Strategy Proof Voting Mechanisms

Aryan Arora

Carleton College

10/31/2023

Outline

Motivation

Setting Up The Problem

Arrow's Impossibility Theorem

Strategy Proof Voting Mechanisms

Gibbard-Satterthwaite Theorem

Correspondence Theorem

Vickrey-Clarke-Groves Mechanism

A Proof Beyond Words

THEOREM 1 (Groves and Loeb [5]): A Groves mechanism is s.i.i.c.

```
\begin{array}{ll} \text{PROOF: For any } w_{-i}(\cdot) \in V_{-i} \text{ and any } w_{i}(\cdot) \in V_{i}, \ u_{i}(w_{-i}(\cdot), \ v_{i}(\cdot); \ GM) \\ -u_{i}(w_{-i}(\cdot), \ w_{i}(\cdot); \ GM) = v_{i}(K^{*}(w_{-i}(\cdot), \ v_{i}(\cdot))) + \Sigma w_{-i}(K^{*}(w_{-i}(\cdot), \ v_{i}(\cdot))) \\ +h_{i}(w_{-i}(\cdot)) - v_{i}(K^{*}(w_{-i}(\cdot), \ w_{i}(\cdot))) - \Sigma w_{-i}(K^{*}(w_{-i}(\cdot), \ w_{i}(\cdot))) - h_{i}(w_{-i}(\cdot)) \\ = \max_{K \in \mathcal{X}} [v_{i}(K) + \Sigma w_{-i}(K)] - [v_{i}(K^{*}(w_{-i}(\cdot), \ w_{i}(\cdot))) + \Sigma w_{-i}(K^{*}(w_{-i}(\cdot), \ w_{i}(\cdot)))] \geqslant 0. \end{array}
```

Motivation

Setting Up the Problem: Voting Committees

I_n : Voting Committee

```
I_n = \{ \text{All Voting Eligible American} \} (US Electorate)

I_2 = \{ \text{Rafe, Rob} \} (Aryan's Comps Committee)

I_{20} = \{ \text{Carleton Mathematics Professors} \} (Math Department)
```

All $i \in I_n$ have preferences R_i over S_m

Setting Up the Problem: Alternatives

S_m : Set of Alternatives

```
S_3 = \{ {\sf Democrat}, {\sf Republican}, {\sf Independent} \} (US President) S_2 = \{ {\sf Pass}, {\sf Fail} \} (Aryan's Comps ) S_{20} = \{ {\sf Halloween Candies} \} (Halloween Candy)
```

Setting Up the Problem: Voting

Each voter casts a ballot, $\mathbf{B_i}$, which is a weak ordering of the alternatives:

$$X > Y > Z$$

 $Y > X \ge Z$
 $Z > Y > X$

Ballot Sets

$$\pi_m = \{ All \text{ possible ballots} \}$$

Assume m = 3 and $S_3 = \{X, Y, Z\}$

$$\pi_{3} = \{(X > Y > Z), (X > Z > Y), (Y > X > Z), (Y > Z > X), (Z > X > Y), (Z > Y > X), (Z > Y > Z), (X \ge Y > Z), ..., (Z \ge Y \ge Z)\}$$

Ballot Sets

$$\pi_m^n = \{ All \text{ possible ballots for all voters} \}$$

Assume m = 3, n = 5, and $S_3 = \{X, Y, Z\}$

$$\pi_3^5 = \{ \{B_1, B_2, B_3, B_4, B_5\}, \\ \{B_1^*, B_2^*, B_3^*, B_4^*, B_5^*\}, \\ \{B_1', B_2', B_3', B_4', B_5'\}, \ldots \}$$

where $B_i \in \pi_m$

Social Choice Function

The **social choice function (u^{nm})** maps the collection of individual ballots to a **social choice**: a societal weak ordering of alternatives:

$$u^{nm}: B \in \pi_m^n \to \pi_m$$

$$B=(B_1,...,B_n)$$

Social Choice Function Example

$$u^{5,3}(B) = u^{5,3} \left(egin{array}{ll} B_1: & X > Y > Z \\ B_2: & X > Y > Z \\ B_3: & X > Y > Z \\ B_4: & X > Y > Z \\ B_5: & X > Y > Z \end{array}
ight) = (X > Y > Z) \in \pi_m$$

where
$$B = \{B_i\}, 1 < i < n, B_i \in \pi_3$$

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys Rationality, Pareto Optimality, and Independence of Irrelevant Alternatives, must be Dictatorial.

