Corso di Sistemi operativi. Esercizi sullo scheduling della CPU.

E1) Si consideri uno scheduler che riceve 4 job A,B,C,D con le seguenti caratteristiche:

$_{\mathrm{Job}}$	durata stimata	tempo di inizio	priorità
A	15	0	2
В	21	5	1
\mathbf{C}	5	9	3
D	8	10	1

Calcolare il tempo di completamento di ogni job a seconda che lo scheduling impiegato sia

- (1) con priorità a code multiple (tre code, gestite con RR)
- (2) round robin (in questo caso si ignorino le priorità)

Si consideri un quanto di tempo pari a 4.

Si disegni per entrambi i casi, lo schema di Gantt.

E3) Si consideri uno scheduler che riceve 4 job A,B,C,D con le seguenti caratteristiche:

Calcolare il turnaround medio e il throughput a seconda che lo scheduling impiegato sia

- (1) SJF
- (2) Round robin con quanto di tempo pari a 12ms

Si consideri (in entrambi i casi) un tempo di commutazione di contesto pari a 1ms.

E5) Considerare un insieme di cinque processi P_1 , P_2 , P_3 , P_4 , P_5 con le seguenti durate e tempi di arrivo in millisecondi:

Job	durata	tempo di inizio
P_1	14	0
P_2	16	30
P_3	40	6
P_4	26	46
P_5	28	22

Come procede lo scheduling Round Robin con un solo processore e quanto di tempo di 12ms? Calcolare il valore medio del tempo di attesa ed il valore medio del tempo di turnaround dei cinque processi.

E7) Considerare un insieme di cinque processi P_1 , P_2 , P_3 , P_4 , P_5 , P_6 con le seguenti durate e tempi di arrivo in millisecondi:

Job	durata	tempo di inizio
P_1	10	0
P_2	6	6
P_2 P_3	15	11
P_4	6	13
P_4 P_5 P_6	2	20
P_6	9	29

Come procede lo scheduling "Shortest Remaining Time First" con un solo processore? Calcolare il valore medio del tempo di attesa ed il valore medio del tempo di turnaround dei processi.

E11) Si consideri un sistema operativo in cui siano in esecuzione i processi P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , con i seguenti tempi di arrivo e durate:

processo	arrivo	durata
P_1	0	15
P_2	5	3
P_3	9	17
P_4	17	17
P_5	23	7
P_6	60	6

Descrivere come avviene lo scheduling dei sei processi con un algoritmo Round Robin con quanto di tempo pari a 6.

Calcolare il tempo di attesa medio ed il tempo di turnaround medio dei processi.

E14) Si consideri un sistema operativo in cui siano in esecuzione i processi P_1 , P_2 , P_3 , P_4 , P_5 con i seguenti tempi di arrivo e durate:

processo	arrivo	durata
P_1	0	24
P_2	6	6
P_3	6	12
P_4	12	6
P_5	15	9

Descrivere come avviene lo scheduling dei processi con gli algoritmi

- SJF
- \bullet SRTF
- Round Robin con quanto di tempo pari a 9

Calcolare il tempo medio di attesa. Indicare quanti context switch avvengono.

E17) Si considerino i seguenti CPU-burst:

Processo	arrivo	durata	priorità
$\overline{P_1}$	0	20	3
P_2	2	9	1
P_3	3	12	3
P_4	5	6	4
P_5	8	11	2

Determinare come verrebbero schedulati i processi utilizzando gli algoritmi: SJF, FIFO, Priorità. Valutare, nei vari casi, i tempi di attesa di ogni processo.

E24) Supponiamo di ricevere 5 job (P_1,P_2,P_3,P_4,P_5) tali che:

Processo arrivo durata P_1 0 11 P_2 2 21 5 P_3 11 P_4 15 P_5 10

Calcolare il tempo di completamento di ogni job ottenuto con uno scheduling Round-Robin, con quanto di tempo 4, nei due casi: (a) con durata dello switch di contesto trascurabile; (b) con durata dello switch di contesto pari a 1.

E28) Considerare l'insieme dei seguenti CPU-burst relativi ai processi P_0 , P_1 , P_2 , P_3 con le seguenti durate e tempi di arrivo in millisecondi:

o compr ar arrivo in immiscoonan			
	Job	durata	tempo di inizio
	P_0	17	0
	P_1	7	2
	P_2	11	3
	P_3	14	6

Come procede lo scheduling Round Robin con un solo processore e quanto di tempo di 4ms? Si assuma che lo switch di contesto abbia durata nulla. Calcolare il valore medio del tempo di attesa ed il valore medio del tempo di turnaround dei burst.

Ripetere l'esercizio nella assunzione che il quanto di tempo sia di 3ms ma che vi sia un tempo dovuto ad ogni switch di contesto pari a 1ms.

E33) Si considerino 5 CPU-burst appartenenti ai processi A, B, C, D, E, con le seguenti caratteristiche:

Descrivere come avviene lo scheduling nei casi l'algoritmo sia SJF e round-robin con quanto di tempo 6. In entrambi i casi si assuma un tempo di commutazione di contesto pari a 1.

Valutare il tempo di completamento e il tempo di attesa di ogni processo.

E35) Si considerino 4 CPU-burst appartenenti ai processi A, B, C, D, con le seguenti caratteristiche:

Descrivere come avviene lo scheduling nei casi l'algoritmo sia SJF e SRTF. In entrambi i casi si assuma un tempo di commutazione di contesto pari a 1. Valutare il tempo di completamento e il tempo di attesa di ogni processo.

E42) Si consideri un S.O. che impieghi lo scheduling SRTF per gestire tre processi P_1 , P_2 e P_3 . Ogni processo è costituito da una sequenza di CPU-burst alternati ad I/O-burst. Supponiamo che tutti gli I/O-burst siano relativi a dispositivi di I/O diversi. I tre processi presentano i seguenti burst:

 P_1 : CPU 10ms, I/O 10ms, CPU 30ms, I/O 8ms, CPU 8ms.

 P_2 : CPU 20ms, I/O 10ms, CPU 10ms.

 P_3 : CPU 50ms, I/O 10ms, CPU 10ms.

Tutti i processi iniziano al tempo 0.

Descrivere come evolve lo scheduling. Si tenga presente che lo scheduling SRTF considera per ogni processo la durata del prossimo CPU-burst. Ovvero: seleziona il processo P che ha il minor tempo di CPU fino alla prossima operazione di I/O (di P).

Valutare i tempi di risposta e di completamento dei tre processi.

E43) Supponiamo di ricevere 4 burst (dai processi P₁,P₂,P₃,P₄) tali che:

Processo arrivo durata

Calcolare il tempo di completamento di ogni processo ottenuto con uno scheduling:

- HRRF con durata dello switch di contesto pari a 1;
- SRTF con durata dello switch di contesto pari a 1;
- Round-Robin, con quanto di tempo 3, con durata dello switch di contesto nulla;
- Round-Robin, con quanto di tempo 3, con durata dello switch di contesto pari a 1;
- Round-Robin, con quanto di tempo 2, con durata dello switch di contesto nulla;
- Round-Robin, con quanto di tempo 2, con durata dello switch di contesto pari a 1;

E51) Si consideri un S.O. che impieghi lo scheduling SRTF per gestire tre processi P_1 , P_2 e P_3 . Ogni processo è costituito da una sequenza di CPU-burst alternati ad I/O-burst. Supponiamo che tutti gli I/O-burst siano relativi a dispositivi di I/O diversi. I tre processi presentano i seguenti burst:

```
P_1: CPU 15ms, I/O 15ms, CPU 24ms, P_2: CPU 12ms, I/O 30ms, CPU 9ms,
```

 P_3 : CPU 18ms, I/O 15ms, CPU 15ms, I/O 12ms, CPU 15ms

Tutti i processi iniziano al tempo 0.

Descrivere come evolve lo scheduling. Si tenga presente che lo scheduling SRTF considera per ogni processo la durata del prossimo CPU-burst. Ovvero: seleziona il processo P che ha il minor tempo di CPU fino alla prossima operazione di I/O (di P).

Valutare i tempi di risposta e di completamento dei tre processi.