Algoritmos y Estructuras de Datos I

Segundo cuatrimestre de 2019

Departamento de Computación - FCEyN - UBA

Algoritmos de búsqueda sobre secuencias

1

Búsqueda lineal

- ► Sea el problema de búsqueda por valor de un elemento en una secuencia.
- ▶ proc contiene(in $s : seq\langle \mathbb{Z} \rangle$, in $x : \mathbb{Z}$, out result : Bool){
 Pre {True}

 Post {result = true $\leftrightarrow (\exists j : \mathbb{Z})(0 \le j < |s| \land_L s[j] = x)}}
 }$
- ▶ ¿Cómo podemos buscar un elemento en una secuencia?

Búsqueda lineal

► Invariante de ciclo:

$$\mathbb{I} \equiv 0 \le k \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le k < j \rightarrow_L s[k] \ne x)$$

► Función variante:

$$fv = |s| - i$$

► ¿Cómo lo podemos implementar en C++?

```
bool contiene(vector<int> &s, int x) {
  int j = 0;
  while( j < s.size() && s[j] != x ) {
    j=j+1;
  }
  return j < s.size();
}</pre>
```

► ¿Es la implementación correcta con respecto a la especificación?

Búsqueda lineal

9	s[0]	s[1]	s[2]	s[3]	s[4]	 s[s -1]
=	x?	= x?	= x?	= x?		= x?
\neq	X	$\neq x$	$\neq x$	$\neq x$		$\neq x$
\uparrow		\uparrow	\uparrow	\uparrow		\uparrow
j		j	j	j		j

► ¿ Qué invariante de ciclo podemos proponer?

$$\mathbb{I} \equiv 0 \le j \le |s| \land_L$$
$$(\forall k : \mathbb{Z})(0 \le k < j \rightarrow_L s[k] \ne x)$$

► ¿Qué función variante podemos usar?

$$fv = |s| - j$$

4

Recap: Teorema de corrección de un ciclo

- ▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $\mathbb{P}_{\mathbb{C}} \Rightarrow \mathbb{I}$,
 - 2. $\{\mathbb{I} \wedge \mathbb{B}\} \mathbb{S} \{\mathbb{I}\},$
 - 3. $\mathbb{I} \wedge \neg \mathbb{B} \Rightarrow \mathbb{Q}_{\mathbb{C}}$,
 - 4. $\{\mathbb{I} \wedge \mathbb{B} \wedge V_0 = fv\}$ **S** $\{fv < V_0\}$,
 - 5. $\mathbb{I} \wedge fv < 0 \Rightarrow \neg \mathbb{B}$,

... entonces la siguiente tripla de Hoare es válida:

 $\{\mathbb{P}_{\mathbb{C}}\}$ while B do S endwhile $\{\mathbb{Q}_{\mathbb{C}}\}$

5

Recap: Teorema de corrección de un ciclo

- 1. $\mathbb{P}_{\mathbb{C}} \Rightarrow \mathbb{I}$,
- 2. $\{\mathbb{I} \wedge \mathbb{B}\} \mathbb{S} \{\mathbb{I}\}$,
- 3. $\mathbb{I} \wedge \neg \mathbb{B} \Rightarrow \mathbb{Q}_{\mathbb{C}}$,
- 4. $\{\mathbb{I} \wedge \mathbb{B} \wedge V_0 = f_V\}$ **S** $\{f_V < V_0\}$,
- 5. $\mathbb{I} \wedge fv \leq 0 \Rightarrow \neg \mathbb{B}$,

En otras palabras, hay que mostrar que:

- ▶ I es un invariante del ciclo (punto 1. y 2.)
- ► Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)
- ► La función variante es estrictamente decreciente (punto 4.)
- ➤ Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)

Búsqueda lineal

- ► Para el ciclo de este programa, tenemos:
 - $ightharpoonup \mathbb{P}_{\mathbb{C}} \equiv i = 0,$

 - $\mathbb{B} \equiv j < |s| \land_L s[j] \neq x$
 - $\blacksquare \equiv 0 \le j \le |s| \land_L (\forall k : \mathbb{Z}) (0 \le k < j \rightarrow_L s[k] \ne x)$
 - ightharpoonup fv = |s| i
- ► Ahora tenemos que probar que:
 - 1. $\mathbb{P}_{\mathbb{C}} \Rightarrow \mathbb{I}$,
 - 2. $\{\mathbb{I} \wedge \mathbb{B}\} \mathbb{S} \{\mathbb{I}\},$
 - 3. $\mathbb{I} \wedge \neg \mathbb{B} \Rightarrow \mathbb{Q}_{\mathbb{C}}$,
 - 4. $\{\mathbb{I} \wedge \mathbb{B} \wedge V_0 = fv\}$ **S** $\{fv < V_0\}$,
 - 5. $\mathbb{I} \wedge fv \leq 0 \Rightarrow \neg \mathbb{B}$,

