Wheeled Mobile Robots

Assignment 2

1.	If the number of controllable degree of freedom is equal to the total degree of freedom, then system is called as a
	○ mobile robot
	○ holonomic system
	○ nonholonomic system
	○ differential drive
	○ structure
	○ manipulator
	Correct answer is holonomic system
2.	In a two fixed wheel (differential) drive mobile robot, the left side wheel angular velocity is 0.5 rad/s and the right side wheel angular velocity is 1.5 rad/s , both wheels are same size and the wheel radius is 10 cm . What will be the longitudinal velocity (u) of the robot with respect to the body frame?
	\bigcirc 0.2 m/s
	\bigcirc 0.1 m/s
	\bigcirc 2 m/s
	\bigcirc 1 m/s
	\bigcirc 0.05 m/s
	$\bigcirc 0.025 \text{ m/s}$
	Correct answer is 0.1 m/s
3.	In a two fixed wheel (differential) drive mobile robot, the left side wheel angular velocity is 0.5 rad/s and the right side wheel angular velocity is 1.5 rad/s, both wheels are same size and the wheel radius is 10 cm. The wheels are placed along the y -axis of body frame and equal distance from the body frame. The distance between the wheel to wheel along y -axis is 40 cm. What will be the angular velocity (r) of the robot with respect to the body frame?
	\bigcirc -0.25 rad/s
	\bigcirc 0.25 rad/s
	\bigcirc -0.5 rad/s
	\bigcirc 0.5 rad/s
	\bigcirc -0.1 rad/s
	\bigcirc 0.1 rad/s
	Correct answer is 0.25 rad/s
4	If the rank of the wheel configuration matrix of a wheeled mobile robot is less than three, then the system is called as a
	○ mobile robot
	○ holonomic system
	○ nonholonomic system
	○ differential drive
	○ structure
	○ manipulator
	Correct answer is nonholonomic system

- 5. For a given mobile robot with four mecanum wheels, the wheel configuration matrix (W) is
 - , if the robot is to move in a lateral direction (upwards), then what will

be the right combination of these wheel angular velocities?

- $\bigcirc \omega_1 = \omega, \omega_2 = \omega, \omega_3 = \omega, \omega_4 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = -\omega, \omega_4 = -\omega$
- $\bigcirc \omega_1 = \omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = -\omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = \omega, \omega_3 = -\omega, \omega_4 = \omega$
- $\bigcirc \omega_1 = \omega, \omega_2 = \omega, \omega_3 = -\omega, \omega_4 = -\omega$

Correct answer is $\omega_1 = \omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = -\omega$

- 6. For a given mobile robot with four mecanum wheels, the wheel configuration matrix (W) is
 - , if the robot is to rotate in the counter clockwise direction (upwards),

then what will be the right combination of these wheel angular velocities?

- $\bigcirc \omega_1 = \omega, \omega_2 = \omega, \omega_3 = \omega, \omega_4 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = -\omega, \omega_4 = -\omega$
- $\bigcirc \omega_1 = \omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = -\omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = \omega, \omega_3 = -\omega, \omega_4 = \omega$
- $\omega_1 = \omega, \omega_2 = \omega, \omega_3 = -\omega, \omega_4 = -\omega$

Correct answer is $\omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = \omega, \omega_4 = \omega$

- 7. For a given mobile robot with three omni-directional wheels, the wheel configuration matrix (W) is
 - , if the robot is to move in a lateral direction (upwards), then what will be the $\lfloor \frac{1}{3l} - \frac{1}{3l} \rfloor$ right combination of these wheel angular velocities?

- $\bigcirc \ \omega_1 = \omega, \omega_2 = \omega, \omega_3 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = -\omega$
- $\bigcirc \omega_1 = \omega, \omega_2 = -\frac{\omega}{2}, \omega_3 = -\frac{\omega}{2}$
- $\bigcirc \omega_1 = \omega, \omega_2 = \frac{\omega}{2}, \omega_3 = \frac{\omega}{2}$
- $\bigcirc \omega_1 = 0, \omega_2 = -\omega, \omega_3 = \omega$
- $\bigcirc \omega_1 = 0, \omega_2 = \omega, \omega_3 = -\omega$

Correct answer is $\omega_1 = \omega, \omega_2 = -\frac{\omega}{2}, \omega_3 = -\frac{\omega}{2}$

- 8. For a given mobile robot with three omni-directional wheels, the wheel configuration matrix (\mathbf{W}) is
 - , if the robot is to move in a longitudinal direction (forward), then what will be

the right combination of these wheel angular velocities?

- $\bigcirc \ \omega_1 = \omega, \omega_2 = \omega, \omega_3 = \omega$
- $\bigcirc \omega_1 = -\omega, \omega_2 = -\omega, \omega_3 = -\omega$
- $\bigcirc \omega_1 = \omega, \omega_2 = -\frac{\omega}{2}, \omega_3 = -\frac{\omega}{2}$
- $\bigcirc \omega_1 = \omega, \omega_2 = \frac{\omega}{2}, \omega_3 = \frac{\omega}{2}$
- $\bigcirc \omega_1 = 0, \omega_2 = -\omega, \omega_3 = \omega$
- $\bigcirc \omega_1 = 0, \omega_2 = \omega, \omega_3 = -\omega$

Correct answer is $\omega_1 = 0, \omega_2 = -\omega, \omega_3 = \omega$

9. For a given land-based mobile robot, the wheel configuration matrix is given as $\mathbf{W} \in \mathbb{R}^{m \times n}$ and m > n, then what will be the pseudo inverse, $\mathbf{W}^+ = \underline{\hspace{1cm}}$ at what condition this is true? and when you will get an identity matrix?

