Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Gabriel Marques Tavares

Data Mining Algorithms 1

(Knowledge Discovery and Data Mining 1)

Winter Semester 2024/25

Preliminaries: Data

Preliminaries: Data

- ► What is data?
- Representation of real (or artificial) objects, situations, processes, ...
- Measured by physical sensors ightarrow temperature, humidity, car traffic, speed, color, ...
- Recorded from digital systems \rightarrow bank transfers, web browsing, ...
- Generated by simulations \rightarrow weather forecast, digital mockups, ...
- Stored and provided by computers \rightarrow e.g., on local disk or on remote server
- ► How to represent data?
- Numerical and categorical data types
- Similarity models → allow for pattern mining
- Data reduction \rightarrow to increase efficiency
- How to present data?
- Visualization
- Privacy aspects

Agenda

- 1. Preliminaries: Data
- 1.1 Data Representation
- 1.2 Visualization
- 1.3 Data Reduction

Data Types – Algebraic View

Ingredients of data types

- Types have identifiers: int, long, float, double, boolean, char, ...
- ightharpoonup Types have domains $\mathcal{D}: \{1,2,\ldots\}, \{true, false\}, \{'hello', 'hi', 'howdy', \ldots\}$
- ▶ Types have operations: +. -. mod. div. and. or. not. concat. ...

E.g., operations for comparison, as needed for data mining

- ▶ Equality tests $=, \neq: \mathcal{D} \times \mathcal{D} \rightarrow \{true, false\}$
- Distance functions $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}_0^+$
- Examples: Euclidean distance, maximum distance, difference value

1.1 Data Representation Page 1.2

Data Handling is Expensive – Implementation View

Data need storage space

- ▶ Single values need 1 Byte = 8 Bit, 4 Byte = 32 Bit, 8 Byte = 64 Bit
- Big data sets allocate Kilobytes 10³. Megabytes 10⁶. Gigabytes 10⁹. Terabytes 10¹². Petabytes 10¹⁵. Exabytes 10¹⁸. Zettabytes 10²¹. etc
- Data compression helps (partially)

Operations need calculation time

- \triangleright Calculating the Euclidean distance of two objects from \mathbb{R}^d needs O(d) time
- Mean $\frac{1}{n}\sum_{i=1}^{n} x_i$ of *n* objects from \mathbb{R}^d needs O(nd) time
- ▶ Covariance matrix of *n* objects $x_i \in \mathbb{R}^d$ needs $O(nd^2)$ time

1.1 Data Representation Page 1.3

Overview of Data Types

Simple, basic data types

Numerical data (numbers) or categorical data (symbols)

Composed data types

Vectors, sequences, sets, relations

Complex data types

- ▶ Multimedia data: images, videos, audio, text, documents, web pages, etc.
- ► Spatial data: shapes, geography, trajectories, etc.
- ► Structures: graphs, networks, trees, etc.

Numeric Data

Simple numeric data

- Numbers: natural, integer, rational, real numbers
- Domain examples: age, income, shoe size, height, weight
- ▶ (Dis-)similarity: difference value d(x, y) = |x y|
- Example: 3 is more similar to 30 than 30 is to 3,000

Composed numeric data

- ▶ Vectors $x \in \mathbb{R}^d = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (*d* times)
- lacksquare Examples: geolocation $(lat, lon) \in \mathbb{R}^2$, feature vector $x = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$
- ► Comparison by Euclidean distance, Manhattan dist., Earth Movers' dist., etc.

Examples: Comparisons of vectors by L_p -distance functions

Given two vectors $o, a \in \mathbb{R}^n$

Distances based on
$$p$$
-norms: $d_p(o,q) = \|o-q\|_p = \sqrt[p]{\sum\limits_{i=1}^n |o_i-q_i|^p}$

Euclidean distance (aerial, beeline)
$$d_2(o,q) = \|o-q\|_2 = \sqrt{\sum_{i=1}^n (o_i-q_i)^2}$$
 Manhattan distance (city blocks)
$$d_1(o,q) = \|o-q\|_1 = \sum_{i=1}^n |o_i-q_i|$$

Manhattan distance (city blocks)
$$d_1(o,q) = \|o-q\|_1 = \sum_{i=1}^n |o_i-q_i|$$

Maximum distance,
$$p \to \infty$$
 $d_{\infty}(o,q) = \max\{|o_i - q_i|, i = 1..n\}$

Weighted
$$p$$
-distances $d_{p,w}(o,q) = \sqrt[p]{\sum\limits_{i=1}^n w_i \cdot |o_i - q_i|^p}$

To illustrate, draw "circles" around c: $\{p \in \mathbb{R}^n, d(p,c) = \varepsilon\}$

1 Preliminaries: Data

1.1 Data Representation

Generalization: Metric Data

Metric Space

Metric space (O, d) consists of object set O and *metric distance* function $d: O \times O \to \mathbb{R}_0^+$ which fulfills:

Symmetry: $\forall p, q \in O : d(p,q) = d(q,p)$

Identity of Indiscernibles: $\forall p, q \in O : d(p,q) = 0 \iff p = q$

Triangle Inequality: $\forall p, q, o \in O : d(p, q) \leq d(p, o) + d(o, q)$

Example: Points in 2D space or in \mathbb{R}^n with Euclidean distance

Counterexamples: do we really want to have metrics in every application?

