Módulo 1: Estadística para ciencia de datos

Reporte "Los salarios"

Inteligencia artificial avanzada para la ciencia de datos I (Grupo 102)

Daniel Salvador Cázares García A01197517 Septiembre de 2022

Resumen

En este trabajo, por medio del uso del dataset Data Science Job Salaries de Kaggle, se busco realizar un análisis exploratorio de los salarios de las personas que trabajan en el sector de Ciencia de datos. Para dicha tarea, se emplearon metodos para calcular medidas estadísticas, visualizar los datos e identificar problemas de calidad en la información.

Así mismo, se busco poner en práctica técnicas de preprocesamiento con el objetivo de mejorar la calidad de los datos que se tienen. Para esto, se utilizaron tecnicas de imputación, creación de atributos y detección de anomalías (outliers).

Introducción

¿Qué hace que una persona que trabaja en el sector de Ciencia de datos tenga un mejor sueldo que otra? Existen diversos factores que influyen en la respuesta a esta pregunta como lo pueden ser el puesto, la experiencia, la compañía, el país, etc. En este trabajo se buscará analizar y entender dichos factores para poder dar respuesta a esta pregunta.

1. EXPLORACIÓN DE LA BASE DE DATOS

Base de datos

Base de datos: Data Science Jobs Salaries (Kaggle)

	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_r
0	2020	МІ	FT	Data Scientist	70000	EUR	79833	
1	2020	SE	FT	Machine Learning Scientist	260000	USD	260000	
2	2020	SE	FT	Big Data Engineer	85000	GBP	109024	
3	2020	MI	FT	Product Data Analyst	20000	USD	20000	
4	2020	SE	FT	Machine Learning Engineer	150000	USD	150000	
4								•

	work_year	salary	salary_in_usd	remote_ratio
count	607.000000	6.070000e+02	607.000000	607.00000
mean	2021.405272	3.240001e+05	112297.869852	70.92257
std	0.692133	1.544357e+06	70957.259411	40.70913
min	2020.000000	4.000000e+03	2859.000000	0.00000
25%	2021.000000	7.000000e+04	62726.000000	50.00000
50%	2022.000000	1.150000e+05	101570.000000	100.00000
75%	2022.000000	1.650000e+05	150000.000000	100.00000
max	2022.000000	3.040000e+07	600000.000000	100.00000

Variables y significado

Cantidad de datos y variables presentes

<class 'pandas.core.frame.DataFrame'>
Int64Index: 607 entries, 0 to 606
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	work_year	607 non-null	int64
1	experience_level	607 non-null	object
2	employment_type	607 non-null	object
3	<pre>job_title</pre>	607 non-null	object
4	salary	607 non-null	int64
5	salary_currency	607 non-null	object
6	salary_in_usd	607 non-null	int64
7	employee_residence	607 non-null	object
8	remote_ratio	607 non-null	int64
9	company_location	607 non-null	object
10	company_size	607 non-null	object

dtypes: int64(4), object(7)
memory usage: 56.9+ KB

Se tiene un total de 607 registros y 11 variables.

Variables presentes

- 1. work_year: Año en que se pagó el salario.
- 2. **experience_level**: Nivel de experiencia: EN Entry-level/Junior, MI Mid-level/Intermediate, SE Senior-level/Experto, EX Executive-level/Director
- 3. **employment_type**: Tipo de empleo: PT Tiempo parcial, FT Tiempo completo, CT Contrato, FL Freelance
- 4. job_title: Rol trabajado durante el año
- 5. **salary**: Monto total del salario bruto pagado (antes de impuestos)
- 6. **salary_currency**: Moneda del salario pagado

