More on Sequential Logic Intro to Finite State Machines

CS 64: Computer Organization and Design Logic
Lecture #16
Fall 2019

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

THIS IS WHAT LEARNING LOGIC GATES FEELS LIKE

Administrative

Lab 8 due Wednesday!

Lecture Outline

- Exercises with Sequential Logic
- Introduction to Finite State Machines
 - Types
 - Examples
 - Exercises

FINAL IS COMING!

- Tuesday, DEC. 10th in this classroom
- Starts at 12:00 PM **SHARP**
- Please start arriving 10 minutes early
- Please bring your UCSB IDs with you

Closed book: no calculators, no phones, no computers

STUDY GUIDE NOW ONLINE!

What's on the Final

• Everything

Exercise 1

Given this circuit diagram:

- a) Write a logic function that describes the diagram in a "sum-of-product" format.
- b) Construct the truth table for this circuit
- c) Further optimize the logic function based a K-Map

Exercise 2

- Let's design a 3-bit counter using D-FFs and logic gates.
- What's needed:
 - This counts $000 \rightarrow 001 \rightarrow 010 \rightarrow ... \rightarrow 111 \rightarrow 000$
 - i.e. from 0 to 7 and then loops again to 0, etc...
- Draw the T.T. based on this description
 - How many inputs? How many outputs?
 - Figure out what the "next states" look like based on "current states"
- Draw K-Maps and find optimal output functions

If a combinational logic circuit is an implementation of a *Boolean function*,

then a sequential logic circuit can be considered an implementation of a *finite state machine*.

Finite State Machines (FSM)

- A State = An output or collection of outputs of a digital "machine"
- A Machine = A computational entity that predictably works based on one or more input conditions and yields a logical output
- <u>A Finite State Machine</u>: An **abstract machine** that can be in **exactly one of a finite number of states at any given time**

Finite State Machines (FSM)

 The FSM can change from one state to another in response to some external inputs

• The change from one state to another is called a *transition*.

- An FSM is defined by a list of its states, its initial state, and the conditions for each transition.
- In CPUs, FSMs are widely used in the control unit

Example of a Simple FSM: The Turnstile

State Transition Table

Current State	Input	Next State	Output
Locked	Coin	Unlocked	Unlocks the turnstile so that the customer can push through.

12/3/2019 Matni, CS64, Fa19 Source: Wikipedia ¹³

Example of a Simple FSM: The Turnstile

State Transition Table

Current State	Input	Next State	Output
Locked	Coin	Unlocked	Unlocks the turnstile so that the customer can push through.
Locked	Push	Locked	Nothing – you're locked! ☺
Unlocked	Coin	Unlocked	Nothing – you just wasted a coin! ☺
Unlocked	Push	Locked	When the customer has pushed through, locks the turnstile.

12/3/2019 Matni, CS64, Fa19 Source: Wikipedia ¹⁴

General Form of FSMs

Example

i.e. On the next rising edge of the clock, the output of the D-FF (Q*) will become the previous value of Q (Q_O) AND the value of input A

FSM Types

There are 2 types/models of FSMs:

- Moore machine
 - Output is function of present state only
- Mealy machine
 - Output is function of present state and present input

Moore Machine

Output is a registered function of present state only

Example of a Moore Machine (with 1 state)

Output is registered function of present state only

On the next rising edge of the clock, the output of the entire circuit (Z) will become

(the previous value of Q (Q_0) **AND** the value of input A) **NOR** B

NOTE: CLK is <u>NOWHERE</u> IN THE EQUATION!!!

Mealy Machine

Output is a registered function of present state and present input

Example of a Moore Finite State Machine

WASHER_DRYER

- Let's "build" a sequential logic FSM that acts as a controller to a *simplistic* washer/dryer machine
- This machine takes in various inputs in its operation (we'll only focus on the following sensor-based ones):

Coin is in (vs it isn't in)
Soap is present (vs it's used up)
Clothes are still wet (vs clothes are dry)

• This machine also issues 1 output while running:

"Done" indicator

Machine Design

 We want this machine to have 4 distinct states that we go from one to the next in this sequence:

1. Initial State

Where we are when we are waiting to start the wash

2. Wash

Where we wash with soap and water

3. Dry

Where we dry the clothes

4. Done

State Diagram for Washer-Dryer Machine

Combining the Inputs

Coin is in (vs it isn't in)

Soap is no longer detected (vs it's still there)

Clothes are now dry (vs clothes are still wet)

- Let's create a variable called **GTNS** (i.e. Go To Next State)
- GTNS is 1 if **any** of the following is true:
 - Coin is in
 - Soap is no longer detected
 - Clothes are now dry
 - I assume that these 3 inputs to be mutually exclusive

24

What's Going to Happen? 1/2

Coin is in (vs it isn't in)
Soap is no longer detected (vs it's still there)
Clothes are now dry (vs clothes are still wet)

- We start at an "Initial" state whenever we start up the machine
 - Let's also assume this stage is when you'd put in the soap and clothes
 - Once input "Coin is in" is 1, GTNS is now 1
 - This event triggers leaving the current state to go to the next state
- This is followed by the next state, "Wash"
 - "Coin inserted" is now 0 at this point (so GTNS goes back to 0)
 - While soap is still present, GTNS goes back to 0
 - When the input "Soap is no longer present" goes to 1, GTNS goes to 1
 - This event triggers leaving the current state to go to the next state

