

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH11)

Paper 01: Structure, Bonding and Introduction

to Organic Chemistry

Section A (multiple choice)

_	Correct Answer	Mark
Number		4
1	The only correct answer is A (iron and copper(II) sulfate solution)	1
	B is incorrect because the reaction is a precipitation	
	C is incorrect because the reaction is a neutralisation	
	D is incorrect because there is no reaction	

Question	Correct Answer	Mark
Number		
2	The only correct answer is D (silver nitrate solution and potassium bromide solution)	1
	A is incorrect because the reaction is a neutralisation	
	B is incorrect because there is no reaction	
	C is incorrect because the reaction is a displacement	

Question	Correct Answer	Mark
Number		
3	The only correct answer is C (7,8,10)	1
	A is incorrect because this is the number of protons, electrons and neutrons in the $^{15}_{7}N$ atom	
	B is incorrect because this is the number of protons, electrons and neutrons in the $^{15}_{7}N$ $^{3+}$ ion	
	D is incorrect because it the numbers of protons and neutrons have been reversed	

Question	Correct Answer	Mark
Number		
4	The only correct answer is D (9)	1
	A is incorrect because it is the number of occupied quantum shells	
	B is incorrect because it is the number of occupied subshells	
	C is incorrect because the electrons in the 3p subshell have been paired before each orbital is occupied	

Question Number	Correct Answer	Mark
5	The only correct answer is A Br CI	1
	B is incorrect because it is Z-2-bromo-3-chloropent-2-ene	
	C is incorrect because it is E-3-bromo-2-chloropent-2-ene	
	D is incorrect because it is E-4-bromo-3-chloropent-2-ene	

Question Number	Correct Answer	Mark
6(a)	The only correct answer is C (it is toxic at low concentrations)	1
	A is incorrect because CO does not form an acid in the atmosphere	
	B is incorrect because CO does not strongly absorb infrared radiation	
	D is incorrect because CO is not the main cause of ozone layer depletion	

Question Number	Correct Answer	Mark
6(b)	The only correct answer is D (120)	1
	A is incorrect because it is the volume of butane that has not reacted	
	B is incorrect because it is the total volume of reactants	
	C is incorrect because it is the total volume of products	

Question Number	Correct Answer	Mark
7(a)	The only correct answer is A (to break the Br-Br bond only)	1
	B is incorrect because the energy of ultraviolet radiation is insufficient to break a $C-H$ bond	
	C is incorrect because the energy of ultraviolet radiation is insufficient to break a $C-C$ bond	
	D is incorrect because the energy of ultraviolet radiation is insufficient to break a $C-H$ bond	

Question	Correct Answer	Mark
Number		
7(b)	The only correct answer is D (propagation, homolytic)	1
	A is incorrect because initiation would not have a free radical reactant and heterolytic bond breaking would form ions	
	B is incorrect because initiation would not have a free radical reactant	
	C is incorrect because heterolytic bond breaking would form ions	

Question Number	Correct Answer	Mark
7(c)	The only correct answer is B $(C_8H_{18} + Br_2 \rightarrow C_8H_{17}Br + HBr)$	1
	A is incorrect because hydrogen is not formed in the reaction	
	C is incorrect because the carbon chain does not break in the reaction	
	D is incorrect because the carbon chain does not break in the reaction and a $C=C$ double bond does not form	

Question	Correct Answer	Mark
Number		
8	The only correct answer is D (CH ₂ Cl ₂)	1
	A is incorrect because C_5H_{12} is non-polar	
	B is incorrect because although CCl4 has polar bonds it does not have a dipole moment	
	C is incorrect because although BCl3 has polar bonds it does not have a dipole moment	

Question Number	Correct Answer	Mark
9	The only correct answer is D (54.2)	1
	A is incorrect because the volume has been divided by the density rather than multiplied	
	B is incorrect because the volume has been divided by the density, then divided by the atomic number	
	C is incorrect because the volume has been divided by the relative atomic mass	

Question Number	Correct Answer	Mark
10(a)	The only correct answer is B (region Q)	1
	A is incorrect because region P denotes where ionisation takes place	
	C is incorrect because region R denotes where deflection takes place	
	D is incorrect because region S denotes where detection takes place	

Question Number	Correct Answer	Mark
10(b)	The only correct answer is B ($^{54}Fe^{2+}$)	1
	A is incorrect because it has the same mass but a smaller charge than 54 Fe $^{2+}$	
	C is incorrect because it has a larger mass and a smaller charge than 54 Fe $^{2+}$	
	D is incorrect because it has a larger mass than 54 Fe $^{2+}$	

Question	Correct Answer	Mark
Number		
10(c)	The only correct answer is C (3)	1
	A is incorrect because it assumes that all chlorine molecular ions have the same mass	
	B is incorrect because it assumes that all chlorine molecules only form between atoms of the same mass	
	D is incorrect because it assumes that $^{35}Cl - ^{37}Cl$ and $^{37}Cl - ^{35}Cl$ are not identical	

Question	Correct Answer	Mark
Number		
11(a)	The only correct answer is B (element V)	1
	A is incorrect because in element U each p orbital contains a single electron	
	C is incorrect because in element W two p orbitals contain electron pairs	
	D is incorrect because in element X three p orbitals contain electron pairs	

Question	Correct Answer	Mark
Number		
11(b)	The only correct answer is B (element X)	1
	A is incorrect because element S is in Group 3	
	C is incorrect because element Y is in Group 1	
	D is incorrect because element Z is in Group 2	

Question	Correct Answer	Mark
Number		
11(c)	The only correct answer is D (element Y)	1
	A is incorrect because in element S the second electron is not removed from an inner shell	
	B is incorrect because in element T the second electron is not removed from an inner shell	
	C is incorrect because in element X the second electron is not removed from an inner shell	

Question Number	Correct Answer	Mark
12	The only correct answer is C (0.0654)	1
	A is incorrect because this is the moles of hydrated copper(II) sulfate used	
	B is incorrect because this is the moles of anhydrous copper(II) sulfate used	
	D is incorrect because the $5H_2O$ are not included in the molar mass	

Question Number	Correct Answer	Mark
13	The only correct answer is A (5.65)	1
	B is incorrect because the yield of 95% has not been used	
	C is incorrect because the 2:1 ratio in the equation has not been used	
	D is incorrect because the yield of 95% and the 2:1 ratio in the equation have not been used	

Total for Section A = 20 marks

Section B

Question Number	Correct Answers	Additional Guidance	Mark
14(a)(i)	$Ba^{2+}(g) \rightarrow Ba^{3+}(g) + e^{(-)}$	Allow e ⁽⁻⁾ (g) / 1e ⁽⁻⁾	1
	OR	Do not award multiples	
	$Ba^{2+}(g) - e^{(-)} \rightarrow Ba^{3+}(g)$	Allow ions shown as Ba ⁺² (g) and Ba ⁺³ (g) Allow Ba ⁺⁺ /Ba ⁺⁺⁺ Comment – allow lower case	
		'ba ²⁺ ' etc	

Question Number	Correct Answers	Additional Guidance	Mark
14(a)(ii)	An answer that makes reference to the following:		1
	• there is a large increase (in ionisation energy)	Note – there must be some indication of a significant increase	
	and	Allow just there is a jump	
	• between the 2 nd and 3 rd ionisations	Allow 'after 2 electrons are removed' / between the 2 nd and 3 rd electrons Ignore comments related to first ionisation energy	
		ionisation energy	

Question Number	Acceptable Answers		Additional Guidance	Mark
14(b)(i)	An answer that makes reference to one of the following points:			2
	barium ion shown correctly	(1)	Allow barium ion with no electrons shown Allow lower case 'ba' Ignore any inner shells shown for Ba ²⁺	
	 one chloride ion shown correctly and an indication of two chloride ions present 	(1)	If inner shells shown for Cl ⁻ they must be correct	
	example of dot-and-cross diagram 2+ Cl Cl Cl		Allow all dots or all crosses Ignore absence of square brackets Ignore any working Do not award covalent diagrams Comment If all charges are omitted, we assume the bonding is covalent so scores zero	

Question Number	Acceptable Answers		Additional Guidance	Mark
14(b)(ii)			Example of calculation	2
	calculation of moles of barium chloride	(1)	$0.200 \times (150 \div 1000) = 0.03 \text{ (mol)}$ Ignore units in M1 even if incorrect	
	• calculation of mass of barium chloride to 2 or 3 SF ((1)	$0.03 \times 208.3 = 6.249$	
			=6.2 / 6.25 (g)	
			Do not award 6.3	
			Ignore absence of units but if given must be correct in M2	
			Correct answer with no working scores 2 marks	
			Allow $0.03 \times 208 = 6.24 / 6.2$ for M2	
			Allow TE from M1 to M2	

