Práctica 6 : Lógica de Primer Orden

Tomás Felipe Melli

$\mathrm{June}\ 26,\ 2025$

$\acute{\mathbf{I}}\mathbf{ndice}$

1	Sintaxis de la Lógica de Primer Orden	2
	1.1 Ejercicio 1	. 2
	1.2 Ejercicio 2	. 2
	1.3 Ejercicio 3	. :
	1.4 Ejercicio 4	. 4
2	Unificación	۷
	2.1 Ejercicio 5	. 4
	2.2 Ejericicio 6	
	2.3 Ejercicio 8	. '
3	Deducción Natural	9
	3.1 Ejercicio 9	. (
	3.2 Ejercicio 10	. 13
4	Semántica	1:
	4.1 Ejercicio 13	. 13
	4.2 Ejercicio 14	

1 Sintaxis de la Lógica de Primer Orden

1.1 Ejercicio 1

Dados $\mathcal{F} = \{d, f, g\}$ donde la aridad es 0,2,3 respectivamente. Cuáles de las siguiente cadenas son términos ? Recordemos que toda constante (símbolo de función de aridad 0) es término y si $f \in \mathcal{F}$ con aridad n y t_1, \ldots, t_n son términos, entonces $f(t_1, \ldots, t_n)$ también lo es.

- 1. g(d,d) sabemos que $g \in \mathcal{F}$ y su aridad es 3, es decir se puede escribir que g toma t_1,t_2,t_3 y $g(t_1,t_2,t_3)$ es término. Si bien d es una constante, no coincide la aridad de g con la cantidad de parámetros que recibe. Por tanto, no es término.
- 2. f(X, g(X, Y), d). Las variables son términos, por tanto X e Y están bien definidas. Los problemas que surgen son : la aridad de f es 2 y la de g es 3. Por tanto, si bien todos los parámetros son términos, no corresponde la aridad de f y g con la cantidad de parámetros que reciben. Por tanto, no es un término.
- 3. g(X, f(d, Z), d) sabemos que $g \in \mathcal{F}$ y su aridad es 3, es decir se puede escribir que g toma t_1, t_2, t_3 y $g(t_1, t_2, t_3)$ es término. Donde $t_1 = X, t_2 = f(d, Z), t_3 = d$ analizamos cada uno de ellos para confirmar que sean términos : X es una variable y por tanto es un término, $f(d, Z) \in \mathcal{F}$ con aridad 2, por tanto $f(t'_1, t'_2)$ es término (en este caso $t'_1 = d, t'_2 = Z$ ambos términos bien formados) y finalmente $t_3 = d$. Concluimos que el es término.
- 4. g(X, h(Y, Z), d) con el razonamiento anterior, vemos que $t_2 = h(Y, Z)$ pero el problema es que $h \notin \mathcal{F}$. Concluimos que no es término.
- 5. f(f(g(d,X), f(g(d,X), Y, g(Y,d)), g(d,d)), g(f(d,d,X), d), Z) sabemos que X, Y, Z son variables y por tanto, términos válidos. También sabemos que la aridad de d es 0 (constante) y por tanto un término válido. Dentro de la f tenemos (f(g(d,X), f(g(d,X), Y, g(Y,d)), g(d,d)), g(f(d,d,X), d), Z) donde podemos definir $t_1 = f(g(d,X), f(g(d,X), Y, g(Y,d)), g(d,d))$ $t_2 = g(f(d,d,X), d)$ y $t_3 = Z$. Decimos entonces que t_3 es válido. Pero miremos t_1 y t_2
 - $t_1 = f(g(d,X), f(g(d,X), Y, g(Y,d)), g(d,d))$ dentro tenemos $t_{1_1} = g(d,X), t_{1_2} = f(g(d,X), Y, g(Y,d))$ y $t_{1_3} = g(d,d)$. Miramos dentro de cada uno de ellos : t_{1_1} no es válido ya que la aridad de g es 3 y aquí sólo toma dos términos (que por cierto, son válidos); t_{1_2} está formado por $t_{1_{2_1}} = g(d,X), t_{1_{2_2}} = Y, t_{1_{2_3}} = g(Y,d)$ donde sólo $t_{1_{2_2}}$ está bien formado, el resto la aridad de g no se corresponde con la cantidad de argumentos que toma; t_{1_3} está mal formado ya que la aridad de g es 3 y en este caso toma dos constantes d.
 - t_2 está formado por $t_{2_1} = f(d, d, X), t_{2_2} = d$ pero, t_{2_1} está mal formado ya que la aridad de f es 2 y aquí recibe 3 términos (válidos), para el caso de t_{2_2} está bien formado.

Finalmente, concluimos que el término está mal formado en muchas partes, y en particular en su expresión más grande que es $f(t_1, t_2, t_3)$ ya que la aridad de f es 2.

1.2 Ejercicio 2

Nos piden decidir cuáles de las siguientes son fórmulas. Sean c una constante, f un símbolo de función de aridad 1 y S y B dos símbolos de predicado binarios (aridad 2). Recordemos : una fórmula atómica es una expresión de la forma $P(t_1, \ldots, t_n)$ donde P es un símbolo de predicado de aridad n y cada t_i es un término

- 1. S(c, X) es una fórmula atómica válida ya que $S(t_1, t_2)$ es fórmula si t_1 y t_2 son términos, en este caso, $t_1 = c$ y $t_2 = X$ ambos términos válidos y S es símbolo de predicado
- 2. B(c, f(c)) escribimos a $B(t_1, t_2)$ con $t_1 = c$ y $t_2 = f(c)$, se cumple la aridad de B que es símbolo de predicado. En este caso, t_1 es un término válido. t_2 está formado por f(c) donde $f(t'_1)$ es un término válido, ya que sólo recibe c como argumento, cumpliendo la aridad de f. Esta es una fórmula.
- 3. f(c) f no es símbolo de predicado, con lo cual no es una fórmula.
- 4. B(B(c,X),Y) el problema acá es que el predicado toma otro predicado, por tanto no es fórmula.
- 5. S(B(c), Z) lo reescribimos como $S(t_1, t_2)$ cumple la aridad de S. Tenemos que ver que sean términos válidos $:t_1 = B(c)$ pero sabemos que B tiene aridad 2, por tanto t_1 no es un término ; $t_2 = Z$ es un término válido. Concluimos que no es una fórmula atómica.
- 6. $(B(X,Y) \Rightarrow (\exists Z.S(Z,Y)))$ lo podemos abstraer a $\sigma_1 \Rightarrow \sigma_2$ para analizar la fórmula. Tomamos $\sigma_1 = B(X,Y)$ donde $B(t_1,t_2)$ y $t_1 = X, t_2 = Y$ son dos variables y por tanto σ_1 es un término válido. Veamos $\sigma_2 = \exists Z.S(Z,Y)$ donde podemos reescribir como $\sigma_2 = \exists Z.\sigma_2'$ y analizar si σ_2' es un término válido. $\sigma_2' = S(Z,Y)$ donde $S(t_1',t_2')$ es un término si tanto t_1' como t_2' lo son. Afortunadamente, $t_1' = Z, t_2' = Y$ ambas variables y por tanto términos, se cumple la aridad de S y por tanto, σ_2 es término. Concluimos entonces que $(B(X,Y) \Rightarrow (\exists Z.S(Z,Y)))$ es una fórmula atómica

