Package 'markovchain'

June 3, 2018

Type Package

Title Easy Handling Discrete Time Markov Chains

Version 0.6.9.10 **Date** 2018-06-01

Author Giorgio Alfredo Spedicato [aut,cre], Tae Seung Kang [aut], Sai Bhargav Yalamanchi [aut], Mildenberger Thoralf [ctb], Deepak Yadav [ctb], Nacho Cordón Castillo [ctb], Vandit Jain [ctb]

Maintainer Giorgio Alfredo Spedicato <spedicato_giorgio@yahoo.it>

Description Functions and S4 methods to create and manage discrete time Markov chains more easily. In addition functions to perform statistical (fitting and drawing random variates) and probabilistic (analysis of their structural proprieties) analysis are provided.

License GPL-2

Depends R (>= 3.2.0), methods

Imports igraph, Matrix, matlab, expm, stats4, parallel, Rcpp (>= 0.11.5), RcppParallel, utils, stats, grDevices

Suggests knitr, testthat, diagram, DiagrammeR, msm, etm, Rsolnp, knitcitations, rmarkdown, ctmcd

VignetteBuilder utils, knitr

LinkingTo Rcpp, RcppParallel, RcppArmadillo

SystemRequirements GNU make

LazyLoad yes

ByteCompile yes

Encoding UTF-8

BugReports http://github.com/spedygiorgio/markovchain/issues

URL http://github.com/spedygiorgio/markovchain/

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2018-06-02 22:57:08 UTC

R topics documented:

markovchain-package	
absorbingStates	
blanden	(
committorAB	
conditionalDistribution	′
craigsendi	
createSequenceMatrix	
ctmc-class	1
ctmcFit	12
expectedRewards	13
expectedRewardsBeforeHittingA	14
ExpectedTime	1:
firstPassage	10
firstPassageMultiple	. 1
fitHigherOrder	1
fitHighOrderMultivarMC	19
freq2Generator	
generatorToTransitionMatrix	
HigherOrderMarkovChain-class	
holson	
hommc-class	
ictmc-class	
impreciseProbabilityatT	
inferHyperparam	
is.accessible	
is.CTMCirreducible	
is.irreducible	2
is.TimeReversible	
kullback	
markovchain-class	
markovchainList-class	
markovchainListFit	
markovchainSequence	
multinomialConfidenceIntervals	
name	
name<	
noofVisitsDist	
predictHommc	
predictiveDistribution	
preproglucacon	
priorDistribution	
probabilityatT	
rain	
retme	
rmarkovchain	
sales	<u>.</u>

mark	ovchain-package <i>I</i>	Eas	v H	lan	ıdl	ins	o I	Dis	cre	ote	T	m	e 1	Ла	ırk	:01	, (:he	ain	ıs						
Index																										56
	verifyMarkovProperty										•											 				53
	transitionProbability																					 				52
	transition2Generator																					 				52
	tm_abs																					 				51
	steadyStates																					 				50
	states																					 				49
	show,hommc-method																					 				49

Description

The package contains classes and method to create and manage (plot, print, export for example) discrete time Markov chains (DTMC). In addition it provide functions to perform statistical (fitting and drawing random variates) and probabilistic (analysis of DTMC proprieties) analysis.

Details

Package: markovchain
Type: Package
Version: 0.6.9.10
Date: 2018-05-30
License: GPL-2

Depends: R (>= 3.4.0), methods, expm, matlab, igraph, Matrix

Author(s)

Giorgio Alfredo Spedicato Maintainer: Giorgio Alfredo Spedicato <spedicato_giorgio@yahoo.it>

References

Discrete-Time Markov Models, Bremaud, Springer 1999

Examples

```
#create some markov chains
statesNames=c("a","b")
mcA<-new("markovchain", transitionMatrix=matrix(c(0.7,0.3,0.1,0.9),byrow=TRUE,
nrow=2, dimnames=list(statesNames,statesNames)))
statesNames=c("a","b","c")
mcB<-new("markovchain", states=statesNames, transitionMatrix=</pre>
```

4 absorbingStates

absorbingStates

Various function to perform structural analysis of DTMC

Description

These functions return absorbing and transient states of the markovchain objects.

Usage

```
absorbingStates(object)
transientStates(object)
## S4 method for signature 'markovchain'
transientStates(object)
canonicForm(object)
communicatingClasses(object)
recurrentClasses(object)
period(object)
```

Arguments

object

A markovchain object.

absorbingStates 5

Value

vector, matrix or list

Author(s)

Giorgio Alfredo Spedicato

References

Feres, Matlab listing for markov chain.

See Also

markovchain

Examples

```
statesNames <- c("a", "b", "c")
markovB <- new("markovchain", states = statesNames, transitionMatrix =</pre>
                   matrix(c(0.2, 0.5, 0.3,
                              0, 1, 0,
                             0.1, 0.8, 0.1), nrow = 3, byrow = TRUE,
                             dimnames = list(statesNames, statesNames)
              ))
communicatingClasses(markovB)
recurrentClasses(markovB)
absorbingStates(markovB)
transientStates(markovB)
canonicForm(markovB)
# periodicity analysis : 1
E \leftarrow matrix(c(0, 1, 0, 0, 0.5, 0, 0.5, 0, 0.5, 0, 0.5, 0, 0.5, 0, 0.1, 0),
            nrow = 4, ncol = 4, byrow = TRUE)
mcE \leftarrow new("markovchain", states = c("a", "b", "c", "d"),
          transitionMatrix = E,
          name = "E")
is.irreducible(mcE) #true
period(mcE) #2
# periodicity analysis : 2
myMatr \leftarrow matrix(c(0, 0, 1/2, 1/4, 1/4, 0, 0,
                   0, 0, 1/3, 0, 2/3, 0, 0,
                   0, 0, 0, 0, 0, 1/3, 2/3,
                   0, 0, 0, 0, 0, 1/2, 1/2,
                   0, 0, 0, 0, 0, 3/4, 1/4,
                   1/2, 1/2, 0, 0, 0, 0, 0,
                    1/4, 3/4, 0, 0, 0, 0, 0), byrow = TRUE, ncol = 7)
myMc <- new("markovchain", transitionMatrix = myMatr)</pre>
period(myMc)
```

6 committorAB

blanden

Mobility between income quartiles

Description

This table show mobility between income quartiles for father and sons for the 1970 cohort born

Usage

```
data(blanden)
```

Format

An object of class table with 4 rows and 4 columns.

Details

The rows represent fathers' income quartile when the son is aged 16, whilst the columns represent sons' income quartiles when he is aged 30 (in 2000).

