Competitive Analysis via Regularization (soda'14)

Xiaoxi Zhang
Department of Computer Science
zxx1121xiaoxi@gmail.com

Motivation

Understand the model

 Understand primal-dual combined with KKT optimality conditions

- Model
- Regularization Algorithm (fractional version)
- Competitive Analysis (fractional version)
- Extensions:
 - More general constraints
 - Rounding a fractional solution to the online set cover with service cost problem

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

What comes online?

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

What comes online?

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

What comes online?

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

• What comes online?

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

What comes online?

What are known in advance?
 The sets(circles) on the plane are fixed in advance.

Goal:

to minimize the # of sets (circles) covering all the nodes

What comes online?

- What if nodes can disappear some time in the future?
- Or even worse, the disappearing time is revealed only when the node disappear?
- What if the cost of turning on the sets are different?
- What if there is cost for keeping a set active after the set is turning on?

- What if nodes can disappear some time in the future?
- Or even worse, the disappearing time is revealed only when the node disappear?
- What if the cost of turning on the sets are different?
- What if there is cost for keeping a set active after the set is turning on?
- How the situation will change you can think of?

- What if nodes can disappear some time in the future?
- Or even worse, the disappearing time is revealed only when the node disappear?
- What if the cost of turning on the sets are different?
- What if there is cost for keeping a set active after the set is turning on?
- Some sets may be turned off

(simple and integer version)

Set	service cost/unit time slot	turn-on cost	
P	3	1	

- Online setting: the nodes on this plane will appear and disappear gradually, reporting the set of circles(Set) which can cover them.
- The appearing time and disappearing time will not be revealed in advance
- Our goal: to minimize the sum of total serving cost and turn-on cost.

(simple and integer version)

Set	service cost/unit time slot			turn-on cost	
P Q		3 1		1 4	
Time	active nodes	associated circles	active circles	updated total cost	
t=1	Α	P,Q	Р	3+1=4	

Greedy

(simple and integer version)

Set	servi	ce cost/unit time	slot	turn-on cost	
P Q		3 1		1 4	
Tim	e active nodes	associated circles	active circles	updated total cost	
t=1 t=2	A A	P,Q P,Q	P P	3+1=4 4+3=7	

Greedy

(simple and integer version)

Greedy

Set	service cost/unit time slot		turn-on cost		
P	3			1	
Q	1			4	
Time	active nodes	associated circles	active circles	updated total cost	
t=1	A	P,Q	P	3+1=4	
t=2	A	P,Q	P	4+3=7	
t=3	B	Q	Q	7+1+4=12	

(simple and integer version)

Greedy

Set	service cost/unit time slot		slot	turn-on cost	
P Q	3 1			1 4	
Time	active nodes	associated circles	active circles	updated total cost	
t=1 t=2 t=3	A A B	P,Q P,Q Q	P P Q	3+1=4 4+3=7 7+1+4=12	

OPT: Turn on Q. Optimal Cost= 4+1+1+1=7

Model

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\begin{array}{ll} \forall t \geq 1 \text{ and } 1 \leq j \leq m_t & \sum_{i \in S_{j,t}} y_{i,t} \geq 1 \\ \forall t \geq 1 \text{ and } 1 \leq i \leq n & z_{i,t} \geq y_{i,t} - y_{i,t-1} \\ \forall t \text{ and } 1 \leq i \leq n & z_{i,t}, y_{i,t} \geq 0 \end{array}$$

What arrives online?

- > m_t the # of items at each time slot t arrives at t
- S_{j,t} the associated set of item j at time slot arrives at t, containing the elements I
 1<= | S_{j,t} | <= n</p>

Model

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\begin{array}{ll} \forall t \geq 1 \text{ and } 1 \leq j \leq m_t & \sum_{i \in S_{j,t}} y_{i,t} \geq 1 \\ \forall t \geq 1 \text{ and } 1 \leq i \leq n & z_{i,t} \geq y_{i,t} - y_{i,t-1} \\ \forall t \text{ and } 1 \leq i \leq n & z_{i,t}, y_{i,t} \geq 0 \end{array}$$

Difficult to understand !!!

What arrives online?

