

Formation TCP/IP

Sommaire

- Modèle en couches
- Couche 1 Accès au réseau
- Couche 2 Internet
- Couche 3 Transport de données
- Couche 4 Application

Modèle OSI et modèle TCP/IP

L'encapsulation

La couche accès au réseau

Couche physique : achemine signaux électriques

Couche liaison de données : communication entre équipements de même sous-réseau

Comment on communique?

- Identification: adresse MAC (ex: 8C-8C-AA-E6-D9-CE)
 Adresse MAC de broadcast: FF-FF-FF-FF-FF
- Equipements:

Le hub

Redistribue l'information à tout le monde

Le switch

Redirige l'information grâce à sa table de commutation

L'entête Ethernet

80 00 20 7A 3F 3E 80 00 20 20 3A AE 08 00 IP, ARP, etc. 00 20 20 3A **Destination MAC Address** Source MAC Address EtherType **CRC Checksum** Payload **MAC Header** Data (46 - 1500 bytes) (14 bytes) (4 bytes) **Ethernet Type II Frame** (64 to 1518 bytes)

Allô? J'ai le bon numéro?

- Pour faire le lien entre IP et MAC : le protocole ARP
- 2 étapes :
 - o Broadcast : Qui a telle IP?
 - o Réponse : J'ai telle IP et j'ai telle MAC
- Aucun moyen de vérifier si une réponse a été demandée. On peut donc directement forger les requêtes ARP et se faire passer pour un autre ordinateur : c'est l'ARP spoofing
- On peut ainsi remodeler complètement le réseau et se placer comme centre du réseau et faire en sorte que tout passe par nous
- nemesis arp -v -r -d interface -S IP_source -D IP_destination -h MAC_expéditrice -m MAC_cible -H
 MAC_source -M MAC_destination
- arpspoof –i interface –t cibles hôte_cible

Comment je vais sur Internet dans tout ça?

- IPv4 et IPv6
- IPv4:
 - o Quelques IPs réservées au local : 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
- On ne peut vraiment s'attribuer n'importe quelle IP
- Trame IPv4:

Avançons masqués

- Internet étant le réseau des réseaux, il y a la notion de réseau qui arrive.
- Comment on définit un réseau et qu'on appartient à un réseau ?
 - Couple IP + masque
 - IP de réseau et IP de broadcast
 - Le masque permet aussi de savoir le nombre d'IP disponibles dans un réseau
- Exemple: 192.168.1.0/24
 - o IP de réseau : 192.168.1.0 et masque : 255.255.255.0
 - Le masque permet de retrouver le réseau auquel appartient à une IP :
 - Exemple avec 192.168.1.2 : 192.168.1.2 & 255.255.255.0 = 192.168.1.0

```
11000000.10101000.00000001.00000010
& 111111111111111111111111.00000000
= 11000000.10101000.00000001.00000000
```

Comment on transporte les données?

Quatres protocoles principaux:

- TCP: garanti l'arrivée des données, qu'elles soient replacées dans le bonne ordre et gère la congestion sur le réseau
- UDP: plus léger mais aucune garantie que les données arrivent. Permet aussi de construire son propre protocole de transport par-dessus simplement. Prioritaire sur TCP
- ICMP: ping mais aussi message d'erreur
- QUIC : nouveau protocol très récent construit sur udp qui apporte le chiffrement au niveau de la couche transport notamment. Principale utilisation : HTTP 3

Ping? Pong.

Header ICMP :

- Ping of death:
 - Un ping ne peut transporter que 2^16 octets de données. Sur certaines vieilles implémentation, un ping qui transporte plus de données peut faire crasher la machine

Allô? Allô, j'ai bien reçu ton allô. Moi aussi, on peut maintenant parler!

Header TCP :

- Attaque DOS par SYN flooding
- On peut aussi détourner un flux TCP en envoyant un drapeau RST puis en interceptant le 3-way handshake TCP
- Peut servir à scanner les ports d'une machine

La Brique de base

Header UDP

Port Source	Port Destination	Longueur	Somme de contrôle	Données
(16 bits)	(16 bits)	(16 bits)	(16 bits)	(longueur variable)

- Problème : comme il n'y a aucune mise en place de session, il est très simple à utiliser pour faire des DOS avec des grands facteurs d'amplification :
 - Exemple : faire des requêtes DNS mais rediriger la réponse vers la machine cible
 - DDOS de DynDNS en 2016 : des centaines de milliers de machines ont flooder les serveurs DNS de DynDNS d'un nombre très important de requêtes UDP (~1Tbps) qui ont fini par faire tomber les machines pendant plusieurs heures.

TCP vs UDP

QUIC

- Créé spécialement pour le web et HTTP 3 est construit dessus
- Reprend toutes les propriétés de TCP et rajoute les propriétés suivantes :
 - o chiffrement (on dit chiffrer et pas crypter cf chiffrer.info)
 - stream multiplexing
 - latence réduite
 - migration de connexion en cas de changement d'ip

L'application

- Dans la couche application se situent les données qui doivent être transportées et qui nous intéressent.
- Leur format va dépendre du type de données et du protocole utilisé pour les transporter (HTTP, FTP, POP, IMAP, SMTP, DNS, etc.)

Des questions?