

ARIZONA
STATE
UNIVERSITY
LIBRARIES

Nucleotide

Entrez

PubMed

Nucleotide

Protein

Genome

Structure

PMC

Taxonomy

Book

Search **Nucleotide**

for

Go **Clear**

Limits

Preview/Index

History

Clipboard

Details

Display

default

Show:

20

Send to

File

Get Subsequence

Fe

Links

1: NM_005099. Homo sapiens a di...[gi:41327755]

LOCUS NM_005099 4342 bp mRNA linear PRI 26-JAN-2004
DEFINITION Homo sapiens a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 4 (ADAMTS4), mRNA.
ACCESSION NM_005099
VERSION NM_005099.3 GI:41327755
KEYWORDS.
SOURCE Homo sapiens (human)
ORGANISM Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 4342)
AUTHORS Clark,H.F., Gurney,A.L., Abaya,E., Baker,K., Baldwin,D., Brush,J., Chen,J., Chow,B., Chui,C., Crowley,C., Currell,B., Deuel,B., Dowd,P., Eaton,D., Foster,J., Grimaldi,C., Gu,Q., Hass,P.E., Heldens,S., Huang,A., Kim,H.S., Klimowski,L., Jin,Y., Johnson,S., Lee,J., Lewis,L., Liao,D., Mark,M., Robbie,E., Sanchez,C., Schoenfeld,J., Seshagiri,S., Simmons,L., Singh,J., Smith,V., Stinson,J., Vagts,A., Vandlen,R., Watanabe,C., Wieand,D., Woods,K., Xie,M.H., Yansura,D., Yi,S., Yu,G., Yuan,J., Zhang,M., Zhang,Z., Goddard,A., Wood,W.I., Godowski,P. and Gray,A.
TITLE The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment
JOURNAL Genome Res. 13 (10), 2265-2270 (2003)
PUBMED 12975309
REFERENCE 2 (bases 1 to 4342)
AUTHORS Wang,W.M., Lee,S., Steiglitz,B.M., Scott,I.C., Lebaras,C.C., Allen,M.L., Brenner,M.C., Takahara,K. and Greenspan,D.S.
TITLE Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-proteinase
JOURNAL J. Biol. Chem. 278 (21), 19549-19557 (2003)
PUBMED 12646579
REMARK GeneRIF: ADAMTS-2 metalloproteinase is shown to cleave procollagen III N-proptides as effectively as those of procollagens I and II
REFERENCE 3 (bases 1 to 4342)
AUTHORS Flannery,C.R., Zeng,W., Corcoran,C., Collins-Racie,L.A., Chockalingam,P.S., Hebert,T., Mackie,S.A., McDonagh,T., Crawford,T.K., Tomkinson,K.N., LaVallie,E.R. and Morris,E.A.
TITLE Autocatalytic cleavage of ADAMTS-4 (Aggrecanase-1) reveals multiple glycosaminoglycan-binding sites
JOURNAL J. Biol. Chem. 277 (45), 42775-42780 (2002)
PUBMED 12202483
REMARK GeneRIF: Autocatalytic cleavage reveals multiple glycosaminoglycan-binding sites
REFERENCE 4 (bases 1 to 4342)
AUTHORS Malfait,A.M., Liu,R.Q., Ijiri,K., Komiya,S. and Tortorella,M.D.
TITLE Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage

JOURNAL J. Biol. Chem. 277 (25), 22201-22208 (2002)
PUBMED 11956193
REMARK GeneRIF: Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage.
REFERENCE 5 (bases 1 to 4342)
AUTHORS Westling,J., Fosang,A.J., Last,K., Thompson,V.P., Tomkinson,K.N., Hebert,T., McDonagh,T., Collins-Racie,L.A., LaVallie,E.R., Morris,E.A. and Sandy,J.D.
TITLE ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain
JOURNAL J. Biol. Chem. 277 (18), 16059-16066 (2002)
PUBMED 11854269
REMARK GeneRIF: has a specific cleavage site at the matrix metalloproteinase site in its interglobular domain
REFERENCE 6 (bases 1 to 4342)
AUTHORS Gao,G., Westling,J., Thompson,V.P., Howell,T.D., Gottschall,P.E. and Sandy,J.D.
TITLE Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation
JOURNAL J. Biol. Chem. 277 (13), 11034-11041 (2002)
PUBMED 11796708
REMARK GeneRIF: activation of proteolytic activity by C-terminal truncation
REFERENCE 7 (bases 1 to 4342)
AUTHORS Yamanishi,Y., Boyle,D.L., Clark,M., Maki,R.A., Tortorella,M.D., Arner,E.C. and Firestein,G.S.
TITLE Expression and regulation of aggrecanase in arthritis: the role of TGF-beta
JOURNAL J. Immunol. 168 (3), 1405-1412 (2002)
PUBMED 11801682
REMARK GeneRIF: Aggrecanase-1 is expressed by fibroblast-like synoviocytes from rheumatoid arthritis and osteoarthritis patients and is induced by cytokines, especially TGF-beta.
REFERENCE 8 (bases 1 to 4342)
AUTHORS Hirohata,S.
TITLE ADAMTS family--new extracellular matrix degrading enzyme
JOURNAL Seikagaku 73 (11), 1333-1337 (2001)
PUBMED 11831030
REMARK GeneRIF: extracellular matrix degrading enzyme
REFERENCE 9 (bases 1 to 4342)
AUTHORS Nakamura,H., Fujii,Y., Inoki,I., Sugimoto,K., Tanzawa,K., Matsuki,H., Miura,R., Yamaguchi,Y. and Okada,Y.
TITLE Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites
JOURNAL J. Biol. Chem. 275 (49), 38885-38890 (2000)
PUBMED 10986281
REFERENCE 10 (bases 1 to 4342)
AUTHORS Tortorella,M., Pratta,M., Liu,R.Q., Abbaszade,I., Ross,H., Burn,T. and Arner,E.
TITLE The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage
JOURNAL J. Biol. Chem. 275 (33), 25791-25797 (2000)
PUBMED 10827174
REFERENCE 11 (bases 1 to 4342)
AUTHORS Matthews,R.T., Gary,S.C., Zerillo,C., Pratta,M., Solomon,K., Arner,E.C. and Hockfield,S.
TITLE Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member

JOURNAL J. Biol. Chem. 275 (30), 22695-22703 (2000)
PUBMED [10801887](#)
REFERENCE 12 (bases 1 to 4342)
AUTHORS Tortorella,M.D., Pratta,M., Liu,R.Q., Austin,J., Ross,O.H.,
Abbaszade,I., Burn,T. and Arner,E.
TITLE Sites of aggrecan cleavage by recombinant human aggrecanase-1
(ADAMTS-4)
JOURNAL J. Biol. Chem. 275 (24), 18566-18573 (2000)
PUBMED [10751421](#)
REFERENCE 13 (bases 1 to 4342)
AUTHORS Hurskainen,T.L., Hirohata,S., Seldin,M.F. and Apte,S.S.
TITLE ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of
zinc metalloproteases. General features and genomic distribution of
the ADAM-TS family
JOURNAL J. Biol. Chem. 274 (36), 25555-25563 (1999)
PUBMED [10464288](#)
REFERENCE 14 (bases 1 to 4342)
AUTHORS Abbaszade,I., Liu,R.Q., Yang,F., Rosenfeld,S.A., Ross,O.H.,
Link,J.R., Ellis,D.M., Tortorella,M.D., Pratta,M.A., Hollis,J.M.,
Wynn,R., Duke,J.L., George,H.J., Hillman,M.C. Jr., Murphy,K.,
Wiswall,B.H., Copeland,R.A., Decicco,C.P., Bruckner,R., Nagase,H.,
Itoh,Y., Newton,R.C., Magolda,R.L., Trzaskos,J.M., Burn,T.C. et al.
TITLE Cloning and characterization of ADAMTS11, an aggrecanase from the
ADAMTS family
JOURNAL J. Biol. Chem. 274 (33), 23443-23450 (1999)
PUBMED [10438522](#)
REFERENCE 15 (bases 1 to 4342)
AUTHORS Tortorella,M.D., Burn,T.C., Pratta,M.A., Abbaszade,I., Hollis,J.M.,
Liu,R., Rosenfeld,S.A., Copeland,R.A., Decicco,C.P., Wynn,R.,
Rockwell,A., Yang,F., Duke,J.L., Solomon,K., George,H.,
Bruckner,R., Nagase,H., Itoh,Y., Ellis,D.M., Ross,H., Wiswall,B.H.,
Murphy,K., Hillman,M.C. Jr., Hollis,G.F., Arner,E.C. et al.
TITLE Purification and cloning of aggrecanase-1: a member of the ADAMTS
family of proteins
JOURNAL Science 284 (5420), 1664-1666 (1999)
PUBMED [10356395](#)
REFERENCE 16 (bases 1 to 4342)
AUTHORS Tang,B.L. and Hong,W.
TITLE ADAMTS: a novel family of proteases with an ADAM protease domain
and thrombospondin 1 repeats
JOURNAL FEBS Lett. 445 (2-3), 223-225 (1999)
PUBMED [10094461](#)
COMMENT REVIEWED REFSEQ: This record has been curated by NCBI staff. The
reference sequence was derived from AL603427.1, AB014588.1,
AF148213.1 and AY358886.1.
On Jan 26, 2004 this sequence version replaced gi:[11497610](#).

