Math 550 Homework 5

Dr. Fuller Solutions

- 1. (a) $-xe^{xy} dx \wedge dy$
 - (b) $x_2 dx_1 \wedge dx_3 \wedge dx_4 + x_1 dx_2 \wedge dx_3 \wedge dx_4$
 - (c) $\left(-\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x}\right) dx \wedge dy$
 - (d) $\left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}\right) dx \wedge dy \wedge dz$
- 2. (a) Yes. For instance, $\omega = d(\frac{x^2}{2}dy)$.
 - (b) No, as ω is not closed.
 - (c) Yes. For instance, $\omega = d(-yz \, dx \frac{z^2}{2} \, dy)$.
- 3. (a) For all p, $\alpha(p)$ is a linear transformation $\mathbf{R}_p^3 \to \mathbf{R}$. Since $\alpha(p) \neq 0$, we have dim $\operatorname{im}\alpha(p) = 1$. The rank-nullity theorem implies dim $\ker \alpha(p) = 2$.
 - (b) $\ker \alpha_1(x,y,z)$ has (e_1,e_2) as a basis. The kernel at each point is simply the (xy)-plane.
 - (c) $\ker \alpha_2(x, y, z)$ has ((1,0,0), (0,1,-x)) as a basis. How to sketch these planes will be discussed in class.
 - (d) $\alpha_1 \wedge d\alpha_1 = dz \wedge d(dz) = dz \wedge 0 = 0$. $\alpha_2 \wedge d\alpha_2 = dx \wedge dy \wedge dz \neq 0$.
- 4. Since ω is exact, there is $\eta \in \Omega^{k-1}(\mathbf{R}^n)$ with $d\eta = \omega$. Then

$$d(\eta \wedge \varphi) = d\eta \wedge \varphi + (-1)^{k-1} \eta \wedge d\varphi = \omega \wedge \varphi + (-1)^{k-1} \eta \wedge 0 = \omega \wedge \varphi.$$

- 5. Suppose $M = c(((-\pi/2, \pi/4)))$, and let $g:(a,b) \to \mathbb{R}^2$ be a local parameterization with $(0,0) \in g((a,b))$. Consider the open set $V = M \cap B((0,0), \frac{1}{4})$ in M; it is connected, and so $g^{-1}(V)$ is an interval in (a,b). But then $V \{(0,0)\}$ has three connected components, while $g^{-1}(V \{(0,0)\})$ will have only two. This contradicts that g^{-1} is continuous.
- 6. (a) When $a \neq 0$, $f^{-1}(a)$ is a hyperboloid, which is a manifold. When a = 0, it is not a manifold. In this case, one may argue using connectedness as in the previous problem that there can be no local parameterization around $(0,0,0) \in f^{-1}(0)$.
 - (b) When a > 0, $f^{-1}(a)$ is a hyperboloid of one sheet, which is connected, but when a < 0, $f^{-1}(a)$ is a hyperboloid of two sheets, which is not.
- 8. Suppose $g: U \subset \mathbf{R}^{n-1} \to \mathbf{R}^n$ is a parameterization with $g(U) = S^{n-1}$. Since S^{n-1} is compact, we have that $g^{-1}(S^{n-1})$ is a non-empty compact open subset of \mathbf{R}^{n-1} . Since \mathbf{R}^{n-1} is connected, this is impossible.

The argument shows that any compact k-dimensional manifold in \mathbb{R}^n cannot be parameterized by a single parameterization.