

A Flexible Framework for Communication-Efficient Machine Learning

AAAI'21
Presented by,
Pavana Prakash

Sarit Khirirat¹, Sindri Magnusson², Arda Ayetekin³, Mikael Johansson¹

¹KTH Royal Institute of Technology

²Stockholm University

³Ericsson, Sweden.

Outline

- Motivation
- > Compression: methods and justification
- > Theoretical results
- Numerical experiments and discussion
- > Conclusion

Distributed Machine Learning

- State-of-the-art problems have large dimension d (millions of parameters).
- 64 × d communicated bits per iteration per node.
- Performance bottleneck has shifted from computation to communication!
 - Neural network training: communication dominates 80% of run time

Strategies to Reduce Communication Bottleneck

- Asynchronous computation
- Client sampling
- Communication period to update global parameters
- Compression

Compression Methods for Reducing Communications

- Compression $Q(\cdot)$ can be
 - Sparsification: send only most important gradient elements.
 - Quantization: reduce precision on elements (e.g., sign compression).

Gradient Compression Methods

• Gradient compression in distributed learning

Gradient compression works well in practice

- Distributed data: server (Ericsson Kista) 500 km away from the data (Lund).
- ×1000 communication saving, compared to full-precision algorithms.

Lack of theoretical justification for gradient compression

Communication Complexity (Tsitsiklis & Luo, 1987)

strongly convex: minimize
$$\sum_{x \in \mathbb{R}^d}^n f_i(x)$$

For every algorithm there exists $f_i(\cdot)$ such that

$$d \times \log \left(\frac{1}{\epsilon}\right)$$
 bits

are need to be communicated to find an ϵ -solution.

- Communication complexity grows at least linearly with d.
- In the worst case, compression does not improve efficiency!

Challenges

- Communication benefits are often realized after a careful tuning of the compression level before training
- Most existing compression schemes are agnostic of the disparate communication costs for different technologies
- No universally good compressor that works well on all problems (worst-case communication complexity of any optimization methods)
- Worst-case bounds do not explain communication efficiency improvements.
- Communication efficiency achieved by hyperparameter optimization.

Contributions

- Explain efficiency by data/problem dependent complexity bounds.
- Design adaptive compression algorithms that
 - maximize communication efficiency automatically
 - adjust to data on-line and communication technology used i.e.,
- Find a good balance between the communication savings and suboptimality guarantees of the solution
 - Focus on adaptive compression,
 - Strikes this balance by adjusting the compression level online, e.g.
 - by optimizing the transmitted bits per iteration.

Initial Setting: Sparsified Gradient Descent

Consider sparsified gradient descent

$$x^{k+1} = x^k - \gamma Q_T(\nabla f(x^k)),$$

• where $Q_T(\cdot)$ with sparsity budget T is defined by

$$[Q_{\mathcal{T}}(g)]_i = \begin{cases} g_i & \text{if } i \in I_{\mathcal{T}}(g) \\ 0 & \text{otherwise} \end{cases}$$

• where $I_T(g)$ has T indices of components with the largest absolute magnitude.

Why does sparsification improve communication efficiency?

Proportional Gradient Energy

$$\alpha(T) = \frac{||Q_T(\nabla f(x))||^2}{||\nabla f(x)||^2}$$

- Worst Case: Gradient energy is distributed evenly among all components.
 - \circ $\alpha(T) = T/d$.
- Real (sparse) Data: Gradient energy is concentrated on few components.
 - \circ $\alpha(T) \ge T/d$.

Sparsified Gradient Descent: Descent Lemma

Lemma (Generalized Descent Lemma)

Consider the minimization over F(x) which is L-smooth and let $\gamma = 1/L$. Then for any $x, x^+ \in \mathbb{R}^d$ with

$$x^+ = x - \gamma Q_T(\nabla F(x))$$

we have

$$F(x^+) \le F(x) - \frac{\alpha(T)}{2L} ||\nabla F(x)||^2.$$

$$\alpha(T) = ||Q_T(\nabla F(x))||^2 / ||\nabla F(x)||^2$$

- $\alpha(T)$ implies the progress sparsification methods can make in each iteration.
- Classical gradient descent lemma when $\alpha(T) = 1$.
- $\alpha(T) \ge T/d$ (with equality for the worst-case energy distribution).

Sparsified Gradient Descent: Data-dependent Complexity

From the descent lemma, the data-dependent iteration complexities are derived
 Iteration Complexity

Upper Bound	μ -convex	convex	nonconvex	
No-Compression	$\mathcal{A}^{ ext{SC}}_{\epsilon}$	$\mathcal{A}_{\epsilon}^{\mathtt{C}}$	$\mathcal{A}_{\epsilon}^{\texttt{NC}}$	
Data-Dependent	$rac{1}{ar{lpha}_{ exttt{Data}}} A^{ exttt{SC}}_{m{\epsilon}}$	$rac{1}{ar{lpha}_{ exttt{Data}}} A_{\epsilon}^{ exttt{C}}$	$rac{1}{ar{lpha}_{ exttt{Data}}} extstyle{\mathcal{A}}_{m{\epsilon}}^{ exttt{NC}}$	
Worst-Case	$rac{ extstyle d}{ au} A_{\epsilon}^{ extstyle ext$	$rac{d}{T} A_{\epsilon}^{ ext{C}}$	$rac{ extstyle d}{ au} \mathcal{A}_{\epsilon}^{ ext{NC}}$	

where $\alpha(T) \ge \alpha^{-}Data$.

Communicated bits to reach ϵ -accuracy (single precision)

• No compression: $32A_{\epsilon} \times d$

• Worst case : $32A_{\epsilon} \times d$

• Data-dependent : $32A_{\epsilon} \times \frac{T}{\bar{\alpha}_{\mathrm{Data}}}$

$$\mathrm{SpeedUp}(T) = \frac{d}{T} \bigg/ \frac{1}{\bar{\alpha}_T} = \frac{\bar{\alpha}_T}{T/d}$$

$$A_{\epsilon}^{\mathrm{SC}} = \kappa \log \left(\frac{F(x^0) - F^{\star}}{\epsilon} \right), \quad A_{\epsilon}^{\mathrm{C}} = \frac{2L||x^0 - x^{\star}||^2}{\epsilon}, \quad A_{\epsilon}^{\mathrm{NC}} = \frac{2L(F(x^0) - F^{\star})}{\epsilon}.$$

Sparsified Gradient Descent: Data-dependent Complexity

From the descent lemma, the data-dependent iteration complexities are derived
 Iteration Complexity

Upper Bound	μ -convex	convex	nonconvex	
No-Compression	$\mathcal{A}^{ ext{SC}}_{\epsilon}$	$\mathcal{A}_{\epsilon}^{\mathtt{C}}$	$\mathcal{A}_{\epsilon}^{\texttt{NC}}$	
Data-Dependent	$rac{1}{ar{lpha}_{ exttt{Data}}} A^{ exttt{SC}}_{m{\epsilon}}$	$rac{1}{ar{lpha}_{ exttt{Data}}} A_{\epsilon}^{ exttt{C}}$	$rac{1}{ar{lpha}_{ exttt{Data}}} extstyle{\mathcal{A}}_{m{\epsilon}}^{ exttt{NC}}$	
Worst-Case	$rac{ extstyle d}{ au} A_{\epsilon}^{ extstyle ext$	$rac{d}{T} A_{\epsilon}^{ ext{C}}$	$rac{ extstyle d}{ au} \mathcal{A}_{\epsilon}^{ ext{NC}}$	

where $\alpha(T) \ge \alpha^{-}Data$.

Communicated bits to reach ϵ -accuracy (single precision)

• No compression: $32A_{\epsilon} \times d$

• Worst case : $32A_{\epsilon} \times d$

• Data-dependent : $32A_{\epsilon} imes rac{T}{ar{ar{lpha}}_{ exttt{Data}}}$

$$\operatorname{SpeedUp}(T) = \frac{d}{T} \bigg/ \frac{1}{\bar{\alpha}_T} = \frac{\bar{\alpha}_T}{T/d}$$

$$A_{\epsilon}^{\mathrm{SC}} = \kappa \log \left(\frac{F(x^0) - F^{\star}}{\epsilon} \right), \quad A_{\epsilon}^{\mathrm{C}} = \frac{2L||x^0 - x^{\star}||^2}{\epsilon}, \quad A_{\epsilon}^{\mathrm{NC}} = \frac{2L(F(x^0) - F^{\star})}{\epsilon}.$$

Why does sparsification improve communication efficiency?

For RCV1 (and many real data-sets)

$$rac{1}{ar{lpha}_{ exttt{Data}}} << rac{d}{T}$$

Data dependent bound: 1000 fold communication improvement!!

Adaptive gradient compression

• Main Idea: Find sparsity budget T that maximizes descent per iteration, i.e.

$$T = \underset{T=1,2,...,d}{\operatorname{argmax}} \; \underset{T=1,2,...,d}{\operatorname{Efficiency}}(T) := \underset{T=1,2,...,d}{\operatorname{argmax}} \; \frac{\alpha(T)}{\operatorname{Cost}(T)}$$

- $\alpha(T)/Cost(T)$ attains its minimum over T = 1, 2, . . . , d.
- $\alpha(T)$ and Cost(T) easily measured online.
 - \circ $\alpha(T)$ adapted to compression used.
 - Cost(T) adapted to technology or application.

Communication Cost: Bits, Packets, Energy and Beyond

• $\mathit{Cost}(T)$ \Rightarrow communication overhead $C(T) = c_1 \times \lceil P(T)/P_{\max} \rceil + c_0$ cost of transmitting a single payload byte number of payload bits per packet $\mathsf{payload}$ $P^{\mathtt{S}}(T) = T \times (\lceil \log_2(d) \rceil + \mathtt{FPP}) \ \ \mathsf{bits}$ $P^{\mathtt{SQ}}(T) = \mathtt{FPP} + T \times \lceil \log_2(d) \rceil \ \ \mathsf{bits},$

For example, if we just count transmitted bits $(c_1 = 1)$, then a single UDP packet transmitted over the Ethernet requires an overhead of,

 $c_0 = 54 \times 8$ bits and can have a payload of up to 1472 bytes.

Communication Adaptive Tuning (CAT) Algorithms

- At iteration k = 0, 1, 2, ...
- **Step 1** (Adaptive tuning):
 - tune T adaptively to optimize the communication efficiency
 - hyper-parameter optimization not required

$$T^k = \underset{T=1,2,...,d}{\operatorname{argmax}} \frac{\alpha^k(T)}{\operatorname{Cost}(T)}$$

• **Step 2** (Compressed gradient):

$$x^{k+1} = x^k - \gamma Q_{T^k}(\nabla f(x^k))$$

Extensions of Communication Adaptive Tuning (CAT)

Sparsification and Quantization (S+Q).

$$[Q_T(g)]_i = \begin{cases} ||g|| \operatorname{sign}(g_i) & \text{if } i \in I_i(g) \\ 0 & \text{otherwise.} \end{cases}$$

• Stochastic Sparsification (for stochastic, multi-node optimization).

$$[Q_{\mathcal{T}}(g)]_i = \frac{g_i}{p_i} \xi,$$

where

$$\xi \sim ext{Bernoulli}(p_i)$$

$$\sum_i p_i = T$$

Communication Costs

- Many Possibilities:
 - Bits, energy, transmission time etc.
 - Build from protocols/standards
 - Build from empirical measurements
- Affine cost: Cost(T) = $c_0 + c_1T$
 - c₀ packet header, c₁ cost per entree
 - \circ Floats over Ethernet $c_0 = 54$, c1 = 4 + log2(d)
 - Empirical Measurements (see figure)

o IEEE 802.15.4 (low energy wireless)

