Esercizio 1. Considerate l'istanza del Facility Location Game con insieme dei clienti $N = \{A, B, C, D\}$, insieme delle facility $F = \{1, 2, 3, 4\}$, costi di set-up $f_1 = 3$, $f_2 = 4$, $f_3 = 1$, $f_4 = 8$ e costi di connessione $d_{A,1} = 2$, $d_{A,2} = 3$, $d_{A,3} = 7$, $d_{A,4} = 7$, $d_{B,1} = 7$, $d_{B,2} = 2$, $d_{B,3} = 5$, $d_{B,4} = 7$, $d_{C,1} = 5$, $d_{C,2} = 7$, $d_{C,3} = 5$, $d_{C,4} = 7$, $d_{D,1} = 7$, $d_{D,2} = 7$, $d_{D,3} = 6$, $d_{D,4} = 7$.

Utilizzando l'algoritmo primale-duale 3-approssimato individuare una soluzione per il problema di facility location (ovvero, quali facility aprire e la connessione di ogni cliente a una facility aperta) e una divisione dei costi tra i clienti che consenta di recuperare almeno $\frac{1}{3}$ del costo della soluzione individuata.

Soluzione Innanzitutto è facile verificare che i costi di connessione soddisfano l'ipotesi metrica, quindi l'uso dell'algoritmo primale-duale appropriato.

Svolgiamo dunque l'algoritmo. Esso fa crescere ordinatamente le variabili $\alpha_j, j \in \{A, B, C, D\}$ e le variabili $\beta_{ij}, i \in \{1, 2, 3, 4\}, j \in \{A, B, C, D\}$. Immaginiamo che il suo svolgimento segua un clock esterno, rappresentato da una variabile temporale t: all'inizio t = 0 e tutte le variabili valgono 0, poi $t = \varepsilon$ e tutte le α_j valgono ε etc.

Per $t \in (0,2)$, le variabili α crescono uniformemente, le variabili β rimangono a 0, nessun arco è tight, nessuna facility è temporaneamente aperta.

All'istante t=2, $\alpha_A=\alpha_B=\alpha_C=\alpha_D=2$, le variabili β sono a o, gli archi $\{1,A\}$ e $\{2,B\}$ sono tight, nessuna facility è temporaneamente aperta.

Per $t \in (2,3)$, le variabili α e le variabili β_{A1} e β_{B2} crescono uniformemente, le altre variabili β rimangono a 0, gli archi $\{1,A\}$ e $\{2,B\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t = 3, $\alpha_A = \alpha_B = \alpha_C = \alpha_D = 3$, $\beta_{A1} = \beta_{B2} = 1$, le altre variabili β sono a o, gli archi $\{1, A\}$, $\{2, B\}$ e $\{2, A\}$ sono tight, nessuna facility è temporaneamente aperta.

Per $t \in (3,4.5)$, le variabili α e le variabili β_{A1} , β_{B2} e β_{A2} crescono uniformemente, le altre variabili β rimangono a 0, $\{1,A\}$, $\{2,B\}$ e $\{2,A\}$ sono tight, nessuna facility è temporaneamente aperta.

All'istante t=4.5, $\alpha_A=\alpha_B=\alpha_C=\alpha_D=4.5$, $\beta_{A1}=\beta_{B2}=2.5$, $\beta_{A2}=1.5$ e le altre variabili β sono a o, gli archi $\{1,A\}$, $\{2,B\}$ e $\{2,A\}$ sono tight, la facility 2 è temporaneamente aperta e i clienti A e B sono connessi (e la facility 2 è appunto il testimone di connessione). Da questo momento α_A , α_B e tutte le variabili β_{ij} con $j \in \{A,B\}$ non crescono oltre.

All'istante t = 5, $\alpha_A = \alpha_B = 4.5$, $\alpha_C = \alpha_D = 5$, $\beta_{A1} = \beta_{B2} = 2.5$, $\beta_{A2} = 1.5$ e le altre variabili β sono a o, gli archi $\{1,A\}$, $\{2,B\}$, $\{2,A\}$, $\{1,C\}$ e $\{3,C\}$ sono tight, la facility 2 è temporaneamente aperta e i clienti $A \in B$ sono connessi (e la facility 2 è appunto il testimone di connessione). Da questo momento α_A , α_B e tutte le variabili β_{ij} con $j \in \{A,B\}$ non crescono oltre.

All'istante t = 5.5, $\alpha_A = \alpha_B = 4.5$, $\alpha_C = \alpha_D = 5.5$, $\beta_{A1} = \beta_{B2} = 2.5$, $\beta_{A2} = 1.5$, $\beta_{C1} = \beta_{C3} = 0.5$ e le altre variabili β sono a o, gli archi $\{1, A\}$, $\{2, B\}$, $\{2, A\}$, $\{1, C\}$ e $\{3, C\}$ sono tight, la facility 1 e la facility 2 sono temporaneamente aperte e i clienti A, B e C sono connessi (e la facility 1 è il testimone di connessione per C). Da questo momento $\alpha_A, \alpha_B, \alpha_C$ e tutte le variabili β_{ij} con $j \in \{A, B, C\}$ non crescono oltre.

All'istante t=6, $\alpha_A=\alpha_B=4.5$, $\alpha_C=5.5$, $\alpha_D=6$, $\beta_{A1}=\beta_{B2}=2.5$, $\beta_{A2}=1.5$, $\beta_{C1}=\beta_{C3}=0.5$ e le altre variabili β sono a o, gli archi $\{1,A\}$, $\{2,B\}$, $\{2,A\}$, $\{1,C\}$, $\{3,C\}$ e $\{3,D\}$ sono tight, la facility 1 e la facility 2 sono temporaneamente aperte e i clienti A,B e C sono connessi.

All'istante t = 6.5, $\alpha_A = \alpha_B = 4.5$, $\alpha_C = 5.5$, $\alpha_D = 6.5$, $\beta_{A1} = \beta_{B2} = 2.5$, $\beta_{A2} = 1.5$, $\beta_{C1} = \beta_{C3} = 0.5$, $\beta_{D3} = 0.5$ e le altre variabili β sono a o, gli archi $\{1, A\}$, $\{2, B\}$, $\{2, A\}$, $\{1, C\}$, $\{3, C\}$ e $\{3, D\}$ sono tight, la facility 1, la facility 2 e la facility 3 sono temporaneamente aperte e i clienti A, B, C, e D sono connessi (e la facility 3 è il testimone di connessione per D). Questo termina la fase 1 dell'algoritmo.

Nella fase 2, l'insieme delle facility temporaneamente aperte è $F_t = \{1, 2, 3\}$. La coppia di facility 1 e 2 è per in conflitto perché β_{A1} e $\beta_{A2} > 0$; analogamente, la coppia di facility 1 e 3 è per in conflitto perché β_{C1} e $\beta_{C3} > 0$.

Consideriamo quindi ordinatamente le facility, nell'ordine in cui le abbiamo temporaneamente aperte. La prima facility che abbiamo aperto è 2, che quindi apriamo in modo definitivo. Allo stesso tempo, chiudiamo in modo definitivo la facility 1 che è in conflitto con 2. A questo punto rimane la sola facility 3 che apriamo in modo definitivo. L'insieme di facility da aprire è quindi $I = \{2,3\}$. I clienti A e B sono direttamente connessi a 2, il cliente D è direttamente connesso a 3 e il cliente C è indirettamente connesso a 2.

La soluzione individuata per il problema di facility location ha quindi costo pari a $f_2 + f_3 + d_{A,2} + d_{B,2} + d_{C,2} + d_{D,3} = 23$. Sappiamo che questa soluzione è 3-approssimata, ovvero il valore della soluzione costruita per il problema duale, che possiamo interpretare come una divisione di parte dei costi del costo tra i clienti, deve essere $\geq \frac{23}{3} = 7$. In questo caso, poiché $\alpha_A + \alpha_B + \alpha_C + \alpha_D = 21$, segue che l'algoritmo ha individuato una soluzione $\frac{23}{21}$ -approssimata.