数值计算

一、数值稳定性

- 1. 在计算机中执行数学运算需要使用有限的比特位来表达实数,这会引入近似误差。
 - 近似误差可以在多步数值运算中传递、积累,从而导致理论上成功的算法失败。因此数值算法设计时要考虑将累计误差最小化。
- 2. 当从头开始实现一个数值算法时,需要考虑数值稳定性。当使用现有的数值计算库(如 tensorflow)时,不需要考虑数值稳定性。

1.1 上溢出、下溢出

- 1. 一种严重的误差是下溢出 underflow: 当接近零的数字四舍五入为零时,发生下溢出。 许多函数在参数为零和参数为一个非常小的正数时,行为是不同的。如:对数函数要求自变量大于零,除法中要求除数非零。
- 2. 一种严重的误差是上溢出 overflow: 当数值非常大,超过了计算机的表示范围时,发生上溢出。
- 3. 一个数值稳定性的例子是 softmax 函数。

设 $\vec{\mathbf{x}} = (x_1, x_2, \dots, x_n)^T$,则 softmax 函数定义为:

$$\operatorname{softmax}(ec{\mathbf{x}}) = \left(rac{\exp(x_1)}{\sum_{j=1}^n \exp(x_j)}, rac{\exp(x_2)}{\sum_{j=1}^n \exp(x_j)}, \cdots, rac{\exp(x_n)}{\sum_{j=1}^n \exp(x_j)}
ight)^T$$

当所有的 x_i 都等于常数 c 时,softmax 函数的每个分量的理论值都为 $\frac{1}{n}$ 。

- 。 考虑 c 是一个非常大的负数(比如趋近负无穷),此时 $\exp(c)$ 下溢出。此时 $\frac{\exp(c)}{\sum_{j=1}^n \exp(c)}$ 分母为零,结果未定义。
- o 考虑 c 是一个非常大的正数(比如趋近正无穷),此时 $\exp(c)$ 上溢出。 $\frac{\exp(c)}{\sum_{i=1}^n \exp(c)}$ 的结果未定义。
- 4. 为了解决 softmax 函数的数值稳定性问题,令 $\vec{\mathbf{z}} = \vec{\mathbf{x}} \max_i x_i$,则有 softmax($\vec{\mathbf{z}}$) 的第 i 个分量为:

$$\begin{aligned} \operatorname{softmax}(\vec{\mathbf{z}})_i &= \frac{\exp(z_i)}{\sum_{j=1}^n \exp(z_j)} = \frac{\exp(\max_k x_k) \exp(z_i)}{\exp(\max_k x_k) \sum_{j=1}^n \exp(z_j)} \\ &= \frac{\exp(z_i + \max_k x_k)}{\sum_{j=1}^n \exp(z_j + \max_k x_k)} \\ &= \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} \\ &= \operatorname{softmax}(\vec{\mathbf{x}})_i \end{aligned}$$

- 。 当 $\vec{\mathbf{x}}$ 的分量较小时, $\vec{\mathbf{z}}$ 的分量至少有一个为零,从而导致 $\operatorname{softmax}(\vec{\mathbf{z}})_i$ 的分母至少有一项为 1,从而解决了下溢出的问题。
- 。 当 $\vec{\mathbf{x}}$ 的分量较大时, $\operatorname{softmax}(\vec{\mathbf{z}})_i$ 相当于分子分母同时除以一个非常大的数 $\exp(\max_i x_i)$,从而解决了上溢出。
- 5. 当 $\vec{\mathbf{x}}$ 的分量 x_i 较小时, $\operatorname{softmax}(\vec{\mathbf{x}})_i$ 的计算结果可能为 0 。此时 $\operatorname{log}\operatorname{softmax}(\vec{\mathbf{x}})$ 趋向于负无穷,因此存在数值稳定性问题。

- o 通常需要设计专门的函数来计算 log softmax ,而不是将 softmax 的结果传递给 log 函数。
- 。 log softmax(·) 函数应用非常广泛。通常将 softmax 函数的输出作为模型的输出。由于─般使用样本的 交叉熵作为目标函数,因此需要用到 softmax 输出的对数。
- 6. softmax 名字的来源是 hardmax 。
 - o hardmax 把一个向量 $\vec{\mathbf{x}}$ 映射成向量 $(0,\cdots,0,1,0,\cdots,0)^T$ 。即: $\vec{\mathbf{x}}$ 最大元素的位置填充 $\vec{\mathbf{1}}$,其它位置填充 $\vec{\mathbf{0}}$ 。
 - o softmax 会在这些位置填充 0.0~1.0 之间的值 (如:某个概率值)。

1.2 Conditioning

- 1. Conditioning 刻画了一个函数的如下特性: 当函数的输入发生了微小的变化时, 函数的输出的变化有多大。 对于 Conditioning 较大的函数, 在数值计算中可能有问题。因为函数输入的舍入误差可能导致函数输出的较大变化。
- 2. 对于方阵 $\mathbf{A} \in \mathbb{R}^{n \times n}$, 其条件数 condition number 为:

$$ext{condition number} = \max_{1 \leq i,j \leq n, i
eq j} \left| rac{\lambda_i}{\lambda_j}
ight|$$

其中 λ_i , $i=1,2,\cdots,n$ 为 **A** 的特征值。

- 方阵的条件数就是最大的特征值除以最小的特征值。
- 。 当方阵的条件数很大时,矩阵的求逆将对误差特别敏感(即: **A** 的一个很小的扰动,将导致其逆矩阵一个非常明显的变化)。
- 。 条件数是矩阵本身的特性, 它会放大那些包含矩阵求逆运算过程中的误差。

二、梯度下降法

- 1. 梯度下降法是求解无约束最优化问题的一种常见方法,优点是实现简单。
- 2. 对于函数: $f: \mathbb{R}^n \to \mathbb{R}$, 假设输入 $\vec{\mathbf{x}} = (x_1, x_2, \dots, x_n)^T$, 则定义梯度:

$$abla_{ec{\mathbf{x}}} f(ec{\mathbf{x}}) = \left(rac{\partial}{\partial x_1} f(ec{\mathbf{x}}), rac{\partial}{\partial x_2} f(ec{\mathbf{x}}), \cdots, rac{\partial}{\partial x_n} f(ec{\mathbf{x}})
ight)^T$$

函数的驻点满足: $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$ 。

3. 沿着方向 u 的方向导数 directional derivative 定义为:

$$\lim_{lpha o 0}rac{f(ec{\mathbf{x}}+lphaec{\mathbf{u}})-f(ec{\mathbf{x}})}{lpha}$$

其中 ü 为单位向量。

方向导数就是 $\frac{\partial}{\partial \alpha} f(\vec{\mathbf{x}} + \alpha \vec{\mathbf{u}})$ 。 根据链式法则,它也等于 $\vec{\mathbf{u}}^T \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})$ 。

3. 为了最小化 f ,则寻找一个方向:沿着该方向,函数值减少的速度最快(换句话说,就是增加最慢)。即:

$$\begin{aligned} & \min_{\vec{\mathbf{u}}} \vec{\mathbf{u}}^T \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}) \\ & s. \, t. \quad ||\vec{\mathbf{u}}||_2 = 1 \end{aligned}$$

假设 $\vec{\mathbf{u}}$ 与梯度的夹角为 θ ,则目标函数等于: $||\vec{\mathbf{u}}||_2 ||\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})||_2 \cos \theta$ 。

考虑到 $||\vec{\mathbf{u}}||_2 = 1$,以及梯度的大小与 θ 无关,于是上述问题转化为:

于是: $\theta^* = \pi$,即 $\vec{\mathbf{u}}$ 沿着梯度的相反的方向。即:梯度的方向是函数值增加最快的方向,梯度的相反方向是函数值减小的最快的方向。

因此:可以沿着负梯度的方向来降低 f 的值,这就是梯度下降法。

4. 根据梯度下降法,为了寻找 f 的最小点,迭代过程为: $\vec{\mathbf{x}}' = \vec{\mathbf{x}} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})$ 。其中: ϵ 为学习率,它是一个正数,决定了迭代的步长。

迭代结束条件为:梯度向量 $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})$ 的每个成分为零或者非常接近零。

- 5. 选择学习率有多种方法:
 - \circ 一种方法是:选择 ϵ 为一个小的、正的常数。
 - 。 另一种方法是:给定多个 ϵ ,然后选择使得 $f(\vec{\mathbf{x}}-\epsilon\nabla_{\vec{\mathbf{x}}}f(\vec{\mathbf{x}}))$ 最小的那个值作为本次迭代的学习率(即:选择一个使得目标函数下降最大的学习率)。

这种做法叫做线性搜索 line search 。

o 第三种方法是:求得使 $f(\vec{\mathbf{x}}-\epsilon \nabla_{\vec{\mathbf{x}}}f(\vec{\mathbf{x}}))$ 取极小值的 ϵ ,即求解最优化问题:

$$\epsilon^* = rg \min_{\epsilon, \epsilon > 0} f(\vec{\mathbf{x}} - \epsilon
abla_{ec{\mathbf{x}}} f(\vec{\mathbf{x}}))$$

这种方法也称作最速下降法。

■ 在最速下降法中,假设相邻的三个迭代点分别为: $\vec{\mathbf{x}}^{< k>}, \vec{\mathbf{x}}^{< k+1>}, \vec{\mathbf{x}}^{< k+2>}$,可以证明: $(\vec{\mathbf{x}}^{< k+1>} - \vec{\mathbf{x}}^{< k>}) \cdot (\vec{\mathbf{x}}^{< k+2>} - \vec{\mathbf{x}}^{< k+1>}) = 0$ 。即相邻的两次搜索的方向是正交的! 证明:

$$egin{aligned} \mathbf{ec{x}}^{< k+1>} &= \mathbf{ec{x}}^{< k>} - \epsilon^{< k>}
abla_{\mathbf{ec{x}}} f(\mathbf{ec{x}}^{< k>}) \ \mathbf{ec{x}}^{< k+2>} &= \mathbf{ec{x}}^{< k+1>} - \epsilon^{< k+1>}
abla_{\mathbf{ec{x}}} f(\mathbf{ec{x}}^{< k+1>}) \end{aligned}$$

根据最优化问题,有:

$$\epsilon^{< k>} = rg\min_{\epsilon, \epsilon>0} f(\mathbf{ec{x}}^{< k+1>})$$

将
$$\vec{\mathbf{x}}^{< k+1>} = \vec{\mathbf{x}}^{< k>} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>})$$
代入,有:

$$f(\mathbf{ec{x}}^{< k+1>}) = f(\mathbf{ec{x}}^{< k>} - \epsilon
abla_{\mathbf{ec{x}}} f(\mathbf{ec{x}}^{< k>}))$$

为求 $f(\vec{\mathbf{x}}^{< k+1>})$ 极小值,则求解: $\frac{\partial f(\vec{\mathbf{x}}^{< k>} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>}))}{\partial \epsilon}\mid_{\epsilon=\epsilon^{< k>}} = 0$ 。

根据链式法则:

$$\frac{\partial f(\vec{\mathbf{x}}^{< k>} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>}))}{\partial \epsilon} = \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>})) \cdot [-\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}^{< k>})] = 0$$

即: $abla_{ec{\mathbf{x}}} f(ec{\mathbf{x}}^{< k+1>}) \cdot
abla_{ec{\mathbf{x}}} f(ec{\mathbf{x}}^{< k>}) = 0$ 。则有: $(ec{\mathbf{x}}^{< k+2>} - ec{\mathbf{x}}^{< k+1>}) \cdot (ec{\mathbf{x}}^{< k+1>} - ec{\mathbf{x}}^{< k>}) = 0$ 。

- 此时迭代的路线是锯齿形的,因此收敛速度较慢。
- 6. 某些情况下如果梯度向量 $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})$ 的形式比较简单,则可以直接求解方程: $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$ 。 此时不用任何迭代,直接获得解析解。
- 7. 梯度下降算法:

○ 输入:

- 目标函数 *f*(**x**)
- 梯度函数 $g(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$
- 计算精度 e
- o 输出: $f(\vec{x})$ 的极小点 \vec{x}^*
- o 算法步骤:
 - 选取初始值 $\vec{\mathbf{x}}^{<0>} \in \mathbb{R}^n$, 置 k=0。
 - 迭代,停止条件为:梯度收敛或者目标函数收敛。迭代步骤为:
 - 计算目标函数 $f(\vec{\mathbf{x}}^{< k>})$, 计算梯度 $\vec{\mathbf{g}}_k = g(\vec{\mathbf{x}}^{< k>})$ 。
 - 若梯度 $|\vec{\mathbf{g}}_k| < e$, 则停止迭代, $\vec{\mathbf{x}}^* = \vec{\mathbf{x}}$ 。
 - 若梯度 $|\vec{\mathbf{g}}_k| \geq e$,则令 $\vec{\mathbf{p}}_k = -\vec{\mathbf{g}}_k$,求 ϵ_k : $\epsilon_k = \min_{\epsilon \leq 0} f(\vec{\mathbf{x}}^{< k >} + \epsilon \vec{\mathbf{p}}_k)$ 。

通常这也是个最小化问题。但是可以给定一系列的 ϵ_k 的值,如: [10,1,0.1,0.01,0.001,0.0001] 。然后从中挑选使得目标函数最小的那个。

- ullet 令 $ec{\mathbf{x}}^{< k+1>} = ec{\mathbf{x}}^{< k>} + \epsilon_k ec{\mathbf{p}}_k$,计算 $f(ec{\mathbf{x}}^{< k+1>})$ 。
 - 若 $|f(\vec{\mathbf{x}}^{< k+1>}) f(\vec{\mathbf{x}}^{< k>})| < e$ 或者 $|\vec{\mathbf{x}}^{< k+1>} \vec{\mathbf{x}}^{< k>}| < e$ 时,停止迭代,此时 $\vec{\mathbf{x}}^* = \vec{\mathbf{x}}$ 。
 - 否则,令 k = k + 1 ,计算梯度 $\vec{\mathbf{g}}_k = g(\vec{\mathbf{x}}^{< k >})$ 继续迭代。

- 8. 当目标函数是凸函数时,梯度下降法的解是全局最优的。通常情况下,梯度下降法的解不保证是全局最优的。
- 9. 梯度下降法的收敛速度未必是最快的。

三、二阶导数与海森矩阵

3.1 海森矩阵

1. 二阶导数 f''(x) 刻画了曲率。假设有一个二次函数(实际任务中,很多函数不是二次的,但是在局部可以近似为二次函数):

- 如果函数的二阶导数为零,则它是一条直线。如果梯度为 1,则当沿着负梯度的步长为 ϵ 时,函数值减少 ϵ 。
- 。 如果函数的二阶导数为负,则函数向下弯曲。如果梯度为1,则当沿着负梯度的步长为 ϵ 时,函数值减少的量大于 ϵ 。
- 如果函数的二阶导数为正,则函数向上弯曲。如果梯度为1,则当沿着负梯度的步长为 ϵ 时,函数值减少的量少于 ϵ 。

2. 当函数输入为多维时, 定义海森矩阵:

$$\mathbf{H}(f)(ec{\mathbf{x}}) = egin{bmatrix} rac{\partial^2}{\partial x_1 \partial x_1} f & rac{\partial^2}{\partial x_1 \partial x_2} f & \cdots & rac{\partial^2}{\partial x_1 \partial x_n} f \ rac{\partial^2}{\partial x_2 \partial x_1} f & rac{\partial^2}{\partial x_2 \partial x_2} f & \cdots & rac{\partial^2}{\partial x_2 \partial x_n} f \ dots & dots & \ddots & dots \ rac{\partial^2}{\partial x_n \partial x_1} f & rac{\partial^2}{\partial x_n \partial x_2} f & \cdots & rac{\partial^2}{\partial x_n \partial x_n} f \ \end{bmatrix}$$

即海森矩阵的第i行j列元素为: $\mathbf{H}_{i,j}=rac{\partial^2}{\partial x_i\partial x_j}f(\mathbf{ec{x}})$ 。

- 3. 当二阶偏导是连续时,海森矩阵是对称阵,即有: $\mathbf{H} = \mathbf{H}^T$ 。
- 在深度学习中大多数海森矩阵都是对称阵。
 4. 对于特定方向 $\vec{\mathbf{d}}$ 上的二阶导数为: $\vec{\mathbf{d}}^T \mathbf{H} \vec{\mathbf{d}}$ 。
- \circ 如果 $ec{\mathbf{d}}$ 是海森矩阵的特征向量,则该方向的二阶导数就是对应的特征值。
 - 。 如果 $\vec{\mathbf{d}}$ 不是海森矩阵的特征向量,则该方向的二阶导数就是所有特征值的加权平均,权重在 (0,1) 之间。且与 $\vec{\mathbf{d}}$ 夹角越小的特征向量对应的特征值具有更大的权重。
 - 最大特征值确定了最大二阶导数,最小特征值确定最小二阶导数。

3.2 海森矩阵与学习率

1. 将 $f(\vec{\mathbf{x}})$ 在 $\vec{\mathbf{x}}_0$ 处泰勒展开: $f(\vec{\mathbf{x}}) \approx f(\vec{\mathbf{x}}_0) + (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)^T \vec{\mathbf{g}} + \frac{1}{2} (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)^T \mathbf{H} (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)$ 。其中: $\vec{\mathbf{g}}$ 为 $\vec{\mathbf{x}}_0$ 处的 梯度; \mathbf{H} 为 $\vec{\mathbf{x}}_0$ 处的海森矩阵。

根据梯度下降法: $\vec{\mathbf{x}}' = \vec{\mathbf{x}} - \epsilon \nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}})$ 。

应用在点 $\vec{\mathbf{x}}_0$,有: $f(\vec{\mathbf{x}}_0 - \epsilon \vec{\mathbf{g}}) \approx f(\vec{\mathbf{x}}_0) - \epsilon \vec{\mathbf{g}}^T \vec{\mathbf{g}} + \frac{1}{2} \epsilon^2 \vec{\mathbf{g}}^T \mathbf{H} \vec{\mathbf{g}}$ 。

- 。 第一项代表函数在点 **x**₀ 处的值。
- 。 第二项代表由于斜率的存在, 导致函数值的变化。
- 第三项代表由于曲率的存在,对于函数值变化的矫正。
- 2. 注意:如果 $\frac{1}{2}\epsilon^2\mathbf{g}^T\mathbf{H}\mathbf{g}$ 较大,则很有可能导致:沿着负梯度的方向,函数值反而增加!
 - o 如果 $\vec{\mathbf{g}}^T \mathbf{H} \vec{\mathbf{g}} \leq 0$,则无论 ϵ 取多大的值, 可以保证函数值是减小的。
 - o 如果 $\vec{\mathbf{g}}^T \mathbf{H} \vec{\mathbf{g}} > 0$,则学习率 ϵ 不能太大。若 ϵ 太大则函数值增加。
 - 根据 $f(\vec{\mathbf{x}}_0 \epsilon \vec{\mathbf{g}}) f(\vec{\mathbf{x}}_0) < 0$,则需要满足: $\epsilon < \frac{2\vec{\mathbf{g}}^T\vec{\mathbf{g}}}{\vec{\mathbf{g}}^T\mathbf{H}\vec{\mathbf{g}}}$ 。若 $\epsilon \geq \frac{2\vec{\mathbf{g}}^T\vec{\mathbf{g}}}{\vec{\mathbf{g}}^T\mathbf{H}\vec{\mathbf{g}}}$,则会导致沿着负梯度 的方向函数值在增加。
 - 考虑最速下降法,选择使得 f 下降最快的 ϵ ,则有: $\epsilon^* = \arg\min_{\epsilon,\epsilon>0} f(\vec{\mathbf{x}}_0 \epsilon \vec{\mathbf{g}})$ 。求解 $rac{\partial}{\partial \epsilon} f(\vec{\mathbf{x}}_0 - \epsilon \vec{\mathbf{g}}) = 0$ 有: $\epsilon^* = rac{\vec{\mathbf{g}}^T \vec{\mathbf{g}}}{\vec{\mathbf{g}}^T \mathbf{H} \vec{\mathbf{g}}}$ 。

根据 $ec{\mathbf{g}}^T\mathbf{H}ec{\mathbf{g}}>0$,很明显有: $\epsilon^*<rac{2ec{\mathbf{g}}^Tec{\mathbf{g}}}{ec{\mathbf{p}}^T\mathbf{H}ec{\mathbf{g}}}$ 。

3. 由于海森矩阵为实对称阵,因此它可以进行特征值分解。假设其特征值从大到小排列为: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

海森矩阵的瑞利商为: $R(\vec{\mathbf{x}}) = \frac{\vec{\mathbf{x}}^T \mathbf{H} \vec{\mathbf{x}}}{\vec{\mathbf{v}}^T \vec{\mathbf{v}}}, \vec{\mathbf{x}} \neq \vec{\mathbf{0}}$ 。可以证明:

$$egin{aligned} \lambda_n & \leq R(ec{\mathbf{x}}) \leq \lambda_1 \ \lambda_1 & = \max_{ec{\mathbf{x}}
eq ec{\mathbf{0}}} R(ec{\mathbf{x}}) \end{aligned}$$

$$\lambda_1 = \max_{ec{\mathbf{x}}
eq ec{\mathbf{0}}} R(ec{\mathbf{x}})$$

$$\lambda_n = \min_{ec{\mathbf{x}}
eq ec{\mathbf{0}}} R(ec{\mathbf{x}})$$

根据 $\epsilon^* = \frac{\vec{\mathbf{g}}^T \vec{\mathbf{g}}}{\vec{\mathbf{g}}^T \mathbf{H} \vec{\mathbf{g}}} = \frac{1}{R(\vec{\mathbf{g}})}$ 可知:海森矩阵决定了学习率的取值范围。最坏的情况下,梯度 $\vec{\mathbf{g}}$ 与海森矩阵最大 特征值 λ_1 对应的特征向量平行,则此时最优学习率为 $\frac{1}{\lambda_1}$ 。

3.3 驻点与全局极小点

1. 满足导数为零的点(即 f'(x)=0)称作驻点。驻点可能为下面三种类型之一:

○ 局部极小点: 在 x 的一个邻域内, 该点的值最小。

○ 局部极大点: 在 x 的一个邻域内, 该点的值最大。

· 鞍点: 既不是局部极小, 也不是局部极大。

- 2. 全局极小点: $x^* = \arg\min_x f(x)$ 。
 - o 全局极小点可能有一个或者多个。

在深度学习中,目标函数很可能具有非常多的局部极小点,以及许多位于平坦区域的鞍点。这使得优化 非常不利。

因此通常选取一个非常低的目标函数值,而不一定要是全局最小值。

- 3. 二阶导数可以配合一阶导数来决定驻点的类型:
 - 局部极小点: f'(x) = 0, f''(x) > 0 。
 - 局部极大点: f'(x) = 0, f''(x) < 0.
 - f'(x) = 0, f''(x) = 0: 驻点的类型可能为任意三者之一。
- 4. 对于多维的情况类似有:
 - 。 局部极小点: $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}) = 0$,且海森矩阵为正定的(即所有的特征值都是正的)。 当海森矩阵为正定时,任意方向的二阶偏导数都是正的。
 - 。 局部极大点: $\nabla_{\vec{\mathbf{x}}} f(\vec{\mathbf{x}}) = 0$,且海森矩阵为负定的(即所有的特征值都是负的)。 当海森矩阵为负定时,任意方向的二阶偏导数都是负的。
 - o $\nabla_{\vec{x}} f(\vec{x}) = 0$,且海森矩阵的特征值中至少一个正值、至少一个负值时,为鞍点。
 - 。 当海森矩阵非上述情况时, 驻点类型无法判断。

下图为 $f(\vec{\mathbf{x}}) = x_1^2 - x_2^2$ 在原点附近的等值线。其海森矩阵为一正一负。

- \circ 沿着 x_1 方向,曲线向上弯曲;沿着 x_2 方向,曲线向下弯曲。
- o 鞍点就是在一个横截面内的局部极小值,另一个横截面内的局部极大值。

四、牛顿法

- 1. 梯度下降法有个缺陷: 它未能利用海森矩阵的信息。
 - 。 当海森矩阵的条件数较大时,不同方向的梯度的变化差异很大。
 - 在某些方向上,梯度变化很快;在有些方向上,梯度变化很慢。
 - 梯度下降法未能利用海森矩阵,也就不知道应该优先搜索导数长期为负或者长期为正的方向。 本质上应该沿着负梯度方向搜索。但是沿着该方向的一段区间内,如果导数一直为正或者一直为 负,则可以直接跨过该区间。前提是:必须保证该区间内,该方向导数不会发生正负改变。
 - 。 当海森矩阵的条件数较大时, 也难以选择合适的步长。
 - 步长必须足够小,从而能够适应较强曲率的地方(对应着较大的二阶导数,即该区域比较陡峭)。
 - 但是如果步长太小,对于曲率较小的地方(对应着较小的二阶导数,即该区域比较平缓)则推进太慢。
- 2. 下图是利用梯度下降法寻找函数最小值的路径。该函数是二次函数,海森矩阵条件数为 5,表明最大曲率是最小曲率的5倍。红线为梯度下降的搜索路径。

它没有用最速下降法, 而是用到线性搜索。如果是最速下降法, 则相邻两次搜索的方向正交。

3. 牛顿法结合了海森矩阵。

考虑泰勒展开式: $f(\vec{\mathbf{x}}) \approx f(\vec{\mathbf{x}}_0) + (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)^T \vec{\mathbf{g}} + \frac{1}{2} (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)^T \mathbf{H} (\vec{\mathbf{x}} - \vec{\mathbf{x}}_0)$ 。其中 $\vec{\mathbf{g}}$ 为 $\vec{\mathbf{x}}_0$ 处的梯度; \mathbf{H} 为 $\vec{\mathbf{x}}_0$ 处的海森矩阵。

如果 $\vec{\mathbf{x}}$ 为极值点,则有: $\frac{\partial}{\partial \vec{\mathbf{x}}} f(\vec{\mathbf{x}}) = \vec{\mathbf{0}}$,则有: $\vec{\mathbf{x}}^* = \vec{\mathbf{x}}_0 - \mathbf{H}^{-1} \vec{\mathbf{g}}$ 。

- \circ 当 f 是个正定的二次型,则牛顿法直接一次就能到达最小值点。
- \circ 当 f 不是正定的二次型,则可以在局部近似为正定的二次型,那么则采用多次牛顿法即可到达最小值点。

4. 一维情况下, 梯度下降法和牛顿法的原理展示:

。 梯度下降法:下一次迭代的点 $\vec{\mathbf{x}}^{< k+1>} = \vec{\mathbf{x}}^{< k>} - \epsilon_k \nabla f(\vec{\mathbf{x}})$ 。

对于一维的情况,可以固定 $\epsilon_k=\eta$ 。由于随着迭代的推进,f'(x) 绝对值是减小的(直到0),因此越靠近极值点, $\Delta(x)$ 越小。

• 牛顿法:目标是 $\nabla f(\vec{\mathbf{x}}) = 0$ 。

在一维情况下就是求解 f'(x)=0。牛顿法的方法是:以 $x=x^{< k>}$ 做 y=f'(x) 切线,该切线过点 $(x^{< k>},f'(x^{< k>}))$ 。该切线在 x 轴上的交点就是: $x^{< k+1>}=x^{< k>}-\frac{f'(x^{< k>})}{f''(x^{< k>})}$ 。

推广到多维情况下就是: $\vec{\mathbf{x}}^{< k+1>} = \vec{\mathbf{x}}^{< k>} - \mathbf{H}_k^{-1} \vec{\mathbf{g}}_k$ 。

5. 当位于一个极小值点附近时, 牛顿法比梯度下降法能更快地到达极小值点。

如果在一个鞍点附近,牛顿法效果很差,因为牛顿法会主动跳入鞍点。而梯度下降法此时效果较好(除非负梯度的方向刚好指向了鞍点)。

- 6. 仅仅利用了梯度的优化算法(如梯度下降法)称作一阶优化算法,同时利用了海森矩阵的优化算法(如牛顿法)称作二阶优化算法。
- 7. 牛顿法算法:
 - 输入:
 - 目标函数 f(x)
 - 梯度 $g(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$
 - 海森矩阵 H(x)
 - 精度要求 e
 - \circ 输出: $f(\vec{x})$ 的极小值点 \vec{x}^*
 - 。 算法步骤:
 - 选取初始值 $\vec{\mathbf{x}}^{<0>} \in \mathbb{R}^n$, 置 k=0 。
 - 迭代, 停止条件为: 梯度收敛。迭代步骤为:
 - 计算 $\vec{\mathbf{g}}_k = g(\vec{\mathbf{x}}^{< k>})$.
 - 若 $|\vec{\mathbf{g}}_k| < e$,则停止计算,得到近似解 $\vec{\mathbf{x}} = \vec{\mathbf{x}}^*$ 。
 - 若 | **g**_k| > e, 则:
 - 计算 $\mathbf{H}_k = \mathbf{H}(\vec{\mathbf{x}}^{< k>})$, 并求 $\vec{\mathbf{p}}_k$, 使得: $\mathbf{H}_k \vec{\mathbf{p}}_k = -\vec{\mathbf{g}}_k$ 。
 - ullet 置 $ec{\mathbf{x}}^{< k+1>} = ec{\mathbf{x}}^{< k>} + ec{\mathbf{p}}_k$ 。
 - 置k = k + 1,继续迭代。
- 8. 梯度下降法中,每一次 \vec{x} 增加的方向一定是梯度相反的方向 $-\epsilon_k \nabla_k$ 。增加的幅度由 ϵ_k 决定,若跨度过大容易引发震荡。

而牛顿法中,每一次 $\vec{\mathbf{x}}$ 增加的方向是梯度增速最大的反方向 $-\mathbf{H}_k^{-1}\nabla_k$ (它通常情况下与梯度不共线)。增加的幅度已经包含在 \mathbf{H}_k^{-1} 中(也可以乘以学习率作为幅度的系数)。

- 9. 深度学习中的目标函数非常复杂,无法保证可以通过上述优化算法进行优化。因此有时会限定目标函数具有 Lipschitz 连续,或者其导数 Lipschitz 连续。
 - Lipschitz 连续的定义: 对于函数 f, 存在一个 Lipschitz 常数 \mathcal{L} , 使得:

$$| orall ec{\mathbf{x}}, orall ec{\mathbf{y}}, |f(ec{\mathbf{x}}) - f(ec{\mathbf{y}})| \leq \mathcal{L} ||ec{\mathbf{x}} - ec{\mathbf{y}}||_2$$

- o Lipschitz 连续的意义是:输入的一个很小的变化,会引起输出的一个很小的变化。
 - 与之相反的是:输入的一个很小的变化,会引起输出的一个很大的变化

五、拟牛顿法

5.1 原理

- 1. 在牛顿法的迭代中,需要计算海森矩阵的逆矩阵 ${f H}^{-1}$,这一计算比较复杂。 可以考虑用一个 n 阶矩阵 ${f G}_k = G({f x}^{< k>})$ 来近似代替 ${f H}_k^{-1} = H^{-1}({f x}^{< k>})$ 。
- 2. 先看海森矩阵满足的条件: $\vec{\mathbf{g}}_{k+1} \vec{\mathbf{g}}_k = \mathbf{H}_k (\vec{\mathbf{x}}^{< k+1>} \vec{\mathbf{x}}^{< k>})$ 。
 - \circ 令 $\mathbf{\vec{y}}_k = \mathbf{\vec{g}}_{k+1} \mathbf{\vec{g}}_k, \vec{\delta}_k = \mathbf{\vec{x}}^{< k+1>} \mathbf{\vec{x}}^{< k>}$ 。则有: $\mathbf{\vec{y}}_k = \mathbf{H}_k \vec{\delta}_k$,或者 $\mathbf{H}_k^{-1} \mathbf{\vec{y}}_k = \vec{\delta}_k$ 。这称为拟牛顿条件。
 - o 根据牛顿法的迭代: $\vec{\mathbf{x}}^{< k+1>} = \vec{\mathbf{x}}^{< k>} \mathbf{H}_k^{-1} \vec{\mathbf{g}}_k$,将 $f(\vec{\mathbf{x}})$ 在 $\vec{\mathbf{x}}^{< k>}$ 的一阶泰勒展开: $f(\vec{\mathbf{x}}^{< k+1>}) = f(\vec{\mathbf{x}}^{< k>}) + f'(\vec{\mathbf{x}}^{< k>})(\vec{\mathbf{x}}^{< k+1>} \vec{\mathbf{x}}^{< k>})$ $= f(\vec{\mathbf{x}}^{< k>}) + \vec{\mathbf{g}}_k^T (-\mathbf{H}_k^{-1} \vec{\mathbf{g}}_k) = f(\vec{\mathbf{x}}^{< k>}) \vec{\mathbf{g}}_k^T \mathbf{H}_k^{-1} \vec{\mathbf{g}}_k$

当 \mathbf{H}_k 是正定矩阵时,总有 $f(\vec{\mathbf{x}}^{< k+1>}) < f(\vec{\mathbf{x}}^{< k>})$,因此每次都是沿着函数递减的方向迭代。

- 3. 如果选择 G_k 作为 H_k^{-1} 的近似时, G_k 同样要满足两个条件:
 - \mathbf{G}_k 必须是正定的。

。 \mathbf{G}_k 满足拟牛顿条件: $\mathbf{G}_{k+1} \vec{\mathbf{y}}_k = \vec{\delta}_k$ 。

因为 G_0 是给定的初始化条件,所以下标从 k+1 开始。

按照拟牛顿条件,在每次迭代中可以选择更新矩阵 $\mathbf{G}_{k+1} = \mathbf{G}_k + \Delta \mathbf{G}_k$ 。

- 4. 正定矩阵定义:设 \mathbf{M} 是 $n \times n$ 阶方阵,如果对任何非零向量 \mathbf{x} ,都有 $\mathbf{x}^T \mathbf{M} \mathbf{x} > 0$,就称 \mathbf{M} 正定矩阵。
 - ο 正定矩阵判定:
 - 判定定理1:对称阵 M 为正定的充分必要条件是: M 的特征值全为正。
 - 判定定理2:对称阵 M 为正定的充分必要条件是: M 的各阶顺序主子式都为正。
 - 判定定理3:任意阵 M 为正定的充分必要条件是: M 合同于单位阵。
 - 。 正定矩阵的性质:
 - 正定矩阵一定是非奇异的。奇异矩阵的定义:若 $n \times n$ 阶矩阵 $\mathbf M$ 为奇异阵,则其的行列式为零,即 $|\mathbf M|=0$ 。
 - 正定矩阵的任—主子矩阵也是正定矩阵。
 - 若 \mathbf{M} 为 $n \times n$ 阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵 \mathbf{L} ,使得 $\mathbf{M} = \mathbf{L}\mathbf{L}^T$,此分解式称为 正定矩阵的乔列斯基(Cholesky)分解。
 - 若 M 为 $n \times n$ 阶正定矩阵,则 M 为 $n \times n$ 阶可逆矩阵。
 - 正定矩阵在某个合同变换下可化为标准型, 即对角矩阵。
 - 所有特征值大于零的对称矩阵也是正定矩阵。
- 5. 合同矩阵: 两个实对称矩阵 ${f A}$ 和 ${f B}$ 是合同的,当且仅当存在一个可逆矩阵 ${f P}$,使得 ${f A}={f P}^T{f B}{f P}$
 - \circ **A** 的合同变换: 对某个可逆矩阵 **P**, 对 **A** 执行 **P**^T**AP**。

5.2 DFP **笪法**

1. DFP 算法(Davidon-Fletcher-Powell) 选择 G_{k+1} 的方法是:

假设每一步迭代中 \mathbf{G}_{k+1} 是由 \mathbf{G}_k 加上两个附加项构成: $\mathbf{G}_{k+1} = \mathbf{G}_k + \mathbf{P}_k + \mathbf{Q}_k$,其中 $\mathbf{P}_k, \mathbf{Q}_k$ 是待定矩阵。此时有: $\mathbf{G}_{k+1}\vec{\mathbf{y}}_k = \mathbf{G}_k\vec{\mathbf{y}}_k + \mathbf{P}_k\vec{\mathbf{y}}_k + \mathbf{Q}_k\vec{\mathbf{y}}_k$ 。

为了满足拟牛顿条件,可以取: $\mathbf{P}_k \vec{\mathbf{y}}_k = \vec{\delta}_k$, $\mathbf{Q}_k \vec{\mathbf{y}}_k = -\mathbf{G}_k \vec{\mathbf{y}}_k$.

这样的 \mathbf{P}_k , \mathbf{Q}_k 不止一个。例如取:

$$\mathbf{P}_k = rac{ec{\delta}_k ec{\delta}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k}, \quad \mathbf{Q}_k = -rac{\mathbf{G}_k ec{\mathbf{y}}_k ec{\mathbf{y}}_k^T \mathbf{G}_k}{ec{\mathbf{y}}_k^T \mathbf{G}_k ec{\mathbf{y}}_k}$$

则迭代公式为:

$$\mathbf{G}_{k+1} = \mathbf{G}_k + rac{ec{\delta}_k ec{\delta}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k} - rac{\mathbf{G}_k ec{\mathbf{y}}_k ec{\mathbf{y}}_k^T \mathbf{G}_k}{ec{\mathbf{y}}_k^T \mathbf{G}_k ec{\mathbf{y}}_k}$$

可以证明:如果初始矩阵 G_0 是正定的,则迭代过程中每个矩阵 G_k 都是正定的。

- 2. DFP 算法:
 - 输入:
 - 目标函数 f(x)
 - 梯度 $g(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$
 - 精度要求 e
 - o 输出: $f(\vec{x})$ 的极小值点 \vec{x}^*

- o 算法步骤:
 - 选取初始值 $\vec{\mathbf{x}}^{<0>} \in \mathbb{R}^n$, 取 \mathbf{G}_0 为正定对称矩阵,置 k=0 。
 - 迭代, 停止条件为: 梯度收敛。迭代步骤为:
 - 计算 $\vec{\mathbf{g}}_k = g(\vec{\mathbf{x}}^{< k >})$ 。
 - 若 $|\vec{\mathbf{g}}_k| < e$,则停止计算,得到近似解 $\vec{\mathbf{x}} = \vec{\mathbf{x}}^*$ 。
 - 若 $|\vec{\mathbf{g}}_k| \ge e$, 则:
 - 计算 $\vec{\mathbf{p}}_k = -\mathbf{G}_k \vec{\mathbf{g}}_k$ 。
 - 一维搜索:求 ϵ_k : $\epsilon_k = \min_{\epsilon>0} f(\vec{\mathbf{x}}^{< k>} + \epsilon \vec{\mathbf{p}}_k)$ 。
 - ullet 设置 $old x^{< k+1>} = old x^{< k>} + \epsilon_k old p_k$ 。
 - 计算 $\vec{\mathbf{g}}_{k+1} = g(\vec{\mathbf{x}}^{< k+1>})$ 。若 $|\vec{\mathbf{g}}_{k+1}| < e$,则停止计算,得到近似解 $\vec{\mathbf{x}} = \vec{\mathbf{x}}^*$ 。
 - 否则计算 G_{k+1} , 置 k = k+1, 继续迭代。
- 3. DFP 算法中,每一次 $\vec{\mathbf{x}}$ 增加的方向是 $-\mathbf{G}_k \nabla_k$ 的方向。增加的幅度由 ϵ_k 决定,若跨度过大容易引发震荡。

5.2 BFGS 算法

- 1. BFGS 是最流行的拟牛顿算法。 DFP 算法中,用 \mathbf{G}_k 逼近 \mathbf{H}^{-1} 。换个角度看,可以用矩阵 \mathbf{B}_k 逼近海森矩阵 \mathbf{H} 。此时对应的拟牛顿条件为: $\mathbf{B}_{k+1}\vec{\delta}_k=\vec{\mathbf{y}}_k$ 。
 - 因为 \mathbf{B}_0 是给定的初始化条件,所以下标从 k+1 开始。
- 2. 令: $\mathbf{B}_{k+1} = \mathbf{B}_k + \mathbf{P}_k + \mathbf{Q}_k$,有: $\mathbf{B}_{k+1} \vec{\delta}_k = \mathbf{B}_k \vec{\delta}_k + \mathbf{P}_k \vec{\delta}_k + \mathbf{Q}_k \vec{\delta}_k$ 。 可以取 $\mathbf{P}_k \vec{\delta}_k = \vec{\mathbf{y}}_k$, $\mathbf{Q}_k \vec{\delta}_k = -\mathbf{B}_k \vec{\delta}_k$ 。 寻找合适的 \mathbf{P}_k ,可以得到 BFGS 算法矩阵的 \mathbf{B}_{k+1} 的迭代公式:

$$\mathbf{B}_{k+1} = \mathbf{B}_k + rac{ec{\mathbf{y}}_k ec{\mathbf{y}}_k^T}{ec{\mathbf{y}}_k^T ec{\delta}_k} - rac{\mathbf{B}_k ec{\delta}_k ec{\delta}_k^T \mathbf{B}_k}{ec{\delta}_k^T \mathbf{B}_k ec{\delta}_k}$$

可以证明,若 \mathbf{B}_0 是正定的,则迭代过程中每个矩阵 \mathbf{B}_k 都是正定的。

- 3. BFGS 算法:
 - 输入:

- 目标函数 f(x)
- 梯度 $g(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$
- 精度要求 e
- o 输出: $f(\vec{x})$ 的极小值点 \vec{x}^*
- 。 算法步骤:
 - $lacksymbol{\bullet}$ 选取初始值 $old{x}^{<0>}\in\mathbb{R}^n$, 取 $old{B}_0$ 为正定对称矩阵,置 k=0 。
 - 迭代,停止条件为:梯度收敛。迭代步骤为:
 - 计算 $\vec{\mathbf{g}}_k = g(\vec{\mathbf{x}}^{< k>})$.
 - 若 $|\vec{\mathbf{g}}_k| < e$,则停止计算,得到近似解 $\vec{\mathbf{x}} = \vec{\mathbf{x}}^*$ 。
 - 若 $|\vec{\mathbf{g}}_k| \geq e$, 则:
 - $lacksymbol{\bullet}$ 由 $\mathbf{B}_k \mathbf{\vec{p}}_k = -\mathbf{\vec{g}}_k$ 求出 $\mathbf{\vec{p}}_k$ 。

这里表面上看需要对矩阵求逆。但是实际上 \mathbf{B}_k^{-1} 有迭代公式。根据 Sherman-Morrison 公式以及 \mathbf{B}_k 的迭代公式,可以得到 \mathbf{B}_k^{-1} 的迭代公式。

- 一维搜索: 求 ϵ_k : $\epsilon_k = \min_{\epsilon \geq 0} f(ec{\mathbf{x}}^{< k>} + \epsilon ec{\mathbf{p}}_k)$ 。
- $lacksymbol{\bullet}$ 设置 $ec{\mathbf{x}}^{< k+1>} = ec{\mathbf{x}}^{< k>} + \epsilon_k ec{\mathbf{p}}_k$ 。
- ullet 计算 $ec{\mathbf{g}}_{k+1}=g(ec{\mathbf{x}}^{< k+1>})$ 。若 $|ec{\mathbf{g}}_{k+1}|< e$,则停止计算,得到近似解 $ec{\mathbf{x}}=ec{\mathbf{x}}^*$ 。
- 否则计算 \mathbf{B}_{k+1} , 置 k=k+1 , 继续迭代。
- 4. BFPS 算法中,每一次 \vec{x} 增加的方向是 $-\mathbf{B}_k^{-1}\nabla_k$ 的方向。增加的幅度由 ϵ_k 决定,若跨度过大容易引发震荡。

5.3 Broyden 类算法

1. 若记 $\mathbf{G}_k = \mathbf{B}_k^{-1}, \mathbf{G}_{k+1} = \mathbf{B}_{k+1}^{-1}$,则对式子:

$$\mathbf{B}_{k+1} = \mathbf{B}_k + rac{ec{\mathbf{y}}_k ec{\mathbf{y}}_k^T}{ec{\mathbf{y}}_k^T ec{\delta}_k} - rac{\mathbf{B}_k ec{\delta}_k ec{\delta}_k^T \mathbf{B}_k}{ec{\delta}_k^T \mathbf{B}_k ec{\delta}_k}$$

使用两次 Sherman-Morrison 公式可得:

$$\mathbf{G}_{k+1} = (\mathbf{I} - rac{ec{\delta}_k ec{\mathbf{y}}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k}) \mathbf{G}_k (\mathbf{I} - rac{ec{\delta}_k ec{\mathbf{y}}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k})^T + rac{ec{\delta}_k ec{\delta}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k}$$

2. \diamondsuit DFP 算法获得的 \mathbf{G}_{k+1} 的迭代公式记作:

$$\mathbf{G}^{DFP} = \mathbf{G}_k + rac{ec{\delta}_k ec{\delta}_k^T}{ec{\delta}_k^T ec{\mathbf{y}}_k} - rac{\mathbf{G}_k ec{\mathbf{y}}_k ec{\mathbf{y}}_k^T \mathbf{G}_k}{ec{\mathbf{y}}_k^T \mathbf{G}_k ec{\mathbf{y}}_k}$$

由 BFGS 算法获得的 G_{k+1} 的迭代公式记作:

$$\mathbf{G}^{BFGS} = (\mathbf{I} - rac{ec{\delta}_k \mathbf{ar{y}}_k^T}{ec{\delta}_k^T \mathbf{ar{y}}_k}) \mathbf{G}_k (\mathbf{I} - rac{ec{\delta}_k \mathbf{ar{y}}_k^T}{ec{\delta}_k^T \mathbf{ar{y}}_k})^T + rac{ec{\delta}_k ec{\delta}_k^T}{ec{\delta}_k^T \mathbf{ar{y}}_k}$$

他们都满足拟牛顿条件,所以他们的线性组合: $\mathbf{G}_{k+1} = \alpha \mathbf{G}^{DFP} + (1-\alpha) \mathbf{G}^{BFGS}$ 也满足拟牛顿条件,而且是正定的,其中 $0 < \alpha < 1$ 。

这样获得了一族拟牛顿法,称为 Broyden 类算法。

3. Sherman-Morrison 公式:假设 \mathbf{A} 是 n 阶可逆矩阵, \mathbf{u} , \mathbf{v} 是 n 维列向量,且 \mathbf{A} + \mathbf{u} \mathbf{v}^T 也是可逆矩阵,则:

$$(\mathbf{A} + \vec{\mathbf{u}}\vec{\mathbf{v}}^T)^{-1} = \mathbf{A}^{-1} - rac{\mathbf{A}^{-1}\vec{\mathbf{u}}\vec{\mathbf{v}}^T\mathbf{A}^{-1}}{1 + \vec{\mathbf{v}}^T\mathbf{A}^{-1}\vec{\mathbf{u}}}$$

六、约束优化

1. 在有的最优化问题中,希望输入或位于特定的集合 S 中,这称作约束优化问题。

集合S内的点 就称作可行解。集合 S也称作可行域。

- 2. 约束优化的一个简单方法是: 对梯度下降法进行修改,每次迭代后,将得到的新的 \vec{x} 映射到集合 \mathbb{S} 中。 如果使用线性搜索: 则每次只搜索那些使得新的 \vec{x} 位于集合 \mathbb{S} 中的那些 ϵ 。
 - 另一个做法:将线性搜索得到的新的 x 映射到集合 S 中。
 - o 或者: 在线性搜索之前, 将梯度投影到可行域的切空间内。
- 3. 在约束最优化问题中,常常利用拉格朗日对偶性将原始问题转换为对偶问题,通过求解对偶问题而得到原始问题的解。
- 4. 约束最优化问题的原始问题:假设 $f(\vec{\mathbf{x}}), c_i(\vec{\mathbf{x}}), h_j(\vec{\mathbf{x}})$ 是定义在 \mathbb{R}^n 上的连续可微函数。考虑约束最优化问题:

$$egin{align} \min_{ec{\mathbf{x}} \in \mathbb{R}^n} f(ec{\mathbf{x}}) \ s.\,t. \quad c_i(ec{\mathbf{x}}) \leq 0, i = 1, 2, \cdots, k \ ; \quad h_j(ec{\mathbf{x}}) = 0, j = 1, 2, \cdots, l \ \end{cases}$$

可行域由等式和不等式确定: $\mathbb{S} = \{\vec{\mathbf{x}} \mid c_i(\vec{\mathbf{x}}) \leq 0, i = 1, 2, \dots, k; \quad h_i(\vec{\mathbf{x}}) = 0, j = 1, 2, \dots, l\}$.

6.1 原始问题

1. 引入拉格朗日函数:

$$L(ec{\mathbf{x}},ec{lpha},ec{eta}) = f(ec{\mathbf{x}}) + \sum_{i=1}^k lpha_i c_i(ec{\mathbf{x}}) + \sum_{i=1}^l eta_j h_j(ec{\mathbf{x}})$$

这里 $\vec{\mathbf{x}}=(x_1,x_2,\cdots,x_n)^T\in\mathbb{R}^n, \alpha_i,\beta_j$ 是拉格朗日乘子, $\alpha_i\geq 0$ 。 $L(\vec{\mathbf{x}},\vec{\alpha},\vec{\beta})$ 是 $\vec{\mathbf{x}},\vec{\alpha},\vec{\beta}$ 的多元非线性函数。

2. 定义函数:

$$heta_P(ec{\mathbf{x}}) = \max_{ec{lpha}, ec{eta} \; : \; lpha_i > 0} L(ec{\mathbf{x}}, ec{lpha}, ec{eta})$$

其中下标 P 表示原始问题。则有:

$$\theta_P(\vec{\mathbf{x}}) = \begin{cases} f(\vec{\mathbf{x}}), & \text{if } \vec{\mathbf{x}} \text{ statisfy original problem's constraint} \\ +\infty, & \text{or else.} \end{cases}$$

- o 若 $\vec{\mathbf{x}}$ 满足原问题的约束,则很容易证明 $L(\vec{\mathbf{x}},\vec{\alpha},\vec{\beta})=f(\vec{\mathbf{x}})+\sum_{i=1}^k\alpha_ic_i(\vec{\mathbf{x}})\leq f(\vec{\mathbf{x}})$,等号在 $\alpha_i=0$ 时取到。
- o 若 x 不满足原问题的约束:
 - 若不满足 $c_i(\vec{\mathbf{x}}) \leq 0$: 设违反的为 $c_{i_0}(\vec{\mathbf{x}}) > 0$, 则令 $\vec{\alpha}_{i_0} \to \infty$, 有: $L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta}) = f(\vec{\mathbf{x}}) + \sum_{i=1}^k \alpha_i c_i(\vec{\mathbf{x}}) \to \infty$ 。
 - 若不满足 $h_j(\vec{\mathbf{x}}) = 0$: 设违反的为 $h_{j_0}(\vec{\mathbf{x}}) \neq 0$, 则令 $\vec{\beta}_{j_0} h_{j_0}(\vec{\mathbf{x}}) \to \infty$, 有: $L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta}) = f(\vec{\mathbf{x}}) + \sum_{i=1}^k \alpha_i c_i(\vec{\mathbf{x}}) + \vec{\beta}_{j_0} h_{j_0}(\vec{\mathbf{x}}) \to \infty$ 。
- 3. 考虑极小化问题:

$$\min_{ec{\mathbf{x}}} heta_P(ec{\mathbf{x}}) = \min_{ec{\mathbf{x}}} \max_{ec{lpha}, ec{eta} \; : \; lpha_i > 0} L(ec{\mathbf{x}}, ec{lpha}, ec{eta})$$

则该问题是与原始最优化问题是等价的,即他们有相同的问题。

- $\circ \min_{\vec{\mathbf{x}}} \max_{\vec{\alpha}, \vec{\beta} : \alpha_i > 0} L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta})$ 称为广义拉格朗日函数的极大极小问题。
- o 为了方便讨论,定义原始问题的最优值为: $p^* = \min_{\vec{\mathbf{x}}} \theta_P(\vec{\mathbf{x}})$ 。

6.2 对偶问题

1. 定义 $\theta_D(\vec{\alpha}, \vec{\beta}) = \min_{\vec{\mathbf{x}}} L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta})$,考虑极大化 $\theta_D(\vec{\alpha}, \vec{\beta})$,即:

$$\max_{ec{lpha},ec{eta} \,:\, lpha_i \geq 0} heta_D(ec{lpha},ec{eta}) = \max_{ec{lpha},ec{eta} \,:\, lpha_i \geq 0} \min_{ec{\mathbf{x}}} L(ec{\mathbf{x}},ec{lpha},ec{eta})$$

问题 $\max_{\vec{\alpha}, \vec{\beta} \ : \ \alpha_i \geq 0} \min_{\vec{\mathbf{x}}} L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta})$ 称为广义拉格朗日函数的极大极小问题。它可以表示为约束最优化问题:

$$egin{aligned} \max_{ec{lpha},ec{eta}\,:\,lpha_i\geq 0} heta_D(ec{lpha},ec{eta}) &= \max_{ec{lpha},ec{eta}\,:\,lpha_i\geq 0} \min_{ec{\mathbf{x}}}L(ec{\mathbf{x}},ec{lpha},ec{eta}) \ s.\,t.\,lpha_i\geq 0, i=1,2,\cdots,k \end{aligned}$$

称为原始问题的对偶问题。

为了方便讨论,定义对偶问题的最优值为: $d^* = \max_{ec{lpha}, ec{eta} + lpha > 0} heta_D(ec{lpha}, ec{eta})$ 。

2. 定理一: 若原问题和对偶问题具有最优值,则:

$$d^* = \max_{\vec{\alpha}, \vec{\beta} \ : \ \vec{\alpha}_i \geq 0} \min_{\vec{\mathbf{x}}} L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta}) \leq \min_{\vec{\mathbf{x}}} \max_{\vec{\alpha}, \vec{\beta} \ : \ \vec{\alpha}_i \geq 0} L(\vec{\mathbf{x}}, \vec{\alpha}, \vec{\beta}) = p^*$$

• 推论一:设 $\vec{\mathbf{x}}^*$ 为原始问题的可行解,且 $\theta_P(\vec{\mathbf{x}}^*)$ 的值为 p^* ; $\vec{\alpha}^*$, $\vec{\beta}^*$ 为对偶问题的可行解, $\theta_D(\vec{\alpha}^*, \vec{\beta}^*)$ 值为 d^* 。

如果有 $p^* = d^*$,则 $\vec{\mathbf{x}}^*$, $\vec{\alpha}^*$, $\vec{\beta}^*$ 分别为原始问题和对偶问题的最优解。

- 3. 定理二:假设函数 $f(\vec{\mathbf{x}})$ 和 $c_i(\vec{\mathbf{x}})$ 为凸函数, $h_j(\vec{\mathbf{x}})$ 是仿射函数;并且假设不等式约束 $c_i(\vec{\mathbf{x}})$ 是严格可行的,即存在 $\vec{\mathbf{x}}$,对于所有 i 有 $c_i(x) < 0$ 。则存在 $\vec{\mathbf{x}}^*$, $\vec{\alpha}^*$,使得: $\vec{\mathbf{x}}^*$ 是原始问题 $\min_{\vec{\mathbf{x}}} \theta_P(\vec{\mathbf{x}})$ 的解, $\vec{\alpha}^*$, $\vec{\beta}^*$ 是对偶问题 $\max_{\vec{\alpha},\vec{\beta}: \alpha_i > 0} \theta_D(\vec{\alpha},\vec{\beta})$ 的解,并且 $p^* = d^* = L(\vec{\mathbf{x}}^*,\vec{\alpha}^*,\vec{\beta}^*)$ 。
- 4. 定理三:假设函数 $f(\vec{\mathbf{x}})$ 和 $c_i(\vec{\mathbf{x}})$ 为凸函数, $h_j(\vec{\mathbf{x}})$ 是仿射函数;并且假设不等式约束 $c_i(\vec{\mathbf{x}})$ 是严格可行的,即存在 $\vec{\mathbf{x}}$,对于所有 i 有 $c_i(x) < 0$ 。则存在 $\vec{\mathbf{x}}^*$, $\vec{\sigma}^*$,使得 $\vec{\mathbf{x}}^*$ 是原始问题 $\min_{\vec{\mathbf{x}}} \theta_P(\vec{\mathbf{x}})$ 的解, $\vec{\alpha}^*$, $\vec{\beta}^*$ 是对偶问题 $\max_{\vec{\alpha},\vec{\beta}: \alpha_i \geq 0} \theta_D(\vec{\alpha},\vec{\beta})$ 的解的充要条件是: $\vec{\mathbf{x}}^*$, $\vec{\alpha}^*$, $\vec{\beta}^*$ 满足下面的 Karush-kuhn-Tucker(KKT) 条件:

$$egin{aligned}
abla_{ec{\mathbf{x}}}L(ec{\mathbf{x}}^*,ec{lpha}^*,ec{eta}^*) &= 0 \
abla_{ec{lpha}}L(ec{\mathbf{x}}^*,ec{lpha}^*,ec{eta}^*) &= 0 \
abla_{ec{eta}}L(ec{\mathbf{x}}^*,ec{lpha}^*,ec{eta}^*) &= 0 \
aligned_{ec{a}}^*c_i(ec{\mathbf{x}}^*) &= 0, i = 1, 2, \cdots, k \
aligned_{ec{a}}^*c_i(ec{\mathbf{x}}^*) &\leq 0, i = 1, 2, \cdots, k \
aligned_{ec{a}}^* &\geq 0, i = 1, 2, \cdots, k \
h_j(ec{\mathbf{x}}^*) &= 0, j = 1, 2, \cdots, l \end{aligned}$$

- 5. 仿射函数: 仿射函数即由 1 阶多项式构成的函数。
 - 一般形式为 $f(\vec{\mathbf{x}}) = \mathbf{A}\vec{\mathbf{x}} + b$ 。这里:**A** 是一个 $m \times k$ 矩阵, $\vec{\mathbf{x}}$ 是一个 k 维列向量,b 是一个 m 维列向量。它实际上反映了一种从 k 维到 m 维的空间线性映射关系。
- 6. 凸函数:设 f 为定义在区间 $\mathcal X$ 上的函数,若对 $\mathcal X$ 上的任意两点 $\vec{\mathbf x}_1, \vec{\mathbf x}_2$ 和任意的实数 $\lambda \in (0,1)$,总有 $f(\lambda \vec{\mathbf x}_1 + (1-\lambda)\vec{\mathbf x}_2) \geq \lambda f(\vec{\mathbf x}_1) + (1-\lambda)f(\vec{\mathbf x}_2)$,则 f 称为 $\mathcal X$ 上的凸函数 。