Performance Evaluation

Pedro Larrañaga, Concha Bielza

Computational Intelligence Group Artificial Intelligence Department Universidad Politécnica de Madrid

Machine Learning Master in Data Science + Master HMDA

Outline

The supervised classification learning problem

- 2 Performance measures
- Performance estimation

Outline

1 The supervised classification learning problem

- **2** Performance measures
- 3 Performance estimation

Three components

- - Random vectors x = (x₁,...,x_n) ∈ ℝⁿ are drawn independently according to some fixed but unknown probability distribution, p(x)
 - The *i*-th component of \mathbf{x} , x_i , has been drawn from the subspace Ω_{X_i} and contains the value of the *i*-th predictor variable, X_i , for one specific instance
 - $\bullet \ \Omega_{\mathbf{X}} = \Omega_{X_1} \times \cdots \times \Omega_{X_n}$
- 2 A label space, Ω_C , containing for each vector $\mathbf{x} = (x_1, ..., x_n)$ the value, c, of its label. The labels are obtained from a random variable, C
 - The conditional distribution of labels for a given vector of the instance space, p(c|x), and
 - The joint distribution, $p(\mathbf{x}, c)$, of cases (instances + labels) are also unknown
- 3 A learning algorithm that implements a set of functions over the instance space, whose outputs are in the label space. The application of the learning algorithm to a data set of labelled instances, $\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}$, will provide a supervised classification model

The data set \mathcal{D} as a table

X ₁		Xn	C
$x_1^{(1)}$		$x_n^{(1)}$	c ⁽¹⁾
$x_1^{(2)}$		$x_n^{(2)}$	c ⁽²⁾
$x_1^{(N)}$		$x_n^{(N)}$	c ^(N)
$x_1^{(N+1)}$		$x_n^{(N+1)}$???
	$ \begin{array}{c} X_1 \\ x_1^{(1)} \\ x_1^{(2)} \\ x_1^{(N)} \\ x_1^{(N+1)} \end{array} $	$X_1^{(1)}$ $X_1^{(2)}$ $X_1^{(N)}$ $X_1^{(N)}$ $X_1^{(N)}$	$x_1^{(1)} \dots x_n^{(1)}$ $x_1^{(2)} \dots x_n^{(2)}$ \dots $x_1^{(N)} \dots x_n^{(N)}$ $x_1^{(N+1)} \dots x_n^{(N+1)}$

Decision regions and decision boundaries

- The supervised classification model partitions the instance space into decision regions, one per class label. ${\bf x}$ is in the decision region associated with c if $\phi({\bf x})=c$.
- ullet These regions are separated by decision boundaries, surfaces in the instance space corresponding to pairs of class labels reaching the same ϕ value
- The more flexible the decision boundaries, the better performance the classifier will have

Loss and risk functions

Loss and risk functions

• The loss function, $L(c, \phi(\mathbf{x}))$, is a quantitative measure of the loss when the label c of the vector \mathbf{x} is different from the label assigned by the classifier, $\phi(\mathbf{x})$

$$egin{array}{lll} \Omega_C imes \Omega_C & \stackrel{L}{
ightarrow} & \mathbb{R}^+ \ (c,\phi(\mathbf{x})) &
ightarrow & L(c,\phi(\mathbf{x})) \end{array}$$

The zero-one loss function is $L(c, \phi(\mathbf{x})) = 1$ when $c \neq \phi(\mathbf{x})$ and 0 otherwise

- The expected risk of the classifier ϕ , $R(\phi) = \int L(c, \phi(\mathbf{x})) \mathrm{d}p(\mathbf{x}, c)$ computes the expectation of the loss (risk) function over the unknown distribution, $p(\mathbf{x}, \mathbf{c})$ For the zero-one loss function, the expected risk associated with a classifier ϕ is calculated as $R_{0-1}(\phi) = p(C \neq \phi(\mathbf{X}))$ with cases drawn according to $p(\mathbf{x}, c)$
- The expected risk should be estimated using the information in $\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}$, by the empirical risk function, $\mathcal{B}_{\mathcal{D}}(\phi)$, according to

$$R_{\mathcal{D}}(\phi) = \frac{1}{N} \sum_{i=1}^{N} L(c^i, \phi(\mathbf{x}^i))$$

Loss and risk functions

	X_1	 Xn	С	$\phi(\mathbf{x})$
(\mathbf{x}^{1}, c^{1})	7.2	 10.4	Р	I
(\mathbf{x}^2, c^2)	7.1	 11.7	P	P
(\mathbf{x}^3, c^3)	6.4	 13.2	P	P
$({\bf x}^4, c^4)$	6.7	 10.1	P	P
(\mathbf{x}^5, c^5)	8.9	 8.4	I	P
$({\bf x}^6, c^6)$	9.2	 7.9	I	I
(\mathbf{x}^{7}, c^{7})	10.7	 5.9	I	I
(\mathbf{x}^{8}, c^{8})	8.1	 8.8	I	I
(\mathbf{x}^9, c^9)	9.9	 7.2	I	I
$(\mathbf{x}^{10}, c^{10})$	11.5	 6.9	I	I

- The output of the classifier is incorrect for Cases 1 and 5
- If each class is equally important, the loss associated with both types of mistakes is the same, and we have $L(c^i, \phi(\mathbf{x}^i)) = 1$ for $i \in \{1, 5\}$ and $L(c^j, \phi(\mathbf{x}^j)) = 0$ for $i \in \{2, 3, 4, 6, 7, 8, 9, 10\}$
- The empirical risk for this zero-one loss function would then be $R_{\mathcal{D}}(\phi) = 1/10 \times 2 = 0.20$. This empirical risk represents an estimation of the probability of the classifier being wrong

Outline

- Performance measures

Two possible values for the class variable, C, represented, for example, as positive, +, and negative, -. $|\Omega_C|=2=|\Omega_{\phi(\mathbf{X})}|=2$

Confusion matrix

$$\phi(\mathbf{x})$$
+ -
 C_{-}^{+}
 $\left(\begin{array}{ccc} ext{TP} & ext{FN} \\ ext{FP} & ext{TN} \end{array}\right)$

- TP: true positives
- FP: false positives
- FN: false negatives
- TN: true negatives

Performance measures

Name	Formula
Accuracy	TP+TN TP+FN+FP+TN
Sensitivity or Recall	TP TP+FN
Specificity	TN FP+TN
Positive predictive value or Precision	TP TP+FP
Negative predictive value	TN TN+FN
F ₁ -measure	$\frac{2\operatorname{Prec}(\phi)\operatorname{Rec}(\phi)}{\operatorname{Prec}(\phi)+\operatorname{Rec}(\phi)}$
Cohen's kappa statistic	$\frac{\left(\frac{\text{TP}}{N} + \frac{\text{TN}}{N}\right) - \left[\left(\frac{\text{EN} + \text{TP}}{N}\right)\left(\frac{\text{FP} + \text{TP}}{N}\right) + \left(\frac{\text{FP} + \text{TN}}{N}\right)\left(\frac{\text{FN} + \text{TN}}{N}\right)\right]}{1 - \left[\left(\frac{\text{FN} + \text{TP}}{N}\right)\left(\frac{\text{FN} + \text{TP}}{N}\right) + \left(\frac{\text{FP} + \text{TN}}{N}\right)\left(\frac{\text{FN} + \text{TN}}{N}\right)\right]}$

- The F₁ measure (van Rijsbergen, 1979) is the harmonic mean of the precision and recall measures
- Cohen's kappa statistic (Cohen, 1960) corrects the accuracy measure considering the result of a mere chance match between the classifier, $\phi(\mathbf{x})$, and the label generation process. C
- All measure values fall within the interval [0, 1], where values close to 1 are preferred

Performance measures. An example

$$\phi(\mathbf{x})$$
+ -
 $C_{-}^{+}\begin{pmatrix} 120 & 8 \\ 60 & 139 \end{pmatrix}$

The values for the seven performance measures are:

- **1** $Acc(\phi) = 0.79$
- Sensitivity(ϕ) = Rec(ϕ) = 0.94
- Specificity(ϕ) = 0.74
- **1** PPV(ϕ) = Prec(ϕ) = 0.67
- **1** NPV(ϕ) = 0.95
- **6** $F_1(\phi) = 0.78$
- $(\phi) = 0.59$

Cost matrix

$$\phi(\mathbf{x}) + C_{-}^{+} \begin{pmatrix} 0 & L(+,-) \\ L(-,+) & 0 \end{pmatrix}.$$

- Total cost error: $TCE(\phi) = FN \cdot L(+, -) + FP \cdot L(-, +)$
- Total cost error in terms of the empirical risk as $TCE(\phi) = N \cdot R_D(\phi)$
- The total cost error verifies $0 \le \text{TCE}(\phi) \le N \cdot \max\{L(+, -), L(-, +)\}$
- If the domain expert is not able to provide this information, costs are assumed to be symmetric: L(+,-) = L(-,+)

- The Brier score (Brier, 1950) measures the accuracy of probabilistic classifications over cases
- Measure of the calibration of a set of probabilistic predictions or as a quadratic cost function

Brier score

$$\mathrm{Brier}(\phi) = \frac{1}{N} \sum_{i=1}^{N} d^{2} \left(\rho_{\phi}(\mathbf{c} | \mathbf{x}^{i}), \mathbf{c}^{i} \right)$$

- N denotes the number of cases in D
- \bullet $p_{\phi}(\mathbf{c}|\mathbf{x}^{i})$ is the vector $(p_{\phi}(+|\mathbf{x}^{i}), p_{\phi}(-|\mathbf{x}^{i}))$ containing the output of the probabilistic classifier
- $\mathbf{c}^i = (1,0)$ or $\mathbf{c}^i = (0,1)$ when the label of the *i*-th instance is + or -, respectively
- The difference between the predicted probability assigned to the possible outcomes for each instance and its actual label is measured with the squared Euclidean distance, $d^2(p_\phi(\mathbf{c}|\mathbf{x}^i),\mathbf{c}^i)$
- The Brier score for a binary classification problem verifies $0 < Brier(\phi) < 2$

Brier score

	X_1	 X_n	С	$ ho_\phi(\mathbf{c} \mathbf{x})$
(\mathbf{x}^{1}, c^{1})	7.2	 10.4	Р	(0.20, 0.80)
(\mathbf{x}^2, c^2)	7.1	 11.7	P	(0.65, 0.35)
$({\bf x}^3, c^3)$	6.4	 13.2	P	(0.70, 0.30)
$({\bf x}^4, c^4)$	6.7	 10.1	P	(0.87, 0.13)
$({\bf x}^5, c^5)$	8.9	 8.4	I	(0.55, 0.45)
$({\bf x}^6, c^6)$	9.2	 7.9	I	(0.25, 0.75)
$({\bf x}^7, c^7)$	10.7	 5.9	I	(0.12, 0.88)
(\mathbf{x}^{8}, c^{8})	8.1	 8.8	I	(0.07, 0.93)
(\mathbf{x}^{9}, c^{9})	9.9	 7.2	I	(0.37, 0.63)
$(\mathbf{x}^{10}, c^{10})$	11.5	 6.9	I	(0.18, 0.82)

Brier
$$(\phi) = \frac{1}{10} \left[(0.20 - 1)^2 + (0.80 - 0)^2 + \dots + (0.18 - 0)^2 + (0.82 - 1)^2 \right] = 0.2971$$

Multi-class classification

Confusion matrix

Measures from the confusion matrix

Name	Notation	Formula
		$\sum_{i=1}^{R} N_{ii}$
Accuracy	$Acc(\phi)$	$\frac{i=1}{N}$
PPV or Prec for class c_j	$\mathrm{PPV}_j(\phi) = \mathrm{Prec}_j(\phi)$	N _{jj} R
		∑ N _{ij} i _R 1 R
Total cost error	$TCE(\phi)$	$\sum_{i=1}^{H} \sum_{j>i}^{H} N_{ij} \cdot L(c_i, c_j)$
Delanasana	D: (1)	$\frac{1}{N} \sum_{i=1}^{N} d^2 \left(p_{\phi}(\mathbf{c} \mathbf{x}^i), \mathbf{c}^i \right)$
Brier score	$Brier(\phi)$	$\bar{N} \sum_{i=1}^{\infty} a^{-i} \left(p_{\phi}(\mathbf{c} \mathbf{x}^{i}), \mathbf{c}^{i} \right)$

$$N = \sum_{i=1}^{R} \sum_{j=1}^{R} N_{ij}$$

- A receiver operating characteristic (ROC), or simply ROC curve (Lusted, 1960), is a graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is varied
- The discrimination threshold is a cutoff value for the posterior probability $p_{\phi}(c|\mathbf{x})$ for which the predicted label is +
- A given discrimination threshold returns a point of the plot
- The ROC curve is created by plotting (on the *Y*-axis) the true positive rate ($\text{TPR} = \frac{\text{TP}}{\text{TP}+\text{FN}}$), versus (on the *X*-axis) the false positive rate ($\text{FPR} = \frac{\text{FP}}{\text{FP}+\text{TN}}$), at various threshold settings. $\text{TP} + \text{FN} = N_+$ number of real positive. $\text{FP} + \text{TN} = N_-$ number of real negative
- The ROC curve is the polygonal curve plotted by connecting all pairs of consecutive points
- The ROC space is a unit square because $0 \le FPR \le 1$ and $0 \le TPR \le 1$

$$\phi(\mathbf{x}) + C \begin{pmatrix} + & \text{TP} & \text{FN} \\ - & \text{FP} & \text{TN} \end{pmatrix}$$

