

Zynq-7000 All Programmable SoC (XC7Z030, XC7Z045, and XC7Z100): DC and AC Switching Characteristics

DS191 (v1.6) September 12, 2013

Product Specification

Introduction

Zynq®-7000 All Programmable SoCs are available in -3, -2, and -1 speed grades, with -3 having the highest performance. Zynq-7000 device DC and AC characteristics are specified in commercial, extended, and industrial temperature ranges. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices are available in the commercial, extended, or industrial temperature ranges.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

This Zynq-7000 AP SoC (XC7Z030, XC7Z045, and XC7Z100) data sheet, part of an overall set of documentation on the Zynq-7000 devices, is available on the Xilinx website at www.xilinx.com/zynq.

DC Characteristics

Table 1: Absolute Maximum Ratings (1)

Symbol	Description	Min	Max	Units
Processing Sy	stem (PS)			
V _{CCPINT}	PS primary logic supply	-0.5	1.1	V
V _{CCPAUX}	PS auxiliary supply voltage	-0.5	2.0	V
V _{CCPLL}	PS PLL supply	-0.5	2.0	V
V _{CCO_DDR}	PS DDR I/O supply	-0.5	2.0	V
V _{CCO_MIO} ⁽²⁾	PS MIO I/O supply	-0.5	3.6	V
V _{PREF}	PS input reference voltage	-0.5	2.0	V
V _{PIN} ⁽²⁾⁽³⁾⁽⁴⁾⁽⁵⁾	PS MIO I/O input voltage	-0.40	$V_{CCO_MIO} + 0.55$	V
	PS DDR I/O input voltage	-0.55	V _{CCO_DDR} + 0.55	V
Programmable	Logic (PL)			
V _{CCINT}	PL internal supply voltage	-0.5	1.1	V
V _{CCAUX}	PL auxiliary supply voltage	-0.5	2.0	V
V _{CCBRAM}	PL supply voltage for the block RAM memories	-0.5	1.1	V
V	PL output drivers supply voltage for 3.3V HR I/O banks	-0.5	3.6	V
V _{CCO}	PL output drivers supply voltage for 1.8V HP I/O banks	-0.5	2.0	V
V _{CCAUX_IO}	Auxiliary supply voltage	-0.5	2.06	V
V _{REF}	Input reference voltage	-0.5	2.0	V
V _{IN} ⁽³⁾⁽⁴⁾⁽⁵⁾	I/O input voltage for 3.3V HR I/O banks	-0.40	V _{CCO} + 0.55	V
	I/O input voltage for 1.8V HP I/O banks	-0.55	V _{CCO} + 0.55	V
	I/O input voltage (when V_{CCO} = 3.3V) for V_{REF} and differential I/O standards except TMDS_33 ⁽⁶⁾	-0.40	2.625	V

[©] Copyright 2012–2013 Xilinx, Inc. Xilinx, the Xilinx logo, Zynq, Virtex, Artix, Kintex, Spartan, ISE, Vivado and other designated brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM, Cortex-A9, CoreSight, Cortex, PrimeCell, ARM Powered, and ARM Connected Partner are trademarks of ARM Ltd. All other trademarks are the property of their respective owners.

Table 1: Absolute Maximum Ratings (1) (Cont'd)

Symbol	Description	Min	Max	Units	
V _{CCBATT}	Key memory battery backup supply	-0.5	2.0	V	
GTX Transceive	er				
V _{MGTAVCC}	Analog supply voltage for the GTX transmitter and receiver circuits	-0.5	1.1	V	
V _{MGTAVTT}	Analog supply voltage for the GTX transmitter and receiver termination circuits	-0.5	1.32	V	
V _{MGTVCCAUX}	Auxiliary analog Quad PLL (QPLL) voltage supply for the GTX transceivers	-0.5	1.935	V	
V _{MGTREFCLK}	GTX transceiver reference clock absolute input voltage	-0.5	1.32	V	
V _{MGTAVTTRCAL}	Analog supply voltage for the resistor calibration circuit of the GTX transceiver column	-0.5	1.32	V	
V _{IN}	Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage	-0.5	1.26	V	
I _{DCIN-FLOAT}	DC input current for receiver input pins DC coupled RX termination = floating	-	14	mA	
I _{DCIN-MGTAVTT}	DC input current for receiver input pins DC coupled RX termination = V _{MGTAVTT}	-	12	mA	
I _{DCIN-GND}	DC input current for receiver input pins DC coupled RX termination = GND	-	6.5	mA	
I _{DCOUT-FLOAT}	DC output current for transmitter pins DC coupled RX termination = floating	-	14	mA	
I _{DCOUT-MGTAVTT}	DC output current for transmitter pins DC coupled RX termination = V _{MGTAVTT}	-	12	mA	
XADC				<u> </u>	
V _{CCADC}	XADC supply relative to GNDADC	-0.5	2.0	V	
V _{REFP}	XADC reference input relative to GNDADC	-0.5	2.0	V	
Temperature				1	
T _{STG}	Storage temperature (ambient)	-65	150	°C	
т	Maximum soldering temperature for Pb/Sn component bodies (7)	_	+220	°C	
T _{SOL}	Maximum soldering temperature for Pb-free component bodies (7)	-	+260	°C	
T _j	Maximum junction temperature ⁽⁷⁾	-	+125	°C	

- Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
- 2. Applies to both MIO supply banks $V_{\text{CCO_MIO0}}$ and $V_{\text{CCO_MIO1}}.$
- 3. The lower absolute voltage specification always applies.
- 4. For I/O operation, refer to the 7 Series FPGAs SelectIO Resources User Guide (UG471) or the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).
- 5. The maximum limit applied to DC signals. For maximum undershoot and overshoot AC specifications, see Table 4 and Table 5.
- 6. See Table 12 for TMDS_33 specifications.
- 7. For soldering guidelines and thermal considerations, see the Zynq-7000 All Programmable SoC Packaging and Pinout Specification (UG865).

Table 2: Recommended Operating Conditions (1)(2)

Symbol	Description	Min	Тур	Max	Units
PS			'		
V _{CCPINT} ⁽³⁾	PS internal supply voltage	0.95	1.00	1.05	V
V _{CCPAUX}	PS auxiliary supply voltage	1.71	1.80	1.89	V
V _{CCPLL}	PS PLL supply voltage	1.71	1.80	1.89	V
V _{CCO_DDR}	PS DDR supply voltage	1.14	_	1.89	V
V _{CCO_MIO} ⁽⁴⁾	PS supply voltage for MIO banks	1.71	_	3.465	V
V _{PIN} ⁽⁵⁾	PS DDR and MIO I/O input voltage	-0.20	_	V _{CCO_DDR} + 0.20 V _{CCO_MIO} + 0.20	V
PL		1			
V _{CCINT} ⁽⁶⁾	Internal supply voltage	0.97	1.00	1.03	V
V _{CCAUX}	Auxiliary supply voltage	1.71	1.80	1.89	V
V _{CCBRAM} ⁽⁶⁾	Block RAM supply voltage	0.97	1.00	1.03	V
V (7)(8)	Supply voltage for 3.3V HR I/O banks	1.14	_	3.465	V
V _{CCO} ⁽⁷⁾⁽⁸⁾	Supply voltage for 1.8V HP I/O banks	1.14	_	1.89	٧
\/	Auxiliary supply voltage when set to 1.8V	1.71	1.80	1.89	V
V _{CCAUX_IO}	Auxiliary supply voltage when set to 2.0V	1.94	2.00	2.06	V
	I/O input voltage	-0.20	_	V _{CCO} + 0.20	٧
V _{IN} ⁽⁵⁾	I/O input voltage (when V_{CCO} = 3.3V) for V_{REF} and differential I/O standards except TMDS_33 ⁽⁹⁾	-0.20	_	2.625	V
I _{IN} ⁽¹⁰⁾	Maximum current through any (PS or PL) pin in a powered or unpowered bank when forward biasing the clamp diode	_	_	10	mA
V _{CCBATT} ⁽¹¹⁾	Battery voltage	1.0	_	1.89	٧
GTX Transceive	r	l	1		
V (12)	Analog supply voltage for the GTX transceiver QPLL frequency range \leq 10.3125 GHz ⁽¹³⁾⁽¹⁴⁾	0.97	1.0	1.08	V
V _{MGTAVCC} ⁽¹²⁾	Analog supply voltage for the GTX transceiver QPLL frequency range > 10.3125 GHz	1.02	1.05	1.08	
V _{MGTAVTT} ⁽¹²⁾	Analog supply voltage for the GTX transmitter and receiver termination circuits	1.17	1.2	1.23	٧
V _{MGTVCCAUX} (12)	Auxiliary analog QPLL voltage supply for the transceivers	1.75	1.80	1.85	V
V _{MGTAVTTRCAL} (12)	Analog supply voltage for the resistor calibration circuit of the GTX transceiver column	1.17	1.2	1.23	٧
XADC		ı	1		
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
		l	1	1	1

Table 2: Recommended Operating Conditions (1)(2) (Cont'd)

Symbol	Description	Min	Тур	Max	Units
Temperature					·
	Junction temperature operating range for commercial (C) temperature devices	0	_	85	°C
T _j	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	_	100	°C

- All voltages are relative to ground. The PL and PS share a common ground.
- 2. For the design of the power distribution system consult the Zynq-7000 All Programmable SoC PCB Design and Pin Planning Guide (UG933).
- When the processor cores operate F_{CPU_6X4X_621_MAX} at 1 GHz (-3E speed grade) or when the DDR interface operates at 1333 Mb/s, the V_{CCPINT} minimum is 0.97V and the V_{CCPINT} maximum is 1.03V.
- 4. Applies to both MIO supply banks V_{CCO_MIO0} and V_{CCO_MIO1} .
- 5. The lower absolute voltage specification always applies.
- 6. V_{CCINT} and V_{CCBRAM} should be connected to the same supply.
- 7. Configuration data is retained even if V_{CCO} drops to 0V.
- 8. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 9. See Table 12 for TMDS_33 specifications.
- 10. A total of 200 mA per PS or PL bank should not be exceeded.
- 11. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 12. Each voltage listed requires the filter circuit described in the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476).
- 13. For data rates ≤ 10.3125 Gb/s, V_{MGTAVCC} should be 1.0V ±3% for lower power consumption.
- 14. For lower power consumption, $V_{MGTAVCC}$ should be 1.0V ±3% over the entire CPLL frequency range.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ ⁽¹⁾	Max	Units
V _{DRINT}	Data retention V _{CCINT} voltage (below which configuration data might be lost)	0.75	_	_	V
V _{DRI}	Data retention V _{CCAUX} voltage (below which configuration data might be lost)	1.5	_	_	V
I _{REF}	V _{REF} leakage current per pin	_	_	15	μΑ
IL	Input or output leakage current per pin (sample-tested)	_	_	15	μΑ
C _{IN} ⁽²⁾	PL die input capacitance at the pad	_	_	8	pF
C _{PIN} ⁽²⁾	PS die input capacitance at the pad	_	_	8	pF
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 3.3V	90	_	330	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 2.5V	68	_	250	μΑ
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.8V	34	_	220	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.5V	23	_	150	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 1.2V	12	_	120	μΑ
ı	Pad pull-down (when selected) @ V _{IN} = 3.3V	68	_	330	μΑ
I _{RPD}	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	_	180	μΑ
I _{CCADC}	Analog supply current, analog circuits in powered up state	_	_	25	mA
I _{BATT} (3)	Battery supply current	_	_	150	nA
	Thevenin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_40) for commercial (C), industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	Thevenin equivalent resistance of programmable input termination to $V_{\rm CCO}/2$ (UNTUNED_SPLIT_50) for commercial (C), industrial (I), and extended (E) temperature devices	35	50	65	Ω
	Thevenin equivalent resistance of programmable input termination to V _{CCO} /2 (UNTUNED_SPLIT_60) for commercial (C), industrial (I), and extended (E) temperature devices	44	60	83	Ω
n	Temperature diode ideality factor	_	1.010	_	_
r	Temperature diode series resistance	_	2	_	Ω

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. This measurement represents the die capacitance at the pad, not including the package.
- 3. Maximum value specified for worst case process at 25°C.
- 4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for PS I/O and 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
		-0.40	100
V . 0.55	100	-0.45	61.7
V _{CCO} + 0.55	100	-0.50	25.8
		-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Table 5: V_{IN} Maximum Allowed AC Voltage Overshoot and Undershoot for PL 1.8V HP I/O Banks⁽¹⁾⁽²⁾

AC Voltage Overshoot	% of UI at -40°C to 100°C	AC Voltage Undershoot	% of UI at -40°C to 100°C
V _{CCO} + 0.55	100	-0.55	100
V _{CCO} + 0.60	50.0	-0.60	50.0
V _{CCO} + 0.65	50.0	-0.65	50.0
V _{CCO} + 0.70	47.0	-0.70	50.0
V _{CCO} + 0.75	21.2	-0.75	50.0
V _{CCO} + 0.80	9.71	-0.80	50.0
V _{CCO} + 0.85	4.51	-0.85	28.4
V _{CCO} + 0.90	2.12	-0.90	12.7
V _{CCO} + 0.95	1.01	-0.95	5.79

- 1. A total of 200 mA per bank should not be exceeded.
- 2. For UI smaller than 20 μs.

^{1.} A total of 200 mA per bank should not be exceeded.

Table 6: Typical Quiescent Supply Current

I_CCPINTQ	Complete	Description	Device		Speed Grade		Units
Caching PS quiescent Vaccint supply current XC7Z045 122 122 122 122 122 123 124 125	Symbol	Description	Device	-3	-3 -2		Units
N/A 122 122 122 123 124 125			XC7Z030	122	122	122	mA
ICCPAUXQ PS quiescent V _{CCPAUX} supply current XC7Z030	I _{CCPINTQ}	PS quiescent V _{CCPINT} supply current	XC7Z045	122	122	122	mA
Variable Variable			XC7Z100	N/A	122	122	mA
N/A 13 13 13 13 13 13 13 1			XC7Z030	13	13	13	mA
ICCDDRQ PS quiescent VCCO_DDR supply current XC7Z030	I _{CCPAUXQ}	PS quiescent V _{CCPAUX} supply current	XC7Z045	13	13	13	mA
ICCDDRQ PS quiescent V _{CCO_DDR} supply current XC7Z045			XC7Z100	N/A	13	13	mA
N/A 4 4 4 4 4 6 7 1 1 1 1 1 1 1 1 1			XC7Z030	4	4	4	mA
I_CCINTQ	I _{CCDDRQ}	PS quiescent V _{CCO_DDR} supply current	XC7Z045	4	4	4	mA
XC7Z045			XC7Z100	N/A	4	4	mA
N/A 795	I _{CCINTQ}	PL quiescent V _{CCINT} supply current	XC7Z030	246	246	246	mA
Cartain Part Part			XC7Z045	611	611	611	mA
XC7Z045 131			XC7Z100	N/A	795	795	mA
N/A 165	I _{CCAUXQ}	PL quiescent V _{CCAUX} supply current	XC7Z030	56	56	56	mA
PL quiescent V _{CCAUX_IO} supply current XC7Z030 2 2 2 2 2 2 2 2 2			XC7Z045	131	131	131	mA
XC7Z045 2 2 2 7 1 1 1 1 1 1 1 1 1			XC7Z100	N/A	165	165	mA
XC7Z100	I _{CCAUX_IOQ}	PL quiescent V _{CCAUX_IO} supply current	XC7Z030	2	2	2	mA
PL quiescent V _{CCO} supply current XC7Z030			XC7Z045	2	2	2	mA
XC7Z045			XC7Z100	N/A	2	2	mA
XC7Z100 N/A 4 4 n	I _{ccoq}	PL quiescent V _{CCO} supply current	XC7Z030	4	4	4	mA
I _{CCBRAMQ} PL quiescent V _{CCBRAM} supply current XC7Z030 11 12 12 12			XC7Z045	4	4	4	mA
XC7Z045 23 23 n			XC7Z100	N/A	4	4	mA
XC7Z045 23 23 23 n	ICCBRAMQ	PL quiescent V _{CCBRAM} supply current	XC7Z030	11	11	11	mA
XC77100 N/A 33 33 n			XC7Z045	23	23	23	mA
NO12100 14/1 00 00 11			XC7Z100	N/A	33	33	mA

- 1. Typical values are specified at nominal voltage, 85°C junction temperatures (T_i) with single-ended SelectIO resources.
- 2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- 3. The Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) estimates operating current. When the required power-on current exceeds the estimated operating current, XPE can display the power-on current.

PS Power-On/Off Power Supply Requirements

The recommended power-on sequence is V_{CCPINT} , V_{CCPAUX} and V_{CCPLL} together, then the PS V_{CCO} supplies (V_{CCO_MIOO} , V_{CCO_MIO1} , and V_{CCO_DDR}) to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCPAUX} , V_{CCPLL} and the PS V_{CCO} supplies (V_{CCO_MIO0} , V_{CCO_MIO1} , and V_{CCO_DDR}) have the same recommended voltage levels, then they can be powered by the same supply and ramped simultaneously. Xilinx recommends powering V_{CCPLL} with the same supply as V_{CCPAUX} , with an optional ferrite bead filter.

For V_{CCO_MIO0} and V_{CCO_MIO1} voltages of 3.3V:

- The voltage difference between V_{CCO_MIO0} /V_{CCO_MIO1} and V_{CCPAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

PL Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , V_{CCAUX} , and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} , V_{CCAUX} , and V_{CCO} have the same recommended voltage levels then they can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTX transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$, $V_{MGTAVCC}$. There is no recommended sequencing for $V_{MGTAVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from $V_{MGTAVTT}$ can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

PS—PL Power Sequencing

The PS and PL power supplies are fully independent. PS power supplies (V_{CCPAUX} , V_{CCPAUX} , V_{CCPAUX} , V_{CCO_DDR} , V_{CCO_MIO0} , and V_{CCO_MIO1}) can be powered before or after the PL power supplies (V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , V_{CCO} , V_{CCAUX_IO} , $V_{MGTAVCC}$, $V_{MGTAVTT}$, $V_{MGTVCCAUX}$, and V_{CCADC}). The PS and PL power regions are isolated to prevent damage.

Power Supply Requirements

Table 7 shows the minimum current, in addition to I_{CCQ} , that is required by Zynq-7000 devices for proper power-on and configuration. If the current minimums shown in Table 6 and Table 7 are met, the device powers on after all five supplies have passed through their power-on reset threshold voltages. The Zynq-7000 device must not be configured until after V_{CCINT} is applied. Once initialized and configured, use the Xilinx Power Estimator (XPE) tools to estimate current drain on these supplies.

Table 7: Power-On Current for Zyng-7000 Devices(1)

Device	I _{CCPINTMIN} Typ ⁽²⁾	I _{CCPAUXMIN} Typ ⁽²⁾	I _{CCDDRMIN} Typ ⁽²⁾	I _{CCINTMIN} Typ ⁽²⁾	I _{CCAUXMIN} Typ ⁽²⁾	I _{CCOMIN} Typ ⁽²⁾	I _{CCAUX_IOMIN} Typ ⁽²⁾	I _{CCBRAMMIN} Typ ⁽²⁾	Units
XC7Z030	I _{CCPINTQ} + 70 mA	I _{CCPAUXQ} + 40 mA	I _{CCDDRQ} + 130 mA per bank	I _{CCINTQ} + 900 mA	I _{CCAUXQ} + 60 mÅ	I _{CCOQ} + 90 mA per bank	I _{CCOAUXIOQ} + 40 mA per bank	I _{CCBRAMQ} + 90 mA	mA
XC7Z045	I _{CCPINTQ} + 70 mÅ	I _{CCPAUXQ} + 40 mA	I _{CCDDRQ} + 130 mA per bank	I _{CCINTQ} + 1400 mA	I _{CCAUXQ} + 60 mÅ	I _{CCOQ} + 90 mA per bank	I _{CCOAUXIOQ} + 40 mA per bank	I _{CCBRAMQ} + 90 mA	mA
XC7Z100	I _{CCPINTQ} + 70 mÅ	I _{CCPAUXQ} + 40 mA	I _{CCDDRQ} + 130 mA per bank	I _{CCINTQ} + 2200 mA	I _{CCAUXQ} + 60 mÅ	I _{CCOQ} + 90 mA per bank	I _{CCOAUXIOQ} + 40 mA per bank	I _{CCBRAMQ} + 90 mA	mA

Notes:

- 1. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate maximum power-on currents.
- 2. Typical values are specified at nominal voltage, 25°C.

Table 8: Power Supply Ramp Time

Symbol	Description	Conditions	Min	Max	Units
T _{VCCPINT}	Ramp time from GND to 90% of V _{CCPINT}	·	0.2	50	ms
T _{VCCPAUX}	Ramp time from GND to 90% of V _{CCPAUX}		0.2	50	ms
T _{VCCO_DDR}	Ramp time from GND to 90% of V _{CCO_DDR}		0.2	50	ms
T _{VCCO_MIO}	Ramp time from GND to 90% of V _{CCO_MIO}		0.2	50	ms
T _{VCCINT}	Ramp time from GND to 90% of V _{CCINT}		0.2	50	ms
T _{VCCO}	Ramp time from GND to 90% of V _{CCO}	0.2	50	ms	
T _{VCCAUX}	Ramp time from GND to 90% of V _{CCAUX}	0.2	50	ms	
T _{VCCAUX_IO}	Ramp time from GND to 90% of V _{CCAUX_IO}	0.2	50	ms	
T _{VCCBRAM}	Ramp time from GND to 90% of V _{CCBRAM}		0.2	50	ms
т	Allowed time per power cycle for V _{CCO} – V _{CCAUX} > 2.625V	$T_J = 100^{\circ}C^{(1)}$	_	500	ma
T _{VCCO2} VCCAUX	and V _{CCO_MIO} - V _{CCPAUX} > 2.625V	$T_{J} = 85^{\circ}C^{(1)}$	_	800	ms
T _{MGTAVCC}	Ramp time from GND to 90% of V _{MGTAVCC}	0.2	50	ms	
T _{MGTAVTT}	Ramp time from GND to 90% of V _{MGTAVTT}	0.2	50	ms	
T _{MGTVCCAUX}	Ramp time from GND to 90% of V _{MGTVCCAUX}	0.2	50	ms	

Notes:

Based on 240,000 power cycles with nominal V_{CCO} of 3.3V or 36,500 power cycles with a worst case V_{CCO} of 3.465V.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

PS I/O Levels

Table 9: PS DC Input and Output Levels(1)

Bank	I/O	-			V _{IH}	V _{OL}	V _{OH}	I _{OL}	I _{OH}
Dalik	Standard			V, Min V, Max		V, Max	V, Min	mA	mA
MIO	LVCMOS18	-0.300	35% V _{CCO_MIO}	65% V _{CCO_MIO}	$V_{CCO_MIO} + 0.300$	0.450	V _{CCO_MIO} - 0.450	8	-8
MIO	LVCMOS25	-0.300	0.700	1.700	$V_{CCO_MIO} + 0.300$	0.400	V _{CCO_MIO} - 0.400	8	-8
MIO	LVCMOS33	-0.300	0.800	2.000	3.450	0.400	V _{CCO_MIO} - 0.400	8	-8
MIO	HSTL_I_18	-0.300	V _{PREF} – 0.100	V _{PREF} + 0.100	V _{CCO_MIO} + 0.300	0.400	V _{CCO_MIO} - 0.400	8	-8
DDR	SSTL18_I	-0.300	V _{PREF} – 0.125	V _{PREF} + 0.125	V _{CCO_DDR} + 0.300	V _{CCO_DDR} /2 - 0.470	V _{CCO_DDR} /2 + 0.470	8	-8
DDR	SSTL15	-0.300	V _{PREF} – 0.100	V _{PREF} + 0.100	V _{CCO_DDR} + 0.300	V _{CCO_DDR} /2 - 0.175	V _{CCO_DDR} /2 + 0.175	13.0	-13.0
DDR	SSTL135	-0.300	V _{PREF} – 0.090	V _{PREF} + 0.090	V _{CCO_DDR} + 0.300	V _{CCO_DDR} /2 - 0.150	V _{CCO_DDR} /2 + 0.150	13.0	-13.0
DDR	HSUL_12	-0.300	V _{PREF} - 0.130	V _{PREF} + 0.130	V _{CCO_DDR} + 0.300	20% V _{CCO_DDR}	80% V _{CCO_DDR}	0.1	-0.1

Notes:

Table 10: PS Complementary Differential DC Input and Output Levels

Bank I/O Standard		V _{ICM} ⁽¹⁾		V _{ID} ⁽²⁾		V _{OL} ⁽³⁾	V _{OH} ⁽⁴⁾	I _{OL}	I _{OH}	
		V, Min	V,Typ	V, Max	V,Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DDR	DIFF_HSUL_12	0.300	0.600	0.850	0.100	_	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DDR	DIFF_SSTL135	0.300	0.675	1.000	0.100	_	(V _{CCO_DDR} /2) - 0.150	$(V_{CCO_DDR}/2) + 0.150$	13.0	-13.0
DDR	DIFF_SSTL15	0.300	0.750	1.125	0.100	_	(V _{CCO_DDR} /2) - 0.175	(V _{CCO_DDR} /2) + 0.175	13.0	-13.0
DDR	DIFF_SSTL18_I	0.300	0.900	1.425	0.100	_	(V _{CCO_DDR} /2) - 0.470	$(V_{CCO_DDR}/2) + 0.470$	8.00	-8.00

- V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q-\overline{Q})$.
- 3. V_{OL} is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

Tested according to relevant specifications.

PL I/O Levels

Table 11: SelectIO DC Input and Output Levels(1)(2)

I/O Stondovd		V _{IL}	V _{II}	Н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
I/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_I_12	-0.300	V _{REF} – 0.080	V _{REF} + 0.080	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	6.3	-6.3
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSTL_II_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSUL_12	-0.300	V _{REF} - 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVCMOS15, LVDCI_15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18, LVDCI_18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} - 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.700	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVCMOS33	-0.300	0.800	2.000	3.450	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVTTL	-0.300	0.800	2.000	3.450	0.400	2.400	Note 7	Note 7
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.1	-0.1
PCI33_3	-0.400	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
SSTL12	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	14.25	-14.25
SSTL135	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.0	-13.0
SSTL135_R	-0.300	V _{REF} – 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.9	-8.9
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.0	-13.0
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	8.9	-8.9
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	V _{CCO} /2 - 0.470	V _{CCO} /2 + 0.470	8	-8
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	$V_{CCO} + 0.300$	V _{CCO} /2 - 0.600	V _{CCO} /2 + 0.600	13.4	-13.4

- 1. Tested according to relevant specifications.
- 2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.
- 3. Supported drive strengths of 2, 4, 6, or 8 mA in HP I/O banks and 4, 8, or 12 mA in HR I/O banks.
- 4. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, or 16 mA in HR I/O banks.
- 5. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, 16, or 24 mA in HR I/O banks.
- 6. Supported drive strengths of 4, 8, 12, or 16 mA
- 7. Supported drive strengths of 4, 8, 12, 16, or 24 mA
- 8. For detailed interface specific DC voltage levels, see the 7 Series FPGAs SelectIO Resources User Guide (UG471).

Table 12: Differential SelectIO DC Input and Output Levels

I/O Standard		V _{ICM} (1)	ı		V _{ID} (2)			V _{OCM} (3)			V _{OD} (4)	
i/O Staridard	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max	V, Min	V, Typ	V, Max
BLVDS_25	0.300	1.200	1.425	0.100	-	_	-	1.250	_		Note 5	
MINI_LVDS_25	0.300	1.200	V _{CCAUX}	0.200	0.400	0.600	1.000	1.200	1.400	0.300	0.450	0.600
PPDS_25	0.200	0.900	V_{CCAUX}	0.100	0.250	0.400	0.500	0.950	1.400	0.100	0.250	0.400
RSDS_25	0.300	0.900	1.500	0.100	0.350	0.600	1.000	1.200	1.400	0.100	0.350	0.600
TMDS_33	2.700	2.965	3.230	0.150	0.675	1.200	V _{CCO} -0.405	V _{CCO} -0.300	V _{CCO} -0.190	0.400	0.600	0.800

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q \overline{Q})$.
- 3. V_{OCM} is the output common mode voltage.
- 4. V_{OD} is the output differential voltage $(Q \overline{Q})$.
- 5. V_{OD} for BLVDS will vary significantly depending on topology and loading.
- 6. LVDS_25 is specified in Table 14.
- 7. LVDS is specified in Table 15.

Table 13: Complementary Differential SelectIO DC Input and Output Levels

		V _{ICM} ⁽¹⁾		V _{IC}) ⁽²⁾	V _{OL} (3)	V _{OH} ⁽⁴⁾	I _{OL}	I _{OH}
I/O Standard	V, Min	V, Typ	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DIFF_HSTL_I	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_II	0.300	0.750	1.125	0.100	_	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSTL_II_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSUL_12	0.300	0.600	0.850	0.100	_	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DIFF_MOBILE_DDR	0.300	0.900	1.425	0.100	_	10% V _{CCO}	90% V _{CCO}	0.100	-0.100
DIFF_SSTL12	0.300	0.600	0.850	0.100	_	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	14.25	-14.25
DIFF_SSTL135	0.300	0.675	1.000	0.100	_	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	13.0	-13.0
DIFF_SSTL135_R	0.300	0.675	1.000	0.100	_	(V _{CCO} /2) - 0.150	$(V_{CCO}/2) + 0.150$	8.9	-8.9
DIFF_SSTL15	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) – 0.175	$(V_{CCO}/2) + 0.175$	13.0	-13.0
DIFF_SSTL15_R	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) - 0.175	$(V_{CCO}/2) + 0.175$	8.9	-8.9
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	_	(V _{CCO} /2) - 0.470	$(V_{CCO}/2) + 0.470$	8.00	-8.00
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	_	(V _{CCO} /2) - 0.600	$(V_{CCO}/2) + 0.600$	13.4	-13.4

- 1. V_{ICM} is the input common mode voltage.
- 2. V_{ID} is the input differential voltage $(Q \overline{Q})$.
- 3. V_{OL} is the single-ended low-output voltage.
- 4. V_{OH} is the single-ended high-output voltage.

LVDS DC Specifications (LVDS_25)

The LVDS_25 standard is available in the HR I/O banks.

Table 14: LVDS_25 DC Specifications(1)

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		2.375	2.500	2.625	V
V _{OH}	Output High Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	_	_	1.675	V
V _{OL}	Output Low Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.700	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, $Q = \text{High}$	$R_T = 100 \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage $(Q - \overline{Q})$, $Q = \text{High } (\overline{Q} - Q)$, $\overline{Q} = \text{High}$			350	600	mV
V _{ICM}	Input Common-Mode Voltage			1.200	1.425	V

Notes:

LVDS DC Specifications (LVDS)

The LVDS standard is available in the HP I/O banks.

Table 15: LVDS DC Specifications(1)

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply Voltage		1.710	1.800	1.890	V
V _{OH}	Output High Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	_	_	1.675	V
V _{OL}	Output Low Voltage for Q and Q	$R_T = 100 \Omega$ across Q and \overline{Q} signals	0.825	_	_	V
V _{ODIFF}	Differential Output Voltage $(Q - \overline{Q})$, $Q = \text{High } (\overline{Q} - Q)$, $\overline{Q} = \text{High }$	$R_T = 100 \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output Common-Mode Voltage	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF}	Differential Input Voltage $(Q - \overline{Q})$, $Q = \text{High } (\overline{Q} - Q)$, $\overline{Q} = \text{High }$	Common-mode input voltage = 1.25V	100	350	600	mV
V _{ICM}	Input Common-Mode Voltage	Differential input voltage = ±350 mV	0.300	1.200	1.425	V

Differential inputs for LVDS_25 can be placed in banks with V_{CCO} levels that are different from the required level for outputs. Consult the 7 Series FPGAs SelectIO Resources User Guide (UG471) for more information.

Differential inputs for LVDS can be placed in banks with V_{CCO} levels that are different from the required level for outputs. Consult the 7 Series FPGAs SelectIO Resources User Guide (UG471) for more information.

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in ISE® Design Suite 14.6 v1.07 and Vivado® Design Suite 2013.2 v1.07 for the -3, -2, and -1 speed grades.

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Zyng-7000 devices.

Speed Grade Designations

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 16 correlates the current status of each Zynq-7000 device on a per speed grade basis.

Table 16: Zyng-7000 Device Speed Grade Designations

Dovice	Speed Grade Designations						
Device	Advance	Preliminary	Production				
XC7Z030			-3, -2, -1				
XC7Z045			-3, -2, -1				
XC7Z100			-2, -1				

Production Silicon and Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases.

Table 17 lists the production released Zynq-7000 device, speed grade, and the minimum corresponding supported speed specification version and software revisions. The software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 17: Zynq-7000 Device Production Software and Speed Specification Release

Device	Speed Grade Designations						
	-3	-2	-1				
XC7Z030	ISE to	ISE tools 14.5 v1.06 and Vivado tools 2013.1 v1.06					
XC7Z045	ISE to	ols 14.5 v1.06 and Vivado tools 2013.1	v1.06				
XC7Z100	N/A Vivado tools 2013.2 v1.07						

PS Performance Characteristics

For further design requirement details, refer to the Zynq-7000 All Programmable SoC Technical Reference Manual (UG585).

Table 18: CPU Clock Domains Performance

Complete	Clock Ratio	Description	Speed Grade			Units	
Symbol	Clock Hatio	Description	-3	-2	-1	Units	
F _{CPU_6X4X_621_MAX} ⁽¹⁾⁽²⁾		Maximum CPU clock frequency	1000	800	667	MHz	
F _{CPU_3X2X_621_MAX}	6:2:1	Maximum CPU_3X clock frequency	500	400	333	MHz	
F _{CPU_2X_621_MAX}	0.2.1	Maximum CPU_2X clock frequency	333	266	222	MHz	
F _{CPU_1X_621_MAX}		Maximum CPU_1X clock frequency	167	133	111	MHz	
F _{CPU_6X4X_421_MAX} ⁽¹⁾		Maximum CPU clock frequency	710	600	533	MHz	
F _{CPU_3X2X_421_MAX}	4:2:1	Maximum CPU_3X clock frequency	355	300	267	MHz	
F _{CPU_2X_421_MAX}	4.2.1	Maximum CPU_2X clock frequency	355	300	267	MHz	
F _{CPU_1X_421_MAX}		Maximum CPU_1X clock frequency	178	150	133	MHz	

Notes:

- 1. The maximum frequency during BootROM execution is 500 MHz across all speed specifications.
- When the processor cores operate F_{CPU_6X4X_621_MAX} at 1 GHz (-3E speed grade), the V_{CCPINT} minimum is 0.97V and the V_{CCPINT} maximum is 1.03V.

Table 19: PS DDR Clock Domains Performance⁽¹⁾

Symbol	Description	Speed Grade			Mb/s
Symbol	Description	-3	-2	-1	Units
F _{DDR3_MAX}	Maximum DDR3 interface performance	1333 ⁽²⁾	1066	1066	Mb/s
F _{DDR3L_MAX}	Maximum DDR3L interface performance	1066	1066	1066	Mb/s
F _{DDR2_MAX}	Maximum DDR2 interface performance	800	800	800	Mb/s
F _{LPDDR2_MAX}	Maximum LPDDR2 interface performance	800	800	800	Mb/s
F _{DDRCLK_2XMAX}	Maximum DDR_2X clock frequency	444	408	355	MHz

- 1. All performance numbers apply to both internal and external V_{REF} configurations.
- 2. When a DDR interface operates at 1333 Mb/s, the V_{CCPINT} minimum is 0.97V and the V_{CCPINT} maximum is 1.03V.

Table 20: PS-PL Interface Performance

Symbol	Description	Min	Max	Units
F _{EMIOGEMCLK}	EMIO gigabit Ethernet controller maximum frequency	_	125	MHz
F _{EMIOSDCLK}	EMIO SD controller maximum frequency	_	25	MHz
F _{EMIOSPICLK}	EMIO SPI controller maximum frequency	_	25	MHz
F _{EMIOJTAGCLK}	EMIO JTAG controller maximum frequency	_	20	MHz
F _{EMIOTRACECLK}	EMIO trace controller maximum frequency	_	125	MHz

Table 20: PS-PL Interface Performance (Cont'd)

Symbol	Description	Min	Max	Units
F _{FTMCLK}	Fabric trace monitor maximum frequency	_	125	MHz
F _{EMIODMACLK}	DMA maximum frequency	1	100	MHz
F _{AXI_MAX}	Maximum AXI interface performance	_	250	MHz

PS Switching Characteristics

Clocks

Table 21: System Reference Clock Input Requirements

Symbol	Description	Min	Тур	Max	Units
T _{JTPSCLK}	PS_CLK RMS clock jitter tolerance	-	-	±0.5	%
T _{DCPSCLK}	PS_CLK duty cycle	40	_	60	%
T _{RFPSCLK}	PS_CLK rise and fall time	-	4	_	ns
F _{PSCLK}	PS_CLK frequency	30	-	60	MHz

Table 22: PS PLL Switching Characteristics

Symbol	Description	5	Units		
	Description	-3	-2	-1	Units
T _{LOCK_PSPLL}	PLL maximum lock time	60	60	60	μs
F _{PSPLL_MAX}	PLL maximum output frequency	2000	1800	1600	MHz
F _{PSPLL_MIN}	PLL minimum output frequency	780	780	780	MHz

Resets

Table 23: PS Reset Requirements

Symbol	Description	Min	Тур	Max	Units
T _{PSPOR}	Required PS_POR_B assertion time ⁽¹⁾	100	_	_	μs
T _{PSRST}	Required PS_SRST_B assertion time	3	-	-	PS_CLK Clock Cycles

Notes:

1. PS_POR_B needs to be asserted low until PS supply voltages reach minimum levels.

PS Configuration

Table 24: Processor Configuration Access Port Switching Characteristics

Symbol	Description	Min	Тур	Max	Units
F _{PCAPCK}	Maximum processor configuration access port (PCAP) frequency	-	-	100	MHz

DDR Memory Interfaces

Table 25: DDR3 Interface Switching Characteristics (1333 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	450	_	ps
T _{DQDS} ⁽²⁾	Output DQ to DQS skew	95	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	222	_	ps
T _{DQSS}	Output clock to DQS skew	-0.11	0.08	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	465	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	528	_	ps

Notes:

- 1. Recommended $V_{CCO_DDR} = 1.5V \pm 5\%$.
- 2. Measurement is taken from either the rising edge of DQ that crosses V_{II} (AC) or the falling edge of DQ that crosses V_{II} (AC) to V_{RFF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{IL}(DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{REF} of CLK.

Table 26: DDR3 Interface Switching Characteristics (1066 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	450	-	ps
T _{DQDS} (2)	Output DQ to DQS skew	100	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	350	-	ps
T _{DQSS}	Output clock to DQS skew	-0.10	0.10	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	560	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	658	_	ps

- 1. Recommended $V_{CCO\ DDR} = 1.5V \pm 5\%$.
- Measurement is taken from either the rising edge of DQ that crosses V_{IL}(AC) or the falling edge of DQ that crosses V_{IL}(AC) to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{II} (DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{RFF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{REF} of CLK.

Table 27: DDR3L Interface Switching Characteristics (1066 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	450	_	ps
T _{DQDS} ⁽²⁾	Output DQ to DQS skew	189	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	267	_	ps
T _{DQSS}	Output clock to DQS skew	-0.13	0.04	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	410	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	629	_	ps

Notes:

- 1. Recommended $V_{CCO\ DDR} = 1.35V \pm 5\%$.
- 2. Measurement is taken from either the rising edge of DQ that crosses $V_{IH}(AC)$ or the falling edge of DQ that crosses $V_{IL}(AC)$ to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{IL}(DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{REF} of CLK.

Table 28: DDR3L Interface Switching Characteristics (800 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	500	-	ps
T _{DQDS} (2)	Output DQ to DQS skew	321	-	ps
T _{DQDH} (3)	Output DQS to DQ skew	380	_	ps
T _{DQSS}	Output clock to DQS skew	-0.12	0.04	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	636	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	853	_	ps

- 1. Recommended $V_{CCO\ DDR} = 1.35V \pm 5\%$.
- Measurement is taken from either the rising edge of DQ that crosses V_{IH}(AC) or the falling edge of DQ that crosses V_{IL}(AC) to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{IL}(DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{II} (AC) to V_{RFF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{RFF} of CLK.

Table 29: LPDDR2 Interface Switching Characteristics (800 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	500	-	ps
T _{DQDS} ⁽²⁾	Output DQ to DQS skew	111	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	318	_	ps
T _{DQSS}	Output clock to DQS skew	0.91	1.10	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	132	-	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	363	_	ps

Notes:

- 1. Recommended $V_{CCO\ DDR} = 1.2V \pm 5\%$.
- 2. Measurement is taken from either the rising edge of DQ that crosses $V_{IH}(AC)$ or the falling edge of DQ that crosses $V_{IL}(AC)$ to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{IL}(DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{REF} of CLK.

Table 30: LPDDR2 Interface Switching Characteristics (400 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	500	-	ps
T _{DQDS} (2)	Output DQ to DQS skew	561	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	852	_	ps
T _{DQSS}	Output clock to DQS skew	0.91	1.08	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	617	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	918	_	ps

- 1. Recommended $V_{CCO\ DDR} = 1.2V \pm 5\%$.
- 2. Measurement is taken from either the rising edge of DQ that crosses $V_{IH}(AC)$ or the falling edge of DQ that crosses $V_{IL}(AC)$ to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses V_{IL}(DC) or the falling edge of DQ that crosses V_{IH}(DC) to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{REF} of CLK.

Table 31: DDR2 Interface Switching Characteristics (800 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	500	_	ps
T _{DQDS} ⁽²⁾	Output DQ to DQS skew	147	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	376	_	ps
T _{DQSS}	Output clock to DQS skew	-0.07	0.08	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	732	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	938	_	ps

Notes:

- 1. Recommended $V_{CCO\ DDR} = 1.8V \pm 5\%$.
- 2. Measurement is taken from either the rising edge of DQ that crosses $V_{IH}(AC)$ or the falling edge of DQ that crosses $V_{IL}(AC)$ to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses $V_{IL}(DC)$ or the falling edge of DQ that crosses $V_{IH}(DC)$ to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{IL}(AC) to V_{REF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{RFF} of CLK.

Table 32: DDR2 Interface Switching Characteristics (400 Mb/s)(1)

Symbol	Description	Min	Max	Units
T _{DQVALID}	Input data valid window	500	-	ps
T _{DQDS} (2)	Output DQ to DQS skew	385	_	ps
T _{DQDH} (3)	Output DQS to DQ skew	662	_	ps
T _{DQSS}	Output clock to DQS skew	-0.11	0.06	T _{CK}
T _{CACK} ⁽⁴⁾	Command/address output setup time with respect to CLK	1760	_	ps
T _{CKCA} ⁽⁵⁾	Command/address output hold time with respect to CLK	1739	_	ps

- Recommended V_{CCO DDR} = 1.8V ±5%.
- Measurement is taken from either the rising edge of DQ that crosses V_{IH}(AC) or the falling edge of DQ that crosses V_{IL}(AC) to V_{REF} of DQS.
- 3. Measurement is taken from either the rising edge of DQ that crosses $V_{IL}(DC)$ or the falling edge of DQ that crosses $V_{IH}(DC)$ to V_{REF} of DQS.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IH}(AC) or the falling edge of CMD/ADDR that crosses V_{II} (AC) to V_{RFF} of CLK.
- Measurement is taken from either the rising edge of CMD/ADDR that crosses V_{IL}(DC) or the falling edge of CMD/ADDR that crosses V_{IH}(DC) to V_{RFF} of CLK.

Figure 1: DDR Output Timing Diagram

Figure 2: DDR Input Timing Diagram

Static Memory Controller

Table 33: SMC Interface Delay Characteristics(1)(2)

Symbol	Description	Min	Max	Units
T _{NANDDOUT}	NAND_IO output delay from last register to pad	4.12	6.45	ns
T _{NANDALE}	NAND_ALE output delay from last register to pad	5.08	6.33	ns
T _{NANDCLE}	NAND_CLE output delay from last register to pad	4.87	6.40	ns
T _{NANDWE}	NAND_WE_B output delay from last register to pad	4.69	5.89	ns
T _{NANDRE}	NAND_RE_B output delay from last register to pad	5.12	6.44	ns
T _{NANDCE}	NAND_CE_B output delay from last register to pad	4.68	5.89	ns
T _{NANDDIN}	NAND_IO setup time and input delay from pad to first register	1.48	3.09	ns
T _{NANDBUSY}	NAND_BUSY setup time and input delay from pad to first register	2.48	3.33	ns
T _{SRAMA}	SRAM_A output delay from last register to pad	3.94	5.73	ns
T _{SRAMDOUT}	SRAM_DQ output delay from last register to pad	4.66	6.45	ns
T _{SRAMCE}	SRAM_CE output delay from last register to pad	4.57	5.95	ns
T _{SRAMOE}	SRAM_OE_B output delay from last register to pad	4.79	6.13	ns
T _{SRAMBLS}	SRAM_BLS_B output delay from last register to pad	5.25	6.74	ns
T _{SRAMWE}	SRAM_WE_B output delay from last register to pad	5.12	6.48	ns
T _{SRAMDIN}	SRAM_DQ setup time and input delay from pad to first register	1.93	3.05	ns
T _{SRAMWAIT}	SRAM_WAIT setup time and input delay from pad to first register	2.26	3.15	ns

- 1. All parameters do not include the package flight time and register controlled delays.
- 2. Refer to the ARM® PrimeCell® Static Memory Controller (PL350 series) Technical Reference Manual for more SMC timing details.

Quad-SPI Interfaces

Table 34: Quad-SPI Interface Switching Characteristics

Symbol	Description	Load Conditions	Min	Max	Units
Feedback Cloc	k Enabled				
T _{DCQSPICLK1}	Quad-SPI clock duty cycle	AII ⁽¹⁾⁽²⁾	44	56	%
T _{QSPICKO1}	Data and slave select output delay	15 pF ⁽¹⁾	-0.10	3.40	ns
		30 pF ⁽²⁾	-1.00	3.80	
T _{QSPIDCK1}	Input data setup time	15 pF ⁽¹⁾	2.00	_	ns
		30 pF ⁽²⁾	3.30	_	
T _{QSPICKD1}	Input data hold time	15 pF ⁽¹⁾	1.30	_	ns
		30 pF ⁽²⁾	1.50	_	
T _{QSPISSCLK1}	Slave select asserted to next clock edge	AII ⁽¹⁾⁽²⁾	1	_	F _{QSPI_REF_CLK} cycle
T _{QSPICLKSS1}	Clock edge to slave select deasserted	AII ⁽¹⁾⁽²⁾	1	_	F _{QSPI_REF_CLK} cycle
F _{QSPICLK1}	Quad-SPI device clock frequency	15 pF ⁽¹⁾	_	100 ⁽³⁾	MHz
		30 pF ⁽²⁾	_	70 ⁽³⁾	
Feedback Cloc	k Disabled				1
T _{DCQSPICLK2}	Quad-SPI clock duty cycle	AII ⁽¹⁾⁽²⁾	44	56	%
T _{QSPICKO2}	Data and slave select output delay	15 pF ⁽¹⁾	-0.10	3.80	ns
		30 pF ⁽²⁾	-1.00	3.80	ns
T _{QSPIDCK2}	Input data setup time ⁽⁴⁾	All ⁽¹⁾⁽²⁾	11 - 1 F _{QSPI_REF_CLK}	_	ns
T _{QSPICKD2}	Input data hold time	All ⁽¹⁾⁽²⁾	1 2×F _{QSPICLK2}	_	ns
T _{QSPISSCLK2}	Slave select asserted to next clock edge	AII ⁽¹⁾⁽²⁾	1	_	F _{QSPI_REF_CLK} cycle
T _{QSPICLKSS2}	Clock edge to slave select deasserted	AII ⁽¹⁾⁽²⁾	1	_	F _{QSPI_REF_CLK} cycle
F _{QSPICLK2}	Quad-SPI device clock frequency	AII ⁽¹⁾⁽²⁾	-	40	MHz
Feedback Cloc	k Enabled or Disabled	'		•	•
F _{QSPI_REF_CLK}	Quad-SPI reference clock frequency	All ⁽¹⁾⁽²⁾	-	200	MHz

- Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads, feedback clock pin has no load. Quad-SPI single slave select 4-bit I/O mode.
- 2. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 30 pF loads in 4-bit stacked I/O configuration, feedback clock pin has no load. Quad-SPI single slave select 4-bit I/O mode.
- 3. Requires appropriate component selection/board design.
- 4. Use 0 ns as the input data setup time when the calculated $T_{\mbox{QSPIDCK2}}$ value is negative.

Figure 3: Quad-SPI Interface (Feedback Clock Enabled) Timing Diagram

Figure 4: Quad-SPI Interface (Feedback Clock Disabled) Timing Diagram

ULPI Interfaces

Table 35: ULPI Interface Clock Receiving Mode Switching Characteristics (1)(2)

Symbol	Description	Min	Тур	Max	Units
T _{ULPIDCK}	Input setup to ULPI clock, all inputs	3.00	-	-	ns
T _{ULPICKD}	Input hold to ULPI clock, all inputs	1.00	-	_	ns
T _{ULPICKO}	ULPI clock to output valid, all outputs	1.70	_	8.86	ns
F _{ULPICLK}	ULPI device clock frequency	-	60	ı	MHz

- 1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads, 60 MHz device clock frequency.
- 2. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

Figure 5: ULPI Interface Timing Diagram

RGMII and MDIO Interfaces

Table 36: RGMII and MDIO Interface Switching Characteristics(1)(2)(3)

Symbol	Description	Min	Тур	Max	Units
T _{DCGETXCLK}	Transmit clock duty cycle	45	-	55	%
T _{GEMTXCKO}	RGMII_TX_D[3:0], RGMII_TX_CTL output clock to out time	-0.50	_	0.50	ns
T _{GEMRXDCK}	RGMII_RX_D[3:0], RGMII_RX_CTL input setup time	0.80	_	_	ns
T _{GEMRXCKD}	RGMII_RX_D[3:0], RGMII_RX_CTL input hold time	0.80	_	_	ns
T _{MDIOCLK}	MDC output clock period	400	_	_	ns
T _{MDIOCKH}	MDC clock High time	160	_	_	ns
T _{MDIOCKL}	MDC clock Low time	160	_	_	ns
T _{MDIODCK}	MDIO input data setup time	80	_	_	ns
T _{MDIOCKD}	MDIO input data hold time	0	_	_	ns
T _{MDIOCKO}	MDIO data output delay	-20	_	170	ns
F _{GETXCLK}	RGMII_TX_CLK transmit clock frequency	_	125	_	MHz
F _{GERXCLK}	RGMII_RX_CLK receive clock frequency	_	125	_	MHz
F _{ENET_REF_CLK}	Ethernet reference clock frequency	_	125	_	MHz

- 1. Test conditions: LVCMOS25, fast slew rate, 8 mA drive strength, 15 pF loads. Values in this table are specified during 1000 Mb/s operation.
- 2. LVCMOS25 slow slew rate and LVCMOS33 are not supported.
- 3. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

Figure 6: RGMII Interface Timing Diagram

SD/SDIO Interfaces

Table 37: SD/SDIO Interface High Speed Mode Switching Characteristics (1)

Symbol	Description	Min	Тур	Max	Units
T _{DCSDHSCLK}	SD device clock duty cycle	_	50	_	%
T _{SDHSCKO}	Clock to output delay, all outputs	2.00	_	12.00	ns
T _{SDHSDCK}	Input setup time, all inputs	3.00	-	_	ns
T _{SDHSCKD}	Input hold time, all inputs	1.05	_	_	ns
F _{SD_REF_CLK}	SD reference clock frequency	-	_	125	MHz
F _{SDHSCLK}	High speed mode SD device clock frequency	0	-	50	MHz

Notes:

1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads.

Figure 7: SD/SDIO Interface High Speed Mode Timing Diagram

Table 38: SD/SDIO Interface Switching Characteristics(1)

Symbol	Description	Min	Тур	Max	Units
T _{DCSDSCLK}	SD device clock duty cycle	_	50	-	%
T _{SDSCKO}	Clock to output delay, all outputs	2.00	_	12.00	ns
T _{SDSDCK}	Input setup time, all inputs	4.00	_	_	ns
T _{SDSCKD}	Input hold time, all inputs	3.00	_	_	ns
F _{SD_REF_CLK}	SD reference clock frequency	-	_	125	MHz
F _{SDIDCLK}	Clock frequency in identification mode	-	-	400	KHz
F _{SDSCLK}	Standard mode SD device clock frequency	0	_	25	MHz

Notes:

Figure 8: SD/SDIO Interface Standard Mode Timing Diagram

I2C Interfaces

Table 39: I2C Fast Mode Interface Switching Characteristics(1)

Symbol	Description	Min	Тур	Max	Units
T _{DCI2CFCLK}	I2C{0,1}SCL duty cycle	-	50	_	%
T _{I2CFCKO}	I2C{0,1}SDAO clock to out delay	_	_	900	ns
T _{I2CFDCK}	I2C{0,1}SDAI setup time	100	-	_	ns
F _{I2CFCLK}	I2C{0,1}SCL clock frequency	_	-	400	KHz

Notes:

1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads.

Figure 9: I2C Fast Mode Interface Timing Diagram

Table 40: I2C Standard Mode Interface Switching Characteristics (1)

Symbol	Description	Min	Тур	Max	Units
T _{DCI2CSCLK}	I2C{0,1}SCL duty cycle	_	50	_	%
T _{I2CSCKO}	I2C{0,1}SDAO clock to out delay	_	_	3450	ns
T _{I2CSDCK}	I2C{0,1}SDAI setup time	250	_	_	ns
F _{I2CSCLK}	I2C{0,1}SCL clock frequency	-	-	100	KHz

Notes:

Figure 10: I2C Standard Mode Interface Timing Diagram

SPI Interfaces

Table 41: SPI Master Mode Interface Switching Characteristics(1)

Symbol	Description	Min	Тур	Max	Units
T _{DCMSPICLK}	SPI master mode clock duty cycle	_	50	_	%
T _{MSPIDCK}	Input setup time for SPI{0,1}_MISO	2.00	_	_	ns
T _{MSPICKD}	Input hold time for SPI{0,1}_MISO	8.20	_	_	ns
T _{MSPICKO}	Output delay for SPI{0,1}_MOSI and SPI{0,1}_SS	-3.10	_	3.90	ns
T _{MSPISSCLK}	Slave select asserted to first active clock edge	1	_	_	F _{SPI_REF_CLK} cycles
T _{MSPICLKSS}	Last active clock edge to slave select deasserted	0.5	_	_	F _{SPI_REF_CLK} cycles
F _{MSPICLK}	SPI master mode device clock frequency	_	_	50.00	MHz
F _{SPI_REF_CLK}	SPI reference clock frequency	_	_	200.00	MHz

Notes:

Figure 11: SPI Master (CPHA = 0) Interface Timing Diagram

Figure 12: SPI Master (CPHA = 1) Interface Timing Diagram

Table 42: SPI Slave Mode Interface Switching Characteristics (1)(2)

Symbol	Description	Min	Max	Units
T _{SSPIDCK}	Input setup time for SPI{0,1}_MOSI and SPI{0,1}_SS	1	_	F _{SPI_REF_CLK} cycles
T _{SSPICKD}	Input hold time for SPI{0,1}_MOSI and SPI{0,1}_SS	1	_	F _{SPI_REF_CLK} cycles
T _{SSPICKO}	Output delay for SPI{0,1}_MISO	0	2.6	F _{SPI_REF_CLK} cycles
T _{SSPISSCLK}	Slave select asserted to first active clock edge	1	_	F _{SPI_REF_CLK} cycles
T _{SSPICLKSS}	Last active clock edge to slave select deasserted	1	_	F _{SPI_REF_CLK} cycles
F _{SSPICLK}	SPI slave mode device clock frequency	_	25	MHz
F _{SPI_REF_CLK}	SPI reference clock frequency	_	200	MHz

- 1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads.
- 2. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

Figure 13: SPI Slave (CPHA = 0) Interface Timing Diagram

Figure 14: SPI Slave (CPHA = 1) Interface Timing Diagram

CAN Interfaces

Table 43: CAN Interface Switching Characteristics(1)

Symbol	Description	Min	Max	Units
T _{PWCANRX}	Minimum receive pulse width	1	_	μs
T _{PWCANTX}	Minimum transmit pulse width	1	_	μs
F _{CAN_REF_CLK}	Internally sourced CAN reference clock frequency	_	100	MHz
	Externally sourced CAN reference clock frequency	_	40	MHz

Notes:

1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads.

PJTAG Interfaces

Table 44: PJTAG Interface(1)(2)

Symbol	Description	Min	Max	Units
T _{PJTAGDCK}	PJTAG input setup time	2.4	_	ns
T _{PJTAGCKD}	PJTAG input hold time	2.0	_	ns
T _{PJTAGCKO}	PJTAG clock to out delay	_	12.5	ns
T _{PJTAGCLK}	PJTAG clock frequency	_	20	MHz

Notes:

- 1. Test conditions: LVCMOS33, slow slew rate, 8 mA drive strength, 15 pF loads.
- 2. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

Figure 15: PJTAG Interface Timing Diagram

UART Interfaces

Table 45: UART Interface Switching Characteristics(1)

Symbol	Description	Min	Max	Units
BAUD _{TXMAX}	Maximum transmit baud rate	_	1	Mb/s
BAUD _{RXMAX}	Maximum receive baud rate	_	1	Mb/s
F _{UART_REF_CLK}	UART reference clock frequency	_	100	MHz

Notes:

GPIO Interfaces

Table 46: GPIO Banks Switching Characteristics(1)

Symbol	Description	Min	Max	Units
T _{PWGPIOH}	Input high pulse width	10 x 1/cpu1x	_	μs
T _{PWGPIOL}	Input low pulse width	10 x 1/cpu1x	_	μs

Notes:

1. Pulse width requirement for interrupt.

Figure 16: GPIO Interface Timing Diagram

Trace Interface

Table 47: Trace Interface Switching Characteristics(1)

Symbol	Description	Min	Max	Units
T _{TCECKO}	Trace clock to output delay, all outputs	-1.4	1.5	ns
T _{DCTCECLK}	Trace clock duty cycle	40	60	%
F _{TCECLK}	Trace clock frequency	_	80	MHz

Notes:

1. Test conditions: LVCMOS25, fast slew rate, 8 mA drive strength, 15 pF loads.

Triple Timer Counter Interface

Table 48: Triple Timer Counter interface Switching Characteristics(1)

Symbol	Description	Min	Max	Units
T _{PWTTCOCLK}	Triple time counter output clock pulse width	2 x 1/cpu1x	-	ns
F _{TTCOCLK}	Triple time counter output clock frequency	_	cpu1x/4	MHz
T _{TTCICLKH}	Triple time counter input clock high pulse width	1.5 x 1/cpu1x	-	ns
T _{TTCICLKL}	Triple time counter input clock low pulse width	1.5 x 1/cpu1x	_	ns
F _{TTCICLK}	Triple time counter input clock frequency	_	cpu1x/3	MHz

Notes:

1. All timing values assume an ideal external input clock. Actual design system timing budgets should account for additional external clock jitter.

Watchdog Timer

Table 49: Watchdog Timer Switching Characteristics

Symbol	Description	Min	Max	Units
F _{WDTCLK}	Watchdog timer input clock frequency	-	10	MHz

PL Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in the PL. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the AC Switching Characteristics, page 14. In each table, the I/O bank type is either High Performance (HP) or High Range (HR).

Table 50: PL Networking Applications Interface Performances

Decembries	I/O Bonk Type	S	Units			
Description	I/O Bank Type	-3	-2	-1	Oiills	
SDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 8)	HR	710	710	625	Mb/s	
	HP	710	710	625	Mb/s	
DDR LVDS transmitter (using OSERDES; DATA_WIDTH = 4 to 14)	HR	1250	1250	950	Mb/s	
	HP	1600	1400	1250	Mb/s	
SDR LVDS receiver (SFI-4.1) ⁽¹⁾	HR	710	710	625	Mb/s	
	HP	710	710	625	Mb/s	
DDR LVDS receiver (SPI-4.2) ⁽¹⁾	HR	1250	1250	950	Mb/s	
	HP	1600	1400	1250	Mb/s	

LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) algorithms dominate deterministic performance.

Table 51: Maximum Physical Interface (PHY) Rate for Memory Interfaces IP available with the Memory Interface Generator (FFG Packages)(1)(2)

Memory			Speed Grade					
Standard	I/O Bank Type	V _{CCAUX_IO}	-3	-2	-1	Units		
4:1 Memory C	ontrollers	<u> </u>						
	HP	2.0V	1866	1866	1600	Mb/s		
DDR3	HP	1.8V	1600	1333	1066	Mb/s		
	HR	N/A	1066	1066	800	Mb/s		
	HP	2.0V	1600	1600	1333	Mb/s		
DDR3L	HP	1.8V	1333	1066	800	Mb/s		
	HR	N/A	800	800	667	Mb/s		
	HP	2.0V	800	800	800	Mb/s		
DDR2	HP	1.8V	800	800	800	Mb/s		
	HR	N/A	800	800	800	Mb/s		
	HP	2.0V	800	667	667	MHz		
RLDRAM III	HP	1.8V	550	500	450	MHz		
	HR	N/A		N/A				
2:1 Memory C	ontrollers							
	HP	2.0V	1066	1066	800	Mb/s		
DDR3	HP	1.8V				Mb/s		
	HR	N/A				Mb/s		
	HP	2.0V	1000	1000		Mb/s		
DDR3L	HP	1.8V	1066	1066	800	Mb/s		
	HR	N/A	800	800	667	Mb/s		
	HP	2.0V			800			
DDR2	HP	1.8V	800	800		Mb/s		
	HR	N/A						
	HP	2.0V						
QDR II+(3)	HP	1.8V	550	500	450	MHz		
	HR	N/A	500	450	400	MHz		
	HP	2.0V						
RLDRAM II	HP	1.8V	533	500	450	MHz		
	HR	N/A						
	HP	2.0V			667	Mb/s		
LPDDR2	HP	1.8V	667	667		Mb/s		
	HR	N/A				Mb/s		

- 1. V_{REF} tracking is required. For more information, see the 7 Series FPGAs Memory Interface Solutions User Guide (UG586).
- 2. When using the internal V_{REF} the maximum data rate is 800 Mb/s (400 MHz).
- 3. The maximum QDRII+ performance specifications are for burst-length 4 (BL = 4) implementations. Burst length 2 (BL = 2) implementations are limited to 333 MHz for all speed grades and I/O bank types.

Table 52: Maximum Physical Interface (PHY) Rate for Memory Interfaces IP available with the Memory Interface Generator (FBG Packages)(1)(2)

Memory Standard	I/O Bank Time	v (3)		Speed Grade					
	I/O Bank Type	V _{CCAUX_IO} (3)	-3	-2	-1	Units			
4:1 Memory (Controllers					,			
DDDO	HP	N/A	1333	1066	800	Mb/s			
DDR3	HR	N/A	1066	800	800	Mb/s			
DDDOI	HP	N/A	1066	800	667	Mb/s			
DDR3L	HR	N/A	800	800	667	Mb/s			
DDDO	HP	N/A	800	800	800	Mb/s			
DDR2	HR	N/A	800	667	667	Mb/s			
DI DDAM III	HP	N/A	550	500	450	MHz			
RLDRAM III	HR	N/A	N/A						
2:1 Memory (Controllers								
DDDo	HP	N/A	1066	1066	800	Mb/s			
DDR3	HR	N/A	1066	800	800	Mb/s			
DDDOI	HP	N/A	1066	800	667	Mb/s			
DDR3L	HR	N/A	800	800	667	Mb/s			
DDDO	HP	N/A	800	800	800	Mb/s			
DDR2	HR	N/A	800	667	667	Mb/s			
ODD II. (4)	HP	N/A	550	500	450	MHz			
QDR II+ ⁽⁴⁾	HR	N/A	450	400	350	MHz			
DI DDAMII	HP	N/A	500	500		N 41 1			
RLDRAM II	HR	N/A	533	500	450	MHz			
LDDDDO	HP	N/A	667	667	667	Mb/s			
LPDDR2	HR	N/A	667	667	533	Mb/s			
	1			0	i				

- 1. V_{BEF} tracking is required. For more information, see the 7 Series FPGAs Memory Interface Solutions User Guide (UG586).
- 2. When using the internal V_{REF} the maximum data rate is 800 Mb/s (400 MHz).
- 3. FBG packages do not have separate $V_{\text{CCAUX_IO}}$ supply pins to adjust the pre-driver voltage of the HP I/O banks.
- 4. The maximum QDRII+ performance specifications are for burst-length 4 (BL = 4) implementations. Burst length 2 (BL = 2) implementations are limited to 333 MHz for all speed grades and I/O bank types.

PL Switching Characteristics

IOB Pad Input/Output/3-State

Table 53 (3.3V high-range IOB (HR)) and Table 54 (1.8V high-performance IOB (HP)) summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays.

- T_{IOPI} is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer.
- T_{IOOP} is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.
- T_{IOTP} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. In HP I/O banks, the internal DCI termination turn-on time is always faster than T_{IOTP} when the DCITERMDISABLE pin is used. In HR I/O banks, the IN_TERM termination turn-on time is always faster than T_{IOTP} when the INTERMDISABLE pin is used.

Table 53: 3.3V IOB High Range (HR) Switching Characteristics

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	Speed Grade		de	Speed Grade			Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
LVTTL_S4	1.31	1.42	1.64	3.77	3.90	4.00	4.53	4.76	4.99	ns
LVTTL_S8	1.31	1.42	1.64	3.50	3.64	3.73	4.26	4.50	4.72	ns
LVTTL_S12	1.31	1.42	1.64	3.49	3.62	3.72	4.25	4.48	4.71	ns
LVTTL_S16	1.31	1.42	1.64	3.03	3.17	3.26	3.79	4.03	4.25	ns
LVTTL_S24	1.31	1.42	1.64	3.25	3.39	3.48	4.01	4.25	4.47	ns
LVTTL_F4	1.31	1.42	1.64	3.22	3.36	3.45	3.98	4.22	4.44	ns
LVTTL_F8	1.31	1.42	1.64	2.71	2.84	2.93	3.47	3.70	3.92	ns
LVTTL_F12	1.31	1.42	1.64	2.69	2.82	2.92	3.45	3.68	3.91	ns
LVTTL_F16	1.31	1.42	1.64	2.57	2.85	3.15	3.33	3.71	4.14	ns
LVTTL_F24	1.31	1.42	1.64	2.41	2.64	2.89	3.17	3.50	3.88	ns
LVDS_25 ⁽¹⁾	0.64	0.68	0.80	1.36	1.47	1.55	2.12	2.33	2.54	ns
MINI_LVDS_25	0.68	0.70	0.79	1.36	1.47	1.55	2.12	2.33	2.54	ns
BLVDS_25 ⁽¹⁾	0.65	0.69	0.80	1.83	2.02	2.20	2.59	2.88	3.19	ns
RSDS_25 ⁽¹⁾	0.63	0.68	0.79	1.36	1.48	1.55	2.12	2.34	2.54	ns
PPDS_25 ⁽¹⁾	0.65	0.69	0.80	1.36	1.49	1.58	2.12	2.35	2.57	ns
TMDS_33 ⁽¹⁾	0.72	0.76	0.86	1.43	1.54	1.60	2.19	2.40	2.59	ns
PCI33_3 ⁽¹⁾	1.28	1.41	1.65	2.71	3.08	3.52	3.47	3.94	4.51	ns
HSUL_12	0.63	0.64	0.71	1.77	1.90	2.00	2.53	2.76	2.99	ns
DIFF_HSUL_12	0.58	0.61	0.70	1.55	1.68	1.78	2.31	2.54	2.77	ns
HSTL_I_S	0.61	0.64	0.73	1.55	1.69	1.80	2.31	2.55	2.79	ns
HSTL_II_S	0.61	0.64	0.73	1.21	1.34	1.43	1.97	2.20	2.42	ns
HSTL_I_18_S	0.64	0.67	0.76	1.28	1.39	1.45	2.04	2.25	2.44	ns
HSTL_II_18_S	0.64	0.67	0.76	1.18	1.31	1.40	1.94	2.17	2.39	ns
DIFF_HSTL_I_S	0.63	0.67	0.77	1.42	1.54	1.61	2.18	2.40	2.60	ns
DIFF_HSTL_II_S	0.63	0.67	0.77	1.15	1.24	1.27	1.91	2.10	2.26	ns
DIFF_HSTL_I_18_S	0.65	0.69	0.78	1.27	1.38	1.43	2.03	2.24	2.42	ns

Table 53: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
DIFF_HSTL_II_18_S	0.65	0.69	0.78	1.14	1.23	1.26	1.90	2.09	2.25	ns
HSTL_I_F	0.61	0.64	0.73	1.10	1.19	1.23	1.86	2.05	2.22	ns
HSTL_II_F	0.61	0.64	0.73	1.05	1.18	1.28	1.81	2.04	2.27	ns
HSTL_I_18_F	0.64	0.67	0.76	1.05	1.18	1.28	1.81	2.04	2.27	ns
HSTL_II_18_F	0.64	0.67	0.76	1.03	1.14	1.23	1.79	2.00	2.22	ns
DIFF_HSTL_I_F	0.63	0.67	0.77	1.09	1.18	1.22	1.85	2.04	2.21	ns
DIFF_HSTL_II_F	0.63	0.67	0.77	1.02	1.11	1.14	1.78	1.97	2.13	ns
DIFF_HSTL_I_18_F	0.65	0.69	0.78	1.08	1.17	1.21	1.84	2.03	2.20	ns
DIFF_HSTL_II_18_F	0.65	0.69	0.78	1.01	1.10	1.13	1.77	1.96	2.12	ns
LVCMOS33_S4	1.31	1.40	1.60	3.77	3.90	4.00	4.53	4.76	4.99	ns
LVCMOS33_S8	1.31	1.40	1.60	3.49	3.62	3.72	4.25	4.48	4.71	ns
LVCMOS33_S12	1.31	1.40	1.60	3.05	3.18	3.28	3.81	4.04	4.27	ns
LVCMOS33_S16	1.31	1.40	1.60	3.06	3.43	3.88	3.82	4.29	4.87	ns
LVCMOS33_F4	1.31	1.40	1.60	3.22	3.36	3.45	3.98	4.22	4.44	ns
LVCMOS33_F8	1.31	1.40	1.60	2.71	2.84	2.93	3.47	3.70	3.92	ns
LVCMOS33_F12	1.31	1.40	1.60	2.57	2.85	3.15	3.33	3.71	4.14	ns
LVCMOS33_F16	1.31	1.40	1.60	2.44	2.69	2.96	3.20	3.55	3.95	ns
LVCMOS25_S4	1.08	1.16	1.32	3.08	3.22	3.31	3.84	4.08	4.30	ns
LVCMOS25_S8	1.08	1.16	1.32	2.85	2.98	3.07	3.61	3.84	4.06	ns
LVCMOS25_S12	1.08	1.16	1.32	2.44	2.57	2.67	3.20	3.43	3.66	ns
LVCMOS25_S16	1.08	1.16	1.32	2.79	2.92	3.01	3.55	3.78	4.00	ns
LVCMOS25_F4	1.08	1.16	1.32	2.71	2.84	2.93	3.47	3.70	3.92	ns
LVCMOS25_F8	1.08	1.16	1.32	2.14	2.28	2.37	2.90	3.14	3.36	ns
LVCMOS25_F12	1.08	1.16	1.32	2.15	2.29	2.52	2.91	3.15	3.51	ns
LVCMOS25_F16	1.08	1.16	1.32	1.92	2.17	2.45	2.68	3.03	3.44	ns
LVCMOS18_S4	0.64	0.66	0.74	1.55	1.68	1.78	2.31	2.54	2.77	ns
LVCMOS18_S8	0.64	0.66	0.74	2.14	2.28	2.37	2.90	3.14	3.36	ns
LVCMOS18_S12	0.64	0.66	0.74	2.14	2.28	2.37	2.90	3.14	3.36	ns
LVCMOS18_S16	0.64	0.66	0.74	1.49	1.62	1.72	2.25	2.48	2.71	ns
LVCMOS18_S24 ⁽¹⁾	0.64	0.66	0.74	1.74	1.92	2.08	2.50	2.78	3.07	ns
LVCMOS18_F4	0.64	0.66	0.74	1.38	1.51	1.61	2.14	2.37	2.60	ns
LVCMOS18_F8	0.64	0.66	0.74	1.64	1.78	1.87	2.40	2.64	2.86	ns
LVCMOS18_F12	0.64	0.66	0.74	1.64	1.78	1.87	2.40	2.64	2.86	ns
LVCMOS18_F16	0.64	0.66	0.74	1.52	1.68	1.81	2.28	2.54	2.80	ns
LVCMOS18_F24 ⁽¹⁾	0.64	0.66	0.74	1.34	1.46	1.55	2.10	2.32	2.54	ns
LVCMOS15_S4	0.66	0.69	0.81	1.86	2.00	2.09	2.62	2.86	3.08	ns
LVCMOS15_S8	0.66	0.69	0.81	2.05	2.18	2.28	2.81	3.04	3.27	ns
LVCMOS15_S12	0.66	0.69	0.81	1.83	2.03	2.23	2.59	2.89	3.22	ns

Table 53: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
LVCMOS15_S16	0.66	0.69	0.81	1.76	1.95	2.13	2.52	2.81	3.12	ns
LVCMOS15_F4	0.66	0.69	0.81	1.63	1.76	1.86	2.39	2.62	2.85	ns
LVCMOS15_F8	0.66	0.69	0.81	1.79	1.99	2.18	2.55	2.85	3.17	ns
LVCMOS15_F12	0.66	0.69	0.81	1.40	1.54	1.65	2.16	2.40	2.64	ns
LVCMOS15_F16	0.66	0.69	0.81	1.37	1.51	1.61	2.13	2.37	2.60	ns
LVCMOS12_S4	0.88	0.91	1.00	2.53	2.67	2.76	3.29	3.53	3.75	ns
LVCMOS12_S8	0.88	0.91	1.00	2.05	2.18	2.28	2.81	3.04	3.27	ns
LVCMOS12_S12 ⁽¹⁾	0.88	0.91	1.00	1.75	1.89	1.98	2.51	2.75	2.97	ns
LVCMOS12_F4	0.88	0.91	1.00	1.94	2.07	2.17	2.70	2.93	3.16	ns
LVCMOS12_F8	0.88	0.91	1.00	1.50	1.64	1.73	2.26	2.50	2.72	ns
LVCMOS12_F12 ⁽¹⁾	0.88	0.91	1.00	1.54	1.71	1.87	2.30	2.57	2.86	ns
SSTL135_S	0.61	0.64	0.73	1.27	1.40	1.50	2.03	2.26	2.49	ns
SSTL15_S	0.61	0.64	0.73	1.24	1.37	1.47	2.00	2.23	2.46	ns
SSTL18_I_S	0.64	0.67	0.76	1.59	1.74	1.85	2.35	2.60	2.84	ns
SSTL18_II_S	0.64	0.67	0.76	1.27	1.40	1.50	2.03	2.26	2.49	ns
DIFF_SSTL135_S	0.59	0.61	0.73	1.27	1.40	1.50	2.03	2.26	2.49	ns
DIFF_SSTL15_S	0.63	0.67	0.77	1.24	1.37	1.47	2.00	2.23	2.46	ns
DIFF_SSTL18_I_S	0.65	0.69	0.78	1.50	1.63	1.72	2.26	2.49	2.71	ns
DIFF_SSTL18_II_S	0.65	0.69	0.78	1.13	1.22	1.25	1.89	2.08	2.24	ns
SSTL135_F	0.61	0.64	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
SSTL15_F	0.61	0.64	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
SSTL18_I_F	0.64	0.67	0.76	1.12	1.22	1.26	1.88	2.08	2.25	ns
SSTL18_II_F	0.64	0.67	0.76	1.05	1.18	1.28	1.81	2.04	2.27	ns
DIFF_SSTL135_F	0.59	0.61	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
DIFF_SSTL15_F	0.63	0.67	0.77	1.04	1.17	1.26	1.80	2.03	2.25	ns
DIFF_SSTL18_I_F	0.65	0.69	0.78	1.10	1.19	1.23	1.86	2.05	2.22	ns
DIFF_SSTL18_II_F	0.65	0.69	0.78	1.02	1.10	1.14	1.78	1.96	2.13	ns

1. This I/O standard is only available in the 3.3V high-range (HR) banks.

Table 54: 1.8V IOB High Performance (HP) Switching Characteristics

	T _{IOPI}				T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
LVDS	0.75	0.79	0.92	1.05	1.17	1.24	1.68	1.92	2.06	ns
HSUL_12	0.69	0.72	0.82	1.65	1.84	2.05	2.29	2.59	2.87	ns
DIFF_HSUL_12	0.69	0.72	0.82	1.65	1.84	2.05	2.29	2.59	2.87	ns
HSTL_I_S	0.68	0.72	0.82	1.15	1.28	1.38	1.79	2.03	2.20	ns
HSTL_II_S	0.68	0.72	0.82	1.05	1.17	1.26	1.69	1.93	2.08	ns
HSTL_I_18_S	0.70	0.72	0.82	1.12	1.24	1.34	1.75	2.00	2.16	ns
HSTL_II_18_S	0.70	0.72	0.82	1.06	1.18	1.26	1.70	1.94	2.08	ns
HSTL_I_12_S	0.68	0.72	0.82	1.14	1.27	1.37	1.78	2.02	2.20	ns
HSTL_I_DCI_S	0.68	0.72	0.82	1.11	1.23	1.33	1.74	1.99	2.15	ns
HSTL_II_DCI_S	0.68	0.72	0.82	1.05	1.17	1.26	1.69	1.93	2.08	ns
HSTL_II_T_DCI_S	0.70	0.72	0.82	1.15	1.28	1.38	1.78	2.03	2.20	ns
HSTL_I_DCI_18_S	0.70	0.72	0.82	1.11	1.23	1.33	1.74	1.99	2.15	ns
HSTL_II_DCI_18_S	0.70	0.72	0.82	1.05	1.16	1.24	1.69	1.92	2.06	ns
HSTL_II_T_DCI_18_S	0.70	0.72	0.82	1.11	1.23	1.33	1.74	1.99	2.15	ns
DIFF_HSTL_I_S	0.75	0.79	0.92	1.15	1.28	1.38	1.79	2.03	2.20	ns
DIFF_HSTL_II_S	0.75	0.79	0.92	1.05	1.17	1.26	1.69	1.93	2.08	ns
DIFF_HSTL_I_DCI_S	0.75	0.79	0.92	1.15	1.28	1.38	1.78	2.03	2.20	ns
DIFF_HSTL_II_DCI_S	0.75	0.79	0.92	1.05	1.17	1.26	1.69	1.93	2.08	ns
DIFF_HSTL_I_18_S	0.75	0.79	0.92	1.12	1.24	1.34	1.75	2.00	2.16	ns
DIFF_HSTL_II_18_S	0.75	0.79	0.92	1.06	1.18	1.26	1.70	1.94	2.08	ns
DIFF_HSTL_I_DCI_18_S	0.75	0.79	0.92	1.11	1.23	1.33	1.74	1.99	2.15	ns
DIFF_HSTL_II_DCI_18_S	0.75	0.79	0.92	1.05	1.16	1.24	1.69	1.92	2.06	ns
DIFF_HSTL_II _T_DCI_18_S	0.75	0.79	0.92	1.11	1.23	1.33	1.74	1.99	2.15	ns
HSTL_I_F	0.68	0.72	0.82	1.02	1.14	1.22	1.66	1.90	2.04	ns
HSTL_II_F	0.68	0.72	0.82	0.97	1.08	1.15	1.61	1.84	1.97	ns
HSTL_I_18_F	0.70	0.72	0.82	1.04	1.16	1.24	1.68	1.91	2.06	ns
HSTL_II_18_F	0.70	0.72	0.82	0.98	1.09	1.16	1.62	1.85	1.98	ns
HSTL_I_12_F	0.68	0.72	0.82	1.02	1.13	1.21	1.65	1.88	2.03	ns
HSTL_I_DCI_F	0.68	0.72	0.82	1.04	1.16	1.24	1.67	1.91	2.06	ns
HSTL_II_DCI_F	0.68	0.72	0.82	0.97	1.08	1.15	1.61	1.84	1.97	ns
HSTL_II_T_DCI_F	0.70	0.72	0.82	1.02	1.14	1.22	1.66	1.90	2.04	ns
HSTL_I_DCI_18_F	0.70	0.72	0.82	1.04	1.16	1.24	1.67	1.91	2.06	ns
HSTL_II_DCI_18_F	0.70	0.72	0.82	0.98	1.09	1.16	1.61	1.85	1.98	ns
HSTL_II _T_DCI_18_F	0.70	0.72	0.82	1.04	1.16	1.24	1.67	1.91	2.06	ns
DIFF_HSTL_I_F	0.75	0.79	0.92	1.02	1.14	1.22	1.66	1.90	2.04	ns
DIFF_HSTL_II_F	0.75	0.79	0.92	0.97	1.08	1.15	1.61	1.84	1.97	ns
DIFF_HSTL_I_DCI_F	0.75	0.79	0.92	1.02	1.14	1.22	1.66	1.90	2.04	ns
DIFF_HSTL_II_DCI_F	0.75	0.79	0.92	0.97	1.08	1.15	1.61	1.84	1.97	ns

Table 54: 1.8V IOB High Performance (HP) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
DIFF_HSTL_I_18_F	0.75	0.79	0.92	1.04	1.16	1.24	1.68	1.91	2.06	ns
DIFF_HSTL_II_18_F	0.75	0.79	0.92	0.98	1.09	1.16	1.62	1.85	1.98	ns
DIFF_HSTL_I_DCI_18_F	0.75	0.79	0.92	1.04	1.16	1.24	1.67	1.91	2.06	ns
DIFF_HSTL_II_DCI_18_F	0.75	0.79	0.92	0.98	1.09	1.16	1.61	1.85	1.98	ns
DIFF_HSTL_II _T_DCI_18_F	0.75	0.79	0.92	1.04	1.16	1.24	1.67	1.91	2.06	ns
LVCMOS18_S2	0.47	0.50	0.60	3.95	4.28	4.85	4.59	5.04	5.67	ns
LVCMOS18_S4	0.47	0.50	0.60	2.67	2.98	3.43	3.31	3.73	4.26	ns
LVCMOS18_S6	0.47	0.50	0.60	2.14	2.38	2.72	2.77	3.14	3.54	ns
LVCMOS18_S8	0.47	0.50	0.60	1.98	2.21	2.52	2.61	2.97	3.35	ns
LVCMOS18_S12	0.47	0.50	0.60	1.70	1.91	2.17	2.34	2.67	2.99	ns
LVCMOS18_S16	0.47	0.50	0.60	1.57	1.75	1.97	2.20	2.51	2.79	ns
LVCMOS18_F2	0.47	0.50	0.60	3.50	3.87	4.48	4.14	4.63	5.30	ns
LVCMOS18_F4	0.47	0.50	0.60	2.23	2.50	2.87	2.87	3.25	3.69	ns
LVCMOS18_F6	0.47	0.50	0.60	1.80	2.00	2.26	2.43	2.76	3.08	ns
LVCMOS18_F8	0.47	0.50	0.60	1.46	1.72	2.04	2.10	2.47	2.86	ns
LVCMOS18_F12	0.47	0.50	0.60	1.26	1.40	1.53	1.89	2.16	2.35	ns
LVCMOS18_F16	0.47	0.50	0.60	1.19	1.33	1.44	1.83	2.08	2.26	ns
LVCMOS15_S2	0.59	0.62	0.73	3.55	3.89	4.45	4.19	4.65	5.27	ns
LVCMOS15_S4	0.59	0.62	0.73	2.45	2.70	3.06	3.08	3.45	3.89	ns
LVCMOS15_S6	0.59	0.62	0.73	2.24	2.51	2.88	2.88	3.26	3.71	ns
LVCMOS15_S8	0.59	0.62	0.73	1.91	2.16	2.49	2.55	2.91	3.31	ns
LVCMOS15_S12	0.59	0.62	0.73	1.77	1.98	2.23	2.41	2.73	3.05	ns
LVCMOS15_S16	0.59	0.62	0.73	1.62	1.81	2.02	2.26	2.56	2.84	ns
LVCMOS15_F2	0.59	0.62	0.73	3.38	3.69	4.18	4.02	4.44	5.00	ns
LVCMOS15_F4	0.59	0.62	0.73	2.04	2.21	2.44	2.68	2.97	3.26	ns
LVCMOS15_F6	0.59	0.62	0.73	1.47	1.74	2.09	2.10	2.50	2.91	ns
LVCMOS15_F8	0.59	0.62	0.73	1.31	1.46	1.61	1.95	2.22	2.43	ns
LVCMOS15_F12	0.59	0.62	0.73	1.21	1.34	1.45	1.84	2.10	2.27	ns
LVCMOS15_F16	0.59	0.62	0.73	1.18	1.31	1.41	1.82	2.07	2.23	ns
LVCMOS12_S2	0.64	0.67	0.78	3.38	3.80	4.48	4.02	4.55	5.30	ns
LVCMOS12_S4	0.64	0.67	0.78	2.62	2.94	3.43	3.26	3.70	4.25	ns
LVCMOS12_S6	0.64	0.67	0.78	2.05	2.33	2.72	2.69	3.08	3.54	ns
LVCMOS12_S8	0.64	0.67	0.78	1.94	2.18	2.51	2.58	2.94	3.33	ns
LVCMOS12_F2	0.64	0.67	0.78	2.84	3.15	3.62	3.48	3.90	4.44	ns
LVCMOS12_F4	0.64	0.67	0.78	1.97	2.18	2.44	2.61	2.93	3.26	ns
LVCMOS12_F6	0.64	0.67	0.78	1.33	1.51	1.70	1.96	2.26	2.52	ns
LVCMOS12_F8	0.64	0.67	0.78	1.27	1.42	1.55	1.91	2.18	2.37	ns
LVDCI_18	0.47	0.50	0.60	1.99	2.15	2.35	2.62	2.91	3.17	ns

Table 54: 1.8V IOB High Performance (HP) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
LVDCI_15	0.59	0.62	0.73	1.98	2.23	2.58	2.62	2.99	3.40	ns
LVDCI_DV2_18	0.47	0.50	0.60	1.99	2.15	2.34	2.62	2.90	3.17	ns
LVDCI_DV2_15	0.59	0.62	0.73	1.98	2.23	2.58	2.62	2.99	3.40	ns
HSLVDCI_18	0.68	0.72	0.82	1.99	2.15	2.35	2.62	2.91	3.17	ns
HSLVDCI_15	0.68	0.72	0.82	1.98	2.23	2.58	2.62	2.99	3.40	ns
SSTL18_I_S	0.68	0.72	0.82	1.02	1.15	1.24	1.66	1.90	2.07	ns
SSTL18_II_S	0.68	0.72	0.82	1.17	1.29	1.37	1.81	2.05	2.19	ns
SSTL18_I_DCI_S	0.68	0.72	0.82	0.92	1.06	1.17	1.56	1.82	1.99	ns
SSTL18_II_DCI_S	0.68	0.72	0.82	0.88	0.98	1.08	1.51	1.74	1.90	ns
SSTL18_II_T_DCI_S	0.68	0.72	0.82	0.92	1.06	1.17	1.56	1.82	1.99	ns
SSTL15_S	0.68	0.72	0.82	0.94	1.06	1.15	1.58	1.82	1.97	ns
SSTL15_DCI_S	0.68	0.72	0.82	0.94	1.06	1.15	1.57	1.82	1.97	ns
SSTL15_T_DCI_S	0.68	0.72	0.82	0.94	1.06	1.15	1.57	1.82	1.97	ns
SSTL135_S	0.69	0.72	0.82	0.97	1.10	1.19	1.60	1.85	2.01	ns
SSTL135_DCI_S	0.69	0.72	0.82	0.97	1.09	1.19	1.60	1.85	2.01	ns
SSTL135_T_DCI_S	0.69	0.72	0.82	0.97	1.09	1.19	1.60	1.85	2.01	ns
SSTL12_S	0.69	0.72	0.82	0.96	1.09	1.18	1.60	1.84	2.00	ns
SSTL12_DCI_S	0.69	0.72	0.82	1.03	1.17	1.27	1.66	1.92	2.09	ns
SSTL12_T_DCI_S	0.69	0.72	0.82	1.03	1.17	1.27	1.66	1.92	2.09	ns
DIFF_SSTL18_I_S	0.75	0.79	0.92	1.02	1.15	1.24	1.66	1.90	2.07	ns
DIFF_SSTL18_II_S	0.75	0.79	0.92	1.17	1.29	1.37	1.81	2.05	2.19	ns
DIFF_SSTL18_I_DCI_S	0.75	0.79	0.92	0.92	1.06	1.17	1.56	1.82	1.99	ns
DIFF_SSTL18_II_DCI_S	0.75	0.79	0.92	0.88	0.98	1.08	1.51	1.74	1.90	ns
DIFF_SSTL18_II_T_DCI_S	0.75	0.79	0.92	0.92	1.06	1.17	1.56	1.82	1.99	ns
DIFF_SSTL15_S	0.68	0.72	0.82	0.94	1.06	1.15	1.58	1.82	1.97	ns
DIFF_SSTL15_DCI_S	0.68	0.72	0.82	0.94	1.06	1.15	1.57	1.82	1.97	ns
DIFF_SSTL15_T_DCI_S	0.68	0.72	0.82	0.94	1.06	1.15	1.57	1.82	1.97	ns
DIFF_SSTL135_S	0.69	0.72	0.82	0.97	1.10	1.19	1.60	1.85	2.01	ns
DIFF_SSTL135_DCI_S	0.69	0.72	0.82	0.97	1.09	1.19	1.60	1.85	2.01	ns
DIFF_SSTL135_T_DCI_S	0.69	0.72	0.82	0.97	1.09	1.19	1.60	1.85	2.01	ns
DIFF_SSTL12_S	0.69	0.72	0.82	0.96	1.09	1.18	1.60	1.84	2.00	ns
DIFF_SSTL12_DCI_S	0.69	0.72	0.82	1.03	1.17	1.27	1.66	1.92	2.09	ns
DIFF_SSTL12_T_DCI_S	0.69	0.72	0.82	1.03	1.17	1.27	1.66	1.92	2.09	ns
SSTL18_I_F	0.68	0.72	0.82	0.94	1.06	1.15	1.58	1.82	1.97	ns
SSTL18_II_F	0.68	0.72	0.82	0.97	1.09	1.16	1.61	1.84	1.99	ns
SSTL18_I_DCI_F	0.68	0.72	0.82	0.89	1.02	1.10	1.53	1.77	1.92	ns
SSTL18_II_DCI_F	0.68	0.72	0.82	0.89	1.02	1.10	1.53	1.77	1.92	ns
SSTL18_II_T_DCI_F	0.68	0.72	0.82	0.89	1.02	1.10	1.53	1.77	1.92	ns

Table 54: 1.8V IOB High Performance (HP) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	S	peed Grad	de	S	peed Grad	de	S	peed Grad	de	Units
	-3	-2	-1	-3	-2	-1	-3	-2	-1	
SSTL15_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL15_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL15_T_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL135_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
SSTL135_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
SSTL135_T_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
SSTL12_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
SSTL12_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
SSTL12_T_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
DIFF_SSTL18_I_F	0.75	0.79	0.92	0.94	1.06	1.15	1.58	1.82	1.97	ns
DIFF_SSTL18_II_F	0.75	0.79	0.92	0.97	1.09	1.16	1.61	1.84	1.99	ns
DIFF_SSTL18_I_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL18_II_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL18_II_T_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL15_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL15_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL15_T_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL135_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL135_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL135_T_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL12_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL12_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
DIFF_SSTL12_T_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns

Table 55 specifies the values of T_{IOTPHZ} and $T_{IOIBUFDISABLE}$. T_{IOTPHZ} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). $T_{IOIBUFDISABLE}$ is described as the IOB delay from IBUFDISABLE to O output. In HP I/O banks, the internal DCI termination turn-off time is always faster than T_{IOTPHZ} when the DCITERMDISABLE pin is used. In HR I/O banks, the internal IN_TERM termination turn-off time is always faster than T_{IOTPHZ} when the INTERMDISABLE pin is used.

Table 55: IOB 3-state Output Switching Characteristics

Cumbal	Decembries		Speed Grade		Units
Symbol	Description	-3	-2	-1	Units
T _{IOTPHZ}	T input to pad high-impedance	0.76	0.86	0.99	ns
T _{IOIBUFDISABLE_HR}	IBUF turn-on time from IBUFDISABLE to O output for HR I/O banks	1.72	1.89	2.14	ns
T _{IOIBUFDISABLE_HP}	IBUF turn-on time from IBUFDISABLE to O output for HP I/O banks	1.31	1.46	1.76	ns

This I/O standard is only available in the 1.8V high-performance (HP) banks.

Input/Output Logic Switching Characteristics

Table 56: ILOGIC Switching Characteristics

Symbol	Description				Units
	•	-3	-2	-1	Units
Setup/Hold					
T _{ICE1CK} /T _{ICKCE1}	CE1 pin setup/hold with respect to CLK	0.42/0.00	0.48/0.00	0.67/0.00	ns
T _{ISRCK} /T _{ICKSR}	SR pin setup/hold with respect to CLK	0.53/0.01	0.61/0.01	0.99/0.01	ns
T _{IDOCKE2} /T _{IOCKDE2}	D pin setup/hold with respect to CLK without delay (HP I/O banks only)	0.01/0.27	0.01/0.29	0.01/0.34	ns
T _{IDOCKDE2} /T _{IOCKDDE2}	DDLY pin setup/hold with respect to CLK (using IDELAY) (HP I/O banks only)	0.01/0.27	0.02/0.29	0.02/0.34	ns
T _{IDOCKE3} /T _{IOCKDE3}	D pin setup/hold with respect to CLK without delay (HR I/O banks only)	0.01/0.27	0.01/0.29	0.01/0.34	ns
T _{IDOCKDE3} /T _{IOCKDDE3}	DDLY pin setup/hold with respect to CLK (using IDELAY) (HR I/O banks only)	0.01/0.27	0.02/0.29	0.02/0.34	ns
Combinatorial				1	
T _{IDIE2}	D pin to O pin propagation delay, no delay (HP I/O banks only)	0.09	0.10	0.12	ns
T _{IDIDE2}	DDLY pin to O pin propagation delay (using IDELAY) (HP I/O banks only)	0.10	0.11	0.13	ns
T _{IDIE3}	D pin to O pin propagation delay, no delay (HR I/O banks only)	0.09	0.10	0.12	ns
T _{IDIDE3}	DDLY pin to O pin propagation delay (using IDELAY) (HR I/O banks only)	0.10	0.11	0.13	ns
Sequential Delays					
T _{IDLOE2}	D pin to Q1 pin using flip-flop as a latch without delay (HP I/O banks only)	0.36	0.39	0.45	ns
T _{IDLODE2}	DDLY pin to Q1 pin using flip-flop as a latch (using IDELAY) (HP I/O banks only)	0.36	0.39	0.45	ns
T _{IDLOE3}	D pin to Q1 pin using flip-flop as a latch without delay (HR I/O banks only)	0.36	0.39	0.45	ns
T _{IDLODE3}	DDLY pin to Q1 pin using flip-flop as a latch (using IDELAY) (HR I/O banks only)	0.36	0.39	0.45	ns
T _{ICKQ}	CLK to Q outputs	0.47	0.50	0.58	ns
T _{RQ_ILOGICE2}	SR pin to OQ/TQ out (HP I/O banks only)	0.84	0.94	1.16	ns
T _{GSRQ_ILOGICE2}	Global set/reset to Q outputs (HP I/O banks only)	7.60	7.60	10.51	ns
T _{RQ_ILOGICE3}	SR pin to OQ/TQ out (HR I/O banks only)	0.84	0.94	1.16	ns
T _{GSRQ_ILOGICE3}	Global set/reset to Q outputs (HR I/O banks only)	7.60	7.60	10.51	ns
Set/Reset			•		
T _{RPW_ILOGICE2}	Minimum pulse width, SR inputs (HP I/O banks only)	0.54	0.63	0.63	ns, Min
T _{RPW_ILOGICE3}	Minimum pulse width, SR inputs (HR I/O banks only)	0.54	0.63	0.63	ns, Min

Table 57: OLOGIC Switching Characteristics

Compleal	Description		Speed Grade)	Unito
Symbol	Description	-3	-2	-1	Units
Setup/Hold					
T _{ODCK} /T _{OCKD}	D1/D2 pins setup/hold with respect to CLK	0.45/-0.13	0.50/-0.13	0.58/0.13	ns
T _{OOCECK} /T _{OCKOCE}	OCE pin setup/hold with respect to CLK	0.28/0.03	0.29/0.03	0.45/0.03	ns
T _{OSRCK} /T _{OCKSR}	SR pin setup/hold with respect to CLK	0.32/0.18	0.38/0.18	0.70/0.18	ns
T _{OTCK} /T _{OCKT}	T1/T2 pins setup/hold with respect to CLK	0.49/-0.16	0.56/-0.16	0.68/-0.16	ns
T _{OTCECK} /T _{OCKTCE}	TCE pin setup/hold with respect to CLK	0.28/0.01	0.30/0.01	0.45/0.01	ns
Combinatorial					
T _{ODQ}	D1 to OQ out or T1 to TQ out	0.73	0.81	0.97	ns
Sequential Delays					
T _{OCKQ}	CLK to OQ/TQ out	0.41	0.43	0.49	ns
T _{RQ_OLOGICE2}	SR pin to OQ/TQ out (HP I/O banks only)	0.63	0.70	0.83	ns
T _{GSRQ_OLOGICE2}	Global set/reset to Q outputs (HP I/O banks only)	7.60	7.60	10.51	ns
T _{RQ_OLOGICE3}	SR pin to OQ/TQ out (HR I/O banks only)	0.63	0.70	0.83	ns
T _{GSRQ_OLOGICE3}	Global set/reset to Q outputs (HR I/O banks only)	7.60	7.60	10.51	ns
Set/Reset					
T _{RPW_OLOGICE2}	Minimum pulse width, SR inputs (HP I/O banks only)	0.54	0.54	0.63	ns, Min
T _{RPW_OLOGICE3}	Minimum pulse width, SR inputs (HR I/O banks only)	0.54	0.54	0.63	ns, Min

Input Serializer/Deserializer Switching Characteristics

Table 58: ISERDES Switching Characteristics

Complete	Description		Speed Grade)	Halta
Symbol	Description	-3	-2	-1	Units
Setup/Hold for Control Lines					
T _{ISCCK_BITSLIP} / T _{ISCKC_BITSLIP}	BITSLIP pin setup/hold with respect to CLKDIV	0.01/0.12	0.02/0.13	0.02/0.15	ns
T _{ISCCK_CE} / T _{ISCKC_CE} (2)	CE pin setup/hold with respect to CLK (for CE1)	0.39/-0.02	0.44/0.02	0.63/-0.02	ns
T _{ISCCK_CE2} / T _{ISCKC_CE2} (2)	CE pin setup/hold with respect to CLKDIV (for CE2)	-0.12/0.29	-0.12/0.31	-0.12/0.35	ns
Setup/Hold for Data Lines					
T _{ISDCK_D} /T _{ISCKD_D}	D pin setup/hold with respect to CLK	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns
T _{ISDCK_DDLY} /T _{ISCKD_DDLY}	DDLY pin setup/hold with respect to CLK (using IDELAY) ⁽¹⁾	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns
T _{ISDCK_D_DDR} /T _{ISCKD_D_DDR}	D pin setup/hold with respect to CLK at DDR mode	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns
TISDCK_DDLY_DDR/ TISCKD_DDLY_DDR	D pin setup/hold with respect to CLK at DDR mode (using IDELAY) ⁽¹⁾	0.11/0.11	0.12/0.12	0.15/0.15	ns
Sequential Delays		1		1	
T _{ISCKO_Q}	CLKDIV to out at Q pin	0.46	0.47	0.58	ns
Propagation Delays	•	•	•	•	+
T _{ISDO_DO}	D input to DO output pin	0.09	0.10	0.12	ns

Notes:

- 1. Recorded at 0 tap value.
- 2. T_{ISCCK_CE2} and T_{ISCKC_CE2} are reported as $T_{ISCCK_CE}/T_{ISCKC_CE}$ in the timing report.

Output Serializer/Deserializer Switching Characteristics

Table 59: OSERDES Switching Characteristics

Ol	Description		Speed Grade)	11-14-
Symbol	Description	-3	-2	-1	Units
Setup/Hold		,			
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.37/0.02	0.40/0.02	0.55/0.02	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.49/0.15	0.56/0.15	0.68/0.15	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.27/–0.15	0.30/0.15	0.34/0.15	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.28/0.03	0.29/0.03	0.45/0.03	ns
T _{OSCCK_S}	SR (reset) input setup with respect to CLKDIV	0.41	0.46	0.75	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.28/0.01	0.30/0.01	0.45/0.01	ns
Sequential Delays		,			•
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.35	0.37	0.42	ns
T _{OSCKO_TQ}	Clock to out from CLK to TQ	0.41	0.43	0.49	ns
Combinatorial		•	•	•	ı
T _{OSDO_TTQ}	T input to TQ out	0.73	0.81	0.97	ns

^{1.} T_{OSDCK_T2} and T_{OSCKD_T2} are reported as T_{OSDCK_T}/T_{OSCKD_T} in the timing report.

Input/Output Delay Switching Characteristics

Table 60: Input/Output Delay Switching Characteristics

Combal	Description		Speed Grad	е	Unita
Symbol	Description	-3	-2	-1	Units
IDELAYCTRL					
T _{DLYCCO_RDY}	Reset to ready for IDELAYCTRL	3.22	3.22	3.22	μs
F _{IDELAYCTRL_REF}	Attribute REFCLK frequency = 200.0 ⁽¹⁾	200	200	200	MHz
	Attribute REFCLK frequency = 300.0 ⁽¹⁾	300	300	N/A	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum reset pulse width	52.00	52.00	52.00	ns
IDELAY/ODELAY					
T _{IDELAYRESOLUTION}	IDELAY/ODELAY chain delay resolution	1/	(32 x 2 x F _{RE}	EF)	ps
	Pattern dependent period jitter in delay chain for clock pattern. (2)	0	0	0	ps per tap
T _{IDELAYPAT_JIT} and T _{ODELAYPAT_JIT}	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽³⁾	±5	±5	±5	ps per tap
	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽⁴⁾	±9	±9	±9	ps per tap
T _{IDELAY_CLK_MAX} /T _{ODELAY_CLK_MAX}	Maximum frequency of CLK input to IDELAY/ODELAY	800	800	710	MHz
T _{IDCCK_CE} / T _{IDCKC_CE}	CE pin setup/hold with respect to C for IDELAY	0.11/0.10	0.14/0.12	0.18/0.14	ns
T _{ODCCK_CE} / T _{ODCKC_CE}	CE pin setup/hold with respect to C for ODELAY	0.14/0.03	0.16/0.04	0.19/0.05	ns
T _{IDCCK_INC} / T _{IDCKC_INC}	INC pin setup/hold with respect to C for IDELAY	0.10/0.14	0.12/0.16	0.14/0.20	ns
T _{ODCCK_INC} / T _{ODCKC_INC}	INC pin setup/hold with respect to C for ODELAY	0.10/0.07	0.12/0.08	0.13/0.09	ns
T _{IDCCK_RST} / T _{IDCKC_RST}	RST pin setup/hold with respect to C for IDELAY	0.13/0.08	0.14/0.10	0.16/0.12	ns
T _{ODCCK_RST} / T _{ODCKC_RST}	RST pin setup/hold with respect to C for ODELAY	0.16/0.04	0.19/0.06	0.24/0.08	ns
T _{IDDO_IDATAIN}	Propagation delay through IDELAY	Note 5	Note 5	Note 5	ps
T _{ODDO_ODATAIN}	Propagation delay through ODELAY	Note 5	Note 5	Note 5	ps

- 1. Average tap delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH_PERFORMANCE mode is set to TRUE.
- 4. When HIGH_PERFORMANCE mode is set to FALSE.
- 5. Delay depends on IDELAY/ODELAY tap setting. See the timing report for actual values.

Table 61: IO_FIFO Switching Characteristics

Symbol	Description		Speed Grade	peed Grade	
	Description	-3	-2	-1	Units
IO_FIFO Clock to Out Delays					
T _{OFFCKO_DO}	RDCLK to Q outputs	0.51	0.56	0.63	ns
T _{CKO_FLAGS}	Clock to IO_FIFO flags	0.59	0.62	0.81	ns
Setup/Hold					
T _{CCK_D} /T _{CKC_D}	D inputs to WRCLK	0.43/-0.01	0.47/0.01	0.53/-0.01	ns
T _{IFFCCK_WREN} /T _{IFFCKC_WREN}	WREN to WRCLK	0.39/-0.01	0.43/-0.01	0.50/-0.01	ns
T _{OFFCCK_RDEN} /T _{OFFCKC_RDEN}	RDEN to RDCLK	0.49/0.01	0.53/0.02	0.61/0.02	ns
Minimum Pulse Width					
T _{PWH_IO_FIFO}	RESET, RDCLK, WRCLK	0.81	0.92	1.08	ns
T _{PWL_IO_FIFO}	RESET, RDCLK, WRCLK	0.81	0.92	1.08	ns
Maximum Frequency		•			
F _{MAX}	RDCLK and WRCLK	533.05	470.37	400.00	MHz

CLB Switching Characteristics

Table 62: CLB Switching Characteristics

O. mah al	Decembrican	S	Speed Grade			
Symbol	Description	-3	-2	-1	Units	
Combinatorial Delays						
T _{ILO}	An – Dn LUT address to A	0.05	0.05	0.06	ns, Max	
T _{ILO_2}	An – Dn LUT address to AMUX/CMUX	0.15	0.16	0.19	ns, Max	
T _{ILO_3}	An – Dn LUT address to BMUX_A	0.24	0.25	0.30	ns, Max	
T _{ITO}	An – Dn inputs to A – D Q outputs	0.58	0.61	0.74	ns, Max	
T _{AXA}	AX inputs to AMUX output	0.38	0.40	0.49	ns, Max	
T _{AXB}	AX inputs to BMUX output	0.40	0.42	0.52	ns, Max	
T _{AXC}	AX inputs to CMUX output	0.39	0.41	0.50	ns, Max	
T _{AXD}	AX inputs to DMUX output	0.43	0.44	0.52	ns, Max	
T _{BXB}	BX inputs to BMUX output	0.31	0.33	0.40	ns, Max	
T _{BXD}	BX inputs to DMUX output	0.38	0.39	0.47	ns, Max	
T _{CXC}	CX inputs to CMUX output	0.27	0.28	0.34	ns, Max	
T _{CXD}	CX inputs to DMUX output	0.33	0.34	0.41	ns, Max	
T _{DXD}	DX inputs to DMUX output	0.32	0.33	0.40	ns, Max	
Sequential Delays			1			
T _{CKO}	Clock to AQ – DQ outputs	0.26	0.27	0.32	ns, Max	
T _{SHCKO}	Clock to AMUX – DMUX outputs	0.32	0.32	0.39	ns, Max	
Setup and Hold Times	of CLB Flip-Flops Before/After Clock CLK		l			
T _{AS} /T _{AH}	A _N – D _N input to CLK on A – D flip-flops	0.01/0.12	0.02/0.13	0.03/0.18	ns, Min	
T _{DICK} /T _{CKDI}	A _X – D _X input to CLK on A – D flip-flops	0.04/0.14	0.04/0.14	0.05/0.20	ns, Min	
	$A_X - D_X$ input through MUXs and/or carry logic to CLK on $A - D$ flip-flops	0.36/0.10	0.37/0.11	0.46/0.16	ns, Min	
T _{CECK_CLB} /T _{CKCE_CLB}	CE input to CLK on A – D flip-flops	0.19/0.05	0.20/0.05	0.25/0.05	ns, Min	
T _{SRCK} /T _{CKSR}	SR input to CLK on A - D flip-flops	0.30/0.05	0.31/0.07	0.37/0.09	ns, Min	
Set/Reset		·				
T _{SRMIN}	SR input minimum pulse width	0.52	0.78	1.04	ns, Min	
T _{RQ}	Delay from SR input to AQ – DQ flip-flops	0.38	0.38	0.46	ns, Max	
T _{CEO}	Delay from CE input to AQ – DQ flip-flops	0.34	0.35	0.43	ns, Max	
F _{TOG}	Toggle frequency (for export control)	1818	1818	1818	MHz	

CLB Distributed RAM Switching Characteristics (SLICEM Only)

Table 63: CLB Distributed RAM Switching Characteristics

Combal	Description	9	Unito		
Symbol	Description	-3	-2	-1	Units
Sequential Delays					
T _{SHCKO} ⁽¹⁾	Clock to A – B outputs	0.68	0.70	0.85	ns, Max
T _{SHCKO_1}	Clock to AMUX – BMUX outputs	0.91	0.95	1.15	ns, Max
Setup and Hold Times B	efore/After Clock CLK				
T _{DS_LRAM} /T _{DH_LRAM}	A – D inputs to CLK	0.45/0.23	0.45/0.24	0.54/0.27	ns, Min
T _{AS_LRAM} /T _{AH_LRAM}	Address An inputs to clock	0.13/0.50	0.14/0.50	0.17/0.58	ns, Min
	Address An inputs through MUXs and/or carry logic to clock	0.40/0.16	0.42/0.17	0.52/0.23	ns, Min
T _{WS_LRAM} /T _{WH_LRAM}	WE input to clock	0.29/0.09	0.30/0.09	0.36/0.09	ns, Min
T _{CECK_LRAM} /T _{CKCE_LRAM}	CE input to CLK	0.29/0.09	0.30/0.09	0.37/0.09	ns, Min
Clock CLK					
T _{MPW_LRAM}	Minimum pulse width	0.68	0.77	0.91	ns, Min
T _{MCP}	Minimum clock period	1.35	1.54	1.82	ns, Min

Notes:

CLB Shift Register Switching Characteristics (SLICEM Only)

Table 64: CLB Shift Register Switching Characteristics

Symbol	Description	5	Speed Grade	е	Units
Symbol	Description	-3	-2	-1	Units
Sequential Delays					
T _{REG}	Clock to A – D outputs	0.96	0.98	1.20	ns, Max
T _{REG_MUX}	Clock to AMUX – DMUX output	1.19	1.23	1.50	ns, Max
T _{REG_M31}	Clock to DMUX output via M31 output	0.89	0.91	1.10	ns, Max
Setup and Hold Times Before/	After Clock CLK				
T _{WS_SHFREG} /T _{WH_SHFREG}	WE input	0.26/0.09	0.27/0.09	0.33/0.09	ns, Min
T _{CECK_SHFREG} /T _{CKCE_SHFREG}	CE input to CLK	0.27/0.09	0.28/0.09	0.33/0.09	ns, Min
T _{DS_SHFREG} /T _{DH_SHFREG}	A – D inputs to CLK	0.28/0.26	0.28/0.26	0.33/0.30	ns, Min
Clock CLK					
T _{MPW_SHFREG}	Minimum pulse width	0.55	0.65	0.78	ns, Min

^{1.} T_{SHCKO} also represents the CLK to XMUX output. Refer to the timing report for the CLK to XMUX path.

Block RAM and FIFO Switching Characteristics

Table 65: Block RAM and FIFO Switching Characteristics

Symbol	Description	5	Speed Grad	е	Units
Symbol	Description	-3	-2	-1	Oille
Block RAM and FIFO Clock-to-O	ut Delays				
T _{RCKO_DO} and T _{RCKO_DO_REG} ⁽¹⁾	Clock CLK to DOUT output (without output register) ⁽²⁾⁽³⁾	1.57	1.80	2.08	ns, Max
	Clock CLK to DOUT output (with output register) ⁽⁴⁾⁽⁵⁾	0.54	0.63	0.75	ns, Max
T _{RCKO_DO_ECC} and T _{RCKO_DO_ECC_REG}	Clock CLK to DOUT output with ECC (without output register) ⁽²⁾⁽³⁾	2.35	2.58	3.26	ns, Max
	Clock CLK to DOUT output with ECC (with output register) ⁽⁴⁾⁽⁵⁾	0.62	0.69	0.80	ns, Max
T _{RCKO_DO_CASCOUT} and T _{RCKO_DO_CASCOUT_REG}	Clock CLK to DOUT output with Cascade (without output register) ⁽²⁾	2.21	2.45	2.80	ns, Max
110.10_50_0/100001_1120	Clock CLK to DOUT output with Cascade (with output register) ⁽⁴⁾	0.98	1.08	1.24	ns, Max
T _{RCKO_FLAGS}	Clock CLK to FIFO flags outputs ⁽⁶⁾	0.65	0.74	0.89	ns, Max
T _{RCKO_POINTERS}	Clock CLK to FIFO pointers outputs ⁽⁷⁾	0.79	0.87	0.98	ns, Max
T _{RCKO_PARITY_ECC}	Clock CLK to ECCPARITY in ECC encode only mode	0.66	0.72	0.80	ns, Max
T _{RCKO_SDBIT_ECC} and	Clock CLK to BITERR (without output register)	2.17	2.38	3.01	ns, Max
T _{RCKO_SDBIT_ECC_REG}	Clock CLK to BITERR (with output register)	0.57	0.65	0.76	ns, Max
TRCKO_RDADDR_ECC and TRCKO_RDADDR_ECC_REG	Clock CLK to RDADDR output with ECC (without output register)	0.64	0.74	0.90	ns, Max
	Clock CLK to RDADDR output with ECC (with output register)	0.71	0.79	0.92	ns, Max
Setup and Hold Times Before/Aft	ter Clock CLK				
T _{RCCK_ADDRA} /T _{RCKC_ADDRA}	ADDR inputs ⁽⁸⁾	0.38/0.27	0.42/0.28	0.48/0.31	ns, Min
T _{RDCK_DI_WF_NC} / T _{RCKD_DI_WF_NC}	Data input setup/hold time when block RAM is configured in WRITE_FIRST or NO_CHANGE mode ⁽⁹⁾	0.49/0.51	0.55/0.53	0.63/0.57	ns, Min
T _{RDCK_DI_RF} /T _{RCKD_DI_RF}	Data input setup/hold time when block RAM is configured in READ_FIRST mode ⁽⁹⁾	0.17/0.25	0.19/0.29	0.21/0.35	ns, Min
T _{RDCK_DI_ECC} /T _{RCKD_DI_ECC}	DIN inputs with block RAM ECC in standard mode ⁽⁹⁾	0.42/0.37	0.47/0.39	0.53/0.43	ns, Min
T _{RDCK_DI_ECCW} /T _{RCKD_DI_ECCW}	DIN inputs with block RAM ECC encode only ⁽⁹⁾	0.79/0.37	0.87/0.39	0.99/0.43	ns, Min
T _{RDCK_DI_ECC_FIFO} / T _{RCKD_DI_ECC_FIFO}	DIN inputs with FIFO ECC in standard mode ⁽⁹⁾	0.89/0.47	0.98/0.50	1.12/0.54	ns, Min
T _{RCCK_INJECTBITERR} / T _{RCKC_INJECTBITERR}	Inject single/double bit error in ECC mode	0.49/0.30	0.55/0.31	0.63/0.34	ns, Min
T _{RCCK_EN} /T _{RCKC_EN}	Block RAM Enable (EN) input	0.30/0.17	0.33/0.18	0.38/0.20	ns, Min
T _{RCCK_REGCE} /T _{RCKC_REGCE}	CE input of output register	0.21/0.13	0.25/0.13	0.31/0.14	ns, Min
T _{RCCK_RSTREG} /T _{RCKC_RSTREG}	Synchronous RSTREG input	0.25/0.06	0.27/0.06	0.29/0.06	ns, Min
T _{RCCK_RSTRAM} /T _{RCKC_RSTRAM}	Synchronous RSTRAM input	0.27/0.35	0.29/0.37	0.31/0.39	ns, Min
T _{RCCK_WEA} /T _{RCKC_WEA}	Write Enable (WE) input (Block RAM only)	0.38/0.15	0.41/0.16	0.46/0.17	ns, Min
T _{RCCK_WREN} /T _{RCKC_WREN}	WREN FIFO inputs	0.39/0.25	0.39/0.30	0.40/0.37	ns, Min
T _{RCCK_RDEN} /T _{RCKC_RDEN}	RDEN FIFO inputs	0.36/0.26	0.36/0.30	0.37/0.37	ns, Min

Table 65: Block RAM and FIFO Switching Characteristics (Cont'd)

Cumbal	Description	5	Units		
Symbol	Description	-3	-2	-1	Units
Reset Delays			•		
T _{RCO_FLAGS}	Reset RST to FIFO flags/pointers ⁽¹⁰⁾	0.76	0.83	0.93	ns, Max
T _{RREC_RST} /T _{RREM_RST}	FIFO reset recovery and removal timing ⁽¹¹⁾	1.59/-0.68	1.76/-0.68	2.01/-0.68	ns, Max
Maximum Frequency					
F _{MAX_BRAM_WF_NC}	Block RAM (Write first and No change modes) When not in SDP RF mode	601.32	543.77	458.09	MHz
F _{MAX_BRAM_RF_PERFORMANCE}	Block RAM (Read first, Performance mode) When in SDP RF mode but no address overlap between port A and port B	601.32	543.77	458.09	MHz
F _{MAX_BRAM_RF_DELAYED_WRITE}	Block RAM (Read first, Delayed_write mode) When in SDP RF mode and there is possibility of overlap between port A and port B addresses	528.26	477.33	400.80	MHz
F _{MAX_CAS_WF_NC}	Block RAM Cascade (Write first, No change mode) When cascade but not in RF mode	551.27	493.93	408.00	MHz
F _{MAX_CAS_RF_PERFORMANCE}	Block RAM Cascade (Read first, Performance mode) When in cascade with RF mode and no possibility of address overlap/one port is disabled	551.27	493.93	408.00	MHz
F _{MAX_CAS_RF_DELAYED_WRITE}	When in cascade RF mode and there is a possibility of address overlap between port A and port B	478.24	427.35	350.88	MHz
F _{MAX_FIFO}	FIFO in all modes without ECC	601.32	543.77	458.09	MHz
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration	484.26	430.85	351.12	MHz

- 1. The timing report shows all of these parameters as $T_{\mbox{RCKO_DO}}$.
- 2. T_{RCKO DOB} includes T_{RCKO DOW}, T_{RCKO DOPB}, and T_{RCKO DOPW} as well as the B port equivalent timing parameters.
- 3. These parameters also apply to synchronous FIFO with DO_REG = 0.
- 4. T_{BCKO DO} includes T_{BCKO DOP} as well as the B port equivalent timing parameters.
- 5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
- $\textbf{6.} \quad \textbf{T}_{RCKO_FLAGS} \text{ includes the following parameters: } \textbf{T}_{RCKO_AEMPTY}, \textbf{T}_{RCKO_AFULL}, \textbf{T}_{RCKO_EMPTY}, \textbf{T}_{RCKO_FULL}, \textbf{T}_{RCKO_RDERR}, \textbf{T}_{RCKO_WRERR}. \\ \textbf{1}_{RCKO_AFULL}, \textbf{1}_{RCKO_AFULL}, \textbf{1}_{RCKO_EMPTY}, \textbf{2}_{RCKO_EMPTY}, \textbf{3}_{RCKO_EMPTY}, \textbf{3}_{RCKO_EMPTY}, \textbf{4}_{RCKO_EMPTY}, \textbf{4}_{RCKO_EMPTY}, \textbf{4}_{RCKO_EMPTY}, \textbf{5}_{RCKO_EMPTY}, \textbf{5}_{RCKO_EMPTY},$
- 7. T_{RCKO_POINTERS} includes both T_{RCKO_RDCOUNT} and T_{RCKO_WRCOUNT}.
- 8. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 9. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 10. T_{RCO_FLAGS} includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 11. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).

DSP48E1 Switching Characteristics

Table 66: DSP48E1 Switching Characteristics

Symbol	Description	S	Speed Grad	е	Units	
Symbol	Description	-3	-2	-1	Units	
Setup and Hold Times of Data/Control Pins to t	he Input Register Clock					
T _{DSPDCK_A_AREG} / T _{DSPCKD_A_AREG}	A input to A register CLK	0.24/0.12	0.27/0.14	0.31/0.16	ns	
T _{DSPDCK_B_BREG} /T _{DSPCKD_B_BREG}	B input to B register CLK	0.28/0.13	0.32/0.14	0.39/0.15	ns	
T _{DSPDCK_C_CREG} /T _{DSPCKD_C_CREG}	C input to C register CLK	0.15/0.15	0.17/0.17	0.20/0.20	ns	
T _{DSPDCK_D_DREG} /T _{DSPCKD_D_DREG}	D input to D register CLK	0.21/0.19	0.27/0.22	0.35/0.26	ns	
T _{DSPDCK_ACIN_AREG} /T _{DSPCKD_ACIN_AREG}	ACIN input to A register CLK	0.21/0.12	0.24/0.14	0.27/0.16	ns	
T _{DSPDCK_BCIN_BREG} /T _{DSPCKD_BCIN_BREG}	BCIN input to B register CLK	0.22/0.13	0.25/0.14	0.30/0.15	ns	
Setup and Hold Times of Data Pins to the Pipel	ine Register Clock			<u>L</u>		
TDSPDCK_{A, B}_MREG_MULT/ TDSPCKD_B_MREG_MULT	{A, B,} input to M register CLK using multiplier	2.04/-0.01	2.34/-0.01	2.79/-0.01	ns	
T _{DSPDCK_{A, B}_ADREG} /T _{DSPCKD_D_ADREG}	{A, D} input to AD register CLK	1.09/-0.02	1.25/-0.02	1.49/-0.02	ns	
Setup and Hold Times of Data/Control Pins to t	he Output Register Clock					
TDSPDCK_{A, B}_PREG_MULT/ TDSPCKD_{A, B}_PREG_MULT	{A, B,} input to P register CLK using multiplier	3.41/–0.24	3.90/-0.24	4.64/-0.24	ns	
T _{DSPDCK_D_PREG_MULT} / T _{DSPCKD_D_PREG_MULT}	D input to P register CLK using multiplier	3.33/–0.62	3.81/–0.62	4.53/–0.62	ns	
T _{DSPDCK_{A, B}} _PREG/ T _{DSPCKD_{A, B}} _PREG	A or B input to P register CLK not using multiplier	1.47/–0.24	1.68/-0.24	2.00/-0.24	ns	
T _{DSPDCK_C_PREG} / T _{DSPCKD_C_PREG}	C input to P register CLK not using multiplier	1.30/-0.22	1.49/-0.22	1.78/–0.22	ns	
T _{DSPDCK_PCIN_PREG} / T _{DSPCKD_PCIN_PREG}	PCIN input to P register CLK	1.12/-0.13	1.28/-0.13	1.52/-0.13	ns	
Setup and Hold Times of the CE Pins		ll .	ll .	1	l	
TDSPDCK_{CEA;CEB}_{AREG;BREG}/ TDSPCKD_{CEA;CEB}_{AREG;BREG}	{CEA; CEB} input to {A; B} register CLK	0.30/0.05	0.36/0.06	0.44/0.09	ns	
T _{DSPDCK_CEC_CREG} / T _{DSPCKD_CEC_CREG}	CEC input to C register CLK	0.24/0.08	0.29/0.09	0.36/0.11	ns	
T _{DSPDCK_CED_DREG} / T _{DSPCKD_CED_DREG}	CED input to D register CLK	0.31/-0.02	0.36/-0.02	0.44/-0.02	ns	
T _{DSPDCK_CEM_MREG} / T _{DSPCKD_CEM_MREG}	CEM input to M register CLK	0.26/0.15	0.29/0.17	0.33/0.20	ns	
T _{DSPDCK_CEP_PREG} / T _{DSPCKD_CEP_PREG}	CEP input to P register CLK	0.31/0.01	0.36/0.01	0.45/0.01	ns	
Setup and Hold Times of the RST Pins				<u> </u>		
TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/ TDSPCKD_{RSTA; RSTB}_{AREG; BREG}	{RSTA, RSTB} input to {A, B} register CLK	0.34/0.10	0.39/0.11	0.47/0.13	ns	
TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG	RSTC input to C register CLK	0.06/0.22	0.07/0.24	0.08/0.26	ns	
T _{DSPDCK_RSTD_DREG} / T _{DSPCKD_RSTD_DREG}	RSTD input to D register CLK	0.37/0.06	0.42/0.06	0.50/0.07	ns	
T _{DSPDCK_RSTM_MREG} / T _{DSPCKD_RSTM_MREG}	RSTM input to M register CLK	0.18/0.18	0.20/0.21	0.23/0.24	ns	
T _{DSPDCK_RSTP_PREG} /T _{DSPCKD_RSTP_PREG}	RSTP input to P register CLK	0.24/0.01	0.26/0.01	0.30/0.01	ns	
Combinatorial Delays from Input Pins to Output	t Pins	П.	1	L	I	
T _{DSPDO_A_CARRYOUT_MULT}	A input to CARRYOUT output using multiplier	3.21	3.69	4.39	ns	
T _{DSPDO_D_P_MULT}	D input to P output using multiplier	3.15	3.61	4.30	ns	
		1	i .	i .		
T _{DSPDO_A_P}	A input to P output not using multiplier	1.30	1.48	1.76	ns	

Table 66: DSP48E1 Switching Characteristics (Cont'd)

Symbol	Description	Speed Grade			Units
	Description	-3	-2	-1	Ullits
Combinatorial Delays from Input Pins to C	ascading Output Pins				
T _{DSPDO_{A; B}_{ACOUT; BCOUT}}	{A, B} input to {ACOUT, BCOUT} output	0.47	0.53	0.63	ns
T _{DSPDO_{A, B}_CARRYCASCOUT_MULT}	{A, B} input to CARRYCASCOUT output using multiplier	3.44	3.94	4.69	ns
T _{DSPDO_D_CARRYCASCOUT_MULT}	D input to CARRYCASCOUT output using multiplier	3.36	3.85	4.58	ns
T _{DSPDO_{A, B}_CARRYCASCOUT}	{A, B} input to CARRYCASCOUT output not using multiplier	1.50	1.72	2.04	ns
T _{DSPDO_C_CARRYCASCOUT}	C input to CARRYCASCOUT output	1.34	1.53	1.83	ns
Combinatorial Delays from Cascading Inpu	ut Pins to All Output Pins		11		
T _{DSPDO_ACIN_P_MULT}	ACIN input to P output using multiplier	3.09	3.55	4.24	ns
T _{DSPDO_ACIN_P}	ACIN input to P output not using multiplier	1.16	1.33	1.59	ns
T _{DSPDO_ACIN_ACOUT}	ACIN input to ACOUT output	0.32	0.37	0.45	ns
T _{DSPDO_} ACIN_CARRYCASCOUT_MULT	ACIN input to CARRYCASCOUT output using multiplier	3.30	3.79	4.52	ns
T _{DSPDO_} ACIN_CARRYCASCOUT	ACIN input to CARRYCASCOUT output not using multiplier	1.37	1.57	1.87	ns
T _{DSPDO_PCIN_P}	PCIN input to P output	0.94	1.08	1.29	ns
T _{DSPDO_PCIN_CARRYCASCOUT}	PCIN input to CARRYCASCOUT output	1.15	1.32	1.57	ns
Clock to Outs from Output Register Clock	to Output Pins		11		
T _{DSPCKO_P_PREG}	CLK PREG to P output	0.33	0.35	0.39	ns
T _{DSPCKO_} CARRYCASCOUT_PREG	CLK PREG to CARRYCASCOUT output	0.44	0.50	0.59	ns
Clock to Outs from Pipeline Register Clock	to Output Pins				
T _{DSPCKO_P_MREG}	CLK MREG to P output	1.42	1.64	1.96	ns
T _{DSPCKO_} CARRYCASCOUT_MREG	CLK MREG to CARRYCASCOUT output	1.63	1.87	2.24	ns
T _{DSPCKO_P_ADREG_MULT}	CLK ADREG to P output using multiplier	2.30	2.63	3.13	ns
T _{DSPCKO_} CARRYCASCOUT_ADREG_MULT	CLK ADREG to CARRYCASCOUT output using multiplier	2.51	2.87	3.41	ns
Clock to Outs from Input Register Clock to	Output Pins		1	11	
T _{DSPCKO_P_AREG_MULT}	CLK AREG to P output using multiplier	3.34	3.83	4.55	ns
T _{DSPCKO_P_BREG}	CLK BREG to P output not using multiplier	1.39	1.59	1.88	ns
T _{DSPCKO_P_CREG}	CLK CREG to P output not using multiplier	1.43	1.64	1.95	ns
T _{DSPCKO_P_DREG_MULT}	CLK DREG to P output using multiplier	3.32	3.80	4.51	ns

Table 66: DSP48E1 Switching Characteristics (Cont'd)

Combal	Description	9	Units		
Symbol		-3	-2	-1	Units
Clock to Outs from Input Register Clock to C	ascading Output Pins			-	
T _{DSPCKO_{ACOUT; BCOUT}_{AREG; BREG}}	CLK (ACOUT, BCOUT) to {A,B} register output	0.55	0.62	0.74	ns
T _{DSPCKO_CARRYCASCOUT_{AREG, BREG}_MULT}	CLK (AREG, BREG) to CARRYCASCOUT output using multiplier	3.55	4.06	4.84	ns
T _{DSPCKO_CARRYCASCOUT_BREG}	CLK BREG to CARRYCASCOUT output not using multiplier	1.60	1.82	2.16	ns
T _{DSPCKO_CARRYCASCOUT_} DREG_MULT	CLK DREG to CARRYCASCOUT output using multiplier	3.52	4.03	4.79	ns
T _{DSPCKO_} CARRYCASCOUT_ CREG	CLK CREG to CARRYCASCOUT output	1.64	1.88	2.23	ns
Maximum Frequency					
F _{MAX}	With all registers used	741.84	650.20	547.95	MHz
F _{MAX_PATDET}	With pattern detector	627.35	549.75	463.61	MHz
F _{MAX_MULT_NOMREG}	Two register multiply without MREG	412.20	360.75	303.77	MHz
F _{MAX_MULT_NOMREG_PATDET}	Two register multiply without MREG with pattern detect	374.25	327.65	276.01	MHz
F _{MAX_PREADD_MULT_NOADREG}	Without ADREG	468.82	408.66	342.70	MHz
F _{MAX_PREADD_MULT_NOADREG_PATDET}	Without ADREG with pattern detect	468.82	408.66	342.70	MHz
F _{MAX_NOPIPELINEREG}	Without pipeline registers (MREG, ADREG)	306.84	267.81	225.02	MHz
F _{MAX_NOPIPELINEREG_PATDET}	Without pipeline registers (MREG, ADREG) with pattern detect	285.23	249.13	209.38	MHz

Clock Buffers and Networks

Table 67: Global Clock Switching Characteristics (Including BUFGCTRL)

Symbol	Description	S	Units		
		-3	-2	-1	Ullits
T _{BCCCK_CE} /T _{BCCKC_CE} (1)	CE pins setup/hold	0.12/0.30	0.14/0.38	0.26/0.38	ns
T _{BCCCK_S} /T _{BCCKC_S} ⁽¹⁾	S pins setup/hold	0.12/0.30	0.14/0.38	0.26/0.38	ns
T _{BCCKO_O} ⁽²⁾	BUFGCTRL delay from I0/I1 to O	0.08	0.10	0.12	ns
Maximum Frequency					
F _{MAX_BUFG}	Global clock tree (BUFG)	741.00	710.00	625.00	MHz

Notes:

Table 68: Input/Output Clock Switching Characteristics (BUFIO)

Symbol	Description	S	Units		
		-3	-2	-1	Ullits
T _{BIOCKO_O}	Clock to out delay from I to O	1.04	1.14	1.32	ns
Maximum Frequency					
F _{MAX_BUFIO}	I/O clock tree (BUFIO)	800.00	800.00	710.00	MHz

Table 69: Regional Clock Buffer Switching Characteristics (BUFR)

Symbol	Description	S	Units		
	Description	-3	-2	-1	Ullits
T _{BRCKO_O}	Clock to out delay from I to O	0.60	0.65	0.77	ns
T _{BRCKO_O_BYP}	Clock to out delay from I to O with Divide Bypass attribute set	0.30	0.32	0.38	ns
T _{BRDO_O}	Propagation delay from CLR to O	0.71	0.75	0.96	ns
Maximum Frequency					
F _{MAX_BUFR} ⁽¹⁾	Regional clock tree (BUFR)	600.00	540.00	450.00	MHz

Notes:

Table 70: Horizontal Clock Buffer Switching Characteristics (BUFH)

Symbol	Decariation	S	Speed Grad	le	Unito
	Description	-3	-2	-1	Units
T _{BHCKO_O}	BUFH delay from I to O	0.10	0.11	0.13	ns
T _{BHCCK_CE} /T _{BHCKC_CE}	CE pin setup and hold	0.20/0.16	0.23/0.20	0.38/0.21	ns
Maximum Frequency					
F _{MAX_BUFH}	Horizontal clock buffer (BUFH)	741.00	710.00	625.00	MHz

T_{BCCCK_CE} and T_{BCCKC_CE} must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These
parameters do not apply to the BUFGMUX primitive that assures glitch-free operation. The other global clock setup and hold times are
optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between
clocks.

T_{BGCKO O} (BUFG delay from I0 to O) values are the same as T_{BCCKO O} values.

^{1.} The maximum input frequency to the BUFR and BUFMR is the BUFIO F_{MAX} frequency.

Table 71: Duty-Cycle Distortion and Clock-Tree Skew

Symbol	Description	Device Speed	peed Grad	e	Units	
Symbol	Description	Device	-3	-2	-1	Ullits
T _{DCD_CLK}	Global clock tree duty-cycle distortion ⁽¹⁾	All	0.20	0.20	0.20	ns
T _{CKSKEW}	Global clock tree skew ⁽²⁾	XC7Z030	0.29	0.36	0.37	ns
		XC7Z045	0.43	0.54	0.57	ns
		XC7Z100	N/A	0.54	0.56	ns
T _{DCD_BUFIO}	I/O clock tree duty-cycle distortion	All	0.12	0.12	0.12	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region	All	0.02	0.02	0.02	ns
T _{DCD_BUFR}	Regional clock tree duty-cycle distortion	All	0.15	0.15	0.15	ns

- These parameters represent the worst-case duty-cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty-cycle distortion that might be caused by asymmetrical rise/fall times.
- 2. The T_{CKSKEW}value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx Timing Analyzer tools to evaluate application specific clock skew.

MMCM Switching Characteristics

Table 72: MMCM Specification

Combal	Description	S	peed Grade		l luita	
Symbol	Description	-3	-2	-1	Units	
MMCM_F _{INMAX}	Maximum input clock frequency	1066.00	933.00	800.00	MHz	
MMCM_F _{INMIN}	Minimum input clock frequency	10.00	10.00	10.00	MHz	
MMCM_F _{INJITTER}	Maximum input clock period jitter	< 20% 0	< 20% of clock input period or 1 ns Max			
MMCM_F _{INDUTY}	Allowable input duty cycle: 10—49 MHz	25.00	25.00	25.00	%	
	Allowable input duty cycle: 50—199 MHz	30.00	30.00	30.00	%	
	Allowable input duty cycle: 200—399 MHz	35.00	35.00	35.00	%	
	Allowable input duty cycle: 400—499 MHz	40.00	40.00	40.00	%	
	Allowable input duty cycle: >500 MHz	45.00	45.00	45.00	%	
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase-shift clock frequency	0.01	0.01	0.01	MHz	
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase-shift clock frequency	550.00	500.00	450.00	MHz	
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency	600.00	600.00	600.00	MHz	
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency	1600.00	1440.00	1200.00	MHz	
MMCM_F _{BANDWIDTH}	Low MMCM bandwidth at typical(1)	1.00	1.00	1.00	MHz	
	High MMCM bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	MHz	
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs(2)	0.12	0.12	0.12	ns	
MMCM_T _{OUTJITTER}	MMCM output jitter		No	te 3		
MMCM_T _{OUTDUTY}	MMCM output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	ns	
MMCM_T _{LOCKMAX}	MMCM maximum lock time	100.00	100.00	100.00	μs	
MMCM_F _{OUTMAX}	MMCM maximum output frequency	1066.00	933.00	800.00	MHz	
MMCM_F _{OUTMIN}	MMCM minimum output frequency ⁽⁵⁾⁽⁶⁾	4.69	4.69	4.69	MHz	
MMCM_T _{EXTFDVAR}	External clock feedback variation	< 20% 0	< 20% of clock input period or 1 ns Max			
MMCM_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	ns	
MMCM_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	MHz	

Table 72: MMCM Specification (Cont'd)

Cumhal	Description	S	Speed Grade	Heita	
Symbol	Description	-3	-2	-1	ns ns ns, Min
MMCM_F _{PFDMIN}	Minimum frequency at the phase frequency detector	10.00	10.00	10.00	MHz
MMCM_T _{FBDELAY}	Maximum delay in the feedback path	3 r	ycle		
MMCM Switching Cha	racteristics Setup and Hold	-			
T _{MMCMDCK_PSEN} / T _{MMCMCKD_PSEN}	Setup and hold of phase-shift enable	1.04/0.00	1.04/0.00	1.04/0.00	ns
T _{MMCMCK_PSINCDEC} / T _{MMCMCKD_PSINCDEC}	Setup and hold of phase-shift increment/decrement	1.04/0.00	1.04/0.00	1.04/0.00	ns
T _{MMCMCKO_PSDONE}	Phase shift clock-to-out of PSDONE	0.59	0.68	0.81	ns
Dynamic Reconfigurat	tion Port (DRP) for MMCM Before and After DCLK				
T _{MMCMDCK_DADDR} / T _{MMCMCKD_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{MMCMDCK_DI} / T _{MMCMCKD_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{MMCMDCK_DEN} / T _{MMCMCKD_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	ns, Min
T _{MMCMCK_DWE} / T _{MMCMCKD_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{MMCMCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	MHz, Max

- 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any MMCM outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.
- 4. Includes global clock buffer.
- 5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.
- 6. When CLKOUT4_CASCADE = TRUE, MMCM_F_{OUTMIN} is 0.036 MHz.

PLL Switching Characteristics

Table 73: PLL Specification

Completel	Description	S	peed Grad	le	l luite
Symbol	Description	-3	-2	-1	Units
PLL_F _{INMAX}	Maximum input clock frequency	1066.00	933.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 20% 0	f clock inpu	t period or	1 ns Max
PLL_F _{INDUTY}	Allowable input duty cycle: 19—49 MHz	25.00	25.00	25.00	%
	Allowable input duty cycle: 50—199 MHz	30.00	30.00	30.00	%
	Allowable input duty cycle: 200—399 MHz	35.00	35.00	35.00	%
	Allowable input duty cycle: 400—499 MHz	40.00	40.00	40.00	%
	Allowable input duty cycle: >500 MHz	45.00	45.00	45.00	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	MHz
PLL_F _{BANDWIDTH}	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter ⁽³⁾		Not	te 1	1
PLL_T _{OUTDUTY}	PLL output clock duty-cycle precision ⁽⁴⁾	0.20	0.20	0.20	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100.00	100.00	100.00	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	1066.00	933.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 20% 0	f clock inpu	t period or	1 ns Max
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path	3 n	s Max or or	ne CLKIN c	/cle
Dynamic Reconfigurat	tion Port (DRP) for PLL Before and After DCLK				
T _{PLLCCK_DADDR} / T _{PLLCKC_DADDR}	Setup and hold of D address	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLCCK_DI} / T _{PLLCKC_DI}	Setup and hold of D input	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLCCK_DEN} / T _{PLLCKC_DEN}	Setup and hold of D enable	1.76/0.00	1.97/0.00	2.29/0.00	ns, Min
T _{PLLCCK_DWE} / T _{PLLCKC_DWE}	Setup and hold of D write enable	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	MHz, Max

- 1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.
- 2. The static offset is measured between any PLL outputs with identical phase.
- 3. Values for this parameter are available in the Clocking Wizard. See http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm.
- 4. Includes global clock buffer.
- 5. Calculated as F_{VCO}/128 assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

Table 74: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

Symbol	Description	Device	S	peed Grad	Units		
	Description	Device	-3	-2	-1	UIIIIS	
SSTL15 Clock-Capa	SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flops, Fast Slew Rate, without MMCM/PLL.						
T _{ICKOF}	Clock-capable clock input and OUTFF without	XC7Z030	5.32	5.85	6.55	ns	
	MMCM/PLL (near clock region)	XC7Z045	5.27	5.78	6.48	ns	
		XC7Z100	N/A	5.91	6.62	ns	

Notes:

1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 75: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description	Speed Grade Device		е	Units	
	Description	Device	-3	-2		Units
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Output Flip-Flop	s, Fast Slew Rate,	without MM	CM/PLL.		
T _{ICKOFFAR}	Clock-capable clock input and OUTFF without	XC7Z030	5.32	5.85	6.55	ns
	MMCM/PLL (far clock region)	XC7Z045	5.88	6.46	7.23	ns
		XC7Z100	N/A	6.59	7.37	ns

Notes:

This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 76: Clock-Capable Clock Input to Output Delay With MMCM

Symbol	Decemention	Speed Grade -3 -2 -1	S	Units		
	Description		-1			
SSTL15 Clock-Cap	lock-Capable Clock Input to Output Delay using Output Flip-Flops, Fast Slew Rate, with MMCM.					
T _{ICKOFMMCMCC}	Clock-capable clock input and OUTFF with MMCM	XC7Z030	0.92	0.92	0.92	ns
		XC7Z045	0.97	0.97	0.97	ns
		XC7Z100	N/A	0.96	0.96	ns

Notes:

- This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
 accessible IOB and CLB flip-flops are clocked by the global clock net.
- MMCM output jitter is already included in the timing calculation.

Table 77: Clock-Capable Clock Input to Output Delay With PLL

Symbol	Description	Device	S	peed Grad	le	Units
	Description	Device	-3	-2	0.81	Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-Flop	s, Fast Slew Rate,	with PLL.			
T _{ICKOFPLLCC}	Clock-capable clock input and OUTFF with PLL	XC7Z030	0.81	0.81	0.81	ns
		XC7Z045	0.86	0.86	0.86	ns
		XC7Z100	N/A	0.85	0.85	ns

- This table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all
 accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. PLL output jitter is already included in the timing calculation.

Table 78: Pin-to-Pin, Clock-to-Out using BUFIO

Symbol	Description	5	Speed Grad	е	Units
	Description	-3	-2	-1	Units
T _{ICKOFCS}	Clock-to-out of I/O clock for HR I/O banks	4.93	5.52	6.20	ns
	Clock-to-out of I/O clock for HP I/O banks	4.85	5.44	6.11	ns

Device Pin-to-Pin Input Parameter Guidelines

Table 79: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks

Symbol	Decemention	Speed Grade	е	Units		
Symbol	Description	Device	-3	-3 -2 -1	Ullits	
Input Setup and Hold	d Time Relative to Global Clock Input Signal for S	Device -3 -2 -1 Unignal for SSTL15 Standard.(1) by) XC7Z030 3.04/-0.34 3.16/-0.34 3.40/-0.34 no XC7Z045 3.50/-0.47 3.67/-0.47 3.97/-0.47 no xero constraints and constraints are constraints.				
T _{PSFD} / T _{PHFD}	Full delay (legacy delay or default delay)	XC7Z030	3.04/-0.34	3.16/-0.34	3.40/-0.34	ns
	global clock input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O	XC7Z045	3.50/-0.47	3.67/-0.47	3.97/-0.47	ns
	banks	XC7Z100	-3 d. ⁽¹⁾ 3.04/-0.34	3.81/-0.52	4.13/-0.52	ns

Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch.

Table 80: Clock-Capable Clock Input Setup and Hold With MMCM

Symbol	Description	Speed Grade	•	Units		
Symbol	Description	Device	-3	-2	-1 3 2.95/–0.23	Ullits
Input Setup and Hold	d Time Relative to Global Clock Input Signal for S	STL15 Standard. ⁽¹)			
T _{PSMMCMCC} /	No delay clock-capable clock input and IFF(2)	XC7Z030	2.41/-0.23	2.68/-0.23	2.95/-0.23	ns
I PHMMCMCC	with MMCM	Device -2 -1 TL15 Standard.(1) XC7Z030 2.41/-0.23 2.68/-0.23 2.95/-0.23 XC7Z045 2.73/-0.09 3.00/-0.09 3.32/-0.09	ns			
		XC7Z100	N/A	3.00/-0.10	3.32/-0.10	ns

Notes:

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the
 global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global
 clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 81: Clock-Capable Clock Input Setup and Hold With PLL

Symbol	Description	Device	•	Units				
			-3	-2	-1	Ullits		
Input Setup and Hold Time Relative to Clock-Capable Clock Input Signal for SSTL15 Standard.(1)								
T _{PSPLLCC} /	No delay clock-capable clock input and IFF(2) with	XC7Z030	2.71/-0.34	3.02/-0.34	3.29/-0.34	ns		
T _{PHPLLCC}	PLL	XC7Z045	2.91/-0.20	3.24/-0.20	3.53/-0.20	ns		
			N/A	3.24/-0.21	3.53/-0.21	ns		

- Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. IFF = Input flip-flop or latch
- Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 82: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

Symbol	Description	•	Units		
Symbol	Description		-2	-1	Onits
T _{PSCS} /T _{PHCS}	Setup/hold of I/O clock for HR I/O banks	-0.36/1.36	-0.36/1.50	-0.36/1.70	ns
	Setup/hold of I/O clock for HP I/O banks	-0.34/1.39	-0.34/1.53	-0.34/1.73	ns

Table 83: Sample Window

Symbol	Description	S	Units		
	Description		-2	-1	Oilles
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.51	0.56	0.61	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO ⁽²⁾	0.30	0.35	0.40	ns

Notes:

- This parameter indicates the total sampling error of the PL DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 MMCM phase shift resolution

 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the PL DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for PL clock transmitter and receiver data-valid windows.

Table 84: Package Skew

Symbol	Description	Device	Package	Value	Units
T _{PKGSKEW}	Package skew ⁽¹⁾	XC7Z030	SBG485		ps
			FBG484	113	ps
		XC7Z045 XC7Z100	FBG676	113	ps
			FFG676	136	ps
			FBG676	159	ps
			FFG676	158	ps
			FFG900	191	ps
			FFG900	161	ps
			FFG1156	165	ps

- These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.
- Package delay information is available for these device/package combinations. This information can be used to deskew the package.

GTX Transceiver Specifications

GTX Transceiver DC Input and Output Levels

Table 85 summarizes the DC specifications of the GTX transceivers in Zynq-7000 devices. Consult the *7 Series FPGAs GTX/GTH Transceivers User Guide* (UG476) for further details.

Table 85: GTX Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	_	_	1000	mV
V _{CMOUTDC}	DC common mode output voltage.	Equation based	,	V _{MGTAVTT} – DV _{PPOUT} /4		
R _{OUT}	Differential output resistance			100	_	Ω
T _{OSKEW}	Transmitter output pair (TXP and TXN) intra-pair skew			2	12	ps
	Differential peak-to-peak input voltage (external AC coupled)	>10.3125 Gb/s	150	_	1250	mV
DV _{PPIN}		6.6 Gb/s to 10.3125 Gb/s	150	_	1250	mV
		≤ 6.6 Gb/s	150	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled V _{MGTAVTT} = 1.2V	-200	_	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	DC coupled V _{MGTAVTT} = 1.2V	_	2/3 V _{MGTAVTT}	_	mV
R _{IN}	Differential input resistance			100	_	Ω
C _{EXT}	Recommended external AC coupling capacitor ⁽²⁾			100	_	nF

Notes:

- 1. The output swing and preemphasis levels are programmable using the attributes discussed in the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) and can result in values lower than reported in this table.
- 2. Other values can be used as appropriate to conform to specific protocols and standards.

Figure 17: Single-Ended Peak-to-Peak Voltage

Figure 18: Differential Peak-to-Peak Voltage

Table 86 summarizes the DC specifications of the clock input of the GTX transceiver. Consult the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) for further details.

Table 86: GTX Transceiver Clock DC Input Level Specification

Symbol	DC Parameter		Тур	Max	Units
V_{IDIFF}	Differential peak-to-peak input voltage	250	_	2000	mV
R _{IN}	Differential input resistance	_	100	_	Ω
C _{EXT}	Required external AC coupling capacitor	_	100	-	nF

GTX Transceiver Switching Characteristics

Consult the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) for further information.

Table 87: GTX Transceiver Performance

					Speed	Grade			
Cumbal	Description	Output	-3		-2		-1 ⁽¹⁾		Units
Symbol	Description	Divider	Package Type						Units
			FF	FB	FF	FB	FF	FB	-
F _{GTXMAX} ⁽²⁾	Maximum GTX transceiver data	12.5	6.6	10.3125	6.6	8.0	6.6	Gb/s	
F _{GTXMIN} ⁽²⁾	Minimum GTX transceiver data	rate	0.500	0.500	0.500	0.500	0.500	0.500	Gb/s
		1			3.2-	-6.6			Gb/s
		2		1.6–3.3					
F _{GTXCRANGE}	CPLL line rate range	4			0.8–	1.65			Gb/s
		8			0.5–0).825			Gb/s
		16			N	/A		Gb/s	
	QPLL line rate range 1	1	5.93-8.0	5.93-6.6	5.93-8.0	5.93-6.6	5.93-8.0	5.93-6.6	Gb/s
		2	2.965	5–4.0	2.965-4.0		2.965–4.0		Gb/s
F _{GTXQRANGE1}		4	1.482	5–2.0	1.4825–2.0		1.4825–2.0		Gb/s
		8	0.7412	25–1.0	0.74125-1.0		0.74125-1.0		Gb/s
		16	N/	/A	N/A		N/A		Gb/s
		1	9.8– 12.5	N/A	9.8– 10.3125	N/A	N	/A	Gb/s
		2	4.9-	6.25	4.9–5.	15625	N	/A	Gb/s
F _{GTXQRANGE2}	QPLL line rate range 2 ⁽³⁾	4	2.45-	3.125	2.45–2.	578125	N	/A	Gb/s
		8	1.225-	1.5625	1.225-1.	2890625	N	/A	Gb/s
		16	0.6125-	0.78125	0.6125-0.	64453125	N	/A	Gb/s
F _{GCPLLRANGE}	GTX transceiver CPLL frequenc	y range	1.6-	1.6–3.3 1.6–3.3 1.		1.6-	-3.3	GHz	
F _{GQPLLRANGE1}	GTX transceiver QPLL frequence	y range 1	5.93	-8.0	5.93-8.0		5.93-8.0		GHz
F _{GQPLLRANGE2}	GTX transceiver QPLL frequence	y range 2	9.8-	12.5	9.8–10.3125		N/A		GHz

- 1. The -1 speed grade requires a 4-byte internal data width for operation above 5.0 Gb/s.
- 2. Data rates between 8.0 Gb/s and 9.8 Gb/s are not available.
- 3. For QPLL line rate range 2, the maximum line rate with the divider N set to 66 is 10.3125Gb/s.

Table 88: GTX Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description	5	Units		
	Description		-2	-1	Ullits
F _{GTXDRPCLK}	GTXDRPCLK maximum frequency		175.01	156.25	MHz

Table 89: GTX Transceiver Reference Clock Switching Characteristics

Cumbal	Description	Conditions	Al	Unito		
Symbol	Description	Conditions	Min	Тур	Max	- Units
F	Reference clock frequency range	-3 speed grade	60	_	700	MHz
F _{GCLK}		All other speed grades	60	_	670	MHz
T _{RCLK}	Reference clock rise time	20% – 80%	_	200	_	ps
T _{FCLK}	Reference clock fall time	80% – 20%	_	200	_	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	50	60	%

Figure 19: Reference Clock Timing Parameters

Table 90: GTX Transceiver PLL/Lock Time Adaptation

Symbol	Description	O a maliki a ma	Α	l leite		
	Description	Conditions	Min	Тур	Max	Units
T _{LOCK}	Initial PLL lock		-	_	1	ms
_	Clock recovery phase acquisition and adaptation time for decision feedback equalizer (DFE).	After the PLL is locked to the reference clock, this is the time it takes to lock the clock data	-	50,000	37 x10 ⁶	UI
DLOCK	Clock recovery phase acquisition and adaptation time for low-power mode (LPM) when the DFE is disabled.	recovery (CDR) to the data present at the input.	-	50,000	2.3 x10 ⁶	UI

Table 91: GTX Transceiver User Clock Switching Characteristics (1)(2)

Cumbal	Description	Data Wic	Ith Conditions	Spe	Units		
Symbol		Internal Logic	Interconnect Logic	-3	-2	-1	Units
F _{TXOUT}	TXOUTCLK maximum frequency	TXOUTCLK maximum frequency				312.500	MHz
F _{RXOUT}	RXOUTCLK maximum frequency			412.500	412.500	312.500	MHz
F	TXUSRCLK maximum frequency	16-bit	16-bit and 32-bit	412.500	412.500	312.500	MHz
F _{TXIN}	TAUSHOLK maximum frequency	32-bit	32-bit	390.625	322.266	250.000	MHz
Е	RXUSRCLK maximum frequency	16-bit	16-bit and 32-bit	412.500	412.500	312.500	MHz
F _{RXIN}		32-bit	32-bit	390.625	322.266	250.000	MHz
		16-bit	16-bit	412.500	412.500	312.500	MHz
F _{TXIN2}	TXUSRCLK2 maximum frequency	16-bit and 32-bit	32-bit	390.625	322.266	250.000	MHz
		64-bit	64-bit	195.313	161.133	125.000	MHz
	RXUSRCLK2 maximum frequency	16-bit	16-bit	412.500	412.500	312.500	MHz
F _{RXIN2}		16-bit and 32-bit	32-bit	390.625	322.266	250.000	MHz
		64-bit	64-bit	195.313	161.133	125.000	MHz

- 1. Clocking must be implemented as described in the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476).
- 2. These frequencies are not supported for all possible transceiver configurations.
- 3. For speed grades -3 and -2, a 16-bit data path can only be used for speeds less than 6.6 Gb/s.
- 4. For speed grade -1, a 16-bit data path can only be used for speeds less than 5.0 Gb/s.

Table 92: GTX Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
F _{GTXTX}	Serial data rate range		0.500	_	F _{GTXMAX}	Gb/s
T _{RTX}	TX rise time	20%–80%	_	40	_	ps
T _{FTX}	TX fall time	80%–20%	_	40	_	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		_	_	500	ps
V _{TXOOBVDPP}	Electrical idle amplitude		_	_	15	mV
T _{TXOOBTRANSITION}	Electrical idle transition time		_	-	140	ns
TJ _{12.5}	Total jitter ⁽²⁾⁽⁴⁾	12.5 Gb/s	-	-	0.28	UI
DJ _{12.5}	Deterministic jitter ⁽²⁾⁽⁴⁾	12.5 Gb/S	-	-	0.17	UI
TJ _{11.18}	Total jitter ⁽²⁾⁽⁴⁾	11.18 Gb/s	_	-	0.28	UI
DJ _{11.18}	Deterministic jitter ⁽²⁾⁽⁴⁾		-	-	0.17	UI
TJ _{10.3125}	Total jitter ⁽²⁾⁽⁴⁾	10.0105.0b/a	_	-	0.28	UI
DJ _{10.3125}	Deterministic jitter ⁽²⁾⁽⁴⁾	10.3125 Gb/s	_	-	0.17	UI
TJ _{9.953}	Total jitter ⁽²⁾⁽⁴⁾	0.050.05/6	_	-	0.28	UI
DJ _{9.953}	Deterministic jitter ⁽²⁾⁽⁴⁾	9.953 Gb/s	_	-	0.17	UI
TJ _{9.8}	Total jitter ⁽²⁾⁽⁴⁾	0.0.06/5	_	-	0.28	UI
DJ _{9.8}	Deterministic jitter ⁽²⁾⁽⁴⁾	9.8 Gb/s	_	-	0.17	UI
TJ _{8.0}	Total jitter ⁽²⁾⁽⁴⁾	0.0 Ch/c	_	-	0.33	UI
DJ _{8.0}	Deterministic jitter ⁽²⁾⁽⁴⁾	8.0 Gb/s	-	_	0.17	UI
TJ _{6.6_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	6.6.Ch/c	-	_	0.28	UI
DJ _{6.6_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	6.6 Gb/s	_	_	0.17	UI

Table 92: GTX Transceiver Transmitter Switching Characteristics (Cont'd)

Symbol	Description	Condition	Min	Тур	Max	Units
TJ _{6.6_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	6.6 Gb/s	_	_	0.30	UI
DJ _{6.6_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 Gb/s	_	_	0.15	UI
TJ _{5.0}	Total jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	_	_	0.33	UI
DJ _{5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	-	_	0.15	UI
TJ _{4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25 Gb/s	_	_	0.33	UI
DJ _{4.25}	Deterministic jitter(3)(4)	4.25 Gb/S	-	_	0.14	UI
TJ _{3.75}	Total jitter ⁽³⁾⁽⁴⁾	2.75 Ch/o	_	_	0.34	UI
DJ _{3.75}	Deterministic jitter(3)(4)	3.75 Gb/s	-	_	0.16	UI
TJ _{3.2}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁵⁾	_	_	0.2	UI
DJ _{3.2}	Deterministic jitter(3)(4)	3.20 GD/S(9)	-	_	0.1	UI
TJ _{3.2L}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁶⁾	_	_	0.35	UI
DJ _{3.2L}	Deterministic jitter(3)(4)	3.20 GD/S(V)	-	_	0.16	UI
TJ _{2.5}	Total jitter ⁽³⁾⁽⁴⁾	2.5 Gb/s ⁽⁷⁾	_	_	0.20	UI
DJ _{2.5}	Deterministic jitter(3)(4)	2.5 GD/S(*/	-	_	0.08	UI
TJ _{1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Gb/s ⁽⁸⁾	_	_	0.15	UI
DJ _{1.25}	Deterministic jitter(3)(4)	1.25 GD/S(0)	_	-	0.06	UI
TJ ₅₀₀	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/o	_	_	0.1	UI
DJ ₅₀₀	Deterministic jitter ⁽³⁾⁽⁴⁾	500 Mb/s	_	-	0.03	UI

- 1. Using same REFCLK input with TX phase alignment enabled for up to 12 consecutive transmitters (three fully populated GTX Quads).
- 2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 4. All jitter values are based on a bit-error ratio of 1e⁻¹².
- 5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 6. CPLL frequency at 1.6 GHz and TXOUT_DIV = 1.
- 7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 8. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.

Table 93: GTX Transceiver Receiver Switching Characteristics

Symbol	Desc	Description		Тур	Max	Units
F _{GTXRX}	Serial data rate	Serial data rate		_	F _{GTXMAX}	Gb/s
T _{RXELECIDLE}	Time for RXELECIDLE to respon	Time for RXELECIDLE to respond to loss or restoration of data		10	_	ns
RX _{OOBVDPP}	OOB detect threshold peak-to-pe	eak	60	_	150	mV
RX _{SST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated @ 33 KHz	-5000	-	0	ppm
RX _{RL}	Run length (CID)		_	_	512	UI
	Data/REFCLK PPM offset	Bit rates ≤ 6.6 Gb/s	-1250	_	1250	ppm
RX _{PPMTOL}	tolerance	Bit rates > 6.6 Gb/s and ≤ 8.0 Gb/s	-700	_	700	ppm
		Bit rates > 8.0 Gb/s	-200	_	200	ppm
SJ Jitter Tolerance(2)					
JT_SJ _{12.5}	Sinusoidal jitter (QPLL) ⁽³⁾	12.5 Gb/s	0.3	_	_	UI
JT_SJ _{11.18}	Sinusoidal jitter (QPLL) ⁽³⁾	11.18 Gb/s	0.3	_	-	UI
JT_SJ _{10.32}	Sinusoidal jitter (QPLL) ⁽³⁾	10.32 Gb/s	0.3	_	_	UI
JT_SJ _{9.95}	Sinusoidal jitter (QPLL) ⁽³⁾	9.95 Gb/s	0.3	_	_	UI
JT_SJ _{9.8}	Sinusoidal jitter (QPLL) ⁽³⁾	9.8 Gb/s	0.3	_	-	UI
JT_SJ _{8.0}	Sinusoidal jitter (QPLL) ⁽³⁾	8.0 Gb/s	0.44	_	_	UI
JT_SJ _{6.6_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	6.6 Gb/s	0.48	_	_	UI
JT_SJ _{6.6_CPLL}	Sinusoidal jitter (CPLL)(3)	6.6 Gb/s	0.44	_	_	UI
JT_SJ _{5.0}	Sinusoidal jitter (CPLL) ⁽³⁾	5.0 Gb/s	0.44	_	_	UI
JT_SJ _{4.25}	Sinusoidal jitter (CPLL) ⁽³⁾	4.25 Gb/s	0.44	_	_	UI
JT_SJ _{3.75}	Sinusoidal jitter (CPLL)(3)	3.75 Gb/s	0.44	_	_	UI
JT_SJ _{3.2}	Sinusoidal jitter (CPLL) ⁽³⁾	3.2 Gb/s ⁽⁴⁾	0.45	_	_	UI
JT_SJ _{3.2L}	Sinusoidal jitter (CPLL)(3)	3.2 Gb/s ⁽⁵⁾	0.45	_	-	UI
JT_SJ _{2.5}	Sinusoidal jitter (CPLL)(3)	2.5 Gb/s ⁽⁶⁾	0.5	_	-	UI
JT_SJ _{1.25}	Sinusoidal jitter (CPLL) ⁽³⁾	1.25 Gb/s ⁽⁷⁾	0.5	_	_	UI
JT_SJ ₅₀₀	Sinusoidal jitter (CPLL)(3)	500 Mb/s	0.4	_	-	UI
SJ Jitter Tolerance	with Stressed Eye ⁽²⁾					
IT TICE	Total iittar with atracand aug (8)	3.2 Gb/s	0.70	-	_	UI
JT_TJSE _{3.2}	Total jitter with stressed eye ⁽⁸⁾	6.6 Gb/s	0.70	-	_	UI
IT CICE	Sinusoidal jitter with stressed	3.2 Gb/s	0.1	-	_	UI
JT_SJSE _{3.2}	eye ⁽⁸⁾	6.6 Gb/s	0.1	_	_	UI

- 1. Using RXOUT_DIV = 1, 2, and 4.
- All jitter values are based on a bit error ratio of 1e⁻¹².
- 3. The frequency of the injected sinusoidal jitter is 10 MHz.
- 4. CPLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. CPLL frequency at 1.6 GHz and RXOUT_DIV = 1.
- 6. CPLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 7. CPLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 8. Composite jitter with RX and LPM or DFE mode.

GTX Transceiver Protocol Jitter Characteristics

For Table 94 through Table 99, the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) contains recommended settings for optimal usage of protocol specific characteristics.

Table 94: Gigabit Ethernet Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units					
Gigabit Ethernet Transmitter Jitter Generation									
Total transmitter jitter (T_TJ) 1250		-	0.24	UI					
Gigabit Ethernet Receiver High Frequency Jitter Tolerance									
Total receiver jitter tolerance	1250	0.749	_	UI					

Table 95: XAUI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units					
XAUI Transmitter Jitter Generation									
Total transmitter jitter (T_TJ)	nsmitter jitter (T_TJ) 3125 -		0.35	UI					
XAUI Receiver High Frequency Jitter Tolerance									
Total receiver jitter tolerance	3125	0.65	_	UI					

Table 96: PCI Express Protocol Characteristics(1)

Standard	Description		Line Rate (Mb/s)	Min	Max	Units
PCI Express Transmitter Ji	tter Generation					
PCI Express Gen 1	Total transmitter jitter		2500	-	0.25	UI
PCI Express Gen 2	Total transmitter jitter		5000	_	0.25	UI
PCI Express Gen 3 ⁽²⁾	Total transmitter jitter unce	orrelated	9000	_	31.25	ps
POI Express Gen 3(4)	Deterministic transmitter jitter uncorrelated		8000	_	12	ps
PCI Express Receiver High	Frequency Jitter Tolerar	nce				
PCI Express Gen 1	Total receiver jitter toleran	ice	2500	0.65	_	UI
PCI Express Gen 2 ⁽³⁾	Receiver inherent timing e	Receiver inherent timing error		0.40	_	UI
POI Express Gen 20%	Receiver inherent determine	Receiver inherent deterministic timing error		0.30	_	UI
		0.03 MHz-1.0 MHz	8000	1.00	_	UI
PCI Express Gen 3 ⁽²⁾	Receiver sinusoidal jitter tolerance	1.0 MHz-10 MHz		Note 4	_	UI
	10 MHz-100 MH			0.10	_	UI

- 1. Tested per card electromechanical (CEM) methodology.
- 2. PCI-SIG 3.0 certification and compliance test boards are currently not available.
- 3. Using common REFCLK.
- 4. Between 1 MHz and 10 MHz the minimum sinusoidal jitter roll-off with a slope of 20 dB/decade.

Table 97: CEI-6G and CEI-11G Protocol Characteristics

Description	Line Rate (Mb/s)	Interface	Min	Max	Units
CEI-6G Transmitter Jitter Gene	eration				
T-1-1 :: (1)	4976–6375	CEI-6G-SR	_	0.3	UI
Total transmitter jitter ⁽¹⁾	4970-0375	CEI-6G-LR	_	0.3	UI
CEI-6G Receiver High Frequen	cy Jitter Tolerance		-		
Total receiver jitter tolerance ⁽¹⁾	4076 6075	CEI-6G-SR	0.6	-	UI
Total receiver jitter tolerance	4976–6375	CEI-6G-LR	0.95	_	UI
CEI-11G Transmitter Jitter Ger	eration				
Total transmitter jitter(2)	0050 44400	CEI-11G-SR	_	0.3	UI
Total transmitter jitter	9950–11100	CEI-11G-LR/MR	_	0.3	UI
CEI-11G Receiver High Freque	ncy Jitter Tolerance				
		CEI-11G-SR	0.65	_	UI
Total receiver jitter tolerance ⁽²⁾	9950–11100	CEI-11G-MR	0.65	_	UI
		CEI-11G-LR	0.825	_	UI

- 1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.
- 2. Tested at line rate of 9950 Mb/s using 155.46875 MHz reference clock and 11100 Mb/s using 173.4375 MHz reference clock.

Table 98: SFP+ Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units
SFP+ Transmitter Jitter Generation				
	9830.40 ⁽¹⁾			
	9953.00			
Total transmitter jitter	10312.50	_	0.28	UI
	10518.75			
	11100.00			
SFP+ Receiver Frequency Jitter Tolerance		1	l .	1
	9830.40 ⁽¹⁾			
	9953.00			
Total receiver jitter tolerance	10312.50	0.7	_	UI
	10518.75			
	11100.00			

Notes:

1. Line rated used for CPRI over SFP+ applications.

Table 99: CPRI Protocol Characteristics

Description	Line Rate (Mb/s)	Min	Max	Units					
CPRI Transmitter Jitter Generation									
	614.4	_	0.35	UI					
	1228.8	-	0.35	UI					
	2457.6	_	0.35	UI					
Total transmitter jitter	3072.0	_	0.35	UI					
	4915.2	-	0.3	UI					
	6144.0	-	0.3	UI					
	9830.4	_	Note 1	UI					
CPRI Receiver Frequency Jitter Tolerance									
	614.4	0.65	_	UI					
	1228.8	0.65	-	UI					
	2457.6	0.65	-	UI					
Total receiver jitter tolerance	3072.0	0.65	-	UI					
	4915.2	0.95	_	UI					
	6144.0	0.95	-	UI					
	9830.4	Note 1	-	UI					

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 100: Maximum Performance for PCI Express Designs

Symbol	Decembries		Units		
	Description	-3	-2	-1	Units
F _{PIPECLK}	Pipe clock maximum frequency	250	250	250	MHz
F _{USERCLK}	User clock maximum frequency	500	500	250	MHz
F _{USERCLK2}	User clock 2 maximum frequency	250	250	250	MHz
F _{DRPCLK}	DRP clock maximum frequency	250	250	250	MHz

^{1.} Tested per SFP+ specification, see Table 98.

XADC Specifications

Table 101: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
$V_{CCADC} = 1.8V \pm 5\%, V_{REFP} = 1$.25V, V _{REFN}	= 0V, ADCCLK = 26 MHz, $T_j = -40^{\circ}$ C to 100°C,	Typical va	lues at 7	_j =+40°C	
ADC Accuracy ⁽¹⁾					-	
Resolution			12	_	_	Bits
Integral Nonlinearity ⁽²⁾	INL		_	-	±2	LSBs
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	LSBs
Offset Error	1	Unipolar operation	_	_	±8	LSBs
		Bipolar operation	_	_	±4	LSBs
Gain Error			_	_	±0.5	%
Offset Matching			_	_	4	LSBs
Gain Matching			_	_	0.3	%
Sample Rate			0.1	_	1	MS/s
Signal to Noise Ratio ⁽²⁾	SNR	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	60	_	_	dB
RMS Code Noise		External 1.25V reference	_	_	2	LSBs
		On-chip reference	_	3	_	LSBs
Total Harmonic Distortion(2)	THD	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	70	_	_	dB
ADC Accuracy at Extended To	emperatures	(-55°C to 125°C)				
Resolution			10	_	_	Bits
Integral Nonlinearity ⁽²⁾	INL		_	_	±1	LSB
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	_	±1	(at 10 bits)
Analog Inputs ⁽³⁾		-1				
ADC Input Ranges		Unipolar operation	0	_	1	V
		Bipolar operation	-0.5	_	+0.5	V
		Unipolar common mode range (FS input)	0	_	+0.5	V
		Bipolar common mode range (FS input)	+0.5	_	+0.6	V
Maximum External Channel Inpu	ut Ranges	Adjacent analog channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	-	V _{CCADC}	V
Auxiliary Channel Full Resolution Bandwidth	FRBW		250	-	_	KHz
On-Chip Sensors	1		1		1	
Temperature Sensor Error		$T_j = -40^{\circ}\text{C to } 100^{\circ}\text{C}.$	_	_	±4	°C
		$T_j = -55^{\circ}\text{C to } +125^{\circ}\text{C}$	_	_	±6	°C
Supply Sensor Error		Measurement range of V_{CCAUX} 1.8V ±5% $T_j = -40^{\circ}\text{C}$ to +100°C	_	-	±1	%
		Measurement range of V_{CCAUX} 1.8V ±5% $T_j = -55$ °C to +125°C	_	-	±2	%
Conversion Rate ⁽⁴⁾			1		ч	
Conversion Time - Continuous	t _{CONV}	Number of ADCCLK cycles	26	_	32	Cycles
Conversion Time - Event	t _{CONV}	Number of CLK cycles	_	_	21	Cycles
DRP Clock Frequency	DCLK	DRP clock frequency	8	_	250	MHz
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	_	26	MHz

Table 101: XADC Specifications (Cont'd)

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
DCLK Duty Cycle			40	-	60	%
XADC Reference ⁽⁵⁾						
External Reference	V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
On-Chip Reference		Ground V_{REFP} pin to AGND, $T_j = -40$ °C to 100°C	1.2375	1.25	1.2625	V

Notes:

- 1. Offset and gain errors are removed by enabling the XADC automatic gain calibration feature. The values are specified for when this feature is enabled.
- Only specified for the bitstream option XADCEnhancedLinearity = ON.
- See the ADC chapter in the 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (UG480) for a detailed description.
- 4. See the Timing chapter in the 7 Series FPGAs and Zynq-7000 All Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter User Guide (UG480) for a detailed description.
- 5. Any variation in the reference voltage from the nominal V_{REFP} = 1.25V and V_{REFN} = 0V will result in a deviation from the ideal transfer function. This also impacts the accuracy of the internal sensor measurements (i.e., temperature and power supply). However, for external ratiometric type applications allowing reference to vary by ±4% is permitted. On-chip reference variation is ±1%.

Configuration Switching Characteristics

Table 102: Configuration Switching Characteristics

O- make al	Description		Speed Grade			
Symbol	Description	-3	-2	-1	Units	
Power-up Timing Ch	naracteristics					
T _{POR} ⁽¹⁾	Power-on reset (50 ms ramp rate time)	10/50	10/50	10/50	ms, Min/Max	
	Power-on reset (1 ms ramp rate time) with the power-on reset override function (POR_OVERRIDE) disabled.	10/35	10/35	10/35	ms, Min/Max	
	Power-on reset (1 ms ramp rate time) with the power-on reset override function (POR_OVERRIDE) enabled.	2/8	2/8	2/8	ms, Min/Max	
Boundary-Scan Por	Timing Specifications			1	1	
T _{TAPTCK} /T _{TCKTAP}	TMS and TDI setup/hold	3.00/2.00	3.00/2.00	3.00/2.00	ns, Min	
T _{TCKTDO}	TCK falling edge to TDO output	7.00	7.00	7.00	ns, Max	
F _{TCK}	TCK frequency	66.00	66.00	66.00	MHz, Max	
Internal Configuration	on Access Port				•	
F _{ICAPCK}	Internal configuration access port (ICAPE2)	100.00	100.00	100.00	MHz, Max	
USRCCLK Output		·			·	
T _{IUSRCCK}	STARTUPE2 USRCCLKO input to CCLK output	0.50/6.00	0.50/6.70	0.50/7.50	ns, Min/Max	

Notes:

Measurement is made when the PS is already powered and stable, before power cycling the PL.

eFUSE Programming Conditions

Table 103 lists the programming conditions specifically for eFUSE. For more information, see the *7 Series FPGA Configuration User Guide* (<u>UG470</u>).

Table 103: eFUSE Programming Conditions(1)

Symbol	Description	Min	Тур	Max	Units
I _{PLFS}	PL V _{CCAUX} supply current	-	_	115	mA
I _{PSFS}	PS V _{CCPAUX} supply current	-	_	115	mA
t j	Temperature range	15	_	125	°C

Notes:

Revision History

The following table shows the revision history for this document:

Date	Version	Description		
08/23/2012	1.0	Initial Xilinx release.		
08/31/2012	1.1	Updated T _i and added Note 3 to Table 2. Updated R _{IN_TERM} in Table 3. Updated standards in Table 9. Revised PS Performance Characteristics section introduction. Updated values in Table 18. Added Note 3 to Table 34. Added notes to Table 36. Revised F _{MSPICLK} in Table 41.		
03/14/2013	1.2	Updated the AC Switching Characteristics based upon ISE tools 14.5 and Vivado tools 2013.1, both at v1.06 for the -3, -2, and -1 speed specifications throughout the document. Updated Table 16 and Table 17 for production release of the XC7Z045 in the -2 and -1 speed designations. Added the XC7Z100 device throughout document.		
		Updated description in Introduction. Added Note 2 to Table 2. Updated V _{PIN} in Table 1 and Table 2. Clarified PS specifications for C _{PIN} (2) and removed Note 3 on I _{RPD} in Table 3. Updated Table 6. Updated Table 9, including removal of LVTTL, notes 2 and 3, and adding SSTL135. Added Table 10.		
		Many enhancements and additions to the figures and tables in the PS Switching Characteristics section including adding notes with test conditions where applicable. Replaced or updated Table 18 through Table 20. Removed AXI Interconnects section.		
		Updated Note 1 in Table 69. Updated Note 1 and Note 2 in Table 84. In Table 87, increased -1 speed grade (FF package) F _{GTXMAX} value from 6.6 Gb/s to 8.0 Gb/s.		
		Updated the rows on offset error and gain error and matching in Table 101. Added Internal Configuration Access Port section to Table 102.		
03/27/2013	1.3	In Table 7, changed I _{CCINTMIN} value for the XC7Z030. Updated Table 16 and Table 17 for production release of the XC7Z030 in the -2 and -1 speed designations. In Table 51, updated the table title, LPDDR2 values, and removed Note 3. In Table 52, updated the table title and removed Note 4.		
04/24/2013	1.4	Updated Table 16 and Table 17 for production release of the XC7Z030 and XC7Z045 in the -3 speed designations. Removed the <i>PS Power-on Reset</i> section. Updated the <i>PS</i> —PL Power Sequencing section. Clarified the load conditions in Table 34 by adding new data.		
		In Table 1, revised V _{IN} (I/O input voltage) to match values in Table 4 and Table 5, and combined Note 4 with old Note 5 and then added new Note 6. Revised V _{IN} description and added Note 9, and updated Note 3 in Table 2. Updated first 3 rows in Table 4 and Table 5. Revised PCI33_3 voltage minimum in Table 11 to match values in Table 1, Table 4, and Table 5. Added Note 1 to Table 14 and Table 15. Added Note 2 to Table 19. Throughout the data sheet (Table 63, Table 64, and Table 79) removed the obvious note "A Zero "0" Hold Time listing indicates no hold time or a negative hold time." Updated and clarified USRCLK data in Table 91.		

^{1.} The Zynq-7000 device must not be configured during eFUSE programming.

Date	Version	Description
06/26/2013	1.5	Updated the AC Switching Characteristics based upon ISE tools 14.6 and Vivado tools 2013.2, both at v1.07 for the -3, -2, and -1 speed specifications throughout the document. Updated Table 16 and Table 17 for production release of the XC7Z100 in the -1 and -2 speed designations. In Table 1, updated I _{DCIN} section for cases when floating, at V _{MGTAVTT} , or GND and I _{DCOUT} for cases
		when floating and at V _{MGTAVTT} . Added Note 6 to Table 2. Added XC7Z100 values to Table 6 and Table 7. Increased the frequency of -2 speed grade for CPU clock performance (6:2:1) in Table 18. Updated the F _{DDR3L_MAX} value in Table 19. Moved Table 20 and added F _{AXI_MAX} . Removed Note 1 from Table 21. Updated the minimum T _{DQVALID} values in Table 25 and Table 26. Added Table 27. In Table 38, corrected the F _{SDSCLK} maximum value and F _{SDIDCLK} units typographical errors. Updated the description of F _{GTXRX} in Table 93.
09/12/2013	1.6	Added the SBG485 package to Table 84. Added USRCCLK Output section and clarified values for T _{POR} in Table 102. Added I _{PSFS} to Table 103. Updated Notice of Disclaimer.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.