哈尔滨工业大学 2014 学年 秋 季学期 自动控制原理 II 试 题

						N 45 15					
题号	1	1	Έ	四四	五	六	七	八	九	+	总分
得分	10 .	10	. 6	8	6	10		. 1 **			
阅卷人									-		

	+
: 一、填空题 (10 分)	0,
1. 传递函数定义: 空初始状态下输出量与输入量的投入变换之比	$\overline{\alpha}$
: :2. 从相位考虑, PD 调节器是一种校正装置, PI 调节器是校正装置。	1
3. 某系统在单位脉冲输入信号 $\delta(t)$ 作用下的响应函数为 $g(t)=10e^{-0.2t}+5e^{-0.5t}$,此系统的传送	
$\frac{10}{10} + \frac{5}{10}$	4
4. 已知单位负反馈系统的开环传函为 $G(s)=\frac{50}{s(0.1s+1)(s+5)}$,则该系统在单位斜坡信号作用了 $utt>=t$,A=I	Š
的稳态误差为_0.1。 V=1,Kv=150 5Gus=10 阶跃、斜坡抛物线	
密 t	<u></u>
	ĺΚ
$G(s) = \frac{10}{3s+1}$,当输入信号为 $F(t) = \sin 2t$ 时,则该系统的稳态输出响	这
: > 1.645in(2t-805°). G(1)2)=10 (61,21)=1.64, (G(52)=-805°	
8. 已知超前校正装置的传递函数为 $G_c(s)=\frac{2s+1}{0.32s+1}$,其提供的最大超前相角为 $\phi_m=$,
: 最大超前角所对应的频率 α_m =。	Y
封	
$\frac{1}{2}$ 9. 一高阶系统 的传函为 $G(s) = \frac{5.6}{(s+8)(s+5)(s^2+s+1)}$,该系统降阶化简后的传	単く
	IVE
10. 设一阶系统的传递 $G(s) = \frac{7}{s+2}$,其阶跃响应曲线在 $i=0$ 处的切线斜率为。	
$=\frac{35}{4}$	
$y'(t) = 7e^{-2t}$	
· 4'(0)=7	

記然

二、(10分)系统结构图如图所示:

- 1、写出闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$ 表达式;
- 2、要使系统满足: $\xi=0.707$, $\omega_n=2$, 试确定相应的 K和 β ;
- 3、求此时系统的动态性能指标 σ %, t_{s} ;
- $4\sqrt{r(t)}=2t$ 时, 求系统由 r(t) 产生的稳态误差 e_{st} ; R(s) E(s)
- 5、确定 $G_n(s)$,使干扰n(t)对系统输出c(t)无影响。

$$\begin{array}{ccc}
& & & \\
& & \\
& & \\
& \Rightarrow \Phi(s) = \frac{k}{s^2} & H = 1 + \beta s & \beta \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

(2)
$$k\beta = 2\{nn, k = wn^2 = \}$$
 $\begin{cases} k = 4 \\ \beta = 0.707 \end{cases}$

13)
$$w_{d} = w_{n} \sqrt{1-s^{2}} = \sqrt{2}$$
 $t_{p} = \frac{\pi}{w_{d}} = 2.22$, $\sigma \% = e^{-\frac{1}{2}w_{n}t_{p}} \times 100\% = 433\%$, $t_{s}(2\%) = \frac{4}{3}w_{n} = 2.83s$

(4)开环行运GGSHGS= + 50 = K S(S+KP) 为工型系统, K=1, mSGGSHGS= 1, es= A=AB=1.414

$$(S) R(s) = 0 / \frac{1}{3} + N(s)$$

$$(S_n(s)) = 0 / \frac{1}{3} + N(s)$$

$$(S_n(s)) = 0 / \frac{1}{3} + N(s)$$

回路:
$$L_1 = -\frac{\beta k}{5}$$
, $L_2 = -\frac{k}{5^2}$
 $\Delta = 1 - L_1 - L_2 = 1 + \frac{\beta k}{5} + \frac{k}{5^2}$
例问通路 $P_1 = 1$, $\Delta_1 = 1 - L_1 = 1 + \frac{\beta k}{5}$
 $P_2 = -\frac{Gn}{5}$, $\Delta_2 = 1$
 $\frac{(s)}{N(s)} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} = \frac{S^2 + \beta k S - Gn S}{S^2 + \beta k S + k} = 0$
 $= > Gn(s) = S + \beta k$

:=、(6分)系统的开环奈氏图如下图所示,P为开环传递函数在 s 右半平面的极点数, ν 为系统的型别,判别系统的闭环稳定性,求出闭环系统在 s 右半平面的极点数。

起始或终止于-180°对销算软强起 这种中连经过(接近)而在成过的模

封

四、(8分) 已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K_s}{s(s+3)^2}$:

- (1) 绘制该系统以根轨迹增益 K_s 为变量的根轨迹(求出:渐近线、分离点、与虚轴的交点等);
- (2) 确定使系统为欠阻尼状态的开环增益K的取值范围。

角字: G(S)=
$$\frac{kg}{s(S+3)^2}$$
, $n=3$, $P_1=0$, $P_2=P_3=-3$
实轴上根本为流: $(-\infty,0]$
注射近线. $\sigma=\frac{0-3-3}{n-m}=-2$, $P=\frac{(2k+1)\pi}{n-m}=t60^{\circ}.180^{\circ}$
分無点. 贯D(S)=35²+125+9=0=> $O_1=1$, $K_{gdz}=4$
 $d_2=-3$, $K_{gdz}=0$

与慶年的交点.
$$D(jw) = -jw^3 - 6w^2 + qjw + k_g = 0$$

$$\Rightarrow \begin{cases} -w^3 + qw = 0 \\ k_g - 6w^2 = 0 \end{cases} \Rightarrow \begin{cases} w = 0 \\ k_g = 0, \end{cases} \begin{cases} w = 3 \end{cases}$$

(2) 4 (kg <54) 4 < K < 6

校正以后的开环幅频特性曲线 L(0)如图所示

试求:1)在原图上绘制所需校正装置的伯德图,求出此装置的传递函数,并说明该装置的类型;

- 2) 校正后的开环传递函数;
- 3) 校正后系统的相角裕度。

2) 转折货率 $\begin{cases} 0.2 \text{ rad/s} & -20 \text{ dB/dec} \\ 2 \text{ rad/s} & +20 \text{ dB/dec} \\ 20 \text{ rad/s} & -20 \text{ dB/dec} \\ 100 \text{ rad/s} & -20 \text{ dB/dec} \end{cases}$

就基准线在W=1处的L111=20lgK=30⇒K=10JT0

六、(10 分)已知:设受控系统的动态方程为: y+y=u

试求: 1) 建立系统状态空间表达式;

- 2) 判断系统可控性与可观测性;
- 3) 设计状态反馈控制器使闭环系统满足: $\sigma_{p} \leq 5\%$ 且 $t_{p} \leq 4.5(s)$ ($\Delta = 5\%$);
- 4) 引入状态反馈后系统的闭环传递函数。
- 5) 画出该状态反馈系统状态变量图
- 1) 没状态变量 X,-y, X=y x=[対]=[0-1]x+[门ル Y=[1 のX