

BOOT CAMP ON READING, ASSEMBLING, ANALYZING & DECHIPHERING MICROBIAL GENOMES

APRIL 28-29, 2025 | BRC AT RICE UNIVERSITY | HOUSTON, TX

Phylogenetics

An Dinh

UTHealth School of Public Health

Houston Methodist Research Institute

Goals

- Introduction to methods and models for phylogenetic inference
- Common language
- Demystification

Outline

- Tree basics
- Building a tree
- Distance matrix methods
- Character-based methods
 - Maximum parsimony
 - Maximum Likelihood
 - Heuristics
 - bootstrapping
 - Bayesian Inference
- Other complexities
- Takeaway

Dissecting a Tree

- Node (vertex) = divergence point
 - Internal nodes = nodes with at least one child branch
 - External nodes = nodes without child branches. Aka: "leaves", "tips",
- Branch (edge) = connection
 - Branch length represents the amount of distance
 - Can be external (terminating at a leaf), or internal

More on Phylogenetic Trees

- Observed (sequenced) samples are on branch tips.
- The order of the leaves don't really mean anything
- Most Recent Common Ancestor (MRCA
 - Or, Last Common Ancestor (LCA)
 - Located on internal node and Hypothetica

Unrooted vs. Rooted

- Unrooted shows evolutionary *relationships*
- Rooted shows evolutionary history
 - Allows for directionality
 - Time runs from root to tip
 - Root = MRCA of all the taxa in a tree
- Rooting a tree
 - Outgroup common
 - Time-irreversible models (will cover briefly later)

Generalized workflow to build a tree

- Data generation & QA/QC Session 1 & 2
- Multiple Sequence Alignment Session 2 & 3
- Tree estimation
- Garbage in, garbage out!

Constructing Phylogenetic Trees

- Distance Matrix-based
 - Algorithmic
- Character-based
 - Estimate the optimum tree out of a set of trees

Distance matrix-based methods

- Start with an MSA, compute All-to-All distance matrix...
- Unweighted Pair-Group Method with Arithmetic Mean (UPGMA)
 - Mutational rate is uniform
 - Branch lengths are equally split
 - Fitch-Margoliash (FM) Method modifies this to do least-squares estimate of branch length
- Neighbor-Joining (NJ) Saitou and Nei, 1987
 - Pairwise distance matrix → overall divergence → adjusted distance matrix
 - Not a bad heuristic and sometimes useful for initial starting tree

Constructing Phylogenetic Trees – **character- based**

- Maximum Parsimony
- Maximum Likelihood
- Bayesian Inference

Maximum Parsimony Positively misleading

- Out of all possible trees, the best tree will have the least number of evolutionary (substitution) events
- Assumptions
 - Homologous similarity identical alleles came from a common ancestor
 - Homoplasy (such as convergent evolution or reversal) is rare

Maximum Likelihood

- max(Pr(Data | Tree)), given:
 - A sample set of sequences, and
 - A nucleotide substitution (evolutionary) model
- "Tree" is a model consisting of:
 - Topology (τ)
 - Branch lengths (ν)
 - Substitution model parameters (θ)
- Computationally intensive, will illustrate shortly...

Nucleotide substitution models

Model	df	Explanation	Code
JC or JC69	0	Equal substitution rates and equal base frequencies (Jukes and Cantor, 1969).	000000
F81	3	Equal rates but unequal base freq. (Felsenstein, 1981).	000000
K80 or K2P	1	Unequal transition/transversion rates and equal base freq. (Kimura, 1980).	010010
HKY or HKY85	4	Unequal transition/transversion rates and unequal base freq. (Hasegawa, Kishino and Yano, 1985).	010010
TN or TN93	5	Like HKY but unequal purine/pyrimidine rates (Tamura and Nei, 1993).	010020
TNe	2	Like TN but equal base freq.	010020
K81 or K3P	2	Three substitution types model and equal base freq. (Kimura, 1981).	012210
K81u	5	Like K81 but unequal base freq.	012210
TPM2	2	AC=AT, AG=CT, CG=GT and equal base freq.	010212
TPM2u	5	Like TPM2 but unequal base freq.	010212
TPM3	2	AC=CG, AG=CT, AT=GT and equal base freq.	012012
TPM3u	5	Like TPM3 but unequal base freq.	012012
TIM	6	Transition model, AC=GT, AT=CG and unequal base freq.	012230
TIMe	3	Like TIM but equal base freq.	012230
TIM2	6	AC=AT, CG=GT and unequal base freq.	010232
TIM2e	3	Like TIM2 but equal base freq.	010232
TIM3	6	AC=CG, AT=GT and unequal base freq.	012032
TIM3e	3	Like TIM3 but equal base freq.	012032
TVM	7	Transversion model, AG=CT and unequal base freq.	012314
TVMe	4	Like TVM but equal base freq.	012314
SYM	5	Symmetric model with unequal rates but equal base freq. (Zharkikh, 1994).	012345
GTR	8	General time reversible model with unequal rates and unequal base freq. (Tavare, 1986).	012345

Basic Markov chain models for substitution

- Jukes-Cantor (1969)
 - Rate of nucleotide substitution is the same for all pairs

- See also: Felsenstein (1981)
 - Like Jukes-Cantor (equal substitution rates), but with unequal base frequency

More basic models for substitution

- Kimura (1980)
 - Transitions (intragroup changes) have a different rate than Transversions (intergroup changes

- See also: Hasegawa-Kishino-Yano (1985)
 - Like Kimura (unequal transition vs. transversion rates), but with unequal base frequency

