FLIP(01) mid-term Presentation

Xiaojuan Cheng Xi'an Shiyou University

October 22, 2019

FLIP(01) Presentation ©FLIP(01)

Outline

Introduction

Data Description

Features Distribution

Model Comparisions

Conclusion

Introduction
Data Description
Features Distribution
Model Comparisions
Conclusion

Problem Description

Data Description

Features Distribution

Model Comparisions

Conclusion

Introduction

FLIP(01) Presentation ©FLIP(01) - 3 / 14

Problem Description

Introduction

Problem Description

Data Description

Features Distribution

Model Comparisions

Conclusion

This is a classification problem to predict seed varieties. There are 210 samples, consistent of 7 features and 1 label. The following is some requirements.

FLIP(01) Presentation ©*FLIP*(01) – 4 / 14

Problem Description

Introduction

Problem Description

Data Description

Features Distribution

Model Comparisions

Conclusion

- This is a classification problem to predict seed varieties. There are 210 samples, consistent of 7 features and 1 label. The following is some requirements.
 - According to the given train data set, training a classified model and then using the model to predict the class of Wheat Seeds.
 - Estimated the error of the training classification model.

FLIP(01) Presentation ©*FLIP*(01) – 4 / 14

Data Description

Data Description

Data Description

Features Distribution

Model Comparisions

Conclusion

Data Description

FLIP(01) Presentation ©FLIP(01) - 5 / 14

Data Description

Introduction

Data Description

Data Description

Data Description

Features Distribution

Model Comparisions

Conclusion

- Attribute Information
- 1. There are 8 attributes, including 1 class attribute and 7 feature attributes.
- 2. The detailed description of the data is shown in the following table.

FLIP(01) Presentation ©*FLIP*(01) – 6 / 14

Data Description

Introduction

Data Description

Data Description

Data Description

Features Distribution

Model Comparisions

Conclusion

	area	peri	compactness	glength	gwidth	Asymmetry coefficient	Graft length of the grain	label
0	14.88	14.57	0.8811	5.554	3.333	1.0180	4.956	1
1	14.29	14.09	0.9050	5.291	3.337	2.6990	4.825	1
2	13.84	13.94	0.8955	5.324	3.379	2.2590	4.805	1
3	16.14	14.99	0.9034	5.658	3.562	1.3550	5.175	1
4	14.38	14.21	0.8951	5.386	3.312	2.4620	4.956	1
5	14.69	14.49	0.8799	5.563	3.259	3.5860	5.219	1
6	14.11	14.10	0.8911	5.420	3.302	2.7000	5.000	1
7	16.63	15.46	0.8747	6.053	3.465	2.0400	5.877	1
8	16.44	15.25	0.8880	5.884	3.505	1.9690	5.533	1

Figure 1: Data

Data Description

Features Distribution

Features Distribution

Model Comparisions

Conclusion

Features Distribution

FLIP(01) Presentation ©*FLIP*(01) – 8 / 14

Features Distribution

Introduction

Data Description

Features Distribution

Features Distribution

Model Comparisions

Conclusion

Figure 2: The distribution of features

FLIP(01) Presentation \bigcirc FLIP(01) - 9 / 14

Data Description

Features Distribution

Model Comparisions

Model Comparisions

Conclusion

Model Comparisions

FLIP(01) Presentation ©FLIP(01) - 10 / 14

Model Comparisions

Introduction

Data Description

Features Distribution

Model Comparisions

Model Comparisions

Conclusion

KNN performand	ce:							
•	precision	recall	f1-score	support				
-								
class1	0.88	0.82	0.85	17				
class2	1.00	0.95	0.98	21				
class3	0.82	0.93	0.87	15				
ova / total	0.01	0.01	0.01	гэ				
avg / total	0.91	0.91	0.91	53				
Randomforest performance:								
	precision	recall	f1-score	support				
-11	0.86	0.71	0 77	17				
class1	0.86	0.71	0.77	17				
class2	0.95	0.95	0.95	21				
class3	0.78	0.93	0.85	15				
/ +-+-7	0.07	0.07	0 07					
avg / total	0.87	0.87	0.87	53				

Figure 3: The Comparision of two models

Data Description

Features Distribution

Model Comparisions

Conclusion

Summary

Conclusion

FLIP(01) Presentation ©FLIP(01) - 12 / 14

Summary

Introduction

Data Description

Features Distribution

Model Comparisions

Conclusion

Summary

- From the above result presentation, we can find that KNN is better than Randomforest model.
- From the feature distribution, we can find that Class1's data distribution is more nearly Gaussian distribution. The first two features are more interrelated.

Thank you & Question

FLIP(01) Presentation ©FLIP(01) - 14 / 14