PROJECT REPORT

Team ID	PNT2022TMID40374	
Project Name	DETECTING PARKINSON'S DISEASE	
	USING MACHINE LEARNING	
Team Members	YESWANTH D	
	○ ABIMANYU K	
	○ NIMALRAJ V	
	• RAJKUMAR P	
	O SIVAGURUSAKTHIVEL B	

DETECTION OF PARKINSON'S DISEASE USING MACHINE LEARNING

1. INTRODUCTION

A research paper in 2017 by Zham et al explained how to detect parkinson disease without doing any MRI scans on the brain just by detecting the speed and pen pressure of sketching a spiral or a wave. So by this we can automate the process and detect the disease by scanning the pattern of the patient and by using simple computer vision algorithms and machine learning we can train a model to classify between a patient and a healthy person.

a. PROJECT OVERVIEW

Biomarkers derived from human voice can offer in-sight into neurological disorders, such as Parkinson's disease (PD), because of their underlying cognitive and neuromuscular function. PD is a progressive neurodegenerative disorder that affects about one million people in the United States, with approximately sixty thousand new clinical diagnoses made each year . Historically, PD has been difficult to quantity and doctors have tended to focus on symptoms while ignoring others, relying primarily on subjective rating scales. Due to the decrease in motor control that is the hallmark of the disease, voice can be used as a means to detect and diagnose PD

b. **PURPOSE**

The ML based diagnosis of this subjective disease can be achieved by using symptoms as an attribute for the algorithm.

The ML algorithm is used for better understand and diagnose PD, develop new treatments and ultimately prevent PD.

2. LITERATURE SURVEY

Team : PNT2022TMID40374

Team Size : 5

Team Leader : YESWANTH D

Team Member: ABIMANYU K

Team Member: NIMALRAJ V

Team Member: RAJKUMAR P

Team Member: SIVAGURUSAKTHIVEL B

1	PAPER TITLE	Rahul R Zaveri, Prof. Pramila M. Chawan "The International Research Journal of Engineering and Technology" vol. 07, issue:10, 2020.Dr. Anupam Bhatia and RaunakSulekh [1]
	PROBLEM	In this study, Naive Bayes was applied topredict the
	DEFINITION	performance of the dataset. Rapid miner 7.6.001 is a tool, which was used to explore, statistically analyze, and mine the data.
	METHODOLOGY/	"Predictive Modelfor Parkinson's Disease through Naive Bayes
	ALGORITHM	Classification"
	ADVANTAGES	The Naive Bayes modelperforms with 98.5 % accuracy, and 99.75% of precision.
	DISADVANTAGES	The SNN Algorithm is Best for Different classes , but formore accuracy need to be

	used more Best algorithm

2	PAPER TITLE	Carlo Ricciardi, et al "Using gait analysis" parameters to classify Parkinsonism: A data mining approach"
	PROBLEM DEFINITION METHODOLOGY/ALGORI	In this system, Random Forest is used for classification along with comparing it with Gradient Boosted Trees. These results are being categorized into 3 different categories namely PSP Random Forest algorithm and Gradient Boosted Tress are used
	ТНМ	boosted fress are used

ADVANTAGES	De Novo Parkinson's Disease and Stable Parkinson's Diseasewith their accuracybeing as high as 86.4% as compared toGradient Boosted Trees which were accurate to a meagre 70%. Also the precision rate of Random Forest was maximum of 90 % against Gradient Boosted Trees whichwere around maximum
	whichwere around maximum of 85%.
DISADVANTAGES	The accuracy is not necessary to predict the Parkinson's Disease

3	PAPER TITLE	MehrbakhshNilashi et al [3] "A hybrid intelligent system for the prediction ofParkinson's Disease progression using Machine Learning techniques"
	PROBLEM DEFINITION	It was intended to understand how the different types of preprocessing steps could affect the prediction accuracy
		of the Classifier
	METHODOLOGY/ALGORI	In this system a method was
	ТНМ	proposed for the UPDRS (Total-UPDRS and Motor- UPDRS)prediction using machine learning. ISVR was
		used to predict the Total- UPDRS and Motor-UPDRS. SOM and NIPALSwere used for clustering and data
	ADVANTAGES	dimensionality reduction The results show that the method combiningSOM, NIPALS, and ISVR techniques was effective in predicting the Total-UPDRS and Motor-
		UPDRS. The Algorithm used is difficult

DISADVANTAGES	to predict and
	edit for future use

4	PAPER TITLE	Aravind Kumar Tiwari "Machine
		Learning
		based Approaches for
		Predictionof
		Parkinson's Disease,"

PROBLEM DEFINITION	In this system, minimum redundancy maximum relevance feature selection algorithms were used to select the most important feature among all the features to predict Parkinson's disease.
METHODOLOGY/ALGORI	Minimum Redundancy MaximumRelevance Feature Selection Algorithms
THM	were used
ADVANTAGES	This system of feature selection along withRandom Forests provided an accuracy of 90.3% and precision of 90.2%.
DISADVANTAGES	The accuracy is not neccesaary to predict the Parkinson's Disease more properly

5	PAPER TITLE	DraganaMiljkovicet al [6] "Machine Learning and Data Mining Methods for Managing Parkinson's Disease"
	PROBLEM DEFINITION	In this system, based on the initial patientsexamination and medications taken, the Predictor part was able to predict each Parkinson's Disease symptom separately covering 15 different Parkinson's Disease symptoms in total.
	METHODOLOGY/ALGORI	In the process of classifying the Parkinson's Disease dataset using the
	ТНМ	ANN based MLPclassifier
	ADVANTAGES	The accuracy of prediction ranges from 57.1% to 77.4% depending on the symptom where thehighest accuracy is achieved from tremor detection.
	DISADVANTAGES	Data Mining using those algorithm is very difficult and Accuracy is poor

3. IDEATION & PROPOSED SOLUTION

3.1) Empathy Map

IBM-Project-48457-1660807433/Detecting Parkinson's Disease using Machine Learning.pdf at main · IBM-EPBL/IBM-Project-48457-1660807433 (github.com)

3.2) IDEATION & BRAINSTROMING

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

① 5 minutes

PROBLEMS IN FACING PARKINSON'S DISEASE

The Risk of developing Parkinson's disease naturally increase with age, and the average age at which it starts is 60 years

If the affected person lately go to hospital may cause to death also

Already existed solution predict is somewhat good but not accurate

Unawareness of parkinson's disease in people lead to improper self treatment

The affected person not able to know what to do?

