INTRODUCCIÓN A LA LÓGICA Y ALGORITMOS

Hernández Pardo Valerie Jireth Presenta a: Karen de los rios

Universidad Distrital Francisco Jose de Caldas Logaritmos y programación en C++ 2025

Estructura del argumento y lógica formal e informal

Actividad 1: Identificación de argumentos

- 1. Si llueve, entonces la calle está mojada. Ha llovido, por lo tanto, la calle está mojada.
- 2. Todos los perros ladran. Rex es un perro. Por lo tanto, Rex ladra.
- 3. María estudia mucho, por lo que debe ser una persona inteligente.

PREMISAS	CONCLUSIÓN	VALIDEZ
-Si llueve, entonces la	-La calle esta mojada.	Es válido, ya que es un argumento
calle está mojadaHa		deductivo. Entonces si las premi-
llovido.		sas son verdaderas, la conclusión
		debe ser verdadera.
-Todos los perros la-	-Rex ladra.	Es válido, debido a que de una
dranRex es un pe-		premisa universal y un caso par-
rro.		ticular se deduce la conclusión.
-María estudia mucho.	-María debe ser una	El argumento no es válido porque
	persona inteligente.	la conclusión no se sigue de ma-
		nera necesaria de la premisa.

Actividad 2: Evaluación de argumentos

- 1. Todos los gatos son mamíferos. Todos los mamíferos vuelan. Por lo tanto, todos los gatos vuelan.
 - Premisa 1: Todos los gatos son mamíferos: Verdadera.
 - Premisa 2: Todos los mamíferos vuelan: Falsa.
 - Conclusión: Todos los gatos vuelan: Falsa.

La estructura lógica es válida (si las premisas fueran verdaderas, la conclusión lo sería), en este caso vemos una premisa falsa, por lo tanto todo el argumento es incorrecto.

- 2. Si Juan estudia, aprobará el examen. Juan estudió. Por lo tanto, aprobó el examen.
 - Premisa 1: Si Juan estudia, aprobará el examen: Verdadera.
 - Premisa 2: Juan estudió: Verdadera.
 - Conclusión: Juan aprobó el examen: Verdadera.

La estructura lógica es válida, como las premisas son verdaderas entonces la conclusión de que aprobó el examen es verdadera.

Proposiciones lógicas y operadores lógicos

- Actividad 3: Tablas de verdad
 - ¿Qué es una tabla de verdad?
 - Una tabla de verdad muestra todas las posibilidades de verdad/falsedad de un argumento y nos ayuda a comprobar su validez.
 - P:"Hoy es lunes" y Q:"Está soleado".
 - V (verdadero), F (falso)
 - 1. $\mathbf{P} \wedge \mathbf{Q}$

P	Q	$\mathbf{P} \wedge \mathbf{Q}$
V	V	V
V	F	F
F	V	F
F	F	F

2. $P \vee Q$

P	Q	$\mathbf{P} \lor \mathbf{Q}$
V	V	V
V	F	V
F	V	V
F	F	F

3. $\neg \mathbf{P} \rightarrow \mathbf{Q}$

P	\mathbf{Q}	$\neg \mathbf{P}$	$\neg P \rightarrow Q$
V	V	F	V
V	F	F	V
F	V	V	V
F	F	V	F

4. $\mathbf{P} \leftrightarrow \mathbf{Q}$

P	\mathbf{Q}	$\mathbf{P} \leftrightarrow \mathbf{Q}$
V	V	V
V	F	\mathbf{F}
F	V	\mathbf{F}
F	F	V

Conceptos básicos y pseudocódigo

- Actividad 4: ¿Qué es un algoritmo?
 - Para mí, un algoritmo es un conjunto de instrucciones claras y ordenadas que permiten resolver un problema o realizar una tarea paso a paso, con el fin de llegar a un resultado.
 - En la vida cotidiana podemos encontrar algunos algoritmos que aunque no nos demos cuenta ahí están por ejemplo:
 - 1. Una receta de cocina
 - 2. Sembrar una planta
 - 3. Ir a la universidad

La programación estructurada es importante porque permite escribir programas claros y ordenados, organizados en pasos lógicos que facilitan su comprensión. Además, ayuda a detectar y corregir errores con mayor facilidad, simplifica el mantenimiento y modificación del código, y fomenta la reutilización de partes ya creadas. En conjunto, hace que el desarrollo de software sea más eficiente y confiable.

Actividad 5: Etapas del desarrollo de un programa

- Análisis del problema: Consiste en comprender qué se quiere resolver, qué datos se tienen y qué resultado se espera.
- Diseño del algoritmo: Escribir los pasos que debe seguir el programa para resolver el problema, de manera clara y ordenada (como una receta).
- Codificación: Traducir el algoritmo a un lenguaje de programación específico (Python, Java, C++, etc.).
- Compilación y ejecución: Transformar el código en instrucciones que la computadora pueda entender y ponerlo en marcha para ver si funciona.
- Verificación y depuración: Revisar que el programa haga lo que debe hacer, corregir errores (bugs) y mejorar el funcionamiento.
- **Documentación:** Redactar explicaciones sobre el funcionamiento del programa, cómo usarlo y cómo fue construido, para que otros (o el mismo programador) puedan entenderlo en el futuro.

Representación de algoritmos y estructuras de control

- Actividad 6: Pseudocódigo y diagramas de flujo
 - Pseudocódigo

```
# Programa que compara dos numeros
numero1 = int(input("Ingrese el primer numero: "))
numero2 = int(input("Ingrese el segundo numero: "))
if numero1 > numero2:
   print("El primer numero es mayor:", numero1)
elif numero2 > numero1:
```

```
print("El segundo numero es mayor:", numero2)
else:
  print("Ambos numeros son iguales")
```

Diagrama de flujo

- Inicio
- Ingresar números 1 y 2
- ¿número1¿número2?
- Sí
- $\bullet\,$ Imprimir . $^{\scriptscriptstyle\rm El}$ primer número es mayor"
- No
- ¿número2¿número1?
- Sí
- Imprimir . El segundo número es mayor"
- No
- Imprimir . Ambos números son iguales"
- Fin

Actividad 7: Uso de estructuras de control

```
# Programa que determina si un numero es par o impar
# Paso 1: Solicitar un numero
numero = int(input("Ingrese un numero: "))
# Paso 2 y 3: Verificar si es par o impar
if numero % 2 == 0:
    print("El numero es par")
else:
    print("El numero es impar")
```

Actividad 8: Estructuras de repetición

• Pseudocódigo que sume los números del 1 al 20

```
suma = 0
for i in range(1, 21):
    suma += i
print("La suma de los numeros del 1 al 20 es:", suma)
```

■ Y para que sume los pares del 1 al 20 se usa el código:

```
suma = 0
for i in range(1, 21):
   if i % 2 == 0:
      suma += i
print("La suma de los numeros pares del 1 al 20 es:", suma)
```

Cierre y Reflexión

- 1. ¿Qué fue lo más fácil y lo más difícil del taller?
 - Lo más fácil fue identificar ejemplos cotidianos de algoritmos, porque se parecen a actividades comunes como recetas o rutinas.
 - Lo más difícil fue entender cómo se aplican las tablas de verdad y la relación con la validez de los argumentos, ya que requieren más análisis lógico.
- 2. ¿Cómo se relaciona la lógica con la programación? La lógica es la base de la programación, porque permite tomar decisiones, analizar condiciones y seguir pasos ordenados. Gracias a la lógica, un programa puede ejecutar instrucciones correctas, resolver problemas y dar resultados coherentes.
- 3. ¿Qué aplicaciones prácticas pueden tener los algoritmos en su vida diaria? Los algoritmos están presentes en muchas actividades cotidianas: desde preparar una receta, seguir una ruta en Google Maps, organizar la rutina diaria, hasta usar aplicaciones como redes sociales o buscadores. En general, cualquier tarea que se haga paso a paso puede verse como un algoritmo.

Referencias bibliográficas

- Componentes del razonamiento: premisas y conclusión. (2023). Objetos de aprendizaje UNAM. Recuperado de http://objetos.unam.mx/logica/premisasConclusion/index.html
- Las tablas de la verdad. (s.f.). REA Las aventuras de Filoland. Proyecto EDIA. Filosofía. Bachillerato. Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF), Ministerio de Educación. https://descargas.intef.es/cedec/proyectoedia/contenidos/Filoland3_palabras_poder/las_tablas_de_la_verdad.pdf
- ¿Qué es el Pseudocódigo y Cómo Puede Mejorar tu Programación? (2025, 26 de febrero). Kinsta, Centro de Recursos. Recuperado de https://kinsta.com/es/base-de-conocimiento/ que-es-pseudocodigo/
- Explicación de algoritmo y diagrama de flujo con ejemplos. (2025, 19 de febrero). Edraw. Recuperado de https://www.edrawsoft.com/es/explain-algorithm-flowchart.html