2005 年研究生期末试题(120 分钟)

《图论及其应用》

- 一、填空(15分,每空1分)
- 1、 已知图 G 有 10 条边, 4 个度数为 3 的顶点, 其余顶点的度数均小于 2, 则 G 中至少有 8 个顶点.
- 2、 m 条边的简单图 G 中所有不同的生成子图(包括 G 和空图)的个数为 __2" ____.
- 3、 4个顶点的非同构的简单图有__11___ 个.
- 4、 图 G₁ 的最小生成树各边权值之和为 28 .

- 5、若 W 是图 G 中一条包含所有边的闭通道,则 W 在这样的闭通道中具有最短长度的充要条件是:
 - (1) 每一条边最多重复经过_1_次;
 - (2) 在 G 的每一个圈上,重复经过的边的数目不超过圈的长度的_一半___
- **6**、**5** 阶度极大非哈密尔顿图族有 $_{--}C_{1}^{5}$, $_{--}C_{1}^{5}$
- 7、在图 G_2 中,图的度序列为(44443322),频序列为(422),独立数为 3,团数为 4,点色数为 4,边色数为 4,直径为 3.

二、选择(15分)

(1)下列序列中,能成为某简单图的度序列的是(C)

(A) (54221) (B) (6654332) (C) (332222)

(2) 已知图 G 有 13 条边, 2 个 5 度顶点, 4 个 3 度顶点, 其余顶点的的度数为 2, 则图 G 有(A) 个 2 度点。

- (A) 2 (B) 4 (C) 8 (3) 图 G 如(a)所示,与 G 同构的图是(C)

(4) 下列图中为欧拉图的是(B),为 H图的是(AB),为偶图的是(BC).

5. 下列图中可 1-因子分解的是(B)

设 Δ 和 δ 分别是(n,m)图 G的最大度与最小度,求证:

证明:
$$n\delta \leq 2m = \sum_{v \in V(G)} d(v) \leq n\Delta \Rightarrow \delta \leq \frac{2m}{n} \leq \Delta.$$

四、正整数序列 $(d_1,d_2,\cdots$ 是一棵树的度序列的充分必要条件是 $\sum_{i=1}^n d_i = 2(n-1)$ (10分).

证明: "⇒" 结论显然

设正整数序列 (d_1,d_2,\cdots) 满足 $\sum_{i=1}^n d_i = 2(n-1)$,易知它是度序列。

设 G 是这个度序列的图族中连通分支最少的一个图,知 $\mathbf{m} = \left| E(G) \right| = n-1$. 假设 \mathbf{G} 不连通,则 $\omega(G) \geq 2$,且至少有一个分支 G_1 含有圈 \mathbf{C} ,否则, \mathbf{G} 是森林, 有 **m=** $|E(G)| = n - \omega < n - 1$ 矛盾! 从 **C** 中任意取出一条边 $e_1 = u_1 v_1$ 。并在另一分支 G,中任意取出一条边 $e_2 = u_2 v_2$,作图

$$G' = G - \{u_1v_1, u_2v_2\} + \{u_1v_2, u_2v_1\}$$

则 G' 的度序列仍然为 $(d_1,d_2,\cdots$ 且 $\omega(G')=\omega(G)-1$,这与 $\mathbf G$ 的选取矛盾! 所以

G 是连通的,G 是树。即 (d_1,d_2,\cdots) 一棵树的度序列。

五、求证: 在简单连通平面图 G 中,至少存在一个度数小于或等于 5 的顶点 (10分).

证明: 若不然, $2m = \sum_{v \in V(G)} d(v) \ge 6n > 6n - 12 \Rightarrow m > 3n - 6$, 这与 **G** 是简单连通平

面图矛盾。

六、证明: (1) 若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通;

(2) 一棵树至多只有一个完美匹配 (10分).

