#### Introduction to Causal Inference

Caleb Leedy

September 4, 2023

#### Frameworks for Causal Inference

- Potential Outcomes
- Directed Acyclic Graphs (DAGs)

# Background and Notation

### **Potential Outcomes**

- Outcome variable Y
- Treatment assignment  $A \in \{0, 1\}$
- Covariates X
- The potential outcomes of Y for individual i are

$$Y_i(0)$$
 and  $Y_i(1)$ .

#### **Potential Outcomes**

- Often the goal is to understand: Y(1) Y(0).
- For each individual i, we only observe either  $Y_i(0)$  or  $Y_i(1)$ .

# **Assumptions**

CL

Stable unit treatment value assumption (SUTVA):

$$Y_i = Y_i(1)A_i + Y_i(0)(1 - A_i).$$

No Unmeasured Confounders (NUC):

$$Y(1), Y(0) \perp A \mid X$$

• Positivity: For X with p(X) > 0,

$$0 < \Pr(A = 1 \mid X) < 1.$$

### Goals:

Average treatment effect (ATE):

$$E[Y(1) - Y(0)]$$

Average treatment effect of the treated (ATT):

$$E[Y(1) - Y(0) \mid A = 1]$$

Conditional average treatment effect (CATE):

$$E[Y(1) - Y(0) | X]$$

Individual treatment effect (ITE):

$$Y_i(1) - Y_i(0)$$

## Average Treatment Effect

Consider the ATE denoted by

$$\tau = E[Y(1) - Y(0)].$$

### **Outcome Model**

- From our assumptions,  $E[Y(a)] = E[E[Y \mid X, A = a]].$
- We can construct a model,  $m_a(X) = E[Y \mid X, A = a]$  and estimate  $\tau$  using

$$\hat{\tau}_{\mathsf{OR}} = \hat{m}_1(X) - \hat{m}_0(X).$$

• If the model for  $\hat{m}_a(X)$  is correctly specified,  $\hat{\tau}_{OB}$  is consistent.

## **Propensity Score**

• Instead of modeling the outcome  $E[Y\mid X]$  we can model the response probability  $\pi(X)=\Pr(A=1\mid X).$ 

# Inverse Propensity Score Weighting

- If  $\pi(X)$  is known then we can estimate  $\tau$  with  $\hat{\tau}_{IPW} = \hat{\mu}_1 \hat{\mu}_0$ .
- We estimate E[Y(1)] with

$$\hat{\mu}_1 = n^{-1} \sum_{i=1}^n \frac{A_i Y_i}{\pi(X_i)}.$$

• We can estimate E[Y(0)] with

$$\hat{\mu}_0 = n^{-1} \sum_{i=1}^n \frac{(1 - A_i)Y_i}{1 - \pi(X_i)}.$$

• This is similar to a Horvitz-Thompson estimator.

### Result

CL

The IPW estimator is consistent.

$$\begin{split} E\left[\frac{AY}{\pi(X)}\right] &= E\left[\frac{AY(1)}{\pi(X)}\right] \\ &= E\left[E\left[\frac{AY(1)}{\pi(X)} \mid Y(1), X\right]\right] \\ &= E\left[Y(1)E\left[\frac{A}{\pi(X)} \mid X\right]\right] \\ &= E[Y(1)]. \end{split}$$

### **Double Robust Estimation**

• We can combine our outcome model and response model together to get a doubly robust estimator:  $\hat{\tau}_{DR} = \hat{\mu}_{1,DR} - \hat{\mu}_{0,DR}$  where

$$\hat{\mu}_{1,DR} = n^{-1} \sum_{i=1}^{n} \left( m_1(x_i) + \frac{A_i}{\hat{\pi}(X_i)} (Y_i - m_1(x_i)) \right)$$

and

CL

$$\hat{\mu}_{0,\mathsf{DR}} = n^{-1} \sum_{i=1}^{n} \left( m_0(x_i) + \frac{1 - A_i}{1 - \hat{\pi}(X_i)} (Y_i - m_0(x_i)) \right).$$

### Result

CL

- $\hat{\tau}_{\mathrm{DR}}$  is consistent if either the outcome or the response model is true.
- If the outcome model is correctly specified  $(m_1(x) = E[Y(1) \mid X])$ , then

$$\begin{split} &E[\hat{\mu}_{1,\mathsf{DR}}] \\ &= n^{-1} \sum_{i=1}^n \left( E[m_1(x_i)] + E\left[ E\left[ \left( \frac{A_i}{\hat{\pi}(X_i)} \right) (Y_i(1) - m_1(x_i)) \mid X \right] \right] \right) \\ &= n^{-1} \sum_{i=1}^n \left( E[m_1(x_i)] + E\left[ E\left[ \left( \frac{A_i}{\hat{\pi}(X_i)} \right) \mid X \right] E\left[ (Y_i(1) - m_1(x_i)) \mid X \right] \right) \\ &= n^{-1} \sum_{i=1}^n E[m_1(x_i)] \\ &= E[Y(1)]. \end{split}$$

### Result

CL

• If the response model is correctly specified  $(\hat{\pi}(X) = \pi(X))$ , then

$$\begin{split} E[\hat{\mu}_{1,\mathsf{DR}}] \\ &= n^{-1} \sum_{i=1}^n E\left[\left(1 - \frac{A_i}{\pi(X_i)}\right) m_1(x_i) + \frac{A_i}{\pi(X_i)} Y_i\right] \\ &= n^{-1} \sum_{i=1}^n E\left[E\left[\left(1 - \frac{A_i}{\pi(X_i)}\right) m_1(x_i) + \frac{A_i}{\pi(X_i)} Y_i \mid X, Y\right]\right] \\ &= n^{-1} \sum_{i=1}^n E\left[\left(1 - \frac{\pi(X_i)}{\pi(X_i)}\right) m_1(x_i) + \frac{\pi(X_i)}{\pi(X_i)} Y_i(1)\right] \\ &= E[Y(1)]. \end{split}$$

## Intrumental Variables (IVs)

- Overview of Instrumental Variables
- Instrumental Variables in Causal Inference

# **Ordinary Least Squares**

In OLS, we consider the model,

$$Y = X\beta + \varepsilon \tag{1}$$

17/32

where  $E[\varepsilon \mid X] = 0$  and  $X \perp \varepsilon$ .

• However, what if  $Cov(X, \varepsilon) \neq 0$ ?

CL

- We say a variable  $X_k$  is **endogenous** if  $Cov(X_k, \varepsilon) \neq 0$ .
- A variable  $X_k$  is **exogenous** if  $X_k \perp \varepsilon$ .

# Modifying Previous Assumptions

CL

 We previous discussed the assumptions of the potential outcomes framework. One of them was: No Unmeasured Confounders (NUC),

$$Y(1), Y(0) \perp A \mid X$$
.

• If a variable  $X_k$  is endogenous, then the model does *not* satisfy the NUC condition.

#### Parametric Models

Consider the following linear model:<sup>1</sup>

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

with  $x_1, x_2 \perp \varepsilon$  but  $x_3 \not\perp \varepsilon$ 

• To estimate  $\beta_3$  we need an instrumental variable.

CL

<sup>&</sup>lt;sup>1</sup>Example taken from (Wooldridge 2010).

#### Instrumental Variables

• A variable  $z_1$  is an **instrumental variable** (IV) if it satisfies:

$$Cov(z_1, \varepsilon) = 0 (2)$$

$$Cov(z_1, x_3) \neq 0 \tag{3}$$

- This makes sense because we want it to be exogenous with respect to Equation 1, yet we need it to influence x<sub>3</sub> if we are going to measure β<sub>3</sub>.
- Note, that Equation 2 cannot be tested but Equation 3 can and should be tested.

## Reduced Form Equations

CL

• When we have an instrument  $z_1$ , we can estimate:

$$\hat{x}_3 = \hat{\gamma}_0 + \hat{\gamma}_1 x_1 + \hat{\gamma}_2 x_2 + \hat{\theta} z_1$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 \hat{x}_3$$

- This framework is called two-stage least squares (2SLS).
- This can be generalized to have K exogenous  $x_i$  variables and L instruments  $z_j$ .

