Theoretical and practical metagenomic approaches to viral discovery

Practical Session: LRIscan for viral long-range RNA-RNA Interactions

Kevin Lamkiewicz, Manja Marz

24.10.2019

European Virus Bioinformatics Center

LRIscan

Results

Alignments and compensatory mutations

UNCONSERVED SEQUENCE, CONSERVED STRUCTURE

Unconserved sequence, conserved structure

HCoV-229E HCoV-NL63 SARS-CoV

HCoV-229E HCoV-NL63 SARS-CoV BCoV

HCoV-229E HCoV-NL63 SARS-CoV BCoV

```
)..))))))))))....))))))))))....
GGAGUCGUAGUGUAAUUGAAAUUCCAUU---U 135
A--GUCCUAGUGUAAUUGAAAUUUCGUCAAGU 135
U---GCACCUAC-----GCAGUAUAAACAAUA 135
GAUUUUUCAUAG------UGG-UGUCUA----- 135
```


COMPENSATORY MUTATIONS IN SECONDARY STRUCTURES

Importance of such mutations

Compensatory mutations underline the importance of a specific secondary structure.

COMPENSATORY MUTATIONS IN SECONDARY STRUCTURES

Importance of such mutations

Compensatory mutations underline the importance of a specific secondary structure.

But be careful!

If we're assuming a uniform mutation rate, every third pair of mutations is a compensatory mutation.

Α	U
Α	Α
Α	С
Α	G
С	Α
С	С
С	G
С	U

Results

WHY LRIS?

- Interaction spans distances between a few hundred and several thousands of nucleotides
- few are described in positive stranded RNA viruses
- often located in loop regions (bulges, hairpins, ...)

WHY LRIS?

- Interaction spans distances between a few hundred and several thousands of nucleotides
- few are described in positive stranded RNA viruses
- often located in loop regions (bulges, hairpins, ...)
 - \Rightarrow pseudo-knots!

WHY LRIS?

- Interaction spans distances between a few hundred and several thousands of nucleotides
- few are described in positive stranded RNA viruses
- ▶ often located in loop regions (bulges, hairpins, ...)
 ⇒ pseudo-knots!
- LRIs may play a very important role in viral replication

How to calculate LRIs

Approach I

- RNAduplex
- RNAplex
- RNAhybrid

HOW TO CALCULATE LRIS

Approach I

Approach II

- RNAduplex
- RNAplex
- RNAhybrid

RNAcofold

HOW TO CALCULATE LRIS

Approach I

- RNAduplex
- RNAplex
- RNAhybrid

Approach II

RNAcofold

Approach III

- RNAup
- IntaRNA

How to calculate LRIs

Approach I

- RNAduplex
- RNAplex
- RNAhybrid

Approach IV

- inteRNA
- ▶ inRNAs

Approach II

RNAcofold

Approach III

- RNAup
- IntaRNA

HOW TO CALCULATE LRIS

Approach I

- RNAduplex
- RNAplex
- RNAhybrid

Approach IV

- inteRNA
- ▶ inRNAs

Approach II

RNAcofold

Approach III

- RNAup
- IntaRNA

Approach V

- PETcofold
- PETCOIOIO
- RNAaliduplex

LRISCAN

Prediction of conserved long-range RNA-RNA interactions in full viral genomes, 2016. M. Fricke, M. Marz

LRISCAN

Prediction of conserved long-range RNA-RNA interactions in full viral genomes, 2016. M. Fricke, M. Marz

⇒ LRIscan

LRIscan

How does LRIscan work and how do I use it?

Results

WORKFLOW OF LRISCAN

COVERAGE AND COMPLEXITY

Coverage of an alignment

Relative number of sequences that do not have a gap on a specific position.

Coverage of an alignment

Relative number of sequences that do not have a gap on a specific position.

Complexity of the alignment

LRIscan

$$C_i = \frac{1}{m} \sum_{k=1}^{m} \frac{|\delta(a_{i...i+s-1}^k)|}{|(a_{i...i+s-1}^k)|}$$

COVERAGE AND COMPLEXITY

Coverage of an alignment

Relative number of sequences that do not have a gap on a specific position.

Complexity of the alignment

$$C_{i} = \frac{1}{m} \sum_{k=1}^{m} \frac{|\delta(a_{i...i+s-1}^{k})|}{|(a_{i...i+s-1}^{k})|}$$

$$\delta(CCUUUGGAAA) = CUGA$$

Workflow of LRISCAN - STEP 2

FINDING SEEDS

$$S_{i,j} = (S_{i-1,j+1} + 1) \cdot \Pi_{ii} \cdot \Phi_{ij}$$

LRIscan

- $ightharpoonup \Pi_{ij}$: do at least *t* percent of the input sequence form the basepair (i, j)?
- $ightharpoonup \Phi_{ii}$: do both alignment columns A_i and A_i meet the coverage threshold?

WORKFLOW OF LRISCAN - STEP 3

SEED SCORING

- z-Score analysis for each seed to measure reliability
- ightharpoonup compensatory score au

$$\tau = \frac{\sum_{b}(u \cdot h)}{6 \cdot |b| \cdot k}$$

with:

- u: number of different base-pair types
- ▶ *h*: number of incompatible base-pairs

WORKFLOW OF LRISCAN - STEP 4

SEED EXTENSION

- each seed is extended 10 nts at the 5' (and 3' respectively)
- calculate MFE with RNAalifold.
 - hard constraints for seed region
 - soft constraints for extension, such that intermolecular interactions are formed

Results

LRISCAN USAGE

Alignment Recap

```
1 $> ./LRIscan.rb -c 2 -f <ALIGNMENT> -o <OUTPUT>
```

- tabular output in .tsv format
- table and figures in .html
- all figures are also stored in the ps/ directory

LRISCAN HANDS-ON

Exercise:

Go to https://www.rna.uni-jena.de/supplements/lriscan/

- Download the MSA of the Flaviviruses.
- 2. Apply LRIscan
- 3. Do not look at the results on the webpage (yet)

LRISCAN HANDS-ON

Exercise:

Go to https://www.rna.uni-jena.de/supplements/lriscan/

- Download the MSA of the Flaviviruses.
- 2. Apply LRIscan
- 3. Do not look at the results on the webpage (yet)

If you have your own dataset, roughly of the same size as the Flavivirus MSA, feel free to use it.

COFFEE BREAK

