

Physique statistique 1 : la distribution de Boltzmann - application aux systèmes à deux niveaux

FIGURE XXIV.1 – Inscription sur la tombe de Ludwig Boltzmann (Cimetière central de Vienne) : expression de l'entropie statistique.

LUDWIG BOLTZMANN (1844-1906)

PLAN DU CHAPITRE

I	Du	Du microscopique au macroscopique : nécessité d'une théorie statistique	
	I.1	Les trois échelles d'analyse	4
	I.2	Nécessité de l'approche statistique : une nouvelle théorie nécessaire	4
TT	Elá	ments de statique des fluides - introduction au facteur de Boltzmann	6

	11.1	Expression des forces elementaires sur un element de nuide au repos	C
		a - Force de gravité (force à longue distance)	6
		b - Forces de pression (force à courte portée)	6
	II.2	Relation de la statique des fluides en champ de pesanteur	7
		a - Etablissement	7
		b - Le cas particulier d'un fluide incompressible en champ de pesanteur	8
	II.3	L'atmosphère isotherme	8
		a - Hypothèses du modèle	8
		b - Expression de la pression	ç
		c - "Extension" : le facteur de Boltzmann - poids de Boltzmann d'une particule	
		indépendante à l'équilibre thermique	Ĉ
		d - Confirmation expérimentale : l'expérience de Jean Perrin	10
ш	Dist	tribution des systèmes en équilibre thermique : distribution de Boltzmann	11
	III.1	Hypothèses	11
	III.2	La distribution de Boltzmann	11
		a - Enoncé	11
		b - Rapport de peuplement de deux niveaux énergétiques	12
IV	Gén	réralités sur les systèmes à spectre discret d'énergie	13
	IV.1	Intérêt - cas réels	13
	IV.2	Cas d'une particule indépendante	14
		a - Probabilité d'occupation d'un état non dégénéré - fonction de partition $$	14
		b - Energie moyenne de la particule	14
		c - Ecart quadratique énergétique moyen	15
	IV.3	Cas d'un système de N particules indépendantes	16
		a - Energie moyenne dans l'hypothèse d'indépendance	16
		b - Réduction de fluctuation par augmentation de taille du système (à RETE-	
		NIR!!!)	16
		c - Capacité thermique	18
V		particulier des systèmes à spectre discret d'énergie : les systèmes à deux	
	nive		18
	V.1	Exemples et intérêt	18
	V.2	Etude détaillée du paramagnétisme de Brillouin (pour un atome à 1 électron célibataire)	20
		a - Probabilité de peuplement et fonction de partition	20
		b - Energie moyenne d'un électron paramagnétique	20

CHAPITRE XXIV. PHYSIQUE STATISTIQUE 1 : LA DISTRIBUTION DE BOLTZMANN - APPLICATION AUX SYSTÈMES À DEUX NIVEAUX

c - Capacité thermique \hdots	21
d - Moment magnétique moyen - régime et loi de Curie $\ \ldots \ \ldots \ \ldots$	22
e - Susceptibilité magnétique - loi de Curie	23
f - Lien cause-conséquence : le théorème de fluctuation-dissipation	24