(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-251705

(43)公開日 平成5年(1993)9月28日

(51)Int.Cl. ⁵ H 0 1 L 29/78	識別記号 4	庁内整理番号	FΙ				技術表示箇所
27/12 27/12	z						
		9056-4M 7210-4M	H 0 1 L	27/ 14		3 1 1	H E 項の数 2 (全 5 頁)
(21)出願番号	特顯平4-81483	RAD	(71)出願人	富士ゼロ	コックスを		
(22)出顧日	平成 4年(1992) 3	, 4 н	(72)発明者	浜田 兔 神奈川県		方本郷 2	2274番地 富士ゼロ
			(72)発明者	神奈川県	., .		2274番地 富士ゼロ 事業所内
			(74)代理人	弁理士	阪本 清	孝	(外1名)

(54)【発明の名称】 薄膜トランジスタ

(57)【要約】

【目的】 半導体活性層としてアモルファスシリコンよりもバンドギャップの大きい透明材質からなる半導体を使用することで、入射光に影響されず、また開口率を増大させることができ、微細化が可能である薄膜トランジスタを提供する。

【構成】 ガラス基板1上に形成された逆スタガ型薄膜トランジスタであり、半導体活性層3に導電性の低いITO膜を使用することで、入射光による光電流が発生せず、電荷の読み出しを正確に行うことができる薄膜トランジスタである。

1

【特許請求の範囲】

【請求項1】 ゲート電極とゲート絶縁膜とソース電極とドレイン電極と半導体層とを有する薄膜トランジスタにおいて、前記半導体層の伝導帯と価電子帯とのエネルギバンドギャップが3eV以上で、前記半導体層を透光性膜としたことを特徴とする薄膜トランジスタ。

【請求項2】 ゲート電極とゲート絶縁膜とソース電極 とドレイン電極と半導体層とを有する薄膜トランジスタ において、前記半導体層のキャリア濃度が10¹⁸個・c m⁻³以下で、かつ前記半導体層を透光性膜としたことを 10 特徴とする薄膜トランジスタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光電変換素子及び発光 素子を駆動する薄膜トランジスタに係り、特に光に影響 されず、素子特性を向上できる薄膜トランジスタに関す る。

[0002]

【従来の技術】従来の薄膜トランジスタ(TFT)は、ガラス等の基板上にゲート電極、ゲート絶縁層、水素化 20 アモルファスシリコン(a-Si:H)等の半導体層、ソース及びドレイン電極を積層した逆スタガ構造のものがあり、イメージセンサを始め、大面積デバイスの分野においてアクティブマトリスク型の液晶ディスプレイに代表されるフラットパネルディスプレイ等の駆動素子として用いられている。

【0003】次に、従来の逆スタガ型の薄膜トランジス タの構成について図5を使って説明する。図5は、従来 の薄膜トランジスタの断面説明図である。 図5に示すよ うに、逆スタガ型の薄膜トランジスタ(TFT)は、ガ 30 ラス等の基板20上にゲート電極21としてのクロム (Cr1)層、ゲート絶縁層22としてのシリコン窒化 膜(SiNx)、半導体活性層23としての水素化アモ ルファスシリコン (a-Si:H) 層、ゲート電極21 に対向するよう設けられたチャネル保護層24としての シリコン窒化膜(SiNx)、オーミックコンタクト層 25としてのn+型水素化アモルファスシリコン(n+ a-Si:H)層、ソース電極26及びドレイン電極2 7としてのクロム (Cr2)層、その上に層間絶縁層 29としてのポリイミド層、更に、その上に配線層30 40 又はチャネル保護層24の上部においてはa-Si:H 層の遮光用としてのアルミニウム(A1)の遮光層28 とを順次積層した構造となっている(特開昭63-93 58号公報参照)。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の薄膜トランジスタにおいては、半導体活性層にアモルファスシリコンを用いていることから、半導体活性層に光が当たると導電性を持ってスイッチング素子の特性が劣化するという問題点があった。

2

【0005】そのために、半導体活性層に光が当たらないように連光層を設ける方法があり、例えば、連光層としては金属薄膜が用いられていた。しかしながら、連光層を設けると工程が増えるだけでなく浮遊電位を持つこととなるので、遮光層をグランドレベルにする必要があり、その場合にも、寄生容量が発生するという問題点があった。

【0006】また、薄膜トランジスタを光電変換素子又は発光素子との積層構造にする場合には、図6の光電変換素子の上に薄膜トランジスタを積層した積層型光電変換装置の平面説明図に示すように、従来の積層型のものであれば、ソース電極26及びドレイン電極27が金属電極であり、単位画素内でTFTが占める割合が増大し、当然ながら開口率(単位画素内における光電変換素子の受光エリアが占める割合)の低下を招き、感度が低下するという問題点もあった。

【0007】本発明は上記実情に鑑みて為されたもので、半導体層としてアモルファスシリコンよりバンドギャップの大きい透明材質の半導体を使うことで光に影響されず、更に開口率を増大させることができる薄膜トランジスタを提供することを目的とする。

[8000]

【課題を解決するための手段】上記従来例の問題点を解決するための請求項1記載の発明は、ゲート電極とゲート絶縁膜とソース電極とドレイン電極と半導体層とを有する薄膜トランジスタにおいて、前記半導体層の伝導帯と価電子帯とのエネルギバンドギャップが3eV以上で、前記半導体層を透光性膜としたことを特徴としている。

)【0009】上記従来例の問題点を解決するための請求 項2記載の発明は、ゲート電極とゲート絶縁膜とソース 電極とドレイン電極と半導体層とを有する薄膜トランジ スタにおいて、前記半導体層のキャリア濃度が10¹⁸個 ・cm⁻³以下で、かつ前記半導体層を透光性膜としたこ とを特徴としている。

[0010]

【作用】請求項1記載の発明によれば、半導体層の伝導帯と価電子帯とのエネルギバンドギャップが3eV以上で、半導体層を透光性膜とした薄膜トランジスタとしているので、光が透過した場合でも導電性が変化しにくくなる。

【0011】請求項2記載の発明によれば、半導体層のキャリア濃度が10¹⁸個・c m⁻³以下で、かつ半導体層を透光性膜としているので、抵抗率が高くなり、光が透過した場合でも導電性が変化しにくい薄膜トランジスタとすることができる。

[0012]

