

Database Management Systems Chapter 1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

.

What Is a Database/DBMS?

- * A very large, integrated collection of data.
- Models real-world scenarios
 - Entities (e.g., students, courses)
 - Relationships (e.g., John is taking CS 5120)
- ❖ A <u>Database Management System (DBMS)</u> is a software package designed to store and manage databases.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Files vs. DBMS

Scenario: 100 TB of data of employees, products, salaries,

- * Application must stage large datasets between main memory and secondary storage (e.g., buffering, pageoriented access, etc.)
- Special code for different queries
- Must protect data from inconsistency due to multiple concurrent users
- Crash recovery
- Security and access control

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

3

Why Use a DBMS?

- Data independence and efficient access.
- Data integrity and security.
- * Uniform data administration.
- Concurrent access
- * Recovery from crashes.
- * Reduced application development time.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Why Study Databases??

- Shift from <u>computation</u> to <u>information</u>
 - Web applications, scientific applications, etc.
- Datasets increasing in diversity and volume.
 - Digital libraries, interactive video, Human Genome project, Earth Observation System project
 - ... need for DBMS exploding
- DBMS encompasses most of CS
 - OS, programming languages, theory, AI, multimedia, etc.

https://www.ibm.com/analytics

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Data Models

- ❖ A <u>data model</u> is a collection of concepts for describing data.
- ❖ A <u>schema</u> is a description of a particular collection of data, using the given data model.
- ❖ The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - Every relation has a *schema*, which describes the columns, or fields.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

- Many <u>views</u>, single <u>conceptual (logical) schema</u> and <u>physical schema</u>.
 - Views describe how users see the data.
 - Conceptual schema defines logical structure
 - Physical schema describes the files and indices used.

Schemas are defined using DDL; data is modified/queried using DML.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

.

Example: University Database

- Conceptual schema (Chapters 2 and 19):
 - Students(sid: string, name: string, login: string, age: integer, gpa: real)
 - Courses(cid: string, cname: string, credits: integer, fname: string)
 - Enrolled(sid: string, cid:string, grade: string)
 - Faculty(fid: string, fname: string, sal: real)
- Physical schema (Chapter 20):
 - Relations stored as unordered files.
 - Index on first column of Students.
- External Schema (View) (Chapters 3 and 25):
 - Course_info(<u>cid:string,enrollment:integer</u>,fname:string)

external Schema (view) (Chapters 3 and 25)

Data Independence

- * Applications are insulated from how data is structured and stored.
- Logical data independence: Protection from changes in logical structure of data.
 - *Faculty(fid: string, fname: string, sal: real)*
 - Faculty_Public(fid: string, fname: string, office: integer)
 - Faculty_Private(fid: string, sal: real)
- Physical data independence: Protection from changes in physical structure of data.
 - Indices, file structure, disks ...

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Relational Algebra

- * Basic operations:
 - Selection (σ) Selects a subset of rows from a relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - <u>Cross-product</u> (X) Allows us to combine two relations.
 - <u>Set-difference</u> (—) Tuples in reln. 1, but not in reln. 2.
 - <u>Union</u> (U) Tuples in reln. 1 or in reln. 2 (or both).
- Additional operations:
 - Intersection, *join*, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

The SQL Query Language

* To find all 18 years old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2

•To find just names and logins, replace the first line: SELECT S.name, S.login

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

11

Creating Relations in SQL

- Creates the Students relation. Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.
- * As another example, the Enrolled table holds information about courses that students take.

https://www.w3resource.com/sql/sql-table.php
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled (sid: CHAR(20), cid: CHAR(20), grade: CHAR(2))

Concurrency Control

- ❖ Concurrent execution of user programs is essential for good DBMS performance.
 - Because disk accesses are frequent, and relatively slow, it is important to keep the cpu humming by working on several user programs concurrently.
- Interleaving actions of different user programs can lead to inconsistency: e.g., check is cleared while account balance is being computed.
- * DBMS ensures such problems don't arise: users can pretend they are using a *single-user system*.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

13

Databases make these folks happy

- End users and DBMS vendors
- DB application programmers
 - E.g., smart webmasters
- * Database administrator (DBA)
 - Designs logical / physical schemas
 - Handles security and authorization
 - Data availability, crash recovery
 - Database tuning as needs evolve

Must understand how a DBMS works!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Summary

- Benefits include recovery from system crashes, concurrent access, quick application development, data integrity and security.
- Levels of abstraction give data independence.
- ❖ A DBMS typically has a layered architecture.
- ❖ DBAs hold responsible jobs and are well-paid! ☺
- DBMS R&D is one of the broadest, most exciting areas in CS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke