

The Apprentice Project

#### Lec05: Linear Regression (Part I)

충북대학교 문성태 (지능로봇공학과) stmoon@cbnu.ac.kr

# Introduction

# **Recap: Dataset**

- Dataset
  - Training set
  - Test set
- Pre-processing
  - Normalization & Standardization
  - PCA (Principal Component Analysis

# **Recap: Machine Learning**



# **Recap: Machine Learning**





# What is Supervised Learning



# **Supervised Learning**

| Input          | Output                  | Application         |
|----------------|-------------------------|---------------------|
| Email          | Spam? (0/1)             | Spam filtering      |
| Audio          | Text transcripts        | Speech recognition  |
| English        | Spanish                 | Machine translation |
| User info      | Click? (0/1)            | Online advertising  |
| Image, lidar   | Position of others cars | Self-driving car    |
| Image of phone | Defect? (0/1)           | Visual inspection   |

# **Supervised Learning**

- Classification
  - Sample을 몇 개의 Class로 분류하는 방식
- Regression
  - 임의의 어떤 숫자를 예측하는 방식



# 02

Linear Regression with univariate

# **Target**

• 아래 그래프에서 학습 데이터 (x,y)를 잘 설명하는 (회귀) 직선을 구하세요



#### How to work



# **Linear Regression**

# How to find regression

- 목적함수 (Objective Function)
  - 목적함수는 최소값/최대값을 찾는 최적화 문제 (Optimization Problem)에서 사용하는 함수

#### **Objective Function vs Cost Function vs Loss Function**

- Objective Function: 어떠한 목적을 가지고 모델을 학습해 최적화하고자 하는 함수
- Cost Function: 입력으로 받은 데이터를 모아서 오차를 계산하는 함수
- Loss Function: 입력으로 받은 데이터를 하나하나 받아 실제값과 예측값 간의 오차를 계산하는 방식

Objective Function >= Cost Function >= Loss Function

# How to calculate the objective function

- Gradient Descent
  - 목적함수의 값을 최소화하기 위해 경사를 내려가듯 최소값을 찾는 방법
  - Iterative optimization algorithm for finding the minimum of a function

# 03

Linear Regression with Multivariate

### **Target: Boston House Prices**

- The data was drawn from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970
- Number of Instances: 506
- Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the target.
  - CRIM: per capita crime rate by town
  - ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
  - INDUS proportion of non-retail business acres per town
  - CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
  - NOX nitric oxides concentration (parts per 10 million)
  - RM average number of rooms per dwelling
  - AGE proportion of owner-occupied units built prior to 1940
  - DIS weighted distances to five Boston employment centres
  - RAD index of accessibility to radial highways
  - TAX full-value property-tax rate per \$10,000
  - PTRATIO pupil-teacher ratio by town
  - B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
  - LSTAT % lower status of the population
  - MEDV Median value of owner-occupied homes in \$1000's (TARGET)

| CRIM    | 자치시(town) 별 1인당 범죄율            |  |  |  |  |
|---------|--------------------------------|--|--|--|--|
| ZN      | 25,000 평방피트를 초과하는 거주지역의 비율     |  |  |  |  |
| INDUS   | 비소매상업지역이 점유하고 있는 토지의 비율        |  |  |  |  |
| CHAS    | 찰스강에 대한 더미변수                   |  |  |  |  |
| CHAS    | (강의 경계에 위치한 경우는 1, 아니면 0)      |  |  |  |  |
| NOX     | 10ppm 당 농축 일산화질소               |  |  |  |  |
| RM      | 주택 1가구당 평균 방의 개수               |  |  |  |  |
| AGE     | 1940년 이전에 건축된 소유주택의 비율         |  |  |  |  |
| DIS     | 5개의 보스턴 직업센터까지의 접근성 지수         |  |  |  |  |
| RAD     | 방사형 도로까지의 접근성 지수               |  |  |  |  |
| TAX     | 10,000 달러 당 재산세율               |  |  |  |  |
| PTRATIO | 자치시(town)별 학생/교사 비율            |  |  |  |  |
| В       | 1000(Bk-0.63)^2,               |  |  |  |  |
|         | 여기서 Bk는 자치시별 흑인의 비율을 말함.       |  |  |  |  |
| LSTAT   | 모집단의 하위계층의 비율(%)               |  |  |  |  |
| MEDV    | 본인 소유의 주택가격(중앙값) (단위: \$1,000) |  |  |  |  |

### **Boston House Prices**

| index | (  | CRIM    | ZN   | INDUS | CHAS | NOX   | RM    | AGE  | DIS    | RAD | TAX | PTRATIO E | 3      | LSTAT | TARGET |
|-------|----|---------|------|-------|------|-------|-------|------|--------|-----|-----|-----------|--------|-------|--------|
|       | 0  | 0.00632 | 18   | 2.31  | (    | 0.538 | 6.575 | 65.2 | 4.09   | 1   | 29  | 6 15.3    | 396.9  | 4.98  | 24     |
|       | 1  | 0.02731 | 0    | 7.07  | (    | 0.469 | 6.421 | 78.9 | 4.9671 | 2   | 24  | 2 17.8    | 396.9  | 9.14  | 21.6   |
|       | 2  | 0.02729 | 0    | 7.07  | (    | 0.469 | 7.185 | 61.1 | 4.9671 | 2   | 24  | 2 17.8    | 392.83 | 4.03  | 34.7   |
|       | 3  | 0.03237 | 0    | 2.18  | (    | 0.458 | 6.998 | 45.8 | 6.0622 | 3   | 22  | 2 18.7    | 394.63 | 2.94  | 33.4   |
|       | 4  | 0.06905 | 0    | 2.18  | (    | 0.458 | 7.147 | 54.2 | 6.0622 | 3   | 22  | 2 18.7    | 396.9  | 5.33  | 36.2   |
|       | 5  | 0.02985 | 0    | 2.18  | (    | 0.458 | 6.43  | 58.7 | 6.0622 | 3   | 22  | 2 18.7    | 394.12 | 5.21  | 28.7   |
|       | 6  | 0.08829 | 12.5 | 7.87  | (    | 0.524 | 6.012 | 66.6 | 5.5605 | 5   | 31  | 1 15.2    | 395.6  | 12.43 | 22.9   |
|       | 7  | 0.14455 | 12.5 | 7.87  | (    | 0.524 | 6.172 | 96.1 | 5.9505 | 5   | 31  | 1 15.2    | 396.9  | 19.15 | 27.1   |
|       | 8  | 0.21124 | 12.5 | 7.87  | (    | 0.524 | 5.631 | 100  | 6.0821 | 5   | 31  | 1 15.2    | 386.63 | 29.93 | 16.5   |
|       | 9  | 0.17004 | 12.5 | 7.87  | (    | 0.524 | 6.004 | 85.9 | 6.5921 | 5   | 31  | 1 15.2    | 386.71 | 17.1  | 18.9   |
|       | 10 | 0.22489 | 12.5 | 7.87  | (    | 0.524 | 6.377 | 94.3 | 6.3467 | 5   | 31  | 1 15.2    | 392.52 | 20.45 | 15     |
|       | 11 | 0.11747 | 12.5 | 7.87  | (    | 0.524 | 6.009 | 82.9 | 6.2267 | 5   | 31  | 1 15.2    | 396.9  | 13.27 | 18.9   |
|       | 12 | 0.09378 | 12.5 | 7.87  | (    | 0.524 | 5.889 | 39   | 5.4509 | 5   | 31  | 1 15.2    | 390.5  | 15.71 | 21.7   |
|       | 13 | 0.62976 | 0    | 8.14  | (    | 0.538 | 5.949 | 61.8 | 4.7075 | 4   | 30  | 7 21      | 396.9  | 8.26  | 20.4   |
|       | 14 | 0.63796 | 0    | 8.14  | (    | 0.538 | 6.096 | 84.5 | 4.4619 | 4   | 30  | 7 21      | 380.02 | 10.26 | 18.2   |
|       | 15 | 0.62739 | 0    | 8.14  | (    | 0.538 | 5.834 | 56.5 | 4.4986 | 4   | 30  | 7 21      | 395.62 | 8.47  | 19.9   |
|       | 16 | 1.05393 | 0    | 8.14  | (    | 0.538 | 5.935 | 29.3 | 4.4986 | 4   | 30  | 7 21      | 386.85 | 6.58  | 23.1   |
|       | 17 | 0.7842  | 0    | 8.14  | (    | 0.538 | 5.99  | 81.7 | 4.2579 | 4   | 30  | 7 21      | 386.75 | 14.67 | 17.5   |
|       | 18 | 0.80271 | 0    | 8.14  | (    | 0.538 | 5.456 | 36.6 | 3.7965 | 4   | 30  | 7 21      | 288.99 | 11.69 | 20.2   |
|       | 19 | 0.7258  | 0    | 8.14  | (    | 0.538 | 5.727 | 69.5 | 3.7965 | 4   | 30  | 7 21      | 390.95 | 11.28 | 18.2   |

# **Linear Regression**

# **Linear Regression**