Symmetric Matrices and Quadratic Forms

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Symmetric Matrix

A **symmetric** matrix is a matrix A such that $A^T = A$. Such a matrix is necessarily square. Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite sides of the main diagonal.

Symmetric:
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7 \end{bmatrix}, \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$$

Nonsymmetric:
$$\begin{bmatrix} 1 & -3 \\ 3 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 & -4 & 0 \\ -6 & 1 & -4 \\ 0 & -6 & 1 \end{bmatrix}$, $\begin{bmatrix} 5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$

A quadratic form is any homogeneous polynomial of degree two in any number of variables. In this situation, **homogeneous** means that all the terms are of degree two. For example, the expression $7x_1x_2 + 3x_2x_4$ is homogeneous, but the expression $x_1 - 3x_1x_2$ is not. The square of the distance between two points in an inner-product space is a quadratic form. Quadratic forms were introduced by Hermite, and 70 years later they turned out to be essential in the theory of quantum mechanics! The formal definition follows.

Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a quadratic form.

$$x^{T} A x = \sum_{i=1}^{n} x_{i} (A x)_{i} = \sum_{i=1}^{n} x_{i} \left(\sum_{j=1}^{n} A_{ij} x_{j} \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

A quadratic form on \mathbb{R}^n is a function Q defined on \mathbb{R}^n whose value at a vector \mathbf{x} in \mathbb{R}^n can be computed by an expression of the form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is an $n \times n$ symmetric matrix. The matrix A is called the **matrix of the quadratic form**.

Suppose V is a vector space over \mathbb{R} . Then a function $\mathbb{Q}: V \to \mathbb{R}$ is called a **quadratic form** if there exists a bilinear form $f: V \times V \to \mathbb{R}$ such that

$$\mathbf{Q}(\mathbf{v}) = f(\mathbf{v}, \mathbf{v})$$
 for all $\mathbf{v} \in \mathcal{V}$.

Simplest example of a nonzero quadratic form is

- Example
 - Without cross-product term $A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$

• With cross-product term $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

Example

For **x** in
$$\mathbb{R}^3$$
, let $Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$. Write this quadratic form as $\mathbf{x}^T A \mathbf{x}$.

 Quadratic forms are easier to use when they have no cross-product terms—that is, when the matrix of the quadratic form is a diagonal matrix

Change of Variable in a QF

If x represents a variable vector in \mathbb{R}^n , then a **change of variable** is an equation of the form

$$oldsymbol{x} = P oldsymbol{y}$$
 or equivalently, $oldsymbol{y} = P^{-1} oldsymbol{x}$

where P is an **invertible matrix** and \boldsymbol{y} is a new variable vector in \mathbb{R}^n .

• y can be regarded as the coordinate vector of x relative to the basis of \mathbb{R}^n determined by the columns of P.

If the change of variable is made in a quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$, then

$$\boldsymbol{x}^T A \boldsymbol{x} = (P \boldsymbol{y})^T A (P \boldsymbol{y}) = \boldsymbol{y}^T P^T A P \boldsymbol{y} = \boldsymbol{y}^T (P^T A P) \boldsymbol{y}$$

- The new matrix of the quadratic form is P^TAP .
- A is symmetric, so there is an **orthogonal matrix** P such that P^TAP is a diagonal matrix D.
- Then the quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$ becomes $\boldsymbol{y}^T D \boldsymbol{y}$, there is no cross-product term.

If **A** and **B** are $n \times n$ real matrices connected by the relation

$$\mathbf{B} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$$

then the corresponding quadratic forms of $\bf A$ and $\bf B$ are identical, and $\bf B$ is symmetric.

Classifying Quadratic Forms

When A is an $n \times n$ matrix, the quadratic form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is a real-valued function with domain \mathbb{R}^n .

point
$$(x_1, x_2, z)$$
 where $z = Q(\mathbf{x})$

Classifying Quadratic Forms

Definition

A quadratic form Q is:

- **o** positive definite if Q(x) > 0 for all $x \neq 0$;
- **o** negative definite if Q(x) < 0 for all $x \neq 0$;
- **o** indefinite if Q(x) assumes both positive and negative values;
- **o** positive semidefinite if $Q(x) \ge 0$ for all x;
- **negative semidefinite** if $Q(x) \leq 0$ for all x.
 - A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n$, $x^T A x > 0$. This is usually denoted $A \succ 0$, and often times the set of all positive definite matrices is denoted \mathbb{S}^n_{++} .
 - A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x^T A x \ge 0$. This is written $A \succeq 0$, and the set of all positive semidefinite matrices is often denoted \mathbb{S}^n_+ .
 - Likewise, a symmetric matrix $A \in \mathbb{S}^n$ is **negative definite** (ND), denoted $A \prec 0$ if for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.
 - Similarly, a symmetric matrix $A \in \mathbb{S}^n$ is **negative semidefinite** (NSD), denoted $A \leq 0$ if for all $x \in \mathbb{R}^n$, $x^T A x \leq 0$.
 - Finally, a symmetric matrix $A \in \mathbb{S}^n$ is *indefinite*, if it is neither positive semidefinite nor negative semidefinite i.e., if there exists $x_1, x_2 \in \mathbb{R}^n$ such that $x_1^T A x_1 > 0$ and $x_2^T A x_2 < 0$.

For diagonal matrix
$$A = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_n \end{bmatrix} \implies x^T A x = a_1 x_1^2 + a_2 x_2^2 + \cdots + a_n x_n^2$$

 $Q(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x}$

SUT CE40282-1: Linear Algebra

Geometric interpretation

$$Q(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x}$$

$$\theta = \arccos(\frac{(Ax).x}{||x||||Ax||})$$

Characterization of Positive Semidefinite Matrices

Suppose $A \in \mathcal{M}_n(\mathbb{F})$ is self-adjoint. The following are equivalent:

- a) A is positive semidefinite,
- b) All of the eigenvalues of A are non-negative,
- c) There is a matrix $B \in \mathcal{M}_n(\mathbb{F})$ such that $A = B^*B$, and
- d) There is a diagonal matrix $D \in \mathcal{M}_n(\mathbb{R})$ with non-negative diagonal entries and a unitary matrix $U \in \mathcal{M}_n(\mathbb{F})$ such that $A = UDU^*$.

Characterization of Positive Definite Matrices

Suppose $A \in \mathcal{M}_n(\mathbb{F})$ is self-adjoint. The following are equivalent:

- a) A is positive definite,
- b) All of the eigenvalues of A are strictly positive,
- c) There is an *invertible* matrix $B \in \mathcal{M}_n(\mathbb{F})$ such that $A = B^*B$, and
- d) There is a diagonal matrix $D \in \mathcal{M}_n(\mathbb{R})$ with *strictly positive* diagonal entries and a unitary matrix $U \in \mathcal{M}_n(\mathbb{F})$ such that $A = UDU^*$.

Theorem

Let A be an $n \times n$ symmetric matrix. Then a quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$ is:

- **positive definite** if and only if the eigenvalues of A are all positive;
- negative definite if and only if the eigenvalues of A are all negative;
- How about semidefinite?

Positive Definite Matrices

 For a symmetric matrix the signs of the pivots are the signs of the eigenvalues.

number of positive pivots = number of positive eigenvalues.

A symmetric matrix **A** is to be **positive definite** if

- all the eigenvalues are positive
- all the pivots are positive
- 3 all the determinants are positive
- **4** $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \ \forall \mathbf{x} \ \text{except} \ \mathbf{x} = 0.$

If any of the eigenvalues or pivots or determinants is zero, that matrix is called a **Positive semidefinite** matrix.

Positive Definite Matrices

- Eigenvalue and Eigenvector
- A positive definite matrix S has positive eigenvalues, positive pivots, positive determinants, and positive energy v^TSv for every vector v. $S = A^TA$ is always positive definite if A has independent columns.
- Positive Definite Matrix
 - Five Tests
 - $x^T S x > 0$ for all x (other than zero-vector)
 - If S is positive definite $S = A^T A$ (A must have independent columns)
 - All eigenvalues are greater than 0
 - Sylvester's Criterion: All upper left determinants must be > 0
 - Every pivot must be > 0

Positive Definite Matrix

- If S is positive definite $S = A^T A$ (A must have independent columns): $A^T A$ is positive definite iff the columns of A are linearly independent.
 - Proof?

