The Eisenhart Lift

Linden Disney-Hogg & Harry Braden

March 2020

1 The Eisenhart Lift

1.1 The metric and equations of motion

Consider the (d+2)-dimensional line element,

$$ds^{2} = \hat{g}_{\mu\nu} dx^{\mu} dx^{\nu} = h_{ij} dx^{i} dx^{j} + 2dt \left(dv - \Phi dt + N_{i} dx^{i} \right), \tag{1.1.1}$$

where i, j = 1, ..., d, $x^{d+1} = t$, $x^{d+2} = v$ and Φ , N_i and h_{ij} are independent of the coordinate v. Then $\xi = \partial_v$ is a Killing vector. We have

$$\hat{g} = \begin{pmatrix} h_{ij} & N_i & 0 \\ N_j & -2\Phi & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad \hat{g}^{-1} = \begin{pmatrix} h^{ij} & 0 & -h^{ik}N_k \\ 0 & 0 & 1 \\ -h^{jk}N_k & 1 & 2\Phi + N_ih^{ij}N_j \end{pmatrix},$$

where h^{ij} is the inverse of h_{ij} . The geodesic Lagrangian is

$$\mathcal{L} = \frac{1}{2}\hat{g}_{\mu\nu}\,\dot{x}^{\mu}\,\dot{x}^{\nu} = \frac{1}{2}h_{ij}\,\dot{x}^{i}\,\dot{x}^{j} + \dot{t}\dot{v} - \Phi\dot{t}^{2} + N_{i}\,\dot{x}^{i}\dot{t} := \tilde{L} + \dot{t}\dot{v},$$

where $\dot{x}^{\mu} = dx^{\mu}/d\lambda$ for an affine geodesic parameter λ (\tilde{L} is defined below). Calculating the equations of motion from \mathcal{L} enables a simple determination of (appropriate combinations of) the Christoffel symbols for \hat{g} . Recall

$$\hat{\Gamma}^{\mu}_{\nu\rho} = \frac{1}{2} \hat{g}^{\mu\delta} \left(\hat{g}_{\delta\nu,\rho} + \hat{g}_{\delta\rho,\nu} - \hat{g}_{\nu\rho,\delta} \right) := \hat{g}^{\mu\delta} [\nu\rho,\delta]_{\hat{g}}.$$

and the equations of motion are

$$0 = \ddot{x}^{\mu} + \hat{\Gamma}^{\mu}_{\nu\rho}\dot{x}^{\mu}\dot{x}^{\rho}.$$

Setting

$$A := A_{\mu} dx^{\mu} = N_i dx^i - \Phi dt, \qquad F = dA = \frac{1}{2} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) dx^{\mu} \wedge dx^{\nu} = \frac{1}{2} F_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$$

we get

$$F_{ij} = \partial_i N_j - \partial_j N_i = -F_{ji}$$

$$F_{it} = -(\partial_t N_i + \partial_i \Phi) = -F_{ti}$$

and using that the equations of motion for v, x^i and t (from $\frac{d}{d\lambda} \frac{\partial \mathcal{L}}{\partial x^{\mu}} = \frac{\partial \mathcal{L}}{\partial x^{\mu}}$) yield

$$0 = \frac{d}{d\lambda}\dot{t} = \ddot{t}$$

(for v) then

$$\frac{1}{2}(\partial_i h_{jk})\dot{x}^j \dot{x}^k - (\partial_i \Phi)\dot{t}^2 + (\partial_i N_j)\dot{x}^j \dot{t} = \frac{d}{d\lambda} \left(h_{ij}\dot{x}^j + N_i \dot{t} \right)
= h_{ij}\ddot{x}^j + (\partial_k h_{ij})\dot{x}^j \dot{x}^k + (\partial_t h_{ij})\dot{x}^j \dot{t} + (\partial_j N_i)\dot{x}^j \dot{t} + (\partial_t N_i)\dot{t}^2$$

(for \dot{x}^i) and

$$\frac{1}{2}(\partial_t h_{ij})\dot{x}^i \dot{x}^j - (\partial_t \Phi)\dot{t}^2 + (\partial_t N_i)\dot{x}^i \dot{t} = \frac{d}{d\lambda} \left(\dot{v} - 2\Phi \dot{t} + N_i \dot{x}^i \right)
= \ddot{v} - 2(\partial_i \Phi)\dot{t}\dot{x}^i - 2(\partial_t \Phi)\dot{t}^2 - 2\Phi \ddot{t} + (\partial_i N_i)\dot{x}^i \dot{x}^j + (\partial_t N_i)\dot{x}^i \dot{t} + N_i \ddot{x}^i$$

we get (collating them together)

$$\begin{split} 0 &= \ddot{t}, \\ 0 &= h_{ij} \, \ddot{x}^j + [jk,i]_h \, \dot{x}^j \dot{x}^k + (\partial_t h_{ij} + \partial_j N_i - \partial_i N_j) \, \dot{t} \dot{x}^j + (\partial_i \Phi + \partial_t N_i) \, \dot{t}^2, \\ &= h_{ij} \, \ddot{x}^j + [jk,i]_h \, \dot{x}^j \dot{x}^k + (\partial_t h_{ij} - F_{ij}) \, \dot{t} \dot{x}^j + F_{ti} \dot{t}^2, \\ 0 &= \ddot{v} + N_i \ddot{x}^i + \left[\frac{1}{2} \left(\partial_j N_i + \partial_i N_j \right) - \frac{1}{2} \partial_t h_{ij} \right] \, \dot{x}^i \dot{x}^j - 2 \partial_i \Phi \, \dot{t} \dot{x}^i - \partial_t \Phi \, \dot{t}^2, \\ &= \ddot{v} + \left[\frac{1}{2} \left(\partial_j N_i + \partial_i N_j \right) - N_k \Gamma_{ij}^k - \frac{1}{2} \partial_t h_{ij} \right] \, \dot{x}^i \dot{x}^j + \left[-N^k (\partial_t h_{ki} - F_{ki}) - 2 \partial_i \Phi \right] \, \dot{t} \dot{x}^i + \left(-\partial_t \Phi + N^i F_{it} \right) \, \dot{t}^2 \end{split}$$

where we have substituted F in the latter, and usde the notation

$$[jk,i]_h = \frac{1}{2} \left(\partial_j h_{ki} + \partial_k h_{ji} - \partial_i h_{jk} \right) .$$

Recall

$$\Gamma^i_{jk} = h^{il}[jk, l]_h \,.$$

Note that to raise the index of N has required we recognise that

$$N^i = \hat{g}^{ij} N_j = h^{ij} N_j$$

1.2 Equivalence of equations of motion

The canonical momenta are given by $p_{\mu} = \partial \mathcal{L}/\partial \dot{x}^{\mu} = \hat{g}_{\mu\nu}\dot{x}^{\nu}$ giving

$$p_v = \dot{t}, \qquad p_i = h_{ij}\dot{x}^j + N_i\dot{t}, \qquad p_t = \dot{v} - 2\Phi\dot{t} + N_i\dot{x}^i,$$

and so

$$\dot{t} = p_v, \qquad \dot{x}^i = h^{ij}(p_j - N_j p_v), \qquad \dot{v} = p_t - N^i p_i + [2\Phi + N^2] p_v.$$

Likewise, the geodesic Hamiltonian is

$${\cal H} = p_\mu \dot{x}^\mu - {\cal L} = rac{1}{2} \hat{g}^{\mu
u} \, p_\mu \, p_
u = rac{1}{2} h^{ij} \, (p_i - N_i p_v) (p_j - N_j p_v) + p_t p_v + \Phi \, p_v^2.$$

The equations of motion are

$$\frac{dt}{d\lambda} = \frac{\partial \mathcal{H}}{\partial p_t} = p_v, \qquad \frac{dv}{d\lambda} = \frac{\partial \mathcal{H}}{\partial p_v}, \qquad \frac{dx^i}{d\lambda} = \frac{\partial \mathcal{H}}{\partial p_i} = h^{ij} (p_j - N_j p_v),
\frac{dp_t}{d\lambda} = -\frac{\partial \mathcal{H}}{\partial t}, \qquad \frac{dp_v}{d\lambda} = -\frac{\partial \mathcal{H}}{\partial v} = 0, \qquad \frac{dp_i}{d\lambda} = -\frac{\partial \mathcal{H}}{\partial x^i}.$$

Because v is a cyclic coordinate its conjugate momentum p_v is conserved along geodesics: thus $p_v = m$ is a constant and we may write

$$\mathcal{H} := H + m p_t, \qquad H := \frac{1}{2} h^{ij} (p_i - mN_i)(p_j - mN_j) + m^2 \Phi.$$

We observe that we have the geodesics have the conserved quantities,

$$\frac{1}{2}\hat{g}^{\mu\nu} p_{\mu}p_{\nu} = m \left[\frac{p^{i}p_{i}}{2m} - N^{i}p_{i} + mN^{i}N_{i} + p_{t} + m\Phi \right] := -mE_{0},$$

$$\hat{g}^{\mu\nu} p_{\mu}\xi_{\nu} = p_{v} = m.$$

Following the identifications of [3] we view $p_v = m$ as the mass, $-p_t = E$ as the energy, E_0 as the internal energy, and $m\Phi = V$ as the potential energy. Taking the internal energy to vanish in the nonrelativistic limit the null geodesics of \hat{g} may be identified with the motion in the d-dimensional space with potential energy V. We note that two conformally related metrics have the same null geodesics, and so the d-dimensional world lines will be the same. For $m \neq 0$ the equations of motion for t then give $dt/d\lambda = m$, whence $dt = m d\lambda$ and we may eliminate the affine geodesic parameter λ for t. The equations of motion are then precisely those coming from the standard mechanical system

$$\tilde{L} = \frac{1}{2} h_{ij} \, \dot{x}^i \, \dot{x}^j + N_i \, \dot{x}^i - \Phi$$

where \dot{x}^i is now the standard dx^i/dt (and $\dot{t}=1$). Now

(a) in the case of a non-null geodesic, if we parameterised the curve by arc length, $\lambda = s$ and t = ms, then from (1.1.1) we have

$$\frac{dv}{dt} = \frac{1}{2m^2} - \tilde{L}.$$

The equations of motion for v follow from this and

$$v = \frac{t}{2m^2} - \int \tilde{L} \, dt + b.$$

(b) in the case of a null geodesics we have

$$\frac{dv}{dt} = -\tilde{L}, \qquad v = -\int \tilde{L} \, dt + b.$$

Thus we have for each $m \neq 0$ and b a bijection between the geodesics of \hat{g} and the equations of motion of \tilde{L} .

1.3 Connection and Curvature

From the equations of motion we read that the nonvanishing Christoffel symbols for \hat{g} are

$$\begin{split} &\hat{\Gamma}^i_{jk} = \Gamma^i_{jk}, & \hat{\Gamma}^i_{jt} = -\frac{1}{2}F^i_{\ j} + \frac{1}{2}h^{ik}\partial_t h_{kj}, & \hat{\Gamma}^i_{tt} = h^{ik}\left(\partial_t N_k + \partial_k \Phi\right) = -F^i_{\ t}, \\ &\hat{\Gamma}^v_{tt} = -\partial_t \Phi + N^k F_{kt}, & \hat{\Gamma}^v_{ij} = \frac{1}{2}\left[\nabla_i N_j + \nabla_j N_i - \partial_t h_{ij}\right], & \hat{\Gamma}^v_{ti} = -\frac{1}{2}N^k (\partial_t h_{ki} - F_{ki}) - \partial_i \Phi. \end{split}$$

Here we have used ∇_i for the Levi-Civita connection from the metric h. Recall now the equation for the Riemann tensor

$$\hat{R}^{\mu}_{\nu\rho\sigma} = \partial_{\rho}\hat{\Gamma}^{\mu}_{\nu\sigma} - \partial_{\sigma}\hat{\Gamma}^{\mu}_{\nu\rho} + \hat{\Gamma}^{\mu}_{\rho\lambda}\hat{\Gamma}^{\lambda}_{\nu\sigma} - \hat{\Gamma}^{\mu}_{\sigma\lambda}\hat{\Gamma}^{\lambda}_{\nu\rho}$$

We immediately notice

$$\hat{R}^i_{\ ikl} = R^i_{\ ikl} + \hat{\Gamma}^i_{kt}\hat{\Gamma}^t_{il} - \hat{\Gamma}^i_{lt}\hat{\Gamma}^t_{ik} + \hat{\Gamma}^i_{kv}\hat{\Gamma}^v_{il} - \hat{\Gamma}^i_{lv}\hat{\Gamma}^v_{ik} = R^i_{\ ikl}$$

as there are non-vanishing Christoffel symbols with v as lower index, or t as an upper index. Further, as all Christoffel symbols are independent of v (as the metric is) we can then say that $\hat{R}^{\mu}_{\ \nu\nu\sigma}=0$. As such $\hat{R}^{\mu}_{\ \nu\rho\sigma}=0$ if any of $\nu,\rho,\sigma=v$. We can also see that $\hat{R}^{t}_{\ \nu\rho\sigma}=0$ by the formula. so we now need only determine

1.
$$\hat{R}^{i}_{jtl}$$

4.
$$\hat{R}^{v}_{ikl}$$

2.
$$\hat{R}^{i}_{tkl}$$

5.
$$\hat{R}^{v}_{itl}$$

3.
$$\hat{R}^{i}_{ttl}$$

6.
$$\hat{R}^{v}_{tkl}$$

7.
$$\hat{R}^{v}_{tt}$$

Making the observation

$$\hat{R}^{v}_{\nu\rho\sigma} = -h^{ik} N_k R_{i\nu\rho\sigma} + R_{t\nu\rho\sigma}$$

and seeing that

$$\hat{R}_{i\nu\rho\sigma} = \hat{g}_{i\mu} \hat{R}^{\mu}_{\ \nu\rho\sigma}$$
$$= h_{ij} \hat{R}^{j}_{\ \nu\rho\sigma}$$

we can simplify

$$\hat{R}^{v}_{j\rho\sigma} = -N_{i}\hat{R}^{i}_{j\rho\sigma} - h_{ji}\hat{R}^{i}_{t\rho\sigma}$$

and

$$\hat{R}^{v}_{\ t\rho\sigma} = -N_{i}\hat{R}^{i}_{\ t\rho\sigma}$$

This lets us get the seoned column of terms immediately after we have the first. The Bianchi identity also tells us that

$$\hat{R}^{\mu}_{\nu\rho\sigma} = -\hat{R}^{\mu}_{\rho\sigma\nu} - \hat{R}^{\mu}_{\sigma\nu\rho}$$

