Given:

Liquid methane is commonly used in various cryogenic applications. The critical temperature of methane is 191 K and must be maintained below this temperature to remain in the liquid phase. Methane enters a pump at 110 K and 1 MPa and leaves at 120 K and 5 MPa.

$$T_{...} := 191 \text{ K}$$

$$T_{in} := 110 \text{ K}$$

$$P_{in} := 1 \text{ MP}$$

$$T_{out} := 120 \text{ K}$$

$$T_{cr} \coloneqq 191 \; \mathrm{K} \qquad \qquad T_{in} \coloneqq 110 \; \mathrm{K} \qquad \qquad P_{in} \coloneqq 1 \; \mathrm{MPa} \qquad \qquad T_{out} \coloneqq 120 \; \mathrm{K} \qquad \qquad P_{out} \coloneqq 5 \; \mathrm{MPa}$$

Required:

Determine the entropy change during this process by

- using the table given and
- using the Tds relations. (b)

Solution:

Referring to the table @ $T_{in} = 110.0 \text{ K}$ and

$$P_{in} = 1.000 \text{ MPa shows}$$

$$s_{in} := 4.875 \frac{kJ}{kg K}$$
 $c_{p,in} := 3.471 \frac{kJ}{kg K}$

$$c_{p,in} := 3.471 \frac{\text{kJ}}{\text{kg K}}$$

Referring to the table @ $\it T_{out} = 120.0~\rm K$ and

$$P_{out} = 5.000 \text{ MPa shows}$$

$$s_{out} := 5.145 \frac{\text{kJ}}{\text{kg K}}$$

$$s_{out} \coloneqq 5.145 \, \frac{\text{kJ}}{\text{kg K}} \qquad c_{p,out} \coloneqq 3.486 \, \frac{\text{kJ}}{\text{kg K}}$$

Thus the change in entropy when using the tables is

$$\Delta s_{table} := s_{out} - s_{in} = 0.2700 \frac{\text{kJ}}{\text{kg K}}$$
 (a)

The average $\,c_{_{\mathcal{D}}}\,$ value over the process is found by

$$c_{p,avg} := \frac{c_{p,in} + c_{p,out}}{2} = 3.478 \frac{\text{kJ}}{\text{kg K}}$$

For an incompressible substance the change in entropy is given by

$$\Delta s_{Tds} := c_{p,avg} \cdot \ln \left(\frac{T_{out}}{T_{in}} \right) = 0.3027 \frac{\text{kJ}}{\text{kg K}}$$
 (b)

The percent difference is found by

$$%diff := \frac{\left| \Delta s_{table} - \Delta s_{Tds} \right|}{\Delta s_{table}} = 12.10 %$$

Properties of Liquid Methane					
Temp	Pressure	Density	Enthalpy	Entropy	Specific Heat
T, K	P, MPa	ρ , kg/m 3	h, kJ/kg	s, kJ/kg K	c_p , kJ/kg K
110	0.5	425.3	208.3	4.878	3.476
	1	425.8	209.0	4.875	3.471
	2	426.6	210.5	4.867	3.460
	5	429.1	215.0	4.844	3.432
120	0.5	410.4	243.4	5.185	3.551
	1	411.0	244.1	5.180	3.543
	2	412.0	245.4	5.171	3.528
	5	415.2	249.6	5.145	3.486