KIỂM TRA GIỮA KÌ 2 - 2022-2023 — ĐỀ 1 LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Cho hàm số f(x) liên tục và xác định trên khoảng K và a,b,c là các số thực thuộc K. Xét các phát biểu

2)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
.

3)
$$\int_{a}^{a} f(x) dx = 0.$$

4)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Số phát biểu đúng là

$$\bigcirc$$
 4.

$$\bigcirc$$
 1.

CÂU 2. Biết $\int_{-\infty}^{\infty} \frac{1}{\sqrt{x+1}+1} dx = 6$ với a là số thực dương. Tính tích phân $I = \int_{-\infty}^{\infty} \frac{1}{1+\sqrt{t+1}} dt$

$$\bigcirc$$
 $I=6$.

B
$$I = 3$$
.

$$\widehat{\mathbf{C}} I = 2\sqrt{3}$$

$$\mathbf{\widehat{D}} I = 3\sqrt{2}$$

CÂU 3. Họ nguyên hàm $F(x) = \int \frac{1}{3x+2} \mathrm{d}x$ là

(A)
$$F(x) = \ln|3x + 2| + C$$
.

B
$$F(x) = \frac{1}{3} \ln|3x + 2| + C.$$

©
$$F(x) = \frac{1}{3}\ln(3x+2) + C.$$

CÂU 4. Cho f(x) có đạo hàm trên [-3;5] thỏa f(-3)=1, f(5)=9, khi đó $\int 4f'(x) dx$

bằng

CÂU 5. Họ nguyên hàm của hàm số $f(x) = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} + 2$ là

$$\bullet - \tan x + \cot x + 2x + C.$$

CÂU 6. Cho hàm số F(x) là một nguyên hàm của hàm số f(x) trên đoạn [-1;2]. Biết rằng $\int_{-1} f(x) dx = 1 \text{ và } F(-1) = -1. \text{ Tính } F(2).$

D
$$-1$$
.

CÂU 7. Cho $\int_0^3 f(x) dx = 2$ và $\int_0^3 g(x) dx = 1$, khi đó $\int_0^3 [1008 f(x) + 2g(x)] dx$ bằng

ĐIỂM:

Giữ tâm thế thoải mái Luôn vững lái tay chèo.

QUICK NOTE

⋄ ⋄	
QUICK NOTE	
	1
	'
	۱.
	'
	4
	I
	(
	'
	1
	ŀ
	'
	ŀ
	۱.
	`
	ŀ
	ł

CÂU 8. Cho $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2$ và $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 3$ với a < b < c, khi đó $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x$ bằng **(B)** 5. **(D)** -1.

 $\hat{\mathsf{CAU}}$ 9. Trong không gian với hệ tọa độ Oxyz, phương trình tổng quát của mặt phẳng (Oxz) là

$$\bigcirc y = 0.$$

$$\widehat{\mathbf{D}} x = 0.$$

(A)
$$1 + \frac{2^x}{\ln 2} + C$$
.

$$\mathbf{B} \frac{x^2}{2} + \frac{2^x}{\ln 2} + C.$$

$$\mathbf{C} \frac{x^2}{2} + 2^x \ln 2 + C.$$

$$\mathbf{D} \frac{\bar{x^2}}{2} + 2^x + C.$$

CÂU 11. Trong không gian Oxyz, mặt phẳng (P):2x+3y-4z+7=0 có một véc-tơ pháp tuyến là

$$\vec{\mathbf{A}} \ \vec{n} = (-2; 3; -4).$$

B)
$$\vec{n} = (-2; -3; -4)$$
.

$$(\vec{\mathbf{C}}) \vec{n} = (2; 3; -4).$$

$$\vec{\mathbf{D}}$$
 $\vec{n} = (2; -3; -4).$

CÂU 12. Tính nguyên hàm $I=\int (3+2x)^2\,\mathrm{d}x$ bằng cách đặt t=3+2x. Mệnh đề nào dưới đây đúng?

(A)
$$I = \int t^2 dt$$
. (B) $I = \frac{1}{2} \int t^3 dt$. (C) $I = \frac{1}{6} \int t^3 dt$. (D) $I = \frac{1}{2} \int t^2 dt$.

$$\bigcirc I = \frac{1}{6} \int t^3 \, \mathrm{d}t.$$

CÂU 13. Họ tất cả các nguyên hàm của hàm số $f(x) = \cos 3x$ là

$$(\textbf{A}) - \frac{\sin 3x}{3} + C. \qquad (\textbf{B}) \frac{\sin 3x}{3} + C. \qquad (\textbf{C}) \sin 3x + C.$$

$$\mathbf{B} \frac{\sin 3x}{3} + C$$

$$\bigcirc$$
 $\sin 3x + C$.

CÂU 14. Nguyên hàm của hàm số $f(x) = x^2 + \frac{2}{x^2}$ là

(A)
$$\frac{x^3}{3} - \frac{2}{x} + C$$
.

B
$$\frac{x^3}{3} - \frac{1}{x} + 6$$

$$\frac{x}{3} + \frac{2}{x} + C.$$

(A)
$$\frac{x^3}{3} - \frac{2}{x} + C$$
. (B) $\frac{x^3}{3} - \frac{1}{x} + C$. (C) $\frac{x^3}{3} + \frac{2}{x} + C$. (D) $\frac{x^3}{3} + \frac{1}{x} + C$.

CÂU 15. Biết $\int_0^{\frac{\pi}{4}} x(1+\sin 2x) dx = \frac{a}{b} + \frac{c}{d}\pi^2$ với $\frac{a}{b}, \frac{c}{d}$ là phân số tối giản. Khi đó a+b+c+d

bằng

(**A**) 36.

CÂU 16. Cho hàm số f(x) có f(0) = -1 và $f'(x) = \sin x \sin^2 2x, \forall x \in \mathbb{R}$. Khi đó $\int f(x) \, \mathrm{d}x$

$$\mathbf{A} - \frac{7\pi}{15}$$

$$\bigcirc \frac{3\pi}{5}$$

$$\bigcirc \frac{-8\pi}{15}$$

CÂU 17. Cho $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{\sin^2 x - 5\sin x + 6} \, \mathrm{d}x = a \ln \frac{4}{c} + b \text{ với } a, c > 0.$ Giá trị của a + b + c

bằng

 $(\mathbf{A}) 0.$

CÂU 18. Cho $F(x) = \cos 2x - \sin x + C$ là họ nguyên hàm của f(x). Tính $f(\pi)$.

$$(A) f(\pi) = -3.$$

B $f(\pi) = 1$.

(C) $f(\pi) = -1$.

CÂU 19. Tích phân $\int \frac{\mathrm{d}x}{3x-2}$ bằng

 \bigcirc $\frac{2}{2} \ln 2$.

 $(\mathbf{D}) \frac{1}{2} \ln 2.$

CÂU 20. Trong không gian Oxyz, cho A(1;2;-1), B(0;-2;3). Diện tích tam giác OAB

A
$$\frac{\sqrt{29}}{6}$$
.

$$\bigcirc \frac{\sqrt{78}}{2}.$$

CÂU 21. Trong không gian Oxyz, cho hai vécto $\vec{u} = (2; -1; 4)$ và $\vec{v} = \vec{i} - 3\vec{k}$. Tích vô hướng $\vec{u} \cdot \vec{v}$ bằng

$$\bigcirc$$
 -11.

(B)
$$-13$$
.

$$\bigcirc 5$$

2

(A) 2.

(B) -2.

 (\mathbf{C}) 0.

(D) 1.

CÂU 23. Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng song song và cách (Oyz) một đoạn bằng 2 là

(A) $z \pm 2 = 0$.

(B) $y \pm 2 = 0$.

(c) $y + z \pm 2 = 0$.

(D) $x \pm 2 = 0$.

CÂU 24. Cho f(x) có đạo hàm trên đoạn [1;2], f(2) = 2, f(4) = 2018, khi đó $\int f'(2x) dx$

bằng

(A) -1008.

(B) 2018.

 $(\mathbf{C}) 1008.$

 $(\mathbf{D}) - 2018.$

CÂU 25. Cho tích phân $I = \int_{0}^{\frac{\pi}{4}} \frac{1+\sin^2 x}{2+\cos^2 x} dx$, nếu ta dùng một phép đổi biến số đặt

 $t = \tan x$ thì sẽ thu được tích phân tương ứng là

(A)
$$I = \int_{0}^{1} \frac{(2t^{1} + 1) dt}{2t^{3} + 3} dt.$$

B
$$I = \int_{0}^{1} \frac{(2t^2 + 2) dt}{(2t^2 + 3)(t^2 + 3)}.$$

$$(D) I = \int_{0}^{1} \frac{(2t^2 + 1) dt}{(2t^2 + 3)(t^2 + 1)}.$$

CÂU 26. Họ nguyên hàm của hàm số $f(x) = \frac{x+5}{x-1}$ là

A $x + 6 \ln |x - 1| + C$.

B) $x - 6 \ln |x - 1| + C$.

(C) $x + 6 \ln(x - 1) + C$.

(D) $6 \ln |x-1| + C$.

CÂU 27. Trong không gian Oxyz, cho mặt cầu (S) có đường kính AB với A(6;2;-5), B(-4;0;7). Phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại A là

 $(\mathbf{A}) \, 5x + y - 6z + 62 = 0.$

(B) 5x + y - 6z - 62 = 0.

(**C**) 5x - y - 6z - 62 = 0.

 (\mathbf{D}) 5x + y + 6z + 62 = 0.

CÂU 28. Giá trị của tích phân $I = \int\limits_{-\infty}^{1} \frac{1}{\sqrt{x+1}} \,\mathrm{d}x$ bằng

A $\frac{207}{250}$.

(B) $3\sqrt{2} - 4$. **(C)** $2\sqrt{2} - 2$.

 $(\mathbf{D}) 1 + \sqrt{2}$.

CÂU 29. Cho hàm số f(x) thỏa mãn $f'(x) = x - \frac{1}{x^2} + 2$ và f(1) = 3. Khi đó hàm số f(x)

CÂU 30. Trong không gian Oxyz, thể tích khối tứ diện ABCD với A(1;0;1), B(2;0;-1), C(0;1;3) và D(3;1;1) bằng

A $\frac{2}{3}$.

(B) 4.

 (\mathbf{C}) 2.

 $\bigcirc \frac{4}{3}$.

CÂU 31. Cho $\tilde{\int} f(x) dx = 1$ và $\tilde{\int} [e^x - f(x)] dx = e^a - b$ với a, b là những số nguyên.

Khẳng định nàv sau đây đúng?

 $(\mathbf{A}) \ a > b.$

 (\mathbf{B}) a < b.

 $(\mathbf{D}) ab = 1.$

CÂU 32. Cho $\int_{-\infty}^{\infty} f(x) dx = -4$; $\int_{-\infty}^{\infty} f(t) dt = 3$. Giá trị của tích phân $\int_{-\infty}^{\infty} f(x) dx$ bằng

CÂU 33. Họ nguyên hàm $F(x) = \int \sin \sqrt{x} \, dx$ là

 $(A) F(x) = -\sqrt{x} \cdot \cos \sqrt{x} + \sin \sqrt{x} + C.$

 $\mathbf{B} F(x) = 2\sqrt{x} \cdot \cos \sqrt{x} - 2\sin \sqrt{x} + C.$

QUICK NOTE

QUICK NOTE

(C) $F(x) = 4$	$\sqrt{x} \cdot \cos \sqrt{x}$	$+4\sin\sqrt{x}+C.$
-----------------------	--------------------------------	---------------------

(**D**) $F(x) = -2\sqrt{x} \cdot \cos\sqrt{x} + 2\sin\sqrt{x} + C$.

