知识编辑

报告人: 李豪

报告时间: 2023.12.29

目录

1. 任务简介

2. 相关工作

3. 总结

☆ 背景:

- ▶ 知识可能是错误或者过时的
- You 梅西是否获得过世界杯冠军?
 - ChatGPT 截至我知识截止日期2022年1月,梅西在阿根廷国家队中还没有获得过世界杯冠军。然而,他曾多次代表阿根廷参加国际比赛,包括世界杯,而且在2014年的巴西世界杯上,阿根廷队进入决赛,但最终输给了德国队,屈居亚军。梅西是一位备受尊敬的足球运动员,他在俱乐部水平上多次获得荣誉,但在国家队层面上,直到2022年1月,他还未获得世界杯冠军。请注意,关于梅西的最新信息可能发生了变化,建议查阅最新的体育新闻以获取最新信息。
- **You** 2023年NBA总决赛冠军是那个队伍?
- ChatGPT 很抱歉,截至我知识截止日期2022年1月,我无法提供2023年NBA总决赛冠军的信息, 因为我的培训数据截止于2022年,并且我无法浏览互联网以获取实时信息。要获取最新的NBA冠军信息,建议查阅最新的体育新闻报道、官方NBA网站或其他可靠的体育新闻来源。

☆ 任务介绍:

原始知识: t = (s,r,o) 目标知识: $t^* = (s,r,o^*)$

$$\min \mathbb{E}_{e \in \mathcal{E}} \mathbb{E}_{x, y^* \in \mathcal{X}_e, \mathcal{Y}_e^*} \mathcal{L}(f^*(x), y^*), \text{ where } f^* = M(f; \mathcal{E}),$$

s.t. $f^*(x) = f(x), \ \forall x \in \mathcal{X} \setminus \mathcal{X}_{\mathcal{E}},$

☆ 评价指标:

▶ 可靠性(Reliability):编辑知识的成功率;

$$\mathbb{E}_{x'_{e}, y'_{e} \sim \{(x_{e}, y_{e})\}} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left(y \mid x'_{e} \right) = y'_{e} \right\}$$

▶ 局部性(Locality): 控制编辑范围内的输出变化,不影响无关知识;

$$\mathbb{E}_{x'_{e}, y'_{e} \sim O(x_{e}, y_{e})} \mathbb{1} \left\{ f_{\theta_{e}} \left(y \mid x'_{e} \right) = f_{\theta} \left(y \mid x'_{e} \right) \right\}$$

▶ 泛化性(Generality):编辑范围内的成功率;

$$\mathbb{E}_{x'_{e}, y'_{e} \sim N(x_{e}, y_{e})} \mathbb{1} \left\{ \operatorname{argmax}_{y} f_{\theta_{e}} \left(y \mid x'_{e} \right) = y'_{e} \right\}$$

☆ 数据集:

```
"subject": "Panzer 58",
   "src": "What year was Panzer 58 commissioned?",
   "rephrase": "What year was the date for the launch of the Panzer 58?",
   "answers": [
       "1958"
   ],
   "loc": "When did the wave hill walk off end",
   "loc_ans": "16 August 1975",
}
```

Task	Edit Descriptor e	In-scope Input $x \sim X_e$	Original Output $y \sim \mathcal{Y}_e$	Target Output $y \sim \mathcal{Y}_e^*$
QA	(Kazakhstan, Captital,	What is the capital of	Astana	Nur-Sultan
	Astana→Nur-Sultan)	Kazakhstan?		
FC	(Marathon, Record,	Kipchoge holds the men's	True	False
	Kipchoge→Kiptum)	marathon world record.		
	(Jordan Poole, Play In,	Provide a short introduction	Jordan Poole entered	In 2023, Jordan Poole transitioned
NLG	Warriors→Wizards)	to Jordan Poole, describing	the Warriors' rotation	from the Warriors to the Wizards,
		his current position.	recently.	remarking a significant change.

☆ 相关数据集:

- ▶ 生成任务: zsRE、WikiGen、T-REx-100 & T-REx-1000、CounterFact、ParaRel、NQ-Situated、MQuAKE
- ▶ 分类任务: FEVER、ConvSent、Bias in Bios、VitaminC-FC

☆ 方法分类:

- External Memorization:利用外部结构存储新知识进行编辑,无需修改 LLM的权重。
- ▶ Global Optimization: 在新知识的指导下通过优化将新知识纳入LLM中。
- ▶ Local Modification: 定位LLM中特定知识的相关参数并进行更新。

☆ 方法分类:

- External Memorization:利用外部结构存储新知识进行编辑,无需修改 LLM的权重。
- ▶ Global Optimization: 在新知识的指导下通过优化将新知识纳入LLM中。
- ▶ Local Modification: 定位LLM中特定知识的相关参数并进行更新。

目录

2.

