6.1 - 51

Christopher Zúñiga C28730

Semana 12

Problem Statement

Adding a new flow E with path $R1 \to R2 \to R6$ to the existing four flows in Figure 6-20. Determine how the max-min bandwidth allocation changes for all five flows.

Key Steps

- 1. Identify shared links: Flow E shares:
 - Link $R1 \to R2$ with flow A.
 - Link $R2 \to R6$ with flow B.
- 2. Original allocations (assuming equal link capacities):
 - Flow A: Full capacity of $R1 \rightarrow R2$.
 - Flow B: Full capacity of $R2 \to R6$.
 - Flows C and D: Unaffected by E.
- 3. Recalculate fair shares:
 - For $R1 \to R2$: 2 flows $(A \text{ and } E) \Rightarrow \text{ each gets } \frac{Capacity}{2}$.
 - For $R2 \to R6$: 2 flows $(B \text{ and } E) \Rightarrow \text{each gets } \frac{Capacity}{2}$.
- 4. New allocations:
 - Flows A and B: Reduced to half their original bandwidth.
 - Flow E: Allocated $\frac{Capacity}{2}$ on both links.
 - \bullet Flows C and D: Remain unchanged.

Conclusion

The max-min bandwidth allocation changes as follows:

- Flows A and B are halved due to sharing links with E.
- ullet Flow E receives equal shares on both shared links.

 \bullet Flows C and D retain their original allocations.

 $Final Allocation: A_{new} = \frac{A_{original}}{2}, \ B_{new} = \frac{B_{original}}{2}, \ E = \frac{Capacity}{2}, \ Cand Dunchanged.$