Source

Personal reworking

References

Jo Blanden, Paul Gregg and Stephen Machin, Intergenerational Mobility in Europe and North America, Center for Economic Performances (2005)

Examples

```
data(blanden)
mobilityMc<-as(blanden, "markovchain")</pre>
```

committorAB

Calculates committor of a markovchain object with respect to set A, B

Description

Returns the probability of hitting states rom set A before set B with different initial states

Usage

```
committorAB(object,A,B,p)
```

conditional Distribution 7

Arguments

object a markovchain class object

A a set of states

B a set of states

p initial state (default value : 1)

Details

The function solves a system of linear equations to calculate probaility that the process hits a state from set A before any state from set B

Value

Return a vector of probabilities in case initial state is not provided else returns a number

Examples

```
 \begin{array}{lll} transMatr <- \ matrix(c(\emptyset,\emptyset,0,1,\emptyset.5,\\ & \emptyset.5,\emptyset,\emptyset,\emptyset,\emptyset,\\ & \emptyset.5,\emptyset,\emptyset,\emptyset,\emptyset,\\ & \emptyset.5,\emptyset,\emptyset,\emptyset,\emptyset,\\ & \emptyset.0.2,0.4,0,\emptyset,\\ & \emptyset,0.8,\emptyset.6,\emptyset,0.5),\\ & nrow = 5) \\ object <- \ new("markovchain", \ states=c("a","b","c","d","e"),transitionMatrix=transMatr)\\ committorAB(object,c(5),c(3)) \\ \end{array}
```

conditionalDistribution

conditionalDistribution of a Markov Chain

Description

It extracts the conditional distribution of the subsequent state, given current state.

Usage

```
conditionalDistribution(object, state)
```

Arguments

object A markovchain object. state Subsequent state.

Value

A named probability vector

8 craigsendi

Author(s)

Giorgio Spedicato, Deepak Yadav

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchain

Examples

craigsendi

CD4 cells counts on HIV Infects between zero and six month

Description

This is the table shown in Craig and Sendi paper showing zero and six month CD4 cells count in six brakets

Usage

```
data(craigsendi)
```

Format

```
The format is: table [1:3, 1:3] 682 154 19 33 64 19 25 47 43 - attr(*, "dimnames")=List of 2 ..$ : chr [1:3] "0-49" "50-74" "75-UP" ..$ : chr [1:3] "0-49" "50-74" "75-UP"
```

Details

Rows represent counts at the beginning, cols represent counts after six months.

Source

Estimation of the transition matrix of a discrete time Markov chain, Bruce A. Craig and Peter P. Sendi, Health Economics 11, 2002.

createSequenceMatrix 9

References

see source

Examples

```
data(craigsendi)
csMc<-as(craigsendi, "markovchain")
steadyStates(csMc)</pre>
```

createSequenceMatrix Function to fit a discrete Markov chain

Description

Given a sequence of states arising from a stationary state, it fits the underlying Markov chain distribution using either MLE (also using a Laplacian smoother), bootstrap or by MAP (Bayesian) inference.

Usage

```
createSequenceMatrix(stringchar, toRowProbs = FALSE, sanitize = FALSE,
   possibleStates = character())

markovchainFit(data, method = "mle", byrow = TRUE, nboot = 10L,
   laplacian = 0, name = "", parallel = FALSE, confidencelevel = 0.95,
   confint = TRUE, hyperparam = matrix(), sanitize = FALSE,
   possibleStates = character())
```

Arguments

stringchar	It can be a nx2 matrix or a character vector or a list
toRowProbs	converts a sequence matrix into a probability matrix
sanitize	put 1 in all rows having rowSum equal to zero

possibleStates Possible states which are not present in the given sequence

data It can be a character vector or a nx2 matrix or a nx2 data frame or a list

method Method used to estimate the Markov chain. Either "mle", "map", "bootstrap" or

"laplace"

byrow it tells whether the output Markov chain should show the transition probabilities

by row.

nboot Number of bootstrap replicates in case "bootstrap" is used.

laplacian Laplacian smoothing parameter, default zero. It is only used when "laplace"

method is chosen.

name Optional character for name slot.

parallel Use parallel processing when performing Boostrap estimates.

confidencelevel

 α

level for conficence intervals width. Used only when method equal to "mle".

confint a boolean to decide whether to compute Confidence Interval or not.

hyperparam Hyperparameter matrix for the a priori distribution. If none is provided, default

value of 1 is assigned to each parameter. This must be of size kxk where k is the number of states in the chain and the values should typically be non-negative

integers.

Details

Disabling confint would lower the computation time on large datasets. If data or stringchar contain NAs, the related NA containing transitions will be ignored.

Value

A list containing an estimate, log-likelihood, and, when "bootstrap" method is used, a matrix of standards deviations and the bootstrap samples. When the "mle", "bootstrap" or "map" method is used, the lower and upper confidence bounds are returned along with the standard error. The "map" method also returns the expected value of the parameters with respect to the posterior distribution.

Note

This function has been rewritten in Rcpp. Bootstrap algorithm has been defined "euristically". In addition, parallel facility is not complete, involving only a part of the bootstrap process. When data is either a data.frame or a matrix object, only MLE fit is currently available.

Author(s)

Giorgio Spedicato, Tae Seung Kang, Sai Bhargav Yalamanchi

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

Inferring Markov Chains: Bayesian Estimation, Model Comparison, Entropy Rate, and Out-of-Class Modeling, Christopher C. Strelioff, James P. Crutchfield, Alfred Hubler, Santa Fe Institute

Yalamanchi SB, Spedicato GA (2015). Bayesian Inference of First Order Markov Chains. R package version 0.2.5

See Also

markovchainSequence, markovchainListFit

ctmc-class 11

Examples

ctmc-class

Class "ctmc"

Description

The S4 class that describes ctmc (continuous time Markov chain) objects.

Objects from the Class

Objects can be created by calls of the form new("ctmc", states, byrow, generator, ...).

Slots

```
states: Name of the states. Must be the same of colnames and rownames of the generator matrix byrow: Binary flag.
generator: Square generator matrix
name: Optional character name of the Markov chain
```

Methods

```
dim signature(x = "ctmc"): method to get the size
initialize signature(.0bject = "ctmc"): initialize method
states signature(object = "ctmc"): states method.
steadyStates signature(object = "ctmc"): method to get the steady state vector.
plot signature(x = "ctmc", y = "missing"): plot method for ctmc objects
```

Warning

Validation method is used to assess whether either columns or rows totals to zero. Rounding is used up to 5th decimal. If state names are not properly defined for a generator matrix, coercing to ctmc object leads to overriding states name with artificial "s1", "s2", ... sequence

12 ctmcFit

Note

ctmc objects are written using S4 Classes.

Author(s)

Sai Bhargav Yalamanchi, Giorgio Spedicato

References

Introduction to Stochastic Processes with Applications in the Biosciences (2013), David F. Anderson, University of Wisconsin at Madison

See Also

```
generatorToTransitionMatrix,rctmc
```

Examples

ctmcFit

Function to fit a CTMC

Description

This function fits the underlying CTMC give the state transition data and the transition times using the maximum likelihood method (MLE)

Usage

```
ctmcFit(data, byrow = TRUE, name = "", confidencelevel = 0.95)
```

expectedRewards 13

Arguments

data It is a list of two elements. The first element is a character vector denoting the

states. The second is a numeric vector denoting the corresponding transition

times.

byrow Determines if the output transition probabilities of the underlying embedded

DTMC are by row.

name Optional name for the CTMC.

confidencelevel

Confidence level for the confidence interval construnction.

Details

Note that in data, there must exist an element wise corresponding between the two elements of the list and that data[[2]][1] is always 0.

Value

It returns a list containing the CTMC object and the confidence intervals.

Author(s)

Sai Bhargav Yalamanchi

References

Continuous Time Markov Chains (vignette), Sai Bhargav Yalamanchi, Giorgio Alfredo Spedicato 2015

See Also

rctmc

Examples

```
data <- list(c("a", "b", "c", "a", "b", "a", "c", "b", "c"), c(0, 0.8, 2.1, 2.4, 4, 5, 5.9, 8.2, 9))
ctmcFit(data)
```

expectedRewards

Expected Rewards for a markovchain

Description

Given a markovchain object and reward values for every state, function calculates expected reward value after n steps.

Usage

```
expectedRewards(markovchain,n,rewards)
```

Arguments

markovchain the markovchain-class object n no of steps of the process

rewards vector depicting rewards coressponding to states

Details

the function uses a dynamic programming approach to solve a recursive equation described in reference.

Value

returns a vector of expected rewards for different initial states

Author(s)

Vandit Jain

References

Stochastic Processes: Theory for Applications, Robert G. Gallager, Cambridge University Press

Examples

 ${\tt expected Rewards Before Hitting A}$

Expected first passage Rewards for a set of states in a markovchain

Description

Given a markovchain object and reward values for every state, function calculates expected reward value for a set A of states after n steps.

Usage

```
expectedRewardsBeforeHittingA(markovchain, A, state, rewards, n)
```

ExpectedTime 15

Arguments

markovchain the markovchain-class object

A set of states for first passage expected reward

state initial state

rewards vector depicting rewards coressponding to states

n no of steps of the process

Details

The function returns the value of expected first passage rewards given rewards coressponding to every state, an initial state and number of steps.

Value

returns a expected reward (numerical value) as described above

Author(s)

Sai Bhargav Yalamanchi, Vandit Jain

ExpectedTime Returns expected hitting time from state i to state j

Description

Returns expected hitting time from state i to state j

Usage

ExpectedTime(C,i,j,useRCpp)

Arguments

C A CTMC S4 object

i Initial state ij Final state j

useRCpp logical whether to use Rcpp

Details

According to the theorem, holding times for all states except j should be greater than 0.

Value

A numerical value that returns expected hitting times from i to j

16 firstPassage

Author(s)

Vandit Jain

References

Markovchains, J. R. Norris, Cambridge University Press

Examples

```
states <- c("a","b","c","d") 
byRow <- TRUE 
gen <- matrix(data = c(-1, 1/2, 1/2, 0, 1/4, -1/2, 0, 1/4, 1/6, 0, -1/3, 1/6, 0, 0, 0, 0), 
nrow = 4,byrow = byRow, dimnames = list(states,states)) 
ctmc <- new("ctmc",states = states, byrow = byRow, generator = gen, name = "testctmc") 
ExpectedTime(ctmc,1,4,TRUE)
```

firstPassage

First passage across states

Description

This function compute the first passage probability in states

Usage

```
firstPassage(object, state, n)
```

Arguments

object A markovchain object

state Initial state

n Number of rows on which compute the distribution

Details

Based on Feres' Matlab listings

Value

A matrix of size 1:n x number of states showing the probability of the first time of passage in states to be exactly the number in the row.

Author(s)

Giorgio Spedicato

firstPassageMultiple 17

References

Renaldo Feres, Notes for Math 450 Matlab listings for Markov chains

See Also

```
conditionalDistribution
```

Examples

firstPassageMultiple function to calculate first passage probabilities

Description

The function calculates first passage probability for a subset of states given an initial state.

Usage

```
firstPassageMultiple(object, state, set, n)
```

Arguments

object	a markovchain-class object
state	intital state of the process (charactervector)
set	set of states A, first passage of which is to be calculated
n	Number of rows on which compute the distribution

Value

A vector of size n showing the first time proabilities

Author(s)

Vandit Jain

References

Renaldo Feres, Notes for Math 450 Matlab listings for Markov chains; MIT OCW, course - 6.262, Discrete Stochastic Processes, course-notes, chap -05

18 fitHigherOrder

See Also

```
firstPassage
```

Examples

fitHigherOrder

Functions to fit a higher order Markov chain

Description

Given a sequence of states arising from a stationary state, it fits the underlying Markov chain distribution with higher order.

Usage

```
fitHigherOrder(sequence, order = 2)
seq2freqProb(sequence)
seq2matHigh(sequence, order)
```

Arguments

sequence A character list.

order Markov chain order

Value

A list containing lambda, Q, and X.

Note

This function is written in Rcpp.

Author(s)

Giorgio Spedicato, Tae Seung Kang

References

Ching, W. K., Huang, X., Ng, M. K., & Siu, T. K. (2013). Higher-order markov chains. In Markov Chains (pp. 141-176). Springer US.

Ching, W. K., Ng, M. K., & Fung, E. S. (2008). Higher-order multivariate Markov chains and their applications. Linear Algebra and its Applications, 428(2), 492-507.

package version 0.2.5

See Also

markovchain

Examples

```
sequence<-c("a", "a", "b", "b", "a", "c", "b", "a", "b", "c", "a", "b", "c", "a", "b")
fitHigherOrder(sequence)</pre>
```

fitHighOrderMultivarMC

Function to fit Higher Order Multivariate Markov chain

Description

Given a matrix of categorical sequences it fits Higher Order Multivariate Markov chain.

Usage

```
fitHighOrderMultivarMC(seqMat, order = 2, Norm = 2)
```

Arguments

seqMat a matrix or a data frame where each column is a categorical sequence

order Multivariate Markov chain order. Default is 2.

Norm Norm to be used. Default is 2.

Value

an homme object

Author(s)

Giorgio Spedicato, Deepak Yadav

References

W.-K. Ching et al. / Linear Algebra and its Applications

20 freq2Generator

Examples

freq2Generator

Returns a generator matrix corresponding to frequency matrix

Description

The function provides interface to calculate generator matrix corresponding to a frequency matrix and time taken

Usage

```
freq2Generator(P, t = 1, method = "QO", logmethod = "Eigen")
```

Arguments

P relative frequency matrix

t (default value = 1)

method one among "QO"(Quasi optimaisation), "WA"(weighted adjustment), "DA"(diagonal

adjustment)

logmethod method for computation of matrx algorithm (by default : Eigen)

Value

returns a generator matix with same dimnames

References

E. Kreinin and M. Sidelnikova: Regularization Algorithms for Transition Matrices. Algo Research Quarterly 4(1):23-40, 2001

Examples

```
sample <- matrix(c(150,2,1,1,1,200,2,1,2,1,175,1,1,1,1,150),nrow = 4,byrow = TRUE)
sample_rel = rbind((sample/rowSums(sample))[1:dim(sample)[1]-1,],c(rep(0,dim(sample)[1]-1),1))
freq2Generator(sample_rel,1)

data(tm_abs)
tm_rel=rbind((tm_abs/rowSums(tm_abs))[1:7,],c(rep(0,7),1))
## Derive quasi optimization generator matrix estimate
freq2Generator(tm_rel,1)</pre>
```

generatorToTransitionMatrix

Function to obtain the transition matrix from the generator.

Description

The transition matrix of the embedded DTMC is inferred from the CTMC's generator.

Usage

```
generatorToTransitionMatrix(gen, byrow = TRUE)
```

Arguments

gen The generator matrix.

byrow Flag to determine if rows (columns) sum to 0.

Value

Returns the transition matrix.

Author(s)

Sai Bhargav Yalamanchi

References

Introduction to Stochastic Processes with Applications in the Biosciences (2013), David F. Anderson, University of Wisconsin at Madison

See Also

```
rctmc,ctmc-class
```

Examples

22 holson

HigherOrderMarkovChain-class

Class "HigherOrderMarkovChain"

Description

The S4 class that describes HigherOrderMarkovChain objects.

holson

Holson data set

Description

A data set containing 1000 life histories trajectories and a categorical status (1,2,3) observed on eleven evenly spaced steps.

Usage

data(holson)

Format

A data frame with 1000 observations on the following 12 variables.

id unique id

time1 observed status at i-th time

time2 observed status at i-th time

time3 observed status at i-th time

time4 observed status at i-th time

time5 observed status at i-th time

time6 observed status at i-th time

time7 observed status at i-th time

time8 observed status at i-th time

time9 observed status at i-th time

time10 observed status at i-th time

time11 observed status at i-th time

Details

The example can be used to fit a markovchain or a markovchainList object.

homme-class 23

Source

Private communications

References

Private communications

Examples

```
data(holson)
head(holson)
```

hommc-class

An S4 class for representing High Order Multivariate Markovchain (HOMMC)

Description

An S4 class for representing High Order Multivariate Markovchain (HOMMC)

Slots

```
order an integer equal to order of Multivariate Markovchain states a vector of states present in the HOMMC model P array of transition matrices

Lambda a vector which stores the weightage of each transition matrices in P byrow if FALSE each column sum of transition matrix is 1 else row sum = 1 name a name given to hommc
```

Author(s)

Giorgio Spedicato, Deepak Yadav

Examples

ictmc-class	An	<i>S4</i>	class	for	representing	Imprecise	Continuous	Time
	Mar	kovci	hains					

Description

An S4 class for representing Imprecise Continuous Time Markovchains

Slots

```
states a vector of states present in the ICTMC model

Q matrix representing the generator demonstrated in the form of variables
range a matrix that stores values of range of variables
name given to ICTMC
```

```
imprecise Probability at T
```

Calculating full conditional probability using lower rate transition matrix

Description

This function calculates full conditional probability at given time s using lower rate transition matrix

Usage

```
impreciseProbabilityatT(C,i,t,s,error,useRCpp)
```

Arguments

С	a ictmc class object
i	initial state at time t

t initial time t. Default value = 0

s final time

error rate. Default value = 0.001

useRCpp logical whether to use RCpp implementation; by default TRUE

Author(s)

Vandit Jain

References

Imprecise Continuous-Time Markov Chains, Thomas Krak et al., 2016

inferHyperparam 25

Examples

```
states <- c("n","y")
Q <- matrix(c(-1,1,1,-1),nrow = 2,byrow = TRUE,dimnames = list(states,states))
range <- matrix(c(1/52,3/52,1/2,2),nrow = 2,byrow = 2)
name <- "testictmc"
ictmc <- new("ictmc",states = states,Q = Q,range = range,name = name)
impreciseProbabilityatT(ictmc,2,0,1,10^-3,TRUE)</pre>
```

inferHyperparam

Function to infer the hyperparameters for Bayesian inference from an a priori matrix or a data set

Description

Since the Bayesian inference approach implemented in the package is based on conjugate priors, hyperparameters must be provided to model the prior probability distribution of the chain parameters. The hyperparameters are inferred from a given a priori matrix under the assumption that the matrix provided corresponds to the mean (expected) values of the chain parameters. A scaling factor vector must be provided too. Alternatively, the hyperparameters can be inferred from a data set.

Usage

```
inferHyperparam(transMatr = matrix(), scale = numeric(),
  data = character())
```

Arguments

transMatr A valid transition matrix, with dimension names.

scale A vector of scaling factors, each element corresponds to the row names of the

provided transition matrix transMatr, in the same order.

data A data set from which the hyperparameters are inferred.

Details

transMatr and scale need not be provided if data is provided.

Value

Returns the hyperparameter matrix in a list.

Note

The hyperparameter matrix returned is such that the row and column names are sorted alphanumerically, and the elements in the matrix are correspondingly permuted.

26 is.accessible

Author(s)

Sai Bhargav Yalamanchi, Giorgio Spedicato

References

Yalamanchi SB, Spedicato GA (2015). Bayesian Inference of First Order Markov Chains. R package version 0.2.5

See Also

markovchainFit, predictiveDistribution

Examples

is.accessible

Verify if a state j is reachable from state i.

Description

This function verifies if a state is reachable from another, i.e., if there exists a path that leads to state j leaving from state i with positive probability

Usage

```
is.accessible(object, from, to)
```

Arguments

object A markovchain object.

from The name of state "i" (beg

from The name of state "i" (beginning state).

to The name of state "j" (ending state).

Details

It wraps an internal function named .commStatesFinder.

is.CTMCirreducible 27

Value

A boolean value.

Author(s)

Giorgio Spedicato

References

James Montgomery, University of Madison

See Also

is.irreducible

Examples

is.CTMCirreducible

Check if CTMC is irreducible

Description

This function verifies whether a CTMC object is irreducible

Usage

```
is.CTMCirreducible(ctmc)
```

Arguments

ctmc

a ctmc-class object

Value

a boolean value as described above.

Author(s)

Vandit Jain

28 is.irreducible

References

Continuous-Time Markov Chains, Karl Sigman, Columbia University

Examples

is.irreducible

Function to check if a Markov chain is irreducible

Description

This function verifies whether a markovchain object transition matrix is composed by only one communicating class.

Usage

```
is.irreducible(object)
```

Arguments

object

A markovchain object

Details

It is based on .communicatingClasses internal function.

Value

A boolean values.

Author(s)

Giorgio Spedicato

References

Feres, Matlab listings for Markov Chains.

is.TimeReversible 29

See Also

```
summary
```

Examples

is.TimeReversible

checks if ctmc object is time reversible

Description

The function returns checks if provided function is time reversible

Usage

```
is.TimeReversible(ctmc)
```

Arguments

ctmc

a ctmc-class object

Value

Returns a boolean value stating whether ctmc object is time reversible a boolean value as described above

Author(s)

Vandit Jain

References

INTRODUCTION TO STOCHASTIC PROCESSES WITH R, ROBERT P. DOBROW, Wiley

30 markovchain-class

Examples

kullback

Example from Kullback and Kupperman Tests for Contingency Tables

Description

A list of two matrices representing raw transitions between two states

Usage

```
data(kullback)
```

Format

A list containing two 6x6 non - negative integer matrices

markovchain-class

Class "markovchain"

Description

The S4 class that describes markovchain objects.

