Time-Varying Skill

Marcin Kacperczyk

Imperial College London

Joint with Stijn van Nieuwerburgh and Laura Veldkamp

Attention Allocation Problem

- Decision makers face an abundance of available information and they must choose how to allocate their limited attention. Do they allocate it rationally?
- Problem: Information choices are not observable
- Our strategy:
 - Business-cycle variation changes the optimal allocation (a theory)
 - Look for evidence of these changes (empirical work)
- Our data: Mutual fund managers
 - An important part of economy (\$14 trillion invested)
 - Primary business is acquiring and processing information

Outline

- Empirical evidence that mutual fund skill fluctuates over the business cycle
 - Portfolio positions co-move more with aggregate economy in recessions (market timing) and more with stock-specific component of returns in expansions (stock picking)
 - Same managers that are good at stock picking in expansions that are good at market timing in recessions
 - These managers outperform
 - Skilled managers can be identified in real time
- A theory for why mutual funds reallocate attention over the business cycle.
 - Recessions are times of high aggregate risk and a high price of risk.
 - Theory has additional testable implications: Attention reallocation works through fundamentals & Increase in portfolio dispersion in recessions

Do People Shift Attention in Recessions?

@ Mark Parisi, Permission required for use.

Data

- Actively managed open-end U.S. equity mutual funds (3,477)
- CRSP survivorship bias-free mutual fund database, January 1980 until December 2005 (312 months), merged with holdings data from Thomson Financial
- CRSP/Compustat stock-level database: return, market capitalization, book-to-market, momentum, liquidity, SUE
- Recessions: NBER dates (38 months)
 Alternatives: months with 1) highest 12% cash-flow volatility; 2)
 negative real consumption growth; 3) lowest 25% market returns; 4)
 real-time recession probability.

Main Result: Timing and Picking Skills are Cyclical

- Main insight: Information allows an investor to purchase more of an asset when its return is likely to be high. It determines covariance of investment positions (w's) with returns.
- Two measures of skill:
 - Fund with high Picking¹_t ability overweights assets that have subsequently high idiosyncratic returns
 - Fund with high *Timing*¹ ability overweights assets that have high betas before the market return rises
- Define:

$$\begin{aligned} \textit{Picking}_{t}^{j} &= \sum_{i=1}^{N^{j}} (w_{it}^{j} - w_{it}^{m}) (R_{t+1}^{i} - \beta_{i} R_{t+1}^{m}) \\ \textit{Timing}_{t}^{j} &= \sum_{i=1}^{N^{j}} (w_{it}^{j} - w_{it}^{m}) (\beta_{i,t} R_{t+1}^{m}) \end{aligned}$$

Main result: ↓ Picking and ↑ Timing in Recessions

$$Picking_t^j = a_0 + a_1 Recession_t + \mathbf{a_2} \mathbf{X_t^j} + \epsilon_t^j, \tag{1}$$

$$Timing_t^j = b_0 + b_1 Recession_t + \mathbf{b_2} \mathbf{X_t^j} + \varepsilon_t^j, \tag{2}$$

	Tim	ning	Picl	king
Recession	0.140	0.139	-0.144	-0.146
	(0.070)	(0.068)	(0.047)	(0.047)
Constant	0.007	0.007	-0.010	-0.010
	(0.024)	(0.024)	(0.018)	(0.018)
Controls	N	Y	N	Y
Observations	221,306	221,306	221,306	221,306

Control variables: Log(Age), Log(Assets), Expenses, Turnover, Flow, Load, Style measures (size, value, momentum)

Timing is 1.67% points per year higher in recessions than in expansions. *Picking* is 1.75% per year lower in recessions.

Alternative Measures of Recessions

- NBER recession defined ex post: might be problematic to use as an out-of-sample predictor
- Use two alternative measures of recessions available in real time:
 - (1) Real-Time probability of recession of Chauvet and Piger (RT)
 - (2) Chicago Fed National Activity Index (CFNAI)

	Tim	ning	Picl	king
RT	0.004 (0.002)		-0.002 (0.001)	
CFNAI	(0.070)	0.094 (0.058)		-0.059 (0.029)
Constant	0.019 (0.024)	0.019 (0.024)	-0.022 (0.017)	-0.022 (0.017)
Controls Observations	Y 221,292	Y 221,292	Y 221,292	Y 221,292

Not All Managers Have Skill

Recession effect at top percentiles of *Timing* and *Picking* distribution:

	P50	P75 Timing	P95	P50	P75 Picking	P95
Recession	0.059 (0.023)	0.114 (0.041)	0.251 (0.082)	-0.084 (0.021)	-0.091 (0.022)	-0.173 (0.067)
Constant	0.000 (0.004)	0.108 (0.020)	0.765 (0.061)	-0.015 (0.005)	0.126 (0.013)	0.722 (0.053)
Controls	Y	Y	Y	Y	Y	Y
Observations	221,306	221,306	221,306	221,306	221,306	221,306

Effect of *Recession* on *Timing* for extremely successful managers is about four times larger than that for the median manager, a (return) difference of 2.3% per year. Effect on *Picking* doubles.

