REFINED GENETIC ALGORITHMS FOR POLYPEPTIDE STRUCTURE PREDICTION

REFINED GENETIC ALGORITHMS FOR POLYPEPTIDE STRUCTURE PREDICTION

Acknowledgements

$Table\ of\ Contents$

		 	 ·	 • •				 •	 		 			 			
		 	 ·	 		 			 	i	 		•	 			
		 		 		 			 	•	 			 			
	 	 		 		 	 •		 					 			
		 	 ·	 		 			 	i				 	٠	 •	
					 •	 		 •	 	•	 			 		 • •	
							 •		 		 	•		 			
														 	•	 	
			·	 	 ٠		 •	 •	 	٠	 		•	 		 	
				 		 			 	•	 			 			
				٠			 •	 ٠	 	•	 			 	٠		

		 	 	 		 		 	•	 		
						 		 	•	 	 	

		٠			 			 		 	 			
					 	•		 	 •	 	 			
			٠		 	•	• •	 	 •	 	 			
					 • •	•		 	 •	 	 			
					 	•		 	 •	 	 			
												• •		
				-				 		 	 			
					 			 		 	 			 į
					 			 	 ٠	 	 			
		٠												
					 	•		 	 ٠	 	 			
				• •	 	•		 	 •	 	 		• •	

		 	 	• •	 	 	 	
			. •	• •	 	 	 	
			 	• •	 	 	 	
			•		 	 	 	

$List\ of\ Figures$

		n .	٠	 	 	

	•
	•
	•
	•
	•
	•
P_s	

$List\ of\ Tables$

ϕ , ψ				 	
. , ,	. × .	30			

$List\ of\ Symbols$

- α																						
\mathcal{F} , as									٠			 ٠			٠							
8																						
- α			•										٠									•
γ γ																						
· i · ·	<i>i</i>						•															
ϕ , and																						
ψ , and																						
ω																						
χ_i i						٠																

$List\ of\ Abbreviations$

Abstract

		20
		80

REFINED GENETIC ALGORITHMS FOR POLYPEPTIDE STRUCTURE PREDICTION

I. Introduction

1.1 Protein Folding Problem / Polypeptid	le Structure Prediction		
		predict	
$native\ conformation\ ^{1}$			
	$PSP \subseteq PFP$		
	_		

¹ The native conformation determines the protein's biological functions.

1.1.1 Background.					
					α
		polypeptide	pep	tide	protein
					2
		residue			
primary structure					
		8	secondary .	structure	
tertiary structure					
1.1.2 Importance.					
Grand Challenges					

1.1.3 Methods for Polypeptide Structures Prediction.

 $energy\ minimization$

 $molecular\ dynamics$

 $ab\ initio$

semi-empirical

force-field

 \mathcal{O} n^5 \mathcal{O} n^4

 \mathcal{O} n^2

n.

n.

1.1.4 Grov	wth of Complexity.					
			x, y	z		1 1
m		2				$\mid n- \mid$
n ,	3n-6					
1.0 0 1 11	· a					
1.2 Genetic Alg	oriinms					
		implicit pare	allelism ³			
						Evo-
lutionary Comput	ting .					
					ch:	$romosome^4$

²Regardless of whether a Cartesian or Internal coordinate system is used. However, the internal coordinate system has fewer independent variables
³See Appendix B.3.3

⁴Because GAs are loosely based on natural evolution, many of the terms associated with natural evolution are used interchangeably with the terms created specifically for genetic algorithms (67).

	5					
				< selection	$ction,\ crossover,$	mutation
	generation		genes			
	Alleles					
						YES
1.3	Parallel and Distrib	buted Computing				
			single	instruction stree	am, multiple data s	stream .
	$multiple\ instruction$	stream, multiple data s	stream			
					scalable	
1.4	Research Objectives	;				

>

⁵Crossover is sometimes called recombination.

Effective and Efficient Polypeptide Structure Prediction

Computational and Software Engineering Principles Experiment Design

- Improve Performance of Hybrid GAs for PSP
- Real Valued Genetic Algorithm Implementation for the PSP
- Exploit Domain Knowledge to Limit Search Space domain knowledge

				Evolution
$Program^6$				
		exogen	ous _	
	7	8		
1.6 Assumptions				
1.0 1133 amp 110 n3				
9				
1 7 Cummanu				
1.7 Summary				

1.5 Methodology

⁶Not to be confused with *Evolutionary Programming*, see Section 2.4.
⁷The probability that an improvement at a specific node is migrated to other nodes.
⁸The probability, given a migration, that it is migrated to all other nodes.
⁹Or molecular conformation

II. Current Issues

2.1 Introduction 2.2 Previous Research 2.3 Polypeptides Structure Prediction (PSP)

			lphaetaeta		
	$\epsilon - op$	otimal			
					lphaetaeta
ω	$trans^1$		ϕ , ψ		
ϕ,ψ,ω					
$\chi's$,					
				ϕ , ψ	
				1 1 1	

 $^{1}\pm180^{circle}~or~\pm\pi$

Biochemistry

2.4	$Genetic\ Algo$	rithms					
							evolutio
prog	ira m						
				m # ma	dom of meal and	in ac	
					adox of real code	ings	
				$virtual\ alphal$	bets		
	blocked						
Fun	damental Theo	rem of Genetic	$c \ A lgorithms$				
				strong	weak		
						r.	7 D
		ED					$\mathbb{Z}P_1$.
EP_5		EP_1 ,				EP_{5} , E	

P

				Q , and	
			P EP_1 .		EP_5
2.5	Parallel Genetic Algorithms				
	is				

island model neighborhood model

farming model

migration	
······································	
1	
$\mathcal{O}\left(rac{nl}{p} ight)$, and p	
$p \ll n$	
Neighborhood Model:	
n	p , p
$\mathcal{O}(s,l)$ $\mathcal{O}(nl)$ s	
Farming Model: farming	
$farm\ out$	
foreman $workers$	

2.6 Summary

${\it III.} \ \ Algorithm \ Analysis, \ Design, \ and \ Implementation$

3.1 Analysis			
3.1.1 Cost Analy	sis of Local Minin	mization using Conjugate C	Fradient.
			Numerical Recipes in C
	n		n
		2	
		\mathcal{O} n^2	ITMAX = 200
Lamarckian	Baldwinian		
eval_func()			
			ITMAX
			generational
		· · · · · · · · · · · · · · · · · · ·	$checkpoint \hspace{1cm} asynchronous$
		farming	

					client .	
		s	erver			
					a priori	
ſ				1	1	
	-			· · · · · = · ·	- · · · · - · · · - · · · · · · · ·	
Ī		-	-	-		
	-	-	-	-		
L				1	1	
				cha	rm_eval()	
		cha	rm_eval()			
			cl	narm_eval()		
	charm_eval()					

3.1.2 Constraint Set Development.

3.1.2.1 Conventions Adopted.

 $heta_{min}$ $heta_{min}$ $heta_{max}$

 $heta_{min}$

 $heta_{max}$

 $heta_{min} > heta_{max}
ightarrow heta_{min_{adj}} \quad heta_{min} - \quad \circ \ heta_{min} < heta_{max}
ightarrow heta_{max_{adj}} \quad heta_{max} \quad \circ \ heta_{max}$

 $omin_{adj}$ $omax_{adj}$

 $heta_{min}$. $heta_{max}$

 $3.1.2.2 \quad [Met]$ -enkephalin. $phi \quad psi$

 $\phi \psi$

3.1.2.3 Polyalanine.

 $a\ priori$... lpha

-		-	θ_{min}	θ_{max}
Non-glycine	– .	-	. –,	- .
Glycine	—		. - .	- .
			- .	-
	— .	-	. –.	- .
χ_1	- <u>, </u>	-		-,

-	# · · · · · · · · · · · · · · · · · · ·	-	$ heta_{min}$	θ_{max}
Non-glycine	— .	-	1	
Glycine				— <u> </u>
			. —	- .
			— .	-
χ_1	_		-1 . 1 . 1 . -1	.

lpha

-	-	-	θ_{min}	θ_{max}
	-, ,		- .	=.
		-	- .	
			. —.	
χ_1		-	.	= .

3.1.3 Real-valued GAs.

-	-	-	$ heta_{min}$	θ_{max}
	- .	-	-	- .
	<u> </u>	-	ľ	- .
		-	-	— ·
χ ₁				

1

3.2 Algorithm Design and Implementation 3.2.1 Parallel Hybrid GA. farming model 3.2.1.1 Algorithm Design. G_{t+1} G_t

¹ The developers of this algorithm have been inconsistent with its naming in the literature. Genocop, Genocop-III.1.0, GENOCOP-III, etc., have been used synonymously. In this document I have adopted the standardization of GENOCOP-III.

 $EvalCnt \leftarrow \ population \ size$ \mathbf{Loop} Until EvalCnt Loop $EvalCnt \gets$ Loop Until EvalCnt Until 3.2.1.2 Scheduling. $round \ robin$ network of workstations

 $evolution\ program$

3.2.2 REal-valved GA, Limited by constraints (REGAL) .

Loop

Until

REPLACE

 $\begin{array}{ccc} server_i & Q \\ EvalsPerformed \\ EvalsPerformed < EvalCnt \land Q \ / \ \emptyset \\ server_j & Q \end{array}$

 $server_j$

3.2.2.1 Incorporation of Domain Knowledge.

 $Evolution\ Program$

probable

improbable

 $\mathcal{S}_{p\,rob}$

 \mathcal{S}_{improb}

 \mathcal{S}_{prob} \mathcal{S}_{improb} \mathcal{S}

 \mathcal{S}_{prob} \mathcal{S}_{improb} \emptyset

$$\leq \theta - \frac{\theta_{min} - \theta_{max}}{\theta_{max}} - \frac{\theta_{max} - \theta_{min}}{\theta_{max}}$$

$$\leq \theta - \frac{\theta_{min} - \theta_{max}}{\theta_{max}} - \frac{\theta_{max} - \theta_{min}}{\theta_{max}}$$

$$\{\chi_1\}$$

modified island

is land

2

 $probabilistic\ migration$

Probability of Migration

 P_m Probability of Complete Migration P_{cm}

 $P_m P_{cm}$

i

j

 $P_m \cdot P_{cm}$

 $P_m \cdot P_{cm} > \dots$

 $archipe lago^3$

- Average Genotypic Distance
- $\bullet \ \ Least \ Genotypic \ Distance$

²Except for the seed of the random number generator.

