code in Texas
texas_closure_merged.plot(column="2019", cmap = "Blues",legend=True).set_axis_off()
```



```
len(texas_closure)
```

27

There are 27 zip code in Texas that at least has one closure during 2016-2019.

```
# filter direct zip code
texas_direct = texas_closure_merged[texas_closure_merged["2019"] > 0].copy()
texas_direct.plot().set_axis_off()
```



```
# create buffer
texas_buffer = texas_direct.copy()
texas_buffer['geometry'] = texas_buffer.geometry.buffer(0.145)
texas_buffer.plot(color="red", alpha=0.5).set_axis_off()
```



```
# spatial join back to texas_closure
texas_indirect = gpd.sjoin(texas_shp, texas_buffer, how="inner", predicate="intersects")
texas_indirect.plot(color="blue", alpha=0.3).set_axis_off()
```



```
len(texas_indirect)
```

795

There are 795 zip code in Texas that is within 10 miles buffer, has indirect effect from hospital closure

```
# find out unaffect zip code
affected_zip_codes = set(texas_direct['ZIP_CD']).union(set(texas_indirect['ZIP_CD']))
texas_unaffected = texas_shp[~texas_shp['ZCTA5'].isin(affected_zip_codes)]
texas_unaffected.plot(color="green", alpha=0.3).set_axis_off()
```



```
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
texas_unaffected.plot(ax=ax, color="green", alpha=0.3)
texas_indirect.plot(ax=ax, color="blue", alpha=0.3)
texas_direct.plot(ax=ax, color="red", alpha=0.5)

ax.set_axis_off()
plt.show()

ax.set_axis_off()
plt.show()
```


Reflecting on the exercise (10 pts)

1. Currently, we identify real closures by comparing the number of active hospitals. However, this approach has a potential issue: we might mistakenly identify a genuine closure as a merger if the total number remains unchanged. This could lead to misclassifying a true closure as a merger.

To improve this method, we could add a classification for operational closures. Instead of simply labeling them as "terminated," an additional column indicating operational closure status would make it easier to verify the true nature of each hospital's closure.

2. Consider the way we are identifying zip codes affected by closures.

The current method of identifying affected ZIP codes based on closures captures a basic impact on access but may oversimplify the actual effects on healthcare accessibility.

Such as, not all hospitals offer the same level of care or capacity. Identifying closures without distinguishing by service type or patient capacity might overlook the specific impact on healthcare access. Moreover, zip codes can vary widely in population density and demographics. A closure in a densely populated or medically underserved area has a different impact than one in a well-served area.

Including factors like hospital capacity or population characteristics, such as density or income, would provide a more accurate measure of affected access.