Calculate the Beta of Nifty50 VS JWS Steels

```
import pandas as pd
import yfinance as yf
import seaborn as sns
import matplotlib.pyplot as plt
import datetime as dt
import statsmodels.api as sm
from colorama import Fore, Style
```

Fetching the last 5 years with monthly frequency of Nifty Data

```
In [ ]: # Define the ticker symbol for the Nifty 50 ("^NSEI") which is ^NSEI in Yahoo Fi
        ticker_symbol = "^NSEI"
        end_date = dt.datetime.now()
        end_date
Out[]: datetime.datetime(2024, 4, 4, 12, 44, 52, 573244)
In [ ]: # Subtract 5 years
        five_years_ago = end_date - dt.timedelta(days=365*5)
        start_date = five_years_ago
        print("Five years ago from", end_date, "is", start_date)
      Five years ago from 2024-04-04 12:44:52.573244 is 2019-04-06 12:44:52.573244
In [ ]: # Fetch historical data
        NIFTY50_data = yf.download(ticker_symbol, start=start_date, end=end_date, interv
      [******** 100%******** 1 of 1 completed
In [ ]: df1 = NIFTY50_data.copy() # Create the duplicate copy
        df1 = df1.drop(['Open', 'High', 'Low', 'Close','Volume'], axis=1) # delete the u
        df1
```

Date	
2019-05-01	11922.799805
2019-06-01	11788.849609
2019-07-01	11118.000000
2019-08-01	11023.250000
2019-09-01	11474.450195
2019-10-01	11877.450195
2019-11-01	12056.049805
2019-12-01	12168.450195
2020-01-01	11962.099609
2020-02-01	11201.750000
2020-03-01	8597.750000
2020-04-01	9859.900391
2020-05-01	9580.299805
2020-06-01	10302.099609
2020-07-01	11073.450195
2020-08-01	11387.500000
2020-09-01	11247.549805
2020-10-01	11642.400391
2020-11-01	12968.950195
2020-12-01	13981.750000
2021-01-01	13634.599609
2021-02-01	14529.150391
2021-03-01	14690.700195
2021-04-01	14631.099609
2021-05-01	15582.799805
2021-06-01	15721.500000
2021-07-01	15763.049805
2021-08-01	17132.199219
2021-09-01	17618.150391
2021-10-01	17671.650391
2021-11-01	16983.199219
2021-12-01	17354.050781

Adj Close

Date	
2022-01-01	17339.849609
2022-02-01	16793.900391
2022-03-01	17464.750000
2022-04-01	17102.550781
2022-05-01	16584.550781
2022-06-01	15780.250000
2022-07-01	17158.250000
2022-08-01	17759.300781
2022-09-01	17094.349609
2022-10-01	18012.199219
2022-11-01	18758.349609
2022-12-01	18105.300781
2023-01-01	17662.150391
2023-02-01	17303.949219
2023-03-01	17359.750000
2023-04-01	18065.000000
2023-05-01	18534.400391
2023-06-01	19189.050781
2023-07-01	19753.800781
2023-08-01	19253.800781
2023-09-01	19638.300781
2023-10-01	19079.599609
2023-11-01	20133.150391
2023-12-01	21731.400391
2024-01-01	21725.699219
2024-02-01	21982.800781
2024-03-01	22326.900391
2024-04-01	22434.650391

Fetching the last 5 years with monthly frequency of JSW Steel Limited data.

Date	
2019-05-01	253.232819
2019-06-01	257.799774
2019-07-01	221.310715
2019-08-01	205.835037
2019-09-01	217.667328
2019-10-01	215.821503
2019-11-01	247.579453
2019-12-01	255.625412
2020-01-01	237.308990
2020-02-01	223.110199
2020-03-01	138.438141
2020-04-01	171.000671
2020-05-01	174.361038
2020-06-01	179.235962
2020-07-01	208.485474
2020-08-01	258.092010
2020-09-01	265.697021
2020-10-01	295.590942
2020-11-01	335.003052
2020-12-01	370.397461
2021-01-01	350.930542
2021-02-01	378.289459
2021-03-01	448.121613
2021-04-01	686.698853
2021-05-01	680.050537
2021-06-01	654.222168
2021-07-01	704.970032
2021-08-01	664.192749
2021-09-01	645.549744
2021-10-01	646.370850
2021-11-01	587.688904
2021-12-01	633.620239

Adj Close

	•
Date	
2022-01-01	607.539307
2022-02-01	606.090454
2022-03-01	707.709229
2022-04-01	702.396423
2022-05-01	532.484375
2022-06-01	545.283325
2022-07-01	608.167175
2022-08-01	664.102783
2022-09-01	629.000610
2022-10-01	671.123169
2022-11-01	740.281860
2022-12-01	764.828430
2023-01-01	713.444885
2023-02-01	664.401489
2023-03-01	685.213806
2023-04-01	722.257751
2023-05-01	693.379395
2023-06-01	781.508179
2023-07-01	813.324219
2023-08-01	779.650024
2023-09-01	779.599976
2023-10-01	736.349976
2023-11-01	801.099976
2023-12-01	880.250000
2024-01-01	818.650024
2024-02-01	800.099976
2024-03-01	830.200012
2024-04-01	869.000000

```
In [ ]: df1.shape # check the column of nifty50
Out[ ]: (60, 1)
In [ ]: df2.shape # check the column of JSW
```

```
Out[]: (60, 1)
```

Merge the Data based on date

Date		
2019-05-01	11922.799805	253.232819
2019-06-01	11788.849609	257.799774
2019-07-01	11118.000000	221.310715
2019-08-01	11023.250000	205.835037
2019-09-01	11474.450195	217.667328
2019-10-01	11877.450195	215.821503
2019-11-01	12056.049805	247.579453
2019-12-01	12168.450195	255.625412
2020-01-01	11962.099609	237.308990
2020-02-01	11201.750000	223.110199
2020-03-01	8597.750000	138.438141
2020-04-01	9859.900391	171.000671
2020-05-01	9580.299805	174.361038
2020-06-01	10302.099609	179.235962
2020-07-01	11073.450195	208.485474
2020-08-01	11387.500000	258.092010
2020-09-01	11247.549805	265.697021
2020-10-01	11642.400391	295.590942
2020-11-01	12968.950195	335.003052
2020-12-01	13981.750000	370.397461
2021-01-01	13634.599609	350.930542
2021-02-01	14529.150391	378.289459
2021-03-01	14690.700195	448.121613
2021-04-01	14631.099609	686.698853
2021-05-01	15582.799805	680.050537
2021-06-01	15721.500000	654.222168
2021-07-01	15763.049805	704.970032
2021-08-01	17132.199219	664.192749
2021-09-01	17618.150391	645.549744
2021-10-01	17671.650391	646.370850
2021-11-01	16983.199219	587.688904
2021-12-01	17354.050781	633.620239

