HematoVision: Advanced Blood Cell Classification Using Transfer Learning

Team Details:

Team ID: LTVIP2025TMID35701

- · Nayudipalli Dayakar
- · Nakka Jagan Satya Sai Krishna Mahesh
- Nadella Sindhura
- Nadakuditi Bindu.

1. INTRODUCTION

1.1.Project Overview

Blood-related diseases like leukemia, anemia, and infections can be diagnosed through blood smear analysis. Manual microscopic analysis is time-consuming and prone to human error. This project, *HematoVision*, presents an automated image classification system using **Transfer Learning** to detect and classify different types of blood cells.

Conventional approaches to blood cell classification involve manual microscopy or rule-based image processing. Recent advances in deep learning, especially Convolutional Neural Networks (CNNs), have drastically improved performance in image classification tasks. Transfer learning, which uses knowledge from models trained on large datasets (like ImageNet), has shown to significantly boost performance even with limited medical datasets. HematoVision builds upon this by fine-tuning pre-trained models for the task of blood cell classification.

1.2.Purpose:

To aid in rapid and reliable blood diagnostics, especially in remote areas or pathology labs with limited manpower, using an intelligent AI-driven classification system.

2. IDEATION PHASE

2.1. Problem Statement

Manual microscopy requires trained personnel and time. There is a strong need for:

- Faster diagnostics
- Consistent and accurate results
- Scalable tools for clinics and labs

2.2.Brainstorming

Ideas considered:

- Manual feature extraction + SVM (less accurate)
- Audio-based diagnostics (not relevant)
- Deep Learning with CNN and Transfer Learning (Selected)

2.3. Finalized Concept

Use **pre-trained CNN architectures** with image augmentation and fine-tuning for classification into blood cell types.

3. REQUIREMENT ANALYSIS

3.1.Dataset

- Sourced from [Kaggle BCCD dataset / Blood Cell Count Dataset]
- Includes images of RBCs, WBCs (4 types), and platelets

3.2.System Requirements

Component	Details
Input	Blood smear image (JPG/PNG)
Output	Predicted cell type
Accura cy Goal	>90%
Model	VGG16, ResNet50, MobileNetV2
Platform	Colab (training), Streamlit or Flask (deployment)

4. SYSTEM DESIGN

4.1. Architecture Diagram (Textual Flow)

User Uploads Image
↓
Preprocessing (resize, normalize)
↓
Model Inference (ResNet/VGG/MobileNet)
↓
Output Cell Type with Confidence Score
↓
Display Results via Web App

4.2.UI Design

- Simple image upload panel
- Results page showing: predicted class, confidence, and explanation

5. MODEL DEVELOPMENT

5.1.Preprocessing

- Image resizing (224x224)
- Normalisation to [0,1]
- Augmentation (rotation, zoom, flip)

5.2.Models Used

- VGG16: High accuracy, slower inference
- ResNet50: Best balance of accuracy and speed
- **MobileNetV2**: Lightweight, mobile-ready

5.3. Evaluation Metrics

- Accuracy, Precision, Recall, F1-score
- Confusion Matrix

6. PROJECT MANAGEMENT

Agile Sprint Plan

Task	Member	Duration
Data Collection	Nayudipalli Dayaka	1 day
Model Training	Sai Krishna Mahesh	2 days
Model Tuning	Nadella Sindhura	2 days
UI Development	Nadakuditi Bindu	1 days
Integration & Testing	Nayudipalli Dayaka	2 day
Documentation	Nadella Sindhura	2 day

7. TESTING

7.1. Functional Testing

- File upload works
- Class output is correct

7.2.Performance Testing

Model	Accuracy	Inference Time
VGG16	91.3%	1.6 sec
ResNet50	93.1%	1.4 sec
MobileNet V 2	89.9%	0.9 sec

8. RESULTS & ANALYSIS

8.1. Output Screenshots

- Uploaded image and predicted cell type
- Graphs: Training vs Validation Accuracy/Loss

Confusion Matrix

8.2. Visual Results

- Accuracy vs Epochs
- Loss vs Epochs
- Confusion Matrix Heatmap

9. ADVANTAGES & LIMITATIONS

Advantages

- High classification accuracy
- Works on web and mobile
- Reduces manual workload in hospitals

Limitations

- Sensitive to image quality
- May not generalize to rare or abnormal cell types

10. CONCLUSION

HematoVision successfully demonstrates the potential of **Transfer Learning** in medical diagnostics, offering fast and accurate blood cell classification using CNNs. It enhances the diagnostic pipeline and can be deployed in clinical settings, even in resource-limited environments.

11. FUTURE SCOPE

- Expand dataset to include leukemia subtypes
- Integrate explainability (Grad-CAM visualizations)
- Deploy as a mobile app
- Enable offline inference
- Integrate with lab microscopes via camera feed

12. APPENDIX

• GitHub link: https://github.com/sindhuranadella/Hemato-Vision