Quasi school sheaves § 13.2 $M-A \quad \text{module}$ $\widetilde{M}-\text{sheaf on Spec } A \ , \quad \widetilde{M} \left(D_{F} \right) = M_{F} \ \forall \ f \in A$

Def: An O_X module $\mathcal F$ is quasi-coherent if for every $\operatorname{Spec} A \subseteq X$, $\mathcal F$ $= \mathcal M$

The Let \mathcal{F} be an \mathcal{O}_X -module. Quasi-sopherence is true if it is known an affine sover-long abstract froof.

Examples: 1) Qx is quasi-coherent

3) F such that $F|_{u_i}\simeq \mathcal{Q}_{\chi}^n|_{u_i}$ are frojective modules over $\Gamma(\chi,\mathcal{Q}_{\chi})$. And all frozertive modules over $\Gamma(\chi,\mathcal{Q}_{\chi})$. And all

4) $X = A_{R}^{'} = Spec R[t]$ (6) $A_{R}^{'}$, $F = (i_{0})_{R} R(t)$ solveraper sheaf at 0

 $\Leftrightarrow \forall \text{ Spec } A_f \subseteq \text{ Spec } A \overset{\text{open}}{\subset} X$ $\Gamma(\mathcal{F}, \text{Spec } A)_f \xrightarrow{} \Gamma(\mathcal{F}, \text{ Spec } A_f)$ this map is an isomorphism.

Rob: X q cqs (= coverable by finitely many when affine, intersection of any two of these is coverable by finitely many affines) F q coherent on X, then for $f \in \Gamma(X, \mathcal{O}_X)$ $\Gamma(X, F)_f \longrightarrow \Gamma(X_f, F)$ is an isomorphism.

Ref: $\pi: X \longrightarrow Y$ gcgs morphism, gorborent on X then $\pi_* \mathcal{F}$ is a quasi-coh. Oy module.

§ 13 4 Q. coherent sheaves form an Abelian category ker, images, quotients exist.

§ 13.5 Module like constructions · Tensor froducts · Y is × a closed embedding corresponding to cideal sheaf cl § 13.6 Finite etype & coherent sheaves Def: A-mod M is I) fin generated if $\exists A^{\dagger} \rightarrow M \rightarrow 0$ (or finite type)

2) fin-presented if $\exists A^{m} \rightarrow A^{\dagger} \rightarrow M \rightarrow 0$ 3) coherent if fin gen & for $A^{\dagger} \rightarrow M$ is finitely generated for all \triangleright Peop A northerian \Rightarrow all 3 equivalent

Coherent A-mods form abelian subcategory of A-mods Def: Extend naturally to modules over \mathcal{Q}_{χ} . Enough to wheck these perfecties on some open affine cover § 13.7 Good properties of finite type and coherent sheaves $F, G \in O_x$ -mod $Hom(F, G)(u) = Hom_{Q_x|_{U}}(F|_{u}, G|_{u})$ wheaf of Q_x -modules Not in general q-wherent even when F, G are! $\tilde{\sim}$ Easy: F is ifinitely if resented then this holds. F, G, Q, coherent \Rightarrow so is $\operatorname{Hom}(F, G)$. Rem: If X = Spec A, then the sategory of quasi-soherent X modules is equivalent to A-mod.