Linearitet af differentiation og mere optimering

Linearitet af differentiation

Vi skal til start se på linearitet af differentiation. Vi starter med en sætning, som vi vil bevise.

Sætning 1.1. Lad f, g være to funktioner begge differentiable i x. Så er funktionen f + g differentiable i x og dens differentialkvotient er givet

$$(f(x) + g(x))' = f'(x) + g'(x).$$

Bevis. Vi kigger på definitionen af differentialkvotienten i x

$$(f(x) + g(x))' = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h}\right) + \lim_{h \to 0} \left(\frac{g(x+h) - g(x)}{h}\right)$$

$$= f'(x) + g'(x),$$

siden vi har antaget, at f og g er differentiable i x.

Vi skal løse flere optimeringsopgaver, men nu i Maple.

Opgave 1

- i) Bevis, at (f(x) g(x))' = f'(x) g'(x). (Hint: Se på beviset for Sætning 1.1.)
- ii) Bevis, at (kf(x))' = kf'(x). (Hint: Brug som tidligere definitionen af differentialkvotienten.)
- iii) Bevis, at $(2x^2)' = 4x$ ved at bruge definitionen af differentialkvotienten.

Opgave 2

Løs følgende opgaver i Maple.

- i) En åben kasse skal have rektangulær bund. Bredde skal være x og længden skal være 2x. Rumfanget skal være $144000cm^3$. Bestem højde, bredde og længde, så overfladearealet er minimeret
- ii) Samme opgave som i), men nu med låg.
- iii) En dåse med rumfang $500cm^3$ skal laves, så overfladearealet er minimeret. Højden på dåsen må maksimalt være 5cm. Bestem dimensionerne på denne dåse.
- iv) Hvad nu hvis dåsen skal være i et skab på $10cm \cdot 10cm$? Hvordan er dimensionerne så.
- v) Spørg mig eller hold fri.