Big Data Computing

Master's Degree in Computer Science 2022-2023

Gabriele Tolomei

Department of Computer Science
Sapienza Università di Roma
tolomei@di.uniroma1.it

UniPl (1999-2005)

UniPl (1999-2005)

UniVE (2008-2013)

UniPl (1999-2005)

UniVE (2008-2013)

Yahoo! Labs 02/27/2023 (2014-2017)

UniPl (1999-2005)

Yahoo! Labs 02/27/2023 (2014-2017)

UniPD (2017-2019)

UniVE (2008-2013)

UniPl (1999-2005)

Yahoo! Labs 02/27/2023 (2014-2017)

UniPD (2017-2019)

UniVE (2008-2013)

Sapienza (2019-)

If A Day Of Mine Were A Pie...

Expectation

If A Day Of Mine Were A Pie...

VS.

Expectation

Reality

Human-Explainable

HERCOLE Lab

Robust Human-Explainable HERCOLE Lab

Robust Human-Explainable **COllaborative** HERCOLE Lab

LEarning

Sounds cool?

HERCOLE Lab

Sounds cool?

Check out the lab's

home page

(still under construction, sic!)

Sounds cool?

Meanwhile you can follow us on Twitter

@HercoleLab

- Class schedule:
 - Monday from 2:00 p.m. to 5:00 p.m.

Aula Magna @ Viale Regina Elena, 295

- Class schedule:
 - Monday from 2:00 p.m. to 5:00 p.m. ——— Aula Magna @Viale Regina Elena, 295
 - Tuesday from 8:00 a.m. to 10:00 a.m. ———— Room IL @Via del Castro Laurenziano, 7a

• Class schedule:

• Monday from 2:00 p.m. to 5:00 p.m. ——— Aula Magna @Viale Regina Elena, 295

• Tuesday from 8:00 a.m. to 10:00 a.m. Room IL @ Via del Castro Laurenziano, 7a

• Office hours:

• Drop me a message to ask for a meeting **online** (Google Meet or Zoom) or inperson at my office (Room 106 @Viale Regina Elena, 295 – 1st Floor, Building E)

- Contacts:
 - Personal homepage: https://www.di.uniroma1.it/~tolomei
 - Email: tolomei@di.uniroma l.it

• Resources:

- Course's website: https://github.com/gtolomei/big-data-computing
- Moodle's web page: https://elearning.uniroma1.it/course/view.php?id=16079

• Resources:

- Course's website: https://github.com/gtolomei/big-data-computing
- Moodle's web page: https://elearning.uniroma1.it/course/view.php?id=16079
- Class material will be published on the course's website only
 - Along with other resources (e.g., suggested readings/books) if needed

• Resources:

- Course's website: https://github.com/gtolomei/big-data-computing
- Moodle's web page: https://elearning.uniroma1.it/course/view.php?id=16079
- Class material will be published on the course's website only
 - Along with other resources (e.g., suggested readings/books) if needed
- Moodle will be used mainly to communicate via the "News" forum
 - And for project submission (more on this later...)

Please, remember to enroll using the Moodle link above!

• Prerequisites:

- Familiarity with basics of Data Science and Machine Learning
- Solid knowledge of Calculus, Linear Algebra, and Probability&Statistics
- Programming skills (preferably in Python)

• Prerequisites:

- Familiarity with basics of Data Science and Machine Learning
- Solid knowledge of Calculus, Linear Algebra, and Probability&Statistics
- Programming skills (preferably in Python)

No worries!

Many subjects will be anyway revisited during class lectures

- <u>Exam</u>:
 - Development of a software project on a typical Big Data task

- Exam:
 - Development of a software project on a typical Big Data task
 - Before you can start working on your project I must approve your proposal first

• Exam:

- Development of a software project on a typical Big Data task
- Before you can start working on your project I must approve your proposal first
- Project proposals must be sent for approval at least one month before the project submission deadline

• Exam:

- Development of a software project on a typical Big Data task
- Before you can start working on your project I must approve your proposal first
- Project proposals must be sent for approval at least one month before the project submission deadline
- Sources of inspiration exist (e.g., <u>Kaggle</u>) but <u>creativity</u> is much more appreciated!

• Exam:

- Development of a software project on a typical Big Data task
- Before you can start working on your project I must approve your proposal first
- Project proposals must be sent for approval at least one month before the project submission deadline
- Sources of inspiration exist (e.g., Kaggle) but creativity is much more appreciated!
- Can be done either individually or in team of at most 2 students

• Exam:

- Development of a software project on a typical Big Data task
- Before you can start working on your project I must approve your proposal first
- Project proposals must be sent for approval at least one month before the project submission deadline
- Sources of inspiration exist (e.g., Kaggle) but creativity is much more appreciated!
- Can be done either individually or in team of at most 2 students
- A brief presentation (in english) describing the project is mandatory

• Exam:

- Development of a software project on a typical Big Data task
- Before you can start working on your project I must approve your proposal first
- Project proposals must be sent for approval at least one month before the project submission deadline
- Sources of inspiration exist (e.g., Kaggle) but creativity is much more appreciated!
- Can be done either individually or in team of at most 2 students
- A brief presentation (in english) describing the project is mandatory
- Other questions on all the topics covered in classes may be asked

Questions?

Outline of the Course

Big Data Phenomenon

02/27/2023

35

Outline of the Course

Big Data Phenomenon

Big Data Infrastructure

Outline of the Course

Big Data Phenomenon

Outline of the Course

Outline of the Course

Let's Get Started!

What the He...ck is That?

source: Wikipedia

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

A few numbers:

- ~2 MHz CPU clock frequency
- 16-bit architecture
- 3,840 bytes of main memory (RAM)
- 69,120 bytes of non-volatile read-only memory (ROM)

The Apollo Guidance Computer (AGC)

The computer installed on each command and lunar module of all the Apollo program's missions

A few numbers:

- ~2 MHz CPU clock frequency
- 16-bit architecture
- 3,840 bytes of main memory (RAM)
- 69,120 bytes of non-volatile read-only memory (ROM)

All the running software was written in AGC assembly language, now also available on <u>GitHub</u>

Almost 55 Years Have Passed...

... And The World Has Changed

... And The World Has Changed

... And The World Has Changed

AGC vs. Our Smartphone

- Most recent smartphones have
 - >3 GHz CPU clock frequency
 - 4÷16 GB of RAM
 - 64÷1000 GB of internal storage (don't call it ROM!)

AGC vs. Our Smartphone

- Most recent smartphones have
 - >3 GHz CPU clock frequency
 - 4÷16 GB of RAM
 - 64÷1000 GB of internal storage (don't call it ROM!)

~3 orders of magnitude faster (~1,000x)

~6÷7 orders of magnitude larger RAM and internal storage (up to 10,000,000x)

A Side Note on Units

Prefixes for multiples of bits (bit) or bytes (B)

Decimal SI Value 1000 10³ k kilo 1000² 10⁶ M mega 1000³ 10⁹ G giga 1000⁴ 10¹² T tera 1000⁵ 10¹⁵ P peta 1000⁶ 10¹⁸ E exa 1000⁷ 10²¹ Z zetta 1000⁸ 10²⁴ Y yotta

Binary		
Value	IEC	JEDEC
1024 2	. Ki kibi	K kilo
1024 ² 2	²⁰ Mi mebi	M mega
1024 ³ 2	30 Gi gibi	G giga
1024 ⁴ 2	⁴⁰ Ti tebi	_
1024 ⁵ 2	⁵⁰ Pi pebi	_
1024 ⁶ 2	e ⁶⁰ Ei exbi	-
1024 ⁷ 2	⁷⁰ Zi zebi	-
1024 ⁸ 2	⁸⁰ Yi yobi	_

Orders of Magnitude

$$100 = 1$$

source: https://www.youtube.com/watch?v=Ww4gYNrOkkg

Orders of Magnitude

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

54

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

Numbers Every Computer Scientist Should Know

Colin Scott's updated and interactive version of Jeff Dean's previous one

2020

The Information Technology (IT) Revolution

- Started almost 60 years ago and still rocketing
- Driven by:
 - Science/Engineering
 - Business
 - Society

What Happens on the Internet in 1 Minute?

source: LocaliQ

How Much Data is Generated Each Day?

• Sometimes a buzzword yet describing an actual phenomenon

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)
 - Velocity -> insane speed at which data is generated (e.g., Twitter stream)

- Sometimes a buzzword yet describing an actual phenomenon
- 4V's (sometimes, 5, 6 or even 7!)
 - Volume → very large amount of data (orders of TB or PB)
 - Variety → different formats of data: structured (relational tables), semistructured (JSON files), and unstructured (text/audio/video)
 - Velocity -> insane speed at which data is generated (e.g., Twitter stream)
 - Veracity -> reliability of the data used to drive decision processes

The 4 V's of Big Data

02/27/2023 source: <u>IBM</u>

66

The Value of Big Data

- Extracting knowledge from data is incredibly valuable
 - 5 out of 6 of the biggest companies in the world are "data companies"

The Value of Big Data

- Extracting knowledge from data is incredibly valuable
 - 5 out of 6 of the biggest companies in the world are "data companies"
- To get the most value out of it, data has to be:
 - Stored
 - Managed
 - Analyzed

Big Data Analysis: Landscape

Big Data Analysis Stack

Execution/Storage Infrastructure

Big Data Analysis Stack

Analytics Infrastructure

Execution/Storage Infrastructure

Big Data Analysis Stack

Data Analysis "Tools"

Analytics Infrastructure

Execution/Storage Infrastructure

Big Data Analysis Stack

What Will We Learn?

- To extract knowledge from different types of data
 - High-dimensional
 - Unlabeled/Labeled
 - Graph-based
 - Infinite/never-ending streams

What Will We Learn?

- To use different models of computation
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory

What Will We Learn?

- To apply big data analysis to actually solve real-world problems
 - Clustering
 - Predictive Analysis
 - Recommender Systems
 - Graph Analysis
 - Stream Processing

•

02/27/2023 78

Everything is ok as long as data fits entirely into main memory (few accesses to the disk are still tolerated)

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

 $5 \times 10^7 \times 10^5$ bytes = 5×10^{12} bytes = **5 TB**

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

$$5 \times 10^7 \times 10^5$$
 bytes = 5×10^{12} bytes = **5 TB**

Main Memory

- Google has crawled 50 million web pages (a tiny fraction of the Web!)
- The average size of each web page (HTML only) is ~100 KB
- The total size of the index will be

 $5 \times 10^7 \times 10^5$ bytes = 5×10^{12} bytes = **5 TB**

2 orders of magnitude difference between data transfer rate

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

 5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~14 hours

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

 5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~14 hours

 More than half a day to just read the index, without even do any computation on it!

 Assuming the disk transfer rate is 100 MB/sec the total time to read the entire index will be:

5×10^{12} bytes/ 10^8 bytes/sec = 5×10^4 seconds ~ 14 hours

- More than half a day to just read the index, without even do any computation on it!
- Single-node architecture is clearly not enough here
 - Scaling Up vs. Scaling Out

Scaling Up/Vertical Scaling

 Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

Scaling Up/Vertical Scaling

 Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

• PRO

• Easiest solution

Scaling Up/Vertical Scaling

• Buy a more performing disk (e.g., 250 or 500 MB/sec transfer rate)

PRO

Easiest solution

CON

- Improvement is physically-limited (e.g., 2.5x or 5x)
- Expensive

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

• PRO

• Flexibility (improvement is not bound apriori, just add new disks as needed)

Scaling Out/Horizontal Scaling

• Buy a set of commodity "cheap" disks and let them work in parallel

• PRO

• Flexibility (improvement is not bound apriori, just add new disks as needed)

CON

• Extra overhead required to manage parallel work

• Computing architecture based on the scaling out principle

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack
- A cluster is made of multiple racks

- Computing architecture based on the scaling out principle
- A lot of commodity nodes communicating with each other
- Each group of 16÷64 nodes is arranged in a so-called rack
- A cluster is made of multiple racks
- Network switches enabling node communication
 - I Gbps (inter-rack)
 - 2÷10 Gbps (intra-rack)

Rack N

• 3 major challenges posed by cluster architecture

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure
 - Minimize network communication bottleneck

- 3 major challenges posed by cluster architecture
 - Ensure reliability upon node failure
 - Minimize network communication bottleneck
 - Ease distributed programming model

• Suppose we have a cluster of N nodes

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

 $p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(node_i fails) = 1/1,000 = 0.001$$

• Associate with each node a random variable $X_{i,t}$

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$$

- Associate with each node a random variable $X_{i,t}$
 - $X_{i,t} \sim \text{Bernoulli}(p)$ outputs I (failure) with probability p = 0.001 and 0 (working) with probability (1-p) = 0.999

- Suppose we have a cluster of N nodes
- Each node has a Mean Time To Failure (MTTF) = 3 years ~ 1,000 days

$$p = P(\text{node}_i \text{ fails}) = 1/1,000 = 0.001$$

- Associate with each node a random variable $X_{i,t}$
 - $X_{i,t} \sim \text{Bernoulli}(p)$ outputs I (failure) with probability p = 0.001 and 0 (working) with probability (1-p) = 0.999
 - Assume for semplicity p is the same for all nodes and independent from each other

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

$$T \sim Binomial(N, p)$$

What is the expected number of failures in a certain day t, given that the probability of <u>one</u> machine failing is p?"

Under the (simplified) assumption that $X_{i,t}$ are all i.i.d.

$$T = X_{1,t} + X_{2,t} + \dots + X_{N,t}$$

$$T \sim Binomial(N, p)$$

$$E[T] = Np$$

• A single-node failure on a day may be a quite a rare event (0.1% chance)

- A single-node failure on a day may be a quite a rare event (0.1% chance)
- Things are not so infrequent when we deal with several nodes:
 - I (expected) failure per day with N = 1,000 nodes
 - 1,000 (expected) failures per day with N = 1,000,000 nodes

- A single-node failure on a day may be a quite a rare event (0.1% chance)
- Things are not so infrequent when we deal with several nodes:
 - I (expected) failure per day with N = 1,000 nodes
 - 1,000 (expected) failures per day with N = 1,000,000 nodes

Q1: How to make data and computation resilient to node failures?

Challenge: Network Bottleneck

• Moving data across nodes both intra- and inter racks may be costly

Challenge: Network Bottleneck

- Moving data across nodes both intra- and inter racks may be costly
- For example, if we have to transfer IOTB of data at I Gbps

 8×10^{13} bits / 1×10^9 bit/sec = 8×10^4 secs ~ 1 day

Challenge: Network Bottleneck

- Moving data across nodes both intra- and inter racks may be costly
- For example, if we have to transfer IOTB of data at I Gbps

 8×10^{13} bits / 1×10^9 bit/sec = 8×10^4 secs ~ 1 day

Q2: How to minimize data transfers so as to reduce network communications?

Challenge: Distributed Programming

• Distributed programming can be really complex

Challenge: Distributed Programming

- Distributed programming can be really complex
- Programmers should focus on the (distributed) task rather than dealing with the complexities of the cluster architecture

Challenge: Distributed Programming

- Distributed programming can be really complex
- Programmers should focus on the (distributed) task rather than dealing with the complexities of the cluster architecture

Q3: How to implement algorithms which take advantage of the distributed infrastructure without worrying about its complexities?

Data is generated at an unprecedented rate → Big Data

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable
- Traditional algorithms/techniques often don't scale very well

- Data is generated at an unprecedented rate → Big Data
- Extracting knowledge from such big data is incredibly valuable
- Traditional algorithms/techniques often don't scale very well
- There is the need for new "tools" which allow storing, managing, and analyzing big data painlessly