Demostración del Teorema 1. Propiedad de la Idempotencia. Sean A y B, conjuntos, entonces:

$$(A \cap A) = A$$
.

Si $A \cap A$ o A son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

1.1. $A \cap A \subseteq A$

Sea
$$x \in (A \cap A) \Leftrightarrow x \in A \ y \ x \in A$$

 $\Rightarrow x \in A$.

Dado que los conectores son del tipo "sí solo sí", se demuestra la primera y segunda contención. Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

1.2.
$$A \subseteq (A \cap A)$$

Sea
$$x \in A \Rightarrow x \in A \ y \ x \in A$$

 $\Leftrightarrow x \in (A \cap A).$

Demostración del Teorema 2. Propiedad de Idempotencia. Sean A y B conjuntos, entonces:

$$(A \cup A) = A$$
.

Si $(A \cup A)$ o A son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

2.1.
$$(A \cup A) \subseteq A$$

Sea
$$x \in (A \cup A) \Leftrightarrow (x \in A) \ o \ (x \in A)$$

 $\Rightarrow x \in A.$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

2.2.
$$A \subseteq (A \cup A)$$

Sea
$$x \in A \Rightarrow (x \in A \ o \ x \in A)$$

 $\Leftrightarrow (x \in (A \cup A).$

Demostración del Teorema 3. Propiedad Conmutativa. Sean A y B conjuntos, entonces:

$$(A \cap B) = (B \cap A).$$

Si $(A \cap B)$ o $(B \cap A)$ son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

3.1.
$$(A \cap B) \subseteq (B \cap A)$$

Sea
$$x \in (A \cap B) \Leftrightarrow (x \in A) \ y \ (x \in B)$$

 $\Rightarrow (x \in B) \ y \ (x \in A)$
 $\Leftrightarrow x \in (B \cap A).$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

3.2. (B
$$\cap$$
 A) \subseteq (*A* \cap *B*)

Sea
$$x \in (B \cap A) \Leftrightarrow x \in B \ y \ x \in A$$

 $\Rightarrow x \in A \ y \ x \in B$
 $\Leftrightarrow x \in (A \cap B).$

Demostración del Teorema 4. Propiedad Conmutativa. Sean A, B conjuntos, entonces:

$$(A \cup B) = (B \cup A).$$

Si $(A \cup B)$ o $(B \cup A)$ son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

4.1. $(A \cup B) \subseteq (B \cup A)$

Sea
$$x \in (A \cup B) \Leftrightarrow (x \in A) \ o \ (x \in B)$$

 $\Rightarrow x \in B \ o \ x \in A$
 $\Leftrightarrow x \in (B \cup A)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

4.2. (B \cup *A*) \subseteq (*A* \cup *B*)

Sea
$$x \in (B \cup A) \Rightarrow x \in B$$
 o $x \in A$
 $\Leftrightarrow x \in A$ o $x \in B$
 $\Leftrightarrow x \in (A \cup B)$.

Demostración del Teorema 5. Propiedad Asociativa. Sean A, B y C conjuntos, entonces:

$$(A \cap B) \cap C = A \cap (B \cap C).$$

5.1. $(A \cap B) \cap C \subseteq A \cap (B \cap C)$

Sea
$$x \in (A \cap B) \cap C \Leftrightarrow [x \in (A \cap B)] \ y \ (x \in C)$$

 $\Leftrightarrow x \in A \ y \ x \in B \ y \ x \in C$
 $\Leftrightarrow x \in A \ y \ x \in (B \cap C)$
 $\Leftrightarrow x \in A \cap (B \cap C)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

5.2. A
$$\cap$$
 ($B \cap C$) \subseteq ($A \cap B$) $\cap C$

Sea
$$x \in [A \cap (B \cap C)] \Leftrightarrow x \in A \ y \ x \in (B \cap C)$$

 $\Leftrightarrow x \in A \ y \ x \in B \ y \ x \in C$
 $\Leftrightarrow x \in (A \cap B) \ y \ x \in C$
 $\Leftrightarrow x \in [(A \cap B) \cap C]$

Demostración del Teorema 6. Propiedad Asociativa. Sean A, B y C conjuntos, entonces:

$$(A \cup B) \cup C = A \cup (B \cup C).$$

Si $(A \cup B) \cup C$ o $A \cup (B \cup C)$ son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

6.1.
$$(A \cup B) \cup C \subseteq A \cup (B \cup C)$$

Sea
$$x \in (A \cup B) \cup C \Leftrightarrow [x \in (A \cup B)] \ o \ (x \in C)$$

 $\Leftrightarrow x \in A \ o \ x \in B \ o \ x \in C$
 $\Leftrightarrow x \in A \ o \ x \in (B \cup C)$
 $\Leftrightarrow x \in A \cup (B \cup C)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

6.2. A
$$\cup$$
($B \cup C$) \subseteq ($A \cup B$) \cup C

Sea
$$x \in [A \cup (B \cup C)] \Leftrightarrow x \in A \ o \ x \in (B \cup C)$$

 $\Leftrightarrow x \in A \ o \ x \in B \ o \ x \in C$
 $\Leftrightarrow x \in (A \cup B) \ o \ x \in C$
 $\Leftrightarrow x \in [(A \cup B) \cup C]$

Demostración del Teorema 7. Propiedad Distributiva. Sean A, B y C conjuntos, entonces:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Si $A \cap (B \cup C)$ o $(A \cap B) \cup (A \cap C)$ son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

7.1. A
$$\cap$$
($B \cup C$) \subseteq ($A \cap B$) \cup ($A \cap C$)

Sea
$$x \in A \cap (B \cup C) \Leftrightarrow x \in A \ y \ x \in (B \cup C)$$

 $\Leftrightarrow x \in A \ y \ (x \in B \ o \ x \in C)$
 $\Leftrightarrow (x \in A \ y \ x \in B) \ o \ (x \in A \ y \ x \in C)$
 $\Leftrightarrow x \in (A \cap B) \ o \ (x \in (A \cap C))$
 $\Leftrightarrow x \in (A \cap B) \cup (A \cap C)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

7.2.
$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$$

Sea
$$x \in (A \cap B) \cup (A \cap C) \Leftrightarrow [x \in A \cap B] \ o \ [x \in A \cap C]$$

 $\Leftrightarrow (x \in A \ y \ x \in B) \ o \ (x \in A \ y \ x \in C)$
 $\Leftrightarrow (x \in A \ o \ x \in A) \ y \ (x \in B \ o \ x \in C)$
 $\Leftrightarrow x \in A \ y \ x \in (B \cup C)$
 $\Leftrightarrow x \in A \cap (B \cup C)$

Demostración del Teorema 8. Propiedad Distributiva. Sean A, B y C conjuntos, entonces:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Si $A \cup (B \cap C)$ o $(A \cup B) \cap (A \cup C)$ son conjuntos vacíos, entonces ambas contenciones se cumplen (ya que el vacío es subconjunto de cualquier otro conjunto). Para todos los demás casos, las contenciones se dan la siguiente manera:

8.1.
$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$$

Sea
$$x \in A \cup (B \cap C) \Leftrightarrow x \in A \ o \ x \in (B \cap C)$$

 $\Leftrightarrow x \in A \ o \ (x \in B \ y \ x \in C)$
 $\Leftrightarrow (x \in A \ o \ x \in B) \ y \ (x \in A \ o \ x \in C)$
 $\Leftrightarrow x \in (A \cup B) \ y \ x \in (A \cup C)$
 $\Leftrightarrow x \in (A \cup B) \cap (A \cup C)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

8.2.
$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$$

$$Sea \ x \in (A \cup B) \cap (A \cup C) \Leftrightarrow x \in (A \cup B) \ y \ x \in (A \cup C)$$

$$\Leftrightarrow (x \in A \ o \ x \in B) \ y \ (x \in A \ o \ x \in C)$$

$$\Leftrightarrow (x \in A \ y \ x \in A) \ o \ (x \in B \ y \ x \in C)$$

$$\Leftrightarrow x \in A \ o \ x \in (B \cap C)$$

$$\Leftrightarrow x \in A \cup (B \cap C)$$