## MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2012 SOLUTION KEY

## **Team Round - continued**

D) (A classic Venn Diagram problem)

$$\frac{a+6}{b+6} = \frac{2}{4} = \frac{1}{2} \Leftrightarrow 2a+12 = b+6 \Leftrightarrow b = 2a+6$$
$$\frac{a+6}{c+6} = \frac{2}{5} \Leftrightarrow 5a+30 = 2c+12 \Leftrightarrow c = \frac{5a+18}{2}$$

To insure that c is an integer, a must be even.

Since the total number of students involved is 116, to maximize f, we must minimize a.

Let 
$$n(C) = 2N$$
,  $n(P) = 4N$  and  $n(F) = 5N$ .

If 
$$a = 2$$
,  $(b, c) = (10, 14)$ 

$$\begin{cases} d+18 = 2N \\ e+22 = 4N \text{ and} \\ 30+f=5N \end{cases}$$

$$(2+10+14)+d+e+f+6=116 \Leftrightarrow d+e+f=84$$

Consequently,

$$\Rightarrow$$
  $(2N-18)+(4N-22)+(5N-30)=84 \Leftrightarrow 11N=154 \Leftrightarrow N=14 \Rightarrow f=70-30=40$ .



Let 
$$m\angle ADC = x^{\circ}$$
 and  $m\angle DBA = (x + 10)^{\circ}$  and  $m(\widehat{BD}) = y^{\circ}$ .

As arcs subtended by inscribed angles,

$$m(\widehat{AC}) = 2x^{\circ}$$
 and  $m(\widehat{AD}) = (2x + 20)^{\circ}$ .

As a leftover arc, 
$$m(\widehat{BC}) = (340 - 4x - y)^{\circ}$$

As an angle formed by intersecting chords,

$$m \angle BED = \frac{1}{2} (2x + y) = 100 \Leftrightarrow 2x + y = 200$$



a

6

f

е

C

d

b

As an angle formed by a tangent and a secant line  $m \angle P = \frac{1}{2} ((340 - 2x - y) - y) = 5$ 

$$\Leftrightarrow 340 - 2x - 2y = 10$$

$$\Leftrightarrow x + y = 165$$

Thus, 
$$x = 35$$
,  $y = 130 \Rightarrow m(\widehat{AD}) = 90^{\circ} \Rightarrow m(\widehat{ADB}) = 220^{\circ}$ 

If  $\overrightarrow{BO}$  intersects the circle in point X, then  $m(\widehat{AX}) = 220^{\circ} - 180^{\circ} = 40^{\circ}$ .

As an inscribed angle,  $m\angle EBO = \underline{20}^{\circ}$ .