- (9) BUNDESREPUBLIK DEUTSCHLAND
- [®] Offenl gungsschrift ® DE 43 37 609 A 1

P 43 37 609.6

4, 11, 93

11, 5.95

DEUTSCHES PATENTAMT

- Aktenzeichen: Anmeldetag:
- Offenlegungstag:

6) Int. Cl.5:

C 07 D 403/10 C 07 D 487/04 C 07 D 487/06 C 07 D 471/04 A 61 K 31/495 A 61 K 31/505 A 61 K 31/645 // (C07D 403/10, 241:32,241:14) (C07D 487/04,207:00,

241:00) (C07D 487/06,235:00)C07D 241:00 (C07D 471/04, LLI 231:00,221:00)

(7) Anmelder:

Boehringer Ingelheim KG, 55218 Ingelheim, DE

2 Erfinder:

Roos, Otto, Dipl.-Chem. Dr., 55270 Schwabenheim, DE; Speck, Georg, Dipl.-Chem. Dr., 55218 Ingelheim, DE; Lösel, Walter, Dipl.-Chem. Dr., 55435 Gau-Algesheim, DE; Arndts, Dietrich, Dr., 55437 Appenheim, DE

- Neue Pyrazincarboxamidderivate, ihre Herstellung und ihre Verwendung in Arzneimitteln
- Die neuen Verbindungen der Formel (I):

(die in der Beschreibung erläutert ist) lassen sich nach konventionellen Verfahren harstellen und können als Arzneistoffe verwendet werden.

Beschreibung

Die Erfindung betrifft neue Pyrazincarboxamidderivate, ihre Herstellung nach konventionellen Methoden und ihre Verwendung in bzw. bei der Herstellung von Arzneimitteln.

Die neuen Verbindungen entsprechend der Formel

und können als Basen oder als Salze mit Säuren vorliegen.

In der Formel I steht

R₁ für Wasserstoff oder einen ggf. hydroxysubstituierten oder sauerstoffunterbrochenen $C_1 - C_8$ -Alkylrest, einen $C_3 - C_8$ -Alknyl- oder Alkinylrest, einen Phenyl- oder $C_3 - C_7$ -Cycloalkylrest, der direkt oder über eine $C_1 - C_4$ -Alkylgruppe an das N-Atom gebunden und der auch hydroxysubstituiert sein kann, R_2 für einen Rest der Formel

$$H_3C$$
 NH_2
 NH_2
 NH_3C
 NH_2
 NH_3C
 NH_2
 NH_3C
 NH_2
 NH_3C
 NH

65

die Gruppe R₁R₂N – auch für die Reste

$$R_2$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5

R₁₃ Wasserstoff, C₁-C₄-Alkyl, das auch durch Phenyl, Phenoxy oder Benzyloxy substituiert sein kann, oder 35 Halogen, und

Cyano, Halogen, Trifluormethyl, Amino oder Carbamoyl,

E und G, die gleich oder verschieden sein können, N oder CH m 2, 3, 4, 5 oder 6,

n 0 oder 1 und

p 2, 3 oder 4 bedeuten.

Die in den obigen Definitionen genannten Alkylgruppen können geradkettig oder verzweigt sein. Sie enthalten bevorzugt 1 bis 4, insbesondere 1 bis 3, vor allem 1 bis 2 C-Atome. Von den Halogenen sind Fluor, Chlor und Brom, vor allem Fluor und Chlor bevorzugt. Bevorzugte ungesättigte Kohlenwasserstoffreste sind Alkyl und Propargyl. Der Index m steht vorzugsweise für 2, 3 oder 4, p für 2 oder 3. In dem Rest der Formel XI steht E vor allem für eine CH-Gruppe, G hauptsächlich für N, wobei der resultierende Pyridylrest vorzugsweise über die 2-Position mit dem Piperazinring verbunden ist.

R11 und R12, die gleich oder verschieden sein können, Wasserstoff, Methyl, Methoxy, Phenyl, Benzyl, Nitro,

Soweit die neuen Verbindungen in verschiedenen stereoisomeren bzw. cis-/trans-isomeren Formen existieren können, sind mit den obigen Formeln die reinen Formen wie auch ihre Mischungen gemeint.