【実施例】本発明の一実施例について図面を参照しながら説明する。図1は、本発明の一実施例に係る薄膜トラ50 ンジスタの断面説明図である。尚、本実施例(実施例

1)では、例として逆スタガ型の薄膜トランジスタにつ いて説明する。

【0013】図1に示すように、実施例1の薄膜トラン ジスタは、ガラス等の透明絶縁性の基板1と、基板1上 に形成されたCr等のゲート電極2と、ゲート電極2を **覆うように形成された窒化シリコン(SiNx)等のゲ** - ト絶縁層3と、ゲート絶縁層3上に酸素濃度を調製し て形成された酸化インジィウム·スズ(ITO)等の半 導体活性層8とが積層され、更に半導体活性層8上には 窒化シリコン等のチャネル保護層5が形成され、Cr等 10 のソース電極7及びドレイン電極6とがチャネル保護層 5の一部を覆うよう形成される構成となっている。

【0014】次に、実施例1の薄膜トランジスタの製造 方法について図1を使って説明する。まず、基板1上に ゲート電極2となるCrを500オングストローム程度 スパッタリングにより着膜し、フォトリソエッチングを 用いて所定の形状にパターニングする。

【0015】次に、ゲート絶縁層3として窒化シリコン をプラズマCVD法で2500オングストローム程度着 膜する。そして、膜中の酸素濃度を調整し、半導体活性 20 層8となる I TO膜をスパッタリングにより500オン グストローム程度着膜する。

【0016】具体的には、着膜時の酸素ガス濃度を1% 以上にしてスパッタリングを行うことで実現することが できる。このとき、ITO膜のキャリア濃度が1018個 ·cm-3以下となれば、縮退が解け半導体としてのIT O膜(半導体活性層8)が実現される。

【0017】そして、半導体活性層8上に、チャネル保 護層5として窒化シリコンをプラズマCVD法により2 500オングストローム程度着膜し、フォトリソエッチ 30 ングを用いて所定の形状にパターニングする。

【0018】更に、ソース電極7及びドレイン電極6と なるCrを1500オングストローム程度スパッタリン グにより着膜し、フォトリソエッチングを用いてパター ニングすることにより実施例1の薄膜トランジスタが作 製される。

【0019】一般にITOなどの酸化物の透明導電膜 は、膜中の酸素量を変化させることにより膜の導電率を 変化させることができるものである。これは、化学量論 的組成からのずれ(酸素欠損)によりキャリアが発生し 40 ていることによる。

【0020】ITO (Indium Tin Oxide) 膜の電気抵抗 率のスパッタ時での酸素濃度依存性は、図2に示すよう な特性をもっているので、Arガスと酸素ガスとを用い た反応性スパッタリングにおいて、酸素ガスの割合(O 2 /Ar+O2)を1%以上にすれば、ITO膜におけ る電気抵抗率 (ρ [$\Omega \cdot cm$]) を増加させることがで き、ITO膜の導電性を低下するように制御できるもの である。

【0021】また、光が当っても導電性が変化しないエ 50 光電変換装置の断面説明図である。

ネルギバンドギャップの大きい半導体を半導体活性層8 として用いる必要があるので、半導体活性層の伝導帯と 価電子帯とのエネルギバンドギャップが3e V以上であ ることが望ましい。従来のa-Siの半導体層ではエネ ルギバンドギャップが1.7~1.8eV程度であった が、本実施例で製造されるITO膜の半導体層ではエネ ルギバンドギャップが3eV以上とすることができる。 【0022】実施例1の薄膜トランジスタによれば、従

来透明電極として用いられていたITO膜の膜中の酸素 量を増加させることにより、膜中のキャリア濃度を10 18個·cm-3以下に制御して導電性を低下させ、半導体 活性層8にITO膜を使用することで、光に影響され ず、素子特性を向上できる効果がある。

【0023】次に、別の実施例(実施例2)として図3 の断面説明図に示す透明薄膜トランジスタについて簡単 に説明すると、実施例2の透明薄膜トランジスタは、実 施例1の薄膜トランジスタと略同様の構成となってお り、相違点はソース電極11及びドレイン電極10、更 にゲート電極9にITO膜を使用している点である。こ の場合のITO膜は、一般的な透明導電膜である。

【0024】次に、実施例2の透明薄膜トランジスタの 製造方法について図3を使って説明する。尚、実施例2 の透明薄膜トランジスタの製造方法は、実施例1の薄膜 トランジスタの製造方法と略同様であるので相違点につ いて説明することにする。

【0025】先ず、基板1上にITO膜を500オング ストローム程度スパッタリングにより着膜し、ゲート電 極9となるようフォトリソエッチングを用いてパターニ ングする。そして、実施例1の場合と同様の方法によ り、窒化シリコンから成るゲート絶縁層3、導電性の低 いITO膜から成る半導体活性層8、窒化シリコンから 成るチャネル保護層5を順次積層して所定形状にパター ニングする。

【0026】その後、透明電極であるソース電極11及 びドレイン電極10として用いられる I TO膜を150 0オングストローム程度にスパッタリング法により着膜 し、フォトリソエッチングを用いて所定の形状にパター ニングし、実施例2の透明薄膜トランジスタが作製され

【0027】実施例2の透明薄膜トランジスタによれ ば、ソース電極11及びドレイン電極10は透明電極で あるので、図3に示す透明薄膜トランジスタを光電変換 素子又は発光素子上部に一体的に形成するようにすれ ば、光電変換素子への入射光量を増大させ又は発光素子 からの発光量を増大させ、開口率を上げることができる 効果がある。

【0028】次に、実施例3として透明薄膜トランジス タを光電変換索子上部に一体的に積層した積層型光電変 換装置について図4を使って説明する。図4は、積層型

【0029】実施例3の積層型光電変換装置における光電変換素子部分は、ガラス等の透明絶縁性の基板1上に積層されたCr等の共通電極12と、共通電極12上に形成された水素化アモルファスシリコン(a-Si: H)等の光電変換層13と、光電変換層13上部に形成されたITO等の上部透明電極14とが順次積層され、更に、上部透明電極14上部には、ポリイミド等の層間絶縁膜15が全体を覆うよう形成され、ドレイン電極11が接続するためのコンタクトホールが設けられている

【0030】そして、実施例3の積層型光電変換装置における透明薄膜トランジスタ(TFT)部分は、ITO等の透明電極であるドレイン電極10及びソース電極11が層間絶縁膜15上部に形成されており、ドレイン電極10は上記コンタクトホールを介して上部透明電極14に接続するようになっている。そして、ドレイン電極10及びソース電極11上部にはTFT部分の半導体活性層8となるITO膜が形成され、更にゲート絶縁層3が半導体活性層8を覆い、ゲート絶縁層3上にITO等の透明電極であるゲート電極9が所定の形状で形成され20ている。尚、実施例3の積層型光電変換装置では、光はTFT部分のゲート電極9側から入射するようになっている。

【0031】次に、実施例3の積層型光電変換装置の製造方法について図4を使って説明する。ガラス基板1上に光電変換素子の共通電極12として、Crを1500オングストローム程度スパッタリングにより着膜し、フォトリソエッチングを用いてパターニングする。次に、光電変換層13として、a-Si:HをプラズマCVDで1.3μm着膜する。そして、上部透明電極14とし 30てITO膜をスパッタリングにより、600オングストローム程度着膜し、上部透明電極14と光電変換層13をパターニングして光電変換素子部分を作成する。

【0032】そして、ポリイミドを層間絶縁膜15として所定の形状に形成し、フォトリソエッチングによりコンタクトホールを開ける。そして、ITO膜を1500オングストローム程度スパッタリングにより着膜し、フォトリソエッチングを用いて所定の形状にパターニングして透明電極であるドレイン電極10及びソース電極11を作成する。

【0033】更に、半導体活性層8となるITO膜中の酸素濃度を実施例1で説明したように調整し、スパッタリングにより500オングストローム程度着膜する。

【0034】次に、ゲート絶縁層3となる窒化シリコンをプラズマCVD法で2500オングストローム程度着膜する。透明電極であるゲート電極9となるITO膜を

1500オングストローム程度スパッタリングにより着膜し、フォトリソエッチングを用いてパターニングすることで実施例3の積層型光電変換装置が作製される。
【0035】実施例3の積層型光電変換装置によれば、ゲート電極9とソース電極11及びドレイン電極10が従来の金属電極からTFTの透明電極に代えられており、また半導体活性層8も導電性の低いITO膜で作成されているので、光電変換素子上部にTFTが形成されても光電変換素子の受光領域が制限されることがなく、10 積層型光電変換装置の微細化による開口率の低下を防ぐことができ、入射光を効率よく利用できる効果がある。【0036】

【発明の効果】請求項1記載の発明によれば、半導体層の伝導帯と価電子帯とのエネルギバンドギャップが3e V以上で、半導体層を透光性膜とした薄膜トランジスタ としているので、光が透過した場合でも導電性が変化し にくくなり、素子特性を向上できる効果がある。

【0037】請求項2記載の発明によれば、半導体層のキャリア濃度が10¹⁸個・cm⁻³以下で、かつ半導体層)を透光性膜としているので、抵抗率が高くなり、光が透過した場合でも導電性が変化しにくい薄膜トランジスタとすることができ、素子特性を向上できる効果がある。【図面の簡単な説明】

【図1】 本発明の一実施例に係る薄膜トランジスタの 断面説明図である。

【図2】 ITO膜の抵抗率のスパッタ時の酸素濃度依存度を示す図である。

【図3】 別の実施例(実施例2)に係る透明薄膜トランジスタの断面説明図である。

30 【図4】 別の実施例(実施例3)に係る積層型光電変 換装置の断面説明図である。

【図5】 従来の薄膜トランジスタの断面説明図である。

【図6】 従来の積層型光電変換装置の平面説明図である。

【符号の説明】

1,20…基板、2,21…ゲート電極、3,22 …ゲート絶縁層、5,24…チャネル保護層、6, 27…ドレイン電極、7,26…ソース電極、8… 40 半導体活性層(ITO)、9…ゲート電極(IT O)、10…ドレイン電極(ITO)、11…ソース電極(ITO)、12…共通電極、13…光電変換層、14…上部透明電極、15…層間絶縁膜、23…半導体活性層(a-Si)、25…オーミックコンタクト層、28…遮光層、29…層間絶縁層、30…配線層

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顯公開番号

特開平5-251705

(43)公開日 平成5年(1993)9月28日

(51)Int.CL* H 0 1 L	29/784 27/12	識別配号 Z	庁內整理番号	F I		技術表示箇	
	27/146		9056—4M 7210—4M		27/ 14	311 H E: 求	
(21)出題番号	+	特顯平4-81483		(71)出顧人	000005498 富士ゼロック	ス株式会社	
(22)出題日		平成4年(1992)3月	94B · ·	(72)発明者	東京都港区赤 浜田 勉	坂三丁目3番5号 名市本郷2274番地 富士ゼ	
	•				ックス株式会	社海老名事業所內	
	•			(72)発明者	神奈川県海老	名市本郷2274番地 富士ゼ 社海老名事業所内	
				(74)代理人	弁理士 阪本	清孝 (外1名)	
·							

(54)【発明の名称】 | pppトランジスタ

(57)【要約】

【目的】 半導体活性層としてアモルファスシリコンよりもパンドギャップの大きい透明材質からなる半導体を使用することで、入射光に影響されず、また開口率を増大させることができ、微細化が可能である薄膜トランジスタを提供する。

【構成】 ガラス基板 1 上に形成された逆スタガ型薄膜トランジスタであり、半導体活性層 3 に導電性の低い 1 TO膜を使用することで、入射光による光電流が発生せず、電荷の読み出しを正確に行うことができる薄膜トランジスタである。

7 2 5 6 8 3

BEST AVAILABLE COPY

【特許請求の範囲】

【間求項】】 ゲート電極とゲート絶縁膜とソース電極とドレイン電極と半導体層とを有する薄膜トランジスタにおいて、前配半導体層の伝導帯と価電子帯とのエネルギバンドギャッブが3 e V以上で、前配半導体層を透光性膜としたことを特徴とする薄膜トランジスタ。

【発明の群細な説明】

[0001]

【産業上の利用分野】本発明は、光電変換素子及び発光 索子を駆動する複膜トランジスタに係り、特に光に影響 されず、索子特性を向上できる薄膜トランジスタに関す る。

[0002]

【従来の技術】従来の薄膜トランジスタ(TFT)は、ガラス等の基板上にゲート電極、ゲート絶縁層、水索化 20 アモルファスシリコン (a - Si: H)等の半導体層、ソース及びドレイン電極を積層した逆スタガ構造のものがあり、イメージセンサを始め、大面積デバイスの分野においてアクティブマトリスク型の液晶ディスプレイに代表されるフラットバネルディスプレイ等の駆動素子として用いられている。

【0003】次に、従来の逆スタガ型の薄膜トランジス タの構成について図5を使って説明する。図5は、従来 の薄膜トランジスタの断面説明図である。 図5 に示すよ うに、逆スタガ型の薄膜トランジスタ (TFT) は、ガ 30 ラス等の基板20上にゲート電極21としてのクロム (Cr1)層、ゲート絶縁層22としてのシリコン窒化 膜(SiNx)、半導体活性層23としでの水素化アモ ルファスシリコン (a-Si:H)層、ゲート電極21 に対向するよう設けられたチャネル保護層24としての シリコン窒化膜(SiNx)、オーミックコンタクト層 25としてのn+型水素化アモルファスシリコン (n+ a-Si:H) 層、ソース電極26及びドレイン電極2 7としてのクロム (Cr2)層、その上に層間絶縁層 29としてのポリイミド層、更に、その上に配線層30 又はチャネル保護層24の上部においてはa-Si:H 周の遮光用としてのアルミニウム (A1) の遮光層28 とを順次積層した構造となっている(特開昭83-93

[0004]

58号公報參照)。

【発明が解決しようとする課題】しかしながら、上記従来の存膜トランジスタにおいては、半部体活性層にアモルファスシリコンを用いていることから、半導体活性層に光が当たると導電性を持ってスイッチング索子の特性が劣化するという問題点があった。

【0005】そのために、半導体活性層に光が当たらないように連光層を設ける方法があり、例えば、遮光層としては金属薄膜が用いられていた。しかしながら、遮光層を設けると工程が増えるだけでなく浮遊電位を持つこととなるので、遮光層をグランドレベルにする必要があり、その場合にも、寄生容量が発生するという問題点があった。

【0006】また、薄膜トランジスタを光電変換索子又は光光素子との積層構造にする場合には、図6の光電変換索子の上に薄膜トランジスタを積層した積層型光電変換表置の平面説明図に示すように、従来の積層型のものであれば、ソース電極26及びドレイン電極27が金属電極であり、単位画案内でTFTが占める額合が増大し、当然ながら関口率(単位画案内における光電変換索子の受光エリアが占める割合)の低下を招き、感度が低下するという問題点もあった。

【0007】本発明は上記実情に鑑みて為されたもので、半導体層としてアモルファスシリコンよりパンドギャップの大きい透明材質の半導体を使うことで光に影響されず、更に関口率を増大させることができる薄膜トランジスタを提供することを目的とする。

[0008]

【課題を解決するための手段】上記従来例の問題点を解決するための請求項1記載の発明は、ゲート電極とゲート絶難膜とソース電極とドレイン電極と半導体層とを有する複膜トランジスタにおいて、前記半導体層の伝導帯と価電子帯とのエネルギバンドギャップが3 e V以上で、前記半導体層を透光性膜としたことを特徴としている。

【0009】上記従来例の問題点を解決するための請求 項2記載の発明は、ゲート電極とゲート絶縁膜とソース 電極とドレイン電極と半導体層とを有する薄膜トランジ スタにおいて、前配半導体層のキャリア濃度が10¹⁴個 ・cm⁻¹以下で、かつ前配半導体層を透光性膜としたこ とを特徴としている。

[0010]

【作用】 請求項1記載の発明によれば、半導体層の伝導 帯と餌電子帯とのエネルギバンドギャップが3eV以上 で、半導体層を選光性膜とした薄膜トランジスタとして いるので、光が透過した場合でも導電性が変化しにくく なる。

【0011】請求項2記載の発明によれば、半等体層のキャリア濃度が10¹¹個・cm⁻¹以下で、かつ半導体層を選光性膜としているので、抵抗率が高くなり、光が透通した場合でも導電性が変化したくい薄膜ドランジスタとすることができる。

{0012}

【実施例】本発明の一実施例について図面を参照しなが ち説明する。図1は、本発明の一実施例に係る蒋膜トラ 50 ンジスタの断面説明図である。尚、本実施例(実施例

1)では、例として逆スタガ型の薄膜トランジスタにつ いて説明する。

【0013】図1に示すように、実施例1の薄膜トラン ・ジスタは、ガラス等の透明絶縁性の基板1と、基板1上 に形成されたCr等のゲート電極2と、ゲート電極2を 覆うように形成された窒化シリコン(SiNx)等のゲ - ト絶縁暦3と、ゲート絶縁層3上に酸素濃度を調製し て形成された酸化インジィウム・スズ (ITO) 等の半 導体活性層8とが積層され、更に半導体活性層8上には 窒化シリコン等のチャネル保護層 5 が形成され、C r 等 のソース電極7及びドレイン電極8とがチャネル保護層 5の一部を覆うよう形成される構成となっている。

【0014】次に、実施例1の薄膜トランジスタの製造 方法について図1を使って説明する。まず、基板1上に ゲート電極2となるCェを500オングストローム程度 スパッタリングにより着膜し、フェトリソエッチングを 用いて所定の形状にパターニングする。

【0015】次に、ゲート絶縁層3として窒化シリコン をブラズマCVD法で2500オングストローム程度着 膜する。そして、膜中の酸素濃度を調整し、半導体活性 20 層8となる1TO膜をスパッタリングにより500オン グストローム程度着膜する。

【0018】具体的には、釜膜時の酸素ガス濃度を1% 以上にしてスパッタリングを行うことで実現することが できる。このとき、ITO膜のキャリア濃度が10"個 ・cm゚リ以下となれば、縮退が解け半導体としてのIT O膜(半導体活性層8)が実現される。

【0017】そんで、半導体活性層8上に、チャネル保 護暦5として窒化シリコンをプラズマCVD法により2 ングを用いて所定の形状にバターニングする。

【0018】更に、ソース電極7及びドレイン電極8と なるCェを15.0.0オングストロニム程度スパッタリン グにより着膜し、フォトリソエッチングを用いてパター ニングすることにより実施例1の薄膜トランジスタが作 製される。

【0019】一般にITOなどの酸化物の透明導電膜 は、膜中の酸素量を変化させることにより膜の導電率を |変化させることができるものである。これは、化学量論 的組成からのずれ(酸素欠損)によりキャリアが発生し ているととによる。

【0020】ITO (Indium Tin Oxide) 膜の電気抵抗 率のスパッタ時での酸素濃度依存性は、図2に示すよう な特性をもっているので、Aェガスと酸素ガスとを用い た反応性スパッタリングにおいて、酸素ガスの割合(〇 、/Ar+O,)を1%以上にすれば、ITO膜におけ る電気抵抗率 (ρ [Ω・σ]) を増加させることがで き、ITO膜の導電性を低下するように制御できるもの

【0021】また、光が当っても導電性が変化しないエ

ネルギバンドギャップの大きい半導体を半導体活性層8 として用いる必要があるので、半導体活性層の伝導帯と 価電子帯とのエネルギバンドギャップが3 e V以上であ ることが望ましい。従来のa-Siの半導体層ではエネ ルギバンドギャップが1.7~1.8 e V程度であった が、本実施例で製造されるITO膜の半導体層ではエネ ルギバンドギャップが3 e V以上とすることができる。 【0022】実施例1の薄膜トランジスタによわば、従 来透明電極として用いられていた「TO膜の膜中の酸素 量を増加させるととにより、膜中のキャリア濃度を10 ・・・・個・cm・・以下に制御して導電性を低下させ、半導体 活性層8に1TO膜を使用することで、光に影響され ず、素子特性を向上できる効果がある。

【0023】次に、別の実施例(実施例2)として図3. の断面説明図に示す透明薄膜トランジスタについて簡単 **に説明すると、実施例2の透明薄膜トランジスタは、実** 施例1の薄膜トランジスタと路同様の橡放となってお り、相違点はソース電極1.1及びドレイン電極1.0、更 にゲート電極9に1TO膜を使用している点である。 こ の場合のITO膜は、一般的な透明導電膜である。

【0024】次に、実施例2の透明薄膜トランジスタの 製造方法について図3を使って説明する。尚、実施例2 の透明薄膜トランジスタの製造方法は、実施例1の薄膜 トランジスタの製造方法と略同様であるので相違点につ いて説明することにする。 A CONTROL WOOMSTAN

【0025】先ず、基板1上にITO膜を500オング ストローム程度スパッタリングにより着膜し、ゲート電 極りとなるようフェトリンエッチングを用いてパターニ ングする。そして、実施例1の場合と同様の方法によ 500オングストローム程度着膜し、フォトリソエッチ:30. り、窒化シリコンから成るゲート絶縁層3、導電性の低 い I TO膜から成る半導体活性層 8、窒化シリコンから 成るチャネル保護層5を順次積層して所定形状にバター ニングする。

【0028】その後、透明電極であるソース電極11及 びドレイン電極10として用いられる1丁〇膜を150 0オングストローム程度にスパッタリング法により着膜 し、フォトリソエッチングを用いて所定の形状にバター ニングし、実施例2の透明薄膜トランジスタが作製され

【0.027】。実施例2の選明薄膜トランジスタによれ は、ソース電価11及びドレイン電価10は透明電価で あるので、図3に示す透明薄膜トランジスタを光電変換 索子又は発光索子上部に一体的に形成するようにすれ は、光電変換素子への入射光量を増大させ又は発光索子 からの発光量を増大させ、閉口率を上げることができる 効果がある。

【0028】次に、実施例3として透明薄膜トランジス タを光電変換累子上部に一体的に積層した積層型光電変 換装置について図4を使って説明する。 図4は、積層型 光電変換装置の断面説明図である。

【0029】実施例3の積層型光電変換装置における光電変換素子部分は、ガラス等の選明絶縁性の基板1上に積層されたCr等の共通電極12と、共通電極12上に形成された水素化アモルファスシリコン(a-Si: H)等の光電変換層13と、光電変換層13上部に形成された1TO等の上部透明電極14とが順次積層され、更に、上部透明電極14上部には、ポリイミド等の層間絶縁以15が全体を覆うよう形成され、ドレイン電極1」が接続するだめのコンタクトホールが設けられている。

【0030】そして、実施例3の積層型光電変換装置における透明薄膜トランジスタ(TFT)部分は、「TO等の透明電極であるドレイン電極10及びソース電極11が層間絶縁膜15上部に形成されており、ドレイン電極10は上記ジタクトボールを介して上部透明電極14に接続するようになっている。そして、ドレイン電極10及びソース電極11上部にはTFT部分の半導体活性層8となる「TO膜が形成され、更にゲート絶縁層3が半導体活性層8を寝い、ゲート絶縁層3上に「TO等の透明電極であるゲート電極9が所定の形状で形成され 20ている。尚、実施例3の積層型光電変換装置では、光はTFT部分のゲート電極9側から入射するようになっている。

【0031】次に、実施例3の積層型光電変換装置の製造方法化ついて図4を使って説明する。ガラス基板1上に光電変換素子の共通電極12として、Cェを1500オングストローム程度スパッタリングにより着酸し、フォトリソエッチングを用いてパターニングする。次に、光電変換層13として、a-Si:HをプラズマCVDで1、3μm着膜する。そして、上部透明電極14として1TO膜をスパッタリングにより、800オングストローム程度着膜し、上部透明電極14と光電変換層13をパターニングして光電変換素子部分を作成する。

【0032】そして、ポリイミドを層間絶縁膜15として所定の形状に形成し、フォトリソエッチングによりコンタクトホールを開ける。そして、「TO膜を1500オングストローム程度スパッタリングにより登膜し、フォトリソエッチングを用いて所定の形状にパターニングして透明電極であるドレイン電極10及びソース電極11を作成する。

【0033】更に、半導体活性圏8となる1TO膜中の 酸素濃度を実施例1で説明したように調整し、スパッタ リングにより500ポングストローム程度着膜する。 【0034】次に、ゲート絶縁層3となる窒化シリコン をブラズマCVD法で2500ポングストローム程度着 膜する。透明電低であるゲート電極9となる1TO膜を 1500オングストローム程度スパッタリングにより着膜し、フォトリソエッチングを用いてパターニングすることで実施例3の預層型光電変換装置が作製される。
[0035] 実施例3の預層型光電変換装置によれば、ゲート電極9とソース電極11及びドレイン電極10が従来の金属電極からTFTの透明電極に代えられており、また半導体活性層8も導電性の低い1TO膜で作成されているので、光電変換架子上部にTFTが形成されても光電変換紫子の受光領域が制限されることがなく、預層型光電変換装置の微細化による開口率の低下を防ぐことができ、入射光を効率よく利用できる効果がある。
[0036]