- non-symmetric: one-way roads on the way from p to q
- ▶ non-definite: indiscernible equivalent objects are not necessarily identical
- ► triangles: sometimes detours maybe preferred

Categorical data

- Symbols, "just identifiers"
- **Examples**:
 - subjects = { physics, biology, math, music, literature, ... }
 - occupation = { butcher, hairdresser, physicist, physician, ...}
- Similarity measure: How to compare values?

Example: Trivial metric

$$d(p,q) = egin{cases} 0 & ext{if } p = q \ 1 & ext{else} \end{cases}$$

Categorical data (cont'd)

Explicit similarity matrix,
$$O \times O \to \mathbb{R}_0^+$$
 car bike trolley car 1 0.3 0.1 bike 0.3 1 0.2 trolley 0.1 0.2 1

Path length in generalization hierarchy

1. Preliminaries: Data

1.1 Data Representation

Simple Data Types: Ordinal

Characteristic

There is a (total) order \leq on the set of possible data values O:

Transitivity: $\forall p, q, o \in O : p \leq q \land q \leq o \implies p \leq o$

Antisymmetry: $\forall p, q \in O : p \leq q \land q \leq p \implies p = q$

Totality: $\forall p, q \in O : p \leq q \lor q \leq p$

Examples

- ▶ Words & lexicographic ordering: high ≤ highschool ≤ highscore
- ▶ (Vague) sizes: $tiny \le small \le medium \le big \le huge$
- ▶ Frequencies, e.g.: $never \le seldom \le rarely \le occasionally \le sometimes \le often \le frequently \le regularly \le usually \le always$
- Numbers (finite or infinite sets): $0 \le 1 \le 2 \le ...$, or $1.78 \le 2.35 \le 3.14 \le ...$

Composed Data Types: Sequences, Vectors

Characteristic

- ▶ Given a domain D, a sequence s of length n is a mapping $I_n \to D$ of the index set $I_n = \{1, ..., n\}$ into D. Let us write $s \in D^n$ for short.
- ightharpoonup The sequence s concatenates n values from D; the order does matter

Examples

- $lackbox{ Distances based on p-norms: } d_p(o,q) = \sqrt[p]{\sum\limits_{i=1}^n |o_i-q_i|^p}$
- ▶ Generalization, with ground distances d_i : $d_p(o,q) = \sqrt[p]{\sum\limits_{i=1}^n d_i(o_i,q_i)^p}$
- ▶ Note: d_p is metric iff all ground distances $d_i: D_i \times D_i \to \mathbb{R}_0^+$ are metric

Composed Data Types: Sets

Characteristic

Unordered collection of individual values

Examples

ightharpoonup skills = {Java, C, Python}, hobbies = {skiing, diving, hiking}

Comparison

► Symmetric Set Difference:

$$R\Delta S = (R-S) \cup (S-R)$$

= $(R \cup S) - (R \cap S)$

 $R\Delta S$

Composed Data Types: Sets

Bitvector Representation

- ▶ Given an ordered base set $B = (b_1, ..., b_n)$, for any set S create a binary vector $r \in \{0,1\}^n$ with $r_i = 1 \iff b_i \in S$.
- ► Hamming distance: Sum of different entries (equals cardinality of symmetric set difference)

Example

- ightharpoonup Base: B = (Math, Physics, Chemistry, Biology, Music, Arts, English)
- $ightharpoonup S = {Math, Music, English} = (1,0,0,0,1,0,1)$
- $Arr R = \{ Math, Physics, Arts, English \} = (1,1,0,0,0,1,1)$
- ightharpoonup Hamming(R, S) = 3

Complex Data Types

Examples for components of complex data

- Structure: graphs, networks, trees
- ► Geometry: shapes, contours, routes, trajectories
- Multimedia: images, audio, text, etc.

