In class work 5 has questions 1 through 8 with a total of 85 points. This assignment is due at the end of the class period (9:55 AM).

 $\boxed{5}$  1. Find the *distance* between the points (7,2) and (-1,-2).

**Solution:** We have

$$\operatorname{dist}((7,2),(-1,-2)) = \sqrt{(7+1)^2 + (2+2)^2}, \qquad \text{(distance formula)}$$
 
$$= \sqrt{64+16}, \qquad \text{(arithmetic)}$$
 
$$= \sqrt{80}, \qquad \text{(arithmetic)}$$
 
$$= 4\sqrt{5}. \qquad \text{(factor)}$$

5 2. Find the *midpoint* of the points (2,4) and (5,7).

**Solution:** 

mid point = 
$$\left(\frac{2+5}{2}, \frac{4+7}{2}\right) = \left(\frac{7}{2}, \frac{11}{2}\right)$$
.

- $\boxed{5}$  3. A line *L* contains the points (x = 5, y = 7) and (x = 7, y = -1).
- (a) Find an *equation* of the line *L*.

**Solution:** The slope is  $\frac{7+1}{5-7} = -4$ . An equation of the line is y-7 = -4(x-5).

 $\boxed{5}$  (b) Find the *x-intercept* of the line *L*.

**Solution:** Replace *y* by zero and solve for *x*; we have

$$[0-7=-4(x-5)] = \left[\frac{7}{4} = x-5\right] = \left[x = \frac{27}{4}\right].$$

 $\boxed{5}$  4. Find an equation of the line that is parallel to the line 3y + 6x = 1 and that contains the point (x = 1, y = 1).

**Solution:** The slope of the line 3y + 6x = 1 is -2. So an equation of the line we are looking for is y - 1 = -2(x - 1).

5. Find the *center* and *radius* of the circle  $x^2 + 2x + y^2 - 6y = -6$ .

# **Solution:**

$$[x^2 + 2x + y^2 - 6y = -6] = [x^2 + 2x + 1 + y^2 - 6y + 9 = -6 + 1 + 9].$$

So the center is (x = 1, y = -3) and the radius is  $\sqrt{4} = 2$ .

 $\boxed{5}$  6. The number of doghouses L a work crew can build in a day varies jointly with the number of people N in the crew and with the time T they work in a day. Given that L=12 when N=5 and T=6, find L when N=20 and T=10.

**Solution:** There is a constant *k* such that

$$L = kNT$$
.

Pasting in the data L=12 when N=5 and T=6 gives  $k=\frac{12}{30}$ . When N=20 and T=10, we have

$$L = \frac{12}{30} \times 20 \times 10 = 80. \tag{1}$$

7. Shown below is a graph of the equation y = U(x). Some points on the graph are labeled. The domain of U is the closed interval [-2,2]



Figure 1: Graph of the equation y = U(x).

 $\boxed{5}$  (a) Find the numerical value of U(-2).

**Solution:** U(-2) = 5.

 $\boxed{5}$  (b) Find the *range* of U.

**Solution:** range(U) = [0,5]

(c) Find the interval(s) on which *U* is *decreasing*.

**Solution:**  $[-2, \frac{1}{2}]$ .

(d) Find the interval(s) on which *U* is *increasing*.

**Solution:**  $[\frac{1}{2}, 1]$ .

(e) Find the interval(s) on which *U* is *constant*.

**Solution:** [1,2].

5 (f) Sketch a graph of the equation y - 1 = U(x - 1).

**Solution:** We need to translate the graph of y = U(x) one unit to the right and one unit up. Here it is!



- 8. Define a function Q by  $Q(x) = \begin{cases} x & x < 1 \\ 5 & 1 \le x \end{cases}$ .
- $\boxed{5}$  (a) Find the numerical value of Q(-2).

**Solution:** Q(-2) = -2

 $\boxed{5}$  (b) Find the numerical value of Q(2).

**Solution:** Q(2) = 5

(c) Sketch a graph of Q.



**Solution:** 

(d) Find the *average rate of change* of Q on the interval [-2,2].