CĂU 34. Trong không gian Oxyz, cho bốn điểm A(-1;1;-2), B(1;2;-1), C(1;1;2), D(-1;-1;2). Phương trình mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD là

B)
$$x - y - z + 2 = 0$$
.

$$\mathbf{\hat{C}}$$
 $2x + y + z + 2 = 0$.

$$(\mathbf{D}) x - 2y - 2z - 1 = 0.$$

CÂU 35. Trong không gian hệ trực toa độ Oxyz, cho mặt phẳng $(\alpha): x+2y-2z-10=0$. Gọi (S) là mặt cầu có tâm I=(2;1;3) cắt mặt phẳng (α) theo giao tuyến là đường tròn có bán kính bằng 2. Phương trình mặt cầu (S) tương ứng là

(A)
$$(S): (x-2)^2 + (y-1)^2 + (z-3)^2 = 20.$$

(B)
$$(S): (x-2)^2 + (y-1)^2 + (z-3)^2 = 12.$$

$$(S): (x+2)^2 + (y+1)^2 + (z+3)^2 = 12.$$

$$(\mathbf{D})(S): (x-2)^2 + (y-1)^2 + (z-3)^2 = 16.$$

CÂU 36. Họ nguyên hàm $F(x) = \int e^{\sqrt{x}} dx$ là

B
$$F(x) = 2e^{\sqrt{x}}(\sqrt{x} - 1) + C.$$

$$\mathbf{C} F(x) = e^{\frac{2}{3}x\sqrt{x}} + C.$$

$$(\mathbf{D}) F(x) = e^{\sqrt{x}} (\sqrt{x} + 2) + C.$$

CÂU 37. Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' có A(-3;2;1), C(4;2;0),B'(-2;1;1), D'(3;5;4). Tọa độ đỉnh A' là

$$(-3; 3; 1).$$

$$(\mathbf{B})$$
 $(-3; 3; 3).$

$$(\mathbf{C})$$
 $(-3; -3; -3).$

$$\bigcirc$$
 $(-3; -3; 3)$

CÂU 38. Hàm số $F(x) = e^{x^2}$ là một nguyên hàm của hàm số

$$\mathbf{B} f(x) = 2x \cdot e^{x^2}.$$

CÂU 39. Họ nguyên hàm của hàm số $f(x) = \frac{1}{x}(2x - \ln x)$ là

(A)
$$2x - \frac{\ln^2 x}{2} + C$$

B
$$2x - \frac{1}{x^2} + C$$

CÂU 40. Biết $\int_{a}^{2} 2x \ln(x+1) dx = a \ln b$ với $a, b \in \mathbb{N}^*$ và b là số nguyên tố. Khi đó 6a+7b

bằng

$$(\mathbf{C})$$
 42

CÂU 41. Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;4;0) và điểm B(3;-4;0). Chu vi của tam giác OAB bằng

(c)
$$10 + 4\sqrt{2}$$
.

CÂU 42. Cho tích phân $I = \int_{1}^{e} x \ln^{2} x \, dx$. Mệnh đề nào dưới đây đúng?

(A)
$$I = \frac{1}{2}x^2 \ln^2 x \Big|_1^e + \int_1^e x \ln x \, dx.$$
 (B) $I = x^2 \ln^2 x \Big|_1^e - 2 \int_1^e x \ln x \, dx.$

B
$$I = x^2 \ln^2 x \Big|_{1}^{e} - 2 \int_{1}^{e} x \ln x \, dx.$$

(c)
$$I = x^2 \ln^2 x \Big|_{1}^{e^{-1}} - \int_{1}^{e} x \ln x \, dx$$

$$\mathbf{C} I = x^2 \ln^2 x \Big|_{1}^{e^{-1}} - \int_{1}^{e} x \ln x \, dx.$$

$$\mathbf{D} I = \frac{1}{2} x^2 \ln^2 x \Big|_{1}^{e} - \int_{1}^{e} x \ln x \, dx.$$

CÂU 43. Cho biết hàm số f(x) có đạo hàm là f'(x) và có một nguyên hàm là F(x). Khi đó giá trị của nguyên hàm $\int [2f(x) + f'(x) + 1] dx$ bằng

©
$$2xF(x) + x + 1$$
.

$$(\mathbf{D}) 2F(x) + f(x) + x + C.$$

CĂU 44. Trong không gian Oxyz, cho mặt cầu (S) có tâm nằm trên (P): x-2y-z-6=0và đi qua ba điểm A(1;2;1), B(-1;-2;1), C(3;2;1) có phương trình tương ứng

(A)
$$(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 19.$$

B
$$(S): (x-2)^2 + (y+1)^2 + (z+2)^2 = 19.$$

$$(S)$$
: $x^2 + (y-3)^2 + (z+1)^2 = 25$.

