Análise da expressão gênica por meio da PCR quantitativa

Dra Patrícia Natália Silva

Curso de Introdução à análise bioinformática aplicada à genética

Sumário

- Revisão sobre qPCR em expressão gênica
- Resumo de metodologias SYBR® e Taqman®
- Conceitos importantes
 - Baseline, threshold, threshold cycle, normalização e eficiência de reação
- Métodos de Análises:
 - ΔΔCT e curva padrão relativa
- Análises estatísticas
 - Outliers, comparação entre RQ, $2^{-\Delta CT}$ e ΔCT

Expressão gênica

 Expressão gênica: processo pelo qual a informação de um gene é utilizado na síntese de um produto funcional

Expressão gênica

Expressão gênica

PCR quantitativa em Tempo Real

- Método usado para medir a quantidade de cDNA inicial amplificado por PCR
- Há uma relação quantitativa entre a quantidade inicial da amostra alvo e a quantidade de produto da PCR após um determinado número de ciclos

P = Produto final

T = Template no início da reação

n = Número de ciclos

E = Eficiência

Taxa de Duplicação de DNA por PCR

Fases de uma PCR

Sistemas de detecção da expressão gênica

- Agentes intercalantes de DNA
- SYBR® Green
 - Afinidade por DNA dupla fita
 - 25 vezes mais sensível que o Brometo de Etídeo

Agentes Intercalantes de DNA

Aumento do sinal é proporcional o aumento do produto

SYBR®Green

- Curva de dissociação (Curva de melting)
- Tm (Temperatura de melting)
 - Temperatura onde metade do produto de PCR está dissociado (desnaturado)

SYBR® Green

- Liga-se inespecificamente a qualquer dupla fita
- Produtos não específicos geram sinal
- Resultados quantitativos incorretos

- Desenho de primers para regiões desfavoráveis à síntese
- Menos dispendiosa

Sondas TaqMan®

- Sondas lineares (hidrólise)
- Além dos primers:

Sonda com *Quencher* e *Reporter*

TaqMan®

- Altamente específico e sensível
- Não permite, nem precisa de dissociação
- Permite Multiplex
- Mais dispendiosa \$

Baseline

Fase onde a intensidade de sinal de produto amplificado não ultrapassa a quantidade de fluorescência presente no meio.

 Background – fluorescência dos primeiros ciclos da PCR

Em que ciclo começa?

Em que ciclo termina?

O que acontece se o baseline for muito baixo?

Formato sigmoidal
Sinal fluorescente não
informativo

O que acontece se o baseline for muito alto?

Efeito dupla cascata Perda de sinal fluorescente informativo

Threshold

Nível arbitrário de fluorescência estabelecido em cima do *baseline* e dentro da região exponencial

Threshold cycle (Ct)

Número de ciclos da PCR no qual a fluorescência atinge o threshold

Normalizações:

- Reporter normalizado (Rn)
 - Sinal fluorescente normalizado por uma referência passiva
 - ROX fluorescência presente no meio (correção de volumes e diferenças de detecção na placa)
 - Fluorescência do gene alvo/fluorescência do ROX

Normalizações

• ΔRn : Reporter normalizado corrigido pelo baseline

Eficiência

 E= 100% tem que garantir que a amplificação dobra a cada ciclo

$$P = T (1 + E)^{n}$$

Eficiência

Pode variar de acordo com:

- ⁻ O preparo da reação
- ⁻ A qualidade do *templates*
- ⁻ A presença de inibidores
- ⁻ O desenho dos *primers*
- As condições de ciclagem
- A qualidade dos reagentes
- ⁻ A concentração dos reagentes
- O tamanho do *amplicon*

Eficiência da Reação - Curva padrão

- Curva padrão para calcular a eficiência da reação
- Diluições seriadas 1:10, 1:5, 1:2

Δ Δ Ct

Eficiência de PCR

Δ Δ Ct

Eficiência de PCR

$$E = 10^{(-1/slope)} - 1$$

- E equivale ao coeficiente de regressão R²
- Calculado com base no coeficiente angular da reta (slope) de acordo com a equação da regressão linear da curva padrão
- Proximidade entre os pontos individuais de Ct e a reta
- Varia entre 0-1, quanto mais perto de 1, mais ajustado

$\Delta \Delta Ct$

Eficiência de PCR

$$E = 10^{(-1/slope)} - 1$$

 $E = 10^{(-1/-3,33)} - 1$
 $E = 10^{0,30} - 1$
 $E = 1,995 - 1$
 $E = 0,995 \text{ ou } 99,5\%$

- E=100% slope de -3,32
- Mais negativos (Ex: -3,7) E<100%
- Mais positivos (Ex: -2,9) E>100% (pipetagem, qualidade da amostra)

Δ Δ Ct

Eficiência de PCR

100% eficiência: diluição 1:10, 3.32 ciclos entre cada diluição

Gene de referência/endógeno

Utilizado para corrigir variações relacionadas à:

- Quantidade de tecido utilizado na extração (número de células total)
- Eficiência de extração de RNA (por exemplo, em tecidos diferentes)
- Eficiência da transcrição reversa (RT) e da amplificação (PCR)
- Quantificação de RNA/cDNA inicial
- Pipetagem de RNA/cDNA nas reações
- Degradação de RNA/cDNA

Gene de referência

Qual é o gene de referência ideal?

