

MOOC Econometrics

Training Exercise 5.1

Questions

Suppose that y_i is a binary dependent variable and that y_i can only take the values 0 and 1 for $i=1,\ldots,n$. Consider the linear regression model

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

where x_i is an explanatory variable and β_1 and β_2 are parameters. Assume that $\mathsf{E}[\varepsilon_i] = 0$.

- (a) What is the expected value of y_i expressed in terms of the parameters and x_i ?
- (b) Show that the expected value of y_i equals the probability that y_i equals 1.
- (c) What is the probability that y_i equals 0 expressed in terms of x_i and the β parameters?
- (d) Since y_i can only take two values, there are two possible values for the error term given the value of x_i and the parameters β . Give these two values and also provide the probability that these two values occur.
- (e) What is the variance of ε_i expressed in terms of x_i and the β parameters? Are the errors homoscedastic?

Ezafus,