

Plug on:
$$O = \frac{RAT_{c}}{Z_{c}^{2}} \frac{3^{2}T^{*}}{3Z^{*}2} - \frac{AT_{c}}{b} T^{*}4$$

Divide:
$$O = \frac{3^{2}T^{*}}{3Z^{*}2} - \frac{AT_{c}^{3}Z_{c}^{2}}{bK} T^{*}4$$

$$-\frac{AT_{c}^{3}Z_{c}^{2}}{bK} = \frac{9}{2^{2}} \frac{3}{2^{2}} \frac{3}{2^{2$$

Let's check units:

Otz, nowfor the domensionless eg'n: 2 + T * 9

This is a non-linear problem and must be solved numerically!

Let
$$T^* = f_1$$
 $f_1' = f_2$

$$\frac{\partial T^*}{\partial z^*} = f_2$$
 $f_2' = f_1'$

$$f_2(0) = -1$$
 $f_1(0) = X$ (untenown)
$$f_2(\infty) = 0$$
We want to fond $X = (T^*)_{z=0}$

From numerical solution:
$$T^* = 1.201 \quad (\text{nicely } O(1))_{z=0}$$

$$T^* = 0.5 \text{ at } z^* = 2.2 \text{ as well})$$
For $SNAP-27$ what is ΔT_C ?

Assume $T_0'' = 1.201$ $T_0'' = 1.201$

$$Assume T_0'' = 1.201$$

$$T_0'' = 0.159 \text{ cm}$$

$$R = 45 \frac{W}{m^{9}k} \qquad 2b = 0.159 cm$$

$$R = \frac{1417W}{(0.42)(0.00159)8} = 2.65 \times 10^{5} \frac{W}{m^{2}}$$

$$V = 5.67 \times 10^{8} \frac{W}{m^{2} \text{ of fins}}$$

$$\Delta T_{c} = \frac{\left(2.65 \times 10^{5}\right)^{2} \left(0.00159\right)^{\frac{3}{2}}}{5.67 \times 10^{8}} \frac{5}{45}$$

This is close to the reported value

of 5470k ...

What 75
$$Z_c$$
?

 $Z_c = \left(\frac{R^4 b}{\sqrt{9}}\right)^{1/5} = \left(\frac{(45)^4 (\frac{0.00159}{2})^{1/5}}{5.67 \times 10^8 (2.65 \times 10^5)^3}\right)^{1/5}$

= 0.079 m = 8cm

and the fins are a couple of times this length...

Amore sophisticated model includes backz radiation and emissivity!

Contents

- Solution to Fin Radiation Problem
- Conclusion
- Comparison to Exact Solution
- Miss.m function

Solution to Fin Radiation Problem

In this script we solve the temperature distribution in a fin where the heat transfer from the fin is in the form of radiation. We assume that there is a specified heat flux at the base of the fin. Because of the strong dependence of the radiative heat flux on temperature the solution is very dependent on the initial condition - the temperature at z = 0. We thus use an iterative solution, progressing to larger values of z to achieve convergence.

```
global zlimpass

zlimpass = 1;
x = 1;
for i = 1:30
    x = fzero('miss',x);
    zlimpass = zlimpass*1.1;
end
initialtemp = x
```

```
initialtemp =
1.2011
```


Conclusion

The final expression converges to the initial condition (temperature) of 1.2011, and the temperature of the fin drops to 0.5 at a distance of 2.2, both nicely O(1) quantities. The decrease in temperature slows drastically at larger z because of the T^4 dependence. At this position the dimensionless heat flux is only -0.11, which means that 89% of the total heat loss occurs for z less than 2.2. Thus, the rest of the fin is of little use: the optimal fin length should be about 1 - comprising 74% of the total heat loss. If we include back radiation (which becomes increasingly significant as the fin temperature drops) this further shortens the optimal length of the fin.

Comparison to Exact Solution

It turns out that you -can- solve this problem analytically: multiplying both sides by dT/dz you can get a perfect differential on both sides of the equation. Integrating and applying the boundary conditions you get a simple analytic solution. The deviation from the numerical solution is very small for small z, with the temperature deviating slightly at large z. We can add this to our figure:

```
T = @(z) (3*z/10^.5 + (2/5)^(3/10)).^(-2/3)

dTdz = @(z) -(2/5)^.5*T(z).^2.5

z = [0:.01:zlimpass];

figure(1)
hold on
plot(z,T(z),'k',z,dTdz(z),'g')
hold off
axis([0 10 -1 1.5])
legend('numerical solution','heat flux','exact temp','exact flux')
```

```
@(z)(3*z/10^{.5}+(2/5)^{(3/10)}).^{(-2/3)}
```

dTdz =

function handle with value:

$$0(z)-(2/5)^{.5}T(z).^{2.5}$$

Miss.m function

The function called by the program is given below. Uncomment it and save it in a file named miss.m

```
% function out = miss(x)
% %This function takes in the initial value of the temperature at z = 0,
% %performs the integration to zlimpass (a global variable) and returns the
% %value of the derivative at zlimpass. We then use this with a rootfinder
% %to get the correct value for x.

%
global zlimpass
%
fdot = @(z,f) [sign(f(1))*f(2);f(1)^4]; %The derivatives
% % Note that we have added a little "fix" to fdot, as things go haywire if
% % the temperature becomes negative as can happen if you have the wrong
% % initial condition. Flipping the sign of the derivative forces stability
% % of the differential equation for these conditions: it is just a numerical
% % fix dealing with errors caused by the incorrect IC guess.
%
[zout,fout] = ode23(fdot,[0 zlimpass],[x,-1]);
% out = fout(end,2); % we require the temperature derivative to be zero at zlimpass.
```

```
%
  % We add in a little graphics to see how we are doing.
% figure(1)
% plot(zout,fout)
% legend('temperature','heat flux')
% xlabel('z')
% ylabel('temperature')
% grid on
% zoom on
% drawnow
```

Published with MATLAB® R2017a