

Data Provided: None

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Autumn Semester 2012-13 (2.0 hours)

EEE6420 Satellite and Optical Telecommunications

Answer **THREE** questions. **No marks will be awarded for solutions to a fourth question.** Solutions will be considered in the order that they are presented in the answer book. Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

- **1. a.** Discuss the role of a satellite telephone system in the context of enhancing the wireless communications networks on earth.
 - **b.** Describe a satellite system currently in service for satellite telephone communications. Include the type of satellite, orbit, how earth coverage is achieved and the challenges faced by designers.
 - **c.** A satellite based mobile phone communications system operates at 1.6 GHz. Calculate the distance of the user from the satellite.

System parameters are:

Satellite antenna diameter	1.2 m
Satellite antenna efficiency	80%
Satellite receiver antenna noise figure	600 K
Signal bandwidth	150 kHz
Satellite receiver noise figure	2 dB
Boltzman's constant k	$1.38 \times 10^{-23} \text{ J/K}$
Operating margin	15 dB
Uplink C/N	10 dB
Handset antenna gain	0 dB
Handset transmit power	6 W
Path length	? km

Note: antenna gain $4\pi A\eta/\lambda^2$

(4)

(6)

(2)

2.	a.	Describe the design of a typical dual reflector antenna used to receive satellite signals on earth. How are the efficiency and noise performance of the antenna optimized?	(7)
	b.	A satellite receiver operating at 12 GHz has a noise figure of 2 dB. (i) If it is directly connected to an antenna/pre-amplifier with a gain of 7 dB and a noise temperature of 100 K, estimate the overall system noise figure. (ii) If the antenna/pre-amplifier is now connected to the receiver via a 5 m length of coaxial cable with an attenuation of 3 dB, estimate the new system noise figure.	(7)
	c.	Why is frequency reuse important in satellite communication systems? Describe two different frequency reuse schemes.	(6)
3.	a.	What are the main limitations of an optical fibre used for long distance communication?	(2)
	b.	A high bit rate submarine optical fibre crossing the Atlantic ocean is to be designed. Which of the following devices and techniques would you recommend? Explain your choices.	
		i. A 1300 nm or 1550 nm wavelength of operation?ii. LEDs or laser diodes?iii. APDs or PIN photodiodes?iv. Optical amplifiers or regenerative repeaters?v. Coherent detection or intensity modulation/direct detection?	(5)
	c.	A long distance optical fibre communication system needs a minimum received power at the photo detector of -60 dBm. The transmitted power is 5 dBm and the link losses are:	
		Fibre loss 2dB/km Splice loss 0.2dB/km Two connector losses at 3dB each Operating margin 10dB	
		 i. Calculate the maximum link length, ii. If the fibre dispersion is 0.7 ns/km, for the length of fibre found in (a) determine the maximum transmission bit rate, iii. Derive an expression for the bandwidth-length product in relation to fibre dispersion for a NRZ pulse stream. Calculate the maximum bit rate for a length of 20 km. 	(11)

Which fibre parameter should be changed to extend the range? Give your

d.

reasoning.

- **4.** a. i. What is wavelength division multiplexing? (2)
 - ii. Describe two multiplexing devices. (8)
 - **b.** i. Describe a Star network and a Bus network. (2)
 - ii. Derive expressions for the total loss in a Star network and a Bus network for N stations if passive couplers are used. (6)
 - iii. Hence determine the loss of both networks if N=10, the stations are 500m apart, the fibre loss = 0.4 dB/km, and the couplers have the following parameters:

Tap loss $L_{tap} = 10 \text{ dB}$

Connector loss $L_c = 1 dB$

Intrinsic transmission loss $L_i = 0.5 dB$

Through loss $L_{thru} = 0.9 dB$

Excess loss $L_{\text{excess}} = 2 \text{ dB}$ (2)

RJL