Or Bar Yaacov ID - 300486396

3. Let \mathcal{H} be a non PAC learnable hypothesis class. Suppose A(S) is an algorithm that always returns the hypothesis $\forall x \in \mathcal{X}, h(x) = 0$.

 $\mathbb{E}_{S|x \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(A(S)) = \mathbb{E}_{S|x \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(h) \right] = L_{\mathcal{D}}(h) = \mathbb{E}_{S|x \sim \mathcal{D}^m} \left[L_{\mathcal{S}}(h) \right] = \mathbb{E}_{S|x \sim \mathcal{D}^m} \left[L_{\mathcal{S}}(A(S)) \right] \leq \mathbb{E}_{S|x \sim \mathcal{D}^m} \left[L_{\mathcal{S}}(A(S)) \right] + \epsilon_m$

Therefore the conditions hold for a non PAC learnable hypothesis class.

4. Let \mathcal{H} be an hypothesis class of binary classifiers.

Suppose that \mathcal{H} is agnostic PAC learnable and let A be a learning algorithm that learns \mathcal{H} with sample complexity $m_{\mathcal{H}}(.,.)$.

Let \mathcal{D} be an unknown distribution over $\mathcal{X} \times \{0,1\}$ and let f be the true function.

Since \mathcal{H} is agnostic PAC learnable and A is learning algorithm that learns \mathcal{H} with sample complexity we know that for all $\epsilon, \delta \in (0, 1)$

$$Pr\left(L_{D}(h) \leq \underset{h \in \mathcal{H}}{min} L_{D}(h) + \epsilon\right) \geq 1 - \delta$$

where

$$L_{D}\left(h\right) = \mathcal{D}\left(\left\{\left(x,y\right) : h(x) \neq y\right\}\right)$$

Let us take the realizability assumption, that is,

$$\exists f \in \mathcal{H}s.t. \forall i (x_1, ..., x_m), y_i = f(x_i)$$

This means that $\min_{h \in \mathcal{H}} L_D(h) = 0$

We may further assume w.l.o.g that Pr(y|x) is determined deterministically by f(x) since the realizability assumption tells us that $y_i = f(x_i)$ and therefore $Pr(y_i = f(x_i)|x_i) = 1$.

This means that $L_D\left(h\right) = \Pr_{(x,y)\sim\mathcal{D}}\left(h(x) \neq y\right) = L_{D,f}\left(h\right) = \Pr_{x\sim\mathcal{D}}\left(h(x) \neq f(x)\right)$ And so, it holds that:

$$Pr(L_{D,f}(h) \le \epsilon) \ge 1 - \delta$$

And therefore \mathcal{H} is PAC learnable and A is a successful PAC learner for \mathcal{H} .

5. Let \mathcal{X} be a discrete domain, and let $\mathcal{H}_{Singleton} = \{h_z : z \in \mathcal{X}\} \cup \{h^-\}$ where

$$h_{z}\left(x\right) = \begin{cases} 1 & x = z \\ 0 & x \neq z \end{cases}, h^{-}\left(x\right) = 0 \,\forall x \in \mathcal{X}$$

(a) Let's recall the empirical risk definition:

$$L_S(h) = \frac{1}{m} |\{i : h(x_i) \neq y_i\}|$$

An ERM based algorithm will have an input of a training set $S = (x_1, y_1), ..., (x_m, y_m)$ and output any $h \in \mathcal{H}_{Singleton}$ which minimizes the empirical risk.

I suggest the following:

- i. If all labels $y_1, ... y_m = 0$ return h^-
- ii. Else find the first label $y_i = 1$ and return h_{x_i} . The realizability assumption assures us the training set will only contain at most one unique sample that is labeled as 1 and therfore a sample labled 1 uniquely defines the true function.
- (b) We must show that there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ such that for all $\epsilon, \delta \in (0,1)$, for all distributions \mathcal{D} over \mathcal{X} and for all labeling function $f: \mathcal{X} \to \{0,1\}$ running the learning algorithm on $m \geq m_{\mathcal{H}}$ i.i.d samples generated by \mathcal{D} the algorithm returns h such that $Pr(L_{\mathcal{D},f}(h) \leq \epsilon) \geq 1 \delta$.