- 7. salaryinusd: Salario en USD
- 8. employee_residence: País de residencia del empleado durante el año laboral
- 9. **remote_ratio**: Cantidad de trabajo realizado de forma remota: 0 Sin trabajo remoto (< 20 %), 50 Parcialmente remoto, 100 Totalmente remoto (> 80 %)
- 10. company_location: País dondse se ubica la oficina principal del empleador
- 11. **company_size**: Número promedio de personas que trabajaron para la empresa durante el año: S menos de 50 empleados (pequeño) M 50 a 250 empleados (mediano) L más de 250 empleados (grande)

Clasificación de variables por tipo y escala

Variables presentes

- 1. work_year: cuantitativa (númerica) | discreta
- 2. **experience_level**: cualitativa (categórica) | ordinal
- 3. employment_type: cualitativa (categórica) | nominal
- 4. job_title: cualitativa (categórica) | nominal
- 5. salary: cuantitativa (númerica) | discreta
- 6. **salary_currency**: cualitativa (categórica) | nominal
- 7. **salaryinusd**: cuantitativa (númerica) | discreta
- 8. employee_residence: cualitativa (categórica) | nominal
- 9. remote_ratio: cualitativa (categórica) | ordinal
- 10. **company_location**: cualitativa (categórica) | nominal
- 11. **company_size**: cualitativa (categórica) | ordinal

Exploración de la base de datos

Medidas estadísticas

Variables cuantitativas

Medidas de tendencia central

Promedio, mediana y moda

	promedio	mediana
salary	324000.062603	115000.0
salary_in_usd	112297.869852	101570.0

	salary	salary_in_usd
0	80000	100000.0
1	100000	NaN

Medidas de dispersión

Rango máximo - mínimo, varianza, desviación estándar

	min	max	varianza	std
salary	4000	30400000	2.385040e+12	1.544357e+06
salary_in_usd	2859	600000	5.034933e+09	7.095726e+04

Variables cualitativas

Tabla de distribución de frecuencia

col_0	count
work_year	
2020	72
2021	217
2022	318

count	col_0
	experience_level
88	EN
26	EX
213	MI
280	SE

col_0	count
employment_type	
СТ	5
FL	4
FT	588
PT	10

job_title	
3D Computer Vision Researcher	1
Al Scientist	7
Analytics Engineer	4
Applied Data Scientist	5
Applied Machine Learning Scientist	4
BI Data Analyst	6
Big Data Architect	1
Big Data Engineer	8
Business Data Analyst	5
Cloud Data Engineer	2
Computer Vision Engineer	6
Computer Vision Software Engineer	3
Data Analyst	97
Data Analytics Engineer	4
Data Analytics Lead	1
Data Analytics Manager	7
Data Architect	11
Data Engineer	132
Data Engineering Manager	5
Data Science Consultant	7
Data Science Engineer	3
Data Science Manager	12
Data Scientist	143
Data Specialist	1
Director of Data Engineering	2
Director of Data Science	7
ETL Developer	2
Finance Data Analyst	1
Financial Data Analyst	2
Head of Data	5
Head of Data Science	4

job_title

Head of Machine Learning	1
Lead Data Analyst	3
Lead Data Engineer	6
Lead Data Scientist	3
Lead Machine Learning Engineer	1
ML Engineer	6
Machine Learning Developer	3
Machine Learning Engineer	41
Machine Learning Infrastructure Engineer	3
Machine Learning Manager	1
Machine Learning Scientist	8
Marketing Data Analyst	1
NLP Engineer	1
Principal Data Analyst	2
Principal Data Engineer	3
Principal Data Scientist	7
Product Data Analyst	2
Research Scientist	16
Staff Data Scientist	1

salary_currency

,	
AUD	2
BRL	2
CAD	18
CHF	1
CLP	1
CNY	2
DKK	2
EUR	95
GBP	44
HUF	2
INR	27
JPY	3
MXN	2
PLN	3
SGD	2
TRY	3
USD	398

col_0 count

employee_residence

1 7 - 7	
AE	3
AR	1
AT	3
AU	3
ВЕ	2
BG	1
ВО	1
BR	6
CA	29
СН	1
CL	1
CN	1
со	1
CZ	1
DE	25
DK	2
DZ	1
EE	1
ES	15
FR	18
GB	44
GR	13
НК	1
HN	1
HR	1
HU	2
IE	1
IN	30
IQ	1
IR	1
IT	4

