Automotive MLCC

Automotive

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME).

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat.
- X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting.
- X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat.
- NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.

HOW TO ORDER

500V = 7

*NPO only

 $(\le 1 \mu F)$ $K = \pm 10\%$ $M = \pm 20\%$

Contact factory for availability of Tolerance Options for Specific Part Numbers.

NOTE: Contact factory for non-specified capacitance values. 0402 case size available in T termination only.

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. Used to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan – stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

Automotive MLCC

NP0/X7R Dielectric

FLEXITERM® FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional Term	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

b) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between –55°C and +125°C

Automotive MLCC-NP0

Capacitance Range

			0603			0805				1206			1210				
Sold	ering	Re	eflow/Wa	ave	Re	eflow/Wa	ave		R	eflow/Wa	ave			Reflo	w Only		
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V	
100	10pF	G	G	G	J	J	J	J	J	J	J	J					
120	12	G	G	G	J	J	J	J	J	J	J	J					
150	15	G	G	G	J	J	J	J	J	J	J	J					
180	18	G	G	G	J	J	J	J	J	J	J						
220	22	G	G	G	J	J	J	J	J	J	J						
270	27	G	G	G	J	J	J	J	J	J	J						
330	33	G	G	G	J	J	J	J	J	J	J						
390	39	G	G	G	J	J	J	J	J	J	J						
470	47	G	G	G	J	J	J	J	J	J	J						
510	51	G	G	G	J	J	J	J	J	J	J						
560	56	G	G	G	J	J	J	J	J	J	J						
680	68	G	G	G	J	J	J	J	J	J	J						
820	82	G	G	G	J	J	J	J	J	J	J						
101	100	G	G	G	J	J	J	J	J	J	J						
121	120	G	G	G	J	J	J	J	J	J	J						
151	150	G	G	G	J	J	J	J	J	J	J						
181	180	G	G	G	J	J	J	J	J	J	J						
221	220	G	G	G	J	J	J	J	J	J	J						
271	270	G	G	G	J	J	J	J	J	J	J						
331	330	G	G	G	J	J	J	J	J	J	J						
391	390	G	G		J	J	J	J	J	J	J						
471	470	G	G		J	J	J	J	J	J	J						
561	560				J	J	J	J	J	J	J						
681	680				J	J	J	J	J	J	J						
821	820				J	J	J	J	J	J	J						
102	1000				J	J	J	J	J	J	J		J	J	J	J	
122	1200				J			J	J	J	J		J	J	М	М	
152	1500				J			J	М	М	М		J	J	М	М	
182	1800				J			J	М	М	М		J	J	М	М	
222	2200				J			J	М	М	М		J	J	М	М	
272	2700				J			J	М				J	J	М		
332	3300							J	М				J	J	Р		
392	3900							J	М				J	J	Р		
472	4700							J	М				J	J	Р		
103	10nF																
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V	
			0603			0805		l		1206			l	12	10		

Letter	A	C	E	G	J	K	M	N	P	Q	X	Y	Z			
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79			
Thicknes	s (0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)			
	PAPER						EMBOSSED									

