Mathematics 1b Notes

Emil A. Overbeck (s246119)

 6^{th} May, 2025

Contents

1	Functions of Several Variables	2
2	Inner Product Spaces and the Spectral Theorem	2
3	Continuity and Differentiability	4
4	Taylor Approximation	6
5	Local and Global Extrema of Functions	6
6	Integration	7
7	Vector fields	8

1 Functions of Several Variables

Quadratic form	$q(x) = x^{\mathrm{T}}Ax + x^{\mathrm{T}}b + c \text{ where } x \in \mathbb{R}^n$	16
Vector function	$f \colon \operatorname{dom}(f) \to R^k \text{ where } \operatorname{dom}(f) \subseteq \mathbb{R}^n$	18
Parametrisations	• Helix: $r(t) = [\cos(t), \sin(t), t]^{T}$ • Sphere $r(u, v) = [\cos(u)\cos(v), \sin(u)\cos(v), \sin(v)]^{T}$	19
Function graph	$\set{(x,f(x))\in\mathbb{R}^{n+k}\mid x\in\mathrm{dom}(f)}$	21
Level set	$\{ x \in \text{dom}(f) \mid f(x) = c \}$	23
Shape equations	• Sphere $(x - c_1)^2 + (y - c_2)^2 + (z - c_3)^2 = r^2$ • Circle: $(x - c_1)^2 + (y - c_2)^2 = r^2$ • Ellipsoid: $\frac{(x - c_1)^2}{a^2} + \frac{(y - c_2)^2}{b^2} = 1$ • Hyperbola: $\frac{(x - c_1)^2}{a^2} - \frac{(y - c_2)^2}{b^2} = 1$	23

2 Inner Product Spaces and the Spectral Theorem

	1	
Norm	$\begin{split} \ \cdot\ \colon V &\to \mathbb{R} \text{ for normed space } V \text{ such that:} \\ \bullet \text{ Non-negativity: } \ x\ \in \mathbb{R}_{\geq 0} \\ \bullet \text{ Non-degeneracy: } \ x\ = 0 \iff x = 0 \\ \bullet \text{ Scaling: } \ cx\ = c \ x\ \\ \bullet \text{ Triangle inequality: } \ x+y\ \leq \ x\ + \ y\ \end{split}$	32
Inner product	$\begin{array}{l} \langle\cdot,\cdot\rangle\colon V\times V\to\mathbb{R} \text{ for inner product space }V \text{ such that:}\\ \bullet\text{ Non-negativity: }\langle x,x\rangle\geq 0\\ \bullet\text{ Non-degeneracy: }\langle x,x\rangle=0\iff x=0\\ \bullet\text{ Conjugate symmetry: }\langle x,y\rangle=\overline{\langle y,x\rangle}\\ \bullet\text{ Linearity: }\langle cx+dy,z\rangle=c\langle x,z\rangle+d\langle y,z\rangle \end{array}$	33
Derived properties	• Conjugate linearity: $\langle x, cy + dz \rangle = \overline{c} \langle x, y \rangle + \overline{d} \langle x, z \rangle$ • Zero product: $\langle x, 0 \rangle = \langle 0, y \rangle = 0$ • Derived norm: $ x = \sqrt{\langle x, x \rangle}$ is a valid norm	34
Matrix properties	$ \bullet Ax \cdot y = x \cdot A^*y \text{ and } x \cdot Ax = A^*y \cdot y $ $ \bullet Ax \cdot y = x \cdot A^Ty \text{ and } x \cdot Ax = A^Ty \cdot y $	35
Polynomial product	$\langle p,q angle_{L^2}=\int_a^b p(x)\overline{q(x)}\mathrm{d}x ext{ where } p,q\in P_b([a,b])$	36
Unit vector	v such that $ v = 1$	37
Unit vector constr.	$y/\ y\ $ is a unit vector pointing in the same direction as y	37
Orthogonality	x and y are orthogonal if $\langle x, y \rangle = 0$	37
Orthonormality	x and y are orthonormal if they are orthogonal unit vectors	37
Orthogonal compl.	$S^{\perp} = \{ x \in V : \langle x, s \rangle = 0 \text{ for all } s \in S \} \text{ where } S \subseteq V;$ if $S = \emptyset$, then $S^{\perp} = V$	37
Zero vector ortho.	If $\langle x, y \rangle = 0$ for all x , then $y = 0$	40

