Midterm 1A

MATH 18, LECTURE C00, WINTER 2019

NAME:

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(10 points.) Let
$$A = \begin{bmatrix} 2 & -2 & 4 \\ 4 & 1 & -2 \\ 6 & -1 & 2 \end{bmatrix}$$
.

- a) (5 points) Find the reduced row echelon form of A.
- b) (5 points) Describe the solution set of the homogeneous equation $A\vec{x} = \vec{0}$.

a)
$$A \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 2 - 2 & 4 \\ 0 & 5 - 10 \\ 0 & 5 - 10 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 - 2 & 4 \\ 0 & 5 & -10 \\ 0 & 0 & 0 \end{bmatrix}$$

b) [A10]
$$\rightarrow \begin{bmatrix} 2 & -2 & 4 & 0 \\ 0 & 5 & -10 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$x_3 = \lambda$$
. Then
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2\lambda \\ \lambda \end{bmatrix} = \lambda \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \quad \text{for } \lambda \in \mathbb{R}.$$

Problem 2.(10 points.) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix}$$
.

- a) (5 points) Is it possible to solve $A\vec{x} = \vec{b}$ for any given vector \vec{b} ? Explain your answer.
- b) (5 points) Describe the set of all vectors $\vec{b} = \begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix}$ for which $A\vec{x} = \vec{b}$ is consistent.

a)
$$A \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

It's not possible since the last row does not have a pivot.

b) Consider
$$[A \mid B]$$
.

$$\begin{bmatrix}
1 & 2 & 1 & b_1 \\
1 & 3 & 0 & b_2 \\
1 & 1 & 2 & b_3
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 2 & 1 & b_1 \\
0 & 1 & -1 & b_2 - b_1 \\
0 & -1 & 1 & b_3 - b_1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 2 & 1 & b_1 \\
0 & 1 & -1 & b_2 - b_1 \\
0 & 1 & -1 & b_2 - b_1 \\
0 & 0 & b_3 + b_2 - 2b_1
\end{bmatrix}$$

The system is consistent if and only if
$$b_3 + b_2 - 2b_1 = 0$$

Problem 3.(10 points.) Given
$$\vec{v}_1 = \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 5 \\ -9 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 1 \\ h \\ h \end{bmatrix}$.

- a) (5 points) Find all values h such that the vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ span \mathbb{R}^3 .
- b) (5 points) Find all values h such that the vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ do not span \mathbb{R}^3 .

$$\begin{bmatrix} 3 & 1 & 1 \\ 3 & 5 & h \\ -3 & 5 & h \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 1 \\ 0 & 4 & h-1 \\ 0 & -8 & h+1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 3 & 1 & 1 \\ 0 & 4 & h-1 \\ 0 & 0 & 3h-1 \end{bmatrix}$$

- a) $3h-1 \neq 0 \Rightarrow h \neq \frac{1}{3}$.
- b) $h = \frac{1}{3}$

Problem 4.(10 points.) Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix}$$
. Define the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$ for $\vec{x} \in \mathbb{R}^3$.

a) (7 points) Is
$$\vec{b} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$
 in the range of T ?

b) (3 points) Is T one-to-one?

b) (3 points) Is T one-to-one?

a) B is in range (T) if
$$A\overline{x} = \overline{b}$$
 is consistent.

Consider

[A|B] = $\begin{bmatrix} 1 & 0 & 2 & 2 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 3 & 1 \end{bmatrix}$ \longrightarrow $\begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 01 & -1 & -2 \\ 0 & -1 & 1 & -1 \end{bmatrix}$
 \longrightarrow $\begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & -3 \end{bmatrix}$.

Since the last column is pivotal, the system is inconsistent, B & range(T).

b) From part a), the third column. Of A is not pivotal. Hence, T is not one -to-one.

•				
		j		

Midterm 1B

MATH 18, LECTURE C00, WINTER 2019

NAME:

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(10 points.) Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 0 & -2 \\ -3 & 5 & -1 \end{bmatrix}$$
.

- a) (5 points) Find the reduced row echelon form of A.
- b) (5 points) Describe the solution set of the homogeneous equation $A\vec{x} = \vec{0}$.

a)
$$A \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & -1 & 1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix} \xrightarrow{R_3 + 2R_2} \begin{bmatrix} 1 & -1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

b)
$$[A|O] \rightarrow \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -0 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$x_3 = \delta$$
. Then the solution set includes any vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2\delta \\ -\Delta \end{bmatrix} = \delta \begin{bmatrix} -27 \\ -1 \\ 1 \end{bmatrix}$ for $\Delta \in \mathbb{R}$.

Problem 2.(10 points.) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & -1 & -2 \\ 1 & 3 & 0 \end{bmatrix}$$
.

- a) (5 points) Is it possible to solve $A\vec{x} = \vec{b}$ for any given vector \vec{b} ? Explain your answer.
- b) (5 points) Describe the set of all vectors $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ for which $A\vec{x} = \vec{b}$ is consistent.

a)
$$A \xrightarrow{R_2 + R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 4 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

=> it's not possible since the last row does not have a pivot.

a pivot.
b) [A:b]
$$\longrightarrow$$
 $\begin{bmatrix} 1 & 2 & 1 & 1 & b_1 \\ 0 & 1 & -1 & b_2 + b_1 \\ 0 & 0 & 0 & b_3 + b_2 - 2b_1 \end{bmatrix}$

The system is consistent if $b_3 - b_2 - 2b_1 = 0$.

Problem 3.(10 points.) Given
$$\vec{v}_1 = \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 5 \\ -9 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} 0 \\ h \\ h \end{bmatrix}$.

- a) (5 points) Find all values h such that the vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ span \mathbb{R}^3 .
- b) (5 points) Find all values h such that the vectors $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ do not span \mathbb{R}^3 .

$$\begin{bmatrix} 3 & 4 & 0 \\ 3 & 5 & h \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 1 & 0 \\ 0 & 4 & h \\ 0 & -8 & h \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 3 & 1 & 0 \\ 0 & 4 & h \\ 0 & 0 & 3h \end{bmatrix}$$

a)
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
 span \mathbb{R}^3 if the last row has a pivot, i.e. $3h \neq 0$ or $h \neq 0$.
b) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ do not span \mathbb{R}^3 if $h=0$.

Problem 4.(10 points.) Let
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 1 & -1 & 3 \end{bmatrix}$$
. Define the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$ for $\vec{x} \in \mathbb{R}^3$.

a) (7 points) Is
$$\vec{b} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
 in the range of T ?

b) (3 points) Is T one-to-one?

$$\begin{bmatrix}
1 & 0 & 2 & 1 & 2 \\
2 & 1 & 3 & 1 & 1 \\
1 & -1 & 3 & 1 & -1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 2 & 1 & 2 \\
0 & 1 & -1 & 1 & -3 \\
0 & -1 & 1 & 1 & -3
\end{bmatrix}$$

$$\rightarrow
\begin{bmatrix}
1 & 0 & 2 & 1 & 2 \\
0 & -1 & 1 & 1 & -3 \\
0 & 0 & 0 & 1 & -6
\end{bmatrix}.$$

- a) No!
- b) No!

			`	
		,		