Admissibility of Substitution for Multimode Type Theory

Joris Ceulemans Andreas Nuyts Dominique Devriese

KU Leuven, Belgium

EuroProofNet WG6 Meeting Leuven, Belgium 4 April 2024

```
\begin{array}{ll} \text{nats} & : \text{Stream } \mathbb{N} \\ \text{head nats} & = 0 \\ \text{tail nats} & = \text{map suc } \text{nats} \end{array}
```

```
\begin{array}{c} \text{nats} : \text{Stream } \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \text{map suc } \begin{array}{c} \text{nats} \\ \end{array} \\ \begin{array}{c} \text{nats} \\ \text{tail nats} \end{array} \qquad \begin{array}{c} \text{o} \\ \text{o} \\ \end{array} \\ \begin{array}{c} \text{o} \\ \text{o} \\ \end{array} \\ \begin{array}{c} \text{o} \\ \text{o} \\ \end{array}
```

```
\begin{array}{c} \text{nats} : \mathsf{Stream} \ \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \mathsf{map suc} \ \ \begin{array}{c} \mathsf{nats} \\ \\ \end{array} \\ \begin{array}{c} \mathsf{nats} \\ \\ \mathsf{map suc} \end{array} \begin{array}{c} 0 & 1 & 2 & \cdots & \cdots \\ \\ \downarrow & \downarrow & \downarrow \\ \\ \mathsf{tail nats} \end{array} \begin{array}{c} 1 & 2 & \cdots & \cdots \\ \\ \end{array}
```

```
\begin{array}{c} \text{nats} : \text{Stream } \mathbb{N} \\ \text{head nats} = 0 \\ \text{tail nats} = \text{map suc } \begin{array}{c} \text{nats} \\ \end{array}
```

Productivity check in Agda is sometimes too restrictive:

Idea: express recursion behaviour in type via modalities.

Parametrised by mode theory (≈ small 2-category):

m

n

Parametrised by mode system (≈ small 2-category):

m

n

Parametrised by mode system (≈ small 2-category):

New primitive modal operations:

$$\vdash \Gamma . \triangleq_{\mu} \mathsf{Ctx} @ m \leftarrow \vdash \Gamma \mathsf{Ctx} @ n$$

$$\Gamma . \triangleq_{\mu} \vdash T \mathsf{Ty} @ m \rightarrow \Gamma \vdash \langle \mu \mid T \rangle \mathsf{Ty} @ n$$

Parametrised by mode system (≈ small 2-category):

New primitive modal operations:

$$\vdash \Gamma . \triangleq_{\mu} \mathsf{Ctx} @ m \quad \leftarrow \qquad \vdash \Gamma \mathsf{Ctx} @ n$$

$$\Gamma . \triangleq_{\mu} \vdash T \mathsf{Ty} @ m \quad \rightarrow \quad \Gamma \vdash \langle \mu \mid T \rangle \mathsf{Ty} @ n$$

Intuitively, $coe^{\alpha}_{T}: \langle \mu \mid T \rangle \rightarrow \langle \rho \mid T \rangle @ n$

Example: Guarded Recursion

Mode system:

$$\begin{array}{l} \varphi \circ \rhd = \varphi \\ \varphi \circ \kappa = \mathbb{1} \\ \mathrm{adv} \in \mathbb{1}_\omega \Rightarrow \rhd \qquad \text{(so, next : $A \to \langle \rhd \mid A \rangle$)} \end{array}$$

Example: Guarded Recursion

Mode system:

New non-modal type/term constructors:

Example: Guarded Recursion

Mode system:

New non-modal type/term constructors:

g-nats : GStream
$$\mathbb{N}$$
 g-nats = $\{ \}0$

Hole	Mode	Context	Expected type
0	ω		GStream $\mathbb N$

Hole	Mode	Context	Expected type
0	ω		GStream №

g-nats : GStream $\mathbb N$

Hole	Mode	Context	Expected type
0	ω	$(\triangleright \mid s : GStream \ \mathbb{N})$	GStream №

$$\Gamma \vdash g\text{-cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

g-nats : GStream
$$\mathbb{N}$$
 g-nats = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ {g-cons ?

