Mate 1: Curs #2

Profesor: Radu Gologan

3 Octombrie 2019

1 Latice

Definitie: (X, \leq) se numeste **latice completa** daca $\forall A \subseteq X \implies \exists sub_A, inf_A \in X \ f: X \to X$ este o functie monotona crescatoare(descrescatoare) daca $x \leq y \implies f(x) \leq (\geqslant) f(y)$

Exemplu:

Fie M o multime, atunci $\mathscr{P}(M)$ este o latice completa relativ la relatia de incluziune \subseteq , cu $\sup_{A_i} = \bigcup_i A_i$ si $\inf_{A_i} = \bigcap_i A_i$, $A_i \in \mathscr{P}(M)$

Teorema (Tarski):

Fie (X, \leq) o latice completa si $f: X \to X$ o functie monotona. Atunci f admite un punct fix: $\exists u \in X \ a.i. \ f(u) = u$

Demonstratie:

Fie $A \subseteq X$ a.i $A = \{x \in X \mid x \leqslant f(x)\}\$ si $u = sup_A$.

Din faptul ca
$$x \in A \implies x \leqslant f(x)$$
, dar f este monotona $\implies f(x) \leqslant f(f(x)) \implies f(x) \in A \ \forall x \in A$ (1)

$$\forall x \in A, \ x \leqslant u \text{ si f monotona} \implies f(x) \leqslant f(u) \implies x \leqslant f(x) \leqslant f(u) \implies f(u) \text{ majorant pentru } A, \text{ dar } u = \sup_A \implies u \leqslant f(u)$$
 (2)

Din faptul ca $u \le f(u) \implies u \in A$, dar din (1) rezulta ca $f(u) \in A$ si $u = \sup_A \implies f(u) \le u$ (3)

Din (2) si (3)
$$\implies f(u) = u$$

Consecinta a teoremei Tarski - Teorema lui Bernstein:

Fie A,B doua multimi, astfel incat $\exists f:A\to B,\ g:B\to A$ doua functii injective. Atunci exista o functie $h:A\to B$ bijectiva.

Demonstratie:

Fie $\phi: \mathscr{P}(A) \to \mathscr{P}(A)$ o functie. ϕ este o functie crescatoare(descrescatoare) daca ϕ are urmatoarea proprietate $\forall U, V \in \mathscr{P}(A)$ a.i. $U \subseteq V \Longrightarrow \phi(U) \subseteq (\supseteq)\phi(V)$ (4)

Fie A o multime si $\phi: \mathscr{P}(A) \to \mathscr{P}(A), \ \phi(X) = A \backslash X$ o functie. Pentru $U, V \in \mathscr{P}(A), U \subseteq V \implies \phi(U) \supseteq \phi(V), \ din \ (1) \implies \phi$ este descrescatoare.(5)

Pentru $f:A\to B$, vom nota pentru $X\in \mathscr{P}(A), f(X)=\{f(x)\,|\,x\in X\}.$

Fie $f: A \to B$ si $q: B \to A$ doua funictii injective.

Fie $S: \mathcal{P}(A) \to \mathcal{P}(A), S(X) = g(B \setminus f(A \setminus X))$. Din (4) si (5) rezulta ca S

este crescatoare. Deoarece S este monotona, din teorema lui Tarski rezulta ca $\exists C \in \mathscr{P}(A) \ a.i. \ S(C) = C \implies \forall x, \ x \in C \iff x \in g(B \setminus f(A \setminus C))$ (6).

Fie $R = \{(x,y) \in A \times B \mid x \notin C \text{ si } y = f(x), \text{ sau } x \in C \text{ si } x = g(y)\}$ o functie definita pe A, cu valori in B, vom arata ca R este o functie bijectiva. Fie $y \in B$. Daca $y \in f(A \setminus C) \implies \exists x \in A \setminus C \text{ a.i. } f(x) = y$. Daca $y \notin f(A \setminus C) \implies y \in B \setminus f(A \setminus C) \implies \exists x = g(y) \in C$. Rezulta ca R este surjectiva (7)

2 Numarabilitate

Definitie:

Fie A, B doua multimi, supunem ca A si B sunt **echivalente** $\iff \exists f : A \to B$ o functie bijectiva.

Definitie:

O multime A echivalenta cu \mathbb{N} se numeste **numarabila**.

Notam card(A) cardinalul lui A = clasa de echivalenta a lui A fata de relatia de echivalenta cu N.

Notam $card(\mathbb{N}) = \aleph_0$

Altfel spus, A este numarabila $\iff \exists (a_n)_{n \geq 0} \ a.i. \ \forall x \in A \ \exists i \in \mathbb{N} \ a.i. \ a_i = x$

Propozitie: daca A si B sunt numarabile $\implies A \times B$ este numarabila. Demonstratie:

Este suficient sa demonstram ca $\mathbb{N} \times \mathbb{N}$ este numarabila, intrucat daca A si B sunt echivalente cu $\mathbb{N} \implies A \times B$ este echivalenta cu $\mathbb{N} \times \mathbb{N}$.

 $\mathbb{N} \times \mathbb{N} = \{(n,m) \, | \, n,m \in \mathbb{N} \}$

Fie
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
, $f((i,j)) = \frac{(i+j)\cdot(i+j-1)}{2} + i$.

Vom demonstra ca f este bijectiva.

Se observa ca daca $a+b=k \implies f((a,b)) \in \left[\frac{k(k-1)}{2},\frac{k(k+1)}{2}\right)$ si oricare doua astfel de intervale sunt disjuncte $\implies f((a,b)) = f((c,d)) \iff a+b=c+d$ Daca a+b=c+d si $f((a,b)) = f((c,d)) \implies \frac{(a+b)\cdot(a+b-1)}{2} + a = \frac{(c+d)\cdot(c+d-1)}{2} + c \iff a=c, \text{ dar } a+b=c+d \implies b=d \implies f \text{ este injectiva.}$ (1)

Fie
$$x \in \mathbb{N} \implies \exists k \in \mathbb{N} \ a.i. \ x \in \left[\frac{k(k-1)}{2}, \frac{k(k+1)}{2}\right)$$
. Notam $y = x - \frac{k(k-1)}{2} \implies f((y, k - y)) = x \implies \forall x \in \mathbb{N} \ \exists (y, k - y) \in \mathbb{N} \times \mathbb{N} \ a.i. \ f((y, k - y)) = x \implies f$ este surjectiva

Din (1) si (2) $\implies f$ este bijectiva $\implies \mathbb{N} \times \mathbb{N}$ este numarabila

Fie $\mathbb{Q}_+ = \{\frac{p}{q} \mid p, q \in \mathbb{N}\}$ si $g: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}_+$, $g((a,b)) = \frac{a}{b}$ o functie evident bijectiva $\Longrightarrow \mathbb{Q}_+$ este echivalenta cu $\mathbb{N} \times \mathbb{N} \Longrightarrow \mathbb{Q}_+$ este numarabila. Analog se demonsteaza ca $\mathbb{Q}_- = \{-\frac{p}{q} \mid p, q \in \mathbb{N}\}$ este numarabila $\Longrightarrow \mathbb{Q}$ este numarabila.