High-level overview of the throughput for compute and memory to clearly identify the highest contributor. High-level overview of Compute (SM) Throughput [%]		he GPU presented as a roofline		al maximum. Breakdowns show the th	roughput for each individual sub-metric	of Compute and Memory 15.15
Memory Throughput [%] L1/TEX Cache Throughput [%] L2 Cache Throughput [%]	0.00 Elapsed Cycles [cycle] 0.00 SM Active Cycles [cycle] 0.00 SM Frequency [cycle/usecond]					
DRAM Throughput [%]	of the available compute or memory performance of	0.00	RAM Frequency [cycle/nsecond]	hifted from the most utilized to anothe	er unit. Start by analyzing workloads in t	1.21
High Throughput Analysis section. Roofline Analysis The ratio of peak float (fp32) to double						
The ratio of peak float (1902) to double	(1po4) perioritance on this device is 2.1. The kerner de	GPU Thro		15 Tpo-4 peak performance. See the Ker	ror mode details on i	oonine analysis.
Compute (SM) [%]						
Memory [%]						
0.0 10.0	20.0 30.0	40.0 Speed	50.0 60.0 d Of Light (SOL) [%]	70.0	80.0 90.0	100.0
SM: Pipe Fma Cycles Active [%]	te Throughput Breakdown	81.43	L2: Xbar2lts Cycles Active [%]	Memory Throughput E	Breakdown	0.00
SM: Issue Active [%] SM: Inst Executed [%]		65.67	L1: M L1tex2xbar Req Cycles Active [%] L2: T Tag Requests [%]			0.00
SM: Pipe Alu Cycles Active [%] SM: Inst Executed Pipe Xu [%] SM: Inst Executed Pipe Adu [%]		26.75	L2: T Sectors [%] L1: Data Pipe Lsu Wavefronts [%] L2: D Sectors [%]			0.00 0.00 0.00
IDC: Request Cycles Active [%] SM: Inst Executed Pipe Cbu Pred On Any [%]		11.41	L2: Lts2xbar Cycles Active [%] L1: Lsuin Requests [%]			0.00
SM: Mio Pq Read Cycles Active [%] SM: Mio Pq Write Cycles Active [%] SM: Mio Inst Issued [%]		7.46	L1: Data Bank Reads [%] L1: Data Bank Writes [%] L1: Lsu Writeback Active [%]			0.00 0.00 0.00
SM: Mio2rf Writeback Active [%] SM: Pipe Shared Cycles Active [%]		0.97	DRAM: Cycles Active [%] DRAM: Dram Sectors [%]			0.00
SM: Pipe Fp64 Cycles Active [%] SM: Pipe Tensor Cycles Active [%] SM: Inst Executed Pipe Lsu [%]		0.45	L1: M Xbar2l1tex Read Sectors [%] L2: D Sectors Fill Device [%] L2: D Sectors Fill Sysmem [%]			0.00 0.00 0.00
SM: Inst Executed Pipe Uniform [%] SM: Inst Executed Pipe Tex [%]		0	L1: Texin Sm2tex Req Cycles Active [%] L1: F Wavefronts [%]			0.00
SM: Inst Executed Pipe Ipa [%] SM: Inst Executed Pipe Fp16 [%]		0	L2: D Atomic Input Cycles Active [%] L1: Tex Writeback Active [%] L1: Data Pipe Tex Wavefronts [%]			0
		Floating Point Ope	erations Roofline			Q Q 5
100						
ଞ୍ଚି ¹⁰						
100,000,000)						
#forman = 100,00						
2 ⊂ _{0.1}						
0.01						
0.001						
0.001 1	10 100		10,000 100,000 ntensity [FLOP/byte]	1e+06	1e+07 1e+08	
Compute Workload Analysis Detailed analysis of the compute resources of the streaming mu	Itiprocessors (SM), including the achieved instructions			with very high utilization might limit the	e overall performance.	Ω
Executed Ipc Elapsed [inst/cycle] Executed Ipc Active [inst/cycle] Issued Ipc Active [inst/cycle]			SM Busy [%] ssue Slots Busy [%]			81.74 65.92
Very High Utilization FMA is the highest-utilized pipeline (by each pipeline.	81.7%). It executes 32-bit floating point (FADD, FMUL, F	FMAD,) and integer (IMUL, IM	AD) operations. The pipeline is over-utiliz	zed and likely a performance bottlenec	k. See the <u>Kernel Profiling Guide</u> for the	workloads handled
▶ Memory Workload Analysis Detailed analysis of the memory resources of the GPU. Memory		formance when fully utilizing the	e involved hardware units (Mem Busy), ex	xhausting the available communication	n bandwidth between those units (Max I	Bandwidth), or by reaching
the maximum throughput of issuing memory instructions (Mem Memory Throughput [Mbyte/second] L1/TEX Hit Rate [%]	Pipes Busy).		Mem Busy [%] Max Bandwidth [%]			0.00
L2 Hit Rate [%] L2 Compression Success Rate [%]		99.80 N	Mem Pipes Busy [%] 2 Compression Ratio			14.89 0
 Scheduler Statistics Summary of the activity of the schedulers issuing instructions. Earlies allocated warps in the pool (Active Warps). Active warps that are 				. , , , ,		
the issue slot is skipped and no instruction is issued. Having ma			lo Eligible [%]	gie warp nom which to issue one of m	ore mstructions (issued warp). On cycle	34.05
Eligible Warps Per Scheduler [warp] Issued Warp Per Scheduler		1.58 C 0.66	ne or More Eligible [%]			65.95
 Warp State Statistics Analysis of the states in which all warps spent cycles during the parallelism is required to hide this latency. For each warp state, to 						
issue every cycle. When executing a kernel with mixed library an Warp Cycles Per Issued Instruction [cycle]		7.13 A	vg. Active Threads Per Warp			6.64
	nich are groups of 32 threads. Optimal instruction throu	ughput is achieved if all 32 threa		on. The chosen launch configuration, e		
branch. Instead, all instructions are so	re threads in a warp per cycle. This kernel achieves an a heduled, but a per-thread condition code or predicate of h allows a warp to reconverge after a data-dependent of	controls which threads execute	the instructions. Try to avoid different ex			
 Instruction Statistics Statistics of the executed low-level assembly instructions (SASS pipelines allows hiding latencies and enables parallel execution. 					ruction pipelines, while others remain u	nused. Using multiple
Executed Instructions [inst] Issued Instructions [inst]	Note that instructions/opcode and Executed instruct	3,286,667,186,026 A	vg. Executed Instructions Per Scheduler vg. Issued Instructions Per Scheduler	[inst]		7,608,025,893.58 7,608,244,642.60
Launch Statistics Summary of the configuration used to launch the kernel. The launch the kernel.	nch configuration defines the size of the kernel arid. th				unch configuration maximizes device u	ρ
Grid Size Block Size	J ,	16,384 R 128 S	Registers Per Thread [register/thread] Static Shared Memory Per Block [byte/blo	ock]		82
Threads [thread] Waves Per SM Function Cache Configuration		30.34	ynamic Shared Memory Per Block [byte/ Priver Shared Memory Per Block [Kbyte/b Shared Memory Configuration Size [Kbyte	lock]		1.02 16.38
Occupancy Occupancy is the ratio of the number of active warps per multiple.	ocessor to the maximum number of possible active w				ely in use. Higher occupancy does not a	Ξ Ω
performance, however, low occupancy always reduces the ability Theoretical Occupancy [%]		gradation. Large discrepancies l 31.25 B	between the theoretical and the achieved Block Limit Registers [block]			. 5
Theoretical Active Warps per SM [warp] Achieved Occupancy [%] Achieved Active Warps Per SM [warp]		29.38 B	Block Limit Shared Mem [block] Block Limit Warps [block] Block Limit SM [block]			164 16 32
⚠ Occupancy Limiters This kernel's theoretical occupancy (31.2%) is limited by the number of required registers S			ancy.		
 Source Counters Source metrics, including branch efficiency and sampled warp stalls if the schedulers fail to issue every cycle. 	tall reasons. Sampling Data metrics are periodically sa	mpled over the kernel runtime.	They indicate when warps were stalled a	nd couldn't be scheduled. See the docu	All umentation for a description of all stall r	reasons. Only focus on
Branch Instructions [inst] Branch Instructions Ratio [%]			Branch Efficiency [%] Avg. Divergent Branches			98.72 3,932,338.44
⚠ Uncoalesced Global Accesses Uncoalesced global acces						0
⚠ Uncoalesced Global Accesses Uncoalesced global access ⚠ Uncoalesced Global Accesses Uncoalesced global access						⊙
Uncoalesced Global Accesses See the CUDA Programming						

Time

Current 731 - _ZN6Kokkos4ImplL33cuda_parallel_launch_local_memoryINS0_11ParallelForIZ4mainEUlRKiE_NS_11RangePolicyIJNS_4CudaEEEES7_EEEEvT... 15.15 second 11,585,407,796 82 0 - NVIDIA A100-PCIE-40GB 764.57 cycle/usecond 8.0 [1343071] raytrace-clang

Regs GPU

SM Frequency

CC Process

All

Save as PDF

 \oplus \ominus \bullet

- Q

Launch: 4 - 731 - _ZN6Kokkos4Imp → 🍞 → Add Baseline → Apply Rules 📾 Occupancy Calculator

Page: Details

Launch

→ GPU Speed Of Light Throughput