



KEMENTERIAN PERDAGANGAN DALAM NEGERI  
DAN HAL EHWAL PENGGUNA MALAYSIA,  
BAHAGIAN HARTA INTELEK,  
TINGKAT 27, 30 DAN 32,  
MENARA DAYABUMI,  
JALAN SULTAN HISHAMUDDIN,  
50623 KUALA LUMPUR

*Ministry of Domestic Trade and Consumer Affairs Malaysia,  
Intellectual Property Division*

Telefon: 03-2741000  
Fax: 2741332

*Fail Tuan:*

*Fail Kita:*

*Tarikh:*

To:

jc986 U.S. PTO  
09/970851  
10/04/01

**Dr. Margaret Chai Sook Yin**  
SIRIM BHD. Persiaran Dato' Menteri,  
P.O. Box 7035 Section 2  
40911 Shah Alam  
**MALAYSIA**

**PATENT APPLICATION NO: PI 2000 4837**

This is to certify that annexed hereto is a true copy from the records of the Registry of Trade Marks and Patents, Malaysia of the application as originally filed which is identified therein.

By authority of the  
**REGISTRAR OF PATENTS**

  
**ABDUL RAHMAN RAMLI**  
(CERTIFYING OFFICER)

15 August 2001



KEMENTERIAN PERDAGANGAN DALAM NEGERI  
DAN HAL EHWAH PENGGUNA MALAYSIA  
BAHAGIAN HARTA INTELEK,  
TINGKAT 27 & 32,  
MENARA DAYABUMI,  
JALAN SULTAN HISHAMUDDIN,  
50623 KUALA LUMPUR.  
*Ministry of Domestic Trade and Consumer Affairs Malaysia  
Intellectual Property Division.*

Telefon : 03-22742100  
Fax : 03-22741332

### CERTIFICATE OF FILING

**APPLICANT** : UNIVERSITI PUTRA MALAYSIA  
**APPLICATION NO.** : PI 20004837  
**REQUEST RECEIVED ON** : 16/10/2000  
**FILING DATE** : 16/10/2000  
**AGENT'S/APPLICANT'S** : ISD 426/13/1 [EPD/2000-5/27]  
**FILE REF.**

Please find attached, a copy of the Request Form relating to the above application, with the filing date and application number marked thereon in accordance with Regulation 25(1).

Date : 20/10/2000

.....  
*de*  
(Hasnon Bt. Alang Mohd Rashid)  
for Registrar of Patents

To : DR. MARGARET CHAI SOOK YIN,  
SIRIM BERHAD,  
1, PERSIARAN DATO' MENTERI,  
SEKSYEN 2, P.O BOX 7035,  
40911 SHAH ALAM,  
SELANGOR DARUL EHSAN,  
MALAYSIA.

|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>Patents Form No. 1</b><br/> <b>PATENTS ACT 1983</b></p> <p><b>REQUEST FOR GRANT OF PATENT</b><br/> <b>[Regulations 7(1)]</b></p> <p>To : The Registrar of Patents<br/>   Patent Registration Office<br/>   Kuala Lumpur,<br/>   Malaysia</p>                                                                                                              | <p><b>For Official Use</b></p> <p>APPLICATION RECEIVED NO. : <u>16 OCT 2000</u></p> <p>Fee received on: <u>16 OCT 2000</u></p> <p>Amount : <u>RM 100/-</u><br/>   *Cheque/Postal Order/Money Order/Draft/Cash<br/> <u>RM 100/-</u></p> <p>Date of mailing :</p> |
| <p>Please submit this Form in duplicate together with the prescribed fee.</p>                                                                                                                                                                                                                                                                                   | <p>Applicant's Reference :<br/> <u>ISD 426/13/1 [EPD/2000-5/27]</u></p>                                                                                                                                                                                         |
| <p><b>THE APPLICANT(S) REQUEST(S) THE GRANT OF A PATENT IN RESPECT OF THE FOLLOWING PARTICULARS</b></p> <p>I. TITLE OF INVENTION : <u>Nucleotide Sequences of the Nucleocapsid (NP) and Phosphoprotein (P) Genes of a Malaysian Velogenic Newcastle Disease Virus Strain AF 2240 and the Production of the NP and P Proteins in <i>Escherichia coli</i></u></p> |                                                                                                                                                                                                                                                                 |
| <p>II. APPLICANT(s) the data concerning each applicant must appear in this box or, if the space is insufficient, in the space below)</p>                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |
| <p>Name : <u>UNIVERSITI PUTRA MALAYSIA</u></p>                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                 |
| <p>I.C./Passport No. : <u>-</u></p>                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |
| <p>Address : <u>Ketua, Jabatan Biokimia dan Mikrobiologi, Fakulti Sains dan Pengajian Alam Sekitar, Universiti Putra Malaysia, UPM 43400 Serdang, Selangor.</u></p>                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |
| <p>Address for service in Malaysia : <u>Intellectual Property Services, SIRIM Berhad, Building 1 No. 1, Persiaran Dato' Menteri, Section 2, 40000 Shah Alam, Selangor, MALAYSIA.</u></p>                                                                                                                                                                        |                                                                                                                                                                                                                                                                 |
| <p>Nationality : <u>A Government Institution of Higher Learning</u></p>                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 |
| <p>* Permanent residence or principal place of business :</p>                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                 |
| <p><u>- as above -</u></p>                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                 |
| <p>Telephone Number<br/>   (if any)</p> <p>03-5446129/<br/>   03-5446134</p>                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                 |
| <p>Additional Information (if any)</p>                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |



### III. INVENTOR

Applicant is the inventor

Yes

No

If the applicant is not the inventor :

Name of inventor/s: 1. Prof. Madya Datin Dr. Khatijah Yusoff  
2. Dr. Tan Wen Siang  
3. Cik Kho Chiew Ling

Address of inventors : Jabatan Biokimia dan Mikrobiologi,  
Fakulti Sains dan Pengajian Alam Sekitar,  
Universiti Putra Malaysia,  
UPM 43400 Serdang, Selangor.

A statement justifying the applicant's right to the patent accompanies this Form :

Yes

No

### Additional Information (if any)

### IV. AGENT OR REPRESENTATIVE

Applicant has appointed a patent agent in accompanying  
Form No. 17

Yes

No

Agent's Registration No. : (PA/2000/0099)

Applicants have appointed \_\_\_\_\_  
To be their common representative

### V. DIVISIONAL APPLICATION

This application is a divisional application

The benefit of the

filing date

priority date

of the initial application is claimed in as much as the subject-matter of the present application is  
contained in the initial application identified below :

Initial Application No. : \_\_\_\_\_

Date of filing of initial application : \_\_\_\_\_

## VI. DISCLOSURE TO BE DISREGARDED FOR PRIOR ART PURPOSES

Additional information is contained in supplemental box :

(a) Disclosure was due to acts of applicant or his predecessor in title

Date of disclosure: \_\_\_\_\_

(b) Disclosure was due to abuse of rights of applicant or his predecessor in title

Date of disclosure: \_\_\_\_\_

A statement specifying in more detail the facts concerning the disclosure accompanies this Form

Yes

No

## Additional Information (If any)

## VII. PRIORITY CLAIM (if any)

The priority of an earlier application is claimed as follows :

Country (if the earlier application is a regional or international application, indicate the office with which it is filed) :

Filing Date : \_\_\_\_\_

Application No. : \_\_\_\_\_

Symbol of the International Patent Classification :

If not yet allocated, please tick

The priority of more than one earlier application is claimed:

Yes

No

The certified copy of the earlier application(s) accompanies this Form:

Yes



If No, it will be furnished by \_\_\_\_\_

## Additional Information (if any)

### VIII. CHECK LIST

A. This application contains the following :

|                |           |
|----------------|-----------|
| 1. request     | Sheets    |
| 2. description | 20 Sheets |
| 3. claim       | 11 Sheets |
| 4. abstract    | 1 Sheets  |
| 5. drawings    | 2 Sheets  |
| Total          | 34 Sheets |

B. This Form, as filed, is accompanied by the items checked below :

|                                                                                                  |                                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------|
| (a) signed Form No. 17                                                                           | <input checked="" type="checkbox"/> |
| (b) declaration that inventor does not wish to be named in the patent                            | <input type="checkbox"/>            |
| (c) statement justifying applicant's right to the patent                                         | <input checked="" type="checkbox"/> |
| (d) statement that certain disclosures to be disregarded                                         | <input type="checkbox"/>            |
| (e) priority document (certified copy of earlier application)                                    | <input type="checkbox"/>            |
| (f) cash, cheque, money order, banker's draft or postal order for the payment of application fee | <input checked="" type="checkbox"/> |
| (g) other documents (specify) Form 5                                                             | <input checked="" type="checkbox"/> |

### IX. SIGNATURE

  
Dr. Margaret Chai Sook Yin  
\*\*(Applicant/Agent)

14/10/2000

(Date)

If Agent, indicate Agent's Registration No. : (PA/2000/0099)

For Official Use

1. Date application received :

2. Date of receipt of correction, later filed papers or drawings completing the application :

\* Delete whichever does not apply

\*\* Type name under signature and delete whichever does not apply

**Nucleotide Sequences of the Nucleocapsid (NP) and Phosphoprotein (P) Genes of a Malaysian Velogenic Newcastle Disease Virus Strain AF2240 and the Production of the NP and P Proteins in *Escherichia coli***

**Field of the Invention**

5 The present invention relates to nucleotide sequences encoding the nucleocapsid (NP) protein and phosphoprotein (P) of Newcastle disease virus (NDV) strain AF2240, and the production of the corresponding proteins with recombinant plasmids bearing the nucleotide sequences in *Escherichia coli*.

10 **Description of the Prior Art**

Newcastle disease virus (NDV) is the prototype of avian paramyxovirus, which causes a highly contagious disease known as Newcastle disease (ND) in many avian species. This disease is of great economic importance requiring control by vaccination or quarantine with slaughter of all birds in confirmed outbreaks, resulting in substantial losses in the 15 poultry industry worldwide. Therefore, development of an improved vaccine and also a rapid and sensitive diagnostic test are greatly desired by the poultry industry.

20 A Malaysian heat resistant NDV strain AF2240, which causes 100% mortality in susceptible chicken flocks has been reported by Abdul Rahman *et al.* (1976) and Lai, C.M. (1985). Further studies by Idris *et al.* (1993) revealed that the thermostabilities of haemagglutination and neuraminidase activities of this AF2240 strain were found to be higher than those of other strains. The basis giving rise to these unique features is still unknown. However a comprehensive understanding of the viral proteins would provide some solutions and useful information for the development of heat stable recombinant 25 vaccines and diagnostic tests.

25 The genome of NDV is a linear, non-segmented, single-stranded negative sense RNA with a molecular weight of  $5.2\text{--}5.7 \times 10^6$  Daltons, or approximately 15,000 bases which encodes six main structural proteins. The genomic RNA is associated with the nucleocapsid (NP), phosphoprotein (P) and large (L) proteins. These macromolecules



5 form the transcriptional complex of the virus, which in turn is surrounded by a lipid bilayer membrane derived from the host cell. Embedded in the membrane are the haemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins. Beneath the lipid bilayer is a shell of protein known as the matrix (M) protein, which is believed to interact with the transcriptional complex. The HN and F glycoproteins are associated with the host cell receptor during infection. The NP encapsidates the viral RNA together with the L protein which is thought to be the transcriptase, and a P protein with an unknown reason.

10 The genes encoding for the HN (EMBL/Gen Bank/DDBJ accession No.X70092), F (EMBL/Gen Bank/DDBJ accession No.AFO48763) and M (EMBL/Gen Bank/DDBJ accession No. AF060563) proteins of the NDV strain AF2240 have been completely sequenced by Tan *et al.* (1995), Salih *et al.* (2000) and Jemain, S.F.P. (1999) respectively. From the HN gene sequence of strain AF2240, it was quite clear that this strain is different from the other published NDV strains. The HN protein lacked the Arg (403) residue and contained 581 amino acids. At the time when the project was initiated, there  
15 was no information available on the coding sequences for the NP and P proteins of NDV strain AF2240. Therefore it remained a problem to prepare cDNA for the cloning of the NP and P genes of NDV.

20 The inventors have now successfully determined the nucleotide sequences encoding the NP and P proteins of NDV strain AF2240. The accession numbers for the genes encoding the NP and P proteins are EMBL/Gen Bank/DDBJ No. AF284646 and AF284647 respectively. The inventors had discovered that the proteins, in either non-fusion or fusion forms bearing the *myc* epitope and six residues of His at their carboxyl terminal end could be successfully produced in *E. coli* by means of recombinant DNA technologies. The NP and P proteins were expressed to a substantial level in the bacteria and can be recognised  
25 by chicken anti-NDV serum.

