

ML for Bank Claim Management Prediction

Mayara Cordeiro

Project overview

Problem Definition

Data Preprocessing

Data cleaning Nan values Encode categorical values **Prepare Data for ML**

Vector Assemble, split data (test, train)

Apply models

Logistic Regression Decision Tree Classifier, Random Forest Classifier, Gradient-boosted Tree Classifier **Evaluate Models**

Binary Classification Evaluator; Multi Classification Evaluator

Run the project

"What is the best ML algorithm to improve a claim management process in a bank?"

The data

ID	△ tai	irget 🔺	v1 🔺	v2 🔺	v3 🔺	v4 🔺	v5 🔺	v6 🔺	v7 🔺	v8	▶ v9 ▲	v10 🔺	v11 🔺	v12 🔺	v13 🔺	v14
3	1		1.33573941541	8.72747443554	С	3.9210257481	7.91526571423	2.59927780824	3.17689497363	0.012941465862	9.99999947099	0.503281467753	16.4341080862	6.08571076128	2.86682950383	11.63638
4	1		null	null	С	null	9.19126518062	null	null	2.30163049167	null	1.31290991714	null	6.50764677834	null	11.63638
5	1		0.943876910249	5.31007920093	С	4.41096869049	5.32615938231	3.97959189371	3.92857110919	0.0196451311527	12.6666671203	0.765863972354	14.7560976181	6.38467003054	2.50558923501	9.60354
6	1		0.797414556191	8.30475713591	С	4.22592985639	11.6274384197	2.09770043999	1.98754875148	0.171946704524	8.96551632111	6.5426694717	16.3474825682	9.64665283318 3.9033019		14.09472
8	1		null	null	С	null	null	null	null	null	null	1.05032835954	null	6.32008733304	null	10.99109
9	0		null	null	С	null	8.85679096154	null	null	0.359993128846	null	1.05032784251	null	6.21607696606	null	11.91625
12	0		0.899805657905	7.31299494722	С	3.49414846822	9.94619971703	1.92606996638	1.77042746203	0.0662514981243	5.01128698221	2.34135611559	16.2745100416	7.71117448561	5.915587527	12.14860

(114321, 133)

Data Preprocessing

- CSV data
- Convert data types
- Replace nan values
- ☐ Encode categorical to numerical labels
- Result: New csv data

ID	 target /	⊳ v1	- 4	▶ v2	Δ	v3	△ v4	_	v5	Δ	v6	Δ	v7	Δ	v8 🗻	v9	-	v10	h 1	v11 🚕	v12	A 1	v13	△ v1	14 🚜	⊩ v1	.5
3	1	1.3357	394	8.727474		2	3.9	210258	7.9152656		2.5992777		3.176895		0.012941466	9.99999	9	0.5032815		16.434109	6.0857105	1	2.8668294	11	1.636387	1.3	3550133
4	1	1.6306	857	7.464411		2	4.1	1450977	9.191265		2.4364016		2.4839208		2.3016305	9.03185	3	1.31291		15.4474125	6.5076466	:	3.7983963	11	1.636386	2.0	0809107
5	1	0.9438	769	5.310079		2	4.4	110969	5.3261595		3.9795918		3.9285712		0.01964513	12.6666	57	0.76586396		14.756098	6.3846703	1	2.5055892	9.	603541	1.5	9841266
6	1	0.7974	1454	8.304757		2	4.2	2259297	11.627439		2.0977004		1.9875487		0.1719467	8.96551	5	6.5426693	3	16.347483	9.646653	;	3.903302	14	4.094723	1.5	9450436
8	1	1.6306	857	7.464411		2	4.1	1450977	8.742359		2.4364016		2.4839208		1.4965686	9.03185	3	1.0503284		15.4474125	6.3200874	1	3.7983963	10	0.991097	2.0	0809107
9	0	1.6306	857	7.464411		2	4.1	1450977	8.856791		2.4364016		2.4839208		0.35999313	9.03185	3	1.0503279		15.4474125	6.216077		3.7983963	11	1.916256	2.0	0809107

Prepare data for ML

- Vector Assembler
- ☐ Split data (train, test) randomSplit([0.7, 0.3])

Apply models

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- ☐ Gradient Boost Classifier

Evaluation

ROC Accuracy

Logistic Regression: 0.72 Logistic Regression: 0.767

Decision Tree Classifier: 0.63 Decision Tree Classifier: 0.776

Random Forest Classifier: 0.71 Random Forest Classifier: 0.760

Gradient Boosting Classifier: 0.74 Gradient Boosting Classifier: 0.779

prediction target 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 | 1.0 0.0

Conclusion

The ML algorithms allows the model to predict eligible process to be solved in priority. Improving the bank services and contribute to deliver a quality service for its clients, by decreasing the processing time.

Accuracy results are closer between the methods, gradient boosting tree presented better results in ROC and accuracy.