Self-attention: an introduction

A series of videos on transformers

Lennart Svensson

• The encoder-decoder structure is standard in machine translations.

The encoder-decoder structure is standard in machine translations.

• The encoder-decoder structure is standard in machine translations.

- The encoder-decoder structure is standard in machine translations.
- What's new? Encoder and decoder use deep self-attention networks.

- The encoder-decoder structure is standard in machine translations.
- What's new? Encoder and decoder use deep self-attention networks.
- Encoder and decoder are also used in other contexts.

WEIGHTED AVERAGES

Compute weighted average

$$y_i = \sum_j W_{ji} x_j.$$

Weights W_{ji}?

WEIGHTED AVERAGES

Compute weighted average

$$y_i = \sum_i W_{ji} x_j.$$

- Weights W_{ji}?
- Decrease with $|t_i t_i|$:

$$\tilde{W}_{ii} = \mathcal{N}(t_i; t_i, 1).$$

Normalize weights to sum to 1:

$$W_{ji} = \frac{\tilde{W}_{ji}}{\sum_{r} \tilde{W}_{ri}}.$$

Emma hates games but she is a great friend

	Emma	hates	games	but	she	is	а	great	friend
Word vectors:	<i>X</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<i>X</i> ₉

Emma hates games but she is a great friend Word vectors:
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Emma hates games but she is a great friend Word vectors:
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Emma hates games but she is a great friend Word vectors:
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Weights?

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Weights?

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Weights? A first idea:

$$z_1 = x_1^\mathsf{T} x_9, \ z_2 = x_2^\mathsf{T} x_9, \dots \qquad \text{Similar words } \Rightarrow \text{large weight!}$$

$$[w_1, w_2, \dots, w_9] = \text{softmax}(z_1, z_2, \dots, z_9)$$

• To compute weights we compute new vectors

Query: $q_9 = W_Q x_9$

Keys: $k_1 = W_K x_1, k_2 = W_K x_2, \dots, k_9 = W_K x_9$

To compute weights we compute new vectors

Query:
$$q_9 = W_Q x_9$$

Keys:
$$k_1 = W_K x_1, k_2 = W_K x_2, ..., k_9 = W_K x_9$$

Weights are obtained from products

$$z_1 = k_1^{\mathsf{T}} q_9, \ z_2 = k_2^{\mathsf{T}} q_9, \ldots, \ z_9 = k_9^{\mathsf{T}} q_9$$

$$[w_1,w_2,\ldots,w_9]=\text{softmax}(z_1,z_2,\ldots,z_9)$$

To compute weights we compute new vectors

Query:
$$q_9 = W_Q x_9$$

Keys:
$$k_1 = W_K x_1, k_2 = W_K x_2, ..., k_9 = W_K x_9$$

Weights are obtained from products

$$z_1 = k_1^\mathsf{T} q_9, \ z_2 = k_2^\mathsf{T} q_9, \dots, \ z_9 = k_9^\mathsf{T} q_9$$

 $[w_1, w_2, \dots, w_9] = \mathsf{softmax}(z_1, z_2, \dots, z_9)$

Large weights for "Emma" and "she"?

• Goal: large z_1 and z_5 .

hockey play game Emma woman girl she

space mar venus

To compute weights we compute new vectors

Query:
$$q_9 = W_Q x_9$$

Keys: $k_1 = W_K x_1$, $k_2 = W_K x_2$, ..., $k_9 = W_K x_9$

Weights are obtained from products

$$z_1 = k_1^{\mathsf{T}} q_9, \ z_2 = k_2^{\mathsf{T}} q_9, \ldots, z_9 = k_9^{\mathsf{T}} q_9$$

 $[w_1, w_2, \ldots, w_9] = \operatorname{softmax}(z_1, z_2, \ldots, z_9)$

Large weights for "Emma" and "she"?

- Goal: large z_1 and z_5 .
- Set $W_K = I$ and W_Q : q_9 in figure.
- This gives large dot products

$$z_1 = k_1^\mathsf{T} q_9 = x_1^\mathsf{T} q_9$$

 $z_5 = k_5^\mathsf{T} q_9 = x_5^\mathsf{T} q_9$

space mars venus

SELF-ATTENTION WEIGHTS IN OUR EXAMPLE

Weights in self-attention:

Query:
$$q_9 = W_Q x_9$$
,
Keys: $k_1 = W_K x_1, k_2 = W_K x_2, \dots, k_9 = W_K x_9$
Weights:
$$\begin{cases} z_1 = k_1^\mathsf{T} q_9, \ z_2 = k_2^\mathsf{T} q_9, \dots, z_9 = k_9^\mathsf{T} q_9 \\ [w_1, w_2, \dots, w_9] = \mathsf{softmax}(z_1, z_2, \dots, z_9) \end{cases}$$

New vector representing "friend":

$$y_9 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

SELF-ATTENTION WEIGHTS IN OUR EXAMPLE

Emma hates games but she is a great friend Word vectors:
$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

Weights in self-attention:

Query:
$$q_3 = W_Q x_3$$
,
Keys: $k_1 = W_K x_1, \ k_2 = W_K x_2, \dots, \ k_9 = W_K x_9$
Weights:
$$\begin{cases} z_1 = k_1^\mathsf{T} q_3, \ z_2 = k_2^\mathsf{T} q_3, \dots, \ z_9 = k_9^\mathsf{T} q_3 \\ [w_1, w_2, \dots, w_9] = \mathsf{softmax}(z_1, z_2, \dots, z_9) \end{cases}$$

New vector representing "games":

$$y_3 = \sum_i w_i x_i = w_1 x_1 + w_2 x_2 + \cdots + w_9 x_9.$$

Self-attention: complete description

A series of videos on transformers

Lennart Svensson

• Let $n: \sharp$ words in sentence, d: length of x_i .

• Let $n: \sharp$ words in sentence, d: length of x_i .

Self-attention: vector notation

• For all $i \in \{1, 2, ..., n\}$:

Query: $q_i = W_Q x_i$,

Keys: $k_i = W_K x_i$,

Values: $v_i = W_V x_i$.

• Let $n: \sharp$ words in sentence, d: length of x_i .

Self-attention: vector notation

• For all $i \in \{1, 2, ..., n\}$:

Query:
$$q_i = W_Q x_i$$
,

Keys:
$$k_i = W_K x_i$$
,

Values:
$$v_i = W_V x_i$$
.

• For all $i, j \in \{1, 2, ..., n\}$:

$$Z_{ji} = k_j^{\mathsf{T}} q_i / \sqrt{d}.$$

• Let $n: \sharp$ words in sentence, d: length of x_i .

Self-attention: vector notation

• For all $i \in \{1, 2, ..., n\}$:

Query:
$$q_i = W_Q x_i$$
,

Keys:
$$k_i = W_K x_i$$
,

Values:
$$v_i = W_V x_i$$
.

• For all $i, j \in \{1, 2, ..., n\}$:

$$Z_{ji} = k_j^{\mathsf{T}} q_i / \sqrt{\mathbf{d}}.$$

• For all $i \in \{1, 2, ..., n\}$:

Weights:
$$[W_{1i}, W_{2i}, ..., W_{ni}] = \underset{n}{\text{softmax}} (Z_{1i}, Z_{2i}, ..., Z_{ni})$$

New embedding:
$$y_i = \sum_{j} v_j W_{ji}$$
.

Order does not matter. It maps sets to sets!

Order does not matter. It maps sets to sets!

Toy example

he
$$\to x_1$$
 $\to q_1 = W_Q x_1, \; k_1 = W_K x_1, \; v_1 = W_v x_1$ is $\to x_2$ $\to q_2 = W_Q x_2, \; k_2 = W_K x_2, \; v_2 = W_v x_2$ old $\to x_3$ $\to q_3 = W_Q x_3, \; k_3 = W_K x_3, \; v_3 = W_v x_3$

Order does not matter. It maps sets to sets!

Toy example

Order does not matter. It maps sets to sets!

Toy example

$$\begin{array}{lll} \text{he} & \rightarrow x_{\text{he}} & \rightarrow q_{\text{he}} = W_Q x_{\text{he}}, \ k_{\text{he}} = W_K x_{\text{he}}, \ v_{\text{he}} = W_V x_{\text{he}} \\ \text{is} & \rightarrow x_{\text{is}} & \rightarrow q_{\text{is}} = W_Q x_{\text{is}}, \ k_{\text{is}} = W_K x_{\text{is}}, \ v_{\text{is}} = W_V x_{\text{is}} \\ \text{old} & \rightarrow x_{\text{old}} & \rightarrow q_{\text{old}} = W_Q x_{\text{old}}, \ k_{\text{old}} = W_K x_{\text{old}}, \ v_{\text{old}} = W_V x_{\text{old}} \\ \text{Weights for "he":} & Z_{\text{he,he}} = k_{\text{he}}^\mathsf{T} q_{\text{he}}, \ Z_{\text{is,he}} = k_{\text{is}}^\mathsf{T} q_{\text{he}}, \ Z_{\text{old,he}} = k_{\text{old}}^\mathsf{T} q_{\text{he}} \\ \begin{bmatrix} W_{\text{he,he}} \\ W_{\text{is,he}} \\ W_{\text{old,he}} \end{bmatrix} = \text{softmax} \begin{pmatrix} \begin{bmatrix} Z_{\text{he,he}} \\ Z_{\text{is,he}} \\ Z_{\text{old,he}} \end{bmatrix} \end{pmatrix}$$

• Order does not matter. It maps sets to sets!

Toy example

he
$$\rightarrow x_{\text{he}}$$
 $\rightarrow q_{\text{he}} = W_Q x_{\text{he}}, \ k_{\text{he}} = W_K x_{\text{he}}, \ v_{\text{he}} = W_V x_{\text{he}}$ is $\rightarrow x_{\text{is}}$ $\rightarrow q_{\text{is}} = W_Q x_{\text{is}}, \ k_{\text{is}} = W_K x_{\text{is}}, \ v_{\text{is}} = W_V x_{\text{is}}$ old $\rightarrow x_{\text{old}}$ $\rightarrow q_{\text{old}} = W_Q x_{\text{old}}, \ k_{\text{old}} = W_K x_{\text{old}}, \ v_{\text{old}} = W_V x_{\text{old}}$ Weights for "he": $Z_{\text{he,he}} = k_{\text{he}}^{\text{T}} q_{\text{he}}, \ Z_{\text{is,he}} = k_{\text{is}}^{\text{T}} q_{\text{he}}, \ Z_{\text{old,he}} = k_{\text{old}}^{\text{T}} q_{\text{he}}$ $Z_{\text{old,he}} = k_{\text{old}}^{\text{T}} q_{\text{he}}$

SELF-ATTENTION: MATRIX DESCRIPTION

Introducing matrix notations:

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix},$$

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}, \qquad K = \begin{bmatrix} k_1 & k_2 & \dots & k_n \end{bmatrix}, \qquad V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

$$K = \begin{bmatrix} k_1 & k_2 & \dots & k_n \end{bmatrix}$$

SELF-ATTENTION: MATRIX DESCRIPTION

Introducing matrix notations:

$$X = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix},$$

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}, \qquad K = \begin{bmatrix} k_1 & k_2 & \dots & k_n \end{bmatrix}, \qquad V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

Self-attention: matrix notation

Calculations without for-loops:

Query:
$$Q = W_Q X$$
,
Keys: $K = W_K X$,

Values:
$$V = W_V X$$

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
.

Weights and averages using columnwise softmax:

Weights:
$$W = \text{softmax}(Z)$$

New embedding: $Y = VW$.

Encoder

A series of videos on transformers

Lennart Svensson

ENCODER OVERVIEW

• The encoder stacks *N* encoder blocks.

ENCODER OVERVIEW

- The encoder stacks N encoder blocks.
- Each encoder block maintains shape (#vectors, vector length).

ENCODER OVERVIEW

- The encoder stacks N encoder blocks.
- Each encoder block maintains shape (#vectors, vector length).
- This video briefly explains all components:
 - input embeddings with positional encodings,
 - · multi-head self-attention,
 - · add & normalize, and
 - · feedforward networks.

• Encoder blocks map sets to sets.

- Encoder blocks map sets to sets.
- However, word order is not irrelevant.

They are rich, but are they happy? They are happy, but are they rich?

- Encoder blocks map sets to sets.
- However, word order is not irrelevant.

They are rich, but are they happy? They are happy, but are they rich?

Solution: encode position in input vectors!

• A small example:

Input: He is happy!

• A small example:

Input: He is happy!

Words in vocabulary: He_ is_ happy

• A small example:

Input: He is happy!

Words in vocabulary: He_ is_ happy

One-hot encodings: t_1 t_2 t_3 t_4

A small example:

Input: He is happy!

Words in vocabulary: He_ is_ happy

One-hot encodings: t_1 t_2 t_3 t_4

Positional one-hot: $p_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$ $p_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix}$ $p_3 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$ $p_4 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$

A small example:

Input: He is happy!

Words in vocabulary: He_ is_ happy

One-hot encodings: t_1 t_2 t_3 t_4

Positional one-hot: $p_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix} \quad p_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix} \quad p_3 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix} \quad p_4 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$

• Input embeddings (vectors), i = 1, 2, 3, 4:

$$x_i = \underbrace{E \ t_i}_{ ext{Word embedding}} + \underbrace{P \ p_i}_{ ext{Positional encoding}}$$

A small example:

Input: He is happy!

Words in vocabulary: He_ is_ happy!

One-hot encodings:
$$t_1$$
 t_2 t_3 t_4

Positional one-hot: $p_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \end{bmatrix}$ $p_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \end{bmatrix}$ $p_3 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$ $p_4 = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$

• Input embeddings (vectors), i = 1, 2, 3, 4:

$$x_i = \underbrace{E t_i}_{\text{Word embedding}} + \underbrace{P p_i}_{\text{Positional encoding}}$$

Learnable parameters

 $E: d \times \text{ size of vocabulary,}$

P: $d \times$ max length of sequence.

- h parallel self-attention blocks/heads.
- Blocks have identical structure but different parameters.

- h parallel self-attention blocks/heads.
- Blocks have identical structure but different parameters.
- Output vectors from different heads are concatenated (for each word)

$$ilde{Y} = egin{bmatrix} Y_1 \ dots \ Y_h \end{bmatrix}$$

Example: n = 3, d = 2, h = 3

- h parallel self-attention blocks/heads.
- Blocks have identical structure but different parameters.
- Output vectors from different heads are concatenated (for each word)

$$ilde{Y} = egin{bmatrix} Y_1 \ dots \ Y_h \end{bmatrix}$$

 Reduce dimensions back to d using a matrix W^o:

$$Y = W^{o} \tilde{Y}$$
.

• Suppose the inputs are denoted X and Y, both size $d \times n$.

• Suppose the inputs are denoted X and Y, both size $d \times n$.

Add & normalization, out: Z

• Adding: A = X + Y.

• Suppose the inputs are denoted X and Y, both size $d \times n$.

Add & normalization, out: Z

- Adding: A = X + Y.
- Normalizing:

$$\mu = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} A_{ij}$$

$$\sigma^2 = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} (A_{ij} - \mu)^2$$

$$Z_{ij} = \frac{A_{ij} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

• Suppose the inputs are denoted X and Y, both size $d \times n$.

Add & normalization, out: Z

- Adding: A = X + Y.
- Normalizing:

$$\mu = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} A_{ij}$$

$$\sigma^2 = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} (A_{ij} - \mu)^2$$

$$Z_{ij} = \frac{A_{ij} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

Why add and normalize?

• Suppose the inputs are denoted X and Y, both size $d \times n$.

Add & normalization, out: Z

- Adding: A = X + Y.
- Normalizing:

$$\mu = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} A_{ij}$$

$$\sigma^2 = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} (A_{ij} - \mu)^2$$

$$Z_{ij} = \frac{A_{ij} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

- Why add and normalize?
- Adding ⇔ residual connection:
 - yields stronger gradients,
 - helps remember positional encoding.

• Suppose the inputs are denoted X and Y, both size $d \times n$.

Add & normalization, out: Z

- Adding: A = X + Y.
- Normalizing:

$$\mu = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} A_{ij}$$

$$\sigma^2 = \frac{1}{d n} \sum_{i=1}^{d} \sum_{j=1}^{n} (A_{ij} - \mu)^2$$

$$Z_{ij} = \frac{A_{ij} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

- Why add and normalize?
- Adding ⇔ residual connection:
 - yields stronger gradients,
 - helps remember positional encoding.
- Normalization:
 - reduces covariate shift ⇒ faster training,
 - centers embeddings around origin, which helps attention layers.

• Applies a fully connected network to each word embedding.

• Applies a fully connected network to each word embedding.

- Applies a fully connected network to each word embedding.
- Embeddings have the same in- and out-dimensions (true for all layers in the encoder).
- Weights are shared among all words.

- Applies a fully connected network to each word embedding.
- Embeddings have the same in- and out-dimensions (true for all layers in the encoder).
- Weights are shared among all words.
- The specific form of the network is linear layer → ReLU → linear layer.

$$W_2 \max(0, W_1 x_i + b_1) + b_2.$$

- Applies a fully connected network to each word embedding.
- Embeddings have the same in- and out-dimensions (true for all layers in the encoder).
- Weights are shared among all words.
- The specific form of the network is linear layer → ReLU → linear layer.

$$W_2 \max(0, W_1 x_i + b_1) + b_2.$$

The operations correspond to two 1D-convolution (fast implementation).

SUMMARY

Encoder remarks

A series of videos on transformers

Lennart Svensson

- The encoder contains two main components:
 - · multi-head self-attention,
 - feedforward neural network (FFN).

- The encoder contains two main components:
 - · multi-head self-attention,
 - feedforward neural network (FFN).
- Multi-head self-attention is a "contextual mapping".

- The encoder contains two main components:
 - · multi-head self-attention,
 - feedforward neural network (FFN).
- Multi-head self-attention is a "contextual mapping".
- FFN is applied token-wise.

- The encoder contains two main components:
 - · multi-head self-attention,
 - feedforward neural network (FFN).
- Multi-head self-attention is a "contextual mapping".
- FFN is applied token-wise.
- In spite all the weight-sharing, the encoder is a universal function approximator.

MULTI-HOP ATTENTION (1)

 First layer receives input embeddings.

MULTI-HOP ATTENTION (1)

 First layer receives input embeddings.

 Deeper layers perform self-attention on updated embeddings.

MULTI-HOP ATTENTION (2)

- Self-attention on updated embeddings \Rightarrow "reason" in multiple steps?

MULTI-HOP ATTENTION (2)

 $\bullet \ \ \mbox{Self-attention on updated embeddings} \Rightarrow \mbox{``reason'' in multiple steps?}$

Predict the next word?

Karin has bought a **guitar**. When she came home, she left **it** in the kitchen and instead picked up some wine. When her brother entered the kitchen, he picked **it** up and started . . .

MULTI-HOP ATTENTION (2)

- Self-attention on updated embeddings ⇒ "reason" in multiple steps?
 - 1. What did Karin leave in the kitchen?
 - 2. What did her brother pick up?
 - 3. What can you do with it?
- Predict the next word?

Karin has bought a **guitar**. When she came home, she left **it** in the kitchen and instead picked up some wine. When her brother entered the kitchen, he picked **it** up and started . . .

VISUALIZATION OF ACTIVATIONS

• Weights for the word "it".

VISUALIZATION OF ACTIVATIONS

• Weights for the word "it".

 Weights are specific for one attention head in layer 4 and one specific sentence.

POTENTIAL WEAKNESSES

- Complexity is $O(n^2)$, where n is sequence length.
- Recall that for all $i, j \in \{1, 2, \dots, n\}$:

$$Z_{ji} = k_j^{\mathsf{T}} q_i / \sqrt{d}.$$

POTENTIAL WEAKNESSES

- Complexity is $O(n^2)$, where n is sequence length.
- Recall that for all $i, j \in \{1, 2, \dots, n\}$:

$$Z_{ji} = k_j^{\mathsf{T}} q_i / \sqrt{d}.$$

Can be difficult to train.

POTENTIAL WEAKNESSES

- Complexity is $O(n^2)$, where n is sequence length.
- Recall that for all $i, j \in \{1, 2, \dots, n\}$:

$$Z_{ji} = k_j^{\mathsf{T}} q_i / \sqrt{d}$$
.

- Can be difficult to train.
- Many heads are unimportant and can be pruned with little impact on performance.

Transformers vs CNNs and RNNs

A series of videos on transformers

Lennart Svensson

Commonly used for images, data sequences and more.

Commonly used for images, data sequences and more.

A few key properties

Local filters (and thus features).

Commonly used for images, data sequences and more.

A few key properties

- Local filters (and thus features).
- Weights depend on **relative position**.

Commonly used for images, data sequences and more.

A few key properties

- Local filters (and thus features).
- Weights depend on relative position.
- Other properties: Weights are shared across entire image, pooling layers, etc.

Commonly used for images, data sequences and more.

A few key properties

- Local filters (and thus features).
- Weights depend on relative position.
- Other properties: Weights are shared across entire image, pooling layers, etc.

A toy example Filter: Input: Output:

Text examples: This book was written by Johan.

Johan wrote this book.

Commonly used for images, data sequences and more.

A few key properties

- Local filters (and thus features).
- Weights depend on relative position.
- Other properties: Weights are shared across entire image, pooling layers, etc.

Text examples: This book, which is about a girl from India, was written by Johan.

Commonly used to model sequences: dynamic models, language and more.

Commonly used to model sequences: dynamic models, language and more.

A few key properties

States only depend on earlier input.

Text examples: She went to the bank of the river.

Commonly used to model sequences: dynamic models, language and more.

A few key properties

- States only depend on earlier input.
- States computed in order.

Text examples: She went to the bank of the river.

This book, which is about a girl from India, was written by Johan.

Commonly used to model sequences: dynamic models, language and more.

A few key properties

- States only depend on earlier input.
- States computed in order.
- Other properties: Weights are shared, can handle variable length input-output, etc.

Text examples: She went to the bank of the river.

Basic RNN structure

This book, which is about a girl from India, was written by Johan.

Maps sets to sets!

Maps sets to sets!

A few key properties

 Order is "ignored" (but position is encoded in state).

Maps sets to sets!

A few key properties

- Order is "ignored" (but position is encoded in state).
- Feature vectors depend on entire sequence.

Text example: She went to the bank of the river.

Maps sets to sets!

A few key properties

- Order is "ignored" (but position is encoded in state).
- Feature vectors depend on entire sequence.
- Other properties: Same number of input and output vectors, deep self-attention architecture, etc.

Encoding each word Encoder have car

Text example: She went to the bank of the river.

RNN: example and properties

may forget the past

positive/negative/neutral? $h_0 \longrightarrow \overbrace{f_{\theta}}^{h_1} \xrightarrow{h_1} \overbrace{f_{\theta}}^{h_2} \xrightarrow{h_3} \overbrace{f_{\theta}}^{h_3} \longrightarrow h_4$ Terrible video by Lennart

RNN: example and properties

- may forget the past
- may suffer from vanishing gradients.

RNN: example and properties

- may forget the past
- may suffer from vanishing gradients.

RNN: example and properties

- may forget the past
- may suffer from vanishing gradients.

Transformer encoder: example and properties

maintains one vector per word,

RNN: example and properties

- may forget the past
- may suffer from vanishing gradients.

Transformer encoder: example and properties

- maintains one vector per word,
- directly links output to all input words

$$y_4 = \sum_j \underbrace{v_j}_{W_{i,\mathbf{x}}} W_{j4}.$$

Decoder: testing and training

A series of videos on transformers

Lennart Svensson

TRANSFORMER OVERVIEW

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.

USING THE DECODER (TESTING)

Repeat until end of sequence:

- 1) Input translated words.
- 2) Compute next word probabilities.
- 3) Pick (sample?) next word.
 - Note: translation is feeded back into decoder. It might be incorrect!

Use training data pairs (original sequence, target translation):

Use training data pairs (original sequence, target translation):

1) Input original sentence and part of target sentence.

Use training data pairs (original sequence, target translation):

- 1) Input original sentence and part of target sentence.
- 2) Compute next word probabilities.

Use training data pairs (original sequence, target translation):

- 1) Input original sentence and part of target sentence.
- 2) Compute next word probabilities.
- 3) Minimize cross-entropy loss: maximize probability of target word.

Use training data pairs (original sequence, target translation):

- 1) Input original sentence and part of target sentence.
- 2) Compute next word probabilities.
- 3) Minimize cross-entropy loss: maximize probability of target word.

Note 1: translation is determined by target, teacher forcing.

Use training data pairs (original sequence, target translation):

- 1) Input original sentence and part of target sentence.
- 2) Compute next word probabilities.
- 3) Minimize cross-entropy loss: maximize probability of target word.

- Note 1: translation is determined by target, teacher forcing.
- Note 2: predicts probabilities of one word at a time (inefficient?).

EMPIRICAL RISK MINIMIZATION

Training data

$$\left(x_{1:n_x^{(j)}}^{(j)},y_{1:n_y^{(j)}}^{(j)}\right), \quad j=1,\ldots,m,$$

where

$$x_{1:n_x^{(j)}}^{(j)} = (x_1^{(j)}, x_2^{(j)}, \dots, x_{n_x^{(j)}}^{(j)})$$
: original sequence, $y_{1:n_y^{(j)}}^{(j)} = (y_1^{(j)}, y_2^{(j)}, \dots, y_{n_y^{(j)}}^{(j)})$: translation.

EMPIRICAL RISK MINIMIZATION

Training data

$$\left(x_{1:n_x^{(j)}}^{(j)},y_{1:n_y^{(j)}}^{(j)}\right), \quad j=1,\ldots,m,$$

where

$$x_{1:n_{x}^{(j)}}^{(j)}=(x_{1}^{(j)},x_{2}^{(j)},\ldots,x_{n_{x}^{(j)}}^{(j)})$$
: original sequence, $y_{1:n_{y}^{(j)}}^{(j)}=(y_{1}^{(j)},y_{2}^{(j)},\ldots,y_{n_{y}^{(j)}}^{(j)})$: translation.

Select network parameters that minimize total loss across training data

$$\sum_{i=1}^{m} \sum_{j=2}^{n_y^{(j)}} -\log \Pr \left[y_i^{(j)} \middle| y_{1:i-1}^{(j)}, x_{1:n_x^{(j)}}^{(j)} \right].$$

EMPIRICAL RISK MINIMIZATION

Training data

$$\left(x_{1:n_x^{(j)}}^{(j)},y_{1:n_y^{(j)}}^{(j)}\right), \quad j=1,\ldots,m,$$

where

$$x_{1:n_x^{(j)}}^{(j)} = (x_1^{(j)}, x_2^{(j)}, \dots, x_{n_x^{(j)}}^{(j)})$$
: original sequence, $y_{1:n_y^{(j)}}^{(j)} = (y_1^{(j)}, y_2^{(j)}, \dots, y_{n_y^{(j)}}^{(j)})$: translation.

Select network parameters that minimize total loss across training data

$$\sum_{j=1}^{m} \sum_{i=2}^{n_{y}^{(j)}} -\log \Pr \left[y_{i}^{(j)} \middle| y_{1:i-1}^{(j)}, x_{1:n_{x}^{(j)}}^{(j)} \right].$$
In parallel?

Decoder: masked self-attention

A series of videos on transformers

Lennart Svensson

TRANSFORMER OVERVIEW

 The decoder stacks N decoder blocks.

TRANSFORMER OVERVIEW

- The decoder stacks N decoder blocks.
- Each decoder block maintains shape (#vectors, vector length).

TRANSFORMER OVERVIEW

- The decoder stacks N decoder blocks.
- Each decoder block maintains shape (#vectors, vector length).
- We have #vectors= n_D, the length of output sequence.

PARALLELIZED PREDICTIONS DURING TRAINING

- Compute all next word probabilities in parallel?
 - Feed entire target sequence into decoder.

PARALLELIZED PREDICTIONS DURING TRAINING

- Compute all next word probabilities in parallel?
 - Feed entire target sequence into decoder.
 - Only possible during training.

PARALLELIZED PREDICTIONS DURING TRAINING

- Compute all next word probabilities in parallel?
 - Feed entire target sequence into decoder.
 - Only possible during training.
 - Predictions may not use future input.

Example: computing y_3

• y_3 should only depend on x_1, x_2, x_3 .

Example: computing y₃

- y_3 should only depend on x_1, x_2, x_3 .
- Compute queries, keys and Z:

$$Z_{13} = \frac{k_1^T q_3}{\sqrt{d}}, \dots, Z_{53} = \frac{k_5^T q_3}{\sqrt{d}}.$$

Example: computing y_3

- y_3 should only depend on x_1, x_2, x_3 .
- Compute gueries, keys and Z:

$$Z_{13} = rac{k_1^{\mathsf{T}} q_3}{\sqrt{d}}, \dots, Z_{53} = rac{k_5^{\mathsf{T}} q_3}{\sqrt{d}}.$$

$$\begin{vmatrix}
 V_{13} \\
 V_{23} \\
 V_{33} \\
 V_{43} \\
 V_{53}
 \end{vmatrix} =
 \begin{vmatrix}
 Exp(Z_{13}) \\
 exp(Z_{23}) \\
 exp(Z_{33}) \\
 0 \\
 0
 \end{vmatrix}$$

Example: computing y_3

- y_3 should only depend on x_1, x_2, x_3 .
- Compute gueries, keys and Z:

$$Z_{13} = rac{k_1^{\mathsf{T}} q_3}{\sqrt{d}}, \dots, Z_{53} = rac{k_5^{\mathsf{T}} q_3}{\sqrt{d}}.$$

$$\begin{bmatrix} \tilde{W}_{13} \\ \tilde{W}_{23} \\ \tilde{W}_{33} \\ \tilde{W}_{43} \\ \tilde{W}_{53} \end{bmatrix} = \begin{bmatrix} \exp(Z_{13}) \\ \exp(Z_{23}) \\ \exp(Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} W_{13} \\ W_{23} \\ W_{33} \\ W_{43} \\ W_{53} \end{bmatrix} = \begin{bmatrix} \tilde{W}_{13} \\ \tilde{W}_{23} \\ \tilde{W}_{33} \\ 0 \\ 0 \end{bmatrix} \frac{1}{\tilde{W}_{13} + \tilde{W}_{23} + \tilde{W}_{33}}$$

Example: computing y_3

- y_3 should only depend on x_1, x_2, x_3 .
- Compute gueries, keys and Z:

$$Z_{13} = rac{k_1^{\mathsf{T}} q_3}{\sqrt{d}}, \dots, Z_{53} = rac{k_5^{\mathsf{T}} q_3}{\sqrt{d}}.$$

eights:
$$\begin{bmatrix} \tilde{W}_{13} \\ \tilde{W}_{23} \\ \tilde{W}_{33} \\ \tilde{W}_{43} \\ \tilde{W}_{53} \end{bmatrix} = \begin{bmatrix} \exp(Z_{13}) \\ \exp(Z_{23}) \\ \exp(Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} W_{13} \\ W_{23} \\ W_{33} \\ W_{43} \\ W_{53} \end{bmatrix} = \begin{bmatrix} \operatorname{softmax}(Z_{13}, Z_{23}, Z_{33}) \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Example: computing V_3

- v₃ should only depend on X_1, X_2, X_3 .
- Compute queries, keys and Z:

$$Z_{13} = \frac{k_1^T q_3}{\sqrt{d}}, \dots, Z_{53} = \frac{k_5^T q_3}{\sqrt{d}}.$$

Masked self-attention SOS have car *X*₃ *X*5

$$egin{array}{c} \widetilde{W}_{13} \ \widetilde{W}_{23} \ \widetilde{W}_{33} \ \widetilde{W}_{43} \ \widetilde{W}_{53} \end{array} = egin{array}{c} \exp(Z_{13}) \ \exp(Z_{23}) \ \exp(Z_{33}) \ 0 \ 0 \end{array}
ightarrow$$

$$\begin{vmatrix} 1_{13} \\ 2_{23} \\ 3_{33} \end{vmatrix} = \begin{vmatrix} 1_{13} \\ 1_{23} \\ 1_{33} \end{vmatrix}$$

$$\begin{bmatrix} \tilde{W}_{13} \\ \tilde{W}_{23} \\ \tilde{W}_{33} \\ \tilde{W}_{43} \\ \tilde{W}_{53} \end{bmatrix} = \begin{bmatrix} \exp(Z_{13}) \\ \exp(Z_{23}) \\ \exp(Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} W_{13} \\ W_{23} \\ W_{33} \\ W_{43} \\ W_{53} \end{bmatrix} = \begin{bmatrix} \operatorname{softmax}(Z_{13}, Z_{23}, Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow y_3 = \sum_{i=1}^5 v_i W_{i3}$$

$$=\sum_{i=1}^5 v_i W_{i3}$$

Calculations without for-loops:

Query: $Q = W_Q X$,

Keys: $K = W_K X$,

Values: $V = W_V X$

 $Z = K^{\mathsf{T}}Q/\sqrt{d}$.

Calculations without for-loops:

Query:
$$Q = W_Q X$$
,

Keys:
$$K = W_K X$$
,

Values:
$$V = W_V X$$

$$Z = K^{\mathsf{T}}Q/\sqrt{d}$$

Unnormalized weights are masked:

$$\tilde{W} = \begin{bmatrix} \exp(Z_{11}) & \exp(Z_{12}) & \exp(Z_{13}) & \exp(Z_{14}) & \exp(Z_{15}) & \dots \\ 0 & \exp(Z_{22}) & \exp(Z_{23}) & \exp(Z_{14}) & \exp(Z_{25}) & \dots \\ 0 & 0 & \exp(Z_{33}) & \exp(Z_{34}) & \exp(Z_{35}) & \dots \\ 0 & 0 & 0 & \exp(Z_{44}) & \exp(Z_{45}) & \dots \\ 0 & 0 & 0 & 0 & \exp(Z_{55}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Calculations without for-loops:

Query:
$$Q = W_Q X$$
,

Keys: $K = W_K X$, Values: $V = W_V X$

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
.

Weights using columnwise **masked** softmax (sm):

$$W = \begin{bmatrix} 1 & sm_1(Z_{12}, Z_{22}) & sm_1(Z_{13}, Z_{23}, Z_{33}) & sm_1(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & sm_2(Z_{12}, Z_{22}) & sm_2(Z_{13}, Z_{23}, Z_{33}) & sm_2(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & sm_3(Z_{13}, Z_{23}, Z_{33}) & sm_3(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & 0 & sm_4(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Calculations without for-loops:

Query:
$$Q = W_Q X$$
,

Keys:
$$K = W_K X$$
,

Values:
$$V = W_V X$$

$$Z = K^{\mathsf{T}}Q/\sqrt{d}$$

Weights using columnwise masked softmax (sm):

$$W = \begin{bmatrix} 1 & sm_1(Z_{12}, Z_{22}) & sm_1(Z_{13}, Z_{23}, Z_{33}) & sm_1(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & sm_2(Z_{12}, Z_{22}) & sm_2(Z_{13}, Z_{23}, Z_{33}) & sm_2(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & sm_3(Z_{13}, Z_{23}, Z_{33}) & sm_3(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & 0 & sm_4(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

New embeddings using weighted averages:

$$Y = VW$$
 \Rightarrow $y_i = v_1 W_{1i} + v_2 W_{2i} + \cdots + v_i W_{ii}$.

Calculations without for-loops:

Query:
$$Q = W_Q X$$
,

Keys: $K = W_K X$,

Values: $V = W_V X$

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$

Weights using columnwise masked softmax (sm):

$$W = \begin{bmatrix} 1 & sm_1(Z_{12}, Z_{22}) & sm_1(Z_{13}, Z_{23}, Z_{33}) & sm_1(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & sm_2(Z_{12}, Z_{22}) & sm_2(Z_{13}, Z_{23}, Z_{33}) & sm_2(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & sm_3(Z_{13}, Z_{23}, Z_{33}) & sm_3(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ 0 & 0 & 0 & sm_4(Z_{14}, Z_{24}, Z_{34}, Z_{44}) & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

New embeddings using weighted averages:

$$Y = VW$$
 \Rightarrow $y_i = v_1 W_{1i} + v_2 W_{2i} + \cdots + v_i W_{ii}$.

Order matters! Not a mapping from one set to another.

MASKED MULTI-HEAD SELF-ATTENTION

 h parallel masked self-attention blocks/heads.

MASKED MULTI-HEAD SELF-ATTENTION

- h parallel masked self-attention blocks/heads.
- Overall structure is identical to multi-head attention.

Example: n = 3, d = 2, h = 3

MASKED MULTI-HEAD SELF-ATTENTION

- h parallel masked self-attention blocks/heads.
- Overall structure is identical to multi-head attention.
- Difference: Y_i computed using masked softmax.

Example: n = 3, d = 2, h = 3

Decoder: encoder-decoder self-attention

A series of videos on transformers

Lennart Svensson

ENCODER-DECODER SELF-ATTENTION (1)

 Encoder-decoder self-attention takes two inputs: X_D: d_D × n_D and X_E: d_E × n_E.

ENCODER-DECODER SELF-ATTENTION (1)

- Encoder-decoder self-attention takes two inputs: X_D: d_D × n_D and X_E: d_E × n_E.
- Each decoder block maintains shape (#vectors, vector length).

ENCODER-DECODER SELF-ATTENTION (1)

- Encoder-decoder self-attention takes two inputs: X_D: d_D × n_D and X_E: d_E × n_E.
- Each decoder block maintains shape (#vectors, vector length).
- Output from encoder-decoder is $Y: d_D \times n_D$.

• Time to use encoder output!

Time to use encoder output!

Translating Spanish to English

• Input sentence: Tengo un coche.

Time to use encoder output!

Translating Spanish to English

• Input sentence: Tengo un coche.

• Encoder output: x_1^E, x_2^E, x_3^E .

Time to use encoder output!

Translating Spanish to English

Input sentence: Tengo un coche.

• Encoder output: x_1^E, x_2^E, x_3^E .

• Finding *y*₄ for "encoder-decoder self-attention":

Time to use encoder output!

Translating Spanish to English

• Input sentence: Tengo un coche.

• Encoder output: x_1^E, x_2^E, x_3^E .

- Finding y₄ for "encoder-decoder self-attention":
 - Query from x_4^D (decoder): $q_4 = W_Q x_4^D$.

Time to use encoder output!

Translating Spanish to English

- Input sentence: Tengo un coche.
- Encoder output: x_1^E, x_2^E, x_3^E .
- Finding y₄ for "encoder-decoder self-attention":
 - Query from x_4^D (decoder): $q_4 = W_Q x_4^D$.
 - Keys and values (encoder):

$$k_1 = W_K x_1^E, v_1 = W_V x_1^E, \dots, v_3 = W_V x_3^E.$$

Time to use encoder output!

Translating Spanish to English

- Input sentence: Tengo un coche.
- Encoder output: x_1^E, x_2^E, x_3^E .
- Finding y₄ for "encoder-decoder self-attention":
 - Query from x_4^D (decoder): $q_4 = W_Q x_4^D$.
 - Keys and values (encoder):

$$k_1 = W_K x_1^E, v_1 = W_V x_1^E, \dots, v_3 = W_V x_3^E.$$

Weights:

$$Z_{14} = k_1^{\mathsf{T}} q_4 / \sqrt{d}, Z_{24} = k_2^{\mathsf{T}} q_4 / \sqrt{d}, Z_{34} = k_3^{\mathsf{T}} q_4 / \sqrt{d}$$

$$\begin{bmatrix} W_{14}, \ W_{24}, \ W_{34} \end{bmatrix}^{\mathsf{T}} = \mathsf{softmax}(\begin{bmatrix} Z_{14}, \ Z_{24}, \ Z_{34} \end{bmatrix}^{\mathsf{T}}).$$

Time to use encoder output!

Translating Spanish to English

- Input sentence: Tengo un coche.
- Encoder output: x_1^E, x_2^E, x_3^E .
- Finding y₄ for "encoder-decoder self-attention":
 - Query from x_4^D (decoder): $q_4 = W_Q x_4^D$.
 - Keys and values (encoder):

$$k_1 = W_K x_1^E, v_1 = W_V x_1^E, \dots, v_3 = W_V x_3^E.$$

Weights:

$$Z_{14} = k_1^{\mathsf{T}} q_4 / \sqrt{d}, Z_{24} = k_2^{\mathsf{T}} q_4 / \sqrt{d}, Z_{34} = k_3^{\mathsf{T}} q_4 / \sqrt{d}$$

$$\left[\textit{W}_{14}, \; \textit{W}_{24}, \; \textit{W}_{34} \right]^{\mathsf{T}} = \mathsf{softmax}(\left[\textit{Z}_{14}, \; \textit{Z}_{24}, \; \textit{Z}_{34} \right]^{\mathsf{T}}).$$

• Average: $y_4 = v_1 W_{14} + v_2 W_{24} + v_3 W_{34}$.

• Let us present equations in matrix form.

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

Queries are computed using X_D:

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

• Queries are computed using X_D :

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• Keys and values are computed using X_E:

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

- Let us present equations in matrix form.
- · Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

Queries are computed using X_D:

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• Keys and values are computed using X_E :

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E$.

• Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d},$$
 $W = \mathsf{softmax}(Z).$

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$

 $X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$

Queries are computed using X_D:

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• Keys and values are computed using X_E :

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
, $W = \operatorname{softmax}(Z)$.

Weighted averages: Y = VW.

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$

 $X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$

• **Queries** are computed using X_D :

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• Keys and values are computed using X_E :

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

• Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
, $W = \mathsf{softmax}(Z)$.

Weighted averages: Y = VW.

Observations

• Number of outputs vectors is n_D .

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

Queries are computed using X_D:

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• **Keys and values** are computed using *X_E*:

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
.

Weighted averages: Y = VW.

Observations

 $W = \operatorname{softmax}(Z)$.

- Number of outputs vectors is n_D.
- Value vectors determined by X_E .

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

Queries are computed using X_D:

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• **Keys and values** are computed using *X_E*:

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
.

Weighted averages: Y = VW.

Observations

- Number of outputs vectors is n_D.
- Value vectors determined by X_E.
- X_D only influences Y via W.

$$W = \operatorname{softmax}(Z)$$
.

- Let us present equations in matrix form.
- Receives two inputs:

$$X_E = \begin{bmatrix} x_1^E & x_2^E & \dots & x_{n_E}^E \end{bmatrix}$$
$$X_D = \begin{bmatrix} x_1^D & x_2^D & \dots & x_{n_D}^D \end{bmatrix}.$$

• Queries are computed using X_D :

$$Q = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_D} \end{bmatrix} = W_Q X_D.$$

• **Keys and values** are computed using *X_E*:

$$K = \begin{bmatrix} q_1 & q_2 & \dots & q_{n_E} \end{bmatrix} = W_K X_E$$

 $V = \begin{bmatrix} v_1 & v_2 & \dots & v_{n_E} \end{bmatrix} = W_V X_E.$

• Weights using columnwise softmax (no mask):

$$Z = K^{\mathsf{T}} Q / \sqrt{d}$$
, $W = \operatorname{softmax}(Z)$.

Weighted averages: Y = VW.

Observations

- Number of outputs vectors is n_D.
- Value vectors determined by X_E.
- X_D only influences Y via W.
- No masks needed: y_i still only depends on x_i^D and X_E.

ENCODER-DECODER MULTI-HEAD SELF-ATTENTION

 h parallel encoder-decoder self-attention blocks/heads.

ENCODER-DECODER MULTI-HEAD SELF-ATTENTION

- h parallel encoder-decoder self-attention blocks/heads.
- Overall structure is identical to multi-head attention.

ENCODER-DECODER MULTI-HEAD SELF-ATTENTION

- h parallel encoder-decoder self-attention blocks/heads.
- Overall structure is identical to multi-head attention.
- Difference: when computing Y_i we use
 - $-X_D$ to compute queries $Q^i = W_D^i X_D$,
 - X_E to compute keys $K^i = W_K^i X_E$ and values $V^i = W_V^i X_E$.

TRANSFORMER OVERVIEW