Aquele cuja expressão gênica não tenha grandes variações entre as diferentes condições experimentais!

Gene Referência

 Amostras tratadas e não tratadas: amplificação do gene referência

Métodos para Cálculo da Quantificação Relativa

 Ct Comparativo (ΔΔCt) – Preparo mais simples pois não requer curva padrão. É necessária a validação das eficiências dos ensaios do gene alvo e endógeno, que devem ser semelhantes

 Curva Padrão Relativa – Não requer validação da eficiência, nem que a eficiência dos ensaios do alvo e do endógeno sejam semelhantes. Requer construção de curva padrão, portanto uso de mais reagentes e espaço na placa

Δ Δ Ct

Validação do Método do C_T Comparativo ($\Delta\Delta Ct$)

Gene Alvo - Gene Referência	Eficiência* * Tolerância de +- 10%	Cálculo
Alvo = GR	100 %	2-∆∆Ct
Alvo= GR	<100%	(1+ E)-△△Ct
Alvo≠ GR	NA	Curva Padrão Relativa

Δ Δ Ct

Δ Δ Ct

	c-myc	GAPDH Tecido	∆Ct	ΔΔCt	2 - ∆∆ Ct
	Ct ± desvio	Ct ± desvio	c-myc - GAPDH	$\Delta Ct-\Delta Ct$	Rel. ao cérebro
Cérebro	30.49 ± 0.15	23.63 ± 0.09	6.86 ± 0.17	0.00 ± 0.17	1.0 ± 0.11
Rim	27.03 ± 0.06	22.66 ± 0.08	4.37 ± 0.10	-2.50 ±0.10	5.6 ± 0.32
Figado	26.25± 0.07	24.60± 0.07	1.65 ± 0.10	-5.21 ± 0.10	37.0 ± 2.52
Pulmão	25.83 ± 0.07	23.01±0.07	2.81 ± 0.10	-4.05 ± 0.10	16.5 ± 1.10

$$\Delta C_T = C_T \text{ (alvo)} - C_T \text{ (gene de referência)}$$

$$\Delta \Delta C_T = \Delta C_T \text{ (amostra)} - \Delta C_T \text{ (calibrador)}$$

Quantidade Relativa = 2 -ΔΔCt

$\Delta \Delta Ct$

Vantagem:

- > Não há necessidade de utilizar curva padrão em toda placa.
- > Redução na quantidade de reagentes.

- Considerações:

- > Necessita ser validado.
- > Eficiência de amplificação do alvo (gene de interesse) e da referência interna (gene de referência) deve ser igual (dp = ±10%).
- > Taqman Gene Expression Assays possuem eficiência próxima de 100%
- > Ideal para um grande número de alvos e/ou amostras ou para validação de resultados de microarray.

Curva Padrão Relativa

- Necessita de curva padrão do gene alvo e do endógeno a cada placa
- Gasta mais reagentes, amostra e \$
- Ideal para estudos com número amostral pequeno
- Não necessita testar a eficiência dos ensaios
- Resultados mais precisos

Curva Padrão Relativa

c-myc		GAPDH	c-myc _N	c-myc _N	
Tecido	Valor Arbitrário	Valor Arbitrário	Norm. c/ GAPDH	Rel. ao cérebro	
Cérebro	0.039 ± 0.004	0.54 ± 0.034	0.07 ± 0.008	1.0 ± 0.12	
Rim	0.41 ± 0.016	1.02 ± 0.052	0.40 ± 0.025	5.5 ± 0.35	
Fígado	0.70 ± 0.036	0.28 ± 0.013	2.49 ± 0.173	34.2 ± 2.37	
Pulmão	0.93 ± 0.044	0.81 + 0.041	1.15 ± 0.079	15.7 ± 1.09	

Gene alvo

Amostra alvo normalizada

Gene de referência

Amostra calibradora normalizada

Análise estatística dos dados

- Verificar a distribuição dos dados:
 - Eles apresentam distribuição normal?

- Existem outliers entre as amostras?
 - Calcular zscore e excluí-los?
- Comparação entre grupos:
 - Teste-t, Anova, Mann-Whitney...
- Qual variável usar?
 - RQ? 2- Δ CT? $\Delta\Delta$ CT?

Distribuição

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
dois_DCT	,274	137	,000	,559	137	,000

a. Lilliefors Significance Correction

PASW Statistics Processor is ready

Outliers

