BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 11-16

10 Well Formed Formulas

10.1 What is allowable formula ϕ ?

- Formulas are string over the alphabet $\{p,q,r..\} \cup \{p_1,p_2,...\} \cup \{\neg,\wedge,\vee,\rightarrow,(,)\}$.
- But not all strings are admissible. e.g $(\neg)() \land pqr \rightarrow$.

Definition: The well formed formulas of propositional logic are those which we obtain by using the construction rules below and only those by applying them finitely many times.

- 1. atom: Every propositional atom p, q, r, ... or $p_1, p_2, p_3, ...$ is a well formed formula.
- 2. \neg : If ϕ is a well formed formula then so is $\neg \phi$.
- 3. \wedge : If ϕ and ψ are well formed formulas so is $\phi \wedge \psi$.
- 4. \vee : If ϕ and ψ are well formed formulas so is $\phi \vee \psi$.
- 5. \rightarrow : If ϕ and ψ are well formed formulas so is $\phi \rightarrow \psi$.

10.2 How do we show that a formula is well formed?

Construct in a top down manner, a parse tree where its leaves are atoms. e.g.

$$(((\neg p) \lor q) \to (p \land (q \lor (\neg r))))$$

• Parse trees of well formed formulas are either an atom as root or the root contains \neg , \land , \lor or \rightarrow .

- In case of \neg , there is only one sub-tree coming out of the root. In case of \lor, \land, \rightarrow these are forms.
- A Sub-formula of a formula corresponds to a sub-tree of the parse tree.
 - You can obtain the formula back by using In-order traversal of the parse tree.
 - In-order traversal can be obtained by recursively printing left subtree, printing root, printing right sub-tree.
 - Pre-order traversal can be obtained by recursively printing root, printing left sub-tree, printing right sub-tree.
 - Post-order traversal can be obtained by recursively printing left subtree, printing right sub-tree, printing root.

10.3 Height of a Parse Tree:

Definition: Given a well-formed formula /phi, its height is defined to be 1 plus length of the longest path in the parse tree starting from the root.

Simple example of different arithmetic notations is as follows:

• x+y: Infix Notation

• xy+: Postfix Notation

• +xy: Prefix Notation

11 Mathematical Induction

- C.F. Gauss derived the formula of $\sum_{n=1}^{n} = \frac{n(n+1)}{2}$ as a child prodigy.
- One of the ways to prove this is by the use of mathematical induction.

Suppose, we wish to show $M(n), M \in N$.

- 1. Base Case: Natural number 1 has the property i.e. we have a proof of M(1).
- 2. **Inductive Hypothesis**: We assume that M(n) is true.
- 3. **Induction Step**: Prove that if M(n) is true then M(n+1) is true.

Theorem: The sum of the first n natural numbers in equal to $\frac{n(n+1)}{2}$

Proof: Let M(n): the sum of the first n natural numbers not equal to $\frac{n(n+1)}{2}$.

• Base Case: To show that M(1) is true.

The sum of first one natural number is 1. Furthermore M(1) states that the sum of first natural number equals $\frac{1(1+1)}{2} = 1$.

 $\therefore M(1)$ is true.

• Inductive Step: Suppose M(n) is true. Consider M(n+1): The sum of the first (n+1) natural numbers is $\frac{(n+1)(n+2)}{2}$.

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

By the induction hypothesis, M(n) is true.

$$\sum_{i=1}^{n+1} = \frac{n(n+1)}{2} + \frac{2(n+1)}{2}$$
$$\sum_{i=1}^{n+1} = \frac{(n+1)(n+2)}{2}$$

M(n+1) is true.

12 Course of Values Induction or Strong Induction

- 1. Base Case: Natural number 1 has the property i.e. we have a proof of M(1).
- 2. **Inductive Step**: We assume that $M(1) \wedge M(2) \wedge M(3) \dots \wedge M(n)$ is true and show that M(n+1) is true.

Statements on parse trees are often shown by strong induction on height. It is also called as structural Induction.

Theorem: For every well-formed proposition logic formula, the number of left brackets equal the number of right brackets.

Proof: Course of values induction on the height og the parse tree corresponding to the well-formed formula.

Let M(n): All formulas of height n, have the same number of left and right brackets.

- Base Case: We will show that M(1) is true. A parse tree of height 1 has only an atom and no bracket. Hence M(1) is true.
- Inductive Step: Suppose M(1), M(2),M(n) is true, we will show that M(n+1) is true.

A parse tree of height ≥ 2 has as its root either of $\neg, \lor, \land, \rightarrow$. Suppose the root as \neg . Then the sub-tree rooted at \neg is of height n.

By the induction hypothesis property as true for the formula ϕ corresponding to that of sub-tree. The formula corresponding to the full tree is $(\neg \phi)$, which has equal number of left and right brackets. Since we added one left bracket and one right bracket.

- Case (2): Let the root be \vee . If this i so, there exist two well formed formulas ϕ_1 and ϕ_2 so that the present formula is $(\phi_1 \vee \phi_2)$. The parse trees corresponding to the formulas ϕ_1 and ϕ_2 have height less than or equal to n.
- ... by the induction hypothesis both these parse trees have equal number of left and right brackets each.
- \therefore $(\phi_1 \lor \phi_2)$ has equal number of left and right brackets. Since this adds one more left (right) bracket to the sum of left brackets of $(\phi_1 \lor \phi_2)$.

Case (3), (4) correspond to the binary connectives \land, \rightarrow , for which the argument is similar.

13 Semantics of Propositional Logic

Def 1: The set of truth values contains two elements - T and F, where T represents 'true' and F corresponds to 'false'.

Def 2: The valuation on model of formula ϕ is an assignment of each propositional atom in ϕ to a truth value. A truth table lists all valuations of a formula ϕ .

Do all valid sequents preserve truth computed by our truth table semantics?

Def: If for all the valuations in which all of $\phi_1, \phi_2, ..., \phi_n$ evaluate to T and formula χ also evaluates to T, we say that (the semantic entailment relation) $\phi_1, \phi_2, ..., \phi_n \models \chi$ holds and we call \models as the semantic entailment relation.

Examples:

1. $p \land q \vDash p$ holds.

p	q	$p \wedge q$	p	$p \lor q$
F	F	F	F	F
F	Τ	F	F	T
T	F	\mathbf{F}	Τ	Т
Τ	Τ	Т	Τ	Т

- 2. $p \lor q \vDash p$ does not holds.
- 3. $p \models q \lor \neg q$ holds.

13.1 Soundness of Propositional Logic

Theorem: Let $\phi_1, \phi_2, ..., \phi_n$ and ψ be propositional logic formulas. If $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, ..., \phi_n \models \psi$ holds.

Proof: Since $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is valid, we know that there is a proof of ψ from the premises $\phi_1, \phi_2, ..., \phi_n$.

We will do course of values induction on the length of this proof (the numbering lines in it).

M(R): For all the sequents $\phi_1, \phi_2, ..., \phi_n \vdash \psi, n \geq 0$, which have a proof of length R. It is the case that $\phi_1, \phi_2, ..., \phi_n \models \psi$ holds.

We will show M(k) is true for $k \in N$ by course of values induction.

Example: Consider $p \land q \rightarrow r \vdash p \rightarrow q \rightarrow r$.

Solution:

 $1.p \wedge q \rightarrow r \quad \text{premise}$

$$7.p \rightarrow (q \rightarrow r) \rightarrow i 2-6$$

1. Base Case: We wish to show M(1) is true. This is an example of sequent with one line proof.

$1.\phi$ premise

Above is a proof that shows $\phi \vdash \phi$. $\phi \models \phi$ hols because whenever ϕ is true, ϕ is true. $\vdash \phi \lor \neg \phi$

$$1.\phi \lor \neg \phi$$
 LEM

 $\vDash \phi \lor \neg \phi$ For every valuation for ϕ is true, $\neg \phi$ is false. Therefore, $\phi \lor \neg \phi$ is true. Similarly, for every valuation for ϕ is false, $\neg \phi$ is true.

- \therefore for every valuation $\phi \lor \neg \phi$ is true.
- $\therefore \vDash \phi \lor \neg \phi \text{ holds.}$
- 2. **Inductive Step**: We assume that shortest proof of the sequent $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is of length K. We assert the inductive hypothesis of all sequents that have a proof of length < K.

A proof has the structure

1.
$$\phi_1$$
 premise

 $n. \ \phi_n$ premise $K. \ \psi$ justification

Two issues the proof needs to deal with.

- (a) What happens in between. (We hope this will be solved by induction hypothesis).
- (b) What is the last rule? (Proof needs to consider all such cases).

Cases (corresponding to which was the last rule applied)

(a) Consider $\wedge i$ to be the last rule applied. ψ has to be of the form $\psi_1 \wedge \psi_2$ citing lines K_1 and K_2 respectively. K_1 and K_2 ; K.

Lines 1- K_1 constitute a proof of the sequent. $\phi_1, \phi_2, ..., \phi_n \vdash \psi_1$. Likewise, Lines 1- K_2 constitute a proof of the sequent. $\phi_1, \phi_2, ..., \phi_n \vdash \psi_2$.

Induction hypothesis is that M(1),..,M(k-1) is true. By the induction hypothesis $\phi_1,\phi_2,...,\phi_n \vDash \psi_1$ holds and $\phi_1,\phi_2,...,\phi_n \vDash \psi_2$ holds.

$$1.\phi_1, \phi_2, ..., \phi_n \vDash \psi_1 2.\phi_1, \phi_2, ..., \phi_n \vDash \psi_2$$