Optimiza	ation Algorithm Notes	
	D. M	
Depu Meng		
Feb. 2019		
1 Introduction to O	ptimization Algorithms	
1.1 Goal of the Course		
- Understand foundations	of optimization	
 Understand foundations of optimization Learn to analyze widely used optimization algorithms 		
· ·	entation of optimization algorithms	
Be familiar with implem	entation of optimization algorithms	
1.2 Topics Involved		
TT	*	
Unconstrained optimizatConstrained optimization		
Constrained optimizationConvex optimization	1	
Sparse optimization		
Sparse optimizationStochastic optimization		
 Stochastic optimization Combinational optimizat 	ion	
- Global optimization		
Grosur optimization		
1.3 Basic Concepts		
Droblem Definition Find t	the value of the decision variable s.t. o	shipative funa
tion is maximized/minimized		objective func-
tion is maximized, minimized	under certain conditions.	
	$\min f(x)$	(1)
	$s.t.x \in \mathcal{S} \subset \mathbb{R}^n$	(2)
		(2)
Here, we call S feasible region	n.	
We often denote constrained optimization Problem as		
	$\min f(x)$	(3)
s.	f(x) = 0, i = 1,, n	(4)
	$b_i(x) = 0, i \in 1,, m$	(5)
	· · · · · · · · · · · · · · · · · · ·	(*)
Definition 1. Global Optim	vality. For global optimal value $x^* \in \mathcal{S}$	3,
	$f(x^*) \le f(x), \forall x \in \mathcal{S}$	(6)

Definition 2. Local Optimality. For local optimal value $x^* \in \mathcal{S}$, $\exists U(x^*)$, such that

$$f(x^*) \le f(x), \forall x \in \mathcal{S} \cap U(x^*)$$
 (7)

Definition 3. Feasible direction. Let $x \in \mathcal{S}$, $d \in \mathbb{R}^n$ is a non-zero vector. if $\exists \delta > 0$, such that

$$x + \lambda d \in \mathcal{S}, \forall \lambda \in (0, \delta)$$
 (8)

Then d is a **feasible direction** at x. We denote F(x, S) as the set of feasible directions at x.

Definition 4. Descent direction. $f(x): \mathbb{R}^n \to \mathbb{R}, x \in \mathbb{R}^n, d$ is a non-zero vector. If $\exists \delta > 0$, such that

$$f(x + \lambda d) < f(x), \forall \lambda \in (0, \delta)$$
(9)

Then d is a **descent direction** at x. We denote $D(x, f) = \{d | \nabla f(x)^T d < 0\}$ as the set of descent direction at x.

1.4 Optimal Conditions

Unconstrained Optimization

First-order necessery condition: f(x) is differentiable at x,

$$\nabla f(x) = 0 \tag{10}$$

Second-order necessery condition: f(x) is second-order differentiable at x,

$$\nabla f(x) = 0 \tag{11}$$

$$\nabla^2 f(x) > 0 \tag{12}$$

$$\nabla^2 f(x) \ge 0 \tag{12}$$

Constrained Optimization

Theorem 1. Fritz-John Condition

For constrained optimization problem

$$\min f(x) \tag{13}$$

$$s.t. \quad g_i(x) \ge 0, i = 1, ..., n$$
 (14)

$$h_i(x) = 0, i \in 1, ..., m$$
 (15)

Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in \mathcal{S}$, f and $g_i, i \in I(x)$ is differentiable at x, $h_j(x)$ is continuously differentiable at x. If x is local optimal, then there exists non-trivial $\lambda_0, \lambda_i \geq 0, i \in I(x)$ and μ_j , such that

$$\lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0$$
 (16)

 $\sum_{j=1}^{m} \nabla \mu_j h_j(x) = 0$ Let $\lambda_0, \lambda_i, i \in I(x) = 0$, then (13) holds. (ii) If $\{ \nabla h_i(x) \}$ is linearly independent, Denote $F_a = F(x, a) = \{d \mid \nabla g_i(x)^T d > 0, i \in I(x)\}$ $F_h = F(x, h) = \{d \mid \nabla h_i(x)^T d = 0, i = 1, ..., m\}$ If x is a optimal value, then appearently $F(x,\mathcal{S}) \cap D(x,f) = \emptyset$. Due to the independence of $\{ \nabla h_i(x) \}$, we have $F_q \cap F_h \subset F(x, \mathcal{S})$, then $F_a \cap F_b \cap D(x, f) = \emptyset$

Proof. (i) If $\{ \nabla h_i(x) \}$ is linearly dependent, then there exists non-trivial μ_i ,

 $\begin{cases} \nabla f(x)^T d < 0 \\ \nabla g_i(x)^T d > 0, i \in I(x) \\ \nabla h_i(x)^T d = 0, j = 1, ..., m \end{cases}$

 $\begin{cases} A^T d < 0 \\ B^T d = 0 \end{cases}$

that is

such that

has no solution. Let

 $A = \{ \nabla f(x)^T, -\nabla g_i(x) \}^T, i \in I(x) \}$ $B = \{ - \nabla h_i(x) \}, j = 1, ..., m$

Then (21) is equivalent to

has no solution.

Denote

 $S_1 = \left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} | y_1 = A^T d, y_2 = B^T d, d \in \mathbb{R}^n \right\}$ $S_2 = \left\{ \left(\frac{y_1}{u_2} \right) | y_1 < 0, y_2 = 0 \right\}$

 S_1, S_2 are non-trivial convex sets, and $S_1 \cap S_2 = \emptyset$. From Hyperplane Separation Theorem: $\exists \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$, such that

 $p_1^T A^T d + p_2^T B^T d \ge p_1^T y_1 + p_2^T y_2, \forall d \in \mathbb{R}^n, \forall \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in CL(S_2)$ (27)

(17)

(18)(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

Let $y_2 = 0, d = 0, y_1 < 0$, we have

1.5

$$p_{1} \geq 0 \tag{28}$$

$$137$$

$$138$$

$$139 \qquad \text{Let } \binom{y_{1}}{y_{2}} = \binom{0}{0} \in CL(S_{2}) \text{ So that}$$

$$140$$

$$141 \qquad (p_{1}^{T}A^{T} + p_{2}^{T}B^{T})d \geq 0 \tag{29}$$

$$(Ap_{1} + Bp_{2})^{T}d \geq 0 \tag{30}$$

$$143$$

$$144 \qquad \text{Let } d = -(Ap_{1} + Bp_{2}), \text{ we have}$$

$$145$$

$$146 \qquad Ap_{1} + Bp_{2} = 0 \tag{31}$$

$$147$$

$$148 \qquad \text{From above, we have}$$

From above, we have

 $\begin{cases} Ap_1 + Bp_2 = 0\\ p_1 > 0 \end{cases}$ Let $p_1 = {\lambda_0, ..., \lambda_{I(x)}}, p_2 = {\mu_1, ..., \mu_m}, i.e.,$

 $\begin{cases} \lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0 \\ \lambda_i > 0 \end{cases}$

Theorem 2. Kuhn-Tucker Condition For constrained optimization problem $\min f(x)$ s.t. $q_i(x) > 0, i = 1, ..., n$

 $h_i(x) = 0, i \in 1, ..., m$ Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in S$, f and $g_i, i \in I(x)$ is differentiable at x, $h_i(x)$ is continuously differentiable at x. $\{\nabla g_i(x), i \in$ $I(x); \nabla h_i(x), j = 1, ..., m$ is linearly independent. If x is local optimal, then $\exists \lambda_i \geq 0 \text{ and } \mu_i, \text{ such that }$

Descent function

 $\nabla f(x) - \sum_{i \in I(x)} \lambda_i \nabla g_i(x) - \sum_{i=1}^m \mu_j \nabla h_j(x) = 0$

Definition 5. Descent function. Denote solution set $\Omega \in X$, A is an algorithm

on $X, \psi: X \to \mathbb{R}$. If

 $\psi(u) < \psi(x), \quad \forall x \notin \Omega, u \in \mathcal{A}(x)$

Then ψ is a **descent function** of (Ω, \mathcal{A}) .

 $\psi(y) < \psi(x), \quad \forall x \in \Omega, y \in \mathcal{A}(x)$ (39)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

1.6 Convergence of Algorithm	
Theorem 3. A is an algorithm on X , Ω is the solution set, x^k , then the iteration stops. Otherwise set $x^{(k+1)} = A(x^{(k)}), k$:	
- $\{x^{(k)}\}\$ in a compact subset of X - There exists a continuous function ψ , ψ is a descent function φ .	ion of (Ω, \mathcal{A})
Then, any convergent subsequence of $\{x^{(k)}\}\$ converges to $x, x \in \mathbb{R}$	$\in \Omega$.
Proof.	
1.7 Search Methods	
Line Search	
Generate $d^{(k)}$ from $x^{(k)}$,	
$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}$	(40)
. search α_k in 1-D space.	
Trust Region	
Generate local model $Q_k(s)$ of $x^{(k)}$,	
$s^{(k)} = \arg\min Q_k(s)$	(41)
$x^{(k+1)} = x^{(k)} + s^{(k)}$	(42)
$x - x + \delta$	(42)

2 Unconstrained Optimization

2.1 Gradient Based Methods

Algorithm 1: Example of gradient based algorithm

Data: Solution set Ω , cost function f $x^{(0)} \in \mathbb{R}^n, k := 0;$ **while** $x^{(k)} \notin \Omega$ **do** $d^{(k)} = -H_k \nabla f(x^{(k)}), (H_k \text{ is a positive definite symmetrical matrix});$ solve $\min_{\alpha_k \geq 0} f(x^{(k)} + \alpha_k d^{(k)});$ $x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k := k+1$

2.2 Determine Search Direction

First-order gradient method

For unconstrained optimization problem

 $\min_{x \in \mathbb{R}^n} f(x)$

 $f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + O(\|x - x^{(k)}\|^2)$

We have

end

Set
$$d^{(k)} = -\nabla f(x^{(k)})$$
, when α_k is sufficiently small,

Set $a^{**} = \bigvee f(x^{**})$, when a_k is sufficiently small,

$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
(45)

(43)

(44)

${\bf Second\text{-}order\ gradient\ method-Newton\ Direction}$

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

$$+ \frac{1}{2} (x - x^{(k)})^T \nabla^2 f(x^{(k)}) (x - x^{(k)}) + O(\|x - x^{(k)}\|^3)$$
(46)

Set $d^{(k)} = -G_k^{-1} \nabla f(x^{(k)})$, where $G_k = \nabla^2 f(x^{(k)})$, i.e., Hesse matrix of f at $x^{(k)}$.

2.3 Determine Step Factor – Line Search