The Base Functions of the RelView System, Version 7.0*

Institut für Informatik und Praktische Mathematik Christian-Albrechts-Universität Kiel Olshausenstraße 40 D-24098 Kiel, Germany

The base functions of Relview can be divided into several parts:

1. Base functions for calculating constant relations and domains:

Syntax	Meaning
L(R)	Universal relation with the same dimension as R
0(R)	Empty relation with the same dimension as R
I(R)	Identity relation with the same dimension as R
Ln1(R)	Universal column vector with the same row number as R
On1(R)	Empty column vector with the same row number as R
L1n(R)	Universal row vector with the same column number as R
01n(R)	Empty row vector with the same column number as R
dom(R)	Domain R * Ln1 (R^) of relation R as column vector

2. Base functions for calculating Boolean operations:

Syntax	Meaning
	Negation (complement) of relation R
R S	Union (join) of R and S
R & S	Intersection (meet) of R and S

3. Base functions for calculating relationalgebraic operations:

Syntax	Meaning
R^	Transposition of relation R
R * S	Composition (product) of R and S

4. Base functions for calculating residuals and symmetric quotients:

Syntax	Meaning
S/R	Left residual of R and S
R∖S	Right residual of ${\tt R}$ and ${\tt S}$
syq(R,S)	Symmetric quotient of R and S

^{*}WWW: http://www.informatik.uni-kiel.de/~progsys/relview.shtml

5. Base functions for calculating closures:

Syntax	Meaning
trans(R)	Transitive closure of R
refl(R)	Reflexive closure of R
symm(R)	Symmetric closure of R

6. Various base functions concerning vectors and points without choice operations:

Syntax	Meaning
inj(v)	Injection induced by the non-empty vector v
<pre>init(v)</pre>	Initial point with the same dimension as the vector v
succ(v)	Homogeneous successor relation with a dimension given
	by the number of rows of the vector v
next(p)	Successor of the point p with the same dimension as p

7. Base operations for choices:

Syntax	Meaning
	A point included in the non-empty column vector v
atom(R)	An atom (a relation consisting of one pair) included in
	the non-empty relation R

8. Base operations which generate random relations. In the following, XY stands for two digits between 00 and 99 and denotes the probability that a pair is contained in the result:

Syntax	Meaning
randomXY(R)	Generation of a random relation with the same dimension as R
randomcfXY(R)	Generation of a cyclefree random relation with the same
	dimension as the homogeneous relation R
randomperm(v)	Generation of a random permutation, where the dimension is
	given by the number of rows of the vector \mathbf{v}

9. Base functions for certain tests on relations. The result is *true* (represented by the universal relation on a singleton set) or *false* (represented by the empty relation on a singleton set):

Syntax	Meaning
empty(R)	Test, whether R is empty
unival(R)	Test, whether R is univalent
eq(R,S)	Test, whether R and S are equal
incl(R,S)	Test, whether R is included in S
cardeq(R,S)	Test, whether the cardinalities of R and S are equal
cardlt(R,S)	Test, whether the cardinality of R is less than that of S
cardgt(R,S)	Test, whether the cardinality of R is greater than that of S

10. Base functions concerning operations on powersets:

Syntax	Meaning
epsi(v)	Membership relation, where the cardinality of the base set is
	given by the row number of the vector v
cardrel(v)	Size comparison relation on a powerset, where the cardinality
	of the base set is given by the row number of the vector v
cardfilter(v,w)	If v is a vector with a powerset 2^X as argument set and w is a
	vector with $n \leq X + 1$ columns, then the operation
	selects from v all sets s fulfilling $ s < n$

11. Base functions concerning relational product and sum domains. Most of these base functions take a domain definition as argument, the result however is always a relation:

Syntax	Meaning
1-st(DD)	1st component (DD domain)
2-nd(DD)	2nd component (DD domain)
p-1(PP)	Projection onto the 1st component (PP product domain)
p-2(PP)	Projection onto the 2nd component (PP product domain)
p-ord(PP)	Product order (PP product domain)
[R,S]	Tupling of relations
i-1(SS)	Injection into 1st component (SS sum domain)
i-2(SS)	Injection into 2nd component (SS sum domain)
s-ord(SS)	Sum order (SS sum domain)
R + S	Sum of relations

12. Base functions concerning function domains:

Syntax	Meaning
part-f(R,S)	Columnwise representation of partial functions
tot-f(R,S)	Columnwise representation of total functions