Robust Auctions with Support Information

Jerry Anunrojwong, Santiago Balseiro, Omar Besbes

Columbia Business School

Motivation

- mech design: how to optimally sell things
- classical theory too detail-dependent, so we relax the common prior assumption (Wilson doctrine)

Problem Formulation

- Optimize over direct mechanisms (x, p)selling one indivisible item to n buyers.
- mechanism is **prior-independent**
- no need to know F ("detail-free" or "robust")
- performance guarantee over all $F \in \mathcal{F}$
- Only the **upper bound** b and **lower bound** a are assumed known.
- We consider many dist classes on $[a,b]^n$.
- dominant strategy IC+IR
- each buyer need not know other buyers' dists
- Objective = " λ -regret" on revenue (unifies regret and ratio objectives)
- minimax regret means $\lambda = 1$
- maximin ratio = λ s.t. minimax λ -regret is zero
- Benchmark = maximum possible revenue when valuation is known = $\max(\boldsymbol{v})$.

Research question:

What is an optimal detail-free mechanism and how well can we perform?

Challenges

Minimax problems are hard! Our problem is **nonconvex** due to class restriction in \mathcal{F} e.g. i.i.d.

Minimax Problem For Each Distribution Class \mathcal{F}

$$\min_{\substack{\text{mech } (x,p) \in \mathcal{M} \\ \text{IC+IR}}} \max_{\boldsymbol{F} \in \mathcal{F}} \mathbb{E}_{\boldsymbol{v} \sim \boldsymbol{F}} \left[\lambda \max_{\boldsymbol{v}}(\boldsymbol{v}) - \sum_{i=1}^{n} p_i(\boldsymbol{v}) \right]$$
benchmark

Main Result: Optimal Mechanism Classes SPA and POOL

We introduce the $POOL(\tau)$ "pooling auction" mechanism class!

(a) SPA(r) allocation rule if the highest value is above r; otherwise, does not allocate

(b) $POOL(\tau)$ allocation rule always allocates to the highest-value agent always allocates to the highest-value agent if the highest value is above τ ; otherwise, allocates to each one of the nagents uniformly at random w.p. 1/n.

Main Theorem

For any $\lambda \in [0,1]$ and $n \geq 1$ i.i.d. bidders, there are constants $k_l < k_h$ s.t. the optimal minimax λ -regret mechanism m^* depends on the relative support information a/b as:

Our Approach

- saddle point approach: find m^*, F^* $R(m^*, \mathbf{F}) \leq R(m^*, \mathbf{F}^*) \leq R(m, \mathbf{F}^*) \ \forall m, \mathbf{F}^*$
- Nature's saddle: with our mechanism forms (SPA and POOL), regret depends only on the marginal F(v) pointwise – so pointwise optimization works!
- Seller's saddle: Bayesian mech design.

Quantitative Insights

Separation between mechanism classes \mathcal{M} quantify the power of mechanism features:

