Derivatives of Inverse Trig Functions

TABLE 3.1 Derivatives of the inverse trigonometric functions

1.
$$\frac{d(\sin^{-1}u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}, \quad |u| < 1$$

2.
$$\frac{d(\cos^{-1}u)}{dx} = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}, \quad |u| < 1$$

3.
$$\frac{d(\tan^{-1}u)}{dx} = \frac{1}{1+u^2} \frac{du}{dx}$$

4.
$$\frac{d(\cot^{-1}u)}{dx} = -\frac{1}{1+u^2}\frac{du}{dx}$$

5.
$$\frac{d(\sec^{-1}u)}{dx} = \frac{1}{|u|\sqrt{u^2 - 1}} \frac{du}{dx}, \quad |u| > 1$$

6.
$$\frac{d(\csc^{-1}u)}{dx} = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, \quad |u| > 1$$

EXAMPLE 2 Using the Chain Rule, we calculate the derivative

$$\frac{d}{dx}(\sin^{-1}x^2) = \frac{1}{\sqrt{1 - (x^2)^2}} \cdot \frac{d}{dx}(x^2) = \frac{2x}{\sqrt{1 - x^4}}.$$

EXAMPLE 3 Using the Chain Rule and derivative of the arcsecant function, we find

$$\frac{d}{dx}\sec^{-1}(5x^4) = \frac{1}{|5x^4|\sqrt{(5x^4)^2 - 1}} \frac{d}{dx}(5x^4)$$

$$= \frac{1}{5x^4\sqrt{25x^8 - 1}} (20x^3) \qquad 5x^4 > 1 > 0$$

$$= \frac{4}{x\sqrt{25x^8 - 1}}.$$

Let's derive the formula for the derivative of sec⁻¹x using implicit differentiation:

$$y = \sec^{-1} x$$

$$\sec y = x$$
Inverse function relationship
$$\frac{d}{dx}(\sec y) = \frac{d}{dx}x$$
Differentiate both sides.
$$\sec y \tan y \frac{dy}{dx} = 1$$
Chain Rule
$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}.$$
Since $|x| > 1, y$ lies in $(0, \pi/2) \cup (\pi/2, \pi)$ and $\sec y \tan y \neq 0$.

To express the result in terms of x, we use the relationships

$$\sec y = x$$
 and $\tan y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}$

to get

$$\frac{dy}{dx} = \pm \frac{1}{x\sqrt{x^2 - 1}} \,.$$

Can we do anything about the \pm sign? A glance at Figure 3.42 shows that the slope of the graph $y = \sec^{-1} x$ is always positive. Thus,

$$\frac{d}{dx}\sec^{-1}x = \begin{cases} +\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x > 1\\ -\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x < -1. \end{cases}$$

With the absolute value symbol, we can write a single expression that eliminates the "±" ambiguity:

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

If u is a differentiable function of x with |u| > 1, we have the formula

$$\frac{d}{dx}(\sec^{-1}u) = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}, \qquad |u| > 1.$$

We need to use the absolute value of the u term because the slope of the $\sec^{-1}u$ is always positive as evidenced in the graph below.

FIGURE 3.42 The slope of the curve $y = \sec^{-1} x$ is positive for both x < -1 and x > 1.