UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

${\bf Tom~Gornik}$ ${\bf Izrek~\check{S}arkovskega}$

Magistrsko delo

Mentor: izr. prof. dr. Aleš Vavpetič

Kazalo

Izrek Šarkovskega

Povzetek

${\bf Sharkovsky\ theorem}$

Abstract

Math. Subj. Class. (2010):

Ključne besede:

Keywords: V tem poglavju bomo spoznali topologijo urejenih prostorov in po-

sebne urejene prostore s topologijo urejenih prostorov, ki jih imenujemo linearni kontinuum. Gre za neke vrste posplošitev premice realnih števil. Pokazali bomo, da je linearni kontinuum prostor Šarkovskega.

Naj bo množica X urejena s strogo linearno relacijo <. Za dana elementa $a, b \in X$, za katera velja neenakost a < b, lahko definiramo štiri podmnožice prostora X, ki jih imenujemo intervali s krajišči a in b. To so:

$$(a,b) = \{x \in X : a < x < b\}$$

$$(a,b] = \{x \in X : a < x \le b\}$$

$$[a,b) = \{x \in X : a \le x < b\}$$

$$[a,b] = \{x \in X : a < x < b\}$$

Opomba 0.1. Interval (a, b) imenujemo odprti interval, interval (a, b] rečemo pol odprti interval, interval [a, b) je pol zaprti interval, interval [a, b] pa je zaprti interval.

Definicija 0.2. Naj bo X množica z vsaj dvema elementoma urejena z relacijo < in naj bo B družina množic, ki vsebuje intervale naslednjih tipov:

- (1) Vsi odprti intervali $(a, b) \in X$.
- (2) Vsi intervali $[a_0, b) \in X$, kjer je a_0 najmanjši element (če obstaja) množice X.
- (3) Vsi intervali $(a, b_0] \in X$, kjer je b_0 največji element (če obstaja) množice X. Družina množic B je baza za topologijo na množici X, ki jo imenujemo topologija urejenih množic.

Opomba 0.3. Če množica X nima najmanjšega elementa, potem baza B ne vsebuje intervalov tipa 2 in če množica X nima največjega elementa, potem baza B ne vsebuje intervalov tipa 3.

Prepričati se moramo, da zgoraj opisana družina množic B res predstavlja bazo topologije na množici X urejeni z linearno relacijo <. Družina podmnožic prostora X je baza topologije na prostoru X, če sta izpolnjeni naslednji lastnosti:

- (b1) Množice iz družine B pokrijejo celoten prostor X. Torej, vsaka točka $x \in X$ je vsebovana v neki množici $B_1 \in B$.
- (b2) Za vsaki množici $B_1, B_2 \in B$ in vsako točko $x \in B_1 \cap B_2$ obstaja množica $B_3 \in B$, za katero velja $x \in B_3 \subseteq B_1 \cap B_2$.

Preverimo najprej pogoj (b1). Najprej moramo preveriti, da je vsaka točka množice X vsebovana v nekem intervalu iz družine B. Če je točka x enaka a_0 , potem velja $x \in [a_0, a)$ za neko točko $a \in X$. Podobno lahko sklepamo v primeru, ko je $x = b_0$. Če je $x \neq a_0$ in $x \neq b_0$, potem zagotovo obstaja

Definicija 0.4. Linearni kontinuum je linearno urejena množica S, ki ima naslednji lastnosti:

- (1) Vsaka navzgor omejena podmnožica $A\subseteq S$ ima najmanjšo zgornjo mejo v S,
- (2) za vsaki dve števili $x, y \in S$ obstaja število $z \in S$, za katerega je x < z < y.

Primer 0.5. Enotski kvadrat
$$[0,1] \times [0,1]$$

Trditev 0.6. Strogo linearno urejena množica X s topologijo urejenih množic je linearni kontinuum natanko tedaj, ko je povezana.

SLIKA 1. Relacije pokritja v trditvi ?? lahko prikažemo z grafom.

Dokaz. Predpostavimo, da je prostor X s topologijo urejenih množic linearni kontinuum. Dokazali bomo, da je prostor X povezan.

Izrek 0.7. Naj bo $f: X \to Y$ zvezna funkcija, kjer je X povezan prostor in Y urejen prostor s topologijo urejenih množic. Če sta a in b dve točki v prostoru X in je r točka v prostoru Y, ki leži med točkama f(a) in f(b), potem obstaja točka $c \in X$, da velja f(c) = r.

Dokaz. Privzemimo predpostavke izreka. Množici $= f(X) \cap (-\infty, r)$ in $B = f(X) \cap (r, \infty)$ sta disjunktni in neprazni, saj ena množica vsebuje točko f(a), druga pa točko f(b). Obe sta odprti v f(X) saj smo ju dobili kot presek odprtega intervala z množico f(X). Če ne obstaja taka točke $c \in X$, da je f(c) = r, potem je f(X) unija množic A in B. Na ta način smo dobili separacijo množice f(X), kar pa je protislovje, saj je slika povezane množice z zvezno preslikavo povezana.

Lema 0.8. Naj bo L linearni kontinuum s topologijo urejenih množic. Naj bosta I in J zaprta intervala v L in $f: L \to L$ zvezna funkcija. Če je $J \subseteq f(I)$, obstaja zaprt interval $K \subseteq I$, za katerega je f(K) = J.

Dokaz. Izberemo taki točki $p,q \in I$, da velja p < q in J = [f(p), f(q)] ali J = [f(q), f(p)]. Definiramo točko $p \le r < q$:

$$r = \sup\{x \in [p, q] : f(x) = f(p)\}.$$

Trdimo, da je f(r) = f(p). V nasprotnem primeru obstaja odprta množica V, ki vsebuje točko f(r) in ne vsebuje točke f(p). To je res, ker je prostor L Hausdorffov. Zaradi zveznosti funkcije f obstaja taka odprta okolica U točke r, da je $f(U) \subseteq V$. Ker je L linearni kontinuum obstaja taka točka $p \leq r' < r$, za katero je interval [r', r] vsebovan v množici U. Torej je $f([r', r]) \subseteq V$, kar pomeni, da $f(p) \notin f([r', r])$. To pa je protislovje z definicijo točke r kot supremum množice. Sedaj definiramo $r < s \leq q$:

$$r = \inf\{x \in [r, q] : f(x) = f(q)\}.$$

Enako kot prej se prepričamo, da je f(s) = f(q). Zapišimo Q = [r, s] in pokažimo, da je f(Q) = J. Izrek o vmesni vrednosti zagotavlja, da je interval J vsebovan v množici f([r, s]). Velja tudi $f([r, s]) \subseteq J$, saj v nasprotnem primeru obstaja r < x < s, za katerega velja $f(x) \notin J$. Če je f(x) < f(p) < f(q) ali f(q) < f(p) < f(x), potem po izreku o vmesni vrednosti obstaja tak x', da velja r < x < x' < s in f(p) = f(x').

to pa je protislovje z definicijo točke r kot supremum. Če je f(x) < f(q) < f(p) ali f(p) < f(q) < f(x), to privede do protislovja z definicijo točke s kot infimum. To pomeni, da res velja J = f(Q).

Lema 0.9. Naj bo L linearni kontinuum v topologiji urejenih množic. Naj bosta I zaprt interval v L in $f: L \to L$ zvezna funkcija. Če je $I \subseteq f(I)$, potem ima f negibno točko $x \in I$.

Dokaz. S pomočjo leme 0.8 ugotovimo, da obstaja zaprt interval $Q \subseteq I$, za katerega je f(Q) = I. Pokazali bomo, da ima funkcija f negibno točko v intervalu Q. Predpostavimo, da funkcija f na intervalu Q nima negibne točke. Potem lahko zapišemo $Q = A \cup B$, kjer je:

$$A = \{x \in L : x < f(x)\},\$$

$$B = \{x \in L : x > f(x)\}.$$

Trdimo, da je množica A odprta. Za vsako točko $x \in A$ lahko izberemo točko $z \in (x, f(x))$ in odprto okolico $U \subseteq (-\infty, z)$ točke x, za katero velja $f(U) \subseteq (z, \infty)$. Ker je množica U podmnožica množoce A, je točka x notranja točka množice A. Množica A je odprta. Podobno lahko dokažemo, da je množica B odprta. Množici $Q \cap A$ in $Q \cap B$ sta odprti podmnožici množice Q za kateri velja $Q = (Q \cap A) \cup (Q \cap B)$. Radi bi videli, da sta množici $Q \cap A$ in $Q \cap B$ neprazni. Zapišimo I = [c, d]. Ker je f(Q) = I, obstaja $x' \in Q$, za katerega je f(x') = d. Ker f nima fiksne točke na Q, je $x' \neq d$. Interval Q je pomnožica intervala I, zato velja x' < f(x') = d, kar pomeni, da je $x' \in Q \cap A$. Analogno poiščemo točko $x'' \in Q - \{c\}$ z lastnostjo: f(x'') = c in $x'' \in Q \cap B$. Torej, množici $Q \cap A$ in $Q \cap B$ tvorita separacijo povezanega prostora Q, kar je protislovje. Funkcija f ima negibno točko v intervalu Q.