Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 16, 2017

Today:

- Graphical models
- Inference
 - Markov Blanket
 - Gibbs sampling
- Learning
 - fully observed: MLE, MAP
 - partly observed data: EM

Readings:

• Bishop chapter 8, 9-9.2

Bayesian Networks Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- Each node denotes a random variable
- Edges denote dependencies
- For each node X_i its CPD defines $P(X_i \mid Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Markov Blanket

The Markov blanket of a node x_i comprises the set of parents, children and co-parents of the node. It has the property that the conditional distribution of x_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

Why Markov Blanket is Useful for Inference

Why Markov Blanket is Useful for Inference

let's use shorthand P(a) to represent P(A=a)

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

To generate a random sample for roots of network (F or A):

- 1. let $\theta = P(F=1)$ # look up from CPD
- 2. r = random number drawn uniformly between 0 and 1
- 3. if $r < \theta$ then output F = 1, else F = 0

To generate a random sample for S, given F,A:

- 1. let $\theta = P(S=1|F=f,A=a)$ # use f, a from above step
- 2. r = random number drawn uniformly between 0 and 1
- 3. if $r < \theta$ then output S=1, else S=0

Continue, generating H|S=s and N|S=s

Generating a sample from joint distribution: easy

Note we can estimate <u>anything!</u>

e.g., P(N=n) by generating many samples from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

Gibbs Sampling:

Goal: Directly sample conditional distributions $P(X_1,...,X_n \mid X_{n+1},...,X_m)$

Approach:

- start with arbitrary initial values for unobserved X₁⁽⁰⁾,...,X_n⁽⁰⁾
 (and the observed X_{n+1}, ..., X_m)
- iterate for s=0 to a big number:

$$X_1^{s+1} \sim P(X_1|X_2^s, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$$

 $X_2^{s+1} \sim P(X_2|X_1^{s+1}, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$
 \dots
 $X_n^{s+1} \sim P(X_n|X_1^{s+1}, X_2^{s+1}, \dots X_{n-1}^{s+1}, X_{n+1}, \dots X_m)$

Eventually (after burn-in), the collection of samples will constitute a sample of the true $P(X_1,...,X_n \mid X_{n+1},...,X_m)$

* but often use every 100th sample, since iters not independent

Gibbs Sampling:

Flu Allergy Sinus Nose

Approach:

- start with arbitrary initial values for $X_1^{(0)},...,X_n^{(0)}$ (and observed $X_{n+1},...,X_m$)
- iterate for s=0 to a big number:

$$X_1^{s+1} \sim P(X_1 | X_2^s, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$$

$$X_2^{s+1} \sim P(X_2 | X_1^{s+1}, X_3^s \dots X_n^s, X_{n+1}, \dots X_m)$$

$$\dots$$

$$X_n^{s+1} \sim P(X_n | X_1^{s+1}, X_2^{s+1}, \dots X_{n-1}^{s+1}, X_{n+1}, \dots X_m)$$

Only need Markov Blanket at each step!

Gibbs is special case of Markov Chain Monte Carlo method

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - Variable elimination
- Can often use Monte Carlo methods
 - Generate many samples, then count up the results
 - Gibbs sampling (example of Markov Chain Monte Carlo)
- Many other approaches
 - Variational methods for tractable approximate solutions
 - Junction tree, Belief propagation, ...

see Graphical Models course 10-708

What you should know: Inference in Bayes Nets

- In general, intractable (NP-complete)
- Probability for a given joint assignment
- Probability for one unobserved variable given all the others
- Conditional independence / D-separation
- Markov blanket
- How to use Markov blanket to simplify inference
- How to generate samples from joint distribution
 - and how to use samples to estimate anything
- Gibbs sampling

Learning Bayes Nets from Data

Learning of Bayes Nets

- Four categories of learning problems
 - Graph structure may be known/unknown
 - Variable values may be fully observed / partly unobserved
- Easy case: learn parameters when graph structure is known, and training data is fully observed
- Interesting case: graph known, data partly observed
- Gruesome case: graph structure unknown, data partly unobserved

Learning CPTs from Fully Observed Data

 Example: Consider learning the parameter

$$\theta_{s|ij} \equiv P(S=1|F=i,A=j)$$

 MLE (Max Likelihood Estimate) is

$$\theta_{s|ij} = \frac{\sum_{k=1}^K \delta(f_k=i, a_k=j, s_k=1)}{\sum_{k=1}^K \delta(f_k=i, a_k=j)}$$
 kth training example
$$\delta(\mathbf{X}) = 1 \text{ if } \mathbf{X} \text{ is true}$$
 0 otherwise

Remember why?

let's use a_k to represent value of A on the kth example

MLE estimate of $\theta_{s|ij}$ from fully observed data

Maximum likelihood estimate

$$\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$$

Our case:

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$

$$P(data|\theta) = \prod_{k=1}^{K} P(f_k)P(a_k)P(s_k|f_ka_k)P(h_k|s_k)P(n_k|s_k)$$

$$\log P(data|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k|f_ka_k) + \log P(h_k|s_k) + \log P(n_k|s_k)$$

$$\frac{\partial \log P(data|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k|f_k a_k)}{\partial \theta_{s|ij}}$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

MLE for $\theta_{s|ij} = P(S = 1|F = i, A = j)$ from <u>fully</u> observed data

Maximum likelihood estimate

$$\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

like flipping coin $\sum_{k=1}^{K} \delta(f_k = i, a_k = j)$ times to see how often $s_k = 1$

MAP for $\theta_{s|ij} = P(S=1|F=i, A=j)$ from <u>fully</u> observed data

Maximum likelihood estimate

$$\theta \leftarrow \arg\max_{\theta} \log P(data|\theta)$$

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

MAP estimate

$$\theta \leftarrow \arg\max_{\theta} \log P(\theta|data) = \arg\max_{\theta} \log \left[P(data|\theta)P(\theta) \right]$$

If assume prior $P(\theta_{s|ij}) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta_{s|ii}^{\beta_1-1} (1 - \theta_{s|ij})^{\beta_0-1}$

$$\theta_{s|ij} = \frac{(\beta_1 - 1) + \sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{(\beta_1 - 1) + (\beta_0 - 1) + \sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

like coin flipping, including hallucinated examples

Estimate θ from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

$$\theta \leftarrow \arg\max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can't calculate MLE:

$$\theta \leftarrow \arg\max_{\theta} \log P(X, Z|\theta)$$

WHAT TO DO?

Estimate heta from partly observed data

- What if FAHN observed, but not S?
- Can't calculate MLE

$$\theta \leftarrow \arg\max_{\theta} \log \prod_{k} P(f_k, a_k, s_k, h_k, n_k | \theta)$$

- Let X be all observed variable values (over all examples)
- Let Z be all unobserved variable values
- Can't calculate MLE:

$$\theta \leftarrow \arg\max_{\theta} \log P(X, Z|\theta)$$

EM seeks* the estimate:

$$\theta \leftarrow \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$$

* EM guaranteed to find local maximum

Expected value

$$E_{P(X)}[f(X)] = \sum_{x} P(X = x)f(x)$$

EM seeks estimate:

$$\theta \leftarrow \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$$

here, observed X={F,A,H,N}, unobserved Z={S}

$$\log P(X, Z | \theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)$$

$$\begin{split} E_{P(Z|X,\theta)} \log P(X,Z|\theta) \ = \ \sum_{k=1}^K \sum_{i=0}^1 P(s_k = i|f_k, a_k, h_k, n_k) \\ [\log P(f_k) + \log P(a_k) + \log P(s_k|f_k a_k) + \log P(h_k|s_k) + \log P(n_k|s_k)] \end{split}$$

let's use a_k to represent value of A on the kth example

EM Algorithm - Informally

EM is a general procedure for learning from partly observed data Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Begin with arbitrary choice for parameters θ

Iterate until convergence:

- E Step: use X, θ to estimate the unobserved Z values
- M Step: use X values and estimated Z values to derive a better θ

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

EM Algorithm - Precisely

EM is a general procedure for learning from partly observed data

Given observed variables X, unobserved Z (X={F,A,H,N}, Z={S})

Define
$$Q(\theta'|\theta) = E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$$

Iterate until convergence:

- E Step: Use X and current θ to calculate $P(Z|X,\theta)$
- M Step: Replace current θ by

$$\theta \leftarrow \arg \max_{\theta'} Q(\theta'|\theta)$$

Guaranteed to find local maximum. Each iteration increases $E_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}

How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

let's use a_k to represent value of A on the kth example

E Step: Use X, θ , to Calculate P(Z|X, θ)

observed X={F,A,H,N}, unobserved Z={S}

How? Bayes net inference problem.

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) =$$

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

let's use a_k to represent value of A on the kth example

EM and estimating $\theta_{s|ij}$

observed $X = \{F,A,H,N\}$, unobserved $Z=\{S\}$

E step: Calculate $P(Z_k|X_k;\theta)$ for each training example, k

$$P(S_k = 1 | f_k a_k h_k n_k, \theta) = E[s_k] = \frac{P(S_k = 1, f_k a_k h_k n_k | \theta)}{P(S_k = 1, f_k a_k h_k n_k | \theta) + P(S_k = 0, f_k a_k h_k n_k | \theta)}$$

M step: update all relevant parameters. For example:

$$\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) \ E[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Recall MLE was:
$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM and estimating θ

More generally,

Given observed set X, unobserved set Z of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable in each training example

M step:

Calculate θ similar to MLE estimates, but replacing each count by its expected count

$$\delta(Z=1) \to E_{Z|X,\theta}[Z]$$
 $\delta(Z=0) \to (1 - E_{Z|X,\theta}[Z])$

Using Unlabeled Data to Help Train Naïve Bayes Classifier

Learn P(Y|X)

Υ	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

E step: Calculate for each training example, k
the expected value of each unobserved variable

Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k

the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), ...x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but

replacing each count by its expected count

let's use y(k) to indicate value of Y on kth example

EM and estimating θ

Given observed set X, unobserved set Y of boolean values

E step: Calculate for each training example, k
the expected value of each unobserved variable Y

$$E_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1|x_1(k), ...x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k)|y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k)|y(k) = j)}$$

M step: Calculate estimates similar to MLE, but replacing each count by its expected count

$$\theta_{ij|m} = \hat{P}(X_i = j|Y = m) = \frac{\sum_k P(y(k) = m|x_1(k) \dots x_N(k)) \ \delta(x_i(k) = j)}{\sum_k P(y(k) = m|x_1(k) \dots x_N(k))}$$

MLE would be:
$$\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$$

- Inputs: Collections \mathcal{D}^l of labeled documents and \mathcal{D}^u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, \mathcal{D}^l , only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Loop while classifier parameters improve, as measured by the change in l_c(θ|D; z) (the complete log probability of the labeled and unlabeled data
 - **(E-step)** Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, *i.e.*, the probability that each mixture component (and class) generated each document, $P(c_j|d_i;\hat{\theta})$ (see Equation 7).
 - (M-step) Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(\mathcal{D}|\theta)P(\theta)$ (see Equations 5 and 6).
- Output: A classifier, $\hat{\theta}$, that takes an unlabeled document and predicts a class label.

From [Nigam et al., 2000]

Experimental Evaluation

- Newsgroup postings
 - 20 newsgroups, 1000/group
- Web page classification
 - student, faculty, course, project
 - 4199 web pages
- Reuters newswire articles
 - 12,902 articles
 - 90 topics categories

20 Newsgroups

Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence	word w ranked by	DD	D
DD	P(w Y=course) / P(w Y ≠ course)	D	DD
artificial		lecture	lecture
understanding		сс	cc
DDw		D^{\star}	DD:DD
dist		DD:DD	due
identical		handout	D^{\star}
rus		due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		DDam	hw
cognitive	I laine and labeled	yurttas	exam
logic	Using one labeled	homework	problem
proving	example per class	kfoury	DDam
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

What you should know about EM

- For learning from partly unobserved data
- MLE of $\theta = \arg \max_{\theta} \log P(data|\theta)$
- EM estimate: $\theta = \arg\max_{\theta} E_{Z|X,\theta}[\log P(X,Z|\theta)]$ Where X is observed part of data, Z is unobserved
- EM for training Bayes networks
- Can also develop MAP version of EM
- Can also derive your own EM algorithm for your own problem
 - write out expression for $E_{Z|X,\theta}[\log P(X,Z|\theta)]$
 - E step: for each training example X^k , calculate $P(Z^k \mid X^k, \theta)$
 - M step: chose new θ to maximize $E_{Z|X,\theta}[\log P(X,Z|\theta)]$

Learning Bayes Net Structure

How can we learn Bayes Net graph structure?

In general case, open problem

- can require lots of data (else high risk of overfitting)
- can use Bayesian priors, or other kinds of prior assumptions about graph structure to constrain search

One key result:

- Chow-Liu algorithm: finds "best" tree-structured network
- What's ' '

- suppo
$$KL(P(\mathbf{X}) \mid\mid T(\mathbf{X})) \equiv \sum_k P(\mathbf{X}=k) \log \frac{P(\mathbf{X}=k)}{T(\mathbf{X}=k)}$$
 netwo

– Chow-Liu minimizes Kullback-Leibler divergence:

Chow-Liu Algorithm

Key result: To minimize KL(P || T) over possible tree networks T representing true P, it suffices to find the tree network T that maximizes the sum of mutual informations over its edges

Mutual information for an edge between variable A and B:

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

This works because for tree networks with nodes $\mathbf{X} \equiv \langle X_1 \dots X_n \rangle$

$$KL(P(\mathbf{X}) || T(\mathbf{X})) \equiv \sum_{k} P(\mathbf{X} = k) \log \frac{P(\mathbf{X} = k)}{T(\mathbf{X} = k)}$$
$$= -\sum_{i} I(X_{i}, Pa(X_{i})) + \sum_{i} H(X_{i}) - H(X_{1} \dots X_{n})$$

Chow-Liu Algorithm

- 1. for each pair of variables A,B, use data to estimate P(A,B), P(A), and P(B)
- 2. for each pair A, B calculate mutual information

$$I(A,B) = \sum_{a} \sum_{b} P(a,b) \log \frac{P(a,b)}{P(a)P(b)}$$

- 3. calculate the maximum spanning tree over the set of variables, using edge weights I(A,B) (given N vars, this costs only O(N²) time)
- 4. add arrows to edges to form a directed-acyclic graph
- 5. learn the CPD's for this graph

Chow-Liu algorithm example Greedy Algorithm to find Max-Spanning Tree

[courtesy A. Singh, C. Guestrin]

Tree Augmented Naïve Bayes

[Nir Friedman et al., 1997]

Bayes Nets – What You Should Know

Representation

- Bayes nets represent joint distribution as a DAG + Conditional Distributions
- D-separation lets us decode conditional independence assumptions

Inference

- NP-hard in general
- For some graphs, closed form inference is feasible
- Approximate methods too, e.g., Monte Carlo methods, ...

Learning

- Easy for known graph, fully observed data (MLE's, MAP est.)
- EM for partly observed data, known graph
- Learning graph structure: Chow-Liu for tree-structured networks
- Hardest when graph unknown, data incompletely observed