Universidade Federal de Roraima Departamento de Ciência da Computação Arquitetura e Organização de Computadores

LISTA DE EXERCÍCIO 02

Aluno: Pedro Aleph Gomes de Souza Vasconcelos

1) Quais as vantagens de um processador multiciclo em relação a um uniciclo?

O ciclo de clock precisa ter a mesma duração para cada instrução no projeto uniciclo , e percorre várias etapas correspondentes às unidades funcionais necessárias até finalizar um ciclo. o desempenho geral de uma implementação de ciclo único não é muito bom já que várias classes de instrução poderiam ficar em um ciclo de clock mais curto.

Em uma implementação multiciclo, cada etapa na execução levará 1 ciclo de clock. permite que uma unidade funcional seja usada mais de uma vez por instrução, desde que seja usada em ciclos de clock diferentes. Esse compartilhamento pode ajudar a reduzir a quantidade de hardware necessária.

(OBS.: peguei do livro por que minhas palavras não ficam melhores)

2) Quais as modificações necessárias em um processador multiciclo simples para que se introduza a função de pipeline?

Dividir as instruções em estágios, essas instruções são colocadas em uma fila de memória dentro do processador onde aguardam o momento de serem executadas. assim que uma instrução termina o primeiro estágio e parte para o segundo, próxima instrução já ocupa o primeiro estágio.

(OBS.:não tenho certeza se requer mais registradores)

3) Considerando o pipeline do MIPS (simples com MEM compartilhada para instrução e dados) e uma iteração de loop conforme o trecho de programa abaixo, relacione os conflitos que podem ocorrer e seus consequentes stalls. Qual o speedup (por iteração) para o programa em relação à versão sem pipeline?

Loop:

subi \$t2, \$t2, 4	1
lw \$t1, 0(\$t2)	2
add \$t3, \$t1, \$t4	3
add \$t4, \$t3, \$t3	4
sw \$t4, 0(\$t2)	5
bea \$t2. \$0. loop	6

na linha 2 ocorre um stall no lw de \$t2 em \$t1, devido ao hazard de dados, requer resultado de \$t2 na linha 1

na linha 3 o stall ocorre no add de \$t1 a \$t4, devido ao hazard de dados, requer o lw de \$t1 na linha 2

na linha 4 o stall ocorre no add de \$t3 a \$t3, devido ao hazard de dados, requer o resultado de \$t3 na linha 3

na linha 5 o stall ocorre no sw de \$t4, devido ao hazard de controle ,\$t4 já está sendo usado para o resultado do add na linha 4

na linha 6 o stall ocorre no beq em \$t2, devido ao hazard estrutural, \$t2 está sendo usando para sw no mesmo ciclo de clock na linha 5

número de iterações sem pipeline: 21 número de iterações com pipeline: 10

speedup: 2,1

(OBS.: eu simplesmente contei as instruções e os registradores, quantas vezes eram usados, desculpe, não entendi muito bem)

4) No programa abaixo, relacione as dependências (dados, WAR, WAW e outros) existentes.

div.d F1, F2, F3 1 sub.d F4, F5, F1 2 s.d F4, 4(F10) 3 add.d F5, F6, F7 4 div.d F4, F5, F6 5

Dependência de dados reais: div.d 1 e sub.d 2, sub.b 2 e s.d 3, add.d 4 e div.d 5 Antidependência: sub.d 2 e add.d 4, add pode escrever em registrador que sub lê.

WAR: uso de F5 por sub

Dependência de saída: sub.d 2 e div.d 5, sub pode terminar depois de div.

WAW: uso de F5

(OBS.: não entendi bem, não tem no livro, tentei seguir o exemplo no slide)

5) Em relação a memória cache. Um computador tem CPI 1 quando todos os acessos à memória acertam no cache. Loads e Stores totalizam 50% das instruções. Se a penalidade por miss é de 25 ciclos e o miss rate é 2%, qual o desempenho relativo se o computador acertar todos os acessos?

CPU Execution Time = IC x 1.0 x ClockCycle

Memory Stall Cycles = IC x 0.75

CPU Execution Time_{cache} = $1.75 \times IC \times ClockCycle$ CPU Execution Time

CPU Execution Time

1.0 x IC x ClockCycle

Resultado final: 1,75

(OBS: ta no slide mas tentei entender)

6) Descreva os seguintes conceitos:

a) Write through

as escritas sempre atualizam a cache e a memória, garantido que os dados sejam sempre consistentes entre os dois.

b) Write back

manipula escritas atualizando os valores apenas no bloco da cache e, depois, escrevendo modificado no nível inferior da hierarquia quando o bloco é substituído.

c) Localidade Temporal

Se um item é referenciado, ele tenderá a ser referenciado novamente em breve .

d) Localidade Espacial

Se um item é referenciado, os itens cujos endereços estão próximos tenderão a ser referenciados em breve.

(OBS.: páginas 354 e 365 do livro azul)