Domas Budrys – Assignment 4 CSCI5080

Question 1 (6.6) (Time spent: 4h 30min): A)

Apriori

C1

	count
М	3
0	4
N	2
K	5
E	4
Y	3
D	1
Α	1
U	1
С	2
- 1	1

C2

				count	
				1	МО
				3	١K
			!	2	1E
C3		L2	!	2	ΝY
	ount	c	1	3	ЭK
мок	3	MK	1	3	E
	3	ок	!	2	Υ
OKE	3	OE		4	ΚE
MKY	4	KE	1	3	CΥ
KYO	3	KY		2	EY

L3

OKE

count

3

FP-Growth:

		port	Su
		5	
		4	
		3	
Support		3	
K, E, O, M, Y	T100	3	
K, E, O, Y	T200	· •	
K, E, M	T300		1
K, M, Y	T400		-1
K, E, O	T500		1

Item	Conditional Pattern Base	Conditional FP Tree	Frequent Patterns
Y	[[K E O M:1], [K E O:1], [K M:1]]	[K:3]	[K,Y:3]
М	[[K E O:1], [K E:1], [K:1]]	[K:3]	[K,M:3]
0	[[K E:3]]	[K E:3]	[[K,O:3, [E,O: 3], [K,E,O:3]]]
Ε	[[K:4]]	[K:4]	[K E:4]
K			

Comparison:

When these algorithms are applied to large databases, FP-Growth algorithm should perform better. It is because Apriori algorithm requires to create new candidate sets that are self-joined, which is a not computational efficient process. On the other hand, FP-Growth algorithm does not create any additional candidate sets.

B)

Buys (X, K) and	$1 \text{ Buys}(X, O) \Rightarrow \text{Buys}(X, E)$	[60%, 100%]
Buys (X. E) and	Buys(X, O) \Rightarrow Buys (X, K)	[60%, 100%]

Question 2 (6.14) (Time spent: 1h 30min):

A)

$$Support(hot\ dogs \rightarrow hamburgers) = \frac{2000}{5000} = .4$$

$$Confidence(hot\ dogs \rightarrow hamburgers) = \frac{2000}{3000} = .667$$

Conclusion:

Association rule is strong because support and confidence percentage is above minimum threshold requirements

B)

$$P(hot \, dog) = \frac{3000}{5000} = .6$$

$$P(hambuger) = \frac{2500}{5000} = .5$$

$$P(hot\ dog, hambuger) = \frac{2000}{5000} = .4$$

$$lift(hot\ dog, hamburger) = \frac{P(hot\ dog,\ hamburger)}{P(hot\ dog)\ X\ P(hamburger)} = \frac{.4}{.6\ X.5} = 1.33(3)$$

Conclusion:

Since **1.33 > 1** we can conclude that buying hot dogs is not independent of buying hambugers and that there is a positive correlation between these two items.