國立中興大學附屬高級中學 113 學年	度第2學期第1次期中考數	<u> </u>	命題:蔡老師	審題:吳老師
班級:3 年班	座號: 姓名	名:	共4頁	Į P1

一、單選題(占25分)

說明:第1題至第5題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。 各題答對者,得5分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. ()若隨機變數 X 所有可能的取值為 $1 \cdot 2 \cdot 3 \cdot k$,且 $P(X=i) = \frac{i^2 i + 3}{40}$, $i = 1 \cdot 2 \cdot 3 \cdot k$ 。 则符合此條件之所有 k 值的乘積為何? (1) -4 (2) -20 (3)4 (4)5 (5)20
- 2. () 設 z = 1 2i,在複數平面上,三點 $O(0) \cdot P(z) \cdot Q(iz)$ 所圍成的三角形面積為 $(1)\frac{3}{2}$ (2)2 (3)3 $(4)\frac{5}{2}$ (5)5
- 3. ()在複數平面上,所有滿足方程式|z-4|: |z+1|=3:2的複數 z 形成什麼圖形? (1)點 (2)直線 (3)圓 (4)拋物線 (5)橢圓

- 4. () 化簡 $\frac{\sqrt{40}}{\sqrt{-5}} + \sqrt{-4}\sqrt{-8} + \frac{6}{\sqrt{2}} = ?$ (1) $-\sqrt{2} + 2\sqrt{2}i$ (2) $-2\sqrt{2} + \sqrt{2}i$ (3) $\sqrt{2} 2\sqrt{2}i$ (4) $2\sqrt{2} \sqrt{2}i$ (5) $-\sqrt{2} 2\sqrt{2}i$
- 5. () 小明宣稱他在三分線投籃的命中率至少 80%,為了證實所言不虛,他邀請小華到籃球場看他表演,在三分線投 10 球並以 $\alpha=0.05$ 檢定。假設隨機變數 X 的取值為小明在三分線投籃 10 次進球的總次數,則小明至少要投進幾球,小華才不會拒絕小明的宣稱。

(請參考以下隨機變數 X = n = 10, p = 0.8的二項分布之機率分布表)

х	0	1	2	3	4	5
p(x)	0.000000	0.000004	0.000074	0.000786	0.005505	0.026424
х	6	7	8	9	10	
p(x)	0.088080	0.201327	0.301990	0.268435	0.107374	

(1)3 球 (2)4 球 (3)5 球 (4)6 球 (5)7 球

說明:第6題至第9題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。 各題之選項獨立判定,所有選項均答對者,得6分;答錯1個選項者,得3.6分;答錯2個選項者,得1.2分;答錯多於2個 選項或所有選項均未作答者,該題以零分計算。

)已知隨機變數 X 之期望值 E(X) = 6, $E(X^2) = 100$,下列哪些為正確的選項?

$$(1)E(2X+3) = 15 \quad (2)Var(X) = 64 \quad (3)Var(X) = E(X^2) = 100 \quad (4)Var(\frac{X}{8}+3) = 4 \quad (5)\sigma(-2X+3) = -16$$

-)甲乙二人作棋賽,約定先勝3局者可得彩金8000元,若甲乙兩人棋力相當(即每局甲乙獲勝機率相等), 7. (已知棋賽第一局甲獲勝,試問下列敘述,何者為真?
 - (1)甲再勝第 2×3 局的機率為 $\frac{1}{4}$
- (2)甲先勝 3 局的機率為 $\frac{9}{16}$ (3)乙先勝 3 局的機率為 $\frac{5}{16}$

 - (4)若甲勝第一局後,棋賽因故中止,則甲應分得彩金 5500 元才合理
 - (5)若甲勝第一局後,棋賽因故中止,則乙應分得彩金 2500 元才合理

)某人手持一硬幣,並聲稱「此硬幣出現正面的機率為 $\frac{1}{2}$ 」。欲檢定此硬幣出現正面的機率, 8. (

並列出前三個步驟如下:

- (I)設「此硬幣出現正面的機率為 $\frac{1}{2}$ 」。
- (II)確立檢定統計量為「丟此硬幣9次中出現正面的次數」。
- (III)設定顯著水準為 0.05。