Communication times (s)

Experiment Settings

- CAT framework for dynamic sparsification and quantization (S+Q)
- Single node: single-master, single-worker setup
- URL data set with 2.4 million data points and 3.2 million features
- Distributed data: server (Ericsson Kista) 500 km away from the data (Lund)
- 1000 Mbit Internet connection using ZMQ library

Single-node Architecture

 CAT S+Q outperforms GD and Alistarh's S+Q up to two orders and one order of magnitude, respectively, in communication efficiency.

Experiment Settings – multi-node

- CAT framework on
 - deterministic sparsification (SG)
 - stochastic sparsification (SS)
 - Sparsification with quantization (S+Q)
- RCV1 data set: 47,236 features, and 697,641 data points.
- Wireless communication scenario (e.g, IEEE 802.15.4) with 512 byte packets.
- Multi-node: 4 nodes using MPI, splitting the data evenly between the nodes.

Multiple-node Architecture

- CAT S+Q outperforms all other compression schemes
- CAT is roughly 6 times more communication efficient than (Alistarh et al. 2017) for the same compression scheme (compare number of bits needed to reach ϵ = 0.4).

Open Problems

- CAT for federated optimization
- CAT for error feedback, etc.

CAT Frameworks for Distributed Architectures

Lemma

Consider the minimization over $F(x) = \sum_{i=1}^{n} F_i(x)/n$, where each function $F_i(x)$ is μ -strongly convex and L-smooth. Let the sequence $\{x_k\}$ be generated by

$$x^{k+1} = x^k - \frac{\gamma^k}{n} \sum_{i=1}^n Q_T(\nabla F_i(x^k)),$$

where $\mathbf{E}[Q_T(v)] = v$ and $\omega(T) = ||v||^2/\mathbf{E}||Q_T(v)||^2$, and let $\gamma^k = \alpha/(k+1)$ for $\alpha > 0$. Then, the communication complexity to reach $\mathbf{E}[F(x^k) - F^*] \le \epsilon$ is

$$\frac{Cost(T)}{\omega_{\max}(T)} \cdot \min\left(\frac{B_1}{\sqrt{\epsilon}}, \frac{B_2}{\epsilon}\right)$$

for $B_1, B_2 > 0$.

- Limitations:
 - CAT with the same compression level T for all clients.

CAT Frameworks for Distributed Stochastic Sparsification

Lemma

Consider the minimization over $F(x) = \sum_{i=1}^{n} F_i(x)/n$, where each function $F_i(x)$ is μ -strongly convex and L-smooth. Let the sequence $\{x_k\}$ be generated by

$$x^{k+1} = x^k - \frac{\gamma}{n} \sum_{i=1}^n Q_T(\nabla F_i(x^k))$$

where $\mathbf{E}[Q_T(v)] = v$ and $\omega(T) = ||v||^2/\mathbf{E}||Q_T(v)||^2$, and let $\gamma_k = \alpha/(k+1)$ for $\alpha > 0$. Then, the communication complexity is

$$\frac{Cost(T)}{\omega_{\max}(T)} \cdot \min\left(\frac{B_1}{\sqrt{\epsilon}}, \frac{B_2}{\epsilon}\right).$$

for $B_1, B_2 > 0$.

Questions:

- 1. How to tune local compression level without synchronization?
- 2. How to tune deterministic compression for federated architectures?

Conclusions

- Existing Works:
- Worst-case bound does not explain communication efficiency by compression.
- Compressions not adapted to technology or relevant communication costs.
- Contributions:
- Explain improved efficiency by data/problem dependent complexity.
- Design adaptive compression that
 - optimizes overall communication efficiency automatically.
 - o adjusts to data online and to any communication technology/application used.
 - o leads to significant communication savings, compared to existing compression.
- Open Problems: CAT frameworks for distributed and federated optimization

