(c) -0.55 / - MOITULOS SOLUTION: 0.55 = 0.5 + 0.05 + 0.005 + 0,0005 + ... Thus a = 0.5 and t = 0.05 = 5Hence, $\lim_{n\to\infty} S = \frac{1}{2} = \frac{1}{2} = \frac{5}{9}$ SOLUTION: What are the details of the required " ! 10N = 3.66 - N = 0,36 $N = \frac{33}{9} = \frac{33}{90} = \frac{11}{30}$ What is the second term? 0,3 What is the third term ? 0,006 $t_2 = 0.1t_2$ but to # 0.1t, 0,36 = 0,3 + 0.06 + 0,006 + 0,0006 + 111 $= 0.3 + 0.06 + 0.06(0.1) + 0.06(0.1)^{2} + 0$

6. 0.27 = 0.3 + 0.06
S_0 , $0.36 = 0.3 + \frac{0.00}{1-0.1}$
= 0.3 + 0.06 = 3 + 6 = 3 + 1
0.9 10 90 10 15
= 45 + 10 = 55 = 11
150 150 30
67 : bootlett winds intowed 182
(e) 4. 123 months and the second
SOLUTION. There are two approaches we could take
For posterity, I will show both.
1) 010 0 167 (B) 10/8/2 V/N T 167 8 1/32 1
1000 N = 4123.123
-N=-4,123
999 N = 4119,0
N = 4119 1373
3 4 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
The approach using geometric sories:
1 11 11 11 11 11 11 11 11 11 11 11 11 1
4.123 = 4 + 0.123 + 0.000123 +
= 4 + 0,123 + 0,123 (0,001) + 0,123 (0,000)
0 2 1 1 4 + 0,123 (0,001)3 + iii
= 4 + 0.123 = 4 + 0.123 = 4 + 123
$= 4 + \frac{0.123}{1 - 0.001} = 4 + \frac{0.123}{0.999} = 4 + \frac{123}{989}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
333 333
then the things to the things to the
tin Tomatic Variant ?
95

(4)	2.031 First method:
	SOLYTION. 1000N = 203.1.31
31 18	99N = 201.1
3/20	What is N = 201.1 2011
	Dometrii Jeries Method;
	2.031 = 2 + 0.031 + 0.031(0.01)
(1)	+ 0,031 (0,01)
	$+0.031(0.01)^3+$
	$=2+\frac{0.031}{1-0.01}=2+\frac{0.031}{0.99}$
	$=2+\frac{0.031}{1-0.01}=2+\frac{0.031}{0.99}$
1800	$= 2 + \frac{31}{990} = \frac{1980 + 31}{990} = \frac{2011}{990}$
170	970 990 990
(9)	6.7182 First method:
(acol)	SOLUTION: $1000 N = 6718, 2\overline{182}$ - $N = -6.7\overline{182}$
2	999N = 6711.50
	12422 1. N= 6.711.5 _ 67115
	$N = \frac{13423}{1998}$ $N = \frac{999}{9990}$
~	0.36 = 0.3 + 0.06 + 0.00 + 0.00
20	= 0,3 + 0,060 + 0,06000 + 0,06000
15	The state of the s

Sum of Geometrie Genes Method: $6.7\overline{182} = 6.7 + 0.0182 + 0.0182 (0.001)$ 0,0182 (0,001)2 $=\frac{67}{10}+\frac{182}{10,000}+\frac{182}{10^{4}}\left(\frac{1}{10^{3}}\right)$ $\frac{67}{10} + \frac{182 \times 10^3}{999 \times 10^4} = \frac{67}{10} + \frac{182}{9990}$ $= \frac{67(999) + 182}{9990} = \frac{67115}{9990} = \frac{13423}{1998}$ SOLUTION: Using first method: $\begin{array}{rcl}
 & 1,000,000 & N = 62430716.430716 \\
 & N = 62,430716 \\
 & 999,999 & N = 62430654.0
 \end{array}$ $N = \frac{62430654}{999,999} = \frac{145526}{2331}$ On the following page I show the process using the defending of the sum of a geometric series.

