

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Greedy best-first

search

A" search

Merancano

Search di environmer vang 'sulit'

Ringkasa

IKI 30320: Sistem Cerdas Kuliah 5: Informed Search

Ruli Manurung

Fakultas Ilmu Komputer Universitas Indonesia

12 September 2007

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

4" searcr

Merancano

Search di environmen

- Best-first search
- 2 Greedy best-first search
- 3 A* search
- Merancang heuristic
- 5 Search di environment yang 'sulit'
- 6 Ringkasan

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-first search

Greedy best-first search

A* search

Search di environmen

- Best-first search
- Greedy best-first search
- 3 A* search
- Merancang heuristic
- 5 Search di environment yang 'sulit
- 6 Ringkasan

Best-first search

Kuliah 5 12 Sep 2007

Manuruno

Best-first

search Greedy best-first

A* search

n scarci

Search di environme

Rinakasa

Prinsip best-first search

Lakukan node expansion terhadap node di fringe yang nilai f(n)-nya paling kecil.

- Ide dasar: f(n) adalah sebuah evaluation function → fungsi yang menyatakan perkiraan seberapa "bagus" sebuah node.
- Kenapa perkiraan?

Best-first search

Kuliah 5 12 Sep 2007

Mana

Best-first

search Greedy

best-first search

Merancan

Search di environme

Ringkasa

Prinsip best-first search

Lakukan node expansion terhadap node di fringe yang nilai f(n)-nya paling kecil.

- Ide dasar: f(n) adalah sebuah evaluation function → fungsi yang menyatakan perkiraan seberapa "bagus" sebuah node.
- Kenapa perkiraan? Kalau tidak, bukan search namanya!
- Implementasi: *fringe* adalah sebuah *priority queue* di mana node disortir berdasarkan f(n).
- Contoh:
 - Uniform-cost search
 - Greedy (best-first) search
 - A* search

Heuristic function

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first search

Greedy best-first search

......

heuristic

environme yang 'sulit'

Rinakae

- Kunci keberhasilan best-first search terletak di heuristic function.
- Heuristic adalah:
 - rule of thumb
 - "kiat-kiat sukses", "tips-tips keberhasilan"
 - informasi tambahan bagi si agent (agar lebih sukses)
 - → *informed* search
- Heuristic function h(n) adalah fungsi yang menyatakan estimasi cost dari n ke goal state.
- Ada banyak kemungkinan heuristic function untuk sebuah masalah.

Contoh heuristic function

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first search

Greedy best-first search

A* sear

Merancan heuristic

Search di environmei yang 'sulit'

Dinakası

Straight-line distance to Bucharest Arad 366 Bucharest Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151 Iasi 226 Lugoj 244 Mehadia 241 Neamt 234 Oradea 380 Pitesti 98 Rimnicu Vilcea 193 Sibin 253 Timisoara 329 Urziceni 80 Vaslui 199 Zerind 374

Sebuah heuristic function untuk agent turis Rumania

 $h_{SLD}(n) = \text{jarak } straight-line distance dari } n \text{ ke Bucharest.}$

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Greedy best-first

search

A* search

n scarci

Search di environment

/ang 'sulit'

Rinakasa

- Best-first search
- 2 Greedy best-first search
- 3 A* search
- Merancang heuristic
- 5 Search di environment yang 'sulit
- 6 Ringkasan

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Roct firet

Greedy best-first search

A* search

, i sourci

Search di environme

Rinakasa

Prinsip greedy best-first search

Lakukan node expansion terhadap node di fringe yang nilai h(n)-nya paling kecil.

Greedy best-first search selalu memilih node yang kelihatannya paling dekat ke *goal*.

Kuliah 5 12 Sep 2007

Ruli Manuruno

search

Greedy best-first search

A* search

, i sourci

Search di environme

Ringkasa

Prinsip greedy best-first search

Lakukan node expansion terhadap node di fringe yang nilai h(n)-nya paling kecil.

Greedy best-first search selalu memilih node yang kelihatannya paling dekat ke *goal*.

Kuliah 5 12 Sep 2007

Ruli Manurun

Best-firs search

Greedy best-first search

 A^* search

, i sourci

Search di environme

Dinakas

Prinsip greedy best-first search

Lakukan node expansion terhadap node di fringe yang nilai h(n)-nya paling kecil.

Greedy best-first search selalu memilih node yang kelihatannya paling dekat ke *goal*.

