# Information Security CENG418 week-5

Cryptography: Digital Signatures

### Hash Functions & Digital Signatures





#### Digital Signatures – message authentication

- Message authentication protects the communication of two parties from any third party.
- It does not protect the two parties against either fraudulently creating or denying the creation of a message.
- A digital signature is analogous to a handwritten signature and provides a set of security capabilities that would be difficult to implement in any other way. It must have the following properties:
  - It must verify the author and the date and time of the signature
  - It must authenticate the contents at the time of the signature
  - It must be verifiable by third parties to resolve disputes
  - thus, the digital signature function includes the authentication function.

#### Digital Signatures

- have looked at message authentication
  - but does not address issues of lack of trust
- digital signatures provide the ability to:
  - verify author, date & time of signature
  - authenticate message contents
  - be verified by third parties to resolve disputes
- hence include authentication function with additional capabilities

#### Digital Signature Model



### Bob Message M Cryptographic hash function Bob's private key Encrypt S Bob's signature

for M

Digital Signature Model

# Alice



valid or not valid

#### Digital Signature Requirements

- must depend on the message signed
- must use information unique to sender
  - to prevent both forgery and denial
- must be relatively easy to produce
- must be relatively easy to recognize & verify
- be computationally infeasible to forge
  - with new message for existing digital signature
  - with fraudulent digital signature for given message
- be practical save digital signature in storage

#### Direct Digital Signatures

- Involve only sender & receiver
- Assumed that the receiver has the sender's public key to verify the signature of the received message
- The sender's signing makes the digital signature on either the entire message or hash with the sender's private key
- Before sending; the message, it can be encrypted using the receiver's public key
- Important that sign first then encrypt message & signature
- Security of signature (authentication of the message) depends on the secrecy of the sender's private key

#### ElGamal Digital Signatures

- signature variant of ElGamal, related to D-H
  - so uses exponentiation in a finite (Galois)
  - with security based difficulty of computing discrete logarithms, as in D-H
- uses private key for encryption (signing)
- uses public key for decryption (verification)
- each user (eg. A) generates their key
  - chooses a secret key (number):  $1 < x_A < q-1$
  - compute their public key:  $y_A = a^{x_A} \mod q$

#### ElGamal Digital Signature

- Alice signs a message M to Bob by computing
  - the hash m = H(M), 0 <= m <= (q-1)
  - chose random integer K with  $1 \le K \le (q-1)$  and gcd(K, q-1)=1
  - compute temporary key:  $S_1 = a^k \mod q$
  - compute  $K^{-1}$  the inverse of  $K \mod (q-1)$
  - compute the value:  $S_2 = K^{-1} (m-x_A S_1) \mod (q-1)$
  - signature is:  $(S_1, S_2)$
- any user B can verify the signature by computing
  - $-V_1 = a^m \mod q$
  - $-V_2 = y_A^{S_1} S_1^{S_2} \mod q$
  - signature is valid if  $V_1 = V_2$

#### ElGamal Signature Example

- use field GF(19) q=19 and a=10
- Alice computes her key:
  - A chooses  $x_A=16$  & computes  $y_A=10^{16}$  mod 19 = 4
- Alice signs message with hash m=14 as (3,4):
  - choosing random K=5 which has gcd(18,5)=1
  - computing  $S_1 = 10^5 \mod 19 = 3$
  - finding  $K^{-1} \mod (q-1) = 5^{-1} \mod 18 = 11$
  - computing  $S_2 = 11(14-16.3) \mod 18 = 4$
- any user B can verify the signature by computing
  - $-V_1 = 10^{14} \mod 19 = 16$
  - $-V_2 = 4^3.3^4 = 5184 = 16 \mod 19$
  - since 16 = 16 signature is valid

## ElGamal Signature

 $y_A = a^{x_A} \mod q$  and  $X_A$  is private key of signer.  $y_A$  is public key of signer.

```
m = H(M)

1 \le k \le (q-1) and gcd(k, q-1)=1

\mathbf{S_1} = \mathbf{a} \mod \mathbf{q}

k^{-1} the inverse of k \mod (q-1)

\mathbf{S_2} = \mathbf{k^{-1}} (\mathbf{m} - \mathbf{x_A} \mathbf{S_1}) \mod (\mathbf{q-1})

signature is: (S_1, S_2)
```

#### Verification of Signature

 $V_1 = a^m \mod q$   $V_2 = y_A^{S1} S_1^{S2} \mod q$ signature is valid if  $V_1 = V_2$ 

$$V_2 = y_A^{S1} S_1^{S2} \mod q$$

$$V_2 = a^{X_A.a^k}. a^{k.k^{-1}.(m-X_A.a^k)} = a^m \mod q$$

#### Schnorr Digital Signatures

- also uses exponentiation in a finite (Galois)
  - security based on discrete logarithms, as in D-H
- The main work for signature generation does not depend on the message and can be done during the idle time of the processor. Minimizes message dependent computation,
  - The message dependent part of the signature generation requires multiplying a 2*n*-bit integer with an *n*bit integer
- main work can be done in idle time
- have using a prime modulus p
  - -p-1 has a prime factor q of appropriate size
  - typically p 1024-bit and q 160-bit numbers