- 7. $(S(X,Y) \Rightarrow S(Y,f(f(X))))$ reescribimos como $\sigma_1 \Rightarrow \sigma_2$ donde $\sigma_1 = S(X,Y)$ un término válido (ya que X e Y son variables); $\sigma_2 = S(Y,f(f(X)))$ que reescrito, $\sigma_2 = S(t_1,t_2)$ donde $t_1 = Y$ un término válido y $t_2 = f(f(X))$ no hay problema acá con la aridad de f ya que $t_2 = f(t_2')$ donde $t_2' = f(X)$ que es un término dado que f toma la variable X respetando su aridad. Concluimos que t_2 es un término valido y por ello σ_2 . Como consecuencia, $(S(X,Y) \Rightarrow S(Y,f(f(X))))$ es una fórmula atómica.
- 8. $B(X,Y) \Rightarrow f(X)$ reescrito $\sigma_1 \Rightarrow \sigma_2$ donde $\sigma_1 = B(X,Y)$ es un término ya que la aridad de B es 2 y tanto X como Y son variables, ergo términos válidos ; $\sigma_2 = f(X)$ es un símbolo de función no de predicado. Por tanto, concluimos que $B(X,Y) \Rightarrow f(X)$ no es una fórmula atómica.
- 9. $S(X, f(Y)) \wedge B(X, Y)$ queremos reescribirlo como $\sigma_1 \wedge \sigma_2$ donde $\sigma_1 = S(X, f(y))$ que podemos reescribir como $\sigma_1 = S(t_1, t_2)$ y por tanto vale la aridad de S, y, $t_1 = X$ un término válido, $t_2 = f(Y)$ que corresponde a la aridad de f y por tanto t_2 es un término válido ya que Y es una variable ; $\sigma_2 = B(X, Y)$ que reescrito como $\sigma_2 = B(t'_1, t'_2)$ cumple la aridad de B y $t'_1 = X, t'_2 = Y$ cumplen ser términos válidos. Concluimos entonces que $S(X, f(Y)) \wedge B(X, Y)$ es una fórmula atómica.
- 10. $\forall X.B(X, f(X))$ lo reescribimos como $\forall X.\sigma$ donde $\sigma = B(t_1, t_2)$ que respeta la aridad de B, ahora queremos ver si $t_1 = X, t_2 = f(X)$ son términos. Como t_1 sólo representa una variable, es un término válido. Por otro lado, $t_2 = f(t_1')$ respeta la aridad de f y en particular $t_1' = X$ una variable, por tanto t_2 es término. Concluimos que $\forall X.B(X, f(X))$ es una fórmula.
- 11. $\exists X.B(Y,X(c))$ podemos escribirla como $\exists X.\sigma$ donde $\sigma=B(Y,X(c))$ que reescrito como $\sigma=B(t_1,t_2)$ vemos que corresponde la aridad de B, tenemos que constatar que tanto t_1 como t_2 sean términos. $t_1=Y$ lo cual es un término válido. $t_2=X(c)$ el problema es que la variable X no está definida como símbolo de función y por tanto, no corresponde a un término válido. Como conclusión, $\exists X.B(Y,X(c))$ no es una fórmula atómica.

1.3 Ejercicio 3

Sea $\sigma = \exists X. P(Y, Z) \land \forall Y. \neg Q(Y, X) \lor P(Y, Z)$

- 1. Podemos reescribir σ con paréntesis para poder detectar cuáles están ligadas y en qué scope como sigue : $\sigma = ((\exists X.P(Y,Z)) \land (\forall Y. \neg Q(Y,X))) \lor P(Y,Z)$ con esto en mente podríamos reescribir $\sigma = \sigma_1 \lor \sigma_2$ donde $\sigma_1 = (\exists X.P(Y,Z)) \land (\forall Y. \neg Q(Y,X))$ que a su vez $\sigma_1 = \sigma_{1_1} \land \sigma_{1_2}$ donde $\sigma_{1_1} = \exists X.P(Y,Z)$ este término tiene ligada al cuantificador la variable X y aparecen libres Y,Z. Por otra parte, $\sigma_{1_2} = \forall Y. \neg Q(Y,X)$ contiene ligada la variable Y al cuantificador universal pero aparece libre X. Finalmente, en σ_2 , tanto Y como Z aparecen libres.
 - Esta bueno pensar que la conjunción es como una multiplicación y la disyunción como una adición para poder detectar este "scope".
- 2. Nos piden hacer sustituciones en σ . Recordar que las sustituciones se hacen donde la variable aparece libre.

$$\bullet \ \sigma\{X := W\}$$

$$\sigma = \exists X.P(Y,Z) \land \forall Y. \neg Q(Y,X) \lor P(Y,Z)$$

$$\exists X.P(Y,Z) \land \forall Y. \neg Q(Y,X) \lor P(Y,Z) \{X := W\}$$

$$\{X := W\}$$

$$\sigma\{Y := W\}$$

$$\sigma = \exists X.P(Y,Z) \land \forall Y. \neg Q(Y,W) \lor P(Y,Z)$$

$$\exists X.P(Y,Z) \land \forall Y. \neg Q(Y,X) \lor P(Y,Z) \{Y := W\}$$

$$\{Y :=$$

1.4 Ejercicio 4

Dada $\sigma = \neg \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z)$

- 1. Podemos reescribir $\sigma = \neg \sigma'$ donde $\sigma' = \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z)$ que podemos reescribir como $\sigma' = \sigma'_1 \land \sigma'_2$ y separar los casos de análisis en $\sigma'_1 = \forall X.\sigma''_1$ con $\sigma''_1 = \exists Y.\sigma'''_1$ donde $\sigma'''_1 = P(X,Y,Z)$ y concluir que en σ'_1 tenemos a X,Y ligadas por un cuantificador universal y existencial respectivamente, dejando libre a la variable Z. Por el otro lado, $\sigma'_2 = \forall Z.\sigma''_2$ la podemos analizar como $\sigma''_2 = P(X,Y,Z)$ y concluir que sólo está ligada por el cuantificador universal la variable Z y tanto X como Y aparecen libres.
- 2. Nos piden hacer sustituciones en σ

•
$$\sigma\{X := g(f(g(Y,Y)), Y)\}\$$

$$\sigma = \neg \forall X.(\exists Y. P(X,Y,Z)) \land \forall Z. P(X,Y,Z)$$

$$\neg \forall X.(\exists Y. P(X,Y,Z)) \land \forall Z. P(X,Y,Z)\{X := g(f(g(Y,Y)),Y)\}$$

$$\equiv \neg \forall X.(\exists Y. P(X,Y,Z)) \land \forall Z. P(g(f(g(Y,Y)),Y),Y,Z)$$

$$\begin{split} \bullet \ \ \sigma\{Y := g(f(g(Y,Y)),Y)\} \\ \sigma = \neg \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z) \\ \neg \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z)\{Y := g(f(g(Y,Y)),Y)\} \\ \equiv \neg \forall X.(\exists Y.P(X,Y,Z)) \land \forall Z.P(X,g(f(g(Y,Y)),Y),Z) \end{split}$$

• $\sigma\{Z:=g(f(g(Y,Y)),Y)\}$ tenemos que renombrar para no capturar $\sigma = \neg \forall X. (\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z) \\ \neg \forall X. (\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z) \{Z:=g(f(g(Y,Y)),Y)\} \\ \equiv \neg \forall X. (\exists Y'.P(X,Y',g(f(g(Y,Y)),Y))) \land \forall Z.P(X,Y,Z)$

3. Nos piden hacer sustituciones en σ . Tenemos que renombrar

```
 \begin{split} \bullet & \sigma\{X := g(f(g(Y,Y)),Y),Y := g(f(g(Y,Y)),Y),Z := g(f(g(Y,Y)),Y)\} \\ & \sigma = \neg \forall X. (\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z) \\ & \neg \forall X. (\exists Y.P(X,Y,Z)) \land \forall Z.P(X,Y,Z) \{X := g(f(g(Y,Y)),Y)\} \\ & \equiv \neg \forall X. (\exists Y'.P(X,Y',g(f(g(Y,Y)),Y))) \land \forall Z.P(g(f(g(Y,Y)),Y),g(f(g(Y,Y)),Y),Z) \end{split}
```

4. Nos piden hacer sustituciones en σ . Aplicar una composición quiere decir que tenemos que aplicar de derecha a izquierda las sustituciones, por tanto renombramos las ligadas

```
• \sigma(\{X := g(f(g(Y,Y)),Y)\} \circ \{Y := g(f(g(Y,Y)),Y)\} \circ \{Z := g(f(g(Y,Y)),Y)\})

\sigma = \neg \forall X'.(\exists Y'.P(X',Y',Z)) \land \forall Z'.P(X,Y,Z')

\neg \forall X'.(\exists Y'.P(X',Y',Z)) \land \forall Z'.P(X,Y,Z')

\equiv \neg \forall X'.(\exists Y'.P(X',Y',g(f(g(Y,Y)),Y))) \land \forall Z'.P(g(f(g(Y,Y)),Y),g(f(g(Y,Y)),Y),Z')
```

2 Unificación

2.1 Ejercicio 5

Tenemos que unir las expresiones que unifican entre sí, para ellas exhibir el mgu. Asumimos que a es una constante, X, Y, Z variables, f, g son símbolos de función y P, Q predicados.

- P(f(X)) con cuáles expresiones podemos unificar?
 - $-P(f(X)) \stackrel{?}{=} P(X)$ no podemos ya que no existe sustitución posible
 - $-P(f(X))\stackrel{?}{=}P(f(a))$ podemos sustituir por $\{X:=a\}$ por tanto, unifica y el mgu es $S=\{X:=a\}$
 - $-P(f(X))\stackrel{?}{=}P(g(Z))$ no podemos ya que no existe sustitución posible
 - $-\ P(f(X))\stackrel{?}{=} Q(f(Y),X)$ no podemos ya que no existe sustitución posible

- $-P(f(X))\stackrel{?}{=}Q(f(Y),f(X))$ no podemos ya que no existe sustitución posible
- $-\ P(f(X))\stackrel{?}{=} Q(f(Y),Y)$ no podemos ya que no existe sustitución posible
- $-P(f(X))\stackrel{?}{=} f(f(c))$ no podemos ya que no existe sustitución posible
- $-P(f(X))\stackrel{?}{=} f(g(Y))$ no podemos ya que no existe sustitución posible
- P(a) con cuáles expresiones podemos unificar?
 - $-P(a)\stackrel{?}{=}P(X)$ con $\{X:=a\}$ podemos unificar, por tanto el m
gu es $S=\{X:=a\}$
 - $-P(a)\stackrel{?}{=}P(f(a))$ no hay sustitución posible
 - $-P(a) \stackrel{?}{=} P(g(Z))$ no hay sustitución posible
 - $-P(a) \stackrel{?}{=} Q(f(Y), X)$ no hay sustitución posible
 - $-P(a)\stackrel{?}{=}Q(f(Y),f(X))$ no hay sustitución posible
 - $-\ P(a)\stackrel{?}{=} Q(f(Y),Y)$ no hay sustitución posible
 - $-P(a)\stackrel{?}{=} f(f(c))$ no hay sustitución posible
 - $-P(a) \stackrel{?}{=} f(g(Y))$ no hay sustitución posible
- P(Y) con cuáles expresiones podemos unificar?
 - $-P(Y)\stackrel{?}{=}P(X)$ podemos sustituir por $\{X:=Y\}$ como consecuencia, el mgu es $S=\{X:=Y\}$
 - $-P(Y)\stackrel{?}{=}P(f(a))$ podemos sustituir por $\{Y:=f(a)\}$ y este será el mgu
 - $-P(Y)\stackrel{?}{=}P(g(Z))$ podemos sustituir por $\{Y:=g(Z)\}$ y este será el mgu
 - $-P(Y) \stackrel{?}{=} Q(f(Y), X)$ no podemos sustituir
 - $-P(Y)\stackrel{?}{=}Q(f(Y),f(X))$ no podemos unificar
 - $-P(Y) \stackrel{?}{=} Q(f(Y), Y)$ no podemos unificar
 - $P(Y) \stackrel{?}{=} f(f(c))$ no podemos unificar
 - $-P(Y)\stackrel{?}{=} f(g(Y))$ no podemos unificar
- Q(X, f(Y)) con cuáles expresiones podemos unificar ?
 - $Q(X, f(Y)) \stackrel{?}{=} P(X)$ no podemos unificar
 - $Q(X, f(Y)) \stackrel{?}{=} P(f(a))$ no podemos unificar
 - $-Q(X, f(Y)) \stackrel{?}{=} P(g(Z))$ no podemos unificar
 - $Q(X, f(Y)) \stackrel{?}{=} Q(f(Y), X)$ podemos sustituir por $\{X := f(Y)\}$ dando el mgu $S = \{X := f(Y)\}$
 - $-Q(X, f(Y)) \stackrel{?}{=} Q(f(Y), f(X))$ no podemos unificar
 - $Q(X, f(Y)) \stackrel{?}{=} Q(f(Y), Y)$ no podemos unificar
 - $-Q(X, f(Y)) \stackrel{?}{=} f(f(c))$ no podemos unificar
 - $-Q(X, f(Y)) \stackrel{?}{=} f(g(Y))$ no podemos unificar
- Q(X, f(Z)) con cuáles expresiones podemos unificar?
 - $-Q(X, f(Z)) \stackrel{?}{=} P(X)$ no podemos unificar
 - $-Q(X, f(Z)) \stackrel{?}{=} P(f(a))$ no podemos unificar
 - $-Q(X, f(Z)) \stackrel{?}{=} P(g(Z))$ no podemos unificar
 - $-Q(X,f(Z))\stackrel{?}{=}Q(f(Y),X)$ podemos sustituir $\{Y:=Z\}$ y luego $\{X:=f(Z)\}$ dando un mgu $S=S_2\circ S_1=\{X:=f(Z),Y:=Z\}$

- $-Q(X,f(Z))\stackrel{?}{=}Q(f(Y),f(X))$ podemos unificar con $\{X:=f(Y)\}$ y luego $\{Z:=X\}$ dando un mgu $S=S_2\circ S_1=\{Z:=X,X:=f(Y)\}$
- $-Q(X,f(Z))\stackrel{?}{=}Q(f(Y),Y)$ podemos unificar con $\{X:=f(Y)\}$ y luego $\{Y:=f(Z)\}$ dando un mgu $S=S_2\circ S_1=\{Y:=f(Z),X:=f(Y)\}$
- $-Q(X, f(Z)) \stackrel{?}{=} f(f(c))$ no podemos unificar
- $-Q(X, f(Z)) \stackrel{?}{=} f(g(Y))$ no podemos unificar
- Q(X, f(a)) con cuáles expresiones podemos unificar ?
 - $-Q(X, f(a)) \stackrel{?}{=} P(X)$ no podemos unificar
 - $-Q(X, f(a)) \stackrel{?}{=} P(f(a))$ no podemos unificar
 - $-Q(X,f(a))\stackrel{?}{=}Q(f(Y),X)$ podemos sustituir $\{X:=f(a)\}$ y luego $\{Y:=a\}$ dando como mgu $S=S_2\circ S_1=\{Y:=a,X:=f(a)\}$
 - $-Q(X,f(a))\stackrel{?}{=}Q(f(Y),f(X))$ no podemos unificar
 - $-Q(X,f(a))\stackrel{?}{=}Q(f(Y),Y)$ podemos sustituir con $\{X:=f(Y)\}$ y luego $\{Y:=f(a)\}$ como mgu nos queda $S=S_2\circ S_1=\{Y:=f(a),X:=f(Y)\}$
 - $-Q(X, f(a)) \stackrel{?}{=} f(f(c))$ no podemos unificar
 - $-Q(X, f(a)) \stackrel{?}{=} f(g(Y))$ no podemos unificar
- \bullet X con cuáles expresiones podemos unificar?
 - $-X \stackrel{?}{=} P(X)$ no podemos unificar
 - $-X \stackrel{?}{=} P(f(a))$ sustituimos $\{X := P(f(a))\}$ y este es el mgu
 - $-X\stackrel{?}{=}P(g(Z))$ sustituimos $\{X:=P(g(Z))\}$ y este es el mgu
 - $X\stackrel{?}{=}Q(f(Y),X)$ no podemos unificar
 - $-X\stackrel{?}{=}Q(f(Y),f(X))$ no podemos unificar
 - $X \stackrel{?}{=} Q(f(Y),Y)$ sustituimos $\{X := Q(f(Y),Y)\}$ y este es el mgu
 - $X\stackrel{?}{=}f(f(c))$ sustituimos por $\{X:=f(f(c))\}$ y este es el mgu
 - $-X\stackrel{?}{=} f(g(Y))$ sustituimos por $\{X:=f(g(Y))\}$ y este es el mgu
- f(X) con cuáles expresiones podemos unificar?
 - $-f(X) \stackrel{?}{=} P(X)$ no podemos unificar
 - $-f(X) \stackrel{?}{=} P(f(a))$ no podemos unificar
 - $-f(X) \stackrel{?}{=} P(g(Z))$ no podemos unificar
 - $-f(X) \stackrel{?}{=} Q(f(Y), X)$ no podemos unificar
 - $-\ f(X) \stackrel{?}{=} Q(f(Y), f(X))$ no podemos unificar
 - $-f(X) \stackrel{?}{=} Q(f(Y), Y)$ no podemos unificar
 - $-f(X)\stackrel{?}{=} f(f(c))$ sustituimos por $\{X:=f(c)\}$ este es el m
gu
 - $-\ f(X)\stackrel{?}{=} f(g(Z))$ sustituimos por $\{X:=g(Z)\}$ este es el m
gu

2.2 Ejericicio 6

Determinar con el algoritmo de Martelli-Montanari si las siguientes expresiones se pueden unificar

1. $f(X, X, Y) \stackrel{?}{=} f(a, b, Z)$

entrada : $\{f(X,X,Y)\stackrel{?}{=}f(a,b,Z)\}$ decompose : $\{X\stackrel{?}{=}a,X\stackrel{?}{=}b,Y\stackrel{?}{=}Z\}$ elim var : $\{X\stackrel{?}{=}a,X\stackrel{?}{=}b\} \text{ con S1 = } \{Y:=Z\}$ colision : falla

Las expresiones no se pueden unificar.

2. $Y \stackrel{?}{=} f(X)$

entrada : $\{Y \stackrel{?}{=} f(X)\}$ elim var : \emptyset con S1 = $\{Y := f(X)$ $\}$

La expresión se puede unificar y el mgu es $S = S_1 = \{Y := f(X)\}$

3. $f(g(c,Y),X) \stackrel{?}{=} f(Z,g(Z,a))$

 $\begin{array}{ll} \text{entrada} : & \{f(g(c,Y),X) \stackrel{?}{=} f(Z,g(Z,a))\} \\ \\ \text{decompose} : & \{g(c,Y) \stackrel{?}{=} Z,X \stackrel{?}{=} g(Z,a)\} \\ \\ \text{elim var} : & \{X \stackrel{?}{=} g(g(c,Y),a)\} \text{ con S1 = } \{Z := g(c,Y)\} \\ \\ \text{elim var} : & \emptyset \text{ con S2 = } \{X := g(g(c,Y),a)\} \end{array}$

Por tanto, la expresión se puede unificar, donde el mgu es

$$S = S_2 \circ S_1 = \{X := q(q(c, Y), a), Z := q(c, Y)\}$$

4. $f(a) \stackrel{?}{=} g(Y)$

entrada : $\{f(a) \stackrel{?}{=} g(Y)\}$ colision : falla

5. $f(X) \stackrel{?}{=} X$

entrada : $\{f(X)\stackrel{?}{=}X\}$ occurs check : falla

6. $g(X,Y) \stackrel{?}{=} g(f(Y), f(X))$

entrada : $\{g(X,Y)\stackrel{?}{=}g(f(Y),f(X))\}$ decompose : $\{X\stackrel{?}{=}f(Y),Y\stackrel{?}{=}f(X)\}$ elim var : $\{Y\stackrel{?}{=}f(f(Y))\} \text{ con S1 =}\{X:=f(Y)\}$ occurs check : falla

2.3 Ejercicio 8

Sean las constantes Nat y Bool, y la función binaria \rightarrow (representada como un operador infijo). Determinar el resultado de aplicar el algoritmo MGU (most general unifier) sobre las ecuaciones planteadas a continuación. En caso de tener éxito, mostrar la sustitución resultante.

1.
$$MGU\{T_1 \rightarrow T_2 \doteq Nat \rightarrow Bool\}$$

entrada :
$$\{T_1 \rightarrow T_2 \stackrel{?}{=} Nat \rightarrow Bool\}$$

decompose :
$$\{T_1 \stackrel{?}{=} Nat, T_2 \stackrel{?}{=} Bool\}$$

elim var :
$$\{T_2 \stackrel{?}{=} Bool\}$$
 con S1 = $\{T_1 := Nat\}$

$$\texttt{elim var} \; : \quad \emptyset \; \texttt{con S2} \; \texttt{=} \; \{T_2 := Bool\}$$

Dicho esto,

$$S = S_2 \circ S_1 = \{T_2 := Bool, T_1 := Nat\}$$

2.
$$MGU\{T_1 \to T_2 \doteq T_3\}$$

entrada :
$$\{T_1
ightarrow T_2 \stackrel{?}{=} T_3\}$$

elim var :
$$\emptyset$$
 con S1 = $\{T_3 := T_1 \rightarrow T_2\}$

Entonces

$$S = S1 = \{T_3 := T_1 \to T_2\}$$

3.
$$MGU\{T_1 \to T_2 \doteq T_2\}$$

entrada :
$$\{T_1
ightarrow T_2 \stackrel{?}{=} T_2\}$$

occurs check: falla

4.
$$MGU\{(T_2 \rightarrow T_1) \rightarrow Bool \doteq T_2 \rightarrow T_3\}$$

entrada :
$$\{(T_2 \rightarrow T_1) \rightarrow Bool \stackrel{?}{=} T_2 \rightarrow T_3\}$$

decompose :
$$\{(T_2 \rightarrow T_1) \stackrel{?}{=} T_2, Bool \stackrel{?}{=} T_3\}$$

elim var :
$$\{(T_2 \rightarrow T_1) \stackrel{?}{=} T_2\}$$
 con S1 = $\{T_3 := Bool\}$

