+r +r +r								
/								
u_0	u ₁	u ₂	U ₃		U _n			
	$u_1 = u_0 + r$	$u_2 = u_0 + 2r$	u ₃ = u ₀ + 3r		$u_n = u_0 + nr$			

		+ r	+r +	·r				
	u_1	u ₂	u ₃	u ₄		u _n		
ľ		$u_2 = u_1 + r$	u ₃ = u ₁ + 2r	u ₄ = u ₁ + 3r		$u_n = u_1 + (n-1)r$		

	x q x	cq x	q	
/	\ /			
u _o	u_1	u ₂	U ₃	 U _n
	$u_1 = u_0 \times q$	$u_2 = u_0 \times q^2$	$u_3 = u_0 \times q^3$	 $u_n = u_0 \times q^n$

	x q	k q x	q			
u_1	u ₂	u ₃	u ₄		u _n	
	$u_2 = u_1 \times q$	$u_3 = u_1 \times q^2$	$u_4 = u_1 \times q^3$		$u_n = u_1 \times q^{n-1}$	

Exemples

Soit (u_n) la suite arithmétique de terme initial $u_0 = 1, 5$ et de raison r = -7. Le terme de rang n est $u_n = 1, 5 + n \times (-7)$ c'est à dire $u_n = 1, 5 \times 7n$. On a ainsi :

•
$$u_4 = 1, 5 - 7 \times 4 = -26, 5$$

•
$$u_{100} = 1, 5 - 7 \times 100 = -698, 5$$

Soit (u_n) la suite arithmétique de terme initial $u_1 = 14$ et de raison r = 1, 3. Le terme de rang n est $u_n = 14 + (n-1) \times 1, 3$; c'est à dire $u_n = 12, 7+1, 3n$. On a ainsi :

•
$$u_4 = 12, 7 + 1, 3 \times 4 = 17, 9$$
;

•
$$u_{100} = 12, 7 + 1, 3 \times 100 = 142, 7.$$

Exemples

Soit (u_n) la suite géométrique de terme initial $u_0 = 2, 4$ et de raison q = 0, 6. Le terme de rang n est $u_n = 2, 4 \times 0, 6^n$.

On a ainsi:

•
$$u_4 = 2, 4 \times 0, 6^4 = 0,31104;$$

•
$$u_{100} = 2, 4 \times 0, 6^{100} = 0.$$

Soit (u_n) la suite arithmétique de terme initial $u_1 = 0, 7$ et de raison q = 2, 2. Le terme de rang n est $u_n = 0, 7 \times 2, 2^{n-1}$.

On a ainsi:

•
$$u_5 = 0, 7 \times 2, 2^4 = 16,39792;$$

•
$$u_1 1 = 0, 7 \times 2, 2^{10} = 1859.$$