D.YESWANTH:

P.RAJKUMAR

K.ABIMANYU

If disease is present, our application recommend Hospitals, treatments, Doctors, etc.,

B.SIVAGURUSAKTHIVEL

Parkinson's disease (PD) is a long term degenerative disorder of the central nervous system that mainly affects the motor system.

The symptoms of Parkinson's disease will occur slowly, the symptoms include tremor, shaking, rigidity, slowness of movement and difficulty with walking, thinking and behavior change, depression and anxiety, loss of smell, some visionary problem, etc.

In our model, a huge amount of data is collected from the normal person and also previously affected person by Parkinson's disease, these data is trained using Machine Learning Algorithm.

The drawing speed was slower and the pen pressure is lower among Parkinson's patients.

Due to tremors and rigidity in muscles ,making it difficult to draw smooth spirals and waves.

Due to improvement in accuracy of detection, user will trust the application and very helpful for Doctors to treat the patients at earlier stage.

To help in early detection of Parkinson's disease which would help in early diagnosis thus slowing down disease progression

The Risk of developing Parkinson's disease naturally increase with age, and the average age at which it starts is 60 years old

Parkinson's disease is chronic and has no cure yet. But, Early detection along with proper medication can significantly improve the quality of life.

For perfect estimation, we collect some data from the user and analyse by using Machine learning to give more accurate result. We will build a model using which we can accurately detect the presence of Parkinson's disease in one's body.

Our goal is to quantify the visual appearance of these drawings and then train a machine learning model to classify them. In this project, we are using. Histogram of Oriented Gradients (HOG) image descriptor along with a Random Forest classifier to automatically detect Parkinson's disease in hand drawn images.

Feasibility

Regardless of their enportance, which tasks are more ... Neastire than others? (Cost, time, effort, complexity, etc.) IBM-Project-48457-1660807433/Brainstorm and Ideation (1).pdf at main · IBM-EPBL/IBM-Project-48457-1660807433 (github.com)

3.3) PROPOSED SOLUTION

PROPOSED SOLUTION TEMPLATE

Date	24 September 2022
Team ID	PNT2022TMID40374
Project Name	Detecting Parkinson's Disease using Machine
	Learning
Maximum Marks	2 Marks

Project team shall fill the following information in proposed solution template.

 Problem Statement (Problem to be solved) More than 10 million people are living with Parkinson's Disease worldwide, according to the Parkinson's Foundation. While Parkinson's cannot be cured, early detection along with proper medication can significantly improve symptoms and quality of life. 	S.No.	Parameter	Description
	1.	(Problem to be	 the central nervous system affecting movements and inducing tremors and stiffness More than 10 million people are living with Parkinson's Disease worldwide, according to the Parkinson's Foundation. While Parkinson's cannot be cured, early detection along with proper medication can significantly improve

		If laterly predicted , it results in cause several threatens to attected persons
2.	Idea / Solution description	For perfect estimation, we collect some data from the user and analyse by using Machine learning to give more accurate result. Here was a fine of the collect some data from the user and analyse by using Machine learning to give more accurate result.
		 Using better Machine Learning Algoritm will result in perfect estimation.
3.	Novelty / Uniqueness	 Due to tremors and rigidity in muscles ,making it difficult to draw smooth spirals and waves. Our goal is to quantify the visual appearance of these drawings and then train a machine learning model to classify them In this project, we are using, Histogram of Oriented Gradients (HOG) image descriptor along with a Random Forest classifier to automatically detect Parkinson's disease in hand drawm images. For perfect estimation, we collect some data from
		the user and analyse by using Machine learning to give more accurate result.

4.	Social Impact / Customer Satisfaction	 The main aim of this application is early prediction and proper treatments can possibly stop or slow progression of this disease to end stage. Hence Customer will not suffer from serious effects of Parkinson's disease
5.	Business Model (Revenue Model)	 Can generate revenue through direct customer. Can collaborate with health care sector and generate revenue from their customers. Can make an advertisement of hospitals that have special treatment of Parkinson's Disease, and if patients allow ,we share the details of the patients to that hospital for medication.
6.	Scalability of the Solution	 In order to get user friendly and more accuracy, we additionally add some data collection from user and analyse easily by draw smooth spirals and waves. An Application is developed where data about patients are recorded and Suggest some medication if they have Parkinson's Disease. Due to improvement in accuracy of detection, user will trust the application and very helpful for Doctors to treat the patients at earlier stage. To help in early detection of Parkinson's disease which would help in early diagnosis thus slowing down disease progression.