丢此硬幣 9 次,令隨機變數 X 表示出現正面的次數,則「在此硬幣出現正面的機率為 $\frac{1}{2}$ 」之假設前提下,

$$P(X=k)=C_k^9\left(\frac{1}{2}\right)^k\left(\frac{1}{2}\right)^{9-k}=\frac{C_k^9}{512}$$
,其中 $k=0,1,\cdots,9$,得 X 的機率分布如下表所示:

k	0	1	2	3	4
P(X=k)	<u>1</u> 512	9 512	$\frac{36}{512}$	84 512	$\frac{126}{512}$
P(X=k)的近似值	0.195%	1.758%	7.031%	16.406%	24.609%
k	5	6	7	8	9
P(X=k)	126 512	84 512	$\frac{36}{512}$	9 512	1 512
P(X=k)的近似值	24.609%	16.406%	7.031%	1.758%	0.195%

下列敘述哪些是正確的? (1)P(X=0)+P(X=9)<0.05 (2)P(X=0)+P(X=1)+P(X=8)+P(X=9)>0.05

(3)在「此硬幣出現正面的機率為 $\frac{1}{2}$ 」之假設成立的條件下,丟此硬幣 9 次中出現正面的次數期望值為 $\frac{9}{2}$ 次

(5)若試驗結果為出現正面 8 次,則拒絕「此硬幣出現正面的機率為 $\frac{1}{2}$ 」 (4)拒絕域為X = 0,9

9. () 如圖,正方形 ABCD 的兩邊分別平行實軸與虛軸,其中心為原點 O, A 點所對應的複數為 z。

 $(1)\overline{OA} = |z|$ $(2)|z-\overline{z}|=2|z|$ (3)B 點所對應的複數為 \overline{z} (4)D 點所對應的複數為iz (5)C 點所對應的複數為-z

三、選填題(占51分)

說明:1.第A至J題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(10-40)。 2.每題完全答對給5分,E題每小題3分,答錯不倒扣,未完全答對不給分。

A. $(a+bi)^2 = 8+6i$, 其中 $a \cdot b$ 為正實數 , 求數對 $(a,b) = (① , ①) \circ$

B. 設複數 z 滿足|z|+z=8-4i,求 z=a+bi ,其中 a 、 b 為實數 ,求數對 (a,b)= (① ,① ① ①

C. 設X的機率分布如下,

X	1		3	4
機率	0.4	х	у	0.1

已知 E(X) = 2,則數對(10x,10y) = (① ,①)。

D. 已知複數 z 滿足 |z-1|=|z+2i|,求 $z \cdot \overline{z}$ 的最小值 $\frac{17}{18}$ 。

E. 甲、乙兩人進行「剪刀、石頭、布」的猜拳遊戲,其中甲勝叫做成功,乙勝或平手叫做失敗。

(1)兩人猜拳 1 次,求成功的機率為 $p = \frac{20}{21}$

(2)今兩人猜拳 90 次,求成功次數的期望值 μ 與變異數 σ^2 ,求數對 (μ,σ^2) =(② ② ,②)。。

- F. 遺傳中外觀是由一對基因所決定,若A表示雙眼皮的基因,a表示單眼皮的基因,則
 - ①當這對基因為 AA 或 Aa 時,外觀是雙眼皮;
 - ②當這對基因為 aa 時,外觀是單眼皮。

小孩的基因是分別從父母親隨機各取得一個基因來組成,且取得 A 或 a 的機率均等。已知一對夫婦的基因皆為 Aa,他們計

畫生 3 個小孩,且每個小孩從父母親取得基因皆為獨立事件,求 3 個小孩都是雙眼皮的機率 = $\frac{20}{28}$ ② ② 。

H. 籤筒中共有10支籤,其中3支為中獎籤。已知每支籤被取到的機會均等,從籤筒中取出2支籤,

並令隨機變數 X 表示抽到中獎籤的支數,求機率 $P(X=1)=\frac{32}{33}$ 。

I. 投擲一粒公正的四面體骰子,其各面的點數分別為1,2,3,4,並令隨機變數X表示擲此骰子2次的點數和,

求機率P(X=6)= $\frac{35}{36}$ 。

J. 設一袋中有 1 個 1 號球、2 個 2 號球、…、10 個 10 號球。現自袋中任取一球,設每一球被取到的機會均等,而取得 k 號球 $(1 \le k \le 10)$,可得 (200-k)元,求取出一球的期望值是 ③ ③ ④ 元。

參考解答:

- = 6. (1)(2) 7. (1)(3)(4)(5) 8. (1)(3)(5) 9. (1)(3)(4)(5)
- \equiv A. 3+i B. 3-4i C. (3,2) D. $\frac{9}{20}$ E. (1) $\frac{1}{3}$ (2)30,20

F.
$$\frac{27}{64}$$
 G. $^{-8}$ H. $\frac{7}{15}$ I. $\frac{3}{16}$ J. 193