8/27/23, 9:29 PM Fengyun - Wikipedia

Fengyun

Fēngyún (FY, simplified Chinese: 风云; traditional Chinese: 風雲; lit. 'wind cloud') are China's meteorological satellites. Launched since 1988 into polar sun-synchronous and geosynchronous orbit, each three-axis stabilized Fengyun satellite is built by the Shanghai Academy of Spaceflight Technology (SAST) and operated by the China Meteorological Administration (CMA).[11][2] To date, China has launched twenty-one Fengyun satellites in four classes (FY-1 through FY-4). Fengyun 1 and Fengyun 3 satellites are in polar, sun-synchronous orbit and Low Earth orbit while Fenguun 2 and 4 are geosynchronous orbit. [2]

On 11 January 2007, China destroyed one of these satellites (FY-1C, COSPAR 1999-025A) in a test of an antisatellite missile [3][4] According to NASA, the intentional destruction of FY-1C created more than 3,000 highvelocity debris items, a larger amount of dangerous space junk than any other space mission in history. [5]

Classes

Fengyun 1

The four satellites of the Fenguun 1 (or FY-1) class were China's first meteorological satellites placed in polar, sun-synchronous orbit. 6 In this orbit. FY-1 satellites orbited the Earth at both a low altitude (approximate 900 km above the Earth's surface), and at a high inclination between 98.8° and 99.2° traversing the North Pole every 14 minutes, giving FY-1-class satellites global meteorological coverage with a rapid revisit time and closer proximity to the clouds they image [7][8] FY-1A, launched in September 1988, lasted 39 days until it suffered attitude control problems. [6] FY-1B, launched in September 1990 along with the first two QQW (Qi Qui Weixing) balloon satellites, [9] lasted until late 1992 when its attitude control system also failed [6] FY-1C, launched in May 1999 along with Shijian-5, also completed its two-year design life operating until January 2004. [6] The last satellite of the class, FY-1D, was launched in May 2002 and operated continuously for nine years until in May 2011 operations were temporarily lost. Despite resuscitation, FY-1D failed on 1 April 2012. [6][10]

All Fengyun 1 satellites were launched from Taiyuan Satellite Launch Center (TSLC) in Shanxi Province on Long March 4A and 4B rockets and weighed 750 kg, 880 kg, 954 kg, and 954 kg respectively. Aboard each satellite were two multichannel visible and infrared scanning radiometers (MVISR) built by the Shanghai Institute of Technical Physics (SITP) bearing an optical scanner, image processor, radiant cooler, and controller for the radiant cooler.[11][12][6] FY-1C and FY-1D satellites also carried on board a high-energy particle detector (HEPD) for study of the space environment, contributing to their increased mass. [6] FY-1 satellites are powered by two deployable solar arrays and internal batteries.[6]

Destruction of FY-1C

On 11 January 2007, China conducted its first anti-satellite (ASAT) missile test, destroying FY-1C with a kinetic kill vehicle, identified by the United States Defense Intelligence Agency (DIA) as the SC-19, [13] a modified DF-21 ballistic missile with mounted kill vehicle. [14] The shootdown, and the subsequent creation of a record-setting amount of in-orbit debris, drew serious international criticism. [15][16][17][18][19]

Fengyun

风云卫星 Fēngyún Wèixīng

Model F	Y-2 in Shanghai museum						
F	Program overview						
Country	People's Republic of China						
Purpose	Meteorology						
Status	Active						
First flight	6 September 1988						
Vehicle information							

Launch

vehicle(s)

Long March 3 · Long March

3A · Long March 3B · Long

March 4B · Long March 4C

Fengyun 2

Satellites of the Fengyun 2 class are based on the spin-stabilized Dong Fang Hong 2 platform and are China's first class of meteorological satellites in geostationary orbit. [20] Unlike meteorological satellites in polar orbit (like the FY-1 and FY-3 classes), FY-2 satellites in geostationary orbit remain in a fixed position relative to the Earth 35,000 km above its surface and maintain a constant watch over an assigned area. [21][22] Unlike polar orbiting satellites which view the same area about twice a day, geostationary satellites can image a location as fast as once a minute and show long term meteorological trends - at the cost of resolution. [21][22]

Built by the Shanghai Institute of Satellite Engineering and operated by the Chinese Meteorological Administration, FY-2 satellites are 4.5 m tall and are spin-stabilized rotating at 100 rotations per minute. FY-2-class satellites have been marketed for their openly available data whereby any user with a receiver could view FY-2 derived sensory data. [20] Satellites of the Fengyun 2 class have a mass of 1,380 kilograms, use solar cells and batteries for power, and a FG-36 apogee motor jettisoned after attaining orbit.[20]

On 2 April 1994, China attempted to launch the Fengyun 2 from Xichang Satellite Launch Center (XSLC) when, prior to its mating with the Long March 3, a fire caused an explosion destroying the satellite, killing a technician, and injuring 20 others. Officials of the Chinese space agency described the \$75 million USD loss of the satellite as a "major setback" to the Chinese space program. [20][23] Despite this, China launched eight successive Fengyun 2 satellites without incident.[20]

Fengyun 3

8/27/23, 9:29 PM Fengyun - Wikipedia

Chinese participation in the monitoring of <u>auroras</u> for scientific and space weather investigation was initiated with the launch of the Fengyun-3D satellite, which carries a wide-field auroral imager. $\frac{[11][12]}{[12]}$

Fengyun 4

Model FY-3 in Shanghai museum

A mockup of a FY-4 satellite

As of 2021, China has launched two Fengyun 4 class satellites.

List of satellites

Satellite	Launch	Orbit	Orbital apsis	Inclination	Period (min)	SCN	COSPAR	Lau si		
Fenyun 1A	6 September 1988	Sun- synchronous	880.0 km × 899.9 km	99.2°	102.6	19467	1988-080A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1988-080A)	TS		
Fengyun 1B	3 September 1990	Sun- synchronous	880.2 km × 902.5 km	98.8°	102.6	20788	1990-081A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1990-081A)	TS		
Fengyun 2-01	4 April 1994	Exploded before launch								
Fengyun 2A	10 June 1997	Geostationary	36,588.1 km × 37,451.4 km	15.0°	1499.1	24834	1997-029A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1997-029A)	XS		
Fengyun 1C	10 May 1999	Sun- synchronous	832.3 km × 851.7 km	99.0°	101.4	25730	1999-025A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1999-025A)	TS		
Fengyun 2B	25 June 2000	Geostationary	35,830.7 km × 35,848.3 km	11.9°	1438.7	26382	2000-032A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2000-032A)	XS		
Fengyun 1D	15 May 2002	Sun- synchronous	855.7 km × 878.8 km	99.1°	102.1	27431	2002-024B (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2002-024B)	TS		
Fengyun 2C	19 October 2004	Geostationary	36,393.0 km × 36,443.3 km	10.2°	1468.1	28451	2004-042A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2004-042A)	XS		
Fengyun 2D	8 December 2006	Geostationary	36,330.7 km × 36,442.4 km	8.3°	1466.5	29640	2006-053A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2006-053A)	XS		
Fengyun 3A	27 May 2008	Sun- synchronous	830.0 km × 843.5 km	98.5°	101.4	32958	2008-026A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2008-026A)	<u>T</u> 5		
Fengyun 2E	23 December 2008	Geostationary	35,785.9 km × 35,805.9 km	6.1°	1436.1	33463	2008-066A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2008-066A)	X		
Fengyun 3B	4 November 2010	Sun- synchronous	835.3 km × 868.6 km	99.1°	101.8	37214	2010-059A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2010-059A)	<u>TS</u>		
Fengyun 2F	13 January 2012	Geostationary	35,794.2 km × 35,799.5 km	4.0°	1436.2	38049	2012-002A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2012-002A)	X		
Fengyun 3C	23 September 2013	Sun- synchronous	837.7 km × 854.8 km	98.5°	101.6	39260	2013-052A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2013-052A)	<u>T5</u>		
Fengyun 2G	31 December 2014	Geostationary	35,782.4 km × 35,798.7 km	2.1°	1435.9	40367	2014-090A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2014-090A)	XS		
Fengyun 4A	10 December 2016	Geostationary	35,784.0 km × 35,802.9 km	0.2°	1436.2	41882	2016-077A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2016-077A)	XS		
Fengyun 3D	14 November 2017	Sun- synchronous	833.4 km × 836.9 km	98.8°	101.4	43010	2017-072A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2017-072A)	<u>T5</u>		
Fengyun 2H	5 June 2018	Geostationary	35,776.6 km × 35,814.1 km	1.3°	1436.0	43491	2018-050A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-050A)	X		
Fengyun 4B	2 June 2021	Geostationary	35,786.6 km × 35,802.2 km	0.2°	1436.1	48808	2021-047A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2021-047A)	X		
Fengyun 3E	4 July 2021	Sun- synchronous	831.3 km × 835.4 km	98.7°	101.4	49008	2021-062A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2021-062A)	<u>J</u> 8		
Fengyun 3G	16 April 2023	Low Earth	410.0 km × 416.0km	50.0°	92.7	56232	2023-055A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2023-055A)	<u>J8</u>		
Fengyun 3F	3 August 2023	Sun- synchronous	832.9 km × 834.1km	98.8°	101.4	57490	2023-111A (https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2023-111A)	JS		

See also

- China Meteorological Administration
- 2007 Chinese anti-satellite missile test
- Yaogan
- Gaofen

References

- Gebhardt, Chris (4 July 2021). "China lofts Fengyun 3E polar weather satellite" (https://www.nasaspaceflight.com/2021/07/fengyun-3e/). NASA Spaceflight.
- Xian, Di; Zhang, Peng; Fang, Meng; Liu, Chang; Jia, Xu (16 January 2020). "The First Fengyun Satellite International User Conference" (https://link.springer.com/content/pdf/10.1007/s00376-020-2011-5.pdf) (PDF). Advances in Atmospheric Sciences. Beijing, China: Springer Publishing. 38 (August 2021): 1429–1432. doi:10.1007/s00376-020-2011-5 (https://doi.org/10.1007%2Fs00376-020-2011-5).
 S2CID 216111411 (https://api.semanticscholar.org/CorpusID:21611141
- David, Leonard (2 February 2007). "China's Anti-Satellite Test:
 Worrisome Debris Cloud Circles Earth" (https://www.space.com/3415-china-anti-satellite-test-worrisome-debris-cloud-circles-earth.html).

 Space.com.
- Kestenbaum, David (19 January 2007). "Chinese Missile Destroys Satellite in 500-Mile Orbit" (https://www.npr.org/2007/01/19/6923805/chinese-missile-destroys-satellite-in-500-mile-orbit). NPR.
- NASA identifies Top Ten space junk missions (http://www.networkworld.c om/community/node/64242); Michael Cooney, NetworkWorld, 28 July 2010
- Krebs, Gunter D. (30 July 2019). "FY 1A, 1B, 1C, 1D" (https://space.skyrocket.de/doc_sdat/fy-1.htm). Gunter's Space Page.
- 7. "Two Orbits, One Mission: NOAA Satellites Work Together To Provide Critical Data for Weather Forecasts" (https://www.goes-r.gov/featureStories/twoOrbitsOneMission.html). NOAA–NASA GOES-R. 29 June 2020.
- Hillger, Donald W. (1997). "Complimenting Geostationary Weather Satellites" (https://rammb.cira.colostate.edu/dev/hillger/pdf/Polar-orbiting _weather_satellites.pdf) (PDF). Topical Time (July-August): 33–35 – via Colorado State University.
- 9. Krebs, Gunter D. (21 July 2019). "QQW 1, 2 (DQ 1, 2)" (https://space.sk yrocket.de/doc_sdat/qqw-1.htm). Gunter's Space Page.
- "Satellite: FY-1D" (https://space.oscar.wmo.int/satellites/view/fy_1d).
 United Nations: World Meteorological Organization. 11 December 2017.
- 11. Lui, A., 2019. Imaging global auroras in space. Light: Science & Applications, 8(1).
- Zhang, Xiao-Xin; Chen, Bo; He, Fei; Song, Ke-Fei; He, Ling-Ping; Liu, Shi-Jie; Guo, Quan-Feng; Li, Jia-Wei; Wang, Xiao-Dong; Zhang, Hong-Ji; Wang, Hai-Feng; Han, Zhen-Wei; Sun, Liang; Zhang, Pei-Jie; Dai, Shuang (2019). "Wide-field auroral imager onboard the Fengyun satellite" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529440). Light: Science & Applications. 8 (47): 47. Bibcode:2019LSA....8...47Z (https://ui.adsabs.harvard.edu/abs/2019LSA....8...47Z). doi:10.1038/s41377-019-0157-7 (https://doi.org/10.1038%2Fs41377-019-0157-7). PMC 6529440 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6529440). PMID 31123586 (https://pubmed.ncbi.nlm.nih.gov/31123586).

