ENTMLGY 6707 Entomological Techniques and Data Analysis

Q-Q Plots: Nuts and Bolts

1 Q-Q Plots

Q-Q Plots stands for Quantile-Quantile Plots. Quantiles are equivalent to percentiles and indicate a value below which a portion of your data are located. For example, the median is the 0.50 quantile and the 50th percentile: half of your data have values smaller than the median, half have larger values. To assess normality, we can plot the quantiles of your data (y-axis) vs. the quantiles of a theoretical sample we know is normally distributed (x-axis). The theoretical sample is comprised of the same number of observations as your actual sample, but it comes from a standard normal distribution for which the quantiles are exactly known. If the samples were distributed exactly alike, the data would fall on a perfectly straight line. Here is a decent looking Q-Q plot of Sepal.Length from the iris data:

qq_sepal <- qqnorm(iris\$Sepal.Length)</pre>

Normal Q-Q Plot

Here is an example of bad one, indicating the data are skewed.

```
set.seed(123)
sample_data <- rexp(20,0.3)
qqnorm(sample_data)</pre>
```


Either a log or square-root transformation helps though. There is some subjectivity here, but these look okay.

```
qqnorm(log(sample_data), main = "Log transformation")
```

Log transformation

qqnorm(sqrt(sample_data), main = "Square root transformation")

Square root transformation

We will also look at Q-Q plots when we fit regressions. Therefore, it's worth understanding the nuts and bolts. Luckily, R has a function that does everything for us, but we will work through each component of a Q-Q plot in this section.

Quantiles are, by definition, between 0 and 1 (e.g., you cannot have -1% or 102% of the data). The first step is to sort the data (smallest to largest) and generate n=150 quantiles (we will calculate the quantile for each observation). These quantiles are obtained using ppoints() (which generates "n" equally spaced points between 0 and 1). Thus, our quantiles are equally spaced starting with 0 and ending at 1.

```
ordered_sample <- sort(iris$Sepal.Length)
head(ordered_sample)</pre>
```

[1] 4.3 4.4 4.4 4.4 4.5 4.6

```
tail(ordered_sample)
```

[1] 7.6 7.7 7.7 7.7 7.7 7.9

```
quantile_vec <- ppoints(n = length(ordered_sample))
head(quantile_vec)</pre>
```

[1] 0.003333333 0.010000000 0.016666667 0.023333333 0.030000000 0.036666667

```
tail(quantile_vec)
```

[1] 0.9633333 0.9700000 0.9766667 0.9833333 0.9900000 0.9966667

Then, we need to pair each observation in our sample with its corresponding quantile value. R has a useful command, quantile(), where x indicates a vector/string of numbers (our sample in this case) and probs indicates the quantile(s) we want to extract. For example, the median is the 0.50 (or 50%) quantile:

```
quantile(x = iris$Sepal.Length, probs = 0.50)
```

50% 5.8

```
median(iris$Sepal.Length)
```

[1] 5.8

Since we have a string of 150 quantiles (quantile_vec), we will calculate the quantile for each observation:

```
quantile_of_each_value <- quantile(x = iris$Sepal.Length, probs = quantile_vec)
head(quantile_of_each_value)</pre>
```

```
0.3333333% 1.0000000% 1.6666667% 2.3333333% 3.0000000% 3.6666667% 4.349667 4.400000 4.400000 4.447667 4.547000 4.600000
```

tail(quantile_of_each_value)

```
96.3333333% 97.0000000% 97.66666667% 98.3333333% 99.0000000% 99.66666667% 7.507333 7.653000 7.700000 7.700000 7.700000 7.800667
```

Looking at the output above, this means that 3.67% of our data are smaller than 4.60 and 96.33% of our data are smaller than 7.5073. You could prove this "by hand" in R without much trouble:

```
vals_smaller_than_7.5073 <- iris$Sepal.Length[iris$Sepal.Length < 7.5]
# n obs smaller than 7.5 / total obs in Sepal.Length
length(vals_smaller_than_7.5073)/length(iris$Sepal.Length)</pre>
```

[1] 0.96

At this point, we have our sorted observations and their associated quantiles. We will now use those "associated quantiles" (quantile_vec) to obtain a theoretical sample from a standard normal distribution.

Think of it this way - in your undergrad stats course, you likely calculated a t-value and then searched through the back of a textbook for a t-table/t-distribution to find the corresponding p-value ("probability"-value). The quantiles of a t-distribution indicate the proportional area under the curve of a t-distribution...which is exactly what a p-value is! That is, a quantile value of 0.975 corresponds to $t = \sim 1.96$ (assuming our sample size is large), meaning 97.5% of the area under a t-distribution is located between $-\infty$ and 1.96. If we conduct a t-test and get t = 1.96, then our p-value is ~ 0.025 . If our hypothesis is two-sided (e.g., sample A is "not equal" to sample B vs. "greater than" or "less than" than sample B), we need to multiply our p-value by 2 to account for that fact (t.test() does this for us when we specify alternative="two.sided"). SO, for two-sided hypotheses and large sample sizes, p-values < 0.05 generally occur when t > 1.96.

```
Scale for x is already present. Adding another scale for x, which will replace the existing scale.
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

Scale for x is already present. Adding another scale for x, which will replace the existing scale.

When you are calculating quantiles for your data, you are calculating the proportion of your data that occur below a certain value (we did this by hand above). This same logic and the logic of quantiles/p-values and t-values applies to standard normal distributions, from which our theoretical samples for Q-Q plots originate. The only difference is that standard normals use Z-values, and not t-values. Some of you may be wondering what the difference is between a t-distribution and the standard normal distribution. When the degrees of freedom approach ∞ for a t-distribution, the answer is absolutely nothing - they are the same. Here is a visual example of getting a Z-value from a quantile:

qnorm() gives the corresponding Z-values in a standard normal distribution for the specified quantiles. What follows is (i) a proof of concept for the 0.975 quantile and (ii) the quantiles that correspond to the quantiles we estimated for our sample.

```
# proof of concept
round(qnorm(0.975),2)
```

[1] 1.96

```
# quantiles corresponding to our sample
stand_norm_vals <- qnorm(quantile_vec)
head(stand_norm_vals)</pre>
```

$\hbox{\tt [1]} \ \ \hbox{\tt -2.713052} \ \ \hbox{\tt -2.326348} \ \ \hbox{\tt -2.128045} \ \ \hbox{\tt -1.989313} \ \ \hbox{\tt -1.880794} \ \ \hbox{\tt -1.790751}$

```
tail(stand_norm_vals)
```

[1] 1.790751 1.880794 1.989313 2.128045 2.326348 2.713052

Now, compare the qqnorm() version (we created qq_sepal above) with our "by hand" version (red, smaller dots).

