이름: _

Multi level translation에서 segment table과 physical memory의 내용이 다음과 같을 때 다음 virtual address를 physical address로 변환 하여라. Virtual address는 4bits of segment #, 8bits of virtual page #, 12bits of offset으로 구성되었다.

Segment table

	Page table pointer	Page table size				
0	1000	0x5				
1	0	0				
2	2000	0x4				

Physical Memory

	Thysical Memory
1000	0x6
	0xb
	0x1
	0x3
	0x2
	0x8
2000	0x12
	0x17
	0x13
	0хс
	0x19
	0x20
	•

1) 2090

2) 205114

Cache

Data를 위한 주소가 <tag, index, select> 형식이고 Reference stream이 아래와 같을 때

- <0x20, 0x04, 0x00> <0x60, 0x02, 0x01> <0x20, 0x04, 0x00> <0x30, 0x02, 0x03> <0x20, 0x06, 0x02> <0x30, 0x02, 0x01> <0x60, 0x02, 0x00> <0xd0, 0x02, 0x03> <0x60, 0x02, 0x00> <0x30, 0x02, 0x03> <0x20, 0x02, 0x00> <0x60, 0x02, 0x01> <0xa0, 0x02, 0x00>
- 3) tag 값의 알려진 마지막 상태를 아래 cache memory에 모두 쓰시오.

Cache Tag	Cache Data			

4) Conflict를 모두 피하려면 최소 몇 개 bank의 set associative cache를 구성하면 되는가?

학번: _____ 이름: ____ 2/2

Address Translation

Paged page table

- 5) X의 가상주소를 **이진수(4bits)**로 쓰시오
- 6) X와 ()의 위치를 고려하여 X가 포함된 Virtual page가 Physical page frame으로 매핑되는 정보를 복원할 때 가,나,다,라,마 의 값을 쓰시오(알 수 없는 경우 "모름"이라 쓰시오)

Paged page table 000 001 010 011 100 (가) 101 110 111

MMU		
Page table	10000	
Page table	Lŀ	
size	ᅴ	

- ' '		' '
Physical Memory		
#	00	
e frame	01	(가)
Page	10	
		Х
	11	
Ker	nel	
spa	ace	
100	000	
100	001	다
100	010	라
100	011	마
101	100	
101	101	

Multi-level translation

- 7) X의 가상주소를 **이진수(5bits)**로 쓰시오
- 8) X가 있는 page가 physical page frame으로 매 핑되는 정보를 복원할 때 가,나,다,라,마 의 값 을 쓰시오(알 수 없는 경우 "모름"으로 쓰시오 오. 10000 이상은 커널 공간에서의 주소이다) Segment Number는 Text: 0, Data: 1, Stack: 2, Heap: 3 으로 지정한다.

Physical Memory		
	00	
# 0)		
frame	01	
ge f		
Ра	10	
		Х
	11	
Kernel		
space		
10000		
10001		
10010		
10011		
10	100	다
10101		라
10110		마
10111		
11000		
11001		
11010		