Введение в метаматематику на троечку

Мат.клуб "Тифаретник" по С. Клини 1 ноября 2021 г.

Определение. Формальные символы

- Логические символы: ⊃(влечёт), &(и), ∨(или), ¬(не), ∀(для всех), ∃(существует)
- Символы предикатов: =(равняется)
- Символы функций: +(сложить с), ·(умножить на), \(следующий за)
- Индивидуальные символы: 0(нуль)
- Переменные: a, b, c, . . .
- *Скобки*: (,)

Определение.

- 1. 0 есть терм
- 2. Каждая переменная есть терм
- 3. Если s и t mермы, то

(a)
$$(s) + (t) - mepm$$
 (b) $(s) \cdot (t) - mepm$ (c) $(s)' - mepm$

4. Никаких других термов, кроме определённых согласно 1-3, нет.

Определение.

- 1. Если s и t mермы, то (s) = (t) ϕ ормула
- 2. Если A и $B \phi$ ормулы, то

(a)
$$(A) \supset (B) - \phi$$
ормула (c) $(A) \lor (B) - \phi$ ормула (b) $(A) \& (B) - \phi$ ормула (d) $\neg (A) - \phi$ ормула

3. Если x — переменная, а A — формула, то

(a)
$$\forall x(A) - \phi o p м y л a$$
 (b) $\exists x(A) - \phi o p м y л a$

4. Никаких других формул, кроме определённых согласно 1-3, нет.

Определение. Вхождение x в формулу A называется csssanhum (или вхождением в качестве csssanhum переменной), если оно является вхождением в квантор $\forall x$ или $\exists x$ или в область действия квантора $\forall x$ или $\exists x$; в противном случае вхождение называется csosoohum.

Определение. Подстановка терма t вместо переменной x в терм или формулу A состоит в одновременной замене каждого свободного вхождения x в A на вхождение t.

Определение. Будем говорить, что терм t свободен при свободных вхождениях переменной x в формулу A(x), если никакое свободное вхождение x в A(x) не входит в область действия какогонибудь квантора $\forall y$ или $\exists y$, где y — переменная из t (т.е. входящая в t).

Постулаты формальной системы

Dramatis personae

В постулатах 1–8 A,B и C — формулы. В 9–13 x — переменная, A(x) — формула, C — формула, не содержащая свободно x, а t — терм, свободный для x в A(x).

Группа А. Постулаты исчисления предикатов

Группа А1. Постулаты исчисления высказываний

$$\widehat{\text{1a}}$$
 $A\supset (B\supset A)$

$$(1b)(A\supset B)\supset ((A\supset (B\supset C))\supset (A\supset C))$$

$$(4a)$$
 $A \& B \supset A$

$$(4b)$$
 $A \& B \supset B$

$$(5a)$$
 $A \supset A \lor B$

$$(5b)$$
 $B \supset A \lor B$

$$\underbrace{2} \quad \underbrace{A, A \supset B}_{B}$$

$$\bigcirc{3} A \supset (B \supset A \& B)$$

$$\textcircled{6} \ (A\supset C)\supset ((B\supset C)\supset (A\vee B\supset C))$$

$$(7) (A \supset B) \supset ((A \supset \neg B) \supset \neg A)$$

$$\widehat{(8^{\circ})} \neg \neg A \supset A$$

Группа А2. (Дополнительные) Постулаты исчисления предикатов

$$(10) \, \forall x A(x) \supset A(t)$$

$$\overbrace{11)} A(t) \supset \exists x A(x)$$

$$\begin{array}{c}
12 \\
\hline
\exists x A(x) \supset C
\end{array}$$

Группа В. (Дополнительные) Постулаты арифметики

$$(13) A(0) \& \forall x (A(x) \supset A(x')) \supset A(x)$$

$$(14) a' = b' \supset a = b$$

$$(15) \neg a' = 0$$

$$(16) a = b \supset (a = c \supset b = c)$$

$$(17) a = b \supset a' = b'$$

$$(18) a + 0 = a$$

$$(19) a + b' = (a+b)$$

$$\widehat{(20)} \ a \cdot 0 = 0$$

$$(21) a \cdot b' = a \cdot b + a$$

Определение. Формула является *аксиомой*, если она имеет форму одну из (1a), (1b), (3)–(8), (10), (11), (13) или она есть одна из (14)–(21).

Определение. Формула является *непосредственным следствием* (из) одной или двух других формул, если она имеет форму, указанную под чертой, тогда как другая (не) имеет(ют) форму(ы), указанную (не) над чертой в (2), (9) или (12).

Определение. Постулаты (2), (9) и (12) мы называем *правилами вывода*. Для любого (фиксированного) выбора A и B или x, A(x) и C, подчинённого отмеченным выше условиям, формулы указанные над чертой, являются *посылкой* (*первой* и *второй посылкой* соответственно), а формула, указанная под чертой, является *заключением* применения правила вывода.

2

Формальный вывод

Определение. Если дан перечень $D_1, \ldots, D_l (l \ge 0)$ формул, то непустая конечная последовательность формул называется формальным выводом из исходных формул D_1, \ldots, D_l , если каждая формула этой последовательности является или одной из формул D_1, \ldots, D_l , или аксиомой, или непосредственным следствием из предыдущих формул последовательности. Вывод называется выводом своей последней формулы E, и эта формула называется выводимой из исходных формул (обозначается $D_1, \ldots, D_l \vdash E$), а также заключением (или конечной формулой) вывода.

Определение. Общие свойства ⊢

- $\Gamma \vdash E$, если E входит в список Γ
- Если $\Gamma \vdash E$, то $\Delta, \Gamma \vdash E$ для любого перечня Δ (Любая доказуемая выводима из любых исходных)
- Если $\Gamma \vdash E$, то $\Delta \vdash E$, где Δ получается из Γ путём перестановки формул Γ или опускания любых таких формул, которые тождественны с другими остающимися
- Если $\Gamma \vdash E$, то $\Delta \vdash E$, где Δ получается из Γ опусканием любых формул Γ , которые являются доказуемыми или выводимыми из остающихся формул Γ .

Теорема 1. О дедукции. Для исчисления высказываний, если $\Gamma, A \vdash B$, то $\Gamma \vdash A \supset B$.

Теорема 1. О дедукции. Для исчисления предикатов (или полной арифметической формальной системы), если $\Gamma, A \vdash B$, причём все свободные переменные остаются фиксированными для последней исходной формулы, то $\Gamma \vdash A \supset B$.

Определение. Переменная "x" приписанная к символу " \vdash " в качестве верхнего индекса отличает применение правила 9 или 12 по отношению к x при построении результирующего вывода.

Теорема 2. В следующих правилах A, B и C или x, A(x), C и t подчинены тем же условиям, что и в соответствующих постулатах, а Γ или $\Gamma(x)$ есть любой список формул.

Для исчисления высказываний справедливы правила от "импликации" до "отрицания" включительно.

Для исчисления предикатов (или полной арифметической системы) справедливы все правила, при условии, что в каждом вспомогательном выводе связанные переменные остаются фиксированными для устраняемой формулы.

	Введение	Удаление
Импликация	Если $\Gamma, A \vdash B$,	$A, A \supset B \vdash B$
	то $\Gamma \vdash A \supset B$	(modus ponens)
Конъюнкция	$A,B \vdash A \& B$	$A \& B \vdash A$
		$A \& B \vdash B$
Дизъюнкция	$A \vdash A \lor B$	Если $\Gamma, A \vdash C$ и $\Gamma, B \vdash C$,
	$B \vdash A \lor B$	то $\Gamma, A \vee B \vdash C$
Отрицание	Если $\Gamma, A \vdash B$ и $\Gamma, A \vdash \neg B$,	$\neg \neg A \vdash A$
	το Γ ⊢ ¬A	
Общность	$A(x) \vdash^x \forall x A(x)$	$\forall x A(x) \vdash A(t)$
Существование	$A(t) \vdash \exists x A(x)$	Если $\Gamma(x), A(x) \vdash C$,
		то $\Gamma(x)$, $\exists x A(x) \vdash^x C$