Summary: This gene encodes a disintegrin and metalloproteinase with
thrombospondin motifs-4, which is a member of the ADAMTS protein
family. Members of the family share several distinct protein
modules, including a propeptide region, a metalloproteinase domain,
a disintegrin-like domain, and a thrombospondin type 1 (TS) motif.
Individual members of this family differ in the number of
C-terminal TS motifs, and some have unique C-terminal domains. The
enzyme encoded by this gene lacks a C-terminal TS motif. It is
responsible for the degradation of aggrecan, a major proteoglycan
of cartilage, and brevican, a brain-specific extracellular matrix
protein. The cleavage of aggrecan and brevican suggests key roles
of this enzyme in arthritic disease and in the central nervous
system, potentially, in the progression of glioma.

COMPLETENESS: complete on the 3' end.

FEATURES Location/Qualifiers

source 1..4342
/organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
/chromosome="1"
/map="1q21-q23"

gene 1..4342
/gene="ADAMTS4"
/note="synonyms: ADMP-1, ADAMTS-2, ADAMTS-4, KIAA0688"
/db_xref="GeneID:9507"
/db_xref="LocusID:9507"
/db_xref="MIM:603876"

CDS 428..2941
/gene="ADAMTS4"
/note="a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 4; aggrecan 1; aggrecanase-1;
go_component: extracellular matrix [goid 0005578] [evidence IEA];
go_function: metallopeptidase activity [goid 0008237] [evidence E] [pmid 10356395];
go_function: peptidase activity [goid 0008233] [evidence E];
go_function: zinc ion binding [goid 0008270] [evidence IEA];
go_function: metalloendopeptidase activity [goid 0004222] [evidence IEA];
go_process: proteolysis and peptidolysis [goid 0006508] [evidence TAS] [pmid 10751421];
go_process: skeletal development [goid 0001501] [evidence TAS] [pmid 10356395]"
/codon_start=1
/product="a disintegrin and metalloproteinase with thrombospondin motifs-4 precursor"
/protein_id="NP_005090.2"
/db_xref="GI:41327756"
/db_xref="GeneID:9507"
/db_xref="LocusID:9507"
/db_xref="MIM:603876"
/translation="MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLAS
LLPSARLASPLPREEEIVFPEKLNGSVLPGSGAPARLLCRLQAFGETLLELEQDSGV
QVEGLTVQYLGQAPELLGGAEPGTYLTGTINGDPESVASLHWWDGGALLGVLQYRGAEL
HLQPLEGGTPNSAGGPGAHILRRKSPASGQGPMCNVKAPLGSPPSPRRAKRFAASLSR
FVETLVVADDKMAAFHGAGLKRYLTTVMAAAAKAFKHPAIRNPVSLVTRVLVILGSGE
EGPQVGPSAAQTLRSFCAWQRLNTPEDSDPDHFDTAILFTRQDLCGVSTCDTLMAD
VGTVCDCPARSCAIVEDDGLQSAFTAHELGHVFNMLHDNSKPCISLNGPLSTSRRVMA
PVMAHVDPPEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHLPTFPKGDYDADRCQ
LTFGPDSRHCPCQLPPPACAALWCSGHLNGHAMCQTKHS PWADGTPCGPAQACMGGRCLH
MDQLQDFNIPQAGGWGPWGWPWGDCSRTC CGGGVQFSSRDCTR PVPRNGGYCEGRRTRF
RSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMWVPRYTGVAPQDQCKLTCQ
ARALGYYYVLEPRVDGTPCSPDSSSVCVQGRCIAGCDRIIGSKKKFDKCMVCGGDG
SGCSKQSGSFRKFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNG
EYTLMPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRY
SFFVPRPTPSTPRPTPQDWLHRRAQILEILRRRPWAGRK"

sig_peptide 428..580
/gene="ADAMTS4"

mat_peptide 581..2938
/gene="ADAMTS4"

