# CADENAS DE MARKOV

# PROCESOS ESTOCASTICOS

- FENOMENOS DINAMICOS DE COMPORTAMIENTO ALEATORIO
- PARAMETRO t
- VARIABLES DE ESTADO
  - -DISCRETA
  - -CONTINUA



## CADENAS DE MARKOV

• CUANDO EL ESTADO DEL SISTEMA QUEDA DEFINIDO POR VARIABLES DISCRETAS

- CUANDO EL ESTADO DEL SISTEMA EN EL INSTANTE t DEPENDE DEL ESTADO DEL MISMO EN UN INSTANTE ANTERIOR
  - MEMORIA DE PRIMER ORDEN (t-1)
  - MEMORIA DE ORDEN SUPERIOR

# **OBSERVACIONES**

- PARAMETRO CONTINUO
- PARAMETRO DISCRETO
  - -IGUALMENTE ESPACIADAS
  - -IRREGULARMENTE ESPACIADAS

# EJEMPLOS DE CADENAS DE MARKOV FINITAS, DE PRIMER ORDEN Y DE PARAMETRO DISCRETO

- BRAND SWITCHING
- REEMPLAZO DE EQUIPOS
- PLANEAMIENTO DE NECESIDADES DE PERSONAL
- ANALISIS DE INVENTARIOS
- ANALISIS DE CREDITOS
- ESTUDIO DE SISTEMAS DE COLAS

# PASO O TRANSACCIÓN

• ES EL AVANCE DEL PROCESO CUANDO EL SISTEMA PASA DE UN ESTADO A OTRO.

- LA TRANSICIÓN DE UN ESTADO A OTRO
  - -PUEDE HACERSE EN UNO O VARIOS PASOS
  - -TIENE ASOCIADA UNA PROBABILIDAD

# PROBABILIDADES DE TRANSICION

**p**ij

 $\mathbf{p}_{\mathsf{i}\mathsf{j}}^{^{\mathsf{(n)}}}$ 

LAS SUPONDREMOS ESTACIONARIAS

# VECTOR PROBABILIDAD O VECTOR DISTRIBUCION

$$\mathbf{V}_{ij} = \begin{bmatrix} \mathbf{p}_{i1} & \mathbf{p}_{i2} & \dots & \mathbf{p}_{ij} & \dots & \mathbf{p}_{in} \end{bmatrix}$$

$$\mathbf{v}_{ij}^{(n)} = \begin{bmatrix} p_{i1}^{(n)} & p_{i2}^{(n)} & \dots & p_{ij}^{(n)} & \dots & p_{in}^{(n)} \end{bmatrix}$$

## MATRIZ DE TRANSICION DE UN PASO

|            | p <sub>11</sub> | p <sub>12</sub> |   | $p_{1j}$ | •••• | $p_{1n}$ |   | $V_1$                  |
|------------|-----------------|-----------------|---|----------|------|----------|---|------------------------|
| D _        | p <sub>21</sub> | p <sub>22</sub> |   | $p_{2j}$ |      | $p_{2n}$ |   | $V_2$                  |
|            |                 | •               | • | •        | •    |          |   | ۷                      |
|            |                 | •               | • | •        | •    |          |   |                        |
| <b>F</b> = | $p_{i1}$        | $p_{i2}$        |   | $p_{ij}$ |      | $p_{in}$ | _ | Vi                     |
|            |                 | -               | • | •        | •    |          |   |                        |
|            |                 | -               | • | •        | •    |          |   |                        |
|            | p <sub>n1</sub> | $p_{n2}$        |   | $p_{nj}$ |      | $p_{nn}$ |   | $\left[ v_{n} \right]$ |

## MATRIZ DE TRANSICION DE UN PASO

|    |                | _ S <sub>1</sub> | $S_2$                                    |   | S <sub>i</sub> |      | S <sub>n</sub> _ | ı |                | _ |
|----|----------------|------------------|------------------------------------------|---|----------------|------|------------------|---|----------------|---|
|    | S <sub>1</sub> | p <sub>11</sub>  | <b>s</b> <sub>2</sub><br>p <sub>12</sub> |   | $p_{1j}$       | •••• | p <sub>1n</sub>  |   | $V_1$          |   |
|    | s <sub>2</sub> | p <sub>21</sub>  | p <sub>22</sub>                          |   | $p_{2j}$       |      | p <sub>2n</sub>  |   | $V_2$          |   |
|    |                |                  | -                                        | - | •              | -    |                  |   | ~ Z            |   |
| D  |                |                  | •                                        | • | •              | -    |                  |   |                |   |
| Ρ= | Si             | $p_{i1}$         | $p_{i2}$                                 |   | $p_{ij}$       |      | p <sub>in</sub>  | = | V <sub>i</sub> |   |
|    |                |                  | •                                        | • | •              | •    |                  |   |                |   |
|    |                |                  | •                                        | • | •              | •    |                  |   |                |   |
|    | S <sub>n</sub> | $p_{n1}$         | $\boldsymbol{p}_{n2}$                    |   | $p_{nj}$       |      | p <sub>nn</sub>  |   | V <sub>n</sub> |   |
|    | L              |                  |                                          |   |                |      | _                |   |                | J |
|    |                |                  |                                          |   |                |      |                  |   |                |   |

## MATRIZ DE TRANSICION DE n PASOS

|     | p <sub>11</sub> | p <sub>12</sub> (n) |      | $p_{1j}^{(n)}$    |      | $p_{1n}^{(n)}$  |   | $v_1^{(n)}$                                              |
|-----|-----------------|---------------------|------|-------------------|------|-----------------|---|----------------------------------------------------------|
|     | p <sub>21</sub> | p <sub>22</sub>     | •••• | $p_{2j}$          | •••• | $p_{2n}^{(n)}$  |   | $\mathbf{V}_2^{(n)}$                                     |
|     |                 | •                   | •    | •                 | •    |                 |   |                                                          |
| P = | $p_{i1}^{(n)}$  | $p_{i2}^{(n)}$      | •    | $p_{ij}^{^{(n)}}$ |      | $p_{in}^{(n)}$  | = | V <sub>i</sub> <sup>(n)</sup>                            |
|     |                 | . 12                |      | . ,,              |      |                 |   | '                                                        |
|     | <br>(n)         | • (n)               | -    | •<br>(n)          | •    | (n)             |   | (n)                                                      |
|     | p <sub>n1</sub> | $p_{n2}$            | •••• | $p_{nj}$          | •••• | p <sub>nn</sub> |   | $\left[\mathbf{v}_{n}^{\scriptscriptstyle{(ii)}}\right]$ |

# UNA CADENA QUEDA DEFINIDA CUANDO SE CONOCEN:

- LAS PROBABILIDADES DE TRANSICION
- EL NUMERO DE ESTADOS
- EL ESTADO ACTUAL DEL SISTEMA

# REPRESENTACION GRAFICA



$$P = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \\ 0 & p_{12} & p_{13} & 0 \\ s_2 & p_{21} & p_{22} & 0 & 0 \\ s_3 & p_{31} & 0 & p_{33} & p_{34} \\ s_4 & 0 & 0 & p_{43} & 0 \end{bmatrix}$$

#### **ANALISIS DE REGIMEN TRANSIENTE**

$$P = \begin{bmatrix} s_1 & s_2 \\ 1/2 & 1/2 \\ s_2 & 1/4 & 3/4 \end{bmatrix}$$





$$P_{11}^{(2)} = P_{11} \cdot P_{11} + P_{12} \cdot P_{21} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{4} = \frac{3}{8}$$



$$P_{12}^{(2)} = P_{11} \cdot P_{12} + P_{12} \cdot P_{22} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{3}{4} = \frac{5}{8}$$



$$P_{21}^{(2)} = P_{21} \cdot P_{11} + P_{22} \cdot P_{21} = \frac{1}{4} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{1}{4} = \frac{5}{6}$$



$$P_{22}^{(2)} = P_{21} \cdot P_{12} + P_{22} \cdot P_{22} = \frac{1}{4} \cdot \frac{1}{2} + \frac{3}{4} \cdot \frac{3}{4} = \frac{11}{16}$$

#### MATRIZ DE TRANSICION DE DOS PASOS

$$P = \begin{bmatrix} p_{11}^{(2)} & p_{12}^{(2)} \\ p_{21}^{(2)} & p_{22}^{(2)} \end{bmatrix} = \begin{bmatrix} p_{11}.p_{11}+p_{12}.p_{21} & p_{11}.p_{12}+p_{12}.p_{22} \\ p_{21}.p_{11}+p_{22}.p_{21} & p_{21}.p_{12}+p_{22}.p_{22} \end{bmatrix} = \begin{bmatrix} v_1^{(2)} \\ v_2^{(2)} \\ v_2^{(2)} \end{bmatrix}$$

# VECTOR PROBABILIDAD DE TRANSICION DE DOS PASOS CUANDO EL ESTADO ACTUAL ES S₁

$$V_1^{(1)} \cdot P = V_1^{(2)}$$

$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} p_{11}.p_{11}+p_{12}.p_{21} & p_{11}.p_{12}+p_{12}.p_{22} \\ p_{21} & p_{22} \end{bmatrix}$$

#### **EN NUESTRO EJEMPLO:**

$$V_1^{(1)} \cdot P = V_1^{(2)}$$

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ & & \\ 1/4 & 3/4 \end{bmatrix} = \begin{bmatrix} 3/8 & 5/8 \\ \end{bmatrix}$$

# VECTOR PROBABILIDAD DE TRANSICION DE DOS PASOS CUANDO EL ESTADO ACTUAL ES S<sub>2</sub>

$$V_2^{(1)} \cdot P = V_2^{(2)}$$

$$\begin{bmatrix} p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ & & \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} p_{21}.p_{11}+p_{22}.p_{21} & p_{21}.p_{12}+p_{22}.p_{22} \\ & & \\ p_{21} & p_{22} \end{bmatrix}$$

#### **EN NUESTRO EJEMPLO:**

$$V_2^{(1)} \cdot P = V_2^{(2)}$$

$$\begin{bmatrix} 1/4 & 3/4 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ & & \\ & 1/4 & 3/4 \end{bmatrix} = \begin{bmatrix} 5/16 & 11/16 \\ \end{bmatrix}$$

$$P^{(2)} = P^2$$

$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} = \begin{bmatrix} p_{11}.p_{11}+p_{12}.p_{21} & p_{11}.p_{12}+p_{12}.p_{22} \\ p_{21}.p_{11}+p_{22}.p_{21} & p_{21}.p_{12}+p_{22}.p_{22} \end{bmatrix}$$

# PROBABILIDADES ASOCIADAS A CADA ESTADO LUEGO DE TRES PASOS

CUANDO EL ESTADO ACTUAL ES S<sub>1</sub>

$$V_1^{(2)}$$
.  $P = V_1^{(3)}$ 

o bien:

$$V_1 \cdot P^{(2)} = V_1^{(3)}$$

# PROBABILIDADES ASOCIADAS A CADA ESTADO LUEGO DE TRES PASOS

• CUANDO EL ESTADO ACTUAL ES S<sub>2</sub>

$$V_2^{(2)}.P = V_2^{(3)}$$

o bien:

$$V_2 \cdot P^{(2)} = V_2^{(3)}$$

# ECUACIONES DE CHAPMAN-KOLMOGOROV

$$V_i^{(n)} = V_{i-1}^{(n-1)} \cdot P$$

o bien:

$$V_i^{(n)} = V_i \cdot P_i^{(n-1)}$$

# **EN DEFINITIVA:**

• PARA CONOCER LA
PROBABILIDAD DE QUE EL
PROCESO SE ENCUENTRA EN
UN ESTADO J DESPUES DE n
PERIODOS CUANDO SE HALLA
EN EL ESTADO I, DEBE
CALCULARSE SIMPLEMENTE LA
MATRIZ P<sup>(n)</sup>