Hole	Mode	Context	Expected type
0	ω	$(\triangleright \mid s : GStream \ \mathbb{N})$	GStream №

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

g-nats : GStream
$$\mathbb{N}$$
 g-nats = $|\ddot{o}b[\triangleright \mid s: GStream \mathbb{N}]$ g-cons $\{\ \}0$ $\{\ \}1$

Hole	Mode	Context	Expected type
0	*	$(\triangleright \mid s : GStream \ \mathbb{N}) . lacktriangleleft_{\kappa}$	N
1	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . lacktriangleleft$	$GStream\ \mathbb{N}$

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

Hole	Mode	Context	Expected type
0	*	$(\triangleright \mid s : GStream \ \mathbb{N}) . \mathbf{A}_{\kappa}$	N
1	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \mathbf{A}_{\triangleright}$	$GStream\ \mathbb{N}$

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

g-nats : GStream
$$\mathbb{N}$$
 g-nats = $|\ddot{o}b[\triangleright \mid s: GStream \mathbb{N}]$ g-cons 0 $\{\ \}1$

Hole	Mode	Context	Expected type
1	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \triangle_{\triangleright}$	GStream №

$$\Gamma \vdash \operatorname{g-cons} : (\kappa \mid A) \to (\triangleright \mid \operatorname{\mathsf{GStream}} A) \to \operatorname{\mathsf{GStream}} A$$

$$\Gamma \vdash \operatorname{\mathsf{g-map}} : (\kappa \mid A \to B) \to \operatorname{\mathsf{GStream}} A \to \operatorname{\mathsf{GStream}} B$$

g-nats : GStream
$$\mathbb{N}$$
 g-nats = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons 0 {g-map ? ?}1

Hole	Mode	Context	Expected type
1	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \triangle_{\triangleright}$	GStream №

$$\Gamma \vdash \operatorname{g-cons} : (\kappa \mid A) \to (\triangleright \mid \operatorname{\mathsf{GStream}} A) \to \operatorname{\mathsf{GStream}} A$$

$$\Gamma \vdash \operatorname{\mathsf{g-map}} : (\kappa \mid A \to B) \to \operatorname{\mathsf{GStream}} A \to \operatorname{\mathsf{GStream}} B$$

g-nats : GStream
$$\mathbb{N}$$

g-nats = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g-cons 0
(g-map $\{ \}1 \quad \{ \}2 \}$)

Hole	Mode	Context	Expected type
1	*	$(\triangleright \mid s : GStream \ \mathbb{N}) . \ \square_{\triangleright} . \ \square_{\kappa}$	$\mathbb{N} o \mathbb{N}$ GStream \mathbb{N}
2	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \ \square_{\triangleright}$	

$$\Gamma \vdash \text{g-cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \text{GStream } A) \rightarrow \text{GStream } A$$

$$\Gamma \vdash \text{g-map} : (\kappa \mid A \rightarrow B) \rightarrow \text{GStream } A \rightarrow \text{GStream } B$$

g-nats : GStream
$$\mathbb{N}$$

g-nats = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons
0
(g-map $\frac{\{suc\}1}{\{\}2\}}$)

Hole	Mode	Context	Expected type
1	*	$(\triangleright \mid s : GStream \ \mathbb{N}) . \ \square_{\triangleright} . \ \square_{\kappa}$	$\mathbb{N} o \mathbb{N}$ GStream \mathbb{N}
2	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \ \square_{\triangleright}$	

$$\Gamma \vdash \text{g-cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \text{GStream } A) \rightarrow \text{GStream } A$$

$$\Gamma \vdash \text{g-map} : (\kappa \mid A \rightarrow B) \rightarrow \text{GStream } A \rightarrow \text{GStream } B$$

g-nats : GStream
$$\mathbb{N}$$

g-nats = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons 0
(g-map suc $\{ \}2$)

Hole	Mode	Context	Expected type
2	ω	$(\triangleright \mid s : GStream \ \mathbb{N}).$	GStream ℕ

$$\Gamma \vdash \text{g-cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \text{GStream } A) \rightarrow \text{GStream } A$$

$$\Gamma \vdash \text{g-map} : (\kappa \mid A \rightarrow B) \rightarrow \text{GStream } A \rightarrow \text{GStream } B$$

g-nats : GStream
$$\mathbb{N}$$

g-nats = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons
0
(g-map suc $\{s\}2$)