### **Summary of invention**

30 The present invention provides nucleotides encoding the full length NP and P polypeptides of Newcastle disease virus strain AF2240. Whereas the genome of NDV is of length approximately 15,000 nucleotides, it has been determined, by this invention, that the portion coding for the NP polypeptide is approximately 1470 nucleotides long and the

portion that codes for the P polypeptide is approximately 1188 nucleotides long. Accordingly, one aspect of the present invention provides for the coding regions of the nucleocapsid (NP) and phosphoprotein (P) genes of Newcastle disease virus strain AF2240. Both the nucleotide sequences are as listed below:

5 NP coding region

|    |                                                                    |     |     |     |     |     |
|----|--------------------------------------------------------------------|-----|-----|-----|-----|-----|
|    | 10                                                                 | 20  | 30  | 40  | 50  | 60  |
|    | ATGTCTTCCG TATTCGATGA ATACGAGCAG CTCCTCGCTG CTCAGACTCG CCCCAATGGA  |     |     |     |     |     |
|    | 70                                                                 | 80  | 90  | 100 | 110 | 120 |
| 10 | GCTCACGGAG GGGGAGAGAG AGGGAGCACT TTAAGAGTTG AGGTCCCAGT ATTCACTCTT  |     |     |     |     |     |
|    | 130                                                                | 140 | 150 | 160 | 170 | 180 |
|    | AACAGTGACG ATCCAGAAGA TAGATGGAAT TTTGCGGTAT TCTGTCTTCG GATTGCTGTT  |     |     |     |     |     |
|    | 190                                                                | 200 | 210 | 220 | 230 | 240 |
|    | AGCGAGGACG CCAACAAACC GCTCAGGCAA GGTGCTCTCA TATCCCTCCT GTGCTCCAT   |     |     |     |     |     |
| 15 | 250                                                                | 260 | 270 | 280 | 290 | 300 |
|    | TCTCAAGTGA TGAGGAACCA TGTTGCCCTT GCAGGAAAAC AGAATGAGGC TACACTGACT  |     |     |     |     |     |
|    | 310                                                                | 320 | 330 | 340 | 350 | 360 |
|    | GTTCTTGAGA TCGATGGTTT TACCAGCAGC GTGCCTCAGT TCAACAAACAG GAGTGGGGTG |     |     |     |     |     |
|    | 370                                                                | 380 | 390 | 400 | 410 | 420 |
| 20 | TCTGAGGAGA GAGCACAGAG ATTCAATGGTG ATAGCAGGGT CTCTCCCTCG GGCCTGCAGT |     |     |     |     |     |
|    | 430                                                                | 440 | 450 | 460 | 470 | 480 |
|    | AACGGTACTC CGTTCGTCAC GGCTGGGGTT GAAGATGATG CACCAGAAGA TATCACTGAT  |     |     |     |     |     |
|    | 490                                                                | 500 | 510 | 520 | 530 | 540 |
|    | ACTCTGGAAA GAATCCTGTC TATCCAGGCT CAGGTATGGG TCACAGTAGC GAAGGCCATG  |     |     |     |     |     |
| 25 | 550                                                                | 560 | 570 | 580 | 590 | 600 |
|    | ACTGCATATG AGACAGCAGA TGAGTCGGAA ACAAGAAGAA TCAATAAGTA CATGCAGCAA  |     |     |     |     |     |
|    | 610                                                                | 620 | 630 | 640 | 650 | 660 |
|    | GGCAGAGTCC AGAAGAAGTA CATCCTCCAC CCTGTATGCA GGAGTGCAAT TCAACTCACA  |     |     |     |     |     |

|    |                                                                    |      |      |      |      |      |
|----|--------------------------------------------------------------------|------|------|------|------|------|
|    | 670                                                                | 680  | 690  | 700  | 710  | 720  |
|    | ATCAGACATT CTCTGGCAGT CCGCATTTC TTAGTTAGCG AGCTTAAGAG AGGCCGCAAT   |      |      |      |      |      |
|    | 730                                                                | 740  | 750  | 760  | 770  | 780  |
|    | ACGGCAGGTG GGAGCTCCAC GTATTACAAC TTAGTAGGGG ATGTAGACTC ATACATCAGG  |      |      |      |      |      |
| 5  | 790                                                                | 800  | 810  | 820  | 830  | 840  |
|    | AACACCGGAC TTACTGCATT CTTCCTTACA CTCAAATATG GAATTAATAC CAAGACATCA  |      |      |      |      |      |
|    | 850                                                                | 860  | 870  | 880  | 890  | 900  |
|    | GCCCTAGCAC TCAGCAGCCT CACAGGCGAT ATCCAAAAGA TGAAGCAGCT CATGCCTTA   |      |      |      |      |      |
|    | 910                                                                | 920  | 930  | 940  | 950  | 960  |
| 15 | TATCGGATGA AGGGAGAAAA TGCGCCGTAC ATGACATTGC TAGGTGACAG TGATCAGATG  |      |      |      |      |      |
|    | 970                                                                | 980  | 990  | 1000 | 1010 | 1020 |
|    | AGCTTTGCAC CGGCTGAGTA TGCACAGCTT TATTCTTTG CCATGGCAT GGCATCAGTC    |      |      |      |      |      |
|    | 1030                                                               | 1040 | 1050 | 1060 | 1070 | 1080 |
|    | TTAGATAAAAG GAACTGGCAA ATACCAATTG GCCAGAGACT TCATGAGCAC ATCATTCTGG |      |      |      |      |      |
| 20 | 1090                                                               | 1100 | 1110 | 1120 | 1130 | 1140 |
|    | AGACTCGGGG TGGAGTATGC TCAGGCTCAG GGGAGTAGCA TCAACGAAGA CATGGCTGCT  |      |      |      |      |      |
|    | 1150                                                               | 1160 | 1170 | 1180 | 1190 | 1200 |
|    | GAGCTAAAAC TAACCCCGGC AGCAAGAAGG GGCCTGGCAG CTGCTGCCA ACGAGTGTCT   |      |      |      |      |      |
|    | 1210                                                               | 1220 | 1230 | 1240 | 1250 | 1260 |
| 25 | GAGGAAACTG GCAGCGTGGG TATTCTACT CAACAAGCCG GGGTCCTCAC TGGGCTCAGC   |      |      |      |      |      |
|    | 1270                                                               | 1280 | 1290 | 1300 | 1310 | 1320 |
|    | GATGGAGGCC CCCGAGCCTC TCAGGGTGGG TCGAACAAAGT CGCAAGGGCA ACCAGATGCC |      |      |      |      |      |
|    | 1330                                                               | 1340 | 1350 | 1360 | 1370 | 1380 |
|    | GGAGATGGGG AGACCCAATT CTTGGATTG ATGAGAGCAG TGGCGAACAG CATGCGAGAA   |      |      |      |      |      |
| 30 | 1390                                                               | 1400 | 1410 | 1420 | 1430 | 1440 |
|    | GCGCCAAACT CGGCACAGAG CACCACCCAC CCGGAACCCCC CCCCGACTCC CGGGCCATCA |      |      |      |      |      |

1450 1460 1470 1480 1490 1500

CAAGATAACG ACACCGACTG GGGGTATTGA . . . . .

**P gene coding region**

10 20 30 40 50 60

5 ATGGCCACCT TTACAGATGC GGAGATAGAT GATATATTG AGACCAGTGG AACTGTCATT

70 80 90 100 110 120

GACAGCATAA TTACGGCCCA GGGTAAATCA GCAGAGACTG TCGGAAGGAG CGCAATCCCA

130 140 150 160 170 180

CAAGGCAAGA CCAAAGCGCT GAGCATAGCA TGGGAGAAGC ATGGGAGCAT CCAACCATCC

10 190 200 210 220 230 240

ACCAGCCAGG ACAACCCCGA CCAACAGGAT AGACCAGACA AACAGCTATC CACACCTGAG

250 260 270 280 290 300

CAGGCGACCC CACACAACAG CTCGCCAGCC ACATCCGCCG AACCGCTCCC CACTCAGGCC

310 320 330 340 350 360

15 GCAGGTGAGG CCGGCGACAC ACAGCTCAAG ACCGGAGCAA GCAACTCTCT TCTGTCTATG

370 380 390 400 410 420

CTCGACAAGC TGAGCAATAA ACCATCTAAT GCTAAAAAGG GCCCATGGTC GAGTCCCCAG

430 440 450 460 470 480

GAAGGATATC ATCAACCTCC GACCAACAA CATGGGGATC AGCCGAACCG CGGAAACAGC

20 490 500 510 520 530 540

CAGGAGAGGC TGCAGGCACCA AGCCAAGGCC GCCCCTGGAA GCCGGGGCAC AGACGCGAGC

550 560 570 580 590 600

ACAGCATATC ATGGACAATG GAAGGAGTCA CAACTATCAG CTGGTGCAAC CCCTCATGTG

610 620 630 640 650 660

25 CTCCAATCAG GGCAGAGCCA AGACAGTACT CCTGTACCTG TGGATCATGT CCAGCCACCT

670 680 690 700 710 720

GTCGACTTTG TGCAGGCGAT GATGACTATG ATGGAGGCGT TATCACAGAA GGTAAGTAAA

|    |                                                                    |      |      |      |      |      |
|----|--------------------------------------------------------------------|------|------|------|------|------|
|    | 730                                                                | 740  | 750  | 760  | 770  | 780  |
|    | GTCGACTATC AGCTAGACCT AGTCTTAAAG CAGACATCCT CCATCCCTAT GATGCGGTCT  |      |      |      |      |      |
|    | 790                                                                | 800  | 810  | 820  | 830  | 840  |
|    | GAAATCCAAC AGCTAAAAAC ATCTGTTGCG GTCATGGAAG CTAATTTAGG CATGATGAAA  |      |      |      |      |      |
| 5  | 850                                                                | 860  | 870  | 880  | 890  | 900  |
|    | ATTCTGGACC CTGGTTGTGC TAACATTTCA TCCTTAAGTG ATCTGCGGGC AGTCGCCCGG  |      |      |      |      |      |
|    | 910                                                                | 920  | 930  | 940  | 950  | 960  |
|    | TCCCCACCCAG TTTTAATTC AGGCCCCGGA GATCCGTCCC CCTACGTGAC ACAAGGGGGT  |      |      |      |      |      |
|    | 970                                                                | 980  | 990  | 1000 | 1010 | 1020 |
| 10 | GAGATGACAC TCAATAAACT CTCACAAACCA GTACAACACC CTTCCGAGTT AATTAAATCT |      |      |      |      |      |
|    | 1030                                                               | 1040 | 1050 | 1060 | 1070 | 1080 |
|    | GCCACAGCGG CGGGACCTGA TATGGGAGTG GAAAAGGACA CTGTCCGTGC ATTGATCACC  |      |      |      |      |      |
|    | 1090                                                               | 1100 | 1110 | 1120 | 1130 | 1140 |
|    | TCGCGCCCGA TGCATCCAAG CTCCTCAGCT AAGCTCCTGA GTAAGCTGGA TGCAGCCGGG  |      |      |      |      |      |
| 15 | 1150                                                               | 1160 | 1170 | 1180 | 1190 | 1200 |
|    | TCGATTGAAG AGATCAGAAA GATCAAGCGC CTTGCACTAA ATGGCTAA.. .....       |      |      |      |      |      |

Further, the present invention provides the amino acid sequences of both the NP and P proteins as listed below:

NP gene: amino acid sequence

|    |                                                                 |    |   |   |   |    |   |   |   |    |   |   |   |    |   |   |    |    |
|----|-----------------------------------------------------------------|----|---|---|---|----|---|---|---|----|---|---|---|----|---|---|----|----|
| 20 | 1                                                               | M  | S | S | V | F  | D | E | Y | E  | Q | L | L | A  | A | Q | T  | 16 |
|    | ATG TCT TCC GTA TTC GAT GAA TAC GAG CAG CTC CTC GCT GCT CAG ACT |    |   |   |   |    |   |   |   |    |   |   |   |    |   |   |    |    |
|    | 1                                                               | 10 |   |   |   | 20 |   |   |   | 30 |   |   |   | 40 |   |   |    |    |
| 17 | R                                                               | P  | N | G | A | H  | G | G | G | E  | R | G | S | T  | L | R | 32 |    |
|    | CGC CCC AAT GGA GCT CAC GGA GGG GGA GAG AGA GGG AGC ACT TTA AGA |    |   |   |   |    |   |   |   |    |   |   |   |    |   |   |    |    |
| 25 | 50                                                              | 60 |   |   |   | 70 |   |   |   | 80 |   |   |   | 90 |   |   |    |    |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 33  | V   | E   | V   | P   | V   | F   | T   | L   | N   | S   | D   | D   | P   | E   | D   | R   | 48  |
|     | GTT | GAG | GTC | CCA | GTA | TTC | ACT | CTT | AAC | AGT | GAC | GAT | CCA | GAA | GAT | AGA |     |
|     | 100 |     | 110 |     |     |     |     | 120 |     |     | 130 |     |     | 140 |     |     |     |
| 49  | W   | N   | F   | A   | V   | F   | C   | L   | R   | I   | A   | V   | S   | E   | D   | A   | 64  |
| 5   | TGG | AAT | TTT | GCG | GTA | TTC | TGT | CTT | CGG | ATT | GCT | GTT | AGC | GAG | GAC | GCC |     |
|     | 150 |     | 160 |     |     |     |     | 170 |     |     | 180 |     |     | 190 |     |     |     |
| 65  | N   | K   | P   | L   | R   | Q   | G   | A   | L   | I   | S   | L   | L   | C   | S   | H   | 80  |
|     | AAC | AAA | CCG | CTC | AGG | CAA | GGT | GCT | CTC | ATA | TCC | CTC | CTG | TGC | TCC | CAT |     |
|     | 200 |     | 210 |     |     |     |     | 220 |     |     | 230 |     |     | 240 |     |     |     |
| 81  | S   | Q   | V   | M   | R   | N   | H   | V   | A   | L   | A   | G   | K   | Q   | N   | E   | 96  |
|     | TCT | CAA | GTG | ATG | AGG | AAC | CAT | GTT | GCC | CTT | GCA | GGA | AAA | CAG | AAT | GAG |     |
|     | 250 |     | 260 |     |     |     |     | 270 |     |     | 280 |     |     |     |     |     |     |
| 97  | A   | T   | L   | T   | V   | L   | E   | I   | D   | G   | F   | T   | S   | S   | V   | P   | 112 |
|     | GCT | ACA | CTG | ACT | GTT | CTT | GAG | ATC | GAT | GGT | TTT | ACC | AGC | AGC | GTG | CCT |     |
| 15  | 290 |     | 300 |     |     |     | 310 |     |     | 320 |     |     | 330 |     |     |     |     |
| 113 | Q   | F   | N   | N   | R   | S   | G   | V   | S   | E   | E   | R   | A   | Q   | R   | F   | 128 |
|     | CAG | TTC | AAC | AAC | AGG | AGT | GGG | GTG | TCT | GAG | GAG | AGA | GCA | CAG | AGA | TTC |     |
|     | 340 |     | 350 |     |     |     | 360 |     |     | 370 |     |     | 380 |     |     |     |     |
| 129 | M   | V   | I   | A   | G   | S   | L   | P   | R   | A   | C   | S   | N   | G   | T   | P   | 144 |
| 20  | ATG | GTG | ATA | GCA | GGG | TCT | CTC | CCT | CGG | GCG | TGC | AGT | AAC | GGT | ACT | CCG |     |
|     | 390 |     | 400 |     |     |     | 410 |     |     | 420 |     |     | 430 |     |     |     |     |
| 145 | F   | V   | T   | A   | G   | V   | E   | D   | D   | A   | P   | E   | D   | I   | T   | D   | 160 |
|     | TTC | GTC | ACG | GCT | GGG | GTT | GAA | GAT | GAT | GCA | CCA | GAA | GAT | ATC | ACT | GAT |     |
|     | 440 |     | 450 |     |     |     | 460 |     |     | 470 |     |     | 480 |     |     |     |     |
| 161 | T   | L   | E   | R   | I   | L   | S   | I   | Q   | A   | Q   | V   | W   | V   | T   | V   | 176 |
|     | ACT | CTG | GAA | AGA | ATC | CTG | TCT | ATC | CAG | GCT | CAG | GTA | TGG | GTC | ACA | GTA |     |
|     | 490 |     | 500 |     |     |     | 510 |     |     | 520 |     |     |     |     |     |     |     |
| 177 | A   | K   | A   | M   | T   | A   | Y   | E   | T   | A   | D   | E   | S   | E   | T   | R   | 192 |
|     | GCG | AAG | GCC | ATG | ACT | GCA | TAT | GAG | ACA | GCA | GAT | GAG | TCG | GAA | ACA | AGA |     |
| 30  | 530 |     | 540 |     |     |     | 550 |     |     | 560 |     |     | 570 |     |     |     |     |
| 193 | R   | I   | N   | K   | Y   | M   | Q   | Q   | G   | R   | V   | Q   | K   | K   | Y   | I   | 208 |
|     | AGA | ATC | AAT | AAG | TAC | ATG | CAG | CAA | GGC | AGA | GTC | CAG | AAG | AAG | TAC | ATC |     |
|     | 580 |     | 590 |     |     |     | 600 |     |     | 610 |     |     | 620 |     |     |     |     |

