

Grundlagen der Robotik

Übung 5

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN INFORMATIK VI **AUTONOMOME** INTELLIGENTE SYSTEME

Abgabe am Donnerstag, 23. November, vor der Vorlesung.

Prof. Dr. Sven Behnke Friedrich-Hirzebruch-Allee 8

Gegeben sei ein planarer Arm (Bewegung in der xy-Ebene) mit einem Rotationsgelenk, einem 5.1) Lineargelenk und einem Rotationsgelenk:

Endeffektor: x_e , y_e , θ_e

 $L_1 = 3,5 \text{ m}$

 $L_2 = 2 \text{ m}$

 $L_3 = 1,5 \text{ m}$

Basis: $x_0=0$, $y_0=0$, $\theta_0=0$

a) Bestimmen Sie die $xy\theta$ -Pose des Endeffektors (x_e , y_e , θ_e) als Funktion der Rotation θ_1 , der Linearverschiebung d_2 und der Rotation θ_3 !

2 Punkte

b) Bestimmen Sie die Lineargeschwindigkeit des Endeffektors bezüglich der Basis in Abhängigkeit von der Geschwindigkeiten der drei Gelenke!

2 Punkte

c) Bestimmen Sie die Rotationsgeschwindigkeit des Endeffektors bezüglich der Basis in Abhängigkeit der Geschwindigkeiten der drei Gelenke!

2 Punkte

d) Fassen Sie die Ergebnisse aus b) und c) in einer Jacobi-Matrix zusammen!

2 Punkte

e) Für welche Konfigurationen ist die Jacobi-Matrix aus d) singulär?

2 Punkte

5.2) Gegeben sei ein planarer Arm (Bewegung in der xy-Ebene) mit einem Lineargelenk entlang der y-Achse, einem Rotationsgelenk und einem Lineargelenk:

Basis: $x_0=0$, $y_0=0$, $\theta_0=0$

Die Längen seien: $L_1 = 4$ m, $L_2 = 5$ m, $L_3 = 3$ m.

a) Visualisieren Sie alle erreichbaren (x, θ_e)-Posen des Endeffektors (x_e, y_e, θ_e) wenn y_e = 4 m, 1 m \leq d₁ \leq 3 m, -45° \leq θ_2 \leq 45° und -1 m \leq d₃ \leq 1 m!

4 Punkte

b) Die Gelenkgeschwindigkeiten seien im Betrag auf 2 m/s für Lineargelenke und 3 rad/s für das Rotationsgelenk begrenzt. In welchen Konfigurationen (d_1 , θ_2 , d_3) ist die Lineargeschwindigkeit in y-Richtung (vertikal) am größten?

4 Punkte

c) Für welche Konfigurationen (d1 , θ_2 , d3) ist der Roboterarm singulär?

2 Punkte