Correction:

Problème

I)-De quoi s'agit-il?

Similitudes directes - Similitudes indirectes - composée de similitudes-construction du centre d'une similitude-Paraboles –tangentes à une paraboles –Construction du point de contact d'une tangente à une parabole.

II)-Solutions et commentaires.

A)1)a) On a f(O) = I et f(D) = J.
$$(\overrightarrow{OD}, \overrightarrow{IJ}) \equiv (\overrightarrow{AO}, \overrightarrow{AC})$$
 [2 π] $\equiv \alpha$ [2 π]

D'où l'angle de la similitude f est α .

Soit k le rapport de f. On a
$$k = \frac{IJ}{OD} = \frac{AI}{AO} = \cos \alpha$$
.

b) On a :
$$\frac{AI}{AO} = \cos\alpha = k$$
 et $(\overrightarrow{AO}, \overrightarrow{AI}) \equiv (\overrightarrow{AO}, \overrightarrow{AC})$ $[2\pi] \equiv \alpha$ $[2\pi]$, d'où A est le centre de f.

2)a) On a
$$(\overrightarrow{AB}\,\hat{},\overrightarrow{AO})\equiv\alpha$$
 $\left[2\pi\right]$ et $\frac{AO}{AB}=\cos\alpha$, d'où $f(B)=O$.

On a
$$(\overrightarrow{AC}, \overrightarrow{AE}) \equiv \alpha$$
 $[2\pi]$ et $\frac{AE}{AC} = \cos\alpha$, d'où f(C) = E.

b) On a
$$f(B) = O$$
 et $f(C) = E$, d'où $\frac{OE}{BC} = k = \cos\alpha$.

- 3) σ la similitude indirecte telle que $\sigma(B) = O$ et $\sigma(C) = E$.
- a) Soit k' le rapport de σ .

On a
$$\sigma(B) = O$$
 et $\sigma(C) = E$, d'où $k' = \frac{OE}{BC} = k = \cos\alpha$.

b) On a O est le milieu du segment [BC], d'où $\sigma(O)$ est le milieu du segment $[\sigma(B) \ \sigma(C)]$, c'est-à-dire milieu de [OE]. D'où $\sigma(O) = I$.

4)a)
$$S_{(OE)}of(B) = S_{(OE)}(O) = O = \sigma(B)$$

$$S_{(OE)}of(C) = S_{(OE)}(E) = E = \sigma(C).$$

 $S_{(OE)}$ est une similitude indirecte et f est une similitude directe, d'où $S_{(OE)}$ of est une similitude indirecte.

 $S_{(OE)}$ of et σ sont deux similitudes indirectes qui coïncident en deux points distincts, donc elles sont égales. Ainsi $S_{(OE)}$ of $= \sigma$.

b) $\sigma(D) = S_{(OE)} \circ f(D) = S_{(OE)} (J) = A$, en effet on a O est le milieu de [AD] et (OI) parallèle à (DJ), donc I la milieu de [AJ].

$$\sigma(A) = S_{(OE)} of(A) = S_{(OE)}(A) = J.$$

5)a) Soit Ω le centre de σ .

$$\sigma \circ \sigma(D) = \sigma(A) = J$$

σοσ est une homothétie de centre Ω. D'où Ω appartient à la droite (DJ).

- b) $\sigma \circ \sigma(B) = \sigma(O) = I$, d'où Ω appartient à la droite (BI).
- c) Ω est donc le point d'intersection des droites (BI) et (DJ).
- d) $\sigma \circ \sigma$ est une homothétie de centre Ω et de rapport $\cos^2 \alpha$.

B)1)a)
$$(\overrightarrow{OC} \, \widehat{,} \, \overrightarrow{OI}) \equiv \frac{\pi}{2} - (\overrightarrow{CI}, \overrightarrow{CO}) \quad [2\pi] \equiv \frac{\pi}{2} - (\frac{\pi}{2} - \alpha) \quad [2\pi] \equiv \alpha \quad [2\pi].$$

$$\frac{\text{OI}}{\text{OC}} = \cos \alpha$$
 \Rightarrow $\text{OI} = \cos \alpha$, (on a OC = 1).

- b) On a $\overrightarrow{OI} = OI \cos \alpha \overrightarrow{u} + OI \sin \alpha \overrightarrow{v} = \cos^2 \alpha \overrightarrow{u} + \sin \alpha \cos \alpha \overrightarrow{v}$.
- c) On a I($\cos^2\alpha$, $\sin\alpha\cos\alpha$) et B(-1,0).

$$\overrightarrow{\Omega I} = \cos^2 \alpha \ \overrightarrow{\Omega B} \qquad \Rightarrow \begin{cases} \cos^2 \alpha - x = \cos^2 \alpha \ (-1 - x) \\ \sin \alpha \ \cos \alpha = \cos^2 \alpha \ (-y) \end{cases}$$

$$\Rightarrow \begin{cases} x = 2 \cot g^2 \alpha \\ y = \cot g^2 \alpha \end{cases}$$

2)
$$\begin{cases} x = 2 \cot^2 \alpha \\ y = \cot^2 \alpha \end{cases} \Rightarrow y^2 = \frac{1}{2} x.$$

D'où Ω varie sur une parabole de foyer $F(\frac{1}{8},0)$ et de directrice la droite Δ d'équation $x=-\frac{1}{8}$.

(Le point O est le sommet de cette parabole).

3)a) On considère l'homothétie h de centre F et de rapport 2.

On pose H = h(M) et H' = h(N).

H et H' sont les symétriques de F respectivement par rapport à (BM) et (BN).

On a $h((MN)) = \Delta$.

Ainsi les symétriques de F respectivement par rapport à (BM) et (BN) sont sur la directrice Δ de la parabole. D'où les droites (BM) et (BN) sont les tangentes à la parabole issues du point B.

b) La perpendiculaire à Δ en H rencontre la droite (BM) en M_1 , le point de contact de la tangente (BM) à la parabole.

De même, la perpendiculaire à Δ en H' rencontre la droite (BN) en N_1 , le point de contact de la tangente (BN) à la parabole.