3.4) PROBLEM SOLUTION FIT

 $\underline{\mathsf{IBM-Project-48457-1660807433/Problem_solution_fit.pdf} \ at \ main \cdot \underline{\mathsf{IBM-EPBL/IBM-Project-48457-1660807433}} \ (\underline{\mathsf{github.com}})}$

4. REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENT & NON- FUNCTIONAL REQUIREMENTS

Date	12 October 2022
Team ID	PNT2022TMID40374
Project Name	Detecting Parkinson's Disease using Machine Learning
Maximum Marks	4 Marks

4.1) Functional Requirements:

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Registration	Registration through Form Registration
		through Gmail
		Registration through Phone Number
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User permission	Allow the Camera

FR-4	User Details	Get user Name Get user Age Get user Gender Get user Address Get user Location Get user Mobile Number Get user Gmail id
FR-5	User Known value (Accurate/Approximate)	Get user BP level Get user sugar level Get user Physical Health Condition Get user Disorder / Disabilities detail
FR-6	User Motion Capture	The Motion of the User is recorded and the result will be added in Final Overall result

FR-6	User Drawings (Spiral /	The Drawing pattern and speed was
	Circle)	noted and result will be added
FR-7	User Demand	After Getting the Result , the Affected person need
		to consult a Doctor.
		The Non-Affected person need some medication
		which will show in same web application itself

4.2) Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	

NFR-1	Usability	Our Web application is User Friendly which show them demonstration skippable video	
		Video	
NFR-2	Security	We don't share the image and user details	
NFR-3	Reliability	Our web application have high	
		accuracy which can be utilized multiple times	
NFR-4	Performance	By using better algorithm and collecting lot of details,	
		Our web application provide more accuracy	
		than all.	
NFR-5	Availability	Our web application can be used by using Mobile	
		phones itself. It	
		doesn't need any external material	
NFR-6	Scalability	Our web applicaton can be used by	
		world wide with easy to access it .	

5. **PROJECT DESIGN**

5.1) DATA FLOW DIAGRAMS

Date	14 October 2022	
Team ID	PNT2022TMID40374	
Project Name	Detecting Parkinson's	
	Disease using Machine Learning	
Maximum Marks	4 Marks	

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored Simplified:

DFD Level 0 (Industry Standard):

5.2) USER STORIES

Use the below template to list all the user stories for the product.

User Type	Functional	User	User Story / Task	Acceptance criteria	Priority	Release
	Requirement	Story Number				
Customer	(Epic) Home Page	USN-1	Description about	I can get an idea	Low	Sprint-3
(Web	Home rage	0311 1	Parkinson's disease.	about the disease.	LOW	Эргий Э
user)			r drivingori s discuse.	about the discuse.		
		USN-2	Details about the test		Low	Sprint-3
			vitals required for the			
	Registration	USN-3	testing. As a user, I can register	Lean accoss my	Moderate	Sprint-3
	Registration	0314-3	for the	I can access my account.	Moderate	Spriiit-3
			application by entering	G. G		
			my username, email,			
			phone number, and			
			password, and confirming			
			my			
			password.			
		USN-4	As a user, I will receive a confirmation mail once I	I can receive a confirmation OTP	High	Sprint-3
			have registered for the	upon registration		
			application.	for verification.		
	It-	LICALE	As a user, I can log in to	Lasa lasa ta	11:-1-	C
	Login	USN-5	the web	I can log in successfully.	High	Sprint-2
			application by entering	successiumy.		
			my email id & password.			
	Main	USN-6	As a user, I submit the	I can access the	Moderate	Sprint-4
	Page(Test		required	page and can		
	vitals)	116117	image for the prediction.	submit the input.	11. 1	6 : 1 4
	Results	USN-7	Results will be displayed along with	I got my results successfully and	High	Sprint-4
			their accuracy.	accurately.		
Admin	Data	USN-8	Collect the required data	,	High	Sprint-1
	collection		for the detection of			
	Data	LICALO	Parkinson's disease	As a regult Leat the	High	Corict 1
		USN-9	Clean and analyze the data to avoid noise and	As a result I get the desired dataset to	High	Sprint-1
	preprocessing		duplications	get trained.		
	Model	USN-10	Build the model using a	Successfully	High	Sprint-1
	Building	0314-10	Random	trained the model.	півіі	Shillf-T
			forest classifier to classify			
			the images.			
	Deploy the	USN-11	Deployment of ML	Deployed	High	Sprint-2
	model		model using IBMWatson Studio, object storage.	successfully.		
	Integrate the	USN-12	Use flask for the	Created the web	Moderate	Sprint-2
	web app with		integration purpose.	app successfully.		
	the IBM					
	Model					

5.3) TECHNOLOGY STACK (ARCHITECTURE & STACK)

Date	13 October 2022	
Team ID	PNT2022TMID40374	
Project Name	Detecting Parkinson's Disease Machine Learning	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Example: Order processing during pandemics for offline mode

Reference: https://link.springer.com/chapter/10.1007/978-981-33-6912-2 22

Guidelines:

- 1. Get the Image from the user (From Storage / Live Drawing)
- 2. Use HOG or Deep features method for better classification
- 3. Use Several best Algorithm techniques like KNN, SVM, Random Forest, Multilayer Perception, Native Bayes etc., to get accurate result
- 4. By Testing and get compared with trained result it predict and detect the Diagram Pattern
- 5. Finally the Machine Learning will predict with more efficiency

TABLE-1: COMPONENTS & TECHNOLOGIES:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with	HTML, CSS, JavaScript /
		application e.g. Web UI,	Angular Js / React Js etc.
		Mobile App, Chatbot	
		etc.	
2.	Application Logic-1	Logic for a process in the application	Java / Python
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage requirements	IBM Block Storage or Other
			Storage Service or Local

			Filesystem
8.	External API-1	Purpose of External API used in the	IBM Weather API, etc.
		application	
9.	External API-2	Purpose of External API used in the	Aadhar API, etc.
		application	
10.	Machine Learning	Purpose of Machine Learning Model	Object Recognition Model, etc.
	Model		
11.	Infrastructure	Application Deployment on Local	Local, Cloud Foundry, Kubernetes,
	(Server / Cloud)	System / Cloud Local Server	etc.
	,	Configuration:	
		Cloud Server Configuration :	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Technology of Opensource framework
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	e.g. SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of architecture (3 – tier, Microservices)	Technology used
4.	Availability	Justify the availability of application (e.g. use of load balancers, distributed servers etc.)	Technology used
5.	Performance	Design consideration for the performance of The application (number of requests per sec, use of Cache, use of CDN's) etc.	Technology used

References:

- 1. DraganaMiljkovic et al, "Machine Learning and Data Mining Methods for Managing Parkinson's Disease" LNAI 9605, pp 209-220, 2016.
- 2. Arvind Kumar Tiwari, "Machine Learning based Approaches for Prediction of Parkinson's Disease," Machine Learning and Applications- An International Journal (MLAU) vol. 3, June 2016.

- 3. Dr. Anupam Bhatiaand RaunakSulekh, "Predictive Model for Parkinson's Disease through Naive Bayes Classification" International Journal of Computer Science & Communication vol. 9, March 2018..
- 4. M. Abdar and M. Zomorodi-Moghadam, "Impact of Patients' Genderon Parkinson's diseaseusing Classification Algorithms" Journal of AI and Data Mining, vol. 6, 2018.
- 5. Md. Redone Hassan et al, "A Knowledge Base Data Mining based on Parkinson's Disease" International Conference on System Modelling& Advancement in Research Trends, 2019

6. PROJECT PLANNING & SCHEDULING

Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Storypoints)

Date	21 October 2022
Team ID	PNT2022TMID40374
Project Name	Detecting Parkinson's Disease Using Machine Learning
Maximum Marks	8 Marks

6.1) Sprint Planning & Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement	Story		Points		
	(Epic)	Number				
Sprint-1	Registration	USN-1	As a user, I can register	2	High	Yeswanth D
			for the web application			Sivagurusakthivel B
			by entering my email,			
			password, and			
			confirming my password.			
Sprint-1	Registration	USN-2	As a user, I will receive	1	High	Rajkumar P
Spriit-1	Registration	0311-2	,	_	High	_
			confirmation email once I			Nimalraj V
			have registered for the			
			application			
Sprint-2	Registration	USN-3	As a user, I can register	2	Low	Abimanyu K
			for the application			
			through Facebook	_	_	6. 141. 15
Sprint-2	Registration	USN-4	As a user, I can register	2	Low	Sivagurusakthivel B
			for the application			Rajkumar P
			through			

			Google Account			
Sprint-1	Registration	USN-5	As a user, I can register for the application through Gmail	2	Medium	Abimanyu K Nimalraj V
Sprint-1	Login	USN-6	As a user, I can log into the application by entering email & password	As a user, I can log into 1 High the application by entering email &		Yeswanth D
Sprint-3	Dashboard	USN-7	As a user, I can see the description about the option in web application	2	Low	Abimanyu K Nimalraj V
Sprint-3	Dashboard	USN-8	As a user, I can provide the necessary details and answer the question in that website honestly	2	High	Yeswanth D Sivagurusakthivel B Rajkumar P
Sprint-3	Dashboard	USN-9	As a user, I upload the drawn images and get the desired result along with the accuracy	2	High	Yeswanth D Sivagurusakthivel B
Sprint-4	Dashboard	USN-10	As a user, I can able to see the Nearby located Hospitals, and some medication advices	1	Low	Rajkumar P Nimalraj V Abimanyu K
Sprint-4	Management	USN-11	As a Administrator, I will update our web application with additional features.	2	Low	Yeswanth D Sivagurusakthivel B
Sprint-4	Management	USN-12	As a Administrator, I can maintain third party Services	1	High	Rajkumar P Nimalraj V Abimanyu K

Sprin	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement	Story		Points		
	(Epic)	Numb				
		er				

Sprint-	Manageme	USN-13	As a	2	High	Yeswanth D
4	nt		Administrator, I			Sivagurusakthivel
			will collect new			B Rajkumar P
			dataset and keep			
			our model well			
			trained to			
			avoid noise and duplication.			
Sprint-	Manageme	USN-14	As a	2	High	Abimanyu
2	nt		Administrator, I			К
			can maintain the information			Nimalraj
			about the user			V
			and provide			
			privacy to them			

6.2) Sprint Delivery Schedule:

Sprint	Total Story Poin ts	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-	6	6 Days	24 Oct 2022	29 Oct 2022	6	29 Oct 2022
Sprint- 2	6	6 Days	31 Oct 2022	05 Nov 2022	6	05 Nov 2022
Sprint-	6	6 Days	07 Nov 2022	12 Nov 2022	5	12 Nov 2022
Sprint-	6	6 Days	14 Nov 2022	19 Nov 2022	6	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

AV (Sprint 1) = 6/6 = 1AV (Sprint 2) = 6/6 = 1AV (Sprint 3) = 6/6 = 1AV (Sprint 4) = 6/6 = 1AV (Total) = 24/24 = 1

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-

burndown-chart/

https://www.atlassian.com/agile/tutorials/burndown-

<u>charts</u>

REFERENCE

https://www.atlassian.com/agile/project-

managementhttps://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-

software https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts

6.3) REPORTS FROM JIRA

7. CODING & SOLUTION

7.1) FEATURES 1

Importing The Necessary Libraries

The first step is usually importing the libraries that will be needed in the program.

The required libraries to be imported to Python script are:

OpenCV:

<u>OpenCV</u> is a library of programming functions mainly aimed at real-time computer vision. Here, OpenCV is used for resizing. Rescaling, thresholding the image.

Imutils:

Imutils package has a series of convenience functions to make basic image processing functions such as translation, rotation, resizing, and displaying Matplotlib images and video frames easier with OpenCV.

We will build_montages for visualization. Our paths import will help us to extract the file paths to each of the images in our dataset.

sklearn.metrics:

The module implements several loss, score, and utility functions to measure classification performance.

sklearn.preprocessing:

This package provides several common utility functions and transformer classes to change raw feature vectors into a representation that is more

suitable for the downstream estimators.

Sklearn.ensemble

This package contains RandomForestClassifier and many more inbuilt algorithms.

Scikit-image

Scikit-image, or skimage, is an open-source Python package designed for image preprocessing.

Histogram of Oriented Gradients (HOG) will come from the feature import of scikit-image.

Pickle:

Python pickle module is used for serializing and de-serializing python object structures. The process to converts any kind of python objects (list, dict, etc.) into byte streams.

7.2) FEATURES 2

- Once after splitting the data into train and test, the data should be fed to an algorithm to build a model.
- There are several Machine learning algorithms to be used depending on the data you are going to process such as images, sound, text, and numerical values. The algorithms that you can choose according to the objective that you might have it may be Classification algorithms are Regression algorithms.
- 1.Logistic Regression
- 2.Decision Tree Classifier
- 3.Random Forest Classifier
- 4.KNN

Random Forest classifier

Initialize our **Random Forest classifier** and train the model using a number of estimators as 100 After training the model, the model should be tested by using the test data which is been separated while splitting the data for checking the functionality of the model.

Here we are selecting 25 images from the test data and initialize the output images for montage

we're going to create a montage so that we can share our work visually

- First, we randomly sample images from our testing set
- Our images list will hold each spiral image along with annotations added via OpenCV drawing functions.
- We proceed to loop over the random image indices.
- Inside the loop, each image is processed in the same manner as during training(convert to gray scale, resize, threshold).
- From there we'll automatically classify the image using our new HOG + Random Forest based classifier and add color-coded annotation
- Each image is quantified with HOG features.
- Then the image is classified bypassing those features to model.predict.
- The class label is colored green for "healthy" and red otherwise .The label is drawn in the top left corner of the image using cv2.putText function .

 Each output image is then appended to an images list so that we can develop a montage

The montage is then displayed until a key is pressed

The **cv2.imshow()** function always takes two more functions to load and close the image. **cv2.waitKey()** function, you can provide any value to close the image and continue with further lines of code.

Evaluation is a process during the development of the model to check whether the model is the best fit for the given problem and corresponding data.

Classification Evaluation Metrics:

These model evaluation techniques are used to find out the accuracy of models built in the classification type of machine learning models. We have three types of evaluation methods.

- Accuracy_score
- Confusion matrix
- Roc- Auc Curve

Confusion Matrix

It is a matrix representation of the results of any binary testing.

Fig: Confusion Matrix of prediction of a disease

- 1. True Positive: 12 (You have predicted the positive case correctly!)
- 2. True Negative: 77 (You have predicted negative case correctly!)
- 3. False Positive: 8 (You have predicted these people as having disease, but in actual they do not have.)

4. False Negative: 3 (Wrong predictions)

We can use the predict method on the model and pass X_test as a parameter to get the output as predictions.

8. **TESTING**

8.1) Test Case

Section	Total	Not	Fa	Pas
	Cases	Tested	il	S
Print Engine	7	0	0	7
Client Application	195	0	0	195
Security	0	0	0	0
Outsource Shipping	0	0	0	0
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

8.2) User Acceptance Testing

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subto tal
By Design	5	3	2	5	15
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	0	0
Won't Fix	0	5	2	0	7
Totals	19	13	11	25	69

9. **RESULTS**

9.1) Performance Metrics

PROJECT: Detecting Parkinson's Disease Using Machine

Learning

TEAM ID: PNT2022TMID40374


```
input_data = (197.07600,206.89600,192.05500,0.00289,0.00001,0.00166,0.00168,0.00498,0.01098,0.00700,0.00563,0.00680,0.00680,0.00339,26.77500,0

# changing input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the numpy array
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

# standardize the data
std_data = scaler.transform(input_data_reshaped)

prediction = model.predict(std_data)

if (prediction[0] == 0):
    print("The Person does not have Parkinsons Disease")

else:
    print("The Person has Parkinsons")
```

(0) The Person does not have Parkinsons Disease

BRIEF DETAILED SCREENSHOTS:

METRICS:

TUNE THE MODEL:

```
Tuning the model

[47] from skleare, model_sclection import GridSearchCV

[48] model-RandomforestClassifier()

[49] parameterrer

[40] parameterrer

[50] grid-GridSearchCV(model_parameters_cvo5)

[50] prid-GridSearchCV(model_parameters_cvo5)
```

10. ADVANTAGES AND DISADVANTAGES

The Advantage is that the RandomForest model to detect parkinson disease from the images was developed successfully with an accuracy of 88%. This model is now used to classify the images, as healthy or parkinson, uploaded in a web page which is integrated with Flask.

The Disadvantages is that the Predict may sometime rarely mismatch with original Disease symptoms.

Due to some comman symptoms of other disease, it may overcome by updating the dataset and trained itself.

11. CONCLUSION

- a. Parkinson's disease is a progressive disorder of the central nervous system affecting movements and inducing tremors and stiffness.
- b. According to Parkinson's Foundation, more than 10 million people are living with Parkinson's disease.
- c. The Risk of developing Parkinson's disease naturally increase with age, and the average age at which it starts is 60 years old
- d. Parkinson's disease is chronic and has no cure yet. But, Early detection along with proper medication can significantly improve the quality of life
- e. As soon as early predicted will reduce the risk factor of life.

12. FUTURE SCOPE

Machine Learning is the Future of our World . It Simplify the testing , and save money and Time. It will replace the MRI scan and CT scan etc.,

The Test is done at home itself

Every smart gadgets user will predominantly prefer this type of application

13.**APPENDIX**

Algorithm Used

I've used HOG (Histogram of oriented gradients) to extract features from the dataset and then passed these features to a random forest classifier to train the model on classifying patterns of patients and healthy drawings.

Software Designing

- Jupyter Notebook Environment
- Machine Learning Algorithms
- Python
- Visual studio code
- HTML
- Flask

We developed this Image detection by using the Python language, which is a high level programming language along with Machine Learning Algorithm such as Random Forest Classifier. For coding we used the Jupyter Notebook of Anaconda distributions and Visual Studio Code in python language. Flask is used as a user interface for the prediction. Hypertext Markup Language (*HTML*) is the standard markup language for documents designed to be

SOURCE CODE:

```
#import the pakages
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from skimage import feature
from imutils import build_montages
from imutils import paths
import numpy as np
import cv2
import os
import pickle
#Quatifying image
def quantify image(image):
    #compute histogram of oriented gradients feature vector for
the input image
features=feature.hog(image, orientations=9, pixels_per_cell=(10, 10
), cells_per_block=(2,2), transform_sqrt=True, block_norm="L1")
    return features
def load_split(path):
    #grab list of images in the input dir, then initialize the
list of data and class labels
    imagepaths=list(paths.list_images(path))
    data, labels=[], []
    #loop over the image path
    for imagepath in imagepaths:
        #extract the class label from the filename
        label=imagepath.split(os.path.sep)[-2]
        #load the input image
        image=cv2.imread(imagepath)
```

```
image=cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
        image=cv2.resize(image, (200, 200))
        image=cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV |
cv2.THRESH OTSU)[1]
        #quantify the image
        features=quantify_image(image)
        #update the data and labels
        data.append(features)
        labels.append(label)
    return (np.array(data), np.array(labels))
# define path to train and test dir
trainingpath= r"Desktop/dataset/spiral/training"
testingpath=r"Desktop/dataset/spiral/testing"
#loading train and test data
print("[INFO] loading data...")
(X_train, Y_train) = load_split(trainingpath)
(X_test, Y_test) = load_split (testingpath)
#Label Encoding
le=LabelEncoder()
Y train=le.fit transform(Y train)
Y test=le.transform(Y test)
print(X_train.shape, Y_train.shape)
#Training The Model
print("[INFO] training model...")
model=RandomForestClassifier(n estimators=100)
model.fit(X_train, Y_train)
#testing the model
testingpath=list(paths.list_images(testingpath))
```

```
idxs=np.arange(0,len(testingpath))
idxs=np.random.choice(idxs, size=(25,), replace=False)
images=[]
#loop over the testing samples
for i in idxs:
    image=cv2.imread(testingpath[i])
    output=image.copy()
    # load the input image, convert to grayscale and resize
    output=cv2.resize(output,(128,128))
    image=cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
    image=cv2.resize(image, (200, 200))
    image=cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)[1]
    #quantify the image and make predictions based on the
extracted feature using last trained random forest
    features=quantify_image(image)
    preds=model.predict([features])
    label=le.inverse_transform(preds)[0]
    #the set of output images
    if label=="healthy":
        color = (0, 255, 0)
    else:
        color = (0, 0, 255)
cv2.putText(output, label, (3,20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, col
or, 2)
    images.append(output)
#creating a montage
montage = build montages (images, (128, 128), (5, 5)) [0]
cv2.imshow("Output", montage)
cv2.waitKey(0)
#model evaluation
prediction=model.predict(X_test)
cm=confusion_matrix(Y_test, prediction).flatten()
```

IMAGE PREPROCESSING OUTPUT:

BASE HTML CODES:

<html lang="en">

<head>

```
<meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0"</pre>
/>
  <meta http-equiv="X-UA-Compatible" content="ie=edge" />
  <title>Predict</title>
  link
   href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css"
   rel="stylesheet"
  />
  <script
src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
  <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script
src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  k
   href="{{ url for('static', filename='css/main.css') }}"
   rel="stylesheet"
  />
  <style>
   body {
     background-image: url("https://img.freepik.com/free-vector/clean-
```

