Stat Arb: Archimedean Copulas

Health Care and Gold Ryan Finegan

- 1. Trade is more based on macro view, but buying at a good price is discussed with brief overview of pairs trading with Copulas
- 2. Macro: Produced with Plotly Python and utilized Python and RStudio's FRED API
- 3. Security Pricing: Utilized Python to scrape Yahoo (might not be too accurate on daily pricing)

Best Idea: Buy GLD US Equity @ \$187.46

Current Macro

BBB spread rising relative to AAA

 Credit spread widening is a bearish signal and has prompted other historic market downturns

1 Year Forward 10s and 2s

- One year forward yield curve is a good indicator of good and bad markets
- Steepening / accelerating means real growth

Industrial Production - ROC

Percentage down M/M:

- April 2008: ~ (-1.03%)
- March 2020: ~ (-4.5%)
- April 2020: ~ (-15.5%)
- March 2023: ~(-0.53%)

Jul 2009

Copper - Gold Divergence

- Copper and gold diverge because gold is a safe haven asset
- Copper does well when there is economic growth because it is utilized in many industrial applications

Capital Goods New Orders / Jobless Claims / Small Business Optimism

Senior Loan Officer Survey

• Lending institutions standards rise during economic turbulence

CRE Data

Office Real Estate Vacancy Percentage US Metro Total

London City Vacancy Office Rate

Trade Ideas

- Long GLD US Equity (Long Only)
 - Probably the best option
 - XLV and GLD do well in this regime (declining Growth and Inflation)
 - Choosing the undervalued security in the coupled (copula) pair should offer more value
- Long GLD Short XLV
 - Stat Arb: Not capital intensive
 - Banking on undervalued pair to "catch up" to overvalued
 - Exit both when conditional probabilities cross 0.5 (calculated daily EOD)
- Conditional Probabilities Using the Frank Copula
 - GLD is undervalued compared to XLV (will be shown in a few slides)

Why GLD?

- Gold is trending up
 - o from equities like miners to the commodity itself
- Safe haven when markets are in decline
- Alternative asset that isn't consumed and could be used to conserve wealth

Why XLV?

- Health Care is known to be a very reliable defensive sector
- There's consumer demand no matter the economic cycle

What's the Relationship?

- Both perform better in declining markets
 - Not cyclical bets like XLY, XLB, XLK

Systematic Backtest

- Used a mixture of Archimedean Copulas (Clayton, Gumbel, Frank)
 - Utilized a training (Jan 2021 to May 2022) and testing (June 2022 to April 2023) period
 - Copulas can be used to get the conditional probabilities of each security
 - Long the security with a conditional probability that is less than 0.4
 - Short the security with a conditional probability that is greater than 0.6
 - Close both positions when both conditional probabilities cross 0.5 threshold

Backtest - June 2022 through April 2023

Trading Using Copulas

- Select securities that do well in the current market regime
 - Defensive / Safe Haven Assets
- Select pairs using Kendall Tau correlation coefficient
 - Use this instead of Pearson Rho because its calculated on order, not value (stability)
 - Doesn't change when the distribution is changed (probability integral transform)
- Pick a training period
 - Used January 2021 to June 2022 as training
 - Sorted the asset pairs on highest Tau correlated daily log returns (could use weekly)

Copulas - ID Marginal Distributions

- Identify marginal distributions relative to the log returns of each stock pair
- Fit each log return of the screened securities to the student t marginal distribution
 - Used Student t because security returns are usually not normal and have fatter tails
 - I used Kolmogorov-Smirnov Test to see if the distributions fit the data well
 - Removed all securities that failed the KS Test (p-values lower than 0.1 meaning that the selected parametric distribution (Student T) for the security wasn't a good fit

Probability Integral Transform

- Probability Integral Transform is used on the PDFs of the marginal returns to make them uniform (needed for coupling the securities)
 - o Transform the PDF into a CDF to make it uniform (standardized
- Do this so copulas can be fit to the marginal distributions

"Trading strategies with copulas." by Stander, Yolanda, Daniël Marais, and Ilse Botha.