|     |      |     |     |      |     |     |      |     |     |      |     |     |      |     |     |     |     |
|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|-----|-----|
| 209 | L    | H   | P   | V    | C   | R   | S    | A   | I   | Q    | L   | T   | I    | R   | H   | S   | 224 |
|     | CTC  | CAC | CCT | GTA  | TGC | AGG | AGT  | GCA | ATT | CAA  | CTC | ACA | ATC  | AGA | CAT | TCT |     |
|     | 630  |     |     |      | 640 |     |      |     | 650 |      |     | 660 |      |     | 670 |     |     |
| 225 | L    | A   | V   | R    | I   | F   | L    | V   | S   | E    | L   | K   | R    | G   | R   | N   | 240 |
| 5   | CTG  | GCA | GTC | CGC  | ATT | TTC | TTA  | GTT | AGC | GAG  | CTT | AAG | AGA  | GGC | CGC | AAT |     |
|     | 680  |     |     |      | 690 |     |      |     | 700 |      |     | 710 |      |     | 720 |     |     |
| 241 | T    | A   | G   | G    | S   | S   | T    | Y   | Y   | N    | L   | V   | G    | D   | V   | D   | 256 |
|     | ACG  | GCA | GGT | GGG  | AGC | TCC | ACG  | TAT | TAC | AAC  | TTA | GTA | GGG  | GAT | GTA | GAC |     |
|     | 730  |     |     |      | 740 |     |      |     | 750 |      |     | 760 |      |     |     |     |     |
| 257 | S    | Y   | I   | R    | N   | T   | G    | L   | T   | A    | F   | F   | L    | T   | L   | K   | 272 |
| 10  | TCA  | TAC | ATC | AGG  | AAC | ACC | GGA  | CTT | ACT | GCA  | TTC | TTC | CTT  | ACA | CTC | AAA |     |
|     | 770  |     |     | 780  |     |     | 790  |     |     | 800  |     |     | 810  |     |     |     |     |
| 273 | Y    | G   | I   | N    | T   | K   | T    | S   | A   | L    | A   | L   | S    | S   | L   | T   | 288 |
| 15  | TAT  | GGA | ATT | AAT  | ACC | AAG | ACA  | TCA | GCC | CTA  | GCA | CTC | AGC  | AGC | CTC | ACA |     |
|     | 820  |     |     | 830  |     |     | 840  |     |     | 850  |     |     | 860  |     |     |     |     |
| 289 | G    | D   | I   | Q    | K   | M   | K    | Q   | L   | M    | R   | L   | Y    | R   | M   | K   | 304 |
|     | GGC  | GAT | ATC | CAA  | AAG | ATG | AAG  | CAG | CTC | ATG  | CGT | TTA | TAT  | CGG | ATG | AAG |     |
|     | 870  |     |     | 880  |     |     | 890  |     |     | 900  |     |     | 910  |     |     |     |     |
| 305 | G    | E   | N   | A    | P   | Y   | M    | T   | L   | L    | G   | D   | S    | D   | Q   | M   | 320 |
| 20  | GGA  | GAA | AAT | GCG  | CCG | TAC | ATG  | ACA | TTG | CTA  | GGT | GAC | AGT  | GAT | CAG | ATG |     |
|     | 920  |     |     | 930  |     |     | 940  |     |     | 950  |     |     | 960  |     |     |     |     |
| 321 | S    | F   | A   | P    | A   | E   | Y    | A   | Q   | L    | Y   | S   | F    | A   | M   | G   | 336 |
|     | AGC  | TTT | GCA | CCG  | GCT | GAG | TAT  | GCA | CAG | CTT  | TAT | TCT | TTT  | GCC | ATG | GGC |     |
|     | 970  |     |     | 980  |     |     | 990  |     |     | 1000 |     |     |      |     |     |     |     |
| 337 | M    | A   | S   | V    | L   | D   | K    | G   | T   | G    | K   | Y   | Q    | F   | A   | R   | 352 |
| 25  | ATG  | GCA | TCA | GTC  | TTA | GAT | AAA  | GGA | ACT | GGC  | AAA | TAC | CAA  | TTC | GCC | AGA |     |
|     | 1010 |     |     | 1020 |     |     | 1030 |     |     | 1040 |     |     | 1050 |     |     |     |     |
| 353 | D    | F   | M   | S    | T   | S   | F    | W   | R   | L    | G   | V   | E    | Y   | A   | Q   | 368 |
|     | GAC  | TTC | ATG | AGC  | ACA | TCA | TTC  | TGG | AGA | CTC  | GGG | GTG | GAG  | TAT | GCT | CAG |     |
| 30  | 1060 |     |     | 1070 |     |     | 1080 |     |     | 1090 |     |     | 1100 |     |     |     |     |
| 369 | A    | Q   | G   | S    | S   | I   | N    | E   | D   | M    | A   | A   | E    | L   | K   | L   | 384 |
|     | GCT  | CAG | GGG | AGT  | AGC | ATC | AAC  | GAA | GAC | ATG  | GCT | GCT | GAG  | CTA | AAA | CTA |     |
|     | 1110 |     |     | 1120 |     |     | 1130 |     |     | 1140 |     |     | 1150 |     |     |     |     |

|     |       |     |     |      |      |     |     |      |      |     |      |      |     |      |      |     |     |
|-----|-------|-----|-----|------|------|-----|-----|------|------|-----|------|------|-----|------|------|-----|-----|
| 385 | T     | P   | A   | A    | R    | R   | G   | L    | A    | A   | A    | A    | Q   | R    | V    | S   | 400 |
|     | ACC   | CCG | GCA | GCA  | AGA  | AGG | GGC | CTG  | GCA  | GCT | GCT  | GCC  | CAA | CGA  | GTG  | TCT |     |
|     | 1160' |     |     |      | 1170 |     |     |      | 1180 |     |      | 1190 |     |      | 1200 |     |     |
| 401 | E     | E   | T   | G    | S    | V   | D   | I    | P    | T   | Q    | Q    | A   | G    | V    | L   | 416 |
| 5   | GAG   | GAA | ACT | GGC  | AGC  | GTG | GAT | ATT  | CCT  | ACT | CAA  | CAA  | GCC | GGG  | GTC  | CTC |     |
|     |       |     |     |      | 1210 |     |     |      | 1220 |     |      | 1230 |     |      | 1240 |     |     |
| 417 | T     | G   | L   | S    | D    | G   | G   | P    | R    | A   | S    | Q    | G   | G    | S    | N   | 432 |
| 10  | ACT   | GGG | CTC | AGC  | GAT  | GGG | GGC | CCC  | CGA  | GCC | TCT  | CAG  | GGT | GGA  | TCG  | AAC |     |
|     | 1250  |     |     | 1260 |      |     |     | 1270 |      |     | 1280 |      |     | 1290 |      |     |     |
| 433 | K     | S   | Q   | G    | Q    | P   | D   | A    | G    | D   | G    | E    | T   | Q    | F    | L   | 448 |
|     | AAG   | TCG | CAA | GGG  | CAA  | CCA | GAT | GCC  | GGA  | GAT | GGG  | GAG  | ACC | CAA  | TTC  | TTG |     |
|     | 1300  |     |     | 1310 |      |     |     | 1320 |      |     | 1330 |      |     | 1340 |      |     |     |
| 449 | D     | L   | M   | R    | A    | V   | A   | N    | S    | M   | R    | E    | A   | P    | N    | S   | 464 |
| 15  | GAT   | TTG | ATG | AGA  | GCA  | GTG | GCG | AAC  | AGC  | ATG | CGA  | GAA  | GCG | CCA  | AAC  | TCC |     |
|     | 1350  |     |     | 1360 |      |     |     | 1370 |      |     | 1380 |      |     | 1390 |      |     |     |
| 465 | A     | Q   | S   | T    | T    | H   | P   | E    | P    | P   | P    | T    | P   | G    | P    | S   | 480 |
|     | GCA   | CAG | AGC | ACC  | ACC  | CAC | CCG | GAA  | CCC  | CCC | CCG  | ACT  | CCC | GGG  | CCA  | TCC |     |
|     | 1400  |     |     | 1410 |      |     |     | 1420 |      |     | 1430 |      |     | 1440 |      |     |     |
| 20  | 481   | Q   | D   | N    | D    | T   | D   | W    | G    | Y   | *    |      |     |      |      |     | 490 |
|     | CAA   | GAT | AAC | GAC  | ACC  | GAC | TGG | GGG  | TAT  | TGA |      |      |     |      |      |     |     |
|     | 1450  |     |     | 1460 |      |     |     | 1470 |      |     |      |      |     |      |      |     |     |

P gene: amino acid sequence

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 1  | M   | A   | T   | F   | T   | D   | A   | E   | I   | D   | D   | I   | F   | E   | T   | S   | 16 |
| 25 | ATG | GCC | ACC | TTT | ACA | GAT | GCG | GAG | ATA | GAT | GAT | ATA | TTT | GAG | ACC | AGT |    |
|    | 1   |     |     | 10  |     |     | 20  |     |     | 30  |     |     | 40  |     |     |     |    |
| 17 | G   | T   | V   | I   | D   | S   | I   | I   | T   | A   | Q   | G   | K   | S   | A   | E   | 32 |
| 30 | GGA | ACT | GTC | ATT | GAC | AGC | ATA | ATT | ACG | GCC | CAG | GGT | AAA | TCA | GCA | GAG |    |
|    | 50  |     |     | 60  |     |     | 70  |     |     | 80  |     |     | 90  |     |     |     |    |
| 33 | T   | V   | G   | R   | S   | A   | I   | P   | Q   | G   | K   | T   | K   | A   | L   | S   | 48 |
|    | ACT | GTC | GGA | AGG | AGC | GCA | ATC | CCA | CAA | GGC | AAG | ACC | AAA | GCG | CTG | AGC |    |
|    | 100 |     |     | 110 |     |     | 120 |     |     | 130 |     |     | 140 |     |     |     |    |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 49  | I   | A   | W   | E   | K   | H   | G   | S   | I   | Q   | P   | S   | T   | S   | Q   | D   | 64  |
|     | ATA | GCA | TGG | GAG | AAG | CAT | GGG | AGC | ATC | CAA | CCA | TCC | ACC | AGC | CAG | GAC |     |
|     |     |     | 150 |     |     | 160 |     |     | 170 |     |     | 180 |     |     | 190 |     |     |
| 5   | N   | P   | D   | Q   | Q   | D   | R   | P   | D   | K   | Q   | L   | S   | T   | P   | E   | 80  |
|     | AAC | CCC | GAC | CAA | CAG | GAT | AGA | CCA | GAC | AAA | CAG | CTA | TCC | ACA | CCT | GAG |     |
|     |     |     | 200 |     |     | 210 |     |     | 220 |     |     | 230 |     |     | 240 |     |     |
| 81  | Q   | A   | T   | P   | H   | N   | S   | S   | P   | A   | T   | S   | A   | E   | P   | L   | 96  |
|     | CAG | GCG | ACC | CCA | CAC | AAC | AGC | TCG | CCA | GCC | ACA | TCC | GCC | GAA | CCG | CTC |     |
|     |     |     | 250 |     |     | 260 |     |     | 270 |     |     | 280 |     |     |     |     |     |
| 10  | P   | T   | Q   | A   | A   | G   | E   | A   | G   | D   | T   | Q   | L   | K   | T   | G   | 112 |
|     | CCC | ACT | CAG | GCC | GCA | GGT | GAG | GCC | GGC | GAC | ACA | CAG | CTC | AAG | ACC | GGA |     |
|     | 290 |     | 300 |     |     | 310 |     |     | 320 |     |     | 330 |     |     |     |     |     |
| 113 | A   | S   | N   | S   | L   | L   | S   | M   | L   | D   | K   | L   | S   | N   | K   | P   | 128 |
|     | GCA | AGC | AAC | TCT | CTT | CTG | TCT | ATG | CTC | GAC | AAG | CTG | AGC | AAT | AAA | CCA |     |
|     | 340 |     | 350 |     |     | 360 |     |     | 370 |     |     | 380 |     |     |     |     |     |
| 129 | S   | N   | A   | K   | K   | G   | P   | W   | S   | S   | P   | Q   | E   | G   | Y   | H   | 144 |
|     | TCT | AAT | GCT | AAA | AAG | GGC | CCA | TGG | TCG | AGT | CCC | CAG | GAA | GGA | TAT | CAT |     |
|     | 390 |     | 400 |     |     | 410 |     |     | 420 |     |     | 430 |     |     |     |     |     |
| 20  | Q   | P   | P   | T   | Q   | Q   | H   | G   | D   | Q   | P   | N   | R   | G   | N   | S   | 160 |
|     | CAA | CCT | CCG | ACC | CAA | CAA | CAT | GGG | GAT | CAG | CCG | AAC | CGC | GGA | AAC | AGC |     |
|     | 440 |     | 450 |     |     | 460 |     |     | 470 |     |     | 480 |     |     |     |     |     |
| 161 | Q   | E   | R   | L   | R   | H   | Q   | A   | K   | A   | A   | P   | G   | S   | R   | G   | 176 |
|     | CAG | GAG | AGG | CTG | CGG | CAC | CAA | GCC | AAG | GCC | GCC | CCT | GGA | AGC | CGG | GGC |     |
|     | 490 |     | 500 |     |     | 510 |     |     | 520 |     |     |     |     |     |     |     |     |
| 25  | T   | D   | A   | S   | T   | A   | Y   | H   | G   | Q   | W   | K   | E   | S   | Q   | L   | 192 |
|     | ACA | GAC | GCG | AGC | ACA | GCA | TAT | CAT | GGA | CAA | TGG | AAG | GAG | TCA | CAA | CTA |     |
|     | 530 |     | 540 |     |     | 550 |     |     | 560 |     |     | 570 |     |     |     |     |     |
| 193 | S   | A   | G   | A   | T   | P   | H   | V   | L   | Q   | S   | G   | Q   | S   | Q   | D   | 208 |
|     | TCA | GCT | GGT | GCA | ACC | CCT | CAT | GTG | CTC | CAA | TCA | GGG | CAG | AGC | CAA | GAC |     |
|     | 580 |     | 590 |     |     | 600 |     |     | 610 |     |     | 620 |     |     |     |     |     |
| 30  | S   | T   | P   | V   | P   | V   | D   | H   | V   | Q   | P   | P   | V   | D   | F   | V   | 224 |
|     | AGT | ACT | CCT | GTA | CCT | GTG | GAT | CAT | GTC | CAG | CCA | CCT | GTC | GAC | TTT | GTG |     |
|     | 630 |     | 640 |     |     | 650 |     |     | 660 |     |     | 670 |     |     |     |     |     |



A primary use of the nucleotides as defined above is for the creation of plasmids using recombinant DNA technologies. The resulting recombinant molecule can then be introduced into an appropriate host. The plasmids thus created can be used to encode NP and P proteins. For expression of the NP and P proteins, any of the common expression vectors, especially the bacterial vectors can be used. The usable bacterial hosts for the vectors include any of the conventional prokaryotic cells. In this invention, the bacterial host used was *Escherichia coli*. Accordingly, a further aspect of the present invention provides for a prokaryotic cell, such as for example a bacterial cell and in particular an *E. coli* cell containing the nucleotides as defined above for the production of NP and P proteins.

The NP and P proteins, produced using recombinant plasmids in accordance with the present invention, can be in the fusion or non-fusion forms. In accordance with the embodiment of the present invention, it provides a method for producing the fusion and non-fusion forms of both the NP and P proteins of NDV virus strain AF2240 in an *E. coli* system. The preferred method for producing the fusion and non-fusion forms of both the NP and P proteins of NDV virus strain AF2240 comprises culturing the transformed *E. coli* of the present invention on an appropriate medium to express the said nucleocapsid protein and phosphoprotein, and isolating and purifying the expressed fusion proteins from the cultures.

While the invention will now be described in connection with certain preferred embodiments in the following experiments so that aspects thereof may be more fully understood and appreciated, it is not intended to limit the invention to these particular embodiments. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the scope of the invention as defined by the appended claims.

#### **Brief description of the figures**

Figure 1 is a western blot of NDV nucleocapsid protein (NP) expressed by transformed *E. coli* TOP10 containing plasmid pTrcHis2-NP

Figure 2 is a western blot of NDV phosphoprotein (P) expressed by transformed *E. coli* TOP10 containing plasmid pTrcHis2-P

**Detailed description of the invention**

The present invention was accomplished through the employment of the recombinant DNA techniques which comprises the amplification of the NP and P coding regions of NDV strain AF2240, the cloning of the genes into the expression vector, the production of the transformed *E. coli*, the cultivation of the transformant, the expression of the NP and P proteins and the purification of the expressed fusion proteins.

The NP and P coding regions of NDV strain AF2240 which had been cloned into the expression vector were prepared through reverse transcription-polymerase chain reaction (RT-PCR). Three primers were used for each gene, which consisted of one forward and two reverse primers as listed below:

**For the amplification of the NP gene**

NPf1 (20 mer): 5'- cct tct gcc aac atg tct tc -3' (Forward primer)

NPr1 (20 mer): 5'- tca ata ccc cca gtc ggt gt -3' (Reverse primer)

NPr2 (18 mer): 5'- ata ccc cca gtc ggt gtc -3' (Reverse primer)

**For the amplification of the P gene**

Pf1 (20 mer): 5'- atg gcc acc ttt aca gat gc -3' (Forward primer)

Pr1 (23 mer): 5'- taa tta gcc att tag tgc aag gc -3' (Reverse primer)

Pr2 (21 mer): 5'- gcc att tag tgc aag gcg ctt -3' (Reverse primer)

Incorporation of primers designated as NPf1 and NPr1 (for the NP gene), or Pf1 and Pr1 (for the P gene) during PCR had amplified gene products containing a stop codon at their 3' ends, while the presence of primers NPf1 and NPr2 (for the NP gene) or Pf1 and Pr2 (for the P gene) gave rise to genes without any no stop codon. For cloning and expression purposes, a commercially available expression vector, pTrcHis2 (Invitrogen, USA) containing the coding regions for the *myc* epitope and 6 His residues downstream of the multiple cloning site was used. After cloning of the respective coding regions of NP and P genes into the pTrcHis2 vector, they were subsequently introduced into a bacterial host *E. coli* TOP10. The resulting plasmid harbouring the NP gene was designated as pTrcHis2-NP while the other one with the P gene as an insert was denoted as pTrcHis2-P. Both the

NP and P proteins were expressed in *E.coli* TOP10 cells as non-fusion and fusion proteins. The latter forms contain the *myc* epitope and 6 His residues at their C termini. For protein identification, protein samples were analysed with SDS- PAGE and then followed by immunoblotting with the anti-NDV chicken serum and the anti-*myc* monoclonal antibody. The western blots for NP and P proteins are as shown in Figure 1 and Figure 2, respectively.

5 The expressed NP fusion protein was purified with affinity chromatography (nickel column), and was judged to be more than 90% pure by SDS-PAGE.

10 The nucleotide sequences of the NP and P genes were determined by the ABI PRISM automated sequencer, model 377. The recombinant plasmids, pTrcHis2-NP and pTrcHis2-P, were used as templates and the synthetic primers used in the sequencing reactions of the NP and P genes are as follows:

For the sequencing of the NP gene coding region

15 pTrcHis2F (21 mer): 5'- gag gta tat att aat gta tcg -3'  
 sNPf1 (21 mer): 5'- gac tca tac atc agg aac acc acc -3'  
 sNPf2 (21 mer): 5'- gat gag agc agt ggc gaa cag -3'  
 pTrcHis2R (18 mer): 5'- gat tta atc tgt atc agg -3'  
 sNPr1 (20 mer): 5'- tca ata ccc cca gtc ggt gt -3'  
 sNPr2 ( 21 mer): 5'- cta agt tgt aat acg tgg agc -3'  
 20 sNPr3 (21 mer): 5'- cca tcg atc tca aga aca tgc -3'

For the sequencing of the P gene coding region

25 pTrcHis2F (21 mer): 5'- gag gta tat att aat gta tcg -3'  
 sPf1 (21 mer): 5'- gtc gac ttt gtg cag gcg atg -3'  
 sPf2 (21 mer): 5'- gga cac tgt ccg tgc att gat -3'  
 pTrcHis2.R (18 mer): 5'- gat tta atc tgt atc agg -3'  
 sPr1 (21 mer): 5'- cca ggg tcc aga att ttc atc -3'  
 sPr2 (22 mer): 5'- ggt gtg gat agc tgt ttg tct g -3'

Both the NP and P coding regions were sequenced from 5' to 3' direction and reversely from 3' to 5' direction.

Example I illustrates the recombinant DNA techniques employed in obtaining bacterial clones harbouring a plasmid containing inserts of NP and P coding cDNA for NDV genomic RNA, the nucleotide sequences of the NP and P genes, and also the expressed NP and P proteins.

## EXAMPLE I

### **Virus Propagation**

The stock of NDV strain AF2240 was originally obtained from the Veterinary Research Institute (VRI), Ipoh. The virus was grown in the allantoic cavity of 8 to 9 day-old chicken embryonated eggs according to the procedures of Blaskovic and Styk (1967). After 3 - 4 days of incubation at 37°C, the eggs were chilled overnight at 4°C. The allantoic fluid was then harvested and the presence of the viruses was determined by haemagglutination (HA) test. The allantoic fluid which showed positive reaction of HA test was then clarified by centrifugation at 6000 xg for 20 min at 4°C (Beckman, JA14 rotor, USA) to remove debris.

### **Genomic RNA extraction**

Total RNA was extracted using the Trizol LS reagent (Gibco BRL, USA). Briefly, 250 µl of the virus infected allantoic fluid was mixed with 750 µl Trizol LS reagent and incubated for 5 min at room temperature. After incubation, 100 µl of 1-bromo-3-chloropropane (BCP) (MRC, UK) was added and the mixtures were mixed vigorously for about 15 s and again incubated at room temperature for 10 min. The mixtures were phase separated by microcentrifugating at 13,000 xg for 15 min at 4°C (Jouan MR 1812, France). The RNA was then precipitated by adding 500 µl of isopropanol (Merck) to the aqueous phase and left at room temperature for 10 min. The precipitated RNA was microcentrifuged at 13,000 xg for 10 min and the pellet obtained was washed once with 75% (v/v) diethyl pyrocarbonate (DEPC) (Sigma, USA) treated ethanol (Hamburg). The pellet was dissolved in 20 µl of DEPC treated dH<sub>2</sub>O.

### **cDNA synthesis and amplification of nucleocapsid (NP) and phosphoprotein (P) genes by RT-PCR**

The amplification reactions were carried out in a programmed thermal cycler (MJ Research Inc. USA). Synthesis of the first strand cDNA was performed in a final volume of 30  $\mu$ l. The reaction mixture contained 0.4  $\mu$ M of each the forward and reverse primers, 5 0.2 mM deoxynucleoside triphosphate (MBI Fermentas, Inc. USA), 5 U of AMV reverse transcriptase (Promega, USA), 8 U of RNase inhibitor (Gibco BRL, USA), 1.5 mM of MgCl<sub>2</sub> and 1x of reaction buffer (50 mM Tris-HCl, 15 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 0.1% Triton X-100). The mixture was incubated at 42°C for 30 min to synthesise the first strand of cDNA, and then 94°C for 3 min to inactivate the reverse transcriptase.

10 For the amplification of the respective NP and P genes, another 20  $\mu$ l of reaction mixture containing 1 U of DyNAzyme EXT DNA polymerase (FINNZYMES), 1.5 mM of MgCl<sub>2</sub> and 1 x of reaction buffer was added to the top of the above cDNA mixture which was held at 94°C in the thermal cycler. The PCR profile for the amplification of NP gene comprising denaturation at 94°C for 30 s, annealing at 55°C for 50 s and extension at 15 72°C for 1 min for a total of 30 cycles. To ensure a complete synthesis of the PCR product, the extension step at 72°C was prolonged for 7 min after the last cycle. The PCR profile for the amplification of P gene was basically similar to that of NP gene, except the annealing step was carried out at 55°C for 30 s.

### **Purification of the amplified PCR products**

20 A total of 40  $\mu$ l of the amplified PCR product was analysed on 1% TAE agarose gel. After the staining with ethidium bromide, the band with the correct size was excised from the gel and purified with the Wizard PCR Preps DNA Purification System (Promega, USA) according to the manufacturer's procedures. After purification, 5  $\mu$ l of the PCR product was again analysed with agarose gel electrophoresis to determine the recovery of 25 the PCR product, which would be used in TA cloning.

### **TOPO TA Cloning of NP and P genes**

Four  $\mu$ l of the purified NP or P DNA fragments carrying an A overhang at their 3' ends was mixed with 1  $\mu$ l of the pTrcHis2 TOPO expression vector (Invitrogen, USA) and the ligation reaction was carried out at room temperature (25°C) for 5 min to form the desired recombinant plasmid.

### **Transformation**

For transformation, 5  $\mu$ l of the ligation mixture was added to 50  $\mu$ l of TOP10 *E. coli* competent cells (Invitrogen, USA). The transformation mixture was incubated on ice for 30 min and the cells were heated at 42°C for 30 to 60 s. This was followed by the adding of 250  $\mu$ l SOC medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl<sub>2</sub>, 10 mM MgSO<sub>4</sub>, 20 mM glucose) and the incubation of the reaction mixture at 37°C for 30 to 60 min with shaking at 250 rpm. Thirty-50  $\mu$ l of the transformation mixture was spread on a LB plate containing 50  $\mu$ g/ml ampicillin and 0.5% of glucose, and the plates were then incubated overnight at 37°C.

### **Screening for positive clones**

15 Ten single colonies were randomly chosen and cultured overnight in 3 to 5 ml of LB medium containing 50  $\mu$ g/ml ampicillin and 0.5% glucose. Plasmid DNA was isolated by using the alkaline lysis method and the orientation of the insert in the positive clones was confirmed by PCR.

### **Protein expression**

20 The identified positive clones were cultured overnight in LB medium containing 50  $\mu$ g/ml ampicillin. The next day, 10 ml of LB medium containing 50  $\mu$ g/ml ampicillin was inoculated with 0.2 ml of the overnight culture and incubated at 37°C with shaking at 250 rpm. Once the cells reached the optical density of 0.6 to 0.8 at  $A_{600}$ , 1 mM IPTG was

added into the culture and continued shaking for 3 to 5 hours. The cells were harvested from the culture by centrifugation and then subjected to polyacrylamide gel electrophoresis (SDS-PAGE).

### **SDS-PAGE and western blotting**

5 The cell pellets (from 1 ml culture solution) were resuspended in 50 to 100  $\mu$ l of 1X SDS-PAGE sample buffer and boiled for 10 min. Five to 10  $\mu$ l of the sample was loaded onto 12% SDS-PAGE gel and eletrophoresesed for 70 to 80 min at 32 volt. The proteins on SDS-PAGE gel were then electro-transferred onto a nitrocellulose membrane for 1 h. Western blotting was carried out by blocking the membrane first with skim milk for 1 h to  
10 saturate unoccupied regions on the membrane. This was followed by adding the anti-NDV chicken serum or anti-*myc* monoclonal antibody (for fusion protein) onto the membrane and this was shaken for 1 h at room temperature. The membrane was then washed four times with TTBS washing solution ( TBS containing 0.5% Tween 20), 5 to 10 min for each wash to remove the unbound antibodies. After washing, peroxidase-  
15 labelled antibody was added to react with the primary antibody and left shaking for another 1 h. The membrane was further washed four times with TTBS solution, each for 5 to 10 min, and lastly BCIP/NBT solution was added as substrate for the peroxidase. The molecular weight of NP and P proteins was about 55 kDa while the fusion form for both the NP and P proteins gave rise to an apparent molecular weight of about 60 kDa.

