동영상 압축 표준(HEVC)

작성자: px6jzi

1. 단어 정의

고효율 비디오 코딩(HEVC/H265)(High Efficiency Video Coding)는 H.264/MPEG-4 AVC의 성공에 힘입어 개발에 착수한 차세대 동영상 부호화 기술이다. 기존에 H.264/MPEG-4 AVC를 개발했던 ISO/IEC MPEG과 ITU-T의 영상 부호화 전문가 그룹(Video Coding Experts Group)이 Joint Collaborative Team on Video Coding (JCT-VC)으로서 2010년 1월 팀을 결성하여 표준화 작업을 진행하였다. 2013년 1월 25일, ITU는 스위스 제네바에서 HEVC를 차세대 최종 표준안으로 승인하였다. ISO/IEC 표준 번호는 ISO/IEC 23008-2, ITU-T 표준 번호는 H.265이며, 2015년에 개정판이 발행되었다. 현재 이를 기반으로 한 다 시점 부호화(Multi-view video coding)와 가변적 부호화 (Scalable video coding), 3D 비디오 부호화 기술이 Annex로서 포함되어 있다.

2. HEVC 부호화 블록도 및 주요 기술/구성 요소

2-1 HEVC 부호화 블록도

2-2 HEVC 주요 기술/구성 요소

주요기술	구성요소	세부 기술	
블록단위 부호화기술	CU(Coding Unit)	부호화가 수행되는 단위로 쿼드 트리형태 분할	
	PU(Prediction Unit)	예측 단위로, 1 CU에 대한 블록 크기 예측	
	TU(Transform Unit)	변환과 양자화 과정 단위, 4x4 ~ 32x32 가변 형	
		태	

	화면 내 예측, 상관도	인접 화소간 상관도 예측, 각도, DC, Planar 기술	
화면예측 기술	예측		
	화면 간 예측 AMVP	공간/시간적 예측 후보군, 현재 벡터값 유사 후	
		보 예측	
	화면 간 예측 MERGE	움직임 벡터/예측 벡터 등일 경우 전송 비트량	
		감소	
루프필터 기술	디블록킹 필터	블록단위 부호화로 인한 블록 경계 열화현상 보	
		정	
	적응적 루프(SAO) 필	복원영상과 원본영상 간 오차 감소 필터	
	터		

3. HEVC의 다양한 활용 및 기술 동향

디지털 방송 분야: 차세대 방송 서비스로 UHDTV 방송과 3DTV 방송이 있다.

비디오 스트리밍 분야: YOUTUBE 같은 포털 사이트를 통한 인터넷 멀티미디어 스트리밍, IPTV 및 인터넷 VOD 서비스, 모바일 기기와의 비디오 스트리밍, IP 네트워크 및 3G 이동통신을 통한 화상 전화 등 네트워크 기반을 한 비디오 스트리밍 서비스 등에서 활용 중이다.

정보가전 분야: 가전제품, 휴대용 제품 등

전문분야: 디지털 분야, 전문가용 카메라 및 편집장치, 의료 영상 등과 같이 초고화질 영상 사용하는 분야에서 활용 중이다.

4. HEVC 표준 요구사항

구분	요구사항		
비트율	기존 H.264 압축비율보다 2배 우수해야 한다.		
	모든 비트율 범위에서 기존 H.264 보다 성능이 좋아야 한다.		
	시각적 무손실 기능을 지원해야 한다.		
해상도	QVGA에서 8K x 4K 이상을 지원해야 한다.		
컬러 공간과 샘플	YCbCr 4:2:0, YCbCr 4:2:2, YCbCr/RGB 4:2:2 영상지원 해야 한다.		
링율	최대 14비트 컬러까지의 비트심도를 지원해야 한다.		
	넓은 컬러 Gamut 영역 및 투명(Transparency) 지원해야 한다.		
프레임율	고정 또는 0Hz 로부터 가변적인 프레임율 지원해야 한다.		
복잡도	사용이 예상되는 시점 기술 수준으로 부/복호화 구현이 가능해야 한다.		
	병열 처리 지원, 복잡도와 부호화 효율 조절할 수 있어야 한다.		
부호화 모드	실시간 화상통신을 위한 저지연 모드 지원, 저장된 비디오 스트리밍 서비		
	스를 위해 임의의 접근, 일시정지, 고속 탐색을 지원해야 한다.		
스캐닝 방법	모든 프로파일과 모든 레벨에서 순차주사 방식을 지원해야 한다.		