occurs check : falla

5.
$$MGU\{T_2 \rightarrow T_1 \rightarrow Bool \doteq T_2 \rightarrow T_3\}$$

entrada :
$$\{T_2 o T_1 o Bool \stackrel{?}{=} T_2 o T_3\}$$

decompose :
$$\{T_2 \stackrel{?}{=} T_2, T_1 \rightarrow Bool \stackrel{?}{=} T_3\}$$

elim triv :
$$\{T_1 \rightarrow Bool \stackrel{?}{=} T_3\}$$

elim var :
$$\emptyset$$
 con S1 = $\{T_3 := T_1 \rightarrow Bool\}$

Con esto

$$S = S1 = \{T_3 := T_1 \rightarrow Bool\}$$

6.
$$MGU\{T_1 \rightarrow Bool \doteq Nat \rightarrow Bool, T_1 \doteq T_2 \rightarrow T_3\}$$

entrada :
$$\{T_1 \rightarrow Bool \stackrel{?}{=} Nat \rightarrow Bool, T_1 \stackrel{?}{=} T_2 \rightarrow T_3\}$$

$$\texttt{decompose} \;: \quad \{T_1 \stackrel{?}{=} Nat, Bool \stackrel{?}{=} Bool, T_1 \stackrel{?}{=} T_2 \rightarrow T_3\}$$

elim triv :
$$\{T_1\stackrel{?}{=} Nat, T_1\stackrel{?}{=} T_2 \rightarrow T_3\}$$

colision: falla

7.
$$MGU\{T_1 \rightarrow Bool \doteq Nat \rightarrow Bool, T_2 \doteq T_1 \rightarrow T_1\}$$

entrada :
$$\{T_1 \rightarrow Bool \stackrel{?}{=} Nat \rightarrow Bool, T_2 \stackrel{?}{=} T_1 \rightarrow T_1\}$$

$$\texttt{decompose} \;: \quad \{T_1 \stackrel{?}{=} Nat, Bool \stackrel{?}{=} Bool, T_2 \stackrel{?}{=} T_1 \rightarrow T_1\}$$

elim triv :
$$\{T_1\stackrel{?}{=} Nat, T_2\stackrel{?}{=} T_1 \rightarrow T_1\}$$

elim var :
$$\{T_2 \stackrel{?}{=} Nat \rightarrow Nat\}$$
 con S1 = $\{T_1 := Nat\}$

$$\texttt{elim var} \;: \quad \emptyset \; \texttt{con S2} \; \texttt{=} \{ T_2 := Nat \to Nat \}$$

Con esto,

$$S = S_2 \circ S_1 = \{T_2 := Nat \to Nat, T_1 := Nat\}$$

8. $MGU\{T_1 \to T_2 \doteq T_3 \to T_4, T_3 \doteq T_2 \to T_1\}$

entrada : $\{T_1 \rightarrow T_2 \stackrel{?}{=} T_3 \rightarrow T_4, T_3 \stackrel{?}{=} T_2 \rightarrow T_1\}$

 $\texttt{decompose} \ : \quad \{T_1 \stackrel{?}{=} T_3, T_2 \stackrel{?}{=} T_4, T_3 \stackrel{?}{=} T_2 \rightarrow T_1\}$

elim var : $\{T_1\stackrel{?}{=}T_3,T_3\stackrel{?}{=}T_4\to T_1\}$ con S1 = $\{T_2:=T_4\}$

elim var : $\{T_3\stackrel{?}{=}T_4 o T_3\}$ con S1 = $\{T_1:=T_3\}$

ocurs check : falla

3 Deducción Natural

3.1 Ejercicio 9

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas, sin usar princhipios de razonamiento clásico, salvo que se indique lo contrario:

- 1. Intercambio (\forall) : $\forall X. \forall Y. P(X, Y) \Leftrightarrow \forall Y. \forall X. P(X, Y)$
 - ullet Arrancamos con la ida : \Longrightarrow

$$\frac{\frac{(\forall X. \forall Y. P(X,Y)) \vdash \forall X. \forall Y. P(X,Y)}{(\forall X. \forall Y. P(X,Y)) \vdash \forall Y. P(x,Y)}}{(\forall X. \forall Y. P(X,Y)) \vdash \forall X. P(X,y)}} \underbrace{\forall_e}_{\forall_e} \\ \frac{(\forall X. \forall Y. P(X,Y)) \vdash \forall X. P(X,y)}{(\forall X. \forall Y. P(X,Y)) \vdash \forall Y. \forall X. P(X,Y)}}_{\vdash \forall X. \forall Y. P(X,Y)} \Rightarrow_i$$

ullet Vamos con la vuelta : \Longleftarrow

$$\frac{ \frac{ (\forall Y. \forall X. P(X,Y)) \vdash \forall Y. \forall X. P(X,Y)}{(\forall Y. \forall X. P(X,Y)) \vdash \forall X. P(X,y)} }{ \frac{ (\forall Y. \forall X. P(X,Y)) \vdash \forall X. P(X,y)}{(\forall Y. \forall X. P(X,Y)) \vdash \forall Y. P(x,Y)} } \underbrace{ \forall_e \\ \frac{ (\forall Y. \forall X. P(X,Y)) \vdash \forall Y. P(x,Y)}{(\forall Y. \forall X. P(X,Y)) \vdash \forall X. \forall Y. P(X,Y)} } \underbrace{ \forall_i \\ \vdash \forall Y. \forall X. P(X,Y) \implies \forall X. \forall Y. P(X,Y)} \Rightarrow \underbrace{ \forall_i }_{\forall X. \forall Y. P(X,Y)} \Rightarrow \underbrace{ \forall_i }_{\forall X. \forall Y. P(X,Y)} \Rightarrow \underbrace{ \forall_i }_{\forall X. \forall Y. P(X,Y)}$$

- 2. Intercambio $(\exists): \exists X.\exists Y.P(X,Y) \Leftrightarrow \exists Y.\exists X.P(X,Y)$
 - \bullet Ida \Longrightarrow

$$\frac{\frac{\overline{\Gamma',P(x,y) \vdash P(x,y)}}{ax} \stackrel{ax}{=} \frac{\overline{\Gamma',P(x,y) \vdash P(x,y)}}{\frac{\Gamma',P(x,y) \vdash \exists X.P(X,y)}{\Gamma',P(x,y) \vdash \exists Y.\exists X.P(X,y)}} \exists_i \\ \frac{\overline{\Gamma \vdash \exists X.\exists Y.P(X,Y)}}{\Gamma,(\exists Y.P(x,Y)) \vdash \exists Y.\exists X.P(X,Y)} \exists_e \\ \frac{(\exists X.\exists Y.P(X,Y)) \vdash \exists Y.\exists X.P(X,Y)}{\vdash \exists X.\exists Y.P(X,Y) \Rightarrow \exists Y.\exists X.P(X,Y)} \Rightarrow_i$$

 \bullet Vuelta \Longleftarrow

$$\frac{\frac{\Gamma', P(x,y) \vdash P(x,y)}{\Gamma', P(x,y) \vdash \exists Y. P(X,Y)} \exists_{i}}{\frac{\Gamma' \vdash \exists X. P(X,y)}{\Gamma', P(x,y) \vdash \exists X. \exists Y. P(X,Y)} \exists_{i}}{\frac{\Gamma', P(x,y) \vdash \exists Y. P(x,Y)}{\Gamma', P(x,y) \vdash \exists X. \exists Y. P(X,Y)}} \exists_{i}$$

$$\frac{(\exists Y. \exists X. P(X,Y)) \vdash \exists X. \exists Y. P(X,Y)}{\vdash \exists Y. \exists X. P(X,Y) \Rightarrow \exists X. \exists Y. P(X,Y)} \Rightarrow_{i}$$

$$\exists \exists X. \forall Y. P(X,Y) \Rightarrow \forall Y. \exists X. P(X,Y)$$

3. Intercambio $(\exists/\forall):\exists X.\forall Y.P(X,Y) \Rightarrow \forall Y.\exists X.P(X,Y)$

$$\frac{\frac{\Gamma', \forall Y.P(x,Y) \vdash \forall Y.P(x,Y)}{\Gamma', \forall Y.P(x,Y) \vdash P(x,y)} \overset{ax}{\forall_e}}{\frac{\Gamma', \forall Y.P(x,Y) \vdash P(x,y)}{\Gamma', \forall Y.P(x,Y) \vdash \exists X.P(X,y)}} \exists_i \\ \frac{\Gamma', \forall Y.P(x,Y) \vdash \exists X.P(X,y)}{\Gamma', \forall Y.P(x,Y) \vdash \forall Y.\exists X.P(X,Y)} ; \exists_e \\ \frac{\Gamma, (\exists X.\forall Y.P(X,Y)) \vdash \forall Y.\exists X.P(X,Y)}{\Gamma \vdash \exists X.\forall Y.P(X,Y) \Rightarrow \forall Y.\exists X.P(X,Y)} \Rightarrow_i$$

4. Universal implica existencial: $\forall X.P(X) \Rightarrow \exists X.P(X)$

$$\frac{\frac{\Gamma \vdash \forall X.P(X)}{\Gamma \vdash P(x)} \forall_{e}}{\frac{(\forall X.P(X)) \vdash \exists X.P(X)}{\vdash \forall X.P(X) \Rightarrow \exists X.P(X)}} \exists_{i}$$

5. Diagonal $(\forall): \forall X. \forall Y. P(X,Y) \Rightarrow \forall X. P(X,X)$ (chequear)

$$\frac{ \frac{(\forall X. \forall Y. P(X,Y)) \vdash \forall X. \forall Y. P(X,Y)}{\forall e} \forall_e}{\frac{(\forall X. \forall Y. P(X,Y)) \vdash \forall Y. P(x,Y)}{(\forall X. \forall Y. P(X,Y)) \vdash P(x,x)} \forall_e}{\frac{(\forall X. \forall Y. P(X,Y)) \vdash \forall X. P(X,X)}{\vdash \forall X. \forall Y. P(X,Y) \Rightarrow \forall X. P(X,X)} \Rightarrow_i}$$

6. Diagonal (\exists) : $\exists X.P(X,X) \Rightarrow \exists X.\exists Y.P(X,Y)$

$$\frac{\frac{\Gamma, P(x,x) \vdash P(x,x)}{\Gamma, P(x,x) \vdash \exists Y. P(x,Y)} \exists_{i}}{\frac{\Gamma, P(x,x) \vdash \exists X. P(X,Y)}{\Gamma, P(x,x) \vdash \exists X. \exists Y. P(X,Y)}} \exists_{i}$$

$$\frac{(\exists X. P(X,X)) \vdash \exists X. \exists Y. P(X,Y)}{\vdash \exists X. P(X,X) \Rightarrow \exists X. \exists Y. P(X,Y)} \Rightarrow_{i}$$

- 7. De Morgan (I): $\neg \exists X.P(X) \Leftrightarrow \forall X.\neg P(X)$
 - \bullet Ida \Longrightarrow

$$\frac{\frac{\overline{\Gamma, P(x) \vdash P(x)}}{\Gamma, P(x) \vdash \exists X. P(X)} \exists_{i} \quad \overline{\Gamma, P(x) \vdash \neg \exists X. P(X)}}{\frac{\Gamma, P(x) \vdash \bot}{\Gamma \vdash \neg P(x)} \lnot_{i}} \underbrace{\frac{\Gamma, P(x) \vdash \bot}{\neg \exists X. P(X) \vdash \forall X. \neg P(X)}}_{\vdash \neg \exists X. P(X) \Rightarrow \forall X. \neg P(X)} \Rightarrow_{i}$$

• Vuelta $\Leftarrow=$

$$\frac{\Gamma' \vdash \exists X. P(X)}{\Gamma' \vdash \exists X. P(X)} \underbrace{\frac{\Gamma', P(x) \vdash \bot P(x)}{\Gamma', P(x) \vdash \bot} ax}_{\Gamma', P(x) \vdash \bot \neg P(x)} \underbrace{\frac{\Gamma, \exists X. P(X) \vdash \bot}{\forall X. \neg P(X) \vdash \neg \exists X. P(X)}}_{\neg e} \exists_{e}$$

$$\frac{\Gamma, \exists X. P(X) \vdash \bot}{\forall X. \neg P(X) \vdash \neg \exists X. P(X)} \exists_{e}$$

$$\frac{\neg e}{\forall X. \neg P(X) \vdash \neg \exists X. P(X)} \Rightarrow_{i}$$

8. De Morgan (II): $\neg \forall X.P(X) \Leftrightarrow \exists X.\neg P(X)$

Para la dirección ⇒ es necesario usar principios de razonamiento clásicos.

• Ida \Longrightarrow

$$\frac{ \begin{array}{c|c} \Gamma'' \vdash \neg \exists X. \neg P(X) \end{array} ax & \overline{\Gamma' \vdash \neg \exists X. \neg P(X) \Rightarrow \forall X. \neg \neg P(X)} & \Rightarrow_{e} \\ \hline \frac{\Gamma, \neg \exists X. \neg P(X) \vdash \forall X. \neg \neg P(X)}{\Gamma, \neg \exists X. \neg P(X) \vdash P(X)} & \forall_{e} \\ \hline \underline{\Gamma, \neg \exists X. \neg P(X) \vdash P(X)} & \neg \neg_{e} \\ \hline \Gamma, \neg \exists X. \neg P(X) \vdash \forall X. P(X) & \forall_{i} & \overline{\Gamma' \vdash \neg \forall X. P(X)} & \Rightarrow_{e} \\ \hline \hline \frac{\neg \forall X. P(X), \neg \exists X. \neg P(X) \vdash \bot}{\neg \forall X. P(X) \vdash \exists X. \neg P(X)} & \Rightarrow_{e} \\ \hline \underline{\neg \forall X. P(X) \vdash \exists X. \neg P(X)} & \neg \neg_{e} \\ \hline \underline{\neg \forall X. P(X) \vdash \exists X. \neg P(X)} & \Rightarrow_{i} \\ \hline \end{array}$$

• Vuelta $\Leftarrow =$

$$\frac{\frac{\overline{\Gamma', \neg P(x) \vdash \forall X. P(X)}}{\Gamma', \neg P(x) \vdash P(x)} \forall_e }{\frac{\Gamma', \neg P(x) \vdash \neg P(x)}{\Gamma', \neg P(x) \vdash \neg P(x)}} ax}{\frac{\Gamma', \neg P(x) \vdash \bot}{\Gamma', \neg P(x) \vdash \bot} \exists_e}{\frac{\overline{\Gamma, \forall X. P(X) \vdash \bot}}{\exists X. \neg P(X) \vdash \neg \forall X. P(X)}}_{\vdash \exists X. \neg P(X) \Rightarrow \neg \forall X. P(X)} \Rightarrow_i}$$