Question Number	Acceptable Answers	Additional Guidance	Mark
14(b)(iii)	$2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$	Accept $2H_3O^+ + CO_3^{2-} \rightarrow 3H_2O + CO_2$	1
		Allow H ₂ CO ₃ Allow multiples Ignore state symbols even if incorrect Do not award uncancelled chloride ions	

Question Number	Acceptable Answers	Additional Guidance	Mark
14(c)	An answer that makes reference to the following point:		1
	• (the) ions are not free to move (and carry charge) / (the) ions are in a fixed position (so cannot carry charge)	Do not award 'electrons are not free to move' Do not award if any statement that BaCl ₂ is covalent	

Total for Question 14 = 8 marks

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(i)	• 2,2,4-trimethylpentane	Ignore any incorrect or absent commas, hyphens etc	1
		Allow 2,2-dimethyl-4-methylpentane	
		Note: ignore minor misspelling of methyl	
		e.g. 'methly'	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(ii)	reforming	Allow reformation / reform	1
		Do not award cracking / fractional distillation Ignore rearrangement / isomerisation	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(a)(iii)	 prevents knocking / prevents pre-ignition / prevents pinking 	Allow smoother combustion / smoother burning / increases octane number / improves octane number / increases RON IGNORE increases the volatility of a fuel /	1
		ignites more easily / is a better fuel / burns more cleanly / has a lower boiling temperature / is a safer fuel / burns more efficiently	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(b)	. (1)	Penalise use of displayed or structural formulae once only	4
		If displayed / semi-displayed formulae used ignore connectivity of CH ₃ groups	
		Ignore names even if incorrect	
	• (1)		
	(1)		
	or (1)		

Question Number	Acceptable Answers	Additional Guidance	Mark
15(c)(i)	dipole on hydrogen bromide molecule and structure of final product (1)	Allow any combination of displayed, structural or skeletal formulae	4
	• curly arrow from C=C to H and curly arrow from H-Br bond to, or just beyond, Br (1)		
	• carbocation intermediate (1)	Allow + on bracket around the structure Do not award δ + on intermediate	
	• lone pair on Br– and curly arrow from lone pair	Do not award δ– on Br in M4	
	to positive charge (1)	Penalise use of half-arrows once only	
		If minor product is shown then do not award	
		M1 NOTE – incorrect starting alkene can score M2 and M4 only	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(c)(ii)	the tertiary carbocation is (more) stable (than the primary carbocation)	Accept the 3° carbocation is more stable (than the 1° carbocation)	1
		Allow a description of a 3° carbocation e.g. '3 methyl groups attached to the positive C'	
		Ignore explanations of stability even if incorrect / Ignore references to Markovnikov's law	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(d)(i)		Example of calculation	2
	• expression for calculation of moles of C and H (1)	Element C H	
		Expression to calculate moles 92.3 / 12 7.7 / 1	
	• deduction of empirical formula (1)	Moles (mol) = 7.7 (mol) = 7.7 (mol)	
		Ratio 1 1 Empirical formula = CH / HC No TE from M1 to M2	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(d)(ii)		Example of calculation	4
	 conversion of volume to m³ (1) conversion of temperature to K and pressure to Pa (1) 	98 x 10 ⁻⁶ (m ³) – if <i>V</i> in dm ³ then pressure must be in kPa 358 (K) and 104 000 (Pa)	
	• rearrangement of ideal gas equation and calculation of <i>n</i> (1)	$n = pV \div RT = (104\ 000\ \text{x}\ 98\ \text{x}\ 10^{-6}) \div (8.31\ \text{x}\ 358)$ $= 3.4259\ \text{x}\ 10^{-3}\ (\text{mol})$	
	• calculation of molar mass (1)	Molar mass = $(0.267) \div (3.4259 \times 10^{-3}) = 77.9 / 78$ (g mol ⁻¹) Comment Do not penalise grams given as units for molar mass	
		M1 and M2 could be subsumed within M3 Answer of 78 with no working scores M4 only	

Question Number	Acceptable Answers	Additional Guidance	Mark
15(d)(iii)	C_6H_6	Standalone mark No TE from di and dii	1

