

Report Number: F690501/RF-RTL010316 Page: 1 of 77

TEST REPORT

of

FCC Part 15 Subpart C §15.247 RSS-247 Issue 1, RSS-Gen Issue 4

FCC ID: TQ8-AVC40D9AN IC Certification: 5074A-AVC40D9KN

Equipment Under Test : DIGITAL CAR AVN SYSTEM

FCC Model Name : AVC40D9AN

IC Model Name : AVC40D9KN

Applicant : Hyundai MOBIS Co., Ltd.

Manufacturer : Hyundai MOBIS Co., Ltd.

Date of Receipt : 2016.08.01

Date of Test(s) : 2016.08.17 ~ 2016.09.01

Date of Issue : 2016.09.01

In the configuration tested, the EUT complied with the standards specified above.

Technical Manager:

Date: 2016.09.01

Date: 2016.09.01

Report Number: F690501/RF-RTL010316 Page: 2 of 77

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	7
3. 20 dB Bandwidth and 99 % Bandwidth	43
4. Maximum Peak Conducted Output power	54
5. Carrier Frequency Separation	56
6. Number of Hopping Frequencies	59
7. Time of Occupancy (Dwell Time)	63
8. Antenna Requirement	77

Report Number: F690501/RF-RTL010316 Page: 3 of 77

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

-Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Phone No. : +82 31 688 0901 Fax No. : +82 31 688 0921

1.2. Details of Applicant

Applicant : Hyundai MOBIS Co., Ltd.

Address : 203, Teheran-ro, Gangnam-gu, Seoul, 06141, Korea

Contact Person: Kwon, Heung-Chul Phone No.: +82 31 260 2714

1.3. Description of EUT

Kind of Product	DIGITAL CAR AVN SYSTEM								
FCC Model Name	AVC40D9AN								
IC Model Name	AVC40D9KN								
Power Supply	DC 14.4 V								
Frequency Range	FCC 2 402 Mb ~ 2 480 Mb (Bluetooth), 2 412 Mb ~ 2 462 Mb (11b/g/n_HT20), 5 745 Mb ~ 5 825 Mb (Band 3: 11a/n_HT20, 11ac_VHT20), 5 755 Mb ~ 5 795 Mb (Band 3: 11n_HT40, 11ac_VHT40), 5 775 Mb (Band 3: 11ac_VHT80), 5 180 Mb ~ 5 240 Mb (Band 1: 11a/n_HT20, 11ac_VHT20), 5 190 Mb ~ 5 240 Mb (Band 1: 11n_HT40, 11ac_VHT40), 5 210 Mb (Band 1: 11ac_VHT80), 5 210 Mb (Band 1: 11ac_VHT80), 5 260 Mb ~ 5 320 Mb (Band 2A: 11a/n_HT20, 11ac_VHT20), 5 270 Mb ~ 5 310 Mb (Band 2A: 11a/n_HT40, 11ac_VHT40), 5 290 Mb (Band 2A: 11ac_VHT80), 5 500 Mb ~ 5 720 Mb (Band 2C: 11a/n_HT40, 11ac_VHT20), 5 510 Mb ~ 5 710 Mb (Band 2C: 11n_HT40, 11ac_VHT40),	1C 2 402 Mbz ~ 2 480 Mbz (Bluetooth), 2 412 Mbz ~ 2 462 Mbz (11b/g/n_HT20), 5 745 Mbz ~ 5 825 Mbz (Band 3: 11a/n_HT20, 11ac_VHT20), 5 755 Mbz ~ 5 795 Mbz (Band 3: 11n_HT40, 11ac_VHT40), 5 775 Mbz (Band 3: 11ac_VHT80), 5 280 Mbz ~ 5 320 Mbz (Band 2A: 11a/n_HT20, 11ac_VHT20), 5 310 Mbz (Band 2A: 11n_HT40, 11ac_VHT40), 5 500 Mbz ~ 5 720 Mbz (Band 2C: 11a/n_HT20, 11ac_VHT20), 5 510 Mbz ~ 5 710 Mbz (Band 2C: 11n_HT40, 11ac_VHT40), 5 530 Mbz ~ 5 690 Mbz (Band 2C: 11ac_VHT80)							
Madulatian Taskainus	5 530 Mb ~ 5 690 Mb (Band 2C: 11ac_VHT80) DSSS, OFDM, GFSK, π/4DQPSK, 8DPSK								
i wodulation rechnique	D333, OF DIVI, GF3K, 11/4DQF3K, 0DF3K								
Modulation Technique	FCC	IC							
Number of Channels	FCC 79 channels (Bluetooth), 11 channels (11b/g/n_HT20), 5 channels (Band 3: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 3: 11n_HT40, 11ac_VHT40), 1 channel (Band 3: 11ac_VHT80), 4 channels (Band 1: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 1: 11n_HT40, 11ac_VHT40), 1 channel (Band 1: 11ac_VHT80), 4 channels (Band 2A: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 2A: 11a/n_HT20, 11ac_VHT40), 1 channel (Band 2A: 11ac_VHT80), 9 channels (Band 2C: 11a/n_HT40, 11ac_VHT20), 4 channels (Band 2C: 11a/n_HT40, 11ac_VHT40),	79 channels (Bluetooth), 11 channels (11b/g/n_HT20), 5 channels (Band 3: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 3: 11n_HT40, 11ac_VHT40), 1 channel (Band 3: 11ac_VHT80), 3 channels (Band 2A: 11a/n_HT20, 11ac_VHT20), 1 channels (Band 2A: 11n_HT40, 11ac_VHT40), 9 channels (Band 2C: 11a/n_HT20, 11ac_VHT40), 4 channels (Band 2C: 11a/n_HT20, 11ac_VHT40), 2 channels (Band 2C: 11ac_VHT80)							
	FCC 79 channels (Bluetooth), 11 channels (11b/g/n_HT20), 5 channels (Band 3: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 3: 11n_HT40, 11ac_VHT40), 1 channel (Band 3: 11ac_VHT80), 4 channels (Band 1: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 1: 11n_HT40, 11ac_VHT40), 1 channel (Band 1: 11ac_VHT80), 4 channels (Band 2A: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 2A: 11a/n_HT20, 11ac_VHT40), 1 channel (Band 2A: 11ac_VHT80), 9 channels (Band 2A: 11ac_VHT80), 9 channels (Band 2C: 11a/n_HT20, 11ac_VHT20),	79 channels (Bluetooth), 11 channels (11b/g/n_HT20), 5 channels (Band 3: 11a/n_HT20, 11ac_VHT20), 2 channels (Band 3: 11n_HT40, 11ac_VHT40), 1 channel (Band 3: 11ac_VHT80), 3 channels (Band 2A: 11a/n_HT20, 11ac_VHT20), 1 channels (Band 2A: 11n_HT40, 11ac_VHT40), 9 channels (Band 2C: 11a/n_HT20, 11ac_VHT20), 4 channels (Band 2C: 11a/n_HT40, 11ac_VHT40),							