$$I_3 = \{i_1, i_2, i_3\}$$
 $S_3 = \{X, Y, Z\}$

$$B_1: X > Y > Z$$

 $B_2: Y > Z > X$
 $B_3: Z > X > Y$

$$I_3 = \{i_1, i_2, i_3\}$$
 $S_3 = \{X, Y, Z\}$

$$B_1: \mathbf{X} > \mathbf{Y} > Z$$

 $B_2: Y > Z > X$
 $B_3: Z > \mathbf{X} > \mathbf{Y}$

$$I_3 = \{i_1, i_2, i_3\}$$
 $S_3 = \{X, Y, Z\}$

$$i_1: X > Y > Z$$

 $i_2: Y > Z > X$
 $i_3: Z > X > Y$

$$X > Y > Z \implies X > Z$$

$$I_3 = \{i_1, i_2, i_3\}$$
 $S_3 = \{X, Y, Z\}$

$$i_1: X > Y > Z$$

 $i_2: Y > Z > X$
 $i_3: Z > X > Y$

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys **Rationality**, Pareto Optimality, and Independence of Irrelevant Alternatives, must be Dictatorial.

Rationality/Universality

Definition (Rationality)

A social choice function should account for all individual preferences and provide the same ranking every time voter's preferences are presented the same way.

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys Rationality, **Pareto Optimality**, and Independence of Irrelevant Alternatives, must be Dictatorial.

Pareto Optimality

Definition (Pareto Optimality)

If all *voters* rank alternative X before alternative Y, the social choice function should provide a ranking that has X ranked before Y.

$$u^{5,3}(B) = u^{5,3} \begin{pmatrix} B_1: & X > Y > Z \\ B_2: & X > Y > Z \\ B_3: & X > Y > Z \\ B_4: & X > Y > Z \\ B_5: & X > Y > Z \end{pmatrix} = (X > Y > Z) \in \pi_m$$

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys Rationality, Pareto Optimality, and Independence of Irrelevant Alternatives must be Dictatorial.

Independence of Irrelevant Alternatives (IIA)

Definition (Independence of Irrelevant Alternatives)

$$u^{5,3}(B) = u^{5,3} \begin{pmatrix} B_1 : & X > Y > Z \\ B_2 : & X > Y > Z \\ B_3 : & X > Y > Z \\ B_4 : & X > Y > Z \\ B_5 : & X > Y > Z \end{pmatrix} : (X > Z)$$

$$u^{5,3}(B') = u^{5,3} \begin{pmatrix} B_1' : & X > Z > Y \\ B_2' : & X > Z > Y \\ B_3' : & X > Z > Y \\ B_4' : & X > Z > Y \\ B_5' : & X > Z > Y \end{pmatrix} : (X > Z)$$

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys Rationality, Pareto Optimality, and Independence of Irrelevant Alternatives must be Dictatorial.

Dictatorial

Definition (Dictatorial)

A social choice function selects the ranking of one particular voter as the social choice.

$$i_1: X > Y > Z$$

 $i_2: Y > Z > X \rightarrow (X > Y > Z)$
 $i_3: Z > X > Y$

Arrow's Impossibility Theorem

Theorem

For n > 2 and m > 3 any social choice function that obeys Rationality, Pareto Optimality, and Independence of Irrelevant Alternatives must be **Dictatorial**.

