Combinational Circuits

Logic Design

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

- Nodes
 - -Inputs: A, B, C
 - -Outputs: *Y*, *Z*
 - -Internal: n1
- Circuit elements
 - -E1, E2, E3
 - -Each a circuit

Types of Logic Circuits

Combinational Logic

- -Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- –Has memory
- Outputs determined by previous and current values of inputs

Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Example

$$S = F(A, B, C_{in})$$

 $C_{out} = F(A, B, C_{in})$

$$A = G - S - S - C_{out}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Design Procedure

- Specification
 - Write a specification for the circuit if one is not already available
- Formulation
 - Derive a truth table
- Optimization
 - Apply 2-level and multiple-level optimization
- Technology Mapping
 - Map the logic diagram to the implementation technology selected
- Verification
 - Verify the correctness of the final design manually or using simulation

- Specification
 - —BCD code words for digits 0 through 9
 - 4-bit patterns 0000 to 1001, respectively
 - Excess-3 code words for digits 0 through 9
 - 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word

- Formulation
 - Variables
 - BCD: A,B,C,D
 - Variables
 - Excess-3: W,X,Y,Z
 - -Don't Cares
 - BCD 1010 to 1111

Input BCD	Output Excess-3
A B C D	WXYZ
0 0 0 0	0011
0 0 0 1	0 1 0 0
0010	0 1 0 1
0011	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	$1 \ 0 \ 0 \ 0$
0 1 1 0	1001
0 1 1 1	1010
$1\ 0\ 0\ 0$	1011
1001	1100

Optimization

Technology Mapping

	Α	В	С	D	а	b	С	d	е	f	g	
0	0	0	0	0	1	1	1	1	1	1	0	כב
1	0	0	0	1	0	1	1	0	0	0	0	-
2	0	0	1	0	1	1	0	1	1	0	1	U
3	0	0	1	1	1	1	1	1	0	0	1	m
4	0	1	0	0	0	1	1	0	0	1	1	7
5	0	1	0	1	1	0	1	1	0	1	1	ற
6	0	1	1	0	0	0	1	1	1	1	1	Ъ
7	0	1	1	1	1	1	1	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	0	0	1	1	œ
>10	All other inputs			0	0	0	0	0	0	0		

	Α	В	С	D	а	
0	0	0	0	0	1	
1	0	0	0	1	0	
2	0	0	1	0	1	
3	0	0	1	1	1	
4	0	1	0	0	0	
5	0	1	0	1	1	
6	0	1	1	0	0	
7	0	1	1	1	1	
8	1	0	0	0	1	
9	1	0	0	1	1	
>10	All other inputs					

$$a = \overline{A}\overline{B}\overline{D} + \overline{A}CD + \overline{A}BD + A\overline{B}\overline{C}$$

	Α	В	С	D	b
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
>10	>10 All other inputs				

$$b = \overline{BC} + \overline{AB} + \overline{ACD} + \overline{ACD}$$

NAND Mapping Algorithm

Replace ANDs and ORs:

NAND Mapping Example

NAND Mapping Example

NOR Mapping Example

Replace ANDs and ORs:

NOR Mapping Example

NOR Mapping Example

