Econ 703 Problem Set 7

Sarah Bass *

October 7, 2020

Question 1

Let k=2. Let $X\in\mathbb{R}$ be a convex set, and $\lambda_1+\lambda_2=1$, and $x_1,x_2\in X$. Then $\sum_{i=1}^2\lambda_ix_i=\lambda_1x_1+\lambda_2x_2=\lambda_1x_1+(1-\lambda_1)x_2\in X$.

Assume $\sum_{i=1}^k \lambda_i x_i \in X$ where $\sum_{i=1}^k \lambda_i = 1$. Consider $x_{k+1} \in X$ and $\lambda' \in (0,1)$. Then $(1-\lambda')\sum_{i=1}^k \lambda_i x_i + \lambda' x_{k+1} \in X$ by the definition of convexity. Let $\lambda'_i = \begin{cases} (1-\lambda')\lambda_i & \text{if } i \in 1,2,...,k \\ \lambda' & \text{if } i = k+1 \end{cases}$ Then $\sum_{i=1}^{k+1} \lambda'_i x_i \in X$ and $\sum_{i=1}^{k+1} \lambda'_i = 1$.

Question 2

The convex hull of a set S is the intersection of all convex sets which contain S. So $co(S) = \bigcap \{C : C \text{ is convex and } S \subset C\}$. First consider the set of all convex combinations of S, $C = \sum_{i=1}^k \lambda_i s_i$, such that $S \subset C$. Since co(S) is the intersection of all convex sets containing S, we know that $S \subset co(S) \subset C$.

For the sake of contradiction, assume that there exists some $c_i \in co(S)$ such that $\sum_{i=1}^k \lambda_i s_i \neq c_i$ for any $s_1, ..., s_k \in S$ and $\lambda_1, ..., \lambda_k \geq 0$ such that $\sum_{i=1}^k \lambda_i = 1$. Then there exists some convex set $C = \sum_{i=1}^k \lambda_i s_i$ such that $S \subset C \subset co(S)$, but $c_i \notin C$. However, this is a contradiction because co(S) is the intersection of all convex sets which contain S. So for any $c_i \in co(S)$ it must be the case that $\sum_{i=1}^k \lambda_i s_i = c_i$. Thus the set of all convex combinations of the elements of S is exactly co(S).

^{*}I have discussed this problem set with Emily Case, Michael Nattinger, Alex Von Hafften, and Danny Edgel.

Question 3

For any set $X \in \mathbb{R}^n$, the closure of X is $clX = X \cup \{$ all limits points of $X \}$. Let X be a convex set. Consider two points $x, y \in clX$. Then there exist two sequences $x_n, y_n \in X$ such that $x_n \to x$ and $y_n \to y$. Since X is convex, $\lambda x_n + (1-\lambda)y_n \in X$ for all $x_n \to x$ and $x_n \to x$ and $x_n \to x$ and $x_n \to x$ since $x_n \to x$ for all $x_n \to x$ and $x_n \to x$ for all $x_n \to x$ and $x_n \to x$ for all $x_n \to x$ for all x for all x

Question 4

Consider a function $f: X \to \mathbb{R}$, where X is a convex set in \mathbb{R}^n . The hypograph is the set of points (y,x) lying on or below the graph of the function, $hypf = \{(y,x) \in \mathbb{R}^{n+1} | x \in X, y \in f(x)\}$. Consider $x', x'' \in X$ such that y' = f(x') and y'' = f(x''). Since X is convex, for $\lambda \in [0,1]$, $(1-\lambda)x' + \lambda x'' \in X$. If the function f is concave, then $f((1-\lambda)x' + \lambda x'') \geq (1-\lambda)f(x') + \lambda f(x'') = (1-\lambda)y' + \lambda y''$. Then $(1-\lambda)(y',x') + \lambda(y'',x'') \in hypf$.

Next consider if the hypograph is convex. Then $(1-\lambda)(y',x')+\lambda(y'',x'')\in hypf$. Then $(1-\lambda)f(x')+\lambda f(x'')=(1-\lambda)y'+\lambda y''\leq f((1-\lambda)x'+\lambda x'')$. Thus f is concave.

Question 5

Let X and Y be disjoint, closed, and convex sets in \mathbb{R}^n and let X be compact. Let $A = \{y - x : x \in X, y \in Y\}$, and let a_n be a sequence in A such that $a_n \to a$. Then there exists some x_n, y_n such that $a_n = y_n - x_n$. Since X is compact, there exists some sequence x_{n_k} such that $x_{n_k} \to x \in X$. Since $a_{n_k} \to a$ and $a_{n_k} \to a$, there must be some y such that $a_{n_k} \to a$. Since Y is closed, $a_{n_k} \to a$.

Now we can apply the theorem from lecture and strictly separate A from $\{0\}$. Then there exists some p and some β such that $p'(y-x) > \beta > 0$ for all $x \in X$ and $y \in Y$. Since X is compact, there exists some x^* such that $p'x^* \geq p'x$ for all $x \in X$. Using the strict separation constant, we can see that $p'x < \frac{\beta}{2} + p'x^*$. We also have that $p'y > \frac{\beta}{2} + p'x^*$. Thus $p'x < \frac{\beta}{2}p'x^* < p'y$ for all $x \in X$ and $y \in Y$.

Question 6

Assume there exists an agreeable trade vector x, so $\inf_{\pi \in \Pi_A} \sum_{i=1}^n \pi_i x_i > 0$ and $\inf_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i (-x_i) > 0$. Then $\sup_{\pi \in \Pi_B} \sum_{i=1}^n \pi_i x_i < 0$. So for any $\pi \in \Pi_A$, $\sum_{i=1}^n \pi_i x_i > 0$, so $\pi \notin \Pi_B$. Similarly for any $\pi \in \Pi_B$, $\sum_{i=1}^n \pi_i x_i < 0$, so $\pi \notin \Pi_A$. So $\Pi_A \cap \Pi_B = \emptyset$.

Assume that $\Pi_A \cap \Pi_B = \emptyset$. Then by the separating hyperplanes theorem,

there exists some $\alpha \in \mathbb{R}$, $x \neq \bar{0} \in \mathbb{R}^n$, $\pi_A \in \Pi_A$, and $\pi_B \in \Pi_B$ such that $\sum_{i=1}^n \pi_{A,i} x_i \leq \alpha \leq \sum_{i=1}^n \pi_{B,i} x_i$. Now consider a trade y such that $y_i = x_i - a$. Then $\sum_{i=1}^n \pi_{A,i} y_i \leq 0 \leq \sum_{i=1}^n \pi_{B,i} y_i$. So y is an agreeable trade vector.