Pythagoras	Let inner product $\langle \cdot, \cdot \rangle$ and derived norm $\ \cdot \ $; if $\langle x, y \rangle = 0$, then $\ x + y\ ^2 = \ x\ ^2 + \ y\ ^2$	40
Cauchy-Schwarz ineq.	Let inner product $\langle \cdot , \cdot \rangle$ and derived norm $\ \cdot \ ;$ $ \langle x,y \rangle \leq \ x\ \ y\ $	41
Triangle inequality	$ x+y = x + y $ iff x and y point in the same direction; $ x+y \le x + y $ otherwise	43
Open ball	$B(x_0, r) = \{ x \in V \mid x - x_0 < r \};$ in \mathbb{R}^2 , a circle around x_0 of radius r	43
Open set	If for each $x_0 \in U$, there exists $\epsilon > 0$ such that $B(x_0, \epsilon) \subseteq U$, then U is open (boundary not in the set)	44
Closed set	U in V is closed if $V \setminus U$ is open	45
Set boundary	Let $M \subseteq V$; ∂M is the set of points $x_0 \in V$ for which each $B(x_0, \epsilon)$ contains points from M and $V \setminus M$	45
Set closure	$\overline{M} = M \cup \partial M$	46
Set interior	$M^{\circ}=M\setminus\partial M$	46
Bounded set	U is bounded if there is r such that $ x \leq r$ for all $x \in U$	47
Orthogonal projection	$\operatorname{proj}_Y(x) = \frac{\langle x, y \rangle}{\langle y, y \rangle} y = \langle x, u \rangle u \text{ where } y \in Y \text{ and } u = \frac{y}{\ y\ }$	47
Orthonormal basis	A list of vectors which is orthonormal and a basis	50
Orthonormal indep.	Orthonormal vectors are linearly independent	51
Gram-Schmidt process	Let v_1, \ldots, v_ℓ be linearly independent vectors; to make orthonormal vectors u_1, \ldots, u_ℓ spanning the same subspace: 1. Set $w_1 \coloneqq v_1$ and $u_1 \coloneqq w_1/\ w_1\ $ 2. For $k = 2, \ldots, \ell$, $w_k \coloneqq v_k - \sum_{j=1}^{k-1} \operatorname{proj}_{u_j}(v_k)$ 3. $u_k \coloneqq w_k/\ w_k\ $	52
Unitary matrix	A square matrix such that $U^*U = UU^* = I$, or $U^{-1} = U^*$	56
Real orthogonal matrix	A real unitary matrix (such that $Q^{T}Q = QQ^{T} = I$)	56
Unitary properties	The following are equivalent: • $U \in \mathbb{C}^{n \times n}$ is unitary $(U^{-1} = U^* = \overline{U}^T)$ • The rows & columns of U are an orthonormal basis of \mathbb{C}^n • U^* is unitary • $Ux \cdot Uy = x \cdot y$ and $ Ux = x $	57
Real orthogonal prop.	The following are equivalent: • $Q \in \mathbb{R}^{n \times n}$ is real orthogonal $(Q^{-1} = Q^* = Q^{\mathrm{T}})$ • The columns of Q are an orthonormal basis of \mathbb{R}^n	59
Diagonalisable matrix	 A matrix A is: Diagonalisable if S so S⁻¹AS is diagonal Unitarily diagonalisable if unitary U so U*AU is diagonal Orthog. diagonalisable if real orthog. Q so Q^TAQ is diag. 	60
Hermitian eigenvalues	If A is Hermitian $(A = A^*)$, all of its eigenvalues are real	63

