Vysoké učení technické v Brně Fakulta informačních technologií

Síťové aplikace a správa sítí-Filtrující DNS resolver

12. října 2020 Jakub Sekula

Obsah

1	IP\	/4 a IPV6					
2	$\mathbf{D}\mathbf{N}$	${f S}$					
3	DNS packet						
	3.1	Hlavička					
	3.2	Dotaz					
	3.3	Odpověď					
	3.4	Authority					
	3.5	Additional					
4	Návrh a implementace aplikace						
	4.1	Překlad programu					
	4.2	Ukázka spouštění					
	4.3	Parametry programu					
	4.4	Tělo programu					
	4.5	Child proces					
	4.6	Návratové kódy					
5	Tes	tování					
	5.1	Testování typu dotazu					
	5.2	Testovaní blacklistových domén					

1 IPV4 a IPV6

Tento filtrující DNS resolver funguje jen pro ipv4 QTYPE 1, tedy dotazy typu A.

2 DNS

DNS je hierarchický systém doménových jmen. Ten realizují právě DNS servery spolu s protokolem stejného jména, který využívají k výměně informací. DNS je v praxi překladová služba, která číselnou IP adresu přeloží do podoby zvolené domény. Na IP se ptá DNS serveru[1].

3 DNS packet

Veškerá komunikace v domain protokolu je přenášená pomocí zpáv, které mají následující podobu[2].

-	++	-			
_	Header	hlavička			
	Question	dotaz			
	Answer	odpověď			
	Authority	autorita(autorizovaná	odpověď)
	Additional	dodatečné	informace		
	г				

3.1 Hlavička

Hlavička paketu je přítomna vždy. Hlavička zahrnuje pole, které značí, z jakých dalších částí se paket skládá a dále také, jestli je paket dotaz, nebo odpověď a další[2]. Podoba hlavičky je následující:

- ID 16 bitový identifikátor paketu
- QR 1 bit značíčí, jestli je paket typu 0 (dotaz), nebo 1 (odpověď)
- Opcode 4 bity pro označení typu dotazu
- AA 1bit Odpověď autority, tedy serveru odpovědného serveru
- TC 1 bit Indikuje zda byl paket zmenšen
- RD 1 bit Indikuje, zda-li je vyžadována rekurze
- RA 1 bit Podpora rekurze
- Z 4 bity Rezerva pro budoucí použití
- RCODE 4 bity Response code

- QDCOUNT 16 bitů Specifikujících počet vstupů v dotazu
- ANCOUNT 16 bitů Specifikujících počet zdrojových záznamů v odpověďi
- NSCOUNT 16 bitů Počet zdrojových záznamů
- ARCOUNT 16 bitů Počet zdrojových záznamů v přídavné sekci

3.2 Dotaz

Část paketu používaná pro přenos dotazu a parametrů s ním spojených[2].

- QNAME 16 bitů Název domény
- QTYPE 16 bitů Typ dotazu
- QCLASS 16 bitů Třída dotazu

3.3 Odpověď

Část paketu používaná pro přenos odpověďi a parametrů s ní spojených[2].

- NAME 16 bitů Název domény spojené se zdrojovým záznamem
- TYPE 16 bitů Typ dotazu
- CLASS 16 bitů Specifikuje význam dat v RDATA
- TTL 16 bitů Čas po jakou dobu má být zaznám cachován před vymazáním
- RDLENGTH 16 bitů Délka oktetů v RDATA
- RDATA Proměnná délka oktetových stringů popisujících zdroj

3.4 Authority

Sekce obsahuje zdrojové záznamy odkazující na autoritativní server[2].

3.5 Additional

Obsahuje zdrojové záznamy, které jsou spjaté s dotazem, ale nejsou odpovědí na tento dotaz[2].

4 Návrh a implementace aplikace

4.1 Překlad programu

Zdrojové kódy k programu se nachází ve složce src. V souboru, nad složkou src, se nachází makefile, pomocí kterého lze pracovat s aplikací. Příkazem make se přeloží projekt a vygeneruje se program dns. Příkazem make clean se program dns smaže. Makefile také zná příkaz make docu, který vytvoří doxygen dokumentaci k projektu.

4.2 Ukázka spouštění

Program se spouští následujícím způsobem:

```
./dns -s 1.1.1.1 -p 8080 -f blacklist
./dns -s 8.8.4.4 -f blacklist.txt
```

4.3 Parametry programu

Program umí zpracovat 3 parametry. Jsou jimi:

- -s: IP adresa nebo doménové jméno DNS serveru (resolveru), kam se má zaslat dotaz.
- -p port: Číslo portu, na kterém bude program očekávat dotazy. Výchozí je port 53. (volitený parametr)
- -f filter_file: Jméno souboru obsahující nežádoucí domény.

Parametry zpracovává funkce getArguments()

4.4 Tělo programu

Aplikace dns běží jako server. Po spuštění programu se vytvoří fukcí socket() komunikační soket, přiřadí se mu adresa pomocí funkce bind() a následně se v cyklu čeká na přijetí paketu na adrese localhost na portu zadaném parametrem programu -p.

Jakmile je zachycen paket na dané adrese a portu, tak se hlavní aplikační proces rozdělí funkcí fork(). Zatímco child proces získavá doménové jméno z paketu a další informace, hlavní proces se vrátí a čeká na přijetí dalšího paketu.

4.5 Child proces

Jakmile je paket přijat, zpracovává se v child procesu. V tomto procesu program získá dotazované doménové jméno QTYPE z paketu, aby si ověřil, zda se opravu jedná o dotaz typu A.

Dále program prochází zadaný soubor domén a hledá, zda-li dotazovaná doména není na tomto seznamu nebo jestli není poddoménou na tomto seznamu.

Případnou zakázanou doménu vrací klientovi jako původní paket s nastaveným rcode flagem na 5 a flagem qr na 1. Obdobně je to pro případ jiného typu dotazu než je typ A, respketive s rcode nastaveným na 4.

V případě, že tyto kontroly proběhnou v pořádku, je paket přesměrován na DNS server zadaný parametrem programu -s. Parametr -s se předává funkci getDnsIp(), která vrací ip adresu DNS serveru. Po získání ip adresy je paket funkcí sendto() poslán na port 53 DNS serveru. Příchod odpověďi je očekáván funkcí recvfrom() a jakmile tento paket dorazí, je poslán nazpět klientovi.

4.6 Návratové kódy

- 9 Chyba soubor neexistuje
- 10 Chyba vstupních parametrů
- 11 Chyba získávání ip adresy DNS serveru
- 12 Chyba vytvoření soketu
- 13 Chyba přidělování adresy soketu

5 Testování

Korektní funkčnost aplikace jsem testoval pomocí nástroje nslookup. Testy fungovaly následovně. V jednom okně terminálu jsem pustil svůj program a ve 2. okně terminálu jsem pustil nslookup takto: "nslookup -port=8080 -type=a doména localhost" a pak jsem porovnával ip adresu, která přisla zpět nslookupu s online resolv nástrojem DNS Checker. Případně jsem zadal ip adresu do prohlížeče. Takto jsem iteroval přes různé domény.

5.1 Testování typu dotazu

Korektnost ošetření dns dotazu typu A jsem testoval tak, že jsem pustil nslookup bez parametru -type=a. Tím pádem se pošle první ipv4 paket a následně i ipv6 paket. V tomto případě nebyl QTYPE z hlavičky paketu nastaven na 1 ale na 28. V situaci kdy přišel ipv6 paket, dns program reagoval korektně a poslal zpět paket s nastaveným rcode a qr a dále neposílal paket na dns resolver. Toto jsem kontroloval programem Wireshark, který celou komunikaci odchytával.

5.2 Testovaní blacklistových domén

Testování blacklistových domén probíhalo tak, že jsem si do souboru zapsal několik domén. Doménami byly kupříkladu facebook.com, docs.google.com a wis.fit.vutbr.cz a na bežící program dns jsem pomocí nslookup posílal domény, které jsem čekal, že projdou, tedy například face.com, google.com, google.cz, vutbr.cz, docs.google.cz apod. Následně jsem posílal domény, u kterých jsem čekal, že neprojdou, tedy domény jako google.com, wis.wis.fit.vutbr.cz atd. Celou síťovou komunikaci jsem sledoval programem Wireshark. A pro každou zaslanou doménu na server, jsem kontroloval odchozí paket na klienta a díval se na rcodea qr flagy v hlavičče.

Reference

- $[1]\ \, \mbox{info@best-hosting.cz}$ BEST-HOSTING s.r.o. Co je to dns server?, 2020.
- [2] P.v. Mockapetris. Domain names implementation and specification. page 1–55, Nov 1987.