**Solution:** 

$$\underset{[-2,2]}{\text{ARC}}(Q) = \frac{Q(2) - Q(-2)}{2 - (-2)} = \frac{5 + 2}{2 + 2} = \frac{7}{4}.$$

## **Greek characters**

| Name    | Symbol                   | Typical use(s)    |
|---------|--------------------------|-------------------|
| alpha   | α                        | angle, constant   |
| beta    | β                        | angle, constant   |
| gamma   | $\gamma$                 | angle, constant   |
| delta   | δ                        | limit definition  |
| epsilon | $\epsilon$ or $\epsilon$ | limit definition  |
| theta   | $\theta$ or $\vartheta$  | angle             |
| pi      | $\pi$ or $\pi$           | circular constant |
| phi     | $\phi$ or $\varphi$      | angle, constant   |

## Named sets

| ſ | empty set     | Ø              |
|---|---------------|----------------|
| ١ | real numbers  | R              |
| ١ | ordered pairs | $\mathbf{R}^2$ |

| integers          | $\mathbf{z}$      |
|-------------------|-------------------|
| positive integers | $\mathbf{Z}_{>0}$ |
| positive reals    | $\mathbf{R}_{>0}$ |

## Set symbols

| Meaning      | Symbol   |  |
|--------------|----------|--|
| is a member  | €        |  |
| subset       | <b>⊂</b> |  |
| intersection |          |  |

| Meaning    | Symbol                   |
|------------|--------------------------|
| union      | U                        |
| complement | superscript <sup>C</sup> |
| set minus  | \                        |

## Logic symbols

| Meaning  | Symbol            |
|----------|-------------------|
| negation | _                 |
| and      | ^                 |
| or       | V                 |
| implies  | $\Longrightarrow$ |

| Meaning      | Symbol    |  |
|--------------|-----------|--|
| equivalent   | =         |  |
| iff          | $\iff$    |  |
| for all      | $\forall$ |  |
| there exists | ∃         |  |

## Arithmetic properties of R

$$\begin{array}{ll} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{associative} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{associative} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{array}$$

## Intervals

For numbers a and b, we define the intervals

$$\begin{aligned} (a,b) &= \{x \in \mathbf{R} \mid a < x < b\} \\ [a,b) &= \{x \in \mathbf{R} \mid a \le x < b\} \\ (a,b] &= \{x \in \mathbf{R} \mid a < x \le b\} \\ [a,b] &= \{x \in \mathbf{R} \mid a \le x \le b\} \end{aligned}$$

## Distance & Midpoint

The distance between the points  $(x_1,y_1)$  and  $(x_2,y_2)$  is  $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}.$ 

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

## Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
  $0^{a} = 0$   
 $1^{a} = 1,$   $a^{n}a^{m} = a^{n+m}$   
 $a^{n}/a^{m} = a^{n-m},$   $(a^{n})^{m} = a^{n+m}$   
 $a^{-m} = 1/a^{m},$   $(a/b)^{m} = a^{m}/b^{m}$ 

### Radicals

$$\begin{split} \sqrt[n]{a} &= a^{1/n} \\ \sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a,b \geq 0) \\ \sqrt[m]{\sqrt[n]{a}} &= \sqrt[m]{a} \\ \sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\ \sqrt[n]{a^n} &= \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases} \end{split}$$

## Identities

$$\begin{split} a(b+c) &= ab + ac \\ &((a+b)(c+d)) = ac + ad + bc + bd \\ &\frac{ab+ac}{a} = b+c \quad \text{(provided } a \neq 0) \\ &\frac{\frac{a}{b}}{\frac{c}{a}} = \frac{ad}{bc} \quad \text{(provided } b, d \neq 0) \\ &\sqrt{ab} = \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0) \\ &\ln(ab) = \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0) \end{split}$$

## **Solution of Equations**

### Algebraic

$$\begin{split} & [ab=0] \equiv [a=0 \text{ or } b=0] \\ & [a^2=b^2] \equiv [a=b \text{ or } a=-b] \\ & \left[\frac{a}{b}=0\right] \equiv [a=0 \text{ and } b\neq 0] \\ & \left[\frac{a}{b}=\frac{c}{d}\right] \equiv [ad=bc \text{ and } b\neq 0 \text{ and } d\neq 0] \\ & [|a|=|b|] \equiv [a=b \text{ or } a=-b] \\ & [\sqrt{a}=b] \equiv [a=b^2 \text{ and } b\geq 0] \end{split}$$