More complex (less constrained) substitution models - GTR

- General Time-Reversible substitution model (Tavare 1986)
 - Like HKY, but each possible nucleotide pair has it's own "exchangeability rate" along with unequal base frequencies
 - "Generalised time reversible (GTR) is the most general neutral, independent, finite-sites, time-reversible model possible."

$$Q = egin{pmatrix} -(a\pi_C + b\pi_G + c\pi_T) & a\pi_C & b\pi_G & c\pi_T \ a\pi_A & -(a\pi_A + d\pi_G + e\pi_T) & d\pi_G & e\pi_T \ b\pi_A & d\pi_C & -(b\pi_A + d\pi_C + f\pi_T) & f\pi_T \ c\pi_A & e\pi_C & f\pi_G & -(c\pi_A + e\pi_C + f\pi_G) \end{pmatrix}$$

Model modifications

- **+\(\Gamma\)** (Yang 1994)
 - Removes the assumption of per-site independence
 - Models rate-heterogeneity in mutational rates across sites (ie: not all sites have equivalent nor independent mutational rates)
 - Applies gamma distribution with a shape parameter (alpha), itself usually estimated from the sample data
- + I (invariant sites)

Computing the likelihood

- Given a possible tree topology...
 - At a *single* site *i*...
 - Assume we "know" interior nodes; leaves are observed

And we may not have substitution parameters estimated yet either...

Computing the likelihood (2)

- Given a possible tree topology...
 - At a *single* site *i*...
 - BUT we do NOT know what the interior nodes are... they could be anything.

$$L(T|D) = \sum \sum \sum L(all\ possible\ inner\ node\ assignments)$$

**Fortunately, Felsenstein's Pruning Algorithm brings complexity down to $O(nsc^2)$

But then consider...

- Number of sites
- How many possible trees:
 - $N_{unrooted} = (2n 5)!!$
 - $N_{rooted} = (2n 3)!!$
 - Let n = 10 sequences
 - $N_{unrooted} = (2n 5)!! = (15)!! = 15 * 13 * 11 * 9 * 7 * 5 * 3 * 1 = 2027025$
 - $N_{rooted} = 3.45e7$
- Exhaustive search infeasible; ML criterion is NP-hard

Heuristic (uphill) search algorithms for tractability

- Nearest-neighbor interchange (NNI)
 - Given a topology, local arrangements are assessed for likelihood by successively deleting interior branches and testing the other possible reconstructions
 - Needs branch length (sequence distances) to compute
- Subtree prune and regraft (SPR) RAxML
- Tree bisection and reconnection (TBR)

Bootstrapping for Branch Support and reliability

- In general, bootstrapping = random subsampling with replacement (resampling)
- Estimates the statistical error when sampling distribution is unknown
- In phylogenetic context, estimates the reliability (consistency) of the resultant (majority-rule) consensus tree
- Bootstrapped sites will be randomly shuffled, length same as original MSA.
- The final resultant tree might not be the overall maximum-likelihood tree

Bayesian Inferential Methods

- $Pr(Tree|Data) = \frac{Pr(Data|Tree) \cdot P(Tree)}{P(Data)}$
 - Pr(D|T) = likelihood, but not the same as in ML method due to handling of 'nuisance parameters'
 - Pr(T) = prior probability distribution: typically assume uniform initially, ie: all trees are equally likely
 - Pr(D) = a normalizing constant, = $\sum (P(D|T) x P(T_i))$
- Can sometimes be faster than ML but convergence is never certain

Bayesian Inferential Methods

- Uses Markov Chain Monte Carlo (MCMC) search methods
 - Metropolis coupled MCMC
 - Stochastic algorithms which should (in theory) help avoid getting trapped in sub-optimal solutions
 - Start with a random tree.
 - Attempt a random walk
 - If the next tree is better than the one you're at, move there.
 - If the next tree is not better, then *maybe* move there, depending on how much worse it is.

More complexities to address mutational heterogeneity

- Partitioning (categorization)
 - Apply specific models for a site or regions along a sequence
- Mixture models
 - Assign a model (out of a user-specified selection) on a per-site basis
- Some caution may need to be exercised to avoid overparameterization

Non-reversible models

- **UNREST** (Yang 1994)
 - Completely unrestrained
- "Rootstrap" = bootstrap + root position support

$$\mathbf{Q} = \begin{bmatrix} \cdot & q_{TC} & q_{TA} & q_{TG} \\ q_{CT} & \cdot & q_{CA} & q_{CG} \\ q_{AT} & q_{AC} & \cdot & q_{AG} \\ q_{GT} & q_{GC} & q_{GA} & \cdot \end{bmatrix}$$

 Relaxes the constant-rate assumption for molecular clock modelling

IQ-TREE

- "combine elements of:
 - hill-climbing algorithms (NNI)
 - random perturbation of current best (locally optimal) trees,
 - and a broad sampling of initial starting trees"
- Ultrafast bootstrapping
- Feature rich
- Good Documentation

BEAST1/BEASTX; BEAST2

• BEAST2 more modular, packages include MSC

Takeaways

- Balancing between robustness and efficiency
 - Computational time, memory consumption...
- Inferential methods (ML, Bayesian) are statistically consistent
- GTR is probably the most popular model
- At least some form of rate heterogeneity modelling should be employed

Evolutionary processes leading to non-treelike structures and Phylogenetic conflicts

- Horizontal Gene Transfer
 - Transformation
 - Conjugation
 - Transduction
 - Gene transfer agents (ie: defective prophages)
- Gene Duplication and Loss
- Transposition of Mobile Genetic Elements
- What now???
 - Networks?