What's Going to Happen? 2/2

Coin is in (vs it isn't in)
Soap is no longer detected (vs it's still there)
Clothes are now dry (vs clothes are still wet)

- This is followed by the next state, "Dry"
 - This new state sets an output that triggers a timer
 - The input "Soap is no longer present" goes to 0, so GTNS is 0 also
 - While the input "Clothes are now dry" is 0, GTNS remains at 0 too
 - When the input "Clothes are now dry" is 1, GTNS changes to 1
 - This event triggers leaving the current state to go to the next state
- This is followed by the next and last state, "Done"
 - When you're here, you go back to the "initial" state
 - No inputs to consider: you do move this regardless

State Diagram for Washer-Dryer Machine

Unconditional Transitions

- Sometimes the transition is unconditional
 - Does not depend on any input –
 you go from State X to State Y regardless...

We then diagram this as a "1" (for "always does this")

12/3/2019

Representing The States

 How many bits do I need to represent all the states in this Washer-Dryer Machine?

- There are 4 unique states (including "init")
 - So, 2 bits
- If my state machine will be built using a memory circuit (most likely, a D-FF), how many of these should I have?
 - 2 bits = 2 D-FFs

• Unfortunately, there's no time to cover this method...

State	S1	S0
Initial	0	0
Wash	0	1
Rinse	1	0
Dry	1	1

Example of a Moore FSM 2

DETECT_1101

- Let's build a sequential logic FSM that always detects a specific serial sequence of bits: 1101
- We'll start at an "Initial" state (S0)
- We'll first look for a 1. We'll call that "State 1" (S1)
 - Don't go to S1 if all we find is a **0**!
- We'll then keep looking for another 1. We'll call that "State 11" (S2)

Example of a Moore Machine 2

DETECT_1101

- Then... a **0**. We'll call that "State 110" (S3)
- Then another 1.
 We'll call that "State 1101" (S4) this will also output a FOUND signal
- We will always be detecting "1101" (it doesn't end)
 So, as SOON as S4 is done, we keep looking for 1s or 0s
- Example: if the input stream is **11110111010101000011111011011** we detect "1101" at $\hat{1}$ $\hat{1}$ $\hat{1}$

State Diagram 2

Representing The States

 How many bits do I need to represent all the states in this "Detect 1101" Machine?

- There are 5 unique states (including "init")
 - So, 3 bits
- How many D-FFs should I have to build this machine?
 - 3 bits = 3 D-FFs

State	B2	B1	В0
Initial	0	0	0
Found "1"	0	0	1
Found "11"	0	1	0
Found "110"	0	1	1
Found "1101"	1	0	0
N/A	1	0	1
	1	1	Χ

Designing the Circuit for the FSM

1. We start with a T.T.

Also called a "State Transition Table"

2. Make K-Maps and simplify

Usually give your answer as a "sum-of-products" form

3. Design the circuit

Have to use D-FFs to represent the state bits

Note: We are

ignoring the N/A states

The Truth Table (The State Transition Table)

	CURRENT STATE		INPUT(S)	NEXT STATE			OUTPUT(S)	
State	B2	B1	В0		B2*	B1*	B0*	FOUND
Initial	0	0	0	0	0	0	0	0
				1	0	0	1	0
Found "1"	0	0	1	0	0	0	0	0
				1	0	1	0	0
Found "11"	0	1	0	0	0	1	1	0
				1	0	1	0	0
Found "110"	0	1	1	0	0	0	0	0
				1	1	0	0	0
Found "1101"	1	0	0	0	0	0	0	1
				1	0	1	0	1

2. K-Maps for B2* and B1*

State	B2	B1	В0	_	B2*	B1*	B0*	FOUND
Initial	0	0	0	0	0	0	0	0
				1	0	0	1	0
Found "1"	0	0	1	0	0	0	0	0
				1	0	1	0	0
Found "11"	0	1	0	0	0	1	1	0
				1	0	1	0	0
Found "110"	0	1	1	0	0	0	0	0
				1	1	0	0	0
Found "1101"	1	0	0	0	0	0	0	1
				1	0	1	0	1

You need to do this for <u>all</u> state outputs

D2*

B1

11

10

$$\bullet B2* = !B2.B1.B0.I$$

• No further simplification

DZ .										
	B2.B1	00	01	11	10					
	B0.I									
	00									
	01									

*					
, -	B2.B1 B0.I	00	01	11	10
-	DU.1				
	00		1		
	01		1		1
	11	1			
	10				

2. K-Map for B0* Output FOUND

```
•B0* = !B2.!B1.!B0.I
+ !B2.B1.!B0.!I
```

BO*

B2.B1	00	01	11	10
B0.I				
00		1		
01	1			
11				
10				

- FOUND = B2. !B1. !B0
 - Note that FOUND does not need
 a K-Map. It is always "1" (i.e. True) when we are in state S4
 (i.e. when B2=1, B1=0, B0=0)

3. Design the Circuit

Note that CLK is the input to ALL the D-FFs' clock inputs. This is a *synchronous machine*.

Note the use of labels (example: B2 or B0-bar) instead of routing wires all over the place!

Note that I issued both Bn and Bnbar from all the D-FFs — it makes it easier with the labeling and you won't have to use NOT gates!

Note that the sole output (FOUND) does **not** need a D-FF because it is **NOT A STATE BIT!**

YOUR TO-DOs

Review this FSM stuff!

Finish Lab #8!

