Contents

1	General Chemistry Review	2
	Structural Theory of Matter	2
	Electrons, Bonds, and Lewis Structures	2
	Identifying Formal Charges	2
	Induction and Polar Covalent Bonds	2
	Atomic Orbitals	3
	Valence Bond Theory	3
	Molecular Orbital Theory	3
	Hybridized Atomic Orbitals	3
	Molecular Geometry	4
	Dipole Moments and Molecular Polarity	4
	Intermolecular Forces and Physical Properties	4
	Solubility	4

1 General Chemistry Review

Structural Theory of Matter

- ▶ **Constitutional isomers**: same molecular formula, but different in the way the atoms are connect, i.e. their constitution is different.
- ▶ Each element forms a predictable number of bonds, from one to four.
- \triangleright \ch{x-x} single: -, double: =, triple: +. e.g. CH₃-CH₃, CH₂=CH₂, CH=CH

Electrons, Bonds, and Lewis Structures

- ▶ Covalent bond: two atoms sharing a pair of electrons.
- ▶ The lowest energy (most stable) state of two atoms is determined both by bond length and bond strength.
- ▶ **Lewis structures**: drawings that show free electrons.
- ▶ Valence electrons are determined by the group, 1A-8A, of the periodic table.
- ▶ **Lone pair**: unshared, or nonbonding, electrons.
- ▶ **F, O, N, CI** (Br, I). Most electronegative elements, from left to right; hydrogen needs to bond to these elements.
- Examples: COF₂, H₂O, NO₃⁻, N₂O

Identifying Formal Charges

- ▶ **Formal charge**: any atom that does not exhibit the appropriate number of valance electrons.
- ▶ Less than expected results in positive charge.
- ▶ More than expected results in negative charge.

Induction and Polar Covalent Bonds

- ▶ Bonds are classified into three categories: covalent, polar covalent, ionic.
- ▶ The categories emerge from the electronegativity values of the atoms sharing a bond.
- ▶ **Electronegativity**: a measure of the ability of an atom to attract electrons.

- ▶ Electronegativity generally increases left to right, and from the bottom to top of the periodic table.
- ▶ If the difference in electronegativity is less than 0.5, then the electrons are considered equally shared and this **covalent**.
- ▶ If the difference in electronegativity is between 0.5 and 1.7, then the electrons are not equally shared and thus a **polar covalent bond**.
- ▶ **Induction**: the withdrawl of electrons towards to more electronegative atom. δ^+ represents partial positive charged gained when electrons are pulled away, while δ^- represents the partial negative charge pulled closer.
- ▶ If the difference in electronegativity is greater than 1.7 then the electrons are not shared and results in an **ionic bond** which is just a result of the force between two oppositely charged ions.

Atomic Orbitals

- ▶ **Atomic orbital (AO)**: s(1), p(3), d(5), f(7).
- \triangleright Locations where ψ is zero are called **nodes**.
- ▶ The more nodes that an orbital has, the greater it's energy.
- Degenerate orbitals: orbitals with the same energy level.
- ▷ Order in which orbitals are filled is determined by three principles:
- ▶ **Aufbau principle**: lowest energy orbital is filled first.
- ▶ Pauli exclusion principle: each orbital can accommodate a maximum of two electrons that have opposite spin.
- Hund's rule: electrons are placed in each degenerate orbital before being paired up.

Valence Bond Theory

 \triangleright

Molecular Orbital Theory

>

Hybridized Atomic Orbitals

D

Molecular Geometry

 \triangleright

Dipole Moments and Molecular Polarity

 \triangleright

Intermolecular Forces and Physical Properties

 \triangleright

Solubility

 \triangleright