Test-3-version A

No work = No credit!

- 1. Find the volume of solid bounded by cylinder $x^2 + y^2 = r^2$ and $y^2 + z^2 = r^2$. (15 pt. Hint: this question is from WebAssign 4.1, no need to change coordinates)
- 2. Find the center of mass of the solid E, which is the cube given by $0 \le x \le a$, $0 \le y \le a$, and $0 \le z \le a$, density $\sigma(x, y, z) = x^2 + y^2 + z^2$. (15 pt)
- 3. Find the area of the region inside $r = 2\cos(2\theta)$ and outside $r = \cos(2\theta)$, $\theta \in [-\pi/4, \pi/4]$.
- 4. Find the volume of the solid that lies between $z = x^2 + y^2$ and $x^2 + y^2 + z^2 = 2$.
- 5. Evaluate $\iiint_E \sqrt{x^2+y^2+z^2}dV$, where E lies above $z=\sqrt{x^2+y^2}$ and between $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$. (15 pt)
- 6. Evaluate the $\int_C x^2 y \ ds$, $C: \ x = \cos(t), \ y = \sin(t), \ z = t, \ 0 \le t \le \pi/2$. (15 pt)
- 7. Evaluate the following integrals (20 pt)
 - a) $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F} = \langle x^2y^3, x^3y^2 \rangle$ and $C : \overrightarrow{r}(t) = \langle t^3 2t, t^3 + 2t \rangle$, $0 \le t \le 1$
 - b) $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F} = \langle x^2 + y^2, x^2 y^2 \rangle$, C is the positively oriented triangle with vertices (0,0), (2,1), and (0,1)

Test-2-version B

No work = No credit!

- 1. Find the volume of solid bounded by cylinder $x^2 + y^2 = r^2$ and $y^2 + z^2 = r^2$. (15 pt. Hint: this question is from WebAssign 4.1, no need to change coordinates)
- 2. Find the center of mass of the solid E, which is the cube given by $0 \le x \le a$, $0 \le y \le a$, and $0 \le z \le a$, density $\sigma(x, y, z) = x^2 + y^2 + z^2$. (15 pt)
- 3. Find the area of the region inside $r = 2\cos(2\theta)$ and outside $r = \cos(2\theta)$, $\theta \in [-\pi/4, \pi/4]$.
- 4. Find the volume of the solid that lies between $z = x^2 + y^2$ and $x^2 + y^2 + z^2 = 2$.
- 5. Evaluate $\iiint_E \sqrt{x^2+y^2+z^2}dV$, where E lies above $z=\sqrt{x^2+y^2}$ and between $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=4$. (15 pt)
- 6. Evaluate the $\int_C x^2 y \ ds$, $C: x = \sin(t), y = \cos(t), z = t, 0 \le t \le \pi/2$. (15 pt)
- 7. Evaluate the following integrals (20 pt)
 - a) $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F} = \langle x^2y^3, x^3y^2 \rangle$ and $C: \overrightarrow{r}(t) = \langle t^3 2t, t^3 + 2t \rangle$, $0 \le t \le 1$
 - b) $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F} = \langle x^2 + y^2, x^2 y^2 \rangle$, C is the positively oriented triangle with vertices (0,0), (2,1), and (0,1)