EA611 - Circuitos II

Resumo Teórico

20 de agosto de 2021

Conteúdo

1	Intr	oduçã	0
	1.1	Transf	formada de Laplace
		1.1.1	Degrau Unitário
		1.1.2	Impulso Unitário
		1.1.3	Transformada da Deriva
	1.2	Transf	formada de Componentes
		1.2.1	Capacitor
		1.2.2	Indutor
		1.2.3	Resistor

1. Introdução

Apresentação Neste documento será descrito as informações necessárias para compreensão e solução de exercícios relacionados a disciplina Note que este documento são notas realizadas por em 20 de agosto de 2021.

1.1. Transformada de Laplace

Definição Conversão de uma equação diferencial em equação algébrica e uma convolução em multiplicação. Formalmente descrita pelas seguintes equações:

Forma Bilateral:

Forma Unilateral:

$$F(s) = \mathcal{B}\{f(t)\} := \int_{-\infty}^{+\infty} f(t) e^{-st} dt$$
 (1.1.1)
$$F(s) = \mathcal{L}\{f(t)\} := \int_{0}^{+\infty} f(t) e^{-st} dt$$
 (1.1.2)

Note que a forma Unilateral será um caso particular da Bilateral. Além disso, no estudo de circuitos elétricos será conveniente a adoção do domínio dos complexos para análise. Assim $s = \sigma + \omega j$ onde j será a Unidade Imaginária, evitando confusão com Corrente Elétrica causada pela notação matemática canónica.

Transformações A seguir encontram-se as principais transformações pela definição Unilateral necessárias:

	f(t)	$\mathcal{L}\{f(t)\}$
Degrau Unitário	u(t)	$\frac{1}{s}$
Impulso Unitário	$\delta(t)$	1
	t^n	$\frac{n!}{s^{n+1}}$
	e^{-at}	$\frac{1}{s+a}$
	te^{-at}	$\frac{1}{(s+a)^2}$
	$\sin(at)$	$\frac{a}{(s^2+a^2)}$
	$\cos(at)$	$\frac{s}{(s^2+a^2)}$
Seno Hiperbólico	$\sinh(at)$	$\frac{a}{(s^2-a^2)}$
Cosseno Hiperbólico	$\cosh(at)$	$\frac{s}{(s^2-a^2)}$
	$e^{at} \sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
	$e^{at} \cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
Convolução	$\int_0^t f(\varphi) g(t - \varphi) d\varphi$ $\int_0^t f(\varphi) u(t - \varphi) d\varphi$	$F(s) \cdot G(s)$
Integral	$\int_0^t f(\varphi) \ u(t-\varphi) \mathrm{d}\varphi$	$\frac{F(s)}{s}$
Derivada	$rac{\mathrm{d}f(arphi)}{\mathrm{d}arphi}$	$s \cdot F(s)$

Tabela 1: Tabela de Transformadas de Laplace

Conside que as funções Trigonométricas Hiperbólicas são definidas pelas equações abaixo:

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ (1.1.3)

1.1.1. Degrau Unitário

Definição Representação de descontinuidade unitária, normalmente utilizada para representar mudanças instantâneas em sistemas. Formalmente descrita pela seguinte equação:

$$u(x-a) = \begin{cases} 0, & x < a; \\ \frac{1}{2}, & x = a; \\ 1, & x > a; \end{cases}$$
 (1.1.4)

1.1.2. Impulso Unitário

Definição Distribuição infinita no ponto zero e nula no restante da reta. Formalmente descrita pela seguinte equação:

$$\delta(x) = \begin{cases} 0, & x \neq 0; \\ \infty, & x = 0; \end{cases}$$
 (1.1.5)

Obedecendo:

$$\int_{-\infty}^{+\infty} \delta(x) \, \mathrm{d}x = 1 \quad \mathrm{e} \quad \boxed{ \int_a^b f(t) \delta(t) \, \mathrm{d}t = \begin{cases} f(0); & \text{se } 0 \in [a, b] \\ 0; & \text{se } 0 \notin [a, b] \end{cases} }$$

1.1.3. Transformada da Deriva

Definição Quando aplicada em uma derivada de ordem n será necessário utilizar da recursão e integração por partes, obtendo a seguinte equação geral:

$$\mathcal{L}\left\{\frac{\mathrm{d}^{n}f(\varphi)}{\mathrm{d}\varphi^{n}}\right\} = s^{n} \cdot F(s) - s^{n-1} \cdot f(0) - s^{n-1} \cdot f'(0) - \dots - s \cdot f^{n-2}(0) - f^{n-1}(0)$$
(1.1.6)

1.2. Transformada de Componentes

Definição Substituir as equações que descrevem cada componente empregado em um circuito através de seu equivalente em **Laplace** simplificará os cálculos e poderá integrar suas condições iniciais na análise como representado abaixo:

1.2.1. Capacitor

Definição Genericamente considera-se a seguinte equação para descrever o comportamento do componente:

$$v_C(t) = \frac{1}{C} \int_0^t i_C(t) dt + v_C(0)$$

Aplica-se a Transformada de Laplace, obtendo a seguinte equação:

$$V_C(s) = \frac{1}{sC} I_C(s) + \frac{v_C(0)}{s}$$
(1.2.1)

1.2.2. Indutor

Definição Genericamente considera-se a seguinte equação para descrever o comportamento do componente:

$$v_L(t) = L \frac{\mathrm{d}i_L(t)}{\mathrm{d}t}$$

Aplica-se a Transformada de Laplace, obtendo a seguinte equação:

$$V_L(s) = sL I_L(s) - L I_L(0)$$
 (1.2.2)

1.2.3. Resistor

Definição Genericamente considera-se a seguinte equação para descrever o comportamento do componente:

$$v_R(t) = R i_R(t)$$

Aplica-se a **Transformada de Laplace**, obtendo a seguinte equação:

$$V_R(s) = R I_R(s)$$
(1.2.3)