S6 Improve Sensitivity II

Reduce Variance: Stratification, Control Variables (CUPED)

Shan Huang, HKU

Reduce Variance σ^2

- Stratification at assignment
 - Post Stratification
- Control Variates
 - Regression with Control Variates
 - CUPED

Stratification

- The most well-known at-assignment variance reduction technique.
 - Block Design
- Basic procedure:
 - Divide the population into strata
 - Sample from each stratum independently
 - Randomize within each stratum
 - Combine treatment effects from strata to give an overall estimate

Block Design

Stratification

- Idea: Remove between-strata variance in metrics (OECs)
- Choose a categorical variable to divide population into different strata (categories) with different OEC (Y)
- The value of OECs are different across strata.

How to Divide Population into Strata

• Stratified sampling aims to remove the between-strata variance in OEC (Y).

$$Var(\bar{Y}^s) = Var(\bar{Y}) - \frac{1}{n} \sum_{1}^{K} p_k (\mu_k - \mu)^2$$

Which variable will you choose to divide the population into strata?

OEC is d(purchase) of Taobao

- 1. Age Groups
- 2. Genders
- 3. #visits in the last week
- 4. \$ spending in the last week
- 5. d(purchase) during the week before the experiment (high, low)

With the largest correlation with post-experiment OEC to remove the largest between-strata variance

How to Divide Population into Strata

- Categorize population into different Strata
 - $n_k = p_k n$

Proportion of the stratum in the population

- Pre-experiment OEC is a good choice and correlates well with OEC
- If OEC is a continuous variable
 - Transform pre-experiment
 OEC into a categorical variable
 - e.g., High, Middle, Low
 - Based on A/A test or Historical Data

Stratification

- For example, divide into three strata based on pre-experiment Y (OEC):
 - High, Middle, Low
- Estimate three treatment effects and then combine them together (weighted average)

Reference: https://www.tripadvisor.com/engineering/reducing-a-b-test-measurement-variance-by-30/

How to Divide Population into Strata

- When pre-experiment data on OEC is not available
 - A new product
 - Experiment with new users
- · Choose the one, most likely highly correlated with the OEC
 - Based on experience and data
 - e.g., two UIs for shopping cart and OEC is purchase rate
 - Age or Gender

Stratification

- 1. Pre-stratify the sample, $n_k = p_k n$
- 2. Randomize completely within each stratum
- 3. Combine the Treatment Effects with different weights

$$\bar{Y}^s = \sum_{k=1}^K p_k \bar{Y}_k$$

$$\Delta^s = \bar{Y}_1^s - \bar{Y}_0^s$$

4. Calculate the variance

$$Var(\bar{Y}^s) = \frac{1}{n} \sum_{k=1}^{K} p_k \sigma_k^2$$

$$Var(\Delta^s) = Var(\bar{Y}_1^s) + Var(\bar{Y}_0^s)$$

5. Calculate t (z) stat

$$t = \frac{\Delta^s}{\sqrt{Var(\Delta^s)}}$$

Stratification

• Assume there are k strata:

$$\bar{Y}^s = \sum_{k=1}^K p_k \bar{Y}_k$$

 p_k : proportion of the population in the k-th stratum

 n_k : number of users from the k-th stratum

$$n_k = p_k n$$

$$E(\bar{Y}^s) = \sum_{k=1}^K p_k E(\bar{Y}_k) = \sum_{k=1}^K p_k \mu_k = \mu$$

• Δ^s under stratified sampling is an unbiased estimate of δ

$$\Delta^s = \bar{Y}_1^s - \bar{Y}_0^s$$

$$E(\Delta^s) = E(\bar{Y}_1^s - \bar{Y}_0^s) = \mu_1 - \mu_0 = \delta$$

• However, $Var(\Delta^s) < Var(\Delta)$

$$Var(Y) = \sum_{k=1}^{K} p_k \sigma_k^2 + \sum_{1}^{K} p_k (\mu_k - \mu)^2 = Var(Y^s) + \sum_{1}^{K} p_k (\mu_k - \mu)^2$$

Within-strata variance+ Between-strata variance

$$Var(\bar{Y}^s) = Var(\bar{Y}) - \frac{1}{n} \sum_{k=1}^{K} p_k (\mu_k - \mu)^2$$

Remove Between-Strata Variance

$$Var(\Delta^s) = Var(\bar{Y}_1^s) + Var(\bar{Y}_0^s)$$

OEC is the \$Purchase/week

n=1000

Sample Characteristics:

- n(male)=n(female)=0.5*1000=500
- \bar{Y} (male)=20, \bar{Y} (female)=50
- Var(male)=20, Var(female)=10
- A. What are the mean and variance for Y?
- B. What are the stratification mean and its variance?

A. What are the mean and variance for the whole sample?

$$\bar{Y}^s = \bar{Y} = \sum_{k=1}^K p_k \bar{Y}_k = 0.5^* 20 + 0.5^* 50 = 35$$

$$Var(Y) = \sum_{k=1}^{K} p_k \sigma_k^2 + \sum_{1}^{K} p_k (\mu_k - \mu)^2 = Var(Y^s) + \sum_{1}^{K} p_k (\mu_k - \mu)^2$$

$$= 15 + 0.5*(20-35)^2 + 0.5*(50-35)^2$$

B. What are the stratification mean and its variance?

$$\bar{Y}^s = \sum_{k=1}^K p_k \bar{Y}_k = 0.5^*20 + 0.5^*50 = 35$$

$$Var(\bar{Y}^s) = \frac{1}{n} \sum_{k=1}^{K} p_k \sigma_k^2 = 1/1000^* (0.5^*20 + 0.5^*10) = 0.015$$

- A. Randomize users into different variants for each stratum in real-time.
 - 1. Define strata factor: pre-experiment streaming hours
 - Stratum (s) = high if factor > threshold (T)
 - Different T leads to different ρ = correlation (s, OEC)
 - $\rho > 0.5$
 - Only on existing users, not on new users WHY?
 - 2. Pre-define n_k for each k (stratum) based on p_k

- B. Rely on a Queue System for (Random) Assignment
 - 1. Assign users into different queues based on their strata factor (e.g., pre-OEC) trigger conditions

- B. Rely on a Queue System for (Random) Assignment
 - 1. Assign users into a different queue based on their strata factor (e.g., pre-OEC) a trigger
 - 2. A queue consists of many 100-slot segments
 - 3. Randomly assign users into different variants within each queue
 - A. Assign a number to each cell [1, 100]
 - B. Shuffle the numbers for the cells
 - C. Map 1 (control) to the cell with the number [1, 50], and 2 (treatment) with [51, 100]

- B. Rely on a Queue System for (Random) Assignment
 - Assign users into different queue based on their strata factor (e.g., pre-OEC) - a trigger
 - Randomly assign users into different variants within each queue

Compare Stratification, Post Stratification, and CUPED at Netflix

- All the techniques achieve much larger variance reduction on existing users.
- Theoretically, CUPED, Stratification, and Post-Stratification should achieve similar performance.
- CUPED and Post Stratification do better than Stratification at Assignment.
- The implementation of stratification is difficult and introduces noises.

Ti are dummies with the different threshold of streaming hours

Existing Users

Reference: Xie, H., & Aurisset, J. (2016, August). Improving the sensitivity of online controlled experiments: Case studies at netflix. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (pp. 645-654).

Compare Stratification, Post Stratification, and CUPED at Netflix

- Variance Reduction is not large on new Users with any techniques.
 - Insufficient pre-experiment data to construct Ti
 - Instead, Ti was constructed by predictions (Machine Learning Models)

Ti are dummies with the different threshold of streaming hours

New Users

Post Stratification

- A popular post-assignment variance reduction technique
- · Assume simple random assignment but uses the estimate of stratification:

$$\bar{Y}_{post}^s = \sum_{k=1}^K p_k \bar{Y}_k$$

 p_k : proportion of the population in the k-th stratum

 n_k : number of users from the k-th stratum

$$n_k = p_k n$$

$$E(\bar{Y}_{post}^s) = \sum_{k=1}^K p_k E(\bar{Y}_k) = \sum_{k=1}^K p_k \mu_k = \mu$$

Post Stratification

- 1. Randomly assign users into control and treatment groups.
- 2. Collect data on OEC and S (strata factor)
- 3. Calculate \bar{Y}_k for each stratum.

