Matrix Multiplication and Partial Differential Equations via Wavelets

by
Daniel D. Beatty
Computer Science
Texas Tech University

Topics of Discussion

An Overview on Wavelets

- Wavelet Transform Definition
- 1-D Wavelets and Convolution
- 2-D Wavelets and Multi-Resolution on the average term
- 2-D Wavelets, Multi-Resolution Quad-Trees, and their optimization

Matrix Multiplication and its Wavelet Version

- Proof
- Chain Structure

Partial Differential Equations

- Overview of PDE
- Related Work
- Proposed Work

Why Is This Important

Optimized Computations

- Well Conditioned Matrices
- Sparse Matrices

Application of Matrix Multiplication

- Simulations, Computer Vision
- Geographical Information Systems (GIS)

Application of Partial Differential Equations

- Gas Flow Simulations
- Particle Physics Simulations

Thesis Objectives

- Produce wavelet filter library
- Apply wavelet operator in matrix multiplication
 - Determine levels approximation and accuracy
 - Determine level of efficiency
- Apply wavelet operator to partial differential equations
 - Determine levels approximation and accuracy
 - Determine level of efficiency

Overview on Wavelets

- Wavelet Transform Definition
- 1-D Wavelets and Convolution
- 2-D Wavelets and Multi-Resolution on the average term
- 2-D Wavelets, Multi-Resolution Quad-Trees, and their optimization

Definition of Wavelet

- A wavelet vector/ array is defined as a generalization of an even length array by an orthonormal bases which are subsets of the entire array.
- A wavelet matrix is defined as a generalization of a square orthogonal or unitary matrix which is a subset of a large class of rectangular matrices

Array Wavelet Transform

- Array (1-D) Wavelets are defined in terms of average and difference terms.
- The average term is an array half the size of the array it represents.
- The difference term is an array half the size of the array it represents.
- Typically the mapping of the wavelet transform is defined simply as $S \rightarrow (A|D)$.
- Each term is acquired by convolving S with some filter. These filters are chosen based on the properties as a pair.
 Orthonormality, compactness, and smoothness are just a few properties.

Convolution

- Convolution is an operation which applies two functions together. Defined mathematically: $x*h = \sum_{l} h(l)x(k-l)$
- The algorithm is as follows:

```
orall i \in [0, M)
orall j \in [0, N)
n=i-j
if (n \in [0, M))
y_i + = x_n \cdot h_j
```

Convolution applied to the Wavelet Transform

$$A_i = A_{i-1} * V,$$
 $D_i = A_{i-1} * W$

$$D_i = A_{i-1} * W$$

where

- V is the scaling wavelet vector,
- W is the differencing wavelet vector,
- A is the average vector (scaled vector),
- D is the difference component vector,
- $\forall i \in [1, L)$ and $A_0 = f$ which is the original signal, and
- L is the limit on the number resolutions that signal can have based on the wavelet type.

Odd-versus-Even Indexing

- There is a significant issue as to how the difference terms, and average terms are indexed.
- The issue is how each element is accounted for in the wavelet representation.

$$(S_i, S_{i-1}) \to A_i$$
, and $(S_i, S_{i-1}) \to D_i$.

• The following equations represent the mapping from the average and difference arrays to the recovered array.

Odd:
$$R_{2i} = (A_i - D_i)\sqrt{1/2},$$
 $R_{2i+1} = (A_i + D_i)\sqrt{1/2}$
Even: $R_{2i} = (A_i + D_i)\sqrt{1/2},$ $R_{2i-1} = (A_i - D_i)\sqrt{1/2}$

2-D Wavelet Transform

- The 2D transform has four components:
 - A: the average (average of the rows and columns)
 - V: vertical (average of the columns and difference of the rows)
 - H: horizontal (average of the rows and difference of the columns)
 - D: diagonal (difference of the rows and columns)

$$B \Rightarrow \left(\begin{array}{cc} H & D \\ A & V \end{array}\right) \qquad B \Rightarrow \left(\begin{array}{cc} A & V \\ H & D \end{array}\right)$$

I-D to 2-D Method

- Given:
 - 1D wavelet transform source matrix
 - Wavelet basis
- Solution: $\forall i \in rows$
 - $\forall j \in columns$
 - $-S[j] \leftarrow source[i][j]$
 - $-S \Rightarrow^W R$

