(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 022 293 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 26.07.2000 Patentblatt 2000/30

(51) Int. Cl.⁷: **C08F 255/00**, C08F 222/06, C10L 1/18

(21) Anmeldenummer: 00100333.4

(22) Anmeldetag: 07.01.2000

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 19.01.1999 DE 19901803

(71) Anmelder: Clariant GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

Krull, Matthias, Dr.
 46147 Oberhausen (DE)

Nagel, Waltraud
 46147 Oberhausen (DE)

- (54) Copolymere und ihre Verwendung als Additiv zur Verbesserung der Kaltfliesseigenschaften von Mitteldestillaten
- (57) Copolymere, enthaltend

A) 45 bis 54 mol-% bivalente Struktureinheiten der Formel 1

worm a, b = 0 oder 1 und a + b = 1 sind,

B) 35 bis 53 mol-% bivalente Struktureinheiten der Formel 2

$$-H_2C-CHR^2-$$
 (2)

und

C) 1 bis 25 mol-% bivalente Struktureinheiten, die sich von Polyolefinen ableiten, wobei die Polyolefine aus Monoolefinen mit 3 bis 5 Kohlenstoffatomen ableitbar sind, dadurch gekennzeichnet, daß

- a) R¹ einen Alkylrest mit 10 bis 40 Kohlenstoffatomen oder einen Alkoxyalkylrest mit 1 bis 100 Alkoxyeinheiten und 1 bis 30 Kohlenstoffatomen im Alkylrest, und
- b) R² einen Alkylrest mit 12 bis 50 Kohlenstoffatomen bedeutet,
- c) der Alkylvinylidengehalt der den Struktureinheiten C) zugrundeliegenden Polyolefine mindestens 50 mol-% beträgt, und
- d) die Zahl der Kohlenstoffatome der den Struktureinheiten C) zugrunde liegenden Polyolefinmoleküle zwischen 36 und 350 beträgt.

Beschreibung

[0001] Die vorliegende Erfindung betrifft Copolymere, enthaltend Struktureinheiten von Olefinen, modifiziertem Maleinsäureanhydrid und Polyolefinen, sowie ihre Verwendung als Zusatz zu Brennstoffölen zur Verbesserung ihrer Kaltfließeigenschaften.

[0002] Rohöle und durch Destillation von Rohölen gewonnene Mitteldestillate wie Gasöl, Dieselöl oder Heizöl, enthalten je nach Herkunft der Rohöle unterschiedliche Mengen an n-Paraffinen, die bei Erniedrigung der Temperatur als plättchenförmige Kristalle auskristallisieren und teilweise unter Einschluß von Öl agglomerieren. Dadurch kommt es zu einer Verschlechterung der Fließeigenschaften dieser Öle bzw. Destillate, wodurch beispielsweise bei Gewinnung, Transport, Lagerung und/oder Einsatz der Mineralöle und Mineralöldestillate Störungen auftreten können. Bei Mineralölen kann dieses Kristallisationsphänomen beim Transport durch Rohrleitungen vor allem im Winter zu Ablagerungen an den Rohrwänden, in Einzelfällen, z.B. bei Stillstand einer Pipeline, sogar zu deren völliger Verstopfung führen. Auch bei der Lagerung und Weiterverarbeitung der Mineralöle kann die Ausfällung von Paraffinen Schwierigkeiten verursachen. So kann es im Winter unter Umständen erforderlich sein, die Mineralöle in beheizten Tanks zu lagern. Bei Mineralöldestillaten können als Folge der Kristallisation Verstopfung der Filter in Dieselmotoren und Feuerungsanlagen auftreten, wodurch eine sichere Dosierung der Brennstoffe verhindert wird und gegebenenfalls eine völlige Unterbrechung der Kraftstoff- bzw. Heizmittelzufuhr eintritt.

[0003] Neben den klassischen Methoden zur Beseitigung der auskristallisierten Paraffine (thermisch, mechanisch oder mit Lösungsmitteln), die sich lediglich auf die Entfernung der bereits gebildeten Ausfällungen beziehen, wurden in den letzten Jahren chemische Additive (sogenannte Fließverbesserer oder Paraffin-Inhibitoren) entwickelt, die durch physikalisches Zusammenwirken mit den ausfallenden Paraffinkristallen dazu führen, daß deren Form, Größe und Adhäsionseigenschaften modifiziert werden. Die Additive wirken dabei als zusätzliche Kristallkeime und kristallisieren teilweise mit den Paraffinen aus, wodurch eine größere Anzahl von kleineren Paraffinkristallen mit veränderter Kristallform resultiert. Ein Teil der Wirkung der Additive wird auch durch eine Dispergierung der Paraffinkristalle erkärt. Die modifizierten Paraffinkristalle neigen weniger zur Agglomeration, so daß sich die mit diesen Additiven versetzten Öle noch bei Temperaturen pumpen bzw. verarbeiten lassen, die oft mehr als 20° tiefer liegen als bei nicht additivierten Ölen.

[0004] Das Fließ- und Kälteverhalten von Mineralölen und Mineralöldestillaten wird unter anderem durch Angabe des Cloud Points (bestimmt nach ISO 3015), des Pour-Points (bestimmt nach ISO 3016) und des Cold-Filter-Plugging-Points (CFPP; bestimmt nach EN 116) beschrieben. Diese Kenngrößen werden in °C gemessen.

[0005] Typische Fließverbesserer für Rohöle und Mitteldestillate sind Copolymerisate des Ethylens mit Carbonsäureestern des Vinylalkohols. So setzt man nach der DE-A-11 47 799 Erdöldestillat-Treib- bzw. -Brennstoffen mit einem Siedepunkt zwischen etwa 120 und 400°C öllösliche Mischpolymerisate aus Ethylen und Vinylacetat mit einem Molekulargewicht zwischen etwa 1.000 und 3.000 zu. Bevorzugt werden Mischpolymerisate, die etwa 60 bis 99 Gew.-% Ethylen und etwa 1 bis 40 Gew.-% Vinylacetat enthalten. Sie sind besonders wirksam, wenn sie durch radikalische Polymerisation in einem inerten Lösungsmittel bei Temperaturen von etwa 70 bis 130°C und Drücken von 35 bis 2.100 atū hergestellt wurden (DE-A-19 14 756).

[0006] Im Stand der Technik sind weiterhin sogenannte Kammpolymere bekannt, die sich von ethylenisch ungesättigten Monomeren mit längeren (z.B. C_8 - C_{30}), bevorzugt linearen, Alkylresten ableiten. Diese werden vor allem in höhersiedenden, paraffinreichen Mineralölen, gegebenenfalls in Kombination mit Ethylen-Copolymeren zur Verbesserung der Kaltfließeigenschaften eingesetzt (z.B. GB-A-1 469 016 und EP-A-0 214 786). Gemäß EP-A-0 153 176 werden Kammpolymere mit C_{12} - C_{14} -Alkylresten auch in eng geschnittenen Destillaten mit z.B. 90-20 % Destillationsbereichen von <100°C und Siedeenden von etwa 340 - 370°C eingesetzt. Gemäß US-2 542 542 und GB-A-1 468 588 werden mit langkettigen Fettalkoholen veresterte Copolymere aus Maleinsäureanhydrid (MSA) und α -Olefinen zur Behandlung von Rohölen eingesetzt.

[0007] EP-A-0 719 290 offenbart ein Copolymer aus einer monoethylenisch ungesättigten Carbonsäure mit 4 bis 6 Kohlenstoffatomen, einem Oligomeren des Propens bzw. eines verzweigten α -Olefins mit 4 bis 10 Kohlenstoffatomen und einer weiteren monoethylenisch ungesättigten Verbindung, die mit den genannten Verbindungen copolymerisierbar ist. Durch Umsetzung mit einem Amin werden daraus öllösliche Reaktionsprodukte erhalten, die sich als Additive für Schmieröle und Kraftstoffe eignen. Das Dokument offenbart keine Zusammensetzung aus einem Maleinsäureester, einem Polyolefin und einem α -Olefin.

[0008] WO-90/03359 offenbart Copolymere aus Polyolefinen, die mehr als 32 C-Atome aufweisen, und olefinisch ungesättigten Carbonsäuren oder Derivaten. Die im Dokument aufgeführten Ester werden allerdings nicht spezifiziert. [0009] DE-A-20 50 071 offenbart mit Fettalkoholen veresterte Copolymere aus einer ethylenisch ungesättigten Dicarbonsäure oder deren Derivaten mit einem α-Olefin mit mindestens 20 Kohlenstoffatomen. Das Dokument offenbart aber beispielsweise keine Polyolefine als Comonomer für die Copolymere.

[0010] Bevorzugtes Herstellverfahren für die Copolymere ist gemäß z.B. DE-A-2 050 071 und EP-A-214 786 die lösemittelfreie Massepolymerisation, von MSA und α-Olefinen, wobei hochmolekulare Copolymere entstehen und

nachfolgende Veresterung. Die Copolymere aus MSA und α -Olefinen als Zwischenstufe für die durch Veresterung mit Fettalkoholen daraus hergestellten Additive weisen jedoch bedingt durch ihre hohen Molekulargewichte eine erhöhte Steifigkeit auf. Diese macht sich in so hohen Viskositäten und Erstarrungspunkten bemerkbar, daß die Polymere nur bei erhöhten Temperaturen handhabbar sind. Aus diesem Grund muß ihre Verarbeitung, Formulierung und Lagerung bei erhöhter Temperatur erfolgen, oder es muß am Ende ihres Herstellungsverfahrens sofort eine Lösung von ihnen in einem geeigneten Lösungsmittel hergestellt werden.

[0011] Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand somit darin, einen wirksamen Kaltfließverbesserer für Mineralöle (Rohöle und Mitteldestillate) auf Basis veresterter Dicarbonsäuren und linearer α-Olefine, der aber trotzdem bei niedrigeren Temperaturen verarbeitbar ist, zu finden.

[0012] Überraschenderweise wurde gefunden, daß der Einbau gewisser Mengen verzweigter Polyolefine die Wirksamkeit der Ester als Kaltfließverbesserer nicht beeinträchtigt, aber die Handhabbarkeit der lösemittelfreien, Anhydridgruppen tragenden Terpolymere deutlich erleichtert. Weiterhin werden auch die Löslichkeit der Additive im zu additivierenden Öl und die Stabilität der Additivkonzentrate sowie ihre Abmischungen mit anderen zur Öladditivierung eingesetzten Polymeren, wie z.B. EVA-Copolymeren, verbessert.

[0013] Gegenstand der Erfindung sind Copolymere, enthaltend

A) 45 bis 54 mol-% bivalente Struktureinheiten der Formel 1

worin a, b = 0 oder 1 und a + b = 1 sind, B) 35 bis 53 mol-% bivalente Struktureinheiten der Formel 2

$$- H_2C - CHR^2 -$$
 (2)

und

15

20

25

30

35

40

45

C) 1 bis 25 mol-%, bevorzugt 1 bis 20 mol-%, bivalente Struktureinheiten, die sich von Polyolefinen ableiten, wobei die Polyolefine aus Monoolefinen mit 3 bis 5 Kohlenstoffatomen ableitbar sind, dadurch gekennzeichnet, daß

- a) R¹ einen Alkyl- oder Alkenylrest mit 10 bis 40 Kohlenstoffatomen oder einen Alkoxyalkylrest mit 1 bis 100 Alkoxyeinheiten und 1 bis 30 Kohlenstoffatomen im Alkylrest, und
- b) R² einen Alkylrest mit 10 bis 50 Kohlenstoffatomen bedeutet,
- c) der Alkylvinylidengehalt der den Struktureinheiten C) zugrundeliegenden Polyolefine mindestens 50 mol-% beträgt, und
- d) die Zahl der Kohlenstoffatome der den Struktureinheiten C) zugrunde liegenden Polyolefinmoleküle zwischen 35 und 350 beträgt.

