NARULA INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

B.TECH/CSE /EVEN/4th SEM / CS402/2020-2021 PAPER TYPE: REGULAR/ SUPPLE(R18) YEAR: 2021

DESIGN AND ANALYSIS OF ALGORITHMS CS402

TIME ALLOTTED: 3 HOURS FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

1. Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

SL. NO.	Question	CO No.	Marks
(i)	Linked lists are not suitable for	1	1
	(A) Insertion sort		
	(B) Binary search		
	(C) Radix sort		
(ii)	(D) Polynomial manipulation Average successful search time for sequential search on 'n' items	4	1
(11)	Average successful search time for sequential search on 'n' items is	7	1
	(A) n/2		
	(B) $(n-1)/2$		
	(C) (n+1)/2		
	(D) n^2		
(iii)	In Randomized Quick sort, the expected running time of any	4	1
	input is		
	(A) O(n)		
	$(B) O(n^2)$		
	(C) $O(n \log n)$ (D) $O(n^3)$		
(iv)	kruskal's algorithm uses and prim's algorithm uses	3	1
(21)	in determining the MST		-
	(A) edges, vertex		
	(B)vertex, edges		
	(C)edges, edges		
	(D)vertex, vertex		
(v)	$T(n) = 2T(n/2) + (n/\log n)$ then $T(n) =$	4	1
	$(A) \Theta (n \log n)$		
	(B) Θ (n log (n log n))		
	(C) Θ (n ² log (n log n)) (D) Θ (n ² log n)		
(vi)	"In which of the following cases n-queen problem does not	1	1
(11)	exist"	1	1
	(A) $n=2$ and $n=4$		
	(B) n=4 and n=6		
	(C) $n=2$ and $n=3$		
	(D) n=4 and n=8"		
(vii)	If each node in a tree has value greater than every value in its	3	1
	left sub tree and value less than every value in its right sub tree,		
	the tree is known as		

NARULA INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT

	(A) complete tree(B) full binary tree(C) binary search tree		
(viii)	(D) threaded tree The depth of a complete binary tree with 'n' nodes is	4	1
()	(A) log (n+1)-1	·	
	(A) log (n+1)-1 (B) log n		
	(C) $\log (n-1) + 1$		
	$(D) \log n + 1$		
(ix)	The running time of Dijkastra's algorithm is-	2	1
(111)	(A) O(V2)	_	-
	(B) O(V+E)		
	$(C) O(n \log n)$		
	(D) all of the above"		
(x)	Given 2 sorted lists of size 'm' and 'n' respectively. Number of	2	1
. ,	comparisons needed in the worst case by the merge sort		
	algorithm will be		
	(A) mn		
	$(B) \max(m,n)$		
	$(C) \min(m,n)$		
	(D) m+n-1		
(xi)	Which of the following best described sorting?	3	1
	(A) Accessing and processing each record exactly once		
	(B) Finding the location of the record with a given key		
	(C) Arranging the data in some given order		
	(D) Adding a new record to the data structure		
(xii)	Find an optimal parenthesization of a matrix chain product	1	1
	whose sequence of dimension s is $\langle 5,4,3 \rangle$ (for three matrices)		
	(A) 125		
	(B) 130		
	(C) 135		
	(D) 140		

$GROUP - B^*$ (Short Answer Type Questions)

Answer any *three* from the following: $3 \times 5 = 15$

SL	. NO.		CO No.	Marks
2.	(a)	Describe the role of space complexity and time complexity of a Program?	1	3
	(b)	Explain quick sort algorithm and simulate it for the following data 20, 5,10,16,54,21	1	2
3.		Illustrate quick sort algorithm and discuss its best case and average case time complexity	1	5
4.		Construct a max-heap using the above algorithm with the following data. <14,16,11,10,3,7,2,9,4,8,1>	2	5
5.	(a)	What is order of growth?, Explain.	2	3
	(b)	What is meant by 'divide and conquer'.	3	2
6.	(a)	Define Class P and NP problem.	2	2

NARULA INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT

Show that C-SAT problem is NP Complete problem (b)

3

$\mathbf{GROUP} - \mathbf{C}^*$ (Long Answer Type Questions)

Answer any *three* from the following: $3 \times 15 = 45$

SI	L. NO.		CO No.	Marks
7.	(a)	Define Ω -notation.	2	2
	(b)	Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst case running time is $O(g(n))$ and its best case running time is $\Omega(g(n))$.	4	5
	(c)	Explain how do you solve the Job sequencing with deadline by greedy approach.	2	8
8.	(a)	Discuss activity selection problem for job sequencing	1	4
	(b)	Solve the recurrence $T(n)=3T(n/2)+n$ by substitution method	2	5
	(c)	Differentiate the main features of greedy method and dynamic programming.	2	6
9.	(a)	Write a Matrix Chain Multiplication Algorithm to find the optimal parenthesis for given n numbers of matrices. What is the time complexity?	3	8
	(b)	Find an optimal solution of parenthesization of a matrix-chain Multiplication whose sequence of dimension {4, 10, 3, 12, 20, and 7}.	2	7
10.	(a)	What do you mean by recursion tree?	1	3
	(b)	Write non deterministic algorithm for sorting and searching	1	7
	(c)	Using KRUSKAL's algorithm find the Minimal Spanning Tree of the following graph. (a) 8 7 4 9 14 e 10 10 10 10 10 10 10 10 10 10 10 10 10	2	5
11.	(a)	Explain the Strassen's Matrix Multiplication algorithm using Divide and Conquer approach	3	7
	(b)	Consider the following instance of the Knapsack Problem: n=4 Weight Vector =(20,18,10,15) and Profit Vector =(36,40,60,50) Knapsack Capacity is 25. Find the optimal solution of the problem using above algorithm.	2	8