³ A collection of islands; thus the islands making of the Para-REGAL execution

- Greatest Genotypic Distance
- Average Best Fitness
- Local Delta

3.3 Summary

IV. Experiment Design

4.1	Experiment Techn	niques				
	4.1.1 Random I	Number Seeds.				
			nodal			
	Seed =(unsigned) ((S	eed + My_node) /	′ (My_node +	1);	

Seed =(unsigned) ((Seed + My_node) % Max_Seed_Value);

Seed floor.

 $* \ rand \ number \ from \ X calculator$

Seed floor

 $*\ randon\ number\ from\ X calculator$

Seed floor

 $*\ randon\ number\ from\ X calculator$

	-	·	·
	-		-
	-		
-	-	·	
	_		

4.1.2 Statistical Techniques.

4.1.2.1 Analysis of Variance (ANOVA).

a

n

a

	4.1.2.2 Kr	uskal-Wallis H	Test.				
4.2	Experiment I: Eva			ı Parallel	${\it extit{E}}$ $Distributed$	Hybrid GA	
	4.2.1 Motivation	and Objective.					
	4.2.2 Methodolog	1 y.					
					P_m , \sim 2000 \sim		
	P_r						
	$farming\ model$.						

-	-		P_m	P_r
-				-
				-
-		-	-	-
-				-
-				-

987654321

4.3	$Experiment \ II:$	Evaluation	of th e	Use	of	Constraints	in	the	PSP

4.3.1 Motivation and Objective.

4.3.2 Methodology.

none loose tight

[Met]-enkephalin tight

 $Polyalanine\ tight$

4.3.3 Parameter Selection.

 $reference\ population$

 \mathcal{F}

 \mathcal{S}

			-
	-		
<u>-</u>			
-	·		
. <u>-</u>	·	·	
· -			
		-	·
· -			
- <u>-</u> -	-	-	-
<u>-</u> .			
<u>-</u>			
_			
	-	·	-
<u>-</u>		·	
<u>-</u> .			
-	-	-	
<u>-</u>			

	1
loose = tight .	

4.4 Experiment III: Evaluation of Exogenous Parameters in the REGAL System

4.4.1 Motivation and Objective.

¹ Based on the ratio of $\frac{\mathcal{F}}{\mathcal{S}}$, it would require 10^{67} tries to randomly generate just on fully feasible chromosome when using the tight constraint set for Polyalanine.

4.4.2 Methodology.

iterations

steady state

adaptive

4.4.3 Exogenous Parameter Evaluation Experiments.

Offsprings

Reference Population Size

		-	
	-		
A CONTRACT OF THE CONTRACT OF	-	-	
	-	-	

	H_0 ,
	e de la companya de
	en e
·	en e

4.5 Experiment IV: Evaluation of Para-REGAL

4.5.1 Motivation and Objective.

4.5.2 Methodology.						
			Is	$land \theta$		
Islands 1 & 2 loose		Island 3	tight .			
	1					
4.5.3 Para-REGAL Experin	nents.					
$\{\ldots,\ldots,\ldots,\ldots\}$	n . I	cm		j · · ·		

-			2 -	÷ -
			-	-
			-	-
		-		
		-		
-	-	ω .	-	
		-		
			-	-
4.0	-	-	-	
4.4	-	-	-	

4.6 Summary

V. Results and Analysis

5.1	Experiment	I:	Parallel	Hubrid	GA

5.1.1 Effectiveness Analysis.

selection pressure

$$\frac{x}{p \circ p _s ize_{small}} > \frac{x}{p \circ p _s ize_{large}}$$

5.1.2 Efficiency Analysis, Serial.

5.1.3 Efficiency Analysis, Parallel.

 $C_{communications}$ $T_{P_2} - T_S$

 $C_{\it communications}$

 T_{P_2} T_S .

Communication Cost Index $\frac{T_{P_2}}{T_C}$

best

 T_P

linear speedup S

p - S > p

 $super\ linear\ speedup$

 T_S

$$E = rac{S}{p}$$
 $E = S$ p
 $Cost$ $cost-optimal$

5.2 Experiment II: Preliminary REGAL Evaluation

 $5.2.1 \quad [Met]$ -enkephalin.

 \mathcal{F}

 \mathcal{S}

-		
	-	-
-	-	
-	-	

-	-		
	-		
	-	-	-
	-		
	-		-
	-		-
	-		

	TO 7	
5.2.2	-Polyal	anine
0.~.~	100900	a ice ice

step

lpha , ...

5.2.3 Efficiency.

-	-		
	-		
	-	-	-
		-	-
	-	-	-
		_	
	-	1	-
		-	-
	-	-	

5.3 Experiment III: Analysis of Exogenous Parameters for REGAL

independent

2

 $current\ best\ trajectory$

3

² Analysis of Variance, see Appendix F.1 for more details. Concern has be raised about lack of variability because a single seed set was used. The Kruskal-Wallis H Test (Appendix F.2) was used as an independent method to verify the ANOVA results. The conclusions were the same. Kruskal-Wallis results are not shown

³ Hypothesis testing was not done on run times because system loading in the multi-user environment could not be controlled.

³ Hypothesis testing was not done on run times because system loading in the multi-user environment could not be controlled. They are provided for reference only. However, the large number of experiments tends to dampen out cases were the platform was heavily loaded. Thus, the data are insightful.

⁴This nomenclature is from the GENOCOP-III documentation. It would be more accurate to stay the reference population is operated upon.

•			$\{x_1,\ldots,x_{n-1},x_{n-1},x_{n-1}\}$
	•		

		-	+ -	F_0	α
		-	*	-	
	-	-		-	
-	-	-	-	-	-
-	*	-	-	*	-
	-		-	-	-
-	-	-	-	*	-
	-	-	-	-	-
	-	-	-		-
	-	-	-	-	-
	-	-	-	-	-
	-	-	-	•	
	-	-	-		

lpha

 $\alpha \qquad ^{-i} \leq i \leq$

 ${\it 5.4} \quad Experiment~IV:~Analysis~of~Para\text{-}REGAL$ P_{cm}

Island 3

	-		-	-		-	-	
				-			-	
		-	*	-	·		-	·
							-	
							-	
							-	

m

 $n = \frac{m}{n}$

-3

th

m

- . K

 P_m	P_{cm}		
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	
-	-	-	·
-	-	-	
-	-	-	
-	-	-	
-	-	-	

5.5 Summary

5

...

....

⁵Considerable resources is a relative concept. Even a 1000 hours of computer time is trivial when compared to experimental techniques that require years to yield results.

VI. Conclusions and Recommendation

Grand Challenge 6.1 Initiative I: PHGA 6.2 Initiative II: REGAL transtrans

 $^{^{1}}$ Actual implementation is out of scope for this investigation because research is required into appropriate control metrics.

²Limit the dihedral angle's range to a lower bound greater than $-\pi$ and an upper bound less than π .

6.3 Initiative III: Examination of Exogenous Parameters
6.3 Initiative III: Examination of Exogenous Parameters
6.3 Initiative III: Examination of Exogenous Parameters
6.3 Initiative III: Examination of Exogenous Parameters
6.3 Initiative III: Examination of Exogenous Parameters
lpha
6.4 Initiative IV: Para-REGAL
0.4 Thereweeve 1 v. 1 with IEECTE
$molten\ globular$
lpha

6.5 Recommendations

6.6 Summary

Appendix A.	Background on the Protein	Folding and Protein	Structure	Prediction Problems
				$inverse\ folding$
problem				
		evaluation		
				design
				J
A.1 Introducti	on to Proteins and Associated Te	erminologu		
	backbor	m c		
	θαςκουν			$\overline{}$, α , γ , γ
		side-char	in . $_i$	α -
				primary structure
	residues			

lpha -helices

 β -sheets secondary structure

 ϕ , which is ψ , which is

 ϕ , ψ

ϕ , ψ		
	φ	ψ
α		
α		
10		-
$oldsymbol{eta}$,		-
$m{eta}$.		-
		-
		-

tertiary structure conformation

native						
	0					
				x_i,y_i,z_i	$\leq i \leq n$	r
			C_{lpha_1}			
	d_{ij}	$x_i - x_j$	$y_i - y_j$	$z_i - z_j$		
	$m{n}$					
				bone	d length	
	bond angle				dihedral an	igle
n-1	n					
	ϕ , ψ , ω			χ_i	<i>i</i>	

- - - -

 d^N N - 0 -

9, 12 15

 . × .	30
	\approx 7 $^{\circ}$
	≈ , ,
	pprox 1

A.2 Experimental Tertiary Structure Determination

A.3 Tertiary Structure Prediction (PFP)

Exact

A.3.1 Classical Prediction Methods. Molecular dynamics -14 _ -13 -15-9 extended-atom representationenergy minimization Ab initio Semi-empirical Force-field n

