

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

7" UMPC

Trade Name / Model: eo / TK71 VANTAGE / TPT700-1

Issued to

Tabletkiosk 2832 Columbia Street Torrance, California 90503

Issued by

Compliance Certification Services Inc.
No. 11, Wu-Gong 6th Rd., Wugu Industrial Park,
Taipei Hsien 248, Taiwan (R.O.C.)
http://www.ccsemc.com.tw
service@ccsrf.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

3. TI	EST METHODOLOGY	6
3.1	EUT CONFIGURATION	
3.1	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES.	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	
4. IN	NSTRUMENT CALIBRATION	9
4.1	MEASURING INSTRUMENT CALIBRATION	9
4.2	MEASUREMENT EQUIPMENT USED	9
4.3	MEASUREMENT UNCERTAINTY	10
5. FA	ACILITIES AND ACCREDITATIONS	11
5.1	FACILITIES	11
5.2	EQUIPMENT	11
5.3	TABLE OF ACCREDITATIONS AND LISTINGS	12
6. SI	ETUP OF EQUIPMENT UNDER TEST	13
6.1	SETUP CONFIGURATION OF EUT	13
6.2	SUPPORT EQUIPMENT	13
7. FO	CC PART 15.247 REQUIREMENTS	14
7.1	6DB BANDWIDTH	
7.2	PEAK POWER.	
7.3	AVERAGE POWER	
7.4	BAND EDGES MEASUREMENT	
7.5	PEAK POWER SPECTRAL DENSITY	
7.6	SPURIOUS EMISSIONS	
7.7	RADIATED EMISSIONS	
7.8	POWERLINE CONDUCTED EMISSIONS.	119
APPE	NDIX I RADIO FREQUENCY EXPOSURE	122
APPE	NDIX II PHOTOGRAPHS OF TEST SETUP	124

1. TEST RESULT CERTIFICATION

Applicant: Tabletkiosk

2832 Columbia Street Torrance, California 90503

Date of Issue: August 26, 2009

Equipment Under Test: 7" UMPC

Trade Name / Model: eo / TK71

VANTAGE / TPT700-1

Date of Test: April 29 ~ August 12, 2009

APPLICABLE STANDARDS						
STANDARD TEST RESULT						
FCC 47 CFR Part 15 Subpart C	No non-compliance noted					
Deviation from Applicable Standard						
None						

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in **ANSI C63.4: 2003** and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by: Reviewed by:

Rex Lai Gina Lo

Section Manager Section Manager

Compliance Certification Services Inc.

Compliance Certification Services Inc.

Page 3 Rev. 00

2. EUT DESCRIPTION

2. EUI DESCRII	. 11011
Product	7" UMPC
Trade Name / Model	eo / TK71
Trade (value / Wiode)	VANTAGE / TPT700-1
Model Discrepancy	All the specification and layout are identical except they come with
Wiodel Discrepancy	different model numbers for marketing purposes.
	1. VDC from Power Adapter
	HIPRO / HP- A0502R3D
	I/P: 100-240V, 2.4A, 50-60Hz
	O/P: 12V, 4.16A
Power Supply	2. VDC from Battery
	a) Model: TK71-2CEL-P
	Rating: 7.4V, 3200mAh / 23.68Wh
	b) Model: TK71-4CEL-L
	Rating: 7.4V, 5200mAh / 38.48W
Frequency Range	IEEE 802.11a mode: 5.745~5.825 GHz
Trequency Range	IEEE 802.11b/g mode: 2.412~2.462 GHz
	IEEE 802.11a mode: 21.81 dBm
	draft 802.11n Standard-20 MHz Channel mode: 22.01 dBm
	draft 802.11n Wide-40 MHz Channel mode: 22.02 dBm
Transmit Power	IEEE 802.11b mode: 18.19 dBm
	IEEE 802.11g mode: 22.23 dBm
	draft 802.11n Standard-20 MHz Channel mode: 21.97 dBm
	draft 802.11n Wide-40 MHz Channel mode: 22.06 dBm
	IEEE 802.11a: OFDM (QPSK, BPSK, 16-QAM, 64-QAM)
	draft 802.11n Standard-20 MHz Channel mode: OFDM (6.5, 7.2, 13,
	14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33
	52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104,
	115.56, 117, 130, 144.44 Mbps)
	draft 802.11n Wide-40 MHz Channel mode: OFDM (13.5, 15, 27, 30,
	40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 135, 150,
	162, 180, 216, 240, 243, 270, 300 Mbps)
Modulation Technique	IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs)
	IEEE 802.11g mode: OFDM (6, 9, 12, 18, 24, 36, 48 and 54 Mpbs)
	draft 802.11n Standard-20 MHz Channel mode: OFDM (6.5, 7.2, 13,
	14.4, 14.44, 19.5, 21.7, 26, 28.89, 28.9, 39, 43.3, 43.33
	52, 57.78, 57.8, 58.5, 65.0, 72.2, 78, 86.67, 104,
	115.56, 117, 130, 144.44 Mbps)
	draft 802.11n Wide-40 MHz Channel mode: OFDM (13.5, 15, 27, 30,
	40.5, 45, 54, 60, 81, 90, 108, 120, 121.5, 135, 150, 162,
	180, 216, 240, 243, 270, 300 Mbps)

Page 4 Rev. 00

D-	
	IEEE 802.11a mode: 5 Channels
	draft 802.11n Standard-20 MHz Channel mode : 5 Channels
Name have of Channels	draft 802.11n Wide-40 MHz Channel mode: 2 Channels
Number of Channels	IEEE 802.11b/g mode: 11 Channels
	draft 802.11n Standard-20 MHz Channel mode: 11 Channels
	draft 802.11n Wide-40 MHz Channel mode: 7 Channels
	Antenna Type: PIFA Antenna
A 4	Antenna Gain:
Antenna Specification	IEEE 802.11a: 3.56 dBi
	IEEE 802.11b/g mode: 2.13 dBi

Remark:

- 1. The sample selected for test was production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>XHF-A7300TK71</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 5 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2003 and FCC CFR 47 Part 15.207, 15.209 and 15.247.

Date of Issue: August 26, 2009

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2003.

Page 6 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Page 7 Rev. 00

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: TK71) had been tested under operating condition.

The EUT is a 1x2 configuration spatial MIMO (1Tx & 2Rx) without beam forming function.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

Date of Issue: August 26, 2009

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis) and docking mode. The worst emission was found in docking mode for powerline conducted emissions, lie-down position (X axis) for radiation emissions and the worst case was recorded.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

IEEE 802.11a mode:

Channel Low(5745MHz), Channel Mid(5785MHz) and Channel High(5825MHz) with 6Mbps data rate were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode:

Channel Low(5745MHz), Channel Mid(5785MHz) and Channel High(5825MHz) with 6.5Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode:

Channel Low(5755MHz) and Channel High(5795MHz) with 13.5Mbps data rate were chosen for full testing.

IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1Mbps data rate and cyclic delay diversity were chosen for full testing.

IEEE 802.11g mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6Mbps data rate and cyclic delay diversity were chosen for full testing.

draft 802.11n Standard-20 MHz Channel mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 6.5Mbps data rate were chosen for full testing.

draft 802.11n Wide-40 MHz Channel mode:

Channel Low (2422MHz), Channel Mid (2437MHz) and Channel High (2452MHz) with 13.5Mbps data rate were chosen for full testing.

Page 8 Rev. 00

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: August 26, 2009

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site					
Name of Equipment Manufacturer Model Serial Number Cal					
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/05/2010	

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	09/10/2009		
Test Receiver	Rohde&Schwarz	ESCI	100064	11/29/2009		
Switch Controller	TRC	Switch Controller	SC94050010	05/02/2010		
4 Port Switch	TRC	4 Port Switch	SC94050020	05/02/2010		
Loop Antenna	EMCO	6502	8905/2356	05/28/2010		
Horn-Antenna	TRC	HA-0502	06	06/03/2010		
Horn-Antenna	TRC	HA-0801	04	06/17/2010		
Horn-Antenna	TRC	HA-1201A	01	08/10/2010		
Horn-Antenna	TRC	HA-1301A	01	08/10/2010		
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/27/2010		
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.		
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.		
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.		
Site NSA	CCS	N/A	FCC MRA: TW1039 IC: 2324G-1/-2	10/17/2010 11/04/2010		
Test S/W	Test S/W LABVIEW (V 6.1)					

Powerline Conducted Emissions Test Site								
Name of Equipment Manufacturer Model Serial Number Calibration Du								
EMI Test Receiver 9kHz-30MHz	Rohde & Schwarz	ESHS30	828144/003	11/25/2009				
Two-Line V-Network 9kHz-30MHz	Schaffner	NNB41	03/10013	06/10/2010				
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	04/08/2010				
Test S/W		LABV	IEW (V 6.1)					

Page 9 Rev. 00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	+/- 2.81
3M Semi Anechoic Chamber / 30MHz ~ 1GHz	+/-3.7046
3M Semi Anechoic Chamber / Above 1GHz	+/-3.0958

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Date of Issue: August 26, 2009

Page 10 Rev. 00

5. FACILITIES AND ACCREDITATIONS

All measurement facilities used to collect the measurement data are located at

5.1 FACILITIES

	No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
	No.11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
	No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The	e sites are constructed in conformance with the requirements of ANSI C63.7 ANSI C63.4 and

5.2 EQUIPMENT

CISPR Publication 22.

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 11 Rev. 00

Date of Issue: August 26, 2009

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Date of Issue: August 26, 2009

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Page 12 Rev. 00

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

Date of Issue: August 26, 2009

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1	LCD Monitor	DELL	2407WFPb	CN-0FC255-46633-67 5-22TJS	FCC DoC	Shielded, 1.8m with 2 cores	Unshielded, 1.8m
2	USB Keyboard	DELL	Sk-8115	N/A	FCC DoC	Shielded, 1.8m	N/A
3	USB Keyboard	Compaq	KU-9978	B463AOAGALT097	FCC DoC	Shielded, 1.8m	N/A
4	USB Mouse	HP	MO19UCA	20440964	FCC DoC	Shielded, 1.8m	N/A
5	USB Mouse	Logitech	M-UB48	DZL211137	FCC DoC	Shielded, 1.8m	N/A
6	USB Mouse	Logitech	M-CAA43	LZE03262922	FCC DoC	Shielded, 1.8m	N/A
7	Modem	ACEEX	DM-1414	304012269	IFAXDM1414	Shielded, 1.8m	Unshielded, 1.8m
8	USB 2.0 External HDD	TeraSyS	F12-U	A0100214-2Bq0039	FCC DoC	Shielded, 1.8m	N/A
9	USB 2.0 External HDD	TeraSyS	F12-U	A0100214-31d0014	FCC DoC	Shielded, 1.8m	N/A
10	USB 2.0 External HDD	TeraSyS	F12-U	A0100214-31d0028	FCC DoC	Shielded, 1.8m	N/A
11	USB 2.0 External HDD	TeraSyS	F12-UF(COMBO)	A0100215-42O012	FCC DoC	Shielded, 1.8m	N/A
12	Multimedia Earphone	Labtec	Axis-301	N/A	FCC DoC	Unshielded, 1.8m*2	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev. 00

7. FCC PART 15.247 REQUIREMENTS

7.1 6DB BANDWIDTH

LIMIT

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

Date of Issue: August 26, 2009

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100 kHz, VBW = RBW, Span = 50 MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

Page 14 Rev. 00

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	11.17		PASS
Mid	2437	11.00	>500	PASS
High	2462	10.17		PASS

Date of Issue: August 26, 2009

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result
Low	2412	16.50		PASS
Mid	2437	16.50	>500	PASS
High	2462	16.50		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Result
Low	2412	17.33		PASS
Mid	2437	17.75	>500	PASS
High	2462	17.83		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Result
Low	2422	35.35		PASS
Mid	2437	35.70	>500	PASS
High	2452	35.93		PASS

Page 15 Rev. 00

Test mode: IEEE 802.11a mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Test Result
Low	5745	16.58		PASS
Mid	5785	16.50	>500	PASS
High	5825	16.50		PASS

Date of Issue: August 26, 2009

Test mode: draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

	Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result			
	Low	5745	17.67		PASS			
	Mid	5785	17.75	>500	PASS			
Ī	High	5825	17.42		PASS			

Test mode: draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Result	
Low	5755	34.42	>500	PASS	
High	5795	35.70	/300	PASS	

Page 16 Rev. 00

Test Plot

IEEE 802.11b mode

6dB Bandwidth (CH Low)

6dB Bandwidth (CH Mid)

Page 17 Rev. 00

6dB Bandwidth (CH High)

IEEE 802.11g mode

6dB Bandwidth (CH Low)

Page 18 Rev. 00

6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

Page 19 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

6dB Bandwidth (CH Low)

6dB Bandwidth (CH Mid)

Page 20 Rev. 00

6dB Bandwidth (CH High)

draft 802.11n Wide-40 MHz Channel mode

6dB Bandwidth (CH Low)

Page 21 Rev. 00

6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

Page 22 Rev. 00

IEEE 802.11a mode / 5745 ~ 5825MHz

6dB Bandwidth (CH Low)

6dB Bandwidth (CH Mid)

Page 23 Rev. 00

6dB Bandwidth (CH High)

draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

6dB Bandwidth (CH Low)

Page 24 Rev. 00

6dB Bandwidth (CH Mid)

6dB Bandwidth (CH High)

Page 25 Rev. 00

<u>draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz</u>

6dB Bandwidth (CH Low)

6dB Bandwidth (CH High)

Page 26 Rev. 00

7.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

Date of Issue: August 26, 2009

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

- 1. Peak power is measured using the spectrum analyzer's internal channel power integration function.
- 2. Power is integrated over a bandwidth greater than or equal to the 99% bandwidth.

Page 27 Rev. 00

TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	18.19	0.0659		PASS
Mid	2437	18.12	0.0649	1.00	PASS
High	2462	18.15	0.0653		PASS

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	22.23	0.1671		PASS
Mid	2437	21.73	0.1489	1.00	PASS
High	2462	19.70	0.0933		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412	19.46	0.0883		PASS
Mid	2437	21.97	0.1574	1.00	PASS
High	2462	18.92	0.0780		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2422	16.82	0.0481	1.00	PASS
Mid	2437	22.06	0.1607		PASS
High	2452	17.61	0.0577		PASS

Page 28 Rev. 00

Test mode: IEEE 802.11a mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5745	21.81	0.1517		PASS
Mid	5785	21.58	0.1439	1.00	PASS
High	5825	21.21	0.1321		PASS

Date of Issue: August 26, 2009

Test mode: draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5745	22.01	0.1589		PASS
Mid	5785	21.03	0.1268	1.00	PASS
High	5825	21.83	0.1524		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	5755	22.02	0.1592	1.00	PASS
Mid	5795	21.91	0.1552		PASS

Page 29 Rev. 00

Test Plot

IEEE 802.11b mode

Peak Power (CH Low)

Agilent 21:13:38 May 11, 2009

R T

Channel Power

Power Spectral Density

18.19 dBm /20.0000 MHz

-54.82 dBm/Hz

Peak Power (CH Mid)

* Agilent 21:12:44 May 11, 2009

R T

Channel Power

Power Spectral Density

18.12 dBm /20.0000 MHz

-54.89 dBm/Hz

Page 30 Rev. 00

Peak Power (CH High)

R T

Channel Power

Power Spectral Density

18.15 dBm /20.0000 MHz

-54.86 dBm/Hz

IEEE 802.11g mode

Peak Power (CH Low)

Agilent 21:21:26 May 11, 2009

R T

Channel Power

Power Spectral Density

22.23 dBm /20.0000 MHz

-50.78 dBm/Hz

Page 31 Rev. 00

Peak Power (CH Mid)

Agilent 21:22:54 May 11, 2009

R T

Channel Power

Power Spectral Density

21.73 dBm /20.0000 MHz

-51.28 dBm/Hz

Peak Power (CH High)

Agilent 21:25:39 May 11, 2009

R T

Channel Power

Power Spectral Density

19.70 dBm /20.0000 MHz

-53.31 dBm/Hz

Page 32 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

Peak Power (CH Low)

🔆 Agilent 21:46:33 May 11, 2009

R T

Channel Power

Power Spectral Density

19.46 dBm /20.0000 MHz

-53.55 dBm/Hz

Peak Power (CH Mid)

* Agilent 21:49:17 May 11, 2009

R T

Channel Power

Power Spectral Density

21.97 dBm / 20.0000 MHz

-51.04 dBm/Hz

Page 33 Rev. 00

Peak Power (CH High)

R T

Channel Power

Power Spectral Density

18.92 dBm /20.0000 MHz

-54.09 dBm/Hz

draft 802.11n Wide-40 MHz Channel mode

Peak Power (CH Low)

Agilent 22:15:39 May 11, 2009

R T

Channel Power

Power Spectral Density

16.82 dBm /40.0000 MHz

-59.20 dBm/Hz

Page 34 Rev. 00

Peak Power (CH Mid)

* Agilent 22:18:07 May 11, 2009

R T

Channel Power

Power Spectral Density

22.06 dBm /40.0000 MHz

-53.96 dBm/Hz

Peak Power (CH High)

Agilent 22:18:59 May 11, 2009

R T

Channel Power

Power Spectral Density

17.61 dBm /40.0000 MHz

-58.41 dBm/Hz

Page 35 Rev. 00

<u>IEEE 802.11a mode / 5745 ~ 5825MHz</u>

Peak Power (CH Low)

Agilent 19:36:24 May 6, 2009

R T

Channel Power

Power Spectral Density

21.81 dBm /20.0000 MHz

-51.20 dBm/Hz

Peak Power (CH Mid)

Agilent 19:33:22 May 6, 2009

R T

Channel Power

Power Spectral Density

21.58 dBm /20.0000 MHz

-51.43 dBm/Hz

Page 36 Rev. 00

Peak Power (CH High)

Channel Power

Power Spectral Density

21.21 dBm /20.0000 MHz

-51.80 dBm/Hz

draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

Peak Power (CH Low)

Agilent 00:02:53 May 7, 2009

R T

Channel Power

Power Spectral Density

22.01 dBm /20.0000 MHz

-51.00 dBm/Hz

Page 37 Rev. 00

Peak Power (CH Mid)

R T

Channel Power

Power Spectral Density

21.03 dBm /20.0000 MHz

-51.99 dBm/Hz

Peak Power (CH High)

Agilent 23:54:14 May 6, 2009

R T

Channel Power

Power Spectral Density

21.83 dBm /20.0000 MHz

-51.18 dBm/Hz

Page 38 Rev. 00

draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Peak Power (CH Low)

Agilent 02:06:59 May 7, 2009

R T

Channel Power

Power Spectral Density

22.02 dBm /40.0000 MHz

-54.00 dBm/Hz

Peak Power (CH High)

Agilent 02:04:54 May 7, 2009

R T

Channel Power

Power Spectral Density

21.91 dBm /40.0000 MHz

-54.11 dBm/Hz

Page 39 Rev. 00

7.3 AVERAGE POWER

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the average power detection.

TEST RESULTS

No non-compliance noted

Page 40 Rev. 00

Date of Issue: August 26, 2009

Test Data

Test mode: IEEE 802.11b mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	15.14
Mid	2437	15.25
High	2462	15.19

Test mode: IEEE 802.11g mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	14.75
Mid	2437	14.41
High	2462	12.21

Test mode: draft 802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2412	11.76
Mid	2437	14.50
High	2462	11.63

Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	Output Power (dBm)
Low	2422	8.58
Mid	2437	14.54
High	2452	9.90

Page 41 Rev. 00

Test mode: IEEE 802.11a mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	Output Power (dBm)
Low	5745	14.09
Mid	5785	14.26
High	5825	14.32

Test mode: draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	Output Power (dBm)
Low	5745	14.81
Mid	5785	14.06
High	5825	14.23

Test mode: draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Channel	Channel Frequency (MHz)	
Low	5755	14.59
High	5795	14.52

Page 42 Rev. 00

Test Plot

IEEE 802.11b mode

Average Power (CH Low)

* Agilent 21:14:22 May 11, 2009

R T

Channel Power

15.14 dBm /20.0000 MHz

Power Spectral Density

-57.87 dBm/Hz

Average Power (CH Mid)

Agilent 21:11:29 May 11, 2009

R T

Channel Power

Power Spectral Density

15.25 dBm /20.0000 MHz

-57.76 dBm/Hz

Page 43 Rev. 00

Average Power (CH High)

R T

Channel Power

Power Spectral Density

15.19 dBm /20.0000 MHz

-57.82 dBm/Hz

IEEE 802.11g mode

Average Power (CH Low)

R T

14.75 dBm /20.0000 MHz

-58.26 dBm/Hz

Page 44 Rev. 00

Average Power (CH Mid)

🔆 Agilent 21:23:56 May 11, 2009

R T

Channel Power

Power Spectral Density

14.41 dBm /20.0000 MHz

-58.60 dBm/Hz

Average Power (CH High)

Agilent 21:25:14 May 11, 2009

R T

Channel Power

Power Spectral Density

12.21 dBm /20.0000 MHz

-60.80 dBm/Hz

Page 45 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

Average Power (CH Low)

🔆 Agilent 21:47:24 May 11, 2009

R T

Channel Power

Power Spectral Density

11.76 dBm /20.0000 MHz

-61.25 dBm/Hz

Average Power (CH Mid)

Agilent 21:48:43 May 11, 2009

R T

Channel Power

Power Spectral Density

14.50 dBm /20.0000 MHz

-58.51 dBm/Hz

Page 46 Rev. 00

Average Power (CH High)

R T

Channel Power

Power Spectral Density

11.63 dBm /20.0000 MHz

-61.38 dBm/Hz

draft 802.11n Wide-40 MHz Channel mode

Average Power (CH Low)

🔆 Agilent 22:16:23 May 11, 2009

R T

Channel Power

Power Spectral Density

8.58 dBm /40.0000 MHz

-67.44 dBm/Hz

Page 47 Rev. 00

Average Power (CH Mid)

🔆 Agilent 22:17:32 May 11, 2009

R T

Channel Power

Power Spectral Density

14.54 dBm /40.0000 MHz

-61.48 dBm/Hz

Average Power (CH High)

Agilent 22:19:30 May 11, 2009

R T

Channel Power

Power Spectral Density

9.90 dBm /40.0000 MHz

-66.12 dBm/Hz

Page 48 Rev. 00

<u>IEEE 802.11a mode / 5745 ~ 5825MHz</u>

Average Power (CH Low)

🔆 Agilent 19:35:51 May 6, 2009

R T

Channel Power

Power Spectral Density

14.09 dBm /20.0000 MHz

-58.92 dBm/Hz

Average Power (CH Mid)

Agilent 19:34:25 May 6, 2009

R T

Channel Power

Power Spectral Density

14.26 dBm /20.0000 MHz

-58.75 dBm/Hz

Page 49 Rev. 00

Average Power (CH High)

14.32 dBm /20.0000 MHz

Power Spectral Density

-58.69 dBm/Hz

draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

Average Power (CH Low)

Agilent 00:03:42 May 7, 2009 R Т

Channel Power

Power Spectral Density

14.81 dBm /20.0000 MHz

-58.20 dBm/Hz

Page 50 Rev. 00

Average Power (CH Mid)

* Agilent 20:16:51 May 11, 2009

R Т

14.06 dBm /20.0000 MHz

Power Spectral Density

-58.95 dBm/Hz

Average Power (CH High)

Agilent 23:56:16 May 6, 2009

R T

Channel Power

Power Spectral Density

14.23 dBm /20.0000 MHz

-58.78 dBm/Hz

Page 51 Rev. 00

draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Average Power (CH Low)

Agilent 02:06:32 May 7, 2009

R T

Channel Power

Power Spectral Density

14.59 dBm /40.0000 MHz

-61.43 dBm/Hz

Average Power (CH High)

Agilent 02:05:39 May 7, 2009

R T

Channel Power

Power Spectral Density

14.52 dBm /40.0000 MHz

-61.50 dBm/Hz

Page 52 Rev. 00

7.4 BAND EDGES MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

TEST RESULTS

Refer to attach spectrum analyzer data chart.

Page 53 Rev. 00

802.11a Mode

1. Operating Frequency: 5725-5875MHz 2. CH Low: 5745MHz, CH High: 5825MHz

3. 6dB bandwidth: CH Low: 15.58MHz, CH High: 16.50MHz

Because the mentioned conditions, the test is not applicable.

Page 54 Rev. 00

Date of Issue: August 26, 2009

Band Edges (IEEE 802.11b mode / CH Low)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 55 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Page 56 Rev. 00

Band Edges (IEEE 802.11b mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 57 Rev. 00

Detector mode: Average

Polarity: Horizontal

Page 58 Rev. 00

Band Edges (IEEE 802.11g mode / CH Low)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 59 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

Page 60 Rev. 00

Band Edges (IEEE 802.11g mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 61 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Page 62 Rev. 00

Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 63 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Page 64 Rev. 00

Band Edges (draft 802.11n Standard-20 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 65 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Page 66 Rev. 00

Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH Low)

Detector mode: Peak Polarity: Vertical

Detector mode: Average Polarity: Vertical

Page 67 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

🔆 Agilent Mkr1 2.390 0 GHz Ref 122 dBpV #Atten 16 dB 45.44 dB**µ**V #Peak Log 10 dB/ Offst 9 ďΒ DI 54.0 dB₽V LgAv M1 S2 S3 FC A AA £(f): FTun Swp Start 2.310 0 GHz Stop 2.430 0 GHz #Res BW 1 MHz **#VBW 10 Hz** Sweep 9.357 s (601 pts)

Page 68 Rev. 00

Report No.: 90427004-RP2

Date of Issue: August 26, 2009

Band Edges (draft 802.11n Wide-40 MHz Channel mode / CH High)

Detector mode: Peak Polarity: Vertical

Polarity: Vertical Detector mode: Average

Page 69 Rev. 00

Detector mode: Peak Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

Page 70 Rev. 00

7.5 PEAK POWER SPECTRAL DENSITY

LIMIT

1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Date of Issue: August 26, 2009

2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.

 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

Page 71 Rev. 00

Test Data

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-10.37		PASS
Mid	2437	-9.53	8.00	PASS
High	2462	-10.10		PASS

Test mode: IEEE 802.11g

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-11.50		PASS
Mid	2437	-12.33	8.00	PASS
High	2462	-11.26		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-13.23		PASS
Mid	2437	-11.44	8.00	PASS
High	2462	-13.11		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-18.50		PASS
Mid	2437	-12.83	8.00	PASS
High	2462	-16.89		PASS

Page 72 Rev. 00

Date of Issue: August 26, 2009

Test mode: IEEE 802.11a mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	5745	-12.00		PASS
Mid	5785	-10.80	8	PASS
High	5825	-11.03		PASS

Test mode: draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	5745	-11.94		PASS
Mid	5785	-11.43	8	PASS
High	5825	-11.87		PASS

Test mode: draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	5755	-14.95	8	PASS
High	5795	-14.60		PASS

Page 73 Rev. 00

Test Plot

IEEE 802.11b mode

PPSD (CH Low)

PPSD (CH Mid)

Page 74 Rev. 00

PPSD (CH High)

IEEE 802.11g mode

PPSD (CH Low)

Page 75 Rev. 00

Date of Issue: August 26, 2009

PPSD (CH Mid)

PPSD (CH High)

Page 76 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

PPSD (CH Low)

PPSD (CH Mid)

Page 77 Rev. 00

PPSD (CH High)

draft 802.11n Wide-40 MHz Channel mode

PPSD (CH Low)

Page 78 Rev. 00

PPSD (CH Mid)

Center 2.448 250 0 GHz #Res BW 3 kHz

#VBW 10 kHz

Span 300 kHz #Sweep 100 s (601 pts)

Date of Issue: August 26, 2009

PPSD (CH High)

Page 79 Rev. 00

Test mode: IEEE 802.11a mode / 5745 ~ 5825MHz

PPSD (CH Low)

PPSD (CH Mid)

Page 80 Rev. 00

PPSD (CH High)

draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

PPSD (CH Low)

Page 81 Rev. 00

PPSD (CH Mid)

PPSD (CH High)

Page 82 Rev. 00

draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

PPSD (CH Low)

PPSD (CH High)

Agilent 02:01:18 May 7, 2009
R T

Page 83 Rev. 00

7.6 SPURIOUS EMISSIONS

7.6.1 Conducted Measurement

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Date of Issue: August 26, 2009

Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

Page 84 Rev. 00

Test Plot

IEEE 802.11b mode

CH Low

CH Mid

Page 85 Rev. 00

CH High

IEEE 802.11g mode

CH Low

Page 86 Rev. 00

CH Mid

CH High

Page 87 Rev. 00

draft 802.11n Standard-20 MHz Channel mode

CH Low

CH Mid

Page 88 Rev. 00

CH High

draft 802.11n Wide-40 MHz Channel mode

CH Low

Page 89 Rev. 00

CH Mid

CH High

Page 90 Rev. 00

IEEE 802.11a mode / 5745 ~ 5825MHz

CH Low

CH Mid

Page 91 Rev. 00

draft 802.11n Standard-20 MHz Channel mode / 5745 ~ 5825MHz

CH Low

Page 92 Rev. 00

CH Mid

CH High

Page 93 Rev. 00

draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz

CH Low

CH High

Page 94 Rev. 00

7.7 RADIATED EMISSIONS

LIMIT

1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Date of Issue: August 26, 2009

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Page 95 Rev. 00

Test Configuration

Report No.: 90427004-RP2

Below 1 GHz

Above 1 GHz

Page 96 Rev. 00

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

Date of Issue: August 26, 2009

- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 97 Rev. 00

Below 1GHz

Operation Mode: Normal Link Test Date: May 11, 2009

Date of Issue: August 26, 2009

Temperature: 25°C **Tested by:** Nan Tsai **Humidity:** 50 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
59.10	V	41.90	-14.75	27.15	40.00	-12.85	Peak
165.80	V	39.25	-10.61	28.64	43.50	-14.86	Peak
366.27	V	37.28	-7.26	30.02	46.00	-15.98	Peak
432.55	V	35.79	-5.84	29.96	46.00	-16.04	Peak
629.78	V	40.90	-2.39	38.51	46.00	-7.49	Peak
699.30	V	32.50	-2.03	30.47	46.00	-15.53	Peak
165.80	Н	43.20	-10.61	32.58	43.50	-10.92	Peak
233.70	Н	45.63	-9.95	35.68	46.00	-10.32	Peak
366.27	Н	44.10	-7.26	36.84	46.00	-9.16	Peak
432.55	Н	42.02	-5.84	36.18	46.00	-9.82	Peak
629.78	Н	36.74	-2.39	34.35	46.00	-11.65	Peak
830.25	Н	32.24	0.26	32.50	46.00	-13.50	Peak

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Page 98 Rev. 00

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	74.40	50.56	-7.35	67.05	43.21	74.00	54.00	-10.79	AVG
N/A										
1326.67	Н	67.28	47.43	-7.35	59.93	40.08	74.00	54.00	-13.92	AVG
	11	07.20	47.43	-1.55	39.93	40.00	74.00	34.00	-13.92	AVU
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 99 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH Mid Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	72.30	48.36	-7.35	64.95	41.01	74.00	54.00	-12.99	AVG
N/A										
1333.33	Н	63.40	46.69	-7.34	56.06	39.35	74.00	54.00	-14.65	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 100 Rev. 00

Operation Mode: TX / IEEE 802.11b / CH High Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	72.50	49.30	-7.35	65.15	41.95	74.00	54.00	-12.05	AVG
N/A										
1330.00	Н	66.90	46.86	-7.35	59.55	39.51	74.00	54.00	-14.49	AVG
4916.67	Н	49.09		1.01	50.10		74.00	54.00	-3.90	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 101 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Low Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1333.33	V	73.75	49.73	-7.34	66.41	42.39	74.00	54.00	-11.61	AVG
N/A										
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 102 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH Mid Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1333.33	V	70.80	47.21	-7.34	63.46	39.87	74.00	54.00	-14.13	AVG
N/A										
1333.33	Н	68.50	46.98	-7.34	61.16	39.64	74.00	54.00	-14.36	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 103 Rev. 00

Operation Mode: TX / IEEE 802.11g / CH High Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1333.33	V	74.46	49.54	-7.34	67.12	42.20	74.00	54.00	-11.80	AVG
N/A										
1330.00	Н	69.59	48.40	-7.35	62.24	41.05	74.00	54.00	-12.95	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 104 Rev. 00

TX / draft 802.11n Standard-20 MHz Channel

Operation Mode: TAY draft 802.1111 Standard-20 WHZ Channel Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1326.67	V	72.21	49.01	-7.35	64.86	41.66	74.00	54.00	-12.34	AVG
N/A										
1330.00	Н	69.91	48.01	-7.35	62.56	40.66	74.00	54.00	-13.34	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 105 Rev. 00

48 % RH

TX / draft 802.11n Standard-20 MHz Channel Test Date: April 29, 2009 **Operation Mode:**

mode / CH Mid

Date of Issue: August 26, 2009

Polarity: Ver. / Hor.

Temperature: 24°C Tested by: Wolf Huang

Reading Reading Correction Result Result Limit Limit Ant. Pol. Margin Frequency (Peak) (Average) (Peak) Remark (Peak) (Average) Factor (Average) (MHz) (H/V) (dB) (dBuV) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) V 1326.67 70.36 48.36 -7.3563.01 41.01 74.00 54.00 -12.99AVG N/A 1330.00 Η 66.36 48.32 -7.3559.01 40.97 74.00 54.00 -13.03 **AVG** N/A

Remark:

Humidity:

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental 1. frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- Average test would be performed if the peak result were greater than the average limit 3. or as required by the applicant.
- Data of measurement within this frequency range shown "---" in the table above 4. means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Measurements above show only up to 6 maximum emissions noted, or would be lesser, 5. with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) - Average limit (dBuV/m).

Page 106 Rev. 00 Operation Mode: TX / draft 802.11n Standard-20 MHz Channel Test Date: April 29, 2009

mode / CH High

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
V	74.54	49.49	-7.35	67.19	42.14	74.00	54.00	-11.86	AVG
Н	66.67	46.69	-7.35	59.32	39.34	74.00	54.00	-14.66	AVG
	(H/V) V	Ant. Pol. (Peak) (dBuV) V 74.54	Ant. Foi. (Peak) (Average) (dBuV) V 74.54 49.49	Ant. Pol. (H/V) (Peak) (Average) (dBuV) (dBm) V 74.54 49.49 -7.35	Ant. Fol. (Peak) (Average) (BuV) (BuV) (BuV) (BuV) (BuV) (BuV) (Control of the control of the co	Ant. Pol. (H/V) (BuV) (Average) (dBuV) (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m)	Ant. Pol. (H/V) (Peak) (Average) (BuV) (BuV) (H/V) (H/	Ant. Pol. (H/V) (GBuV) (Average) (GBuV) (GBm) (GBuV/m) (G	Ant. Pol. (H/V) (QBuV) (Average) (Average) (QBuV) (QBuV) (QBuV/m)

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 107 Rev. 00

TX / draft 802.11n Wide-40 MHz Channel mode

Date of Issue: August 26, 2009

Operation Mode: 17 dual 802.1111 wide-40 Will Chainlei mode Test Date: April 29, 2009

Temperature:24°CTested by: Wolf HuangHumidity:48 % RHPolarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	72.95	49.53	-7.35	65.60	42.18	74.00	54.00	-11.82	AVG
N/A										
1333.33	Н	71.06	48.94	-7.34	63.72	41.60	74.00	54.00	-12.40	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 108 Rev. 00

Operation Mode: TX / draft 802.11n Wide-40 MHz Channel mode Test Date: April 29, 2009

Date of Issue: August 26, 2009

/ CH Mid

Temperature: 24°C **Tested by:** Wolf Huang **Humidity:** 48 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	72.36	49.36	-7.35	65.01	42.01	74.00	54.00	-11.99	AVG
N/A										
1326.67	Н	66.21	48.21	-7.35	58.86	40.86	74.00	54.00	-13.14	AVG
	11	00.21	40.21	-1.55	36.60	40.80	74.00	34.00	-13.14	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 109 Rev. 00

Operation Mode: TX / draft 802.11n Wide-40 MHz Channel mode / CH High Test Date: April 29, 2009

Date of Issue: August 26, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 48 % RH Polarity: Ver. / Hor.

Frequency (MHz)	Ant. Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1326.67	V	74.12	49.56	-7.35	66.77	42.21	74.00	54.00	-11.79	AVG
N/A										
1222 22	TT	(5.60	47.24	7.24	50.25	40.00	74.00	54.00	14.00	AVIC
1333.33	Н	65.69	47.34	-7.34	58.35	40.00	74.00	54.00	-14.00	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 110 Rev. 00

Tx / IEEE 802.11a mode / 5745 ~ 5825MHz / **Test Date:** April 30, 2009

Date of Issue: August 26, 2009

Operation Mode: CH Low

24°C **Temperature: Tested by:** Wolf Huang 47 % RH **Humidity: Polarity:** Ver. / Hor.

Reading Reading Correction Result Result Limit Limit Ant.Pol. Frequency Margin (Peak) Remark (Peak) Factor (Average) (Peak) (Average) (Average) (MHz) (H/V) (dB) (dBuV) (dBuV) (dB/m)dBuV/m) (dBuV/m) dBuV/m) (dBuV/m) 1063.33 V -7.8448.19 74.00 54.00 -5.81 Peak 56.04 1330.00 V 70.32 -7.35 62.97 74.00 54.00 -15.03 AVG 46.32 38.97 2123.33 V 50.85 -2.0548.81 74.00 54.00 -5.19 Peak 2653.33 V 52.14 -1.1251.03 74.00 54.00 -2.97Peak N/A 1063.33 Η 53.35 -7.8445.51 74.00 54.00 -8.49 Peak 1333.33 Η 66.54 42.37 -7.34 59.20 35.03 74.00 54.00 -18.97 AVG 2133.33 -2.03 54.00 -3.89 Η 52.14 50.11 74.00 Peak Н 49.98 2653.33 51.10 ___ -1.12---74.00 54.00 -4.02Peak N/A

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 111 Rev. 00

Date of Issue: August 26, 2009

Operation Mode: Tx / IEEE 802.11a mode / 5745 ~ 5825MHz / **Test Date:** April 30, 2009

Temperature: 24°C **Tested by:** Wolf Huang

Humidity: 47 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1066.67	V	56.61		-7.84	48.77		74.00	54.00	-5.23	Peak
1326.67	V	72.21	45.32	-7.35	64.86	37.97	74.00	54.00	-16.03	AVG
2126.67	V	50.46		-2.04	48.42		74.00	54.00	-5.58	Peak
2653.33	V	52.04		-1.12	50.92		74.00	54.00	-3.08	Peak
N/A										
1330.00	Н	63.26	42.02	-7.35	55.91	34.67	74.00	54.00	-19.33	AVG
2133.33	Н	52.44		-2.03	50.41		74.00	54.00	-3.59	Peak
2656.67	Н	51.15		-1.11	50.04		74.00	54.00	-3.96	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 112 Rev. 00

Date of Issue: August 26, 2009

Operation Mode: Tx / IEEE 802.11a mode / 5745 ~ 5825MHz / **Test Date:** April 30, 2009

Temperature: 25°C **Tested by:** Wolf Huang

Humidity: 50% RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1066.67	V	58.78		-7.84	50.94		74.00	54.00	-3.06	Peak
1326.67	V	69.59	44.95	-7.35	62.24	37.60	74.00	54.00	-16.40	AVG
2126.67	V	50.06		-2.04	48.02		74.00	54.00	-5.98	Peak
2653.33	V	52.31		-1.12	51.19		74.00	54.00	-2.81	Peak
N/A										
1326.67	Н	66.36	42.23	-7.35	59.01	34.88	74.00	54.00	-19.12	AVG
2123.33	Н	52.39		-2.05	50.34		74.00	54.00	-3.66	Peak
2660.00	Н	50.43		-1.10	49.32		74.00	54.00	-4.68	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 113 Rev. 00

Operation Mode: Tx / draft 802.11n Standard-20 MHz Channel Test Date: May 4, 2009 mode / 5745 ~ 5825MHz / CH Low

Date of Issue: August 26, 2009

Temperature: 23°C **Tested by:** Nan Tsai

Humidity: 49 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1326.67	V	69.73	46.87	-7.35	62.38	39.52	74.00	54.00	-14.48	AVG
2660.00	V	50.90		-1.10	49.80		74.00	54.00	-4.20	Peak
N/A										
1326.67	Н	60.84	42.28	-7.35	53.49	34.93	74.00	54.00	-19.07	AVG
2133.33	Н	51.71		-2.03	49.68		74.00	54.00	-4.32	Peak
2653.33	Н	50.34		-1.12	49.23		74.00	54.00	-4.77	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 114 Rev. 00

Operation Mode: Tx / draft 802.11n Standard-20 MHz Channel **Test Date:** May 4, 2009 mode / 5745 ~ 5825MHz / CH Mid

Temperature: 23°C **Tested by:** Nan Tsai

Humidity: 49 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1330.00	V	68.51	48.18	-7.35	61.16	40.83	74.00	54.00	-13.17	AVG
2666.67	V	51.39		-1.09	50.30		74.00	54.00	-3.70	Peak
11566.67	V	44.24	35.42	14.19	58.42	49.61	74.00	54.00	-4.39	AVG
N/A										
1326.67	Н	62.69	43.62	-7.35	55.34	36.27	74.00	54.00	-17.73	AVG
2123.33	Н	53.56		-2.05	51.52		74.00	54.00	-2.48	Peak
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 115 Rev. 00

Date of Issue: August 26, 2009

Date of Issue: August 26, 2009

Tx / draft 802.11n Standard-20 MHz Channel **Test Date: Operation Mode:**

May 4, 2009 mode / 5745 ~ 5825MHz / CH High

Temperature: 23°C **Tested by:** Wolf Huang

49 % RH Ver. / Hor. **Humidity: Polarity:**

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1326.67	V	63.70	46.17	-7.35	56.35	38.82	74.00	54.00	-15.18	AVG
1863.33	V	51.92		-3.56	48.36		74.00	54.00	-5.64	Peak
2653.33	V	51.76		-1.12	50.64		74.00	54.00	-3.36	Peak
11650.00	V	47.25	35.43	14.35	61.60	49.78	74.00	54.00	-4.22	AVG
N/A										
1326.67	Н	63.88	43.60	-7.35	56.52	36.25	74.00	54.00	-17.75	AVG
2126.67	Н	53.23		-2.04	51.19		74.00	54.00	-2.81	Peak
11650.00	Н	45.21	33.87	14.35	59.56	48.22	74.00	54.00	-5.78	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 116 Rev. 00 **Operation Mode:** Tx / draft 802.11n Wide-40 MHz Channel mode / 5755 ~ 5795MHz / CH Low

Test Date: May 4, 2009

Date of Issue: August 26, 2009

Temperature: 23°C **Tested by:** Nan Tsai **Humidity:** 49 % RH **Polarity:** Ver. / Hor.

Reading Reading Correction Result Result Limit Limit Ant.Pol. Frequency Margin (Peak) Remark (Peak) (Average) Factor (Peak) (Average) (Average) (MHz) (H/V) (dB) (dBuV) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) 1333.33 V 65.82 -7.3458.48 38.81 74.00 54.00 -15.19 AVG 46.15 V 2123.33 -2.0554.00 -5.00Peak 51.04 49.00 74.00 V 2656.67 49.94 -1.11 48.83 74.00 54.00 -5.17 Peak N/A 1333.33 Η 61.58 43.61 -7.3454.24 36.27 74.00 54.00 -17.73 **AVG** 2123.33 Η 54.39 38.63 -2.0552.34 36.58 74.00 54.00 -17.42AVG N/A

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 117 Rev. 00

Tx / draft 802.11n Wide-40 MHz Channel **Operation Mode: Test Date:** May 4, 2009

Date of Issue: August 26, 2009

23°C **Temperature: Tested by:** Nan Tsai

mode / 5755 ~ 5795MHz / CH High

49 % RH **Humidity: Polarity:** Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
1063.33	V	59.23		-7.84	51.39		74.00	54.00	-2.61	Peak
1333.33	V	65.35	46.16	-7.34	58.01	38.82	74.00	54.00	-15.18	AVG
1863.33	V	51.16		-3.56	47.61		74.00	54.00	-6.39	Peak
2653.33	V	50.95		-1.12	49.84		74.00	54.00	-4.16	Peak
11616.67	V	45.52	32.55	14.28	59.80	46.83	74.00	54.00	-7.17	AVG
N/A										
1066.67	Н	53.17		-7.84	45.34		74.00	54.00	-8.66	Peak
1330.00	Н	59.18		-7.35	51.84		74.00	54.00	-2.16	Peak
2123.33	Н	51.55		-2.05	49.50		74.00	54.00	-4.50	Peak
11616.67	Н	46.14	34.37	14.28	60.43	48.65	74.00	54.00	-5.35	AVG
N/A										

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin(dB) = Remark result(dBuV/m) Average limit(dBuV/m).

Page 118 Rev. 00

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to $\S15.207(a)$, except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Date of Issue: August 26, 2009

Frequency Range (MHz)	Limits (dBμV)					
(141112)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				

^{*} Decreases with the logarithm of the frequency.

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page 119 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Date of Issue: August 26, 2009

Test Data

Operation Mode: Normal Link **Test Date:** August 12, 2009

Temperature: 22°C **Tested by:** Snake Shan

Humidity: 45 % RH

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.2500	46.22	35.52	0.08	46.30	35.60	61.76	51.76	-15.46	-16.16	L1
0.3000	41.92	26.92	0.08	42.00	27.00	60.24	50.24	-18.24	-23.24	L1
0.4450	41.93	28.73	0.07	42.00	28.80	56.97	46.97	-14.97	-18.17	L1
3.0200	32.74	16.74	0.06	32.80	16.80	56.00	46.00	-23.20	-29.20	L1
14.4400	39.70	32.50	0.30	40.00	32.80	60.00	50.00	-20.00	-17.20	L1
16.0550	37.56	30.26	0.34	37.90	30.60	60.00	50.00	-22.10	-19.40	L1
0.2400	36.10	27.40	0.10	36.20	27.50	62.10	52.10	-25.90	-24.60	L2
0.3500	41.51	30.11	0.09	41.60	30.20	58.96	48.96	-17.36	-18.76	L2
0.4500	41.22	30.02	0.08	41.30	30.10	56.88	46.88	-15.58	-16.78	L2
2.7200	40.52	35.62	0.08	40.60	35.70	56.00	46.00	-15.40	-10.30	L2
4.1100	38.31	34.71	0.09	38.40	34.80	56.00	46.00	-17.60	-11.20	L2
14.0100	30.60	25.10	0.20	30.80	25.30	60.00	50.00	-29.20	-24.70	L2

Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz;
- 4. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$

Page 120 Rev. 00

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 121 Rev. 00

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Date of Issue: August 26, 2009

EUT Specification

EUT	7" UMPC
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	EEE 802.11b mode: 18.19 dBm(65.92 mW) IEEE 802.11g mode: 22.23 dBm(167.11 mW) draft 802.11n Standard-20 MHz Channel mode: 21.97 dBm(157.40 mW) draft 802.11n Wide-40 MHz Channel mode: 22.06 dBm(610.69 mW)
Antenna gain (Max)	2.13 dBi (Numeric gain: 1.63)
Evaluation applied	
Remark: 1. The maximum output p gain.)	ower is <u>22.23 dBm (167.11mW) at 2412MHz (with 1.63 numeric antenna</u>
2. \overline{DTS} device is not subjection	ect to routine RF evaluation; MPE estimate is used to justify the compliance. ation transmitters, no SAR consideration applied. The maximum power

density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Remark:

Please refer to the separated SAR report.

Page 122 Rev. 00

7" UMPC **EUT** WLAN: 2.412GHz ~ 2.462GHz Frequency band WLAN: 5.745GHz ~ 5.825GHz (Operating) Others: Bluetooth: 2.402GHz ~ 2.480GHz Portable (<20cm separation) Mobile (>20cm separation) **Device category** Others Occupational/Controlled exposure (S = 5 mW/cm2) ☐ General Population/Uncontrolled exposure **Exposure classification** (S=1 mW/cm2)Single antenna Multiple antennas Tx diversity **Antenna diversity** Rx diversity Tx/Rx diversity IEEE 802.11a mode / 5745 ~ 5825MHz: 21.81 dBm (151.71mW) draft 802.11n Standard-20 MHz Channel mode: 22.01 dBm (158.85mW) Max. output power draft 802.11n Wide-40 MHz Channel mode: 22.02 dBm (159.22mW) Antenna gain (Max) 3.56 dBi (Numeric gain: 2.27) MPE Evaluation **Evaluation applied** SAR Evaluation* N/A Remark: 1. The maximum output power is <u>22.02dBm (159.22mW) at 5755MHz</u> (with <u>2.27numeric antenna</u> gain.) 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance. 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Remark:

Please refer to the separated SAR report.

Page 123 Rev. 00

Date of Issue: August 26, 2009