Quantum theory of the electronic heat capacity 2

Argument number 2: slightly more careful [not examinable]

Our previous argument neglects the density of states – there are proportionately more electrons with greater energies.

$$\frac{\partial f(\epsilon)}{\partial \epsilon} = \frac{\partial}{\partial \epsilon} \frac{1}{e^{(\epsilon - \mu)/k_B T} + 1} = -\frac{1}{k_B T} \frac{e^{(\epsilon - \mu)/k_B T}}{(e^{(\epsilon - \mu)/k_B T} + 1)^2} \qquad \Rightarrow \qquad \frac{\partial f(\epsilon)}{\partial \epsilon} \bigg|_{\epsilon = \mu} = -\frac{1}{4k_B T}$$

The slope of the Fermi-Dirac distribution at μ means $f(\epsilon)$ drops from 1 to zero over a range $\simeq 4k_BT$. Therefore approximately (see figure) $\frac{1}{2} \times 2k_BT \times \frac{1}{2}g(\epsilon_F) = \frac{1}{2}g(\epsilon_F)k_BT$ states go from below ϵ_F to above.

