

UV Traitement du signal

Cours 6

Du signal continu au signal numérique Échantillonnage, reconstruction et quantification

ASI 3

Contenu du cours

- Introduction
 - Pourquoi numériser ?
 - Chaîne de numérisation
- Echantillonnage idéal
 - Définition
 - TF du signal échantillonné Analyse du spectre
 - ◆ Théorème de Shannon
- Echantillonnage réel
 - Définition
 - Influence sur le spectre du signal échantillonné
- Filtrage anti-repliement
- Reconstruction du signal
- Quantification

Du signal analogique au signal numérique

- Donc un signal numérique est une suite de valeurs
 Ces valeurs sont codées sur un certain nombre de bits
- C'est donc une suite de 0 et de 1 ...

Introduction

- Propriétés du numérique, c'est à dire du codage en 0/1
 - La numérisation d'un signal est une perte d'information...
 - Permet d'effectuer les traitements sur des machines informatiques, spécialisées dans le TS ou non (DSP, PC)
 - Puissance, rapidité, coût
 - Flexibilité (système numérique = logiciel : facile à modifier, ex. : modems numériques), contrairement aux montages électroniques ...
 - Codage interne des 0 et des 1 souvent en 0/5V : A priori pas d'altération du signal, robuste au bruit une fois numérisé
 - Exemple : un 0 codé sur 0V parasité par un bruit de 0.5V sera toujours un 0 ...
 - Précision insensible au temps, à la température, à l'usure du système, etc.
 - Pas d'erreur lors de la transmission, la recopie, le stockage, etc.
 - Adéquation entre simulation et traitement : simuler du numérique, c'est en faire!

Introduction

- Applications
 - TV numérique
 - Enregistrement audio, vidéo
 - Téléphonie mobile.
 - **•** ...
- Attention : on ne peut pas dire que Numérique > analogique
 - Dépend de la qualité de l'échantillonnage et de la quantification
 - Certains disent que le signal perd une partie de son âme ...
- On ne peut pas dire l'inverse non plus!

Il est nécessaire de comprendre comment se fait le passage du monde analogique à celui du numérique. Dans ce cours, on se placera dans le contexte de signaux réels.

Introduction

Chaîne de numérisation

Echantillonnage

Prélèvement de la valeur du signal continu x(t) à des intervalles de temps t_n . Généralement les t_n sont régulièrement espacés ; $T_e = t_{n+1} - t_n$ est appelé <u>période d'échantillonnage</u>. On obtient la suite de valeurs $x_e(t) = \{x(t_n)\}$ avec $t_n = nT_e$.

Quantification

Approximation de chaque valeur $x_e(t)$ par un multiple entier d'une quantité élémentaire q appelée échelon de quantification.

Codage binaire

Transformation de la valeur quantifiée en mot binaire exploitable par le calculateur

Échantillonnage idéal

Échantillonnage idéal : prélèvement pendant un <u>temps infiniment court</u> des valeurs de x(t) à $t = nT_e$ (multiple entier de T_e).

Modélisation mathématique

L'échantillonnage correspond à la multiplication de x(t) par un peigne de Dirac $\coprod_{T_{\rho}}(t)$

$$x_e(t) = x(t). \coprod_{T_e}(t) \longrightarrow x_e(t) = x(t). \sum_{n=-\infty}^{+\infty} \delta(t - nT_e)$$

En utilisant la propriété $x(t).\delta(t-t_0)=x(t_0).\delta(t-t_0)$, on obtient : $x_e(t)=\sum_{n=-\infty}^{+\infty}x(nT_e)\delta(t-nT_e)$

TF du signal échantillonné

Question : que devient le spectre du signal x(t) après <u>échantillonnage idéal</u>?

 $\mathcal{F}[x_e(t)]$ = $\mathcal{F}[x(t). \coprod_{T_e}(t)]$. D'après le théorème de Plancherel, on a :

$$\mathcal{F}[x_e(t)] = \mathcal{F}[x(t)] * \mathcal{F}[\coprod_{T_e}(t)]$$

Or la TF du peigne de Dirac est : $\mathscr{F}[\coprod_{T_e}(t)] = F_e \sum_{n=-\infty}^{+\infty} \delta(f - nF_e)$. On en déduit :

$$\mathcal{F}[x_e(t)] = X(f) * F_e \sum_{n=-\infty}^{+\infty} \delta(f - nF_e)$$

Comme le produit de convolution est distributif et que $y(t)*\delta(t-t_0)=y(t-t_0)$, on a alors :

$$X_e(f) = F_e \cdot \sum_{n=-\infty}^{+\infty} X(f - nF_e)$$
 avec $F_e = \frac{1}{T_e}$ F_e : fréquence d'échantillonnage

Le spectre de $X_e(f)$ est celui de X(f) "périodisé" avec une période fréquentielle F_e .

L'échantillonnage dans le domaine temporel se traduit par une "périodisation" de période F_{ρ} dans le domaine fréquentiel.

Analyse du spectre de $x_e(t)$

On considère que x(t) est un signal réel dont le spectre est borné en fréquence, de fréquence maximale F_{\max} i.e.

$$\forall |f| > F_{\max}, |X(f)| = 0$$

Question : que devient le spectre $X_e(f)$ en fonction de F_e ?

$$X_e(f) = Fe. \sum_{n=-\infty}^{+\infty} X(f - nFe)$$

Les motifs élémentaires de $|X_e(f)|$ sont disjoints (pas de recouvrement des motifs)

Le motif principal (n = 0) est égal au spectre de x(t). Comme les motifs sont disjoints, on peut extraire X(f) grâce à un filtre passe-bas idéal et donc reconstituer intégralement le signal x(t) à partir de la connaissance de son échantillonné $x_{\epsilon}(t)$.

Analyse du spectre de $x_e(t)$

• Cas 2 : $F_e < 2F_{\text{max}}$

Les motifs élémentaires de $|X_e(f)|$ se recouvrent. On parle de <u>repliement de spectres</u>.

A cause du chevauchement des motifs élémentaires constituant le spectre $X_e(f)$ du signal échantillonné, il n'est pas possible de récupérer le spectre X(f) par un filtrage approprié. Il n'est donc pas possible de reconstruire le signal initial x(t) à partir de la connaissance de son échantillonné $x_e(t)$.

TdS

10

Théorème de Shannon

Question : quelle est la condition sur F_e pour qu'à partir du signal échantillonné $x_e(t)$, on puisse reconstruire intégralement x(t)?

- $F_e \ge 2F_{\text{max}}$: pas de recouvrement de spectre → extraction de X(f) par filtrage passe-bas idéal
- $F_e < 2F_{\text{max}}$: repliement de spectre → impossibilité de récupérer X(f) par filtrage

Par conséquent, pour que la répétition périodique du spectre de $x_e(t)$ ne déforme pas le spectre X(f) répété, il faut et il suffit que $F_e \ge 2F_{\max}$

Enoncé du théorème de Shannon

La condition nécessaire et suffisante pour échantillonner un signal sans perte d'information est que la fréquence d'échantillonnage F_e soit supérieure ou égale au double de la fréquence maximale du signal. Plus précisément, si on note $F_{\rm max}$ la fréquence maximale du signal, il faut et il suffit que : $F_e \ge 2F_{\rm max}$.

Pour F_e fixée, $\frac{F_e}{2}$ est appelée fréquence de Nyquist : c'est la fréquence maximale admissible du signal pour éviter les distorsions de spectre

Exemples

Exemple 2

Soit un "La" dont la Fréquence est 440Hz. Ce signal s'écrit : $x(t) = \sin(2\pi 440t)$ Sous matlab, on est en numérique, donc le temps est discret = échantillonnage à Fe.

Temps(s)

Echantillonnage d'un "La" à une fréquence Fe donnée : (essayer avec Fe = 10000, 5000, 2000, 1000, 881, 600, etc)

Exemple 3

Quelle est la fréquence d'échantillonnage du CD? ...

Échantillonnage réel

Echantillonnage idéal

L'échantillonnage idéal suppose l'utilisation d'une impulsion infiniment brève permettant d'extraire la valeur instantanée $x(nT_e)$ à l'instant nT_e . C'est donc l'application de la distribution δ $(t - nT_e)$ au signal continu x(t):

Par définition :
$$x_e(nT_e) = \int_{-\infty}^{+\infty} x(\tau) \cdot \delta(\tau - nT_e) d\tau$$

On remarque que :
$$x(t)*\delta(-t) = \int_{-\infty}^{+\infty} x(\tau).\delta(\tau - t)d\tau$$
. On en déduit alors $x_e(nT_e) = x(t)*\delta(-t)|_{t=nT_e}$

L'échantillonneur est assimilable à un filtre de réponse impulsionnelle $\delta(-t)$

Echantillonnage réel

En pratique, on n'a pas une impulsion infiniment brève et l'échantillonneur est assimilable à un filtre de réponse impulsionnelle h(-t).

Expression d'un échantillon réel :
$$\tilde{x_e}(nT_e) = x(t)*h(-t)|_{t=nT_e}$$

$$\tilde{x_e}(nT_e) = [x(t)*h(-t)]\delta(t-nT_e)$$

D'où l'expression du signal échantillonné réel :

$$\tilde{x}_e(t) = [x(t) * h(-t)] \sum_{n=-\infty}^{\infty} \delta(t - nT_e)$$

Échantillonnage réel

Exemple : échantillonnage réel par moyennage simple

L'échantillonneur moyenneur donne des échantillons correspondant à la valeur moyenne de x(t) prise sur un intervalle de durée ΔT .

On prend h(t) comme $h(t) = \frac{1}{\Delta T} \prod_{\Delta T} \left(t - \frac{\Delta T}{2} \right)$

Expression du signal échantillonné

$$\widetilde{x}_e(t) = \sum_{n=-\infty}^{+\infty} \widetilde{x}_e(nT_e) \delta(t - nT_e)$$

$$\tilde{x}_e(nT_e) = [x(t)*h(-t)]\delta(t-nT_e)$$

$$\tilde{x_e}(nT_e) = \dots$$

$$\tilde{x}_e(nT_e) = \frac{1}{\Delta T} \int_{nT_e}^{nT_e + \Delta T} x(t) dt$$

1 seul échantillon :

valeur moyenne de x(t) prise sur un intervalle de durée ΔT (temps de fermeture de l'interrupteur)

$$\widetilde{x}_e(nT_e) = \frac{1}{\sqrt{T}} \int_{-\infty}^{nT_e + \Delta T} x(t) dt$$

TF d'un signal échantillonné

Question : que devient le spectre du signal x(t) après <u>échantillonnage réel</u>?

L'expression du signal échantillonné avec un échantillonneur réel est :

$$\widetilde{x}_e(t) = [x(t) * h(-t)]. \sum_{n=-\infty}^{+\infty} \delta(t - nT_e)$$

D'après Plancherel, on a :
$$\widetilde{X}_e(f) = [X(f).H(-f)] * F_e \sum_{n=-\infty}^{+\infty} \delta(f - nF_e)$$

Or $H(-f) = H^*(f)$ pour une réponse impulsionnelle h réelle

D'où:
$$\widetilde{X}_{e}(f) = F_{e} \sum_{n=-\infty}^{+\infty} X(f - nF_{e}).H^{*}(f - nF_{e})$$

Rappel: pour un ech. Idéal, on avait: $X_e(f) = Fe$. $\sum_{n=0}^{+\infty} X(f - nFe)$

$$X_e(f) = Fe$$
.
$$\sum_{n=-\infty}^{+\infty} X(f - nFe)$$

Interprétation

L'expression de $\widetilde{X}_{e}(f)$ est identique à $X_{e}(f)$ à un terme de pondération $H^{*}(f)$ près.

- Le terme de pondération n'influe pas sur la condition de Shannon.
- Le terme $H^*(f)$ introduit une distorsion sur le spectre par rapport au cas idéal. Cette distorsion est d'autant plus faible que H(f) est constante dans la bande $[-F_e/2, F_e/2]$.

Exemple d'échantillonnage réel

Soit x(t) un signal dont le spectre est à support borné

On réalise un échantillonnage réel par moyennage simple

$$h(t) = \frac{1}{\Delta T} \prod_{\Delta T} \left(t - \frac{\Delta T}{2} \right) \quad \text{donc} \quad H(f) = \operatorname{sinc}(\pi f \Delta T) e^{-j\pi f \Delta T}$$

précédent, on a

D'après le résultat précédent, on a
$$\widetilde{X}_e(f) = F_e \sum_{n=-\infty}^{+\infty} X(f - nF_e).H^*(f - nF_e)$$

Cas des signaux à support fréquentiel non borné

Problème des signaux à large bande

- Dans le cas des signaux à support fréquentiel infini, il est impossible de définir une notion de fréquence maximale. Quelque soit la fréquence d'échantillonnage F_{e} , il y a toujours repliement de spectre.
- Les signaux réels comportent souvent une composante fréquentielle à large bande due à la présence de bruit (perturbations aléatoires), ce qui imposerait une fréquence F_e importante.

Solution : filtrage anti-repliement

On va numériser un signal $x_1(t)$, qui sera le résultat d'un filtrage passe-bas idéal du signal x(t) à support fréquentiel infini ou à large bande.

D'une manière générale, afin de garantir la condition de Shannon, il faut utiliser un filtre passe-bas anti-repliement de fréquence de coupure f_c inférieure à $F_c/2$.

Filtre passe-bas anti-repliement

Problématique

On a échantillonné un signal x(t) en respectant le théorème de Shannon, comment fait-on pour le reconstruire à partir des échantillons?

Hypothèses : ■ La condition de Shannon a été respectée lors de l'échantillonnage (x(t) est à support borné en fréquence ou filtrage anti-repliement)

■ Echantillonnage idéal

Solution : pour reconstruire le signal, il suffit de prendre la TF inverse du motif de base de $X_e(f)$.

- Filtrage passe bas idéal
- Diviser par Fe
- Puis TF inverse

Illustration

Problème:

■ Filtre idéal => la connaissance de tous les échantillons $x(nT_e)$ est nécessaire pour reconstruire le signal

19

■ Reconstruction mathématiquement possible, mais physiquement irréalisable car le filtre passe-bas idéal n'est pas causal → interpolation physiquement non réalisable.

Extrapoleur d'ordre 0 (bloqueur d'ordre zéro, BOZ)

On se propose ici d'étudier une méthode de reconstruction causale.

Principe

L'idée est simplement de maintenir l'échantillon $x(nT_e)$ jusqu'à l'apparition de l'échantillon $x(nT_e+T_e)$.

$$x_0(t) = x(nT_e)$$
 pour $nT_e \le t < (n+1)T_e$ et $\forall n$

On peut encore l'écrire
$$x_0(t)$$
 = $\sum_{n=-\infty}^{+\infty} x(nT_e) \Pi_{T_e}(t-T_e/2-nT_e)$

Conséquences en fréquence ? => Calcul de la TF de $x_0(t)$.

En remarquant qu'on peut écrire aussi :

En remarquant qu'on peut ecrire aussi :
$$x_0(t) = \underbrace{\left[\sum_{n=-\infty}^{+\infty} x(nT_e)\delta\left(t-nT_e\right)\right]}_{x_e(t)} * \prod_{T_e} (t-T_e/2) \quad \text{on obtient} \quad X_0(f) = \operatorname{sinc}(\pi f T e) \cdot e^{-j\pi f T e} \underbrace{\left(\sum_{n=-\infty}^{+\infty} X(f-nF_e)\right)}_{T_e} + \underbrace{\left(\sum_{n=-\infty}^{+\infty} X(f-nF_e)\right)}_{T$$

Le spectre d'amplitude du signal reconstruit par le BOZ est celui du signal échantillonné déformé par le terme $sinc(\pi fT_e)$. (rmq : l'expo est strictement complexe : pas de modif d'amplitude, mais une modification de la phase due au décalage temporel de Te/2)

Interprétation de l'extrapoleur d'ordre 0

La TF du signal reconstruit par l'extrapolateur d'ordre 0 s'écrit

$$X_0(f) = \operatorname{sinc}(\pi f T e) \cdot e^{-j\pi f T e} \left(\sum_{n=-\infty}^{+\infty} X(f - n F_e) \right)$$

 $X_0(f)$ = spectre du signal échantillonné pondéré par la TF du signal porte de reconstruction

- 1- Déformation de la bande centrale entre $[-F_e/2, F_e/2]$.
- 2- Présence de composantes hautes fréquences.

- 1- Augmentation de F_e .
- 2- On peut ainsi choisir pour le filtre passe-bas une $f_c < F_e/2$

La quantification

Rôle

Approximer chaque valeur du signal échantillonné $x_e(t)$ par un multiple entier d'une quantité élémentaire q appelée "pas de quantification" ou quantum.

Si q est constant quelle que soit l'amplitude du signal, on parle de quantification uniforme.

Dans tous les cas, la quantification est une perte d'information.

Principe

Il existe principalement deux modes de quantification

- par arrondi : si
$$\left(N-\frac{1}{2}\right)\cdot q \le x_e(t) < (N+\frac{1}{2})\cdot q$$
 alors à $x_e(t)$ on associe le code N ou la valeur Nq

- par troncature : si $Nq \le x_e(t) < (N+1) \cdot q$ alors à $x_e(t)$ on associe le code N ou la valeur Nq

La quantification introduit une erreur modélisable mathématiquement, et que l'on peut considérer comme une variable aléatoire.

La quantification

Résolutions en quantification linéaire		
Bits par échantillon	Plage dynamique approximative avec bruit de dispersion	Application
8	44 dB	Qualité basse/Modérée pour multimédia En cours de péremption
12	68 dB	Anciens échantillonneurs Akaî
14	80 dB	Format EIAJ d'origine des adapteurs PCM (Sony)
16	92 dB	Standard CD - DAT Résolution grand public haute qualité
20	116 dB	Enregistrement professionnel Haute qualité
24	140 dB	Résolution professionnelle de très haute qualité Dépasse les besoins psycho acoustique

Conclusions:

- ☐ La condition de Shannon garantit la non perte d'information, dans le cas idéal!
- ☐ Dans le cas pratique, il y a des distorsions dans le signal échantillonné
 - échantillonnage réel
 - reconstruction par extrapolation
- ☐ Des précautions sont à prendre afin que le signal échantillonné et le signal reconstruit à partir des échantillons soient les plus fidèles possibles au signal original.

Bibliographie :

- Bellanger M, Traitement numérique du signal, Dunod, 1998.
- Picinbono B, Théorie des signaux et des systèmes, Dunod, 1993
- Cottet F, Traitement des signaux et acquisition de données, Dunod, 1997