Positive Definite Matrices

- Eigenvalue and Eigenvector
- A positive definite matrix S has positive eigenvalues, positive pivots, positive determinants, and positive energy v^TSv for every vector v. $S = A^TA$ is always positive definite if A has independent columns.
- Positive Definite Matrix
 - Five Tests
 - $x^T S x > 0$ for all x (other than zero-vector)
 - If S is positive definite $S = A^T A$ (A must have independent columns)
 - All eigenvalues are greater than 0
 - Sylvester's Criterion: All upper left determinants must be > 0
 - Every pivot must be > 0

Eigenvalues & Positive Definite Matrices

■ POSITIVE DEFINITE ⇒ POSITIVE EIGENVALUES

Proof?

POSITIVE EIGENVALUES \Rightarrow POSITIVE DEFINITE

Proof?

Positive Definite Matrices

- Eigenvalue and Eigenvector
- A positive definite matrix S has positive eigenvalues, positive pivots, positive determinants, and positive energy v^TSv for every vector v. $S = A^TA$ is always positive definite if A has independent columns.
- Positive Definite Matrix
 - Five Tests
 - $x^T S x > 0$ for all x (other than zero-vector)
 - If S is positive definite $S = A^T A$ (A must have independent columns)
 - All eigenvalues are greater than 0
 - Sylvester's Criterion: All upper left determinants must be > 0
 - Every pivot must be > 0

Left determinants & Positive Definite Matrix

All upper left determinants must be > 0

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

POSITIVE DEFINITE \Rightarrow POSITIVE DETERMINANT

Proof?

Sylvester's Criterion

Suppose $A \in \mathcal{M}_n$ is self-adjoint. Then A is positive definite if and only if, for all $1 \le k \le n$, the determinant of the top-left $k \times k$ block of A is strictly positive.

Sylvester's Criterion for Positive SemiDefinite Matrices

- A principal minor of a square matrix is the determinant of a submatrix of A that is obtained by deleting some (or none) of its rows as well as the corresponding columns.
- A matrix is positive semidefinite if and only if all of its principal minors are non-negative

$$B = \begin{bmatrix} a & b & c \\ \overline{b} & d & e \\ \overline{c} & \overline{e} & f \end{bmatrix}$$

are a, d, f, det(B) itself, as well as

$$\det\left(\begin{bmatrix} a & b \\ \overline{b} & d \end{bmatrix}\right) = ad - |b|^2, \quad \det\left(\begin{bmatrix} a & c \\ \overline{c} & f \end{bmatrix}\right) = af - |c|^2, \quad \text{and}$$

$$\det\left(\begin{bmatrix} d & e \\ \overline{e} & f \end{bmatrix}\right) = df - |e|^2.$$

Positive Definite Matrices

- Eigenvalue and Eigenvector
- A positive definite matrix S has positive eigenvalues, positive pivots, positive determinants, and positive energy v^TSv for every vector v. $S = A^TA$ is always positive definite if A has independent columns.
- Positive Definite Matrix
 - Five Tests
 - $x^T S x > 0$ for all x (other than zero-vector)
 - If S is positive definite $S = A^T A$ (A must have independent columns)
 - All eigenvalues are greater than 0
 - Sylvester's Criterion: All upper left determinants must be > 0
 - Every pivot must be > 0

Pivots & Positive Definite Matrix

- Every pivot must be > 0
 - Pivots are, in general, way easier to calculate than eigenvalues.
 - Just perform elimination and examine the diagonal terms.
 - Example: Is the following matrix positive definite matrix? $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
 - Note: number of positive (negative) pivots = number of positive (negative) eigenvalue

Pivots & Positive Definite Matrix

POSITIVE PIVOTS \Rightarrow POSITIVE DEFINITE

Proof?

If **A** is positive definite, \mathbf{A}^{-1} will also be positive definite.

If **A** and **B** are positive definite matrices, $\mathbf{A} + \mathbf{B}$ will also be a positive definite matrix.

 Positive definite and negative definite matrices are always full rank, and hence, invertible.

For $A \in \mathbb{R}^{m \times n}$ gram matrix is always positive semidefinite. Further, if $m \ge n$ (and we assume for convenience that A is full rank), then gram matrix is positive definite.

Suppose $A, B \in \mathcal{M}_n$ are positive (semi)definite, $P \in \mathcal{M}_{n,m}$ is any matrix, and c > 0 is a real scalar. Then

- a) A + B is positive (semi)definite,
- b) *cA* is positive (semi)definite,
- c) A^T is positive (semi)definite, and
- d) P^*AP is positive semidefinite. Furthermore, if A is positive definite then P^*AP is positive definite if and only if rank(P) = m.