Question Number	Acceptable Answers	Additional Guidance	Mark
16(a)	An explanation that makes reference to the following points: • atoms (of the same element) with the same number of protons / atoms with same atomic number / atoms with same proton number • with a different number of neutrons / neutron number / mass number (1)	NOTE answers with no reference to atoms can score 1 max for correct statements about the number of protons and neutrons or atomic number and mass number e.g. 'elements with same number of protons but different number of neutrons' scores 1 mark e.g. 'isotopes have the same atomic number and different mass number' scores 1 mark Ignore references to same number of electrons	2
		Ignore references to relative atomic mass	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(b)		Example of calculation	2
	• numerator of weighted mean expression (1)	$(70 \times 20.6) + (72 \times 27.4) + (73 \times 7.7) + (74 \times 36.7) + (76 \times 7.6)$	
	• calculation of relative atomic mass (1)	$ \frac{(70 \times 20.6) + (72 \times 27.4) + (73 \times 7.7) + (74 \times 36.7) + (76 \times 7.6)}{100} $ $ = 72.703 / 72.70 / 72.7 $	
		TE on one transcription error	
		Final answer must be to at least 1 decimal place	
		Correct answer with no working scores 2 Ignore units	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(c)	• 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ²	Allow [Ar] $3d^{10}4s^24p^2$ Allow $4s^2$ immediately before $3d^{10}$ Allow $3p_x^23p_y^23p_z^2$ Allow numbers of electrons not shown as superscripts Allow upper case letters for 'S', 'P' and 'D'	1

•

Question Number	Acceptable Answers	Additional Guidance	Mark
16(d)(i)		Example of calculation	2
	• calculation of $\sum M_{\rm r}$ (all reactants) $/\sum M_{\rm r}$ (all product	s) 46+72.6 +48+23+10.8+4+18 = 222.4 1) / 72.6+4+80+23+10.8+32) = 222.4	
	• calculation of atom economy as a percentage (1)	$(76.6 \div 222.4) \times 100 = 34.442\%$ Allow TE in M2 from M1 provided atom economy is less than 100% Allow use of $A_r = 72.7$ for Ge calculated in (b) which gives the answer 34.472%	
		Ignore SF except 1 SF	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(d)(ii)	 An explanation that makes reference to the following points: 3 bond pairs between Ge atom and three H atoms lone pair on Ge atom (and charge on ion) 	(1) (1)	Allow any combination of dots and / or crosses Ignore missing charge on ion	2
			Ignore lines showing covalent bonds	

Question Number	Acceptable Answers		Additional Guidance	Mark
16(d)(iii)	An answer that makes reference to the following points: • trigonal pyramid(al)	(1)	Allow pyramidal	2
	 trigonal pyramid(al) angle between 106 and 108° 	(1)(1)	Comment – the correct shape and angle are standalone marks. However allow trigonal planar and 120° for 2 marks if (d)(ii) shows only 3 bond pairs.	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(d)(iv)		Example of calculation	4
	 calculation of maximum mass of germane in laboratory in mg (1) 	$0.640 \times 231 = 147.84 \text{ (mg)}$	
	• conversion of mass from mg to g (1)	147.84 ÷ 1000 = 0.14784 (g) Allow TE from M1 to M2	
	• calculation of moles of germane (1)	= $0.14784 \div 76.6 = 1.9300 \times 10^{-3}$ (mol) Allow TE from M2 to M3	
	 calculation of maximum number of germane molecules in laboratory 	$1.9300 \times 10^{-3} \times 6.02 \times 10^{23}$ = 1.1619 × 10 ²¹ (molecules)	
	NOTE – do not award M1 and M2 if there is evidence that candidates believe the values 147.84 / 0.14784 are moles. Such answers are likely to only be able to access M4	Allow TE from M3 to M4 Allow use of 76.7 for 76.6 giving 1.1604×10^{21} Correct answer with no working scores 4	
		marks Ignore SF except 1 SF	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(e)(i)			1
	 calculation of moles of carbon dioxide 	(335.5 ÷ 24000)	
		= $0.013979 / 1.3979 \times 10^{-2}$ (mol)	
		Ignore SF except 1 SF	

Question Number	Acceptable Answers	Additional Guidance	Mark
16(e)(ii)			1
	• answer to (i) × 2	(0.013979×2)	
		$= 0.027958 / 2.7958 \times 10^{-2} $ (mol)	
		Ignore SF except 1 SF	
		Allow TE from (i)	

Question	Acceptable Answers	Additional Guidance	Mark	
Number				
16(e)(iii)			1	
	• answer to (ii) \div 4	$(0.027958 \div 4)$		
		$= 0.0069896 / 6.9896 \times 10^{-3} $ (mol)		
		Ignore SF except 1 SF		
		Allow TE from (ii)		

Question Number	Acceptable Answers	Additional Guidance	Mark
16(e)(iv)			2
	• 1.50 ÷ (answer to (iii)) (1)	$1.50 \div 6.9897 \times 10^{-3} = 214.6 \text{ (g mol}^{-1)}$	
		214 6 72 6 142 01	
	• identification of X (1)	214.6 - 72.6 = 142.01	
		$142.01 \div 4 = 35.501$; so X = Cl	
		Allow TE from (iii) Must be some	
		correct working to score M2	

Total for Question 16 = 20 marks

Question Number	Acceptable Answers		Additional Guidance	Mark
17(a)	An answer that makes reference to the following points:			2
	• C ₁₀	(1)	Allow in either order	
	• H ₁₆	(1)	Allow numerical values not shown as subscripts e.g. C10H16 scores both marks	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following points:	Do not award other colours	1
	• from purple to colourless	Allow (pale) pink to colourless Ignore references to clear Ignore adjectives before purple e.g. deep purple	

Question Number	Acceptable Answers	Additional Guidance	Mark
17(b)(ii)	ОНОНОН	Allow displayed formula Ignore connectivity of OH group unless bond shown horizontally, and H connected directly to bond Ignore orientation of OH group	1

Question Number	Acceptable Answers	Additional Guidance	Mark
17(b)(iii)	• oxidation	Allow electrophilic addition	1

Question Number	Acceptable Answers	Additional Guidance	Mark
17(c)	H ₃ C CH ₂ H C CH ₂ H C H H	Allow skeletal, structural or displayed or any combination Ignore 'n' before or after structure Ignore connectivity of CH ₃ and CH ₂ groups	1

Question Number	Acceptable Answers	Additional Guidance	Mark
17(d)	An answer that makes reference to any two of the following points:	Allow the term 'plastic' for polymers	2
	• (help develop) biodegradable polymers / polymers from plant material / (polymers that can be) re-used / (polymers that can be easily) recycled (1)	Ignore biopolymers Ignore reduce use of polymers	
	 remove (toxic) gases produced by incineration (of polymers) (1) (develop processes to) convert polymers back into feedstock (for use in chemical industry) (1) use of IR (spectroscopy) to separate polymers (for recycling) (1) 	Allow monomers / smaller molecules / more reactive molecules / more useful molecules for 'feedstock'	

	Acceptable Answers	Additional Guidance	Mark
17(e)(i)	An answer that makes reference to the following points:	Allow reverse arguments for hexane	2
	advantage of liquid CO ₂		
	• non-flammable / non-toxic / readily available / CO ₂ can be reused (1)	Allow can be separated (from limonene) easily Allow hexane is non-renewable / finite Ignore 'removes CO ₂ from atmosphere'	
	disadvantage of liquid CO ₂		
	energy needed to generate (high) pressure / (high) pressure is expensive / risk of explosion under pressure / (1)	Allow energy needed to maintain pressure Allow strength of vessel needed to withstand (high) pressure Ignore references to temperature Ignore just 'expensive' Do not award greenhouse gas / global warming	

Question Number	Acceptable Answers		Additional Guidance	Mark
17(e)(ii)	 calculation of mass of limonene required in 30 cm³ of cleaning product calculation of mass of orange peel needed to produce 1 g of limonene calculation of mass of orange peel needed to produce enough limonene to make 30 cm³ of cleaning product, in kg 	(1) (1) (1)	Additional Guidance Example of calculation $0.841 \times 30 = 25.23 \text{ (g)}$ Ignore units in M1 1 g limonene needs $(100 \div 1.63)$ g of peel $= 61.3497 \text{ (g)}$ $(100 \div 1.63) \times 25.23 = 1547.9 \text{ (g)}$ $= 1.55 \text{ (kg)}$ Allow final answer in grams if units quoted Allow TE throughout	3 3
			M2 could be subsumed in M3 Ignore SF except 1 SF Correct answer with no working scores 3 NOTE: if ratio in M2 is inverted mass = 4.11 x 10 ⁻⁴ (kg) and scores M1 and M3	

Total for Question 17 = 13 marks
Total for Section B = 60 marks
Total for Paper = 80 marks