Symmetric eigenvector	If A is real & symmetric $(A = A^{T})$, it has a real eigenvector	63
Spectral theorem in $\mathbb R$	The following are equivalent: • $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix • A is real orthogonally diagonalisable • A 's eigenvectors are an orthonormal basis of \mathbb{R}^n	64
Spectral decomp. in $\mathbb R$	If $A \in \mathbb{R}^{n \times n}$ is symmetric, then $A = Q\Lambda Q^{\mathrm{T}}$ where Λ is a diagonal matrix whose diagonal is the eigenvalues of A and Q is a real orthogonal matrix whose columns are eigenvectors of A	66
Quadratic symmetry	Let quadratic form $q(x) = x^{T}Ax + x^{T}b + c$; $B = (A + A^{T})/2$ is symmetric and $q(x) = x^{T}Bx + x^{T}b + c$	67
Spectral theorem in $\mathbb C$	The following are equivalent: • $A \in \mathbb{C}^{n \times n}$ is normal $(A^*A = AA^*)$ • A is unitary diagonalisable • The eigenvectors of A are an orthonormal basis of \mathbb{C}^n	69
Spectral decomp. in $\mathbb C$	If $A \in \mathbb{C}^{n \times n}$ is symmetric, then $A = U\Lambda U^*$ where Λ is a diagonal matrix whose diagonal is the eigenvalues of A and Q is a unitary matrix whose columns are eigenvectors of A	69
Definite matrix	A square matrix A is: • Positive definite if $A = A^*$ and $\langle Ax, x \rangle > 0$ for $x \neq 0$ • Positive semi-definite $A = A^*$ and $\langle Ax, x \rangle \geq 0$ for $x \neq 0$ • Negative definite if $-A$ is positive definite • Negative semi-definite if $-A$ is positive semi-definite	70
Definite properties	The following are equivalent: • A is positive definite (positive semi-definite) • The eigenvalues of A are positive (non-negative) • There is $c>0$ ($c\geq0$) such that $\langle Ax,x\rangle\geq c\langle x,x\rangle$ for all x	71
3 Continuity and	d Differentiability	
Continuity	f is continuous at x_0 if $f(x) \to f(x_0)$ whenever $x \to x_0$; if $ f(x) - f(x_0) \to 0$ whenever $ x - x_0 \to 0$; if $\forall \epsilon > 0, \exists \delta > 0, \forall x \in I : x - x_0 < \delta \Rightarrow f(x) - f(x_0) < \epsilon$	75
Differentiability	$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ if the limit exists	78
Curve in \mathbb{R}^k	$\operatorname{im}(oldsymbol{r}) = \set{oldsymbol{r}(t) \mid t \in I}$ is a curve in \mathbb{R}^k	80
Tangent vector	$r'(t) = (r'_1(t), \dots, r'_k(t))$ is the tangent vector at $r(t)$; if $r'(t) \neq 0$ for all $t \in I$, then r is regular	81
Continuity in \mathbb{R}^k	$f \colon A - > \mathbb{R}^k$ is continuous at x_0 if $\ f(x) - f(x_0)\ \to 0$ whenever $\ x - x_0\ \to 0$, or $f(x) \to f(x_0)$ whenever $x \to x_0$	82
Coordinate continuity	$f=(f_1,\ldots,f_k)$ is continuous at $oldsymbol{x}_0$ iff all f_i are cont. at $oldsymbol{x}_0$	83

Continuity operations	If $f,g:\mathbb{R}^n \to \mathbb{R}^k$, then the following are continuous: • $f+g$ and $f-g$ • $h \times f$ where h is a scalar function • $ f $ and $\langle f,g \rangle$ • f/h where h is a non-zero scalar function • $g \circ j$ where $j:\mathbb{R}^m \to \mathbb{R}^n$ is continuous	84
Partial derivative	$rac{\partial f}{\partial x_j}(x) = \lim_{h \to 0} rac{f(\dots, x_j + h, \dots) - f(\dots, x_j, \dots)}{h}$ where $f \colon \mathbb{R}^n \to \mathbb{R}^n$	89
Gradient	$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$	89
Directional derivative	$\nabla_v f(x) = \lim_{h \to 0} \frac{f(x + hu) - f(x)}{h} = u \cdot \nabla f(x)$ where $u = v/\ v\ $, or $u = v$ if v is a unit vector	91
Hessian matrix	$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \dots & \ddots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix} $ for $f \colon \mathbb{R}^n \to \mathbb{R}$	93
Jacobian matrix	$J_f(x) = egin{bmatrix} rac{\partial f_1}{\partial x_1}(x) & \cdots & rac{\partial f_1}{\partial x_n}(x) \ & \cdots & \ddots & \cdots \ rac{\partial f_k}{\partial x_1}(x) & \cdots & rac{\partial f_k}{\partial x_n}(x) \end{bmatrix} ext{ for } f \colon \mathbb{R}^n o \mathbb{R}^k$	104
Partial differentiability	If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \boldsymbol{x}_0 , then all partial derivatives exist at \boldsymbol{x}_0	98
Full partial diff.	If the partial derivatives for $f: \mathbb{R}^n \to \mathbb{R}$ exist at all points and are continuous, then f is differentiable for all \mathbb{R}^n	99
Continuous diff.	If f is differentiable at \boldsymbol{x}_0 , then it is continuous at \boldsymbol{x}_0	99
Partial derivative order	$rac{\partial^2 f}{\partial x_j\partial x_k}(x) = rac{\partial^2 f}{\partial x_k\partial x_j}(x)$	100
Chain rule	$g(f(x))' = \langle f'(x), \nabla g(f(x)) \rangle$ where $g \colon \mathbb{R}^n \to \mathbb{R}, f \colon \mathbb{R} \to \mathbb{R}^n$	101
Linear differentiability	A linear map $L \colon \mathbb{R}^n \to \mathbb{R}^k, L(x) = Ax$ is differentiable for all \mathbb{R}^n with Jacobian A	103
Coordinate diff.	$f=(f_1,\ldots,f_k)$ is differentiable at $m{x}_0$ if all f_i are differentiable at x_0	104
C^1 vector function	Differentiable function who's first derivative is continuous	104
Generalised chain rule	$J_{g\circ f}(x_0) = J_g(f(x_0))J_f(x_0)$	105