col_0 count

employee_residence

JE	1
JP	7
KE	1
LU	1
MD	1
MT	1
MX	2
MY	1
NG	2
NL	5
NZ	1
PH	1
PK	6
PL	4
PR	1
PT	6
RO	2
RS	1
RU	4
SG	2
SI	2
TN	1
TR	3
UA	1
US 3	32
VN	3

remote_ratio

_	
0	127
50	99
100	381

-	_	
col	Λ	count
COL	u	COUIL

com	pany	location

company_location	
AE	3
AS	1
AT	4
AU	3
ВЕ	2
BR	3
CA	30
СН	2
CL	1
CN	2
со	1
CZ	2
DE	28
DK	3
DZ	1
EE	1
ES	14
FR	15
GB	47
GR	11
HN	1
HR	1
HU	1
IE	1
IL	1
IN	24
IQ	1
IR	1
IT	2
JP	6
KE	1

	count
company_location	
LU	3
MD	1
МТ	1
MX	3
MY	1
NG	2
NL	4
NZ	1
PK	3
PL	4
PT	4
RO	1
RU	2
SG	1
SI	2
TR	3
UA	1
US	355
VN	1

col_0 count company_size L 198 M 326

S

83

Moda

	work_year	experience_level	employment_type	job_title	salary_currency	employee_residence	remote_ratio
0	2022	SE	FT	Data Scientist	USD	US	100

Visualización de datos

Variables cuantitativas

Medidas de posición

Boxplot, cuartiles, outliers

[Text(0.5, 1.0, 'salary_in_usd')]

Se puede observar que cerca del 50% de los salarios se encuentran en un rango de 60,000a150,00 USD, con varios outliers que superan de forma notable el máximo del diagrama de caja, que se encuentra en cerca de \$300,000

Histogramas

Análisis de distribución de los datos y forma

<AxesSubplot:xlabel='salary_in_usd', ylabel='Count'>

La gráfica de distribución para los salarios en USD tiene una forma asimetrica, donde existe un marcado sesgo a la derecha y la mayoría de los salarios se encuentran al rededor de la media salarial que es de aprox. \$112,000 USD.

Variables categóricas

Distribución de los datos (diagramas de barras y pastel)

work_year

Más del 50% de los registros son de 2022

<AxesSubplot:xlabel='work_year', ylabel='salary_in_usd'>

experience_level

<AxesSubplot:ylabel='experience_level'>

En las gráficas se puede ver que la mayor parte de los trabajos son posiciones intermedias y senior

<AxesSubplot:xlabel='experience_level', ylabel='salary_in_usd'>

Como sería de esperarse, los puestos senior y ejecutivos pagan más.

employment_type

<AxesSubplot:ylabel='employment_type'>

Con gran diferencia, los trabajos de tiempo completo son los más comunes en comparación al resto. (97%)

