Notes on 10d Super Yang-Mills

Chris Elliott, Pavel Safronov and Brian Williams

March 1, 2019

1 Minimal Super Yang-Mills

Our starting point will be the theory complexifying the usual 10d super Yang-Mills theory. Fix a complex reductive gauge group G with Lie algebra \mathfrak{g} . The ordinary fields of super Yang-Mills theory on \mathbb{R}^{10} consist of a boson: a connection A on the trivial G-bundle, and a fermion: a \mathfrak{g} -valued section λ of the Weyl spinor bundle associated to the spinor representation S_+^{-1} . These fields are acted upon by the group of gauge transformations – G-valued functions on \mathbb{R}^{10} .

We can model the stack of fields modulo gauge transformations infinitesimally near the point 0 by the corresponding BRST complex. This is the local super Lie algebra

$$L_{\text{BRST}} = \Omega^0(\mathbb{R}^{10};\mathfrak{g}) \to \Omega^1(\mathbb{R}^{10};\mathfrak{g}) \oplus \Omega^0(\mathbb{R}^{10};\Pi S_+ \otimes \mathfrak{g})$$

with the de Rham differential, placed in cohomological degrees 0 and 1, with bracket induced from the Lie bracket on \mathfrak{g} .

The action functional in 10d super Yang-Mills is given by

$$S(A,\lambda) = \int_{\mathbb{R}^{10}} \langle F_A \wedge *F_A + (\lambda, \mathcal{D}_A \lambda) \rangle,$$

where $\langle - \rangle$ denotes an invariant pairing on \mathfrak{g} , and (,) denotes a scalar-valued pairing $S_+ \otimes S_- \to \mathbb{C}$ (there will be a unique such pairing, up to rescaling, characterized by the condition that $(\rho(v)\lambda_1, \rho(v)\lambda_2) = (\lambda_1, \lambda_2)$ for each $v \in \mathbb{C}^{10}$, where ρ denotes Clifford multiplication).

We can re-encode this data in terms of the classical BV complex (Phil and I wrote this down in [EY18, Section 3.1]). This is the L_{∞} -algebra whose underlying cochain complex takes the form

$$\Omega^0(\mathbb{R}^{10};\mathfrak{g}) \xrightarrow{\quad d\quad } \Omega^1(\mathbb{R}^{10};\mathfrak{g}) \xrightarrow{\quad d*d\quad } \Omega^9(\mathbb{R}^{10};\mathfrak{g}) \xrightarrow{\quad d\quad } \Omega^{10}(\mathbb{R}^{10};\mathfrak{g})$$

$$\Omega^0(\mathbb{R}^{10};\Pi S_-\otimes \mathfrak{g}) \xrightarrow{\quad *\not d} \Omega^{10}(\mathbb{R}^{10};\Pi S_-\otimes \mathfrak{g}),$$

with degree -3 invariant pairing induced by the invariant pairing on \mathfrak{g} and the pairing (,) between S_+ and S_- , and

 $^{^1}$ If we didn't complexify we would instead consider $G_{\mathbb{R}}$ a compact connected Lie group, and a section of the Majorana-Weyl spinor bundle, which necessitates working in Lorentzian signature. I think for our purposes it's interesting enough to just consider the complexified theory and avoid signature issues. The complexified theory twists to holomorphic Chern-Simons theory with complex gauge group.

2 References

with degree 2 and 3 brackets given by the action of $\Omega^0(\mathbb{R}^{10};\mathfrak{g})$ on everything along with

$$\ell_2^{\mathrm{Bos}} \colon \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \otimes \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \to \Omega^9(\mathbb{R}^{10}; \mathfrak{g})$$

$$(A \otimes B) \mapsto [A \wedge *\mathrm{d}B] + [*\mathrm{d}A \wedge B] + \mathrm{d} * [A \wedge B]$$

$$\ell_2^{\mathrm{Fer}} \colon \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \otimes \Omega^0(\mathbb{R}^{10}; S_+ \otimes \mathfrak{g}) \to \Omega^{10}(\mathbb{R}^{10}; S_- \otimes \mathfrak{g})$$

$$(A \otimes \lambda) \mapsto *A\lambda$$

in degree 2, and the map

$$\ell_3 \colon \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \otimes \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \otimes \Omega^1(\mathbb{R}^{10}; \mathfrak{g}) \to \Omega^9(\mathbb{R}^{10}; \mathfrak{g})$$

$$(A \otimes B \otimes C) \mapsto [A \wedge *[B \wedge C]] + [B \wedge *[C \wedge A]] + [C \wedge *[A \wedge B]]$$

in degree 3.

1.1 On-Shell Supersymmetry Action

We can define an action of the 10d $\mathcal{N}=1$ supersymmetry algebra on the complex of BRST fields in this minimal super Yang-Mills theory. The Poincaré action is clear, and the action of the supersymmetry Q is generated – in the usual Physics notation – by the transformation [BSS77]

$$\begin{split} \delta_Q A &= \Gamma(Q,\lambda) \\ \delta_Q \lambda &= \frac{1}{4} \rlap{/}{E}_A Q, \end{split}$$

where the notation F_A stands for the iterated Clifford multiplication $F_A = F^{ij}\gamma_i\gamma_j$. To check that this defines a supersymmetry action we need to check it's compatible with the brackets in the supersymmetry algebra. So, we calculate

$$\begin{split} [\delta_{Q_1},\delta_{Q_2}]A &= \frac{1}{4}(\Gamma(Q_2,\rlap{/}E_AQ_1) - \Gamma(Q_1,\rlap{/}E_AQ_2))\\ &=\\ \text{and } \delta_{Q_1},\delta_{Q_2}]\lambda &= \frac{1}{4}(\rlap{/}E_{\Gamma(Q_2,\lambda)}Q_1 - \rlap{/}E_{\Gamma(Q_1,\lambda)}Q_2)\\ &- \end{split}$$

2 Baulieu's 10 Model

2.1 Off-Shell Action of a Scalar Supersymmetry

3 Homotopy Data

3.1 Homotopy Transfer of the Scalar Supersymmetry

References

- [BSS77] L. Brink, J. Schwarz, and J. Scherk. "Supersymmetric Yang-Mills theories". Nuclear Phys. B 121.1 (1977), pp. 77–92. URL: https://doi.org/10.1016/0550-3213(77)90328-5.
- [EY18] C. Elliott and P. Yoo. "Geometric Langlands Twists of N=4 Gauge Theory from Derived Algebraic Geometry". Advances in Theoretical and Mathematical Physics 22.3 (2018). arXiv: 1507.03048 [math-ph].