4 Taylor Approximation

Taylor polynomial	$P_K(x) = \sum_{k=0}^K rac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ with expansion point x_0	110
Taylor's formula	There exists ξ between x and x_0 such that we have the remainder term $R_K(x) = f(x) - P_K(x) = \frac{f^{K+1}(\xi)}{(K+1)!}(x-x_0)^{K+1}$	114
Taylor's formula alt.	There exists $\varepsilon_K \colon \mathbb{R} \to \mathbb{R}$ where $\varepsilon_K(x - x_0) \to 0$ as $x - x_0 \to 0$ such that $R_K(x) = \varepsilon_K(x - x_0)(x - x_0)^K$	114
Taylor's theorem	If there is $C > 0$ such that $ f^{(k)}(x) \le C $, then for K, x , $\left f(x) - \sum_{k=0}^{K} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right \le \frac{C}{(K+1)!} x - x_0 ^{K+1}$	115
Taylor polynom. in \mathbb{R}^n	$P_1(x) = f(x_0) + (x - x_0) \cdot \nabla f(x_0) \text{ where } x, x_0 \in \mathbb{R}^n;$ $P_2(x) = f(x_0) + (x - x_0) \cdot \nabla f(x_0) + \frac{1}{2} (x - x_0) \cdot H_f(x_0) (x - x_0)$	118
Taylor polynom. in \mathbb{R}^2	$P_1(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)$	118
Taylor formula in \mathbb{R}^2	$R_2(x) = f(x) - P_2(x) = \varepsilon(x - x_0) x - x_0 ^2$ for some $\varepsilon \colon \mathbb{R}^n \to \mathbb{R}$ where $\varepsilon(x - x_0) \to 0$ whenever $x \to x_0$	123

5 Local and Global Extrema of Functions

Continuous image set	Let continuous $f : [a, b] \to \mathbb{R}$ on bounded and closed $[a, b]$; im (f) is bounded and closed	128
	Let continuous $f: [a, b] \to \mathbb{R}$; if f attains extremum at x_0 , then one of the following is true:	
Continuous extremum	$ \bullet $	130
	• f is not differentiable at x_0 • f is differentiable at x_0 and $f'(x_0) = 0$	
Second derivative test	We can use $f''(x)$ to find the extremum of $f(x)$	131
Connected set	$B \in \mathbb{R}^n$ is connected if for each $x_1, x_2 \in B$, there is a continuous $r \colon [0,1] \to B$ such that $(r(0), r(1)) = (x_1, x_2)$	133
Connected set function	Let $B \in \mathbb{R}^n$ and continuous $f : B \to \mathbb{R}$; f has a minimum and maximum and, if B is a connected set, then $\operatorname{im}(f) = f(B) = [m, M]$ for some $m, M \in \mathbb{R}$	133
	If $f:A\to\mathbb{R}$ attains a maximum at x_0 , one of the following is true;	
Extremum properties	 x₀ ∈ A ∩ ∂A (x₀ is a boundary point) f is not differentiable at x₀ ∈ A° f is differentiable at x₀ ∈ A° and ∇f(x₀) = 0 	133
Stationary point	$f \colon A o \mathbb{R}$ has stationary point $x_0 \in A^\circ$ if $ abla f(x_0) = 0$	134

An extremum where f is differentiable is a stationary point Stationary extremum 137 A stationary point that isn't an extremum is a saddle point Saddle point 138 • If $H_f(x_0)$ is positive definite, x_0 is a strict local min. • If $H_f(x_0)$ is negative definite, x_0 is a strict local max. Second partial deriv. 138 • If $H_f(x_0)$ has pos. & neg. eigenvalues, x_0 is a saddle point 6 Integration Let $f: [a, b] \to \mathbb{R}$; • If f is Riemann integrable, im(f) is a bounded set in \mathbb{R} Riemann integral prop. 143 • If f is continuous, then it is Riemann integrable $\int_{a}^{b} (cf(x) + dg(x)) dx = c \int_{a}^{b} f(x) dx + d \int_{a}^{b} g(x) dx$ Riemann linearity 143 $\int_a^b f(x) \, \mathrm{d}x \le \int_a^b g(x) \, \mathrm{d}x \text{ if } f(x) \le g(x)$ Riemann monotonicity 143 $\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \leq \int_{a}^{b} |f(x)| \, \mathrm{d}x$ Riemann triangle ineq. 143 $\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{x_0} f(x) \, \mathrm{d}x + \int_{x_0}^{b} f(x) \, \mathrm{d}x \text{ where } x_0 \in]a, b[$ Riemann insertion 143 $F(x) = \int_{0}^{x} f(y) dy$ is an anti-derivative of f with x_0 fixed Fundamental theorem 145 $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$ Integration 146 $\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx \text{ where } f \text{ is continuous and } g \text{ is continuously differentiable}$ Integration by parts 147 $\int f(g(x))g'(x) dx = F(g(x))$ where f is continuous and g is continuously differentiable with its range in f's domain Integration by subst. 147 Let $Q = \{ (x, y) \in \mathbb{R}^2 \mid a_1 \le x \le b_1 \land a_2 \le y \le b_2 \};$ $\int_{Q} f(x, y) \, d(x, y) = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x, y) \, dy \right) dx$ Integration over \mathbb{R}^2 151 $\int_{B} f(x,y) \, \mathrm{d}(x,y) = \int_{\alpha}^{\beta} \int_{\varphi_{2}(\theta)}^{\varphi_{2}(\theta)} f(r\cos(\theta), r\sin(\theta)) r \, \mathrm{d}r \, \mathrm{d}\theta$ Polar integration 164 $\int_{O} f(\boldsymbol{x}) d(\boldsymbol{x}) = \int_{a_{n}}^{b_{n}} \cdots \left(\int_{a_{1}}^{b_{1}} f(\boldsymbol{x}) dx_{1} \right) \cdots dx_{n}$ Integration over \mathbb{R}^n 165 $\int_{r(\Gamma)} f(\boldsymbol{x}) d\boldsymbol{x} = \int_{\Gamma} f(r(\boldsymbol{u})) |\det(J_r(\boldsymbol{u}))| d\boldsymbol{u} \text{ if } \det \neq 0$ Change of var. over \mathbb{R}^n 167

167

 $\operatorname{vol}_n(B) = \int_B 1 \, \mathrm{d}X = |\det(J_r)|$

Volume

7 Vector fields

Mass	$M = \int_B f(x) \mathrm{d}x$	171
Centre of mass	$x^{ ext{CM}} = rac{1}{M} \int_B x f(x) \mathrm{d}x$	171
Regular parametr.	$u \mapsto \sqrt{\det(J^{\mathrm{T}}J)} \text{ where } J = \det\left((J_r(u))^{\mathrm{T}}J_r(u)\right) \neq 0$	175
Cross product in \mathbb{R}^3	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{bmatrix}$	176
Special case Jacobian	• Curve in \mathbb{R}^n : $u \mapsto r'(u) $ • Surface in \mathbb{R}^3 : $u \mapsto r'_{u_1}(u) \times r'_{u_2}(u) $ • Subset of \mathbb{R}^3 : $\sqrt{\det(J_r(u)^T J_r(u))} = \det(J_r(u)) $	177
Integral over m-fold	$\int_{\mathcal{D}} f(x) \mathrm{d}S = \int_{\Gamma} f(r(u)) \sqrt{\det(J_r(u)^{\mathrm{T}} J_r(u))} \mathrm{d}u$	179
Graph surface	$\mathcal{S} = \set{(u,v,h(u,v)) \in \mathbb{R}^3 \mid (u,v) \in B}$	184
Gradient field	$V(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$	186
Gradient field symm.	$rac{\partial V_i}{\partial x_j}(x) = rac{\partial V_j}{\partial x_i}(x) \;\; (J_V(x) \; ext{is symmetric})$	187
Star-shaped set	A set with a centre x such that the line between x & any point in S is contained in S ; such sets are simply connected	188
Jacobian symmetry	Let $V: U \to \mathbb{R}^n$ where U is simply connected; If $J_V(x)$ is symmetric for all $x \in U, V$ is a gradient field	189
Vector field line int.	$\int_{\mathcal{C}} V \cdot \mathrm{d}s = \int_{a}^{b} V(r(u)) \cdot r'(u) \mathrm{d}u$	179
Circulation theorem	V is a gradient field iff. for any closed & piecewise C^1 curve in $\mathcal C$ it holds that $\int_{\mathcal C} V \cdot \mathrm{d} s = 0$	195
Vector field surface int.	$\int_{\mathcal{F}} V \cdot \mathrm{d}s = \int_{\Gamma} \langle V(r(u_1,u_2)), n_{\mathcal{F}}(u_1,u_2) angle \mathrm{d}(u_1,u_2)$	197