Sprawozdanie z laboratorium nr 7.

1.Wstęp

Zadanie, które mieliśmy wykonać to implementacja struktury danych drzewa czerwonoczarnego lub AVL. Następnie należało wykonać pomiary czasu odczytu danych. Wybraną przeze mnie strukturą są drzewa czerwono-czarne. Samoorganizująca się odmiana drzew binarnych.

2. Realizacja

Implementacja drzewa czerwono-czarnego została wykonana na podstawie "Wprowadzenie do algorytmów" autorstwa T. Cormen'a. Następie by dokonać pomiaru drzewo zostawało wypełnione najgorszym przypadkiem dla drzewa binarnego czyli posortowanymi rosnąco/malejąco liczbami. Pomiar wyszukiwania został wykonany na 3 różne sposoby.

- 1. szukana wartość zostawała dobrana losowo z wartości pomiędzy $^{1\!\!/}_4$ do $^{3\!\!/}_4$ dodanych elementów.
- 2. szukana wartość to pierwsza dodana liczba
- 3. szukana wartość to ostatnia dodana liczba

3. Wyniki

Elementy	rand [ns]
10	521
500	501
1000	421
2000	631
3000	623
4000	782
5000	952
10000	1160
50000	886
100000	1274
200000	2244
300000	1765
500000	2221
1000000	2504

Elementy	ostatni [ns]
10	373
500	259
1000	268
2000	279
3000	297
4000	335
5000	312
10000	594
50000	467
100000	520
200000	610
300000	659
500000	652
1000000	859

Tabela 1. Wyniki pomiarów

Elementy	pierwszy [ns]
10	420
500	269
1000	285
2000	314
3000	350
4000	336
5000	320
10000	641
50000	495
100000	778
200000	787
300000	1298
500000	935
1000000	1156

Zależności czasu wyszukiwania od ilości danych

Wykres 1. Zależności czasu od ilości danych

4. Wnioski

Drzewa czerwono czarne poprzez swoje algorytmy wyrównujące są bardzo dobrą alternatywą dla list oraz drzew binarnych w których przypadku niekorzystne dodawanie elementów również tworzy listę. Na podstawie powyższego wykresu można pzybliżyć krzywą zależności czasowej do krzywej LOG(N) co potwierdza złożoność obliczeniową na poziomie O(LOG(N)) dla niekorzystnych przypadków. Wybór samego elemntu czy jest na początku, na końcu czy w środku nie powoduje dużych różnic w czasie wyszukiwania, w przypadku największej ilości danych N=10^6 różnice pomiędzy czasem dla ostatniego elementu a dobranego losowo to zaledwie 1000 nanosekund co jest zaledwie jedną mikrosekundą. Porównując z poprzednim sprawozdanie z tablic asocjacyjnych, które odznaczają się bardzo szybkim czasem wyszukiwania wartości, drzewa czerwono czarne otrzymują równie dobre wyniki co w dodatku z prostą implementacją i brakiem konieczności tworzenia zaawansowanych funkcji hashujących tworzy z nich bardzo dobre struktury danych.