The state of the s

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

	ROI. DATA - FSD
(Security classification of title, body of abstract and indexing	annotation must be intered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)	PR. REPORT SECURITY CLASSIFICATION
Besten Cellege	Unclassified
Space Data Analysis Laboratory	2% GROUP
Chestnut Hill, Massachusetts 0216	7
1 REPORT TITLE	•
ASPECT OF THE AXTS AND OF A VECTO	R PERPENDICULAR TO THE AXIS OF THE
SATELLITE OVI-5	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Tam.	uary 1966 - January 1967
Scientific Final Jan s. Authoritis (first name, middle initial, last name)	dary 1900 - January 1901
Rene J. Marcou	
Marvin E. Stick	
& REPORT DATE	74 TOTAL NO. OF PAGES 74 NO. OF REFS
2 January 1967	114 3
SE CONTRACTOR STANT NO. AICH UTGET NO.	94 ORIGINATOR'S REPORT NUMBER(5)
AF19(628)-2980 363	
& PROJECT, TASK, WORK UNIT NOS.	
8662 n/a n/a	
c. DOD ELEMENT N/ &	8 b. OTHER REPORT HO'S) (Any other numbers that may be assigned this report)
d DOD SUBELEMENT N/A	AFCRL-71-0357
	Mr OUT (1200)
IO. DISTRIBUTION STATEMENT	
1 - This document has been appro-	ved for public release and sale;

its distribution is unlimited.

11. SUPPLEMENTARY NOTES This research was supported by the Advanced Research Projects Agency.

12 SPONSORING MILITARY ACTIVITY Air Force Cambridge Research Laboratories (OP) L. G. Hanscom Field Bedford, Massachusetts 01730

13. ADSTRACT

The motion of a satellite with respect to a fixed system of coordinates in space has been determined. Formulas are derived which determine the aspect of the satellite axis, and the aspect of a vector perpendicular to the satellite axis. The telemetered data consisted of solar angle measurements in terms of voltage from six sun sensors along the pitch, yaw, and roll axis, and magnetic field measurements from three mutually perpendicular magnetometers.

The 7094 computer programs to determine the aspects along with the resulting plots of the desired angles as a function of flight time for different revolutions are exhibited. plots showed that the satellite was not stable as expected, but a stabilizing trend was noticeable as flight time increased.

KEYWORDS: Solar Sensor, Aspect Angle, Magnetometer, Vertistat

DD 1 NOV 45 1473

Unclassified

ASPECT OF THE AXIS AND OF A VECTOR PERPENDICULAR TO THE AXIS OF THE SATELLITE OV1-5

RENE J. MARCOU MARVIN E. STICK

SPACE DATA ANALYSIS LABORATORY
DEPARTMENT OF UNIVERSITY RESEARCH
BOSTON COLLEGE
CHESTNUT HILL, MASSACHUSETTS

Contract No. AF19 (628)-2980 Project No. 8662

FINAL REPORT

2 January 1967

This research was sponsored by the Advance Research Projects Agency under ARPA order 363

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

CONTENTS

Abstract	i
Nomenclature	ii
List of Illustrations	iv
Introduction .	vii
I. DESCRIPTION OF OV1-5 ASPECT SYSTEM	1
A. Position of Sun Sensors and Magnetometers	•
B. Determination of Sun Angles from Calibration Curves	• 5
C. Determination of Magnetic Field from Calibration Curves	7
11. DETERMINATION OF ANGLES BETWEEN SUN VECTOR AND AXES OF SATELLITE	8
A. Theoretical Description	8
B. Results and Plots for Different Revolutions (Full Orbits and	16
Real Time)	
III. DESCRIPTION OF FIXED REFERENCE SYSTEM	29
A. Fixed Reference System with Respect to the Vernal Equinox	29
B. Expression of the Required Vectors in this Fixed System	30
1. Sun vector	30
2. Magnetic field vector	30
3. The nose axis of the satellite	30
4. The unit vector from the center of the earth to the	30
satellite	
 The unit vector e_φ. 	32
IV. DETERMINATION OF OH AND OH FOR A FIXED SYSTEM	34
V. DETERMINATION OF @ AND # FOR A FIXED SYSTEM	38
A. Theoretical Description	38
B. Program to Determine 0 and \$\phi\$ with Explanations	42
VI. DETERMINATION OF THE ANGLE BETWEEN e AND Û"	48
A. Determination of e in another fixed system	48
B. Determination of the angle ρ	50

	a file was after pr	
	C. Theoretical description for (to, U")	5
	D. Program to determine (\$c, Û")	5
	E. Plots of the angle between \mathbf{c}_{ϕ} and $\hat{\mathbf{U}}^{\shortparallel}$ with explanations	5
Α	PPENDIX	
	A. SAMPLE LISTINGS OF "ASPECT FINAL" DATA	6:
	B. PROGRAM TO DETERMINE THE MAGNETIC FIELD FROM THE EPHEMERIS	71
	C. PLOTS OF LEAST SQUARES APPROXIMATIONS TO THE SUN SENSOR ANGLES	7:
	D. LINEAR APPROXIMATIONS TO MAGNETOMETER CALIBRATION INFORMATION	. 89
	E. ORBITAL AND REAL TIME PLOTS OF O AND O IN THE FIXED SYSTEM	92
	P. PURTUER DECOUCETON OF THE RETERMINATION OF THE ANGLE	100

٠,

ABSTRACT

The motion of a satellite with respect to a fixed system of coordinates in space has been determined. Formulas are derived which determine the aspect of the satellite axis, and the aspect of a vector perpendicular to the satellite axis. The telemetered data consisted of solar angle measurements in terms of voltage from six sun sensors along the pitch, yaw, and roll axis, and magnetic field measurements from three mutually perpendicular magnetometers.

The 7094 computer programs to determine the aspects along with the resulting plots of the desired angles as a function of flight time for different revolutions are exhibited. These plots showed that the satellite was not stable as expected, but a stabilizing trend was noticeable as flight time increased.

NOMENCLATURE

Symbol Symbol	
e _r , e _O , e _Φ	system of orthonormal base vectors on $0V1-5$ with e along the nose axis, e in the direction of sun sensor E, and $e_{\phi} = e_{\phi} x e_{r}$
α ₁ , α ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor A
β ₁ , β ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor B
~Y ₁ , Y ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor C
δ ₁ , δ ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor D
ξ ₁ , ξ ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor E
f ₁ , f ₂	the angles determined by output voltage #1 and output voltage #2 respectively for sun sensor F
i, j, k	system of orthonormal base vectors in a right handed fixed system with i and j in the equatorial plane and i parallel to the vernal equinox
ŝ	a unit vector parallel to the sun's rays to the satellite, but in opposite sense
M .	a unit vector parallel to the earth's magnetic field
o _s ·	declination of the sun
[®] s	apparent right ascension of the sun
⊕H	angle between the equatorial plane and the magnetic field
ΦH	azimuth of the magnetic field in the fixed system i , j , k

()	angle between the nose axis of the satellite and the equatorial plane
Φ	azimuth of the nose axis with respect to the vernal equinox
Θ , Φ Ε Ε	latitude and longitude of the satellite from the ephemeris
ω .	the angular velocity of rotation of the earth on its axis with respect to the vernal equinox
\hat{N}_1 , \hat{N}_2	orthogonal unit vectors defining a plane where \boldsymbol{e}_{φ} rotates
ρ	the angle between N ₁ and e_{ϕ}
Ψ _Н .	the angle between the magnetic field vector and the equatorial plane of the earth
λ_{H}	the azimuth of the magnetic field vector with respect to the Greenwich Meridian Plane
ï, j,	geocentric system of base unit vectors
F	total magnetic field
R _E	vector from the earth's center to the satellite in the rotating system
β _s	angle between the axis of the satellite and the sun vector
β _H	angle between the axis of the satellite and the magnetic field vector
Û"	unit vector from the center of the earth to the satellite
Υ _s	angle between e and the sun vector

ILLUSTRATIONS

Figure	Рарс
1. Diagram of OV1-5 Aspect System	2
2. Intersection of Cone Angles for Sun Sensor A	8
3. Intersection of Cone Angles for Sun Sensor C	• 11
4. Cone Angles for Sun Sensor E	. 13
5. Plot of (♣S,e _r) for Revolution 480	17
6. Plot of (⟨Ŝ,e _O) for Revolution 480	18
7. Plot of (★S,e,) for Revolution 480	19
8. Plot of (√S,e _r) for Revolution 957	20
9. Plot of (≰Ŝ,e _o) for Revolution 957	, 21
10. Plot of (⊀S,e,) for Revolution 957	22
11. Plot of (\$\$,e _r) for Real Time 1236 and 1237	23
12. Plot of (∢Ŝ,e _O) for Real Time 1236 and 1237	24
13. Plot of (≼S,e _d) for Real Time 1236 and 1237	25
14. Plot of (∤Ŝ,e _r) for Revolution 1360	26
15. Plot of (≮S,e _e) for Revolution 1360	27
16. Plot of (∜S,e _φ) for Revolution 1360	28
17. Fixed System W.R.T. the Vernal Equinox	29
18. Fixed System at June 22	31
 Relation of Equatorial Plane Reference Points in the Fixe and Rotating Systems 	d 32
20. Representation of e_{ϕ} in the $\hat{N}_1 - \hat{N}_2$ Plane	33
21. Relation of Fixed and Rotating Systems	34
22. Representation of e_{ϕ} Relative to the \hat{S} - e_{r} Plane	48
23. Plot of (<e, 480<="" for="" revolution="" td="" û")=""><td>58</td></e,>	58

24.	Plot of	(se , W, for Revolution 957	•	59
25.	Plot of	(4e4, 11") for Real Time 1236 and 1237		60
26.	Plot of	(3e, (') for Revolution 1360		61
27.	Plot of Voltage	Least Squares Approximation for Sun Sensor	A - Output	7:
28.	Plot of Voltage	Least Squares Approximation for Sun Sensor 2	A - Output	. 78
29.	Plot of Voltage	Least Squares Approximation for Sun Sensor	B - Output	79
30.	Plot of Voltage	Least Squares Approximation for Sun Sensor	B - Output	80
31.	Plot of Voltage	Least Squares Approximation for Sun Sensor	C - Output	81
32.	Plot of Voltage	Least Squares Approximation for Sun Sensor 2	C - Output	82
33.	Plot of Voltage	Least Squares Approximation for Sun Sensor 1	D - Output	83
34.	Plot of Voltage	Least Squares Approximation for Sun Sensor 2	D - Output	84
35.	Plot of Voitage	Least Squares Approximation for Sun Sensor	E - Output	85
36.	Plot of Voltage	Least Squares Approximation for Sun Sensor 2	E - Output	86
37.	Plot of Voltage	Least Squares Approximation for Sun Sensor	F - Output	87
38.	Plot of Voltage	Least Squares Approximation for Sun Sensor 2	F - Output	88
39.	Plot of	Linear, Approximation for X Magnetometer		89
40.	Plot of	Linear Approximation for Y Magnetometer		90
41.	Plot of	Linear Approximation for Z Magnetometer		91
42.	Plot of	0 vs. Greenwich Mean Time for Revolution 48	0	92
43.	Plot of	to vs. Greenwich Mean Time for Revolution 48	0	93
44.	Plot of	6 vs. Greenwich Mean Time for Revolution 95	7	94

45.	Plot	of	Φ	vs.	Greenwich	Mean	Time	for	Revolution 957	95
46.	Plot	of	0	vs.	Greenwich	Mean	Time	for	Real Time 1236 and 1237	96
47.	Plot	of	Φ	vs.	Greenwich	Mean	Time	for	Real Time 1236 and 1237	97
48.	Plot	of	0	vs.	Greenwich	Mean	Time	for	Revolution 1360	98
49.	Plot	of	٥	VS.	Greenwich	Mean	Time	for	Revolution 1360	QQ

INTRODUCTION

To properly analyze the data of certain satellite detectors one must know the angle between the axis of the detector and a specified vector in space. The goal in this report is to determine the angle between a detector perpendicular to the satellite axis and a vector from this detector to the earth's center. This was done by considering the angle between a vector from the center of the earth (which we will call $\hat{\mathbf{U}}$ ") to the satellite and a vector (which we will call \mathbf{e}_{ϕ}) perpendicular to the axis of the satellite and in the opposite direction from the detector.

In order to obtain this angle it is necessary to first determine the motion of the satellite about the pitch, yaw, and roll axes. In the early portions of the flight of OVI-5, motion about each of these axes was active indicating that the satellite was quite unstable. However at revolution 957 the motion became approximately 1.5 turns on the pitch axis and roll axis with rotation of approximately 45 degrees on the yaw axis. At revolution 1360, complete turns ceased on each of the axes and the satellite seemed to be quite stable. It should be noted that a stabilizing trend was apparent after revolution 957 but the degree of stabilization could

only be determined by analysis of the particular revolution.

The aspect of the axis of the satellite was also necessary as input data for the analysis of the aspect of the vector perpendicular to the axis, that is the angle between \mathbf{e}_{ϕ} and $\hat{\mathbf{U}}^{n}$ as a function of flight time.

CHAPTER I

DESCRIPTION OF OVI-5 ASPECT SYSTEM

The responsibility for designing a suitable spacecraft aspect detection system was given to American Science and Engineering, Inc. This system consisted of six solar aspect sensors and three magnetometers. For the sun sensors, calibration consists of determining the two output voltages for each sensor which result from the light source of the sun. The requirement for the sun sensors are a clear 45° conical field of view with axis alignment consistent with the magnetometers. Only one sun sensor is recording at a given time and that sensor is determined by the appropriate recorded signature voltage.

A. Position of Sun Sensors and Magnetometers

The OV1-5 aspect system sensor locations and orientation along with the calibration information is shown in the following pages.* The pitch magnetometer X determines the component of the magnetic field sensed along the pitch axis; the yaw magnetometer Z determines the component of the magnetic field sensed along the yaw axis and the roll magnetometer Y determines the component of the magnetic field sensed along the roll axis. Solar aspect output #1 is used to determine the angle between the sun and the satellite in the plane of the reference arrow marked on the appropriate sun sensor. Solar aspect output #2 is used to determine the angle between the sun and the satellite in the plane perpendicular to the arrow marked on the appropriate sun sensor.

This information was provided by American Science and Engineering, Inc., Cambridge, Massachusetts.

OV1-5 ASPECT SYSTEM SENSOR LOCATIONS AND ORIENTATION

OUTPUT SIGNAL SENSE

SOLAR ASPECT SYSTEM

MAGNETOMETERS

B

front view Ov 00 5 v satellite

Figure 1

SOLAR ASPICT SYSTEM

		SENSO			SENSOR B		
Signature Voltage		4. 0	59	3.9	0		
=.		ASPECT #1	OUTPUT #2	ASPECT C	UTPUT #2		ASPE #1
ANGĻE	•						
45		4.27	4. 23	4.24	4.24	,	4.24
40		3.96	3.90	3.86	3. 97	•	3.87
30		3.33	3.30	3.24	3.31		3. 2 3
20		2.92	2.87	2.82	2.87		2.86
10		2.57	2.52	2.47	2.50	1	2.52
0		2.26	2.21	2.16	2. 13		2. 21
10		1.95	1.89	1.33	1.86		1.90
20		1.61	1.54	1.48	1.51		1.56
30		1.21	1. 11	1.04	1.09		1. 14
40		0.63	0.48	0.35	0.50		0. 52
45		0.29	0.23	0.26	0. 24		0.26

SOLAR ASPICT SYSTEM CALIBRATION

. A	SENSOR B 3.90		SENSO 3.1		SENS	SENS.	
UTP UT #2	ASPECT #1	OUTPUT #2	ASPECT #1	OUTPUT #2	ASPECT #1	OUTPUT, #2	ASPECT #1
1						, •	
4. 23	4.24	4.24	4.24	4.28	4.25	4. 23	4.35
3.90	3.86	3.97	3.87	4.04	3.93	3.37	4.26
3.30	3.24	3.31	3.23	3.35	3.28	3.27	3.51
2. 87	2.82	2.87	2.86	2.88	2.80	2.86	2.99
2. 52	2.47	2.50	2. 52	2.51	2.51	2.51	2.57
2. 21	2.16	2. 13	2. 21	2. 19	2.20	2. 19	2.19
1.89	1.33	1.86	1.90	1.87	1.89	1. 85	1.81
1.54	1.43	1.51	1.56	1.54	1,56	1. 51	1.42
1. 11	1.04	1.09	1.14	1. 16	1.15	1. 07	0.97
0.48	0.35	0.50	0.53	0.65	0.54	0.45	0.42
0. 23	0.26	0. 24	0. 26	0.30	0.20	0. 24	0.19

A CALIBRATION

3. 19	SENŠOR D 2.42			SOR E B6V	SENSOR F 1.57		
CT OUTPUT #2	ASPEC #1	T OUTPUT · #2	ASPECT #1	OUTPUT #2		OUTPUT #2	
4. 28	4.25	4. 23	4.35	0. 24	4. 27	4. 26	
4.04	3.93	3. 37	4.26	0.49	3.94	3.98	
3 . 35	3.28	3. 27	3.51	1.07	3.21	3.33	
2.88	2.80	2.86	2.99	1.52	2.89 .	2.88	
2.51	2.51	2. 51	2.57	1. 88	2.54.	2.52	
2. 19	2.20	2. 19	2.19	2.23	2. 21	2.20	
1.87	1.89	1. 85	1.81	2.59	1. 90	1. 87	
1.54	1.56	1. 51	1.42	2. 97	1.54	1.53	
1. 16	1. 15	1. 07	0.97	3.43	1. 10	1. 12	
0.65	0.54	0.45	0.42	4. C 5	0.45	0.51	
0.30	0.23	0. 24	0.19	4.30	0. 28	0. 23	

MAGNETOMETER CALIBRATION INFORMATION

Field in Milligauss		X		Y	2.
coo .		4.81		4. 80	. 4.81
550		4.63		4.62	4.65
500	•	4.45		1.43	4.47
450		4.25		4.23	4.25
400		4.04		4.01	1.05
350		3. H3		3.79	2.81
300		3.61		3.5 7	° 57
250		3.39		2.35	3.34
200		3.18		3. 14	3.13
150		2.98		2. 94	2. 33
100		2.78		2.76	2.71
50		2.59		2.58	2. 57
0		2.41	•	2.41	2.40
-50		2.22		2. 24	2. 23
-100		2.03		2.06	2.05
-150		1.84		1. 37	1.36
-200		1.63		1. 68	1. 67
-250		1.42		1. 47	1. 45
-300		1.21		1. 26	1.22
-350		. 99	•	1.03	. 98
-400		. 78	-	. 82	.75
-450	•	. 58		. 61	.53
-500		. 38		. 40	.32
-550		. 19		. 21	+. 14
-600		+.02		+.03	03

B. Determination of Sun Angles from Calibration Curves

Using the calibration information provided, a least squares cubic fit was made to each of the two output voltages for all six sun sensors. The method was as follows:

$$\Theta = A + BV + CV^2 + DV^3$$

where V equals the output voltage, Θ equals the sun-satellite angle, and A, B, C, D are the constants to be determined.