Die neuen Verbindungen werden nach üblichen Methoden erhalten, insbesondere nach den folgenden Verfahren.

1. Umsetzung einer Verbindung der Formel

mit einem Amin der Formel

65

5

10

15

20

25

30

35

40

45

55

60

65

wobei R1 und R2 die oben angegebene Bedeutung haben.

Die Umsetzung erfolgt in einem polaren, möglichst wasserfreien Lösungsmittel oder Lösungsmittelgemisch, insbesondere Dimethylsulfoxid, Dimethylformamid, vorzugsweise in Gegenwart einer Base, etwa Triethylamin, N-Methylpiperidin, Pyridin, in der Wärme.

2. Zur Herstellung solcher Verbindungen, in denen R₂ einen Rest der Formel II, IV, V oder VI darstellt, kann die Verknüpfung auch über ein anderes Stickstoffatom des Restes R₂ erfolgen. Beispielsweise werden die Verbindungen mit R₂ gleich II auch erhalten, indem man ein Amin der Formel

H—N—CmH₂m NH₂ (XVIII)

(worin m, R₁ und R₃ die obige Bedeutung haben, mit dem Chinazolinderivat der Formel

H₃C (MX)

wie unter 1. beschrieben, umsetzt.
3. Umsetzung einer Verbindung der Formel

(R niederer Alkylrest, Benzyl)

mit Guanidin. Die Umsetzung ist nicht auf die Ester mit R in den genannten Bedeutungen beschränkt, doch wird der Fachmann zweckmäßig einen gut herstellbaren Ester, etwa den Methyl- oder Ethylester verwenden, bzw. einen Ester, bei dessen Umsetzung ein unproblematischer Alkohol entsteht.

Bevorzugt verwendet man den Alkohol, der auch in der Estergruppe enthalten ist, indem man z. B. einen Methylester der Formel XX in Methanol bei Siedetemperatur umsetzt. Dieses Verfahren eignet sich am besten zur Herstellung der erfindungsgemäßen Verbindungen.

Soweit die Verbindungen in stereoisomeren Formen vorliegen können, werden entsprechende Ausgangsprodukte eingesetzt oder es werden ggf. bei der Herstellung gebildete Mischungen in die Komponenten aufgetrennt.

Die Ausgangsstoffe können, soweit sie nicht schon bekannt sind, ebenfalls nach konventionellen Verfahren

erhalten werden. Werden beispielsweise anstelle der N-Amidino-carboxamide der Formel XVI bzw. der Formel XVII die entsprechenden Ester eingesetzt, so gelangt man zu den Ausgangsstoffen der Formel XX.

Die Verbindungen der Formel I sind als Wirkstoffe in Arzneimitteln verwendbar oder können als Zwischenprodukte zur Herstellung solcher Wirkstoffe Verwendung finden. Unter anderem hemmen die neuen Verbindungen den Na+/H+- und den Na+/Li+-Austausch. Die erfindungsgemäßen Wirkstoffe können als Antihypertensiva, Mucolytika, Diuretika und Cancerostatika benutzt werden; sie sind ferner anwendbar bei Krankheiten,
die im Zusammenhang mit Ischämien stehen (Beispiele: cardiale, cerebrale, gastrointestinale, pulmonale, renale
Ischämie, Ischämie der Leber, Ischämie der Skelettmuskulatur). Entsprechende Krankheiten sind beispielsweise
coronare Herzkrankheit, Angina pectoris, Embolie im Lungenkreislauf, akutes oder chronisches Nierenversagen, chronische Niereninsuffizienz, Hirninfarkt (z. B. nach der Wiederdurchblutung von Hirnarealen nach Auflösung von Gefäßverschlüssen, auch in Kombination mit t-PA, Streptokinases, Urokinase usw.), akute und chronische Durchblutungsstörungen des Hirns. Bei der Reperfusion des ischämischen Herzens (z. B. nach einem
Angina-pectoris-Anfall oder einem Herzinfarkt) können irrevesible Schädigungen an Cardiomyocyten in der
betroffenen Region auftreten. Die erfindungsgemäßen Verbindungen können u. a. in einem solchen Fall zur
Cardioprotektion benutzt werden.