Same Managers?

Select funds with highest 25% $Picking_t^j$ in expansions (Skill Picking=1):

	Timing		Picking	
	Expansion	Recession	Expansion	Recession
Skill Picking	-0.001	0.037	0.059	-0.054
_	(0.004)	(0.013)	(0.005)	(0.017)
Constant	0.018	0.055	-0.022	-0.159
	(0.001)	(0.005)	(0.002)	(0.006)
Controls	Y	Y	Y	Y
Observations	204,311	18,354	204,311	18,354

Skilled managers switch strategies.

Funds that switch strategies earn higher returns

	CAPM Alpha	3-Factor Alpha	4-Factor Alpha
Skill Picking	0.068	0.040	0.058
	(0.028)	(0.018)	(0.016)
Constant	0.058	0.041	0.050
	(0.020)	(0.016)	(0.019)
Controls	Y	Y	Y
Observations	226,769	226,769	226,769

CAPM, three-factor, and four-factor alphas are 48 to 82 basis points per year higher for the *Skill Picking* portfolio, a difference that is statistically and economically significant.

Other results

- Characteristics of skilled funds: younger, smaller AUM, higher expense ratios, higher portfolio turnover, higher inflows, fewer stocks, more industry concentration, managers more likely to have an MBA, more likely to depart for hedge funds later
- How improve timing ability: hold more cash, hold more low-beta stocks, hold less-cyclical industries before downturn
- Ruling out alternative explanations: Composition effects at the fund or manager level, career concerns, mechanical effects at stock level

Skill Index Predicts Future Performance

Skill $Index_{t+1}^j = w_t Timing_t^j + (1 - w_t) Picking_t^j$ with w_t real-time recession probability

		One Year Ahead	
	CAPM Alpha	3-Factor Alpha	4-Factor Alpha
Skill Index	0.197	0.090	0.091
	(0.028)	(0.023)	(0.013)
Constant	-0.044	-0.071	-0.058
	(0.024)	(0.018)	(0.021)
Controls	Y	Y	Y
Observations	187,659	187,659	187,659

Real-time skill index forecasts fund performance (net alpha) over next year. A one-standard-deviation increase in the *Skill Index* is associated with a 2.2% per year higher CAPM alpha and 1.0% higher three-factor and four-factor alphas.

Persistence of Skill Measures

Model

- Three groups of mean-variance investors: skilled funds (information processing capacity K), unskilled funds (K=0), unskilled non-fund investors (K=0)
- Stock payoffs load on aggregate component $a \sim N(0, \sigma_a)$ and have stock specific-component $s_i \sim N(0, \sigma_i)$ for each stock i
- Timing:
- Time 1 Skilled funds choose what to research/allocate attention: choose the precision of signals they will receive about a and s_i 's subject to constraint on total capacity K
- Time 2 Skilled funds observe signals, update beliefs using Bayes' law, then choose how much of each asset to hold; equilibrium prices are formed from all investors' asset demands and noisy supply
- Time 3 Asset payoffs and utilities are realized; model ends
- Recessions are periods with more aggregate risk $\sigma_a(R) > \sigma_a(E)$ and a higher price of risk $\rho(R) > \rho(E)$

Theoretical Predictions

- An increase in aggregate risk or in risk aversion increases the marginal value of reallocating capacity from the stock-specific to the aggregate shock
- An increase in aggregate risk increases the dispersion across funds' portfolios and profits
- An increase in aggregate risk increases the expected profit of an informed fund

Additional Testable Implications

- Actively managed mutual funds should learn more about fundamental aggregate shocks in recessions, and fundamental stock-specific shocks in expansions.
 - $\textit{Fpicking}_t^j$: covariance between $w_{ti}^j w_{ti}^m$ and standardized unexpected earnings across all stocks i held by fund j
 - $Ftiming_t^j$: covariance between $w_{ti}^j w_{ti}^m$ and innovations in industrial production growth (or employment growth)
- Higher portfolio dispersion = $\sum_{i=1}^{N} (w_i^j w_i^m)^2$ in recessions, also higher dispersion in returns, betas, and alphas
- Higher outperformance in recessions
- All of these are confirmed in the mutual fund data

Conclusion

- Model of attention allocation of investment managers 3 testable predictions:
 - Attention: Higher covariance between holdings and
 - aggregate information in recessions (*Timing*)
 - stock-specific information in expansions (Picking)
 - Oispersion: Higher portfolio dispersion in recessions
 - **Outperformance:** Higher excess returns in recessions
- Identify group of managers with timing ability in recessions and stock-picking ability in expansions; significant outperformance
- Broader contribution: Uncover evidence that agents actively reallocate attention, in a rational way.