Problem Set 12

Angular momentum PHYS-101(en)

1. Planetary survey

A spaceship is sent to investigate a planet of mass m_p and radius r_p . The ship launches an instrument with mass m_i when it is a distance $5r_p$ from the center of the planet. The instrument has an initial speed v_0 (with respect to the planet), while it is initially traveling at an angle θ with respect to a radial line between the center of the planet and the launch position of the instrument. For what angle θ will the instrument just graze the surface of the planet?

2. Toy Locomotive

A toy locomotive of mass m_L runs on a uniform horizontal circular track of radius R_T and total mass m_T . The track forms the rim of an otherwise massless wheel, which is free to rotate without friction about a vertical axis. The locomotive starts from rest and accelerates without slipping to a final speed of v relative to the track. What is the locomotive's final speed v_f relative to the ground?

3. Particle-rod collision revisited

We will revisit problem 2 of problem set 6, and you are encouraged to use those results. Note that we use ℓ instead of L to distinguish it from the magnitude of the angular momentum.

A slender uniform rod of length ℓ and mass M rests along the y-axis on a frictionless, horizontal table. A particle of equal mass M is moving along the x-axis at a speed V_0 . At t=0, the particle strikes the end of the rod and sticks to it. Note that gravity would be acting in the \hat{z} direction, but does not need to be considered.

- 1. Calculate the angular velocity $\vec{\omega}$ of the rod-particle system about its center of mass after the collision. Express your answer in terms of V_0 , ℓ , \hat{x} , \hat{y} , and \hat{z} .
- 2. Using this result, calculate the position of the particle (stuck at one end of the rod) $\vec{r}_p(t)$ for $t \geq 0$. Express your answer in terms of $\vec{R}_{CM}(t)$, ℓ , $\omega = |\vec{\omega}|$, t, \hat{x} , \hat{y} , and \hat{z} .

4. Former exam question: The ringmaster

Two identical rings slide on a surface with a coefficient of kinetic friction μ . Each ring has a height h, radius ρ_0 , negligible radial thickness, and mass m. At time t = 0, each ring is given the same kinetic energy E_0 .

- 1. The first ring has purely translational horizontal motion (and does not rotate). Calculate the time t_1 for the ring to stop due to friction.
- 2. The second ring has purely rotational motion about its vertical symmetry axis (and there is no translation of its center of mass). Calculate the time t_2 for the ring to stop due to friction. What is the value of the ratio t_2/t_1 ?
- 3. What are the answers to parts 1 and 2 if, instead of rings, the objects are uniform disks with the same masses m, heights h, outer radii ρ_0 , and energies E_0 as the rings?

5. Optional: Elliptic Orbit

A satellite of mass m_s is in an elliptical orbit around a planet of mass m_p , which is located at one focus of the ellipse. It is not burning any fuel nor expelling any propellant. The satellite has a speed v_f at the distance r_f when it is furthest from the planet.

- 1. What is the speed v_c of the satellite when it is at its closest distance to the planet? What is this distance r_c ? Express your answer in terms of m_s , m_p , G, v_f , and r_f as needed.
- 2. If the satellite were in a circular orbit of radius $r_0 = r_c$, would its speed v_0 be greater than, equal to, or less than the speed v_c in the original elliptic orbit?