Atty. Docket No. Form PTO-1449 (modified) Serial No. 11899.0152.DVUS01 To be assigned (MOBT:152-2) List of Patents and Publications for Applicant's **Applicant** Alexander Steinbüchel et al. INFORMATION DISCLOSURE STATEMENT

Filing Date:

Group: (Use several sheets if necessary)

Other Art **U.S. Patent Documents Foreign Patent Documents** See Page 1 See Page 1 See Page 1

U.S. Patent Documents

Exam. Init.	Ref. Des.	Document Number			Class	Sub Class	Filing Date of App.
	Al						

Foreign Patent Documents

Exam. Init.	Ref. Des.	Document Number	Date	Country	Class	Sub Class	Translation Yes/No
	ВІ						

Other Art (Including Author, Title, Date Pertinent Pages, Etc.)

Exam. Init.	Ref. Des.	Citation
AND	Cl	Anderson, A.J. and Dawes, E.A., Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates, <i>Microbial. Rev.</i> 54: 450-472 (1990).
ARZ	C2	Barnes, W.M., Sequencing DNA with Dideoxyribonucleotides as Chain Terminators: Hints and Strategies for Big Projects, in <i>Methods in Enzymology: Guide to Molecular Cloning Techniques</i> , Vol. 152, Academic Press: New York, pp. 538-556 (1987).
Attal	C3	Byrom, D., Industrial production of copolymer from <i>Alcaligenes eutrophus</i> , In: Dawes, E.A.(editor) Novel biodegradable microbial polymers, Kluwer Academic Publishers, Doordrecht, pp. 113-117 (1990).
AAZ	C4	Greene, J.R., et al., Subcloning, in <i>Methods in Enzymology: Guide to Molecular Cloning Techniques</i> , Vol. 152, Academic Press: New York, pp. 512-522 (1987).
ARD	C5	Huismann, G.W., et al., Metabolism of Poly(3-hydroxyalkanoates) (PHAs) by <i>Pseudomonas</i> oleovorans, <i>J. Biol. Chem.</i> 266: 2191-2198 (1991).
Ste	C6	Kimmel, "Identification and Characterization of Specific Clones: Strategy for Confirming the Validity of Presumptive Clones," in <i>Methods in Enzymology: Guide to Molecular Cloning Techniques</i> , Vol. 152, Academic Press: New York, pp. 507-511 (1987).

EXAMINER:	116	11	DATE CONSIDERED:	7711	17

Form PTO-1449 (modified)		Atty. Docket No.	Serial No.	
		11899.0152.DVUS01 (MOBT:152-2)	To be assigned 09/779, 427	
List of Patents and Publications for	r Applicant's	Applicant	0// 471, 121	
		Alexander Steinbüchel et al.		
Information Disclosure \$	STATEMENT			
(Use several sheets if necess	ary)	Filing Date:	Group: 1636	
U.S. Patent Documents Foreign		Patent Documents	Other Art	
See Page 1		See Page 1	See Page 1	

Other Art (Including Author, Title, Date Pertinent Pages, Etc.)

Exam. Init.	Ref. Des.	Citation					
MA	C7	Liebergesell, M., et al., Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototropic bacteria reveals synthesis of a polyester exhibiting an unusual composition, <i>Appl. Microbiol. Biotechnol.</i> 40: 292-300 (1993).					
ANd	C8	New England Biolabs Catalog 1992. New England Biolabs, Beverly, MA. P. 32					
ADD	С9	Peoples, O.P. and Sinskey, A.J., Poly-β-hydroxybutyrate biosynthesis and <i>Alcaligenes</i> eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC), J. Biol. Chem. 264: 15298-15303 (1989).					
AND	C10	Reusch, R.N., Biological complexes of poly-β-hydroxybutyrate, <i>FEMS Microbiol. Rev.</i> 103: 119-130 (1992).					
AA2	C11	Schlegel, H.G., et al., The Isolation of Mutants not Accumulating Poly-β-hydroxybutyric Acid, <i>Arch. Microbiol.</i> 71: 283-294 (1970).					
bbZ	C12	Schubert, P., et al., Cloning of the <i>Alcaligenes eutrophus</i> gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in <i>Escherichia coli</i> , <i>J. Bacteriol</i> . 170: 5837-5847 (1988).					
AND	C13	Slater, S.C., et al., Cloning and expressing <i>Escherichia coli</i> of the <i>Alcaligenes eutrophus</i> H16 poly β-hydroxybutyrate bio-synthetic pathway, <i>J. Bacteriol</i> . 170: 4431-4436 (1988).					
Ma	C14	Steinbüchel, A., Polyhydroxyalkanoic acids: In: D. Byrom (editor) Biomaterials, Macmillan Press, New York, pp. 123-213 (1991).					
ADD	C15	Valentin, H. E., et al., Identification of 4-hydroxyvaleric acid as a constituent of bio-synthetic polyhydroxyalcanoic acids from bacteria, <i>Appl. Microbiol. Biotechnol.</i> 36: 507-514 (1992).					
AND	C16	Valentin, H.E., et al., Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria, <i>Appl. Microbiol. Biotechnol.</i> 40: 710-716 (1994).					

			/		
Examiner:	. 1_	11.5%	1/	DATE CONSIDERED:	0011.3