CLASS QUIZ: OCTOBER 15: ORDER OF ZERO, L'HOPITAL'S RULE

MATH 153, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters):
For these questions, keep in mind that the order of a zero for a function f at a point c in its domain
(where it's continuous) such that $f(c) = 0$ is defined as the lub of the set $\{\beta \ge 0 \mid \lim_{x \to c} f(x) / x - c ^{\beta} = 0\}$.
If f is an infinitely differentiable function at c, then the order, if finite, must be a positive integer. If the
order is a positive integer r, then the first $r-1$ derivatives of f at c equal zero and the r^{th} derivative at c
is nonzero (assuming f to be infinitely differentiable).
For convenience, we take $c=0$ in the next three questions, i.e., all limits are being taken as $x\to 0$.
(1) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the
pointwise sum $f + g$ at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1 + x^3)$).
(A) 1
(B) 2
(C) 3
(D) 5
$\stackrel{ ightharpoonup}{(E)} 6$
Your answer:
(2) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the
pointwise product fg at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1 + x^3)$).
pointwise product fg at zero: (Example. $f(x) = \sin x$ and $g(x) = \ln(1+x)$). (A) 1
(A) 1 (B) 2
(C) 3
(D) 5 (D) 5
(E) 6
Your answer:
(3) If f has a zero of order 2 and g has a zero of order 3 at the point 0, what is the order of zero for the
composite function $f \circ g$ at zero? (Example: $f(x) = \sin^2 x$ and $g(x) = \ln(1+x^3)$).
(A) 1
(B) 2
(C) 3 (D) 5
(D) 5
(E) 6
Your answer:
(4) L'Hopital's rule can be related with order of zero in the following manner: Every time the rule is

Assume that we start with a limit $\lim_{x\to c} f(x)/g(x)$ where both f and g are infinitely differentiable at c, and further, that f(c)=g(c)=0. If the order of zero of f is d_f and the order of zero of g is d_g , which of the following is true?

applied to a $(\to 0)/(\to 0)$ form, the order of zero of the numerator and denominator go down by one. Repeated application hopefully yields a situation where either the numerator or the denominator

has a nonzero limiting value.

- (A) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a nonzero numerator and zero denominator, so the limit is undefined. If $d_g < d_f$, then we apply the LH rule d_g times to get a zero numerator and nonzero denominator, so the limit is zero.
- (B) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a zero numerator and nonzero denominator, so the limit is undefined. If $d_g < d_f$, then we apply the LH rule d_g times to get a nonzero numerator and zero denominator, so the limit is zero.
- (C) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a nonzero numerator and zero denominator, so the limit is zero. If $d_g < d_f$, then we apply the LH rule d_g times to get a zero numerator and nonzero denominator, so the limit is undefined.
- (D) If $d_f = d_g$, then we need to apply the LH rule d_f times and we will then get a nonzero numerator and nonzero denominator, that we can evaluate to get the limit. If $d_f < d_g$, then we apply the LH rule d_f times to get a zero numerator and nonzero denominator, so the limit is zero. If $d_g < d_f$, then we apply the LH rule d_g times to get a nonzero numerator and zero denominator, so the limit is undefined.
- (E) In all cases, we perform the LH rule $\min\{d_f, d_g\}$ times and obtain a nonzero numerator and nonzero denominator.

Your answer:		