

Apollo KT266A Chipset

VT8366A Single-Chip North Bridge for Socket-A Based Athlon™ CPUs with 266 MHz Front Side Bus with AGP4x and V-Link plus Advanced ECC Memory Controller supporting PC133 / PC100 SDR SDRAM and PC2100 / PC1600 DDR SDRAM for Desktop & Mobile PC Systems

> Revision 2.1 September 14, 2001

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 1999, 2000, 2001 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C585, VT82C586B, VT82C587, VT82C590, VT82C595, VT82C596A, VT82C596B, VT82C597, VT82C598, VT82C598MVP, VT8501, VT82C680, VT82C685, VT82C686A, VT82C687, VT82C691, VT82C692, VT82C693, VT82C693A, VT82C694, VT82C694A, VT82C694X, VT8601, VT8603, VT8605, VT8363, VT8365, VT8371, VT8366A, VT8374, Mobile South, Super South, Apollo VP, Apollo VPX, Apollo VP2, Apollo VP3, Apollo MVP4, Apollo P6, Apollo Pro, Apollo ProPlus, Apollo Pro133, Apollo Pro133A, Apollo ProMedia, Apollo ProSavage, KX133, KM133, KL133, KT133, and KT266A may only be used to identify products of VIA Technologies.

Cyrix6_x86[™] is a registered trademark of VIA Technologies.

AMD6_K86[™], AMD-K6[™], AMD-K7[™] and Athlon [™] are registered trademarks of Advanced Micro Devices

Celeron™, Pentium⁻II™, Pentium-III™, MMX™, and Intel™, are registered trademarks of Intel Corp.

PS/2[™] is a registered trademark of International Business Machines Corp.

Windows 95[™], Windows 98[™], and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:

440 Mission Court, Suite 220 Fremont, CA 94539

USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or 687-4654

Taipei Office:

8th Floor, No. 533

Chung-Cheng Road, Hsin-Tien

Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Online Services:

Home Page: http://www.via.com.tw (Taiwan) –or- http://www.viatech.com (USA)

FTP Server: ftp.via.com.tw (Taiwan) BBS: (886-2) 2218-5208

REVISION HISTORY

Document Release	Date	Revision	Initials
2.0	8/31/01	Initial release based on VT8366 data sheet rev 1.61	DH
		Changed Product Number from VT8366 to VT8366A	
		Changed Chipset Name from KT266 to KT266A	
		Updated Device 0 Rx46[0], 4E[7], 54[5-4], 55[6], 66[6], 69[5-4], 90-91, 95[7-5],	
		96, 9E, AD[5]; Device 1 Rx2D-2F, 40[6], 41[3-2], 42[7,3]	
		Updated chip marking to make Chipset Name most prominent	
2.1	9/14/01	Changed cover, page headers, features & overview to emphasize chipset name	DH
		Updated system block diagram; Fixed miscellaneous typographical errors	
		Added VAD6 strap and updated strap information table, pin diagram and pin lists	
		Removed DQS pin functions from DQM pins due to removal of x4 DRAM support	
		Fixed register summary entries for Device 0 Rx40-41, 43-44, 49, 4B-4C	
		Updated Device 0 Rx55[6] (x4 DRAM capability removed), 67[2-0] (MD Latch	
		Clock Select & Clock Delay), 9E[1] (new bit), 97[7-3] (CPU Clock Divide)	
		Updated chip marking to remove chip number (to match production part marking)	

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	I
LIST OF FIGURES	III
LIST OF TABLES	
PRODUCT FEATURES	
OVERVIEW	4
PINOUTS	6
PIN DESCRIPTIONS	9
REGISTERS	17
REGISTER OVERVIEW	
MISCELLANEOUS I/O	21
CONFIGURATION SPACE I/O	21
REGISTER DESCRIPTIONS	22
Device 0 Header Registers - Host Bridge	22
Device 0 Configuration Registers - Host Bridge	24
V-Link Control	24
DRAM Control	
Host PCI Bridge Control	
GART / Graphics Aperture Control	
Host CPU Control	
AGP Control	
V-Link Control	
Extended Power Management Control.	
Device 1 Header Registers - PCI-to-PCI Bridge	
Device 1 Configuration Registers - PCI-to-PCI Bridge	
AGP Bus Control	47
ELECTRICAL SPECIFICATIONS	
ABSOLUTE MAXIMUM RATINGS	
DC CHARACTERISTICS	
POWER CHARACTERISTICS	
AC TIMING SPECIFICATIONS	51
MECHANICAI SDECIEICATIONS	50

LIST OF FIGURES

FIGURE 1.	APOLLO KT266A CHIPSET SYSTEM BLOCK DIAGRAM	4
FIGURE 2.	VT8366A NORTH BRIDGE CHIP BALL DIAGRAM (TOP VIEW)	6
	APOLLO KT266A CHIPSET PCB LAYOUT COMPONENT PLACEMENT GUIDE	
FIGURE 4.	VT8366A NORTH BRIDGE CLOCK DISTRIBUTION	15
	CPU / SDRAM / AGP CLOCK CONNECTIONS	
	GRAPHICS APERTURE ADDRESS TRANSLATION	
	MECHANICAL SPECIFICATIONS – VT8366A 552-PIN BALL GRID ARRAY PACKAGE	

-iii-

LIST OF TABLES

TABLE 1.	VT8366A NORTH BRIDGE CHIP PIN LIST (NUMERICAL ORDER)	7
	VT8366A NORTH BRIDGE CHIP PIN LIST (ALPHABETICAL ORDER)	
	VT8366A NORTH BRIDGE PIN DESCRIPTIONS	
TABLE 4.	VT8366A NORTH BRIDGE REGISTERS	17
TABLE 5.	SYSTEM MEMORY MAP	27
TABLE 6.	DEVICE 0 RX58 MA MAP TYPE ENCODING	28
TABLE 7.	MEMORY ADDRESS MAPPING TABLE	28
TABLE 8.	VGA/MDA MEMORY/IO REDIRECTION	47
TABLE 9.	AC TIMING MIN / MAX CONDITIONS	51

APOLLO KT266A Chipset

VT8366A Single-Chip North Bridge for Socket-A (Socket-462) Based Athlon CPUs with 266 MHz Front Side Bus with AGP 4x and V-Link plus Advanced ECC Memory Controller supporting PC133 / PC100 SDR SDRAM and PC2100 / PC1600 DDR SDRAM for Desktop & Mobile PC Systems

PRODUCT FEATURES

• High Performance and High Integration Athlon AGP 4x / DDR Chipset with Advanced System Power Management

- KT266A Chipset: VT8366A system controller and VT8233 V-Link south bridge
- Single chip Athlon system controller with 64-bit Socket-A Athlon CPU, 64-bit SDR/DDR system memory, 266
 MB/sec high bandwidth V-Link NB/SB, and 32-bit AGP interfaces
- V-Link south bridge chip includes UltraDMA-33/66/100 EIDE, 6 USB Ports, 10/100 Fast Etherlet LAN controller, AC97 / MC97 link (for Audio and Modem support), LPC, SMBus, Power Management, and Keyboard / PS2-Mouse Interfaces plus RTC / CMOS on chip
- Supports separately powered 3.3V (5V tolerant) interface to system memory and AGP
- Modular power management and clock control for advanced system power management

• High Performance Athlon CPU Interface

- Supports Socket-A (Socket-462) AMD Athlon processors
- HSTL-like 1.5V high-speed transceiver logic signal levels
- Support independent address, data, and snoop interfaces
- 100/133 MHz DDR (Double Data Rate) transfer on Athlon CPU address and data buses
- Built-in PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Four-entry command queue to accommodate maximum CPU throughput
- Four-entry probe queue to stores probes from the system to the processor
- Twenty four-entry processor system data and control queue to store system data control commands in two separate read and write buffers for data movement in and out of processor interface
- Supports WC (Write Combining) cycles
- Sleep mode support
- System management interrupt, memory remap and STPCLK mechanism

• Full Featured Accelerated Graphics Port (AGP) Controller

Synchronous and pseudo-synchronous with the host CPU bus with optimal skew control

V-Link	<u>AGP</u>	<u>CPU</u>	<u>Mode</u>
66 MHz	66 MHz	100 MHz DDR	Pseudo synchronous
66 MHz	66 MHz	133 MHz DDR	Synchronous

- AGP v2.0 compliant
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- Supports 66 MHz 1x, 2x and 4x modes for AD and SBA signaling
- Pipelined split-transaction long-burst transfers up to 1GB/sec
- Thirty-two level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
- Windows 95 OSR-2 VXD and integrated Windows 98 / Windows 2000 miniport driver support

• High Bandwidth 266 MB/sec 8-bit V-Link Host Controller

- Supports 66 MHz V-Link Host interface with peak bandwidth of 266MB/S
- V-Link operates at 2X or 4X modes
- Full duplex commands with separate STB/CMD
- Request/Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer/Defer-Reply transaction
- Transaction assurance for V-Link Host to Client access. Eliminate V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state/throttle transfer latency. All V-Link transaction both Host and Client have consistent view of transaction data depth and buffer size to avoid data overflow.
- High efficient V-Link arbitration with minimum overhead. All V-Link transaction with predictable cycle length with known CMD/Date duration.

• Advanced High-Performance SDR/DDR DRAM Controller

- DRAM interface synchronous with host CPU (100/133 MHz) for most flexible configuration
- DRAM interface may be <u>faster</u> than CPU by 33 MHz to allow use of 133 MHz memory with 100 MHz FSB
- DRAM interface may be <u>slower</u> than CPU by 33 MHz to allow use of 100 MHz memory with 133 MHz FSB
- Concurrent CPU, AGP, and V-Link access
- Supports SDR and DDR SDRAM memory types
- Dynamic Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 1M / 2M / 4M / 8M / 16M / 32M / 64MxN DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8/x16 DRAM technology) for registered SDR/DDR modules
- Supports 6 banks up to 3 GB DRAMs (512Mb x8/x16 DRAM technology) for unbuffered SDR/DDR modules
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, command, and MD signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection)
 or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- x-1-1-1-1-1 back-to-back accesses for SDR SDRAM
- x-1/2-1/2-1/2-1/2-1/2 back-to-back accesses for DDR SDRAM
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

Advanced System Power Management Support

- Dynamic power down of SDRAM (CKE)
- PCI and AGP bus clock run and clock generator control
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- SDRAM self-refresh power down
- 8 bytes of BIOS scratch registers
- Low-leakage I/O pads
- Built-in NAND-tree pin scan test capability
- 2.5V, 0.22um, high speed / low power CMOS process
- 35 x 35 mm, 552 pin BGA Package

OVERVIEW

The **Apollo KT266A** (**VT8366A** North Bridge plus **VT8233** South Bridge) is a high performance, cost-effective and energy efficient chipset for the implementation of AGP / PCI desktop personal computer systems based on 64-bit Socket-A (AMD Athlon) processors.

Figure 1. Apollo KT266A Chipset System Block Diagram

The KT266A chipset consists of the VT8366A north bridge "host system controller" (552 pin BGA) and the VT8233 V-Link south bridge (376 pin BGA). The VT8366A provides superior performance between the CPU, DRAM, AGP bus, and V-Link bus with pipelined, burst, and concurrent operation. The VT8233 (also referred to as a "V-Link Client controller") is a highly integrated PCI / LPC controller. Its internal bus structure is based on 66 MHz PCI bus that provides 2x bandwidth compare to previous generation PCI / ISA bridge chips. The VT8233 also provides a 266MB/sec bandwidth Host/Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8366A north bridge supports eight banks of SDR / DDR SDRAMs up to 4 GB for registered modules (six banks up to 3GB for unbuffered modules). The DRAM controller supports standard PC133 / PC100 Synchronous DRAM (SDRAM) or can be configured to support PC2100 / PC1600 Double-Data-Rated (DDR) SDRAM. The SDR / DDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 66 / 100 / 133 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M xN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus (66 / 100 / 133 MHz).

The VT8366A north bridge also supports full AGP v2.0 capability for maximum bus utilization including 2x and 4x mode transfers, SBA (SideBand Addressing), Flush/Fence commands, and pipelined grants. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for

KT266A Chipset – VT8366A Athlon DDR North Bridge

deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU / AGP / PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported for interoperability with major AGP-based 3D and DVD-capable multimedia accelerators.

The VT8366A host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. When combined the V-Link Host / Client controllers, it realizes a complete PCI sub-system and supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The 376-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10/100Mb base-T Ethernet or 1/10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated USB interface with root hubs and six function ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, the Apollo KT266A chipset provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

The Apollo KT266A chipset is ideal for high performance, high quality, high energy efficient and high integration desktop and notebook AGP / PCI / LPC computer systems.

PINOUTS

111	NOUTS							Fi	gure 2.	VT83	866A N	North 1	Bridge	Chip E	Ball Di	agram	(Top '	View)								
Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
A	VCC AGP	VCC AGP	GD16	GD17	AGP VREF	VCC AGP	GD23	GD24	GD28	VCC AGP	SB A7	SB STB#	SB A0	VCC AGP	AIN 9#	AIN 13#	AIN 6#	D11#	D10#	D12#	D1#	D15#	D17#	D18#	D28#	D29#
В	GD15	GBE1#	GBE2#	GND	GD21	VCC AGP	GBE3#	GD27	GD30	VCC AGP	SB A4	SB STB	SB A1	VCC AGP	AIN 12#	GND	AIN 3#	D9#	GND	D8#	D3#	GND	D24#	D27#	GND	DI CLK1#
C	GD11	GD12	GD13	GD14	GD19	GD20	GD22	GD26	GD31	GRBF#	SB A5	GND	G GNT#	CFWD RST	CON NECT	AIN 10#	AIN 7#	AIN 11#	DO CLK0#	D5#	D7#	D6#	D16#	D25#	D21#	D23#
D	GD8	GND	GBE0#	GND	GD18	GND	GDEV SEL#	GD25	ST0	ST2	G PIPE#	SB A3	SB A2	G REQ#	VCCH	AIN 4#	AIN 2#	VCCH	DI CLK0#	D0#	VCCH	D4#	VCCH	D22#	D31#	DO CLK1#
E	VCC AGP	VCC AGP	G DS0#	GD10	G STOP#	G TRDY#	G FRM#	G DS1	G WBF#	GND	SB A6	VCC AGP	ST1	PROC RDY	AIN 14#	DIN VAL#	AIN CLK#	AIN 5#	D14#	D13#	D2#	D26#	D19#	D20#	GND	D30#
F	GD7	GD4	GD6	G DS0	GD9	GND	GND	G DS1#	GD29	GND	G IRDY#	VCC AGP	GND	GND	AIN 8#	S2K VREF	GND	GND	VCCH	GND	GND	S2K GND	D32#	DI CLK2#	D33#	D41#
G	GD5	GND	G CLK	GND	G PAR	VCC AGP	G7	8	9	10	11	12	13	14	15	16	17	18	19	G20	S2K VCC	S2K COMP	VCCH	D40#	D42#	DO CLK2#
Н	GD1	GD3	GD0	GD2	VCC Q	VCC AGP	Н		AGP	Pins							CPU	Pins		H	H CLK	S2K VTT	D46#	D36#	GND	D43#
J	VID	G COMP	GND Q	VAD0 strap	GND	GND	J		VCC AGP	VCC AGP	VCC 25	VCC 25	VCC AGP	VCCH	VCC 25	VCC 25	VCCH	VCCH		J	H CLK#	AGND HCK	D45#	D44#	D38#	D34#
K	UP STB	UP STB#	UP CMD	V BE#	VL VREF	VAD1 strap	K		VCC AGP	K10	11	12	13	14	15	16	K17	VCCH		K	VCCH	AVCC HCK	VCCH	D35#	D37#	D39#
L	DN CMD	DN STB	DN STB#	V PAR	VAD4 strap	VAD2 strap	L	VLink	VCC 25	L	GND	GND	GND	GND	GND	GND	L	VCC 25		L	GND	GND	D47#	D58#	GND	D56#
M	VCC VL	VCC VL	GND	GND	VCC VL	VCC VL	M	Pins	VCC 25	M	GND	GND	GND	GND	GND	GND	M	VCC 25		M	D59#	D48#	DI CLK3#	D57#	D60#	D62#
N	VCC VK	VAD6 strap	VAD7	VAD5 strap	VAD3 strap	VCC VL	N		VCC VL	N	GND	GND	GND	GND	GND	GND	N	VCCH		N	D51#	D63#	VCCH	D52#	D53#	DO CLK3#
P	VL COMP	GND	PWR OK	RE SET#	GND	GND	P		VCCM	P	GND	GND	GND	GND	GND	GND	P	VCCH		P	GND	D49#	D50#	D54#	GND	D61#
R	MD58	MD63	MD59	VSUS 25	SUS ST#	VCCM	R		VCC 25	R	GND	GND	GND	GND	GND	GND	R	VCC 25		R	VCCH	D55#	AOUT 4#	AOUT 6#	AOUT 2#	AOUT 3#
Т	VCCM	VCCM	GND	GND	MD62	VCCM	T		VCC 25	T	GND	GND	GND	GND	GND	GND	T	VCC 25		T	S2K VREF	AOUT 8#	VCCH	AOUT 5#	AOUT 9#	AO CLK#
U	MD57	DQM 7	DQS 7#	MD61	MD56	MD60	U		VCCM	U10	11 VCC	12	13	14	15 VCC	16 VCC	U17	VCCM		U	AVCC MCK	AGND MCK	AOUT 11#	AOUT 13#	GND AOUT	AOUT 12# AOUT
V	MD51 DOS	MD55 DQM	MD50	MD54 AGND	MD53	M VREF	V		VCCM	VCCM	VCC 25	VCC 25		VCCM	VCC 25	VCC 25	VCCM	VCCM		V	MCLK FB	MCLK	GND	AOUT 10# TEST	7#	14#
W	6#	6	MD52	DL2	DL2	GND	W						DRAM							W		VCCM	MD0 MAA	IN#		VCCM
Y	VCCM		GND	GND	CS7#	VCCM	Y7	8	9	10	11	12	13	14	15	16	17	18 AVCC	19 M	Y20	GND	MAB 14 MAA	14	GND DQM	MD5	MD4 DQS
AA	MD49	MD48	MD47	MD46 MAA	CS6# MAB	GND MAA	VCCM MAB	GND MAA	VCCM	MD36	DOM	VCCM	GND MAA	VCCM MAB	MAA	GND MAA	VCCM	DL1 AGND	VREF	VCCM	GND MAA	8 MAB	MD2	0 MAA	MD1	0#
AB	MD43	DQM 5	MD42 DQS	11 MAB	12	12 SRAS	10	10	VCCM MAB	MD32 MECC7	8	VCCM MECC4	1	2	2	3	VCCM MAA	DL1		VCCM MAA	MAB	MAB 8 DQM	GND MAB	13 MAA	GND MAB	MD6
AC	MD41	GND	5#	11	GND	A# SWE	MD39	GND DQS	0 DOS	CKE7 MECC2	GND MAA	CKE4 MECC5	GND MAB		MD25	GND MAB	4 MAB	MD18	MD17 DQS	6	5	Ì	7	9 MAA	13 MAB	MD7
AD		MD44	MD40 SCAS	CS1#	CS5#	B# SRAS	MD38 DQM	4#	FB	CKE2 MECC6	0	CKE5 MECC0	1	MD30	MD29 DQS	3	4	MD22	DQS 2# DQM	GND MAB	GND	MD14	MD13	7	9	MD3
AE	CS3#	CS2#	A#	CS4#	GND SWE	B#	4	GND	MD37	CKE6 MECC3	GND DQS	CKE0 MECC1	GND	MD27	3#	GND	MD24	MD23	2	6	MD11	MD10	GND	MD9	GND	VCCM
AF	VCCM	VCCM	CS0#	SCAS B#	A#	MD35	VCCM	MD34	MD33	CKE3	DQS 8#	CKE1	VCCM	MD31	DQM 3	VCCM	MD28	MD19	MD21	VCCM	MD20	MD15	DQS 1#	MD12	MD8	VCCM

Table 1. VT8366A North Bridge Chip Pin List (Numerical Order)

Pin#		Pin Name	Pin #		Pin Name	Pin#	00	66A North Bri Pin Name	Pin#	1 12	Pin Name	Pin#	161	Pin Names	Pin#		Pin Name
A01	P	VCCAGP	D03		GBE0#	G05		GPAR / GCKRUN#	P01	Ι	VLCOMP	Y23	О	MAA14	AC25		MAB13
A02	P	VCCAGP	D04	P	GND	G06	P	VCCAGP	P02	P	GND	Y24	P	GND	AC26		MD07
A03 A04	IO IO	GD16 GD17	D05 D06	IO P	GD18 GND	G21 G22	P I	S2KVCC S2KCOMP	P03 P04	I	PWROK RESET#	Y25 Y26	IO IO	MD05 MD04	AD01 AD02		MD45 MD44
A05	P	AGPVREF	D07	Ю	GDEVSEL#	G23	P	VCCH	P05	P	GND	AA01	IO	MD49	AD03		MD40
A06	P	VCCAGP	D08	Ю	GD25	G24		D40#	P06	P	GND	AA02	Ю	MD48	AD04	0	CS1#
A07	IO	GD23	D09	0	STO	G25		D42#	P21	P	GND	AA03	IO	MD47	AD05	0	CS5#
A08 A09	IO IO	GD24 GD28	D10 D11	O	ST2 GPIPE#	G26 H01	I	DOCLK2# GD1	P22 P23		D49# D50#	AA04 AA05	IO O	MD46 CS6#	AD06 AD07	0	SWEB# MD38
A10	P	VCCAGP	D11	I	SBA3	H02	Ю	GD3	P24		D54#	AA06	P	GND	AD07		DQS4# / CKE4
A11	I	SBA7	D13	I	SBA2	H03	Ю	GD0	P25	P	GND	AA07	P	VCCM	AD09	I	DQSFB
A12	Ĭ	SBS#	D14	I	GREQ#	H04	IO	GD2	P26		D61#	AA08	P	GND	AD10		MECC2 / CKE2
A13 A14	I P	SBA0 VCCAGP	D15 D16	P	VCCH AIN04#	H05 H06	P P	VCCQ VCCAGP	R01 R02		MD58 MD63	AA09 AA10	P IO	VCCM MD36	AD11 AD12	O IO	MAA00 MECC5 / CKE5
A15	Ō	AIN09#	D17	ŏ	AIN02#	H21	I	HCLK	R03		MD59	AA11	P	GND	AD13	0	MAB01
A16	0	AIN13#	D18	P	VCCH	H22	P	S2KVTT	R04	P	VSUS25	AA12	P	VCCM	AD14	Ю	MD30
A17	0	AIN06#	D19	0	DICLK0#	H23	IO		R05	I	SUSST#	AA13		GND	AD15		MD29
A18 A19	IO IO	D11# D10#	D20 D21	IO P	D00# VCCH	H24 H25	IO P	D36# GND	R06 R21	P P	VCCM VCCH	AA14 AA15	P P	VCCM VCCM	AD16 AD17	0	MAB03 MAB04
A20	IO	D10# D12#	D21	IO	D04#	H26	Ю	D43#	R21 R22		D55#	AA16	P	GND	AD17		MD22
A21	Ю	D01#	D23	P	VCCH	J01	I	VID	R23	I	AOUT04#	AA17	P	VCCM	AD19		DQS2# / CKE2
A22	IO	D15#	D24	IO	D22#	J02	I	GCOMP	R24	I	AOUT06#	AA18	P	AVCCDL1	AD20	P	GND
A23 A24	IO IO	D17# D18#	D25 D26	IO I		J03 J04	P IO	GNDQ VAD0 / strap	R25 R26	I	AOUT02# AOUT03#	AA19 AA20	P P	MVREF VCCM	AD21 AD22	P	GND MD14
A24 A25	IO	D18# D28#	E01	P	DOCLK1# VCCAGP	J04 J05	P	GND	T01	P	VCCM	AA21	P	GND	AD22 AD23		MD14 MD13
A26	IO	D29#	E02	P	VCCAGP	J06	P	GND	T02	P	VCCM	AA22		MAA08	AD24		MAA07
B01	IO	GD15	E03		GDS0#	J21	I	HCLK#	T03	P	GND	AA23	Ю	MD02	AD25		MAB09
B02	IO	GBE1#	E04			J22	P	AGNDHCK	T04	P	GND	AA24		DQM0 / CKE0 MD01	AD26		MD03
B03 B04	IO P	GBE2# GND	E05 E06	IO IO	GSTOP# GTRDY#	J23 J24	IO IO	D45# D44#	T05 T06	IO P	MD62 VCCM	AA25 AA26	0	DQS0# / CKE0	AE01 AE02	0	CS3# CS2#
B05	Ю	GD21	E07	IO	GFRM#	J25	Ю		T21	P	S2KVREF	AB01	Ю	MD43	AE03	ŏ	SCASA#
B06	P	VCCAGP	E08	Ю	GDS1	J26	Ю	D34#	T22	I	AOUT08#	AB02	О	DQM5 / CKE5	AE04	О	CS4#
B07	IO	GBE3#	E09	I	GWBF#	K01	Î	UPSTB	T23	P	VCCH	AB03		MD42	AE05		GND
B08 B09	IO IO	GD27 GD30	E10 E11	P I	GND SBA6	K02 K03	I I	UPSTB# UPCMD	T24 T25	I	AOUT05# AOUT09#	AB04 AB05	0	MAA11 MAB12	AE06 AE07	0	SRASB# DQM4 / CKE4
B10	P	VCCAGP	E12	P	VCCAGP	K03	Ю	VBE#	T26	I	AOUTCLK#	AB05	o	MAA12	AE08	P	GND
B11	I	SBA4	E13	О	ST1	K05	P	VLVREF	U01	Ю	MD57	AB07	O	MAB10	AE09	Ю	MD37
B12	I	SBS	E14	I	PROCRDY	K06	Ю	VAD1 / strap	U02	0	DQM7 / CKE7	AB08	0	MAA10	AE10		MECC6 / CKE6
B13 B14	I P	SBA1 VCCAGP	E15 E16	0	AIN14# DINVAL#	K21 K22	P P	VCCH AVCCHCK	U03 U04	0	DQS7# / CKE7 MD61	AB09 AB10	P IO	VCCM MD32	AE11 AE12	P	GND MECC0 / CKE0
B15	0	AIN12#	E10	o	AINCLK#	K22	P	VCCH	U05		MD56	AB11	0	DQM8	AE12 AE13	P	GND
B16	P	GND	E18	Ō	AIN05#	K24	Ю		U06		MD60	AB12	P	VČCM	AE14		MD27
B17	O	AIN03#	E19		D14#	K25	Ю		U21	P	AVCCMCK	AB13	О	MAA01	AE15	O	DQS3# / CKE3
B18	IO	D09#	E20	IO	D13#	K26	IO	D39#	U22	P	AGNDMCK	AB14	0	MAB02	AE16	P	GND
B19 B20	P IO	GND D08#	E21 E22	IO IO	D02# D26#	L01 L02	0	DNCMD DNSTB	U23 U24	I	AOUT11# AOUT13#	AB15 AB16	0	MAA02 MAA03	AE17 AE18		MD24 MD23
B21	IO	D03#	E23	IO	D19#	L03	ŏ	DNSTB#	U25	P	GND	AB17	P	VCCM	AE19	O	DQM2 / CKE2
B22	P	GND	E24	Ю	D20#	L04	Ю	VPAR	U26	I	AOUT12#	AB18	P	AGNDDL1	AE20	О	MAB06
B23	IO	D24#	E25	P	GND D20#	L05	IO	VAD4 / strap	V01		MD51	AB19	IO	MD16 VCCM	AE21		MD11
B24 B25	IO P	D27# GND	E26 F01	IO	D30# GD7	L06 L21	IO P	VAD2 / strap GND	V02 V03		MD55 MD50	AB20 AB21	P	MAA05	AE22 AE23	IO P	MD10 GND
B26	o	DICLK1#	F02	IO	GD4	L22	P	GND	V04		MD54	AB22	ŏ	MAB08	AE24		MD09
C01	Ю	GD11	F03	Ю	GD6	L23	Ю	D47#	V05	Ю	MD53	AB23	P	GND	AE25	P	GND
C02	IO	GD12	F04	IO	GDS0	L24	Ю	D58#	V06	P	MVREF	AB24	0	MAA13	AE26	P	VCCM
C03 C04		GD13 GD14	F05 F06	IO P	GD9 GND	L25 L26	P IO	GND D56#	V21 V22	O	MCLKFB MCLK	AB25 AB26		GND MD06			VCCM VCCM
		GD14 GD19	F07		GND	M01		VCCVL	V23		GND			MD41	AF03		CS0#
C06	Ю	GD20	F08	Ю	GDS1#	M02	P	VCCVL	V24	I	AOUT10#	AC02	P	GND	AF04	О	SCASB#
C07		GD22	F09		GD29	M03	P	GND	V25		AOUT07#	AC03		DQS5# / CKE5	AF05		SWEA#
C08 C09		GD26 GD31	F10 F11		GND GIRDY#	M04 M05	P P	GND VCCVL	V26 W01		AOUT14# DOS6# / CKE6	AC04 AC05		MAB11 GND	AF06 AF07		MD35 VCCM
C10		GRBF#	F12	P	VCCAGP	M06	P	VCCVL	W01 W02		DQM6 / CKE6			SRASA#	AF08		MD34
C11	I	SBA5	F13	P	GND	M21	Ю	D59#	W03	Ю	MD52	AC07	Ю	MD39	AF09		MD33
C12			F14		GND	M22	-	D48#	W04	P	AGNDDL2	AC08		GND	AF10		MECC3 / CKE3
C13 C14	0	GGNT# CFWDRST	F15 F16	O P	AIN08# S2KVREF	M23 M24		DICLK3# D57#	W05 W06	P P	AVCCDL2 GND	AC10		MAB00 MECC7 / CKE7	AF11 AF12		DQS8# MECC1 / CKE1
C14		CONNECT	F17	P	GND	M25		D60#	W21	P	VCCM	AC10		GND	AF12		VCCM
C16	0	AIN10#	F18	P	GND	M26	Ю	D62#	W22	P	VCCM	AC12	Ю	MECC4 / CKE4	AF14	Ю	MD31
C17		AIN07#	F19	P	VCCH	N01		VCCVK	W23		MD00	AC13			AF15		DQM3 / CKE3
C18		AIN11#	F20	P P	GND	N02		VAD6 / strap	W24 W25	I	TESTIN# VCCM			MD26	AF16		VCCM MD28
C19 C20		DOCLK0# D05#	F21 F22	P	GND S2KGND	N03 N04		VAD7 VAD5 / strap	W25 W26		VCCM VCCM			MD25 GND			MD28 MD19
		D03# D07#	F23		D32#	N04 N05		VAD3 / strap	Y01	P	VCCM	AC17		MAA04			MD19 MD21
C22	Ю	D06#	F24	О	DICLK2#	N06	P	VCCVL	Y02	P	VCCM	AC18	Ю	MD18	AF20	P	VCCM
C23		D16#	F25		D33#	N21		D51#	Y03	P	GND			MD17	AF21		MD20
		D25# D21#	F26 G01		D41# GD5	N22 N23		D63# VCCH	Y04 Y05		GND CS7#	AC20 AC21		MAA06 MAB05	AF22 AF23		MD15 DQS1# / CKE1
		D21# D23#	G01 G02	P	GND	N23 N24		D52#	Y06		VCCM	AC21 AC22		DQM1 / CKE1	AF23 AF24		MD12
D01	Ю	GD8	G03	I	GCLK	N25	Ю	D53 #	Y21	P	GND	AC23	О	MAB07	AF25	Ю	MD08
D02	P	GND	G04	P	GND	N26	I	DOCLK3#	Y22	О	MAB14	AC24		MAA09	AF26	P	VCCM

Center VCC25 Pins (16 pins): J11-12,15-16,L9,18,M9,18,R9,18,T9,18,V11-12,15-16 Center GND Pins (36 pins): L11-16,M11-16,N11-16,R11-16,R11-16,T11-16

 Center VCCH (6 pins):
 J14, 17-18,K18,N18,P18
 Center VCCAGP (4 pins):
 J9-10,13,K9

 Center VCCM (9 pins):
 P9,U9,18,V9-10,13-14,17-18
 Center VCCVL (1 pin):
 N9

Table 2. VT8366A North Bridge Chip Pin List (<u>Alphabetical</u> Order)

Pin#	_	Pin Name	Pin#		Pin Name	Pin#	v	Pin Name	Pin #	_	Pin Name	Pin#		Pin Names	Pin#	Ų	Pin Name
AB18 W04	P P	AGNDDL1 AGNDDL2	F25 J26	IO	D33# D34#	C02 C03	IO	GD12 GD13	AC02 AC05	P P	GND GND			MD23 MD24	W24 K03	I	TESTIN# UPCMD
J22	P	AGNDHCK	K24		D35#	C03	IO	GD13 GD14	AC08	P	GND	AE17 AC15	Ю	MD25	K03	I	UPSTB
U22	P	AGNDMCK	H24		D36#	B01		GD15	AC11	P	GND	AC14	Ю	MD26	K02	Ī	UPSTB#
AA18	P	AVCCDL1	K25	Ю	D37#	A03	Ю	GD16	AC13	P	GND	AE14	Ю	MD27	J04	Ю	
W05	P	AVCCDL2	J25	Ю	D38#	A04	Ю	GD17	AC16	P	GND	AF17	Ю	MD28	K06		VAD1 / strap
K22	P	AVCCHCK	K26	IO	D39#	D05	IO	GD18	AD20	P	GND	AD15	IO	MD29	L06		VAD2 / strap
U21	P	AVCCMCK	G24	IO	D40#	C05	IO	GD19	AD21	P	GND	AD14	IO	MD30	N05		VAD3 / strap
A05	P	AGPVREF AIN02#	F26	IO	D41# D42#	C06	IO	GD20	AE05	P P	GND	AF14	IO	MD31 MD32	L05		VAD4 /strap
D17 B17	0	AIN02# AIN03#	G25 H26		D42# D43#	B05 C07	IO	GD21 GD22	AE08 AE11	P	GND GND	AB10 AF09	IO IO	MD33	N04 N02		VAD5 / strap VAD6 / strap
D16	ŏ	AIN04#	J24		D44#	A07	Ю	GD23	AE13	P	GND	AF08	Ю	MD34	N03		VAD7
E18	Ō	AIN05#	J23		D45#	A08	Ю	GD24	AE16	P	GND	AF06	Ю	MD35	K04		VBE#
A17	O	AIN06#	H23	Ю	D46#	D08	Ю	GD25	AE23	P	GND	AA10	Ю	MD36	A01	P	VCCAGP
C17	O	AIN07#	L23	Ю	D47#	C08	Ю	GD26	AE25	P	GND	AE09	Ю	MD37	A02	P	VCCAGP
F15	0	AIN08#	M22	IO	D48#	B08	IO	GD27	J03	P	GNDQ	AD07	IO	MD38	A06	P	VCCAGP
A15	0	AIN09#	P22	IO	D49#	A09	IO	GD28	G05	IO	GPAR / GCKRUN#	AC07	IO	MD39	A10	P	VCCAGP
C16 C18	0	AIN10# AIN11#	P23 N21	IO IO	D50# D51#	F09 B09	IO IO	GD29 GD30	D11 C10	I I	GPIPE# GRBF#	AD03 AC01	IO IO	MD40 MD41	A14 B06	P P	VCCAGP VCCAGP
B15	o	AIN11# AIN12#	N24		D51# D52#	C09	Ю	GD30 GD31	D14	I	GREQ#	AB03	Ю	MD42	B10		VCCAGP
A16	ŏ	AIN13#	N25		D53 #	D07	Ю	GDEVSEL#	E05	Ю	GSTOP#	AB01	Ю	MD43	B14	P	VCCAGP
E15	O	AIN14#	P24	Ю	D54#	F04		GDS0	E06	Ю	GTRDY#	AD02	Ю	MD44	E01	P	VCCAGP
E17	Ō	AINCLK#	R22	IO	D55#	E03	Ю	GDS0#	E09	I	GWBF#	AD01	Ю	MD45	E02	P	VCCAGP
R25	I	AOUT02#	L26	Ю	D56#	E08		GDS1	H21	I	HCLK	AA04	Ю	MD46	E12	P	VCCAGP
R26	I	AOUT03#	M24	IO	D57#	F08	Ю	GDS1#	J21	I	HCLK#	AA03	Ю	MD47	F12	P	VCCAGP
R23	I	AOUT04#	L24	IO	D58#	E07		GFRM#	AD11	0	MAA00	AA02	IO	MD48	G06	P	VCCAGP
T24	I	AOUT05#	M21	IO	D59#	C13		GGNT#	AB13	0	MAA01	AA01	IO	MD49	H06	P	VCCH
R24 V25	I	AOUT06# AOUT07#	M25 P26	IO IO	D60# D61#	F11		GIRDY# GND	AB15	0	MAA02 MAA03	V03	IO IO	MD50 MD51	D15 D18	P P	VCCH
T22	I I	AOUT08#	M26	IO	D61# D62#	B04 B16	P P	GND GND	AB16 AC17	0	MAA04	V01 W03	IO	MD51 MD52	D18 D21	P	VCCH VCCH
T25	I	AOUT09#	N22		D63#	B19	P	GND	AB21	ŏ	MAA05	V05	Ю	MD53	D23	P	VCCH
V24	Ī	AOUT10#	D19	O	DICLK0#	B22	P	GND	AC20	ŏ	MAA06	V04	Ю	MD54	F19	P	VCCH
U23	I	AOUT11#	B26	O	DICLK1#	B25	P	GND	AD24	O	MAA07	V02	Ю	MD55	G23	P	VCCH
U26	I	AOUT12#	F24	О	DICLK2#	C12	P	GND	AA22	O	MAA08	U05	Ю	MD56	K21	P	VCCH
U24	I	AOUT13#	M23	О	DICLK3#	D02	P	GND	AC24	O	MAA09	U01	Ю	MD57	K23	P	VCCH
V26	I	AOUT14#	E16	0	DINVAL#	D04	P	GND	AB08	0	MAA10	R01	IO	MD58	N23	P	VCCH
T26	I	AOUTCLK#	C19	Î	DOCLK0#	D06	P	GND	AB04	0	MAA11	R03	IO	MD59	R21	P	VCCH
C14 C15	0	CFWDRST	D26 G26	I I	DOCLK1#	E10	P P	GND	AB06 AB24	0	MAA12 MAA13	U06 U04	IO IO	MD60	T23 R06	P	VCCH
AF03	0	CONNECT CS0#	N26	I	DOCLK2# DOCLK3#	E25 F06	P	GND GND	Y23	o	MAA14	T05	Ю	MD61 MD62	T01	P P	VCCM VCCM
AD04	ŏ	CS1#	L01	O	DNCMD	F07	P	GND	AC09	ŏ	MAB00	R02	Ю	MD63	T02	P	VCCM
AE02	Ö	CS2#	L02	ŏ	DNSTB	F10	P	GND	AD13	ŏ	MAB01	AE12	IO	MECC0 / CKE0	T06	P	VCCM
AE01	Ö	CS3#	L03	ŏ	DNSTB#	F13	P	GND	AB14	Ö	MAB02	AF12	Ю	MECC1 / CKE1	W21	P	VCCM
AE04	O	CS4#	AA24	О	DQM0 / CKE0	F14	P	GND	AD16	O	MAB03	AD10	Ю	MECC2 / CKE2	W22	P	VCCM
AD05	O	CS5#	AC22	0	DQM1 / CKE1	F17	P	GND	AD17	0	MAB04	AF10		MECC3 / CKE3	W25	P	VCCM
AA05	0	CS6#	AE19	O	DQM2 / CKE2	F18	P	GND	AC21	0	MAB05	AC12	IO	MECC4 / CKE4	W26	P	VCCM
Y05	0	CS7#	AF15		DQM3 / CKE3	F20 F21	P P	GND	AE20	0	MAB06	AD12		MECC5 / CKE5	Y01 Y02	P P	VCCM
D20 A21	IO IO	D00# D01#	AE07 AB02	0	DQM4 / CKE4 DQM5 / CKE5	G02	P	GND GND	AC23 AB22	0	MAB07 MAB08	AE10 AC10	Ю	MECC6 / CKE6 MECC7 / CKE7	Y06	P	VCCM VCCM
	Ю	D01# D02#	W02	ŏ	DQM6 / CKE6	G04	P	GND	AD25	ŏ	MAB09	V06	P	MVREF	AA07	P	VCCM
	IO	D03#	U02	ŏ	DQM7 / CKE7	H25	P	GND	AB07	ŏ	MAB10	AA19	P	MVREF	AA09	P	VCCM
D22	Ю	D04#	AB11	О	DQM8	J05	P	GND	AC04	O	MAB11	E14	I	PROCRDY	AA12	P	VCCM
C20		D05#	AA26	0	DQS0# / CKE0	J06	P	GND	AB05	O	MAB12	P03	I	PWROK	AA14	P	VCCM
	IO	D06#	AF23	0	DQS1# / CKE1	L21	P	GND	AC25	0	MAB13	P04	I	RESET#	AA15		VCCM
C21	IO	D07#	AD19		DQS2# / CKE2	L22	P	GND	Y22	0	MAB14	G22	I	S2KCOMP	AA17		VCCM
B20 B18					DQS3# / CKE3 DQS4# / CKE4	L25 M03	P P	GND GND	V22 V21		MCLK MCLKFB	F22		S2KGND S2KVCC	AA20		VCCM VCCM
		D10#	AC03		DQS5# / CKE5	M04	P	GND	W23		MD00	F16		S2KVREF	AB12		VCCM
		D10# D11#	W01		DQS6# / CKE6	P02	P	GND	AA25			T21		S2KVREF	AB17		VCCM
		D12#	U03		DQS7# / CKE7	P05	P	GND	AA23			H22	P	S2KVTT	AB20		VCCM
E20		D13#	AF11	О	DQS8#	P06	P	GND	AD26	Ю	MD03	A13	I	SBA0	AE26		VCCM
E19	Ю	D14#	AD09	I	DQSFB	P21	P	GND	Y26	Ю	MD04	B13	I	SBA1	AF01	P	VCCM
		D15#	D03		GBE0#	P25	P	GND			MD05	D13	I	SBA2	AF02		VCCM
	-	D16#	B02		GBE1#	T03	P	GND			MD06	D12	Ĭ	SBA3	AF07		VCCM
		D17#	B03		GBE2#	T04	P	GND	AC26			B11	I	SBA4	AF13		VCCM
A24 E23		D18# D19#	B07 G03	IO	GBE3# GCLK	U25 V23	P P	GND GND	AF25 AE24		MD08 MD09	C11 E11	I I	SBA5 SBA6	AF16 AF20		VCCM VCCM
		D19# D20#	J02	I	GCOMP	W06		GND	AE24 AE22			A11	I	SBA6 SBA7	AF26		VCCM VCCM
		D20# D21#	H03		GD0	Y03	P	GND			MD10 MD11	B12	I	SBS	H05		VCCQ
D24			H01		GD0 GD1	Y04	P	GND	AF24			A12	Ī	SBS#	N1		VCCVK
		D23#	H04		GD2	Y21	P	GND	AD23			AE03	0	SCASA#	M01		VCCVL
		D24#	H02		GD3	Y24	P	GND	AD22			AF04	ŏ	SCASB#	M02		VCCVL
C24	Ю	D25#	F02	Ю	GD4	AA06		GND	AF22	Ю	MD15	AC06	О	SRASA#	M05	P	VCCVL
		D26#	G01		GD5	AA08		GND			MD16	AE06	_	SRASB#	M06		VCCVL
		D27#	F03		GD6	AA11		GND	AC19			D09	0	ST0	N06		VCCVL
		D28#	F01		GD7	AA13		GND	AC18			E13		ST1	J01		VID
		D29#	D01			AA16		GND	AF18			D10		ST2	P01		VLCOMP
		D30# D31#	F05		GD9 GD10	AA21 AB23		GND GND	AF21 AF19			R05 AF05	I	SUSST# SWEA#	K05 L04		VLVREF VPAR
		D31# D32#			GD10 GD11	AB25 AB25		GND	AP19 AD18			AD06	0	SWEA# SWEB#			VSUS25
		25 Pins (16 pins):												18 Center VCC			

Center VCC25 Pins (16 pins): J11-12,15-16,L9,18,M9,18,R9,18,T9,18,V11-12,15-16 Center GND Pins (36 pins): L11-16,M11-16,N11-16,P11-16,R11-16,T11-16

 Center VCCH (6 pins):
 J14, 17-18,K18,N18,P18
 Center VCCAGP (4 pins):
 J9-10,13,K9

 Center VCCM (9 pins):
 P9,U9,18,V9-10,13-14,17-18
 Center VCCVL (1 pin):
 N9

PIN DESCRIPTIONS

Table 3. VT8366A North Bridge Pin Descriptions

			CPU Interface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
CFWDRST	C14	О	CLK Forward Reset. Reset the CLK forward circuitry for the Athlon TM interface.
CONNECT	C15	0	Connect. Used for power management and CLK-forward initialization at reset.
PROCRDY	E14	Ι	Processor Ready. Used for power management and CLK-forward initialization at reset.
AIN[14-2]#	(see pin list)	0	Host CPU Address / Command Output. Unidirectional system address / command interface to the processor from the system controller. It is used to transfer probes or data movement commands into the processor during PCI-to-DRAM cycles to snoop the CPU internal Cache. AIN[14:2]# is skew-aligned with the forward clock, AINCLK#
AINCLK#	E17	О	Host CPU Address Output Clock. Single-ended forwarded clock for the AIN[14:2]# bus that is driven by the system controller. Both rising and falling edges are used to transfer addresses or commands to the processor.
AOUT[14-2]#	(see pin list)	I	Host CPU Address Input. Unidirectional system address / command interface from the processor to the system controller. It is used to transfer processor commands or probes responses to the system controller. AOUT[14:2]# is skew-aligned with the forward clock, AOUTCLK#
AOUTCLK#	T26	I	Host CPU Address Input Clock. Single-ended forwarded clock for the AOUT[14:2]# bus that is driven by the processor. Both rising and falling edges are used to transfer commands or probe responses.
D[63-0]#	(see pin list)	IO	Host CPU Data. Bi-directional interface between the processor and the system controller for data movement. D[63:0]# bus is skew-aligned with either the DICLK[3:0]# or DOCLK[3:0]# forward clocks.
DICLK[3-0]#	M23, F24, B26, D19	0	Host CPU Data Input Clock. Single-ended forwarded clocks for the D[63:0]# bus, driven by the system controller to the processor. Each 16-bit data word is skew-aligned with one of these clocks. Both rising and falling edges are used to transfer data to the pocessor.
DOCLK[3-0]#	N26, G26, D26, C19	I	Host CPU Data Output Clock. Single-ended forwarded clocks for the D[63:0]# bus, driven by the processor to the system controller. Each 16-bit data word is skew-aligned with one of these clocks. Both rising and falling edges are used to transfer data to the system controller.
DINVAL#	E16	0	Host CPU Data Read In Valid. Driven by the system controller to control the flow of data into the processor. DINVAL# can be used to introduce an arbitrary number of cycles between octawords into the processor.

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

Figure 3. Apollo KT266A Chipset PCB Layout Component Placement Guide

	Γ	PRAN	I Interface
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(See Pin List)	IO	Memory Data. These signals are connected to the DRAM data bus.
MECC[7:0] / CKE[7:0]	AC10, AE10, AD12, AC12, AF10, AD10, AF12, AE12	Ю	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat / temperature in high-speed memory systems.
MAA[14:0]	(See Pin List)	О	Memory Address A. DRAM address lines (two sets for better drive)
MAB[14-0]	(See Pin List)	О	Memory Address B. DRAM address lines (two sets for better drive).
CS[7:0]#	Y5, AA5, AD5, AE4, AE1, AE2, AD4, AF3	О	Memory Chip Select. Chip select of each bank.
DQM8, DQM7 / CKE7, DQM6 / CKE6, DQM5 / CKE5, DQM4 / CKE4, DQM3 / CKE3, DQM2 / CKE2, DQM1 / CKE1, DQM0 / CKE0 SRASA#, SRASB#	AB11, U2, W2, AB2, AE7, AF15, AE19, AC22, AA24	0	Memory Data Mask: Data mask of each byte lane. DQM8 is used for the ECC bit. Row Address Command Indicator. (two pins for better drive)
SKASA#, SKASB# SCASA#, SCASB#	ACo, AEo AE3, AF4	0	Column Address Command Indicator. (two pins for better drive)
SWEA#, SWEB#	AE3, AF4 AF5, AD6	0	Write Enable Command Indicator. (2 pins for better drive)
DQS[8]#, DQS[7:0]# / CKE[7:0]	AF3, AD6 AF11, U3, W1, AC3, AD8, AE15, AD19, AF23, AA26	Ю	DDR Data Strobe. DQS[8]# for ECC bit.
DQSFB	AD9	I	DDR Data Strobe Feedback. Connect to ground through a 1K ohm resistor. See also KT266A Design Guide.

			V-Link Interface		
Signal Name	Pin#	<u>I/O</u>	Signal Description		
VAD7,	N3,	IO	Address/Data Bus.	Connection	VT8233 Strap Pin
VAD6 / strap,	N2,		VAD6 strap – CPU DQ Mode	0=Center DQ, 1=Edge DQ	SDA2
VAD5 / strap,	N4,		VAD5 strap – Strap Source	0=MA, SCASA, SWEA, 1=ROM	SDA1
VAD4 / strap,	L5,		VAD4 strap – CPU FSB Clock Speed	0=100 MHz (default), 1=133 MH	z SDA0
VAD3 / strap,	N5,		VAD3 strap – CPU Clock Divide Bit-3	(see Device 0 Rx97[6])	SA19
VAD2 / strap,	L6,		VAD2 strap – CPU Clock Divide Bit-2	(see Device 0 Rx97[5])	SA18
VAD1 / strap,	K6,		VAD1 strap – CPU Clock Divide Bit-1	(see Device 0 Rx97[4])	SA17
VAD0 / strap	J4		VAD0 strap – CPU Clock Divide Bit-0	(see Device 0 Rx97[3])	SA16
_			The VAD pins are used by the KT266A	A chipset to communicate strap	information to the
			VT8366A north bridge from the VT823	33 south bridge at system power	up (i.e., the actual
			straps are on the indicated pin of the south	h bridge chip)	
VPAR	L4	IO	Parity.		
VBE#	K4	IO	Byte Enable.		
UPCMD	K3	I	Command from Client-to-Host.		
UPSTB	K1	I	Strobe from Client-to-Host.		
UPSTB#	K2	I	Complement Strobe from Client-to-Hos	st.	
DNCMD	L1	О	Command from Host-to-Client.	_	
DNSTB	L2	O	Strobe from Host-to-Client.		
DNSTB#	L3	O	Complement Strobe from Host-to-Clien	nt.	

