第二章 动物的生殖激素

主要内容

- >主要的生殖激素的种类和分泌器官;
- >生殖激素的作用历程和作用特点;
- ▶各种激素的功能与用途。

第二章 动物的生殖激素

第一节: 概述

第二节: 脑部生殖激素

第三节: 性腺激素

第四节: 胎盘促性腺激素

第五节: 其他组织器官分泌的激素

本节主要内容

- 1.激素的基本概念
- 2.激素的分类
- 3.主要的生殖激素的种类和分泌器官
- 4. 生殖激素的合成、贮存及调节

一、激素

由有机体产生、经体液循环或空气传播等途径作用于靶器官或靶细胞、调节机体生理机能的微量信息传递物质或微量生物活性物质。

一、激素

激素的作用贯穿于生殖过程的始末,没有生殖激素,生殖活动无法进行,所以学好本章内容,是学好繁殖学的关键。本章主要搞清各种生殖激素的产生、生理作用及其相互间的关系,要求在理解的基础上,加强记忆。

二、激素的分类

1、按化学性质分类

含氮激素: FSH、LH、hCG

类固醇激素: E、P、T

脂肪酸类激素: PG

2.按来源分类

脑部激素

松果腺素: MLT

下丘脑释放激素: GnRH

垂体促性腺激素:FSH、LH

性腺激素: E2、A、P4

孕体激素: 孕体激素: PMSG

组织激素: PG

外激素

二、激素的分类

三、生殖激素种类

生殖激素:与动物生殖活动有直接关系,生殖激素通常由内分泌腺体(无管腺)产生的,故又称为生殖内分泌激素。

次要生殖激素:与生殖活动无直接关系,但可影响 机体的生长和发育及代谢机能而间接影响生殖机能, 如GH等。

四、生殖激素的合成、贮存及调节

1、生物合成(基因调控)

结构基因转录、翻译合成(蛋白质、大分子肽类)

胞内酶系催化合成(类固醇、小分子肽类等)

激素的合成往往先合成分子量较大的激素原 (prohormone)或激素前体(prehormone),然后酶解,

脱下分子量较小而有生物活性的激素。

四、生殖激素的合成、贮存及调节

2、贮存

下丘脑和垂体分泌的激素,分泌后贮存在腺体内,刺激后释放。

类固醇激素合成后直接释放至细胞外液。

进入血液中的激素,少量(约5%)呈游离状态,大部分与结合蛋白质(binding protein, BP)或载体蛋白质(carrier protein, CP)结合。

四、生殖激素的合成、贮存及调节

3、释放

表分泌(epicrine): 通过相邻细胞的缝隙连接。

神经内分泌(neurocrine):神经元胞体合成后贮存于轴突,以扩散形式通过神经元的突触间隙。

旁分泌(paracrine):局部激素释放后,通过细胞外液间隙弥散至邻近靶细胞以传递局部信息。

外分泌(exocrine): 由管道排泄至体外。

自分泌(autocrine):细胞一部分影响另一部分,影响细胞器

表分泌 (Epicrine)

神经分泌 Neurocrine

旁分泌 Paracrine

自分泌 Antocrine

四、生殖激素的合成、贮存及调节

4、调节

- 正反馈与负反馈
- 长反馈或长回路反馈
- 短反馈或短回路反馈
- 超短反馈

五、激素的作用特点

- ①特异性(受体)
- ②积累性(活性丧失快,半衰期)
- ③高效性
- ④ 具有协同或抗衡的作用
- ⑤与所处生理时期及用量和方法有关
- ⑥生物学活性取决于分子结构

六、激素作用机理

(1) 蛋白质或多肽类激素作用于细胞膜

四、生殖激素的合成、贮存及调节

(2) 类固醇激素作用于细胞质和细胞核

动物繁殖学

四、生殖激素的合成、贮存及调节

(3) 外激素作用于感受器

本节小结

- 》激素的基本概念及分类
- > 激素的分泌及调节
- 》激素的作用特点及其作用机理
- > 生殖激素的的合成、贮存及其作用

本节结束

本节主要内容

- ▶下丘脑激素
- ▶垂体激素
- ▶松果腺素

一、下丘脑激素

- ◆合成部位及种类
- ◆促性腺激素释放激素
- ◆催产素

一、下丘脑激素

下丘脑内侧区主要神经核团和垂体 示意图

一、下丘脑激素

1.下丘脑激素合成部位及种类

	名称	英文缩写	化学本质	合成部位	主要生理作用
释放激素或因子	促性腺激素释 放激素	GnRH	10肽	弓状核等	促进FSH和LH的分泌和释 放
	促乳素释放因 子	PRF	多肽		促进PRL的分泌与释放
	生长激素释放 激素	GHRH	44肽	视前区核	促进GH的分泌与释放
	促甲状腺素释 放激素	TRH	3肽	正中隆起	促进TSH和PRL分泌与释放
	促肾上腺皮质 素释放激素	CRH	41肽	室旁核等	促进ACTH的分泌与释放
	促黑素细胞素 释放激素	MRH	5肽		促进MSH的分泌与释放

	名称	英文缩写	化学本质	合成部位	主要生理作用
抑制激素或因子	生长抑素	SS	14肽	视前区、室周核等	抑制GH和PRL的 释放
	促乳素抑制因 子	PIF	多肽或 胺类		抑制PRL释放
	促黑素细胞素 抑制激素	MIH	3肽	可能是0XT降解产物	抑制MSH释放
其他	催产素	ОХТ	9肽	视上核,室旁核	促进子宫收缩、 乳汁排出
	抗利尿激素	ADH	9肽	视上核,室旁核	减少尿量, 升高 血压

一、下丘脑激素

2、促性腺激素释放激素

第6、10位氨基酸变化后,生物活性增强,而其他位置的氨基酸发生变化后,生物活性降低。

激动剂

促排I号,促排II号,促排III号 巴塞林(Buserelin)

颉颃剂

一、下丘脑激素

促性腺激素释放激素 简称GnRH

(gonadotrophin releasing hormone)

来源:由分布于下丘脑内侧视前区、下丘脑前部、弓状核、视交叉上核的细胞分泌。

包括促黄体素释放激素(LH-RH或LRH) 、促卵泡素释放 激素(FSH-RH) 、LH-RF (LRF) 、FSH-RF

Schally等(1971年), 165000头猪的下丘脑组织、12步 分离和提取。

一、下丘脑激素

生理功能

(1) 促进垂体LH和FSH的合成和释放

雄性:促进精子发生和增强性欲的作用

雌性:诱导发情、排卵,提高配种受胎率

- (2)治疗雄性性欲减弱、精液品质下降,雌性卵泡囊肿和排卵异常等;提高受胎率,增加产仔数。
 - (3) 长时间或大剂量应用GnRH或类似物有"抗生育作用"

一、下丘脑激素

3、催产素

20世纪初发现,垂体抽提液能刺激血管收缩、升高机体血压,并引起子宫平滑肌收缩和泌乳等。

1954年,分离纯化得催产素(oxytocin, OXT) 和加压素 (vasopressin, VP; 抗利尿素, antidiuretic hormone, ADH) 。

一、下丘脑激素

生理功能与应用

排乳:刺激乳腺导管肌上皮细胞收缩

分娩:刺激子宫平滑肌的收缩

发情:刺激子宫分泌前列腺素

溶黄: 卵巢黄体分泌

促进分娩,注意时间

治疗胎衣不下、子宫出血和促进子宫内容物的排出

二、松果体激素

松果腺分泌(松果体 脑上腺)

吲哚类:黑色紧张素 (褪黑素)

- (1) 抑制性腺发育(两栖类 肤色变浅)。减轻重量、DNA含量、抑制代谢性增生,抑制孕酮产量等
 - (2) 抑制附性器官的功能 (子宫重量)
- (3) 干扰GnRH,对抗LH、FSH分泌抑制排卵,阻断PMSG或HCG引起的排卵反应

二、松果体激素

吲哚类: 黑色紧张素 (褪黑素)

- (4) 抑制由持续光照引起的卵巢增重量和发情期延长。
- (5) 生理条件下抑制生理器官发情和初情期到来。
- (6) 对季节性繁殖的动物,调节繁殖季节与产品产量。

