Probabilidades y Estadística (C). Clase Práctica 2: Probabilidad.

1. Sean A y B eventos de un espacio muestral Ω , probar que

$$P((A \cap B) \cup (A^c \cap B^c)) = 1 - P(A \cap B^c) - P(B) + P(A \cap B).$$

- 2. De un bolillero que contiene B bolillas blancas y N bolillas negras se extrae una bolilla al azar.
 - (a) ¿Cuál es la probabilidad de obtener una blanca?
 - (b) Definir un espacio muestral que sea equiprobable.
- 3. Una pareja tiene 5 hijes. Por particularidades genéticas, es igualmente probable que cada niñe tenga ojos claros u oscuros, calcular la probabilidad de que:
 - (a) todes les hijes tengan el mismo color de ojos.
 - (b) les 3 mayores tengan ojos oscuros y el resto claros.
 - (c) haya exactamente 3 con ojos oscuros.
 - (d) les dos mayores tengan ojos oscuros.
 - (e) haya al menos une con ojos claros.
- 4. Calcular la probabilidad de que al extraer dos cartas de un mazo de 40 cartas españolas
 - (a) sean ambas pares.
 - (b) sea una par y la otra impar.
 - (c) ambas tengan la misma paridad.
 - (d) salga al menos un dos.
 - (e) salga un dos y un oro.
- 5. Se tienen 3 bolitas negras, 1 roja, 1 azul y 1 blanca para distribuir en tres cajas distintas, de modo que queden dos bolitas en cada caja.
 - (a) ¿De cuántas maneras puede hacerse? ¿El espacio utilizado es equiprobable?
 - (b) ¿Cuál es la probabilidad de que las tres negras queden en cajas distintas?
 - (c) ¿Cuál es la probabilidad de que en alguna caja quede una negra con la roja?

Resoluciones

- 1. Conviene primero repasar definiciones de probabilidad y propiedades. Mirar la resolución en fotos.
- 2. Si $\Omega = \{b_1, ..., b_B, n_1, ..., n_N\}$ tiene cardinal B + N. El evento $A = \text{``La bolita extraida es blanca''}, es <math>A = \{b_1, ..., b_B\}$.

Como Ω es equiprobable, $P(A) = \frac{\#A}{\#\Omega} = \frac{B}{B+N}$.

- 3. El espacio muestral será $\Omega = \{O, C\}^5$ donde la primer coordenada corresponde al color de ojos de le hije mayor y ordenades segun su nacimiento.
 - (a) 2/32 porque me sirve $A_a = \{(O, O, O, O, O), (C, C, C, C, C)\}$ que tiene cardinal 2.
 - (b) el unico resultado que me sirve es (O,O,O,C,C), luego la rta es 1/32.
 - (c) $A_c = \{\omega \in \Omega / \text{"exactamente 3 coordenadas son O"} \}$ P("haya exactamente 3 con ojos oscuros")= $\binom{5}{3}/32$.
 - (d) $A_d = (O, O, x, y, z) : x, y, z \in O, C$. Con lo cual $P(A_d) = 2^3/2^5$.

- (e) $A_e = \{\text{"al menos unx con ojos claros"}\} = \{\text{"ningune con ojos claros"}\}^c$. Con lo cual, $P(A_e) = 1 P(A_e^c) = 1 1/32$.
- 4. Cuento sin orden usando numeros combinatorios. Ω es el conjunto con todos los subconjuntos de dos cartas de las 40 del mazo. Tiene cardinal $\binom{40}{2}$.
 - (a) $\binom{20}{2} / \binom{40}{2} = 19/78$
 - (b) $20 * 20/\binom{40}{2} = 20/39$
 - (c) $\#C = \binom{20}{2} * 2$ porque elijo 2 cartas de la misma paridad y tengo dos posibilidades de paridad.
 - (d) Separo en casos por la turbiedad del al menos: exactamente un dos o dos 2. Me queda $\#D = 4*36+\binom{4}{2}$
 - (e) Separo en casos: sale el dos de oro o no. $\#E = 1\binom{39}{1} + \binom{3}{1}\binom{9}{1}$ (en el segundo sumando elijo un 2 (de los otros 3) y elijo un oro)
- 5. Hint: distinguir entre los casos en los que las negras van juntas o separadas.