Failure Detectors

Seif Haridi - Royal Institute of Technology Peter Van Roy - Université catholique de Louvain

haridi(at)kth.se peter.vanroy(at)uclouvain.be

Modeling Timing Assumptions

- Tedious to model eventual synchrony (partial synchrony)
- Timing assumptions mostly needed to detect failures
 - □ Heartbeats, timeouts, etc...
- Use failure detectors to encapsulate timing assumptions
 - Black box giving suspicions regarding node failures
 - Accuracy of suspicions depends on model strength
 - Invention of failure detectors around 1990 was a major step toward the maturity of the field of distributed algorithms as opposed to a disorganized bunch of complicated algorithms

19/3/2012

Based on Ghodsi's slides

Implementation of Failure Detectors

- Typical Implementation
 - Periodically exchange heartbeat messages
 - Timeout based on worst case msg round trip
 - If timeout, then suspect node
 - If recv msg from suspected node, revise suspicion and increase time-out

19/3/2012

Based on Ghodsi's slides

3

Completeness and Accuracy

- Two important types of requirements
 - 1. Completeness requirements
 - Requirements regarding actually crashed nodesWhen do they have to be detected?
 - 2. Accuracy requirements
 - Requirements regarding actually alive nodes
 - □ When are they allowed to be suspected?
- How to trivially achieve either? [d]
 - Both impossible in an asynchronous system!

19/3/2012

Based on Ghodsi's slides

Formal Model of FD

- Augment formal model with failure detectors (FD)
- A configuration consists of
 - State of each node
 - FD-state of each node
- Transition function on node i gets extra parameter:
 - FD-state of node i
- FD-state updated in comp(i) by another function
 - FD-function
 - Not modeled explicitly, but must satisfy some properties

19/3/2012

Based on Ghodsi's slides

5

Requirements: Completeness

- Strong Completeness
 - Every crashed node is eventually detected by all correct nodes
- There exists a time after which all crashed nodes are detected by all correct nodes
 - The book only studies detectors with this property
- Is it realistic? [d]

19/3/2012

Based on Ghodsi's slides

Requirements: Completeness

- Weak Completeness
 - Every crashed node is eventually detected by some correct node
- There exists a time after which all crashed nodes are detected by some correct node
 - A privileged node with good view of the others!
 - But: possibly detected by different correct nodes
 - □ Several privileged nodes, with good views to some

19/3/2012 Based on Ghodsi's slides

3

Requirements: Accuracy

- Strong Accuracy
 - No correct node is ever suspected
- For all nodes p and q,
 - p does not suspect q, unless q has crashed
- Is it realistic? [d]
 - Strong assumption, requires synchrony
 - I.e. no premature timeouts

19/3/2012

Based on Ghodsi's slide

Requirements: Accuracy

- Weak Accuracy
 - There exists a correct node which is never suspected by any node
- There exists a correct node P
 - Such that all nodes will never suspect P
- This is still quite a strong assumption
 - □ There is a privileged node that is always seen

19/3/2012

Based on Ghodsi's slides

0

Requirements: Accuracy

- Eventual Strong Accuracy
 - After some finite time the FD provides strong accuracy
- Eventual Weak Accuracy
 - After some finite time the detector provides weak accuracy
- After some time, the requirements are fulfilled
 - Prior to that, any behavior is possible!
- Quite weak assumptions [d]
 - When can eventual weak accuracy be achieved?

19/3/2012

Based on Ghodsi's slides

Four Main Established Detectors

- Four detectors with strong completeness
 - Perfect Detector (P)
 - Strong Accuracy
 - Strong Detector (S)
 - Weak Accuracy
 - Eventually Perfect Detector (◊P)
 - Eventual Strong Accuracy
 - Eventually Strong Detector (⟨S)
 - Eventual Weak Accuracy

Asynchronous Systems

19/3/2012 Based on Ghodsi's slides 11

Four Less Interesting Detectors

- Four detectors with weak completeness
 - Detector Q
 - Strong Accuracy
 - Weak Detector (W)
 - Weak Accuracy