Vector-Matrix Method

Row Transform

 $\forall i \in rows$

- 1. Initialize temporary array/vector to all zeros (x).
- 2. $\forall k \in columns$

(a)
$$\forall l \in ha.Size \ x + = \begin{cases} S_{i,k-l} * hA_l, & \text{if } k-l \in columns \\ 0, & \text{otherwise} \end{cases}$$

- 3. $\forall k \in columns/2$ $result_{i,k} = x_{2k+1} \text{ (In other words, odd split)}$
- 4. Initialize x to all zeros.
- 5. $\forall k \in columns$

(a)
$$\forall l \in hd.Size \ x + = \begin{cases} S_{i,k-l} * hD_l, & \text{if } k-l \in columns \\ 0, & \text{otherwise} \end{cases}$$

6. $\forall k \in columns/2$ $result_{i,k+columns/2} = x_{2k+1} \text{ (In other words, odd split)}$

Multi-Resolution

- 1. Initialize xA and xD to zero
- 2. $\forall k \in columns$, $\forall l \in filter$
 - \bullet n=k-l
 - if $(n \in columns)$ $xA_k = W_{i,n} * hA_l$ $xD_k = W_{i,n} * hD_l$
- 3. Transfer back to W

$$W_i = xA|xD$$

And the column transform is represented by:

- 1. initialize yA and yD to zero
- 2. $\forall k \in rows$, $\forall l \in filter$
 - \bullet n = k l
 - if $(n \in columns)$ $yA_k = W_{i,n} * hA_l$ $yD_k = W_{i,n} * hD_l$
- 3. Transfer back to W

$$W_j = yA|yD$$

Proof of Concept

- I-D Transform
- 2-D Transform
- 2-D Multi-Resolution
- 2-D Multi-Resolution Quad Tree

I-D Transform

I-D Transform Even Index

2-D Original Image

2-D Wavelet Transform

2-D Multi-Resolution

Matrix Multiplication

- Concept
 - Proof
 - -2×2 example
 - Qualifications for Wavelets in Matrix Multiplication
 - Wavelet Based Matrix Multiply Procedure
- The objectives of this thesis
 - Apply wavelet operator in matrix multiplication
 - determine levels approximation/ accuracy
 - determine efficiency

Theoretical Proof

This segment is a simple linear algebra proof which shows that wavelet matrix multiplication is possible.

1.
$$L(AB) = L(A) \cdot L(B)$$

- 2. ψ^{-1} is a linear operator
- 3. $\psi^{-1}(\psi(A) \cdot \psi(B)) = \psi^{-1}(\psi(A)) \cdot \psi^{-1}(\psi(B))$
- 4. $\psi^{-1}(\psi(A)) = A$
- 5. $\psi^{-1}(\psi(B)) = B$
- 6. Therefore: $AB = \psi^{-1}(\psi(A) \cdot \psi(B))$

A 2 by 2 Example

$$c_i^j = \sum_k a_i^k \ b_k^j.$$

$$\begin{pmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \end{pmatrix} \begin{pmatrix} b_1^1 & b_1^2 \\ b_2^1 & b_2^2 \end{pmatrix} = \begin{pmatrix} a_1^1 b_1^1 + a_1^2 b_2^1 & a_1^1 b_1^2 + a_1^2 b_2^2 \\ a_2^1 b_1^1 + a_2^2 b_2^1 & a_2^1 b_1^2 + a_2^2 b_2^2 \end{pmatrix}$$

$$W(A) = \frac{1}{2} \begin{pmatrix} (a_1^1 + a_2^1 + a_1^2 + a_2^2) & (a_1^1 + a_2^1 - a_1^2 - a_2^2) \\ (a_1^1 - a_2^1 + a_1^2 - a_2^2) & (a_1^1 - a_2^1 - a_1^2 + a_2^2) \end{pmatrix}, \tag{1}$$

$$W(B) = \frac{1}{2} \begin{pmatrix} (b_1^1 + b_2^1 + b_1^2 + b_2^2) & (b_1^1 + b_2^1 - b_1^2 - b_2^2) \\ (b_1^1 - b_2^1 + b_1^2 - b_2^2) & (b_1^1 - b_2^1 - b_1^2 + b_2^2) \end{pmatrix}.$$
(1)

