September (Anna payapanber)
$$X \in \Gamma(\alpha, \beta)$$
 $\alpha > 0$, $\beta > 0$ and $\int X(X) = \beta^{\alpha} \frac{x^{d-1}e^{-\beta x}}{\Gamma(\alpha)} \times \infty$

$$\frac{1}{\Gamma(\alpha)} = \int_{0}^{\infty} x^{\alpha-1}e^{-x} dx$$

$$\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \beta^{\alpha} x^{\alpha-1}e^{-\beta x} dx = 1;$$

$$\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} \beta$$

G.) $X_i \in \Gamma(x_i, \beta)$ $i=1, \dots, n$ $u \times 1, \dots \times n$ ca regabilitions b colonyanious, upo X₁ + - - + X₁ ∈ Γ(α, + - - + α₁, β) Sow $\frac{1}{\sqrt{1 - x_1 + x_2}}$ $\frac{1}{\sqrt{1 - x_1$ DX = /////// 3 = g(Q) X_1 -- X_N regal & cobryanout Exp(β), upo $\underset{i=1}{\overset{M}{\leq}} X_i$ $\sim \Gamma(n,\beta)$ $EH = nEX, = \frac{n}{\beta}$ $\partial H = \frac{M}{\beta^2}$ Havi-ashyo $X \in \Gamma(\alpha, \beta)$ $X \in \mathcal{L}(M)$, upo $X \sim \Gamma(\frac{M}{2}, \frac{1}{2})$