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 http://www.sgsgroup.kr

Report Number: F690501/RF-RTL010316 Page: 4 of 77

1.4. Declaration by the manufacturer

- Adaptive Frequency Hopping is supported and use at least 20 channels.

1.5. Information about the FHSS characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.5.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.5.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.5.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mb.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.5.5. Equipment Description

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: F690501/RF-RTL010316 Page: 5 of 77

1.6. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	Agilent	E8257D	MY51501169	Jul. 07, 2016	Annual	Jul. 07, 2017
Signal Generator	R&S	SMBV100A	255834	Jun. 20, 2016	Annual	Jun. 20, 2017
Spectrum Analyzer	R&S	FSV30	100768	Mar. 30, 2016	Annual	Mar. 30, 2017
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 24, 2015	Annual	Sep. 24, 2016
Bluetooth Tester	TESCOM	TC-3000C	3000C000142	Dec. 02, 2015	Annual	Dec. 02, 2016
Directional Coupler	KRYTAR	152613	122661	Mar. 04, 2016	Annual	Mar. 04, 2017
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-6SS	4	Jun. 18, 2016	Annual	Jun. 18, 2017
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	11	Jun. 03, 2016	Annual	Jun. 03, 2017
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 29, 2016	Annual	Feb. 28, 2017
Power Sensor	R&S	NRP-Z81	100669	Feb. 29, 2016	Annual	Feb. 28, 2017
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 21, 2016	Annual	Mar. 21, 2017
Preamplifier	H.P.	8447F	2944A03909	Aug. 11, 2016	Annual	Aug. 11, 2017
Preamplifier	R&S	SCU-18	10117	Apr. 07, 2016	Annual	Apr. 07, 2017
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 12, 2016	Annual	May 12, 2017
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 19, 2015	Biennial	Aug. 19, 2017
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB9163	396	Jun. 18, 2015	Biennial	Jun. 18, 2017
Horn Antenna	R&S	HF906	100326	Feb. 01, 2016	Biennial	Feb. 01, 2018
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	9170-540	Sep. 04, 2015	Biennial	Sep. 04, 2017
Antenna Master	INN-CO systems	MA4640-XP-ET	N/A	N.C.R.	N/A	N.C.R.
Turn Table	INN-CO systems	CONTROLLER CO3000	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESU26	100109	Mar. 07, 2016	Annual	Mar. 07, 2017
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.

Report Number: F690501/RF-RTL010316 Page: 6 of 77

1.7. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part15 subpart C, RSS-247 Issue 1, RSS-Gen Issue 4							
Standa	rd Section	Test Item	Result				
15.205(a) 15.209 15.247(d)	RSS-247 Issue 1 5.5 RSS-Gen Issue 4 8.9	Transmitter Radiated Spurious Emissions Conducted Spurious Emission	Complied				
15.247(a)(1)	RSS-247 Issue 1 5.1(2) RSS-Gen Issue 4 6.6	20 dB Bandwidth and 99 % Bandwidth	Complied				
15.247(b)(1)	RSS-247 Issue 1 5.4(2)	Maximum Peak Conducted Output Power	Complied				
15.247(a)(1)	RSS-247 Issue 1 5.1(2)	Carrier Frequency Separation	Complied				
15.247(a)(1)(iii)	RSS-247 Issue 1 5.1(4)	Number of Hopping Frequencies	Complied				
15.247(a)(1)(iii)	RSS-247 Issue 1 5.1(4)	Time of Occupancy (Dwell Time)	Complied				

1.8. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in DA 00-705 were used in the measurement of the DUT.

1.9. Sample calculation

Where relevant, the following sample calculation is provided:

1.9.1. Conducted test

Offset value (dB) = Directional Coupler (dB) + Cable loss (dB)

1.9.2. Radiation test

Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

1.10. Test report revision

Revision	Report number	Date of Issue	Description	
0	F690501/RF-RTL010316	2016.09.01	Initial	

Report Number: F690501/RF-RTL010316 Page: 7 of 77

2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission below 30 $\,\mathrm{Mb}$ Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mz}$ to 1 $\,\text{GHz}$ Emissions.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm x 297 mm)

Report Number: F690501/RF-RTL010316 Page: 77 8 of

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 \times to the 10th harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

Report Number: F690501/RF-RTL010316 Page: 9 of 77

2.1.2. Conducted Spurious Emissions

2.2. **Limit**

FCC

§15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

§15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (쌘)			Field Strength (
0.009 - 0.490	300	20 log (2 400/F(klb))	2 400/F(kHz)
0.490 - 1.705	30	20 log (24 000/F(地))	24 000/F(kllz)
1.705 - 30	30	29.54	30
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
Above 960	3	54.0	500

Report Number: F690501/RF-RTL010316 Page: 10 of 77

IC

RSS-247 Issue 1, 5.5, In any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 klz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

RSS-Gen Issue 4, 8.9

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 or Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Table 4 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Above 30 服

Frequency (Mb)	Field Strength (μ̄V/m at 3 metres)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

* Unless otherwise specified, for all frequencies greater than 1 %, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 Mb. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

Report Number: F690501/RF-RTL010316 Page: 11 of 77

Table 5 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Below 30 №

Frequency	Electric Field Magnetic Field Strength Strength (μ̄V/m) (μ̄Α/m)		Measurement Distance (Metres)
0.009 - 0.490 kHz	2 400/F (F in klb)	2 400/377F (F in klb)	300
0.490 - 1.705 kHz	24 000/F (F in 🕸)	24 000/377F (F in 址)	30
1.705 - 30 Mb	30	N/A	30

Note: The emission limits for the bands 9-90 $\,\mathrm{kl\! l}$ and 110-490 $\,\mathrm{kl\! l}$ are based on measurements employing a linear average detector. Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the relevant RSS.

Report Number: F690501/RF-RTL010316 Page: 12 of 77

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

Note:

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 meter open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

2.3.2. Test Procedures for emission from above 30 Mb

- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 $\,\mathrm{dB}$ lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 $\,\mathrm{dB}$ margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report Number: F690501/RF-RTL010316 Page: 13 of 77

NOTE;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 km for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 Gm.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is $1/T_{on}$ Hz $(T_{on} = On\text{-time of the Pulsed emission})$ for Average detection (AV) at frequency above 1 GHz. VBW = 360 Hz \geq 1/ T_{on} Hz, pulse width in seconds ($T_{on} = 2.90$ ms). Refer to the DH5, 3DH5 of Time of Occupancy (Dwell Time) test item.
- 4. When Average result is different from peak result over 20 dB (over-averaging), According to 15.35 (c), as a "duty cycle correction factor", pulse averaging with 20 log(duty cycle) has to be used.
- 5. Definition of DUT Axis.
 - Definition of the test orthogonal plan for EUT was described in the test setup photo.

The test orthogonal plan of EUT is **X-axis** during radiation test.

2.3.3. Test Procedures for Conducted Spurious Emissions

2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer.

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW ≥ 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.3.3.3. TDF function

- For plots showing conducted spurious emissions from 32.768 klb to 24.8 Glb, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

Report Number: F690501/RF-RTL010316 Page: 14 of 77

2.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 32.768 klb to 1 000 Mb was investigated. All reading values are peak values.

Radiated Emissions		Ant	Correction Factors		Total Limit		it	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
53.60	43.30	Peak	Н	15.35	-27.04	31.61	40.00	8.39
56.39	35.10	Peak	V	13.47	-27.02	21.55	40.00	18.45
339.75	38.70	Peak	V	16.16	-25.38	29.48	46.00	16.52
339.88	42.00	Peak	Н	15.12	-25.38	31.74	46.00	14.26
Above 400.00	Not detected	-	-	-	-	-	-	-

Remark:

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 @b.
- 2. Reported spurious emissions are in <u>BDR / DH5 / Middle channel</u> as worst case among other modes.
- 3. Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.
- 5. The device has a reference clock operating at 32.768 klb.

Test plot

Report Number: F690501/RF-RTL010316 Page: 15 of 77

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values.

Operating Mode: GFSK (1 Mbps)

A. Low channel (2 402 Mb)

Radiated Emissions		Ant	Correctio	Correction Factors		Total Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	24.99	Peak	V	28.07	5.31	58.37	74.00	15.63
*2 310.00	15.67	Average	٧	28.07	5.31	49.05	54.00	4.95
*2 385.58	27.73	Peak	٧	28.14	5.77	61.64	74.00	12.36
*2 385.58	15.88	Average	V	28.14	5.77	49.79	54.00	4.21
*2 390.00	24.90	Peak	V	28.15	5.80	58.85	74.00	15.15
*2 390.00	15.86	Average	V	28.15	5.80	49.81	54.00	4.19

Radiated Emissions		Ant	Correction Factors		Total	Lir	nit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 804.36	45.16	Peak	V	32.66	-30.25	47.57	74.00	26.43
*4 803.95	38.03	Average	V	32.65	-30.26	40.42	54.00	13.58
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL010316 Page: 16 of 77

B. Middle channel (2 441 Mb)

Radiated Emissions		Ant	Correction Factors		Total Limit		nit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 881.65	44.31	Peak	V	32.86	-29.69	47.48	74.00	26.52
*4 882.03	36.34	Average	V	32.86	-29.69	39.51	54.00	14.49
Above 4 900.00	Not detected	-	-	-	-	-	-	-

C. High channel (2 480 Mb)

Radia	Radiated Emissions			Correctio	n Factors	Total	Lim	nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	26.71	Peak	V	28.24	5.54	60.49	74.00	13.51
*2 483.50	16.94	Average	V	28.24	5.54	50.72	54.00	3.28
*2 484.45	27.53	Peak	V	28.24	5.54	61.31	74.00	12.69
*2 484.45	17.00	Average	V	28.24	5.54	50.78	54.00	3.22
*2 500.00	25.39	Peak	V	28.26	5.49	59.14	74.00	14.86
*2 500.00	16.34	Average	V	28.26	5.49	50.09	54.00	3.91

Radiated Emissions			Ant	Correctio	n Factors	Total	Lir	nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*4 959.84	42.60	Peak	V	33.07	-29.47	46.20	74.00	27.80
*4 960.02	34.54	Average	V	33.07	-29.47	38.14	54.00	15.86
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL010316 Page: 17 of 77

Operating Mode: 8DPSK (3 Mbps)

