Documentação do Projeto de Telemetria CAN com ESP32

Eduardo Schvinn

April 22, 2025

1 Introdução

Este projeto tem como objetivo transmitir dados de sensores (aceleração e GPS) via protocolo CAN utilizando ESP32. A proposta visa facilitar a coleta de dados em tempo real para aplicações como monitoramento veicular em protótipos Baja SAE.

2 Componentes Utilizados

- 2 x ESP32 (ESP-IDF)
- 1 x Módulo MPU6050 (Acelerômetro e Giroscópio)
- 1 x Módulo GPS NEO-M8N
- 2 x Módulo CAN com CI SN65HVD230
- Cabos, protoboards e fonte de alimentação

3 Funcionamento Geral

- O ESP transmissor coleta dados do MPU6050 e do GPS.
- As informações são organizadas em pacotes CAN com identificadores 0x123 (aceleração) e 0x124 (GPS).
- O ESP receptor interpreta os pacotes e exibe os dados no terminal.

4 Estrutura dos Frames CAN Transmitidos

O sistema transmite dois frames distintos na rede CAN, cada um com identificador e estrutura de payload definidos:

Frame 1: Dados de Aceleração (ID 0x123)

- 6 bytes no total.
- Cada componente da aceleração (X, Y, Z) codificado em dois bytes (int16_t).
- Formato big-endian:

- Exemplo:
 - ax = -512 0xFE00, ay = 256 0x0100, az = 16383 0x3FFF
 - Payload: FE 00 01 00 3F FF

Frame 2: Coordenadas GPS (ID 0x124)

- 8 bytes no total.
- Latitude e longitude como float (IEEE 754), 4 bytes cada.
- Formato little-endian:

- Exemplo:
 - Latitude = -30.0457, Longitude = -51.2309
 - Representação: 9A 99 F0 C1 0B 8D 4E C2

Resumo dos Frames

Frame	ID	Bytes (Payload)	Conteúdo
Frame 1	0x123	6	Aceleração (X, Y, Z)
Frame 2	0x124	8	Latitude (4B) + Longitude (4B)

5 Formato dos Dados Transmitidos

A separação em dois frames evita a perda de precisão das coordenadas GPS.

Frame 1 (ID 0x123):

- Bytes 0-1: aceleração em X (int16)
- Bytes 2-3: aceleração em Y (int16)
- Bytes 4-5: aceleração em Z (int16)

Frame 2 (ID 0x124):

- Bytes 0-3: latitude (float)
- Bytes 4-7: longitude (float)

6 Conversão de Dados GPS no Receptor

A transmissão das coordenadas GPS segue o padrão IEEE 754 para float (4 bytes), utilizando a ordem *little-endian*.

No Transmissor

Os valores são copiados diretamente para o buffer da mensagem:

```
memcpy(&msg2.data[0], &latitude, sizeof(float));
memcpy(&msg2.data[4], &longitude, sizeof(float));
```

No Receptor

O processo reverso reconstitui os valores:

```
float latitude , longitude;
memcpy(&latitude , &msg.data[0], sizeof(float));
memcpy(&longitude , &msg.data[4], sizeof(float));
```

Considerações

- A ordem dos bytes deve ser idêntica em ambos os dispositivos.
- O uso de memcpy garante fidelidade dos dados sem conversões.
- O formato binário permite transmitir floats com eficiência.

7 Fluxo do Sistema

- 1. Inicialização de UART (GPS), I2C (MPU6050) e CAN.
- 2. Leitura dos sensores.
- 3. Transmissão a cada 500ms.
- 4. Receptor interpreta e exibe os dados no terminal.