Hole	Mode	Context	Expected type
2	ω	$(\triangleright \mid s : GStream \ \mathbb{N}).$	GStream ℕ

$$\Gamma \vdash \text{g-cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \text{GStream } A) \rightarrow \text{GStream } A$$

$$\Gamma \vdash \text{g-map} : (\kappa \mid A \rightarrow B) \rightarrow \text{GStream } A \rightarrow \text{GStream } B$$

g-nats : GStream
$$\mathbb{N}$$

g-nats = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons
0
(g-map suc s)

Hole	Mode	Context	Expected type

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

```
g-toggle : GStream \mathbb{N} g-toggle = |\ddot{o}b[ \rhd \mid s : GStream \mathbb{N}] g-cons 0 (g-cons 1 \{ \}0 \})
```

Hole	Mode	Context	Expected type
0	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \triangle_{\triangleright} . \triangle_{\triangleright}$	GStream $\mathbb N$

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \rightarrow (\triangleright \mid \mathsf{GStream}\ A) \rightarrow \mathsf{GStream}\ A$$

```
g-toggle : GStream \mathbb{N} g-toggle = |\ddot{o}b[ \rhd \mid s : GStream \mathbb{N}] g-cons 0 (g-cons 1 \{s\}0)
```

Hole	Mode	Context	Expected type
0	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . \mathbf{A}_{\triangleright} . \mathbf{A}_{\triangleright}$	GStream №

$$\Gamma \vdash \mathsf{g\text{-}cons} : (\kappa \mid A) \to (\triangleright \mid \mathsf{GStream}\ A) \to \mathsf{GStream}\ A$$

$$\mathsf{adv} \in \mathbb{1}_{\omega} \Rightarrow \triangleright \qquad \qquad (\mathsf{adv} \circ \triangleright) \in \triangleright \Rightarrow \triangleright^2$$

g-toggle : GStream \mathbb{N} g-toggle = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g-cons 0 (g-cons 1 $\{s^{adv \circ \rhd}\}0$)

Hole	Mode	Context	Expected type
0	ω	$(\triangleright \mid s : GStream \ \mathbb{N}) . lacktriangleleft_{\triangleright} . lacktriangleleft_{\triangleright}$	$GStream\ \mathbb{N}$

$$\Gamma \vdash \text{g-cons} : (\kappa \mid A) \to (\triangleright \mid \text{GStream } A) \to \text{GStream } A$$
$$\text{adv} \in \mathbb{1}_{\omega} \Rightarrow \triangleright \qquad \qquad (\text{adv} \circ \triangleright) \in \triangleright \Rightarrow \triangleright^2$$

g-toggle : $GStream \mathbb{N}$

g-toggle = $l\ddot{o}b[\triangleright \mid s : GStream <math>\mathbb{N}]$

g-cons 0 (g-cons 1 $s^{adv \circ \triangleright}$)

Hole	Mode	Context	Expected type

$$g$$
-toggle = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo\triangleright})$

We want g-toggle \equiv g-cons 0 (g-cons 1 g-toggle)

General idea:

$$|\ddot{\mathsf{ob}}[\rhd \, | \, x : T \,] \ t \equiv t \ [\, x \mapsto |\ddot{\mathsf{ob}}[\, \rhd \, | \, x : T \,] \ t \,]$$

$$g$$
-toggle = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo\triangleright})$

We want g-toggle \equiv g-cons 0 (g-cons 1 g-toggle)

General idea:

$$|\ddot{o}b[\triangleright \mid x : T] t \equiv t [x \mapsto |\ddot{o}b[\triangleright \mid x : T] t]$$

$$\frac{\mu: m \to n \quad \vdash \Gamma \text{ Ctx } @ n \quad \Gamma. \triangle_{\mu} \vdash S \text{ Ty } @ m}{\vdash \Gamma. (\mu \mid x : S) \text{ Ctx } @ n}$$

$$g$$
-toggle = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo\triangleright})$

We want g-toggle \equiv g-cons 0 (g-cons 1 g-toggle)

