

. @ The flows of the above network augmenting paths
are: - 1, x, x, x2, xe,
which never terminater
- Hence, the Ford-Fullcerson Algorithm tends to
fail to return max-flow of this network which
produces the above augmented paths.
- Hence proved that Ford - Fulkerson algorithm I method
fail to terminate only if edge capacities are
irrational numbers.
6 Consider same network with irrational capacities as
abuve (9n 1.a)
0 10 0
10 x
10 10 10
(9) E)
where;
$V = \sqrt{5} - 1 = 0.6180$
2 Minimum
@ Path Po → <sid, t=""> Scapacity = 10 \$</sid,>
\bigcirc
0/10/10/6-6-20/0
Ol 10
0)10

1. 6 : Max flow = capacities of parts (Pot P, + P2)
{minimum capacities }
= 10 +10+1 from 0,€,®
= 21
However, the algorithm ford-fullcerson returns
1+x+x+x2+x2 (from Ans.1.0)
$\frac{AFter}{(1+4)c)^{th}} = \pm 1 + 2 = \frac{k}{2} $
augmented path
~
≤ 1 + 2 ≥ x' where x = √5-1
i=1 2
= 3+2x
< 5 and = max-flow of 21
Thus, Ford- Fulkerson algorithm fails when the
capacities one irrational and it does not -come
converge to the maximum flow.
- References Ans. 1 @ , B > mit.edy cse. uht.edu
, co

2. The edge between (vi) and (v3) is removed since its
How is zero (0).
- Similarly, edge (4) to (6) is removed.
- These edges will not be selected again as its plous
is their flow are zero now
3 since one edge is removed each time, we do this at
most E times.
@ Each path on which we 'reduce flow could be
augmented path.
5 From the above observations and mechanism we could
get to our max. flow with at most IEI augmentations/
augmenting paths.
7

3. Here we need to prove two things firstly, any
overflow vertex say is in initial step i.e. when
network is initialized has a simple path back to
Source 's'. Secondly, simple path from x -> s
exist and after RELABLE or PUSH operation the new
overflowing path at vertex 'u' still have a simple
path to 's' . {u -> s}
•
O Initialization:
- Initially s is at height IVI and all the adjucent /
neighbouring nodes from source 's' one at height zero (0)
- source sends the flow to these group of vertices (Gs)
- The vertices in 9s are the only overflowing vertices
<u>umenty</u>
- In residual network, their are exactly same number
of edges from neighbouring vertices (4s) to s. so,
considering this as simple paths from overflowing
yethices then their exist simple path to Gs -> s.
•
2 Now suppose their exist simple path betwee from
à to s.
- IF RELABELED is done on this node then only
height of 'a' is changed but their exist a simple
path between from a -> s.
- If Push operation tolces place, the a' is connected
to s by initial path (previous operation path)
•

3. - If Push affects path a → u → v.... → z, then in

residual network there must be path

Z→... v → u → a in Gp.

- Hence, in Gp any new overflowing yertex in the

affected path u→... → v has a simple path to

a → s.