Let's fix \mathcal{D} , and divide into cases:

- i. The labeling function $f(x) = h^-(x)$, therefore the training set will not contain a label of 1 and so for any size of a training set my algorithm will return h^- and it's generalization error will be $L_{D,f}(h) = \Pr_{x \sim \mathcal{D}}[h(x) \neq f(x)] = 0$
- ii. The labeling function $f(x) = h_z(x)$
 - A. The training set contains a label of 1 and so my algorithm will return h_z and it's generalization error will be $L_{D,f}\left(h\right) = \underset{x \sim \mathcal{D}}{Pr}[h(x) \neq f(x)] = 0$
 - B. The training set doesn't contain a label of 1 and so my algorithm will return h^- .

Let $\epsilon, \delta \in (0, 1)$, Let's denote $Pr(x = z) = \epsilon'$.

The generalization error in such a case will be

$$L_{D,f}(h) = \Pr_{x \in \mathcal{D}}[h(x) \neq f(x)] = \Pr[x = z] = \epsilon'$$

And so, in this case, the generalization error is not under our control, however, we can avoid this case.

The probability that our training set doesn't contain (z,1) is $Pr[(z,1) \notin S] = (1-\epsilon')^m$. So we can increase our confidence that we will not encounter this case by increasing m. Any m that satisfies the inequality

$$(1 - \epsilon')^m \le \delta$$

Will give us

$$Pr(L_{\mathcal{D},f}(h) = 0 \le \epsilon) \ge 1 - \delta$$

And so, a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ exists and this proves that \mathcal{H} is PAC learnable. To give an upper bound on $m_{\mathcal{H}}$:

$$\left(1 - \epsilon'\right)^m \le \delta \Rightarrow \log\left(\left(1 - \epsilon'\right)^m\right) \le \log(\delta) \Rightarrow m \cdot \log\left(1 - \epsilon'\right) \le \log\left(\delta\right)$$

$$m \leq \frac{\log\left(\delta\right)}{\log\left(1 - \epsilon'\right)}$$

7.
$$L_{\mathcal{D}}(h) = \Pr_{(x,y) \sim \mathcal{D}}[h(x) \neq y] = \begin{cases} Pr_{(x,y) \sim \mathcal{D}}[y \neq 0|x] & \text{if } h(x) = 0, \\ Pr_{(x,y) \sim \mathcal{D}}[y \neq 1|x] & \text{if } h(x) = 1 \end{cases}$$

We wish to minimize the function $\phi(x)$ defined below:

$$\phi(x) = \begin{cases} Pr\left[y \neq 0 | x\right] & \text{if } \mathbf{h}(\mathbf{x}) = 0, \\ Pr\left[y \neq 1 | x\right] & \text{if } \mathbf{h}(\mathbf{x}) = 1 \end{cases} = \begin{cases} Pr\left[y = 1 | x\right] & \text{if } \mathbf{h}(\mathbf{x}) = 0, \\ 1 - Pr\left[y = 1 | x\right] & \text{if } \mathbf{h}(\mathbf{x}) = 1 \end{cases}$$

So if Pr[y=1|x] < 1 - Pr[y=1|x] we should choose h(x)=0 otherwise we should choose h(x)=1.

$$Pr[y = 1|x] < 1 - Pr[y = 1|x] \Leftrightarrow Pr[y = 1|x] < \frac{1}{2}$$

Therefore, the optimal classifier is given by:

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & Pr[y=1|x] \ge \frac{1}{2} \\ 0 & otherwise \end{cases}$$

8. Let $\mathcal{H} = \{h_1, ..., h_N\}$ be a finite hypothesis class over domain \mathcal{X} , denote $VC(\mathcal{H}) = d$. There exists $C \subset \mathcal{X}, |C| = d$ such that \mathcal{H} shatters C meaning that $|\mathcal{H}_{\mathcal{C}}| = 2^{|C|} \Rightarrow |\mathcal{H}_{\mathcal{C}}| = 2^d$ therefore

$$2^{d} \le |\mathcal{H}| \Rightarrow d \le \log\left(|H|\right) \Rightarrow |d| \le |\log\left(|H|\right)| \Rightarrow d \le |\log\left(|H|\right)|$$

9. (a) Given a subset $C \subseteq \mathcal{X}$ the domain set, in order to show that \mathcal{H} shatters C I must show that for every possible labeling of the set C there exists an hypothesis $h \in \mathcal{H}$ that explains it.