/product="a disintegrin and metalloproteinase with
thrombospondin motifs-4"
misc feature
665..2833
/gene="ADAMTS4"
/note="KOG3538; Region: Disintegrin metalloproteinases
with thrombospondin repeats [Posttranslational
modification, protein turnover, chaperones]"
/db_xref="CDD:21321"
misc feature
1079..1711
/gene="ADAMTS4"
/note="Reprolysin; Region: Reprolysin (M12B) family zinc
metalloprotease"
/db_xref="CDD:23198"
misc feature
1739..1954
/gene="ADAMTS4"
/note="ACR; Region: ADAM Cysteine-Rich Domain"
/db_xref="CDD:24307"
misc feature
2018..2152
/gene="ADAMTS4"
/note="TSP1; Region: Thrombospondin type 1 repeats"
/db_xref="CDD:14922"
misc feature
2486..2833
/gene="ADAMTS4"
/note="ADAM_spacer1; Region: ADAM-TS Spacer 1"
/db_xref="CDD:26460"
variation
complement(3229)
/allele="G"
/allele="C"
/db_xref="dbSNP:4656992"
polyA signal
4308..4313
/gene="ADAMTS4"
polyA site
4331
/gene="ADAMTS4"

ORIGIN

1 gggagaaccc acagggagac ccacagacac atatgcacga gagagacaga ggaggaaaga
61 gacagagaca aaggcacacg ggaagaaggc agagacaggg cagggcacaga agcggcccaag
121 acagagtccct acagagggag aggccagaga agctgcagaa gacacaggca gggagagaca
181 aagatccagg aaaggagggc tcaggaggag agtttggaga agccagaccc ctgggcacct
241 ctcccaagcc caaggactaa gttttctcca tttcccttaa cggtcctcag cccttctgaa
301 aactttgcct ctgaccttgg caggagtcca agcccccagg ctacagagag gagcttcca
361 aagcttagggt gtggaggact tggtgcccta gacggcctca gtccctccca gctgcgtac
421 cagtgccatg tcccagacag gtcgcacatcc cgggaggggc ttggcagggc gctggctgt
481 gggagcccaa ccctgcctcc tgctccccat tggccgcctc tccctggctgg tggctgtct
541 tctgtactg ctggcccttc tccctgcctc agccccggctg gccagcccccc tccccggga
601 ggaggagatc gtgtttccag agaagctcaa cggcagcgatc tgcctggct cgggcgcggcc
661 tgccaggctg ttgtgcccgt tgcaggcctt tggggagacg ctgtacttag agctggagca
721 ggactccgggt gtgcaggctg aggggctgac agtgcagtagt ctggggccagg cgcctgagct
781 gctgggtgga gcagagcctg gcacacctt gactggcacc atcaatggag atccggagtc
841 ggtggcatct ctgcacttggg atgggggagc cctgttaggc gtgttacaat atcggggggc
901 tgaactccac ctccagcccc tggaggggagg cacccctaac tctgtctggg gacctggggc
961 tcacatccata cgccggaaaga gtcctgcctc cggtaaggt cccatgtgca acgtcaaggc
1021 tcctcttggaa agccccagcc ccagaccccg aagagccaag cgctttgcctt cactgagtag
1081 atttgtggag acactgggtt tggcagatga caagatggcc gcattccacg gtgcggggct
1141 aaagcgctac ctgctaacag ttagtggcagc agcagccaag gccttcaagc acccaagcat
1201 ccgcaatccct gtcagcttgg tggtgactcg gctagtgtatc ctggggctcag gcgaggagg
1261 gcccccaagtg gggcccagtg ctgcccagac cctgcgcagc ttctgtgcct ggcagcgggg
1321 cctcaacacc cctgaggact cggaccctga ccactttgac acagccatcc tggtttacccg
1381 tcaggacactg tggggagtct ccacttgcga cacgtgggt atggctgtatc tgggcaccgt
1441 ctgtgaccccg gctcgagct gtgcattgt ggaggatgtatc gggctccagt cagccttcac
1501 tgctgctcat gaactgggtc atgtcttcaa catgctccat gacaactcca agccatgtatc