This means

$$\begin{split} \hat{R}^i_{\ tkl} &= -\hat{R}^t_{\ klt} - \hat{R}^i_{\ lkt} \\ &= 2\hat{R}^i_{\ [k|t|l]} \end{split}$$

and so we just need to work out 1 and 3. Let us begin the slog:

$$\begin{split} \hat{R}^{i}_{jtl} &= \partial_{t} \hat{\Gamma}^{i}_{jl} - \partial_{l} \hat{\Gamma}^{i}_{jt} + \hat{\Gamma}^{i}_{t\mu} \hat{\Gamma}^{\mu}_{jl} - \hat{\Gamma}^{i}_{l\mu} \hat{\Gamma}^{\mu}_{jt} \\ &= \Gamma^{i}_{jl,t} - \nabla_{l} \hat{\Gamma}^{i}_{jt} \\ &= \Gamma^{i}_{jl,t} + \frac{1}{2} \nabla_{l} \left[h^{ik} \left(F_{kj} - h_{kj,t} \right) \right] \\ &= \Gamma^{i}_{jl,t} - \frac{1}{2} h^{ik} \nabla_{l} h_{kj,t} + \frac{1}{2} \nabla_{l} F^{i}_{j} \end{split}$$

(This form will be useful to give coherence with [3]). Now note

$$\begin{split} h^{ik} \nabla_{l} (\partial_{t} h_{kj}) &= h^{ik} \left[h_{kj,tl} - \Gamma^{m}_{lk} h_{mj,t} - \Gamma^{m}_{lj} h_{km.t} \right] \\ &= h^{ik} \left[h_{kj,lt} - \partial_{t} (h_{mj} \Gamma^{m}_{lk}) + h_{mj} \Gamma^{m}_{lk,t} - \partial_{t} (h_{km} \Gamma^{m}_{lj}) + h_{mk} \Gamma^{m}_{lj,t} \right] \\ &= h^{ik} \left[\partial_{t} (h_{kj,l} - [lk,j]_{h} - [lj,k]_{h}) + h_{mj} \Gamma^{m}_{lk,t} \right] + \Gamma^{i}_{lj,t} \end{split}$$

Calculating

$$h_{kj,l} - [lk,j]_h - [lj,k]_h = h_{kj,l} - \frac{1}{2}(h_{lj,k} + h_{kj,l} - h_{lk,j}) - \frac{1}{2}(h_{lk,j} + h_{jk,l} - h_{jl,k}) = 0$$

we have

$$\hat{R}^{i}_{jtl} = \frac{1}{2} \left[\nabla_{l} F^{i}_{j} + \Gamma^{i}_{jl,t} - h^{ik} h_{jm} \Gamma^{m}_{lk,t} \right]$$

Hence

$$\hat{R}^{i}_{tkl} = 2\hat{R}^{i}_{[k|t|l]} = \nabla_{[l}F^{i}_{k]} - h^{ij}h_{m[k}\Gamma^{m}_{l]j,t}$$
or = $\nabla_{[l}F^{i}_{k]} - \nabla_{[l}h^{ij}h_{k]j,t}$

Further

$$\begin{split} \hat{R}^{i}_{ttl} &= \partial_{t} \hat{\Gamma}^{i}_{tl} - \partial_{l} \hat{\Gamma}^{i}_{tt} + \hat{\Gamma}^{i}_{t\mu} \hat{\Gamma}^{\mu}_{tl} - \hat{\Gamma}^{i}_{l\mu} \hat{\Gamma}^{\mu}_{tt} \\ &= -\frac{1}{2} \partial_{t} \left(F^{i}_{l} - h^{ij} h_{jl,t} \right) + \frac{1}{4} \left(F^{i}_{j} - h^{ik} h_{kj,t} \right) \left(F^{j}_{l} - h^{jm} h_{ml,t} \right) + \nabla_{l} F^{i}_{t} \\ &= -\frac{1}{2} \partial_{t} \left(F^{i}_{l} - h^{ij} h_{jl,t} \right) + \frac{1}{4} \left(F^{i}_{j} + h^{ik}_{,t} h_{kj} \right) \left(F^{j}_{l} - h^{jm} h_{ml,t} \right) + \nabla_{l} F^{i}_{t} \\ &= -\frac{1}{2} \left[\partial_{t} \left(F^{i}_{l} - h^{ij} h_{jl,t} \right) - \frac{1}{2} \left(F^{ij} + h^{ij}_{,t} \right) (F_{jl} - h_{jl,t}) - 2 \nabla_{l} F^{i}_{t} \right] \quad \text{(useful to give coherence with [3])} \\ &= -\frac{1}{2} \left(F^{i}_{l,t} - h^{ij} h_{jl,tt} \right) + \frac{1}{4} \left(F^{i}_{j} F^{j}_{l} - F^{ij} h_{jl,t} + F_{jl} h^{ij}_{,t} + h^{ij}_{,t} h_{jl,t} \right) + \nabla_{l} F^{i}_{t} \end{split}$$

With these three we can read off

$$\begin{split} \hat{R}^{v}_{\ jkl} &= -N_{i}R^{i}_{\ jkl} - h_{ji} \left[h^{ia}h_{m[l}\Gamma^{m}_{k]a,t} - \nabla_{[k}F^{i}_{\ l]} \right] \\ &= -N_{i}R^{i}_{\ jkl} - h_{m[l}\Gamma^{m}_{k]j,t} + \nabla_{[k}F_{|j|l]} \\ &= -N_{i}R^{i}_{\ jkl} - h_{m[l}\Gamma^{m}_{k]j,t} + \frac{1}{2}\nabla_{j}F_{kl} \end{split}$$

using

$$\begin{split} \nabla_{[k}F_{|j|l]} &= F_{j[l,k]} - F_{jm}\Gamma^m_{[kl]} - F_{m[l}\Gamma^m_{k]j} \\ &= N_{[l,|j|k]} - N_{j,[lk]} - F_{m[l}\Gamma^m_{k]j} \\ &= \frac{1}{2} \left(F_{kl,j} - \Gamma^m_{kj}F_{ml} + \Gamma^m_{jl}F_{mk} \right) \\ &= \frac{1}{2} \nabla_j F_{kl} \end{split}$$

$$\begin{split} \hat{R}^{v}{}_{jtl} &= -\frac{1}{2} N_{i} \left[\nabla_{l} F^{i}{}_{j} + \Gamma^{i}{}_{jl,t} - h^{ik} h_{jm} \Gamma^{m}_{lk,t} \right] - h_{ji} \left\{ -\frac{1}{2} \left(F^{i}{}_{l,t} - h^{ik} h_{kl,tt} \right) \right. \\ &+ \frac{1}{4} \left(F^{i}{}_{k} F^{k}{}_{l} - F^{ik} h_{kl,t} + F_{kl} h^{ik}{}_{,t} + h^{ik}{}_{,t} h_{kl,t} \right) + \nabla_{l} F^{i}{}_{t} \right\} \\ &= -\frac{1}{2} N_{i} \left[\nabla_{l} F^{i}{}_{j} + \Gamma^{i}{}_{jl,t} - h^{ik} h_{jm} \Gamma^{m}_{lk,t} \right] + \frac{1}{2} \left(h_{ji} F^{i}{}_{l,t} + h_{jl,tt} \right) \\ &+ \frac{1}{4} \left(F_{jk} F^{k}{}_{l} - F_{j}{}^{k} h_{kl,t} + F_{kl} h_{ji} h^{ik}{}_{,t} + h_{ji} h^{ik}{}_{,t} h_{kl,t} \right) + \nabla_{l} F_{jt} \\ &= -\frac{1}{2} N_{i} \left[\nabla_{l} F^{i}{}_{j} + \Gamma^{i}{}_{jl,t} - h^{ik} h_{jm} \Gamma^{m}_{lk,t} \right] + \frac{1}{2} \left(h_{ji} F^{i}{}_{l,t} + h_{jl,tt} \right) \\ &+ \frac{1}{4} \left(F_{jk} F^{k}{}_{l} - F_{j}{}^{k} h_{kl,t} - F^{i}{}_{l} h_{ji,t} + h_{ji} h^{ik}{}_{,t} h_{kl,t} \right) + \nabla_{l} F_{jt} \end{split}$$

Now we have constructed Riemann curvature tensors, we can go on to calculate the Ricci tensor given by

$$\hat{R}_{\nu\sigma} = \hat{R}^{\mu}_{\ \nu\mu\sigma}$$

As before, we said that we can never have t as the first upper index, or a v as the lower indices, so we know that

$$\hat{R}_{v\mu} = 0$$

and that this formula reduces to

$$\hat{R}_{\nu\sigma} = \hat{R}^i_{\ \nu i\sigma}$$

We straight away recognise that the spatial part is the same as for the spatial manifold, i.e.

$$\hat{R}_{ij} = R_{ij}$$

All that's left to calculate is $\hat{R}_{ti} = \hat{R}_{it}$, \hat{R}_{tt} , which are given by

$$\begin{split} \hat{R}_{tl} &= \hat{R}^{i}{}_{til} \\ &= \nabla_{[l} F^{i}{}_{k]} - \nabla_{[l} h^{ij} h_{i]j,t} \\ &= \frac{1}{2} \left[\nabla_{l} F^{i}{}_{i} - \nabla_{i} F^{i}{}_{l} - \partial_{l} \left(h^{ij} h_{ij,t} \right) + \nabla_{i} h^{ij} h_{jl,t} \right] \\ &= -\frac{1}{2} \left[\nabla^{i} \left(F_{il} - h_{il,t} \right) + \partial_{l} \left(h^{ij} h_{ij,t} \right) \right] \quad \text{(compare to [3])} \end{split}$$