- 9. Universal/conjunción: $\forall X.(P(X) \land Q(X)) \Leftrightarrow (\forall X.P(X) \land \forall X.Q(X))$
 - \bullet Ida \Longrightarrow

$$\frac{ \frac{ \Gamma \vdash \forall X. (P(X) \land Q(X))}{ \Gamma \vdash P(x) \land Q(x)} \overset{ax}{\forall_e} }{\frac{ \Gamma \vdash P(x) \land Q(x)}{ \Gamma \vdash P(x)} \overset{Ax}{\forall_i}} \frac{ \frac{ \Gamma \vdash \forall X. (P(X) \land Q(X))}{ \Gamma \vdash P(x) \land Q(x)} \overset{ax}{\forall_e} }{\frac{ \Gamma \vdash P(x) \land Q(x)}{ \Gamma \vdash \forall X. Q(X)} \overset{Ae_2}{\forall_i}} \frac{ \frac{ \Gamma \vdash Q(x) \land Q(x)}{ \Gamma \vdash \forall X. Q(X)} \overset{Ae_2}{\forall_i}}{\frac{ \forall X. (P(X) \land Q(X) \vdash \forall X. P(X) \land \forall X. Q(X)}{ \Gamma \vdash \forall X. Q(X)} \overset{Ae_3}{\Rightarrow_i}}$$

• Vuelta $\Leftarrow=$

$$\frac{ \frac{\Gamma \vdash \forall X.P(X) \land \forall X.Q(X)}{\land e_1} }{\frac{\Gamma \vdash \forall X.P(X)}{\Gamma \vdash P(x)} \forall_e \quad \text{con } \{ \ \ \mathbb{X} \ := \ \mathbb{x} \} } \frac{ \frac{\Gamma \vdash \forall X.P(X) \land \forall X.Q(X)}{\Gamma \vdash Q(X)} \land_{e_2} }{\frac{\Gamma \vdash \forall X.Q(X)}{\Gamma \vdash Q(x)} \land_i} \forall_e \quad \text{con } \{ \ \ \mathbb{X} \ := \ \mathbb{x} \} } \frac{ \frac{\Gamma \vdash P(x) \land Q(x)}{\Gamma \vdash Q(x)} \land_i}{\frac{(\forall X.P(X) \land \forall X.Q(X)) \vdash \forall X.(P(X) \land Q(X))}{\vdash (\forall X.P(X) \land \forall X.Q(X))} \Rightarrow_i}$$

10. Universal/disyunción: $\forall X.(P(X) \lor \sigma) \Leftrightarrow (\forall X.P(X)) \lor \sigma$, asumiendo que $X \notin \text{fv}(\sigma)$.

Para la dirección ⇒ es necesario usar principios de razonamiento clásicos.

 \bullet Ida \Longrightarrow

$$\frac{\overline{\Gamma, \neg \sigma \vdash \forall X. (P(X) \lor \sigma)}}{\underline{\Gamma, \neg \sigma \vdash P(x) \lor \sigma}} \lor_{e} \qquad \frac{\overline{\Gamma, \neg \sigma, P(x) \vdash P(x)}}{\overline{\Gamma, \neg \sigma, P(x) \vdash P(x)}} ax \qquad \overline{\Gamma, \neg \sigma, P(x) \vdash P(x)} \qquad \overline{\Gamma, \neg \sigma, P(x) \vdash P(x)} \qquad \overline{\Gamma, \neg \sigma, P(x) \vdash P(x)} \qquad \overline{\Gamma, \neg \sigma \vdash P(x)} \qquad \forall i_{1} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma)} \qquad \forall i_{1} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X. P(X)) \lor \sigma} \qquad \overline{\Gamma, \neg \sigma \vdash (\forall X.$$

• Vuelta \Leftarrow

$$\frac{\frac{\overline{\Gamma' \vdash \forall X.(P(X)}}{\Gamma' \vdash P(x)} \overset{ax}{\forall_e} \text{ con } \{\mathbb{X} := \mathbb{x}\}}{\frac{\Gamma, \sigma \vdash \sigma}{\Gamma, \sigma \vdash \sigma} \overset{ax}{\Rightarrow}} \frac{\frac{\Gamma, \sigma \vdash \sigma}{\Gamma, \sigma \vdash \sigma} \overset{ax}{\Rightarrow}}{\frac{\Gamma, \sigma \vdash \sigma}{\Gamma, \sigma \vdash \rho(X) \lor \sigma}} \overset{\forall_i}{\forall_i} \frac{\frac{\Gamma, \sigma \vdash \sigma}{\Gamma, \sigma \vdash \rho(X) \lor \sigma} \overset{\forall_i}{\Rightarrow}}{\frac{(\forall X.P(X)) \lor \sigma \vdash \forall X.(P(X) \lor \sigma)}{\vdash (\forall X.P(X)) \lor \sigma \Rightarrow \forall X.(P(X) \lor \sigma)}} \overset{\forall_i}{\Rightarrow_i}$$

11. Existencial/disyunción: $\exists X.(P(X) \lor Q(X)) \Leftrightarrow (\exists X.P(X) \lor \exists X.Q(X))$

$$\frac{\Gamma', P(x) \vdash P(x) \downarrow P$$

12. Existencial/conjunción: $\exists X.(P(X) \land \sigma) \Leftrightarrow (\exists X.P(X) \land \sigma)$, asumiendo que $X \notin \text{fv}(\sigma)$.

$$\frac{\Gamma, P(\times) \wedge \delta - P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta + P(\times)} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta + \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta + \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta + \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta + P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{A \times} \frac{\Gamma, P(\times) \wedge \delta}{\Gamma, P(\times) \wedge \delta} \xrightarrow{$$

$$\frac{\frac{A^{2} A^{2} A^{2} A^{2} A^{2}}{\Gamma^{1} + A^{2} A^{2} + \Gamma^{1}}}{\frac{A^{2} A^{2} A^{2}}{\Gamma^{1} + A^{2} A^{2} + \Gamma^{1}}}{\frac{A^{2} A^{2} A^{2} A^{2}}{\Gamma^{1} + A^{2} A^{2} + \Gamma^{1}}}{\frac{A^{2} A^{2} A^{2} A^{2} A^{2}}{\Gamma^{1} + A^{2} A^{2} + \Gamma^{2} A^{2} + \Gamma^{2} A^{2} A^{2}}}{\frac{A^{2} A^{2} A^{2} A^{2} A^{2} A^{2} A^{2} A^{2}}{\Gamma^{2} A^{2} A^{2} A^{2} + \Gamma^{2} A^{2} A^{2} A^{2} A^{2}}}}$$

$$\frac{1}{A^{2} A^{2} A^{$$

13. Principio del bebedor: $\exists X.(P(X) \Rightarrow \forall X.P(X))$ En este ítem es necesario usar principios de razonamiento clásicos.

