<i>Name</i> :	• • • • • • • • • • • • • • • • • • • •		• • • • • •				
Roll No.:							
Invigilator's S	Signature :						
CS/B.TECH(CSE)/SEM-8/CS-801B/2012							
2012							
SOFT COMPUTING							
Time Allotted: 3 Hours				Ful Marks: 70			
Τŀ	ne figures in th	he margin ir	ıdica	te full marks			
Candidates are required to give their answers in their own words							
as far as practicable.							
GROUP – A							
(Multiple Choice Type Questions)							
1. Choose	the correct alt	ternatives fo	or th	e following: $10 \times 1 = 10$			
i) For	For a ne work with inputs $[x_1, x_2, x_3] = [0.3, 0.5, 0.6]$						
and weights $[w_1, w_2, w_3] = [0.2, 0.1, -0.3]$, the net							
output to the output $M-P$ neuron is							
a)	0.07		b)	- 0.07			

d) -0.7.

0.7

c)

8203

[Turn over

ii) For a 3-input neuron representing a perceptron, where $[x_1, x_2, x_3] = [0.8, 0.6, 0.4]$ and weights $[w_1, w_2, w_3] = [0.1, 0.3, -0.2]$ and bias b = 0.35, the output of the neuron using bipolar sigmoid activation function is

a) 0.625

b) 0.764

c) 0.259

d) 0.346.

iii) The boundary of the fuzzy set A is defined by those elements x of the universe such that

- a) $\mu A(x) = 1$
- b) $0 < \mu A(x) < 1$
- c) $\mu A(x) = 0$
- d) $0 \le \mu A(x) \le 1$.

iv) The Hebbian rule is type of learning.

- a) supervised
- b) competitive
- c) unsupervised
- d) reinforced.

v) Single layer perceptron is used for

- a) linear separability
- b) error minimization
- c) back propagation
- d) annealing.

8203

vi)	In fu		er the rule	e base is updated by the			
	a)	Fuzzy logic	b)	ANN and GA			
	c)	Hebb's rule	d)	none of these.			
vii)	If a problem is linearly separable, then we can find the weight vector W_i , such that W_i^T . $X > 0$, for each X , with						
	desi	red output '+1' a	nd W_i^T .	X < 0, for each X , with			
	desi	red output '-1'.					
	a)	True	b)	F lse			
	c)	Can't say	d)	None of these.			
viii)		Combination of gen s for representing a particular property of an individual is known as					
	a)	gene	b)	genome			
	c)	allele	d)	chromosome.			
ix)	The	size of each	chromos	ome for the problem			
			ion $f(x)$	$) = x^2$ in the interval			
		<i>c</i> ≤ 31 is					
	a)	8	b)	5			
	c)	4	d)	none of these.			
8203			3	[Turn over			

- Let A and B are two fuzzy sets with membership x) function μ , then $\mu_{A\cup B}(x)$ is equal to
 - a) $\mu_A(x) + \mu_B(x)$ b) $\mu_A(x) \mu_B(x)$
 - c) MAX $\{\mu_A(x), \mu_B(x)\}\$ d) MIN $\{\mu_A(x), \mu_B(x)\}\$.

GROUP - B (Short Answer Type Questions)

Answer any *three* of the following.

- $3 \times 5 = 15$
- 2. Compare between supervised learning and unsupervised learning with proper diagrams
- 3. Discuss about the different ctivation functions used of training artificial neural networks.
- Indicate different p rameters of classical GA. 4.
- 5. Define the s gnal layer perceptron net and its linear separ bility
- Consider two fuzzy sets $A = \left\{ \frac{0 \cdot 2}{1} + \frac{0 \cdot 3}{2} + \frac{0 \cdot 4}{3} + \frac{0 \cdot 5}{4} \right\}$ and $B = \left\{ \frac{0 \cdot 1}{1} + \frac{0 \cdot 2}{2} + \frac{0 \cdot 2}{3} + \frac{1}{4} \right\}.$ Find the algebraic sum and algebraic product of the given fuzzy sets.

8203

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Using Hebb Network, implement AND function with bipolar inputs and targets.
 - b) Write down the training algorithm and testing algorithm for the single layer perceptron network using perceptron learning rule.
 - c) What is 'delta learning rule'?

6 + 6 + 3

8. a) Find the new weights of he back propagation network after the first iteration of the following figure by using suitable activation function:

Assume with given vectors, Input pattern I = [0.4, -0.7], Target t = [0.1], Weight vector from input layer to

8203

5

[Turn over

hidden layer $V = \begin{bmatrix} 0.1 & 0.4 \\ -0.2 & 0.2 \end{bmatrix}$, Weight vector from

hidden layer to output layer $W = \begin{bmatrix} 0 \cdot 2 \\ -0 \cdot 5 \end{bmatrix}$.

Show new weight vector W and V after first iteration. State the proposed scheme of convergence of the above net.

- b) Using Perceptron Network, implement XOR function with bipolar inputs and targets.
- c) What are the two algorithms used in a Madeline net?

 Differentiate them. 7 + 4 + 4
- 9. a) Discuss about fuz y Cart sian product with example.
 - b) Two fuzzy relations are given by $R = \begin{bmatrix} x_1 & y_1 & y_2 \\ 0.6 & 0.3 \\ 0.2 & 0.9 \end{bmatrix}$ and

composition between fuzzy relations.

- c) Describe the importance of fuzzy sets. 5 + 6 + 4
- 10. a) Describe how genetic algorithms differ from other optimization and search procedures.
 - b) What is crossover rate and mutation rate?

8203 6

- c) Use genetic algorithm to maximize the function $f(x) = x^2$ for $0 \le x \le 31$. The four initial population chromosome's size of 5 is selected as 01101, 11000, 01000, 10011. Show the first two iterations and justify the improvement of optimal solution of x. 5 + 4 + 6
- 11. Write short notes on any *three* of the following: 3×5
 - a) Biological neuron vs ANN
 - b) ART network
 - c) Defuzzification methods
 - d) Self organizing map

== =======