

Purely Functional Data structures

Functional Programming

Utrecht University

1

Goals

- Know the difference between persistent (purely functional) and ephemeral data structures,
- Be able to use persistent data structures,
- Define and work with custom data types

• What does x:xs look like in memory?

- What does x:xs look like in memory?
- Suppose that xs = b:c:d:[] for some b,c and d

• What does xs = b:c:d:[] look like in memory?

• What does x:xs look like in memory?

• What does x:xs look like in memory?

• What does drop 2 xs look like in memory?

• What does drop 2 xs look like in memory?

• What does 1 ++ xs look like in memory?

• What does 1 ++ xs look like in memory?

• What does 1 ++ xs look like in memory?

Persistent vs Ephemeral

- Data structures in which old versions are available are *persistent* data structures.
- Traditional data structures are ephemeral.

Persistent vs Ephemeral

- Advantages of persistent data structures:
 - · Convenient to have both old and new:
 - · Separation of concerns;
 - · Compute subexpressions independently
 - Output may contain old versions (i.e. tails)

Can we get this for other data structures?

Yes*!

Can we get this for other data structures?

Yes*!

[*] for a lot of them

Successor Data Structure SuccDS

- Store an set S of ordered elements s.t. we can efficiently find successor of a query q.
- The successor of \boldsymbol{q} is the smallest element in S larger or equal to $\boldsymbol{q}.$

Successor Data Structure SuccDS

- ullet Store an set S of ordered elements s.t. we can efficiently find successor of a query q.
- The successor of q is the smallest element in S larger or equal to q.
- Example: $S=\{1,4,5,8,9,20\}$, successor of q=7 is 8.

Implementing a Successor DS SuccDS a

- Store the elements of type a in a data structure of type SuccDS a
- What should the type of our succ0f function be?

Implementing a Successor DS SuccDS a

- Store the elements of type a in a data structure of type SuccDS $\,$ a
- What should the type of our succ0f function be?

succOf :: Ord a => a -> SuccDS a -> Maybe a

12

Implementing a Successor DS: Try 1, Lists

• Idea: Use an (unordered) list

Implementing a Successor DS: Try 1, Lists

```
succOf :: Ord a => a -> SuccDS a -> Maybe a
succOf q s = minimum' [ x | x <- s, x >= q]
where
    minimum' [] = Nothing
    minimum' xs = Just (minimum xs)
```

Implementing a Successor DS: Try 1, Lists

Implementing a Successor DS: Try 2, Ordered Lists

· Idea: Use an ordered list.

Implementing a Successor DS: Try 2, Ordered Lists

· Idea: Use an ordered list.

- Does not really help: running time is still ${\cal O}(n)$.

Implementing a Successor DS: Try 2, Ordered Lists

· Idea: Use an ordered list.

- Does not really help: running time is still O(n).
- We need a better data structure.

Implementing a Successor DS: Try 3, BSTs

Implementing a Successor DS: Try 3, BSTs

• Idea: Use a binary search tree (BST).

```
type SuccDS a = Tree a
```

- Can we list all elements in a Tree a?
- Can we test if a t :: Tree a is a BST?

Warmup: Listing The elements of a Tree

```
elems :: Tree a -> [a]
elems Leaf = []
elems (Node 1 x r) = elems 1 ++ [x] ++ elems r
```

Warmup: Testing if a Tree is a BST?

- This implementation uses $O(n^2)$ time.
- Exercise: write an implementation that runs in ${\cal O}(n)$ time.

Implementing a Successor DS: Queries

Implementing a Successor DS: Queries

Nice if the input tree happens to be balanced, i.e. of height $O(\log n)$

Making Balanced Trees

• Suppose that the input is a sorted list, how to build a balanced tree?

Making Balanced Trees

• Suppose that the input is a sorted list, how to build a balanced tree?

```
buildBalanced :: [a] -> Tree a
buildBalanced [] = Leaf
buildBalanced xs = Node 1 x r
 where
    m = length xs `div` 2
    (ls,x:rs) = splitAt m xs
    1 = buildBalanced ls
    r = buildBalanced rs
  • Running time: O(n \log n).
```

Dynamic Successor: Insert

ullet Can we add new elements to the set S?

Dynamic Successor: Insert

• Can we add new elements to the set S?

Dynamic Successor: Insert

• Can we add new elements to the set S?

- Notjustinsert x 1!
- Note that we are building new trees!

May unbalance the tree

- · Repeatedly inserting elements unbalances the tree
- > foldr insert Leaf [1..5]
 Node (Node (Node (Node Leaf 1 Leaf) 2 Leaf) 3 Leaf) 4 Leaf) 5 Leaf

Self balancing trees: Red Black Trees

Properties:

- 1) leaves are black
- 2) root is black
- 3) red nodes have black children
- 4) for any node, all paths to leaves have the same number of black children.

Self balancing trees: Red Black Trees

- Properties:
 - 1) leaves are black
 - 2) root is black
 - 3) red nodes have black children
 - 4) for any node, both children have the same blackheight
- blackHeight of a node = number of black children on any path from that node to its leaves.

Self balancing trees: Red Black Trees

- Properties:
 - 1) leaves are black
 - 2) root is black
 - 3) red nodes have black children
 - 4) for any node, both children have the same blackheight
- Support queries and updates in $O(\log n)$ time.

