l'Ingénieur

# **Applications**

# **Applications**

Savoirs et compétences :

### Correcteur proportionnel

Soit un système de fonction de transfert  $G(p) = \frac{1}{(1+10p)(1+0,1p)(1+0,2p)}$  placé dans une boucle à retour unitaire.

**Question** 1 Calculer la précision du système  $\varepsilon_S$  pour une entrée échelon unitaire.

**Question 2** Tracer dans le diagramme de Bode la fonction de transfert en boucle ouverte du système.

**Question** 3 Déterminer K pour avoir une marge de phase de 45°. Indiquer alors la valeur de la marge de gain. Indiquer la valeur de l'écart statique.

**Question** 4 Déterminer K pour avoir une marge de gain de 6 dB. Indiquer alors la valeur de l'écart statique.

1. 
$$\varepsilon_S = \frac{1}{2}$$
.

1

2. . 3. 
$$\omega_{-135}^{\circ} = 2.95 \,\text{rad/s}$$
.

4. 
$$\omega_{0 \, \text{dB}} = 7.17 \, \text{rad/s} \text{ et } M_G = 38 \, \text{dB soit } K_P = 79.$$







## Correcteur proportionnel

D'après ressources P. Dupas.

Soit un système de fonction de transfert G(p) = $\frac{1}{p(1+p+p^2)}$  placé dans une boucle à retour unitaire. On souhaite corriger le comportement de ce système par un correcteur proportionnel. On désire une marge de phase de −45° et une marge de gain de 10 dB.

On donne le diagramme de Bode associé à cette fonction de transfert.



**Question** 1 *Mesurer puis calculer la marge de phase.* 

**Question** 2 Mesurer puis calculer la marge de gain.

**Question** 3 Déterminer  $K_p$  pour avoir une marge de phase de 45°. Vérifier la marge de gain.

**Question** 4 Déterminer  $K_p$  pour avoir une marge de gain de 10 dB. Vérifier la marge de phase.

- 1.  $M_{\varphi} = -60^{\circ}$ .
- 2.  $M_G = -20 \,\mathrm{dB}$ .
- 3.  $K_P = 0.54$  et  $M_G = 5.35$  dB.
- 4.  $K_P = 0.316$  et  $M_{\varphi} = 70^{\circ}$ .

#### Correcteur proportionnel intégral

D'après ressources P. Dupas.

Soit un système de fonction de transfert G(p) =placé dans une boucle à retour unitaire.  $(p+1)\left(\frac{p}{8}+1\right)$ 

On souhaite disposer d'une marge de phase de 45°en utilisant un correcteur proportionnel intégral de la forme  $C(p) = K_p \frac{1 + \tau p}{\tau p}.$ 

**Question** 1 Tracer le diagramme de Bode de la boucle ouverte non corrigée.



Question 2 Déterminer les paramètres du correcteur pour avoir une marge de phase de 45°.

#### Correction

- On résout  $\varphi(\omega) = -135^\circ$ :  $\varphi(\omega) = -\arctan \omega \frac{\omega + \omega}{8}$ arctan  $\omega/8 \Rightarrow \tan 135^\circ = \frac{\omega + \omega/8}{1 - \omega^2/8} \Leftrightarrow -1 + \omega^2/8 - 9\omega/8 = 0 \Leftrightarrow \omega^2 - 9\omega - 8 = 0. \Delta = 81 + 32 = 10,63^2.$ • Calculons  $G_{\text{dB}}(9,82) = -23.9 \,\text{dB}$ . Il faut donc augmenter le gain de 23.0 dB.  $C_{\text{dB}}(9,82) = -23.9 \,\text{dB}$ .
- menter le gain de 23.9 dB soit  $K_P = 10^{23.9/20} =$ 15,7.
- On choisit  $\tau$  pour ne pas modifier la marge de phase. Il faut donc que le déphasage de 0°du correcteur ait lieu avant 9.82 rad/s. De manière usuelle on prend  $\frac{1}{\tau} = \frac{9.82}{10} = 0.982 \,\text{rad/s}.$ • Au final, on a  $C(p) = 15.7 \, \frac{1+1.018p}{1.018p}$ .

Question 3 Tracer le diagramme de Bode du correcteur et le diagramme de la boucle ouverte corrigée.







## Correcteur à avance de phase

Soit un système de fonction de transfert  $G(p) = \frac{100}{(p+1)^2}$  placé dans une boucle à retour unitaire.

Corriger ce système de sorte que sa marge de Question phase soit égale à 45°.