Infosys Power Programmer Test 9

Test Summary

No. of Sections: 1No. of Questions: 3Total Duration: 120 min

Section 1 - Coding

Section Summary

No. of Questions: 3 Duration: 120 min

Additional Instructions:

None

Q1. Abinesh has two Integers A and B, and he was to print all the terms of the series upto B-terms of the A-bonacci Numbers.

For example, when A = 2, the sequence becomes Fibonacci, when A = 3, sequence becomes Tribonacci.

Input : A = 3, B = 8

Output: 0, 0, 1, 1, 2, 4, 7, 13

We need to print first B terms.

First three terms are 0, 0 and 1.

Fourth term is 0 + 0 + 1 = 1

Fifth term is 0 + 1 + 1 = 2

Sixth terms is 1 + 1 + 2 = 4

Seventh term is 7(1 + 2 + 4) and eighth

term is 13(7 + 4 + 2).

Note:

If A=3, the series start with 0,0,1

If A=5, the series start with 0,0,0,0,1

If A=6, the series start with 0,0,0,0,0,1

Input Format

Enter the input number(A) Enter the input number(B)

Output Format

Display the sequence which was obtained with the help of A and B.

Constraints

0 < A,B < 100

(Only positive integers are allowed)

Sample Input

Sample Output

3 0 0 1 1 2 4 7 13 8

Time Limit: - ms Memory Limit: - kb Code Size: - kb

Q2. Ganesh is a maths teacher, he gives a problem statement to his/her students to solve it. The question is, a number can always be represented as a sum of squares of other numbers. Note that 1 is a square and we can always break a number as (1*1 + 1*1 + 1*1 + ...). Given a number n, the task is to find the minimum number of squares that sum to n.

For Ex: Input: n = 100 Output: 1

100 can be written as 10^2 . Note that 100 can also be written as $5^2 + 5^2 + 5^2 + 5^2$, but this representation requires 4 squares. So, the output is 1 since we have single square of 10 to satisfied the condition(minimum

number of squares that sum up to n.).

Input Format

Enter the input number(n)

Output Format

Display the minimum number of squares that sum to n.

Constraints

0 < n < 1000

(n should be positive integer, decimals are not allowed)

Sample Input Sample Output

100 1

Time Limit: - ms Memory Limit: - kb Code Size: - kb

Q3. Anitha and Aarthi are sisters, they are playing a game in which Aarthi will provide a number. Anitha has to find out the number is divisible by 8 even after removing certain digits.

(Note:It's not allowed to rearrange the digits.)

For Ex:

Input: 1787075866 Output: Yes

There exist more one or more subsequences divisible by 8. Example subsequences are 176, 16 and 8.

Input Format

Enter the input number

Output Format

Display the Yes if the number is divisible by 8, even after removing certain digits or if it not divisible then display No.

Constraints

0 < len(Num) < 100

The length of the number should not exceed 100.

Sample Input Sample Output

653468922 Yes

Answer Key & Solution

Section 1 - Coding

Q1 Test Case

Input Output

10 19 0 0 0 0 0 0 0 0 0 1 1 2 4 8 16 32 64 1

Weightage - 10

SRM PAT 10/14/24, 4:10 PM

Input	Output
20 34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Weightage - 15	4
Input	Output
8	0 0 0 0 0 0 1 1 2
10	
Weightage - 10	
Input	Output
9 13	0 0 0 0 0 0 0 0 1 1 2 4 8
Weightage - 10	
Input	Output
23 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Weightage - 15	4
Input	Output
30 60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	+
Weightage - 20	
Input	Output
34 65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Weightage - 20	1
Sample Input	Sample Output
3 8	0 0 1 1 2 4 7 13
Solution	

#include <bits/stdc++.h> using namespace std;

// Function to print bonacci(n-acci) series

```
void bonacciseries(long n, int m)
   {
       // Assuming m > n.
       int a[m] = { 0 };
       a[n - 1] = 1;
       a[n] = 1;
       for (int i = n + 1; i < m; i++)
           a[i] = 2 * a[i - 1] - a[i - n - 1];
       // displaying the results
       for (int i = 0; i < m; i++)
           cout << a[i] << " ";
   }-
   //main function for displaying the series
   int main()
       int A,B;
       cin>>A;
       cin>>B;
       bonacciseries(A,B);
       return 0;
   }-
Q2
       Test Case
       Input
                                                      Output
        25
                                                         1
       Weightage - 10
       Input
                                                      Output
        50
                                                         2
       Weightage - 10
       Input
                                                      Output
        79
                                                         4
       Weightage - 10
       Input
                                                      Output
        810
                                                         2
```

Weightage - 20

Input Output
999 4

Weightage - 20

 Input
 Output

 450
 2

Weightage - 15

Input Output
399 4

Weightage - 15

Sample Input Sample Output

100 1

Solution

```
#include <bits/stdc++.h>
using namespace std;
// Returns count of minimum squares that sum to \boldsymbol{n}
int getMinSquares(int n)
    int* dp = new int[n + 1];
    // getMinSquares table for base case entries
    dp[0] = 0;
    dp[1] = 1;
    dp[2] = 2;
    dp[3] = 3;
    // getMinSquares rest of the table using recursive formula
    for (int i = 4; i <= n; i++) {
        // max value is i as i can always be represented as 1*1 + 1*1 + ...
        dp[i] = i;
        // going through all smaller numbers to recursively find minimum
        for (int x = 1; x \leftarrow ceil(sqrt(i)); x++) {
            int temp = x * x;
            if (temp > i)
                break;
                dp[i] = min(dp[i], 1 + dp[i - temp]);
        }
    }
```

```
// Storing the result and deleting the occupied spaces
       int res = dp[n];
       delete[] dp;
       return res;
   }-
   // main program
   int main()
   -{
       int n;
       cin>>n;
       cout << getMinSquares(n);</pre>
       return 0;
   }
Q3
       Test Case
                                                      Output
       Input
        100233002
                                                         100233002 Yes
       Weightage - 10
                                                      Output
       Input
        277177011030
                                                         277177011030 Yes
       Weightage - 10
                                                      Output
       Input
        77199
                                                         77199 No
       Weightage - 10
                                                      Output
       Input
        99422313
                                                         99422313 Yes
       Weightage - 10
       Input
                                                      Output
        758593780053
                                                         758593780053 Yes
       Weightage - 10
       Input
                                                      Output
```

93804020440424202929

93804020440424202929 Yes

```
Weightage - 20
```

Input Output

910320237047027772471 910320237047027772471 Yes

Weightage - 20

Input Output

15951579 No

Weightage - 10

Sample Input Sample Output

653468922 Yes

Solution

```
#include <bits/stdc++.h>
using namespace std;
bool isSubSeqDivisible(string str)
{
   int n = str.length();
   int dp[n + 1][10];
   memset(dp, 0, sizeof(dp));
   int arr[n + 1];
    for (int i = 1; i <= n; i++)
        arr[i] = str[i - 1] - '0';
    for (int i = 1; i <= n; i++) {
        dp[i][arr[i] \% 8] = 1;
        for (int j = 0; j < 8; j++) {
            if (dp[i - 1][j] > dp[i][(j * 10 + arr[i]) % 8])
                dp[i][(j * 10 + arr[i]) % 8] = dp[i - 1][j];
            if (dp[i - 1][j] > dp[i][j])
                dp[i][j] = dp[i - 1][j];
        }
    }
    for (int i = 1; i <= n; i++) {
        if (dp[i][0] == 1)
            return true;
```

```
return false;
}

// main function
int main()
{
    string str;
    cin>>str;
    if (isSubSeqDivisible(str))
        cout << str << " Yes";
    else
        cout << str << " No";
    return 0;
}</pre>
```