

UNIVERSITÄT BAYREUTH Physik

Analysis

Sätze und Definitionen

von Moritz Schramm

 $Wintersemester \ 20/21 \\ basierend auf dem Vorlesungsskript von Prof. Păun$

Inhaltsverzeichnis

1	Ree	elle Zahlen	1			
	1.1	Algebraische Eigenschaften der reellen Zahlen	2			
	1.2	Die Existenz einer kleinsten oberen oder größten unteren Schranke	3			
	1.3	Die wichtigsten Klassen reeller Zahlen	4			
		1.3.1 Die natürlichen Zahlen	4			
		1.3.2 Die ganzen Zahlen	4			
		1.3.3 Die rationalen Zahlen	4			
		1.3.4 Die reellen Zahlen	4			
		1.3.5 Weitere Sätze und Definitionen	4			
	1.4	Das Archimedische Prinzip	5			
2	Folgen 7					
	2.1	Der Grenzwert einer Folge	7			
		2.1.1 Eigenschaften der Grenzwerte	7			
	2.2	Das Cauchysche Konvergenzkriterium	g			
			10			
	2.3	01	10			
			10			
			11			
3	Reihen 13					
	3.1	Konvergenz Kriterien für Reihen	13			
	3.2		14			
	3.3		15			
4	Stetige Funktionen 17					
	4.1		17			
	4.2		18			
	4.3		18			
	4.4		20			
	4.5		21			
	4.6	Logarithmus				
	4.7		23			
5	Differential rechnung 25					
	5.1		25			
	5.2		27			
	5.3	Konvexität	28			

		5.3.1 Taylor Reihe	29
6	Das	Riemannsche Integral	30
	6.1	Allgemeine Eigenschaften integrierbarer	
		Funktionen	30
	6.2	Zusammenhang zwischen Integral und Ableitung	32

Kapitel 1

Reelle Zahlen

Eine Menge \mathbb{R} wird als Menge der reellen Zahlen bezeichnet, wenn die folgenden Bedingungen erfüllt sind:

I Axiom der Addition:

 $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert als $(x, y) \mapsto x + y$

- 1_+ Es existiert ein neutrales Element 0 mit $\forall x \in \mathbb{R}: x+0=0+x=x$
- 2_+ Zu jedem $x \in \mathbb{R}$ existiert ein $-x \in \mathbb{R}$ sodass x + (-x) = (-x) + x = 0
- 3_+ Die Operation + ist assoziativ, d.h. $\forall x, y, z \in \mathbb{R}: x + (y + z) = (x + y) + z$
- 4_+ Die Operation + ist kommutativ, d.h. $\forall x, y \ \mathbb{R}$: x + y = y + x

II Axiom der Multiplikation:

$$: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 definiert als $(x, y) \mapsto x \cdot y$

- 1. Es existiert ein neutrales Element $1 \neq 0$ sodass $\forall x \in \mathbb{R}: x \cdot 1 = 1 \cdot x = x$
- 2. $\forall x \in \mathbb{R} \setminus \{0\}$ existiert ein $x^{-1} \in \mathbb{R}$ (das Inverse von x) sodass $\forall x \in \mathbb{R}: x \cdot x^{-1} = x^{-1} \cdot x = 1$
- 3. Die Operation · ist assoziativ, d.h. $\forall x, y, z \in \mathbb{R}$: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 4. Die Operation · ist kommutativ, d.h. $\forall x, y \in \mathbb{R}$: $x \cdot y = y \cdot x$

Zusätzlich: Distributivität $\forall x, y, z \in \mathbb{R}: (x+y) \cdot z = x \cdot z + y \cdot z$

III Anordnungsaxiom:

Zwischen den Elementen in \mathbb{R} existiert eine Relation \leq mit folgenden Bedingungen:

$$0 < \forall x \in \mathbb{R}: x \leq x$$

$$1 < \forall x, y \in \mathbb{R}: x \le y \land y \le x \Rightarrow x = y$$

$$2 < \forall x, y, z \in \mathbb{R}: x \le y \land y \le z \Rightarrow x \le z$$

$$3 < \forall x, y \in \mathbb{R}: x \leq y \lor y \leq x$$

IV Vollständigkeitsaxiom:

Seien X, Y Mengen, sodass $X \neq \emptyset$, $Y \neq \emptyset$ sowie $X \subseteq \mathbb{R}$, $Y \subseteq \mathbb{R}$ und $\forall x \in X, y \in Y : x \leq y$. Dann gilt $\exists c \in \mathbb{R} : \forall x \in X, y \in Y : x \leq c \leq y$

1.1 Algebraische Eigenschaften der reellen Zahlen

- (a) Folgerungen aus dem Additionsaxiom
 - 1. Es gibt nur ein additives neutrales Element $0 \in \mathbb{R}$
 - 2. Jedes $x \in \mathbb{R}$ besitzt ein eindeutiges Negatives
 - 3. In \mathbb{R} besitzt die Gleichung a+x=b die eindeutige Lösung x=b-a
- (b) Folgerungen aus dem Multiplikationsaxiom
 - 1. Es gibt nur ein multiplikates neutrales Element $1 \in \mathbb{R}$
 - 2. Zu jedem $x \neq 0$ gibt es nur ein Inverses x^{-1}
 - 3. Für $a \neq 0$ besitzt die Gleichung $x \cdot a = b$ die eindeutige Lösung $x = b \cdot a^{-1}$
- (c) Folgerungen aus den Axiomen I und II
 - 1. $\forall x \in \mathbb{R}: x \cdot 0 = 0 \cdot x = 0$
 - 2. $\forall x, y \in \mathbb{R}$: $x \cdot y = 0 \Rightarrow x = 0 \lor y = 0$
 - 3. $\forall x \in \mathbb{R}: (-1) \cdot x = -x$
 - 4. $\forall x \in \mathbb{R}: (-x) \cdot (-x) = x \cdot x$
- (d) Folgerungen aus dem Anordnungsaxiom
 - 1. $\forall x, y \in \mathbb{R}$ gilt genau eine der Relationen x < y, x = y, x > y
 - 2. $\forall x, y, z \in \mathbb{R}$: $x < y \land y \le z \implies x < z$
- (e) Folgerungen aus den Axiomen I und II sowie II und III
 - 1. $\forall x, y, z, w \in \mathbb{R}$:
 - $x < y \Rightarrow x + z < y + z$
 - $x > 0 \Rightarrow -x < 0$
 - $x \le y \land z \le w \Rightarrow x + z \le y + w$
 - 2. $\forall x, y, z \in \mathbb{R}$:
 - $x > 0 \land y > 0 \Rightarrow x \cdot y > 0$
 - $x < 0 \land y > 0 \Rightarrow x \cdot y < 0$
 - $x < 0 \land y < 0 \Rightarrow x \cdot y > 0$
 - $x < y \land z > 0 \Rightarrow x \cdot z < y \cdot z$
 - $x < y \land z < 0 \Rightarrow x \cdot z > y \cdot z$
 - $3. \ 0 < 1$
 - 4. $\forall x \in \mathbb{R}: x > 0 \Rightarrow x^{-1} > 0$

1.2 Die Existenz einer kleinsten oberen oder größten unteren Schranke

Definition 1. Obere und untere Schranken

- (i) Eine Menge $X \subset \mathbb{R}$ heißt von *oben beschränkt*, falls eine Zahl $c \in \mathbb{R}$ existiert, sodass $\forall x \in X : x \leq c$. c ist dann eine obere Schranke.
- (ii) Eine Menge $X \subset \mathbb{R}$ heißt von *unten beschränkt*, falls eine Zahl $c \in \mathbb{R}$ existiert, sodass $\forall x \in X : c \leq x$. c ist dann eine untere Schranke.
- (iii) Eine Menge die von oben und unten beschränkt ist, heißt beschränkt.

Definition 2. Maximales und minimales Element

- (i) Ein Element $a \in X$ wird maximales Element von X genannt, falls a eine obere Schranke ist
 - $a = \max(X)$
- (ii) Ein Element $b \in X$ wird minimales Element von X genannt, falls b eine untere Schranke ist
 - $b = \min(X)$

Bemerkung 1

Das maximale bzw. minimale Element sind immer eindeutig, müssen aber nicht zwangsweise existieren.

Definition 3

- (i) Sei $X \subset \mathbb{R}$ eine von oben beschränkte Menge. Die kleinste Zahl, die eine obere Schranke für X ist, heißt Supremum von X (sup X). Es gilt:
 - $\bullet \ \forall x \in X \colon x \leq \sup X$
 - $\forall M < \sup X : \exists x \in X : M < x$
- (ii) Sei $X \subset \mathbb{R}$ eine von unten beschränkte Menge. Die größte Zahl, die eine untere Schranke für X ist, heißt Infimum von X (inf X).
 - $\forall x \in X : x \ge \inf X$
 - $\forall M > \inf X : \exists x \in X : M > x$

Satz 1. $\exists \sup X$

Jede nicht leere Menge $X \subset \mathbb{R}$, die von oben beschränkt ist, besitzt eine eindeutige kleinste obere Schranke.

Wichtig: Nicht für Q gültig.

1.3 Die wichtigsten Klassen reeller Zahlen

1.3.1 Die natürlichen Zahlen

Definition 4

Eine Menge $X \subset \mathbb{R}$ heißt *induktiv*, wenn mit jedem $x \in X$ auch $x + 1 \in X$

Definition 5

Die Menge der natürlichen Zahlen ist die kleinste induktive Menge, die die 1 enthält und wird mit \mathbb{N} bezeichnet.

1.3.2 Die ganzen Zahlen

Definition 6

 $\mathbb{Z} = \{-n \mid n \in \mathbb{N}\} \cup \mathbb{N} \cup \{0\}$

1.3.3 Die rationalen Zahlen

Definition 7

 $\mathbb{Q} = \{ \tfrac{p}{q} \mid p, q \in \mathbb{Z} \}$

1.3.4 Die reellen Zahlen

Alle reelle Zahlen, die nicht rational sind, werden irrational genannt.

1.3.5 Weitere Sätze und Definitionen

Satz 2

Für jede natürliche Zahl gilt:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Definition 8. Binomial Koeffizient

$$\forall n \ge k \ge 0$$
: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$

Bemerkung 2

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Satz 3. Binomischer Lehrsatz

Seien $x, y \in \mathbb{R}$ und $n \in \mathbb{N}$. Es gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Satz 4. Bernoullische Ungleichung

Sei $x \in \mathbb{R}$ mit x > -1. Es gilt:

$$\forall n \in \mathbb{N} : (1+x)^n \ge 1 + nx$$

1.4 Das Archimedische Prinzip

Satz 5. Archimedisches Axiom

Zu jeder festen positiven Zahl x und jeder reellen Zahl y gibt es ein $n_0 \in \mathbb{N}$ sodass $n_0 x > y$

Definition 9. Absolutbetrag

Für eine reelle Zahl x wird der Betrag definiert durch:

$$x = \begin{cases} x, & \text{falls } x \ge 0 \\ -x, & \text{falls } x < 0 \end{cases}$$

5

Satz 6

Die Funktion $|\cdot|$ hat folgende Eigenschaften:

- (i) $\forall x \in \mathbb{R}: |x| \ge 0$ sowie $|x| = 0 \iff x = 0$
- (ii) (Multiplikativität) $\forall x,y \in \mathbb{R} \colon |x| \cdot |y| = |x \cdot y|$
- (iii) (Dreiecksungleichung) $\forall x,y \in \mathbb{R} \colon |x+y| \leq |x| + |y|$
- (iv) (umgekerte Dreiecksungleichung) $\forall x,y \in \mathbb{R}: \ \big||x|-|y|\big| \leq |x\pm y| \leq |x|+|y|$

Kapitel 2

Folgen

2.1 Der Grenzwert einer Folge

Definition 10. Folge

Eine Funktion $f: \mathbb{N} \to \mathbb{R}$ wird Folge genannt und die Werte $a_n = f(n)$ werden als n-tes Glied der Folge bezeichnet

Definition 11. ε -Umgebung

Sei $\varepsilon > 0$. Das Intervall $v(a, \varepsilon) = (a - \varepsilon, a + \varepsilon)$ wird ε -Umgebung genannt.

Definition 12. Konvergenz einer Folge

Sei $(a_n)_{n\geq 1}$ eine Folge reeller Zahlen.

 $(a_n)_{n\geq 1}$ konvergiert gegen $a\in\mathbb{R}$, also $\lim_{n\to\infty}a_n=a$, wenn gilt:

$$\forall \varepsilon > 0 \colon \exists n_0 \in \mathbb{N} \colon \forall n \ge n_0 \colon |a_n - a| < \varepsilon$$

2.1.1 Eigenschaften der Grenzwerte

Definition 13. Beschränktheit

- (i) Eine Folge $(a_n)_{n\geq 1}$ heißt nach oben beschränkt, falls $\exists K\in\mathbb{R}:\, \forall n\in\mathbb{N}:\, a_n\leq K$
- (ii) Eine Folge $(a_n)_{n\geq 1}$ heißt nach unten beschränkt, falls $\exists K\in\mathbb{R}: \forall n\in\mathbb{N}: a_n\geq K$
- (ii) Eine Folge $(a_n)_{n\geq 1}$ heißt beschränkt, falls $\exists K\in\mathbb{R}: \forall n\in\mathbb{N}: |a_n|\leq K$

Satz 7

Jede konvergente Folge ist beschränkt.

Satz 8. Eindeutigkeit des Limes

Der Grenzwert einer konvergenten Folge ist immer eindeutig.

Satz 9. Algebraische Operationen mit dem Limes

Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ Folgen, sodass $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$.

- (i) $\lim_{n \to \infty} a_n + b_n = a + b$
- (ii) $\lim_{n\to\infty} a_n \cdot b_n = a \cdot b$
- (iii) $b \neq 0 \Rightarrow \exists N \in \mathbb{N}: \forall n \geq N: b_n \neq 0$ sowie $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

Satz 10. Sandwich Theorem

- (i) Seien $(x_n)_{n \ge 1}$ und $(y_n)_{n \ge 1}$ Folgen mit $\lim_{n \to \infty} x_n = x$ und $\lim_{n \to \infty} y_n = y$. Wenn x < y folgt $\exists N \in \mathbb{N}$: $\forall n \ge N$: $x_n < y_n$.
- (ii) Seien $(x_n)_{n\geq 1}$ und $(y_n)_{n\geq 1}$ Folgen mit $\lim_{n\to\infty} x_n = x$ und $\lim_{n\to\infty} y_n = y$. Wenn $\exists n_0 \in \mathbb{N}: \forall n \geq n_0: x_n \leq y_n$ folget $x \leq y$.
- (iii) Seien $(a_n)_{n\geq 1}$ $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ Folgen, sodass $\exists n_0 \in \mathbb{N} : \forall n \geq n_0 : a_n \leq b_n \leq c_n$. Wenn a_n und c_n konvergieren mit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$, dann konvergiert b_n mit $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$ (Sandwich Theorem).

Definition 14. Uneigentliche Konvergenz

Eine Folge $(a_n)_{n\geq 1}$ heißt uneigentlich konvergent gegen ∞ (bzw. $-\infty$) wenn

$$\forall K \in \mathbb{R}: \exists n_0 \in \mathbb{N}: \forall n \geq n_0: a_n > K \text{ (bzw. } a_n < K)$$

Satz 11

- (i) Sei $(a_n)_{n\geq 1}$ eine Folge, die gegen $\pm \infty$ konvergiert. Dann folgt $\exists N\in\mathbb{N}: \forall n\geq N: a_n\neq 0$ sowie $\lim_{n\to\infty}\frac{1}{a_n}=0$
- (ii) Sei $(a_n)_{n\geq 1}$ eine Folge, sodass $\lim_{n\to\infty} a_n = 0$. Mit der Annahme $\forall n\geq N : a_n>0$ (bzw. $a_n<0$) folgt $\lim_{n\to\infty}\frac{1}{a_n}=\infty$ (bzw. $-\infty$).

8

2.2 Das Cauchysche Konvergenzkriterium

Definition 15. Cauchy Folge

Eine Folge heißt Cauchy Folge genau dann, wenn

$$\forall \varepsilon > 0: \exists n_0 \in \mathbb{N}: \forall n, m \geq n_0: |a_n - a_m| < \varepsilon$$

Satz 12

Jede konvergente Folge ist eine Cauchy Folge

Definition 16. Teilfolgen

Sei $(a_n)_{n\geq 1}$ eine Folge und $n_1 < n_2 < n_3 < \dots$ eine aufsteigende Folge natürlicher Zahlen, dann heißt die Folge $(a_{n_k})_{k\geq 1}$ $(a_{n_1},a_{n_2},a_{n_3},\dots)$ Teilfolge von $(a_n)_{n\geq 1}$.

Satz 13. Bolzano-Weierstraß

Jede beschränkte Folge reeller Zahlen besitzt mindestens eine konvergente Teilfolge.

Satz 14. Intervallschachtelungs-Prinzip

Sei $I_1 \supset I_2 \supset I_3 \supset \dots$ eine absteigende Folge von abgeschlossenen Intervallen in \mathbb{R} , sodass $\lim_{k\to\infty} l(I_k) = 0$. Dann $\exists ! x_0 \in \mathbb{R} : \forall k \geq 1 : x_0 \in I_k$

Definition 17. Monoton wachsende bzw. fallende Folgen

Eine Folge $(a_n)_{n>1}$ heißt

- monoton wachsend, falls $\forall n \geq 1$: $a_n \leq a_{n+1}$
- streng monoton wachsend, falls $\forall n \geq 1$: $a_n < a_{n+1}$
- monoton fallend, falls $\forall n \geq 1$: $a_n \geq a_{n+1}$
- streng monoton fallend, falls $\forall n \geq 1: a_n > a_{n+1}$

Satz 15

- Jede monoton wachsende und nach oben beschränkte Folge konvergiert
- Jede monoton fallende und nach unten beschränkte Folge konvergiert

Satz 16

Jede Cauchy Folge konvergiert.

2.2.1 Häufungspunkte einer Folge

Definition 18. Häufungspunkt

Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt einer reellen Folge, wenn es eine Teilfolge dieser Folge gibt, die gegen a konvergiert.

Definition 19. Limes superior und inferior

- Sei $(a_n)_{n\geq 1}$ eine nach oben beschränkte Folge. Dann heißt $\lim_{n\to\infty} \sup a_n = \lim_{n\to\infty} \sup \{a_k \mid k\geq n\}$ Limes superior.
- Sei $(a_n)_{n\geq 1}$ eine nach unten beschränkte Folge. Dann heißt $\lim_{n\to\infty}\inf a_n=\lim_{n\to\infty}\inf\{a_k\mid k\geq n\}$ Limes inferior.

Satz 17. Größter und kleinster Häufungspunkt

Der Limes Superior ist der $gr\"{o}\beta te$ Häufungspunkt und der Limes Inferior der kleinste Häufungspunkt.

Satz 18

Sei $(a_n)_{n\geq 1}$ eine beschränkte Folge. Dann

$$(a_n)_{n\geq 1}$$
 konvergent \iff $\lim_{n\to\infty}\sup a_n=\lim_{n\to\infty}\inf a_n$ \iff $\exists !$ Häufungspunkt

2.3 Folgen komplexer Zahlen

2.3.1 Der Körper der komplexen Zahlen

Satz 19

 $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ ist ein Körper (der Körper der komplexen Zahlen).

Definition 20. Real- und Imaginärteil, komplexe Konjugation

Sei
$$z = x + iy$$
. Dann ist $Re(z) = x$ und $Im(z) = y$ sowie $z^* = x - iy$.

Definition 21. Komplexer Betrag

Sei
$$z = x + iy$$
. Dann ist $|z| = \sqrt{x^2 + y^2}$.

Satz 20. Eigenschaften des komplexen Betrags

- (i) $\forall z \in \mathbb{C}: |z| \ge 0$ sowie $|z| = 0 \iff z = 0$
- (ii) $\forall z_1, z_2 \in \mathbb{C}: |z_1 z_2| = |z_1||z_2|$
- (iii) $\forall z_1, z_2 \in \mathbb{C}: |z_1 + z_2| \le |z_1| + |z_2|$

Satz 21

Seien $a,b\in\mathbb{C}.$ Dann hat die Gleichung $z^2+az+b=0$ mindestens eine komplexe Lösung.

Satz 22. Fundamentalsatz der Algebra

Jedes Polynom P mit $\operatorname{grad}(P) \geq 1$ besitzt mindestens eine Nullstelle in \mathbb{C} .

2.3.2 Konvergenz in $\mathbb C$

Definition 22. Konvergenz einer komplexen Folge

Eine Folge $(z_n)_{n\geq 1}$ komplexer Zahlen heißt konvergent gegen $z_0\in\mathbb{C},$ wenn:

$$\forall \varepsilon > 0 \colon \exists n_0 \in \mathbb{N} \colon \forall n \geq n_0 \colon |z_n - z_0| < \varepsilon$$

Satz 23

Komplexe Folge $(z_n)_{n\geq 1}$ konvergiert $\iff \operatorname{Re}((z_n)_{n\geq 1})$ und $\operatorname{Im}((z_n)_{n\geq 1})$ konvergiert.

Definition 23. Komplexe Cauchy-Folge

Eine komplexe Folge $(z_n)_{n\geq 1}$ wird Cauchy-Folge genannt, wenn:

$$\forall \varepsilon > 0: \exists n_0 \in \mathbb{N}: \forall n, m \ge n_0: |z_n - z_m| < \varepsilon$$

Satz 24

 $(z_n)_{n\geq 1}$ ist Cauchy-Folge \iff $\operatorname{Re}((z_n)_{n\geq 1})$ und $\operatorname{Im}((z_n)_{n\geq 1})$ sind Cauchy-Folgen.

Satz 25. Algebraische Operationen mit komplexen Folgen

Seien $(z_n)_{n\geq 1}$ und $(w_n)_{n\geq 1}$ Folgen, sodass $\lim_{n\to\infty} z_n = z_0$ und $\lim_{n\to\infty} w_n = w_0$.

$$(i) \lim_{n \to \infty} z_n + w_n = z_0 + w_0$$

(ii)
$$\lim_{n \to \infty} z_n \cdot w_n = z_0 \cdot w_0$$

(iii)
$$w_0 \neq 0 \Rightarrow \lim_{n \to \infty} \frac{z_n}{w_n} = \frac{z_0}{w_0}$$

Definition 24. Beschränktheit komplexer Folgen

Eine komplexe Folge $(z_n)_{n\geq 1}$ heißt echt beschränkt, falls $\exists K\in\mathbb{R}_+: \forall n\geq 1: |z_n|< K$.

Satz 26. Bolzano-Weierstraß für komplexe Zahlen

Sei $(z_n)_{n\geq 1}$ eine beschränkte Folge komplexer Zahlen. Dann besitzt $(z_n)_{n\geq 1}$ eine konvergente Teilfolge.

Kapitel 3

Reihen

Definition 25. Reihendefinition

Sei $(z_n)_{n\geq 1}$ eine Folge komplexer Zahlen. Dann heißt $s_m=\sum_{k=1}^m z_k$ Partialsumme von $(z_n)_{n\geq 1}$. Die Folge $(s_m)_{m\geq 1}$ heißt Reihe mit den Gliedern $(z_n)_{n\geq 1}$ und wird mit $\sum_{k=1}^\infty z_k$ bezeichnet.

