ONE 250

Digital Logic 数字逻辑

Junying Chen 陈俊颖 博士, 副教授

Chapter 1 :: Topics

- Background
- The Game Plan
- The Art of Managing Complexity
- The Digital Abstraction
- Number Systems
- Logic Gates

Background

- Microprocessors have revolutionized our world
 - Cell phones, Internet, rapid advances in medicine, etc.
- The semiconductor industry has grown from \$21 billion in 1985 to \$306 billion in 2013

The Game Plan

- Purpose of course:
 - Understand what's under the hood of a computer
 - Learn the principles of digital design
 - Learn to systematically debug increasingly complex designs

The Art of Managing Complexity

- Abstraction
- Discipline
- The Three –Y's
 - Hierarchy
 - Modularity
 - Regularity

NE RON

Abstraction

Hiding details when they aren't important

focus of this course

Discipline

- Intentionally restrict design choices
- Example: Digital discipline
 - Discrete voltages instead of continuous
 - Simpler to design than analog circuits can build more sophisticated systems
 - Digital systems replacing analog predecessors:
 - i.e., digital cameras, digital television, cell phones, CDs

The Three -Y's

Hierarchy

A system divided into modules and submodules

Modularity

Having well-defined functions and interfaces

Regularity

- Encouraging uniformity, so modules can be easily reused

Example: The Flintlock Rifle

Hierarchy

- Three main modules:
 lock, stock, and barrel
- Submodules of lock:
 hammer, flint, frizzen,
 etc.

ZNE RON

Example: The Flintlock Rifle

Modularity

- Function of stock: mount barrel and lock
- Interface of stock: length and location of mounting pins

Regularity

Interchangeable parts

The Digital Abstraction

- Most physical variables are continuous
 - Voltage on a wire
 - Frequency of an oscillation
 - Position of a mass
- Digital abstraction considers discrete subset of values

The Analytical Engine

- Designed by Charles
 Babbage from 1834 –
 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before it was finished

Chapter 1 < 12>

Digital Discipline: Binary Values

Two discrete values:

- 1's and 0's
- 1, TRUE, HIGH
- 0, FALSE, LOW
- 1 and 0: voltage levels, rotating gears, fluid levels, etc.
- Digital circuits use voltage levels to represent 1 and 0
- Bit: Binary digit

George Boole, 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Number Systems

Decimal numbers

Binary numbers

Number Systems

Decimal numbers

$$5374_{10} = 5 \times 10^{3} + 3 \times 10^{2} + 7 \times 10^{1} + 4 \times 10^{0}$$
five three seven four thousands hundreds tens ones

Binary numbers

Powers of Two

•
$$2^0 =$$

•
$$2^1 =$$

•
$$2^2 =$$

•
$$2^3 =$$

•
$$2^4 =$$

•
$$2^5 =$$

•
$$2^6 =$$

•
$$2^7 =$$

•
$$2^8 =$$

•
$$2^9 =$$

•
$$2^{10} =$$

•
$$2^{11} =$$

•
$$2^{12} =$$

•
$$2^{13} =$$

•
$$2^{14} =$$

•
$$2^{15} =$$

2 2

Powers of Two

•
$$2^0 = 1$$

•
$$2^1 = 2$$

•
$$2^2 = 4$$

•
$$2^3 = 8$$

•
$$2^4 = 16$$

•
$$2^5 = 32$$

•
$$2^6 = 64$$

•
$$2^7 = 128$$

•
$$2^8 = 256$$

•
$$2^9 = 512$$

•
$$2^{10} = 1024$$

•
$$2^{11} = 2048$$

•
$$2^{12} = 4096$$

•
$$2^{13} = 8192$$

•
$$2^{14} = 16384$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal

- Decimal to binary conversion:
 - Convert 47₁₀ to binary

Number Conversion

- Binary to decimal conversion:
 - Convert 10011₂ to decimal
 - $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

- Decimal to binary conversion:
 - Convert 47₁₀ to binary
 - $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number

- N-bit binary number
 - How many values?
 - Range?
 - Example: 3-digit binary number

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range: $[0, 10^{N} 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values?
 - Range?
 - Example: 3-digit binary number

Binary Values and Range

- N-digit decimal number
 - How many values? 10^N
 - Range: $[0, 10^{N} 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: [0, $2^N 1$]
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

ONE

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Important!

Hexadecimal Numbers

- Base 16
- Shorthand for binary

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary

- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂

- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