- > m_t the # of items at each time slot t arrives at t
- S_{j,t} the associated set of item j at time slot arrives at t, containing the elements I

$$1 \le |S_{j,t}| \le n$$

(fractional version)

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$

 $\forall t \geq 1 \text{ and } 1 \leq i \leq n$
 $\forall t \text{ and } 1 \leq i \leq n$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$
 $z_{i,t} \ge y_{i,t} - y_{i,t-1}$
 $z_{i,t}, y_{i,t} \ge 0$

turn-on cost of circle i

(fractional version)

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$

 $\forall t \geq 1 \text{ and } 1 \leq i \leq n$
 $\forall t \text{ and } 1 \leq i \leq n$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$
 $z_{i,t} \ge y_{i,t} - y_{i,t-1}$
 $z_{i,t}, y_{i,t} \ge 0$

turn-on cost of circle i

the # of the nodes appearing at t

i: circle(set);

j: node at each time slot

Service cost / unit time slot

(fractional version)

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$

 $\forall t \geq 1 \text{ and } 1 \leq i \leq n$
 $\forall t \text{ and } 1 \leq i \leq n$

the # of the nodes appearing at t

i: circle(set);

j: node at each time slot

Service cost / unit time slot

$$\sum_{i \in S_{j,t}} y_{i,t} \geq 1$$
 $z_{i,t} \geq y_{i,t} - y_{i,t-1}$
 $z_{i,t}, y_{i,t} \geq 0$

turn-on cost of circle i

Associated set of circles which can cover the node j at t

(fractional version)

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$

 $\forall t \geq 1 \text{ and } 1 \leq i \leq n$
 $\forall t \text{ and } 1 \leq i \leq n$

the # of the nodes appearing at t

i: circle(set);

j: node at each time slot

Service cost / unit time slot

$$\sum_{i \in S_{j,t}} y_{i,t} \geq 1$$
 $z_{i,t} \geq y_{i,t} - y_{i,t-1}$
 $z_{i,t}, y_{i,t} \geq 0$

The fraction at which circle i is active at time t

turn-on cost of circle i

Associated set of circles which can cover the node j at t

(fractional version)

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n^2$$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$\sum_{i \in S_{j,t}} y_{i,t} \geq 1$$
 $z_{i,t} \geq y_{i,t} - y_{i,t-1}$

$$z_{i,t} \geq y_{i,t} - y_{i,t-1}$$

$$z_{i,t},y_{i,t}\geq 0$$

The fraction at which circle i is active at time

turn-on cost of circle i

the # of the nodes appearing at t

i: circle(set);

j: node at each time slot

Service cost / unit time slot

Associated set of circles which can cover the node j at t

Multiple slots in the duration of each node may have different indexes

Break Ties !!!

- Model
- Regularization Algorithm (fractional version)
- Competitive Analysis (fractional version)
- Extensions:
 - More general constraints
 - Rounding a fractional solution to the online set cover with service cost problem

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$
 $z_{i,t} \geq y_{i,t} - y_{i,t-1}$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$\sum_{i \in S_{i,t}} y_{i,t} \ge 1$$

$$z_{i,t} \ge y_{i,t} - y_{i,t-1}$$

$$z_{i,t}, y_{i,t} \geq 0$$

Offline

Online Goal

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_{i} \cdot |y_{i,t} - y_{i,t-1}|,$$

Actual cost

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot \max\{0, y_{i,t} - y_{i,t-1}\}.$$

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$
 $z_{i,t} \geq y_{i,t} - y_{i,t-1}$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$\sum_{i \in S_{i,t}} y_{i,t} \ge 1$$

$$z_{i,t} \ge y_{i,t} - y_{i,t-1}$$

$$z_{i,t}, y_{i,t} \geq 0$$

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot |y_{i,t} - y_{i,t-1}|,$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$\sum_{i \in S_{i,t}} y_{i,t} \ge 1$$

$$z_{i,t}, y_{i,t} \geq 0$$

Online Optimization

$$\min \sum_{t=1}^T \sum_{i=1}^n c_{i,t} \cdot y_{i,t} + \sum_{t=1}^T \sum_{i=1}^n w_i (|y_{i,t} - y_{i,t-1}|, |y_{i,t} - y_{i,t-1}|, |y_{i,t-1} - y_{i,t-1}|, |y_{$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \geq 1$ $\forall t \text{ and } 1 \leq i \leq n$ $z_{i,t}, y_{i,t} \geq 0$

Regularization Function for I₁-norm

$$\Delta \left(\mathbf{w} \| \mathbf{u}\right) = \sum_{i} \left(\mathbf{w}_{i} \ln \frac{\mathbf{w}_{i}}{\mathbf{u}_{i}} + \mathbf{u}_{i} - \mathbf{w}_{i}\right)$$

