NAME:	

ChBE 2130 Thermodynamics I Fall 2015 Exam 1

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________
- Submit your crib sheet with your exam.

Problem	Possible Points	Score
1	20	
2	28	
3	28	
4	24	
Crib Sheet	Yes No (-5)	
Total	100	

- 1. Concept Questions [20 pts: 5 points each, no partial credit within sub-problem]
 - From diagram, what is the condition of water at 370 K and 15 MPa?
 - a. Vapor
 - b. Liquid
 - c. Mixed Phase
 - d. Supercritical
 - From diagram, what is the approx. temperature in a 500 cm³ vessel containing 5 mole of water at 9 MPa?

- b. 200° C
- c. 300° C
- d. 400° C

- Water is in vapor-liquid (mixed) equilibrium in a fixed pressure container.
 Heat is added until the temperature increases by 5°C. How does the phase change?
 - a. Some vapor is condensed
 - b. All vapor is condensed
 - c. Some liquid evaporates
 - d. All liquid evaporates
- A gas undergoes reversible expansion from 40 bar and 500 K to 5 bar and 500 K by one of two pathways. Which process creates more work?
 - a. A constant pressure process to the final volume and then constant volume process to 5 bar.
 - b. A constant volume process to 5 bar and then constant pressure to the final volume.
 - c. Same work for both

2. **[28 pts]** Consider an isothermal, mechanically reversible compression of a fluid from V_1 to V_2 . Develop the equation for heat (in terms of V_1 and V_2) using the van der Waals equation of state:

$$P = \frac{RT}{V - b} - \frac{a}{V^2}$$

Assume that the coefficients, a and b, are constant and the internal energy is only a function of temperature.

Show intermediate steps for complete credit.

- 3. An ideal gas undergoes the following cyclic process in a closed system:
 - Initially at 30°C and 100 kPa (state 1)
 - Adiabatically compressed to 500 kPa (state 2)
 - Cooled at constant pressure to 30°C (state 3)
 - Expanded isothermally to the original state

The process steps are mechanically reversible. $C_p = (7/2) R$ and $C_v = (5/2) R$

a. [12 pts] Complete the following table:

State	Т (К)	P (kPa)
1		
2		
3		

b. [16 pts] Determine W for each step and the total W for one process cycle

Step	W (J/mol)
12	
23	
31	
Total	

4.	At 1 atm, the heat of fusion at 0°C is 6.02 kJ/mol and the heat of vaporization at 100°C is 40.6 kJ/mol.
	a. [2 pts] What is the phase of the inlet stream?
	b. [2 pts] What is the phase of the outlet stream?
	c. [20 pts] How much heat is required in kJ/s to be added to the boiler?