A. Low channel (2 402 Mb)

Radia	Radiated Emissions			Correction Factors		Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	24.25	Peak	V	28.07	5.31	57.63	74.00	16.37
*2 310.00	15.66	Average	V	28.07	5.31	49.04	54.00	4.96
*2 380.08	26.40	Peak	V	28.14	5.73	60.27	74.00	13.73
*2 380.08	15.73	Average	V	28.14	5.73	49.60	54.00	4.40
*2 390.00	25.04	Peak	V	28.15	5.80	58.99	74.00	15.01
*2 390.00	15.85	Average	V	28.15	5.80	49.80	54.00	4.20

Radiated Emissions			Ant	Correctio	n Factors	Total	Lir	nit
Frequency (脈)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 803.39	44.92	Peak	V	32.65	-30.27	47.30	74.00	26.70
*4 804.00	35.56	Average	V	32.65	-30.26	37.95	54.00	16.05
Above 4 900.00	Not detected	-	-	-	-	-	-	-

B. Middle channel (2 441 灿)

Radiated Emissions			Ant	Correctio	n Factors	Total	Lir	nit
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dBμV/m)	Limit (dBµV/m)	Margin (dB)
*4 882.40	43.06	Peak	٧	32.86	-29.69	46.23	74.00	27.77
*4 881.95	34.13	Average	V	32.86	-29.69	37.30	54.00	16.70
Above 4 900.00	Not detected	-	-	-	-	-	-	-

Report Number: F690501/RF-RTL010316 Page: 18 of 77

C. High channel (2 480 Mb)

Radia	Radiated Emissions			Correction Factors		Total Limit		nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	26.06	Peak	V	28.24	5.54	59.84	74.00	14.16
*2 483.50	17.27	Average	V	28.24	5.54	51.05	54.00	2.95
*2 484.80	26.67	Peak	V	28.24	5.54	60.45	74.00	13.55
*2 484.38	17.12	Average	V	28.24	5.54	50.90	54.00	3.10
*2 500.00	25.60	Peak	V	28.26	5.49	59.35	74.00	14.65
*2 500.00	16.37	Average	V	28.26	5.49	50.12	54.00	3.88

Radiated Emissions			Ant	Correctio	n Factors	Total	Lin	nit
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	Actual (dΒμV/m)	Limit (dBµV/m)	Margin (dB)
*4 959.60	42.45	Peak	V	33.07	-29.47	46.05	74.00	27.95
*4 959.97	32.70	Average	V	33.07	-29.47	36.30	54.00	17.70
Above 5 000.00	Not detected	-	-	-	-	-	-	-

Remarks;

- 1. "*" means the restricted band.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + AMP + CL + or Reading + AF + CL.
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.

Page: 19 Report Number: F690501/RF-RTL010316 of 77

2.4.3. Plot of Transmitter Radiated Spurious Emissions

Operating Mode: GFSK (1 Mbps)

Low channel band edge (Peak)

Low channel band edge (Average)

Page: 20 Report Number: F690501/RF-RTL010316 of 77

High channel band edge (Peak)

High channel band edge (Average)

Report Number: F690501/RF-RTL010316 Page: 21 of 77

Low channel 2nd harmonic (Peak)

Low channel 2nd harmonic (Average)

Report Number: F690501/RF-RTL010316 Page: 22 of 77

Middle channel 2nd harmonic (Peak)

Middle channel 2nd harmonic (Average)

Report Number: F690501/RF-RTL010316 Page: 23 of 77

High channel 2nd harmonic (Peak)

High channel 2nd harmonic (Average)

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm x 297 mm)

Report Number: F690501/RF-RTL010316 Page: 24 of 77

Operating Mode: 8DPSK (3 Mbps)

Low channel band edge (Peak)

Low channel band edge (Average)

Report Number: F690501/RF-RTL010316 Page: 77 25 of

High channel band edge (Peak)

High channel band edge (Average)

Report Number: F690501/RF-RTL010316 Page: 26 of 77

Low channel 2nd harmonic (Peak)

Low channel 2nd harmonic (Average)

Report Number: F690501/RF-RTL010316 Page: 27 of 77

Middle channel 2nd harmonic (Peak)

Middle channel 2nd harmonic (Average)

Report Number: F690501/RF-RTL010316 Page: 28 of 77

High channel 2nd harmonic (Peak)

High channel 2nd harmonic (Average)

Report Number: F690501/RF-RTL010316 Page: 29 of 77

2.4.4. Plot of Conducted Spurious Emissions

Operating Mode: GFSK (1 Mbps)

