VEKTOR

BESARAN FISIKA

Berdasarkan satuan

- Besaran Pokok
- Besaran Turunan

Berdasarkan ada tidaknya arah

- Besaran Vektor
- Besaran Skalar

Definisi & Contoh

Besaran Skalar

- Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan).
 - Contoh : waktu, suhu, volume, laju, energi
 - Catatan: skalar tidak tergantung sistem koordinat

Besaran Vektor

- Besaran yang dicirikan oleh besar dan arah.
 - Contoh : kecepatan, percepatan, gaya
 - Catatan : vektor tergantung sistem koordinat

Besaran vektor adalah...

Besaran yang memiliki besar (nilai) dan arah.

Notes:

a. Dua vektor sama jika arah dan besarnya sama

$$A = B$$

- b. Dua vektor dikatakan tidak sama jika :
 - 1. Besar sama, arah berbeda

2. Besar tidak sama, arah sama

$$A \neq B$$

3. Besar dan arahnya berbeda

$$A \neq B$$

Notes:

4. Besar sama, arah berlawanan

C. A -A

5. Besar kelipatan, arah sama

d. $\frac{3}{2}$ A

MELUKIS PENJUMLAHAN VEKTOR

Metode Poligon Metode Jajargenjang

METODE POLIGON

PENJUMLAHAN VEKTOR dengan METODE POLIGON

PENJUMLAHAN VEKTOR DENGAN JJ. GENJANG

PENJUMLAHAN VEKTOR DENGAN JJ. GENJANG

PENJUMLAHAN VEKTOR DENGAN JJ. GENJANG

JAJAR GENJANG Α R=A+B В

POLIGON

VEKTOR RESULTAN dengan METODE ANALITIS

Menentukan resultan dengan menggunakan rumus disebut dengan metode analitis.

a. Dengan rumus kosinus

a. Dengan dekomposisi

Ayo Perhatikan!

NILAI SUDUT ISTIMEWA

x°	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
Cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	~

PERBANDINGAN TRIGONOMETRI SUATU SUDUT DIBERBAGAI KUADRAN

PENTING!

Kuadran Fungsi		II	III	IV
Sinus	+	+	_	_
Cosinus	+	_	_	+
tangen	+		+	_

a. Dengan rumus kosinus

$$R = \sqrt{A^2 + B^2 + 2.A.B.\cos\theta}$$

Arah resultan dapat menggunakan aturan sinus berikut:

$$\frac{R}{\sin \theta} = \frac{A}{\sin \alpha} = \frac{B}{\sin \beta}$$

METODE DEKOMPOSISI

MENJUMLAH VEKTOR SECARA ANALITIS

$$\mathbf{R} = \sqrt{|\mathbf{R}_{\mathbf{X}}|^2 + |\mathbf{R}_{\mathbf{Y}}|^2}$$

Vektor	Sudut	Komponen pd sumbu		
Vektor	Sudut	X	Y	
F ₁	α_1	F ₁ cosα ₁	$F_1sinlpha_1$	
F ₂	$lpha_2$	$F_2\cos\alpha_2$	$F_2sinlpha_2$	
F ₃	α_3	$F_3\cos\alpha_3$	F_3 sin α_3	
Jun	nlah	R _X =	R _Y =	

Arah Resultan =
$$\tan \theta = \frac{Ry}{Rx}$$