In das Anwendungsgebiet Ischämie ist auch die Verhinderung von Schäden an Transplantaten einzubeziehen (z. B. als Schutz des Transplantats vor, während und nach der Implantation), die im Zusammenhang mit Transplantationen auftreten können.

Zur Anwendung der Wirkstoffe eignen sich übliche Formulierungen, etwa Tabletten, Dragées, Kapseln, Granulate, Injektionslösungen, ggf. auch nasal applizierbare Zubereitungen, wobei die Menge der Wirksubstanz in einer Einzelgabe im allgemeinen 1 bis 200 mg, vorzugsweise 20—100 mg beträgt. Die Herstellung dieser Arzneimittelformen erfolgt in an sich bekannter Weise.

Beispiele

1. Tabletten (Zusammensetzung)

Verbindung nach Beispiel 40,0 mg

Maisstärke 144,0 mg
sek. Calciumphosphat 115,0 mg

Magnesiumstearat 1,0 mg
300,0 mg

20

25

30

35

40

55

2. Gelatinekapseln

Der Inhalt einer Kapsel besteht aus 50,0 mg einer Verbindung gemäß der Erfindung und 150,0 mg Maisstärke. Die nachstehenden Synthesebeispiele sollen die Erfindung näher erläutern.

Beispiel 1

N-[2-(4-Amino-6,7-dimethoxy)chinazolinyl]-N'-[5-[2-(N-amidino-carbamoyl)-3-amino-6-chlor]pyrazi-nyl]-N,N'-dimethyl-1,2-diaminoethan-hydrochlorid

H₃CONNH NH₂

CH₂CH₂CH₂NH₂

CH₃CH₃ HCI

(a) 5,83 g (20 mmol) N-[(4-Amino-6,7-dimethoxy)-2-chinazolinyl]-N,N'dimethyl-1,2-diaminoethan, 4,44 g (20 mmol) 3-Amino-5,6-dichlorpyrazin-2-carbonsäuremethylester, 2,75 ml Triethylamin (20 mmol) werden in 30 ml Dimethylsulfoxid gelöst und 2 Stunden unter Rühren auf 80°C erhitzt. Nach dem Abkühlen wird mit 60 ml Wasser versetzt und das sich abscheidende Reaktionsprodukt durch Absaugen isoliert. Nach Trocknen wird die Substanz (Ausbeute 9,1 g) ohne weitere Reinigung zum Guanidinderivat umgesetzt. (b) 9,07 g (95 mmol) Guanidin-hydrochlorid werden mit 95 ml (95 mmol) 1 N methanolischer Natriummethylatlösung 30 Min. bei Raumtemperatur gerührt. Vom ausgefallenen Natriumchlorid wird abgesaugt. Das Filtrat wird mit einer Lösung von 9,1 g (19,1 mmol) 3-Amino-6-chlor-5-[2-[(4-amino-6,7-dimethoxy)-2-chinazolinyl]-1-(N,N'-dimethyl-1,2-diaminoethyl)]-pyrnzin-2-carbonsäuremethylester in 50 ml Dimethylformamid versetzt und 2 Stunden unter Rückfluß erhitzt. Nach Abdestillieren des Lösungsmittels wird der verbleibende Rückstand über eine Kieselgel-Säule gereinigt. Fließmittel: Essigester 70/Isopropanol 30/NH4OH 5. Die gereinigte Substanz wird in Ethanol gelöst, mit etherischem Chlorwasserstoff angesäuert

und durch Zugabe von Diethylether das Hydrochlorid zur Kristallisation gebracht. Ausbeute: 5,4 g.

Die in den folgenden Tabellen aufgeführten Verbindungen können entsprechend den vorstehenden Beispielen und/oder den Angaben in der Beschreibung erhalten werden.

