Assignment 2 - FIT2014

James Austin

September 5, 2014

Problem 0 - A

Base Case: The problem works when N = 2, as $P_2 = 2$, as given in the problem description

$$P_2 = Q_1 * P_{2-1} + Q_2 * P_{2-2}$$

$$P_2 = 1 * 1 + 1 * 1$$

$$P_2 = 1 + 1$$

$$P_2 = 2$$

 $P_2 = 2$ Now we solve for P_{n+1}

$$P_{n+1} = \sum_{i=1}^{n} Q_i P_{n-1} + Q_{n+1} P_{(n+1)-(n+1)}$$

$$P_{n+1} = \sum_{i=1}^{n} Q_i P_{n-1} + Q_{n+1} P_0$$

$$P_{n+1} = \sum_{i=1}^{n} Q_i P_{n-1} + P_n$$

$$P_{n+1} = \sum_{i=1}^{n} Q_i P_{n-1} + Q_{n+1} P_0$$

$$P_{n+1} = \sum_{i=1}^{n-1} Q_i P_{n-1} + P_r$$

$$P_{n+1} = 2\sum_{i=1}^{n} Q_i P_{n-1}$$

No idea what to do now.¹

¹Morituri te salutant.