1 Herramientas básicas de Formato

1.1 El m'etodo del descenso infinito

Consejo

Cuando animas a alguien que utilice LyX y le invitas a que se pase por la pgina oficial de que es usuario de esta plataforma, no le vas a LyX y que en descargas se baje el instalador. hacer que se instale Linux si no quiere, as que

El siguiente m'etodo de demostraci'on fue utilizado frecuentemente por Pierre Fermat* (1601-1665) por lo que a 'el se le atribuye. Por lo general, es usado para demostrar que algo no sucede. Por ejemplo, Fermat lo utiliz'o para mostrar que no hay soluciones enteras de la ecuaci'on $x^4 + y^4 = z^2$, con $xyz \neq 0$.

La base te'orica de su m'etodo es que no hay una colecci'on infinita de enteros positivos que sea decreciente, esto es, no podemos encontrar una infinidad de enteros positivos que cumplan $n_1 > n_2 > n_3 > \cdots$.

Hay dos maneras de usar esta idea para demostrar afirmaciones. La primera es tener una afirmaci'on $\mathcal{P}(n_1)$ que se supone v'alida. Si de 'esta se puede encontrar un entero positivo $n_2 < n_1$ tal que $\mathcal{P}(n_2)$ es v'alida y, a su vez, si de 'esta se encuentra un entero positivo $n_3 < n_2$ tal que $\mathcal{P}(n_3)$ es v'alida, y as'i sucesivamente, entonces una infinidad de enteros positivos se genera de tal forma que cumple que $n_1 > n_2 > n_3 > \cdots$, pero esto es imposible, por lo que $\mathcal{P}(n_1)$ no es verdadera. Veamos un ejemplo para ilustrar este m'etodo.

Ejemplo.

El n'umero $\sqrt{2}$ no es un n'umero racional[†].

Supongamos que $\sqrt{2}$ es un n'umero racional, entonces $\sqrt{2} = \frac{m_1}{n_1}$, con m_1 y n_1 n'umeros enteros positivos. Como $\sqrt{2} + 1 = \frac{1}{\sqrt{2} - 1}$, tenemos que

$$\sqrt{2} + 1 = \frac{1}{\frac{m_1}{n_1} - 1} = \frac{n_1}{m_1 - n_1}$$
, por lo que $\sqrt{2} = \frac{n_1}{m_1 - n_1} - 1 = \frac{2n_1 - m_1}{m_1 - n_1}$.

Como $1 < \sqrt{2} < 2$, sustituyendo el supuesto valor racional de $\sqrt{2}$ se tiene que $1 < \frac{m_1}{n_1} < 2$, de donde $n_1 < m_1 < 2n_1$. De aqu'i tenemos que, $2n_1 - m_1 > 0$ y $m_1 - n_1 > 0$. Luego, si definimos $m_2 = 2n_1 - m_1$ y $n_2 = m_1 - n_1$, tenemos que $m_2 < m_1$ y $n_2 < n_1$, ya que $n_1 < m_1$ y $m_1 < 2n_1$, respectivamente. Luego, $\sqrt{2} = \frac{m_1}{n_1} = \frac{m_2}{n_2}$, con $m_2 < m_1$ y $n_2 < n_1$. Siguiendo este proceso, podemos generar una infinidad de enteros positivos $m_1 > m_2$ $m_2 > m_2$ que cumplen que

$$\sqrt{2} = \frac{m_1}{n_1} = \frac{m_2}{n_2} = \frac{m_3}{n_3} = \cdots,$$

^{*}Matemático Frances

[†]Fracción

[‡]Naturales

con $m_1>m_2>m_3>\cdots$ y $n_1>n_2>n_3>\cdots$, pero esto no es posible. Por lo tanto, $\sqrt{2}$ no es un n'umero racional.