

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

© CKE 2013	WPI	ISUJE ZDAJĄCY	Miejsce
graficzny ©	KOD	PESEL	Miejsce na naklejkę z kodem
Układ			dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM PODSTAWOWY

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 23 strony (zadania 1–34). Ewentualny brak zgłoś osobie przewodniczącej zespołowi nadzorującemu egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1–25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatorów.

SIERPIEŃ 2014

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

MMA-P1 1P-144

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. *(1 pkt)*

Wskaż nierówność, która opisuje przedział zaznaczony na osi liczbowej.

A.
$$|x-7| < 15$$

B.
$$|x-7| > 15$$

C.
$$|x-15| < 7$$

B.
$$|x-7| > 15$$
 C. $|x-15| < 7$ **D.** $|x-15| > 7$

Zadanie 2. (1 pkt)

Liczba $\frac{1}{2} \cdot 2^{2014}$ jest równa

A.
$$2^{2013}$$

B.
$$2^{2012}$$

C.
$$2^{1007}$$

D.
$$1^{2014}$$

Zadanie 3. (1 pkt)

Liczba $c = \log_3 2$. Wtedy

A.
$$c^3 = 2$$

B.
$$3^c = 2$$

C.
$$3^2 = 6$$

C.
$$3^2 = c$$
 D. $c^2 = 3$

Zadanie 4. (1 pkt)

Liczba $(\sqrt{5} - \sqrt{3})^2 + 2\sqrt{15}$ jest równa

A.
$$2 + 2\sqrt{15}$$

C.
$$2 + 4\sqrt{15}$$

Zadanie 5. *(1 pkt)*

Julia połowę swoich oszczędności przeznaczyła na prezent dla Maćka. 10% tego, co jej zostało, przeznaczyła na prezent dla Dominiki. Ile procent oszczędności pozostało Julii?

Zadanie 6. *(1 pkt)*

Rozwiązaniem równania $\frac{x-5}{7-x} = \frac{1}{3}$ jest liczba

B.
$$\frac{11}{2}$$
 C. $\frac{2}{11}$

C.
$$\frac{2}{11}$$

Zadanie 7. *(1 pkt)*

Jeśli
$$a = \frac{b}{c - b}$$
, to

A.
$$b = \frac{a+1}{a \cdot c}$$
 B. $b = \frac{a \cdot c}{a+1}$ **C.** $b = \frac{a \cdot c}{a-1}$ **D.** $b = \frac{a-1}{a \cdot c}$

B.
$$b = \frac{a \cdot c}{a+1}$$

C.
$$b = \frac{a \cdot c}{a - 1}$$

$$\mathbf{D.} \quad b = \frac{a-1}{a \cdot c}$$

W zadaniach 8. i 9. wykorzystaj przedstawiony poniżej wykres funkcji f.

Zadanie 8. (1 pkt)

Dziedziną funkcji f jest przedział

A.
$$\langle 0, 3 \rangle$$

B.
$$(0,8)$$

C.
$$\langle -3, 3 \rangle$$

D.
$$(-3, 8)$$

Zadanie 9. (1 pkt)

Największą wartością funkcji f jest

Zadanie 10. *(1 pkt)*

Wskaż rysunek, na którym przedstawiony jest wykres funkcji kwadratowej, określonej wzorem f(x) = (x-2)(x+4).

A.

В.

D.

Zadanie 11. *(1 pkt)*

Funkcja kwadratowa, której zbiorem wartości jest przedział $(-\infty, -3)$, może być określona wzorem

A.
$$y = (x+2)^2 - 3$$

B.
$$y = -(x+3)^2$$

A.
$$y = (x+2)^2 - 3$$
 B. $y = -(x+3)^2$ **C.** $y = -(x-2)^2 - 3$ **D.** $y = -x^2 + 3$

D.
$$y = -x^2 + 3$$

Zadanie 12. *(1 pkt)*

Funkcja liniowa f(x) = ax + b jest rosnąca i ma dodatnie miejsce zerowe. Stąd wynika, że

A.
$$a > 0 \text{ i } b > 0$$

B.
$$a < 0 \text{ i } b < 0$$
 C. $a < 0 \text{ i } b > 0$ **D.** $a > 0 \text{ i } b < 0$

C.
$$a < 0 \text{ i } b > 0$$

D.
$$a > 0$$
 i $b < 0$

Zadanie 13. *(1 pkt)*

Suma dziesięciu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 35. Pierwszy wyraz a_1 tego ciągu jest równy 3. Wtedy