Nifty Closing JSW Closing

Date		
2022-01-01	17339.849609	607.539307
2022-02-01	16793.900391	606.090454
2022-03-01	17464.750000	707.709229
2022-04-01	17102.550781	702.396423
2022-05-01	16584.550781	532.484375
2022-06-01	15780.250000	545.283325
2022-07-01	17158.250000	608.167175
2022-08-01	17759.300781	664.102783
2022-09-01	17094.349609	629.000610
2022-10-01	18012.199219	671.123169
2022-11-01	18758.349609	740.281860
2022-12-01	18105.300781	764.828430
2023-01-01	17662.150391	713.444885
2023-02-01	17303.949219	664.401489
2023-03-01	17359.750000	685.213806
2023-04-01	18065.000000	722.257751
2023-05-01	18534.400391	693.379395
2023-06-01	19189.050781	781.508179
2023-07-01	19753.800781	813.324219
2023-08-01	19253.800781	779.650024
2023-09-01	19638.300781	779.599976
2023-10-01	19079.599609	736.349976
2023-11-01	20133.150391	801.099976
2023-12-01	21731.400391	880.250000
2024-01-01	21725.699219	818.650024
2024-02-01	21982.800781	800.099976
2024-03-01	22326.900391	830.200012
2024-04-01	22434.650391	869.000000

```
In [ ]: df.columns
Out[ ]: Index(['Nifty Closing', 'JSW Closing'], dtype='object')
In [ ]: df.shape # Check the data size
```

```
Out[ ]: (60, 2)

In [ ]: df['Nifty50_Return'] = round(df['Nifty Closing'].pct_change() * 100,2) # Calcula
    df['JSW_Return'] = round(df['JSW Closing'].pct_change() * 100,2) # Calculating t
    df = df.dropna() # Delete the null values
    df
```

	, ,	,	, –	_
Date				
2019-06-01	11788.849609	257.799774	-1.12	1.80
2019-07-01	11118.000000	221.310715	-5.69	-14.15
2019-08-01	11023.250000	205.835037	-0.85	-6.99
2019-09-01	11474.450195	217.667328	4.09	5.75
2019-10-01	11877.450195	215.821503	3.51	-0.85
2019-11-01	12056.049805	247.579453	1.50	14.71
2019-12-01	12168.450195	255.625412	0.93	3.25
2020-01-01	11962.099609	237.308990	-1.70	-7.17
2020-02-01	11201.750000	223.110199	-6.36	-5.98
2020-03-01	8597.750000	138.438141	-23.25	-37.95
2020-04-01	9859.900391	171.000671	14.68	23.52
2020-05-01	9580.299805	174.361038	-2.84	1.97
2020-06-01	10302.099609	179.235962	7.53	2.80
2020-07-01	11073.450195	208.485474	7.49	16.32
2020-08-01	11387.500000	258.092010	2.84	23.79
2020-09-01	11247.549805	265.697021	-1.23	2.95
2020-10-01	11642.400391	295.590942	3.51	11.25
2020-11-01	12968.950195	335.003052	11.39	13.33
2020-12-01	13981.750000	370.397461	7.81	10.57
2021-01-01	13634.599609	350.930542	-2.48	-5.26
2021-02-01	14529.150391	378.289459	6.56	7.80
2021-03-01	14690.700195	448.121613	1.11	18.46
2021-04-01	14631.099609	686.698853	-0.41	53.24
2021-05-01	15582.799805	680.050537	6.50	-0.97
2021-06-01	15721.500000	654.222168	0.89	-3.80
2021-07-01	15763.049805	704.970032	0.26	7.76
2021-08-01	17132.199219	664.192749	8.69	-5.78
2021-09-01	17618.150391	645.549744	2.84	-2.81
2021-10-01	17671.650391	646.370850	0.30	0.13
2021-11-01	16983.199219	587.688904	-3.90	-9.08
2021-12-01	17354.050781	633.620239	2.18	7.82
2022-01-01	17339.849609	607.539307	-0.08	-4.12

	Nifty Closing	JSW Closing	Nifty50_Return	JSW_Return
Date				
2022-02-01	16793.900391	606.090454	-3.15	-0.24
2022-03-01	17464.750000	707.709229	3.99	16.77
2022-04-01	17102.550781	702.396423	-2.07	-0.75
2022-05-01	16584.550781	532.484375	-3.03	-24.19
2022-06-01	15780.250000	545.283325	-4.85	2.40
2022-07-01	17158.250000	608.167175	8.73	11.53
2022-08-01	17759.300781	664.102783	3.50	9.20
2022-09-01	17094.349609	629.000610	-3.74	-5.29
2022-10-01	18012.199219	671.123169	5.37	6.70
2022-11-01	18758.349609	740.281860	4.14	10.30
2022-12-01	18105.300781	764.828430	-3.48	3.32
2023-01-01	17662.150391	713.444885	-2.45	-6.72
2023-02-01	17303.949219	664.401489	-2.03	-6.87
2023-03-01	17359.750000	685.213806	0.32	3.13
2023-04-01	18065.000000	722.257751	4.06	5.41
2023-05-01	18534.400391	693.379395	2.60	-4.00
2023-06-01	19189.050781	781.508179	3.53	12.71
2023-07-01	19753.800781	813.324219	2.94	4.07
2023-08-01	19253.800781	779.650024	-2.53	-4.14
2023-09-01	19638.300781	779.599976	2.00	-0.01
2023-10-01	19079.599609	736.349976	-2.84	-5.55
2023-11-01	20133.150391	801.099976	5.52	8.79
2023-12-01	21731.400391	880.250000	7.94	9.88
2024-01-01	21725.699219	818.650024	-0.03	-7.00
2024-02-01	21982.800781	800.099976	1.18	-2.27
2024-03-01	22326.900391	830.200012	1.57	3.76
2024-04-01	22434.650391	869.000000	0.48	4.67

In []: df.columns

In []: # Perform regression analysis
X = sm.add_constant(df['Nifty50_Return']) # Put the nifty 50 return in x variabl

```
model = sm.OLS(df['JSW_Return'], X) # Use ordinary least squares regression
results = model.fit() # Fit the model to the data
results = results.summary() # Summarize the result of the regression</s
# Print regression results
print(results)</pre>
```

OLS Reg	ression	Results
---------	---------	---------

============				=======	========	====	
Dep. Variable:	•	JSW_Return	R-squared:		0.363		
Model:	OLS		Adj. R-squ	Adj. R-squared:		0.351	
Method:	Leas	st Squares	F-statisti	.c:		32.44	
Date:	Thu, 0	4 Apr 2024	Prob (F-st	atistic):	4.5	4.51e-07	
Time:		12:44:54	Log-Likeli	Log-Likelihood:		-218.22	
No. Observations:		59	AIC:		440.4		
Df Residuals:		57	BIC:			444.6	
Df Model:		1					
Covariance Type:		nonrobust					
=======================================	:======:			=======	========	=======	
=							
	coef	std err	t	P> t	[0.025	0.97	
5]							
-							
const	1.1622	1.328	0.875	0.385	-1.497	3.82	
1							
Nifty50_Return	1.3728	0.241	5.695	0.000	0.890	1.85	
6							
===========	.======	=======		========	========	=====	
Omnibus:		57.416	Durbin-Wat	son:		1.951	
Prob(Omnibus):		0.000	Jarque-Bera (JB): 4		43	8.819	
Skew:		2.509	Prob(JB):		5.1	5e-96	
Kurtosis:		15.382	Cond. No.			5.66	
=======================================				========	=======	=====	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

So, the beta is:

Nifty50_Return 1.3735

Insights

Certainly! The beta coefficient in a regression analysis represents the sensitivity of the dependent variable (in this case, JSW Steel returns) to changes in the independent variable (Nifty 50 returns).

In the regression results you provided, the beta coefficient for Nifty 50 returns is approximately 1.3731. This means that for every 1% increase (or decrease) in the Nifty 50 returns, we can expect JSW Steel returns to increase (or decrease) by approximately 1.3731%.

A beta coefficient greater than 1 indicates that JSW Steel is more volatile than the market represented by the Nifty 50 index. Conversely, a beta coefficient less than 1 would indicate that JSW Steel is less volatile than the market.

Therefore, with a beta coefficient of approximately 1.3731, JSW Steel is expected to experience larger fluctuations in returns compared to the overall market (Nifty 50). It suggests that JSW Steel returns are positively correlated with the movements of the Nifty 50 index, and the stock tends to amplify the movements in the market.