基础数理统计

第八章 Bootstrap 方法

- 8.1 随机模拟
 - 2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

1 8.1 随机模拟

② 8.2 Bootstrap 方差估计

- 3.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

令 $T_n = g(X_1, X_2, \dots, X_n)$ 为一个统计量,希望知道 T_n 的方差 $V_F(T_n)$ 。Bootstrap 方法的思想有两个步骤:

- (1) 用 $V_{\widehat{F}_n}(T_n)$ 估计 $V_F(T_n)$;
- (2) 用随机模拟方法近似求出 $V_{\widehat{F}_n}(T_n)$ 。

这里 $V_{\widehat{F}_n}(T_n)$ 是数据服从 \widehat{F}_n 分布时 T_n 的方差。

- 8.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

- 1 8.1 随机模拟
- ② 8.2 Bootstrap 方差估计
- ③ 8.3 Bootstrap 置信区间

8.1 随机模拟

8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

大数定律:可以用随机模拟值的样本方差来近似估计方差。

8.2 Bootstrap 方差估计

- 8.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

- 1 8.1 随机模拟
- ② 8.2 Bootstrap 方差估计
- ③ 8.3 Bootstrap 置信区间

- 3.1 随机模拟
- 8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

给定 n 个样本 X_1, \dots, X_n , 我们可以计算得到经验分布 函数 \widehat{F}_n .

- 1. 从分布 \hat{F}_n 中生成新样本 $\mathcal{X}_1 = \{X_1^*, \dots, X_n^*\}$;
- 2. 基于样本 $\mathcal{X}_1 = \{X_1^*, \dots, X_n^*\}$, 计算出统计量 $T^* = g(X_1^*, \dots, X_n^*)$;
- 3. 重复上述步骤 m 次,得到统计量 T_1^*, \dots, T_m^*

有放回抽样

- 3.1 随机模拟
- 8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

经验分布函数,

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x), \ \forall \ x \in \mathbb{R},$$

所以从分布函数 $\hat{F}_n(x)$ 中生成样本,等价的就是: Bootstrap= 有放回抽样

Bootstrap

- 8.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

- 1. 从样本 X_1, \dots, X_n 中有放回抽样得到新样本 $\mathcal{X}_1 = \{X_1^*, \dots, X_n^*\};$
- 2. 基于样本 $X_1 = \{X_1^*, \dots, X_n^*\}$, 计算出统计量 $T^* = g(X_1^*, \dots, X_n^*)$;
- 3. 重复上述步骤 m 次,得到统计量 T_1^*, \dots, T_m^*

.1 随机模拟

8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

注意:

- 新得到的样本中可能是有重复的因为 Bootstrap 的 机制是有放回抽样。
- 新样本的容量等于原始样本的容量。

- 3.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

实际情况
$$F \Rightarrow X_1, \dots, X_n \Rightarrow T_n = g(X_1, \dots, X_n);$$

Bootstrap 方法 $\hat{F}_n \Rightarrow X_1^*, \dots, X_n^* \Rightarrow T_n^* = g(X_1^*, \dots, X_n^*);$

例子:均值

考虑一个抛硬币的例子,我们抛 10 次记录每次是否正面向上,得到 10 个观察值

$$X = \{x_1, x_2, \dots, x_{10}\}.$$

我们可以用样本均值来估计正面向上的概率

$$\bar{x} = \frac{1}{10}(x_1 + x_2 + \dots + x_{10}).$$

8.1 随机模拟

8.2 Bootstrap 方差估计

8.1 随机模拟

8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

要刻画上述估计的精度 (推断出 x 的分布), 我们可以考虑 Bootstrap. 首先重抽样观察值得到一个 Bootstrap 样本,可能如下:

$$X_1^* = \{x_2, x_1, x_{10}, x_{10}, x_3, x_4, x_6, x_7, x_1, x_9\}.$$

我们可以基于新样本 X_1^* 计算出 Bootstrap 均值: μ_1^* . 重复这一个过程得到第二个新样本 X_2^* , 计算 μ_2^* . 以此类推, 重复 100 次得到 100 个 μ_1^* , μ_2^* , . . . , μ_{100}^* .

- .1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间
- 这些通过重抽样得到的统计量 T_1^*, \dots, T_m^* 反映了原始样本统计量 T 的波动情况;
- 通过分析这些统计量,我们可以估计方差,构造出 对应的置信区间。

Bootstrap 方差估计

- 1. 从 F, 分布中抽样 X*, ..., X*,;
- 2. 计算 $T_n^* = g(X_1^*, \dots, X_n^*)$;
- 3. 重复第 1 步和第 2 步 B 次,得到 $T_{n,1}^{\star}, \ldots, T_{n,B}^{\star}$;
- 4. 令

$$v_{boot} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^{\star} - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^{\star} \right)^{2}.$$

.1 随机模拟

8.2 Bootstrap 方差估计

- 8.3 Bootstrap 置信区间

- ③ 8.3 Bootstrap 置信区间

一、正态区间法

.1 随机模拟

8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

基于所得到的 Bootstrap 统计量 T_1^*, \dots, T_m^* , 我们可以构造置信区间

$$T_n \pm z_{\alpha/2} \widehat{\mathsf{se}}_{\mathsf{boot}},$$

其中 $\hat{se}_{boot} = \sqrt{v_{boot}}$ 是标准差的 Bootstrap 估计。 该区间不是很准确,除非 T_n 的分布接近正态分布。

二、枢轴量法置信区间

.1 随机模拟

8.2 Bootstrap 方差估计

8.3 Bootstrap 置信区间

令 $\theta = T(F)$, $\widehat{\theta}_n = T(\widehat{F}_n)$, 定义枢轴量为 $R_n = \widehat{\theta}_n - \theta$ 。 用 $\widehat{\theta}_{n,1}^{\star}, \ldots, \widehat{\theta}_{n,B}^{\star}$ 表示 $\widehat{\theta}_n$ 的 Bootstrap 复本。 θ_{β}^{\star} 表示 $\widehat{\theta}_{n,1}^{\star}, \ldots, \widehat{\theta}_{n,B}^{\star}$ 的 β 分位数。 $1 - \alpha$ 的 Bootstrap 枢轴置 信区间为

$$C_n = (2\widehat{\theta}_n - \theta_{1-\alpha/2}^{\star}, 2\widehat{\theta}_n - \theta_{\alpha/2}^{\star}). \tag{1}$$

枢轴量法置信区间-续

注意到,令 $H(r) = P_F(R_n \le r), \ C_n^{\star} = (a,b)$,其中

$$\mathbf{a}=\widehat{\theta}_{\mathbf{n}}-\mathbf{H}^{-1}(1-\frac{\alpha}{2}),\ \mathbf{b}=\widehat{\theta}_{\mathbf{n}}-\mathbf{H}^{-1}(\frac{\alpha}{2}),$$

则

$$P(a \le \theta \le b) = P(\widehat{\theta}_n - b \le R_n \le \widehat{\theta}_n - a) = 1 - \alpha.$$

由于 H的 Bootstrap 估计为

$$\widehat{H}(r) = \frac{1}{B} \sum_{l=1}^{B} I(R_{n,b}^{\star} \le r) \not \sqsubseteq P R_{n,b}^{\star} = \widehat{\theta}_{n,b}^{\star} - \widehat{\theta}_{n}.$$

故
$$\widehat{H}^{-1}(1-\alpha/2)=\theta_{1-\alpha/2}^{\star}-\widehat{\theta}_{\mathbf{n}},\ \widehat{H}^{-1}(\alpha/2)=\theta_{\alpha/2}^{\star}-\widehat{\theta}_{\mathbf{n}}.$$

.1 随机模拟

8.2 Bootstrap 方差估计

- 3.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

定理 1

当 T(F) 满足一定的条件时,

$$P_F(T(F) \in C_n) \to 1 - \alpha$$
, as $n \to \infty$.

三、分位区间法

- 8.1 随机模拟
- 8.2 Bootstrap 方差估计
- 8.3 Bootstrap 置信区间

Bootstrap 分位数区间定义为

$$C_n = (\theta_{\alpha/2}^{\star}, \theta_{1-\alpha/2}^{\star}).$$

例 1

 $X_{i1}, X_{i2}, \ldots, X_{in_i}$ 是来自分布 $F_i (i = 1, 2)$ 的简单随机样本,它们相互独立。求 F_1, F_2 的总体中位数之差的置信区间。

1. 记 $\hat{\theta}_i$ 为 $X_{i1}, X_{i2}, \ldots, X_{in_i}$ 的样本中位数,记

$$\widehat{\theta} = \widehat{\theta}_1 - \widehat{\theta}_2.$$

2. 从 $X_{i1}, X_{i2}, \dots, X_{in_i}$ 有放回抽样得到 $X_{i1}^*, X_{i2}^*, \dots, X_{in_i}^*$, 计算样本中位数 $\widehat{\theta}_1^*, \widehat{\theta}_2^*$; 该步骤重 复 B 次得到的样本分位数之差记为

$$\widehat{\theta}_{r}^{\star} = \widehat{\theta}_{1,r}^{\star} - \widehat{\theta}_{2,r}^{\star} (r = 1, 2, \dots, B)$$

 $\widehat{\theta}_r^{\star}(r=1,2,\ldots,B)$ 的样本方差记为 v_{boot} , α 样本分位数记为 θ_{α} 。

3.1 随机模拟

8.2 Bootstrap 方差估计

1. 正态置信区间:

$$(\widehat{\theta} - \mathbf{z}_{\alpha/2} \sqrt{\mathbf{v}_{boot}}, \widehat{\theta} + \mathbf{z}_{\alpha/2} \sqrt{\mathbf{v}_{boot}}).$$

2. 枢轴置信区间:

$$(2\widehat{\theta} - \theta_{1-\alpha/2}, 2\widehat{\theta} - \theta_{\alpha/2}).$$

3. 分位数置信区间:

$$(\theta_{\alpha/2}, \theta_{1-\alpha/2}).$$

作业: 2, 3, 5, 7, 8

3.1 随机模拟

8.2 Bootstrap 方差估计