Similarity models: Approaches

- ► Direct measures highly data type dependent
- ► Feature extraction / feature engineering explicit vector space embedding with hand-crafted features
- ► Kernel trick implicit vector space embedding
- ► Feature learning (explicit) vector space embedding learned by deep learning methods, e.g. neural networks

Complex Data Types

Examples for similarity models								
	Direct	Feature extraction	Kernel-based	Feature learning				
Graphs	Structural	Degree Histograms	Label Sequence	Node embeddings,				
	Alignment		Kernel	Spectral Neural Networks				
Geometry	Hausdorff	Shape Histograms	Spatial Pyramid	Convolution Neural				
	Distance		Kernel	Networks (CNN)				
Sequences	Edit Distance	Symbol Histograms	Cosine Distance	Recurrent neural network (RNN)				

Objects and Attributes (Conceptual Modeling)

Data Tables (Relational Model)

name	sem	major	skills
Ann	3	CS	Java, C, R
Bob	1	CS	Java, PHP
Charly	4	History	Piano
Debra	2	Arts	Painting

Feature Extraction

Objects from database DB are mapped to feature vectors

- ► Feature vector space
 - Points represent objects
 - ▶ Distance corresponds to (dis-)similarity

Similarity Queries

- ► Similarity queries are basic operations in (multimedia) databases
- ightharpoonup Given: universe O, database $DB \subseteq O$, distance function d and query object $q \in O$

Range query

Range query for range parameter $\varepsilon \in \mathbb{R}_0^+$:

$$range(DB, q, d, \varepsilon) = \{o \in DB \mid d(o, q) \le \varepsilon\}$$

Nearest neighbor query

$$\mathit{NN}(\mathit{DB},q,d) = \{o \in \mathit{DB} \mid \forall o' \in \mathit{DB} : d(o,q) \leq d(o',q)\}$$

Similarity Queries

k-nearest neighbor query

k-nearest neighbor query for parameter $k \in \mathbb{N}$:

$$NN(DB, q, d, k) \subseteq DB$$
 with $|NN(DB, q, d, k)| = k$ and

$$\forall o \in NN(DB, q, d, k), o' \in DB - NN(DB, q, d, k) : d(o, q) \leq d(o', q)$$

Ranking query

Ranking query (partial sorting query): "get next" functionality for picking database objects in an increasing order w.r.t. their distance to q:

$$\forall i \leq j : d(q, rank_{DB,q,d}(i)) \leq d(q, rank_{DB,q,d}(j))$$

Similarity Search

- **Example:** Range query $range(DB, q, d, \varepsilon) = \{o \in DB \mid d(o, q) < \varepsilon\}$
- Naive search by sequential scan
 - Fetch database objects from secondary storage (e.g. disk): O(n)time
 - Check distances individually: O(n)time
- Fast search by applying database techniques
 - Filter-refine architecture
 - Filter: Boil database DB down to (small) candidate set $C \subseteq DB$
 - ▶ Refine: Apply exact distance calculation to candidates from *C* only
 - Indexing structures
 - Avoid sequential scans by (hierarchical or other) indexing techniques
 - ▶ Data access in time O(n), $O(\log n)$, or even O(1)

Filter-Refine Architecture

- Principle of multi-step search:
 - Fast filter step produces candidate set C ⊂ DB (by approximate distance function d')
 - 2. Exact distance function *d* is calculated on candidate set *C* only.
- Example: Dimensionality reduction^a
- ► ICES criteria for filter quality^b
 - I ndexable Index enabled
 - C omplete No false dismissals
 - E fficient Fast individual calculation
 - S elective Small candidate set

^aGEMINI: Faloutsos 1996; KNOP: Seidl & Kriegel 1998

^bAssent, Wenning, Seidl: ICDE 2006

Filter-Refine Architecture

- Principle of multi-step search:
 - Fast filter step produces candidate set C ⊂ DB (by approximate distance function d')
 - 2. Exact distance function *d* is calculated on candidate set *C* only.
- ► Example: Dimensionality reduction^a
- ► ICES criteria for filter quality^b
 - I ndexable Index enabled
 - C omplete No false dismissals
 - E fficient Fast individual calculation
 - S elective Small candidate set

^aGEMINI: Faloutsos 1996; KNOP: Seidl & Kriegel 1998

^bAssent, Wenning, Seidl: ICDE 2006

Indexing: Example

- Example: Phone book
- Indexed using alphabetical order of participants
- ► Instead of sequential search:
 - Estimate region of query object (interlocutor)
 - Check for correct branch
 - Use next identifier of query object
 - Repeat until query is finished

Image source: hierher/flickr, Licence: CC BY 2.0

Indexing: Principle

Organize data in a way that allows for fast access to relevant objects, e.g. by heavy pruning.