### **20 Purification of NP fusion protein using ProBond Column**

Two hundred  $\mu$ l of LB medium containing 50  $\mu$ g/ml ampicillin was cultured with 2 ml of overnight culture of transformant harbouring plasmid pTrcHis2-NP (carrying the NP insert without a stop codon), and the cells were grown to an OD<sub>600</sub> of 0.6 to 0.8. Protein expression was then induced by adding 1 mM IPTG and the cells were grown for another  
25 5 h. The cells were harvested by centrifugation at 2000 xg for 15 min at 4°C. The cell pellet was first resuspended in 10 ml of binding buffer (500 mM NaCl, 20 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 7.8), then 100  $\mu$ g/ml of lysozyme was added and incubated for 15 min on ice. The cells were lysed by sonication until the cell lysate is no longer viscous. The cell lysate was then treated with RNase and DNase I, both at a concentration of 5  $\mu$ g/ml for 15 min at  
30 30°C. The cell lysate was then centrifuged at 10,000 xg for 20 min to remove all the cell

debris. The supernatant was collected and passed through a 0.45  $\mu\text{m}$  filter. This cell lysate was incubated with the ProBond resin (Invirogen, USA) for 30 min and then allowed to drip through the resin. The column was washed with 10 ml of washing buffer (50 mM Imidazole, 500 mM NaCl, 20 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 6.0), and the proteins were then eluted with 5 ml of elution buffer (500 mM Imidazole, 500 mM NaCl, 20 mM NaH<sub>2</sub>PO<sub>4</sub>, pH 6.0). The elute was collected as 1 ml fractions. Samples from each fractions were analysed on 12% SDS-PAGE to check the purity of the protein.

## REFERENCES

10 Abdul Rahman, M.S., Chee, Y.S. and Lim, S.S. (1976) Observation on the response of breeder flocks to ranikhet standard vaccination. *Kajian Vet.* **8**: 48 – 53.

15 Blaskovic,D. and Styk, B. (1967) Laboratory methods of virus transmission in multicellular organisms. *In: Maramorasch, K. and Koprovski, H. (Eds.), Virology, Vol. 1. Academic Press, New York, pp. 194 – 197.*

15 Idris, Z., Yusoff, K., Shamaan, N.A. and Ibrahim, A.L. (1993) The Effect of temperature on different strains of Newcastle disease virus. *2<sup>nd</sup>. UNESCO National Workshop on Promotion of Microbiology in Malaysia*, 38.

20 Jemain, S.F.P., (1999) Sequence determination of the Matrix gene in Newcastle disease virus strain AF2240. MS thesis, Universiti Putra Malaysia.

Lai, C.M., (1985) A Study on a velogenic viscerotropic Newcastle disease virus *in-vitro* and *in-vivo*. PhD thesis, Universiti Pertanian Malaysia.

Salih,O., Omar, A.R., Ali, A.M. and Yusoff, K. (2000) Nucleotide sequence analysis of the F protein gene of a Malaysian velogenic NDV strain AF2240. *Journal of Biochemistry, Molecular Biology and Biophysics* **4**: 51-57.

Tan, W.S., Lau, C.H., Ng, B.K., Ibrahim, A.L. and Yusoff, K. (1995) Nucleotide sequence of the haemagglutinin-neuraminidase (HN) gene of a Malaysian heat resistant viscerotropic-velogenic Newcastle disease virus (NDV) strain AF2240. *DNA Sequence* 6: 47-50.

## CLAIMS

1. Nucleotides encoding the full length or part of the nucleocapsid (NP) protein of Newcastle disease virus (NDV).
2. The nucleotides as claimed in claim 1 characterised in that it has the following nucleotide sequence:

10                    20                    30                    40                    50                    60  
 ATGTCTTCCG TATTCGATGA ATACGAGCAG CTCCTCGCTG CTCAGACTCG CCCCAATGGA

70                    80                    90                    100                    110                    120  
 GCTCACGGAG GGGGAGAGAG AGGGAGCACT TTAAGAGTTG AGGTCCCAGT ATTCACTCTT

10                    130                    140                    150                    160                    170                    180  
 AACAGTGACG ATCCAGAAGA TAGATGGAAT TTTGCGGTAT TCTGTCTTCG GATTGCTGTT

190                    200                    210                    220                    230                    240  
 AGCGAGGACG CCAACAAACC GCTCAGGCAA GGTGCTCTCA TATCCCTCCT GTGCTCCCAT

15                    250                    260                    270                    280                    290                    300  
 TCTCAAGTGA TGAGGAACCA TGTTGCCCTT GCAGGAAAAC AGAATGAGGC TACACTGACT

310                    320                    330                    340                    350                    360  
 GTTCTTGAGA TCGATGGTTT TACCAGCAGC GTGCCTCAGT TCAACAAACAG GAGTGGGGTG

370                    380                    390                    400                    410                    420  
 TCTGAGGAGA GAGCACAGAG ATTCACTGGTG ATAGCAGGGT CTCTCCCTCG GGCAGTGCAGT

20                    430                    440                    450                    460                    470                    480  
 AACGGTACTC CGTTCGTCAC GGCTGGGTT GAAGATGATG CACCAGAAGA TATCACTGAT

490                    500                    510                    520                    530                    540  
 ACTCTGGAAA GAATCCTGTC TATCCAGGCT CAGGTATGGG TCACAGTAGC GAAGGCCATG

25                    550                    560                    570                    580                    590                    600  
 ACTGCATATG AGACAGCAGA TGAGTCGGAA ACAAGAAGAA TCAATAAGTA CATGCAGCAA

610                    620                    630                    640                    650                    660  
 GGCAGAGTCC AGAAGAAGTA CATCCTCCAC CCTGTATGCA GGAGTGCAAT TCAACTCACA

670                    680                    690                    700                    710                    720  
 ATCAGACATT CTCTGGCAGT CCGCATTTC TTAGTTAGCG AGCTTAAGAG AGGCCGCAAT

30                    730                    740                    750                    760                    770                    780  
 ACGGCAGGTG GGAGCTCCAC GTATTACAAC TTAGTAGGGG ATGTAGACTC ATACATCAGG

790                    800                    810                    820                    830                    840  
 AACACCGGAC TTACTGCATT CTTCCCTTACA CTCAAATATG GAATTAATAC CAAGACATCA

|    |            |            |             |            |            |            |
|----|------------|------------|-------------|------------|------------|------------|
|    | 850        | 860        | 870         | 880        | 890        | 900        |
|    | GCCCTAGCAC | TCAGCAGCCT | CACAGGGCGAT | ATCCAAAAGA | TGAAGCAGCT | CATGCCGTTA |
|    | 910        | 920        | 930         | 940        | 950        | 960        |
|    | TATCGGATGA | AGGGAGAAAA | TGCGCCGTAC  | ATGACATTGC | TAGGTGACAG | TGATCAGATG |
| 5  | 970        | 980        | 990         | 1000       | 1010       | 1020       |
|    | AGCTTTGCAC | CGGCTGAGTA | TGCACAGCTT  | TATTCTTTG  | CCATGGGCAT | GGCATCAGTC |
|    | 1030       | 1040       | 1050        | 1060       | 1070       | 1080       |
|    | TTAGATAAAG | GAACTGGCAA | ATACCAATT   | GCCAGAGACT | TCATGAGCAC | ATCATTCTGG |
|    | 1090       | 1100       | 1110        | 1120       | 1130       | 1140       |
| 10 | AGACTCGGGG | TGGAGTATGC | TCAGGCTCAG  | GGGAGTAGCA | TCAACGAAGA | CATGGCTGCT |
|    | 1150       | 1160       | 1170        | 1180       | 1190       | 1200       |
|    | GAGCTAAAAC | TAACCCCGGC | AGCAAGAAGG  | GGCCTGGCAG | CTGCTGCCA  | ACGAGTGTCT |
|    | 1210       | 1220       | 1230        | 1240       | 1250       | 1260       |
|    | GAGGAAACTG | GCAGCGTGG  | TATTCTACT   | CAACAAGCCG | GGGTCTCAC  | TGGGCTCAGC |
| 15 | 1270       | 1280       | 1290        | 1300       | 1310       | 1320       |
|    | GATGGAGGCC | CCCGAGCCTC | TCAGGGTGGA  | TCGAACAAGT | CGCAAGGGCA | ACCAGATGCC |
|    | 1330       | 1340       | 1350        | 1360       | 1370       | 1380       |
|    | GGAGATGGGG | AGACCCAATT | CTTGGATTG   | ATGAGAGCAG | TGGCGAACAG | CATGCGAGAA |
|    | 1390       | 1400       | 1410        | 1420       | 1430       | 1440       |
| 20 | GCGCCAAACT | CCGCACAGAG | CACCACCCAC  | CCGGAACCCC | CCCCGACTCC | CGGGCCATCA |
|    | 1450       | 1460       | 1470        | 1480       | 1490       | 1500       |
|    | CAAGATAACG | ACACCGACTG | GGGGTATTGA  | .....      | .....      | .....      |

3. Nucleotides encoding the full length or part of the phosphoprotein (P) of Newcastle disease virus (NDV).

25 4. The nucleotides as claimed in claim 3 characterised in that it has the following nucleotide sequence:

|    |            |             |            |            |            |            |
|----|------------|-------------|------------|------------|------------|------------|
|    | 10         | 20          | 30         | 40         | 50         | 60         |
|    | ATGGCCACCT | TTACAGATGC  | GGAGATAGAT | GATATATTG  | AGACCAGTGG | AACTGTCATT |
|    | 70         | 80          | 90         | 100        | 110        | 120        |
| 30 | GACAGCATAA | TTACGGCCCA  | GGGTAAATCA | GCAGAGACTG | TCGGAAGGAG | CGCAATCCCA |
|    | 130        | 140         | 150        | 160        | 170        | 180        |
|    | CAAGGCAGA  | CCAAAGCGCT  | GAGCATAGCA | TGGGAGAACG | ATGGGAGCAT | CCAACCATCC |
|    | 190        | 200         | 210        | 220        | 230        | 240        |
|    | ACCAGCCAGG | ACAACCCCGA  | CCAACAGGAT | AGACCAGACA | AACAGCTATC | CACACCTGAG |
| 35 | 250        | 260         | 270        | 280        | 290        | 300        |
|    | CAGGCGACCC | CACACAAACAG | CTCGCCAGCC | ACATCCGCCG | AACCGCTCCC | CACTCAGGCC |

|    |             |             |             |            |            |            |
|----|-------------|-------------|-------------|------------|------------|------------|
|    | 310         | 320         | 330         | 340        | 350        | 360        |
|    | GCAGGTGAGG  | CCGGCGACAC  | ACAGCTCAAG  | ACCGGAGCAA | GCAACTCTCT | TCTGTCTATG |
|    | 370         | 380         | 390         | 400        | 410        | 420        |
|    | CTCGACAAGC  | TGAGCAATAA  | ACCATCTAAT  | GCTAAAAAGG | GCCCATGGTC | GAGTCCCCAG |
| 5  | 430         | 440         | 450         | 460        | 470        | 480        |
|    | GAAGGATATC  | ATCAACCTCC  | GACCCAACAA  | CATGGGGATC | AGCCGAACCG | CGGAAACAGC |
|    | 490         | 500         | 510         | 520        | 530        | 540        |
|    | CAGGAGAGGC  | TGCGGCACCA  | AGCCAAGGCC  | GCCCCTGGAA | GCCGGGGCAC | AGACGCGAGC |
| 10 | 550         | 560         | 570         | 580        | 590        | 600        |
|    | ACAGCATATC  | ATGGACAATG  | GAAGGAGTCA  | CAACTATCAG | CTGGTGCAAC | CCCTCATGTG |
|    | 610         | 620         | 630         | 640        | 650        | 660        |
|    | CTCCAATCAG  | GGCAGAGCCA  | AGACAGTACT  | CCTGTACCTG | TGGATCATGT | CCAGCCACCT |
|    | 670         | 680         | 690         | 700        | 710        | 720        |
|    | GTCGACTTTG  | TGCAGGCGAT  | GATGACTATG  | ATGGAGGCCT | TATCACAGAA | GGTAAGTAAA |
| 15 | 730         | 740         | 750         | 760        | 770        | 780        |
|    | GTCGACTATC  | AGCTAGACCT  | AGTCTTAAAG  | CAGACATCCT | CCATCCCTAT | GATGCGGTCT |
|    | 790         | 800         | 810         | 820        | 830        | 840        |
|    | GAAATCCAAC  | AGCTAAAAAC  | ATCTGTTGCG  | GTCATGGAAG | CTAATTTAGG | CATGATGAAA |
| 20 | 850         | 860         | 870         | 880        | 890        | 900        |
|    | ATTCTGGACC  | CTGGTTGTGC  | TAACATTCA   | TCCTTAAGTG | ATCTGCGGGC | AGTCGCCCGG |
|    | 910         | 920         | 930         | 940        | 950        | 960        |
|    | TCCCCACCCAG | TTTTAATTTC  | AGGCCCGGA   | GATCCGTCCC | CCTACGTGAC | ACAAGGGGGT |
|    | 970         | 980         | 990         | 1000       | 1010       | 1020       |
|    | GAGATGACAC  | TCAATAAACT  | CTCACAAACCA | GTACAACACC | CTTCCGAGTT | AATTAAATCT |
| 25 | 1030        | 1040        | 1050        | 1060       | 1070       | 1080       |
|    | GCCACAGCGG  | GCAGGACCTGA | TATGGGAGTG  | GAAAAGGACA | CTGTCCTGTC | ATTGATCACC |
|    | 1090        | 1100        | 1110        | 1120       | 1130       | 1140       |
|    | TCGCGCCCGA  | TGCATCCAAG  | CTCCTCAGCT  | AAGCTCCTGA | GTAAGCTGGA | TGCAGCCGGG |
|    | 1150        | 1160        | 1170        | 1180       | 1190       | 1200       |
| 30 | TCGATTGAAG  | AGATCAGAAA  | GATCAAGCGC  | CTTGCACTAA | ATGGCTAA.. | .....      |

5. The NP protein coded according to claim 1 or claim 2 characterised in that  
it has the following amino acid sequence:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 1  | M   | S   | S   | V   | F   | D   | E   | Y   | E   | Q   | L   | L   | A   | A   | Q   | T   | 16 |
|    | ATG | TCT | TCC | GTA | TTC | GAT | GAA | TAC | GAG | CAG | CTC | CTC | GCT | GCT | CAG | ACT |    |
| 35 | 1   |     |     | 10  |     |     | 20  |     |     | 30  |     |     | 40  |     |     |     |    |
| 17 | R   | P   | N   | G   | A   | H   | G   | G   | G   | E   | R   | G   | S   | T   | L   | R   | 32 |
|    | CGC | CCC | AAT | GGA | GCT | CAC | GGA | GGG | GGA | GAG | AGA | GGG | AGC | ACT | TTA | AGA |    |
|    | 50  |     |     | 60  |     |     | 70  |     |     | 80  |     |     | 90  |     |     |     |    |

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | 33  | V   | E   | V   | P   | V   | F   | T   | L   | N   | S   | D   | D   | P   | E   | D   | R   | 48  |
|    |     | GTT | GAG | GTC | CCA | GTA | TTC | ACT | CTT | AAC | AGT | GAC | GAT | CCA | GAA | GAT | AGA |     |
|    |     | 100 |     | 110 |     | 120 |     |     |     |     |     | 130 |     | 140 |     |     |     |     |
| 5  | 49  | W   | N   | F   | A   | V   | F   | C   | L   | R   | I   | A   | V   | S   | E   | D   | A   | 64  |
|    |     | TGG | AAT | TTT | GCG | GTA | TTC | TGT | CTT | CGG | ATT | GCT | GTT | AGC | GAG | GAC | GCC |     |
|    |     | 150 |     | 160 |     | 170 |     |     |     |     |     | 180 |     | 190 |     |     |     |     |
|    | 65  | N   | K   | P   | L   | R   | Q   | G   | A   | L   | I   | S   | L   | L   | C   | S   | H   | 80  |
|    |     | AAC | AAA | CCG | CTC | AGG | CAA | GGT | GCT | CTC | ATA | TCC | CTC | CTG | TGC | TCC | CAT |     |
|    |     | 200 |     | 210 |     | 220 |     |     |     |     |     | 230 |     | 240 |     |     |     |     |
| 10 | 81  | S   | Q   | V   | M   | R   | N   | H   | V   | A   | L   | A   | G   | K   | Q   | N   | E   | 96  |
|    |     | TCT | CAA | GTG | ATG | AGG | AAC | CAT | GTT | GCC | CTT | GCA | GGA | AAA | CAG | AAT | GAG |     |
|    |     | 250 |     | 260 |     | 270 |     |     |     |     |     | 280 |     |     |     |     |     |     |
| 15 | 97  | A   | T   | L   | T   | V   | L   | E   | I   | D   | G   | F   | T   | S   | S   | V   | P   | 112 |
|    |     | GCT | ACA | CTG | ACT | GTT | CTT | GAG | ATC | GAT | GGT | TTT | ACC | AGC | AGC | GTG | CCT |     |
|    |     | 290 |     | 300 |     | 310 |     |     |     |     | 320 |     | 330 |     |     |     |     |     |
|    | 113 | Q   | F   | N   | N   | R   | S   | G   | V   | S   | E   | E   | R   | A   | Q   | R   | F   | 128 |
|    |     | CAG | TTC | AAC | AAC | AGG | AGT | GGG | GTG | TCT | GAG | GAG | AGA | GCA | CAG | AGA | TTC |     |
|    |     | 340 |     | 350 |     | 360 |     |     |     |     | 370 |     | 380 |     |     |     |     |     |
| 20 | 129 | M   | V   | I   | A   | G   | S   | L   | P   | R   | A   | C   | S   | N   | G   | T   | P   | 144 |
|    |     | ATG | GTG | ATA | GCA | GGG | TCT | CTC | CCT | CGG | GCG | TGC | AGT | AAC | GGT | ACT | CCG |     |
|    |     | 390 |     | 400 |     | 410 |     |     |     |     | 420 |     | 430 |     |     |     |     |     |
|    | 145 | F   | V   | T   | A   | G   | V   | E   | D   | D   | A   | P   | E   | D   | I   | T   | D   | 160 |
|    |     | TTC | GTC | ACG | GCT | GGG | GTT | GAA | GAT | GAT | GCA | CCA | GAA | GAT | ATC | ACT | GAT |     |
|    |     | 440 |     | 450 |     | 460 |     |     |     |     | 470 |     | 480 |     |     |     |     |     |
| 25 | 161 | T   | L   | E   | R   | I   | L   | S   | I   | Q   | A   | Q   | V   | W   | V   | T   | V   | 176 |
|    |     | ACT | CTG | GAA | AGA | ATC | CTG | TCT | ATC | CAG | GCT | CAG | GTA | TGG | GTC | ACA | GTA |     |
|    |     | 490 |     | 500 |     | 510 |     |     |     |     | 520 |     |     |     |     |     |     |     |
| 30 | 177 | A   | K   | A   | M   | T   | A   | Y   | E   | T   | A   | D   | E   | S   | E   | T   | R   | 192 |
|    |     | GCG | AAG | GCC | ATG | ACT | GCA | TAT | GAG | ACA | GCA | GAT | GAG | TCG | GAA | ACA | AGA |     |
|    |     | 530 |     | 540 |     | 550 |     |     |     |     | 560 |     | 570 |     |     |     |     |     |
|    | 193 | R   | I   | N   | K   | Y   | M   | Q   | Q   | G   | R   | V   | Q   | K   | K   | Y   | I   | 208 |
|    |     | AGA | ATC | AAT | AAG | TAC | ATG | CAG | CAA | GGC | AGA | GTC | CAG | AAG | AAG | TAC | ATC |     |
|    |     | 580 |     | 590 |     | 600 |     |     |     |     | 610 |     | 620 |     |     |     |     |     |
| 35 | 209 | L   | H   | P   | V   | C   | R   | S   | A   | I   | Q   | L   | T   | I   | R   | H   | S   | 224 |
|    |     | CTC | CAC | CCT | GTA | TGC | AGG | AGT | GCA | ATT | CAA | CTC | ACA | ATC | AGA | CAT | TCT |     |
|    |     | 630 |     | 640 |     | 650 |     |     |     |     | 660 |     | 670 |     |     |     |     |     |
|    | 225 | L   | A   | V   | R   | I   | F   | L   | V   | S   | E   | L   | K   | R   | G   | R   | N   | 240 |
|    |     | CTG | GCA | GTC | CGC | ATT | TTC | TTA | GTT | AGC | GAG | CTT | AAG | AGA | GGC | CGC | AAT |     |
|    |     | 680 |     | 690 |     | 700 |     |     |     |     | 710 |     | 720 |     |     |     |     |     |
| 40 | 241 | T   | A   | G   | G   | S   | S   | T   | Y   | Y   | N   | L   | V   | G   | D   | V   | D   | 256 |
|    |     | ACG | GCA | GGT | GGG | AGC | TCC | ACG | TAT | TAC | AAC | TTA | GTA | GGG | GAT | GTA | GAC |     |
|    |     | 730 |     | 740 |     | 750 |     |     |     |     | 760 |     |     |     |     |     |     |     |
| 45 | 257 | S   | Y   | I   | R   | N   | T   | G   | L   | T   | A   | F   | F   | L   | T   | L   | K   | 272 |
|    |     | TCA | TAC | ATC | AGG | AAC | ACC | GGA | CTT | ACT | GCA | TTC | TTC | CTT | ACA | CTC | AAA |     |
|    |     | 770 |     | 780 |     | 790 |     |     |     |     | 800 |     | 810 |     |     |     |     |     |
|    | 273 | Y   | G   | I   | N   | T   | K   | T   | S   | A   | L   | A   | L   | S   | S   | L   | T   | 288 |
|    |     | TAT | GGA | ATT | AAT | ACC | AAG | ACA | TCA | GCC | CTA | GCA | CTC | AGC | AGC | CTC | ACA |     |
|    |     | 820 |     | 830 |     | 840 |     |     |     |     | 850 |     | 860 |     |     |     |     |     |
| 50 | 289 | G   | D   | I   | Q   | K   | M   | K   | Q   | L   | M   | R   | L   | Y   | R   | M   | K   | 304 |
|    |     | GGC | GAT | ATC | CAA | AAG | ATG | AAG | CAG | CTC | ATG | CGT | TTA | TAT | CGG | ATG | AAG |     |
|    |     | 870 |     | 880 |     | 890 |     |     |     |     | 900 |     | 910 |     |     |     |     |     |

|     |      |     |     |      |     |     |      |     |     |      |      |     |      |     |     |     |     |
|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|------|-----|------|-----|-----|-----|-----|
| 305 | G    | E   | N   | A    | P   | Y   | M    | T   | L   | L    | G    | D   | S    | D   | O   | M   | 320 |
|     | GGA  | GAA | AAT | GCG  | CCG | TAC | ATG  | ACA | TTG | CTA  | GGT  | GAC | AGT  | GAT | CAG | ATG |     |
|     | 920  |     |     | 930  |     |     | 940  |     |     | 950  |      |     |      |     |     | 960 |     |
| 321 | S    | F   | A   | P    | A   | E   | Y    | A   | Q   | L    | Y    | S   | F    | A   | M   | G   | 336 |
| 5   | AGC  | TTT | GCA | CCG  | GCT | GAG | TAT  | GCA | CAG | CTT  | TAT  | TCT | TTT  | GCC | ATG | GGC |     |
|     | 970  |     |     | 980  |     |     | 990  |     |     |      | 1000 |     |      |     |     |     |     |
| 337 | M    | A   | S   | V    | L   | D   | K    | G   | T   | G    | K    | Y   | Q    | F   | A   | R   | 352 |
| 10  | ATG  | GCA | TCA | GTC  | TTA | GAT | AAA  | GGA | ACT | GGC  | AAA  | TAC | CAA  | TTC | GCC | AGA |     |
|     | 1010 |     |     | 1020 |     |     | 1030 |     |     | 1040 |      |     | 1050 |     |     |     |     |
| 353 | D    | F   | M   | S    | T   | S   | F    | W   | R   | L    | G    | V   | E    | Y   | A   | Q   | 368 |
|     | GAC  | TTC | ATG | AGC  | ACA | TCA | TTC  | TGG | AGA | CTC  | GGG  | GTG | GAG  | TAT | GCT | CAG |     |
|     | 1060 |     |     | 1070 |     |     | 1080 |     |     | 1090 |      |     | 1100 |     |     |     |     |
| 369 | A    | Q   | G   | S    | S   | I   | N    | E   | D   | M    | A    | A   | E    | L   | K   | L   | 384 |
| 15  | GCT  | CAG | GGG | AGT  | AGC | ATC | AAC  | GAA | GAC | ATG  | GCT  | GCT | GAG  | CTA | AAA | CTA |     |
|     | 1110 |     |     | 1120 |     |     | 1130 |     |     | 1140 |      |     | 1150 |     |     |     |     |
| 385 | T    | P   | A   | A    | R   | R   | G    | L   | A   | A    | A    | A   | Q    | R   | V   | S   | 400 |
|     | ACC  | CCG | GCA | GCA  | AGA | AGG | GGC  | CTG | GCA | GCT  | GCT  | GCC | CAA  | CGA | GTG | TCT |     |
|     | 1160 |     |     | 1170 |     |     | 1180 |     |     | 1190 |      |     | 1200 |     |     |     |     |
| 401 | E    | E   | T   | G    | S   | V   | D    | I   | P   | T    | Q    | Q   | A    | G   | V   | L   | 416 |
| 20  | GAG  | GAA | ACT | GGC  | AGC | GTG | GAT  | ATT | CCT | ACT  | CAA  | CAA | GCC  | GGG | GTC | CTC |     |
|     | 1210 |     |     | 1220 |     |     | 1230 |     |     | 1240 |      |     |      |     |     |     |     |
| 417 | T    | G   | L   | S    | D   | G   | G    | P   | R   | A    | S    | Q   | G    | G   | S   | N   | 432 |
| 25  | ACT  | GGG | CTC | AGC  | GAT | GGG | GGC  | CCC | CGA | GCC  | TCT  | CAG | GGT  | GGA | TCG | AAC |     |
|     | 1250 |     |     | 1260 |     |     | 1270 |     |     | 1280 |      |     | 1290 |     |     |     |     |
| 433 | K    | S   | Q   | G    | Q   | P   | D    | A   | G   | D    | G    | E   | T    | Q   | F   | L   | 448 |
|     | AAG  | TCG | CAA | GGG  | CAA | CCA | GAT  | GCC | GGA | GAT  | GGG  | GAG | ACC  | CAA | TTC | TTG |     |
|     | 1300 |     |     | 1310 |     |     | 1320 |     |     | 1330 |      |     | 1340 |     |     |     |     |
| 449 | D    | L   | M   | R    | A   | V   | A    | N   | S   | M    | R    | E   | A    | P   | N   | S   | 464 |
| 30  | GAT  | TTG | ATG | AGA  | GCA | GTG | GCG  | AAC | AGC | ATG  | CGA  | GAA | GCG  | CCA | AAC | TCC |     |
|     | 1350 |     |     | 1360 |     |     | 1370 |     |     | 1380 |      |     | 1390 |     |     |     |     |
| 465 | A    | Q   | S   | T    | T   | H   | P    | E   | P   | P    | P    | T   | P    | G   | P   | S   | 480 |
|     | GCA  | CAG | AGC | ACC  | ACC | CAC | CCG  | GAA | CCC | CCC  | CCG  | ACT | CCC  | GGG | CCA | TCC |     |
|     | 1400 |     |     | 1410 |     |     | 1420 |     |     | 1430 |      |     | 1440 |     |     |     |     |
| 481 | Q    | D   | N   | D    | T   | D   | W    | G   | Y   | *    |      |     |      |     |     |     | 490 |
| 35  | CAA  | GAT | AAC | GAC  | ACC | GAC | TGG  | GGG | TAT | TGA  |      |     |      |     |     |     |     |
|     | 1450 |     |     | 1460 |     |     | 1470 |     |     |      |      |     |      |     |     |     |     |

6. The P protein coded according to claim 3 or claim 4 characterised in that it has the following amino acid sequence:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 40 | 1   | M   | A   | T   | F   | T   | D   | A   | E   | I   | D   | D   | I   | F   | E   | T   | S   | 16 |
|    |     | ATG | GCC | ACC | TTT | ACA | GAT | GCG | GAG | ATA | GAT | GAT | ATA | TTT | GAG | ACC | AGT |    |
|    |     | 1   |     | 10  |     |     | 20  |     |     | 30  |     |     |     |     | 40  |     |     |    |
| 17 | G   | T   | V   | I   | D   | S   | I   | I   | T   | A   | Q   | G   | K   | S   | A   | E   | 32  |    |
| 45 | GGA | ACT | GTC | ATT | GAC | AGC | ATA | ATT | ACG | GCC | CAG | GGT | AAA | TCA | GCA | GAG |     |    |
|    | 50  |     |     | 60  |     |     | 70  |     |     | 80  |     |     | 90  |     |     |     |     |    |

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | 33  | T   | V   | G   | R   | S   | A   | I   | P   | Q   | G   | K   | T   | K   | A   | L   | S   | 48  |
|    |     | ACT | GTC | GGA | AGG | AGC | GCA | ATC | CCA | CAA | GGC | AAG | ACC | AAA | GCG | CTG | AGC |     |
|    |     | 100 |     | 110 |     |     |     | 120 |     |     |     | 130 |     |     | 140 |     |     |     |
| 5  | 49  | I   | A   | W   | E   | K   | H   | G   | S   | I   | Q   | P   | S   | T   | S   | Q   | D   | 64  |
|    |     | ATA | GCA | TGG | GAG | AAG | CAT | GGG | AGC | ATC | CAA | CCA | TCC | ACC | AGC | CAG | GAC |     |
|    |     | 150 |     | 160 |     |     |     | 170 |     |     |     | 180 |     |     | 190 |     |     |     |
| 10 | 65  | N   | P   | D   | Q   | Q   | D   | R   | P   | D   | K   | Q   | L   | S   | T   | P   | E   | 80  |
|    |     | AAC | CCC | GAC | CAA | CAG | GAT | AGA | CCA | GAC | AAA | CAG | CTA | TCC | ACA | CCT | GAG |     |
|    |     | 200 |     | 210 |     |     |     | 220 |     |     |     | 230 |     |     | 240 |     |     |     |
| 15 | 81  | Q   | A   | T   | P   | H   | N   | S   | S   | P   | A   | T   | S   | A   | E   | P   | L   | 96  |
|    |     | CAG | GCG | ACC | CCA | CAC | AAC | AGC | TCG | CCA | GCC | ACA | TCC | GCC | GAA | CCG | CTC |     |
|    |     | 250 |     | 260 |     |     |     | 270 |     |     |     | 280 |     |     |     |     |     |     |
| 20 | 97  | P   | T   | Q   | A   | A   | G   | E   | A   | G   | D   | T   | Q   | L   | K   | T   | G   | 112 |
|    |     | CCC | ACT | CAG | GCC | GCA | GGT | GAG | GCC | GGC | GAC | ACA | CAG | CTC | AAG | ACC | GGA |     |
|    |     | 290 |     | 300 |     |     |     | 310 |     |     |     | 320 |     |     | 330 |     |     |     |
| 25 | 113 | A   | S   | N   | S   | L   | L   | S   | M   | L   | D   | K   | L   | S   | N   | K   | P   | 128 |
|    |     | GCA | AGC | AAC | TCT | CTT | CTG | TCT | ATG | CTC | GAC | AAG | CTG | AGC | AAT | AAA | CCA |     |
|    |     | 340 |     | 350 |     |     |     | 360 |     |     |     | 370 |     |     | 380 |     |     |     |
| 30 | 129 | S   | N   | A   | K   | K   | G   | P   | W   | S   | S   | P   | Q   | E   | G   | Y   | H   | 144 |
|    |     | TCT | AAT | GCT | AAA | AAG | GGC | CCA | TGG | TCG | AGT | CCC | CAG | GAA | GGA | TAT | CAT |     |
|    |     | 390 |     | 400 |     |     |     | 410 |     |     |     | 420 |     |     | 430 |     |     |     |
| 35 | 145 | Q   | P   | P   | T   | Q   | Q   | H   | G   | D   | Q   | P   | N   | R   | G   | N   | S   | 160 |
|    |     | CAA | CCT | CCG | ACC | CAA | CAA | CAT | GGG | GAT | CAG | CCG | AAC | CGC | GGA | AAC | AGC |     |
|    |     | 440 |     | 450 |     |     |     | 460 |     |     |     | 470 |     |     | 480 |     |     |     |
| 40 | 161 | Q   | E   | R   | L   | R   | H   | Q   | A   | K   | A   | A   | P   | G   | S   | R   | G   | 176 |
|    |     | CAG | GAG | AGG | CTG | CGG | CAC | CAA | GCC | AAG | GCC | GCC | CCT | GGA | AGC | CGG | GGC |     |
|    |     | 490 |     | 500 |     |     |     | 510 |     |     |     | 520 |     |     |     |     |     |     |
| 45 | 177 | T   | D   | A   | S   | T   | A   | Y   | H   | G   | Q   | W   | K   | E   | S   | Q   | L   | 192 |
|    |     | ACA | GAC | GCG | AGC | ACA | GCA | TAT | CAT | GGA | CAA | TGG | AAG | GAG | TCA | CAA | CTA |     |
|    |     | 530 |     | 540 |     |     |     | 550 |     |     |     | 560 |     |     | 570 |     |     |     |
| 50 | 193 | S   | A   | G   | A   | T   | P   | H   | V   | L   | Q   | S   | G   | Q   | S   | Q   | D   | 208 |
|    |     | TCA | GCT | GGT | GCA | ACC | CCT | CAT | GTG | CTC | CAA | TCA | GGG | CAG | AGC | CAA | GAC |     |
|    |     | 580 |     | 590 |     |     |     | 600 |     |     |     | 610 |     |     | 620 |     |     |     |
| 55 | 209 | S   | T   | P   | V   | P   | V   | D   | H   | V   | Q   | P   | P   | V   | D   | F   | V   | 224 |
|    |     | AGT | ACT | CCT | GTA | CCT | GTG | GAT | CAT | GTC | CAG | CCA | CCT | GTC | GAC | TTT | GTG |     |
|    |     | 630 |     | 640 |     |     |     | 650 |     |     |     | 660 |     |     | 670 |     |     |     |
| 60 | 225 | Q   | A   | M   | M   | T   | M   | M   | E   | A   | L   | S   | Q   | K   | V   | S   | K   | 240 |
|    |     | CAG | GCG | ATG | ATG | ACT | ATG | ATG | GAG | GGC | TTA | TCA | CAG | AAG | GTA | AGT | AAA |     |
|    |     | 680 |     | 690 |     |     |     | 700 |     |     |     | 710 |     |     | 720 |     |     |     |
| 65 | 241 | V   | D   | Y   | Q   | L   | D   | L   | V   | L   | K   | Q   | T   | S   | S   | I   | P   | 256 |
|    |     | GTC | GAC | TAT | CAG | CTA | GAC | CTA | GTC | TTA | AAG | CAG | ACA | TCC | TCC | ATC | CCT |     |
|    |     | 730 |     | 740 |     |     |     | 750 |     |     |     | 760 |     |     |     |     |     |     |
| 70 | 257 | M   | M   | R   | S   | E   | I   | Q   | Q   | L   | K   | T   | S   | V   | A   | V   | M   | 272 |
|    |     | ATG | ATG | CGG | TCT | GAA | ATC | CAA | CAG | CTA | AAA | ACA | TCT | GTT | GCG | GTC | ATG |     |
|    |     | 770 |     | 780 |     |     |     | 790 |     |     |     | 800 |     |     | 810 |     |     |     |
| 75 | 273 | E   | A   | N   | L   | G   | M   | M   | K   | I   | L   | D   | P   | G   | C   | A   | N   | 288 |
|    |     | GAA | GCT | AAT | TTA | GCG | ATG | ATG | AAA | ATT | CTG | GAC | CCT | GGT | TGT | GCT | AAC |     |
|    |     | 820 |     | 830 |     |     |     | 840 |     |     |     | 850 |     |     | 860 |     |     |     |
| 80 | 289 | I   | S   | S   | L   | S   | D   | L   | R   | A   | V   | A   | R   | S   | H   | P   | V   | 304 |
|    |     | ATT | TCA | TCC | TTA | AGT | GAT | CTG | CGG | GCA | GTC | GCC | CGG | TCC | CAC | CCA | GTT |     |
|    |     | 870 |     | 880 |     |     |     | 890 |     |     |     | 900 |     |     | 910 |     |     |     |

|     |      |     |     |      |     |     |      |     |     |      |     |      |      |     |     |     |     |     |
|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|------|------|-----|-----|-----|-----|-----|
| 305 | L    | I   | S   | G    | P   | G   | D    | P   | S   | P    | Y   | V    | T    | Q   | G   | G   | 320 |     |
|     | TTA  | ATT | TCA | GGC  | CCC | GGA | GAT  | CCG | TCC | CCC  | TAC | GTG  | ACA  | CAA | GGG | GGT |     |     |
|     | 920  |     |     |      |     | 930 |      |     | 940 |      |     | 950  |      |     |     | 960 |     |     |
| 5   | 321  | E   | M   | T    | L   | N   | K    | L   | S   | Q    | P   | V    | Q    | H   | P   | S   | E   | 336 |
|     | GAG  | ATG | ACA | CTC  | AAT | AAA | CTC  | TCA | CAA | CCA  | GTA | CAA  | CAC  | CCT | TCC | GAG |     |     |
|     | 970  |     |     |      |     | 980 |      |     | 990 |      |     | 1000 |      |     |     |     |     |     |
| 10  | 337  | L   | I   | K    | S   | A   | T    | A   | G   | G    | P   | D    | M    | G   | V   | E   | K   | 352 |
|     | TTA  | ATT | AAA | TCT  | GCC | ACA | GCG  | GGC | GGA | CCT  | GAT | ATG  | GGA  | GTG | GAA | AAG |     |     |
|     | 1010 |     |     | 1020 |     |     | 1030 |     |     | 1040 |     |      | 1050 |     |     |     |     |     |
| 15  | 353  | D   | T   | V    | R   | A   | L    | I   | T   | S    | R   | P    | M    | H   | P   | S   | S   | 368 |
|     | GAC  | ACT | GTC | CGT  | GCA | TTG | ATC  | ACC | TCG | CGC  | CCG | ATG  | CAT  | CCA | AGC | TCC |     |     |
|     | 1060 |     |     | 1070 |     |     | 1080 |     |     | 1090 |     |      | 1100 |     |     |     |     |     |
| 20  | 369  | S   | A   | K    | L   | L   | S    | K   | L   | D    | A   | A    | G    | S   | I   | E   | E   | 384 |
|     | TCA  | GCT | AAG | CTC  | CTG | AGT | AAG  | CTG | GAT | GCA  | GCC | GGG  | TCG  | ATT | GAA | GAG |     |     |
|     | 1110 |     |     | 1120 |     |     | 1130 |     |     | 1140 |     |      | 1150 |     |     |     |     |     |
| 25  | 385  | I   | R   | K    | I   | K   | R    | L   | A   | L    | N   | G    | *    |     |     |     |     | 396 |
|     | ATC  | AGA | AAG | ATC  | AAG | CGC | CTT  | GCA | CTA | AAT  | GCG | TAA  |      |     |     |     |     |     |
|     | 1160 |     |     | 1170 |     |     | 1180 |     |     |      |     |      |      |     |     |     |     |     |

7. A recombinant expression plasmid containing the NDV nucleocapsid gene as claimed in claim 1 or claim 2.

8. A recombinant expression plasmid containing the NDV phosphoprotein gene as claimed in claim 3 or claim 4.

9. The recombinant expression plasmid according to claim 7 which is the expression plasmid pTrcHis2-NP constructed by cloning the NDV nucleocapsid gene of claims 1 or 2 into vector pTrcHis2.

10. The recombinant expression plasmid according to claim 8 which is the expression plasmid pTrcHis2-P constructed by cloning the NDV phosphoprotein gene of claims 3 or 4 into vector pTrcHis2.

11. A transformed *Escherichia coli* with the recombinant expression plasmid according to claim 7 or claim 9.

12. A transformed *Escherichia coli* with the recombinant expression plasmid according to claim 8 or claim 10.



|    |      |     |      |     |     |     |      |     |     |     |      |     |     |      |     |     |     |     |
|----|------|-----|------|-----|-----|-----|------|-----|-----|-----|------|-----|-----|------|-----|-----|-----|-----|
|    | 177  | A   | K    | A   | M   | T   | A    | Y   | E   | T   | A    | D   | E   | S    | E   | T   | R   | 192 |
|    |      | GCG | AAG  | GCC | ATG | ACT | GCA  | TAT | GAG | ACA | GCA  | GAT | GAG | TCG  | GAA | ACA | AGA |     |
|    | 530  |     | 540  |     |     |     | 550  |     |     |     | 560  |     |     | 570  |     |     |     |     |
| 5  | 193  | R   | I    | N   | K   | Y   | M    | Q   | Q   | G   | R    | V   | Q   | K    | K   | Y   | I   | 208 |
|    |      | ACA | ATC  | AAT | AAG | TAC | ATG  | CAG | CAA | GGC | AGA  | GTC | CAG | AAG  | AAG | TAC | ATC |     |
|    | 580  |     | 590  |     |     |     | 600  |     |     |     | 610  |     |     | 620  |     |     |     |     |
| 10 | 209  | L   | H    | P   | V   | C   | R    | S   | A   | I   | Q    | L   | T   | I    | R   | H   | S   | 224 |
|    |      | CTC | CAC  | CCT | GTA | TGC | AGG  | AGT | GCA | ATT | CAA  | CTC | ACA | ATC  | AGA | CAT | TCT |     |
|    | 630  |     | 640  |     |     |     | 650  |     |     |     | 660  |     |     | 670  |     |     |     |     |
| 15 | 225  | L   | A    | V   | R   | I   | F    | L   | V   | S   | E    | L   | K   | R    | G   | R   | N   | 240 |
|    |      | CTG | GCA  | GTC | CGC | ATT | TTC  | TTA | GTT | AGC | GAG  | CTT | AAG | AGA  | GGC | CGC | AAT |     |
|    | 680  |     | 690  |     |     |     | 700  |     |     |     | 710  |     |     | 720  |     |     |     |     |
| 20 | 241  | T   | A    | G   | G   | S   | S    | T   | Y   | Y   | N    | L   | V   | G    | D   | V   | D   | 256 |
|    |      | ACG | GCA  | GGT | GGG | AGC | TCC  | ACG | TAT | TAC | AAC  | TTA | GTA | GGG  | GAT | GTA | GAC |     |
|    | 730  |     | 740  |     |     |     | 750  |     |     |     | 760  |     |     |      |     |     |     |     |
| 25 | 257  | S   | Y    | I   | R   | N   | T    | G   | L   | T   | A    | F   | F   | L    | T   | L   | K   | 272 |
|    |      | TCA | TAC  | ATC | AGG | AAC | ACC  | GGA | CTT | ACT | GCA  | TTC | TTC | CTT  | ACA | CTC | AAA |     |
|    | 770  |     | 780  |     |     |     | 790  |     |     |     | 800  |     |     | 810  |     |     |     |     |
| 30 | 273  | Y   | G    | I   | N   | T   | K    | T   | S   | A   | L    | A   | L   | S    | S   | L   | T   | 288 |
|    |      | TAT | GGA  | ATT | AAT | ACC | AAG  | ACA | TCA | GCC | CTA  | GCA | CTC | AGC  | AGC | CTC | ACA |     |
|    | 820  |     | 830  |     |     |     | 840  |     |     |     | 850  |     |     | 860  |     |     |     |     |
| 35 | 289  | G   | D    | I   | Q   | K   | M    | K   | Q   | L   | M    | R   | L   | Y    | R   | M   | K   | 304 |
|    |      | GGC | GAT  | ATC | CAA | AAG | ATG  | AAG | CAG | CTC | ATG  | CGT | TTA | TAT  | CGG | ATG | AAG |     |
|    | 870  |     | 880  |     |     |     | 890  |     |     |     | 900  |     |     | 910  |     |     |     |     |
| 40 | 305  | G   | E    | N   | A   | P   | Y    | M   | T   | L   | L    | G   | D   | S    | D   | Q   | M   | 320 |
|    |      | GGA | GAA  | AAT | GCG | CCG | TAC  | ATG | ACA | TTG | CTA  | GGT | GAC | AGT  | GAT | CAG | ATG |     |
|    | 920  |     | 930  |     |     |     | 940  |     |     |     | 950  |     |     | 960  |     |     |     |     |
| 45 | 321  | S   | F    | A   | P   | A   | E    | Y   | A   | Q   | L    | Y   | S   | F    | A   | M   | G   | 336 |
|    |      | AGC | TTT  | GCA | CCG | GCT | GAG  | TAT | GCA | CAG | CTT  | TAT | TCT | TTT  | GCC | ATG | GGC |     |
|    | 970  |     | 980  |     |     |     | 990  |     |     |     | 1000 |     |     |      |     |     |     |     |
| 50 | 337  | M   | A    | S   | V   | L   | D    | K   | G   | T   | G    | K   | Y   | Q    | F   | A   | R   | 352 |
|    |      | ATG | GCA  | TCA | GTC | TTA | GAT  | AAA | GGA | ACT | GGC  | AAA | TAC | CAA  | TTC | GCC | AGA |     |
|    | 1010 |     | 1020 |     |     |     | 1030 |     |     |     | 1040 |     |     | 1050 |     |     |     |     |
| 55 | 353  | D   | F    | M   | S   | T   | S    | F   | W   | R   | L    | G   | V   | E    | Y   | A   | Q   | 368 |
|    |      | GAC | TTC  | ATG | AGC | ACA | TCA  | TTC | TGG | AGA | CTC  | GGG | GTG | GAG  | TAT | GCT | CAG |     |
|    | 1060 |     | 1070 |     |     |     | 1080 |     |     |     | 1090 |     |     | 1100 |     |     |     |     |
| 60 | 369  | A   | Q    | G   | S   | S   | I    | N   | E   | D   | M    | A   | A   | E    | L   | K   | L   | 384 |
|    |      | GCT | CAG  | GGG | AGT | AGC | ATC  | AAC | GAA | GAC | ATG  | GCT | GCT | GAG  | CTA | AAA | CTA |     |
|    | 1110 |     | 1120 |     |     |     | 1130 |     |     |     | 1140 |     |     | 1150 |     |     |     |     |
| 65 | 385  | T   | P    | A   | A   | R   | R    | G   | L   | A   | A    | A   | Q   | R    | V   | S   | 400 |     |
|    |      | ACC | CCG  | GCA | GCA | AGA | AGG  | GGC | CTG | GCA | GCT  | GCT | GCC | CAA  | CGA | GTG | TCT |     |
|    | 1160 |     | 1170 |     |     |     | 1180 |     |     |     | 1190 |     |     | 1200 |     |     |     |     |
| 70 | 401  | E   | E    | T   | G   | S   | V    | D   | I   | P   | T    | Q   | Q   | A    | G   | V   | L   | 416 |
|    |      | GAG | GAA  | ACT | GGC | AGC | GTG  | GAT | ATT | CCT | ACT  | CAA | CAA | GCC  | GGG | GTC | CTC |     |
|    | 1210 |     | 1220 |     |     |     | 1230 |     |     |     | 1240 |     |     |      |     |     |     |     |
| 75 | 417  | T   | G    | L   | S   | D   | G    | G   | P   | R   | A    | S   | Q   | G    | G   | S   | N   | 432 |
|    |      | ACT | GGG  | CTC | AGC | GAT | GGA  | GGC | CCC | CGA | GCC  | TCT | CAG | GGT  | GGA | TCG | AAC |     |
|    | 1250 |     | 1260 |     |     |     | 1270 |     |     |     | 1280 |     |     | 1290 |     |     |     |     |
| 80 | 433  | K   | S    | Q   | G   | Q   | P    | D   | A   | G   | D    | G   | E   | T    | Q   | F   | L   | 448 |
|    |      | AAG | TCG  | CAA | GGG | CAA | CCA  | GAT | GCC | GGG | GAT  | GGG | GAG | ACC  | CAA | TTC | TTG |     |
|    | 1300 |     | 1310 |     |     |     | 1320 |     |     |     | 1330 |     |     | 1340 |     |     |     |     |

|     |     |      |     |     |      |     |     |      |     |     |      |     |     |      |      |     |     |     |
|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|------|-----|-----|-----|
| 449 | D   | L    | M   | R   | A    | V   | A   | N    | S   | M   | R    | E   | A   | P    | N    | S   | 464 |     |
|     | GAT | TTG  | ATG | AGA | GCA  | GTG | GCG | AAC  | AGC | ATG | CGA  | GAA | GCG | CCA  | AAC  | TCC |     |     |
|     |     | 1350 |     |     | 1360 |     |     | 1370 |     |     | 1380 |     |     |      | 1390 |     |     |     |
| 5   | 465 | A    | Q   | S   | T    | T   | H   | P    | E   | P   | P    | P   | T   | P    | G    | P   | S   | 480 |
|     | GCA | CAG  | AGC | ACC | ACC  | CAC | CCG | GAA  | CCC | CCC | CCG  | ACT | CCC | GGG  | CCA  | TCC |     |     |
|     |     | 1400 |     |     | 1410 |     |     | 1420 |     |     | 1430 |     |     | 1440 |      |     |     |     |
| 10  | 481 | Q    | D   | N   | D    | T   | D   | W    | G   | Y   | *    |     |     |      |      |     | 490 |     |
|     | CAA | GAT  | AAC | GAC | ACC  | GAC | TGG | GGG  | TAT | TGA |      |     |     |      |      |     |     |     |
|     |     | 1450 |     |     | 1460 |     |     | 1470 |     |     |      |     |     |      |      |     |     |     |

16. A fused or non-fused form of NDV phosphoprotein isolated and purified from culture of the transformed microorganism of claim 12 or claim 14 characterised in that it has the following amino acid sequence:

|    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 15 | 1   | M   | A   | T   | F   | T   | D   | A   | E   | I   | D   | D   | I   | F   | E   | T   | S   | 16  |
|    |     | ATG | GCC | ACC | TTT | ACA | GAT | GCG | GAG | ATA | GAT | GAT | ATA | TTT | GAG | ACC | AGT |     |
|    | 1   |     |     | 10  |     |     | 20  |     |     | 30  |     |     |     | 40  |     |     |     |     |
| 20 | 17  | G   | T   | V   | I   | D   | S   | I   | I   | T   | A   | Q   | G   | K   | S   | A   | E   | 32  |
|    |     | GGA | ACT | GTC | ATT | GAC | AGC | ATA | ATT | ACG | GCC | CAG | GGT | AAA | TCA | GCA | GAG |     |
|    |     | 50  |     | 60  |     |     | 70  |     |     | 80  |     |     |     | 90  |     |     |     |     |
| 25 | 33  | T   | V   | G   | R   | S   | A   | I   | P   | Q   | G   | K   | T   | K   | A   | L   | S   | 48  |
|    |     | ACT | GTC | GGA | AGG | AGC | GCA | ATC | CCA | CAA | GGC | AAG | ACC | AAA | GCG | CTG | AGC |     |
|    |     | 100 |     | 110 |     |     | 120 |     |     | 130 |     |     |     | 140 |     |     |     |     |
| 30 | 49  | I   | A   | W   | E   | K   | H   | G   | S   | I   | Q   | P   | S   | T   | S   | Q   | D   | 64  |
|    |     | ATA | GCA | TGG | GAG | AAG | CAT | GGG | AGC | ATC | CAA | CCA | TCC | ACC | AGC | CAG | GAC |     |
|    |     | 150 |     | 160 |     |     | 170 |     |     | 180 |     |     |     | 190 |     |     |     |     |
| 35 | 65  | N   | P   | D   | Q   | Q   | D   | R   | P   | D   | K   | Q   | L   | S   | T   | P   | E   | 80  |
|    |     | AAC | CCC | GAC | CAA | CAG | GAT | AGA | CCA | GAC | AAA | CAG | CTA | TCC | ACA | CCT | GAG |     |
|    |     | 200 |     | 210 |     |     | 220 |     |     | 230 |     |     |     | 240 |     |     |     |     |
| 40 | 81  | Q   | A   | T   | P   | H   | N   | S   | S   | P   | A   | T   | S   | A   | E   | P   | L   | 96  |
|    |     | CAG | GCG | ACC | CCA | CAC | AAC | AGC | TCG | CCA | GCC | ACA | TCC | GCC | GAA | CCG | CTC |     |
|    |     | 250 |     | 260 |     |     | 270 |     |     | 280 |     |     |     |     |     |     |     |     |
| 45 | 97  | P   | T   | Q   | A   | A   | G   | E   | A   | G   | D   | T   | Q   | L   | K   | T   | G   | 112 |
|    |     | CCC | ACT | CAG | GCC | GCA | GGT | GAG | GCC | GGC | GAC | ACA | CAG | CTC | AAG | ACC | GGA |     |
|    |     | 290 |     | 300 |     |     | 310 |     |     | 320 |     |     |     | 330 |     |     |     |     |
| 50 | 113 | A   | S   | N   | S   | L   | L   | S   | M   | L   | D   | K   | L   | S   | N   | K   | P   | 128 |
|    |     | GCA | AGC | AAC | TCT | CTT | CTG | TCT | ATG | CTC | GAC | AAG | CTG | AGC | AAT | AAA | CCA |     |
|    |     | 340 |     | 350 |     |     | 360 |     |     | 370 |     |     |     | 380 |     |     |     |     |
| 55 | 129 | S   | N   | A   | K   | K   | G   | P   | W   | S   | S   | P   | Q   | E   | G   | Y   | H   | 144 |
|    |     | TCT | AAT | GCT | AAA | AAG | GGC | CCA | TGG | TCG | AGT | CCC | CAG | GAA | GGA | TAT | CAT |     |
|    |     | 390 |     | 400 |     |     | 410 |     |     | 420 |     |     |     | 430 |     |     |     |     |
| 60 | 145 | Q   | P   | P   | T   | Q   | Q   | H   | G   | D   | Q   | P   | N   | R   | G   | N   | S   | 160 |
|    |     | CAA | CCT | CCG | ACC | CAA | CAA | CAT | GGG | GAT | CAG | CCG | AAC | CGC | GGA | AAC | AGC |     |
|    |     | 440 |     | 450 |     |     | 460 |     |     | 470 |     |     |     | 480 |     |     |     |     |
| 65 | 161 | Q   | E   | R   | L   | R   | H   | Q   | A   | K   | A   | A   | P   | G   | S   | R   | G   | 176 |
|    |     | CAG | GAG | AGG | CTG | CGG | CAC | CAA | GCC | AAG | GCC | GCC | CCT | GGA | AGC | CGG | GGC |     |
|    |     | 490 |     | 500 |     |     | 510 |     |     | 520 |     |     |     |     |     |     |     |     |



**ABSTRACT**

**Nucleotide Sequences of the Nucleocapsid (NP) and Phosphoprotein (P) Genes of a Malaysian Velogenic Newcastle Disease Virus Strain AF2240 and the Production of the NP and P Proteins in *Escherichia coli***

5 The present invention relates to nucleotide sequences encoding the nucleocapsid (NP) protein and phosphoprotein (P) of Newcastle disease virus (NDV) and the production of the corresponding proteins with recombinant plasmids bearing the nucleotide sequences in *Escherichia coli*.



Detection of NP protein with anti-NDV chicken serum

lanes:

- 1: Molecular mass standards expressed in kDa
- 2 & 3: NP fusion protein
- 4 & 5: NP non-fusion protein
- 6: NDV

**Figure 1**



#### Detection of P fusion protein with the anti-*Myc* monoclonal antibody

lanes:

- 1: Cells containing the recombinant P fusion plasmid after being induced with IPTG for 5 h
- 2: Cells containing the recombinant P fusion plasmid after being induced with IPTG for 3 h
- 3: Cells containing the recombinant P fusion plasmid after being induced with IPTG for 1 h
- 4: Cells containing the recombinant P fusion plasmid **before being induced with IPTG**
- 5: Cells harbouring empty vector
- 6: Molecular mass standards expressed in kDa



#### Detection of P non-fusion protein with anti-NDV chicken serum

lanes:

- 1: Molecular mass standards expressed in kDa
- 2: Cells harbouring empty vector
- 3: Cells containing the recombinant P non-fusion plasmid **before being induced with IPTG**
- 4: Cells containing the recombinant P non-fusion plasmid after being induced with IPTG for 2 h
- 5: Cells containing the recombinant P non-fusion plasmid after being induced with IPTG for 4 h
- 6: Cells containing the recombinant P non-fusion plasmid after being induced with IPTG for 6 h

Figure 2