$$\begin{split} \hat{R}_{tt} &= \hat{R}^{i}_{\ tit} \\ &= \frac{1}{2} \left[\partial_{t} \left(F^{i}_{\ i} - h^{ij} h_{ji,t} \right) - \frac{1}{2} \left(F^{ij} + h^{ij}_{\ ,t} \right) \left(F_{ji} - h_{ji,t} \right) - 2 \nabla_{i} F^{i}_{\ t} \right] \\ &= -\frac{1}{2} \left[\partial_{t} \left(h^{ij} h_{ij,t} \right) - \frac{1}{2} \left(F^{ji} - h^{ji}_{\ ,t} \right) \left(F_{ji} - h_{ji,t} \right) + 2 \nabla_{i} F^{i}_{\ t} \right] \quad \text{(compare to [3])} \\ &= -\frac{1}{2} \left[\partial_{t} \left(h^{ij} h_{ij,t} \right) - \frac{1}{2} \left(F^{ij} F_{ij} + F^{ij} h_{ij,t} + h^{ij}_{\ ,t} F_{ij} + h^{ij}_{\ ,t} h_{ij,t} \right) + 2 \nabla^{i} F_{it} \right] \\ &= -\frac{1}{2} \left[\partial_{t} \left(h^{ij} h_{ij,t} \right) - \frac{1}{2} \left(F^{ij} F_{ij} - 2 F_{ij,t} h^{ij} + h^{ij}_{\ ,t} h_{ij,t} \right) + 2 \nabla^{i} F_{it} \right] \end{split}$$

1.4 The Frame

An alternative way to get this result is using the frame field formulation. Given the metric (1.1.1) we define the frame $\{\hat{e}^A\}$,

$$ds^{2} = \hat{g}_{\mu\nu} dx^{\mu} dx^{\nu} = h_{ij} dx^{i} dx^{j} + 2dt \left(dv - \Phi dt + N_{i} dx^{i} \right) = \hat{\eta}_{AB} \hat{e}^{A} \hat{e}^{B} = \eta_{ab} e^{a} e^{b} + \hat{e}^{+} \hat{e}^{-} + \hat{e}^{-} \hat{e}^{+}.$$

Here $A \in \{+, -, a, b, \ldots\}$, $\hat{\eta}_{+-} = \hat{\eta}_{-+} = 1$, and we take

$$\hat{e}^+ := dt, \qquad \hat{e}^- := dv - \Phi dt + N_i dx^i, \qquad \hat{e}^a := \hat{e}^a_\mu dx^\mu = e^a_i dx^i = e^a,$$

and

$$e_i^a \eta_{ab} e_j^b = h_{ij}.$$

The coframe $\{\hat{E}_A\}$ with $\hat{e}^A(\hat{E}_B) = \delta^A_B$ is given by

$$\hat{E}_+ := \partial_t + \Phi \, \partial_v, \qquad \hat{E}_- := \partial_v, \qquad \hat{E}_a := E_a - N_a \, \partial_v,$$

where $N_a = N_i E_a^i$ and similarly

$$e^a(E_b) = \delta^a_b, \qquad E_b = E^i_b \, \partial_i.$$

We emphasise that N, ϕ and e^a may depend on x^i and t.

Denoting the structure constants $[\hat{E}_B, \hat{E}_C] = c_{BC}^A \hat{E}_A$ we have from

$$d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y])$$

for a one-form α , then for the torsion free connection

$$d\hat{e}^A = -\hat{\omega}^A_{\ B} \wedge e^B = \hat{\omega}^A_{\ BC} e^B \wedge e^C$$

we have

$$d\hat{e}^A(\hat{E}_B, \hat{E}_C) = \hat{\omega}^A_{BC} - \hat{\omega}^A_{CB} = -\hat{e}^A([\hat{E}_B, \hat{E}_C]) = -c^A_{BC}$$

from which

$$\hat{\omega}_{BC}^{A} = \frac{1}{2}\hat{\eta}^{AF}(c_{CFB} + c_{BFC} - c_{FBC}).$$

The v-independence of the metric means that

$$[\hat{E}_{-}, \hat{E}_{B}] = 0, \qquad c^{A}_{-B} = 0$$

while

$$\begin{split} [\hat{E}_{+}, \hat{E}_{a}] &= \partial_{t} E_{a} - (\partial_{t} N_{a}) \partial_{v} - (E_{a} \Phi) \partial_{v} \\ &= (\partial_{t} E_{a}^{j}) [\partial_{j} - N_{j} \partial_{v}] - E_{a}^{j}) [\partial_{t} N_{j} + \partial_{j} \Phi] \partial_{v} \\ &= (\partial_{t} E_{a}^{j} e_{j}^{b}) \hat{E}_{b} + F_{at} \hat{E}_{-} \end{split}$$

and

$$[\hat{E}_a, \hat{E}_b] = [E_a, E_b] - (E_a N_b - E_b N_a) \partial_v$$

= $c^f_{ab} \hat{E}_f - F_{ab} \hat{E}_-$

giving the (possibly) non-vanishing structure constants as

$$c^{f}_{ab}, c^{-}_{ab} = -F_{ab}, c^{b}_{+a} = (\partial_{t}E^{j}_{a}e^{b}_{j}), c^{-}_{+a} = F_{at}.$$

Now

$$\begin{split} d\hat{e}^{+} &= 0, \\ d\hat{e}^{-} &= \frac{1}{2} F_{ab} \, e^{a} \wedge e^{b} + F_{it} \, dx^{i} \wedge dt = \frac{1}{2} F_{ab} \, \hat{e}^{a} \wedge \hat{e}^{b} + F_{at} \, \hat{e}^{a} \wedge \hat{e}^{+}, \\ d\hat{e}^{a} &= d \left(\hat{e}^{a}_{\mu} dx^{\mu} \right) = e^{a}_{i} dx^{i} = e^{a} = (\partial_{j} e^{a}_{i}) \, dx^{j} \wedge dx^{i} + (\partial_{t} e^{a}_{i}) \, dt \wedge dx^{i} \\ &= \omega^{a}_{bc} \, e^{b} \wedge e^{c} - (E^{i}_{b} \, \partial_{t} e^{a}_{i}) \, dt \wedge e^{b} = \omega^{a}_{bc} \, e^{b} \wedge e^{c} + (\partial_{t} E^{i}_{b} \, e^{a}_{i}) \, dt \wedge e^{b}, \end{split}$$

from which we see

$$\hat{\omega}^{a}_{BC} \,\hat{e}^{B} \wedge \hat{e}^{C} = \omega^{a}_{bc} \,e^{b} \wedge e^{c} + (\partial_{t} E^{i}_{b} \,e^{a}_{i}) \,\hat{e}^{+} \wedge \hat{e}^{b},$$
$$\hat{\omega}^{-}_{BC} \,\hat{e}^{B} \wedge \hat{e}^{C} = \frac{1}{2} F_{bc} \,\hat{e}^{b} \wedge \hat{e}^{c} + F_{at} \,\hat{e}^{a} \wedge \hat{e}^{+}.$$

Set

$$\alpha^a_b := e^a_i \, \partial_t E^i_b = c^a_{+b}, \quad \alpha_{ab} = -\alpha_{ba},$$

Using the antisymmetry of the connection then $0 = \hat{\omega}_{++A} = \hat{\omega}_{+A}^{-}$ and so

$$\hat{\omega}_{a+}^{-} = F_{at}, \quad \hat{\omega}_{ab}^{-} = \frac{1}{2}F_{ab}, \quad \hat{\omega}_{bc}^{a} = \omega_{bc}^{a}, \quad \hat{\omega}_{ab+}^{a} = -\frac{1}{2}F_{ab} - \frac{1}{2}\left[\partial_{t}E_{a}^{i}E_{ib} - \partial_{t}E_{b}^{i}E_{ia}\right] = -\frac{1}{2}F_{ab} + \alpha_{ab}.$$

From the structure of the connection we see that $\hat{R}^A_{\ B} \in \{\hat{R}^-_{\ a}, \hat{R}^a_{\ +}, \hat{R}^a_{\ b}\}$ and so $\widehat{\text{Ric}}_{AB} = \hat{R}^F_{\ AFB} = \hat{R}^f_{\ AfB}$. Thus the (possible) non-vanishing components of the Ricci tensor are

$$\widehat{\mathrm{Ric}}_{++} = \widehat{R}^f_{\ +f+}, \quad \widehat{\mathrm{Ric}}_{a+} = \widehat{R}^f_{\ af+}, \quad \widehat{\mathrm{Ric}}_{ab} = \widehat{R}^f_{\ afb}.$$

1.5 Einstein metrics

Now because $\hat{g}_{tv} = 1$ and $\hat{R}_{tv} = 0$, then (B, \hat{g}) is Einstein if and only if it is Ricci flat. With this we can follow the paper [1] to try and derive conditions on the functions N_i, Φ .

Insert lead in - left out to get calculation of after (43) done quicker

Define

$$H_{ij} = h_{ij,t}$$

$$H = h^{ij}H_{ij}$$

$$f_j = \nabla_i H_i^i - \nabla_j H,$$

then

$$\begin{split} f^i &= \nabla_j H^{ij} - h^{ij} \nabla_j H \\ &= (h^{ik} h^{jl} - h^{ij} h^{kl}) \nabla_j H_{kl} \,. \end{split}$$

We have shown previously

$$\nabla_{j}H_{kl} = h_{mk}\Gamma^{m}_{lj,t} + h_{ml}\Gamma^{m}_{kj,t}$$

$$\Rightarrow f^{i} = h^{jl}\Gamma^{i}_{lj,t} + h^{ik}\Gamma^{j}_{kj,t} - 2h^{ij}\Gamma^{l}_{jl,t}$$