			AGP Bus Interface
Signal Name	Pin #	<u>I/O</u>	Signal Description
GD[31:0]	(see pinout tables)	Ю	Address/Data Bus. The standard AGP/PCI address and data lines. The address is driven with GDS0# and GDS1# assertion for AGP transfers and is driven with GFRM# assertion for PCI transfers.
GDS0	F4	Ю	Bus Strobe 0 (AGP transactions only). Provides timing for 2x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.
GDS0#	Е3	IO	Bus Strobe 0 complement and Bus Strobe 0 (AGP transactions only). Provides timing for 4x data transfer mode on AD[15:0]. The agent that is providing the data drives this signal.
GDS1	E8	IO	Bus Strobe 1 (AGP transactions only). Provides timing for 2x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GDS1#	F8	IO	Bus Strobe 1 complement and Bus Strobe 1 (AGP transactions only). Provides timing for 4x data transfer mode on AD[31:16]. The agent that is providing the data drives this signal.
GBE[3:0]#	B7, B3, B2, D3	IO	Command/Byte Enable. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using PIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data, but the state of these pins is ignored by the AGP master. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GFRM#	E7	IO	Frame (PCI transactions only). Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	F11	IO	Initiator Ready AGP: For write operations, the assertion of this pin indicates that the master is ready to provide <i>all</i> write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	E6	IO	Target Ready: AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfers on both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	E5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDEVSEL#	D7	IO	Device Select (PCI transactions only). This signal is driven by the VT8366A when a PCI initiator is attempting to access main memory. It is an input when the VT8366A is acting as PCI initiator. Not used for AGP cycles.

Note: Clocking of the AGP interface is performed with GCLK; see the clock pin group for descriptions of the clock pins.

Note: PCB Layout Guidelines (reference from AGP specification)

- 1. Total motherboard trace length 10" max, trace impedance = 65 ohms \pm 15 ohms, minimize signal crosstalk
- 2. Trace lengths within groups matched to within 2 inches or better. Group a: GDS0#, GDS0, GD15-0, GBE1-0# Group b. GDS1#, GDS1, GD31-16, GBE3-2#

Group c. SBS#, SBS, SBA7-0
a should be provided around GDS0#, GDS0, GDS1# and GDS1 to prevent crosstalk with

3. Ground isolation should be provided around GDS0#, GDS0, GDS1# and GDS1 to prevent crosstalk with GD[31:0]. Ideally ground traces should be provided adjacent to GDSn# on the same signal layer, but at a minimum wider spaces should be provided on either side (e.g., 16 mil spaces on either side of GDSn# if GDSn# signal traces are 8 mil).

AGP Bus Interface (continued)					
Signal Name	<u>Pin #</u>	<u>IO</u>	Signal Description		
GPIPE#	D11	Ι	Pipelined Request. Asserted by the master (graphics controller) to indicate that a full-vidth request is to be enqueued by the target VT8366A. The master enqueues one equest each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is leasserted no new requests are enqueued across the AD bus.		
GRBF#	C10	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the VT8366A will not return low priority read data to the master.		
GWBF#	E9	I	Write Buffer Full.		
SBA[7:0]	A11, E11, C11, B11, D12, D13, B13, A13	Ι	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (the VT8366A). These pins are ignored until enabled.		
SBS	B12	I	Sideband Strobe. Provides timing for SBA[7:0] (driven by the master)		
SBS#	A12	I	Sideband Strobe complement and SBS . Provides timing for SBA[7:0] (driven by the master) when 4x timing is supported.		
ST[2:0]	D10, E13, D9	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the VT8366A and inputs to the master. 		
GREQ#	D14	I	Request. Master request for AGP.		
GGNT#	C13	0	Grant. Permission is given to the master to use AGP.		
GPAR / GCKRUN#	G5	Ю	Rx78[1]=0: AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0]. Rx78[1]=1: AGP Clock Run. Used to stop the AGP bus clock to reduce bus power usage.		
GCLK	G3	I	AGP Clock.		

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT8366A has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

Test Functions				
Signal Name	Pin#	<u>I/O</u>	Signal Description	
TESTIN#	W24	I	PLL Test Input. Normally connected to VCC25 with a 4.7K pullup.	

	Clock / Reset Control				
Signal Name	Pin#	<u>I/O</u>	Signal Description		
HCLK	H21	Ι	Cost Clock. This pin receives the host CPU clock $(66 / 100 / 133 \text{ MHz})$. This clock is used all VT8366A logic that is in the host CPU domain. The memory interface logic will also se this clock if selected (memory system timing can alternately be selected to use the AGP as clock). The CPU clock must lead the AGP clock by 0.2 ± 0.5 nsec.		
HCLK#	J21	I	Host Clock Complement.		
GCLK	G3	I	AGP Clock. 66 MHz clock used by all VT8366A logic that is in the AGP clock domain. The AGP clock must be synchronous to the 200 MHz host CPU clock.		
MCLK	V22	О	DRAM Clock. Output from internal clock generator to the external clock buffer.		
MCLKFB	V21	I	ORAM Clock Feedback. Input from MCLK via the external clock buffer.		
RESET#	P4	Ι	leset. Input from south bridge chip. When asserted, this signal resets the VT8366A and sets ll register bits to the default value. The rising edge of this signal is used to sample all powerp strap options		
PWROK	P3	I	Power OK.		
SUSST#	R5	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable.		

Figure 4. VT8366A North Bridge Clock Distribution

Figure 5. CPU / SDRAM / AGP Clock Connections

	Power, Ground, and Test				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
VCC25	(see pin list)	P	Power for Internal Logic and I/O Interface Logic (2.5V ±5%).		
VSUS25	R4	P	Suspend Power (2.5V ±5%).		
GND	(see pin list)	P	Ground. Connect to main ground plane.		
VCCH	D15, D18, D21, D23, F19, G23, K21, K23, N23, R21, T23	P	Host CPU Interface Power. Connect to same voltage as S2KVTT. Voltage is CPU dependent. See KT266A Design Guide for recommended power circuit.		
S2KVTT	H22	P	S2K Bus Termination Voltage. Connect to same voltage as VCCH. Voltage is CPU dependent. See KT266A Design Guide for recommended power circuit.		
S2KVREF	F16, T21	P	S2K Bus Voltage Reference. $\frac{1}{2}$ S2KVTT derived using $100 \Omega 1\% + 100 \Omega 1\%$ resistive voltage divider. See KT266A Design Guide.		
S2KVCC	G21	P	S2K Bus Interface Power. (2.5V ±5%)		
S2KGND	F22	P	S2K Bus Ground. Connect to main ground plane.		
S2KCOMP	G22	I	S2K Bus Compensation. Connect to 70 Ω 1% resistor to ground.		
VCCM	(see pin list)	P	Memory Interface Power. (2.5V ±5%)		
MVREF	V6, AA19	P	DDR SDRAM Voltage Reference. $\frac{1}{2}$ VCC25 derived using a 1K Ω 1% + 1K Ω 1% resistive voltage divider. See KT266A Design Guide.		
VCCVL	M1-2, M5-6, N6, N9	P	V-Link Interface Power. (2.5V ±5%)		
VCCVK	N1	P	V-Link Compensation Circuit Power. (2.5V ±5%)		
VLVREF	K5	P	V-Link Reference Voltage. 0.9V derived using a resistive voltage divider consisting of $2K \Omega 1\%$ to VCC25 and $1.13K \Omega 1\%$ to ground.		
VLCOMP	P1	I	V-Link P-Channel Compensation. Connect 70Ω 1% resistor to ground.		
VCCAGP	A1-A2, A6, A10, A14, B6, B10, B14, E1-E2, E12, F12, G6, H6, J9-J10, J13, K9	P	AGP Interface Power. 1.5V(4x mode) / 3.3V (1x and 2x mode) ±5%		
VCCQ					
,	H5	P	AGP Quiet Power. $1.5V(4x \text{ mode}) / 3.3V (1x \text{ and } 2x \text{ mode}) \pm 5\%$		
GNDQ	J3	P P	AGP Quiet Power. 1.5V(4x mode) / 3.3V (1x and 2x mode) ±5% AGP Quiet Ground. Connect to main ground plane.		
GNDQ	J3	P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to		
GNDQ AGPVREF	J3 A5	P P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide.		
GNDQ AGPVREF GCOMP	J3 A5	P P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60 Ω 1% resistor to VCCQ.		
GNDQ AGPVREF GCOMP VID	J3 A5 J2 J1	P P I I	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. $0 = \text{desktop}$, $1 = \text{mobile}$. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic.		
GNDQ AGPVREF GCOMP VID AVCCHCK	J3 A5 J2 J1 K22	P P I I	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. $0 = \text{desktop}$, $1 = \text{mobile}$. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic. Connect to main 2.5V supply through a ferrite bead.		
GNDQ AGPVREF GCOMP VID AVCCHCK AGNDHCK	J3 A5 J2 J1 K22 J22	P P I I P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. 0 = desktop, 1 = mobile. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic. Connect to main 2.5V supply through a ferrite bead. Host CPU Clock Ground. Connect to main ground plane through a ferrite bead. DRAM Clock Power (2.5V ±5%). For internal DRAM clock deskew logic.		
GNDQ AGPVREF GCOMP VID AVCCHCK AGNDHCK AVCCMCK	J3 A5 J2 J1 K22 J22 U21	P P I I P P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. 0 = desktop, 1 = mobile. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic. Connect to main 2.5V supply through a ferrite bead. Host CPU Clock Ground. Connect to main ground plane through a ferrite bead. DRAM Clock Power (2.5V ±5%). For internal DRAM clock deskew logic. Connect to main 2.5V supply through a ferrite bead.		
GNDQ AGPVREF GCOMP VID AVCCHCK AGNDHCK AVCCMCK	J3 A5 J2 J1 K22 J22 U21 U22	P P I I P P P P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. 0 = desktop, 1 = mobile. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic. Connect to main 2.5V supply through a ferrite bead. Host CPU Clock Ground. Connect to main ground plane through a ferrite bead. DRAM Clock Power (2.5V ±5%). For internal DRAM clock deskew logic. Connect to main 2.5V supply through a ferrite bead. DRAM Clock Ground. Connect to main ground plane through a ferrite bead. Internal Delay Circuit Power (2.5V ±5%). Connect to main 2.5V supply		
GNDQ AGPVREF GCOMP VID AVCCHCK AGNDHCK AVCCMCK AGNDMCK AVCCDL1	J3 A5 J2 J1 K22 J22 U21 U22 AA18	P P I I P P P P	AGP Quiet Ground. Connect to main ground plane. AGP Voltage Reference. 0.39 VCC3 to 0.41 VCC3. Typical value is 1.32V (0.40 times 3.3V). This can be provided with a resistive divider (150 Ω 1% to VCCQ and 100 Ω 1% to ground). See KT266A Design Guide. AGP Compensation. Connect to 60Ω 1% resistor to VCCQ. Voltage ID. CPU FSB interface voltage select. 0 = desktop, 1 = mobile. Host CPU Clock Power (2.5V ±5%). For internal Host CPU clock logic. Connect to main 2.5V supply through a ferrite bead. Host CPU Clock Ground. Connect to main ground plane through a ferrite bead. DRAM Clock Power (2.5V ±5%). For internal DRAM clock deskew logic. Connect to main 2.5V supply through a ferrite bead. DRAM Clock Ground. Connect to main ground plane through a ferrite bead. Internal Delay Circuit Power (2.5V ±5%). Connect to main 2.5V supply through a ferrite bead.		

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT8366A North Bridge chip of the Apollo KT266A chipset (refer to the separate VT8233 data sheet for the register definitions of the South Bridge chip). These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 4. VT8366A North Bridge Registers

VT8366A I/O Ports

Port #	I/O Port	<u>Default</u>	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

VT8366A Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3099	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved-	00	_
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	_
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Capability Pointer	0000 00A0	RO
38-3F	-reserved-	00	_

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	18	RO
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RO
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RO
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	CPU Configuration	Default	Acc
50-53	-reserved-	00	_
54	CPU Frequency Select	x0	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	40	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	Extended SMRAM Control	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	10	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Offset	PCI Bus Control	<u>Default</u>	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	RW
72	-reserved-	00	_
73	PCI Master Control	00	RW
74	-reserved-	00	_
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7F	-reserved-	00	_

Offset	GART/TLB Control	<u>Default</u>	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved-	00	_
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-8F	-reserved-	00	_

Offset	Host CPU Control	Default	Acc
90-91	-reserved-	00	_
92	S2K Timing Control	78	RW
93	BIU Arbitration Control	00	RW
94	BIU Control 1	00	RW
95	BIU Control 2	00	RW
96	BIU Control 3	00	RW
97	CPU Strapping	strapping	RO
98	S2K Compensation Strapping	00	RW
99	S2K Compensation Result 1	00	RO
9A	S2K Compensation Result 2	00	RW
9B	S2K Compensation Result 3	00	RO
9C	S2K Compensation Result 4	07	RW
9D	S2K Compensation Result 5	00	RW
9E	BIU Control 4	00	RW
9F	-reserved-	00	

Offset	AGP Control	<u>Default</u>	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	_
A7-A4	AGP Status	1F00 0201	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Latency Timer	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	AGP Strobe Output Drive Strength	00	RW
В0	AGP Pad Control / Status	8x	RW
B1	AGP Drive Strength	63	RW
B2	AGP Pad Drive / Delay Control	08	RW
В3	-reserved-	00	_

Offset	V-Link Control	<u>Default</u>	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
B6-B7	-reserved-	00	
В8	V-Link SB Compensation Control	00	RW
В9	V-Link SB Drive Control	00	RW
BA-BD	-reserved-	00	_

Offset	DRAM Power Control	<u>Default</u>	Acc
BE	MPD Drive Strength	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Extended Power Management	<u>Default</u>	Acc
C0	Power Management Capability ID	01	RO
C1	Power Management New Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control / Status	00	RW
C5	Power Management Status	00	RW
C6	PCI-to-PCI Bridge Support Extension	00	RW
C7	Power Management Data	00	RW
C8-DF	-reserved-	00	

Offset	Reserved	Default	Acc
E0-EF	-reserved-	00	_
F0-F7	-reserved- (test)	00	_
F8-FF	-reserved- (backdoor)	00	_

VT8366A Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID 1106		RO
3-2	Device ID	B099	RO
5-4	Command	0007	RW
7-6	Status	0230	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
A	Sub Class Code	04	RO
В	Base Class Code	06	RO
С	-reserved-	00	_
D	Latency Timer	00	$\mathbf{R}\mathbf{W}$
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
10-17	-reserved-	00	_
18	Primary Bus Number	00	$\mathbf{R}\mathbf{W}$
19	Secondary Bus Number	00	\mathbf{RW}
1A	Subordinate Bus Number	00	$\mathbf{R}\mathbf{W}$
1B	Secondary Latency Timer	00	RO
1C	I/O Base F0		$\mathbf{R}\mathbf{W}$
1D	I/O Limit 00		$\mathbf{R}\mathbf{W}$
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	$\mathbf{R}\mathbf{W}$
23-22	Memory Limit (Inclusive)	0000	$\mathbf{R}\mathbf{W}$
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	\mathbf{RW}
28-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
34	Capability Pointer	80	RO
35-3D	-reserved-	00	
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	AGP Bus Control	<u>Default</u>	Acc
40	CPU-to-AGP Flow Control 1	00	RW
41	CPU-to-AGP Flow Control 2	00	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	22	RW
44	Back-Door Register Control	20	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

Miscellaneous I/O

One I/O port is defined in the VT8366A: Port 22.

Port 22	2 – PCI / AGP Arbiter DisableRW
7-2	Reserved always reads 0
1	AGP Arbiter Disable
	0 Respond to GREQ# signaldefault
	1 Do not respond to GREQ# signal
0	PCI Arbiter Disable
	0 Respond to all REQ# signalsdefault
	1 Do not respond to any REQ# signals, including
	PREQ#

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 76.

Configuration Space I/O

All registers in the VT8366A (listed above) are addressed via the following configuration mechanism:

Mechanism #1

-	orts respond only to double-word accesses. Byte or cesses will be passed on unchanged.
Port CF	B-CF8 - Configuration AddressRW
31	Configuration Space Enable
	0 Disableddefault
	1 Convert configuration data port writes to
	configuration cycles on the PCI bus
30-24	Reserved always reads 0
23-16	PCI Bus Number
	Used to choose a specific PCI bus in the system
15-11	Device Number
	Used to choose a specific device in the system
	(devices 0 and 1 are defined for the VT8366A)
10-8	Function Number
	Used to choose a specific function if the selected
	device supports multiple functions (only function 0 is
	defined for the VT8366A).
7-2	Register Number (also called the "Offset")
	Used to select a specific DWORD in the VT8366A
	configuration space
1-0	Fixed always reads 0
Port CF	FF-CFC - Configuration DataRW

Refer to PCI Bus Specification Version 2.1 for further details on operation of the above configuration registers.

Register Descriptions

Device 0 Header Registers - Host Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and device number equal to zero.

device n	umbei	equal to <u>zero</u> .
Device (0 Offs	et 1-0 - Vendor ID (1106h)RO
15-0		ode (reads 1106h to identify VIA Technologies)
10 0	ID C	out (reads 1100h to identify virt reemiologies)
Device	0 Offs	et 3-2 - Device ID (3099h)RO
15-0	ID C	ode (reads 3099h to identify the VT8366A)
Dovice	n Aff e	et 5-4 –Command (0006h)RW
15-10		
15-10 9		Back-to-Back Cycle EnableRO
9	rasi ()	Fast back-to-back transactions only allowed to
	U	the same agentdefault
	1	Fast back-to-back transactions allowed to
	1	different agents
8	SERI	R# EnableRO
Ü	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report parity errors if bit-6 is set).
7		ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
	1	Take normal action on detected parity errors
5		Palette SnoopRO
	0	Treat palette accesses normallydefault
	1	Don't respond to palette accesses on PCI bus
4		ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
2	1	Bus masters may generate Mem Write & Invalial Cycle MonitoringRO
3	Speci 0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	_	Bus MasterRO
	0	Never behaves as a bus master
	1	Can behave as a bus masterdefault
1	Mem	ory SpaceRO
_	0	Does not respond to memory space
	1	Responds to memory spacedefault
0	I/O S	
	0	Does not respond to I/O spacedefault
	1	Responds to I/O space
		-

Device	0 Offs	et 7-6 – Status (0210h)RWC
15	Detec	cted Parity Error
	0	No parity error detected default
	1	Error detected in either address or data phase.
		This bit is set even if error response is disabled
		(command register bit-6)write one to clear
14	Signa	aled System Error (SERR# Asserted)
		always reads 0
13	_	aled Master Abort
	0	No abort received default
	1	Transaction aborted by the master
- 4.6	_	write one to clear
12		ived Target Abort
	0	No abort received
	1	Transaction aborted by the target
11	Ciana	write one to clear
11	Signa ()	aled Target Abortalways reads 0 Target Abort never signaled
10-9		SEL# Timing
10-9	00	Fast
	01	Mediumalways reads 01
	10	Slow
	11	Reserved
8	Data	Parity Error Detected
	0	No data parity error detected default
	1	Error detected in data phase. Set only if error
		response enabled via command bit- $6 = 1$ and
		VT8366A was initiator of the operation in
		which the error occurredwrite one to clear
7		Back-to-Back Capablealways reads 0
6		Definable Features always reads 0
5		Hz Capablealways reads 0
4		orts New Capability listalways reads 1
3-0	Rese	rvedalways reads 0
Device	0 Offs	et 8 - Revision ID (0nh)RO
7-0		Revision Codealways reads 0nh (n=rev code)
7-0	Cmp	Revision Codearways reads offit (n=rev code)
Device	0 Offs	et 9 - Programming Interface (00h)RO
7-0	Inter	face Identifieralways reads 00
	0.000	
		et A - Sub Class Code (00h)RO
7-0	Sub (Class Codereads 00 to indicate Host Bridge
Device	∩ Offs	et B - Base Class Code (06h)RO
7-0	base	Class Code reads 06 to indicate Bridge Device
Device	0 Offs	et D - Latency Timer (00h)RW
		atency timer value in PCI bus clocks.
_		
7-3 2-0		ranteed Time Slice for CPUdefault=0 rved (fixed granularity of 8 clks) always read 0
4-U		2-1 are writeable but read 0 for PCI specification
		eatibility. The programmed value may be read
		in Offset 75 bits 5-4 (PCI Arbitration 1).
		,

Device 0 Host Bridge Header Registers (continued)

Device	0 Offset E - Header Type (00h)RO
7-0	Header Type Codereads 00: single function
Device	0 Offset F - Built In Self Test (BIST) (00h)RO
7	BIST Supportedreads 0: no supported functions
6-0	Reserved always reads 0
Device	0 Offset 13-10 - Graphics Aperture Base

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits...... def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) <u>7 6 5 4 3 2 1</u> (Gr Aper Size) RW RW RW RW RW RW RW 1M RW RW RW RW RW RW 2MRWRWRWRWRW 0 4MRWRWRWRW 0 8M RWRWRWRW 0 0 0 16M 0 RWRWRW 0 0 0 0 32M RWRW 0 0 0 0 0 0 64M RW = 00 0 0 0 0 0 128M 0 0 0 0 0 0 256M

19-0 Reserved always reads 00008

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID.....default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h).....R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Configuration Registers - Host Bridge

These registers are normally programmed once at system initialization time.

V-Link Control

Device	0 Offset 40 – V-Link Specification ID (00h)RO	D
7-0	Specification Revision always reads 00	
Device	0 Offset 41 – NB V-Link Capability (18h)RO	
7-6	Reserved always reads 0	
5	16-bit Bus Width SupportedRO	
	0 Not Supporteddefault	
	1 Supported	
4	8-Bit Bus Width SupportedRO	
	0 Not Supported	
	1 Supporteddefault	
3	4x Rate SupportedRO	
	0 Not Supported	
	1 Supporteddefault	
2	2x Rate SupportedRO	
	0 Not Supporteddefault	
	1 Supported	
1-0	Reserved always reads 0	
Device	0 Offset 42 – NB Downlink Command (88h)RW	
7-4	DnCmd Max Request Depth (0=1 DnCmd) def = 8	
3-0	DnCmd Write Buffer Size (doublewords) def = 8	
3-0	Differit Write Builer Size (doublewords) doi = 0	
Device	0 Offset 44-43 – NB Uplink Status (8280h)RO	
15-12	UpCmd P2C Write Buffer Size (max lines) def = 8	
11-8	UpCmd P2P Write Buffer Size (max lines) def = 2	
7-4	UpCmd Max Request Depth (0=1 UpCmd) def = 8	

3-0 Reservedalways reads 0

Device	0 Offset 45 –NB V-Link Bus Timer (44h)RW
7-4	Timer for Normal Priority Requests from SB
	0000 Immediate
	0001 1*4 VCLKs
	0010 2*4 VCLKs
	0011 3*4 VCLKs
	0100 4*4 VCLKsdefault
	0101 5*4 VCLKs
	0110 6*4 VCLKs
	0111 7*4 VCLKs
	1000 8*4 VCLKs
	1001 16*4 VCLKs
	1010 32*4 VCLKs
	1011 64*4 VCLKs
	11xx Own the bus for as long as there is a request
3-0	Timer for High Priority Requests from SB
	0000 Immediate
	0001 1*2 VCLKs
	0010 2*2 VCLKs
	0011 3*2 VCLKs
	0100 4*2 VCLKsdefault
	0101 5*2 VCLKs
	0110 6*2 VCLKs
	0111 7*2 VCLKs
	1000 8*2 VCLKs
	1001 16*2 VCLKs
	1010 32*2 VCLKs
	1011 64*2 VCLKs

11xx Own the bus for as long as there is a request

Device	o Ons	ct 40 - ND V-Link Misc Control (0011)
7	Down	nstream High Priority
	0	Disable High Priority Down Commands def
	1	Enable High Priority Down Commands
6	Down	nlink Priority
	0	Treat Downlink Cycles as Normal Priority def
	1	Treat Downlink Cycles as High Priority
5-4	Com	bine Multiple STPGNT Cycles into One V-
	Link	Command
	00	Compatible, 1 command per V-Link cmd def
	01	
	10	3 commands per V-Link command
		4 commands per V-Link command
3-2	V-Liı	nk Master Access Ordering Rules
	00	High priority read, pass normal read (not pass
		write)default
	01	Read (high/normal) pass write (HR>LR>W)
	1x	
1	Reser	
0	Read	y Queue Full Performance
	0	Full Performancedefault
	1	Backwards Compatible
Dovice	n Offa	ot 47 V Link Control (00h) DW
		et 47 – V-Link Control (00h)RW
7-3		rved always reads 0
2		-Disconnect
		Disabledefault
1	1	Enable
1		nk Disconnect Cycle for HALT cycle
	0	2154014
Δ	1	Zime i
0	V-L 11	nk Disconnect Cycle for STPGNT Cycle Disabledefault
	Ü	Enablederauit
	1	Ellaule

Device	<u> 0 Offset 48 – NB/SB-V-Link Configuration (18h)RV</u>
7	Reserved always reads 0
6	Rest Bus Width Supported
	0 Not Supporteddefault
	1 Supported
5	16-bit Bus Width Supported
	0 Not Supporteddefault
	1 Supported
4	8-Bit Bus Width Supported
	0 Not Supported
	1 Supporteddefault
3	4x Rate Supported
	0 Not Supported
	1 Supporteddefault
2	2x Rate Supported
	0 Not Supporteddefault
	1 Supported
1-0	Reserved always reads 0
Dovido	0 Offset 40 CD V I into Comphility (19h) DO
	0 Offset 49 – SB V-Link Capability (18h)RO
7-6	Reserved always reads 0
5	16-bit Bus Width SupportedRO
	0 Not Supported default
4	1 Supported
4	8-Bit Bus Width SupportedRO
	0 Not Supported 1 Supported default
3	1 Supported
3	4x Rate SupportedRO 0 Not Supported
	0 Not Supported 1 Supporteddefault
2	2x Rate SupportedRO
4	0 Not Supported default
	1 Supported
1-0	Reservedalways reads 0
1-0	Reserveuarways reads o
Device	<u> 0 Offset 4A – SB Downlink Status (88h)RO</u>
7-4	DnCmd Max Request Depth (0=1 DnCmd)def = 8
3-0	DnCmd Write Buffer Size (doublewords)def = 8
	,
	<u> 0 Offset 4C-4B – SB Uplink Command (8280h). RW</u>
15-12	UpCmd P2C Write Buffer Size (max lines)def = 8
11-8	UpCmd P2P Write Buffer Size (max lines)def = 2
7-4	UpCmd Max Request Depth (0=1 UpCmd)def = 8
3-0	Reservedalways reads 0

7-4	Timer for Normal Priority Requests from NB	7	1394 High Priority
	0000 Immediate		0 Low prioritydefault
	0001 1*4 VCLKs		1 High priority
	0010 2*4 VCLKs	6	LAN / NIC High Priority
	0011 3*4 VCLKs		0 Low prioritydefault
	0100 4*4 VCLKsdefault		1 High priority
	0101 5*4 VCLKs	5	Reserved always reads 0
	0110 6*4 VCLKs	4	USB High Priority
	0111 7*4 VCLKs		0 Low prioritydefault
	1000 8*4 VCLKs		1 High priority
	1001 16*4 VCLKs	3	Reserved always reads 0
	1010 32*4 VCLKs	2	IDE High Priority
	1011 64*4 VCLKs		0 Low prioritydefault
	11xx Own the bus for as long as there is a request		1 High priority
	Timer for High Priority Requests from NB	1	AC97-ISA High Priority
	0000 Immediate	_	0 Low prioritydefault
	0001 1*2 VCLKs		1 High priority
	0010 2*2 VCLKs	0	PCI High Priority
	0011 3*2 VCLKs	v	0 Low priority default
	0100 4*2 VCLKsdefault		1 High priority
	0101 5*2 VCLKs		1 mgm phondy
	0110 6*2 VCLKs	Device	0 Offset 4F - SB V-Link Misc Control (00h) RW
	0111 7*2 VCLKs	7	Upstream Command High Priority
	1000 8*2 VCLKs		0 Disable high priority up commands default
	1001 16*2 VCLKs		1 Enable high priority up commands
	1010 32*2 VCLKs	6-1	Reserved always reads 0
	1011 64*2 VCLKs	0	Down Cycle Wait for Up Cycle Write Flush
	11xx Own the bus for as long as there is a request		(Except Down Cycle Post Write)
	That o wa use out for us long us until is a request		0 Disable default
			1 Enable
			0.000 + #4 CDVIII
			0 Offset 54 - CPU Frequency Select (x0h) RW
		7	Reservedalways reads 0
		6	CPU FSB Frequency SelectRO, Set by Strap VAD4
			Default set from the VT8233 South Bridge SDA0 pin
			communicated to the VT8366A via VAD4
			0 100 MHz
			1 133 MHz
		5	ROMSIP ConfigurationRO, Set by Strap VAD5
			0 Disable (config per MA / SCASA / SWEA
			straps)
			1 Enable (configure per ROMSIP)
		4	SDRAM Burst Length 8QW
			0 Disabledefault
			1 Enable

3-0 Reserved

.....always reads 0

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8633 BIOS porting guide for details).

Table 5. System Memory Map

Space	<u>Start</u>	Size	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB		00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFEFFF	
Init 4	4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Device	e 0 Offset 55 – DRAM Control (00h)RW
7	0WS Back-to-Back Write to Different DDR Bank
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	DQS Input DLL Adjustment
	0 Disabledefault
	1 Enable
4	DQS Output DLL Adjustment
	0 Disabledefault
	1 Enable
3	DQM Removal (Always Perform 4-Burst RW)
	0 Disabledefault
	1 Enable
2	DQS Output
	0 Disabledefault
	1 Enable
1	Auto Precharge for TLB Read or CPU WriteBack
	0 Disabledefault
	1 Enable
0	Write Recovery Time
	0 1Tdefault
	1 2T

Device 0 Offset 59-58 - DRAM MA Map Type (2222h).RW

15-13	Bank 5/4 MA Map Type (see table below)
12	Bank 5/4 1T Command Rate
	0 2T Commanddefault
	1 1T Command
11-9	Bank 7/6 MA Map Type (see table below)
8	Bank 7/6 1T Command Rate
	0 2T Commanddefault

- 7-5 Bank 1/0 MA Map Type (see table below)
- 4 Bank 1/0 1T Command Rate

1 1T Command

- 0 2T Command......default
- 1 1T Command
- 3-1 Bank 3/2 MA Map Type (see table below)
- 0 Bank 3/2 1T Command Rate
 - 0 2T Command......default
 - 1 1T Command

Table 6. Device 0 Rx58 MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	256Mb	8-bit Column Address
110	256Mb	9-bit Column Address
111	256Mb	10/11-bit Column Address

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A – Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D - Bank 3 Ending (HA[31:24]) (01h)	RW
Offset 5E - Bank 4 Ending (HA[31:24]) (01h)	
Offset 5F - Bank 5 Ending (HA[31:24]) (01h)	
Offset 56 - Bank 6 Ending (HA[31:24]) (01h)	RW
Offset 57 - Bank 7 Ending (HA[31:24]) (01h)	

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (00h)......RW

- 7-6 DRAM Type for Bank 7/6
- 5-4 DRAM Type for Bank 5/4
- 3-2 DRAM Type for Bank 3/2
- 1-0 DRAM Type for Bank 1/0

00 SDR SDRAMdefault

01 -reserved-

10 DDR SDRAM

11 -reserved-

Table 7. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

					_ `					т.						- 37
MA	۸: <u>1</u> ۷	13	12	11	10	9	8	7	<u>6</u>	<u>5</u>	4	3	2	1	0	
<u>16Mb</u>		24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
(000)				13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
64/128M	b															x16 (14,8)
2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
001		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
4K page	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
010		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
8K page	14	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
256Mb																
2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
101		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
4K page	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
110		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
111		28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offs	et 63 - Shadow	RAM
7-6	CC00	00h-CFFFFh	7-6	E000	0h-EFFFFh	
	00	Read/write disabledefault		00	Read/write dis	able
	01	Write enable		01	Write enable	
	10	Read enable			Read enable	
	11	Read/write enable		11	Read/write ena	able
5-4		0h-CBFFFh	5-4	F000	0h-FFFFFh	
	00	Read/write disabledefault		00	Read/write dis	able
	01	Write enable		01	Write enable	
		Read enable		10	Read enable	
		Read/write enable		11	Read/write ena	able
3-2		0h-C7FFFh	3-2	Mem	ory Hole	
	00	Read/write disabledefault			None	
	01	Write enable		01	512K-640K	
	10	Read enable		10	15M-16M (1M	1)
	11	Read/write enable			14M-16M (2M	
1-0		0h-C3FFFh	1-0	SMI	Mapping Cont	rol
	00	Read/write disabledefault		(Bit-1	1 = A,BK Direc	t Acce
	01	Write enable		(Bit-0	0 = A,BK DRA	M Aco
	10	Read enable				
	11	Read/write enable			<u>SMM</u>	
ъ.	0.000	4.62 CL L DAM C 4 12 (00L) DW			Code I	<u>Data</u>
		et 62 - Shadow RAM Control 2 (00h)RW		00	DRAM DI	RAM
7-6		00h-DFFFFh		01	DRAM DI	RAM
		Read/write disabledefault		10	DRAM I	PCI
	01	Write enable		11	DRAM DI	RAM
		Read enable				
		Read/write enable				
5-4		0h-DBFFFh				
		Read/write disabledefault				
	01	Write enable				
		Read enable				
		Read/write enable				
3-2		0h-D7FFFh				
		Read/write disabledefault				
	01	Write enable				
		Read enable				
		Read/write enable				
1-0		Oh-D3FFFh				
		Read/write disabledefault				
		Write enable				
	10	Read enable				

evice 0 Offset 63 - Shadow RAM Control 3 (00h) RW						
7-6	E0000h-EFFFFh					
	00	Read/write disable	default			
	01	Write enable				
	10	Read enable				
	11	Read/write enable				
5-4	F0000h-FFFFFh					
	00	Read/write disable	default			
	01	Write enable				
	10	Read enable				
	11	Read/write enable				
3-2	Mem	nory Hole				
	00	None	default			
	01	512K-640K				
	10	15M-16M (1M)				
	11	14M-16M (2M)				
1-0	SMI	Mapping Control				
	(Bit-1 = A,BK Direct Access SMRAM Disable)					
	(Bit-0 = A,BK DRAM Access Enable)					
		<u>SMM</u>	Non-SMM			

Code

PCI

PCI

DRAM DRAM

DRAM DRAM

<u>Data</u>

PCI

PCI

11 Read/write enable

Device	0 Offset 64 - DRAM Timing for All Banks (E4h)RW				
7	Precharge Command to Active Command Period				
	$0 T_{RP} = 2T$				
	1 $T_{RP} = 3T$ default				
6	Active Command to Precharge Command Period				
	0 Tras = 5T				
	1 $T_{RAS} = 6T$ def				
5-4	CAS Latency				
	<u>SDR</u> <u>DDR</u>				
	00 1T -				
	01 2T 2T				
	10 3T 2.5Tdefault				
	11 - 3T				
	For VCM, CAS Latency is fixed at 2T, independent				
	of the above bits				
3	Reserved always reads 0				
2	ACTIVE to CMD				
	0 2T				
	1 3Tdefault				
1-0	Bank Interleave				
	00 No Interleavedefault				
	01 2-way				
	10 4-way				
	11 Reserved				
	For 16Mb SDRAMs, bank interleave is always 2-way				
Device	0 Offset 65 - DRAM Arbitration Timer (00h)RW				
7-4	AGP Timer (units of 4 MCLKs) default = 0				
3-0	CPU Timer (units of 4 MCLKs) default = 0				
Device	0 Offset 66 - DRAM Arbitration Control (40h) .RW				
7	SDR – Feedback Clock Select				
	DDR - DQS Input Delay Setting				
	0 Auto (Rx67 reads DLL calibration result) def				
	1 Manual (Rx67 reads DQS input delay)				
6	DDR - DQS Output Delay SettingRO				
	0 Auto				
	1 Manual always reads 1				
5-4	Arbitration Parking Policy				
	00 Park at last bus ownerdefault				
	01 Park at CPU				
	10 Park at AGP				
	11 -reserved-				
3-0	AGP / CPU Priority (units of 4 MCLKs)				

Device	0 Offset 6	7 – DDR Strobe Input Delay (00h) RW
Bevice	DDR:	Date Stroke Imput Delay (0011/11111 Itt)
7-0		out Delaydefault = 0
		[7]=0, read DLL calibration result)
		,
	SDR:	
7-3	Reserve	dalways reads 0
2-0	MD Lat	ch Clock Select and Clock Delay
	M	D Latch Clock Delay Value ternal clock 0.27 default
	000 In	ternal clock 0.27 default
	001 In	ternal clock 0.45
	010 In	ternal clock 1.02
	011 E	sternal feedback clock 2.10
	100 In	ternal clock 1.32
	101 In	ternal clock 1.50
	110 In	ternal clock 2.07
	111 E:	sternal feedback clock 3.15
Dovice	n Offcat 6	8 – DDR Strobe Output Delay (00h) RW
7-0		OS Output Delaydefault = 0
7-0	DDKD	25 Output Delaydeladit = 0

Device	0 Offs	et 69 – DRAM Clock Select (00h)RW	
7	CPU Operating Frequency Faster Than DRAM		
	0	CPU Same As or Equal to DRAMdefault	
	1	CPU Faster Than DRAM by 33 MHz	
6	DRA	M Operating Frequency Faster Than CPU	
	0	DRAM Same As or Equal to CPUdefault	
	1	DRAM Faster Than CPU by 33 MHz	
5	DRA	M Queue More Than 2	
	0	Disabledefault	
	1	Enable	
4	DRA	M Queue Not Equal to 4	
	0	Disabledefault	
	1	Enable	
3	DRA	M 8K Page Enable	
	0	Disabledefault	
	1	Enable	
2	DRA	M 4K Page Enable	
	0	Disabledefault	
	1	Enable	
1	DIM	M Type	
	0	Unbuffereddefault	
	1	Registered	
0	Mult	iple Page Mode	
	0	Disabledefault	
	1	Enable	

7-0	Refresh Counter (in units of 16 MCLKs)
	00 DRAM Refresh Disableddefault
	01 32 MCLKs
	02 48 MCLKs
	03 64 MCLKs
	04 80 MCLKs
	05 96 MCLKs
	The programmed value is the desired number of 16-
	MCLK units minus one.

	Fast Read to Write turn-around	7-6	SDRAM A Drive – SRASA/SCASA/SWEA, MAA
7	0 Disabledefault	/-0	00 Lowestdefault
	1 Enable		01
6	Page Kept Active When Cross Bank		10
U	0 Disabledefault		11 Highest
	1 Enable	5-4	SDRAM B Drive – SRASB/SCASB/SWEB, MAB
5	Burst Refresh	3-4	00 Lowest
3	0 Disabledefault		01
	1 Enable		10
4	CKE Function		11 Highest
7	0 Disable	3-2	DDR DQS Drive
	1 Enabledefault	3-2	00 Lowest
3	Swap CA22 / CA14		01
3	0 Disabledefault		10
	1 Enable		11 Highest
2-0	SDRAM Operation Mode Select	1-0	MD / MECC / CAS / CKE Early Clock Select
- 0	000 Normal SDRAM Modedefault	10	00 Latest
	001 NOP Command Enable		01
	010 All-Banks-Precharge Command Enable		10
	(CPU-to-DRAM cycles are converted		11 Earliest
	to All-Banks-Precharge commands).		
	011 MSR Enable	Device	0 Offset 6D - Drive Control 2 (00h)RW
	CPU-to-DRAM cycles are converted to	7-6	Early Clock Select for SCMD, MA Output (for 1T
	commands and the commands are driven on		Command)
	MA[14:0]. The BIOS selects an appropriate		00 Latestdefault
	host address for each row of memory such that		01
	the right commands are generated on		10
	MA[14:0].		11 Earliest
	100 CBR Cycle Enable (if this code is selected,	5-4	DQM Drive
	CAS-before-RAS refresh is used; if it is not		00 Lowestdefault
	selected, RAS-Only refresh is used)		01
	101 Reserved		10
	11x Reserved		11 Highest
		3-2	RAS# Drive
			00 Lowestdefault
			01
			10
			11 Highest
		1-0	Memory Data Drive (MD, MECC)
			00 Lowestdefault

Note: Refer to the BIOS Developers Guide for recommended memory configuration detection algorithms and recommended settings for the bits of the above two registers.

01 10

11 Highest

Device 0 Offset 6E - ECC Control (00h).....RW ECC / EC Mode Select 0 ECC Checking and Reportingdefault ECC Checking, Reporting, and Correcting Perform Read-Modify-Write for Partial Write 0 Disabledefault Enable 5 **Enable SERR# on ECC / EC Multi-Bit Error** Don't assert SERR# for multi-bit errors..... def Assert SERR# for multi-bit errors **Enable SERR# on ECC / EC Single-Bit Error** 0 Don't assert SERR# for single-bit errors..... def 1 Assert SERR# for single-bit errors 3 ECC / EC Enable - Bank 7/6 (DIMM 3) 0 Disable (no ECC or EC for banks 7/6)...default 1 Enable (ECC or EC per bit-7) ECC / EC Enable - Bank 5/4 (DIMM 2) 2 0 Disable (no ECC or EC for banks 5/4)...default 1 Enable (ECC or EC per bit-7) ECC / EC Enable - Bank 3/2 (DIMM 1) 1 0 Disable (no ECC or EC for banks 3/2)...default Enable (ECC or EC per bit-7) ECC / EC Enable - Bank 1/0 (DIMM 0)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

1 Enable (ECC or EC per bit-7)

0 Disable (no ECC or EC for banks 1/0)...default

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	<u>RMW</u>	Error Checking	Error Correction	
0/1	0	No	No	No	
0	1	Yes	Yes	No	
1	1	Yes	Yes	Yes	
Device	Device 0 Offset 6F - ECC Status (00h)RWC				
7	Multi-	bit Erro	r Detected	write of '1' resets	
6-4	Multi-	bit Erro	r DRAM Bank	default=0	
	Encode	ed value	of the bank with th	e multi-bit error.	
3	Single-	bit Erro	or Detected	write of '1' resets	

Single-bit Error DRAM Bankdefault=0

Encoded value of the bank with the single-bit error.

Host PCI Bridge Control

These registers are normally programmed once at system initialization time.

Device	0 Offset 70 - PCI Buffer Control (00h)RW
7	CPU to PCI Post-Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5-4	PCI Master to DRAM Prefetch Control
	00 Always Prefetchdefault
	x1 Never Prefetch
	10 Prefetch only for enhance command
3	Reserved always reads 0
2	PCI Master Read Buffering
	0 Disabledefault
	1 Enable
1	Delay Transaction
	0 Disabledefault
	1 Enable
0	Reserved always reads 0

0 Offse	et 71 - CPU to PCI Flow Control (48h) RW
Retry	Status
0	No retry occurreddefault
1	Retry occurred
Retry	Timeout Action
0	Retry forever (record status only)
1	Flush buffer or return FFFFFFF for read def
Retry	Count and Retry Backoff
00	Retry 2 times, Boff CPUdefault
01	Retry 16 times
10	Retry 4 times
11	Retry 64 times
PCI I	Burst
0	Disable
1	Enabledefault
Reser	vedalways reads 0
Confi	guration Cycle
0	Fix AD31default
1	Compatible Type #1 AD31
IDSE	L Control
0	AD11 / AD12default
1	AD30 / AD31
	Retry 0 1 Retry 0 1 Retry 00 01 10 11 PCI I 0 1 Reser Confi 0 1 IDSE 0

7	Reserved always reads 0	7	Arbitration Mode
6	PCI Master 1-Wait-State Write		0 REQ-based (arbitrate at end of REQ#) defaul
	0 Zero wait state TRDY# responsedefault		1 Frame-based (arbitrate at FRAME# assertion)
	1 One wait state TRDY# response	6-4	CPU Latency
5	PCI Master 1-Wait-State Read	3	Reservedalways reads (
	O Zero wait state TRDY# responsedefault	2-0	PCI Master Bus Time-Out
	1 One wait state TRDY# response		(force into arbitration after a period of time)
4	WSC#		000 Disabledefaul
	0 Disabledefault		001 1x16 PCICLKs
	1 Enable		010 2x16 PCICLKs
3-1	Reserved always reads 0		011 3x16 PCICLKs
0	PCI Master Broken Timer Enable		100 4x16 PCICLKs
	0 Disabledefault		
	1 Enable. Force into arbitration when there is no FRAME# 16 PCICLK's after the grant.		111 7x16 PCICLKs
	Č	<u>Device</u>	0 Offset 76 - PCI Arbitration 2 (00h)RV
		7	I/O Port 22 Enable
			0 CPU access to I/O address 22h is passed on to
			the PCI busdefaul
			1 CPU access to I/O port 22h is processed by
			internal I/O
		6	Reservedalways reads
		5-4	Master Priority Rotation Control
			00 Disablede
			01 Grant to CPU after every PCI master grant
			10 Grant to CPU after every 2 PCI master grants
			11 Grant to CPU after every 3 PCI master grants
			With setting 01, the CPU will always be grante
			access after the current bus master completes, n
			matter how many PCI masters are requesting. Wit
			setting 10, if other PCI masters are requesting durin
			the current PCI master grant, the highest priorit
			master will get the bus after the current master
			completes, but the CPU will be guaranteed to get the
			bus after that master completes. With setting 11,
			other PCI masters are requesting, the highest priorit
			will get the bus next, then the next highest priorit
			will get the bus, then the CPU will get the bus. I
			other words, with the above settings, even if multiple
			PCI masters are continuously requesting the bus, th
			CPU is guaranteed to get access after every master
			grant (01), after every other master grant (10) or after
			every third master grant (11).
		3-2	
			00 REQ4#
			01 REQ0#
			10 REQ1#
			11 REQ2#
		1	Reservedalways reads
		0	REQ4# Master Priority
			0 Normal defau

0 Normal default

1 High

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the VT8366A.

This scheme is shown in the figure below.

Figure 6. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the VT8366A contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device 0 Offset 83-80 - GART/TLB Control (00000000h) RW Device 0 Offset 84 - Graphics Aperture Size (00h) RW always reads 0 **Graphics Aperture Size** 15-8 Reserved (test mode status)......RO 11111111 1M 11111110 2M Flush Page TLB 11111100 4M 0 Disabledefault 11111000 8M Enable 11110000 16M 11100000 32M 11000000 64M Reserved (always program to 0)RW Note: For any master access to the Graphics Aperture range, snoop will not be performed.

	11000000 64M
	10000000 128M
	00000000 256M
Offset 8	BB-88 - GA Translation Table Base (00000000h) RW
31-12	Graphics Aperture Translation Table Base.
	Pointer to the base of the translation table in system
	memory used to map addresses in the aperture range
	(the pointer to the base of the "Directory" table).
11-2	Reserved always reads 0
1	Graphics Aperture
	0 Disable default
	1 Enable
	Note: To disable the Graphics Aperture, set this bit
	to 0 and set all bits of the Graphics Aperture Size to
	1 1
	0. To enable the Graphics Aperture, set this bit to 1
	and program the Graphics Aperture Size to the
	desired aperture size.
0 1	Reservedalways reads 0

Host CPU Control

The contents of this register are preserved during suspend. Bits 2-0 have no default value. 7 Disconnect Enable When STPGNT Detected 6 Write to Read Delay default = 1 5-4 Read to Write Delay default = 1 5-4 Read to Write Delay default = 1 2-0 Write Data Delay from SYSDC to CPU Data Output (WrDataDly)	Device	0 Offset 92 – S2K Timing Control III (78h)RW	Device	0 Offset 95 – BIU Control 2RW
1	The contents of this register are preserved during suspend.			FWDVLD / PSQHPTR Concurrency
The format Delay Control Compare address qualified with PMW	Bits 2-0	have no default value.		0 Backwards Compatible default
6 Write to Read Delay default = 1	7	Disconnect Enable When STPCNT Detected		1
5-4 Read to Write Delay default = 115 3 Reserved (Do Not Program) default = 1 2-0 Write Data Delay from SYSDC to CPU Data Output (WrDataDly) Fig. 1 Compare address qualified with PMW To Max of Contiguous Probe SysDC Before Switch to Other Type of SysDC 5-3 Max of Contiguous Read SysDC Before Switch to Other Type of SysDC 5-3 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 5-4 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC To Disable Max of Contiguous Write SysDC Before Switch to Other Type of SysDC To Disable Merice Offset 94 − BIU Control 1			6	RHOCTW
3 Reserved (Do Not Program)		•		0default
Second Part				1
Output			5	PMW Address Compare
Compare address qualified with PMW Write Policy of CPU Write to DRAM 0 Issue DRAM write when FIFO holds more than two requests or DRAM controller idle. def 1 Disable with PMW 2 Disable with PMW 1 Enable 2 PCI Master Pipeline Request 1 Enable 3 PCI Master Pipeline Request 3 PCI Master Pipeline Request 4 PCI Mast	2-0			0 Backward compatible default
Device 0 Offset 93 - BIU Arbitration Control RW		Output (WiDataDiy)		1 Compare address qualified with PMW
The state of the			4	Write Policy for CPU Write to DRAM
7-6 Max of Contiguous Probe SysDC Before Switch to Other Type of SysDC 5-3 Max of Contiguous Read SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Disable Command will not have new FID) . def 1 Enable 1 Enable 1 Enable 1 Enable 1 Enable 1 Enable 2 Point SysDC 3 PMR Cycle Control 1 Execute PMR cycles in MWQ is fulldefault is full or not 2 FID Command Detect 0 Disable (command will not have new FID) . def 1 Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normally whether MWQ is full or in Execute PMR cycles normal yellow is full or in Execute PMR cycles normal yellow is full or in Execute PMR cycles normal yellow is full or in Execute PMR cycles normal yellow is full				0 Issue DRAM write when FIFO holds more
Solution Type of SysDC	Device	0 Offset 93 – BIU Arbitration ControlRW		than two requests or DRAM controller idle.def
Solid	7-6	Max of Contiguous Probe SysDC Before Switch to		1 Disable Write Policy
5-3 Max of Contiguous Read SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC 2-1 Enable Device 0 Offset 94 – BIU Control 1			3	PMR Cycle Control
Other Type of SysDC 2-0 Max of Contiguous Write SysDC Before Switch to Other Type of SysDC Device 0 Offset 94 – BIU Control 1	5-3			
Second Profession Seco				1 Execute PMR cycles normally whether MWQ
Other Type of SysDC	2-0			is full or not
Device Offset 94 - BIU Control 1			2	FID Command Detect
Device Offset 94 - BIU Control L				0 Disable (command will not have new FID) . def
Device Offset 94 - BIU Control 1				1 Enable
7 SDRAM Self-Refresh When Disconnected 0 Disable default 1 Enable 6 Probe Next Tag State T1 When PCI Master Read Caching Enabled 0 Disable default 1 Enable 7 Memory Write Queue Timer Function 5-4 Reserved always reads 0 3 DRAM Speculative Read for PCI Master Read (Before Probe Result is Known) 0 Disable default 1 Enable 6 Memory Write Queue Timer Function Trigger 0 Disable default 1 Enable 6 Memory Write Queue Timer Function Trigger 0 Trigger by data ready for C2M Wr Req. def 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer High Bound def=0 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer High Bound def=0 1 Enable 6 Memory Write Queue Timer High Bound def=0 1 Enable 7 Memory Write Queue Timer Function Trigger 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer Low Bound def=0 1 Enable 6 Bits 5-0 are defined in units of 4QW / request number 7 Memory Write Queue Timer High Bound def=0 1 Enable 6 Memory Write Queue Timer Low Bound def=0 2-0 Memory Write Queue Timer Low Bound def=0 Bits 5-0 are defined in units of 4QW / request number	ъ.	0.000 + 0.4 PWI C + 1.4 PWI	1	HALT Command Detect
O Disable				0 Disable (command will not do self refresh). def
Enable Caching Enabled O Disable Device 0 Offset 96 - BIU Control 3 RW	7			1 Enable
6 Probe Next Tag State T1 When PCI Master Read Caching Enabled 0 Disable default 1 Enable 7 Memory Write Queue Timer Function 5-4 Reserved always reads 0 3 DRAM Speculative Read for PCI Master Read (Before Probe Result is Known) 0 Disable default 1 Enable 6 Memory Write Queue Timer Function Trigger 0 Trigger by data ready for C2M Wr Reqdef 1 Trigger by command FIFO utilization 1 Enable 5-3 Memory Write Queue Timer High Bound default 1 Enable 5-3 Memory Write Queue Timer High Bound default 1 Enable 5-4 Memory Write Queue Timer Function Trigger 5-5 Memory Write Queue Timer High Bound default 1 Enable 5-6 Memory Write Queue Timer High Bound default 1 Enable 5-7 Memory Write Queue Timer Function Trigger 5-8 Memory Write Queue Timer High Bound default 1 Enable 5-9 Memory Write Queue Timer Low Bound default 5-1 Memory Write Queue Timer High Bound default 5-3 Memory Write Queue Timer Low Bound default 6 Bits 5-0 are defined in units of 4QW / request number 6 Memory Write Queue Timer High Bound default 6 Memory Write Queue Timer High Bound default 6 Memory Write Queue Timer High Bound default 7 Memory Write Queue Timer Function 8 Disable default			0	Reserved always reads 0
Caching Enabled O Disable				
O Disable default 1 Enable 7 Memory Write Queue Timer Function O Disable default 1 Enable 7 Memory Write Queue Timer Function O Disable default 1 Enable	6			
Tenable Ten		_	Dorrigo	0 Offset 06 DHI Control 2 DW
5-4 Reserved always reads 0 3 DRAM Speculative Read for PCI Master Read (Before Probe Result is Known) 0 Disable default 1 Enable 2 PCI Master Pipeline Request 0 Disable default 1 Enable 5-3 Memory Write Queue Timer Function Trigger 0 Trigger by data ready for C2M Wr Reqdef 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer High Bounddef=0 Wemory Write Queue Timer Low Bounddef=0 Bits 5-0 are defined in units of 4QW / request number 5-3 Memory Write Queue Timer Low Bounddef=0 Bits 5-0 are defined in units of 4QW / request number 5-3 Memory Write Queue Timer Low Bounddef=0 Bits 5-0 are defined in units of 4QW / request number 5-3 Memory Write Queue Timer Low Bounddef=0 Bits 5-0 are defined in units of 4QW / request number				-
1 Enable 1 Enable 1 Enable 1 Enable 2 PCI Master Pipeline Request 1 Enable 3 DRAM Speculative Read for PCI Master Read (Before Probe Result is Known) 1 Enable 2 PCI Master Pipeline Request 1 Enable 3 Disable default 1 Enable 4 Trigger by data ready for C2M Wr Reqdef 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer High Bounddef=0 8 Memory Write Queue Timer Low Bounddef=0 8 Disable default 1 Enable 9 Fast Write-to-Read Turnaround 0 Disable default 0 Trigger by data ready for C2M Wr Reqdef 1 Trigger by command FIFO utilization 8 Memory Write Queue Timer High Bounddef=0 8 Disable default 1 Enable 9 Fast Write-to-Read Turnaround 0 Disable default			7	•
(Before Probe Result is Known) 0 Disable		•		
0 Disable default 1 Enable 2 PCI Master Pipeline Request 0 Disable default 1 Enable 5-3 Memory Write Queue Timer High Bound default 1 Enable Bits 5-0 are defined in units of 4QW / request number PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable default 1 Enable Fast Write-to-Read Turnaround 0 Disable default 0 Trigger by data ready for C2M Wr Reqdef 1 Trigger by command FIFO utilization 5-3 Memory Write Queue Timer Low Bound default Bits 5-0 are defined in units of 4QW / request number	3		_	
1 Enable 2 PCI Master Pipeline Request 0 Disable default 1 Enable 3 PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable default 1 Enable 0 Fast Write-to-Read Turnaround 0 Disable default 0 Disable default 0 Disable default 0 Disable default			6	
2 PCI Master Pipeline Request 0 Disable default 1 Enable 2-0 Memory Write Queue Timer High Bound def=0 Bits 5-0 are defined in units of 4QW / request number 1 PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable default 1 Enable 0 Fast Write-to-Read Turnaround 0 Disable default				
0 Disable default 1 Enable 1 PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable default 1 Enable 0 Fast Write-to-Read Turnaround 0 Disable default 0 Disable default	_			• • •
1 Enable 1 PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable	2			
1 PCI-to-CPU / CPU-to-PCI (P2C / C2P) Concurrency 0 Disable			2-0	•
Concurrency	_			Bits 5-0 are defined in units of 4QW / request number
0 Disabledefault 1 Enable 0 Fast Write-to-Read Turnaround 0 Disabledefault	1	·		
1 Enable 0 Fast Write-to-Read Turnaround 0 Disabledefault				
0 Fast Write-to-Read Turnaround 0 Disabledefault				
0 Disabledefault	•			
	U			
I Enable				
		I Enable		

Device	0 Offset 97 – CPU Strapping ControlRO	Device	0 Offset 9A – S2K Compensation Result 2 RW
7-3	CPU Clock Divideset from VAD[3-0] straps	7	S2K Edge DQ ModeRO, set from MA11 strap
	00000 11no strap default		0 Central DQdefault
	00001 11.5		1 Edge DQ
	00010 12	6-0	S2K Strobe Delay (EdgeDQ)
	00011 12.5		set from MA[8-4] straps
	00100 5		0 Auto Modeno-strap default
	00101 5.5		~0 Strapping Mode
	00110 6		·
	00111 6.5	Device	0 Offset 9B – S2K Compensation Result 3RO
	01000 7	7-0	S2K Strobe DLL Delay Counter (Auto)def = 0
	01001 7.5		•
	01010 8	Device	0 Offset 9C – S2K Compensation Result 4 (07h) RW
	01011 8.5	7	S2K Compensation Circuit Trigger
	01100 9	6	DLL AutodetectRO
	01101 9.5	5	Delay Compensation Counter Control
	01110 10	4-3	S2K Pad AC Coupling to VREF Signal in Address
	01111 10.5		/ Data Output Clock
	10000 3	2-0	S2K Pad Slew Rate Ctrl (7h is strongest) def=7h
			· • • • • • • • • • • • • • • • • • • •
	10001 3.5	Device	0 Offset 9D – S2K Compensation Result 5 RW
	10010 4	7-4	S2K Strobe Output Drive Strength P Control
	10011 4.5	3-0	S2K Strobe Output Drive Strength N Control
•	101xx -reserved-		•
3	Reserved always reads 0		
2	S2K Drive Strength		
	0 Determined by register settingsdefault	Device	0 Offset 9E – BIU Control 4RW
	1 Determined by auto compensation	7	Pending Memory Read
1	Fast Address Out Decodeset from ROMSIP#		0 Read not pendingdefault
	0 Normalno strap default		1 Read pending
	1 Fast	6	Issue Memory Write Queue Ready When
0	S2K Compensation Circuit		Command FIFO is Empty Enough (>24)
	0 Always Enabledefault		0 Disable default
	1 Enable on Disconnect		1 Enable
ъ.	A OPP 4 AN CATZO 41 C4 1 (ANI) DITI	5	Issue Memory Write Queue If More Than 4 CPU
Device	0 Offset 98 – S2K Compensation Strapping (00h)RW		Requests Are Pending
7-4	S2K Pullup Drive Strength default = 0		0 Disabledefault
3-0	S2K Pulldown Drive Strength default = 0		1 Enable
D	0.000-4.00 COV.C	4	Fast Write Performance Improvement
	0 Offset 99 – S2K Compensation Result 1 (00h)RO		0 Backwards Compatible default
7-4	Pullup Auto Compensation Result default = 0		1 Enable performance improvement
3-0	Pulldown Auto Compensation Result default = 0	3	Issue Write DADS Only When Memory Write
			Queue Timer or DM Idle or HB Hit
			0 Disabledefault
			1 Enable
		2	Compare Partial Address to Decide if CPU-to-
		-	Memory Read Hit CPU-to-Memory Write
			0 Compare HA[31:6] (backwards compatible)del
			1 Compare HA[31:12]
		1	Memory Read Guard Bit
		1	0 Backwards Compatibledefault
			1 Enable
		Λ	
		0	Reserved always reads 0

AGP Control

Device v	0 Offset A3-A0 - AGP Capability Identifier
	002h)RO
31-24	Reserved always reads 00
23-20	Major Specification Revision always reads 0010b
	Major rev # of AGP spec that device conforms to
19-16	Minor Specification Revision always reads 0000b
	Minor rev # of AGP spec that device conforms to
15-8	Pointer to Next Itemalways reads C0 (last item)
7-0	AGP ID (always reads 02 to indicate it is AGP)
Device (0 Offset A7-A4 - AGP Status (1F000201h)RO
	Offset A7-A4 - AGP Status (1F000201h)RO Maximum AGP Requests always reads 1Fh†
	_
	Maximum AGP Requests always reads 1Fh†
31-24	Maximum AGP Requests always reads 1Fh† Max # of AGP requests the device can manage (32)
31-24	Maximum AGP Requests always reads 1Fh† Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0]
31-24 23-10	Maximum AGP Requests always reads 1Fh† Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved
31-24 23-10 9	Maximum AGP Requests always reads 1Fh† Max # of AGP requests the device can manage (32) † See also RxFC[1] and RxFD[4-0] Reserved
31-24 23-10 9 8-6	Maximum AGP Requests
31-24 23-10 9 8-6 5	Maximum AGP RequestsMax # of AGP requests the device can manage (32)† See also RxFC[1] and RxFD[4-0]Reservedalways reads 0sSupports SideBand Addressingalways reads 1Reservedalways reads 0s4G Supported(can be written at RxAE[5]
31-24 23-10 9 8-6 5 4	Maximum AGP Requests
31-24 23-10 9 8-6 5 4 3	Maximum AGP Requests

Device (0 Offs	et AB-A8 - AGP Command (00000000h) . RW
31-24	Requ	lest Depth (reserved for target) always reads 0s
23-10	_	
9	Sidel	Band Addressing Enable
	0	Disabledefault
	1	Enable
8	AGP	Enable
	0	Disabledefault
	1	Enable
7-6	Rese	rved always reads 0s
5	4G E	nable
	0	Disabledefault
	1	Enable
4	Fast	Write Enable
	0	Disabledefault
	1	Enable
3	Rese	rved always reads 0s
2	4X N	Iode Enable
	0	Disabledefault
	1	Enable
1	2X N	Iode Enable
	0	Disabledefault
	1	Enable
0	1X N	Iode Enable
	0	Disable default
	1	Enable

Device	0 Offset AC - AGP Control (00h)RW	Device 0 Offset AD – AGP Latency Timer (02h)RW
7	AGPRO per strap on MAB9 0 Disabledefault	7-6 Reservedalways reads 05 AGP Data Input Enable (for Power Saving)
	1 Enable	0 AGP data input always enabled default
6	AGP Read Synchronization	1 AGP data input only enabled when necessary
U	0 Disabledefault	to avoid redundant transitions
	1 Enable	
5	AGP Read Snoop DRAM Post-Write Buffer	4 Choose First or Last Ready of DRAM 0 Last ready chosen
3	0 Disabledefault	· · · · · · · · · · · · · · · · · · ·
	1 Enable	1 First ready chosen
4		3-0 AGP Data Phase Latency Timer default = 02h
4	GREQ# Priority Becomes Higher When Arbiter is Parked at AGP Master	
	0 Disabledefault	D 1 0 000 1 1 T 1 CD 151 II C 1 1 (001) DW
	1 Enable	<u>Device 0 Offset AE – AGP Miscellaneous Control (00h)RW</u>
3	2X Rate Supported (read also at RxA4[1])	7-6 Reserved always reads 0
	0 Not supporteddefault	5 Greater Than 4GB Supported
	1 Supported	0 Disabledefault
2	LPR In-Order Access (Force Fence)	1 Enable
	o Fence/Flush functions not guaranteed. AGP read requests (low/normal priority and high priority) may be executed before previously issued write requests	4 Fast Write Supported 0 Fast Write not supported
1	write requests as required.	<u>Device 0 Offset AF – AGP Strobe Drive Strength (00h) RW</u>
1	AGP Arbitration Parking 0 Disabledefault 1 Enable (GGNT# remains asserted until either GREQ# de-asserts or data phase ready)	 7-4 AGP Strobe Output Drive Strength N Control 3-0 AGP Strobe Output Drive Strength P Control
0	AGP to PCI Master or CPU to PCI Turnaround	
-	Cycle	
	0 2T or 3T Timingdefault 1 1T Timing	

Device	0 Offset B0 - AGP Pad Control / Status (8xh)RW	Device	0 Offset B2 – AGP Pad Drive / Delay Ctrl (08h) RW
7	AGP 4x Strobe VREF Control	7	GD/GBE/GDS, SBA/SBS Control
	0 STB VREF is STB# and vice versa		1.5V (Bit-1 = 0)
	1 STB VREF is AGPREFdefault		$0 SBA/SBS = no \ cap default$
6	AGP 4x Strobe & GD Pad Drive Strength		GD/GBE/GDS = no cap
	0 Drive strength set to compensation circuit		1 $SBA/SBS = no cap$
	defaultdefault		GD/GBE/GDS = cap
	1 Drive strength controlled by RxB1[7-0]		3.3V (Bit-1 = 1)
5-3	AGP Compensation Circuit N Control Output .RO		0 SBA/SBS = \mathbf{cap} default
2-0	AGP Compensation Circuit P Control Output .RO		GD/GBE/GDS = no cap
			1 SBA/SBS = \mathbf{cap}
			GD/GBE/GDS = cap
Dovico	0 Offset B1 – AGP Drive Strength (63h)RW	6-5	Reserved always reads 0
		4	GD[31-16] Staggered Delay
7-4	AGP Output Buffer Drive Strength N Ctrl def=6		0 Nonedefault
3-0	AGP Output Buffer Drive Strength P Ctrldef=3		1 GD[31:16] delayed by 1 ns
		3	AGP Slew Rate Control
			0 Disable
			1 Enable default
		2	AGP Preamble Control

V-Link Control **DRAM Power Control** Device 0 Offset B4 – V-Link NB Compensation Ctrl (00h)RW Device 0 Offset BE - MECC Drive Strength (00h)...... RW V-Link Autocomp Output Value always reads 0 **MECC Drive Strength** 5-0 5 **Pullup Compensation Selection** Reservedalways reads 0 0 Auto Comp (use values in bits 7-6)......default Device 0 Offset BF – DRAM Pad Toggle Reduction (00h)RW Manual Comp (use values in bits 3-2) MA / SCMD Pin Toggle Reduction **Pulldown Compensation Selection** 0 Disable default 0 Auto Comp (use values in bits 7-6)......default Enable (MA and S command pins won't toggle Manual Comp (use values in bits 1-0) if not accessed) **Pullup Compensation Manual Setting......** def = 0 3-2 Slew Rate Control for MA / S-Command Group A **Pulldown Compensation Manual Setting....** def = 0 0 Disable......default Device 0 Offset B5 - V-Link NB Drive Control (00h)....RW Enable Slew Rate Control for MA / S-Command Group B **Strobe Pullup Manual Setting** 0 Disable.....default **Strobe Pulldown Manual Setting** 3-1 Reserved always reads 0 1 Enablealways reads 0 V-Link Slew Rate Control 4 Reserved 0 Disabledefault DIMM #3 MAA / MAB Select 3 Enable MAAdefault MAB DIMM #2 MAA / MAB Select MAAdefault Device 0 Offset B8 – V-Link SB Compensation Ctrl (00h)RW MAB 1 V-Link Autocomp Output Value always reads 0 DIMM #1 MAA / MAB Select **Pullup Compensation Selection** 0 MAAdefault 0 Auto Comp (use values in bits 7-6)......default 1 MAB Manual Comp (use values in bits 3-2) DIMM #0 MAA / MAB Select **Pulldown Compensation Selection** MAAdefault Auto Comp (use values in bits 7-6)......default MAB 1 Manual Comp (use values in bits 1-0) **Pullup Compensation Manual Setting......** def = 0 **Pulldown Compensation Manual Setting.....** def = 0 Device 0 Offset B9 - V-Link SB Drive Control (00h).....RW **Reserved** always reads 0 **V-Link Slew Rate Control** Disabledefault Enable

Extended Power Management Control

Device 0 Offset C0 – Power Management Capability IDRO 7-0 Capability ID always reads 01h

7-0	Capability 1D always icads offi
ъ.	0.000 4.01 D M 4N D'4 DO
	0 Offset C1 – Power Management New PointerRO
7-0	New Pointeralways reads 00h ("Null" Pointer)
Device	0 Offset C2 – Power Mgmt Capabilities IRO
7-0	Power Management Capabilities always reads 02h
	0.000 + G2 D N 15 + G 1994 W DO
<u>Device</u>	0 Offset C3 – Power Mgmt Capabilities IIRO
7-0	Power Management Capabilities always reads 00h
Device	0 Offset C4 – Power Mgmt Control / StatusRW
7-2	Reserved always reads 0
1-0	Power State
	00 D0default
	01 -reserved-
	10
	10 -reserved-
	10 -reserved- 11 D3 Hot
	11 D3 Hot
Device	
	11 D3 Hot

Device	0 Offset C6 - PCI-to-PCI Bridge St	upport ExtRW
7-0	P2P Bridge Support Extensions	default = 0
Device	0 Offset C7 – Power Management l	DataRW
7-0	Power Management Data	default = 0

Device	1 Header Registers - PCI-to-PCI Bridge	Device	1 Offset 7-6 - Status (Primary Bus) (0230h) RWC
All rog	isters are located in PCI configuration space. They	15	Detected Parity Error always reads 0
	be programmed using PCI configuration mechanism 1	14	Signaled System Error (SERR#)always reads 0
	CF8 / CFC with bus number of 0 and function number	13	Signaled Master Abort
_	o 0 and device number equal to one.		0 No abort receiveddefault
equal to	o and device namoer equal to one.		1 Transaction aborted by the master with
Device	1 Offset 1-0 - Vendor ID (1106h)RO		Master-Abort (except Special Cycles)
15-0	ID Code (reads 1106h to identify VIA Technologies)		write 1 to clear
		12	Received Target Abort
Device	1 Offset 3-2 - Device ID (B099h)RO		0 No abort receiveddefault
15-0	ID Code (reads B099h to identify the VT8366A PCI-		1 Transaction aborted by the target with Target-
	to-PCI Bridge device)		Abort write 1 to clear
D	1 Off. 4 5 4 C	11	Signaled Target Abortalways reads 0
	1 Offset 5-4 – Command (0007h)RW	10-9	DEVSEL# Timing
	Reservedalways reads 0		00 Fast
9	Fast Back-to-Back Cycle EnableRO		01 Mediumalways reads 01
	0 Fast back-to-back transactions only allowed to		10 Slow
	the same agentdefault		11 Reserved
	1 Fast back-to-back transactions allowed to	8	Data Parity Error Detectedalways reads 0
0	different agents	7	Fast Back-to-Back Capablealways reads 0
8	SERR# Enable RO	6	User Definable Featuresalways reads 0
	0 SERR# driver disableddefault	5	66MHz Capablealways reads 1
	1 SERR# driver enabled	4	Supports New Capability listalways reads 1
7	(SERR# is used to report parity errors if bit-6 is set).	3-0	Reserved always reads 0
7	Address / Data Stepping RO	Device	1 Offset 8 - Revision ID (00h)RO
	0 Device never does steppingdefault1 Device always does stepping		VT8366A Chip Revision Code (00=First Silicon)
6	Parity Error ResponseRW	7-0	V 10300A Cmp Revision Code (00–1418t Smcon)
U	0 Ignore parity errors & continuedefault	Device	1 Offset 9 - Programming Interface (00h)RO
	1 Take normal action on detected parity errors	This re	gister is defined in different ways for each Base/Sub-
5	VGA Palette Snoop (Not Supported)RO		ode value and is undefined for this type of device.
·	0 Treat palette accesses normallydefault		Interface Identifieralways reads 00
	1 Don't respond to palette writes on PCI bus	7-0	interface identifierarways reads 00
	(10-bit decode of I/O addresses 3C6-3C9 hex)	Device	1 Offset A - Sub Class Code (04h)RO
4	Memory Write and Invalidate CommandRO		Sub Class Code .reads 04 to indicate PCI-PCI Bridge
	0 Bus masters must use Mem Writedefault		-
	1 Bus masters may generate Mem Write & Inval	Device	1 Offset B - Base Class Code (06h)RO
3	Special Cycle MonitoringRO	7-0	Base Class Code reads 06 to indicate Bridge Device
	0 Does not monitor special cyclesdefault	ъ.	1 000 (D. J. () TO (001) DO
	1 Monitors special cycles		1 Offset D - Latency Timer (00h)RO
2	Bus MasterRW	7-0	Reserved always reads 0
	0 Never behaves as a bus master	Dovice	1 Offset E - Header Type (01h)RO
	1 Enable to operate as a bus master on the		
	primary interface on behalf of a master on the	7-0	Header Type Code reads 01: PCI-PCI Bridge
	secondary interfacedefault	Device	1 Offset F - Built In Self Test (BIST) (00h) RO
1	Memory SpaceRW	7	BIST Supported reads 0: no supported functions
	O Does not respond to memory space	6	Start Test write 1 to start but writes ignored
	1 Enable memory space accessdefault	5-4	Reservedalways reads 0
0	I/O SpaceRW	3-0	Response Code0 = test completed successfully
	0 Does not respond to I/O space	2 0	225ponde Coucimino Cost Completed Successituity
	1 Enable I/O space accessdefault		

7-0 Primary Bus Number	Device 0 Offset 2D-2C – Subsystem Vendor ID (0000h)R/W1 15-0 Subsystem Vendor ID
Device 1 Offset 1A - Subordinate Bus Number (00h)RW	Device 1 Offset 34 – Capability Pointer (80h)RO
7-0 Primary Bus Number	7-0 Capability Pointeralways reads 80h
Device 1 Offset 1B – Secondary Latency Timer (00h)RO	Device 1 Offset 3F-3E – PCItoPCI Bridge Ctrl (0000h) RW
7-0 Reservedalways reads 0	15-4 Reservedalways reads 0
Device 1 Offset 1C - I/O Base (f0h)RW	3 VGA-Present on AGP 0 Forward VGA accesses to PCI Bus default
7-4 I/O Base AD[15:12]default = 1111b	1 Forward VGA accesses to AGP Bus
3-0 I/O Addressing Capability default = 0	Note: VGA addresses are memory A0000-BFFFFh
Device 1 Offset 1D - I/O Limit (00h)RW	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-bit decode). "Mono" text mode uses
7-4 I/O Limit AD[15:12] default = 0	B0000-B7FFFh and "Color" Text Mode uses B8000-
3-0 I/O Addressing Capability default = 0	BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses
Device 1 Offset 1F-1E - Secondary Status (0000h)RO	3Cx-3Dxh. If an MDA is present, a VGA will not
15-0 $Rx44[4] = 0$: No Function (always reads 0)	use the 3Bxh I/O addresses and B0000-B7FFFh
Rx44[4] = 1: Read same value as $Rx7-6$ (Pri Status)	memory space; if not, the VGA will use those
Device 1 Offset 21-20 - Memory Base (FFF0h)RW	addresses to emulate MDA modes.
15-4 Memory Base AD[31:20] default = FFFh	2 Block / Forward ISA I/O Addresses 0 Forward all I/O accesses to the AGP bus if
3-0 Reservedalways reads 0	they are in the range defined by the I/O Base
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RW	and I/O Limit registers (device 1 offset 1C-1D)default
15-4 Memory Limit AD[31:20] default = 0	1 Do not forward I/O accesses to the AGP bus
3-0 Reserved always reads 0	that are in the 100-3FFh address range even if
Device 1 Offset 25-24 - Prefetchable Mem Base (FFF0h) RW	they are in the range defined by the I/O Base
15-4 Prefetchable Memory Base AD[31:20]def = FFFh	and I/O Limit registers.
3-0 Reserved always reads 0	1-0 Reservedalways reads 0
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]	

Device 1 Configuration Registers - PCI-to-PCI Bridge

AGP Bus Control

7	CPU-AGP Post Write
	0 Disabledefaul
	1 Enable
6	Reservedalways reads
5	CPU-AGP One Wait State Burst Write
	0 Disabledefau
	1 Enable
4	AGP to DRAM Prefetch
	0 Disabledefau
	1 Enable
3	CPU to AGP Post Write Halt
	0 Disabledefau
	1 Enable
	If set to 1, CPU-to-PCI posted cycles can be delaye
	for PCI master accesses (i.e., PCI master access
	allowed even if the CPU-to-PCI buffer is not flushed
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefau
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter
	addresses are memory addresses B0000h-B7FFF
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BF
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't can
	(MDA accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefau
	1 Enable
0	AGP Delay Transaction
	0 Disabledefau
	1 Enable

Table 8. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	<u>VGA</u>	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	<u>3Dx</u>	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	<u>Access</u>	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offse	et 41 - CPU-to-AGP Flow Control 2 (00h) RW
7	Retry	Status
	0	No retry occurreddefault
	1	Retry Occurredwrite 1 to clear
6	Retry	Timeout Action
ŭ	0	No action taken except to record status def
	1	Flush buffer for write or return all 1s for read
5-4	Retry	Count
		Retry 2, backoff CPU default
		Retry 4, backoff CPU
		Retry 16, backoff CPU
		Retry 64, backoff CPU
3		to-AGP Bursting Timeout
	0	Disable default
	1	Enable
2-0	Reser	vedalways reads 0
Dovice	1 Offco	et 42 - AGP Master Control (00h) RW
7		nnect PCI on AGP Data Ready
	0	Continue current PCI master even if AGP data
	1	is ready
	1	is ready
6	ACDI	Master One Wait State Write
U		Disabledefault
		Enable
5		Master One Wait State Read
		Disabledefault
		Enable
4	Reser	
3	RPM2	· · · · · · · · · · · · · · · · · · ·
	0	Use tail of AGP-to-Memory Read Ready to
		return datadefault
	1	Dynamically use head or tail of AGP-to-
		Memory Read Ready to return data
2	Prefet	tch Disable when Delay Transaction Occurs
	0	Normal operationdefault
	1	Disable prefetch when doing fast response to
		the previous delay transaction or doing read
		caching
1	Reser	vedalways reads 0
0	Gener	rate STOP# When AGP Master Access
		es Cache Line Boundary
		Disabledefault
	1	Enable

Device	1 Offset 43 - AGP Master Latency Timer (22h) RW	Device	1 Offset 45	– Fast Writ	e Control (72h)RW	
7-4 Host to AGP Time Slot			7 Force Fast Write Cycle to be QW Aligned			
	0 Disable (no timer		(if Rx45[6		5 6	
	1 16 GCLKs		0 Disa	able	default	
	2 32 GCLKs)default		1 Ena	ble		
	3 48 GCLKs	6	Merge M	ultiple CPU	Transactions Into One Fast	
				st Transact		
	F 240 GCLKs		0 Disa	able		
3-0	AGP Master Time Slot		1 Ena	ble	default	
	0 Disable (no timer)	5	Merge M	ultiple CPU	J Write Cycles To Memory	
	1 16 GCLKs		Offset 23-	20 Into Fast	Write Burst Cycles	
	2 32 GCLKsdefault		(if Rx45[6]=0)	•	
	3 48 GCLKs		0 Disa	able		
	•••		1 Ena	ble	default	
	F 240 GCLKs	4	Merge	Multiple	CPU Write Cycles To	
			Prefetchal	ble Memor	ry Offset 27-24 Into Fast	
			Write Bu	st Cycles (if	f Rx45[6] = 0	
Device	1 Offset 44 – Backdoor Register Control (20h).RW		0 Disa	able		
7	Revision ID Writeable		1 Ena	ble	default	
	0 Revision ID is ROdefault	3	Reserved		always reads 0	
	1 Revision ID is RW	2	Fast Write	e Burst 4T N	Max (No Slave Flow Control)	
6	Reserved always reads 0		0 Disa	able	default	
5	Power Management Capability Support		1 Ena	ble		
	0 Rx34 reads 00	1	Fast Write	e Fast Back	to Back	
	1 Rx34 reads 80hdefault		0 Disa	able		
4	Reflect Rx7-6 Status in Rx1F-1E		1 Ena	ble	default	
	0 Disable (Rx1F-1E always reads 0)default	0	Fast Write	e Initial Blo	ck 1 Wait State	
	1 Enable (Rx1F-1E reads same as Rx7-6)		0 Disa	able	default	
3-2	Rx83[2-1] Back Door Value		1 Ena	ble		
1	Rx82[5] Back Door Value (Device Specific Intfc)					
0	Back Door Register Enable for AGP Device ID	Rx45	CPU Write	CPU Write		
	(Rx47-46)	Bits	Address	Address		
	0 Disabledefault	<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment	
	1 Enable	x1xx	-	-	QW aligned, burstable	
		0000	-	-	DW aligned, nonburstable	
		x010	0	0	n/a	
		0010	0	1	DW aligned, non-burstable	
		x010	1	-	QW aligned, burstable	
		x001	0	0	n/a	
		x001	-	1	QW aligned, burstable	
		0001	1	0	DW aligned, non-burstable	
		x011	0	0	n/a	
		0.4.4			OTT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

x011

x011

1000

1010

1001

1

0

0

1

1

0

QW aligned, burstable

QW aligned, burstable

QW aligned, non-burstable

QW aligned, non-burstable

QW aligned, non-burstable

Device 1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW	Device 1 Offset 80 – Capability ID (01h)RO
15-0 PCI-to-PCI Bridge Device ID default = 0000	7-0 Capability IDalways reads 01h
	Device 1 Offset 81 – Next Pointer (00h)RO
	7-0 Next Pointer: Nullalways reads 00h
	Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h) RO
	7-6 Power Mgmt Capabilitiesalways reads 0
	5 Power Mgmt Capabilities . programmed via Rx44[1]
	4-0 Power Mgmt Capabilities always reads 02h
	Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h) RO
	7-3 Power Mgmt Capabilitiesalways reads 0
	2-1 Power Mgmt Capabilities programmed via Rx44[3-2]
	O Power Mgmt Capabilities always reads 0
	Device 1 Offset 84 – Power Mgmt Ctrl/Status (00h) RW
	7-2 Reservedalways reads 0
	1-0 Power State 00 D0default
	00 D0default
	10 -reserved-
	11 D3 Hot
	Device 1 Offset 85 – Power Mgmt Status (00h)RO
	7-0 Power Mgmt Statusdefault = 00
	Device 1 Offset 86 – P2P Br. Support Extensions (00h). RO
	7-0 P2P Bridge Support Extensionsdefault = 00
	Device 1 Offset 87 – Power Management Data (00h) RO
	7-0 Power Management Datadefault = 00

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit
Storage Temperature	-55	125	oC
Case Operating Temperature	0	85	oC
Input Voltage	-0.5	5.5	Volts
Output Voltage ($V_{CC} = 3.1 - 3.6V$)	-0.5	$V_{CC} + 0.5$	Volts

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $T_C = 0-85^{O}C$, $V_{CC3}=3.3V+/-5\%$, GND=0V

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input low voltage	-0.50	0.8	V	
V_{IH}	Input high voltage	2.0	V _{CC} +0.5	V	
V_{OL}	Output low voltage	-	0.45	V	I _{OL} =4.0mA
V _{OH}	Output high voltage	2.4	-	V	I _{OH} =-1.0mA
I_{IL}	Input leakage current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate leakage current	-	+/-20	uA	$0.45 < V_{OUT} < V_{CC}$

Power Characteristics

 $T_C = 0-85^{O}C$, $V_{RAIL} = V_{CC} + / -5\%$, $V_{CORE} = 2.5V + / -5\%$, GND=0V

Symbol	Parameter		Max	Unit	Condition
I_{CC33}	Power Supply Current - Internal Logic & I/O Intfc			mA	Max operating frequency
I _{CCSUS}	Power Supply Current - Suspend Power			mA	Max operating frequency
I _{CCTT}	Power Supply Current - CPU Interface Termination			mA	Max operating frequency
I_{CCHCK}	Power Supply Current - Host CPU Clock Logic			mA	Max operating frequency
I_{CCMCK}	Power Supply Current - DRAM Clock Logic			mA	Max operating frequency
I _{CCGCK}	Power Supply Current - AGP Clock Deskew Logic			mA	Max operating frequency
I_{CCQ}	Power Supply Current - AGP 1.5V or 3.3V Power			mA	Max operating frequency
I_{CCQQ}	Power Supply Current - AGP Quiet Power			mA	Max operating frequency
I _{CCS2KREF}	Power Supply Current - CPU Interface Voltage Ref			uA	Max operating frequency
I _{CCCLKREF}	Power Supply Current - Clock Voltage Reference			uA	Max operating frequency
I _{CCAGPREF}	Power Supply Current - AGP Voltage Reference			uA	Max operating frequency
P_D	Power Dissipation			W	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 9. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power	3.135	3.465	Volts
2.5V Power	2.375	2.625	Volts
Case Temperature	0	85	oC

Drive strength for each output pin is programmable. See Rx6D for details.

MECHANICAL SPECIFICATIONS

Figure 7. Mechanical Specifications – VT8366A 552-Pin Ball Grid Array Package