RINGS

Cosets

Author

Tom Jeong

November 4, 2024

		1	1
1 7	าท	tΩ	${ m nts}$
	,,,		

1 RINGS 3

1 RINGS

Q: Given a ring R, is there a field F such that $R \subseteq F$? ex. $\mathbb{Z} \subseteq \mathbb{Q}$

the field of Fractions

Q: How do we build $\mathbb Q$ from $\mathbb Z$

$$\frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{Z} \backslash \{0\}$$

$$\mathbb{Q} = \mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$$

 $(p,q) \sim (r,s)$ if ps = qr More generally, for a domain R consider

$$R \times (R - \{0\})$$

and define an equivalence relation

$$(a,s) \sim (b,t) \text{ iff } at = sb$$

exercise Check that \sim is an equivalence relation.

define the field of fractions Q of a domain R as $Q = R \times (R - \{0\})/\sim$ define $(a,s) = \frac{a}{s}$

Exercise: Q is a ring with operations:

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st} \text{ or } (a, s) + (b, t) = (at + bs, st)$$

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}$$

- 1. additive identity in Q is $\frac{0}{1} = \frac{0}{s}$, $\forall s \in R \{0\}$
- 2. multiplication in Q is $1 = \frac{1}{1} = \frac{s}{s}$, $\forall s \in R \{0\}$

Lemma 1.1.

Q is a field

Proof.

If
$$\frac{a}{s} \neq 0$$
, then $a \neq 0$

and then
$$\frac{s}{a} \cdot \frac{a}{s} = 1$$

Exercise How to define this injective ring homomorphisms

$$i:R \to Q$$
 , and $i(a) = \frac{a}{1}$

Proposition 1.2 (3.4.1).

Let R be a domain with field of fractions Q. Let L be a field and let

$$\varphi:R\to L$$

be an injective ring homomorphisms, then, ∃! injective ring homomorphism

$$\bar{\varphi}: Q \to L$$

such that
$$\bar{\varphi} \cdot i = \varphi$$

$$R \xrightarrow{i} Q$$

$$\varphi \downarrow_{\exists!\bar{\varphi}}$$

$$L$$

 $\underline{\mathbf{E}\mathbf{X}}$

$$R = \mathbb{Z}$$

$$Q = \mathbb{Q}$$

$$L = \mathbb{R}$$

Proposition 1.3 (3.4.2 COROLLARY not prop).

Let R be a domain contained in a field L. The smallest subfield in L containing R is

$$K = \{as^{-1} | a \in R, s \in R - \{0\}\}\$$

The field of fractino is isomorphic to K.

Proof.

Let $a, b \in R$ and $s, t \in R - \{0\}$

Then $(as^{-1})(bt^{-1}) = abs^{-1}t^{-1}$

And $as^{-1} + bt^{-1} = (at + bs)(st)^{-1}$

and $(as^{-1})^{-1} = sa^{-1}$ if $a \neq 0$

Thus K is a subfield of L

Note that any subfield of L containing R must contain K, and we have $a \in R, s^{-1} \forall s \in R - \{0\}$

Let Q be the field of fractions of R and ocntains the injection $R \to L$ sending $r \in R$ to $r \in L$

By Proposition (3.4.1) $\bar{\varphi}(\frac{a}{s}) = as^{-1}$ is an injective homomorphism. and is clearly injective onto K.

Sket Proof of Proposition

since $\varphi \cdot i = \varphi$ we must have for $s \in R - \{0\}$,

$$\begin{split} 1 &= \bar{\varphi}(1) \\ &= \bar{\varphi}(\frac{s}{1} \cdot \frac{1}{s}) \\ &= \bar{\varphi}(\frac{s}{1}) \cdot \bar{\varphi}(\frac{1}{s}) \\ &= \bar{\varphi}(i(s)) \cdot \bar{\varphi}(\frac{1}{s}) \\ &= \bar{\varphi}(s) \cdot \bar{\varphi}(\frac{1}{s}) \end{split}$$

Hence

$$\bar{\varphi}(\frac{a}{s}) = \bar{\varphi}(\frac{a}{1})\bar{\varphi}(\frac{1}{s}) = \varphi(a)\varphi(s)^{-1}$$

We need to check $\bar{\varphi}$ is well-defined:

if $\frac{a}{s} = \frac{b}{t}$ then at = sb, and so

 $\varphi(a)\varphi(t)=\varphi(s)\varphi(b)$ and so

$$\varphi(a)\varphi(s)^{-1}=\varphi(\underline{b})\varphi(t)^{-1}$$

i.e.
$$\varphi(\underline{a}) = \varphi(\underline{b})$$

exercise Check that $\bar{\varphi}$ is a ring homomorphism and injective

Plans for the rest of the semester: Given a ring R, if R is a field, every non-zero element has a multi. inverse

If R is a domain, we can build its field of fractions.

Q: What properites of \mathbb{Z} Hold in other rings?

Let R be a ring

- 1. Can we factor elements in R?
- 2. Are factorizations unique?
- 3. Is there a notion of "prime" in R?
- 4. Does the division algorithm work in r do we have unique remainder

Assume R is a domain for the next few classes <u>Factoring in R</u> Deifine: let $x, z \in R$ if x = ry for some $r \in R$ we say y is a divisor of x denoted $y \mid x$

Notes if R is a PID then for any $a,b \in R, \exists d$ such that

$$\langle a, b \rangle = \{\lambda_1 a + \lambda_2 b | \lambda_1, \lambda_2 \in R\}$$