Systems Modeling and Programming in a Unified Environment based on Julia

Hilding Elmqvist, Toivo Henningsson, Martin Otter

Hilding Elmqvist

- Founded Dynasim (1992)
- Architect of Dymola
- Modelica Initiative one of key architects (1996)
- Dynasim acquired by Dassault Systémes (2006)
- FMI one of key architects
- Founded Mogram (2016)
- Modia open source initiative

Outline

- What's in a System Model
- Modelica
- Rationale for Modia project
- Julia
- Introduction to *Modia* Language
- Modia Prototype
- Summary

What's in a System Model?

- Lumped Element Model
 - Discrete set of only time-varying variables, i.e. No partial derivatives
 - Ordinary Differential Equations
 - Algebraic Equations
- Assignment statements (Algorithm)? No
- Data flow diagrams (Block diagrams)? No
- Bond graphs? No

Problem: The system topology is not shown

- Manual derivation of algorithm
- Manual derivation of diagram

```
/**
 * Routine for evaluating the right-hand side of the set of equations dy[i]/dt = ...
 * This loads the array dydt[] which can then be read from other methods after
 * calling. t is the time point, y is the set of coordinates y[i] to evaluate the
 * right-hand side at.
 */
private void evaluateDyDt(double t, double[] y) {
   dydt[0] = y[2];   dydt[1] = y[3];
   double s01 = Math.sin(y[0] - y[1]);
   double s01 = Math.cos(y[0] - y[1]);
   double nu1 = y[2]*y[2]*s01 - gamma * Math.sin(y[1]);
   double nu2 = oneplusalphagamma * Math.sin(y[0]) + alphabeta * y[3]*y[3]*s01;
   double f = 1.0/(1.0 + alpha*s01*s01);
   dydt[2] = - f*(nu2 + alpha*c01*nu1);
   dydt[3] = f*oneoverbeta*(oneplusalpha*nu1 + c01*nu2);
}
```


Engineering Practice I – Use Equations

Differential-Algebraic Equations (DAE)

$$0 = f\left(\frac{\mathrm{d} x}{\mathrm{d} t}, x, w, p, u, y\right)$$

$$0 = g(x, w, p, u, y)$$

Example:

$$m_1 \frac{d^2 x_1}{dt^2} + (\lambda_1 + \lambda_2) \frac{dx_1}{dt} - \lambda_2 \frac{dx_2}{dt} + (k_1 + k_2) x_1 - k_2 x_2 = 0$$

$$m_2 \frac{d^2 x_2}{dt^2} - \lambda_2 \frac{dx_1}{dt} + (\lambda_2 + \lambda_3) \frac{dx_2}{dt} - k_2 x_1 + (k_2 + k_3) x_2 = 0$$

Polybeit, for easic alteration of equations. I will propounde a fewe eraples, bicamse the extraction of their rootes, maie the more aptly bee wroughte. And to a note the tediouse repetition of these woordes: is equalle to: I will sette as I doe often in woorke bse, a paire of paralleles, or Gemowe lines of one lengthe, thus:—, bicause noe. 2. thynges, can be more equalle. And now marke these nombers.

Equality sign introduced in 1557 by Robert Recorde

AXIOMATA
SIVE
LEGES MOTUS

Lex. II.

Mutationem motus proportionalem esse vi motrici impressa, & sieri secundum lineam restam qua vis illa imprimitur.

ms fuos & progressivos & circulares in spatis minus resister factos confervant distriss.

Lex. II.

Newton's 2nd law (July 5, 1687)

Engineering Practice II – Use Schematics

Circuit Diagram

Gear box

Process Flow Diagram

Multibody System

History - Kirchhoff

- Kirchhoff published his voltage and current laws in 1845
- In 1847, Kirchhoff discussed the solution of these equations:

Let μ be the least number of wires that must be removed from an arbitrary system so that all closed figures are destroyed. Then μ is also the independent equations that can be derived by the use of Theorem 1 [Kirchhoff's voltage law].

Kirchhoff discusses closed loops in circuit diagrams

More than m - 1 [m is number of crossing points] independent equations cannot be derived by Theorem 2 [Kirchhoff's current law]. For if we apply Theorem 2 to all m crossing points, each I occurs two times in the equations thereby formed, one time with coefficient +1, the other time with the coefficient -1. Therefore, the sum of all equations yields the identical equation 0 = 0. The equations obtained by application of that theorem to m - 1 arbitrary crossing points are, on the other hand, independent.

