Computer Organization Lab4

Architecture diagrams:

CPU: 取自 CO_Lab_4.pdf

Pipeline Register: 數字為 bit 數

IF/ID:	ID/EX:	EX/MEM:	MEM/WB:		
32 pc+4	WB	WB	WB		
32 instr	1 RegWrite	1 RegWrite	1 RegWrite		
	1 MemtoReg	1 MemtoReg	1 MemtoReg		
	M	M			
	1 Branch	1 Branch	32 MemData		
	1 MemRead	1 MemRead	32 ALUResult		
	1 MemWrite	1 MemWrite	5. WriteReg		
	EX				
	3 ALU_op	32 pc_branch			
	1 RegDst	1 . zero			
	1 ALUSrc	32 ALUResult			
		32 RTData			
	32 Pc+4	5. WriteReg			
	32 RSData				
	32 RTData				
	32 Extended				
	5. instr[20-16]				
	5. instr[15-11]				

Hardware module analysis:

(explain how the design work and its pros and cons)

和 single-cycle CPU 相比,因為多加了 pipeline register,每個 stage 可以被分配給不同的指令,所以同時可以有多個指令在進行,不會浪費空閒的 hardware。 每個 pipeline register 中,儲存該指令在下一個 stage 所需要的 control signal 和 data

IF: 讀取當前 PC Addr 的指令,因為指令有可能是 branch 所以需要儲存 pc+4

ID: 利用 IF/ID 儲存的指令,得到 RSData、RTData 和 control signal 等

EX: 利用 ID/EX 中的 control signal 和 Data 做 ALU 的計算, 一併算出 Branch addr、得到 RD Addr (WriteReg)

MEM: 利用 EX/MEM 儲存的 RSData (Read Addr)和讀取出的 RTData,再根據 control signal 決定是否要讀/修改 memory。

且在此時確定 branch 的結果,並將計算的結果連結至 Program Counter WB: 根據 MEM/WB 儲存的 control signal 決定是否需要 Write to Reg (Memory data / ALU result)

每個 stage 都各自做不同的指令,有效利用資源,但有可能不同指令之間有 data dependency , 就會造成 hazard , 則需要更複雜的機制(forwarding 、 stall 等)去控制,但整體而言效率是比 single-cycle CPU 好很多的。

Finished part:

(show the screenshot of the simulation result and waveform, and explain it)

Test1:	和助教給的參考答案是相同的
--------	---------------

begin:										
addi	\$1,\$0,3;			// a = 3						
addi	\$2,\$0,4;			// b = 4						
addi	\$	3,\$0,1;		// c = 1						
sw	\$1,4(\$0);			// A[1] = 3						
add	\$4,\$1,\$1;			// \$4 = 2*a						
or	\$6,\$1,\$2;			$// e = a \mid b$						
and	nd \$7,\$1,\$3;			$// f = a \delta$	// f = a & c					
sub	b \$5,\$4,\$2;			// d = 2*	'a - b					
slt	\$8,\$1,\$2;			// g = a	// g = a < b					
beq	eq \$1,\$2,begin									
lw	lw \$10,4(\$0);			// i = A[1]						
Register										
Register==										
Register==:		3, r2=	4, r3=	1, r4=	6, r5=	2, r6=	7, r7= 1			
				1, r4= 0, r12=		2, r6= 0, r14=		0		
r0=	0, r1=	3, r2=						0		
r0= r8=	0, r1= 1, r9=	3, r2= 0, r10=	3, r11=	0, r12=	0, r13=	0, r14=	0, r15=			
r0= r8= r16= r24=	0, r1= 1, r9= 0, r17=	3, r2= 0, r10= 0, r18= 0, r26=	3, r11= 0, r19=	0, r12= 0, r20=	0, r13= 0, r21=	0, r14= 0, r22=	0, r15= 0, r23=	0		
r0= r8= r16= r24=	0, r1= 1, r9= 0, r17= 0, r25=	3, r2= 0, r10= 0, r18= 0, r26=	3, r11= 0, r19=	0, r12= 0, r20=	0, r13= 0, r21=	0, r14= 0, r22= 0, r30=	0, r15= 0, r23=	0		
r0= r8= r16= r24= Memory====	0, r1= 1, r9= 0, r17= 0, r25=	3, r2= 0, r10= 0, r18= 0, r26=	3, r11= 0, r19= 0, r27= 0, m3=	0, r12= 0, r20= 0, r28= 0, m4=	0, r13= 0, r21= 0, r29= 0, m5=	0, r14= 0, r22= 0, r30=	0, r15= 0, r23= 0, r31= 0, m7= 0	0		
r0= r8= r16= r24= Memory====	0, r1= 1, r9= 0, r17= 0, r25= 0, m1=	3, r2= 0, r10= 0, r18= 0, r26= 3, m2=	3, r11= 0, r19= 0, r27= 0, m3=	0, r12= 0, r20= 0, r28= 0, m4=	0, r13= 0, r21= 0, r29= 0, m5=	0, r14= 0, r22= 0, r30= 0, m6= 0, m14=	0, r15= 0, r23= 0, r31= 0, m7= 0	0		

Problems you met and solutions:

除了在 Pipeline Reg 的設計上想了比較久的時間,基本上都是沿用 single-cycle CPU 的設計,沒有做太多更動,因此沒有遇到太多困難。

Bonus (optional):

Modified machine code:

0010000	00000000	00100000000	0000010000		l1:	addi	\$1, \$0, 16			
0010000	00000010	0010000000	0001100100		I10:	addi	\$9, \$0, 100			
0010000	00000000	110000000	000001000		13:	addi	\$3, \$0, 8			
0010000	00001000	100000000	000000100		12:	addi	\$2, \$1, 4			
1010110	00000000	0010000000	000000100		14:	SW	\$1,4(\$0)			
1000110	00000001	.000000000	000000100		15:	lw	\$4, 4(\$0)			
0010000	00001001	110000000	000001010		18:	addi	\$7, \$1, 10			
0000000	00011000	0010011000	0000100000		17:	add	\$6, \$3, \$1			
0000000	00100000)110010100	0000100010		16:	sub	\$5, \$4, \$3			
0000000	00111000)110100000	0000100100		19:	and	\$8, \$7, \$3			
Register====				=====						
r0=	0, r1=	16, r2=	20, r3= {	8, r4=	16,	r5=	8, r6= 24,	r7= 26		
r8=	8, r9=	100, r10=	0, r11=	0, r12=		0, r13=	0, r14=	0, r15=	0	
r16=	0, r17=	0, r18=	0, r19=	0, r20=		0, r21=	0, r22=	0, r23=	0	
r24=	0, r25=	0, r26=	0, r27=	0, r28=		0, r29=	0, r30=	0, r31=	0	
Memory====										
mO=	O, m1=	16, m2=	O, m3=	0, m4=	0), m5=	0, m6=	0, m7=	0	
m8=	O, m9=	O, m10=	O, m11=	O, m12=		O, m13	= 0, m14=	0, m15=	0	
r16=	0, m17=	O, m18=	O, m19=	0, m2	0=	O, m	21= 0, m22=	0, m23=		0
m24=	0, m25=	0, m26=	0, m27=	O, m2	8=	O, m	29= 0, m30=	0, m31=		0

Summary:

這次的 lab 讓我對 pipeline CPU 有更多的理解,bonus 的部分也讓我發現自己思考的盲點。