二、松果体激素

肽类

(1) 精加催素 (8-Arginine Vasoto cino AVT

作用: 与褪黑色类似

(2) GnRH (LH-RH) 和TRH (促甲状腺激素

二、松果体激素

胺类化合物

松果腺是哺乳类体内唯一具有高浓度羊基吲哚氧位甲醛转换酶 (HIOM) 的组织,在它的作用下,能合成5-羊基色醇,甲醛色胺,5-甲氧荃色醇等,有类似黑色紧张素的作用,但活性少,维持短。

PGS类

三、垂体激素

三、垂体激素

- 2、垂体促性腺激素GTH
- ▶ 促卵泡素(FSH)
- ▶ 促黄体素(LH)
- ▶ 促乳素 (PRL)

三、垂体激素

- 2、垂体促性腺激素GTH
 - (1) 促卵泡素 (follitropin)

FSH: Follicle stimulating hormone, 卵泡刺激素

化学特性: 糖蛋白质激素, α、β亚基组成。

同种动物:糖蛋白质激素α基本相同,β差异较大。

异种动物: α变异较大,β变异较小。

- α-亚基与动物种属特异性有关
- ✓ β-亚基主要决定糖蛋白质激素的特异性生物活性。

三、垂体激素

生理功能与应用

雌性:刺激卵泡生长发育。

雄性: 促进生精上皮发育和精子的形成

商品名: Pregnicol® (Parnell)

Synchrogect® (Vetimax)

- ✓ 诱导发情和超数排卵
- ✓ 治疗卵巢机能疾病
- □ HL(半衰期)短,需多次注射

三、垂体激素

FSH分泌调节

- GnRH、活化素
- 卵泡抑制素
- 雌激素

三、垂体激素

- 2、垂体促性腺激素GTH
- (2) 促黄体素

LH: luteinizing hormone

又名促间质细胞素

(interstitial cell stimulating hormone, ICSH)

分子结构与FSH类似。 α、β-亚基组成。

三、垂体激素

生理功能

雄性:刺激雄激素的合成和分泌,对副性腺发育和精子 最后形成起决定作用。

雌性: 触发排卵。

促进黄体形成并分泌孕酮。

刺激卵泡膜细胞分泌雄激素。

三、垂体激素

临床应用

常用hCG/GnRH替代 主要与FSH配合用于超数排卵 商品名: Pregnyl®

- ❖ 排卵障碍
- ❖ 卵泡囊肿
- ❖ 早期习惯性流产或早期胚胎死亡
- ❖ 母畜情期过短久配不孕
- ❖ 公畜性欲不强、精液和精子数量少

三、垂体激素

- 2、垂体促性腺激素GTH
 - (3) 促乳素

催乳素(prolactin, PRL),促黄体生成素 (luteotropin)

化学特性: 单链蛋白质, 有3个-S-S-。

生理功能:

- ✓刺激乳腺发育和促进泌乳
- ✓抑制性腺机能发育(抱窝,高产奶牛受胎率低)
- √行为效应(母爱)
- ✓维持妊娠

三、垂体激素

2、垂体促性腺激素GTH

(4) 促卵泡素与促黄体素在脑垂体中含量与比例与发情的关系

555555555

本节小结

- 1、脑部生殖激素的种类与作用
- 2、下丘脑结构及下丘脑激素
- 3、垂体结构及垂体激素
- 4、松果腺激素种类与作用

本节结束

本节主要内容

类固醇激素

- ❖ 雌激素
- ❖ 雄激素
- ❖ 孕激素
- 含氮激素
- ❖ 抑制素
- ❖ 活化素
- ❖ 卵泡抑素
- ❖ 松驰素

一、类固醇激素

一、类固醇激素

1、雌激素(estrogens)

来源: 主要卵巢内膜细胞和颗粒细胞, 胎盘、肾上腺皮质和睾丸。

种类: 主要是雌二醇 (estradiol) 、雌酮(estrone)、雌三醇(estriol)等,

活性以17-β雌二醇活性最高。植物雌激素无类固醇结。

转化模式: 双细胞、双促性腺激素作用模式

动物繁殖学

一、类固醇激素

(1) 生理功能

胚胎期:促进子宫和阴道的发育

初情期前:促进第二性征的发育

初情期: 促进下丘脑垂体的分泌活动

发情周期:刺激卵泡发育;使雌性动物出现性欲和性兴奋

(与小量P4配合);刺激阴道上皮增生,平滑肌收缩

妊娠期: 刺激乳腺导管系统的生长

分娩期:与OXT协同,参与分娩发动

巡乳期: 与PRL协同促进乳腺发育,乳汁分泌

一、类固醇激素

(2) 应用

- ◆ 促进产后胎衣排出或排出木乃伊化的胎儿
- ◆ 对乏情或发情征状微弱母畜的诱导发情
- ◆ 用于牛、羊的人工催乳
- ◆ 对雄性动物进行化学去势
- ◆ 人工合成的有: 已烯雌酚、已雌酚、二丙酸雌二酚等

一、类固醇激素

2、雄激素(angrogens)

来源:睾丸间质细胞,雌性肾上腺、卵巢和胎盘亦分泌少量

种类: 主要形式:

睾酮

雄烯二酮

雄酮

一、类固醇激素

生理功能和应用:

- ▶ 对雄性:
- 促进生殖道、副性腺的生长 发育和机能。
- 刺激精子发生
- 刺激并维持雄性动物性欲
- 对雌性:作用复杂

- ✓ 治疗性欲不强和性机能减退
- ✓ 使用方法,埋植或注射
- ✓ 埋植、注射

一、类固醇激素

3.孕激素(progestins)

来源: 卵巢黄体细胞

睾丸

肾上腺 亦分泌少量

卵泡颗粒细胞

种类: 孕酮(黄体酮, P₄)

孕烯醇酮

一、类固醇激素

生理功能与应用

- > 维持妊娠
- > 调控发情
- ✓ 防止功能性流产
- ✓ 诱发同期发情
- ✓ 治疗卵泡囊肿或排卵延迟
- ✓ 早期妊娠诊断

动物繁殖学

4. 孕激素与雌激素的作用比较

类 别	孕激素	雌激素
发情行为	抑制	增强
排卵	抑制 (禽类例外)	促进
子宫和阴道上皮腺细胞	分泌浓稠黏液	分泌稀薄黏液
子宫和阴道平滑肌	抑制收缩	刺激收缩

二、其它性腺激素

1、松弛素 (relaxin)

属多肽、水溶性、妊娠后期黄体产生,兔主要来自 胎盘,分子量6300。

功能: 1 使骨盆韧带、耻骨联合松弛,易于分娩

- 2 使子宫颈口开张,子宫肌肉舒张。
- 3 在雌激素协同下,促进乳腺发育。

二、其它性腺激素

2 、抑制素 (inhibine)

属多肽,有睾丸抑制素、卵巢抑制素等,前者由精细管壁上的sertoli cell分泌的,后者主要存在于卵泡液中,主要生理功能是抑制FSH的分泌。

本节小结

- 1. 雄性激素性质、功能与用途。
- 2. 雌性激素性质、功能与用途。
- 3. 孕激素的特点、功能与用途。
- 4. 松驰素的性质与功能

本节结束

本节主要内容

- ▶孕马血清促性腺激素
- ▶人绒毛膜促性腺激素
- ≻胎盘性腺激素
- ▶其他胎盘激素

一、孕马血清促性腺激素

PMSG: pregnant mare's gonadotrophin

来源:马属动物胎盘的尿囊绒毛膜细胞产生,是胚胎的代谢产物,又称马绒毛膜促性腺激素 (equine chorionic gonadotrophin, eCG)

化学特性: 糖蛋白质激素。由α-和β-两个亚基组成。β-亚基具有激素特异性,只有与α-亚基结合后才能表现其生物学活性。

一、孕马血清促性腺激素

1、PMSG分泌

一、孕马血清促性腺激素

2、生理功能及应用

类似FSH和LH的双重功能,以FSH为主

- ✓ 诱导发情和超数排卵以及单胎动物生多胎
- ✓ 治疗卵巢静止、持久黄体等
- □ 半寿期长(马144小时),易引起卵巢囊肿。
- □ 用PMSG诱导发情后,追加抗PMSG抗体。

二、人绒毛膜促性腺激素

HCG: human chorionic gonadotrophin

来源:灵长类妊娠早期胎盘绒毛膜滋养层细胞(朗氏细胞)分泌。存在于血液中经尿液排出体外,"孕妇尿促性腺激素"。

化学特性: 糖蛋白质激素, α-和β-亚基通过 非共价键结合而成。

二、人绒毛膜促性腺激素

生理功能及应用

生理功能与LH类似:

- ✔ 促进母畜卵泡成熟和排卵
- ✓ 与FSH、PMSG配合诱导同期发情、超数排卵
- ✓ 治疗排卵延迟、卵泡囊肿、慕雄狂
- ✓ 治疗雄性动物性腺发育不良或阳萎

雌性动物生殖激素的作用

雄性动物生殖激素的作用

三、其它胎盘激素

1、胎盘雌激素

妊娠后期,分泌雌激素量显著增加,产前迅速下降。

马: 60-80天即可测出水平升高,8-9个月达高峰。

猪: 两个高峰--23-31天; 12周--分娩时。

牛羊:雌激素量较少。

2、胎盘孕激素:

各种动物怀孕后均可产生,后期量多。

三、其它胎盘激素

3、胎盘促乳素: (人、鼠、兔、牛、羊、猪) 妊娠后期含量水平高,促进乳腺生长发育 (乳牛>肉牛,高产>低产)

4、胎盘松弛素: (猪.兔.鼠)

另外,肾上腺皮质素、生长素、促肾上腺皮质素等。

本节小结

- 1、孕马血清促性腺激素的分泌及作用
- 2、人绒毛膜促性腺激素的分泌与作用
- 3、其他胎盘激素的分泌与作用

本节结束

本节主要内容

- ▶前列腺素
- ▶外激素

一、前列腺素

PG: Prostaglandin

来源:各种组织和体液。生殖系统、呼吸系统、心血管系统等 多种组织均可产生PG。

基本结构:含20个碳原子的不饱和脂肪酸,即前列酸,由一个环戊环和两个脂肪酸侧链组成。

三类九型:环外双键数目,为 PG_1 、 PG_2 和 PG_3 。取代基和双键的位置,用A、B、C、D、E、F、G、H和I表示。侧链取代基有 α -和 β -两种构型。

一、前列腺素

1 生理功能 (PGF_{2α}与PGE₂)

溶解黄体: PGF_{2a}作用较强

各种动物适宜的溶黄作用时间不同

促进排卵: 机理尚不清楚

子宫收缩和分娩: 促进

提高精液品质:影响运行时间

受精:对胚胎着床,胎盘生长起调节作用

一、前列腺素

PGF2 溶黄体作用时间

种类	排卵后天数	种 类	排卵后天数
牛	4天后	马	4天后
羊	4天后	犬	24天后
猪	10天后	大鼠	4天后

一、前列腺素

2 类似物及其应用

商品名: Estrumate® (Coopers)
Estruplan® (Parnell)

- ✓ 调节发情
- ✓ 控制分娩
- ✓ 治疗持久黄体、卵巢囊肿、子宫疾病
- ✓ 增加公畜的射精量,提高受胎率

二、外激素

概念: (pheromone) 动物向外释放的有特异气味的化学物质,同类动物与其接触时,可产生行为和生理上反应。

来源: 外激素腺体,如皮脂腺、汗腺、唾液腺等。

特性:可能是多种化学物质的混合物。其性质因分泌动物的种类不同而异。如灵长类分泌的一些低级脂肪酸混合物。

二、外激素

人和罗猴

麝鹿和灵猫的性外激素 与人工合成香精

二、外激素

公猪性外激素与睾酮

二、外激素

生物学作用与应用前景

对异性和同性的生殖内分泌调节以及发情、排卵均有一定程度的影响,主要表现在"异性刺激"或"公羊效应"、"群居效应"等。

- ①召唤异性
- ②刺激求偶行为
- ③激发交配行为

本节小结

- 1、前列腺素的分泌及其作用
- 2、外激素的概念、来源及其特性

本节结束

本章小结

- 1. 了解生殖激素的基本概念、分类以及各种生殖激素的分泌部位及生理作用。
 - 2. 了解生殖激素产生的主要器官及其作用特点。
- 3. 理解垂体后叶激素素生理作用,理解催产素的产生途径和能够促进分娩的原因。
- 4. 掌握LH、FSH的生理作用及在脑垂体中二者的含量和比例与发情特点的关系。
 - 5. 掌握性腺激素的生理作用。

本章结束

