Informe Tarea 5

Ronald Cardona Anderson Grajales Sebastian Valencia Julian Sanchez

16 de septiembre de 2018

1. Solución numérica de sistemas de ecuaciones lineales

Muchos problemas del mundo real se formulan como sistemas de ecuaciones de n variables y m incógnitas que bajo condiciones ideales $(n \ y \ m)$ no son valores muy grandes), se pueden resolver de manera analítica. Sin embargo, cuando $n \ y \ m$ tienden a ser valores muy grandes la solución analítica a estos problemas es muy difícil de calcular ya que requiere de mucho tiempo y claramente no es la forma más eficiente hacerlo. Debido a esto, desde el campo del $Análisis \ Numérico$ se plantean diversas formas computacionales, ya sean algoritmos u otras técnicas que nos permitan resolver estos sistemas rápidamente, teniendo en cuenta que hay una $propagación \ de \ error$ en cada cálculo dependiendo de la capacidad de la computadora donde se ejecuten estos. En este documento se presentan algunos algoritmos numéricos que son de gran ayuda a la hora de resolver sistemas de ecuaciones lineales.

1.1. Determinantes

Definición 1.1. Sea $A = [a_{ij}]$ una matriz de tamaño $n \times n$. El cofactor C_{ij} de a_{ij} se define como $(-1)^{i+j}$ det M_{ij} , donde M_{ij} es la matriz de tamaño $(n-1) \times (n-1)$, que se obtiene al eliminar la fila i y la columna j de la matriz.[1]

Teorema 1.1. Sea $A = [a_{ij}]$ una matriz de tamaño $n \times n$. [1]

■ Para cada $1 \le i \le n$ se cumple que: $\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$

■ Para cada $1 \le j \le n$ se cumple que: $\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + ... + a_{nj}C_{nj}$

De acuerdo al teorema 1.1 se puede definir una ecuación de recurrencia para encontrar el determinante de una matriz $A = [a_{ij}]$ de la siguiente manera:

$$det(A, n)_{1 \le i \le n} = \begin{cases} a_{11}, & \text{if } n = 1. \\ (-1)^{i+1} \times a_{1i} \times det(A', n - 1), & \text{if } n > 1. \end{cases}$$
 (1)

Donde A' es la matriz que se obtiene al eliminar la columna i y la fila n de A. De esta manera, para una matriz B de $n \times n$, la solución se entrega de la forma: det(B, n).

1.2. Multiplicación de matrices

Definición 1.2. Dadas las matrices $A \in M_{m \times n}$ y $B \in M_{n \times p}$, entonces el producto de A con B, denotado AB, es una matriz $C \in M_{m \times p}$, dada por: [1]

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

$$con i = 1, ..., m \ y \ j = 1, ..., p$$

1.3. Escalonamiento de matrices

Definición 1.3. Sea $A = [a_{ij}]$ una matriz de $n \times n$. Decimos que A está escalonada si $\forall i, j, 1 \le i \le j \le n$, $a_{ij} = 0$.

```
Leer A, b
si A \notin \Re^{n \times n} ó b \notin \Re^n entonces
 A debe ser cuadrada y b debe ser un arreglo de n posiciones
si no, si \det A = 0 entonces
     A debe ser invertible
en otro caso
     para k = 1 a n - 1 hacer
           si A_{kk} = 0 entonces
                j \leftarrow k + 1
                mientras j < n \ \boldsymbol{y} \ A_{jk} = 0 \ \text{hacer}
                 j \leftarrow j+1
                fin
                \mathbf{si} \ j < n \ \mathbf{entonces}
                     para l = k a n hacer
                      A_{kl} \leftarrow A_{kl} + A_{jl}
                     b_k \leftarrow b_k + b_i
                fin
           fin
           para i = k + 1 a n hacer
                si A_{ki} \neq 0 entonces
                    A_{ki} \neq 0 entonces m \leftarrow \frac{A_{ik}}{A_{kk}} \mathbf{para} \ l = k \ \mathbf{a} \ n \ \mathbf{hacer} \mid A_{il} \leftarrow A_{il} - m \times A_{kl} \mathbf{fin} b_i \leftarrow b_i - m \times b_k
           fin
     fin
_{\rm fin}
La solución (A, b)
            Algoritmo 1: Algoritmo para escalonar matrices
```

Referencias

[1] Orlando García Jaimes, Jairo A. Villegas Gutiérrez, Jorge Iván. Álgebra Lineal. Editorial EAFIT, Medellín 2012.