Erratum for Figure 5 of Biswas et al.

Niloy Biswas & Pierre E. Jacob

February 1, 2022

There was a bug in the code used to produce Figure 5 of Biswas et al. [2019]. The choice of step-size for the MALA and ULA chains was not set in the code as it was described in the paper. The corresponding script ula_versus_mala/ula_versus_mala.R has now been corrected. Below we provide details and an updated Figure 5.

1 Choice of step-size in previous code

• Langevin Monte Carlo methods are based on a proposal of the form

$$Y = X + \frac{1}{2}h^2\nabla\log\pi(X) + hZ,\tag{1}$$

or equivalently

$$Y = X + \frac{1}{2} \epsilon \nabla \log \pi(X) + \sqrt{\epsilon} Z, \tag{2}$$

with $\epsilon = h^2$. In other words, the term in front of the gradient should be commensurate to the variance of the noise term. Our previous code for Figure 5 implemented this proposal correctly following the parameterization in (2). In our previous code, ula_stepsize and mala_stepsize corresponded to $\epsilon = h^2$ above.

• For this example, the optimal scaling for MALA corresponds to $h \sim d^{-1/6}$ or $h^2 \sim d^{-1/3}$. However we got it wrong in the implementation: we chose $\epsilon = h^2 \sim d^{-1/6}$, leading to a decaying acceptance rate for MALA as dimension grew, i.e. a sub-optimal tuning of MALA.

2 Updated code and experiments

We have updated the script ula_versus_mala/ula_versus_mala.R. In the updated script, ula_stepsize and mala_stepsize correspond to h in (1), and we choose $h \sim d^{-1/6}$.

2.1 Choice of step-size

We experiment with step-sizes of the form $h = Cd^{-1/6}$ for various C and d. We obtain Figure 1, confirming that the MALA acceptance rate is stable with d.

2.2 Upper bounds on mixing times

With the corrected step-sizes, we can again estimate upper bounds on $t_{\text{mix}}(\delta)$, say with $\delta = 0.25$. We obtain Figure 2, based on 50 independent meetings for each configuration (dimension, step-size, algorithm). The upper bounds associated with ULA tend to be smaller. However they provide information on the convergence of ULA to its limiting distribution, which is not π . And, they are simply upper bounds, so the actual mixing times could be ordered differently.

Figure 1: Acceptance rate of MALA for various C and d, with mala_stepsize $h = Cd^{-1/6}$.

Figure 2: Upper bounds on the mixing time, for various dimensions and various step-sizes of the form $Cd^{-1/6}$, for ULA and for MALA.

References

N. Biswas, P. E. Jacob, and P. Vanetti. Estimating convergence of markov chains with l-lag couplings. pages 7389-7399, 2019. URL http://papers.nips.cc/paper/8958-estimating-convergence-of-markov-chains-with-l-lag-couplings.pdf. 1