- ► R-Tree as an example for spatial index structure:
 - ► Hierarchy of minimum bounding rectangles
 - ▶ Disregard subtrees which are not relevant for the current query region

Agenda

- 1. Preliminaries: Data
- 1.1 Data Representation
- 1.2 Visualization
- 1.3 Data Reduction

Data Visualization

- ► Patterns in large data sets are hardly perceived from tabular numerical representations
- ▶ Data visualization transforms data in visually perceivable representations ("a picture is worth a thousand words")
- Combine capabilities:
 - Computers are good in number crunching (and data visualization by means of computer graphics)
 - Humans are good in visual pattern recognition

		M				- 8		Talanta Mariana				
Monthly average temperatur Städte Ø			Mrz						Sep	Okt		
Stadte Ø Abu Dhabi	Jan 25			Apr 36	Mai		Jul 42	Aug 43				Dez 27
Acapulco	32			30				33				
Acapuico Anchorage	32						18	17				
Antalya	15							36				17
Aritarya Athen	13			20				34				
Athen Atlanta	11							34				
Bangkok	32							33				
Bogota	20							18				
Buenos Aires	30			23				17				
Buenos Aires Caracas	30							32				
Caracas Casablanca	3K 18				22			27				
Casabianca Chicago	18							21				
Criicago Colombo (Sri Lanka)	31			32			31	31				
	13			25				36				
Dallas Denver	12							30				
Faro (Algarve)	16				21		29	25				
Grand Canyon (Arizona)	10						29	27				
	27			26								
Harare	-3						22	24				
Helsinki								21				
Heraklion (Kreta)	15						30	30				
Hongkong												
Honolulu	26			27				31				
Houston	16							35				
Irkutsk	-14			17			24	21				-13 11
Istanbul												
Jakutsk (Nordostsibirien)	-35							21				
Johannesburg	25						17	20				
Kairo	19											
Kapstadt	27			24				18				
Kathmandu	18							28				
Larnaka (Zypern)	17							34				
Las Palmas	21							28				
Las Vegas	15							39				
Lhasa	9							22				
Lima	26	26	27	24	21	. 20	19	18	19	20	22	24

Data Visualization Techniques

Туре	Idea	Examples					
Geometric	Visualization of geometric transformations and projections of the data	Scatterplots	Parallel Coordinates				
		Minimum Values Maximum Values of Data Range of Data Range	Y Y Ś Ś				
Icon-Based	Visualization of data as icons	· A . O O O	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
		Chernoff Faces	Stick Figures				
Pixel-oriented	Visualize each attribute value of each data object by one coloured pixel	DOWNING COLORS)					
Other		Recursive Patterns Hierarchical Techniques,	Graph-based Techniques, Hybrid-				
		Techniques,					

 ${\sf Slide \ credit: \ Keim, \ Visual \ Techniques \ for \ Exploring \ Databases, \ Tutorial \ Slides, \ KDD \ 1997.}$

2D Scatterplot

Characteristic

- Designed for two-dimensional data; two axes span the drawing area
- ▶ 2D objects are depicted as points in the diagram
- Orthogonal projections of points to axes indicate coordinate values
- Provides a first look at bivariate data to see clusters of points, outliers, etc.

Scatterplot Matrix

Characteristic

Matrix of scatterplots for pairs of dimensions

Ordering

Ordering of dimensions is important:

- Reordering improves understanding of structures and reduces clutter
- Interestingness of orderings can be evaluated with quality metrics (e.g. Peng et al.)

Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering, IEEE Symp. on Inf. Vis., 2004.

Enhancing Scatterplot

Characteristic

- Using additional formats such as shape and color to represent additional dimensions
- More dimensions lead to higher complexity (information availability vs. interpretability

Trace encoding in process mining: A survey and benchmarking, Engineering Applications of Artificial Intelligence, EAAI, 2003.

1. Preliminaries: Data 1.2 Visualization Page 1.28

Scatterplot Limitations

Limitations

- Scatterplots work well for two dimensions only
- Scatterplot matrices depict pairwise correlations only
- ▶ In perspective illustrations of three or more dimensions, projections get ambiguous

Polygonal Plots

- Depict objects by curves rather than by points
- Coordinates are not indicated by orthogonal projections but by eplicit intersections of polygons with axes
- Example Spiderweb axes remain connected at origin
- Example Parallel Coordinates axes are aligned in parallel

Spiderweb Model

Characteristics

- ▶ Illustrate any single object by a polygonal line
- Contract origins of all axes to a global origin point
- Works well for few objects only

1. Preliminaries: Data 1.2 Visualization Page 1.30

Parallel Coordinates

Characteristics

- ▶ d-dimensional data space is visualised by d parallel axes
- ► Each axis is scaled to min-max range
- ▶ Object = polygonal line intersecting axis at value in this dimension

Parallel Coordinates (cont'd)

Ordering

- Again, the ordering and orientation of the dimensions is important to reveal correlations
- ▶ The farer the attributes the harder their correlations are perceived; coloring helps

Visualize clusters

 Visualize correlations between dimensions

Bertini et al., Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization, Trans. on Vis. and Comp. Graph., 2011.

Pixel-Oriented Techniques

Characteristics

- Each data value is mapped onto a colored pixel
- ► Each dimension is shown in a separate window

How to arrange the pixel ordering?

One strategy: Recursive Patterns iterated line and column-based arrangements

Figures from Keim, Visual Techniques for Exploring Databases, Tutorial Slides, KDD 1997.

Chernoff Faces

Characteristics

Map d-dimensional space to facial expression, e.g. length of nose = dim 6; curvature of mouth = dim 8

Advantage

Humans can evaluate similarity between faces much more intuitively than between high-dimensional vectors

Disadvantages

- ► Without dimensionality reduction only applicable to data spaces with up to 18 dimensions
- ▶ Which dimension represents what part?

Minimum Values of Data Range

Maximum Values of Data Range

Figures taken from Mazza, Introduction to Information Visualization, Springer, 2009.

1. Preliminaries: Data 1.2 Visualization Page 1.34

Chernoff Faces

Table 4.1 Annual

http://www.weatherbase.com.

climatic

Example: Weather Data City Precip. Temp. Temp. max Temp. min Record max Record min average average average average Athens 37 21 42 13 Bucharest 58 16 49 -23Athens Dublin Madrid Rio de Janeiro Canberra -1042 -7 Dublin 74 10 28 Helsinki 63 5 8 31 -36 Hong Kong 218 25 37 13 35 -13London 75 10 Bucharest Helsinki Moscow Rome Madrid 45 13 20 -10Mexico City 23 32 _3 Moscow 35 -42New York 118 -18Porto 126 14 34 Canberra Hong Kong New York Tunis Pio de Inneiro 100 25 43 -7 Rome 80 15 37 23 Tunis 35 Zurich 107 -20

cities. Values from

Figures from Riccardo Mazza, Introduction to Information Visualization, Springer, 2009.

values in Celsius of some world

1. Preliminaries: Data 1.2 Visualization Page 1.35

Mexico City

Porto

London

Zurich

Chernoff Faces

Example: Finance Data

FIGURE 3
Facial Representation of Financial Performance (1 to 5 Years Prior to Failure)

FEDERAL							
Date		Year to Failure					
Dimensions	5	4	3	2	1		
1. Return on Assets	0.10	0.11	0.06	0.03	-0.16		
2. Debt Service	3.66	3.79	1.55	0.78	-14.11		
3. Cash Flows	1.53	1.48	1.39	1.35	0.94		
4. Capitalization	0.22	0.20	0.18	0.16	-0.02		
5. Current Ratio	71.40	89.10	97.85	96.80	58.21		
Cash Turnover	24.03	25.92	25.62	27.40	71.26		
7. Receivables Turnover	5.25	4.46	4.26	4.36	9.56		
8. Inventory Turnover	5.38	4.77	4.57	4.44	5.34		
9. Sales per Dollar							
Working Capital	6.74	6.33	7.02	7.61	-45.77		
10. Retained Earning/							
Total Assets	0.32	0.30	0.01	-0.01	-0.26		
11. Total Assets	0.94	.76	0.39	0.45	0.43		
	0600	0(548)0	(6 A 8)				

Figure from Huff et al., Facial Representation of Multivariate Data, Journal of Marketing, Vol. 45, 1981, pp. 53-59.

1. Preliminaries: Data 1.2 Visualization Page 1.36

Agenda

- 1. Preliminaries: Data
- 1.1 Data Representation
- 1.2 Visualization
- 1.3 Data Reduction

Data Reduction

Why data reduction?

- Better perception of patterns
 - Raw (tabular) data is hard to understand
 - Visualization is limited to (hundreds of) thousands of objects
 - Reduction of data may help to identify patterns
- Computational complexity
 - Big data sets cause prohibitively long runtime for data mining algorithms
 - Reduced data sets are useful the more the algorithms produce (almost) the same analytical results

How to approach data reduction?

- Data aggregation (basic statistics)
- Data generalization (abstraction to higher levels)

Data Reduction Strategies: Three Directions

ID	A1	A2	А3
1	54	56	75
2	87	12	65
3	34	63	76
4	86	23	4

Numerosity Reduction Reduce number of objects

Dimensionality Reduction
Reduce number of attributes

Quantization, **Discretization**Reduce number of values per domain

ID	A 1	А3
1	L	75
3	XS	76
4	XL	4

Numerosity reduction

Reduce number of objects

- ► Sampling (loss of data)
- ► Aggregation (model parameters, e.g., center and spread)

Data Reduction Strategies (cont'd)

Dimensionality reduction

Reduce number of attributes

- ► Linear methods: feature sub-selection, Principal Components Analysis, Random projections, Fourier transform, Wavelet transform, etc
- Non-linear methods: Multidimensional scaling (force model), Neural embedding

Quantization, discretization

Reduce number of values per domain

- Binning (various types of histograms)
- ► Generalization along hierarchies (OLAP, attribute-oriented induction)

Data Aggregation

- Aggregation is numerosity reduction (= less tuples)
- lackbox Generalization yields duplicates ightarrow add counting attribute and merge duplicate tuples

Name	Age	Major
Ann	27	CS
Bob	26	CS
Eve	19	cs

Name	Age	Major
(any)	Twen	CS
(any)	Twen	CS
(any)	Teen	cs

Age Major Count
Twen CS 2
Teen CS 1

Basic Aggregates

- Central tendency: Where is the data located? Where is it centered?
 - Examples: mean, median, mode, etc. (see below)
- Variation, spread: How much do the data deviate from the center?
 - Examples: variance / standard deviation, min-max-range, . . .

Examples

- ► Age of students is around 20
- ► Shoe size is centered around 40
- ► Recent dates are around 2020
- Average income is in the thousands

Distributive Aggregate Measures

Distributive Measures

The value of a distributive measure d on D can be calculated by combining the results of distributed calculations on partitions $D_i \subset D$, $D = D_1 \cup D_2 \cup \dots \cup D_n$

Examples

- ightharpoonup count($D_1 \cup D_2$) = count(D_1) + count(D_2)
- $ightharpoonup sum(D_1 \cup D_2) = sum(D_1) + sum(D_2)$
- \blacktriangleright min $(D_1 \cup D_2) = min(min(D_1), min(D_2))$
- $ightharpoonup max(D_1 \cup D_2) = max(max(D_1), max(D_2))$

1.3 Data Reduction Page 1.42

Algebraic Aggregate Measures

Algebraic Measures

An algebraic measure on D can be computed by an algebraic function with Marguments (M being a bounded integer), each of which is obtained by applying a distributive aggregate function to the partitions $D_i \subset D$, $D = D_1 \cup D_2 \cup \dots D_n$

Examples

- $\Rightarrow avg(D_1 \cup D_2) = \frac{sum(D_1 \cup D_2)}{count(D_1 \cup D_2)} = \frac{sum(D_1) + sum(D_2)}{count(D_1) + count(D_2)}$
- Note: avg is note distributive, $avg(D_1 \cup D_2) \neq avg(avg(D_1), avg(D_2))$
- ightharpoonup standard_deviation($D_1 \cup D_2$)

1.3 Data Reduction Page 1.43

Holistic Aggregate Measures

Holistic Measures

There is no constant bound on the storage size that is needed to calculate and represent sub-aggregates.

Examples

- ► median: value in the middle of a sorted series of values (=50% quantile)
 - $median(D_1 \cup D_2) \neq simple_function(median(D_1), median(D_2))$
- ▶ mode: value that appears most often in a set of values
- ► rank: k-smallest / k-largest value (cf. quantiles, percentiles)

Measuring the Central Tendency

Mean – (weighted) arithmetic mean

Well-known measure for central tendency ("average").

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{x}_w = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

Mid-range

Average of the largest and the smallest values in a data set:

$$(max + min)/2$$

- ► Both are algebraic measures
- Applicable to numerical data only (sum, scalar multiplication)

What about categorical data?

Measuring the Central Tendency (cont'd)

Median

- ► Middle value of sorted values (if their count is odd)
- For even number of values: average of the middle two values (numeric case), or one of the two middle values (non-numeric case)
- ► Applicable to ordinal data only, as a (total) order is required
- Median is a holistic measure

Examples

- never, never, never, rarely, rarely, often, usually, usually, always
- tiny, small, big, big, big, big, big, huge, huge
- tiny, tiny, small, medium, big, big, large, huge

What if there is no ordering?

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Example: blue, red, blue, yellow, green, blue, red
- Unimodal, bimodal, trimodal, ...: There are 1, 2, 3, ... modes in the data (multi-modal in general), cf. mixture models
- ► There is no mode if each data value occurs only once
- ▶ Well suited for categorical (i.e., non-numerical) data

Measuring the Dispersion of Data

Variance

▶ The variance measures the spread around the mean of numerical data:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right]$$

- ► The single pass calculation (sum of squares and square of sum in parallel) is faster than the two-pass method but numerically less robust in case of big numbers.
- ▶ Variance is zero if and only if all the values are equal
- ▶ Standard deviation is equal to the square root of the variance
- ▶ Both the standard deviation and the variance are algebraic measures

Boxplot Analysis

Boxplots comprise a five-number summary of a dataset

- Minimum, first quartile, median, third quartile, maximum
- ▶ These are the 0%, 25%, 50%, 75%, 100% quantiles of the data
- Also called "25-percentile", etc.

Boxplot illustration

- ► The box ranges from the first to the third quartile
- ► Height: inter-quartile range (IQR) = Q3 Q1
- ▶ The median is marked by a line within the box
- ▶ Whiskers at minimum and maximum value
- ▶ Outliers: usually values more than 1.5 · IQR below Q1 or above Q3

Boxplot Example

Data Generalization

- Quantization may use generalization
 - ▶ E.g., group age (7 bits \rightarrow 128 values) to age_range (4 bits \rightarrow 16 values only)
- ▶ Dimensionality reduction is a borderline case of quantization
 - Dropping age corresponds to reduction zero bits
 - ► Corresponds to generalization of age to "all" = "any age" = no information

Data Generalization

- How to group the values of an attribute into partitions?
- Overall data (no partitioning, i.e., single partition)
 - Overall mean, overall variance: too coarse (overgeneralization)
- ▶ Different techniques to form groups for aggregation
 - Binning histograms, based on value ranges
 - Generalization abstraction based on generalization hierarchies
 - Clustering (see later) based on object similarity

Binning Techniques: Histograms

- Histograms use binning to approximate data distributions
- ▶ Divide data into bins and store a representative (sum, average, median) for each bin

Equi-width Histograms

- Divide the range into N intervals of equal size (uniform grid)
- ▶ If A and B are the lowest and highest values of the attribute, the width of intervals will be (B A)/N

Benefits

- ► Most straightforward
- ► Easy to understand

Limitations

- Outliers may dominate presentation
- Skewed data is not handled well

Equi-width Histograms

Example

► Sorted data, 10 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

► Insert 999

Equi-height Histograms

Divide the range into N intervals, each containing approx. the same number of samples (quantile-based approach)

Benefits

- Good data scaling
- Less prone to outliers

Limitations

- Key information in bin boundaries (somehow subtle)
- ► If any value occurs often, the equal frequency criterion might not be met (intervals have to be disjoint!)

Equi-height Histograms

Example

► Same data, 4 bins: 5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 14, 15, 17, 17, 17, 18, 19, 23, 24, 25, 26, 26, 26, 27, 28, 32, 34, 36, 37, 38, 39, 97

- ► Median = 50%-quantile
 - ► More robust against outliers (cf. value 999 from above)
 - Four bin example is strongly related to boxplot

1.3 Data Reduction Page 1.57

Concept Hierarchies: Examples

Concept Hierarchies: Examples

Concept Hierarchy for Categorical Data

- Concept hierarchies can be specified by (expert) users
- Heuristically generate a hierarchy for a set of (related) attributes
 - based on the number of distinct values per attribute in the attribute set
 - ► The attribute with the most distinct values is placed at the lowest level of the hierarchy

► Fails for counter examples: 20 distinct years, 12 months, 7 days_of_week, but not "year < month < days_of_week" with the latter on top

Summarization-based Aggregation

Data Generalization

A process which abstracts a large set of task-relevant data in a database from low conceptual levels to higher ones.

- ► Approaches:
 - ► Data-cube approach (OLAP / Roll-up) manual
 - ► Attribute-oriented induction (AOI) automated

Basic OLAP (Online Analytical Processing) Operations

Roll up

Summarize data by climbing up hierarchy or by dimension reduction.

Drill down

Reverse of roll-up. From higher level summary to lower level summary or detailed data, or introducing new dimensions.

Slice and dice

Selection on one (slice) or more (dice) dimensions.

Pivot (rotate)

Reorient the cube, visualization, 3D to series of 2D planes.

Example: Roll up / Drill down

Query

```
SELECT country, quarter, some_agg_fnc(...)
FROM business
GROUP BY country, quarter
```

Roll-Up

```
SELECT continent, quarter, some_agg_fnc(...)
FROM business
GROUP BY continent, quarter

SELECT country, some_agg_fnc(...)
FROM business
GROUP BY country
```

Drill-Down

```
SELECT city, quarter, some_agg_fnc(...)
FROM business
GROUP BY city, quarter

SELECT country, quarter, product, some_agg_fnc(...)
FROM business
GROUP BY country, quarter, product
```

Example: Roll up and Drill-Down in a Data Cube

Example: Slice Operation

VCR dimension is chosen

Example: Dice Operation

sub-data cube over PC, VCR and quarters 2 and 3 is extracted

Example: Pivot (rotate)

year	17			18			19		
product	TV	PC	VCR	TV	PC	VCR	TV	PC	VCR
	:	:	÷	:	:	÷	:	:	i

 \downarrow Pivot (rotate) \downarrow

product	TV			PC			VCR		
year	17	18	19	17	18	19	17	18	19
	:	:	:	:	:	:	:	:	:

Further OLAP Operations

Other operations

- Drill across: involving (across) more than one fact table
- Drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

1.3 Data Reduction Page 1.68

Specifying Generalizations by Star-Nets

- ► Each circle is called a *footprint*
- ► Footprints represent the granularities available for OLAP operations

Discussion of OLAP-based Generalization

Strength

- Efficient implementation of data generalization
- ► Computation of various kinds of measures, e.g., count, sum, average, max
- Generalization (and specialization) can be performed on a data cube by roll-up (and drill-down)

Limitations

- ► Handles only dimensions of simple non-numeric data and measures of simple aggregated numeric values
- ► Lack of intelligent analysis, does not suggest which dimensions should be used and what levels the generalization should aim at

Attribute-Oriented Induction (AOI)

- More automated approach than OLAP
- Apply aggregation by merging identical, generalized tuples and accumulating their respective counts.
- ▶ Builds on *data focusing:* task-relevant data, including dimensions, resulting in the *initial relation*
- ► Generates a *generalization plan*: decide for either *attribute removal* or *attribute generalization*

Attribute-Oriented Induction (AOI)

Three choices for each attribute: keep it, remove it, or generalize it

Attribute Removal

Remove attribute A in the following cases:

- ► There is a large set of distinct values for A but there is no generalization operator (concept hierarchy) on A, or
- A's higher level concepts are expressed in terms of other attributes (e.g. *street* is covered by *city*, *state*, *country*).

Attribute Generalization

If there is a large set of distinct values for A, and there exists a set of generalization operators (i.e., a concept hierarchy) on A, then select an operator and generalize A.

Attribute Oriented Induction: Example

Name	Gender	Major	Birth place	Birth data	Residence	Phone	GPA
Jim Woodman	M	CS	Vancouver, BC,	8-12-81	3511 Main St.,	687-4598	3.67
			Canada		Richmond		
Scott	M	CS	Montreal, Que,	28-7-80	345 1st Ave.,	253-9106	3.70
Lachance			Canada		Richmond		
Laura Lee	F	Physics	Seattle, WA, USA	25-8-75	125 Austin Ave.,	420-5232	3.83
					Burnaby		
					•		

- ► Name: large number of distinct values, no hierarchy removed
- Gender: only two distinct values retained
- ► Major: many values, hierarchy exists generalized to Sci., Eng., Biz.
- ▶ Birth_place: many values, hierarchy generalized, e.g., to country
- Birth_date: many values generalized to age (or age_range)
- ▶ Residence: many streets and numbers generalized to city
- ▶ Phone number: many values, no hierarchy removed
- ► Grade_point_avg (GPA): hierarchy exists generalized to good, ...
- ► Count: additional attribute to aggregate base tuples

Attribute Oriented Induction: Example

► Initial Relation:

Name	Gender	Major	Birth place	Birth data	Residence	Phone	GPA
Jim Woodman	M	CS	Vancouver, BC,	8-12-81	3511 Main St.,	687-4598	3.67
			Canada		Richmond		
Scott	M	CS	Montreal, Que,	28-7-80	345 1st Ave.,	253-9106	3.70
Lachance			Canada		Richmond		
Laura Lee	F	Physics	Seattle, WA, USA	25-8-75	125 Austin Ave.,	420-5232	3.83
					Burnaby		
				•			
•			•			·	
					1	l .	

► Prime Generalized Relation:

Gender	Major	Birth region	Age Range	Residence	GPA	Count
М	Science	Canada	20-25	Richmond	Very good	16
F	Science	Foreign	25-30	Burnaby	Excellent	22
•						

► Crosstab for generalized relation:

	Canada	Foreign	Total
М	16	14	30
F	10	22	32
Total	26	36	62

Attribute Generalization Control

- ▶ Two common approaches
 - ► Attribute-threshold control: default or user-specified, typically 2-8 values
 - Generalized relation threshold control: control the size of the final relation/rule, e.g., 10-30 tuples
- ► Tradeoff: how many distinct values for an attribute?
 - Overgeneralization: values are too high-level
 - Undergeneralization: level not sufficiently high
 - Both yield tuples of poor usefulness

Strategies for Next Attribute Selection

- Aiming at minimal degree of generalization
 - Choose attribute that reduces the number of tuples the most
 - Useful heuristic: choose attribute with highest number of distinct values.
- ▶ Aiming at *similar degree of generalization* for all attributes
 - ► Choose the attribute currently having the least degree of generalization
- User-controlled
 - Domain experts may specify appropriate priorities for the selection of attributes