A C⁰ Finite Element Method for Triharmonic Problems

Joint work with Peimeng Yin¹

Hengguang Li Department of Mathematics Wayne State University

NMSP2024: Numerical Methods for Spectral Problems: Theory and Applications Guiyang, China, August 5-9, 2024

¹The University of Texas at El Paso

The Triharmonic Equation

 $\Omega \subset \mathbb{R}^2$ – a bounded polygonal domain. $\Gamma := \partial \Omega$.

 $H^m(\Omega)$ – the space of functions whose *j*th ($j \le m$) derivatives are square integrable.

 $S_n \subset H^1_0(\Omega)$ – the linear C^0 finite element space on a quasi-uniform mesh, h = mesh size.

The 6th-order problem with the simply supported boundary condition:

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

High-order models occurs in differential geometry, the thin film equations, and the phase field crystal model, among many others.

The space

$$V := \{ \phi \in H^3(\Omega), \phi |_{\partial\Omega} = 0, \ \Delta \phi |_{\partial\Omega} = 0 \}.$$

The variational formulation: Find $u \in V$ such that,

$$a(u,\phi) = \int_{\Omega} \nabla \Delta u \cdot \nabla \Delta \phi dx = \int_{\Omega} f \phi dx = (f,\phi), \quad \forall \phi \in V.$$

The Triharmonic Equation

A Poincaré inequality for $v \in H_0^1(\Omega) \cap H^2(\Omega)$:

$$||\Delta v||_{L^2(\Omega)} \ge C||v||_{H^2(\Omega)}.$$

Well-posedness [L., & Yin; 2024]

Given $f \in H^{-1}(\Omega)$, the variational formulation admits a unique $u \in V$ and it satisfies

$$||u||_{H^3(\Omega)} \le C||f||_{H^{-1}(\Omega)}.$$

Uniqueness: for $w \in V \subset H_0^1(\Omega) \cap H^2(\Omega)$,

$$0 = a(w, w) = \int_{\Omega} \nabla \Delta w \cdot \nabla \Delta w dx = \|\nabla \Delta w\|_{L^{2}(\Omega)}^{2} \ge C\|w\|_{H^{2}(\Omega)}^{2}.$$

Numerical approximation of the sixth-order problem is difficult.

Conforming FEMs:

Argyris triangle

Numerical approximation of the sixth-order problem is difficult.

Conforming FEMs:

 C^2 elements

Numerical approximation of the sixth-order problem is difficult.

Conforming FEMs:

C2 elements

Nonconforming FEMs and interior penalty discontinuous Galerkin methods: [Wu & Xu; 2019], [Wu & Xu; 2017], [Gudi & Neilan; 2011].

Numerical approximation of the sixth-order problem is difficult.

Conforming FEMs:

C² elements

Nonconforming FEMs and interior penalty discontinuous Galerkin methods: [Wu & Xu; 2019], [Wu & Xu; 2017], [Gudi & Neilan; 2011].

Mixed FEMs assuming uniqueness of the solution in H^1 : [Droniou, Ilyas, Lamichhane, & Wheeler; 2019].

The Triharmonic Equation

The equation:

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

The direct decomposition with auxiliary functions w, v

$$\left\{ \begin{array}{ll} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \Gamma; \end{array} \right. \quad \left\{ \begin{array}{ll} -\Delta v = w & \text{in } \Omega, \\ v = 0 & \text{on } \Gamma; \end{array} \right. \quad \text{and} \quad \left\{ \begin{array}{ll} -\Delta \bar{u} = v & \text{in } \Omega, \\ \bar{u} = 0 & \text{on } \Gamma. \end{array} \right.$$

A naive mixed formulation: Find $\bar{u}, v, w \in H_0^1(\Omega)$ such that

$$\begin{split} (\nabla w, \nabla \psi) = & (f, \psi), \quad \forall \psi \in H^1_0(\Omega), \\ (\nabla v, \nabla \psi) = & (w, \psi), \quad \forall \psi \in H^1_0(\Omega), \\ (\nabla \bar{u}, \nabla \psi) = & (v, \psi), \quad \forall \psi \in H^1_0(\Omega). \end{split}$$

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r,θ) – polar coordinates.

Building a solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right).$$

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r,θ) – polar coordinates.

Building a solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right).$$

 $\tilde{\eta}(r; \tau, R)$ is a cut-off function

$$\tilde{\eta}(r;\tau,R) = \begin{cases} 0, & \text{if } r > R, \\ 1, & \text{if } r < \tau R, \\ \frac{1}{2} + \sum_{i=0}^{6} C_{i} \left(\frac{2r}{R(1-\tau)} - \frac{1+\tau}{1-\tau} \right)^{2i+1}, & \text{otherwise,} \end{cases}$$

with $R = \frac{32}{5}$, $\tau = \frac{1}{8}$, and the coefficients C_i are determined by solving the linear system

$$\tilde{\eta}^{(i)}(R; \tau, R) = 0, \quad i = 0, \dots, 6.$$

The source term f is obtained by calculating $f = -\Delta(\Delta(\Delta u)) \in L^2(\Omega)$.

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r,θ) – polar coordinates.

Building a solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right).$$

Reference solution u_R (left), the mixed method solution u_{10} (center), $|u_R - u_{10}|$ (right).

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r,θ) – polar coordinates.

Building a solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right).$$

Reference solution u_R (left), the mixed method solution u_{10} (center), $|u_R - u_{10}|$ (right).

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r,θ) – polar coordinates.

Building a solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right).$$

Reference solution u_R (left), the mixed method solution u_{10} (center), $|u_R - u_{10}|$ (right).

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$. (r, θ) – polar coordinates.

Building a wrong solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right) \notin H^{3}(\Omega).$$

Reference solution u_R (left), the mixed method solution u_{10} (center), $|u_R - u_{10}|$ (right).

The naive mixed method converges to the wrong solution even in a convex domain!

Hengguang Li (li@wayne.edu) 5 / 14

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

$$\text{Recall } V:=\{\phi\in H^3(\Omega), \phi|_{\partial\Omega}=0, \; \Delta\phi|_{\partial\Omega}=0\}.$$

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Recall
$$V := \{ \phi \in H^3(\Omega), \phi |_{\partial\Omega} = 0, \ \Delta \phi |_{\partial\Omega} = 0 \}.$$

The Laplace operator and its image [L. & Yin; 2024]:

• The mapping $-\Delta: V \to H^1_0(\Omega)$ is injective and has a closed range.

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Recall $V := \{ \phi \in H^3(\Omega), \phi |_{\partial\Omega} = 0, \Delta \phi |_{\partial\Omega} = 0 \}.$

The Laplace operator and its image [L. & Yin; 2024]:

- The mapping $-\Delta: V \to H_0^1(\Omega)$ is injective and has a closed range.
- \bullet ${\cal H}$ the image of this mapping; ${\cal H}^{\perp}$ its orthogonal complement.

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Recall $V := \{ \phi \in H^3(\Omega), \phi |_{\partial\Omega} = 0, \Delta \phi |_{\partial\Omega} = 0 \}.$

The Laplace operator and its image [L. & Yin; 2024]:

- The mapping $-\Delta: V \to H_0^1(\Omega)$ is injective and has a closed range.
- \mathcal{H} the image of this mapping; \mathcal{H}^{\perp} its orthogonal complement.
- $\mathcal{H} \oplus \mathcal{H}^{\perp} = H_0^1(\Omega)$; $\mathcal{H} = H_0^1(\Omega)$ when Ω 's largest angle $< \pi/2$.

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

Recall $V := \{ \phi \in H^3(\Omega), \phi |_{\partial\Omega} = 0, \ \Delta \phi |_{\partial\Omega} = 0 \}.$

The Laplace operator and its image [L. & Yin; 2024]:

- The mapping $-\Delta: V \to H^1_0(\Omega)$ is injective and has a closed range.
- \bullet $\,{\cal H}$ the image of this mapping; ${\cal H}^{\scriptscriptstyle \perp}$ its orthogonal complement.
- $\mathcal{H} \oplus \mathcal{H}^{\perp} = H_0^1(\Omega)$; $\mathcal{H} = H_0^1(\Omega)$ when Ω 's largest angle $< \pi/2$.

Good news: \mathcal{H}^{\perp} is finite dimensional! We are able to identify its basis.

