Data Science and Artificial Intelligence Probability and Statistics

Discrete Probability Distribution

Lecture No.-05

Topics to be Covered

Topic

Topic

Negative binomial Distribution

Hyper geometric Distribution

Po(t) = P[verents in (t, t+dt)] Plt+dt)= Po(t) Po(t+dt) both events Are Indep P(t+dt)=Pot)[1-[1event occur] - P[zevent ocus] - P[3event occur] $P_0(t+dt) = P_0(t)[1-\lambda dt-0-0]$ P(t+dt) = Po(t)[1-Adt] = Po(t) - & Po(t) dt

$$Po(t+dt) - Po(t) = -\lambda Po(t)dt$$

$$= Po(t+dt) - Po(t) = -\lambda Po(t)dt$$

$$= \lambda t \frac{Po(t+dt) - Po(t)}{dt} = -\lambda Po(t)dt$$

$$= \lambda t \frac{Po(t+dt) - Po(t)}{dt} = -\lambda Po(t)$$

$$\Rightarrow \frac{d \cdot lo(t)}{dt} = -\lambda \cdot lo(t)$$

$$\frac{d lo}{dt} = -\lambda lot)$$

Reperential

$$f'(x) = f(x+h) - f(x)$$
hoo

Vong variable seprable

$$\frac{d Po}{dt} = -\lambda Po$$

$$= \left(\frac{d Po}{Po} = \int \lambda dt\right)$$

$$= both index Integraling$$

$$= ln Po = -\lambda t + C$$

$$Po = e^{-\lambda t} Po(t) = e^{-\lambda t}$$

$$\Rightarrow$$
 de $Po(t) = -\lambda Po(t)$

$$\frac{d Po(t)}{dt} = -\lambda Po(t)$$
 this is D. E

$$\frac{1}{P_0} = \int \lambda dt$$

=
$$P_0(t) = e^{-\lambda t}$$

$$P(X=x) = \frac{e^{-\mu}(\mu)^{x}}{x!}$$

$$M = \frac{e^{-\mu}(\mu$$

Negative Binomal Distribution:

GEOMETRIC Distribution G2(P) $B(\eta, \rho)$ X = No of red ballsX = 01, 2, 3, 4, 5, GBB B(SUCCESS)
GGB
GGB

A com is Torsed Infinite No-of time Brinomal Tonals	o 4th HEAD appears.
NINITITITITININ	
NTTNTTNN	10th TOES.
TITIN N N TITIN	(4. Head)
N N T T T T N N	7th Curation Tolling
B(n, p)	Bla Process R(N/b)Xb
NTNTNTNTN	G(P) -> only one succes
many seguences Are MERE B(n,p)xp.	Neg Bland > Kth success

Negative Binomal: fie 92 th success

Negative Binomual Distribution $V B(n, p) = B(n, p) \times p$

Negative Binomual 9th success

Negative Binomial Distribution $P(x=r) = n-1 c_{n-1} b^{\sigma-1} q^{(n-1)-(r-1)}(b)$ $P(x=x)=n-1C_{n-1}|_{ph-1},_{p}q(n-1-x+1)$

SVECTOSS. $P(X=x) = N-1C_{x-1} p^{x} q^{x-x}$

No. of

Viring for 7th success
for nth trusts.

B(n, b)	P
n-1	1
7-1	1

Q1. Find the probability that third head turns up in 5 tosses of an unbiased

coin. Vrong Negative Binomial $= \frac{4 c_2(\frac{1}{2})^2(\frac{1}{2})^2 \times \frac{1}{2}}{11 Ans}$

Q2. Find the probability that a third child in a family is the family's second daughter, assuming the male and female are equally probable.

$$= 2C_{1}(\frac{1}{2})(\frac{1}{2}) \times \frac{1}{2}$$

THANK - YOU