Cálculo

Simplificación de expresiones y ecuaciones logarítmicas y exponenciales

Ejemplo 1.

Simplifica la expresión $log_3(log_2 512)$.

Sea $y = log_2 512$, de donde $2^y = 512$.

¿Qué exponente del 2 me da como resultado 512? Obtenemos y = 9.

Así, $log_2 512 = log_2 2^9 = 9$, porque $log_a(a^x) = x$.

Luego, $log_3(log_2 512) = log_3(9)$.

 $log_3(log_2 512) = log_3(9) = log_3(3^2)$, representando al 9 como potencia de 3.

 $log_3(log_2 512) = log_3(9) = log_3(3^2) = 2 log_3(3),$

aplicando leyes de los logaritmos $log_a(a^x) = x$,

como $log_3(3) = log_3(3^1) = 1$.

Por lo que $log_3(log_2 256) = 2 log_3(3) = 2(1) = 2$.

Ejemplo 2.

Resolver la ecuación $log_{\frac{1}{7}}x = \frac{3}{2}$ para x.

Aplicando la función exponencial de base $\frac{1}{7}$, tenemos

 $\left(\frac{1}{7}\right)^{\log_{\frac{1}{7}}x} = \left(\frac{1}{7}\right)^{\frac{3}{2}}$, de donde

$$x = \left(\frac{1}{7}\right)^{\frac{3}{2}} = 0.0539949$$

Funciones algebraicas y trascendentes

Ejemplo 3.

Encontrar la solución de la ecuación $5^x - 5^{-x} = 2$.

No es posible aplicar directamente el logaritmo a la función, ya que por las propiedades de los logaritmos no es posible simplificar el logaritmo de una suma; así que primero resolveremos la ecuación para la función exponencial 5^x .

Sea $u = 5^x$, así $5^x - 5^{-x} = 2$, se representa como sigue:

$$u - u^{-1} = 2$$

$$u-\frac{1}{u}=2$$

$$\frac{u^2-1}{u}=2$$

$$u^2 - 1 = 2u$$

$$u^2 - 2u - 1 = 0$$

$$u = \frac{2 \pm \sqrt{4 - 4(1)(-1)}}{2} = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2}$$

$$u = \frac{2+2\sqrt{2}}{2} = 1 + \sqrt{2}$$
 y $u = \frac{2-2\sqrt{2}}{2} = 1 - \sqrt{2}$

Así
$$5^x = 1 + \sqrt{2}$$
 y $5^x = 1 - \sqrt{2}$.

La segunda opción no puede ser debido a que una función exponencial no puede tomar un número negativo, de tal modo que la única opción es $5^x = 1 + \sqrt{2}$, de donde

$$log_5(5^x) = log_5(1+\sqrt{2}) \approx 1.826056$$

Ejemplo 4.

Encontrar la solución de la ecuación.

$$log_3(2x-1) - log_3(5x+2) = log_3(x-2) - 2$$

Mantenemos a la izquierda las expresiones con logaritmo natural

$$log_3(2x-1) - log_3(5x+2) - log_3(x-2) = -2$$

J1. Funciones algebraicas y trascendentes

Factorizando el signo

$$log_3(2x-1) - (log_3(5x+2) + log_3(x-2)) = -2$$

Aplicando las propiedades del logaritmo

$$log_3(2x-1) - log_3(5x+2)(x-2) = -2$$

Aplicando las propiedades del logaritmo

$$log_3 \frac{(2x-1)}{(5x+2)(x-2)} = -2$$

Aplicado las ecuaciones inversas se tiene

$$3^{\log_3 \frac{(2x-1)}{(5x+2)(x-2)}} = 3^{-2}$$

Se elimina la función exponencial con la logarítmica

$$\frac{(2x-1)}{(5x+2)(x-2)} = \frac{1}{3^2}$$

Resolviendo la ecuación algebraica

$$\frac{(2x-1)}{(5x+2)(x-2)} = \frac{1}{9}$$

$$9(2x-1) = (5x+2)(x-2)$$

$$18x - 9 = 5x^2 - 10x + 2x - 4$$

$$5x^2 - 26x + 5 = 0$$

Resolviendo con la fórmula general

$$x = \frac{26 \pm \sqrt{26^2 - 4(5)(5)}}{2(5)}$$

$$x = \frac{26 \pm \sqrt{676 - 100}}{10}$$

$$x = \frac{26 \pm \sqrt{576}}{10}$$

$$x = \frac{26 \pm 24}{10}$$

$$x = \frac{26 \pm 24}{10}$$

$$x = \frac{26 + 24}{10} = \frac{50}{10} = 5 \text{ y } x = \frac{26 - 24}{10} = \frac{2}{10} = \frac{1}{5}$$

