PAPER • OPEN ACCESS

A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh

To cite this article: H Mahmood et al 2016 IOP Conf. Ser.: Earth Environ. Sci. 39 012057

View the article online for updates and enhancements.

You may also like

- Biomass estimation in mangrove forests: a comparison of allometric models incorporating species and structural information.

 Md Saidur Rahman, Daniel N M Donoghue, Louise J Bracken et al.
- An empirical, integrated forest biomass monitoring system
 Robert E Kennedy, Janet Ohmann, Matt Gregory et al.
- Above-ground biomass estimation of mangrove forest using WorldView-2 imagery in Perancak Estuary, Bali
 Dian Utari, Muhammad Kamal and Frida Sidik

Recent citations

- Allometric equations for estimating stem biomass of Artocarpus chaplasha Roxb. in Sylhet hill forest of Bangladesh Md. Rafikul Islam et al
- A multi-purpose National Forest Inventory in Bangladesh: design, operationalisation and key results
 Matieu Henry et al
- Biomass model development for carbon stock estimation in the tropical forest of Eastern India: an allometric approach Saroni Biswas et al

A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh

H Mahmood^{1, 4}, M R H Siddique¹ and M Akhter^{2, 3}

¹Forestry and Wood Technology Discipline, Khulna University, Khulna - 9208, Bangladesh

²Assistant Conservator of Forests, Forest Department, Ministry of Environment and Forest, Dhaka, Bangladesh

³Food and Agricultural Organization of the United Nations, Bangladesh

E-mail: mahmoodhossain@hotmail.com

Abstract. Estimations of biomass, volume and carbon stock are important in the decision making process for the sustainable management of a forest. These estimations can be conducted by using available allometric equations of biomass and volume. Present study aims to: i. develop a compilation with verified allometric equations of biomass, volume, and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations for different trees and shrubs of Bangladesh. Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement in use and development of allometric equations. A list of documents containing allometric equations was prepared from secondary sources. The documents were collected, examined, and sorted to avoid repetition, yielding 50 documents. These equations were tested through a quality control scheme involving operational verification, conceptual verification, applicability, and statistical credibility. A total of 517 allometric equations for 80 species of trees, shrubs, palm, and bamboo were recorded. In addition, 222 allometric equations for 39 species were validated through the quality control scheme. Among the verified equations, 20%, 12% and 62% of equations were for green-biomass, oven-dried biomass, and volume respectively and 4 tree species contributed 37% of the total verified equations. Five gaps have been pinpointed for the existing allometric equations of Bangladesh: a. little work on allometric equation of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equation for belowground biomass and carbon estimation, and d. lower proportion of valid allometric equations. It is recommended that site and species specific allometric equations should be developed and consistency in field sampling, sample processing, data recording and selection of allometric equations should be maintained to ensure accuracy in estimation of biomass, volume, and carbon stock in different forest types of Bangladesh.

1. Introduction

Bangladesh is one of the most densely populated countries in the world with only 0.06% of the world's forest [1] and 0.017 ha of per capita forest land [2]. The huge population (166.3 million) exerts immense pressure on her forest resources for the demand of timber, fuel wood, and other forest products. Measurement of forest biomass and volume are important for estimating forest productivity. Appropriate estimation of forest stocking, productivity, nutrient cycling, nutrient budget, amount of

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

doi:10.1088/1755-1315/39/1/012057

carbon stock, and prediction of future status are important considerations for the sustainable management of forest resources [3, 4]. Tree biomass and volume can be measured from both destructive (clear-cut) and non-destructive (allometric equation) methods [3, 5]. Allometric method is frequently used for estimating the biomass and volume of forest plant species, which is the most powerful tool of measurement [6, 7, 8, 9]. The use of appropriate equations for estimating biomass and volume will contribute in improving the accuracy of forest resource assessment, and also guide the forest policies and management interventions [10, 11]. Considering this importance, different research and academic institutions and individual researchers have developed biomass and volume allometric equations for estimating biomass and volume stock of a particular forest of Bangladesh.

Choice of allometric equations is one of the key sources of uncertainty in forest biomass estimation. About one-fourth of the published equations contain blunders, oversights, or forecast unrealistic values [12]. Therefore, verification and validation of allometric equation is imperative, before its application in estimation of biomass and volume [13]. Validating and verifying an allometric equation is vast in extent, and diverse in regards to methods, assumptions and conclusions. Recently, [13] proposed a systematic transparent quality control method to quantify the degree of confidence for the allometric equations without involving equation development. Quantitative reviews of available allometric equations have been implemented at a regional scale, but few countries have developed a national database for biomass and volume allometric equations [12]. In South Asia, the first regional database was developed in 2014 [14], while [15] have developed the first database for Bangladesh in 2013. However, these databases were not comprehensive and quality controlled. Repetition of some allometric equations was also observed. The use and development of allometric equations should be specific to the conditions of the country, which is crucial for three reasons. The first is that the assessment of tree and forest resources of a country should be accurate. The second is that country specific models are more efficient, and the third reason is the amount of uncertainty of the models used. However, the overall objective is to improve the quality of estimates for a multitude of purposes including timber volume, wood energy biomass, carbon stocks, etc. in trees and forest resources of Bangladesh. To achieve this overall objective, we have to have the status of the existing tree allometric equations, forest resource estimation methods, and a verified database of tree allometric equations. Therefore, a quality controlled comprehensive database of allometric equations is needed to assess the gaps and scope for the development of new allometric equations with important tree species of different forest types of Bangladesh. The specific objectives of the present study were to: i. develop a compilation with valid allometric equations of biomass, volume and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations with different trees and shrubs.

2. Material and Methods

2.1. Collection of Information

Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement and experiences in the use and development of allometric equations. A draft list of documents containing allometric equations was prepared through consultation with key stakeholders and online search (Google Scholar) results. This list was updated by taking time and identifying unlisted documents. The listed documents were collected from bibliographic databases such as: Science Direct, Springer Link, CABI, AGRIS, AGRICOLA, JSTOR, ResearchGate. Sometimes personal and official communications were established with identified key stakeholders to obtain their research articles, reports, theses, bulletins, monographs, inventory reports and proceedings papers. Hard and soft copies of the collected documents were maintained for references.

doi:10.1088/1755-1315/39/1/012057

2.2. Compilation of Information

The collected documents were sorted considering relevance and repetition. The information of the allometric equations in the sorted documents was grouped and recorded into 8 different categories. The categories were plant ecology (Population), geographical location, ecoregions (FAO, Udvardy, Bailey, WWF, Holridge and IUCN Bioecological zones-Bangladesh), equation parameters (coefficients, constants, variables and ranges), plant components (leaves, Branches, Stump, Stems, Bark, Root, etc.), taxonomical description (Family, Genus, Species), fit statistical information (R2, adjusted R2, RMSE, sample number, bias correction, Akaike information criterion, furnival index) and Bibliography.

2.3. Quality control of the allometric equations

All the allometric equations were tested through a quality control scheme following four types of verification (operational verification, conceptual verification, applicability, statistical credibility) according to [13]. The detail process of verification has been given below:

- Operational verification: Too large or too small predicted biomass or volume values
- Conceptual verification: Predicted biomass or volume are lower than "0" or have negative values
- Applicability: Under which condition the model can be applied (Population ecology, environmental condition of the site where the equation was developed, tree component measured, Taxonomic reference, Range of applicability)
- Statistical credibility: Sample size should be at least 30 trees and the coefficient of determination should be higher than 0.85

3. Results

3.1. Documents of allometric equations

A total of 53 documents were identified that contained the allometric equations for plants of Bangladesh. The collected documents were sorted, considering relevance and repetition, and 50 documents were found (i.e. 96% of the total document of allometric equations). Most of the documents were Journals (52%) followed by reports (24%), bulletins and theses (figure 1). The list of documents containing allometric equations of Bangladesh has been presented as Appendix 1.

Figure 1. Document type of available literature in percentage.

Most of the documents were prepared during the last decade of the twentieth century (1991-2000). However, the number of studies on the development of allometic equations has increased rapidly

doi:10.1088/1755-1315/39/1/012057

during 2011 to 2016, which contributed 26% of the total allometric documents of Bangladesh (figure 2).

Figure 2. Year-wise publication of the documents.

3.1. Total number of allometric equations

This study recorded a total of 517 allometric equations on volume, biomass, carbon and nutrients for 80 species of tree, shrub, palm and bamboo. Higher preference, about 92% of the total allometric equations, was recorded for trees and 6% for shrubs. Among these equations, 70% equations were for volume estimation and only 6% equations were for oven-dry biomass estimation. Unfortunately, there is not a single equation for below-ground biomass estimation (table 1).

Table 1. Total number of allometric equations according to plant and equation types in Bangladesh.

Category	Volume	Green biomass	Oven- dried biomass	Air- dried biomass	Carbon	Nutrients	Length of split leaf	Total
Tree	360	78	11	0	25	3	0	477
Shrub	1	1	20	0	3	6	0	31
Palm	0	2	0	0	0	0	1	3
Bamboo	0	3	0	3	0	0	0	6
Total	361	84	31	3	28	9	1	517

3.2. Verified allometric equations

Considering operational and conceptual verification, applicability and statistical credibility, the total number of allometric equations was reduced to 222, which was 43% of the total allometric equations. Most of the equations (45%) failed to meet the requirements of statistical credibility and conceptual verification (24%) (table 2). About 97% of the valid allometric equations were for individual species, while only 3% equations for mixed species. Irrespectively, about 77% of allometric equations were for plantation followed by natural forest (15%) and home garden (7%).

Table 2. Number of allometric equations in each category of verification.

Category	Operational verification	Conceptual verification	Applicability	Statistical credibility	Final validation
Valid	473	394	517	285	222
Not valid	44	123	0	232	295
Total equation	517	517	517	517	517

doi:10.1088/1755-1315/39/1/012057

Trees contained 196 verified equations which were 41% of the total allometric equations under the tree category. Shrubs contained 26 verified equations which were 84% of the total allometric equations of the shrub category (table 1 and 3). Surprisingly, not a single verified allometric equation was found for palm and bamboo. Under valid allometric equations, about 62% and 12% of the equations were observed for volume and oven-dry biomass respectively (figure 3).

Table 3. Number of verified allometric equations according to plant and equation types in Bangladesh.

