Definition

Sei V eine nichtleere Menge. Dann heisst V ein reeller Vektorraum, wenn eine innere Operation (Addition)

$$+ : V \times V \rightarrow V$$

$$(a,b) \mapsto a+b$$

und eine äussere Operation (Multiplikation mit einem Skalar)

$$\cdot : \mathbb{R} \times V \to V$$

$$(\alpha, a) \mapsto \alpha a$$

definiert sind, so dass folgende Axiome gelten:

Struktur von Vektorräumen

A1 $\forall u, v \in V$: u + v = v + u

A2 $\forall u, v, w \in V$: (u + v) + w = u + (v + w)

A3 $\exists 0 \in V$ so, dass $\forall u \in V$: u + 0 = u

A4 $\forall u \in V \exists -u \in V \text{ so, dass } u + (-u) = 0$

M1 $\forall \alpha, \beta \in \mathbb{R}$, $\forall u \in V$: $(\alpha \beta)u = \alpha(\beta u)$

M2 $\forall \alpha, \beta \in \mathbb{R}$, $\forall u, v \in V$: $(\alpha + \beta)u = \alpha u + \beta u$ und $\alpha(u + v) = \alpha u + \alpha v$

M3 $\forall u \in V$: 1u = u

Der Vektor $0 \in V$ heisst **Nullvektor**.

Ein **komplexer VR** ist entsprechend, mit \mathbb{C} an Stelle von \mathbb{R} , definiert.

Sei $A \neq \emptyset$ eine Menge und $\mathbb K$ ein Körper (z.B. $\mathbb R, \mathbb C$ oder $\mathbb Q$).

Auf der Menge $F(A, \mathbb{K}) := \{f : A \to \mathbb{K}\}$ aller Funktionen

auf A mit Werten in $\mathbb K$ werden die Addition und die Multiplikation mit Skalaren punktweise (d.h. für alle $s \in A$) folgendermassen definiert: Für $f,g\in F(A,\mathbb K)$ und $\alpha\in\mathbb K$ sei

$$(\alpha f)(s) := \alpha f(s)$$

(f+g)(s) := f(s) + g(s)

Dann ist $F(A, \mathbb{K})$ ein Vekorraum über \mathbb{K} .

Beispiel

Sei $\emptyset \neq A \subset \mathbb{R}$. Dann ist die Menge

$$C(A,\mathbb{R}):=\{f:A o\mathbb{R}:f ext{ stetig}\}$$

aller stetigen, reellen Funktionen auf A eine Teilmenge von $F(A, \mathbb{R})$ und selber ein VR.

Definition

Eine nichtleere Teilmenge U eines Vektorraums V heisst **Unterraum** von V, falls

- 1. $\forall a, b \in U$: $a + b \in U$ (d.h. U ist abgeschlossen unter Addition) und
- 2. $\forall a \in U, \forall \alpha \in \mathbb{K}: \ \alpha a \in U \ (d.h. \ U \ ist abgeschlossen unter Multiplikation mit Skalaren)$

Lemma

Ein Unterraum ist selber ein Vektorraum.

Beispiel

 $C([a, b], \mathbb{R})$ ist ein Unterraum von $F([a, b], \mathbb{R})$.

Beispiel

 $P_n:=\{\sum_{k=0}^n a_k x^k: a_k \in \mathbb{R}\}$ ist die Menge aller reellen Polynome vom Grad $\leq n$ und $P:=\bigcup_{n\in\mathbb{N}}P_n$. Dann sind P und alle P_n Unterräume vom $C(\mathbb{R},\mathbb{R})$.

Beispiel

Die Menge $C^n(]a, b[,\mathbb{R})$ aller n-mal stetig differenzierbaren Funktionen auf dem Intervall]a, b[ist ein Unterraum $C(]a, b[,\mathbb{R}).$

Beispiel

Es gilt die Kette von Inklusionen

$$F(\mathbb{R},\mathbb{R})\supset C^0(\mathbb{R},\mathbb{R})\supset C^1(\mathbb{R},\mathbb{R})\supset C^2(\mathbb{R},\mathbb{R})\supset\ldots$$
 $\ldots\supset C^\infty(\mathbb{R},\mathbb{R})\supset P\supset\ldots\supset P_2\supset P_1\supset P_0\supset\{0\}$

wobei jeder Raum Unterraum aller ihn einschliessenden Vektorräume ist.

Beispiel

Sei $A \in \mathbb{R}^{m \times n}$. Dann ist

$$\{x\in\mathbb{R}^n:Ax=b\}$$

ein Unterraum von \mathbb{R}^n genau dann, wenn b = 0.

Repetition

Lineare Algebra

Vektorräume

Beispiele

Struktur von Vektorräumen

vektorraume

Struktur von Vektorräumen

Satz

Seien U_1, U_2 Unterräume eines VR V. Dann sind

- ▶ $U_1 \cap U_2 = \{u \in V : u \in U_1 \text{ und } u \in U_2\}$ und
- ▶ $U_1 + U_2 = \{v = u_1 + u_2 \in V : u_1 \in U_1 \text{ und } u_2 \in U_2\}$

Unterräume von V.

Achtung: $U_1 \cup U_2$ ist im Allgemeinen kein UR.

- Deispiei
 - ▶ {0} und *V* sind UR von *V*.
 - ▶ Ist $v \in V$, so ist $\{\alpha v : \alpha \in \mathbb{R}\}$ ein UR von V.

Beispiel

Sind v_1, v_2 zwei nicht parallele Vektoren in $\mathbb{R}^3 \setminus \{0\}$, so sind

- $U_i := \{ \alpha v_i : \alpha \in \mathbb{R} \}$ zwei Geraden durch den Ursprung
- ▶ $U_1 + U_2 = \{\alpha_1 v_1 + \alpha_2 v_2 : \alpha_i \in \mathbb{R}\}$ die Ebene welche die beiden Geraden enthält

Unterräume von \mathbb{R}^3 .