

Self-introduction

- Yuanyi Luo
- Fourth-year PhD candidate
- Interest in multimodal machine learning and pattern recognition
- Researching on multimodal graph representation

Three Questions of Today's Lecture

clarify many complex

relationships in our lives?

learning?

Unstructured data

Telling stories

Linear structure

Linear structure

Tree structure

Hierarchical data

Graph structure

- Complex networks with multiple interconnections
- Graph provides us with a convenient way to make choices
- Graphs aren't bound by rigid structural principles
- Graphs serve as the ideal tool for visualizing these connections in a clear and comprehensive manner

Graph structure

Graph example - Twitter

Small network of Twitter users User name: Billy User User **FOLLOWS** name: Ruth name: Harry **FOLLOWS**

Graph example - Twitter

 Add new nodes without any rigid structured principles

Expand the graph to include the messages

Property graph model

- The most common form of graph model is the property graph model, whereby:
 - The graph contains nodes and relationships.
 - A node may have zero or more properties (key-value pairs).
 - Nodes can be labelled with one or more labels.
 - Relationships can be named and directed, and always have a start and end node.
 - Relationships can also contain properties.

Labels and Relationships

- The graph on the right is a more complex example of a social network.
- Note that the relationships between entities do not exhibit uniformity.
- New nodes and relationships were added without compromising the existing network or migrating data (flexibility).

Graph for searching

Connected Papers: a graph-based tool for finding scientific papers

Answer the first question

What should we do if we want to summarize and clarify many complex relationships in our lives?

The definition of a graph

 A graph is a collection of vertices and edges, also known as nodes and relationships.

The definition of a graph

Undirected graph

directed graph

The definition of a graph

different weights of graphs have different means

Second Questions of Today's Lecture

Graph Database Management Systems

- A graph database management system features a CRUD (Create, Read, Update, Delete) interface.
- They are built for use with OLTP (online transactional processing) systems.
- Graph databases have two key properties:
 - The **underlying storage** (*native graph storage* vs serialized storage).
 - The processing engine (most Graph DBs feature index-free adjacency, meaning nodes point to each other in the underlying database).

Graph Compute Engines

- A graph compute engine enables global graph computational algorithms to be run against large datasets.
- They are optimised for processing information in batches, similarly to OLAP (online analytical processing).

Graph structure

1 - Performance

- Graph databases have excellent performance on queries involving highly-connected data.
- The execution time for each query is proportional only to the size of the **part of the graph** traversed to satisfy the query, rather than the size entire graph.

Depth	RDBMS execution time(s)	Neo4j execution time(s)	Records returned
2	0.016	0.01	~2500
3	30.267	0.168	~110,000
4	1543.505	1.359	~600,000
5	Unfinished	2.132	~800,000

Above: an experiment finding friends of friends in an RDBMS vs in Neo4j.

2 - Flexibility

- We often need to modify an existing database, such as capturing a new type of relationship between two entities, or adding a new property.
- Graphs are naturally additive, meaning we can add new kinds of relationships, new nodes, labels and subgraphs without affecting existing queries.
- This means we don't have to model our domain ahead of time, and can update our graph ad hoc.

2 - Flexibility

Graph databases are excellent at combining data from across multiple domains:

3 - Agility

 Graph databases are schema-free, rapidly speeding up development.

 Graph databases do not adhere to the ACID principle (Atomicity, Consistency, Isolation, Durability) of relational databases.

Second Questions of Today's Lecture

Multimodal learning

Multimodal learning tasks

The problems of Multimodal learning

This part of my life is called "Happiness"

Different schema

Unclear relationship semantics

I am so happy

I am so happy

The problems of Multimodal learning

Multimodal datasets

Different schema

Unclear relationship semantics

Knowledge graph

Property graph

Knowledge graph

Multimodal learning with graph

Summary

 A graph is data structure that depicts key relationships and patterns within complex datasets.

 A graph database is a specialized data management system optimized for storing, querying, and analyzing interconnected data represented as graphs.

 If you want to analyze multimodal datasets that contains complex relationship semantics between different modalities, knowledge graph may be a good data representation method.