Bootstrap

Introduction

- Goal: introduced in 1979 as a computer-based method for estimating the standard error of estimated parameters like $\hat{\theta}$;
- Rationale: having observed a random sample of size n, $\mathbf{x}=(x_1,x_2,\dots,x_n)$ from a probability distribution F,

$$F \to (x_1, x_2, \dots, x_n),$$

define the empirical distribution function \widehat{F} to be the discrete distribution that puts probability $\frac{1}{n}$ on each x_i , $i=1,2,\ldots,n$. A bootstrap sample is defined as a random sample of size n, say $\boldsymbol{x}^*=(x_1^*,x_2^*,\ldots,x_n^*)$, drawn from \widehat{F} , $\widehat{F} \to (x_1^*,x_2^*,\ldots,x_n^*)$,

Then different bootstrap samples are used to estimate standard errors/construct CI for parameters of interest when the true distribution unknown.

• Fun fact: for a random sample x of size n, it has $\binom{2n-1}{n}$ distinct bootstrap samples.

Procedure

Bootstrap

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the statistical accuracy of a quantity $S(\mathbf{Z})$ computed from our dataset. B training sets \mathbf{Z}^{*b} , $b=1,\ldots,B$ each of size N are drawn with replacement from the original dataset. The quantity of interest $S(\mathbf{Z})$ is computed from each bootstrap training set, and the values $S(\mathbf{Z}^{*1}),\ldots,S(\mathbf{Z}^{*B})$ are used to assess the statistical accuracy of $S(\mathbf{Z})$.

Implication of CI

A 90% CI for θ implies:

90% of the time, a random interval constructed in this way will contain the true value θ .

Crude/Reflected Confidence Interval

- Crude CI is straightforward and easy to understand, it has certain problem when the underlying distribution is not that normal;
- Reflected CI comes from the percentile interval of $\hat{\theta} \theta$: we estimate the distribution of $\hat{\theta} \theta$ by the bootstrap distribution of $\hat{\theta}^* \hat{\theta}$. Denote the α -percentile of $\hat{\theta}^* \hat{\theta}$ by $\hat{H}^{-1}(\alpha)$ and the α -percentile of $\hat{\theta}^*$ by $\hat{G}^{-1}(\alpha)$. You can show that the interval given by

$$\widehat{H}^{-1}(\alpha) \le \widehat{\theta} - \theta \le \widehat{H}^{-1}(1 - \alpha)$$

will then give

$$\hat{\theta} + (\hat{\theta} - \hat{G}^{-1}(1 - \alpha)) \le \theta \le \hat{\theta} + (\hat{\theta} - \hat{G}^{-1}(\alpha))$$

which is the reflected CI.

Penalized Regression

 Implementation: use sklearn.linear_model.ridge_regression/sklearn.linear_model.Lasso;

 Lasso can restrain parameters to zero compared to ridge due to its constraint functions.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.