Let

$$I_{n} = \sum_{k=1}^{n} [A + BV_{k} + CV_{k}^{2} + DV_{k}^{3} = \Theta_{k}]^{2}$$

$$= \frac{\partial In}{\partial A} = \frac{\partial In}{\partial B} = \frac{\partial In}{\partial C} = \frac{\partial In}{\partial D} = 0$$

$$= An + B \sum_{k=1}^{n} V_{k} + C \sum_{k=1}^{n} V_{k}^{2} + D \sum_{k=1}^{n} V_{k}^{3} = \sum_{k=1}^{n} \Theta_{k}$$

$$A \sum_{k=1}^{n} V_{k} + B \sum_{k=1}^{n} V_{k}^{2} + C \sum_{k=1}^{n} V_{k}^{3} = D \sum_{k=1}^{n} V_{k}^{4} = \sum_{k=1}^{n} V_{k}^{4} \Theta_{k}$$

$$A \sum_{k=1}^{n} V_{k} + B \sum_{k=1}^{n} V_{k}^{3} + C \sum_{k=1}^{n} V_{k}^{4} + D \sum_{k=1}^{n} V_{k}^{5} = \sum_{k=1}^{n} V_{k}^{3} \Theta_{k}$$

$$A \sum_{k=1}^{n} V_{k}^{4} + B \sum_{k=1}^{n} V_{k}^{4} + C \sum_{k=1}^{n} V_{k}^{5} + D \sum_{k=1}^{n} V_{k}^{6} = \sum_{k=1}^{n} V_{k}^{3} \Theta_{k}$$

Using Cramer's rule we can now find the desired constants.

$$\Delta = \begin{bmatrix} n & \sum v_k & \sum v_k^2 & \sum v_k^3 \\ \sum v_k & \sum v_k^2 & \sum v_k^3 & \sum v_k^4 \\ \sum v_k^2 & \sum v_k^3 & \sum v_k^4 & \sum v_k^5 \\ \sum v_k^3 & \sum v_k^4 & \sum v_k^5 & \sum v_k^6 \end{bmatrix}$$

$$A = \begin{bmatrix} \sum \circ_{k} & \sum v_{k} & \sum v_{k}^{2} & \sum v_{k}^{3} \\ \sum v_{k} \circ_{k} & \sum v_{k}^{2} & \sum v_{k}^{3} & \sum v_{k}^{4} \\ \sum v_{k}^{2} \circ_{k} & \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} \\ \sum v_{k}^{3} \circ_{k} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{6} \end{bmatrix}$$

$$A = \begin{bmatrix} n & \sum \circ_{k} & \sum v_{k}^{2} & \sum v_{k}^{3} \\ \sum v_{k} & \sum v_{k} \circ_{k} & \sum v_{k}^{3} & \sum v_{k}^{4} \\ \sum v_{k}^{2} & \sum v_{k}^{2} \circ_{k} & \sum v_{k}^{4} & \sum v_{k}^{5} \\ \sum v_{k}^{3} & \sum v_{k}^{3} \circ_{k} & \sum v_{k}^{4} & \sum v_{k}^{5} \\ \sum v_{k}^{3} & \sum v_{k}^{2} & \sum v_{k} \circ_{k} & \sum v_{k}^{4} \\ \sum v_{k} & \sum v_{k}^{2} & \sum v_{k} \circ_{k} & \sum v_{k}^{4} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{2} \circ_{k} & \sum v_{k}^{5} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{3} \circ_{k} & \sum v_{k}^{6} \end{bmatrix}$$

$$D = \begin{bmatrix} n & \sum v_{k} & \sum v_{k}^{2} & \sum v_{k} \circ_{k} & \sum v_{k}^{5} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{2} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{2} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{2} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{3} & \sum v_{k}^{4} & \sum v_{k}^{5} & \sum v_{k}^{3} \circ_{k} \\ \sum v_{k}^{5} & \sum v_{k}^{5} & \sum v_{k}^{5} & \sum v_{k}^{5} \circ_{k} \\ \sum v_{k}^{5} & \sum v_{k}^{5} & \sum v_{k}^{5} & \sum v_{k}^{5} & \sum v_{k}^{5} \circ_{k} \\ \sum v_{k}^{5} & \sum v_$$

The plots of the different curves for each sensor and output voltage can be found in the appendix.

C. Determination of the Magnetic Field from the Calibration Curves

A straight line fit was made for each magnetometer using the appropriate calibration information. The points and equations used are shown in the appendix along with the linear fits to the calibration curves. It should be noted that the X magnetometer has its direction coincident with the positive $\mathbf{e}_{\mathbf{r}}$ axis in the previous discussion. The Y magnetometer is coincident with $-\mathbf{e}_{\mathbf{0}}$, and the Z magnetometer is coincident with $-\mathbf{e}_{\mathbf{0}}$.

DETERMINATION OF THE ANGLES BETWEEN THE SUN VECTOR AND THE AXES OF THE SATELLITE

A. Theoretical Description

For sensor A with signature voltage 4.69^{V} , we have the following set-up:

Figure 2

 α_1 is the angle determined by output voltage #1 and α_2 is the angle determined by output voltage #2. The sun vector is determined by the intersection of the cones produced by α_1 and α_2 ; and we will now determine this sun vector. However, it should be noted that although the cones may intersect in two places, the ambiguity is resolved since we know which sensor is reading and therefore on which side the sun lies.

$$\frac{\sqrt{\chi^2 + z^2}}{\gamma} = \cot \alpha_1 \tag{1}$$

$$\frac{\sqrt{x^2 + y^2}}{7} = \cot \alpha_2 \tag{2}$$

Subtracting, we get

$$z^{2} - y^{2} = y^{2} \cot^{2} \alpha_{1} - z^{2} \cot^{2} \alpha_{2}$$

$$z^{2} \csc^{2} \alpha_{2} = y^{2} \csc^{2} \alpha_{1}$$

$$z = y \frac{\sin \alpha_{2}}{\sin \alpha_{1}}$$

$$\chi^{2} = \gamma^{2} \left[\frac{\cos^{2} \alpha_{1}}{\sin^{2} \alpha_{1}} - \frac{\sin^{2} \alpha_{2}}{\sin^{2} \alpha_{1}} \right] = \gamma^{2} \left[\frac{\cos^{2} \alpha_{1} - \sin^{2} \alpha_{2}}{\sin^{2} \alpha_{1}} \right]$$

=>X ==
$$\frac{y}{\cos^2\alpha_1 - \sin^2\alpha_2}$$

 $\sin\alpha_1$

$$Y = Y = \frac{\sin \alpha_1}{\sin \alpha_1}$$

$$Z = \pm \gamma \frac{\sin \alpha_2}{\sin \alpha_1}$$

Therefore any vector R from the satellite to the given light source can be expressed as:

$$R = e_{\mathbf{r}} \left[y \frac{\sqrt{\cos^2 \alpha_1 - \sin^2 \alpha_2}}{\sin \alpha_1} \right] + e_{\theta} \left[y \frac{\sin \alpha_2}{\sin \alpha_1} \right] + e_{\phi} y \frac{\sin \alpha_1}{\sin \alpha_1}$$

Normalizing this vector and expressing it in terms of the sun vector \hat{S} we get:

$$\hat{S} = e_{r} / \frac{1}{\cos^{2} a_{1} - \sin^{2} a_{2}} + e_{\phi} \sin a_{1}$$

1. if $\alpha_1 > 0$, $\alpha_2 > 0$

$$\hat{S} = e_r / \overline{\cos^2 \alpha_1 - \sin^2 \alpha_2} - e_\theta \sin|\alpha_2| + e_\theta \sin\alpha_1$$

 \hat{S} is in the octant e_r , $-e_\theta$, e_ϕ

2. if $\alpha_1 > 0$, $\alpha_2 < 0$

$$\hat{S} = e_r / \cos^2 \alpha_1 - \sin^2 \alpha_2 - e_\theta \sin \alpha_2 + e_\phi \sin \alpha_1$$

 \hat{S} is in the octant e_r , e_0 , e_0

3. if
$$\alpha_1 < 0$$
, $\alpha_2 > 0$

$$\hat{S} = e_r / \overline{\cos^2 \alpha_1 - \sin^2 \alpha_2} - e_\theta \sin |\alpha_2| - e_\phi \sin |\alpha_1|$$

$$\hat{S} \text{ is the octant } e_r, -e_\theta, -e_\phi$$

$$\hat{S} = e_r / \overline{\cos^2 \alpha_1 - \sin^2 \alpha_2} - e_\theta \sin \alpha_2 - e_\phi \sin |\alpha_1|$$

$$\hat{S} \text{ is the octant } e_r, e_\phi, -e_\phi$$

For sun sensor B with signature voltage 3.90 $^{\rm V}$ and output voltages β_1 and β_2 corresponding to α_1 and α_2 , we find

1. if
$$\beta_1 > 0$$
, $\beta_2 > 0$

$$\hat{S} = -e_r / \cos^2 \beta_1 - \sin^2 \beta_2 + e_{\Theta} \sin \beta_2 + e_{\phi} \sin \beta_1$$

 \hat{S} is in the obtant $-e_r$, e_{Θ} , e_{ϕ}

2. if
$$\beta_1 > 0$$
, $\beta_2 < 0$

$$\hat{S} = -e_r / \cos^2 \beta_1 - \sin^2 \beta_2 + e_\theta \sin \beta_2 + e_\phi \sin \beta_1$$

$$\hat{S} \text{ is in the octant } -e_r, -e_\theta, e_\phi$$

3. if
$$\beta_1 < 0_1 \beta_2 > 0$$

$$\hat{S} = -e_r \sqrt{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\theta} \sin \beta_2 + e_{\phi} \sin \beta_1$$

$$\hat{S} \text{ is in the octant } -e_r, e_{\theta}, -e_{\phi}$$

4. if
$$\beta_1 < 0, \beta_2 < 0$$

$$\hat{S} = -\epsilon_{\mathbf{r}} / \cos^2 \beta_1 - \sin^2 \beta_2 + \epsilon_{\theta} \sin \beta_2 + \epsilon_{\phi} \sin \beta_1$$

$$\hat{S} \text{ is in the octant.} -\epsilon_{\mathbf{r}}, -\epsilon_{\theta}, -\epsilon_{\phi}$$

Continuing with this same approach, we will now find S for sensors C and D. For sensor C with signature voltage 3.19 we have the following figure:

Figure 3

It should be noted that while sensor A faces along positive e_r , sensor C faces along positive e_{ϕ} . γ_1 and γ_2 are the angles produced by the output voltages where γ_1 corresponds to output voltage #1.

$$x^2 + y^2 = z^2 \cot^2 y_2 \tag{4}$$

$$z^2 + \gamma^2 = x^2 \cot^2 \gamma_1 \tag{5}$$

Subtracting and solving for X we find

$$X = {}^{\pm}Z \frac{\sin\gamma_1}{\sin\gamma_2} \tag{6}$$

Substituting (6) into (4) we find

$$y^2 = z^2 \left[\frac{\cos^2 \gamma_2}{\sin^2 \gamma_2} - \frac{\sin^2 \gamma_1}{\sin^2 \gamma_2} \right]$$

For sensor D with output signature voltage 2.42 $^{\rm V}$ and output angles δ_1 and δ_2 respectively, the sun vector can now be expressed as

$$\hat{S} = e_r \sin \delta_1 - e_0 \sin \delta_2 - e_\phi \sqrt{\cos^2 \delta_1 - \sin^2 \delta_2}$$
 (8)

This follows from the analysis for sensor C except that e_{Θ} is replaced by $-e_{\Theta}$ and e_{Φ} by $-e_{\Phi}$.

The reader can determine which quadrants the sun vector lies for (8) depending upon the conditions placed on δ_1 and δ_2 .

Now, we will find \hat{S} for sensors E and F. For sensor E with signature voltage .86 $^{\rm V}$, we have the following figure:

These cones actually intersect as can be seen from the figure for sensor C if we let $\vec{e}_{\phi} = -e_{\phi}$, $\vec{e}_{\theta} = e_{\phi}$, $\vec{e}_{r} = e_{r}$ where the bars represent the unit vectors for sensor E (and then remove the bars).

Sensor E faces positive e_{Θ} and ξ_1 and ξ_2 are the angles corresponding to the respective output voltages.

$$Y^2 + Z^2 = X^2 \cot^2 \xi_1$$

 $X^2 + Z^2 = Y^2 \cot^2 \xi_2$ (9)

Subtracting and solving for Y we get

$$Y = \pm X \frac{\sin \xi_2}{\sin \xi_1} \tag{10}$$

Substituting (10) into (9), we find

$$z^{2} = \chi^{2} \frac{(\cos^{2} \xi_{1} - \sin^{2} \xi_{2})}{\sin^{2} \xi_{1}}$$

$$z = \frac{\pm \chi}{\sin \xi_1} \sqrt{\cos^2 \xi_1 - \sin^2 \xi_2}$$

$$X = X \frac{\sin \xi_1}{\sin \xi_1}$$

The normalized sun vector can now be written as

$$\hat{S} = e_r \sin \xi_1 + e_0 / \frac{\cos^2 \xi_1 - \sin^2 \xi_2}{\cos^2 \xi_1 - \sin^2 \xi_2} + e_\phi \sin \xi_2$$

Due to output voltage #2 of sensor E as can be seen by the calibration of output voltage #2,

$$\hat{S} = e_r \sin \xi_1 + e_\theta \sqrt{\cos^2 \xi_1 - \sin^2 \xi_2} + e_\phi \sin \xi_2$$
 (11)

Once again the reader can determine which quadrants the sun vector lies in for (11) depending upon the conditions placed on ξ_1 and ξ_2 .

For sensor F with output signature voltage 1.57^{V} and output voltages f_1 and f_2 respectively.

$$\hat{S} = e_r \sin f_1 - e_\theta / \cos^2 f_1 - \sin^2 f_2 + e_\phi \sin f_2$$
 (12)

This follows from the analysis for sensor E except that

 \mathbf{e}_{Θ} is replaced by $-\mathbf{e}_{\Theta}$ and \mathbf{e}_{φ} is not changed due to the remark preceding (11) .

In summary, for each of the sun sensors, the unit vector S can be expressed as follows:

Sensor A
$$\hat{S} = e_r / \frac{\cos^2 \alpha_1 - \sin^2 \alpha_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\theta} \sin \alpha_2 + e_{\phi} \sin \alpha_1$$
Sensor C
$$\hat{S} = e_r / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\theta} \sin \beta_2 + e_{\phi} \sin \beta_1$$
Sensor C
$$\hat{S} = e_r / \frac{\sin \beta_1 - e_{\theta} \sin \beta_2 - e_{\phi} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2}}{\sin \beta_1 - e_{\theta} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\phi} \sin \beta_2}$$
Sensor E
$$\hat{S} = e_r / \frac{\sin \beta_1 - e_{\theta} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\phi} \sin \beta_2}{\sin \beta_1 - e_{\theta} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\phi} \sin \beta_2}$$
Sensor F
$$\hat{S} = e_r / \frac{\sin \beta_1 - e_{\theta} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\phi} \sin \beta_2}{\sin \beta_2 - e_{\phi} / \frac{\cos^2 \beta_1 - \sin^2 \beta_2}{\cos^2 \beta_1 - \sin^2 \beta_2} + e_{\phi} \sin \beta_2}$$

To determine the angle between the sun vector and the axes of the satellite, we need only consider the respective dot products. That is:

$$\hat{S}.e_r = \cos(\hat{S}, e_r) = \text{cosine of the angle between}$$

$$\hat{S}.and e_r.$$

$$\hat{S}.e_0 = \cos(\hat{S}, e_0) = \text{cosine of the angle between}$$

$$\hat{S}.and e_0.$$

$$\hat{S}.e_\phi = \cos(\hat{S}, e_\phi) = \text{cosine of the angle between}$$

$$\hat{S}.and e_\phi.$$

Using this approach, we find the following angles:

Sensor A
$$\frac{Sensor B}{(3S, e_T) \arccos \sqrt{\cos^2 \alpha_1 - \sin^2 \alpha_2}}$$
 $\frac{Sensor B}{\arccos (-\sqrt{\cos^2 \alpha_1 - \sin^2 \alpha_2})}$ $\frac{90 - \gamma_1}{90 - \gamma_1}$ $\frac{(3S, e_0)}{(3S, e_0)}$ $\frac{90 + \alpha_2}{90 - \alpha_1}$ $\frac{90 - \beta_2}{90 - \beta_1}$ $\frac{90 - \beta_2}{\arccos (-\sqrt{\cos^2 \gamma_1 - \sin^2 \gamma_2})}$ $\frac{Sensor B}{(3S, e_0)}$ $\frac{Sensor E}{90 - \delta_1}$ $\frac{Sensor E}{\gcd (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}$ $\frac{Sensor E}{(3S, e_0)}$ $\frac{90 - \delta_1}{90 - \delta_1}$ $\frac{90 + \delta_2}{\arccos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}$ $\frac{90 - \delta_2}{\gcd (3S, e_0)}$ $\frac{90 - \delta_1}{90 - \delta_1}$ $\frac{\arccos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}{\arccos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}$ $\frac{90 - \delta_2}{\gcd (3S, e_0)}$ $\frac{90 - \delta_1}{\gcd (3S, e_0)}$ $\frac{3\cos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}{\gcd (3S, e_0)}$ $\frac{90 - \delta_1}{\gcd (3S, e_0)}$ $\frac{3\cos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}{\gcd (3S, e_0)}$ $\frac{90 - \delta_1}{\gcd (3S, e_0)}$ $\frac{3\cos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}{\gcd (3S, e_0)}$ $\frac{90 - \delta_1}{\gcd (3S, e_0)}$ $\frac{3\cos (-\sqrt{\cos^2 \delta_1 - \sin^2 \delta_2})}{\gcd (3S, e_0)}$

In each case output voltage #1 corresponds to the angle subscripted with a"1" and similarly for output voltage #2.

B. Results and Plots for Different Revolutions (Full Orbits and Real Time)

As can be seen by the following plots, the satellite is not well-behaved. During the later orbits, the motion of the satellite seems to becoming more stable than that of Rev. 480, however, at no time can a definite precession angle be found. The X exis of each of the plots represents seconds Greenwich Meridian time, and the Y exis represents the angle in degrees.

The program to determine the angles between the sun and the axes of the satellite is incorporated into the major program that will be discussed in Chapter V. The angles that are found range from 0° to 180° , so to predict a complete turn on either the pitch, roll, or yaw axis one would have to examine the appropriate plot. An example of this appears in the plot of ($\frac{1}{2}$ S, $\frac{1}{6}$) for revolution 480. The sharp descent at approximately 53.4k seconds indicates a complete turn of the roll axis, i.e. ($\frac{1}{2}$ S, $\frac{1}{6}$ S) is going from positive $0^{\circ} \rightarrow 180^{\circ}$ to negative $180^{\circ} \rightarrow 0^{\circ}$.

Since the signature voltages for the sun sensors were not extremely accurate, limits were set on each signature voltage to determine the appropriate sun sensor reading. These limits and the action taken can be found in the program referenced above.

Figure 5

Figure 6

Figure 7

53K

Figure 8

, ,

Figure 9

Figure 10

Figure 11

١,

됮..

Figure 12

딹.

Figure 13

120-180-DEGREES 60 <u>*</u>. 5×. 6K 7K 8K 8K 6K 5K 1 SECONDS $(\sqrt{5}, e_T)$ Revolution 1360 7/8/66 98

You

<u>.</u>

Figure 14

10K

11K

Figure 15

1

Figure 16

CHAPTER III

DESCRIPTION OF THE FIXED REFERENCE SYSTEM

A. Fixed Reference System with Respect to the Vernal Equinox

Since we are considering the motion of a satellite, the contribution of the earth's rotation about its axis and its rotation about the sun must be taken into account when trying to determine the aspect of the satellite, with respect to a fixed system of coordinates. To express the aspect in terms of a geocentric system of coordinates would not have much meaning due to the above angular contributions. The fixed system used is with respect to the vernal equinox* (March 21).

Let i be a unit vector parallel to the line from the observer to the point on the celestial sphere where the sun appears at the time of the vernal equinox and directed toward the sun. Let k be a unit vector parallel to the polar axis of the earth and j = kxi

Figure 17

The unit vector j lies in the equatorial plane of the earth.

Every vector in this fixed system can be expressed in the form

 $\hat{V} = \cos\theta_V \cos\theta_V + j \cos\theta_V \sin\phi_V + k \sin\theta_V.$ \hat{V} is an arbitrary unit vector in this fixed system, θ_V is the angle between the equatorial plane and the vector \hat{V} , ϕ_V is the azimuth of \hat{V} with respect to the vernal equinox.

^{*}The vernal equinox is defined as the intersection of the equatorial plane of the earth and orbital plane of the earth.

(15)

B. Expression of Required Vectors in this Fixed System of Coordinates

In this section we will describe the unit vectors \hat{S} , \hat{M} , e_{r} , \hat{U}'' , and e_{ϕ} in the fixed system of base vectors i, j, k that will be used in the next three chapters.

1. The sun vector

The unit sum vector S from the earth to the sum can be expressed

$$\hat{S} = i \cos \theta_{e} \cos \theta_{e} + j \cos \theta_{e} \sin \theta_{e} + k \sin \theta_{e}$$
 (13)

where θ_s is the apparent declination of the sun and ϕ_s is the apparent right ascension with respect to the vernal equinox at March 21. These angles were found in The American Ephemeris and Nautical Almanac - 1966.

2. The magnetic field vector

The unit vector M representing the magnetic field will be expressed

$$\hat{M} = i \cos \theta_{H} \cos \phi_{H} + j \cos \theta_{H} \sin \phi_{H} + k \sin \theta_{H}$$
 (14)

The determination of these angles Θ_H and Φ_H for the fixed system of coordinates i, j, k will be discussed in chapter IV.

3. The axis of the satellite, e_

The axis of the satellite can be expressed as the unit vector

 $e_r=i\ \cos\theta\ \cos\phi+j\ \cos\theta\ \sin\phi+k\ \sin\theta$ In Chapter V, we will go into a detailed description explaining how to obtain the angles 0 and 4.

4. The vector U" from the center of the earth to the satellite

Given the following information:

tm = eppemeris transit time

9 = latitude of the satellite from the ephemeris

• = longitude of the satellite from the ephemeris

t = Greenwich Meridian time in secs.

• = right ascension

0 = angle between the nose axis of the satellite and the equatorial

• = azimuth of the nose axis W.R.t. the vernal equinox

 $\omega = \frac{2\pi}{T}$ where T is secs. in a sidereal day

Given the angles 0_E and Φ_E , we can set the unit vector \tilde{U}'' in a rotating system as:

$$\hat{\mathbf{U}}'' = \hat{\mathbf{i}} \cos \theta_{\mathbf{E}} \cos \phi_{\mathbf{E}} + \hat{\mathbf{j}} \cos \theta_{\mathbf{E}} \sin \phi_{\mathbf{E}} + \hat{\mathbf{k}} \sin \theta_{\mathbf{E}}$$
 (16)

where i is in the Greenwich Meridian Plane, k is in the direction of the north pole and $j = k \times i$. Both i and j lie in the equatorial plane of the earth.

If we let tm equal the ephemeris transit time at which the Greenwich . Meridian Plane transits the sun line (this time can be found on pages 19-33 in the above mentioned almanac), and $\omega = \frac{2\pi}{T}$ where T is the time in seconds for a sidereal day, and t = GMT in seconds, then

$$\bar{I} = i \cos[\omega(t-tm) + \phi_{\alpha}] + j \sin[\omega(t-tm) + \phi_{\alpha}] \qquad (17)$$

$$\mathbf{j} = -\mathbf{i} \sin[\omega(\mathbf{t} - \mathbf{tm}) + \phi_{\mathbf{s}}] + \mathbf{j} \cos[\omega(\mathbf{t} - \mathbf{tm}) + \phi_{\mathbf{s}}]$$
 (18)

Using (17) and (18) we can now express U" in the i, j, k fixed system, i.e.

$$\hat{U}'' = i \cos \theta_{E} \cos \left[\omega(t-tm) + \Phi_{S} + \Phi_{E}\right] + j \cos \theta_{E} \sin \left[\omega(t-tm) + \Phi_{S} + \Phi_{E}\right]$$

$$+ k \sin \theta_{E}$$
(19)

where k is parallel to \overline{k} . Perhaps at this point, some diagrams might help clarify matters.

Figure 18

^{*} A sidereal day is the duration of one rotation of the earth on its axis with respect to the vernal equinox. A sidereal day is 23 hours, 56 minutes, 4.09054 secs. of mean solar time.

In this diagram $j = k \times i$, and j lies in the equatorial plane of the earth along with i. Looking at the above figure from another view we have

Figure 19

5. The unit vector e, in the fixed system.

Given the angles θ and ϕ any vector R along the nose axis of the satellite in the fixed system can be written as

 $R = r(i \cos\theta \cos\phi + j \cos\theta \sin\phi + k \sin\theta)$

$$=>e_{T} = \frac{\partial R}{\partial T} = i \cos\theta \cos\phi + j \cos\theta \sin\phi + k \sin\theta$$

$$\hat{N}_{1} = \frac{1}{T} \frac{\partial R}{\partial \theta} = -i \sin\theta \cos\phi - j \sin\theta \sin\phi + k \cos\theta$$
(20)

$$\hat{N}_2 = \frac{1}{r \cos \theta} \frac{\partial R}{\partial \phi} = -i \sin \phi + j \cos \phi \tag{21}$$

and $\mathbf{e_r}$, $\mathbf{N_1}$, $\mathbf{N_2}$ defines an orthogonal system. Since the satellite may be spinning, $\mathbf{e_{\phi}}$ is in the plane of $\hat{\mathbf{N_1}}$ and $\hat{\mathbf{N_2}}$, and $\mathbf{e_{\phi}} = \hat{\mathbf{N_1}} \cos \rho + \hat{\mathbf{N_2}} \sin \rho$.

Figure 20

It should be noted that we could have let $\rho^{\, \prime}$ = angle between $\hat{N}_2^{\, \prime}$ and $e_{\, \varphi}^{\, \prime}.$ Then we would get

$$e_{\phi} = \hat{N}_1 \sin \rho' + \hat{N}_2 \cos \rho'$$
.

Using the angle ρ we get

$$e_{\phi} = \hat{N}_{1} \cos \rho + \hat{N}_{2} \sin \rho = (-i \sin \theta \cos \phi - j \sin \theta \sin \phi + k \cos \theta) \cos \rho$$

$$+ \sin \rho (-i \sin \phi + j \cos \phi)$$

$$=>e_{\phi}$$
 =-i(sin0 cos ϕ cos ϕ + sin ϕ sin ϕ) - j(sin θ sin ϕ cos ϕ - cos ϕ sin ϕ)

+ k coso cosp

All that is needed to uniquely determine this unit vector is the angle ρ , and this will be discussed in Chapter VI.

(22)

DETERMINATION OF OH AND OH FOR A FIXED SYSTEM

In this chapter we will determine the magnetic field of the earth in a fixed system of coordinates. Using the same approach and same unit vectors as in (17) and (18) we can once again set up the following diagram:

Figure 21

From the diagram we note that when I = S the angle $(\not I, i) = \varphi_S$ the right ascension. Thus the sun line and its right ascension now may be used as a reference in the representation of a vector initially expressed in the geocentric system of base vectors I, J, K in the fixed system I, I, I, I.

Let M be a unit vector initially expressed in the base I, J, K.

$$\hat{M} = \overline{i} \cos \psi_{H} \cos \lambda_{H} + \overline{j} \cos \psi_{H} \sin \lambda_{H} + \overline{k} \sin \psi_{H}$$
 (23)

where ψ_H is the angle between M and the equatorial plane of the earth, and λ_H is the azimuth of M with respect to the Greenwich Meridian Plane. Since I and J are in the equatorial plane of the earth we may write

$$\vec{j} = i \cos (\omega t + \chi) + j \sin (\omega t + \chi)$$

$$\vec{j} = -i \sin (\omega t + \chi) + j \cos (\omega t + \chi)$$
(24)

If the time tm represents the time at which the Greenwich Meridian Plane transits the sum line, then

$$\bar{i} = i \cos \phi_g + j \sin \phi_g = i \cos (\omega t m + \chi) + j \sin (\omega t m + \chi)$$

$$= \chi = \phi_g - \omega t m$$
(25)

and
$$i = i \cos[\omega(t-tm) + \phi_s] + j \sin[\omega(t-tm) + \phi_s]$$

$$j = -i \sin[\omega(t-tm) + \phi_s] + j \cos[\omega(t-tm) + \phi_s]$$
(26)

which is the same as was shown in (17) and (18). Substituting (26) in (23), we get

$$\hat{\mathbf{M}} = \mathbf{i} \cos \psi_{\mathbf{H}} \cos \left[\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{S}} + \lambda_{\mathbf{H}}\right] + \mathbf{j} \cos \psi_{\mathbf{H}} \sin \left[\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{S}} + \lambda_{\mathbf{H}}\right]$$

$$+ \mathbf{k} \sin \psi_{\mathbf{H}}$$
(27)

However equating (27) and (14) we have

$$\sin \psi_{H} = \sin \Theta_{H}$$

$$\cos \psi_{H} \cos [\omega(t-tm) + \phi_{S} + \lambda_{H}] = \cos \theta_{H} \cos \phi_{H}$$

$$\cos \psi_{H} \sin[\omega(t-tm) + \phi_{S} + \lambda_{H}] = \cos \Theta_{H} \sin \phi_{H}$$

=>
$$\psi_{H}$$
 = Θ_{H} (angle between equatorial plane and M)

$$=>\phi_{H}=\omega(t-tm)+\phi_{s}+\lambda_{H}$$
(28)

Now using the program listed in the appendix, the magnetic field can be expressed as

$$\hat{M} = c_{\Theta_E} \frac{X}{F} + e_{\Phi_E} \frac{Y}{F} - e_{T_E} \frac{Z}{F}$$
 (29)

where $\mathbf{r}_{E},\;\boldsymbol{\theta}_{E}$ are the Geocentric coordinates of the satellite.

In the rotating system the vector $\mathbf{R}_{\mathbf{E}}$ is expressable as

$$R_{E} = [\vec{1} \cos \theta_{E} \cos \phi_{E} + \vec{j} \cos \theta_{E} \sin \phi_{E} + \vec{k} \sin \theta_{E}] r_{E}$$

 $\mathbf{e}_{\mathbf{e}_{\mathbf{E}}}$ is positive east and is tangent to the circle of latitude,

^{*}FOUGERE, P. private communication, L. G. Hanscom Field, Bedford, Mass.

 $\mathbf{e}_{\mathbf{e}_{\mathbf{E}}}$ is tangent to the arc of the great circle going through the polar axes and in the direction of increasing latitude, $\mathbf{e}_{\mathbf{r}_{\mathbf{E}}}$ is from the center of the earth outward.

$$e_{r_E} = \frac{\partial R_E}{\partial r_E}$$
 $e_{\Theta_E} = \frac{1}{r_E} \frac{\partial R_E}{\partial \Theta_C}$ $e_{\Phi_C} = \frac{1}{r_E \cos \Theta_E} \frac{\partial R_E}{\partial \Phi_E}$

In (29) the terms X, Y, Z and F are given by the referenced program and F equals the total field, X the component of the field in the e_{Θ_E} direction, Y the component of the field in positive e_{Φ_E} , and Z the component is radially downward.

Since the angles Θ_E and Φ_E are the latitude and longitude respectively of the satellite in the goecentric system (obtained from the ephemeris), we now have

$$e_{r_{E}} = \vec{i} \cos \theta_{E} \cos \phi_{E} + \vec{j} \cos \theta_{E} \sin \phi_{E} + \vec{k} \sin \theta_{E}$$

$$e_{\theta_{E}} = -\vec{i} \sin \theta_{E} \cos \phi_{E} - \vec{j} \sin \theta_{E} \sin \phi_{E} + \vec{k} \cos \theta_{E}$$

$$e_{\phi_{E}} = -\vec{i} \sin \phi_{E} + \vec{j} \cos \phi_{E}$$
(30)

Substituting (30) into (29) we find

$$F \hat{M} = -\overline{i} [(X \sin \theta_E + Z \cos \theta_E) \cos \phi_E + Y \sin \phi_E]$$

$$-\overline{j} [(X \sin \theta_E + Z \cos \theta_E) \sin \phi_E - Y \cos \phi_E]$$

$$+\overline{k} [X \cos \theta_E - Z \sin \theta_E] . \qquad (31)$$

where $F^2 = X^2 + Y^2 + z^2$

From (23) and (28) we have

$$\hat{\mathbf{M}} = \hat{\mathbf{i}} \cos \Theta_{\mathbf{H}} \cos \lambda_{\mathbf{H}} + \hat{\mathbf{j}} \cos \Theta_{\mathbf{H}} \sin \lambda_{\mathbf{H}} + \hat{\mathbf{k}} \sin \Omega_{\mathbf{H}}$$
 (32)

Equating (31) and (32) we find

$$\theta_{H} = \arcsin \left[\frac{X \cos \theta_{E} - Z \sin \theta_{E}}{F} \right]$$

$$\lambda_{H} = \arctan \left[\frac{Y \cos \theta_{E} - (X \sin \theta_{E} + Z \cos \theta_{E}) \sin \theta_{E}}{-Y \sin \theta_{E} - (X \sin \theta_{E} + Z \cos \theta_{E}) \cos \theta_{E}} \right]$$
(33)

Substituting (33) into (27) with $\psi_H = \Theta_H$ i.e.

$$\hat{M} = i \cos \Theta_H \cos [\omega(t-tm) + \Phi_S + \lambda_H] + j \cos \Theta_H \sin [\omega(t-tm) + \Phi_S + \lambda_H]$$

+ k sin0_H (34)

will give the unit vector in the direction of the earth magnetic field in the i, j, k fixed system. Equating (34) and (14) we now can find the angles Θ_H and Φ_H . The expression for angle Θ_H is given in (33) and

$$\phi_{H} = \omega(t-tm) + \phi_{S} + \lambda_{H}$$
 (35)

where $\lambda_{\rm H}$ is given also in (33). The magnetic field of the earth is then given by

M = F M

where F is given by Fougere's program as a function of (r_E, θ_E, ϕ_E)

$$F^2 = \chi^2(r_E, \Theta_E, \phi_E) + \chi^2(r_E, \Theta_E, \phi_E) + \chi^2(r_E, \Theta_E, \phi_E)$$

DETERMINATION OF C AND & FOR A FIXED SYSTEM

In this chapter we will discuss the determination of 0, the angle between the nose axis of the satellite and the equatorial plane of the earth, and Φ , the aximuth of the nose axis of the satellite with respect to the vernal equinox.

