

Reproducible Machine Learning for Humans

Nikita Kazeev on behalf on the Everware and REP teams

kazeevn@yandex-team.ru

2016-10-13, 4th National eScience Symposium, Amsterdam, the Netherlands

Yandex School of Data Analysis

https://yandexdataschool.com

- A non-commercial private university
- Free tuition, no employment obligations on part of the students (yet many go to Yandex)
- > 450+ students graduated since 2007
- > Strong (50% drop out rate) education in Data & Computer Science
- Organizes a Machine Learning Conference
- Interest in interdisciplinary research (eScience) from Information Retrieval to Fundamental Science
- > 25% of our students have background in Physics
- A full member of the LHCb experiment in CERN since 2015, an associate member during 2014-2015

Me

- A data scientist
- MS in Physics
- Work on infrastructure optimization and anomaly detection for LHCb
- Taught machine learning at Machine Learning in High Energy Physics Summer Schools

Plan

- > The problem of research irreproducibility
- Our tools for computational experiments
 - Everware
 - Reproducible Experiment Platform (REP)
- Demo

Irreproducibility indicators

- 'Which version of my code I used to generate figure 13?'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
- 'I thought I've used the same parameters but I'm getting different results...'
- 'On what dataset have I compared algorithms exactly?'
- 'Why did I do that?!'
- 'It worked yesterday!!'

Case in point

- > 53 'landmark' papers in drug discovery
- > 2012 by Amgen (US company)
- confirmed in only 6 (11%) cases"

- > 54 papers in cancer biology 2010-2012
- 2013
- US\$1.6 million
- results, spreadsheet
- https://osf.io/e81xl/wiki/home/
- to be completed by 2017

Nature's Reproducibility Survey

Nature: 1,500 scientists lift the lid on reproducibility by Monya Baker raw survey data (link)

WHAT FACTORS COULD BOOST REPRODUCIBILITY?

Respondents were positive about most proposed improvements but emphasized training in particular.

...part of the story

Computational experiment is a significant part of the experiment, that starts as data collected. Reproducibility of that part being just a partial answer can be aided technologically.

Possible effects (see the previous slide):

- Practical
 - better mentoring/supervision
 - more within-lab validation
 - > simplified external-lab validation
 - incentive for better practice
 - robust design
- Educational
 - wider access to the best practices
 - better teaching

Tools in High Energy Physics

data storage shared storage (XROOTD, AFS, EOS, CERNBOX) standardized environment software: ROOT, minuit, RooFit, experiment-stack, ... computational cluster (e.g. lxplus) code versioning repository (gitlab) advanced analysis approaches blind analysis reviews, cross-checks within group, inter-group collaboration collaborative culture q&a groups, experts publishing workflow double experiment-checks

Reproducibility key components

- Basic assumptions (vocabulary)
- Data
- Environment + Resources (CPU/GPU)
- Code
- Workflow
- Automated intermediate results checks
- Final results (datasets, publications)

Enter Reproducible Experiment Platform (REP)

> Python-based (numpy, pandas, ...), Jupyter-friendly

- > Python-based (numpy, pandas, ...), Jupyter-friendly
-) Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)

- > Python-based (numpy, pandas, ...), Jupyter-friendly
- Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)

- Python-based (numpy, pandas, ...), Jupyter-friendly
-) Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)

- Python-based (numpy, pandas, ...), Jupyter-friendly
- Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics

- > Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics
- Paralleled training of classifiers & grid search (IPython parallel)

- Python-based (numpy, pandas, ...), Jupyter-friendly
- angle Unified scikit-learn-like API to many ML packages (Sklearn, XGBoost, uBoost, TMVA, Theanets, ...)
- Meta-algorithms pipelines («REP-Lego»)
- \triangleright Configurable interactive reporting & visualization to ensure model quality (e.g. check for overfitting)
- Pluggable quality metrics
- Paralleled training of classifiers & grid search (IPython parallel)
- Open-source, Apache 2.0: https://github.com/yandex/rep
- Well-documented, supported by Yandex, http://yandex.github.io/rep/

https://github.com/everware/everware-dimuon-example

data: CERNBOX

- **data:** CERNBOX
- > common environment: REP

- **data:** CERNBOX
- common environment: REP
- **environment management:** Docker

- **data:** CERNBOX
- common environment: REP
- environment management: Docker
- GitHub: analysis code and environment versioning

- **data:** CERNBOX
- > common environment: REP
- **environment management**: Docker
- GitHub: analysis code and environment versioning
- continuous integration: intermediate **results checks** & report

https://github.com/everware/everware-dimuon-example
 data: CERNBOX
 common environment: REP
 environment management: Docker
 GitHub: analysis code and environment versioning
 continuous integration: intermediate results checks & report

Steps to run:

https://github.com/everware/everware-dimuon-example
 data: CERNBOX
 common environment: REP
 environment management: Docker
 GitHub: analysis code and environment versioning
 continuous integration: intermediate results checks & report

Steps to run:

https://github.com/everware/everware-dimuon-example

- **data:** CERNBOX
- common environment: REP
- environment management: Docker
- GitHub: analysis code and environment versioning
- continuous integration: intermediate **results checks** & report

Or you can use *Everware* - just click.

Everware is ...

... about re-useable science, it allows people to jump right in to your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware Code
- https://everware.rep.school.yandex.net Yandex instance

More examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

Everware is ...

... about re-useable science, it allows people to jump right in to your research code. Lets you launch *Jupyter* notebooks from a git repository with a click of a button.

- https://github.com/everware Code
- https://everware.rep.school.yandex.net Yandex instance

More examples:

- algorithm meta-analysis, https://github.com/openml/study_example
- gravitational waves, https://github.com/anaderi/GW150914
- COMET, https://github.com/yandexdataschool/comet-example-ci

Under the hood of Everware

- an extension for *JupyterHub*:
 - a spawner for building and running custom *Docker* images
- integrated with:
 - Dockerhub
 - > GitHub (for authentication and repository interaction)

Pros & cons

Pros

- easier supervision/mentoring
- easier within-lab validation
- wider access to the best practices
- > simplified cross-lab validation
- good incentive for formal reproduction
- good thing for industry career track development
- access to wider set of practices

Cons

- learning a bit of open-source technology
- re-organize internal research process
- inner barrier for openness
- higher incentive for mindless borrowing
- > environments divergence

Research workflow with everware

Education workflow with everware

- Python course at YSDA 2015
- MLHEP Machine Learning summer schools 2015 and 2016
- YSDA course on Machine learning at Imperial College London 2016
- Kaggle competitions 2016
- Machine learning course at University of Eindhoven
- > LHCb open data masterclass

Roadmap

- Integrate with data sharing resources (zotero, figshare, etc)
- > Automatic capture of environment (integrate with repro-zip)
- Integration with publishing resources (gitxiv, re-science, openml)
- Not only jupyter-based computations
- Bring your own resources computational model

Conclusion

- Reproducibility depends on humans
 - Can be helped with human-facing technology;
- Everware works for research and education;
 - easy to try;
 - WIP, https://github.com/everware
 - feature requests are welcome
 - pull requests are most welcome
- REP might work as a common environment for your ML study
 - it also has nice tools to ease the routine

Thank you!

Backup

Everware demo

Running https://github.com/everware/everware-dimuon-example

Sorry, printed version doesn't support animation. https://github.com/everware/everware-dimuon-example

Yandex services landscape (est 1997)

- Web search
- Image search
- Speech recognition
- Car traffic prediction
- Mail and spam filtering
- Natural language translation
- Market (shopwindow for internet shops)
- Yandex Data Factory (https://yandexdatafactory.com)
- Yandex School of Data Analysis
 - (full member of LHCb since Dec'15)

References

```
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://rescience.github.io/read/
http://push.cwcon.org/
https://openml.org
https://figshare.com/
https://gitlab.cern.ch/lhcb-bandq-exotics/Lb2LcD0K
https://osf.io/ezcuj/wiki/home/
https://osf.io/e81xl/wiki/home/
Center for open science, https://cos.io/
IPFS, https://github.com/ipfs/
Nature, keyword: reproducibility, http://www.nature.com/news/reproducibility-1.17552
```

Dealing with cognitive bias

http://go.nature.com/nqyohl