Tabelle 1

Verbindungen der Formel I worin R ein Rest der Formel II ist

10	Nr.	m	R ₁	R ₃	Fp. [°C]
-	1	2	Н	Н	
15	2	2	CH3	Н	
	3	2	н	CH3	
	4	2	CH ₃	CH3	
20	5	2	CH ₃	. C ₂ H ₅	
	6	2	C ₂ H ₅	CH3	
	7	2	C ₂ H ₅	C ₂ H ₅	
25	8	2	i-C ₃ H ₇	CH3	
	9	2	CHa	i-C ₃ H ₇	
	10	2	i-C ₃ H ₇	·I-C3H7	
30	11	3	H	CH3	
	12	3	CH3	Ħ	
	13	3	CH3	СНз	
35	14	3	C ₂ H ₅	CH ₃	
	15	3	СНз	СзНъ	
40	16	3	C ₂ H ₅	C ₂ H ₅	
40	17	3	I-C3H7	CH3	
	18	3	CH3	i-CgH7	
45	19	3	i-C ₃ H ₇	i-C3H7	
73	20	3	n-C ₄ H ₉	n-C4Hg	

50

55

60

65

 $Tabelle\,2$ Verbindungen der Formel II worin R_2 ein Rest der Formel III ist

Fp. [°C]	Frm	Rg	R ₁	Nr.
	cis	Н	Н	1
	cis	н	CH3	2
•	cis	CH3	н	3
	cis	СНз	снз	4
	cis	ი-CHვHუ	n-CH3H7	5
	trans	Н	. Н	6
	trans	Н	CH3	7
	trans	СНз	Н	8
	trans	снз	снз	9
	trans	п-СНзН7	n-CH3H7	10
	cis/trans	Н	i-C4H9	11
	cis/trans	t-C4H9	Н	12
• •				
•				
•				

 $Tabelle\, 3$ $Verbindungen\, der\, Formel\, I\, worin\, R_2\, ein\, Rest\, der\, Formel\, IV\, ist$

5	Nr.	m	n .	R ₁	Fp. [C]
	1	2	0	н	
10	2	2	· O	CH3	
	3	2	0	C ₂ H ₅	
	4	2	0	I-C3H7	
15	5	2	0	C ₆ H ₅	·
	6	2	1	н	
	7	2	1	CH3	
20	8	2	1	C ₂ H ₅	
	9	2	1	i-C ₃ H ₇	
25	10	2	1	C ₆ H ₅	
	11	3	0	Н	
	12	3	0	СНЗ	
30	13	3	0	C ₂ H ₅	
30	14	3	0	i-C3H7	
	15	3	0	C ₆ H ₅	
35	16	3	1	Н	·
•	17	3	1	СНЗ	
	18	3	1	C ₂ H ₅	
40	19	3 .	1	I-C3H7	
	20	3	1	C ₆ H ₅	

50

 $Tabelle\, 4$ $Verbindungen\, der\, Formel\, I\, worin\, R_2\, ein\, Rest\, der\, Formel\, V,\, R_3\, gleich\, H\, und\, p\, gleich\, 2\, ist$

r.	m	R ₁	R4	Fp. [°C]	
	2	Н	. Н		_
	2	CH3	CH ₃	•	
	2	C ₂ H ₅	C ₂ H ₅		
•	2	I-C3H7	i-C ₃ H ₇		
	2	C ₆ H ₅	CH3		
	3	Н	H		
	3	CH3	CH3		
	3	C ₂ H ₅	C ₂ H ₅		
	3	i-C₃H 7	i-C ₃ H ₇		
)	3	C ₆ H ₅	CH3		
	2	n-C ₄ H ₉	СНз		
2	2	C ₆ H ₅	C ₆ H ₅		
		The lie C			
Ve	rhindungen der	Tabelle 5 Formel I worin R ₂ ein R	est der Formel VI ist		
·•	m	R ₁	Rg	Fp. [°C]	
	2	<u> </u>	Н		-
			• • •		
			CHa	•	
	2	CH3	CH3 CaHs	•	
	2 2	СН _З С ₂ Н _Б	C ₂ H ₅	•	•
	2 2 2	СН3 С2Н _Б i-С3Н7	C ₂ H ₅ I-C ₃ H ₇	•	
	2 2	СН _З С ₂ Н _Б	C ₂ H ₅	•	•
	2 2 2 2	СН _З С ₂ Н _Б i-С ₃ Н ₇ С ₆ Н ₅ Н	С ₂ Н ₅ 1-С ₃ Н ₇ СН ₃ Н	•	•
	2 2 2 2 3	CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅ H CH ₃	C ₂ H ₅ I-C ₃ H ₇ CH ₃ H CH ₃	•	
	2 2 2 2 3 3	CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅ H CH ₃ C ₂ H ₅	C ₂ H ₅ I-C ₃ H ₇ CH ₃ H CH ₃ C ₂ H ₅		
	2 2 2 2 3 3 3	CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅ H CH ₃ C ₂ H ₅ i-C ₃ H ₇	C ₂ H ₅ I-C ₃ H ₇ CH ₃ H CH ₃ C ₂ H ₅ I-C ₃ H ₇		
	2 2 2 3 3 3	CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅ H CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅	C ₂ H ₅ I-C ₃ H ₇ CH ₃ H CH ₃ C ₂ H ₅ I-C ₃ H ₇ CH ₃		
	2 2 2 3 3 3 3	CH ₃ C ₂ H ₅ i-C ₃ H ₇ C ₆ H ₅ H CH ₃ C ₂ H ₅ i-C ₃ H ₇	C ₂ H ₅ I-C ₃ H ₇ CH ₃ H CH ₃ C ₂ H ₅ I-C ₃ H ₇		

43 37 609 A1 DE

Tabelle 6

Verbindungen der Formel I, worin R_1R_2N – für einen Rest der Formel VII

5	Re	
10		(Víl a)

· Nr. R₈ Rg Fp. [°C] 1 Н Н 2 CH₃ CI 25 3 CI CI 4 СНЗ СНз

Tabelle 7

•	Verbindungen der Fe	ormel I, worin R ₁ R ₂ N— für einen Re	est der Formel VIII
35		\bigcirc	
40		N	(VIII a)
45 _t		R _g N	
50	Nr.	Rg	Fp. [°C]

	Nr.	Rg	Fp. [°C]
55	1	Н	
	2	CI	•
	3 .	CH ₃	
60			•

65

 $Tabelle\,8$ Verbindungen der Formel I, worin R_1R_2N — ein Rest der Formel IX ist (die Positionsangaben für R_{11}/R_{12} beziehen sich auf den Phenylrest)

		ilen sien auf den i hen		
Nr.	R ₁₀ ·	R ₁₁	R ₁₂	Fp. [°C]
1	н	Н	Н	•
2	Н	3-CI	Н	
3	Н	2-F	3-F	
4	H	4-NO ₂	Н	
5	н	4-CN	Н	
6	н	3-0CH3	4-0CH3	
7	Н	CH3	Н	
8	Н	4-F	3-C ₂ H ₅	
9	н	4-CH2-C6H5	н	•
10	н	4-0CH3	2-CH ₂ -C ₆ N ₅	
11	снз	H	. н	
12	CH ₃	3-C1	н	•
13	CH ₃	2-F	3-F	
14	CH ₃ .	4-NO ₂	н	
15	CH ₃	4-CN	н	
16	CH3	3-0CH ₃	4-0CH3	,
17	CH3	CH3	Н	
18	CH3	4-F	3-C ₂ H ₅	
19	CH3	4-CH2-C6H5	H	
20	CH3	4-0CH3	2-CH ₂ -C ₆ N ₅	
21	C ₂ H ₅	. н	H	
22	C ₂ H ₅	3-CI	·	
23	C ₂ H ₅	2-F	3-F	
24	C ₂ H ₅	4-NO ₂	Н	
25	C ₂ H ₅	4-CN	н	
26	C ₂ H ₅	3-0CH3	4-0CH3	
27	C ₂ H ₅	CH ₃	н	
28	C ₂ H ₅	4-F	3-C ₂ H ₅	
29	C₂H₅	4-CH ₂ -C ₆ H ₅	H	
30	C ₂ H ₅	4-0CH3	2-CH ₂ -C ₆ N ₅	
31	i-C ₃ H ₇	Н	Н	
32	n-C ₆ H ₁₃	4-F	н	
33	4-F-C6H4	4-F	H	
34	CH ₂ -C ₆ H ₅	4-F	н	
35	C ₂ H ₅	4-F	Н	
36	п-С4Н9	2-CH ₃	6-CH3	

Tabelle 9

Verbindungen der Formel I, worin R_1R_2N — einen Rest der Formel X

darstellt (R3 und R9 gleich H)

