

CLAIMS

- 1 1. A method of forming a ceramic body with nanostructures on at least one surface
- 2 thereof, the method comprising:
 - 3 (a) compressing ceramic particulate at a pressure sufficient to form a solid body;
 - 4 (b) sintering the solid body at a temperature and for a period sufficient to bond the
 - 5 particulate in the solid body into one or more ceramic crystals;
 - 6 (c) exposing the solid body to a reducing environment at a temperature and for a
 - 7 period sufficient to form nanostructures on at least a portion of the exterior
 - 8 surface of the solid body.
- 1 2. The method in accordance with claim 1, wherein the ceramic particulate further
- 2 comprises titania.
- 1 3. The method in accordance with claim 1, wherein the reducing environment further
- 2 comprises a hydrogen-containing gas flowing over the solid body at a sufficient gas flow
- 3 rate to form said nanostructures.
- 1 4. The method in accordance with claim 1, wherein said pressure is greater than about 0
- 2 MPa.

- 1 5. The method in accordance with claim 1, wherein said pressure is about 400 MPa.
- 1 6. The method in accordance with claim 1, wherein the step of sintering is carried out at
2 a temperature of less than 1,400 degrees Celsius.
- 1 7. The method in accordance with claim 6, wherein the step of sintering is carried out at
2 a temperature of about 1,200 degrees Celsius.
- 1 8. The method in accordance with claim 7, wherein the step of sintering is carried out for
2 about 6 hours.
- 1 9. The method in accordance with claim 3, wherein the hydrogen-containing gas further
2 comprises a majority inert gas and a minority hydrogen-containing gas.
- 1 10. The method in accordance with claim 9, wherein the hydrogen-containing gas is
2 hydrogen.
- 1 11. The method in accordance with claim 9, wherein the hydrogen-containing gas is
2 water.

1 12. The method in accordance with claim 9, wherein the step of heat treating is carried
2 out at a temperature of about 700 degrees Celsius.

1 13. The method in accordance with claim 12, wherein the step of heat treating is carried
2 out for a period of about 8 hours.

1 14. The method in accordance with claim 1, wherein the step of heat treating is carried
2 out at a flow rate between about 100 and about 500 milliliters per minute.

1 15. The method in accordance with claim 14, wherein the flow rate is at least about 500
2 milliliters per minute.

1 16. The method in accordance with claim 1, wherein the nanostructures formed further
2 comprise nanofibers.

1 17. The ceramic body produced according to the process of claim 1.

1 18. A method of forming a metal oxide body with nanostructures on at least one surface
2 thereof, the method comprising:

3 (a) compressing metal oxide particulate at a pressure greater than 0 MPa to form a
4 solid body;

5 (b) sintering the solid body in air at a temperature of less than 1,400 degrees
6 Celsius; and then
7 (c) heat treating the solid body in a gas mixture containing a majority of an inert
8 gas and a minority of a hydrogen-containing gas at a gas flow rate, a temperature
9 and for a period sufficient to cause nanostructures to form on at least a portion of
10 the exterior surface of the solid body.

1 19. The method in accordance with claim 18, wherein the nanostructures formed further
2 comprise nanofibers.

1 20. The method in accordance with claim 18, wherein said pressure is about 400 MPa.

1 21. The method in accordance with claim 18, wherein the step of sintering is carried out
2 at a temperature of about 1,200 degrees Celsius.

1 22. The method in accordance with claim 21, wherein the step of sintering is carried out
2 for about 6 hours.

1 23. The method in accordance with claim 18, wherein the inert gas is nitrogen.

1 24. The method in accordance with claim 18, wherein the hydrogen-containing gas is
2 hydrogen.

1 25. The method in accordance with claim 18, wherein the hydrogen-containing gas is
2 water.

1 26. The method in accordance with claim 18, wherein said gas flow rate is between
2 about 100 and about 500 milliliters per minute.

1 27. The method in accordance with claim 26, wherein the gas flow rate is at least about
2 500 milliliters per minute.

1 28. The method in accordance with claim 18, wherein the step of heat treating is carried
2 out at a temperature of about 700 degrees Celsius.

1 29. The method in accordance with claim 28, wherein the step of heat treating is carried
2 out for a period of about 8 hours.

1 30. The metal oxide body produced according to the process of claim 18.

1 31. A method of forming a titania body with nanofibers on at least one surface thereof,
2 the method comprising:

3 (a) compressing titania particulate at a pressure of about 400 MPa to form a solid
4 body;
5 (b) sintering the solid body in air at a temperature between about 1,100 and about
6 1,400 degrees Celsius for about 6 hours; and then
7 (c) heat treating the solid body in gas containing about 95 percent inert gas and
8 about 5 percent hydrogen with a gas flow rate between about 100 and about 500
9 milliliters per minute and a gas temperature of about 700 degrees Celsius.

1 32. The method in accordance with claim 31, wherein the step of sintering is carried out
2 at a temperature of about 1,200 degrees Celsius.

1 33. The method in accordance with claim 31, wherein the flow rate is at least about 500
2 milliliters per minute.

1 34. The titania body produced according to the process of claim 31.

1 35. A titania solid body having a plurality of fibers on the surface thereof, said fibers
2 having a diameter in a range from about 15 nanometers to about 50 nanometers.

1 36. The titania solid body in accordance with claim 35, wherein the titania is the rutile
2 phase.

1 37. The titania solid body in accordance with claim 35, wherein the solid body contains a
2 plurality of titania crystals.

1 38. The titania solid body in accordance with claim 35, further comprising a pair of
2 electrically conductive bodies having opposite electrical polarity mounted to the body.

1 39. A sensor comprising:

2 (a) a titania solid body having a plurality of fibers on the surface thereof, said
3 fibers having diameters in a range between about 15 and about 50 nanometers;

4 and

5 (b) a resistance measuring means electrically connected to the solid body.