Misure di indice di rifrazione

Sommario

L'obiettivo dell'esperienza consiste nella misura degli indici di rifrazione del plexiglass e dell'acqua.

MATERIALE A DISPOSIZIONE

- Banco ottico con sorgente luminosa;
- un semicilindro di plexiglass;
- un diottro sferico riempito di acqua;
- un metro a nastro (risoluzione 1 mm).

Misure da effettuare ed analisi

Indice di rifrazione del plexiglass

FIGURA 1: Schematizzazione dell'apparato per la misura dell'indice di rifrazione del plexiglass. L'angolo di incidenza θ_i (di rifrazione θ_r) è l'angolo formato dal raggio luminoso incidente (rifratto) con la normale alla superficie di separazione tra i due mezzi.

Se un raggio di luce passa da un mezzo con indice di rifrazione n_1 ad uno con indice di rifrazione n_2 , gli angoli di incidenza e di rifrazione sono legati tra di loro dalla legge di Snell

$$n_1 \sin \theta_i = n_2 \sin \theta_r. \tag{1}$$

Si posizioni il semicilindro in modo che il raggio incida al centro della superficie piana rifrangente (per evitare una seconda rifrazione in uscita) e si misuri una serie di coppie ($\sin \theta_i$, $\sin \theta_r$) per un certo numero (diciamo 10) di valori di θ_i . Si ricavi l'indice di rifrazione cercato da un fit lineare alle misure, ricordando che l'indice di rifrazione dell'aria è con buona approssimazione $n_1 \sim 1$.

INDICE DI RIFRAZIONE DELL'ACQUA

Con riferimento alla figura 2, e detto r il raggio del diottro, p e q sono legati dalla relazione

$$\frac{n_2}{p} + \frac{n_1}{q} = \frac{(n_2 - n_1)}{r}. (2)$$

Operativamente, fissata una posizione per la sorgente, si muova lo schermo fino a che l'immagine non è a fuoco,

FIGURA 2: Schematizzazione dell'apparato per la misura dell'indice di rifrazione dell'acqua. Le grandezze q e p sono definite, rispettivamente come la distanza dal vertice del diottro della sorgente e dell'immagine (a fuoco sullo schemo).

e si misurino p e q. Si ripeta l'operazione per diverse posizioni della sorgente e si costruisca il grafico cartesiano di 1/q in funzione di 1/p. Ricordando che $n_1 \sim 1$, per la (2) le due grandezze saranno legate da

$$\frac{1}{q} = -\frac{n_2}{p} + \frac{(n_2 - 1)}{r}. (3)$$

Tramite fit lineare si stimi l'indice di rifrazione cercato come il coefficiente angolare della retta di best fit.

CONSIDERAZIONI PRATICHE

Indice di rifrazione del plexiglass

Troverete già montati sul banco ottico, accanto alla sorgente di luce, una lente convergente ed un diaframma a fenditura per creare un fascio di luce sottile. Non dovrebbe essere necessario modificare il montaggio—in caso di bisogno chiedete aiuto all'esercitatore.

INDICE DI RIFRAZIONE DELL'ACQUA

Come vedrete, la sorgente luminosa è immersa in acqua, per cui si raccomanda di fare attenzione, durante gli spostamenti, onde evitare spiacevoli fuoriuscite.

Si noti che l'oggetto da mettere a fuoco è un piccolo rombo incollato sulla sorgente.

1 APPENDICE: VALORI TABULATI

Si riportano di seguito i valori *indicativi* degli indici di rifrazione da misurare.

Materiale	n
Plexiglass	1.48
Acqua	1.33

Si veda il retro per un programma di esempio per l'analisi dei dati con il calcolatore.

```
ı | # Programma di esempio per l'analisi delle misure sull'indice di rifrazione di acqua e plexiglass
2 import pylab
3 from scipy.optimize import curve_fit
4
5 # Dati in ingresso per il diottro (da modificare con le vostre misure).
6 p = pylab.array([45.6, 42.9, 41.0, 38.7, 35.8, 34.1], 'd')
q = pylab.array([43.5, 47.6, 51.2, 56.4, 68.1, 75.4], 'd')
8 Dp = pylab.array(len(p)*[0.5],'d')
9 Dq = pylab.array(len(q)*[1],'d')
10
11 # Plot di 1/q vs 1/p
pylab.figure(1)
pylab.title('Indice di rifrazione dell\'acqua')
pylab.xlabel('1/p [1/cm]')
pylab.ylabel('1/q [1/cm]')
pylab.grid(color = 'gray')
pylab.errorbar(1./p, 1/q, Dp/(p*p), Dq/(q*q), 'o', color='black')
18
# Fit con una retta - nota che le incertezze sono ignorate!
20 def f(x, a, b):
      return a*x + b
21
22
popt, pcov = curve_fit(f, 1./p, 1/q, pylab.array([-1.,1.]))
24 a, b
           = popt
          = pylab.sqrt(pcov.diagonal())
25 da. db
26 print('Acqua: n = %f +- %f' % (a, da))
pylab.plot(1./p, f(1./p, a, b), color='black')
pylab.savefig('rifrazione_acqua.png')
29
30 # Dati in ingresso per il plexiglass (da modificare con le vostre misure).
31 # In questo esempio x = R*sin(theta_r), y = R*sin(theta_i) [cm]
x = \text{pylab.array}([1.25, 1.85, 2.9, 4.35, 0.5, 0.25, 0.8, 1.5, 4.8], 'd')
33 y = pylab.array([1.9, 2.5, 4.2, 6.65, 0.75, 0.45, 1.1, 2.4, 7.], 'd')
Dx = pylab.array(len(x)*[0.1],'d')
35 Dy = pylab.array(len(y)*[0.1],'d')
36
37 # Plot di x vs y
38 pylab.figure(2)
39 pylab.title('Indice di rifrazione del plexiglass')
40 pylab.xlabel('R sin(theta_r) [cm]')
pylab.ylabel('R sin(theta_i) [cm]')
42 pylab.grid(color = 'gray')
43 pylab.errorbar(x, y, Dx, Dy, 'o', color='black')
44
45 # Fit con una retta per essere sicuri che il termine noto sia compatibile con zero
popt, pcov = curve_fit(f, x, y, pylab.array([1.,0.]))
            = popt
47 a, b
48 da, db
             = pylab.sqrt(pcov.diagonal())
49 print('Plexiglass: b = %f +- %f compatibile con 0?' % (b, db))
50
51 # Fit con la legge di Snell
52 def f1(x, a):
      return a*x
53
popt, pcov = curve_fit(f1, x, y, pylab.array([1.]))
print('Plexiglass: n = %f +- %f' % (popt, pylab.sqrt(pcov.diagonal())))
pylab.plot(x, f1(x, a), color='black')
pylab.savefig('rifrazione_plexiglass.png')
59
60 pylab.show()
```