The Plane Separation Property

Definition 1 (Convexity). Let \mathcal{P} be an incidence geometry with a betweenness relation $[\cdot \cdot \cdot]$. A non empty set S of points in \mathcal{P} is called convex if whenever $x, y \in S$ are distinct points, $\overline{xy} \subseteq S$.

Definition 2 (Plane Separation Property). Let \mathcal{P} be an incidence geometry with a betweenness relation $[\cdots]$. We say that this geometry has the Plane Separation Property if every line ℓ partitions the set of points not on ℓ into two nonempty, disjoint, convex sets, H_1 and H_2 , with the property that if $x \in H_1$ and $y \in H_2$ then $\overline{xy} \cap \ell = \{p\}$ for some point p. The sets H_1 and H_2 are called half-planes.

Examples

To show that a particular incidence geometry has the plane separation property, given any line we must specify the half-planes H_1 and H_2 and show that they are nonempty, disjoint, convex sets, which have the intersection property.

 \mathbb{R}^2 Given a line $\ell = \overleftrightarrow{AB}$, we define two half-planes as follows:

$$H_1 = \left\{ X = (x_1, x_2) \mid \det egin{bmatrix} a_1 & a_2 & 1 \ b_1 & b_2 & 1 \ x_1 & x_2 & 1 \end{bmatrix} > 0
ight\}$$

and

$$H_2 = \left\{ X = (x_1, x_2) \mid \det \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ x_1 & x_2 & 1 \end{bmatrix} < 0 \right\}.$$

Certainly both H_1 and H_2 are not empty, and they are disjoint by construction.

To see that H_1 is convex, suppose BWOC that we have points $X, Y \in H_1$ and a point $Z = (z_1, z_2)$ such that [XZY] and $Z \notin H_1$. Now

$$m = \det \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ z_1 & z_2 & 1 \end{bmatrix}$$

is either 0 or negative. If m=0, then in fact $Z\in \overrightarrow{AB}$. Since $X,Y\notin \overrightarrow{AB}$, we have that \overline{XY} and \overrightarrow{AB} meet at a single point Z; but we've seen this can only happen if $X\in H_1$ and $Y\in H_2$ (or vice versa). Suppose instead that m<0; that is, $Z\in H_2$. Now we have that \overline{XZ} and \overline{YZ} each intersect \overline{AB} at unique points, say W and V, respectively. Note that [XWZ] and [YVZ]. Since [XZY], we have that X, Y, Z, W, and V are all collinear. If W and V are distinct points, then in fact $X,Y\in \overrightarrow{WV}=\overrightarrow{AB}$, a contradiction. If W=V, then we have [XWZ] and [YWZ], so by the

4-point axiom, [WZY], a contradiction. So we must have $Z \in H_1$, and thus H_1 is convex. A similar argument shows that H_2 is convex.

Finally, we need to show that if $X \in H_1$ and $Y \in H_2$, then $\overline{XY} \cap \overrightarrow{AB}$ consists of a unique point. We showed precisely this previously.

Ordered Geometries

Definition 3 (Ordered Geometry). Let \mathcal{P} be an incidence geometry with a betweenness relation $[\cdot \cdot \cdot]$. We say that \mathcal{P} (with this betweenness relation) is an Ordered Geometry if it has the Trichotomy Property, the 4-Point Property, the Interpolation Property, and the Line Separation Property.

For example, both \mathbb{R}^2 and \mathbb{Q}^2 are ordered geometries.

Definition 4 (Triangle). Let \mathcal{P} be an incidence geometry, and let x, y, and z be distinct points. Then the set

$$\triangle xyz = \overline{xy} \cup \overline{yz} \cup \overline{zx}$$

is called the triangle with vertices x, y, and z. The segments \overline{xy} , \overline{yz} , and \overline{zx} are called the sides of the triangle.

Theorem 1 (Pasch's Axiom). Let x, y, and z be distinct points in an ordered geometry, and let ℓ be a line such that $x, y, z \notin \ell$. Finally, suppose there is a point $w \in \ell$ such that [xwy]; that is, ℓ cuts the side \overline{xy} .

Then precisely one of the following two things happens:

- 1. ℓ cuts \overline{yz} and does not cut \overline{zx} , or
- 2. ℓ cuts \overline{zx} and does not cut \overline{yz} .

Proof. Since \mathcal{P} is an ordered geometry, it satisfies the Plane Separation property. In particular, the points not on ℓ are partitioned into two convex, nonempty half-planes, H_1 and H_2 . Since $\overline{xy} \cap \ell = \{w\}$ is not empty, without loss of generality we have $x \in H_1$ and $y \in H_2$. Since $z \notin \ell$, there are two possibilities: either $z \in H_1$ or $z \in H_2$. In the first case, we see that ℓ cuts \overline{yz} and does not cut \overline{zx} , and in the second case, ℓ cuts \overline{zx} but not \overline{yz} .

In other words, Pasch's Axiom states that if a line enters a triangle then it must also exit.

Lemma 2. Let ℓ be a line and $C \in \ell$ a point in an ordered geometry. Suppose A and B are points not on ℓ such that [ABC]. Then A and B are on the same side of ℓ .

Proof. Suppose otherwise that A and B are on opposite sides of ℓ . By the Plane Separation property, and because A and B are not on ℓ , the segment \overline{AB} cuts ℓ at a unique point D. That is, $D \in \ell$ and [ADB]. But note that $C, D \in \ell$, so $\overline{CD} = \ell$, and also $C, D \in \overline{AB}$, so that $\overline{CD} = \overline{AB}$. But then $\overline{AB} = \ell$, a contradiction. Thus A and B must be on the same side of ℓ .