Mobile Communication Techniques Petros Elia, elia@eurecom.fr Final Exam February 2015

Instructions

- Exercises fall in categories of 1-point, 2-point and 3-point exercises.
- Total of $4 \times 1 + 5 \times 2 + 3 \times 3 = 23$ points.
- The last question is for extra credit, and it accounts for 3 points.
- Each answer should be clearly written, and the solution should be developed in detail.
- Mathematical derivations need to show all steps that lead to the answer.
- Complete as many exercises as you can. Don't spend too much time on an individual question.
- Partial credit will be given for incomplete solutions.
- There is NO penalty for incorrect solutions.
- If in certain cases you are unable to provide rigorous mathematical proofs, go ahead and provide intuitive justification of your answers. Partial credit will be given.
- Calculators are allowed. Feel free to provide close form expressions in their simplest form.
- Open book and open class notes are allowed. No other notes are allowed.

Hints - equations - conventions:

Notation

- R represents the rate of communication in bits per channel use (b.p.c.u),
- ρ represents the SNR (signal to noise ratio),
- w will denote additive noise which will be distributed as a circularly symmetric Gaussian random variable $\mathbb{C}\mathcal{N}(0, N_0)$. If N_0 is not specified, then set $N_0 = 1$,
- h_i will denote *independent* fading scalar coefficients which will be distributed as circularly symmetric Gaussian random variables $\mathbb{C}\mathcal{N}(0,1)$

Useful equations

– For small ϵ , and for the statistical distributions of interest, the following holds:

$$P(|h_i|^2 < \epsilon) = \int_0^{\epsilon} p(|h_i|^2) d|h_i|^2 \approx \max_{[0,\epsilon]} \left\{ p(|h_i|^2 = \epsilon) \right\}$$

- For small ϵ , and for the statistical distributions of interest, the following holds:

$$P(|h_i|^2 + |h_j|^2 < \epsilon) \approx p\left(\{|h_i|^2 < \epsilon\} \text{ or } \{|h_j|^2 < \epsilon\}\right)$$

- Remember: for a given SNR, then SNR in dB is simply $10 \log_{10} SNR$
- For a given probability of error P(error), the diversity order or diversity gain is defined as

$$d := -\lim_{\rho \to \infty} \frac{\log P(\text{error})}{\log \rho}.$$

GOOD LUCK!!

EXAM PROBLEMS

- 1) (1 point). Briefly state a disadvantage of operating in a very dense urban setting (smaller cells), where the path distances are not typically very high.
- 2) (1 point). Consider a fast-fading channel, and let T_{coding} and T_{coh} respectively denote the coding duration and the coherence interval.
 - Which of the two holds: $T_{coding} >> T_{coh}$ or $T_{coding} << T_{coh}$?
 - What is a good measure of performance in this setting? Outage probability or capacity?
- 3) (1 point). What is the rate, in bits per channel use, when we use the Alamouti code with 256-QAM entries?
- 4) (*I point*). Assume we have a 1×1 SISO communication system operating outdoors in the presence of unit power noise and of (flat) Rayleigh fading with a large coherence period that is larger than the maximum allowable coding duration.
 - What is the approximate power P consumed by the transmitter, if we wish to have a probability of error that is approximately $P_{err} \approx 10^{-8}$?
 - What is the approximate power savings (reduction in P) compared to the above, if we now take the same system, with the same reliability constraints, and place it indoors, in a quite library?
- 5) (2 points). Assume that we have a 1×1 SISO communication system operating outdoors in the presence of unit power noise and of a Rayleigh fading with a large coherence period that is larger than the maximum allowable coding duration. Let the delay spread be approximately 2 times the length of a symbol duration ($T_d \approx 2/W$).
 - What is the approximate power P consumed by the transmitter, if we wish to have a probability of error that is approximately $P_{err} \approx 10^{-8}$?
 - What are the approximate power savings, if (for the same reliability) we double the signal bandwidth?
 - What are the approximate power savings, if we take the same system, with the same reliability constraints, and place it indoors, in a quite library? (please describe these savings, as a function of the channel)
- 6) (2 points). Consider an outdoors setting where we employ a 2×1 MISO system (2 transmit antennas, and 1 receive antenna), and where the signal-to-noise ratio is approximately $SNR = P/N_o \approx 100$.
 - Describe IN DETAIL, three (non-trivially) different settings that would allow for a probability of error that is in the order of $P_{err} \approx 10^{-10}$. In describing settings, you must include the time duration, the bandwidth, the code, the rate, etc.
- 7) (2 points). Consider the quasi-static Rayleigh fading channel. Let $SNR=10^{-3}$ and $\epsilon=10^{-2}$.
 - What is the approximate ϵ -outage capacity for SISO.

- What are the gains in ϵ -outage capacity, brought about by adding two extra receive antennas?
- 8) (2 points). Consider communication in a SISO AWGN environment. Assume that we have a total power constraint of $\bar{P} \approx 10^8$ Watts, and a specific application that only allows for total bandwidth of about $W \approx 1$ KHz. Per dimension, the noise has unit power (Standard noise assumption).
 - What is the APPROXIMATE gain in the total capacity (over the entire bandwidth), if we double bandwidth (fix \bar{P}), vs. if we double power (fix W)? I.e., what is best: to double bandwidth, or to double power? (Hint: think of convexity)
- 9) (2 points). Assume that we have a 4×3 MIMO channel (4 transmit and 3 receive antennas) in the presence of Rayleigh fading (outdoors), where the coefficients are i.i.d. in space. Assume that we use a 4×2 space-time code \mathcal{X}_1 that spans 4 spatial dimensions (4 transmit antennas) and T=2 time slots.
 - What is the maximum diversity that we can achieve with \mathcal{X}_1 ?
 - How many independent QAM symbols must \mathcal{X}_1 carry, so that we can achieve full degrees of freedom? (Hint: count number of variables)
 - If \mathcal{X}_1 does not achieve the maximum possible diversity, what is the first thing you must change about it?
- 10) (3 points). Consider communication in a SISO AWGN sensor environment. Assume that we have a total power constraint of $\bar{P} \approx 100$ Watts (over all frequencies), and a total bandwidth constraint of about $W \approx 1$ MHz. Per dimension, the noise has unit power (Standard noise assumption). Let the desired probability of error be approximately $P_{err} \approx 10^{-2}$.

How long (in seconds) will it take to send (over the entire bandwidth), 20 bits of information?

11) (3 points). Assume that we are operating over a 2×1 MISO channel in the presence of Raleigh fading and in the presence of additive noise of power $N_o = 1$. Consider a code:

$$\mathcal{X} = \{ X = \theta \cdot \left| \begin{array}{cc} f_0 & -f_1^* \\ f_1 & f_0 \end{array} \right. \right\}$$

where θ is the power normalizer, and f_0 , f_1 are independently drawn from a 4-QAM constellation.

- a) Assume that we want a signal-to-noise ratio of about 40 dB. What must θ be?
- b) Given an SNR of about 40dB, what is the approximate probability of error (averaged over noise and averaged over fading)? Hint: argue what is the maximum possible diversity, and then if the code achieves it.
- c) Does the code allow for the maximum degrees of freedom?
- d) Assume now that the code is drawing f_0 , f_1 , not from a 4-QAM constellation, but from a 64-QAM constellation. Does the code now satisfy the full rank criterion? Does it achieve the full degrees of freedom?

- 12) (3 points extra credit). Consider communication in a SISO Rayleigh flat-fading environment (outdoors), where the coherence period of the channel is 10 milliseconds ($T_{coh} \approx 10ms$), and it is bigger than the coding duration $T_{coding} < T_{coh}$. Assume that we want a rate of approximately R=1 bit per channel use.
 - What is the SNR (call it $SNR = \rho_1$) needed to achieve a probability of outage that is approximately $P_{outage} \approx 10^{-5}$?

For this same $SNR = \rho_1$, let us consider now the case where we actually have perfect channel state information at the transmitter and the receiver (perfect CSITR). In this latter CSITR case:

• What is the AVERAGE rate that we can achieve for the same $SNR = \rho_1$? Hint: emphasis on 'CSIT' and the word 'AVERAGE'. Hint - two words: R - - - A - - - - - N