GEO1003 - Shared Notes

Master Geomatics Students

2024-12-07

Contents

Introduction
Example
Introduction
Markdown Basics
Resources and Helpers
Comments
Headers
Bold and Italic
Lists
Links
Images
Blockquotes
Code
Tables
Math
Definition Blocks
Definition Blocks + Lists
Empty Section
How does GNSS work?
Introduction
GPS segments
Radio Signal
Initialisation
Pseudorange Measurement
Carrier Phase Measurement
Jamming and Spoofing
Jamming
Spoofing
Signal blockage
Constellation failure
GNSS performance
Introduction

	Error Sources	10
	Pseudorange Calculation	10
	Ionosphere Delay	11
	Accuracy and Precision	11
	Dilution of Precision	11
	Availability, Continuity and Integrity	11
	Availability	11
		11
	Integrity	11
	S *	11
		11
		12
		12
		12
		13
		15
	Darios	10
G١	NSS in the built environment (outdoor, indoor and in between)	15
		15
		15
	-	15
	v	15
	Shadow Macching	
CF	RS	15
	Introduction	15
		15
	v	15
	v	15
		15
		15
		15
		15
		15
		15
		15
	- v	15
	IDNAI	10
W	i-Fi-monitoring / Fingerprinting	15
•	07 01 0	15
		15
		15
	<u> </u>	15
	· - ·	15
		15
		15 15
		15
		15
		15
	Radio Frequency Identification (RFID)	15

Hybrid and Other Techniques	 	 15
Trilateration		15
Inertial Navigation Systems (INS)	 	 15
Visual Based Indoor Localisation	 	 15
Isovists		15
Performance Metrics	 	 15
Position	 	 15
Location		15
Yield	 	 15
Consistency		15
Overhead		15
Latency	 	 15
Power Consumption		15
Roll-Out and Operating Costs	 	 15
Location awareness and privacy		15
Introduction	 	 15
Spaces	 	 15
Indoor Space		15
Semi-Indoor Space		15
Semi-Outdoor Space	 	 15
Outdoor Space		15
IndoorCMI		15

Introduction

This is the introduction to the notes.

Example

Introduction

The goal of this chapter is just to demonstrate how things should be organized. It will be removed from the notes in the end.

Markdown Basics

Resources and Helpers

A nice cheat sheet about Markdown can be found at this link: https://www.markdownguide.org/cheat-sheet/.

On VS Code, there are some nice extensions that can help you write Markdown files:

- Markdown All in One to provide useful shortcuts and commands
- markdownlint to properly format your Markdown files

Feel free to ask me if you have questions about Markdown.

Comments

```
This <!--This is a comment.--> is <!--
Comments are not rendered.
They can take multiple lines
-->
a
sentence.
```

This is a sentence.

Headers

```
<!-- Comment the fist headers to avoid messing up the outline of this file -->
<!--
# Level 1

## Level 2

### Level 3
-->

#### Level 4

##### Level 5

###### Level 6
```

Level 4

Level 5 Level 6

Bold and Italic

```
- Normal text
- **Bold text**
- _Italic text_
- **_Bold and italic text_**
```

- Normal text
- Bold text
- Italic text
- Bold and italic text

Lists

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Links

```
[Example link] (https://www.example.com)
```

Example link

Images

```
![Example image](../../images/example.jpg){ width="250" }
```


Figure 1: Example image

Blockquotes

```
> This is a blockquote.
```

This is a blockquote.

Code

```
Inline code: `print("Hello, World!")`
Code block:
    ``python
def hello_world():
    print("Hello, World!")

Inline code: print("Hello, World!")
Code block:
def hello_world():
    print("Hello, World!")
```

Tables

Table: A simple table

Table 1: A simple table

Header 1	Header 2
Cell 1	Cell 2
Cell 3	Cell 4

Math

```
Inline math: $x^2$ is the square of $x$.

Block math: $$$ \left( \frac{0^{-x^2}}{dx} = \frac{\sqrt{\pi^2}}{2} \right) $$
```

Inline math: x^2 is the square of x.

Block math:

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Definition Blocks

Lorem ipsum dolor sit amet

: Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.

Cras arcu libero

: Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Lorem ipsum dolor sit amet Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.

Cras arcu libero Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Definition Blocks + Lists

- **Lorem ipsum dolor sit amet**
 - : Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.
- **Cras arcu libero**
 - : Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.
 - Lorem ipsum dolor sit amet Sed sagittis eleifend rutrum. Donec vitae suscipit est. Nullam tempus tellus non sem sollicitudin, quis rutrum leo facilisis.
 - Cras arcu libero Aliquam metus eros, pretium sed nulla venenatis, faucibus auctor ex. Proin ut eros sed sapien ullamcorper consequat. Nunc ligula ante.

Empty Section

An other section that is empty.

How does GNSS work?

Introduction

GPS (Global Positioning System), also known as NAVSTAR (NAVigation Satellite Time And Ranging) had its first satellite launched in 1978.

GPS segments

The GPS system consists of three segments:

- 1. Space segment (satellites with atomic clocks)
- 2. Control segment (ground stations for clock offsets)
- 3. User segment (receivers)

Radio Signal

The GPS radio signal contains:

- the **L-band carrier frequency** between 1 and 2 GHz
- the Pseudo Random Noise (PRN, also called the spreading code), unique to each satellite, publicly available
- the navigation message containing the satellite orbit and clock information

Figure 2: GPS L1 CA-signal (scale is not accurate)

Initialisation

When starting, GPS receivers try to find a particular GPS satellite on *each of their channels* (tens to hundreds). This is done by **overlaying the received signal** with a replica of the **spreading code** and then shifting it until correlation shows a maximum (best fit, or match).

Pseudorange Measurement

The **pseudorange** $p_{r,s}$ is calculated by multiplying the travel time $\tau_{r,s}$ by the speed of light c:

$$p_{r,s} = c \cdot \tau_{r,s}$$
 where $\tau_{r,s} = t_r - t_s$

Carrier Phase Measurement

Carrier Phase Measurement:

- Measures **fractional phase difference** between the received *carrier wave* from the satellite and a locally generated *replica*.
- Provides a **very precise distance** measure (satellite to receiver)
- Needs to be **initialized** by finding the initial number of carrier wave cycles.
- Is much more precise than pseudorange code measurement. thanks to the **carrier period** being **much smaller** than code chip duration (in L1 CA-code signal, 1540 carrier periods fit in one PRN spreading code chip).

Jamming and Spoofing

There are multiple mays a GNSS signal may be threatened, jamming and spoofing being intentional attacks.

Jamming

By the time GNSS signals arrive at the antennas of a GNSS positioning system, the power level of these signals is very low. This low power level makes the signals susceptible to interference from other signals transmitted in the GNSS frequency range.

Jamming is a special case of signal interference where an attacker tries to block the incoming GNSS signal to a specific person/area.

GNSS receivers can use several methods to protect against interference and jamming:

- Signal filtering
- Multiple navigation sensors. For short-term interference, other sensors can help the receiver bridge brief periods of GNSS outage.
- Multi-frequency/multi-constellation GNSS makes it much harder to jam a signal on multiple different frequencies at once.
- Anti-jam antennas use multiple antenna elements to control the amount of signal received from a particular direction. When an anti-jam system senses interference from a direction, it turns down the antenna gain for it.

Spoofing

Unlike interference where GNSS is denied by overpowering the satellite signal, spoofing tricks the receiver into reporting an incorrect position. Spoofing is done by first jamming the GNSS receiver and then providing a false satellite signal that is either created by a signal generator or is a rebroadcast of a pre-recorded GNSS signal. Unlike interference, spoofing is always an intentional attack.

To protect against spoofing the same methods apply as against interference. Additionally, one of the most effective ways to protect against spoofing is to track encrypted signals that are broadcast by several of the GNSS constellations. Access to the encrypted signals is restricted and not available to all users.

Signal blockage

The GNSS signal can be blocked by many objects like trees or buildings, especially in urban areas. The main protection is again using multiple constellations and using additional sensors like an IMU.

Constellation failure

Although it is extremely unlikely that an entire constellation will fail, receivers that can track more than one constellation protect against this unlikely scenario.

GNSS performance

Introduction

Error Sources

Pseudorange Calculation

Multiple issues affect the calculation of the pseudorange:

- satellite clock offset (known).
- receiver clock offset (unknown).
- ionosphere delay (unknown).
- other errors, such as *multipath* (unknown).

The calculation is very sensible since $c \approx 3 \times 10^8 \,\mathrm{m/s}$, and a **1 µs** error will cause a **300** m error in the calculated distance.

Ionosphere Delay

Ionospheric delay:

- Is due to **free electrons** in the ionosphere.
- Is highly variable (depends on **time** and **space**).
- Ranges from a few meters to hundreds of meters.
- Is maximum near geomagnetic equator, around local noon and during solar maxima.
- Is proportional to 1/frequency².
- Can be estimated using two frequencies. This is why satellites emit at **L1** (1575.42 MHz) and **L2** (1227.60 MHz).

Accuracy and Precision

The quality of the measurement can be assessed through the carrier-to-noise-density ratio C/N_0 (signal strength).

The precision of the measurement depends on the method used:

Table 2: Precision of GNSS measurements

	Pseudorange	Carrier Phase
Precision	Few meters to few decimeters	Few centimeters to millimeter

Dilution of Precision

Availability, Continuity and Integrity

Availability

Continuity

Integrity

PPP-RTK

Abbreviations

- SV: space vehicles or orbiting space vehicles
- RTK: Real-Time Kinematic
- **PPP**: Precise Point Positioning
- PPP-RTK: Hybrid of PPP and RTK
- CORS: Continuously Operating Reference Station
- NRTK: Network RTK
- OSR: Observation State Representation
- SSR: State Space Representation

PPP

- **PPP** achieves decimetre-level or better accuracy by leveraging corrections transmitted via satellite or the internet.
- It utilises the SSR message format for efficient data transmission.
- **PPP** is suitable for global applications due to its independence from regional base stations.
- The primary limitation of **PPP** is its long convergence time, typically ranging from 5 to 30 minutes.
- **PPP** primarily corrects for orbit errors, clock errors, and biases to achieve its positioning solution.
- **PPP** offers a trade-off between accuracy and coverage, providing moderate accuracy over a wide area.
- Variations like PPP-AR and A-PPP exist, offering enhanced accuracy or specialized capabilities.

RTK

- RTK provides centimetre-level accuracy, achieving the highest precision among the discussed technologies.
- RTK relies on the OSR message format, which requires a two-way communication channel between the base station and the rover.
- The coverage area of **RTK** is limited to a short range (30-50 km) due to signal degradation with distance.
- RTK boasts a near-instantaneous convergence time, typically under 5 seconds.
- RTK corrects for various errors, including orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay.
- RTK is widely adopted in applications demanding high accuracy within a limited area, such as surveying and agriculture.
- Developments like Network RTK (NRTK) address range limitations by incorporating networks of base stations.

PPP-RTK

- **PPP-RTK** combines the strengths of PPP and RTK, offering high accuracy, global coverage, and fast convergence.
- **PPP-RTK** achieves centimetre-level accuracy comparable to RTK while offering global coverage.
- **PPP-RTK** employs the efficient **SSR** message format, enabling broadcast corrections and lower bandwidth requirements.
- PPP-RTK utilises a network of CORS stations for precise atmospheric and clock corrections.
- **PPP-RTK** converges significantly faster than PPP, typically within 1-10 minutes, and potentially seconds under ideal conditions.
- It effectively corrects for orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay, allowing for integer ambiguity resolution.
- **PPP-RTK** gracefully degrades to standard PPP performance when outside the range of the CORS network.

Comparing RTK, PPP, and PPP-RTK

Feature	RTK	PPP	PPP-RTK
Accura	cym-level (up to 1 cm + 1 ppm)	dm-level or better (less than 10 cm)	cm-level, similar to RTK
Covera Area	ghimited range (typically 30-50 km from the base station)	Global	Global with graceful degradation to standard PPP outside the range of the CORS network
For-	GOSR (Observation Space	SSR (State Space Repre-	SSR (State Space Representation)
mat Transn Chan- nel	Representation) nikionway communication between base	sentation) Corrections delivered via satellite or	Corrections broadcast to users , enabling a large number of users to connect simultaneously
Conver Time	instantaneous (typically less than	the internet Relatively long (typically 5-30 minutes)	Fast (typically 1-10 minutes, potentially within seconds under ideal conditions)
Errors Solved	5 seconds) Orbit errors, clock errors, bias, ionospheric delay, tropospheric	Orbit errors, clock errors, bias	Orbit errors, clock errors, bias, ionospheric delay, tropospheric delay, enabling integer ambiguity resolution
Key Strengt	delay High accuracy, very that convergence time	Global coverage, no reliance on local base stations	High accuracy, fast convergence time, global coverage, lower bandwidth requirements compared to RTK, graceful degradation outside CORS range
Key Limi- ta- tions	Limited range, high bandwidth requirements, reliance on local base stations	Long convergence time, lower accuracy compared to RTK	Still requires a CORS network (though less dense than RTK) and may degrade to standard PPP with increasing distance from CORS station

Figure 3: difference in message format and resolved errors

DGNSS

GNSS in the built environment (outdoor, indoor and in between)

Introduction

Multipath

Urban Canyon

Shadow Matching

CRS

Introduction

Coordinate Systems

Coordinate Reference Systems

Geographic Coordinate Reference Systems

Projected Coordinate Reference Systems

Linear Reference Systems

Terrestrial Reference Systems and Frames

Datum and Transformations

Transformations and conversions

Datums

Map Projections

RDNAP

Wi-Fi-monitoring / Fingerprinting

Introduction

Wi-Fi-Based Approaches

Wi-Fi Monitoring

Wi-Fi Fingerprinting