Finite Model Theory

Heinz-Dieter Ebbinghaus Jörg Flum

June 15, 2020

Contents

1	Prel	Preliminaries														2	2						
	1.1	Struct	ures																			7	2
		1.1.1	Graph																			-	2

Preliminaries 1

1.1 Structures

Vocabularies are finite sets that consist of relation symbols and constant **symbols**. We denote vocabularies by τ , σ ,.... A *vocabulary is *relational if it does not contain constants.

1.1.1 Graph

Let $\tau = \{E\}$ with a binary relation symbol E. A **graph** (or **undirected graph**) is a τ -structure $\mathcal{G} = (G, E^G)$ satisfying 1. for all $a \in G$: not $E^G aa$

- 2. for all $a, b \in G$: if $E^G ab$ then $E^G ba$

By GRAPH we denote the class of **finite** graphs. If only (1) is required, we speak of a digraph