Отчёт по лабораторной работе №3

Дисциплина: Математические основы защиты информации и информационной безопасности

Дэнэилэ Александр Дмитриевич, НПМмд-02-23

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	11
Сп	исок литературы	12

Список таблиц

Список иллюстраций

4.1	Шифрование гаммированием											1	0
	TI TI												

1 Цель работы

Изучить шифрование гаммированием.

2 Задание

Реализовать алгоритм шифрования гаммированием конечной гаммой.

3 Теоретическое введение

Из всех схем шифрования простейшей и наиболее надежной является схема однократного использования. Формируется m-разрядная случайная двоичная последовательность - ключ шифра. Отправитель производит побитовое сложение по модулю два (mod 2) ключа

$$k = k_1 k_2 \dots k_i \dots k_m$$

и m-разрядной двоичной последовательности

$$p=p_1p_2\dots p_i\dots p_m$$

соответствующей посылаемому сообщению:

$$c_i = p_i \oplus k_i, i = \overline{1, m}$$

где p - -й бит исходного текста, $_i$ - -й бит ключа, \oplus - операция побитового сложения (XOR), c_i - -й бит получившейся криптограммы

$$c = c_1 c_2 \dots c_i \dots c_m$$

Операция побитного сложения является обратимой, т.е. $(x \oplus y) \oplus y)$, поэтому дешифрование осуществляется повторным применением операции \oplus к криптограмме:

$$p_i=c_i\oplus k_i, i=\overline{1,m}$$

Основным недостатком такой схемы является равенство объема ключевой информации и суммарного объема передаваемых сообщений. Данный недостаток можно убрать, использовав ключ в качестве «зародыша», порождающего значительно более длинную ключевую последовательность. Такая схема называется гаммированием.

Гаммирование - процедура наложения при помощи некоторой функции F на исходный текст гаммы шифра, т.е. nceedocnyuaйhoй последовательности (ПСП) с выходов генератора G. Псевдослучайная последовательность по своим статистическим свойствам неотличима от случайной последовательности, но является детерминированной, т.е. известен алгоритм ее формирования. Обычно в качестве функции F берется операция поразрядного сложения по модулю два или по модулю N (N - число букв алфавита открытого текста). Простейший генератор псевдослучайной последовательности можно представить рекуррентным соотношением:

$$\gamma_i = a\gamma_{i-1} + bmod(m), i = \overline{1,m}$$

где γ_i - i-й член последовательности псевдослучайных чисел, $,\gamma_0,b$ - ключевые параметры. Такая последовательность состоит из целых чисел от 0 до m-1. Если элементы γ_i и γ_j совпадут, то совпадут и последующие участки: $\gamma_{i+1}=\gamma_{j+1}, \gamma i+2=\gamma_{j+2}$. Таким образом, ПСІП является периодической. Знание периода гаммы существенно облегчает криптоанализ. Максимальная длина периода равна m. Для достижения необходимо удовлетворить следующим условиям:

- 1. b и m взаимно простые числа;
- 2. -1 делится на любой простой делитель числа m;
- 3. -1 кратно 4, если кратно 4.

Стойкость шифров, основанных на процедуре гаммирования, зависит от характеристик гаммы - длины и равномерности распределения вероятностей появления знаков гаммы.

При использовании генератора ПСП получаем бесконечную гамму. Однако, возможен режим шифрования конечной гаммы. В роли конечной гаммы может выступать фраза. Как и ранее, используется алфавитный порядок букв, т.е. буква «а» имеет порядковый номер 1, «б» - 2 и т.д.

4 Выполнение лабораторной работы

Реализуем алгоритм шифрования гаммированием конечной гаммой (рис. 4.1).

```
inp = input()
key = |input()
alphabet = ' aбвгдежзийклмнопрстуфхцчшщыльном'

i = 0
while len(inp) != len(key):
    key += key[i]
    i += 1

out = ''
for i in range(len(inp)):
    out += alphabet[(alphabet.find(inp[i]) + alphabet.find(key[i])) % (len(alphabet) - 1)]

print(out)

приказ
гамма
усхчбл
```

Рис. 4.1: Шифрование гаммированием

5 Выводы

Изучил шифрование гаммированием.

Список литературы