### Identification

- Then the IV solves the identification problem.
- Let  $z = (x_1, x_2, z_1)$ .
- Equation 2 implies that  $E[z'\varepsilon] = 0$ .
- The normal equations for the IV estimator are:

$$E[z'x]\beta = E[z'y].$$

• This has a unique solution if E[z'x] has full rank, which happens if Equation 3 is satisfied.

#### Results for 2SLS

Under regularity conditions, 2SLS is

- · consistent,
- · asymptotically normal, and
- · asymptotically efficient.

See (Wooldridge 2010), Chapter 5 for these proofs.

### Problems with IVs

- Bias
- Weak instruments

### Intrumental Variables

- Overview of Instrumental Variables
- Instrumental Variables in Causal Inference

### Causal Models with No Unconfoundedness

Suppose that we have the model,<sup>2</sup>

$$Y_i(a) = Y_i(0) + \tau A_i.$$

We can also express this as

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$

We do not use the NUC. So

$$Y(1), Y(0) \not\perp A \mid X$$
.

Notice that OLS does not work because

$$\tau_{OLS} = \frac{\mathrm{Cov}(Y_i, A_i)}{\mathrm{Var}\,A_i} = \frac{\mathrm{Cov}(\tau A_i + \varepsilon, A_i)}{\mathrm{Var}\,A_i} = \tau + \frac{\mathrm{Cov}(\varepsilon, A_i)}{\mathrm{Var}\,A_i}$$

<sup>&</sup>lt;sup>2</sup>The rest of the slides were based off of Stefan Wager's S361 Causal Inference Notes (Wager 2020).

### Causal Models with IVs

We can add an instrument and have something similar to 2SLS,

$$Y_i = \alpha + A_i \tau + \varepsilon_i$$
  
$$A_i = Z_i \gamma + \eta_i \qquad \varepsilon_i \perp Z_i.$$

Then

$$Cov(Y_i, Z_i) = Cov(A_i\tau + \varepsilon_i, Z_i) = \tau Cov(A_i, Z_i).$$

• Hence,

$$\tau = \frac{\operatorname{Cov}(Y_i, Z_i)}{\operatorname{Cov}(A_i, Z_i)}.$$

Background

# **Optimal Instruments**

If Z is a d-dimensional vector then we have

$$\tau = \frac{\operatorname{Cov}(Y_i, w(Z_i))}{\operatorname{Cov}(A_i, w(Z_i))}$$

where  $w: \mathbb{R}^d \to \mathbb{R}$ .

• The optimal choice of  $w(\cdot)$  that minimizes the variance of  $\tau$ , is

$$w^*(Z) \propto E[A \mid Z].$$

### **Estimation**

The previous slide suggests the following estimation strategy:

- 1. Estimate  $\hat{w}(\cdot) = E[A \mid Z]$  nonparametrically, and then
- 2. Estimate the covariances using  $\hat{w}$ ,

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}(Z_i))}$$

However, this can fail from overfitting with weak instruments.

# **Cross Fitting**

A better strategy is to use cross-fitting, and solve

$$\hat{\tau} = \frac{\hat{\text{Cov}}(Y_i, \hat{w}^{k(-i)}(Z_i))}{\hat{\text{Cov}}(A_i, \hat{w}^{k(-i)}(Z_i))}$$

where  $\hat{w}^{k(-i)}$  is the estimation of  $\hat{w}$  on the k-th fold in which element i is missing.

## Extension to Nonparametric Regression

Suppose we have the model:

$$Y_i = g(A_i) + \varepsilon_i, \quad Z_i \perp \varepsilon_i$$

• Then,

CL

$$E[Y_i \mid Z_i] = \int g(a)f(a \mid z)da.$$

• This can be estimated using basis splines (or other nonparametric techniques).

#### References I



Wager, Stefan (2020). Stats 361: Causal inference.



Wooldridge, Jeffrey M (2010). Econometric analysis of cross section and panel data. MIT press.