【発明の効果】請求項1記載の発明によれば、半導体層の伝導帯と価電子帯とのエネルギバンドギャッブが3 e V以上で、半導体層を透光性膜とした薄膜トランジスタ としているので、光が透過した場合でも導電性が変化し にくくなり、素子特性を向上できる効果がある。

【0037】請求項2記載の発明によれば、半導体層のキャリア協康が101個・cm 以下で、かつ半導体層を選光性限としているので、抵抗率が高くなり、光が選過した場合でも導電性が変化したくい障膜トランジスタとするととができ、素子特性を向上できる効果がある。【図面の簡単な説明】

【図1】 本発明の一実施例に係る薄膜トランシスタの 断面説明図である。

【図2】 【TO膜の抵抗率のスパッタ時の酸素濃度依存度を示す図である。

【図3】 別の実施例(実施例2)に係る透明薄膜トランジスタの断面説明図である。

【図4】 別の実施例(実施例3)に係る積層型光電変換装置の断面説明図である。

【図5】 従来の薄膜トランジスタの断面説明図であ

【図6】 従来の積層型光電変換装置の平面説明図である。

【符号の説明】

* [44.4 m 【図5] [4] [4] [4] (4.5 m [4] (4.5

especies of the experience of the control of the experience of the

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

05-251705

(43) Date of publication of application: 28.09.1993

(51) Int.CI.

H01L 29/784

H01L 27/12

H01L 27/146

(21)Application number: 04-081483 (71)Applicant: FUJI

XEROX

CO LTD

(22) Date of filing: 04.03.1992 (72) Inventor: HAMADA

TSUTOMU

ITO

HISAO

(54) THIN-FILM TRANSISTOR

(57) Abstract:

PURPOSE: To obtain a thin-film transistor, of which numerical aperture can be increased without being influenced by light, by forming a semiconductor layer with specific carrier concentration into a translucent film.

CONSTITUTION: A Cr film to be a gate electrode 2 is attached to and

patterned on a substrate 1 by

sputtering, a silicon nitride film as a gate insulating layer 3 is attached by a plasma CVD method, an oxygen content in the film is adjusted, and ITO film to be a semiconductor active layer 8 is attached by sputtering. Then, the silicon nitride film as a channel protective layer 5 is attached to and patterned on the semiconductor active layer 8 by the plasma CVD method, and the Cr film to be a source electrode 7 and drain electrode 6 is attached by sputtering and patterned by photolithographic. Therefore, the oxygen content in the ITO film is increased, a carrier concentration is controlled to 1018/cm3 and less to lower electrical conductivity and the ITO film is used as the semiconductor active layer 8 so that element characteristics can be improved without influence of light.

[Claims]

[Claim 1] A thin film transistor comprising a gate electrode, gate insulator, a source electrode, a drain electrode, and a semi-conductor layer, characterized in that an energy band gap between a conduction band and a valence band of said semi-conductor layer is 3 eV or more and said semi-conductor layer is used as the translucent film.

[Claim 2] A thin film transistor comprising a gate electrode, gate insulator, a source electrode, a drain electrode, and a semi-conductor layer, characterized in that carrier concentration of said semi-conductor layer is not more than 10¹⁸ number/cm³ and said semi-conductor layer is used as the translucent film.

[Detailed Description of the Invention]
[0001]

[Industrial Application] The present invention relates to the thin film transistor which drives a photoelectric transducer and a light emitting element, particularly relates to the thin film transistor which can improve an elemental property without being influenced by light.
[0002]

[Prior Art] The conventional thin film transistor (TFT)

has the reverse stagger structure which carried out the laminating of a gate electrode, a gate insulator, semi-conductor layers such as a hydrogenation amorphous silicon (a-Si:H), and the source and drain electrodes on substrates such as glass. The TFT is used as driving elements such as a flat-panel display represented by the active matrix type liquid crystal display in the field of a large area device including an image sensor. [0003] Next, the configuration of the thin film transistor of the conventional reverse stagger type is explained using Figure 5. Figure 5 is the cross-section explanatory view of the conventional thin film transistor. As shown in Figure 5, the thin film transistor (TFT) of a reverse stagger type has a structure which laminates in this order that on the substrate 20 such as a glass, the chromium (Cr1) layer as a gate electrode 21, the silicon nitride film (SiNx) as a gate insulator 22, the hydrogenation amorphous silicon (a-Si:H) layer as a semi-conductor active layer 23, the silicon nitride film (SiNx) as a channel protective layer 24 provided so that the gate electrode 21 might be countered, n+ type hydrogenation amorphous silicon (n+a-Si:H) layer as an ohmic contact layer 25, Chromium (Cr2) layer as the source electrode 26 and a drain electrode 27, a polyimide layer as a layer insulation layer 29 on it, and the protection-from-light layer 28 of the aluminum (Al)

as an object for protection from light of an a-Si:H layer

one by one in the upper part of a wiring layer 30 or the channel protective layer 24on it further (refer to Japanese Patent Application Laid-Open No. S63-9358).

[0004]

[Problem to be Solved by the Invention] However, in the above-mentioned conventional thin film transistor, since the amorphous silicon was used for the semi-conductor active layer, when light hit the semi-conductor active layer, there was a trouble that the property of a switching element deteriorated with conductivity.

[0005] Therefore, there is a method of preparing a protection-from-light layer so that light may not hit a semi-conductor active layer, for example, the metal thin film was used as a protection-from-light layer. However, since a process not only increases, but it would have floating potential when the protection-from-light layer was prepared, the protection-from-light layer needed to be made into the grand level, and there was a trouble that parasitic capacitance occurred, also in such a case. [0006] Moreover, there is a problem that in making a thin film transistor into a laminated structure with an photoelectric transducer or a light emitting element, as shown in the plain explanatory view of the laminating type photoelectric-conversion equipment which carried out the laminating of the thin film transistor on the photoelectric transducer of Figure 6, if it is the thing of the

conventional laminating type, the source electrode 26 and the drain electrode 27 are metal electrodes and the rate that TFT occupies within a unit pixel increased, and though it was natural, decline in a numerical aperture (rate that the light-receiving area of the photoelectric transducer in a unit pixel occupies) was caused, and there was also a trouble that sensibility fell.