证明; (1) 因为任意一个图的奇度点个数必然为偶数个,若 G 恰有两个奇度点 u 与 v,且它们不连通,那么就会得出一个连通图只有一个奇度点的矛盾结论。所以若 G 恰有两个奇度点 u 与 v,则 u 与 v 必连通。

(2) 若树T有两个相异的完美匹配 M_1, M_2 ,则 $M_1 \Delta M_2 \neq \Phi$ 且 $T[M_1 \Delta M_2]$ 中的每个顶点的度数为 2,则T中包含圈,这与T是数矛盾!

七、求图 G 的色多项式 $P_k(G)$ (15 分).

解:图G的补图如图 \bar{G} ,则

$$\begin{split} h(H_1,x) &= r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4 \,, \quad \mbox{$\not =$} \mbox{$\not=$} \mbo$$

$$P_k(G) = (x + x^2)(2x^2 + 4x^3 + x^4) = [k]_6 + 5[k]_5 + 6[k]_4 + 2[k]_3$$

八、求图 G中 a 到 b 的最短路(15分).

图 G

解
$$1. A_1 = \{a\}, t(a) = 0, T_1 = \Phi$$

$$2.b_1^{(1)} = v_3$$

3.
$$m_1 = 1$$
, $a_2 = v_3$, $t(v_3) = t(a) + l(av_3) = 1$ (最小), $T_2 = \{av_3\}$

2.
$$A_2 = \{a, v_3\}, \ b_1^{(2)} = v_1, b_2^{(2)} = v_2$$

3.
$$m_2 = 1$$
, $a_3 = v_1$, $t(v_1) = t(a) + l(av_1) = 2$ (最小), $T_3 = \{av_3, av_1\}$

2.
$$A_3 = \{a, v_3, v_1\}, \ b_1^{(3)} = v_2, b_2^{(3)} = v_2, b_3^{(3)} = v_4$$

3.
$$m_3 = 3$$
, $a_4 = v_4$, $t(v_4) = t(v_1) + l(v_1v_4) = 3$ (最小),

$$T_4 = \{av_3, av_1, v_1v_4\}$$

$$1_{4} = \{av_{3}, av_{1}, v_{1}v_{4}\}$$

$$2. A_{4} = \{a, v_{3}, v_{1}, v_{4}\}, b_{1}^{(4)} = v_{2}, b_{2}^{(4)} = v_{2}, b_{3}^{(4)} = v_{2}, b_{4}^{(4)} = v_{5}$$

3.
$$m_4 = 4$$
, $a_5 = v_5$, $t(v_5) = t(v_4) + l(v_4v_5) = 6$ (最小),

$$T_5 = \{av_3, av_1, v_1v_4, v_4v_5\}$$

2.
$$A_5 = \{a, v_3, v_1, v_4, v_5\}, b_1^{(5)} = v_2, b_2^{(5)} = v_2, b_3^{(5)} = v_2, b_4^{(5)} = v_2, b_5^{(5)} = v_2$$

3.
$$m_5 = 4$$
, $t(v_2) = t(v_4) + l(v_4v_2) = 7$ (最小),

$$T_6 = \{av_3, av_1, v_1v_4, v_4v_5, v_4v_2\}$$

2.
$$A_6 = \{a, v_3, v_1, v_4, v_5, v_2\}, b_2^{(6)} = v_6, b_4^{(6)} = b, b_5^{(6)} = v_6, b_6^{(6)} = v_6$$

3.
$$m_6 = 6$$
, $a_7 = v_6$, $t(v_6) = t(v_2) + l(v_2v_6) = 9$ (最小),

$$T_7 = \{av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6\}$$

2.
$$A_7 = \{a, v_3, v_1, v_4, v_5, v_2, v_6\}, b_4^{(7)} = b, b_5^{(7)} = b, b_7^{(7)} = b$$

3.
$$m_7 = 7$$
, $a_8 = b$, $t(b) = t(v_6) + l(v_6b) = 11$ (最小),

$$T_8 = \{av_3, av_1, v_1v_4, v_4v_5, v_4v_2, v_2v_6, v_6b\}$$

于是知 a 与 b 的距离

$$d(a, b) = t(b) = 11$$

由 T_8 导出的树中 a 到 b 路 $av_1v_4v_2v_6b$ 就是最短路。