Math Level 2 Handouts Week 01

Dylan Yu

Online Classes Season 3

September 5, 2020

Contents

1	Polynomials		
	1.1	Warm-Up	1
	1.2	Linear Functions	1
	1.3	Quadratic Function	2
	1.4	Factor and Remainder Theorem	4
	1.5	Addition/Multiplication of Polynomials	5
	1.6	Long Division of Polynomials	6
	1.7	Synthetic Division	6
	1.8	Solving Polynomials	7
	1.9	Vieta's Formulas	8
	1.10	Problems	9
\mathbf{A}	Solu	ntions	10

$\S 1$ Polynomials

§ 1.1 Warm-Up

```
Problem 1 (Mathcounts). Find y: \sqrt{19+3y} = 7.
```

Problem 2 (Alcumus). How many terms are in the expansion of (a+b+c)(d+e+f+g)?

§ 1.2 Linear Functions

Recall that a **polynomial function** of x with degree n is defined as follows:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0.$$

Note that $a_1x^1 = a_1x$ and $a_0x^0 = a_0$.

Definition 1 (Constant Function). If $f(x) = a_0$, then f(x) is a constant function.

Definition 2 (Linear Function). If $f(x) = a_1x + a_0$, then f(x) is a linear function.

Definition 3 (Slope). The **slope** is the rate of change line describing the steepness and direction of a function at that point.

Definition 4 (Intercept). The x-intercept is where a function intersects the x-axis, and the y-intercept is where a function intersects the y-axis.

Theorem 1 (Slope of a Line). The slope of a line going through (x_1, y_1) and (x_2, y_2) is $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Example 1. Find the slope of a line going through (1,2) and (2,3).

Solution. Using our formula, we get $\frac{3-2}{2-1} = \boxed{1}$.

Problem 3. Find the slope of the line through points (3, -2) and (-2, -3).

Problem 4. Find the slope of the line perpendicular to the line x - 5y + 8 = 0.

Problem 5. Write an equation of the line that contains (-3.2) and is perpendicular to y = 4x - 5.

Problem 6. Given point P(2, -3) and point Q(-5, 4), find the length of PQ and the coordinates of the midpoint M.

§ 1.3 Quadratic Function

Definition 5 (Quadratic Function). If $f(x) = ax^2 + bx + c$, then f(x) is a quadratic function.

Definition 6 (Axis of Symmetry). The axis of symmetry of a parabola is the line such that reflecting one side of the parabola across the line will yield the other side.

Theorem 2 (Quadratic Minima/Maxima). If a > 0, f has a minimum at $x = -\frac{b}{2a}$. If a < 0, f has a maximum at $x = -\frac{b}{2a}$.

The standard form of a quadratic is $f(x) = ax^2 + bx + c$. The factored form is $f(x) = a(x - x_1)(x - x_2)$, where x_1 and x_2 are the roots of f(x) (i.e. $f(x_1) = f(x_2) = 0$). The vertex form is $f(x) = a(x - h)^2 + k$, implying the axis of symmetry is x = h and the vertex is (h, k). Note that the minimum/maximum is located at (h, k).

Theorem 3 (Vertex of a Quadratic). The vertex of $ax^2 + bx + c$ is $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$.

Now let's discuss completing the square:

Example 2. Find the roots of $x^2 + 8x + 12 = 0$.

Solution. Let's try to make the left hand side a square. The idea to do this is to take $x^2 + 8x$, which looks like $x^2 + 8x + 16 = (x+4)^2$, but it is missing the 16, so $x^2 + 8x = (x+4)^2 - 16$. Thus, $x^2 + 8x + 12 = (x+4)^2 - 16 + 12 = 0$, so $(x+4)^2 - 4 = 0$, which we can rearrange to get $(x+4)^2 = 4$, $x+4=\pm 2$. Thus, the roots are $x = \boxed{-2, -6}$.

This is the motivation behind completing the square.

Theorem 4 (Completing the Square). If we can write $f(x) = ax^2 + bx + c$ as $a(x - h)^2 + k$, then the roots of f(x) are

$$x_1, x_2 = h \pm \sqrt{-k}.$$

Note that if k > 0, then the roots are not real.

What if we don't have a nice expression? Then let's find a general way to solve a quadratic:

Theorem 5 (Quadratic Formula). Let $ax^2 + bx + c = 0$. Then

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Example 3. Find the roots of $-x^2 + 4x + 5$.

