Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. A través de un análisis similar al desarrollado en la página 53 del Cengel Cimbala, determine cuál es la presión dentro de una burbuja "cilíndrica" que tiene la geometría observada en la figura 1 (cilindro con casquetes esféricos en sus extremos). A partir del resultado, responda las siguientes preguntas: ¿Es este estado estable?, es decir, ¿es un caso de estática? ¿Cómo evoluciona el sistema? En caso de que no sea estable, ¿cuál sería la geometría final de la gota? Las variables relevantes del problema serían las siguientes:

Figure 1: Gota cilíndrica

2. Un tanque sufre, en una de sus paredes verticales planas, una abolladura como se muestra en la figura 2. La misma puede considerarse como un cilindro de sección elipsoidal (semiejes de longitud A y B) y largo L. Calcule cuál es la fuerza hidrostática resultante sobre la abolladura (en función de sus dimensiones) y qué torque genera respecto a los puntos de concentración de tensiones (a y b). Exprese el resultado en términos de los parámetros del problema:

Figure 2: Abolladura elipsoidal en pared plana

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. En la figura 3 se observa un aspersor de un solo brazo visto en planta. El mismo rota respecto del punto O a velocidad constante ω . El flujo de agua Q ingresa desde un caño vertical a través de O. El torque resistente que se produce en el cojinete es $-T_O$. ¿Cual es la expresión que define la velocidad de rotación ω ?. En caso de que el aspersor tuviese cuatro brazos separados entre sí a 90° , ¿cual es la expresión de la velocidad?, ¿y si existiesen infinitos brazos aspersores?

Figure 3: Aspersor de un brazo