Problema 30. Sigui G un grup i considerem l'aplicació $f: G \to G \times G$ definida per f(x) := (x, x), per a $x \in G$. Demostreu que f és un morfisme injectiu i que f(G) és un subgrup normal de $G \times G$ si, i només si, G és abelià.

Solució. És clar que f és un morfisme:

$$\forall (a,b) \in G \times G, f(ab) = (ab,ab) = (a,a)(b,b) = f(a)f(b).$$

Veiem que f és injectiva. En efecte, sigui $(x,y) \in G \times G$; $f(x) = f(y) \Leftrightarrow (x,x) = (y,y) \Leftrightarrow x = y$.

Notem que $f(G) := \{(x, x) | x \in G\}$ és un subgrup de $G \times G$. En efecte:

- (i) L'element neutre és (e, e), essent e l'element neutre de G.
- (ii) Donat $(x, x) \in f(G)$, l'invers és $(x, x)^{-1} = (x^{-1}, x^{-1}) \in f(G)$.
- (iii) Donats (x, x) i (y, y) de f(G), $(x, x)(y, y) = (xy, xy) \in f(G)$, ja que $xy \in G$.

Resta demostrar que: $f(G) \triangleleft G \times G \Leftrightarrow G$ abelià.

Veiem-ho:

 \Rightarrow)

 $f(G) \triangleleft G \times G \Leftrightarrow \forall (a,b) \in G \times G, \, \forall (k,k) \in f(G), \, (a,b)(k,k)(a,b)^{-1} = (aka^{-1},bkb^{-1}) \in f(G).$

L'element (aka^{-1}, bkb^{-1}) serà de f(G) si, i només si $aka^{-1} = bkb^{-1}$. Així doncs, aquesta última igualtat es compleix per a qualssevol elements a, b, k de G. En particular, per a a, b dos elements de G qualssevol i k = a, es compleix que $aaa^{-1} = bab^{-1}$. En operar, obtenim que ab = ba i G és abelià.

 \Leftarrow

G és abelià, per tant $\forall (a,b) \in G \times G$, ab = ba.

 $\forall a,b,k \in G \ (a,b)(k,k)(a,b)^{-1} = (aka^{-1},bkb^{-1}) = (k,k); \text{ o sigui } \forall (a,b) \in G \times G, (a,b)f(G)(a,b)^{-1} \subseteq f(G).$