<AxesSubplot:xlabel='employment_type', ylabel='salary_in_usd'>

job_title

<AxesSubplot:xlabel='job_title'>


```
[Text(0, 0, 'Data Scientist'),
Text(1, 0, 'Machine Learning Scientist'),
Text(2, 0, 'Big Data Engineer'),
Text(3, 0, 'Product Data Analyst'),
Text(4, 0, 'Machine Learning Engineer'),
Text(5, 0, 'Data Analyst'),
Text(6, 0, 'Lead Data Scientist'),
Text(7, 0, 'Business Data Analyst'),
Text(8, 0, 'Lead Data Engineer'),
Text(9, 0, 'Lead Data Analyst'),
Text(10, 0, 'Data Engineer'),
Text(11, 0, 'Data Science Consultant'),
Text(12, 0, 'BI Data Analyst'),
Text(13, 0, 'Director of Data Science'),
Text(14, 0, 'Research Scientist'),
Text(15, 0, 'Machine Learning Manager'),
Text(16, 0, 'Data Engineering Manager'),
Text(17, 0, 'Machine Learning Infrastructure Engineer'),
Text(18, 0, 'ML Engineer'),
Text(19, 0, 'AI Scientist'),
Text(20, 0, 'Computer Vision Engineer'),
Text(21, 0, 'Principal Data Scientist'),
Text(22, 0, 'Data Science Manager'),
Text(23, 0, 'Head of Data'),
Text(24, 0, '3D Computer Vision Researcher'),
Text(25, 0, 'Data Analytics Engineer'),
Text(26, 0, 'Applied Data Scientist'),
Text(27, 0, 'Marketing Data Analyst'),
Text(28, 0, 'Cloud Data Engineer'),
Text(29, 0, 'Financial Data Analyst'),
Text(30, 0, 'Computer Vision Software Engineer'),
Text(31, 0, 'Director of Data Engineering'),
Text(32, 0, 'Data Science Engineer'),
Text(33, 0, 'Principal Data Engineer'),
Text(34, 0, 'Machine Learning Developer'),
Text(35, 0, 'Applied Machine Learning Scientist'),
Text(36, 0, 'Data Analytics Manager'),
Text(37, 0, 'Head of Data Science'),
Text(38, 0, 'Data Specialist'),
Text(39, 0, 'Data Architect'),
Text(40, 0, 'Finance Data Analyst'),
Text(41, 0, 'Principal Data Analyst'),
Text(42, 0, 'Big Data Architect'),
Text(43, 0, 'Staff Data Scientist'),
Text(44, 0, 'Analytics Engineer'),
Text(45, 0, 'ETL Developer'),
Text(46, 0, 'Head of Machine Learning'),
Text(47, 0, 'NLP Engineer'),
Text(48, 0, 'Lead Machine Learning Engineer'),
Text(49, 0, 'Data Analytics Lead')]
```


salary_currency

salary_currency

employee_residence

<AxesSubplot:xlabel='employee_residence'>


```
[Text(0, 0, 'DE'),
Text(1, 0, 'JP'),
Text(2, 0, 'GB'),
Text(3, 0, 'HN'),
Text(4, 0, 'US'),
Text(5, 0, 'HU'),
Text(6, 0, 'NZ'),
Text(7, 0, 'FR'),
Text(8, 0, 'IN'),
Text(9, 0, 'PK'),
Text(10, 0, 'PL'),
Text(11, 0, 'PT'),
Text(12, 0, 'CN'),
Text(13, 0, 'GR'),
Text(14, 0, 'AE'),
Text(15, 0, 'NL'),
Text(16, 0, 'MX'),
Text(17, 0, 'CA'),
Text(18, 0, 'AT'),
Text(19, 0, 'NG'),
Text(20, 0, 'PH'),
Text(21, 0, 'ES'),
Text(22, 0, 'DK'),
Text(23, 0, 'RU'),
Text(24, 0, 'IT'),
Text(25, 0, 'HR'),
Text(26, 0, 'BG'),
Text(27, 0, 'SG'),
Text(28, 0, 'BR'),
Text(29, 0, 'IQ'),
Text(30, 0, 'VN'),
Text(31, 0, 'BE'),
Text(32, 0, 'UA'),
Text(33, 0, 'MT'),
Text(34, 0, 'CL'),
Text(35, 0, 'RO'),
Text(36, 0, 'IR'),
Text(37, 0, 'CO'),
Text(38, 0, 'MD'),
Text(39, 0, 'KE'),
Text(40, 0, 'SI'),
Text(41, 0, 'HK'),
Text(42, 0, 'TR'),
Text(43, 0, 'RS'),
Text(44, 0, 'PR'),
Text(45, 0, 'LU'),
Text(46, 0, 'JE'),
Text(47, 0, 'CZ'),
Text(48, 0, 'AR'),
Text(49, 0, 'DZ'),
Text(50, 0, 'TN'),
Text(51, 0, 'MY'),
Text(52, 0, 'EE'),
Text(53, 0, 'AU'),
Text(54, 0, 'BO'),
Text(55, 0, 'IE'),
Text(56, 0, 'CH')]
```


remote_ratio

<AxesSubplot:ylabel='remote_ratio'>

Por mucha diferencia, los trabajos completamente remotos son los más comunes (63%)

<AxesSubplot:xlabel='remote_ratio', ylabel='salary_in_usd'>

company_location

<AxesSubplot:xlabel='company_location'>

company_size

<AxesSubplot:ylabel='company_size'>

Se puede observar que el 86% de los puestos de trabajo en ciencia de datos son en compañías medianas o grandes.

<AxesSubplot:xlabel='company_size', ylabel='salary_in_usd'>

Problemas de calidad de datos

Registros duplicados

71

	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employed
119	2021	МІ	FT	Data Engineer	200000	USD	200000	
181	2021	МІ	FT	Data Scientist	76760	EUR	90734	
217	2021	МІ	FT	Data Scientist	76760	EUR	90734	
256	2021	МІ	FT	Data Engineer	200000	USD	200000	
303	2022	SE	FT	Data Scientist	123000	USD	123000	
•••								
587	2022	SE	FT	Data Scientist	140000	USD	140000	
588	2022	SE	FT	Data Analyst	99000	USD	99000	
592	2022	SE	FT	Data Scientist	230000	USD	230000	
596	2022	SE	FT	Data Scientist	210000	USD	210000	
597	2022	SE	FT	Data Analyst	170000	USD	170000	

71 rows × 11 columns

Existen 71 duplicados. Sin embargo, debido a que no se cuenta con datos más especificos, esta repetición no es un motivo suficiente para eliminar duplicados, pues existe la posibilidad de que existan puestos de trabajo con caracteristicas similares.

Valores faltantes

work_year experience_level employment_type 0 job_title salary salary_currency salary_in_usd employee_residence 0 0 remote ratio company_location company_size 0 dtype: int64

No existen valores faltantes o nulos.

Outliers

Para encontrar outliers se utilizo el rango intercuartil (IQR). Esto solamente se realizo para la variable salary_in_usd, pues no tendría sentido hacerlo para cantidades de dinero que se encuentran en diferentes tipos de moneda.

Num outliers: 10 Min outlier: 324000 Min outlier: 600000

Ouliers: [324000, 325000, 380000, 405000, 412000, 416000, 423000, 450000, 450000, 600000]

Se puede observar que existen 10 outliers o valores atípicos para el salario en USD. Llama la atención que solamente existen outliers por encima de la mediana. Estos valores se encuentran muy lejanos de la mediana del salario de \$101,570 USD, por lo que es posible que esten impactando de manera negativa a los cálculos. El valor máximo se encuentra incluso muy por encima de los otros ouliers, por lo que es posible que se trate de un error.

Preparación de los datos

Selección del conjunto de datos a utilizar

Selección de variables

Variables objetivo

La variable de interés es salary_in_usd, pues se busca analizar el efecto que tienen las diferentes variables sobre el salario de las personas que trabajan en Data Science.

Variables incluidas y excluidas

La mayoría de las variables presentes pueden ser relevantes para el análisis de información. Sin embargo, existen 2 variables: salary y salary_currency, que pueden ser eliminadas. Estas no aportan información útil para hacer comparaciones, pues son sueldos en diferentes tipos de moneda. Además, ya se cuenta con una variable de salario en dolares, por lo que no son necesarias para hacer alguna otra conversión.

dtypes: int64(3), object(6)
memory usage: 47.4+ KB

Manejo de datos categóricos

Recorte de datos (faltantes, duplicados, etc)

Como se pudo observar anteriormente, no existen datos faltantes.

