Trabajo Práctico 1 - Transformaciones Lineales

- 1) Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal:
 - a) Dados los vectores $u, v, v' \in \mathbb{R}^2$ representa en el sistema de coordenadas de la derecha el transformado del vector $v' \in \mathbb{R}^2$.

b) Dados los vectores T(1,0) y T(0,1) del sistema de coordenadas, representa gráficamente el transformado de los vectores u=(2,1) y v=(-1,-2)

- 2) Dadas las siguientes transformaciones lineales determina, en cada caso, la imagen del vector v', sabiendo que:
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,0) = (-1,1,1), T(0,1) = (0,1,-1) y $v' = (3,1) \in \mathbb{R}^2$.
 - b) $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^2$ tal que T(u) = (-3, 6), T(v) = (5, -1) y $v' = \frac{2}{3}u 2v \in \mathbb{R}^{2 \times 2}$
 - c) $T: \mathbb{C}^{2\times 1} \to \mathbb{C}^{2\times 2}$ (con $\mathbb{K} = \mathbb{C}$) tal que $T(u) = \begin{pmatrix} 2i & 0 \\ 0 & 1 \end{pmatrix}$, $T(v) = \begin{pmatrix} -2 & -1 \\ 0 & 1+i \end{pmatrix}$ y $v' = 4v 3iu \in \mathbb{C}^{2\times 1}$.
- 3) Dados los vectores $u = (1,3), v = (-2,1) \in \mathbb{R}^2$ y las funciones: $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $T_1(x,y) = (x,-y)$

$$T_2: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_2(x,y) = (x-1,y)$

$$T_3: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que $T_3(x,y) = (x,x^2)$

- a) Representa los vectores u y v en un sistema de coordenadas, calcula gráfica y analíticamente los vectores u+v y 3v
- b) Para cada una de las funciones dadas, completa las siguientes tablas calculando el transformado de los vectores indicados:

T_1	(u)	$T_1(v)$	$T_1(3u)$	$3T_1(u)$	$T_1(u+v)$	$T_{1}\left(u\right) +T_{1}\left(v\right)$	$T_1(\theta)$
T_2	(u)	$T_{2}\left(v\right)$	$T_2(3u)$	$3T_{2}\left(u\right)$	$T_2(u+v)$	$T_{2}\left(u\right) +T_{2}\left(v\right)$	$T_{2}\left(heta ight)$
T_3	(u)	$T_3(v)$	$T_3(3u)$	$3T_3(u)$	$T_3(u+v)$	$T_3\left(u\right) + T_3\left(v\right)$	$T_3(\theta)$

- c) Grafica los vectores obtenidos en el apartado anterior usando un sistema de coordenadas diferentes para cada tabla.
- d) Usa los enlaces T_1 , T_2 , T_3 para analizar si las funciones T_1, T_2, T_3 preservan las operaciones suma y producto por escalar. Identifica cuales de ellas no son transformaciones lineales.
- e) Teniendo en cuenta los apartados anteriores, completa los siguientes enunciados con: "=" " \neq " "si" "no"
 - i) $T_{2}\left(0,0\right)...\left(0,0\right)\Rightarrow T_{2}.....$ es transformación lineal
 - ii) $T_3(0,0)...(0,0) \wedge T_3(u) + T_3(v)...T_3(u+v) \Rightarrow T_3....$ es transformación lineal
- 4) Determina, en caso de existir, una transformación lineal
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^{3 \times 1}$ tal que

i)
$$T(0,0) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$
, $T(2,0) = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$, $T(-2,-1) = \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix}$

ii)
$$T(2,0) = \begin{pmatrix} 2 \\ -4 \\ 2 \end{pmatrix}$$
, $T(-2,-1) = \begin{pmatrix} -4 \\ 4 \\ -1 \end{pmatrix}$, $T(0,1) = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$

b)
$$T: \mathbb{R}^{2\times 2} \longrightarrow \mathbb{R}^3$$
 tal que $T\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = (0, 2, -1), T\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = (1, 1, -1),$

$$T\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (2, 1, 1) \text{ y } T\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} = (1, -2, 0)$$

- c) $T: \mathbb{R}^2 \to \mathbb{C}$, tal que
 - i) T(1,1) = 2+i, T(-1,1) = -2+i
 - ii) T(1,1) = 2 + i, T(2,2) = 4 + 2i
- 5) Dadas $F: \mathbb{R}^2 \to \mathbb{R}^3$, $T: \mathbb{R}^2 \to \mathbb{R}^3$ y $H: \mathbb{R}^2 \to \mathbb{R}^3$ transformaciones lineales:
 - F(1,-1) = (0,-1,2) y F(2,1) = (3,1,1)
 - T(1,1) = (2,1,-1) y T(1,3) = (6,1,-3)
 - H(1,0) = (1,0,1) y H(0,1) = (1,1,-1)

Determina si:

a)
$$F = T$$

b)
$$F = H$$

- 6) Determina núcleo e imagen de las siguientes transformaciones lineales:
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^{2 \times 2}$ tal que $T(x, y, z) = \begin{pmatrix} x y & 0 \\ 0 & z \end{pmatrix}$
 - b) $T: \mathbb{C}^2 \to \mathbb{C}^3$, tal que T(x,y) = (x+y,iy,x+2y), donde los espacios vectoriales son complejos.
 - c) $T: \mathbb{R}^4 \to \mathbb{R}^2$ tal que T(x, y, z, t) = (x + y + t, -x + z t)
- 7) Dada la transformación lineal
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por T(x, y, z) = (x + 2y, 3z x y).

Determina:

- i) Nu(T), una base para el mismo e interpreta geométricamente dicho subespacio.
- ii) dim $\operatorname{Im}(T)$, sin hallar explícitamente el subespacio imagen.

b)
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^{3\times 1}$$
 definida por $T(x, y, z) = \begin{pmatrix} x + z \\ -z \\ z \end{pmatrix}$

Determina:

- i) $\operatorname{Im}(T)$, una base para el mismo.
- ii) dim Nu(T), sin hallar explícitamente el subespacio núcleo.
- iii) $\xi(0,1,0) \in \text{Nu}(T)$? Interpreta geométricamente el subespacio Nu(T).

8) Dada $T: \mathbb{R}^{3\times 1} \longrightarrow \mathbb{R}^{3\times 1}$ transformación lineal definida por $T(X) = A \cdot X$. Para

a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 4 & 4 & k-4 \\ 2 & k-3 & 1 \end{pmatrix} \in \mathbb{R}^{3\times 3}$$
. Determina

i) $k \in \mathbb{R}$ para que $Nu(T) = \{\theta\}$

ii)
$$t \in \mathbb{R}$$
 para que $\begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix} \in \text{Im}(T)$, siendo $k = 5$

b)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ -1 & 0 & 2+k \end{pmatrix} \in \mathbb{R}^{3\times 3}$$
. Determina $k \in \mathbb{R}$ para que Nu $(T) \neq \{\theta\}$

9) En septiembre de 2020 la proporción de infectados por COVID-19 en la provincia de Tucumán según sintomatología y lugar de aislamiento estaba dada por la siguiente tabla:

	Asintomáticos	Sintomáticos	
sala	0, 3	0,8	
UTI	0	0, 2	
C.A.C.	0,7	0	

UTI: unidad de terapia intensiva

C.A.C.: centro de aislamiento comunitario

Si $T: \mathbb{R}^{2 \times 1} \to \mathbb{R}^{3 \times 1}$ es la transformación lineal definida por $T(X) = A \cdot X$, donde A es la matriz de proporción de infectados (dada por la tabla anterior) y $X = \begin{pmatrix} x \\ y \end{pmatrix}$ representa la cantidad de infectados en la provincia, donde x son los asíntomáticos e y los sintomáticos

- a) ¿Qué representa la imagen del vector X?
- b) Si hubieran 320 pacientes asintomáticos y 40 sintomáticos ¿Cuántos pacientes estarían internados en salas, en C.A.C. y en UTI en ese momento?
- c) Si en ese momento Tucumán disponía de 1528 camas en sala, 277 camas en UTI y 980 camas en C.A.C ¿Cuál es el número de infectados sintomáticos y asintomáticos que se podían atender?