Feuille d'exercices 2. Dérivation et intégration.

Exercice 2.1 : (niveau 1)

Simplifier les expressions $\cos(2\arccos x)$, $\sin(2\arccos x)$ et $\tan(2\arcsin x)$.

Exercice 2.2 : (niveau 1)

Sans en rechercher les domaines de définition, calculer les dérivées des fonctions suivantes :

$$f(x) = \cos\left(e^{3x\sin(\ln x)}\right), \ g(x) = (\ln^3(x^2+1) - \ln(x^2+1))^5 \text{ et } h(x) = \frac{\sin x^2}{(x+\ln x)^9}.$$

Exercice 2.3 : (niveau 1)

Calculer les primitives des fonctions suivantes :

$$f(x) = (x^2 - 1)e^{2x}$$
, $g(x) = x^3e^{-x^2}$, $h(x) = \ln^2 x$.

Exercice 2.4: (niveau 1)

Soit $n \in \mathbb{N}$. Calculer $\int_{1}^{e} t^{n} \ln t \ dt$.

Exercice 2.5 : (niveau 1)

Calcul de $\int (\cos t)^4 (\sin t)^2 dt$.

Exercice 2.6: (niveau 1)

Soit f une application continue de [0,1] dans \mathbb{R} .

Montrer qu'il existe une unique primitive F de f telle que $\int_0^1 F(t) \ dt = 0$.

Exercice 2.7 : (niveau 1)

Soit f une application continue de \mathbb{R} dans \mathbb{R} . Lorsque g est donnée par l'une des formules suivantes, montrer que g est dérivable et calculer g':

1°)
$$g(x) = \int_{2x}^{x^2} f(t) dt$$
.

$$\mathbf{2}^{\circ}) \quad g(x) = \int_0^x x f(t) \ dt.$$

3°)
$$g(x) = \int_0^x f(t+x) dt$$
.

Exercice 2.8: (niveau 1)

Soit f une application continue de \mathbb{R} dans \mathbb{R} .

Calculer la limite lorsque x tend vers 0 de $\frac{1}{x} \int_{0}^{x} f(t) dt$.

Exercice 2.9: (niveau 1)

Soit f une application continue de [0,1] dans \mathbb{R} telle que $\int_0^1 f(t) \ dt = \frac{1}{2}$.

Montrer que f possède un point fixe, c'est-à-dire qu'il existe $\ell \in [0,1]$ tel que $f(\ell) = \ell$.

Exercice 2.10 : (niveau 1)

Calculer $A = \int_0^{\frac{\pi}{3}} \tan x \sqrt{1 + \tan^2 x} \ dx$ et $B = \int_0^{\pi} \frac{\sin t}{1 + \cos^2 t} dt$.

Exercice 2.11 : (niveau 1)

Calcul de $\int (\cos^4 t)(\sin^3 t) dt$.

Exercice 2.12 : (niveau 2)

Résoudre l'équation (E): $2\arcsin x = \arcsin(2x\sqrt{1-x^2})$.

Exercice 2.13 : (niveau 2)

Montrer que, pour tout $t \in \mathbb{R}$, $\arctan(t) = \arcsin\left(\frac{t}{t/1+t^2}\right)$.

Exercice 2.14: (niveau 1)

- 1°) Soit $\alpha, \beta \in \mathbb{R}_+^*$. Déterminer la limite en 1 de la fonction $x \mapsto \frac{x^{\alpha} 1}{x^{\beta} 1}$.

2°) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application dérivable. Soit $a \in \mathbb{R}$. Déterminer la limite en a de $x \longmapsto \frac{xf(a) - af(x)}{x - a}$.

Exercice 2.15 : (niveau 2)

Calculer la dérivée *n*-ième de $f: x \longmapsto \cos^2 x$ et de $g: x \longmapsto \frac{2x}{x^2-1}$.

Exercice 2.16: (niveau 2)

Déterminer les fonctions continues sur \mathbb{R} telles que

$$\forall x \in \mathbb{R}, \forall a \in \mathbb{R}_+^* : f(x) = \frac{1}{2a} \int_{x-a}^{x+a} f(t)dt.$$

Exercice 2.17 : (niveau 2)

Calculer
$$I = \int_{-2}^{1} \frac{x}{x^2 + 4x + 13} dx$$
.

Exercice 2.18: (niveau 2)

Déterminez les applications continues f de [a, b] dans \mathbb{R} vérifiant :

$$\int_{a}^{b} f(t)dt = (b - a) \sup_{t \in [a,b]} |f(t)|.$$

Exercice 2.19 : (niveau 2)

Calculer les primitives des fonctions suivantes :

$$f(x) = \frac{\sqrt{\sqrt{x} + 1}}{\sqrt{x}}, \quad g(x) = \frac{\cos x}{\sqrt{2 + \sin x}}, \quad h(x) = \frac{(\ln x)^2}{x},$$
$$i(x) = \frac{1}{x \ln x \ln(\ln x)}, \quad j(x) = \frac{1}{x + \sqrt{x}}, \quad k(x) = \text{th}x,$$
$$\ell(x) = \frac{x^3}{1 + x^2}, \quad m(x) = \frac{1}{\sqrt{x} + \sqrt{x - 1}}, \quad n(x) = \tan^2 x, \quad p(x) = (1 + \tan x)^2.$$

Exercice 2.20: (niveau 2)

Etude de la fonction $f(t) = \frac{t^2 - 2t - 1}{t}e^{-1/t}$

Exercice 2.21 : (niveau 2)

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 x^n \tan(x) dx$.

Calculer les limites de $(I_n)_{n\in\mathbb{N}}$ et de $(nI_n)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.

Exercice 2.22 : (niveau 2)

Soit $n \in \mathbb{N}$. Calculer $\int_0^1 x^n \sqrt{1-x} \ dx$.

Exercice 2.23 : (niveau 2)

Calculer la limite lorsque x tend vers 0 de $\int_{x}^{3x} \frac{\sin t}{t^2} dt$.

Exercice 2.24 : (niveau 2)

Pour tout $n \in \mathbb{N}$, calculer $I_n = \int_0^{\frac{\pi}{4}} \tan(t) \times \ln^n(\cos t) dt$.

Exercice 2.25 : (niveau 2)

On souhaite calculer $I = \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{x}{\sin x} dx$.

1°) Transformer I en posant d'abord $u = \frac{x}{2}$, puis $t = \tan u$.

2°) Soit
$$\alpha > 0$$
. En posant $x = \frac{1}{t}$, calculer $\int_{\frac{1}{t}}^{\alpha} \frac{\ln t}{1 + t^2} dt$.

 3°) Achever le calcul de I.

Exercice 2.26 : (niveau 2)

Calcul de $\int \frac{\sqrt{1+\sqrt{1-t^2}}}{\sqrt{1-t^2}} dt$.

Exercice 2.27 : (niveau 3)

Simplifier $f(x) = \arcsin\left(\frac{1+x}{\sqrt{2(1+x^2)}}\right)$.

Exercice 2.28 : (niveau 3)

Résoudre l'équation suivante, en l'inconnue $x \in \mathbb{R}$:

$$\arccos\left(\frac{1-x}{1+x}\right) + \arcsin\left(\frac{2\sqrt{x}}{1+x}\right) = \pi.$$

Exercice 2.29 : (niveau 3)

Lemme de Gronwall:

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ continue, telle qu'il existe $k \in \mathbb{R}_+$ pour lequel :

 $\forall x \in \mathbb{R}_+^* \ f(x) \le k \int_0^x f(t)dt.$

Montrez que f est nulle.

Exercice 2.30 : (niveau 3)

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une application deux fois dérivable telle que, pour tout $x \in \mathbb{R}_+$, f(x) > 0 et $f(x)f''(x) \ge f'(x)^2$. Montrer que

$$\forall x \in \mathbb{R}_+, \ f(x) \ge f(0)e^{x\frac{f'(0)}{f(0)}}.$$

Exercice 2.31 : (niveau 3)

Calculer la limite lorsque n tend vers $+\infty$ de $\sum_{i=1}^n \sum_{j=1}^n \frac{(-1)^{i+j}}{i+j}$.

On pourra utiliser que $\int_0^1 t^n dt = \frac{1}{n+1}$.

Exercice 2.32 : (niveau 3)

a et b sont deux réels tels que a < b. On note F l'ensemble des applications continues de [a,b] dans \mathbb{R} qui ne s'annulent en aucun point. Pour tout $f \in F$, on pose $P_f = \left(\int_a^b f(t)dt\right)\left(\int_a^b \frac{dt}{f(t)}\right)$.

- $\mathbf{1}^{\circ}$) Déterminer le minimum de P_f lorsque f décrit F et préciser pour quels éléments de F ce minimum est atteint.
- 2°) Montrer que $\{P_f/f \in F\}$ n'est pas majoré.

Exercice 2.33 : (niveau 3)

Soit f une application continue de [0,1] dans \mathbb{R} et $n \in \mathbb{N}^*$.

On suppose que, pour tout $k \in \{0, \dots, n-1\}$, $\int_0^1 f(x)x^k dx = 0$.

Montrer que f s'annule au moins n fois.

Exercices supplémentaires

Exercice 2.34 : (niveau 1)

Sans en rechercher les domaines de définition, calculer les dérivées des fonctions suivantes :

 $f(x) = \frac{3x^2}{1 - x^2}, \ g(x) = \exp\left(\frac{2x - 1}{x^2 + 2}\right), \ h(x) = xe^{-\frac{1}{x^2}}.$

Exercice 2.35 : (niveau 1)

Sans en rechercher le domaine de définition, dérivez les fonctions suivantes : $\frac{1}{2}$

$$f(x) = \ln \sqrt{|\tan x|}, \ g(x) = \sqrt{\sin \frac{1}{x}} \text{ et } h(x) = \frac{1}{2(e^x + e^{-x})^2}.$$

Exercice 2.36 : (niveau 1)

Résoudre l'équation $\tan(3x - \frac{\pi}{5}) = \tan(x + 4\frac{\pi}{5})$.

Exercice 2.37: (niveau 1)

Résoudre l'équation $x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$

Exercice 2.38 : (niveau 1)

Calculer $\int_0^{\frac{\pi}{4}} \frac{1 + \tan^2 x}{1 + \tan x} dx.$

Exercice 2.39 : (niveau 1)

Étudier la fonction $f(x) = \arcsin \frac{2\sqrt{x}}{1+x}$.

Exercice 2.40 : (niveau 1)

- 1°) Montrer que pour tout $x \in \mathbb{R}^*$, th $x = \frac{2}{\operatorname{th}(2x)} \frac{1}{\operatorname{th}x}$.
- **2**°) En déduire la valeur, pour $n \in \mathbb{N}$, de $\sum_{k=0}^{n} 2^k \operatorname{th}(2^k x)$.

Exercice 2.41 : (niveau 2)

Calcul de la limite quand x tend vers $\frac{\pi}{6}$ de : $\frac{\arctan(2\sin(x)) - \frac{\pi}{4}}{\cos(3x)}$.

Exercice 2.42 : (niveau 2)

Calculer le sinus, le cosinus et la tangente des nombres réels $\frac{\pi}{12}$, $\frac{5\pi}{12}$ et $\frac{7\pi}{12}$.

Exercice 2.43: (niveau 2)

Résoudre l'équation $\cos x + \cos 2x - 3\cos 3x = -1$.

Exercice 2.44 : (niveau 2)

Calculer
$$I = \int_0^2 \sqrt{e^x} dx$$
, $J = \int_{\frac{\pi^2}{2e}}^{\frac{\pi^2}{16}} \frac{dx}{\sqrt{x} \cos^2(\sqrt{x})}$, $K = \int_{\frac{\pi}{e}}^{\frac{\pi}{3}} \frac{dx}{\tan x}$ et $L = \int_0^1 e^{e^x + x} dx$.

Exercice 2.45 : (niveau 2)

Calculer, pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \ dx$.

Exercice 2.46 : (niveau 2)

Calculez
$$\int_0^{\sin^2 x} \arcsin \sqrt{t} dt + \int_0^{\cos^2 x} \arccos \sqrt{t} dt$$
, où $x \in [0, \frac{\pi}{2}]$.

Exercice 2.47: (niveau 2)

Soit n un entier naturel. Résoudre l'équation en l'inconnue $x \in \mathbb{R}$ suivante :

$$(\cos x)^n + (\sin x)^n = 1.$$

Exercice 2.48: (niveau 2)

Soit f une application continue de [0,1] dans \mathbb{R} . On admettra qu'une telle application est toujours bornée.

Montrer que
$$I_n = \int_0^1 t^n f(t) dt \underset{n \to +\infty}{\longrightarrow} 0$$
 (avec $n \in \mathbb{N}$).

Si f est de classe C^{1} avec $f(1) \neq 0$,

donner un équivalent de I_n lorsque n tend vers $+\infty$.

Exercice 2.49 : (niveau 2)

En posant
$$u = \pi - t$$
, calculer $I = \int_0^{\pi} \frac{t \sin t}{1 + \cos^2 t}$.

En posant
$$u = \frac{\pi}{2} - t$$
, calculer $J = \lim_{x \to \frac{\pi}{2}} \left(\int_0^x \frac{dt}{1 + \tan^{2018} t} \right)$.

En posant
$$u = \sqrt{t^2 + t + 1} - t$$
, calculer $K = \int_0^1 \frac{dt}{\sqrt{t^2 + t + 1}}$.

Exercice 2.50 : (niveau 2)

(oral CCP) : Simplifier l'expression de la fonction
$$x \mapsto \arcsin\left(\frac{2x}{1+x^2}\right)$$
.

Exercice 2.51: (niveau 2)

On souhaite calculer
$$I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{3 + \sin(2x)}} dx$$
.

1°) Montrer que
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sqrt{3 + \sin(2x)}} dx$$
, puis que $I = \frac{1}{\sqrt{2}} \int_0^{\frac{\pi}{2}} \frac{\cos(x - \frac{\pi}{4})}{\sqrt{3 + \sin(2x)}} dx$.

2°) Poser successivement $t = x - \frac{\pi}{4}$ et $u = \sin t$ pour calculer I.

Exercice 2.52 : (niveau 2)

- 1°) Soit $(\theta, \varphi) \in \mathbb{R}^2$:
- a) Résoudre les inéquations $Atan\theta + Atan\varphi < \frac{\pi}{2}$ et $Atan\theta + Atan\varphi > -\frac{\pi}{2}$.
- b) Exprimez $Atan\theta + Atan\varphi$ à l'aide de $Atan\frac{\tilde{\theta} + \varphi}{1 \theta_{12}}$.
- 2°) Calculez a = Atan2 + Atan5 + Atan8.
- 3°) Résoudre $Atan(x-3) + Atanx + Atan(x+3) = \frac{5\pi}{4}$.

Exercice 2.53 : (niveau 3)

Résoudre l'équation $\cos(\pi \sin(x)) = \sin(\pi \cos(x))$, en l'inconnue $x \in \mathbb{R}$.

Exercice 2.54 : (niveau 3)

Simplifier
$$f(x) = \arccos\sqrt{\frac{1+\sin x}{2}} - \arcsin\sqrt{\frac{1+\cos x}{2}}$$
.

Exercice 2.55 : (niveau 3) On pose
$$I = \int_0^{\pi/2} \frac{\cos x}{\sqrt{1 + \cos x \sin x}} dx$$
 et $J = \int_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x \sin x}} dx$. Montrer que $I = J$ puis calculer I .

Exercice 2.56: (niveau 3)

Soit f une fonction continue sur \mathbb{R} . On suppose qu'il existe a appartenant à [0,1] tel que pour tout x réel, $f(x) = \int_{0}^{ax} f(t)dt$.

- 1°) Montrer que f est indéfiniment dérivable sur \mathbb{R} .
- 2°) Montrer que f est la fonction nulle.

Exercice 2.57 : (niveau 3)

Déterminez les applications f continues de [0,1] dans \mathbb{R} et vérifiant :

$$\int_0^1 f(x)dx = \frac{1}{3} + \int_0^1 f(x^2)^2 dx.$$