Zestaw 1 — Teoria mnogości

- 1. Udowodnij, że dla dowolnych zbiorów A, B, C i D zachodzą równości:
 - a) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$,
 - b) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$,
 - c) $(A \setminus B) \cup C = [(A \cup C) \setminus B] \cup (B \cap C),$
 - d) $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$.
- 2. Wykaż, że dla dowolnych zbiorów A, B, C i D zachodzą warunki:
 - a) jeśli $(A \subset B \text{ i } C \subset D)$, to $(A \cup C \subset B \cup D)$,
 - b) jeśli $A \subset B$ oraz $C \subset D$, to $A \setminus D \subset B \setminus C$.
- 3. Udowodnij, że dla dowolnych zbiorów A, B i C zachodzą równości:
 - a) $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$,
 - b) $A \setminus B = A \triangle (A \cap B)$,
 - c) $A \triangle B = A^c \triangle B^c$.
- 4. Wykorzystując znane prawa rachunku zbiorów, pokaż, że

$$(A \triangle B) \triangle C = A \triangle (B \triangle C).$$

5. Uzasadnij, że dla dowolnych zbiorów A i B istnieje dokładnie jeden zbiór C, dla którego

$$A \triangle C = B$$
.

- **6.** Pokaż, że dla dowolnych zbiorów A, B i C jeżeli zbiory $A \triangle B$ i $B \triangle C$ są skończone, to skończony jest również zbiór $A \triangle C$.
- 7. Znajdź warunek równoważny równości

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$

wyrażony w terminach własności zbiorów A i B.

- 8. Uzasadnij, że dla dowolnych zbiorów A i B mamy
 - a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$,
- b) $\mathcal{P}(A \cup B) = \{C : C = A_1 \cup B_1 \text{ dla pewnych } A_1 \in \mathcal{P}(A) \text{ i } B_1 \in \mathcal{P}(B)\}.$
- 9. Udowodnij, że dla dowolnych zbiorów $A,\,B,\,C$ iDmamy
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
 - b) $(A \cup B) \times (C \cup D) = (A \times C) \cup (A \times D) \cup (B \times C) \cup (B \times D)$,
 - c) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.