A. Theoretical Description

The unit vector $\mathbf{e}_{\mathbf{r}}$ in (15) can also be expressed in the form

$$\mathbf{e}_{\mathbf{r}} = \dot{\alpha}\hat{\mathbf{N}} + \dot{\beta}\mathbf{S} + \frac{\lambda\hat{\mathbf{M}} \times \hat{\mathbf{S}}}{|\mathbf{M} \times \hat{\mathbf{S}}|}$$
(36)

and dotting e_r with itself $\alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta M \cdot S = 1$ where \hat{M} and \hat{S} are as in (14) and (13) respectively. If we dot e_r with \hat{M} , \hat{S} , and \hat{M} x \hat{S} we find

$$\hat{\mathbf{M}} \cdot \mathbf{e}_{\mathbf{r}} = \cos \beta_{\mathbf{H}} = \alpha + \beta \hat{\mathbf{M}} \cdot \hat{\mathbf{S}}$$
 (37)

$$\hat{S} \cdot e_{r} = \cos \beta_{s} = \alpha \hat{M} \cdot \hat{S} + \beta \qquad (38)$$

$$\hat{M} \times \hat{S} \cdot e_{T} = \frac{Y(\hat{M} \times \hat{S}) \cdot (\hat{M} \times \hat{S})}{|\hat{M} \times \hat{S}|}$$
(39)

Equation (39) can be rewritten as

$$Y = \frac{\hat{M} \times \hat{S} \cdot e_{r}}{|\hat{M} \times \hat{S}|}$$
(40)

The angle β_s is defined in Chapter II, and β_H is defined as

$$\cos \beta_{\rm H} = \frac{{\rm H_Z}}{{\rm H_O}} \tag{41}$$

where H_Z is the component of the earth's magnetic field parallel to the mose axis of the satellite and H_O is the total magnetic field determined from the three magnetometers X, Y, and Z.

i.e.
$$H_0^2 = \chi^2 + \chi^2 + Z^2$$
 (42)

Solving (37) and (38) for α and β by Cramer's Rule we find

$$\alpha = \frac{\cos \beta_{H} - \hat{M} \cdot \hat{S} \cos \beta_{S}}{1 - (\hat{M} \cdot \hat{S})^{2}}$$

$$\beta = \frac{\cos \beta_{S} - \hat{M} \cdot \hat{S} \cos \beta_{H}}{1 - (\hat{M} \cdot \hat{S})^{2}}$$
(43)

Let $1-(\hat{M}\cdot\hat{S})^2$ be replaced by $|\hat{M}x\hat{S}|^2$, then we can express e as

$$e_{r} = \frac{(\cos \beta_{II} - \hat{M} \cdot \hat{S} \cos \beta_{S}) \hat{M}}{|\hat{M}x\hat{S}|^{2}} + \frac{(\cos \beta_{S} - \hat{M} \cdot \hat{S} \cos \beta_{H}) \hat{S}}{|\hat{M}x\hat{S}|^{2}} + \frac{(\hat{M}\hat{S}e_{r}) \hat{M}x\hat{S}}{|\hat{M}x\hat{S}|^{2}}$$

$$(44)$$

Since $e_r \cdot k = \sin \theta$ where e_r is as in (15), then using (44) for e_r and taking the scalar product of e_r and k.

$$\sin \theta = \frac{(\cos \theta_H - \hat{M} \cdot \hat{S} \cos \theta_S) \sin \theta_H + (\cos \theta_S - \hat{M} \cdot \hat{S} \cos \theta_H) \sin \theta_S + (\hat{M} \cdot \hat{S} e_T) \cos \theta_H \cos \theta_S \sin (\phi_S - \phi_H)}{1 - (\hat{M} \cdot \hat{S})^2}$$
(45)

All terms in (45) are now known except for the triple scalar product for (\hat{MSe}_r) . If we take the scalar product of (44) with e_r we get

$$1 = \frac{\left(\cos\beta_{H} - \hat{M} \cdot \hat{S} \cos\beta_{S}\right) \cos\beta_{H} + \left(\cos\beta_{S} - \hat{M} \cdot \hat{S} \cos\beta_{H}\right) \cos\beta_{S} + \left(\hat{M} \cdot \hat{S} e_{T}\right)^{2}}{\left|\hat{M}_{X} \hat{S}\right|^{2}}$$
(46)

Replacing $|\hat{M}x\hat{S}|^2$ by 1- $(\hat{M}\cdot\hat{S})^2$, (46) can be rewritten as

$$(\hat{MSe}_{r})^{2} = 1 - (\hat{M} \cdot \hat{S})^{2} - \cos^{2}\beta_{H} - \cos^{2}\beta_{S} + 2\hat{M} \cdot \hat{S} \cos\beta_{S} \cos\beta_{H}$$
 (47)

Replacing $\cos^2 \beta_H$ by 1- $\sin^2 \beta_H$ and completing the square, (47) can be rewritten as

$$(\hat{NSe}_{r})^{2} = \sin^{2}\beta_{H} - \cos^{2}\beta_{s} - (\hat{M}\cdot\hat{S})^{2} + 2\hat{M}\cdot\hat{S}\cos\beta_{s}\cos\beta_{H}$$

$$- \cos^{2}\beta_{s}\cos^{2}\beta_{H} + \cos^{2}\beta_{s}\cos^{2}\beta_{H}$$

$$(\hat{MSe}_{r})^{2} = \sin^{2}\beta_{H} - \cos^{2}\beta_{s}(1-\cos^{2}\beta_{H}) - (\hat{M}\cdot\hat{S}-\cos\beta_{s}\cos\beta_{H})^{2}$$

$$(\hat{MSe}_{r})^{2} = \sin^{2}\beta_{H}\sin^{2}\beta_{s} - (\hat{M}\cdot\hat{S}-\cos\beta_{s}\cos\beta_{H})^{2}$$

$$(48)$$

Now replacing (48) into (45) the angle 0 can be determined, however an ambiguity arises due to the term

$$(\hat{MSe}_{1}) = \pm \sqrt{\sin^{2}\beta_{H} \sin^{2}\beta_{S} - (\hat{M}\cdot\hat{S} - \cos\beta_{S} \cos\beta_{H})^{2}}$$
(49)

According to Report AFCRI.-55-516 page 5, the positive sign for (\hat{MSe}_r) must be taken where e_r is on the same side of the \hat{M} - \hat{S} plane as $\hat{Mx}\hat{S}$, and the negative sign where e_r is on the opposite side of the \hat{M} - \hat{S} plane. Also for a flight where the magnetometer data is accurate (\hat{MSe}_r) will be real, i.e.

$$(\hat{MSe}_r)^2 = \sin^2 \beta_H \sin^2 \beta_g - (\hat{M} \hat{S} - \cos \beta_g \cos \beta_H)^2 > 0$$

In actual flight, however, it occurred that $(\hat{MSe}_r)^2$ <0 which is physically impossible. This was a result of erroneous magnetic field data which occurred frequently during the flight of OV1-5.

When e_r makes an angle <90° with the vector MxS, then $(MSe_r) > 0$ and $(MSe_r) < 0$ when the angle made >90°. In the case of a rocket flight, this presents no problem but for a satellite we are unable to predetermine the position of e_r relative to the M-S plane. In order to get around this problem, the output for angles θ and θ from the program ASPECT was analyzed and those values which gave the smoothest curve fit were selected.

In this manner we determined whether to take $+(MSe_r)$ or $-(MSe_r)$ during a specific position of the flight or a combination of both. That is, when a crossover in the plot of 0 occurs the sign of (MSe_r) should be examined to insure a smooth fit. If at any time in the flight $B_s = 0$, the ambiguity does not exist since at this time

as can be seen in revolution 957.

Using expressions (14) and (13) and forming the scalar product of each with $\mathbf{e}_{_{\mathbf{T}}}$ we have

$$\cos\theta \cos\theta_{H} \cos(\phi - \phi_{H}) + \sin\theta_{H} \sin\theta = \cos\beta_{H}$$
 (50)

$$\cos\theta \cos\theta_{s} \cos(\phi - \phi_{s}) + \sin\theta_{s} \sin\theta = \cos\theta_{s}$$
 (51)

Now according to Report AFCRL-63-871 page 5 and 6, upon multiplying (50) by $\sin\theta_{\rm H}$ we can eliminate $\sin\theta$ from (50) and (51). In a similar manner $\cos\theta$ can be eliminated and the above equations can be rewritten as

$$b_1 \cos\theta \cos\phi + b_2 \cos\theta \sin\phi = a$$

$$(b_1 \sin\theta - c) \cos\phi + (b_2 \sin\theta - c_2) \sin\phi = 0$$
(52)

where

$$a = \cos \beta_{H} \sin \theta_{S} - \cos \beta_{S} \sin \theta_{H}$$

$$b_{1} = \cos \theta_{H} \sin \theta_{S} \cos \theta_{H} - \cos \theta_{S} \sin \theta_{H} \cos \theta_{S}$$

$$b_{2} = \cos \theta_{H} \sin \theta_{S} \sin \theta_{H} - \cos \theta_{S} \sin \theta_{H} \sin \theta_{S}$$

$$c_{1} = \cos \theta_{H} \cos \beta_{S} \cos \theta_{H} - \cos \theta_{S} \cos \beta_{H} \cos \theta_{S}$$

$$c_{2} = \cos \theta_{H} \cos \beta_{S} \sin \theta_{H} - \cos \theta_{S} \cos \beta_{H} \sin \theta_{S}$$

the solution of (52) is

$$\sin \phi = \frac{a(b_1 \sin \theta - c_1)}{\cos \theta (b_1 c_2 - b_2 c_1)}$$

$$\cos \phi = \frac{-a}{\cos \theta} \left(\frac{b_2 \sin \theta - c_2}{b_1 c_2 - b_2 c_1} \right)$$

or

$$tan \Phi = \frac{b_1 sin \Theta - c_1}{-(b_2 sin \Theta - c_2)}$$

Another and less tedious method of determining the angle 4 is to take the scalar product of e_ in (15) and (44), both with i and j. In this case

$$tan \phi = \frac{\mathbf{j} \cdot \mathbf{e}_{\mathbf{r}}}{\mathbf{i} \cdot \mathbf{e}_{\mathbf{r}}}$$
 (54)

where the expression for e in (54) is that found in (44).

B. Program to Determine 0 and 4 with Explanations

The following Fortran program named ASPECT was written for the IBM 7094 computer and its purpose is to calculate the angle 0 and Φ as described in (45) and (53) respectively. Frequently during the flight of OV1-5, we found poor magnetic field data. As a result, when running this program consideration of the angle $\beta_{\rm H}$ = ($\frac{1}{2}$ M, $e_{\rm T}$) sometimes produced erroneous values. That is, terms in which $\cos\beta_{\rm H}$, written in this program as CBETAH, were involved produced at times negative values for

1. - STHETP * STHETP

1. - STHETN * STHETN

used for the determination of

CTHETP = SQRT(1.-STHETP * STHETP)

and

CTHETN = SQRT(1.-STHETN * STHETN) .

In ASPECT, CTHETP = COSO when the plus sign for (MSe $_{r}$) was used and CTHETN \approx COSO when the minus sign for (MSe $_{r}$) was used. In the final analysis these few poor data points were overlooked to insure a good curve fit.

The output of this program is as follows:

$$\hat{MSe}_{\mathbf{T}} = \sin^2 \beta_{H} \sin^2 \beta_{S} - (\hat{M} \cdot \hat{S} - \cos \beta_{S} \cos \beta_{H})^2$$

(53)

THETAP and PHIP are the angles 0 and 0 when + \(\tilde{MSe_t} \) was used

THETAN and PHIN are the angles 0 and 0 when - MSert was used

H = the total magnetic field determined from the data

 $SUNAX' = (\dagger S, e_{\tau})$

SUNTHE= (45,eg)

SUNPHI= (45,e)

GMTT = Greenwich Mean time of each data point

THETNW and PHINEW are the latitude and longitude respectively of the satellite with respect to Greenwich for the time GMTT.

SIG is the signature voltage of that sun sensor which is giving sum data

```
GAMMA=GAMMA+.0174533
                                                                    45
    GAMMA2=GAMMA2+.0174533
    XCOS=SGRT(COSIGAMMA) **2-SIN(GAMMA2) **2)
    XSIN=SGRT.11.-XCUS#XCOS1
    SUNPHI = ATAN(XSIN/XCOS)
    SUNPHI = SUNPHI #57.29578
    GO TO 16
 13 DFLTA=-45.795+3.296#5A1+12.528#5A1#5A1-1.970#5A1##3--
    SUNAX=GU.-DELTA
    DELTA2=-45.594+3.668*3A2+12.1GC#SA2#SA2#1.885#5A2##7...
    SUNTHE=90.+DELT42
    DELTA=DELTA#.0174533
    DELTA2=DELTA2*.0174533
    XCOS=-SORT(COS(DELTA) * #2-SINLDELIA21 ##21 .... ...
    XSIN=SORT(1.-XCOS#XCOS)
    SUNPHI=ATANIXSIN/XCOS1 +57-29578+180-
    GO TO 16
 14 FTHFTA=-45.601+7.573#SA1+12.483#SA1#SA1=1.019#SA1##3 ...
    SUNAX=90.-FTHETA
    FTHET2=-46.021+3.728#SA2+12.227#SA2##2-1.895#SA2##3--
    SUNPHI=90. -FTHEI2
    FTHETA=FTHETA*.0174533
    FTHET2=FTHET2*.0174533
    XCOS=-SURTICOSIFTHEIA) **2-SINIFTHEI21**21 .......
    XSIN=SQRT(1.-XCUS#XCOS)
    SUNTHE = ATAN(X51N/XCO5) # 57.29578+180.
    GO TO 16
 15 EP51LN=-48.057+14.876*5A1+5_154#SA1#SA1=-851#SA1##3
    SUNAX=90.-EPSILN
    EPSIL2=46.387-7.424+5A?-9.191+5A2##2+1.400#$A2##3.....
    SUNPHI = 90 - EPSIL 2
    EPSILN=EPSILN*.0174533
    EPSIL2=EPSIL2*.0174533
    XCOS=SQRTICOS(EPSILN) # *2-SINLEPSIL 21 ##21_
    XSIN=SQRT(1.-XCUS+XCUS)
    SUNTHE = ATAN(XSIN/XCUS) +57.29578 _____
    DETERMINATION OF BETA-H
16 XMG=249.458*XX-604.989
    YMG=251.256*YY-606.030
    ZMG=247.934*ZZ-592.562
    H=SGRT (XMG*XMG+YMG*YMG+ZMG*ZMG)
    GO TO 30
 26 J=J+1
 34 REFER=GMTT-GMT(J)
    IF (REFER) 23.24.24
 23 REFER = - REFER
 24 IF (REFER-CHECKA) 25.25.26
 25 TIME = GMTT-GMT(J)
    TIMET=TIME/SPAN
    IF (TIME) 27.28.29
 27 FNEW=F(J)-TIMET*(F(J-1)-F(J))
    TTT1X-(I-C)X) *I 3MIT-(C)X=W3NX
    YNFW=Y(J)-T[MET*(Y(J-1)-Y(J))
    ZNE w = Z ( J ) - TIME T * ( Z ( J - 1 ) - Z ( J + 1
    THETNW=THETA(J)-TIMET*(THETA(J-1)-THETA(J))
    PHINEW=PHILLJ)-TIMET*(PHILLJ)
    GO 10 33
28 FNEW=FLJ1
    XNEW=X(J)
    YNEW=Y(J) ...
    ZNEW=Z(J)
```

3,

```
THETNW=THETA(J)
      SHINE WEDING IJA
      C. TC 33
   22 FREWEFILL-TIMFTRIFILL-FLICHT
      ** F # = * ( U) + T ! MF [ " ( * ( U) - * ( U+1) )
      ANEM=AINFIREIRIALTH-AINFIL
      2NEW=2(J)-TIMET:(I(J)-2(J+1))
      Ing (Nating Tald) - Ting lat latelature inclasses the ...
      Pm[New=Pm](J)=1:N=[*(P-1(J)-Pm](J+1))
   33 Che lanexigen
      FRETNESTHETNA 1.0174033
      PHINEW=PHINEW+L.:174515
      DETERMINATION OF THETA-H AND PHI-H
      Simping language, line incl-lness sincing in allenge
      CTHETH = SORT (1 -- STHETH + STHETH)
      THE TANGOTAMULTING INTO THE INT
      TERM = *NEW + STALTHETMIN - INEW + COST THE THRI
      AMJAN=ATAMI LYME**CITI PHIMEMI=IERM#SIMIPHIMEMILIKI-YME##
     ISIN(PHINEW)-TERM#CCS(PHINEW)))
      PHIH-CMEGARLOWII-IM ) + PHIS-AMDAR
      DETERMINATION OF MS AND MSER
C
     . Add=COSLINETAGE
      DEF = LINITHETAS)
      ACF = CCS LEHISO
      DFH=SIMIPHIST
      EMDOIS=CIHETH*ARC*CLSLPHIH-PHISIASIHETH*CEF ......
      GUNAX=SUNAX+.c174533
      CINCLES - LINES LAKE
      CO SUN=COS (GUNAX)
      COSBET-COSLAWCRETAH.
      EMSERT=SINSUN*SINSUN*(1.-CRETAH*CRETAH)-(EMDOTS-COSRET)**2
      IF LEMSERIL 61 .61 .62
   oi EMSER=0.0
      GU . TO . 63
   62 EMSER=SORT(EMSERT)
      DETERMINATION OF THETA AND PHI
   63 AA=(DEF-EMDOTS+STHETH) +COSUN+(STHETH-EMDOTS+DEF) +CEETAH
      BB-ABC*CIHETH*SIN LPHIS-PHIHI*EMSER
      CC=1.-FMDOTS*EMCCTS
      STHEIP=LAA+BELICC
      STHETN=(AA-BB)/CC
      CTHEIP=SORILL -STHEIP+STHEIP1
      THETAP=ATAN(STHETP/CTHETP) +57.29578
      CTHE.TN=SQR.TLL-STHEIN+STHEIN).
      THETAN=ATAN(STHETN/CTHETN) #57.29578
      CPHIH=COS(PHIM) . . . . . .
      SPHIH=SIN(PHIH)
      B1=CTHETH+DEF+CPHIH-AGC+STHETH+ACE
      B2=CTHETH+DEF+SPHIH-ARC+STHETH+DFH
      CL=CIHETH*COSUN*CPHIH-ARC*CRETAH*ACE
      C2=CTHETH*COSUN*SPHIH-APC*CRETAH*DFH
      ANUM=RI#STHFTP-C1
      ADENOM=-192#STHETP-C21
      BNUM=B1+STHETN-C1 .
      BDENOM= - (BZ#STHE (N-CZ)
      PHIP=ATAN. IANUM/ADENUM1#57.29578
      PHINEATAN INNUM/SUENUM1#57.29578
      IF (PHIEL _70,72,72
   72 [F (ANLM) 73 . 75 . 75
   73 PHIP=PHIR+180.
     GO FO 76
```

3,

			• • • • • •	
	7. 1	F (ANUM)	71.73.73	47
		HIPSPHIR		
		0 10 76		
96				
7.5			?	
76			80.82.82	
82	1	F (ENUST)	83.85.85	
	63 P	HINEPHIN	N+180.	
			_	
	_			
			81.83.83	
			44360	
	G	0 TC 44		
		HIN=PHI	u	
			ETNW#57.295	
			IINEW457.295	
				SERT . H. THETAP . THE TAN . PHIP . PHIN . SUNAX . SUNTHE .
	25	UNPHLLIF	IL TAMAPILINE	SIG-GMIT
	49 F	ORMAT(1)	4.2F7.4.10F6	•1•F6•3•F10•31
				ETAN . PHIP . PHIN . SUNAX . SUNTHE . SUNPHI . THE INW
		HINEW . CA		F. 100 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
			0F6-1 •F10-31	
	97 1	F (MTEST	1-9991 4.95.	96
	. 96 C	ALL. EXII		
		TOP		
	_	ND		
	_	MD	-	
\$D	ATA			
	• •	• • • •		
				·

	• • •			
•			-	
•	•		• • •	
·		•		
				and the state of the design contract contract of the state of the stat
	• • • •	- •	•	semination in administration course describe a residence of the constitution of the constitution of the
		• •		apartic resource all minimum regions are as to the angle of the second statement of the second stateme
		•		er a regio secondo especial de como especial de como de como en especial de como en en especial de como espe
				The state of the s
				7,

CHAPTER VI

DETERMINATION OF (je., U")

In this chapter we will determine the angle between the unit vector U" as expressed in (19) and \mathbf{e}_{ϕ} in (22). The unit vector \mathbf{e}_{ϕ} is the direction of sensor C on the satellite and $\mathbf{e}_{\phi} = -\mathbf{e}_{\mathbf{r}} \times \mathbf{e}_{0}$ for the $\mathbf{e}_{\mathbf{r}}$, \mathbf{e}_{0} , \mathbf{e}_{ϕ} system with regards to the satellite as discussed in Chapter II.

A. Determination of e, in another fixed system

The problem as was mentioned in Chapter III is to solve for the angle ρ . In order to do this, we must set up another system for e_{ϕ} . In the following figure, e_{ϕ} is in the plane of \hat{H}_1 and \hat{N}_2 .

Figure 22

and can be expressed in the form

$$e_{\phi} = \alpha \hat{S} + \frac{\beta(e_{\mathbf{r}} \times \hat{S})}{|e_{\mathbf{r}} \times \hat{S}|} + \frac{\gamma \hat{S} \times (e_{\mathbf{r}} \times \hat{S})}{|\hat{S} \times (e_{\mathbf{r}} \times \hat{S})|}$$
(55)

where \hat{S} , and the vectors $\frac{(e_r \times \hat{S})}{|e_r \times \hat{S}|}$, $\frac{\hat{S} \times (e_r \times \hat{S})}{|\hat{S} \times (e_r \times \hat{S})|}$

define an orthogonal system of unit vectors. Since

$$\hat{S} \times (e_r \times \hat{S}) = e_r (\hat{S} \cdot \hat{S}) - \hat{S}(e_r \cdot \hat{S}) = e_r - \hat{S}\cos\beta_s$$

it is easy to show that

$$|e_{x} \times \hat{s}| = |\hat{s} \times (e_{x} \times \hat{s})| = \sin \theta_{s}$$
 (56)

where $\beta_s = (4S e_r)$

To determine α , β , and γ in (55) we must take the scalar product of e_{φ} with \hat{S} , $e_{\underline{r}} \times \hat{S}$, and $\hat{S} \times (e_{\underline{r}} \times \hat{S})$ respectively. This gives us: $\frac{\hat{S} \times (e_{\underline{r}} \times \hat{S})}{\hat{S} \times \hat{S}}$

$$\alpha = e_{a}.\hat{S} = \cos\gamma_{s} \tag{57}$$

$$\beta = e_{\phi} \cdot \frac{(e_{\mathbf{r}} \times \hat{S})}{\sin \beta_{\mathbf{s}}} = \frac{(e_{\phi} e_{\mathbf{r}} \hat{S})}{\sin \beta_{\mathbf{s}}} \qquad (58)$$

$$\gamma = e_{\phi} \cdot \frac{(\hat{S}x(e_{r} \times \hat{S}))}{\sin \beta_{S}} = e_{\phi} \cdot \frac{[e_{r} - \hat{S}\cos \beta_{S}]}{\sin \beta_{S}} = \frac{\cos \gamma_{S}\cos \beta_{S}}{\sin \beta_{S}}$$
 (59)

Using (57), (58), (59) it is now possible to set

$$e_{\phi} = \cos \gamma_{S} \hat{S} + \frac{(e_{\phi}e_{r}\hat{S})}{\sin \beta_{S}} \frac{(e_{r} \times \hat{S})}{\sin \beta_{S}} - \frac{\cos \gamma_{S} \cos \beta_{S}}{\sin \beta_{S}} \frac{\hat{S} \times (e_{r} \times \hat{S})}{\sin \beta_{S}}$$
(60)

If we consider now the scalar product of \mathbf{e}_ϕ in (60) with itself,

$$1 = \cos^{2} \gamma_{s} + \frac{(\varsigma_{\phi} e_{r} \hat{s})^{2}}{\sin^{2} \beta_{s}} + \frac{\cos^{2} \gamma_{s} \cos^{2} \beta_{s}}{\sin^{2} \beta_{s}}$$

=>
$$\sin^2 \beta_s = \sin^2 \beta_s \cos^2 \gamma_s + \cos^2 \beta_s \cos^2 \gamma_s + (e_{\phi} e_{\mathbf{r}} \hat{S})^2$$

=> $(e_{\phi} e_{\mathbf{r}} \hat{S}) = \frac{1}{2} \sqrt{\sin^2 \beta_s - \cos^2 \gamma_s}$ (61)

Inserting (61) into (60), e_{ϕ} is now expressable in the orthogonal system \hat{S} , $e_{r} \times \hat{S}$, $\hat{S} \times (e_{r} \times \hat{S})$. The plus sign for $(e_{\phi}e_{r} \hat{S})$ will $\frac{\hat{S} \times \hat{S}}{\hat{S} \times \hat{S}} = \frac{\hat{S} \times \hat{S}}{\hat{S} \times \hat{S}}$

used when e_{ϕ} is on the same side of the e_{r} - \hat{S} plane as e_{r} x \hat{S} . Otherwise the ginus sign will be used in (61).

B. Determination of the angle p

Using expression (22), (60) with the value of $(e_0e_T^S)$ found in (61), the purpose of this section will be to determine the angle ρ that e_{ϕ} makes with \hat{N}_1 while rotating in the $\hat{N}_1 - \hat{N}_2$ plane. In this method, we shall equate the k coefficients in each of the above mentioned expressions for e_{ϕ} . The k coefficient of (22) is $\cos\theta$ $\cos\theta$. If we let

A =
$$\cos\theta \sin\phi \sin\theta_s - \cos\theta_s \sin\phi_s \sin\theta$$

B = $\cos\theta_s \cos\phi_s \sin\theta - \cos\theta \cos\phi \sin\theta_s$ (62)
C = $\cos\theta \cos\theta_s \sin(\phi_s - \phi)$

It can be shown that the k coefficient of (60) where \hat{S} and $e_{\hat{r}}$ are in the i, j, k systems is

$$\cos \gamma_{s} \sin \theta_{s} + \frac{C(e_{\phi}e_{r}\hat{S})}{\sin^{2}\theta_{s}} - \frac{\cos \gamma_{s} \cos \theta_{s}}{\sin^{2}\theta_{s}} \left[\cos \theta_{s} \cos \theta_{s} - \cos \theta_{s} \sin \theta_{s}A\right]$$
(63)

Equating coso coso to (63) and simplifying

$$\cos \rho = \frac{\sin^2 \beta_s \cos \gamma_s \sin \theta_s + C(e_{\phi} e_r \hat{S}) - \cos \gamma_s \cos \theta_s \cos \theta_s (\cos \theta_s \sin \theta_s \cos (\phi_s - \phi))}{\sin^2 \beta_s \cos \theta}$$
(64)

We may further simplify (64) by using the expressions for e_{T} and S in (15) and (13) respectively.

$$= \times e_{\mathbf{r}} \cdot \hat{\mathbf{S}} = \cos\theta \cos\theta_{\mathbf{S}} \cos(4 - \Phi_{\mathbf{S}}) + \sin\theta \sin\theta_{\mathbf{S}} = \cos\theta_{\mathbf{S}}$$

$$= \times \sin^{2}\beta_{\mathbf{S}} \cos\theta \frac{\cos\rho}{\cos\gamma_{\mathbf{S}}} = \sin^{2}\beta_{\mathbf{S}} \sin\theta_{\mathbf{S}} + \frac{C(e_{\mathbf{\Phi}}e_{\mathbf{r}}\hat{\mathbf{S}})}{\cos\gamma_{\mathbf{S}}} - \cos\beta_{\mathbf{S}}(\sin\theta - \sin\theta_{\mathbf{S}}\cos\beta_{\mathbf{S}})$$

$$= \sin^{2}\beta_{\mathbf{S}} \sin\theta_{\mathbf{S}} + \sin\theta_{\mathbf{S}} \cos^{2}\beta_{\mathbf{S}} + \frac{C(e_{\mathbf{\Phi}}e_{\mathbf{r}}\hat{\mathbf{S}})}{\cos\gamma_{\mathbf{S}}} - \cos\beta_{\mathbf{S}} \sin\theta$$

$$= \sin^{2}\beta_{\mathbf{S}} \sin\theta_{\mathbf{S}} + \sin\theta_{\mathbf{S}} \cos^{2}\beta_{\mathbf{S}} + \frac{C(e_{\mathbf{\Phi}}e_{\mathbf{r}}\hat{\mathbf{S}})}{\cos\gamma_{\mathbf{S}}} - \cos\beta_{\mathbf{S}} \sin\theta$$

$$\frac{\cos \gamma_{s} \left[\sin \theta_{s} - \cos \theta_{s} \sin \theta\right] + C(e_{\phi}e_{r}^{\$})}{\sin^{2} \theta_{s} \cos \theta}$$
(66)

Due to the term $(e_{\phi}e_{_{\bf T}}\hat{\bf S})$ an ambiguity results for the angle ρ . As can be seen by figure 22 in this chapter the angle $\gamma_{_{\bf S}}$ is a minimum when $e_{_{\bf T}}$, $\hat{\bf S}$, and $e_{_{\dot{\phi}}}$ all lie in the same plane. We know from a previous discussion that $(e_{_{\dot{\phi}}}e_{_{\bf T}}\hat{\bf S})$ is positive when $e_{_{\dot{\phi}}}$ is on the same side of the $e_{_{\bf T}}\hat{\bf S}$ as $e_{_{\dot{\bf S}}}\hat{\bf S}$. Therefore we may also say that $(e_{_{\dot{\phi}}}e_{_{\bf T}}\hat{\bf S})$ is negative as $\gamma_{_{\bf S}}$ goes from its max value to its min value.

We can obtain another expression for the angle ρ by considering the scalar product of (22) with the sun vector \hat{S} expressed in (13).

Ι£

$$A_1 = \cos\theta \sin\theta_s - \cos\theta_s \sin\theta \cos(\phi - \phi_s)$$

$$A_2 = \cos\theta_s \sin(\phi - \phi_s)$$

(67)

Then

$$e_{\phi} \cdot \hat{S} = \cos \gamma_{S} = A_{1} \cos \rho - A_{2} \sin \rho$$

$$= > A_{1}^{2} \cos^{2} \rho - 2A_{1}A_{2}\sin \rho \cos \rho + A_{2}^{2} \sin^{2} \rho = \cos^{2} \gamma_{S}$$

$$= > A_{1}^{2} + A_{2}^{2} \tan^{2} \rho - 2A_{1}A_{2}\tan \rho - \cos^{2} \gamma_{S} (1 + \tan^{2} \rho) = 0$$

$$= > (A_{2}^{2} - \cos^{2} \gamma_{S}) \tan^{2} \rho - 2A_{1}A_{2}\tan \rho + A_{1}^{2} - \cos^{2} \gamma_{S} = 0$$

$$= > \tan \rho = \frac{A_{1}A_{2}^{2} \sqrt{A_{2}^{2} \cos^{2} \gamma_{S} + \cos^{2} \gamma_{S} (A_{1}^{2} - \cos^{2} \gamma_{S})}{A_{2}^{2} - \cos^{2} \gamma_{S}}$$

$$tanp = \frac{A_1 A_2^{\pm} \cos_{\gamma_s} \sqrt{A_1^2 + A_2^2 - \cos^2_{\gamma_s}}}{A_2^2 - \cos^2_{\gamma_s}}$$

but

$$A_1^2 + A_2^2 = \cos^2\theta \sin^2\theta_s - 2\cos\theta \sin\theta_s \cos\theta_s \sin\theta \cos(\phi - \phi_s)$$

$$+\cos^2\theta_s \sin^2\theta \cos^2(\phi - \phi_s) + \cos^2\theta_s \sin^2(\phi - \phi_s)$$

=
$$(1-\sin^2\theta) \sin^2\theta_s - 2 \sin\theta \cos\theta \sin\theta_s \cos\theta_s \cos(\theta-\theta_s)$$

+ $\cos^2\theta_s (1-\cos^2\theta) \cos^2(\theta-\theta_s) + \cos^2\theta_s \sin^2(\theta-\theta_s)$

=
$$-\sin^2\theta \sin^2\theta_s - 2\sin\theta \cos\theta \sin\theta_s \cos\theta_s \cos(\phi - \phi_s)$$

- $\cos^2\theta_s \cos^2\theta \cos^2(\phi - \phi_s) + 1$

=1-
$$(\sin\theta \sin\theta_s + \cos\theta \cos\theta_s \cos(\phi - \phi_s)^2$$

so by (65), $A_1^2 + A_2^2 = 1 - \cos^2 \beta_s = \sin^2 \beta_s$ (68)

Inserting (68) into (67) we now have another expression for angle ρ , that is

$$tan_0 = \frac{\Lambda_1 \Lambda_2 + \cos \gamma_s}{\Lambda_2^2 - \cos^2 \gamma_s}$$

$$(69)$$

The ambiguity can be resolved in the same manner as previously discussed since the term in the square root is exactly that found in (61).*

C. Theoretical description for (jee, U")

Rewriting the expressions for $\hat{U}^{"}$ in (19) and e_{\star} in (22), we have

$$\hat{\mathbf{U}}^* = \mathbf{i} \cos \theta_{\mathbf{E}} \cos \{\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{S}} + \phi_{\mathbf{E}}\} + \mathbf{j} \cos \theta_{\mathbf{E}} \sin \{\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{S}} + \phi_{\mathbf{E}}\}$$

+ k sin0_F

e_ =-i(sin0 cost cosp + sint sinp) - j(sin0 sint cosp - cost sinp)

+ k coso cosp

Now taking the scalar product of (19) and (22),

$$\begin{aligned} \mathbf{e}_{\phi} \cdot \hat{\mathbf{U}}^{"} &= -\sin\theta \cos\rho \cos\theta_{\mathbf{E}} \cos(\phi - [\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{s}} + \phi_{\mathbf{E}}]) \\ &- \sin\rho \cos\theta_{\mathbf{E}} \sin(\phi - [\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{s}} + \phi_{\mathbf{E}}]) + \cos\theta \cos\rho \sin\theta_{\mathbf{E}} \\ \mathbf{e}_{\phi} \cdot \hat{\mathbf{U}}^{"} &= \cos(\pi \mathbf{e}_{\phi}, \hat{\mathbf{U}}) = \cos\theta_{\mathbf{E}} [\cos\rho (\cos\theta \tan\theta_{\mathbf{E}} - \sin\theta \cos(\phi - [\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{s}} + \phi_{\mathbf{E}}])) \\ &- \sin\rho \sin(\phi - [\omega(\mathbf{t} - \mathbf{t}\mathbf{m}) + \phi_{\mathbf{s}} + \phi_{\mathbf{E}}])] \end{aligned}$$
(70)

In summary (70) determines the angle between e_{ϕ} and U' where the angle ρ is determined by (69) or (66). When γ_{g} is increasing, use the + sign for $(e_{\phi}e_{\phi}S)$ and when γ_{g} is decreasing, use the - sign for $(e_{\phi}e_{\phi}S)$

D. Program to determine (e. U")

In the following program written for the IBM 7094 computer and named ASPECT FINAL, the output is as follows:

^{*} The expression for sino and its derivation can be found in Appendix F.

(71)

ROWP is the angle ρ when + $\sqrt{\sin^2 \beta_s} - \cos^2 \gamma_s$ was used ROWN is the angle ρ when - $\sqrt{\sin^2 \beta_s} - \cos^2 \gamma_s$ was used ANGLEP is the angle between e_{ϕ} and \hat{U}'' when ROWP was used. ANGLEN is the angle between e_{ϕ} and \hat{U}'' when ROWN was used

BANGLP = 360 - ANGLEP

BANGLN = 360 - ANGLEN

SUNPHI = γ_s = the angle between the sun and e_{ϕ}

GMT = Greenwich mean time for each data point

The only problem that occurred while running this program was at varying times the term

$$\sin^2 \beta_s - \cos^2 \gamma_s$$

was found to be negative and therefore an error was encountered when determining ($e_{\phi}e_{\mathbf{r}}S$). However this occurred so infrequently that the data points at which (71) was negative were just overlooked.

	TIME=02+PAGES=15
STCP WALL	CONTINUE
#1670H	DLOGIC
	PECT LISTOREFORCKORD
C ASPE	CT FINAL
	RMINATION OF ROW FOR ANGLE BETWEEN L-PHI AND U IN FIXED SYST
	SUNPHI IS INCREASING FROM 0 TO 180 DEGREES. USE ROWP
	SUNPHI IS CECREASING FROM 180 TO O DEGREES. USE ROWN
	015.5)THETAS.PHIS.TM
	AT(2F10.5.F)0.2) AS=THETAS*.0)74533
	D=PHIS*.0174533
	6A=2.*3.1415927/86164.091
	15.1)THETA.PHI.SUNAX.SUNPHI.THETN#.PHINEW.GMT.MTEST
	(AT (6F7.1.F)0.3.4X.14)
	A=THETA*.0174533
	PHI*•0174533
	X=SUNAX*.0174533 HI=SUNPHI*.0174533
	S(THETA) *SIN(THETAS)-COS(THETAS) *SIN(THETA) *COS(PH)-PHIS)
	SITHETAS) *SIN(PHI=PHIS)
	STSUNPHI)
TERM	'=C#5GRT(SIN(SUNAX)##2-C#C)
	P=A*B+YERM .
	N=A*B-TERM
_	=5*B-C*C
	TP=SQRT(SROWP#+2+CROW##2) TN=SQRT(SROWN##2+CROW##2)
	P=SROWP/HYPOTP
	WERROWNZHYPOTK
CROW	P=CROW/HYPOTP
	N=CROM/HYPOTV
	RMINATION OF ANGLE FETWEEN E-PHI AND U
_	=PHINEW*.0174533
	THETNW*•0174533 STTHETA)*SIN(PSI)/COS(PSI)-SIN(THETA)*COS(PH)-(OMEGA*
_	-TM)+PHIS+AMDA))
	NTPHI-(OMEGA*(GNT-TF)+PHIS+AMDA))
	P=COS(PSI)*(CROWP*D-SROWP*E)
	P=SURT([XCOSP*XCOSP)
	EP=ATAN(X5INP/XCOSP)*57.29578
	N=COS(PSI) * (CROWN*D-SROWN*E)
	N=SORT(1XCOSN+XCOSN)
	EN=ATAN(X5(NV/XCO5N)*57.29578 LP=ATAN(-X5(NP/XCO5P)*57.29578
	COSP149396
	EP=ANGLEP+180.
	LP=HANGLP+180.
GO T	0 12
	LP#BANGLP+360.
	LN=ATAN(-XSINN/XCOSN)*57.29578
	COSN 7 7 3 7 8
	EN=ANGLEN+180.
GO T	
	LN=HANGLN+360.
	=ATAN(SROWP/CROWP) #57.29578
ROWN	=ATAN(SROWN/CROWN)#57.29578
15 //	CROWP1 24.3.26 .

