

IHP SG13G2

open source

Process Specification Rev. 1.0 (2023_02_21)

Table of Contents:

1	General Information	3
1.1	Main Processing Sequence and Cross-Section Schematic	4
1.2	Process Control	
1.2.1	Pass/Fail Parameters	5
1.2.2		
1.3	Wafer Reject Criteria	6
2	Process Control Parameters	7
2.1	NMOS	7
2.2	PMOS	7
2.3	iNMOS	8
2.4	HV-NMOS	8
2.5	HV-PMOS	9
2.6	HV-iNMOS	9
2.7	Rsil	10
2.8	Rppd	
2.9	Rhigh	
2.10	Schottky_nbl1	
2.11	S-Varicap	
2.12	MIM Capacitor	
2.13	Resistances, Line Width Deltas, Temperature Coefficients	
2.14	Contact & Via Resistances	
2.15	Maximum Current Densities	
2.16	Layer Thickness Values	
2.17	Parasitic Capacitances	17
3	Bipolar Parameters	19
3.1	npn13g2	19
3.2	npn13g2l	
3.3	npn13g2v	20
4	Attachment A: Measurement Conditions	21
5	Change History	24
6	Known Issues	25

1 General Information

SG13S is a high performance BiCMOS technology with a 0.13 μ m CMOS process. It contains bipolar devices based on SiGe:C npn-HBT's with up to 250 GHz transient frequency and 300 GHz oscillation frequency. This process provides 2 gate oxides: A thin gate oxide for the 1.2 V digital logic and a thick oxide for a 3.3 V supply voltage. For both modules NMOS, PMOS and isolated NMOS transistors are offered. Further passive components like poly silicon resistors and MIM capacitors are available. The backend option offers 5 thin metal layers, two thick metal layers (2 and 3 μ m thick)and a MIM layer.

SG13G2 has the same device portfolio as SG13S but much higher bipolar performance with 300 GHz transient frequency and 500 GHz oscillation frequency.

1.1 Main Processing Sequence and Cross-Section Schematic

- Shallow trench isolation (STI)
- NWell formation
- PWell formation
- Triple Well formation
- Poly Gate formation
- Bipolar Window opening
- Collector Window opening
- Emitter opening
- Emitter Poly definition
- Base Poly definition
- nSD implant / drive
- pSD implant / drive
- Salicide formation
- Contact definition
- Metal1

- Via1
- Metal2
- Via2
 - Metal3
- Via3
- Metal4
- Via4
- Metal5
- MIM formation
- TopVia1
- TopMetal1
- TopVia2
- TopMetal2
- Passivation
- Parametric test

Fig. 1.1.1: SG13 process cross-section (not to scale)

Fig. 1.1.2: BEOL detail cross-section below Metal1 for passive modeling (not to scale).

Remark:

ILDO consists of oxide (590nm) and nitride (50nm).

For a homogenous ILDO with ϵ_R =4.1 the effective thickness corresponds to d_{eff}=620nm.

1.2 Process Control

Several geometrical and electrical parameters are measured for process control purposes. Electrical measurements are typically performed at T_0 = 27°C (300K). Coefficients describing the temperature behavior of parameters are extracted for the temperature range -40°C < T < 125°C.

Process control parameters are assigned to one of the following categories:

1.2.1 Pass/Fail Parameters

Pass/fail parameters are used for wafer selection during the wafer fabrication process. Pass/Fail parameters are measured on each wafer and are characterized by SPEC limits in **bold red**.

1.2.2 Information Parameters

Information parameters are provided in order to increase the knowledge about the process. These parameters do not lead to wafer scrap. There are two groups of information parameters:

The first group of information parameters is measured, identically to the pass/fail parameters, on each wafer. These parameters are characterized by SPEC limits in **bold blue**.

The second group of information parameters is not measured on each wafer. This group includes, for example, the layer thickness values measured during the wafer fabrication process or taken from REM cross-sections, and the coefficients describing the temperature, voltage and matching behavior of active and passive devices. This group of information parameters is given in *italic blue*.

Notes:

- The process control transistor parameters must not be used for circuit simulation purposes. They are often extracted from simplified model equations in order to increase the speed of the measurements. Special circuit simulation transistor parameters are provided in the model parameter section 5. Those are extracted from the complete set of model equations in order to give the best fit of the entire characteristic for all operating points. Therefore, process control transistor parameters may differ from their corresponding circuit simulation parameters.
- It is strongly recommended that a design shall rely only on pass/fail parameters.

1.3 Wafer Reject Criteria

Pass/fail parameters are measured on nine (or more) sites, distributed uniformly across the wafer. At least 2/3 of the measured sites (min. 6 sites) must pass all pass/fail criteria in order to consider the tested wafer as pass.

Please refer to the following example. In reality about 50 tests are included.

1.3.2 Example Wafer fail

2 Process Control Parameters

2.1 NMOS

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTN10x013	V	0.43	0.50	0.55	A.a1	WxL = 10 x 0.13 µm²
Threshold Voltage Long Channel Device	VTN10x10	V	0.16	0.20	0.24	A.a1	WxL = 10 x 10 µm²
Threshold Voltage Small Channel Device	VTN015x013	V	0.4	0.54	0.68	A.a1	$WxL = 0.15 \times 0.13 \ \mu m^2$
Saturation Current Short Channel Device	IDSN013	μA/μm	380	480	600	A.b1	WxL = 10 x 0.13 µm²
Off-Current Short Channel Device	IOFFN013	LOG10 (A/µm)		-10	9	A.c1	WxL = 10 x 0.13 µm²
Drain Induced Barrier Lowering 0.1/1.2V	DIBLN013	mV/V	20	50	80	A.d1	WxL = 10 x 0.13 µm²
Sub Threshold Slope	SSN013	mV/dec	76	82	88	A.e	WxL = 10 x 0.13 µm²
Breakdown Voltage	BVDSSN013	V	2.0	2.7		A.f1	WxL = 10 x 0.13 µm²
Effective Channel Length	LEFFN013	μm	0.10	0.14	0.19	A.g1	WxL = 10 x 0.13 µm²
Effective Channel Width	WEFFN015	μm	0.09	0.15	0.22	A.h1	WxL = 0.15 x 0.13 μm²
Miller Capacitance NMOS	CMILLERN	fF/µm	0.32	0.36	0.40	A.k1	
Junction Capacitance NMOS	CJUNCTIONN	fF/µm²	0.9	0.95	1.0	A.k	
Junction Breakdown	BVNPW			12		A.f3	

2.2 PMOS

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTP10x013	V	-0.53	-0.47	-0.41	A.a1	WxL = 10 x 0.13 μm²
Threshold Voltage Long Channel Device	VTP10x10	V	-0.41	-0.36	-0.31	A.a1	WxL = 10 x 10 μm²
Threshold Voltage Small Channel Device	VTP015x013	V	-0.58	-0.48	-0.38	A.a1	WxL = 0.15 x 0.13 µm²
Saturation Current Short Channel Device	IDSP013	μ A /μm	-270	-215	-170	A.b1	WxL = 10 x 0.13 μm²
Off-Current Short Channel Device	IOFFP013	LOG10 (A/µm)		-10.3	-9,3	A.c1	WxL = 10 x 0.13 μm²
Drain Induced Barrier Lowering 0.1/1.2V	DIBLP013	mV/V	25	50	75	A.d1	WxL = 10 x 0.13 µm²
Sub Threshold Slope	SSP013	mV/dec	-87	-81	-75	A.e	WxL = 10 x 0.13 µm²
Breakdown Voltage	BVDSSP013	V		-2.9	-2.2	A.f1	WxL = 10 x 0.13 µm²
Effective Channel Length	LEFFP013	μm	0.07	0.10	0.13	A.g1	WxL = 10 x 0.13 μm²

Effective Channel Width	WEFFP015	μm	0.17	0.24	0.31	A.h1	WxL = 0.15 x 0.13 µm²
Miller Capacitance	CMILLERP	fF/μm	0.31	0.35	0.39	A.k1	
Junction Capacitance	CJUNCTIONP	fF/µm²	0.8	0.85	0.9	A.k	
Junction Breakdown	BVPNW	V		-12		A.f3	

2.3 iNMOS

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTNI10x013	V	0.43	0.50	0.55	A.a1	WxL = 10 x 0.13 µm²
Saturation Current Short Channel Device	IDSNI013	μ A /μm	380	480	600	A.b1	WxL = 10 x 0.13 µm²
Off-Current Short Channel Device	IOFFNI013	LOG10 (A/µm)		-10	-9	A.c1	WxL = 10 x 0.13 µm²
Drain Induced Barrier Lowering 0.1/1.2V	DIBLNI013	mV/V	20	50	80	A.d1	WxL = 10 x 0.13 µm²
Sub Threshold Slope	SSNI013	mV/dec	76	82	88	A.e	WxL = 10 x 0.13 µm²
Breakdown Voltage	BVDSSNI013	V	2.0	2.7		A.f1	WxL = 10 x 0.13 μm²

2.4 HV-NMOS

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTNHV10x045	V	0.63	0.70	0.77	A.a2	WxL = 10 x 0.45 µm²
Threshold Voltage Long Channel Device	VTNHV10x10	V	0.65	0.69	0.73	A.a2	WxL = 10 x 10 µm²
Threshold Voltage Small Channel Device	VTNHV030x045	V	0.59	0.67	0.75	A.a2	WxL = 0.30 x 0.45 µm²
Saturation Current Short Channel Device	IDSNHV045	μΑ/μm	480	560	640	A.b2	WxL = 10 x 0.45 µm²
Off-Current Short Channel Device	IOFFNHV045	LOG10 (A/µm)		-12.5	-11.0	A.c2	WxL = 10 x 0.45 µm²
Drain Induced Barrier Lowering 0.1/1.8V	DIBLNHV045	mV/V	0	15	30	A.d2	WxL = 10 x 0.45 µm²
Sub Threshold Slope	SSNHV045	mV/dec	72	84	96	A.e	WxL = 10 x 0.45 µm²
Breakdown Voltage	BVDSSNHV045	V	5,3	6.1		A.f2	WxL = 10 x 0.45 µm²
Effective Channel Length	LEFFNHV045	μm	0.26	0.31	0.36	A.g2	WxL = 10 x 0.45 µm²
Effective Channel Width	WEFFNHV030	μm	0.23	0.28	0.33	A.h2	WxL = 0.30 x 0.45 µm²
Miller Capacitance	CMILLERNHV	fF/µm	0,42	0.45	0,48	A.k1	
Junction Capacitance	CJUNC- TIONNHV	fF/µm²	0,74	0,80	0,86	A.k	

Junction Breakdown BVNPWhv	V		12		A.f3	
----------------------------	---	--	----	--	------	--

2.5 HV-PMOS

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTPHV10x04	V	-0.71	-0.65	-0.59	A.a2	WxL = 10 x 0.4 μm²
Threshold Voltage Long Channel Device	VTPHV10x10	V	-0.78	-0.70	-0.64	A.a2	WxL = 10 x 10 µm²
Threshold Voltage Small Channel Device	VTPHV03x04	\ \	-0.71	-0.64	-0.57	A.a2	WxL = 0.3 x 0.4 µm²
Saturation Current Short Channel Device	IDSPHV04	μΑ/μm	-290	-240	-190	A.b2	WxL = 10 x 0.4 μm²
Off-Current Short Channel Device	IOFFPHV04	LOG10 (A/µm)		-12.5	-11.5	A.c2	WxL = 10 x 0.4 µm²
Drain Induced Barrier Lowering 0.1/3.3V	DIBLPHV04	mV/V	0	5	15	A.d2	WxL = 10 x 0.4 µm²
Sub Threshold Slope	SSPHV04	mV/dec	-102	-92	-82	A.e	WxL = 10 x 0.4 µm²
Breakdown Voltage	BVDSSPHV04	\ \		-6.3	-5.3	A.f2	WxL = 10 x 0.4 µm²
Effective Channel Length	LEFFPHV04	μm	0.24	0.30	0.36	A.g2	WxL = 10 x 0.4 μm²
Effective Channel Width	WEFFPHV03	μm	0.26	0.33	0.40	A.h2	WxL = 0.3 x 0.4 µm²
Miller Capacitance	CMILLERPHV	fF/µm	0.32	0.35	0.38	A.k1	
Junction Capacitance	CJUNCTION- PHV	fF/µm²	0.74	0.80	0.86	A.k	
Junction Breakdown	BVPNWhv	V		-12		A.f3	

2.6 HV-iNMOS

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Threshold Voltage Short Channel Device	VTNIHV10x045	V	0.63	0.70	0.77	A.a2	WxL = 10 x 0.45 µm²
Saturation Current Short Channel Device	IDSNIHV045	μΑ/μm	480	560	640	A.b2	WxL = 10 x 0.45 μm²
Off-Current Short Channel Device	IOFFNIHV045	LOG10 (A/µm)		-12.5	-11.0	A.c2	WxL = 10 x 0.45 μm²
Drain Induced Barrier Lowering 0.1/1.8V	DIBLNIHV045	mV/V	0	15	30	A.d2	WxL = 10 x 0.45 µm²
Sub Threshold Slope	SSNIHV045	mV/dec	72	84	96	A.e	WxL = 10 x 0.45 µm²
Breakdown Voltage	BVDSSNIHV045	V	5.2	6.1		A.f2	WxL = 10 x 0.45 μm²

2.7 **Rsil**

Rsil utilizes salicided, n-doped gate polysilicon as resistor material

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment		
Sheet Resistance	RSNRSIL	Ω	6.2	7.0	7.8	A.i			
Line Width Delta	DWRSIL	nm	-20	10	40	A.i			
Temperature Coefficients	TC1NRSIL TC2NRSIL	ppm/K ppm/K ²		3100 0.3		A.af			
Matching Coefficient	MATRSIL1 MATRSIL2	nm		6 1.4		A.ac			
Metal-to-Body-Resistance	RCRSIL			4.5		A.ae			
Max. Current Density	is limited by contacts, please refer chapter 2.9								

2.8 Rppd

Rppd utilizes $\it unsalicided, p-doped gate polysilicon$ as resistor material. For realizing precision resistors, a line width of $2\mu m$ or higher is recommended.

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Sheet Resistance	RSRPPD	Ω	235	260	285	A.i	
Line Width Delta	DWRPPD	nm	-24	6	36	A.i	
Temperature Coefficients	TC1NRPPD TC2NRPPD	ppm/K ppm/K ²		170 0.4		A.af	
Matching Coefficient	MATRPPD	nm		15		A.ac	
Metal-to-Body-Resis- tance	RCRPPD	Ω*μm		35		A.ae	
Temperature Coefficient Metal-toBody-Resistance	TC3NRPPD	ppm/K		-950			
Max. Current Density	IMRPPD	mA/µm			1.2		11 years @105°C

2.9 Rhigh

Rhigh utilizes unsalicided, partially compensated gate polysilicon as resistor material

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Sheet Resistance	RSRHIGH	Ω	1160	1360	1560	A.i	
Line Width Delta	DWRHIGH	nm	-80	-40	0	A.i	
Temperature Coefficients	TC1NRHIGH TC2NRHIGH	ppm/K ppm/K ²		-2300 2.1		A.af	
Matching Coefficient	MATRHIGH	nm		48		A.ac	
Metal-to-Body-Resis- tance	RCRHIGH	Ω*μm		80		A.ae	
Max. Current Density	IMRHIGH	mA/µm			0.6		11 years @105°C

2.10 Schottky_nbl1

This Schottky barrier diode utilizes *Nbulay* as cathode.

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Reverse current density	IRNBL1	μΑ/μm²	-1	-0.1	0		0.3 x 1.0 μm² @ -2.5 V
Diode Voltage	VFNBL1	V	0.34	0.39	0.44		0.3 x 1.0 μm² @ 100 μA/μm²

2.11 S-Varicap

Thick Gate Oxide

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Capacitance -3	SVAR_m3	fF/µm²	20.5	23	25.5		10x(3.74x0.3)µm² @15.8GHz
Capacitance 0	SCVAR_0	fF/µm²	32	35.3	37.5		10x(3.74x0.3)µm² @15.8GHz
Capacitance +3	SCVAR_3	fF/µm²	37.5	39.5	41.5		10x(3.74x0.3)µm² @15.8GHz
Q Factor -3	QFACTOR_m3		50	62	75		10x(3.74x0.3)µm² @15.8GHz
Q Factor 0	QFACTOR_0		35	43	50		10x(3.74x0.3)µm² @15.8GHz
Q Factor 3	QFACTOR_3		35	43	50		10x(3.74x0.3)µm² @15.8GHz

2.12 MIM Capacitor

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Specific Area Capacitance	CMIMA	fF/µm²	1.35	1.5	1.65	A.k	
Specific Capacitance MIM Perimeter	СМІМР	aF/µm		40		A.I	
Breakdown Voltage	BVMIM	V	15	23		A.y	
Voltage Coefficients	VCMIM1 VCMIM2	ppm/V ppm/V ²		-26 5		A.ah	
Temperature Coefficient	TCMIM1 TCMIM2	ppm/K ppm/K²		3.6 0.002		A.ad	
Matching Coefficient	KCMIM	nm					

2.13 Resistances, Line Width Deltas, Temperature Coefficients

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment			
Substrate Resistivity	RSBLK	Ωcm	37.5	50	62.5		Specification: WAFPR3763			
Salicided GatPoly (n ⁺)	refer section 2	.13								
Unsalicized GatPoly (n⁺)	refer section 2	.14								
Unsalicided GatPoly (p ⁺)	refer section 2.15									
Metal1 Snake Sheet Resistance	SNAKEM1	mΩ	90	115	145		width = 0.16 μm			
Unsalicided nSD-Activ Sheet Resistance	RSNSD0	Ω	55	67	79					
Unsalicided pSD-Activ Sheet Resistance	RSPSD0	Ω	69	79	89					
Metal2 Snake Sheet Resistance	SNAKEM2	mΩ	70	88	110		width = 0.20 μm			
Metal3 Snake Sheet Resistance	SNAKEM3	mΩ	70	88	110		width = 0.20 μm			
Metal4 Snake Sheet Resistance	SNAKEM4	mΩ	70	88	110		width = 0.20 μm			
Metal5 Snake Sheet Resistance	SNAKEM5	mΩ	70	88	110		width = 0.20 μm			
TopMetal1 Snake Sheet Resistance	SNAKETM1	mΩ	14	18	22		width = 1.5 μm			
TopMetal2 Snake Sheet Resistance	SNAKETM2	mΩ	7.5	11	14.5		width = 2.0 μm			
Metal1 Sheet Resistance	RSMET1	mΩ	85	110	135	A.i				
Metal2 Sheet Resistance	RSMET2	mΩ	73	88	103	A.i				
Metal3 Sheet Resistance	RSMET3	mΩ	73	88	103	A.i				
Metal4 Sheet Resistance	RSMET4	mΩ	73	88	103	A.i				
Metal5 Sheet Resistance	RSMET5	mΩ	73	88	103	A.i				
TopMetal1 Sheet Resistance	RSTM1	mΩ	15	18	21	A.i				
TopMetal2 Sheet Resistance	RSTM2	mΩ	7.5	11	14.5	A.i				
Metal1 Line Width Delta	DWMET1	nm	-64	-24	16	A.i				
Metal2 Line Width Delta	DWMET2	nm	-56	-16	24	A.i				
Metal3 Line Width Delta	DWMET3	nm	-56	-16	24	A.i				
Metal4 Line Width Delta	DWMET4	nm	-56	-16	24	A.i				
Metal5 Line Width Delta	DWMET5	nm	-50	-20	34	A.i				
TopMetal1 Line Width Delta	DWTM1	nm	-300	-100	100	A.i				
TopMetal2 Line Width Delta	DWTM2	nm	-340	-140	140	A.i				
Metal1 Sheet Resistance Temperature Coefficient	TC1RSMET1	ppm/K		3400		A.af				
Metal2 Sheet Resistance	TC1RSMET2	ppm/K		3500		A.af				

Temperature Coefficient					
Metal3 Sheet Resistance Temperature Coefficient	TC1RSMET3	ppm/K	3500	A.af	
Metal4 Sheet Resistance Temperature Coefficient	TC1RSMET4	ppm/K	3500	A.af	
Metal5 Sheet Resistance Temperature Coefficient	TC1RSMET5	ppm/K	3500	A.af	
TopMetal1 Sheet Resistance Temperature Coefficient	TC1RSTM1	ppm/K	3700	A.af	
TopMetal2 Sheet Resistance Temperature Coefficient	TC1RSTM2	ppm/K	3800	A.af	

2.14 Contact & Via Resistances

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Metal1 to Silicide on nSD-Activ	RCM1NSD	Ω/CNT	8	17	22	V = 1 V	93740 contact chain
Metal1 to Silicide on pSD-Activ	RCM1PSD	Ω/CNT	8	17	22	V = 1 V	93740 contact chain
Metal1 to Silicide on GatPoly (n*)	RCM1NPLY	Ω/CNT	8	15	20	V = 1 V	98566 contact chain
Metal1 to Silicide on GatPoly (p*)	RCM1PPLY	Ω/CNT	8	15	20	V = 1 V	98566 contact chain
Metal2 – Metal1	RVIA1	Ω/VIA	5	9	20	V = 1 V	103840 contact chain
Metal3 - Metal2	RVIA2	Ω/VIA	5	9	20	V = 1 V	103840 contact chain
Metal4 – Metal3	RVIA3	Ω/VIA	5	9	20	V = 1 V	103840 contact chain
Metal5 – Metal4	RVIA4	Ω/VIA	5	9	20	V = 1 V	103840 contact chain
TopMetal1 - Metal5	RTV1	Ω/VIA	1	2.2	4	V = 1 V	3276 contact chain
TopMetal2 - TopMe- tal1	RTV2	Ω/VIA	0.5	1.1	2.2	V = 1 V	1140 contact chain

2.15 Maximum Current Densities

(11 years @105°C)

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Metal1	IMAXM1	mA			0.36	A.v	w = 0.16 0.36 µm
Metal1	JMAXM1	mA/µm			1	A.v	w > 0.36 µm
Metal2	IMAXM2	mA			0.6	A.v	w = 0.2 0.3 μm
Metal2	JMAXM2	mA/µm			2	A.v	w > 0.3 µm
Metal3	IMAXM3	mA			0.6	A.v	w = 0.2 0.3 μm
Metal3	JMAXM3	mA/µm			2	A.v	w > 0.3 µm
Metal4	IMAXM4	mA			0.6	A.v	w = 0.2 0.3 μm
Metal4	JMAXM4	mA/µm			2	A.v	w > 0.3 µm
Metal5	IMAXM5	mA			0.6	A.v	w = 0.2 0.3 μm
Metal5	JMAXM5	mA/µm			2	A.v	w > 0.3 µm
TopMetal1	JMAXM6	mA/µm			15	A.v	
TopMetal2	JMAXM7	mA/µm			16	A.v	
Contact	JMAXCNT	mA/Cnt			0.3	A.v	
Via1	JMAXVIA1	mA/Via			0.4	A.v	
Via2	JMAXVIA2	mA/Via			0.4	A.v	
Via3	JMAXVIA3	mA/Via			0.4	A.v	
Via4	JMAXVIA4	mA/Via			0.4	A.v	
TopVia1	JMAXTVIA1	mA/Via			1.4	A.v	
TopVia2	JMAXTVIA2	mA/Via			10	A.v	

2.16 Layer Thickness Values

Parameter	Name	Unit	Min	Target	Max	Meas. Cond.	Comment
Shallow Trench Isolator Thickness	тѕті	nm		400		A.ag	
Gate Polysilicon Thickness	TGATPOLY	nm	150	160	170	A.w	
Thickness of Gate Oxide	TGOXNW	nm	2.25	2.45	2.65	A.x	
Thickness of Gate Oxide HV-MOS	TGOX1NW	nm	6.8	7.3	7.8	A.x	
Thickness of Gate Oxide	TGOXPW	nm	2.45	2.65	2.85	A.x	
Thickness of Gate Oxide HV-MOS	TGOX1PW	nm	7.0	7.5	8.0	A.x	
Metal1 Layer Thickness	TMET1	nm		420		A.ag	
Metal2 Layer Thickness	TMET2	nm		490		A.ag	
Metal3 Layer Thickness	TMET3	nm		490		A.ag	
Metal4 Layer Thickness	TMET4	nm		490		A.ag	
Metal5 Layer Thickness	TMET5	nm		490		A.ag	
TopMetal1 Layer Thickness	TTM1	nm		2000		A.ag	
Isolator Thickness between Metal1 and Activ	TILD0	nm		640		A.w, A.ag	
Isolator Thickness between Metal2 and Metal1	TILD1	nm		540		A.w, A.ag	
Isolator Thickness between Metal3 and Metal2	TILD2	nm		540		A.w, A.ag	
Isolator Thickness between Metal4 and Metal3	TILD3	nm		540		A.w, A.ag	
Isolator Thickness between Metal5 and Metal4	TILD4	nm		540		A.w, A.ag	
Isolator Thickness between TopMetal1 and Metal5	TILDTM1	nm		850		A.w, A.ag	
MIM Capacitor Dielectric Thickness	TISMIM	nm		40		A.w	
MIM Capacitor Top Plate Thickness	ТМІМТОР	nm		150		A.ag	
Thickness Values of Passivation Layers	TPASS1 TPASS2	nm		1500 400		A.ag	Oxide layer SiN layer
TopMetal2 Layer Thickness	TTM2	nm		3000		A.ag	
Isolator Thickness between TopMetal2 and TopMetal1	TILTM2	nm		2800		A.w, A.ag	

2.17 Parasitic Capacitances

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Metal1 - Activ Area Capacitance	CAMET1ACT	aF/µm²	49	59	69	A.aq	A = 250·1200 μm²
Metal1 - Substrate Area Capacitance	CAMET1SUB	aF/µm²	31	37	43	A.aq	A = 250·1200 μm²
Metal1 - Metal2 Area Capacitance	CAMET1/2	aF/µm²	54	68	82	A.aq	A = 250·1200 μm²
Metal2 - Metal3 Area Capacitance	CAMET2/3	aF/µm²	54	68	82	A.aq	A = 250·1200 μm²
Metal3 - Metal4 Area Capacitance	CAMET3/4	aF/µm²	54	68	82	A.aq	A = 250·1200 μm²
Metal4 - Metal5 Area Capacitance	CAMET4/5	aF/µm²	54	68	82	A.aq	A = 250·1200 μm²
TopMetal1 - Metal5 Area Capacitance	CATOPMET1	aF/µm²	36	42.5	49	A.aq	A = 250·1200 μm²
TopMetal2 - TopMetal1 Area Capacitance	CATOPMET2	aF/µm²	10	13	16	A.aq	A = 250·1200 μm²

3 Bipolar Parameters

Important Note: For process control monitoring minimum devices are used.

3.1 npn13g2

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Current Gain	NPN13G2_BETA	-	300	650	1200	A.n	A _E =0.07x0.9 μm²
Early Voltage	NPN13G2_VA	V		150		A.o	A _E =0.07x0.9 μm²
Breakdown Voltage Emitter – Collector	NPN13G2_BVCEO	V	1.4	1.6		A.p	A _E =0.07x0.9 μm²
Breakdown Voltage Collector – Base	NPN13G2_BVCBO	V	3.8	4.8		A.q	A _E =0.07x0.9 μm²
Breakdown Voltage Emitter – Base	NPN13G2_BVEBO	V	1.0	1.6		A.r	A _E =0.07x0.9 μm²
Collector Current	NPN13G2_IC07	μA	2.6	3.8	5.2	A.ai	A _E =0.07x0.9 μm²
Max. Collector Current	NPN13G2_ICMAX	mA			3.5		A _E =0.07x0.9 μm²
Max. Transit Frequency	NPN13G2_FT	GHz	300	350		A.s	A _E =4x(0.07x0.9 μm²)
Max. Oszillation Frequency	NPN13G2_FMAX	GHz	400	450		A.s	A _E =4x(0.07x0.9
							μm²)

3.2 npn13g2l

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Current Gain	NPN13G2L_BETA	_	300	650	1200	A.n	A _E =0.07x1 μm²
Early Voltage	NPN13G2L_VA	V		150		A.o	A _E =0.07x1 μm²
Breakdown Voltage Emitter – Collector	NPN13G2L_BVCEO	V	1.4	1.6		A.p	A _E =0.07x1 μm²
Breakdown Voltage Collector – Base	NPN13G2L_BVCBO	V	3.8	4.8		A.q	A _E =0.07x1 μm²
Breakdown Voltage Emitter – Base	NPN13G2L_BVEBO	V	1.0	1.6		A.r	A _E =0.07x2 μm²
Collector Current	NPN13G2L_IC07	μA	2.6	3.8	5.2	A.ai	A _E =0.07x1 μm ²
Max. Collector Current	NPN13G2L_ICMAX	mA			3.0		A _E =0.07x1 μm²
Max. Transit Frequency	NPN13G2L_FT	GHz	280	330		A.s	A _E =4x(0.07x1
Max. Oszillation Frequency	NPN13G2L_FMAX	GHz	380	430		A.s	μm²) `

3.3 npn13g2v

Parameter	Name	Unit	Min	Tar- get	Max	Meas. Cond.	Comment
Current Gain	NPN13G2V_BETA	_	300	650	1200	A.n	A _E =0.12x1 μm²
Early Voltage	NPN13G2V_VA	V		150		A.o	A _E =0.12x1 μm²
Breakdown Voltage Emitter – Collector	NPN13G2V_BVCEO	V	2.2	2.5		A.p	A _E =0.12x1 μm ²
Breakdown Voltage Collector – Base	NPN13G2V_BVCBO	V	7	8.5		A.q	A _E =0.12x1 μm ²
Breakdown Voltage Emitter – Base	NPN13G2V_BVEBO	V	1.0	1.8		A.r	A _E =0.12x1 μm ²
Collector Current	NPN13G2V_IC07	μA	3.4	4.7	6.2	A.ai	A _E =0.12x1 μm ²
Max. Collector Current	NPN13G2V_ICMAX	mA			0.5		A _E =0.12x1 μm ²
Max. Transit Frequency	NPN13G2V_FT	GHz	90	120		A.s	A _E =4x(0.12x1
Max. Oszillation Frequency	NPN13G2V_FMAX	GHz	280	330		A.s	μm²)

Attachment A: Measurement Conditions

 V_{DS} = +0.05 V / -0.05 V (n-channel / p-channel device); V_{BS} = 0 V;

Ref.

A.a1

Parameter:

Threshold Voltage:

```
V<sub>T</sub> is extrapolated from the maximum slope of the active transfer characteristic region. A linear regression
                   is performed to find this slope. V_T = V_0 - V_{DS}/2; Vo is the gate voltage intercept of the slope.
                   Isolated NMOS: V<sub>nWell</sub> = 0 V
A.a2
                   Threshold Voltage:
                    V_{DS} = +0.1 \text{ V} / -0.1 \text{ V} (n-channel / p-channel device); V_{BS} = 0 \text{ V};
                    V<sub>T</sub> is extrapolated from the maximum slope of the active transfer characteristic region. A linear regression
                   is performed to find this slope. V_T = Vo - \dot{V}_{DS}/2; Vo is the gate voltage intercept of the slope.
                    Isolated NMOS: V<sub>nWell</sub> = 0 V
                   Saturation Current:
A.b1
                    V_{DS} = V_{GS} = +1.2 \text{ V} / -1.2 \text{ V} (n-channel / p-channel device); V_{BS} = 0 \text{ V}
                   Isolated NMOS: V<sub>nWell</sub> = 0 V
                   Saturation Current:
A.b2
                   V_{DS} = V_{GS} = +3.3 \text{ V} / -3.3 \text{ V} (n-channel / p-channel device); V_{BS} = 0 \text{ V}
                   Isolated NMOS: V<sub>nWell</sub> = 0 V
                    Off-Current:
A.c1
                    V<sub>DS</sub>=+1.2V / -1.2V (n-channel device / p-channel device); V<sub>GS</sub>=V<sub>BS</sub>=0 V; I<sub>D</sub> measured
A.c2
                    V<sub>DS</sub>=+3.3V / -3.3V (n-channel device / p-channel device); V<sub>GS</sub>=V<sub>BS</sub>=0 V; I<sub>D</sub> measured
                   Drain Induced Barrier Lowering:
A.d1
                   DIBL = [V_{GS}(V_{DS1}) - V_{GS}(V_{DS2})]/(V_{DS1} - V_{DS2}) \text{ at } I_D = JSS*W/L
                   V_{DS1} = +0.1 V; V_{DS2} = +1.2 V; V_{BS} = 0 V; JSS = 0.5 nA (n-channel device) V_{DS1} = -0.1 V; V_{DS2} = -1.2 V; V_{BS} = 0 V; JSS = 0.1 nA (p-channel device)
                   Drain Induced Barrier Lowering:
A.d2
                   DIBL = [V_{GS}(V_{DS1}) - V_{GS}(V_{DS2})]/(V_{DS1}-V_{DS2}) at I_D = ISS*W/L
                    V_{DS1} = +0.1 \text{ V}; V_{DS2} = +3.3 \text{ V}; V_{BS} = 0 \text{ V}; ISS = 1 nA (n-channel device)
                    V_{DS1} = -0.1 \text{ V}; V_{DS2} = -3.3 \text{ V}; V_{BS} = 0 \text{ V}; ISS = 0.4 nA (p-channel device)
A.e
                    Sub Threshold Slope:
                    V_{DS} = +0.1 V / -0.1 V (n-channel / p-channel device); V_{BS} = 0 V
                    The slope is estimated from the two drain currents I_{D1} = JSS1*W/L and I_{D2} = JSS2*W/L
                    JSS1 = 0.5 nA, ISS2 = 5 nA (n-channel device);
                    JSS1 = 0.1 nA, ISS2 = 1 nA (p-channel device);
A.f1
                    Breakdown Voltage:
                    V<sub>GS</sub>=V<sub>BS</sub>=0 V; I<sub>D</sub>=I<sub>Do</sub>=+10 nA/μm / -10 nA/μm (n-channel / p-channel device)
A.f2
                   Breakdown Voltage:
                    V_{GS} = V_{BS} = 0V; I_D = +100 \text{ pA/um} / -100 \text{ pA/um} (n-channel / p-channel device)
A.f3
                   Breakdown Voltage:
                   j = 1 mA / cm² for S/D to body diode surrounded by STI
                   Effective Channel Length:
A.g1
                   Extrapolated from linear regions of transistors with gate length's of 0.13 µm, 0.18 µm;
                    V<sub>DS</sub>=+0.05 V / -0.05 V (n-channel / p-channel device)
                   Method (P. Suciu et.al., e.g. IEEE Tr. ED-27(1980)9,p.1846):
                   Basic equations:
                   (1) I_D = V (V_{GSeff} - V_{DS}/2) V_{DS}
(2) V_{GSeff} = V_{GS} - V_t
                    (3) \mu = \mu_o / (1 + U_o V_{GSeff})
                    (4) \frac{1}{4} 
                    (5) 1/\checkmark_{o}(L) = (L - 4/4L) / (W \mu_{o} C_{ox})
                    First step: according to equ.(4), linear extrapolation of 1/ , = 1/ (V<sub>GSeff</sub> = 0) from two working points
                    V<sub>GSeff1</sub> = +0.9V / -0.9V; V<sub>GSeff2</sub> = +1.5V / -1.5V (n-channel / p-channel device) for all transistors with different
                   gate length
                    Second step: linear regression of √L from all 1/ , (L) numbers according to equ.(5)
                   Effective Channel Length:
A.g2
                    Extrapolated from linear regions of transistors with gate length's of 0.33 µm (only SG13S), 0.45 µm, 10
                    \mum / 0.33 \mum (only SG13S) 0,4 \mum, 10 \mum; V_{DS}=+0.1 V / -0.1 V (n-channel / p-channel device)
                   Method (P. Suciu et.al., e.g. IEEE Tr. ED-27(1980)9,p.1846):
                            Basic equations:
                    (1) I_D = \beta \left( V_{GSeff} - V_{DS}/2 \right) V_{DS}
```

```
SG13 Process Specification Rev. 1.0
(2) V_{GSeff} = V_{GS} - V_t
(3) \mu = \mu_o / (1 + U_o V_{GSeff})
(4) 1/\beta(V_{GSeff}) = (L - \Delta L) / (W \mu C_{ox}) = (L - \Delta L) (1 + U_o V_{GSeff}) / (W \mu_o C_{ox})
(5) 1/\beta_{o}(L) = (L - \Delta L) / (W \mu_{o} C_{ox})
First step: according to equ.(4), linear extrapolation of 1/\beta_0 = 1/\beta(V_{GSeff} = 0) from two working points V_{GSeff}
= +1V / -1V; V<sub>GSeff2</sub> = +1.5V / -1.5V (n-channel / p-channel device) for all transistors with different gate
Second step: linear regression of \Delta L from all 1/\beta_o(L) numbers according to equ.(5)
Effective Channel Width:
Extrapolated from linear regions of transistors with gate width's of 0.15µm, 10.0 µm (not isolated NMOS),
V<sub>DS</sub> = +0.05 V / -0.05 V (n-channel / p-channel device)
Basic equations:
(1) I_D = \beta (V_{GSeff} - V_{DS}/2) V_{DS}
(2) V_{GSeff} = V_{GS} - V_{T}
(3) \mu = \mu_o / (1 + U_o V_{GSeff})
      1. 1/\beta(V_{GSeff}) = L/[(W - \Delta W) \mu C_{ox}] = [L(1 + U_o V_{GSeff})]/[(W - \Delta W) \mu_o C_{ox}]
      2. \beta_o(W) = (W - \Delta W) \mu_o C_{ox} / L
First step: according to equ.(4), linear extrapolation of 1/\beta_0 = 1/\beta(V_{GSeff} = 0) from two working points V_{GSeff1}
= +1V / -1V; V<sub>GSeff2</sub> = +1.5V / -1.5V (n-channel / p-channel device) for all transistors with different gate
Second step: linear regression of \Delta W from all \beta_o(W) numbers according to equ.(5)
Effective Channel Width:
Extrapolated from linear regions of transistors with gate width's of 0.3 µm, 10.0 µm,
V_{DS} = +0.1 V / -0.1 V (n-channel / p-channel device)
Basic equations:
(1) I_D = \beta \left( V_{GSeff} - V_{DS}/2 \right) V_{DS}
(2) V_{GSeff} = V_{GS} - V_T
(3) \mu = \mu_o / (1 + U_o V_{GSeff})
      3. 1/\beta(V_{GSeff}) = L/[(W - \Delta W) \mu C_{ox}] = [L(1 + U_o V_{GSeff})]/[(W - \Delta W) \mu_o C_{ox}]
      4. \beta_o(W) = (W - \Delta W) \mu_o C_{ox} / L
First step: according to equ.(4), linear extrapolation of 1/\beta_0 = 1/\beta(V_{GSeff} = 0) from two working points V_{GSeff1}
= +1V / -1V; V<sub>GSeff2</sub> = +1.5V / -1.5V (n-channel / p-channel device) for all transistors with different gate
Second step: linear regression of \Delta W from all \beta_0(W) numbers according to equ.(5)
Sheet Resistance, Line Width Delta
The sheet resistance R_s and the line width delta (= \Delta W) values are calculated from the resistances of two
resistors R<sub>1</sub> and R<sub>N</sub>:
     R<sub>1</sub>: one single stripe with the dimension W x L
     R<sub>N</sub>: N stripes in parallel with dimensions (W/N) x L each
Formulas: R_1 = R_s L / (W + \Delta W) and R_N = R_s (L / N) / (W/N + \Delta W)
Voltage across both resistors in series: 0.5V
Capacitance Measurements, Area Capacitances
V=0V; f=100kHz; Area Capacitance = C<sub>measure</sub> / Area
Capacitance Measurements MIM, Area Capacitances
V=2V applied to top plate; f=100kHz
Capacitance Measurements, Perimeter Capacitance
V=0V; f=100kHz
Perimeter capacitance = [C<sub>measure</sub> / Perimeter
Current Gain
BETA = I_C / I_B; V_{BE} = 0.7V; V_{CB} = 0V
Early Voltage
VCE = 0.9 \pm 0.2 \text{ V}; IB = const = IB(VBE = 0.70 \text{ V}; VCB = 0 \text{ V})
```

A.k1

A.I

A.n

A.h1

A.h2

A.i

A.k

A.o

Breakdown Voltage BV_{CE0} A.p

Extrapolation from the $J_C=(0.3-0.75)$ mA/ μ m² part of the $V_{CE}(I_C)$ characteristic, J_C related to the emitter area A_E

Breakdown Voltage BV_{CB0} A.q

 $I_E=0; I_{CB}=0.1 \mu A$

A.r Breakdown Voltage BV_{EB0}

 $I_{C}=0; I_{EB}=1\mu A$

HBT Maximum Transit Frequency (f_T), HBT Maximum Oscillation Frequency (f_{max}) A.s

U and h_{21} are measured as a function of V_{BE} @ V_{CE} = 1.2 V and 40 GHz. f_T and f_{max} are extrapolated, with -

20dB decay per f-decade, from the 40 GHz h₂₁ and sgrt(U) values, respectively. De-embedding is applied.

A.v Maximum Current Density of Metal Lines, Contacts and Vias

The maximum current density is determined via electromigration measurements as part of the process qualification procedure. The current density values given were estimated to reach less than 0.01% failure in 11years of operation at 105°C (for SG13RH: 20 years at 125°C)

A.x Gateoxide thickness measurement using Cox extrapolation

Measured capacitance corrected for Offset and Miller Capacitance. Tox = 3.9*Eps0*Area/Cox

A.w Optical Layer Thickness

The thickness of the layer is measured by means of optical interferometry / ellipsometry

A.y MIM Breakdown Voltage

V_{BOTTOM}=0V; J_{BVMIM}=1 pA/μm²

BV_{MM}: Current forced into the top plate and corresponding voltage is measured.

A.ac Resistor Matching Coefficient k

Measuring the matching behavior of resistor pairs, differing in the resistor area, are investigated. The least square fit $\sigma(dR/R)$ vs. inverse square root of area is estimated: $\sigma(dR/R) = k^*A^{-0.5}$

A.ad MIM Capacitor Temperature Coefficient

Measurement of capacitance (at $V_{MIM} = 0V$, f = 1MHz) as a function of temperature in the range -40°C to 125°C

Temperature coefficients T_{CMIM1} and T_{CMIM2} ; T_0 = 300K C(T) = $C(T_0)$ * $[1 + T_{\text{CMIM1}}$ * $(T - T_0)$ + T_{CMIM2} * $(T - T_0)^2$]

A.ae Salicide to GatPoly Contact Resistance

 $R_{RES} = (2^* R_{CONT} / \# \text{ of contacts}) + (2^* R_{C2POLY} / \text{ resistor width}) + R_{POLY}$

Note that this formula is only valid for resistors with same width of unsalicided and salicided regions

 R_{RES} : Total resistance of a resistor; R_{CONT} : Contribution of a single W-plug (typically < 1 Ω)

R_{C2POLY}: Salicide to GatPoly contact resistance

R_{POLY}: Contribution of the unsalicided polysilicon stripe (= R_S* L / W)

A.af Resistor Temperature Coefficients

Measurement of R as a function of temperature in the range -40°C to 125°C.

Temperature coefficients T_{C1} and T_{C2} ; $T_0 = 300K$ $R(T) = R(T_0) * [1 + T_{C1} * (T - T_0) + T_{C2} * (T - T_0)^2]$

A.ag SEM Cross Section Analysis

A.ah MIM Capacitor Voltage Coefficients

Measurement of capacitance (at T = 300K, f = 1MHz) as a function of the applied voltage (V_{MIM}) in the range -10V to +10V. V_{MIM} is applied at the lower electrode, while the top electrode is grounded. $C(V_{MIM}) = C(V_{MIM} = 0V) * [1 + VCMIM1 * (V_{MIM}) + VCMIM2 * (V_{MIM})^2]$

A.ai Collector Current

 V_{BE} =0.7V; V_{CB} =0V

A.al HBT Transistor Matching Coefficient k

Measuring the matching behavior of transistor pairs, differing in the emitter area, are investigated. The least square fit $\sigma(dVBE)$ vs. inverse square root of area is estimated: $\sigma(dVBE) = k^*A^{-0.5}$ $V_{BE}=0.7V$; $V_{CB}=0V$

A.am MOS Transistor Matching Coefficient k

Measuring transistor pairs, differing in the gate area. The least square fit $\sigma(dVT)$ vs. inverse square root of area is estimated: $\sigma(dVT) = k^*A^{-0.5}$ $V_{DS} = 0.1 \text{ V}; I_D = 2\mu A \text{ W/L}$

V_{DS}-0.1 V, 1_D-2μ/ (V/)

A.aq Capacitance of metal layer to Active or Substrate

V=0V; f=100kHz

5 Change History

Version	Changes/Remarks
2023_02_21	Initial Version

6 Known Issues