#### Schnorr Key Setup

- choose suitable primes p, q; , such that q is a prime factor of p 1
- choose a such that a<sup>q</sup> = 1 mod p
- (a,p,q) are global parameters for all
- each user (eg. A) generates a key
  - chooses a secret key (number):  $0 < s_A < q$
  - compute their public key: v<sub>A</sub> = a<sup>-s<sub>A</sub></sup> mod q

#### Schnorr Signature

- A user with public key v and private key s generates a signature as follows:
- user signs message by
  - choosing random r with 0 < r < q and computing  $x = a^r \mod p$
  - concatenate message with x and hash result to computing:e = H(M || x)
  - computing:  $\mathbf{y} = (r + se) \mod q$
  - signature is pair (e, y)
- any other user can verify the signature as follows:
  - computing:  $x' = a^y v^e \mod p$
  - verifying that: e = H(M || x')

#### Digital Signature Standard (DSS)

- US Govt approved signature scheme
- designed by NIST & NSA in early 90's
- published as FIPS-186 in 1991
- revised in 1993, 1996 & then 2000
- uses the SHA hash algorithm
- DSS is the standard, DSA is the algorithm
- FIPS 186-2 (2000) includes alternative RSA & elliptic curve signature variants
- DSA is digital signature only unlike RSA
- is a public-key technique

#### DSS vs RSA Signatures



#### (a) RSA Approach



PU<sub>G</sub>; a set of parameters known to a group of communicating principals. Global public key.

#### Digital Signature Algorithm (DSA)

The DSA is based on the difficulty of computing discrete logarithms and is based on schemes originally presented by ElGamal and Schnorr.

- creates a 320 bit signature
- with 512-1024 bit security
- smaller and faster than RSA
- a digital signature scheme only
- > security depends on difficulty of computing discrete logarithms

The DSA signature scheme has advantages, being both smaller (320 vs 1024bit) and faster (much of the computation is done modulo a 160 bit number), over RSA. Unlike RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key technique.

#### DSA Key Generation

- have shared global public key values (p,q,g):
  - choose 160-bit prime number q
  - choose a large prime p with  $2^{L-1}$ 
    - where L= 512 to 1024 bits and is a multiple of 64
    - such that q is a 160 bit prime divisor of (p-1)
  - choose  $q = h^{(p-1)/q}$ 
    - where 1 < h < p-1 and  $h^{(p-1)/q} \mod p > 1$
- users choose private & compute public key:
  - choose random private key: x<q</li>
  - compute public key:  $y = g^x \mod p$

#### DSA Signature Creation

- > to **sign** a message M the sender:
  - generates a random signature key k, k<q</li>
  - k must be random, be destroyed after use, and never be reused
  - the public key components (p,q,g), the user's private key
     (x)
- > then computes signature pair:
  - $r = (g^k \mod p) \mod q$
  - $s = [k^{-1}(H(M) + xr)] \mod q$
- > sends signature (r,s) with message M
- Note that computing r only involves calculation mod p and does not depend on message, hence can be done in advance. Similarly with randomly choosing k's and computing their inverses.

#### DSA Signature Verification

- having received M & signature (r,s)
- to verify a signature, recipient computes:

```
w = s<sup>-1</sup> mod q
u1= [H(M)w]mod q
u2= (rw)mod q
v = [(g<sup>u1</sup> y<sup>u2</sup>)mod p]mod q
```

if v=r then signature is verified

#### DSS Overview





(a) Signing



$$w = f_3(s', q) = (s')^{-1} \mod q$$

$$v = f_4(y, q, g, H(M'), w, r')$$

$$= ((g(H(M')w) \mod q \ yr'w \mod q) \mod p) \mod q$$

(b) Verifying



#### **Latest version**



<u>https://ec.europa.eu/digital-building-</u>
<u>blocks/wikis/display/DIGITAL/Digital+Signature+Service+-++DSS</u>

#### Summary

- have discussed:
  - digital signatures
  - digital signature algorithm and standard

#### Next Lecture

Key Distribution and Management

# Sample questions

Which of the following is a characteristic of digital signatures?

- A. They use symmetric key cryptography.
- B. They require a physical signature on a document.
- C. They use public key cryptography to provide authentication and integrity.
- D. They are not secure for transmitting sensitive information.

What is correct about digital signatures?

- A. A digital signature cannot be moved from one signed document to another because it is the hash of the original document encrypted with the private key of the signing party.
- B. Digital signatures may be used in different documents of the same type.
- C. A digital signature cannot be moved from one signed document to another because it is a plain hash of the document content.
- D. Digital signatures are issued once for each user and can be used everywhere until they expire.

Which of the following is a characteristic of public key cryptography?

- A. It uses the same key for encryption and decryption.
- B. It uses two different keys for encryption and decryption.
- C. It can only be used for encrypting small messages.
- D. It is not suitable for use in electronic commerce.