L'usage de la calculatrice et du mobile est interdit.

N.B:

Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

Toute réponse doit être justifiée.

Exercice 1: (Questions de cours) (3,5 pts)

Soient \mathbb{K} un corps commutatif et n, m, p des entiers naturels non nuls.

1- Soient les matrices à coefficients dans \mathbb{K} : $A = (a_{ik})_{\substack{1 \leq i \leq n \\ 1 \leq i \leq m}}$ et $B = (b_{kj})_{\substack{1 \leq k \leq p \\ 1 \leq i \leq m}}$

i/ Définir le produit $A \cdot B$.

✓ ii/ Montrer que le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.

✓2- Le produit de deux matrices symétriques est-il une matrice symétrique? Justifier.

𝔞- L'anneau M_n (𝔻) est-il intègre ? Justifier.

 $\sqrt{4}$ - Soient E un K-espace vectoriel de dimension n et B, C deux bases de E. La matrice de passage de B vers C est-elle inversible? Justifier.

Exercice 2:(6.5 pts)

Soient $a \in \mathbb{R}$ et φ_a un endomorphisme du \mathbb{R} -e.v. $\mathbb{R}_2[X]$ dont la matrice associée relaitivement à la base canonique $B = (1, X, X^2)$ de $\mathbb{R}_2[X]$ est :

$$M_a = \left(\begin{array}{ccc} 1 & 1 & -1 \\ -1 & a & a+2 \\ 1 & 1 & 1 \end{array} \right).$$

V 1- Déterminer suivant le paramètre a, sans rechercher l'expession de φ_a , une base de $\ker \varphi_a$ et le rang de φ_a .

 $\sqrt{2}$ - Pour quelles valeur de a la matrice M_a est-elle inversible?

3- Soit $C = (P_1 = 1 + X^2, P_2 = X + X^2, P_3 = 1 + X)$ une famille de vecteurs de $\mathbb{R}_2[X]$.

 \bigvee i/- Verifier que C est une base de $\mathbb{R}_2[X]$.

 \vee ii/- Déterminer la matrice de passage P de B vers C.

 \bigvee iii / Calculer P^{-1} .

(4) Utiliser les résultats de la question 3 pour :

 \sqrt{i} Déterminer les coordonnées du vecteur $A = 2 + 3X - 4X^2$ dans la base C.

ii) On pose $M'_a = M_C(\varphi_a)$. Exprimer M'_a en fonction des matrices M_a et P.

Justifier.

Bon courage.