Solution: Tutorial 9 (Physics 2-15B11PH211)

Solution 1.

Solution 2.

QA; OB; OC = 3Å; YÅ; 3Å

$$\frac{c}{a} = 1.5$$

for tetragonal, $a = b \neq c$
 $b = a$, $c = 1.5a$
 $h: K: l = \frac{a}{0A} \cdot \frac{b}{0B} \cdot \frac{c}{0C}$
 $= \frac{a}{3} \cdot \frac{a}{4} \cdot \frac{1.5a}{3} = \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{1}{2}$
 $= 4:3.6$
 $(hKl) \equiv (436)$

AE

Solution 3.

OA! OB: OC =
$$1\mathring{A}$$
; $2\mathring{A}$; ∞

$$h: K: l = \frac{a}{0A}; \frac{b}{0B}; \frac{c}{0C}$$

$$= \frac{3}{1\mathring{A}}; \frac{2}{2\mathring{A}}; \frac{1}{\infty}$$

$$= 3; 21; 0$$

$$(hkl) = (310) Arre$$

Solution 4.

$$2r = 3.5$$
 $1mm^2$ Area

 $for fcc$, $a = J2(2r)$
 $= 1.414(3.5)$
 $= 4.94 \text{ Å}$

(100): Area of square = $a^2 = (4.94)^2 \text{ Å}^2$
No. of atoms in this area = 2
 $1 \text{ Å} = 10^{-7} \text{ mm}$
 $for fcc$, $a = J2(2r)$
 $= 4.94 \text{ Å}$

(4.94)² $\times 10^{-14} \text{ mm}^2$ Area = 2 atoms

 $for fcc$, $a = J2(2r)$
 $= 4.94 \text{ Å}$
 $for fcc$, $a = J2(2r)$
 $= 4.94 \text{ Å}$
 $for fcc$, $a = J2(2r)$
 $= 4.94 \text{ Å}$
 $= 4.16 \times 10^{12} \text{ atoms}$
 $for fcc$, $a = J2(2r)$
 $= 4.16 \times 10^{12} \text{ atoms}$

Solution 5.

Fe :
$$a = 2.8 \times 7 \text{ A}$$
 $p = 78.70 \text{ Kg/m}^3$
 $m_A = 55.85$
 $a^3 = \frac{nMA}{NA p_m} \implies n = \frac{a^3 NA p_m}{M_A}$
 $n = \frac{(2.87)^2 \times 6.023 \times 10^{23} \times 78.70}{55.85}$
 $n = 2 \implies n = 2.0063$
 $n = 2 \implies n = 2 \implies n = 2.0063$
 $n = 4 \implies n = 4 \implies n$

Solution 6. Please refer lecture slides.

Solution 7.

bcc, Reflection of (110)
$$\rightarrow$$
 20.2°
 $a = 3.15 \,\text{Å}$, $\lambda = ?$
 $2 \,\text{d}_{110} \, \sin Q_8 = \lambda$
 $\lambda = 2 \,\text{X} \, \frac{3.15}{\sqrt{2}} \, \text{X} \, \text{o}_{13} \, \text{Y} \, \text{A}^\circ$ [$\text{d}_{11} = \frac{q}{\sqrt{2}}$]
 $\lambda = 1.538 \,\text{Å}$