Part 7: Comparative Study — IEEE 754 Handling in Python vs. JavaScript

Overview

Both Python and JavaScript use IEEE 754 double-precision (64-bit) floating-point arithmetic by default, but they differ in their behavior, control over rounding, and error handling.

1. Default Precision

Feature	Python	JavaScript
Number type	float = IEEE 754 64-bit	Number = IEEE 754 64-bit
Decimal support	Optional via decimal module	No built-in high-precision decimal
Example	1.1 + 2.2 = 3.30000000000000000	Same in JS

2. Rounding Behavior

- Python offers full control using the decimal module with modes like ROUND HALF UP, ROUND DOWN.
- JavaScript uses binary floating-point math with limited rounding control.

Python Example:

from decimal import Decimal, ROUND_HALF_UP Decimal('1.235').quantize(Decimal('1.00'), rounding=ROUND HALF UP) # 1.24

JavaScript Example:

Math.round(1.235 * 100) / 100; // May return 1.24, not always reliable

3. Special Values

Both languages support:

Infinity

- -Infinity
- NaN (Not a Number)

Python:

float('inf'), float('-inf'), float('nan')

JavaScript:

Infinity, -Infinity, NaN

Note: In both, NaN != NaN (evaluates to True).

4. Underflow & Overflow

Case	Python Output	JavaScript Output
Underflow	0.0	0
Overflow	inf	Infinity

5. Denormalized Numbers

- Both support subnormal values, though behavior varies.
- Python: supports values like 5e-324
- JavaScript: depends on browser/engine behavior

6. Observed Differences

Behavior	Python	JavaScript
Arbitrary precision	Yes (with decimal)	No (use libraries like Big.js)
Rounding control	Full via decimal	Limited
NaN comparison	nan != nan is True	NaN !== NaN is True
Visualization tools	Easy with Matplotlib	Needs browser-based plotting

Conclusion

While both languages conform to IEEE 754, Python provides much more visibility and control over floating-point operations. JavaScript, while consistent with IEEE 754, is limited in precision control and visualization without external libraries.