Machine Learning

Linear Models

Fabio Vandin

October 18th, 2022

Linear Predictors and Affine Functions

Consider $\mathcal{X} = \mathbb{R}^d$

"Linear" (affine) functions:

$$L_d = \{h_{\mathbf{w},b} : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

where

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \left(\sum_{i=1}^d w_i x_i\right) + b$$

Note:

- each member of L_d is a function $\mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b$
- b: bias

Linear Models

Hypothesis class $\mathcal{H}: \phi \circ L_d$, where $\phi: \mathbb{R} \to \mathcal{Y}$

- $h \in \mathcal{H}$ is $h : \mathbb{R}^d \to \mathcal{Y}$
- ϕ depends on the learning problem

Example

- binary classification, $\mathcal{Y} = \{-1, 1\} \Rightarrow \phi(z) = \operatorname{sign}(z)$
- regression, $\mathcal{Y} = \mathbb{R} \Rightarrow \phi(z) = z$

Equivalent Notation

Given $\mathbf{x} \in \mathcal{X}$, $\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$, define:

- $\mathbf{w}' = (b, w_1, w_2, \dots, w_d) \in \mathbb{R}^{d+1}$
- $\mathbf{x}' = (1, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1}$

Then:

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle \tag{1}$$

 \Rightarrow we will consider bias term as part of **w** and assume $\mathbf{x} = (1, x_1, x_2, \dots, x_d)$ when needed, with $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$

Linear Classification

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \{-1, 1\}$, 0-1 loss

 $Hypothesis\ class = \textit{halfspaces}$

$$HS_d = \operatorname{sign} \circ L_d = \{\mathbf{x} \to \operatorname{sign}(h_{\mathbf{w},b}(\mathbf{x})) : h_{\mathbf{w},b} \in L_d\}$$

Example: $\mathcal{X} = \mathbb{R}^2$

Finding a Good Hypothesis

Linear classification with hypothesis set $\mathcal{H} = \text{halfspaces}$.

How do we find a good hypothesis?

Good = minimizes the training error (ERM)

⇒ Perceptron Algorithm (Rosenblatt, 1958)

Note:

if $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 0$ for all $i = 1, ..., m \Rightarrow$ all points are classified correctly by model $\mathbf{w} \Rightarrow realizability assumption$ for training set

Linearly separable data: there exists **w** such that: $y_i \langle \mathbf{w}, \mathbf{x}_i \rangle > 0$

Perceptron

```
Input: training set (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m) initialize \mathbf{w}^{(1)} = (0, \dots, 0); for t = 1, 2, \dots do

if \exists i \ s.t. \ y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle \leq 0 then \mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + y_i \mathbf{x}_i; else return \mathbf{w}^{(t)};
```

Interpretation of update:

Note that:

$$y_i \langle \mathbf{w}^{(t+1)}, \mathbf{x}_i \rangle = y_i \langle \mathbf{w}^{(t)} + y_i \mathbf{x}_i, \mathbf{x}_i \rangle$$

= $y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle + ||\mathbf{x}_i||^2$

 \Rightarrow update guides **w** to be "more correct" on (\mathbf{x}_i, y_i) .

Termination? Depends on the realizability assumption!

Perceptron with Linearly Separable Data

If data is linearly separable one can prove that the perceptron terminates.

Proposition

Assume that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ is linearly separable, let:

- $B = \min\{||\mathbf{w}|| : y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \ge 1 \ \forall i, i = 1, \dots, m, \}$, and
- $R = \max_i ||\mathbf{x}_i||$.

Then the Perceptron algorithm stops after at most $(RB)^2$ iterations (and when it stops it holds that $\forall i, i \in \{1, ..., m\} : y_i \langle \mathbf{w}^{(t)}, \mathbf{x}_i \rangle > 0$).

Perceptron: Notes

- simple to implement
- for separable data
 - termination is guaranteed
 - may require a number of iterations that is exponential in d...
 other approaches (e.g., ILP Integer Linear Programming)
 may be better to find ERM solution in such cases
 - potentially multiple solutions, which one is picked depends on starting values
- non separable data?
 - run for some time and keep best solution found up to that point (pocket algorithm)