$$= h^{jk}\Gamma^{i}_{jk,t} - h^{ij}\Gamma^{k}_{jk,t}.$$

Hence

$$\begin{split} \nabla_{i}f^{i} &= h^{jk}\nabla_{i}\Gamma^{i}_{jk,t} - h^{ij}\nabla_{i}\Gamma^{k}_{jk,t} \\ &= h^{ij}\left[\nabla_{k}\Gamma^{k}_{ij,t} - \nabla_{i}\Gamma^{k}_{jk,t}\right] \\ &= h^{ij}\left[\Gamma^{k}_{ij,tk} + \Gamma^{k}_{kl}\Gamma^{l}_{ij,t} - \Gamma^{l}_{ki}\Gamma^{k}_{lj,t} - \Gamma^{l}_{kj}\Gamma^{k}_{il,t} - \Gamma^{k}_{jk,ti} + \Gamma^{l}_{ij}\Gamma^{k}_{lk,t}\right] \\ &= h^{ij}\left[\partial_{t}\left(\Gamma^{k}_{ij,k} - \Gamma^{k}_{jk,i} + \Gamma^{k}_{kl}\Gamma^{l}_{ij} - \Gamma^{k}_{il}\Gamma^{l}_{jk}\right) + \Gamma^{k}_{il}\Gamma^{l}_{jk,t} - \Gamma^{l}_{ki}\Gamma^{k}_{lj,t}\right] \\ &= h^{ij}R^{k}_{ikt} = h^{ij}R_{ij,t} \end{split}$$

1.6 Bargman Structures

A Bargmann structure (B, \hat{g}, ξ) is a principal bundle $\pi : B \to M$, where dim $B = \dim M + 1$, equipped with a Lorentzian metric \hat{g} and nowhere vanishing null vector field ξ such that with

respect to the usual Levi-Civita connection $\hat{\nabla}\xi = 0$. Then $M := B/\mathbb{R}\xi$ is equipped with a Newton-Cartan geometry (M, K, θ, ∇) where

$$K = \pi_* \hat{g}^{-1}, \qquad \hat{g}(\xi) = \pi^* \theta,$$

K is degenerate and $\pi^*\theta$ generates ker K.

In our setting we have a metric of Brinkmann form

$$\hat{g} = h + dt \otimes \omega + \omega \otimes dt, \quad \omega = dv - \Phi(x,t) dt + N_i(x,t) dx^i, \quad h = h_{ij}(x,t) dx^i \otimes dx^j.$$

Then $\xi = \partial_v$, $\theta = dt$.

2 Introduction

Let us start with a bit of back story, so we can develop and go further. This will be built off of [2].

2.1 Galilei and Newton Structures

We start with some more classical work.

Definition 2.1 (Galilei group). The Galilei group is the matrix group

$$G = \left\{ \begin{pmatrix} R & b & c \\ 0 & 1 & e \\ 0 & 0 & 1 \end{pmatrix} \mid R \in SO(d), \ , b, c \in \mathbb{R}^n, \ e \in \mathbb{R} \right\} \le GL_{d+2}(\mathbb{R})$$

We think of G as acting on (x, t, 1) s.t.

$$\begin{pmatrix} R & b & c \\ 0 & 1 & e \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t \\ 1 \end{pmatrix} = \begin{pmatrix} Rx + tb + c \\ t + e \\ 1 \end{pmatrix}$$

with this action we see:

- 1. R are rotations in space
- $2. \ b$ are boosts
- 3. c, e are translations in space and time respectively

With this interpretation we have

Definition 2.2. The **Homogeneous Galilei group/Euclidean group** H is the group of Galilean transformations that preserve the spatio-temporal origin (0,0,1).

Proposition 2.3. H consists of matrices of the form

$$\begin{pmatrix} R & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} .$$

Moreover $H \cong SO(d) \ltimes \mathbb{R}^d$ as a Lie group (not a as a Lie transformation group [4]) is faithfully represented by matrices of the form

$$\begin{pmatrix} R & b \\ 0 & 1 \end{pmatrix} \in GL_{d+1}.$$

Proof. See my CQIS notes for a more built up discussion of this fact.

We now recall the following def:

Definition 2.4. The **frame bundle** of a k-dimensional smooth manifold M is GL(M), the GL_k -principal fibre bundle with fibres at $x \in M$ given by the space of ordered bases of T_xM .

Definition 2.5. A proper Galilei structure H(M) is a reduction of structure group of the frame bundle of a (d+1)-dimensional M via $H \hookrightarrow GL_{d+1}$.

References

- [1] H. W. Brinkmann. Einstein spaces which are mapped conformally on each other. *Mathematische Annalen*, 94(1):pp. 119–145, 1925. ISSN 00255831. doi:10.1007/BF01208647.
- [2] C. Duval, G. Burdet, H. P. Künzle, M. Perrin. Bargmann structures and Newton-Cartan theory. *Physical Review D*, 31(8):pp. 1841–1853, 1985. ISSN 05562821. doi:10.1103/PhysRevD.31.1841.
- [3] Christian Duval, Gary Gibbons, Péter Horvthy. Celestial mechanics, conformal structures, and gravitational waves. *Physical Review D*, 43(12):pp. 3907–3922, 1991. ISSN 05562821. doi: 10.1103/PhysRevD.43.3907.
- [4] H. P. Künzle. Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics. Ann. Inst. H. Poincaré Sect. A (N.S.), 17:pp. 337–362, 1972. ISSN 0246-0211.