Solution for Quiz-2

CSCE 590-1: From Data to Decisions with Open Data: A Practical Introduction to Al

Prof. Biplav Srivastava, Spring 2021

Student: Avineet Kumar Singh

GitHub

Question 1: Classification

German credit dataset is a popular dataset in ML. It can be found at in multiple formats at (.csv, .arff):

https://www.openml.org/t/31

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

1(a): Download the data and pre-process in any way necessary. How many data items and features does it have? What are their types? [10 points]

Solution:

Number of data items: 1000,

Features: 21

Type of data:

df.info()

C <class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype			
0	checking_status	1000 non-null	object			
1	duration	1000 non-null	int64			
2	credit_history	1000 non-null	object			
3	purpose	1000 non-null	object			
4	credit_amount	1000 non-null	int64			
5	savings_status	1000 non-null	object			
6	employment	1000 non-null	object			
7	installment_commitment	1000 non-null	int64			
8	personal_status	1000 non-null	object			
9	other_parties	1000 non-null	object			
10	residence_since	1000 non-null	int64			
11	property_magnitude	1000 non-null	object			
12	age	1000 non-null	int64			
13	other_payment_plans	1000 non-null	object			
14	housing	1000 non-null	object			
15	existing_credits	1000 non-null	int64			
16	job	1000 non-null	object			
17	num_dependents	1000 non-null	int64			
18	own_telephone	1000 non-null	object			
19	foreign_worker	1000 non-null	object			
20	class	1000 non-null	object			
dtypes: int64(7), object(14)						
memory usage: 164.2+ KB						

Numeric features: 7

Nominal features: 14

<u>**Data Preprocessing**</u> is performed using two methods:

- 1) Using Sklearn (giving numbers to categories/label encoding the data)
- 2) Using Pandas(one hot encoding)

1(b) Perform classification on the class label with at least two methods.

Present model accuracy, recall and F1 statistics. If possible, print model structure.

Solution:

<u>Code:</u> https://github.com/AVINEET-Singh/csce-590-submissions/blob/main/D2D_Quiz2_Q1.ipynb

Classifier 1: SVM

Accuracy Of SVM : 0.765

Precision Of SVM: 0.7831325301204819

Recall Of SVM: 0.9219858156028369

F1_score Of SVM : 0.8469055374592833

Classifier 2: Random Forest

Accuracy Of RF: 0.705

Precision Of RF: 0.705

Recall Of RF : 1.0

F1_score Of RF: 0.8269794721407624

Question 2: Clustering

Cluster the data with any method without giving the number of classes. Now compare the clusters with the classes. Find the homogeneity, completeness, and v-score metrics.

Solution:

<u>Code:</u> https://github.com/AVINEET-Singh/csce-590-submissions/blob/main/D2D Quiz2 Q2.ipynb

Clustering Method: DBSCAN

Identified clusters: [-1 0 1 2 3 4 5]

Clustering Performance Evaluations:

Homogeneity score : 0.018023986665695928

Completeness score : 0.03783409567061084

V-measure score : 0.024416206477339702

Question 3: Bonus:

The dataset has attributes for age and personal_status. What is the distribution of class with respect to these attributes? Is there a age or personal_status group that can perceive bias? Feel free to pre-process data to gain insights – e.g., binning for age.

Solution:

<u>Code</u>: https://github.com/AVINEET-Singh/csce-590-submissions/blob/main/D2D_Quiz2_Q3.ipynb

distribution of 'personal_status' based on 'class' label:

class_label	bad	good
personal_status		
'female div/dep/mar'	109	201
'male div/sep'	20	30
'male mar/wid'	25	67
'male single'	146	402

distribution of 'age' based on 'class' label(After Categorizing age):

class_label	bad	good
Age_cat		
18-25	80	110
25-33	101	225
33-55	100	313
55<	19	52

Plotting 'age' and 'personal_status' groups based on 'class' label

Study of Biasness in dataset (as per age and personal status group)

Based on the above tables and figures following biasness could be identified:

- 1) Categories for female customers are low as male customers are divided into more categories as per personal status. Even if the dataset is small, the categories for personal status should be balanced among both the genders. This could be considered as 'Association bias'.
- 2) As per personal status, the ratio of good credit risks to bad credit risks customers is higher for 'male-single' customers. It means there is a slight biasness in considering marital status for determining good and bad credit risks.
- 3) As per age category, the ratio of good credit risks to bad credit risks customers is higher for age category of '33-55'. People in this category are considered more stable which may not be true.
- 4) As per the plot, for 'female div/dep/mar' the number of bad credit risks increase as compared to good credit risks after the age of 35(approx.), which is not prevalent in other categories at that age.