A.
$$a_{10} = \frac{7}{2}$$

B.
$$a_{10} = 4$$

D.
$$a_{10} = 32$$

Zadanie 14. (1 pkt)

Ciąg geometryczny (a_n) określony jest wzorem $a_n = -\frac{3^n}{4}$ dla $n \ge 1$. Iloraz tego ciągu jest równy

B.
$$-\frac{3}{4}$$
 C. $\frac{3}{4}$

C.
$$\frac{3}{4}$$

Zadanie 15. *(1 pkt)*

Kąt α jest ostry i spełniona jest równość $3 \lg \alpha = 2$. Wtedy wartość wyrażenia $\sin \alpha + \cos \alpha$ jest równa

B.
$$\frac{5\sqrt{13}}{26}$$
 C. $\frac{5\sqrt{13}}{13}$

C.
$$\frac{5\sqrt{13}}{13}$$

D.
$$\sqrt{5}$$

Zadanie 16. (*1 pkt*)

Promień okręgu opisanego na trójkącie równobocznym jest równy 8. Wysokość tego trójkąta jest równa

A.
$$4\sqrt{3}$$

B.
$$8\sqrt{3}$$

Zadanie 17. (1 pkt)

Punkty A, B i C leżą na okręgu o środku O (zobacz rysunek). Zaznaczony na rysunku

wypukły kąt środkowy AOB ma miarę

- **A.** 60°
- **B.** 100°
- **C.** 120°
- **D.** 140°

Zadanie 18. (1 pkt)

Odcinki BC i DE są równoległe i |AE| = 4, |DE| = 3 (zobacz rysunek). Punkt D jest środkiem

A. 4

- **B.** 6
- **C.** 8
- **D.** 16

Zadanie 19. (1 pkt)

Dane są równania czterech prostych:

$$k: \quad y = \frac{1}{2}x + 5$$

$$l: \quad y = 2x + 5$$

$$m: y = -2x + 3$$

$$n: y = 2x - 5$$

Prostopadłe są proste

- \mathbf{A} . l i n
- **B.** *l* i *m*
- \mathbf{C} . k i n
- **D.** k i m

Zadanie 20. (1 pkt)

Punkt P = (-1, 0) leży na okręgu o promieniu 3. Równanie tego okręgu może mieć postać

A.
$$(x+1)^2 + y^2 = 9$$

B.
$$x^2 + (y - \sqrt{2})^2 = 3$$

C.
$$(x+1)^2 + (y+3)^2 = 9$$

D.
$$(x+1)^2 + y^2 = 3$$

Zadanie 21. (1 pkt)

Punkty A = (13, -12) i C = (15, 8) są przeciwległymi wierzchołkami kwadratu ABCD. Przekatne tego kwadratu przecinają się w punkcie

A.
$$S = (2, -20)$$

B.
$$S = (14, 10)$$
 C. $S = (14, -2)$ **D.** $S = (28, -4)$

C.
$$S = (14, -2)$$

D.
$$S = (28, -4)$$

Zadanie 22. (1 pkt)

Pole powierzchni całkowitej walca, którego przekrojem osiowym jest kwadrat o boku długości 4, jest równe

A. 256π

B. 128π

C. 48π

D. 24π

Zadanie 23. (1 pkt)

Ostrosłup i graniastosłup mają równe pola podstaw i równe wysokości. Objętość ostrosłupa jest równa $81\sqrt{3}$. Objetość graniastosłupa jest równa

B.
$$27\sqrt{3}$$

D.
$$243\sqrt{3}$$

Zadanie 24. (1 pkt)

Rzucamy trzy razy symetryczną monetą. Prawdopodobieństwo otrzymania co najmniej jednej reszki jest równe

A.
$$\frac{7}{8}$$

B.
$$\frac{1}{2}$$

C.
$$\frac{1}{4}$$

D.
$$\frac{1}{8}$$

Zadanie 25. (1 pkt)

Średnia arytmetyczna liczb: x, 13, 7, 5, 5, 3, 2, 11 jest równa 7. Mediana tego zestawu liczb jest równa

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. *(2 pkt)*

Rozwiąż nierówność $-x^2 - 5x + 14 < 0$.

Odpowiedź:

Zadanie 27. *(2 pkt)*

Rozwiąż równanie $x^3 - 6x^2 - 11x + 66 = 0$.

Odpowiedź:

	Nr zadania	26.	27.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 28. *(2 pkt)*Wykaż, że suma sześcianów trzech kolejnych liczb naturalnych parzystych jest podzielna przez 24.

Zadanie 29. *(2 pkt)*

Kąt α jest ostry oraz $\frac{4}{\sin^2 \alpha} + \frac{4}{\cos^2 \alpha} = 25$. Oblicz wartość wyrażenia $\sin \alpha \cdot \cos \alpha$.

Odpowiedź:

	Nr zadania	28.	29.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 30. *(2 pkt)*

Dany jest trójkąt ABC, w którym |AC| > |BC|. Na bokach AC i BC tego trójkąta obrano odpowiednio takie punkty D i E, że zachodzi równość |CD| = |CE|. Proste AB i DE przecinają się w punkcie F (zobacz rysunek). Wykaż, że $| \ll BAC | = | \ll ABC | - 2 \cdot | \ll AFD |$.

Zadanie 31. *(2 pkt)*

Dany jest ciąg arytmetyczny (a_n) określony dla $n \ge 1$, w którym $a_5 = 22$ oraz $a_{10} = 47$. Oblicz pierwszy wyraz a_1 i różnicę r tego ciągu.

Odpowiedź:

	Nr zadania	30.	31.
Wypełnia	Maks. liczba pkt	2	2
egzaminator	Uzyskana liczba pkt		

Zadanie 32. (5 pkt)

Miasta A i B są odległe o 450 km. Pani Danuta pokonała tę trasę swym samochodem w czasie o 75 minut dłuższym niż pani Lidia. Wartość średniej prędkości, z jaką jechała pani Danuta na całej trasie, była o 18 km/h mniejsza od wartości średniej prędkości, z jaką jechała pani Lidia. Oblicz średnie wartości:

- prędkości, z jaką pani Danuta jechała z A do B.
- prędkości, z jaką pani Lidia jechała z A do B.

Odpowiedź:

	Nr zadania	32.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 33. (4 pkt)

Podstawą ostrosłupa prawidłowego jest kwadrat. Wysokość ściany bocznej tego ostrosłupa jest równa 22, a tangens kąta nachylenia ściany bocznej ostrosłupa do płaszczyzny jego podstawy jest równy $\frac{4\sqrt{6}}{5}$. Oblicz objętość tego ostrosłupa.

Odpowiedź:

	Nr zadania	33.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 34. (4 pkt)

Zbiór M tworzą wszystkie liczby naturalne dwucyfrowe, w zapisie których występują dwie różne cyfry spośród: 1, 2, 3, 4, 5. Ze zbioru M losujemy jedną liczbę, przy czym każda liczba z tego zbioru może być wylosowana z tym samym prawdopodobieństwem. Oblicz prawdopodobieństwo, że wylosujemy liczbę większą od 20, w której cyfra dziesiątek jest mniejsza od cyfry jedności.

Odpowiedź:

	Nr zadania	34.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

MMA-P1_1P-144

WYPEŁNIA ZDAJĄCY

Nr zad.	0	Odpowiedzi						
1	A	В	C	D				
2	Α	В	C	D				
3	A	В	C	D				
4	A	В	С	D				
5	A	В	С	D				
6	A	В	C	D				
7	A	В	C	D				
8	A	В	С	D				
9	A	В	C	D				
10	Α	В	С	D				
11	A	В	C	D				
12	A	В	С	D				
13	A	В	С	D				
14	A	В	С	D				
15	A	В	С	D				
16	A	В	С	D				
17	A	В	С	D				
18	A	В	С	D				
19	A	В	С	D				
20	A	В	C	D				
21	A	В	C	D				
22	A	В	C	D				
23	A	В	C	D				
24	Α	В	C	D				
25	A	В	C	D				

PESEL										

Miejsce na naklejkę z nr. PESEL

WYPEŁNIA EGZAMINATOR

Nr			Pur	ıkty		
zad.	0	1	2	3	4	5
26						
27						
28						
29						
30						
31						
32						
33						
34						

(OD) EG	ZAN	IINA	TOR	A			
	Czy	/teln	y pod	lpis e	gzan	ninat	ora	
	KC	DD 2	ZDA	\JĄ(CEC	30		