medical-patterned-background-vector_53876-140867.jpg?w=1060&t=st=1667911964~exp=1667912564~hmac=4298568 f384f42cfc60423d63ac6a8c806e4fe025c1bed2f32ae68b3f15b2139");

```
background-position: center;
 background-repeat: no-repeat;
 background-size: cover;
 height: 100%;
 width: 100%;
}
h1 {
 font-size: 40px;
 text-align: center;
 color: black;
 font-style: italic;
 font-weight: bolder;
}
h2 {
 font-size: 35px;
 text-align: center;
 color: black;
 font-style: italic;
```

```
font-weight: bolder;
}
h5 {
 font-size: 25px;
 text-align: center;
 color: black;
 font-weight: bolder;
}
a {
 color: grey;
 float: right;
 text-decoration: none;
 font-style: normal;
 padding-right: 20px;
}
a:hover {
 background-color: black;
```

```
color: white;
 font-size: 30px;
 padding-left: 10px;
 border-radius: 5px;
}
ul {
 align-items: center;
 display: flex;
 list-style-type: none;
 width: 100%;
 gap: 3rem;
 justify-content: center;
 font-size: 2rem;
 position: fixed;
 top: 0;
 margin: 0;
 padding: 1rem;
 background-color: white;
```

```
}
  li {
   cursor: pointer;
  }
  li a {
   text-decoration: none;
   color: inherit;
  }
  li.active {
   font-weight: bold;
   color: orangered;
  }
 </style>
</head>
<body>
 <nav>
  <a href="/home">Home</a>
```

```
<a href="/upload">Predict-Results</a>
   </nav>
  <br />
  <h1><b>Prevention is better than cure!</b></h1>
  <br />
  <h2>
   <center>
    ♥Diagnosis is not the end, but the beginning of practice.
   </center>
  </h2>
  <br />
  <h2><center>♥Detect the disease and take measures
wisely</center></h2>
  <br />
  <h5>
   NOTE: Upload an spiral drawn by the patient for better Prediction /user
in a white
   sheet
  </h5>
```

```
<div class="container">
   <center>
     <div id="content" style="margin-top: 2em">
      {% block content %}{% endblock %}
     </div>
   </center>
  </div>
 </body>
 <footer>
  <script
   src="{{ url_for('static', filename='js/main.js') }}"
   type="text/javascript"
  ></script>
 </footer>
</html>
```

HOME HTML CODES

```
<!DOCTYPE html>
<html lang="en">
 <head>
  <meta charset="UTF-8" />
  <meta name="viewport" content="width=device-width, initial-scale=1.0"</pre>
/>
  <meta http-equiv="X-UA-Compatible" content="ie=edge" />
  <title>HomePage</title>
  <style>
   body {
    background: linear-gradient(to right, #33ccff 0%, #99ffcc 100%);
    background-size: cover;
    background-position: relative;
    background-repeat: no-repeat;
    height: 100%;
    width: 100%;
   }
```

```
h3 {
 text-align: center;
 color: white;
.main {
 margin-top: 100px;
}
p {
 color: black;
 text-indent: 10px;
 margin: 10px;
 font-size: 20px;
}
a {
 color: grey;
 float: right;
 text-decoration: none;
 font-style: normal;
```

```
padding-right: 20px;
}
a:hover {
 background-color: black;
 color: white;
 font-size: 30px;
 padding-left: 10px;
 border-radius: 5px;
}
ul {
 align-items: center;
 display: flex;
 list-style-type: none;
 width: 100%;
 gap: 3rem;
 justify-content: center;
 font-size: 2rem;
```

```
position: fixed;
 top: 0;
 margin: 0;
 padding: 1rem;
 background-color: white;
}
li {
 cursor: pointer;
}
li a {
 text-decoration: none;
 color: inherit;
}
li.active {
 font-weight: bold;
 color: orangered;
}
```

```
img {
  width: 450px;
  height: 400px;
  padding: 25px;
 }
 img:hover {
  border-color: grey;
 }
 #im {
  width: 1450px;
  height: 700px;
  padding: 25px;
 }
 </style>
</head>
<body>
 <nav>
  <a href="/home">Home</a>
```

```
<a href="/upload">Predict-Results</a>
   </nav>
  <br /><br /><br />
  <h1>
   <center>
    <b class="pd"
     ><font color="black" size="15" font-family="Comic Sans MS"
      >Detection of Parkinson's Disease using ML</font
     ></b
   </center>
  </h1>
  <div>
   <center>
    Parkinson disease (PD) is a progressive neuro degenerative disorder
     that impacts more than 6 million people around the world.
Parkinson's
     disease is non-communicable, early-stage detection of Parkinson's
```

can

prevent further damages in humans suffering from it.

However, Nonetheless, non-specialist physicians still do not have a definitive test for PD, similarly in the early stage of the diseased person where the signs may be intermittent and badly characterized.

lt

to

resulted in a high rate of misdiagnosis (up to 25% among non-specialists) and many years before treatment, patients can have the disorder. A more accurate, unbiased means of early detection is required, preferably one that individuals can use in their home setting. However, it has been observed that PD's presence in a human is

related to its hand-writing as well as hand-drawn subjects. From that perspective, several techniques have been proposed by researchers

detect Parkinson's disease from hand-drawn images of suspected people.

But the previous methods have their constraints.

</center>

<h4>

```
<center>
      <b class="pd"
       ><font color="black" size="12" font-family="Comic Sans MS"
        >Causes and Symptoms of Parkinson's Disease</font
       >
      </b>
    </center>
   </h4>
   <span>
    <img
      src="https://www.narayanahealth.org/blog/wp-
content/uploads/2015/04/parkinson.png"
     title="Disease"
    />
   </span>
   <span>
    <img
```

src="https://stanfordmedicine25.stanford.edu/the25/parkinsondisease/_jcr_content/main/panel_builder_0/panel_0/panel_builder_0/panel_builder_0/panel_builder/panel_0/image.img.476.high.png/1.png"

```
title="Symptoms"
   /></span>
   <span
    ><img
src="https://www.verywellhealth.com/thmb/Aaqo8oM3QDHSNHCt DIKCNe
WoUk=/1500x0/filters:no_upscale():max_bytes(150000):strip_icc()/zhanse
n-5200700_Finaledit2-3e7eb00f1bdb4806adb3f67ca4404894.jpg"
     title="Stages"
   /></span>
   <span
    ><img
     src="https://www.gutmicrobiotaforhealth.com/wp-
content/uploads/2016/12/parkinson.jpg"
      title="Effect"
   /></span>
   <span
    ><img
src="https://i.pinimg.com/originals/02/16/e4/0216e4b8a5db4d6e2a3f7043e
af7dc32.jpg"
     title="Cause"
```

```
/></span>
   <span
    ><img
      src="https://jnnp.bmj.com/content/jnnp/91/8/795/F4.large.jpg"
     title="diagnosis"
   /></span>
   <h3>
     <center>
      <font color="black" size="12" font-family="Comic Sans MS"
       >Treatment for parkinson disease</font
      >
    </center>
   </h3>
   <span
    ><img
      src="https://www.mdpi.com/biomolecules/biomolecules-11-
00612/article_deploy/html/images/biomolecules-11-00612-g001.png"
     title="diagnosis"
   /></span>
   <span
```

```
><img
     src="https://media.springernature.com/m685/springer-
static/image/art%3A10.1038%2Fs41401-020-0365-
y/MediaObjects/41401 2020 365 Fig1 HTML.png"
     title="diagnosis"
   /></span>
   <span
    ><img
     src="https://www.verywellhealth.com/thmb/BgjmOKb2W-
7z0gqLZryKBd4FFHs=/1500x0/filters:no_upscale():max_bytes(150000):stri
p_icc()/advanced-parkinsons-disease-5200544_color_text_v1-
3bc74418259340ceaf5f6d407daeff73.jpg"
     title="diagnosis"
   /></span>
   <h3>
    <center>
     <font color="black" size="12" font-family="Comic Sans MS"
       >How brains looks during PD?</font
     >
    </center>
```

```
</h3>
   <span
    ><img
      id="im"
src="https://ichef.bbci.co.uk/news/976/cpsprodpb/16161/production/_10745
6409_parkinsons.jpg"
      title="Stage"
   /></span>
   <span
    ><img
      id="im"
      src="https://img.parkinsonsinfoclub.com/wp-content/uploads/back-
conditions-neck-conditions-london-back-pain-clinic-scaled.jpeg"
      title="Stage"
   /></span>
   <br /><br />
  </div>
 </body>
</html>
```

PRED HTML CODES

{% extends "base.html" %} {% block content %}

```
<div>
  <form id="upload-file" method="post" enctype="multipart/form-data">
     <center>
       <label for="imageUpload" class="upload-label">
          Choose...
       </label>
       <input type="file" name="file" id="imageUpload" accept=".png, .jpg,</pre>
.jpeg">
     </center>
  </form>
 <center> <div class="image-section" style="display:none;">
     <div class="img-preview">
       <div id="imagePreview">
       </div></center>
    </div>
     <center>
```

```
<div>
          <button type="button" class="btn btn-primary btn-lg " id="btn-</pre>
predict">Predict!</button>
       </div>
    </center>
  </div>
  <div class="loader" style="display:none;"></div>
  <h3 id="result">
    <span> </span>
  </h3>
</div>
{% endblock %}
main.css CODE:
.img-preview {
  width: 256px;
  height: 256px;
```

```
position: relative;
  border: 5px solid #F8F8F8;
  box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
  margin-top: 1em;
  margin-bottom: 1em;
}
.img-preview>div {
  width: 100%;
  height: 100%;
  background-size: 256px 256px;
  background-repeat: no-repeat;
  background-position: center;
}
input[type="file"] {
  display: none;
}
```

```
.upload-label {
  display: inline-block;
  padding: 12px 30px;
  background: #fe2727;
  color: #fff;
  font-size: 1em;
  transition: all .4s;
  cursor: pointer;
}
.upload-label:hover {
  background: #34495E;
  color: #39D2B4;
}
.loader {
  border: 8px solid #f3f3f3;
  /* Light grey */
  border-top: 8px solid #3498db;
```

```
/* Blue */
  border-radius: 50%;
  width: 50px;
  height: 50px;
  animation: spin 1s linear infinite;
}
@keyframes spin {
  0% {
     transform: rotate(0deg);
  }
  100% {
     transform: rotate(360deg);
  }
}
main.js CODE:
$(document).ready(function() {
  // Init
  $('.image-section').hide();
```

```
$('.loader').hide();
  $('#result').hide();
  // Upload Preview
  function readURL(input) {
     if (input.files && input.files[0]) {
       var reader = new FileReader();
       reader.onload = function(e) {
          $('#imagePreview').css('background-image', 'url(' + e.target.result
+ ')');
          $('#imagePreview').hide();
          $('#imagePreview').fadeIn(650);
       };
       reader.readAsDataURL(input.files[0]);
     }
  }
  $("#imageUpload").change(function() {
     $('.image-section').show();
     $('#btn-predict').show();
     $('#result').text(");
```

```
$('#result').hide();
  readURL(this);
});
// Predict
$('#btn-predict').click(function() {
  var form_data = new FormData($('#upload-file')[0]);
  // Show loading animation
  $(this).hide();
  $('.loader').show();
  // Make prediction by calling api /predict
  $.ajax({
     type: 'POST',
     url: '/predict',
     data: form_data,
     contentType: false,
     cache: false,
```

```
processData: false,
        async: true,
        success: function(data) {
          // Get and display the result
          $('.loader').hide();
          $('#result').fadeIn(600);
          $('#result').text('Prediction: ' + data);
          console.log('Success!');
       },
     });
  });
});
```

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-48457-1660807433

PROJECT DEMO LINK: Parkinson Disease Video.mp4 - Google Drive

PROJECT DEMO LINK IN GITHUB:

 $\underline{\mathsf{IBM-Project-48457-1660807433/Parkinson\ Disease\ Video.mp4\ at\ main\cdot \mathsf{IBM-EPBL/IBM-Project-48457-1660807433\ (github.com)}}$ (WITHOUT VOICE)

PROJECT DEMO LINK:

https://drive.google.com/file/d/1AbImdGJX_ebiokaemzgdaiJGemCol

H1q/view?usp=share_link (WITH VOICE)