J.

494 4

				56
26	GO TO 46 IF (SROWP) 44,44,46			
	ROWP=ROWF+360.			
	IF (CROWN) 54.3.56			
54	ROWN=KOWN+180.			The second secon
	GO TO 66	·		-
	1F (SROWN) 64-64-66			
	ROWN=ROWN+360. SUMPHI=SUMPHI*57.2957	ō		
00	WRITE(6.11)ROWP.ROWN.	ANGLEP.BANGLP.	ANGLEN . BANGLN . SU	NPHI •GMT
11	FORMAT(IX.8F10.3)			
	PUNCH 2 - ROWP - ROWN - ANG	LEP . BANGLP . AND	LEN . BANGLN . SUNPH	I • GMT
2	FORMAT (8F10.3)			
	IF (MTEST-99913.9.1)			·
10	CALL EXIT			•
	END			
SCATA				. • .
				······································
				
			1 .	
		· - · · · - · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	•	
	· · · · · · · · · · · · · · · · · · ·			**************************************
		-, · -, ·		

	alanda and the state of the sta			
				•
···				
		•		
•				

Ļ

E. Plots of the Angle between e and U" with explanations

When plotting ($\{e_{\varphi}, \hat{U}''\}$) the rule to choose ANGLEP when γ_S was increasing and ANGLEN when γ_S was decreasing could not be strictly adhered to. The angle γ_S could start increasing or decreasing without switching to the other side of the e_{Υ} - \hat{S} plane. In order to determine if the switchover actually occurred, the appropriate angle ρ had to be examined (ROWP for ANGLEP and ROWN for ANGLEN). A switchover from ANGLEP to ANGLEN when γ_S starts decreasing should incur a smooth, change from ROWP to ROWN and similarly when γ_S starts increasing.

Another point to bear in mind is that unless ($\frac{1}{1}$ S, $\frac{1}{1}$ S, $\frac{1}{1}$) is quite small when a critical point occurs for γ_s , then to insure a switchover from one side of the $\frac{1}{1}$ S plane to the other side the angle $\frac{1}{1}$ S should have a min value fairly close to $\frac{1}{1}$ 80°. This can best be seen in figure #22. The vector $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9, and $\frac{1}{1}$ 9 and $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9, and $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9, and $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and the min value of $\frac{1}{1}$ 9 occurs when $\frac{1}{1}$ 9 plane and $\frac{1}{1}$

Still another point to bear in mind is that high detector readings may occur on detectors looking in the direction of sun sensor D even though ($\{e_{\varphi}, \hat{U}''\}$) is a large angle. This occurred in revolution 480 approximately 53.5k seconds GMT and the reason was that the detector was looking almost directly into the path of the sun as shown by the plot of ($\{S,e_{\varphi}\}$) for revolution 480. If the detectors in the direction of the sun sensor D are not looking into the path of the sun and if there are no reflections from the albedo as may have occurred in revolution 957, then these detectors should have high readings when ($\{e_{\varphi}, \hat{U}''\}$) has low angular values and low readings when ($\{e_{\varphi}, \hat{U}''\}$) has high angular values.

As one can readily see, in the following figures #23-#26, there are points which do not follow the general trend of the curves. These stray points were included in the plots to give a complete picture of the data analyzed. The data listings for these plots can be found in the appendix.

Ġ

	•		X
1237 (\$e _{\$} ,U") 6/29/66		· (2K
			- ¥
Real Time	. 120-	9	83E OV CTITATICH MEAN TIME IN DECONDS
	Y		83E CTTAVICUL
1236 (łe _φ . U") 6/23/66			. 32 %
		Ţ.	. 81K
2 рескеез	08	. 09	0 • 80K

APPENDIX

-, '

REVOLUTION 480 5/4/66

USE ANGLEP FROM 48519 SECS TO 53414 SECS. AT 53450 SECS SWITCH TO ANGLEN SINCE SUMBHI AND ROWP INDICATE & SWITCH TO THE OTHER SIDE OF THE ER-S PLANE. USE ANGLEN THROUGH 55896 SECS.

ROWP	ROWN	ANGLEP	BANGLP	ANGLEN	BANGLN	SUNPHI CMT
40.320	46.462	106.174	253.826	111.042	248.958	111.400 48519.000
324.204	328.595	105.137	254.863	102.941	257.059	91.100 48556.000
331.653	342.680	27.954	262.046	91.900	268.100	92.700 48589.000
314.289	65.885	100.401	259.599	45.918	314.082	111.000 48624.000
335.633	45.895	P6.115	273+885	46.350	· 313.650	107.900 48655.000
. 323.545	25.739	74.057	285.933	53.865	306.135	103.600 48692.000
356.777	23.327	72.131	287.869	55.798	304.202	102.600 46723.000
4.915	14.275	67.002	292.998	61.099	293.901	96.200 48765.000
8.767	12.695	64.559	295.441	62.110	297.890	92.600 48791.000
13.558	110.78	61.598	298-402	63.039	296.961	86.200 48629.000
15.157	17.133	60.306	299.694	62.147	297.853	87.500 48860.000
18.27.	12.879	57.788	302.212	61.101	298.899	84.500 45897.000
21.474	14.284	55.206	304.794	59.608	300.392	80.200 48928.000
26.605	16.240	51.282	308.718	57.285 .	302.715	75.900 48965.000
28.989	18.869	48.824	311.176	54.547	305.453	74.300 48996.000
33.705	22.015	44.649	715.351	50.956	309.044	71.200 49034.000
36.372	27.248	41.515	318.485	46.129	313.871	68.500 49065.000
40.050 47.798	33.328	37.374	322.626	40.495	319.505	66.000 49102.000
51.863	49.696	32.643	327.357	34,955	325.045	60.900 49133.000
56.676	56.611	28.396	331.604	29.028	330.972	58.700 49170.000
63.340	60.531	24.965	335.035	24.964	335.036	56.200 49201.000
70.858	66.169	21.924	337.723	21.076	338.924	54.200 49239.000 51.900 49271.000
72.832	1.346	ร็กอก็อย	309.932	19.601 83.833	340.399 276.167	50.400 51711.000
67.986	0.240	47.790	312.210	83.556	276.444	56.200 51748.000
81.265	335.037	56.862	303.138	79.404	280.596	37.000 51953.000
81.566	333.495	57.954	102.046	75.877	284.123	36.300 51984.000
78.875	323.479	63.331	96.669	73.767	286.233	33.300 52021.000
73.898	316.415	58.126	291.874	72.288	287.712	32.800 52052.000
72.926	314.168	71.828	788 -172	71.234	288.766	32.300 52090.000
69.886	303.686	79.466	280.534	69.723	290.277	30.200 52121.000
65.538	298.515	95.416	774.584	66.170	293.830	31.400 52156.000
61.745	292.099	89.199	270.801	62.378	297.622	32.100 52189.000
61.724	285.700	98.780	261.220	59.032	300.968	32.700 52226.000
64.213	285.088	106.738	253.262	56.669	303.331	33.800 52257.000
87.188	37.792	41.648	718-352	56.753	303.247	69.700 52462.000
80.993	79.072	162.509	197.491	163.231	196.769	55.700 52500.000
67.747	56.710	165.902	194.098	164.753	195.247	59.707 52531.000
63.654	59.819	164.741	195.259	161.935	198.065	63.000 52568.000
57.573	27.383	164.990	195.010	167.752	197.748	69.300 92599.000
61.770	54.863	163.156	196.844	156.382	203.618	70.900 52636.000
64.296	57.226	164-424	195.576	157.367	202.633	71.700 52667.000
65.814	63.850	157.268	207.732	150.386	209.614	84.100 52772.000
57.723	67.119	148.631	211.169	148,259	211.741	88.600 52803.000
71.720	73.041	146.118	213.882	147.340	212.660	92.900 52840.000
17.355	17.115	145.782	214.218	147.792	212.008	96.300 52871.000
108.822	97.880	162.209	197.791	156.446	203.554	103.500 52907.000
167-037	116.137	130-387	229.613	151.542	198.458	107.700 52938.000
204.416	143.277	97.956	262.044	145.489	211-511	114.100 52975.000
Z10.626.	124.139	R7.5	772.318	44.:01	7333	120-200 53006-000
136.416	104.180	142.754	217.246	174.250	185.710	148.600 5321
104	101.482	בפני מפדיי	203.908	107. 46	140.024	155.601 53247.00
12 .436	102.008	152.96.	207-038	167.467	102.503	159.700 53276.000
" 117. /^*	107.700	156.373	7636627	163.935	1061065	164.800 53315.000

						64
116.513	105.655	157.338	202.662	163.360	196.640	167.300 53346.000
113.206	105.115	158.714	201.286	161.897	198.103	170.500 53383.000
107.628	107.561	158.975	201.025	158.992	201.008	175.000 53414.000
108.479	104.477	157.796	202.204	158.169	201.831	177.100 52450.000
110.074	101.371	159.591	204.409	155.488	204.512	175.400 53461.000
112.035	98.911	155.540	204.460	154.686	205.314	172.700 53518.000
117.471	93.595	154.385	205.614	150.310	209.690	166.700 53549.000
117.653	93.181	155.055	204.945	149.768	210.232	165.600 53586.000
3.4.57?	89.602	28.034	331.966	147.581	212.419	162.100 53617.000
302.413	83.705	30.438	329.562	146.923	. 213.077	158.300 53054.000
3.7.364	96.095	25.708	334.292	141.730	216.270	155.60 53685.000
314.390	81.545	27.689	332.311	136.320	223.680	149.50 53722.000
116.250	75.101	30.309	329.091	134.398	225.602	146.900 53753.000
255.851	58.568	62.305	297.605	116.737	243.263	125.16) 54092.000
270.439	88.113	73.986	286.014	100.827	253.173	121.309 54128.000
285.108	23.478	74.355	285.644	121.835	238.165	119.200 54159.000
298.698	23.630	14.048	285.952	111.962	248.038	116.100 54196.000
3-7.340	18.536	75.532	284.468	111.842	248.158	115.100 54227.000
322.987	27.716	70.315	289.684	103.852	256.148	114.170 54263.000
322.132	24.647	74.032	285.968	105.918	254.082	113.700 54294.000
331.072	24.247	74.609	285.391	102.542.	257.458	111.000 54330.000
335.491	25.099	75.617	284.383	102.959	257.041	110.800 54361.000
341.913	25.431	76.607	283.393	101.492	258.508	109.100 54395.000
345.351	26.770	75.174	281.826	102.744	257.256	108-900 54429-000
··· 35.2.177	25.919	80.754	279.246	101.540	258.460	106-000 54462-000
354.779	27.536	80.284	279.716	100.777	259.223	105.900 54496.000
356.905	29.466	67.710	292.290	88.269	271.731	106.000 54532.000
354.986	27.094	74.106	285.894	91.807	268.193	105.600 54563.000
354.679	21.138	50.459	279.541	92.567	267.433	102.600 54599.000
349.967	17.173	87.237	272.763	97.572	262.428	102.700 54637.000
49.088	318.457	26.675	333.325	73.154	286.846	47.305 54869.000
53.234	322.551	29.073	330.927	71.172	286.828	47.500 54900.000
10.674	14.353	63.542	296.458	62.432	297.568	91.400 54933.000
12.424	13.146	62.850	297.150	62.617	297.383	90.301 54964.000
13.158	13.158	62.144	297.856	62.144	297.856	90.000 54999.000
13.588	13.588	61.682	298.318	61.682	298.318	90.001 55030.000
17.011	11.875	59.631	300.369	61.776	298.224	87.100 55066.000
17.686	12.989	58.744	301.256	60.794	299.206	86.900 55097.000
18.211	14.749	57.599	302.401		. 300.823	87.100 55133.000
19.559	15.552	56.057	303.943	58.013	301.987	86.300 55164.000
20.234	17.529	54.750	305.250	56.113	303.887	86.400 55159.000
21.223	19.344	53.098	306.902	54.096	305.904	86.300 55230.000
22.611	21.595	51.026	308.974	51.576	308.424	86-100 55265-000
24.610	23.509	48.760	311.240	49.374	310.626	83.600 55296.000
26.372	25.900	46.153	313.847	46.427	313,573	83.600 55332.000
28.093	27.010	44.031	315.969	44.703	315.297	85.500 55363.000
31.874	28.600	40.406	319.594	42.553	317.447	83.400 55399.000
35.028	30.088	36.677	323.323	39.914	370.086	82.400 55430.000 81.900 55465.000
38.827	31.392	32.753	327.247	37.864	322.136	
41.860	33.056	39.266	330.734	35.482	324.518	81.500 55496.000 82.100 55331.000
44.681	35.088	25.634	334 - 366	32.754	327.246	
49.992	34.668	21.891	338.109	34.162	325.838	80.200 55562.000
52.429 34.077	36.526	19.430	340.570	33.103 77.328	326.897	77-100 55762-000
34.077	2.810	51.835	308.165	77.328	282.672	77.100 55762.000
37.65C	8.576	45.515	314.485	53.308	306-697	
25.513 27.983	337.971	98.874	261-126	53.303	306.697	75.700 55829.000
33.084	355.564	87.062	272.938	79•26 8	283.F79 28C.732	71.830 55896.000
2701104	373047.	010006	2174770	176200	2000172	11000

* } k

REVOLUTION 957 6/8/66

USE ANGLEP FROM 45055 SECS TO 46376 SECS SINCE ROWP IS SMOOTH IN THIS INTERVAL.

USE AUGLEN FROM 48801 SECS TO 50906 SECS SINCE SUMPHI INDICATES A POSSIBLE SWITCHOVER AND THE USE OF ANGLEN IN THIS INTERVAL PRODUCES A SMOOTHER CLAVE THAN WOULD ANGLEP. USE ANGLEP FROM 50957 SECS TO 51887 SECS DUE TO SUMPHI SWITCHOVER.

RUWP	ROWN	ANGLEP	HANGLE	ANGLEN	BANGLN	SUNPHI	CHI
94.011	103.799	149.855	210.145	146.218	213.782		45055.000
94.254	105.854	149.880	210.120	144.727	215.273	24.500	45091.000
95.218	112.208	145.520	214.480	136.490	223.510	25.100	45122.000
95.016	111.594	148.727	211-273	139.256	220.744	21.700	45158.COC
92.592	114.398	154.020	205.980	139.311	. 220.689		45189-000
93.368	121.448	154.050	206.141	133.537	226.463	19.700	45225.000
94.096	127.139	151.292	208.708	125.059	234.941	18.900	45756.000
96.583.	195.089	154.943	205.017	64.269	295.731	18.600	45291.000
94-657	148.485	157.156	207.544	105.241	254.759	18.800	4:322.000
98.336	168.347	150.702	209.298	86.531	273.469		45357.000
107.984	209.664	144.287	715.713	47.383	312.617	17.300	4.388.000
118.224	225.313	133.089	226.911	28.972	331.028	21.300	4 424.000
115.494	227.281	134.698	252.305	26.027	333.973	23.500	45435.000
116.065	230.462	133.491	226.509	23.428	336.572		45490.000
120.332	226.280	128.996	231.004	27.524	332.476	26.400	45521.000
61.805	334.629	150.294	199.706	112.038	247.962	47.300	45690.000
61.483	334.945	159.163	:00.837	113.972	246.028	47.000	45721.000
46.617	14.160	154.268	205.732	129.262	230.738	59.507	45850.000
42.762	23,693	153.795	20,6.205	139.794	220.206	62.600	45885.000
39.675	23.00H	152.331	207.669	139.997	220.003	66.100	45914.000
40.160	25.581	155.291	204.709	145.588	214.412	68.600	45950.000
37.675	28.745	154.156	205.844	148.017	211.983	70.900	45981:000
36.451	31.993	156.744	203.056	154.312	205.558	78.750	460827000
36.695	33.305	158.303	201.697	156.425.	203.575	81.300	46113.000
36:493	35.705	160.020	199.980	159.600	200.400	87.700	46148.000
36.700	36.700	160.185	199.815	160.185	199.815	90.000	46179.000
37.367	37.6H4	160.540	199.460	160.658	199.342	91.000	46214.000
37.864	39.354	160.517	199.383	161.033	198.967	95.000	46245.000
39.439	41.871	161.355	198.645	161.702	198.298	97.300	48279:000
38.761	42.920	159.730	200.270	159.988	200.012	99.100	46310.000
42.032	50.460	161.030	198.970	159.496	200.504	104.300	48345.000
42.049	52.179	159.149	200.851 .	156.567	203.433	106.400	46376.000
190.374	154.145	115.078	243.972	131.355	228.645	120.700	45801.000
195.336	165.071	110.329	249.671	130.678	229.322	118.000	48838.000
198.932	164.959	105.591	253.419	130.796	229.204	116.400	48669.000
210.180	184.811	93.138	266.862	113.694	246.306	112.000	48906.000
196.155	174.305	107.791	252.209	125.061	234.939	115.500	48937.000
191.883	177.925	111.343	248.657	122.619	237.381	115.0200	48974.000
133-821	180.549	103.925	255.078	119.126	240.874	111.900	49005-000
197.828	186.884	104.226	255.774	113.512	246.488		49042.000
193.952	193.717	106.232	253.768	106.429	253.571		49073.500
185.501	185.254	113.535	246.465	113.740	246.260		49110.000
171.640	159.215	1748477	735.523	133.527	226.473		49141-000
159.933	159.682	137.773	227.227	132.952	227.048		49178-000
147.087	137.119	140.896	219.104	145.795	214.205		49209-000
107.425	139.613	54.627	305.373	82.490	277.510		49719.000
112.767	159.356	59.766	300.234	101.334	258.666		49750 .000
127.485	166.070	73.207	286.793	108.263	251.737		49786.000
135.943	181.005	91.651	278-379	123.206	236.794		49817-000
143.680	179.826	89.982	270.018	123.349	236.651		49854-000
145.392	184-148	01-034	208.066	127.576	232.424	0 5 7 5 0 1	49885.000
160.360	183.368	107.163	252.837	128.749	231.251		49921-000
128-504	179.566	136.166	7536834	125.461	234.539		49952-000
155.752	180.553	104.520	255.480	127.000	233.000	56.800	49989.000

•						
265.054	250.162	139.333	220.667	172,414	187.586	45.4766 50356.20
117.838	154.744	109.185	250.815	128.693	231.307	35.600 50393.00
112.734	150.087	110.978	249.027	127.870	232.130	34.300 50424.00
" 109.142	143.828	114.237	245.763	120.732	233.268	32.400 50465.50
3.3.853	276.531	11.212	348.788	38.122	321.678	29.600 50491.00
						30.900 50527.00
1010714	175.519	86.561	273.439	93.770	266.210	
303.726	276.001	143.405	216.595	149.773	210.227	28.700 50558.00
100.918	130.734	126.987	233.013	128.204	231.796	27.100 50593.00
79.990	125.540	134.536	225.464	132.461	227.539	22.300 50614.00
1916355	122,905	139.18!	220.819	135.707	224.293	19.300 50660.00
1-9-647	122.353	141.484	218.516	136.531	223.469	19-100 50651-00
100.282	121.267	143.746	216.054	137.433	222.567	18.500 50727.00
98.877	121.937	147.441	212.559	138.665	221.335	18-400-50758-000
103.391	117.429	151.479	208.521	144.291	215.709	13.800 50793.00
1-3.860	117.567	153.957	206-143	146.013	213.987	12.700 50824.000
106.873	112.776	150.103	209.897	146.697	213.303	14.400 50861.00
105.397	117.647	158.849	201.151	149.546	210.454	9.900 50891.000
112.678	112.720	157 121	202.879	157.083	202.917	5.300 50026.000
110-128	114.757	159.218	200.792	155.008	204.992	
709.704			198.640	153.967		5.600 50757.000
	117-097	161.360	• • • • • • •		206.033	5.300 51059.000
106.723	121.742	164.460	195.540	149.612	210.388	7.700 51090.000
105.040	122.400	164.966	195.134	147.783	212.217	9.000 51125.000
104.847	123.991	154.404	195,596	146.352	213.648	9.700 51156.000
.02.848	127-045	164-193	105.801	142.668	217.332	12-100 51192-000
302.214	127.987	163.306.	196.556	141.422	218.57R	12-900 51223-000
102.533	127.927	161.256	195.714	140.635	219.365	12.700 51259.000
112.506	116.417	152.595	207.405	149.377	210.623	2.200 51290.000
71.830	343.236	147.832	21,20168	72.370	287.630	45.830 51356.000
43.172	140.428	154.410	205.590	126.502	233.498	23.700 51392.000
90-059	145.424	153.054	206.946	170.442	239.558	25.600 51423.00
57.516	63.490	77.074	282.926	81.057	278.943	88.100 51456.000
38.530	278.574	67.477	292.523	164.527	195.473	31.400 51487.000
>0.092	318.162	127.340	232.660	53.085	306.915	52.600 51887.000

			<u> </u>		·-	
			·			
*****	·		•			
		·		•		
			.v.	,		
			,			
			-			

:

					REAL	TIME	1236	6/28/66
3.0	ANGLEN	TO.	AGREE	Set T. T. L.	DETECTO	OR REA	DINGS.	

ROWP	ROWN	ANGLEP	BANGLP	ANGLEN	BANGLN	SUNPHI	GAT
335.473	339.321	125.886	234.114	122.909	237-091	98.400	81831.000
 327.626	333.118	137.332	222.668	133.204	226.796	The second secon	81563.000
325.970	332.362	130.714	223.286	131.895	228.105	102.200	81839.000
 326.821	337.000	130.775	229.225	122.867	237.133	104.200	81937-000
325.599	339.804	125.409	231.091	117.665	242.335	106.600	21966.000
 322.531	342.290	128.948	231.052	113.038	246.962	109.600	62001-000
319.705	346.095	129.580	230.420	107.866	. 252.134	110.100	62032.000
 315.814	349.008	131.751	228.049	104.342.	255.658	111.400	82065.000
3-9-978	356.748	135.912	224.097	27.147	262.853	113.200	82(496.000
299.416	5.344	143.096	216.904	86.825	273.175	115.500	ฮี่อาวิค•โกกัด
286.712	37.376	150.624	309.376	58.217	301.783	117.477	92160.000

REAL TIME 1237 6/29/66
USE ANGLEN TO AGREE WITH DETECTOR READINGS AND TO PRODUCE A SMOUTH CHANGE FROM
REAL TIME 1236

ROWP	ROWN	ANGLEP	BANGLP	ANGLEN	PANGLN	SUNPHI	GNIT
49.248	358.383	9.405	350.595	51.769	308.231	64.600	1309.00
50.898	356:980	8.106	351.894	52.443	307.557	63-100	1340.00
258.543	22.261	59.075	300.925	105.339	254.661	135.800	13 3.00
53.492	356.196	4.447	355.153	52.599	307-401	61.500	1466-00
54.5993	355.230	7.071	352.929	53.543	.306.457	60.910	1346 66
56.243	355.123	8.710	351.290	54.250	305.720	59.800	1477.00
57.841	354.381	10.592	349.318	55.142	304.858	58.700	1509.00
58.145	354,096	11, 574	348.426	54.973	305.027	58.500	1540.00
57.820	352.136	17.665	347.335	55.516	304.464	57.900	1571.00
59.333	352.187	14.051	345.949	55.613	304.387	57.200	1602.00
57.920	350.917	14.377	345.623	55.185	304.815	57.500	1634.00
56.717	348.356	15.340	344.660	55.157	304.943	57.100	1665.00
35.852	347.985	15.637	344.363	53.868	306.132	57.400	1697.00
54.824	345.499	16.936	343.064	53.334	306.666	56.900	1728.00
53.16?	342.748	18.362	341.638	52.383	307.617	56.600	1760.00
54.008	344.078	19.324	340.676	50.713	309.287	56.70°	1791.00
51.223	342.310	20.112	339.888	48.803	311.197	57.400	1623.00
51.787	342.990	21.187	338.813	47.625	312.375	57.400	1854.00
49.827	340.853	23.299	336.701	46.023	313.977	57.500	1586.00
50.905	341.906	25.978	334.022	44.321	315.679	57.300	1917.00
110 428	203.588	164.951	195.049	80.251	279.749	65.100	1959.00
157.548	247.060	63.832	296.168	126.221	233.779	48.800	1988.00

.

١,

REVOLUTION 1360 7/8/66

SE ANGLEP THROUGHOUT SINCE SUNPHI DID NOT INDICATE A SWITCHOVER AND ROWN IS
NOT SMOOTH AT THE BREAK FROM 7846 SECS TO 9595 SECS.

ROWP	ROWN	ANGLEP	BANGLP	ANGLEN	BANGLN	SUNPHI	GMT
"55.300	355.409	100.717	251.283	135.187	224.813	56.200	3495.73€
49.489	349.177	10% - 237	250.763	139.057	220.943	58.000	3526.736
44.78b	350.793	114.063	245.937	143.744	216.256	58.400	3559.880
45.720	353.652	121-157	238.843	150.093	209.907	61.700	3591.880
43.577	306.957	121.992	233.002	153.153	206.847	65.200	3624.231
40.578	356.624	131.720	228.280	158.051	201.949	67.000	3655.231
21.864	328.684	126.372	233.628	162.540	197.460	65.400	3668 - 420
19.359	330.816	127.907	232.093	160.892	199.108	67.700	3719-420
14.507	333.486	178.624	231.376	158.849	201.151	68.800	3752.598
14.666	336.080	134.648	225.352	160.501	199.499	72.300	3783.598
14.904	337.731	132.887	227.113	156.836	203.164	73.100	3816.487
15.401	341.137	132.702	227.298	153.656	206.344	74.400	3647.487
13.713	342.684	133.343	226.657	152.041	207.959	76.000	3880.315
13.542	348.539	133.739	226.261	147.834	212.166	78.600	3911.315
10.147	352.806	136.601	223.399	148.050	213.950	82.100	3944.047
9.293	302.405	136.949	223.051	146.046	213.954	82.400	3975.047
23.818	20.835	131.358	228.642	130.489	229.511	88.500	4072.129
20.266	22.294	129.002	230.998	129.653	230.347	91.000	4103.129
23.501	71.255	135 485	227.518	131.578	228.422	88.900	4136.129
19.115	23.883	129.898	230.102	131.982	228.018	92.300	4167.129
16.952	26.474	130.354	229.646	134.794	225.206	94.600	4199.917
16.115	25.954	129.657	230.343	134.550	225.450	94.700	4230.917
14.430	27.663	127.627	230.373	136.635	223.355	96.300	4263.637
16.474	26.959	132.523	227.377	138.600	221.400	95.000	4294.637
14.34C	33.912	134.837	225.163	144.147	215.853	98.200	4327.214
14.251	34.065	139.940	220.060	151.121	208.879	99.900	4358.214
14.277	36.436	142.586	217.414	156.070	203.930	101.700	4390.783
15.200	37.549	146.285	213.715	160.897	199-103	101-800	4421.783
16.066	36.446	146.326	213.674	160.939	199.061	101.100	4454.144
14.522	37.801	145.322	214.678	162.680	197.320	102.900	4485.144
10.766	40.672	141-931	218.069	166.790	193.210	107-100	4560.822
9.409	40.660	140.875	219.125	167.361	192.639	107.900	4611.822
70.864	40.110	141.921	718.079	168.410	191.590	107.200	4644.011
10.055	41.026	141.005	218.995	169.905	190.095	108.600	4675.011
-340.201	30.164	108.737	751.263	145.691	214.309	112.400	5276.108
347.192	28.944	107.396	252.604	145.720	214.280	112.600	5307-108
345.410	25.442	103.703	253.297	144.154	215.846	110.700	5339.501
339.206	24.004	102.673	257.327	145.414	214.586	111.600	5370-501
330.325	20.194	98.121	761.879	146.963	213.037	111.700	5402-899
313.487	14.272	90.276	269.724	151.022	208.978	110.500	5433-899
258.134	112.583	63.554	796.046	82.302	277.698	110.500	5466.465
35.427	78.786	93.005	266.992	108.988	251.012	110.500	5497.469
17.353	56.145	97.007	262.993	119:182	240.818	110.400	5530.140
10.032	47.837	95.983	264.017	121.147			5561.140
7.873	38.008	7 6141	267.859	119.223	238.853	110.000	5593.527
3.274	36.809	93.465	266.535				
1.129	33.476	91.305		118.920	241.080	107.700	5624-527
•177	31.099	_	268.695		243.363	106.900	
355.882	32.184	87.490		112.057	247.943	105.700	5720.494
355.613		77.575	282,424	106.919	253.081	107.900	5751.494
358.975	28.032	71.207	288.793	98.123	261-877	105.600	
	26.150		243.154	102.620	257.380		5783.913
359.365 4.080	25.398	96.846	263.154	119.118	240.882	103.300	5814.913
40.340	29.577	116.727	243.273	139,358	220.642	102.700	5910.951
6.424	28.118	119.261	240.739	138.662			5941.951

						69
6.401	30.212	123.016	236.982	144.735	215.265	101.900 6005.35
151.579	329.605	84.301	775.799	63.601	296.399	70.300 6031.43
317.830	29.482	32.736	27.264	95.216	264.784	125.600 6062.43
9.170	26.582	178.842	231.157	144.410	215.590	98.700 6100.84
7.365	27.010	125.684	231.316	145.956	214.044	99.305 6131.84
6.249	26.334	128.428	231.572	145.313	214.687	100.000 6163.95
7.947	23.241	130.026	229.374	143.069	216.931	97.600 6.194.95
5.517	22.511	130.213	229.787	143.258	216.742	98.400 6227.27
5.797	21.989	131.283	728.717	143.531	216.469	96.000 6258.27
6.738	20.912	13: 123	228.877	141.184	218.816	97.000 6290.70
8.289	19.417	129.507	230.193	137.006	222.994	95.500 6321.70
2.493	18.564	126.595	233.402	134.102	- 225 - 898	97.800 6417.80
6.C13	17.478	125.002	234.498	130.024	229.976	95.670 6448.80
5.819	16.511	124.047	235.053	128.176	231.824	95.200 6481.45
17.287	17.727	127.250	237.750	122.482	237.518	93.900 6512.45
17.655	17.723	118.783	241.217	118.818	241.182	91.000 .6545.01
18.185	18.323	117.075	242.925	117.145	242.855	92.900 6576.01
18.006	18.117	114.414	245.586	114.468	245.532	91.500 6608.429
18.267	18.341	112.745	247.755	112.280	247.720	90.700 6634.42
18.110	18.269	106.142	253.858	106.220	253.780	92.200 6671.88
17.817	17.873	101.832	258,168	101.860	258.140	90.600 6702.88
17.898	17.951	101.470	258.530	101.495	258.505	90.600 6735.26
17.120	17.049	94.412	265.588	94.376	. 265.624	88.700 6766.26
343.335	343.322	91.069	268.931	91.075	268.925	89.400 6798.63
343.127	343.196	20.370	269.630	20.336	269.664	90.600 6529.63
341.142	340.985	08.594	261.406	98.661	261.339	67.900 6661.979
19.826	14.268	74.551	265.449	92.960	267.040	87.200 6892.979
19.120	14.758	95.083	264.917	94.050	265.950	87.300 6935.404
20.476	12,730	95.789	264,211	94.351	265.619	66.100 6956.404
19.533	13.974	92.817	267.183	91.825	268.172	87.200 6968.76
19.603	12.412	94.404	265.596	93.715	266.285	86.400 7019.76
269.526	286.699	6.802	353.198	8.795	351.205	88.900 7054.25
290.192	290.944	6.919	353.082	6.430	353.570	90.300 7085.25
15.633	13.192	94.901	265,099	95.019	264.981	88.800 7115.498
16.808	10.633	92.833	267.167	23.451	265.549	67.000 7146.498
18.235	11.293	83.771	276.209	84.488	275.512	86.600 7179.12
18.633	7.178	94.087	275.913	86.511	273.489	84.60C 7210.12
16.224	8.515	83.473	276.527	85.461	274.539	86.400 7242.829
18.546	5.706	PO. 765	279.235	84.549	275.451	84.000 7273.829
17.270	9.789	75.511	284.489	78.458	281.542	85.900 7306.578
18.941	7.000	72.457	287.443	76.653	283.147	84.506 7337.578
18.768	5.984	71.227	298.773	76.476	283.524	84.100 7370.309
18.157	10.254	66.500	293.500	69.556	290.444	86.300 7401.309
24.207	5.335	58 - 176	301.824	67.229	292.771	81.400 7434.10
24.223	7.973	54.022	305.978	61.809	298.191	82.400 7465.10
25.769	2.924	47.279	312.721	55.187	304.813	82.400 7497.938
26.093	11.935	42.99	317-009	50.902	307.098	83.200 7526.938
26.075	14.282	37.753	322.247	44.238	315.762	84.100 7561.781
30.542	15.989	24.504	335.496	33.651	326.349	82.300 7592.781
32.215	16.050	15.755	344.245	27.787	332.213	81.100 7625,497
32.257	17.884	14-75-4	45.976	26.1E2	333.518	81.970 7656.497
29.803	17.884	14.854	345.146	25.369	334.631	63.300 7686.930
30.201	17.806	13.645	46.355	25.385	334.615	82.900 7719.930
32.403	18.015	12.192	347.808	26.507	333.493	81.400 /752.193
33.996	17.085	11.644	348.356	28.419	331.581	79.500 7783.193
35.572	16.260	12.224	347.776	30.911	329.089	77.600 7815.474
35.063	16.526	190207	3446 193	32.398	321.602	77.707 7846.474
30.979	353.761	87. 27	272.673	111.981	248-019	72.107 9595.632
28.015	354.115	75.07.17	207.781	113.360	240.540	14.00 96.20.632
24.839	354.127	94.370	265.630	115.940	244.060	75.50: 9659.455

.

.

