Q1-Explain the difference between preemptive and nonpreemptive scheduling.

Preemptive scheduling is when a process can be interrupted and moved back to the ready queue if a higher priority process arrives.

Nonpreemptive Scheduling: once a process starts executing, it runs until it either completes or yields voluntarily.

Q2-Consider the following set of processes, with the length of the CPU burst time given in milliseconds:

Process	Burst Time	Priority
P1	2	2
P2	1	1
P3	8	4
P4	4	2
P5	5	3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0. a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, non-preemptive priority (a larger priority number implies a higher priority), and RR (quantum = 2).

Chart: FCFS

Chart: SJF

Chart: Priority Scheduling (nonpreemptive, "larger priority number implies a higher priority")

*Just incase i miss read the instructions, making one with the shorter priority
Chart: **Priority Scheduling (nonpreemptive, "shorter priority number implies a higher priority"**)

Avg waiting time:(0 + 1 + 3 + 7 + 12)/5 = 4.6 msAvg TAT: (1 + 3 + 7 + 12 + 20)/5 = 8.6 ms

Chart: Round Robin (Quantum = 2)

b. What is the turnaround time of each process for each of the scheduling algorithms in part a?

Turnaround Time=Completion Time-Arrival Time
Since all processes arrive at time 0, Turnaround Time = Completion Time

Chart: FCFS

Process	Completion Time	Turnaround Time (TAT)
p1	2	2
p2	3	3
p3	11	11
p4	15	15
p5	20	20

Chart: SJF

Process	Completion Time	Turnaround Time (TAT)
p2	1	1
p1	3	3
p4	7	7
p5	12	12
р3	20	20

Chart: Priority Scheduling (nonpreemptive, higher number = higher priority)

Process	Completion Time	Turnaround Time (TAT)
p2	8	8
p1	13	13
p4	15	15
p5	19	19
p3	20	20

Chart: Priority Scheduling (nonpreemptive, lower number = higher priority)

Process	Completion Time	Turnaround Time (TAT)
p2	1	1
p1	3	3
p4	7	7
p5	12	12
p3	20	20

Chart: Round Robin (Quantum = 2)

Process	Completion Time Turnaround Time (TAT	
p1	2	2
p2	3	3
р3	20	20
p4	13	13
р5	16	16

c. What is the waiting time of each process for each of these scheduling algorithms?

Waiting Time=Turnaround Time-Burst Time

FCFS

Process	Brust Time	Completion	Turnaround Time	Waiting Time
P1	2	2	2	0
P2	1	3	3	2
P3	8	11	11	3
P4	4	15	15	11
P5	5	20	20	15

SJF

Process	Brust Time	Completion	Turnaround Time	Waiting Time
P2	1	1	1	0
P1	2	3	3	1
P4	4	7	7	3
P5	5	12	12	7
P3	8	20	20	12

^{*}Lower # priority is the same as the SJF, I will continue with the HIghest # priority

Priority (Higher Number = Higher Priority)

Process	Brust Time	Completion	Turnaround Time	Waiting Time
P3	8	8	8	0
P5	5	13	13	8
P1	2	15	15	13
P4	4	19	19	15
P2	1	20	20	19

Round Robin (q = 2)

Process	Brust Time	Completion	Turnaround Time	Waiting Time
P1	2	2	2	0
P2	1	3	3	2
P3	8	20	20	12
P4	4	13	13	9
P5	5	16	16	11

d. Which of the algorithms results in the minimum average waiting time (over all processes)?

					Average V	Vaiting time
Algorithm	P1	P2	P3	P4	P5	Avg WT
FCFS	0	2	3	7	10	4.4
SJF	1	0	12	3	7	4.6
Priority	0	8	13	17	19	11
RR(q=2)	0	2	12	9	11	6.8

The average with the minimum average waiting time is **FCFS** with a waiting time of **4.4ms**.

Q3-Consider two processes, P1 and P2, where p1 = 50, t1 = 25, p2 = 75, and t2 = 30. a. Can these two processes be scheduled using rate-monotonic scheduling? Illustrate your answer using a Gantt chart such as the ones in Figure 5.21–Figure 5.24.

* I can't find the images mentioned in the questions. I will continue with the charts I've been doing form q # 1.

Gantt chart: RMS

RMS is a fixed-priority scheduling algorithm where processes with shorter periods get higher priority.

No, these two processes can't be scheduled using rate-monotonic scheduling.

P1 misses its deadline at t = 50 ms, so RMS fails

b. Illustrate the scheduling of these two processes using earliest-deadline-first (EDF) scheduling.

Gantt chart: EDF

The charts look similar but this process is more dynamic and does meet the deadlines.

Q4- Write a program (c++ or java) that computes turnaround time and average wait time for the processes listed in Q2 for FCFS and SJF scheduling . Upload your solution to GitHub and submit the link to your program.

```
2 | 0 | 5
3 | 5 | 8
4 | 7 | 13
```

```
C:\Users\richa\.jdks\openjdk-23.0.1\bin\java.exe ...
    ----- FCFS ------
Process ID | Waiting Time | Turnaround Time
     1 |
                                     2
     2
                    2
                                     3
     3
                   3
                                    11
                  11
                                    15
     5
                  15
                                    20
Average Waiting Time: 6.2
Average Turnaround Time: 9.8
----- SJF -----
Process ID | Waiting Time | Turnaround Time
     2
                    0
                                     1
     1
                    1
                                     3
                    3
     5
                    7
                                    12
     3
                   12
                                    20
Average Waiting Time: 4.6
Average Turnaround Time: 8.4
```