1561 cagtttgaat gggcctttga gcacacctcg ccatgtcatg gcccctgtga tggctcatgt
1621 ggatcctgag gagcccttgtt cccccctgcag tgccccttc atcactgact tcctggacaa
1681 tggctatggg cactgtctct tagacaaaacc agaggctcca ttgcattgc ctgtgacttt
1741 ccctggcaag gactatgtat ctgaccgcca gtgccagctg accttcggc cggactcag
1801 ccattgtcca cagctgccgc cgccctgtgc tgccccttg tgctctggc acctaataatgg
1861 ccatgccatg tgccagacca aacactcgcc ctggggccat ggcacacccct gcggggccgc
1921 acaggcctgc atgggtggc gctgcctcca catggaccag ctccaggact tcaatattcc
1981 acaggcttgtt ggctggggc cttggggacc atgggtgtac tgctctcgga cctgtgggg
2041 tggtgtccag ttctccccc gagactgcac gaggccctgtc ccccgaaatg gtggcaagta
2101 ctgtgagggc cgccgtaccc gttccgctc ctgcaacact gaggactgcc caactggctc
2161 agccctgacc ttccgcgagg agcagtgtgc tgcctacaac caccgcaccc acctcttcaa
2221 gagctccca gggcccatgg actgggttcc tcgcatacaca ggcgtggccc cccaggacca
2281 gtgcaaactc acctggcagg cccgggcaact gggctactac tatgtgttgg agccacgggt
2341 ggttagatggg accccctgtt cccggacag ctccctggc tgggtccagg gccgatgcat
2401 ccatgctggc tgtgatcgca tcattggctc caagaagaag tttgacaagt gcatgggtgt
2461 cggaggggac ggttctgggt gcagcaagca gtcaggctcc ttcagggaaat tcaggtacgg
2521 atacaacaat gtggtcacta tccccgcggg gcccaaccac attcttgcctt ggcagcagg
2581 aaaccctggc caccggagca totacttggc cctgaagctg ccagatggct cctatggcc
2641 caatggtgaa tacacgctga tgcctccccc cacagatgtg gtactgcctg gggcagtcag
2701 ctgcgcctac agcggggcca ctgcagccctc agagacactg tcaggccatg gcccactggc
2761 ccagcctttg acactgcaag tcctagttggc tggcaacccc caggacacac gcctccgata
2821 cagcttcttc gtgccccggc cgacccttc aacgcacccgc cccactccccc aggactggct
2881 gcaccgaaga gcacagattc tggagatcct tcggccggcgc ccctggggcgg gcaggaaata
2941 acctcaatat cccggctgc ctttctggc accggggccct cggacttagc tgggagaaag
3001 agagagctt tttttgtgc tcatgctaag actcaatggg gaggggctgt gggcgtgaga
3061 cctgccccctc ctctctgccc taatgcgcag gctggccctg ccctgggttc ctgcctggg
3121 aggcaatgtat gggtttagtgg atggaaagggg ctgcacagaca gccctccatc taaactgccc
3181 cctctggccct gcgggtcaca ggagggaggg ggaaggcagg gagggcctgg gcccagtt
3241 tattttatata gtattttattt actttttattt agcaccagg aaggggacaa ggacttagg
3301 cctggggaaac ctgacccttg accccctata gccctcaccc tggggcttagg aaatccagg
3361 tgggtgtat aggtataatg ggtgtgtta tgcgtgtgt tggtgtgaa aatgtgtgt
3421 tgcttatgtt tgaggtacaa cctgttctgc tttcccttc ctgaattttt tttttgg
3481 aaagaaaatg caagggtagg gtggcccttc agggagtgag ggattatott tttttttt
3541 tctttctttc tttttttt ttttttggaga cagaatctcg ctctgtcgcc caggctggag
3601 tgcaatggca caatctcgcc tcactgcattc ctccgcctcc cgggttcaag tgattctcat
3661 gcctcagcct cctgagtagc tgggattaca ggctcctgcc accacgccc gctaatttt
3721 gttttgtttt gtttggagac agagtctcg tattgtcacc agggctggaa tgatttcagc
3781 tcactgcaac ctgcggcacc tgggttccag caatttcctt gcctcagcct cccgagtagc
3841 ttagattata ggcacccattt accacgcccc gctaattttt gtatttttag tagagacgg
3901 gtttaccat gttggccagg ctggtctcgactcctgacc ttaggtgatc cactcgcc
3961 catctcccaa agtgcgtggaa ttacaggcgat gagccaccgt gcctggccac gcccaactaa
4021 tttttgtatt ttttagtagat acagggtttc accatgttgg ccaggctgtcttgaactcc
4081 tgacctcagg taatcgaccc gcctcgccct cccaaatgtc tgggattaca ggtgtgagcc
4141 accacgcccc gtacatattt tttaaatttta attctactat ttatgtgatc tttttgg
4201 cagacagatg tggttgcattt ctaactccat gtctctgagc attagatttc tcatttgcca
4261 ataataatac ctccctttaga agtttggat gaggattaaa taatgtaaat aaagaactag
4321 cataacactc aaaaaaaaaaa aa

//

[Disclaimer](#) | [Write to the Help Desk](#)
[NCBI](#) | [NLM](#) | [NIH](#)

Feb 24 2004 16:01:25