STORTIN ZONICAT

UFPB/CCEN/DMPGMAT

Análise no \mathbb{R}^n Exame de Qualificação – 2012.2

Nome:	Matrícula:
Nome.	Wautuua

- 1. Dados dois conjuntos $X, Y \subset \mathbb{R}^n$ definimos $d(X, Y) = \inf\{|x y|; x \in X, y \in Y\}$
 - a) Dado $x \in \mathbb{R}^n$ e $Y \subset \mathbb{R}^n$, mostre que $d(x,Y) = d(x,\overline{Y})$.
 - b) Mostre que $d(x, Y) = 0 \Leftrightarrow x \in Y$.
 - c) Mostre que $d(X,Y) = d(\overline{X},\overline{Y})$.
- 2. Seja $T:\mathbb{R}^n\to\mathbb{R}^m$ uma transformação linear. Mostre que são equivalentes as seguintes afirmações:
 - a) $|Tx| = |x|, \forall x \in \mathbb{R}^n$.
 - b) $|Tx Ty| = |x y|, \forall x, y \in \mathbb{R}^n$.
 - c) $\langle Tx, Ty \rangle = \langle x, y \rangle, \forall x, y \in \mathbb{R}^n$.
- 3. Mostre que se $f: \mathbb{R}^n \to \mathbb{R}$ é uma transformação linear então existe único $y \in \mathbb{R}^n$ tal que $f(x) = \langle x, y \rangle, \forall x \in \mathbb{R}^n$.
- 4. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}^2$ funções de classe C^1 .
 - a) Mostre que f não pode ser injetiva. (Sugestão: Use o teorema da função implícita caso haja $x \in \mathbb{R}^2$ com $Df(x) \neq 0$.)
 - b) Mostre que q não pode ser sobrejetiva.
- 5. Seja $f: \mathbb{R} \to \mathbb{R}$ uma aplicação de classe C^1 tal que $|f'(t)| \leq k < 1$ para todo $t \in \mathbb{R}$. Considere a aplicação $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\phi(x,y) = (x+f(y),y+f(x))$. Mostre que ϕ é um difeomorfismo. Sugestão: Mostre que ϕ é um difeomorfismo local e injetiva.
- 6. Sejam $\phi, \psi : [a, b] \to \mathbb{R}$ duas funções contínuas tais que $\phi(x) \le \psi(x)$ para todo $x \in \mathbb{R}$. Considere $X = \{(x, y) \in \mathbb{R}^2; x \in [a, b], \phi(x) \le y \le \psi(x)\}.$
 - a) Mostre que X é J-mensurável. (Sugestão: determine ∂X .)
 - b) Dada $f: X \to \mathbb{R}$ contínua, mostre que

$$\int_{X} f = \int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x, y) dy$$

.