

# Metodología de investigación cuantitativa

Conceptos de probabilidad

Pablo Geraldo Bastías

pdgerald@uc.cl

#### Estructura

- 1. Preámbulo
  - 1.1 Álgebra de conjuntos
  - 1.2 Espacio muestral y eventos
- 2. Probabilidad
  - 2.1 Definición de Probabilidad
  - 2.2 Propiedades de la Probabilidad
  - 2.3 Probabilidad Conjunta
- 3. Variable aleatoria y distribuciones
  - 3.1 Concepto de variable aleatoria
  - 3.2 Función de masa, densidad y distribución
- 4. Ejercicios
- 5. Referencias

### Propósito de la sesión

- Formalizar intuiciones adquiridas previamente (experiencia cotidiana, análisis de datos)
- Familiarizarse con algunos conceptos básicos de teoría de la probabilidad
- Adquirir conceptos necesarios para trabajar con variables aleatorias en el contexto del estudios cuantitativos

# Operaciones de conjuntos

Contención:

$$A \subset B \iff (x \in A \implies x \in B)$$

• Igualdad:

$$A = B \iff (A \subset B \land B \subset A)$$

• Unión:

$$A \cup B = \{ x: x \in A \lor x \in B \}$$

• Intersección:

$$A \cap B = \{ x: x \in A \land x \in B \}$$

Complemento:

$$A^c = \{x : x \notin A \}$$

# Algunas definiciones...

La probabilidad es el constructo matemático utilizado para representar fenómenos o procesos aleatorios (?). Algunas definiciones nos ayudarán a formalizar su tratamiento:

- **Espacio muestral**: Conjunto de resultados posibles de un experimento aleatorio ( $\Omega$  o S).
- **Punto muestral**: Un resultado en particular del espacio muestral ( $\omega \in \Omega$ ).
- Evento: Cualquier subconjunto de resultados posibles (A =  $\{\omega \in \Omega: \omega \text{ es un número par}\}$ ).

# Espacio de eventos

Una colección de eventos (subconjuntos) de  $\Omega$ , denotada  $\mathcal{A}$ , se denomina espacio de eventos si cumple con ciertas propiedades:

- No vacío:
  - $\mathscr{A} \neq \varnothing$  (Alternativamente:  $\Omega \in \mathscr{A}$ )
- Cerrado bajo complementos:
  - si  $A \in \mathcal{A}$ , entonces  $A^c \in \mathcal{A}$
- Cerrado bajo uniones:
  - si  $A_1, A_2, A_3... \in \mathcal{A}$ , entonces  $A_1 \cup A_2 \cup A_3... \in \mathcal{A}$

### Definición Axiomática

### Axiomas de Kolmogorov

Sean  $\Omega$  un espacio muestral,  $\mathscr{A}$  un espacio de eventos, y P una medida de probabilidad. Entonces, la tríada  $(\Omega, \mathscr{A}, P)$  es un espacio de probabilidad si satisface las siguientes condiciones:

1. No negatividad:

$$P(A) \ge 0, \forall A \in \mathscr{A}$$

2. Aditividad contable:

Si  $A_1, A_2, ... \in \mathcal{A}$  son disjuntos de a pares, entonces:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A)$$

3. Unitaridad:

$$P(\Omega) = 1$$

### Definición Axiomática

Axiomas de Kolmogorov

Un ejemplo puede ayudar a entender mejor... ¿Cómo representar el lanzamiento de una moneda, en tanto fenómeno aleatorio, con estos conceptos?

### Definición Axiomática

### Axiomas de Kolmogorov

Un ejemplo puede ayudar a entender mejor... ¿Cómo representar el lanzamiento de una moneda, en tanto fenómeno aleatorio, con estos conceptos?

