Quiz 7.5 – Vibrational Motion

Name:

Harmonic Oscillator
O_2 vibrations can me modeled as a quantum mechanical harmonic oscillator with reduced mass equal to
$8.0~AMU$ and a force constant of $1138\frac{N}{m}$. Give the fundamental angular frequency (ω), fundamental linear frequency (ν), and zero-point energy for oxygen vibrations.
Write the wavefunction for the first three states of a harmonic oscillator. You may use generic symbols for N and α , but you must expand the Hermite polynomials.

Give the energies of these three states, and sketch their wavefunctions on a poten	tial energy curve.
Give the classical maximum displacement for each of these three states, both in equilibrium ${\rm O_2}$ bond length $(121~pm)$	$1 \ pm$ and in % of the