Online Optimization

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_{i} \cdot |y_{i,t} - y_{i,t-1}|,$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$z_{i,t}, y_{i,t} \geq 0$$

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \frac{1}{\eta} \sum_{i=1}^{n} w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right)$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$z_{i,t}, y_{i,t} \geq 0$$

Online Optimization

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot |y_{i,t} - y_{i,t-1}|,$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \text{ and } 1 \leq i \leq n$$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$

$$z_{i,t}, y_{i,t} \geq 0$$

$$\begin{aligned} \min \sum_{t=1}^T \sum_{i=1}^n c_{i,t} \cdot y_{i,t} + \sum_{t=1}^T \left(\frac{1}{\eta} \right) \sum_{i=1}^n w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right) \\ \forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1 \\ \forall t \text{ and } 1 \leq i \leq n \qquad z_{i,t}, y_{i,t} \geq 0 \end{aligned}$$

Algorithm 1 Regularization Algorithm

parameters: $\epsilon > 0, \eta = \ln(1 + n/\epsilon)$.

initialize $y_{i,0} = 0$ for all $i = 1, \ldots, n$.

for t = 1, 2, ..., T do

let $c_t \in \mathbb{R}^n_+$ be the cost vector and let P_t be the feasible set of solutions at time t. solve the following convex program to obtain y_t ,

$$(P') y_t = \arg\min_{x \in P_t} \left\{ \langle c_t, x \rangle + \frac{1}{\eta} \sum_{i=1}^n w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right) \right\}.$$

end for

$$\begin{aligned} \min \sum_{t=1}^T \sum_{i=1}^n c_{i,t} \cdot y_{i,t} + \sum_{t=1}^T \frac{1}{\eta} \sum_{i=1}^n w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right) \\ \forall t \geq 1 \text{ and } 1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1 \\ \forall t \text{ and } 1 \leq i \leq n \qquad z_{i,t}, y_{i,t} \geq 0 \end{aligned}$$

Algorithm 1 Regularization Algorithm

parameters: $\epsilon > 0, \eta = \ln(1 + n/\epsilon)$.

initialize $y_{i,0} = 0$ for all $i = 1, \ldots, n$.

for t = 1, 2, ..., T do

let $c_t \in \mathbb{R}^n_+$ be the cost vector and let P_t be the feasible set of solutions at time t. solve the following convex program to obtain y_t ,

$$(P') y_t = \arg\min_{x \in P_t} \left\{ \langle c_t, x \rangle + \frac{1}{\eta} \sum_{i=1}^n w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right) \right\}.$$

end for

$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \frac{1}{\eta} \sum_{i=1}^{n} w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right)$$

$$\forall t \ge 1 \text{ and } 1 \le j \le m_t \qquad \sum_{i \in S_{j,t}} y_{i,t} \ge 1$$

$$\forall t \text{ and } 1 \le i \le n \qquad z_{i,t}, y_{i,t} \ge 0$$

- Model
- Regularization Algorithm (fractional version)
- Competitive Analysis (fractional version)
- •Extensions:
 - More general constraints
 - Rounding a fractional solution to the online set cover with service cost problem

Competitive Analysis —— Primal-dual Framework

- Primal KKT Condition Dual
- Objective consists of two parts:
 - •Service Cost $\sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t}$
 - Movement Cost $\sum_{t=1}^{T} \sum_{i=1}^{T} w_i \cdot \max\{0, y_{i,t} y_{i,t-1}\}.$
- Two inequalities
 - \circ a-b <=a In (a/b)

Competitive Analysis —big picture

Competitive Analysis —big picture

P' Solve the optimal solution D'

Competitive Analysis —big picture

Competitive Analysis ——big picture

- Since we solve P'* and use the solution y' (primal variable vector) as that of P, we need to guarantee :
- 1. y' is feasible for P. (P(y') > = P* = OPT)
- 2. $P(y') \le c P^* = c OPT$ (now we only have $P(y') \ge P^* = OPT$ due to 1.)
- * How to achieve $P(y') \le c OPT$?

$$P(y') \le C D \le C D^* \le C OPT \le C P^*$$

- Since we solve P'* and use the solution y' (primal variable vector) as that of P, we need to guarantee :
- 1. y' is feasible for P. (P(y') > = P* = OPT)
- 2. $P(y') \le c P^* = c OPT$ (now we only have $P(y') \ge P^* = OPT$ due to 1.)
- * How to achieve $P(y') \le c OPT$?

$$P(y') <= c D^* <= c OPT <= c P^*$$

D is exactly a lower bound of OPT we need!

