Orthogonal Compt. Subspace.

Let $U = \mathbb{R}^n$, Let W be a Subspace of \mathbb{R}^n of dimension

'k'. $W^{\perp} = \{\vec{v} \in \mathbb{R}^n \mid \vec{v} \cdot \vec{w} = 0 \text{ for every } \vec{w} \in W\}$

(1) Let $V = \mathbb{R}^{n}$, W be a subspay \mathbb{R}^{n} .

Then W^{\perp} is also a subspay \mathbb{R}^{n} . $W \cap W^{\perp} = \{\vec{0}\}$.

Proof: Let $\vec{v} \in W \cap W^{\perp}$. $\vec{v} \cdot \vec{v} = 0$.

> WN W+= \$0\$.

* $N=\mathbb{R}^n$, N Subspace of \mathbb{R}^n Then $\{u_{k+1}, \dots, u_n\}$ is a basis for w^1 det \mathcal{B} be an orthonormal Let \mathcal{B} be the span of $\{u_{k+1}, \dots u_n\}$ basis for \mathcal{N} .

Note that $\{u_{k+1}, \dots u_n\}$ is a basis for w^1 .

To establish Span $S * W^1$ to be $u_i, u_j : \{0, i \neq j\}$ the same, we show 1 = i = j $S \subseteq W^1 \otimes W^1 \subseteq S$ Let $\{u_i, \dots u_k\}$ be the orthonormal $\Rightarrow S = W^1$

Jo prove $S \subseteq W^{\perp}$ Any vector \vec{x} of the form $\vec{x} = d_{k+1} \vec{v}_{k+1} + \cdots + d_n \vec{v}_n$ bor some scalars $d_{k+1} \cdots d_n$.

is Orthogonal to every $\vec{w} \in W$

Let $\vec{W} = C_1\vec{V}_1 + \cdots + C_k\vec{V}_k$ for some Scalars $C_1 \cdots C_k$. $\Rightarrow \vec{Z} \cdot \vec{W} = 0 \Rightarrow (d_{k+1}\vec{V}_{k+1} + \cdots + d_n\vec{V}_n)$. $(C_1\vec{V}_1 + \cdots + C_k\vec{V}_k) = 0$ Also $\{\vec{V}_{k+1}, \cdots \vec{V}_n\}$ is orthonormal 2Orthogonal to every vector $\{\vec{V}_1, \cdots \vec{V}_k\}$ Hence $\vec{Z} \in W^{\perp} \Rightarrow S \subseteq W^{\perp}$ Jo Show that $W^{+}\subseteq S$. We must show than any vector in W^{+} is also in the Span S Let $\overrightarrow{\mathcal{X}}\subseteq W^{+}$. Since $\{V_{i, \dots, i}, V_{n}\}$ is is Orthonormal basis for \mathbb{R}^{n} $\overrightarrow{\mathcal{X}}: (\overrightarrow{\mathcal{X}}, \overrightarrow{V}_{i}) + \dots + (\overrightarrow{\mathcal{X}}, \overrightarrow{V}_{n}) \overrightarrow{V}_{n}$

 $\Rightarrow \vec{x} = (\vec{x} \cdot \vec{v_{k+1}}) \vec{v_{k+1}} + \cdots + (\vec{x} \cdot \vec{v_{k}}) \vec{v_{k}}$ $\Rightarrow \vec{x} \in Span S \text{ of } \{\vec{v_{k+1}} \cdots \vec{v_{k}}\}$ $\Rightarrow W^{\perp} \subseteq S$ $\Rightarrow W^{\perp} = S.$

- (2) dim(w) + dim(w) = dim(v)

 (3) Let W C Rⁿ & {\vec{u}_1 \ldots \vec{u}_e} is an Osthonormal basic for W.

 For any vector \vec{v} \in R^n, we define

 the Orthogonal proj of \vec{v} on to

 W as

 proj \vec{v} = (\vec{v}. \vec{u}_1) \vec{u}_1 + (\vec{v}. \vec{u}_2) u_2 + \ldots (\vec{v}. \vec{u}_k) \vec{u}_k}
- (4) Let W be a subsport Rⁿ.

 Every vector vector vector vector vector vector vector vector be Rⁿ.

 Can be expressed uniquely as

 (*) vector vect

Prove that $(x) = \vec{V} = \vec{V}_w + \vec{v}$

 $||\vec{v}||^2 = |(\vec{V}_W + \vec{V}_{W^{\perp}}) \cdot (|\vec{V}_W + \vec{V}_{W^{\perp}})|$ $= ||\vec{V}_W||^2 + ||V_{W^{\perp}}||^2$ $\Rightarrow Pythagoras Jheoran.$

Orientation of fundamental
Subspaces of AERmin

Rn

Rn

RN

RATIO

Consider \mathbb{R}^{n} . Let $A \in \mathbb{R}^{m \times n}$. $\Rightarrow A \vec{z}$ Let $\vec{x} \in \mathcal{N}_{A}$. $\Rightarrow A \vec{z} : \vec{O}_{m}$.

For every vector $\vec{x} \in \mathcal{N}_{A}$, $A \vec{z} : \vec{O}_{m}$. $\Rightarrow A \vec{z}$ is Orthogonal to every vector $\vec{v} \in \mathbb{R}^{m}$. $\Rightarrow \mathcal{N}_{A}$. $\Rightarrow A \vec{z}$ is Orthogonal to every $\vec{v} \in \mathcal{N}_{A}$. $\Rightarrow A \vec{z} \in \mathbb{R}^{m}$. $\Rightarrow \mathcal{N}_{A}$.

 $\Rightarrow A\vec{z} \cdot \vec{u} = 0 \qquad \text{for } x \in N_A.$ $= (Ax)^T \cdot u = 0 \qquad \Rightarrow x^T (A^T u) = 0$ $= x^T (A^T u) = 0 \qquad x \in N_A, \vec{u} \in \mathbb{R}^m$ $\downarrow V_A. \qquad \text{element of } R_A T$

 \mathbb{R}^{η} : NA is Orthog Comp. of RAT.

RAT is Orthog Comp of NA.

$$\vec{b} = \vec{b}_{R_A} + \vec{b}_{N_{A}T}.$$

