AMATH 562 Assignment 6

Tyler Chen

Exercise 6.2

Consider the sample space S = [0, 1] with uniform probability distribution, i.e.,

$$\mathbb{P}([a,b]) = b - a, \ \forall 0 \le a \le b \le 1$$

Define the sequence $\{X_n\}_{n\in\mathbb{N}_0}$ as $X_n(s)=\frac{n}{n+1}s+(1-s)^n$. Also, define the random variable X on this sample space as X(s)=s. Show that $X_n\to_{a.s.} X$.

Observe that for all $s \in (0,1], 0 \le (1-s) < 1$ so,

$$\lim_{n \to \infty} \left[\frac{n}{n+1} s + (1-s)^n \right] = s+0 = s$$

In particular, this means that,

$$[0,1) \subseteq \left\{ s \in S : \lim_{n \to \infty} |X_n - X| = 0 \right\}$$

Thus, since $\mathbb{P}[1,1] = 0$ and $[0,1) \cap [1,1] = \emptyset$,

$$\mathbb{P}\left(\lim_{n\to\infty}|X_n-X|=0\right)\geq \mathbb{P}([0,1))=\mathbb{P}([0,1))+\mathbb{P}([1,1])=\mathbb{P}([0,1)\cup[1,1])=\mathbb{P}([0,1])=1$$

Probabilities are at most 1, implying $X_n \to_{a.s.} X$.

Exercise 6.3

Let $\{X_n\}_{n\in\mathbb{N}_0}$ and $\{Y_n\}_{n\in\mathbb{N}_0}$ be two sequences of random variables, defined on the sample space S. Suppose that we know,

$$X_n \to_{a.s.} X$$
 $Y_n \to_{a.s.} Y$

Prove that $X_n + Y_n \rightarrow_{a.s.} X + Y$.

By hypothesis,

$$\mathbb{P}\left(\lim_{n\to\infty}|X_n-X|=0\right)=1$$

$$\mathbb{P}\left(\lim_{n\to\infty}|Y_n-Y|=0\right)=1$$

The intersection of sets of measure 1 is still a set of measure 1. Thus,

$$1 = \mathbb{P}\left(\lim_{n \to \infty} |X_n - X| = 0 \land \lim_{n \to \infty} |Y_n - Y| = 0\right)$$
$$= \mathbb{P}\left(\lim_{n \to \infty} |X_n - X| + \lim_{n \to \infty} |Y_n - Y| = 0\right)$$
$$= \mathbb{P}\left(\lim_{n \to \infty} |X_n - X| + |Y_n - Y| = 0\right)$$

By the triangle inequality,

$$|(X_n + Y_n) - (X + Y)| = |(X_n - X) + (Y_n - Y)| \le |X_n - X| + |Y_n - Y|$$

So,
$$|X_n - X| + |Y_n - Y| = 0$$
 implies $|(X_n + Y_n) - (X + Y)| = 0$. Thus,

$$\left\{\omega: \lim_{n\to\infty}|X_n(\omega)-X(\omega)|+|Y_n(\omega)-Y(\omega)|=0\right\}\subseteq \left\{\omega: \lim_{n\to\infty}|(X_n(\omega)+Y_n(\omega)-(X(\omega)+Y(\omega))|=0\right\}$$

Finally,

$$\mathbb{P}\left(\lim_{n\to\infty}|(X_n+Y_n)-(X+Y)|=0\right)\geq 1$$

Probabilities are at most 1, implying $X_n + Y_n \rightarrow_{a.s.} X + Y$.

Exercise 6.6

Let $X_1, X_2, ...$, be independent with $\mathbb{P}(X_n = 1) = p_n$ and $\mathbb{P}(X_n = 0) = 1 - p_n$. Show that,

- (a) $X_n \to_p 0$ if and only if $p_n \to 0$.
- (b) $X_n \to_{a.s.} 0$ if and only if $\sum_n p_n < \infty$
- (a) Fix $\varepsilon \in (0,1)$ and consider $\mathbb{P}(|X_n| > \varepsilon)$. For any $\omega \in \Omega$, $|X_n(w)| > \varepsilon$ if $X_n(\omega) = 1$, and $|X_n(\omega)| \le \varepsilon$ if $X_n(\omega) = 0$. In particular, this means that regardless of the value of ε , $\mathbb{P}(|X_n| > \varepsilon) \ge \mathbb{P}(X_n = 1) = p_n$ and $\mathbb{P}(|X_n| \le \varepsilon) \ge \mathbb{P}(X_n = 0) = 1 p_n$ so that $\mathbb{P}(|X_n| > \varepsilon) \le p_n$. Thus, for any $\varepsilon \in (0,1)$, $\mathbb{P}(|X_n| > \varepsilon) = p_n$, and clearly if $\varepsilon > 1$ then $\mathbb{P}(X_n > \varepsilon) = 0$. We then have,

