Lecture 4: Vector Fields

Tianpei Xie

Oct. 13th., 2022

Contents

1	Vector field on Euclidean space and on surface		2
	1.1	Field of directions and vector field	2
	1.2	Vector fields in local coordinates and derivative of functions	F

1 Vector field on Euclidean space and on surface

1.1 Field of directions and vector field

• **Definition** A vector field w in an open set U of Euclidean space \mathbb{R}^2 is a map which assign to each $q \in U$ a vector $w(q) \in \mathbb{R}^2$. The vector field is said to be differentiable if writing q = (x, y) and w(q) = (a(x, y), b(x, y)), the functions a, b are differentiable function in U.

Figure 1: A vector field

• Definition A (tangent) vector field w in an open set $U \subset S$ of a regular surface S is a correspondence which assigns to each $p \in U$ a vector $w(p) \in T_pS$. The vector field w is differentiable at $p \in U$ if, for some parameterization x(u, v) at p, the functions a(u, v) and b(u, v) given by

$$\boldsymbol{w}(p) = a(u, v)\boldsymbol{x}_u + b(u, v)\boldsymbol{x}_v$$

are differentiable functions at p; it is clear that this definition does not depends on the choice of x.

- **Definition** A *trajectory* of a vector field \boldsymbol{w} is a differentiable parameterized curve $\alpha(t) = (x(t), y(t)), t \in I$ such that $\alpha'(t) = \boldsymbol{w}(\alpha(t))$.
- \bullet The vector field w determines a system of differential equations,

$$\frac{dx}{dt} = a(x, y),$$
$$\frac{dy}{dt} = b(x, y),$$

and that a trajectory of w is a solution to the above system of equations.

• Theorem 1.1 Let w be a vector field in an open set $U \subset \mathbb{R}^2$. Given $p \in U$, there exists a trajectory $\alpha : I \to U$ of w, i.e. $\alpha'(t) = w(\alpha(t)), t \in I$ with $\alpha(0) = p$. This trajectory is unique in the following sense: Any other trajectory $\beta : J \to U$ with $\beta(0) = p$ agrees with α in $I \cap J$.

This gives the existence and uniqueness of trajectory in local neighborhood.

- Theorem 1.2 Let w be a vector field in an open set $U \subset \mathbb{R}^2$. Given $p \in U$, there exists a neighborhood $V \subset U$ of p, an interval I, and a mapping $\alpha : V \times I \to U$ such that
 - For a fixed $p \in V$, the curve $\alpha(p,t), t \in I$, is the trajectory of \boldsymbol{w} passing through p; that is,

$$\alpha(q,0) = p, \quad \frac{\partial \alpha}{\partial t}(p,t) = \boldsymbol{w}\left(\alpha(p,t)\right)$$

Figure 2: All trajectories which pass p in a neighborhood V can be represented by α

 $-\alpha$ is differentiable.

This means that the trajectory depends differentiable on initial point p.

Geometrically Theorem 1.2 means that all trajectories which pass, for t = 0, in a certain neighborhood V of p may be "collected" into a single differentiable map. It is in this sense that we say that the trajectories depend differentiably on p.

- **Definition** The collection of trajectories $\alpha(q,t)$ passing through a neighborhood V of p is called a *(local) flow* of w at p.
- Given the parameterization $\boldsymbol{x}(u,v)$ at p, the differentiable vector field \boldsymbol{w} and the curve $\alpha(t) = \boldsymbol{x}(u(t),v(t))$ on \mathcal{S} with $\alpha(0) = p$, $\dot{\alpha}(0) = \boldsymbol{y}$, the vector field can be represented as

$$\mathbf{w}(t) = a(u(t), v(t))\mathbf{x}_u + b(u(t), v(t))\mathbf{x}_v$$

= $a(t)\mathbf{x}_u + b(t)\mathbf{x}_v$ (1)

• Lemma 1.3 (The existence of first integral)

Let \mathbf{w} be a vector field in an open set $U \subset \mathbb{R}^2$ and let $p \in U$ such that $\mathbf{w}(p) \neq 0$. Then there exists a neighborhood $W \subset U$ of p and a differentiable function $f: W \to \mathbb{R}$ such that f is constant along each trajectory of \mathbf{w} and $df_q \neq 0$ for all $q \in W$.

Proof: Choose the Cartesian coordinate system in \mathbb{R}^2 such that p = (0,0) and $\boldsymbol{w}(p)$ is in direction of x-axis. Let the $\alpha: V \times I \to U$ be a local flow at $p, V \subset U, t \in I$, and let the $\hat{\alpha}$ be the restriction of α to the rectangle

$$(V \times I) \cap \{(x, y, t), x = 0\}$$

By definition of the local flow, $d\hat{\alpha}_p$ maps the unit vector of the t axis into w and maps the unit vector of y-axis into itself. Thus $d\hat{\alpha}_p \neq 0$. It follows that there exists a neighborhood $W \subset U$ of p, where $\hat{\alpha}^{-1}$ is defined and differentiable. The projection of $\hat{\alpha}^{-1}(x,y)$ onto the y-axis is a differentiable function $\xi = f(x,y)$, which has the same value ξ for all points of the trajectory passing through $(0,\xi)$.

In other word, note that $\hat{\alpha}(0, y, t)$ is the point obtained by "walking" in the trajectory of (0, y) an time t. On the other hand, $\hat{\alpha}^{-1}(x, y)$ are the points of the form (0, y', t) for some y' and

Figure 3: An integral curve of differential equations

some $t \in I$. The projection of $\hat{\alpha}^{-1}(x,y)$ onto the y-axis is the intersection of the trajectory passing through (x,y) with the y-axis. By the uniqueness of the trajectory, if you take (x,y) and (x_1,y_1) in the same trajectory, they must pass through the same position y-axis, so the function $\hat{\alpha}^{-1}(x,y)$ is constant on trajectories.

Since $d\hat{\alpha}_p \neq 0$, W may be taken sufficiently small so that $df_q \neq 0$ for all $q \in W$. f is the function we required.

• **Definition** The function $f: W \to \mathbb{R}$ above is called a (local) first integral of a vector field of \boldsymbol{w} in a neighborhood W of p. In other word, for f to be the first integral of vector field \boldsymbol{w} , $\alpha(t)$ be the trajectory of the vector field, then

$$\frac{df(\alpha(t))}{dt} = a(u, v) \frac{\partial f}{\partial u} + b(u, v) \frac{\partial f}{\partial v}$$
$$\equiv \boldsymbol{w}(f) = 0$$

In other word, the **curve** $f(\alpha(t)) = const$ is seen as **one solution** for the system of differential equations.

• **Definition** A *field of directions* r is an open set $U \subset \mathbb{R}^2$ is a correspondence which assigns to each $p \in U$ a *line* r(p) in \mathbb{R}^2 passing through p.

r is said to be **differentiable** at $p \in U$ if there exists nonzero differentiable vector field \mathbf{w} defined in a neighborhood $V \subset U$ of p, such that for each $q \in V$, $\mathbf{w}(q) \neq 0$ is a **basis** of r(q); r is differentiable in U, if it is differentiable in every $p \in U$.

Definition In differential equations, a *field of directions* is given by

$$a(x,y)\frac{dx}{dt} + b(x,y)\frac{dy}{dt} = 0$$

The above form is also called 1-form differentials.

• Note that for each differentiable w in U there exists a differentiable field of directions r with r(p) = line generated by w(p).

Figure 4: Field of directions and the integral curve.

• Definition A regular connected curve $C \subset U$ is an integral curve of a field of directions r defined in U if r(q) is the tangent line to C at q for all $q \in C$.

It is clear that given r in U, there passes, for each $q \in U$ an integral curve of r.

• The difference between field of directions and the vector field is that for $\mathbf{w}_2 = \lambda \mathbf{w}_1$ with $\lambda \neq 0$ constant, they corresponds to the same field of direction r (i.e. up to scale).

Conversely, if two vectors belong to the same straight line passing through p they are considered equivalent. Thus for every $p \in U$, $r(p) = (r_1, r_2)$ with r_1, r_2 being two real numbers and $(r_1, r_2) \sim (\lambda r_1, \lambda r_2)$

1.2 Vector fields in local coordinates and derivative of functions

• Theorem 1.4 Let w_1, w_2 are two vector fields in an open subset $U \subset S$, which are linearly independent at some point $p \in U$. Then it is possible to **parameterize** a neighborhood $V \subset U$ of p in a way that for each $q \in V$ the coordinate lines of this parameterization passing through q are **tangent** to the lines determined by $w_1(q)$ and $w_2(q)$.

(Note that not necessary to be the tangent line.)

Proof: Let W be a neighborhood of p where the first integrals f_1 and f_2 of $\mathbf{w}_1, \mathbf{w}_2$, respectively, are defined. Define a map $\varphi : W \to \mathbb{R}^2$ as

$$\varphi(q) = (f_1(q), f_2(q)), \quad q \in W.$$

Since f_1 is constant on the trajectory of \mathbf{w}_1 and $df_1 \neq 0$, we have at p

$$d\varphi_p(\mathbf{w}_1) = ((df_1)_q(\mathbf{w}_1), (df_2)_q(\mathbf{w}_1)) = (0, a),$$

where $a = (df_2)_q(\mathbf{w}_1) \neq 0$, since $\mathbf{w}_1, \mathbf{w}_2$ are linearly independent. Similarly, see that

$$d\varphi_p(\boldsymbol{w}_2) = (b,0),$$

where $b = (df_1)_q(\boldsymbol{w}_2) \neq 0$. It follows that $d\varphi_p \neq 0$ and hence φ is a local diffeomorphism. There exist, therefore, a neighborhood $\bar{U} \subset \mathbb{R}^2$ of $\varphi(p)$ which is mapped diffeomorphically by $\boldsymbol{x} = \varphi^{-1}$ onto a neighborhood $V = \boldsymbol{x}(\bar{U})$ of p; that is, \boldsymbol{x} is a parameterization of \mathcal{S} at p, whose coordinate curve is given by

$$f_1(q) = const.$$
 $f_2(q) = const.$

are tangent at q to the lines determined by $w_1(q)$ and $w_2(q)$.

- Corollary 1.5 Given two fields of directions r_1, r_2 in an open set $U \subset S$ such that at $p \in U$, $r_1(p) \neq r_2(p)$, there exists a **parameterization** x in a neighborhood of p such that the **coordinate curves** of x are the **integral curves** of r_1, r_2 .
- Corollary 1.6 (The existence of the orthogonal parameterization). For all $p \in U$, there exists a parameterization $\mathbf{x}(u, v)$ is a neighborhood V of p such that the coordinate curve u = const. and v = const. intersects orthogonally for each $q \in V$ (such that \mathbf{x} is called an orthogonal parameterization).
- It thus represent the **basis vector field** as $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$, and

$$\mathbf{w}(u,v) = a(u,v)\frac{\partial}{\partial u} + b(u,v)\frac{\partial}{\partial v}$$

- Corollary 1.7 Let $p \in S$ be a hyperbolic point of S. Then it is possible to parametrize a neighborhood of p in such a way that the coordinate curves of this parametrization are the asymptotic curves of S.
- Corollary 1.8 Let p ∈ S be a non-umbilical point of S. Then it is possible to parametrize a
 neighborhood of p in such a way that the coordinate curves of this parametrization are the
 lines of curvature of S.
- **Definition** Define the <u>derivative</u> w(f) of a differentiable function $f: U \subset S \to \mathbb{R}$ relative to a vector field w in U by

$$\boldsymbol{w}(f)(q) = \left. \frac{d}{dt} \left(f \circ \alpha \right) \right|_{t=0}, \quad q \in U$$

where $\alpha: I \to \mathcal{S}$ is the **trajectory of** \boldsymbol{w} passing through q such that $\alpha(0) = q, \alpha'(0) = \boldsymbol{w}(q)$.

• Thus the vector field w can also be considered as a <u>differential operator</u> on space of continuous functions \mathbb{C}^{∞} as $w: \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ as

w(f) = directional derivative of f along trajectory α of w.

Then

$$\mathbf{w}(f) = \left(a(u, v)\frac{\partial}{\partial u} + b(u, v)\frac{\partial}{\partial v}\right)(f)$$
$$= a(u, v)\frac{\partial f}{\partial u} + b(u, v)\frac{\partial f}{\partial v}$$

• The composition of two vector fields w, v together gives

$$wv(fg) \equiv w(v(fg)) = w(v(f)g) + w(fv(g))$$

$$= w(v(f))g + v(f)w(g) + w(f)v(g) + fw(v(g))$$

$$vw(fg) = v(w(f))g + w(f)v(g) + v(f)w(g) + fv(w(g))$$

$$[w v - v w](fg) = ([w v - v w](f))g + f([w v - v w](g))$$

$$[w, v](fg) = ([w, v](f))g + f([w, v](g))$$

where the operator

$$[\boldsymbol{w},\,\boldsymbol{v}] \equiv [\boldsymbol{w}\,\boldsymbol{v} - \boldsymbol{v}\,\boldsymbol{w}]$$

is called the *Lie bracket*.

References