[0007] In view of the above-mentioned actual condition, the present invention is to provide the thin film transistor which can increase a numerical aperture further without influencing by light by using the semi-conductor of the transparence quality of the material with a larger band gap than an amorphous silicon as a semi-conductor layer.

[8000]

[Means for Solving the Problem] The invention according to claim 1 to solve the conventional problems is a thin film transistor comprising a gate electrode, gate insulator, a source electrode, a drain electrode, and a semi-conductor layer, characterized in that an energy band gap between a conduction band and a valence band of said semi-conductor layer is 3 eV or more and said semi-conductor layer is used as the translucent film.

[0009] The invention according to claim 2 to solve the conventional problems is a thin film transistor comprising a gate electrode, gate insulator, a source electrode, a drain electrode, and a semi-conductor layer, characterized

in that carrier concentration of said semi-conductor layer is not more than 10^{18} number/cm³ and said semi-conductor layer is used as the translucent film.

[0010]

[Bffect] According to the invention set forth in claim 1, since the energy band gap of the conduction band and a valence band of the semi-conductor layer is 3 eV or more and the thin film transistor uses the translucency film as the semi-conductor layer, even when light penetrates, conductivity is able to change with difficulty.

[0011] According to the invention set forth in claim 2, the carrier concentration of a semi-conductor layer is not more than 10¹⁸ number/cm³ and the semi-conductor layer is used as the translucency film, resistivity becomes high and even when light penetrates, it can consider as the thin film transistor from which conductivity can change with difficulty.

[0012]

[Example] It explains referring to a drawing about one example of this invention. Figure 1 is the cross-section explanatory view of the thin film transistor according to one embodiment of the present invention. In addition, this example (Example 1) explains the thin film transistor of a reverse stagger type as an example.

[0013] As shown in Figure 1, the thin film transistor of Example 1 has the structure that the substrate 1 of

transparence insulation of glass etc., the gate electrodes 2 such as Cr formed on the substrate 1, the gate insulator 3 such as silicon nitride (SiNx) formed so that the gate electrode 2 might be covered, the semi-conductor activate layers 8 such as indium oxide/tin (ITO) formed by controlling oxygen concentration on the gate insulator 3 are laminated, and on the semi-conductor active layer 8, the channel protective layers 5 such as silicon nitride are formed and the source electrode 7 and the drain electrodes 6 such as Cr prepared so that they cover a part of channel protective layer 5.

[0014] Next, the manufacture approach of the thin film transistor of Example 1 is explained using Figure 1.

First, film deposition of about 500A of the Cr(s) used as the gate electrode 2 is carried out by sputtering on a substrate 1, and patterning is carried out to a predetermined configuration using photolitho etching.

[0015] Next, film deposition of about 2500A of the silicon nitride is carried out by the plasma-CVD method as a gate insulator 3. And the oxygen concentration in the film is adjusted and film deposition of about 500A of the ITO film used as the semi-conductor active layer 8 is carried out by sputtering.

[0016] It is realizable by making oxygen gas concentration at the time of film deposition 1% or more, and specifically performing sputtering. If the carrier concentration of the

ITO film becomes not more than 10¹⁸ number/cm³ at this time, degeneration will be cleared and the ITO film (semi-conductor active layer 8) as a semi-conductor will be realized.

[0017] And on the semi-conductor active layer 8, film deposition of about 2500A of the silicon nitride is carried out by the plasma-CVD method as a channel protective layer 5, and patterning is carried out to a predetermined configuration using photolitho etching.

[0018] Furthermore, the thin film transistor of Example 1 is produced by carrying out film deposition of about 1500A of the Cr(s) used as the source electrode 7 and the drain electrode 6 by sputtering, and carrying out patterning using photolitho etching.

[0019] Generally the transparence electric conduction film of oxides such as ITO can change membranous conductivity by changing the amount of oxygen in the film. This is because the carrier is generated by the gap (oxygen deficiency) from stoichiometric composition.

[0020] The oxygen concentration dependency in the time of the spatter of the electrical resistivity of the ITO (Indium Tin Oxide) film has the property as shown in Figure 2, and therefore in reactive sputtering using Ar gas and oxygen gas, since it is, if it is made comparatively $(O_2 / Ar + O_2)$ to 1% or more, the electrical resistivity $(\rho [\Omega - cm])$ in the ITO film can be made to increase, and it can control to fall

the conductivity of the ITO film.

[0021] Moreover, since it is necessary to use the large semi-conductor of an energy band gap from which conductivity does not change as a semi-conductor active layer 8 even if light hits, it is desirable for the energy band gap of the conduction band of a semi-conductor active layer and a valence band to be 3 eV or more. Although the energy band gap was about 1.7-1.8eV in the semi-conductor layer of conventional a-Si, an energy band gap is 3eV or more in the semi-conductor layer of the ITO film manufactured by this example.

[0022] According to the thin film transistor of Example 1, by make the amount of oxygen in the film of the ITO film conventionally used as a transparent electrode increase, the carrier concentration in a film be control not more than 10^{18} number/cm³ and conductivity be reduced, there be effectiveness which can improve an element property without influencing by light by using an ITO film for the semi-conductor active layer 8.

[0023] Next, when the transparence thin film transistor shown in the cross-section explanatory view of Figure 3 as another example (Example 2) is explained briefly, the transparence thin film transistor of Example 2 has the constitution similar to the thin film transistor of Example 1, and differences are the source electrode 11 and the drain electrode 10, and a point that is using the ITO film for

the gate electrode 9 further. The ITO film in this case is common transparence electric conduction film.

[0024] Next, the manufacture approach of the transparence thin film transistor of Example 2 is explained using Figure 3. In addition, since the manufacture approach of the transparence thin film transistor of Example 2 is similar to the manufacture approach of the thin film transistor of Example 1, and it is made to explain differences.

[0025] First, film deposition of about 500A of the ITO film is carried out by sputtering on a substrate 1, and patterning is carried out using photolitho etching so that it may become the gate electrode 9. And by the same approach as the case of Example 1, the laminating of the gate insulator 3 consisting of silicon nitride, the semi-conductor active layer 8 consisting of the low conductive ITO film, and the channel protective layer 5 consisting of silicon nitride is carried out one by one, and patterning is carried out to a predetermined configuration.

[0026] Then, film deposition of the ITO film used as the source electrode 11 which is a transparent electrode, and a drain electrode 10 is carried out to about 1500A by the sputtering method, patterning is carried out to a predetermined configuration using photolitho etching, and the transparence thin film transistor of Example 2 is produced.

[0027] Since the source electrode 11 and the drain

electrode 10 are transparent electrodes according to the transparence thin film transistor of Example 2, if the transparence thin film transistor shown in Figure 3 is formed in an photoelectric transducer or the light emitting element upper part in an integrated manner, the amount of incident light to an photoelectric transducer is increased, or the amount of luminescence from a light emitting element is increased, and there is effectiveness which can increase a numerical aperture.

[0028] Next, a transparence thin film transistor is explained to the photoelectric-transducer upper part using Figure 4 about the laminating mold photo-electric-conversion equipment which carried out the laminating in an integrated manner as Example 3. Figure 4 is the cross-section explanatory view of laminating mold photo-electric-conversion equipment.

[0029] The photoelectric-transducer part in the laminating type photo-electric-conversion equipment of Example 3 has the structure that the common electrodes 12 such as Cr laminated on the substrate 1 of transparence insulation of glass etc., the photo-electric-conversion layers 13 such as a hydrogenation amorphous silicon (a-Si:H) formed on the common electrode 12, the upper transparent electrodes 14 such as ITO formed in the photo-electric-conversion layer 13 upper part are laminated one by one, further, in the upper transparent

electrode 14 upper part, the interlayer insulation films 15 such as polyimide is formed in covering the whole, and the contact hole for the drain electrode 11 to connect is provided.

[0030] In the transparence thin film transistor (TFT) parts in the laminating type photo-electric-conversion equipment of Example 3, the drain electrode 10 and the source electrode 11 whose are transparent electrodes such as ITO are formed in the interlayer insulation film 15 upper part so that the drain electrode 10 is connected to the upper transparent electrode 14 through the above-mentioned contact hole. And the ITO film used as the semi-conductor active layer 8 of a TFT part is formed in the drain electrode 10 and source electrode 11 upper part, the gate insulating layer 3 covers the semi-conductor active layer 8, and the gate electrode 9 which are transparent electrodes such as ITO is formed in the predetermined configuration on the gate insulator 3. In addition, in the laminating type photo-electric-conversion equipment of Example 3, incidence of the light is carried out from the gate electrode 9 side of a TFT part.

[0031] Next, the manufacture approach of the laminating type photo-electric-conversion equipment of Example 3 is explained using Figure 4. On a glass substrate 1, as a common electrode 12 of a photoelectric transducer, film deposition of about 1500A of the Cr(s) is carried out by

sputtering, and patterning is carried out using photolitho etching. Next, 1.3 μ m film deposition of a-Si:H is carried out by plasma CVD as a photo-electric-conversion layer 13. And film deposition of about 600A of the ITO film is carried out by sputtering as an upper transparent electrode 14, patterning of the photo-electric-conversion layer 13 with the upper transparent electrode 14 to create a photoelectric-transducer part.

[0032] And polyimide having a predetermined configuration is formed as an interlayer insulation film 15, and a contact hole is opened by photolitho etching. And film deposition of about 1500A of the ITO film is carried out by sputtering, patterning is carried out to a predetermined configuration using photolitho etching, and the drain electrode 10 and the source electrode 11 which are a transparent electrode are created.

[0033] Further, the oxygen concentration in the ITO film to be the semi-conductor active layer 8 is adjusted in the manner mentioned in Example 1, and film deposition of the about 500A is carried out by sputtering.

[0034] Next, film deposition of about 2500A of the silicon nitride to be the gate insulator 3 is carried out by the plasma-CVD method. The laminating type

photo-electric-conversion equipment of Example 3 is produced by carrying out film deposition of about 1500A of the ITO film to be the gate electrode 9 which is a transparent

electrode by sputtering, and carrying out patterning using photolitho etching.

[0035] Since according to the laminating type photo-electric-conversion equipment of Example 3 the gate electrode 9, the source electrode 11, and the drain electrode 10 are replaced with the transparent electrode of TFT from the conventional metal electrode and the semi-conductor active layer 8 is also created by the low conductive ITO film, even if TFT is formed in the photoelectric-transducer upper part, the light-receiving field of a photoelectric transducer is not restricted and decrease in the aperture ratio by miniaturization of laminating type photo-electric-conversion equipment can be prevented, and it is effective in the ability to use incident light efficiently.

[0036]

[Effect of the Invention] According to the invention set forth in claim 1, the energy band gap of the conduction band and the valence band of a semi-conductor layer is 3 eV or more and the thin film transistor uses the semi-conductor layer as the translucency film, and therefore even when light penetrates conductivity change with difficulty and an element property can be improved.

[0037] According to invention set forth in claim 2, the carrier concentration of a semi-conductor layer is not more than 10^{16} number/cm³ and the semi-conductor layer is used

as the translucency film, and therefore resistivity becomes higher, and even when light penetrates, it can consider as the thin film transistor from which conductivity cannot change easily, and an element property can be improved.

[Brief Description of the Drawings]

[Figure 1] It is the cross-section explanatory view of the thin film transistor according to one embodiment of this invention.

[Figure 2] It is drawing showing the oxygen concentration dependence at the time of the spatter of the resistivity of the ITO film.

[Figure 3] It is the cross-section explanatory view of the transparence thin film transistor according to another embodiment (Example 2).

[Figure 4] It is the cross-section explanatory view of the laminating type photo-electric-conversion equipment according to another embodiment (Example 3).

[Figure 5] It is the cross-section explanatory view of the conventional thin film transistor.

[Figure 6] It is the plain explanatory view of conventional laminating type photo-electric-conversion equipment.

[Description of Notations]

1, 20 - Substrate, 2, 21 -- Gate electrode, 3, 22 -- Gate insulator, 5, 24 -- Channel protective layer, 6, 27 -- Drain electrode, 7, 26 -- Source electrode, 8 --

Semi-conductor active layer (ITO), 9 -- Gate electrode (ITO), 10 -- Drain electrode (ITO), 11 -- Source electrode (ITO), 12 -- Common electrode, 13 -- Photo-electric-conversion layer, 14 -- Upper transparent electrode, 15 -- Interlayer insulation film, 23 -- Semi-conductor active layer (a-Si), 25 -- Ohmic contact layer, 28 -- Protection-from-light layer, 29 -- Interlayer insulation layer, 30 -- Wiring layer

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER: __

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.