$$X_n \to_p 0 \Longleftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(|X_n| > \varepsilon) = 0 \Longleftrightarrow \forall \varepsilon > 0, \lim_{n \to \infty} p_n = 0 \Longleftrightarrow X_n \to_p 0 \qquad \Box$$

(b) Suppose $\sum_{n} \mathbb{P}(\{\omega : X_n(\omega) = 1\}) = \sum_{n} p_n < \infty$. Then, by Borel-Cantelli Lemma we have,

$$0 = \mathbb{P}(\{\omega : X_n(\omega) = 1, \text{ i.o.}\}) = \mathbb{P}(\{\omega : \lim_{n \to \infty} |X_n(\omega)| \neq 0)$$

Equivalently,

$$1 = \mathbb{P}(\{\omega : \lim_{n \to \infty} X_n(\omega) = 0\}) \iff X_n \to_{a.s.} 0$$

Now, suppose $\sum_n \mathbb{P}(\{\omega: X_n(\omega)=1\} = \sum_n p_n = \infty$. Then, by Borel-Cantelli Lemma, since X_n are independent meaning $\{\omega: X_n(\omega)=1\}$ are independent, we have,

$$1 = \mathbb{P}(\{\omega : X_n(\omega) = 1, \text{ i.o.}\}) = \mathbb{P}(\{\omega : \lim_{n \to \infty} X_n(\omega) \neq 0\}) \Longleftrightarrow X_n \not\to_{a.s.} 0$$

This proves that $X_n \to_{a.s.} 0$ if and only if $\sum_n p_n = 0$.

Exercise 6.7

Suppose that $X_1, X_2, ...$, are independent with $\mathbb{P}(X_n > x) = x^{-5}$ for all $x \ge 1$ and n = 1, 2, Show that $\limsup_{n \to \infty} (\log X_n) / \log n = c$ almost surely for some number c, and find c.

We have,

$$\limsup_{n \to \infty} \{(\log X_n) / \log n = c\} = \{\omega : X_n(\omega) / \log n = c, \text{ for infinitely many } n\}$$

Fix $n \in \mathbb{N}, d \in \mathbb{R}$. Consider¹,

$$\mathbb{P}(\log X_n / \log n > d) = \mathbb{P}(\log X_n > d \log n) = \mathbb{P}(X_n > e^{d \log n}) = \mathbb{P}(X_n > n^d) = (n^d)^{-5} = n^{-5d}$$

Take c = 1/5 so that for any $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} \mathbb{P}(\log X_n / \log n > c + \varepsilon) = \sum_{n=1}^{\infty} n^{-5(c+\varepsilon)} = \sum_{n=1}^{\infty} n^{-1-5\varepsilon} < \infty$$
$$\sum_{n=1}^{\infty} \mathbb{P}(\log X_n / \log n > c - \varepsilon) = \sum_{n=1}^{\infty} n^{-5(c-\varepsilon)} = \sum_{n=1}^{\infty} n^{-1+5\varepsilon} = \infty$$

By Borel Cantelli, and since $(A_n, i.o.)^c = (A_n^c, a.b.f.m)$,

$$\mathbb{P}(\log X_n / \log n > c + \varepsilon, \text{ i.o.}) = 0 \iff \mathbb{P}(\log X_n / \log n < c + \varepsilon, \text{ a.b.f.m}) = 1$$

Since X_n are independent, then $\{\log X_n/\log n > c + \varepsilon\}$ are independent so, by Borel Cantelli,

$$\mathbb{P}(\log X_n/\log n > c - \varepsilon, \text{ i.o.}) = 1$$

Together these show,

$$\mathbb{P}(\log X_n/\log n = c, \text{ for infinitely many } n) = \mathbb{P}\left(\limsup_{n \to \infty} \{(\log X_n)/\log n = 1/5\}\right) = 1$$

¹note that when $\log n$ is in the denominator it isn't well defined for n=1. But we interpret it as if the equalities below are actually true