- Since we solve P'* and use the solution y' (primal variable vector) as that of P, we need to guarantee :
- 1. y' is feasible for P. (P(y') > = P* = OPT)
- 2. $P(y') \le c P^* = c OPT$ (now we only have $P(y') \ge P^* = OPT$ due to 1.)
- * How to achieve $P(y') \le c OPT$?

$$P(y') \le C D \le C D^* \le C OPT \le C P^*$$

How to obtain such a feasible dual solution???

- Since we solve P'* and use the solution y' (primal variable vector) as that of P, we need to guarantee :
- 1. y' is feasible for P. (P(y') > = P* = OPT)
- 2. $P(y') \le c P^* = c OPT$ (now we only have $P(y') \ge P^* = OPT$ due to 1.)
- * How to achieve $P(y') \le c OPT$?

$$P(y') \le C D \le C D^* \le C OPT \le C P^*$$

Design appropriate values for dual variables

How to obtain such a feasible dual solution???

- Primal KKT Condition Dual
 - Optimality
 - o primal and dual variables satisfy KKT Condition

- Which one we list the KKT Condition for ?
 - Ans: P'* and D'*.
 - Let y' denote the solution of P'*.

$$\min \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \frac{1}{\eta} \sum_{i=1}^{n} w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right) \quad \forall t$$

$$1 \le j \le m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \ge 1 \quad \text{Associated dual variable : } a_{jt}$$

$$1 \le i \le n \quad z_{i,t}, y_{i,t} \ge 0$$

In fact, we do not need to derive the specific dual program from P'. We only need to know the dual variables and list the kkt condition for P' and D'.

2. KKT

We now assume additionally that f_i and h_i are differentiable (but general otherwise). By (1.2), x^* minimizes $L(x, \lambda^*, \nu^*)$ over x. Thus, its gradient must vanish at x^* :

$$\nabla f_0(x^*) + \sum \lambda_i^* \nabla f_i(x^*) + \sum \nu_i^* \nabla h_i(x^*) = 0.$$

Thus, we have:

(2.1)
$$f_i(x^*) \leq 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\nabla f_0(x^*) + \sum \lambda_i^* \nabla f_i(x^*) + \sum \nu_i^* \nabla h_i(x^*) = 0.$$

This system is called the Karush-Kuhn-Tucker (KKT) conditions.

References

2. KKT

We now assume additionally that f_i and h_i are differentiable (but general otherwise). By (1.2), x^* minimizes $L(x, \lambda^*, \nu^*)$ over x. Thus, its gradient must vanish at x^* :

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

Thus, we have:

$$f_i(x^*) \leq 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

(2.1)

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

This system is called the Karush-Kuhn-Tucker (KKT) conditions.

References

2. KKT

We now assume additionally that f_i and h_i are differentiable (but general otherwise). By (1.2), x^* minimizes $L(x, \lambda^*, \nu^*)$ over x. Thus, its gradient must vanish at x^* :

$$\nabla f_0(x^*) + \sum \lambda_i^* \nabla f_i(x^*) + \sum \nu_i^* \nabla h_i(x^*) = 0.$$

Thus, we have:

$$f_i(x^*) \le 0$$

$$h_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

(2.1)

$$\nabla f_0(x^*) + \sum \lambda_i^* \nabla f_i(x^*) + \sum \nu_i^* \nabla h_i(x^*) = 0.$$

This system is called the Karush-Kuhn-Tucker (KKT) conditions.

References

2. KKT

We now assume additionally that f_i and h_i are differentiable (but general otherwise). By (1.2), x^* minimizes $L(x, \lambda^*, \nu^*)$ over x. Thus, its gradient must vanish at x^* :

$$\nabla f_0(x^*) + \sum \lambda_i^* \nabla f_i(x^*) + \sum \nu_i^* \nabla h_i(x^*) = 0.$$

Thus, we have:

(2.1)
$$1 \leq j \leq m_t \quad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$|f_i(x^*)| \leq 0$$

$$|h_i(x^*)| = 0$$

$$|\lambda_i^* f_i(x^*)| = 0$$

$$|\lambda_i^* f_i(x^*)| = 0$$

Obj

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

This system is called the Karush-Kuhn-Tucker (KKT) conditions.

