PARAMETERS III: BIOLOGY AND NATURAL HISTORY

Steven M. Goodreau, Ph.D. Samuel M. Jenness, Ph.D. Eli S. Rosenberg, Ph.D.

Outline for this session

- Circumcision
- CCR5-∆32 mutation
- HIV disease progression: VL and AIDS/mortality among ART naïve
- How these and behaviors come together for per-act tx probability
- Implementing in the model

Circumcision

Circumcision: concept

- Biomedical intervention that reduces HIV <u>acquisition</u> risk
- Trials in sub-Saharan African heterosexual males showed ~60% efficacy
- Among MSM, marginal efficacy is lower because of varied sex roles
 - No benefit to receptive partners
 - In insertive partners...
 - Similar efficacy assumed as to heterosexuals
 - Metanalysis found insufficient evidence of efficacy in insertive MSM (Millett et al, JAMA 2008)

Circumcision: assessment and model

- 90% of both B and W men were circumcised
- Node attribute at entry. Conveys 60% protection to insertive HIV- men

CCR5-△32

CCR5- Δ 32: Concept

- Protein receptor on CD4+ T-cells that facilitates viral entry
- ullet Δ 32 mutation results in defective protein
 - Homozygote (2 copies) confers full immunity
 - Heterozygote: 70% reduced susceptibility in 1 MSM study
- Distribution of Δ 32 allele different by race
 - Whites: 3.4% homozygote, 17.6% heterozygote
 - Blacks: ~0% homozygote 2.1% heterozygote

HIV disease progression: ART naïve

HIV disease progression

HIV infection natural history, per CD4 and VL

HIV disease progression in model

- Model currently tracks VL and AIDS status (but not CD4)
- Progression to death in about 10 years:

	Duration	Start VL value	End VL value
'Up' part of curve to peak of acute virema	45 days	0	6.886 log ₁₀ copies per mL
'Down' part to set- point VL	45 days	6.886 log ₁₀ copies per mL	4·5 log ₁₀ copies per mL
Chronic infection	3550 days	4·5 log ₁₀ copies per mL	4·5 log ₁₀ copies per mL
AIDS to death	728 days	4·5 log ₁₀ copies per mL	$7 \log_{10}$ copies per mL (Death)

- Segments of VL curve are linear
- Deterministic timing. VL values too?

Bringing biology and behaviors together for HIV transmission

Bringing biology and behaviors together for HIV transmission

 Probability of HIV tx within act of serodiscordant dyad drawn as Bernoulli event with p determined by:

Predictor	Partner	Parameters	References
Sexual role (insertive or receptive)	HIV-	Receptive: 0.008938 base probability when HIV+ partner has 4.5 log ₁₀ viral	Vittinghoff ²⁹
receptive		load copies per mL	
		Insertive: 0.003379 base probability when HIV+ partner has 4.5 log ₁₀ viral	Vittinghoff ²⁹
		load copies per mL	
HIV viral load (VL)	HIV+	Multiplier of 2·45(VL - 4·5), where VL is	Wilson ³⁰
		expressed as log ₁₀ copies per mL	
Acute stage	HIV+	Multiplier of 6	Leynaert, ¹⁸ Bellan ³¹
CCR5 status	HIV-	Δ32 homozygote: multiplier of 0	Marmor ¹⁴
		heterozygote: multiplier of 0.3	Marmor ¹⁴
Condom use	Both	Multiplier of 0.25	Varghese, ³²
			Weller ³³ , Smith ³⁴
Circumcision status	HIV-,	Multiplier of 0·40	Gray ¹³

Implementing in the model

Circumcision, CCR5

param.mard:

EpiModelHIV:::setBirthAttr.mard:

```
dat$attr$circ[newIds[newB]] <- rbinom(nBirths.B, 1, dat$param$circ.B.prob)
dat$attr$circ[newIds[newW]] <- rbinom(nBirths.W, 1, dat$param$circ.W.prob)
dat$attr$role_class[newIds[newB]] <- sample(c("I" "R" "V")
```

And stay tuned for transmission....

VL and progression – ART-naive

param.mard:

```
7, vl.acute.rise.int = 21, vl.acute.peak = 6.886, vl.acute.fall.int = 21, vl.set.point = 4.5, vl.aids.onset.int = 520 * 7, vl.aids.int = 52 * 2 * 7, vl.fatal = 7, vl.full.supp = 1.5, vl.part.supp = 3.5,
```

- update.vl.mard (for viral load)
- progress.mard (for which stage)
- way too much code to show meaningfully. Summary:

And stay tuned for transmission....

VL and progression – ART

param.mard:

```
max.time.off.tx.full.int = 520 *
7, max.time.on.tx.part.int = 52 * 15 * 7, max.time.off.tx.part.int = 520 *
7, vl.acute.rise.int = 21, vl.acute.peak = 6.886, vl.acute.fall.int = 21,
```

```
2 * 7, vl.fatal = 7, vl.full.supp = 1.5, vl.part.supp = 3.5, full.supp.down.slope = 0.25, full.supp.up.slope = 0.25, part.supp.down.slope = 0.25, part.supp.up.slope = 0.25, b.B.rate = 0.001/7, b.W.rate = 0.001/7, b.W.rate = 0.001/7,
```

- update.vl.mard: changes to viral load b/c of tx
 - summary:
 - tx makes VL go down (to different levels depending on whether full or partial suppression)
 - stopping treatment makes VL go up
 - Reinitiating tx makes VL go down again ©

VL and progression – ART

progress.mard: tx failure and AIDS initiation occurs when:

```
aids.tx.naive <- which(active == 1 & status == 1 & cum.time.on.tx ==
    0 & (time.since.inf >= vl.aids.onset) & stage != "D")
part.tx.score <- (cum.time.off.tx/max.time.off.tx.part) +
    (cum.time.on.tx/max.time.on.tx.part)
aids.part.escape <- which(active == 1 & cum.time.on.tx >
    0 & tt.traj == "YP" & stage == "C" & part.tx.score >=
    1 & stage != "D")
aids.off.tx.full.escape <- which(active == 1 & tx.status ==
    0 & tt.traj == "YF" & cum.time.on.tx > 0 & cum.time.off.tx >=
    max.time.off.tx.full & stage != "D")
isAIDS <- c(aids.tx.naive, aids.part.escape, aids.off.tx.full.escape)</pre>
```

And stay tuned for transmission....

Transmission!

param.mard:

```
birth.age = 18, b.method = "fixed", URAI.prob = 0.0082 *
1.09, UIAI.prob = 0.0031 * 1.09, acute.rr = 4, circ.rr = 0.4,
condom.rr = 0.25, disc.outset.main.B.prob = 0.685, disc.outset.main.W
```

trans.mard:

```
trans.ip.prob <- URAI.prob * 2.45^(ip.vl - 4.5)
trans.ip.prob[ip.stage == "AR"] <- trans.ip.prob[ip.stage ==
    "AR"] * acute.rr
trans.ip.prob[ip.stage == "AF"] <- trans.ip.prob[ip.stage ==
    "AF"] * (1 + (acute.rr - 1) * (vl.acute.fall.int - ip.stage.time[ip.stage ==
    "AF"])/vl.acute.fall.int)
trans.ip.prob[disc.ip$uai == 0] <- trans.ip.prob[disc.ip$uai ==
    0] * condom.rr
trans.ip.prob[ip.ccr5 == "DD"] <- trans.ip.prob[ip.ccr5 ==
    "DD"] * 0
trans.ip.prob[ip.ccr5 == "DW"] <- trans.ip.prob[ip.ccr5 ==
    "DW"] * ccr5.heteroz.rr
trans.ip.prob[which(ip.prep == 1 & ip.prepcl == "l")] <- trans.ip.prob[which(ip.prep == 1 & ip.prepcl == "l"]) <- trans.ip.prob[which(ip.prepcl == "l"]) <- trans.ip.prob[which(ip.prepcl
```

Etc.