Synchronous Systems

Synchronous Systems

- Eventually Detector Q (\Diamond Q)
 - Eventual Strong Accuracy

Asynchronous Systems

- Eventually Weak Detector (◊W)
 - Eventual Weak Accuracy

19/3/2012

Based on Ghodsi's slides

Interface of Perfect Failure Detector

- Module:
 - □ Name: PerfectFailureDetector (P)
- Events:
 - □ **Indication**: ⟨crash | p_i⟩
 - Notifies that node p_i has crashed
- Properties:
 - □ PFD1 (strong completeness)
 - □ PFD2 (strong accuracy)

19/3/2012

Based on Ghodsi's slides

13

Properties of P

- Properties:
 - □ PFD1 (strong completeness)
 - Eventually every node that crashes is permanently detected by every correct node (liveness)
 - □ PFD2 (strong accuracy)
 - If a node p is detected by any node, then p has crashed (safety)
- Safety or Liveness?

19/3/2012

Based on Ghodsi's slides

Implementing P in Synchrony

- Assume synchronous system
 - $\hfill\Box$ Max transmission delay between 0 and δ time units
- Each node every γ time units
 - □ Send <heartbeat> to all nodes
- Each node waits $\gamma+\delta$ time units
 - □ If did not get <heartbeat> from p_i
 - Detect <crash | p_i>

19/3/2012

Based on Ghodsi's slides

. . .

Correctness of P

- □ PFD1 (strong completeness)
 - A crashed node doesn't send <heartbeat>
 - Eventually every node will notice the absence of <heartbeat>
- □ PFD2 (strong accuracy)
 - Assuming local computation is negligible
 - Maximum time between 2 heartbeats

 γ+δ time units
 - If alive, all nodes will recv hb in time
 - No inaccuracy

19/3/2012

Based on Ghodsi's slides

Interface of EPFD

- Module:
 - □ Name: EventuallyPerfectFailureDetector (◊P)
- Events:
 - □ **Indication**: $\langle \text{suspect} \mid p_i \rangle$
 - Notifies that node p_i is suspected to have crashed
 - □ **Indication**: ⟨restore | p_i⟩
 - Notifies that node p_i is not suspected anymore
- Properties:
 - PFD1 (strong completeness)
 - PFD2 (eventual strong accuracy). Eventually, no correct node is suspected by any correct node.

19/3/2012

Based on Ghodsi's slides

17

Implementing ⟨P

- Assume partially synchronous system
 - Eventually some bounds exists
- Each node every γ time units
 - Send <heartbeat > to all nodes
- Each node waits T time units
 - □ If did not get <heartbeat> from p_i
 - Indicate <suspect | p_i> if p_i is not in suspected
 - Put p_i in suspected set
 - □ If get HB from p_i, and p_i is in **suspected**
 - Indicate <restore | p_i> and remove p_i from suspected
 - Increase timeout T

19/3/2012

Based on Ghodsi's slide

Correctness of $\Diamond P$

- □ EPFD1 (strong completeness)
 - Same as before
- □ EPFD2 (eventual strong accuracy)
 - Each time p is inaccurately suspected by a correct q
 - □ Timeout T is increased at q
 - \Box Eventually system becomes synchronous, and T becomes larger than the unknown bound δ (T> γ + δ)
 - $\hfill \square$ $\hfill q$ will receive HB on time, and never suspect p again

19/3/2012 Based on Ghodsi's slides 1

Leader Election

/3/2012

Based on Ghodsi's slides

Leader Election vs Failure Detection

- Failure detection captures failure behavior
 - Detect failed nodes
- Leader election (LE) also captures failure behavior
 - □ Detect correct nodes (a single & same for all)
- Formally, leader election is a FD
 - □ Always suspects all nodes except one (leader)
 - Ensures some properties regarding that node

19/3/2012 Based on Ghodsi's slides

21

Leader Election vs Failure Detection

- We'll define two leader election algorithms
 - □ Leader election (LE) which "matches" P
 - $\ \square$ Eventual leader election (Ω) which "matches" $\lozenge P$

19/3/2012

Based on Ghodsi's slides

Matching LE and P

- P's properties
 - P always eventually detects failures (strong completeness)
 - P never suspects correct nodes (strong accuracy)
- Completeness of LE
 - Informally: eventually ditch crashed leaders
 - Formally: eventually every correct node trusts some correct node
- Accuracy of LE
 - Informally: never ditch a correct leader
 - Formally: No two correct nodes trust different correct nodes
 - Is this really accuracy? [d]
 - Yes! Assume two nodes trust different correct nodes
 - One of them must eventually switch, i.e. leaving a correct node

19/3/2012

Based on Ghodsi's slides

23

LE desirable properties

- LE always eventually detects failures
 - Eventually every correct node trusts some correct node
- LE is always accurate
 - No two correct nodes trust different correct nodes
- But the above two permit the following

But P₁ is "inaccurately" leaving a correct leader

19/3/2012

Based on Ghodsi's slide

LE desirable properties

- To avoid "inaccuracy" we add
 - Local Accuracy:
 - If a node is elected leader by p_i, all previously elected leaders by p_i have crashed

19/3/2012 Based on Ghodsi's slides 25

Interface of Leader Election

- Module:
 - Name: LeaderElection (le)
- Events:
 - □ Indication: ⟨leLeader | p_i⟩
 - Indicate that leader is node p.
- Properties:
 - LE1 (eventual completeness). Eventually every correct node trusts some correct node
 - LE2 (agreement). No two correct nodes trust different correct nodes
 - $\ \square$ LE3 (local accuracy). If a node is elected leader by p_i , all previously elected leaders by p_i have crashed

19/3/2012

Alia Gold outs Galligths(est) stillese

Implementing LE

- Globally rank all nodes
 - \Box E.g. rank ordering $p_1>p_2>p_3>p_4$
 - Represented by function r which returns all nodes with higher ranking
 - $\neg r(p_1) = \emptyset$,
 - $r(p_2)=\{p_1\},$
 - $r(p_3)=\{p_1,p_2\}$
 - $r(p_4) = \{p_1, p_2, p_3\}$

19/3/2012

Alia Gold outs Galligds (dst) stitlesse

27

Implementing LE (2)

- Implements: LeaderElection (le).
- Uses: PerfectFailureDetector (P).
- upon event (init) do
 - □ suspected = Ø; leader := highest(r)
 - □ trigger ⟨leLeader | leader⟩
- upon event ⟨crash | p_i⟩ do
 - □ suspected := suspected $\cup \{p_i\}$
- upon exists p_i s.t. r(p_i) ⊆ suspected ∧ p_i∉suspected do
 - □ leader := p_i
 - □ trigger ⟨leLeader | p_i⟩

19/3/2012

Alia Gold outs Galligths(est) stillese

Matching Ω and $\Diamond P$

- \(\rightarrow \)
 P weakens P by only providing eventual accuracy

eventual

- LE Properties:
 - □ *LE1* (eventual completeness). Eventually every correct node trusts some correct node
 - LE2 (agreement). No two correct nodes trust different correct nodes
 - LES (local accuracy). If a mode is elected leader of particular all previously elected leaders by p_i have cracked

19/3/2012

Alia Goll outs Galigds (ds) slittess

29

Interface of Eventual Leader Election

- Module:
 - \square Name: EventualLeaderElection (Ω)
- Events:
 - □ **Indication**: ⟨leLeader | p_i⟩
 - Notify that p_i is trusted to be leader
- Properties:
 - ELD1 (eventual completeness). Eventually every correct node trusts some correct node
 - ELD2 (eventual agreement). Eventually no two correct nodes trust different correct nodes

19/3/2012

Alia Gold outs Galligths(est) stillese

Eventual Leader Detection Ω

- In crash-stop process abstraction
 - \square Ω is obtained directly from $\lozenge P$
 - □ Each node trusts the node with highest id among all nodes not suspected by ◊P
 - Eventually, exactly one correct process will be trusted by all correct processes

19/3/2012

Based on Ghodsi's slides

31

Implementing Ω

- Implements: EventualLeaderElection (Ω).
- Uses: EventuallyPerfectFailureDetector (\(\rightarrow P \right).
- upon event (init) do
 - suspected := Ø; leader := p_n;
 trigger ⟨leLeader | leader⟩
- upon event ⟨suspect | p_i⟩ do
 suspected := suspected ∪ {p_i}
- upon event (restore | p_i) do
 suspected := suspected \ {p_i}
- upon exists p_i s.t. $r(p_i) \subseteq$ suspected $\land p_i \notin$ suspected do
 - □ leader := p_i
 - \Box trigger $\langle leLeader \mid p_i \rangle$

19/3/2012

Based on Ghodsi's slides

Ω for Crash Recovery

- Can we elect a recovered node? [d]
 - Not if it keeps crash-recovering infinitely often!
- Basic idea
 - Count number of times you've crashed (epoch)
 - Distribute your epoch periodically to all nodes
 - Elect leader with lowest (epoch, node_id)
- Implementation
 - \Box Similar to $\Diamond P$ and Ω for crash-stop
 - Piggyback epoch with heartbeats
 - Store and load leader upon crash

19/3/2012 Based on Ghodsi's slides

Reductions

19/3/201

Based on Ghodsi's slides

Reductions

- - X can be solved given a solution of Y
 - Read X is reducible to Y
 - □ Informally, problem X is easier than or as hard as Y

19/3/2012

Based on Ghodsi's slides

35

Preorders, partial orders...

- A relation ~ is a preorder on a set A if for any x,y,z in A
 - □ x~x (reflexivity)
 - □ x~y and y~z implies x~z (transitivity)
- Difference between preorder and partial order
 - Partial order is a preorder with antisymmetry
 - x~y and y~x implies x=y
 - □ I.e. two different objects x and y cannot be symmetric
 - i.e. it isn't possible that x-y and y-x for two different x and y

19/3/2012

Based on Ghodsi's slide

≤ is a preorder

- ≤ is a preorder
 - Reflexivity. X≤X
 - X can be solved given a solution to X
 - □ Transitivity. X≤Y and Y≤Z implies X≤Z
 - Since Y≤Z, use impl. of Z to impl. Y. use impl. of Y to impl. X. Hence we impl. X from Z's impl.
- ≤ is not antisymmetric, thus not a partial order
 - □ Two different X and Y can be equivalent
 - Distinct problems X and Y can be solved from the other's solution

19/3/2012

Based on Ghodsi's slides

37

Shortcut definitions

- We write X≃Y if
 - \square X \leq Y and Y \leq X
 - Problem X is equivalent to Y
- We write X<Y if</p>

 - Problem X is strictly weaker than Y, or
 - Problem Y is strictly stronger than X

19/3/2012

Based on Ghodsi's slides

Example

- It is true that ◊P≤P
 - \Box Given P, we can implement $\Diamond P$
 - We just return P's suspicions.
 - P always satisfies ⟨P's properties
- In fact, ⟨P≺P in the asynchronous model
 - □ Because it is not true that $P \leq \langle P \rangle$
- Reductions common in computability theory
 - \Box If X \leq Y, and if we know X is impossible to solve
 - Then Y is impossible to solve too
 - □ If $\langle P \leq P \rangle$, and some problem Z can be solved with $\langle P \rangle$
 - Then Z can also be solved with P

19/3/2012

Based on Ghodsi's slides

30

Weakest FD for a problem?

- Often P is used to solve problem X
 - □ But P is not very practical (needs synchrony)
 - □ Is X a "practically" solvable problem?
 - Can we implement X with $\Diamond P$?
 - Sometimes a weaker FD than P will not solve X
 - □ Proven using reductions

19/3/2012

Based on Ghodsi's slides

Weakest FD for a problem

- We might know that X≪P (X solvable with P)
 - □ Can we solve X with a weaker FD than P, say P?
 - □ Or is it impossible, i.e. \\P<X
- Common proof to show P is weakest FD for X
 - □ Prove that P≤X
 - □ I.e. P can be solved given X
- If P≤X then ◊P<X</p>
 - □ Because we know $\Diamond P < P$ and P = X, i.e. $\Diamond P < P = X$
 - If we can solve X with $\Diamond P$, then
 - we can solve P with $\langle P, \text{ which is a contradiction} \rangle$

19/3/2012 Based on Ghodsi's slides

How are the detectors related

19/3/2012

Based on Ghodsi's slides

Trivial Reductions

- Strongly complete
 - □ ⟨⟨P≤P
 - P is always strongly accurate, thus also eventually strongly accurate
 - □ ⟨S≤S
 - S is always weakly accurate, thus also eventually weakly accurate
 - □ S≤P
 - P is always strongly accurate, thus also always weakly accurate
 - □ ⟨⟨S≤⟨⟩P
 - ◊P is always eventually strongly accurate, thus also always eventually weakly accurate

19/3/2012

Based on Ghodsi's slides

43

Trivial Reductions (2)

- Weakly complete
 - □ ⟨Q≤Q
 - Q is always strongly accurate, thus also eventually strongly accurate
 - □ ◊W≤W
 - W is always weakly accurate, thus also eventually weakly accurate
 - □ W≤Q
 - Q is always strongly accurate, thus also always weakly accurate
 - □ ⟨⟨W≤⟨Q
 - Q is always eventually strongly accurate, thus also always eventually weakly accurate

19/3/2012

Based on Ghodsi's slides

Completeness "Irrelevant"

- Weak completeness trivially reducible to strong
- Strong completeness reducible to weak
 - i.e. can get strong completeness from weak
 - P≤Q, S≤W, ◊P≤◊Q, ◊S≤◊W,
 - They're equivalent!
 - P≃Q, S≃W, ◊P≃◊Q, ◊S≃◊W

Q, 3 11, V. VQ,	Accuracy			
Completeness	Strong	Weak	Eventual Strong	Eventual Weak
Strong	Р	S	♦ P	φS
Weak	Q	W	 QQ	\$W

19/3/2012

4

Proving Irrelevance of Completeness

Based on Ghodsi's slides

- Weak completeness ensures
 - Every crash is eventually detected by some correct node
- Simple idea
 - Every node q broadcasts suspicions Susp periodically
 - upon event receive <S,q>
 - Susp := (Susp \cup S) {q} \leftarrow

also works like a heartbeat

- Every crash is eventually detected by all correct p
 - Can this violate some accuracy properties?

19/3/2012

ased on Ghodsi's slide

Maintaining Accuracy

- Strong and Weak Accuracy aren't violated
- Strong accuracy
 - No one is ever inaccurate
 - Our reduction never spreads inaccurate suspicions
- Weak accuracy
 - Everyone is accurate about at least one node p
 - No one will spread inaccurate information about p

19/3/2012

Based on Ghodsi's slides

47

Maintaining Eventual Accuracy

- Eventual Strong and Eventual Weak Accuracy aren't violated
- Proof is almost same as previous page
 - Eventually all faulty nodes crash
 - Inaccurate suspicions undone
 - Will get heartbeat from correct nodes and revise (-{q})

19/3/2012

Based on Ghodsi's slides

Omega also a FD

- Can we implement $\lozenge S$ with Ω ? [d]
 - □ I.e. is it true that ◊S ≤ Ω
 - $\hfill\Box$ Suspect all nodes except the leader given by Ω
 - Eventual Completeness
 - All nodes are suspected except the leader (which is correct)
 - Eventual Weak Accuracy
 - □ Eventually, one correct node (leader) is not suspected by anyone
 - □ Thus, ◊S≤Ω

19/3/2012

Based on Ghodsi's slides

Ω equivalent to $\Diamond S$ (and $\Diamond W$)

- We showed $\lozenge S \leqslant \Omega$, it turns out we also have $\Omega \leqslant \lozenge S$ • I.e. $\Omega \approx \lozenge S$
- Due to the famous CHT Theorem
 - CHT Theorem (1996):
 - If consensus implementable with detector D, then Omega can be implemented using D
 - □ I.e. if Consensus \leq D, then $\Omega \leq$ D
 - Since \Diamond S can be used to solve consensus, we have $\Omega \leq D$
 - □ Implies ⟨W is weakest detector to solve consensus
 - Only important proof that is omitted in this course!

19/3/2012

Based on Ghodsi's slides

51

Relation between FDs (2)

equivalent

reducible to ----->

19/3/201

Based on Ghodsi's slides

Combining Abstractions

- Fail-stop (synchronous)
 - Crash-stop process model
 - □ Perfect links + Perfect failure detector (P)
- Fail-silent (asynchronous)Crash-stop process model

 - Perfect links
- Fail-noisy (partially synchronous)
 Crash-stop process model

 - □ Perfect links + Eventually Perfect failure detector (◊P)
- Fail-recovery
 - Crash-recovery process model
 - Stubborn links + ...

19/3/2012

Based on Ghodsi's slides

Rest of course: "from P to ◊P"

- Assume crash-stop system with a perfect failure detector (fail-stop)
 - Give algorithms
- Then try to make a weaker assumption
 - For example, eventually perfect failure detector
 - Revisit the algorithms:
 - Do they still work? Can they be made to work?

Based on Ghodsi's slides