For
$$|C| = 1$$
, $C = \{x \in \mathcal{X}\}$ \mathcal{H} shatters C beacuse $\mathcal{H}_{\mathcal{C}} = \{h_x(x) = 1, h^-(x) = 0\} \Rightarrow |\mathcal{H}_{\mathcal{C}}| = 2$

For every $C \subseteq \mathcal{X}$ such that $|C| = 2, C = \{x_1, x_2 \in \mathcal{X}\}$ there is no hypothesis in $\mathcal{H}_{Singleton}$ that can explain the labeling $(x_1, 1), (x_2, 1)$ and therefore $|\mathcal{H}_C| = 3 < 2^{|C|}$.

(b) Let's complete the proof by showing that $d \leq VC(\mathcal{H})$, in other words, we wish to give a set $C \subseteq \mathcal{X}, |C| = d$ such that \mathcal{H} shatters C.

Let's consider the set
$$C=\{e_1,...,e_d\}$$
 where $e_i=\begin{bmatrix}e_{i1}=0\\\vdots\\e_{ii}=1\\\vdots\\e_{id}=0\end{bmatrix}$ is the

unit vector. Let $l_1, ..., l_d \in \{0, 1\}$ be some labeling of $e_1, ..., e_d$ respec-

The hypothesis $r_1 \hat{r}_2 \hat{...} r_d \in \mathcal{H}$ where $r_i = \begin{cases} e_i & l_i = 1 \\ \bar{e}_i & l_i = 0 \end{cases}$ explains

this labeling for each member $e_j \in C$ and therefore \mathcal{H} shatters C. In recitation we have seen that $d \geq VC(\mathcal{H})$ and we can conclude that $VC(\mathcal{H}) = d$

- 10. (a) The hypothesis class defind in question 11 has a VCdim that is equal to the upper bound as I have proved in question 11.
 - (b) Consider the domain $\mathcal{X} = \{1, ..., k\}$ and consider the hypothesis class of threshold functions

$$\mathcal{H}_{th} = \{ h_{\theta}(x) = sign(x - \theta) : \theta \in \mathbb{R} \}$$

|H|=k but $\mathrm{VC}(\mathcal{H})=1$ and since k can be arbitrarily large, the gap between $log_2(|\mathcal{H}|)$ and $VC(\mathcal{H})$ can be arbitrarily large.

11. First let's note that $|H_{parity}| = 2^n$ and therefore, by q8 we know that

$$VC(H_{parity}) \le |log(|H_{parity}|)| = n$$

Let's show that $VC(H_{parity}) \ge n$ and conclude that $VC(H_{parity}) = n$.

Consider the set
$$C \subseteq \{0,1\}^n$$
, $|C| = n$, $C = \{e_1, ..., e_n\}$ where $e_i = \begin{bmatrix} e_{i1} = 0 \\ \vdots \\ e_{ii} = 1 \\ \vdots \\ e_{id} = 0 \end{bmatrix}$

is the unit vector. Let $l_1,...,l_d \in \{0,1\}$ be some labeling of $e_1,...,e_d$ respectively.

Consider the hypothesis h_I where $I = \{j : j \in [n], l_j = 1\}$ In words, the hypothesis will sum over all j's where the labeling of e_i is 1.

Now $h_I(e_i) = \left(\sum_{j \in I} e_{ij}\right) mod2 = \begin{cases} 1 mod2 = 1 & l_i = 1 \\ 0 mod2 = 0 & l_i = 0 \end{cases}$. So the hypothesis h_I labels correctly all elements in C and so \mathcal{H}_{parity} shatters C.

12. $\mathcal{X} = \mathbb{R}$.Let's prove that $VC\left(\mathcal{H}_{k-intervals}\right) = 2k$

First let's show that $C \subseteq \mathcal{X}, |C| = 2k, C = \{1, ..., 2k\}$ is shattered by $\mathcal{H}_{k-intervals}$. Let $l_1, ..., l_{2^k} \in \{0, 1\}$ be some labeling of 1, ..., 2k respectively.

Let $\epsilon \ll 1$, Define the hypothesis $h_A(x)$, where $A = \bigcup_{i=1}^k [a_i, b_i]$ and $a_i = \bigcup_{i=1}^k [a_i, b_i]$

$$\begin{cases} 2i - 1 - \epsilon & l_{2i-1} = 1 \\ 2i - 1 + \epsilon & l_{2i-1} = 0 \end{cases} \text{ and } b_i = \begin{cases} 2i - 1 + \epsilon & l_{2i-1} = 1, l_{2i} = 0 \\ 2i + \epsilon & l_{2i-1} = 1, l_{2i} = 1 \\ 2i + \epsilon & l_{2i-1} = 0, l_{2i} = 1 \\ 2i - \epsilon & l_{2i-1} = 0, l_{2i} = 0 \end{cases} \text{ clearly }$$

$$\forall j \in [2k], h_A(j) = \begin{cases} 1 & l_j = 1 \\ 0 & l_j = 0 \end{cases}$$

In words, we treat each pair of adjacent points in C seperately and explain each pair with it's own interval.

