Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction g(x) est :

$$[-5;3]$$

 $[-6;-1,5]$

${f Q2}$	Tracer	le tablea	u de	vari	iation	de	la f	onc
tion	h(x)				Пл Г	ПR		TR

1	on $h(x)$)B	ПІВ
	x		

 ${f Q3}$ Tracer le tableau de signe de la fonction

9	y(x)	□F □M □B □TB
ſ	x	
l		
l		

Q4. En utilisant le point (-4,6;-1), on peut écrire :

- p(-4,6) = -1

- $\Box m(-4,6) = -1$
- m(-1) = -4, 6

Q5♣ Résoudre graphiquement

f(x) = 3 sur [-6; 7]

Q6 Résoudre f(x) > -1 sur [-6, 7]

- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction r(x) est :

Q2 Tracer le tableau de variation de la fonction m(r) $\square F \square M \square B \square TB$

i	on $m(x)$	$x)$ \square	_TB
	x		
	•••		

 ${f Q3}$ Tracer le tableau de signe de la fonction

r	(x)		\Box F	В	ТВ
Γ	x				
l					
l					
ı					

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- $\Box g(-1) = -4, 6$
- m(-1) = -4,6
- m(-4,6) = -1
- p(-1) = -4, 6

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

Q6 Résoudre f(x) < 1 sur [-6; 7]

- $x \in [-5, 2; -0, 3[\cup]2, 2; 6, 3[$
- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction r(x) est :

- [-5;3][-6;-1,5]

Q2 Tracer le tableau de variation de la fonc-

510	on $m(x)$	s)	Ш	B [TB
	x				

 ${f Q3}$ Tracer le tableau de signe de la fonction

g((x)	TB
	x	
ı		

Q4 En utilisant le point (2,4;-2,2), on peut écrire :

- g(-2,2) = 2,4
- m(2,4) = -2,2
- p(2,4) = -2,2
- m(-2,2) = 2,4
- g(2,4) = -2,2

Q5 Résoudre graphiquement f(x) = 3 sur [-6; 7]

- x = -2.5
 - $x = -2,5 \qquad \qquad x = -5,5$

- **Q6** Résoudre $f(x) \ge -1$ sur [-6; 7]

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction m(x) est:

${f Q2}$	Tracer	le tab	leau c	le vai	riation	ı de	la f	onc
tion	q(x)			F	Пм Г	\neg_{R}		TB

on $g(x)$	
x	ī

Q3 Tracer le tableau de signe de la fonction

F M B TB

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- p(-1,6) = 1,6
- m(-1,6) = 1,6
- m(1,6) = -1,6
- p(1,6) = -1,6

$$f(x) = -2 \text{ sur } [-6; 7]$$

- x = -2, 1
- x = -4.5
- **Q6** Résoudre $f(x) \ge 1$ sur [-6, 7]
 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$
 - $x \in [-6, -5, 2] \cup [-0, 3, 2, 2] \cup [6, 3, 7]$
 - $x \in]-5, 2; -0, 3[\cup]2, 2; 6, 3[$
 - $x \in [-6; -5, 2[\cup] 0, 3; 2, 2[\cup]6, 3; 7]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction h(x) est:

${f Q2}$	Tracer	le tab	leau	de va	ariatic	on de l	la fonc-
tion	q(x)		Г	F	\square M	ПВ	ТВ

J.	on $g(x)$,	шт		
	x				

Q3 Tracer le tableau de signe de la fonction

p((x)	□F □M □B □TB
	x	
	• • •	

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- m(1,6) = -1,6
- g(-1,6) = 1,6
- p(1,6) = -1,6
- m(-1,6) = 1,6
- p(-1,6) = 1,6

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -2.7
- x = -3, 2 $\prod x = -4, 1$
- x = 4,3
- **Q6** Résoudre $f(x) \ge -1$ sur [-6; 7]
 - $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$ $x \in [-6, -4, 8] \cup [-1, 5, 3, 6] \cup [5, 6, 7]$
 - $x \in]-4, 8; -1, 5[\cup]3, 6; 5, 6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction g(x) est :

$$[0,5;6]$$

 $[-5;3]$

$\mathbf{Q}2$	Tracer	le tableau	ı de	vari	ation	de	la for	ıc
	. ()				la r	70		ъ

ti	on $g(x)$	□F □M □B	ПТВ
Γ	x		

 ${f Q3}$ Tracer le tableau de signe de la fonction

□F □M □B □TB

Q4. En utilisant le point (-4,6;-1), on peut écrire :