Kuliah 5 12 Sep 2007

Greedy best-first search

Prinsip greedy best-first search

253

Lakukan node expansion terhadap node di fringe yang nilai h(n)-nya paling kecil.

Greedy best-first search selalu memilih node yang kelihatannya paling dekat ke goal.

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Greedy

best-first search

A* search

Merancar

Search di environmen yang 'sulit'

Ringkasan

Complete?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

A* search

A Scarci

heuristic

Search di environmer yang 'sulit'

Ringkasar

 Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)

IKI30320 Kuliah 5 12 Sep 2007

Greedy best-first search

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search

Greedy best-first search

A* search

, i ocaioi

Search di environmer

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity? Secara teoritis, $O(b^m)$, tetapi heuristic function yang baik akan mempercepat drastis

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first search

Greedy best-first search

A* search

n scarci

Search di environme

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity? Secara teoritis, $O(b^m)$, tetapi heuristic function yang baik akan mempercepat drastis
- Space complexity?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search

Greedy best-first search

A* search

Search di environmer

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity? Secara teoritis, $O(b^m)$, tetapi heuristic function yang baik akan mempercepat drastis
- Space complexity? O(b^m) → semua node disimpan di memory

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search Greedy

best-first search

A^ search

Merancan

Search di environmer yang 'sulit'

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity? Secara teoritis, $O(b^m)$, tetapi heuristic function yang baik akan mempercepat drastis
- Space complexity? O(b^m) → semua node disimpan di memory
- Optimal?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search

Greedy best-first search

A* search

Morancan

Search di environmen yang 'sulit'

- Complete? Ya, jika state space terbatas dan pengulangan state ditangani. (Lihat Neamt → Oradea)
- Time complexity? Secara teoritis, $O(b^m)$, tetapi heuristic function yang baik akan mempercepat drastis
- Space complexity? O(b^m) → semua node disimpan di memory
- Optimal? Tidak.

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Greedy best-first

search

A* search

a searcr

Search di environmer

- Best-first search
- 2 Greedy best-first search
- 3 A* search
- 4 Merancang heuristic
- 5 Search di environment yang 'sulit
- 6 Ringkasan

A* search

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-first search

Greedy best-first search

A* search

Merancang heuristic

Search di environmer yang 'sulit'

Ringkasa

Prinsip A* search

Hindari node yang berada di path yang "mahal"

Evaluation function f(n) = g(n) + h(n)

- g(n) = Path cost ke n
- h(n) = Estimasi path cost dari n ke goal
- f(n) = Estimasi total cost melalui n

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-fire

A* search

Merancar heuristic

search di environmen yang 'sulit'

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

A* search

heuristic

Search di environmer vang 'sulit'

415=239+176 671=291+380 413=220+193

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first

search

A* search

Merancan

646=280+366

Search di environmei

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first

A* search

Merancang

Search di environmer

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first

A* search

Merancang

Search di environmer

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first

A* search

Merancano

Search di environmer vang 'sulit'

Admissible heuristic

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-firs search

Greedy best-first search

A* search

Merancano

Search di environme yang 'sulit' A* search menggunakan heuristic yang admissible

 $0 \le h(n) \le h^*(n)$, di mana $h^*(n)$ adalah cost dari n yang sebenarnya.

Bahasa gampangnya: nilai sebuah heuristic function tidak

pernah melebihi cost ke goal yang sebenarnya.

Contoh: $h_{SLD}(n)$

Theorem

A* search adalah optimal.

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-fi search

best-first search

A* search

Search di environme

Ringkasa

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-fi search

best-first search

A* search

Search di environmer

Ringkasa

•
$$f(G_2) = g(G_2)$$
, karena $h(G_2) = 0$

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-fi search

best-first search

A* search

Search di environmer

Ringkasa

- $f(G_2) = g(G_2)$, karena $h(G_2) = 0$
- $g(G_2) > g(G_1)$, karena G_2 tidak optimal

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-fi search

Greedy best-firs search

A* search

n scarcii

Search di

Ringkasa

- $f(G_2) = g(G_2)$, karena $h(G_2) = 0$
- $g(G_2) > g(G_1)$, karena G_2 tidak optimal
- $g(G_1) \ge f(n)$, karena h admissible

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-first search

best-first search

A* search

Search di environmen

Ringkasa

Andaikan G_2 adalah goal *suboptimal* di dalam *fringe*. Ambil n sebuah *fringe* node pada path menuju G_1 , goal *optimal*, sbb:

- $f(G_2) = g(G_2)$, karena $h(G_2) = 0$
- $g(G_2) > g(G_1)$, karena G_2 tidak optimal
- $g(G_1) > f(n)$, karena h admissible

Karena $f(G_2) > f(n)$, algoritma A^* search tidak pernah akan memilih G_2 untuk di-expand. Teorema terbukti!

Consistency sebuah heuristic

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-firs search

Greedy best-first search

A* search

Search di environme

Rinakasa

• Sebuah *heuristic* dikatakan *consistent* jika:

$$h(n) \leq c(n, a, n') + h(n')$$

Jika h konsisten, maka:

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$\geq f(n)$$

 Pada sembarang path, nilai f(n) tidak pernah turun (nondecreasing), atau monotonic.

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-fir search

best-first search

A* search

. .

Search di environmer

Ringkasa

- *Node expansion A** berdasarkan urutan nilai *f*.
- Bayangkan penelusuran state space yang dilakukan A* menambahkan f-contour.

Bandingkan dengan "lapisan" yang ditelusuri breadth-first dan uniform-cost.

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-firs search

Greedy best-first search

A* search

heuristic

Search di environmer yang 'sulit'

Ringkasan

Complete?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Roet-firet

Greedy best-firs

A* search

heuristic

environmei yang 'sulit'

Ringkasar

• Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-firs

best-first search

A* search

Merancan neuristic

Search di environmer vang 'sulit'

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-fire search

Greedy best-first search

A* search

.

Search di environmer

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity? Eksponensial dalam (error $h \times$ jumlah step solusi)

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-fire search

Greedy best-first search

A* search

1 Scarcii

Search di environme

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity? Eksponensial dalam (error $h \times$ jumlah step solusi)
- Space complexity?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search

Greedy best-first search

A* search

Search di environmer

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity? Eksponensial dalam (error hx jumlah step solusi)
- Space complexity? O(b^m) → semua node disimpan di memory

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

search

Greedy best-first search

A* search

Aoranoano

Search di environmer yang 'sulit'

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity? Eksponensial dalam (error hx jumlah step solusi)
- Space complexity? O(b^m) → semua node disimpan di memory
- Optimal?

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-firs search

Greedy best-first search

A* search

Merancang

Search di environmer yang 'sulit'

- Complete? Ya, kecuali jumlah node di mana $f \leq f(G)$ tak terbatas
- Time complexity? Eksponensial dalam (error hx jumlah step solusi)
- Space complexity? O(b^m) → semua node disimpan di memory
- Optimal? Ya.
 - A^* meng-expand semua node di mana $f(n) < C^*$
 - A^* (mungkin) meng-expand beberapa node di mana $f(n) = C^*$
 - A^* tidak pernah meng-expand node di mana $f(n) > C^*$

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Greedy best-first

best-first search

Merancang

heuristic Search di

ang 'sulit'

- Best-first search
- 2 Greedy best-first search
- 3 A* search
- Merancang heuristic
- 5 Search di environment yang 'sulit'
- 6 Ringkasan

Contoh admissible heuristic

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

A* searc

Merancang heuristic

Search di environmen yang 'sulit'

Ringkasa

h(n) untuk 8-puzzle

 $h_1(n)$: jumlah angka yang salah posisi

 $h_2(n)$: jumlah jarak semua angka dari posisi yang benar

Start State

Goal State

$$h_1(s) =$$

$$h_2(s) =$$

Contoh admissible heuristic

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

nuli Manuruni

Best-fir search

best-first search

A Scarcii

Merancang heuristic

Search di environmen yang 'sulit'

Ringkasa

h(n) untuk 8-puzzle

 $h_1(n)$: jumlah angka yang salah posisi

 $h_2(n)$: jumlah jarak semua angka dari posisi yang benar

Start State

Goal State

$$h_1(s) = 6$$

 $h_2(s) = 4+0+3+3+1+0+2+1=14$

Membandingkan dua heuristic

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first search

Greedy best-first search

A* sear

Merancang heuristic

> Search di environmer ang 'sulit'

Rinakas

 h₁ dan h₂ sama-sama admissible. Mana yang lebih baik? Bandingkan jumlah node yang di-expand:

d	IDS	$A^*(h_1)$	$A^*(h_2)$
12	3,473,941	539	113
24	54,000,000,000	39,135	1,641

- Jika $h_2(n) \ge h_1(n)$ untuk semua n (dan keduanya admissible), dikatakan bahwa h_2 men-dominate h_1 dan lebih baik untuk search.
- Semakin besar nilai h(n),
 semakin dekat ke h*(n),
 semakin banyak node yang tidak di-expand (di-prune),
 semakin efisien search-nya!