Objects from the Class

Objects can be created by calls of the form new("markovchain", states, byrow, transitionMatrix, ...).

Slots

states: Name of the states. Must be the same of colnames and rownames of the transition matrix

byrow: Binary flag.

transitionMatrix: Square transition matrix

name: Optional character name of the Markov chain

markovchain-class 31

Methods

```
* signature(e1 = "markovchain", e2 = "markovchain"): multiply two markovchain objects
* signature(e1 = "markovchain", e2 = "matrix"): markovchain by matrix multiplication
* signature(e1 = "markovchain", e2 = "numeric"): markovchain by numeric vector multi-
    plication
* signature(e1 = "matrix", e2 = "markovchain"): matrix by markov chain
* signature(e1 = "numeric", e2 = "markovchain"): numeric vector by markovchain mul-
     tiplication
[ signature(x = "markovchain", i = "ANY", j = "ANY", drop = "ANY"): ...
^ signature(e1 = "markovchain", e2 = "numeric"): power of a markovchain object
== signature(e1 = "markovchain", e2 = "markovchain"): equality of two markovchain
     object
!= signature(e1 = "markovchain", e2 = "markovchain"): non-equality of two markovchain
     object
absorbingStates signature(object = "markovchain"): method to get absorbing states
canonicForm signature(object = "markovchain"): return a markovchain object into canonic
coerce signature(from = "markovchain", to = "data.frame"): coerce method from markovchain
    to data.frame
conditional Distribution signature (object = "markovchain"): returns the conditional proba-
    bility of subsequent states given a state
coerce signature(from = "data.frame", to = "markovchain"): coerce method from data.frame
    to markovchain
coerce signature(from = "table", to = "markovchain"): coerce method from table to
    markovchain
coerce signature(from = "msm", to = "markovchain"): coerce method from msm to markovchain
coerce signature(from = "msm.est", to = "markovchain"): coerce method from msm.est
     (but only from a Probability Matrix) to markovchain
coerce signature(from = "etm", to = "markovchain"): coerce method from etm to markovchain
coerce signature(from = "sparseMatrix", to = "markovchain"): coerce method from
     sparseMatrix to markovchain
coerce signature(from = "markovchain", to = "igraph"): coercing to igraph objects
coerce signature(from = "markovchain", to = "matrix"): coercing to matrix objects
coerce signature(from = "markovchain", to = "sparseMatrix"): coercing to sparseMatrix
    objects
coerce signature(from = "matrix", to = "markovchain"): coercing to markovchain objects
    from matrix one
dim signature(x = "markovchain"): method to get the size
names signature(x = "markovchain"): method to get the names of states
names<- signature(x = "markovchain", value = "character"): method to set the names</pre>
    of states
```

32 markovchain-class

```
initialize signature(.0bject = "markovchain"): initialize method

plot signature(x = "markovchain", y = "missing"): plot method for markovchain objects

predict signature(object = "markovchain"): predict method

print signature(x = "markovchain"): print method.

show signature(object = "markovchain"): show method.

sort signature(x = "markovchain", decreasing=FALSE): sorting the transition matrix.

states signature(object = "markovchain"): returns the names of states (as names.

steadyStates signature(object = "markovchain"): method to get the steady vector.

summary signature(object = "markovchain"): method to summarize structure of the markov chain

transientStates signature(object = "markovchain"): method to get the transient states.

t signature(x = "markovchain"): transpose matrix

transitionProbability signature(object = "markovchain"): transition probability
```

Warning

Validation method is used to assess whether either columns or rows totals to one. Rounding is used up to 5th decimal. If state names are not properly defined for a probability matrix, coercing to markovhcain object leads to overriding states name with artificial "s1", "s2", ... sequence. In addition, operator overloading has been applied for +, *, * = -, ! = operators.

Note

markovchain object are written in S4 Classes.

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchainSequence,markovchainFit

Examples

```
#show markovchain definition
showClass("markovchain")
#create a simple Markov chain
transMatr<-matrix(c(0.4,0.6,.3,.7),nrow=2,byrow=TRUE)
simpleMc<-new("markovchain", states=c("a","b"),
transitionMatrix=transMatr,
name="simpleMc")
#power</pre>
```

markovchainList-class 33

```
simpleMc^4
#some methods
steadyStates(simpleMc)
absorbingStates(simpleMc)
simpleMc[2,1]
t(simpleMc)
is.irreducible(simpleMc)
#conditional distributions
conditionalDistribution(simpleMc, "b")
#example for predict method
mcFit<-markovchainFit(data=sequence)</pre>
predict(mcFit$estimate, newdata="b",n.ahead=3)
#direct conversion
myMc<-as(transMatr, "markovchain")</pre>
#example of summary
summary(simpleMc)
## Not run: plot(simpleMc)
```

markovchainList-class Class "markovchainList"

Description

A class to handle non - homogeneous Markov chains

Objects from the Class

A markovchainlist is a list of markovchain objects. They can be used to model non - homogeneous discrete time Markov Chains, when transition probabilities (and possible states) change by time.

Slots

```
markovchains: Object of class "list": a list of markovchains name: Object of class "character": optional name of the class
```

Methods

```
[[ signature(x = "markovchainList"): extract the i-th markovchain
dim signature(x = "markovchainList"): number of markovchain underlying the matrix
predict signature(object = "markovchainList"): predict from a markovchainList
print signature(x = "markovchainList"): prints the list of markovchains
show signature(object = "markovchainList"): same as print
```

34 markovchainListFit

Note

The class consists in a list of markovchain objects. It can help to deal with non - homogeneous Markov chains.

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchain

Examples

markovchainListFit

markovchainListFit

Description

Given a data frame or a matrix (rows are observations, by cols the temporal sequence), it fits a non-homogeneous discrete time markov chain process (storing row). In particular a markov chain List of size = ncol - 1 is obtained estimating transitions from the n samples given by consecutive column pairs.

Usage

```
markovchainListFit(data, byrow = TRUE, laplacian = 0, name)
```

markovchainSequence 35

Arguments

data Either a matrix or a data.frame or a list object.

byrow Indicates whether distinc stochastic processes trajectionies are shown in distinct

rows.

laplacian Laplacian correction (default 0).

name Optional name.

Details

If data contains NAs then the transitions containing NA will be ignored.

Value

A list containing two slots: estimate (the estimate) name

Examples

```
# using holson dataset
data(holson)
# fitting a single markovchain
singleMc <- markovchainFit(data = holson[,2:12])
# fitting a markovchainList
mclistFit <- markovchainListFit(data = holson[, 2:12], name = "holsonMcList")</pre>
```

markovchainSequence

Function to generate a sequence of states from homogeneous Markov chains.

Description

Provided any markovchain object, it returns a sequence of states coming from the underlying stationary distribution.

Usage

```
markovchainSequence(n, markovchain, t0 = sample(markovchain@states, 1),
  include.t0 = FALSE, useRCpp = TRUE)
```

Arguments

n Sample size

markovchain markovchain object t0 The initial state

include.t0 Specify if the initial state shall be used

useRCpp Boolean. Should RCpp fast implementation being used? Default is yes.

Details

A sequence of size n is sampled.

Value

A Character Vector

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchainFit

Examples

```
# define the markovchain object
statesNames <- c("a", "b", "c")
mcB <- new("markovchain", states = statesNames,
    transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1),
    nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames)))
# show the sequence
outs <- markovchainSequence(n = 100, markovchain = mcB, t0 = "a")</pre>
```

multinomialConfidenceIntervals

A function to compute multinomial confidence intervals of DTMC

Description

Return estimated transition matrix assuming a Multinomial Distribution

Usage

```
multinomialConfidenceIntervals(transitionMatrix, countsTransitionMatrix,
  confidencelevel = 0.95)
```

name 37

Arguments

```
transitionMatrix

An estimated transition matrix.

countsTransitionMatrix

Empirical (conts) transition matrix, on which the transitionMatrix was performed.

confidencelevel

confidence interval level.
```

Value

Two matrices containing the confidence intervals.

References

Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software 5(6) (2000)

See Also

```
markovchainFit
markovchain
```

Examples

name

Method to retrieve name of markovchain object

Description

This method returns the name of markovchain object

Usage

```
name(object)
## S4 method for signature 'markovchain'
name(object)
```

Arguments

object

A markovchain object

38 name<-

Author(s)

Giorgio Spedicato, Deepak Yadav

Examples

name<-

Method to set name of markovchain object

Description

This method modify the existing name of markovchain object

Usage

```
name(object) <- value
## S4 replacement method for signature 'markovchain'
name(object) <- value</pre>
```

Arguments

object A markovchain object

value New name of markovchain object

Author(s)

Giorgio Spedicato, Deepak Yadav

noofVisitsDist 39

noofVisitsDist	return a joint pdf of the number of visits to the various states of the DTMC
----------------	--

Description

This function would return a joint pdf of the number of visits to the various states of the DTMC during the first N steps.

Usage

```
noofVisitsDist(markovchain,N,state)
```

Arguments

markovchain a markovchain-class object

N no of steps state the initial state

Details

This function would return a joint pdf of the number of visits to the various states of the DTMC during the first N steps.

Value

a numeric vector depicting the above described probability density function.

Author(s)

Vandit Jain

40 predictiveDistribution

nredi	۵+ L	lommo
$DF \cap G \cap I$	(1 -	16)[[[[[[[

Simulate a higher order multivariate markovchain

Description

This function provides a prediction of states for a higher order multivariate markovchain object

Usage

```
predictHommc(hommc,t,init)
```

Arguments

homme a homme-class object
t no of iterations to predict

init matrix of previous states size of which depends on hommc

Details

The user is required to provide a matrix of giving n previous coressponding every categorical sequence. Dimensions of the init are s X n, where s is number of categorical sequences and n is order of the home.

Value

The function returns a matrix of size s X t displaying t predicted states in each row coressponding to every categorical sequence.

Author(s)

Vandit Jain

predictiveDistribution

Function to compute the probability of observing a new data set, given a data set

Description

The function computes the probability of observing a new data set using information from a given data set. Additionally, hyperparameters can be provided.

Usage

```
predictiveDistribution(stringchar, newData, hyperparam = matrix())
```

predictiveDistribution 41

Arguments

stringchar This is the data using which the Bayesian inference is performed.

newData This is the data whose predictive probability is computed.

hyperparam This determines the shape of the prior distribution of the parameters. If none is

provided, default value of 1 is assigned to each parameter. This must be of size kxk where k is the number of states in the chain and the values should typically

be non-negative integers.

Details

The underlying method is Bayesian inference. The probability is computed by averaging the likelihood of the new data with respect to the posterior. Since the method assumes conjugate priors, the result can be represented in a closed form (see the vignette for more details), which is what is returned.

Value

The log of the probability is returned.

Author(s)

Sai Bhargav Yalamanchi

References

Inferring Markov Chains: Bayesian Estimation, Model Comparison, Entropy Rate, and Out-of-Class Modeling, Christopher C. Strelioff, James P. Crutchfield, Alfred Hubler, Santa Fe Institute

Yalamanchi SB, Spedicato GA (2015). Bayesian Inference of First Order Markov Chains. R package version 0.2.5

See Also

markovchainFit

priorDistribution

preproglucacon

Preprogluccacon DNA protein bases sequences

Description

Sequence of bases for preproglucacon DNA protein

Usage

```
data(preproglucacon)
```

Format

A data frame with 1572 observations on the following 2 variables.

V1 a numeric vector, showing original coding

preproglucacon a character vector, showing initial of DNA bases (Adenine, Cytosine, Guanine, Thymine)

Source

Avery Henderson

References

Averuy Henderson, Fitting markov chain models on discrete time series such as DNA sequences

Examples

```
data(preproglucacon)
preproglucaconMc<-markovchainFit(data=preproglucacon$preproglucacon)</pre>
```

priorDistribution

Prior Distribution

Description

Function to evaluate the prior probability of a transition matrix. It is based on conjugate priors and therefore a Dirichlet distribution is used to model the transitions of each state.

Usage

```
priorDistribution(transMatr, hyperparam = matrix())
```

priorDistribution 43

Arguments

transMatr The transition matrix whose probability is the parameter of interest.

hyperparam The hyperparam matrix (optional). If not provided, a default value of 1 is as-

sumed for each and therefore the resulting probability distribution is uniform.

Details

The states (dimnames) of the transition matrix and the hyperparam may be in any order.

Value

The log of the probabilities for each state is returned in a numeric vector. Each number in the vector represents the probability (log) of having a probability transition vector as specified in corresponding the row of the transition matrix.

Note

This function can be used in conjunction with inferHyperparam. For example, if the user has a prior data set and a prior transition matrix, he can infer the hyperparameters using inferHyperparam and then compute the probability of their prior matrix using the inferred hyperparameters with priorDistribution.

Author(s)

Sai Bhargav Yalamanchi, Giorgio Spedicato

References

Yalamanchi SB, Spedicato GA (2015). Bayesian Inference of First Order Markov Chains. R package version 0.2.5

See Also

predictiveDistribution, inferHyperparam

```
\label{eq:priorDistribution} \begin{split} \text{priorDistribution}(\text{matrix}(c(0.5,\ 0.5,\ 0.5,\ 0.5),\\ & \text{nrow} = 2,\\ & \text{dimnames} = \text{list}(c("a",\ "b"),\ c("a",\ "b"))),\\ & \text{matrix}(c(2,\ 2,\ 2,\ 2),\\ & \text{nrow} = 2,\\ & \text{dimnames} = \text{list}(c("a",\ "b"),\ c("a",\ "b")))) \end{split}
```

44 probabilityatT

nro	hah	il.	itν	atT

Calculating probability from a ctmc object

Description

This function returns the probability of every state at time t under different conditions

Usage

```
probabilityatT(C,t,x0,useRCpp)
```

Arguments

С	A CTMC S4 object
t	final time t
x0	initial state
useRCpp	logical whether to use RCpp implementation

Details

The initial state is not mandatory, In case it is not provided, function returns a matrix of transition function at time t else it returns vector of probabilities of transition to different states if initial state was x0

Value

returns a vector or a matrix in case x0 is provided or not respectively.

Author(s)

Vandit Jain

References

INTRODUCTION TO STOCHASTIC PROCESSES WITH R, ROBERT P. DOBROW, Wiley

```
states <- c("a","b","c","d") 
byRow <- TRUE 
gen <- matrix(data = c(-1, 1/2, 1/2, 0, 1/4, -1/2, 0, 1/4, 1/6, 0, -1/3, 1/6, 0, 0, 0), 
nrow = 4,byrow = byRow, dimnames = list(states,states)) 
ctmc <- new("ctmc",states = states, byrow = byRow, generator = gen, name = "testctmc") 
probabilityatT(ctmc,1,useRCpp = TRUE)
```

rain 45

rain

Alofi island daily rainfall

Description

Rainfall measured in Alofi Island

Usage

```
data(rain)
```

Format

A data frame with 1096 observations on the following 2 variables.

V1 a numeric vector, showing original coding rain a character vector, showing daily rainfall millilitres brackets

Source

Avery Henderson

References

Avery Henderson, Fitting markov chain models on discrete time series such as DNA sequences

Examples

```
data(rain)
rainMc<-markovchainFit(data=rain$rain)</pre>
```

rctmc

Function to generate a sequence of random CTMC transitions.

Description

The function generates random CTMC transitions as per the provided generator matrix.

Usage

```
rctmc(n, ctmc, initDist = numeric(), T = 0, include.T0 = TRUE, out.type = "list")
```

46 rctmc

Arguments

n The number of samples to generate.

ctmc The CTMC S4 object.

initDist The initial distribution of states.

The time up to which the simulation runs (all transitions after time T are not

returned).

include. T0 Flag to determine if start state is to be included.

out.type "list" or "df"

Details

In order to use the T0 argument, set n to Inf.

Value

Based on out.type, a list or a data frame is returned. The returned list has two elements - a character vector (states) and a numeric vector (indicating time of transitions). The data frame is similarly structured.

Author(s)

Sai Bhargav Yalamanchi

References

Introduction to Stochastic Processes with Applications in the Biosciences (2013), David F. Anderson, University of Wisconsin at Madison

See Also

generatorToTransitionMatrix,ctmc-class

rmarkovchain 47

rmarkovchain	Function to generate a sequence of states from homogeneous or non- homogeneous Markov chains.

Description

Provided any markovchain or markovchainList objects, it returns a sequence of states coming from the underlying stationary distribution.

Usage

```
rmarkovchain(n, object, what = "data.frame", useRCpp = TRUE,
   parallel = FALSE, num.cores = NULL, ...)
```

Arguments

n	Sample size
object	Either a markovchain or a markovchainList object
what	It specifies whether either a data.frame or a matrix (each rows represent a simulation) or a list is returned.
useRCpp	Boolean. Should RCpp fast implementation being used? Default is yes.
parallel	Boolean. Should parallel implementation being used? Default is yes.
num.cores	Number of Cores to be used
	additional parameters passed to the internal sampler

Details

When a homogeneous process is assumed (markovchain object) a sequence is sampled of size n. When a non - homogeneous process is assumed, n samples are taken but the process is assumed to last from the begin to the end of the non-homogeneous markov process.

Value

Character Vector, data.frame, list or matrix

Note

Check the type of input

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

48 sales

See Also

markovchainFit, markovchainSequence

Examples

```
# define the markovchain object
statesNames <- c("a", "b", "c")
mcB <- new("markovchain", states = statesNames,</pre>
   transitionMatrix = matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1),
   nrow = 3, byrow = TRUE, dimnames = list(statesNames, statesNames)))
# show the sequence
outs <- rmarkovchain(n = 100, object = mcB, what = "list")
#define markovchainList object
statesNames <- c("a", "b", "c")
mcA <- new("markovchain", states = statesNames, transitionMatrix =</pre>
   matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3,
   byrow = TRUE, dimnames = list(statesNames, statesNames)))
mcB <- new("markovchain", states = statesNames, transitionMatrix =</pre>
   matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3,
   byrow = TRUE, dimnames = list(statesNames, statesNames)))
mcC <- new("markovchain", states = statesNames, transitionMatrix =</pre>
   matrix(c(0.2, 0.5, 0.3, 0, 0.2, 0.8, 0.1, 0.8, 0.1), nrow = 3,
   byrow = TRUE, dimnames = list(statesNames, statesNames)))
mclist <- new("markovchainList", markovchains = list(mcA, mcB, mcC))</pre>
# show the list of sequence
rmarkovchain(100, mclist, "list")
```

sales

Sales Demand Sequences

Description

Sales demand sequences of five products (A, B, C, D, E). Each row corresponds to a sequence. First row corresponds to Sequence A, Second row to Sequence B and so on.

Usage

```
data("sales")
```

Format

An object of class matrix with 269 rows and 5 columns.

show,hommc-method 49

Details

The example can be used to fit High order multivariate markov chain.

Examples

```
data("sales")
# fitHighOrderMultivarMC(seqMat = sales, order = 2, Norm = 2)
```

show, hommc-method

Function to display the details of homme object

Description

This is a convenience function to display the slots of homme object in proper format

Usage

```
## S4 method for signature 'hommc'
show(object)
```

Arguments

object

An object of class homme

states

Defined states of a transition matrix

Description

This method returns the states of a transition matrix.

Usage

```
states(object)
## S4 method for signature 'markovchain'
states(object)
```

Arguments

object

A discrete markovchain object

Value

The character vector corresponding to states slot.

50 steadyStates

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchain

Examples

steadyStates

Stationary states of a markovchain object

Description

This method returns the stationary vector in matricial form of a markovchain object.

Usage

```
steadyStates(object)
## S4 method for signature 'markovchain'
steadyStates(object)
```

Arguments

object

A discrete markovchain object

Value

A matrix corresponding to the stationary states

Note

The steady states are identified starting from which eigenvectors correspond to identity eigenvalues and then normalizing them to sum up to unity. When negative values are found in the matrix, the eigenvalues extraction is performed on the recurrent classes submatrix.

tm_abs 51

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchain

Examples

tm_abs

Single Year Corporate Credit Rating Transititions

Description

Matrix of Standard and Poor's Global Corporate Rating Transition Frequencies 2000 (NR Removed)

Usage

```
data(tm_abs)
```

Format

```
The format is: num [1:8, 1:8] 17 2 0 0 0 0 0 1 455 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:8] "AAA" "AA" "A" "BBB" ... ..$ : chr [1:8] "AAA" "AA" "ABB" ...
```

References

European Securities and Markets Authority, 2016 https://cerep.esma.europa.eu/cerep-web/statistics/transitionMatrice.xhtml

```
data(tm_abs)
```

52 transitionProbability

transition2Generator Return the generator matrix for a corresponding transition matrix

Description

Calculate the generator matrix for a corresponding transition matrix

Usage

```
transition2Generator(P, t = 1, method = "logarithm")
```

Arguments

P transition matrix between time 0 and t

t time of observation

method "logarithm" returns the Matrix logarithm of the transition matrix

Value

A matrix that represent the generator of P

See Also

rctmc

Examples

```
\label{eq:mymatr} \begin{subarray}{ll} mymatr <- matrix(c(.4, .6, .1, .9), nrow = 2, byrow = TRUE) \\ Q <- transition2Generator(P = mymatr) \\ expm::expm(Q) \end{subarray}
```

transitionProbability Function to get the transition probabilities from initial to subsequent states.

Description

This is a convenience function to get transition probabilities.

Usage

```
transitionProbability(object, t0, t1)
## S4 method for signature 'markovchain'
transitionProbability(object, t0, t1)
```

verifyMarkovProperty 53

Arguments

object A markovchain object.

t0 Initial state.

t1 Subsequent state.

Value

Numeric Vector

Author(s)

Giorgio Spedicato

References

A First Course in Probability (8th Edition), Sheldon Ross, Prentice Hall 2010

See Also

markovchain

Examples

verifyMarkovProperty Vario

Various functions to perform statistical inference of DTMC

Description

These functions verify the Markov property, assess the order and stationarity of the Markov chain.

This function tests whether an empirical transition matrix is statistically compatible with a theoretical one. It is a chi-square based test

Verifies that the s elements in the input list belongs to the same DTMC

Usage

```
verifyMarkovProperty(sequence, verbose = TRUE)
assessOrder(sequence, verbose = TRUE)
assessStationarity(sequence, nblocks, verbose = TRUE)
verifyEmpiricalToTheoretical(data, object, verbose = TRUE)
verifyHomogeneity(inputList, verbose = TRUE)
```

Arguments

sequence An empirical sequence.

verbose Should test results be printed out?

nblocks Number of blocks.

data matrix, character or list to be converted in a raw transition matrix

object a markovchain object

inputList A list of items that can coerced to transition matrices

Value

Verification result

a list with following slots: statistic (the chi - square statistic), dof (degrees of freedom), and corresponding p-value

a list of transition matrices?

Author(s)

Tae Seung Kang, Giorgio Alfredo Spedicato

References

Anderson and Goodman.

See Also

markovchain

Index

!=,markovchain,markovchain-method	assessStationarity
(markovchain-class), 30	<pre>(verifyMarkovProperty), 53</pre>
*Topic classes	
ctmc-class, 11	blanden, 6
markovchain-class, 30	
markovchainList-class, 33	<pre>canonicForm(absorbingStates), 4</pre>
*Topic datasets	canonicForm, markovchain-method
blanden, 6	(markovchain-class), 30
craigsendi, 8	coerce,data.frame,markovchain-method
holson, 22	(markovchain-class), 30
kullback, 30	coerce,etm,markovchain-method
preproglucacon, 42	(markovchain-class), 30
rain, 45	coerce, markovchain, data.frame-method
sales, 48	(markovchain-class), 30
tm_abs, 51	coerce,markovchain,igraph-method
*Topic package	(markovchain-class), 30
markovchain-package, 3	coerce, markovchain, matrix-method
*, markovchain, markovchain-method	(markovchain-class), 30
(markovchain-class), 30	coerce, markovchain, sparseMatrix-method
*, markovchain, matrix-method	(markovchain-class), 30
(markovchain-class), 30	coerce, matrix, markovchain-method
*, markovchain, numeric-method	(markovchain-class), 30
(markovchain-class), 30	coerce,msm,markovchain-method
*,matrix,markovchain-method	(markovchain-class), 30
(markovchain-class), 30	coerce, msm.est, markovchain-method
*,numeric,markovchain-method	(markovchain-class), 30
(markovchain-class), 30	coerce,sparseMatrix,markovchain-method
==, markovchain, markovchain-method	(markovchain-class), 30
(markovchain-class), 30	coerce,table,markovchain-method
[,markovchain,ANY,ANY,ANY-method	(markovchain-class), 30
(markovchain-class), 30	committorAB, 6
[[,markovchainList-method	<pre>communicatingClasses (absorbingStates),</pre>
(markovchainList-class), 33	4
^,markovchain,numeric-method	conditionalDistribution, 7 , 17
(markovchain-class), 30	$conditional Distribution, {\tt markovchain-method}$
	(markovchain-class), 30
absorbingStates, 4	craigsendi, 8
absorbingStates,markovchain-method	${\sf createSequenceMatrix}, 9$
(markovchain-class), 30	ctmc-class, 11
assessOrder (verifyMarkovProperty), 53	ctmcFit, 12

INDEX 57

name < -, 38
name<-, markovchain-method (name<-), 38
names, markovchain-method
(markovchain-class), 30
names<-,markovchain-method
(markovchain-class), 30
noofVisitsDist, 39
period(absorbingStates),4
plot,ctmc,missing-method(ctmc-class)
11
plot, markovchain, missing-method
(markovchain-class), 30
predict, markovchain-method
(markovchain-class), 30
predict, markovchainList-method
(markovchainList-class), 33
predictHommc, 40
predictiveDistribution, 26 , 40 , 43
preproglucacon, 42
print,markovchain-method
(markovchain-class), 30
<pre>print,markovchainList-method</pre>
(markovchainList-class), 33
priorDistribution, 42
probabilityatT,44
•
rain, 45
rctmc, 12, 13, 21, 45, 52
recurrentClasses (absorbingStates), 4
rmarkovchain, 47
sales, 48
seq2freqProb(fitHigherOrder), 18
seq2matHigh(fitHigherOrder), 18
show, hommc-method, 49
show,markovchain-method
(markovchain-class), 30
show,markovchainList-method
(markovchainList-class), 33
sort, markovchain-method
(markovchain-class), 30
states, 49
states, ctmc-method (ctmc-class), 11
states, markovchain-method (states), 49
steadyStates, 50
steadyStates,ctmc-method(ctmc-class)
11

58 INDEX

```
steadyStates, markovchain-method
        (steadyStates), 50
summary, 29
summary,markovchain-method
        (markovchain-class), 30
t,markovchain-method
        (markovchain-class), 30
tm_abs, 51
transientStates (absorbingStates), 4
transient {\tt States,mark} ov chain-{\tt method}
        (absorbingStates), 4
transition2Generator, 52
transition Probability, 52
transitionProbability,markovchain-method
        ({\it transition Probability}),\, {\it 52}
{\tt verifyEmpiricalToTheoretical}
        (verifyMarkovProperty), 53
verifyHomogeneity
        (verifyMarkovProperty), 53
verifyMarkovProperty, 53
```