相关工作

- □ 现有的知识编辑方法通常在回答 编辑事实的释义问题时表现良好, 但在回答因编辑事实而改变答案 的问题时却表现不佳。
- 並 提出一个多跳问答数据MQUAKE, 包括MQUAKE-CF(反事实编辑)、 MQUAKE-T(时序知识)

$$\mathcal{C} = \langle (s_1, r_1, o_1), \dots, (s_n, r_n, o_n) \rangle$$

- E (WALL-E, creator, Andrew Stanton → James Watt)
 (University of Glasgow, headquarters location,
 Glasgow → Beijing)
 Q In which city is the headquarters of the employer of
 WALL-E's creator located?
 What is the location of the headquarters of the company
 that employed the creator of WALL-E?
 Where is the headquarters of the company that employed
- a Emeryville a* Beijing
- (WALL-E, creator, Andrew Stanton)
 (Andrew Stanton, employer, Pixar)
 (Pixar, headquarters location, Emeryville)

the creator of WALL-E situated?

C* (WALL-E, creator, James Watt)
 (James Watt, employer, University of Glasgow)
 (University of Glasgow, headquarters location, Beijing)

🔹 构建数据集:

- MQUAKE-CF: 知识三元 组来源为Wikidata, 问题Q 通过ChatGPT构建, 取样 替换0为0*构建新知识;
- ▶ MQUAKE-T: 基于时间的 现实世界知识更新₩ikidata 2021-04 / 2023-04

	#Edits	2-hop	3-hop	4-hop	Total
	1	2,454	855	446	3,755
MQUAKE-CF	2	2,425	853	467	3,745
	3	-	827	455	1,282
	4	-	-	436	436
	All	4,879	2,535	1,804	9,218
MQUAKE-T	1 (All)	1,421	445	2	1,868

✿ MQUAKE:

- 将多跳问题分解为子问题;
- ▶ 回答子问题的答案;
- ▶ 自我检查答案是否与Memory中任何已编辑的事实矛盾;

☆ 实验结果:

MQUAKE-CF

Base Model	Method	Edit-wise	Instance-wise	Multi-hop	Multi-hop (CoT)
	Base	_	100.0	43.4	42.1
	FT	44.1	24.1	1.6 ↓41.8	1.9 ↓40.2
GPT-J	MEND	72.8	59.6	9.2 \$434.2	11.5 ↓30.6
	ROME	90.8	86.7	7.6 \(\pi 35.8\)	18.1 ↓24.0
	MEMIT	97.4	94.0	8.1 \435.3	12.3 ↓29.8
	Base	-	61.0	30.0	36.6
	FT	20.2	7.8	0.7 ↓29.3	0.2 ↓36.4
Vicuna-7B	MEND	65.2	47.6	7.4 ↓22.6	8.4 ↓28.2
	ROME	99.8	89.6	8.4 ↓21.6	12.2 ↓24.4
	MEMIT	96.6	84.0	7.6 \(\pm22.4\)	9.0 ↓27.6

MQUAKE-T

Method	Edit- wise	Instance- wise	Multi- hop	Multi-hop (CoT)
Base	_	100.0	34.3	46.8
FT	19.5	19.0	0.0 \$4.3	0.2 ↓46.6
MEND	99.0	98.5	16.0 ↓18.3	38.2 ↓8.6
ROME	100.0	97.7	0.3 \134.0	11.3 ↓35.5
MEMIT	100.0	98.9	$0.3 \downarrow 34.0$	4.8 \ 42.0

			MQuA	KE-CI	F	MQUAKE-T			
# Edited in	1	100	1000	3000	1	100	500	1868	
Base Model	Method								
GPT-J	MEMIT	12.3	9.8	8.1	1.8	4.8	1.0	0.2	0.0
GPT-J	MEND	11.5	9.1	4.3	3.5	38.2	17.4	12.7	4.6
GPT-J	MeLLo	20.3	12.5	10.4	9.8	85.9	45.7	33.8	30.7
Vicuna-7B	MeLLo	20.3	11.9	11.0	10.2	84.4	56.3	52.6	51.3
GPT-3	MeLLo	68.7	50.5	43.6	41.2	91.1	87.4	86.2	85.5

Editing a Pre-Trained Model with MEND

$$z_{\ell+1} = W_{\ell} u_{\ell}$$

$$\frac{\partial L}{\partial W_{\ell}^{ij}} = \sum_{k} \frac{\partial L}{\partial z_{\ell+1}^{k}} \frac{\partial z_{\ell+1}^{k}}{\partial W_{\ell}^{ij}} = \frac{\partial L}{\partial z_{\ell+1}^{i}} \frac{\partial z_{\ell+1}^{i}}{\partial W_{\ell}^{ij}}$$

$$\frac{\partial L}{\partial W_{\ell}^{ij}} = \delta_{\ell+1}^{i} u_{\ell}^{j}$$

$$\nabla_{W_{\ell}} L = \sum_{i=1}^{B} \delta_{\ell+1}^{i} u_{\ell}^{i}$$

MEND Architecture

$$z_{\ell} = \operatorname{concat}(u_{\ell}, \delta_{\ell+1})$$

$$h_{\ell} = z_{\ell} + \sigma(s_{\ell}^{1} \odot (U_{1}V_{1}z_{\ell} + b) + o_{\ell}^{1}), \qquad g(z_{\ell}) = h_{\ell} + \sigma(s_{\ell}^{2} \odot U_{2}V_{2}h_{\ell} + o_{\ell}^{2})$$
$$\tilde{\nabla}_{W_{\ell}} = \sum_{i=1}^{B} \tilde{\delta}_{\ell+1}^{i} \tilde{u}_{\ell}^{i\top}.$$

$$\tilde{W} = W_{\ell} - \alpha \tilde{\nabla}_{W_{\ell}}$$

☆ 训练过程:

Algorithm 1 MEND Training

- 1: **Input:** Pre-trained p_{θ_W} , weights to make editable W, editor params ϕ_0 , edit dataset D_{edit}^{tr} , edit-locality tradeoff c_{edit}
- 2: **for** $t \in {1, 2, ...}$ **do**
- 3: Sample $x_e, y_e, x'_e, y'_e, x_{loc} \sim D_{edit}^{tr}$
- 4: $\mathcal{W} \leftarrow \text{EDIT}(\theta_{\mathcal{W}}, \mathcal{W}, \phi_{t-1}, x_{e}, y_{e})$
- 5: $L_{\rm e} \leftarrow -\log p_{\theta_{\tilde{\mathcal{M}}}}(y_{\rm e}'|x_{\rm e}')$
- 6: $L_{\text{loc}} \leftarrow \text{KL}(p_{\theta_{\mathcal{W}}}(\cdot|x_{\text{loc}})||p_{\theta_{\tilde{\mathcal{W}}}}(\cdot|x_{\text{loc}}))$
- 7: $L(\phi_{t-1}) \leftarrow c_{\text{edit}}L_{\text{e}} + L_{\text{loc}}$
- 8: $\phi_t \leftarrow \operatorname{Adam}(\phi_{t-1}, \nabla_{\phi} L(\phi_{t-1}))$

Algorithm 2 MEND Edit Procedure

- 1: **procedure** EDIT $(\theta, \mathcal{W}, \phi, x_e, y_e)$
 - 2: $\hat{p} \leftarrow p_{\theta_{\mathcal{W}}}(y_{e}|x_{e})$, caching input u_{ℓ} to $W_{\ell} \in \mathcal{W}$
- 3: $L(\theta, \mathcal{W}) \leftarrow -\log \hat{p}$ \triangleright Compute NLL
- 4: for $W_{\ell} \in \mathcal{W}$ do
- 5: $\delta_{\ell+1} \leftarrow \nabla_{W_{\ell}u_{\ell}+b_{\ell}}l_e(x_e,y_e)$ > Grad wrt output
- 6: $\tilde{u}_{\ell}, \tilde{\delta}_{\ell+1} \leftarrow g_{\phi_{\ell}}(u_{\ell}, \delta_{\ell+1})$ > Pseudo-acts/deltas
- 7: $\tilde{W}_{\ell} \leftarrow W_{\ell} \tilde{\delta}_{\ell+1} \tilde{u}_{\ell}^{\top}$ > Layer ℓ model edit
- 8: $\tilde{\mathcal{W}} \leftarrow \{\tilde{W}_1, ..., \tilde{W}_k\}$
- 9: **return** \hat{W} \triangleright Return edited weights

