

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Г «Информатика и системы управления»
КАФЕДРА «	«Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Разработка базы данных для IoT-платформы умный $\partial o M$ »

Студент <u>ИУ7-66Б</u> (Группа)	(Подпись, дата)	Мамврийский И. С. (И. О. Фамилия)
Руководитель курсовой работы	(Подпись, дата)	<u>Гаврилова Ю. М.</u> (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Ана	Аналитическая часть	
	1.1	Существующие решения	4
	1.2	Формулирвока требований к разрабатываемой базе данных и	
		приложению	4
	1.3	Формализация хданных	
	1.4	Анализ существующих баз данных на основе формализации	
		задачи	(
		1.4.1 Дореляционная база данных	6
		1.4.2 Реляционная база данных	7
		1.4.3 Постреляционные	7
	1.5	Формализация и описание пользователей проектируемого при-	
		ложения к базе данных	7

Введение

В настоящее время технологии интернета вещей (IoT) становятся неотъемлемой частью нашей повседневной жизни, и одним из наиболее заметных примеров их применения является IoT-платформа для умного дома. Она объединяет различные устройства в доме, от светильников до умных термостатов, в единую сеть, которая может управляться и контролироваться через интернет.

Основной целью IoT-платформы умного дома является создание интеллектуальной инфраструктуры, способной адаптироваться к потребностям и предпочтениям пользователей. Она обеспечивает возможность контролировать освещение, отопление, кондиционирование воздуха, безопасность и другие аспекты жизни в доме с помощью смартфона или другого устройства с доступом в интернет.

Благодаря IoT-платформе умного дома пользователи могут не только управлять устройствами в реальном времени, но и получать данные и аналитику о потреблении ресурсов, обеспечивая оптимальное использование энергии и повышение эффективности.

С учетом быстрого развития технологий IoT и роста спроса на умные системы, платформы умного дома становятся все более интегрированными, расширяя свои возможности и предлагая новые функции для улучшения качества жизни пользователей.

Целью курсовой работы является разработка базы данных для IoTплатформы умный дом. Для достижения поставленной цели необходимо выполнить следующие задачи:

1 Аналитическая часть

1.1 Существующие решения

Так как IoT-вещей активно развиваются, то на рынке уже представлены различные платформы умных домов. Рассмотрим наиболее популярные из них:

- Apple Homekit
- Intel IoT Platform
- MTS IoT HUB
- Xiaomi MI

Выделим следующие критерии для сравнения выбранных платформ:

- 1) Многопользовательский доступ
- 2) Возможность создания нескольких домов
- 3) История работы устройств

Сравнение выбранных платформ по указанным критериям представлены в таблице 1.1:

Таблица 1.1 – Сравнение существующих решений

Решение	1	2	3
Apple Homekit	+	+	-
Intel IoT Platform	-	-	+
MTS IoT HUB		+	+
Предполагаемое решение	+	+	+

Таким образом, ни одна из плафторм не удовлетворяет всем критериям.

1.2 Формулирвока требований к разрабатываемой базе данных и приложению

В ходе выполнения курсовой работы необходимо разработать базу данных для хранения ифнормации о пользователях, умных домах, устройствах.

Помимо этого, нужно спроектировать Web-приложение, которое будет предоставлять интерфейс для взаимодействия с базой данных с возможностью создавать умные дома, добавлять новые устройтва в свой дом, просматривать историю работы устройств.

Необходимо также предусмотреть многопользовательский доступ к дому, возможность добавления других пользователь в свой дом для совместного управления. Требуется реализовать функциональность для разных категорий пользователей, каждый из которых получает свой определенный набор прав.

1.3 Формализация хданных

Разрабатываемая база данных для IoT платформы умного дома должна содержать информаицю о пользователях, устройствах, умных домах, истории работы устройств. Данные категории показаны на ER-диаграмме в нотации Чена 1.1.

Рисунок 1.1 – ER-диаграмма в нотации Чена

1.4 Анализ существующих баз данных на основе формализации задачи

База данных – **самодокументированное** собрание **нтегрированных** записей. Рассмотрим части данное определения:

- 1. База данных является самодокументированной, то есть содержит описание собственной струкутры, которое называется словарем данных, каталогом данных или метаданными.
- 2. База данных собрание интегрированных записей, она содержит:
 - файлы данных,
 - метаданные,
 - индексы,
 - может содеражтьетаданные приложений.
- 3. База данных является информационной моделью пользовательской модели предметной области.

Модель базы данных определяет логическую структуру базы данных и то, каким образом данные будут храниться, организовываться и обрабатываться.

Существует три основных типа моделей базы данных:

- дореляционные;
- реляционные;
- постреляционные.

1.4.1 Дореляционная база данных

K дореляционным моделям баз данных относятся иерархическая и сетевая модели.

Иерархическая модель состоит из объектов с указателями от родительских объектов к потомкам, соединяя вместе связанную информацию. Она может быть представлена в виде дерева. Одним из больших минусов данной модели является невозможность отношения "многие-ко-многим"

Основными понятиями сетевой модели базы данных являюся узел и связь. Узел — совокупность атрибутов данных, описывающих некоторый объект. Данная база данных может быть предствлена в виде графа. При изменении структуры данной модели придется изменять и приложние, так как логика процедуры выборки данных зависит от физической организации этих данных.

1.4.2 Реляционная база данных

В реляционных моделях данные организованы в набор двумерных взаимосвязанных таблиц. Каждая из которых представляет собой набор столбцов и строк, где столбец представляет атрибуты сущности, а строки представляют записи. Такое представление обеспечивает простой и эффективный способ хранения структурированной информации, доступа к ней, а также легкую сортировку.

Также в данной модели происходит разделение между физическим и логическим уровнями, что позволяет управлять физической системой хранения, не меняя данных, содержащихся в логической структуре.

1.4.3 Постреляционные

Нереляционная база данных — это база данных, в которой в отличие от большинства традиционных систем баз данных не используется табличная схема строк и столбцов. В этих базах данных применяется модель хранения, оптимизированная под конкретные требования типа хранимых данных. Например, данные могут храниться как простые пары "ключ — значение документы JSON или граф, состоящий из ребер и вершин. Все эти хранилища данных не используют реляционную модель.

Недостатком такой модели является сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.

1.5 Формализация и описание пользователей проектируемого приложения к базе данных

Для взаимодействия с Web-приложением было выделено четыре категории пользователя: новый пользователь, владелец, участник дома, зарегистрированный пользователь.

Все возможные функции для каждой категории пользователей пред-

ставлены на следующей Use-case диаграмме 1.2

Рисунок 1.2 – Use-case диаграмм полльзователей

Новый пользователь – незарегистрированный пользователь, который получает возможность зарегистрироваться на IoT платформе, введя логин и пароль.

Зарегистрированный пользователь – пользователь, который прошел регистрацию. Он может создать собственный дом или стать участником дома.

Участник дома - пользователь, который который вступил в дом. В зависимостьи от уровня доступа ему доступны следующие функции: просмотр статистики, управление устройствами, также при необходимости он может создать собственный дом.

Владелец – пользователь, который создал дом. Ему доступен наибольший функционал, помимо функций доступных участнику, он может добавлять/удалять участников дома, устройства, определять уровень доступа других участников к дому. Также владелец может стать участником другого дома.

Вывод

В данном разделе проведен анализ аналогов IoT-платформ для умного дома. Ни одно из исследованных решений не соответствовало всем установленным критериям сравнения. При рассмотрении моделей баз данных было принято решение в пользу реляционной модели. Это обосновано необходимостью обеспечения целостности хранящихся данных в разрабатываемой базе данных для IoT-платформы, а также простотой хранения структурированной информации и возможностью ее сортировки.

Кроме того, были формализованы поставленная задача, данные и категории пользователей.