Characterization of \mathcal{H}^{\perp} [L., & Yin; 2024]

A function v belongs to \mathcal{H}^{\perp} iff $v \in H_0^1(\Omega)$ is the solution of

$$\Delta^2 v = 0$$
 in Ω , $v = \Delta v = 0$ on Γ .

$$H^1$$
 orthogonality: for any $z \in V$ and $v \in \mathcal{H}^{\perp}$,

$$(-\nabla \Delta z, \nabla v) = 0.$$

Is it even possible?

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

$$K_{\omega}^R = \{(r,\theta)| 0 \leq r \leq R, 0 \leq \theta \leq \omega\}.$$

Let
$$\tau \in (0,1)$$
 and $\frac{2\omega}{\pi} \notin \mathbb{N}$. Define $N := \lfloor \frac{2\omega}{\pi} \rfloor$.

For $1 \le i \le N$, define

$$s_i^-(r,\theta;\tau,R) = \eta(r;\tau,R) r^{-\frac{i\pi}{\omega}} \sin\left(\frac{i\pi}{\omega}\theta\right) \in H^{-1}(\Omega).$$

Special Functions [L. & Yin; 2024]

(i) For $1 \le i \le N$, we define $\xi_i \in H^{-1}(\Omega)$, such that

$$\xi_i(r,\theta;\tau,R) := s_i^-(r,\theta;\tau,R) + \zeta_i(r,\theta;\tau,R),$$

where $\zeta_i \in H_0^1(\Omega)$ satisfies $-\Delta \zeta_i = \Delta s_i^-$ in Ω , $\zeta_i = 0$ on Γ .

(ii) For $1 \le i \le N$, define $\sigma_i \in H_0^1(\Omega)$, such that

$$-\Delta \sigma_i = \xi_i \text{ in } \Omega, \qquad \sigma_i = 0 \text{ on } \Gamma.$$

$$\Longrightarrow \Delta^2 \sigma_i = \Delta \xi_i = 0$$

The 6th-order problem with the simply supported boundary condition

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

ω	$(0,\frac{\pi}{2})$	$(\frac{\pi}{2},\pi)$	$(\pi,\frac{3\pi}{2})$	$(\frac{3\pi}{2}, 2\pi)$
$\frac{\pi}{\omega}$	(2,∞)	(1, 2)	$(\frac{2}{3},1)$	$(\frac{1}{2}, \frac{2}{3})$
N	0	1	2	3

Table: The value of N for different ω .

Special Functions [L. & Yin; 2024]

(i) For $1 \le i \le N$, we define $\xi_i \in H^{-1}(\Omega)$, such that

$$\xi_i(r,\theta;\tau,R) := s_i^-(r,\theta;\tau,R) + \zeta_i(r,\theta;\tau,R),$$

where $\zeta_i \in H_0^1(\Omega)$ satisfies $-\Delta \zeta_i = \Delta s_i^-$ in Ω , $\zeta_i = 0$ on Γ.

(ii) For $1 \le i \le N$, define $\sigma_i \in H_0^1(\Omega)$, such that

$$-\Delta \sigma_i = \xi_i \text{ in } \Omega, \qquad \sigma_i = 0 \text{ on } \Gamma.$$

$$\Longrightarrow \Delta^2 \sigma_i = \Delta \xi_i = 0$$

The dimension of \mathcal{H}^{\perp} is finite and $\mathcal{H}^{\perp} = \operatorname{span}\{\sigma_i\}_{1 \leq i \leq N}$.

Any $z \in H_0^1(\Omega)$ can be written as

$$z = z_{\mathcal{H}} + \sum_{i=1}^{N} c_{z,i} \sigma_i,$$

where $z_{\mathcal{H}} \in \mathcal{H}$ and the coefficients $c_{z,i}$ are uniquely determined by

$$\sum_{i=1}^{N} c_{z,i}(\nabla \sigma_i, \nabla \sigma_j) = (\nabla z, \nabla \sigma_j), \quad j = 1, \dots, N.$$

The dimension of \mathcal{H}^{\perp} is finite and $\mathcal{H}^{\perp} = \text{span}\{\sigma_i\}_{1 \leq i \leq N}$.

Any $z \in H_0^1(\Omega)$ can be written as

$$z = z_{\mathcal{H}} + \sum_{i=1}^{N} c_{z,i} \sigma_i,$$

where $z_{\mathcal{H}} \in \mathcal{H}$ and the coefficients $c_{z,i}$ are uniquely determined by

$$\sum_{i=1}^{N} c_{z,i}(\nabla \sigma_i, \nabla \sigma_j) = (\nabla z, \nabla \sigma_j), \quad j = 1, \dots, N.$$

Recall the direct decomposition

$$\left\{ \begin{array}{ll} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \Gamma; \end{array} \right. \quad \left\{ \begin{array}{ll} -\Delta v = w & \text{in } \Omega, \\ v = 0 & \text{on } \Gamma; \end{array} \right. \quad \text{and} \quad \left\{ \begin{array}{ll} -\Delta \bar{u} = v & \text{in } \Omega, \\ \bar{u} = 0 & \text{on } \Gamma. \end{array} \right.$$

The dimension of \mathcal{H}^{\perp} is finite and $\mathcal{H}^{\perp} = \operatorname{span}\{\sigma_i\}_{1 \leq i \leq N}$.

Any $z \in H_0^1(\Omega)$ can be written as

$$z = z_{\mathcal{H}} + \sum_{i=1}^{N} c_{z,i} \sigma_i,$$

where $z_{\mathcal{H}} \in \mathcal{H}$ and the coefficients $c_{z,i}$ are uniquely determined by

$$\sum_{i=1}^{N} c_{z,i}(\nabla \sigma_i, \nabla \sigma_j) = (\nabla z, \nabla \sigma_j), \quad j = 1, \dots, N.$$

Idea: Modifying the RHS

$$\left\{ \begin{array}{ll} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \Gamma; \end{array} \right. \quad \left\{ \begin{array}{ll} -\Delta v = w & \text{in } \Omega, \\ v = 0 & \text{on } \Gamma; \end{array} \right. \quad \left\{ \begin{array}{ll} -\Delta \tilde{u} = v - \sum_{i=1}^{N} c_{v,i} \sigma_{i} & \text{in } \Omega, \\ \tilde{u} = 0 & \text{on } \Gamma, \end{array} \right.$$

 $\Longrightarrow u = \tilde{u} \in H^3(\Omega).$

Modified Mixed Methods [L. & Yin; 2024]

Solving the triharmonic problem $\Delta^3 u = f$. Recall s_i^- , $i = 1, \dots, N$.

• Step 1. $\forall \psi \in S_n$, find the numerical solutions $w_n, v_n, \zeta_{in} \in S_n$

(1)
$$a(w_n, \psi) = (f, \psi),$$
 (2) $a(v_n, \psi) = (w_n, \psi),$ (3) $a(\zeta_{in}, \psi) = (\Delta s_i^-, \psi),$

and set $\xi_{in} = \zeta_{in} + s_i^-$.

• Step 2. Find the finite element solution $\sigma_{in} \in S_n$, $i = 1, \dots, N$

$$a(\sigma_{in},\psi)=(\xi_{in},\psi).$$

• Step 3. Find the coefficient $c_{v,in} \in \mathbb{R}$ by solving the linear system

$$\sum_{i=1}^{N} c_{v_n,i}(\nabla \sigma_{in}, \nabla \sigma_{jn}) = (\nabla v_n, \nabla \sigma_{jn}), \quad j = 1, \cdots, N.$$

• Step 4. Find the finite element solution $u_n \in S_n$ of the Poisson equation

$$a(u_n,\psi) = \left(v_n - \sum_{i=1}^N c_{v_n,i}\sigma_{in},\psi\right).$$

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Recall $N := \lfloor \frac{2\omega}{\pi} \rfloor$. For $1 \le i \le N$, let

$$0 < \alpha < \frac{\pi}{\omega}$$
 and $-1 < \beta_i < 1 - \frac{i\pi}{\omega}$.

Notice $-\Delta \sigma_i = \xi_i \in H^{\beta_i}(\Omega) \Longrightarrow \sigma_i \in H^{\min(2+\beta_i,\alpha)}(\Omega)$. Therefore, for any $\tau \in S_n$,

$$a(u - u_n, \tau) = (v - v_n, \tau) - \sum_{i=1}^{N} (c_{v,i}\sigma_i - c_{v_n,i}\sigma_{in}, \tau)$$

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Recall $N := \lfloor \frac{2\omega}{\pi} \rfloor$. For $1 \le i \le N$, let

$$0 < \alpha < \frac{\pi}{\omega}$$
 and $-1 < \beta_i < 1 - \frac{i\pi}{\omega}$.

Notice $-\Delta \sigma_i = \xi_i \in H^{\beta_i}(\Omega) \Longrightarrow \sigma_i \in H^{\min(2+\beta_i,\alpha)}(\Omega)$. Therefore, for any $\tau \in S_n$,

$$a(u - u_n, \tau) = (v - v_n, \tau) - \sum_{i=1}^{N} (c_{v,i}\sigma_i - c_{v_n,i}\sigma_{in}, \tau)$$

==

$$||u-u_n||_{H^1(\Omega)} \leq C\Big(||u-u_I||_{H^1(\Omega)} + ||v-v_n||_{H^{-1}(\Omega)} + \sum_{i=1}^N (|c_{in}|||\sigma_i - \sigma_{in}||_{H^{-1}(\Omega)} + |c_{v,i} - c_{v_n,i}|||\sigma_i||_{H^{-1}(\Omega)})\Big),$$

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Recall $N := \lfloor \frac{2\omega}{\pi} \rfloor$. For $1 \le i \le N$, let

$$0 < \alpha < \frac{\pi}{\omega}$$
 and $-1 < \beta_i < 1 - \frac{i\pi}{\omega}$.

Notice $-\Delta \sigma_i = \xi_i \in H^{\beta_i}(\Omega) \Longrightarrow \sigma_i \in H^{\min(2+\beta_i,\alpha)}(\Omega)$. Therefore, for any $\tau \in S_n$,

$$a(u - u_n, \tau) = (v - v_n, \tau) - \sum_{i=1}^{N} (c_{v,i}\sigma_i - c_{v_n,i}\sigma_{in}, \tau)$$

 \Longrightarrow

$$||u-u_n||_{H^1(\Omega)} \leq C\Big(||u-u_I||_{H^1(\Omega)} + ||v-v_n||_{H^{-1}(\Omega)} + \sum_{i=1}^N (|c_{in}|||\sigma_i - \sigma_{in}||_{H^{-1}(\Omega)} + |c_{v,i} - c_{v_n,i}|||\sigma_i||_{H^{-1}(\Omega)})\Big),$$

where $\|\sigma_i - \sigma_{in}\|_{H^{-1}(\Omega)} \le Ch^{\min(1+\beta_i + \min(\alpha,1),2\alpha)}$ and $|c_{v,i} - c_{v_n,i}| \le Ch^{2\min(1+\beta_i,\alpha)}$.

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Error Analysis [L., & Yin; 2024]

Let $u_n \in S_n$ be the proposed finite element solution of the sixth order problem. Then

$$||u - u_n||_{H^1(\Omega)} \le C_0 h + \sum_{i=1}^N C_i h^{\min\{2(1+\beta_i),1\}} \le C h^{\gamma}, \quad \beta_i < 1 - \frac{i\pi}{\omega}.$$

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Error Analysis [L., & Yin; 2024]

Let $u_n \in S_n$ be the proposed finite element solution of the sixth order problem. Then

$$||u - u_n||_{H^1(\Omega)} \le C_0 h + \sum_{i=1}^N C_i h^{\min\{2(1+\beta_i),1\}} \le C h^{\gamma}, \quad \beta_i < 1 - \frac{i\pi}{\omega}.$$

ω	$[0, \frac{\pi}{2}]$	$\left(\frac{\pi}{2},\frac{2\pi}{3}\right]$	$\left(\frac{2\pi}{3},\pi\right]$	$(\pi, \frac{4\pi}{3}]$	$(\frac{4\pi}{3}, \frac{3\pi}{2}]$	$(\frac{3\pi}{2}, 2\pi)$
$min{2(1 + \beta_1), 1}$		$2(1 + \beta_1)$	1	1	1	1
$min{2(1 + \beta_2), 1}$				$2(1 + \beta_2)$	1	1
$min{2(1 + \beta_3), 1}$						$2(1 + \beta_3)$
γ	1	$2(1 + \beta_1)$	1	$2(1 + \beta_2)$	1	$2(1 + \beta_3)$

Table: The values of min{ $2(1 + \beta_i)$, 1} and γ for different ω .

Suppose the largest interior angle ω of Ω is at (0,0), $\omega > \pi/2$ and other angles $< \pi/2$.

Error Analysis [L., & Yin; 2024]

Let $u_n \in S_n$ be the proposed finite element solution of the sixth order problem. Then

$$||u - u_n||_{H^1(\Omega)} \le C_0 h + \sum_{i=1}^N C_i h^{\min\{2(1+\beta_i),1\}} \le C h^{\gamma}, \quad \beta_i < 1 - \frac{i\pi}{\omega}.$$

Hengguang Li (li@wayne.edu) 10/14

Numerical Illustration I

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

A wrong solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right) \notin H^{3}(\Omega).$$

Top row: reference solution u_R (left), naive mixed method solution u_{10}^N (center), $|u_R - u_{10}^N|$ (right). Bottom row: proposed method solution u_{10}^A (left), $|u_R - u_{10}^A|$ (right).

Hengguang Li (li@wayne.edu) 11/14

Numerical Illustration I

The equation

$$-\Delta^3 u = f$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

A wrong solution

$$u(r,\theta) = \tilde{\eta}(r;\tau,R)r^{\frac{\pi}{\omega}}\sin\left(\frac{\pi}{\omega}\theta\right) \notin \mathbf{H}^3(\Omega).$$

	j = 7	j = 8	j = 9	j = 10	
$ u-u_j^N _{H^1(\Omega)}$	2.74964e-01	1.35594e-01	6.77391e-02	3.38605e-02	
$ u-u_j^A _{H^1(\Omega)}$	6.07564	6.02331	6.00958	6.00306	

Table: The H^1 error of the numerical solutions on quasi-uniform meshes.

Numerical Illustration II

An H³ solution

Given $f_0 = -\Delta \left(\tilde{\eta}(r; \tau, R) r^{\frac{N\pi}{\omega}} \sin \left(\frac{N\pi}{\omega} \theta \right) \right) \in H_0^1(\Omega)$, let u be the H^3 solution of $-\Delta^3 u = \Delta^2 f_0$. To ensure $u \in H^3(\Omega)$, we require u satisfies

$$-\Delta u = f_0 - \sum_{i=1}^{N} c_i \sigma_i$$
 in Ω , $u = 0$ on Γ ,

where c_i is given by $\sum_{i=1}^{N} c_i(\nabla \sigma_i, \nabla \sigma_j) = (\nabla f_0, \nabla \sigma_j), \quad j = 1, \dots, N.$

Figure: $\omega \approx 1.383\pi \in (\pi, 3\pi/2)$: the reference solution u_R (left); $|u - u_{10}^N|$ (center); $|u - u_{10}^A|$ (right).

Hengguang Li (li@wayne.edu) 12/14

Numerical Illustration II

An H^3 solution

Given $f_0 = -\Delta \left(\tilde{\eta}(r; \tau, R) r^{\frac{N\pi}{\omega}} \sin \left(\frac{N\pi}{\omega} \theta \right) \right) \in H_0^1(\Omega)$, let u be the H^3 solution of $-\Delta^3 u = \Delta^2 f_0$. To ensure $u \in H^3(\Omega)$, we require u satisfies

$$-\Delta u = f_0 - \sum_{i=1}^{N} c_i \sigma_i$$
 in Ω , $u = 0$ on Γ ,

where c_i is given by $\sum_{i=1}^{N} c_i(\nabla \sigma_i, \nabla \sigma_j) = (\nabla f_0, \nabla \sigma_j), \quad j = 1, \dots, N.$

	j = 6	j = 7	j = 8	j = 9
$ u-u_j^N _{H^1(\Omega)}$	9.67666	9.64665	9.63404	9.63164
$ u-u_j^A _{H^1(\Omega)}$	5.27303e-02	2.09405e-02	1.01081e-02	4.20655e-03

Table: The H^1 error of the numerical solutions on quasi-uniform meshes.

Numerical Illustration III

Tests for different values of ω

$$-\Delta^3 u = \sin(\frac{N\pi}{\omega}\theta)$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

ω	expected rate	j = 7	j = 8	<i>j</i> = 9	j = 10
$\approx 0.56409\pi$	0.46	0.75	0.67	0.59	0.54
$\approx 0.63099\pi$	0.83	0.96	0.95	0.94	0.93
$\frac{2\pi}{3}$	1.00	1.03	1.01	1.00	1.00
$\approx 0.70483\pi$	1.00	1.01	1.01	1.01	1.00
$\approx 0.79517\pi$	1.00	1.02	1.01	1.01	1.00

Table: The H^1 error for $\omega \in (\frac{\pi}{2}, \pi)$ on quasi-uniform meshes.

Numerical Illustration III

Tests for different values of ω

$$-\Delta^3 u = \sin(\frac{N\pi}{\omega}\theta)$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

ω	expected rate	j = 6	<i>j</i> = 7	j = 8	<i>j</i> = 9
$\approx 1.10615\pi$	0.38	0.82	0.72	0.62	0.53
$\approx 1.25612\pi$	0.82	0.96	0.95	0.94	0.93
$\approx 1.30101\pi$	0.93	0.98	0.98	0.98	0.98
$\frac{4\pi}{3}$	1.00	1.00	1.00	1.00	1.00
$\approx 1.38305\pi$	1.00	1.02	1.02	1.01	1.01

Table: The H^1 error for $\omega \in (\pi, \frac{3\pi}{2})$ on quasi-uniform meshes.

Numerical Illustration III

Tests for different values of ω

$$-\Delta^3 u = \sin(\frac{N\pi}{\omega}\theta)$$
 in Ω , $u = \Delta u = \Delta^2 u = 0$ on Γ .

ω	expected rate		<i>j</i> = 6	j = 7	j = 8	j = 9
$\approx 1.58946\pi$	0.23	Π	0.87	0.76	0.63	0.50
$\frac{5\pi}{3}$	0.40	Ī	0.83	0.75	0.65	0.60
$\frac{7\pi}{4}$	0.57	I	0.87	0.82	0.77	0.71

→ Table: The H^1 error for $\omega \in (\frac{3\pi}{2}, 2\pi)$ on quasi-uniform meshes.

- **1** $H^3(\Omega)$ well-posedness for the triharmonic problem.
- ① The naive mixed formulation does not apply to domains with angles $> \pi/2$
- The proposed mixed methods consist of 5 + N Poisson equations in general polygonal domains.
- The correspondence between the largest angle and the convergence rates on quasi-uniform meshes is nonlinear.

- **O** $H^3(\Omega)$ well-posedness for the triharmonic problem.
- **②** The naive mixed formulation does not apply to domains with angles $> \pi/2$.
- The proposed mixed methods consist of 5 + N Poisson equations in general polygonal domains.
- The correspondence between the largest angle and the convergence rates on quasi-uniform meshes is nonlinear.

- **1** $H^3(\Omega)$ well-posedness for the triharmonic problem.
- The naive mixed formulation does not apply to domains with angles $> \pi/2$.
- \bullet The proposed mixed methods consist of 5 + N Poisson equations in general polygonal domains.
- The correspondence between the largest angle and the convergence rates on quasi-uniform meshes is nonlinear.

- **O** $H^3(\Omega)$ well-posedness for the triharmonic problem.
- ② The naive mixed formulation does not apply to domains with angles $> \pi/2$.
- \bigcirc The proposed mixed methods consist of 5 + N Poisson equations in general polygonal domains.
- The correspondence between the largest angle and the convergence rates on quasi-uniform meshes is nonlinear.

- **O** $H^3(\Omega)$ well-posedness for the triharmonic problem.
- **②** The naive mixed formulation does not apply to domains with angles $> \pi/2$.
- \bigcirc The proposed mixed methods consist of 5 + N Poisson equations in general polygonal domains.
- The correspondence between the largest angle and the convergence rates on quasi-uniform meshes is nonlinear.

Acknowledgments

