

Presented and prepared by Jesse Baker

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - \frac{\mathbf{t}_{active}}{\mathbf{t}_{active}}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

t_{idle}	$=T_{samp}$	le —	t_{active}
iciic	Jane	ic	active

		PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	POWER	SUPPLY					
ctive	I _{Q_ACTIV} E	Quiescent current during active conversion	Active Conversion, serial bus inactive		135	220	μА
			Duty cycle 1 Hz, averaging mode off, serial bus inactive. T _A = 25 °C		3.5	5	
	IQ	Quiescent current	Duty cycle 1 Hz, 8 averaging mode on, serial bus inactive. T _A = 25 °C		16	22	μА
			Duty cycle 1 Hz, averaging mode off, serial bus active, SCL frequency = 400 kHz		15		
i _{idle}	I _{SB}	Standby current ⁽⁴⁾	Serial bus inactive. SCL, SDA, and ADD0 = V+. T_A = 25 °C		1.25	3.1	μА
		Shutdown current	Serial bus inactive, SCL, SDA, and ADD0 = V+. T _A = 25 °C		0.15	0.5	μА
	I _{SD}	Shutdown current	Serial bus inactive, SCL, SDA and ADD0 = V+, T _A = 150 °C			5	μА
		Shutdown current	Serial bus active, SCL frequency = 400 kHz, ADD0 = V+		17		μA

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
	TEMPERATURE TO DIGITAL CONVERTER							
tactive Conversion time O		One-shot mode	13	15.5	17.5	ms		

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

BIT	FIELD	TYPE	RESET	DESCRIPTION	
6:5	AVG[1:0]	R/W	1	Conversion averaging modes. Determines the number of conversion results that are collected and averaged before updating the temperature register. The average is an accumulated average and not a running average. 00: No averaging 01: 8 Averaged conversions 10: 32 averaged conversions 11: 64 averaged conversions	→ t _{active} = 15.5 ms

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

BIT	FIELD	TYPE	RESET	DESCRIPTION	
6:5	AVG[1:0]	R/W	1	Conversion averaging modes. Determines the number of conversion results that are collected and averaged before updating the temperature register. The average is an accumulated average and not a running average. 00: No averaging 01: 8 Averaged conversions 10: 32 averaged conversions 11: 64 averaged conversions	→ t _{active} = 124 ms

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

BIT	FIELD	TYPE	RESET	DESCRIPTION	
6:5	AVG[1:0]	R/W	01	Conversion averaging modes. Determines the number of conversion results that are collected and averaged before updating the temperature register. The average is an accumulated average and not a running average. 00: No averaging 01: 8 Averaged conversions 10: 32 averaged conversions 11: 64 averaged conversions	• t _{active} = 496

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

BIT	FIELD	TYPE	RESET	DESCRIPTION
6:5	AVG[1:0]	R/W	01	Conversion averaging modes. Determines the number of conversion results that are collected and averaged before updating the temperature register. The average is an accumulated average and not a running average. 00: No averaging 01: 8 Averaged conversions 10: 32 averaged conversions 11: 64 averaged conversions

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

sample

Table 7-7. Conversion Cycle Time in CC Mode

CONV[2:0]	AVG[1:0] = 00	AVG[1:0] = 01	AVG[1:0] = 10	AVG[1:0] = 11
000	15.5 ms	125 ms	500 ms	1 s
001	125 ms	125 ms	500 ms	1 s
010	250 ms	250 ms	500 ms	1 s
011	500 ms	500 ms	500 ms	1 s
100	1 s	1 s	1 s	1 s
101	4 s	4 s	4 s	4 s
110	8 s	8 s	8 s	8 s
111	16 s	16 s	16 s	16 s

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

t_{idle}	$=T_{samp}$	le —	t_{active}
iciic	Jane	ic	active

POWER	POWER SUPPLY									
I _{Q_ACTIV} E	Quiescent current during active conversion	Active Conversion, serial bus inactive	135 220	μA						
		Duty cycle 1 Hz, averaging mode off, serial bus inactive. T_A = 25 °C	3.5	5						
I _Q Quiescent current	Duty cycle 1 Hz, 8 averaging mode on, serial bus inactive. T _A = 25 °C		16 22	μА						
		Duty cycle 1 Hz, averaging mode off, serial bus active, SCL frequency = 400 kHz	15							
I _{SB}	Standby current ⁽⁴⁾	Serial bus inactive. SCL, SDA, and ADD0 = V+. T _A = 25 °C	1.25 3.1	μА						
	Shutdown current	Serial bus inactive, SCL, SDA, and ADD0 = V+. T_A = 25 °C	0.15 0.8	μА						
I _{SD}	Shutdown current	Serial bus inactive, SCL, SDA and ADD0 = V+, T _A = 150 °C		μА						
	Shutdown current	Serial bus active, SCL frequency = 400 kHz, ADD0 = V+	17	μА						

idle(Continuous conversion mode)
idle(One-shot mode)

21

Example: Continuous conversion mode average current consumption (no averaging)

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

 $t_{idle} = 1s - 15.5 ms$
 $t_{idle} = 984.5 ms$

Example: Continuous conversion mode average current consumption (no averaging)

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$

$$t_{idle} = 1s - 15.5 ms$$

$$t_{idle} = 984.5 ms$$

$$I_{AVG} = \frac{(984.5 \, ms \times 1.25 \, uA) + (15.5 \, ms \times 135 \, uA)}{1 \, s} = 3.32 \, uA \rightarrow 2,750 \, days \, from \, 220 \, mAh \, battery$$

Example: Continuous conversion mode average current consumption (8 averaged conversions)

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$

$$t_{idle} = T_{sample} - t_{active}$$
 $t_{idle} = 1s - 124 \text{ ms}$
 $t_{idle} = 876 \text{ ms}$

$$I_{AVG} = \frac{(876 \text{ ms} \times 1.25 \text{ uA}) + (124 \text{ ms} \times 135 \text{ uA})}{1 \text{ s}} = 17.8 \text{ uA} \rightarrow > 510 \text{ days from } 220 \text{ mAh battery}$$

Example: One shot mode average current consumption (no averaging)

$$I_{AVG} = \frac{(t_{idle} \times i_{idle}) + (t_{active} \times i_{active})}{T_{sample}}$$
 $t_{idle} = T_{sample} - t_{active}$ $t_{idle} = 1s - 15.5 \, ms$ $t_{idle} = 984.5 \, ms$

$$I_{AVG} = \frac{(984.5 \text{ ms} \times 0.15 \text{ uA}) + (15.5 \text{ ms} \times 135 \text{ uA})}{1 \text{ s}} = 2.24 \text{ uA} \rightarrow > 4,000 \text{ days from } 220 \text{ mAh battery}$$

Digital temperature sensor

- Low sleep/standby current
- Modest active current

Microcontroller

- Low sleep current
- Modest standby current
- Large active current

Digital temperature sensor

- Low sleep/standby current
- Modest active current

Microcontroller

- Low sleep current
- Modest standby current
- Large active current

Digital temperature sensor

- Low sleep/standby current
- Modest active current

Thank you!

To find more temperature sensor resources and products, visit <u>ti.com/temperature</u>.