# **EN NUESTRO EJEMPLO:**

$$P^{3} = \begin{bmatrix} 0,344 & 0,656 \\ 0,328 & 0,672 \end{bmatrix}$$

# **EN NUESTRO EJEMPLO:**

$$P^{4} = \begin{bmatrix} 0,336 & 0,664 \\ 0,332 & 0,668 \end{bmatrix}$$

# CLASIFICACION DE LOS ESTADOS DE UNA CADENA

- ESTADOS ACCESIBLES
- ESTADOS COMUNICANTES
- ESTADOS RECURRENTES
- ESTADOS TRANSITORIOS

-SIN RETORNO

# **ESTADO ACCESIBLE**

S<sub>j</sub> es accesible desde S<sub>i</sub> si, para algún paso, p<sub>ij</sub><sup>(n)</sup>≥ 0

$$\begin{aligned} &S_i \to S_j \\ &Si \quad S_i \to S_j \qquad y \quad S_j \to S_k \end{aligned} \qquad S_i \to S_k$$

# **ESTADO ACCESIBLE**

 $S_{j}$  es accesible desde  $S_{i}$  si, para algún paso,  $p_{ij}^{(n)} > 0$   $S_{i} \rightarrow S_{j}$ 



# ESTADO ACCESIBLE

S<sub>i</sub> es accesible desde S<sub>i</sub> si, para algún paso, p<sub>ii</sub><sup>(n)</sup>≥ 0

$$S_i \rightarrow S_j$$

$$\mathsf{y} \quad \mathsf{S_i} \! o \mathsf{S_k}$$

$$\Rightarrow$$

$$S_i \rightarrow S_k$$



$$P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & x & x & x \\ 2 & x & x & x \\ 3 & & & x \\ 4 & & & x \end{bmatrix}$$

### **ESTADOS COMUNICANTES**

S<sub>i</sub> y S<sub>j</sub> se comunican si cada estado es accesible desde el otro.

### **ESTADO RECURRENTE**

• UN ESTADO  $S_i$  ES RECURRENTE SI UNA VEZ QUE EL PROCESO LO ALCANZA, REGRESA A ÉL ( $S_4$ ,  $S_5$  y  $S_6$ )



### **ESTADO TRANSITORIO**

• UN ESTADO S<sub>i</sub> ES TRANSITORIO SI EXISTE UNA PROBABILIDAD DE QUE NO REGRESE A EL (S<sub>3</sub>)



### **ESTADO ABSORBENTE**

• UN ESTADO S<sub>i</sub> ES ABSORBENTE SI UNA VEZ QUE EL PROCESO LO ALCANZA, NO LO ABANDONA (S<sub>2</sub>).



### **CLASE**

- DOS ESTADOS QUE SE COMUNICAN PERTENECEN A LA MISMA CLASE:  $S_4$ ,  $S_5$  Y  $S_6$  FORMAN UNA MISMA CLASE.
- UNA CLASE PUEDE CONSISTIR EN UN SOLO ESTADO (S<sub>1</sub>)



### **ESTADO SIN RETORNO**

• ES UN ESTADO QUE NO SE COMUNICA CON NINGUN OTRO, NI SIQUIERA CONSIGO MISMO (S<sub>3</sub>)



|                       | 1 | 2      | 3 | 4 | 5      |
|-----------------------|---|--------|---|---|--------|
| 1                     | X | X      |   |   |        |
| 1<br>2<br>3<br>4<br>5 | X | X<br>X | X |   |        |
| 3                     |   |        |   | 1 |        |
| 4                     |   |        |   | X | X<br>X |
| 5                     |   |        |   | X | X      |