For  $a \neq 0$ ,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

#### Exponential

$$\begin{bmatrix} \ln(a) = 0 \end{bmatrix} \equiv \begin{bmatrix} a = 1 \end{bmatrix}$$
$$\begin{bmatrix} e^a = 1 \end{bmatrix} \equiv \begin{bmatrix} a = 0 \end{bmatrix}$$
$$\begin{bmatrix} \ln(a) = b \end{bmatrix} \equiv \begin{bmatrix} a = e^b \end{bmatrix}$$

## Logarithms

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

## **Graph Translations**

For the graph of F(x,y) = 0

- The graph of F(x-h,y)=0 is the graph of F(x,y)=0translated h units to the right.
- The graph of F(x, y k) = 0 is the graph of F(x, y) = 0translated k units up.
- The graph of F(x/c, y) = 0 is the graph of F(x, y) = 0stretched a factor of c horizontally.
- The graph of F(x,y/c)=0 is the graph of F(x,y)=0 Compound Interest stretched a factor of c vertically.

## Circles

Equation of circle centered at (h,k) with radius r is

$$(x-h)^2 + (y-k)^2 = r^2$$
.

Expanded the equation is

$$x^2 - 2hx + y^2 - 2ky = r^2 - h^2 - k^2.$$

## Parabolas & Lines

The vertex of the parabola  $ax^2 + bx + c = y$  is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points  $(x_1, y_1)$  and Graph of natural logarithm

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number  $\frac{y_2 - y_1}{x_2 - x_1}$  is the slope.

## Function notation

| dom(F)   | domain of function $F$ |
|----------|------------------------|
| range(F) | range of function $F$  |

## Domains, Ranges, and Zeros

| Function     | Domain              | Range               | Zeros  |
|--------------|---------------------|---------------------|--------|
| ln, log      | $(0,\infty)$        | $(-\infty, \infty)$ | 1      |
| exp          | $(-\infty, \infty)$ | $(0, \infty)$       | Ø      |
| abs          | $(-\infty, \infty)$ | $(0,\infty)$        | 0      |
| $\checkmark$ | $(0,\infty)$        | $(0,\infty)$        | 0      |
| 3∕           | $(-\infty, \infty)$ | $(-\infty, \infty)$ | 0      |
| floor        | $(-\infty, \infty)$ | $\mathbf{z}$        | [0,1)  |
| ceiling      | $(-\infty, \infty)$ | $\mathbf{z}$        | [-1,0] |

Interest rate r compounded n times per year

$$A = P(1 + r/n)^{nt}$$

Continuous compounding:

$$A = P \mathrm{e}^{rt}$$

## **Exponential Growth**

The exponential function that contains the points  $(t = t_o, y = y_o)$  and  $(t = t_1, y = y_1)$  is

$$y = y_o \left(\frac{y_1}{y_o}\right)^{\frac{t-t_o}{t_1-t_o}}.$$

## Graphs



Graph of natural exponential



## Common Errors

| Error                              | Correct or Example                               |
|------------------------------------|--------------------------------------------------|
| x/0 = 0  or  x                     | <sup>x</sup> / <sub>0</sub> is undefined         |
| $-x^2 = x^2$                       | $-x^2 = -(x^2)$                                  |
| a/(b+c) = a/b + a/c                | $\frac{1}{(1+1)} \neq \frac{1}{1} + \frac{1}{1}$ |
| a+bx/a = 1 + bx                    | a + bx/a = 1 + bx/a                              |
| $(a+b)^2 = a^2 + b^2$              | $(a+b)^2 = a^2 + 2ab + b^2$                      |
| $\sqrt{a+b} = \sqrt{a} + \sqrt{b}$ | $\sqrt{1+1} \neq \sqrt{1} + \sqrt{1}$            |

Revised February 2, 2023by Barton Willis. This work is licensed under Attribution 4.0 International (CC BY 4.0)



