STACK NUMBER IS NOT QUEUE-NUMBER BOUNDED

Vida Dujmović, Robert Hickingbotham, Pat Morin, David R. Wood

October 26, 2020

ABSTRACT. We describe a family of graphs in which every member has queue number at most X, but for every integer s, there is a member of the family whose stack number is greater than s.

1 Introduction

We will prove the following theorem.

Theorem 1. There exists a family \mathcal{F} of graphs for which $qn(G) \leq X$ for every $G \in \mathcal{F}$ and, for every $s \in \mathbb{N}$, there exists $G \in \mathcal{F}$ for which sn(G) > s.

Specifically,

$$\mathcal{F} := \{ S_B \square Q_n : B, Q \in \mathbb{N} \}$$

where S_B denotes the star with B leaves and Q_n is the triangulated $n \times n$ grid.

2 The Proof

Let S_B denote the star graph with root r and B leaves. Let Q be the $n \times n$ triangulated grid, defined as follows: $V(Q) := \{1, ..., n\}^2$ and

$$E(Q) := \{(x,y)(x+1,y) : x \in \{1,\dots,n-1\}, y \in \{1,\dots,n\}\}$$

$$\cup \{(x,y)(x,y+1) : x \in \{1,\dots,n\}, y \in \{1,\dots,n-1\}\}$$

$$\cup \{(x,y)(x+1,y+1) : x,y \in \{1,\dots,n-1\}\}.$$

We will consider the graph $G := S_B \square Q$.

Lemma 1. $qn(G) \le 4$.

Proof. From David's email:

Q is planar with a Hamiltonian cycle (assuming n is even), so $sn(Q) \le 2$.

Also $sqn(0) \le 3$: Order the vertices row-by-row and then left-to-right within a row, vertical edges in one queue, horizontal edges in one queue and diagonal edges in another queue.

My old paper shows $qn(G \setminus box H) \le qn(G) + sqn(H)$, so $qn(S \setminus box Q) \le 4$.

Now, consider a hypothetical *s*-stack layout (φ, \prec) of *G*.

For each node v of S_b , we define π_v as the permutation of $\{1, ..., n\}^2$ in which (x_1, y_1) appears before (x_2, y_2) if and only $(v, x_1, y_1) < (v, x_2, y_2)$. The following lemma is an immediate consequence of the Pigeonhole Principle:

Lemma 2. There exists a permutation π of $\{1,...,n\}^2$ and a set L_1 of leaves of S_B of size $B_1 \ge \lceil B/(n^2)! \rceil$ such that $\pi_v = \pi$ for each $v \in L_1$.

For each leaf v in L, consider the subgraph Q_v of G induced by the vertex set $\{(v,x,y): x,y \in \{1,\ldots,n\}\}$. The edge colouring φ used in the stack layout gives an edge colouring of Q_v using s colours. The graph Q_v is isomorphic to Q_v , so the edge colouring of Q_v defines an edge colouring of Q_v . We call this colouring of Q_v : $Q \to \{1,\ldots,s\}$. The graph Q_v has less than Q_v edges, so there are fewer than Q_v edge colourings of Q_v . Another application of the Pigeonhole Principle proves the following:

Lemma 3. There exists a subset $L_2 \subseteq L_1$ of size $B_2 \ge B_1/s^{7n^2}$ and an edge colouring $\varphi_0 : Q \to \{1, ..., s\}$ such that $\varphi_v = \varphi_0$ for each $v \in L_2$.

Lemma 4. There exists a sequence $L_3 := u_1, ..., u_{B_3}$ with $\{u_1, ..., u_{B_3}\} \subseteq L_2$ of length $B_3 \ge (B_2)^{1/2^{n^2-1}}$ such that, for each $p \in V(Q)$, $(u_1, p) < (u_2, p) < \cdots < (u_{B_3}, p)$ or $(u_1, p) > (u_2, p) > \cdots > (u_{B_3}, p)$.

Proof. Let p_1, \ldots, p_{n^2} denote the vertices of Q, in any order. Begin with the sequence $S_1 := v_{1,1}, \ldots, v_{1,b}$ that contains all $b_1 := B_2$ elements of L_2 ordered so that $(v_{1,1}, p_1) < \cdots (v_{1,b}, p_1)$. For each $i \in \{2, \ldots, n^2\}$, the Erdős-Szekeres Theorem implies that, S_{i-1} contains a subsequence $S_i := v_{i,1}, \ldots, v_{i,b_i}$ of length $b_i \ge \sqrt{|S_{i-1}|}$ such that $(v_{i,1}, p_i) < \cdots < (v_{i,b_i}, p_i)$ or $(v_{i,1}, p_i) > \cdots > (v_{i,b_i}, p_i)$. It is straightforward to verify by induction that $b_i \ge B_3^{1/2^{i-1}}$ resulting in a final sequence S_{n^2} of length at least $B_2^{1/2^{n^2-1}}$.

Let $d = B_3$ and let S_d be the subgraph of S_b induced by $\{r\} \cup \{u_1, ..., u_d\}$ where $u_1, ..., u_d$ is the sequence of leaves defined in Lemma 4. Consider the vertex colouring of Q obtained by colouring each vertex $p \in V(Q)$ red if $(u_1, p) < \cdots < (u_d, p)$ and colouring p blue if $(u_1, p) > \cdots > (u_d, p)$.

Lemma 5. The graph Q contains an n-vertex path R consisting entirely of red vertices or entirely of blue vertices.

Proof. The dual of *Q* is the board on which the game Hex is played. The well-known *Hex Lemma* states that any colouring of the vertices of *Q* with colours red and blue contains exactly one of the following [?]:

1. a path with endpoints (x,1) and (x',n) consisting entirely of red vertices, for some $x,x' \in \{1,\ldots,n\}$; or

2. a path with endpoints (1, y) and (n, y') consisting entirely of blue vertices, for some $y, y' \in \{1, ..., n\}$.

In either case, the path contains at least n vertices and therefore has a n-vertex subpath consisting entirely of red vertices or entirely of blue vertices.

Without loss of generality, assume that the path $R:=p_1,\ldots,p_n$ defined by Lemma 5 consists entirely of red vertices, so that $(u_1,p_j)<\cdots<(u_d,p_j)$ for each $j\in\{1,\ldots,n\}$. Recall that $(\varphi,<)$ is a hypothetical s-stack layout of G and therefore it is also an s-stack layout of the subgraph $X:=S_d\square R$. The following result finishes the proof by showing that this is not possible when n>2s and $d>s2^{2s+1}$.

Lemma 6. The graph X contains a set of edges of size at least $\min\{d/2^n, n\}/2$ that are pairwise crossing with respect to \prec .

Proof. We will define two sequences of nested sets $A_1 \supseteq A_1 \supseteq A_n$ of leaves of S_d so that each A_i satisifies the following conditions:

- (C1) A_i contain $d_i \ge d/2^i$ leaves of S_d .
- (C2) Each leaf $v \in A_i$ defines an i-element vertex set $Z_{i,v} := \{(v,p_j) : j \in \{1,...,i\}\}$. For any distinct $v, w \in A_i$, $Z_{i,v}$ and $Z_{i,w}$ are separated with respect to \prec . In other words, $Z_{i,v} \prec Z_{i,w}$ or $Z_{i,v} > z_{i,w}$.

Before defining A_1, \ldots, A_n we first show how the existence of the set A_n implies the lemma. To avoid triple-subscripts, let $d' := d_n \ge d/2^n$. The set A_n defines vertex sets $Z_{n,v_1} < \cdots < Z_{n,v_{d'}}$. Recall that r is the root of S_b so it is adjacent to each of $v_1, \ldots, v_{d'}$ in S_b . Therefore, for each $j \in \{1, \ldots, n\}$ and each $i \in \{1, \ldots, d'\}$, the edge $(r, p_j)(v_i, p_j)$ is in X. Therefore, (r, p_j) is adjacent to an element of each of $Z_{n,v_1}, \ldots, Z_{n,v_{d'}}$.

Since $Z_{n,v_1},\ldots,Z_{n,v_{d'}}$ are separated with respect to \prec , when viewed from afar, this situation looks like a complete bipartite graph $K_{n,d'}$ with the root vertices $L:=\{(r,p_j): j\in\{1,\ldots,n\}\}$ in left part and the groups $R:=Z_{n,v_1}\cup\cdots\cup Z_{n,v_{d'}}$ in the right part. Any linear ordering of $K_{n,d'}$ has a large set of pairwise crossing edges so, intuitively, the graph induced by $L\cup R$ should also have a large set of pairwise crossing edges. Lemma 7, below, formalizes this and shows that this graph has a set of at least $\min\{d',n\}/2$ pairwise crossing edges.

