Tiempo máximo para la realización de la evaluación: 2hs.

- P1) Siendo $rot(\vec{f}) = (x, x^2 2x, -z)$, calcular la circulación de \vec{f} a lo largo de la curva C intersección de las superficies de ecuación: $z = 3 x^2 y^2$, $z = 2x^2 + 2y^2$. Indicar gráficamente la orientación que ha elegido para recorrer C.
- P2) Dado el campo $\vec{f}(x,y,z) = (12x + 2yz, 6y + 2xz, 2xy)$, **demostrar** que admite función potencial y **determinar** los valores de "a" para los cuales resulta nula su integral de línea desde (-a,a,1) hasta (1,a,a).
- P3) Calcular el flujo de $\vec{f}(x,y,z) = (x,2y,x-z)$ a través de la superficie Σ de ecuación $y = 4-x^2$ con $z \le y$, en el 1º octante. Indicar gráficamente cómo ha orientado a Σ
- P4) Calcular la masa del cuerpo H definido por $x^2 + z^2 \le 32$, $z \ge \sqrt{x^2 + 2y^2}$ en el 1° octante, si su densidad en cada punto es $\delta(x, y, z) = K \cdot z$ con K constante.
- T1) **Enunciar** y **demostrar** la condición necesaria para la existencia de función potencial **Determinar** si el campo $\vec{f}(x,y) = (2x \cdot y + 2x \cdot g'(x^2), x^2)$ con $\vec{f} \in C^1$, admite función potencial. T2) **Enunciar** el teorema de cambio de variables en integrales dobles. Dado el cambio de variables definido por (x,y) = (v-2u,u+v) la región D_{xy} se transforma en la región D_{uv} .

Calcular el área de D_{uv} sabiendo que el área de D_{xy} es igual a 9