(D)
$$(S): (x-1)^2 + (y+1)^2 + (z-1)^2 = 16.$$

CÂU 45. Tìm nguyên hàm F(x) của hàm số $f(x) = \cos x \sqrt{\sin x + 1}$.

(a)
$$F(x) = \frac{1}{3}(\sin x + 1)\sqrt{\sin x + 1} + C.$$
 (B) $F(x) = \frac{1 - 2\sin x - 3\sin^2 x}{2\sqrt{\sin x + 1}}.$ (C) $F(x) = \frac{2}{3}(\sin x + 1)\sqrt{\sin x + 1} + C.$ (D) $F(x) = \frac{1}{3}\sin x\sqrt{\sin x + 1} + C.$

B
$$F(x) = \frac{1 - 2\sin x - 3\sin^2 x}{2\sqrt{\sin x + 1}}.$$

©
$$F(x) = \frac{2}{3}(\sin x + 1)\sqrt{\sin x + 1} + C$$

$$\mathbf{D} F(x) = \frac{1}{3} \sin x \sqrt{\sin x + 1} + C.$$

CÂU 46. Trong không gian Oxyz, cho mặt cầu (S) 'có tâm I(1;2;-4) và thể tích bằng 36π . Phương trình của (S) là

$$(x-1)^2 + (y-2)^2 + (z+4)^2 = 9.$$

(B)
$$(x-1)^2 + (y-2)^2 + (z-4)^2 = 9$$
.

$$(\mathbf{c})(x+1)^2 + (y+2)^2 + (z-4)^2 = 9$$

$$(\mathbf{D})(x-1)^2 + (y-2)^2 + (z+4)^2 = 3.$$

CÂU 47. Trong không gian Oxyz, cho hình bình hành ABCD với A(1;1;1), B(2;3;4) và C(6;5;2). Diện tích hình bình hành ABCD bằng

(A)
$$3\sqrt{83}$$
.

B
$$\sqrt{83}$$
.

(D)
$$2\sqrt{83}$$
.

CÂU 48. Họ nguyên hàm của hàm số $f(x) = (2 + e^{3x})^2$ là **(A)** $4x + \frac{4}{3}e^{3x} + \frac{1}{6}e^{6x} + C$. **(B)** $3x + \frac{4}{3}e^{3x} + \frac{1}{6}e^{6x} + C$. **(D)** $3x + \frac{4}{3}e^{3x} + \frac{5}{6}e^{6x} + C$.

$$4x + \frac{4}{3}e^{3x} + \frac{1}{6}e^{6x} + C.$$

B
$$3x + \frac{4}{3}e^{3x} + \frac{1}{6}e^{6x} + C$$

$$\mathbf{C}$$
 $4x + \frac{3}{3}e^{3x} - \frac{9}{6}e^{6x} + C$.

CÂU 49. Cắt khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật ABB_1A_1 có AB và A_1B_1 thuộc hai đáy của hình trụ với AB=4a và $AA_1=5a$. Thể tích khối tru đã cho bằng

(A)
$$12\pi a^3$$
.

B)
$$16\pi a^3$$
.

(c)
$$4\pi a^3$$
.

(D)
$$\frac{17\pi a^3}{3}$$
.

CÂU 50. Cho hình trụ (T) có hai đường tròn đáy với tâm lần lượt là O và O'. Gọi AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30° , AB=6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng

(A)
$$180\pi$$
.

B)
$$90\pi$$
.

(c)
$$30\pi$$
.

$$\bigcirc$$
 15π .

•	•	•	•	•	•			•			•	•	•	•	•	•						•	•	

•	•		•	•		•	•	•	•	•	•	•	•						•	•

																•	