- $\Box g(-1) = -4, 6$
- g(-4,6) = -1

$$f(x) = -3 \text{ sur } [-6; 7]$$

- **Q6** Résoudre f(x) > 1 sur [-6; 7]

 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction g(x) est :

$$[0,5;6]$$

 $[-6;-1,5]$

$\mathbf{Q2}$	Tracer	le table	eau de v	variatioi	n de la	a fonc-
tion	m(x)		\Box F	□M [_B [ТВ

1	011 110(3	′)		Пъ	1
	x				
	•••				
					J

Q3 Tracer le tableau de signe de la fonction

r	(x)	ТВ
Γ	x	
1		

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- $\Box m(-1,6) = 1,6$

- p(-1,6) = 1,6

Q5♣ Résoudre graphiquement

f(x) = 2 sur [-6; 7]

- **Q6** Résoudre $f(x) \leq -1$ sur [-6, 7]

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$[-5;3]$$

$$[-6; -1, 5]$$

Q2 Tracer le tableau de variation de la fonction m(x) \square F \square M \square B \square TB

1	011 111(3	·)		ШЪ	шть	
	x					

Q3 Tracer le tableau de signe de la fonction

m(x)	□F □M □B □TB
x	

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- p(-1) = -4, 6
- m(-4,6) = -1
- p(-4,6) = -1

Q5♣ Résoudre graphiquement

$$f(x) = -3 \text{ sur } [-6; 7]$$

Q6 Résoudre $f(x) \ge 1$ sur [-6; 7]

- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$
- $x \in]-5,2;-0,3[\cup]2,2;6,3[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

${f Q2}$	Tracer	le tab	leau d	le var	riation	de l	la fonc
tion	a(x)			TE [Пм Г	٦В	Птв

1	on $g(x)$)B	ПІВ
	x		

Q3 Tracer le tableau de signe de la fonction

m	a(x)	□F □M □B □TB
Γ	x	
l		
l		
1		

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- $\square m(1,6) = -1,6$

- p(-1,6) = 1,6

Q5 Résoudre graphiquement f(x) = 2 sur [-6, 7]

$$f(x) = 2 \text{ sur } [-6; 7]$$

Q6 Résoudre f(x) > 1 sur [-6, 7]

Une seule bonne réponse par question (sauf symbole 🜲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction g(x) est:

- [0,5;6]
 - [-5;3]
- [-6; -1, 5]

Q2 Tracer le tableau de variation de la fonc- \Box F \Box M \Box P \Box TP tion m(x)

1	on $m(x)$	5)		Шр	Птр
	x				

Q3 Tracer le tableau de signe de la fonction

g(x)	□F □M □B □TB
x	

Q4 En utilisant le point (2,4;-2,2), on peut écrire :

- p(-2,2) = 2,4
- m(2,4) = -2,2
- p(2,4) = -2,2
- q(2,4) = -2,2
- m(-2,2)=2,4

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -3, 2

- **Q6** Résoudre $f(x) \leq -1$ sur [-6, 7]
 - $x \in [-6, -4, 8] \cup [-1, 5, 3, 6] \cup [5, 6, 7]$
 - $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
 - $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$
 - $x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction h(x) est :

$$[\qquad \qquad \Box \ [-5;3]$$

10	on $m(x)$	s)	Ш	Шв [_TB
	x				

 ${\bf Q3}\,$ Tracer le tableau de signe de la fonction

r((x)	□ Б □ В	ТВ
	x		

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- m(1,6) = -1,6
- g(1,6) = -1,6
- p(-1,6) = 1,6
- $\Box m(-1,6) = 1,6$

Q5♣ Résoudre graphiquement

f(x) = -3 sur [-6; 7]

Q6 Résoudre f(x) < -1 sur [-6; 7]

Une seule bonne réponse par question (sauf symbole 🜲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction r(x) est:

$$[-5;3]$$

Q2	Tracer	ие	tableau	uе	vai	iauc)11	ue.	Ia	10110
tion	a(x)			П	7 F	٦л	г	lR	г	ТВ

10	on $g(x)$	_BIB
	x	

Q3 Tracer le tableau de signe de la fonction

F M B TB

Q4. En utilisant le point (-3,4;0,6), on peut écrire :

- m(-3,4) = 0,6
- m(0,6) = -3,4
- p(-3,4) = 0,6
- g(0,6) = -3,4
- p(0,6) = -3,4

Q5♣ Résoudre graphiquement

$$f(x) = 3 \text{ sur } [-6; 7]$$

- x = 6.6
- x = 0
- x = -2.5

Q6 Résoudre f(x) < -1 sur [-6; 7]

- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$ $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
- $x \in]-4,8;-1,5[\cup]3,6;5,6[$
- $x \in [-6; -4, 8[\cup] 1, 5; 3, 6[\cup] 5, 6; 7]$

Une seule bonne réponse par question (sauf symbole 🜲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction g(x) est:

]
$$-\infty;+\infty[$$

$$[-6; -1, 5]$$

Q2 Tracer le tableau de variation de la fonc-

10	on $g(x)$)	F	ШВ	ШТВ
	x				

Q3 Tracer le tableau de signe de la fonction

(x)	□F □M □B □TB
x	
	$\frac{(x)}{x}$

Q4. En utilisant le point (2,4;-2,2), on peut écrire :

- p(-2,2) = 2,4
- g(2,4) = -2,2
- p(2,4) = -2,2
- m(2,4) = -2,2
- m(-2,2)=2,4

$$f(x) = -2 \text{ sur } [-6; 7]$$

- x = -4.5

- **Q6** Résoudre $f(x) \leq -1$ sur [-6, 7]
 - $x \in]-4,8;-1,5[\cup]3,6;5,6[$
 - $x \in [-6; -4, 8[\cup] 1, 5; 3, 6[\cup] 5, 6; 7]$
 - $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
 - $x \in [-6, -4, 8] \cup [-1, 5, 3, 6] \cup [5, 6, 7]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction p(x) est:

Q2 Tracer le tableau de variation de la fonc-

ti	on $g(x)$	_TB
	x	

Q3 Tracer le tableau de signe de la fonction

p(x)	□F □M □B □TB
x	

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- p(-4,6) = -1
- m(-1) = -4, 6
- q(-4,6) = -1
- p(-1) = -4, 6

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

- x = -2, 1
- x = -4.5

Q6 Résoudre f(x) > -1 sur [-6, 7]

- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$
- $x \in [-6, -4, 8] \cup [-1, 5, 3, 6] \cup [5, 6, 7]$ $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
- $x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$[0,5;6]$$

 $[-6;-1,5]$

$\mathbf{Q}2$	Tracer	le tab	leau	de v	ariat	ion (de I	a i	tonc-
ion	h(x)		[F		1 [В		ТВ

1	on $n(x)$)	Шг	ШБ	Птр	
	x					_
	•••					

Q3 Tracer le tableau de signe de la fonction

m(x)	
x	

Q4. En utilisant le point (-3,4;0,6), on peut écrire :

- p(0,6) = -3,4

- p(-3,4) = 0,6

$$f(x) = -2 \text{ sur } [-6; 7]$$

- x = -4.5
- **Q6** Résoudre f(x) > 1 sur [-6; 7]

 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$[0,5;6]$$

 $[-6;-1,5]$

$\mathbf{Q2}$	Tracer	le table	au de	vari	ation	de l	la fo	nc-
tion	a(x)			E E	ли Г	ĪВ		rp

ti	on $g(x)$	_TB
	x	

Q3 Tracer le tableau de signe de la fonction

F M B TB

Q4. En utilisant le point (-3,4;0,6), on peut écrire :

- $\square m(0,6) = -3,4$
- g(-3,4) = 0,6
- p(0,6) = -3,4

Q5 Résoudre graphiquement f(x) = 2 sur [-6; 7]

- (m) 10

- x = -5, 2

Q6 Résoudre f(x) > -1 sur [-6, 7]

- $\ \, \square \ \, x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction g(x) est :

Q2 Tracer le tableau de variation de la fonction h(x) $\square F \square M \square R \square TB$

ti	on $h(x)$	F	<u></u> ТВ
	x		

 $\mathbf{Q3}$ Tracer le tableau de signe de la fonction

p(x)	□F □M □B □TB
x	

Q4 En utilisant le point (-3,4;0,6), on peut écrire :

- p(0,6) = -3,4
- g(-3,4) = 0,6
- p(-3,4) = 0,6
- m(-3,4) = 0,6
- $\square m(0,6) = -3,4$

Q5♣ Résoudre graphiquement

f(x) = 2 sur [-6; 7]

Q6 Résoudre f(x) < 1 sur [-6; 7]

- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$
- $x \in]-5,2;-0,3[\cup]2,2;6,3[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction g(x) est :

$$[0,5;6]$$

 $[-6;-1,5]$

	ion $m(x)$	(c)
ſ	x	

O2 Tracer le tableau de variation de la fonc-

` '			
x			

Q4 En utilisant le point (2,4;-2,2), on peut écrire :

- $\square m(2,4) = -2,2$

- m(-2,2) = 2,4
- p(-2,2) = 2,4
- p(2,4) = -2,2

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

Q6 Résoudre f(x) > 1 sur [-6; 7]

- $x \in]-5,2;-0,3[\cup]2,2;6,3[$
- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction m(x) est:

[-6; -1, 5]
[0, 5; 6]

Q2 Tracer le tableau de variation de la fonc-

510	on $m(x)$	s)	Ш	B [TB
	x				

Q3 Tracer le tableau de signe de la fonction

m	a(x)	ТВ
Γ	x	
l		
l		
1		

 $\mathbf{Q4}$ En utilisant le point (-4,6;-1), on peut écrire :

- p(-4,6) = -1
- g(-1) = -4, 6
- m(-4,6) = -1
- m(-1) = -4, 6
- p(-1) = -4, 6

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -3, 2
- x = -2.7
- **Q6** Résoudre $f(x) \le 1$ sur [-6, 7]

- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$
- $x \in]-5,2;-0,3[\cup]2,2;6,3[$
- $x \in [-6, -5, 2[\cup] 0, 3, 2, 2[\cup]6, 3, 7]$
- $x \in [-6, -5, 2] \cup [-0, 3, 2, 2] \cup [6, 3, 7]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

Q1 Le domaine de définition de la fonction r(x) est :

${f Q2}$	Tracer	le tab	leau	de va	ariatio	n de	la f	onc-
tion	m(x)			F	\square M	Β		ТВ

1	on $m(x)$;)	ШР	ШМ	Шв [
	x					

Q3 Tracer le tableau de signe de la fonction

p	(x)	□F □M □B □TB
Γ	x	
1		

Q4 En utilisant le point (-3,4;0,6), on peut écrire :

- $\square m(0,6) = -3,4$

Q5♣ Résoudre graphiquement

$$f(x) = -3 \text{ sur } [-6; 7]$$

Q6 Résoudre $f(x) \ge 1$ sur [-6; 7]

- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction h(x) est :

- - [0,5;6]

\	/			
x]
				1
				_

Q3 Tracer le tableau de signe de la fonction

F M B TB

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- $\Box m(-1,6) = 1,6$
- g(1,6) = -1,6
- p(1,6) = -1,6
- m(1,6) = -1,6
- p(-1,6) = 1,6

- f(x) = 2 sur [-6; 7]

- **Q6** Résoudre $f(x) \le -1$ sur [-6; 7]

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$\mathbf{Q2}$	Tracer	le tab	leau c	le va	riatior	ı de l	a fonc-
tion	m(x)			F	\mathbf{M}	В	ТВ

1	on $m(x)$	t)	Шг	ШБ	Птр
	x				

Q3 Tracer le tableau de signe de la fonction

F M B TB

Q4. En utilisant le point (-4,6;-1), on peut écrire :

- p(-4,6) = -1
- g(-1) = -4, 6
- m(-1) = -4, 6
- p(-1) = -4, 6

$$f(x) = -3 \text{ sur } [-6; 7]$$

- **Q6** Résoudre $f(x) \le 1$ sur [-6;7]

 - $x \in [-6; -5, 2] \cup [-0, 3; 2, 2] \cup [6, 3; 7]$
 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

${\bf Q2}$ Tracer le tableau de variation de la fonc								
t	ion $h(x)$	\square F \square M \square B \square TB						
ſ	x							
l								

Q3 Tracer le tableau de signe de la fonction

m	$\mu(x)$	
	x	
	• • •	
ı		

Q4 En utilisant le point (-3,4;0,6), on peut écrire :

- p(-3,4) = 0,6
- g(-3,4) = 0,6
- p(0,6) = -3,4
- m(-3,4) = 0,6

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

- x = -1, 8

Q6 Résoudre $f(x) \ge -1$ sur [-6, 7]

- $x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction h(x) est :

$$[-5;3]$$

 $[-6;-1,5]$

${f Q2}$	Tracer	le tableau	de	vari	iatio	n de	la	fonc
4:	h (m)				٦лг	Пр	г	ТТР

10	on $n(x)$)	Ш		TB
	x				
	• • •				
		l			

Q3 Tracer le tableau de signe de la fonction

m(:	x)	F	ШВ	ШТВ
	\overline{x}			
	• • •			
I∟				

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- $\Box g(-1) = -4, 6$
- m(-1) = -4, 6
- q(-4,6) = -1
- p(-4,6) = -1
- p(-1) = -4, 6

Q5♣ Résoudre graphiquement

f(x) = 3 sur [-6; 7]

- **Q6** Résoudre $f(x) \ge 1$ sur [-6;7]
 - $x \in]-5,2;-0,3[\cup]2,2;6,3[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction p(x) est :

$$[-5;3]$$

 $[-6;-1,5]$

(\mathbf{Q}	2 Trac	cer le tableau de variation de la fonc-
1	i	on $h(x)$	□F □M □B □TB
		x	

Q3 Tracer le tableau de signe de la fonction

x)	\square F \square M \square B \square TB	
x		
• • •		
		,

Q4. En utilisant le point (-1,6;1,6), on peut écrire :

- $\square m(1,6) = -1,6$
- p(-1,6) = 1,6
- $\square m(-1,6) = 1,6$

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

Q6 Résoudre f(x) > 1 sur [-6; 7]

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$] [-5;3]$$

$$[-6; -1, 5]$$

1 9 (w	,			ШЪ	
\overline{x}					
• • •					
		$\frac{x}{\dots}$			

 ${f Q3}$ Tracer le tableau de signe de la fonction

r((x)	□ Б □ В	ТВ
	x		

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- m(-4,6) = -1
- p(-1) = -4, 6
- m(-1) = -4, 6

$$f(x) = -3 \text{ sur } [-6; 7]$$

- **Q6** Résoudre $f(x) \le 1$ sur [-6; 7]

 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

 - $x \in]-5,2;-0,3[\cup]2,2;6,3[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction m(x) est :

$\mathbf{Q2}$	Tracer	le table	au de	varia	ation	de l	la fonc
tion	a(x)		Пт		lva E	٦р	Птр

	g(x)	g(x)
	x	x
	• • •	

Q3 Tracer le tableau de signe de la fonction

m	a(x)	ТВ
Γ	x	
l		
l		
1		

Q4. En utilisant le point (-1,6;1,6), on peut écrire :

- p(1,6) = -1,6
- g(-1,6) = 1,6

Q5♣ Résoudre graphiquement

$$f(x) = -2 \text{ sur } [-6; 7]$$

Q6 Résoudre $f(x) \ge -1$ sur [-6, 7]

- $x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$[-6; -1, 5]$$

 $[0, 5; 6]$

$\mathbf{Q}2$	Tracer	le ta	bleau	de '	varia	ition	de I	a i	tonc-
tion	h(x)			F	· 🔲	мГ	В	П	ТВ

i	on $h(x)$)	∐ТВ
	x		

 ${\bf Q3}\,$ Tracer le tableau de signe de la fonction

	□F □M □B	ТВ
• •		
		FMB

Q4 En utilisant le point (2,4;-2,2), on peut écrire :

- $\square m(2,4) = -2,2$
- $\Box m(-2,2) = 2,4$
- p(-2,2) = 2,4
- p(2,4) = -2,2
- g(-2,2) = 2,4

Q5 Résoudre graphiquement f(x) = 3 sur [-6, 7]

$$f(x) = 3 \text{ sur } [-6; 7]$$

Q6 Résoudre f(x) < 1 sur [-6; 7]

- $x \in]-5,2;-0,3[\cup]2,2;6,3[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction p(x) est :

- [0,5;6]
- [-6; -1, 5]

Q2 Tracer le tableau de variation de la fonc-

i	on $h(x)$)
	x	
	•••	

 ${f Q3}$ Tracer le tableau de signe de la fonction

□F □M □B □TB

Q4 En utilisant le point (2,4;-2,2), on peut écrire :

- p(-2,2) = 2,4
- $\Box g(-2,2) = 2,4$
- $\Box m(-2,2) = 2,4$
- p(2,4) = -2,2

Q5♣ Résoudre graphiquement

f(x) = 2 sur [-6; 7]

- x = -2, 5

Q6 Résoudre $f(x) \ge 1$ sur [-6; 7]

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction r(x) est :

$\mathbf{Q2}$	Tracer	le	tableau	ı de	var	iatic	n	de	la	fonc
	1 ()				пΕ	7 x r		lD.		

10	on $n(x)$)	Ш	ШМ	TB
	x				

Q3 Tracer le tableau de signe de la fonction

m(x)	□F □M □B □TB
x	

Q4 En utilisant le point (-3,4;0,6), on peut écrire :

- p(-3,4) = 0,6
- g(0,6) = -3,4
- g(-3,4) = 0,6
- m(-3,4) = 0,6
- p(0,6) = -3,4

Q5♣ Résoudre graphiquement

f(x) = 3 sur [-6; 7]

Q6 Résoudre f(x) < 1 sur [-6; 7]

- $x \in]-5,2;-0,3[\cup]2,2;6,3[$
- $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}$ Le domaine de définition de la fonction p(x) est :

${f Q2}$	Tracer	le table	au de	vari	ation	de l	a fond	•
tion	h(x)				Ім П	ĪВ	Птв	

tion	h(x))B	Плв
	:		
.	• •		

Q3 Tracer le tableau de signe de la fonction

p((x)	□F □M □B □TB
	x	
ı		

Q4 En utilisant le point (-3,4;0,6), on peut écrire :

- $\Box m(-3,4) = 0,6$
- g(0,6) = -3,4
- p(-3,4) = 0,6
- p(0,6) = -3,4

Q5 Résoudre graphiquement f(x) = 3 sur [-6; 7]

f(x) = 3 sur [-6; 7]

Q6 Résoudre $f(x) \le -1$ sur [-6; 7]

- $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction m(x) est:

- [-5;3]
- [0,5;6]
- [-6; -1, 5]

Q2 Tracer le tableau de variation de la fonc-

i	on $m(x)$	c)	⊔F ⊔М ⊔В ⊔ТВ
	x		
	• • • •		

Q3 Tracer le tableau de signe de la fonction

g(x)	ТВ
	x	
	• • •	

- Q4. En utilisant le point (2,4;-2,2), on peut écrire :
 - m(-2,2)=2,4

 - m(2,4) = -2,2
 - p(-2,2) = 2,4

 - p(2,4) = -2,2
- Q5♣ Résoudre graphiquement

$$f(x) = -3 \text{ sur } [-6; 7]$$

- **Q6** Résoudre f(x) > 1 sur [-6, 7]
 - $x \in [-6, -5, 2] \cup [-0, 3, 2, 2] \cup [6, 3, 7]$
 - $x \in]-5,2;-0,3[\cup]2,2;6,3[$
 - $x \in [-6, -5, 2[\cup] 0, 3, 2, 2[\cup]6, 3, 7]$
 - $x \in [-5, 2; -0, 3] \cup [2, 2; 6, 3]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction g(x) est:

.10	on $n(x)$	Пр
	x	

Q3 Tracer le tableau de signe de la fonction

r	(x)		□в [ТВ
Г	x			

Q4. En utilisant le point (-1,6;1,6), on peut écrire :

- m(-1,6) = 1,6
- p(1,6) = -1,6
- g(1,6) = -1,6
- m(1,6) = -1,6
- p(-1,6) = 1,6

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -4.1
- x = -2.7
- **Q6** Résoudre f(x) < -1 sur [-6; 7]
 - $x \in]-4,8;-1,5[\cup]3,6;5,6[$
 - $x \in [-6; -4, 8[\cup] 1, 5; 3, 6[\cup] 5, 6; 7]$
 - $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$
 - $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction p(x) est:

$\mathbf{Q2}$	Tracer	le tableau	ı de	vari	ation	de la	ı fonc-
tion	m(x)		П	7	МГ	¬в Г	ТВ

1	on $m(x)$	$\square F \square M \square$	B LLB
	x		

Q3 Tracer le tableau de signe de la fonction

g	(x)	□F □M □B □TB
Γ	x	
l		
1		

 $\mathbf{Q4}$ En utilisant le point (-4,6;-1), on peut écrire :

- m(-1) = -4, 6
- g(-1) = -4, 6
- p(-4,6) = -1
- p(-1) = -4, 6

Q5♣ Résoudre graphiquement

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -2.7
- x=4,3

Q6 Résoudre $f(x) \leq -1$ sur [-6, 7]

- $x \in]-4, 8; -1, 5[\cup]3, 6; 5, 6[$
- $x \in [-6; -4, 8[\cup] 1, 5; 3, 6[\cup] 5, 6; 7]$
- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$
- $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$

QCM n°02

Classe: 111 NOM - Prénom:

Une seule bonne réponse par question (sauf symbole 🌲 : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse = -0,1

Q1 Le domaine de définition de la fonction g(x) est:

$$\square [-5;$$

$\mathbf{Q}2$	Tracer	le tal	bleau	de v	aria	tion	de l	a i	onc-
tion	g(x)			F		Л [В		TB

_	σ11 <i>g</i> (ω	<i>'</i>			
	x				

Q3 Tracer le tableau de signe de la fonction

r	(x)		\Box F	В	ТВ
Г	x				
l					

Q4 En utilisant le point (-1,6;1,6), on peut écrire :

- m(-1,6) = 1,6
- p(-1,6) = 1,6
- m(1,6) = -1,6
- q(-1,6) = 1,6
- p(1,6) = -1,6

Q5♣ Résoudre graphiquement

$$f(x) = 2 \text{ sur } [-6; 7]$$

- x = 6.5
- x = -2.5

Q6 Résoudre f(x) < -1 sur [-6; 7]

- $x \in [-6; -4, 8] \cup [-1, 5; 3, 6] \cup [5, 6; 7]$
- $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$
- $x \in [-6, -4, 8] \cup [-1, 5, 3, 6] \cup [5, 6, 7]$
- $x \in]-4,8;-1,5[\cup]3,6;5,6[$

Une seule bonne réponse par question (sauf symbole \clubsuit : plusieurs réponses justes). En général, réponse juste = 1 pt, réponse fausse= -0,1

 $\mathbf{Q1}\,\mathrm{Le}$ domaine de définition de la fonction m(x) est :

$$] [-5;3]$$

$\mathbf{Q}2$	Tracer	le tableau	ı de	varı	ation	de	la to	nc
	1. ()				la r E	¬_		תר

ti	on $h(x)$	□F □M □B	ТВ
	x		

Q3 Tracer le tableau de signe de la fonction

r	(x)	F B	ПТВ
Г	x		

Q4 En utilisant le point (-4,6;-1), on peut écrire :

- $\bigsqcup_{m} m(-4,6) = -1$
- m(-1) = -4, 6

Q5♣ Résoudre graphiquement

$$f(x) = -3 \text{ sur } [-6; 7]$$

- x = -2,7

Q6 Résoudre $f(x) \le -1$ sur [-6; 7]

- $x \in]-4,8;-1,5[\cup]3,6;5,6[$

- $x \in [-4, 8; -1, 5] \cup [3, 6; 5, 6]$