Design and Analysis of Algorithms

L31: Multi-Stage Graphs

Dynamic Programming

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec 5.1, 5.2, 5.4, 5.8, 5.9
- Text book 1: Levitin
 - Sec 8.2-8.4
- http://www.gdeepak.com/course/adslidesold/26ad.pdf
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/ MIT1_204S10_lec13.pdf
- RI: Introduction to Algorithms
 - Cormen et al.

Consider Restaurant Ordering

- Food order and serving
 - Soups
 - Starters
 - Main course (curries)
 - Breads/Rice
 - Sweets
 - Mouth freshners
- Each happens in stages
 - Want meal with minimum cost w/ 1 item in each stage
 - Have multiple choices in each stage.
 - Draw a multi-stage graph

Multi-Stage Graph: Restaurant

Simple Multi-Stage Graph

• Find shortest path from s to t

– Q: Does Greedy approach work?

Multistage Graph: Shortest Path

- Find shortest path from s to t
 - Greedy Approach: $s \rightarrow A \rightarrow D \rightarrow t = 1+5+20=26$
 - Shortest path: $s \rightarrow C \rightarrow F \rightarrow t = 7+3+5=15$

Dynamic Programming: Forward Approach


```
d(s,t)=min{1+d(A,t), 3+d(B,t), 7+d(C,t)}
d(A,t)=min{5+d(D,t),10+d(E,t)}=min(25,24)=24
d(B,t)=min(8+d(D,t),6+d(E,t),15+d(F,t))
=min{8+20,6+14,15+5)=20
d(C,t)=min{4+d(E,t),3+d(F,t)}=min{18,8}=8
d(s,t)=min{1+24, 3+20, 7+8}=15
```

Dynamic Programming: Backward Approach


```
d(s,t) = \min\{d(s,D) + 20, d(s,E) + 14, d(s,F) + 5\}
d(s,D) = \min\{d(s,A) + 5, d(s,B) + 8\} = \min(1+5,3+8) = 6
d(s,E) = \min(d(s,A) + 10, d(s,B) + 6, d(s,C) + 4)
= \min\{1+10,3+6,7+4\} = 9
d(s,F) = \min\{d(s,B) + 15, d(s,C) + 3\} = \min\{3+15,7+3\} = 10
d(s,t) = \min\{6+20, 9+14, 10+5\} = 15
```

Dynamic Programming: Applications

- Resource allocation problem
- Consider the following scenario:
 - A team of 3 students are asked to complete 4 assignments.
 - Any student can choose to complete all 4 or none.
 - At a time, only one person will do assignment.
 - First P₁, then P₂, and then P₃ (in that order)
 - However, no assignment is to be done by 2 students
 - Duplicate (wasted) efforts to be avoided
 - All the 4 assignments need to be completed.
 - Depending upon assignments completed by a students, different marks are awarded as shown next

• Marks evalutation for assignment done by a person

Person → Assignments↓	ΡI	P2	P3
I	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

 Q: How to allocate assignments to team members so as to get maximum marks

- Possible allocations...
- P₁: 0As:
 - P₂:4A, P₃:0A:
 - Marks:0+10+0=10
 - P₂:3A, P₃:1A,
 - Marks: 0+8+5=13
 - P₂:2A, P₃:2As,
 - Marks: 0+7+5=12
 - P₂:1A, P₃:3As,
 - Marks:0+4+6=10
 - P₂:0A, P₃:4As,
 - Marks:0+0+6=6

P → A↓	PI	P2	P3
_	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations...
- P₁: 1A:
 - P₂:3A, P₃:0A,
 - Marks: 2+8+0=10
 - P₂:2A, P₃:1As,
 - Marks: 2+7+5=14
 - P₂:1A, P₃:2As,
 - Marks:2+4+5=11
 - P₂:0A, P₃:3As,
 - Marks:2+0+6=8

P → A↓	ΡI	P2	P3
I	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations...
- P₁: 2As.
 - P₂:2A, P₃:0A:
 - Marks:5+7+0=12
 - P₂:1A, P₃:1A,
 - Marks: 5+4+5=14
 - P₂:0A, P₃:2As,
 - Marks: 5+0+5=10

P → A↓	ΡI	P2	P3
I	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations
- P₁: 3As
 - $-P_2:1A, P_3:0A:$
 - Marks=7+4+0=11
 - $-P_2:0A, P_3:1A:$
 - Marks=7+0+5=12
- P₁:4As:
 - $-P_2:0A, P_3:0A$
 - Marks=8

P → A↓	ΡI	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Construction of Multistage graph
- The graph has 4 stages
 - Stage 1: Start
 - Stage 2: P₁ does some assignments
 - Stage 3:P₂ some remaining assignments
 - Stage 4:P₃ all remaining assignments
 - The end stage: all assignments are done
- From each stage to next stage
 - Draw edge with allowed possibilities
- Each stage (except start, end) has 5 vertices
 - V(i,j): Person P_i, j num of assignments done.
 - $1 \le i < 3$; and $0 \le j \le 4$
- Start, end stage has one vertex each

P → A↓	ΡI	P2	P3
I	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

Q: Find max marks using DP Forward approach?

Q: Find max marks using DP Backward approach?

DP Forward approach: Steps

- Generate multi-stage graph in forward direction
 - Start at source node s
 - Compute V(i,j) and edge cost as graph is built
 - Keep track of predecessor P(i) of each node that yields highest V(i, j)
 - Eliminates non-optimal subsequences (pruning)
 - Eliminate infeasible edges/nodes as graph is built
 - Construct solution by tracing back from sink t to source s using predecessor P(i) variable

DP Forward approach: Algo

```
Algo: FGraph (Graph G, int k, int p[])
// i/p k-stage graph n vertices indexed in order of stages.
// edge C(i,j) is cost of edge V_{i} \rightarrow V_{j}
// p[1:k] is a minimum cost path
 float cost[maxsize]; int d[maxsize], r;
 cost[n]=0.0
 for j=n-1 to 1 // compute cost[j]
    Let r be a vertex such that \nabla_{i} \rightarrow \nabla_{r} is an edge, and
    c(j,r) + cost[r] is minimum
    cost[j] = c[j,r) + cost(r)
    d[j]=r
 p[1]=1; p[k]=n;
 for j=2 to k-1
    p[j] = d[p[j-1]]
```

Exercise: Find min cost path

Summary

- Multi stage graph
- Forward approach
- Backward approach