# MACHINE LEARNING FYS-STK 4155

PROJECT 1
KARI ERIKSEN

#### Abstract

Here is my abstract going to be

#### Introduction

One of the simples models within the field of machine learning and statistical learning is linear regression. Because of its simplicity and the fact that it forms the base of many other more advanced methods it is highly recommended to understand it.

In this project we are studying several linear regression methods, the ordinary least square, Ridge regression and last the Lasso regression. Our first approach to understand these methods is to test them on the Franke function 1, a two-dimensional function which is widely used on testing interpolation and fitting algorithms. We evaluate our models abillity to predict the outcome(solution) using a resampling method called bootstrap and explore statistical errors such as bias, variance and Mean Square Error (MSE). All methods are explained in the sections below.

At last we will be using real data from a website that provides terrain data over the earth, https://earthexplorer.usgs.gov/, and test out method on these.

### Theory

The Franke function is a two-dimensional function consisting of a sum of four exponatials, eq. 1. This will be the function which we will generate data from to feed our regression models. We define it for  $x, y \in [0, 1]$ .

It can be seen represented as a surface plot in figure 1.

$$f(x,y) = \frac{3}{4} \exp\left(-\frac{(9x-2)^2}{4} - \frac{(9y-2)^2}{4}\right) + \frac{3}{4} \exp\left(-\frac{(9x+1)^2}{49} - \frac{(9y+1)}{10}\right) + \frac{1}{2} \exp\left(-\frac{(9x-7)^2}{4} - \frac{(9y-3)^2}{4}\right) - \frac{1}{5} \exp\left(-(9x-4)^2 - (9y-7)^2\right)$$
(1)

### Regression methods

#### Linear Regression

Linear regression is a method in statistics that predicts the response of one or several explanatory variables. At its simplest form we could try to find the stright line between two points. This equation is fairly simple.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\epsilon} \tag{2}$$

Here  $\hat{y}$  is a dependent variable, the outcome, x is an independent variable, or the predictor, and  $\hat{\beta}_0$  and  $\hat{\beta}_1$  the intercept and slope respectively.  $\epsilon$  is the error in our prediction. The solution for  $\hat{\beta}_0$  and  $\hat{\beta}_1$  in this problem is best found with least square and is also fairly easy.

If we had several predictors we could extend our problem to a more general case.



Figure 1: Surface plot of Franke function for  $x, y \in [0, 1]$  generated with python code given in the assignment paper.

$$\hat{y} = f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j$$
 (3)

Now X is a vector containing all predictors,  $X^{\top} = \{X_0, X_1, X_2, X_3, ..., X_p\}$ ,  $\beta_0$  is the intercept and  $\beta_j$  is a vector keeping all coefficients for each predictor, the parameters we are searching for.  $\hat{y}$  is the predicted values of y = f(X). Moving  $\beta_0$  to the  $\beta$  – vector and adding an extra column with 1's to the design matrix  $X^{\top}$  we can reduce the problem to vector form and get the following. We will make use of this notation when finding solutions using least square etc.

$$\hat{y} = \hat{X}\hat{\beta} + \epsilon \tag{4}$$

In our case we want to search for a solution that is non-linear, as the Franke function 1 is not linear. Instead we must look for a polynomial of higher degree. For the i'th y-value the equation is given below.

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \dots + \beta_d x_i^d$$
 (5)

For this problem the design matrix will look like the following.

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ 1 & x_2 & x_2^2 & \dots & x_2^d \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_i & x_i^2 & \dots & x_i^d \end{bmatrix}$$
(6)

In addition our function depends on both x and y, so we have two variable that have polynomail features. These may also have interacting terms and therefore we must add interaction between the two variables. Thus our design matrix up to degree d looks like eq 7.

$$\mathbf{X} = \begin{bmatrix} 1 & x_1 & y_1 & x_1^2 & x_1 y_1 & y_1^2 & \dots & y_1^d \\ 1 & x_2 & y_2 & x_2^2 & x_2 y_2 & y_2^2 & \dots & y_2^d \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_i & y_i & x_i^2 & x_i y_i & y_i^2 & \dots & y_i^d \end{bmatrix}$$
(7)

This is the matrix we use to solve our problem at hand, and denpending on the matrix having full column rank and the propertie  $\mathbf{X}\mathbf{X}^{\top}$  being postive definit we will look at separate methods for finding solutions.

## Ordinary Least Square

The least square methods

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - x_i^{\mathsf{T}} \beta)^2$$
(8)

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\beta)$$
(9)

$$\frac{\partial RSS(\beta)}{\partial \beta} = 0 = -2\mathbf{X}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\beta)$$
 (10)

$$\mathbf{X}^{\mathsf{T}}\mathbf{y} - \mathbf{X}^{\mathsf{T}}\mathbf{X}\beta = 0 \tag{11}$$

$$\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \tag{12}$$

### Ridge Regression

$$\hat{y} = \hat{X}\hat{\beta} + \epsilon \tag{13}$$

$$\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I}_{pp})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$
(14)

### Lasso Regression

# Resampling method

## ${\bf Bootstrap}$

Evaluate some statistical estimates

### Results

Hope I get some results...

### Discussion

..to discuss.