Automotive MLCC-X7R

Capacitance Range

			0402	_				0603							805						1206						10			12		2220	
So	Idering	Re	eflow/V	<i>l</i> ave			Re	flow/W	<i>l</i> ave					Reflov	v/Wave	9				Re	flow/M					Reflov	v Only		Reflov	v Only		flow O	,
		16V			10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100\
221	Cap 220	С	C	C																													
271	(pF) 270	C	C	C																													
331	330	С	С	С																													
391	390	С	C	С																													
471	470	С	C	С																													
561	560	С	С	С																													
681	680	С	C	С																													
821	820	С	С	С																													
102	1000	С	C	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
182	1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	С	C	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	Cap 0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	(μF) 0.012	С			_	G	G	G				J	J	J	M	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
153	0.015	С				G	G	G				J	J	J	M	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
183	0.018	С				G	G	G				J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
223	0.022	С			_	G	G	G				J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
273	0.027	С			_	G	G	G				J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
333	0.033	С		_	_	G	G	G				J	J	J	М	J	J	J	J	J	J	J	J		K	K	K	K	K	K			
473	0.047	_	-		_	G	G	G				J	J	J	М	J	J	J	J	J	М	J	J		K	K	K	K	K	K			
563	0.056	ـــــ	-	-	_	G	G	G				J	J	J	М			J	J	J	M	J	J		K	K	K	M	K	K			_
683	0.068		-		_	G	G	G				J	J	J	М	_		J	J	J	М	J	J		K	K	K	M	K	K			
823 104	0.082	₩	₩	-	₩	G	G	G	_			J	J	J	М	_		J	J	J	M	J	J	_	K	K	K	M	K	K			-
		₩	-	-	-	G	G	G	_			J	J	М	M	_		J	J	J	M	J	J	_	K	K	K	M	K	K			
124 154	0.12		-	-	₩							J M	J N	M	N N	_		J	J	M	M				K	K	K	P	K	K	\vdash	_	⊢
224	0.15	╀	-		G							M		M	N N			J	J	M					M			P	M				
334	0.22	₩	+-	+-	G	-	-	-	-	-	_	N	N	M	N N	_	-	J	M	P	Q		-	-	P	M	M P	Q		M	\vdash	_	\vdash
474	0.33	-	+	-	-		-	-		_		N N	N N	M	N N	-	-	M	M	P	Q				P	P	P	Q	X	X		_	\vdash
684	0.47	\vdash	+	+-	-		-	-	-	-	_	N N	N	N	IN		-	M	Q	Q	Q		_	-	P	P	Q	X	X	X	\vdash	_	\vdash
105	0.00	-	1	1	-	-	-	-	-	-		N N	N	N		-	-	M	Q	Q	Q			-	P	Q	Q	X	X	X	\vdash		
155	1.5	+	+	+	-	-	-	-	-	-	_	IN	IN	IN		-	-	O.	Q	Q	Q		_	-	P	Q	Z	Z	X	X	\vdash		\vdash
225	2.2	+	-	-	-			_				-		_		-	_	Q	Q	Q					Х	Z	Z	Z	Z	Z	_		-
335	3.3	+	\vdash	+	\vdash	-		-	-			\vdash		-		\vdash	-	Q	Q	- u				-	X	Z	Z	Z	Z				\vdash
475	4.7	\vdash	+	+	\vdash			-			_	\vdash		-	\vdash	\vdash	-	Q	Q				_		X	Z	Z	7	Z				Z
106	10	+	+	+	-	-	-	-	-	-	-	\vdash	-	-		\vdash	-	- Q	· ·	-	-	-	-	-	Z	Z					\vdash	Z	Z
226	22	\vdash	+	+	\vdash			-			_	\vdash		-	\vdash	\vdash	-	\vdash		\vdash			_					-	\vdash		Z		-
		16V	25V	50V	10V	16V	25V	50V	1001/	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	1001/	2001/	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100
		1	0402		† · · · ·	1.07	1 201	0603		1 -001		1.01		_	805	12001	1 -004	L		,	1206			, 5004	1.07	12		1.001	18	-		2220	1.000
			0404	<u>. </u>				0003	•					UC	000						1200)				12	IU		10	14		2220	

Letter	A	С	E	G	J	K	M	N	P	Q	X	Y	Z			
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79			
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)			
	PAPER						EMBOSSED									

Automotive MLCC-X8R

Capacitance Range

	SIZE	06	603	08	05	12	206
,	Soldering	Reflov	v/Wave	Reflow	//Wave	Reflov	v/Wave
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(μF) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	M	M
683	0.068	G		N	N	M	M
823	0.082			N	N	М	M
104	0.1			N	N	М	M
124	0.12			N	N	М	М
154	0.15			N	N	М	М
184	0.18			N		М	M
224	0.22			N		М	M
274	0.27					М	М
334	0.33					М	M
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
·	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	O	603	OS	305	120	06

Letter	А	С	Е	G	J	K	М	N	Р	Q	Χ	Υ	Z		
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79		
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)		
	DADER						EMBOSSED								