

Bruce M. Boghosian

Introduction and motivation

Testing H_0 $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Summary

Two-sample inferences

Testing H_0 : $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 Introduction and motivation

Testing H_0 : $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Summary

Tuffs Two sample tests

and

- Sometimes, instead of comparing a sample mean to a known value, we wish to compare two sample means:
 - **Two sources:** Farm X and Farm Y each send 10 cases of barley. For both shipments, we quantify the quality of each case. We would like to compare μ_X to μ_Y . Note this is different from comparing μ_X to a hypothesized μ_0 . We might wish to do hypothesis testing on $H_0: \mu_X = \mu_Y$, etc.
 - Two treatments: Farm sends two shipments, X and Y, of barley, each consisting of 10 cases. We malt (soak in water) the barley of shipment X for 8 hours before roasting it over a peat fire, and that of shipment Y for 12 hours before roasting it over a peat fire. Then we quantify the quality of the malted and roasted barley in both cases. and we compare μ_X and μ_Y . Again, we might also wish to do hypothesis testing on $H_0: \mu_X = \mu_Y$, etc.
- Likewise, we might wish to compare two sample variances, e.g., $H_0: \sigma_{\mathbf{Y}}^2 = \sigma_{\mathbf{Y}}^2$.

Trufts Testing $H_0: \mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Testing H_0 :

Thm:

- Let X_1, \ldots, X_n be first random sample from $N(\mu_X, \sigma)$
- Let Y_1, \ldots, Y_m be second random sample from $N(\mu_Y, \sigma)$
- Let S_X^2 and S_Y^2 be the two sample variances
- Let S_n^2 be the pooled variance,

$$S_p^2 = \frac{\sum_{j=1}^n (X_j - \overline{X})^2 + \sum_{j=1}^m (Y_j - \overline{Y})^2}{n + m - 2} = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n + m - 2}$$

Then the quantity

$$T_{n+m-2} = \frac{\left(\overline{X} - \mu_{X}\right) - \left(\overline{Y} - \mu_{Y}\right)}{S_{p}\sqrt{\frac{1}{n} + \frac{1}{m}}}$$

has Student T distribution with n + m - 2 df.

Testing $H_0: \mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$ (continued)

Bruce M. Boghosian

Introduction and motivation

Testing H_0 : $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Summary

Pf:

First note that we can write

$$T_{n+m-2} = \frac{\left(\overline{X} - \mu_X\right) - \left(\overline{Y} - \mu_Y\right)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{\frac{X - Y - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{S_p^2}{\sigma^2}}}$$
$$= \frac{\frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{1}{n+m-2} \left[\sum_{j=1}^{n} \left(\frac{X_j - \overline{X}}{\sigma}\right)^2 + \sum_{j=1}^{m} \left(\frac{Y_j - \overline{Y}}{\sigma}\right)^2\right]}}$$

- Var $(\overline{X} + \overline{Y}) = \frac{\sigma^2}{n} + \frac{\sigma^2}{m} = \sigma^2 (\frac{1}{n} + \frac{1}{m})$
- So numerator of above is distributed as a standard normal

Testing $H_0: \mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$ (continued)

Bruce M. Boghosian

Introductio and motivation

Testing H_0 : $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Summary

■ Pf:

Turning our attention to the denominator of

$$T_{n+m-2} = \frac{\frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{1}{n+m-2} \left[\sum_{j=1}^n \left(\frac{X_j - \overline{X}}{\sigma} \right)^2 + \sum_{j=1}^m \left(\frac{Y_j - \overline{Y}}{\sigma} \right)^2 \right]}}$$

- We see that $\sum_{j=1}^{n} \left(\frac{X_{j} \overline{X}}{\sigma}\right)^{2}$ and $\sum_{j=1}^{m} \left(\frac{Y_{j} \overline{Y}}{\sigma}\right)^{2}$ are independent χ^{2} r.v.s with n-1 and m-1 df, respectively.
- Hence their sum U is χ^2 distributed with n+m-2 df.
- Also numerator and denominator above are independent.
- ∴ $T_{n+m-2} = \frac{Z}{\sqrt{\frac{U}{n+m-2}}}$ is t distributed with n+m-2 df. \square

Tufts Testing $H_0: \mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$ (continued)

Testing H_0 :

Thm.: Let x_1, \ldots, x_n and y_1, \ldots, y_m be independent random samples from normal distributions with means μ_X and μ_Y , respectively, and with the same standard deviation σ .

- Since H_0 is $\mu_X = \mu_Y$, define the quantity $t = \frac{x-y}{s_p\sqrt{\frac{1}{n}+\frac{1}{m}}}$.
 - To test $H_0: \mu_X = \mu_Y$ versus $H_1: \mu_X > \mu_Y$ at the α level of significance, reject H_0 if $t \ge +t_{\alpha,n+m-2}$.
 - To test $H_0: \mu_X = \mu_Y$ versus $H_1: \mu_X < \mu_Y$ at the α level of significance, reject H_0 if $t \leq -t_{\alpha,n+m-2}$.
 - To test $H_0: \mu_X = \mu_Y$ versus $H_1: \mu_X \neq \mu_Y$ at the α level of significance, reject H_0 if either (a) $t \leq -t_{\alpha/2,n+m-2}$ or (b) $t \geq +t_{\alpha/2,n+m-2}$.

Example

Bruce M. Boghosian

Introduction and motivation

Testing H_0 : $\mu_X = \mu_Y$ when $\sigma_X = \sigma_Y$

Summary

- Were Mark Twain and Quintus Curtius Snodgrass the same person?
- Proportion of 3-letter words used in n = 8 writings of MT and m = 10 of QCS.

- Find $\overline{x} = \frac{1}{8} \sum_{j=1}^{8} x_j = 0.2319 \& \overline{y} = \frac{1}{10} \sum_{j=1}^{10} y_j = 0.2097.$
- Is this close enough to conclude that $\mu_X = \mu_Y$?

Tufts Example (continued)

Testing H_0 :

■ Find $\overline{x} = \frac{1}{8} \sum_{i=1}^{8} x_i = 0.2319 \& \overline{y} = \frac{1}{10} \sum_{i=1}^{10} y_i = 0.2097.$

- Is this close enough to conclude that $\mu_X = \mu_Y$?
- Hypothesis test with $H_0: \mu_X = \mu_Y$ and $H_1: \mu_X \neq \mu_Y$.
- Calculate $s_x^2 = 0.0002103$ and $s_y^2 = 0.0000955$
- Then calculate

$$s_p = \sqrt{\frac{(n-1)s_\chi^2 + (m-1)s_\gamma^2}{n+m-2}} = 0.0121.$$

Tufts Example (continued)

Testing H_0 :

Then calculate

$$t = \frac{\overline{x} - \overline{y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{0.2319 - 0.2097}{0.0121 \sqrt{\frac{1}{8} + \frac{1}{10}}} = 3.88$$

- Take $\alpha = 0.01$, reject H_0 if $t \le -t_{0.005,16} = -2.9208$ or $t \ge t_{0.005.16} = 2.9208.$
- Hence we reject H_0 .
- MT & QCS not same person with 99% confidence.

Tufts Summary

- We have defined two-sample tests.
- We have tested $H_0: \mu_X = \mu_Y$.
- We have provided an example.