20				
	Nr.	R ₈	R ₁₃	Fp. [°C]
25	1	Н	Н	
	2	C ₂ H ₅	Н	
	3	Н	СНз	
30	4	I-C3H7	Н	
	5	I-C3H7 I-C3H7	CH ₃	
	6	Н	Br	
35	7	Br	Н	
	8	CH ₃	• н	

Tabelle 9a

Verbindungen der Formel I, worin R₁R₂N - einen Rest der Formel X

45

50

55

60

65

darstellt (R3 und R9 gleich H)

Ni	R ₈	R ₁₃	Fp. [°C]	20
1	Н	Н		
2	C ₂ H ₅	н		25
3		СНз		
4	i-C ₃ H ₇	н		
5	i-C ₃ H ₇	СНз		30
6		Br		
7	Br	н		
8	CHa	н		35

Tabelle 10

Verbindungen der Formel I, worin R_1R_2N — für einen Rest der Formel XI steht

5	P ₁₁	
10	R ₁₂ —N—N—	(XI a)

15	Nr.	R ₁₁	R ₁₂	Fp. [°C]
•	1	NH ₂	Н	
20	2	CONH ₂	Н	
	3	CI	Н	
	4	CI	CI	•
25	5	Н	Н	
	6	Н	CH ₃	
	7	CH ₃	Н	
30	8	CH ₃ CH ₃	CH ₃	

 $Tabelle\ 11$ $Verbindungen\ der\ Formel\ I, wor in\ R_1R_2N-f\"{u}r\ einen\ Rest\ der\ Formel\ XII\ bzw.\ XIII$

steht, in der R₁₄ bzw. R₁₅ die Reste R₃ bzw. R₄ bedeuten, zusätzlich jedoch gemeinsam auch -CH₂-CH

Nr.	R ₁₄	R ₁₅	Form	Fp. [°C]
1	Н	CH3		
2	снз	H		
3	CH3	СНз	cis	
4	CH ₃	CH ₃	trans	
5	C ₂ H ₅	CH ₃	cis/trans	
6	C ₂ H ₅	C ₂ H ₅	cis	
7 ·	C ₂ H ₅	C ₂ H ₅	trans	
8	Н	i-C ₃ H ₇		
9	-CH ₂ -CH ₂ -CH ₂ -CH ₂ -		cis	
10	-CH2-CH2-CH2-CH2-		trans	

Tabelle~12 Verbindungen der Formel I, worin R_1R_2N — für einen Rest der Formel XIV steht, wobei sich die Positionsangaben für R_5 und R_6 auf das Chinazolinonringsystem beziehen

;	Nr.	R ₇	R ₅	R ₆	Fp. [°C]
, –	1	Н	Н	Н	
	2	н	6-OCH3	7-0CH3	
	3	H	8-0CH3	·H	
	4	Н	6-OH	7-OH	
	5	H	7-0H	Н	
	6	н	8-OH	Н	
	7	Н	, 6-CI	· н	
	8	Н	6-CH3	7-CH ₃	
	9	СНз	н	н	
	10	CH3	6-0CH3	7-0CH3	
	11	CH3	8-0CH3	н	
	12	CH3	6-OH	7- O H	
	13	СНЗ	7-0H	Н	
	14	снз	8-OH	Н	
	15	CH3	6-CI	Н	•
	16	CH3	6-CH ₃	7-CH ₃	

 $Tabelle\ 13$ $Verbindungen\ der\ Formel\ I,\ worin\ R_1R_2N-für\ einen\ Rest\ der\ Formel\ XV\ steht$

	Nr.	m	R ₃	Fp. [°C]
45				
	1	2	Н	
	2	2	CH ₃	
50	3	2	C2H5	
	4	2	n-C3H7	
	5	2	n-C ₄ H ₉	
55	6	2	i-C3H7	
	7	3	Н	
	8	3	CH ₃	
60	9	3	C2H5	
	10	3	n-C3H7	
	11	3	n-C4H9	•
65	12	3	i-C3H7	

Patentansprüche

1. Verbindungen der Formel

5. 10 (l) 15 R_2

in der

R₁ für Wasserstoff oder einen geradkettigen oder verzweigten, ggf. hydroxysubstituierten oder sauerstoff-unterbrochenen $C_1 - C_8$ -Alkylrest, einen $C_3 - C_8$ -Alkenyl- oder Alkinylrest, einen Phenyl- oder $C_3 - C_7$ -Cy-cloalkylrest, der direkt oder über eine $C_1 - C_4$ -Alkylgruppe an das N-Atom gebunden und der auch hydroxysubstituiert sein kann, R₂ für einen Rest der Formel

$$H_3C$$
 NH_2
 NH_3C
 NH_3C

65

20 die Gruppe R₁R₂N – auch für die Reste

stehen, worin

10

15

20

25

35

40

45

50

55

60

R3 und R4, die gleich oder verschieden sein können, Wasserstoff oder C1 -- C4-Alkyl,

R5 und R6, die gleich oder verschieden sein können, Wasserstoff, Methyl, Methoxy, Hydroxy oder Halogen,

R7 Wasserstoff, C1-C4-Alkyl, Benzyl oder Benzyloxy,

Re und Re, die gleich oder verschieden sein können, Wasserstoff, C₁—C₄-Alkyl, Phenyl oder Halogen, R₁₀ Wasserstoff oder C₁—C₆-Alkyl, das auch durch Phenyl oder methyl-, methoxy- oder halogensubstituier-

tes Phenyl substituiert sein kann, R_{11} und R_{12} , die gleich oder verschieden sein können, Wasserstoff, Methyl, Methoxy, Phenyl, Benzyl, Nitro, Cyano, Halogen, Trifluormethyl, Amino oder Carbamoyl,

R₁₃ Wasserstoff, C₁—C₄-Alkyl, das auch durch Phenyl, Phenoxy, Benzyloxy substituiert sein kann, oder Halogen,

E und G, die gleich oder verschieden sein können, N oder CH

und

m 2, 3, 4, 5 oder 6,

n 0 oder 1 und

p 2, 3 oder 4 bedeuten,

wobei

die Verbindungen der Formel I als Basen oder als Salze und ggf. in Form der einzelnen Stereoisomeren oder eis-/trans-Isomeren bzw. der Mischungen solcher Isomeren vorliegen können.

2. Verbindungen der Formel I, in der R_2 einen Rest der Formel II, R_1 und R_3 , die gleich oder verschieden sein können, Wasserstoff oder einen $C_1 - C_3$ -Alkylrest bedeuten.

3. Verbindungen der Formel I, in der R_2 einen Rest der Formel III, R_1 und R_3 , die gleich oder verschieden sein können, Wasserstoff oder einen $C_1 - C_3$ -Alkylrest bedeuten.

4. Verbindungen der Formel I, in der R₂ einen Rest der Formel XII oder XIII bedeutet und R₃ und R₄ die obige Bedeutung haben.

5. Arzneimittel, gekennzeichnet durch einen Gehalt an einer Verbindung nach Anspruch 1 bis 4, neben üblichen Hilfs- und/oder Trägerstoffen.

6. Verwendung von Verbindungen nach Anspruch 1 bis 4 bei der Herstellung von Arzneimitteln.

7. Verwendung von Verbindungen nach Anspruch 1 bis 4 als Antihypertensiva, Mucolytika, Diuretika, Cancerostatika, zur Behandlung von Krankheiten, die im Zusammenhang mit Ischämien stehen, bei Hirninfarkt, akuten und chronischen Durchblutungsstörungen des Hirns, zur Cardioprotektion und zur Verhinderung von Schäden an Transplantaten.

8. Verfahren zur Herstellung der Verbindungen nach Anspruch 1 bis 4 nach konventionellen Methoden, dadurch gekennzeichnet, daß man

(a) eine Verbindung der Formel

mit einem Amin der Formel

$$R_{2}$$
 N—H (XVII)

5

10

20

65

worin R1 und R2 die obige Bedeutung haben, umsetzt, oder daß man $\,$

(b) eine Verbindung der Formel

worin m, R1 und R3 die obige Bedeutung haben, mit einer Verbindung der Formel

umsetzt,
oder daß man 50
(c) eine Verbindung der Formel

worin R einen niederen Alkyirest bedeutet, mit Guanidin umsetzt und die erhaltenen Produkte ggf. in sterisch unterschiedliche Formen auftrennt und/oder gewünschtenfalls erhaltene Basen mit Säuren in Salze überführt bzw. erhaltene Salze in freie Basen.