### CLASIFICACION DE CADENAS DE MARKOV

- IRREDUCTIBLES (O ERGODICAS)
  - APERIODICAS (O REGULARES)
  - PERIODICAS

• REDUCIBLES (O SEPARABLES)

# CADENAS IRREDUCTIBLES (O ERGODICAS)

TODOS SUS ESTADOS SE COMUNICAN



|                | S <sub>1</sub> | $S_2$ | $S_3$ | $S_4$ | $S_5$ | $S_6$ |
|----------------|----------------|-------|-------|-------|-------|-------|
| S <sub>1</sub> | _              | X     |       | X     |       |       |
| $S_2$          | X              |       | X     |       | X     |       |
| $S_3$          |                | X     |       |       |       | X     |
| $S_4$          | X              |       |       |       | X     |       |
| $S_5$          |                | X     |       | X     |       |       |
| $S_6$          | _              |       | X     |       | X     |       |

- LOS ESTADOS DE UNA CADENA IRREDUCTIBLE SON TODOS RECURRENTES
- LAS CADENAS ERGODICAS FORMAN UNA SOLA CLASE COMUNICANTE
- LUEGO DE INFINITAS TRANSACCIONES, LAS PROBABILIDADES SE ESTABILIZAN EN VALORES LIMITES



$$P^{2} = \begin{array}{c|c} .3500 & .3500 & .3000 \\ .7400 & .1400 & .1200 \\ .5000 & .5000 & .0000 \end{array}$$

$$P^{4} = \begin{bmatrix} .5315 & .3215 & .1470 \\ .4226 & .3386 & .2388 \\ .5450 & .2450 & .2100 \end{bmatrix}$$

$$P^{8} = \begin{bmatrix} .4985 & .3158 & .1858 \\ .4979 & .3090 & .1931 \\ .5077 & .3096 & .1827 \end{bmatrix}$$

$$P^{16} = \begin{bmatrix} .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \end{bmatrix}$$

$$P^{17} = \begin{bmatrix} .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \end{bmatrix}$$

$$P^{18} = \begin{bmatrix} .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \\ .5000 & .3125 & .1875 \end{bmatrix}$$

|         | .5000 | .3125 | .1875 |
|---------|-------|-------|-------|
| $P^n =$ | .5000 | .3125 | .1875 |
|         | .5000 | .3125 | .1875 |
|         |       |       |       |

### para un n suficientemente grande:

$$V_i^n = V_i^{n+1} = V^n = V^{n+1} = V^*$$

### **CADENAS REGULARES (O APERIODICAS)**

$$P = \begin{bmatrix} X & X & 0 & X & X \\ 0 & X & X & 0 & X \\ 0 & 0 & 0 & X & X \\ X & 0 & X & 0 & X \\ X & X & 0 & 0 & 0 \end{bmatrix}$$

Si alguna potencia tiene sólo elementos positivos

#### **CADENAS PERIODICAS**

$$P = \begin{bmatrix} 0 & X & X & 0 \\ X & 0 & 0 & X \\ X & 0 & 0 & X \\ 0 & X & X & 0 \end{bmatrix}$$

Cuando no puede hallarse una potencia de P para la cual todos los elementos sean positivos

$$P^{2} = \begin{vmatrix} X & 0 & 0 & X \\ 0 & X & X & 0 \\ 0 & X & X & 0 \\ X & 0 & 0 & X \end{vmatrix}$$

$$P^{3} = \begin{vmatrix} 0 & X & X & 0 \\ X & 0 & 0 & X \\ X & 0 & 0 & X \\ 0 & X & X & 0 \end{vmatrix}$$

$$P^{4} = \begin{vmatrix} X & 0 & 0 & X \\ 0 & X & X & 0 \\ 0 & X & X & 0 \\ X & 0 & 0 & X \end{vmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$$



SE ESTABILIZA EN (1/4 1/2 1/4)



SE ESTABILIZA EN (1/2 1/2)

# CADENAS REDUCIBLES (O SEPARABLES)

CUANDO NO TODOS LOS ESTADOS SON COMUNICANTES



## ANALISIS DEL REGIMEN PERMANENTE

|         | .5000 | .3125 | .1875 |
|---------|-------|-------|-------|
| $P^n =$ | .5000 | .3125 | .1875 |
|         | .5000 | .3125 | .1875 |
|         |       |       |       |

$$V_i^n = V_i^{n+1}$$

$$V_i^n \cdot P = V^{n+1}$$

$$V^* = V^*.P$$

$$V^* = V^*$$
. P

$$\sum_{j=1}^{\infty} p(j) = 1$$

$$[p(1) p(2) ....p(j) ...p(N)] P = [p(1) p(2) ....p(j) ...p(N)]$$

$$p(1) + p(2) + .... + p(j) + ... + p(N) = 1$$

### Por ejemplo:

$$\begin{bmatrix} p(1) & p(2) & p(3) \end{bmatrix} \begin{bmatrix} 0.5 & 0.5 \\ 0.2 & 0.2 & 0.6 \\ 1.0 \end{bmatrix} = \begin{bmatrix} p(1) & p(2) & p(3) \end{bmatrix}$$

$$p(1) + p(2) + p(3) = 1$$

$$p(1) \cdot 0.5 + p(2) \cdot 0.2 + p(3) = p(1)$$

$$p(1) \cdot 0.5 + p(2) \cdot 0.2 = p(2)$$

$$p(1) + p(2) + p(3) = 1$$

$$p(1) + p(2) + p(3) = 1$$

$$p(1) = 0.5$$
  
 $p(2) = 0.3125$   
 $p(3) = 0.1875$ 

Es decir:

$$V^* = \begin{bmatrix} 0.5 & 0.3125 & 0.1875 \end{bmatrix}$$

### Para cadenas periódicas:

$$\begin{bmatrix} p(1) & p(2) \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} p(1) & p(2) \end{bmatrix}$$

$$p(1).0 + p(2).1 = p(1)$$

$$p(1) + p(2) = 1$$

$$p(2) = 1/2$$

p(1) = 1/2

#### SUMA DE FLUJOS

$$\sum_{j} p(i).p_{ij} = \sum_{k} p(k).p_{ki}$$



### • BALANCE NODO S₁:

$$p(1)-0.5 = p(2)-0.2 + p(3).1$$

### • BALANCE NODO S<sub>2</sub>:

$$p(2) \cdot (0.2 + 0.6) = p(1) \cdot 0.5$$

#### CONDICION DE SUMA:

$$p(1) + p(2) + p(3) = 1$$

### Ejemplo de aplicación:



$$p(ingreso) = \lambda_n \cdot \Delta t$$

$$p(egreso) = \mu_n \cdot \Delta t$$

$$p(ingreso) = \lambda_n \cdot \Delta t$$

$$\lambda_n = \lambda$$
 Para n = 0, 1

$$\lambda_n = 0$$
 Para  $n = 2$ 

$$p(egreso) = \mu_n \cdot \Delta t$$

$$\mu_n = 0$$
 Para  $n = 0$ 

$$\mu_n = \mu$$
 Para n = 1, 2

#### Matriz de transición:

$$P = \begin{bmatrix} S_0 & S_1 & S_2 \\ 1 - \lambda \cdot \Delta t & \lambda \cdot \Delta \tau \\ \mu \cdot \Delta t & 1 - \lambda \cdot \Delta t - \mu \cdot \Delta t \\ S_2 & \mu \cdot \Delta t & 1 - \mu \cdot \Delta t \end{bmatrix}$$

$$\begin{bmatrix} p(0) & p(1) & p(2) \end{bmatrix} \begin{bmatrix} 1 - \lambda \cdot \Delta t & \lambda \cdot \Delta t \\ \mu \cdot \Delta t & 1 - \lambda \cdot \Delta t - \mu \cdot \Delta t & \lambda \cdot \Delta t \\ \mu \cdot \Delta t & 1 - \mu \cdot \Delta t \end{bmatrix} = \begin{bmatrix} p(0) & p(1) & p(2) \end{bmatrix}$$



#### CADENAS ABSORBENTES

- TIENE POR LO MENOS UN ESTADO ABSORBENTE
- ES POSIBLE ACCEDER DESDE CADA ESTADO NO ABSORBENTE HASTA POR LO MENOS UN ESTADO ABSORBENTE

 Un estado "j" absorbente se identifica porque tiene una probabilidad unitaria p<sub>ij</sub> en la matriz de transición



### Ejemplos de estados absorbentes:

- Pago de una factura
- Realización de un contrato
- Venta de un activo fijo
- Despido de un empleado
- Falla de un dispositivo

### En este tipo de procesos interesa conocer:

- Número promedio de pasos que tarda en absorberse
- Número promedio de veces que el proceso pasa por cada estado antes de absorberse
- Probabilidad de ser absorbido por un estado determinado (si hay varios estados absorbentes)

#### • Una matriz absorbente puede reagruparse:



### I (a x a): MATRIZ IDENTIDAD. Cada elemento representa la probabilidad de permanecer en un estado absorbente en un paso



### O (a x n): MATRIZ NULA. Cada elemento representa la probabilidad de pasar de un estado absorbente a uno no absorbente en un paso



A (n x a): MATRIZ DE ESTADOS ABSORBENTES.

Cada elemento representa la probabilidad de ser absorbido en una transacción



N (n x n): MATRIZ DE ESTADOS NO ABSORBENTES.

Cada elemento representa la probabilidad de no ser absorbido en un paso.



### Ejemplo:







# Determinación del número de pasos promedio que transcurren antes que el proceso se absorba:

$$n = (I - N)^{-1} . 1$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 0.5 \\ 0.25 & 0 \end{bmatrix}$$

$$I - N = \begin{bmatrix} 1 & -0.5 \\ -0.25 & 1 \end{bmatrix}$$

$$(I - N)^{-1} = \begin{bmatrix} 1.14 & 0.57 \\ 0.29 & 1.14 \end{bmatrix}$$

$$(I - N)^{-1} \cdot 1 = \begin{bmatrix} 1.14 & 0.57 \\ 0.29 & 1.14 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.71 \\ 1.43 \end{bmatrix}$$

- Si el proceso comienza en S<sub>1</sub> hará 1.71 transacciones (en promedio) antes de absorberse
- Si el proceso comienza en S<sub>3</sub> hará 1.43 pasos (en promedio) antes de absorberse
- Si comienza en S<sub>1</sub> el número promedio de veces que pasa por S<sub>1</sub> es 1.14 y por S<sub>3</sub> 0.57.
- Si comienza en S<sub>3</sub> el número promedio de veces que pasa por S<sub>1</sub> es 0.29 y por S<sub>3</sub> 1.14

## Determinación de la probabilidad de terminar en un estado j absorbente comenzando en un estado i no absorbente:

$$n = (I - N)^{-1} . A$$

$$(I - N)^{-1} = \begin{bmatrix} 1.14 & 0.57 \\ 0.29 & 1.14 \end{bmatrix} \quad A = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.75 \end{bmatrix}$$

$$(I - N)^{-1} \cdot A = \begin{bmatrix} 0.57 & 0.43 \\ 0.14 & 0.86 \end{bmatrix}$$

### Comenzando en S₁:

- -probabilidad de terminar en S₁ es 0.57
- -probabilidad de terminar en S<sub>3</sub> es 0.43

### Comenzando en S<sub>3</sub>:

- -probabilidad de terminar en S₁ es 0.14
- -probabilidad de terminar en S<sub>3</sub> es 0.86

### EXTENSION PARA CADENAS NO ABSORBENTES

 Para determinar el número de pasos promedio requeridos para alcanzar un estado no absorbente " j " se procede como si fuera absorbente



$$S_{1} \quad S_{2} \quad S_{3}$$

$$P = \begin{array}{c|ccc} S_{1} & S_{2} & S_{3} \\ \hline .4 & .3 & .3 \\ \hline .2 & .5 & .3 \\ \hline .3 & 0 & .4 & .6 \\ \hline \end{array}$$

Para averiguar el número promedio de transacciones que se realizan hasta alcanzar por primera vez el estado 3, se supone S<sub>3</sub> absorbente.

$$S_{1} \quad S_{2} \quad S_{3}$$

$$P = \begin{array}{c|ccc} S_{1} & S_{2} & S_{3} \\ \hline .4 & .3 & .3 \\ \hline .2 & .5 & .3 \\ \hline .3 & 0 & 0 & 1 \\ \hline \end{array}$$

Luego se pasa al formato estándar

$$P = \begin{bmatrix} S_3 & S_1 & S_2 \\ 1 & 0 & 0 \end{bmatrix}$$

$$S_3 = \begin{bmatrix} 1 & 0 & 0 \\ S_1 & .3 & .4 & .3 \\ S_2 & .3 & .2 & .5 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 0.4 & 0.3 \\ 0.2 & 0.5 \end{bmatrix}$$

$$I - N = \begin{bmatrix} 0.6 & -0.3 \\ -0.2 & 0.5 \end{bmatrix}$$

$$(I - N)^{-1} = \begin{bmatrix} 2.08 & 1.25 \\ 0.82 & 2.5 \end{bmatrix}$$

$$(I - N)^{-1} \cdot 1 = \begin{bmatrix} 2.08 & 1.25 \\ 0.82 & 2.5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3.33 \\ 3.32 \end{bmatrix}$$

- Si el proceso comienza en S₁ hará 3.33 transacciones (en promedio) antes de llegar por primera vez a S₃
- Si el proceso comienza en S<sub>2</sub> hará 3.32 pasos (en promedio) antes de lograr por primera vez el estado S<sub>3</sub>

#### CADENAS CICLICAS

- UN CICLO ES UN CAMINO CERRADO ENTRE ESTADOS RECURRENTES
- PARA QUE UNA CADENA SEA CICLICA DEBE CUMPLIRSE QUE
  - TENGA POR LO MENOS UN CICLO
  - SEA POSIBLE ENTRAR EN EL CICLO





NO ES ERGODICA: ES REDUCIBLE EN  $(S_2, S_3)$  Y EN  $(S_1)$ 

### Número de intentos promedio que se realizan para alcanzar el ciclo:

 Se supone al ciclo como un estado absorbente:



$$I - N = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} .5 \end{bmatrix} = \begin{bmatrix} .5 \end{bmatrix}$$

$$(I - N)^{-1} = \begin{bmatrix} 2 \end{bmatrix}$$

 $(I - N)^{-1} \cdot 1 = 2$ 

### A largo plazo (régimen permanente):

EL SISTEMA ES CICLICO

• EL PORCENTAJE DEL TIEMPO QUE PASA EN CADA ESTADO SE CALCULA CON EL PROCEDIMIENTO VISTO PARA REGIMEN PERMANENTE.

$$\begin{bmatrix} p(1) & p(2) & p(3) \end{bmatrix} \begin{bmatrix} .5 & .2 & .3 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} p(1) & p(2) & p(3) \end{bmatrix}$$

$$\begin{cases}
p(1) \cdot 0.5 = p(1) \\
2 \cdot p(2) + p(3) = p(3)
\end{cases} \qquad p(1) = 0$$

$$p(2) = 0.5$$

$$p(1) + p(2) + p(3) = 1$$

$$p(3) = 0.5$$