0

En cuanto a los datos duplicados, si existen 71 registros repetidos. Sin embargo, no se tiene información suficiente para descartarlos, ya que pueden existir puestos de trabajo con caracteristicas muy similares o incluso varias personas que tengan un mismo puesto en la misma compañía.

71

Manejo de datos atípicos

Como se pudo observar anteriormente, existen varios outliers para variable salary_in_usd. Además, la distribución de los datos tiene un grado de sesgo causado por dichos outliers, que son salarios muy elevados en comparación al resto.

Para manejar estos datos atípicos, se decidio utilizar el rango intercuartil (IQR) y realizar una **imputación**, para sustituir los valores atípicos por la mediana y no tener que eliminar dichos registros.

Transformación de los datos

Escalamiento y normalización

El alcance de este trabajo es principalmente explorar, visualizar y analizar los datos, por lo que no hay la necesidad de realizar un escalamiento o normalización. Sin embargo, si se estuviera realizando un modelo de inteligencia artificial, este proceso si sería necesario para que el modelo no se viera impactado por la escala de las variables de entrada.

Construcción de atributos

Existen algunas variables categoricas que se pueden expresar de más de una forma. Para esto, puede ser útil crear nuevos atributos. Aquellos atributos categoricos que son expresados de forma númerica, pueden ser traducidos a String para la visualización de los datos. Del mismo modo y de forma contraria, atributos categoricos que son Strings, pueden ser traducidos a números, los cuales podrían ser utilizados en caso de que se entrene un modelo de Machine Learning.

experience_level

Se creo la columna experience_level_num y se hicieron las siguientes conversiones:

- EN → 0
- MI → 1
- SE → 2
- EX → 3

employment_type

Se creo la columna employment_type_num y se hicieron las siguientes conversiones:

- PT → 0
- FT → 1
- CT → 2
- FL → 3

remote_ratio

Se creo la columna remote_ratio_cat y se hicieron las siguientes conversiones:

- 0 → Remote
- 50 → Hybrid
- 100 → On-site

company_size

Se creo la columna company_size_num y se hicieron las siguientes conversiones:

- S → 0
- M → 1
- L → 2

Reformateo / reestructura de datos

Para facilitar el análisis e interpretación de la información de forma visual, se modifico el formato en que se presental algunas de las variables categóricas:

- **experience_level**: Modificar las categorías abreviadas (EN, MI, SE, EX) por sus nombres completos (Entry, Mid, Senior, Executive)
- **employment_type**: Modificar las categorías abreviadas (PT, FT, CT, FL) por sus nombres completos (Part-time, Full-time, Contract, Freelance)

2. ANÁLISIS DE DATOS Y PREGUNTAS GUÍA

¿Cuál es el salario al que pueda aspirar un analista de datos?

Para poder responder esta pregunta se pueden utilizar los rangos intercuartiles, así como observar la distribución de frecuencia para el año en curso

Salario min: 10000.0 Salario Q25: 81666.0 Salario Q75: 158800.0 Salario max: 266400.0

Salario promedio: 121992.7924528302

<AxesSubplot:xlabel='salary_in_usd', ylabel='Count'>

Se puede ver que el 50% de los salarios se encuentran en un rango de 81,666a158,800, por lo que se

podría decir que por lo menos el 50% de los analista de datos pueden aspirar a un salario cercano o dentro de este rango.

Hay que tomar en cuenta que también existen salarios por debajo y encima de este rango, sin embargo, la frecuencia es menor. Es importante recordar que en este caso no se está tomando en cuenta otras variables que pueden influir grandemente en el salario.

¿En qué países se ofrecen mejores salarios?

Para poder responder esta pregunta se puede calcular el salario promedio por país y observar aquellos en los que es mayor.

```
company_location
JP     114127.333333
IL     119059.000000
NZ     125000.000000
US     135127.656338
RU     157500.000000
Name: salary_in_usd, dtype: float64
[Text(0, 0, 'L'), Text(1, 0, 'S'), Text(2, 0, 'M')]
```


Los países que en promedio pagan mejor a los trabajadores de Data Science son Japón (JP), Israel (IL), Nueva Zelanda (NZ), Estados Unidos (US) y Rusia (RU). En promedio, estos países pagan un sueldo arriba de $114,127USDala\~no(Elpromedioanivelmundiales$ 121,992)

¿Se han incrementado los salarios a lo largo del tiempo?

```
work_year
2020
        83558.972222
2021
        93020.981567
2022
       121992.792453
Name: salary_in_usd, dtype: float64
([<matplotlib.axis.XTick at 0x1f501a74ee0>,
  <matplotlib.axis.XTick at 0x1f501a74eb0>,
 <matplotlib.axis.XTick at 0x1f57bd74400>],
 [Text(0, 0, ''), Text(0, 0, ''), Text(0, 0, '')])
120000
115000
110000
105000
100000
  95000
  90000
  85000
                                         2021
          2020
                                                                        2022
                                       work_year
```

Los salarios promedio aumentaron de aproximadamente 83Ken2020a93K en 2021. El aumento más considerable se dio en 2022, pues hubo un aumento a un promedio de \$121K. Esto muestra una tendencia positiva y que además, el valor de los trabajos en Ciencia de datos sigue aumentando con los años.

¿Influye el nivel de experiencia en el salario?

```
experience_level
Entry 61643.318182
Executive 150979.730769
Mid 83215.352113
Senior 135430.542857
Name: salary_in_usd, dtype: float64
<AxesSubplot:xlabel='salary_in_usd', ylabel='experience_level'>
```


De forma general y como es de esperarse se puede observar que aquellos con un nivel de experiencia de entrada o medio tienen un menor salario, que aquellas personas con un empleo en el que necesitan experiencia ejecutiva o senior. Algo que llama la atención es que existen puestos de trabajo senior que ganan igual o incluso mejor que posiciones ejecutivas. Es importante mencionar, que para poder hacer un análisis más a fondo de esta información, sería necesario hacer la distinción por puesto de trabajo o incluso dentro de un mismo país o compañía.

¿Influye el tamaño de la compañía en el salario que puede ofrecer a un analista de datos?

Los trabajos de ciencia de datos en empresas de mayor tamaño tienen un salario por lo general más alto que las empresas medianas y pequeñas. Sin embargo, llama la atención que el sueldo de las empreas medianas tampoco se encuentra tan lejos del que ofrecen las grandes. También hay que recordar que

esto no implica necesariamente que las empresas más grandes siempre den un salario más alto, pues dentro de una empresa puede haber diferentes salarios.

¿Qué tipo de contrato (parcial, tiempo completo, etc) ofrece mejores salarios?

employment_type

Contract 121689.000000 Freelance 48000.000000 Full-time 108612.852041 Part-time 33070.500000

Name: salary_in_usd, dtype: float64
<AxesSubplot:xlabel='employment_type'>

En cuanto a las horas de trabajo, y como sería de suponerse, los trabajos de tiempo completo tienen un salario promedio mucho más alto que aquellos de medio tiempo (108, 612vs.33,070). En cuanto al tipo de empleo, aquellas personas que trabajan bajo un contrato tienen un salario promedio mayor al doble del salario de las personas que trabajan en freelance (121, 689vs.48,000)

Conlusión

En este trabajo se pudieron poner en práctica metodos para analizar y preprocesar datos.

Por un lado, por medio del calculo de medidas estadísticas y la visualización de datos, se pudo realizar un análisis exploratorio y comprender la relación del sueldo con otras variables.

Así mismo, se aprendieron nuevas técnicas para mejorar la calidad de la información que se tiene, como escalamiento, normalización, discretización, imputación y detección de anomalías (outliers). Esto es muy útil, sobre todo cuando se crean modelos de estadisticos.