Stochastische Prozesse Stoffzusammenfassung

Joachim Breitner

11. März 2017

Diese Zusammefassung ist natürlich alles andere als vollständig und zu knapp, um immer alle Aussagen mit Voraussetzungen korrekt wiederzugeben. Man verwende sie mit Vorsicht.

1 Vokabeln, Definitionen und äquivalente Charakterisierungen

1.1 Markov-Ketten in diskreter Zeit

```
(X_n)_{x\in\mathbb{N}_0}, X_n:\Omega\to S Markov-Kette mit Zustandsraum S
                                     P(X_{n+1} = i_{n+i} \mid X_0 = i_0, \dots, X_n = i_n) = p_{i_n i_{n+1}}
P = (p_{ij})_{i,j \in S} 
P^{(n)} = (p_{ij}^{(n)})_{i,j \in S}
                                     Übergangsmatrix mit Übergangswahrscheinlichkeiten
                                     n-Schritt-Übergangsmatrix mit n-Schritt-Übergangswahrscheinlichkeiten
                                     \exists n \in \mathbb{N}p_{ij}^{(n)} > 0, ,i \text{ führt nach } j"
                                     i \leadsto j \land j \leadsto i, , i \text{ kommuniziert mit } j"
i \leftrightarrow j
J \subseteq S abgeschlossen
                                     \not\exists j \in J, i \in S \setminus J : i \leadsto j
                                     (p_{ij}, i, j \in S) ist stochastische Matrix
                                     (X_n) hat nur eine Äquivalenzklasse bzgl. "\leftrightarrow \vee ="
(X_n) irreduzibel
T_i \\ f_{ij}^{(n)}
                                     \inf\{n \in \mathbb{N} \mid X_n = i\}, "Ersteintrittszeit"
                                     P(T_j = n \mid X_0 = i), insbesondere f_{ij}^{(1)} = p_{ij}
                                     \sum_{n=0}^{\infty} f_{ij}^{(n)} = P_i(T_j < \infty)
i rekurrent
                                     \sum_{n=0}^{\infty} p_{ij}^{(n)} = \infty = E_i(\sum_{n=0}^{\infty} 1_{X_n=i}), die erwartete Zahl der Besuche.
i transient
                                     i nicht rekurrent
\nu: S \to \mathbb{R}_{>0}
                                     Verteilung, wenn gilt: \sum_{a \in S} \nu(a) = 1
\sum_{i \in S} \nu(i) p_{ij} = \nu(j), also \nu = \nu P
\nu invariant
                                     E_k(\sum_{n=1}^{T_k} 1_{(X_n=i)}), Besucher pro Zyklus
\gamma_k: S \to \mathbb{R}_{>0}
                                     invariant, 0 < \gamma_k < \infty, eindeutig mit \gamma_k(k) = 1, wenn (X_n) irreduzibel, rekurrent.
                                     (X_n) irreduzibel, transient: stationäre Verteilung existiert nicht.
                                     E_i(T_i) = \sum_{n=1}^{\infty} n \cdot f_{ii}^{(n)} + \infty \cdot (1 - f_{ii}^*)
m_i
                                     i \text{ transient} \implies m_i = \infty.
i positiv rekurrent
                                     (X_n) irreduzibel: Stationäre Verteilung existiert \iff ein/alle Zustände positive
                                     rekurrent. Dann: \pi(i) = \frac{1}{m_i}
```

$$(Ph)(i) \qquad \qquad \sum_{j \in S} p_{ij}h(j), \text{ vergleiche Matrix-Vektor-Multiplikation.} \\ Ph \geq h \implies h(X_n) \text{ Sub-Martingal} \\ Ph = h \implies h(X_n) \text{ Martingal} \\ Ph \leq h \implies h(X_n) \text{ Super-Martingal} \\ \end{cases}$$

1.2 Markov-Ketten in stetiger Zeit

1.2.1 Poisson-Prozess

- (A1) $t \mapsto N(t,\omega) \in \{f: [0,\infty) \to \mathbb{N}_0 \mid f(0) = 0, f \text{ monoton wachsend, } f \text{ stetig von rechts}\}$
- (A2) Unabhängige Zuwächse
- (A3) Identisch verteilte Zuwächse
- (A4) Ereignisse einzeln: $P(N_h \ge 2) = o(h)$ für $h \to 0$

Dann gilt:

- $\forall s, t \geq 0 : N_{s+t} N_s \sim \mathcal{P}o(\lambda t)$
- Zeit zwischen Sprüngen $\text{Exp}(\lambda)$ -verteilt.

Intensitätsmatrix:

$$\begin{pmatrix} -\lambda & \lambda & 0 & \cdots \\ 0 & -\lambda & \lambda & 0 \\ \vdots & 0 & -\lambda & \lambda \\ & & \ddots & \ddots \end{pmatrix}$$

1.2.2 Der allgemeine Fall

 $P(X_{t_n+h} = i_{n+1} \mid X_{t_k} = i_k, k = 1, \dots, n) = P(X_{t_n+h} = i_{n+1} \mid X_{t_n} = i_n) = P(X_{t_n+h} = i_{n+1} \mid X_{t_n} = i_n)$ Markov-Eigenschaft

 $P(X_{t+h} = i_{n+1} \mid X_t = i_n)$

 $p_{ij}(t) := P(X_t = j \mid X_0 = i), Übergangsmatrizenfunktion$ $P(t) = (p_{ij}(t))$ P_{ij} SÜMF $\lim_{t\to 0} p_{ij}(t) = \delta_{ij}$, "Standardübergangsmatrizenfunktion"

 $Q = (q_{ij})$ Instensitätsmatrix

 $q_{ij} \coloneqq \lim_{t \to 0} \frac{p_{ij}(t) - \delta_{ij}}{t} = p'_{ij}(0)$

Anschaulich: Kehrwert der Diagonalelemente sagt, wie lange die Kette in dem Zustand bleibt, die anderen Elemente geben die Wahrscheinlichkeit des nächsten

Zustands an.

 $\sum_{i \in S} q_{ij} = 0$ P konservativ

1.3 Brownsche Bewegung

Gauss-Prozess alle Fidis normalverteilt

 $P(B_0 = 0) = 1$, P-f.a. Pfade stetig, $B_t - B_s$ unabhängig von \mathcal{F}_s , $\mathcal{N}(0, t - s)$ -Brownsche Bew.

verteilt.