CLAIMS

What is claimed is:

1	1. A method of providing secure communication between a remote
2	system and a remotely accessed system, comprising:
3	calculating at the remote system a first hash of an operation using a hash
4	algorithm;
5	encrypting at the remote system the first hash to form a signed hash;
6	receiving at the remotely accessed system the signed hash from the remote
7	system;
8	storing at the remotely accessed system a reference hash in a section of non-
9	volatile memory before receiving the signed hash;
10	validating at the remotely accessed system the signed hash using the reference
11	hash; and
12	executing at the remotely accessed system the operation associated with the
13	signed hash if the signed hash is validated.
1	2. The method, as set forth in claim 1, comprising responding to the
2	remote system based on the validation of the signed hash.
1	3. The method, as set forth in claim 2, wherein responding to the remote
2	system comprises generating a completion message if the signed hash is validated.
1	4. The method, as set forth in claim 2, wherein responding to the remote
2	system comprises generating an error message if the signed hash is not validated.

1	5. The method, as set forth in claim 1, wherein the operation comprises a
2	command.
1	6. The method, as set forth in claim 1, wherein the operation comprises
2	identification information.
1	7. The method, as set forth in claim 1, wherein validating comprises
2	accessing a database to access the reference hash.
1	8. The method, as set forth in claim 1, wherein validating comprises
2	parsing a packet to access the signed hash.
1	9. A method of providing secure communication between systems,
2	comprising:
3	delivering identification information to a remotely accessed system from a
4	remote system;
5	creating a nonce at the remotely accessed system;
6	delivering the nonce to the remote system;
7	calculating at the remote system a first hash of an operation using a hash
8	algorithm;
9	encrypting at the remote system the first hash along with the nonce to form a
10	signed hash;
11	receiving at the remotely accessed system the signed hash from the remote
12	system;

13	storing at the remotely accessed system a reference hash in a section of non-
14	volatile memory before receiving the signed hash;
15	validating at the remotely accessed system by comparing the signed hash to the
16	reference hash; and
17	executing at the remotely accessed system the operation associated with the
18	signed hash if the signed hash is validated.
1	10. The method, as set forth in claim 9, wherein encrypting comprises
2	signing at the remote system the first hash to form the signed hash.
1	11. The method, as set forth in claim 9, comprising parsing at the remotely
2	accessed system a packet for the first signed hash.
1	12. The method, as set forth in claim 9, comprising responding to the
2	remote system based on the validation of the signed hash.
1	13. The method, as set forth in claim 9, wherein generating the nonce at the
2	remotely accessed system comprises storing the identification information at the
3	remotely accessed system and validating comprises verifying the identification
4	information to determine if a packet is valid.
1	14. The method, as set forth in claim 9, wherein validating comprises
2	accessing a database for the reference hash, wherein the reference hash comprises a
3	second hash along with the nonce.

1	15. The method, as set forth in claim 9, wherein validating comprises
2	accessing a database for the reference hash, and combining the reference hash with the
3	nonce to validate the operation from the remote system.
1	16. The method, as set forth in claim 9, wherein validating comprises
2	verifying the identification information.
1	17. The method, as set forth in claim 9, wherein generating the nonce at the
2	remotely accessed system comprises storing the nonce at the remotely accessed system
3	and validating comprises verifying the nonce in a packet.
1	18. A system comprising:
2	a first computer system, the first computer system comprising a first program
3	for hashing information;
4	a request being generated from information received by the first computer
5	system and hashed by the first program;
6	a network connected to the first computer system and adapted to receive the
7	request;
8	a second computer system connected to the network and adapted to receive the
9	request from the first computer system, wherein the second computer system
10	comprises:
11	a processor;
12	a first section memory operatively coupled to the processor, the first
13	section memory storing a file that is a hash; and

14	a second section of memory being configured to store a validation
15	program initiated by the processor, the validation program having a validation
16	routine configured to validate the file stored in the first section of memory
17	against the received request; wherein if the received request is valid, the
18	second computer system may execute a command that corresponds to the file.
1	19. The system, as set forth in claim 18, wherein the information
2	comprises a command.
1	20. The system, as set forth in claim 19, wherein the information
2	comprises a nonce.
1	21. The system, as set forth in claim 18, wherein the first computer system
2	comprises a second program for digitally signing information.
1	22. The system, as set forth in claim 21, wherein the validation program
2	compares the hash stored in the first section of memory against signed information in
3	the received request.
1	23. The system, as set forth in claim 22, wherein the signed information
2	comprises a signed command and signed argument.