Category	Volume	Green biomass	Oven-dried biomass	Carbon	Nutrients	Total
Tree	138	44	10	1	3	196
Shrub	0	0	17	3	6	26
Palm	0	0	0	0	0	0
Bamboo	0	0	0	0	0	0
Grand total	138	44	27	4	9	222

Figure 3. Percentage of valid allometric equations in different categories.

Thirty-nine species of 18 families and 31 genera have a total of 222 verified allometric equations. But, *Sonneratia apetala, Acacia mangium* and *Acacia auriculiformis* have each of 12 volume equations. *Senna siamea* has 23 allometric equations for green biomass, but other species have few equations under each category. These four species contributed 37% of the total verified allometric equations (Table 4). Species wide valid allometric equations in Bangladesh have been prepared and presented in Appendix 2.

Table 4. List of species with verified allometric equations in Bangladesh.

Genus	Species	Local name	Volum e	Green biomas s	Oven- dried biomas s	Carbo n	Nutrient s	Remar k
Acacia	mangium	Mangium	12	12				
Acacia	auriculiformis	Akashmon i	12	5	1			
Acacia	nilotica	Babla	2					
Aegialitis	rotundifolia	Nuniya			2			
Aegiceras	corniculatum	Khulshi			4	1	3	
Albizia	procera	Koroi	2					
Albizia	spp	Koroi	6				Mix	ed species
Albizia	saman	Rain tree	6					
Albizia	richardiana	Rajkoroi	2					
Aphanamixis	polystachya	Pitraj	2					
Artocarpus	chaplasha	Chapalish	2		2			
Artocarpus	heterophyllus	Kathal	2					
Avicennia	officinalis	Baen	2					
Azadirachta	indica	Neem	2					
Breonia	chinensis	Kadam	1					
Ceriops	decandra	Goran			5			
Dalbergia	sissoo	Sissoo	5					
Dipterocarpu	turbinatus	Telya	3					
S		garjan						
Eucalyptus	camaldulensis	Eucalyptu s	7					
Eucalyptus	tereticornis	Eucalyptu s	1					
Eucalyptus	brassiana	Eucalyptu s	1					
Excoecaria	agallocha	Gewa			5	1	3	
Falcataria	moluccana	Moluccna	2					
Gmelina	arborea	Gamar	2					
Hevea	brasiliensis	Rubber	10					
Kandelia	candel	Goria			5	1	3	
Lagerstroemi a	speciosa	Jarul	1		1			
Lannea	coromandelic a	Badi	1					
Mangifera	indica	Am	2					
Melia	azadarach	Bokain	2					
Mixed			1	4	1	1		
Pinus	caribaea	Pine	8					
Senna	siamea	Minjiri	8	23				
Shorea	robusta	Sal	7					
Sonneratia	apetala	Keora	12					
Swietenia	macrophylla	Mahogany	6					
Syzygium	cumini	Kalojam	1					
Tectona	grandis	Teak	2		1			
Terminalia	_		2		1			
1 erminalla	arjuna	Arjun	2					

doi:10.1088/1755-1315/39/1/012057

Xylia xylocarpa Pyinkado 1

A total of 58 verified allometric equations were observed for all over Bangladesh for different species. These allometric equations were developed from sample trees that were collected from different locations of Bangladesh. Therefore, these equations overlap different ecoregions of Bangladesh. Conversely, the other 164 verified allometric equations were found under all categories of ecoregions in Bangladesh as described by FAO, Udvardy, WWF and Bailey (table 5).

Table 5. Numbers of allometric equations and species in different ecoregions of Bangladesh.

Ecoregion	Zones	Equation number	Species number
FAO	Tropical moist Deciduous Forest	38	12
	Tropical rain forest	26	12
Udvardy	Tropical humid forests	76	14
	Tropical dry forests / Woodlands	12	9
WWF	Tropical humid forest	12	6
	Tropical and subtropical moist broadleaf forests	10	1
	Tropical and subtropical dry broadleaf forests	77	20
	Mangrove	33	5
Bailey	Rainforest Division	101	21
•	Rainforest Regime Mountain	12	9
Holdridge	Subtropical moist	13	4
•	Subtropical wet	13	10
	Tropical moist	10	2
Bangladesh IUCN	Brahmaputra-Jamuna flood plain	4	2
C	Chittagong Hills and the CHTs	6	2
	Ganges flood plain	2	1
	Offshore island	14	2
	Sundarbans	33	5
	Surma-Kushiara flood plain	1	1
	Sylhet hills	11	8

^{*} Overlapped ecoregions have not considered in this table.

4. Discussion

Allometric equations for trees and shrubs are fundamental to assess standing volume, biomass or carbon stock, bioenergy, nutrient cycling, payment for environmental services etc. [7, 10, 11]. Inappropriate use and development of allometric equations may give an inaccurate estimate of forest resources that may lead to inappropriate decisions on forest management issues and initiatives [16]. In Bangladesh, 5% species of trees and shrubs have allometric equations for estimating biomass and volume. However, this percentage was reduced to 2.5% considering only the verified equations. Four tree species contributed about 37% of the total valid allometric equations, and 12% verified equations were for oven-dried biomass of 10 species. This scenario pinpointed five gaps in the existing allometric equations of Bangladesh. This situation indicates: a. little work on allometric equations of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equations.

doi:10.1088/1755-1315/39/1/012057

Bangladesh Forest Research Institute (BFRI) was usually responsible for the development of allometric equations for estimating volume and biomass since 1971. Forest Department also developed some volume allometric equations in cooperation with BFRI under specific forest inventory from 1971 to 2000. The contribution of individual researchers in developing allometric equations was quite low during that period. Recently (2001-2016), the contribution from the individual researchers has increased. Previously, almost all efforts were given to derived volume equations for different tree species in the natural forest and plantation, to estimate the commercial volume stock of timber in particular forest and species as well. This could be the reason a very small number of biomass allometric equations were found in Bangladesh during 1971 to 2000. Few fuel wood species (*Acacia mangium, Acacia auriculiformis, Senna siamea* and *Sonneratia apetala*) have gotten more emphasis to derive allometric equations.

Development of biomass and volume allometric equations requires extensive planning, field works, sample analysis in the laboratory, and data analysis. These activities are mostly destructive, difficult, and expensive to repeat. Therefore, these activities require consistency in field work and equation selection process. Most of the allometric equations, 45% and 24% of the total allometric equations, failed to meet the requirements of statistical credibility and conceptual verification respectively under quality control scheme. This large proportion of invalid equations (57%) may be from lack of awareness on the quality control scheme of the derived allometric equations. So, it is suggested to include interval of calibration, residual standard deviation, coefficient of regression value, number of sample trees and location of sample tree or data collection in the document to meet the requirements of quality control scheme.

During the last National Forest Assessment in Bangladesh (2005-07), globally available equations and factors were used to calculate the above-ground biomass of forest. The Sundarban Carbon inventory in 2009-10 used the globally available equations for the mangrove species to calculate the carbon stock in the Sundarban Reserved Forest [17]. However, he accuracy can be questionable as they were using some general allometric equations [16, 18]. Therefore, development of allometric equations for local species, considering various factors for different forest types, is essential to ensure accuracy in volume, biomass and carbon estimation [12]. Major species of bamboo natural/ homestead, coastal afforestation, fresh water swamp forest, inland chars, mango plantation, associate species of Sal forest, major species of the Sundarbans and tree species outside the forest (table 6) should be given more emphasis during the development of biomass and volume allometric equations in Bangladesh.

Table 6. List of recommended species for further development of allometric equations in Bangladesh.

Acacia catechu
Adina cordifolia
Albizia lebbeck
Albizia odoratissimus
Anacardium occidentale
Areca catechu
Avicennia alba
Avicennia marina
Avicennia officinalis
Bambusa arundinacea
Bambusa balcooa
Bambusa longispiculata
Bambusa polymorpha
Bambusa tulda
Bambusa vulgaris
Barringtonia acutangula
Leucaena leucocephala
Litchi chinensis
Lumnitzera racemosa
Melocanna baccifera

Bombax ceiba Borassus flabellifer Bruguiera gymnorrhiza Bruguiera sexangula Butea monosperma Calophyllum inophyllum Cassia fistula Cerbera manghas Chickrassia tabularis Clerodendrum inerne Cocos nucifera Cynometra ramiflora Dalbergia sisoo Dalbergia spinosa Dellinia pentagyna Delonix regia Pongamia pinnata Psidium guajava Rhizophora apiculata Rhizophora mucronata

Dendrocalamus longispathus Dillenia indica Dillinia pentagyna Diospyros peregrina Disopyros philippensis Duabanga grandiflora Dysoxylum binectariferum Erythrina orientalis Excoecaria indica Feronia limonia Ficus bengalensis Ficus hispida Ficus religiosa Heritiera fomes Hibiscus tiliaceus Khava anthotheca Pithecellobium dulce Tamarix indica Terminalia belerica Terminalia catappa

doi:10.1088/1755-1315/39/1/012057

Michelia champca	Schima wallichii	Toona ciliata
Mimosops elengi	Sonneratia apetala	Trema orientalis
Moringa oleifera	Sonneratia caseolaris	Xylocarpus granatum
Nypa fruticans	Spondias dulce	Xylocarpus mekongensis
Phoenix paludosa	Syzygium grandis	Zizyphus mauritiana
Phoenix sylvestris	Tamarindus indica	

Acknowledgements

We greatly acknowledge the financial support of FAO through GCP/BGD/058/USA (LOA Code: FAOBGDLOA 2015-026) to accomplish this work. The authors also thank FAO for providing financial support (Travel and Accommodation) to present the paper at the International conference WRE2016, Shanhai, China. We would like to thank Bangladesh Forest Department, Bangladesh Forest Research Institute, Institute of Forestry and Environmental Sciences, University of Chittagong, Department of Forestry and Environmental Science, Shahjalal University of Science & Technology, and Forestry and Wood Technology Discipline, Khulna University for their cordial logistic supports during the collection of the extensive literature.