$$A \cdot B = \begin{pmatrix} (a_1^1 b_1^1 + a_1^2 b_2^1) & (a_1^1 b_1^2 + a_1^2 b_2^2) \\ (a_2^1 b_1^1 + a_2^2 b_2^1) & (a_2^1 b_1^2 + a_2^2 b_2^2) \end{pmatrix}.$$

$$\psi(A) = (a_1^1b_1^1 + a_1^2b_2^1 + a_1^1b_1^2 + a_1^2b_2^2) + (a_2^1b_1^1 + a_2^2b_2^1 + a_2^1b_1^2 + a_2^2b_2^2)$$

$$\psi(V) = (a_1^1b_1^1 + a_1^2b_2^1 - a_1^1b_1^2 - a_1^2b_2^2) + (a_2^1b_1^1 + a_2^2b_2^1 - a_2^1b_1^2 - a_2^2b_2^2)$$

$$\psi(H) = (a_1^1b_1^1 + a_1^2b_2^1 + a_1^1b_1^2 + a_1^2b_2^2) - (a_2^1b_1^1 + a_2^2b_2^1 + a_2^1b_1^2 + a_2^2b_2^2)$$

$$\psi(D) = (a_1^1b_1^1 + a_1^2b_2^1 - a_1^1b_1^2 - a_1^2b_2^2) - (a_2^1b_1^1 + a_2^2b_2^1 - a_2^1b_1^2 - a_2^2b_2^2)$$

$$\psi(A) = a_1^1 b_1^1 + a_1^2 b_2^1 + a_1^1 b_1^2 + a_1^2 b_2^2 + a_2^1 b_1^1 + a_2^2 b_2^1 + a_2^1 b_1^2 + a_2^2 b_2^2$$

$$\psi(V) = a_1^1 b_1^1 + a_1^2 b_2^1 - a_1^1 b_1^2 - a_1^2 b_2^2 + a_2^1 b_1^1 + a_2^2 b_2^1 - a_2^1 b_1^2 - a_2^2 b_2^2$$

$$\psi(H) = a_1^1 b_1^1 + a_1^2 b_2^1 + a_1^1 b_1^2 + a_1^2 b_2^2 - a_2^1 b_1^1 - a_2^2 b_2^1 - a_2^1 b_1^2 - a_2^2 b_2^2$$

$$\psi(D) = a_1^1 b_1^1 + a_1^2 b_2^1 - a_1^1 b_1^2 - a_1^2 b_2^2 - a_2^1 b_1^1 - a_2^2 b_2^1 + a_2^1 b_1^2 + a_2^2 b_2^2$$

$$W(A) \cdot W(B) = \frac{1}{4} \begin{pmatrix} W_A & W_V \\ W_H & W_D \end{pmatrix}$$

$$W_{A} = (a_{1}^{1} + a_{2}^{1} + a_{1}^{2} + a_{2}^{2})(b_{1}^{1} + b_{2}^{1} + b_{1}^{2} + b_{2}^{2}) + (a_{1}^{1} + a_{2}^{1} - a_{1}^{2} - a_{2}^{2})(b_{1}^{1} - b_{2}^{1} + b_{1}^{2} - b_{2}^{2})$$

$$W_{V} = (a_{1}^{1} + a_{2}^{1} + a_{1}^{2} + a_{2}^{2})(b_{1}^{1} + b_{2}^{1} - b_{1}^{2} - b_{2}^{2}) + (a_{1}^{1} + a_{2}^{1} - a_{1}^{2} - a_{2}^{2})(b_{1}^{1} - b_{2}^{1} - b_{1}^{2} + b_{2}^{2})$$

$$W_{H} = (a_{1}^{1} - a_{2}^{1} + a_{1}^{2} - a_{2}^{2})(b_{1}^{1} + b_{2}^{1} + b_{2}^{1} + b_{2}^{2}) + (a_{1}^{1} - a_{2}^{1} - a_{1}^{2} + a_{2}^{2})(b_{1}^{1} - b_{2}^{1} + b_{1}^{2} - b_{2}^{2})$$

$$W_{D} = (a_{1}^{1} - a_{2}^{1} + a_{1}^{2} - a_{2}^{2})(b_{1}^{1} + b_{2}^{1} - b_{1}^{2} - b_{2}^{2}) + (a_{1}^{1} - a_{2}^{1} - a_{1}^{2} + a_{2}^{2})(b_{1}^{1} - b_{2}^{1} - b_{1}^{2} + b_{2}^{2})$$