Voting Mechanism

The **voting mechanism** (v^{nm}) maps the collection of individual ballots to a **committee choice**, a single alternative $X \in S_m$:

$$v^{nm}: B \in \pi_m^n \to X \in S_m$$

$$B=(B_1,...,B_n)$$

Social Choice Function Example

$$u^{5,3}(B) = u^{5,3} \begin{pmatrix} B_1: & X > Y > Z \\ B_2: & X > Y > Z \\ B_3: & X > Y > Z \\ B_4: & X > Y > Z \\ B_5: & X > Y > Z \end{pmatrix} = (X > Y > Z) \in \pi_m$$

Voting Mechanism Example

$$v^{5,3}(B) = v^{5,3} \left(egin{array}{ccc} B_1: & X > Y > Z \ B_2: & X > Y > Z \ B_3: & X > Y > Z \ B_4: & X > Y > Z \ B_5: & X > Y > Z \end{array}
ight) = (X) \in S_m$$

Strategy Proof Voting Mechanism

Definition (Sincere Strategy)

A voter, i, employs a sincere strategy when $B_i = R_i$

Definition (Sophisticated Strategy)

A voter, i, employs a sophisticated strategy when $B_i \neq R_i$

Definition (Strategy Proof Voting Mechanism)

A voting mechanism is strategy proof if there does not exist any ballot, $B \in \pi_m^n$ such that the outcome of the voting procedure is manipulable using a sophisticated strategy

Strategy Proof Voting Mechanism

Definition (Strategy Proof Voting Mechanism)

A voting mechanism is strategy proof if no voter has an incentive to cast a ballot different from their own preferences

Example

- ▶ 49% of Americans identify as independents¹
- ► In the 2020 US Presidential Election independent candidates gathered 1.9% of votes

¹https://www.axios.com/2023/04/17/poll-americans-independent-republican-democrat

Strategy Proof Voting Mechanism

$$R_i = (Independent > Democrat > Republican)$$

Sincere: $B_i = (Independent > Democrat > Republican)$

Sophisticated: $B_i = (Democrat > Independent > Republican)$

Gibbard-Satterthwaite Theorem

Theorem (Gibbard-Satterthwaite Theorem)

Consider a voting procedure, v^{nm} with $n \ge 2$ and $m \ge 3$. The voting procedure is strategy proof if and only if it is Dictatorial.

Dictatorial ⇒ Strategy Proof

Assume voting mechanism v^{nm} is a Dictatorial voting mechanism and voter $k \in I_n$ is the dictator.

- voter k is not incentivized to cast a sophisticated ballot
- For all $i \in \{1, ..., k-1, k+1, ..., n\}$ voter i is not incentivized to cast a sophisticated ballot.

Key Theorems

Theorem (Arrow's Impossibility)

For n > 2 and m > 3 any social choice function that obeys Rationality, Pareto Optimality, and Independence of Irrelevant Alternatives must be Dictatorial.

Theorem (Gibbard-Satterthwaite Theorem)

Consider a voting procedure, v^{nm} with $n \ge 2$ and $m \ge 3$. The voting procedure is strategy proof if and only if it is Dictatorial.

Theorem (Gibbard-Satterthwaite Correspondence Theorem)

The strategy-proofness condition for voting procedures in the Gibbard-Satterthwaite Theorem correspond precisely to Arrow's conditions for a social choice function.

Strategy:

- ightharpoonup We can produce a v^{nm} from a u^{nm}
- \triangleright We can produce a u^{nm} from a v^{nm}
- **Each** v^{nm} that produces a u^{nm} (and vice versa) is unique

A strategy proof voting procedure can be constructed from For n > 2 and m > 3 any social choice function.

$$u^{5,3}(B) = u^{5,3} \begin{pmatrix} B_1: & X > Y > Z \\ B_2: & X > Y > Z \\ B_3: & X > Y > Z \\ B_4: & X > Y > Z \\ B_5: & X > Y > Z \end{pmatrix} = (X > Y > Z) \in \pi_m$$

$$\mathbf{v}^{\mathsf{nm}} = \mathsf{max}(\mathbf{u}^{\mathsf{nm}}) = \mathbf{X} \in \mathbf{S}_{\mathsf{m}}$$

