

Memorandum № 1

Keplerian Orbit Elements — Cartesian State Vectors

Inputs

- a traditional set of Keplerian Orbit Elements
 - Semi-major axis a [m]
 - Eccentricity e [1]
 - Argument of periapsis ω [rad]
 - Longitude of ascending node (LAN) Ω [rad]
 - Inclination i [rad]
 - Mean anomaly $M_0 = M(t_0)$ [rad] at epoch t_0 [JD]
- **onsidered** epoch t [JD], if different from t_0
- standard gravitational parameter $\mu = GM$ of the central body, if different from Sun (G...Newtonian constant of gravitation $\left[\frac{m^3}{kg \cdot s^2}\right]$, M...central body mass [kg])

Outputs

- cartesian state vectors

 - position vector $\mathbf{r}(t)$ [m] or [AU] velocity vector $\dot{\mathbf{r}}(t)$ $\left[\frac{\mathrm{m}}{\mathrm{s}}\right]$ or $\left[\frac{\mathrm{AU}}{\mathrm{d}}\right]$

1 Algorithm

- 1. Calculate or set M(t):
 - a) If $t = t_0$: $M(t) = M_0$.
 - b) If $t \neq t_0$:
 - i. Determine the time difference Δt in seconds with

$$\Delta t = 86400(t - t_0). \tag{1}$$

ii. Calculate mean anomaly M(t) from

$$M(t) = M_0 + \Delta t \sqrt{\frac{\mu}{a^3}} \tag{2}$$

with $\mu = \mu_{\odot} = 1.327\,124\,400\,41\cdot10^{20}\,(\pm1\cdot10^{10})\,\frac{\text{m}^3}{\text{s}^2}$ for the Sun as central body. Normalize M(t) to be in $[0, 2\pi)$.

2. Solve Kepler's Equation $M(t) = E(t) - e \sin E$ for the eccentric anomaly E(t) with an appropriate method numerically, e.g. the Newton-Raphson method²:

$$f(E) = E - e\sin E - M \tag{3}$$

$$E_{j+1} = E_j - \frac{f(E_j)}{\frac{d}{dE_j}f(E_j)} = E_j - \frac{E_j - e\sin E_j - M}{1 - e\cos E_j}, \quad E_0 = M$$
 (4)

3. Obtain the true anomaly $\nu(t)$ from

$$\nu(t) = 2 \cdot \arctan \left(\sqrt{1+e} \sin \frac{E(t)}{2}, \sqrt{1-e} \cos \frac{E(t)}{2}\right),\tag{5}$$

Argument (t) omitted for the sake of simplicity.

Be aware that Orbit Elements change over time, so be sure to use one set of Orbit Elements given for a certain epoch t_0 only for a small time interval (compared to the rate of changes of the Orbit Elements) around t_0 .

where arctan2 is the two-argument arctangent function

$$\arctan 2(y,x) = \begin{cases} \arctan\left(\frac{y}{x}\right) & x > 0\\ \arctan\left(\frac{y}{x}\right) + \pi & y \ge 0, x < 0\\ \arctan\left(\frac{y}{x}\right) - \pi & y < 0, x < 0\\ +\frac{\pi}{2} & y > 0, x = 0\\ -\frac{\pi}{2} & y < 0, x = 0\\ \text{undefined} & y = 0, x = 0 \end{cases}$$

$$(6)$$

4. Use the eccentric anomaly E(t) to get the distance to the central body with

$$r_c(t) = a(1 - e\cos E(t)). \tag{7}$$

5. Obtain the position and velocity vector $\mathbf{o}(t)$ and $\dot{\mathbf{o}}(t)$, respectively, in the orbital frame (z-axis perpendicular to orbital plane, x-axis pointing to periapsis of the orbit):

$$\mathbf{o}(t) = \begin{pmatrix} o_x(t) \\ o_y(t) \\ o_z(t) \end{pmatrix} = r_c(t) \begin{pmatrix} \cos \nu(t) \\ \sin \nu(t) \\ 0 \end{pmatrix}, \quad \dot{\mathbf{o}}(t) = \begin{pmatrix} \dot{o}_x(t) \\ \dot{o}_y(t) \\ \dot{o}_z(t) \end{pmatrix} = \frac{\sqrt{\mu a}}{r_c(t)} \begin{pmatrix} -\sin E \\ \sqrt{1 - e^2} \cos E \\ 0 \end{pmatrix}$$
(8)

6. Transform $\mathbf{o}(t)$ and $\dot{\mathbf{o}}(t)$ to the inertial frame³ in bodycentric (in case of the Sun as central body: heliocentric) rectangular coordinates $\mathbf{r}(t)$ and $\dot{\mathbf{r}}(t)$ with the rotation matrices $\underline{R}_x(\varphi)$ and $\underline{R}_z(\varphi)$ using the transformation sequence

$$\mathbf{r}(t) = \underline{R}_{z}(-\Omega)\underline{R}_{x}(-i)\underline{R}_{z}(-\omega)\mathbf{o}(t)$$

$$\stackrel{o_{z}(t)=0}{=} \begin{pmatrix} o_{x}(t)(\cos\omega\cos\Omega - \sin\omega\cos i\sin\Omega) - o_{y}(t)(\sin\omega\cos\Omega + \cos\omega\cos i\sin\Omega) \\ o_{x}(t)(\cos\omega\sin\Omega + \sin\omega\cos i\cos\Omega) + o_{y}(t)(\cos\omega\cos i\cos\Omega - \sin\omega\sin\Omega) \\ o_{x}(t)(\sin\omega\sin i) + o_{y}(t)(\cos\omega\sin i) \end{pmatrix}$$
(9)

$$\dot{\mathbf{r}}(t) = \underline{R}_z(-\Omega)\underline{R}_x(-i)\underline{R}_z(-\omega)\dot{\mathbf{o}}(t)
\underline{\dot{o}_z(t)=0} \begin{pmatrix} \dot{o}_x(t)(\cos\omega\cos\Omega - \sin\omega\cos i\sin\Omega) - \dot{o}_y(t)(\sin\omega\cos\Omega + \cos\omega\cos i\sin\Omega) \\ \dot{o}_x(t)(\cos\omega\sin\Omega + \sin\omega\cos i\cos\Omega) + \dot{o}_y(t)(\cos\omega\cos i\cos\Omega - \sin\omega\sin\Omega) \\ \dot{o}_x(t)(\sin\omega\sin i) + \dot{o}_y(t)(\cos\omega\sin i) \end{pmatrix}.$$
(10)

7. In order to obtain the position and velocity vector $\mathbf{r}(t)$ and $\dot{\mathbf{r}}(t)$, respectively, in the units AU and AU/d, calculate

$$\mathbf{r}(t)_{[\text{AU}]} = \frac{\mathbf{r}(t)}{1.495\,978\,706\,91\cdot10^{11}}, \qquad \dot{\mathbf{r}}(t)_{[\text{AU/d}]} = \frac{\dot{\mathbf{r}}(t)}{86\,400\cdot1.495\,978\,706\,91\cdot10^{11}}.$$
(11)

2 Constants and Conversion Factors

Universal Constants

Symbol	Description	Value	Source
G	Newtonian constant of gravitation 4	$G = 6.67428(67) \cdot 10^{-11} \frac{\text{m}^3}{\text{kg} \cdot \text{s}^2}$	[2, pp. 686–689]

Conversion Factors

Conversion		Source
Astronomical Units \rightarrow Meters	$1 \text{AU} = 1.495 978 707 00 \cdot 10^{11} (\pm 3) \text{m}$	[4, p. 370 f.]
Julian Days \rightarrow Seconds	1 d = 86400 s	[5, p. 696]
$Degrees \rightarrow Radians$	$1^{\circ} = 1^{\circ} \cdot \frac{\pi}{180^{\circ}} \text{rad} \approx 0,017453293 \text{rad}$	

³ W.r.t. the central body and the meaning of i, ω and Ω to its reference frame.

 $^{^4 \}quad \text{The numbers in parentheses in } 6.67428(67) \cdot 10^{-11} \text{ are a common way to state the uncertainty; short notation for } (6.67428 \pm 0.0000067) \cdot 10^{-11}.$

3 References

Equations 2–4, 7 and 8: [3, pp. 22–27]; Equations 9 and 10: [6, p. 26]; Equation 5: [7]; Value for μ_{Θ} : [1].

- [1] IAU DIVISION I WORKING GROUP ON NUMERICAL STANDARDS FOR FUNDAMENTAL ASTRONOMY: Astronomical Constants: Current Best Estimates (CBEs). Online available at http://maia.usno.navy.mil/NSFA/NSFA_cbe.html. Retrieved 2013/05/01. [→ cited on page 3]
- [2] Mohr, Peter J.; Taylor, Barry N.; Newell, David B.: CODATA recommended values of the fundamental physical constants: 2006.

 In: Review of Modern Physics 80 (2): 633–730. American Physical Society, 2008. ISSN 1539-0756. DOI 10.1103/RevModPhys.80.633. Online available at http://physics.nist.gov/cuu/Constants/RevModPhys_80_000633acc.pdf. [→ cited on page 2]
- [3] MONTENBRUCK, Oliver; GILL, Eberhard: <u>Satellite Orbits: Models</u>, <u>Methods, Applications</u>. Corrected 3rd printing. Springer, Heidelberg, 2005. ISBN 9783540672807. [→ cited on page 3]
- [4] PITJEVA, E.; STANDISH, E.: Proposals for the masses of the three

- largest asteroids, the Moon-Earth mass ratio and the Astronomical Unit. In: Celestial Mechanics and Dynamical Astronomy 103: 365–372. Springer Netherlands, 2009. ISSN 0923-2958. DOI 10.1007/s10569-009-9203-8. [→ cited on page 2]
- [5] SEIDELMANN, P. Kenneth (ed.): Explanatory Supplement to the Astronomical Almanac. First paperback impression. University Science Books, Sausalito, California, USA, 2006. ISBN 978-1-891389-45-0. [→ cited on page 2]
- [6] STANDISH, E. Myles; WILLIAMS, James G.: *Orbital Ephemerides* of the Sun, Moon and Planets. Online available at ftp://ssd.jpl. nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf. Retrieved 2011/05/15. [→ cited on page 3]
- [7] WIKIPEDIA (ed.): <u>True anomaly</u>. Online available at http://en.wikipedia.org/w/index.php?title=True_anomaly& oldid=427251318. Retrieved 2011/05/15. [→ cited on page 3]