Nome e Cognome:		N. Matricola:
È uno studente lavoratore?	\square SI	□ NO
Ha seguito il corso in questo A.A. (2019/20)?	\square SI	$\hfill \square$ NO, l'ho seguito nell'A.A
Si è iscritto regolarmente su Uniweb a questo esame?	\square SI	$\hfill \square$ NO, perché

Laurea Magistrale in Ingegneria Meccatronica A.A. 2019/2020 Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.)

Esame Scritto di Teoria dei Sistemi (Modulo A) del 29/01/2020

Istruzioni. Non è ammessa la consultazione di libri o quaderni, né l'uso di calcolatrici programmabili. Scrivere in modo <u>chiaro</u> e <u>ordinato</u>, motivare ogni risposta e fornire traccia dei calcoli. Tempo a disposizione: <u>2 h 30 min</u>.

Esercizio 1 [9 pti]. Si consideri il seguente sistema non lineare a tempo continuo:

$$\dot{x}_1(t) = \alpha x_1(t) - x_1^3(t) - x_1(t)x_2(t)
\dot{x}_2(t) = 2x_1^2(t) + \alpha x_2(t)$$
 $\alpha \in \mathbb{R}$.

- 1. Determinare i punti di equilibrio del sistema al variare di $\alpha \in \mathbb{R}$.
- 2. Studiare la stabilità dell'equilibrio nell'origine al variare di $\alpha \in \mathbb{R}$ utilizzando la linearizzazione.
- 3. Per i casi critici del punto 2 (se ne esistono), studiare la stabilità **dell'equilibrio nell'origine** utilizzando il Teorema di Lyapunov (ed, eventualmente, Krasowskii) e la seguente funzione candidata di Lyapunov $V(x_1, x_2) = 2x_1^2 + x_2^2$.

Esercizio 2 [9 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo discreto:

$$x(t+1) = Fx(t) + Gu(t)$$
 $F = \begin{bmatrix} 1 & 0 & 2 \\ 1 & \alpha & -1 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}, G = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \alpha \in \mathbb{R}.$

- 1. Determinare la forma di Jordan di F, i modi elementari del sistema e il loro carattere al variare di $\alpha \in \mathbb{R}$.
- 2. Fissato $\alpha = 1$, dire se il sistema è raggiungibile e determinare gli spazi raggiungibili in t passi, per ogni $t \geq 1$.
- 3. Fissato $\alpha = 1$, determinare, se possibile, un controllore in retroazione dallo stato tale per cui la matrice di stato del sistema retroazionato abbia tutti gli autovalori in $\frac{1}{2}$.

Esercizio 3 [9 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo discreto:

$$x(t+1) = Fx(t) + Gu(t)$$

$$F = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & (1-\alpha)^2 \\ 0 & \alpha^2 & 0 \end{bmatrix}, G = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}, \alpha \in \mathbb{R}.$$

- 1. Determinare per quali valori di $\alpha \in \mathbb{R}$ il sistema risulta (i) osservabile e (ii) ricostruibile.
- 2. Fissato $\alpha = 1$, sapendo che in corrispondenza all'ingresso u(0) = 1, u(1) = 2, i valori dell'uscita sono y(0) = 0, y(1) = 1, y(2) = 4, determinare, se possibile, lo stato iniziale x(0) del sistema.
- 3. Determinare, giustificando la risposta, i valori di $\alpha \in \mathbb{R}$ (se ne esistono) tali per cui il sistema ammette uno stimatore dead-beat dello stato che porta a zero l'errore di stima nel minor numero possibile di passi.

Domanda di Teoria [6 pti]. Si consideri un sistema lineare tempo invariante a tempo discre-	Domanda di Teoria	[6 pti	i]. Si	consideri	un sister	na lineare	tempo	invariante	a tempo	discret
---	-------------------	--------	--------	-----------	-----------	------------	-------	------------	---------	---------

$$x(t+1) = Fx(t) + Gu(t), \quad F \in \mathbb{R}^{n \times n}, G \in \mathbb{R}^{n \times m}.$$

- 1. Si assuma che il sistema sia raggiungibile in \bar{t} passi. Si derivi (riportando i passaggi) l'ingresso a minima energia che porta lo stato del sistema da $x(0) = x_0 \in \mathbb{R}^n$ a $x(\bar{t}) = x_f \in \mathbb{R}^n$.
- 2. Siano F=1, G=1, e $\bar{t}=2.$ Si riporti, giustificando la risposta, l'espressione di **tutti i possibili ingressi** che portano lo stato da $x(0)=x_0\in\mathbb{R}$ a $x(\bar{t})=x(2)=x_{\mathrm{f}}\in\mathbb{R}$.

Parte riservata al docente (NON compilare!)

	Parte 1	Parte 2	Parte 3	Totale
Esercizio 1				/ 9
Esercizio 2				/ 9
Esercizio 3				/ 9
Domanda di Teoria				/ 6
Punteggio Finale				/ 33

Commenti:			