

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288

Fax: (908) 927 9288

FCC CFR47 PART 15 SUBPART C & RSS-210 CERTIFICATION TEST REPORT

For

Handheld Device WZRDnet

Model Number: WHD-310(V)2

FCC ID: XAYWHD310V2 IC:9251A-WHD310V2

Report Number: 0048-120702-01

Prepared for
TELEGRID Technologies, Inc.
19 Microlab Road, Suite D
Livingston, NJ 07039
USA

Prepared by

Advanced Compliance Laboratory, Inc.
6 Randolph Way
Hillsborough, NJ 08844
Tel: (908) 927 9288
Fax: (908) 927 0728

Date: 9/20/2012

EUT: WZRDnet Model: WHD-310(V)2

TABLE OF CONTENTS

1.	TE	EST RESULT CERTIFICATION	3
2.	EU	JT DESCRIPTION	4
3.	TE	EST METHODOLOGY	5
4.	FA	ACILITIES AND ACCREDITATION	5
5.	CA	ALIBRATION AND UNCERTAINTY	6
	5.1.	MEASURING INSTRUMENT CALIBRATION	6
	5.2.	MEASUREMENT UNCERTAINTY	6
	5.3.	TEST AND MEASUREMENT EQUIPMENT	<i>7</i>
6.	SE'	TUP OF EQUIPMENT UNDER TEST	8
7.	AP	PPLICABLE LIMITS AND TEST RESULTS	9
	7.1.	6 dB&99% BANDWIDTH	9
	7.2.	PEAK OUTPUT POWER	
	7.3.	SAR &MAXIMUM PERMISSIBLE EXPOSURE	
	7.4.	AVERAGE POWER	22
	7.5.	PEAK POWER SPECTRAL DENSITY	24
	7.6.	CONDUCTED SPURIOUS EMISSIONS	29
	7.7.	RADIATED SPURIOUS EMISSIONS	
	7.7.	7.1. EMISSION TESTING PROCEDURE	
	7.8.	AC CONDUCTED EMISSIONS	44
8.	SE'	TUP PHOTOS	50
Q	۸D	PENDEY	57

1. TEST RESULT CERTIFICATION

COMPANY NAME: TELEGRID TECHNOLOGIES, INC.

19 Microlab Road, Suite D Livingston, NJ 07039, USA

EUT DESCRIPTION: WZRDnet

MODEL: WHD-310(V)2

DATE TESTED: 07/02/2012 to 09/20/2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC Part 15.247 & IC RSS-210 (issue 8), RSS-GEN, RSS-310 (issue 3) NO NON-COMPLIANCE NOTED

Advanced Compliance Laboratory, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Advanced Compliance Laboratory, Inc. (ACL) and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by ACL, Advanced Compliance Laboratory, Inc. will constitute fraud and shall nullify the document.

Approved & Released For ACL By:

Tested By:

Wei Li Manager

Advanced Compliance Laboratory, Inc.

Edward Lee EMC Engineer

Sam

2. EUT DESCRIPTION

The WHD-310(V)2 is a portable handheld wireless communication device that is a key element of the WZRDnet low-power wireless ad-hoc mesh network, using digital modulation & operating in the 2400-2483.5 MHz band. It also contains a GPS receiver operated at 1.575GHz.

The transmitter has a maximum peak conducted output power as follows:

Frequency Range (MHz)	Output Power (dBm)	Output Power (mW)
2410-2465	18.84	76.6

The EUT can use Dipole Omnidirectional antenna with revised SMA connector. detachable antenna (professional installation required) which is not provided by the applicant. The data sheet of the antenna are attached:

Antenna #1: R380500125, 2.4GHz Dipole Reverse SMA Omnidirectional Antenna, gain=2dBi made by Pulse/Larsen;

Antenna #1 with highest gain was used for testing conducted by ACL.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/2003, FCC CFR 47 Part 2 & 15 and IC RSS-210. Testing procedure stated in FCC publication KDB558074 Measurement of Digital Transmission Systems Operating under Section 15.247, was followed.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at Hillsborough, New Jersey, USA The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

ACL is accredited by NVLAP, Laboratory Code 200101-0. The full accreditation can be viewed at http://www.ac-lab.com

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

5.2. MEASUREMENT UNCERTAINTY

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Manufacture	Model	Serial No.	Description	Last	Cal Due
			•	Cal	dd/mm/
				dd/mm/	yy
				yy	
Agilent	E4440A	US40420700	3Hz-26.5GHz Spec. Analyzer	25/08/12	25/08/13
R &S	ESPI7	6001	9KHz-7GHz EMI Receiver	17/06/12	17/06/13
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	15/01/12	15/01/13
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	15/01/12	15/01/13
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	28/05/12	28/05/13
EMCO	3115	4945	Double Ridge Guide Horn Antenna	22/01/12	22/01/13
HP	E8254A	US42110367	Signal Generator	23/03/12	23/03/13
Scientific-Atlanta	12A-18	441	Wave Guide Horn Antenna	04/08/12	04/08/13
Agilent	E4448A	MY45300108	3Hz-50GHz Spectrum Analyzer	05/09/12	05/09/13
Agilent	83650B	3844A01114	50G Swept Signal Generator	27/01/11	27/01/13
HP	5361B	3023A01322	20G Pulse/CW Microwave Counter	10/06/12	10/06/13
HP	4419A	US37292112	RF Power Meter w/ Sensor Probe	29/06/12	29/06/13
EMCO	3116	4943	Double Ridge Guide Horn Antenna	11/01/12	11/01/13
ARA	MWH-1826/	1013	18-26GHZ Horn Antena	10/02/12	10/2/2013
	В				
Fischer Custom	LISN-1	900-4-0008	Line Impedance Stabilization Networks	18/03/12	18/03/13
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	24/03/12	24/03/13
SUNSYS	EC127	96025	Temperature Test Chamber	30/06/12	30/06/13
Lorch	5NF-800/100	AC3	Notch Filter		
Microwave	0-S	AC3	Notell Filter		
Lorch	5NF-1800/22	AE10	Notch Filter		
Microwave	00-S	ALIU	Noten Pater		
RES-NET	RFA500NFF 30	0108	30dB in-line Power Attenuator		
Narda	3022	80986	Directional Coupler		

All Test Equipment Used are Calibrated Traceable to NIST Standards.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

ITEM	DESCRIPTION	ID or DOC
AC-DC Adaptor	Switching PS/PSAC05R-050	
Earphone/Mic	IMPACT S1465 Earphone/Mic	
Notebook PC	HP Notebook PC	CRVSA-02T1-60

TEST SETUP

Testing Frequency/Channel/Port Selection:

- L(owest), M(iddle), H(ighest) Channels of 2.4G Band: 2410MHz/2440MHz/2465MHz
- 14 Channels listed
- Modulation: QPSK. Emission Designation is 2M42GXW.
- Measured at EUT's antenna port for conducted measurements.
- Measured in chamber/OATS for radiated & AC conducted emission measurements

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6dB BANDWIDTH

LIMIT

§15.247 (a) (2) & RSS-210 A8.2(1): Min. 6dB bandwidth should be no less than 500KHz.

TEST PROCEDURE per FCC KDB 558074D01

Measurement Procedure for Emission Bandwidth (DTS	Applicable to this EUT
Bandwidth)	
5.1.1 DTS Bandwidth Measurement Procedure	\boxtimes
5.1.2 Alternate DTS Bandwidth Measurement Procedure	

RESULTS

No non-compliance noted.

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2 EUT: WZRDnet Model: WHD-310(V)2

Summary of Bandwidth Testing Data

Channel	6dB Bandwidth (KHz)	99% Bandwidth (KHz)
L	1433	24035
M	1477	24189
Н	1455	24186

6dB & 99% BANDWIDTH

7.2. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b)(3) & RSS-210 A8.4(4)

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

b(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Therefore, the applicable output power limit shall be calculated as follows:

Pout = 30 -(Gtx-6) for antenna gain ≤6dBi or

Pout = 30 - Floor[(Gtx-6)/3]

 G_{Tx} = the maximum transmitting antenna directional gain in dBi.

TEST PROCEDURE per FCC KDB 558074D01

Measurement Procedure for Fundamental Emission Output	Applicable to this EUT	
Power		
5.2.1.1 Maximum Peak Conducted Output Power Level	\boxtimes	
Measurement Procedure PK1		
5.2.1.2 Maximum Peak Conducted Output Power Level		
Measurement Procedure PK2		
5.2.2.1 Maximum Conducted Output Power Level *		
Measurement Procedure AVG1		
5.2.2.2 Maximum Conducted Output Power Level *		
Measurement Procedure AVG2		

^{*} Alternative method. EUT shall be configured to transmit continuously (min. 98% duty cycle at full power). The spectrum analyzer shall be set for bin-to-bin spacing ≤RBW/2.

RESULTS

No non-compliance noted:

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2

Channel	Frequency (MHz)	Peak Power (dBm)	Limit (dBm)	Margin (dBm)
Low	2410	17.97	30	-12.03
Middle	2440	18.07	30	-11.93
High	2465	18.84	30	-11.16

EUT: WZRDnet Model: WHD-310(V)2

PLOTS for Peak Output Power

EUT: WZRDnet

Model: WHD-310(V)2

EUT: WZRDnet Model: WHD-310(V)2

7.3. SAR & MAXIMUM PERMISSIBLE EXPOSURE

For portable devices (47 CFR §2.1093), RF evaluation must be based on specific absorption rate (SAR) limits. Human exposure to RF emissions from mobile devices (47 CFR §2.1091) can be evaluated with respect to Maximum Permissible Exposure (MPE) limits for field strength or power density or with respect to SAR limits, whichever is most appropriate.

The EUT, WHD-310(V)2 is a portable product, SAR is required not MPE. However, since the power is 76.6 mWatts x 0.197 < 60/f(in GHz). The SAR is exempted per FCC and IC requirements.

Model: WHD-310(V)2 **LIMITS & RSS-102**

EUT: WZRDnet

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	/Controlled Exposure	es	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	osure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

EUT: WZRDnet Model: WHD-310(V)2

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E ^2 / 3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of Power to mW and Distance to cm, using: P

(mW) = P(W) / 1000 and

$$d (cm) = 100 * d (m)$$

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

Substituting the logarithmic form of power and gain using: P

$$(mW) = 10 ^ (P (dBm) / 10)$$
 and

$$G \text{ (numeric)} = 10 ^ (G (dBi) / 10)$$

yields

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

Equation (1)

$$S = 0.0795 * 10 ^ ((P + G)/10)/ d^2$$

Equation (2)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm²

EUT: WZRDnet Model: WHD-310(V)2

Equation (1) and the measured peak power is used to calculate the MPE distance. Equation (2) and the measured peak power is used to calculate the Power density.

LIMITS

From §1.1310 Table 1 (B), for Public $S = 1.0 \text{ mW/cm}^2$ for Professional, $S = 5.0 \text{ mW/cm}^2$

RESULTS

No non-compliance noted:

For this EUT, Max. P (pk)= 18.84 dBm, Max G= 2.0 dBi, and d=20cm

Plug all three items into equation (2), and yields,

Power Density	Output	Antenna	Power
Limit	Power	Gain	Density
(mW/cm ²)	(dBm)	(dBi)	(mW/cm ²)
1.0/5.0	18.84	2.0	0.02

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

 EUT: WZRDnet
 Report No: 0048-120702-01

 Model: WHD-310(V)2
 FCC ID: XAYWHD310V2
 & IC:9521A-WHD310V2

7.4. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted.

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2 EUT: WZRDnet Model: WHD-310(V)2

OUTPUT AVERAGE POWER

Channel BW (MHz)	Channel	Average Power (dBm)
2410	Low	12.07
2440	Middle	12.04
2465	High	12.92

7.5. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.247 (e) & RSS-210 A8.2(2)

For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE per FCC KDB 558074D01

Measurement Procedure for Maximum Power Spectral Density in the Fundamental Emission	Applicable to this EUT
5.3.1 Measurement Procedure PKPSD for Peak PSD*	\boxtimes
5.3.2 Measurement Procedure AVGPSD for Average PSD*	

^{*} same method as used to determine fundamental power. When 100KHz RBW is chosen, an equivalent value in 3 kHz can be obtained by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = $10\log(3 \text{ kHz}/100 \text{ kHz} = -15.2 \text{ dB})$.

RESULTS

No non-compliance noted:

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2

EUT: WZRDnet Model: WHD-310(V)2

Summary of PPSD Testing Data:

Channel	PPSD (dBm/100KHz BW)	Equivalent PPSD (dBm/3KHz BW)	Limit (dBm/3KHz BW)
Low	14.88	-0.32	8
Middle	14.46	-0.74	8
High	15.34	0.14	8

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2

PEAK POWER SPECTRAL DENSITY

EUT: WZRDnet

Model: WHD-310(V)2

7.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

§15.247 (d) & RSS- 210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205 (a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE per FCC KDB 558074D01

Conducted Measurement Procedure for Maximum Unwanted Emissions into Non-Restricted Frequency Bands	Applicable to this EUT
5.4.1.1 Measurement Procedure-Reference Level	\boxtimes
5.4.1.2 Measurement Procedure-Unwanted Emissions*	

^{*} Different attenuation limit shall be used based on the measurement method of fundamental emission power and PSD.

Antenna-Port Conducted Measurement Procedure for	Applicable to this EUT
Maximum Unwanted Emissions into Restricted Frequency	
Bands**	
5.4.2.2.1 Measurement Procedure on Frequencies ≤1000MHz	
Using peak or Quasi-peak detector	
5.4.2.2.1 Measurement Procedure RBAVG1 on Frequencies	
≥1000MHz (Power Averaging with RMS detector)***	
5.4.2.2.2 Measurement Procedure RBAVG2 on Frequencies	
≥1000MHz (Trace Averaging with Sample detector)***	

- 1. Proper RBW and detector, per 15.35 a/b, shall be chosen in different frequency ranges;
- 2. Maximum transmitter antenna gain (no less than 2dBi), G, shall be added to the measured power level to determine the EIRP;
- Appropriate factor, A, shall be added to model worst case ground reflections: 6.0dB (f≤30MHz) and 4.7dB (f≤30 to 1000MHz)
- 4. Electric field strength can be obtained from the equation: E= EIRP-20log(d)+104.8+G (or 2.0) +A; Then compare to applicable limit;
- 5. Unwanted emissions from EUT cabinet or casing shall be measured via radiated emission test method per C63.10 (in this case, the antenna port may be terminated properly).
- 6. Absolute peak power limit of -21.2dBm within the unwanted emission bandwidth shall be used for meeting 15.35(b) requirement;
- 7. Per 15.35(c), for pulse operation, Duty Cycle factor reduction can be applied for unwanted emissions that have the same pulse characteristics as does the fundamental emissions (such as harmonics) pulse operation.

*** EUT shall be configured to transmit continuously (min. 98% duty cycle at full power). The spectrum analyzer shall be set for bin-to-bin spacing ≤RBW/2.

RESULTS

No non-compliance noted.

^{**} To use this conducted testing method, the followings shall be taken as consideration:

. CONDUCTED SPURIOUS EMISSIONS (in non-restricted frequency Bands)

Based on PSD measurement result, set reference level as -4dBm.

	Plot Nam	ne:	Cond	ucted Sp	urious Er	nissions	@ Low	СН
* A	gilent						Mkr1 2	4.58 GHz
Ref 19	.8 dBm	#Atten	20 dB				-52	.84 dBm
#Peak Log 10	Marker -24.580000	 0000 GHz-						
dB/ Offst	-52.84 dE	3m						
9.8								
dB								
DI								
-5.0 dBm								
LgAv								
29114								
V1 S2								
S3 FC								
AA £ (f):	 							1
FTun	H = H .			Junton	and the same of th	المعاولين ويرودو	hadra alla sala	Lulphan Marin May After
Swp	wholesof Whomen	Mary Mary Mary Mary Mary Mary Mary Mary	Marchael March	Mark Wall	-			
Start 2	 0 MH=						Stop 2	5.00 GHz
	W 100 kHz		VBW 30	0 kHz		Sweep 2	.387 s (6	

1.

7.7. RADIATED SPURIOUS EMISSIONS

7.7.1. EMISSION TESTING PROCEDURE

LIMITS

§15.205 (a) RSS-102 Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	
30 - 88	100 **	3	
88 - 216	150 **	3	
216 - 960	200 **	3	
Above 960	500	3	

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode. Established procedures in C63.10 for performing radiated measurements shall be used. For cabinet emission measurements, the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. For portable devices, the EUT was tested in three orthogonal planes.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The radio spectrum was investigated from the lowest frequency generated within the device (without going below 9 kHz) up to the 10^{th} harmonic of the rated transmitted emission. The emissions are investigated with the transmitter set to the lowest, middle, and highest channels.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

EUT: WZRDnet Model: WHD-310(V)2

7.7.2. EMISSION TESTING DATA

For WHD-310(V)2 Handheld Device

A. Transmitting Mode

	Positi					Corr.	PK	Avg.L		
Freq.	on	Dist.	D Corr	Peak	Avg.	Avg.	Lim	im		Avg.Mar.
(MHz)	(H,V-X	(m)	(dB)	(aBuv/m)	(dBuV/m)			(dBuV		(dBuV/m)
(,	,Y,Z)	(/	(3.2)	at 3m	(== == , ,)	V/m)	/m)	(== == , == ,	(== == ,,
	Low Channel Harmonics									•
4820	H,X	1	-10.5	53.0		38.9	74	54	-21.0	-15.1
4820	V,X	1	-10.5	44.1		30.0	74	54	-29.9	-24.0
4820	Н,Ү	1	-10.5	53.3		39.2	74	54	-20.7	-14.8
4820	V,Y	1	-10.5	45.0		30.9	74	54	-29.0	-23.1
4820	H,Z	1	-10.5	43.6		29.5	74	54	-30.4	-24.5
4820	V,Z	1	-10.5	53.8		39.7	74	54	-20.2	-14.3
	Mid Channel Harmonics									
4880	H,X	1	-10.5	52.3		38.2	74	54	-21.7	-15.8
4880	V,X	1	-10.5	44.0		29.9	74	54	-30.0	-24.1
4880	Н,Ү	1	-10.5	52.1		38.0	74	54	-21.9	-16.0
4880	V,Y	1	-10.5	43.4		29.3	74	54	-30.6	-24.7
4880	H,Z	1	-10.5	44.5		30.4	74	54	-29.5	-23.6
4880	V,Z	1	-10.5	52.5		38.4	74	54	-21.5	-15.6
	High Channel Harmonics									
4930	H,X	1	-10.5	52.5		38.4	74	54	-21.5	-15.6
4930	V,X	1	-10.5	43.7		29.6	74	54	-30.3	-24.4
4930	Н,Ү	1	-10.5	51.2		37.1	74	54	-22.8	-16.9
4930	V,Y	1	-10.5	44.1		30.0	74	54	-29.9	-24.0
4930	H,Z	1	-10.5	43.0		28.9	74	54	-31.0	-25.1
4930	V,Z	1	-10.5	52.8		38.7	74	54	-21.2	-15.3

The system was configured for testing in a typical fashion (as a customer would normally use it. No other harmonics or spurious emissions were detected in the rest band above system floor, noise above -20dB to the limit.

DUTY CYCLE CORRECTION FACTOR:

*IN ACCORDANCE WITH FCC KDB Publication No. 558074, THE "DUTY CYCLE CORRECTION FACTOR" FOR SPURIOUS RADIATED EMISSIONS IS; 20 log * (4.26 ms / 21.65 ms) = -14.1 dB, WHICH WAS USED TO CORRECT THE AVERAGE SPURIOUS READING. *Please see Section 9 for details.*

Report No: 0048-120702-01

EUT: WZRDnet FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2 Model: WHD-310(V)2

In addition, the band edge requirements are also verified. The testing results for worst case are shown as following and comply with the band edge requirements for 2400-2483.5MHz DTS per FCC Part 15.247 & FCC KDB Publication No. 558074. Tx Antenna with max gain was used for this testing.

- H=Measurement antenna horizontal position
- V= Measurement antenna vertical position

Using conventional manner for measuring the radiated emissions that are removed by more than two measurement bandwidths from band-edge, such as the emissions in the restricted band 2310-2390MHz & 2483.5-2500MHz, etc.

• Using conventional manner or if needed, using "delta" measurement technique for measuring the radiated emissions that are up to two measurement bandwidths removed from band-edge, such as the restricted band that begins at 2483.5MHz.

Black Trace: RBW=500KHz, VBW=1MHz, Delta(peak to band-edge): 47.90dB Peak: 117.73dBuV/m-47.90dBuV/m=69.83dBuV/m (under 74dBuV/m limit)

Blue Trace: RBW=500KHz, VBW=1MHz, Delta(peak to band-edge): 47.99dB Peak: 117.23dBuV/m-47.99dBuV/m=69.24dBuV/m (under 74dBuV/m limit)

B. Receiving Mode EUT with AC/DC Charger Connected

EUT: WZRDnet

Model: WHD-310(V)2

	AOIDO OI							
Freq.	Positio n (H,V-X, Y,Z)	Dist.	D Corr (dB)	Peak (dBuV/m)	Quasi-Pe ak (dBuV/m)	Avg. (dBuV/m)	FCC-15 3m Lim (dBuV/m)	Mar. (dBuV/m)
41.9	V	3	0	37.1			40.0	-2.9
47.1	V	3	0	30.1			40.0	-9.9
57.2	V	3	0	35.4			40.0	-4.6
115.9	V	3	0	31.5			43.5	-12.0
150.0	V	3	0	37.4			43.5	-6.1
288.0	V	3	0	32.5			46.5	-14.0
334.0	V	3	0	33.3			46.5	-13.2
444.0	V	3	0	32.7			46.5	-13.8
486.0	V	3	0	33.2			46.5	-13.3
55.9	Н	3	0	36.5			40.0	-3.5
116.3	Н	3	0	30.9			43.5	-12.6
159.6	Н	3	0	34.0			43.5	- 9.5
288.0	Н	3	0	33.8			46.5	-12.7
334.0	Н	3	0	33.7			46.5	-12.8
446.0	Н	3	0	32.0			46.5	-14.5
486.0	Н	3	0	32.8	_		46.5	-13.7

EUT with PC connected

Polarity	Height	Azimuth	Amplitude	Class B	Difference
-	_		Reading	3m Limit	from limit
[H, V]	(m)	(Degree)	$(dB\mu V)$	$(dB\mu V/m)$	(dB)
Н	1.4	135	31.2	40.0	-8.8
Н	1.4	135	31.3	40.0	-8.7
Н	1.4	090	35.8	40.0	-4.2
Н	1.3	135	32.9	43.5	-10.6
Н	1.3	180	36.1	43.5	-7.4
Н	1.2	225	34.5	43.5	-9.0
Н	1.1	225	42.3	46.5	-4.2
Н	1.1	180	36.9	46.5	-9.6
Н	1.1	180	36.4	46.5	-10.1
Н	1.0	225	38.1	46.5	-8.4
Н	1.0	180	42.2	46.5	-4.3
V	1.2	180	33.7	40.0	-6.3
V	1.2	160	33.8	40.0	-6.2
V	1.1	045	35.8	43.5	-7.7
V	1.1	000	36.2	43.5	-7.3
V	1.1	270	36.2	46.5	-10.3
V	1.1	270	41.6	46.5	-4.9
V	1.1	225	38.6	46.5	-7.9
V	1.0	225	43.1	46.5	-3.4
V	1,0	180	40.6	46.5	-5.9
	[H, V] H H H H H H H H V V V V V	[H, V] (m) H 1.4 H 1.4 H 1.3 H 1.3 H 1.3 H 1.2 H 1.1 H 1.1 H 1.1 H 1.0 V 1.2 V 1.2 V 1.1 V 1.0 V 1.0 V 1.0	[H, V] (m) (Degree) H 1.4 135 H 1.4 135 H 1.4 090 H 1.3 135 H 1.3 180 H 1.2 225 H 1.1 180 H 1.1 180 H 1.1 180 H 1.1 180 V 1.2 180 V 1.2 180 V 1.1 045 V 1.1 000 V 1.1 270 V 1.1 270 V 1.1 225 V 1.0 225 V 1.0 225 V 1.0 180	[H, V] (m) (Degree) Reading (dBμV) H 1.4 135 31.2 H 1.4 135 31.3 H 1.4 090 35.8 H 1.3 135 32.9 H 1.3 180 36.1 H 1.2 225 34.5 H 1.1 180 36.9 H 1.1 180 36.9 H 1.1 180 36.4 H 1.0 225 38.1 H 1.0 180 42.2 V 1.2 180 33.7 V 1.2 160 33.8 V 1.1 045 35.8 V 1.1 270 36.2 V 1.1 270 36.2 V 1.1 270 41.6 V 1.1 225 38.6 V 1.0 225 43.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

No other significant spurious were detected in the rest band (up to 6.5GHz) Worst case: EUT programmed to RX mode. A stimulating signal (CW, operated @2.44GHz for Zigbee Receiver and @1.575GHz for GPS Receiver) was used to stimulate receiver during emissions measurements.

EUT: WZRDnet Model: WHD-310(V)2

7.8. AC CONDUCTED EMISSIONS

The EUT was setup and located so that the distance between the boundary of the EUT and the closest surface to the LISN was 0.8m or more.

EUT test configuration was according to CISPR22 and Section 7 of ANSI C63.4/2003.

Conducted disturbance was measured between the phase lead and the ground, and between the neutral lead and the ground. The frequency 0.150 - 30 MHz was investigated.

The EMI receiver was set to PEAK detector setting, and swept continuously over the frequency range to be investigated. The resolution bandwidth was set to 9KHz minimum. The EMI receiver input cable was connected to LINE 1 RF measurement connection on the LISN. A 50ohm terminator was connected to the unused RF port on the LISN. For each mode of EUT operation, emissions readings were maximized by manipulating cable and wire positions. The configuration for each EUT power cord which produced emissions closest to the limit was recorded. The same procedure was repeated for LINE 2 of each EUT power cord.

Instrument Settings

Frequency Range	Peak	Quasi-Peak	Average
0.15 - 30 MHz	9 kHz	9 kHz	30 kHz

Limit: FCC Part 15 / CISPR22 Class B

Testing Data

The following plots show the neutral and line conducted emissions for the typical operation condition. The conducted test data shows the worst case emissions still below the FCC Part 15/CISPR22 Class B limits.

Highest Data for AC Main Conducted Emissions (w/ PC Connected)							
Frequency (MHz)	160	170	200	390	450		
Peak Reading (dBuV) from Line*	53.1	51.4	49.2	41.0	41.3		
Frequency (MHz)	160	170	190	390	460		
Peak Reading(dBuV) from Neutral *	53.0	51.6	51.5	41.7	43.0		

^{*} No average reading is needed since the peak reading is already below average limit.

Report No: 0048-120702-01 FCC ID: XAYWHD310V2 & IC:9521A-WHD310V2 **EUT: WZRDnet** Model: WHD-310(V)2

Highest Data for AC Main Conducted Emissions (w/ AC/DC adaptor)						
Peak Reading from Line Quasi-Peak Reading from Line Average Reading from Line						
58.0 dBuV	51.7 dBuV	45.3dBuV				
Peak Reading from Neutral	Quasi-Peak Reading from Neutral	Average Reading from Neutral				
54.6 dBuV	47.4 dBuV	39.7dBuv				

Result: No non-compliance noted

A. Tested @ AC Main of AC/DC Adaptor

Line Conducted Emission

Frequency: 150kHz to 30MHz

Quasi-Peak Reading at 570kHz

Average Reading at 570kHz

Neutral Conducted Emission

Frequency: 150kHz to 30MHz

Quasi-Peak Reading at 560kHz

Average Reading at 560kHz

B. Tested @ AC Main of PC

Line Conducted Emission

Neutral Conducted Emission

