

Quantum Computing using QisKit (SDK based on python)

Tentative week-wise schedule

Week	Topics to be covered
Week 1	Introduction to quantum computing. Quantum computing vs classical computing and Potential applications of Quantum Computing Discussing about the python ecosystems for Quantum Computing Basic principles of quantum computing Superposition, Interference, Quantum entanglement
Week 2	 Introduction to qubits What are qubits, notation and representation of qubits Introduction to quantum gates Single qubit gate (X,Z,H, etc) & Multi-qubit gate (CNOT, etc) Why python for QC?
Week 3	 Introduction to quantum computing in python using qiskit Exploring qiskit sdk Running your first python script on an actual quantum computer Learning about quantum circuits Implementing quantum circuits in python using qiskit
Week 4	 Further exploring python's support for quantum computing using qiskit sdk Simulators Actual quantum computer use Exploring IBM Quantum Experience
Week 5	Getting started with Quantum protocols and algorithms in python Quantum teleportation
Week 6	Continuing Quantum protocols and algorithms in python Superdense coding
Week 7	Continuing Quantum protocols and algorithms in python Basic python scripts exploring cryptography (QKD)
Week-8	Continuing Quantum protocols and algorithms in python Deutsch-Jozsa Algorithm
Week 9	Applications of quantum computing using python Linear system of equations
Week 10	Continuing Applications of quantum computing using python Hybrid quantum-classical Neural Networks with PyTorch and Qiskit