- 13. "Senator Clinton Questions Vice Admiral John M. McConnell, USN (ret), Director of National Intelligence and Lieutenant General Michael Maples, USA, the Director of the Defense Intelligence Agency at a Senate Armed Services Committee Hearing on Worldwide Threats" (https://web.archive.org/web/20070330225204/https://www.senate.gov/~clinton/news/statements/details.cfm?id=269792). February 27, 2007.
 Archived from the original (https://www.senate.gov/~clinton/news/statements/details.cfm?id=269792) on March 30, 2007. Retrieved April 24, 2007.
- 14. "Sc-19 Asat" (http://www.globalsecurity.org/space/world/china/sc-19-asa t.htm). Archived (https://web.archive.org/web/20170613044709/http://www.globalsecurity.org/space/world/china/sc-19-asat.htm) from the original on June 13, 2017. Retrieved February 17, 2017.
- "Chinese ASAT Test" (http://www.centerforspace.com/asat/). Archived (https://web.archive.org/web/20070423040143/http://www.centerforspace.com/asat/) from the original on April 23, 2007. Retrieved April 18, 2007.
- 16. "ISS crew take to escape capsules in space junk alert" (https://www.bbc.co.uk/news/science-environment-17497766). BBC. March 24, 2012. Archived (https://web.archive.org/web/20120324150155/http://www.bbc.co.uk/news/science-environment-17497766) from the original on March 24, 2012. Retrieved March 24, 2012.
- BBC News (2007). Concern over China's missile test (http://news.bbc.c o.uk/2/hi/asia-pacific/6276543.stm). Retrieved January 20, 2007.
 Archived (https://web.archive.org/web/20110512000703/http://news.bbc.co.uk/2/hi/asia-pacific/6276543.stm)
 May 12, 2011, at the Wayback Machine
- Agence France-Presse (January 19, 2007). "Britain Concerned By Chinese Satellite Shoot-Down" (http://www.spacewar.com/reports/Britain _Concerned_By_Chinese_Satellite_Shoot_Down_999.html).
 Spacedaily.com. Archived (https://web.archive.org/web/2011060722565 3/http://www.spacewar.com/reports/Britain_Concerned_By_Chinese_Satellite_Shoot_Down_999.html) from the original on June 7, 2011.
- Kestenbaum, David (January 19, 2007). "Chinese Missile Destroys Satellite in 500-Mile Orbit" (https://www.npr.org/templates/story/story.ph p?storyld=6923805). National Public Radio. Archived (https://web.archive.org/web/20111121121752/http://www.npr.org/templates/story/story.ph p?storyld=6923805) from the original on November 21, 2011.
- Krebs, Gunter D. (21 July 2019). "FY 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H" (https://space.skyrocket.de/doc_sdat/fy-2.htm). Gunter's Space Page.
- 21. "Weather Satellites" (https://www.weather.gov/jetstream/satellites).

 National Weather Service.
- 22. Hanson, Derek; Peronto, James; Hilderbrand, Douglas. "NOAA's Eyes in the Sky After Five Decades of Weather Forecasting with Environmental Satellites, What Do Future Satellites Promise for Meteorologists and Society?" (https://public.wmo.int/en/resources/bulletin/noaa%E2%80%99s-eyes-sky-after-five-decades-of-weather-forecasting-environmental). World Meteorological Organization. 62 (1).
- 23. Tyler, Patrick E. (27 April 1994). "China Says Blast Won't Slow Satellite Launchings" (https://www.nytimes.com/1994/04/27/world/china-says-blast-won-t-slow-satellite-launchings.html). *The New York Times.* p. 3.
- "Concern over China's missile test" (http://news.bbc.co.uk/2/hi/asia-pacific/6276543.stm). BBC News. 2007-01-19.

External links

Fēngyún-3 satellite programme (http://www.wmo-sat.info/oscar/satelliteprogrammes/view/53)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Fengyun&oldid=1172065992"