- Point (0,0), with both FPR and TPR equal to zero, denotes the model that classifies all instances as negative
- Point (1, 1), with both FPR and TPR equal to one, represents the classifier labeling all instances as positive
- The diagonal of the ROC space, that is, the line connecting points (0,0) and (1,1), verifies FPR = TPR at all points. The classifiers represented with points along this diagonal are regarded as random classifiers. The random classifier at point (a, a) means that, for a positive labelled case, C = +, the probability that the classifier, ϕ , classifies it as positive, $\phi = +$, equals a. In mathematical notation, $p(\phi = +|C = +) = a$. For a negative labelled case, $p(\phi = + | C = -) = a$.
- The classifiers represented by points above (or below) the diagonal perform better (or worse) than random
- (FPR1, TPR1) represents a better classifier than (FPR2, TPR2) if (FPR1, TPR1) is on the left and higher up than (FPR2, TPR2), because these positions signify that FPR₁ < FPR₂ and TPR₁ > TPR₂
- For point (1,0), FPR = 1 and TPR = 0. It denotes a classifier that gets all its predictions wrong
- Point (0, 1) represents the best classifier, which gets all the positive cases right and none the negative ones wrong

Notation used by Algorithm 1 for building a ROC curve

ROC analysis in binary classification

- D: the set of cases.
- \bullet $\phi(\mathbf{x}^i)$: the continuous output of the classifier for instance \mathbf{x}^i
- min and max: the smallest and largest values returned by $\phi(\mathbf{x})$, respectively,
- *incr*: the smallest difference between any two output values
- \bullet N_{+} and N_{-} : the number of real positive and negative cases, respectively
- The range of the threshold values t is min, min + incr, $min + 2 \cdot incr$, ..., max
- TP and FP are initialized as 0 (lines 2 and 3)
- For each case whose classification output exceeds threshold t (line 5), the TP counter is incremented by one if the case is positive (lines 6-7); for negative cases (lines 8-9) the FP counter is incremented by one
- TPR and FPR are respectively computed (lines 12 and 13) and the associated (FPR, TPR) is added to the ROC curve (line 14)

ROC analysis in binary classification

Algorithm 1: A simple algorithm for building a ROC curve (Fawcett, 2006)

```
Input: A classifier \phi, and constants min, max, incr, N_+, N_-
   Output: A ROC curve
   for t = min to max by incr do
         TP = 0
 2
         FP = 0
 3
         for \mathbf{x}^i \in \mathcal{D} do
 4
               if \phi(\mathbf{x}^i) > t then
                    if xi is a positive case then
 6
                         TP = TP + 1
                    else
                         FP = FP + 1
 9
               endif
10
         endfor
11
         TPR = TP/N_{\perp}
12
         FPR = FP/N_{-}
13
         Add point (FPR, TPR) to ROC curve
14
   endfor
```

Instances	\mathbf{x}^{i}	1	2	3	4	5	6	7	8	9	10
Output	$p(+ \mathbf{x}^i)$	0.97	0.91	0.84	0.80	0.68	0.67	0.66	0.61	0.49	0.46
True class	c^i	+	-	+	+	-	+	-	+	-	-

- FPR = $\frac{\text{FP}}{N}$ and TPR= $\frac{\text{TP}}{N}$.
- First threshold at 0.46. At it, the five positive instances are well classified, whereas the five negative instances are misclassified. We get FPR = TPR = 1
- All the thresholds output by increments of 0.01 (value of incr) up to 0.49 yield the same results
- At 0.49, the instance x^{10} is correctly classified as -, and we get FPR = 0.80, and TPR = 1
- The next significant threshold is 0.61, where we get the third point, (0.60, 1)
- The other points are output in a similar fashion

The area under the ROC curve (AUC)

- The AUC is the most popular summary statistic for the ROC curve; AUC(ϕ) \in [0, 1]
- A perfect classifier, (FPR = 0, TPR = 1): AUC($\phi_{perfect}$) = 1
- A random classifier: $AUC(\phi_{random}) = 0.5$
- The AUC can be computed as: $AUC(\phi) = 1 \frac{\sum_{i=1}^{N_+} (i rank_i)}{N_+ \cdot N}$
 - $rank_i$ is the rank (according to the posterior probability of C = +) of the i-th case in the subset of positive labels given by classifier ϕ
 - \bullet N_{\perp} and N_{\parallel} denote the number of real positive and negative cases in \mathcal{D} , respectively
- AUC can be interpreted as a measurement indicator of whether a classifier is able to rank a randomly chosen positive instance higher than a negative one

$$AUC(\phi) = 1 - \frac{(1-1) + (3-2) + (4-3) + (6-4) + (8-5)}{5 \cdot 5} = 0.72$$

The AUC directly from the Figure:

$$AUC(\phi) = 0.20 \cdot 0.20 + 0.20 \cdot 0.60 + 0.20 \cdot 0.80 + 0.40 \cdot 1 = 0.72$$

Multi-class classification

ROC analysis in multi-class problems

- For multi-class problems the AUC can be generalized as the volume under the ROC surface (Ferri et al., 2003)
- Alternatively, as an average AUC of all possible two-class ROC curves that can be generated from the multi-class problem (Hand and Till, 2001)

$$AUC_{\text{multi-class}}(\phi) = \frac{2}{R(R-1)} \sum_{\substack{c_i, c_j \in \Omega_C \\ c_i \neq c_i}} AUC_{c_i, c_j}(\phi)$$

- AUC_{multi-class}(ϕ) is the total AUC of the multi-class ROC for classifier ϕ
- AUC_{c_i,c_i}(ϕ) is the AUC of the two-class ROC curve of ϕ for classes c_i and C_i

- **2** Performance measures
- Performance estimation

Honest estimation methods

Single resampling-based estimation methods

 $\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}$ is partitioned into two disjoint data subsets:

- The training data set: $\mathcal{D}_{\text{training}} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^{N_1}, c^{N_1})\}$ with N_1 cases and
- The test data set: $\mathcal{D}_{\text{test}} = \mathcal{D} \setminus \mathcal{D}_{\text{training}} = \{(\mathbf{x}^{N_1+1}, c^{N_1+1}), ..., (\mathbf{x}^{N}, c^{N})\}$ with $N N_1$ cases

A general empirical risk function is estimated as follows: $R_{\mathcal{D}_{\text{test}}}(\phi_{\text{training}}) = \frac{1}{N-N_1} \sum_{(\mathbf{x}^i, c^i) \in \mathcal{D}_{\text{test}}} L(c^i, \phi_{\text{training}}(\mathbf{x}^i))$

The hold-out estimation of classification accuracy:

$$\mathrm{Acc_h}(\phi) = \mathrm{Acc}_{\mathcal{D}_{test}}(\phi_{training}) = \frac{1}{\mathit{N} - \mathit{N}_1} \sum_{(\mathbf{x}^i, o^i) \in \mathcal{D}_{test}} \mathbb{I}(c^i = \phi_{training}(\mathbf{x}^i))$$

where I(a) is the indicator function

Single resampling-based estimation methods

$$\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}, \text{ is partitioned into } k \text{ folds: } \mathcal{D}_1, ..., \mathcal{D}_k, \text{ verifying } \mathcal{D} = \bigcup_{l=1}^k \mathcal{D}_l \text{ with } \mathcal{D}_w \cap \mathcal{D}_l = \emptyset$$

Accuracy of
$$\phi$$
 estimated as $\mathrm{Acc_{ev}}(\phi) = \frac{1}{k} \sum_{l=1}^{k} \mathrm{Acc}_{l}$ with $\mathrm{Acc}_{l} = \frac{1}{|\mathcal{D}_{l}|} \sum_{(\mathbf{x}^{i}, \mathbf{c}^{i}) \in \mathcal{D}_{l}} \mathbb{I}(\mathbf{c}^{i} = \phi_{l}(\mathbf{x}^{i}))$

- The k-fold cross-validation estimator is very nearly unbiased, but its variance can be large (Stone, 1977)
- Leave-one-out cross-validation when k = N
- Stratified k-fold cross-validation for unbalanced data sets

Multiple resampling-based estimation methods

Repeated hold-out

- $\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}$, is randomly partitioned B times as training data sets, $\mathcal{D}_{\text{training}}^l$, and test data sets, $\mathcal{D}_{\text{test}}^l$. For each partition $l \in \{1, ..., B\}$: $\mathcal{D} = \mathcal{D}_{\text{training}}^l \cup \mathcal{D}_{\text{test}}^l$ and $\mathcal{D}_{\text{training}}^l \cap \mathcal{D}_{\text{test}}^l = \varnothing$
- The final model, ϕ , is learned from \mathcal{D} , and its accuracy is estimated as

$$Acc_{rh}(\phi) = \frac{1}{B} \sum_{l=1}^{B} Acc^{l}$$

where Acc^l denotes the estimation of the accuracy of model $\phi_{\mathrm{training}}^l$, learned from $\mathcal{D}_{\mathrm{training}}^l$, and tested over $\mathcal{D}_{\mathrm{test}}^l$

- Repeated hold-out extends the main idea of the hold-out scheme to a multiple resampling scenario. The partition in the hold-out scheme is repeated several times, each with a random assignment of training and test cases
- Advantage: stability of the estimates (variance is low), resulting from a large number of sampling repetitions
- Drawback: there is no control of how many times each case is used in the training data sets or in the test data sets

Multiple resampling-based estimation methods

Repeated k-fold cross-validation

Repeated *k*-fold cross-validation reduces the variability of the estimator by multiple rounds of *k*-fold cross-validation performed using different partitions

- The 5 x 2 cross-validation (Dietterich, 1998) performs five repetitions of two-fold cross-validation
- The 10 x 10 cross-validation (Bouckaert, 2003) based on 10 repetitions of 10-fold cross-validation

Multiple resampling-based estimation methods

- Bootstrap sampling method consists of sampling with replacement N cases from $\mathcal{D} = \{(\mathbf{x}^1, c^1), ..., (\mathbf{x}^N, c^N)\}$
- Repeated B times: \mathcal{D}_{b}^{I} , with $I \in \{1, ..., B\}$, all of size N
- The probability of a case not being chosen after N selections is $(1 \frac{1}{N})^N \approx \frac{1}{e} \approx 0.368$
- The expected number of distinct cases in each of the B data sets \mathcal{D}_{b}^{I} used for training the classifier is 0.632N

$$-\mathcal{D}_{b-\text{test}}^{l} = \mathcal{D} \setminus \mathcal{D}_{b}^{l} \text{ and } \text{Acc}(\phi_{b}^{l}) = \frac{1}{|\mathcal{D}_{b-\text{test}}^{l}|} \sum_{(\mathbf{x}^{i}, c^{i}) \in \mathcal{D}_{b-\text{test}}^{l}} \mathbb{I}(c^{i} = \phi_{b}^{l}(\mathbf{x}^{i}))$$

- The **e0** bootstrap estimate, ${
m Acc}_{
m e0}(\phi)=rac{1}{B}\sum\limits_{b=1}^{B}{
m Acc}(\phi_b^I)$ can be pessimistic

0.632 bootstrap method (Efron, 1979)

$$Acc_{.632bootstrap}(\phi) = 0.632Acc_{e0}(\phi) + 0.368Acc_{resubstitution}(\phi)$$

where the resubstitution estimation is: $Acc_{resubstitution}(\phi) = \frac{1}{N} \sum_{(\mathbf{x}^i, c^i) \in \mathcal{D}} \mathbb{I}(c^i = \phi(\mathbf{x}^i))$

- Bootstrap estimation is asymptotically (large values of B) unbiased and its variance is small. These are interesting properties when working with small data sets.

References

- G. W. Brier (1950). Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78. 1-3
- J. Cohen (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurements, 20, 37-46
- T.M. Cover, J.A. Thomas (1991). Elements of Information Theory. Wiley
- A. Edwards (1948). Note on the "correction for continuity" in testing the significance of the difference between correlated proportions. Psychometrika. 13, 185-187
- B. Efron (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26
- T. Fawcett (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874
- C. Ferri, J. Hernández-Orallo, M.A. Salido (2003), Volume under the ROC surface for multi-class problems. Proceedings of the 14th European Conference on Machine Learning, 108-120
- D.J. Hand, R.J. Till (2001). A simple generalization of the area under the ROC curve for multiple class classification problems. Machine Learning, 45, 171-186
- S. Kullback, R.A. Leibler (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79-86
- A.K. Kurtz (1948). A research test of Rorschach test. Personnel Psychology, 1, 41-53
- L.B. Lusted (1960). Logical analysis in roentgen diagnosis. *Radiology*, 74, 178-193
- C.E. Shannon (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 3, 379-423
- Z. Šidák (1967). Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62(31), 626-633
- M. Stone (1977). Asymptotics for and against cross-validation. Biometrika. 64(1), 29-35.
- C.J. van Riisbergen (1979). Information Retrieval. Butterworth.