#### Lanzar una moneda

$$\Omega = \{Cara, Sello\} = \{C,S\} 
\mathscr{A} = \{\emptyset, \{C\}, \{S\}, \Omega\} 
P(E) = \begin{cases}
0 
1/2 : E = \{C\} \text{ o } E = \{S\} 
1 : E = \{C, S\}$$

### Propiedades de la Probabilidad

Sea  $(\Omega, \mathcal{A}, P)$  un espacio de probabilidad. Entonces:

Monotonicidad:

$$\forall A, B \in \mathcal{A}$$
, si  $A \subseteq B$ , entonces  $P(A) \leq P(B)$ 

• Regla de sustracción:

$$\forall A, B \in \mathcal{A}$$
, si  $A \subseteq B$ , entonces  $P(B \setminus A) = P(B) - P(A)$ 

• Evento imposible:

$$P(\varnothing) = 0$$

Intervalo o límites:

$$\forall A \in \mathcal{A}, 0 \leq P(A) \leq 1$$

Complemento:

$$\forall A \in \mathcal{A}, P(A^c) = 1 - P(A)$$

### Probabilidad conjunta

También es posible derivar una serie de condiciones que se cumplen cuando lo que nos interesa es estudiar la (probabilidad de) ocurrencia conjunta de distintos eventos.

#### Definición

La probabilidad conjunta de dos eventos A y B corresponde a la probabilidad de que ocurra su intersección, que a su vez es un evento en  $\mathscr{A}$ : P(A  $\cap$  B)

Por su parte, la probabilidad de que ocurra A ó B se denota como P(A U B)

# Algunos teoremas

Regla de Adición:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
  
¿Qué ocurre si A y B son disjuntos?

Probabilidad condicional:

$$P(A|B) = P(A \cap B) / P(B)$$

Ley Multiplicativa:

$$P(A|B)P(B) = P(A \cap B)$$

Teoremas de Bayes:

$$P(A|B) = P(B|A)P(A) / P(B)$$

• Probabilidad Total:

$$P(B) = \sum_{i} P(B|A_i)P(A_i)$$

¿Qué condición debe cumplir A<sub>i</sub>?

### Independencia

Dos eventos se dicen estadísticamente independientes si tener información sobre uno de ellos *no nos dice nada* sobre la probabilidad de ocurrencia del otro. Formalmente:  $P(A \cap B) = P(A)P(B)$ 

### Probabilidad condicional e independencia

Para A, B  $\in \mathcal{A}$ , con P(B) > 0, A y B son independientes si y sólo si P(A|B) = P(A)

### Variable Aleatoria

Una variable aleatoria es una función

### Variable Aleatoria

Una variable aleatoria es una función Una función que transforma en valores numéricos los resultados posibles de un "experimento aleatorio".

#### Variable Aleatoria

Una variable aleatoria es una función

Una función que transforma en valores numéricos los resultados posibles de un "experimento aleatorio".

#### Definición

Una variable aleatoria X es una variable cuyo valor es dado por X =  $\mathscr{X}(\omega)$ , donde  $\mathscr{X}: \Omega \to \mathbb{R}$ 

#### Por ejemplo:

A = 
$$\{\omega \in \Omega: \mathcal{X}(\omega) = 1\} = \{\omega \in \Omega: X = 1\} = \{X = 1\}$$
  
B =  $\{\omega \in \Omega: \mathcal{X}(\omega) = 1\} = \{\omega \in \Omega: X \ge 4\} = \{X \ge 4\}$ 

# Función de masa (PMF) y densidad (PDF)

Las variables aleatorias pueden ser discretas o continuas, de acuerdo a si los valores que puede tomar son contables o no.
Para las variables aleatorias discretas, es posible definir su distribución de probabilidad del siguiente modo:

### Función de masa de probabilidad (PMF)

$$f(x) = Pr(X = x), \forall x \in \mathbb{R}$$

#### Probabilidad de un evento

$$Pr(A) = \sum_{x \in \mathcal{X}(\mathcal{A})} f(x)$$

PDF: La función de densidad de probabilidad es el equivalente al PMF para las variables continuas.

### Función de distribución acumulada (CDF)

Otra manera de definir la distribución de una variable aleatoria es a través de su función de distribución acumulada.

Función de distribución acumulada (CDF)

$$F(x) = Pr(X \le x), \forall x \in \mathbb{R}$$

En palabras, la CDF nos indica la probabilidad de que la variables aleatoria tome un valor menor o igual a cierto número; además, cualquier evento puede ser descrito en términos de CDF, por lo que su probabilidad puede derivarse únicamente con F(x).

# Propiedades de la CDF

Algunas propiedades que se desprenden de los axiomas y propiedades de la probabilidad:

• No decreciente:

$$\forall x_1, x_2 \in \mathbb{R}$$
, si  $x_1 < x_2$ , entonces  $F(x_1) \leq F(x_2)$ 

Probabilidad 0:

$$\lim_{x\to -\infty} F(x) = 0$$

• Probabilidad 1:

$$\lim_{x\to\infty}F(x)=1$$

• Complemento:

$$\forall x \in \mathbb{R}, 1-F(x)=Pr(X>x)$$

 Calcule la probabilidad de obtener los siguientes resultados en un único lanzamiento de dados. Considere que el dado tiene 6 caras y no está cargado.

```
A = {1,2,3}B = {2,4,6}C = {6}D = {3,6}
```

2. Calcule la probabilidad de obtener las siguientes combinaciones de resultados al retirar una carta de una baraja de 52 cartas.

```
A = {Que la pinta sea pica}
B = {Que la pinta sea diamante o corazones}
C = {Retirar un rey y diamante}
D = {Retirar un rey o diamente}
```

Imagine que tenemos un censo de estudiantes de 4° básico, donde fueron observadas sin error las siguientes variables.

Por un lado, el grupo socioeconónico al que pertenece el estudiante, una variable aleatoria denotada X, que toma valor 1 si éste es bajo, 2 si es medio, y 3 si es alto.

Por otro lado, su puntaje Simce, denotado como Y, que toma valor 1 si es bajo, 2 si es medio y 3 si es alto.

La siguiente tabla expresa las probabilidades marginales de ambas variables.

|       | X = 1 | X = 2 | X = 3 |     |
|-------|-------|-------|-------|-----|
| Y = 1 |       |       |       | 0.4 |
| Y = 2 |       |       |       | 0.5 |
| Y= 3  |       |       |       | 0.1 |
|       | 0.4   | 0.3   | 0.3   |     |

A partir de la tabla presentada, calcule las siguientes probabilidades.

- La probabilidad de cada combinación, asumiendo independencia entre ambas variables.
- Observar  $(X \leq 2)$ .
- Observar (Y = 3).
- Observar  $(X = 2, Y \ge 2)$ .
- Observar (Y = 3|X = 1).

La siguiente tabla expresa las probabilidades marginales y conjuntas de ambas variables, bajo un nuevo escenario.

|       | X = 1 | X = 2 | X = 3 |     |
|-------|-------|-------|-------|-----|
| Y = 1 | 0.25  | 0.11  | 0.04  | 0.4 |
| Y = 2 | 0.13  | 0.16  | 0.21  | 0.5 |
| Y = 3 | 0.02  | 0.03  | 0.05  | 0.1 |
|       | 0.4   | 0.3   | 0.3   |     |

A partir de la tabla presentada, calcule las siguientes probabilidades.

- Observar  $(X \leq 2)$ .
- Observar (Y = 3).
- Observar  $(X = 2, Y \ge 2)$ .
- Observar (Y = 3|X = 1).
- Observar (Y = 1|X = 3)
- ¿Siguen siendo independientes ambas variables? ¿Por qué?
- Reflexione: ¿Por qué es importante considerar que los datos fueron obtenidos de un censo, y que las variables fueron medidas sin error?

#### Referencias

- Aronow, P., & Miller, B. (2015) Theory of Agnostic Statistics
- Capinski, M., & Zastawniak, T. (2000) Probability Through Problems.
- Carsey, T. y Harden, J. (2014) Monte Carlo Simulations and Resampling Methods for Social Science
- Medina, F. (2015) Razonamiento Estadístico, Magíster en Bioestadística, U. de Chile.
- Olea, R. (2013) Nivelación Probabilidad, Magíster en Sociología, PUC.
- Rincón, L. (2014) Introducción a la Probabilidad, UNAM.