		+ -
	-	n , n
ab initio	$\mathcal{O} n^5$	
semi-empirical	$\mathcal{O} n^4 - \mathcal{O} n^3$	
$force ext{-}field$	$\mathcal{O}^{-}n^{2}$	

$$E \qquad \frac{U_{0\,ijkl}}{\epsilon_{ij},k,l)\in\mathcal{D}} \quad \pm \qquad n_{ij\,kl-ij\,kl}$$

$$\epsilon_{ij} \quad F_{ij} \quad \frac{r_0}{r_{ij}} \quad ^{12} - \qquad \frac{r_0}{r_{ij}} \quad ^{6}$$

$$\frac{q_iq_j}{Dr_{ij}}$$

$$\epsilon_{ij} \quad \frac{r_0}{r_{HX}} \quad ^{12} - \qquad \frac{r_0}{r_{HX}} \quad ^{10}$$

$$ullet$$
 $oldsymbol{\omega}$, $oldsymbol{\omega}$, $oldsymbol{\chi}$,

- N
- \bullet r_{HX}
- \bullet r_{ij}
- $i, j, k, \ldots l$ $ij\,k\,l$
- $U_{0_{ijkl}}$ D , as

 $E_{\mathcal{B}}$ $E_{\mathcal{A}}$ $E_{\mathcal{D}}$ $E_{\mathcal{N}}$ $E_{\mathcal{N}'}$

A.3.2 Other Prediction Methods.

homology.

sequence-structure alignment

$$E \qquad K_{r_{ij}} \ r_{ij} - r_{eq} \ ^{2}$$

$$K_{\Theta_{ijk}} \quad ijk - e_{q} \ ^{2}$$

$$(i,j,k) \in \mathcal{A}$$

$$K_{\Phi_{ijkl}} \qquad n_{ijkl} \quad ijkl - \gamma_{ijkl}$$

$$(i,j,k,l) \in \mathcal{D}$$

$$\frac{A_{ij}}{r_{ij}} \ ^{12} - \frac{B_{ij}}{r_{ij}} \ ^{6} \ \frac{q_{i}q_{j}}{\pi \varepsilon r_{ij}}$$

$$- \frac{A_{ij}}{(i,j) \in \mathcal{N}'} \ ^{12} - \frac{B_{ij}}{r_{ij}} \ ^{6} \ \frac{q_{i}q_{j}}{\pi \varepsilon r_{ij}}$$

- B
- A
- D
- *N*
- N'
- i , j
- \bullet ijk
- i,j,\ldots k i,j,k,\ldots l \bullet ij kl
- ullet , $K_{r_{ij}}$, r_{eq} , $K_{\Theta_{ijk}}$, ϵ_q , $K_{\Phi_{ijkl}}$, $\gamma_{ij\,kl}$, A_{ij} , B_{ij} , ε , ...,

Simplification				
		Lattice		

Appendix B. Background on Genetic Algorithms

$population \qquad encoded$			operators		fitness
function		gen	eration		
		always			
	irregular				
				good	

B.1 Brief History of Evolutionary Algorithms

Evolution strategie

 $V = \langle \mathbf{x}, \sigma \rangle$

 \mathbf{X}

t

 σ

	\mathbf{x}^{t+1}	$\mathbf{x}^t = N = , \sigma$		
		_		
		. σ _		
B.2 Origins of Ger	$netic \ Algorithms$			
	1			
"Adaptation in Natu	ural and Artificial Systems"			
	Schema Theorem	Fundamental Theor	rem of Genetic Alg	orithms
B.3 Simple Genetic	c Algorithm (SGA)			

 $a\,lle\,le$

locus

chromosome

genes

string

¹ The term **phenotype** refers to the traits expressed by an individual, in this case the value returned by a function. Contrast this with **genotype** which refers to the traits that define the individual, for example the parameters of the function

evolves

 x_{min}

 x_{max}

 x_{min} . x_{max}

B.3.1 Simple Genetic Algorithm Operators.

selection crossover

mutation

selected

Crossover

converge

Mutation

proportional

roulette-wheel

S

Rank-based

tournament

 $e\,lit ist$

P(t) P(t+1)1 1 2 2 3 3 Recombination 4 4 Mutation Selection μ -1 μ –1 μ μ

B.3.2 Simple Gene	etic Algorithm Pa	rameters.				
						on-lin
performance						
B.3.3 Mathematica	ıl Theory of How ((Why) Simple G	As Work.	Schemata		
		٠, -				don'
care					{	}
	{ <i>x</i>		}	defining	$length$ δ H	
o H	· ·	H	Ţ	, ,		
		δ *:			δ * *	_
0 * *				-, -, .,	• • • • • • • • • • • • • • • • • • • •	
V T. T						

	m/H,t	$\geq m \ H, t \cdot \frac{f \ H}{f}$	$-p_c \frac{\delta H}{l-}$	$o H p_m$,		
m H,t				H .		
	H		$egin{array}{c} m \ H, t \ & rac{f(H)}{f} \ & H \end{array}$			$p_c rac{\delta(H)}{l-1}$
		H		$o H p_m$		10 [-1
parallelism		1				implicit
B.3.3.1 C	omplexity Analy	sis.				
		O nl	n		<i>l</i>	
					O nl	

				building block	
		L	Deception		
			1		
linkage					
under-spe	cified over-speci	fied			
				C	competitive template
D 1 4 35	a .: 41 .:				
B.4.1 Me	ssy Genetic Algorit	hm Operators.			
				thresholding	
				inresnotating	
		cut-and-splice			
. .	cut	cut-unu-spiice		splice	
				op wee	
			1		
 (DEI)	primordial	juxta positio			numerative initializatio
(PEI)			k l	k	
			$egin{array}{ccc} k & l & k \end{array}$		

B.4.2 Messy Genetic Algorithm Parameters.