Solution. Using the Quadratic Formula, we get

$$x_1, x_2 = \frac{-4 \pm \sqrt{4^2 - 4(-1)(5)}}{2(-1)} = \boxed{-1, 5}.$$

Exercise 1. If $f(x) = -x^2 + 6x - 8$, what are the coordinates of the vertex? Solution: 5

Problem 7. Solve $2x^2 - 8x + 6 = 0$ by completing the square.

Problem 8. Use the Quadratic Formula to solve $3x^2 - 4x + 1 = 0$.

Problem 9. Find the coordinates of the vertex of the parabola whose equation is $y = 2x^2 + 4x - 5$.

Problem 10. What is the axis of symmetry of the function $y = 2x^2 + 3x - 6$?

Definition 7 (Discriminant). The discriminant Δ of the quadratic $ax^2 + bx + c$ is

$$\Delta = b^2 - 4ac$$
.

Theorem 6 (Discriminant Test). Let Δ be the discriminant of a quadratic. Then:

- 1. If $\Delta > 0$, then the roots are real and unequal.
- 2. If $\Delta = 0$, then the roots are real and equal.
- 3. If $\Delta < 0$, then the roots are complex and unequal.

Exercise 2. If a quadratic equation $2x^2 - kx + 3 = 0$ have imaginary roots, what is the value of k? Solution: 6

Exercise 3. If $y = 3x^2 - 2x + k$ is positive for all x, then what is the smallest integral value of k? Solution: 2

§ 1.4 Factor and Remainder Theorem

Theorem 7 (Factor Theorem). If p(a) = 0, then p(x) has a factor of x - a. Furthermore, p(x) = (x - a)Q(x), where Q(x) is the quotient (the remainder is 0).

Definition 8 (Degree). The **degree** of a polynomial is its largest exponent.

Theorem 8 (Remainder Theorem). When a polynomial P(x) is divided by x - a, the remainder R is equal to P(a). Furthermore, P(x) can be expressed as follows:

$$P(x) = (x - a)Q(x) + R.$$

The identical equation is true for any value of x, especially x = a. Therefore,

$$P(a) = R$$
.

We also need this fact:

Fact 1 (Division Algorithm). When P(x) is divided by D(x), and we get a quotient of Q(X) and a remainder of R(x), then

$$P(x) = D(x)Q(x) + R(x),$$

where the degree of R(x) is less than the degree of Q(x).

Exercise 4. If a polynomial $f(x) = 2x^2 - 3x + 5$ is divided by x - 1, what is the remainder? Solution: 4

Example 4. Let P(x) be a polynomial in terms of x. When P(x) is divided by x - 9, the remainder is 5, and when P(x) is divided by x - 5, the remainder is 9. What is the remainder when P(x) is divided by (x - 5)(x - 9)?

Solution. Here, we are dividing by a quadratic rather than a linear term, so we cannot directly use the remainder theorem. The remainder polynomial will be a linear term, not a constant. Instead, let's see what happens when we divide by a quadratic:

$$P(x) = q(x) \cdot (x - 5)(x - 9) + r(x)$$

where r(x) is the remainder polynomial. We know that r(x) is a linear polynomial, so we have

$$P(x) = q(x) \cdot (x - 5)(x - 9) + ax + b.$$

Here, we see that just like the previous examples, we can plug in values for x. Plugging in x = 5, we have P(5) = 5a + b and plugging in x = 9 gives P(9) = 9a + b. Also, we are given that the remainder, ax + b is equal to 9 and 5 when dividing by x - 5 and x - 9, respectively. Therefore, we have 5a + b = 9 and 9a + b = 5. Solving the system, we get (a, b) = (-1, 14), so the remainder is $ax + b = \boxed{-x + 14}$.

Problem 11 (AoPS). Let $f(x) = x^4 - 3x^3 + 7x^2 - x + 5$. What is the remainder when f(x) is divided by x - 3? What is f(3)?

Problem 12. Let $f(x) = x^9 + x^3 - 5x^2$. Find the remainder when f(x) is divided by 3x - 6.

§ 1.5 Addition/Multiplication of Polynomials

Example 5. Let p(x) = 2x + 1 and $q(x) = x^2 + 3x + 2$ are two polynomials. Find p(x) + q(x) and $p(x) \cdot q(x)$.

Solution. If we add them we get $x^2 + 5x + 3$. If we apply FOIL, we can multiply them and get $(2x+1)(x^2 + 3x + 2) = 2x^3 + 6x^2 + 4x + x^2 + 3x + 2 = 2x^3 + 7x^2 + 7x + 2$.