Corrección de búsqueda lineal

¿I es un invariante del ciclo?

$$\mathbb{I} \equiv 0 \le k \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le k < j \rightarrow_L s[k] \ne x)$$

- ▶ La variable j toma el primer valor 0 y se incrementa por cada iteración hasta llegar a |s|.
- ightharpoonup \Rightarrow 0 \leq $j \leq$ |s|
- ► En cada iteración, todos los elementos a izquierda de *j* son distintos de *x*
- $ightharpoonup \Rightarrow (\forall k : \mathbb{Z})(0 \le k < j \rightarrow_L s[k] \ne x)$

Corrección de búsqueda lineal

¿Se cumple la postcondición del ciclo a la salida del ciclo?

$$\mathbb{I} \equiv 0 \le k \le |s| \wedge_L (\forall j : \mathbb{Z}) (0 \le k < j \to_L s[k] \ne x)$$

$$\mathbb{Q}_{\mathbb{C}} \equiv (j < |s|) \leftrightarrow (\exists k : \mathbb{Z}) (0 \le k < |s| \wedge_L s[k] = x)$$

$$\mathbb{B} \equiv j < |s| \wedge_L s[j] \ne x$$

- ► Al salir del ciclo, no se cumple la guarda. Entonces no se cumple j < |s| o no se cumple $s[j] \neq x$
 - lackbox Si no se cumple j < |s|, no existe ninguna posición que contenga x
 - Si no se cumple $s[j] \neq x$, existe al menos una posición que contiene a x

Corrección de búsqueda lineal

¿Es la función variante estrictamente decreciente?

$$fv = |s| - j$$

- ► En cada iteración, se incremente en 1 el valor de *j*
- ► Por lo tanto, en cada iteración se reduce en 1 la función variante.

10

Corrección de búsqueda lineal

¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?

$$fv = |s| - j$$

$$\mathbb{B} \equiv j < |s| \wedge_L s[j] \neq x$$

- ▶ Si $fv = |s| j \le 0$, entonces $j \ge |s|$
- ▶ Como siempre pasa que $j \le |s|$, entonces es cierto que j = |s|
- ▶ Por lo tanto j < |s| es falso.

Corrección de búsqueda lineal

- ► Finalmente, ahora que probamos que:
 - 1. $\mathbb{P}_{\mathbb{C}} \Rightarrow \mathbb{I}$,
 - 2. $\{\mathbb{I} \wedge \mathbb{B}\} \mathbb{S} \{\mathbb{I}\}$,
 - 3. $\mathbb{I} \wedge \neg \mathbb{B} \Rightarrow \mathbb{Q}_{\mathbb{C}}$,
 - 4. $\{\mathbb{I} \wedge \mathbb{B} \wedge V_0 = fv\}$ **S** $\{fv < V_0\}$,
 - 5. $\mathbb{I} \wedge fv \leq 0 \Rightarrow \neg \mathbb{B}$,
- ► ...podemos por el teorema concluir que el ciclo termina y es correcto.

.

Búsqueda lineal

► Implementación:

```
bool contiene(vector<int> &s, int x) {
  int j = 0;
  while( j < s.size() && s[j] != x ) {
    j=j+1;
  }
  return j < s.size();
}</pre>
```

► Analicemos cuántas veces va a iterar este programa:

S	X	# iteraciones
$\langle \rangle$	1	0
$\langle 1 angle$	1	0
$\langle 1,2 angle$	2	1
$\langle 1,2,3 angle$	4	3
$\langle 1,2,3,4 \rangle$	4	3
$\langle 1,2,3,4,5 \rangle$	-1	5

13

Búsqueda lineal

▶ Dada una secuencia cualquiera, ¿cuál es el tiempo máximo (i.e. el peor caso) que puede tardar en ejecutar el programa?

Función contiene	T_{exec}	máx.# veces
int j = 0;	<i>c</i> ₁	1
while(j < s.size() && s[j] != x) {	<i>c</i> ₂	1+ s
j=j+1;	<i>c</i> ₃	s
}		
return j < s.size();	C ₄	1

► ¿Cuál es el tiempo máximo de ejecución para una secuencia s?

Si definimos a n como la longitud de s, entonces:

$$T_{contiene}(n) = 1 * c_1 + (1 + n) * c_2 + n * c_3 + 1 * c_4$$

Búsqueda lineal

- ▶ ¿De qué depende cuántas veces se ejecuta el ciclo?
 - ▶ Del tamaño de la secuencia
 - De si el valor buscado está o no contenido en la secuencia
- ▶ ¿Qué tiene que pasar para que el tiempo de ejecución sea el máximo posible?
 - ► El elemento no debe estar contenido.
- ► Esto representa el **peor caso** en tiempo de ejecución.

14

Tiempo de ejecución de peor caso

Definición. El tiempo de ejecución de un programa es una función $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ tal que f(n) es el costo de ejecutar el programa en el peor caso para una entrada de tamaño n.

Algunas observaciones:

- 1. Cada línea de programa cuesta un tiempo constante c_j (excepto llamados a otros programas)
- 2. Nos interesa el peor caso (i.e. el que tarda más) del programa.
- 3. Podemos medir la cantidad de operaciones en lugar del tiempo total.
- 4. El tiempo de ejecución se mide en función del tamaño de la entrada y no de la entrada particular.

Notación "O grande"

Definición. Si f y g son dos funciones, decimos que $f \in O(g)$ si existen $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tales que

$$f(n) \leq c g(n)$$
 para todo $n \geq n_0$.

Intuitivamente, $f \in O(g)$ si g(n) "le gana" a f(n) para valores grandes de n.

17

Tiempo de Ejecución de peor caso

Utilizamos la notación "O grande" para expresar el tiempo de ejecución de peor caso f de los programas.

- ▶ Si $f \in O(n)$ (y $f \notin O(1)$) decimos que el programa es lineal.
- ► Si $f \in O(n^2)$ (y $f \notin O(n)$) decimos que el programa es cuadrático.
- ► Si $f \in O(n^3)$ (y $f \notin O(n^2)$) decimos que el programa es cúbico.
- ► En general, si $f \in O(n^k)$, decimos que el programa es polinomial.
- ▶ Si $f \in O(2^n)$ o similar, decimos que el programa es exponencial.

La búsqueda lineal tiene un tiempo de ejecución (de peor caso) perteneciente O(n) con n el tamaño de la entrada. Decimos también "el algoritmo es O(n)". ¿Se puede dar un algoritmos de búsqueda más eficiente?

Notación "O grande"

Definición. Si f y g son dos funciones, decimos que $f \in O(g)$ si existen $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tales que

$$f(n) \leq c g(n)$$
 para todo $n \geq n_0$.

Ejemplos:

- ▶ Si f(n) = n y $g(n) = n^2$, entonces $f \in O(g)$.
- ► Si $f(n) = n^2$ y g(n) = n, entonces $f \notin O(g)$.
- ► Si f(n) = 100n y $g(n) = n^2$, entonces $f \in O(g)$.
- ► Si $f(n) = 4n^2$ y $g(n) = 2n^2$, entonces $f \in O(g)$ (y a la inversa).
- Si $T_{contiene}(n) = 1 * c_1 + (1 + n) * c_2 + n * c_3 + 1 * c_4$,

 entonces $T_{contiene}(n) \in O(n)$

10

Búsqueda sobre secuencias ordenadas

- ► Supongamos ahora que la secuencia está ordenada.
- ▶ proc contieneOrdenada(in $s: seq\langle \mathbb{Z} \rangle$, in $x: \mathbb{Z}$, out result: Bool){

 Pre {ordenado(s)}

 Post {result = true $\leftrightarrow (\exists j: \mathbb{Z})(0 \le j < |s| \land_L s[j] = x)}}$
- ▶ ¿Podemos aprovechar que la secuencia está ordenada para crear un programa más eficiente ?

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que $s[j] \ge x$.

```
bool contieneOrdenada(vector<int> &s, int x) { int j=0; while( j < s.size() && s[j] < x ) { j=j+1; } return (j < s.size() && s[j] == x); }
```

¿Cuál es el tiempo de ejecución de peor caso?

21

Búsqueda sobre secuencias

- $ightharpoonup T_{continue}(n) \in O(n)$
- $ightharpoonup T_{contieneOrdenado}(n) \in O(n)$
- ► El tiempo de ejecución de peor caso de contiene y contieneOrdenado está acotado por la misma función *c* * *n*.
- ► Entonces ambas funciones crecen a la misma velocidad
 - ► Abuso de notación: podemos decir que ambos programas tienen el "mismo" tiempo de ejecución de peor caso

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que $s[j] \ge x$.

Función contieneOrdenado	T_{exec}	máx.# veces
int j = 0;	c_1'	1
while(j < s.size() && $s[j] < x$) {	c_2'	1+ s
j=j+1;	c_3'	s
}		
return (j < s.size() && s[j] == x);	c_4'	1

► Sea *n* la longitud de *s*, ¿cuál es el tiempo de ejecución en el peor caso?

$$T_{contieneOrdenado}(n) = 1 * c'_1 + (1 + n) * c'_2 + n * c'_3 + 1 * c'_4$$

▶ ¿A qué O grande pertenece la función $T_{contieneOrdenado}(n)$?

$$T_{contieneOrdenado}(n) \in O(n)$$

22

Búsqueda sobre secuencias ordenadas

- ▶ ¿Podemos aprovechar el ordenamiento de la secuencia para mejorar el tiempo de ejecución de peor caso?
 - ▶ ¿Necesitamos iterar si |s| = 0? Trivialmente, $x \notin s$
 - ightharpoonup ¿Necesitamos iterar si |s| = 1? Trivialmente,
 - $s[0] == x \leftrightarrow x \in s$
 - ▶ ¿Necesitamos iterar si x < s[0]? Trivialmente, $x \notin s$
 - ▶ ¿Necesitamos iterar si $x \ge s[|s|-1]$? Trivialmente, $s[|s|-1] == x \leftrightarrow x \in s$

-

Búsqueda sobre secuencias ordenadas

Asumamos por un momento que $|s| > 1 \land_L (s[0] \le x \le s[|s|-1])$

25

Búsqueda sobre secuencias ordenadas

Si $x \in s$, tiene que estar en la posición *low* de la secuencia.

26

Búsqueda sobre secuencias ordenadas

▶ ¿Qué invariante de ciclo podemos escribir?

$$\mathbb{I} \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$$

► ¿Qué función variante podemos definir?

$$fv = high - low - 1$$

Búsqueda sobre secuencias ordenadas

```
bool contieneOrdenada(vector<int> &s, int x) {
    // casos triviales
    if (s.size()==0) } {
        return false;
    } else if (s.size()==1) {
        return s[0]==x;
    } else if (x<s[0]) {
        return false;
    } else if (x ≥ s[s.size()-1]) {
        return s[s.size()-1]==x;
    } else {
        // casos no triviales
        o...
    }
}</pre>
```

27

Búsqueda sobre secuencias ordenadas

```
} else {
    // casos no triviales
    int low = 0;
    int high = s.size() - 1;
    while( low+1 < high ) {
        int mid = (low+high) / 2;
        if( s[mid] ≤ x ) {
            low = mid;
        } else {
            high = mid;
        }
    }
    return s[low] == x;
}</pre>
```

A este algoritmo se lo denomina búsqueda binaria

Búsqueda binaria

► Veamos ahora que este algoritmo es correcto.

```
\mathbb{P}_{\mathbb{C}} \equiv \operatorname{ordenada}(s) \wedge (|s| > 1 \wedge_{L} s[0] \leq x \leq s[|s| - 1])
\wedge \operatorname{low} = 0 \wedge \operatorname{high} = |s| - 1
\mathbb{Q}_{\mathbb{C}} \equiv (s[\operatorname{low}] = x) \leftrightarrow (\exists i : \mathbb{Z})(0 \leq i < |s| \wedge_{L} s[i] = x)
\mathbb{B} \equiv \operatorname{low} + 1 < \operatorname{high}
\mathbb{I} \equiv 0 \leq \operatorname{low} < \operatorname{high} < |s| \wedge_{L} s[\operatorname{low}] \leq x < s[\operatorname{high}]
\operatorname{fv} = \operatorname{high} - \operatorname{low} - 1
```

30

Corrección de la búsqueda binaria

- ▶ $\mathbb{I} \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$ ¿Es un invariante para el ciclo?
 - ► El valor de *low* es siempre menor estricto que *high*
 - low arranca en 0 y sólo se aumenta
 - ▶ high arranca en |s| 1 y siempre se disminuye
 - ► Siempre se respecta que $s[low] \le x$ y que x < s[high]
- ▶ $\mathbb{Q}_{\mathbb{C}} \equiv (s[low] = x) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)$ ¿A la salida del ciclo se cumple la postcondicion $\mathbb{Q}_{\mathbb{C}}$?
 - ▶ Al salir, se cumple que low + 1 = high
 - Sabemos que s[high] > x y s[low] <= x
 - ▶ Como s está ordenada, si $x \in s$, entonces s[low] = x

Corrección de la búsqueda binaria

- ► ¿Es la función variante estrictamente decreciente?
 - ► Nunca ocurre que *low* = *high*
 - ightharpoonup Por lo tanto, siempre ocurre que low < mid < high
 - ▶ De este modo, en cada iteración, o bien high es estrictamente menor, o bien low es estrictamente mayor.
 - ▶ Por lo tanto, la expresión high − low − 1 siempre es estrictamente menor.
- ➤ ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?
 - ▶ Si $high low 1 \le 0$, entonces $high \le low + 1$.
 - Por lo tanto, no se cumple (high > low + 1), que es la guarda del ciclo

50

Búsqueda binaria

- ► ¿Podemos interrumpir el ciclo si encontramos x antes de finalizar las iteraciones?
- ▶ Una posibilidad **no recomendada** (no lo hagan en casa!):

```
while( low+1 < high) {
   int mid = (low+high) / 2;
   if( s[mid] < x ) {
      low = mid;
   } else if( s[mid] > x ) {
      high = low;
   } else {
      return true; // Argh!
   }
  return s[low] == x;
}
```

33

Búsqueda binaria

- ➤ Si queremos salir del ciclo, el lugar para decirlo es ... la guarda!
- while(low+1 < high && s[low] != x) {
 int mid = (low+high) / 2;
 if(s[mid] ≤ x) {
 low = mid;
 } else {
 high = mid;
 }
 return s[low] == x;
 }</pre>
- ▶ Usamos fuertemente la condición $s[low] \le x < s[high]$ del invariante.

Búsqueda binaria

- ► Una posibilidad **aún peor** (ni lo intenten!):
- bool salir = false;
 while(low+1 < high && !salir) {
 int mid = (low+high) / 2;
 if(s[mid] < x) {
 low = mid;
 } else if(s[mid] > x) {
 high = mid;
 } else {
 salir = true; // Puaj!
 }
 }

 return s[low] == x || s[(low+high)/2] == x;
 }

34

Búsqueda binaria

► ¿Cuántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s -1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	:
t	$\cong (s -1)/2^t$

• Sea t la cantidad de iteraciones necesarias para llegar a high - low = 1.

```
1 = (|s|-1)/2^t entonces 2^t = |s|-1 entonces t = \log_2(|s|-1).
```

Luego, el tiempo de ejecución de peor caso de la búsqueda binaria es $O(\log_2 |s| - 1) = O(\log_2 |s|)$.

Búsqueda binaria

► ¿Es mejor un algoritmo que ejecuta una cantidad logarítmica de iteraciones?

	Búsqueda	Búsqueda	
s	Lineal	Binaria	
10	10	4	
10^{2}	100	7	
10^{6}	1,000,000	21	
$2,3 \times 10^{7}$	23,000,000	25	
7×10^9	7,000,000,000	33 (!)	

- ► Sí! Búsqueda binaria es más eficiente que búsqueda lineal
- ▶ Peeero, requiere que la secuencia esté ya ordenada.

37

Nearly all binary searches are broken!

- ► En 2006 comenzaron a reportarse accesos fuera de rango a vectores dentro de la función binarySearch implementada en las bibliotecas estándar de Java.
- ► En la implementación en Java, los enteros tienen precisión finita, con rango $[-2^{31}, 2^{31} 1]$.
- ► Si low y high son valores muy grandes, al calcular k se produce overflow.
- ► La falla estuvo *dormida* muchos años y se manifestó sólo cuando el tamaño de los vectores creció a la par de la capacidad de memoria de las computadoras.
- ▶ Bugfix: Computar k evitando el overflow: int mid = low + (high-low)/2;

http://goo.gl/Ww0Cx6

3

Conclusiones

- ► La búsqueda binaria implementada en Java estaba formalmente demostrada ...
- ... pero la demostración suponía enteros de precisión infinita (en la mayoría de los lenguajes imperativos son de precisión finita).
 - ► En AED1 no nos preocupan los problemas de aritmética de precisión finita (+Info: Orga1).
 - Es importante validar que las hipótesis sobre las que se realizó la demostración valgan en la implementación (aritmética finita, existencia de acceso concurrente, multi-threading, etc.)

_

Bibliografía		
 David Gries - The Science of Programming Chapter 16 - Developing Invariants (Linear Search, Binary Search) Cormen et al Introduction to Algorithms Chapter 2.2 - Analyzing algorithms Chapter 3 - Growth of Functions 		
41		