B.4.3 Mathematical Theory of How (Why) Messy GAs Work.

normalized expected defining length $\frac{\langle \delta \rangle}{l+1}$ k

$$\frac{\langle \delta \rangle}{l}$$
 $\frac{k-}{k}$

B.4.3.1 Complexity Analysis.

 \mathcal{O} l^k

01, 1,...

n = much

B.5 Fast Messy Genetic Algorithm (fmGA)

B.5.1 Fast Messy Genetic Algorithm Operators.

probabilistically complete initialization

l-k

ŀ

B.5.2 Fast Messy Genetic Algorithm Parameters.

B.5.3 Mathematical Theory of How (Why) Fast Messy GAs Work.

B.5.3.1	Complexity Analysis.				
				01 1	
	01	$l \in \mathcal{O}(l^k)$			
		O	nl		

Appendix C. Background on Parallel Computing

C.1 Parallel Architectures				
			node	
			granularity	
	$fine \ grained$	l		
coarse grained				

shared memory

distributed memory

message passing

 $interconnection\ topology \qquad network$

2-D mesh

X

hypercube

dimension N

N

N

C.2 Parallel Algorithms.

- ...
- •

•

•

Appendix D. PHGA Operation

in.something something in in.something /dev/null psga_param psga_default psga_param psga_default in mpirun -np -sz in.2.10.24 & > /dev/null

```
Experiments = 1
     Total Trials = 500
  Population Size = 20
 Structure Length = 240
   Crossover Rate = 0.65
   Mutation Rate = 0.005
   Generation Gap = 1.0
   Scaling Window = 1
  Report Interval = 1
 Structures Saved = 1
Max Gens w/o Eval = 10
   Dump Interval = 0
      Dumps Saved = 0
          Options = ycel
  Number of Peaks = 1.0
Minimization Prob = 1.0
 Replacement Prob = 1.0
      Random Seed = 987654321
         Rank Min = 1.5
```

Appendix E. Genocop-III

E.1 Algorithm

 $\begin{array}{c} \text{end} \\ \text{end} \end{array}$

```
 \begin{array}{ccc} \textbf{Procedure Genocop III} \\ \textbf{begin} \\ t \leftarrow & t \end{array}
```

```
t \leftarrow t
P_s \ t
P_r \ t
P_r \ t
P_r \ t
while not do begin
t \leftarrow t
P_s \ t
P_s \ t
P_s \ t
P_s \ t
if t \ mod \ k then begin
P_r \ t
P_r \ t
P_r \ t
end
```

```
procedure evaluate P_s t
begin
               \vec{s} \in P_s \ t \ \mathbf{do}
     if \vec{s} \in \mathcal{F}
                ec{s} , f \ ec{s} , \mathbf{else}
     then
     begin
                \vec{r} \in P_r \ t
      \vec{z} \in \mathcal{F}
\vec{s} \qquad f \ \vec{z}
if f \ \vec{r} > f \ \vec{z} then \vec{r} \qquad \vec{z} \qquad P_r
                 ec{s} , ec{z} , P_s ,
                                                                 p_r
     \quad \text{end} \quad
end
                                                                                                  P_s
E.2 Input Parameters
            1
                                                                                                                                            algorithm\ domain
                                                                                               application domain
                               fixed
               adaptive
                                                                                    genocop.h
```

 $^{^1}$ Here the phrase "Domain Constraints" is used in a context more limited than normally used in compute science, specifically, the allowable range of specified variables. If a domain constraint is not defined for a variable, it defaults to the architecture dependent range for R

	the control of the co	
	-	
		$N \cup I$
<u>-</u>		$N \cup$
	· · · · · · · · · · · · · · · · · · ·	$N \cup$
		$N \cup I$
		$N \cup$
	4.44	N
	4.44	$I\!\!N$
		$I\!\!N$
	-	N
. <u>-</u> .		N
- -		N
<u>-</u>		-
	-	
-		N
		R
		$\leq iSeed \leq iSeed$
		$\leq iSeed \leq 1$
· · · -		

• .

•

•

•

E.3 Operators

 $x_{k}^{'}$ left k right k

E.3.5 Non-uniform mutation.

E.3.4 Boundary mutation.

$$x_k^{t+1} \qquad \begin{array}{c} x_k^t & \triangle \ t, r \ k \ -x_k \\ \\ x_k^t - \triangle \ t, x_k - l \ k \end{array}$$

$$\triangle t, y \quad y \cdot r \cdot = \frac{t}{T}^b,$$

 \vec{y} \vec{c} $\vec{c} - \vec{w}$

Appendix F. Statistical Methods

F.1 Analysis of Variance (A	NOVA)				
F.1.1 Single Factor Fo	actorial Design .	a			
	<i>n</i>		<i>a</i>		
	y_{ij} μ $ au_i$	$i = \epsilon_{ij} = egin{array}{cccc} i & , & , \dots \ j & , & , \dots \end{array}$,a		
y_{ij} , , , , , , ij , ,	μ			overall mean $ au_i$	
$oldsymbol{i}$.		treatment effect	ϵ_{ij} ,		
	σ^2				
				fix	ee
effects model			only		
random samples			$random\ eff$	ects model $ au_i$	
		$ au_i$			
			<i>a</i>	_	r
1	N , and			$_{i=1}^{a}$ n_{i}	
analysis of variance					
	SS_T	$egin{array}{cccccccccccccccccccccccccccccccccccc$			
SS_T , and					

SS_T $SS_{Treatments}$ SS_E

 $SS_{Treatments}$

 SS_E , , , , , , ,

no difference

 H_0 μ_1 μ_2 \dots μ_a

 $H_0 \quad \tau_1 \quad \tau_2 \quad \dots \quad \tau_a$

$$F_0 = \frac{SS_{Treatment}/a -}{SS_E/N - a} = \frac{MS_{Treatments}}{MS_E}$$

F , a - a , N - a ,

 H_0

$$F_0 > F_{\alpha_+ \ a-1_+ \ N-a}$$

 F_0

$$SS_{T} = \frac{a}{i=1} \frac{n}{j=1} \frac{y_{ij}^{2}}{N} - \frac{y_{ij}^{2}}{N}$$

$$SS_{Treatments} = \frac{a}{i=1} \frac{y_{i}^{2}}{n} - \frac{y_{..}^{2}}{N}$$

$$SS_{E} = SS_{T} - SS_{Treatments}$$

y , and a sum of

and the second s		-		F_0
	$SS_{Treatments}$	a -	$MS_{Treatments}$	$F_0 = \frac{MS_{Treatments}}{MS_E}$
	SS_E	N-a	MS_E	
	SS_T	N-		

$$y_{i.}$$
 y_{ij} , $y_{i.}$ $y_{i.}/n$ i , , . . . , a

$$y_{..}$$
 y_{ij} , $y_{..}$ $y_{..}/N$ j_{ij}

F.1.2 Two Factor Factorial Design .

 $i \quad , \quad , \ldots, a$ $y_{ij\,k} \quad \mu \quad au_i \quad eta_j \quad aueta_{\ ij} \quad \epsilon ijk \quad j \quad , \quad , \ldots, b$

A = b , and B = a

 H_0 au_1 au_2 \dots au_a H_1 \exists au_i /

B . $H_0 \quad \beta_1 \quad \beta_2 \quad \dots \quad \beta_b$ $H_1 \quad \exists \beta_i \ /$

A

B

 $H_0 \qquad aueta \; _{ij} \qquad \qquad orall \; i, \; j$

 H_0

		·		F_0
	SS_A	a -	$MS_A = \frac{SS_A}{a-1}$	$F_0 = \frac{MS_A}{MS_E}$
	SS_B	b —	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$
	SS_{AB}	a-c $b-c$	$MS_{AB} = \frac{SS_AB}{(a-1)(b-1)}$	$\begin{array}{ccc} F_0 & \frac{MS_A}{MS_E} \\ F_0 & \frac{MS_B}{MS_E} \\ F_0 & \frac{MS_{AB}}{MS_E} \end{array}$
	SS_E	ab n - 1	$MS_E = \frac{SS_E}{ab(n-1)}$	
	SS_T	abn —		

 $H_1 \quad \exists \tau_i /$

$$SS_{T} = \frac{a - b - n}{1} y_{ijk}^{2} - \frac{y \dots^{2}}{abn}$$

$$SS_{A} = \frac{y_{ik}^{2}}{bn} - \frac{y_{ik}^{2}}{abn}$$

$$SS_{B} = \frac{y_{ik}^{2}}{an} - \frac{y_{ik}^{2}}{abn}$$

$$SS_{AB} = SS_{Subtotals} - SS_{A} - SS_{B}$$

$$SS_{E} = SS_{T} - SS_{Subtotals}$$

$$SS_{Subtotals} = \frac{a - b}{i=1} \frac{y_{ij}^{2}}{n} - \frac{y_{ik}^{2}}{abn}$$

$$SS_{Subtotals} = \frac{y_{ij}^{2}}{abn} - \frac{y_{ik}^{2}}{abn}$$

$$y_{i..}$$
 y_{ijk} , $y_{i..}$ $y_{i..}/bn$ i , , . . . , a
 $j=1 \ k=1$
 a n
 $y_{.j.}$ y_{ijk} , $y_{j..}$ $y_{.j.}/an$ j , , . . . , b
 $i=1 \ k=1$
 $y_{ij..}$ y_{ijk} , $y_{ij..}$ $y_{ij..}/n$ i , , . . . , a
 j , , . . . , b
 $i=1 \ k=1$
 j , , . . . , b
 j , , . . . , b

F.2 Kruskal-Wallis H Test.

n

 $Suppose\ we\ have\ k\ independent\ samples\ from\ k\ populations.\ We\ wish\ to\ test\ the\ null\ hypothesis$

 H_0 : the samples are from identical populations $against\ the\ alternative\ hypothesis$

 H_1 : the populations are not identical at the α level of significance.