Satz 27. Geometrische Reihe

Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert die sogenannte geometrische Reihe $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \in \mathbb{C}$ absolut.

Satz 28

Eine notwendige, aber nicht hinreichende Bedingung für die Konvergenz einer Reihe $\sum_{n=1}^{\infty} a_n$ ist, dass a_n eine Nullfolge ist. Es gilt also:

$$\lim_{n \to \infty} a_n \neq 0 \implies \sum_{n=1}^{\infty} a_n \text{ divergient}$$

3.1 Konvergenz Kriterien für Reihen

Satz 29. Cauchysches Konvergenzkriterium für Reihen

$$\sum_{n=1}^{\infty} z_n \text{ konvergiert } \iff \forall \varepsilon > 0 : \exists n_0 \in \mathbb{N} : \forall n, m \ge n_0 : \left| \sum_{k=n}^m z_k \right| < \varepsilon$$

Definition 26. Absolute Konvergenz

Die Reihe $\sum_{k=0}^{\infty} z_n$ ist absolut konvergent, wenn die Reihe $\sum_{k=0}^{\infty} |z_k|$ konvergiert. Jede absolute konvergente Reihe konvergiert.

Satz 30. Majoranten- und Minorantenkriterium

Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ zwei reelle Reihen.

- (i) Majorantenkriterium: Falls $\sum_{n=0}^{\infty} b_n$ konvergiert und $\exists N \in \mathbb{N}: \forall n \geq N: |a_n| \leq b_n$, dann konvergiert auch $\sum_{n=0}^{\infty} a_n$ absolut.
- (i) Minorantenkriterium: Wenn $\forall k \in \mathbb{N}: a_k \geq 0, \sum_{n=0}^{\infty} b_n$ divergiert und $\exists N \in \mathbb{N}: \forall n \geq N: a_n \geq b_n \geq 0,$ dann divergiert auch $\sum_{n=0}^{\infty} a_n$.

Satz 31. Leibnizsches Konvergenzkriterium

Sei $(a_n)_{n\geq 1}$ eine monoton fallende reelle Folge, sodass $\forall n\geq 1$: $a_n\geq 0$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert die sogenannte alternierende Reihe $\sum_{n=1}^{\infty}(-1)^na_n$.

Satz 32

Sei $(a_n)_{n\geq 1}$ eine monoton fallende reelle Folge, sodass $\forall n\geq 1$: $a_n\geq 0$. Dann konvergiert die Reihe $\sum_{n=1}^{\infty}a_n\iff\sum_{k=0}^{\infty}2^ka_{2^k}$ konvergiert.

3.2 Reihen mit komplexen Gliedern

Satz 33. Majoranten- und Minorantenkriterium für komplexe Reihen

Das Majoranten- bzw. Minorantenkriterium (Satz 30) gilt auch, wenn $(a_n)_{n\geq 1}$ eine komplexe Folge ist.

Satz 34. Cauchyscher Test

Sei $\sum a_n$ eine komplexe Reihe mit $\alpha = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$. Dann gilt:

- 1. $\alpha < 1$: $\sum a_n$ konvergiert absolut
- 2. $\alpha > 1$: $\sum a_n$ divergient
- 3. $\alpha = 1$: keine Aussage möglich

Satz 35. d'Alembertsches Quotientenkriterium

Sei $\sum z_n$ eine komplexe Reihe mit $\alpha = \lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right|$. Dann gilt:

- 1. $\alpha < 1$: $\sum z_n$ konvergiert absolut
- 2. $\alpha > 1$: $\sum z_n$ divergiert
- 3. $\alpha = 1$: keine Aussage möglich

Definition 27. Potenzreihen

Seien $z_0, z \in \mathbb{C}$ und $(c_n)_{n\geq 0}$ eine Folge komplexer Zahlen. Reihen der Gestalt $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ werden Potenzreihen genannt.

Satz 36. Cauchy-Hadamard: Konvergenz von Potenzreihen

Sei $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ eine Potenzreihe. Dann gilt:

(i) Die Potenzreihe konvergiert innerhalb des Kreises:

$$|z - z_0| < \frac{1}{\lim_{n \to \infty} \sup |c_n|^{\frac{1}{n}}}$$

- (ii) Sie divergiert außerhalb des Kreises
- (iii) Auf dem Kreisrand ist keine Aussage möglich

3.3 Umgeordnete Reihen

Definition 28. τ -umgeordnete Reihe

Sei $\tau \colon \mathbb{N} \to \mathbb{N}$ eine bijektive Abbildung. Dann ist $\sum_{n=1}^{\infty} z_{\tau(n)}$ die τ -umgeordnete Reihe.

Satz 37. Umordnungssatz

Sei $\sum_{n=1}^{\infty} z_n$ eine komplexe, absolut konvergente Reihe. Dann konvergiert auch jede Umordnung dieser Reihe gegen denselben Grenzwert.

Satz 38. Riemannscher Umordnungssatz

Sei $\sum_{n=1}^{\infty} a_n$ eine konvergente, aber **nicht** absolut konvergente Reihe reeller Zahlen. Dann gilt:

- (i) Sei $c \in \mathbb{R}$ beliebig. Dann $\exists \tau \colon \mathbb{N} \to \mathbb{N}$ bijektive Abbildung, sodass $\sum_{n=1}^{\infty} a_{\tau(n)} = c$
- (ii) $\exists \tau_+ : \mathbb{N} \to \mathbb{N}, \tau_- : \mathbb{N} \to \mathbb{N}$ bijektive Abbildungen, sodass $\sum_{n=1}^\infty a_{\tau_+(n)} = +\infty$ und $\sum_{n=1}^\infty a_{\tau_-(n)} = -\infty$

Satz 39. Cauchy-Produkt von Reihen

Seien $\sum_{n=0}^{\infty} z_n$ und $\sum_{n=0}^{\infty} w_n$ absolut konvergente Reihen. Für $n \geq 0$ wird definiert:

$$c_n = \sum_{k=0}^n z_{n-k} w_k$$

Dann ist

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} z_n\right) \left(\sum_{n=0}^{\infty} w_n\right)$$

absolut konvergent.

Satz 40. Eulersche Zahl

Es gilt:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

sowie $e \in \mathbb{R} \setminus \mathbb{Q}$.

Satz 41. Eigenschaften der Exponentialfunktion

Es gilt:

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

sowie:

$$\exp(z_1 + z_2) = \exp(z_1) \cdot \exp(z_2)$$

Satz 42. Eulersche Formel

$$\forall z \in \mathbb{C}: \exp(iz) = \cos(z) + i\sin(z)$$

Kapitel 4

Stetige Funktionen

4.1 Bezeichnungen und Definitionen

Im Folgenden wird mit \mathbb{K} (\mathbb{R} oder \mathbb{C}) der zu betrachtente Körper bezeichnet. Sei $M \subset \mathbb{K}$ der Definitionsbereich. Eine Funktion $f \colon M \to \mathbb{K}$ ordnet jedem Element $x \in M$ ein Element $y \in \mathbb{K}$ zu (f(x) = y).

Die Menge $f(M) = \{y \in \mathbb{K} \mid \exists x \in M : f(x) = y\}$ wird als Wertemenge order auch Bild der Funktion f bezeichnet. Allgemeiner heißt $f(A) = \{y \in \mathbb{K} \mid \exists a \in A : f(a) = y\}$, wenn $A \subset M$, das Bild von A unter f.

Dabei bezeichnet $f_{|A}: A \to \mathbb{K}$ mit $f_{|A}(a) = f(a)$ die Restriktion von f.

Definition 29. Operationen mit Funktionen

Seien $f, g: M \to \mathbb{K}$.

(i)
$$(f+q)(x) = f(x) + q(x)$$

(ii)
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

(iii)
$$(\lambda \cdot f)(x) = \lambda \cdot f(x)$$
 wobe
i $\lambda \in \mathbb{K}$

(iv)
$$\frac{f}{g}$$
: $M \setminus \{z \in M \mid g(z) = 0\} \to \mathbb{K}$ mit $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Definition 30. Komposition von Funktionen

Sei $f: M \to \mathbb{K}$ und $g: E \to \mathbb{K}$ sodass $f(M) \subset E$. Dann bezeichnet $(g \circ f): M \to \mathbb{K}$ mit $(g \circ f)(x) = g(f(x))$ die Komposition der Funktionen f und g.

4.2 Stetigkeit von Funktionen

Definition 31. Stetigkeit einer Funktion

Sei $D \subset \mathbb{K}$ und $f: D \to \mathbb{K}$ sowie $z_0 \in D$.

$$f$$
 stetig in $z_0 \iff \forall \varepsilon > 0$: $\exists \delta > 0$: $\forall z \in D$: $|z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$

f heißt stetig, wenn f in jedem $z_0 \in D$ stetig ist.

Satz 43. Folgenkriterium

Sei $f: D \to \mathbb{K}$ und $z_0 \in D$.

$$f$$
 stetig in $z_0 \iff \forall (z_n)_{n\geq 1} \subset D$: $\lim_{n\to\infty} z_n = z_0 \implies \lim_{n\to\infty} f(z_n) = f(z_0)$

Satz 44. Rationale Operationen auf stetigen Funktionen

Seien $f, g: D \to \mathbb{K}$ mit $D \subset \mathbb{K}$ beliebig. Wenn f, g in $z_0 \in D$ stetig sind, dann gilt:

- (i) f + g ist stetig in z_0
- (ii) $f \cdot g$ ist stetig in z_0
- (iii) $\lambda \cdot f$ ist stetig in z_0
- (iv) falls $g(z_0) \neq 0$ gilt $\frac{f}{g}$ ist stetig in z_0

Satz 45. Komposition von stetigen Funktionen

Sei $f: D \to \mathbb{K}$ und $g: E \to \mathbb{K}$ sodass $f(D) \subset E$. Sei außerdem f in $z_0 \in D$ stetig, sowie g in $w_0 = f(z_0) \in E$ stetig. Dann ist die Funktion $g \circ f$ in z_0 stetig.

4.3 Grenzwerte von Funktionen

Definition 32. Häufungspunkte einer Menge

Sei $M \subset \mathbb{K}$ eine beliebige Menge. Ein Punkt $p \in \mathbb{K}$ ist ein Häufungspunkt der Menge M, wenn $\forall \varepsilon > 0$ die Menge $\{z \in \mathbb{K} \mid |z-p| < \varepsilon\}$ eine unendliche Teilmenge von M enthält.

Definition 33. Grenzwert einer Funktion

Sei $f: D \to \mathbb{K}$ und $z_0 \in \mathbb{K}$ ein Häufungspunkt von D. Dann ist $A \in \mathbb{K}$ der Grenzwert von f, wenn z gegen z_0 strebt, falls gilt:

$$\forall \varepsilon > 0: \exists \delta > 0: \forall z \in D: 0 < |z - z_0| < \delta \implies |f(z) - A| < \varepsilon$$

$$\lim_{z \to z_0} f(z) = A$$

Satz 46

 $\lim_{z\to z_0} f(z) = A$ gilt genau dann, wenn für jede Folge $(z_n)_{n\geq 1}$ von Elementen aus $D\setminus\{z_0\}$ die gegen z_0 konvergieren, die Folge $(f(z_n))_{n\geq 1}$ gegen A konvergiert.

Definition 34. Beschränkheit einer Funktion

Sei $f: D \to \mathbb{K}$.

$$f$$
 ist beschränkt $\iff \exists M > 0: \forall z \in D: |f(z)| \leq M$

Ist f beschränkt, wird

$$||f||_{C^o} = \sup\{|f(z)| \mid z \in D\}$$

als Supremumsnorm von f bezeichnet.

Satz 47. Eigenschaften der Supremumsnorm

Seien f, g beschränkte Funktionen. Dann gilt:

- (i) $||f||_{C^o} = 0 \iff f = 0$
- (ii) $||\lambda \cdot f||_{C^o} = |\lambda|||f||_{C^o}$
- (iii) $||f + g||_{C^o} \le ||f||_{C^o} + ||g||_{C^o}$

Definition 35. Konvergent normale Reihen

Eine Reihe $\sum_{n=1}^{\infty} f_n$ von Funktionen $f_n : D \to \mathbb{K}$ heißt konvergent normal genau dann, wenn $\forall n \geq 1 : f_n$ beschränkt ist und $\sum_{n=1}^{\infty} ||f_n||_{C^o}$ konvergent.

Satz 48

Sei $\sum_{n=0}^{\infty} f_n$ konvergent normal. Für $z \in D$ setze $f(z) = \sum_{n=0}^{\infty} f_n(z)$. Dann ist die Funktion $f: D \to \mathbb{K}$ stetig.

Bemerkung 3. Potenzreihen sind konvergent normal

Sei $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ eine Potenzreihe mit Konvergenzradius $|z-z_0| < R$. Dann ist die Potenzreihe im Konvergenzradius konvergent normal.

4.4 Globale Eigenschaften stetiger Funktionen

Satz 49. Zwischenwertsatz von Bolzano-Cauchy

Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion mit $f(a) \cdot f(b) < 0$. Dann $\exists p \in [a, b]: f(p) = 0$.

Satz 50

Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann ist f beschränkt und $\exists x_m,x_M\in[a,b]\colon f(x_m)=\inf\{f(x)\mid x\in[a,b]\}$ sowie $f(x_M)=\sup\{f(x)\mid x\in[a,b]\}.$

Definition 36. Gleichmäßig stetig

Eine Funktion $f: I \to \mathbb{R}$ heißt in I gleichmäßig stetig wenn gilt:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x_1, x_2 \in I : |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon$$

Satz 51

Jede auf einem Intervall [a, b] mit $a, b \in \mathbb{R}$ stetige Funktion $f: [a, b] \to \mathbb{R}$ ist gleichmäßig stetig.

Definition 37

Sei $f: [a, \infty[\to \mathbb{R}, \text{ dann gilt:}]$

(i)
$$\lim_{x \to \infty} f(x) = \alpha \in \mathbb{R} \iff \forall \varepsilon > 0 : \exists N \in \mathbb{R} : \forall x > \max(a, N) : |f(x) - \alpha| < \varepsilon$$

(ii)
$$\lim_{x \to \infty} f(x) = \infty \iff \forall M > 0 : \exists K \in \mathbb{R} : \forall x > K : f(x) > M$$

(iii)
$$\lim_{x \to \infty} f(x) = -\infty \iff \forall M > 0 : \exists K \in \mathbb{R} : \forall x > K : f(x) < M$$

Für $\lim_{x\to -\infty} f(x)$ ähnlich.

Definition 38. Monotone Funktionen

Sei $M \subset \mathbb{R}$ eine Menge, $f: M \to \mathbb{R}$ eine Funktion. Dann heißt f:

- monoton wachsend wenn $\forall x_1, x_2 \in M: x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$
- streng monoton wachsend wenn $\forall x_1, x_2 \in M: x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
- monoton fallend wenn $\forall x_1, x_2 \in M: x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$
- streng monoton fallend wenn $\forall x_1, x_2 \in M: x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Satz 52

Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion. Dann ist f genau dann injektiv wenn f streng monoton ist.

Definition 39. Umkehrabbildung

Seien $M_1, M_2 \subset \mathbb{R}$ und $f: M_1 \to M_2$ bijektiv. Dann ist $g: M_2 \to M_1$ genau dann die Umkehrabbildung (Inverse, $g = f^{-1}$), wenn $\forall y \in M_2$: $(f \circ g)(y) = y$ und $\forall x \in M_1$: $(g \circ f)(x) = x$.

Satz 53

Sei $f: [a, b] \to \mathbb{R}$ eine stetige, streng monotone Funktion. Dann ist $f([a, b]) = J \subset \mathbb{R}$ bijektiv und $f^{-1}: J \to [a, b]$ ist auch stetig und monoton.

4.5 Landau Symbole

Definition 40. Klein o und groß \mathcal{O}

Sei $f, q:]a, \infty[\to \mathbb{R}.$

- f(x) = o(g(x)) für $x \to \infty$ wenn $\forall \varepsilon > 0: \exists R > 0: \forall x > \max(R, a): |f(x)| < \varepsilon |g(x)|$
- $f(x) = \mathcal{O}(g(x))$ für $x \to \infty$ wenn $\exists c > 0 : \exists R \in \mathbb{R} : \forall x > R : |f(x)| \le c|g(x)|$

Sei $f, g: I \to \mathbb{R}$ mit $I \subset \mathbb{R}$. Dann ist:

- f(x) = o(g(x))) für $x \to x_0$ wenn $\forall \varepsilon > 0$: $\exists \delta > 0$: $\forall x \in I \cap]x_0 - \delta, x_0 + \delta[: |f(x)| < \varepsilon |g(x)|$
- $f(x) = \mathcal{O}(g(x))$) für $x \to x_0$ wenn $\exists c > 0 : \exists \delta > 0 : \forall x \in I \cap]x_0 - \delta, x_0 + \delta[: |f(x)| < c|g(x)|$

4.6 Logarithmus

Satz 54

Die Exponentialfunktion $\exp : \mathbb{R} \to \mathbb{R}$ ist stetig, streng monoton wachsend und $\exp(\mathbb{R}) =]0, \infty[$.

Die Umkehrfunktion heißt (natürlicher) Logarithmus log: $]0, \infty[\to \mathbb{R}.$

Satz 55. Eigenschaften des Logarithmus

- $\forall x, y \in]0, \infty[: \log(xy) = \log(x) + \log(y)$
- $\log(1) = 0$
- $\log(x) > 0 \iff x > 1$

Definition 41. Potenzen einer positiv reellen Zahl

Sei $a \in]0, \infty[$, $z \in \mathbb{C}$. Dann ist $a^z = \exp(z \log(a))$.

Satz 56

Die Funktion $f(x) = a^x$, $f: \mathbb{R} \to]0, \infty[$ ist stetig und:

- $\forall x, y \in \mathbb{R}$: $a^{x+y} = a^x a^y$
- $\forall n \in \mathbb{N}: a^{\frac{1}{n}} = \sqrt[n]{a}$
- $\forall x, y \in \mathbb{R}: (a^x)^y = a^{xy}$

Satz 57

Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige reelle Funktion mit $\forall x, y \in \mathbb{R}$: f(x+y) = f(x)f(y). Dann ist f entweder $f(x) = a^x$ mit $a \in \mathbb{R}_+$ oder $\forall x \in \mathbb{R}$: f(x) = 0.

Bemerkung 4. Grenzwerte der Logarithmus Funktion

- (i) $\lim_{x\to 0} \log x = -\infty$ wobei x > 0
- (ii) $\lim_{x \to \infty} \log x = \infty$
- (iii) Sei $\alpha \in \mathbb{R}_+$ dann $\lim_{x \to 0} x^\alpha = 0$ wobei x > 0
- (iv) $\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$

4.7 Trigonometrische Funktionen

Definition 42. Sinus und Kosinus

Da für $z \in \mathbb{C} \exp(iz) = \cos(z) + i\sin(z)$ gilt:

$$\cos(z) = \sum_{k=0}^{\infty} = \frac{(-1)^k}{(2k)!} z^{2k} = \frac{\exp(iz) + \exp(-iz)}{2}$$

$$\sin(z) = \sum_{k=0}^{\infty} = \frac{(-1)^k}{(2k+1)!} z^{2k+1} = \frac{\exp(iz) - \exp(-iz)}{2i}$$

sowie cos(-z) = cos(z) und sin(-z) = -sin(z).

Satz 58. Additions theoreme

Sei $z_1, z_2 \in \mathbb{C}$.

$$\cos(z_1 + z_2) = \cos(z_1)\cos(z_2) - \sin(z_1)\sin(z_2)$$

$$\sin(z_1 + z_2) = \sin(z_1)\cos(z_2) + \sin(z_2)\cos(z_1)$$

Satz 59. Analytische Eigenschaften von Sinus und Cosinus

- (i) \sin und \cos \sin auf $\mathbb C$ stetig
- (ii) $\forall x \in \mathbb{R}$: $\sin^2 x + \cos^2 x = 1$
- (iii) r_{2n+2} und r_{2n+3} bezeichnen die Restglieder von Cosinus und Sinus, also

$$\cos(z) = \sum_{k=0}^{n} = \frac{(-1)^k}{(2k)!} x^{2k} + r_{2n+2}(x)$$

$$\sin(z) = \sum_{k=0}^{n} = \frac{(-1)^k}{(2k+1)!} x^{2k+1} + r_{2n+3}(x)$$

Es gilt:

$$\forall |x| < 2n + 3: |r_{2n+2}| \le \frac{|x|^{2n+2}}{(2n+2)!}$$

$$\forall |x| < 2n + 4: |r_{2n+3}| \le \frac{|x|^{2n+3}}{(2n+3)!}$$

Satz 60. Nullstelle des Cosinus

 $\cos: [0,2] \to \mathbb{R}$ hat genau eine Nullstelle, nämlich $\frac{\pi}{2}$.

Satz 61. Folgerungen aus den Additionstheoremen

- $\sin x_1 + \sin x_2 = 2\sin(\frac{x_1+x_2}{2})\cos(\frac{x_1-x_2}{2})$
- $\sin x_1 \sin x_2 = 2\cos(\frac{x_1+x_2}{2})\sin(\frac{x_1-x_2}{2})$
- $\cos x_1 + \cos x_2 = 2\cos(\frac{x_1+x_2}{2})\cos(\frac{x_1-x_2}{2})$
- $\cos x_1 \cos x_2 = -2\sin(\frac{x_1+x_2}{2})\sin(\frac{x_1-x_2}{2})$

Bemerkung 5. Folgerungen der Nullstelle des Cosinus

- $\exp(i\frac{\pi}{2}) = i$
- $\exp(i\pi) = -1$
- $\forall z \in \mathbb{C}$: $\exp(z + 2\pi ki) = \exp(z)$ wenn $k \in \mathbb{Z}$. Gilt auch für sin und cos
- $\sin(\frac{\pi}{2} z) = \cos(z)$ sowie $\cos(\frac{\pi}{2} z) = \sin(z)$
- $\cos(z) = 0 \iff z \in \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\}\$ $\sin(z) = 0 \iff z \in \{k\pi \mid k \in \mathbb{Z}\}\$

Satz 62. Umkehrfunktion von Sinus und Cosinus

- (i) Die Funktion cos: $[0,\pi] \to [-1,1]$ ist streng monoton fallend und bildet das Intervall $[0,\pi]$ bijektiv auf [-1,1] ab. Die Umkehrfunktion ist $\arccos: [-1,1] \to [0,\pi]$
- (ii) Die Funktion $\sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ ist streng monoton wachsend und bildet das Intervall $[-\frac{\pi}{2}, \frac{\pi}{2}]$ bijektiv auf [-1, 1] ab. Die Umkehrfunktion ist $\arcsin: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$

Bemerkung 6. Gültigkeitsbereich der Umkehrfunktion

Es gilt $\forall x \in [-1, 1]$: $\cos(\arccos(x)) = x$ und $\forall x \in [0, \pi]$: $\arccos(\cos(x)) = x$.

Definition 43. Tangens

(i) tan: $\mathbb{C} \setminus \{k\pi + \frac{\pi}{2} \mid k \in \mathbb{Z}\} \to \mathbb{C}$ definiert durch

$$\tan z = \frac{\sin z}{\cos z}$$

tan:] $-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}$ ist streng monoton wachsend. Damit ist die Umkehrfunktion arctan: $\mathbb{R} \to] -\frac{\pi}{2}, \frac{\pi}{2}[$.

(ii) $\cot : \mathbb{C} \setminus \{k\pi \mid k \in \mathbb{Z}\} \to \mathbb{C}$ definiert durch

$$\cot z = \frac{\cos z}{\sin z}$$

24

Kapitel 5

Differentialrechnung

Definition 44. Differenzierbarkeit einer Funktion

Sei $V \subset \mathbb{R}$ eine Menge und $f: V \to \mathbb{R}$ oder \mathbb{C} eine Funktion. Dann heißt f in einem Punkt $x_0 \in V$ differenzierbar falls x_0 ein Häufungspunkt von V ist und

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \qquad (x \neq x_0)$$

existiert.

5.1 Allgemeine Eigenschaften und wichtige Ableitungsregeln

Satz 63. Stetigkeit von differenzierbaren Funktionen

Sei $f: I \to \mathbb{R}$ oder \mathbb{C} eine Funktion, die in $x_0 \in I$ differenzierbar ist. Dann ist f in x_0 stetig.

Satz 64. Lineare Approximation

Sei $f: I \to \mathbb{R}$ eine Funktion. Dann ist f genau dann in $x_0 \in I$ differenzierbar, wenn es eine Konstante $c \in \mathbb{R}$ gibt, so dass $f(x) = f(x_0) + c(x - x_0) + o(|x - x_0|)$ für $x \to x_0$ (mit $c = f'(x_0)$).

Satz 65. Algebraische Operationen

Seien $f_1, f_2: I \to \mathbb{R}$ Funktionen die in x_0 differenzierbar sind und $\lambda \in \mathbb{R}$. Dann sind folgende Operationen auch differenzierbar:

(i)
$$(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$$

- (ii) $(\lambda f_1)'(x_0) = \lambda f_1'(x_0)$
- (iii) $(f_1 \cdot f_2)'(x_0) = f_1'(x_0)f_2(x_0) + f_1(x_0)f_2'(x_0)$
- (iv) $f_2(x_0) \neq 0 \Rightarrow \left(\frac{f_1}{f_2}\right)'(x_0) = \frac{f_1'(x_0)f_2(x_0) f_1(x_0)f_2'(x_0)}{f_2^2(x_0)}$

Satz 66. Kettenregel

Sei $f_1: I_1 \to \mathbb{R}$ und $f_2: I_2 \to \mathbb{R}$, sodass $f_1(I_1) \subset I_2$. Die Funktion f_1 sei in $x_1 \in I_1$ differenzierbar und f_2 in $x_2 = f(x_1)$ differenzierbar. Dann ist $g(x) = (f_1 \circ f_2)(x)$ in x_2 differenzierbar und $g'(x) = f'_2(f_1(x_1))f'_1(x_1)$.

Satz 67. Ableitung der Umkehrfunktion

Sei $f: I \to J$ bijektiv und stetig. Wenn f im Punkt $x_0 \in I$ differenzierbar ist und $f'(x_0) \neq 0$, dann ist $f^{-1}: J \to I$ im Punkt $y_0 = f(x_0) \in J$ differenzierbar und

$$(f^{-1}(y_0))' = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$$

Definition 45. Höhere Ableitungen und stetige Differenzierbarkeit

Sei $f: I \to \mathbb{R}$ differenzierbar. Falls $f': I \to \mathbb{R}$ in x_0 differenzierbar ist, so heißt

$$(f')'(x_0) = f''(x_0)$$

die zweite Ableitung.

Mit Induktion: $f: I \to \mathbb{R}$ heißt k-mal differenzierbar in x_0 , falls die (k-1)-te Ableitung $f^{(k-1)}: I \to \mathbb{R}$ in x_0 differenzierbar ist, $f^{(k)}(x_0) = (f^{(k-1)}(x_0))'$.

- f heißt k-mal differenzierbar, wenn f in jedem Punkt aus I k-mal differenzierbar ist
- f heißt k-mal stetig differenzierbar in I, wenn f k-mal differenzierbar ist und $f^{(k)}: I \to \mathbb{R}$ stetig ist.

5.2 Die zentralen Sätze der Differentialrechnung

Definition 46. Lokale Extrema

Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine reelle Funktion. Man sagt, f hat in $x_0 \in I$ ein

- (i) lokales Maximum (bzw. streng lokales Maximum) wenn $\exists \varepsilon_0 > 0 \colon \forall x \in I \cap]x_0 \varepsilon_0, x_0 + \varepsilon_0 [\colon f(x) \leq f(x_0) \text{ (bzw. } f(x) < f(x_0) \text{ mit } x \neq x_0)$
- (ii) lokales Minimum (bzw. streng lokales Minimum) wenn $\exists \varepsilon_0 > 0 \colon \forall x \in I \cap]x_0 \varepsilon_0, x_0 + \varepsilon_0[\colon f(x) \ge f(x_0) \text{ (bzw. } f(x) > f(x_0) \text{ mit } x \ne x_0)$

Satz 68. Satz von Fermat

Sei $f: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$ und sei in x_0 ein lokales Extrema sowie $\exists \delta_0: |x_0 - \delta_0, x_0 + \delta_0| \subset I$. Dann gilt $f'(x_0) = 0$.

Satz 69. Satz von Rolle

Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion mit f(a) = f(b). Wenn f in]a, b[differenzierbar ist, dann gilt: $\exists x_0 \in]a, b[: f'(x_0) = 0.$

Satz 70. Mittelwertsatz der Differentialrechnung

Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion die auf dem Intervall]a, b[differenzierbar ist. Dann gilt:

$$\exists x_0 \in]a, b[: f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Satz 71. Satz von Cauchy

Seien $f, g: [a, b] \to \mathbb{R}$ stetige Funktionen die auf]a, b[differenzierbar sind. Dann gilt: $\exists x_0 \in]a, b[: f'(x_0)(g(b) - g(a)) = g'(x_0)(f(b) - f(a))$

Satz 72. Monotonie von Funktionen

Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion die auf]a, b[differenzierbar ist. Dann gilt:

27

- (i) $\forall x \in]a, b[: f'(x) > 0 \implies f \text{ ist } streng \text{ monoton wachsend.}$
- (ii) f ist monoton wach send $\Rightarrow \forall x \in]a, b[: f'(x) \ge 0.$

Satz 73. Minimum bzw. Maximum einer Funktion

Sei $f:]a, b[\to \mathbb{R}$ differenzierbar. Wenn $x_0 \in]a, b[$ existiert, so dass $f'(x_0) = 0$ und $f''(x_0)$ existiert mit $f''(x_0) > 0$ (bzw. $f''(x_0) < 0$). Dann hat f in x_0 ein streng lokales Minimum (bzw. Maximum).

5.3 Konvexität

Definition 47. Konvexe und konkave Funktionen

Sei $I \subset \mathbb{R}$. $f: I \to \mathbb{R}$ heißt konvex, falls $\forall x_0, x_1 \in I: \forall \lambda \in [0, 1]: f(\lambda x_1 + (1 - \lambda)x_0) \le \lambda f(x_1) + (1 - \lambda)f(x_0)$. f heißt konkav, wenn -f konvex ist.

Satz 74. Kriterium für Konvexität

Sei $f: I \to \mathbb{R}$, wobei I ein offenes Intervall ist und f zwei mal differenzierbar ist:

f ist konvex $\iff \forall x \in I: f''(x) \geq 0 \iff f'$ ist monoton wachsend

Satz 75. Regel von l'Hôspital

Seien $f, g:]a, b[\to \mathbb{R}$ differenzierbare Funktionen und $\forall x \in]a, b[: g'(x) \neq 0$ (dabei ist $a = -\infty$ und $b = \infty$ zugelassen). Gilt dann:

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \text{ oder } \lim_{x \to a} g(x) = \infty$$

und existiert der Grenzwert:

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = L \text{ wobei } x > a \text{ und } -\infty \le L \le \infty$$

Dann gilt:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L \text{ wobei } x > a$$

Hinweis: Es müssen alle Voraussetzungen erfüllt sein (d.h. differenzierbar, $g'(x) \neq 0$, Limes existiert, Zähler und Nenner gehen gegen 0 oder ∞). Die Regel gilt ebenso wenn $x \to b$ mit x < b.

5.3.1 Taylor Reihe

Satz 76. Satz von Taylor

Sei $f: I \to \mathbb{R}$ eine Funktion und $x_0, x \in I$. Sei $I_0 = [x, x_0]$ falls $x < x_0$ ($[x_0, x]$ falls $x_0 < x$) und J_0 das offene Intervall von I_0 . Die Funktion $f_{|I_0}$ und ihre ersten n Ableitungen seien auf I_0 stetig und $f_{|J_0}^{(n)}$ ist differenzierbar. Dann existiert ein ξ zwischen x und x_0 , sodass gilt:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x_0, x)$$

wobei

$$r_n(x_0, x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
 (Restglied nach Lagrange)

oder

$$r_n(x_0,x) = \frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^n(x-x_0)$$
 (Restglied nach Cauchy)

Kapitel 6

Das Riemannsche Integral

6.1 Allgemeine Eigenschaften integrierbarer Funktionen

Definition 48. Treppenfunktion

Sei $a < b, a, b \in \mathbb{R}$ und ϕ : $[a, b] \to \mathbb{R}$. ϕ heißt Treppenfunktion, wenn es eine Unterteilung des Intervalls [a, b] mit $a = x_0 < x_1 < x_2 < ... < x_n = b$ gibt und $c_1, ..., c_n \in \mathbb{R}$ existieren, sodass $\phi_{||x_{k-1}, x_k|} = c_k$ mit k = 1, ..., n.

T[a,b] ist der Vektorraum der Treppenfunktionen.

Definition 49

Sei $\phi \in T[a, b]$ und $a = x_0 < x_1 < \dots < x_k = b$ und $c_i = \phi_{||x_{i-1}, x_i|}$. Dann:

$$\int_{a}^{b} \phi(x) dx := \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$

Satz 77

Sei $\phi, \psi \in T[a, b]$ und $\lambda \in \mathbb{R}$. Dann gilt:

- $\int_a^b (\phi(x) + \psi(x))dx = \int_a^b \phi(x)dx + \int_a^b \psi(x)dx$
- $\int_a^b (\lambda \phi(x)) dx = \lambda \int_a^b \phi(x) dx$
- $\phi \ge \psi \implies \int_a^b \phi(x) dx \ge \int_a^b \psi(x) dx$

Definition 50. Ober- und Unterintegral

Sei $f: [a, b] \to \mathbb{R}$ eine beliebige, aber beschränkte Funktion. Dann:

- $\overline{\int_a^b} f(x) dx = \inf \{ \int_a^b \phi(x) dx \mid \phi \in T[a, b], \phi \ge f \}$ (Oberintegral)
- $\int_a^b f(x)dx = \sup\{\int_a^b \psi(x)dx \mid \psi \in T[a,b], \psi \leq f\}$ (Unterintegral)

f heißt Riemann-integrierbar, wenn:

$$\overline{\int_a^b} f(x)dx = \int_a^b f(x)dx =: \int_a^b f(x)dx$$

Satz 78

 $f: [a,b] \to \mathbb{R}$ ist (Riemann) integrierbar $\iff \forall \varepsilon > 0 : \exists \phi, \psi \in T[a,b] : \psi \leq f \leq \phi$ und $\int_a^b \phi(x) dx - \int_a^b \psi(x) dx < \varepsilon$

Satz 79

Jede stetige Funktion ist integrierbar.

Satz 80

Jede monotone Funktion ist integrierbar.

Satz 81

Seien $f, g: [a, b] \to \mathbb{R}$ zwei integrierbare Funktionen und $\lambda \in \mathbb{R}$. Dann sind auch folgende Funktionen integrierbar:

- (i) f+g
- (ii) λf
- (iii) f_+, f_-
- (iv) $\forall p \geq 1$: $|f|^p$

Außerdem gilt:

- $f \ge g \implies \int_a^b f(x)dx \ge \int_a^b g(x)dx$
- $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Satz 82. Mittelwertsatz der Integralrechnung

Sei $f: [a, b] \to \mathbb{R}$ stetig, dann $\exists \xi \in [a, b]: \int_a^b f(x) dx = (b - a) f(\xi)$.

Definition 51. Riemannsche Summen

Sei $[a,b] \subset \mathbb{R}$ und $a=x_0 < x_1 < ... < x_n = b$ eine Unterteilung des Intervalls [a,b]. Sei außerdem $\xi_k \in [x_{k-1},x_k], (\xi_k)_{k=1,...,n}$ eine Stützstelle. Dann definiert man die Riemannsche Summe der Funktion f zur Unterteilung $(x_i)_{i=0,...,n}$ und Stützstelle $(\xi_i)_{i=1,...,n}$ folgendermaßen:

$$\mathcal{R}_f((x_k), (\xi_k)) := \sum_{k=1}^n f(\xi_k)(x_k - x_{k-1})$$

 $\mu((x_i)) = \max(x_i - x_{i-1})_{i=1,\dots,n}$ gibt die Feinheit der Unterteilung an.

Satz 83

Sei $f: [a, b] \to \mathbb{R}$ eine integrierbare Funktion.

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall (x_i)_{i=0,\dots,n} : \forall (\xi_i)_{i=1,\dots,n} : \mu((x_i)) < \delta \Rightarrow \left| \int_a^b f(x) dx - \mathcal{R}_f((x_i), (\xi_i)) \right| < \varepsilon$$

Dies erlaubt es, dass Riemannsche Integral als Grenzwert zu betrachten.

6.2 Zusammenhang zwischen Integral und Ableitung

Satz 84

Sei $f: [a, b] \to \mathbb{R}$ eine integrierbare Funktion. Dann:

$$\forall x_1, x_2 \in [a, b]: \int_{x_1}^{x_2} f(x) dx = -\int_{x_2}^{x_1} f(x) dx$$

$$\forall x_1, x_2, x_3 \in [a, b]: \int_{x_1}^{x_3} f(x) dx = \int_{x_1}^{x_2} f(x) dx + \int_{x_2}^{x_3} f(x) dx$$

$$F(x) := \int_{x_2}^{x_3} f(t) dt$$

Satz 85

Sei $f: [a, b] \to \mathbb{R}$ eine integrierbare Funktion und sei f in $x_0 \in [a, b]$ stetig. Dann ist die Funktion $F(x) = \int_a^x f(t)dt$ in x_0 differenzierbar und $F'(x_0) = f(x_0)$.

Definition 52. Stammfunktion

Eine differenzierbare Funktion $F: [a, b] \to \mathbb{R}$ heißt Stammfuntkion oder primitive Funktion einer Funktion $f: [a, b] \to \mathbb{R}$ falls $\forall x \in [a, b] : F'(x) = f(x)$ gilt.

Satz 86. Fundamentalsatz der Differential- und Integralrechnung

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion und sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion von f. Dann gilt:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: (F(x)) \Big|_{a}^{b}$$

Satz 87. Integration durch Substitution

Sei $f: I \to \mathbb{R}$ stetig und $\phi: [a, b] \to \mathbb{R}$ stetig differenzierbar sowie $\phi([a, b]) = I$. Dann:

$$\int_{a}^{b} f(\phi(x))\phi'(x)dx = \int_{\phi(a)}^{\phi(b)} f(t)dt$$

Satz 88. Partielle Integration

Seien $f,g\colon [a,b]\to \mathbb{R}$ stetig differenzierbare Funktionen. Dann:

$$\int_a^b f'(x)g(x)dx = (f(x)g(x))\Big|_a^b - \int_a^b f(x)g'(x)dx$$