

# NASA TECH BRIEF



NASA Tech Briefs announce new technology derived from the U.S. space program. They are issued to encourage commercial application. Tech Briefs are available on a subscription basis from the National Technical Information Service, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief program may be directed to the Technology Utilization Division, NASA, Code UT, Washington, D.C. 20546.

## Ferrite Attenuator Modulation Improves Antenna Performance



Ferrite Modulator Schematic

### The problem:

Multiple antenna systems onboard aircraft create undesirable interference zones under certain conditions—equal signal strength and a 180° phase displacement. The interference zones reduce the signal strength at the ground receiving station during critical flight periods; i.e., takeoff and landing.

### The solution:

Reduce the gain of the antenna element causing the interference by inserting a ferrite attenuator into the appropriate waveguide. Modulating the ferrite attenuator to change the antenna gain at the receive fre-

quency permits ground tracking until the antenna is no longer required, at which time the fixed attenuation quantity is inserted into the waveguide.

### How it's done:

The modulator schematic shown in the figure is composed of three sections: (1) a multivibrator, (2) an integrator, and (3) a driver for the ferrite coil. The multivibrator is a free running circuit that establishes the frequency of the modulation wave. Q<sub>3</sub> is a switch in the Miller integrator and is controlled by the multivibrator output. The charging and discharging of the capacitor between the base and collector of Q<sub>4</sub> deter-

(continued overleaf)

mines the final output waveshape. The emitter follower,  $Q_5$ , drives the ferrite coil. A blocking diode added to the emitter circuit prevents feedback from the 29 V dc applied to the ferrite coil.  $R_K$  inserted in the emitter of  $Q_5$  determines the amount of attenuation required.

**Notes:**

1. With minor modification, the modulation technique can be applied to navigation and communication systems employing phased-array antenna elements.
2. Requests for further information may be directed to:

Technology Utilization Officer  
NASA Pasadena Office  
4800 Oak Grove Drive  
Pasadena, California 91103  
Reference: B70-10702

**Patent status:**

Inquires about obtaining rights for the commercial use of this invention may be made to:

Patent Counsel  
Mail Code 1  
NASA Pasadena Office  
4800 Oak Grove Drive  
Pasadena, California 91103

Source: S. G. Larson, F. H. Shorkley,  
J. C. Hooks, and B. T. Williams of  
Western Electric Co., Inc.  
under contract to  
NASA Pasadena Office  
(NPO-12011)