Теплицев вариант анализа сингулярного спектра

Потешкин Егор Павлович, Голяндина Нина Эдуардовна

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

> Наука СПбГУ-2023 21 ноября 2023, Санкт-Петербург

Постановка задачи

Временной ряд $X=(x_1,\ldots,x_N)$ — последовательность наблюдений, упорядоченных по времени.

Примеры: Биржевой курс, замеры температуры в течении нескольких лет.

Дано: Временной ряд состоит из тренда, сезонности (неслучайные состовляющие) и шума (случайная состовляющая): X = T + S + R.

Проблема: Как выделить неслучайные компоненты?

Метод: Singular spectrum analysis (SSA).

Задача: Выделить сигнал как можно точнее.

Решение: Для стационарных рядов использование теплицева варианта SSA.

Доп. мотивация: Преимущество теплицева варианта в задача обнаружения сигнала методов Monte Carlo SSA.

Обозначения: оператор вложения и ганкелизации

 $\mathsf{X} = (x_1, \dots, x_N)$. Зафиксируем длину окна L, 1 < L < N.

Оператор вложения Т:

$$\mathfrak{T}(\mathsf{X}) = \mathbf{X} = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_N \end{pmatrix}$$

— траекторная матрица.

Оператор ганкелизации \mathcal{H} — усреднение матрицы по побочным диагоналям.

SSA: алгоритм

Входные данные: временной ряд $\mathsf{X} = (x_1, \dots, x_N)$.

Параметр: длина окна L.

 $\mathsf{Pesynbtat}$: m восстановленных временных рядов.

Рис.: Алгоритм SSA

MSSA: алгоритм

MSSA — обобщение SSA на многомерный случай, когда X — набор из D временных рядов (каналов). Также этот метод дает преимущество по сравнению с SSA, если сигналы имеют в большой степени одинаковую структуру.

Пусть $\mathbf{X}=\{\mathbf{X}^{(d)}\}_{d=1}^D$ — D-канальный временной ряд с длинами N_1,\dots,N_D . Тогда требуется определить только шаг построения траекторной матрицы:

ullet Вложение: составная траекторная матрица L imes K

$$\mathbf{X}=[\mathfrak{T}(\mathsf{X}^{(1)}):\ldots:\mathfrak{T}(\mathsf{X}^{(D)})]=[\mathbf{X}^{(1)}:\ldots:\mathbf{X}^{(D)}],$$
где $K=\sum_{i=1}^DK_i,\,K_i=N_i-L+1.$

Стационарный случай

Basic SSA/MSSA — сингулярное разложение траекторной матрицы, универсальный метод.

Toeplitz SSA/MSSA — теплицево разложение траекторной матрицы, имеет преимущество для стационарных временных рядов.

Остальные этапы кроме разложения не меняются.

Два варианта метода Toeplitz MSSA:

- Метод Block [Plaut and Vautard, 1994].
- Метод Sum предлагаем.

Тёплицев MSSA: обозначение

Пусть X — D-канальный временной ряд с одинаковыми длинами $N_d=N \ \forall d=1,\ldots,D.$ Зафиксируем M.

Определим матрицу $\mathbf{T}_{l,k}^{(M)} \in \mathbb{R}^{M imes M}$ с элементами

$$\left(\mathbf{T}_{l,k}^{(M)}\right)_{ij} = \frac{1}{N - |i-j|} \sum_{n=1}^{N - |i-j|} x_n^{(l)} x_{n+|i-j|}^{(k)}, \ 1 \leqslant i, j \leqslant M,$$

которая является оценкой ковариационной матрицы l и k-го каналов.

Тёплицев MSSA: метод Block

Построить

$$\mathbf{T}_{\mathsf{Block}} = \begin{pmatrix} \mathbf{T}_{1,1}^{(K)} & \mathbf{T}_{1,2}^{(K)} & \cdots & \mathbf{T}_{1,D}^{(K)} \\ \mathbf{T}_{2,1}^{(K)} & \mathbf{T}_{2,2}^{(K)} & \cdots & \mathbf{T}_{2,D}^{(K)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{T}_{D,1}^{(K)} & \mathbf{T}_{D,D}^{(K)} & \cdots & \mathbf{T}_{D,D}^{(K)} \end{pmatrix} \in \mathbb{R}^{DK \times DK},$$

где
$$K = N - L + 1$$
.

 $oldsymbol{Q}$ Найти ортонормированные собственные векторы Q_1,\dots,Q_{DK} матрицы $oldsymbol{\mathbf{T}}_{\mathsf{Block}}$ и получить разложение

$$\mathbf{X} = \sum_{i=1}^{DK} (\mathbf{X}Q_i) Q_i^{\mathrm{T}} = \sum_{i=1}^{DK} P_i Q_i^{\mathrm{T}}.$$

Тёплицев MSSA: метод Sum

- $oldsymbol{1}$ Построить $oldsymbol{\mathbf{T}}_{\mathsf{Sum}} = \sum_{i=1}^D oldsymbol{\mathbf{T}}_{i,i}^{(L)} \in \mathbb{R}^{L imes L}$.
- $oldsymbol{2}$ Найти ортонормированные собственные векторы H_1,\dots,H_L матрицы $\mathbf{T}_{\mathsf{Sum}}$ и получить разложение

$$\mathbf{X} = \sum_{i=1}^{L} H_i Z_i^{\mathrm{T}},$$

где
$$Z_i = \mathbf{X^T} H_i$$

Численное исследование

Дано:
$$(\mathsf{F}^{(1)},\mathsf{F}^{(2)})=(\mathsf{S}^{(1)},\mathsf{S}^{(2)})+(\mathsf{R}^{(1)},\mathsf{R}^{(2)}),\ N=71.$$

Задача: проверить точность базового и модифицированных методов для разных значений параметра L.

Рассмотрим 3 случая:

• Косинусы с одинаковыми периодами:

$$s_n^{(1)} = 30\cos(2\pi n/12), \quad s_n^{(2)} = 20\cos(2\pi n/12), \quad n = 1,\dots, N.$$

Косинусы с разными периодами:

$$s_n^{(1)} = 30\cos(2\pi n/12), \quad s_n^{(2)} = 20\cos(2\pi n/8), \quad n = 1, \dots, N.$$

Полиномы первой степени (нестационарные ряды):

$$s_n^{(1)} = 1.2n, \quad s_n^{(2)} = 0.8n, \quad n = 1, \dots, N.$$

Группировка в SSA: $I_1 = \{1, 2\}$.

Численное исследование. Результаты

Таблица: MSE восстановления сигнала.

Случай 1	L = 12	L = 24	L = 36	L = 48	L = 60
SSA	3.25	2.01	2.00	2.01	3.25
Toeplitz SSA	3.2	1.87	1.63	1.59	1.67
MSSA	3.18	1.83	1.59	1.47	2.00
Sum	3.17	1.75	1.44	1.32	1.33
Block	1.39	1.26	1.25	1.33	1.97
Случай 2	L = 12	L = 24	L = 36	L = 48	L = 60
SSA	3.25	2.01	2.00	2.01	3.25
Toeplitz SSA	3.2	1.87	1.63	1.59	1.67
MSSA	6.91	3.77	3.07	2.88	3.84
Sum	6.88	3.65	2.64	2.37	2.27
Block	4.47	3.67	3.22	3.23	3.8
Случай 3	L = 12	L = 24	L = 36	L = 48	L = 60
SSA	3.65	2.08	1.96	2.08	3.65
Toeplitz SSA	3.33	2.43	3.74	7.84	16.29
MSSA	3.42	1.94	1.63	1.57	2.27
Sum	3.32	2.24	3.04	5.91	11.95
Block	12.55	6.18	2.97	1.78	1.97

Выводы

- Sum и Block версии Toeplitz MSSA для стационарного ряда точнее выделяют сигнал, чем Basic MSSA. Если в сигналах разных каналов присутствует одна и та же частота, то Block немного лучше Sum. Но если частоты разные, то Block существенно хуже Sum.
- 2 Рекомендуется использовать длину окна $L\gg (N+1)/2$ для метода Sum и $L \approx (N+1)/2$ для метода Block.
- Если сравнивать по трудоемкости, для оптимальной длины окна метод Sum численно эффективнее Block. Также он позволяет рассматривать многоканальные временные ряды с разными длинами, в отличие от Block.