General idea:

$$l\ddot{o}b[\triangleright \mid x : T] t \equiv t [x \mapsto l\ddot{o}b[\triangleright \mid x : T] t]$$

$$\frac{\mu: m \to n \quad \vdash \Gamma \operatorname{Ctx} @ n \quad \Gamma . \mathbf{\Omega}_{\mu} \vdash S \operatorname{Ty} @ m}{\vdash \Gamma . (\mu + x : S) \operatorname{Ctx} @ n}$$

$$\frac{\Gamma . \mathbf{\Omega}_{\mu} \vdash s : S @ m}{\Gamma \vdash (x \mapsto s) : \Gamma . (\mu + x : S) @ n}$$

$$g$$
-toggle = $|\ddot{o}b[\rhd \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 s^{advo})

We want g-toggle \equiv g-cons 0 (g-cons 1 g-toggle)

General idea:

$$l\ddot{o}b[\triangleright \mid x : T] t \equiv t [x \mapsto l\ddot{o}b[\triangleright \mid x : T] t]$$

$$g$$
-toggle = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo\triangleright})$

We want g-toggle \equiv g-cons 0 (g-cons 1 g-toggle)

General idea:

$$|\ddot{\mathsf{ob}}[\triangleright \mid \mathsf{x} : \mathsf{T}] \ t \equiv t \ \left[\mathsf{x} \mapsto (|\ddot{\mathsf{ob}}[\triangleright \mid \mathsf{x} : \mathsf{T}] \ t) \ \left[\mathbf{A}_{\mathsf{\Gamma}}^{\mathsf{adv}} \right] \right]$$

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}\,] \ \mathsf{g\text{-}cons} \ \mathsf{0} \ (\mathsf{g\text{-}cons} \ \mathsf{1} \ s^{\mathsf{adv} \circ \triangleright})$$

$$\Gamma \qquad \vdash \sigma \qquad = \left(s \mapsto \operatorname{g-toggle}\left[\operatorname{\textbf{\textbf{Q}}}_{\Gamma}^{\operatorname{adv}}\right]\right) \qquad : \Gamma \, . \, \left(\rhd \, | \, s : \operatorname{\mathsf{GStream}} \, \mathbb{N} \right)$$

g-cons 0 (g-cons 1
$$s^{\text{advop}}$$
) [σ] = g-cons

$$g$$
-toggle = $|\ddot{o}b[\triangleright \mid s : GStream \mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo\triangleright})$

$$\Gamma \,.\, \pmb{\triangle}_{\!\kappa} \vdash \sigma \,.\, \pmb{\triangle}_{\!\kappa} = \left(s \mapsto \operatorname{g-toggle}\, \left[\, \pmb{\triangleleft}_{\!\mathsf{\Gamma}}^{\mathsf{adv}}\,\right]\right) \,.\, \pmb{\triangle}_{\!\kappa} : \Gamma \,.\, \left(\rhd \,:\, s : \mathsf{GStream}\,\, \mathbb{N}\right) \,.\, \pmb{\triangle}_{\!\kappa}$$

g-cons 0 (g-cons 1
$$s^{\text{advop}}$$
) $[\sigma]$
= g-cons $(0 [\sigma. \mathbf{A}_{\kappa}]) \dots$

g-toggle =
$$|\ddot{o}b[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}]$$
 g-cons 0 (g-cons 1 $s^{\mathsf{advo}\triangleright}$)

$$\Gamma. \triangleq_{\triangleright} \vdash \sigma. \triangleq_{\triangleright} = \left(s \mapsto \operatorname{g-toggle} \left[\triangleleft_{\Gamma}^{\operatorname{adv}} \right] \right). \triangleq_{\triangleright} : \Gamma. \left(\triangleright \mid s : \operatorname{GStream} \ \mathbb{N} \right). \triangleq_{\triangleright}$$

$$\begin{split} & \text{g-cons 0 (g-cons 1 } s^{\text{advo}}) \ [\, \sigma \,] \\ & = \text{g-cons (0 [} \sigma \, . \, \blacksquare_{\kappa} \,]) \, \Big((\text{g-cons 1 } s^{\text{advo}}) \ [\, \sigma \, . \, \blacksquare_{\triangleright} \,] \Big) \end{split}$$

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}\,] \ \mathsf{g\text{-}cons} \ \mathsf{0} \ (\mathsf{g\text{-}cons} \ \mathsf{1} \ s^{\mathsf{adv} \circ \triangleright})$$

$$\Gamma \qquad \vdash \sigma \qquad = \left(s \mapsto \text{g-toggle } \left[\mathbf{Q}_{\Gamma}^{\text{adv}} \right] \right) \qquad : \Gamma . \left(\triangleright \mid s : \text{GStream } \mathbb{N} \right)$$

g-cons 0 (g-cons 1
$$s^{\operatorname{advo}}$$
) $[\sigma]$
= g-cons (0 $[\sigma . \mathbf{A}_{\kappa}]$) $($ (g-cons 1 s^{advo}) $[\sigma . \mathbf{A}_{\triangleright}]$)
= g-cons 0 ...

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}\,] \ \mathsf{g\text{-}cons} \ \mathsf{0} \ (\mathsf{g\text{-}cons} \ \mathsf{1} \ s^{\mathsf{adv} \circ \triangleright})$$

$$\Gamma \qquad \vdash \sigma \qquad = \left(s \mapsto \text{g-toggle } \left[\textbf{$\mathbf{A}_{\Gamma}^{\sf adv}$} \right] \right) \qquad : \Gamma \, . \, \left(\rhd \, | \, s : \mathsf{GStream} \, \, \mathbb{N} \right)$$

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\,\triangleright\,\,|\,\, s: \mathsf{GStream}\,\,\mathbb{N}\,]\,\,\mathsf{g\text{-}cons}\,\,\mathsf{0}\,\,\big(\mathsf{g\text{-}cons}\,\,\mathsf{1}\,\,s^{\mathsf{advo}\triangleright}\big)$$

$$\Gamma \qquad \vdash \sigma \qquad = \left(s \mapsto \operatorname{g-toggle}\left[\operatorname{\textbf{\textbf{Q}}}_{\Gamma}^{\operatorname{adv}}\right]\right) \qquad : \Gamma \, . \, \left(\triangleright \, \mid s \, : \, \operatorname{\mathsf{GStream}} \, \mathbb{N}\right)$$

$$\begin{split} & \operatorname{g-cons} \ 0 \ \left(\operatorname{g-cons} \ 1 \ s^{\operatorname{advo}\triangleright}\right) \left[\sigma\right] \\ & = \operatorname{g-cons} \ \left(0 \ \left[\sigma \cdot \mathbf{A}_{\kappa}\right]\right) \left(\left(\operatorname{g-cons} \ 1 \ s^{\operatorname{advo}\triangleright}\right) \left[\sigma \cdot \mathbf{A}_{\triangleright}\right]\right) \\ & = \operatorname{g-cons} \ 0 \ \left(\operatorname{g-cons} \ \left(1 \ \left[\sigma \cdot \mathbf{A}_{\triangleright} \cdot \mathbf{A}_{\kappa}\right]\right) \left(s^{\operatorname{advo}\triangleright} \left[\sigma \cdot \mathbf{A}_{\triangleright} \cdot \mathbf{A}_{\triangleright}\right]\right)\right) \\ & = \operatorname{g-cons} \ 0 \ \left(\operatorname{g-cons} \ 1 \ \left(s^{\operatorname{advo}\triangleright} \left[\left(s \mapsto \operatorname{g-toggle} \left[\mathbf{A}_{\Gamma}^{\operatorname{adv}}\right]\right) \cdot \mathbf{A}_{\triangleright} \cdot \mathbf{A}_{\triangleright}\right]\right)\right) \end{split}$$

Difficulties with Substitution in MTT

- MTT substitution \neq list of terms.
 - ▶ keys, locks, ...
- MTT has explicit substitution constructor for terms.
 - I.e. substituted terms are part of syntax.
 - System of laws governing interaction with other constructors.
- Can MTT substitution be "computed away"?
 - Preferably in a structurally recursive way.

2 Modal Systems

WSMTT	SFMTT
extrinsically typed, intrinsically scoped	extrinsically typed, intrinsically scoped
explicit substitutions	no substitution constructor for terms
same substitution constructors as MTT	definition of substitution tailored to algorithm

Intrinsic scoping:

$$\frac{\hat{\Gamma}.(\mu \mid _) \vdash_{\mathsf{sf}} t \, \mathsf{expr} \, @ \, m}{\hat{\Gamma} \vdash_{\mathsf{sf}} \lambda^{\mu}(t) \, \mathsf{expr} \, @ \, m}$$

$$\frac{\hat{\Gamma}. \mathbf{\Omega}_{\mu} \vdash_{\mathsf{sf}} t \, \mathsf{expr} \, @ \, m}{\hat{\Gamma} \vdash_{\mathsf{sf}} \mathsf{mod}_{\mu} (t) \, \mathsf{expr} \, @ \, n}$$

Implementation in 3 stages:

- **1** Atomic renamings: $x \mapsto y$, **2**, **a**, ... (but no composition)
- **2** Atomic substitutions : $x \mapsto t$, **4**, **a**, ... (but no composition)
- General substitutions: also composition

Implementation in 3 stages:

- **1** Atomic renamings: $x \mapsto y$, **2**, **a**, ... (but no composition)
- **2** Atomic substitutions : $x \mapsto t$, **4**, **a**, ... (but no composition)
- General substitutions: also composition

Example: why atomic renamings?

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}\,] \ \mathsf{g\text{-}cons} \ \mathsf{0} \ (\mathsf{g\text{-}cons} \ \mathsf{1} \ s^{\mathsf{adv} \circ \triangleright})$$

$$\text{g-cons 0 } \left(\text{g-cons 1 } \left(s^{\operatorname{adv} \circ \triangleright} \left[\left(s \mapsto \operatorname{g-toggle} \left[\mathbf{A}_{\Gamma}^{\operatorname{adv}} \right] \right) . \, \mathbf{A}_{\triangleright} . \, \mathbf{A}_{\triangleright} \right] \right) \right)$$

Implementation in 3 stages:

- **1** Atomic renamings: $x \mapsto y$, **2**, **a**, ... (but no composition)
- 2 Atomic substitutions : $x \mapsto t$, \triangle , \triangle , ... (but no composition)
- General substitutions: also composition

Example: why atomic renamings?

$$\mathsf{g\text{-}toggle} = \mathsf{l\"ob}[\triangleright \mid s : \mathsf{GStream} \ \mathbb{N}\,] \ \mathsf{g\text{-}cons} \ \mathsf{0} \ (\mathsf{g\text{-}cons} \ \mathsf{1} \ s^{\mathsf{adv} \circ \triangleright})$$

$$\begin{split} & \text{g-cons 0 } \left(\text{g-cons 1 } \left(s^{\text{advo}} \left[\left(s \mapsto \text{g-toggle } \left[\mathbf{A}_{\Gamma}^{\text{adv}} \right] \right) . \mathbf{A}_{\triangleright} . \mathbf{A}_{\triangleright} \right] \right) \right) \\ & = \text{g-cons 0 } \left(\text{g-cons 1 } \left(\left(\text{g-toggle } \left[\mathbf{A}_{\Gamma}^{\text{adv}} \right] \right) \left[\mathbf{A}_{\Gamma}^{\text{advo}} \right] \right) \right) \end{split}$$

Implementation in 3 stages:

- **1** Atomic renamings: $x \mapsto y$, **2**, **a**, ... (but no composition)
- **2** Atomic substitutions : $x \mapsto t$, **4**, \triangle , ... (but no composition)
- General substitutions: also composition

Example: why atomic renamings?

$$g$$
-toggle = $|\ddot{o}b[> | s : GStream $\mathbb{N}]$ g -cons 0 $(g$ -cons 1 $s^{advo})$$

$$\begin{array}{l} \text{g-cons 0} \ \left(\text{g-cons 1} \ \left(s^{\text{advop}} \ \left[\left(s \mapsto \text{g-toggle} \ \left[\overset{\mathsf{adv}}{\mathsf{\Gamma}} \right] \right) . & \stackrel{\mathsf{a}}{\Longrightarrow} . & \stackrel{\mathsf{a}}{\Longrightarrow} \right] \right) \right) \\ = \text{g-cons 0} \ \left(\text{g-cons 1} \ \left(\left(\text{g-toggle} \ \left[\overset{\mathsf{adv}}{\mathsf{\Gamma}} \right] \right) \left[\overset{\mathsf{adv}}{\mathsf{\Gamma}} \right] \right) \right) \\ = \text{g-cons 0} \ \left(\text{g-cons 1} \ \text{g-toggle} \right) \\ \end{array}$$

Soundness & Completeness

Theorem (Soundness)

 $embed([\![t]\!]) =^{\sigma} t.$

Theorem (Completeness)

If $t = \sigma$ s, then $\llbracket t \rrbracket = \llbracket s \rrbracket$.

Thank you for listening! Questions?

preprint