Varieties of Metric and Quantitative Algebras

蓮尾研 M2 日野 亘

修士論文の貢献

metric / quantitative algebra Ø variety theorem

	metric equation $s=_{arepsilon}t$	basic quantitative inference $\bigwedge_i x_i =_{\varepsilon_i} y_i o s =_{\varepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Hω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

背景: Variety Theorem

定理. [Birkhoff 1935] Σ-algebra のクラス K に対して

K は等式の族で定義可能 (= variety)

⇔ K は 商代数 (H), 部分代数 (S), 直積 (P) で閉じる

例: Σ = {・, e, (-)⁻¹} で群全体のクラス

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$x \cdot x^{-1} = e \quad \text{etc.}$$

・ 普遍代数における金字塔的定理 「代数のどのような性質が等式で表現できるか」

Metric Algebra

[Weaver 1995] [Khudyakov 2003]

距離空間上の代数 (metric algebra) と

metric equation
$$s =_{\varepsilon} t$$
 を用いる

• 関数解析や作用素環への応用

 $d(\llbracket s \rrbracket, \llbracket t \rrbracket) \leq \varepsilon$

後述

implicationで定義されたクラス

連続 な quasivarietyに対する variety theorem

定理. [Weaver 1995] metric algebra のクラス K に対して、

K が implication $\wedge s_i =_{\varepsilon_i} t_i \rightarrow s =_{\varepsilon} t$ の連続な族で定義可能

⇔ K は 部分代数 (S) と 約積 (PR) で閉じる

Quantitative Algebra

[Mardare, Panangaden & Plotkin, LICS 2016]

計算効果の代数的理論 [Plotkin & Power, 2001] の量的拡張

- metric algebra + non-expansiveness
- ・ 公理として basic quantitative inference を使う

$$\bigwedge_{i=1}^{n} \mathbf{x}_{i} =_{\varepsilon_{i}} \mathbf{y}_{i} \to s =_{\varepsilon} t \quad \begin{cases} x_{i}, y_{i} : \underline{\mathfrak{S}} \\ s, t : \underline{\mathfrak{I}} \end{cases}$$

・ 距離空間の構成 (Hausdorff距離, Kantorovich距離) が

自由代数 になる

部分集合の間の距離

確率測度の間の距離

・完全な推論体系を与えた

修士論文の貢献

- metric / quantitative algebra の普遍代数的研究
 - ・ variety theoremの証明 (strict variety および continuous variety)
 - metric algebraに対する congruence の拡張

	$\begin{array}{c} \text{metric} \\ \text{equation} \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{arepsilon_i} y_i o s =_{arepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] H_{ω} , S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

Strict Variety Theorem

	$\begin{array}{c} \text{metric} \\ \text{equation} \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{\varepsilon_i} y_i o s =_{\varepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Hω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

Strict Variety Theorem

定理. [H. 2016] metric algebra のクラス K に対して、 K が metric equation の族で定義可能 ⇔ K は 商代数 (H), 部分代数 (S), 直積 (P) で閉じる

- ・ 古典的な variety theorem のナイーブな拡張
- ・ 証明には congruential pseudometric を用いる

Congruential Pseudometric

・ congruence の 距離バージョン

定義. [this thesis] metric algebra $A = (A, d, \Sigma^A)$ に対して、 $A \perp \mathcal{O}$ pseudometric θ が **congruential** : $\Leftrightarrow \theta \leq d$ かつ、関係 $\theta(x, y) = 0$ が congruence

- · 商代数 A/θ が定義できる
- ・普遍代数の定理が再現できる
 - · 第一同型定理
 - 直積代数 ↔ permutable congruential pseudometrics

証明の概略

定理. [H. 2016] K が metric equation の族で定義可能 ⇔ K は 商代数 (H), 部分代数 (S), 直積 (P) で閉じる

証明. (⇐) Kで成立するmetric equationの全体をE.

 $A \models E \Rightarrow A \in K$ を示せば良い:

congruential pseudometric を使う

これで十分? → NO! 距離等式は**表現能力が弱すぎる**

strict variety theorem の応用: metric equation で定義可能 ⇔ **商代数**, 部分代数, 直積 で閉じる

- ・ 普遍代数として: <u>ノルム線形空間すら表せない</u> 例: $x =_{\varepsilon} y \to \lambda x =_{|\lambda|_{\varepsilon}} \lambda y$
- ・計算効果への応用として:Hausdorff距離や Kantorovich距離を自由代数として表せない
- → basic quantitative inference を使う

$$\bigwedge_{i=1}^{n} x_i =_{\varepsilon_i} y_i \to s =_{\varepsilon} t \qquad x_i, y_i$$
: 変数 s, t : 項

ω-Variety & Continuous Variety

	$\begin{array}{c} metric \\ equation \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{\varepsilon_i} y_i o s =_{\varepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Hω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

ω-Variety Theorem

[Mardare, Panangaden & Plotkin, 2017]

定理. [Mardare+, 2017] metric algebra のクラス K が basic quantitative inference の族で定義可能 \leftrightarrow K は 部分代数 (S), 直積 (P), ω -反射的商 (H_{ω}) について閉じている

- 一般に、仮定を有限個にするのにテクニックが要る
 - 今回は、商についてサイズに関する制約 (Hω)
- ・ [Weaver 1995], [Khudyakov 2003] と違って**連続性**がない

連続性条件

[Weaver 1995] [Khudyakov 2003]

	$\begin{array}{c} metric \\ equation \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{arepsilon_i} y_i o s =_{arepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Hω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

連続性条件

[Weaver 1995] [Khudyakov 2003]

定義. [Khudyakov 2003] implicationの族 Φ が連続的

$$\Leftrightarrow \bigwedge_{i=1}^n s_i =_{\varepsilon_i} t_i \to s =_{\varepsilon} t \in \Phi \text{ a}.$$

任意の ε '> ε について δ >0 が存在して、

$$\bigwedge_{i=1}^n s_i =_{\varepsilon_i + \delta} t_i \to s =_{\varepsilon'} t \in \Phi \quad \text{\refal}$$

かつ、
$$\bigwedge_{i=1}^n x_i =_0 y_i \to \sigma(\vec{x}) =_0 \sigma(\vec{y}) \in \Phi$$

・ implication の連続な族で定義されたクラスは、 metric algebra の**完備化**と<u>超積</u>について閉じる

$$\prod_i A_i/\mathcal{U}$$
 \mathcal{U} : 超フィルター

・ 後者は「位相的に閉」 [Kapovich+ 1995] → ロバストネス

Continuous Variety Theorem

	$\begin{array}{c} metric \\ equation \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{\varepsilon_i} y_i o s =_{\varepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Hω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

Continuous Variety Theorem

定理. [this thesis] metric algebra のクラス K が、basic quantitative inference の連続な族で定義可能 \leftrightarrow K は 部分代数 (S), 直積 (P), 反射的商 (H_R) および 超積 (P_U) について閉じている

- ・ 超積は 有限性 + 連続性 のため
 - 商に関するサイズの条件は無い
- ・証明には 距離空間上の自由代数 を用いる

既存研究との比較

- ・ basic quantitative inference は [Mardare+ 2016] による
 - ・ 距離空間上のK-自由代数は、Kで成り立つBQIで決まる
- サイズに関する条件について、
 - [Mardare+ 2017] 商に対して条件 (Hω)
 - [this thesis] 超積による (アイデアは[Weaver 1995])

	$\begin{array}{c} \text{metric} \\ \text{equation} \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{arepsilon_i} y_i o s =_{arepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] H_{ω} , S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

今後の展望

- ・圏論的な普遍代数論との関連、例えば:
 - monad & Eilenberg-Moore algebra (cf. [MacLane 1971])
 - factorization system [Adámek, Herrlich & Strecker 1990]
 - enriched Lawvere theory [Power 1999]
- ・距離空間としての性質

例:いつ自由代数が完備/コンパクトになるか?

まとめ

- ・ metric / quantitative algebra の variety theorem (strict variety / continuous variety) を証明した
- ・ metric algebra に対する congruence として congruential pseudometric を導入し調べた
 - 同型定理
 - 直積代数 → permutable congruential pseudometric

参考文献 (一部)

- N. Weaver. *Quasi-varieties of metric algebras*. Algebra universalis, 33(1):1–9, 1995.
- V. A. Khudyakov. Quasivarieties of metric algebras.
 Algebra and Logic, 42(6):419–427, 2003.
- R. Mardare, P. Panangaden, and G. D. Plotkin.
 Quantitative algebraic reasoning. LICS 2016.
- P. Mardare, P. Panangaden, and G. D. Plotkin. On the axiomatizability of quantitative algebras. unpublished, 2017. http://people.cs.aau.dk/~mardare/papers/Quasi.pdf

対外発表リスト

査読付き論文

 Wataru Hino, Hiroki Kobayashi, Ichiro Hasuo and Bart Jacobs. Healthiness from Duality. LICS 2016.

投稿予定

· Wataru Hino. Varieties of Metric and Quantitative Algebras.

