

Then we will show that in general
$ \varphi(r) = \int d^3r G(\vec{r}, \vec{r}) \rho(\vec{r}) \qquad \text{Produce by all charges} \\ Volume \qquad \qquad \text{in the Volume V} $
In the volume V
Volume
- (da 2G (r 2) V(c)
- Jaa 2G, (r, r,) 4 (r)
→ → → → → → → → → → → → → → → → → → →
Where Surface integral. The boundary value,
P(r), acts as a source for the
26 (17) = n. VG(1,1) interior. The boundary - to-bulk
1 on a creen tunction is given by
= n; 2G(r,r) the normal derivative of the 2ri Dirichlet Green Function
Dirichlet Green Function
2G,(r, r) = "surface green
ano function"
We will first use this formula in a specific
example. Then we will give a proof of the
theorem
1 4 60 1 0 1 1

Example Problems Where Green Thrm is useful
Find the potential
1) (1-7 in upper half
plane Two halves
of a metal plane
Yo=V Yo=O are held at potentials
Y=V and Y=O. See
hotes for solution
2) Consider a cylinder (metal) infinite in
length. The top half is held at potential
V and the bottom half is held at potential
$-\sqrt{}$
$\forall \circ = \varphi_{\circ}$
\mathcal{L}
$\frac{\nabla \varphi_{=?}}{-\nabla_{=}} = \varphi_{0}$
Find the potential in interior. See Jackson
probs 2.12 and 2.13, for solution

$$\varphi(\vec{r}) = -\int da \, \partial G_{\rho}(\vec{r}, \vec{r}) \, \varphi(r)$$
boundary

Then we integrate over the boundary $V_0=40$ O=40 only the left half contributes since 4 is zero on the right half. We have

 $\frac{\partial G(\vec{r}, r_0) = \vec{n} \cdot \nabla_r G(\vec{r}, \vec{r}_0)}{\partial r_0}$ $\vec{n} = \text{outward}$ directed normal

 $= \left(\frac{\partial}{\partial y_o}\right) \left[\frac{1}{\sqrt{\pi} \left((x-x_o)^2 + (y-y_o)^2 + (z-z_o)^2\right)^{N_2}}\right]$

 $\frac{-1}{\sqrt{1+((x-x_0)^2+(y+y_0)^2+(z-z_0)^2)^{1/2}}} = 0$ and

 $\int da_0 = \int dz_0 \int dx_0 = integral \text{ over the left}$ boundary $-\infty$ - ∞ hand plate

The rest is algebra (see handout). Find

$$\frac{\varphi(\vec{r}) = \sqrt{\tan^{-1}\left(\frac{1}{x}\right)} = \sqrt{\theta}}{\pi}$$

This satisfies the boundary condition

I. FINISHING UP PROBLEM ON GREEN THEOREM

First we have

$$\varphi(\mathbf{x}) = -\frac{V_o}{4\pi} \int_{-\infty}^{\infty} dz_o \int_{-\infty}^{0} dx_o \frac{-\partial}{\partial y_o} \left[\frac{1}{((x-x_o)^2 + (y-y_o)^2 + (z-z_o)^2)^{1/2}} - \frac{1}{((x-x_o)^2 + (y+y_o)^2 + (z-z_o)^2)^{1/2}} \right]_{y_o=0}$$
(1.1)

In the first step we integrate over z_o getting

$$\underline{\varphi(x) = -\int_{-\infty}^{0} dx_o V_o \frac{-\partial}{\partial y_o} \left[-\frac{1}{2\pi} \log(\sqrt{(x-x_o)^2 + (y-y_o)^2}) + \frac{1}{2\pi} \log(\sqrt{(x-x_o)^2 + (y+y_o)^2}) \right]_{y_o = 0}}$$
Green theorem in 2D!

Now we perform do the differentiation with respect to y_o ; then set $y_o = 0$, yielding

$$\varphi(x) = \frac{V_o}{4\pi} \int_{-\infty}^{0} dx_o \frac{4y}{(x - x_o)^2 + y^2}$$
 (1.3)

Finally doing the integral over x_o we have

$$\varphi(x) = \frac{V_0}{2\pi} \left(\pi - 2\operatorname{atan}(x/y) \right) \tag{1.4}$$

We can use some geometric identities of the arctan

$$atan(x/y) = \frac{\pi}{2} - atan(y/x)$$
 (1.5)

yielding

$$\varphi(x) = \frac{V_0}{\pi} \operatorname{atan}(y/x) \tag{1.6}$$

Remarks:

- This satisfies the boundary conditions.
- As might have been anticipated the solution is only a function of y/x. This could have been anticipated on the basis of dimensional analysis. There is no other length scale L so that the potential could be written as $\varphi(x) = f(x/L, y/L)$. Further the only quantity which has dimensions of voltage is V_o thus from the get go we know that

$$\varphi(x) = V_o f(y/x) \tag{1.7}$$

Another way to approach this problem is just substitute this form into the Laplace equation and integrate to determine f(y/x).

Differentiating the potential to find the electric field

$$\sigma = E_y|_{y=0} = -\frac{\partial}{\partial y}\varphi(\mathbf{x}) = \frac{-V_o}{x}$$
(1.8)

This seems reasonable to me.

Proof of Green Theorem - Jackson 1.10 The proof given below generalizes to many types of equations. I used it for scalar waves in a curved acometry in my life. geometry in my life. $G_{D}(\vec{y},\vec{x})$ is the green function $\vec{X} \equiv \text{where the charge is}$ $\vec{y} \equiv \text{where the potential is observed}$ Then below $\nabla = \partial = \partial$; and $\nabla G = \nabla_{\mathbf{x}} G_{\mathbf{p}}(\mathbf{y}, \mathbf{x})$ similarly 2, 6 = 2 6 p (\$,\$). Now $-\nabla_{x}^{2} G_{D}(y,x) = S^{3}(\vec{y}-\vec{x})$ S. $\varphi(\dot{\beta}) = \left(a^3 \times \varphi(x) \left(-\nabla^2_{i}G(y,x)\right)\right)$ Now integrate twice by parts so $-\nabla_x^2$ acts on Y(x). Using $u \, dv = d(uv) - v \, du$ twice we have: 4 (-2, 2, 6) = -2, (42, 6) + 2, 43, 6 = -3: (4), (9, (9, (9, (8)) - (8, 9, 4)) 6 = -2. (42,6 - 2,46) + (- 124) G

So	using	$-\nabla_{3}\varphi = \varphi$	we	have		
,	0					
		a	7	۸	^	
	4(y) =-	/ da. (4)	= - 2i 4	;) +	ρ(x) 6(y,x)	d ³ x
)				
	Ç	Surface			Volume	
Since	for the	Dicichlet	Green	function	$G(\vec{y}, \vec{x}) = 0$	when
X					erm vanishes.	•
	<u> </u>			7		
Lea	ving					
	(g) =	- (dañ.	76 (4 x) 4(x).	+ J p(x) G(y, x) 93×
			× J			
		_		. 0		
		Surface		. 0	Volume	
		_				
		_				
		_		0		
		_				
		_				
		_				
		_				
		_				
		_				
		_				
		_				
		_				