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| \neq 0, \mathbf{W} \mathbf{W}^{+} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| = 0, \mathbf{W} \mathbf{W}^{+} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| \neq 0, \mathbf{W}^{+} \mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \left(\mathbf{W}^{T}\mathbf{W}\right)^{-1}\mathbf{W}^{T}, \left|\left(\mathbf{W}^{T}\mathbf{W}\right)\right| \neq 0, \mathbf{W}^{+}\mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^+ = \left(\mathbf{W}^T \mathbf{W}\right)^{-1} \mathbf{W}^T, \left| \left(\mathbf{W}^T \mathbf{W}\right) \right| = 0, \mathbf{W}^+ \mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \left(\mathbf{W}^{T}\mathbf{W}\right)^{-1}\mathbf{W}^{T}, \left|\left(\mathbf{W}^{T}\mathbf{W}\right)\right| \neq 0, \mathbf{W}\mathbf{W}^{+} = \mathbf{I}.$$

Correct answer is
$$\mathbf{W}^+ = (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T, |(\mathbf{W}^T \mathbf{W})| \neq 0, \mathbf{W}^+ \mathbf{W} = \mathbf{I}.$$

10. For a given land-based mobile robot, the wheel configuration matrix is given as $\mathbf{W} \in \mathbb{R}^{m \times n}$ and m < n, then what will be the pseudo inverse, $\mathbf{W}^+ = \underline{\hspace{1cm}}$ at what condition this is true? and when you will get an identity matrix?

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| \neq 0, \mathbf{W} \mathbf{W}^{+} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| = 0, \mathbf{W} \mathbf{W}^{+} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \mathbf{W}^{T} \left(\mathbf{W} \mathbf{W}^{T} \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^{T} \right) \right| \neq 0, \mathbf{W}^{+} \mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \left(\mathbf{W}^{T}\mathbf{W}\right)^{-1}\mathbf{W}^{T}, \left|\left(\mathbf{W}^{T}\mathbf{W}\right)\right| \neq 0, \mathbf{W}^{+}\mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = (\mathbf{W}^{T}\mathbf{W})^{-1}\mathbf{W}^{T}, |(\mathbf{W}^{T}\mathbf{W})| = 0, \mathbf{W}^{+}\mathbf{W} = \mathbf{I}.$$

$$\bigcirc \mathbf{W}^{+} = \left(\mathbf{W}^{T}\mathbf{W}\right)^{-1}\mathbf{W}^{T}, \left|\left(\mathbf{W}^{T}\mathbf{W}\right)\right| \neq 0, \mathbf{W}\mathbf{W}^{+} = \mathbf{I}.$$

Correct answer is $\mathbf{W}^+ = \mathbf{W}^T \left(\mathbf{W} \mathbf{W}^T \right)^{-1}, \left| \left(\mathbf{W} \mathbf{W}^T \right) \right| \neq 0, \mathbf{W} \mathbf{W}^+ = \mathbf{I}.$

11. The Euler method is a first-order method, which means that the local error (error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size.

O True

Correct answer is **True**

12. There are less equations than unknowns (m;n), then the solution is under-specified.

 \bigcirc True

Correct answer is **True**

13. If the given matrix $\mathbf{A} = \begin{bmatrix} 0.1 & 0.1 \\ 0 & 0 \\ 0.5 & -0.5 \end{bmatrix}$, what will be the Moore Penrose pseudo inverse matrix of \mathbf{A} ?

$$\bigcirc \mathbf{A}^+ = \begin{bmatrix} 5 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^+ = \begin{bmatrix} 5 & 0 & 1 \\ -5 & 0 & 1 \end{bmatrix}$$

$$\bigcirc \ \mathbf{A}^{+} = \begin{bmatrix} 0.5 & 0 & 0.1 \\ 0.5 & 0 & -0.1 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^+ = \begin{bmatrix} 1 & 0 & 5 \\ 1 & 0 & -5 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^+ = \begin{bmatrix} 1 & 0 & 5 \\ -1 & 0 & 5 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^+ = \begin{bmatrix} 0.1 & 0 & 0.5 \\ 0.1 & 0 & -0.5 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 1 & 0 & 5 \\ -1 & 0 & 5 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.1 & 0 & 0.5 \\ 0.1 & 0 & -0.5 \end{bmatrix}$$

$$\bigcirc \mathbf{A}^{+} = \begin{bmatrix} 0.1 & 0 & 0.5 \\ -0.1 & 0 & 0.5 \end{bmatrix}$$

Correct answer is $\mathbf{A}^+ = \begin{bmatrix} 5 & 0 & 1 \\ 5 & 0 & -1 \end{bmatrix}$