Fit Copulas on Transformed Marginal Returns

- Used Frank, Clayton, Joe, and Gumbel to fit to the marginal distributions
- Optimal copulas were selected to decouple the marginal distributions and it was selected using the lowest AIC according to log likelihood
- Frank copulas were used on the XLV and GLD pair
- Much like a Gaussian Copula with little tail dependence

Last Week's Conditional Probabilities

	GLD	XLV
Date		
2023-05-01	0.25	0.72
2023-05-02	0.98	0.24
2023-05-03	0.85	0.38
2023-05-04	0.82	0.14
2023-05-05	0.03	0.85

Conditional Probabilities (Frank Copula) - GLD US Equity

GLD Conditional Probabilities - Frank Copula

GLD Long Only -Last three times @ less than 0.2 conditional probability

	GLD FIOD	GLD FIICE
Date		
2023-03-07	0.03	168.62
2023-03-08	0.48	168.54
2023-03-09	0.89	170.20
2023-03-10	0.99	173.87
2023-03-13	0.99	177.86

0.20

2023-03-14

176.83

GLD Prob. GLD Price

	GLD Prob	GLD Price
Date		
2023-03-21	0.02	180.37
2023-03-22	0.97	183.44
2023-03-23	0.93	185.74
2023-03-24	0.07	183.65

	GLD 1 100	GLD I IICE
Date		S
2023-04-10	0.16	185.11
2023-04-11	0.78	186.28
2023-04-12	0.73	187.19
2023-04-13	0.93	189.72
2023-04-14	0.03	186.36

GLD Prob GLD Price

Appendix

```
class Trading:
    def __init (self, condition, start, end):
        if condition == 1:
            self.period1 = start
            self.period2 = end
        else:
            self.period1 = int(time.mktime((dt.datetime.now() - dt.timedelta(365*35)).timetuple()))
            self.period2 = int(time.mktime(dt.datetime.now().timetuple()))
        self.fred start = str(dt.datetime.now() - dt.timedelta(365*35)).split()[0]
        self.fred end = dt.datetime.now()
        self.interval = '1d'
        self.ticker_list = ["^GSPC","XLV","VNQ","XLP","XLU","TLT","GDX","GLD","MUB","SPLV","DEF","XLRE","IEF",
                            "GDXJ", "MBB", "UUP", "IIGD", "PINK", "XLY", "XLP", "HG=F", "GC=F"]
    def yahoo universe(self):
        web3 = []
        failed = []
        for security in self.ticker_list:
            try:
                interval = '1d'
                query_string = f'https://query1.finance.yahoo.com/v7/finance/download/{security}?period1={self.perio
                df = pd.read csv(query string).set index("Date")
                df['ticker'] = security
                df.columns = ['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume', 'ticker']
                web3.append(df)
            except:
                failed.append(security)
                pass
            final = pd.concat(web3)
            df final = final.reset index()
        return df final, web3, failed
```

```
def trading_sql(self, data_file):
    try:
        conn = sqlite3.connect('tradable_universe')
        data_file.to_sql("consensusinvestable", conn, if_exists='replace', index = False)
        conn.commit()
        conn.close()
        print("Updating the sql table was a success")
    except:
        print("Was unsuccessful in uploading the dataframe into the datatable. ")
def to trading sql(self, data):
    1111111
    Inputs: dataframe you want to upload
    Outputs: saves SQL table to the investable database
    try:
        connection = sqlite3.connect(config.db_file)
        data.to_sql("consensusinvestable", connection, if_exists='replace', index=False)
        connection.commit()
        connection.close()
        print("Uploading dataframe to database worked successfully.")
    except:
        print("Was unable to save the dataframe into the investable datatable.")
```

```
conn = sqlite3.connect('tradable universe')
        df = pd.read sql query("SELECT * from consensusinvestable", conn)
        conn.commit()
        conn.close()
    except:
        print("Could not retrieve the datatable. ")
    return df
def ticker filter(self, ticker, final):
    return final[final['ticker']==f"{ticker}"]
def dataframe(self, tickers, final, start, end):
    1111111
    Inputs: The tickers you want to filter by and a raw unfiltered data query from trading database.
    Outputs: A dataframe with the columns being the names of the selected tickers and the values being
    the adjusted adjusted close prices.
    .....
    new df = []
    for ticker in tickers:
        new = final[final['ticker']==f"{ticker}"]
        new_df.append(new)
    main = pd.concat(new_df)
    df = main.pivot_table(index = main.index, columns = "ticker", values = 'Adj Close')
    return df[start:end]
```

def load_sql(self):

try: