First-order Logic¹

LECTURE 4

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

First order languages

Summary

- \Diamond Motivation [R&N, 8.1]
- ♦ Syntax [R&N, 8.2]
- \Diamond Semantics [R&N, 8.2]
- ♦ Representation in FOL [R&N, 8.3]

Features of propositional logic

Propositional logic allows to represent information that is

- \Diamond partial
- \Diamond disjunctive
- \Diamond negated

(unlike most data structures and databases)

Features of propositional logic

Propositional logic is declarative:

- syntax
- semantics
- inference

Syntactic expressions correspond to assertions and **inference** allows to derive new facts

Features of propositional logic

Propositional logic is **compositional**:

meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

Meaning in propositional logic is **context-independent** (unlike natural language, where meaning depends on context)

take the book next to the keyboard

Modeling the Wumpus world: breeze and stench

for each Location $L_{i,j}$:

breeze is perceived in the locations adjacent to a pit, e.g.

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

stench is perceived in the locations adjacent to a wumpus, e.g.

$$S_{1,1} \Leftrightarrow (W_{1,2} \vee W_{2,1})$$

Modeling the Wumpus world: wumpus

♦ there is at least one wumpus

$$W_{1,1} \vee W_{1,2} \vee W_{1,2} \vee \ldots \vee W_{4,4}$$

there is at most one wumpus, for each pair of locations:

$$\neg W_{1,1} \lor \neg W_{1,2}$$

. . .

$$\neg W_{4,3} \lor \neg W_{4,4}$$

Modeling the Wumpus world: state

State = Location (Pose) + Arrow + Wumpus

Fluents:

 $L_{1,1}^0, Facing East^0, Have Arrow^0, Wumpus Alive^0$

Fluents have a superscript denoting the time t, as their value changes over time.

Modeling the Wumpus world: agent perceptions

Assumption: percepts refer to the current location, e.g. Stench is perceived at time t: $Stench^t$

Turning perceptions into knowledge about the world:

 \diamondsuit If the agent is in location x, y at time t, then perceiving breeze is equivalent to asserting $B_{x,y}$:

$$L_{x,y}^t \Rightarrow (Breeze^t \Leftrightarrow B_{x,y})$$

 $L_{x,y}^t \Rightarrow (Stench^t \Leftrightarrow S_{x,y})$

This relationship must hold for every time step t

Modeling the Wumpus world: transition model

Actions are also labelled with the time of execution:

e.g.
$$Forward^0$$

Effect Axioms: how does the world change as a result of the execution of an action

$$L_{1,1}^0 \wedge FacingEast^0 \wedge Forward^0 \Rightarrow L_{2,1}^1$$

We need similar sentences for:

- ♦ each location,
- ♦ each time step,
- \diamondsuit each action (Grab, Shoot, Climb, TurnLeft, TurnRight)

Modeling the Wumpus world: frame problem

Foe each action:

```
Forward^{t} \Rightarrow (HaveArrow^{t} \Leftrightarrow HaveArrow^{t+1})
Forward^{t} \Rightarrow (WumpusAlive^{t} \Leftrightarrow WumpusAlive^{t+1})
```

Alternative:

 $HaveArrow^{t+1} \Leftrightarrow (HaveArrow^t \land \neg Shoot^t)$

. . .

$$L_{1,1}^{t+1} \Leftrightarrow (L_{1,1}^{t} \wedge (\neg Forward^{t} \vee Bump^{t+1})) \\ \vee (L_{1,2}^{t} \wedge (South^{t} \wedge Forward^{t})) \\ \vee (L_{1,2}^{t} \wedge (West^{t} \wedge Forward^{t}))$$

Modeling the Wumpus world: finally ...

 $\neg Stench^0 \wedge \neg Breeze^0 \wedge \neg Glitter^0 \wedge \neg Bump^0 \wedge \neg Scream^0$

Action: $Forward^0$ can proven safe!

A useful definition:

$$OK_{x,y}^t \Leftrightarrow (\neg P_{x,y} \land \neg (W_{x,y} \land WumpusAlive^t))$$

Modeling the Wumpus world: next ...

After execution one can check in the KB the new location of the agent as well as the value of the percepts in location $1,\,1$

$$\neg Stench^1 \land Breeze^1 \land \neg Glitter^1 \land \neg Bump^1 \land \neg Scream^1$$

Action: $TurnRight^1$ $\neg Stench^2 \land Breeze^2 \land \neg Glitter^2 \land \neg Bump^2 \land \neg Scream^2$

Not the right representation tool

The number of rules grows fast ...

- writing of the rules can be done by a program
- number of rules can make reasoning inefficient

Propositional logic has very limited expressive power (unlike natural language)

First-order logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald Mc-Donald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, beginning of . . .

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0,1]$	known interval value

The language: logical symbols

A first order language \mathcal{L} is built upon the following sets of symbols:

Logical symbols

- ullet propositional connectives: $\neg, \land, \lor, \Rightarrow \text{ and } \Leftrightarrow$;
- \bullet propositional constants \top and \bot ;
- equality = (not always included);
- separators '(', ')' and ',';
- A denumerable set of *individual variable* symbols x_1 , x_2 , . . . ;
- universal quantification ∀;
- existential quantification \exists .

The language: parameters

- A denumerable set of *predicate symbols*, each associated with a positive integer n, arity. A predicate with arity n is called n-ary;
- ullet A denumerable set of *function symbols*, each associated with a positive integer n, arity. A function with arity n is called n-ary;
- A denumerable set of *constant symbols*.

Examples 1

The pure predicate language:

```
n-ary predicate symbols: P_1^n, P_2^n, \ldots; constant symbols: c_1, c_2, \ldots; no function symbols, no equality.
```

Example 2

The language of *elementary number theory*:

```
Equality; predicate symbols: only the binary predicate <; constant symbols: 0; function symbols: a unary function symbol s, successor function, (additionally, the binary function symbols + and \times, addition and multiplication)
```

Examples: representation with existentials

Some medical doctors are arrogants

- $a) \quad \exists x (medicalDoctor(x) \land arrogant(x))$
- $a') \exists x (medical Doctor(x) \Rightarrow arrogant(x)) \text{ OK no doctors!!}$

Some worker is a car industry employee

- b) $\exists x(worker(x) \land carIndustryEmployee(x))$
- b') $\exists x(worker(x) \Rightarrow carIndustryEmployee(x))$

Examples: representation with universals

All bakers can make appleCakes

- $c) \quad \forall x (Baker(x) \Rightarrow cando(x, appleCake))$
- c') $\forall x(Baker(x) \land cando(x, appleCake))$

all bakers!!

Examples: nested quantifiers

 $\forall x \exists y \ loves(x,y)$ everyone has somebody to love $\exists x \forall y \ loves(x,y)$ the great lover

Check the use of parameters:

 $\forall x \exists y \ loves(y, x)$ somebody loves us

 $\exists x \forall y \ loves(y, x)$ the great beloved

Terms

The set TERM of the *terms* of \mathcal{L} is inductively defined as follows:

- 1. Every constant and variable symbol is a term;
- 2. If $t_1 cdots t_n$ are terms and f is a n-ary function symbol, $f(t_1, \ldots, t_n)$ is a term (functional term).

Examples: x, c, f(x, y + c),...

Atomic formulae

The set A_{TOM} of the *atomic formulae* is inductively defined as follows:

- 1. \perp and \top are atoms;
- 2. If t_1 e t_2 are terms then $t_1 = t_2$ is an atom;
- 3. If t_1, \ldots, t_n are terms and P is a n-ary predicate symbol $P(t_1, \ldots, t_n)$ is an atom.

Examples: P(x), Q(x,c), R(x,f(x,y+c)),...

Examples: terms and atoms

\Diamond Terms: homeOf(Giovanni)batteryOf(MyHonda)author Of(Hamlet)f(x,y,g(z,t+3)) \Diamond Atoms: Big(homeOf(Giovanni))Bigger(homeOf(Giovanni), homeOf(Filippo))Low(batteryOf(MyHonda))author Of(Hamlet) = Shakespeare $x + (2 \times y) = 0$ f(x, y, g(z, t+3)) = f(x, y, w)

First Order Formulae

The set of *formulae* of \mathcal{L} is inductively defined as follows:

- Every atom is a formula;
- If A is a formula $\neg A$ is a formula;
- ullet If \circ is a binary operator, A and B formulae, $A \circ B$ is a formula;
- ullet If A is a formula, x a variable, $\forall xA$ and $\exists xA$ are formulae.

Examples: P(x), $\exists x Q(x,c)$, $\forall z R(x,f(x,y+c))$,...

$$\circ = \land, \lor, \Rightarrow, \Leftrightarrow$$

Examples: formulae

 $Big(homeOf(Giovanni)) \land Bigger(homeOf(Giovanni), homeOf(Filippo))$

 $\forall t \ Low(batteryOf(MyHonda), t)$ $\exists x \ x = authorOf(Hamlet) \land Born(StratfordOnAvon, x)$ $\forall x \ x + (2 \times y) = 0$ $\neg (f(x, y, g(z, t + 3)) = f(x, y, w))$

Operator precedence

Precedence among logical operators is defined as follows:

$$\forall, \exists, \neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

and, as in propositional logic, all operators are right associative.

$$\forall x P(x) \Rightarrow \exists y \exists z Q(y, z) \land \neg \exists x R(x)$$
$$\forall x [P(x) \Rightarrow \exists y (\exists z (Q(y, z) \land \neg (\exists x (R(x))))].$$

Notes

- ullet the inner occurrence of x is bound to the innermost existential quantifier
- R&N: the parentheses enclosing the scope of a quantifier are omitted when the scope is the whole formula, i.e.:

$$\forall x \ P(x) \Rightarrow Q(x)$$

Notation variants

Syntax	RN	Others
Negation (not)	$\neg P$	$\sim P \overline{P}$
Conjunction (and)	$P \wedge Q$	$P\&Q P\cdot Q PQ P,Q$
Disjunction (or)	$P \lor Q$	$P \mid Q P; Q P+Q$
Implication (se)	$P \Rightarrow Q$	$P \to Q P \supset Q$
Equivalence (sse)	$P \Leftrightarrow Q$	$\overline{P \equiv Q} P \leftrightarrow Q$
Universal (forall)	$\forall x \ P(x)$	$(\forall x)P(x) \overline{\bigwedge x} P(x) P(x)$
Existential (exists)	$\exists x \ P(x)$	$ (\exists x) P(x) \bigvee x \ P(x) P(Sk_i) $
Relation	R(x,y)	$(R \ x \ y)$ Rxy xRy

Variables in terms atomic formulae

Let var(t) the set of variables of term t.

A term/atom is **ground** if it does not contain variables.

An occurrence of a variable x in a formula is **free** if it is not in the scope of a quantifier, bound if not free.

Examples:

$$\begin{array}{l} P(x), \exists x Q(x,c), \forall z R(x,f(x,y+c)), \\ \forall z R(x,f(x,y+c)) \land P(z) \text{ is } \forall z (R(x,f(x,y+c)) \land P(z)) \\ \forall z R(x,f(x,y+c)) \land \exists z P(z) \end{array}$$

A sentence – otherwise called closed formula – is a formula without free variables.

Interpretations and models

A structure for the language \mathcal{L} is a pair $\mathfrak{A} = \langle D, I \rangle$ where:

- D is a non empty set called *domain* of \mathfrak{A} ;
- \bullet *I* is a function called *interpretation*. *I* maps:
 - -every constant symbol c into an element $c^I \in D$;
 - -every n-ary function symbol f into a function f^I : $D^n \to D$;
 - -every n-ary predicate symbol P into a n-ary relation $P^I \subset D^n$.

Note on terminology (wrt RN):

- ♦ domain is the set of individual objects
- interpretation assigns a value to predicates, functions and constants (NOT only functions)
- ♦ model is a structure where a formula is true

Examples

$$\forall x \exists y P(x,y)$$

D, the set of human beings $P^I=$ the set of pairs $\langle A,B\rangle$, such that B is father of A All human beings have a father

D, the set of human beings $P^{I'}$ the set of pairs $\langle A,B\rangle$, such that B is mother of A All human beings have a mother

D the set of natural numbers P^J the set of pairs $\langle m,n \rangle$, such that m < n For every nat number there is a greater one

Truth of formulae

The truth of a closed formula ϕ , in a structure \mathfrak{A} , is denoted by:

$$\mathfrak{A} \models \phi$$

meaning that the structure $\mathfrak A$ satisfies ϕ iff ϕ is true in $\mathfrak A$ (as specified next).

Note: |= is overloaded!

Truth: definition 1

Let $\mathfrak{A} = \langle D, I \rangle$ a structure for the language \mathcal{L}

- 1. $\mathfrak{A} \models \top$ and $\mathfrak{A} \not\models \bot$;
- 2. if A is a closed atomic formula $P(t_1, \ldots, t_n)$, then

$$\mathfrak{A}\models P(t_1,\ldots,t_n) \text{ iff } \langle t_1^I\ldots t_n^I\rangle \in P^I;$$

3. if A is a closed atomic formula $t_1 = t_2$ then

$$\mathfrak{A} \models t_1 = t_2 \text{ iff } t_1^I = t_2^I;$$

- 4. $\mathfrak{A} \models \neg A \text{ iff } \mathfrak{A} \not\models A;$
- 5. $\mathfrak{A} \models A \wedge B$ iff $\mathfrak{A} \models A$ and $\mathfrak{A} \models B$;
- 6. $\mathfrak{A} \models A \vee B$ iff $\mathfrak{A} \models A$ or $\mathfrak{A} \models B$;
- 7. $\mathfrak{A} \models (A \Rightarrow B)$ iff $\mathfrak{A} \models A$ implies $\mathfrak{A} \models B$;

Truth: definition 2

- 8. $\mathfrak{A}\models(A\Leftrightarrow B)$ iff $\mathfrak{A}\models A$ and $\mathfrak{A}\models B$ or $\mathfrak{A}\not\models A$ and $\mathfrak{A}\not\models B$;
- 9. $\mathfrak{A} \models \forall x A \text{ iff for every } d \in D \text{ we have } \mathfrak{A} \models A \{d \to x\});$
- 10. $\mathfrak{A}\models\exists xA \text{ iff there exists a } d\in D \text{ s.t. } \mathfrak{A}\models A\{d\rightarrow x\}.$

 $A\{d \rightarrow x\}$ denotes that each occurrence of x is interpreted by the object d.

Note: Same as **extended interpretation** by RN, when name conflicts on quantified variables are avoided by scoping rules.

Examples 1

- 1. $\exists x (P(x) \land Q(x))$
- 1. Verified in $\mathfrak A$ iff there exists a $d \in D$ which makes $\mathfrak A \models (P(x) \land Q(x)) \{d = x\}$ true.

There exists a $d \in D$ such that $d \in P^I \cap Q^I$ (D is by definition non empty). Hence the subsets of D associated by I to P and Q, respectively, are non empty and have a non empty intersection.

Examples 2

- 2. $\exists x (P(x) \Rightarrow Q(x))$
- 2. Verified in $\mathfrak A$ iff there exists a $d \in D$ which makes $\mathfrak A \models (P(x) \Rightarrow Q(x))\{d=x\}$ true.

There exists $d \in D$ such that $d \in P^I \cup Q^I$. Hence, if I associates P with the empty subset of D, the formula $\exists x (P(x) \Rightarrow Q(x))$ becomes true for every domain element.

Examples 3

- 3. $\forall x (P(x) \land Q(x))$
- 3. Verified in $\mathfrak A$ iff for all $d \in D$ $\mathfrak A \models (P(x) \land Q(x)) \{d = x\}$ is true. P and Q have a non empty extension, they both coincide with D!
- 4. $\forall x (P(x) \Rightarrow Q(x))$
- 4. Verified in $\mathfrak A$ iff for all $d \in D$ $\mathfrak A \models (P(x) \Rightarrow Q(x))\{d = x\}$ is true. The extension of P is included in the extension of Q, the extension of P can be empty or both the extensions of P and Q can be empty.

Models, validity, satisfiability

Let A be a sentence.

If $\mathfrak{A} = A$, \mathfrak{A} is a *model* of A, or A is *true* in \mathfrak{A} .

A formula $A \in \mathcal{L}$ is *valid* iff it is true in every structure of \mathcal{L} , denoted $\models A$.

A set of formulae Γ is *satisfiable* if there exists a structure \mathfrak{A} , such that $\mathfrak{A}\models A$ for every $A\in\Gamma$.

Validity and satisfiability can NOT be easily checked with the truth tables!

Logical entailment, Equivalence

Let Γ a set of formulae and A a closed formula.

Then Γ logically entails A, written $\Gamma \models A$, iff for every structure \mathfrak{A} of the language such that $\mathfrak{A}\models B$ for every $B\in\Gamma$ (i.e. every model of Γ), we have that $\mathfrak{A}\models A$.

Two formulae P and Q are semantically (or logically) equivalent (written $P \equiv Q$) if for every structure $\mathfrak A$ we have that:

$$\mathfrak{A} = P \text{ iff } \mathfrak{A} = Q.$$

Equivalences for quantifiers

Formulae are semantically equivalent if they differ in

- the name of variables in the scope of quantifiers $\forall x P(x) \equiv \forall y P(y)$
- the order of quantifiers of the same kind $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y) \equiv \forall x, y P(x,y)$
- the elimination of quantifiers whose variable does not occurr in their scope

$$\forall x P(y) \equiv P(y)$$

Semantic Equivalence: negation

1.
$$\forall xP \equiv \neg \exists x \neg P$$

$$2. \neg \forall xP \equiv \exists x \neg P$$

3.
$$\exists xP \equiv \neg \forall x \neg P$$

4.
$$\neg \exists x P \equiv \forall x \neg P$$
.

Semantic Equivalence: and, or

Quantifiers are distributive wrt \wedge and \vee , but with restrictions:

1.
$$\forall x(P_1 \land P_2) \equiv \forall x P_1 \land \forall x P_2$$
 although useless!

2.
$$\exists x(P_1 \lor P_2) \equiv \exists xP_1 \lor \exists xP_2$$
 although useless!

3.
$$\forall x(P_1 \vee P_2) \equiv \forall x P_1 \vee P_2$$
 (only) if $x \notin var(P_2)$

4.
$$\exists x(P_1 \land P_2) \equiv \exists xP_1 \land P_2 \text{ (only) if } x \notin var(P_2).$$

Semantic Equivalence: implication

Let P_2 a formula where x does not occurr free

1.
$$(\forall x P_1) \Rightarrow P_2 \equiv \exists x (P_1 \Rightarrow P_2)$$

2.
$$(\exists x P_1) \Rightarrow P_2 \equiv \forall x (P_1 \Rightarrow P_2)$$

3.
$$P_2 \Rightarrow \forall x P_1 \equiv \forall x (P_2 \Rightarrow P_1)$$

$$4. P_2 \Rightarrow \exists x P_1 \equiv \exists x (P_2 \Rightarrow P_1).$$

KB of family relationship

$$\forall x \forall y (father(y, x) \Rightarrow son(x, y))$$
$$\forall x \forall y (mother(y, x) \Rightarrow son(x, y))$$

$$\forall x \forall y \forall z (father(x,y) \land father(y,z) \Rightarrow grandfather(x,z)) \\ \forall x \forall z (\exists y \ (father(x,y) \land father(y,z)) \Rightarrow grandfather(x,z))$$

$$\forall x \forall y \forall z (father(x,y) \land mother(y,z) \Rightarrow grandfather(x,z)) \\ \forall x \forall z (\exists y \ (father(x,y) \land mother(y,z)) \Rightarrow grandfather(x,z))$$

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y)$.

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\forall x,y \; FirstCousin(x,y) \Leftrightarrow \exists p,ps \; Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y)$

FOL Knowledge bases

A **knowledge** base is a representation of the knowledge about the world (problem).

• intensional knowledge: general laws on the domain of interest (e.g. $\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$)

• extensional knowledge: facts about a specific problem instance (situation) (e.g. Parent(daniele, michela))

The KB is built with TELL and queried with Ask, which relies on **Inference** in FOL (next class).

Interacting with FOL KBs

Consider a family KB in FOL, specifying that fathers are male parents and that daniele is parent of michela and jacopo:

$$Tell(KB, Male(daniele))$$

 $Ask(KB, \exists a \ father(daniele, a))$

i.e., does the KB entail that Daniele is a father?

Answer: $Yes, \{a/michela\} \leftarrow \text{substitution (binding list)}$

Answer: $Yes, \{a/jacopo\}$

Interacting with FOL KBs

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g.,

$$S = Smarter(x, y), \quad \sigma = \{x/Hillary, y/Bill\}$$

 $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

More on substitution next class

Exercises

- Complete the family KB including other relationships and also facts about your family.
- Model the wumpus world in FOL.