$$W_{A} = a_{1}^{1}b_{1}^{1} + a_{2}^{1}b_{1}^{1} + a_{1}^{2}b_{2}^{1} + a_{2}^{2}b_{2}^{1} + a_{1}^{1}b_{1}^{2} + a_{2}^{1}b_{1}^{2} + a_{1}^{2}b_{2}^{2} + a_{2}^{2}b_{2}^{2}$$

$$W_{V} = a_{1}^{1}b_{1}^{1} + a_{2}^{1}b_{1}^{1} + a_{1}^{2}b_{2}^{1} + a_{2}^{2}b_{2}^{1} - a_{1}^{1}b_{1}^{2} - a_{2}^{1}b_{1}^{2} - a_{1}^{2}b_{2}^{2} - a_{2}^{2}b_{2}^{2}$$

$$W_{H} = a_{1}^{1}b_{1}^{1} - a_{2}^{1}b_{1}^{1} + a_{1}^{2}b_{2}^{1} - a_{2}^{2}b_{2}^{1} + a_{1}^{1}b_{1}^{2} - a_{2}^{1}b_{1}^{2} + a_{1}^{2}b_{2}^{2} - a_{2}^{2}b_{2}^{2}$$

$$W_{D} = a_{1}^{1}b_{1}^{1} - a_{2}^{1}b_{1}^{1} + a_{1}^{2}b_{2}^{1} - a_{2}^{2}b_{2}^{1} - a_{1}^{1}b_{1}^{2} + a_{2}^{1}b_{1}^{2} - a_{1}^{2}b_{2}^{2} + a_{2}^{2}b_{2}^{2}$$

This can then be compared to the coefficients of $W(A \cdot B)$ which were

$$\psi(A) = a_1^1b_1^1 + a_1^2b_2^1 + a_1^1b_1^2 + a_1^2b_2^2 + a_2^1b_1^1 + a_2^2b_2^1 + a_2^1b_1^2 + a_2^2b_2^2$$

$$\psi(V) = a_1^1b_1^1 + a_1^2b_2^1 - a_1^1b_1^2 - a_1^2b_2^2 + a_2^1b_1^1 + a_2^2b_2^1 - a_2^1b_1^2 - a_2^2b_2^2$$

$$\psi(H) = a_1^1b_1^1 + a_1^2b_2^1 + a_1^1b_1^2 + a_1^2b_2^2 - a_2^1b_1^1 - a_2^2b_2^1 - a_2^1b_1^2 - a_2^2b_2^2$$

$$\psi(D) = a_1^1b_1^1 + a_1^2b_2^1 - a_1^1b_1^2 - a_1^2b_2^2 - a_2^1b_1^1 - a_2^2b_2^1 + a_2^1b_1^2 + a_2^2b_2^2$$

Notice that $W(A) \cdot W(B) = W(A \cdot B)$, in the case of 2×2 matrices.

Qualifications for Wavelet Matrix Multiplication

- 1. Are the matrices the same size and are they each a square matrix?
- 2. If not, are the dimensions suitable for multiplication?
- 3. If so, what is the maximum resolution for each matrix? The lesser maximum is the limit for both.
- 4. Is the wavelet transform performed on each matrix the same?

Wavelet Based Matrix Multiply Procedure

The general wavelet based matrix multiply is as follows:

- 1. Arguments:
 - A : a $m \times p$ matrix
 - B: a $p \times n$ matrix
- 2. Results: C : a $m \times n$ matrix
- 3. Procedure:
 - $\bullet \ A \xrightarrow{\psi} \alpha$
 - $B \xrightarrow{\psi} \beta$
 - $\alpha \stackrel{ChainRow}{\rightarrow} \alpha^c$
 - $\bullet \ \beta \overset{ChainColumn}{\rightarrow} \beta^c$
 - Chain Multiply $(\alpha^c, \beta^c) \to C$

Partial Differential Equations

- Overview of PDE
- Related Work
- Proposed Work
- Partial Differential Equations (PDE) in general
- Classic Methods
- PDE problems
- Related Wavelet Research

PDE In General

General PDE Equation

$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

- The condition of the famous equation $B^2 4AC$ determines the category of PDE:
 - Less than zero is an elliptical PDE
 - More than zero is a hyperbolic PDE
 - Equal to zero is parabolic PDE
- Solution to PDE numerically includes explicit, implicit, Galerkin, and Monte Carlo

Elliptical Partial Differential Equation

- In general, elliptical PDE measure the strength of an item compared to its neighbors.
- Physical Examples include:
 - Heat Equations $u_t = \alpha^2 \nabla^2 u$
 - Wave Equations $u_{tt} = \alpha^2 \nabla^2 u$
 - Laplace Equation $\nabla^2 u = 0$
 - Poison's Formula $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$
- Boundary Conditions for setting up a PDE solution:
 - Dirichlet
 - Neumann
 - Robbin's

Parabolic Partial Differential Equations

- Parabolic PDE model diffusion and fluid mechanics
- Common uses to today
 - Gas dispersion in a room
 - Fluid dispersion within a pipe or river

Hyperbolic Partial Differential Equations

- Models oscillating phenomena (EM Fields, Vibrating Strings)
- Analytic Solution D'Alembert Solution
 - Replace (x,t) by the new canonical coordinates
 - Solve the transformed equations
 - Transformed equations
 - Transform the solution into original coordinates
 - Substitute the general solution into the IC's to acquire the constants
- Beware of Boundary Conditions: Examples (fixed or variable)

$$u_n + \lambda u = g(t)$$
$$u = g(t)$$
$$u_n = g(t)$$

Difference Equations

- Central Difference Formula

 - $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$ $f''(x) \approx \frac{f(x+h) 2f(x) + f(x-h)}{h^2}$
- Backward Difference Formula
 - $f'(x) \approx \frac{f(x) f(x h)}{h}$
- Forward Difference Formula
 - $f'(x) \approx \frac{f(x+h) f(x)}{h}$

Explicit Method

- Basic Method:
 - Start with the index value of 0 (i=0 at the initial value)
 - Find the solution $\forall x \in u(x,t), t = t_{i+1}$
 - Establish the boundary conditions with respect for $u_{t_{i+1},x}$ by boundary condition approximation formula.
 - Repeat the previous two steps until i = n (where n is the largest index)
- Strength: It is a top-down dynamic algorithm
- Weakness: Numerically, it is unstable. Even though it is sound by Turing Theory

Implicit Method

- Pick some value for λ such that $\lambda \in [0,1]$
- Pick Δx and Δt and assign grid points
- Use computational molecule to generate equation
- Solve Matrix

PDE Problems

- Semi-Infinite String Problem
- Heat Diffusion
- Diffusion Convection

Semi Infinite String Problem

- The semi-infinite string problem is a typical resonance problem.
 - PDE $u_{tt} = c^2 u_{xx} \ \forall x \in (0, \infty)$ and $\forall t \in (0, \infty)$
 - BC u(0,t) = 0
 - IC
 - u(0,x) = f(x)
 - $\bullet \quad u_t(x,0) = g(x)$
 - general solution: $u(x,t) = \frac{1}{2}[f(x-ct) + f(x+ct)] + \frac{1}{2c}\int_{-\infty}^{x+ct} x ctg(\zeta)d\zeta$
 - c^2u_{xx} is the net force due to the tension on the string.
 - u_{tt} represents the longitudinal or torsional vibrations on the string.

Heat Diffusion

- The heat diffusion/ conduction equation defines heat in a solid at any point and time within the domain.
- Diffusitivity variable defined: $\alpha = \frac{K}{\tau \sigma}$
 - K is the thermal constant
 - τ is the density
 - σ is the specific heat
- PDE Defined:
 - $u_t = \alpha^2 u_{xx}$ such that
 - u_t is the change in temperature with respect to time.
 - u_{xx} is the concavity of the temperature

Diffusion - Convection

- The big idea for diffusion convection is that convection currents effects on the diffusion process.
- Generic Formula: $u_t = \alpha^2 u_{xx} vu_x$ such that
 - u_t is the change in time
 - $\alpha^2 u_{xx}$ is the diffusion component
 - vu_x is the convection component
 - v is the velocity of the convection current
 - α is the diffusitivity constant

Proposed Work on PDE

- Apply wavelet operator to partial differential equations
- Determine levels of accuracy and approximation
- Determine efficiency