1. Compute h. Calculate

$$h = \frac{12}{n(n+1)} \sum_{i=1}^{n} k \frac{R_i^2}{n_i} - 3(n+1)$$

2. Accept or reject H_0 . If $h > \chi^2_{k-1,\alpha}$, reject H_0 ; otherwise accept H_0 .

Probability, Statistics, and Queueing Theory: With Computer Science Applications

Journal of Global Optimization

Evolutionary Algorithms in Theory and Practice

Algorithmics: Theory and Practice

Journal of Computational Chemistry

Proceedings

of the Fourth International Conference on Genetic Algorithms

Physics Today

Parallel Program Design: A Foundation

Journal of Global

Optimization

Grand Challenges 1993: High Per-

formance Computing and Communications

Protein Folding

Proteins: Structures and Molecular Properties

Handbook of Genetic Algorithms

 $International\ Conference$

 $on \ Genetic \ Algorithms$

Proceedings of the Fifth Interantional Conference on Genetic Algorithms

An Analysis of the Behavior of a Class of Genetic Adaptive Systems

IEEE Transactions on Systems,

Man and Cybernetics

Genetic Algorithms and

their Applications: Proceedings of the Second Internation Conference on Genetic Algorithms

Parallel Genetic Algorithms

The Second Annual Conference on Evolu-

tionary Programming

Task Scheduling in Parallel and Dis-

tributed Systems

Proceedings of the Third International Conference on Genetic Algorithms

Proceedings of the Fourth International Conference on Genetic Algorithms

Th e

Mathematica Journal

International

Conference on Genetic Algorithms

Proceedings of the Second IEEE Conference on Evolutionary Computation

The Second Annual Conference on Evolutionary Programming

Artificial Intelligence Through Simulated Evolution

 $IEEE{--}A\,CSS\,C$

 $Foundations\ of\ Genetic\ Algorithms\ 2$

Computers and Intractibility: A Guide to the Theory of NP-

Completeness

Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms, Noise, and the Sizing

 $of\ Populations$

Proceedings of

the Fifth International Conference on Genetic Algorithms

 $Complex\ Systems$

International

 $Conference\ on\ Genetic\ Algorithms$

Complex Systems

Proceedings of the Second International Conference on Genetic Algorithms

Proceedings of the Fifth International Conference on Genetic Algorithms

IEEE Transactions on

Systems, Man & Cybernetics

 $Proceedings\ of\ the\ Third\ International\ Conference\ on\ Genetic\ Algorithms$

Proceedings of the Fourth International Conference on Genetic Algorithms

Deception Considered Harmful

Proceedings of International Parallel Processing

Symposium

Adaptation in Natural and Artificial Systems

Scientific American

Principles of Biochemistry

Biochemistry

Applied Computing

1997: Proceedings of the 1997 Symposium on Applied Computing

The Origins of Order, Self-Organization and Selection in Evolution

 $A\,dvances\ in\ Parallel\ Algorithms$

Introduction to Parallel Computing:

Design and Analysis of Algorithms

Compendium of Parallel Programs for the Intel iPSC Computers

 $Calculus\ with\ A\ nalytic\ Geometry$

Journal of Global Optimization

The Protein Folding Problem and Tertiary Structure Prediction

Arbeitspapiere der

GMD 748

Real Time System Design

Introduction to Parallel Computing

$Proceedings \ of \ the \ National \ Academy \ of \ Science \ USA$

Theory and Problems of Organic Chem-

istry

Applied Computing 1996: Proceed-

ings of the 1996 Symposium on Applied Computing

Evolutionary Computation

Proceedings of the 3rd Annual Conference

on Evolutionary Programming

 $Evolution ary\ Computation\ Journal$ $Genetic\ Algorithms\ +\ Data\ Structures\ =\ Evolution\ Programs$

 $Genetic\ Algorithms + Data\ Structures = Evolution\ Programs$

Molecular Structure (Theochem)

Design and Analysis of Experiments

Paralle Computing

Journal

of Computational Chemistry

Heuristics

 $Proceedings\ of\ the\ Third\ International\ Conference\ on\ Genetic\ Algorithms$

 $Numerical\ Recipes$

in C: The Art of Scientific Computing

Protein Science

Third

International Conference on Genetic Algorithms

Proceedings of the Fourth International Conference

 $on\ Genetic\ Algorithms$

MPI: The Complete

Reference

WEBSTER'S II New Riverside University Dictionary

IEEE-CH

Proceedings of the Fourth Interna-

tional Conference on Genetic Algorithms

COMPUTER

Proceedings of the Fourth

International Conference on Genetic Algorithms

Biochemistry

Genetic

Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms

$PPSN\ III$

Proceedings of the Fourth International Conference on Genetic Algorithms

Foundation of Genetic Algorithms

Vita