Kevin Sekuj

CS-225: Discrete Structures in CS

Homework 4, Part 2

Exercise Set 6.2: #6 (part 2), #11, #17

Exercise Set 6.3: #13, #40, #42

Exercise Set 6.2

#6. (part 2).

a. or

b. and

c. $x \in A \cap (B \cup C)$

d. ⊆

#11.

Supposition: Suppose A, B, and C are any { $particular\ but\ arbitrarily\ chosen$ } sets and A \cap (B - C).

Goal: Prove that for all sets A, B, and C, the relation $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ holds.

Deduction:

Let $x \in A \cap (B-C)$. By the definition of intersection, $x \in A$ and $x \in B-C$.

By the definition of set difference,

 $X \in B$ and $x \notin C$

Thus, $x \in A$ and $x \in B$ and $x \notin C$.

To show $x \in (A \cap B)$ - $(A \cap C)$, we must show that $x \in A \cap B$ and $x \notin A \cap C$. Since $x \in A$ and $x \in B$, $x \in A \cap B$. Also, since $x \in A$ and $x \notin C$, by the definition of intersection, $x \notin A \cap C$. Thus, according to the previous two conclusions, $x \in (A \cap B)$ - $(A \cap C)$.

Conclusion: Therefore, any $x \in A \cap (B - C)$ is in $(A \cap B) - (A \cap C)$. Thus, by the definition of subsets, $A \cap (B - C) \subseteq (A \cap B) - (A \cap C)$ {as was to be shown}.

#17.

Supposition: Suppose A, B, and C are any {particular but arbitrarily chosen sets} and $A \subseteq B$.

Goal: Show that for all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.

Deduction:

Suppose $A \subseteq B$. Let $x \in A \cup C$.

By the definition of union, $x \in A$ or $x \in C$.

1)

In the case $x \in A$,

since $A \subseteq B$, then $x \in B$.

Thus, $x \in B$ or $x \in C$.

Then, by the definition of union, $x \in B \cup C$.

2)

In the case $x \in C$, then

 $x \in B$ or $x \in C$. Thus, by the definition of union,

 $x \in B \cup C$.

Conclusion: Hence, in both cases, $x \in B \cup C$. Therefore, $A \cup C \subseteq B \cup C$ by the definition of subsets {as was to be shown}.

Exercise Set 6.3

#13.

$$A \cup (B - C) = (A \cup B) - (A \cup C)$$

Let:

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{2, 4, 6\}$$

LHS

$$(B-C)$$

By the definition of difference:

$$B-C=\{3, 4, 5\}-\{2, 4, 6\}=\{3, 5\}$$

$A \cup (B - C)$

By the definition of union,

$$A \cup (B - C) = \{1, 2, 3\} \cup \{3, 5\} = \{1, 2, 3, 5\}$$

RHS

$(A \cup B) - (A \cup C)$

By the definition of union,

$$A \cup B = \{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$$

And, by the definition of union

$$A \cup C = \{1, 2, 3\} \cup \{2, 4, 6\} = \{1, 2, 3, 4, 6\}$$

By the definition of difference,

$$(A \cup B) - (A \cup C) = \{1, 2, 3, 4, 5\} - \{1, 2, 3, 4, 6\} = \{5\}.$$

Thus, every element of each set is not in the other set. In other words, for sets A, B, C,

$$A \cup (B - C) \neq (A \cup B) - (A \cup C)$$

$$#40. (A - B) - (B - C) = A - B$$

$$(A - B) - (B - C)$$

=
$$(A \cap B^c) - (B \cap C^c)^c = (A \cap B^c) \cap (B \cap C^c)^c$$
 set difference law

 $= (A \cap B^c) \cap (B^c \cup (C^c)^c)$ De Morgan's law

 $= (A \cap B^c) \cap (B^c \cup C)$ double complement law

= $((A \cap B^C) \cap B^C) \cup ((A \cap B^C) \cap C)$ distributive law

= $(A \cap (B^c \cap B^c)) \cup ((A \cap B^c) \cap C)$ associative law (\cap)

 $= (A \cap B^c) \cup ((A \cap B^c) \cap C)$ idempotent law (\cap)

 $= A \cap B^c$ absorption law

= A - B set difference law

#42. $(A - (A \cap B)) \cap (B - (A \cap B))$

 $= (A \cap (A \cap B^c) \cap (B \cap (A \cap B)^c)$

 $= A \cap ((A \cap B)^c \cap (B \cap (A \cap B)^c)$

 $= A \cap (((A \cap B)^c \cap B) \cap (A \cap B)^c)$

 $= A \cap ((B \cap (A \cap B)^c) \cap (A \cap B)^c)$

 $= A \, \cap \, (B \, \cap \, ((A \, \cap \, B \,)^c \cap \, (A \, \cap \, B)^c))$

 $= A \cap (B \cap (A \cap B)^{c})$

 $= (A \cap B) \cap (A \cap B)^c$

= Ø

set difference law

associative law (∩)

associative law (∩)

commutative law (∩)

associative law (∩)

idempotent law (∩)

associative law (∩)

complement law (∩)