الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

دورة: جوان 2015

الشعبة: رياضيات وتقني رياضي

اختبار في مادة: العلوم الفيزيائية

المدة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03,5 نقطة)

لدراسة حركية تطور التحول الكيميائي بين محلول ثيوكبريتات الصوديوم $(2Na^{+}_{(aq)}+S_{2}O_{3}^{2-}_{(aq)})$ ومحلول حمض كلور الماء $(H_{3}O^{+}_{(aq)}+Cl^{-}_{(aq)})$.

في اللحظة $c_1=0,5mol/L$ من محلول ثيوكبريتات الصوديوم تركيزه $V_1=480mL$ مع حجم $V_1=480mL$ من محلول حمض كلور الماء تركيزه $V_2=5,0mol/L$ من محلول حمض كلور الماء تركيزه $V_2=20mL$ التالية: $S_2O_{3-(\alpha c)}^{2-}+2H_3O_{(\alpha c)}^+=S_{(s)}+SO_{2(g)}^++3H_2O_{(l)}$

1- أنشئ جدولا لتقدم التفاعل.

2- حدّد المتفاعل المحد.

 $\sigma = 1$ إن متابعة التحول عن طريق قياس الناقلية النوعية المزيج التفاعلي مكنت من رسم بيان الشكل $\sigma = 1$ والممثل التغيرات الناقلية النوعية بدلالة الزمن $\sigma = f(t)$.

- علَّل دون حساب سبب تناقص الناقلية النوعية.

 $\sigma(t) = 20.6 - 170x$: بالعبارة: τ النفاعلي عند لحظة τ بالعبارة: τ

أ- عرّف السرعة الحجمية للتفاعل.

ب- بيّن أن السرعة الحجمية للتفاعل تكتب

$$v_{vol} = -\frac{1}{170V} \times \frac{d\sigma(t)}{dt}$$
 بالشكل:

حيث V حجم الوسط التفاعلي المعتبر ثابتا.

t=0 السرعة الحجمية التفاعل عند اللحظة

د- عرّف زمن نصف التفاعل $t_{1/2}$ ثم حدد

قيمته بيانيا.

التمرين الثاني: (03 نقاط)

تمتص جميع النباتات الكربون C الموجود في الجو $(C, ^{14}C)$ خلال عملية النتفس، حيث تبقى النسبة $\frac{N(^{14}C)}{N(^{12}C)} = 1,2 \times 10^{-12}$

عند موبت النبات تتناقص هذه النسبة نتيجة تفكك الكربون $\binom{14}{6}$.

-1 تتفكك نواة الكربون 14 مصدرة جسيمات β^- و نواة ابن (2X).

 \cdot_{sO} , $_{\jmath}N$, $_{gF}$, $_{gC}$, $_{sB}$ التالية: التالية: التالية الكربون 14، وحدد النواة الابن من بين الأنوية التالية:

-2 احسب: أ- طاقة الربط E, لنواة الكربون 14

ب- طاقة الربط لكل نوية أنواة الكربون 14.

m = 300mg عند لحظة t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها m = 300mg عند لحظة t فوجد t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t فوجد عمر قطعة خسّب قديم، قيس النسّاط الإشعاعي لعينة منها كتاتها t

أخذت عينة لها نفس الكتلة السابقة من شجرة حية فوجد أن كتلة الكربون 12 فيها هي 150mg.

أ- احسب عدد أنوية الكربون ^{12}C و استنتج عدد أنوية الكربون ^{14}C في العينة التي أخذت من الشجرة الحية.

ب- احسب النشاط الإشعاعي الابتدائي A_0 ، ثم حدد عمر قطعة الخشب.

تعطى:

 $t_{1/2}({}^{14}_6C) = 5730 ans$, $M({}^{14}C) = 14g/mol$, $N_A = 6,02 \times 10^{23} mol^{-1}$, $1an = 31536 \times 10^3 s$ m(p) = 1,00728u , m(n) = 1,00866u , $m({}^{14}_6C) = 13,99995u$, $1u = 931,5 MeV/c^2$

التمرين الثالث: (03 نقاط)

h عن سطح الأرض دون سرعة ابتدائية. m تسقط في الهواء من ارتفاع h عن سطح الأرض دون سرعة ابتدائية.

 $g = 10m/s^2$:

 $f=k\cdot
u$ نهمل دافعة أرخميدس ونعتبر شدة قوة مقاومة الهواء -1

أ- مثل القوى الخارجية المؤثرة على الكرية.

بتطبيق القانون الثاني لنيوتن في معلم Oz موجه نحو الأسفل ومرتبط بمرجع سطحي أرضي نعتبره غاليليا، أوجد المعادلة التفاضلية لسرعة الكرية.

. g ، m ، k : استنتج عبارة السرعة الحدية v_{lim}

2- إنّ دراسة تغيرات سرعة الكرية بدلالة الزمن مكنت من الحصول على بيان الشكل (2).

أ- استنتج من البيان قيمة السرعة الحدية v_{lim}

 $\frac{m}{k}$ باستعمال التحليل البعدي ، واحسب النسبة و-- ب

3- كيف يتطور تسارع الكرية خلال الحركة ؟

-4 مثل كيفيا مخطط السرعة v(t) لحركة السقوط الشاقولي لمركز عطالة الكرية في الفراغ.

التمرين الرابع: (03,5 نقطة)

بهدف معرفة ذاتية وشيعة L ومقاومتها r نحقق التركيب الموضىح بالشكل ($x \in \mathbb{R}$) حيث $x \in \mathbb{R}$ والمولد ثابت التوتر قوته المحركة الكهربائية $x \in \mathbb{R}$.

التفاضلية التواريق قانون جمع التوترات، بيّن أن المعادلة التفاضلية -1 لشدة التيار تكتب بالشكل: $\beta + \alpha i(t) = \beta$ ، حيث منافق بالتقادير عبارتيهما مستعينا بالمقادير β , α التالية: β , α التالية: β , α

المعادلة النفاضلية. $i(t) = \frac{\beta}{\alpha}(1 - e^{-\alpha \cdot t})$ هي حلا المعادلة النفاضلية.

تعطى بالعلاقة: -3 التوتر بين طرفي الوشيعة تعطى بالعلاقة: $u_b(t) = \frac{E}{R+r}(r+Re^{-\frac{(R+r)}{L}t})$

4- باستعمال راسم اهتزازات ذي ذاكرة تحصلنا على بيان الشكل (4) الممثل لتغيرات التوتر بين طرفي الوشيعة بدلالة الزمن.

أ- أعد رسم الدارة موضحا كيفية توصيل راسم الاهتزازات لمشاهدة بيان الشكل (4).

ب- بالاعتماد على البيان استنتج:

- القوة المحركة الكهربائية للمولد E.

مقاومة الوشيعة r.

- ثابت الزمن r للدارة.
 - ذاتية الوشيعة L.
- $\cdot E_{(L)}$ العبارة اللحظية للطاقة المخزنة في الوشيعة -5 -5
 - ب- أوجد قيمة هذه الطاقة في النظام الدائم.

التمرين الخامس: (03,5 نقطة)

بمناسبة البطولة العالمية للتزلج على الجليد اختار المنظمون المسلك الموضيح بالشكل (5) والمتكون من:

. AB=50m وطوله $\alpha=30^\circ$ مينوي مائل زاوية ميله $\alpha=30^\circ$

BC : مستوي افقى.

CO: هوّة ارتفاعها hعن سطح الأرض.

نفرض أن كتلة المتزلج ولوازمه هي: m=80kg، m=80kg. ينطلق المتبارون فرادى من قمة المستوي المائل دون سرعة ابتدائية.

f بين الموضعين A و B ، استنتج شدة قوة الاحتكاك -1 المتزلج) بين الموضعين A و B ، استنتج شدة قوة الاحتكاك $V_B=20m/s$ التي نعتبرها ثابتة على طول المسار ABC علما أنه يبلغ الموضع

ب- بتطبيق القانون الثاني لنيوتن حدد طبيعة الحركة على المسار AB واحسب تسارعها.

E يغادر المتزلج المستوي الأفقي BC عند الموضع C في لحظة نعتبرها مبدأ الأزمنة ليسقط في الموضع C نهمل مقاومة الهواء ودافعة أرخميدس. بتطبيق القانون الثاني لنيوتن على الجملة ، جد المعادلتين الزمنيتين للحركة نهمل مقاومة الهواء ودافعة أرخميدس بتطبيق عاليلي، ثم استنتج معادلة المسار.

-3 بيان الشكل (6) يمثل تغيرات مربع سرعة المتزلج بدلالة مربع الزمن من لحظة مغادرة المستوي الأفقي حتى وصوله الموضع -E.

أ- اكتب عبارة السرعة V بدلالة V_{x} و V_{y} ثم أوجد العلاقة النظرية بين V^{2} و V^{2} .

 $\cdot E$ و C استنتج بيانيا قيمة السرعة عند كل من الموضعين

ج - احسب الارتفاع h.

التمرين التجريبي: (03,5 نقطة)

تتعرض أغلب الأجهزة الكهرومنزلية مثل المسخن المائي وآلة تقطير القهوة إلى ترسبات كلسية يمكن إزالتها باستعمال منظفات (détartrants) تجارية، يفضل استعمال المنظفات التي تحتوي على حمض اللاكتيك $C_3H_6O_3$ نظرا لفعاليته وعدم تفاعله مع مكونات الأجهزة وتحلله بسهولة في الطبيعة، إضافة إلى كونه غير ملوث للبيئة.

كُتب على لاصقة قارورة المنظف التجاري المعلومات التالية:

- . P = 45% النسبة المئوية الكتاية لحمض اللاكتيك في المنظف -
 - يستعمل المنظف التجاري المركز مع التسخين.
- . $M(C_3H_6O_3) = 90g/mol$ الكتلة المولية الجزيئية لحمض اللاكتيك
 - . $\rho = 1,13kg/L$ الكتلة الحجمية للمنظف التجاري –
- وياس $C=1,0\times 10^{-1} \, mol/L$ من محلول مائي لحمض اللاكتيك تركيزه V=500m من محلول مائي لحمض اللاكتيك والمحلول القيمة pH=2,4 عند الدرجة pH=2,4
 - أ- اكتب المعادلة الكيميائية المنمذجة لتفاعل حمض اللاكتبك مع الماء.
 - ب- أنشئ جدولا لتقدم التفاعل.
 - ج- احسب تراكيز الأفراد الكيميائية المتواجدة في المحلول عند التوازن عدا الماء.
 - $(C_1H_2O_1/C_2H_3O_3)$ الثنائية pKa المصوضة pKa
- -2 بهدف التحقق من النسبة المئوية الكتاية لحمض اللاكتيك في المنظف التجاري المركز ، نمده 100 مرة فنحصل على محلول (S_a) لحمض اللاكتيك تركيزه المولي C_a نعاير حجما $V_a=10mL$ من المحلول بواسطة محلول مائي لهيدروكسيد الصوديوم ($(Na^+_{(aq)}+HO^-_{(aq)})$ تركيزه $(Na^+_{(aq)}+HO^-_{(aq)})$ نصل إلى نقطة التكافؤ عند إضافة الحجم $V_{bE}=28,3mL$.
 - أ- اكتب المعادلة الكيميائية المنمذجة لتفاعل المعايرة.
 - . التركيز المولى للمنظف التجاري المركز C_0 التركيز المولى المنظف التجاري المركز.
 - ج- احسب النسبة المئوية الكتلية لحمض اللكتيك في المنظف التجاري. ماذا تستتج ؟
 - $ho_0 = 1kg/L$ تعطى الكتلة الحجمية للماء

الموضوع الثاني

التمرين الأول: (03 نقاط)

يُعتبر الطب أحد المجالات الرئيسية التي عرفت تطبيقات الأشعة النووية. حيث تستعمل بعض الأنوية المشعة اتشخيص الأمراض ومعالجتها. يستعمل الرينيوم Re_{75} للتخفيف من ألام الروماتيزم عن طريق الحقن الموضعي بجرعات ذات حجم قدره $V_0 = 10 \ mL$.

 $^{186}_{76}Os$ ينتج عن تفكك نواة الرينيوم $^{186}_{75}Re$ نواة الأوسميوم $^{-1}$

أ- اكتب معادلة التحول النووي الحادث.

ب- حدّد نمط التحول الحادث وعرفه.

A = f(t) يمثل تغيرات النشاط الإشعاعي بدلالة الزمن -2

 A_0 أ- استنتج من البيان النشاط الإشعاعي الابتدائي

ب- عرّف زمن نصف العمر $t_{1/2}$ ، وحدد قيمته من البيان.

 $^{-186}_{75}\,Re$ جسب ثابت النشاط الإشعاعي λ للرينيوم

3- باستعمال قانون تناقص النشاط الإشعاعي، احسب عدد أنوية

 $t_{1} = 10 jours$ الرينيوم الموجودة في الجرعة عند اللحظة الموجودة الموجو

V عند اللحظة t_i نأخذ من الجرعة بواسطة حقنة حجما -4

يحتوي على 1.2×10^{14} نواة من الرينيوم Re ونحقن بها

مريض في مفصل الركبة. أوجد الحجم V المحقون.

التمرين الثاني: (03.5 نقطة)

تُستعمل المكتفات في عدة تراكيب كهربائية ذات فائدة علمية في الحياة اليومية.

بغرض حساب سعة مكثفة غير مشحونة مسبقا، نحقق التركيب الموضح بالشكل (2) حيث $R=100\Omega$ والمولد ثابت التوتر قوته المحركة الكهربائية E.

1 أعد رسم الدارة موضحا عليها التوترات بأسهم وجهة التيار الكهربائي.

. بنطبيق قانون جمع التوترات، جد المعادلة التفاضلية التي يحققها التوتر $u_c(t)$ بين طرفي المكثفة.

. $u_c(t) = A(1-e^{-\frac{t}{\tau}})$ و σ ثابتان يطلب كتابة عبارتيهما $u_c(t) = A(1-e^{-\frac{t}{\tau}})$

 $ln(E - u_C) = -\frac{1}{\tau}t + ln E$ بيّن أن: -4

: بيان الشكل (3) يمثل تغيرات $ln(E-u_c)$ تغيرات يمثل يمثل عند البيان -5

أ- قيمة E القوة المحركة الكهربائية للمولد.

 $\cdot C$ قيمة ثابت الزمن au، و قيمة سعة المكثفة

 $E_{c}(t)$ المكتفة المخزنة في المكتفة اللحظية للطاقة المخزنة في المكتفة -6

ب- نرمز ب $E_{C}(\infty)$ للطاقة المخزنة في المكثقة عند اللحظة t= au وب $E_{C}(\infty)$ للطاقة العظمي.

 $rac{E_C(au)}{E_C(\infty)}$ احسب النسبة –

.C' كيف يتم ربط مكثفة سعتها C' مع المكثفة السابقة لكي يأخذ ثابت الزمن القيمة: $\frac{\tau}{4} = \frac{\tau}{4}$ ؟ واحسب قيمة -7

تُستعمل المنتوجات الصناعية الأزوتية في المجال الفلاحي لتوفرها على عنصر الأزوت الذي يعد من بين العناصر الضرورية لتخصيب التربة. يحتوي منتوج صناعي على نترات الأمونيوم $NH_4NO_{3(s)}$ كثير الذوبان في الماء . تُشير لاصقة كيس المنتوج الصناعي الأزوتي إلى النسبة المئوية الكتلية لعنصر الأزوت (33%). القياسات تمّت عند الدرجة $25^{\circ}C$.

في اللحظة t=0 نمزج حجما $V_1=20m$ من محلول شوارد الأمونيوم $NH_{4\,(aq)}^+$ تركيزه المولي $V_1=20m$ من محلول هيدروكسيد الصوديوم $V_1=0.15mol/L$ تركيزه المولي $V_2=0.15mol/L$ مع حجم $V_2=10m$ من محلول هيدروكسيد الصوديوم $V_1=0.15mol/L$ تركيزه المولي $V_2=0.15mol/L$ قيس $V_1=0.15mol/L$ المزيج النفاعلي فوجد $V_1=0.15mol/L$ ننمذج التحول الحادث بالمعادلة الكيميائية التالية:

$$NH_{4(aq)}^{+} + HO_{(aq)}^{-} = NH_{3(aq)} + H_{2}O_{(I)}$$

1- أ- بيّن أن التفاعل السابق هو تفاعل حمض - أساس.

 $x_{
m mex}$ ب- أنشئ جدولا لتقدم الثفاعل. حدّد المتفاعل المحد واستنتج قيمة التقدم الأعظمي

 $x_{eq} = 1.5 \times 10^{-3} \, mol$:ج- بيّن أنه عند النوازن

auد - احسب النسبة النهائية au_{f} لتقدم التفاعل. ماذا تستنتج

-2 بهدف التأكد من النسبة المئوية الكتلية لعنصر الأزوت في المنتوج الصناعي، نذيب عينة كتلتها m=6g منه في حوجلة عيارية، فنحصل على محلول (S_a) حجمه 250m. نأخذ حجما $V_a=10m$ من المحلول (S_a) ونعايره بواسطة محلول هيدروكسيد الصوديوم تركيزه المولي $C_b=0,2m$ ، نصل إلى نقطة التكافؤ عند إضافة الحجم $V_{bE}=14m$.

أ- احسب التركيز المولي C_a للمحلول (S_a) ، واستنتج كتلة الأزوت في العينة.

ب- تعرّف النسبة المئوية الكتلية لعنصر الأزوت بأنها: النسبة بين كتلة الأزوت في العينة وكتلة العينة.

- احسب النسبة المئوية الكتابة لعنصر الأزوت في العينة. ماذا تستنتج ؟

 $. pK_a(NH_4^+/NH_3) = 9,2$ و M(H) = 1g/mol و M(O) = 16g/mol و M(N) = 14g/mol

التمرين الرابع: (03 نقاط)

ملعب التنس عبارة عن مستطيل طوله m 23,8 m وعرضه m 8,23 وضعت في منتصفه شبكة ارتفاعها m عندما يرسل اللاعب الكرة يجب أن تسقط في منطقة محصورة بين الشبكة وخط يوجد على مسافة m من الشبكة كما هو موضح بالشكل (4) .

في دورة رولان قاروس الدولية يريد اللاعب ندال إسقاط الكرة في النقطة B حيث OB=L=18,7m يرسل ندال الكرة نحو الأعلى ثم يضربها بمضربه من نقطة D توجد على ارتفاع D من النقطة D من النقطة D نتطلق الكرة من النقطة D بسرعة أفقية $v_0=126$ $v_0=126$ كما هو موضح بالشكل (5).

نهمل تأثير الهواء ونأخذ $g=9.8m/s^2$. نعتبر أن الحركة تتم في معلم سطحي أرضى يعتبر غاليليا.

B و D مثل القوة المؤثرة على الكرة خلال حركتها بين D و -1

. y(t) , x(t) القانون الثانى لنيوتن أوجد المعادلتين الزمنيتين -2

3- استنتج معادلة مسار الحركة.

OF = 12,2m : علما أن: الكرة فوق الشبكة -4

5- هل نجح ندال في الإرسال ؟

التمرين الخامس: (03,5 نقطة)

تتكون الجملة الموضحة بالشكل (6) من: عربتين (A) و (B) نعتبرهما نقطيتين كتلتيهما $m_A = 300g$ مهملة الموضحة بالشكل (6) من: عربتين (B) و يتكون الجملة الموضحة بالشكل (6) من: عربتين المتلة وعديم الامتطاط يمر على محز بكرة مهملة الكتلة ، والاحتكاك مهمل على المستوى المائل.

 $g=10m/s^2$ تابتة. تعطى f ثابتة في العربة $g=10m/s^2$ ثابتة تعطى أعرب الجملة من السكون وتخضع العربة في العربة أ

1- بتطبيق القانون الثاني لنيوتن على كل عربة أثبت أن المعادلة التفاضلية لحركة الجملة تعطى بالعلاقة:

f , g , m , m , α : عبارته بدلاله عبارته بطلب کتابه عبارته بطلب کتابه $\frac{dv}{dt} + \beta = 0$

بياني الشكل (7) يمثلان تغيرات سرعتي العربتين بدلالة الزمن.

أ- حدّد المنحنى الموافق لسرعة كل عربة مع التعليل.

ب- اعتمادا على المنحنيين استنتج:

- تسارع حركة كل عربة .
- المسافة المقطوعة من طرف العربة (A) خلال هذه المرحلة.
 - lpha استنتج شدة قوة الاحتكاك \overline{f} ، وقيمة الزاوية

التمرين التجريبي: (03.5 نقطة)

لمتابعة التطور الزمني للتحول الكيميائي الحادث بين محلول حمض كلور الماء $(H_3O^+_{(aq)} + Cl^-_{(aq)})$ ومعدن V=100mL عند اللحظة T=0 كتلة من الزنك T=0 الزنك T=0 الزنك T=0 عند اللحظة T=0 كتلة من الزنك T=0 الزنك T=0 المحرو به حجم عاد المولي T=0 المولى T=0 نعتبر أن حجم الوسط التفاعلي ثابت من محلول حمض كلور الماء تركيزه المولى T=0 الميدروجين المنطلق مع مرور الزمن في الشروط التجريبية التالية: T=0 والضغط T=0 والضغط T=0 والضغط T=0

- التفاعل المنمذج التحول الكيميائي الحادث، علما أن الثنائيتين المشاركتين في التفاعل هما: $Zn^{2+}_{(aq)}/Zn_{(s)}$ ، $H_3O^+_{(aq)}/H_{2(g)}$
 - 2- أنشئ جدولا لتقدم التفاعل، وحدد المتفاعل المحد.
 - 3- الدراسة التجريبية لهذا التحول مكنت من الحصول على البيان الموضح بالشكل(8).
 - أ- عرّف السرعة الحجمية للتفاعل.
 - $v_{vol} = \frac{P}{VRT} \times \frac{dV_{H_2}}{dt}$: بيّن أنه يمكن كتابة عبارة السرعة الحجمية للتفاعل بالشكل بالشكل والمحارثة عبارة السرعة المحجمية المحجمية
 - حيث V حجم المزيج التفاعلي.
 - t=0 عند اللحظة المرعة الحجمية للتفاعل عند اللحظة

د- استنتج سرعة اختفاء شوارد ($H_3O^+_{(\alpha q)}$)عند نفس اللحظة.

4- عرّف زمن نصف التفاعل، وحدد قيمته بيانيا.

M(Zn)=65,4g/mol ، R=8,314(SI) حيث PV=nRT المثالي بالعلاقة: PV=nRT