MEND losses: $L_{e} = -\log p_{\theta_{\tilde{\mathcal{W}}}}(y'_{e}|x'_{e}), \quad L_{loc} = \mathrm{KL}(p_{\theta_{\mathcal{W}}}(\cdot|x_{loc})||p_{\theta_{\tilde{\mathcal{W}}}}(\cdot|x_{loc})).$ (4a,b)

☆ 实验结果:

		Wikitext (Generati	ion	zsRE Question-Answering				
	GPT-	Neo (2.7B)	GPT-J (6B)		T5-XL (2.8B)		T5-XXL (11B)		
Editor	ES ↑	ppl. DD↓	ES ↑	ppl. DD↓	ES ↑	acc. DD↓	ES ↑	acc. DD↓	
FT FT+KL KE MEND	0.55 0.40 0.00 0.81	0.195 0.026 0.137 0.057	0.80 0.36 0.01 0.88	0.125 0.109 0.068 0.031	0.58 0.55 0.03 0.88	<0.001 <0.001 <0.001 0.001	0.87 0.85 0.04 0.89	<0.001 <0.001 <0.001 <0.001	

	FEVER 1	Fact-Checking	zsRE Q	uestion-Answering	Wikite	xt Generation		Edit S	uccess ↑	Acc. Dra	wdown ↓
	BERT-	base (110M)	BAF	RT-base (139M)	distil	GPT-2 (82M)	Edits	ENN	MEND	ENN	MEND
Editor	ES ↑	acc. DD \downarrow	ES↑	acc. DD \downarrow	ES ↑	ppl. DD↓	1	0.99	0.98	< 0.001	0.002
FT FT+KL ENN KE MEND	0.76 0.64 0.99 0.95 > 0.99	<0.001 <0.001 0.003 0.004 <0.001	0.96 0.89 0.99 0.98	<0.001 <0.001 <0.001 <0.001 0.002	0.29 0.17 0.93 0.25 0.86	0.938 0.059 0.094 0.595 0.225	5 25 75 125	0.94 0.35 0.16 0.11	0.97 0.89 0.78 0.67	0.007 0.005 0.005 0.006	0.005 0.011 0.011 0.012

Locating

- ▶ clean run:正常使用prompt对语言模型进行问答。
- ▶ corrupted run:对subject进行扰动。
- ▶ corrupted-with-restoration run:恢复一些中间状态。

- $\mathbb{P}[o]$
- $\mathbb{P}_*[o]$
- $\mathbb{P}_{*,clean \, h_i^{(l)}}[o]$

Locating

- ▶ clean run:正常使用prompt对语言模型进行问答。
- ▶ corrupted run:对subject进行扰动。
- ▶ corrupted-with-restoration run:恢复一些中间状态。

$$\mathbb{P}[o]$$
 $\mathbb{P}_*[o]$
 $\mathbb{P}_{*closer}^{(l)}[o]$

$$\begin{aligned} \text{IE} &= \mathbb{P}_{*, \text{ clean } h_i^{(l)}}[o] - \mathbb{P}_*[o] \\ \text{TE} &= \mathbb{P}[o] - \mathbb{P}_*[o] \end{aligned}$$

locating

cditing **

minimize $\|\hat{W}K - V\|$ such that $\hat{W}k_* = v_*$ by setting $\hat{W} = W + \Lambda (C^{-1}k_*)^T$.

$$\Lambda = (v_* - Wk_*)/(C^{-1}k_*)^T k_* \qquad C = KK^T$$

- editing
 - ▶ 计算k_{*}: 根据subject token计算k_{*}

$$k_* = \frac{1}{N} \sum_{j=1}^{N} k(x_j + s), \text{ where } k(x) = \sigma \left(W_{fc}^{(l^*)} \gamma(a_{[x],i}^{(l^*)} + h_{[x],i}^{(l^*-1)}) \right)$$

▶ 计算v_{*}:

$$\frac{1}{N} \sum_{j=1}^{N} \underbrace{-\log \mathbb{P}_{G(m_{i}^{(l^{*})}:=z)} \left[o^{*} \mid x_{j} + p\right]}_{\text{(a) Maximizing } o^{*} \text{ probability}} + \underbrace{D_{\mathrm{KL}} \left(\mathbb{P}_{G(m_{i'}^{(l^{*})}:=z)} \left[x \mid p'\right] \middle\| \mathbb{P}_{G} \left[x \mid p'\right]\right)}_{\text{(b) Controlling essence drift}}.$$

▶ 插入事实:

✿ 实验结果:

Table 1: zsRE Editing Results on GPT-2 XL.

Editor	Efficacy ↑	Paraphrase ↑	Specificity ↑
GPT-2 XL	$22.2 (\pm 0.5)$	$21.3 (\pm 0.5)$	$24.2 \ (\pm 0.5)$
FT FT+L KE KE-zsRE MEND MEND-zsRE ROME	$99.6 (\pm 0.1)$ $92.3 (\pm 0.4)$ $65.5 (\pm 0.6)$ $92.4 (\pm 0.3)$ $75.9 (\pm 0.5)$ $99.4 (\pm 0.1)$ $99.8 (\pm 0.0)$	47.2 (±0.7) 61.4 (±0.6) 90.0 (±0.3) 65.3 (±0.6) 99.3 (±0.1)	$23.2 (\pm 0.5)$ $23.4 (\pm 0.5)$ $24.9 (\pm 0.5)$ $23.8 (\pm 0.5)$ $24.1 (\pm 0.5)$ $24.1 (\pm 0.5)$ $24.2 (\pm 0.5)$

目录

3.

- ☆ 存在挑战:
 - ▶ 平衡局部性和泛化性
 - ▶ 更加困难的应用场景 (复杂知识、多次编辑、同时编辑)
 - ▶ 理论解释
- ☆ 未来方向:
 - ▶ 持续编辑
 - ▶ 自动发现编辑目标
 - ▶ 丰富的应用场景

- paper list: https://github.com/zjunlp/KnowledgeEditingPapers
- ★ AACL tutorial: Editing Large Language Models https://drive.google.com/file/d/1EW-cusC_llCM0wEshkIdYuYrvfBPCDRz/view?usp=sharing
- ・ 工具: EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

 https://github.com/zjunlp/EasyEdit
 https://github.com/zjunlp/EasyEdit

参考文献

- [1] Wang S, Zhu Y, Liu H, et al. Knowledge Editing for Large Language Models: A Survey[J]. arXiv preprint arXiv:2310.16218, 2023.
- [2] Yao Y, Wang P, Tian B, et al. Editing Large Language Models: Problems, Methods, and Opportunities[J]. arXiv preprint arXiv:2305.13172, 2023.
- [3] Zhong Z, Wu Z, Manning C D, et al. MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions[J]. arXiv preprint arXiv:2305.14795, 2023.
- [4] Mitchell E, Lin C, Bosselut A, et al. Fast model editing at scale[J]. arXiv preprint arXiv:2110.11309, 2021.
- [5] Meng K, Bau D, Andonian A, et al. Locating and editing factual associations in GPT[J]. Advances in Neural Information Processing Systems, 2022, 35: 17359-17372.
- [6] Zheng C, Li L, Dong Q, et al. Can We Edit Factual Knowledge by In-Context Learning?[J]. arXiv preprint arXiv:2305.12740, 2023.
- [7] Dai D, Dong L, Hao Y, et al. Knowledge neurons in pretrained transformers[J]. arXiv preprint arXiv:2104.08696, 2021.
- [8] Hartvigsen T, Sankaranarayanan S, Palangi H, et al. Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors[J]. arXiv preprint arXiv:2211.11031, 2022.
- [9] Dong Q, Dai D, Song Y, et al. Calibrating factual knowledge in pretrained language models[J]. arXiv preprint arXiv:2210.03329, 2022.
- [10] Sinitsin A, Plokhotnyuk V, Pyrkin D, et al. Editable neural networks[J]. arXiv preprint arXiv:2004.00345, 2020.
- [11] Gupta A, Mondal D, Sheshadri A, et al. Editing Common Sense in Transformers[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. 2023: 8214-8232.

参考文献

- [12] De Cao N, Aziz W, Titov I. Editing factual knowledge in language models[J]. arXiv preprint arXiv:2104.08164, 2021.
- [13] Murty S, Manning C D, Lundberg S, et al. Fixing model bugs with natural language patches[J]. arXiv preprint arXiv:2211.03318, 2022.
- [14] Li D, Rawat A S, Zaheer M, et al. Large language models with controllable working memory[J]. arXiv preprint arXiv:2211.05110, 2022.
- [15] Mitchell E, Lin C, Bosselut A, et al. Memory-based model editing at scale[C]//International Conference on Machine Learning. PMLR, 2022: 15817-15831.
- [16] Madaan A, Tandon N, Clark P, et al. Memprompt: Memory-assisted prompt editing with user feedback[J]. 2022.

谢谢大家

