

AIMResearcher - AI Research Assistant

An AIM Lab Project June - August'25

Team Members

Aliza Saadi Rameen Babar Mehrunisa Nasir

What is AIMResearcher?

AIMResearcher is an open-source pipeline that ingests the flood of AI/ML literature, pinpoints only the papers truly relevant to a researcher's query, and distils each paper's scope, limitations, and datasets into structured, machine-readable outputs — all delivered alongside a narrated micro-summary.

Key value propositions:

- **1. Relevance**, **not noise** Hybrid dense–sparse retrieval cuts false positives that plaque keyword search.
- **2. Instant scope mapping** JSON output of contributions, limitations, and future-work lets researchers spot gaps in seconds.
- Dataset registry on the fly Extracts benchmark names verbatim for hassle-free replication planning.
- **4. Shareable insights** Generates a 40-second narrated video script so findings travel beyond the lab.
- **5. 100** % **open source** Built on LangChain, LangGraph, Qdrant, and Mistral-7B; no proprietary lock-in.

Problem Statement

Every week, more than 5,000 new Al/ML papers hit arXiv alone. You fire up Google Scholar, type "reinforcement learning for robot navigation," and - boom - 150 PDFs stare back. You start reading one that *looks* promising, burn 30 minutes wrestling with its algebra, and then discover the authors are optimising Atari games, not robots. Multiply that false start by a semester and you've spent days on papers that are tangential - or totally off-topic.

The core pain points:

1. Finding truly relevant work - Keyword search returns near matches and outdated citations; you still have to skim dozens of abstracts.

- **2. Grasping each paper's** *scope* **quickly** Limitations and future-work sections are buried near the end, written in dense prose.
- **3. Tracking datasets** Identifying which benchmarks a study uses (and whether they're public) is tedious manual extraction.
- **4. Summarising outcomes** Turning insights into a short briefing or a shareable video requires even more time.

Researchers need an assistant that pinpoints only the papers that matter and surfaces their scope, datasets, and a crisp summary without the rabbit-holes.

Solution Overview

We built an end-to-end pipeline powered entirely by open-source components that:

- 1. Ingests AI/ML papers automatically from arXiv.
- 2. Stores semantics using both dense and sparse embeddings in a Qdrant hybrid index.
- 3. Retrieves the five most relevant papers for any natural-language query.
- **4.** Extracts each paper's scope / limitations and datasets in structured form.
- **5. Generates** a narrated slide-style video summarising each paper.

The entire stack is open-source: LangChain + LangGraph for orchestration, Qdrant for storage, BGE & BM25 for embeddings, Mistral-7B for reasoning, and MoviePy / gTTS for video.

Methodology & Key Design Choices

Component	Rationale	Highlights	
LangChain + LangGraph	Provide plug-and-play primitives (loaders, embeddings, vector store) and a state-graph to link them, so our ingestion → retrieval → extraction pipeline is built from clear nodes we can swap or extend in a single line.	Rapid prototyping, strict typed-state validation, and easy future branching/parallelism.	
Qdrant Hybrid Index	Combines dense semantic similarity with BM25 keyword exactness in one call.	GRPC for speed; scales to millions of chunks.	
Dense Embedding: BAAI/bge-base-en-v 1.5	Strong semantic recall, 768-dim, CPU-friendly; no proprietary license.	Loaded on CPU in production, CUDA optional during ingestion.	
Sparse Embedding: BM25 via FastEmbedSparse	Retains exact keyword matches, boosting recall for niche terms.	Works natively inside hybrid retrieval.	
Semantic Gradient Chunking	Keeps paragraphs intact while reducing prompt size by > 70 %, lowering LLM latency.	20 chunks per paper on average.	
LLM: Mistral-7B-Instruct via Ollama	Best balance between hallucination rate and CPU latency among tested models.	Temperature 0 to maximise determinism.	
Prompt Design	Separate prompts for query rewriting, scope extraction, dataset extraction, and narration.	Few-shot examples live in dedicated prompt files.	
Video Composer	Converts summary to audio with gTTS, combines PDF page images via PyMuPDF + OpenCV, stitches with MoviePy.	nbines PDF page images per paper. PDF + OpenCV, stitches	

Workflow Summary

1. Data ingestion

- Query arXiv for "Artificial Intelligence and Machine Learning" papers.
- Enrich metadata with stable URLs.
- Split each paper into ~20 semantic chunks.
- Embed every chunk with BGE-base (dense) and BM25 (sparse) and upsert into Qdrant ("axRiv research papers").

