1a. The following diagram shows triangle ABC.

$$\mathrm{BC}=10~\mathrm{cm}, \mathrm{A\hat{B}C}=80^{\circ} \mathrm{\ and\ B\hat{A}C}=35^{\circ}.$$

Find AC. [3 marks]

1b. Find the area of triangle ABC.

[3 marks]

2a. The following diagram shows a quadrilateral ABCD.

AD = 7 cm, BC = 8 cm, CD = 12 cm, $D\hat{A}B = 1.75$ radians, $A\hat{B}D = 0.82$ radians.

Find BD. [3 marks]

2b. Find \hat{DBC} .

3a. The following diagram shows the quadrilateral ABCD.

AB = 6.73 cm, BC = 4.83 cm, $B\hat{C}D = 78.2^{\circ}$ and CD = 3.80 cm.

Find BD. [3 marks]

[4 marks]

3b. The area of triangle ABD is 18.5 cm². Find the possible values of θ .

4a. The following diagram shows three towns A, B and C. Town B is 5 km from Town A, on a bearing of 070°. Town C is 8 km from Town B, on a bearing of 115°.

Find \hat{ABC} . [2 marks]

4b. Find the distance from Town A to Town C. [3 marks]

4c. Use the sine rule to find \hat{ACB} .

Name:

5a. In triangle ABC, $AB=6\,cm$ and $AC=8\,cm$. The area of the triangle is $16\,cm^2$.

Find the two possible values for \hat{A} .

[4 marks]

5b. Given that \hat{A} is obtuse, find BC.

[3 marks]

6a. A communication tower, T, produces a signal that can reach cellular phones within a radius of 32 km. A straight road passes through the area covered by the tower's signal.

The following diagram shows a line representing the road and a circle representing the area covered by the tower's signal. Point R is on the circumference of the circle and points S and R are on the road. Point S is 38 km from the tower and $R\hat{S}T = 43^{\circ}$.

Let SR = x. Use the cosine rule to show that $x^2-\left(76\cos 43^\circ\right)x+420=0$. [2 marks]

6b. Hence or otherwise, find the total distance along the road where the signal from the tower can reach cellular phones. [4 marks]

7a. The following diagram shows the quadrilateral ABCD.

$$\mathrm{AD}=6~\mathrm{cm},~\mathrm{AB}=15~\mathrm{cm}, \mathrm{A\hat{B}C}=44^{\circ}, \mathrm{A\hat{C}B}=83^{\circ}\mathrm{and}\mathrm{D\hat{A}C}= heta$$

Find AC. [3 marks]

7b. Find the area of triangle ABC.

[3 marks]

7c. The area of triangle ACD is half the area of triangle ABC.

Find the possible values of θ .

[5 marks]

7d. Given that θ is obtuse, find CD.

[3 marks]

8a. The following diagram shows a square ABCD, and a sector OAB of a circle centre O, radius r. Part of the square is shaded and labelled R.

$$\hat{AOB} = \theta$$
, where $0.5 \le \theta < \pi$.

Show that the area of the square ABCD is $2r^2(1-\cos\theta)$.

[4 marks]

8b. When $\theta=lpha$, the area of the square ABCD is equal to the area of the sector OAB.

[4 marks]

- (i) Write down the area of the sector when $\theta = \alpha$.
- (ii) Hence find α .