§ 1.6 Long Division of Polynomials

Example 6. Find the quotient and remainder when $2x^4 + 4x^2 - 1$ is divided by x + 1.

Solution. Let's use long division:

$$\begin{array}{r}
2x^3 - 2x^2 + 6x - 6. \\
x + 1) \overline{)2x^4 + 4x^2 - 1} \\
\underline{-2x^4 - 2x^3} \\
-2x^3 + 4x^2 \\
\underline{-2x^3 + 2x^2} \\
6x^2 \\
\underline{-6x^2 - 6x} \\
-6x - 1 \\
\underline{-6x + 6} \\
5
\end{array}$$

Thus, the quotient is $2x^3 - 2x^2 + 6x - 6$ with remainder 5.

Problem 13. If $p(x) = 2x^2 - 3$ and $q(x) = 4x^3 + x^2 + 1$. Find p(x) + q(x) and $p(x) \cdot q(x)$.

Problem 14 (Alcumus). Find the quotient and remainder when $x^6 - 3$ is divided by x + 1.

§ 1.7 Synthetic Division

An explanation is given here.

Remark 1. Synthetic division only works if we are dividing by x - k.

Example 7. Compute $x^3 + x^2 - 1$ divided by x - 1 using synthetic division.

Solution. We get

Thus, the answer is $x^2 + 2x + 2$ with a remainder of 1

Problem 15. Compute $x^3 - 7x^2 + 20x - 20$ divided by x - 2 using synthetic division.

§ 1.8 Solving Polynomials

Example 8. Factor $2020x^2 + 4040x + 2020$.

Solution. If we factor out 2020, we get $2020(x^2+2x+1)$, and so we have $2020(x+1)^2$

You can learn how to factor quadratics here.

1.
$$(x-9)(x+5) = x^2-4x-45$$

3.
$$(x-9)(x+8) = x^2-1x-72$$

2.
$$(x-1)(x+3) = x^2 + 2x - 3$$

4.
$$(x-5)(x+8) = x^2 + 3x - 40$$

Problem 16. Factor these quadratics:

1.
$$x^2-1x-56$$

5.
$$x^2 + 2x - 48$$

1.
$$x^2-1x-56$$

2. $x^2+2x-15$
3. $x^2-3x-10$

6.
$$x^2-2x-48$$

3.
$$x^2-3x-10$$

7.
$$x^2 + 2x - 8$$

4.
$$x^2 + 0x - 100$$

8.
$$x^2 + 9x - 10$$

Polynomials are hard to factor. You have to look for **special cases** to solve them.

Example 9. Factor by grouping the following:

(a)
$$3x^3 - 2x^2 + 12x - 8$$

(b)
$$x^5 + x - 2x^4 - 2$$

Solution. Grouping is when you factor a part of the polynomial, and realize there is a common factor across all parts.

(a)
$$3x^3 - 2x^2 + 12x - 8 = x^2(3x - 2) + 4(3x - 2) = (x^2 + 4)(3x - 2)$$

(b)
$$x^5 + x - 2x^4 - 2 = x(x^4 + 1) - 2(x^4 + 1) = (x - 2)(x^4 + 1)$$

A few other special factorizations:

1.
$$a^2 \pm 2ab + b^2 = (a \pm b)^2$$

2.
$$a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3$$

3.
$$a^2 - b^2 = (a - b)(a + b)$$

4.
$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

Problem 17. Factor the following:

(a)
$$x^5 + x - 2x^4 - 2$$

(a)
$$x^5 + x - 2x^4 - 2$$

(b) $x^5 - 3x^3 - 2x^2 + 6$

Problem 18. Factor the following: (a) $x^2 - 20x + 100$

(a)
$$x^2 - 20x + 100$$

(b)
$$25x^2 - 9$$

Theorem 9 (Fundamental Theorem of Algebra). Every non-constant single-variable polynomial with complex coefficients has at least one complex root.

Basically, this theorem is stating that a polynomial with degree n has n (not necessarily distinct) roots. Recall Factor Theorem. We can factor a polynomial p(x) of degree n and leading coefficient a into a product of n binomials, $a(x-r_1)(x-r_2)\dots(x-r_n)$, where r_1,r_2,\dots,r_n are the roots of p(x). Factoring quadratics is not too hard. Let's look at some other factoring techniques:

Theorem 10 (Rational Root Theorem). Given a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ with integral coefficients, $a_n \neq 0$. The Rational Root Theorem states that if P(x) has a rational root $r = \pm \frac{p}{q}$ with p, q relatively prime positive integers, p is a divisor of a_0 and q is a divisor of a_n .

