Biodiversity Capstone Project

Investigating Protected Species

The dataset

File: species_info.csv

Dimensions: Category, Scientific_name, Common_names, Conservation_status

Category: contains 7 categories (Mammal, Bird, Reptile, Amphibian, Fish, Vascular Plant, Nonvascular Plant)

Scientific_name: contains 5,541 distinct species

Common_names: many different values

Conservation_status: contains 5 status (Endangered, In Recovery, No Intervention, Species of Concern, Threatened)

category scientific_name common_names conservation 0 Mammal Clethrionomys gapperi gapperi Gapper's Red-Backed Vole nan	n_status
0 Mammal Clethrionomys gapperi gapperi Gapper's Red-Backed Vole nan	
1 Mammal Bos bison American Bison, Bison nan	
2 Mammal Bos taurus Aurochs, Aurochs, Domestic Cattle (Feral), Domesticated Cattle nan	
3 Mammal Ovis aries Domestic Sheep, Mouflon, Red Sheep, Sheep (Feral) nan	
4 Mammal Cervus elaphus Wapiti Or Elk nan	

4 - Analyzing species conservation status:

conservation_counts =
species.groupby('conservation_status').scientific_name.nuni
que().reset_index()

2 - Replacing in 'NaN' values with 'No Intervention':

species.fillna('No Intervention', inplace = True)

3 - Checking species conservation status again:

conservation_counts_fixed =
species.groupby('conservation_status').scientific_name.nuni
que().reset_index()

Before replacement of 'NaN' values

conservation_status	scientific_name	
Endangered	15	
In Recovery	4	
Species of Concern	151	
Threatened	10	

After replacement of 'NaN' values

conservation_status	scientific_name	
Endangered	15	
In Recovery	4	
No Intervention	5363	
Species of Concern	151	
Threatened	10	

4 - Plotting Conservation Status by Species

```
plt.figure(figsize=(10, 4))

ax = plt.subplot()

plt.bar(range(len(protection_counts)),protection_counts.s

cientific_name.values)

ax.set_xticks(range(len(protection_counts)))

ax.set_xticklabels(protection_counts.conservation_status.

values)

plt.ylabel('Number of Species')

plt.title('Conservation Status by Species')

labels = [e.get_text() for e in ax.get_xticklabels()]

plt.show())
```


5 - Creating a new column to check which species are protected

species['is_protected'] = species.conservation_status != 'No Intervention'
category_counts = species.groupby(['category', 'is_protected']).scientific_name.nunique().reset_index()

6 - Pivoting to better visualize the data

category_pivot = category_counts.pivot(columns='is_protected', index='category', values='scientific_name')\.reset_index() category pivot.columns = ['category', 'not protected', 'protected']

7 - Creating a new column to display the percentage protected

category_pivot['percent_protected'] = category_pivot.protected /
(category_pivot.protected + category_pivot.not_protected)

	category	not_protected	protected	percent_protected
0	Amphibian	72	7	0.088608
1	Bird	413	75	0.153689
2	Fish	115	11	0.087302
3	Mammal	146	30	0.170455
4	Nonvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

8 - Chi-Squared Test for Significance - Checking whether Mammals are more likely to be endangered than Birds

```
contingency = [[30, 146], [75, 413]]
pval = chi2_contingency(contingency)[1]
print(pval)
```

No significant difference because pval > 0.05

9 - Chi-Squared Test for Significance - Checking whether Mammals are more likely to be endangered than Reptiles

```
contingency_reptile_mammal = [[30, 146], [5, 73]]
pval_reptile_mammal = chi2_contingency(contingency_reptile_mammal)[1]
print(pval_reptile_mammal)
```

<u>Significant difference! pval_reptile_mammal < 0.05</u>

10 - Conclusion:

Certain types of species are more likely to be endangered than others.

Recommendations for conservationists concerned about endangered species

- Conduct Chi-Squared tests to identify which species are more likely to be endangered than others
- Allocate greater amount of budget to species that are more likely to be endangered
- Promote initiatives to educate the public
- Create a program to facilitate reproduction of endangered species until the significance tests' results become no significant

Sample size determination

baseline = 15

minimum_detectable_effect = 100*5./15

sample_size_per_variant = 870

yellowstone_weeks_observing = sample_size_per_variant/507.

bryce_weeks_observing = sample_size_per_variant/250.

Sample size calculator

Appendix

Graphs created during analysis

Thank you!