4. Calculate
$$Y_{post}^{\overline{s}} = \sum_{k=1}^{K} p_k \overline{Y}_k$$

- p_k is predefined according to "population" data
- \bar{Y}_k is sample mean for each stratum k

5. Calculate
$$\Delta_{post}^s = \bar{Y}_{post1}^s - \bar{Y}_{post0}^s$$

6. Calculate Var (Δ_{post}^s)

$$Var(\bar{Y}_{post}^{s}) = \frac{1}{n} \sum_{k=1}^{K} p_{k} \sigma_{k}^{2} + \frac{1}{n^{2}} \sum_{k=1}^{K} (1 - p_{k}) \sigma_{k}^{2} + o(\frac{1}{n^{2}})$$
Larger than $Var(\bar{Y}^{s})$

$$Var(\Delta^s_{post}) = Var(\bar{Y}^s_{post1}) + Var(\bar{Y}^s_{post0})$$

Post Stratification

However, variance reduction is smaller than stratification at assignment

•
$$n_k^{post} \neq p_k n$$

- $var(\bar{Y}^s) \le var(\bar{Y}^s_{post}) \le var(\bar{Y})$
- When n is very large:
 - $var(\bar{Y}^s) \approx var(\bar{Y}^s_{post}) \leq var(\bar{Y})$
- Post stratification is less costly to implement.

Example

OEC is the \$Purchase/week

n=1000

Sample Characteristics:

• n(male) = 505

Different from p_k

- n(female)= 495
- \bar{Y} (male)=20, \bar{Y} (female)=50
- Var(male)=20, Var(female)=10

Stratification Mean and Variance (Mean)

$$\bar{Y}^s = \sum_{k=1}^K p_k \bar{Y}_k = 0.5^* 20 + 0.5^* 50 = 35$$

$$Var(\bar{Y}_{post}^s) = \frac{1}{n} \sum_{k=1}^K p_k \sigma_k^2 + \frac{1}{n^2} \sum_{k=1}^K (1 - p_k) \sigma_k^2 + o(\frac{1}{n^2}) = (0.5*20 + 0.5*10) / 1000 + (0.5*20 + 0.5*10) / 1000 - (0.5*20 + 0.5*10) / 100$$

CUPED

CUPED: Controlled Experiments by Utilizing Pre-Experiment Data (Deng, Xu, Kohavi, & Walker, 2013)

- Remove variance in a metric that can be accounted for by pre-experiment information.
- Control Variates: Pre-experiment information X.

•
$$Y^{cuped} = Y - \theta X$$
 Remove the variance caused by X

•
$$\Delta^{cuped} = \Delta = m_1 - m_0 = \bar{Y}_1 - \bar{Y}_0 = \bar{Y}_1^{cuped} - \bar{Y}_0^{cuped}$$

How to Choose Control Variables

- $Var(Y^{cuped}) = Var(Y) + \theta^2 Var(X) 2\theta Cov(X, Y)$
- To Minimize $(Var(Y^{cuped})), \theta = Cov(X, Y)/Var(X)$
- $Var(Y^{cuped})_{min} = Var(Y)(1 \rho^2)$
 - $\rho = correlation(X,Y)$
- Choose the X with the largest correlation with Y (e.g., post-experiment OEC).
- Empirically, pre-experiment OEC correlates well with Y.
- e.g., OEC is purchase amount/user, X is pre-experiment purchase amount

How to Choose Control Variables

"Across a large class of metrics, our results consistently showed that using the same variable from the pre- experiment period as the covariate tends to give the best variance reduction." (Deng, Xu, Kohavi, & Walker, 2013)

t-test - CUPED

Figure 2: Slowdown experiment. Top: p-value. Bottom: p-value when using only half the users for CUPED.

- Use exp_data_3.csv
- Find the Treatment Effects on Clicking Ads using CUPED
 - X: pre_click
 - $Y^{cuped} = Y \theta X$
 - $\theta = Cov(X, Y)/Var(X)$
- Find the variance reduction by CUPED
 - Compare $Var(\Delta^{cuped})$ vs. $Var(\Delta)$
 - p value

```
var_x=np.var(df.pre_click, ddof=1)
#np.cov returns a var-cov metrix
cov_xy = np.cov(df.pre_click,df.click, ddof=1)[0][1]
theta = cov_xy/var_x
df['theta']=theta
df['click_cuped']=df.click - df.pre_click*theta
```

With CUPED

```
d_0 = df[df['treat'] == 0]['click_cuped']
d_1 = df[df['treat'] == 1]['click_cuped']
diff = np.mean(d_1) - np.mean(d_0)
print(diff)
cm = sms.CompareMeans(sms.DescrStatsW(d_1), sms.DescrStatsW(d_0))
ttest = cm.ttest_ind(alternative = 'two-sided', usevar = 'unequal')
se = cm.std_meandiff_separatevar
print(se,ttest)
```

Without CUPED

```
d_0 = df[df['treat'] == 0]['click']
d_1 = df[df['treat'] == 1]['click']
diff = np.mean(d_1) - np.mean(d_0)
print(diff)
cm = sms.CompareMeans(sms.DescrStatsW(d_1), sms.DescrStatsW(d_0))
ttest = cm.ttest_ind(alternative = 'two-sided', usevar = 'unequal')
se = cm.std_meandiff_separatevar
print(se,ttest)
```

Regression with Control Variables

- Remove the variances explained by X (covariates, e.g., age, gender, preexperiment behaviors)
- X can be continuous variables
- Stratification: Strata Factor has to be categorical variable

Regression with Control Variates

$$Y_i = \beta_0 + \beta_1 \cdot T_i + X_i \theta + \epsilon_i$$

 $T_i = \{0,1\}$, Control or Treatment

 Y_i is the OEC (or other metrics)

X are control variables

Regression with Control Variables

$$Y_i = \beta_0 + \beta_1 \cdot T_i + X_i \theta + \epsilon_i$$

- Linear regression gives a consistent estimator for the average treatment effect
 - β_1 represents the Average Treatment Effects
- Reduces variance by controlling for X
- BUT, it makes assumption:
 - the conditional expectation of the outcome metric is linear in the treatment assignment and covariates.

- Use exp_data_3.csv
- 1. Find the Treatment Effects of Clicking Ads using OLS:

•
$$Y_i = \beta_0 + \beta_1 \cdot T_i + \epsilon_i$$

- 2. Find the correlations between X and Y.
 - X: gender and pre-click (i.e., whether clicking ads during the week before the experiment)
- 3. Adding Control Variables separately and then sequentially

•
$$Y_i = \beta_0 + \beta_1 \cdot T_i + X_i \theta + \epsilon_i$$

- 4. What changes and What does not change after adding control variables?
- 5. Find the maximum variance reduction you can get by adding the control variables.

```
import statsmodels.formula.api as smf
mod = smf.ols(formula='click ~ treat +
pre_click', data=df)
res = mod.fit()
print(res.summary())
```

Review

- 1. A/B testing Terminology and Overview
- 2. Statistics behind A/B testing
 - 1. Statistical tests (t, z, chi-square)
 - 2. Confidence intervals
 - 3. Type I error & Multiple Testing
 - 4. Type II error & Power Analysis
 - 5. Regression
- 3. Internal & External Validity
 - 1. Sanity Checks (SRM, Randomization checks, A/A tests)
 - 2. SUTVA (network interferences)
 - 3. Survivorship bias
 - 4. Heterogeneous Treatment Effects
 - 5. Novelty and Primacy Effects
- 4. Improve Sensitivity
 - 1. Estimate σ^2 : ratio metrics (lift), Clustered SE (correlated observations)
 - 2. Increase N (pooled control group, split sample)
 - 3. Increase effect size (Triggering Experiments)
 - 4. Reduce variance (transform matrix and interleaving design)
 - 5. Stratification (post and at assignment)
 - 6. Regression with controls, CUPED
 - 7. Paired Design, Block Design

- Compare the means (lift, median, etc) between treatment and control
- Interpret the results considering type I and II errors

- Two principles to be considered during the whole process of experiments
- Need to guarantee internal validity
- Consider external validity when generalizing the results

- Improve sensitivity means using the smaller sample to achieve larger power
- Always a desire to improve the power given a sample size