Chapitre 8 : Heuristiques d'amélioration locale et métaheuristiques

INF4705 - Analyse et conception d'algorithmes

Gilles Pesant Simon Brockbank

École Polytechnique Montréal gilles.pesant@polymtl.ca, simon.brockbank@polymtl.ca

Hiver 2017

Plan

- Introduction
- 2 Heuristiques d'amélioration locale
- Métaheuristiques

Introduction

Catégories d'algorithme d'optimisation

- exact
- approximatif
- heuristique

Plan

- Introduction
- 2 Heuristiques d'amélioration locale
- Métaheuristiques

Constat

L'espace des solutions est trop vaste pour être exploré en entier.

source: © 2016. Nevron Software LLC. Chapitre 8

Observation / Hypothèse de travail

Des solutions "voisines" ont des valeurs "voisines".

source: © 2016. Nevron Software LLC. Chapitre 8

Principe général

À partir d'une solution initiale s_0 , appliquer une succession d'améliorations locales afin d'arriver à une meilleure solution s_t (selon une fonction d'évaluation f) après t itérations.

Patron de conception

```
Démarrer avec une certaine solution s_0; i \leftarrow 0; tant que \exists s \in V_{s_i} telle que f(s) > f(s_i) i \leftarrow i+1; s_i \leftarrow s; retourner s_i;
```

Décisions de conception

- Définir le voisinage V_s d'une solution s, qui définit les améliorations locales à considérer.
- Est-ce qu'on choisit le meilleur voisin ou le premier voisin améliorant?

Avantages

- Mise en oeuvre facile
- Consommation de ressources moins sensible à la taille de l'exemplaire
- Algorithme "anytime":
 à tout moment, on peut retourner une solution (s_i)

Inconvénients

On s'arrête à un optimum local

Soln 3 est un optimum local. Soln 9 est l'optimum global.

Localisation d'entrepôts

On doit affecter un entrepôt de ravitaillement parmi *m* à chacun de *n* magasins d'une chaîne de manière à minimiser la somme des coûts de ravitaillement (et d'ouverture d'entrepôt).

Localisation d'entrepôts

Voisinage ré-affectation

On change l'affectation d'un magasin.

 $\Theta(nm)$ voisins

Localisation d'entrepôts

Voisinage échange

On échange les affectations de deux magasins.

 $\Theta(n^2)$ voisins

Voyageur de commerce

Problème

Faire la tournée d'un ensemble de villes en minimisant la distance totale parcourue.

Voisinage k-échange (d'arêtes)

Tournées voisines obtenues en remplaçant un petit nombre d'arêtes par autant de nouvelles arêtes.

Algorithme k-opt

- **1** Démarrer avec une certaine tournée τ ;
- **2 tant que** on peut remplacer k arêtes a_1, \ldots, a_k de τ par k autres a'_1, \ldots, a'_k reformant une tournée moins longue $\tau \leftarrow \tau \{a_1, \ldots, a_k\} + \{a'_1, \ldots, a'_k\};$
- \odot retourner τ ;
- $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ façons de choisir les arêtes à remplacer, $k \ll n$
- $\Omega(n^k)$ voisins (plusieurs choix pour reformer une tournée)

	В	C	D	Ε
Α	3	4	2	7
В		4	5	3
C			5	8
D				6

Tournée initiale τ ; Distance totale = 25

	В	C	D	Ε
Α	3	4	2	7
В		4	5	3
C			5	8
D				6

Tournée initiale τ ; Distance totale = 25

	В	C	D	Ε
Α	3	4	2	7
В		4	5	3
C			5	8
D				6

Distance totale = 23

	В	C	D	Ε
Α	3	4	2	7
В		4	5	3
C			5	8
D				6

Distance totale = 19; Optimum local

Rappel : Mais les algorithmes conçus selon ce patron s'arrêtent à un optimum local.

source : ©2016. Nevron Software LLC.

Plan

- Introduction
- 2 Heuristiques d'amélioration locale
- Métaheuristiques

Métaheuristiques

Patrons de conception d'algorithmes heuristiques qui sont plus performants qu'une simple amélioration locale.

L'intuition de départ emprunte souvent au monde physique et même animal.

Deux grandes familles

- métaheuristiques à base de trajectoire : amélioration locale + mécanisme d'échappement à un optimum local
- métaheuristiques à base de populations : non plus une solution courante mais plusieurs

Métaheuristiques à base de trajectoire

- amélioration locale améliorée
- mécanisme pour échapper à un optimum local
- sans garantie de trouver l'optimum global

Elles sont très nombreuses; en voici quelques-unes :

Recuit simulé

S'inspire d'une technique visant à produire une forte structure cristalline chez une substance en la chauffant puis en la refroidissant lentement.

```
Patron de conception
```

```
tant que critère d'arrêt

choisir s dans V_{s_i} de façon aléatoire;

si f(s) \ge f(s_i) alors

s_{i+1} \leftarrow s;

sinon

s_{i+1} \leftarrow s avec probabilité p_i;

s_{i+1} \leftarrow s_i avec probabilité 1 - p_i;

i \leftarrow i + 1;
```

Recuit simulé

Décisions de conception

- Définir le voisinage V_s d'une solution s.
- Critère d'arrêt :
 - nombre limite d'itérations
 - nombre limite d'itérations sans avoir changé de solution
 - nombre limite d'itérations sans avoir amélioré la valeur de la solution d'un certain pourcentage
- Probabilité p_i : croît inversement avec i et $f(s_i) f(s)$, par exemple $p_i = e^{-(f(s_i) f(s))/\theta_i}$.
- Température θ_i: décroit par paliers selon un horaire de refroidissement.

Recherche tabou

Lorsqu'une solution est choisie, on l'inclut dans un ensemble $\mathcal T$ de solutions taboues pendant un certain nombre d'itérations afin d'éviter d'y retourner.

Patron de conception

```
... T \leftarrow \emptyset; tant que \mathit{crit\`ere}\ d'\mathit{arr\^et} choisir s \in V_{s_i} \setminus T qui maximise f; i \leftarrow i+1; s_i \leftarrow s; retirer de T certaines solutions qui ont "fait leur temps"; T \leftarrow T \cup \{s\}; ...
```

Recherche tabou

Décisions de conception

- Voisinage V_s
- Critère d'arrêt
- Durée du statut tabou : par exemple, un nombre d'itérations choisi aléatoirement dans l'intervalle [5, 10].

Note : En pratique, plutôt que de déclarer taboue une nouvelle solution, on le fait pour la modification inverse de celle ayant mené à cette solution.

Recherche à voisinage variable

On ne définit pas seulement un mais plusieurs voisinages $V_s^1, \dots V_s^k$ complémentaires.

Lorsqu'un certain voisinage nous a mené à un optimum local, on passe tout simplement à un autre voisinage afin d'y échapper.

```
Patron de conception
```

```
... j \leftarrow 1; tant que critère d'arrêt tant que \exists s \in V_{s_i}^j telle que f(s) > f(s_i) i \leftarrow i + 1; s_i \leftarrow s; j \leftarrow 1 + (j \mod k); ...
```

Recherche à voisinage variable

Décisions de conception

- Voisinages $V_s^1, \dots V_s^k$
- Critère d'arrêt
- Est-ce qu'on choisit le meilleur voisin ou le premier voisin améliorant?

Métaheuristiques à base de populations

On maintient une population de solutions dont la composition évolue au fil des itérations.

Plusieurs inspirations du règne animal : colonies de fourmis, d'abeilles, ...

Nous en décrivons une, assez répandue :

Algorithmes génétiques

Inspirés de la sélection naturelle. Chaque solution est représentée par un chromosome. La population évolue au fil des itérations par des croisements et mutations.

Patron de conception

```
Démarrer avec une certaine population P_0; i \leftarrow 0; tant que crit\`ere d'arr\^et P \leftarrow s\'election(P_i, \rho, f); P_c \leftarrow croisement(P); P_m \leftarrow mutation(P); P_{i+1} \leftarrow s\'election(P_i \cup P_c \cup P_m, |P_i|, f); i \leftarrow i+1; retourner s\'election(P_i, 1, f);
```

Algorithmes génétiques

Décisions de conception

- Définition d'un chromosome
- Taille de la population
- Critère d'arrêt
- Proportion de la population sélectionnée comme parents
- Probabilités de croisement et de mutation

Ex : Localisation d'entrepôts

Magasins $1, 2, \dots, 6$ Entrepôts A, B, C

Chromosome : entrepôt du magasin 1, entrepôt du magasin 2, ...

Croisement							
ParentX	Α	В	В	Α	С	В	
ParentX ParentY	C	В	Α	C	В	Α	
Enfant	Α	В	Α	С	В	Α	-
Enfant	C	В	В	A	C	В	

Mutation							
	A	В	В	Α	С	В	
	Α	В	В	Α	В	В	