Appendix A

Sl no	Source
1	Alamgir, M., Al-Amin, M. 2008. Allometric models to estimate biomass organic carbon

- stock in forest vegetation. Journal of Forestry Research 19 (2): 101-106
- 2 Chaffey, D.R., Miller, F.R., Sandom, J.H. 1985. A forest inventory of the Sundarbans, Bangladesh. Project report 140, Overseas Development Administration, Land Resources Development Centre, England
- 3 Cox, F.Z. 1984. Volume functions for plantation species and elements for growth models for Teak. Field Document no 2, Assistance to the Forestry Sector of Bangladesh, Food and Agricultural Organization of the United Nations, FAO/UNDP Project BGD/79/017
- Das, N. 2014. Modeling Develops to Estimate Leaf Area and Leaf Biomass of Lagerstroemia speciosa in West Vanugach Reserve Forest of Bangladesh. ISRN Forestry, doi. org/10.1155/2014/486478
- Das, S., Davidson, J., Latif, M.A., Rahman, F., Das, S. 1985. Tree volume tables for Moluccana (Paraserianthes falcataria syn. Albizia falcataria syn. A. moluccana) in Bangladesh. Bulletin no 4, Inventory Division, Bangladesh Forest Research Institute, Chittagong.
- Das, S., Rahman, M.F., Reza, N.A., Latif, M.A. 1992. Tree volume tables for Sal (Shorea robusta Gaertn. f.) in the plantations of Bangladesh. Bulletin 7, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong, 1-11 pp.
- Davidson, J., Das, S., Khan, S.A., Latif, M.A., Zashimuddin, M. 1985. Tree volume tables for small Eucalypt round wood in Bangladesh. Bulletin no 4, Silviculturer Research Division, Bangladesh Forest research Institute, Chittagong
- 8 Deb, J.C., Halim, M.A., Ahmed, E. 2012. An allometric equation for estimating stem biomass of Acacia auriculiformis in the north-eastern region of Bangladesh. Southern Forests 74(2): 103–113

doi:10.1088/1755-1315/39/1/012057

9 Drigo, R., Latif, M.A., Chowdhury, J.A., Shaheduzzaman, M. 1987. The maturing mangrove plantations of the coastal afforestation project. Food and Agricultural Organization of the United Nations, FAO/UNDP Project BDG/85/085, Assistant to the Forestry Sector.

- Sl no Source
- Drigo, R., Shaheduzzaman, M., Chowdhury, J.A. 1988. Inventory of forest resources of Southern Sylhet Forest Division. Assistance to Forestry Sector Phase II, Field Document no 3, Food and Agriculture Organisation of the United Nations, FAO/UNDP Project BGD/85/085
- Hossain, S.M.Y., Martin, A.R. 2013. Merchantable timber production in Dalbergia sissoo plantations across Bangladesh: regional patterns, management practices and edaphic factors. Journal of Tropical Forest Science 25(3): 299-309
- Islam, S.M.Z., Ahmed, K.U., Khan, M.I. 2014. Mathematical models for estimating stem volume and volume tables of Rubber tree. Bulletin 10, Forest Inventory Series, Bangladesh Forest Reearch Institute, Chittagong.
- Islam, S.M.Z., Khan, M.I. Ahmed, K.U. 2012. Volume equations and tables for Rajkoroi (Albizia richardiana King and Prain) planted in the southern part of Bangladesh. Bangladesh Journal of Forest Science 32 (1): 28-39
- Islam, S.S., 1988. Commercial volume table for teak (Tectona grandis) in Bangladesh by regression technique. Bano Biggyan Patrika 17 (1&2): 55-67
- Islam, S.S., Kabir, J., Masum, A.K.M. 2012. Volume Table of Raintree (Samanea saman) in Bangladesh by Regression Technique. Open Journal of Statistics 2: 115-119
- Islam, S.S., Reza, N.A., Hasnin, M., Khan, M.A.S., Islam, M.R., Siddiqi, N.A. 1992. Volume table of young Keora (Sonneratia apetala) trees for the western coastal belt of Bangladesh. Bulletin 1, Plantation Trial Unit Series, Bangladesh Forest Research Institute, Chittagong, 1-23 pp.
- Khan, M.N.I., Faruque, O. 2010. Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. iForest 3: 153-158
- Kingston, B. 1979. A collation of tree and bamboo volume tables of Bangladesh. Field Document no 15, Food and Agricultural Organization of the United Nations, UNDP/FAO Project BGD/72/005, Forest Research Institute, Chittagong
- Latif M.A., Habib, M.A. 1994. Biomass tables for Acacia mangium grown in the plantations in Bangladesh. Journal of Tropical Forest Science 7(2): 296-302
- Latif, M.A., 1988. Biomass tables for young Eucalyptus grown in Bangladesh. Bano Biggyan Patrika 17 (1 & 2): 46-54

doi:10.1088/1755-1315/39/1/012057

SI no Source

- Latif, M.A., Das, S., Rahman, M.F., Chowdhury, J.A. 1994. Tree volume tables for Baen (Avicennia officinalis L.) in the coastal plantations of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Banglaesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 21-23 pp.
- Latif, M.A., Habib, M.A. 1993. Biomass table for Acacia auriculiformis grown in the plantation in Bangladesh. Indian Journal of Forestry 16 (4): 323-327
- Latif, M.A., Habib, M.A. 1994. Biomass tables for minjiri (Cassia Siamea Lam.) grown in the plantations in Bangladesh. Bangladesh Journal of Forest Science 23 (1): 59-64
- Latif, M.A., Habib, M.A., Das, S., 1993. Tree volume tables for Acacia mangium in the plantations of Bangladesh. Bangladesh Journal of Forest Science 22 (1 & 2): 23-29
- Latif, M.A., Islam, M.N. 1984a. Tree volume volume tables for Syzygium grande (Wt.) Wald (Dhakijam). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 25-57.
- Latif, M.A., Islam, M.N. 1984b. Tree volume tables for Artocarpus chaplasha Roxb. (Chapalish). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 58-92.
- Latif, M.A., Islam, M.N. 1984c. Tree volume tables for Dipterocarpus turbintus Gaertn. F. (Tali Garjan). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 122-128.
- Latif, M.A., Islam, M.N. Choudhury, J.H. 1984. Tree volume tables for Gmelina arborea Roxb. (Gamar). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 93-121.
- Latif, M.A., Islam, M.N., Islam, S.S. 1985. Tree volume tables for Teak (Tectona grandis) in Bangladesh. Bulletin no 5, Inventory Division, Bangladesh Forest Research Institute, Chittagong.

doi:10.1088/1755-1315/39/1/012057

Sl no Source

- Latif, M.A., Islam, M.S., Islam, S.M.Z. 1999. Volume tables for sissoo, koroi, mahogany, eucalyptus and bokain planted on croplands in the western part of Bangladesh. Bangladesh Forest Research Institute, Chittagong.
- Latif, M.A., Islam, M.S., Islam, S.M.Z., 2000. Volume tables for Sissoo, Koroi, Akashmoni, Babla, Mahogany, and Rain tree planted on embankments and road sides in the coastal areas of Bangladesh. Bulletin 9, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong.
- Latif, M.A., Islam, S.M.Z. 2000. Volume tables for 11 important tree species grown in the home gardens of Bangladesh. Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong.
- Latif, M.A., Islam, S.M.Z. 2004. Timber and fuelwood volume tables for Acacia auriculiformis, A. mangium, Eucalyptus camaldulensis and Dalbergia sissoo in plantations in Bangladesh. Forestry Sector Project, Bangladesh Forest Department and Bangladesh Forest Research Institute, Chittagong.
- Latif, M.A., Islam, S.S., Davidson, J. 1986. Metric volume tables for some tree species found in the natural forests of Bangladesh. Bulletin 6, Inventory Division, Bangladesh Forest Resarch Institute, Chittagong.
- Latif, M.A., Khan, A.F.M.K., Hossain, M.M. 1998. Stump diameter -DBH volume relationships for Teli Garjan (Dipterocarpus turbinatus), Dhakijam (Sygyzium grande) and Teak (Tectona grandis) in Bangladesh. Bangladesh Journal of Forest Science 27 (1): 16-24
- Latif, M.A., Rahman, M.F., Das, S. 1995. Volume table for Acacia auriculiformis, Cassia siamea and Pinus caribaea in Bangladesh. Bangladesh Journal of Forest Science 24 (2): 22-30
- Mahmood, H., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2015b. Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees DOI: 10.1007/s00468-015-1314-0
- Mahmood, H., Shaikh, M.A.A., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2016. Above-ground biomass, nutrients and carbon in *Aegiceras corniculatum* of the Sundarbans. *Open Journal of Forestry* 6 (2): 72-89
- Mahmood, H., Siddique, M.R.H., Bose, A., Limon, S.H., Chowdhury, M.R.K. Saha, S. 2012. Allometry, above-ground biomass and nutrient distribution in Ceriops decandra (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh. Wetlands Ecology and Management 20: 539-548

Sl no	Source
40	Mahmood, H., Siddique, M.R.H., Saha, S., Abdullah, S.M.R. 2015a. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands Ecology and Management 23 (4): 765-774
41	Rahman, M.F., Das, S., Latif, M.A. 2001. Volume table for Koroi (albizia procera) and Arjun (Terminalia arjuna) trees planted in the central part of Bangladesh. Bangladesh Journal of Forest Science 30 (1): 39-46.
42	Rahman, M.F., Das, S., Reza, N.A., Chowdhury, J.A., Latif, M.A. 1994. Tree volume table for Keora (Sonneratia apetala BuchHam) in the coastal plantation of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Banglaesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 1-20 pp.
43	Rahman, M.M., Kamaluddin, M. 1996. Volume table for natural hybrid trees of Acacia mangium X Acacia auriculiformis in plantations of Bangladesh. Chittagong University Studies, 20 (1): 89-94
44	Revilla, J.A.V., Ahmed, I.U., Hossain, A. 1998a. Forest Inventory of the Sundarbans Reserved Forest, Final Report, Volume 1. Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh
45	Revilla, J.A.V., Ahmed, I.U, Saha, U.K. 1998b. Forest Inventory of the Natural Forest and Forest Plantations (Sylhet Forest Division), Final Report. Gob/Wb, Forest Resources Management Project, Technical Assistance Component. (Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh).
46	Roy, B. 2012. Species-specific allometric models for estimation of aboveground stem biomass of three dominant tree species at Satchari National park. Unpublished MS thesis. Department of Forestry and Environmental Science, ShahJalal University of Science and Technology, Sylhet, Bangladesh

- Sarker, S.K., Das, N., Chowdhury, M.Q., Haque, M.M. 2013. Developing allometric equations for estimating leaf area and leaf biomass of Artocarpus chaplasha in Raghunandan Hill Reserve, Bangladesh. Southern Forests 75(1): 51-57
- Siddique, M.R.H., Mahmood, H., Chowdhury, M.R.K. 2012. Allometric relationship for estimating above-ground biomass of Aegialitis rotundifolia Roxb. of Sundarbans mangrove forest, in Bangladesh. Journal of Forestry Research 23 (1): 23-28.
- Sylvander, R., Latif, M.A., Karlsson, A. 2001. Forest inventory of the Sal forest of Bangladesh, Volume 1, Technical Report, Forestry Sector Project, Forest Department, Ministry of Environment and Forest, Dhaka

doi:10.1088/1755-1315/39/1/012057

Ullah, M.R., Banik, G.R., RajibBanik. 2014. Developing Allometric Models for Carbon Stock Estimation in Eighteen Year Old Plantation Forests of Bangladesh. Jacobs Journal of Microbiology and Pathology 1(1): 006

Appendix B

Genus	Species	Local	Family	Unite	Vegetation Component	Equation	Sample	R2	MSE	Ref.
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -1.5851 + 2.4855 * Log (DBH)	120	0.972	0.0232	23
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -4.4303 + 2.4855 * Log (GBH)	120	0.972	0.0232	23
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -2.0847 + 2.1723 * Log (DBH) + 0.5141 * Log (Height)	120	0.977	0.0189	23
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) = -4.5714 + 2.1723 * Log (GBH) + 0.5141 * Log (Height)	120	0.977	0.0189	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) = $-2.1442 + 2.5917 * \text{Log (DBH)}$	120	996.0	0.0313	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) = -5.1110 + 2.5917 * Log (GBH)	120	996.0	0.0313	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) = -2.7095 + 2.2372 * Log (DBH)	120	0.972	0.0257	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	+ 0.3017 Log (Height) Log (Green biomass) = -5.2705 + 2.2372 * Log (GBH) + 0.5817 * Log (Height)	120	0.972	0.0257	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) = $-2.2732 + 1.9752 * \text{Log (DBH)}$	120	0.570	0.3528	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) = -4.5343 + 1.9752 * Log (GBH)	120	0.570	0.3528	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) = -3.2955 + 1.3142 * Log (DBH) + 1.0521 * Log (Height)	120	0.585	0.3355	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) = -4.7999 + 1.3142 * Log (GBH) + 1.0521 * Log (Height)	120	0.585	0.3355	23
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) = -2.1219 + 1.9299 * Log (DBH)	120	0.761	0.1568	23
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) = -4.3311 + 1.9299 * Log (GBH)	120	0.761	0.1568	23
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) = -0.6183 + 2.8726 * Log (DBH) - 1.5471 * Log (Height)	120	0.820	860.0	23
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) = -3.9067+ 2.8726 * Log (GBH) - 1.5471 * Log (Height)	120	0.820	860.0	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) = -2.0512 + 2.6006 * Log (DBH)	120	0.964	0.0339	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) = -5.0282 + 2.6006 * Log (GBH)	120	0.964	0.0339	23
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) = -2.9256 + 2.0525 * Log (DBH) + 0.8996 * Log (Height)	120	0.978	0.0201	23

Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green	Log (Green biomass) = $-5.2752 + 2.0525 * \text{Log (GBH)}$	(H)	120	0.978	0.0201	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs oreen biomass	Log (Green biomass) = $-2.5173 + 2.281 * \text{Log (DBH)}$	(I	120	6	0.1641	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs	Log (Green biomass) = -2.9974 + 1.98 * Log (DBH) + 0.494 * Log (Height)	+	120		0.1613	23
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	Log (Green biomass) = -5.264 + 1.98 * Log (GBH) + 0.494 * Log (Height)	+	120		0.1613	23
Genus	Species	Local	Family	Unit		Equation	Sampl	R2	MSE	FI	Ref
		name		e of Y	Component		e size				٠Ş
Sonnerati	apetala	Keora	Lythraceae	m3	Total volume over bark	Volume = 0.0117 + 0.0000280056 * DBH^(2) *	713	0.912			42
s Sonnerati	apetala	Keora	Lythraceae	m3	Total volume over bark	for the following volume = $0.0117 + 0.00000283756 * GBH^{(2)}$	713	0.912			42
a Sonnerati	apetala	Keora	Lythraceae	m3	Volume under bark	* Height Volume = $0.0041 + 0.0000246325 * DBH^{(2)} *$	713	0.937			42
a Sonnerati	apetala	Keora	Lythraceae	m3	Volume under bark	Height Volume = $0.0041 + 0.00000249579 * GBH^{(2)} *$	713	0.937			42
a Avicennia	officinali	Baen	Aviceniaceae	m3	Total volume over bark	Height Volume = $0.0089 + 0.0000264 * DBH^{(2)} *$	308	0.859	0.0002		21
Avicennia	s officinali	Baen	Aviceniaceae	m3	Total volume over bark	Height Volume = $0.0089 + 0.00000267 * GBH^{2}(2) *$	308	0.859	0.0002		21
Albizia	s procera	Koroi	Mimosaceae	m3	Total volume over bark	Height Log (Volume) = -12.0901 + 2.502194 * Log	221	0.983	9		41
Albizia	procera	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) = -11.6632 + 1.941989 * Log	221	0.991			41
Terminali	arjuna	Arjun	Combretacear	m3	Total volume over bark	(GBH) = -11.1885 + 2.222144 * Log (GBH)	177	986.0			41
Terminali	arjuna	Arjun	Combretacear	m3	Total volume over bark	Log (Volume) = -11.3794 + 1.896423 * Log (CBH) + 0.653558 * 1.09 (Height)	177	0.997			41
Shorea	robusta	Sal	Dipterocarpacea	а m3	Total volume over bark	Log (Volume) = -9.1727759 + 2.5178944 * DBH	499	996.0	0.0385	0.057	38
Shorea	robusta	Sal	Dipterocarpacea	a m3	Total volume over bark	Log (Volume) = -12.0554 + 2.5178944 * Log (GRH)	499	9 9960 6	0.0385	0.057	38
Shorea	robusta	Sal	Dipterocarpacea e	a m3	Total volume over bark	Log(Yolume) = -9.615639 + 2.033071 * Log (DBH) + 0.7361229 * Log (Height)	499	0.955	0.0077	0.088	38
Shorea	robusta	Sal	Dipterocarpacea e	a m3	Total volume over bark	Log (Volume) = -11.938881 + 2.033071 * Log (GBH) + 0.7361229 * Log (Height)	499	0.955	0.0077	0.088	38

38	38	16	16	16	16	24	24
0.080	0.080	0.009	0.003	0.010	0.005	0.006	0.006
0.0065	0.0065	0.0000	0.0547	0.0001	0.0744	0.0152	0.0152
0.962	0.962	98.0	0.95	0.85	0.94	86.0	86.0
499	499	461	461	464	464	132	132
Volume = $0.0032556 + 0.0000269 * DBH^{(2)} *$ Height	Volume = $0.003255 + 0.0000027255 * GBH^{(2)}$ * Height	Volume = 0.0052 - 0.0022 * X + 0.0005 * DBH^(2)	Log (Volume) = -9.1937 + 1.7683 * Log (DBH) + 0.7358 * Log (Height)	Volume = 0.0042 - 0.0017 * DBH + 0.0005 * DBH^(2)	Log (Volume) = -9.2587 + 1.6463 * Log (DBH) + 0.9138 * Log (Height)	Log (Volume) = -8.209 + 2.2178 * Log (DBH)	Log (Volume) = -10.7488 + 2.2178 * Log (GBH)
Total volume under bark	Total volume under bark	Total volume over bark	Total volume over bark	Total volume over bark	Total volume over bark	Total volume over bark	Total volume over bark
m3	m3	m3	m3	m3	m3	m3	m3
Dipterocarpacea	Dipterocarpacea e	Lythraceae	Lythraceae	Lythraceae	Lythraceae	Fabaceae	Fabaceae
Sal	Sal	Keora	Keora	Keora	Keora	Mangiu m	Mangiu m
robusta	robusta	apetala	apetala	apetala	apetala	mangium	mangium
Shorea	Shorea	Sonnerati a	Sonnerati a	Sonnerati a	Sonnerati a	Acacia	Acacia

Ref. No	24	24	24	24	24	20	20	20	20	17	17	22	22	22	22	36	36	36	36	36
E	0.0048	0.0048	0.0056	0.0056	0.0048					40.79	33.36					0.0061	0.0061	0.0648	0.0648	0.0059
MSE	0.0091	0.0091	0.0299	0.0299	0.0219					0.23	0.16		0.0084	0.0218	0.0119					
K 2	686.0	686.0	696.0	696.0	0.977	0.948	0.948	0.9575	0.9575	0.88	0.92	0.9674	986.0	8696.0	0.983	0.959	0.959	0.988	0.988	8896.0
Sample size	132	132	132	132	132	294	294	294	294	635	645	139	139	139	139	139	139	139	139	139
Equation	Log (Volume) = -9.1426 + 1.7612 * Log (DBH) + 0.83335 * Log (Height)	Log (Volume) = -11.1587 + 1.7612 * Log (GBH) + 0.83335 * Log (Height)	Log (Volume) = -9.00226 + 2.3246 * Log (DBH)	Log (Volume) = -11.6633 + 2.3246 * Log (GBH)	Log (Volume) = -10.2221 + 1.74054 * Log (DBH) + 1.07596 * Log (Height)	Log (Green biomass) = $-1.3933 + 2.39602 *$ Log (DBH)	Log (Green biomass) = 4.136 + 2.39602 * Log (GBH)	Log (Green biomass) = -2.228 + 1.81492 * Log (DBH) + 0.85007 * Log (Height)	Log (Green biomass) = -4.306 + 1.81492 * Log (GBH) + 0.85007 * Log (Height)	Volume = $0.084 * DBH^{(2.263)}$	Volume = $0.000465 * DBH^{(1.58)} *$ Height^{(1.603)	Log (Green biomass) = $-1.3577 + 2.4177 *$ Log (DBH)	Log (Green biomass) = -2.2782 + 1.9736 * Log (DBH) + 0.8113 * Log (Height)	Log (Green biomass) = $-2.3176 + 2.6075 *$ Log (DBH)	Log (Green biomass) = $-3.1661 + 2.1982 *$ Log (DBH) + $0.7477 *$ Log (Height)	Log (Volume) = -8.208 + 2.2389 * Log (DBH)	Log (Volume) = -10.7709 + 2.2389 * Log (GBH)	Log (Volume) = -9.125 + 1.918 * Log (DBH) + 0.67988 * Log (Height)	Log (Volume) = -11.3205 + 1.918 * Log (GBH) + 0.67988 * Log (Height)	Log (Volume) = $-9.187 + 2.468 * \text{Log}$ (DBH)
Vegetation Component	Total volume over bark	Total volume over bark	Total volume under bark	Total volume under bark	Total volume under bark	Total above-ground green biomass	Total above-ground green biomass	Total above-ground green biomass	Total above-ground green biomass	Total volume over bark	Total volume over bark	Total above-ground green biomass	Total above-ground green biomass	Stem green biomass	Stem green biomass	Total volume over bark	Total volume over bark	Total volume over bark	Total volume over bark	Total volume under bark
Unite of Y	m3	m3	m3	m3	m3	kg	kg	kg	kg	cft	cft	kg	kg	kg	kg	m3	m3	m3	m3	m3
Family	Fabaceae	Fabaceae	Fabaceae	Fabaceae	Fabaceae					Lamiaceae	Lamiaceae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae	Leguminosae
Local name	Mangium	Mangium	Mangium	Mangium	Mangium					Teak	Teak	Akashmon i	Akashmon	Akashmon i	Akashmon i	Akashmon i	Akashmon i	Akashmon i	Akashmon i	Akashmon i
Species	mangium	mangium	mangium	mangium	mangium					grandis	grandis	auriculiformis	auriculiformis	auriculiformis	auriculiformis	auriculiformis	auriculiformis	auriculiformis	auriculiformis	auriculiformis
Genus	Acacia	Acacia	Acacia	Acacia	Acacia	Mixed	Mixed	Mixed	Mixed	Tectona	Tectona	Acacia	Acacia	Acacia	Acacia	Acacia	Acacia	Acacia	Acacia	Acacia

36	92
0.0059 3	0.0048 3
8896.0	0.9773
139	139
Log (Volume) = -12.0121 + 2.468 * Log (GBH)	Log (Volume) = -10.2398 + 2.100244 * Log (DBH) + 0.780214 * Log (Height)
Total volume under bark	Total volume under bark
m3	m3
Leguminosae	Leguminosae
Akashmon i	Akashmon i
auriculiformis	auriculiformis
Acacia	Acacia

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation	Sample size	22	MSE	료	Ref. No
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under	Log (Volume) = -12.6440 + 2.100244 * Log	139	0.9773		0.0048	36
Senna	siamea	Miniiri	Leonminosae	m3	bark Total volume over	(GBH) + 0.780214 * Log (Height) (GBH) + 0.780214 * Log (Nohme) = -8 602 + 2 4038 * Log	120	96260		0.0098	36
	200	ı ınfilmızı	Ceammosac		bark	(DBH)	071			0.00.0	2
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark	Log (Volume) = $-11.3536 + 2.4038 * Log$ (GBH)	120	9626.0		0.0098	36
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over	Log (Volume) = -9.514 + 1.871 * Log (DBH) + 0.897 * Log (Height)	120	8686.0		0.0054	36
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over	Log (Volume) = -11.6557 + 1.871 * Log	120	8686.0		0.0054	36
Senna	siamea	Minjiri	Leguminosae	m3	bark Total volume under	(GBH) + 0.89 / * Log (Height) Log (Volume) = -9.334 + 2.55686 * Log	120	926.0		0.0081	36
Commo		Missieri	I constant	2	bark Total volume under	(DBH) $\frac{1}{1} \frac{1}{2} \frac{1}{2$	0.00	9200		0.0001	36
Scillia	Stattica	мшјшт	Legammosae	CIII	bark	Log (Volume) = -12.2032 + 2.33000 · Log (GBH)	170	0.970		0.0001	30
Senna	siamea	Minjiri	Leguminosae	m3	Total volume under	Log (Volume) = -10.1766698 + 2.0641847 *	120	986.0		0.0049	36
Senna	siamea	Minjiri	Leguminosae	m3	bark Total volume under	Log (UBH) + 0.829093/ * Log (Height) Log (Volume) = -12.5396 + 2.064187 * Log	120	986.0		0.0049	36
		,)		bark	(GBH) + 0.8290937 * Log (Height)					
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) = -8.7854 + 2.410755 * Log (DBH)	122	986.0		0.002	36
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over	Log (Volume) = -11.545 + 2.410755 * Log	122	986.0		0.002	36
Pinus	caribaea	Pine	Pinaceae	m3	bark Total volume over	(GBH) $\log (\text{Volume}) = -9 39412 + 1 867386 * Log$	122	0 9945		0.0052	36
					bark	(DBH) + 0.839034 * Log (Height)	1	2			2
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) = -11.5317 + 1.867386 * Log (GBH) + 0.839034 * Log (Height)	122	0.9945		0.0052	36
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) = -9.11552 + 2.483187 * Log (DBH)	122	0.9858		0.0084	36
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under	Log (Volume) = -11.9580 + 2.483187 * Log (GBH)	122	0.9858		0.0084	36
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) = -9.7505 + 1.935397 * Log (DBH) + 0.851715 * 1.09 (Height)	122	0.9933		0.0058	36
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume)= -11.9660 + 1.935397 * Log (GBH) + 0.851715 * Log (Height)	122	0.9933		0.0058	36
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) = -11.839665 + 2.404568 * Log (GBH)	124	0.973			31
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) = -11.506528 + 1.973377 * Log (GBH) + 0.623823 * Log (Height)	124	0.979			31
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total volume over	Log (Volume) = -12.52620808 + 2.5653795	245	0.942			31
					Dallk	. Log (GDII)					

31	31	
96.0	0.929	
245	178	
Log (Volume) = -12.4361459 + 1.8661846 *	Log (Volume) = -12.8715358 + 2.6994968 *	Log (GBH)
Total volume over	bark Total volume over	bark
m3	m3	
Meliaceae	Mimosaceae	
Mahogany	Koroi	
macrophylla	dds	
Swietenia	Albizia	

Genus	Species	Local	Family	Unite	Vegetation	Equation	Sample	R2	MSE	FI	Ref.
	,	name	•	Of Y	Component	•	size				Š
Albizia	dds	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) = -12.4 + 1.7131 * Log (GBH) + 1.58245 * Log (Height	178	196.0			31
Dalbergi a	sissoo	Sissoo	Fabaceae	m3	Total volume over bark	Log (Volume) = -12.427775 + 2.6056676 * Log (GBH)	202	0.902			31
Dalbergi a	sissoo	Sissoo	Fabaceae	m3	Total volume over bark	Log (Volume) = -12.5189939 + 1.9800535 * Log (GBH) + 1.0775148 * Log (Height)	202	0.934			31
Acacia	nilotica	Babla	Mimosaceae	m3	Total volume over bark	Log (Volume) = -11.2782859 + 2.34743 * Log (GBH)	128	0.91			31
Acacia	nilotica	Babla	Mimosaceae	m3	Total volume over bark	Log (Volume) = -11.875835 + 1.8823999 * Log (GBH) + 1.0819988 * Log (Height)	128	0.91			31
Albizia	saman	Rain tree	Mimosaceae	m3	Total volume over bark	Log (Volume) = -12.287524 + 2.5086408 * Log (GBH)	190	0.952			31
Albizia	saman	Rain tree	Mimosaceae	m3	Total volume over bark	Log (Volume) = -12.3213818 + 1.8912934 * Log (GBH) + 1.183443 * Log (Height)	190	0.974			31
Ceriops	decandra	Goran	Rhizophoracea e	50	Leaf	Oven-dried biomass = $2.99 * (Collar girth)^{(1.95)}$	48	68.0	0.02		39
Ceriops	decandra	Goran	Rhizophoracea e	50	Branch	Oven-dried biomass = $0.23 * (Collar girth)^{(3.09)}$	48	0.94	0.03		39
Ceriops	decandra	Goran	Rhizophoracea e	50	Bark	Oven-dried biomass = $0.77 * (Collar girth)^{2}(2.23)$	48	0.97	0.01		39
Ceriops	decandra	Goran	Rhizophoracea e	50	Stem with bark	Oven-dried biomass = $3.22 * (Collar girth)^{(2.27)}$	48	0.97	0.01		39
Ceriops	decandra	Goran	Rhizophoracea e	ао	Total above-ground	Oven-dried biomass = $4.70 * (Collar girth)^{\circ}(2.41)$	48	0.97	0.01		39

IOP Conf. Series: Earth and Environmental Science **39** (2016) 012057 doi:10.1088/1755-1315/39/1/012057

	Species	Local	Family	Unite of Y	Vegetation Component	Equation	Sample size	R2	MSE	RMSE	AIC	Bias correctio n	Ref. No
Aegialitis	rotundifolia	Nuniya	Plumbaginacea e	50	Leaf	Oven-dried biomass = 13.96 * (Collar girth) - 12.38 * (Height)^(2)- 0.01 * (Height at girth measurement	50	0.88	1392.78	37.32			84
						point)^(2) + 0.08 * (Collar girth) * (Height) * (Height at girth measurement point)							
Aegialitis	rotundifolia	Nuniya	Plumbaginacea e	ac	Branch	Oven-dried biomass = $3.09 *$ (Collar girth) $^{\prime}$ (2) - $22.887 *$ (Height) $^{\prime}$ (7) + $0.13 *$ (Collar	50	0.92	8626.98	92.882			84
						girth) * (Height) * (Height at girth measurement point)							
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Leaf	Log 10 (Oven-dried biomass) = 0.9256 * Log 10 (DBH ² (2)) - 2.133	30	0.8499	0.051	0.226	-86.652	1.146	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Branch	Log 10 (Oven-dried biomass) = 1.1656 * Log 10	30	6996.0	0.016	0.126	-122.159	1.043	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Bark	(DBH^(2)) - 1.7047 Log 10 (Oven-dried biomass) = 1.0824 * Log 10 (DBH^(2)) - 1.7568	30	0.9933	0.003	0.052	-175.484	1.007	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Stem without bark	Log 10 (Oven-dried biomass) = 1.0927 * Log 10 (DBH/(2)) - 1.0275	30	0.9937	0.003	0.051	-176.616	1.007	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above- ground	Log 10 (Oven-dried biomass) = 1.0996 * Log 10 (DBH/(2)) - 0.8572	30	0.9953	0.002	0.044	-185.005	1.005	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above- ground	Log 10 (Nitrogen) = $1.0972 *$ Log 10 (DBH $^{\prime}$ (2)) - 3.0845	30	0.9922	0.0032	0.0567		1.008583	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above- ground	Log 10 (Phosphorus) = $1.0947 * \text{Log } 10 \text{ (DBH}^2(2)) - 5.6790$	30	0.9905	0.0039	0.0623		1.010333	40
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above- ground	Log 10 (Potassium) = 1.0990 $* \text{Log } 10 \text{ (DBH}^{2}(2)) - 3.0370$	30	0.9929	0.0029	0.054		1.007774	40

Ref	· N	40	37	37	37	37	37	37	37	37	37	∞	15	15
Bias	n	1.005136										1.01066		
FI			0.06	0.23	0.11	0.34	0.61						0.21	0.18
AIC			-133.53	-86.947	-110.07	-80.521	-18.875					-600.02		
RMS F.	1	0.044	90.0	0.16	0.1	0.18	0.62							
MSE		0.001	0.004	0.03	0.01	0.03	0.38						0.07	0.05
R 2		0.9953	68.0	0.87	98.0	98.0	0.94	0.95	0.95	0.95	96.0	0.9674	98.0	6.0
Sampl e size	2315 2	30	25	25	25	25	25	25	25	25	25	009	205	205
Equation		Log 10 (Carbon) = 1.1 * Log 10 (DBH $^{\wedge}$ (2)) - 1.1937	Oven-dried biomass = $0.014 * (DBH)^{\wedge}(2) + 0.03$	Sqrt (Oven-dried biomass) = 0.29 * (DBH) - 0.21	Sqrt (Oven-dried biomass) = 0.66 * sqrt (DBH) - 0.57	Sqrt (Oven-dried biomass) = 1.19 * Sqrt (DBH) - 1.02	Oven-dried biomas = $0.21 * (DBH)^{\wedge}(2) + 0.12$	Nitrogen = $0.39 *$ (DBH) $^{(2)}$ + 0.49	Phosphorus = $0.77 *$ (DBH) $^{(2)}$ + 0.14	Potassium = $0.87 *$ (DBH) $^{(2)}$ + 0.07	Carbon = $0.09 *$ (DBH) $^{\wedge}$ (2) + 0.05	Oven-dried biomass = 0.092486 * ((DBH) * (Height))^((1.4765)	Log (Volume) = - 8.3013 + 2.1746 * Log (DBH)	Log (Volume) = - 9.1864 + 1.8502 * Log (DBH) + 0.8234 * Log (Height)
Vegetation	Componen t	Total above- ground	Leaf	Branch	Bark	Stem without bark	Total above-	Total above-	Total above- ground	Total above-	Total above- ground	Stem biomass	Stem volume	Stem
Unit	Y	kg	kg	kg	kg	kg	kg	kg	kg	kg	kg	kg	m3	m3
Family		Euphorbiaceae	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Rhizophoracea e	Leguminosae	Mimosaceae	Mimosaceae
Local	паше	Gewa	Goria	Goria	Goria	Goria	Goria	Goria	Goria	Goria	Goria	Akashmon i	Rain tree	Rain tree
Species		agallocha	candel	candel	candel	candel	candel	candel	candel	candel	candel	auriculiformi s	saman	saman
Genus		Excoecari a	Kandelia	Kandelia	Kandelia	Kandelia	Kandelia	Kandelia	Kandelia	Kandelia	Kandelia	Acacia	Albizia	Albizia

IOP Conf. Series: Earth and Environmental Science **39** (2016) 012057 doi:10.1088/1755-1315/39/1/012057

Miyed Shrub				t	Above	Oven-dried biomass =	8720						_
OBJUG DAVIA				a		+ 0.536662 **	1						-
Mixed Shrub				ρū	biomass (4 Above- C ground 0 biomass	(Biomass) Carbon = -0.379625 + 0. 0.500132 * (Biomass)	0.8970 8						-
Genus	Species	Local	Family	Unit e of	Vegetation Component	Equation	Sampl e size	R2	MSE	AIC	FI COI	Bias	Ref.
Acacia	mangium	Mangiu	Fabaceae	kg	Total above-ground	Log (Green biomass) = -1.4659 + 2.3256 * Log (DBH)	132	0.979	0.019				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) = 4.1281 + 2.3256 * Log (GBH)	132	0.979	0.019				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) = -1.7073 + 2.1922 * Log (DBH) + 0.2331 * Log (Height)	132	0.977	0.018				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) = 4.2168 + 2.1922 * Log (GBH) + 0.2331 * Log (Height)	132	0.977	0.018				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem green biomass	Log (Green biomass) = $-2.2782 + 2.5213 * \text{Log (DBH)}$	132	0.955	0.043				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem green biomass	Log (Green biomass) = $-5.1644 + 2.5213 * \text{Log (GBH)}$	132	0.955	0.043				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem green biomass	Log (Green biomass) = -2.7344 + 2.2692 * Log (DBH) + 0.4406 * Log (Height)	132	0.958	0.039				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem green biomass	Log (Green biomass) = -5.3320 + 2.2692 * Log (GBH) + 0.4406 * Log (Height)	132	0.958	0.039				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) = -1.8493 + $2.3906 * Log (DBH)$	132	0.975	0.021				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) = 4.5859 + $2.3906 * Log (GBH)$	132	0.975	0.021				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) =-2.4276 + 2.0709 * Log (DBH) + 0.5586 * Log (Height)	132	0.981	0.015				19
Acacia	mangium	Mangiu m	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) = 4.7982 + 2.0709 * Log (GBH) + 0.5586 * Log (Height)	132	0.981	0.015				19

47	4	46
1.019	1.0066	
	0.4	
-58.298	-309.79	-427.62
	0.963 8	0.99
200	312	101
Log (Oven-dried biomass) = $-4.44814 + 2.0483 * Log (DBH)$	Log (Oven-dried biomass) = - 1.34008 + 0.83123 * Log (DBH) + 0.47969 * Log (Height)	Log (Oven-dried biomass) = - 0.53361 + 0.988759 * Log ((DBH)^(2) * (Height) * (Wood density))
Leaf	Leaf	Stem biomass
kg	kg	kg
Moraceea e	Lythracea e	Moraceea e
Chapalis h	Jarul	Chapalis h
chaplasha	speciosa	chaplasha
Artocarpus	Lagerstroemia	Artocarpus

IOP Conf. Series: Earth and Environmental Science **39** (2016) 012057 doi:10.1088/1755-1315/39/1/012057

	Species	Local name	Family	Unit e of Y	Vegetation Component	Equation	Sampl e size	R 2	RMS E	AIC	E	Ref
Tectona	grandis	Teak	Lamiaceae	kg	Stem biomass	Log (Oven-dried biomass) = $0.07908 + 0.89315 * \text{Log}$ ((DBH) $^{\prime}$ (2) * (Height) * (Wood density))	101	0.94		-76.89		46
Albizia	richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) = $-10.996396 + 2.247808 *$ Log (GBH)	511	86.0				13
Albizia	richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) = -10.831293 + 1.699319 * Log (GBH) + 0.813706 * Log (Height)	511	86.0				13
Mixed				m3	Total volume over bark	Log (Volume) = $-9.4209 + 1.7480 * \text{Log}$ (DBH) + $0.9310 * \text{Log}$ (Height)	954	0.98				7
Eucalyptus	brassiana	Eucalyptu S	Myrtaceae	m3	Total volume over bark	Log (Volume) = $-9.5783 + 1.6783 * \text{Log}$ (DBH) + 1.0483 * Log (Height)	164	98.0				7
Eucalyptus	tereticornis	Eucalyptu	Myrtaceae	m3	Total volume	Log (Volume) = $-9.4264 + 1.6850 * \text{Log}$ (DRH) + 0 9840 * Log (Height)	279	0.98				7
Eucalyptus	camaldulensi	Eucalyptu	Myrtaceae	m3	Total volume	Log (Volume) = -9.3520 + 1.8055 * Log (DBH) + 0.8500 * 1.00 (height)	511	86.0				7
Artocarpus	s chaplasha	s Chapalish	Moraceeae	m3	Total volume	Log (Volume) = $-8.179774 + 2.24074 *$	427	0.97	0.03		3.27	26
Artocarpus	chaplasha	Chapalish	Moraceeae	m3	over bark Total volume	Log (DBH) Log (Volume) = -8.9449526 + 1.82851 *	427	6 0.98	0.02		2.67	26
Gmelina	arborea	Gamar	Lamiaceae	m3	over bark Total volume	Log (DBH) + 0.735381 * Log (Height) Log (Volume) = -7.9022697 + 2.1472 *	486	4 0.93	80.0		3.68	28
Gmelina	arborea	Gamar	Lamiaceae	m3	over bark Total volume	Log (Volume) = $-8.4687076 + 1.63502 *$	486	3 0.96	0.04		2.65	28
Dipterocarpu	turbinatus	Telya	Dipterocarpacea	m3	over bark Total volume	Log (Volume) = -8.5116354 + 2.35556 *	436	6 0.97	0.034		1.82	27
s Dipterocarpu	turbinatus	garjan Telya	e Dipterocarpacea	m3	over bark Total volume	Log (DBH) Volume = 0.000390878 + 0.00064549776	436	9 0.69			1.47	27
×		garjan	ນ		over bark	"(DBH)"(2) + 0.00014/82// "(DBH)" (Height) + 0.00002407 * (DBH)"(2) * (Height)						
Falcataria	moluccana	Moluccna	Leguminosae	m3	Stem Volume	Log (John e) = -8.9942 + 1.4963 * Log (DDI) + 1.1461 * 1.00 (Height)	343	0.93			0.0141	5
Falcataria	moluccana	Moluccna	Leguminosae	m3	Stem Volume	(DBH) + 1.1401 · Log (Retgill) Log (Volume) = -10.707106 + 1.4963 * Log (GBH) + 1.1461 * Log (Height)	343	2 0.93 2				S
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume	Log (Volume) = -10.5628 + 2.1502 * Log (GBH)	583	0.95				12
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume	Log (Volume) = $-11.2768 + 1.8795 * \text{Log}$	583	0.97				12
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	(GBH) = -10.6451 + 2.1607 * Log (GBH)	583	0.95				12

