ПРОРАЧУН ХИДРАУЛИЧНОГ ЦИЛИНДРА

Хидраулично постројење се састоји од:

- А електромотор
- В пумпа
- С резервоар
- D пречистач
- Е вентил сигурности
- F разводник
- 1 радни цилиндар
- 2 клипњача

Шема уљно - хидрауличне инсталације

Израчунати димензије хидрауличног цилиндра на основу радних параметара:

максимална сила на клипњачи:		$F_1 =$	470	KN
сила при увлачењу клипњаче:		$F_2 =$	330	KN
максимални радни притисак:		<i>p</i> =	200	bar
пробни притисак:	$p_{\rm max} =$	250	bar	
дозвољено температурно подручје:		$-20^{\circ} C$	до	60° C
маскимална брзина клипа:		$v_{\rm max} =$	0.2	$\frac{m}{s}$
ход клипа:		H =	2550	mm
пречник цилиндра:		$D_C =$	200	mm
пречник клипњаче:	d_{i}	$\frac{D_C}{2} = \frac{D_C}{2}$	100	mm
проток уља		Q =	24	$\frac{l}{\min}$
материјал цилиндра:		Č.1530		
класа квалитета завареног шава (ξ_1):	друга		

Решење задатка:

потрено је:

- 1. прорачунати притисак за увлачење извлачење клипњаче
- 2. израчунати ефективну и стварну снагу при извлачењу клипњаче
- 3. изабрати пумпни агрегат и електромотор
- 4. изабрати уље
- 5. прорачунати дебљину зида цилиндра
- 6. нацртати радионички цртеж цилиндра
- 7. остале параметре усвајати према препорукама, конструктивно
- 8. приложити све потребне табеле и дијаграме коришћене при прорачуну

притисак потребан за силу F_1

$$p_1 = \frac{F_1}{A_k} = 14960564.65 \frac{N}{m^2}$$

$$A_k = \frac{{D_c}^2 \cdot \pi}{4} = 0.031415927 \;\; m^2$$
 површина чела клипа

јединица за притисак је Pascal (Pa) тј: $1\frac{N}{m^2} = 1Pa$

Tj:
$$1\frac{N}{m^2} = 1Pa$$

користи се јединица за притисак (bar) тј: $16ap = 10^5 \cdot Pa$ па се може писати:

$$p_1 = 149.6056 \ bar$$

тј:
$$p_1 pprox$$
 150 bar

притисак потребан за силу F_{2}

$$A_{k2} = \frac{\left(D_c^2 - d_{kl}^2\right) \cdot \pi}{4} = 0.023562 \ m^2$$

ефективна снага у смеру извлачења клипа:

$$P=rac{A}{t}=rac{F\cdot s}{t}=F\cdot v=F\cdot v\cdot rac{A}{A}=rac{F}{A}\cdot v\cdot A=p\cdot Q$$
 The $P=p_1\cdot Q=$ 6000 $rac{N\cdot m}{s}$

морамо претворити јединицу за проток:

$$Q=$$
 24 $\frac{l}{\min}$ може се усвојити да је: $1l=$ 1 dm^3

где важи да је: 1 m = 10 dm

тј:
$$1m^3=$$
 1000 dm^3 па је проток: $Q=\frac{24\cdot 10^{-3}}{60}\frac{m^3}{s}=$ 0.0004 $\frac{m^3}{s}$

Због губитака услед трења и локалних губитака при струјању, стварна снага се мора увећати за вредност укупног степена искоришћења:

по услову задатка је дефинисан максималан пробни притисак:

$$p_{\rm max} = 250 \ bar$$

па из Т 8.3, стр 9 копије које је професор дао на часу добијамо да је за задани маскимални притисак најподеснија <mark>зупчаста</mark> пумпа прецизне израде, чији је укупни степен корисности:

$$\eta = 0.95$$
 усвојено

Можемо израчунати потребну стварну снагу у цилиндру:

$$P_1 = \frac{P}{n} = 6315.789474 \frac{N \cdot m}{s} = 6.315789 \ KW$$

Узимајући и губитке приликом струјања у цевоводу, притисак који треба да да пумпа износи:

$$p_n = 1,1 \cdot \frac{P_1}{O} =$$
 173.6842 *bar* губици увећани за 10%

према укупном притиску усваја се пумпни агрегат ПП Трстеник, Т. 8.15 зупчаста пумпа:

величина III,

специфичан проток: q= 16.66 $\frac{cm^3}{oh}$

номиналне брзине $n = 1500 \, \mathrm{min}^{-1}$

која остварује проток: $Q = q \cdot n =$ 24.99 $\frac{l}{\min}$ што задовољава по услову задатка:

 $Q=rac{l}{\min}$ номиналне снаге: $P_n=$ 8.3 KW

Mace: m = 3.7 kg

са стране 2, копије које је професор дао усваја се кинематска вискозност за усвојену пумпу:

u= 40 до 80 $mm^2\cdot s^{-1}$ (оптимална вискозност уља)

Т. 19.2.2 стр 5 копија, радно подручје вискозности: $\nu = 20$ до 300 $mm^2 \cdot s^{-1}$

с обзиром на напомену стр 8, копије: за притиске до 250 bar усваја се уље квалитета HL, а за средњеевропске услове класе 22, тј HL 22, чија је вискозност на 40 $^{\circ}C$

 $v = 22 \ mm^2 \cdot s^{-1}$ (прво сам радио са 32, па онда са 22, размишљај)!