References

 $\forall t$

$$\min \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \frac{1}{\eta} \sum_{i=1}^{n} w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right)$$

$$1 \leq j \leq m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \geq 1$ Associated

$$1 \le i \le n \qquad \qquad z_{i,t}, y_{i,t} \ge 0$$

dual variable:

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_i \nu_i^* \nabla h_i(x^*) = 0.$$

$$c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{i:i \in S_{\epsilon,t}} a_{j,t} = 0.$$

For all $1 \leq j \leq m_t$,

(2.9)
$$\sum_{i \in S_{j,t}} y_{i,t} - 1 \ge 0,$$

(2.10)
$$a_{j,t} \left(\sum_{i \in S_{j,t}} y_{i,t} - 1 \right) = 0,$$

For all $1 \le i \le n$,

$$(2.11) c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0,$$

$$c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} = 0.$$

$$(2.11) \quad c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0,$$

$$y_{i,t} \left(c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{\eta} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \right) = 0.$$

 $\forall t$

$$\min \sum_{i=1}^n c_{i,t} \cdot y_{i,t} + \frac{1}{\eta} \sum_{i=1}^n w_i \left(\left(x_i + \frac{\epsilon}{n} \right) \ln \left(\frac{x_i + \epsilon/n}{y_{i,t-1} + \epsilon/n} \right) - x_i \right)$$

$$1 \le j \le m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \ge 1$ Associated

$$1 \le i \le n \qquad \qquad z_{i,t}, y_{i,t} \ge 0$$

Associated dual variable:

ajt

sociation

For all $1 \leq j \leq m_t$,

(2.9)
$$\sum_{i \in S_{j,t}} y_{i,t} - 1 \ge 0,$$

(2.10)
$$a_{j,t} \left(\sum_{i \in S_{j,t}} y_{i,t} - 1 \right) = 0,$$

For all $1 \le i \le n$,

$$(2.11) c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{i,t}} a_{j,t} \ge 0,$$

$$y_{i,t}\left(c_{i,t} + \frac{w_i}{\eta}\ln\left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}}\right) - \sum_{j:i \in S_{j,t}} a_{j,t}\right) = 0.$$

 $\forall t \geq 1 \text{ and } i, j$

 $a_{i,t}, b_{i,t} \geq 0$

 $\forall t \text{ and } 1 \leq i \leq n$ $z_{i,t}, y_{i,t} \geq 0$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t} \mid (D) \qquad \max \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t}$$

$$\begin{array}{ll} \forall t \geq 1 \text{ and } 1 \leq j \leq m_t & \sum_{i \in S_{j,t}} y_{i,t} \geq 1 \\ \forall t \geq 1 \text{ and } 1 \leq i \leq n & z_{i,t} \geq y_{i,t} - y_{i,t} \\ \forall t \text{ and } 1 \leq i \leq n & z_{i,t}, y_{i,t} \geq 0 \end{array}$$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$
 $z_{i,t} \ge y_{i,t} - y_{i,t-1}$
 $z_{i,t}, y_{i,t} \ge 0$

(2.11)
$$c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0,$$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t} \mid (D) \qquad \max \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \geq 1$ $\forall t \geq 1 \text{ and } 1 \leq i \leq n$ $z_{i,t} \geq y_{i,t} - y_{i,t}$

$$orall t$$
 and $1 \le i \le n$ $z_{i,t} \ge g_{i,t}$ $\forall t$ and $1 \le i \le n$ $z_{i,t}, y_{i,t} \ge 0$

$$\sum_{i \in S_{j,t}} y_{i,t} \ge 1$$
$$z_{i,t} \ge y_{i,t} - y_{i,t-1}$$

$$z_{i,t}, y_{i,t} \geq 0$$

$$\forall t \geq 1 \text{ and } i$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$

$$\forall t \geq 1 \text{ and } i, j$$

feasible!

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$
 $b_{i,t+1} - b_{i,t} \leq c_{i,t} - \sum_{j|i \in S_{i,t}} a_{j,t}$

$$a_{j,t},b_{i,t}\geq 0$$

$$(2.11) c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0,$$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t} \mid (D) \qquad \max \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \geq 1$ $\forall t \geq 1 \text{ and } 1 \leq i \leq n$ $z_{i,t} \geq y_{i,t} - y_{i,t}$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t \qquad \sum_{i \in S_{j,t}} y_{i,t} \geq 1$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n \qquad z_{i,t} \geq y_{i,t} - y_{i,t-1}$$

$$\forall t \text{ and } 1 \leq i \leq n \qquad z_{i,t}, y_{i,t} \geq 0$$

$$\begin{array}{ll} \forall t \geq 1 \text{ and } i \\ \forall t \geq 1 \text{ and } 1 \leq i \leq n \\ \forall t \geq 1 \text{ and } i, j \end{array} \begin{array}{ll} b_{i,t} \leq w_i \\ b_{i,t+1} - b_{i,t} \leq c_{i,t} - \sum_{j|i \in S_{i,t}} a_{j,t} \\ a_{j,t}, b_{i,t} \geq 0 \end{array}$$

$$(2.11) c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0,$$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

(P)
$$\min \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} \cdot y_{i,t} + \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot z_{i,t} \mid (D) \qquad \max \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t}$$

$$\forall t \geq 1 \text{ and } 1 \leq j \leq m_t$$
 $\sum_{i \in S_{j,t}} y_{i,t} \geq 1$ $\forall t \geq 1 \text{ and } 1 \leq i \leq n$ $z_{i,t} \geq y_{i,t} - y_{i,t}$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$
 $z_{i,t} \geq y_{i,t} - \forall t \text{ and } 1 \leq i \leq n$ $z_{i,t}, y_{i,t} \geq 0$

$$z_{i,t} \geq y_{i,t} - y_{i,t-1}$$
 $z_{i,t}, y_{i,t} \geq 0$

$$\forall t \geq 1 \text{ and } i$$

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$

$$\forall t \ge 1 \text{ and } 1 \le i \le n$$

 $\forall t \ge 1 \text{ and } i, j$

feasible!

$$\forall t \geq 1 \text{ and } 1 \leq i \leq n$$
 $b_{i,t+1} - b_{i,t} \leq c_{i,t} - \sum_{j|i \in S_{j,t}} a_{j,t}$
 $\forall t \geq 1 \text{ and } i, j$
 $a_{j,t}, b_{i,t} \geq 0$

$$\eta = \ln(1+n/\epsilon)$$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

Feasible is not enough, we need $P(y') \le D!$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$

$$M_t = \eta \sum_{y_{i,t} > y_{i,t-1}} \frac{w_i}{\eta} (y_{i,t} - y_{i,t-1})$$
 a-b<=a ln(a/b)

$$(2.1) M_t = \eta \sum_{y_{i,t} > y_{i,t-1}} \frac{w_i}{\eta} \left(y_{i,t} - y_{i,t-1} \right) \le \eta \sum_{y_{i,t} > y_{i,t-1}} \left(y_{i,t} + \frac{\epsilon}{n} \right) \cdot \left(\frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) \right)$$

$$(2.2) \qquad = \eta \sum_{y_{i,t} > y_{i,t-1}} \left(y_{i,t} + \frac{\epsilon}{n} \right) \cdot \left(\sum_{j|i \in S_{j,t}} a_{j,t} - c_{i,t} \right)$$

$$(2.3) \leq \eta \sum_{i=1}^{n} \left(y_{i,t} + \frac{\epsilon}{n} \right) \sum_{j|i \in S_{j,t}} a_{j,t} = \eta \sum_{j=1}^{m_t} a_{j,t} \left(\sum_{i \in S_{j,t}} y_{i,t} + \frac{\epsilon |S_{j,t}|}{n} \right)$$

$$(2.4) \leq \eta \left(1 + \frac{\epsilon k}{n}\right) \sum_{j=1}^{m_t} a_{j,t}.$$

For all $1 \leq j \leq m_t$,

(2.9)
$$\sum_{i \in S_{j,t}} y_{i,t} - 1 \ge 0,$$

(2.10)
$$a_{j,t} \left(\sum_{i \in S_{j,t}} y_{i,t} - 1 \right) = 0,$$

For all $1 \le i \le n$,

$$(2.11) c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{i:i \in S_{i-1}} a_{j,t} \ge 0,$$

(2.12)

$$y_{i,t}\left(c_{i,t} + \frac{w_i}{\eta}\ln\left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}}\right) - \sum_{j:i \in S_{i,t}} a_{j,t}\right) = 0.$$

$$b_{i,t+1} = \frac{w_i}{\eta} \ln \left(\frac{1+\epsilon/n}{y_{i,t}+\epsilon/n} \right)$$
 $a_{jt} = a_{jt}$

For all $1 \leq j \leq m_t$,

$$S = \sum_{i=1}^{T} \sum_{j=1}^{n} c_{i,t} y_{i,t}$$

(2.9)

$$\sum_{i \in S_{j,t}} y_{i,t} - 1 \ge 0,$$

$$(2.5) S = \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} y_{i,t} = \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t} \sum_{i \in S_{j,t}} y_{i,t} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot y_{i,t} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right)$$

$$a_{j,t}\left(\sum_{i\in S_{i,t}}y_{i,t}-1\right)=0$$

$$(2.5) \quad S = \sum_{t=1}^{T} \sum_{i=1}^{n} c_{i,t} y_{i,t} = \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t} \sum_{i \in S_{j,t}} y_{i,t} - \frac{1}{\eta} \sum_{t=1}^{T} \sum_{i=1}^{n} w_i \cdot y_{i,t} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right)$$

$$(2.10) \quad a_{j,t} \left(\sum_{i \in S_{j,t}} y_{i,t} - 1 \right) = 0,$$

$$(2.6) \quad = \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t} - \frac{1}{\eta} \sum_{i=1}^{n} w_i \left\{ \sum_{t=1}^{T} \left(y_{i,t} + \frac{\epsilon}{n} \right) \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \frac{\epsilon}{n} \sum_{t=1}^{T} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) \right\}$$
For all $1 \le i \le n$,

$$(2.7) \qquad \leq \sum_{t=1}^{T} \sum_{j=1}^{m_t} a_{j,t} - \frac{1}{\eta} \sum_{i=1}^{n} w_i \left\{ \left(\sum_{t=1}^{T} (y_{i,t} + \frac{\epsilon}{n}) \right) \ln \left(\frac{\sum_{t=1}^{T} (y_{i,t} + \frac{\epsilon}{n})}{\sum_{t=1}^{T} (y_{i,t-1} + \frac{\epsilon}{n})} \right) - \frac{\epsilon}{n} \ln \left(\frac{y_{i,T} + \frac{\epsilon}{n}}{y_{i,0} + \frac{\epsilon}{n}} \right) \right\}$$

$$(2.11) \qquad c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \geq 0,$$

$$c_{i,t} + \frac{w_i}{\eta} \ln \left(\frac{y_{i,t} + \frac{\epsilon}{n}}{y_{i,t-1} + \frac{\epsilon}{n}} \right) - \sum_{j:i \in S_{j,t}} a_{j,t} \ge 0$$

$$\geq (\sum_{i} a_i) \log(\frac{\sum_{i} a_i}{\sum_{i} b_i}).$$

$$\leq \sum_{t=1}^{T} \sum_{i=1}^{m_t} a_{j,t} = \text{value of } (D).$$

$$\sum_{i} a_i \log(a_i/b_i) \geq (\sum_{i} a_i) \log(\frac{\sum_{i} a_i}{\sum_{i} b_i}).$$

$$y_{i,t} \left(c_{i,t} + \frac{w_i}{\eta} \ln\left(\frac{y_{i,t} + \frac{\epsilon}{\eta}}{y_{i,t-1} + \frac{\epsilon}{\eta}}\right) - \sum_{j:i \in S_{j,t}} a_{j,t}\right) = 0.$$

- Model
- Regularization Algorithm (fractional version)
- Competitive Analysis (fractional version)
- Extensions:
 - More general constraints
 - Rounding a fractional solution to the online set cover with service cost problem

General Covering Constraints with Variable Upper Bounds

- Each node needs multiple circles to cover him $\sum_{i \in S_{j,t}} y_{i,t} \ge r_{j,t}$ (where $r_{j,t} \in \mathbb{N}$)
- Upper Bound for each variable

$$0 \leq y_{i,t} \leq 1$$

 $0 \le y_{i,t} \le 1$ is naturally guaranteed in P'

General Covering Constraints with Variable Upper Bounds

$$\sqrt{\sum_{i \in S_{j,t}} y_{i,t}} \ge r_{j,t}$$

$$\sqrt{0} \le y_{i,t} \le 1$$

Knapsack Constraints:

If we need to guarantee $\sum_{i \in S} x_i \ge r$ Then for every $S' \subset S : |S'| < r$, we should have:

$$\sum_{i \in S \setminus S'} x_i \ge r - |S'|.$$

By adding the KC constraints, the original box constraints become redundant; consider the first round t in which a variable $y_{i,t}$ is strictly larger than 1. The KC constraints imply that for every S containing i,

$$\sum_{\ell \in S \setminus \{i\}} y_{\ell,t} \ge r_{j,t} - 1,$$

- Model
- Regularization Algorithm (fractional version)
- Competitive Analysis (fractional version)
- •Extensions:
 - More general constraints
 - Rounding a fractional solution to the online set cover with service cost problem

Rounding a fractional solution to integer solution (minor weakness: $w_i=1$)

Algorithm 2 Rounding Algorithm

- 1: parameter: $\alpha \geq 0$
- 2: for each $S \in \mathcal{S}$, choose i.i.d random variable $Z_S \sim \exp(1)$.
- 3: for each $e \in \mathcal{E}$, choose i.i.d random variable $Z_e \sim \exp(1)$.
- 4: at any time t, let $y_{S,t}$ denote the current fractional value of S.
- 5: **for** t = 1, 2, ..., T **do**
- 6: let $A_t = \left\{ S \in \mathcal{S} | \frac{Z_S}{y_{S,t}} < \alpha \right\}$.
- 7: let $B_t = \bigcup_{e \in \mathcal{E}} \left\{ S | S = \arg\min_{S' | e \in S'} \left\{ \frac{Z_{S'}}{y_{S',t}} \right\}, \text{ and } \frac{Z_S}{y_S} < \frac{Z_e}{\max\{0,1-\sum_{S|e \in S} y_{S,t}\}} \right\}.$
- 8: output $A_t \cup B_t$.
- 9: end for

Thanks!

The MTS Work Fuction Algorithm

- Let (S,d) be any MTS and let s₀ be an initial state
- Fix any task sequence $\sigma = r_1 r_2, ..., r_n$
- •Let $\sigma_i = r_1 r_2, ..., r_i$ be the prefix of σ
- ⊙For each state s∈S, define $w_i(s)$ to be the minimum (offline) cost to process σ_i starting from s_0 and ending in state s

The MTS Work Function Algorithm

- ⊙For each state s∈ S, define $w_i(s)$ to be the minimum (offline) cost to process σ_i starting from s_0 and ending in state s
- ⊙Optimal offline cost OPT(σ)= min_{x∈S} $w_n(x)$
- \odot To compute $w_n(s)$, we have:

$$w_{i+1}(s) = \min_{x \in S} \{ w_i(x) + r_{i+1}(x) + d(x,s) \},$$

$$w_0(s) = d(s_0, s)$$

Dynamic programming

The MTS Work Function Algorithm

$$w_{i+1}(s) = \min_{x \in S} \{ w_i(x) + r_{i+1}(x) + d(x,s) \}, w_0(s) = d(s_0, s)$$

 S_1 S_1

$$w_0(s_1) = d(s_0, s_1)$$
 $w_1(s_1) = w_0(s_1) + r_1(s_1)$

So

$$S_2$$
 S_2

$$w_0(s_2) = d(s_0, s_2)$$
 $w_1(s_2) = w_0(s_3) + r_1(s_3) + d(s_3, s_2)$ $w_2(s_2) = w_1(s_3) + r_2(s_3) + d(s_3, s_2)$

S₃

$$w_0(s_3) = \overline{d(s_0, s_3)}$$
 $w_1(s_3) = w_0(s_3) + r_1(s_3)$

 S_1

$$W_2(s_1) = W_1(s_2) + r_2(s_2) + d(s_2, s_1)$$

 S_2

$$w_2(s_2) = w_1(s_3) + r_2(s_3) + d(s_3, s_2)$$

 $w_2(s_3)$ is the minimum

$$W_2(S_3) = W_1(S_3) + r_1(S_3)$$

r₂

The MTS Work Function Algorithm

Online:

Algorithm WFA: Suppose that the algorithm is in state s_i after processing the i tasks in σ_i . Then to process r_i , the algorithm moves to a state

$$\begin{cases} S_{i+1} = \arg\min_{x \in S} \{ w_{i+1}(x) + d(S_i, x) \}, \\ w_{i+1}(S_{i+1}) = w_i(S_{i+1}) + r_{i+1}(S_{i+1}) \end{cases}$$

WFA Can Always Choose An Appropriate State s₁₊₁

Offline:
$$w_{i+1}(s) = \min_{x \in S} \{w_i(x) + r_{i+1}(x) + d(x,s)\}, w_0(s) = d(s_0,s)$$

Algorithm
$$\begin{cases} S_{i+1} = \arg\min_{x \in S} \{ w_{i+1}(x) + d(S_i, x) \}, \\ WFA: \end{cases}$$
 (1)
WFA:
$$\begin{cases} w_{i+1}(S_{i+1}) = w_i(S_{i+1}) + r_{i+1}(S_{i+1}) \\ \end{cases}$$
 (2)

Proof: Let A be the set of the states satisfying (1) and (2). We firstly define a set A' satisfying (1). Clearly, A' isn't empty. Then we prove that there is an element of A' that satisfies (2).