Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes

Florian J Gisdon, Mariella Zunker, Jan Niclas Wolf, Kai Prüfer, Jörg Ackermann, Christoph Welsch, Ina Koch

doi.org/10.1093/bioinformatics/btae112

Gökçe Uludoğan

PhD Candidate

LifeLU Reading Group | 26 September 2024

Motivation

- PDB Update in 2023
 - Released ~1300 entries with >10 chains
 - ~13% of total entries that year
- Protein complex analysis
 - Challenging
 - Need computational tools for structural and functional characterization
- Complex graph representation & graph-theoretical approaches

Hypothesis: Partitioning of the protein complex graph by graph theoretical methods gives functional, biological modules.

Complex Graph

- Nodes
 - Chains
- Edges
 - Inter-chain residue-residue contacts
- Edge weight
 - # residue-residue contacts
- Contact
 - A sphere model for atoms
 - Atom contact: sphere overlap.
 - Residue contact: at least one atom-atom contact
 - Chain contact: at least one residue residue contact.

Community Detection - Louvain Algorithm

Based on modularity, a measure of how well a network has been partitioned into clusters.

Two steps:

- local moving of nodes
- aggregation of nodes.

Community Detection - Louvain Algorithm

internally disconnected communities

Community Detection - Leiden Algorithm

Case studies

- human respiratory complex I
 - Assigned functional modules
 - Proton gradient across the membrane
 - 45 chains (44 unique)

- Peripheral arm
 - N-module
 - oxidation of NADH takes place under the release of two electrons.
 - o Q-module
 - ubiquinone is bound onto which the electrons are transferred
- The membrane arm (P-module)
 - Proximal and a distal part, P_P and P_D
 - The proton translocation across the membrane involves three antiporter-like subunits.
 - ND4 and ND5 in P_D
 - ND2 in P_P

- Peripheral arm
 - N-module
 - oxidation of NADH takes place under the release of two electrons.
 - Q-module
 - ubiquinone is bound onto which the electrons are transferred
- The membrane arm (P-module)
 - Proximal and a distal part, P_P and P_D
 - The proton translocation across the membrane involves three antiporter-like subunits.
 - ND4 and ND5 in P_D
 - ND2 in P_P

An antiporter is an integral membrane protein that is involved in the active transport of two or more different molecules or ions across a phospholipid membrane.

The structural modules are in accordance with the well-connected regions in the complex graph and correlated with experimental findings.

Structural modules were rather rigid but between the modules, higher flexibility is expected.

M3 & M5 flexibility - ND1 and ND6 subunits conformational movements in open and closed forms

Case studies

- human respiratory complex I
 - Assigned functional modules
 - Proton gradient across the membrane
 - 45 chains (44 unique)
- the group II chaperonin TRiC/CCT
 - group II chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) from yeast with co-chaperon plp2
 - Open conformation (ATP binding)
 - Closed conformation (ATP hydrolysis)
 - Folding of the cytoskeletal proteins actin and tubulin
 - Asymmetrical
 - 17 chains (9 unique)

Group II chaperonin TRiC/CCT

- Asymmetry in ring contacts
- pronounced intra-ring contacts
- 4 modules changing from the open to the closed conformation
- Two structural modules in each ring and a dynamic change in the module structure upon chamber closure

Case studies

- human respiratory complex I
 - Assigned functional modules
 - Proton gradient across the membrane
 - 45 chains (44 unique)
- the group II chaperonin TRiC/CCT
 - Open & Closed conformation (ATP hydrolysis)
 - Folding of the cytoskeletal proteins actin and tubulin
 - Asymmetrical
 - 17 chains (9 unique)
- the head of the bacteriophage Φ29
 - 400 chains (2 unique)
 - Very large protein complex with little variation in the individual components, which assemble
 into different structural units.

the head of the bacteriophage Φ29

Execution Time

- Complex graph
 - Bottleneck
 - 20s for complex I and TRiC/CCT
 - 1.5h for the bacteriophage Φ29
- Graph partitioning
 - o 2s