g. Knapsack 0/1

Given N items each item mith a meight & a value, find man value which can be obtained by picking items such that the total meight of all items (= k

- 1) Each item can be picked at mani once.
- 2) We can't take a part of the item.

2m: N=4, K=50 N: L 2 3 4 W: 20 10 30 40 V: 100 60 120 150 V: 5 6 4 3.75Fiden L:
Rick the items based on their value (Greedy) $4^{th} 4 2^{th} \Rightarrow 150 + 60$ $\Rightarrow 210 \times$

Idea 2: - Vick the items based on N/W ratio (quedy) 2^{wd}, 1st => 60 + 100 = 160. ×

-> GREEDY is NOT morking

aus: Pick 3nd + pick 1st: 120+100 = 220.

Brute Force

Generate all possibilities and theck the case mith meight <= k & man Value.

TC:
$$O(2^N)$$
 { Backtracking $SO(3^N)$
8c: $O(N)$

L) Stack size

Constrainze

$$L = \langle N \langle = 10^3 \rangle$$

$$L = \langle K \langle = 10^3 \rangle$$

N=X K= 15

N: 1 2 3 4 5 6 7

W[]: 4 L 5 4 3 7 4

V[]: 3 2 8 3 7 10 5

Kp[1-7,15]: Man volue which can be obtained using items I to 7 mith meight (=15

dp[i,j] = Man dp[i-1,j], dp[i-1,j-w[i]]+v[i]

[j-w[i]>=0

[j>=w[i]

Dp Engression

Dp table: - aus: dp[N][K] * int dp[N+1][K+1] = {-13

int kp (int dpl][], int i, int j, V[], Wl]) K if(i==0)veturn o; if (dp[i][j] == -1) { a = Kp(dp, i-1, j, v, w) // leave ith if () >= W[i]) & IPick ith item a = man(a, kp(dp, i-1, j-w[i], N, W)+V[i])

return aptistis;

TC: O(N*K)

SC: O(N*K) + Stack space.

dp[i,j] = Man dp[i-1,j], dp[i-1,j-wli]+v[i]

int kp (int N, int K, int Wl], int VI)) { int dp[N+1][K+1]

11 How to fill the Matrin

veturn aplNI[k];

TC: O(N*K)

8C: D(N*K)

$$\frac{2n}{}$$
:- N=5, K=7
items: 1 2 3 4 5
W[]: 3 6 5 2 4
V[]: 12 20 15 6 10

dp[6][8]

$\overline{\mathbb{N}}$		٥	1	2	3	4	5	6	7	
	0	R	D	D	0	٥	٥	O	٥	
3	1	0	0	0	(2)	12	12	12	12	
6	2	0	D	0	12	12	12	20	20	
5	3	0	0	0	12	12	15	20	20	
2	4	0	0	6		12	18	20	2١	9
4	2	0	0	6	12	12	18	20	22	
										² 5,4

dp[2,6] = man(dp[1,6], dp[1,0]+20) dp[2,7] = max(dp[1,7], dp[1,1]+20) $dp[3,\frac{3}{2}] = max(dp[2,3], x)$ dp[4,2] = max(dp[3,2], dp[3,0)+6) dp[4,3] = max(dp[3)[3], dp[3][1)+6) dp[4,5] = max(dp[3)[5], dp[3,3]+6) 15, 12+4 dp[5,6] = max(dp[4,6], dp[4,2]+10) 20, 16 dp[5,7] = max(dp[4,7], dp[4,3]+10) (21, 22)

$$\Rightarrow i = N, j = K$$

mhile (170 48 970) <

યુ

Clse 1 11 êth element is present in aus. aus. add (i);

$$j = j - W lij;$$

Space Optimization:

-> At any given time me only need 2 sows.

$$\begin{array}{cccc}
0^{th} & \longrightarrow & 0^{th} \\
1^{St} & \longrightarrow & 1^{St} \\
2^{nd} & \longrightarrow & 0^{th} \\
3^{nd} & \longrightarrow & 1^{St} \\
4^{th} & \longrightarrow & 0^{th} \\
5^{th} & \longrightarrow & 1^{St} \\
\vdots & \vdots & \vdots & \vdots \\
1^{n} & \longrightarrow & 1^{n} & 2^{n} & 2^{$$

dp[2][K+1]

Tisadvantage:

-> We won't be able to trace back the aus.

i → i 1/.2 i-1 → (i-1) 1/.2 TC: O(N*K)

SC: 0(K)

return dp[N:/2][K]

D. 2 nacty same as previous problem.

A single item can be picked as many times as me want?

(Knapsack)

N=4

1 2 3 4 K=50

WIJ: 20 13 10 40

V[]: 100 66 40 150

dplillij = max (apli-1721), aplij (j-w1i)+V[i])

deaue im pick im

man value using [1+0i] items s.t total wt (= k.

