Database corruption

Michał Sadowski michal.sadowski@hotmail.com @SadowskiMichal

Sponsors

Few words about me

- Michał Sadowski
- Located in Kraków, Poland
- Taking active technical role in upgrade (to SQL Server 2014) project
- MCP since 2005
- MCITP: SQL Server DBA 2005/2008
- Interests:
 - Disaster Recovery
 - Performance tuning
- Leader of PLSSUG Kraków group
- Principal IT Specialist in ABB, responsible for Treasury Management System

Microsoft

Systems Engineer

Security on Windows Server 2003

Microsoft CERTIFIED

IT Professional

Database Administrator

Microsoft

Solutions Associate

Windows Server 2008

Microsoft

Specialist

Server Virtualization with Windows Server Hyper-V & System Center

Agenda

- Introduction
- Basics of data file
- Database Recovery options
- Basics of heap and (non)clustered index
- How to approach corruption?
- Examples with demos
- Features available in Enterprise Edition
- Summary

THERE ARE TWO TYPES OF PEOPLE: THOSE WHO HAVE LOST DATA AND THOSE WHO WILL...

Introduction

- Database corruption happens very frequently however not always DBA is aware of that
- Corruption doesn't mean that database is useless
- SQL Server has built-in mechanisms to detect corruption
- Right steps just after you detect corruption can minimize system unavailability
- You can detect and fix most of the corruption in short time

Basics of data file

- There is at least one data file (*.mdf, *.ndf)
- There is at least one transaction log file (*.ldf)
- SQL Server is using Write Ahead Logging (WAL) mechanism
- SQL Server reads/writes data in pages
 (8 kb), which are grouped in extents (8*8kb)
- Each data file contains data and metadata
- Data file can be in Read-Only mode

Possible database states

- ONLINE
- OFFLINE
- RESTORING
- RECOVERING
- RECOVERY_PENDING
- SUSPECT
- EMERGENCY

Database Recovery Option

- NONE
 - Default option after installation
- TORN_PAGE_DETECTION
 - Bit to be flipped for each 512-byte sector on data page
- CHECKSUM
 - Availble in SQL Server 2005+
 - From SQL Server 2008+ also in tempdb

Basics of heap and (non)clustered index

- Data rows are stored in structures called heap or clustered index
- There can be only one clustered index
- There can be up to 999 (2008+) nonclustered indexes
- Index are organized as B-tree and can have many levels
- Nonclustered index doesn't contain any data, only data pointers
- The only exception is index with INCLUDE

Heap

Clustered index

Nonclustered index

Phases of Recovery

Why use multiple files?

- For most DBs single data and transaction log file should be enough
- Easier management and restore of DB 5 x 200GB vs. 1TB disks
- Use filegroups to enable placement of objects on specific physical disks – better performance
- Primary file will contain only system tables and objects faster DB in ONLINE state
- Put heavily accessed tables and the nonclustered indexes that belong to those tables on different filegroups – better performance and availability
- Transaction log file on different disk
- Piecemeal restore

DBCC CHECKDB

- Transactionally consistent static view of DB
- Low-level consistency checks of the critical system catalogs
- Allocation consistency checks
- Consistency checks of every table
- Cross-table consistency checks:
 - Service Broker metadata
 - Various system catalogs
 - Indexed views
 - XML, spatial indexes

How to approach corruption?

- Check if you can connect to database
- Check what is corrupted
- Check result of DBCC CHECKDB
- Check if you have latest valid backup / if AlwaysOn / mirroring / log-shipping / snapshot / other backup solution is in place
- In case you don't have any valid backups ALWAYS make backup before any modification of suspected database

DEMOEXAMPLES OF CORRUPTED DATABASES

Features available in Enterprise Edition

- Table and index partitioning
- Single page restore
- Fast recovery
- Online indexing
- Online schema changes
- Database snapshot
- Parallel index operations

Summary

- If you found out that database is corrupted DON'T PANIC
- Prepare restore (not backup) strategy based on business requirements
- Always use DBCC CHECKDB
- Always use CHECKSUM option
- Check average execution time of DBCC CHECKDB
- Restore backups frequently (e.g. every month) and check how long it took
- Remember about msdb.dbo.suspect_pages table

To learn more, go here:

- Paul's Randal blog, categories:
 - Corruption
 - DBCC
 - CHECKDB From Every Angle
- Pluralsight: SQL Server: Detecting and Correcting Database Corruption
- MSDN: Piecemeal Restore of Database

FOR HELP, CONTACT ME:

michal.sadowski@hotmail.com

Questions?

THANK YOU!

Sponsors