12	12
0.97	.93
	88 0.93
583	388
Log (Volume) = -11.3509 + 1.8930 * Log (GBH) + 0.6848 * Log (Height)	Log (Volume) = -10.4946 + 2.1365 * Log (GBH)
Total volume under bark	Total volume over bark
m3	m3
Euphorbiaceae	Euphorbiaceae
Rubber	Rubber
brasiliensis	brasiliensis
Нечеа	Нечеа

Genus	Species	Local name	Family	Unit e of	Vegetation Component	Equation	Sampl e size	K 2	Ref
Hevea	brasiliensis	Rubber	Euphorbiacea	m3	Total volume over	Log (Volume) = -11.355075 + 1.90505 * Log (GBH) + 0.67956 *	388	96.0	12
Hevea	brasiliens is	Rubber	Euphorbiacea	m3	Total volume under	Log (Volume) = -10.58495 + 2.14861 * Log (GBH)	388	0.93	12
Нечеа	brasiliensis	Rubber	e Euphorbiacea	m3	bark Total volume under	Log (Volume) = -11.43443 + 1.92013 * Log (GBH) + 0.670876 *	388	96.0	12
Hevea	brasiliensis	Rubber	e Euphorbiacea	m3	bark Total volume over	Log (Height) Volume = 0.01097 - 0.00064 * (GBH) + 0.000055 * (GDB)^(2)	195	96.0	12
Hevea	brasiliensis	Rubber	e Euphorbiacea	m3	bark Total volume under	Volume = $0.016931 - 0.00085 * (GBH) + 0.000055 * (GBH)^{(2)}$	195	96.0	12
Acacia	auriculiformi	Akashmon	e Leguminosae	m3	bark Timber volume over	Volume = $0.027119694 + 0.00000240953 * (GBH)^2(2) * (Height)$	141	0.942	33
Acacia	s auriculiformi	ı Akashmon	Leguminosae	m3	bark Timber volume over	Volume = 0.02059085 + 0.00000257258 * (GBH)^(2) * (Height)	89	0.929	33
Acacia	s auriculiformi s	ı Akashmon i	Leguminosae	kg	bark Branch and stem less than 30 cm girth to 10 cm girth green	Green biomass = $17.17526 + 0.011026 * (GBH)^{(2)}$	89	0.857	33
Eucalyptus	camaldulensi	Eucalyptus	Myrtaceae	m3	biomass Timber volume over	Volume = $0.003083594 + 0.00000291538 * (GBH)^2(2) * (Height)$	1117	0.974	33
Eucalyptus	s camaldulensi	Eucalyptus	Myrtaceae	m3	bark Timber volume over	Volume = $0.005034521 + 0.00000269095 * (GBH)^2(2) * (Height)$	09	96.0	33
Eucalyptus	s camaldulensi	Eucalyptus	Myrtaceae	m3	bark Total volume over	Volume = 0.076339 - 0.00058066 * (Height) + 0.000016216 *	94	0.978	33
Eucalyptus	s camaldulensi	Eucalyptus	Myrtaceae	m3	bark Timber volume over	(GBH)'(2) + 0.0000032505 * (GBH)'(2) * (Height) Volume = $0.00444242 + 0.00000274348 * (GBH)'(2) * (Height)$	94	0.975	33
Acacia	s mangium	Mangium	Fabaceae	m3	bark Total volume over	Volume = 0.0379401 - 0.0027469 * (GBH) + 0.00099945 *	44	0.935	33
Acacia	mangium	Mangium	Fabaceae	m3	bark Total volume over	(GBH)^(2) Volume = 0.01368013 - 0.00018226 * (Height) + 0.000005503 *	44	0.971	33
Acacia	mangium	Mangium	Fabaceae	m3	bark Timber volume over	(GBH)'(2) + 0.00000352188 * (GBH)'(2) * (Height) Volume = $0.047423 - 0.00387 * (GBH) + 0.000109 * (GBH)^(2)$	37	806.0	33
Acacia	mangium	Mangium	Fabaceae	m3	bark Total volume over	Volume = -0.04085 + 0.00437656 * (Height) + 0.0000627199 *	159	0.965	33
Acacia	mangium	Mangium	Fabaceae	m3	Dark Timber volume over	$(\text{UBH})^*(2) + 0.0000248535 \cdot (\text{UBH})^*(2)^* \cdot (\text{Height})$ $\text{Volume} = 0.010632025 + 0.00000289124 * (GBH)^*(2) * (\text{Height})$	133	0.95	33
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume over	Volume = 0.012282107 + 0.00168945 * (Height) - 0.000019455 *	80	0.972	33

Dalbergia sissoo Fabaceae Dalbergia sissoo Fabaceae Swietenia macrophylla Mahogany Meliaceae Albizia spp Koroi Mimosaceae Eucalyptus camaldulensis Eucalyptu Myrtaceae Bucalyptus camaldulensis Eucalyptu Myrtaceae Rucalyptus camaldulensis Eucalyptu Myrtaceae Melia azadarach Bokain Meliaceae Mangifera indica Am Anacardiace Mangifera indica Am Anacardiace Lannea coromandelic Badi Anacardiace Syzygium cumini Kathal Moraceeae Artocarpus heterophyllus Kathal Moraceeae Albizia spp Koroi Mimosaceae Swietenia macrophylla Mahogany Meliaceae Azadirachta indica Neem Meliaceae	e of	e of	Equation	Sampl e size	2	. Ket
sja sissoo Sissoo ia macrophylla Mahogany ia macrophylla Mahogany spp Koroi spp Koroi spp Koroi spp Koroi spp Koroi saadarach Bokain azadarach Bokain aradarach Bokain aradarach Bokain sra indica Am coromandelic Badi a a m cumini Kalojam pus heterophyllus Kathal spp Koroi chta indica Neem	Y					%
gia sissoo ia macrophylla Mahogany ia macrophylla Mahogany spp Koroi spp Koroi stus Eucalyptu s S azadarach Bokain sra azadarach sra indica m coromandelic g Am pus heterophyllus kathal koroi spp Koroi spp Koroi spp Koroi ia macrophylla Mahogany ichta indica Neem	ceae m3	Total volume under bark	Log (Volume) = -12.14678171 + 2.49978991 * Log (GBH)	181	0.973	30
ia macrophylla Mahogany ia macrophylla Mahogany spp Koroi spp Koroi spp Koroi spp Koroi scamaldulensis Eucalyptu s azadarach Bokain azadarach Bokain azadarach Bokain aradarach Rahal sra indica Am cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal ia macrophylla Koroi spp Koroi spp Koroi spp Koroi spp Koroi chta indica Neem	ceae m3	Total volume under bark	Log (Volume)= -11.8405276 + 2.07000287 * Log (GBH) + 0.6152993 * Log (Height)	181	0.982	30
ia macrophylla Mahogany spp Koroi spp Koroi spp Koroi spp Koroi spp Koroi s azadarach Bokain azadarach Bokain aradarach Bokain aradarach Rahal bus indica Am cumini Kalojam pus heterophyllus Kathal spp Koroi chta indica Neem	aceae m3	Total volume under bark	Log (Volume) = -12.045383 + 2.460647 * Log (GBH)	120	0.979	30
spp Koroi spp Koroi stualdulensis Eucalyptu staadarach Bokain era azadarach Bokain era indica Am era indica Am era coromandelic Badi a cumini Kalojam pus heterophyllus Kathal pus heterophyllus Koroi spp Koroi spp Koroi ia macrophylla Mahogany ia macrophylla Mahogany ichta indica Neem	aceae m3	Total volume under bark	Log (Volume) = -11.716535 + 2.084968 * Log (GBH) + 0.534389 * Log (Height)	120	0.99	30
spp Koroi otus camaldulensis Eucalyptu s s azadarach Bokain era indica Am era indica Am era indica Am pus indica Am pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi ia macrophylla Mahogany ia macrophylla Mahogany ichta indica Neem otha indica Neem	osaceae m3	Total volume under bark	Log (Volume) = -12.093533 + 2.463398 * Log (GBH)	103	0.931	30
ottus camaldulensis Eucalyptu s camaldulensis Eucalyptu s azadarach Bokain azadarach Bokain era indica Am coromandelic Badi a coromandelic Badi a cumini Kalojam heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi spp Koroi spp Koroi spp cia macrophylla Mahogany ita macrophylla Mahogany ita indica Neem	osaceae m3	Total volume under bark	Log (Volume) = -11.961135 + 1.967741 * Log (GBH) + 0.0077234 * 1.00 (Tailork)	103	0.947	30
azadarach Bokain sazadarach Bokain era indica Am coromandelic Badi a cunini Kalojam pus heterophyllus Kathal pus heterophyllus Koroi spp Koroi	taceae m3	Total volume under bark	0.507/24 * Log (Height) Log (Volume) = -11.177929 + 2.297689 * Log (GBH)	151	0.94	30
era azadarach Bokain azadarach Bokain era indica Am coromandelic Badi a m cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi sia macrophylla Mahogany ita macrophylla Mahogany ita indica Neem	taceae m3	Total volume under bark	Log (Volume) = -11.523307 + 1.911628 * Log (GBH) + 0.730003 * 1.500018 * 1.0	151	0.955	30
era indica Am era indica Am era indica Am coromandelic Badi a cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal ina macrophylla Koroi spp Koroi spp Koroi spp Koroi spp Mahogany ita macrophylla Mahogany ita indica Neem	aceae m3	Total volume under bark	U. 250502 * Log (Hetgit) Log (Volume) = -11.041653 + 2.1705 * Log (GBH)	143	0.935	30
era indica Am era indica Am coromandelic Badi a m cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi spp Koroi spp Mahogany ita macrophylla Mahogany ita indica Neem	aceae m3	Total volume under bark	Log (Volume) = -10.962743 + 1.888957 * Log (GBH) + 0.505435 * 1.00 (Hainh+)	143	0.951	30
era indica Am coromandelic Badi a a cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi app Mahogany ita macrophylla Mahogany ita indica Neem	cardiacea m3	Total over bark volume	Log (Volume) = -11.27269 + 2.24506 * Log (GBH)	343	0.975	32
m cumini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi spp Mahogany ita macrophylla Mahogany ita macrophylla Naem	cardiacea m3	Total over bark volume	Log (Volume) = $-11.25377 + 1.96697 * Log (GBH) + 0.52237$	343	0.981	32
m cunini Kalojam pus heterophyllus Kathal pus heterophyllus Kathal spp Koroi spp Koroi spp Koroi ia macrophylla Mahogany ita macrophylla Mahogany ichta indica Neem	cardiacea m3	Total over bark volume	Log (Height) Cog (Volume) = -11.519102 +2.01724 * Log (GBH) + 0.56356 * Log (Height)	87	0.971	32
puss heterophyllus Kathal pus heterophyllus Kathal spp Koroi iia macrophylla Mahogany iia macrophylla Mahogany ichta indica Neem	taceae m3	Total over bark volume	Log (Volume) = -11.24854 + 2.24804 * Log (GBH)	66	996.0	32
pus heterophyllus Kathal spp Koroi spp Koroi iia macrophylla Mahogany ichta indica Neem ichta indica Neem	aceeae m3	Total over bark volume	Log (Volume) = -11.06320 + 2.18203 * Log (GBH)	119	0.97	32
spp Koroi ita macrophylla Mahogany ita macrophylla Mahogany ichta indica Neem ichta indica Neem	aceeae m3	Total over bark volume	Log (Volume) = -10.99533 + 1.80823 * Log (GBH) + 0.68951 * Log (Height)	119	0.983	32
spp Koroi iia macrophylla Mahogany iia macrophylla Mahogany ichta indica Neem	osaceae m3	Total over bark volume	Log (Volume) = -11.50692 + 2.31757 * Log (GBH)	140	896.0	32
macrophylla Mahogany macrophylla Mahogany indica Neem indica Neem	osaceae m3	Total over bark volume	Log (Volume) = -11.19651 + 1.85690 * Log (GBH) + 0.67878 * Log (Height)	140	0.979	32
macrophylla Mahogany indica Neem indica Neem	aceae m3	Total over bark volume	Log (Volume) = -11.46122 + 2.29592 * Log (GBH)	105	0.981	32
indica Neem indica	aceae m3	Total over bark volume	Log (Volume) = -11.27102 + 1.88064 * Log (GBH) + 0.64629 * Log (Height)	105	0.99	32
<i>indica</i> Neem	aceae m3	Total over bark volume	Log(Volume) = -11.33340 + 2.25814 * Log(GBH)	36	0.974	32
	aceae m3	Total over bark volume	Log (Volume) = -11.42823 + 1.89235 * Log (GBH) + 0.71493 * Log (Height)	36	0.985	32
Aphanamixi polystachya Pitraj Meliaceae	aceae m3	Total over bark volume	Log (Volume) = -11.25645 + 2.25821 * Log (GBH)	105	0.973	32

IOP Conf. Series: Earth and Environmental Science **39** (2016) 012057 doi:10.1088/1755-1315/39/1/012057

Aphanamixi s	polystachya	Pitraj	Meliaceae	m3	Total over bark volume	volume Log (Volume) = -11.25528 + 1.98544 * Log (GBH) + 0.47163 * I oo (Haiohh	5528 + 1.98	544 * Log (0	3BH) + 0	.47163	105	0.987	32
	saman	Rain tree	Mimosaceae	m3	Total over bark volume		7623 + 2.26	924 * Log (0	3BH)		153	0.981	32
	Species	Local	Family	Unit e of v	Vegetation Component	Equation	Sampl e size	R2	MSE	RMS E	AIC	F	Ref
	saman	Rain tree	Mimosaceae	m3	Total over bark volume	Log (Volume) = -11.31983 + 1.91118 * Log (GBH) + 0.63606 * Log (Height)	153	66.0					32
	chinensis	Kadam	Rubiaceae	m3	Total volume over bark	Log (Volume) = -10.4647 + 2.3911 * Log (DBH) + 0.6373 * Log (Height)	51	0.9906					10
Dipterocarpu s	turbinatus	Telya garjan	Dipterocarpacea e	m3	Total volume over bark	Log (Volume) = -9.5258 + 2.1229 * Log (DBH) + 0.5993 * Log (Height)	49	9996.0					10
Lagerstroemi a	speciosa	Jarul	Lythraceae	m3	Total volume over bark	Log (Volume) = -9.6744 + 2.1065 * Log (DBH) + 0.6675 * Log (Height)	74	0.9862					10
	xylocarpa	Lohakat	Leguminosae	m3	Total volume over bark	Log (Volume) = -9.4303 + 2.0988 * Log (DBH) + 0.6042 * Log (Height)	94	0.9872					10
	robusta	Sal	Dipterocarpacea e	m3	Total volume over bark	Log (Volume) = -10.0253 + 2.1163 * Log (DBH) + 0.7588 * Log (Height)	79	0.9878					10
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) = -8.66152 + 1.5856 * Log (DBH) + 0.77152 * Log (Height)	91	86.0					6
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) = -9.29715 + 1.70514 * Log (DBH) + 0.95088 * Log (Height)	236	86.0					6
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) = -9.23507 + 1.69673 * Log (DBH) + 0.92309 * Log (Height)	133	86.0					6
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) = -8.75215 + 1.75034 * Log (DBH) + 0.64233 * 1.09 (Height)	214	0.92					6
Aegiceras	corniculatu m	Khulshi	Myrsinaceae	kg	Leaf	Log 10 (Oven-dried biomass) = 0.76 * Log 10 ((DBH^(2))) - 1.39	29	0.93	0.02	0.12	-119.05	0.0	38

0.07 -154.68 0.0 38	0.07 -154.68 0.1 38	4	0.18 -96.57 0.6 38 8	4 -96.57 0.6 8 -66.27 1.8	-96.57 0.6 8 -66.27 1.8 -45.94 3.6	-96.57 0.6 8 -66.27 1.8 -45.94 3.6 -49.25 3.6
0.004	0.004	0.03))	60.0	0.09	0.09
0.99	66.0	0.99		66.0	66.0	86°0 86°0
29	29	29		29		
Log 10 (Oven-dried biomass) = $1.04 * \text{Log } 10 \text{ (IDBH}^{(2))} - 1.80$	1 T	Sqrt (Oven-dried biomass) =	0.48 * DBH - 0.13	0.48 * DBH - 0.13 Sqrt (Nitrogen) = 0.67 * DBH + 0.11	0.48 * DBH - 0.13 Sqrt (Nitrogen) = 0.67 * DBH + 0.11 Sqrt (Phosphorus) = 0.94 * DBH + 0.08	0.48 * DBH - 0.13 Sqrt (Nitrogen) = 0.67 * DBH + 0.11 Sqrt (Phosphorus) = 0.94 * DBH + 0.08 Sqrt (Potassium) = 1.06 * DBH - 0.18
Bark	Stem without bark	Total above-	ground	.		க் க் க்
kg	kg	kg		ad	ao ao	مه مه مه
Myrsinaceae	Myrsinaceae	Myrsinaceae		Myrsinaceae	Myrsinaceae Myrsinaceae	Myrsinaceae Myrsinaceae Myrsinaceae
Khulshi	Khulshi	Khulshi		Khulshi		
corniculatu m	corniculatu m	corniculatu	m	m corniculatu m	m corniculatu m corniculatu m	m corniculatu m corniculatu m corniculatu m
Aegiceras	Aegiceras	Aegiceras		Aegiceras	Aegiceras Aegiceras	Aegiceras Aegiceras Aegiceras

doi:10.1088/1755-1315/39/1/012057

References

- [1] F 2010 The Food and Agriculture Organization of the United Nations *Global Forests Resource*Assessment
- [2] Altrell D, et al. 2007 National forest and tree resources assessment: 2005 Bangladesh Forest Department, Ministry of Environment and Forests Bangladesh Space Research and Remote Sensing Organization, Ministry of Defense and Food and Agriculture Organization of the United Nations 5 116
- [3] Golley B F, et al. 1975 *Mineral Cycling in a Tropical Moist Forest Ecosystem* University of Georgia Press. Athens
- [4] Mahmood H 2014 Carbon pools and fluxes in Bruguiera parviflora dominated naturally growing mangrove forest of Peninsular Malaysia *Wet. Ecol. Magt.* **22**(1) 15
- [5] Ketterings Q M, et al. 2001 Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forest *For. Ecol. Magt.* **146** 199
- [6] Mahmood H, et al. 2004 Allometric relationships for estimating above and below-ground biomass of saplings and trees of Bruguiera parviflora (Wight and Arnold) *Malaysia App. Biol.* **33**(1) 37
- [7] Mahmood H, et al. 2012 Allometry, above-ground biomass and nutrient distribution in *Ceriops decandra* (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh *Wet. Ecol. Magt.* **20** 539
- [8] Komiyama A, et al. 2005 Common allometric equations for estimating the tree weight of mangroves *J. Trop. Ecol.* **21** 471
- [9] Komiyama A, et al. 2008 Allometry, biomass, and productivity of mangrove forest: a review *Aqua. Bot.* **89** 128
- [10] Morgan W B and Moss P A 1985 Biomass energy and urbanisation: commercial factors in the production and use of biomass fuels in tropical Africa *Biomass* 6 285
- [11] Bombelli A, et al. 2009 Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables: Biomass *Food and Agriculture Organization Global Terrestrial Observation System* 18
- [12] Henry M, et al. 2011 Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations *Silva Fennica* **45**(3B) 477
- [13] Birigazzi L, et al. 2015 Toward a transparent and consistent quality control procedure for tree biomass allometric equations *Xiv World Forestry Congress, Durban, South Africa* **7** 11
- [14] Sandeep S, et al. 2014 *Inventory of volume and biomass tree allometric equations for South Asia* Food & Agriculture Organization of the United Nations, Rome, Italy
- [15] Akhter M, et al. 2013 *Tree volume and biomass allometric equations of Bangladesh* FD and FAO, Dhaka, Bangladesh
- [16] Mahmood H, et al. 2015 Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh *Wet. Ecol. Magt.* **23** (4) 765
- [17] Rahman M M, et al. 2015 Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones *Wet. Ecol. Magt.* **23** (2) 269
- [18] Mahmood H, et al. 2016 Above-ground biomass, nutrients and carbon in Aegiceras corniculatum of the Sundarbans *Open J. For.* **6** (2) 72