Low channel

Report Number: F690501/RF-RTL010316 Page: 30 of 77

Report Number: F690501/RF-RTL010316 Page: 31 of 77

Middle channel

Report Number: F690501/RF-RTL010316 Page: 32 of 77

Report Number: F690501/RF-RTL010316 Page: 33 of 77

High channel

Report Number: F690501/RF-RTL010316 Page: 34 of 77

Report Number: F690501/RF-RTL010316 Page: 35 of 77

Band edge compliance with hopping enabled

Low channel

High channel

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

A4(210 mm × 297 mm)

Report Number: F690501/RF-RTL010316 Page: 36 of 77

Operating Mode: 8DPSK (3 Mbps)

Low channel

of Report Number: F690501/RF-RTL010316 Page: 37 77

Report Number: F690501/RF-RTL010316 Page: 38 of 77

Middle channel

Report Number: F690501/RF-RTL010316 Page: 39 of 77

Report Number: F690501/RF-RTL010316 Page: 40 of 77

High channel

Report Number: F690501/RF-RTL010316 Page: 41 of 77

Report Number: F690501/RF-RTL010316 Page: 42 of 77

Band edge compliance with hopping enabled Low channel

High channel

Report Number: F690501/RF-RTL010316 Page: 43 of 77

3. 20 dB Bandwidth and 99 % Bandwidth

3.1. Test Setup

3.2. **Limit**

Limit: Not Applicable

3.3. Test Procedure

3.3.1. 20 dB Bandwidth

The test follows DA 00-705.

The 20 dB bandwidth was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency.

Use the following spectrum analyzer setting:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel.

RBW \geq 1 % of the 20 dB bandwidth

 $VBW \ge RBW$

Sweep = auto

Detector = peak

Trace = max hold

The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 $\,\mathrm{dB}$ down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 $\,\mathrm{dB}$ bandwidth of the emission.

3.3.2. 99 % Bandwidth

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW. Detector = sampling, Trace mode = max hold. The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

Report Number: F690501/RF-RTL010316 Page: 44 of 77

3.4. Test Results

Operation Mode	Data Rate (Mbps)	Channel	Frequency (∰z)	20 dB Bandwidth (脈)	99 % Bandwidth (Mb)
		Low	2 402	1.047	0.908
GFSK	1	Middle	2 441	1.047	0.914
		High	2 480	1.044	0.908
	2	Low	2 402	1.293	1.154
π/4DQPSK		Middle	2 441	1.293	1.148
		High	2 480	1.290	1.151
	3	Low	2 402	1.293	1.154
8DPSK		Middle	2 441	1.290	1.154
		High	2 480	1.287	1.154

Report Number: F690501/RF-RTL010316 Page: 45 of 77

20 dB Bandwidth

Operating Mode: GFSK

Low channel

Middle channel

Report Number: F690501/RF-RTL010316 Page: 46 of 77

High channel

Operating Mode: π/4DQPSK

Low channel

Report Number: F690501/RF-RTL010316 Page: 47 of 77

Middle channel

High channel

Report Number: F690501/RF-RTL010316 Page: 48 of 77

Operating Mode: 8DPSK

Low channel

Middle channel

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 49 of 77

High channel

99 % Bandwidth

Operating Mode: GFSK

RTT5041-20(2015.10.01)(3)

Low channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 50 of 77

Middle channel

High channel

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 51 of 77

Operating Mode: π/4DQPSK

Low channel

Middle channel

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 52 of 77

High channel

Operating Mode: 8DPSK

Low channel

Report Number: F690501/RF-RTL010316 Page: 53 of 77

Middle channel

High channel

RTT5041-20(2015.10.01)(3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 54 77

4. Maximum Peak Conducted Output Power

4.1. Test Setup

4.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 klz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400-2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725-5 805 Mb band: 1 Watt.

1. RSS-247 Issue 1, 5.4(2), For FHSs operating in the band 2 400-2 483.5 Mb, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels (see Section 5.4(5) for exceptions).

4.3. Test Procedure

The test follows DA 00-705. Using the power sensor instead of a spectrum analyzer.

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.
- 3. Test program: (S/W name: R&S Power Viewer, Version: 3.2.0)
- 4. Measure peak power each channel.

Report Number: F690501/RF-RTL010316 Page: 55 of 77

4.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

Operation Mode	Data Rate	Channel	Frequency (쌘)	Attenuator + Cable offset (dB)	Peak Power Result (dB m)	Peak Power Limit (dB m)
		Low	2 402	16.63	2.51	
GFSK	1 Mbps	Middle	2 441	16.67	<u>2.68</u>	20.97
		High	2 480	16.46	2.27	
		Low	2 402	14.06	2.53	
π/4DQPSK	2 Mbps	Middle	2 441	14.28	<u>2.64</u>	20.97
		High	2 480	13.84	2.20	
		Low	2 402	14.06	2.29	
8DPSK	3 Mbps	Middle	2 441	14.28	<u>2.65</u>	20.97
		High	2 480	13.84	2.24	

Remark:

In the case of AFH, the limit for peak power is 0.125 W

Directional coupler and cable offset compensate for test program (R&S Power Viewer) before measuring.

Report Number: F690501/RF-RTL010316 Page: 56 of 77

5. Carrier Frequency Separation

5.1. Test Setup

5.2. Limit

FCC

§15.247(a)(1) Frequency hopping system operating in 2 400-2 483.5 Mb. Band may have hopping channel carrier frequencies that are separated by 25 kHz or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

IC

RSS-247 Issue 1, 5.1(2), FHSs shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2 400-2 483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

5.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705.

The device is operating in hopping mode between 79 channels and also supporting Adaptive Frequency Hopping with hopping between 20 channels. As compared with each operating mode, 79 channels are chosen as a representative for test.

Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels.

RBW ≥ 1 % of the span

VBW ≥ RBW

Sweep = auto

Detector = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the between the peaks of the adjacent channels.

Report Number: F690501/RF-RTL010316 Page: 57 of 77

5.4. Test Results

Ambient temperature : (23 ± 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H.

Operation Mode	Frequency (Mb)	Adjacent Hopping Channel Separation (啦)	Two-third of 20 dB Bandwidth (朏)	Minimum Bandwidth (紀)
GFSK	2 441	1 000	698	25
8DPSK	2 441	1 000	860	25

Note;

RTT5041-20(2015.10.01)(3)

Measurement is made with EUT operating in hopping mode between 79 channels providing a worse case scenario as compared to AFH mode hopping between 20 channels.

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Report Number: F690501/RF-RTL010316 Page: 58 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 59 of 77

6. Number of Hopping Frequencies

6.1. Test Setup

6.2. Limit

FCC

§15.247(a)(1)(iii), Frequency hopping systems in the 2 400-2 483.5 № band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

IC

RSS-247 Issue 1, 5.1(4), FHSs operating in the band 2 400-2 483.5 Mz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

6.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705.

The device supports Adaptive Frequency Hopping and will use a minimum of 20 channels of the 79 available channels.

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer.
- 2. Set spectrum analyzer Start = 2 400 Mb, Stop = 2 441.5 Mb, Sweep=sweep and Start = 2 441.5 Mb, Stop = 2 483.5 Mb, Sweep = auto, Detector = peak.
- 3. Set the spectrum analyzer as RBW, VBW = 500 klb.
- 4. Max hold, allow the trace to stabilize and count how many channel in the band.

Report Number: F690501/RF-RTL010316 Page: 60 of 77

6.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity % R.H. : 47

Operation Mode	Number of Hopping Frequency	Limit
GFSK	79	≥ 15
8DPSK	79	≥ 15

Remark:

Measurement is made with EUT operating in hopping mode between 79 channels providing a worse case scenario as compared to AFH mode hopping between 20 channels.

Report Number: F690501/RF-RTL010316 Page: 61 of 77

Operating Mode: GFSK

Report Number: F690501/RF-RTL010316 Page: 62 of 77

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 63 of 77

7. Time of Occupancy (Dwell Time)

7.1. Test Set up

7.2. Limit

FCC

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400-2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

IC

RSS-247 Issue 1, 5.1(4), FHSs operating in the band 2 400-2 483.5 Mb shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

A period time = 0.4 (s) * 79 = 31.6 (s)

*Adaptive Frequency Hopping

A period time = 0.4 (s) * 20 = 8 (s)

7.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 4. The Bluetooth has 3 type of payload, DH1, DH3, DH5 and 3DH1, 3DH3, 3DH5. The hopping rate is insisted of 1 600 per second.

Report Number: F690501/RF-RTL010316 Page: 64 of 77

The EUT must have its hopping function enabled. Use the following spectrum analyzer setting:

Span = zero span, centered on a hopping channel

RBW = 1 Mbz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector = peak

Trace = max hold

Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation repeat this test for each variation.

Report Number: F690501/RF-RTL010316 Page: 65 of 77

7.4. Test Results

Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H.

7.4.1. Packet Type: DH1, 3DH1

Operation Mode	Frequency (썐)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
GFSK	2 441	0.38	121.60	400
8DPSK	2 441	0.39	124.80	400

Note:

Time of occupancy on the TX channel in 31.6 sec

In case of GFSK: $0.38 \times \{(1\ 600 \div 2) / 79\} \times 31.6 = 121.60 \text{ ms}$ In case of 8DPSK: $0.39 \times \{(1\ 600 \div 2) / 79\} \times 31.6 = 124.80 \text{ ms}$

Page: Report Number: F690501/RF-RTL010316 66 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 67 of 77

7.4.2. Packet Type: DH3, 3DH3

Operation Mode	Frequency (쌘)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (IIS)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
GFSK	2 441	1.64	262.40	400
8DPSK	2 441	1.65	264.00	400

Note:

Time of occupancy on the TX channel in 31.6 sec

In case of GFSK: $1.64 \times \{(1\ 600 \div 4) / 79\} \times 31.6 = 262.40 \text{ ms}$ In case of 8DPSK: $1.65 \times \{(1\ 600 \div 4) / 79\} \times 31.6 = 264.00 \text{ ms}$

Report Number: F690501/RF-RTL010316 Page: 68 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 69 of 77

7.4.3. Packet Type: DH5, 3DH5

Operation Mode	Frequency (쌘)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 31.6 sec (IIS)	Limit for time of occupancy on the Tx Channel in 31.6 sec (ms)
GFSK	2 441	2.89	308.27	400
8DPSK	2 441	2.90	309.33	400

Note:

Time of occupancy on the TX channel in 31.6 sec

In case of GFSK: $2.89 \times \{(1\ 600 \div 6) / 79\} \times 31.6 = 308.27 \text{ ms}$ In case of 8DPSK: $2.90 \times \{(1\ 600 \div 6) / 79\} \times 31.6 = 309.33 \text{ ms}$

Report Number: F690501/RF-RTL010316 Page: 70 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 71 of 77

7.4.4. Packet Type: DH1, 3DH1 (Adaptive Frequency Hopping)

Operation Mode	Frequency (Mb)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 8 sec (ms)	Limit for time of occupancy on the Tx Channel in 8 sec (ms)
GFSK	2 441	0.38	60.80	400
8DPSK	2 441	0.39	62.40	400

Note:

Time of occupancy on the TX channel in 8 sec

In case of GFSK: $0.38 \times \{(800 \div 2) / 20\} \times 8 = 60.80 \text{ ms}$ In case of 8DPSK: $0.39 \times \{(800 \div 2) / 20\} \times 8 = 62.40 \text{ ms}$

Page: 72 Report Number: F690501/RF-RTL010316 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 73 of 77

7.4.5. Packet Type: DH3, 3DH3 (Adaptive Frequency Hopping)

Operation Mode	Frequency (Mb)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 8 sec (ms)	Limit for time of occupancy on the Tx Channel in 8 sec (ms)
GFSK	2 441	1.64	131.20	400
8DPSK	2 441	1.64	131.20	400

Note:

Time of occupancy on the TX channel in 8 sec

In case of GFSK and 8DPSK: $1.64 \times \{(800 \div 4) / 20\} \times 8 = 131.20 \text{ ms}$

Report Number: F690501/RF-RTL010316 Page: 74 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 75 of 77

7.4.6. Packet Type: DH5, 3DH5 (Adaptive Frequency Hopping)

Operation Mode	Frequency (쌘)	Dwell Time (ms)	Time of occupancy on the Tx Channel in 8 sec (ms)	Limit for time of occupancy on the Tx Channel in 8 sec (ms)
GFSK	2 441	2.89	154.13	400
8DPSK	2 441	2.89	154.13	400

Note:

Time of occupancy on the TX channel in 8 sec

In case of GFSK and 8DPSK: $2.89 \times \{(800 \div 6) / 20\} \times 8 = 154.13 \text{ ms}$

Report Number: F690501/RF-RTL010316 Page: 76 of 77

Operating Mode: GFSK

Operating Mode: 8DPSK

Report Number: F690501/RF-RTL010316 Page: 77 of 77

8. Antenna Requirement

8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

8.2. Antenna Connected Construction

Antenna used in this product is chip type with gain of -0.10 dB i.

- End of the Test Report -