Package 'pfica'

December 13, 2020

Version 0.1.1		
Title Penalized Independent Component Analysis for Univariate Functional Data		
Author Marc Vidal, Ana Ma Aguilera		
Maintainer Marc Vidal <marc.vidalbadia@ugent.be></marc.vidalbadia@ugent.be>		
Description Performs penalized independent component analysis for univariate functional data. Two alternative models are implemented, both based on the fourth order blind identification method.		
License GPL (>= 2)		
Depends R (>= 2.10), fda		
Imports corpcor, moments		
Encoding UTF-8		
LazyData true		
NeedsCompilation no		
Repository CRAN		
RoxygenNote 7.1.1		
R topics documented:		
ffobi		
Index		
ffobi Smoothed functional ICA in terms of basis functions coordinates		

1

6

Description

This function computes the ordinary ICA procedure from a sample represented by basis functions (Fourier, B-splines...). The estimation method is based on the use of fourth moments (FOBI), in which it is assumed that the independent components have different kurtosis values. The proposed algorithm can be considered an extension of the implementation of the kurtosis operator introduced in Peña et. al (2014), whose decomposition is used to identify cluster structures and outliers.

2 ffobi

Usage

```
ffobi(fdx, ncomp = fdx$basis$nbasis, eigenfPar = fdPar(fdx),
    pr = c("fdx", "fdx.st"), shrinkage = FALSE,
    center = FALSE, plotfd = FALSE)
```

Arguments

fdx a functional data object obtained from the **fda** package.

ncomp number of independent components to compute.

eigenfPar a functional parameter object, obtained from the **fda** package, that defines the

independent component functions to be estimated.

pr the functional data object to project into the space spanned by the eigenfunc-

tions of the FOBI operator. To compute the independent components, the usual procedure is to use fdx.st, the standardized basis expansion. Thus, if pr is not

supplied, fdx.st is used.

shrinkage uses shrinkage estimators to compute the covariance matrix of the coordinate

vectors.

center a logical value indicating whether the mean function has to be subtracted from

each functional observation.

plotfd a logical value indicating whether to plot the eigenfunctions

of the FOBI operator.

Details

This IC model for functional data consists in performing the multivariate ICA of a transformation of the coordinate vectors associated to a basis of functions. The algorithm also incorporates a continuous penalty in the orthonormality constraint.

Value

a list with the following named entries:

eigenbasis a functional data object for the eigenfunctions or independent factors.

kurtosis a numeric vector giving the kurtosis associated to each independent component

vector.

scores a matrix whose column vectors are the independent components.

Author(s)

Marc Vidal, Ana Ma Aguilera

References

Peña, C., J. Prieto, and C. Rendón (2014). *Independent components techniques based on kurtosis for functional data analysis*. Working paper 14-10. Universidad Carlos III de Madrid.

Ramsay, J. and B. Silverman (2005). Functional Data Analysis. Springer.

Schafer, J. and K. Strimmer (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4.32(1).

Vidal, M. (2020). Functional Independent Component Analysis in Bioelectrical Signal Processing. MA thesis. Universidad de Granada.

kd 3

See Also

kffobi

Examples

```
## Canadian Weather data
library(fda)
arg <- 1:365
Temp <- CanadianWeather$dailyAv[,,1]
B <- create.bspline.basis(rangeval=c(min(arg),max(arg)), nbasis=16)
x <- Data2fd(Temp, argvals = arg, B)
Lfdobj <- int2Lfd(max(0, norder(B)-2))
penf <- fdPar(B, Lfdobj, lambda=10^4)
ica.fd <- ffobi(x, 16, penf)
## Plot by region: classification in order of maximum kurtosis
k1 <- which.max(ica.fd$kurtosis)
k2 <- which.max(ica.fd$kurtosis[c(-k1)])+1
sc <- ica.fd$scores
plot(sc[,c(k1)], sc[,c(k2)], ylab = "", xlab = "")
text(sc[,c(k1)], sc[,c(k2)], CanadianWeather$region, pch=0.5, cex=0.6)</pre>
```

kd

Kurtosis distance

Description

This function calculates the kurtosis distance (Vidal, 2020), which is an ad-hoc measure to select the number of components to be computed in kffobi and pspline.kffobi.

Usage

```
kd(fdx, hm = fdPar(fdx), pp = NULL, r = 2, centerfd = FALSE, qmin = 2, qmax = 5)
```

Arguments

a functional data object obtained from the **fda** package.

hm

a functional parameter object, obtained from the **fda** package, that defines the independent component functions to be estimated in kffobi.

pp

the penalty parameter to perform kd on pspline.kffobi.

a number indicating the order of the penalty to perform kd on pspline.kffobi.

centerfd

a logical value indicating whether the mean function has to be subtracted from each functional observation.

the minimum allowable a degree.

qmin the minimum allowable q degree. qmax the maximum allowable q degree.

Details

The kurtosis distance (KD) measures the degree of extremeness in an independent component coordinate space by computing the kurtosis on the independent component vectors.

4 kffobi

Value

A vector of KD values.

Author(s)

Marc Vidal

References

Vidal, M. (2020). Functional Independent Component Analysis in Bioelectrical Signal Processing. MA thesis. Universidad de Granada.

See Also

kffobi

kffobi

Smoothed functional ICA in terms of principal components

Description

This function computes the ordinary ICA procedure from a penalized principal component expansion (also known as Karhunen-Loeve expansion) whose eigenbasis is expressed in terms of basis functions (Fourier, B-splines...). The estimation method is based on the use of fourth moments (FOBI), in which it is assumed that the independent components have different kurtosis values. The proposed algorithm can be considered an extension of the IC model proposed in Li et al. (2015). This function provides more accurate estimates than ffobi and was used in Vidal (2020) to identify artifactual independent curves in bioelectrical signals.

Usage

Arguments

fdx a functional data object obtained from the **fda** package. number of independent components to compute. ncomp eigenfPar a functional parameter object, obtained from the fda package, that defines the principal component functions to be estimated. the functional data object to project into the space spanned by the eigenfunctions pr of the FOBI operator. To compute the independent components, the usual procedure is to use KL.st, the standardized principal component expansion. Thus, if pr is not supplied, KL. st is used. shrinkage uses shrinkage estimators to compute the covariance matrix of the coordinate vectors of the KL expansion. center a logical value indicating whether the mean function has to be subtracted from each functional observation.

plotfd a logical value indicating whether to plot the eigenfunctions

of the FOBI operator.

kffobi 5

Details

Note that kffobi first computes the (penalized) functional PCA; see Aguilera and Aguilera-Morillo (2013) for a detailed discussion. Thus here, the IC model for functional data consists in performing the multivariate ICA of the KL coordinate vectors in terms of the PC weight functions.

Value

a list with the following named entries:

eigenbasis a functional data object for the eigenfunctions or independent factors.

kurtosis a numeric vector giving the kurtosis associated to each independent component

vector.

scores a matrix whose column vectors are the independent components.

Author(s)

Marc Vidal, Ana Ma Aguilera

References

Aguilera, AM. and MC. Aguilera-Morillo (2013). "Penalized PCA approaches for B-spline expansions of smooth functional data". In: *Applied Mathematics and Computation* 219(14), pp. 7805–7819.

Li, B., G. Van Bever, H. Oja, R. Sabolova, and F. Critchley (2015). "Functional independent component analysis: an extension of the fourth-orderblind identification." *Submitted*.

Miettinen, J., K. Nordhausen, and S. Taskinen (2017). "Blind source separation based on joint diagonalization in R: The packages JADE and BSSasymp". In: *Journal of Statistical Software* 76.2, pp. 1–31.

Ramsay, J. and B. Silverman (2005). Functional Data Analysis. Springer.

Vidal, M. (2020). Functional Independent Component Analysis in Bioelectrical Signal Processing. MA thesis. Universidad de Granada.

See Also

kd, ffobi

Examples

```
## foetal_ecg data
library(fda)
dataset <- matrix(
    scan("https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v076i02/foetal_ecg.dat"),
    2500, 9, byrow = TRUE);
X <- dataset[1:1000, 2:9]
arg <- 1:1000
basis <- create.fourier.basis(rangeval=c(min(arg), max(arg)), nbasis=301, basisvalues=TRUE)
x <- Data2fd(X, argvals=arg, basis)
## Penalization can be considered:
#Lfdobj <- vec2Lfd(c(0,(2*pi/diff(4))^2,0), 4)
#hm <- fdPar(base, Lfdobj, lambda=2)
## Select the number of components with the kurtosis distance:
#kurt.dist <- kd(x, qmax = 8)
aci <- kffobi(x, 7, plotfd = TRUE)</pre>
```

6 pspline.kffobi

Description

This function provides an alternative form of computing the smoothed functional ICA in terms of principal components (function kffobi). A discrete penalty that measures the roughness of principal factors by summing squared *r*-order differences between adjacent B-spline coefficients (P-spline penalty) is used; see Aguilera and Aguilera-Morillo (2013) for a detailed discussion.

Usage

Arguments

fdx	a functional data object obtained from the fda package.
ncomp	number of independent components to compute.
рр	the penalty parameter. It can be estimated by leave-one-out cross-validation.
r	a number indicating the order of the penalty.
pr	the functional data object to project into the space spanned by the eigenfunctions of the FOBI operator. To compute the independent components, the usual procedure is to use KL.st, the standardized principal component expansion. Thus, if pr is not supplied, then KL.st is used.
shrinkage	uses shrinkage estimators to compute the covariance matrix of the coordinate vectors of the KL expansion.
center	a logical value indicating whether the mean function has to be subtracted from each functional observation.
plotfd	a logical value indicating whether to plot the eigenfunctions of the FOBI operator.

Details

To compute the penalty matrix, the following code is used: $\Delta^2 = \mathtt{diff}(\mathtt{diag}(\mathtt{nknots} + 2), \mathtt{differences} = 2)$, where nknots is the number of basis knots. As in kffobi, the functional ICA of the principal component expansion is equivalent to the multivariate ICA of the KL coordinate vectors; see *Details* in kffobi.

Value

a list with the following named entries:

eigenbasis a functional data object for the eigenfunctions or independent factors.

kurtosis a numeric vector giving the kurtosis associated to each independent component vector.

scores a matrix whose column vectors are the independent components.

pspline.kffobi 7

Author(s)

Marc Vidal, Ana Ma Aguilera

References

Aguilera, AM. and MC. Aguilera-Morillo (2013). "Penalized PCA approaches for B-spline expansions of smooth functional data". In: *Applied Mathematics and Computation* 219(14), pp. 7805–7819.

Ramsay, J. and B. Silverman (2005). Functional Data Analysis. Springer.

Vidal, M. (2020). Functional Independent Component Analysis in Bioelectrical Signal Processing. MA thesis. Universidad de Granada.

See Also

kffobi

Examples

```
## Canadian Weather data
library(fda)
arg <- 1:365
Temp <- CanadianWeather$dailyAv[,,1]
B <- create.bspline.basis(rangeval=c(min(arg),max(arg)), nbasis=16)
x <- Data2fd(Temp, argvals = arg, B)
ica.fd <- pspline.kffobi(x, 16, pp = 10)
## Plot by region: classification in order of maximum kurtosis
k1 <- which.max(ica.fd$kurtosis)
k2 <- which.max(ica.fd$kurtosis[c(-k1)])+1
sc <- ica.fd$scores
plot(sc[,c(k1)], sc[,c(k2)], ylab = "", xlab = "")
text(sc[,c(k1)], sc[,c(k2)], CanadianWeather$region, pch=0.5, cex=0.6)</pre>
```

Index

```
* functional ICA
ffobi, 1
kffobi, 4
pspline.kffobi, 6
* utilities
kd, 3
ffobi, 1, 4, 5
kd, 3, 5
kffobi, 3, 4, 4, 6, 7
pspline.kffobi, 3, 6
```