3.2 Ejercicio 10

Demostrar en deducción natural : $(\forall X. \forall Y. R(X, f(Y))) \Rightarrow (\forall X. R(X, f(f(X))))$ (cchequear)

$$\frac{\overline{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash \forall X. \forall Y. R(X, f(Y)))}}{\frac{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash \forall Y. R(x, f(Y)))}{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash R(x, f(f(X)))}} \, \forall_e \quad \text{con } \{ \ \texttt{X} := \texttt{x} \} \\ \frac{\overline{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash R(x, f(f(X)))}}{\overline{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash \forall X. R(X, f(f(X)))}} \, \forall_e \quad \text{con } \{ \ \texttt{Y} := \texttt{f}(\texttt{x}) \} \\ \frac{\overline{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \vdash \forall X. R(X, f(f(X)))}}{\overline{\Gamma, (\forall X. \forall Y. R(X, f(Y))) \Rightarrow (\forall X. R(X, f(f(X))))}} \, \Rightarrow_i$$

4 Semántica

4.1 Ejercicio 13

Sea L el lenguaje de primer orden que incluye (junto con las variables, conectivos y cuantificadores) la constante a_1 , el símbolo de función f de aridad 2 y el símbolo de predicado P de aridad 2. Sea σ la fórmula:

$$\forall X_1 \,\forall X_2 \, (P(f(X_1, X_2), a_1) \Rightarrow P(X_1, X_2))$$

Definamos una interpretación \mathcal{I} para L como sigue: $D_{\mathcal{I}}$ es \mathbb{Z} , $\overline{a_1} = 0$, $\overline{f}(X,Y) = X - Y$, y $\overline{P}(X,Y)$ es X < Y.

- 1. Escribir la interpretación de σ en castellano. La interpretación de la fórmula en castellano es la siguiente : "para toda variable del dominio X_1 y X_2 si vale que la diferencia entre las variables es menor que cero entonces, en particular vale que X_1 es menor que X_2 "
- 2. ¿El enunciado es verdadero o falso? El enunciado es verdadero bajo la interpretación definida.

3. Hallar una interpretación de σ en la cual el enunciado tenga el valor de verdad opuesto. Si proponemos una interepretación \mathcal{I}' para \mathcal{L} donde $D_{\mathcal{I}'}$ es \mathbb{Z} , $\overline{a_1} = 0$, $\overline{f}(X,Y) = X + Y$, y $\overline{P}(X,Y)$ es un predicado que define la igualdad. Bajo esta nueva interpretación, la fórmula σ es falsa.

4.2 Ejercicio 14

Sea \mathbb{N} la interpretación aritmética donde $D_{\mathcal{I}} = \mathbb{N}$ y:

$$\overline{c}^0$$
 es 0
 \overline{P}^2 es =
 \overline{f}_1^1 es la función sucesor
 \overline{f}_2^2 es la suma +
 \overline{f}_3^2 es el producto×

Hallar, si es posible, asignaciones que satisfagan y que no satisfagan las siguientes fórmulas:

1.
$$P(f_2(X_1, X_1), f_3(f_1(X_1), f_1(X_1)))$$

Sea $a : var \to \mathbb{N}$. $a(X_1) = n \in \mathbb{N}$

$$P(f_2(X_1, X_1), f_3(f_1(X_1), f_1(X_1)))$$

$$a(f_2(X_1, X_1) = a(f_3(f_1(X_1), f_1(X_1)))$$

$$a(X_1) + a(X_1) = (a(X_1) + 1) \times (a(X_1) + 1)$$

$$\mathbb{N} \models_a P(f_2(X_1, X_1), f_3(f_1(X_1), f_1(X_1))) \text{ vale } \dots$$

$$\iff a(X_1) + a(X_1) = (a(X_1) + 1) \times (a(X_1) + 1)$$

$$\iff 2n = n^2 + 2n + 1 \quad i.e \quad n^2 + 1 = 0$$

No está definida la raíz en N, por tanto, no hay asignación que satisfaga.

2.
$$P(f_{2}(X_{1}, c), X_{2}) \Rightarrow P(f_{2}(X_{1}, X_{2}), X_{3})$$

Sea $a : var \to \mathbb{N}$. $a(X_{1}) = n \in \mathbb{N}$, $a(X_{2}) = s \in \mathbb{N}$, $a(X_{3}) = t \in \mathbb{N}$, $a(c) = 0 \in \mathbb{N}$
 $P(f_{2}(X_{1}, c), X_{2}) \Rightarrow P(f_{2}(X_{1}, X_{2}), X_{3})$
 $((a(X_{1}) + a(c)) = a(X_{2})) \Rightarrow (a(X_{1}) + a(X_{2}) = a(X_{3}))$
 $\mathbb{N} \models_{a} P(f_{2}(X_{1}, c), X_{2}) \Rightarrow P(f_{2}(X_{1}, X_{2}), X_{3}) \text{ vale } \dots$
 $\iff ((a(X_{1}) + a(c)) = a(X_{2})) \Rightarrow (a(X_{1}) + a(X_{2}) = a(X_{3}))$
 $\iff n + 0 = s \Rightarrow n + s = t$
 $\iff n = s \Rightarrow s + s = t$
 $\iff n = s \Rightarrow 2s = t$

Existe asignación que satisfaga. $n=1=s \wedge t=2$

3.
$$\neg P(f_3(X_1, X_2), f_3(X_2, X_3))$$
 Sea $a: var \to \mathbb{N}$. $a(X_1) = n \in \mathbb{N}$, $a(X_2) = s \in \mathbb{N}$, $a(X_3) = t \in \mathbb{N}$, $a(c) = 0 \in \mathbb{N}$

$$\neg P(f_3(X_1, X_2), f_3(X_2, X_3))$$

$$a(X_1) \times a(X_2) \neq a(X_2) \times a(X_3)$$

$$\mathbb{N} \models_a \neg P(f_3(X_1, X_2), f_3(X_2, X_3)) \text{ vale } \dots$$

$$\iff a(X_1) \times a(X_2) \neq a(X_2) \times a(X_3)$$

$$\iff n \times s \neq s \times t$$

$$\iff n \neq t$$

Existe asignación que satisfaga.

4.
$$\forall X_1. P(f_3(X_1, X_2), X_3)$$
 Sea $a: var \to \mathbb{N}$. $a(X_1) = n \in \mathbb{N}$, $a(X_2) = s \in \mathbb{N}$, $a(X_3) = t \in \mathbb{N}$, $a(c) = 0 \in \mathbb{N}$ $\forall X_1. P(f_3(X_1, X_2), X_3)$ $a(X_1) \times a(X_2) = a(X_3)$ $\mathbb{N} \models_a \forall X_1. P(f_3(X_1, X_2), X_3)$ vale ... $\iff a(X_1) \times a(X_2) = a(X_3)$ $\iff n \times s = t$ $\iff n = t/s \quad s \neq 0$

Existe asignación que satisfaga, pero el cuantificador universal exige que toda asignación satisfaga, y por tanto, es falsa para todo X_1

5.
$$\forall X_1. (P(f_3(X_1,c),X_1) \Rightarrow P(X_1,X_2))$$
 Sea $a: var \to \mathbb{N}$. $a(X_1) = n \in \mathbb{N}$, $a(X_2) = s \in \mathbb{N}$, $a(c) = 0 \in \mathbb{N}$ $\forall X_1. (P(f_3(X_1,c),X_1) \Rightarrow P(X_1,X_2))$ $a(X_1) \times a(c) = a(X_1) \Rightarrow a(X_1) = a(X_2)$ $\mathbb{N} \models_a \forall X_1. (P(f_3(X_1,c),X_1) \Rightarrow P(X_1,X_2))$ vale ... $\iff a(X_1) \times a(c) = a(X_1) \Rightarrow a(X_1) = a(X_2)$ $\iff n \times 0 = n \Rightarrow n = s$ $\iff 0 = n \Rightarrow n = s$

Si $n \neq 0$ por antecedente falso, la asignación es verdadera. Si $s = 0 \land n = 0$ también vale; pero qué pasa si $s \neq 0 \land n = 0$? Se rompe todo, por tanto, no vale para todo n.