Now let's prove that for all $C \subseteq \mathcal{X}$, |C| = 2k + 1, $C = \{c_1, ..., c_{2k+1}\}$, C is not shattered by $\mathcal{H}_{k-intervals}$.

Let's consider the following labeling for C: $l_1 = 1, l_2 = 0, l_3 = 1, ..., l_{2k} = 0, l_{2k+1} = 1 \in \{0,1\}$, i.e we take the alternating labeling of the elements of C starting with a positive labeling. Since 2k+1 is an odd number we know that we have k+1 elements labeled as 1 and they are all seperated by elements labeled as 0 therefore there is no hypothesis in $\mathcal{H}_{k-intervals}$ that can explain this labeling, and therefore C is not shattered by $\mathcal{H}_{k-intervals}$.

If k in unlimited then for any $C \subseteq \mathcal{X}$, |C| = p and for any labeling of C we can take k=p. The hypothesis where there's an interval for each $c \in C$ that is labeled as 1 and that interval contains only c and no other c' in C clearly explains this labeling of C. Therefore in this case $VC(\mathcal{H}_{intervals}) = \infty$

13. Consider the class of homogenous halfspaces in \mathbb{R}^d : $\mathcal{H} = \{h_w : h_w(x) = sgn(\langle w, x \rangle), w \in \mathbb{R}^d\}$, as we have seen in recitation 5, $VCdim(\mathcal{H}) = d$

 $\mathcal{H}S_d = \{h_{w,b} : h_{w,b}(x) = sgn(\langle w, x \rangle + b), w \in \mathbb{R}^d, b \in \mathbb{R}\}, \text{ let's prove that } VCdim(\mathcal{H}S_d) = d+1$

Let's first show that there exists $C \subseteq \mathcal{X}, |C| = d + 1$, which $\mathcal{H}S_d$ shatters. Let's consider $C = \{e_1, ... e_d, 0\}$ where e_i is the i'th unit vector. Given some

labeling of C $l_1, ..., l_{d+1} \in \{-1, 1\}$ take the hypothesis $w = \begin{bmatrix} l_1 \\ \vdots \\ l_d \end{bmatrix}, b = \frac{1}{2}l_{d+1}$

$$\forall i \in [d], \ h_{w,b}(e_i) = sgn\left(\langle w, x \rangle + b\right) = sgn\left(l_i + \frac{1}{2}l_{d+1}\right) = sgn\left(l_i\right)$$

$$h_{w,b}(0) = sgn\left(\langle w, 0 \rangle + b\right) = sgn\left(b\right) = sgn\left(\frac{1}{2}l_{d+1}\right) = sgn\left(l_{d+1}\right)$$

Now it's left to prove that for all $C \subseteq \mathcal{X}$, $|C| = d + 2 \mathcal{H}S_d$ doesn't shatter C, let's assume by contradiction that there exists $C \subseteq \mathcal{X}$, |C| = d +

2, $C=\{c_1,...,c_{d+2}\}$. that $\mathcal{H}S_d$ shatters, i.e for every possible label of C $l_1,...,l_{d+2}\in\{-1,1\}$ there exists a $w=(w_1,...,w_d)\in\mathbb{R}^d,b\in\mathbb{R}$ such that $h_{w,b}$ predicts correctly the labeling.

$$h_{w,b}(c_i) = \langle c_i, w \rangle + b = l_i$$

The set $C' = \{(1, c_1), ..., (1, c_{d+2})\}$ is shattered by the class of homogenous halfspaces in \mathbb{R}^{d+1} because given a labeling $l_1, ..., l_{d+2}$ the hypothesis $h_w(x) = \langle (b, w), x \rangle$ predicts correctly on all elements of C'

$$h_w((1,c_i)) = \langle (b,w), (1,c_i) \rangle = b + \langle w, c_i \rangle = l_i$$

In contradiction to the VCdim of the class of homogenous halfspaces in \mathbb{R}^{d+1} being d+1.