CBPV course: exercises

P. B. Levy

University of Birmingham

- 1. Give introduction rules, elimination rules, β -laws and η -laws for the types $\sum \{{}^{0}A, A'; {}^{1}B, B', B''\}$ and $\prod \{{}^{0}A, A' \vdash B; {}^{1}C, C', C' \vdash D\}$.
- 2. For these connectives, give reversible rules. Define the up-operation and down-operation, and show that each inverse is identity modulo $=_{\beta\eta}$.
- 3. Take the term

```
\mathtt{f}: (\mathtt{int} + \mathtt{bool}) \to (\mathtt{int} + \mathtt{bool}) \vdash \mathtt{f}: (\mathtt{int} + \mathtt{bool}) \to (\mathtt{int} + \mathtt{bool})
```

Apply an η -expansion for \rightarrow , then for +, then for bool.

4. Suppose that $\Gamma \vdash M$: bool and $\Gamma \vdash N_0, N_1, N_2, N_3 : C$. Show that

```
\begin{split} \Gamma \vdash \mathsf{case} \ M \ \mathsf{of} \ \big\{ \\ \mathsf{true}. \ \mathsf{case} \ M \ \mathsf{of} \ \big\{ \mathsf{true}.N_0, \mathsf{false}.N_1 \big\}, \\ \mathsf{false}. \ \mathsf{case} \ M \ \mathsf{of} \ \big\{ \mathsf{true}.N_2, \mathsf{false}.N_3 \big\} \\ \big\} \\ =_{\beta\eta} \mathsf{case} \ M \ \mathsf{of} \ \big\{ \mathsf{true}.N_0, \mathsf{false}.N_3 \big\} : C \end{split}
```

- 5. Show that inl is injective, i.e. if $\Gamma \vdash M, M' : A$ and $\Gamma \vdash$ inl $M =_{\beta\eta}$ inl M' : A + B then $\Gamma \vdash M =_{\beta\eta} M' : A$.
- 6. Write down the η -law for the 0 type.
- 7. A typing context Γ is *inconsistent* if there is a term $\Gamma \vdash M : 0$. Show that if Γ is inconsistent then for every type A there is a unique (up to $=_{\beta n}$) term $\Gamma \vdash N : A$.
- 8. Given a term $\Gamma, \mathbf{x} : A \vdash M : 0$, show that it is an "isomorphism" in the sense that there is a term $\Gamma, \mathbf{y} : 0 \vdash N : A$ satisfying

$$\Gamma, \mathbf{y} : 0 \vdash M[N/\mathbf{x}] =_{\beta\eta} \mathbf{y} : 0$$

$$\Gamma, \mathbf{x} : A \vdash N[M/\mathbf{y}] =_{\beta\eta} \mathbf{x} : A$$

- 9. In CBV jumbo λ -calculus with errors, and (separately) with printing, give an interpreter and big-step semantics and denotational semantics for the term constructors.
- 10. Deduce the semantics of pattern-match and project product.
- 11. Translate these term constructors into fine-grain CBV.