口頭発表

- Varieties of metric algebras. 数学基礎論若手の会 2016.
- Varieties, Quasivarieties and Prevarieties: Completing the Picture.
 CALCO 2015 Early Ideas.
- Quotient monads and their algebras. CSCAT 2015.

動機づけ

計算効果

 $f: int \rightarrow int$ は $\llbracket f \rrbracket: \mathbb{Z} \rightarrow \mathbb{Z}$ と見なせないかも

- ・非停止性
- ・非決定性
- · 副作用(状態,入出力)
- 大域的脱出 (継続)
- ·確率的分歧

計算効果

モナドによる定式化

[Moggi, LICS 1989]

 $f: int \rightarrow int$ を、 $[f]: \mathbb{Z} \rightarrow T\mathbb{Z}$ として解釈する 計算効果を表すモナド

例: 非決定性 \mathcal{P} , ステート $(-\times S)^S$, 入力 $(-)^I$

利点

・ 様々な計算効果を同一の枠組みで扱える

欠点

- 計算効果の合成を統一的に扱えない
- 演算 (∨, read, write, etc.) を別途与える必要

普遍代数的定式化

[Plotkin & Power, FoSSaCS 2001]

operation + equation → free algebra

・例: nondet. choice (v) + semilattice の公理

利点

$$x \lor x = x$$
$$x \lor y = y \lor x \quad \text{etc.}$$

- ・ 計算効果の syntax に対応して自然な意味論
- · 等式論理を用いて reasoning ができる
- 普遍代数で計算効果の合成を統一的に扱える
 [Hyland, Plotkin & Power, TCS 2006]

Quantitative algebraの理論へ

- ・計算効果の代数的理論は、プログラムの**同一性**を推 論する体系を与える
- ・確率的プログラムに対しては、同一性だけでなく、 **どのくらい近いか**を調べたい
 - ・ quantitative な等式概念へ

Metric / Quantitative Algebra

- ・ metric algebra = Σ-algebra (A, Σ^A) と A上の距離 d の対
 - ・演算と距離の間に関係性を仮定しない
 - ・ 定理によっては適宜、連続性などを仮定する
- quantitative algebra = metric algebra + non-expansiveness
 - ・ 各演算 $\sigma^{A}: A^{n} \to A$ が non-expansive $d(\sigma(\vec{x}), \sigma(\vec{y})) \leq \max_{i} d(x_{i}, y_{i}) \text{ for } \vec{x}, \vec{y} \in A^{n}$
 - ・ 圏論的には自然:**距離空間の圏**での Σ-algebra
 - ・ ノルム線形空間などを扱えない (例: "2倍")

超積と Gromov-Hausdorff Metric

超積と Gromov-Hausdorff距離

- コンパクト距離空間全体のクラスに距離が定まる (Gromov-Hausdorff距離) [Gromov 1999]
 - ・ <u>距離空間</u>の収束や連続変形を扱える

例:

超積と Gromov-Hausdorff距離

定理. [Kapovich+ 1995] $\mathcal{U}:\mathbb{N}$ 上の非単項超フィルターコンパクト距離空間の列 $(X_n)_n$ が、Gromov-Hausdorff距離についてXに収束するとき、 $X\simeq\prod X_n/\mathcal{U}$

距離代数の収束:距離代数の超積

位相的に閉なクラス:超積で閉じたクラス

閉包条件

・ H: 商代数, H_{ω} : ω-反射的商, H_{R} : 反射的商

· S: 部分代数, P: 直積

• Pu: 超積, P_R: 約積, P_{SR}: 部分超積

	$\begin{array}{c} metric \\ equation \\ s =_{\varepsilon} t \end{array}$	basic quantitative inference $\bigwedge_i x_i =_{arepsilon_i} y_i o s =_{arepsilon} t$	$egin{aligned} metric \ implication \ igwedge_i s_i =_{arepsilon_i} t_i ightarrow s =_{arepsilon} t \end{aligned}$
_	[H. 2016] H, S, P	[Mardare+ 2017] Ηω, S, P	[Mardare+ 2017] S, P _{SR}
continuous		[this thesis] H _R , S, P, P _U	[Weaver 1995] S, P _R [Khudyakov 2003] S, P, L _S

ω-反射的商

定義. metric algebraの射 $f: A \to B$ が ω -反射的 : \Leftrightarrow 任意の有限部分集合 $B' \subset B$ に対して、有限部分集合 $A' \subset A$ が存在して、 $f_{A'}: A' \to B'$ が等長同型

反射的商

定義. metric algebraの射 f:A → B が 反射的

:⇔ 部分集合 A' ⊂ A が存在して f_{A'} : A' → B が等長同型

