Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

Кафедра ЭВМ

Отчет о лабораторной работе №6 **«Динамика очереди»** по дисциплине «Моделирование»

Выполнили:

ст. гр. 245 бригада №4 Сокол Илья Лапин Кирилл **Проверил:** доц. каф. ЭВМ Саблина В.А. **Цель работы:** оценка времени переходного процесса (времени установления средней длины очереди) при стационарном режиме работы СМО; оценка скорости нарастания очереди при отсутствии стационарного режима работы СМО (перегрузка СМО) и оценка скорости «рассасывания» очереди при восстановлении стационарного режима работы СМО.

Практическая часть

1. Ознакомление с моделью СМО

Ознакомимся с моделью СМО, соответствующей описанию поставленной задачи. Данная модель имеет следующее графическое представление (рисунок 1.1):

Рисунок 1.1 – Графическое представление рассматриваемой модели СМО

В соответствии с вариантом задания среднее время прохождения узкого участка в нормальном режиме $T_{\rm y}=400$. Время прохождения узкого участка распределено равномерно в диапазоне $T_{\rm v}\pm0.8T_{\rm v}$.

Средний интервал времени между транспортными средствами на трассе $T_{\rm u}=1.11T_{\rm y}$. Интервалы между транспортными средствами на трассе распределены по экспоненциальному закону.

Разработаем имитационную GPSS-модель рассматриваемой СМО. Листинг полученной программы представлен ниже:

```
TERMINATE
; Второй сегмент программы
GENERATE 111, FN$EXPON
                                      ; Приход транспортного средства
(Tu=1.11*Ty)
QUEUE QUE1,1
                                      ; Присоединение к очереди перед
сужением
SEIZE UZK
                                      ; Переход в узкое место
DEPART QUE1,1
                                       ; Уход из очереди
; Число транспортных средств, вошедших в сужение с учетом начальной длины
очереди
NTr5 EQU LQUE0+5
NTr10 EQU LQUE0+10
NTr15 EQU LQUE0+15
NTr20 EQU LQUE0+20
NTr25 EQU LQUE0+25
NTr50 EQU LQUE0+50
NTr75 EQU LQUE0+75
NTr100 EQU LQUE0+100
NTr200 EQU LQUE0+200
NTr500 EQU LQUE0+500
NTr1000 EQU LQUE0+1000
NTr2000 EQU LQUE0+2000
NTr5000 EQU LQUE0+5000
NTr10000 EOU LOUE0+10000
NTr20000 EQU LQUE0+20000
TEST E XN1, NTr5, MET1
                                      ; В сохраняемых величинах SAVi
фиксируется средняя длина очереди QUE1
SAVEVALUE SAV5, QA$QUE1
                                      ; После прохождения і транспортных
средств
;SAVEVALUE TIME5,C1
                                      ; Можно фиксировать время вхождения і
транспортных средств
MET1
          TEST E XN1, NTr10, MET2
          SAVEVALUE SAV10, QA$QUE1
          TEST E XN1, NTr15, MET3
MET2
          SAVEVALUE SAV15, QA$QUE1
MET3
          TEST E XN1, NTr20, MET4
          SAVEVALUE SAV20, QA$QUE1
MET4
          TEST E XN1, NTr25, MET5
          SAVEVALUE SAV25, QA$QUE1
          TEST E XN1, NTr50, MET6
MET5
          SAVEVALUE SAV50, QA$QUE1
          TEST E XN1, NTr75, MET7
MET6
          SAVEVALUE SAV75, QA$QUE1
MET7
          TEST E XN1, NTr100, MET8
          SAVEVALUE SAV100, OA$OUE1
MET8
          TEST E XN1, NTr200, MET9
          SAVEVALUE SAV200, QA$QUE1
MET9
          TEST E XN1, NTr500, MET10
          SAVEVALUE SAV500, QA$QUE1
```

```
MET10
          TEST E XN1,NTr1000,MET11
         SAVEVALUE SAV1000, OA$QUE1
MET11
        TEST E XN1,NTr2000,MET12
         SAVEVALUE SAV2000, QA$QUE1
        TEST E XN1,NTr5000,MET13
MET12
         SAVEVALUE SAV5000, QA$QUE1
MET13
        TEST E XN1, NTr10000, MET14
         SAVEVALUE SAV10000, QA$QUE1
         TEST E XN1, NTr20000, MET15
MET14
         SAVEVALUE SAV20000, QA$QUE1
MET15
        ADVANCE 100,60
                                   ; Проход узкого места (Ту+-0.8Ту)
         RELEASE UZK
                                    ; Конец узкого места
         TERMINATE
                                    ; Уход из модели
; Третий сегмент программы
GENERATE 1000000 ; Время моделирования
TERMINATE 1
                   ; Завершение моделирования
START 1
```

2. Изучение нормального режима работы

Зададим нормальный режим работы трассы в районе сужения, при котором среднее время прохождения узкого участка равняется $T_{\rm y}$ при отсутствии на нем дополнительных заторов, коэффициент загрузки узкого участка $\rho < 1$ ($\rho = T_{\rm y}/T_{\rm u} = 0.9$), начальная длина очереди равна 0. Листинг полученной программы представлен ниже:

```
EXPON FUNCTION RN1,C24
          0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
          .8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
          .97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
LOUEO EOU O
                   ; Начальная длина очереди
; Первый сегмент программы - задание начальной длины очереди перед сужением
GENERATE 1,0,, LQUE0 ; Начальная длина очереди в 4-ом параметре транзакта
QUEUE QUE1,1
SEIZE UZK
DEPART QUE1,1
ADVANCE 400,320
RELEASE UZK
TERMINATE
; Второй сегмент программы
GENERATE 444, FN$EXPON
                                      ; Приход транспортного средства
(T_{\text{M}}=1.11*T_{\text{y}})
QUEUE QUE1,1
                                       ; Присоединение к очереди перед
сужением
```

```
SEIZE UZK
                                       ; Переход в узкое место
DEPART OUE1,1
                                       ; Уход из очереди
; Число транспортных средств, вошедших в сужение с учетом начальной длины
очереди
NTr5 EQU LQUE0+5
NTr10 EQU LQUE0+10
NTr15 EQU LQUE0+15
NTr20 EQU LQUE0+20
NTr25 EQU LQUE0+25
NTr50 EQU LQUE0+50
NTr75 EQU LQUE0+75
NTr100 EQU LQUE0+100
NTr200 EQU LQUE0+200
NTr500 EQU LQUE0+500
NTr1000 EQU LQUE0+1000
NTr2000 EQU LQUE0+2000
NTr5000 EQU LQUE0+5000
NTr10000 EQU LQUE0+10000
NTr20000 EQU LQUE0+20000
TEST E XN1, NTr5, MET1
                                      ; В сохраняемых величинах SAVi
фиксируется средняя длина очереди QUE1
                                      ; После прохождения і транспортных
SAVEVALUE SAV5, QA$QUE1
средств
; SAVEVALUE TIME5, C1
                                      ; Можно фиксировать время вхождения і
транспортных средств
          TEST E XN1, NTr10, MET2
MET1
          SAVEVALUE SAV10, QA$QUE1
          TEST E XN1, NTr15, MET3
MET2
          SAVEVALUE SAV15, QA$QUE1
          TEST E XN1, NTr20, MET4
мет3
          SAVEVALUE SAV20, QA$QUE1
          TEST E XN1, NTr25, MET5
MET4
          SAVEVALUE SAV25, QA$QUE1
          TEST E XN1, NTr50, MET6
MET5
          SAVEVALUE SAV50, QA$QUE1
MET6
          TEST E XN1, NTr75, MET7
          SAVEVALUE SAV75, QA$QUE1
          TEST E XN1, NTr100, MET8
MET7
          SAVEVALUE SAV100, QA$QUE1
          TEST E XN1, NTr200, MET9
MET8
          SAVEVALUE SAV200, QA$QUE1
MET9
          TEST E XN1, NTr500, MET10
          SAVEVALUE SAV500, OA$OUE1
MET10
          TEST E XN1, NTr1000, MET11
          SAVEVALUE SAV1000, QA$QUE1
MET11
          TEST E XN1, NTr2000, MET12
          SAVEVALUE SAV2000, QA$QUE1
MET12
          TEST E XN1, NTr5000, MET13
          SAVEVALUE SAV5000, QA$QUE1
```

```
MET13
         TEST E XN1, NTr10000, MET14
         SAVEVALUE SAV10000, QA$QUE1
MET14
         TEST E XN1, NTr20000, MET15
         SAVEVALUE SAV20000, QA$QUE1
        ADVANCE 400,320 ; Проход узкого места (Ту+-0.8Ту)
MET15
         RELEASE UZK
                                  ; Конец узкого места
         TERMINATE
                                  ; Уход из модели
; Третий сегмент программы
GENERATE 10000000 ; Время моделирования
TERMINATE 1
              ; Завершение моделирования
START 1
```

В результате выполнения программы получим отчет, представленный на рисунке 2.1.

FACILITY	?	ENTRIES	UTIL.	AVE	TIME	AVAIL.	OWNE	R PEND	INTER	RETRY	DELAY
UZK		22546	0.90	0 :	399.18	0 1	2254	7 0	0	0	4
QUEUE		MAX CO	NT. EN	TRY EN	TRY(0)	AVE.CC	NT. I	VE.TIME	E AVI	E.(-0)	RETRY
QUE1		44	4 22	550 2	2283	5.10	9 2	265.771	25	21.001	0
SAVEVALU	IF.	D.	ETRY	V	ALUE						
SAV5	-	-	0		0						
SAV10			0		343						
SAV15			0		0.605						
SAV20			0	(.553						
SAV25			0	(0.672						
SAV50			0		1.850						
SAV75			0		1.920						
SAV100			0		1.695						
SAV200			0	2	2.172						
SAV500			0	2	2.589						
SAV1000)		0	4	1.500						
SAV2000)		0		3.148						
SAV5000)		0		3.798						
SAV1000	0		0		1.623						
SAV2000	0		0		5.204						
FEC XN	PRI	BDT	7	ccem (TIDDEN	T NEXT	י המ	AMETER	377.1	TIE	
22547	0	10000288.1			JUKKEN 42	1 NEX1	PAF	CHITE I E.K	VA.	LUE	
22552	0	10000288.1		254/ 2552	92	43 8					
22552	0	200000000.0		2552 2553	0	45					
22555	0	20000000.0	00 2	2000	0	45					

Рисунок 2.1 – Отчет о выполнении программы модели в нормальном режиме Измерим среднюю длину очереди перед сужением трассы:

$$l_{\rm cp1}=5.109$$

Определим время установления средней длины очереди $l_{
m cp1}$. Для этого изменим описание GPSS-модели следующим образом:

```
EXPON FUNCTION RN1,C24

0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38

.8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
```

```
LQUEO EQU O ; Начальная длина очереди
; Первый сегмент программы - задание начальной длины очереди перед сужением
GENERATE 1,0,, LQUE0 ; Начальная длина очереди в 4-ом параметре транзакта
QUEUE QUE1,1
SEIZE UZK
DEPART QUE1,1
ADVANCE 400,320
RELEASE UZK
TERMINATE
; Второй сегмент программы
GENERATE 444, FN$EXPON
                                    ; Приход транспортного средства
(T_{\text{M}}=1.11*T_{\text{y}})
QUEUE QUE1,1
                                     ; Присоединение к очереди перед
сужением
SEIZE UZK
                                      ; Переход в узкое место
DEPART QUE1,1
                                      ; Уход из очереди
; Число транспортных средств, вошедших в сужение с учетом начальной длины
очереди
NTr5 EQU LQUE0+5
NTr10 EQU LQUE0+10
NTr15 EOU LOUE0+15
NTr20 EOU LOUE0+20
NTr25 EOU LOUE0+25
NTr50 EOU LOUE0+50
NTr75 EQU LQUE0+75
NTr100 EQU LQUE0+100
NTr200 EQU LQUE0+200
NTr500 EQU LQUE0+500
NTr1000 EQU LQUE0+1000
NTr2000 EQU LQUE0+2000
NTr5000 EQU LQUE0+5000
NTr10000 EQU LQUE0+10000
NTr20000 EQU LQUE0+20000
TEST E XN1, NTr5, MET1
                                     ; В сохраняемых величинах SAVi
фиксируется средняя длина очереди QUE1
SAVEVALUE SAV5, QA$QUE1
                                     ; После прохождения і транспортных
средств
SAVEVALUE TIME5, C1
                                     ; Можно фиксировать время вхождения і
транспортных средств
          TEST E XN1, NTr10, MET2
          SAVEVALUE SAV10, QA$QUE1
          SAVEVALUE TIME10,C1
          TEST E XN1, NTr15, MET3
MET2
          SAVEVALUE SAV15, QA$QUE1
          SAVEVALUE TIME15,C1
MET3
          TEST E XN1, NTr20, MET4
          SAVEVALUE SAV20, QA$QUE1
          SAVEVALUE TIME20,C1
MET4
         TEST E XN1, NTr25, MET5
          SAVEVALUE SAV25, QA$QUE1
          SAVEVALUE TIME25,C1
```

MET5	TEST E XN1,NTr50,MET6 SAVEVALUE SAV50,QA\$QUE1 SAVEVALUE TIME50,C1	
MET6	TEST E XN1,NTr75,MET7 SAVEVALUE SAV75,QA\$QUE1 SAVEVALUE TIME75,C1	
MET7	TEST E XN1,NTr100,MET8 SAVEVALUE SAV100,QA\$QUE1 SAVEVALUE TIME100,C1	
MET8	TEST E XN1,NTr200,MET9 SAVEVALUE SAV200,QA\$QUE1 SAVEVALUE TIME200,C1	
MET9	TEST E XN1,NTr500,MET10 SAVEVALUE SAV500,QA\$QUE1 SAVEVALUE TIME500,C1	
MET10	TEST E XN1,NTr1000,MET11 SAVEVALUE SAV1000,QA\$QUE1 SAVEVALUE TIME1000,C1	
MET11	TEST E XN1,NTr2000,MET12 SAVEVALUE SAV2000,QA\$QUE1 SAVEVALUE TIME2000,C1	
MET12	TEST E XN1,NTr5000,MET13 SAVEVALUE SAV5000,QA\$QUE1 SAVEVALUE TIME5000,C1	
MET13	TEST E XN1,NTr10000,MET14 SAVEVALUE SAV10000,QA\$QUE1 SAVEVALUE TIME10000,C1	
MET14	TEST E XN1,NTr20000,MET15 SAVEVALUE SAV20000,QA\$QUE1 SAVEVALUE TIME20000,C1	
MET15	ADVANCE 400,320 RELEASE UZK	; Проход узкого места (Ту+-0.8Ту) ; Конец узкого места
	TERMINATE	; Уход из модели
GENERATE	сегмент программы 10000000 ; Время моделиров 1 ; Завершение моде	вания елирования
START 1		

В результате выполнения программы получим отчет, представленный на рисунке 2.2.

FACILITY UZK	ľ	ENTRIES 22546									
QUEUE		MAX CO									
QUE1		44	4 2	2550	2283	5.10	9 22	65.77	1 25	21.001	0
SAVEVALU	JE	R	ETRY		VALUE						
SAV5			0		0						
TIME5			0	32	70.253						
SAV10			0		0.343						
TIME10			0	58	63.267						
SAV15			0		0.605						
TIME15			0	84	04.372						
SAV20			0		0.553						
TIME20			0	108	15.196						
SAV25			0		0.672						
TIME25			0	138	89.552						
SAV50			0		1.850						
TIME50			0	238	95.569						
SAV75			0		1.920						
TIME75			0	330	73.450						
SAV100			0		1.695						
TIME100)		0	472	07.371						
SAV200			0		2.172						
TIME200)		0	907	87.928						
SAV500			0		2.589						
TIME500			0	2209	39.425						
SAV1000			0		4.500						
TIME100				4381	47.466						
SAV2000			0		3.148						
TIME200			0	9105	57.449						
SAV5000			0		3.798						
TIME500			0	22292	65.258						
SAV1000			0		4.623						
TIME100				44137	38.480						
SAV2000			0		5.204						
TIME200	000		0	88801	.65.002						
FEC XN	PRI	BDT		ASSEM	CURREN	r next	PARA	METER	VA:	LUE	
22547		10000288.1									
22552		10000386.5									
		20000000.0									
			_		-						

Рисунок 2.2 – Отчет о выполнении программы модели в нормальном режиме с фиксацией времени вхождения транспортных средств

Таким образом, наиболее близкое к $l_{\rm cp1}=5.109$ значение длины очереди устанавливается после прохождения 20000 транспортных средств. Это значение равно 8880165.002 единиц модельного времени.

3. Изучение аварийного режима работы

Зададим аварийный режим работы трассы в районе сужения, при котором среднее время прохождения узкого участка удваивается и равняется $2T_{\rm y}=2*400=800$, коэффициент загрузки узкого участка в таком случае $\rho>1$ ($\rho=2T_{\rm y}/T_{\rm u}=1.8$), начальная длина очереди равна 0. Листинг полученной программы представлен ниже:

```
EXPON FUNCTION RN1,C24
          0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
          .8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
          .97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
LQUEO EQU O
                   ; Начальная длина очереди
; Первый сегмент программы - задание начальной длины очереди перед сужением
GENERATE 1,0,, LQUE0 ; Начальная длина очереди в 4-ом параметре транзакта
QUEUE QUE1,1
SEIZE UZK
DEPART QUE1,1
ADVANCE 800,640
RELEASE UZK
TERMINATE
; Второй сегмент программы
GENERATE 444, FN$EXPON
                                    ; Приход транспортного средства
(T_{\text{M}}=1.11*T_{\text{y}})
QUEUE QUE1,1
                                     ; Присоединение к очереди перед
сужением
SEIZE UZK
                                      ; Переход в узкое место
DEPART QUE1,1
                                      ; Уход из очереди
; Число транспортных средств, вошедших в сужение с учетом начальной длины
очереди
NTr5 EOU LOUE0+5
NTr10 EOU LOUE0+10
NTr15 EQU LQUE0+15
NTr20 EQU LQUE0+20
NTr25 EQU LQUE0+25
NTr50 EQU LQUE0+50
NTr75 EQU LQUE0+75
NTr100 EQU LQUE0+100
NTr200 EQU LQUE0+200
NTr500 EQU LQUE0+500
NTr1000 EQU LQUE0+1000
NTr2000 EQU LQUE0+2000
NTr5000 EQU LQUE0+5000
NTr10000 EQU LQUE0+10000
NTr20000 EQU LQUE0+20000
TEST E XN1, NTr5, MET1
                                     ; В сохраняемых величинах SAVi
фиксируется средняя длина очереди QUE1
SAVEVALUE SAV5, QA$QUE1
                                     ; После прохождения і транспортных
средств
                                    ; Можно фиксировать время вхождения і
SAVEVALUE TIME5,C1
транспортных средств
          TEST E XN1, NTr10, MET2
          SAVEVALUE SAV10, QA$QUE1
          SAVEVALUE TIME10,C1
MET2
          TEST E XN1, NTr15, MET3
          SAVEVALUE SAV15, OA$OUE1
          SAVEVALUE TIME15,C1
MET3
         TEST E XN1, NTr20, MET4
          SAVEVALUE SAV20, QA$QUE1
          SAVEVALUE TIME20,C1
```

MET4	TEST E XN1,NTr25,MET5 SAVEVALUE SAV25,QA\$QUE1 SAVEVALUE TIME25,C1	
MET5	TEST E XN1,NTr50,MET6 SAVEVALUE SAV50,QA\$QUE1 SAVEVALUE TIME50,C1	
MET6	TEST E XN1,NTr75,MET7 SAVEVALUE SAV75,QA\$QUE1 SAVEVALUE TIME75,C1	
MET7	TEST E XN1,NTr100,MET8 SAVEVALUE SAV100,QA\$QUE1 SAVEVALUE TIME100,C1	
MET8	TEST E XN1,NTr200,MET9 SAVEVALUE SAV200,QA\$QUE1 SAVEVALUE TIME200,C1	
MET9	TEST E XN1,NTr500,MET10 SAVEVALUE SAV500,QA\$QUE1 SAVEVALUE TIME500,C1	
MET10	TEST E XN1,NTr1000,MET11 SAVEVALUE SAV1000,QA\$QUE1 SAVEVALUE TIME1000,C1	
MET11	TEST E XN1,NTr2000,MET12 SAVEVALUE SAV2000,QA\$QUE1 SAVEVALUE TIME2000,C1	
MET12	TEST E XN1,NTr5000,MET13 SAVEVALUE SAV5000,QA\$QUE1 SAVEVALUE TIME5000,C1	
MET13	TEST E XN1,NTr10000,MET14 SAVEVALUE SAV10000,QA\$QUE1 SAVEVALUE TIME10000,C1	
MET14	TEST E XN1,NTr20000,MET15 SAVEVALUE SAV20000,QA\$QUE1 SAVEVALUE TIME20000,C1	
MET15	ADVANCE 800,640 RELEASE UZK	; Проход узкого места (Ту+-0.8Ту) ; Конец узкого места
	TERMINATE	; Уход из модели
GENERATE	сегмент программы 20000000 ; Время моделиров 1 ; Завершение моде	
START 1		

В результате выполнения программы получим отчет, представленный на рисунке 3.1.

FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER	R PEND INTER RETRY DELAY
UZK 25023 1.000 799.197 1 25024	0 0 0 19641
QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AV	
QUE1 19641 19641 44664 3 9742.223 43	362449.762 4362742.799 0
SAVEVALUE RETRY VALUE	
SAV5 0 0.025	
TIME5 0 3270.253	
SAV10 0 2.898	
TIME10 0 7750.597	
SAV15 0 4.425	
TIME15 0 11409.755	
SAV20 0 6.715	
TIME20 0 16484.959	
SAV25 0 8.273	
TIME25 0 20550.939	
SAV50 0 14.055	
TIME50 0 38243.384	
SAV75 0 22.264	
TIME75 0 58779.862	
SAV100 0 34.889	
TIME100 0 80634.816	
SAV200 0 72.518	
TIME200 0 159836.394	
SAV500 0 173.754	
TIME500 0 396800.786	
SAV1000 0 340.531	
TIME1000 0 788349.781	
SAV2000 0 695.563	
TIME2000 0 1585088.942	
SAV5000 0 1819.014	
TIME5000 0 3969082.156	
SAV10000 0 3768.104	
TIME10000 0 7931731.903	
SAV20000 0 7741.229	
TIME20000 0 15954875.379	
DEC VII DET DET ACCEN CURRENT VIOLE DAD	METER INTIE
FEC XN PRI BDT ASSEM CURRENT NEXT PARA 25024 0 20000253.932 25024 57 58	AMELEK VALUE
44666 0 20000631.474 44666 0 8 44667 0 4000000.000 44667 0 60	
91007 0 100000000.000 11007 0 00	

Рисунок 3.1 – Отчет о выполнении программы модели в аварийном режиме Определим время увеличения средней длины очереди в 10 и 100 раз по сравнению с $l_{\rm cp1}=5.109$ в нормальном режиме:

- увеличение в 10 раз при приблизительном модельном времени 116067.100
- увеличение в 100 раз при приблизительном модельном времени 932795.438

Учитывая дискретность шкалы отсчета, проведем линейную интерполяцию величин SAVi (рисунок 3.2).

Рисунок 3.2 – Линейная интерполяция величин SAVi

4. Изучение нормального режима работы с начальными условиями по длине очереди

Зададим нормальный режим работы трассы в районе сужения, при котором среднее время прохождения узкого участка равняется $T_{\rm y}$ при отсутствии на нем дополнительных заторов, коэффициент загрузки узкого участка $\rho < 1$ ($\rho = T_{\rm y}/T_{\rm u} = 0.9$), начальная длина очереди $100*l_{\rm cp1} = 100*3.098 \approx 310$. Листинг полученной программы представлен ниже:

```
EXPON FUNCTION RN1,C24
          0,0/.1,.104/.2,.222/.3,.335/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
          .8,1.6/.84,1.85/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
          .97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
LQUE0 EQU 310
                   ; Начальная длина очереди
; Первый сегмент программы - задание начальной длины очереди перед сужением
GENERATE 1,0,, LQUE0 ; Начальная длина очереди в 4-ом параметре транзакта
QUEUE QUE1,1
SEIZE UZK
DEPART QUE1,1
ADVANCE 400,320
RELEASE UZK
TERMINATE
; Второй сегмент программы
GENERATE 444, FN$EXPON
                                       ; Приход транспортного средства
(T_{\text{M}}=1.11*T_{\text{y}})
QUEUE QUE1,1
                                       ; Присоединение к очереди перед
сужением
SEIZE UZK
                                       ; Переход в узкое место
DEPART QUE1,1
                                       ; Уход из очереди
```

```
; Число транспортных средств, вошедших в сужение с учетом начальной длины
очереди
NTr5 EQU LQUE0+5
NTr10 EQU LQUE0+10
NTr15 EQU LQUE0+15
NTr20 EQU LQUE0+20
NTr25 EQU LQUE0+25
NTr50 EQU LQUE0+50
NTr75 EQU LQUE0+75
NTr100 EQU LQUE0+100
NTr200 EQU LQUE0+200
NTr500 EQU LQUE0+500
NTr1000 EQU LQUE0+1000
NTr2000 EQU LQUE0+2000
NTr5000 EQU LQUE0+5000
NTr10000 EQU LQUE0+10000
NTr20000 EQU LQUE0+20000
TEST E XN1, NTr5, MET1
                                      ; В сохраняемых величинах SAVi
фиксируется средняя длина очереди QUE1
SAVEVALUE SAV5, QA$QUE1
                                      ; После прохождения і транспортных
средств
SAVEVALUE TIME5,C1
                                      ; Можно фиксировать время вхождения і
транспортных средств
          TEST E XN1, NTr10, MET2
MET1
          SAVEVALUE SAV10, OA$OUE1
          SAVEVALUE TIME10,C1
          TEST E XN1, NTr15, MET3
MET2
          SAVEVALUE SAV15, QA$QUE1
          SAVEVALUE TIME15,C1
          TEST E XN1, NTr20, MET4
MET3
          SAVEVALUE SAV20, QA$QUE1
          SAVEVALUE TIME20,C1
          TEST E XN1, NTr25, MET5
MET4
          SAVEVALUE SAV25, QA$QUE1
          SAVEVALUE TIME25,C1
          TEST E XN1, NTr50, MET6
MET5
          SAVEVALUE SAV50, QA$QUE1
          SAVEVALUE TIME50,C1
          TEST E XN1, NTr75, MET7
MET6
          SAVEVALUE SAV75, QA$QUE1
          SAVEVALUE TIME75,C1
          TEST E XN1, NTr100, MET8
MET7
          SAVEVALUE SAV100, QA$QUE1
          SAVEVALUE TIME100,C1
MET8
          TEST E XN1, NTr200, MET9
          SAVEVALUE SAV200, QA$QUE1
          SAVEVALUE TIME200,C1
          TEST E XN1, NTr500, MET10
MET9
          SAVEVALUE SAV500, QA$QUE1
          SAVEVALUE TIME500,C1
MET10
          TEST E XN1, NTr1000, MET11
```

```
SAVEVALUE SAV1000, QA$QUE1
         SAVEVALUE TIME1000,C1
MET11 TEST E XN1,NTr2000,MET12
         SAVEVALUE SAV2000, QA$QUE1
         SAVEVALUE TIME2000,C1
MET12 TEST E XN1, NTr5000, MET13
         SAVEVALUE SAV5000, QA$QUE1
         SAVEVALUE TIME5000,C1
MET13 TEST E XN1,NTr10000,MET14
         SAVEVALUE SAV10000, QA$QUE1
         SAVEVALUE TIME10000,C1
        TEST E XN1, NTr20000, MET15
MET14
         SAVEVALUE SAV20000, QA$QUE1
         SAVEVALUE TIME20000,C1
        ADVANCE 400,320
MET15
                                  ; Проход узкого места (Ту+-0.8Ту)
         RELEASE UZK
                                  ; Конец узкого места
         TERMINATE
                                  ; Уход из модели
; Третий сегмент программы
GENERATE 10000000 ; Время моделирования
TERMINATE 1 ; Завершение моделирования
START 1
```

В результате выполнения программы получим отчет, представленный на рисунке 4.1.

FACILITY UZK	ř	ENTRIES 22819									
QUEUE QUE1		MAX COI									
SAVEVALU SAV5 TIME5	JE		ETRY 0		5.913						
SAV10 TIME10			0	305	5.533						
SAV15 TIME15 SAV20			0 :	12891	5.166 5.102 4.728						
TIME20 SAV25			0 :	131420 304	0.942 4.319						
TIME25 SAV50 TIME50			0		3.189 2.727 1.998						
SAV75 TIME75			0	300 153780	0.917 0.517						
SAV100 TIME100 SAV200	0		0 :	164348	8.700 8.855 2.206						
TIME200 SAV500 TIME500			0	205269 279 325418	9.227						
SAV1000 TIME100)		0	25	1.494 5.797						
SAV2000 TIME200 SAV5000	00		0 :	92648	1.884 4.394 3.649						
TIME5000 SAV10000			0 2:	0 2239617.917 0 39.881							
TIME100 SAV2000 TIME200	00		0 4		2.803						
FEC XN	DDT	BDT	λe	SFM (TIDDFNT	NFYT	מממס	MFTFD	VA.	uir.	
		10000107.1					LAM		· A		
		10000261.7									
22823	0	20000000.0	00 22	323	0	60					

Рисунок 4.1 – Отчет о выполнении программы модели в нормальном режиме с начальными условиями по длине очереди

Определим время уменьшения средней длины очереди в 2 и 10 раз по сравнению с начальным значением после аварийного режима:

- уменьшение в 2 раза при приблизительном модельном времени 1207870.149
- уменьшение в 10 раз при приблизительном модельном времени 6529901.031

Учитывая дискретность шкалы отсчета, проведем линейную интерполяцию величин SAVi (рисунок 4.2).

Рисунок 4.2 – Линейная интерполяция величин SAVi

Вывод

Была произведена оценка времени переходного процесса (времени установления средней длины очереди) при стационарном режиме работы СМО; была произведена оценка скорости нарастания очереди при отсутствии стационарного режима работы СМО (перегрузка СМО), а также оценка скорости «рассасывания» очереди при восстановлении стационарного режима работы СМО.