Kirchhoff discusses singular systems of equations

History - Analogies

- Maxwell (1873) introduced Force-Voltage Analogy
 - Effort and flow variables
 - Mass ≈ inductance

- Variables of terminals associated with connections
- Series connection of electrical component correspond to parallel connection of mechanical components and vice versa
- Paynter (1960): Bond graphs
- Firestone (1933) introduced Force-Current Analogy
 - Across (relative quantities) and Through variables
 - Mass ≈ Capacitor (Mass has reference to ground)
 - Kirchhoff's current law sum of through variables are zero
- Trent (1955): Isomorphism between Oriented Linear Graphs and Lumped Physical Systems

Engineering Practice III – Use Catalogs of Symbols

Electrical

Hydraulics

Process

Fluid

Ideal Connection Semantics

- Electrical: Kirchhoff's current law, 1845
 - Sum of currents at junction is zero
- Mechanics: Newton's (1687) and Euler's (about 1737) second laws:
 - The **vector sum of the forces** on an object is equal to the mass of that object multiplied by the acceleration vector of the object.
 - The rate of change of angular momentum about a point that is fixed in an inertial reference frame, is equal to the sum of torques acting on that body about that point.
 - Neglect mass and moment of inertia at junction → Sum of forces are zero and sum of torques are zero
- Fluid systems:
 - Consider a small volume at junction →
 - Mass balance: Sum of mass flow rates are zero
 - Energy balance: Sum of energy flow rates are zero

Kirchhoff

Newton

Euler

Model Based Systems Engineering Needs

- Modeling continuous behavior using differential and algebraic equations
- System composition using graphs
- Graphical user experience
- Generic model parameters and templates
- Problem solving using advanced scripting
- Events and safe controllers using synchronous semantics

Unification by Modelica

- Modelica: A formal language to capture modeling knowhow
- Equation based language for convenience
- Object oriented for reuse
- System topology by connections
- Terminal definitions connectors
- Icons AND equations not only symbols

Why Modia?

- Evolution of Modelica language has slowed down
- Tool vendors are currently catching up
- Need an experimental language platform
- Modelica specification is becoming large and hard to comprehend
- Tool vendors want more details into the specification
- Better to make reference implementation
- Functions/Algorithms in Modelica are weak
 - no advanced data structures such as union types, no matching construct, no type inference, etc
- Better to utilize other language efforts for functions
- Julia has perfect scientific computing focus
- Modia Julia macro set

Julia - Main Features

- Dynamic programming language for technical computing
- Strongly typed with Any-type and type inference
- JIT compilation to machine code (using LLVM)
- Matlab-like notation/convenience for arrays
- Advanced features:
 - Multiple dispatch (more powerful/flexible than object-oriented programming)
 - Matrix operators for all LAPACK types (+ LAPACK calls)
 - Sparse matrices and operators
 - Parallel processing
 - Meta programming
- Developed at MIT since 2012, current version 0.5.0, MIT license

Functions: Modelica vs Julia

Modelica:

```
function planarRotation "Return orientation object of a planar rotation"
  import Modelica.Math;
  extends Modelica.Icons.Function;
  input Real e[3](each final unit="1") "Normalized axis of rotation (must have length=1)";
  input Modelica.Slunits.Angle angle "Rotation angle to rotate frame 1 into 2 along axis e";
  output TransformationMatrices.Orientation T "Orientation object to rotate frame 1 into 2";
  algorithm
  T := [e]*transpose([e]) + (identity(3) - [e]*transpose([e]))*Math.cos(angle) - skew(e)*Math.sin(angle);
  annotation(Inline=true);
  end planarRotation;
```

Julia:

```
planarRotation(e, angle) = e^*e' + (eye(3) - e^*e')*cos(angle) - skew(e)*sin(angle)
```


Julia AST for Meta-programming

- Quoted expression :()
 - Any expression in LHS
- Operators are functions
- \$ for "interpolation"

```
julia > equ = :(0 = x + 2y)
:(0 = x + 2y)
julia> dump(equ)
Expr
 head: Symbol =
 args: Array(Any,(2,))
  1: Int64 0
  2: Expr
   head: Symbol call
   args: Array(Any,(3,))
    1: Symbol +
    2: Symbol x
    3: Expr
     head: Symbol call
     args: Array(Any,(3,))
     typ: Any
   typ: Any
 typ: Any
```

```
julia> solved = Expr(:(=), equ.args[2].args[2], Expr(:call, :-, equ.args[2].args[3]))
(x = -(2y))
julia > y = 10
10
julia > eval(solved)
-20
julia> @show x
x = -20
Julia> # Alternatively (interpolation by $):
julia > solved = :(\$(equ.args[2].args[2]) = - \$(equ.args[2].args[3]))
```

Modia – "Hello Physical World" model

Modelica

@model FirstOrder begin

x = Float(start=1)

T = Parameter(0.5, "Time constant")

u = 2.0 # Same as Parameter(2.0)

@equations begin

T*der(x) + x = u

end

end

model M

Real x(start=1);

parameter Real T=0.5 "Time constant";

parameter Real u = 2.0;

equation

 $T^*der(x) + x = u;$

end M;

Variable Constructor

Current design (should be parametric to constrain the types of value, min, max, start, nominal to be of typ):

```
type Variable
  variability::Variability
  typ::DataType
  value
  unit::SIUnits.SIUnit
  displayUnit
  min
  max
  start
  nominal
  description::AbstractString
  flow::Bool
  state::Bool
end
```

```
Parameter(value,unit=SIPrefix,description="") =
Variable(parameter, typeof(value), value, unit,
unit, nothing, nothing, value, true, value,
description, false, false)
```

Electrical components

Modelica

```
@model Pin begin
v=Float()
i=Float(flow=true)
end
@model OnePort begin
v=Float()
 i=Float()
 p=Pin()
 n=Pin()
@equations begin
v = p.v - n.v
0 = p.i + n.i
 i = p.i
 end
end
@model Resistor begin # Ideal linear electrical resistor
 @extends OnePort()
 @inherits i, v
 R=1 # Resistance
@equations begin
 R*i = v
 end
end
```

```
connector Pin
 Modelica.Slunits.Voltage v;
 flow Modelica. Slunits. Current I;
end Pin;
partial model OnePort
 SI.Voltage v;
 SI.Current i;
 PositivePin p;
 NegativePin n;
equation
 v = p.v - n.v;
0 = p.i + n.i;
 i = p.i;
end OnePort:
model Resistor
 parameter Modelica. Slunits. Resistance R;
 extends Modelica. Electrical. Analog. Interfaces. One Port;
equation
v = R*i;
end Resistor;
```

Electrical Circuit

```
@model LPfilter begin
 resistor=Resistor(R=1)
 capacitor=Capacitor(C=1)
 constantVoltage=ConstantVoltage(V=1)
 ground=Ground()
@equations begin
 connect(resistor.n, capacitor.p)
 connect(resistor.p, constantVoltage.p)
 connect(constantVoltage.n, capacitor.n)
 connect(constantVoltage.n, ground.p)
 end
end
```

Modelica

```
model LPfilter
 Resistor resistor(R=1)
 Capacitor capacitor(C=1)
 ConstantVoltage constantVoltage(V=1)
 Ground ground
equation
 connect(resistor.n, capacitor.p)
 connect(resistor.p, constantVoltage.p)
 connect(constantVoltage.n, capacitor.n)
 connect(constantVoltage.n, ground.p)
end
```


- Clock partitioning of equations
- Clock inference
- Clocked equations active at ticks

Synchronous Controllers

```
@model DiscretePIController begin
K=1 # Gain
Ti=1E10 # Integral time
dt=0.1 # sampling interval
ref=1 # set point
u=Float(); ud=Float()
y=Float(); yd=Float()
e=Float(); i=Float(start=0)
```

```
@equations begin
 # sensor:
 ud = sample(u, Clock(dt))
 # PI controller:
 e = ref-ud
i = previous(i, Clock(dt)) + e
 yd = K*(e + i/Ti)
 # actuator:
 y = hold(yd)
                             1.5
 end
                             0.5
```

end

Discontinuities - State Events

```
@model IdealDiode begin
 @extends OnePort()
 @inherits v, i
 s = Float(start=0.0)
@equations begin
 v = if positive(s); 0 else s end
 i = if positive(s); s else 0 end
 end
end
```

 positive() and negative() introduces crossing functions

Cauer Low Pass Filter

```
11=1.304
12=0.8586
c1=1.072
c2=1/(1.704992^2*11)
c3=1.682
c4=1/(1.179945^2*12)
c5=0.7262
C1=Capacitor(C=c1+c2)
C2=Capacitor(C=c2)
C3=Capacitor(C=I1)
C4=Capacitor(C=c4)
C5=Capacitor(C=c2, v=Float(state=false))
R1=Resistor(R=1)
n1=Pin()
n2=Pin()
n3=Pin()
```

- Parameter propagation
- The use of nodes to define connections
- Manual non-state selection

Rotational and Blocks Components

```
@model Flange begin
 phi=Float()
 tau=Float(flow=true)
end
@model Inertia begin
 J=Parameter(0, min=0) # Moment of inertia
 flange_a=Flange() # Left flange of shaft
flange_b=Flange() # Right flange of shaft
 phi=Float(start=0)
 w=Float(start=0)
 a=Float()
@equations begin
 phi = flange a.phi
 phi = flange b.phi
 w = der(phi)
 a = der(w)
 J*a = flange a.tau + flange b.tau
 end
end
```

• Data flow blocks are special case

```
@model SISO begin # Single Input Single Output
u=Float()
y=Float()
end

@model FirstOrder begin # First order transfer function
k=1 # Gain
T=1 # Time Constant
@extends SISO()
@inherits u, y
@equations begin
der(y) = (k*u - y)/T
end
end
```

Multi domain - Servo system

- Emf refers to der(phi)
- Causes index reduction
- Emf.phi not state variable

Differentiate: this.Jmotor.phi = this.Jmotor.flange_a.phi introducing derivative: der(this.Jmotor.flange_a.phi) giving: der(this.Jmotor.phi) = der(this.Jmotor.flange_a.phi)

•••

2-dimensional heat transfer

```
    One million states
```

- Very sparse Jacobian
- SundialsDAE has sparse handling

```
const N=1000; L=0.2; T0=290, ...
function heatTransfer2D(T)
 for i in 1:N, j in 1:N
  qx1=i>1 ? T[i-1,j]-T[i,j] : 0.0
  derT[i,j]=c*(qx1+qx2+qy1+qy2)
 end; return derT
end
@model HeatTransfer begin
 T = Float(start=fill(T0,N,N))
@equations begin
 der(T) = heatTransfer2D(T)
end
```

```
function jacobian_incidence(::typeof(heatTransfer2D),args...)

I::Vector{Int} = fill(1, 5*N*N)

J::Vector{Int} = fill(1, 5*N*N)

for i in 1:N, j in 1:N

...

return sparse(I,J,1)
end
```


How To Simulate a Model

- Instantiate model, i.e. create sets of variables and equations
- Structurally analyze the equations
 - Which variable appear in which equation
 - Handle constraints (index reduction)
 - Differentiate certain equations
 - Sort the equations into execution order (BLT)
- Symbolically solve equations for unknowns and derivatives
- Generate code
- Numerically solve DAE
- Etc.

- Gives a sequence of subproblems
- Symbolically solve for variable in bold

BLT (Block Lower Triangular) form

```
error.u1 = step.offset+(if time < step.startTime then 0 else step.height);</pre>
error.y = error.u1-load.w;
Vs.p.v = P.k*error.y;
Ra.R*La.p.i = Vs.p.v-Ra.n.v;
Jm.w = gear.ratio*load.w;
emf.k*Jm.w = La.n.v;
La.L*der(La.p.i) = Ra.n.v-La.n.v;
emf.flange.tau = -emf.k*La.p.i;
 // System of 4 simultaneous equations
 der(Jm.w) = gear.ratio*der(load.w);__
 Jm.J*der(Jm.w) = Jm.flange_b.tau-emf.flange.tau;
 0 = gear.flange_b.tau-gear.ratio*Jm.flange b.tau;
 load.J*der(load.w) = -gear.flange b.tau;
der(load.flange_a.phi) = load.w;
emf.flange.phi = gear.ratio*load.flange a.phi;
G.p.i+La.p.i = La.p.i;
```


Modia Prototype

- Work since January 2016
- Hilding Elmqvist / Toivo Henningsson / Martin Otter
- So far focus on:
 - Models, connectors, connections, extends
 - Flattening
 - BLT
 - Symbolic solution of equations (also matrix equations)
 - Symbolic handling of DAE index (Pantelides, equation differentiation)
 - Basic synchronous features
 - Basic event handling
 - Simulation using Sundials DAE solver, with sparse Jacobian
 - Test libraries: electrical, rotational, blocks, multibody
- Partial translator from Modelica to Modia (PEG parser in Julia)
- Will be open source

Summary - Modia

- Modelica-like, but much more powerful and simpler
- Algorithmic part: Julia functions (much more powerful than Modelica)
- Model part: Julia meta-programming (no Modia compiler)
- Equation part: Julia expressions (no Modia compiler)
- Structural and Symbolic algorithms: Julia data structures / functions
- Target equations: Sparse DAE (no ODE)
- Simulation engine: IDA + KLU sparse matrix (Sundials 2.6.2)
- Revisiting all typically used algorithms: operating on arrays (no scalarization), improved algorithms for index reduction, overdetermined DAEs, switches, friction, Dirac impulses, ...
- Just-in-time compilation (build Modia model and simulate at once)