١,

۸

```
F.3
                  MARCOTTE
                                EGHEVA
SID
         0232
                  TIME=02.PAGES=15
STCP
                  CONTINUE
SALL
SIBJOR
SIBFIC EGHEVA
                 DLOGIC
LIST * RFF * DFCK * SDD
CEGHEVA
C
       PROGRAM SHUVE. NEFDS FCTRAL. FIELD
       FPOCH CORRECTED FIELD VS. ALT.
C
       DIMENSION A(1000) .G(30.30) .H(30.30) .FMT (12)
      1.TG(30.30).TH(30.30).GCORP(30.30).HCORR(30.30)
       COMMON HOORP
                         . GCORR
       KTIME =3. GET POSITION
       TIME = TIME DIFFERENCES IN YEARS
KTIME=1.2 CODFFS ARE FOR MAIN FIFLD. RATE OF CHANGE
       LOUNT=50
       P1=3.14159265
       PIDEG=5729.57795E-2
       READ 15.9000 | KPROG. NDUMMY. COMULT. KTH . KTIME. TIME
9000
       FORMAT (214.E16.8.214.E16.8)
       KOUNT=0
       R7=0.0
       GO TO (12.12.2010) . KTIME
C
       NDUMMY IS NO. OF COEFFICIENTS.
       COMULT IS A MULTUPLIFR FOR COEFFS. KPROG IS 1. A IS NOT MODIFIED.
Ċ
C
                                                   KPROG =2. A=A+COMULT.
C
       KPROG = 3 FOR SCHMIDT A. KPROG = 4 FOR VESTINE TYPE (N*SCHMEDT)
12
       DO 112 K=1.1000
112
       A(K)=0.0
       COMPUTE N1.M22.M1. FOR FRASIC: NTOP IS NO. OF TERMS IN COMPLETE SET OF HIGHEST DEGREE. NEXTRA IS NO. OF TERMS IN INCOMPLETE SET.
000
       ODOOFL=SQRT(FLOAT(NCUMMY+1)+.01)
       NPART=Q000FL+1.0
000
       READ IN COEFFS. Alo. All. Bli. A20. . . . . .
       READ (5.100) (FMT(1).1=1.12)
100
       FORMAT(12A6)
       READ (5.FMT) (A(J).J=1.NDUMMY)
       FIND MODIFIED COEFFS.
       GO TO(17.92.91.91).KPROG
        DO93 LL=1.NDUMMY -
92
        A(LL)=A(LL) *COMULT
93
       GO TO 17
       1=0
91
       N=0
       AA=2.0*(SQRT(FLOAT(NDUMMY))+1.0)+1.0
        KK=AA
         D010000 K=3.KK.2
        D010000 J=1.K
       M = (1 - N##2 +1)/2
4F(M) 1002 + 15 + 16
       FACTOR =FCTRAL (2+N)/(2.0+4N+(FCTRAL(N))++2)
       GO TO 14
```

١,

```
16 FACTOR =FCTRAL(2+N)/(2.0++N+FCTRAL(N))+SQRT(2.0/(FCTRAL(N+M)+ FCTR
     1AL (N-M) ) )
         GO TO (1007.1010.14003.14002) . KPROG
14
14003
          FACTOR =FACTOR + COMULT
         GO TO 14001
14002 FACTOR = FACTOR + COMULT /FLOATIN)
14001 A(1)=FACTOR *A(1)
         IF(I-NDUMMY)10000+17+1111
10000
       CONTINUE
17
       [X=0
       DO 2000 NX=2,NPART
       DO 2000 MX=1+NX
       IX=IX+1
       IF (MX-112001 .2002 .2003
2002
      GO TO (50,511,KTIME
50
      G(NX.1)=A(IX)
       GO TO 2000
       TG(NX+1)=A(IX)
51
      GO TO 2000
GO TO (52+53) KTIME
2003
       TG(NX.MX)=A(IX)
53
       IX=IX+1
       TH(NX+MX)=A(IX)
      GO TO 2000
      G(NX.MX)=A(IX)
52
       1X=1X+1
      H(NX+MX)=A(IX)
2000
      CONTINUE
      GO TO 1
DO 55 JJ=1+30
DO 55 KK=1+30
2010
      HCORR(JJ,KK)=H(JJ,KK)+TIME#TH(JJ,KK)
      GCORRIJJ.KK1=GIJJ.KK1+TIME+TGIJJ.KK)
12010 READ (5.7000) CIME.AUNCH.THETA.PHI.HEIGHT
 7000 FORMAT (2F10.4.3(2XF8.4))
      HEIGHT=HEIGHT#1.85325
      IF(CIME-99999.0)6001.4002.2001
4002
      COUNT = KOUNT
      SSOR=SORT (R2/COUNT)
      WRITE (6,5005)550R
      FORMATIE16.8)
5005
GO TO 22
6001 CALL FIELD(THETA.PHI.HEIGHT.NPART.X.Y.Z.F)
      KOUNT=KOUNT+1
      HELL=SQRT(X*X+Y*Y)
      ANC=PIDEG+ATAN(APS(Z/HELL))
      IF(X)500.501.502
500
      D=SIGN(PI+Y)-SIGN(ATAN(Y/X)+Y)
      GO TO 503
      D=SIGN(PI+.5.Y)
501
      GO TO 503
      D=ATAN(Y/X)
502
      D=PIDEG*D
503
       IF(LOUNT-50) 1012.1011.1012
1011 WRITE(6.1013)
      LOUNT=0
 1012 WRITE (6.110) THETA.PHI.HETGHT.X.Y.Z.HFLL.F.D.ANC.AUNCH
PUNCH 111.THETA.PHI.HETGHT.X.Y.Z.F.AUNCH
  110 FORMAT(2F9.4+1PE16.R.-2P5F17.3+0P2F12+3+F12-4)
  111 FORMAT(3F10.3.-2P4F10.3.0PF10.3)
      LOUNT = LOUNT + 1
```

```
60 10 17010
1002
1003
1007
1010
        CALL NUMP
CALL NUMP
CALL NUMP
        CALL DUMP
1111
 POOT CALL DUMP
1013 FORMAT(132H1
2001
                       E. LAT. N LONG. HEIGHT KM.
                                                             NORTH X
                                                                            EAST Y
           DOWN Z
                         HORIZ
                                   TOTAL INTENS. DECLINATION INCLINATION T A
     2FTER LAUNCH)
   22 CALL EXIT
       END
               LIST.REF.DECK.SDD
SIRFIC IFELD
       SURROUTINE FIELDIDLAT.DLONG.HGT.NMAX.AN.RE.RV.P)
       FARTHS MAGNETIC FIELD USING ANY SET OF COEFFICIENTS
       DIMENSION H(30.30).G(30.30).P(30.30).DP(30.30).CONST(30.30).SP(30)
      1.CP(30).AOR(30)
       COMMON H.G
       IF (CP(1)-1.0)1.2.1
1
       P(1.1)=1.0
       DP(1.1)=0.0
       SP(1)=0.0
       CP(1)=1.0
      DO 4 M=1.30
DO 3N=1.2
CONST(N.M)=0.0
3
       DO 4 N=3.30
       FM=M
       FN=N
       CONST(N.M)=((FN-2.0)+(FN-2.0)-(FM-1.0)+(FM-1.0))/((FN+FN)-3.0)/((F
      1N+FN1-5.01
      PHI=DLONG/57.2957795
AR=6371.2/(6371.2+HGT)
C=SIN (DLAT/57.2957795)
       S=SQRT (1.0-C+C)
       SP(2)=SIN (PHI)
CP(2)=COS (PHI)
       AOR(1)=
                AR#AR
       AOR (2)=
                   AR#AOR(1)
       DO 5 M=3.NMAX
       SP(M)=SP(2)+CP(M-1)+CP(2)+SP(M-1)
       CP(M)=CP(2)+CP(M-1)-SP(2)+SP(M-1)
       AOR (M) =
                  AR#AOR (M-1)
       RV=0.
       BN=0.0
       BPHI=0.0
       DO 6 N=2.NMAX
       FN=N
       SUMR=0.0
       SUMT=0.0
       SUMP=0.0
       DO 7 M=1.N
       IF (N-M)8.9.8
       P(N.N)=S+P(N-1.N-1)
       DP(N+N)=S+DP(N-1+N-1)+C+P(N-1+N-1)
       GO TO 10
       P(N.M)=C+P(N-1.M)-CONST(N.M)+P(N-2.M)
       DP(N.M)=C+DP(N-1.M)-S+P(N-1.M)-CONST(N.M)+DP(N-2.M)
       FM=M-1
10
       TS=G(N.M)+CP(M)+H(N.M)+SP(M)
```

```
"SUMR=SUMR+P(N+M) #TS
         SUMT=SUMT+DP (N+M) #TS
        SUMP=SUMP+FM+P(N+M)+(-G(N+M)+SP(M)+H(N+M)+CP(M))
RV=RV+AOR(N)+FN+SUMR
         RN=RN-AOR(N) #SUMT
        RPHI=RPHI-AOR(N) +SUMP
        BF=-RPHI/S
B=SQRT (BN*RN+RV*RV+BF*RE)
RETURN
        END
SIBFTC CFTRAL LIST.REF.DECK.SDD
FUNCTION FCTRAL(K)
        1F(K)2000+1+2
 2000 STOP 2000
1 FCTRAL=1.0
        PETURN
     2 IF(K-1)2000+1+3
        PROD=FLOAT(K)
GOOGFL=PROD
     4 0000FL=0000FL-1.0
6 IF(0000FL-1.0)2001.7.10
 2001 STOP 2001
     7 FCTRAL=PROD
        RETURN
    10 PROD=PROD+GOOGL
GO TO 4
END
SDATA
              -1.8973926E-06
(24×E25.8)
                                                             160E
                                                           -.100E
                                                            .190E
       10
                                                            .820E
       11
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
27
29
                                                            .350E
                                                           -.500E
                                                            .44 OE
                                                            .000E
                                                           .200E
                                                           -. 110E
                                                           . 22 OE
                                                           .210E
                                                            . 180E
                                                           .180E
                                                           .200E
                                                           .170E
                                                           .100E 1
```

```
--500E 0
-700E 0
--200E 0
-200E 0
          3745679901
                                                                                                       -21 OE
                                                                                                                        1
                                                                                                                        000
                                                                                                         .100E
                                                                                                      -.200E
-.200E
.150E
                                                                                                                        0
                                                                                                        .150E
-110E
-500E
-700E
                                                                                                                       0
                                                                                                      -.600E
                                                                                                                       0
                                                                            1
                                                                                    -0.30508775E 05
                                                                                     -0.21808302E 04
                                                                                     0.58407369E
-0.21956077E
0.5145217RE
-0.34430141E
0.1448483E
0.17150113E
                                                                                                                    04
                                                                                                                    04
                                                                                                                    04
                                                                                                                    04
                                                                                                                    04
                                                                                                                    03
                                                                                    0.28666562E
-0.61608247E
                                                                                                                    04
                                                                                                                    04
                                                                                    -0.11936724E

0.22290292E

0.56309372E

0.65680435E
                                                                                                                    04
                                                                                                                    04
                                                                                                                    03
                                                                                                                    03
-0.13761476E
                                                                                                                    03
                                                                                     0.43600536E
0.47754694E
                                                                                                                    04
                                                                                                                    04
                                                                                     0.95552545E
                                                                                                                    03
                                                                                  0.95552545E
0.22800695E
-0.11412046E
-0.65218185E
0.14499263E
0.17518126E
-0.15226956E
-0.21027692E
                                                                                                                    04
                                                                                                                   04
                                                                                   0.27628720E
-0.39691649E
0.19293695E
                                                                                                                   04
                                                                                                                   03
                                                                                                                   04
                                                                                   0.19293093E
0.12409761E
-0.24542910E
-0.59848446E
-0.24982365E
-0.32559201E
-0.57247381E
                                                                                                                   04
                                                                                                                   03
                                                                                    0.61958762E
                                                                                    0.69252063E
0.24850067E
0.1245503RE
                                                                                                                   03
                                                                                    0.22692597E
0.92501821E
0.22338884E
                                                                                                                   03
                                                                                                                   03
                                                                                                                  04
                                                                                    0.37497479E 03
```

0.70218083F 02
0.10117546E 03
-0.16596319E 03
0.87118310E 01
-0.44940472E 02
-0.38003508E 02
0.27806275E 04
-0.22568674E 04
-0.224383128E 04
0.22736780E 03
0.19120144E 03
-0.37440271E 03
0.75827096E 03
-0.51570851E 03
0.26619910E 03
0.33689441E 03
0.51373941E 02
-0.15688118E 02
0.14926150E 03
-0.21241840E 02
0.17769346E 01
-0.81528097E 03
0.40691421E 03
-0.37214176E 03
0.72929968E 03
-0.11764831E 04
-0.19003021E 03
-0.42363667E 02
0.88395876E 03
-0.18684875E 04
-0.15495010E 03
0.80660194E 02
-0.47169191E 02
-0.47169191E 02
-0.475128689E 02
0.15357842E 03

LEAST SQUARES APPROXIMATION FOR SUN SENSOR A OUTPUT VOLTAGE 1

 $0=-45.113-1.273V+14.399V^2-2.167V^3$

LEAST SQUARES APPROXIMATION FOR SUN SENSOR A OUTPUT VOLTAGE 2

0=-44.852+1.363V+13.063V²-1.984V³

LEAST SQUARES APPROXIMATION FOR SUN SENSOR B OUTPUT VOLTAGE 1

0=-45.956+4.636V+11.970V²-1.901V³

LEAST SQUARES APPROXIMATION FOR SUN SENSOR B OUTPUT VOLTAGE 2

0=-45.291+3.724V+12.014V²-1.873V³

LEAST SQUARES APPROXIMATION FOR SUN SENSOR C OUTPUT VOLTAGE 1

0=-45.877+2.570V+12.816V²-1.994V³

LEAST SQUARES APPROXIMATION FOR SUN SENSOR C OUTPUT VOLTAGE ?

0=-46.958+4.022V+12.134V²-1.9072V³

20°--20°·

LEAST SQUARES APPROXIMATION FOR SUN SENSOR D OUTPUT VOLTAGE 1

 $0=-45.795+3.296V+12.528V^2-1.970V^3$

LEAST SQUARES APPROXIMATION FOR SUN SENSOR D OUTPUT VOLTAGE 2

 $\Theta = -45.594 + 3.668V + 12.100V^2 - 1.885V^3$

LEAST SQUARES APPROXIMATION FOR SUN SENSOR E OUTPUT VOLTAGE 1

0=-48.057+14.867V+5.154V²-.851V³

Figure 36

LEAST SQUARES APPROXIMATION FOR SUN SENSOR E

OUTPUT VOLTAGE 2

e =+46.387-7.424V-9.191V²+1.400V³

LEAST SQUARES APPROXIMATION FOR SUN SENSOR F

OUTPUT VOLTAGE 1

 $0=-45.601+2.523V+12.483V^2-1.919V^3$

LEAST SQUARES APPROXIMATION FOR SUN SENSOR F OUTPUT VOLTAGE 2

 $0 = -46.021 + 3.228V + 12.277V^2 - 1.895V^3$

XMG=249.458V-604.989

Ch saugiq

Figure 41

. 53K

. 52K

. 51K

r6

0 vs GMT Revolution 957

iè

2× 63K OK OK OK OK OK GREENVICH MEAN TIME IN SECONDS Real Time 9 vs GMT . 82K 1236 . 81K DECREES

2K.. 1237 Real Time 300-180 120. -09 . 82K 81K 46 00 DECKEES

θ vs GMT Revolution 1360

. 11K 6K GREENWICH MEAN TIME IN SECONDS

In this section we will prove the equivalence of relations (66) and (69). It has been shown that

$$A_1 \cos \rho - A_2 \sin \rho = \cos \gamma_s \tag{72}$$

If we now make the substitution by letting

$$tan\psi = \frac{A_2}{A_1}$$

$$sin\psi = \frac{A_2}{\sqrt{A_1^2 + A_2^2}}$$

$$cos\psi = \frac{A_1}{\sqrt{A_1^2 + A_2^2}}$$

Substituting (73) into (72) yields

$$\sqrt{A_1^2 + A_2^2} \left[\cos \psi \cos \rho - \sin \psi \sin \rho \right] = \cos \gamma_S$$

$$\sqrt{A_1^2 + A_2^2} \cos (\rho + \psi) = \cos \gamma_S$$

$$\cos (\rho + \psi) = \frac{\cos \gamma_S}{\sin \beta_S}$$

$$\Rightarrow \rho = \frac{\pi}{2} \arccos \left(\frac{\cos \gamma_S}{\sin \beta_S} \right) - \psi \qquad (74)$$

Let

then

$$v = \pm \arccos \left(\frac{\cos \gamma_s}{\sin \beta_s} \right)$$

It follows that

$$\cos(2v) = \frac{\cos \gamma_s}{\sin \beta_s}$$

$$\sin v = \frac{2 \sqrt{\sin^2 \beta_s - \cos^2 \gamma_s}}{\sin \beta_s}$$

$$\sin(-v) = \frac{\sin^2 \beta_s - \cos^2 \gamma_s}{\sin^2 \beta_s - \cos^2 \gamma_s}$$

Let us restrict ourselves to

$$-v = \arccos \left(\frac{\cos \gamma_s}{\sin \beta_s}\right)$$

(It can be shown that if we take the positive sign for v, the analysis will result in an erroneous expression for (66)).

Therefore from (74),

$$\cos \rho = \frac{A_1 \cos \gamma_s}{\sin^2 \beta_s} - \frac{A_2 (e_{\phi} e_{\mathbf{r}} \hat{\mathbf{S}})}{\sin^2 \beta_s}$$

Multiplying and dividing by cos0,

$$\cos \rho = \frac{A_1 \cos \gamma_s \cos \theta + C(e_{\phi}e_r \hat{S})}{\sin^2 \beta_s \cos \theta}$$
 (76)

However

$$A_1 \cos \gamma_s : \cos \theta = \cos \gamma_s [\sin \theta] - \sin \theta, \cos \beta_s]$$

so the expression in (76) is in agreement with (66).

In a similar manner we find

$$\sin_{\rho} = \frac{\frac{1}{s} A_{1} \sqrt{\sin^{2} \beta_{s} - \cos^{2} \gamma_{s}}}{\sin^{2} \beta_{s}} - \frac{A_{2} \cos_{\gamma_{s}}}{\sin^{2} \beta_{s}}$$
or
$$\sin_{\rho} = \frac{-A_{1} \left(e_{\phi} e_{r} \hat{S}\right) - A_{2} \cos_{\gamma_{s}}}{\sin^{2} \beta_{s}}$$
(77)

The problem now is to show that sinp in (77) divided by cosp in (75) will yield the same expression as (69).

$$tan_{\rho} = \frac{\sin_{\rho}}{\cos_{\rho}} = \frac{-A_1(e_{\phi}e_r\hat{S}) - A_2\cos_{\gamma_s}}{A_1\cos_{\gamma_s}-A_2(e_{\phi}e_r\hat{S})}$$

Multiplying and dividing by the conjugate of the radical in the denominator we get

tano = [
$$\mp A_1 / \sin^2 \beta_s - \cos^2 \gamma_s - A_2 \cos \gamma_s$$
] [$A_1 \cos \gamma_s + A_2 / \sin^2 \beta_s - \cos^2 \gamma_s$]

[$A_1 \cos \gamma_s \mp A_2 / \sin^2 \beta_s - \cos^2 \gamma_s$] [$A_1 \cos \gamma_s + A_2 / \sin^2 \beta_s \cos^2 \gamma_s$]

$$tamp = \frac{-A_{1}A_{2}cos^{2}\gamma_{s} + A_{2}^{2}cos\gamma_{s} \sqrt{\sin^{2}\beta_{s}-\cos^{2}\gamma_{s}} + A_{1}^{2}cos\gamma_{s} \sqrt{\sin^{2}\beta_{s}-\cos^{2}\gamma_{s}} - A_{1}A_{2}(\sin^{2}\beta_{s}-\cos^{2}\gamma_{s})}{\cos^{2}\gamma_{s}(A_{1}^{2} + A_{2}^{2}) - A_{2}^{2}\sin^{2}\beta_{s}}$$

$$\tan \theta = \frac{7 \cos \gamma_{s} / \sin^{2} \beta_{s} - \cos^{2} \gamma_{s} (A_{1}^{2} + A_{2}^{2}) - A_{1} A_{2} \sin^{2} \beta_{s}}{\sin^{2} \beta_{s} (\cos^{2} \gamma_{s} - A_{2}^{2})}$$

$$tanp = \frac{-A_1A_2 + \cos\gamma_s / \sin^2\beta_s - \cos^2\gamma_s}{\cos^2\gamma_s - A_2^2}$$

OT

$$tano = \frac{A_1 A_2 \pm \cos \gamma_s}{A_2^2 - \cos^2 \gamma_s}$$

which is in agreement with (69).