а дефинисано радно подручје температуре уља према Сл.2 стр 6 и 7 копија, Т .19.2.2 стр 5:

Puoroouo	температура уља $^{\circ}C$ за:					
Вискозна група ISO			кратко дозвољена вискозност $mm^2 \cdot s^{-1}$			
	најмања - 20	највећа - 300	најмања - 10	највиша - 1000		
VG22	45° <i>C</i>	-5 ° <i>C</i>	65 ° <i>C</i>	-20 ° <i>C</i>		

што задовољава услов задатка: $-20^{\circ}~C~$ до $60^{\circ}~C~$

Можемо израчунати брзину извлачења клипа:

$$v = \frac{Q}{A_b} = 0.013258 \frac{m}{s}$$

време извлачења клипа:

$$t = \frac{H}{v} = 192.3424$$
 s Tj: $t = 3.21 \text{ min}$

брзина увлачења клипа:

$$v_2 = \frac{Q}{A_{k2}} = 0.017677 \, \frac{m}{s}$$

време увлачења клипа:

$$t_2 = \frac{H}{v_2} = 144.2568 \text{ s}$$
 Tj: $t_2 = 2.4 \text{ min}$

претпоставља се брзина струјања флуида у разводном цевоводу:

$$v_{raz} =$$

1.5
$$\frac{m}{s}$$

$$v_{raz} = 1.5 \frac{m}{s}$$
 (од 0,7 до 1,8 $\frac{m}{s}$)

из једначине континуитета - једнакости протока у разводном цевоводу и на месту улаза у цилиндар имамо:

$$v_{raz} \cdot A_{raz} = Q$$

 $Q_{raz}=Q$ тј: ${m v}_{raz}\cdot A_{raz}=Q$ можемо одредити површину попречног пресека разводног цевовода:

 $A_{raz} = \frac{Q}{v} = 0.0002777 \ m^2$ одакле се рачуна пречник разводног цевовода:

$$d_{raz} = \sqrt{\frac{4 \cdot A_{raz}}{\pi}} = 0.018802558 \, m$$
 Tj: $d_{raz} = 18.80256 \, mm$

$$d_{raz} = 18.80256 \, mm$$

усваја се стандардни пречник разводног цевовода и одговарајући прикључак на цилиндру:

$$d_{raz} = 20 mm$$

усвајамо и за повратни цевовод исти пречник цеви тј:

$$d_{pov} =$$

20 mm

Дебљина зида цилиндра израчунава се по обрасцу, биће објашњено на предавањима:

$$\delta = \frac{D_c \cdot p_{\text{max}}}{2 \cdot \frac{[\sigma]}{S}} + C = 22.80840336 \ mm$$
 усваја се: $\delta = 23 \ mm$

$$\delta =$$

 $p_{\rm max} = 250 \ bar$

највиши притисак који се остварује у раду (пробни)

$$[\sigma] = [\sigma]_M \cdot \xi_1 = 357$$

 $[\sigma] = [\sigma]_{\!_M} \cdot \xi_1 =$ 357 $\qquad \frac{N}{mm^2} \qquad$ меродавна карактеристика материјала - дозвољени напон затезања

420
$$\frac{N}{mm^2}$$

 $[\sigma]_{\!\scriptscriptstyle M}=$ 420 $\frac{N}{mm^2}$ критични напон за радне услове, за температуре до 400 $^{\circ}C$ $[\sigma]_{\scriptscriptstyle M} = R_{\scriptscriptstyle p0,2}$ T 2.3 M.E.I за

Коефицијент врсте и квалитета завареног шава:

 $\xi_1 =$

0.95

1 за прву класу квалитета

$$\xi_1 = 0.8$$
 до 0.95 за другу класу квалитета усвајам: $\xi_1 = 0.85$ $\xi_1 = 0.7$ до 0.8 за трећу класу квалитета $\xi_1 = 0.6$ до 0.7 за четврту класу квалитета

степен сигурности за челике:

$$S_{\min} = 1.5$$

T 2.5 M.E. I
$$S = 3$$

Додатак дебљини зида цеви или суда, зависно од очекиване корозије:

$$C=$$
 1 до 3 mm усвајам: $C=$ 1.8 mm

Дебљина зида за равно дно:

$$\delta_1 = 0.3 \cdot D_c \cdot \sqrt{\frac{p_{\text{max}}}{S}} = 27.50095 \quad mm$$
 ycbaja ce: $\delta_1 = 28 \quad mm$

Провера извијања клипњаче:

један крај укљештен а други зглонно везан Сл. 8.26 стр 13 копије, слободна дужина извијања износи:

$$l_r = S_k = 0{,}707 \cdot l = 2000.81 \;\; mm$$
 $l_r = 2.00081 \; m$ $l = H + 280 = 2830 \;\; mm$ (узета у обзир конструктивна величина, ушице)

Момент инерције попречног пресека клипњаче:

$$I_{\min} = \frac{d_{kl}^4 \cdot \pi}{64} = 4.90874E-06 \quad m^4$$

Површина попречног пресека клипњаче:

$$A_{kl} = \frac{d_{kl}^2 \cdot \pi}{4} = 0.007854 \ m^2$$

Коефицијент извијања - виткост:
$$\lambda = \frac{l_r}{\sqrt{\frac{I_{\min}}{A}}} = 80.0324$$

$$\lambda_0 = 89 \ \text{гранична виткост за Č.1530} \qquad \lambda < \lambda_0 \qquad \text{Тет - Мајерова једначина:}$$

$$\lambda < \lambda_0$$
 Гет - Мајерова једначин

$$\sigma_{_k} = 335 - 0.62 \cdot \lambda = \;$$
 285.379912 $\frac{N}{mm^2}$ критична сила: $F_{_k} = \sigma_{_k} \cdot A_{_{kl}} =$ 2241369 N

$$F_k = 2241.369 \ KN$$

Провера степена сигурности на извијање: