Recitation #18: Comparison Tests and Alternating Series

Problem 1 Determine if the following series absolutely converge, conditionally converge, or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n^2 e^{\frac{-n^3}{3}}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n + 3^{-n}}$$

(e)
$$\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$$

(f)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$$

(g)
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$$

Solution: (a) Since $\frac{1}{n+3}$ is positive and decreasing, the Alternating Series

Test applies. Thus, this series converges. But we know that $\sum_{n=1}^{\infty} \frac{1}{n+3}$

diverges (Harmonic Series) and so $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$ is conditionally convergent.

Learning outcomes:

Recitation #18: Comparison Tests and Alternating Series

(b) Let $a_n = \frac{(n+1)^n}{(2n)^n}$. Applying the Root Test, we see that

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{n+1}{2n}$$
$$= \frac{1}{2} < 1.$$

- So $\sum_{n=1}^{\infty} \frac{(n+1)^n}{(2n)^n}$ converges, and therefore $\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$ is absolutely convergent.
- (c) Let $f(x) = x^2 e^{\frac{-x^3}{3}}$. The function f(x) is continuous, positive, and decreasing. So we apply the integral test

$$\begin{split} \int_{1}^{\infty} x^{2} e^{\frac{-x^{3}}{3}} \, dx &= \lim_{b \to \infty} \int_{1}^{b} x^{2} e^{\frac{-x^{3}}{3}} \, dx \\ &= \lim_{b \to \infty} \int_{\frac{1}{3}}^{\frac{b^{3}}{3}} e^{-u} \, du \qquad \mathbf{u} = \frac{x^{3}}{3}, \ d\mathbf{u} = x^{2} \, dx \\ &= \lim_{b \to \infty} \left[-e^{\frac{-b^{3}}{3}} + e^{\frac{-1}{3}} \right] \\ &= 0 + e^{\frac{-1}{3}} = e^{\frac{-1}{3}}. \end{split}$$

So, by the Integral Test, $\sum_{n=1}^{\infty} n^2 e^{\frac{-n^3}{3}}$ converges. Therefore, $\sum_{n=1}^{\infty} (-1)^{n+1} n^2 e^{\frac{-n^3}{3}}$ is absolutely convergent.

(d) First, notice that

$$\frac{5}{3^n} > \frac{5}{3^n + 3^{-n}}.$$

Then since $\sum_{n=0}^{\infty} \frac{5}{3^n}$ converges (geometric series with $r = \frac{1}{3} < 1$), we know that $\sum_{n=0}^{\infty} \frac{5}{3^n + 3^{-n}}$ converges by the Comparison Test. Thus, the series $\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n + 3^{-n}}$ is absolutely convergent.

(e) Since the sequence $\left\{\frac{(-2)^n}{n}\right\}$ diverges, the series $\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$ diverges by the Divergence Test.

Recitation #18: Comparison Tests and Alternating Series

(f) Notice that all the terms of this series are positive. Use the **Limit Comparison Test** with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{3n^4 + 1} \cdot \frac{n^2}{1}$$
$$= \frac{1}{3}.$$

Therefore, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by the Limit Comparison Test we know that $\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$ converges and therefore is absolutely convergent.

(g) Notice that all the terms of this series are positive. Use the **Comparison** Test with $\sum_{n=1}^{\infty} 2 \cdot e^{-n}$.

First, notice that for all $n \geq 3$,

$$\left(1 + \frac{1}{n}\right)^2 < 2.$$

Also, notice that $\sum_{n=1}^{\infty} e^{-n}$ is a convergent geometric series. Therefore $\sum_{n=1}^{\infty} 2 \cdot e^{-n}$ converges, and so $\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$ converges by the Comparison Test and therefore is absolutely convergent.

- **Problem 2** (a) Find an upper bound for how close $\sum_{k=0}^{4} \frac{(-1)^k k}{4^k}$ is to the value of $\sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k}$.
 - (b) How many terms are needed to estimate $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n!}$ to within 10^{-6} ?

Solution: (a) Recall from the lesson that the remainder R_n is given by $R_n = |S - S_n| \le a_{n+1}.$

Recitation #18: Comparison Tests and Alternating Series

Also notice that

$$\sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k} = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)}{4^{k-1}}$$

and

$$\sum_{k=0}^{4} \frac{(-1)^k k}{4^k} = \sum_{k=1}^{5} \frac{(-1)^{k-1} (k-1)}{4^{k-1}}.$$

So

$$\left| \sum_{k=0}^{\infty} \frac{(-1)^k k}{4^k} - \sum_{k=0}^{4} \frac{(-1)^k k}{4^k} \right|$$

$$= \left| \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (k-1)}{4^{k-1}} - \sum_{k=1}^{5} \frac{(-1)^{k-1} (k-1)}{4^{k-1}} \right|$$

$$= |S - S_5|$$

$$= R_6 \le a_6 = \boxed{\frac{5}{4^5}}$$

(b) Since $R_n \leq a_{n+1}$, we need to find n so that

$$a_{n+1} \le 10^{-6}$$

$$\iff \frac{\ln(n+1)}{(n+1)!} \le 10^{-6}$$

$$\iff \frac{(n+1)!}{\ln(n+1)} \ge 10^{6}$$

Using a calculator, we see that this inequality holds for $n \approx 8.8$. So for $\lceil n \geq 9 \rceil$, $R_n < 10^{-6}$.