[0014] Bei den Struktureinheiten der der Formel 1 zugrunde liegenden Verbindungen handelt es sich um Ester der Malein-, Furnar- oder Itaconsäure. Die bevorzugten Kettenlängen für den Rest R¹ richten sich nach der beabsichtigten Verwendung der Copolymeren. Soll das Copolymer als Kaltfließverbesserer für Mitteldestillate verwendet werden, so ist R¹ ein Alkylrest von vorzugsweise 10 bis 24, insbesondere 12 bis 20 Kohlenstoffatomen. Neben dem Einsatz einzelner Alkohole R¹-OH hat sich hier die Verwendung von Alkoholmischungen z.B. aus Dodecanol und Tetradecanol oder Tetradecanol und Hexadecanol im Verhältnis 1:10 bis 10:1, insbesondere 3:1 bis 1:3 besonders bewährt. Durch Variation der Alkoholkomponente kann das Additiv dem zu behandelnden Öl angepaßt werden. So kann z.B. durch Zugabe von beispielsweise 15 Gew.-% Behenylalkohol zu oben genannten Mischungen die Wirksamkeit in Ölen mit extrem hohem Siedeende von > 390°C, insbesondere >410°C optimiert werden. Soll das Copolymer als Pour Point Depressant, z.B. in Roh- und Rückstandsölen Verwendung finden, so haben sich Reste R¹ von 16 bis 40, vorzugsweise von

16 bis 30, Kohlenstoffatomen als besonders geeignet erwiesen. Die Reste R¹ können linear oder verzweigt sein, wobei die Verzweigung ein sekundäres oder tertiäres Kohlenstoffatom umfassen kann. Lineare Reste R¹ sind bevorzugt. Ist R¹ verzweigt, dann trägt es diese Verzweigung vorzugsweise in 2-Stellung. Es ist möglich, verschiedene Reste R¹ zu verwenden, d.h. bei der Herstellung der Maleinsäure-, Itaconsäure- und/oder Fumarsäureester Mischungen verschiedener Alkohole einzusetzen.

[0015] Bevorzugte Alkohole R¹-OH sind beispielsweise 1-Decanol, 1-Dodecanol, 1-Tridecanol, Isotridecanol, 1-Tetradecanol, 1-Hexadecanol, 1-Octadecanol, Eicosanol, Docosanol, Tetracosanol, deren Mischungen, sowie natürlich vorkommende Mischungen wie z.B. Cocosfettalkohol, Talgfettalkohol und Behenylalkohol. Die Alkohole können natürlichen wie auch synthetischen Ursprungs sein.

[0016] In einer weiteren bevorzugten Ausführungsform handelt es sich bei den Resten R¹ um Alkoxyalkylreste der Formel 3

$$-(O-A)_{\chi}-R^3$$
 (3)

worin A für einen C_2 - C_4 -Alkylenrest, x für eine ganze Zahl von 1 bis 100 und R^3 für einen C_1 - C_{30} -Alkylrest steht. Die (O-A)-Einheit ist vorzugsweise eine Ethoxy- oder Propoxyeinheit. Werden alkoxylierte Einheiten der Formel (3) für R^1 verwendet, so geschieht das vorzugsweise in Mischung mit Resten R^1 , die nicht alkoxyliert sind. Der Anteil der alkoxylierten Reste R^1 übersteigt vorzugsweise 20 mol-% (bezogen auf alle Reste R^1) nicht. R^3 kann linear oder verzweigt sein. Ist R^3 verzweigt, so liegt die Verzweigung vorzugsweise in 2-Stellung. Bevorzugt ist R^3 linear.

Die Struktureinheiten der Formel 2 leiten sich von α -Olefinen ab. Diese α -Olefine haben von 10 bis 50, vorzugsweise 12 bis 40 Kohlenstoffatome. Die Kohlenstoffkette der α -Olefine kann geradkettig oder verzweigt sein, vorzugsweise ist sie geradkettig. Beispiele für geeignete Olefine sind 1-Dodecen, 1-Tetradecen, 1-Hexadecen, 1-Heptadecen, 1-Octadecen, 1-Nonadecen, 1-Eicosen, 1-Hemicosen, 1-Docosen, 1-Tetracosen, 1-Hexacosen, 1-Octadecen, 1-Nonadecen, 1-Eicosen, 1-Hemicosen, 1-Docosen, 1-Tetracosen, 1-Hexacosen, 1-Octadecen, 1-Nonadecen, 1-Benfalls geeignet sind kommerziell erhältliche Olefin-Fraktionen, wie z.B. Octacosen etc. Sowie deren Mischungen. Ebenfalls geeignet sind kommerziell erhältliche Olefin-Fraktionen, wie z.B. C₂₀-C₂₄- oder C₃₀-Olefin. Auch hier ist die Auswahl des Olefins vom Verwendungszweck abhängig. Während kurzkettige Olefine im Bereich C₁₄-C₂₂ in Mitteldestillaten die besten Ergebnisse liefern, erfordern Roh- und Rückstandsöle langkettige Olefine wie z.B. C₂₀-C₂₄- oder C₃₀₊-Olefin-Fraktionen.

[0018] Die unter C) genannten Struktureinheiten sind von Polyolefinen abgeleitet, die sich von Monoolefinen mit 3,4 oder 5 Kohlenstottatomen ableiten lassen. Besonders bevorzugte Monoolefine als Grundkörper der Polyolefine sind Propylen und Isobutylen, woraus Polypropylen und Polyisobutylen als Polyolefine entstehen. Die Polyolefine haben vorzugsweise einen Alkylvinylidengehalt von mindestens 50 mol-%, insbesondere von mindestens 70 mol-%, speziell mindestens 75 % Die der radikalischen Polymerisation nicht zugänglichen Polyolefine verbleiben als nicht copolymerisierte Bestandteile im Produkt, was sich auch positiv auf die Mischbarkeit der Ester sowie deren Mischungen mit anderen Polymeren auswirkt. Unter Alkylvinylidengehalt versteht man den Gehalt der Polyolefine an Struktureinheiten, die auf Verbindungen der Formel 4

$$H_2C = C R^4$$

$$R^5$$
(4)

40

45

50

zurückgehen, worin R^4 oder R^5 Methyl oder Ethyl bedeuten und die andere Gruppe ein Oligomeres des C_3 - C_5 -Olefins ist Die Zahl der Kohlenstoffatome des Polyolefins beträgt zwischen 35 und 350. In einer bevorzugten Ausführungsform der Erfindung beträgt die Zahl der Kohlenstoffatome zwischen 45 und 250. In einer weiteren bevorzugten Ausführungsform der Erfindung beträgt der Anteil der Struktureinheiten C) 1 bis 20 mol-%, insbesondere 2 bis 15 mol-%.

[0019] Die den Struktureinheiten C) zugrunde liegenden Polyolefine sind durch ionische Polymerisation zugänglich, und als Handeisprodukte erhältlich (z.B. [®]Ultravis, [®] Napvis, [®]Hyvis, [®]Glissopal) (Polyisobutene von BP, BASF mit unterschiedlichen Alkylvinylidengehalten und Molekulargewichten).

[0020] Die mittlere Molekülmasse der erfindungsgemäßen Copolymere beträgt im allgemeinen zwischen 1.500 und 200.000 g/mol, insbesondere zwischen 2.000 und 100.000 g/mol (GPC gegen Polystyrolstandards in THF).