Red Black Trees in Haskell

• Enforces property 1. Other properties are more difficult to enforce in the type.

Implementing Queries and Inserts

- succ0f more or less the same as before.
- Insert:
 - Make sure black heights remain ok by replacing a black leaf by a red node.
 - The only issue is red,red violations.
 - Allow red, red violations with the root, but not below that.
 - · Recolor the root black at the end.

```
insert :: Ord a => a -> RBTree a -> RBTree a
insert x = blackenRoot . insert' x
insert' :: Ord a => a -> RBTree a -> RBTree a
```

```
insert' :: Ord a => a -> RBTree a -> RBTree a
insert' x Leaf = Node Red Leaf x Leaf
```

As before, this creates an unbalanced tree. So, what's left is to rebalance the newly created trees.

```
insert' :: Ord a => a -> RBTree a -> RBTree a
insert' x Leaf = Node Red Leaf x Leaf
insert' x t@(Node c l v r)
   | x < y = balance c (insert' x 1) y r
   | x == v = t
     otherwise = balance c l y (insert' x r)
balance :: Color -> RBTree a -> a -> RBTree a
       -> RBTree a
```

Rebalancing

- The only potential issue is two red nodes near the root.
- There are only four configurations:

Rebalancing

• Make the root red, and its children black:

Rebalancing

• Make the root red, and its children black:

balance Black (Node Red (Node Red a x b) y c) z d =
 Node Red (Node Black a x b) y (Node Black c z d)

Rebalancing code

Other cases are symmetric:

```
balance Black (Node Red (Node Red a x b) v c) z d =
    Node Red (Node Black a x b) y (Node Black c z d)
balance Black (Node Red a x (Node Red b v c)) z d =
    Node Red (Node Black a x b) v (Node Black c z d)
balance Black a x (Node Red (Node Red b y c) z d) =
    Node Red (Node Black a x b) v (Node Black c z d)
balance Black a x (Node Red b y (Node Red c z d)) =
    Node Red (Node Black a x b) v (Node Black c z d)
```

Rebalancing code

Other cases are symmetric:

```
balance Black (Node Red (Node Red a x b) v c) z d =
    Node Red (Node Black a x b) y (Node Black c z d)
balance Black (Node Red a x (Node Red b v c)) z d =
    Node Red (Node Black a x b) v (Node Black c z d)
balance Black a x (Node Red (Node Red b y c) z d) =
    Node Red (Node Black a x b) v (Node Black c z d)
balance Black a x (Node Red b y (Node Red c z d)) =
    Node Red (Node Black a x b) v (Node Black c z d)
balance c l x r
    Node c 1 x r
```

Deleting

- What if we also want to remove elements from S?

Deleting

- What if we also want to remove elements from S?
- Possible in $O(\log n)$ time with Red-Black trees, but a bit more messy.

Data structures in the Haskell Standard Library

- Self balancing BST Implementation available in Data. Set
- Often useful to store additional information: Data.Map.

```
lookup :: Ord k \Rightarrow k \rightarrow Map k v \rightarrow Maybe v
```

Data structures in the Haskell Standard Library

- Self balancing BST Implementation available in Data. Set
- Often useful to store additional information: Data.Map.

```
lookup :: Ord k \Rightarrow k \rightarrow Map k v \rightarrow Maybe v
```

• Finite Sequences: Data. Sequence, allow fast access to front and back.

Data structures in the Haskell Standard Library

- Self balancing BST Implementation available in Data. Set
- Often useful to store additional information: Data.Map.

```
lookup :: Ord k \Rightarrow k \rightarrow Map k v \rightarrow Maybe v
```

- Finite Sequences: Data. Sequence, allow fast access to front and back.
- All these data structures are persistent.

• Can we quickly find the platform directly below Mario at (x,y)?

• Easy if we had the platforms intersecting the vertical line at x in top-to-bottom order in a Set or Map: find successor of y.

• Can we quickly find the platform directly below Mario at (x,y)?

• What happens when vertical line starts/stops to intersect a platform?

• What happens when vertical line starts/stops to intersect a platform?

• What happens when vertical line starts/stops to intersect a platform?

- Can we quickly find the platform directly below Mario at (x,y)?
- What happens when vertical line starts/stops to intersect a platform?

- Can we quickly find the platform directly below Mario at (x,y)?
- What happens when vertical line starts/stops to intersect a platform?
- Add or remove a platform from the Set

- Can we quickly find the platform directly below Mario at (x,y)?
- · What happens when vertical line starts/stops to intersect a platform?
- Add or remove a platform from the Set
- Since Set is persistent, old versions remain in tact. Store them in a Map.

- Can we quickly find the platform directly below Mario at (x, y)?
- · What happens when vertical line starts/stops to intersect a platform?
- Add or remove a platform from the Set
- Since Set is persistent, old versions remain in tact. Store them in a Map.
- To answer a query: go to the version at time \boldsymbol{x} using a successor query, and find successor of $\boldsymbol{y}.$

Homework: Verifying Red-Black Tree Properties

• Write a function validRBTree :: RBTree a -> Bool that checks if a given RBTree a satisfies all red-black tree properties.