Computational Complexity Theory: Lecture 8

Instructor : Chandan Saha Scribes : Sanal S Prasad and Ishan Banerjee

September 1, 2015

1 NL-completeness

We would like to define **NL**-completeness. For this, we have to define the appropriate kind of reduction. Our definition of reduction should be guided by the question $\mathbf{L} \stackrel{?}{=} \mathbf{NL}$.

First Attempt: We should be looking at some kind of "log-space reduction". We would like to define $L_1 \leq_l L_2$. Suppose we define as follows: We say that L_1 log-space reduces to L_2 if there is a log-space computable function f such that $x \in L_1 \Leftrightarrow f(x) \in L_2$

With this definition we would like to show that if $L_1 \leq_l L_2$ and $L_2 \in \mathbf{L}$, $L_1 \in \mathbf{L}$. Let's try to prove this.

Attempted proof: Suppose $x \in \{0,1\}^*$. $L_2 \in \mathbf{L}$ so it has a TM M which runs in log space. We would like to compute f(x) give it to M and then find out if $f(x) \in L_2$ using M. However f(x) can take space that is not logarithmic in |x|. In that case just writing down f(x) will take too much space. So this is not going to work.

1.1 Log space reduction

First a definition.

Definition 1.1 (Implicit log space computable). A function $f: \{0,1\}^* \to \{0,1\}^*$ is called implicit log space computable if

- 1. |f(x)| is polynomial in |x|, i.e $|f(x)| \leq |x|^c$ for some $c \in \mathbb{R}$.
- 2. $L_1 := \{(x,i)|f(x)_i = 1\}$ is in **L** $(f(x)_i)$ is the *i*th bit of f(x)).
- 3. $L_2 := \{(x, i) | i \le |f(x)|\}$ is in **L**.

In some sense, we want each bit to be computable in log space. The last condition is to ensure that we don't ask for the *i*th bit of f(x) when f(x) has less than *i* bits.

Definition 1.2. A language L_1 is log space reducible to L_2 if there is an implicit log space computable function f such that $x \in L_1 \iff f(x) \in L_2$.

Lemma 1.1. If $L_1 \leq_l L_2$ and $L_2 \in \mathbf{L}$, then $L_1 \in \mathbf{L}$.

Proof: Let M be a log space machine that decides L_2 . Construct a new machine M' which takes y as input and simulates M on input f(y). Whenever M asks for the ith bit of f(y), we compute it in log space and give it to M. Since M itself runs in $\log(|f(y)|)$ space and f(y) is at most polynomial in |y| the machine runs in $O(\log |y|)$ space.

Lemma 1.2. If $L_1 \leq_l L_2$ and $L_2 \leq_l L_3$, then $L_1 \leq_l L_3$.

Proof: Suppose f is the reduction function from L_1 to L_2 and g is the reduction function from L_2 to L_3 . It is clear that $g \circ f$ is a reduction from L_1 to L_3 . We must show that it is implicit log space computable. Let M be a machine that computes the ith bit of g. Just simulate M on input f(x) computing the ith bit of f(x) (in log space) when it is asked for. Again, this is clearly $O(\log |x|)$ for similar reasons as in the previous question.

Definition 1.3 (NL completeness). A language $L \in NL$ is NL complete if for every $L' \in NL$, $L' \leq_l L$.

Let's consider the following language: $\mathtt{PATH} = \{(G,s,t)|G \text{ is a digraph and } t \text{ is reachable from } s \text{ in } G\}$

Theorem 1.3. PATH is NL complete.

Proof: (1) PATH is in NL.

We give the sequence of vertices connecting s and t as the read once certificate. The verifier checks if every two contiguous vertices are indeed connected. This can be done in log space.

(2) Any language $L \in \mathbf{NL}$ reduces to PATH i.e. $L \leq_l$ PATH. Let $L \in \mathbf{NL}$. Suppose M decides L in log space. The reduction is as follows $x \mapsto (G_{M,x}, c_{start}, c_{accept})$, where $G_{M,x}$ is the configuration graph of M on input x and c_{start} and c_{accept} are the start and accept states respectively. Since M takes log space $|G_{M,x}|$ is at most $2^{O(\log|x|)}$ which is polynomial in |x|. To compute the ith bit, we check if the ith bit lies in $G_{M,x}$ c_{start} or c_{accept} . If it lies in c_{start} or c_{accept} it does not depend on |x| and it can be found in constant space. If it is in the description of vertices it can be found in log space as the size of any vertex c is logarithmic in the size of the input as the machine M takes space logarithmic. If it is in the description of edges, we need to check whether two vertices are adjacent or not. We use the two transition functions to determine if there is an edge between the two vertices or not. This can again be done in log space.

Consider the language $\overline{PATH} = PATH^c$. It is clearly in $\mathbf{co} - \mathbf{NL}$. In fact, we have the following:

Lemma 1.4. \overline{PATH} is $\mathbf{co} - \mathbf{NL}$ complete i.e. \overline{PATH} is in $\mathbf{co} - \mathbf{NL}$ and every language $L \in \mathbf{co} - \mathbf{NL}$ is log space reducible to \overline{PATH} .

Proof: $\overline{\text{PATH}}$ is in $\mathbf{co} - \mathbf{NL}$ as PATH is in \mathbf{NL} . Let L be a language in $\mathbf{co} - \mathbf{NL}$. Then $\overline{\mathbf{L}}$ is in \mathbf{NL} and hence log space reduces to PATH. Simply take the same reduction function, f. We know that $x \in \overline{\mathbf{L}} \iff f(x) \in \overline{\text{PATH}}$. This implies that $x \in \mathbf{L} \iff f(x) \in \overline{\text{PATH}}$. This establishes the theorem.

We have the following theorem

Theorem 1.5 (Immerman-Szelepsceny). $\overline{\mathtt{PATH}} \in \mathbf{NL}$. This implies $\mathbf{NL} = \mathbf{co} - \mathbf{NL}$.

Proof: Given (G, s, t), we need to certify that t is not reachable from s. To do this, we first identify the vertices of G with numbers $1, 2, \dots, n$. Let $N_j :=$ no. of vertices reachable from s via a path of length at most j. And let $V_j :=$ set of all vertices reachable from s in path of length at most j. Note that N_j is small i.e. storing N_j requires only $O(\log n)$ bits.

Our proof will be by induction. Assume that the verifier knows N_n , then it can verify that t is not reachable from s using the following certificate: For each v_i that is reachable from s, we provide v_i and a path from s to v_i of length less than or equal to n. We give v_i 's in ascending order. The verifier can go through the certificate and verify that the v_i 's are reachable, and that they are given in ascending order. The verifier does this by first writing down s and then v_i . Suppose our path is v_{i_1}, \ldots, v_{i_n} . Then the verifier will check for each k, whether v_{i_k} is adjacent to $v_{i_{k+1}}$. At any one point, the verifier only stores the value of v_i and the value of v_{i_k} and the value of $v_{i_{k+1}}$. This requires only $O(\log n)$ space and is read-once. The verifier also checks that t is not equal to v_i and that $v_i < v_{i+1}$.

Suppose the verifier knows the value of N_{k-1} and wishes to verify the value of N_k . For this, we give the certificate as follows: for all vertices, v_i , we provide a certificate that v_i either is in V_k or not in V_k . If v_i is in V_k , we give a path from s to v_i of length at most k. This too requires only $O(\log n)$ space to verify and is read-once. If it is not in V_k , we use the following certificate: All the vertices of V_{k-1} in ascending order, with their certificates (path). The verifier merely checks that the vertex is not adjacent to any of these vertices. This also takes $O(\log n)$ space and is read-once. This follows by a similar argument as above.

Our overall certificate will consist of a concatenation of certificates for $N_0, N_1 \dots N_n$ and then a certificate that t is not reachable. The verifier will store the value of N_k and use it to verify the value of N_{k+1} using the read-once certificate for N_{k+1} . It then reuses the space used by N_k and stores N_{k+1} and repeats the process. At each point of time, we are only using the amount of space necessary for verifying the value of N_{k+1} , given the value of N_k and the certificate for N_{k+1} . But we already know that this takes $O(\log n)$ space. Therefore, at any point of time the verifier needs to store only $O(\log n)$ space. The certificate is also polynomial in size. To see this, observe that the certificate for each N_k consists of at most n vertices and the certificate for each of these takes at most n^2 space.