Задача А. Мосты

 Имя входного файла:
 bridges.in

 Имя выходного файла:
 bridges.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дан неориентированный граф, не обязательно связный, но не содержащий петель и кратных рёбер. Требуется найти все мосты в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество мостов в заданном графе. На следующей строке выведите b целых чисел — номера рёбер, которые являются мостами, **в возрастающем порядке**. Рёбра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

bridges.in	bridges.out
6 7	1
1 2	3
2 3	
3 4	
1 3	
4 5	
4 6	
5 6	

Задача В. Точки сочленения

Имя входного файла: points.in Имя выходного файла: points.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф. Требуется найти все точки сочленения в нём.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число b — количество точек сочленения в заданном графе. На следующей строке выведите b целых чисел — номера вершин, которые являются точками сочленения, в возрастающем порядке.

points.in	points.out
6 7	2
1 2	2
2 3	3
2 4	
2 5	
4 5	
1 3	
3 6	

Задача С. Компоненты реберной двусвязности

Имя входного файла: bicone.in Имя выходного файла: bicone.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Компонентой реберной двусвязности графа $\langle V, E \rangle$ называется подмножество вершин $S \subset V$, такое что для любых различных u и v из этого множества существует не менее двух реберно не пересекающихся путей из u в v.

Дан неориентированный граф. Требуется выделить компоненты реберной двусвязности в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1 \le n \le 20\,000, 1 \le m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

В первой строке выходного файла выведите целое число k — количество компонент реберной двусвязности графа. Во второй строке выведите n натуральных чисел a_1, a_2, \ldots, a_n , не превосходящих k, где a_i — номер компоненты реберной двусвязности, которой принадлежит i-я вершина.

bicone.in	bicone.out
6 7	2
1 2	1 1 1 2 2 2
2 3	
3 1	
1 4	
4 5	
4 6	
5 6	

Задача D. Компоненты вершинной двусвязности

Имя входного файла: biconv.in
Имя выходного файла: biconv.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Компонентой вершинной двусвязности графа $\langle V, E \rangle$ называется максимальный по включению подграф (состоящий из вершин и ребер), такой что любые два ребра из него лежат на вершинно простом цикле.

Дан неориентированный граф без петель. Требуется выделить компоненты вершинной двусвязности в нем.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1 \le n \le 20\,000$, $1 \le m \le 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \le b_i, e_i \le n)$.

Формат выходных данных

В первой строке выходного файла выведите целое число k — количество компонент вершинной двусвязности графа. Во второй строке выведите m натуральных чисел a_1, a_2, \ldots, a_m , не превосходящих k, где a_i — номер компоненты вершинной двусвязности, которой принадлежит i-е ребро. Ребра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

biconv.in	biconv.out
5 6	2
1 2	1 1 1 2 2 2
2 3	
3 1	
1 4	
4 5	
5 1	

Задача Е. Почтальон

Имя входного файла: post.in
Имя выходного файла: post.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайта

В городе $\mathfrak C$ есть n площадей, соединенных улицами. При этом количество улиц не превышает ста тысяч и существует не более трех площадей, на которые выходит нечетное число улиц. Для каждой улицы известна ее длина. По улицам разрешено движение в обе стороны. В городе есть хотя бы одна улица. От любой площади до любой можно дойти по улицам.

Почтальону требуется пройти хотя бы один раз по каждой улице так, чтобы длина его пути была наименьшей. Он может начать движение на любой площади и закончить также на любой (в том числе и на начальной).

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество площадей в городе $(1 \le n \le 1\,000)$. Далее следуют n строк, задающих улицы. В i-й из этих строк находится число m_i — количество улиц, выходящих из площади i. Далее следуют m_i пар положительных чисел. В j-й паре первое число — номер площади, в которую идет j-я улица с i-й площади, а второе число — длина этой улицы.

Между двумя площадями может быть несколько улиц, но не может быть улиц с площади на нее саму.

Все числа во входном файле не превосходят 10^5 , общее количество улиц также не превосходит 10^5 .

Формат выходных данных

Если решение существует, то в первую строку выходного файла выведите одно число — количество улиц в искомом маршруте (считая первую и последнюю), а во вторую — номера площадей в порядке их посещения.

Если решений нет, выведите в выходной файл одно число -1.

Если решений несколько, выведите любое.

post.in	post.out
4	5
2 2 1 2 2	1 2 4 3 2 1
4 1 2 4 4 3 5 1 1	
2 2 5 4 8	
2 3 8 2 4	

Задача F. Размещение данных

Имя входного файла: data.in
Имя выходного файла: data.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Телекоммуникационная сеть крупной IT-компании содержит п серверов, пронумерованных от 1 до n. Некоторые пары серверов соединены двусторонними каналами связи, всего в сети m каналов. Гарантируется, что сеть серверов устроена таким образом, что по каналам связи можно передавать данные с любого сервера на любой другой сервер, возможно с использованием одного или нескольких промежуточных серверов. Множество серверов A называется отказоустойчивым, если при недоступности любого канала связи выполнено следующее условие. Для любого не входящего в это множество сервера X существует способ передать данные по остальным каналам на сервер X хотя бы от одного сервера из множества A. В условиях показан пример сети и отказоустойчивого множества из серверов с номерами 1 и 4. Данные на сервер 2 можно передать следующим образом. При недоступности канала между серверами 2 и 3 — с сервера 1. На серверы 3 и 5 при недоступности любого канала связи можно по другим каналам передать данные с сервера 4.