All that remains is to define the sets $A_1 \supseteq \cdots \supseteq A_n$. The set A_1 contains all the leaves of S_d . For each $i \in \{2, \ldots, n\}$, the set A_i is defined as follows: Let Z_1, \ldots, Z_r denote the sets $\{\{(v, p_j) : j \in \{1, \ldots, i-1\}\} : v \in A_{i-1} \text{ ordered so that } Z_1 < \cdots < Z_r.$ Label the vertices of A_{i-1} v_1, \ldots, v_r so that $(v_1, p_{i-1}) < \cdots < (v_r, p_{i-1})$. (This is equivalent to naming them so that $(v_i, p_i) \in Z_i$ for each $j \in \{1, \ldots, r\}$.)

Now we define the set $A_i := \{v_{2k+1} : k \in \{0, ..., \lfloor (r-1)/2 \rfloor\}$. All that remains is to verify that A_i satisfies (C1) and (C2). To see that A_i satisfies (c1) just observe that $|A_i| = \lceil r/2 \rceil \ge r/2 = |A_{i-1}|/2 \ge d/2^i$. All that remains is to show that A_i satisfies (C2).

For each $j \in \{i-1,i\}$, let $Q_j := \{(v,p_j) : v \in A_{i-1}\}$. Recall that, for each $v \in A_{i-1}$, the edge $e_v := (v,p_{i-1})(v,p_i)$ is in X. We have the following properties:

- (P1) By Lemma 3, $\varphi(e_v) = \varphi_0(p_{i-1}, p_i)$ does not depend on v. In particular for distinct $v, w \in A_{i-1}$ the edges e_v and e_w do not cross.
- (P2) By the application of Lemma 5 the order of vertices in Q_{i-1} by \prec is identical to the order of vertices in Q_i by \prec . That is $(v, p_{i-1}) \prec (w, p_{i-1})$ if and only if $(v, p_i) \prec (w, p_i)$ for each $v, w \in A_{i-1}$.
- (P3) By Lemma 2, $(v, p_{i-1}) < (v, p_i)$ for every $v \in A_{i-1}$ or $(v, p_{i-1}) > (v, p_i)$ for every $v \in A_{i-1}$. These three conditions imply that the vertex sets Q_{i-1} and Q_i interleave perfectly with respect to <. More precisely,

$$(v_1, p_{i-1+b}) < (v_1, p_{i-b}) < (v_2, p_{i-1+b}) < (v_2, p_{i-b}) \cdots < (v_r, p_{i-1+b}) < (v_r, p_{i-b})$$

for some $b \in \{0,1\}$. Suppose, without loss of generality that b = 0. [TODO: Explain why (P1)–(P3) imply a perfect interleave.]

For each odd $j \in \{1,\ldots,r-2\}$ we have $(v_j,p_i) < (v_{j+1},p_{i-1}) < Z_{j+2}$. Therefore $Z_j \cup \{(v_j,p_i)\} < Z_{j+2}$. By a symmetric argument, $Z_j \cup \{(v_j,p_i)\} > Z_{j-2}$ for each odd $j \in \{3,\ldots,r\}$. Finally, since $(v_j,p_i) < (v_{j+2},p_i)$ for each odd $i \in \{1,\ldots,r\}$, we have $Z_j \cup \{(v_j,p_i)\} < Z_{j+2} \cup \{(v_{j+2},p_i)\}$ for each odd $j \in \{1,\ldots,r-2\}$. Thus A_i satisifies (C2) since the sets $Z_1 \cup \{(v_1,p_i)\}, Z_3 \cup \{(v_3,p_i)\},\ldots,Z_{2\lfloor(\lfloor r-1)/2\rfloor+1} \cup (v_{2\lfloor(\lfloor r-1)/2\rfloor+1},p_i)$ are precisely the sets $Z_{i,1},\ldots,Z_{i,d_i}$ determined by our choice of A_i .

Lemma 7. Let G be any graph, let < be any linear ordering of V(G), let $Z_1 < \cdots < Z_{2s}$ be subsets of V(G), and let $r_1 < \cdots < r_{2s}$ be vertices of G such that, for each $i, j \in \{1, \dots, 2s\}$, G contains an edge $r_i z_j$ with $z_j \in Z_j$. Then G contains a set of s edges that are pairwise crossing with respect to <.

Proof. At least one of the following two cases applies:

- 1. $Z_s < r_{s+1}$ in which case the graph between r_{s+1}, \dots, r_{2s} and Z_1, \dots, Z_s has a set of s pairwise-crossing edges.
- 2. $r_s < Z_{s+1}$ in which case the graph between $r_1, ..., r_s$ and $Z_{s+1}, ..., Z_{2s}$ has a set of s pairwise-crossing edges.