Lecture 7 Naive Bayes and Sentiment Classification

CS 6320

Naive Bayes and Sentiment Classification

- Classification is a basic activity of human life.
 Recognize and classify. Examples: classify people, images, voices, assigning grades, emails, etc.
- Text classification/categorization is the task of assigning a label (category)
 to a document; it is a basic NLP capability.
- Sentiment analysis- is an example of text categorization it assigns a positive or negative label to text.

Examples: Product reviews, movie review, book review, restaurant reviews, political commentaries, etc.

Other text classification problems

- Spam detection
- Language identification

Naive Bayes and Sentiment Classification

Example

- + ...richly applied satire, and some great plot twists
- _ It was pathetic. The worst part about it was the boxing scenes...
- + ...awesome caramel sauce and sweet toasty almonds. I love this place!
- _ ...awful pizza and ridiculously overpriced...

Approach to classification: supervised machine learning

■ Take an input x and a fixed set of output classes Y = y, y_2 ,..., y_M and return a predicted class $y \in Y$.

For texts: c is a class, (instead of y) and d – document.

Training examples $(d_1, c_1), (d_2, c_2) \dots (d_N, C_N)$

Goal: classify a new document d to its correct class $c \in C$.

Probabilistic classifiers

Generation classifiers — given an observation return the class most likely to have generated the observation.

Example: Naive Bayes

Discriminative classifiers – learn what features from input are most useful to discriminate between possible classes.

Example: logistic regression

Naive Bayes Classifiers

• Given a document d and set of classes $c \in C$, returns

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c) P(c)}{P(d)}$$

$$= \underset{c \in C}{\operatorname{argmax}} P(d|c) P(c)$$

$$\uparrow \qquad \uparrow$$

$$\underset{likelihood prior probability}{\uparrow} probability$$

Naive Bayes Classifiers

• A document d is represented by a set of features $f_1, f_2, ..., f_n$

$$\hat{c} = \operatorname{argmax} P(f_1, f_2, \dots, f_n | c) P(c)$$

Naive Bayes assumption: Features are independent, ie: $P(f_i|c)$ are independent.

$$P(f_1, f_2, ..., f_n | c) = P(f_1 | c) P(f_2 | c) ... P(f_n | c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{f \in F} P(f|c)$$

Naive Bayes Classifiers

- Bag -of-words approach: Features use words.
- Words are specified by their positions in the document; w_i word at position i

$$C_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c) \prod_{i \in positions} P(w_i|c)$$

Use log space to avoid underflow and increase speed.

$$c_{NB} = \operatorname*{argmax}_{c \in \mathcal{C}} \left[log P(c) + \sum_{ie \ positions} \log P(w_i | c) \right]$$

Training the Naïve Bayes Classifiers

• How to learn P(c) and $P(f_i|c)$?

 N_c — percentage of documents in training set with class c.

 N_{doc} - total number of documents.

$$\widehat{P}(c) = \frac{N_c}{N_{doc}}$$

 $\widehat{P}(w_i|c) = \frac{count(w_i,c)}{\sum_{w \in V} count(w,c)}$

V - vocabulary for all classes.

Example:
$$\hat{P}(fantastic|+) = \frac{count(fantastic,+)}{\sum_{w \in V} count(w,+)}$$

Use Laplace smoothing

$$\widehat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} count(w, c) + V}$$

Example

		Cat	Documents				
Training		-	just plain boring				
		-	entirely predictable and lacks energy				
		-	no surprises and very few laughs				
		+	very powerful				
		+	the most fun film of the summer				
2	Test	?	S=predictable with no fun				
$P(-) = \frac{3}{5}$		P($(+) = \frac{2}{5}$				
$P("predictable" -) = \frac{1+1}{14+20}$ $P("predictable" +) = \frac{0+1}{9+20}$							
P("no" -)	$=\frac{1+1}{14+20}$	•	$P("no" +) = \frac{0+1}{9+20}$				
$P("fun" -) = \frac{0+1}{14+20}$ $P("fun" +) = \frac{1+1}{9+20}$							
$P(-)P(S -) = \frac{3}{5}x \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$							
P(+)P(S +	$-) = \frac{2}{5}x^{\frac{1}{2}}$	29 ³	$\frac{2}{3} = 3.2 \times 10^{-5}$				
_							

▶ Pick Negative class

Improvements

Fix negations
didn't like this movie
didn't becomes Not_like,
Not this,

 Sentiment lexicons – list of words that are pre-annotated with positive and negative sentiment.

Not_movie w

Examples: MPQA subjectivity lexicon; 6885 words, 2718 positive and 4912 negative; with strong or weak bias.

- + admirable, beautiful, confident, dazzling, great...
- awful, bad, cheat, deny, envious, foul, hate...

Naive Bayes as a Language Model

- A language model predicts the next word after seeing a string of words; and calculates probability of strings.
- Naïve Bayes assigns a probability to each word P(word|c). It can also assign a probability to each sentence

$$P(s \mid c) = \prod_{i \in positions} P(w_i \mid c)$$

	P(w +)	P(w -)
I	0.1	0.2
love	0.1	0.001
this	0.01	0.01
fun	0.05	0.005
film	0.1	0.1

$$P("I love this fun film"|+) = 0.1x0.1x0.01x0.05x0.1 = 0.0000005$$

$$P("I love this fun film"|-) = 0.2x0.001x0.01x0.005x0.1 = 0.000000001$$

 $P(s|+) > P(s|-)$

Evaluation: Precision and Recall

$$Precision = \frac{true \ positives}{true \ positives + false \ positives}$$

$$Recall = \frac{true\ positives}{true\ positives + false\ negatives}$$

F - measure

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

$$\beta > 1$$
 favors recall $\beta < 1$ favors precision

More than two classes

- Two Possibilities:
 - 1. Multi-label classification (any-of)
 - Each document can be assigned more than one label
 - Build separate binary classifiers for each class c, train on positive examples labeled c and negative examples not labeled c.
 - For a test document d, each classifier makes its decision independently, and multiple labels can be assigned to d.

More than two classes

- 2. Multinomial classification (*one-of*)
 - Classes are mutually exclusive
 - Build separate binary classifiers
 - For a test document, run all classifiers and choose the label from the classifier with the highest score.

Example: 3-way one-of email classification

gold labels								
		Urgent	Normal	Spam				
System	urgent	8	10	1	$precision_u = \frac{8}{8 + 10 + 1}$			
output	normal	5	60		$precision_n = \frac{60}{5 + 60 + 50}$			
	spam	3	30	200	$precision_s = \frac{200}{3 + 30 + 200}$			
		recallu= $\frac{8}{8+5+3}$	recalln= 60 10 + 60 + 30	recalls= 200 $1 + 50 + 200$				

Example: 3-way one-of email classification

