$$P(X_{n+1} = j | X_n = i) = P(X_1 = j | X_0 = i),$$
 ieupo Homogeneo

Probabilidades de transición

Sean i y j dos estados de una cadena de Markov. A la probabilidad

$$P(X_{n+1} = j \mid X_n = i)$$

probabilidades de transición en un paso

representa la probabilidad de transición del estado i en el tiempo n, al estado j en el tiempo n+1.

Notación:

$$P_{ij} = P(X_1 = j | X_0 = i)$$

$$P_{ij} = P_{ij}(n, n+1) = P\left(\chi_{n+1} = j \mid \chi_n = i\right)$$

S={0,1,2,...}} Cadena de Markov en tiempo discretio

La entrada (i,j) de esta matriz es la probabilidad de transición p_{ij} , es decir, la probabilidad de pasar del estado i al estado j

$$P = \begin{cases} 0 & 1 & 2 & \cdots \\ p_{00} & p_{01} & p_{02} & \cdots \\ p_{10} & p_{11} & p_{12} & \cdots \\ p_{20} & p_{21} & p_{22} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{cases}$$

$$Rotriz cotocostico$$

$$\vdots_{j,j} \in S = \{0,1,2,3,\dots\}$$

$$\vdots_{00} = \{0,0,1\} = \{0,1\} = \{0,1\} = \{0,1\} = \{0,2\}$$

$$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, \qquad \text{extages} \quad \text{finites} \quad \text{product} \quad \text{p$$

matriz esto cástica

La matriz de probabilidades de transición $P = (p_{ij})$ cumple las siguientes dos propiedades.

a)
$$p_{ij} \geqslant 0$$
.

b)
$$\sum_{j} p_{ij} = 1$$
. Suma por \mathcal{L} las

____ En general toda matriz cuadrada que cumpla estas dos propiedades se dice que es una matriz estocástica. Debido a la propiedad de Markov, esta matriz captura la esencia del proceso y determina el comportamiento de la cadena en cualquier tiempo futuro. Si además la matriz satisface la condición $\sum_{i} p_{ij} = 1$, es decir, cuando la suma por columnas también es uno, entonces se dice que es doblemente estocástica.

CALCULOS BASICOS

A powerful feature of Markov chains is the ability to use matrix algebra for computing probabilities. To use matrix methods, we consider probability distributions as vectors.

A probability vector is a row vector of non-negative numbers that sum to 1. Bold

$$\alpha = (\alpha_1, \alpha_2, \alpha_3, \dots)$$

A powerful readure of infarkon chains to the ability to use matrix argeora for computing probabilities. To use matrix methods, we consider probability distributions as vectors.

A probability vector is a row vector of non-negative numbers that sum to 1. Bold Greek letters, such as α , λ , and π , are used to denote such vectors.

Assume that *X* is a discrete random variable with $P(X = j) = \alpha_j$, for j = 1, 2, ...Then, $\alpha = (\alpha_1, \alpha_2, ...)$ is a probability vector. We say that the distribution of X is α . For matrix computations we will identify discrete probability distributions with row

For a Markov chain X_0, X_1, \ldots , the distribution of X_0 is called the *initial distribution* of the Markov chain. If α is the initial distribution, then $P(X_0 = j) = \alpha_j$, for all j.

n-Step Transition Probabilities

For states i and j, and $n \ge 1$, $P(X_n = j | X_0 = i)$ is the probability that the chain started in i hits j in n steps. The n-step transition probabilities can be arranged in a matrix. The matrix whose ijth entry is $P(X_n = j | X_0 = i)$ is the *n-step transition matrix* of the Markov chain. Of course, for n = 1, this is just the usual transition matrix P.

For $n \ge 1$, one of the central computational results for Markov chains is that the *n*-step transition matrix is precisely P^n , the *n*th matrix power of P.

n-Step Transition Matrix

Let X_0, X_1, \dots be a Markov chain with transition matrix **P**. The matrix \mathbf{P}^n is the *n*-step transition matrix of the chain. For $n \ge 0$,

$$P_{ij}^{n} = P(X_n = j | X_0 = i)$$
, for all i, j .

Note that $P_{ii}^n = (P^n)_{ij}$. Do not confuse this with $(P_{ij})^n$, which is the number P_{ij} raised to the *n*th power. Also note that P^0 is the identity matrix. That is,

$$P_{ij}^{0} = P(X_{0} = j | X_{0} = i) = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Ejemplos

Cadena de dos estados

Considere una cadena de Markov con espacio de estados {0,1}, y con matriz y diagrama de transición como aparece en la Figura 3.2, en donde $0 \le a \le 1$,

y 0
$$\leq$$
 b \leq 1. Suponga que la distribución inicial está dada por $p_0=P(X_0=0)$ y $p_1=P(X_0=1)$.

$$P = \begin{pmatrix} 0 & 1 \\ 1 & -a & a \\ b & 1-b \end{pmatrix}$$

$$1-a$$
 0 b $1-b$

$$P = \begin{pmatrix} 0 & 1 \\ 1 & -a & a \\ b & 1 - b \end{pmatrix}$$

$$1 - a \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$1 - b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

5=30,19

Si as vois son independientes no a = 1 - 6

$$P = 0 \begin{pmatrix} 0 & 1 \\ 1-2 & 2 \\ 1-3 & 2 \end{pmatrix} \rightarrow P(x_n = 0) = 1-2$$

$$P(x_n = 1) = 2$$

Cadena de variables aleatorias independientes

Sea ξ_1, ξ_2, \dots una sucesión de variables aleatorias independientes con valores en el conjunto $\{0,1,\ldots\}$, y con idéntica distribución dada por las probabilidadas as a Dofiniramas varias cadanas da Markov a partir da esta

$$\alpha = (\alpha_{3}, \alpha_{2}, \alpha_{3}, \dots)$$

$$\times \sum_{i \neq j} \alpha_{i} = 1$$

$$\propto P(X = j) = \alpha_{j}$$

$$\alpha = (\alpha_{1}, \alpha_{2}, \dots) \rightarrow es | a \text{ distribución}$$

$$de | X : X = 0, 1, 2, \dots, 3, \dots$$

$$P(X_{0} = j) = \alpha_{j}$$

$$\lim_{i \to \infty} Q_{1}, \alpha_{2}, \dots, \alpha_{j}, \dots$$

$$\lim_{i \to \infty} Q_{1}, \alpha_{2}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots$$

$$\lim_{i \to \infty} Q_{1}, \alpha_{2}, \dots, \alpha_{j}, \dots$$

$$\lim_{i \to \infty} Q_{1}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots$$

$$\lim_{i \to \infty} Q_{1}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots, \alpha_{j}, \dots$$

$$P(x_n = j \mid x_0 = i) = P_{ij}^n$$

$$P(x_{4}=j \mid x_{0}=i) = ?$$

Sea ξ_1, ξ_2, \dots una sucesión de variables aleatorias independientes con valores en el conjunto $\{0, 1, \dots\}$, y con idéntica distribución dada por las probabilidades a_0, a_1, \dots Definiremos varias cadenas de Markov a partir de esta sucesión.

Sea $X_n = \xi_n$. La sucesión $\{X_n : n \ge 1\}$ es una cadena de Markov con espacio de estados $\{0,1,\ldots\}$, y con probabilidades de transición $p_{ij} = P(X_n = j \mid X_{n-1} = i) = P(X_n = j) = a_j$. Es decir, la matriz de

$$P(A|B) = P(A)$$

$$P(X_{1}|X_{2}) = P(X_{1})$$

$$P(X_{0}=j) = Q_{0}^{*}; j = 0, 1, 2, ...$$

$$P(X_{1}=j|X_{0}=i) = P(X_{2}=j) = Q_{j}^{*}$$

$$P(X_{2}=j|X_{4}=i) = P(X_{2}=j) = Q_{j}^{*}$$

probabilidades de transición es de la siguiente forma:

$$P = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots \\ a_0 & a_1 & a_2 & \cdots \\ \vdots & \vdots & \vdots & \end{pmatrix}.$$

Por la hipótesis de independencia, esta cadena tiene la cualidad de poder pasar a un estado cualquiera siempre con la misma probabilidad en cualquier momento, sin importar el estado de partida. En consecuencia, para cualquiera estados i y j, y para cualquier entero $n \ge 1$, las probabilidades de transición en n pasos son fáciles de calcular y están dadas por $p_{ij}(n) = a_j$. Esta cadena puede modelar, por ejemplo, una sucesión de lanzamientos independientes de una moneda.