LINEAR REGRESSION MODELS W4315

HOMEWORK 3 QUESTIONS

October 1, 2010

Instructor: Frank Wood

1. (50 points) ¹ Refer to Copier maintenance Problem 1.20.

- a. Estimate the change in the mean service time when the number of copiers serviced increases by one. Use a 90 percent confidence interval. Interpret your confidence interval.
- b. Conduct a t test to determine whether or not there is a linear association between X and Y here; control the α risk at .10. State the alternatives, decision rule, and conclusion. What is the P-value of your test?
- c. Are your results in parts (a) and (b) consistent? Explain.
- d. The manufacturer has suggested that the mean required time should not increase by more than 14 minutes for each additional copier that is serviced on a service call. Conduct a test to decide whether this standard is being satisfied by Tri-City. Control the risk of a Type I error at .05. State the alternatives, decision rule, and conclusion. What is the *P*-value of the test?
- e. Does b_0 give any relevant information here about the "start-up" time on calls-i.e., about the time required before service work is begun on the copiers at a customer location?
- 2. (20 points) ² Consider the test problem in a normal error regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where:

 β_0 and β_1 are parameters X_i are known constants ϵ_i are independent $N(0, \sigma^2)$

¹This is problem 2.5 in "Applied Linear Regression Models(4th edition)" by Kutner etc.

²This is problem 2.19 in "Applied Linear Regression Models(4th edition)" by Kutner etc.

When testing whether or not $\beta_1 = 0$, why is the F test a one-sided test even though H_a includes both $\beta_1 < 0$ and $\beta_1 > 0$? [Hint: refer to the following problem]

- 3. (30 points) ³ Consider the same normal regression model as in problem 2.
- a. When testing H_0 : $\beta_1 = 5$ versus H_a : $\beta_1 \neq 5$ by means of a general linear test, what is the reduced model? What are the degrees of freedom df_R ?
- b. When testing H_0 : $\beta_0 = 2$, $\beta_1 = 5$ versus H_a : not both $\beta_0 = 2$ and $\beta_1 = 5$ by means of a general linear test, what is the reduced model? What are the degrees of freedom df_R ?

³This is problem 2.57 in "Applied Linear Regression Models(4th edition)" by Kutner etc.