УДК 620.197.3

ОСНОВНЫЕ ПРОБЛЕМЫ ВОДООБОРОТНЫХ СИСТЕМ ОХЛАЖДЕНИЯ С ЗАМКНУТЫМ КОНТУРОМ И ПУТИ ИХ РЕШЕНИЯ

THE MAIN PROBLEMS OF CLOSED-LOOP WATER CIRCULATION COOLING SYSTEMS AND WAYS TO SOLVE THEM

Садретдинов Илья Фагимович

кандидат химических наук, начальник лаборатории проблемных исследований, научно-технический центр OOO «Газпром нефтехим Салават» 28sif@snos.ru

Султанбекова Ирина Александровна

кандидат химических наук, ведущий специалист лаборатории проблемных исследований, научно-технический центр ООО «Газпром нефтехим Салават» 28sia@snos.ru

Аннотация. Данная статья посвящена промышленным водооборотным системам охлаждения с замкнутым контуром. Проведено измерение аналитических показателей исходной воды при заполнении системы и циркуляционной воды после 1 года эксплуатации. На основе анализа полученных данных выявлены основные проблемы и предложены пути их решения.

Ключевые слова: водооборотные системы охлаждения с замкнутым контуром, коррозия, реагентная защита.

Sadretdinov Ilya Fagimovich

Ph.D. of Chemical Sciences, Head of Laboratory, Scientific and Technical Center LLC «Gazprom Neftekhim Salavat» 28sif@snos.ru

Sultanbekova Irina Alexandrovna

Ph.D. of Chemical Sciences, Leading Specialist of Laboratory, Scientific and Technical Center LLC «Gazprom Neftekhim Salavat» 28sia@snos.ru

Annotation. This article is devoted to industrial closed-loop water circulation cooling systems. Measurement of analytical indicators of the source water was carried out when filling the system and circulating water after 1 year of operation. Based on the analysis of the data obtained, the main problems have been identified and ways to solve them have been proposed.

Keywords: closed loop water circulation systems, corrosion, reagent protection.

с истемы охлаждения оборудования установок нефтехимических производств являются неотъемлемой частью технологического процесса. От того, насколько системы охлаждения обеспечивают потребности оборудования в отведении избыточного тепла, существенным образом зависит энергоэффективность и надежность теплообменного оборудования. С другой стороны все предприятия в области нефтехимии и нефтепереработки подвержены строгому экологическому контролю, в том числе по количеству и качеству сбрасываемых сточных вод. В связи с этим поддержание качества оборотной воды в системе и длительная работа установок замкнутого контура циркуляции воды без продувок позволяют минимизировать влияние на окружающую среду и одновременно сохранять эффективность производства на высоком уровне [1].

В системах с замкнутым контуром охлаждающая среда напрямую не контактирует с окружающим воздухом. Для охлаждения циркулирующей воды используются холодильники, подключенные к системам с открытым контуром, чиллеры или «сухие градирни». Вода циркулирует в замкнутом цикле и подвергается попеременному охлаждению и нагреву, чаще всего без контакта с воздухом. Соответственно, в отличие от открытых систем оборотного водоснабжения, меняются условия отложения солей, коррозионных процессов и возможного биозагрязнения воды [2].

В ООО «Газпром нефтехим Салават» замкнутый водооборотный цикл используется для охлаждения блока компрессоров в цехе № 8 нефтеперерабатывающего завода (НПЗ). Водооборотный цикл изначально заполняется химически очищенной водой (ХОВ) и далее функционирует в закрытом режиме, без продувок в течение всего межремонтного пробега (рис. 1). При падении уровня воды в буферной емкости производится добавление ХОВ. Реагентная обработка воды не проводится.

При вскрытии оборудования в период капремонтов в данной системе постоянно фиксировалось наличие большого количества шлама. Исследование толщины металла методом ультразвуковой толщинометрии (УЗТ) выявляло ускоренное утонение металла трубопроводов, фиксировались факты пропуска трубок холодильника.

Рисунок 1 – Схема замкнутого водооборотного цикла охлаждения блока компрессоров в цехе № 8 НПЗ ООО «Газпром нефтехим Салават»

Было проведено обследование замкнутого контура установки цеха № 8 НПЗ с применением дополнительного аналитического контроля (мониторинга) по показателям водных сред, определяющим процессы коррозии, солеотложения и микробиологического загрязнения, с последующей оценкой необходимости разработки и внедрения программы реагентной защиты. Результаты определения показателей исходной ХОВ, использованной для заполнения системы, и циркуляционной воды через 1 год эксплуатации представлены в таблице 1. Анализы выполнялись по внутренним аттестованным методикам ООО «Газпром нефтехим Салават».

Таблица 1 – Показатели качества исходной ХОВ и циркуляционной воды через 1 год эксплуатации замкнутого цикла

Nº⊓/ ⊓	Наименование показателя, единица измерения	ХОВ	Циркуляционная во- да
1	Водородный показатель, рН, ед.	7,05	8,88
2	Массовая концентрация кремнекислоты, мкг / дм ³	4,44	2724,4
3	Массовая концентрация общего железа, мг / дм ³	отс	0,018
4	Щелочность общая, мг / дм ³	0,14	3,36
5	Массовая концентрация эквивалента иона кальция (ЖСа), мг-экв / дм ³	0,001	1,32
6	Солесодержание в пересчете на NaCl, мг / дм ³	1,10	179,6
7	Удельная электрическая проводимость, мкСм / см	2,3	375
8	Взвешенные вещества, мг / дм ³	отс	отс
9	Химическое потребление кислорода, мг O ₂ / дм ³	104	192
10	Микробиология, ед. RLU (люминометр)	0	1,5
11	Жесткость общая, мг / дм ³	0,001	2,85
12	Массовая концентрация хлоридов, мг / дм ³	1,47	50,19
13	Массовая концентрация сульфатов, мг / дм ³	0,58	46,32
14	Скорость коррозии, мм / год (ГОСТ 9.506-87), гравиметрический метод, среда – воздух, Т=40 °С, материал купонов – Ст20	0,37	0,46
15	Расчетные показатели		
	Коэффициент упаривания, ед. (по УЭП)	_	163,0
	Коэффициент упаривания, ед. (по хлоридам)	_	34,1
	Индекс Ланжелье, ед. (при 40 °C)	_	1,3
	Индекс Ризнера, ед. (при 40 °C)	_	6,3
	Транспорт кальция, %		81,0

Как видим из данных таблицы 1, в циркуляционной воде замкнутого контура наблюдается высокое значение $X\Pi K - 192$ мг O_2 / дм 3 . Поскольку микробиологические показатели воды при этом оставались низкими, это косвенно указывает на, вероятно, непостоянный характер загрязнения циркуляционной воды органическими веществами.

Показатели щелочности, общей и кальциевой жесткости, солесодержания и УЭП значительно увеличились за период эксплуатации системы. Данный факт, вероятно, связан с постепенным попаданием в воду компонентов из ранее сформированных отложений, поскольку оборудование находится в эксплуатации около 40 лет, а также за счет процессов упаривания циркуляционной воды.

Взвешенные вещества в циркуляционной воде на момент проведения исследования отсутствовали. Содержание железа не превышало 1,0 мг / дм³. Однако в циркуляционной воде замкнутого контура установки цеха № 8 НПЗ наблюдается повышенное содержание кремнекислоты, что в условиях низких скоростей потоков может привести к образованию отложений (например, в случае, если кремний находится в форме кремнезёма или песка) и развитию подшламовой коррозии.

Значения коэффициентов упаривания и транспорта кальция являются в данном случае ориентировочными, поскольку используются, как правило, для систем с постоянной подпиткой (открытые водооборотные узлы).

Величина индексов Ланжелье и Ризнера указывает на незначительную склонность циркуляционной воды к накипеобразованию и умеренную склонность к протеканию коррозионных процессов. Однако необходимо учитывать, что в расчете данных показателей учитывается ограниченное количество параметров, а на величину скорости коррозии влияют множество факторов.

Для определения рисков протекания коррозионных процессов в среде замкнутого контура охлаждения было выполнено экспериментальное определение скорости коррозии в лабораторных условиях. Скорость коррозии в экспериментах составила 0,46 мм / год для циркуляционной воды и 0,37 мм / год для XOB, что превышает величину нормы, составляющую не более 0,1 мм / год. Характер коррозии – равномерный.

Таким образом, в результате проведенных исследований было установлено, что металлическое оборудование системы замкнутого охлаждения компрессоров подвергается сильному коррозионному воздействию со стороны циркуляционной воды. Для снижения рисков преждевременной отбраковки элементов холодильников и участков трубопроводов замкнутого цикла рекомендуется внедрение реагентной обработки циркуляционной воды. Исходя из проведенного обследования системы охлаждения компрессоров, реагентная защита должна быть направлена в первую очередь на ингибирование коррозии. Литературные данные свидетельствуют, что в случае использования реагентной обработки воды замкнутых циклов различными ингибиторами, возможно кратное увеличение микробиологического загрязнения воды [3]. Для предотвращения данного процесса необходимо включение в программу реагентной обработки биоцидов.

Также для предотвращения развития подшламовой коррозии рекомендуется проведение постоянной фильтрации циркуляционной воды в объеме 10–30 % от объема системы.

Литература:

- 1. ИТС по наилучшим доступным технологиям 20-2016. Промышленные системы охлаждения. М. : Бюро НДТ. 2016. 328 с.
- 2. Ресурсосберегающие способы водоподготовки в оборотных системах / И.В. Шестак [и др.] // Природные ресурсы. 2018. № 1. С. 32–39.
- 3. Нестеренко С.В., Банников Л.П. Проблемы эксплуатации бессточного оборотного цикла водоснабжения коксохимического предприятия // Экология и промышленность. 2018. Т. 1. С. 44–52.

References:

- 1. ITS on the best available technologies 20-2016. Industrial cooling systems. M.: Bureau of BAT. 2016. 328 p.
- 2. Resource-saving ways of water treatment in recycling systems / I.V. Shestak [et al.] // Natural Resources. 2018. № 1. P. 32–39.
- 3. Nesterenko S.V., Bannikov L.P. Problems of operation of drainless recycling cycle of water supply of cokechemical enterprise // Ecology and Industry. 2018. Vol. 1. P. 44–52.