Лабораторная работа №3.4.2 Исследование взаимной диффузии газов

Гёлецян А.Г.

31 октября 2022 г.

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частометр, цифровой вольтметр, LC-автогенератор, термопара медь-константин.

1 Теоретическая часть

Модель среднего поля. В качестве простейшей эмпирические модели, описывающей магнитную восприимчивость ферромагнетика, можно рассмотреть следующую модель: Пусть намагниченность среды пропорциональна некоторому эффективному полю $H_{\rm эфф}$, складывающемуся из поля H в данной точке, созданного сторонними токами, и среднего "коллективного" поля, пропорционального величине намагниченности M

$$egin{aligned} oldsymbol{M} &= \chi_{
m nap} oldsymbol{H}_{
m e d \Phi} \ & \chi_{
m nap} \propto 1/T \ oldsymbol{H}_{
m e d \Phi} &= oldsymbol{H} + eta oldsymbol{M} \end{aligned}$$

Отсюда можно получить закон Кюри-Вейсса

$$\chi = \frac{1}{\chi_{\text{nap}}^{-1} - \beta} \propto \frac{1}{T - \Theta} \tag{1}$$

2 Установка

Рис. 1: Установка для определения коэффициента вязкости жидкости.

Установка измеряет температуру образца и собственный период колебания LC контура, где C находится в автогенераторе, а в качестве L выступает катушка с гадолиниевым сердечником. Обозначим L_0 индуктивность катушки без сердечника. Тогда

$$L - L_0 \propto \mu - 1 = \chi$$

Так же мы знаем что

$$\tau_0 = 2\pi \sqrt{L_0 C}$$
$$\tau = 2\pi \sqrt{LC}$$

Подставляя уравнения и воспользовавшись законом Кюри-Вейсса (1) полуаем

$$\frac{1}{\chi} \propto \frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p \tag{2}$$

Измерения температуры проводим двумя частями. Термометр измеряет температуру воды в термостате, а термопара измеряет разницу температур воды и масла в пробирке, в котором находится образец с катушкой.

3 Измерения

Параметры установки

$$\tau_0 = (8.252 \pm 0.001)\mu c, \quad \kappa = 24^{\circ}C/MB$$

Температура масла в пробирке считается формулой

$$T = T_{ ext{вода}} + \Delta T$$
 где $\Delta T = \kappa U$

Nº	$T_{\scriptscriptstyle \mathrm{B}},^{\circ} C$	U , ${ m MB}$	$P, \mu c$
1	11.09	-4	10.1612
2	13.07	-7	10.1070
3	14.05	-9	10.0683
4	16.06	-7	9.9403
5	18.02	-14	9.7542
6	20.02	-14	9.4331
7	22.03	-14	9.0214
8	24.01	-17	8.7452
9	26.02	-18	8.6090
10	28.01	-20	8.5355
11	30.01	-20	8.4875
12	32.00	-20	8.4539
13	34.00	-20	8.4290
14	36.00	-31	8.4126
15	37.98	-33	8.3984
16	39.95	-42	8.3874

Таблица 1: Сырые данные

Ошибки сырых данных

$$\Delta T_{\scriptscriptstyle \mathrm{B}} = 0.01^{\circ} C, \quad \Delta U = 1 \mathrm{mB}, \quad \Delta P = 0.001 \mu c$$

После обработки данных получаем следующие значения, где $y=\frac{1}{\tau^2-\tau_0^2}$

Nº	T	ΔT ,° C	au	$\Delta \tau, \mu c$	y	$\Delta y, \mu c^{-2}$
1	10.994	0.026	10.1612	0.001	0.028446	0.000021
2	12.902	0.026	10.1070	0.001	0.029363	0.000023
3	13.834	0.026	10.0683	0.001	0.030052	0.000024
4	15.892	0.026	9.9403	0.001	0.032558	0.000027
5	17.684	0.026	9.7542	0.001	0.036970	0.000035
6	19.684	0.026	9.4331	0.001	0.047875	0.000057
7	21.694	0.026	9.0214	0.001	0.075244	0.00013
8	23.602	0.026	8.7452	0.001	0.119289	0.00034
9	25.588	0.026	8.6090	0.001	0.166130	0.00065
10	27.530	0.026	8.5355	0.001	0.210117	0.0010
11	29.530	0.026	8.4875	0.001	0.253669	0.0015
12	31.520	0.026	8.4539	0.001	0.296479	0.0020
13	33.520	0.026	8.4290	0.001	0.338692	0.0027
14	35.256	0.026	8.4126	0.001	0.373645	0.0032
15	37.188	0.026	8.3984	0.001	0.410236	0.0039
16	38.942	0.026	8.3874	0.001	0.443858	0.0046

Таблица 2: Данные после обработки

Построим график y = y(T)

Рис. 2: График зависимости y=y(T)

Из графика получаем парамагнитную точку Кюри гадолиния $\Theta_p=(17.9\pm0.9)^\circ C.$ Так же из графика можем оценить ферромагнитную точку Кюри $\Theta_{\rm K}=(19.7\pm1)^\circ C$

4 Выводы

Из опыта получили следующие данные

$$\Theta_p = (17.9 \pm 0.9)^{\circ} C, \quad \Theta_K = (19.7 \pm 1)^{\circ} C$$
 (3)

Табличные значения этих данных

$$\Theta_p^{\text{ra6}} = (17.1 \pm 0.5)^{\circ} C, \quad \Theta_K^{\text{ra6}} = 20.2^{\circ} C$$
 (4)

В пределах погрешности результаты совпадают с табличными значениями.