

HCC/HCF4026B HCC/HCF4033B

DECADE COUNTERS/DIVIDERS WITH DECODED 7-SEGMENT DISPLAY OUTPUTS

WITH; DISPLAY ENABLE 4026B RIPPLE BLANKING 4033B

- COUNTER AND 7-SEGMENT DECODING IN ONE PACKAGE
- EASILY INTERFACED WITH 7-SEGMENT DIS-PLAY TYPES
- FULLY STATIC COUNTER OPERATION : DC TO 6MHz (typ.) AT V_{DD} = 10V
- IDEAL FOR LOW-POWER DISPLAYS
- DISPLAY ENABLE OUTPUT 4026B
- "RIPPLE BLANKING" AND LAMP TEST 4033B
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATING
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4026B/4033B (extended temperature range) and HCF4026B/4033B (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF4026B and HCC/HCF4033B each consist of a 5-stage Johnson decade counter and an output decoder which converts the Johnson code to a 7-segment decoded output for driving one stage in a numerical display. These devices are particularly advantageous in display applications where low power dissipation and/or low package count are important. Inputs common to both types are CLOCK, RESET, & CLOCK INHIBIT; common outputs are CARRY OUT and the seven decoded outputs (a, b, c, d, e, f, g). Additional inputs and outputs for the HCC/HCF4026B include DISPLAY ENABLE input and DISPLAY ENABLE and UNGATED "C-SEGMENT" outputs. Signals peculiar to the HCC/HCF4033B are RIPPLE-BLANKING INPUT AND LAMP TEST INPUT and a RIPPLE-BLANK-ING OUTPUT. A high RESET signal clears the de-

June 1989 1/15

cade counter to its zero count. The counter is advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. Antilock gating is provided on the JOHNSON counter, thus assuring proper counting sequence. The CARRY-OUT (Cout) signal completes one cycle every ten CLOCK INPUT cycles and is used to clock the succeeding decade directly in a multi-decade counting chain. The seven decoded outputs (a, b, c, d, e, f, g) illuminate the proper segments in a seven segment display device used for representing the decimal numbers 0 to 9. The 7-segment outputs go high on selection in the HCC/HCF4033B; in the HCC/-HCF4026B these outputs go high only when the DISPLAY ENABLE IN is high.

HCC/HCF4026B - When the DISPLAY ENABLE IN is low the seven decoded outputs are forced low regardless of the state of the counter. Activation of the display only when required results in significant power savings. This system also facilitates implementation of display-character multiplexing. The CARRY OUT and UNGATED "C-SEGMENT" signals are not gated by the DISPLAY ENABLE and therefore are available continuously. This feature is a requirement in implementation of certain divider functions such as divide-by-60 and divide-by-12.

HCC/HCF4033B - The HCC/HCF4033B has provisions for automatic blanking of the non-significant zeros in a multi-digit decimal number which results in an easily readable display consistent with

normal writing practice. For example, the number 0050.07000 in an eight digit display would be displayed as 50.07. Zero suppression on the integer side is obtained by connecting the RBI terminal of the HCC/HCF4033B associated with the most significant digit in the display to a low-level voltage and connecting the RBO terminal of that stage to the RBI terminal of the HCC/HCF4033B in the next-lower significant position in the display. This procedure is continued for each succeeding HCC/HCF4033B on the integer side of the display. On the fraction side of the display the RBI of the HCC/HCF4033B associated with the least significant bit is connected to a low-level voltage and the RBO of that HCC/-HCF4033B is connected to the RBI terminal of the HCC/HCF4033B in the next more-significant-bit position. Again, this procedure is continued for all HCC/HCF4033B's on the fraction side of the display. In a purely fractional number the zero immediately preceding the decimal point can be displayed by connecting the RBI of that stage to a high level voltage (instead of to the RBO of the next more-significant-stage). For example : optional zero \rightarrow 0.7346. Likewise, the zero in a number such as 763.0 can be displayed by connecting the RBI of the HCC/HCF4033B associated with it to a high-level voltage. Ripple blanking of non-significant zeros provides an appreciable savings in display power. The HCC/HCF4033B has a LAMP TEST input which, when connected to a high-level voltage, overrides normal decoder operation and enables a check to be made on possible display malfunctions by putting the seven outputs in the high state.

2/15

FUNCTIONAL DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
V _i	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I _I	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T _{op} = Full Package-temperature Range	200	mW mW
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storasge Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
Vı	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C

^{*} All voltages values are referred to V_{SS} pin voltage.

LOGIC DIAGRAMS

TIMING DIAGRAMS

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			1	est Con	dition	s	Value							
Symbol	Parame	ter	Vı	٧o	I o	V _{DD}	TL	ow*		25°C		T _{Hi}	igh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	нсс	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
		шог	0/ 5			5		20		0.04	20		150	
		HCF Types	0/10			10		40		0.04	40		300	
		1) 00	0/15			15		80		0.04	80		600	
V _{OH}	Output High	า	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	ı	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3] v
				13.5/1.5	< 1	15		4			4		4	
l _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
l _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	Types	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		IIIA
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		1,7003	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	μΑ
	Current	HCF Types	0/15	,	10.000	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	F-7 .
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^(*) $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is 0.3%/°C, all input rise and fall times = 20ns)

Councile and	Donomoton.	Test Conditions					
Symbol	Parameter		V _{DD} (V)	Min.	Тур.	Max.	Unit
CLOCKE	D OPERATION						
t _{PLH} , t _{PHL}	Propagation Delay Time		5		250	500	
	Carry Out Line		10		100	200	ns
			15		75	150	
t _{PLH} , t _{PHL}	Propagation Delay Time		5		350	700	
	Decode Out Lines		10		125	250	ns
			15		90	180	
t_{THL}, t_{TLH}	Transition Time		5		100	200	
	Carry Out Line		10		50	100	ns
			15		25	50	
f _{CL} *	Maximum Clock Input Frequency		5	2.5	5		
			10	5.5	11		MHz
			15	8	16		
t _{WC}	Clock Pulse Width		5		110	270	
			10		50	100	ns
			15		40	80	
t _r , t _f	Clock Input Rise or Fall Time		5				
			10 15	ι	Unlimited		
DESET (OPERATION		15				
	Propagation Delay Time		5		275	550	
t _{PLH} ,	Carry Out Line		10		120	240	ns
	·		15		80	160	113
t _{PLH} , t _{PHL}	Propagation Delay Time		5		300	600	
TPLH, TPHL	Decode Out Lines		10		125	250	ns
			15		90	180	113
t _{WR}	Reset Pulse Width		5		100	120	
·WR	NOSCE LUISE VVIGITI		10		50	100	ns
			15		25	50	113
t _{rem}	Reset Removal Time		5		0	30	
rem	Neset Nemoval Time		10		0	15	ns
			15		0	10	113
			10		U	10	

^{*} Measured with respect to carry output line.

Typical Output Low (sink) Current.

Typical Output High (source) Current Characteristics.

TYPICAL APPLICATIONS

Interfacing with Filament Fluorescent Display.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Detail of Typical Flip-flop Stage for Both Types.

TYPICAL APPLICATIONS (continued)

Interfacing with LED Displays (display common anode).

DISPLAY
ENABLE

CONTROL

CLOCK

PRESET

VDO = 5V (MIN)

Ig = 20 ArmA

Fig = 20 Ar

(Display Common Cathode).

Interfacing with NIXIE Tube.

Interfacing with Liquid Cristal Displays.

TEST CIRCUITS

Quiescent Device Current.

Input Voltage.

Input Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.