Equipos de extracción líquido-líquido y principios de extracción sólido-líquido

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

22 de Abril de 2021

Contenidos

Recordatorio de Clase Anterior

- Objetivos de la Clase
- Introducción a Extracción Sólido-Líquido
 - Fundamentos de la Extracción Sólido-Líquido
 - Extracción Sólido Líquido en una Etapa

Al aplicar los balances de materia a las envolventes resulta:

$$R_{n-1} - E_n = R_n - S = \Delta$$

Relación mínima de solvente a alimentación

Las líneas de enlace convergen hacia el solvente de extracción

Método de Varteressian-Fenske o McCabe-Thiele

Podemos trazar una serie de líneas por el punto de diferencia, y de esta forma construir una curva de operación en un gráfico y v/s x.

Método de Maloney-Schubert

Redefinición de coordenadas en base libre de solvente de extracción (S), en que A es el soluto y B el solvente original

$$X_A = \frac{\text{masa de A}}{\text{masa de A} + \text{masa de B}} = \frac{x_A}{x_A + x_B}$$

$$Y_A = \frac{\text{masa de A}}{\text{masa de A} + \text{masa de B}} = \frac{y_A}{y_A + y_B}$$

$$N_R = \frac{\text{masa de } S}{\text{masa de } A + \text{masa de } B} = \frac{x_S}{x_A + x_B}$$

$$N_E = \frac{\text{masa de } S}{\text{masa de } A + \text{masa de } B} = \frac{y_S}{y_A + y_B}$$

Balance de materia en base libre de solvente de extracción (kg A + kg B / h):

$$F' + S' = E'_1 + R'_{N_p} = M'$$

(Generalmente F = F')

→ M' sobre línea F'S' con coordenadas determinadas según:

$$F'X_F + S'Y_S = M'X_M$$

El punto de diferencia está determinado por:

$$R'_{N_p} - S' = F' - E'_1 = \Delta'_R$$

Para toda etapa S se cumple:

$$R'_{N_p} - S' = R_{S-1}' - E'_S = \Delta'_R$$

Objetivos de la Clase

- Ver los principales equipos usados en la extracción líquidolíquido.
- Revisar los fundamentos de la extracción sólido-líquido.

Equipos para Extracción Líquido-Líquido: Mezcladores-sedimentadores

(Geankoplis, 2018)

Equipos para Extracción Líquido-Líquido: Mezcladores-sedimentadores

https://chemicalengineeringworld.com/mixer-settler-working-principle/

Equipos para Extracción Líquido-Líquido: Mezcladores-sedimentadores

https://chemicalengineeringworld.com/mixer-settler-working-principle/

Equipos para Extracción Líquido-Líquido: Torre estática de platos perforados

Equipos para Extracción Líquido-Líquido: Torre estática de platos perforados

https://chemicalengineeringworld.com/spray-towers-wet-scrubber-for-extraction/

http://www.liquid-extraction.com/sieve-tray-column.htm

Equipos para Extracción Líquido-Líquido: Torre empacada estática de contacto continuo

http://www.liquid-extraction.com/packed-column-smvp.htm

Relleno aleatorio

Relleno ordenado

Equipos para Extracción Líquido-Líquido: Torres de extracción en etapas con agitación

(Geankoplis, 2018)

Equipos para Extracción Líquido-Líquido: Torres de extracción en etapas con agitación - SCHEIBEL® Column

http://www.liquid-extraction.com/scheibel-column.htm

Equipos para Extracción Líquido-Líquido: Torres de extracción en etapas con agitación - KARR® Column

http://www.liquid-extraction.com/karr-column.htm

Extracción Sólido-Líquido

Ejemplos:

- Extracción de aceite de semillas oleaginosas
- Extracción de azúcar de remolacha

En esta operación un solvente líquido (en azul) se utiliza para extraer los solutos de una matriz sólida (alimentación en rojo).

Etapas en la extracción:

- Penetración del disolvente en la matriz
- 2. Solubilización de los componentes
- 3. Transporte de soluto hacia el exterior de la matriz
- 4. Migración de soluto desde superficie a solución

En una operación real es imposible separar totalmente la solución del sólido (éste queda mojado, solución ocluida)

Soluto Inerte

Solvente

Soluto

Solvente

Célula de Remolacha

Célula de Poroto de soya

Lixiviación en una etapa

Supuestos importantes:

- 1. Sólido inerte es insoluble
- 2. Todo el soluto se disuelve por completo (hay suficiente solvente y tiempo)
- 3. La solución ocluida tiene la misma composición que la que se retira.

Solución ocluida tiene la misma composición que la que se retira.

Lixiviación en 1 etapa

Supuestos importantes:

- Sólido inerte es insoluble
- Todo el soluto se disuelve por completo (hay suficiente solvente y tiempo)
- 3. La solución ocluida tiene la misma composición que la que se retira.

Nomenclatura:

- La corriente sólido-líquido se llama flujo inferior o suspensión
- La corriente que se retira se llama flujo superior o derrame

Diagrama de Equilibrio para Lixiviación

Para describir el equilibrio se utilizarán 2 concentraciones para cada corriente:

 La concentración (N) de sólido insoluble o inerte B en la suspensión (en masa), i.e.

$$N = \frac{kg B}{kg A + kg C} = \frac{kg \text{ s\'olido}}{kg \text{ soluci\'on}}$$

2. La concentración de soluto A en el líquido, i.e.

$$y_A = \frac{kg A}{kg A + kg C} = \frac{kg soluto}{kg solución}$$
 (suspensión)

$$x_A = \frac{kg A}{kg A + kg C} = \frac{kg soluto}{kg solución}$$
 (derrame)

De acuerdo a la nomenclatura anterior, tendremos:

$$N = \frac{kg \; B}{kg \; A + kg \; B} = \frac{kg \; \text{s\'olido}}{kg \; \text{soluci\'on}}$$

$$y_A = \frac{kg A}{kg A + kg C} = \frac{kg soluto}{kg solución}$$
 (suspensión)

$$x_A = \frac{kg A}{kg A + kg C} = \frac{kg soluto}{kg solución}$$
 (derrame)

Normalmente $y_A = x_A$ (ambos líquidos tienen la misma composición)

La curva del flujo inferior se obtiene en forma experimental.

Normalmente $y_A = x_A$ (ambos líquidos tienen la misma composición)

La curva del flujo inferior se obtiene en forma experimental.

Normalmente $y_A = x_A$ (ambos líquidos tienen la misma composición)

Objetivos de la Clase

- Ver los principales equipos usados en la extracción líquidolíquido.
- Revisar los fundamentos de la extracción sólido-líquido.

Equipos de extracción líquido-líquido y principios de extracción sólido-líquido

IIQ2023 - Operaciones Unitarias II

José Rebolledo Oyarce

22 de Abril de 2021

