幾何学 演習の解説 (11/12)

1

- (1) S_1, S_2 を適当に単体分割しておきます.これらの連結和は
- $1. S_1, S_2$ から一つの 2 単体およびその辺単体を取り除き (Euler 数はそれぞれ 3-3+1=1 だけ減る),
- 2. 円柱で繋ぐ

というふうに得られます.この円柱の Euler 数への寄与は,下の図より

$$6 - 12 + 6 = 0$$

ですから、結局

$$\chi(S_1 \sharp S_2) = (\chi(S_1) - 1) + (\chi(S_2) - 1) + 0 = \chi(S_1) + \chi(S_1) - 2$$

です.

円柱部分の単体分割.

頂点6個,辺12本,面6個

(2) 取り除いた k 個の円板を D_1,\dots,D_k とすると, $X\cup(\sqcup_iD_i)=F_g$, $X\cap(\sqcup_iD_i)=S^1\sqcup\dots\sqcup S^1$ (k 個の S^1 の非交和)です.X 以外のホモロジーは

$$H_l(D_1 \sqcup \ldots \sqcup D_k) = \begin{cases} \mathbb{Z}^k & l = 0 \\ 0 & l \ge 1 \end{cases}$$

$$H_l(F_g) = \begin{cases} \mathbb{Z} & l = 0, 2 \\ \mathbb{Z}^{2g} & l = 1 \\ 0 & l \ge 3 \end{cases}$$

$$H_l(S^1 \sqcup \ldots \sqcup S^1) = \begin{cases} \mathbb{Z}^k & l = 0, 1 \\ 0 & l \ge 2 \end{cases}$$

です.この分解について Mayer-Vietoris 完全列を書くと

$$\longrightarrow 0 \longrightarrow H_2(X) \oplus 0 \stackrel{j_2}{\longrightarrow} \mathbb{Z} \longrightarrow$$

$$\xrightarrow{\partial_1} \mathbb{Z}^k \xrightarrow{i_1} H_1(X) \oplus 0 \xrightarrow{j_1} \mathbb{Z}^{2g} \longrightarrow$$

$$\xrightarrow{\partial_0} \mathbb{Z}^k \xrightarrow{i_0} H_0(X) \oplus \mathbb{Z}^k \longrightarrow \mathbb{Z} \longrightarrow 0$$

となります.

まず,定義に従って ∂_1 を見てみます. $z\in C_2(F_g)$ をサイクルとしましょう.このとき $y\in C_2(X)\oplus C_2(\sqcup_i D_i)$ で $j_2(y)=z$ となるものがありました.この y は $j_1(\partial y)=0$ を満たしており,よってサイクル $x\in C_1(\sqcup S^1)$ で $i_0(x)=y$ を満たすものが存在しました.この x が $\partial_2(z)=x$ を定めるのでした.

この問題の場合, $z\in H_2(F_g)=\mathbb{Z}$ を生成元とすると, ∂y は $X\cap D_1,\dots,X\cap D_k$ で表される X の 1 次元サイクルになり,よって $\partial_2(z)=x\in H_1(\sqcup S^1)$ は k 個の S^1 自身で表されるサイクルです.従って $\partial_2:\mathbb{Z}\to\mathbb{Z}^k$ は

$$\partial_2(1) = (1, 1, \dots, 1)$$

と書けることになり、特に単射です.列の完全性から j_2 が 0 写像であることが従います.よって 1 行目から

$$0 \longrightarrow H_2(X) \stackrel{j_2}{\longrightarrow} 0$$

が完全列になります.これにより $H_2(X) = 0$ です.

X は連結なので $H_0(X)=\mathbb{Z}$ です . $i_0:\mathbb{Z}^k\to\mathbb{Z}\oplus\mathbb{Z}^k$ を見てみると

$$i_0(a_1, \dots, a_k) = (a_1 + \dots + a_k) \oplus (a_1, \dots, a_k) \quad (a_i \in \mathbb{Z})$$

ですから i_0 は単射です.列の完全性から ∂_0 が 0 写像であることになります. 0 写像 j_2 のところから始めると

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\partial_1} \mathbb{Z}^k \xrightarrow{i_1} H_1(X) \xrightarrow{j_1} \mathbb{Z}^{2g} \xrightarrow{\partial_0} 0$$

が完全列です. ∂_1 は単射ですから特に $\operatorname{im}\partial_1\cong\mathbb{Z}$ であり,列の完全性から $\ker i_1\cong\mathbb{Z}$ です.よって, i_1 の定義域 $H_1(\sqcup S^1)\cong\mathbb{Z}^k$ を $\ker i_1\cong\mathbb{Z}$ で割って おけば,短完全列

$$0 \longrightarrow \mathbb{Z}^k/\mathbb{Z} \xrightarrow{i_1} H_1(X) \xrightarrow{j_1} \mathbb{Z}^{2g} \longrightarrow 0$$

を得ます. \mathbb{Z}^{2g} は自由加群ですからこの短完全列は分裂し

$$H_1(X) \cong \mathbb{Z}^{k-1} \oplus \mathbb{Z}^{2g} \cong \mathbb{Z}^{2g+k-1}$$

です.まとめると次のようになります.

$$H_l(X) = \begin{cases} \mathbb{Z} & l = 0\\ \mathbb{Z}^{2g+k-1} & l = 1\\ 0 & l \ge 2. \end{cases}$$

(3) 次のように,内側の円板 D と外側 X とに分割しましょう(図は g=4):

 $D\cup X=N_g,\,D\cap X=S^1$ です.円板 D は \mathbb{Z}_2 係数でも自明なホモロジーを持ちます.X のホモロジーについては,ホモロジー群のホモトピー不変性を使ってもよければ,X を外側の円周に「押しつぶす」ことにより g 個の S^1 の 1 点和になることから

$$H_l(X; \mathbb{Z}_2) \cong \left\{ egin{array}{ll} \mathbb{Z}_2 & l = 0 \\ (\mathbb{Z}_2)^g & l = 1 \\ 0 & \mathrm{otherwise} \end{array} \right.$$

です.これを用いて Mayer-Vietoris 完全列を書くと

$$\longrightarrow 0 \longrightarrow 0 \oplus 0 \longrightarrow H_2(X) \longrightarrow$$

$$\xrightarrow{\partial_1} \mathbb{Z}_2 \xrightarrow{i_1} 0 \oplus (\mathbb{Z}_2)^g \longrightarrow H_1(N_g) \longrightarrow$$

$$\xrightarrow{\partial_0} \mathbb{Z}_2 \xrightarrow{i_0} \mathbb{Z}_2 \oplus \mathbb{Z}_2 \longrightarrow H_0(N_g) \longrightarrow 0.$$

まず i_1 を見てみます. $H_1(S^1;\mathbb{Z}_2)\cong\mathbb{Z}_2$ は,この場合は $D\cap X=S^1$ で表わされるサイクルで生成されます. i_1 による $H_1(D;\mathbb{Z}_2)$ への像はもちろん 0 です.このサイクルは X においては外周 $aabbccdd\dots$ とホモローグですから, $H_1(X;\mathbb{Z}_2)$ への像は $2a+2b+2c+2d+\cdots$ となり, \mathbb{Z}_2 係数では 0 です.従って i_1 は 0 写像で,列の完全性から ∂_1 は全射です.一方,やはり列の完全性から単射であることもわかり,従って

$$H_2(N_q; \mathbb{Z}_2) \cong \mathbb{Z}_2$$

がわかります.次に i_0 を見ると

$$i_0(1) = (1,1)$$

ですから単射で,列の完全性から ∂_0 は 0 写像です. i_1 も 0 写像でしたから

$$0 \xrightarrow{i_1} 0 \oplus (\mathbb{Z}_2)^g \longrightarrow H_1(N_g) \xrightarrow{\partial_0} 0$$

が完全になります. よって $H_1(N_a; \mathbb{Z}_2) \cong (\mathbb{Z}_2)^g$ です.

 \mathbb{Z} 係数の場合と同様に, N_g が連結であることから $H_0(N_g;\mathbb{Z}_2)=\mathbb{Z}_2$ となります.以上から

$$H_l(N_g; \mathbb{Z}_2) \cong \left\{ egin{array}{ll} \mathbb{Z}_2 & l = 0, 2 \\ (\mathbb{Z}_2)^g & l = 1 \\ 0 & \text{otherwise} \end{array} \right.$$

2

(1) この曲面を X_n と書きます.まず $X_1=aa^{-1}$ は球面ですから種数 0 ,また $X_2=a_1a_2a_1^{-1}a_2^{-1}$ はトーラスで,種数は 1 です.

以下では $n\geq 3$ とします. $b=a_2a_3\dots a_n$ とおくと $a_n^{-1}=b^{-1}a_2\dots a_{n-1}$ ですから

$$a_1 a_2 \dots a_n a_1^{-1} \dots a_n^{-1} = a_1 b a_1^{-1} \dots a_{n-1}^{-1} (b^{-1} a_2 \dots a_{n-1})$$

さらに $a_1^{-1}\dots a_{n-1}^{-1}=c$ とおくと, $a_1=a_2^{-1}\dots a_{n-1}^{-1}c^{-1}$ なので,上の式は $= (a_2^{-1}\dots a_{n-1}^{-1}c^{-1})bcb^{-1}a_2\dots a_{n-1}$ $= c^{-1}bcb^{-1}a_2\dots a_{n-1}a_2^{-1}\dots a_{n-1}^{-1}$

です . $c^{-1}bcb^{-1}$ の部分はトーラス , $a_2\dots a_{n-1}a_2^{-1}\dots a_{n-1}^{-1}$ の部分は X_{n-2} と同じ表示になっていますから

$$X_n = T \sharp X_{n-2}$$

を得たことになります.これにより,帰納的に

$$X_n = F_{\left[\frac{n}{2}\right]}$$

です.

- (2) Euler 数が -2 以上の閉曲面は
- 向き付け可能なもの: $F_0 = S^2$, $F_1 = T^2$, F_2
- 向き付け不可能なもの: $N_1 = \mathbb{R}P^2$, $N_2 = \text{Klein bottle}$, N_3 , N_4

で全てです. N_3 以外については,これらを標準形で表し,必要に応じて各辺を二等分ないしは四等分すれば,八角形の辺を二つずつ同一視したものとして表せます. N_3 についても,標準形 aabbcc について,例えば aa の部分の二辺だけを二等分すれば条件を満たす表示が得られます.

 S^2 が条件のような cell 分割を持つと仮定します . 二つの 2-cell が高々一つ の辺を共有するという条件から , 各頂点に集まる辺の数は 3 以上であること が従います .

まず次の補題を示します:

補題 1 0-cell, 1-cell, 2-cell の数をそれぞれa, b, cとすると, Euler 数はa-b+c.

[証明] 六角形の内部に頂点を取り、これと六角形の各頂点を結べば単体分割になります.六角形の中には新たに頂点が 1 個 , 辺が 6 本 , 面が 6 個現れますから , 0 単体 , 1 単体 , 2 単体の総数はそれぞれ a+c,b+6c,6c となります.よって

$$\chi = (a+c) - (b+6c) + 6c = a - b + c$$

つまり, 六角形の 2-cell をあたかも 2 単体の様に考えて Euler 数を数えることが出来る訳です. ■

この cell 分割で,2-cell が x 個だとしてみます.2-cell 毎に辺は 6 本ある訳ですが、各辺は二つの 2-cell で共有されますから,辺の数は 6x/2=3x 本です.また,2-cell 毎に頂点は 6 個ありますが,各々は 3 本以上の辺で共有されますから,頂点の数は最大でも 6x/3=2x を超えません.これと上の補題から,Euler 数 χ について

$$\chi \le 2x - 3x + x = 0$$

でなければなりません.ところが

$$H_k(S^2) = \begin{cases} \mathbb{Z} & k = 0, 2\\ 0 & \text{otherwise} \end{cases}$$

ですから Euler 数は 1-0+1=2 で矛盾します. 以上により, 条件のような cell 分割は存在しないことが判りました.