Khôlles de Mathématiques - Semaine 19

Hugo Vangilluwen, Ober George

03 Mars 2024

1 Calculer $E^{i,j} \times E^{k,l}$ en fonction de i, j, k, l et des symboles de Kronecker

Le symbole de Kronecker est définit de la manière suivante :

$$\forall (x,y) \in \mathbb{R}^2, \delta_{xy} = \begin{cases} 0 \text{ si } x \neq y \\ 1 \text{ si } x = y \end{cases}$$
 (1)

La matrice $E^{i,j} \in \mathcal{M}(n,p)(\mathbb{K})$ avec $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$ ne possède que des coefficients nuls sauf le coefficient de la $i^{\grave{e}me}$ ligne et $j^{\grave{e}me}$ colonne qui vaut 1. Formellement :

$$\forall (r,s) \in [1,n] \times [1,p], \ [E^{i,j}]_{rs} = \delta_{ir}\delta_{js}$$
 (2)

Démonstration. Calculons $E^{i,j}(n,p) \times E^{k,l}(p,q)$. Soient $(r,s) \in [1,n] \times [1,q]$ fq

$$\begin{split} \left[E^{i,j} \times E^{k,l}\right]_{rs} &= \sum_{t=1}^{n} E^{i,j}_{r,t} E^{k,l}_{t,s} \\ &= \sum_{t=1}^{n} \delta_{ir} \delta_{jt} \delta_{kt} \delta_{ls} \\ &= \delta_{jk} \delta_{ir} \delta_{ls} \\ &= \delta_{jk} \left[E^{i,l}\right]_{rs} \end{split}$$

Donc $E^{i,j} \times E^{k,l} = \delta_{jk} E^{i,l}$. Ainsi, pour le calcul de $(E^{i,j})^2$, $q \leftarrow n, k \leftarrow i, l \leftarrow j$.

$$(E^{i,j})^2 = \delta_{ji}E^{i,j} = \begin{cases} E^{i,j} \text{ si } i = j \\ 0_{n,p} \text{ si } i \neq j \end{cases}$$