Eqn Ps = spec_power(dBm(fs(RX_in[::,::,1],,,,,"Kaiser")),-1e5,1e5) - WindowGain

Eqn Pn = wtodbm(dbmtow(spec_power(dBm(fs(RX_in[::,::,1],,,,,"Kaiser")),-4e5,-3e5)) + dbmtow(spec_power(dBm(fs(RX_in[::,::,1],,,,,"Kaiser")),3e5,4e5))) - WindowGain

Eqn KaiserNENBW = 1.653 Eqn WindowGain = 10*log10(KaiserNENBW)

Egn MeanPn = mean(Pn)

gn SNR = Ps - MeanPn

Eqn BER = real(max(var("Count-")[::,::,0])+max(var("Count+")[::,::,0])) / Bits[0,0]

Eqn Averaged_SNR = interpolate("linear",SNR,1,[min(R)::1::max(R)])

Link budget simulation results

R	Ps	Pn	BER	SNR	MeanPn
100.000000 200.000000	-70.029760 -82.069408	-117.829843 -117.769187	0.019600 0.019300	47.769755 35.730107	-117.799515