ANOVA

- An Analysis of Variance
 - Compare the means of more than two groups, samples, populations

Sampling variability • variability within the distributions • Within-Sample variability

ANOVA =

variability among the sample means

variability within the distributions

Signal

Noise

Oneway ANOVA

Data Science: Comparison

 Professor Huang is teaching three data science fundamentals classes. One of these classes is delivered online, the second one is delivered in person on campus, and the third one is a hybrid class. Professor Huang wants to know if there are differences in performance due to the delivery platform.

ANOVA

import pandas as pd # For oneway ANOVA import scipy.stats as st

ANOVA with Post Hoc

```
# For Post Hoc
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.stats.multicomp import MultiComparison as multi
# Read data stored in csv file
df = pd.read csv("differences3.csv")
# assign label to each student type: Online, InPerson, Hybrid
df["Student"].replace({1:"Online", 2:"InPerson", 3:"Hybrid"}, inplace=True)
# Oneway ANOVA
rdf = st.f oneway(df["Score"][df["Student"]=="Online"], df["Score"][df["Student"]=="InPerson"], df["Score"][df["Student"]=="Hybrid"])
print ("ANOVA Results: ", rdf)
# Post Hoc
mc = multi(df["Score"], df["Student"])
posthoc = mc.tukeyhsd()
print ()
print (posthoc)
```

Oneway ANOVA

Data Science: Comparison

 Professor Huang is teaching three data science fundamentals classes. One of these classes is delivered online, the second one is delivered in person on campus, and the third one is a hybrid class. Professor Huang wants to know if there are differences in performance due to the delivery platform.

ANOVA

ANOVA

```
import pandas as pd
import scipy.stats as st

# Read data stored in csv file
df = pd.read_csv("differences3.csv")

# assign label to each student type: Online, InPerson, Hybrid
df["Student"].replace({1:"Online", 2:"InPerson", 3:"Hybrid"}, inplace=True)

# Oneway ANOVA
rdf = st.f_oneway(df["Score"][df["Student"]=="Online"], df["Score"][df["Student"]=="InPerson"], df["Score"][df["Student"]=="Hybrid"])
print ("ANOVA Results: ", rdf)
```

ANOVA

ANOVA Results: F_onewayResult(statistic=1.251646103688551, pvalue=0.2937751293444691)

If sig (p-value) < 0.05, then we reject null hypothesis. Therefore, we conclude that significant difference exists.

If sig > 0.05, then we accept the null hypothesis.

import pandas as pd # For oneway ANOVA import scipy.stats as st

ANOVA with Post Hoc

```
# For Post Hoc
from statsmodels.stats.multicomp import pairwise_tukeyhsd
from statsmodels.stats.multicomp import MultiComparison as multi

# Read data stored in csv file
df = pd.read_csv("differences3.csv")

# assign label to each student type: Online, InPerson, Hybrid
df["Student"].replace({1:"Online", 2:"InPerson", 3:"Hybrid"}, inplace=True)

# Oneway ANOVA
rdf = st.f_oneway(df["Score"][df["Student"]=="Online"], df["Score"][df["Student"]=="InPerson"], df["Score"][df["Student"]=="Hybrid"])

print ("ANOVA Results: ", rdf)

# Post Hoc
mc = multi(dff"Score"], df["Student"])
posthoc = mc.tukeyhsd()

print ()
print (posthoc)
```


Branch of artificial intelligence using data to train a machine (model) to make predictions based on inputs (data)

- Supervised Learning
 - Data for training machine learning model include known labels (outputs) and features (inputs)
- Unsupervised Learning
 - Data for training model include only features (inputs) but no known labels (outputs)
 - Machine learning model is trained by observing similarities in features (inputs)

- Supervised Learning
 - Popular supervised learning method
 - Regression model

$$f(x) = y$$
$$Y = a + bX$$

where X is the explanatory variable
 Y is the dependent variable.
 b is the slope of the line
 a is the intercept value of y when x = 0)

Temperature	Customer
71	204
75	198
100	311
65	128
97	280
77	284
70	168
88	236
76	162
96	245

Temperature	Customer
71	204
75	198
100	311
65	128
97	280
77	284
70	168
88	236
76	162
96	245

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.813790773			
R Square	0.662255423			
Adjusted R Square	0.620037351			
Standard Error	36.81556566			
Observations	10			

ANOVA

	df	SS	MS	F	Significance F
Regression	1	21261.313	21261.313	15.68653871	0.004173386
Residual	8	10843.087	1355.385875		
Total	9	32104.4			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-91.29220104	79.85396655	-1.143239403	0.285994895	-275.4357781	92.85137604	-275.4357781	92.85137604
Temperature	3.839168111	0.969334269	3.960623525	0.004173386	1.603879278	6.074456944	1.603879278	6.074456944

Multiple R

- Absolute value of correlation coefficient (Pearson r)
 - The large the number the more indication of possible relationship
 - Can't tell the direction because of the absolute value

R^2

- coefficient of determination
 - How well the regression model (line) fits the data
 - Proportion of the variance in the dependent variable that is explainable (predictable) by he independent variable
 - R² = 1 means 100% of the dependent variable can be explained by the independent variable
 - R² = 0.80 means 80% of the dependent variable can be explained by the independent variable

Standard Error

- A measure of the precision of the model
 - Average error of the regression model.
 - Tells how wrong the model is
 - The smaller the better (in relation to the coefficient)

Significant F

- Significant F is the P-value of F
 - a ratio computed by dividing the mean regression sum of squares by the mean error sum of squares
 - Ranges from 0 to very large number
 - Model is OK if less than 0.05
 - Look for another independent variable if greater than 0.05

P-values

- Probability that the estimated coefficient is unreliable.
 - OK if less than 0.05
 - Otherwise, delete the independent variable > 0.05

Residuals

• error = $y - \hat{y}$ (y actual – y predicted)

Regression Results

Data Science Fundamentals: Regression Results

• Temperature vs. Customers

Temperature	Customers
100	60
95	98
90	100
85	200
80	300
75	320

• Customers = Y = Dependent Variable

Υ	Ϋ́
Customers	Mean
60	180
98	180
100	180
200	180
300	180
320	180

Regression Results ERROR

Residual Residual ²

Υ	Ÿ	Υ - Ϋ	(Y - Ÿ)^2
60	179.67	-119.67	14320.11
98	179.67	-81.67	6669.44
100	179.67	-79.67	6346.78
200	179.67	20.33	413.44
300	179.67	120.33	14480.11
320	179.67	140.33	19693.44

Total Sum of Square (SST) = $\Sigma(Y - \overline{Y})^2 = 61923.33$

61923.33

X	Υ
Temperature	Customers
100	60
95	98
90	100
85	200
80	300
75	320

Regression Statistics								
Multiple R	0.963506714							
R Square	0.928345189							
Adjusted R Square	0.910431486							
Standard Error	33.30579815							
Observations	6							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	57486.22857	57486.22857	51.82318801	0.00197334			
Residual	4	4437.104762	1109.27619					
Total	5	61923.33333						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1182.666667	139.990045	8.448219777	0.001075413		1571.341342	793.9919915	1571.341342
Temerature	-11.46285714	1.592321712	-7.198832406	0.00197334	-15.88385097	-7.041863319	-15.88385097	-7.041863319

$$\hat{Y} = 1182.67 - 11.46(X)$$

Χ	Υ	Ŷ	Y-Ŷ	(Y-Ŷ)^2				
100	60	36.67	CC					
٥٢	00	93.97	1 55	K				
	CT	51.27						
		08.57	CC					
80	300	265.87	1 55					
75	320	323.17						
Sum of Squ	ium of Squares Error (SSE)							
Total Sum	otal Sum of Squares (SST)							
Sum of Squ	Sum of Squares Regression (SSR)							

Pagrassian S	tatistics						X	Υ	Ŷ	Y-Ý	Ŷ	(Y-Ŷ)^2
Regression S	lutistics					_	100	60	36.67	23.3	3	544.29
Multiple R	0.963506714	R Squa	re = SSR	/ SST			95	98	93.97	4.03	3	16.24
R Square	0.928345189		= 574	85.84/6	51923.33		90	100	151.27	-51.2	27	2628.61
Adjusted R Square	0.910431486		= 0.92	•		ı	85	200	208.57	-8.5	7	73.44
Standard Error	33.30579815						80	300	265.87	34.1	.3	1164.86
Observations	6						75	320	323.17	-3.1	.7	10.05
							Sum of S	Squares Error	(SSE)			4437.49
ANOVA	<u> </u>						Total Su	m of Squares	(SST)			61923.33
	df	SS	MS	F	Significance F		Total Su	iii oi squares	(331)			01323.33
Regression	1	57486.22857	57486.22857	51.82318801	0.00197334		Sum of S	SquaresRegre	ssion (SSI	₹)		57485.84
Residual	4	4437.104762	1109.27619									
Total	5	61923.33333										
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upp	er 95%	Lower 95.0%	Upper 9	5.0%		
Intercept	1182.666667	139.990045	8.448219777	0.001075413	793.9919915		1.341342	793.9919915				
Temerature	-11.46285714	1.592321712	-7.198832406	0.00197334	-15.88385097	-7.04	1863319	-15.88385097	-7.0418	53319		

$$\hat{Y} = 1182.67 - 11.46(X)$$

Machine Learning- Python -Regression Analysis

• Temperature vs. Customers

Temperature	Customers
100	60
95	98
90	100
85	200
80	300
75	320

Regression Statistics								
Multiple R	0.963506714							
R Square	0.928345189							
Adjusted R Square	0.910431486							
Standard Error	33.30579815							
Observations	6							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	57486.22857	57486.22857	51.82318801	0.00197334			
Residual	4	4437.104762	1109.27619					
Total	5	61923.33333						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1182.666667	139.990045	8.448219777	0.001075413	793.9919915	1571.341342	793.9919915	1571.341342
Temerature	-11.46285714	1.592321712	-7.198832406	0.00197334	-15.88385097	-7.041863319	-15.88385097	-7.041863319

$$\hat{Y} = 1182.67 - 11.46(X)$$

import pandas as pd

need for regression analysis

print (results.summary())

import statsmodels.api as sm from statsmodels.formula.api import ols

```
temperature = [100,95,90,85,80,75]
customer= [60,98,100,200,300,320]

df = pd.DataFrame(temperature, columns=["Temperature"])
df["Customer"] = customer

# Perform Regression Analysis
```

results = ols ("Customer ~ Temperature", data=df).fit()

OLS Regression Results

Dep. Variable:	R-squared:			0.928	ノ	
Model:	OLS	Adj. R-squar	ed:		0.910	
Method:	Least Squares	F-statistic:			51.82	
Date:	Fri, 29 May 2020	Prob (F-stat	istic):		0.00197	ノ
Time:	21:50:05		od:		-28.332	
No. Observations:	6	AIC:			60.66	
Df Residuals:	4	BIC:			60.25	
Df Model:	. 1					
Covariance Type:	nonrobust					
CO:	ef std err	t P>	t	[0.025	0.975]	
Intercept 1182.66	67 139.990	8.448 0.	001	793.992	1571.341	
Temperature / -11.46			002	-15.884	-7.042	
Omnibus:	nan	Durbin-Watso	n:		1.909	
Prob(Omnibus):	nan				0.477	
Skew:	-0.659	Prob(JB):	. ,		0.788	
Kurtosis:	2.585	Cond. No.			905.	
	=========					
↓	\					
$\hat{Y} = 1182.67 - 11$.46(X)					

Linear Regression in Machine Learning: Train and Test Model

Linear Regression in Machine Learning: Train and Test Model

import mysql.connector as sq import pandas as pd

needed for machine learning regression model training and testing from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

Connecting to MySQL, query database, store results in dataframe variable mydb=sq.connect(host="localhost",user="root",passwd="ucla", buffered=True) query = "SELECT * FROM covid19USA531.covid19USA531" df = pd.read_sql(query,mydb)

	iso_code	location	date	total_cases	new_cases	total_deaths	new_deaths	total_tests	new_tests
0	USA	United States	3/14/2020	2174	511	47	7	31732	4575
1	USA	United States	3/15/2020	2951	777	57	10	39332	7600
2	USA	United States	3/16/2020	3774	823	69	12	57173	17841
3	USA	United States	3/17/2020	4661	887	85	16	72856	15683
4	USA	United States	3/18/2020	6427	1766	108	23	97590	24734

prepare x by droping y = total_deaths
x = df.drop(["iso_code", "location", "date", "total_deaths"], axis=1)

	total_cases	new_cases	new_deaths	total_tests	new_tests
0	2174	511	7	31732	4575
1	2951	777	10	39332	7600
2	3774	823	12	57173	17841
3	4661	887	16	72856	15683
4	6427	1766	23	97590	24734

```
# prepare y = total_deaths
y = df.total_deaths
```

```
47
          57
          69
          85
         108
74
       98916
75
      100442
76
      101617
77
      102836
78
      103781
Name: total_deaths, Length: 79, dtype: int64
```

```
#train_and_test_data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=40)
```

model = LinearRegression()
model.fit(x_train, y_train)

y_predict = model.predict(x_test)

model.score(x_test,y_test)

model.coef_

model.intercept_