Changes in notations Linear Transformations 2D Maps

Week 8: Linear Transformations and 2D Maps

Table of contents

- Changes in notations
- 2 Linear Transformations
- 3 2D Maps
 - Projection in 2D
 - Reflection in 2D

Vectors and points with the same notation

- From now on, both points and vectors are denoted by columns.
 - The point P is identified with vector $\vec{u} = \overrightarrow{OP}$.
 - The vector $\vec{u} = \overrightarrow{OP}$ is identified with the endpoint P.

Vectors and points with the same notation

- ullet For example, $ec{u}=egin{bmatrix} 2\\1\\2 \end{bmatrix}$ can be viewed both as
 - the point with

x-coordinate
$$= 0$$
, y-coordinate $= 1$, z-coordinate $= 2$,

② or a vector starts at the origin O and ends at the point $P = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

Abbreviation

ullet In \mathbb{R}^2

$$\vec{x}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$

 \bullet In \mathbb{R}^3

$$\vec{x}_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Vector equation of lines in \mathbb{R}^2

ullet Line through $ec{x}_0$ with direction $ec{d}$

$$\vec{x} = \vec{x}_0 + t\vec{d}$$

• Line through \vec{x}_0 with normal \vec{n}

$$\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0$$

Vector equation of lines in \mathbb{R}^2

ullet Line through $ec{x}_0$ with direction $ec{d}$

$$\vec{x} = \vec{x}_0 + t\vec{d}$$

• Line through \vec{x}_0 with normal \vec{n}

$$\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0$$

• Special case: Lines through the origin $O=\tilde{0}$ through the origin with direction \vec{d} through the origin with normal \vec{n}

Vector equation of lines and planes in \mathbb{R}^3

ullet Line through $ec{x}_0$ with direction $ec{d}$

$$\vec{x} = \vec{x}_0 + t\vec{d}$$

- Planes in \mathbb{R}^3
 - **1** Plane through \vec{x}_0 with direction vectors \vec{u}, \vec{v}

$$\vec{x} = \vec{x}_0 + s\vec{u} + t\vec{v}$$

2 Plane through \vec{x}_0 with normal vector \vec{n}

$$\vec{n} \cdot (\vec{x} - \vec{x}_0) = 0$$

Linear transformations

A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a **linear transformation** if it

preserves addition

$$T(\vec{x}+\vec{y}) = T(\vec{x}) + T(\vec{y})$$
 for any $\vec{x}, \vec{y} \in \mathbb{R}^n$

2 preserves scalar multiplication

$$T(c\vec{x}) = cT(\vec{x})$$
 for any scalar c and $\vec{x} \in \mathbb{R}^n$

(a) Show that the following map $T:\mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x - y \\ 2x + y \\ 3x - 4y \end{bmatrix}$$

Solution. There are 2 things to check

 $oldsymbol{0}$ T preserves addition

$$T\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}\right) + T\left(\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right)?$$

2 T preserves scalar multiplication

$$T\left(c\begin{bmatrix}x\\y\end{bmatrix}\right) = cT\left(\begin{bmatrix}x\\y\end{bmatrix}\right)?$$

(b) Verify
$$T(\vec{x})=egin{bmatrix}1&-1\\2&1\\3&-4\end{bmatrix}\vec{x}$$
 for any $\vec{x}\in\mathbb{R}^2$

Prove that the map $T:\mathbb{R}^2\to\mathbb{R}^2$ defined as follows is not linear

$$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y \end{bmatrix}$$

Comment

• Soon, we will learn that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear \Leftrightarrow each component

in
$$T\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 is a **linear combination** of x_1,\ldots,x_n

$$T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

Comment

• Soon, we will learn that $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear \Leftrightarrow each component

in
$$T \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 is a **linear combination** of x_1, \dots, x_n

$$T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

$$\bullet \text{ Put } M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \Rightarrow T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = M \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrix multiplication \Rightarrow linear map

Theorem 1

Let M be an $m \times n$ matrix. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is defined by

$$T(\vec{x}) = M\vec{x},$$

then T is a linear transformation.

Proof. We need to verify that

 $oldsymbol{0}$ T preserves addition and

 $\mathbf{2}$ T preserves scalar multiplication

Example 3: Reflections in \mathbb{R}^2

The reflections about the x-axis and about the line y=x are both linear.

Example 4: Orthogonal projections

The orthogonal projections onto the x-axis in \mathbb{R}^2 and the orthogonal projection onto xy-plane in \mathbb{R}^3 are both linear

Example 5: Rotation in \mathbb{R}^2

The counter-clockwise rotation by angle θ is linear

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}$$

Linear transformation ⇔ matrix multiplication

Theorem 2

The map $T:\mathbb{R}^n\to\mathbb{R}^m$ is a linear transformation if and only if there exists an $m\times n$ matrix M such that

$$T(\vec{x}) = M\vec{x}$$
 for all $\vec{x} \in \mathbb{R}^n$

The matrix M is called the **matrix representation** of T.

Comments

There are 2 parts in the statement of Theorem 2.

- ② If T is linear, there is a matrix $M \in M_{m \times n}(\mathbb{R})$ such that

$$T(\vec{x}) = M\vec{x}$$

Matrix of linear transformation

Lemma 1

If $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation defined by

$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{pmatrix},$$

then $T\vec{x} = M\vec{x}$ with

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Standard unit vectors

In \mathbb{R}^n , there are n standard unit vectors $ec{e}_1, ec{e}_2, \ldots, ec{e}_n$

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Standard unit vectors

In \mathbb{R}^n , there are n standard unit vectors $ec{e}_1, ec{e}_2, \ldots, ec{e}_n$

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

ullet In \mathbb{R}^2

$$ec{e}_1 = ec{i} = egin{pmatrix} 1 \ 0 \end{pmatrix}, \ ec{e}_2 = ec{j} = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

ullet In \mathbb{R}^3

$$\vec{e_1} = \vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{e_2} = \vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ \vec{e_3} = \vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Matrix of linear transformation

Lemma 2

Assume $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Let M be the $m \times n$ matrix with columns $T(\vec{e}_1), T(\vec{e}_2), \dots, T(\vec{e}_n)$

$$M = [T(\vec{e}_1) \ T(\vec{e}_2) \ \cdots \ T(\vec{e}_n)]$$

Then

$$T(\vec{x}) = M\vec{x}$$
 for all $\vec{x} \in \mathbb{R}^n$.

Comment on Lemma 2

There are 2 steps in finding the matrix of linear $T: \mathbb{R}^n \to \mathbb{R}^m$

1 Let $\vec{e}_1, \ldots, \vec{e}_n$ be standard unit vectors of \mathbb{R}^n . Compute

$$T(\vec{e}_1),\ldots,T(\vec{e}_n)$$

② Form the matrix M having $T(\vec{e}_1), \ldots, T(\vec{e}_n)$ as columns

$$M = [T(\vec{e}_1) \cdots T(\vec{e}_n)].$$

(a) Find the matrix of the linear transformation $T:\mathbb{R}^2 \to \mathbb{R}^2$ with

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix}, \ T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}3\\1\end{pmatrix}$$

(b) Find
$$T \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $T \begin{pmatrix} 3 \\ 5 \end{pmatrix}$?

(a) Find the matrix of the linear transformation $T:\mathbb{R}^3 \to \mathbb{R}^2$ with

$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix}, \ T\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}3\\1\end{bmatrix}, \ T\begin{bmatrix}0\\1\\1\end{bmatrix} = \begin{bmatrix}4\\4\end{bmatrix}$$

(b) Find
$$T \begin{pmatrix} 3 \\ 5 \\ -7 \end{pmatrix}$$
?

Summary on matrix of linear transformation

• $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear \Leftrightarrow there exists an $m \times n$ matrix M:

$$T(\vec{x}) = M\vec{x}$$

 ${\it M}$ is called the matrix representation of ${\it T}$.

Summary on matrix of linear transformation

ullet There are 2 ways to determine M

Summary on matrix of linear transformation

ullet There are 2 ways to determine M

2 If $\vec{e}_1, \dots, \vec{e}_n$ are standard unit vectors of \mathbb{R}^n , then

$$M = [T(\vec{e}_1) \ T(\vec{e}_2) \ \cdots \ T(\vec{e}_n)]$$

Summary on linear transformations in 2D

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$$

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix}$$
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}$

A useful identity

Lemma 3

If $\vec{a}, \vec{x}, \vec{b}$ are in \mathbb{R}^n , then

$$(\vec{a}\cdot\vec{x})\vec{b}=\vec{b}\vec{a}^T\vec{x}$$

In particular we have

$$(\vec{a}\cdot\vec{x})\vec{b}=M\vec{x}$$
 with $M=\vec{b}\vec{a}^T$

A useful identity

Lemma 3

If $\vec{a}, \vec{x}, \vec{b}$ are in \mathbb{R}^n , then

$$(\vec{a}\cdot\vec{x})\vec{b}=\vec{b}\vec{a}^T\vec{x}$$

In particular we have

$$(\vec{a} \cdot \vec{x})\vec{b} = M\vec{x}$$
 with $M = \vec{b}\vec{a}^T$

- $\vec{a} \cdot \vec{x}$ is a number $\Rightarrow (\vec{a} \cdot \vec{x}) \vec{b}$ is a scalar multiple of \vec{b}
- ullet $Mec{x}$ is multiplication of the matrix $M=ec{b}ec{a}^T$ by the vector $ec{x}$

Given $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Express the orthogonal projection $\operatorname{proj}_{\vec{b}}(\vec{x})$ as a matrix multiplication, that is, find the matrix M such that

$$\operatorname{proj}_{\vec{b}}(\vec{x}) = M\vec{x}$$

2D maps

- We will discuss the following 2D maps
 - Operation Projection
 - 2 Reflection
 - Scaling
 - Rotation
 - Shear
- All these are linear transformations.

We aim to find the matrix representations of these maps.

Projections in \mathbb{R}^2

Let l be a line through the origin. There are 2 types of projections onto l

Orthogonal projection

2 Skew projection along \vec{v}

Orthogonal projection

Theorem 3

Let l be a line in \mathbb{R}^2 which passes through the origin.

If l has direction \vec{d} , the orthogonal projection onto l has matrix

$$M = \frac{1}{||\vec{d}||^2} \vec{d}\vec{d}^T$$

What Theorem 3 says?

• Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto l. The matrix of T is

$$M = \frac{1}{||\vec{d}||^2} \vec{d}\vec{d}^T$$

• Any point $P = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ is projected to the point P' with coordinates

$$P' = T(P) = M \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

• Assume $P = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \vec{x}_0$. We find coordinates of its projection P'.

• Assume $P = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \vec{x}_0$. We find coordinates of its projection P'.

• P' has the same coordinates as $\overrightarrow{OP'}$, which is

$$\operatorname{proj}_{\vec{d}}(\overrightarrow{OP}) = \frac{\vec{d} \cdot \overrightarrow{OP}}{\vec{d} \cdot \vec{d}} \vec{d} = \frac{1}{||\vec{d}||^2} (\vec{d} \cdot \vec{x}_0) \vec{d} = \frac{1}{||\vec{d}||^2} \vec{d} \vec{d}^T \vec{x}_0$$

Exercise 1

Assume
$$\vec{d} = \begin{bmatrix} A \\ B \end{bmatrix}$$
. Find the projection matrix in A,B .

Find the orthogonal projection P' of the point $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ onto the line l.

(a)
$$l: \vec{x} = t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
.

(b)
$$l: 2x - 3y = 0$$
.

Skew projection

Theorem 4

Let \vec{n}, \vec{v} be nonzero vectors. Let l be a line through O having normal \vec{n} .

The projection onto l along the direction \vec{v} has matrix representation

$$M = I_2 - \frac{\vec{v}\vec{n}^T}{\vec{v} \cdot \vec{n}}$$

- \bullet The line l has vector equation $\vec{n}\cdot\vec{x}=0$
- Let $P = \vec{x}_0$ and $P' = \vec{x}$ be skew projection along \vec{v} of P onto l.

- The line l has vector equation $\vec{n} \cdot \vec{x} = 0$
- Let $P = \vec{x}_0$ and $P' = \vec{x}$ be skew projection along \vec{v} of P onto l.

 \bullet Since $\overrightarrow{PP'} \parallel \overrightarrow{v},$ we have $\overrightarrow{PP'} = t\overrightarrow{v}$

$$\vec{x} - \vec{x}_0 = t\vec{v} \Rightarrow \vec{x} = \vec{x}_0 + t\vec{v}$$

$$\bullet \ P' \text{ is on } l \Rightarrow \vec{n} \cdot \vec{x} = 0$$

$$\vec{n} \cdot (\vec{x}_0 + t\vec{v}) = 0 \Rightarrow t = -\frac{\vec{n} \cdot \vec{x}_0}{\vec{n} \cdot \vec{v}}$$

•
$$P'$$
 is on $l \Rightarrow \vec{n} \cdot \vec{x} = 0$

$$\vec{n} \cdot (\vec{x}_0 + t\vec{v}) = 0 \Rightarrow t = -\frac{\vec{n} \cdot \vec{x}_0}{\vec{n} \cdot \vec{v}}$$

We obtain

$$\vec{x} = \vec{x}_0 - \frac{\vec{n} \cdot \vec{x}_0}{\vec{n} \cdot \vec{v}} \vec{v} = \vec{x}_0 - \frac{1}{\vec{n} \cdot \vec{v}} (\vec{n} \cdot \vec{x}_0) \vec{v}$$
$$= \vec{x}_0 - \frac{1}{\vec{n} \cdot \vec{v}} \vec{v} \vec{n}^T \vec{x}_0 = \left(I_2 - \frac{\vec{v} \vec{n}^T}{\vec{n} \cdot \vec{v}} \right) \vec{x}_0$$

Exercise 2

Assume
$$\vec{n}=egin{bmatrix} a \\ b \end{bmatrix}$$
 and $\vec{v}=egin{bmatrix} A \\ B \end{bmatrix}$. Write out M in Theorem 3 in a,b,A,B .

(a) Find the images of the points $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ -2 \end{pmatrix}$ with

$$l: x - 2y = 0, \ \vec{v} = \begin{pmatrix} 3\\-1 \end{pmatrix}.$$

(b) Show that any point on the line l': x+3y=10 is projected to a fixed point on the line l. Can you explain this?

Reflections in \mathbb{R}^2

Let l be a line through the origin. We discuss 2 types of reflection through l

Orthogonal reflection

Skew reflection

Orthogonal reflection

Theorem 5

Let l be a line though O with direction \vec{d} .

Then the orthogonal reflection through $\it l$ has matrix representation

$$M = \frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T - I_2.$$

• Assume $P = \vec{x}_0$. We find its reflection Q.

• Assume $P = \vec{x}_0$. We find its reflection Q.

• P' is the midpoint of $PQ \Rightarrow P' = \frac{1}{2}(P+Q)$

$$Q = 2P' - P = \frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T \vec{x}_0 - \vec{x}_0 = \left(\frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T - I_2\right) \vec{x}_0$$

Remark

- ullet The result works for lines in both \mathbb{R}^2 and \mathbb{R}^3 .
- ullet The line l needs to go through the origin, that is, $ec{x}=tec{d}$
- ullet The orthogonal reflection through l has matrix

$$M = \frac{2}{||\vec{d}||^2} \vec{d}\vec{d}^T - I$$

Exercise 3

Assume
$$\vec{d} = \begin{bmatrix} A \\ B \end{bmatrix}$$
. Find the reflection matrix in $A,B.$

(a) Let $l: \vec{x} = t \begin{vmatrix} 1 \\ -2 \end{vmatrix}$ be a line. Find the matrix of reflection through l.

(b) Find the image of the point $\binom{5}{1}$.

(c) Find the image of the line
$$m: \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} + t \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Skew reflection

Theorem 6

Let l be a line through O with normal vector \vec{n} . Let \vec{v} be a nonzero vector.

The skew reflection through l in the direction \vec{v} has matrix

$$M = I_2 - \frac{2}{\vec{v} \cdot \vec{n}} \vec{v} \vec{n}^T.$$

50 / 55

Proof (Sketch)

• $P=\vec{x}_0$ a point, P'= skew projection along \vec{v} of P onto l, Q= skew reflection of P.

Proof (Sketch)

• $P = \vec{x}_0$ a point, P' = skew projection along \vec{v} of P onto l, Q = skew reflection of P.

• We knew how to compute P' from the previous result

$$P' = \left(I_2 - \frac{1}{\vec{v} \cdot \vec{n}} \vec{v}^T \vec{n}\right) \vec{x}_0$$

Proof (Sketch)

• $P = \vec{x}_0$ a point, P' = skew projection along \vec{v} of P onto l, Q = skew reflection of P.

• We knew how to compute P' from the previous result

$$P' = \left(I_2 - \frac{1}{\vec{v} \cdot \vec{n}} \vec{v}^T \vec{n}\right) \vec{x}_0$$

• Since P' is the midpoint of PQ, we have $P' = \frac{1}{2}(P+Q)$

$$Q = 2P' - P = \left(I_2 - \frac{2}{\vec{v} \cdot \vec{n}} \vec{v} \vec{n}^T\right) \vec{x}_0$$

Exercise 4

Assume $\vec{n} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} A \\ B \end{bmatrix}$. Find the matrix of the skew reflection through l in the direction \vec{v} in a,b,A,B.

Consider
$$l: x-2y=0$$
 and $\vec{v}=\begin{bmatrix} 3\\ -1 \end{bmatrix}$.

(a) Find the matrix of the skew reflection through l in the direction \vec{v} .

(b) Find the images of the points $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ -2 \end{pmatrix}$.

(c) What is the image of the line x - 2y = 1?

(d) Show that the image of the line
$$m: \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 is a line.