62.430716 = 62 + 0.430716 $+ 0.430716 \left(\frac{1}{106}\right) + 0.430716 \left(\frac{1}{106}\right)^{2}$ + 0,430716 (106) + - - -=62 + 0.43071662 + 0,430716 999999 = 62 (2331) + 1004 _ 145526 The sum of the terms of an infinite
geometric progression is 12
and the sum of the first two terms
of the progression is 6. Write the first three terms of the progression.

SOLUTION. $S_n = 12$, $S_2 = t_1 + t_2 = 6$ 6= a+ar + 7 r= 6-a $t_3 = ar^2 = a\left(\frac{6-a}{a}\right)^2 = a\left[\frac{36-12a+a^2}{a^2}\right] = \frac{a^2-12a+a}{a}$ $S_{h} = 12 = \frac{9}{1-F} = \frac{9}{1-\left(\frac{6-9}{9}\right)} = \frac{9}{9} = \frac{9}{9}$ $12 = \frac{a^2}{2q - b} \iff 12(2q - b) = a^2$ ←> a²-24a+72=0 ← (4) Completing the Aquara: 92-249=-12 -> 92-249+(-12)=-12+144 $(q-12)^2 = 72 \iff q-12 = \pm \sqrt{72}$ $\iff a - 12 = \pm 6\sqrt{2} \iff a = 12 \pm 6\sqrt{2}$ $\Rightarrow a = 12 + 6\sqrt{2}$ or $a = 12 - 6\sqrt{2}$. There are two possible geometric progressions one with $r = \frac{6 - (12 + 6\sqrt{2})}{12 + 6\sqrt{2}} = \frac{-6 - 6\sqrt{2}}{12 + 6\sqrt{2}}$ $= \frac{(-6-6\sqrt{2})(12-6\sqrt{2})}{(12+6\sqrt{2})(12-6\sqrt{2})} = \frac{-72+36\sqrt{2}-72\sqrt{2}+72}{144-72}$ $= \frac{-36\sqrt{2}}{72} = -\frac{\sqrt{2}}{2}; t_1 = 12 + 6\sqrt{2},$ $t_2 = (12+6\sqrt{2})(-\frac{\sqrt{2}}{2}) = -6\sqrt{2}-6$; $t_3 = (12+6\sqrt{2})(-\frac{12}{2})^2$ 99

ms

So the first possible three terms are 12+6/2, -6/2-6, 6+3/2 The other possible geometric progression has first term $12-6\sqrt{2}$, with $r = 6 - (12-6\sqrt{2}) = -6+6\sqrt{2}$ $12-6\sqrt{2}$ $12-6\sqrt{2}$ $12-6\sqrt{2}$ $= \frac{(-6+6\sqrt{2})(12+6\sqrt{2})}{(12-6\sqrt{2})(12+6\sqrt{2})} = \frac{-72-36\sqrt{2}+72\sqrt{2}+72}{144-72}$ $\frac{36\sqrt{2}}{72} = \frac{\sqrt{2}}{2}$ Herce t, = 12-6/2 t2= (12-6VZ)(VZ) = 6VZ-6 $t_3 = (12-6\sqrt{2})(\frac{12}{2})^2 = (12-6\sqrt{2})(\frac{1}{2})$ That is, 12-612, -6+612, 6-312

THE BINOMIAL THEOREM Consider the following array: $(x+y)^{2} = 1x + 1y$ $(x+y)^{2} = 1x^{2} + 2xy + 1y^{2}$ $(x+y)^{3} = 1x^{3} + 3x^{2}y + 3xy^{2} + 1y^{3}$ $(x+y)^{4} = 1x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + 1y^{4}$ $(x+y)^{5} = 1x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4}y^{5}$ We can continue using the procedure for multiplying polynomials to extend this sequence of This : equations as far as no ! $(x+y)^{6} = (x+y)(x+y)^{5}$ $= 1x^{6} + 5x^{5}y + 10x^{4}y^{2} + 10x^{3}y^{3} + 5x^{2}y^{4}$ $+ xy^{5} + 1x^{5}y + 5x^{4}y^{2} + 10x^{3}y^{3}$ $+ 10x^{2}y^{4} + 15xy^{5} + 1y^{6}$ $= 1 x^{6} + 6 x^{5} y + 15 x^{4} y^{2} + 20 x^{3} y^{3} + 15 x^{2} y^{4}$ +6xy5+1x6 Proceeding in this way we can obtain an expression (expansion) for each higher power of the Vinomial (x+y) in a htep-by-step Fashin. we would like a general formula for the expansion of $(x + y)^n$ when $n \in \mathbb{N}_0$ which would enable us to expand $(x + y)^n$ for example, without having to obtain all of the preceeding expansions. Moreover, we would like a general formula for each term in this expansion. With this and in View, me study the preceding expansions and the following observations: The number of terms in the expansion of $(x+y)^n$ is n+1. The coefficient of the first term in the expansion is and decreases by one in sac succeeding term: the exponent for in the first term and by one in each succeeding term for X and y in any term is n.

The coefficient for any term after the first the product of the reality the preceding term and the of that term diver Using these observations we readily obtain Using these observations me readily obtain:

(X+Y) = X + 7 x by + 2/ x 5 x 2 + 35 x 4 y 3 + 35 x 3y + 2/x y + 7 xy + y We generalize the preceding discussion with the following theorem, called the binomial theorem: THEOREM 6-14, $y < x, y \in \mathbb{C}$, $n, r \in \mathbb{N}_0$, $xy \neq 0$, and $n \geq r$, then $(x+y)^n = x^n + n x^{n-1} + \frac{n(n-1)}{1/2} \times x^{n-2}$ $+\frac{n(n-1)(n-2)}{1/2/3} \times \frac{n-3}{4} \times \frac{3}{4} + \cdots$ + n(n-1)(n-2) - · · (n-++1) x n-+ r + ... + y n r factors 111

The conclusion of the binomial theorem is often called the benomial formula. Expand (2a-b) 8 The required expansion may be obtained by substituting 29 for x and -b for y in the binomas formula. We have: $(2a - b)^8 = [2q + (-b)]^8$ $= (2a)^{8} + 8(2a)^{7}(-b) + \frac{8.7}{112}(2a)^{6}(-b)$ $+\frac{8.7.6}{11213}(29)(-6)^{3}+\frac{8.7.65}{1121314}(29)(-6)^{4}$ + 8,7,6,5,4 (20)3(-6)3 + 8.7.6.5.4.3 (2a) (-6) 6. + 817.6.5.4.3.2 (2a)(-6)⁷ 112.3.4.5.6.7 + 81716.5.4,312·1 (-b) 8 11213.4.5.6.7.8

 $= 256 q^{8} - 1024 q^{7}b + 1792 a^{6}b^{2} - 1792 a^{5}b$ $+ 1120 a^{4}b^{4} - 448 a^{3}b^{5} + 112 a^{2}b^{6}$ 2+16963+68 7008 60 In the preceeding example, we observe the indicated product 8.7.6.5.4.32 special notation has been introduce for them, namely, "n!". Thus 8! = 8,7,6,5,4,3,2,1) n! is read "n factorial" This equation suggests a way to define 0!, Let n = 0 and we = x° - 4(x+14)(300x) = 7000 x 7 43750 x7 113

EXAMPLE 2
Evaluate the following expressions

(a)
$$\frac{800!}{798!}$$
 (b) $\frac{7!}{3!4!}$ (c) $\frac{3!+5!}{(7-4)!}$

(d) $\frac{(n+2)!}{n!}$ (e) $\frac{(n-r+1)!}{(n-r-1)!}$

SOLUTIONS

(a) $\frac{800!}{798!} = \frac{800 \cdot 199 \cdot (198!)}{798!}$
 $= 800 \cdot 199 = 639 \cdot 200$

(b) $\frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5 \cdot (4!)}{3!2 \cdot 1} = \frac{7 \cdot 6 \cdot 5}{3!2 \cdot 1} = 35$

(c) $\frac{3!+5!}{(7-4)!} = \frac{3!}{3!} \cdot \frac{(1+5\cdot4)}{(1+5\cdot4)} = \frac{1}{3!}$

(d) $\frac{(n+2)!}{7!} = \frac{(n+2)(n+1)}{n!}$
 $= (n+2)(n+1)$

(e) $\frac{(n-r+1)!}{(n-r-1)!} = \frac{(n-r+1)(n-r)[(n-r-1)!]}{(n-r-1)!}$ 8 008 + 0 = 0 (n-1+1) (n-1+) (n-1+) A EXERCISES 1. Using the binomial theorem, write the expansion of each of the following: (a) $(a+b)^{10} = a^{10} + 10a^{9}b + 45a^{8}b^{2} + 120a^{7}b^{3}$ $+ 210a^{8}b^{4} + 252a^{5}b^{5} + 210a^{4}b^{6}$ $+ 120a^{3}b^{7} + 45a^{2}b^{8} + 10ab^{9} + b^{70}$ (b) $(x+3)^7 = x^7 + 7x^6(3) + 21x^5(3)^2$ $(+35 \times (3)^3 + 35 \times (3)^4 + 21 \times (3)^5$ + 7 x · (3) 6 + 37 $= x^7 + 21 x^6 + 189 x^5 + 945 x^4 + 2835 x^3$ + 5/03 x2 + 5/03 x + 2/87 (c) $(x-5)^8 = x^8 + 8x^7(-5) + 28x^6(-5)^2$ + 56 x5(-5)3+ 70 x4(5)4+ 56 x3(-5)5 + 28x2(-5)6 + 8x(-5)7 + (-5)8 $= x^{8} - 40x^{7} + 700x^{6} - 7000x^{5} + 43750x^{4}$ $- 175000x^{3} + 437500x^{2}$ - 625000 X + 390625 115

(d) $(3q+2b)^5 = (3a)^5 + 5(3a)^4(2b) + 10(3a)^3(2b)^2$ $+10(39)^{2}(26)^{3}+5(39)(26)^{4}+(26)^{5}$ = 243 a + 810 a + 6 + 1080 a 362 + 720 a 263 798 + 240 ab+ 3265 (e) $(b-c)^6 = b^6 + 6b^5(-c) + 15b^4(-c)^2$ + 20 63(-c)3 + 15 62(-c)4 +66(-6)5+(-6)6 $= 6^{6} - 66^{5}c + 156^{4}c^{2} - 206^{3}c^{3}$ +156-6605+66 (f) $(2a-3b)^5 = (2a)^5 + 5(2a)^4(-3b)$ $+10(2a)^{3}(-3b)^{2}+10(2a)^{2}(-3b)^{3}$ $+5(2a)(-3b)^{4}+(-3b)^{5}$ $= 32a^5 - 240a^4b + 720a^3b^2$ -1080 a263 + 810 ab4 - 24365 + 28x2(-5) 6+ 8x (-5) 126 (-5 X.05124 + 5X,0001 = 4000 X + 48120 X + - 175000 x3 + 487500 X2

2) Evaluate each of the following:

(a)
$$\frac{19!}{16!} = \frac{19.18.17 \cdot (16!)}{16!} = \frac{19.18.17}{16!} = 5814$$

(b)
$$\frac{52!}{49!3!} = \frac{52.51.50.(49!)}{3.2.1(49!)} = \frac{52.51.50}{2.3}$$

$$=26\cdot17\cdot50=22100$$

(c)
$$\frac{1}{3!} + \frac{1}{5!} = \frac{1}{3!} + \frac{1}{3!} (5.4)$$

$$= \frac{20+1}{5!} = \frac{21}{5!} = \frac{3.7}{5!4.3.2} = \frac{7}{40}$$

(d)
$$(4+3)! = \frac{7.6.5.(4!)}{3.2.1.(4!)} = 35$$

(e)
$$\frac{15! - 13!}{14!} = \frac{13!(15.14 - 1)}{14!} = \frac{15.14 - 1}{14}$$

$$= 15 - \frac{1}{4} = \frac{209}{14}$$

(+)
$$\frac{3!4!}{4!-3!} = \frac{3!4!}{3!(4-1)} = \frac{4\cdot 3\cdot 2}{3} = 8$$

(g)
$$(n-1)! - \frac{1}{n!} = \frac{1}{(n-1)!} - \frac{1}{n(n-1)!}$$

$$= \frac{n-1}{n!}$$

$$= \frac{n-1}{n!}$$

$$= \frac{n}{n!}$$
(h) $\frac{(n+3)! + n!(n+2)}{n!(n+2)!} - \frac{n![(n+3)(n+1)! + (n+2)]}{n!(n+2)!}$

$$= \frac{(n+2)[(n+3)(n+1)! + 1]}{(n+2)!} - \frac{n^2 + 4n + 4}{(n+1)!}$$

$$= \frac{(n+2)^2}{(n+1)!}$$
(g) $\frac{n!}{n!} = 720 \iff n = 6 \iff \frac{5}{6} = 6$
(b) $\frac{n!}{(n-2)!} = 72 \iff \frac{7(n-1)(n-2)!}{(n-2)!} = 72$

$$= \frac{n}{(n-2)!} - \frac{7}{(n-2)!} \implies \frac{7}{(n-2)!} = \frac{7}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{7}{(n-2)!} \implies \frac{7}{(n-2)!} = \frac{7}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{7}{(n-2)!} \implies \frac{7}{(n-2)!} = \frac{7}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{7}{(n-2)!} = \frac{7}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{7}{(n-2)!} = \frac{7}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{3}{(n-2)!} = \frac{3}{(n-2)!}$$

$$= \frac{3}{(n-2)!} - \frac{3}{(n-2)!} = \frac{3}{(n-$$

(c)
$$n! = 930 (n-2)!$$

 $n (n-1)(n-2)! = 930 (n-2)!$
 $n^2 - n = 930 \iff n^2 - n - 930 = 0$
 $930 = 2:3:5:31 = 30:31$
 $i = 930 (29!)$
 $31! = 930 \iff 31:30(29!)$
 $31! = 930 \iff 31:30(29!) = 930$
 $(29!)$
(d) $(2n+1)! (2n-1)! = 10$
 $(2n+1)[(2n)!][(2n-1)!] = 10$

Prove the identity (n-1)! + n! $\frac{1}{(n-1)!} + \frac{1}{n(n-1)!} = \frac{n+1}{n(n-1)!} = \frac{n+1}{n}$ MORE ABOUT THE BINOMIAL THEOREM Referring to Theorem 6-14, we observe that the term involving y' is the (r+1)th term of the Expansion of (x+y)". in the expansion of $(x + y)^n$ is n (n-1) · · · (n-+1) x n-r r Note that this formula gives all terms except the first. This first term The fifth term of the expansion of (x + x) & can be obtained by for r substituting 8 for n and 4 for r

There the 5th term in the expansion of (x+y) 8 is 8.7.6.5 x 8+4 4, or 70 x 4 y 4. The fraction 8.7.6.5 can be expressed more compactly by multiplying both numerator and denominator by 4:3:2.1, or 4%. 8.7.6.5 8.7.6.5.4.3.2.) We can use the same procedure to write the coefficient n(n-1)...(n-1+1) in statement (A 121

This time we multiply the numerator and denominator by (n-r)! We have: n(n-1) - - - (n-t+1) = -1n(n-1) ono (n-++1)(n-+)(n-+-1) ono 3121 r!(n-r)! - r!(n-r)! Accordingly, the coefficient of the term in the expansion of (x+y) is $\frac{n!}{r!(n-r)!}$ We will find it convenient to use the symbol of cr, or ("), to represent this coefficient. Thus & C3 = (3) = 3151 12 tho coefficient of x y 3 in the expansion of (x+x) 8.

11 C8 = (8) = 11. is the coefficient of x3y8 in the expansion of (x+y); and $n \cdot G_r = \binom{n}{r} = \frac{n!}{r!(n-r)!} \quad \text{in the}$ efficient of xn-ry in the expansion Using this notation we can write the bingmial formula in the following $(x+y)^{\eta} = \binom{\eta}{0} x^{\eta} y^{\eta} + \binom{\eta}{1} x^{\eta} y^{\eta}$ X -2 /2 + ... (x $+ \binom{n}{r} x^{n-r} y^r + \cdots$ (n) x n-n y provided n EN, 123

Using the summation (signing E) notation, we may write the fenomial theorem as follows: $y \times y \in C$, $n, r \in N$, $xy \neq 0$, and $n \ge r$, then $(x+y)^n = \sum_{r=0}^n {n \choose r} x^{n-r} r^r$ We also observe that A can now be written somewhat more compactly as follows: $f(x,y) \in \mathbb{C}$, $n,r \in \mathbb{N}$, $xy \neq 0$, and $n \geq r$, the the (r+1)th ferm in the expansion of (x+y)" is 125

Use statement C to expand (29-6)8. Since statement C is merely gnother way of stating the binomial theorem;
we again substitute 29 for x;
(-6) for y, and 8 for n. Thus $(2a-b)^8 = \sum (8)(2a)^8 - (-b)$ Expanding the right member of this equation and supplying such term, we obtain the result shown in example 1, page 113. as early as 1996 or 1998, with the introduction of Computer algebra systems such as Derive into the TI-92, we could extra expand ((2a-6)18) $^{02}\sum_{n}(mCr(8,r)*(2*a)^{n}(8-r)*(-b)^{n}r,$ r, 0, 8) yields: 256 a - 1024. a b + 1792 a 6 2 - 1792 a b 3 + 1120 gtb+ - 448 g3 b5 + 112 g266 -16 9 67 + 68

MPLE, 3 1 + 319MAX SOLUTION 3: 3. 1 ... (1-05 15 20 15 6 9 36 84 126 126 84 36 9 1 If the "1" at the top is called now of and the first, item in each now is can item of in row n can be found from the formula: $\binom{n}{i} = \frac{n!}{n!}$ j) (n-j)!j! Also, now n of the triangle gives the coefficients of the expansion of (9+6)? What is $\binom{0}{0}$? $\binom{0}{0} = \frac{0!}{(0-0)!0!} = \frac{0!}{(0-0)!0!}$ We can write the triangle as:
(, (!) = 1, (2) = 1, (7) = 1, (7)

It can be readily shown that I is an identity and we have: $\frac{1}{\sqrt{n}}, r \in \mathbb{C}, r \leq n, \text{ and } \binom{n}{r} = \frac{n!}{r!(n-r)!}$ Then $\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$ This theorem is known as Pascal's theorem for himmeal coefficients. (p. 124), we may write the binomial in the following form: $(x+y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2$ If we let x = 1 in this formula, we obtain : $(1+y)^n = 1 + ny + \frac{n(n-1)}{2!}y^2$ $+\frac{n(n-1)(n-2)}{3!}$

In more advanced courses in mathematics it is proved that there are conditions under which formula of is valid even when n is not a counting number (N,). For example, G is valid for any rational number of When 14/21, In fact,

if n & Q - No y & R, and 14/21,

the right member of G is a

Convergent infinite series whose "Sum" is the left member of G. EXAMPLE 5 Expand 1-x by using statement q. SOLUTION 1 = (1-x)TX We substitute -x for y and -1 for n. $(1-x)^{-1} = [1+(-x)]^{-1}$ $= 1 + (-1)(-x) + \frac{(-1)(-2)}{21}(-x)^{2}$ $+\frac{(-1)(-2)(-3)}{3}(-x)^3+...$ $(1-x)^{-1} = 1 + x + x^2 + x^3 + \dots$

If |x|<1, the right member of this aquation; 1+ x + x2+ x3+,,, is an is $\frac{1}{1-x}$ according to Theorem 5-14 $S_n = \frac{q-qr}{1-r} \rightarrow \lim_{n\to\infty} S_n = \frac{q}{1-r} \quad \text{when } |r|K|$ 1+X+X+X+,... $-x | 1 + 0x + 0x^2 + 0x^3 + 0x^4 + \dots$ 13/

EXAMPLE 6 SM X 9 3 19 MARX 3 Use statement of to find VIO to the nearest thousandth. $\sqrt{10} = (9+1)^{1/2} = [9(1+\frac{1}{9})]^{1/2}$ $= 9^{2}(1+\frac{1}{9})^{2} - 3(1+\frac{1}{9})^{2}$ Concentrating on $(1 + \frac{1}{9})^{\frac{1}{2}}$, using statement q, $y = \frac{1}{9}$ and $y = \frac{1}{2}$. $(1+\frac{1}{9})^{\frac{1}{2}} \approx 1+(\frac{1}{2})(\frac{1}{9})+\frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(\frac{1}{9})^{2}$ 2 1+18-1-16.93+... \$\tag{1+0.0555-0.0015+0,0001 ≈ 1.0541 , $\sqrt{10} = 3(1+\frac{1}{9})^2 \approx 3.162$ Observe that in order to get the answer correct to 3 documal places , we retained 4 decemal places until the final step.

(c)
$$(2.01)^{3} = (2 + \frac{1}{100})^{8}$$

 $= 2^{8} + 8(2)^{7}(\frac{1}{100}) + 28(2)^{6}(\frac{1}{100})^{2}$
 $+ 56(2)^{8}(\frac{1}{100})^{5} + 98(2)^{2}(\frac{1}{100})^{6}$
 $+ 8(2)(\frac{1}{100})^{7} + (\frac{1}{100})^{7}$
 $= 256 + 10, 24 + 0, 1792 + 0,001792$
 $+ 0.000112 + 11, \approx 266.421$
(d) $\sqrt{5}$ See example on page 133, $\sqrt{5} = 5^{\frac{1}{2}} = (4+1)^{\frac{1}{2}} = \frac{1}{4}(1+\frac{1}{4})^{\frac{1}{2}}$
 $= 4^{\frac{1}{2}}(1+\frac{1}{4})^{\frac{1}{2}} = 2(1+\frac{1}{4})^{\frac{1}{2}}$
Concentrating man on $(1+\frac{1}{4})^{\frac{1}{2}}$
using a statement of from bottom of page 130, with $\sqrt{x} = 1$ and $\sqrt{x} = \frac{1}{4}$, we obtain; $\sqrt{x} = \frac{1}{4}$, we obtain; $\sqrt{x} = \frac{1}{4}$, $\sqrt{x} = \frac{1}{4$

= 1.118 . . . \5 = 2,236 (e) $\sqrt{17} = 17^{1/2} = (16+1)^{1/2} = [16(1+\frac{1}{16})]^{1/2}$ = 16 (1+16) 1/2 = 4 (1+16) 1/2 $(1+\frac{1}{16})^{1/2} = 1+\frac{1}{2^{1}}\frac{1}{16}+\frac{(\frac{1}{2})(-\frac{1}{2})}{2}(\frac{1}{16})^{2}$ $+\frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})}{3!2}(\frac{1}{16})^3$ = 1 + 0,03125 - 0,000 488 ... + 0,0000000 22. 4(1,0308) = 4,1232 inconsequential 17 × 4.123 $\sqrt[3]{28} = 28^{\frac{1}{3}} = (27+1)^{\frac{1}{3}} = [27(1+\frac{1}{27})]^{\frac{1}{3}}$ $= 27^{3} \left(1 + \frac{1}{27}\right)^{1/3} = 3 \left(1 + \frac{1}{27}\right)^{\frac{1}{3}}$ $(1+\frac{1}{27})^{\frac{1}{3}} \approx 1+\frac{1}{3}\cdot\frac{1}{27}+\frac{(\frac{1}{2})(-\frac{2}{3})}{2}(\frac{1}{27})^{\frac{2}{3}}$ $+ \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{312} \left(\frac{1}{27}\right)^{3} + \cdots$ $\times \left(+ 0.0123456... - 0.000152\right)$ ≈ 1,0121936 × 1,0122 $\frac{3}{28} = 3(1.0122) = 3.0366 = 3.037$ 147