Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Transistor-level fault
 - * Stuck-open (1978)
 - * Stuck-on
 - Cell-aware (2009)
 - Review
- Fault Detection
- Fault Coverage
- Conclusion

Why Faulty NAND Has Memory?

- Stanford Murphy Experiment [Li 01]
 - Sequence Dependency: Test result depends on test sequence
- Example: NAND gate
 - Same test patterns {11, 01, 00}, but in different sequence
 - Sequence 1 fails; Sequence 2 passes
 - Is it A SA1 or not?

SSF Cannot Explain Seq. Dep. **Sequence 1**

		Ooquonico		-
Α	В	Out _{good}	Out _{faulty}	
1	1	0	0	
0	1	1	0 ←	A SA1 ?
0	0	1	1	

Sequence 2

Α	В	Out _{good}	Out _{faulty}	
0	0	1	1	
0	1	1	1 ←	Not A SA1 ??
1	1	0	0	

Classification of Fault Models

Stuck-open Fault [Wadsack 78]

- Stuck-open (SOP) fault
 - Faulty transistors is always off
- Example: NAND
 - 11→01 detects A_P SOP
 - Totally 4 faults: A_P B_P A_N B_N

Input	Fault-free		Faulty (Outputs $Z = h$	igh impedance
AB	Output	A_P	A_N	B _P	B _N
0 0	1	1	1	1	1
0 1	1	Z	1	1	1
10	1	1	1	Z	1
11	0	0	Z	0	Z

SOP Requires 2-pattern Test

Sequence Dependency

- SOP Faulty circuit has <u>memory</u> (due to parasitic capacitor)
 - Test results depend on sequence of test patterns
- Example: A_p stuck-open fault,
 - Same test patterns{11, 01, 00}, but different sequence
 - Sequence 1 fails; Sequence 2 passes (test escape)

Sequence 1

Α	В	Out _{good}	Out _{faulty}	
1	1	0	0	FAIL:
0	1	1	0 ←	Fault detected
0	0	1	1	

Sequence 2

Α	В	Out _{good}	Out _{faulty}	
0	0	1	1	PASS:
0	1	1	1 ←	Fault undetected (test escape)
1	1	0	0	(test escape)

Simulation Results [Millman 89]

- Q: How effective is SSF test sets for stuck-open faults?
- 74LS181 ALU
 - Total 426 stuck-open faults
 - 100% SSF tests cannot achieve 100% SOP fault coverage

Test set	Krish	Br2	Goel	Mc1	Hugh
Test Length	12	14	35	124	135
SSF fault coverage %	100	100	100	100	100
SOP fault coverage %	79.3	79.6	90.8	87.1	93.4

SSF Not Enough for SOP

SOP ≠ TDF [Li 02]

- TDF is correlated with SOP fault, but they are NOT the same
- {11→01, 01→10, 00→11} has 100% TDF coverage
 - but only 75% SOP fault coverage (missed B_P)

$A_1B_1 \to A_2B_2$	Out _{good}	Detected SOP	Detected TDF
11→01	0→1	A _P	A STF; Out STR
1 <mark>0</mark> →01	1→1	-	A STF
11→10	0→1	B _P	B STF; Out STR
<mark>0</mark> 1→10	1→1	-	B STF
00→11	1→0	A _N B _N	A STR; B STR Out STF

TDF Not Enough for SOP, Either

Experimental Results [Woodhal 87] [Li 01]

- 1 μm CMOS [Woodhal 87]
 - Total population: 4,552 chips (passed parametric test)
 - 1,225 chips failed stuck-at test
 - * 44 chips (3.6% of 1225) failed stuck-open test
 - * 4 chips failed stuck-open test escaped stuck-at test
- 0.7μm CMOS, Stanford Murphy experiment [Li 01]
 - Total population 5.5K chips tested
 - 116 defective chips
 - * 7 single stuck-open fault diagnosed
 - * 2 multiple faults (stuck-at + stuck-open)
- About 5% of failed chips are stuck-open

Stuck-open Cannot be Ignored

Quiz

Q1: Find a sequence of 2 patterns to detect B_N SOP fault in NOR

A:

Q2: Find a sequence of 2 patterns that cannot detect B_N SOP fault (test escape)

A:

Sequence 1

Α	В	Out _{good}	Out _{faulty}

Sequence 2

Α	В	Out _{good}	Out _{faulty}

Classification of Fault Models

Stuck-On Fault

- Faulty transistor is always on
 - Form a conducting path between Vdd and Gnd in static state
- Stuck-on fault may NOT be detected by Boolean testing
 - Output logic values depends on relative impedance of transistors
- Stuck-on fault can be detected by I_{DDQ} testing
 - Apply test pattern
 - Wait for a while
 - Measure quiescent current from power supply

I_{DDQ} Testing [Mark 81]

- Measure static power supply current, with test patterns applied
 - I_{DD} = power supply current from V_{DD}
 - Q = quiescent
- Very commonly used in CMOS technology*
- Example: NMOS stuck-on fault

*but I_{DDQ} less effective for new technologies due to leakage

Q: Find a test pattern to detect B_N Stuck-on fault in NOR by I_{DDQ}

A:

Classification of Fault Models

Cell-aware Test (CAT) [Hapke 09]

- Consider different defects types inside cell: open, bridge, transistor
- Need layout extraction and analog fault simulation

PFA proven CAT only detected defect

Why CAT more Effective?

- 4 test patterns detect 8 SSF at MUX I/O pins
 - 100% SSF coverage

in ₀	in ₁	ctrl	out	detected SSF
0	1	0	0	ctrl SA1, out SA1, in ₀ SA1
1	0	0	1	in ₁ SA1
1	0	1	0	ctrl SA0, out SA0, in ₀ SA0
1	1	1	1	in ₁ SA0

CAT adds {000} to detect in₁/w bridging

in ₀	in ₁	ctrl	out
0	1	0	0
1	0	0	1
1	0	1	0
1	1	1	1
0	0	0	0/1

CAT is Effective but Longer

Experimental Results [Hapke 14]

- AMD 32 nm, total 800K IC tested
- 699 IC failed only CAT, passed other tests

CAT Improves 885DPM

Fault Modeling

- Introduction
- Fault Models
 - Stuck-at fault (1961)
 - Bridging fault (1973)
 - Delay fault (1974)
 - Transistor-level fault (1978)
 - Review
- Fault Detection
- Fault Coverage
- Conclusion

Classification of Fault Models

Fault Models Evolve with Technology

More Classifications

- According to timing
 - AC faults: timing dependent
 - * Delay faults
 - DC faults: not timing dependent
 - Stuck-at faults, stuck-open faults ...
- According to memory effect
 - Sequential faults: faults that increase number of states
 - Stuck-open faults, feedback bridging faults
 - Combinational faults: faults do not increase number of states
 - Stuck-at faults, non-feedback bridging faults
- According to circuit under test (CUT)
 - Memory fault model (see memory testing chapter)
 - FPGA fault model
 - •

No Single Best Fault Model for All Circuits

Summary

- Transistor stuck-open (SOP)
 - Sequence dependence: faulty comb. logic has memory
 - ◆ TDF ≠ SOP
- ② Transistor stuck-on
 - I_{DDQ} testing
- 3 Cell-aware testing
 - layout extraction + analog fault simulation
 - Improved DPM but longer test

- Fault models evolve with technology
 - NO single best fault model for all circuits
 - New fault models needed for future technologies!