

Podstawy programowania (wykład)

Wprowadzenie Elementarz języka C – część 1

Tematyka wykładu

- Wprowadzenie. Elementarz języka C część 1
- 2. Elementarz języka C część 2
- 3. Instrukcje
- 4. Operatory
- 5. Tablice
- Wskaźniki
- 7. Łańcuchy znakowe
- 8. Struktury i unie. Pola bitowe
- 9. Funkcje część 1
- 10. Funkcje część 2 (m.in. makrodefinicje)
- 11. Rekurencja
- 12. Obsługa plików
- 13. Dynamiczne zarządzanie pamięcią
- 14. Omówienie zadań na zaliczenie
- 15. Zaliczenie wykładu

Literatura i źródła

- 1. R. Jones, I. Stewart: "Sztuka programowania w języku C", WNT, Warszawa 1992. (dla bardzo początkujących w programowaniu)
- 2. G. Perry, D. Miller: "*Język C. Programowanie dla początkujących. Wydanie III*", Helion, Gliwice 2016. (dla początkujących w programowaniu)
- 3. B. Kernighan, D. Ritchie: "*Język ANSI C*", WNT, Warszawa 2001 ("*Język ANSI C. Programowanie. Wydanie II*", Helion, Gliwice, 2010).
- 4. S. Prata: "Język C. Szkoła programowania", Helion, Gliwice 2016.
- 5. M. Tłuczek: "*Programowanie w języku C. Ćwiczenia praktyczne. Wydanie II*", Helion, Gliwice 2011.
- 6. C. Delannoy: "Ćwiczenia z języka C", WNT, Warszawa 1993.
- 7. C. Tondo, S. Gimpel: "Język ANSI C. Ćwiczenia i rozwiązania", WNT, Warszawa 2004. (rozwiązania zadań z podręcznika nr 3)
- 8. M. Kotowski: "Wysokie C", Lupus, Warszawa 1998. (dla zaawansowanych)
- 9. opis biblioteki standardowej: https://cplusplus.com/reference/
- 10. opis biblioteki standardowej: https://en.cppreference.com/w/c/

Wprowadzenie

- Dlaczego język C?
- Powstanie języka C
- Języki programowania a język C
- Język C i C++
- Popularność języka C
- Standardy języka C

Dlaczego język C?

Strona 5

Dlaczego warto poznać język programowania C?

- podstawa dla innych języków, które są na nim oparte
 (C++, Java, C#) podobna składnia, instrukcje, operatory
- ścieżka nauki na studiach: C => C++ => Java => C#
- język wysokiego poziomu, ale "bliski" sprzętowi (middle-level language)
- kompilatory C tworzą wydajny, szybki kod wynikowy
- szerokie zastosowania (komputery, mikrokontrolery, systemy wbudowane)
- obecnie nadal jeden z najpopularniejszych języków programowania (indeks TIOBE, indeks PYPL)

Powstanie języka C

Dennis Ritchie i Ken Thompson, komputer PDP-11, 1972 rok

Powstanie języka C

Strona 7

Rozwijany w latach: 1969-1973.

Zaprojektowany w 1972 roku w Bell Laboratories (twórca Dennis Ritchie). Zrealizowany pod systemem operacyjnym UNIX dla komputera DEC PDP-11.

Początkowo był językiem oprogramowania systemowego (powstał jako język do programowania systemu UNIX). Szybko zyskał popularność jako uniwersalny język programowania ogólnego przeznaczenia.

Powstanie języka C

Strona 8

Zaglądamy do muzeum...

Źródło zdjęcia: Shieldforyoureyes Dave Fischer / Retro-Computing Society of Rhode Island institution QS:P195,Q18857750 (https://commons.wikimedia.org/wiki/File:Pdp-11-70-panel.jpg), "Pdp-11-70-panel", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Języki programowania a język C

Języki C i C++

Strona 10

C++ to nadzbiór języka C. C to podzbiór języka C++.

Każdy program w języku C jest programem w języku C++.