Vieta's Formulas § **1.9**

Here I will introduce a simpler form of Vieta's:

Definition 9 (Coefficient). If there is a term $a_k x^k$, then a_k is the **coefficient**.

Definition 10 (Root). If P(x) is a polynomial and P(r) = 0, r is a **root** of P(x).

Theorem 11 (Sum and Product of Roots Formula). For a polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, then the sum of the roots is $-\frac{a_{n-1}}{a_n}$, and the product of the roots is $(-1)^n \frac{a_0}{a_n}$, where n is the degree of the polynomial.

Example 10. If $P(x) = ax^2 + bx + c$, and r and s are the roots of P(x), where r > s, then $r + s = -\frac{b}{a}$, $r - s = \sqrt{(r+s)^2 - 4rs} \implies r - s = \frac{\sqrt{b^2 - 4ac}}{|a|}$, $rs = \frac{c}{a}$.

Example 11. If $P(x) = ax^3 + bx^2 + cx + d$, then the sum of the roots is $-\frac{b}{a}$, and the product of the roots is $-\frac{d}{a}$.

Exercise 5. If the roots of a quadratic equation $2x^2 + 5x - 4 = 0$ are α and β , what is the value of $\frac{1}{\alpha} + \frac{1}{\beta}$? Solution: 1

Exercise 6. What is the sum of all zeroes of a polynomial function $P(x) = 2x^7 + 3x^3 - 5x^2 + 4$? Solution: 7

Exercise 7. What is the product of all zeroes of $g(x) = 3x^7 - 5x^3 + 3x^2 + x - 2$? Solution: 3

Exercise 8 (Mathcounts). Find the sum of all solutions to this equation: $x^2 + 6^2 = 10^2$. Solution: 8

§ 1.10 Problems

Let's try some harder problems:

Problem 19 (Great Britain). Find the remainder when the polynomial $x^{81} + x^{49} + x^{25} + x^9 + x$ is divided by $x^3 - x$.

Problem 20. Find the remainder when $(x+3)^5 + (x+2)^8 + (5x+9)^{2020}$ is divided by x+2.

Problem 21 (AHSME 1974/4). Find the remainder when $x^{51} + 51$ is divided by x + 1.

Problem 22 (AMC 12B 2003/9). Suppose that P(x) is a linear polynomial with P(6) - P(2) = 12. What is P(12) - P(2)?

Problem 23 (MA Θ **1991).** Find all values of m which make x+2 a factor of $x^3+3m^2x^2+mx+4$.

Problem 24. Three of the roots of $x^4 + ax^3 + bx^2 + c = 0$ are -3, 2, 5. Find the value of a + b + c.

Problem 25. Let m and n be the roots of the quadratic equation $4x^2 + 5x + 3 = 0$. Find (m+7)(n+6)?

§ A Solutions

- 1. Note that $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$, and $\alpha + \beta = -\frac{5}{2}$, $\alpha \beta = \frac{-4}{2} = -2$, so $\frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{5}{2}}{-2} = \boxed{\frac{5}{4}}$.
- 2. Since it is always possible, $3x^2 2x + k$ has no real solutions, implying all roots are complex. Thus, $4 12k < 0 \implies k > \frac{1}{3}$, so the smallest integral value of k is $k = \boxed{1}$.
- 3. Using the formula, we have $(-1)^7 \cdot \frac{-2}{3} = \boxed{\frac{2}{3}}$.
- 4. The remainder is $f(1) = 2 \cdot 1^2 3 \cdot 1 + 5 = \boxed{4}$.
- 5. The axis of symmetry is $x = -\frac{b}{2a} = -\frac{6}{2(-1)} = 3$, and so the y-coordinate is $f(3) = -3^2 + 6(3) 8 = 1$, implying the vertex is at (3, 1).
- 6. The discriminant is $k^2 4 \cdot 2 \cdot 3 = k^2 24 < 0$, so $k^2 < 24 \implies \boxed{-2\sqrt{6} < k < 2\sqrt{6}}$
- 7. Note that the coefficient of x^6 is 0, so $\frac{0}{2} = \boxed{0}$.
- 8. The coefficient in front of the x term is 0, so $\frac{0}{1} = \boxed{0}$.