Make new directory: ckpoint; linear_data; nonlinear_data

Running configuration

GPU: Tesla P100Cuda version: 11.2

Packages: torch, tqdm, matplotlib

Data generation process (linear and nonlinear)

$$\begin{cases} y_t^1 = y_{t-1}^1 - 1.5 * y_{t-1}^2 + \epsilon_t^1 \\ y_t^2 = 1.2 * y_{t-1}^2 + \epsilon_t^2 \\ x_t^1 = y_t^1 + y_t^2 \\ x_t^2 = y_t^1 - \sin(y_t^2) \end{cases} \text{ and } \begin{cases} y_t^1 = y_{t-1}^1 - (y_{t-1}^2)^2 + \epsilon_t^1 \\ y_t^2 = 1.2 * y_{t-1}^2 + \epsilon_t^2 \\ x_t^1 = y_t^1 + y_t^2 \\ x_t^2 = y_t^1 - \sin(y_t^2) \end{cases}$$

• batch size = 64, length = 50, chunks = 200

VAE structure:

• framework:

• self.encoder:

Sequential(

- (0): Linear(in_features=4, out_features=16, bias=True)
- (1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (2): LeakyReLU(negative_slope=0.01)
- (3): Linear(in_features=16, out_features=32, bias=True)
- (4): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (5): LeakyReLU(negative_slope=0.01)

• self.decoder:

Sequential(

)

- (0): Linear(in_features=32, out_features=16, bias=True)
- (1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (2): LeakyReLU(negative_slope=0.01)

- (3): Linear(in_features=16, out_features=2, bias=True)
- (4): BatchNorm1d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (5): LeakyReLU(negative_slope=0.01)

)

self.coupling/ self.f1:

Sequential(

- (0): Linear(in_features=2, out_features=16, bias=True)
- (1): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (2): LeakyReLU(negative_slope=0.01)
- (3): Linear(in_features=16, out_features=32, bias=True)
- (4): BatchNorm1d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (5): LeakyReLU(negative_slope=0.01)
- (6): Linear(in_features=32, out_features=2, bias=True)
- (7): BatchNorm1d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
- (8): LeakyReLU(negative_slope=0.01)

)

VAE process

$$\begin{cases} \epsilon_t = h(x_t, x_{t-1}) \\ p(\epsilon_t) = \prod_t p(\epsilon_t^d) \\ \overline{y_t} = M * y_{t-1} \\ y_t = g(\overline{y_t}) + \epsilon_t \end{cases}$$

• Loss: $mse(recon, original) + KL(\epsilon_t|x_t, x_{t-1}; normal) + L1(M)$

Result:

VAE-linear

VAE-nonlinear

VAE_model 20210425

• VAE_spline_linear

• VAE_spline_nonlinear

pass