Merancang admissible heuristic

Kuliah 5 12 Sep 2007

Merancano heuristic

 Admissible heuristic dapat diperoleh dari solution cost vang sebenarnya dari variasi masalah yang dipermudah (relaxed).

Contoh:

- Andaikan masalah 8-puzzle dipermudah sehingga sebuah angka bisa dipindahkan ke mana saja. Cost dari solusinya = h_1 .
- Andaikan masalah 8-puzzle dipermudah sehingga sebuah angka bisa dipindahkan ke tetangga mana saja (kosong atau tidak). Cost dari solusinya = h_2 .
- Optimal solution cost dari masalah yang dipermudah tidak akan melebihi optimal solution cost masalah yang sebenarnya → *admissible*!
- Admissible heuristic bisa juga diperoleh dari sub-masalah.

Outline

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

A* search

Merancang neuristic

Search di environment yang 'sulit'

- Best-first search
- 2 Greedy best-first search
- 3 A* search
- Merancang heuristic
- 5 Search di environment yang 'sulit'
- 6 Ringkasan

Environment yang tidak observable

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first search

Greedy best-first search

A" searc

heuristic

Search di environment yang 'sulit'

Ringkasa

- Selama ini, kita berasumsi bahwa environment di mana problem solving agent kita berada fully observable.
- Apa yang terjadi jika si agent tidak memiliki sensor?

8

- Initial state bisa di mana saja: {1,2,3,4,5,6,7,8}
- Setelah DoKeKanan, bisa di: {2,4,6,8}
- Solusi adalah rangkaian tindakan [DoKeKanan, DoSedot, DoKeKiri, DoSedot]

Sensorless problem

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-firs

Greedy best-first search

A↑ seard

heuristic

Search di environment yang 'sulit'

Rinakasa

- Si agent harus mencatat himpunan physical state (S_p) yang mungkin sedang terjadi \rightarrow belief state (S_b) .
- Search dilakukan dalam space yang terdiri dari belief state, bukan physical state.
- Belief state S_b' yang dihasilkan suatu action terhadap belief state S_b adalah union dari semua physical state S_p' yang dihasilkan action tersebut terhadap semua physical state $S_p \in S_b$.
- Sebuah solusi adalah path yang menuju belief state di mana semua member physical state-nya adalah goal.

Contoh belief state VACUUMCLEANERWORLD

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first

A* searc

Merancan

Search di environment vang 'sulit'

Contingency problem

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurung

Best-first

Greedy best-first search

A* search

Merancan neuristic

Search di environment vang 'sulit'

- Selama ini, kita berasumsi bahwa environment di mana problem solving agent kita berada deterministic.
- Bayangkan robot pembersih kita cacat: jika DoSedot dilakukan di ruangan bersih, kadang-kadang ia malah membuatnya kotor! Bagaimana belief state space-nya?

Contingency problem

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

Best-fir search

Greedy best-first search

A^ search

Merancano neuristic

Search di environment yang 'sulit'

Rinakasa

- Selama ini, kita berasumsi bahwa environment di mana problem solving agent kita berada deterministic.
- Bayangkan robot pembersih kita cacat: jika DoSedot dilakukan di ruangan bersih, kadang-kadang ia malah membuatnya kotor! Bagaimana belief state space-nya?
- Sekarang bayangkan robot ini punya sensor yang melihat apakah ruangan kotor.
- Solusi sekarang bukanlah rangkaian tindakan (action sequence), tetapi action tree, mis:
 - [DoSedot, DoKeKanan, if [B, Kotor] then DoSedot].

Contingency problem

Masalah di mana agent menerima input baru dari sensor setelah bertindak.

Outline

IKI30320 Kuliah 5 12 Sep 2007

- Ringkasan

Ringkasan

IKI30320 Kuliah 5 12 Sep 2007

Ruli Manurun

search

Greedy best-first search

A searc

Merancan heuristic

Search di environme yang 'sulit'

Ringkasan

Best-first search

- Uniform-cost search: f(n) = g(n)
- Greedy best-first search: f(n) = h(n)
- A^* search: f(n) = g(n) + h(n)
- Dengan heuristic yang admissible dan consistent, A* pasti complete dan optimal.
- Heuristic demikian dapat diperoleh dari variasi masalah yang dipermudah, atau submasalah.
- Search di mana environment-nya tidak observable atau non-deterministic masih bisa diatasi.