Rozszerzenia nieobiektowe C++

Strona 11

Elementy nieobiektowe języka C++:

Czasami "przemycane" do programów tworzonych w języku C, co wymaga użycia kompilatora C++

❖ Nowe mechanizmy WE/WY: strumienie cout, cin

de facto to obiekty

- Nowy symbol komentarzy: // (komentarz wierszowy)
- Dowolne rozmieszczenie deklaracji
- ❖ Wyrażenia arytmetyczne w inicjalizacji: int a = 2*n-1;
- Przekazywanie argumentów do funkcji przez referencję

```
void zwieksz(int &a) { a++; }
```

Argumenty domniemane funkcji

```
void ustaw(int x, int y = 2, int z = 4)
```

- Przeciążanie funkcji
- Dynamiczne zarządzanie pamięcią: new, delete
- Funkcje otwarte inline

Strona 12

www.tiobe.com

www.tiobe.com/tiobe-index/

Indeks TIOBE określa popularność języków programowania.

Jest tworzony na podstawie liczby zapytań zawierających nazwę języka, zadawanych przez użytkowników w wyszukiwarkach internetowych.

Język	TIOBE Index (październik 2020)
С	16,95%
Java	12,56%
Python	11,28%
C++	6,94%
C#	4,16%

Język programowania	TIOBE Index (wrzesień 2022)
Python	15,74%
С	13,96%
Java	11,72%
C++	9,76%
C#	4,88%

Źródło danych: www.tiobe.com/tiobe-index/, wrzesień 2022

Strona 13

TIOBE Programming Community Index

Source: www.tiobe.com

Źródło rysunku: www.tiobe.com/tiobe-index/, wrzesień 2022

Strona 14

Średnie miejsca zajmowane przez poszczególne języki w ciągu roku

Programming Language	2022	2017	2012	2007	2002	1997	1992	1987
Python	1	5	8	7	12	28	-	-
С	2	2	1	2	2	1	1	1
Java	3	1	2	1	1	16	-	-
C++	4	3	3	3	3	2	2	6
C#	5	4	4	8	14	-	-	-
Visual Basic	6	14	-	-	-	-	-	-
JavaScript	7	8	10	9	8	24	-	-
Assembly language	8	10	-	-	-	-	-	-
SQL	9	-	-	-	7	-	-	-
PHP	10	7	6	5	6	-	-	-
Prolog	24	32	33	27	17	21	12	3
Lisp	33	31	13	16	13	10	4	2
Pascal	270	114	16	22	99	9	3	5
(Visual) Basic	-	-	7	4	4	3	6	4

Źródło danych: www.tiobe.com/tiobe-index/, wrzesień 2022

Strona 15

Worldwide	Worldwide, Oct 2022 compared to a year ago:				
Rank	Change	Language	Share	Trend	
1		Python	28.3 %	-1.8 %	
2		Java	17.2 %	-0.9 %	
3		JavaScript	9.69 %	+0.4 %	
4		C#	7.2 %	-0.2 %	
5		C/C++	6.45 %	-0.5 %	
6		PHP	5.39 %	-0.9 %	
7		R	4.03 %	+0.3 %	
8	<u> ተ</u>	TypeScript	2.71 %	+1.1 %	
9	V	Objective-C	2.16 %	+0.2 %	
10	<u>ተ</u> ተ	Go	2.08 %	+0.5 %	
11	V	Swift	2.05 %	+0.4 %	
12	$\downarrow \downarrow \downarrow \downarrow$	Kotlin	1.81 %	+0.1 %	
13	<u> ተ</u>	Rust	1.57 %	+0.8 %	
14	V	Matlab	1.52 %	+0.1 %	
15		Ruby	1.13 %	+0.1 %	

Indeks PYPL

PopularitY of Programming Language

Źródło danych: https://pypl.github.io/PYPL.html, wrzesień 2022

Standardy języka C

Nazwa standardu	Rok	Opis	
pierwsza wersja	1972	powstanie języka C (następca języka B z 1969)	
K&R C	1978	standard Kernighan i Ritchie z podręcznika "C Programming Language" (wydanie polskie "Język C")	
ANSI C (C89)	1989	ANSI X3.159-1989 "Programming Language C"	
ISO C (C90)	1990	ANSI C jako norma ISO/IEC 9899:1990	
C99	1999	norma ISO/IEC 9899:1999	
C11	2011	norma ISO/IEC 9899:2011	
C17	2017-18	korekta C11, norma ISO/IEC 9899:2018	
C2x		nowy standard planowany do ogłoszenia	

Elementarz języka C

Strona 17

Część 1 – zagadnienia podstawowe

- Nazwy (identyfikatory)
- Słowa kluczowe
- Komentarze
- Typy danych
- Deklaracje zmiennych i stałych
- Instrukcje
- Operatory

zapowiedź

- Priorytety operatorów
- Wyrażenia arytmetyczne
- Wyrażenia logiczne

Nazwy (identyfikatory)

Strona 18

Poprawna nazwa w języku C to ciąg znaków składający się z liter, cyfr lub znaku podkreślenia _ (*underline*), rozpoczynający się od litery (ewentualnie od znaku _).

pole all X_l obwod_kola
_wynik 2litry obwód_koła

UWAGA: w języku C rozróżniane są duże i małe litery.
Dlatego:

liczba LICZBA LiczbA

to w języku C trzy różne nazwy.

Słowa kluczowe

Strona 19

Słowa kluczowe w standardzie ANSI C / ISO C

auto	
break	
case	
char	
const	
continue	
default	
do	
double	

else
enum
extern
float
for
goto
if
int
long

register
return
short
signed
sizeof
static
struct
switch
typedef

union
unsigned
void
volatile
while

poza standardem

Komentarze

Strona 20

Komentarz to tekst opisujący kod źródłowy programu. Komentarze są ignorowane przez kompilator podczas kompilacji kodu. Można je również stosować do "wyłączania" fragmentów kodu z działania.

W języku ANSI C komentarz rozpoczyna się sekwencją znaków /* i kończy sekwencją znaków */.

Pomiędzy tymi znakami może znajdować się dowolna liczba znaków lub wierszy komentarza.

Przykłady:

```
/* Program rozwiazuje rownanie kwadratowe */
/* To jest komentarz
    umieszczony
    w kilku wierszach */
d = b*b - 4*a*c; /* komentarz na końcu wiersza */
obwod = 2 * pi /* stala PI */ * r;
```

Strona 21

Dane w programach przechowywane są w postaci zmiennych i stałych.

W języku C wyróżniamy następujące typy proste (wbudowane w język):

- stałoprzecinkowe: char, short, int, long, long long
- zmiennoprzecinkowe. float, double, long double
- typ znakowy char

typy arytmetyczne (liczbowe)

od C99

- typ nieokreślony void
- brak typu danych dla wartości logicznych
 (stosuje się typ int, prawda to wartość niezerowa, fałsz to wartość
 zerowa),
 typ logiczny bool przyjmujący wartości true, false dostępny od
 standardu C99 (biblioteka stdbool.h)
- brak typu danych dla łańcuchów znakowych (napisów)
 (stosuje się tablice znakowe lub typ wskaźnikowy char*)

Strona 22

Typy stałoprzecinkowe

typ	liczba bitów N	zakres wartości -2 ^{N-1} 2 ^{N-1} -1	
char	8	-128127	
short	16	-32 76832 767	
i t-	16	-32 76832 767	
int 32	-2 147 483 6482 147 483 647		
long	32	-2 147 483 6482 147 483 647	
long long od C99	64	-9 223 372 036 854 775 808 9 223 372 036 854 775 807	

Typ short nazywany jest także short int.

Typ long nazywany jest także long int.

Typ long long nazywany jest także long long int.

Strona 23

Typy stałoprzecinkowe

Domyślnie, wszystkie typy stałoprzecinkowe opisują wartości ze znakiem (signed) reprezentowane binarnie w kodzie U2.

