Mathematik

Fortgeschrittene Übungen lineare Algebra

BGW 16

ANR

1 Aufgabe 1

Sei $f(x) = u(x) \cdot v(x)$ eine Funktion mit u(x) = c mit $c \in \mathbb{R}$. Zeigen Sie, dass dann $f'(x) = c \cdot v'(x)$ gilt.

2 Aufgabe 2

Sei $f(x) = (x - \alpha)(x - \beta)$. Zeigen Sie, dass dann $f'(x) = (x - \alpha) + (x - \beta)$ gilt.

3 Aufgabe 3

Sei $D = \begin{pmatrix} c & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & c \end{pmatrix}$ mit $c \in \mathbb{R}$ eine Diagonalmatrix und $v_{3\times 1}$ ein Vektor. Zeigen Sie, dass $D \cdot v = c \cdot v$ gilt.

4 Aufgabe 4

Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal genau dann, wenn $A \cdot A^T = E$. Determinantenproduktsatz: Sind A, B, C Matrizen so, dass $A = B \cdot C$, dann gilt $det(A) = det(B) \cdot det(C)$.

- (a) Zeigen Sie, dass $A=\begin{pmatrix}0&-1\\-1&0\end{pmatrix}$ orthogonal ist, $B=\begin{pmatrix}1&1\\1&1\end{pmatrix}$ aber nicht.
- (b) Begründen Sie, dass die Inverse einer orthogonalen Matrix zugleich ihre Transponierte ist.
- (c) Sei A orthogonal. Weisen Sie nach, dass dann $det(A) = -1 \lor det(A) = 1$ gilt, indem Sie zunächst zeigen, dass $det(A^2) = 1$ gilt.
- (d) Entscheiden Sie begründet, ob die Nullmatrix $N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ orthogonal ist.

5 Aufgabe 5

Eine LR-Zerlegung einer Matrix A besteht aus zwei Matrizen, L, R so, dass $A = L \cdot R$, wobei L eine linke untere Dreiecksmatrix und R eine rechte obere Dreiecksmatrix ist.

- (a) Sei $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix}$ eine rechte obere Dreiecksmatrix. Bestimmen Sie det(A).
- (b) Sei $A = L \cdot R = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \cdot \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$ eine LR-Zerlegung. Zeigen Sie durch Nachrechnen, dass det(A) = det(R).

6 Aufgabe 6

Sei
$$Q_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 mit $0^{\circ} \leq \alpha \leq 360^{\circ}$ und $e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ gegeben.

- (a) Weisen Sie nach, dass $Q_0 = E$ gilt.
- (b) Zeigen Sie, dass Q_{α} orthogonal ist und bestimmen Sie $det(Q_{\alpha})$. Hinweis: $cos^{2}(\alpha) + sin^{2}(\alpha) = 1$ für alle α .
- (c) Berechnen Sie $Q_{90} \cdot e_1, Q_{180} \cdot e_1$ und $Q_{360} \cdot e_1$ und beschreiben Sie die Wirkung der Abbildung Q_{α} .

Mathematik

Fortgeschrittene Übungen lineare Algebra

BGW 16

ANR

Lösungen

Aufgabe 1

Mit der Produktregel der Ableitung folgt $f'(x) = 0 \cdot v(x) + v'(x) \cdot c = c \cdot v'(x)$.

Aufgabe 2

Mit der Produktregel der Ableitung folgt $f'(x) = 1 \cdot (x - \beta) + 1 \cdot (x - \alpha) = (x - \alpha) + (x - \beta)$.

Aufgabe 3

Sei
$$v = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$$
. Dann gilt $D \cdot v = \begin{pmatrix} c \cdot v_x \\ c \cdot v_y \\ c \cdot v_z \end{pmatrix} = c \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = c \cdot v$.

Aufgabe 4

(a)
$$A \cdot A^T = E$$
, aber $B \cdot B^T = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \neq E$.

(b) Es gilt sowohl
$$A \cdot A^T = E$$
 als auch $A \cdot A^{-1} = E$, also $A \cdot A^T = A \cdot A^{-1} \Leftrightarrow A^T = A^{-1}$.

(c) Wir verwenden den Determinantenproduktsatz. Es gilt
$$det(A^2) = det(A) \cdot det(A) = det(A^T) \cdot det(A) = det(A^{-1}) \cdot det(A) = det(A^{-1} \cdot A) = det(E) = 1$$
. Wenn $det(A^2) = 1$ folgt $det(A) = 1 \lor det(A) = -1$.

(d) Offenbar det(N) = 0 und somit ist N nicht orthogonal.

Aufgabe 5

(a)
$$det(A) = a_{11} \cdot a_{22} \cdot a_{33} = \prod_{i=1}^{3} a_{ii}$$

(b)
$$det(A) = det(L) \cdot det(R) = 1 \cdot det(R) = det(R)$$
.

Aufgabe 6

(a) Einsetzen liefert
$$Q_0 = \begin{pmatrix} \cos(0) & -\sin(0) \\ \sin(0) & \cos(0) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E.$$

(b) Es gilt
$$Q_{\alpha} \cdot Q_{\alpha}^{T} = E$$
. Weiter $det(Q_{\alpha}) = \cos(\alpha) \cdot \cos(\alpha) - \sin(\alpha) \cdot (-\sin(\alpha)) = \cos^{2}(\alpha) + \sin^{2}(\alpha) = 1$.

(c)
$$Q_{90} \cdot e_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
, $Q_{180} \cdot e_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ und $Q_{360} \cdot e_1 = e_1$. Die Matrix Q_{α} bewirkt eine Drehung des Vektors um α Grad entgegen dem Uhrzeigersinn.