Assignment 1

Ryan Goulding – 100556101 Justin Estaris – 100528069

Part 1

a)

$$T(n) = 2T(\frac{n}{2}) + 3n + 7$$

 $a = 2, b = 2, \log_2 2 = 1, k = 1, p = 0$
 $= \theta(n \log n)$

b)

$$T(n) = 7T\left(\frac{n}{2}\right) + n^2$$
 $a = 7, b = 2, k = 2, p = 0$
 $\log_2 7 = 2.81$
 $f(n) = n = O(n^{2-\epsilon}) for \ some \ \epsilon > 0? \ Yes!$
Case 1. applies and $T(n) = \theta(n^{\log_2 7}) = \theta(n^3)$

c)

Solution	Work
$T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$	
$=3T\left(\frac{n}{2}\right)+n$	
$=3\left[3T\left(\frac{n}{2^2}\right)+\frac{n}{2}\right]+n$	$T\left(\frac{n}{2}\right) = 3T\left(\frac{n}{2^2}\right) + \frac{n}{2}$
$= 3^2 T(\frac{n}{2^2}) + 3\left(\frac{n}{2}\right) + n$	
$=3^2T(\frac{n}{2^2})+3(\frac{n}{2})+n$	
$= 3^{2} \left[3T \left(\frac{n}{2^{3}} \right) + \left(\frac{n}{2^{2}} \right) \right] + 3\left(\frac{n}{2} \right) + n$	$T\left(\frac{n}{2^2}\right) = 3T\left(\frac{n}{2^3}\right) + \left(\frac{n}{2^2}\right)$
$=3^3T\left(\frac{n}{2^3}\right)+3\left(\frac{n}{2}\right)+3\left(\frac{n}{2}\right)+n$	

$=3^kT\left(\frac{n}{2^k}\right)+k\left(\frac{3n}{2}\right)+n$	
$=3^nT(0)+n\left(\frac{3n}{2}\right)+n$	
$=3^n+n\left(\frac{3n}{2}\right)+n$	
$= O(3^n)$	

d)

Part 2

Category	Function		

n!	n!	
c ⁿ	4 ⁿ	2 ⁿ
c^{logn}	$2^{\log_2^n}$	
n^{71}	$n^{71}+5^{n}+17n$	
cn ⁴	3⁄4n ⁴	
n^3	n ³ -logn	n^3
n^2	$3n^2+7n+15$	n^2
$\sqrt{n3}$	√n3	
n	18n	
clog _b n	Log ₁₀ n	$3\log_2 n$

Part 3

$$T(n) = T(n/2+cs) + T(n/2) + 3n$$

$$O(n) = 4n$$