# Improving a Hypercube Structured Distributed Hash Table

James R. Wilburn

Mentor: Dr. Udaya Shankar

#### What is a Hash Table?

- Store data
- Map keys to values
- Can get, set, or delete



#### What is a Distributed Hash Table?

- Transparent
- Can still get, set, or delete
- Data spread across a network



#### **Unstructured Clusters**

- n vertices
- n-1 edges per vertex



## Advantages

- Max distance of 1
- Easy to maintain when small
- Adapts to change
- Redundant links



# Disadvantages

- Slow at large sizes
- Search is slow



#### Hypercubic Networks

- 2<sup>n</sup> vertices
- n edges per vertex
- Recursive design
- Labelled vertices



### Advantages

- Short max distance
- Redundant links
- Dynamic growth
- Search is fast



## Disadvantages

- Hard to maintain
- Weak to change



#### PeerCube

- Cluster at each vertex
- Cluster data replication
- Limited cluster size



#### PeerCube Clusters

- Grow and Shrink
- Merge and Split
- Share data internally
- Smin and Smax



# Cluster Splitting

- When the cluster is larger than Smax
- Makes two clusters smaller than Smax
- Links can be unidirectional



## Cluster Merging

- When the cluster is smaller than Smin
- Makes one cluster larger than Smin
- More than two clusters can merge



#### **Problems**

- No data prioritization
- All data is in memory



#### **Hot Data Caching**

- Cache frequently accessed data
- Preempt structure
- Key-specific links
- Latency decrease



# Cold Data Paging

- Page infrequently accessed data to disk
- Saves RAM
- Minimal latency increase