A social choice function can be constructed from any strategy proof voting procedure

- 1. Pick an arbitrary strong ordering of the alternatives
- 2. Define $\lambda_{X,Y}$ for $X,Y \in S_m$ where $X \neq Y$ as follows:

$$B_i = (\alpha > \beta > X > \gamma > \phi > Y)$$

$$\lambda_{X,Y}(B_i) = (X > Y > \alpha > \beta > \gamma > \phi)$$

- 3. For each ballot set $B = (B_1, ..., B_n)$ construct a binary relation, P
 - 3.1 For all $X, Y \in S_m$ where $X \neq Y, X > Y$ in P if and only if $X = v^{nm}(\lambda_{X,Y}(B_1), ..., \lambda_{X,Y}(B_n))$

Example

$$B_1 = (X > Y > Z)$$
 $\lambda_{X,Y}(B_1) = (X > Y > Z)$
 $B_2 = (Y > X > Z)$ $\lambda_{X,Y}(B_2) = (Y > X > Z)$
 $\lambda_{X,Y}(B_3) = (X > Y > Z)$

$$v^{nm}(\lambda_{X,Y}(B_1), \lambda_{X,Y}(B_2), \lambda_{X,Y}(B_1)) = X$$

 $v^{nm}(\lambda_{Y,Z}(B_1), \lambda_{Y,Z}(B_2), \lambda_{Y,Z}(B_1)) = Y$
 $v^{nm}(\lambda_{X,Z}(B_1), \lambda_{X,Z}(B_2), \lambda_{X,Z}(B_1)) = X$

$$\mathbf{P} = (\mathbf{X} > \mathbf{Y} > \mathbf{Z})$$

4. Let μ be a function that associates P with the appropriate ballot set

- 5. if v^{nm} is strategy proof, P is a strong order
- 6. μ is a strict social choice function
- 7. μ obeys Pareto Optimality and Independence of Irrelevant Alternatives
 - 7.1 If v^{nm} is strategy proof, it obeys Pareto Optimality and Independence of Irrelevant Alternatives

- 5. if v^{nm} is strategy proof, P is a strong order
- 6. μ is a strict social choice function
- 7. μ obeys Pareto Optimality and Independence of Irrelevant Alternatives
 - 7.1 If v^{nm} is strategy proof, it obeys Pareto Optimality and Independence of Irrelevant Alternatives

$$v^{nm}$$
 is strategy proof $\implies v^{nm}$ is Pareto Optimal.

Assume strategy proof and not Pareto Optimal

There exists some $C \in \pi_m^n$ such that X > Y for all $C_i \in C$ but $v^{nm}(C) = Y$

Because X is in the range of v^{nm} there must exist a ballot set D such that $v^{nm}(D) = X$

There exists some voter, *k* such that:

$$v^{nm}(C_1, ..., C_{k-1}, C_k, ..., C_n) = Y$$

 $v^{nm}(D_1, ..., D_{k-1}, C_k, ..., C_n) = Y$
 $v^{nm}(D_1, ..., D_{k-1}, D_k, ..., C_n) = X$

Example

v^{nm} chooses the second best alternative

$$C_1 = (X > Y > Z)$$
 $D_1 = (Y > X > Z)$
 $C_2 = (X > Y > Z)$ $D_2 = (Y > X > Z)$
 $C_n = (X > Y > Z)$ $D_n = (Y > X > Z)$

Voter k:

Sincere: (X > Y > Z)

Outcome: Y

Sophisticated: (Y > X > Z)

Outcome: X

Contradiction!

A Glimmer of Hope

Vickrey Auctions:

- ► Sealed Bid Auction
- Winner is the second highest big

Thank you

Thank you to everyone in the Math/Stats department!