В рамках проекта группе разработчиков компании необходимо разместить свои данные в сети. Для повышения доступности данных и устойчивости к авариям разработчики хотят продублировать свои данные, разместив их одновременно на нескольких серверах, образующих отказоустойчивое множество. Чтобы минимизировать издержки, необходимо выбрать минимальное по количеству серверов отказоустойчивое множество. Кроме того, чтобы узнать, насколько гибко устроена сеть, необходимо подсчитать количество способов выбора такого множества, и поскольку это количество способов может быть большим, необходимо найти остаток от деления этого количества способов на число 10^9+7 . Требуется написать программу, которая по заданному описанию сети определяет следующие числа: k — минимальное количество серверов в отказоустойчивом множестве серверов, c — остаток от деления количества способов выбора отказоустойчивого множества из k серверов на число 10^9+7

Формат входных данных

Первая строка входного файла содержит целые числа n и m — количество серверов и количество каналов связи соответственно ($2 \le n \le 200000, 1 \le m \le 200000$). Следующие m строк содержат по два целых числа и описывают каналы связи между серверами. Каждый канал связи задается двумя целыми числами: номерами серверов, которые он соединяет. Гарантируется, что любые два сервера соединены напрямую не более чем одним каналом связи, никакой канал не соединяет сервер сам с собой, и для любой пары серверов существует способ передачи данных с одного из них на другой, возможно с использованием одного или нескольких промежуточных серверов.

Формат выходных данных

Выведите два целых числа, разделенных пробелом: k — минимальное число серверов в отказоустойчивом множестве серверов, c — количество способов выбора отказоустойчивого множества из k серверов, взятое по модулю 10^9+7

Примеры

data.in	data.out
5 5	2 3
1 2	
2 3	
3 4	
3 5	
4 5	

Замечание

В приведенном примере отказоустойчивыми являются следующие множества $\{1,3\},\{1,4\},\{1,5\}.$

Задача G. Таня и пароль

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Пока папа был на работе, маленькая девочка Таня решила поиграть с папиным паролем к секретной базе данных. Папин пароль представляет собой строку, состоящую из n+2 символов. Она выписала все возможные n трёхбуквенных подстрок пароля на бумажки, по одной на каждую бумажку, а сам пароль выкинула. Каждая трёхбуквенная подстрока была выписана на бумажки столько раз, сколько она встречалась в пароле. Таким образом, в итоге у Тани оказалось n бумажек.

Потом Таня поняла, что папа расстроится, если узнает о ее игре, и решила восстановить пароль или, по крайней мере, хотя бы какую-то строку, соответствующую получившемуся набору трёх-буквенных строк. Вам предстоит помочь ей в этой непростой задаче. Известно, что папин пароль состоял из строчных и заглавных букв латинского алфавита, а также из цифр. Строчные и заглавные буквы латинского алфавита считаются различными.

Формат входных данных

В первой строке следует целое число $n\ (1\leqslant n\leqslant 2\cdot 10^5)$, количество трёхбуквенных подстрок, которые получились у Тани.

Следующие n строк каждая содержат по три буквы, образующие подстроку пароля папы. Каждый символ во вводе — строчная или заглавная буква латинского алфавита или цифра.

Формат выходных данных

Если во время игры Таня что-то напутала, и строк, соответствующих данному набору подстрок, не существует, то выведите «NO».

Если же возможно восстановить строку, соответствующую данному набору подстрок, то выведите «YES», а затем любой подходящий вариант пароля.

стандартный ввод	стандартный вывод
5	YES
aca	abacaba
aba	
aba	
cab	
bac	
4	NO
abc	
bCb	
cb1	
b13	
7	YES
aaa	aaaaaaaa
aaa	

Задача Н. Премьер министр

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Новый премьер-министр решил проехать по России от Москвы до Владивостока по железной дороге, а затем вернуться обратно. Он поручил своим помощникам разработать маршрут так, чтобы не пришлось два раза проезжать через один и тот же город. Однако помощники сообщили, что для Российских железных дорог это невозможно. Определите, в каких городах премьер-министр будет вынужден побывать дважды.

Формат входных данных

В первой строке входных данных находятся числа n и m — количество российских городов, соединенных железными дорогами в единую сеть, и количество железнодорожных перегонов, соединяющих пары городов ($1 \le n \le 20\,000$; $1 \le m \le 200\,000$).

Города имеют номера от 1 до n. В каждой из следующих m строк находится пара натуральных чисел, описывающая, между какими двумя городами проходит соответствующая железнодорожная ветка. В последней строке находятся два целых числа s и s ($1 \le s \ne e \le n$) — номера Москвы и Владивостока по версии РЖД.

Формат выходных данных

В первой строке выведите число b — количество городов, которые премьер-министру придется посетить дважды. В следующих b строках выведите b целых чисел — номера этих городов в возрастающем порядке.

стандартный ввод	стандартный вывод
3 2	1
1 2	2
2 3	
3 1	