Exercise session 7: LTL and CTL

Ingmar Dasseville ingmar.dasseville@cs.kuleuven.be
Thomas Vanstrydonck thomas.vanstrydonck@cs.kuleuven.be
Simon Marynissen simon.marynissen@cs.kuleuven.be

January 2, 2018

1 Check equivalence

Which of the following pairs of CTL formulas are equivalent? For those which are not, exhibit a model of one of the pair which is not a model of the other:

1. EF ϕ and EG ϕ

Solution: Not equivalent.

2. EF $\phi \vee$ EF ψ and EF $(\phi \vee \psi)$

Solution: Equivalent.

3. AF $\phi \vee$ AF ψ and AF $(\phi \vee \psi)$

Solution: Not equivalent.

4. AF $\neg \phi$ and $\neg EG \phi$

Solution: Equivalent.

5. EF $\neg \phi$ and \neg AF ϕ

Solution: Not equivalent.

- 6. A $(\phi_1 \ U \ A \ (\phi_2 \ U \ \phi_3))$ and A $(A \ (\phi_1 \ U \ \phi_2) \ U \ \phi_3)$, hint: it might make it simpler if you think first about models that have just one path **Solution**: Not equivalent.
- 7. \top and AG $\phi \to EG \phi$

Solution: Equivalent.

8. \top and EG $\phi \to AG \phi$

Solution: Not equivalent.

9. A $[\phi \cup \psi]$ and $\phi \wedge AF \psi$

Solution: Not equivalent.

10. A $[\phi \cup \psi] \vee A [\tau \cup \psi]$ and A $[(\tau \vee \phi) \cup \psi]$

Solution: Not equivalent.

2 Express in CTL and LTL

Express the following properties in CTL and LTL whenever possible. If neither is possible, try to express the property in CTL*:

1. Whenever p is followed by q (after finitely many steps), then the system enters an 'interval' in which no r occurs until t.

Solution: Possible solution:

$$AG (p \to AX AG (\neg q \lor A [\neg r U t]))$$

2. Event p precedes s and t on all computation paths. (You may find it easier to code the negation of that specification first)

Solution: Possible solution:

$$\neg \text{EF } ((s \lor t) \land \text{EF } (p)) \equiv \text{AG } (\neg ((s \lor t) \land \text{EF } (p)))$$

3. After p, q is never true. (Where this constraint is meant to apply on all computation paths.)

Solution: Possible solution:

AG
$$(p \to \neg EF q)$$
 or AG $(p \to \neg EX EF q)$

4. Between the events q and r, event p is never true.

Solution: Possible solution:

$$[\mathrm{AG}\;(q \to \neg \mathrm{EF}\;(p \land \mathrm{EF}\;r))] \land [\mathrm{AG}\;(r \to \neg \mathrm{EF}\;(p \land \mathrm{EF}\;q))]$$

5. Transitions to states satisfying p occur at most twice.

Solution: Possible solution:

$$\neg(\text{EF }(p \land \text{EX EF }(p \land \text{EX EF }p)))$$

6. Property p is true for every second state along a path.

Solution: Possible solution:

$$X X p$$
 $AX AX p$

3 Expressable in ...

1. Give example of an LTL-formula for which equivalent translation in CTL does not exist.

Solution: G $p \rightarrow G q$

2. Give example of an CTL-formula for which equivalent translation in LTL does not exist.

Solution: EX p

3. Give example of an CTL*-formula for which equivalent translation in LTL either in CTL does not exist.

Solution: A (G $p \to G q$) \vee EX p

4 Proof the equivalence

Given the definitions:

- $\pi \models \psi \cup \phi$ iff there is some i > 1 such that $\pi^i \models \phi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \models \psi$
- $\pi \models \psi \ \mathrm{R} \ \phi$ iff either there is some $i \geq 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i$ we have $\pi^j \models \phi$, or for all $k \geq 1$ we have $\pi^k \models \phi$

Proof the following theorem:

$$\neg(\psi \cup \phi) \equiv \neg\psi \setminus \nabla \neg\phi \tag{1}$$

Solution: Proof. Let \mathcal{M} be a transition structure, s a state of \mathcal{M} . We must show that for every path π of \mathcal{M} starting in s, $\pi \models \neg(\psi \cup \phi)$ iff $\pi \models \neg\psi \ R \neg \phi$,

The trick of the proof is in first simplifying the definition of $\,\mathrm{R}:$

$$\pi \models \psi \ R \ \phi \text{ iff for all } i \geq 1 \text{ such that } \pi^i \models \neg \phi, \text{ there exists a } j < i \text{ such that } \pi^j \models \psi$$
 (2)

Assume that $\pi \models \psi \ R \ \phi$. Then either all $i \geq 1$ satisfy $\pi^i \models \phi$, or equivalently, there is no $i \geq 1$ such that $\pi^i \models \neg \phi$. In this case, the righthand of the equivalence is trivially satisfied. Or, there is an $i \geq 1$ such that $\pi^i \models \psi$ and $j \leq i$ implies $\pi^i \models \phi$. It follows for any $i' \geq 0$ such that $\pi^{i'} \models \neg \phi$, that i < i' and $\pi^i \models \psi$. Again, the righthand is satisfied.

Assume that $\pi \not\models \psi \ \mathrm{R} \ \phi$. Hence, there is an $i \geq 1$ such that $\pi^i \models \neg \phi$ and ϕ has not been released, i.e., ψ is false in each of π^1, \ldots, π^{j-1} . Hence, for this i we have $\pi^i \models \neg \phi$ and there is no j < i such that $\pi^j \models \psi$.

Given this equivalence, the theorem can no easily be proven:

$$\pi \models \neg(\psi \cup \phi)$$
 iff for all $i \ge 1$ such that $\pi^i \models \phi$, there is a $j < i$ such that $\pi^j \models \neg \psi$ iff $\pi \models \neg \psi \ R \ \neg \phi$. (3)

5 Nim game

If you have time left, and haven't made the Nim game yet last session, complete this exercise. The assignment from last week can still be found on Toledo.