[0021] Die Herstellung der erfindungsgemäßen Copolymere erfolgt vorzugsweise bei Temperaturen zwischen 50 und 220 °C, insbesondere 100 bis 190 °C, speziell 130 bis 170°C. Das bevorzugte Herstellungsverfahren ist die lösemittelfreie Massepolymerisation, es ist jedoch auch möglich, die Polymerisation in Gegenwart aprotischer Lösemittel

wie Toluol, Xylol oder von Lösemittelgemischen wie Kerosin oder Solvent Naphtha durchzuführen. Besonders bevorzugt ist die Polymerisation in wenig moderierenden, aliphatischen oder isoaliphatischen Lösemitteln. Bei der Lösungspolymerisation kann die Temperatur durch den Siedepunkt des Lösemittels oder durch Arbeiten unter Unter- oder Überdruck besonders einfach eingestellt werden.

[0022] Die Reaktion der Monomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanzklasse gehören z.B. Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)peroxid-carbonat, t-Butylperpivalat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril) oder 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Monomerengemisch, eingesetzt.

[0023] Die Copolymere können durch Copolymerisation von Polyolefin (Komponente C) und α-Olefin (Komponente B) mit entweder Itacon- oder Maleinsäureanhydrid oder Maleinsäure-, Fumarsäure-, Itaconsäureester hergestellt werden. Wird eine Copolymerisation mit Anhydriden durchgeführt, so wird das entstandene Copolymer nach der Herstellung verestert. Diese Veresterung erfolgt beispielsweise durch Umsetzung mit 1,5 bis 2,5 mol Alkohol pro mol Anhydrid bei 50 bis 300, insbesondere 120 - 250 °C. Das Reaktionswasser kann mittels eines Inertgasstroms abdestilliert oder mittels azeotroper Destillation ausgetragen werden. Copolymere mit Säurezahlen von weniger als 50, insbesondere weniger als 30, speziell weniger als 20 mg KOH/g sind bevorzugt.

[0024] Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Copolymere als Additiv für Brennstofföle zur Verbesserung der Kaltfließeigenschaften dieser Brennstofföle.

[0025] Ein weiterer Gegenstand der Erfindung sind Brennstofföle, die die erfindungsgemäßen Copolymere enthalten.

[0026] Die erfindungsgemäßen Copolymere werden Mineralölen oder Mineralöldestillaten in Form von Lösungen oder Dispersionen zugesetzt. Diese Lösungen oder Dispersionen enthalten vorzugsweise 1 bis 90, insbesondere 5 bis 80 Gew.-% der Mischungen. Geeignete Lösungs- oder Dispersionsmittel sind aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, z.B. Benzinfraktionen, Kerosin, Decan, Pentadecan, Toluol, Xylol, Ethylbenzol oder kommerzielle Lösungsmittelgemische wie Solvent Naphtha, [®]Shellsol AB, [®]Solvesso 150, [®]Solvesso 200, [®]Exxsol-, [®]ISOPAR und [®]Shellsol D-Typen sowie aliphatische oder aromatische Alkohole, Ether und/oder Ester. Die angegebenen Lösemittelgemische enthalten unterschiedliche Mengen an aliphatischen und/oder aromatischen Kohlenwasserstoffen. Die Aliphaten können geradkettig (n-Paraffine) oder verzweigt sein (iso-Paraffine). Aromatische Kohlenwasserstoffe können mono-, di- oder polyzyklisch sein und gegebenenfalls einen oder mehrere Substituenten tragen. Durch die erfindungsgemäßen Copolymere in ihren rheologischen Eigenschaften verbesserte Mineralöle oder Mineralöldestillate enthalten 0,001 bis 2, vorzugsweise 0,005 bis 0,5 Gew.-% der Copolymere, bezonen auf das Destillat

[0027] Zur Herstellung von Additivpaketen für spezielle Problemlösungen können die Copolymere auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind Vinylester enthaltende Co- oder Terpolymerisate des Ethylens, Alkylphenol-Aldehydharze und polare Verbindungen, die eine Paraffindispergierung bewirken (Paraffindispergatoren).

[0028] So haben sich Mischungen der erfindungsgemäßen Copolymere mit Copolymerisaten hervorragend bewährt, die 10 bis 40 Gew. -% Vinylacetat und 60 bis 90 Gew.-% Ethylen enthalten. Als Fließverbesserer sind auch Copolymere des Ethylens mit einem oder mehreren C₁-C₃₀-Alkylvinylestern, C₁-C₃₀-Alkyl-(meth)acrylaten und/oder Olefinen geeignet. Insbesondere geeignet sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylhexanoat, Vinyloctanoat, Neodecansäure-, Neononansäurevinylester, Methylacrylat, Ethylacrylat, 2-Ethylhexylacrylat, Laurylacrylat, Stearylacrylat sowie die entsprechenden Ester der Methacrylsäure. Geeignete Olefine sind z.B. Propen, Isobutylen, Diisobutylen, 4-Methylpenten und Nobornen. Desgleichen können auch Mischungen verschiedener Fließverbesserer mit unterschiedlicher quantitativer (z.B. Comonomergehalt) und/oder qualitativer Zusammensetzung (Art der Co-/Terpolymere, Molekulargewicht, Verzweigungsgrad) eingesetzt werden.

[0029] Nach einer bevorzugten Ausgestaltung der Erfindung setzt man die erfindungsgemäßen Copolymere in Mischung mit Ethylen/Vinylacetat/ Neononansäurevinylester-Terpolymerisaten oder Ethylen-Vinylacetat/ Neodecansäurevinylester-Terpolymerisaten zur Verbesserung der Fließfähigkeit von Mineralölen oder Mineralöldestillaten ein. Die Terpolymerisate der Neononansäurevinylester bzw. der Neodecansäurevinylester enthalten außer Ethylen 10 bis 35 Gew.-% Vinylacetat und 1 bis 25 Gew.-% der jeweiligen Neoverbindung.

[0030] In weiterer bevorzugter Ausführungsform der Erfindung werden die erfindungsgemäßen Copolymere mit Terpolymeren eingesetzt, die neben Ethylen 10 - 35 Gew.-% Vinylester und 0,5 bis 20 Gew.-% Olefine wie z.B. Diisobutylen, Hexen, 4-Methylpenten und/oder Norbornen enthalten.

