- gesucht Menge aller Lösungen x der simultanen Kongruenzen
 - $-x \equiv c_1 \bmod m_1$
 - $-x \equiv c_2 \bmod m_2$
 - **–** ...
 - $-\ x \equiv c_n \bmod m_n$
- Vorgehensweise
 - m_1 bis m_n sind teilerfremd
 - * ansonsten redundante Kongruenzen eliminieren
 - Produkt berechnen

*
$$M = \prod_{i=1}^n a_i$$
 – $M_i = \frac{M}{m_i}$

- euklidischen Alg. anwenden

*
$$a_i * m_i + b_i * M_i = 1$$

- Lösung

$$* x = \sum_{i=1}^{n} x_i * s_i * Ai$$

- * Falls a $\{0,...,m-1\}$, b $\{0,...,m-1\}$ sodass $a\equiv b \mod m$
- Beispiel:
 - gegeben:

$$* \ c_1=1, c_2=2, c_3=3$$

$$*\ m_1=3, m_2=4, m_3=5$$

- -m = 3 * 4 * 5 = 60
- euklidische Alg.
 - * l=1

- * l=2
 - $A_2 = -1$
- * l=3

[[Diskrete Mathematik]]