Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) $(M\Gamma T Y \text{ им. H.Э. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА .	«Программное обеспечение ЭВМ и информационные технологии»		
НАПРАВЛЕН	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»		

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

Название:		Интервальные оценки	
Дисциплина:		Математическая статистика	
Студент	<u>ИУ7-64Б</u> Группа	 Подпись, дата	С. Д. Параскун И. О. Фамилия
Преподаватель			М. А. Велищанский
		Подпись, дата	И. О. Фамилия

1. Задание на лабораторную

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Содержание работы:

- 1. Для выборки объема n из генеральной совокупности X реализовать в виде программы на ЭВМ:
 - \circ вычисление точечных оценок $\hat{\mu}(\vec{x}_n)$ и $S^2(\vec{x}_n)$ математического ожидания МХ и дисперсии DX соответственно;
 - \circ вычисление нижней и верхней границ $\underline{\mu}(\vec{x}_n), \, \overline{\mu}(\vec{x}_n)$ для γ -доверительного интервала для математического ожидания MX;
 - \circ вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x}_n)$, $\overline{\sigma}^2(\vec{x}_n)$ для γ -доверительного интервала для дисперсии DX;
- 2. Вычислить $\hat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3. Для заданного пользователем уровня доверия γ и N объема выборки из индивидуального варианта:
 - \circ на координатной плоскости Oyn построить прямую $y = \hat{\mu}(\vec{x}_N)$, также графики функций $y = \hat{\mu}(\vec{x}_n)$, $y = \underline{\mu}(\vec{x}_n)$, $y = \overline{\mu}(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N;
 - \circ на другой координатной плоскости Ozn построить прямую $z=S^2(\vec{x}_N)$, также графики функций $z=S^2(\vec{x}_n),\ z=\underline{\sigma}^2(\vec{x}_n),$ $z=\overline{\sigma}^2(\vec{x}_n)$ как функций объема n выборки, где n изменяется от 1 до N.

В работе использовалась выборка по 13 варианту.

2. у-доверительный интервал

2.1 Определение

Пусть дана случайная величина X, закон распределения которой известен с точностью до неизвестного параметра θ , и для параметра θ построен интервал $(\underline{\theta}(\vec{X}_n), \overline{\theta}(\vec{X}_n))$, где $\underline{\theta}(\vec{x}_n)$ и $\overline{\theta}(\vec{X}_n)$ – пара статистик случайной выборки \vec{X}_n , такой что:

$$P\left\{\underline{\theta}(\vec{X}_n) < \theta < \overline{\theta}(\vec{X}_n)\right\} = \gamma. \tag{2.1}$$

Тогда $(\underline{\theta}(\vec{X}_n), \overline{\theta}(\vec{X}_n))$ называется интервальной оценкой параметра θ с коэффициентом доверия γ (γ -доверительный интервал).

Для удобства также можно ввести величину $\alpha = \frac{1-\gamma}{2}$ – вероятность отклонения результата в определенном направлении.

2.2 Формулы для вычисления границ γ -доверительного интервала

Пусть \vec{X}_n – случайная выборка объема n из генеральной совокупности X, распределенной по нормальному закону с параметрами μ и σ^2 .

1. Для мат. ожидания:

$$\underline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X}_n)}{\sqrt{n}} t_{\alpha}(n-1), \qquad (2.2)$$

$$\overline{\mu}(\vec{X}_n) = \overline{X} + \frac{S(\vec{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1), \qquad (2.3)$$

где \overline{X} — точечная оценка мат. ожидания, $S(\vec{X}_n)$ — точечная оценка дисперсии, $t_{1-\alpha}(n-1)$ — квантиль уровня α распределения Стьюдента со степенями свободы n-1;

2. Для дисперсии:

$$\underline{\sigma}^{2}(\vec{X}_{n}) = \frac{(n-1) \cdot S^{2}(\vec{X}_{n})}{\chi_{1-\alpha}^{2}(n-1)}, \tag{2.4}$$

$$\overline{\sigma}^{2}(\vec{X}_{n}) = \frac{(n-1) \cdot S^{2}(\vec{X}_{n})}{\chi_{\alpha}^{2}(n-1)},$$
(2.5)

где $S(\vec{X}_n)$ – точечная оценка дисперсии, $\chi^2_{\alpha}(n-1)$ – квантиль уровня α для распределения χ^2 с n-1 степенями свободы.

3. Код программы

```
function main()
      f = fopen("X.txt", "r");
      buf = textscan(f, "%f", 'Delimiter', '');
      X = buf{1,1};
      X = X';
      fclose(f);
      gamma = 0.9;
      alpha = (1 - gamma) / 2;
10
      MU = MX(X);
11
12
      S2 = DX(X);
      fprintf("MU = \%f, S2 = \%f \ , MU, S2);
13
14
      MU_low = get_low_MU(X, alpha);
15
      MU_high = get_high_MU(X, alpha);
16
      fprintf("MU_low = %f, MU_high = %f\n", MU_low, MU_high);
17
18
      S2_low = get_low_S2(X, alpha);
19
      S2_high = get_high_S2(X, alpha);
20
      fprintf("S2_low = %f, S2_high = %f\n", S2_low, S2_high);
21
      gamma = 0.9;
23
      alpha = (1 - gamma) / 2;
24
      N = length(X);
25
26
      figure;
27
      hold on;
28
      plot([1, N], [MU, MU], 'r');
29
      plot((1 : N), get_MU_array(X, N), 'g');
30
      plot((1 : N), get_MU_low_array(X, N, alpha), 'b');
31
      plot((1 : N), get_MU_high_array(X, N, alpha), 'm');
32
      1 = legend('\mu^(x_N)', '\mu^(x_n)', '_{--}\mu^(x_n)',
33
          '^{--}\mu\^(x_n)');
34
      set(1, 'fontsize', 14);
35
      grid on;
36
37
      figure;
38
      hold on;
39
      plot([2, N], [S2, S2], 'r');
      plot((1 : N), get_S2_array(X, N), 'g');
41
      plot((1 : N), get_S2_low_array(X, N, alpha), 'b');
42
      S2_high_array = get_S2_high_array(X, N, alpha);
43
      plot((4 : N), S2_high_array(4 : N), 'm');
44
      1 = legend('S^2(x_N)', 'S^2(x_n)', '_{--} \simeq 2(x_n)',
45
```

```
'^{--}\sigma^2(x_n)');
46
      set(1, 'fontsize', 14);
47
      grid on;
  end
49
50
  function mx = MX(X)
      n = length(X);
52
      sum = sum(X);
53
      mx = sum / n;
  endfunction
55
56
  function dx = DX(X)
      n = length(X);
58
      MX = MX(X);
59
      if (n == 1)
60
           dx = 0;
61
      else
62
           dx = sum((X - MX).^2) / (n - 1);
      endif
64
  endfunction
65
66
  function mu_low = get_low_MU(X, alpha)
67
      n = length(X);
68
      MU = MX(X);
69
      S = sqrt(DX(X));
70
      mu_low = MU + S / sqrt(n) * tinv(alpha, n - 1);
71
  endfunction
72
73
  function mu_high = get_high_MU(X, alpha)
74
      n = length(X);
75
      MU = MX(X);
76
      S = sqrt(DX(X));
77
      mu_high = MU + S / sqrt(n) * tinv(1 - alpha, n - 1);
78
  endfunction
79
80
  function s2_low = get_low_S2(X, alpha)
81
      n = length(X);
82
      S2 = DX(X);
83
      s2_{low} = (n - 1) * S2 / chi2inv(1 - alpha, n - 1);
84
  endfunction
85
86
  function s2_high = get_high_S2(X, alpha)
87
      n = length(X);
88
      S2 = DX(X);
89
      s2_high = (n - 1) * S2 / chi2inv(alpha, n - 1);
91 endfunction
92
93 function MU_array = get_MU_array(X, N)
```

```
MU_array = zeros(1, N);
94
       for i = 1 : N
95
           MU_array(i) = MX(X(1 : i));
       endfor
97
  endfunction
98
  function MU_low_array = get_MU_low_array(X, N, alpha)
100
       MU_low_array = zeros(1, N);
101
       for i = 1 : N
           cur_X = X(1 : i);
103
           MU_low_array(i) = get_low_MU(cur_X, alpha);
104
       endfor
  endfunction
106
107
  function MU_high_array = get_MU_high_array(X, N, alpha)
108
       MU_high_array = zeros(1, N);
109
       for i = 1 : N
110
           cur_X = X(1 : i);
111
           MU_high_array(i) = get_high_MU(cur_X, alpha);
112
       endfor
113
  endfunction
115
  function S2_array = get_S2_array(X, N)
116
       S2_array = zeros(1, N);
117
       for i = 1 : N
118
           S2_array(i) = DX(X(1 : i));
119
       endfor
120
  endfunction
121
122
  function S2_low_array = get_S2_low_array(X, N, alpha)
123
       S2_low_array = zeros(1, N);
124
       for i = 1 : N
125
           cur_X = X(1 : i);
126
           S2_low_array(i) = get_low_S2(cur_X, alpha);
127
       endfor
128
  endfunction
129
130
  function S2_high_array = get_S2_high_array(X, N, alpha)
131
       S2_high_array = zeros(1, N);
132
       for i = 1 : N
133
           cur_X = X(1 : i);
134
           S2_high_array(i) = get_high_S2(cur_X, alpha);
135
       endfor
  endfunction
137
```

4. Результаты расчетов для выборки по варианту

При вычислении результатов параметр $\gamma = 0.9$.

$\hat{\mu}(\vec{x}_n)$	$\underline{\mu}(\vec{x}_n)$	$\overline{\mu}(\vec{x}_n)$
-10.131750	-10.270946	-9.992554
$S^2(\vec{x}_n)$	$\underline{S}^2(\vec{x}_n)$	$\overline{S}^2(\vec{x}_n)$
0.846041	0.692138	1.061888

При построении графиков функций n=1..N, причем N=120 – объем исходной выборки.

Рисунок 4.1 – Оценка для мат. ожидания

Рисунок 4.2 – Оценка для дисперсии

Рисунок 4.3 – Оценка для дисперсии (график $\overline{\sigma}^2(\vec{x}_n)$ начинается с n=4)