[0031] Das Mischungsverhältnis der erfindungsgemäßen Copolymere mit den vorstehend beschriebenen Ethylen/Vinylacetat-Copolymerisaten bzw. den Terpolymerisaten aus Ethylen, Vinylacetat und den Vinylestern der Neon-

onan- bzw. der Neodecansäure bzw. aus Ethylen, Vinyliden und Olefinen beträgt (in Gewichtsteilen) 20:1 bis 1:20, vorzugsweise 10:1 bis 1:10. Die Mischungen der erfindungsgemäßen Copolymere mit den genannten Copolymerisaten sind insbesondere zur Verbesserung der Fließfähigkeit von Mitteldestillaten geeignet.

[0032] Ferner können die erfindungsgemäßen Copolymere in Mischung mit Alkylphenol-Formaldehydharzen eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei diesen Alkylphenol-Formaldehydharzen um solche der Formel 5

worin R^6 für C_4 - C_{50} -Alkyl oder -Alkenyl, R^7 für Ethoxy- und/oder Propoxy, n für eine Zahl von 5 bis 100 und p für eine Zahl von 0 bis 50 steht.

[0033] Paraffindispergatoren reduzieren die Größe der Paraffinkristalle und bewirken, daß die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Als Paraffindispergatoren haben sich öllösliche polare Verbindungen mit ionischen oder polaren Gruppen, z.B. Aminsalze und/oder Amide bewährt, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden. Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α , β -ungesättigten Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können, die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen und Umsetzungsprodukte von Terpolymerisaten auf Basis α , β -ungesättigter Dicarbonsäureanhydride, α , β -ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole. Auch Alkylphenol-Formaldehydharze sind als Paraffindispergatoren geeignet.

[0034] Das Mischungsverhältnis (in Gewichtsteilen) der Copolymere mit Paraffindispergatoren beträgt jeweils 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1.

[0035] Die erfindungsgemäßen Copolymere eignen sich dazu, die Kaltfließeigenschaften von Rohölen, Destillatölen oder Brennstoffölen sowie Schmierölen zu verbessern. Die Öle können mineralischen, tierischen wie auch pflanzlichen Ursprungs sein.

[0036] Als Brennstofföle sind neben Roh- und Rückstandsölen Mitteldestillate besonders gut geeignet. Als Mitteldestillate bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 500°C sieden, wie beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Sie können Anteile an alkoholischen Treibstoffen, wie z.B. Ethanol und Methanol, oder auch Biobrennstoffe, wie z.B. Rapsöl oder Rapsölsäuremethylester, enthalten. Die erfindungsgemäßen Brennstoffe enthalten vorzugsweise weniger als 350 ppm und speziell weniger als 200 ppm Schwefel. Ihr mit GC bestimmter Gehalt an n-Paraffinen, die Kettenlängen von 18 Kohlenstoffatomen oder mehr aufweisen, liegt bei mindestens 8 Flächen-%, bevorzugt bei mehr als 10 Flächen-%. Ihr 95 %-Destillationspunkt liegt vorzugsweise oberhalb 350°C, insbesondere oberhalb 370°C, speziell oberhalb 380°C.

[0037] Die Copolymere können allein oder auch zusammen mit anderen Zusatzstoffen verwendet werden, beispielsweise mit Entwachsungshilfsmitteln, Leitfähigkeitsverbesseren, Entschäumern, Dispergierhilfsmittel, Korrosionsinhibitoren, Antioxidantien, Lubricity-Additiven, Dehazern oder Schlamminhibitoren. Die Additivkomponenten können den zu additivierenden Ölen gemeinsam als Konzentratmischung in geeigneten Lösemitteln oder auch getrennt zugesetzt werden.

Beispiele

10

15

20

Herstellung und Charakterisierung der eingesetzten Additive

[0038] Bei den eingesetzten Poly(olefinen) handelt es sich um Handelsprodukte ($^{(8)}$ Ultravis) der Fa. BP Chemicals. Das eingesetzte $C_{20/24}$ -Olefin ist eine Mischung von 1-Olefinen enthaltend als Hauptkomponenten 2 % C_{18} , 48 % C_{20} .

36 % C₂₂ und 7% C₂₄.

Allgemeine Herstellvorschrift 1: Polymerisation von MSA mit Olefinen (P1 bis P12)

[0039] In einem Rundkolben mit Rührer, Innenthermometer, Rückflußkühler, Gaseinleitungsrohr und zwei Dosiertrichtern wird die in der Tabelle angegebene Mischung aus Olefin und Poly(isobutylen) unter Durchleiten von Stickstoff und Rühren bei 150-160°C vorgelegt. Aus separaten Vorlagen werden kontinuierlich geschmolzenes Maleinsäureanhydrid und eine Lösung von di-tert.-Butylperoxid in Kerosin derart zugegeben, daß die in Tabelle 1 angegebene Maximaltemperatur eingehalten wird, was etwa 1-1,5 Stunden dauert. Es wird 2 Stunden bei 150°C nachreagiert und anschließend abgefüllt.

Tabelle 1

15	

20

25

30

35

Herstellungsbeispiele Polymerisation							
Beispiel	Mol MSA		Olefin	Poly(olefin)	T _{max}	
	_	mol	Kettenlänge	mol	Mw		
P1	1,0	0,9	C _{20/24}	0,1	800	160°C	
P2	1,0	0,9	C _{20/24}	0,1	1300	160°C	
P3	1,0	0,95	C _{20/24}	0,05	1300	160°C	
P4	1,0	0,9	C ₁₈	0,1	800	170°C	
P5	1,0	0,8	C ₁₈	0,2	800	170°C	
P6	1,0	0,7	C ₁₈	0,3	800	170°C	
P7	1,0	0,9	C ₁₈	0,1	1300	170°C	
P8	1,0	0,8	C ₁₈	0,2	1300	170°C	
P9	1,0	0,7	C ₁₈	0,3	1300	160°C	
P10 (Vgl.)	1,0	1,0	C _{20/24}	-		160°C	
P11 (Vgl.)	1,0	1,0	C20/24	- .		190°C	
P12 (Vgl.)	1,0	1,0	C ₁₈	- .		170°C	

Tabelle 2
Viskositätsverhalten der MSA-Olefin-Co- und Terpolymere

Die Bestimmung der Viskosität erfolgt gemäß ISO 3219 (B) mit einem Rotationsviskosimeter (Haake RV 20) mit