Użycie kwalifikatora unsigned oznacza wartości bez znaku reprezentowane binarnie w naturalnym kodzie dwójkowym NKB.

typ	liczba bitów N	zakres wartości 02 ^ℕ −1
unsigned char	8	0255
unsigned short	16	065 535
	16	065 535
unsigned int	32	04 294 967 295
unsigned long	32	04 294 967 295
unsigned long long	64	0 18 446 744 073 709 551 615

Strona 24

Typy zmiennoprzecinkowe

typ	liczba bitów	liczba cyfr znaczących	zakres wartości
float	32	7	$3.4*10^{-38} \dots 3.4*10^{38}$
double	64	15	1.7*10 ⁻³⁰⁸ 1.7*10 ³⁰⁸
long double	80	19	3.4*10 ⁻⁴⁹³² 1.1*10 ⁴⁹³²

Wszystkie typy zmiennoprzecinkowe opisują wartości ze znakiem.

Nie jest dozwolone stosowanie kwalifikatorów signed i unsigned.

Deklaracje zmiennych i stałych

Strona 25

Deklaracje zmiennych i stałych

Deklaracja:

- nadaje nazwę,
- określa typ przechowywanej wartości,
- rezerwuje odpowiedni obszar pamięci.

```
Deklaracja zmiennej:
```

```
char znak;
int i, j, k;
float x, y;
```

Inicjalizacja zmiennej:

```
char znak = 'X';
int i = 0;
float pi = 3.14;
```

Deklaracja stałej:

```
const char LITERA = 'a';
const int N = 10;
const float PI = 3.14;
```

Deklaracje zmiennych i stałych

Strona 26

Rodzaje zmiennych

Zmienne globalne (tworzone na zewnątrz funkcji) są dostępne w całym programie od miejsca deklaracji. Są automatycznie zerowane.

Zmienne lokalne (tworzone wewnątrz funkcji) są tworzone tylko na czas działania funkcji (po jej wykonaniu są usuwane), są dostępne tylko wewnątrz funkcji. Po utworzeniu przyjmują przypadkowe wartości.

W deklaracjach zmiennych możliwe jest stosowanie następujących kwalifikatorów umieszczanych przed nazwą typu zmiennej:

Instrukcje

```
prosta
                             Cecha języka C:
                           mały zestaw instrukcji

❖ złożona { }

pusta ;
warunkowa prosta if
  i warunkowa złożona if-else
wyboru switch
iteracyjne (petle): for, while, do-while
przerwania pętli break
kontynuacji pętli continue
skoku goto
powrotu z funkcji return
```

Strona 28

Operatory

Zestaw operatorów języka C

Cecha języka C: rozbudowany zestaw operatorów

- jednoargumentowe
- dwuargumentowe
- trójargumentowy
- wieloargumentowy ()

sizeof

```
arytmetyczne
zwiększania i zmniejszania
relacji
logiczne
               & &
bitowe
                &
                                   <<
przypisania
                                                   %=
                =3
                                   <<=
```

inne

Operatory

Strona 29

Priorytety operatorów

```
()
           ->
                                           sizeof
                                      &
3.
              왕
     +
                      przedrostkowe
                                       jednoargumentowe
5.
     <<
          >>
          <=
                      >=
8.
     &
10.
11.
     &&
12.
13.
                                           <<= >>=
15.
```

Kolejność wykonywania działań

Strona 30

$$\frac{a+b}{}$$

ŹLE

$$c-d$$

$$(a + b) / (c - d)$$

DOBRZE

Kolejność wykonywania działań

Wyrażenia arytmetyczne

Strona 32

Dzielenie całkowite "obcina" część ułamkową.

```
UWAGA: 9 / 2 = 4

9/2.0 = 4.5

9.0/2 = 4.5

9.0/2.0 = 4.5
```

```
int a = 9, b = 2;

float c;

c = a/b; 4.0

Rzutowanie typu c = (float)a/b; 4.5

(type cast) c = a/(float)b; 4.5

= \frac{a+b}{2} c = (a + b)/2.0;
```

Wyrażenia logiczne

Strona 33

czy a jest równe b?

$$a = = b$$

czy x jest większe od y i jednocześnie a jest różne od b?

$$x > y & a != b$$

łączenie warunków: