week10

A comprehensive diagram showing contiguous memory allocation along with its key concepts.

week10 1

The key aspects of contiguous memory allocation as shown in the diagram:

- 1. Memory Organization:
 - Memory is divided into fixed-size or variable-size partitions
 - Each process is allocated a continuous block of memory
 - Processes are stored sequentially in memory
- 2. Key Elements in the Diagram:
 - Operating System space (reserved at the start)
 - Active Processes (Process 1, 2, and 3)
 - Free Space blocks (shown with dashed borders)
 - Memory boundaries (start and end)

Let's look at memory allocation methods:

Common Allocation Strategies:

1. First Fit:

- Allocates the first available space that's large enough
- Fast but can lead to fragmentation
- Most commonly used method

2. Best Fit:

- Searches entire memory for smallest sufficient block
- Minimizes wasted space
- Can be slower due to full memory search

3. Worst Fit:

- Allocates largest available block
- Leaves larger remaining spaces
- Can be inefficient for memory utilization

week10 3

Issues with Contiguous Memory Allocation:

- 1. External Fragmentation:
 - Small free spaces between allocated blocks
 - Total free space may be adequate but not contiguous
- 2. Internal Fragmentation:
 - Wasted space within allocated blocks
 - Occurs when allocated memory is larger than required
- 3. Memory Compaction:
 - Solution to external fragmentation
 - Combines scattered free space into one large block
 - Requires process relocation

week10 4