2. Retrieval-Augmented Generation (RAG) pipeline

- Query transformation node rewrites the user's question for clarity (e.g., expands acronyms).
- A hybrid search (dense + BM25) retrieves the top-k chunks, their metadata, and similarity scores.
- Those chunks form the external knowledge context that is injected into Mistral, enabling the LLM to generate an answer grounded in the retrieved evidence rather than model priors.

3. Scope extraction

- The same retrieved context feeds a dedicated "scope" prompt that asks for contributions, limitations, and future-work.
- Output is parsed to JSON for downstream automation.

4. Dataset extraction

- Another prompt asks the model to list dataset names exactly as mentioned in the paper.
- Output is validated and stored as a Python-list string.

5. Video Generation

- Summary → conversational narration via gTTS (English TTS).
- Corresponding PDF converted to high-resolution page images (PyMuPDF).
- OpenCV repeats each page frame to match narration timing; MoviePy merges audio & frames.
- Output: final_video.mp4 a ready-to-share 1080p explainer.

LLM Comparative Analysis

Model	Avg CPU Latency (min)	Accuracy (manual)	Hallucinations	Verdict
gemma3	3.5	***	High	Fast but unreliable.
Mistral	25 - 35	****	Low	Chosen; accuracy > latency
DeepSeek-R1	41+	***	Medium	Too slow, fabricates data.

Mistral's < 5 % hallucination rate outweighs its 7 × latency penalty for research-grade outputs.

Trade-Off Discussion

Latency vs. Accuracy:

Gemma responded in under four minutes but misidentified scopes or invented datasets about 20 % of the time. DeepSeek was both slower and less truthful. Mistral's 5 % hallucination rate justified its higher latency for our use case, especially when run asynchronously.

Hybrid Retrieval:

Pure dense embedding missed exact-term queries; pure BM25 ignored synonyms. The hybrid approach improved NDCG@5 by 0.12 on a 50-query dev set.

Chunking Strategy:

Reducing average prompt size from roughly 7 100 to 2 000 tokens shaved several minutes off Mistral's generation time.

Possible Future Improvements

- GPU accelerate Mistral: Run the 7 B model on an A100 or Apple-silicon GPU via vLLM/llama.cpp to cut inference from ~25 min to ≤ 6 min per query while keeping cost under \$0.15.
- **2.** Parallelise scope + dataset extraction: Split the LangGraph after retrieval, run both prompts concurrently, then merge targeting a 30 % drop in end-to-end time.
- **3. Stream answers live:** Enable token streaming in the Ollama client so users see the first words within two seconds; add a "stop / refine" control in the UI.
- **4. Automate hourly arXiv ingestion:** Use GitHub Actions to pull new cs.Al/cs.LG/cs.CV papers, deduplicate by arXiv ID, chunk, embed, and upsert; trigger a Slack alert on any ingestion lag > 60 min.
- **5. Auto-publish narrated videos:** After rendering, upload the MP4 plus scope and dataset JSON to the internal portal, tagged by arXiv ID, within ten minutes of video completion.
- **6. Scalability:** Containerise services and deploy on Kubernetes; shard Qdrant and front-end everything with a message queue. Autoscale CPU ingestion pods by feed lag and spin up GPU inference pods on demand, allowing the system to index 1 M+ papers and serve 100 concurrent queries with sub-2 s retrieval latency.

AlMResearcher turns the relentless torrent of Al literature into precise, actionable insight - merging hybrid retrieval, RAG grounding, and automated video narration in a fully open-source, container-ready stack. It frees researchers from time-sink skimming, surfaces verifiable scopes and datasets in seconds, and scales seamlessly to millions of papers and hundreds of simultaneous queries. With AlMResearcher, the focus shifts from *finding* knowledge to *extending* it.