40

45

50

55

Beispiel	Mw	V ₁₆₀	V ₁₄₀	V ₁₂₀
P1	5.900	2,38 Pas	14,08 Pas	>30 Pas
. P2	8.100	1,10 Pas	3,38 Pas	25 Pas
P3 .	5.850	2,79 Pas	13,20 Pas	>30 Pas
P4	5.530	2,15 Pas	9,35 Pas	>30 Pas
P5	5.620	0,69 Pas	1,28 Pas	5,32 Pas
P6	5.900	0,36 Pas	0,71 Pas	2,96 Pas
P7	5.860	1,12 Pas	3,56 Pas	25 Pas
P8	7.030	0,55 Pas	0,89 Pas	2,85 Pas
				

Tabelle 2 (fortgesetzt)

	Viskositätsverhal	ten der MSA-Olefin-Co	- und Terpolymere			
Die Bestimmung der V Platte-Kegel-Meßsyste graphie in THF gegen	em. Die Bestimmung	des Molekulargewich	em Rotationsviskosimet ts erfolgte mittels Gelpe	er (Haake RV 20) mit ermeationschromato-		
P9	0.05 D					
P10 (Vgl.)	6.050	4,69 Pas	29,27 Pas	> 50 Pas		
P11 (Vgl.)	3.990	0,17 Pas	0,36 Pas	1,18 Pas		
P12 (Vgl.)	5.460	4,39 Pas	24,84 Pas	> 50 Pas		

[0040] Diese Viskositätsmessungen zeigen, daß Fließfähigkeit und Handhabbarkeit der erfindungsgemäßen Terpolymere bei niedrigeren Temperaturen gewährleistet sind als bei den bekannten Copolymeren. Das bei höherer Temperatur polymerisierte Vergleichsmuster P11 zeigt zwar eine sehr niedrigere Viskosität, hat aber keine vergleichbare Wirksamkeit (vgl. Tabelle 4).

Allgemeine Herstellvorschrift 2: Polymeranaloge Veresterung

[0041] Das MSA-Co- bzw. -Terpolymer wird in einem Dreihalskolben mit Rührer, Innenthermometer und Wasserabscheider unter leichtem Erwärmen in gleichen Gewichtsteilen Solvent Naphtha gelöst. Nach Zugabe der angegebenen Mengen Behenylalkohol (nativer Fettalkohol, enthaltend als Hauptkomponenten 2 % Octadecanol, 63 % Eicosanol, 31 % Docosan) Tetradecanol, Hexadecanol und/oder alkoxylierten Behenylalkohols pro Mol einpolymerisiertem Maleinsäureanhydrid wird 12 Stunden lang unter Rückfluß (ca. 220°C) gekocht. Es wird mit Solvent Naphtha auf 50 % Polymergehalt verdünnt und abgefüllt.

Tabelle 3

	Herstellbeispiele Veresterung	
Polymer	Alkohol	Säurezahl
P1	1,6 moi Behenyialkohol	14
P2	1,6 mol Behenylalkohol	13
P3	1,6 mol Behenylalkohol	14
P10	1,6 mol Behenylalkohol	15
P11	1,6 mol Behenylalkohol	15
P4	2 mol Tetradecanol	15
P4	1,6 mol Tetradecanol	13
P5	2 mol Tetradecanol	13
P6	2 mol Tetradecanol	16
P7	2 mol Tetradecanol	15
P8	2 mol Tetradecanol	18
P12	2 mol Tetradecanol	15
P4	1 mol Tetradecanol + 1 mol Hexadecanol	17
P4	1,8 mol Tetradecanol + 0,2 mol Behenylalkohol x 12 EO	16
P4	1,5 mol Tetradecanol 0,5 mol Behenylalkohol	15
	P1 P2 P3 P10 P11 P4 P4 P5 P6 P7 P8 P12 P4 P4	Polymer Alkohol P1 1,6 mol Behenylalkohol P2 1,6 mol Behenylalkohol P3 1,6 mol Behenylalkohol P10 1,6 mol Behenylalkohol P11 1,6 mol Behenylalkohol P12 2 mol Tetradecanol P3 1,6 mol Tetradecanol P4 1,6 mol Tetradecanol P5 2 mol Tetradecanol P6 2 mol Tetradecanol P7 2 mol Tetradecanol P8 2 mol Tetradecanol P12 1 mol Tetradecanol P14 1 mol Tetradecanol P15 1 mol Tetradecanol P16 2 mol Tetradecanol P17 2 mol Tetradecanol P18 2 mol Tetradecanol P19 1 mol Tetradecanol P19 1 mol Tetradecanol P19 1 mol Tetradecanol + 1 mol Hexadecanol P19 1,8 mol Tetradecanol + 0,2 mol Behenylalkohol x 12 EO

Beispiel E 16:

5

10

20

35

40

45

50

55

[0042] 0,5 mol Fumarsäure-Dibehenylester, 0,05 mol Poly(isobutylen) mit Molekulargewicht 800 und 0,45 mol

 $C_{20/24}$ -Olefin werden in einem Mehrhalskolben unter Rühren und Durchleiten von Stickstoff auf 140°C erwärmt. Es wird eine Lösung von di-tert.-Butylperoxid in Kerosin derart zugegeben, daß die Reaktionstemperatur 150°C nicht übersteigt. Es wird 2 Stunden bei 140°C nachgerührt, mit der gleichen Menge Solvent Naphtha verdünnt und abgefüllt.

[0043] Die veresterten Polymere wurden auf ihre Wirksamkeit als Pour Point Depressanten in einem Rückstandsöl mit Eigenstockpunkt von 45°C untersucht. Die Messungen erfolgen in Anlehnung an ISO 3016 mit einem Pour Point Automaten Herzog MC 850 der Fa. Herzog.

Tabelle 4

	Wirksamkeit der veresterten Terpo- lymere als Pour Point Depressant						
Beispiel	660 ppm	1200 ppm					
E1	+ 36 °C	+ 30 °C					
E2	+ 36 °C	+ 30 °C					
E3	+ 33 °C	+ 30 °C					
E16	+ 33 °C	+ 30 °C					
E4 (Vgl.)	+ 36 °C	+ 33 °C					
E5 (Vgl.)	+ 45 °C	+ 36 °C					

[0044] Weiterhin eignen sich die erfindungsgemäßen Terpolymere als Coadditive (Kammpolymere) zu Ethylenco-25 polymeren in Mitteldestillaten, insbesondere in Mitteldestillaten mit hohem Siedeende (>370 °C, insbesondere >380 °C) und/oder hohem Cloud Point >0 °C.

Tabelle 5

3	ľ)		

15

20

40

35

45

50

55

Charakterisierung der Testöle						
Die Bestimmung der Siedekenndaten erfolgt gemäß ASTM D-86, die Bestimmung des CFPP-Werts gemäß EN 116 und die Bestim- mung des Cloud Points gemäß ISO 3015.						
Testől 1 Testől 2						
Siedebeginn [°C]	179	155				
20 % [°C]	242	212				
90 % [°	90 % [° 365 390					
95% [°C] 388 402						
Cloud Point [°C] + 4,4 + 13						
CFPP[°C]	-2	+ 11				

Tabelle 6

CFPP-Wirksamkeit in Testől 1

Die Messung des CFPP-Werts erfolgt gemäß EN 116. Als Fließverbesserer werden 4 Gewichtsteile eines handelsüblichen Ethylen-Vinylacetat-Copolymer mit einem Vinylacetatgehalt von 28 Gew.-% und einer bei 140°C gemessenen Schmelzviskosität von 320 mPas pro Gewichtsteil des erfindungsgemäßen Esters verwendet.

Beispiel	100 ppm	200 ppm	300 ppm	400 ppm
E6	-12	-15	-18	-18

Tabelle 6 (fortgesetzt)

CFPP-Wirksamkeit in Testöl 1

Die Messung des CFPP-Werts erfolgt gemäß EN 116. Als Fließverbesserer werden 4 Gewichtsteile eines handelsüblichen Ethylen-Vinylacetat-Copolymer mit einem Vinylacetatgehalt von 28 Gew.-% und einer bei 140°C gemessenen Schmelzviskosität von 320 mPas pro Gewichtsteil des erfindungsgemäßen Esters verwendet.

622611611 20111116151	ionoonat ron be	•		
E7	-13	-14	-15	-18
E8	-10	-16	-16	-19
E9	-6	-5	-8	-12
E10	-12	-16	16	-19
E11	-5	-14	-16	-17
E12 (Vgl.)	-8	-14	-15	-17
E13	-10	-12	-14	-17
E14	-12	-13	-15	-16
E15	-12	-15	-17	-17

[0045] Die Wirksamkeit der erfindungsgemäßen Terpolymere ist bei Polyolefinanteile im Olefingemisch von < 30 mol-% den entsprechenden Copolymeren überlegen.

Tabelle 7

CFPP-Wirksamkeit in Testől 2

Die Messung des CFPP-Werts erfolgt gemäß EN 116. Als Fließverbesserer werden 2 Gewichtsteile einer Mischung zweier handelsüblichger Ethylen-Vinylester-Copolymere (Terpolymer mit 31 Gew.-% Vinylacetat, 9 Gew.-% Neononansäurevinylester und einer bei 140°C gemessenen Schmelzviskosität V₁₄₀ von 230 mPas und Ethylen-4-Methylpenten-Vinylacetat-Terpolymer mit 24 % Vinylacetat und V₁₄₀ von 300 mPas) im Verhältnis 3:1 pro Gewichtsteil des erfindungsgemäßen Esters verwendet.

Beispiel	300 ppm	500 ppm	600 ppm	1.000 ppm
E6	+2	+2	-2	-6
E11 (Vgl.)	+3	+4	+2	-2
E12	+2	-1	-2	-5
E13	+5	+3	-1	-6

Phasenstabilität

10

15

20

25

30

35

40

50

55

[0046] Mit Solvent Naphtha auf 50 Gew.-% verdünnte Einstellungen der erfindungsgemäßen Polymere wurden mit 4 Teilen einer handelsüblichen 70 %igen Fließverbesserersuspension (EVA-Copolymer mit 26 % Vinylacetat und V₁₄₀ von 280 mPas versetzt und durch 30-minütiges Rühren bei 80°C homogenisiert. Anschließend wurden die bei 50°C gelagerten Proben visuell auf Phasenstabilität geprüft.

Muster	2 Tage	7 Tage	14 Tage
E6	homogen	1 % Sediment	3 % Sediment
E7	homogen	homogen	0,5 % Sediment
E8	homogen	homogen	homogen
E9	homogen	homogen	1 % Sediment

(fortgesetzt)

Muster	2 Tage	7 Tage	14 Tage
E10	homogen	homogen	homogen
E11 (Vgl.)	2 % Sediment	6 % Sediment	10 % Sediment

[0047] Die Ergebnisse zeigen die durch den Einbau von Poly(isobutylen) verbesserte Phasenstabilität der erfindungsgemäßen Polymere in Abmischung mit Ethylen-Vinylester-Copolymeren.

Patentansprüche

10

15

20

25

30

35

40

45

50

55

- 1. Copolymere, enthaltend
 - A) 45 bis 54 mol-% bivalente Struktureinheiten der Formel 1

worin a, b = 0 oder 1 und a + b = 1 sind,

B) 35 bis 53 mol % bivalente Struktureinheiten der Formel 2

$$-H_2C-CHR^2-$$
 (2)

und

C) 1 bis 25 mol-% bivalente Struktureinheiten, die sich von Polyolefinen ableiten, wobei die Polyolefine aus Monoolefinen mit 3 bis 5 Kohlenstoffatomen ableitbar sind, dadurch gekennzeichnet, daß

- a) R¹ einen Alkyl- oder Alkenylrest mit 10 bis 40 Kohlenstoffatomen oder einen Alkoxyalkylrest mit 1 bis 100 Alkoxyeinheiten und 1 bis 30 Kohlenstoffatomen im Alkylrest, und
- b) R² einen Alkylrest mit 10 bis 50 Kohlenstoffatomen bedeutet,
- c) der Alkylvinylidengehalt der den Struktureinheiten C) zugrundeliegenden Polyolefine mindestens 50 mol-% beträgt, und
- d) die Zahl der Kohlenstoffatome der den Struktureinheiten C) zugrunde liegenden Polyolefinmoleküle zwischen 35 und 350 beträgt.
- Copolymer nach Anspruch 1, dadurch gekennzeichnet, daß R¹ einen Rest der Formel 3 bedeutet

$$-(O-A)_x - R^3$$
 (3)

worin A für C₂-C₄-Alkyl, x für eine Zahl von 1 bis 100 und R³ für C₁-C₃₀-Alkyl steht.

- 3. Copolymer nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die bivalenten Struktureinheiten, die sich von Polyolefinen ableiten, sich von Polypropylen oder Polyisobutyten ableiten.
- Copolymer nach Anspruch 3, dadurch gekennzeichnet, daß das Polypropylen oder Polyisobutylen mindestens 50 mol-% Alkylvinylideneinheiten enthält.

- Copolymere nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ihre Molekülmasse zwischen 5000 und 200.000 Einheiten beträgt.
- Verwendung eines Copolymers nach einem oder mehreren der Ansprüche 1 bis 5 zur Verbesserung der Kaltfließeigenschaften von Brennstoffölen, Rohölen und Destillatölen.

5

15

20

25

35

40

45

- 7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß ein Copolymer mit R¹ = C₁₀-C₂₄-Alkyl als Kaltfließverbesserer verwendet wird.
- Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß ein Copolymer mit R¹ = C₁₆-C₄₀-Alkyl als pour point depressant verwendet wird.
 - Brennstofföl, enthaltend 0,001 bis 2 Gew.-% eines oder mehrerer Copolymere nach einem oder mehreren der Ansprüche 1 bis 5.

Office européen des brevets

(11) EP 1 022 293 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

- (88) Veröffentlichungstag A3: 13.11.2002 Patentblatt 2002/46
- (51) Int CI.7: **C08F 255/00**, C08F 222/06, C10L 1/18
- (43) Veröffentlichungstag A2: 26.07.2000 Patentblatt 2000/30
- (21) Anmeldenummer: 00100333.4
- (22) Anmeldetag: 07.01.2000
- (84) Benannte Vertragsstaaten:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Benannte Erstreckungsstaaten:

 AL LT LV MK RO SI
- (30) Priorität: 19.01.1999 DE 19901803

- (71) Anmelder: Clariant GmbH 65929 Frankfurt am Main (DE)
- (72) Erfinder:
 - Krull, Matthias, Dr. 46147 Oberhausen (DE)
 - Nagel, Waltraud
 46147 Oberhausen (DE)
- (54) Copolymere und ihre Verwendung als Additiv zur Verbesserung der Kaltfliesseigenschaften von Mitteldestillaten
- (57) Copolymere, enthaltend
 - A) 45 bis 54 mol-% bivalente Struktureinheiten der Formel 1

worin a, b = 0 oder 1 und a + b = 1 sind,

B) 35 bis 53 mol-% bivalente Struktureinheiten der Formel 2

$$--$$
 H₂C $--$ CHR² $--$ (2)

und

- C) 1 bis 25 mol-% bivalente Struktureinheiten, die sich von Polyolefinen ableiten, wobei die Polyolefine aus Monoolefinen mit 3 bis 5 Kohlenstoffatomen ableitbar sind, dadurch gekennzeichnet, daß
 - a) R¹ einen Alkylrest mit 10 bis 40 Kohlenstoffatomen oder einen Alkoxyalkylrest mit 1 bis 100 Alkoxyeinheiten und 1 bis 30 Kohlenstoffatomen im Alkylrest, und
 - b) R2 einen Alkylrest mit 12 bis 50 Kohlenstoffatomen bedeutet,
 - c) der Alkylvinylidengehalt der den Struktureinheiten C) zugrundeliegenden Polyolefine mindestens 50 mol-% beträgt, und

က	
တ	
N	
2	
S	
0	
	•
1.	
a	
Ш	

d) die Zahl der Kohlenstoffatome der den Struktureinheiten C) zugrunde liegenden Polyolefinmoleküle zwischen 36 und 350 beträgt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 00 10 0333

	EINSCHLÄGIG	E DOKUMENTE		
ategorie	Kennzeichnung des Doku der maßgeblic	ments mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL7)
A	DE 43 30 971 A (BA 16. März 1995 (199 * Seite 2, Zeile 4	5-03-16)	1-9	C08F255/00 C08F222/06 C10L1/18
ľ	DE 195 08 656 A (B. 19. September 1996 * Ansprüche *		1-9	
i	US 5 733 993 A (MI) 31. März 1998 (1990 * Ansprüche *	(E CARL A ET AL) B-03-31)	1-9	
ļ	*		-	
•				
1				
				RECHERCHIERTE SACHGEBIETE (Int.CL7)
				CO8F C10L
ı				·
	* .			·
		·		
	. •			•
Der vorli	egende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
·· · - 	iecher thenod	Abschlußdatum der Recherche		Prùfer
M	IUNCHEN	17. September 200	2 Irae	egui Retolaza, E
X scribe Y , von be ancere A Techno	ECOPE DER GENANNTEN DOKI ECOPE DER GENANNTEN DOKI berinderer Bedeutung in Verbindung - Verbnertlichung berzeiben Kateg begischer Hintergrund ertiffliche Offenbarung	JMENTE T : der Erfindung zug E : älteres Patentidok et nach dem Anmelc mit eher D : in der Anmeldung orie L : aus anderen Grün	runde liegende T ument, das jedoc ledatum veröffent angeführtes Dok iden angeführtes	heorien oder Grundsätze th erst am oder tilcht worden ist turnent

•

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 00 10 0333

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

17-09-2002

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichun
DE 4330971	A	16-03-1995	DE	4330971	A1	16-03-1995
DE 4330371	•	•• ••	AT	156844	T	15-08-1997
			AU	7694494	A	03-04-1995
			BR	9407488	Α	25-06-1996
			CA	2171428	A1	23-03-1995
			DE	59403749	D1	18-09-1997
			DK		T3	22-09-1997
			WO	9507 9 44	A1	23-03-1995
			EP	0719290	Al .	03-07-1996
			ES	2105754	T3	16-10-1997
			FI	961147	Α	12-03-1996
		•	HU	74108	A2	28-11-1996
			JP	9502475	T	11-03-1997
			NO	961013	Α	13-03-1996
			PL	313415	A1	24-06-1996
		-	บร	6284716	B1	04-09-2001
			US	2001025094	A1	27-09-2001
DE 19508656	Α	19-09-1996	DE	19508656	A1	19-09-1996
DE 13208030	,,	13 03 1010	AU	5100896	Α	02-10-1996
			CA	2213009	A1	19-09-1996
			DE	59603861	D1	13-01-2000
			WO	9628486	A1	19-09-1996
•			EP	0815150	Al	07-01-1998
		•	JP	11502239	T	23-02-1999
US 5733993	A	31-03-1998	DE	69710295	D1	21-03-2002
n2 2/32333	••	3. 00 220	ĒΡ	0842956	A2	20-05-1998
		•	JP	3126334	B2	22-01-2001
			JP	10168138	Α	23-06-1998
			SG	64460	A1	27-04-1999
			US	5814706	Α	29-09-1998