AL/EQ-TR-1996-0034

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Pilot Demonstration of Nitrate-Based Bioremediation of Fuel-Contaminated-Aquifer at Eglin AFB, Florida: Site Characterization, Design, and Performamnce Evaluation

S. R. Hutchins and D. E. Miller (EPA/NRML)
H. G. Sweed, P. B. Bedient, J. M. Thomas, C. H. Ward
and M. R. Wiesner (Rice University)

United States Environmental Protection Agency National Risk Management Research Laboratory Robert S. Kerr Laboratory Ada OK 74820

Rice University
Department of Environmental Science and Engineering
Houston TX 77251

April 1997

19971223 030

Approved for public release; distribution is unlimited.

DITC QUALITY INCLUSION &

Environnics Directorate Environmental Risk Management Division 139 Barnes Drive Tyndall Air Force Base FL 32403-5323

AL/EQ-TP-1996-0034

UNITED STATES AIR FORCE ARMSTRONG LABORATORY

Pilot Demonstration of Nitrate-Based Bioremediation of Fuel-Contaminated-Aquifer at Eglin AFB, Florida: Site Characterization, Design, and Performance Evaluation

> R. A. Hutchins and D. E. Miller - US EPA NRML H. G. Sweed, P. B. Bedient, J. M. Thomas, C. H. Ward, and M. E. Weiner - Rice University

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
National Risk Management Research Laboratory
Robert S. Kerr Laboratory
Ada OK 74820

RICE UNIVERSITY

Department of Environmental Science and Engineering

Houston, TX 77251

April 1997

Approved for public release; distribution is unlimited.

Environics Directorate Environmental Risk Management Division 139 Barnes Drive, Suite 2 Tyndall Air Force Base FL 32403-5323

NOTICES

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any employees, nor any of their contractors, subcontractors, or their employees, make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency, contractor, or subcontractor thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency, contractor, or subcontractor thereof.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service, where it will be available to U.S. Government agencies only because of the proprietary nature of the research.

This report has been reviewed and is approved for publication.

FOR THE COMMANDER:

Celider Themes ALISON THOMAS

Project Manager

ALLAN M. WEINER, Lt Col, USAF

Chief, Environmental Risk Management Division

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project Microbiology 10 (2015)

(0704-0188), Washington, DC 20503. 3. REPORT TYPE AND DATES COVERED 2. REPORT DATE 1. AGENCY USE ONLY (Leave blank) Final Report Oct 92 thru Sep 96 April 1997 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE Pilot Demonstration of Nitrate-Based Bioremediation of Fuel-MIPRs 92-65, C93-20, Contaminated Aquifer at Eglin AFB, FL: Site Characterization, and 93-70 Design, and Performance Evaluation S.R. Hutchins and D.E. Miller - US EPA NRMRL H.G Sweed, P.B. Bedient, J.M. Thomas, C.H. Ward, and M.R. Wiesner - Rice University 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER United States Environmental Protection Agency National Risk Management Research Laboratory Robert S Kerr Laboratory Ada, Oklahoma 74820 Rice University Department of Environmental Science & Engineering Houston, Texas 77251 10. SPONSORING/MONITORING 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER AL/EQM-OL AL/EO-TR-1996-0034 139 Barnes Drive, Suite 2 Tyndall, Air Force Base, 32403-5323

11.SUPPLEMENTARY NOTES

Availability of this report is specified on reverse of front cover

12a, DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for Public Release - Unlimited Distribution

13. ABSTRACT (Maximum 200 words) The objective of this research was to compare the extent of bioremediation of a fuel contaminated aquifer using aerobic recharge with and without nitrate addition. This research was undertaken to provide a direct comparison through the operation of a pilot project at a JP-4 jet fuel-contaminated aquifer at Eglin AFB, FL. Nitrate can serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen, it may be more economical to remediate fuel-contaminated aquifers using nitrate rather than oxygen. The pilot project treatment system consisted of two adjacent 100-foot x 100-foot cells that received nitrate-amended and unamended recharge, respectively, through sprinkler application. Performance was continuously monitored through the use of both conventional and cluster wells located within and outside of the treatment cells. Performance evaluation, consisting of extensive chemical, microbial, and toxicological analyses of aquifer sediments and groundwater, were conducted after 4 and 12 months of operation to provide a thorough evaluation of the extent of nitratebased bioremediation. Results showed recharge application had a positive effect on both cells, resulting in decreased contaminant loads, increased nutrient distribution, increased microbial populations, and decreased sediment toxicity.

15. NUMBER OF PAGES 14. SUBJECT TERMS Bioremediation, nitrate, anaerobic degradation, alternate 221 electron acceptors, denitrification, jet fuel, hydrocarbons 16. PRICE CODE 20. LIMITATION OF 19. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION OF ABSTRACT UL OF ABSTRACT OF THIS PAGE REPORT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89) Prescribed by ANSI Sta 239-18 298-102

PREFACE

This report was prepared by the United States Environmental Protection Agency's Robert S. Kerr Environmental Research Laboratory, P.O. Box 1198, Ada, OK 74820, under Contract MIPR 92-08 for HQ, USAF/CEVR, Bolling Air Force Base, Building 516, Washington, DC, 20332-5000, and Contracts MIPRs 92-65, 93-20, and 93-70 for the Armstrong Laboratory Environics Directorate (AL/EQ), Suite 2, 139 Barnes Drive, Tyndall Air Force Base, Florida 32403-5319.

This project focuses on research conducted for design, construction, and operation of an *in-situ* pilot demonstration system for nitrate-based bioremediation of a shallow water-table aquifer contaminated with JP-4 jet fuel at Eglin AFB, FL. Because this project encompasses the work of several research efforts to provide a thorough site characterization and performance evaluation of the field project, some of these research efforts have been published separately and will only be summarized here. This report primarily describes RSKERL's efforts, including the site characterization, design, and operation of the pilot system, an interim performance evaluation based on the first 4 months of operation, and a final performance evaluation based on an additional 8 months of operation. In addition, this report describes laboratory microcosm studies conducted before, during, and after operation of the pilot demonstration system to evaluate the contribution of specific microbial processes to f *in situ* bioremediation.

The authors would like to thank the following groups and individuals for their support and cooperation: (1) Mr. Frank Beck et al, RSKERL, for field support in drilling and well construction, (2) Mr. Stephen Williams, Environmental Restoration Program, Eglin AFB, for providing oversight and coordinating access to the field site, (3) Mr. Guy Willis, EA Engineering, for providing monitoring and sampling services, (4) Ms. Barbara Wilson et al, RSKERL, for providing project support, (5) Dr. John Wilson et al, RSKERL, for providing technical advice, (6) ManTech Environmental Research Services Corporation, for providing analytical support, (7) Computer Data Systems Inc, for graphics, mapping, contouring, and modeling services, and (8) EA Engineering, for pilot system design and construction. Although the research described in this paper has been funded wholly or in part by the U.S. Environmental Protection Agency, it has not been subjected to Agency review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.

The work was performed between October 1992 and September 1996. The AL/EQM project officer was Ms Alison Thomas.

(The reverse of this page is blank)

EXECUTIVE SUMMARY

A. OBJECTIVE

The objective of this research was to compare the extent of bioremediation of a fuel-contaminated aquifer using aerobic recharge with and without nitrate addition. This research was undertaken to provide a direct comparison through operation of a pilot project at a JP-4 jet fuel-contaminated aquifer at Eglin AFB, FL. Subobjectives of this research were to: (1) provide a thorough site characterization to delineate contaminant distribution and microbial activity in the aquifer, (2) conduct field and laboratory tests to provide design parameters for construction and operation of the pilot system, (3) design, construct, and operate a pilot system to provide a direct comparison of the effects of recharge with and without nitrate amendments, (4) use core and water analyses to compare the extent of benzene, alkylbenzene, and JP-4 removal in the two treatment areas, (5) evaluate changes in microbial populations and sediment toxicity as a result of nitrate-based bioremediation, and (6) conduct post-test treatability studies to better elucidate the respective microbial roles.

B. BACKGROUND

Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (collectively known as BTEXTMB) which, although being relatively water-soluble, are contained in the immiscible bulk fuel phase that serves as a slow-release mechanism for sustained ground water contamination. Pump-and-treat technology alone is economically impractical for renovating aquifers contaminated with bulk fuel, because the dynamics of immiscible fluid flow result in prohibitively long time periods for removal of the organic phase. In many cases, the problem is mitigated through the use of *in situ* aerobic bioremediation, which involves the addition of nutrients and oxygen (or hydrogen peroxide) to the contaminated areas so that the indigenous microbial populations can degrade the contaminants. Although aerobic bioremediation has been successfully applied, difficulties relating to aquifer plugging and oxygen mass transport are often encountered in inducing aerobic conditions by addition of oxygen or hydrogen peroxide to the subsurface environment.

Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen, it may be more economical to remediate fuel-contaminated aquifers using nitrate rather than oxygen. Several investigators have demonstrated that monoaromatic hydrocarbons can be degraded under denitrifying conditions. In general, laboratory studies have shown that alkylbenzenes are degraded whereas benzene is recalcitrant when nitrate is used as the sole electron acceptor. However, these processes are not well

understood at field scale, where several other processes, including aerobic biodegradation, can proceed concomitantly. Although there have been several field studies on nitrate-based bioremediation of fuel-contaminated aquifers, none have involved the use of a control site, where water is recirculated without nitrate addition. Therefore, the relative contributions of nitrate to BTEXTMB biodegradation in these field studies require further clarification.

C. SCOPE

Research has shown that monoaromatic hydrocarbons, with the possible exception of benzene, can be degraded and in many cases mineralized under denitrifying conditions. In addition, other studies have shown that fuel constituents such as polycyclic aromatic hydrocarbons can be degraded under denitrifying conditions; the same holds true for aerobic breakdown products of fuel hydrocarbons, such as phenols, alcohols, and aromatic acids. However, these types of compounds will, in general, be much more readily degraded under aerobic versus denitrifying conditions. Given the problems inherent in promoting aerobic biodegradation of fuel hydrocarbons in anaerobic aquifers, there are significant advantages to using nitrate to supplement rather than replace oxygen for *in situ* bioremediation. From a practical standpoint, several processes can be expected to occur under nitrate-based bioremediation because of the heterogeneity of aquifers and the establishment of microenvironments. In field tests to date, this has complicated the interpretation of the relative benefit of providing nitrate for *in situ* bioremediation.

The objective of this research, then, was to compare the extent of bioremediation using aerobic recharge with and without nitrate addition. Our intent was not to eliminate the other biotic and abiotic processes which might be operating concomitantly with nitrate reduction, but to evaluate the benefit of providing nitrate as a supplemental electron acceptor under field conditions. In addition, this project provided an opportunity to evaluate whether nitrate-based bioremediation would have any effect on native microbial populations or background toxicity.

D. METHODOLOGY

A progression of research activities was carefully coordinated to develop a comprehensive field study. First, in-house work was coordinated thorough cooperative agreements with Rice University and Oklahoma State University to provide a thorough initial site characterization. Work done in-house focused on: (1) feasibility studies on microbial performance using laboratory microcosms, (2) field sampling and analyses for distribution of contaminants, biomass estimates, and soil nutrient status, and (3) field sampling to provide water and aquifer material for the above tasks and for other researchers. Work done at Oklahoma State University focused on evaluation of sediment toxicity using FETAX, an assay based on development of frog embryos. Work done at Rice University focused on: (1) evaluation of microbial ecology using standard

counting procedures, (2) cone penetrometer and infiltration testing for hydrological characterization of the aquifer, and (3) laboratory column studies for evaluation of aquifer plugging potential. This information was used to design the pilot project, which consisted of two adjacent 100-foot x 100-foot cells that received nitrate-amended and unamended recharge, respectively, through sprinkler application. Performance was continuously monitored through the use of both conventional and cluster wells, located within and outside of the treatment cells. Performance evaluations, consisting of extensive chemical, microbial, and toxicological analyses of aquifer sediments and ground water, were conducted after 4 and 12 months of operation to provide a thorough evaluation of the extent of nitrate-based bioremediation.

E. TEST DESCRIPTION

The initial site characterization was conducted Mar 20-25, 1993, with laboratory and column microcosm testing being initiated afterwards. Based on this and additional site characterization work conducted in July, a conceptual design plan was prepared and submitted Oct 1993 to Armstrong Laboratory, Environics Directorate for review. The plan was accepted and construction was begun Mar 94. Two 100-foot x 100-foot treatment cells were delineated for treatment, one of which received ground water recharge amended to yield 10 mg/L NO₃-N and the other which received no amendments. Nutrients were not added, because microcosm tests indicated that they were not required for this near-surface soil. The treatment cells were located downgradient of the original fuel spill area. Other than a raised berm overlying a shallow plastic barrier extending 2.5-4.5 feet into the subsurface between the two cells, there was no surface or subsurface construction for hydraulic containment. Application was by continuous sprinkler at 11 gpm/cell. Separate tracers were added to the sprinkler recharge waters for each of the two treatment cells during the first 2week interval, and movement of tracers and nitrate were monitored routinely through the use of both conventional fully-penetrating wells with 10-ft screens and special cluster wells with 5-cm screens.

Operation began Apr 7, 1994, concomitant with the first tracer study, and a second tracer study was conducted Jun 1994. Nitrate levels were increased to 15-20 mg/L NO₃-N on Jul 15, 1994. An Interim Performance Evaluation was conducted Aug 19-30, 1994. Core samples were obtained for contaminant distribution, treatability studies, microbial characterization, and toxicological evaluation. Water samples were obtained from geoprobe points and lysimeters. Because lysimeter data indicated incomplete transfer of nitrate within the Nitrate Cell, a 30-foot x 30-foot plot inside each cell was stripped of vegetative cover on Nov 14-16, 1994, and covered with weed barrier to enhance nitrate transfer into the subsurface. The Final Performance Evaluation was conducted May 13-30, 1995, and the pilot project was discontinued.

F. RESULTS

The initial site characterization demonstrated that: (1) the fuel was distributed 3-7 feet below ground surface, (2) the fuel was depleted in benzene and toluene, (3) the aquifer was anaerobic, (4) there was a large, viable, and active microbial population, (5) selected alkylbenzenes were degraded under denitrifying conditions, (6) surface application would be an effective delivery system, (7) recirculation of recharge water would plug the aquifer due to colloidal material, and (8) the fuel-contaminated aquifer was toxic relative to background core samples, based on FETAX. Once pilot operation began, tracer studies demonstrated transfer of the recharge through the contaminated interval. A total of 94 kg NO₃-N was delivered to the Nitrate Cell over the first fourmonth period. Water quality analyses demonstrated that the system was actively denitrifying, but lysimeter samples showed that much of the nitrate was consumed within the rhizosphere above the fuel-contaminated interval. In addition, some of the cores obtained during the Interim Performance Evaluation apparently contacted more contaminated regions than those obtained for the initial site characterization. The Interim Performance Evaluation consequently demonstrated little removal of contaminants.

After an additional eight months operation, during which the stripped plots were installed, an additional 300 kg NO₃-N was added to the Nitrate Cell. Lysimeter samples showed increased nitrate transfer to the contaminated interval beneath the stripped plot, and the Final Performance Evaluation demonstrated higher fractional removal of contaminant groups beneath the stripped plots as well. In general, there was no difference in performance between the Nitrate Cell and the Control Cell based on overall contaminant mass removal across each cell. However, there was higher fractional contaminant mass removal of many of the isomers in the Nitrate Cell stripped plot compared to the Control Cell stripped plot. Based on core data from the Interim and Final Performance Evaluations, BTEXTMB was reduced by $66 \pm 1\%$ in both treatment cells, equivalent to a mass loss of 106 kg and 21 kg in the in the Nitrate Cell and Control Cell, respectively. In contrast, JP-4 decreased by 37% (2170 kg) in the Nitrate Cell and increased by 11% (210 kg) in the Control Cell. Monitoring well data provided evidence of sulfate reduction in the Control Cell, but not in the Nitrate Cell. In addition, post-test treatability studies demonstrated active BTEXTMB removal in the upper zone of the Nitrate Cell under both denitrifying and iron-reducing conditions. However, only toluene was degraded under iron-reducing conditions in the corresponding upper Control Cell zone. Mesitylene, which is labile under denitrifying conditions, was removed to a greater extent in the Nitrate Cell than in the Control Cell. Treatability studies conducted with post-test core material demonstrated removal of alkylbenzenes and mineralization of m-xylene under denitrifying, iron-reducing, sulfate-reducing, and methanogenic conditions. These data collectively indicate that biotic processes, probably related to BTEXTMB removal, were occurring in both

treatment cells, although to various extents in the different regions.

Microbial populations, including protozoa, increased during the first 4 months of operation and then declined afterwards, although microbial numbers were generally higher in the deeper zones than before bioremediation commenced. In addition, the soil nutrient status generally increased, due to elevation of the soil pH and production of ammonia-nitrogen through dissimilatory nitrate reduction. Although results were quite variable, sediment toxicity generally decreased across the site. Collective laboratory and field data indicated that contaminant reduction occurred as a result of both anaerobic bioremediation and soil washing.

G. CONCLUSIONS

It is difficult to quantitatively evaluate the success of nitrate-based bioremediation in this pilot demonstration project because of three factors: (1) due to biological processes in the rhizosphere, nitrate was not uniformly and consistently delivered to the contaminated interval, (2) other biological processes in the Control Cell allowed bioremediation to proceed there as well as in the Nitrate Cell, and (3) near-surface site heterogeneities did not allow for even distribution of recharge and complicated the performance evaluation based on random core samples. Regardless, recharge application had a positive effect in both cells, resulting in decreased contaminant loads, increased nutrient distribution, increased microbial populations, and decreased sediment toxicity. In addition, penetration of tracers through the contaminated intervals showed that this method could be used to bioremediate shallow spills in anaerobic aquifers, without oxygen addition and the associated plugging problems. Removal of the vegetative cover facilitated nitrate transport in the Nitrate Cell, which accelerated contaminant removal relative to the corresponding Control Cell. Monitoring well data, geoprobe data, core data, and treatability studies all substantiate the occurrence of in situ bioremediation. Although the relative contribution of biodegradation to BTEXTMB removal cannot be accurately determined, laboratory and field data collectively indicate that it was a significant process in contaminant reduction.

H. RECOMMENDATIONS

To derive the answers to satisfy the original objectives, this project should be repeated at a smaller scale to better control site heterogeneity and facilitate nitrate transport to the subsurface. However, performance of the pilot project was good, and demonstrated that subsurface microbial activity could be stimulated through sprinkler application of recharge containing natural as well as added electron acceptors. Although it was deemed impractical in this study, the continuous addition of multiple and/or alternating tracers would provide the more quantitative data needed for modeling the relative contributions of biodegradation to contaminant removal. This approach should be investigated at field scale with a more homogeneous aquifer using multiple electron acceptors to enhance anaerobic bioremediation.

TABLE OF CONTENTS

Section	Title	Page
I IN A. B. C.	TRODUCTION OBJECTIVE BACKGROUND	1 1 1 4
II SI A. B.	 Cone Penetrometer Survey Water Quality Analyses Core Analyses Laboratory Column Testing Infiltration Testing and Modeling Microbial Characterization Toxicity Evaluation 	6 6 9 10 22 33 36 41 48 52 50 63
III P	CONSTRUCTION 1. Landscaping and Infrastructure 2. Treatment System 3. Monitoring System	66 67 67 70 71 73 73
A		76 76 86 99 101

TABLE OF CONTENTS (Continued)

Section	n Title	Page
	4. Core Analyses D. FINAL PERFORMANCE EVALUATION 1. General System Performance 2. Lysimeter Samples 3. Ground Water Samples 4. Core Analyses E. TREATABILITY STUDIES 1. Distribution of Microbial Activity 2. Dissimilatory Nitrate Reduction to Ammonia 3. Alternate Electron Acceptors 4. Mineralization Studies	108 109 109 111 114 118 134 134 137 138 144
٧	CONSIDERATIONS FOR FULL-SCALE APPLICATION	146
VI	CONCLUSIONS	151
VII	RECOMMENDATIONS	153
VIII	REFERENCES	155
Append	xib	
A B	GC/MS DATA FOR EGLIN AFB SOIL CORES	165 185
С	WATER QUALITY DATA FOR PILOT DEMONSTRATION PROJECT	201

LIST OF FIGURES

igure	Title	Page
1 -	Site Schematic of POL Area at Eglin AFB, Showing Approximate Location of Original Fuel Leak and Ground Elevation Contours	. 7
2	Site Schematic of POL Area at Eglin AFB, Showing Location of Original Hydrogen Peroxide Study and Current Treatment Cell Boundaries	. 8
3	Cone Penetrometer Sample Locations and Aqueous BTEX Levels for Mar 93 Site Characterization, Prior to Pilot Project Operation. Sample Taken at Water Table, 2 to 5 Feet Below Ground Surface	73
4	Geoprobe Sample Locations for Mar 93 Site Characterization, Prior to Pilot Project Operation	21
5	Location of Pre-Test Core Samples, and JP-4 Cumulative Mass Distribution Resulting from Core Analyses. Also Shown are the Treatment Cell Boundaries for the Pilot Demonstration Project	27
6	Location of Infiltration Test Cells for Hydraulic Characterization Prior Remediation	to 38
7	Cross-Section of Infiltration Test Cell #2, Showing Position of Piezometers and Cluster Wells Relative to Water Table and Contaminant Distribution	39
8	Location of Core Samples Taken for Microbiological Characterization Prior to remediation. Also Shown are Cumulative Masses of BTEXTN and JP-4 for Given Locations	VID
9	Location of Core Samples Taken for Toxicological Evaluation Prior to Pilot Demonstration Project, Showing Test Results and Contaminant Levels	
10	Removal of Individual BTEXTMB Compounds Under Denitrifying Conditions at Location 80EB5, Prior to Start of Remediation	55
11	Percent Removal of BTEXTMB Compounds in Pre-Test Cores After 28 Days Under Denitrifying Conditions. Removals are Corrected for Loss in Controls; Negative Removals are Shown as Zero. Mean of Three Replicates Per Set	

Figure	Title	Page
12	Microcosm Study on Combined BTEXTMB Removal, Under Denitrifying Conditions, in Cores Taken from Pilot Demonstration Area Prior to Remediation. Mean of Three Replicates Per Set	58
13	BTEXTMB and Nitrate Removal in Denitrifying Microcosms With Selected Nutrient Amendments. Mean of Three Replicates Per Set	59
14	Schematic of Pilot Demonstration Project, Showing Locations of Treatment Cells in Relation to EPA Wells and JP-4 Contamination in Selected Cores	68
15	Construction Details of Pilot Demonstration Project, Showing Locations of Pumphouse, Sprinklers, Trenches, and Cluster Wells. The Approximate Spray Area is Shown for the Nitrate Cell Sprinklers	69
16	Construction Details of EPA1 Cluster Well, Showing Locations of Well Screens in Relation to EPA1 and JP-4 Contamination in 800 Core	72
17	Water Level Response to Sprinkler Application and Rainfall Events in Pilot Demonstration Wells. Arrows Denote Times Sprinklers were Turned Off for Sampling Events	77
18 78	Water Elevation Contours Prior to (Mar 93) and During (Jun 94) Operation of the Pilot Project	78
19	Breakthrough of Bromide in EPA1 Cluster, Center of Nitrate Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test	80
20	Breakthrough of Bromide in EPA3 Cluster, Edge of Nitrate Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test	81
21	Breakthrough of Chloride in EPA2 Cluster, Center of Control Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test	

igure=	Title	Page
22	Breakthrough of Chloride in EPA4 Cluster, Edge of Control Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test	84
23	Breakthrough of a) Bromide and b) Chloride Tracer in EPA5 Cluster, Downgradient of Nitrate Treatment Cell	85
24	Comparison of Tracer Data in Conventional PVC Wells vs Cluster Well Averages	87
25	BTEXTMB and Electron Acceptor Levels in a) EPA1 Monitoring Well, b) EPA1 Cluster Wells, c) EPA2 Monitoring Well, and d) EPA2 Cluster Wells	88
26	Aqueous BTEXTMB Profiles in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	90
27	Occurrence and/or Breakthrough of Nitrate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	92
28	Formation of Ammonia-Nitrogen in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	94
29	Breakthrough of Sulfate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	. 95
30	Formation of Thiosulfate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	. 97
31	Occurrence of Soluble Iron in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	. 98

Figure	Title	Page
32	Location of Mid-Test Core Samples, Taken During Interim Performance Evaluation. Locations 80W, 80X, 80Y, 80Z, and 80ZA Were Also Sampled Using Lysimeters. Pre-Test Core Sample Locations are Shown for Reference	102
33	Location of Stripped Plots (Shaded Areas) Which Were Constructed Nov 94. Also Shown are Locations of Lysimeters Which Were Installed in the Nitrate Cell During the Final Performance Evaluation	
34	Concentrations of a) Nitrate-Nitrogen and b) Total Organic Carbon in Nitrate Cell Lysimeters. Shaded Bars Represent Concentrations Beneath Stripped Plot	113
35	Location of Post-Test Core Samples, Taken During Final Performance Evaluation. Pre- and Mid-Test Core Sample Locations are Shown for Reference	117
36	BTEXTMB and Electron Acceptor Levels in EPA Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell	119
37	Mass Removal of BTEX Based on Core Analyses. Shown are Cumulative Mass Contours (g/m²) of BTEX Based on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and c) During Final Performance Evaluation	122
38	Mass Removal of BTEXTMB Based on Core Analyses. Shown are Cumulative Mass Contours (g/m²) of BTEXTMB Based on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and c) During Final Performance Evaluation	123
39	Mass Removal of JP-4 Based on Core Analyses. Shown are Cumulative Mass Contours (g/m²) of BTEXTMB Based on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and c) During Final Performance Evaluation	e 124
40	Effect of Stripped Plots on Mass Removal of Selected Contaminants in a) Nitrate Cell and b) Control Cell. Negative Fractions are Shown as No Removal	129

Figure	Title	Page
41	Changes in Sediment Toxicity, as Measured by FETAX Assay, During a) Interim Performance Evaluation and b) Final Performance Evaluation. Also Shown are JP-4 Cumulative Mass Contours (g/m²)	133
42	Percent Removal of Individual BTEXTMB Compounds in Post-Test Cores Under Denitrifying Conditions. Removals are Corrected for Loss in Controls, and Negative Removals are Shown as Zero. Mean of Three Replicates Per Set	135
43	Combined BTEXTMB Removal in Cores Taken from Pilot Demonstration Area During Final Performance Evaluation. Mean of Three Replicates Per Set	136
44	Removal of Combined BTEXTMB in Core Samples from Different Depths in Each Treatment Cell Using Different Electron Acceptors. Mean of Three Replicates Per Set	140
45	Removal of BTEXTMB Isomers from Nitrate Cell and Control Cell Cores, with Either Nitrate or Iron Addition. Removals are Shown for First 30 Days of Incubation. Mean of Three Replicates Per Set	142
46	Removal of Benzene, o-Xylene, and 1,2,3-Trimethylbenzene in 80ZY2 and 80ZN2 Cores, Collected 1-6-2.7 Feet from Beneath Control and Nitrate Cells, Respectively	143
47	Recovery of Nonvolatile Carbon and Carbon Dioxide from Biodegradation of Radiolabeled <i>m</i> -Xylene in Microcosms from Each Treatment Ce Using Different Electron Acceptors. Mean of 2-3 Replicates, 200 Days.	II 145

LIST OF TABLES

Table	Title	Page
1	WELL CONSTRUCTION DATA FOR EGLIN AFB SITE	14
2	PERIODIC WATER QUALITY ANALYSES FOR POL WELLS	15
3	GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE PRIOR TO PILOT STUDY, 3/93	23
4	PARTICLE-SIZE ANALYSIS OF CORE SAMPLES FROM SELECTED DEPTHS AT WELL LOCATIONS EPA1 AND EPA2, EGLIN AFB	28
5	CUMULATIVE MASS DATA FOR ALL CORE SAMPLES COLLECTED DURING PILOT PROJECT	29
6	DISTRIBUTION OF COMPOUND CLASSES IN JP-4 JET FUEL AND CONTAMINATED CORES, EGLIN AFB	32
7	CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 3/93, PRIOR TO START OF REMEDIATION	46
8	NUMBERS OF DIFFERENT TYPES OF MICROORGANISMS IN EGLIN AFB CORES PRIOR TO PILOT DEMONSTRATION PROJECT, COLLECTED 3/93	47
9	MINERALIZATION OF RADIOLABELED SUBSTRATES IN EGLIN AFB MICROCOSMS PREPARED WITH MID-TEST CORE MATERIAL MEAN OF THREE REPLICATES WITH STANDARD DEVIATION	62
10	SUMMARY DATA FOR BTEX AND ELECTRON ACCEPTOR REMOVAL IN COLUMNS PREPARED WITH EGLIN AFB AQUIFER MATERIAL COLLECTED PRIOR TO START OF REMEDIATION	
11	TIMELINES AND MASS LOADINGS FOR OPERATION OF PILOT DEMONSTRATION PROJECT ON NITRATE-BASED BIOREMEDIATION	N 74
12	CONCENTRATIONS OF MONOAROMATIC HYDROCARBON BREAK-DOWN PRODUCTS IN CLUSTER WELLS, COLLECTED 6/94 DURING OPERATION OF PILOT DEMONSTRATION PROJECT. (CONCENTRATION IN µg/L)	

LIST OF TABLES (Continued)

Table	Title	Page
13	NITROGEN DATA FOR WATER SAMPLES OBTAINED FROM SOIL LYSIMETERS INSTALLED IN NITRATE CELL DURING INTERIM PERFORMANCE EVALUATION	103
14	GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING INTERIM PERFORMANCE EVALUATION, 8/94	105
15	AVERAGE AQUEOUS BTEXTMB CONCENTRATIONS IN PILOT CELLS BEFORE AND AFTER FOUR MONTHS OF TREATMENT	107
16	CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 8/94, DURING INTERIM PERFORMANCE EVALUATION	110
17	GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING FINAL PERFORMANCE EVALUATION, 5/95	115
18	CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 5/95, DURING FINAL PERFORMANCE EVALUATION	120
19	MASS ESTIMATES OF CONTAMINANT GROUPS WITHIN TREATMENT CELL BOUNDARIES, BASED ON CORE ANALYSES	125
20	MASS REDUCTION ESTIMATES FOR SPECIFIC CONTAMINANTS WITHIN AND OUTSIDE OF STRIPPED PLOT IN NITRATE TREATMENT CELL	127
21	MASS REDUCTION ESTIMATES FOR SPECIFIC CONTAMINANTS WITHIN AND OUTSIDE OF STRIPPED PLOT IN CONTROL TREATMENT CELL	128
22	CHANGES IN PROTOZOAN POPULATION NUMBERS DURING PILOT DEMONSTRATION PROJECT	131
23	PRODUCTION OF N-15 AMMONIA-NITROGEN FROM N-15-NITRATE NITROGEN IN SELECTED CORES COLLECTED FROM NITRATE CELL DURING FINAL PERFORMANCE EVALUATION	139

INTRODUCTION

A. OBJECTIVE

Previous field work at the U.S. Coast Guard Facility in Traverse City, Michigan, had shown that alkylbenzenes in an aquifer contaminated with JP-4 jet fuel could be degraded by the indigenous microorganisms under denitrifying conditions. However, the lack of a suitable control site precluded a direct assessment of the benefits of nitrate addition relative to infiltration recharge without nitrate amendments. Without such a comparison, the economics of nitrate-based bioremediation versus pump-and-treat methods could not be determined. The following research was therefore undertaken to better define the control parameters and provide a direct comparison through operation of a pilot project at a JP-4 jet fuel-contaminated aquifer at Eglin AFB, FL. The objectives of this research were to:

- (1) provide a thorough site characterization to delineate contaminant distribution and microbial activity in the aquifer,
- (2) conduct field and laboratory tests to provide design parameters for construction and operation of the pilot system,
- (3) design, construct, and operate a pilot system to provide a direct comparison of the effects of recharge with and without nitrate amendments,
- (4) use core and water analyses to compare the extent of benzene, alkylbenzene, and JP-4 degradation in the two treatment areas,
- (5) evaluate changes in microbial populations and sediment toxicity as a result of nitrate-based bioremediation,
- (6) conduct post-test treatability studies to better elucidate the respective microbial roles, and

B. BACKGROUND

Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. There are approximately 1 million underground tanks storing gasoline in the U.S., and 270,000 confirmed releases have been reported in the last 6 years (OUST, 1994). Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) which are hazardous compounds regulated by the U.S. Environmental Protection Agency (EPA, 1977). Although these aromatic hydrocarbons are relatively water-soluble, they are

contained in the immiscible bulk fuel phase which serves as a slow-release mechanism for sustained ground water contamination. Pump-and-treat technology alone is economically impractical for renovating aquifers contaminated with bulk fuel, because the dynamics of immiscible fluid flow result in prohibitively long time periods for removal of the organic phase (Wilson and Conrad, 1984; Bouchard et al., 1989). In many cases, the problem is mitigated through the use of *in situ* aerobic bioremediation, which involves the addition of nutrients and oxygen (or hydrogen peroxide) to the contaminated areas so that the indigenous microbial populations can degrade the contaminants (Thomas et al, 1987; Lee et al, 1988; Atlas, 1991). Although aerobic bioremediation has been successfully applied (Raymond et al, 1978; Lee and Raymond, 1991; Bell and Hoffman, 1991), difficulties relating to aquifer plugging and oxygen mass transport are often encountered in inducing aerobic conditions by addition of oxygen or hydrogen peroxide to the subsurface environment (Wilson et al, 1986; Barker et al, 1987; Aggarwal et al, 1991).

Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification (Tiedje, 1988). Because nitrate is less expensive and more soluble than oxygen, it may be more economical to remediate fuel-contaminated aquifers using nitrate rather than oxygen. Several investigators have demonstrated that monoaromatic hydrocarbons can be degraded under denitrifying conditions. Zeyer et al (1986) showed that toluene and m-xylene could be mineralized under denitrifying conditions in laboratory aquifer columns, and a pure culture was subsequently obtained with the same activity (Dolfing et al, 1990). The m-xylene-adapted microorganisms were unable to utilize benzene, ethylbenzene, and o- and p-xylene (Kuhn et al, 1988). Major et al (1988), using aquifer material, observed biodegradation of benzene, toluene, and all three xylene isomers under denitrifying conditions. Hutchins et al (1991a) found that toluene, ethylbenzene, xylenes, and 1,2,4trimethylbenzene were degraded by aquifer microorganisms under denitrifying conditions, whereas benzene was recalcitrant. However, Trizinsky and Bouwer (1990) observed biodegradation of benzene, toluene, and m-xylene in batch enrichment cultures, although o-xylene removal did not begin until the previous substrates were depleted. In contrast, other researchers have observed cometabolic biotransformation of o-xylene (Evans et al, 1991; Jørgensen and Aamand, 1991). Hutchins (1993) conducted microcosm tests with nonacclimated and acclimated aquifer material from Traverse City, MI, to assess the extent of biodegradation of radiolabeled BTEX as single substrates. The rates and extent of biodegradation of toluene and m-xylene in the acclimated aquifer material were generally similar to those observed in the nonacclimated material. Benzene was recalcitrant in both cases. o-Xylene was recalcitrant in the nonacclimated aquifer material, but degradation occurred after toluene addition. In the acclimated aquifer material, o-xylene degradation commenced without addition of toluene. Mineralization accounted for 36 to 54% of the total alkylbenzene removal. In general, then, laboratory studies have shown that alkylbenzenes are degraded whereas benzene is recalcitrant when nitrate is used as

the sole electron acceptor. However, these processes are not well understood at field scale, where several other processes, including aerobic biodegradation, can proceed concomitantly.

Several field studies have been performed on nitrate-based bioremediation of fuel-contaminated aquifers. Results include complete removal of benzene and toluene with the xylenes being more recalcitrant (Batterman, 1986), a 95 to 98% reduction in purgeable alkylbenzenes (Sheehan et al, 1988), complete removal of toluene with benzene, ethylbenzene, and the xylenes being unaffected (Lemon et al, 1989), and reductions of 87%, 67%, and 34% for toluene, ethylbenzene, and xylenes, respectively, with benzene being recalcitrant (Hilton et al, 1992). Other field tests are in progress (Hutchins and Wilson, 1994). However, these studies focused on aqueous concentrations and did not address whether BTEX levels were significantly reduced in the aquifer solids. Hutchins et al (1991b) investigated the use of nitrate to promote biological removal of fuel aromatic hydrocarbons for a JP-4 jet fuel spill at Traverse City, Michigan, through a field demonstration project in cooperation with the U.S. Coast Guard. Laboratory tests had indicated that denitrification would be a suitable alternative for biorestoration of the aquifer, although benzene was not degraded (Hutchins et al, 1991b). The field work showed that BTEX was degraded under denitrifying conditions in conjunction with low oxygen (microaerophilic) levels. However, a suitable control site was not available to test the effects of treatment without nitrate addition. Therefore, the relative contribution of nitrate to BTEX biodegradation in the field study requires further clarification.

To further investigate this, Hutchins et al (1992) conducted two column tests using aquifer material to simulate the nitrate field demonstration project carried out earlier at Traverse City, Michigan. The objectives were to better define the effect nitrate addition had on the biodegradation of BTEX in the field study, and to determine whether BTEX removal can be enhanced by supplying a limited amount of oxygen as a supplemental electron acceptor. Columns were operated using limited (0.5-1.5 mg/L) oxygen, limited oxygen plus nitrate, and nitrate alone. In the first column study, benzene was generally recalcitrant compared to the alkylbenzenes, although some removal did occur. The average benzene breakthroughs were 74.3±5.8%, 75.9±12.1%, and 63.1±9.6% in the columns with limited oxygen, limited oxygen plus nitrate, and nitrate alone, respectively, whereas the corresponding average effluent alkylbenzenes breakthroughs were 22.9±2.3%, 2.9±1.1%, and 4.3±3.3%. In the second column study, nitrate was deleted from the feed to the column originally receiving nitrate alone and added to the feed of the column originally receiving limited oxygen alone. Benzene breakthrough was similar for each column. Breakthrough of alkylbenzenes decreased by an order of magnitude once nitrate was added to the microaerophilic column, whereas alkylbenzene breakthrough increased by 50-fold once nitrate was removed from the denitrifying column. Although the requirement for nitrate to achieve optimum alkylbenzene removal was clearly demonstrated in these columns, there were significant contributions by biotic and abiotic processes other than denitrification which could not be quantified. Similarly, Anid et al (1993) observed enhanced benzene and alkylbenzene removals in denitrifying columns once low levels of oxygen (<1.0 mg/L) were added, and concluded that processes other than denitrification may have also contributed to the enhanced removal.

C. SCOPE

Research has shown that monoaromatic hydrocarbons, with the possible exception of benzene, can be degraded and in many cases mineralized under denitrifying conditions. In addition, other studies have shown that fuel constituents such as polycyclic aromatic hydrocarbons can be degraded under denitrifying conditions (Mihelcic and Luthy, 1988; Al-Bashir et al, 1990; Bouwer et al, 1992), and the same holds true for aerobic breakdown products of fuel hydrocarbons, such as phenols, alcohols, and aromatic acids (Hu and Shieh, 1987; Dangel et al, 1989; Kuhn et al, 1989; Häggblom et al, 1990; Kluge et al, 1990; Rudolphi et al, 1991; Seyfried et al, 1991; Flyvbjerg et al, 1993). However, these types of compounds will in general be much more readily degraded under aerobic versus denitrifying conditions. Given the problems inherent in promoting aerobic biodegradation of fuel hydrocarbons in anaerobic aquifers, there are significant advantages to using nitrate to supplement rather than replace oxygen for in situ bioremediation. Although denitrification has been considered to be an anaerobic process, it is not completely repressed in aerobic soil systems, and in fact low oxygen levels can even promote denitrification (Ottow and Fabig, 1985; Lloyd et al, 1987; Britton, 1989; Patureau et al, 1994, Robertson et al, 1995). From a practical standpoint, several processes can be expected to occur under nitrate-based bioremediation because of the heterogeneity of aquifers and the establishment of microenvironments. In field tests to date, this has complicated the interpretation of the relative benefit of providing nitrate for in situ bioremediation.

The objective of this research was to compare the extent of bioremediation using aerobic recharge with and without nitrate addition. Our intent was not to eliminate the other biotic and abiotic processes which might be operating concomitantly with nitrate reduction, but to evaluate the benefit of providing nitrate as a supplemental electron acceptor under field conditions. In addition, this project provided an opportunity to evaluate whether nitrate-based bioremediation would have any effect on native microbial populations or background toxicity.

This report primarily describes RSKERL's efforts, including the site characterization, design, and operation of the pilot system, an interim performance evaluation based on the first 4 months of operation, and a final performance evaluation based on an additional 8 months of operation. In addition, this report describes laboratory microcosm studies which were conducted prior to, during, and after operation of the pilot demonstration system to evaluate the contribution of specific microbial processes. Because this project encompasses the work of several research

efforts to provide a thorough site characterization and performance evaluation of the field project, a complete treatment is beyond the scope of this report. Some of these research efforts have been published separately and will be summarized and referenced in this report where applicable. In addition, the extent of the database for the combined laboratory and field evaluations preclude a thorough treatment of all of the data in this report; therefore, data tables have been included as appendices so that additional information on this project can be obtained as needed.

SECTION II

SITE CHARACTERIZATION

A. SITE DESCRIPTION

Extensive site characterizations by other groups have been published elsewhere and are available (Weston, 1984; EA Engineering, 1987; EA Engineering, 1993). In brief, the field site is located within the Petroleum, Oils, and Lubricants (POL) facility at Eglin Air Force Base, FL (Figure 1). The terrain is relatively flat, with the subsurface consisting of a 30-40 foot thick shallow sand-and-gravel aquifer which extends down to contact the Pensacola Clay confining unit. The aquifer dips to the south-southwest at a rate of 15-25 feet per mile. The estimated porosity is 35-45% and the horizontal and vertical conductivity are approximately 0.5 feet/day (Weston, 1984).

Air Force personnel detected a leak in an underground jet fuel pipeline in April 1984 (Figure 1). A preliminary site characterization estimated that 30,000-40,000 gallons of JP-4 jet fuel had contaminated approximately 4,000 cubic yards of soil and shallow aquifer material. Use of the pipeline was discontinued, and a series of shallow, gravel-filled trenches was installed perpendicular to the direction of fuel movement. By October 1984, skimmer pumps had recovered 7,400 gallons. By 1986, free product had been reduced to levels which were nonrecoverable, and the use of the skimmer pumps was discontinued.

In 1986, EA Engineering conducted additional site characterization to prepare for installation and operation of a pilot demonstration project on enhanced *in situ* biodegradation using hydrogen peroxide (EA Engineering, 1987). A system was designed for delivering nutrients and hydrogen peroxide to the subsurface via three application methods: (1) injection wells, (2) infiltration galleries, and (3) spray infiltration (Figure 2). Four recovery wells were installed to provide ground water for recirculation. The application system was constructed and put into operation in March 1987. Over an 18-month period, approximately 7,800 pounds of inorganic nutrients and 94,000 pounds of 35% hydrogen peroxide were injected into the subsurface. Problems with both hydrogen peroxide stability and loss of infiltration capacity were encountered, which reduced delivery of oxygen to the subsurface (Hinchee et al, 1989). Approximately 5,000 pounds of JP-4 hydrocarbons were removed, with volatilization accounting for approximately 70% of the total removal.

B. RSKERL/RICE/OSU SITE CHARACTERIZATION

Much of the research effort in this project was spent in the initial site characterization. This is because the treatment area for this study encompassed the

Site Schematic of POL Area at Eglin AFB, Showing Approximate Location of Original Fuel Leak and Ground Elevation Contours. Figure 1.

Site Schematic of POL Area at Eglin AFB, Showing Location of Original Hydrogen Peroxide Study and Current Treatment Cell Boundaries. Figure 2.

area affected by the previous hydrogen peroxide study (Figure 2), and operation of the hydrogen peroxide delivery systems undoubtedly had significant effects on the subsurface hydrology, microbiology, and contaminant distribution. In addition, there had been no site characterization for 5 years following the hydrogen peroxide study. Finally, specific parameters required for thorough evaluation of nitrate-based bioremediation were not obtained during previous investigations. Therefore, additional site characterization was required to provide information for design and operation of the nitrate-based pilot demonstration system.

Personnel from the Robert S. Kerr Environmental Research Laboratory (RSKERL), Rice University (Rice), and Oklahoma State University (OSU) coordinated and conducted several field trips to Eglin AFB during 1993-1994. The objectives were to:

- (1) define stratigraphy and hydraulic conductivity using cone penetrometry,
- (2) provide water quality information with respect to both sample depth and aerial coverage,
- (3) obtain continuous core samples through the contaminated interval at several locations across the site to delineate fuel mass and distribution,
- (4) obtain both water and core samples for column studies to assess plugging potential,
- (5) conduct a combined infiltration/tracer test in each proposed treatment cell to evaluate the depth of penetration of the recharge water and develop hydraulic parameters for modeling purposes,
- (6) obtain core samples to evaluate microbial ecology, and
- (7) obtain core samples to evaluate sediment toxicity.

1. Cone Penetrometer Survey

In March 1993, researchers from RSKERL and Rice conducted a comprehensive site investigation at the POL facility to characterize site hydrogeology, determine the spread and vertical extent of BTEX and JP-4 contamination in aquifer core samples, and provide vertical resolution of water quality. This field activity involved the use of a cone penetrometer, geoprobe, and conventional drilling rigs. A cone penetrometer operated by Terra Technologies, Inc., was used to assess areas of BTEX contamination and associated dissolved oxygen as well as to characterize the hydrogeologic properties of the subsurface at the site. Sampling points were installed

at the water table in 26 locations to measure BTEX and dissolved oxygen concentrations across the site (Figure 3). Collected samples were analyzed for BTEX on a real-time basis using a portable GC. This methodology allowed a rapid assessment of the contaminant plume, since collected data could be analyzed and used to delineate additional sampling points. For quality control, 17 split samples were preserved and shipped to RSKERL for GC/MSD analysis. With the exception of two anomalous readings (CPT-8, CPT-9), laboratory and field analytical results agreed quite well ($r^2 = 0.9986$). The anomalous data were not used. A maximum BTEX level of 4,500 µg/L was detected, with levels decreasing to approximately 10 µg/L over a distance of 300 feet downgradient of the spill (Figure 3). Lateral spreading of the plume was identified over a distance of 350 feet. Dissolved oxygen levels measured in the field were consistently below 1 mg/L across the investigated area.

The detailed stratigraphy provided by the cone typically identified sand from the ground surface to the depth of penetration (15-20 feet). Clay lenses were detected at about 15 feet in several locations. One cone hole (CPT-14) was completed to a depth of 33 feet where a clay aquitard identified by previous investigators was encountered. Water table elevations determined by the cone penetrometer provided data for a potentiometric map, indicating that the ground water flow generally follows land surface contours as shown in Figure 1. Interpretation of the cone logs suggests that the conductivity of the sand ranges from 0.010-0.045 cm/sec.

2. Water Quality Analyses

a. Methods

Several parameters were monitored to provide an extensive characterization of water quality and indicate the types of microbial processes that may have been occurring in the subsurface. Because the water table was very shallow, samples were collected using either peristaltic pumps or submersible pumps. Flow-through systems were used to minimize contact with air so that samples could be analyzed in the field for dissolved oxygen (DO) and pH using electrodes. In addition, samples were analyzed immediately for soluble iron using a Chemetrics® photometric method. Duplicate samples were taken for BTEX and TOC by filling 40-mL VOA bottles and acidifying to pH < 2 with H₂SO₄. These were sealed without headspace using Teflon-lined septa. Duplicate samples were also taken for dissolved gases by overfilling 60-mL glass serum bottles, acidifying to pH < 2 with H₂SO₄, and crimpsealing without headspace using Teflon®-lined grey butyl rubber septa. Samples for nutrients and inorganic parameters were collected in clean plastic containers. All samples were refrigerated and/or stored on ice for transport to RSKERL.

To evaluate volatile aromatic hydrocarbons, samples were analyzed for trimethylbenzenes as well as BTEX. The trimethylbenzenes include mesitylene

Cone Penetrometer Sample Locations and Aqueous BTEX Levels for Mar 93 Site Characterization, Prior to Pilot Project Operation. Samples Taken at Water Table, 2 to 5 Feet Below Ground Surface. Figure 3.

(MESIT), pseudocumene (PSCU), and 1,2,3-trimethylbenzene (TMB). Taken collectively, this combination will be referred to as BTEXTMB for the purposes of this report. Samples were analyzed using a Varian Saturn II Mass Spectrometer in combination with a Varian 3400 Gas Chromatograph and a Tekmar 7000 Headspace Autoanalyzer. The mass spectrometer was tuned to meet EPA Method 524.2 mass spectrometer tune criteria for bromofluorobenzene spectrum. It was operated at 2 scans/sec over a mass range of 45 to 250 amu. Other settings were as follows: acquire time = 13 min; emission current = 20 μ A; electron multiplier = 1400 volts; filament and multiplier delay = 90 sec; peak threshold = 2; ion time = 100 μ sec; mass defect = -50 mmu/100 amu; and background mass = 45 amu. The tune parameters were: Segment 1 = 110; Segment 2 = 70; Segment 3 = 100; and Segment 4 = 90. The gas chromatograph injector temperature was 175°C, and the transfer line temperature was 200°C. A 30-m, 0.25-mm DB-Wax capillary column with 0.5-μm film thickness was temperature programmed from 45°C (2.0 minutes) to 131°C at 8°C/minute, then to 225°C at 30°C/minute. The column flow rate was 1 mL/minute, and the split flow was 30 mL/minute. The headspace autoanalyzer settings were as follows: platen = 85°C; sample equilibration = 30 minutes; sample loop = 1 mL; and the valve = 150°C. An internal standard calibration method was established for each compound using concentrations of 1.0, 5.0, 10.0, 50.0, 100, 500, and 1000 µg/L. The method detection limit was 0.1 μg/L.

Dissolved gases were analyzed by replacing part of the water volume in the sealed serum bottles with helium and then sampling the equilibrated headspace (Kampbell et al, 1989). Methane was analyzed using a Hewlett-Packard 5890 gas chromatograph with a thermal conductivity detector. Gases were chromatographed using a 6-foot CTR I dual column consisting of an 1/8-inch inner column packed with Poropak mix and a 1/4-inch outer column packed with activated Molecular Sieve (Alltech Associates, Deerfield, IL). Operation was isothermal at 35°C with a helium flow rate of 29 mL/minute. Nitrous oxide was analyzed using a Hewlett-Packard 5890 gas chromatograph with an electron capture detector and a 6-foot x 1/8-inch stainless steel column filled with 100/120 mesh Poropak Q (Supelco, Bellefonte, PA). The column was temperature programmed from 55°C (1.0 minute) to 140°C (5.0 minutes) at 20°C/minute. The carrier gas was 95% argon/5% methane at 30 mL/min. Aqueous dissolved gas concentrations were calculated for the original solutions using Henry's constants and correcting for total mass in gas and liquid phases. Based on the sampled volumes, detection limits were 0.07 and 0.0004 mg/L for methane and nitrous oxide, respectively.

Bromide, chloride, sulfate, and occasionally thiosulfate were analyzed using a Quanta 4000 (Waters) capillary electrophoresis unit. The electrolyte was 0.14 M chromate with CIA-Pak OFM Anion-BT solution (Waters). Separation was done on a 60 cm x 75 μ m fused silica column under a 20 KV negative voltage with a current of 16 μ amp, and analytes were detected with a UV detector at 254 nm. Samples were also analyzed for aqueous nitrate, nitrite, ammonia, phosphate, and total organic carbon

(TOC) according to standard EPA methods (Kopp and McKee, 1979).

b. Monitoring Wells

There are several wells located at the POL area which had been installed over the past 10 years. However, well logs and construction records could not be found for some of these. In addition, most of the existing wells are screened over large intervals, which provides little information on water quality in localized zones of contamination. Because of this, many of the wells at the site were not used in this study. Also, additional wells were constructed during site characterization as part of this and other ongoing investigations. Those wells shown in Figure 1 were periodically sampled to provide background information and to assess the effects of pilot operation outside of the treatment cells. Details of well construction are shown in Table 1. Water quality analyses for the monitoring wells at different time periods are shown in Table 2. Because EPA Wells 1-4, 5B, 5C, 83-1, 83-2, and 83-7 were installed after the initial sampling trip, background water quality data were not available for these locations. This discussion focuses on the 1993 data for the original site characterization; the remaining data in Table 2 will be discussed in later sections. The data indicate the general anaerobic nature of the aquifer, with pH values generally less than 6.5, dissolved oxygen less than 1.0 mg/L, and methane concentrations up to 15 mg/L. The lower zones of the aquifer, contacted by the PL wells, appeared to be somewhat less anaerobic, with lower methane concentrations, higher sulfate levels, and less contamination. However, significant concentrations of BTEXTMB were present throughout the aquifer, especially in the vicinity of the original treatment area (Table 2, Figure 1). Benzene concentrations were reduced relative to the other constituents, probably as a result of both weathering and operation of the pilot project on hydrogen peroxide treatment. However, concentrations exceeded compliance levels in several locations. Also, o-xylene levels were similarly reduced, presumably because this dimethylbenzene isomer is more labile than its analogues under anaerobic conditions. Very little nitrate was originally present, but nutrients such as ammonia-nitrogen and phosphate were relatively high, especially in the original treatment area. These data showed that the overall aquifer was still contaminated, and that the subsurface might be conducive to nitrate-based bioremediation.

c. Geoprobe Samples

Although the data provided by the monitoring wells gave a general picture of the state of the aquifer, there was insufficient vertical resolution to ascertain the water quality status in the proposed treatment area. RSKERL researchers therefore used a geoprobe to drive a screened rod to three selected depths at several locations to obtain water samples for correlating water quality information with core analyses. Locations of the geoprobe sample points are shown in Figure 4, and the water quality data are shown in Table 3.

TABLE 1. WELL CONSTRUCTION DATA FOR EGLIN AFB SITE

	Casing	Elevation of	Elevation of			Screened	Screen	Grouted
Me M	Diameter (in)	ground surface (ft MSL)	TOC (ft MSL)	Stick-up (ft)	Stick-up Depth to Bottom (ft) (ft from G.S.)	Interval (ft from G.S.)	Length (ft)	Interval (ft from G.S.)
EPA1	2.0	11.92	13.97	2.05	11.00	1.0 - 11.0	10.0	0.0 - 1.0
EPA2	2.0	12.79	14.80	2.01	11.00	1.0 - 11.0	10.0	0.0 - 1.0
EPA3	2.0	12.93	14.89	1.96	11.00	1.0 - 11.0		0.0 - 3.0
EPA4	2.0	13.75	15.69	1.94	11.00	1.0 - 11.0	10.0	0.0 - 3.0
EPA5A	2.0	99.8	10.62	1.97	11.00	1.0 - 11.0		0.0 - 3.0
EPA5B	2.0	8.66	10.71	2.02	21.00	11.0 - 21.0		0.0 - 3.0
EPA5C	2.0	8.66	10.61	1.95	31.00	21.0 - 31.0		0.0 - 3.0
EPA83-1	2.0	10.35	12.84	2.49	26.00	20.2 - 25.2		0.0 - 19.0
EPA83-2		10.46	12.77	2.31	8.00	2.3 - 7.3	2.0	0.0 - 2.0
EPA83-7		8.72	10.68	1.96	9.10	3.4 - 8.4	2.0	0.0 - 2.5
PL1		10.51	12.51	2.00	50.50	? - 50	•	1
PL2		13.35	15.49	2.14	49.50	2 - 50	•	ı
PL3		6.83	8.94	2.11	39.19	? - 40	•	ı
R2		9.78	10.40	0.62	18.50	8.5 - 13.0	4.5	0.0 - 3.0
R3		10.23	10.90	0.67	18.50	8.5 - 13.0	4.5	0.0 - 3.0
R4		11.40	11.86	0.46	18.50	8.5 - 13.0	4.5	0.0 - 3.0
ω		10.55	12.14	1.59	13.16	1 - 13?	13?	03
O		11.54	13.76	2.25	14.65	1 - 13?	13?	03
۵		13.16	15.47	2.31	14.47	1 - 13?	13?	03
Ш		13.76	16.10	2.34	14.49	1 - 13?	13?	03
EA6		13.91	16.42	2.51	7.91	2.9 - 7.9	2.0	ı

TABLE 2. PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

																				_				_				_	_				1
N ₂ O (mg/L)	¥	¥	<0.001	-0.00>	Ϋ́	ž	<0.001	0.004	¥	¥	<0.001	<0.00		Ϋ́	ž	<0.001	0.00		ž	¥	<0.001	6 .00	ď	2	<u> </u>	00.00	<0.001	Š	ΔN	2 6	20.00	-0.0v	
CH, (mg/L)	¥	¥	0.29	10.50	Ą	¥	0.63	8.51	Ą Z	¥	7.59	14.50		¥	₹	1.12	9.81		9.16	¥	3.97	6.88	Ą	<u> </u>	<u> </u>	3.4/	16.50	Ž	Ž	ξ ÷	2 !	78.	
TOC (mg/L)	.¥	₹	8.3	1 .8	¥	¥	4.0	4.7	₹	Ą	31.3	16.2		Ϋ́	Ϋ́	4.3	5.4		32.3	ž	25.8	14.8	Ą		₹ ;	12.5	20.6	A A	2	<u> </u>	δ.	4.6	1,
SO ₄ (mg/L)	Ą	5.6	3.6	0.4	¥	3.4	5.4	13.0	¥	C .	<0.5	3.5	}	Ϋ́	2.9	<0.5	<0.5		9.5	Ξ:	2.0	6.3	ΔN	<u> </u>) - 	-:	<0.5	Ą		ე ე (ς. Σ. Ι	4.7	
PO,-P (mg/L)	¥	0.99	0.93	0.87	Ą	<0.05	<0.05	<0.05	Ą	ָר ק ק	<0.05	<0.05		Ą	<0.05	<0.05	<0.05		0.18	0.24	0.11	0.07	· •	ξ,	0.10	0.18	0.16	Ą		CU.U.	0.02 0.05	<0.05	
NH,-N (mg/L)	ž	1.47	1.55	1.46	Š	0.49	0.49	0.24	Ą	. d	4.02	2 42	1	A A	1.77	0.20	09.0		1.79	2.77	1.75	0.82	4	¥ ;	3.41	9.54 54	2.22	V V	<u> </u>	0.63	1.40	1.80	
NO ₂ -N (mg/L)	Ŀ	<0.05	<0.05	<0.05	¥	50	<0.05	<0.05	ΔN	, d	000	50.05	20.07	Ą	<0.05	<0.05	<0.05	!	<0.05	<0.05	<0.05	<0.05	3	Z Z	<0.05	<0.05	<0.05	2	2 (<0.05	<0.05	<0.05	
NO ₃ -N	l	0.79	0.51	<0.05	Š	, S	<0.05	<0.05	87	ָ בַּ כִּ	0 0 0 0 0 0	200	6.5	Ą	0.29	<0.05	<0.05	}	<0.05	<0.05	<0.05	<0.05	:	Š	<0.05	<0.05	<0.05	4	<u> </u>	<0.05	<0.05	<0.05	
CI (mg/L)		11.6	10.3	4.9	Y Z	. 0	6.0	12.8	Š		n 0	3 5	<u>.</u>	¥	4 8	8.6	13.5) i	4.5	83	4.6	8.7		¥	6.0	7.5	16.3	3	ž	4.9	9.7	2.7	
Br (ma/L)		1.6	<0.5	<0.5	Ą	<u> </u>	- ć	<0.5	2	<u> </u>	υ . υ .	ָּיִ לְ	c.0>	Ą	10	-0°5	5	?	<0.5	7.6	0.5	<0.5	;	¥	8.9	<0.5	<0.5	;	₹ Z	7.4	3.5	<0.5	
Fe (sol) (ma/L)		4 1	¥	6 0.1	Ą	2 0	0 Z	60.1	3	<u> </u>	9.5	<u> </u>	 	Ą		S A	÷ 5	.	7.4	. α Υ	P A	×0.1	,	Š	11.6	¥	60.1	;	Y Z	18.7	¥	1.3	
00 (1/04/		<u> </u>	0.3	0.2	ΔIA	<u> </u>	- 6	6.1 5.0	1	¥ ;	6.1	ر د د	- - -	Ą	÷		; {	- ?	90	3 5	- 6	6.1		¥	6 0.1	0.3	60.1	;	¥	٥٠ <u>٠</u>	0.2	6 0.1	
pH (oH units)	\$2	204	6.90	69.9	4	£ 6	00.9	6.35	;	Z Z	5.68	6.40	6.04	ΔN	Ç 0	0.00	0.0	<u>.</u>	A.	27.0	0.74 0.03	6.40		¥	5.77	6.28	6.41		¥ —	80.9	6.62	6.40	
Water Level	(C)	2 6	5 6	4.28	<u> </u>	¥ ¦	5.19	5.15		Ą Z	5.02	5.81	2.00	V.V	ξ (5.6 6.0	00.0	08.6	277	00.0	3.1	2.89		AN	3.33	2 80	3.20		¥ Z	3.25	3.81		
Date	_	2/24/92	5/27/95	4/20/96	00,000	2/24/93	8/23/94	5/27/95		2/24/93	8/23/94	5/27/95	4/20/96	00,40,0	2/24/95	8/23/94	C6/17/C	4/20/96	60,70,0	2/24/93	8/23/94	5/27/95		2/24/93	8/23/94	5/07/05	4/20/96		2/24/93	8/23/94	5/22/95	4/20/96	
Well		- E	E PA	EPA1	i I	EPAZ	EPA2	EPA2	1	EPA3	EPA3	EPA3	EPA3		EPA4	EPA4	EPA4	EPA4	, ,	EPASA	EPA5A	EPA5A FPA5A	i	EPA5B	FPASB		EPA5B	i	EPA5C	EPA5C	FPASC	EPA5C	

TABLE 2 (cont). PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

												_	_		_		_			_	_											
N ₂ O (mg/L)	A A	<0.001	<0.001	<0.001	¥	<0.001	<0.001	<0.001	A A	<0.001	<0.001	0.004		¥	<0.001	<0.001	<0.001		Ϋ́	<0.001	60.00	0.004	Ϋ́	<0.001	<0.001	<0.001		2	40.00 1	<0.001	<0.00	
CH, (mg/L)	N A	2.65	1.54	10.30	Š	10.70	7.43	12.10	¥	9.78	8.90	9.52		0.62	2.10	3.35	0.83		4.71	0.18	1.59	0.25	1.13	1.90	1.49	2.55		15.30	3.77	2.71	12.10	
TOC (mg/L)	Ϋ́	5.6	3.7	- 0.	¥	9.0	8.9	6.2	¥	7.4	12.8	4.7		3.6	5.0	3.8	3.4		4.3	1.4	5.8	1.7	3.8	4.2	3.1	4.5	<u>!</u>	31.0	11.2	0.9	15.4	
SO ₄ (mg/L)	Ą	<0.5	2.1	<0.5	¥	<0.5	1.0	3.0	¥	1.0	2.3	6.1	;	25.3	6.9	4.1	6.1		31.2	14.5	7.2	13.5	0.9	2.0	<u>:</u>	2.5	ì	1.5	<0.5	5.9	6 .	
PO ₄ -P (mg/L)	Ą Z	0.10	0.26	0.14	Ą	<0.05	<0.05	<0.05	Ą Z	<0.05	0.19	0.34	-) 5	0.15	<0.05	0.07	<0.05		<0.05	<0.05	<0.05	<0.05	0.10	<0.05	0.08	<0.05		0.88	0.20	0.57	0.48	
NH,-N (mg/L)	₹	1.10	0.79	0.84	¥	0.84	0.35	0.39	Ž	0.78	42.	0.40	5	0.28	0.99	0.80	0.42	!	0.08	<0.05	0.21	0.10	0.92	0.35	0.77	100	2	3.44	2.78	3.06	2.34	
NO ₂ -N (mg/L)	1	<0.05	<0.05	<0.05	¥	<0.05	<0.05	<0.05	Ą.	50.	<0.05	50 0	9.9	<0.05	<0.05	<0.05	<0.05)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3	<0.05	<0.05	<0.05	<0.05	
NO ₃ -N (mg/L)	i .	<0.05	<0.05	<0.05	¥	-0 02 -0 05	<0.05	<0.05	Ą	כל ל	0.05	20.0	50.05	<0.05	90.0	<0.05	<0.05	8	0.37	90.0	<0.05	<0.05	0.18	900	0 05	5 5	50.05	90.0	<0.05	<0.05	<0.05	
CI (ma/L)		20.0	8.2	9.6	¥	101	. 6	4.5	٩	2 4) (0.	8.7	6.1	7.1	7 0	;	11.3	4.4	3.8	3.1	6	4 4	. o	, r	C.	2.0	19.3	7.5	25.3	
Br (ma/L) (1	1.2	<0.5	<0.5	Ą		, v	<0.5	4	<u> </u>	- 6 - 4	, ,	c.0>	<0.5	2.8	8	, c	?	<0.5	7	<0.5	<0.5	ر در	, c)) (3 6	c.O>	1.4	10.9	<0.5	<0.5	
Fe (sol)	1	7.1	Ž	6 0.1	Ą		2. V	.0° 1.0°	2	<u> </u>	- V	2 5	 0 V	4.6	10.9	Z Z	<u> </u>	-	5.9	1 4	Y Z	60.1	7 4 5	? c	5 Z	2 0	N.	Y Y	4.6	¥	6 0.1	
00 ()/u/		(d	0.4	<0.1	Ą	2 0	0.0	6.1	<u> </u>	£ (<u>, -</u>	- 6	9.0	-	- 61	Ş Z	ָ נ נ נ	, ,	0	. 4	C	60.1	, C	- 6	. u	5 5	-0.1 -0.1	<0.1	0.4	0.4	60.1	
PH (stignt Ha)		7 2	6.35	6.41	V	2 0	0.40 0.00	6.57	4	¥ ,	4.97 n 4 n	0.10	5./4	8 64	20.00	0.2.0 8.5.5	0.33	0.43	6.35	2 2	2 2	5.95	9 20	0.0	0.40	9 9	6.41	6.10	60.9	6.31	6.45	
Water Level	_	7 42	7.54	7.17	<u> </u>	<u> </u>	1.7	3.68		¥ ;	5.62	5.7	4.77	70 Y	7.54	4.92	3.2	4.55	2	0.3 3E	65.9	5.97	3	4.30	7.7	4.18		1 98	177			
Date		0/27/04	5/26/95	4/19/96	00,40,0	2/24/93	8/27/94	5/26/95	9	2/24/93	8/27/94	2/56/97	4/20/96	0/1/0/0	2/24/30	6/21/94	C8/17/C	4/20/96	0/1/0/0	0/00/0	100/00/0	4/20/96	00,00	2/24/93	8/27/94	C6/97/C	4/20/96	3/22/93	A0/7C/A	5/26/95	4/20/96	
Well	,	EPA83-1	EPA83-1	EPA83-1	0	EPA83-2	EPA83-2	EPA83-2 EPA83-2		EPA83-7	EPA83-7	EPA83-7	EPA83-7	č	7.	7 2	Z ;	7	Ĉ	7 2	7 2	길	i	F 1	E :	PL3	PL3	8	2 6	5 E	22	

TABLE 2 (cont). PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

N ₂ O (mg/L)	Q.	<0.001 	<0.001	<0.001	2	7	3 5	0.419	-00.00 -	¥	<0.001	<0.001	<0.001		٧	<0.001	<0.001	200	3	₹	0.001	<0.001	0.00	¥	0000	000		50.00	¥	<0.001	<0.001	0.065	
							•		٠.																								
CH, (mg/L)	6.64	4. 0.	0.8	5.2	0.6	Ò	<u>.</u>	0.14	5.4	4.6	6.57	5.51	2.4	i	8.5	4.	1.00	-)) 	7.2	1.5	2.97	9.5	X	0.32	α α	3 3	13.00	¥	7.4	7.0	5.65	_
TOC (mg/L)	30.7	12.9	5.4	10.0	30	-	c	4.4	10.2	7.1	16.7	9.5	4.5	}	24.1	17.2	4.1	4		10.7	9.8	2.5	5.3	6.2	α	9 6	9 6	6.3	Ž	5.0	4.8	3.4	
SO ₄ (mg/L)	6.1	<0.5	11.2	2.7	8	•	4.	10.8	6.0	2.5	<0.5	<0.5	8	?	<0.5	<0.5	<0.5	6.7). (9.8	1.0	<0.5	6.9	4.5	٠ ۲	9 6	9 6	2.4	¥	<0.5	<0.5	14.5	
PO ₄ -P (mg/L)	0.24	0.18	0.44	0.55	0.52		0.6	<0.05	0.48	0.26	0.22	0.30	0.30	3	0.25	0.09	0.07		<u>.</u>	0.35	0.20	0.36	0.21	0	5 5	20.00	50.0	<0.05	ž	<0.05	0.07	<0.05	
NH,-N (mg/L)	2.80	2.64	2.51	1.66	0.84		3.13	1.52	3.13	0.60	2.77	4	5,58	3	1.95	0.54	0.47		7.02	0.75	0.17	0.19	0.37	0.45	6	7 6	67.0	0.28	Ą	0.24	<0.05	0.10	
NO ₂ -N (mg/L)	<0.05	<0.05	<0.05	<0.05	70 O.5	0 0	<0.05	0.14	<0.05	<0.05	<0.05	<0.05	0.05	2	<0.05	<0 O5	0.05		<0.0>	<0.05	<0.05	<0.05	<0.05	70.05	ָ ק ק	2 6	000	<0.05	Ž	<0.05	<0.05	<0.05	
NO ₃ -N (mg/L)	<0.05	90.0	<0.05	<0.05	לים קי		<0.05	2.49	<0.05	<0.05	<0.05	<0.05	50.05	3	0.16	2002	0.05	20.0	c0:05	0.17	90.0	<0.05	<0.05	000	2 4	20.00	20.05	<0.05	¥	<0.05	0.05	<0.05	
Cl (mg/L)	1.7	8.2	9.2	9.4	7	- ·	9.1	8.4	7.9	3.55	6	7.2	1 5	? -	<0.5	7	7	5 5	18.6	11.3	11.0	9.6	7.7	c	1 0	, c	7.7	15.0	¥	7	2.4	4.5	
Br (mg/L)	5.6	16.2	<0.5	<0.5		· ·	17.5	<0.5	<0.5	ر د	6.	0 2	9 6		<0.5	5	5 6)	<0.5	<0.5	<0.5	<0.5	<0.5	Ç)) !	0.0	ς. 2	<0.5	Š	6	, c	<0.5	,
Fe (sol) (mg/L)	Ϋ́	17.1	¥	<0.1	4	<u> </u>	15.2	¥	0.1	0	10.2	N N	<u> </u>	.	5.3	L C	2.5 V	֭֝֞֞֝֞֝֞֝֟֝֓֓֓֓֞֟֝֓֓֓֓֓֞֟֞֓֓֓֓֓֓֓֞֟֓֓֓֓֞֡֓֓֓֞	0°.	8.6	2.2	ž	6 0.1	•	1. (2.3	Ž	6 0.1	X Y	α -) A	0.0	,
DO (mg/L)	0.2	6.0	0.2	60.1	Ċ	3	0.	0.5	~0.1	9	9 -		, č	- - - -	0.8		- c		0.1	0.8	12	0.5	0.1	7	- ر ن ر	C. 0	0.3	<0.1	Z	7	; c	0.0	;
pH (pH units)	00.9	6.21	6.62	6.60	c o	0.30	5.96	6.83	6.63	A 5.4	9.0		5 6	00.00	601	0	0.24	0.03	6.40	6.26	6.34	6.58	6.30	7	0.10	6.05	6.20	6.35	Ž	200	9 9	6.3	<u>}</u>
Water Level (ft from TOC)	3.40	3.17	3.40	2.65	ć	0.50 0	2.90	3.20	2.44	97.7	5.5	4.63	7 6	3.84	4 90	00.4	4.00	4.4.	4.26	6.44	83	6.56	5.82	i i	5.52	6.33	89.9 -	5.87	ΔN	000	9.00	5.00	3
Date	3/22/93	8/27/94	5/27/95	4/19/96	00,700	3/24/93	8/27/94	5/27/95	4/19/96	00/1/0/0	2017010	5/27/05	3/27/33	4/20/96	2/24/93	0,027,04	8/21/94	C6/07/C	4/20/96	2/24/93	0/26/a	5/26/95	4/20/96	9	2/24/93	8/28/94	5/27/95	4/20/96	2/24/03	20/00/0	10/20/34	96/06/17	1/1/2/20
Well	P3	£	2 22	R3	ì	4	72	B 4	\$	C	ם מ	ه ۵	ه ۵	20	C) (<u>ی</u>	د	ပ	c	ے د	ے د	۵ ۵	ı	Ц	ш	ш	ш	9	2 5	2 5	E AO	ב כ

TABLE 2 (cont). PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

																				_							_								7
DTCYTMB	DIEATMD	(µg/L)	¥.	9	224	171		¥	288	100	290		7340				Ϋ́					302	195	185	175	¥	348	86	62		₹				
	_	(ng/L)	¥	1.2	21.9	37.2		¥	9.07	18.0	139.0	Ą Z	166.0	102.0	189.0))	N A	509.0	481.0	404.0		34.6	20.3	32.9	35.7	Š	16.1	4.9	7.4		Ϋ́	17.6	2.4	<1.0	
1		(µg/L)	¥	1.0	78.9	103.0		X A	83.8	20.4	176.0	Ą Z	306.0	153.0	569.0	2	Š	1610.0	944.0	1240.0		47.5	46.0	77.1	56.6	Ϋ́	204.0	73.0	17.4		Ϋ́	78.7	16.7	<1.0	
' I.		(µg/L)	¥	41.0	12.9	7.7	:	Ϋ́	116.0	58.4	132.0	Ą	93.7	67.2	138.0	200	Ϋ́	443.0	366.0	386.0		25.7	16.6	22.1	25.1	¥	15.1	2.0	α	<u>?</u>	Ϋ́	9.1	2.7	<1.0	
	_	(µg/L)	¥	0:	27.8	<1.0)	¥	5.7	<1.0	<1.0	4	899.0	380.0	5510	5.	Ϋ́	4140.0	2030.0	2110.0		52.4	0.	o. 1.0	<u>∧</u>	Ϋ́	0:1	×1.0	7	<u>,</u>	Ϋ́	76.5	1.0	<1.0	
		(µg/L)	Y Y	2.	34.2	30) ;	Š	5.3	2.4	73.4	4	2120.0	651.0	1750.0	0.0671	Ą	5640.0	2140.0	3450.0		80.0	52.3	24.8	33.9	ž	43.1	3.4	7	ò	Ą	53.4	- 8.	<1.0	
	PXY	(μg/L)	Ą	1.0	20.7	4.5	?	Ą	4.2	10	51.0		מאמ				Ą	2370.0	1160.0	1290.0		42.0	42.0	21.3	19.0	¥ Z	26.2	8	2 5	4.4	Ϋ́	77.6	3.5	<1.0	
3	ETBZ	(μg/L)	Ą	C -	10.4	. 6	ò	¥	<u>τ</u>	- T	19.0	4	<u> </u>	0000	0.000	0.089	Š	1460 0	7410	827.0	: 	11.7	9.7	6.9	4.7	Ą	18.6	3.0	1 4	- Ö	¥	41.7	1:1	<1.0	
	덛	(μg/L)	ΔN	<u> </u>	17.5	;	2.	Ϋ́	0	? ?	0. 0. 0.	3	Z 2	570.0	0.00	305.0	Ą Z	54100	20700	1570.0		2.8	5.4	41.0	<1.0	Ą	. 4	7	2 5	0.15	Ϋ́	1.0	V-1.0	<1.0	
ל בים בים	BZ	(μg/L) (VIV.	<u> </u>	; , 7	<u> </u>	4.0	Ą	. T	· 7	0. 0.	:	¥ \$			2.7	Ą	2 2	7.5	17.3	:	8.3	r.	410	0. 0.	Δ	20.7	7	7 .	<u></u>	¥	6.2	V V	√ 0.1×	
ABLE 2 (colli). r Eniodio Waleri aconeri incue	Water Level	$\overline{}$	Ý.	¥ %	t 6	9.6	4.28	- AN	10		5.15		A G	20.02	5.81	2.00	ΔN	200	0.90 9.90	90.0	2	3.77	1	3 63	2.89	<u> </u>	2 2 2	900	0.00	3.20	Ϋ́	3.25		3.11	
IABL	Date \	_	00,70	2/24/93	8/23/94	C8/17/C	4/20/96	20/763	10/0/0/0	9/23/34	4/20/96	!	2/24/93	8/23/94	2/7//95	4/20/96	0/04/03	20/00/0	0/23/94	30/00/17	4/20/30	2/24/93	8/03/04	5/27/05	4/20/96	0/1/00	6/00/04	7/22/34	2/17/2	4/20/96	2/24/93	A0/2/04	5/27/05	4/20/96	
	Well				EPAI	_		LDAS			EPAZ EPAZ					EPA3	7 7 0	* * C	EPA4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	‡ { L	EDASA	CDASA	EDASA	EPA5A	Q Q	FFA35	EPASE	EFASE	EPA5B	EDASC	EDASO	7577	FPA5C	i
	_				_	_																													

TABLE 2 (cont). PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

																		_	_			_	_	_	_											
BTEXTMB (ua/L)		¥ Z	186	o	278		Ą	287	150	274	1	¥	99	208	65		14	330	355	⊽		476	က	145	٧		23	39	=======================================	ເດ		947	230	101	88	
TMB (î	¥	15.2	4.	13.2		ž	24.2	16.7	27.6	i	ž	13.2	46.3	15.7		<1.0	29.0	16.2	<1.0		35.7	1.0	41.0	4.0		1 .8	5.1	5.4	<1.0		47.2	24.8	3.1	3.9	
PSCU	ı	Ϋ́	115.0	9.9	36.0	}	¥	51.0	34.9	203	2	Ą	22.9	82.6	24.9) :	Ξ:	66.2	121.0	7	?	62.1	1.6	25.8	<1.0		10.3	20.9	80.4	4	!	360.0	156.0	77.9	55.0	
MESIT	(TABILI)	¥	16.6	0.1	21.1	:	Ϋ́	26.5	200	45.2) }	¥	11.0	39.9	13.6) -	<1.0	7.3	16.9	7	<u>?</u>	22.1	0.10	410	V-1.0		1.0	2.3	11.8	7	<u>;</u>	30.9	16.7	8.3	4.8	
OXYL OXYL	(Ing/L)	¥	0.1	1 0	ξ σ	<u>-</u>	¥	57.8	3 6	3 5	<u> </u>	¥	4.5	7.8	, C	3	۸ 1.0	1.0	7	7 7	?	6.	<1.0	17	- T	!	5.	1.0	7	7	?	34.3	7.9	0.12 0.12	V 10	
MXYL	(IIIG/L)	¥	15.1	7	124.0); ;	¥	0 64	9 6	0.00	S. 75	¥	9	15.7		ţ ţ	1.7	33	7.2.4	† C	<u>.</u>	263.0	7	, 4	3 7	<u>?</u>	5.1	4.3	0	5 7	<u>.</u>	2010	6.4	4 6	A 4	5
PXYL	(µg/r)	Ą	12.6	7	2 6	0.18	¥		5 6	0.12	41.0	Ą	ر د	- c) +	<u>:</u>	σ.	200	5 6	7.7	V.1.	9	? -	2.6	9 5	<u>,</u>	2.4	4.2	į (7 7	O. I.V	107.0	2 0	9 0) u	5.5
ETBZ	(mg/L)	ΔN	, O	; ,	2.5	8 6	Ą	<u> </u>	- t		7.3	Ą			5 7). -	27	j	2 4	C (o.1.o	V.	, c	<u> </u>	0. 7	<u>v</u>	4.		? ?	5. 5.	٥.٢>	1500	5.0	0 H		0.0
	(µg/L)	8	Ç C	<u> </u>	o. (2.2	δ.	<u> </u>	55.0	9.	1.2	9	֓֞֞֜֜֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֞֝֜֜֜֝֓֓֓֓֓֓֡֜֝֜֝֓֓֓֡֜֝֡֓֡֓֜֝֡֓֡֜֝֡֡֡֜֝֡֓֜֜֝֡֡֜֜֝֡֡֜֝֡֡	<u> </u>	<u>,</u>	<1.0	7	? •	<u> </u>	0.1	۲ .0	ζ,) (2) - -	0.1	7) (<u>,</u>	O	V.0	7	2 .	O. C	0. 0	O
1	(µg/L) (4	۲ م ک	, r	O. I.	4.4	2	<u> </u>	16.1	8. 8.	43.1	4	٤ (د خ	o (7 0	2.3	Ţ	- 3 6 8	23.1	12.2	×1.0	6	7 5	0.15	0.6	0.15	7	7 7) · ·	0. - -	0. V	ć	0.0	o (0.15	o: -
	(ft from TOC)		¥ 5 1	7.42	7.54	7.17		¥ i	4.11	4.38	3.68		¥ ;	5.62	5.71	4.77	č	5.24	4.92	5.21	4.55	,	6.54 4.	6.35	6.59	2.97	9	0.4		4.18				1.77		
Date	<u>`</u>		2/24/93	8/27/94	5/26/95	4/19/96	00,70,0	2/24/93	8/27/94	5/56/95	4/19/96		2/24/93	8/27/94	2/56/97	4/20/96	!	2/24/93	8/27/94	5/27/95	4/20/96		2/24/93	8/28/94	2/56/95	4/20/96	9,70,0	2/24/93	8/27/94	5/26/95	4/20/96		3/22/93	8/27/94	2/26/95	4/20/96
Well		-	_	EPA83-1	_	EPA83-1		EPA83-2	EPA83-2	EPA83-2	EPA83-2		EPA83-7	EPA83-7	EPA83-7	EPA83-7		<u> </u>	P.1	<u>P. 1</u>	PL1		P.2	P. 2	PL2	<u>고</u>		P	PL3	PL3	PL3		2 2	R 2	R2	22

TABLE 2 (cont). PERIODIC WATER QUALITY ANALYSES FOR POL WELLS

6	<u> </u>	Т																														_		
DTEVTMB	(µg/L)		461	826	21	89	8	י כ	§ ;	2 :	46	72	2030	1121	2					669		_	_		2192	1250					ž			
977	(mg/L)		51.4	6.68	7.7	4.9	×1.0	2 0	5.5 0.0	9	3.3	1.0	146.0	46.2	۸ 0.)	181.0	217.0	92.3	161.0	<u>:</u>	153.0	395.0	26.6	175.0	72.0					Ϋ́			
	7.5C (mg/L)		103.0	236.0	28.2	36.1	7	2 6	0.69	0.7	23.7	13.3	517.0	554.0	4.9	?	327.0	285.0	91.8	235.0		306.0	548.0	41.7	419.0	217.0	338.0	300.0	278.0		Ϋ́	203.0	129.0	89.3
ı	MESII (ua/L)		32.5	63.4	3.3	5.6	7) i	c./[- -	<1.0	1:1	99.3	74.0	41.0	<u>;</u>	140.0	179.0	115.0	105.0		110.0	271.0	81.8	173.0	85.4	123.0	45.0	60.0		¥	131.0	79.3	87.8
ł		1	3.9	115.0	√1.0	<1.0	7	2.6	19.5	~1.0	۲ ۰ 0.	1.0	7.7	3.3	7	?	146.0	141.0	13.4	27	ì	494.0	243.0	4.0	146.0	66.1	62.5	25.1	58.0		Ϋ́	3.2	1.1	~1.0
I	MXYL (iia/l)	i in	132.0	158.0	1.4	12.7	ç	S.3	26.1	-1.0	1.9	13.4	259.0	58.5	7	<u>?</u>	654.0	74.1	7.3	8 00	92.0	1645.0	282.0	9.1	810.0	566.0	596.0	300.0	341.0		Ϋ́	459.0	32.6	4.1
Į	PXYL (IIG/L)	1	86.4	126.0	6.1	7.5	7	<u>.</u>	20.3	1.5	3.3	0.6	594.0	160.0	7	2.	285.0	47.8	4.6	50 5	0.80	730.0	175.0	5.1	308.0	199.0	163.0	105.0	113.0	5	Ϋ́	133.0	12.1	1 .8
١	ETBZ	1	43.0	60.5	4.4	2.7	7	O. [>	6.6	<1.0	10.6	co Lo	301.0	165.0	2 7	<u> </u>	147.0	10.0	1.7	107	45.	261.0	46.4	3.0	135.0	38.2	35.2	19.0	25.7	į	¥	30.5	2.8	<1.0
١	10F	ı	2.5	1.4	41.0 -	<1.0	,	0.1^	۲۰ م	√ 7.0	<1.0	0	. c	; ,	· ·	<u>></u>	24.3	3.4	4.0	,	<u>.</u>	342.0	6.8	<u>م</u> 1.0	24.7	4.1	3.6	0	200	5.	¥		۸ 0.	<1.0
ı		(H9/L)	6.3	5.4	4.0	1.0	,	Q. ✓	2.9	<u>م</u> .0	3.0	0 80	25.5	60 1	3 7	o:	×1.0	. O.	0	,	0.15	4.3	1.0	<1.0	1.2	2	0 1	, t	<u>,</u>	<u>;</u>	¥	Q. V	1.0	4.0
		(10011100)	3.40	3.17	3.40	2.65	(3.30	2.90	3.20	2.44	7 20	S: 4	4.48		3.84	4 90	4 68	4 97	5 6	4.26	4.9	6.31	6.56	5.82	6.52	6.33	89.9	0.00	0.0				5.92
	Date \	1	3/22/93	8/27/94	5/27/95	4/19/96		3/24/93	8/27/94	5/27/95	4/19/96	0/04/00	201707	5/27/05	06/17/0	4/20/96	2/24/93	8/27/04	5/26/05	00,000	4/20/96	2/24/93	8/28/94	5/26/95	4/20/96	2/2//03	70/8C/8	5/02/05	20/00/4	4/20/90	2/24/93	8/28/94	5/27/95	4/20/96
	Well	1				33.5		P4	74	P4	R4	C	ه ۵	۵ ۵	ם מ	ω	C	ى د) د) (ပ	c	ء د	۵ ۵	۵۵	Ш	ם נ	J U	u L	Ц	FAG	E A A	FA6	EA6
	<u> </u>	丄																		_														

Figure 4. Geoprobe Sample Locations for Mar 93 Site Characterization, Prior to Pilot Project Operation.

Again, dissolved oxygen was low, especially from 7-11 feet below ground surface. Ammonia-nitrogen concentrations tended to increase with depth at most locations. One explanation for this may be that nitrification of applied fertilizer produced nitrate in the rhizosphere, which was then reduced to ammonia through dissimilatory nitrate reduction as the nitrate infiltrated through the contaminated region. This could happen with an aerobic soil zone and an anaerobic subsurface, providing there was sufficient available carbon. This would appear to be the case in the treatment area, since both TOC and BTEXTMB levels were high throughout the aquifer. In addition, sulfate levels were low and methane levels were high, with higher methane concentrations generally within the deeper regions of the aquifer. This would indicate that the aquifer microorganisms are metabolically active in this anaerobic environment. Benzene concentrations ranged from 0-300 $\mu g/L$ and were erratically distributed with respect to total BTEXTMB (Table 3). This could indicate selective volatilization, leaching, or biodegradation, depending on the depth of the water sample and proximity to the original spill area. However, it also could indicate the presence of other spills. For example, the ratio of benzene to total BTEXTMB was 3% nearest the spill location (80E2), 13% downgradient of the spill (80I2), and 0.4% in the far corner of the proposed control cell (80H3). However, the corresponding BTEXTMB levels were 2550, 2280, and 24,100 $\mu g/L$ in those locations. This does not correlate with preferential leaching of benzene from the original fuel spill. Without data from these locations prior to the fuel spill, it is difficult to determine whether all of the contamination at the site originated from the JP-4 jet fuel pipeline leak. Nonetheless, these data show that, despite the aerobic bioremediation provided by the hydrogen peroxide demonstration project, extensive contamination of the ground water occurs over the project area to a depth of at least 11 feet below ground surface.

3. Core Analyses

Core samples were taken on several separate occasions for various purposes. For example, previous site characterizations did not provide an adequate description of the near-surface aquifer, which contained most of the contaminants. Therefore, core samples which had been obtained during installation of the EPA1 and EPA2 wells were further characterized by direct microscopy and particle-size analysis (Jerome Cruz, ManTech Environmental Services, Inc). This section also describes the sampling, analytical methods, and results for the measurement of BTEXTMB and JP-4 in aquifer cores. This was done to delineate the lateral spread and vertical extent of contamination at the site and provide mass estimates. This information was also used to help define the locations of the proposed treatment cells.

a. Methods

Core samples were obtained using a Giddings probe modified for acquisition and extrusion of saturated aquifer material. Samples were collected using 2-inch hollow core barrels either with or without pistons to prevent loss of flowing

TABLE 3. GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE PRIOR TO PILOT STUDY, 3/93

	֓֞֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֡֝֝֝֡֝֝				1					,	ļ	2	2	2	0-00
Area	Sample	Grade Elev.	Bot. Screen	Top Screen (ft from GS)	Bot. Screen (ft MSL)	Top Screen (ft MSL)	pH (pH units)	DO (mg/L)	Fe (sol) (mg/L)	Br (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		(I						ļ	0	i	6	ű
	80A-1	11.08	2.00	3.50	6.08	7.58	6.01	Ξ	4.80	<0.5	0.5 1.5	9 6	0.00	 	3.5
	80A-2	11.08	8.00	6.50	3.08	4.58	6.13	0.3	2.30	40.5 1	0.0 0.1	60.0	0.00	1.7	3 5
,	80A-3	11.08	11.00	9.50	90.0	1.58	6.19	0.5	13.50	<0.5	c.0>	0.08	0.02 0.03	6.63	?
						9	9	4	9	, 5	ر بر	800	<0.05	2.42	0.57
	80B-1	10.92	4.00	2.50	6.92	8.42	0.00	9 6	9 5	9 6	2 6	0	<0.05	4.74	0.89
	80B-2	10.92	7.00	5.50	3.92	5.42	9.08		5.4	ָ טַר	9 6	3 6	9 6	2 45	000
Proposed	80B-3	10.92	10.00	8.50	0.92	2.42	6.07	0.3	4.30	Q.02	C.O.	6.03	8.99	ì	3
Nitrate					ć	6	9	4	09'6	ć	0	0.08	<0.05	0.55	<0.05
Treatment	80D-1	12.30	2.50	4.00	6.80	0.90	200.0		2 4	2	α,	800	<0.05	0.76	0.23
Se S	80D-2	12.30	8.50	7.00	3.80	5.30	0.20	9 6) t	? *		80.0	50.05	1 69	<0.05
	80D-3	12.30	11.50	10.00	0.80	2.30	0.20	0.0	9	<u>.</u>	i	3	}	}	
			1		7	000	5 70	-	2 70	8	1.7	<0.05	<0.05	1.48	0.14
	80 E-1		5.50	00.4	0.70	0.50	9	: -	5.15	6	1.6	0.10	<0.05	2.46	<0.05
	80 E-2	12.28	8.50	00.7	0.70	0.20	9.20	0	13	0.5	0.9	0.0	<0.05	0.86	<0.05
	80 E-3		11.50	00.01	0.70	7.70	<u> </u>	3	2	}	!				
														i	
-	,	-	70	60.7	6.28	7.78	6.20	0.5	2.00	<0.5	<0.5	0.18	<0.05	0.84	<0.05
-			9.70	7 20	3.28	4.78	6.40	4.0	2.30	<0.5	<0.5	0.10	<0.05	1.35	0.14
	25.5	1.30		02.7	80.0	1 78	6.40	0.3	2.30	<0.5	<0.5	0.10	<0.05	1.13	0.36
	2 2 2 2 3 3 3		2.:	0.20	0.50	:	:								
	i co	13.44	7	4 00	7.94	9.44	6.10	1.3	0.50	<0.5	2.1	0.17	<0.05	1.85	<0.05
	- 100		9 6	20.7	4.94	6.44	6.51	0.8	0.38	1.4	1.3	0.45	<0.05	1.74	90.0
	80F-2	1 2	9.30	80.7	7	3.44	6.65	6.	0.09	<0.5	1.5	0.68	<0.05	0.05	0.02
Proposed	80F-5		06:11	9.00	-	: i) !								
Control	-		6.70	4 20	7.31	8.81	5.98	0.9	1.18	9.0	1.3	0.09	<0.05		<0.05
rearment	-506		5 6	2 7	4 21	28.	5.63	4.0	0.37	0.1	2.5	0.09	<0.05		<0.05
<u>ē</u>	806-2	13.01	2.5	05.7	÷ +	18.0	6.48	9.0	0.97	0.5	6.	0.09	<0.05	0.40	<0.05
	806-3		2.:	10.20	<u> </u>	i	}					-			
	200	10.50	5 70	4 20	6.80	8.30	5.12	1.2	2.40	0.8	1.3	0.08	<0.05		<0.05
			8 70	7.20	3.80	5.30	5.95	0.4	7.50	7.5	9.6	0.0	<0.05	2.69	0.20
	80H-3	12.50	11.70	10.20	0.80	2.30	6.22	0.4	2.30	1 .8	4.3	0.0	<0.05		<0.05
		-				č		Ċ	00 7	14	00	0 08	<0.05		0.07
Downgradient			5.70	4.20	4.81	6.31	0 0	9 6	, u	- 0	Ια	000		234	
of Proposed	80I-2	10.51	8.70	7.20	1.81	3.31	26. C.		2.00	į.	<u>-</u>	3			
Nitrate			i i	0 40	7 00	6.42	9	0.1	7.00		1.5	0.07	<0.05		
Treatment	- 20		2.50	3.70	1 92	3.42	6.20	0.1	8.30		1.3	0.08		5.28	1.59
Cell	865	21.01	9.20	07.6	-1 08	0.42	6.20	.0×	11.30	2.0	2.3	0.08	<0.05		
	2-M8		7.1												
	_														

TABLE 3 (cont). GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE PRIOR TO PILOT STUDY, 3/93

					_																						 				
	BIEXIMB (µg/L)	800	1960	1010	1130	1290	902	101	1210	5020	5200	2550	164	1170	1630	1300		478	0859	129	2000			201	_	24100		2280			994
	(Tg/L)	157.0	151.0	53.5	81.6	59.6	29.9	32.1	104.0	255.0	217.0	76.3	10.2	308.0	286.0	262.0		103.0	254.0	10.4	261.0	353.0	118.0	40.4	287.0	406.0	30.2	116.0	69.0	38.8	19.9
	PSCU (µg/L)	278.0	289.0	144.0	221.0	284.0	184.0	58.5	201.0	530.0	347.0	416.0	21.8	480.0	549.0	534.0	:	16.7	0.1.0	17.1	180.0	934.0	223.0	0.99	694.0	1090.0	45.7	483.0	357.0	393.0	373.0
	MESIT (µg/L)	204.0	137.0	49.2	91.5	89.2	33.5	9.7	67.8	148.0	163.0	71.0	9.1	207.0	187.0	203.0		48.9	526.0	8.4	154.0	336.0	109.0	33.4	233.0	327.0	15.0	73.5	33.3	38.0	13.3
:	OXYL (µg/L)	17.0	19.8	12.8	123.0	41.8	35.6	<1.0	133.0	516.0	1210.0	81.3	20.9	51.8	14.0	12.4	i	207.0	1610.0	35.8	200.0	1730 0	47.1	14.2	153.0	5480.0	133.0	3.6	<1.0	<1.0	4.0
; I	MXYL (µg/L)	35.1	761.0	405.0	232.0	324.0	140.0	41.0	392.0	1930.0	1830.0	812.0	53.0	64.8	328.0	138.0		49.3	2110.0	48.8	405.0	2550 0	581.0	26.5	1520.0	6750.0	678.0	515.0	182.0	63.2	41.9
٠	PXYL (μg/L)	19.1	384.0	202.0	113.0	254.0	145.0	<1.0	190.0	0.906	773.0	460.0	26.6	36.6	178.0	110.0	2	29.0	933.0	22.8	251.0	1190.0	210.0	12.7	691.0	3120.0	340.0	512.0	192.0	213.0	157.0
	ETBZ (μg/L)	7.1	176.0	115.0	60.5	198.0	95.0	<1.0	95.3	615.0	492.0	544.0	18.8	8.2	63.4	200	7.03	16.3	640.0	13.1	26.4	200	26.7	~	350.0	1700.0	129.0	271.0	202.0	229.0	296.0
	ТОL (µg/L)	63.1	15.2	10.1	205.0	39.3	34.2	40	20.4	105.0	165.0	12.6	2.4	1 6	σ	9 0	7.6	7.4	209.0	2.9	. 170	0.70	14.3	7	941.0	5150.0	61.9	4.7	1.6	1.7	6.8
	BZ (μg/L)	19.1	24.8	16.8	-	4.2	8.7	7	6.00	17.0	4.0	76.2	1.0	7	16.0	9.0	7	~1.0	۰ <u>۲</u>	<1.0	7	7 7	V 0.	7	20.4	100.0	54.8	303.0	5.8	9.0	82.2
יוייאט אין ואא	N ₂ O (mg/L)	_	00.00	<0.001	- 500	<0.00	<0.001	000	00.00	<0.001	0.002	<0.001	<0.001	0.065	500	3 5	3	0.001	0.010	0.003	9000	3 5	\$0.09 \$0.00	,	9.6	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
יובוי	CH ₄ (mg/L)	1			3 73			0.10			2.86	13.70	2.80	0 95	20.0	3.30 7.16	0.,	4.61	5.18	0.01	5	3 6	3.65	7	5 5	3.70	14.60	12.20	14.30	15.10	13.00
- vv.	TOC (mg/L)		30.0	29.2	40.4	25.1	24.5	9	0.00	22.2	57.1	40.9	12.0	0 90	10.0	0.0	<u>.</u>	20.0	11.4	4.2	0	0.0	11.5	Ċ	9 5	18.1	26.8	29.5	41.6	43.2	53.1
שטחיי	SO, (mg/L) (2 6	<0.5	, ,	9 6	<0.5	ر بر	5 5	<0.5	<0.5	<0.5	<0.5	, ,	, ,	0.0	0.0 0.0	5.0	1.8	4.6	:	0.0	 <0.5	,	o 4		<0.5	<0.5	<0.5	<0.5	<0.5
	Sample	,	- VOO	80A-3	P. BOB.	80B-2	80B-3	7	200	80D-3	80 F-1	80 E-2	80 E-3	,		2-200	ج ک	80F-1	80F-2	80F-3	,	-500	80G-3		-100	80H-3	801-1	801-2	80.1-1	800-2	807-3
BLE 3 (cont). GEO	Area						ъ	Nitrate				•								Proposed	Control	reament	3				Downgradient	of Proposed	Treatment	Cell	

sands (Leach et al, 1989). Cores were extruded into sterile, clean half-pint Mason jars using a paring device to shave off the core material which had been in contact with the core barrel. The jars were immediately sealed and set aside until the entire core barrel had been emptied. Each core was then subsampled using a sterile, clean 10-mL tuberculin syringes with the tip removed. The core was subsampled to the bottom of the jar to provide a subsample representative of the entire core length. The subsample was immediately added to a tared 40-mL VOA vial containing 5 mL deionized water and 5 mL methylene chloride, and the vial was sealed with a Teflon®-lined silica septum and mixed. Extract vials were either stored on ice or at room temperature prior to transport to RSKERL for analysis.

Sample vials were weighed to determine mass of core sample added, and samples were then extracted by placing on a wrist-action shaker for 30 minutes and sonicating for 1 minute. The organic extract was removed with a syringe, passed through a sodium sulfate column, and fire-sealed in a glass ampule. For JP-4 analyses, samples were analyzed using a Hewlett-Packard 5880 GC with a flame ionization detector. Samples were chromatographed on a 30-m x 0.53-mm DB-5 capillary column with 1.5-µm film thickness. The column was temperature programmed from 10°C (3.0 minutes) to 56°C at 4°C/minute, then to 75°C at 30°C/minute, then to 95°C at 2°C/minute, held for 1 minute, and then to 254°C at 30°C/minute with a final 8.0-minute hold. The column flow rate was 4.7 mL/minute. JP-4 concentrations were quantified with a 7-point external standard calibration curve ranging from 50-50000 mg/L. The detection limit is based on the initial mass of core sample; with core samples averaging around 30 grams, the detection limit was approximately 10 mg/kg on a wet weight basis.

BTEXTMB was quantified using a Hewlett-Packard 5890 GC equipped with a Hewlett-Packard 5971 mass selective detector. Cool (38°C) on-column injection was used with electronic pressure control set for a constant flow of 0.9 ml/minute. A 30-m x 0.25-mm Restek Stabilwax® capillary column with 0.5-μm was used, preceded by a 230-mm x 0.53-mm uncoated capillary precolumn. The column was temperature programmed from 32°C (3.0 minutes) to 70°C at 4°C/minute, then to 200°C at 20°C/minute with a final 1.0-minute hold. Quantitation was based on calibration curves of a single target ion for each compound with the addition of up to two qualifier ions recorded to verify chromatographic separation or purity. The ions chosen were those listed in EPA Method 524.2 (Revision 3.0). Both low-level (0.01-10 mg/L) and highlevel (10-300 mg/L) calibration curves were used, with fluorobenzene as the internal standard. The system detection limit was 0.02 mg/L, which provided for a method detection limit of approximately 0.003 mg/kg on a wet weight basis.

Selected core extracts were also subjected to an extensive GC/MS search to better define the distribution of the residual volatile hydrocarbons. Samples were chromatographed using a 30-m x 0.25-mm Restek Stabilwax capillary column with 0.5- μ m film thickness coupled to a 100-m x 0.25-mm DB-1 Petrocol column with a

0.5- μ m film thickness. Data were obtained in a scan mode (m/z = 34 to 450) and peak spectra were compared with library spectra to provide tentative identifications. These identifications were then sorted into separate compound classes using a computer program. A final manual spectral interpretation was made for all compounds which were not identified or where significant coelution was observed. A "calibration curve" was created from the analysis of 117 different petroleum compounds, including alkanes, alkenes, cycloalkanes, monoaromatic hydrocarbons, and polycyclic aromatic hydrocarbons. This curve was used to relate response factor to retention time ($r^2 = 0.977$), and provided a semiquantitative analysis of the weight percent of the various compound classes. For comparative purposes, concentrations of individual monoaromatic hydrocarbons (BTEXTMB) were also done this way.

b. Results

The core samples from Locations EPA1 and EPA2 appeared to be texturally mature to submature quartz sands commonly associated with a beach environment. The particle size analyses are shown in Table 4. The samples were basically unconsolidated, well-sorted medium-sized quartz sands, averaging 0.25 to 0.50 mm in diameter (Table 4). The particles were subangular to rounded, and ranged from subprismoidal to spherical in shape. There were occasional amber-colored quartz grains which were possibly coated with iron oxides. Detrital mafic grains occurred in minor amounts. Mafics may have been chloritic aggregates or pyroxenes, based on appearance after crushing. Plant material was common in the upper horizon samples, down to 3.5 to 4.5 feet below ground surface. Sand grains were coated with what appeared to be finer argillaceous soil material and quartz dust, down to about 4.5 feet for both core locations.

Core samples were also taken to delineate the distribution of BTEXTMB and JP-4. Initially, 22 locations were designated for the acquisition of continuous cores, including two which extended from ground surface to 20 feet below grade. The locations of these cores are shown in Figure 5. Core locations 80A-80J also correspond to the locations used for taking geoprobe samples, thus providing a direct comparison between core samples and water quality analyses. Data for these cores, as well as those taken later to assess the effects of pilot operation, are shown in Appendix A.

For each core location, concentrations of BTEXTMB and JP-4 in the individual subsamples were weighted for the sampled interval and summed to provide a total cumulative mass estimate in g/m² for that location. A bulk density of 1830 kg/m³ was assumed for this calculation. Cumulative mass data for all of the core samples during the entire pilot project are shown in Table 5. Based on the analyses of the cores taken Mar 93 - Mar 94, a contour plot showing the cumulative mass distribution of TPH (as JP-4) across the site was constructed (Figure 5). The source is located in the proximity of 80U, and the resultant residual saturation is found distributed fairly evenly

Figure 5. Location of Pre-Test Core Samples, and JP-4 Cumulative Mass Distribution Resulting from Core Analyses. Also Shown are the Treatment Cell Boundaries for the Pilot Demonstration Project.

TABLE 4. PARTICLE-SIZE ANALYSIS OF CORE SAMPLES FROM SELECTED DEPTHS AT WELL LOCATIONS EPA1 AND EPA2, EGLIN AFB

Well	Depth		W	eight Percer	nt	
Location	(ft from GS)	<0.25 mm	0.25-0.50 mm	0.5-1.0 mm	1.0-2.0 mm	>2.0 mm
	1.0-1.5	16.60	46.50	34.50	2.33	0.10
	2.0-2.5	NA	NA	NA	NA	NA
	3.0-3.5	12.50	41.50	26.40	3.01	16.60
EPA1	4.0-4.5	15.40	48.60	32.10	3.89	0.00
	5.0-7.0	21.70	49.30	26.50	2.40	0.18
	7.0-9.0	16.40	53.10	28.20	2.27	0.00
	9.0-11.0	18.00	53.00	26.60	2.36	0.00
	1.0-1.5	26.00	51.90	20.30	1.66	0.16
	2.0-2.5	25.60	52.30	20.50	1.48	0.14
	3.0-3.5	26.80	50.30	21.30	1.49	0.00
EPA2	4.0-4.5	22.80	51.60	23.10	2.16	0.36
	5.0-7.0	13.10	52.80	30.30	3.84	0.00
	7.0-9.0	11.40	52.90	31.80	3.79	0.14
	9.0-11.0	9.41	54.50	32.10	3.96	0.00

across an area downgradient. The contaminated interval is 4-5 feet thick next to the source, but is generally 2-3 feet thick downgradient. The bottom of the contaminated zone (<10 mg/kg JP-4) ranges from 4-7 feet below land surface. Based on a 300-foot x 300-foot area which encompasses all 22 core locations, the total JP-4 mass was estimated to be 26800 kg (T. Fisher, personal communication). This is equivalent to 9300 gallons, assuming a density of 0.76 (Smith et al, 1981). In the 100-foot x 200-foot proposed treatment area, the JP-4 mass was estimated to be 2860 kg, based on simple averaging of cumulative masses for the core locations strictly within the treatment boundaries. At the time of the initial sampling (March), most of the JP-4 was located below the water table in the majority of the locations for which water table information was available.

TABLE 5. CUMULATIVE MASS DATA FOR ALL CORE SAMPLES COLLECTED DURING PILOT PROJECT

																																_	_				_
JP-4	(g/m²)	1120	3 2	113	250	\ 89	1640	1800	3760	~ 1 0	2380	0 2	1 0	کا	9	48	×10	9190	3240	1440	9	3980	11300	40	13900	3010	3290	19000	1820	4230	2710	1040	3720	1300	√	5	13400
втехтмв	(g/m²)		24.20 0.05	0.0 0.0 1.0	9.30 0.00	2.86	20.40	40.60	63.60	3.40	12.90	1.02	0.30	0.50	0.23	2.03	0.37	335.00	37.81	16.00	69.0	43.70	352.00	1.14	533.00	113.00	29.30	809.00	8.80	61.20	3.15	4.20	57.80	1.92	0.52	0.29	378.00
BTEX B	(g/m²)	0	0.50	0.21	0.51	1.92	12.60	24.00	33.80	2.78	11.60	0.36	0.23	0.40	0.04	1.37	0.20	219.00	11.00	10.70	0.56	10.70	229.00	0.88	349.00	64.30	1.22	373.00	3.06	23.00	0.07	0.35	17.50	0.08	0.12	0.01	189.00
TMB	(g/m²)	0	2.621	0.083	2.226	0.163	1.145	3.852	6.855	0.126	0.207	0.068	0.023	0.021	0.044	0.150	0.043	21.600	4.500	966.0	0.036	11.200	30.400	0.00	41.200	12.800	8.720	55.500	1.200	8.140	0.712	1.460	9.170	0.268	0.113	960.0	42.000
PSCU	(g/m²)	1 	7.775	0.446	3.638	0.704	4.025	7.908	11.871	0.367	0.963	0.527	0.038	0.053	0.102	0.352	0.089	71.270	15.086	2.235	0.065	10.274	64.822	0.133	101.008	20.651	10.880	144.421	3.309	19.756	0.890	1.327	18.674	0.445	0.155	0.075	99.465
MESIT	(g/m²)		3.276	0.119	2.972	0.077	2.638	4.792	11.100	0.127	0.138	0.063	0.015	0.022	0.043	0.166	0.034	22.894	7.192	2.008	0.026	11.629	28.143	0.055	41.687	14.928	8.477	235.671	1.231	10.293	1.496	1.060	12.432	1.130	0.130	0.113	47.366
OXYL	(g/m²)		9000	0.008	0.132	0.420	1.536	8.054	16.194	0.302	4.995	0.001	0.031	<0.001	0.003	0.424	<0.001	55.097	0.220	1.300	0.054	5.292	51.465	0.039	81.553	18.886	0.507	0.611	0.709	0.186	0.034	0.026	4.328	0.014	0.041	0.001	0.388
MXYL	(g/m²)		6.532	0.072	0.208	0.843	6.569	9.287	9.903	0.810	3.458	0.089	0.140	0.273	0.017	0.510	0.120	90.587	5.369	3.930	0.370	2.963	95.463	0.592	129.273	23.138	0.318	212.058	1.307	12.188	0.018	0.162	7.732	0.019	0.042	0.005	111.202
PXYL	(g/m²)		2.925	0.049	0.130	0.336	2.589	4.203	6.448	0.332	1.712	0.095	0.051	0.102	0.010	0 231	0.051	35 634	3000	1,700	0.136	2 096	46.500	0.232	56.648	11.459	0.343	85.191	0.709	6.597	9000	0.124	4.779	0.024	0.032	0.002	49.944
ETBZ	(g/m²)		0.972	0.034	0.032	0.224	1.812	2.250	0.846	0.224	0.626	0.164	0.005	0.017	8000	000.0	0.000	25.053	1 878	0.751	0.031	0.251	32.751	0.00	43.918	4.527	0.034	74.997	0.316	3.978	0.005	0.025	0.651	0.007	0 005	<0.001	27.549
10 <u>F</u>	(g/m²)		9000	0.028	0.010	0.085	0000	0.222	0.387	1.084	0.717	9000	000	6000	500	1010	2 5	11 838	504	0.00	500	0000	2500	200	37.007	6 257	0.019	0.275	0.019	0.036	0.011	0.010	0.00	0.012	500	0000	0.096
BZ	(g/m²)		0.035	0.015	0.001	0.014	0.085	0000	000	0.00	0900	00.0	5 5	00.0	60.0	5 6	0.00	20.00	0.03	0.00	5 5	200	0.00	000	0.000	5 6	0000	0.210	40.00	000			0.00		50.00	5 6	0.011
	Interval (ft)		10.3	12.0	7.0	100	2 5		0 1	 	, w	5 4	, t	. 6		. «	0. 5	4. d	0.0	0 0	2.0	2.6	ς α	9 6	114	Σ α	7 7	7.5	8 4	7.4	7.7	, ₁	; ₇	, ₁	 		7.5
	Date		Mar-93	Mar-93	Mar-93	Mar-93	Mar-03	Mar-93	Mar-03	Mar-03	Mar-03	Marios	Mar 02	A110-04	Acres of	May-95	Mar-95	Mai-95	C6-1810	20-Inf	1.1 02	201-10	1.103	1.1 02	Anr-94	20.0	A10-04	A10-94	A10-04	A10-04	A LO DO	6 600	to for V	10 61 V	70.0-24	te-finy	Aug-94
	Sample ID		80A	80B	208	000) II) M	508	2 2	- I	8 8	3 6	SOK C		0 0 10 0	80L	80M	200	200	200	9 6	200	5 00 0	2 2	200) (A	XU8	X >08	208	9024	200	90ZD	9020	902D	9075	80ZG

TABLE 5 (cont). CUMULATIVE MASS DATA FOR ALL CORE SAMPLES COLLECTED DURING PILOT PROJECT

		leydotal	BZ	TOL	ETBZ	PXYL	MXYL	OXYL	MESIT	PSCU	TMB	BTEX	BTEXTMB	JP-4
Samble ID	Date	(ft)	(g/m²)	(g/m²)										
									:					
80ZH	Aug-94	5.5	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<10
80ZI	Aug-94	5.0	0.002	0.015	<0.001	0:030	0.014	0.017	5.564	0.134	2.270	0.08	8.04	1870
80ZJ	Aug-94	5.0	0.002	0.129	4.119	10.272	20.578	8.540	32.820	75.348	29.200	43.60	181.00	8340
80ZK	May-95	6.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.010	0.002	<0.001	<0.01	0.02	220
80ZL	May-95		<0.001	1.284	12.278	20.445	42.438	25.094	20.401	43.180	16.000	102.00	181.00	2660
80ZM	May-95	7.0	990.0	0.043	18.403	23.203	49.084	0.203	22.194	55.349	17.200	91.00	186.00	8390
NZ08	May-95		<0.001	9000	0.331	1.083	0.412	0.770	6.670	15.323	6.130	2.60	30.70	3990
80ZO	May-95		0.001	0.054	0.863	2.100	4.024	2.175	13.560	31.947	11.900	9.22	66.70	4750
80ZP	May-95		<0.001	0.007	0.021	0.314	0.148	0.086	10.155	16.293	5.890	0.58	32.90	4600
80ZO	May-95		<0.001	<0.001	0.001	0.012	<0.001	0.001	0.105	8.921	1.933	0.01	10.97	4630
80ZB	May-95		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.349	0.127	<0.01	0.48	2590
80ZS	May-95		<0.001	0.003	<0.001	0.014	0.011	0.002	0.037	0.855	0.405	0.03	1.33	2070
80ZT	May-95		<0.001	<0.001	0.003	0.025	0.033	0.016	1.892	0.679	1.055	0.08	3.70	4220
80ZU	May-95		<0.001	<0.001	0.065	0.228	0.392	0.423	11.929	3.850	3.053	1.11	19.90	4030
80ZV	May-95		<0.001	0.005	<0.001	0.003	0.004	<0.001	4.610	0.651	0.636	0.01	5.91	3090
80ZW	May-95		<0.001	0.005	0.00	0.033	0.023	0.015	3.540	0.340	0.498	0.08	4.46	4210
XZ08	May-95		<0.001	0.00	<0.001	<0.001	<0.001	<0.001	7.266	5.142	4.640	0.01	17.10	1500
80ZY	May-95		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	2.996	0.765	0.355	<0.01	4.12	3920
80ZZ	May-95	7.0	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.080	0.102	0.119	<0.01	0.30	0
80ZZA	May-95	7.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.065	0.012	0.027	<0.01	0.10	×10

Subsamples were taken from each of the core locations, generally representing the most contaminated interval, and analyzed for distribution of compound classes relative to JP-4 fresh fuel samples (Table 6). In general, weathering had reduced the aromatic and cycloalkane fractions by 3% and 4%, respectively. Core locations 80D and 80I were unusual in that the alkane fractions were significantly higher than those in the other cores. For location 80I, the high benzene concentrations in the soil and water, coupled with the extent of surface soil contamination, suggested that this may have resulted from another source, perhaps spillage from the surface transfer station. The last four cores in Table 6 had very low "JP-4" levels, and therefore the distribution of compound classes may not be valid. However, core analyses revealed that there may be deeper plumes which probably originated from other upgradient locations. This is shown by high levels of benzene and toluene, but not alkanes, in the soil 9 feet below surface at location 80H (Appendix A), and is substantiated by the geoprobe water quality information from that location as well. For example, the weighted average core concentration of toluene in cores 80H8-80H11, covering the depth interval 7.2-8.7 feet below ground surface, was 0.208 mg/kg (Appendix A). Assuming a bulk density of 1830 kg/m³ and a porosity of 30%, the expected aqueous concentration of toluene, excluding sorption, would be 1270 μg/L. The geoprobe location 80H-2, screened from 7.2-8.7 feet below ground surface, yielded water with a toluene concentration of 940 μg/L, which is within 30% of the calculated value.

Analysis of the JP-4 jet fuel reveals that BTEXTMB makes up about 45% of the total aromatics, and the total aromatics make up about 17% of the JP-4. In contrast, based on analysis of BTEXTMB concentrations in the core samples listed in Table 6, BTEXTMB makes up about 2-36% of the total aromatics in the weathered cores, with the higher percentages closer to the spill area. The total aromatics make up about 14% of the residual JP-4. In fresh JP-4 jet fuel, the weight percentages of the target compounds were 1.18% for benzene, 2.43% for toluene, 0.47% for ethylbenzene, 0.47% for p-xylene, 1.61% for m-xylene, 0.93% for o-xylene, 0.60% for mesitylene, 0.88% for pseudocumene, and 0.49% for 1,2,3-trimethylbenzene. In general, the mass ratios of benzene and toluene to combined BTEXTMB were lower than expected, and in several cases o-xylene mass ratios were also very low (Appendix A). The benzene and toluene losses may have been due in part to the earlier remediation study using hydrogen peroxide, but the selective loss of o-xylene relative to the other xylene isomers is puzzling. Other studies have shown that toluene and o-xylene are rapidly degraded in anaerobic zones where iron reduction and sulfate reduction predominate (Borden et al, 1995), and it is possible that these compounds were being degraded under natural conditions in certain locations. However, this was not uniform, and other locations at the site (eg, 80D, 80F, 80G, 80L) showed the expected ratio of o-xylene to the other target compounds. These weight percentages show that the JP-4 jet fuel is weathered, and can be used to estimate total nitrate demand. Assuming that the treatment area contains 2860 kg of JP-4, 14% of which are aromatics, this yields 400 kg of aromatics. A conservative estimate would be

TABLE 6. DISTRIBUTION OF COMPOUND CLASSES IN JP-4 JET FUEL AND CONTAMINATED CORES, EGLIN AFB

	A 11	Avenation	Cycloolkopes	Alkanes	PAHs	Other	JP-4
Core	•		Cycloalkanes	(wt %)	(wt %)	(wt %)	(mg/kg)
	(wt %)	(wt %)	(wt %)		4.61	0.93	(1119/119/
JP-4	57.79°	15.89	18.87	1.90			-
JP-4	59.30	17.70	17.50	0.94	3.65	0.95	
Mean	58.55	16.80	18.19	1.42	4.13	0.94	
Stdev	1.07	1.28	0.97	0.68	0.68	0.01	1050
80A12	63.06	14.14	14.24	1.05	4.41	3.03	1850
80B12	69.16	9.19	16.21	0.36	2.69	2.27	375
80C3	67.77	12.13	13.51	0.32	4.84	1.34	926
80 E15	60.99	13.27	20.59	0.36	3.85	0.98	3270
80F15	62.16	18.13	10.93	1.74	5.50	1.47	2570
80G3	66.50	13.18	11.41	3.19	4.08	1.59	4230
80N2	61.43	17.23	11.32	0.99	7.42	1.54	3370
80013	60.16	12.34	15.31	1.62	8.96	1.61	10700
80P15	62.69	14.02	12.34	2.52	7.30	1.13	2350
80R9	60.42	13.27	14.58	1.50	8.36	1.87	7720
8059	61.64	15.41	11.99	1.29	7.68	2.00	11700
80U2	66.50	12.80	15.12	0.00	2.02	3.49	15500
80V1	68.70	13.70	12.00	0.74	0.21	4.66	3340
Mean	63.94	13.75	13.81	1.21	5.18	2.08	
Stdev	3.29	2.26	2.67	0.92	2.66	1.06	
80D12	75.10	9.97	9.38	0.68	2.60	2.16	595
8014	82.96	1.71	11.61	0.97	1.19	1.56	2010
80H7	0.00	100.00	0.00	0.00	0.00	0.00	12
80J6	93.80	0.00	6.25	0.00	0.00	0.00	<10
	1	59.81	0.00	0.00	11.34	13.44	18
80L3	12.77	18.20	0.00	0.00	81.80		<10
80M2	0.00	10.20	0.00	0.00			

that 20% of the aromatics can be degraded under denitrifying conditions, leading to a nitrate demand of 80 kg NO₃-N for both treatment cells, assuming complete denitrification (Hutchins et al, 1991b). Actually, other sinks for nitrate would (and ultimately did) lead to increased nitrate consumption beyond that afforded by the labile aromatic hydrocarbons alone.

4. Laboratory Column Testing

Previous operation of the hydrogen peroxide pilot demonstration project had caused a drastic reduction in the aquifer's hydraulic conductivity, which inhibited delivery of the nutrients and hydrogen peroxide to the subsurface and thus limited its efficacy. Hinchee et al (1989) attributed the clogging to iron and/or phosphate precipitation, despite laboratory data showing that the nutrient solution formed no precipitate when combined with the soil. Because the same problems could adversely affect the nitrate-based pilot demonstration project, the following laboratory column tests were undertaken to identify the cause of the reduced hydraulic conductivity and recommend a treatment plan. These tests were conducted by Mark Wiesner and Mae Grant at Rice University, and the results have been published elsewhere (Wiesner et al, 1996). The following is a summary of their results.

a. Media Characteristics

Uncontaminated background aquifer core material was collected 5.5-9.0 feet below ground surface at location 80K, using an anaerobic glovebox. Analysis of the uncontaminated soil yielded a silt content of 4.2% by weight, and the Rice University Automated Sediment Analyzer (RUASA) gave an average grain size of 350 μm . The silt contains clay particles as small as 0.65 μm , as measured by dynamic light scattering. Bulk density of the soil was 1.61 g/mL, determined from the dry mass of soil and its volume when saturated. The dry soil density was 2.62 g/mL, determined from the density of a suspension prepared by placing a known weight of oven dried soil in a 50-mL volumetric flask and filling the remaining volume with water. These experimentally-determined densities gave a porosity of 0.385 for the uncontaminated background aquifer material (Hillel, 1971).

Analyses were conducted to characterize raw ground water samples received from the site. The iron concentration in the raw water was measured using a HACH spectrophotometer after filtering through a 0.45-µm filter to remove the particulates; the total iron was 0.03 mg/L. No ferrous iron was detected in the filtered water. When the ground water was acidified with nitric acid to bring the pH down to 1.98, some of the iron in the soil was dissolved. After filtering the acidified sample through a 0.45-µm filter, measurements revealed a higher total iron concentration (1.01 mg/L) and a slight ferrous concentration (0.01 mg/L). Ground water from the remediation site appeared rather turbid, implying a high content of suspended clay particles about 0.5-2.0 µm in size. Column tests were conducted on raw water and

water that had been allowed to stand for 5 days to allow some of the larger particles to settle. Dynamic light scattering (DLS) experiments on the inlet water that had settled for 5 days detected particles as small as 0.3 μm and gave an average size of 0.61 μm . Measurements from a Coulter Multisizer gave a particle number concentration of 3.32 x 109/L and an average particle size of 0.77 μm , which was consistent with the DLS measurements. In contrast, the light scattering measurements on the raw water yielded an average size of 0.744 μm while the Coulter Multisizer gave an average of 0.84 μm with a number concentration of 8.6 x 109/L. Dynamic light scattering measurements found no particles in the effluents in both cases, strong evidence that all suspended particles in the inlet water were retained in the aquifer soil within the column. To simulate the nutrient solution "Restore® 375", a stock salt mixture was prepared containing ammonium and phosphate salts according to the referenced weight fractions of the major ions (Hinchee et al., 1989). Trisodium tripolyphosphate was replaced by monosodium phosphate. The final stock salt mixture contained 50% NH₄Cl, 20% Na₂HPO₄, and 30% NaH₂PO₄.

b. Experimental Apparatus and Procedures

A laboratory apparatus was designed to investigate the cause of reduced permeability in the sandy aquifer. The apparatus consists of two reservoirs, two magnetic stirrers, an Ismatec® pump, a flowmeter, a pressure sensor (range 0-60 psi), and a Spectrum® chromatography column with cross-sectional area of 4.91 cm² and adjustable height. The column was prepared by placing 15 to 20 mL of water in the column, transferring the saturated soil into the column using a spatula, and gently tapping on the column wall after each addition of sand. This ensured a dense air-free packing. A column was usually packed to about 4 cm for fast flow and 8 cm for low rates. Each experiment was repeated for reproducibility.

A few experiments were conducted at a flow rate of 1 mL/minute (minimum achievable with the pump) giving a linear velocity of 3.4 x 10-3 cm/sec, which is an order of magnitude higher than the estimated ground water flow rate of 1.7 to 3.3 x 10-4 cm/sec (Hinchee et al, 1989). Since the objective was to identify the cause of changes in permeability at the injection wells, most experiments were performed at a flow rate corresponding to the 5-10 gpm specified at the injection wells. For a 6-inch by 8-foot injection well, a 5 gpm injection rate yielded a linear velocity of 2.7 x 10-2 cm/sec. Numerous column tests were conducted at 10 ml/minute, giving an equivalent velocity of 3.4 x 10-2 cm/sec, which is on the same order of magnitude as the injection velocity. In addition, the experiments were conducted for inlet waters of different composition in order to identify the effect of each component on the permeability of the aquifer soil in a packed column.

c. Results and Discussion

(1) Raw Ground water. The ground water was placed on a stirring

plate to keep the particulates in suspension while being pumped through the packed column. Within a few minutes, K dropped to 0.2 darcies as a result of particle migration, but fell by another order of magnitude to 0.02 darcies within an hour. The experiment was stopped because the pressure drop exceeded the limit of the pressure sensor. Later, ground water was allowed to sit without stirring for one day before passing through a packed column. The raw water was then allowed to sit undisturbed for another 4 days before column testing. Repeated measurements were performed to ensure reproducibility for each one of the three different inlet conditions. The hydraulic conductivity was reduced in the same manner for all three cases, suggesting that clay particles smaller than 1 μm , which do not settle easily, are solely responsible for the reduction in permeability. Migration or rearrangement of the clay particles in the soil accounts for the initial decrease in the permeability of the packed bed. As more clay particles are introduced into the column in the feed stream and deposited inside the porous packing material, the permeability declines and requires higher energy to achieve the same flow rate. This result has been observed in deep bed filtration (O'Melia and Ali, 1978).

(2) Filtered Ground water. Filtering the ground water through 0.45-μm filters improved hydraulic conductivity significantly. While the raw water continued to plug the porous medium, reducing K by an order of magnitude, the filtered water achieved a steady-state permeability of about 0.15 darcy. We also investigated the effect of precipitation of calcium and/or iron phosphate salts in ground water or soil. The stock salt mixture was then added to the filtered ground water at the delivery concentration of 1000 mg/L and pH of 6.69. After the initial decline due to rearrangement of fines, data showed no further reduction in permeability compared to that using filtered ground water. This strongly indicates that any interaction that might occur between the nutrient solution and the soil in the column does not affect the permeability of the sandy porous medium. Finally, FeCl₃ was added to the filtered ground water containing nutrient solution to make a Fe3+ concentration of 10 mg/L. White flocs of Fe(H₂PO₄)₃ formed in the reservoir, giving a pH of 6.48. Filtered ground water was pumped through the column for 1 hour before switching to the solution with added nutrient and Fe3+; no significant loss in hydraulic conductivity was detected. Measurements using the "loaded" solution showed the same permeability as the filtered ground water.

d. Conclusions

These laboratory column tests demonstrated that clay particles less than 1 μ m in size, either in the soil or in the ground water, plugged up the pores much more rapidly than those of iron and iron phosphate precipitates. Therefore, use and recirculation of the shallow ground water would require an above-ground treatment unit capable of removing clay particles in the submicron range, such as a membrane filtration device or a conventional packed bed filter. Based on this analysis, it was

recommended that the water used for recharge should be obtained from a different source and should not be recirculated.

5. Infiltration Testing and Modeling

The previous hydrogen peroxide pilot demonstration project used several different methods for applying nutrients and peroxide to the subsurface, including spray application, infiltration galleries, and subsurface injection (Hinchee et al, 1989). Application of solution through sprinklers was chosen as the distribution method for the current project on nitrate-based bioremediation. This method offers a number of potential advantages over injection wells and infiltration galleries. Because surface application systems primarily employ sprinklers or soaker hoses, equipment costs and installation costs are low. No drilling or excavation is required as in the cases of injection wells and infiltration galleries, and operational problems in surface application systems can be easily detected and corrected because the entire system is above ground. In addition, oxygen can be incorporated at low concentrations into the recharge without additional pumps or compressors. One of the primary advantages of surface application is that, since fuel spills are relatively narrow in depth but can cover a wide area, the infiltrated water will have a shorter flowpath through the contaminated interval, thus maximizing mass transfer of electron acceptors or other components. However, design of a surface application system does require significant characterization of site hydrogeology as well as a quantitative understanding of site specific infiltration and water table mounding characteristics. In addition, even surface distribution of sprinkler recharge is required not only to build the water table mound, but to avoid "dead zones" of stagnant subsurface water which counteract overall efficiency of remediation.

The following studies were therefore conducted to evaluate the feasibility of surface application as a means of supplying nitrate for the pilot-scale demonstration project. Specifically, the objectives of these tests were to: (1) model the formation and dissipation of a water table mound and the vertical migration of a conservative tracer during a field-scale infiltration and tracer experiment at the site, and (2) design a hydraulic scheme for both the formation of a ground water mound and the delivery of nitrate for the pilot project. These studies were carried out by Howard Sweed and Phil Bedient of Rice University, and the results have been published elsewhere (Sweed et al, 1996). The following is a brief summary of their work.

a. Infiltration/Tracer Test Design

Field-scale experiments were conducted in July 1993 to determine the suitability of surface application for the pilot project. An infiltration test was designed to characterize the infiltration characteristics of the site and to provide site-specific information about the formation of ground water mounds in response to surface application. A vertical tracer test was also conducted simultaneously to characterize

the vertical transport characteristics of the system. The infiltration test and vertical tracer test were conducted at two test plots measuring 15 feet x 10 feet (Figure 6). Each test was established around five piezometers which were used for collection of samples for both water quality and water table elevation data. Each test plot also contained two multilevel discrete cluster wells. Each of the cluster wells was constructed of 1/4-inch polypropylene tubing with a 2.5-inch, 80-mesh screen and installed in separate boreholes 0.5 feet apart using a geoprobe. The four screens were located at 1-foot intervals ranging from 1 foot above to 2 feet below the ambient water table (Figure 7).

The objectives of the infiltration test were to qualitatively observe infiltration behavior and to quantify the formation and dissipation of the ground water mound formed in response to the infiltration. Because results from the March 1993 cone penetrometer investigation identified low permeability material at the ground surface in several locations, the initial experimental design employed a small application rate to limit ponding and runoff. However, later examination of the surface soils in the test plot locations indicated higher permeabilities. After applying the design flow rate of 4.5 inch/day through soaker hoses alone for 17 hours, the soil within the test plots remained dry and no mound had formed. Consequently, the application rate was increased to 46 inch/day through the use of sprinklers, until a satisfactory mound had formed. Subsequently, sprinklers were removed and application of 10 inch/day from the soaker hoses continued for the duration of the experiment. The effective average application rate over the duration of the experiment was 36 inch/day.

The conservative tracer test simulated vertical transport of nitrate under field conditions through the use of sodium bromide. Specifically, the tracer experiment was designed to provide information on the travel time from the surface to the contaminated zone, the retention time of the tracer within the contaminated interval, and the depth to which chemicals applied at the surface would reach. Surface application of the tracer began immediately after the sprinklers were removed. The design flow rate of bromide stock solution into the bulk flow was 1.2 mL/minute, but was increased to 20 mL/minute to maintain the desired application concentration of 80 mg/L Br when the water application rate was increased.

b. Infiltration Test Results and Modeling

Infiltration of unamended tap water resulted in the formation of ground water mounds beneath both test plots. The water table increased by a maximum of 1.1 feet at Test Plot 1 and 0.5 feet at Test Plot 2. As expected, the rate of mound formation and dissipation at the field scale was strongly related to the surface application rate. Test Plot 1 exhibits very uniform mounding behavior; Test Plot 2 results indicate slightly more variability, although the general trends at the two locations are similar. The difference in maximum mound heights indicates a difference in hydraulic conductivity between the test plots. Modeling of the hydraulics of mound formation and

Figure 6. Location of Infiltration Test Cells for Hydraulic Characterization Prior to Remediation.

Figure 7. Cross-Section of Infiltration Test Cell #2, Showing Position of Piezometers and Cluster Wells Relative to Water Table and Contaminant Distribution.

dissipation with the two-dimensional ground water numerical model BIOPLUME II (Rifai et al, 1987) was conducted to achieve three objectives: (1) to calibrate the model to the results obtained during the infiltration test, (2) to estimate the hydrogeological parameters necessary for predictive modeling at the site, and (3) to predict ground water mounding response to various scenarios for the larger pilot-scale treatment cells to be used in the nitrate-based pilot test. Although BIOPLUME II simulates ground water flow in a confined aquifer, the applicability of the model to a water-table mounding scenario was validated through good agreement of the BIOPLUME II predictions with predictions based on the classic mounding analysis developed by Hantush (1967).

The model was calibrated to the mounding data from both Test Plot 1 and Test Plot 2. Hydraulic conductivities of 2 x 10-2 cm/sec and 4.5 x 10-2 cm/sec were used for Test Plots 1 and 2, respectively, and the respective hydraulic gradients were 0.013 and 0.001 feet/feet. The saturated thickness, storativity, and porosity were 5 feet, 0.20, and 0.385, respectively. The surface application was modeled in four time periods to simulate the different schemes implemented during the experiment. These schemes involved the use of both sprinklers and soaker hoses; sprinklers were modeled as injection wells while soaker hoses were simulated as diffuse recharge. The formation of the mound was observed as an increase in hydraulic head, since no vertical dimension exists in the 2-D BIOPLUME II model. Good agreement was obtained in the calibration between the observed and predicted mounding data; the maximum peak of 1.12 feet at Test Plot 1 predicted by the model agrees well with the maximum of 1.1 feet observed in the field in piezometer 1P1 (Sweed et al, 1996). Similarly, the predicted maximum mound of 0.49 feet corresponds to the maximum observed water table rise of 0.47 feet in piezometer 2P1.

Modeling of the observed response of the water table during the test plot infiltration test provided estimates of the site-specific hydrogeological parameters necessary for predictive modeling of the pilot-scale system. Predictive modeling runs were used to anticipate the extent of water-table mounding under a variety of surface application schemes. The simulation of surface application to the proposed pilot treatment cells required only 1 time period, because a constant application rate was assumed. Because subsurface heterogeneities were observed across the pilot test areas, a number of hydrogeologic schemes were modeled to determine the optimal hydraulic design. Based on the existing water table and the vertical distribution of contaminants, a mound of 2.5 feet was considered to be necessary for the pilot-scale system to inundate the contaminated intervals of the unsaturated zone and create a sufficient hydraulic gradient to force the nitrate into the subsurface. The modeling indicated that, because the pilot test will cover a much larger area (100 feet x 200 feet) than the infiltration test plots, this water table rise will occur at significantly lower application rates than those used during the infiltration experiment. Based on the predictive runs (data not shown), a surface application rate of 2.88 inch/day (25 gpm across the two pilot treatment cells) was chosen as the design flow rate to achieve the

desired mound.

c. Tracer Test

The ground water mounds formed at the test plots provided favorable hydraulic conditions for vertical transport of the sodium bromide tracer. The following analysis focused on the cluster wells at the outside edges of the test plots. At Cluster Well 1P4, the front reached CL1 very shortly after tracer application began and proceeded through the other multilevel ports, in order, reaching the deepest monitoring point, CL4, after approximately 20 hours (Sweed et al, 1996). Decreasing concentrations of bromide were detected in reverse order following the cessation of tracer application. A similar downward migration pattern was observed at Cluster Well 2P4. The observed lag between the breakthrough at CL2 and CL3 and between the breakthrough at CL3 and CL4 is related to the hydraulic retention time (HRT) of the system. This retention time represents an experimental determination of the residence time of bromide within the contaminated zone and an estimate of the time available for denitrifying organisms to consume nitrate during the bioremediation experiment. For the 3-foot contaminated interval, the HRT was estimated to be 9 hours at Test Plot 1 and 27 hours at Test Plot 2. This discrepancy is most likely caused by subsurface heterogeneities. The smaller water table mound at Test Plot 2, caused by the higher hydraulic conductivity, creates a smaller vertical driving force, and thus the travel time out of the zone is greater.

d. Conclusions

This study has demonstrated the site characterization and computer modeling necessary for the development and design of the surface application system. The test plot-scale infiltration test provided qualitative and quantitative information about site-specific infiltration and water table mounding characteristics. At the test site, 36 inch/day was applied via surface application to the two test cells; water table mounds of 1.1 feet and 0.5 feet were observed. A vertical tracer test demonstrated that hydraulic conditions were favorable for transport of chemicals from the surface to the contaminated interval of the subsurface under these conditions. These data suggested that similar operation of the pilot project at 25 gpm across the two pilot treatment cells would create the vertical gradient necessary to drive the electron acceptor to the contaminated zone.

6. Microbial Characterization

Measurements of microbial activity are essential in assessing the feasibility of bioremediation. Biofeasibility usually is assessed by determining the biodegradation potential of contaminants in laboratory treatability studies, which is often coupled with estimating microbial numbers. Laboratory tests are conducted to determine the potential for contaminant biodegradation and nutrient amendments that

will enhance biodegradation rates. Microbial counts can be used as a preliminary indicator of microbial activity before conducting more expensive treatability tests. However, assessing biofeasibility using determinations of viable counts of microorganisms alone may lead to erroneous conclusions about biofeasibility. Research has shown that viable counts may not represent the microbial population that is being sampled (Fry and Zia, 1982; Brock, 1987).

The site for the pilot demonstration project was therefore characterized to assess the feasibility of nitrate-enhanced bioremediation. The microbial ecology of the site and the biodegradation potential of BTEXTMB was determined. The microbial ecology was characterized by Michele Thomas, Cristin Bruce, Virginia Gordy, and others at Rice University, and has been published in detail elsewhere (Thomas et al, 1995; Thomas et al, 1997). The following section is a brief summary of their work, and includes enumeration of viable and direct counts, cell counts by phospholipid fatty acid (PLFA) determination, the most probable number (MPN) of total denitrifiers, MPN of JP-4 degrading microorganisms with nitrate as the electron acceptor, and aerobic and anaerobic protozoa. Biodegradation potential, as evaluated through treatability studies, is covered in Section IIC.

a. Methods

Subsurface material was collected at three depths from boreholes adjacent to Locations 80A, 80B, 80D, 80E, 80J, and 80K (Figure 5), and included the proposed area to be treated with nitrate (80AA, 80BA, 80DA and 80EB), a site downgradient of the contamination (80JB), and a site located outside the zone of residual JP-4 contamination and used as a background site (80KB) as shown in Figure 8. Core samples were collected aseptically under anaerobic conditions using a field glovebox as described previously (Leach et al, 1989). Samples were kept on ice in the field and shipped to RSKERL, where split samples were obtained under aseptic, anaerobic conditions for treatability tests at RSKERL. The cores were then shipped on ice to Rice University and stored at 5° C until used. Texture analysis of the subsurface materials was conducted by Law Engineering, Houston, TX. Chemical and biochemical analyses of the cores were conducted at RSKERL by ManTech Environmental Technology, using RSKERL standard operating procedures. These analyses included pH, ammonia-nitrogen (NH₄-N), combined nitrate/nitrite-nitrogen (NO₃/NO₂-N), total Kjeldahl nitrogen (TKN), orthophosphate (o-PO₄), total phosphate (tot-PO₄), total organic carbon (TOC), and phospholipid fatty acids (PLFA). The concentrations of BTEXTMB and JP-4 in the subsurface materials were determined using gas chromatography as described previously.

Microbial counts were conducted at Rice University. Serial dilutions of each sample were prepared in triplicate under aerobic conditions by aseptically adding 10 grams of subsurface material to dilution bottles that contained 95 mL of

Figure 8. Location of Core Samples Taken for Microbial Characterization Prior to Remediation. Also Shown are Cumulative Masses of BTEXTMB and JP-4 for Given Locations.

0.1% sodium pyrophosphate. The bottles were shaken on a wrist action shaker for 1 hour, afterwhich the rest of the dilution series was prepared using 0.1% sodium pyrophosphate as the diluent. This dilution series was used to determine the number of total heterotrophs, JP-4 degraders, oligotrophs, total denitrifiers, JP-4 degraders that use nitrate as the terminal electron acceptor, and aerobic and anaerobic protozoa in each sample. Acridine orange direct counts were determined on dilutions prepared by adding 2.5 grams of subsurface material in 22.5 mL of 0.1% sodium pyrophosphate and shaking for 1 hour. All plates and incubation vessels used to determine microbial numbers were incubated at room temperature (~25°C) in the dark.

Using the plate count technique, the number of total heterotrophs, JP-4 degraders, and oligotrophs that grew aerobically on R2A medium (Difco Industries, Detroit, MI), a mineral salts medium incubated in the presence of JP-4 vapors, and a mineral salts medium incubated without JP-4 vapors, respectively, was determined (Thomas et al, 1995). Although the proposed remedial treatment is anaerobic, counts of aerobic microorganisms are important; most denitrifiers are aerobic organisms that switch to anaerobic respiration in the absence of oxygen (Alexander, 1977). Colonies growing on R2A medium were counted after 1.5 to 2 weeks of incubation, whereas colonies growing on the other media were counted after 4 weeks of incubation. The MPN of total denitrifiers was determined using Nitrate Broth (Difco Industries).

The MPN of organisms that degrade JP-4 using nitrate as the electron acceptor was determined by first sterilizing 40-mL vials containing 20 mL of mineral salts medium amended with 1 g/L KNO₃. Then, 200 µL of filter-sterilized JP-4 was added aseptically to the vials, afterwhich the vials were inoculated with serial dilutions of the samples and sealed with Teflon®-lined septa and open top screw caps. Vials prepared identically, except without JP-4, were used as controls to assess denitrification from metabolism of ambient organic carbon. Because the vials containing JP-4 were initially aerobic, any denitrification detected could result from metabolism of oxygenated intermediates of JP-4 biodegradation and/or JP-4. The MPN of denitrifiers and the number of JP-4 degraders that use nitrate as the terminal electron acceptor were determined after 3 and 6 weeks, respectively. Denitrification potential was determined colorimetrically by testing for the presence of nitrite with sulfanilic acid and N,N-dimethyl-1-naphthylamine (Blazevic et al, 1973).

Direct counts of microorganisms were determined by epifluorescence microscopy (Wilson et al, 1983). The number of aerobic and anaerobic protozoa was determined (Sinclair and Ghiorse, 1987) using subsurface sediment or dilutions of the sediment. Plates containing the protozoan enrichments were incubated aerobically or anaerobically in an anaerobic glovebox. The aerobic enrichments were observed at 2, 4, 6, and 8 weeks. The anaerobic enrichments were observed every 3 weeks for 3 months for cysts or vegetative protozoa. The Student's *t*-test for equal or unequal variances was used to compare microbial numbers in contaminated and uncontaminated zones.

b. Results

Core samples were composed of fine to medium-grained sands. Except for sample 80JB2 (86% sand), all samples consisted of at least 92% sand with the remainder being silt. The cores were slightly acidic, with high organic nitrogen and low nitrate (Table 7). TOC values were generally low, even where there was residual fuel contamination. JP-4 fuel was not detected in subsurface material from either the 80JB or 80KB boreholes; however, this does not mean that these locations had not previously been influenced by contamination. Sample 80KB6, for example, was believed to have been influenced at one time by a soluble BTEXTMB plume from this or another source, since analysis of subsurface material just below this depth at Location 80K indicated the presence of BTEXTMB (Appendix A). Although sample 80KB6 had no detectable BTEXTMB based on core analysis, the detection limit of 0.01 mg BTEXTMB/kg subsurface material is not low enough to detect low concentrations of BTEXTMB in the water.

Aquifer sediments at the site contain variable, but generally high, numbers of denitrifying bacteria, many of which can grow using constituents or breakdown products of JP-4 as carbon sources (Table 8). The MPN of total denitrifiers ranged from 10^4 to 10^7 , about the same as that observed in JP-4-contaminated aquifer material from Traverse City, MI (Hutchins et al, 1991b). Viable counts ranged from below detection to log 6 and direct counts ranged from log 10^7 to 10^9 , which is within the range observed for other subsurface materials (Ghiorse and Wilson, 1988; Kampfer et al, 1991). Although the number of microorganisms growing on a mineral salts medium in the presence of JP-4 vapor (JP-4 degraders) or without JP-4 vapor (oligotrophs) were about the same in many samples, the size of many colonies in the former were larger. Those microorganisms producing large colonies most likely were growing on the JP-4 whereas those producing small colonies may have grown on carbon impurities in the medium. Cell numbers estimated by phospholipid fatty acid analysis were usually less than, but positively correlated (α = 0.05) to direct counts (Table 8).

Both aerobic and anaerobic protozoa were detected, suggesting that cropping of bacteria may occur during nitrate-enhanced bioremediation. Protozoa would limit the population size of the bacteria, thereby preventing biomass from clogging the treatment zone; however, cropping may decrease the rate of bioremediation by decreasing the number of hydrocarbon degrading microorganisms. Aerobic protozoa ranged from below detection to 106, which is similar to that found at a site contaminated with aviation gasoline (Sinclair et al, 1993) but higher than that encountered at a site contaminated with coal tar (Madsen et al, 1991). Of interest was the detection of anaerobic protozoa at numbers equal to or less than 103/gram dry weight. A flaggelate determined to be a facultative anaerobe was isolated from sample

TABLE 7. CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 3/93, PRIOR TO START OF REMEDIATION

	Lo int	Hi int	Lo int Hi int Top int		i i		N-,HN	NO3/NO2-N	TKN	0-PO ₄ -P	tot-PO ₄ -P	100	BTEXTMB	JP-4	PLFA
(ft) (ft)	Ħ))	(ft MSL)	(ft MSL)	€	(pH units)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(nM/g)
		7	7.2	α	-	280	40	<0.5	132.0	<0.5	47.2	0.123	0.061	214	2.97
		י ע זי ת	. 6	7.7	: ;	6.05	3.6	<0.5	103.0	<0.5	25.6	0.055	32.500	1290	1.37
4.5		5.6	5.5	9.9	<u> </u>	6.28	1.4	<0.5	64.2	<0.5	10.8	0.038	5.670	276	0.22
0		00	8.7	66	1.2	5.61	1 .	<0.5	351.0	3.37	293.0	0.556	0.023	40	3.50
200		3.4	7.5	8.7		5.75	2.2	<0.5	197.0	2.49	195.0	0.260	0.597	355	4.20
4.5		5.6	5.3	6.4	7	6.38	4.0	<0.5	84.0	1.05	32.2	0.091	0.245	×10	0.65
2.5		Ω Ω	89	8.6	0.	4.94	6.0	<0.5	191.0	2.96	193.0	0.266	0.051	35	3.54
4.0		5.0	7.3	8.3	1.0	5.82	5.6	<0.5	9.66	99.0	46.6	0.052	0.595	377	1.01
0.9		6.8	5.5	6.3	0.8	6.21	<0.5	<0.5	75.6	0.74	19.8	0.00	0.043	55	0.55
3.2		4.2	8.1	9.1	1.0	5.26	9.0	<0.5	161.0	<0.5	34.6	0.114	1.770	1160	1.26
4.2		5.2	7.1	8.1	1.0	5.35	<0.5	<0.5	137.0	<0.5	43.6	0.103	31.000	1600	0.93
6.5		7.5	4.8	5.8	1.0	7.02	<0.5	<0.5	75.4	<0.5	10.8	0.007	0.779	ک	0.21
2.5		3.5	9.9	7.6	1.0	6.46	6.0	<0.5	144.0	1.86	58.6	0.169	0.691	<10	0.30
35		4.5	5.6	9.9	0.1	6.93	6.2	<0.5	121.0	3.06	58.4	0.111	0.280	<10	0.41
9.0		7.0	3.1	4.1	1.0	6.49	13.7	<0.5	147.0	3.84	121.0	0.077	Y Y	Y Y	60.0
3.2		4.4	89	9.3	1.2	5.85	6.0	<0.5	92.4	<0.5	49.4	0.040	<0.001	×10	0.35
4.4		5.5	7.0	8.1	7:	98.9	9.0	<0.5	71.4	<0.5	15.2	0.016	<0.001	<10	0.18
5.5		6.7	5.8	7.0	1.2	7.25	<0.5	<0.5	54.2	<0.5	7.0	0.005	<0.001	<10	90.0

* Core Locations 80AA, 80BA. 80DA, and 80EB were in areas still containing JP-4. Locations 80JB and 80KB were downgraient and upgradient, respectively.

TABLE 8. NUMBERS OF DIFFERENT TYPES OF MICROORGANISMS IN EGLIN AFB CORES PRIOR TO PILOT DEMONSTRATION PROJECT, COLLECTED 3/93

	Low	High	Top	Bot			Aerobic Plate Counts		Cell Count by	Cell Count by
Core	Intrvl		Interval	Interval	Int	Total Hetrotrophs	JP-4 Degraders	Oligotrophs	PLFA Analysis	Direct Count
Sample*		(ft)	(ft MSL)		(ft)	Log cells/g (SD)	Log cells/g (SD)	Log cells/g (SD)	Log cells/g	Log cells/g (SD)
	(ft)	117	(IL MISE)	(IL MOL)	(11)	Log cellarg (OD)	Log contrg (CD)	209 00:00 9 (02)		
80AA2	2.3	3.4	7.7	8.8	1.1	6.7 (0.1)	6.6 (0.1)	6.6 (0.1)	8.5	9.0 (0.1)
	3.4	4.5	6.6	7.7	1.1	6.8 (0.2)	5.5 (0.1)	5.5 (0.2)	8.1	8.9 (0.1)
80AA1		5.6		6.6	1.1	4.7 (0.2)	2.4 (0.1)	<2.0	7.3	7.2 (2.3)
80AA7	4.5	5.0	5.5	0.0	,.,	4.7 (0.2)	2.4 (0.1)	~2.0	,.0	, . <u> </u>
80BA3	1.0	2.2	8.7	9.9	1.2	5.7 (0.1)	4.5 (0.1)	3.7 (0.1)	8.5	8.9 (0.2)
80BA2	2.2	3.4	7.5	8.7	1.2	6.0 (0.1)	4.4 (0.2)	3.9 (0.1)	8.6	9.1 (0.1)
80BA5	4.5	5.6	5.3	6.4	1.1	4.4 (0.1)	3.6 (0.1)	3.6 (0.1)	7.8	7.5 (2.4)
OUDAS	7.5	5.0	3.5			, (0,	(,	, ,		
80DA1	2.5	3.5	8.8	9.8	1.0	5.9 (0.0)	4.9 (0.1)	5.1 (0.1)	8.5	8.8 (0.1)
80DA5	4.0	5.0	7.3	8.3	1.0	5.9 (0.0)	3.8 (0.1)	3.4 (0.1)	8.0	8.5 (0.1)
80DA8	6.0	6.8	5.5	6.3	0.8	5.8 (0.1)	5.2 (0.1)	5.2 (0.1)	7.7	8.5 (0.2)
0007.0	""									
80EB2	3.2	4.2	8.1	9.1	1.0	6.8 (0.1)	5.7 (0.3)	6.2 (0.0)	8.1	8.4 (0.3)
80EB1	4.2	5.2	7.1	8.1	1.0	4.6 (0.1)	4.2 (0.1)	2.6 (1.9)	8.0	8.3 (0.4)
80EB5	6.5	7.5	4.8	5.8	1.0	5.6 (0.1)	5.7 (0.1)	5.8 (0.1)	7.3	8.4 (0.3)
00230	"					, ,			1	
80JB2	2.5	3.5	6.6	7.6	1.0	5.6 (0.1)	3.3 (0.1)	3.3 (0.1)	7.5	8.3 (0.3)
80JB1	3.5	4.5	5.6	6.6	1.0	6.6 (0.1)	6.3 (0.1)	6.3 (0.1)	7.6	8.3 (0.2)
80JB5	6.0	7.0	3.1	4.1	1.0	4.8 (0.1)	4.2 (0.1)	4.2 (0.0)	7.0	8.1 (0.2)
00000	""			,		ì í				
80KB2	3.2	4.4	8.1	9.3	1.2	5.8 (0.1)	4.2 (0.1)	4.2 (0.1)	7.6	8.5 (0.2)
80KB1	4.4	5.5	7.0	8.1	1.1	5.2 (0.0)	4.4 (0.0)	4.9 (0.1)	7.3	7.8 (1.5)
80KB6	5.5	6.7	5.8	7.0	1.2	5.9 (0.2)	3.5 (0.1)	3.2 (0.1)	6.8	8.1 (0.4)
Core	Low	High		Bot			Denitrifier Cell Counts			ozoa**
Core Sample	Low Intrvi	Intrvi	Interval	Interval	Int	Total	JP-4	No. JP-4	Aerobic	Anaerobic
	1	-	Interval		Int (ft)	Total Log MPN/g (SD)				
Sample	Intrvi (ft)	Intrvi (ft)	Interval (ft MSL)	Interval (ft MSL)	(ft)	Log MPN/g (SD)	JP-4 Log MPN/g (SD)	No. JP-4 Log MPN/g (SD)	Aerobic Log cells/g (SD)	Anaerobic Log cells/g (SD)
Sample 80AA2	Intrvi (ft) 2.3	Intrvi (ft)	Interval (ft MSL) 7.7	Interval (ft MSL) 8.8	(ft) 1.1	Log MPN/g (SD) 7.1 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0)	Aerobic Log cells/g (SD) 4.4 (0.2)	Anaerobic Log cells/g (SD) 0.8 (0.2)
Sample 80AA2 80AA1	(ft) 2.3 3.4	IntrvI (ft) 3.4 4.5	Interval (ft MSL) 7.7 6.6	Interval (ft MSL) 8.8 7.7	(ft) 1.1 1.1	7.1 (0.4) 7.2 (0.6)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1)
Sample 80AA2	Intrvi (ft) 2.3	Intrvi (ft)	Interval (ft MSL) 7.7	Interval (ft MSL) 8.8	(ft) 1.1	Log MPN/g (SD) 7.1 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0)	Aerobic Log cells/g (SD) 4.4 (0.2)	Anaerobic Log cells/g (SD) 0.8 (0.2)
80AA2 80AA1 80AA7	2.3 3.4 4.5	3.4 4.5 5.6	fnterval (ft MSL) 7.7 6.6 5.5	Interval (ft MSL) 8.8 7.7 6.6	(ft) 1.1 1.1 1.1	7.1 (0.4) 7.2 (0.6) 4.2 (0.2)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0)
80AA2 80AA1 80AA7 80BA3	2.3 3.4 4.5	Intrvi (ft) 3.4 4.5 5.6	7.7 6.6 5.5	Interval (ft MSL) 8.8 7.7 6.6	(ft) 1.1 1.1 1.1 1.2	7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4)
80AA2 80AA1 80AA7 80BA3 80BA2	(ft) 2.3 3.4 4.5 1.0 2.2	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4	7.7 6.6 5.5 8.7 7.5	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7	(ft) 1.1 1.1 1.1 1.2 1.2	7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1)	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4)
80AA2 80AA1 80AA7 80BA3	2.3 3.4 4.5	Intrvi (ft) 3.4 4.5 5.6	7.7 6.6 5.5	Interval (ft MSL) 8.8 7.7 6.6	(ft) 1.1 1.1 1.1 1.2	7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5	1ntrvl (ft) 2.3 3.4 4.5 1.0 2.2 4.5	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4	7.7 6.6 5.5 8.7 7.5 5.3	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7	(ft) 1.1 1.1 1.1 1.2 1.2	7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1)	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5	3.4 4.5 5.6 2.2 3.4 5.6	7.7 6.6 5.5 8.7 7.5 5.3	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4	(ft) 1.1 1.1 1.2 1.2 1.1	7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5	7.7 6.6 5.5 8.7 7.5 5.3	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4	(ft) 1.1 1.1 1.2 1.2 1.1	1.0 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5	1ntrvi (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8	7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3	8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 1.0	1.0.4 (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2)	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0	7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3	8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 1.0	1.0 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2)	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2	1nterval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3	1.1 1.1 1.1 1.2 1.2 1.1 1.0 0.8	1.0 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0	Intrvi (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8	Interval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5	8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2	IntrvI (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 7.5	Interval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8	1ntrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2	IntrvI (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2 7.5 3.5	Interval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5	Intrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5	IntrvI (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 7.5 3.5 4.5	Interval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8 7.6 6.6	(ft) 1.1 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0) 7.1 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3) 6.0 (0.4)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7) 2.5 (0.2)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2) <0, 0.7, 1.0
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5	Intrvi (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5 2.5	IntrvI (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2 7.5 3.5	Interval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8 6.6	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5	1.0 (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5 2.5 3.5 6.0	IntrvI (ft) 3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 7.5 3.5 4.5 7.0	1nterval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8 6.6 5.6 3.1	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8 7.6 6.6 4.1	(ft) 1.1 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0) 7.1 (0.4) 4.4 (0.2)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3) 6.0 (0.4) 3.0 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7) 2.5 (0.2) 2.8 (0.4)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2) <0, 0.7, 1.0 <0.0, <0, 1.4
80AA2 80AA1 80AA7 80BA3 80BA5 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5 80JB2 80JB1 80JB5	1.0 (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5 2.5 3.5 6.0 3.2 3.2	3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2 7.5 4.5 7.0 4.4	1nterval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8 6.6 5.6 3.1	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8 7.6 6.6 4.1	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0) 7.1 (0.4) 4.4 (0.2) 4.8 (0.2)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3) 6.0 (0.4) 3.0 (0.2) 0.9 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7) 2.5 (0.2) 2.8 (0.4) 3.2 (0.2)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2) <0, 0.7, 1.0 <0.0, <0, 1.4 1.4 (0.2)
80AA2 80AA1 80AA7 80BA3 80BA2 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5	1.0 (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5 2.5 3.5 6.0	3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2 7.5 7.0 4.4 4.5 5.5	1nterval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8 6.6 5.6 3.1	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8 7.6 6.6 4.1	(ft) 1.1 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0	Cog MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0) 7.1 (0.4) 4.4 (0.2) 4.8 (0.2) 5.7 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3) 6.0 (0.4) 3.0 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7) 2.5 (0.2) 2.8 (0.4)	Anaerobic Log cells/g (SD) 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2) <0, 0.7, 1.0 <0.0, <0, 1.4
80AA2 80AA1 80AA7 80BA3 80BA5 80BA5 80DA1 80DA5 80DA8 80EB2 80EB1 80EB5 80JB2 80JB1 80JB5	1.0 (ft) 2.3 3.4 4.5 1.0 2.2 4.5 2.5 4.0 6.0 3.2 4.2 6.5 2.5 3.5 6.0 3.2 3.2	3.4 4.5 5.6 2.2 3.4 5.6 3.5 5.0 6.8 4.2 5.2 7.5 4.5 7.0 4.4 5.5	1nterval (ft MSL) 7.7 6.6 5.5 8.7 7.5 5.3 8.8 7.3 5.5 8.1 7.1 4.8 6.6 5.6 3.1	Interval (ft MSL) 8.8 7.7 6.6 9.9 8.7 6.4 9.8 8.3 6.3 9.1 8.1 5.8 7.6 6.6 4.1	(ft) 1.1 1.1 1.2 1.2 1.1 1.0 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1	1.0.4 MPN/g (SD) 7.1 (0.4) 7.2 (0.6) 4.2 (0.2) 5.2 (0.7) 6.0 (0.4) 4.3 (0.4) 6.5 (0.2) 6.1 (0.1) 6.3 (0.4) 6.6 (0.6) 4.4 (0.9) 6.4 (0.2) 4.7 (0.0) 7.1 (0.4) 4.4 (0.2) 4.8 (0.2) 5.7 (0.4)	JP-4 Log MPN/g (SD) 6.8 (0.2) 6.4 (0.1) 3.2 (0.5) 1.6 (0.3) 4.5 (0.2) 2.9 (0.3) 3.9 (0.2) 4.1 (1.2) 5.6 (0.3) 5.5 (0.9) 2.3 (0.5) 5.1 (0.3) 3.7 (0.3) 6.0 (0.4) 3.0 (0.2) 0.9 (0.2)	No. JP-4 Log MPN/g (SD) 3.4 (0.0) <1 <1 1.9 (0.5) 3.2 (0.1) <1 2.5, 2.9, <1 1.6 (0.2) <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Aerobic Log cells/g (SD) 4.4 (0.2) 3.0, <1, <1 2.9 (0.1) 6.2 (0.1) 5.8 (0.4) 2.9 (0.5) 5.7 (0.4) 6.0 (0.3) >4 2.3 (0.3) 2.7 (0.2) 3.5 (0.1) 3.6 (0.7) 2.5 (0.2) 2.8 (0.4) 3.2 (0.2) <1	Anaerobic Log cells/g (S 0.8 (0.2) 2.0 (0.1) 0.4 (0.0) 2.7 (0.4) 2.2 (0.4) 0.7 (0.6) >2, >2, 1.6 <0, <0, 0.7 1.6 (0.2) 0.9, <0, 1.0 <0 <0, 0.4 1.7 (0.2) <0, 0.7, 1.6 <0.0, <0, 1.1 1.4 (0.2) 0.8 (0.2)

^{*} Core locations 80AA, 80BA, 80DA, and 80EB were in areas still containing JP-4. Locations 80JB and 80KB were downgradient and upgradient, respectively

80DA1.

Population counts of the different types of microorganisms in the proposed treatment zone (cores 80AA, 80BA, 80DA, and 80EB), which is also the zone of residual fuel saturation, were statistically compared to those in the uncontaminated samples, 80KB2 and 80KB1, of the control core. Sample 80KB6 was not used as an uncontaminated control since it probably had been exposed to contamination as previously discussed. Microbial numbers were significantly higher in the proposed treatment zone than in the uncontaminated control samples, except for the number of oligotrophs, total denitrifiers, and an estimate of anaerobic protozoa (α = 0.05). These data suggest that the biomass increased as a result of the contamination event. However, it is also possible that the previous remediation efforts using hydrogen peroxide and nutrient addition led to an increase in biomass and diversity. However, it is not known whether those effects would have been mitigated over time, whereas the remaining fuel components would have exerted a more pronounced effect. Other researchers have reported that contamination often increases biomass and biodegradation potential (Smith et al, 1986; Aamand et al, 1989; Thomas et al, 1989). The high numbers of JP-4 degraders in the contaminated zone, and microorganisms that can use JP-4 under denitrifying conditions, suggest that these microorganisms have adapted to degrade the JP-4 fuel. In summary, characterization of the site indicated indigenous subsurface microorganisms were present and capable of degrading JP-4 jet fuel under denitrifying conditions, and that the site appeared to be amenable to nitrate-enhanced bioremediation.

7. Toxicity Evaluation

The pilot demonstration project provided a rare opportunity to evaluate toxicity associated with the contaminated sediments prior to initiating nitrate-based bioremediation, as well as to assess the degree of toxicity reduction (or increase) as a consequence of remediation. An initial attempt to evaluate toxicity was made by Rice University personnel using the Microtox and Mutatox assays to determine toxicity and mutagenicity of the core samples obtained for microbial characterization. Both assays rely on changes in bacterial luminescence when *Photobacterium phosphoreum* is exposed to toxins or mutagens. Dr. B. Thomas Johnson, National Fisheries Contaminant Research Center, Columbia, MO, conducted the assays. Using the Microtox assay, the only samples to exhibit toxicity were 80AA1 and 80EB1, which were the samples that contained the highest JP-4 concentrations (M. Thomas, personal communication). Therefore, these tests were not sensitive enough for detecting toxicity changes throughout the site as remediation progressed.

Because of this, a separate project was established with Jack Bantle from Oklahoma State University to evaluate other methods for assessing toxicity associated with contaminated sediments. The project goal was to develop and evaluate

reproductive and developmental toxicity tests using the gametes and embryos of the South African clawed frog *Xenopus laevis* with particular emphasis on assessing the toxicity of contaminated sediments from the pilot project demonstration area. This report has been published separately (Bantle, 1996). The following section describes the application of the basic FETAX assay to the pre-test core samples. FETAX (Frog Embryo Teratogenesis Assay- *Xenopus*) is a 4-day whole embryo developmental toxicity tests that utilizes the embryos of *Xenopus*. FETAX was initially designed as an indicator of potential human developmental health hazards. The assay is well suited for complex mixtures (e.g., industrial effluents etc.) testing and has been validated using single chemicals of known mammalian developmental toxicity (Bantle, 1996).

a. Methods

Ten locations were selected in the pilot demonstration area for toxicity assessment using FETAX (Figure 9). A large auger was used to drill down to approximately 0.5 feet above the desired interval. Two to four core barrels, depending on the amount of material needed, were then inserted into the hole and driven 3 feet into the subsurface. These were left in place until ready for sampling. Each core barrel was then pulled and extruded separately. The first one to three barrels were used to provide core material for OSU. For each core barrel, recovery of aquifer material was measured and the appropriate amount was extruded and discarded from the bottom of the barrel to attain the desired interval. The core was then extruded without paring into two clean pint jars to 4/5 capacity, afterwhich 100 mL of anaerobic CaCO₃ solution was added to each jar to begin pH stabilization. The final core barrel was used for BTEXTMB/TPH analyses to better define the hydrocarbon distribution. This core was extruded directly into four 1/2-pint jars, and subsamples were taken with 10-mL plastic syringes and extracted with MeCl₂ for analyses as described previously. All samples were mixed and stored in ice chests (without ice) in the shade prior to transport back to RSKERL. The samples were stored at 12°C and were picked up by OSU personnel the next day.

Initial experiments were conducted using FETAX to assess the developmental toxicity of JP-4. Because human effects were a concern, the initial tests were conduct with and without Aroclor 1254-induced rat liver microsomes to simulate mammalian metabolism. In the first experimental series, FETAX was used to determine the developmental toxicity of JP-4 emulsified in 2% agarose. This technique allowed the exposure of nonpolar organics in aqueous media. In later experiments, JP-4 was tested with corn oil, which was used to help disperse the jet fuel in agarose and would be used as a vehicle in other experiments. For the aquifer cores, two methods of exposure were attempted. The first method was aqueous extraction in which the cores were mixed with FETAX solution overnight at 30 rpm and then the sediment was removed by centrifugation. The embryos were then exposed to the water fraction. The second method was a direct soil exposure method performed by placing 50 cm³ of

Figure 9. Location of Core Samples Taken for Toxicological Evaluation Prior to Pilot Demonstration Project, Showing Test Results and Contaminant Levels.

core sample in a vessel with 170 mL of FETAX solution and suspending the embryos above the sediment. As a control, sediment from Location 80K was spiked with JP-4 to determine if toxicity from JP-4 could be observed with the direct exposure method.

b. Results

The initial experiments with JP-4 were successful on several counts. The first experiments showed that it was possible to generate standard toxicity parameters (LC50, EC50, TI and MCIG) using the agarose exposure technique (Bantle, 1996). The tests with microsomes showed insignificant differences from the test without microsomes, indicating that cytochrome P450 did not significantly change the toxicity of JP-4. This did not mean that cytochrome P450 did not metabolize JP-4, but that developmental toxicity was unaltered. For the aquifer cores, the direct exposure method showed more severe effects than did the aqueous extraction exposure method for all sites (data not shown). Because mortality caused by 50 cm³ sediment samples was 100% for most sites, the sample size was reduced to 5 cm³ and all cores were retested. Previous studies with JP-4-spiked core and the amount of TPH present in the core samples had suggested that 50 cm³ would be required to obtain significant developmental toxicity. When 5 cm3 of sediment proved toxic, it suggested that additional toxicants were present in these cores or the JP-4 present in the sediment was metabolized over time to increase its toxicity. The control site 80K that was spiked with JP-4 also showed significant effects both at 50 cm³ and 5 cm³ of sediment direct exposure (data not shown).

A qualitative assessment of site toxicity was obtained by ranking the data from the various exposure groups. For example, direct exposures with 50 cm³ aquifer cores yielded the following ranking, in order of increasing toxicity, for mortality:

Exp1:
$$80K < 80G < 80R < 80B = 80O = 80S = 80N = 80E = 80F = 80C$$

Ranking of malformation on the sites for survivors from direct exposure to 50 cm³ aquifer cores are shown below:

FETAX experiments using direct exposure with 5 cm³ core provide data on partial effects. Partial effects data will allow a determination of whether site developmental toxicity will be increased or decreased following nitrate remediation. The following is a ranking of the sites based on mortality results from direct exposure to 5 cm³ aquifer cores:

Exp1: 80E < 80G < 80K < 80R < 80F < 80C = 80B < 80N < 80O < 80S Exp2: 80G < 80K < 80R < 80O < 80S < 80C < 80F < 80B = 80N = 80E Exp3. 80G < 80K < 80R < 80O < 80F < 80C < 80B < 80S = 80N = 80E Finally, the following is a ranking of sites based on malformation of survivors from direct exposure to 5 cm³ aquifer cores:

Exp1: 80K = 80O = 80G = 80C < 80R < 80E < 80F = 80B < 80N

Exp2: 80K < 80G < 80R < 80O < 80S = 80F = 80C Exp3: 80R < 80G < 80K < 80O < 80F < 80C = 80B

In conclusion, the results from all of these experiments suggested that developmental toxicity of the site due to JP-4 can be measured using direct exposure to *Xenopus* embryos. These experiments also showed that was possible to rank the sites from most toxic to least toxic. Although there were some anomalies in the data, trends in the ranking of sites could be determined, with areas closer to the source (80N, 80E) being more toxic than areas further away (80K, 80C). This is shown schematically in Figure 9, which compares the overall toxicity based on the reduced data with the core locations and relative extent of contamination. These tests were later repeated following bioremediation to assess whether site toxicity had been reduced.

C. TREATABILITY STUDIES

Microbial counts alone are insufficient to assess process feasibility in terms of biodegradation potential. Treatability studies are also required, using microcosms to simulate field conditions as much as possible and varying the environmental parameters for sensitivity analysis. There is no defined procedure for determining how many samples are required to give an overview of microbial activity at a given site. Similarly, there is little consistency among researchers regarding microcosm construction, sampling, and analyses. Because no microcosm work had previously been done at this site to evaluate the potential for indigenous microbial populations to degrade BTEXTMB under denitrifying conditions, batch microcosm tests were conducted with numerous core samples to quantitate rates and extent of biodegradation. In addition, the effects of nutrient addition were examined in one core sample to determine whether nutrient supplements would be required in the pilot study. Finally, column studies were performed to validate results observed in batch tests and to see if denitrification would be affected by oxygen, expected to be incorporated into the sprinkler recharge.

1. Distribution of Microbial Activity and Nutrient Requirements

a. Methods

To evaluate distribution of nitrate-based BTEXTMB-degrading activity, core subsamples were split from the 18 core samples which had been collected for

Rice University (Figure 8). Microcosms were prepared aseptically in an anaerobic glovebox to preclude intrusion of oxygen. All preparations were made when the atmospheric oxygen concentration in the glovebox was less than 10 ppm (vol/vol) as measured by an oxygen monitor. Test chemicals were reagent-grade and all glassware and preparation supplies were sterilized. Dilution water, used to transfer core material, consisted of distilled water mixed with ground water from a spring near Ada, OK, to simulate the ground water at the Eglin AFB site. The dilution water was sterilized by autoclaving, transferred into the glovebox, and filtered through a 0.45µ filter to remove precipitates. Microcosms were prepared by adding 10 g core material to 12-mL serum bottles. Core material was rinsed into the serum bottles using a small quantity of water and each sample was amended with nutrients to provide solution concentrations of 10 mg/L NH₄-N and 10 mg/L PO₄-P. Microcosms were further amended with potassium nitrate to yield 50 mg/L NO₃-N. Poisoned controls also contained 250 mg/L mercuric chloride and 500 mg/L sodium azide as biocides to inhibit microbial growth. Sufficient viable and control microcosms were prepared to provide six to eight sampling events of three viable and one control microcosm per set. To evaluate nutrient demand, microcosms were prepared as above, with the following exceptions: (1) only one core sample was evaluated (a 50:50 mix of 80AA1 and 80AA2), and (2) different levels of nutrients were added. The following treatment groups were designated and included either: (1) no nutrients, (2) 10 mg/L NH₄-N only, (3) 10 mg/L PO₄-P only, or (4) 10 mg/L each NH₄-N and PO₄-P. In addition, a separate control group was established to provide three replicate control microcosms per set.

Each microcosm was then spiked with an aqueous stock containing benzene, toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, mesitylene, pseudocumene, and 1,2,3-trimethylbenzene to yield final solution concentrations of 1 to 6 mg/L for each compound. Immediately after spiking, the microcosms were sealed without headspace using Teflon®-lined butyl rubber septa, mixed, inverted, and incubated in an anaerobic glovebox in the dark at 20°C. Three replicates from each viable set and one to three control microcosms, depending on the test, were sacrificed at designated time intervals. Each microcosm was mixed and centrifuged at 1500 rpm for 30 minutes to clarify the supernatant. Aqueous volatile aromatic hydrocarbons were analyzed by purge-and-trap gas chromatography using a Tekmar LSC-2000 liquid sample concentrator and an HP5890 GC with a flame ionization detector. Hydrocarbons were purged onto a Tenax trap for 6 minutes at 34°C followed by a 2minute dry purge and desorbed for 4 minutes at 180°C. Samples were chromatographed using a 30-m x 0.53-mm ID megabore DB-wax capillary column with a 1.0-μm film thickness. The temperature program was from 50°C (4 minutes) to 120°C at 8°C/minute, and then to 180°C at 30°C/minute. The quantitation limit for these compounds was 0.2 $\mu g/L$. The remaining aqueous sample was analyzed for pH, nitrate, nitrite, ammonia, and phosphate using standard EPA methods as described previously (Kopp and McKee, 1979). The residual solids were not analyzed.

b. Results

As shown by the example data for Core 80EB5, selected alkylbenzenes were degraded under denitrifying conditions by indigenous aquifer microorganisms at the site, with toluene, ethylbenzene, and m-xylene typically being preferred over the other alkylbenzenes (Figure 10). Biodegradation of p-xylene, o-xylene, mesitylene, and pseudocumene was generally intermediate, whereas benzene and 1,2,3trimethylbenzene were often recalcitrant. Removals of each compound were calculated over the 28-day time period, corrected for corresponding loss (or gain) in controls, and graphed to show distribution of microbial activity (Figure 11). The extent of removal for the different compounds was surprisingly variable across the site and did not always correlate with either depth or extent of contamination. For example, in the area of residual JP-4 contamination within the nitrate cell (80AA, 80BA, 80DA, 80EB), the highest amount of JP-4 (1600 mg/kg) was found in the mid-depth core within the 80EB series (Table 7). This core also contained the lowest amounts of hydrocarbon removal activity in this group (Figure 11), and thus the results might be attributable to toxicity of residual JP-4. However, the shallowest cores of the 80AA and 80EB series had the next highest levels of JP-4 (1290 and 1160 mg/kg, respectively) and hydrocarbon removal was better there than in several of the others with lower JP-4 levels (Figure 11). Also, the downgradient location 80JB exhibited the least amount of hydrocarbon removal, even though it was relatively clean (Figure 11, Table 7). In contrast, the greatest extent of hydrocarbon removal was found in another clean sample, the deepest core of the 80KB series (Figure 11). However, as previously mentioned, core samples below this depth at this location show increasing BTEXTMB contamination, probably as a result of contamination up-gradient.

It should be emphasized that these data do not conclusively demonstrate biodegradation of these compounds under denitrifying conditions, even though poisoned controls were successfully used. Previous work has shown that abiotic removals of some compounds (such as benzene) are enhanced when labile substrates (such as toluene) are metabolized under denitrifying conditions, possibly in response to enhanced sorption due to the production of biomass or other metabolites (Hutchins, 1993). However, the different patterns of compound removal observed in these different locations strongly suggest that biodegradation is primarily responsible. In addition, the period of alkylbenzene removal generally coincided with the periods of nitrate removal and nitrite production (data not shown). Total combined BTEXTMB removals ranged from 12-50% for Location 80AA, 57-74% for Location 80BA, 38-60% for Location 80DA, 5-72% for Location 80EB, 0-1% for Location 80JB, and 7-81% for Location 80KB. Total nitrate removals ranged from 21-52% for Location 80AA, 34-43% for Location 80BA, 18-90% for Location 80DA, 29-86% for Location 80EB, 5-11% for Location 80JB, and 16-34% for Location 80KB. Nitrate removal did not correlate with BTEXTMB removal in the area within the Nitrate Cell (r² = 0.008, P = 0.608, 36 observations), presumably because of the different amounts of residual hydrocarbon within this area (Table 7). However, a significant linear correlation (r² = 0.836, P =

Figure 10. Removal of Individual BTEXTMB Compounds Under Denitrifying Conditions at Location 80EB5, Prior to Start of Remediation.

Figure 11. Percent Removal of BTEXTMB Compounds in Pre-Test Cores After 28 Days Under Denitrifying Conditions. Removals are Corrected for Loss in Controls; Negative Removals are Shown as Zero. Mean of Three Replicates Per Set.

0.0006, 9 observations) was obtained between BTEXTMB removal and nitrate removal for the three depths at control site 80KB, again strongly suggesting that biodegradation is primarily responsible for BTEXTMB removal. This high correlation probably results from the low TOC at this location, enabling the BTEXTMB spike to be used exclusively as the electron donor.

Concentrations of individual alkylbenzenes in viable and control microcosms were totaled and graphed to provide summary data on the biodegradation of combined BTEXTMB as a function of sample location and depth (Figure 12). Overall, microbial activity was observed in 12 of the 18 separate core samples. Five of the inactive samples were from regions outside of the proposed treatment zone and contained no discernable JP-4 contamination. For the active samples, the mean zero-order rate constants were 1.2 \pm 0.5 mg/L/day alkylbenzene biodegradation and 2.6 \pm 1.3 mg/L/day NO3-N removal. Addition of either ammonia-nitrogen, phosphate-phosphorus, or both had little effect on the rate of either BTEXTMB biodegradation or nitrate utilization (Figure 13). There was a slight increase in the extent of denitrification when ammonia-nitrogen was added as a sole amendment, but the effect was minor. This indicates that nutrient addition might not be required for enhancing denitrification in the field at this site. However, extrapolation of batch microcosm data may be insufficient for predicting long-term field requirements, and so monitoring aqueous nutrient levels in the field during pilot operation would be recommended.

In summary, these data indicated that nitrate-based bioremediation was feasible for this site, and that the requisite microbial activity was distributed throughout the proposed treatment region. However, the rates of alkylbenzene removal and nitrate consumption were lower than observed at other field sites (Hutchins et al, 1991b; Hutchins and Wilson, 1994). There are many factors which can affect the endogenous rates of denitrification at this site, including microbial population diversity, pH. toxicity of fuel constituents, and availability of suitable electron donors. However, no experiments were conducted to delineate which of these controlling parameters had the greatest effect on the groups of microorganisms which degrade BTEXTMB under denitrifying conditions. We suspect that the low pH was somewhat inhibitory. since denitrifying bacteria prefer pH-neutral or slightly alkaline soils (Tiedie, 1988). However, we did not consider pH modification in the experimental design of the pilot demonstration project because of previous concerns with soil plugging and loss of infiltration capacity. Regardless, the observed low endogenous rates of nitrate reduction would preclude any advantage of applying nitrate in excess of 10 mg/L NO₃-N. This would also avoid the use of high flow rates, so sufficient residence time could be afforded for microbial reactions to proceed as recharge water migrates downgradient from the pilot test site.

Figure 12. Microcosm Study on Combined BTEXTMB Removal, Under Denitrifying Conditions, in Cores Taken from Pilot Demonstration Area Prior to Remediation. Mean of Three Replicates Per Set.

Figure 13. BTEXTMB and Nitrate Removal in Denitrifying Microcosms with Selected Nutrient Amendments. Mean of Three Replicates Per Set.

2. Mineralization Studies

a. Methods

Because of the questions regarding the role of mineralization versus other processes (eg, partial biodegradation, enhanced sorption), microcosm tests were conducted with radiolabeled compounds to assess the extent of biodegradation in the Eglin AFB aquifer material. At this time, fresh aquifer material was not available, and so mineralization studies were conducted with radiolabeled m-xylene on replicate microcosms remaining from an initial test. However, mineralization occurred in only a few of these samples (unpublished data), and these results were considered suspect because of the extended time periods between the tests. Although the reason for this problem was not ascertained, it is possible that the extended incubation time resulted in a loss of the requisite microbial activity. More extensive tests were therefore conducted on fresh aquifer material collected during the Interim Performance Evaluation (described later). This material was collected 3.4-7.0 feet below ground surface at Location 80ZA, within the Nitrate Cell (Figure 8). The following radiolabeled compounds (Sigma) were used as supplied: [UL-14C]benzene (19.3 mCi/mmol), [ring-UL-14C]toluene (10.2 mCi/mmol), m-[ring-UL-14C]xylene (5.1 mCi/mmol), and o-[ring-UL-14C]xylene (9.0 mCi/mmol). Isotope purities exceeded 98 percent in all cases. Isotopes were diluted in the respective unlabeled compounds and individual aqueous spikes were prepared anaerobically as previously described. Microcosms were prepared as described for the initial batch studies, except that 10 grams aquifer material were used in 60-mL serum bottles to provide a larger aqueous volume for repetitive sampling. Final concentrations ranged from 1-2 mg/L for the individual radiolabeled compounds, with 30 mg/L NO₃-N, 10 mg/L NH₄-N, and 10 mg/L PO₄-P. Three replicate microcosms, with corresponding poisoned controls, were prepared for each of the four radiolabeled compounds. In addition, positive controls were prepared for each radiolabeled compound by constructing identical microcosms without nitrate addition. All microcosms were incubated at room temperature in an anaerobic glovebox.

All sampling was done in the glovebox. Microcosms were mixed and allowed to settle for several hours prior to sampling. For each microcosm, the septum was removed and aqueous samples were obtained using glass syringes. The removed volume was replaced using sterile 6-mm glass beads and the microcosm was resealed without headspace, mixed, and incubated in the dark. BTEXTMB and nutrient analyses were conducted as previously described. Distribution of the radiolabel was assessed using a modification of the procedure used by Grbic-Galic and Vogel (1987). It should be noted that this assay accounts for distribution of the radiolabel in the aqueous phase alone, and represents the extent of biodegradation of available soluble substrate. Because of the large amount of solids present, and the continuous addition of glass beads to compensate for volume displacement, it was not possible to obtain reproducible and accurate counts of the solids. Three different

measurements were done on each sample. For total ¹⁴C activity, 0.5 mL sample were injected directly into a mixture of 10 mL Beckman Ready-Value scintillation cocktail and 0.5 mL 1 N NaOH. This serves to contain the radiolabeled parent compound, as well as ¹⁴CO₂ and nonvolatile intermediates of metabolism. Next, 0.5 mL sample were injected into 0.5 mL NaOH. This was purged with nitrogen gas at 250 mL/min for 5 minutes, followed by the addition of 10 mL scintillation cocktail. This measurement represents both ¹⁴CO₂ and nonvolatile intermediates. Finally, 0.5 mL sample were injected into 0.5 mL 1 N HCl and similarly purged. This represents the nonvolatile intermediates only, and ¹⁴CO₂ was calculated by the difference between this sample and the NaOH-treated sample. All samples were allowed to equilibrate for at least 16 hours to minimize the effects of chemiluminescence, and were counted using a Beckman LS 7800 scintillation counter with automatic quench correction. The counting efficiency was 92%. Quality control check standards were run weekly, and blanks were prepared with 0.5 mL dilution water in both acid and base treatment vials.

b. Results

Data from the radiolabel microcosm test are summarized in Table 9, and show that biodegradation of toluene and *m*-xylene occurs when nitrate is added as the electron acceptor, but not in the absence of nitrate or in poisoned controls. After 21 days, 53% of the toluene was mineralized, with 12% remaining as nonvolatile intermediates or end-products. Thus, only 65% of the toluene was theoretically transformed. However, gas chromatographic analysis of the microcosm supernatants show 100% toluene removal (Table 9). Because both analyses are done on the microcosm supernatant only, sorption onto the sediment fraction do not account for the missing radiolabel. It is possible that toluene was converted to a volatile metabolite that was lost during purging of both the acid and base fractions during the analysis. However, this could also represent preferential incorporation of toluene into biomass or sorption onto suspended solids.

In other studies, Swindoll et al (1988) observed that uptake into cell biomass represented a large fraction of total metabolism for many xenobiotic compounds under aerobic conditions, and Jorgensen et al (1991) reported that 44% of labelled toluene was incorporated into biomass of enrichment cultures under denitrifying conditions. In contrast to toluene, 98% of the *m*-xylene label was recovered in this study, with 85% being mineralized and 13% remaining as nonvolatile intermediates or end-products. For all practical purposes, benzene was recalcitrant in this test under these conditions, despite a very slight amount of mineralization under denitrifying conditions compared with both the viable and poisoned controls (Table 9). Benzene was not expected to be a problem for this particular field site, because there was very little of it in the weathered fuel, except for the source area and in deeper wells outside of the treatment cells (Table 2, Appendix C). Although *o*-xylene was also recalcitrant in this test, this does not necessarily indicate that it was recalcitrant in the

TABLE 9. MINERALIZATION OF RADIOLABELED SUBSTRATES IN EGLIN AFB MICROCOSMS PREPARED WITH MID-TEST CORE MATERIAL. MEAN OF THREE REPLICATES WITH STANDARD DEVIATION

		Time	No Nitrate Added	Nitrate Added	Poisoned Controls
	Baramatara	(days)	Mean ± StDev	Mean ± StDev	Mean ± StDev
Compound	Parameters	(uays) 0	2.01 ± 0.53	1.45 ± 0.07	1.52 ± 0.05
Benzene	Concentration	7	1.47 ± 0.20	1.61 ± 0.15	1.57 ± 0.16
	by GC (mg/L)	21	1.75 ± 0.21	1.61 ± 0.10	1.74 ± 0.22
		0	0.22 ± 0.17	0.04 ± 0.06	0.18 ± 0.16
	Percent in	7.	0.22 ± 0.17 0.11 ± 0.17	0.11 ± 0.08	0.12 ± 0.11
	Nonvolatile	21	0.02 ± 0.03	0.29 ± 0.41	0.02 ± 0.03
	Carbon	0	0.52 ± 0.03	0.39 ± 0.03	0.16 ± 0.23
	Percent	7	-0.05 ± 0.07	0.25 ± 0.10	-0.05 ± 0.14
	Mineralized	· ·	0.79 ± 0.12	1.88 ± 0.47	0.27 ± 0.06
		21		1.13 ± 0.11	1.13 ± 0.06
	Concentration	0	1.49 ± 0.54	1.13 ± 0.17	1.48 ± 0.23
	by GC (mg/L)	7	1.37 ± 0.07	0.00 ± 0.00	1.47 ± 0.17
		21	1.79 ± 0.67	1.64 ± 0.39	0.93 ± 0.19
	Percent in	0	1.22 ± 0.20		1.13 ± 0.34
Toluene	Nonvolatile	7	1.59 ± 0.41	4.92 ± 0.99	1.03 ± 0.07
	Carbon	21	1.60 ± 0.20	11.8 ± 1.97	0.21 ± 0.28
	Percent	0	0.39 ± 0.18	0.89 ± 0.31	-0.05 ± 0.27
	Mineralized	7	-0.07 ± 0.56	7.99 ± 2.66	0.08 ± 0.27
		21	0.58 ± 0.11	53.0 ± 4.10	
	Concentration	0	1.11 ± 0.08	6.15 ± 4.51	4.14 ± 4.91
	by GC (mg/L)	7	1.38 ± 0.19	1.41 ± 0.10	1.55 ± 0.11
		21	1.49 ± 0.44	0.00 ± 0.00	1.38 ± 0.26
	Percent in	0	5.70 ± 0.59	5.29 ± 2.09	4.14 ± 0.55
m -Xylene	Nonvolatile	7	7.81 ± 0.67	3.10 ± 0.16	4.59 ± 0.39
/// //y/o	Carbon	21	5.68 ± 1.07	12.9 ± 0.84	3.85 ± 1.71
	Percent	0	1.15 ± 0.61	1.39 ± 3.18	-0.37 ± 0.80
	Mineralized	7	-1.46 ± 0.54	4.60 ± 0.86	-0.87 ± 0.71
		21	2.52 ± 1.39	84.6 ± 5.45	-0.12 ± 1.01
	Concentration	0	2.02 ± 0.98	6.26 ± 0.20	6.76 ± 1.23
	by GC (mg/L)	7	2.51 ± 0.22	2.44 ± 0.53	2.01 ± 0.38
		21	2.23 ± 0.40	2.19 ± 0.16	2.12 ± 0.08
	Percent in	0	3.53 ± 0.19	4.21 ± 0.45	2.97 ± 0.33
o -Xylene	Nonvolatile	7	4.25 ± 0.56	4.24 ± 0.81	2.72 ± 0.12
	Carbon	21	4.06 ± 0.77	3.51 ± 0.74	2.39 ± 0.23
	Percent	0	0.16 ± 0.36	-0.35 ± 0.16	-0.37 ± 0.59
	Mineralized	7	-0.25 ± 0.35	-0.14 ± 0.76	-0.35 ± 0.40
	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	21	0.43 ± 0.72	0.39 ± 0.70	-0.26 ± 0.06

previous microcosm studies. Other labile substrates were not added to these microcosms, and previous work has shown that the addition of other substrates often promotes biodegradation of o-xylene through cometabolic reactions (Jorgensen and Aamand, 1991; Evans et al, 1991; Hutchins, 1993). In summary, these data provide additional evidence that some of the removals observed in the previous tests could be attributed to biodegradation, indicating the feasibility of nitrate-based bioremediation.

3. Column Studies

The batch treatability studies provided a level of confidence regarding the feasibility of initiating nitrate-based bioremediation at the field site. To verify that nitrate-based biodegradation of BTEXTMB could operate under a mode of continuous operation, column studies were initiated. These column studies were performed not only to validate results observed in batch tests, but to see if denitrification would be affected by oxygen, expected to be incorporated into the sprinkler recharge. Tests were conducted with Eglin AFB aquifer material as well as aquifer material collected from two other sites. This work has been published in detail elsewhere (Miller and Hutchins, 1995), and the following is a brief summary of the results with the Eglin AFB material.

a. Methods

Glass columns, 3.8 cm ID and 30.5 cm in length, were assembled and operated within an anaerobic glovebox. The columns were configured to operate in an upflow mode, and all associated inlet and effluent lines were constructed of stainless steel tubing. Core samples 80AA3 and 80AA6, which were collected from 1.2-2.3 feet and 5.6-6.7 feet below ground surface, respectively, during the microbial characterization study (Figure 8) were combined and used to provide the aquifer material for the Eglin AFB column. Sediments were packed into the column to a height of 25.4 cm. Aqueous flowrates were used that corresponded to a residence time within the soil matrix of approximately 24 hours. The target compounds consisted of benzene, toluene, ethylbenzene, m-xylene, and o-xylene (BTEX), which were contained in a hexadecane solution and slowly partitioned into the column influent. Initially, the BTEX mixture was introduced into the soil column with no accompanying electron acceptor (no nitrate or oxygen) to allow sorption/desorption processes to stabilize. In addition to monitoring the inlet and outlet BTEX concentrations, column streams were monitored for dissolved oxygen to ensure that anaerobic conditions were maintained. Nitrate addition was initiated after complete breakthrough was observed for the compounds. Changes resulting from the nitrate addition were monitored until a stable concentration of BTEX compounds was observed the outlet stream. A low concentration of oxygen was then incorporated into the inlet stream, and monitoring of the BTEX concentrations was continued.

b. Results

Steady-state breakthrough of BTEX was achieved in about 50 days, afterwhich nitrate was added and the column was operated for 57 days, and then for an additional 60 days with oxygen added as well. The data were averaged over the respective operating periods to provide an estimate of column performance. After steady-state breakthroughs were achieved, application of 26.1 mg/L NO₃-N to the Eglin AFB column resulted in removal of BTEX components similar to removals previously observed in the Park City and the Traverse City soil columns (Miller and Hutchins, 1995). As summarized in Table 10, toluene seemed to be the most readily utilized, followed by m-xylene and ethylbenzene, with a slight removal of o-xylene and benzene. The slight removal of benzene was observed prior to nitrate addition and was therefore not induced by nitrate. Ethylbenzene utilization was concomitant with that of m-xylene. The soil column required 7 days to reach a maximum toluene removal (data not shown). Addition of 0.8 mg/L oxygen to the inlet nitrate stream did not change the removal observed for combined BTEX (Table 10). The absence of a negative effect of oxygen on overall BTEX removal under denitrifying conditions has been observed previously (Hutchins et al, 1992). In this test, a slight decrease in removal was observed for toluene along with a greater decrease in o-xylene removal. Ethylbenzene removal increased and, although the mean removal of m-xylene remained the same, the outlet concentration of m-xylene was lower during operation with trace amounts of oxygen. Nitrate utilization and nitrite production were slightly reduced during microaerophilic operation. Based on stoichiometry of complete mineralization under both electron acceptor conditions, the amount of oxygen added was insufficient to compensate for the decreased denitrification activity. In summary, inclusion of oxygen into the inlet stream produced small changes in the removal of individual compounds but did not affect the overall BTEX removal. This indicates that oxygen incorporated into the sprinkler discharge would probably not hinder bioremediation under denitrifying conditions.

TABLE 10. SUMMARY DATA FOR BTEX AND ELECTRON ACCEPTOR REMOVAL IN COLUMNS PREPARED WITH EGLIN AFB AQUIFER MATERIAL COLLECTED PRIOR TO START OF REMEDIATION

		Denitrification			
Parameter	inlet	Outlet	Removal		
	(mg/L)	(mg/L)	(mg/L)		
Benzene	4.06 ± 0.14	3.74 ± 0.13	0.30 ± 0.14		
Toluene	4.84 ± 0.14	0.03 ± 0.0	4.80 ± 0.15		
Ethylbenzene	2.75 ± 0.08	0.07 ± 0.02	2.68 ± 0.08		
<i>m</i> -Xylene	4.70 ± 0.13	0.26 ± 0.07	4.42 ± 0.16		
o -Xylene	4.79 ± 0.11	3.13 ± 0.16	1.64 ± 0.19		
BTEX	21.2 ± 0.6	7.23 ± 0.34	13.8 ± 0.6		
Nitrate-N	27.6 ± 1.6	7.41 ± 1.38	20.2 ± 1.6		
Nitrite-N	0.12 ± 0.02	1.71 ± 0.42	-1.60 ± 0.41		
Oxygen	-	•	-		
	Denitrification/Microaerophilic				
Parameter	Inlet	Outlet	Removal.		
1	(mg/L)	(mg/L)	(mg/L)		
Benzene	3.30 ± 0.23	3.06 ± 0.17	0.22 ± 0.18		
Toluene	4.64 ± 0.15	0.06 ± 0.15	4.55 ± 0.16		
Ethylbenzene	2.92 ± 0.09	0.05 ± 0.02	2.86 ± 0.10		
m -Xylene	4.58 ± 0.18	0.08 ± 0.03	4.47 ± 0.19		
o -Xylene	4.67 ± 0.16	3.49 ± 0.16	1.18 ± 0.15		
BTEX	20.1 ± 0.7	6.74 ± 0.19	13.3 ± 0.7		
Nitrate-N	27.3 ± 0.5	10.8 ± 0.7	16.5 ± 0.6		
Nitrite-N	0.23 ± 0.03	0.48 ± 0.07	-0.25 ± 0.08		
Oxygen	0.80 ± 0.10	0.02 ± 0.01	0.78 ± 0.10		

SECTION III

PILOT TEST DESIGN, CONSTRUCTION, AND OPERATION

A. CONCEPTUAL DESIGN PLAN

The initial site characterization and treatability studies demonstrated that:

- (1) the fuel was distributed 3-7 feet below ground surface,
- (2) the fuel was depleted in benzene and toluene,
- (3) the aquifer was anaerobic,
- (4) there was a large, diverse, and viable microbial population,
- (5) selected alkylbenzenes were degraded under denitrifying conditions,
- (6) surface application would be an effective delivery system,
- (7) recirculation of recharge water would plug the aquifer due to colloidal material, and
- (8) nutrient addition would not be required.

Based on this, a conceptual design plan was prepared and submitted Oct 1993 to AL/EQW-OL for review. The basic elements of the conceptual design plan were as follow:

- (1) there would be two adjacent 100-foot x 100-foot cells as shown on Figure 5, with no "buffer zone" between cells,
- (2) application would be at 12.5 GPM/cell, equivalent to 2.5 inch/day,
- (3) application rate and schedule for each cell would be identical,
- (4) application would be by sprinkler or soaker hose,
- (5) recharge water would be obtained from treated ground water used to supply Eglin AFB and would be unamended with the exception of potassium nitrate being applied to the Nitrate Cell at a concentration of 10 mg/L NO₃-N, and

(6) there would be no down-gradient collection and treatment process.

The plan was accepted and construction was begun Feb 94.

B. CONSTRUCTION

The pilot demonstration project consisted of three principal components: (1) landscaping and infrastructure, (2) treatment system, and (3) monitoring system. A schematic of the treatment system is shown in Figure 14, and illustrates the principal components in relation to subsurface contamination based on a cross-sectional view.

1. Landscaping and Infrastructure

A 20,000-foot² area was designated for treatment (Figure 15), based on the distribution of residual hydrocarbons. This did not encompass the source area (see Figure 5), because the much higher hydrocarbon concentrations found here would have necessitated an additional side-by-side treatment comparison on this smaller area in addition to the larger area, and this was not practical. Two 100-foot x 100-foot treatment cells were delineated for treatment, with the southwest cell being designated as the Nitrate Cell and the northeast cell being the Control Cell (Figure 15). The land surface of the cells was generally covered with bermuda grass, although vegetation was more sparse adjacent to the source area. There was also a large pine tree at the western edge of the Control Cell. The surface soil was sandy, except in the southwestern corner of the Control Cell, where the surface soil consisted of red loam/clay fill which had been brought in previously to provide a bed for the above-ground storage tanks.

Plastic sheeting was installed in a trench separating the two treatment cells to minimize crossover during infiltration to the water table. The depth ranged from 2.0-2.5 feet (at the water table) on the east side to 4.0-4.5 feet (above the water table) on the west side. A soil berm was then built over the filled trench to prevent runoff onto the Nitrate Cell, since the land surface sloped down towards the southeast (see Figure 1). Other than this, there was no surface or subsurface construction for hydraulic containment. During trenching for the plastic sheet, we observed that the red loam/clay fill extended about a foot down on the west side and then decreased eastward until it disappeared, about 2/5 of the way across the Control Cell. This fill material did not extend appreciably into Nitrate Cell. Because ponding had been observed on this material during rainfall, trenches were installed over part of the Control Cell to facilitate infiltration (Figure 15). These trenches were cut in an irregular pattern (to avoid subsurface PVC and electrical lines) and backfilled with clean sand from other locations. Fill soil, which had been cleaned by roasting, was used to overlay the sand. Finally, the entire area was reseeded with grass and fertilized, both within and outside of treatment cells, by Base personnel.

Figure 14. Schematic of Pilot Demonstration Project, Showing Locations of Treatment Cells in Relation to EPA Wells and JP-4 Contamination in Selected Cores.

Construction Details of Pilot Demonstration Project, Showing Locations of Pumphouse, Sprinklers, Trenches, and Cluster Wells. The Approximate Spray Area is Shown for the Nitrate Cell Sprinklers. Figure 15.

2. Treatment System

The treatment system consisted of a series of outdoor storage tanks, a pumphouse for mixing and delivery of the treated water, and a sprinkler distribution system. The recharge water was obtained from the Floridan Aquifer, the same source that provided ground water for that part of the Base. The water was essentially clean, with approximately 15 mg/L sodium, 3 mg/L potassium, 25 mg/L calcium, 15 mg/L magnesium, and less than 0.05 mg/L iron and manganese. The pH was 7.6 and there was no measurable dissolved oxygen. The recharge water contained approximately 7 mg/L chloride, 9 mg/L sulfate, 0.1 mg/L NO₃-N, 0.3 mg/L TOC, and less than 0.5 mg/L bromide and less than 0.05 mg/L each of NO₂-N, NH₄-N, and PO₄-P. BTEXTMB and JP-4 were not detected. Because the water had been chlorinated and still contained 1.8 mg/L chlorine as residual, it was routed through a carbon column to remove chlorine prior to being used as recharge. The carbon column was located outside on a concrete pad, along with three 500-gallon storage tanks and one 300-gallon storage tank. One of the storage tanks was used as a nitrate stock tank, and contained technical grade (99%) potassium nitrate (Van Waters & Rogers, Mobile, AL) at a design concentration of 4000-5000 mg/L NO₃-N. This was periodically amended with sodium bromide (Van Waters & Rogers, Mobile, AL) at a design concentration of 25000 mg/L Br when tracer studies were performed. The 300-gallon stock tank was used as the stock tank for the Control Cell when tracer studies were underway, and contained sodium chloride (Sam's Warehouse, Shalimar, FL) at a design concentration of 40000 mg/L Cl. The remaining two 500-gallon tanks were designated as mixing tanks. Mixing for each tank (except the chloride stock tank) was accomplished by recirculating water with the indoor pumps. In addition, each tank was equipped with two float-valve solenoids for measuring high and low water levels.

The treatment system was designed so that, once water levels dropped to the low water-level limit in either of the mixing tanks, water from the carbon column and the appropriate stock tank was routed into both mixing tanks at a fill rate which exceeded the discharge rate. Similarly, when either of the high water-level limits was attained, the fill for both tanks was discontinued. This permitted continuous operation. Water flow and system operation were checked daily, and totalizers were used to measure the cumulative volumes being delivered to each treatment cell. Recharge water was pumped to both cells through PVC pipe into a conventional sprinkler distribution system (Figure 15). Each cell contained nine adjustable sprinkler heads (Rainbird), of which only five were used during this study. For each cell, the single center sprinkler head was set to rotate 360 degrees and the side sprinkler heads were set to rotate 180 degrees so that water was applied to the interior of the cells. The sprinkler system was designed to have overlapping spray areas, thereby providing adequate and even water distribution across most of the cell, except perhaps for the four corners. Although sprinkler heads had also been installed in the corners of each cell, and the system was designed to switch sprinkler patterns over a 24-hour cycle,

this led to too many problems in balancing the flows between the mixing tanks. Flow imbalances typically accumulated over a short time interval, causing one mixing tank to trip the low water-level sensor while the other tripped the high water-level sensor, causing shut-down. To avoid this, we decided not to use the corner sprinkler heads. This arrangement resulted in an average net flow of 11.0-11.5 GPM/cell.

3. Monitoring System

Application water and ground water quality were monitored continuously during system operation using both conventional and cluster monitoring wells. For each cell, a fully-penetrating well and a cluster well were placed in the center and at one of the edges (Figure 14). The Nitrate Cell contained EPA1 and EPA3, at the center and at the edge, respectively, while the Control Cell contained EPA2 and EPA4 at its corresponding center and edge. The fully-penetrating wells were constructed of 2-inch PVC and screened 1-11 feet below ground surface, as described in Table 1. The cluster wells consisted of five individual wells per cluster and were installed separately, adjacent to the fully-penetrating wells, using a geoprobe (Figure 15). Each cluster well was constructed of 1/4-inch polypropylene tubing with a 2.5-inch 80-mesh steel screen. The top of each cluster well was sealed with a Teflon® plug valve. The wells were installed 4.0, 5.0, 6.5, 8.5, and 11 feet below ground surface for each cluster location (Figure 16). This was done to provide depth-discrete information on water quality as recharge infiltrated through the vadose zone and migrated downward through the saturated zone in each of the cells. A larger, less discrete cluster was designated EPA5 and installed downgradient of the Nitrate Cell (Figure 15). This consisted of three 2-inch PVC wells, screened at 1-11 feet, 11-21 feet, and 21-31 feet for EPA5A, EPA5B, and EPA5C, respectively. This well cluster was installed primarily to determine whether nitrate was escaping from the system or being utilized within the treatment cells.

For sampling the 2-inch wells, a Grundfos submersible pump was used. The pump was set sequentially at the top, bottom, and middle of the water column and pumped for 5 minutes at 3 L/minute for each level to purge each well. This resulted in the clearance of approximately ten well volumes from EPA1-5A, five well volumes from EPA5B, and three well volumes from EPA5C. Although the total purged well volumes were different for the EPA5 cluster, the amount of water pumped through the well screens was approximately the same. The flow rate was then reduced to approximately 0.5 L/minute and samples were obtained from the middle of the water column. Dedicated polyethylene lines were used for each 2-inch well. For sampling the small cluster wells, a peristaltic pump with multiple heads was connected directly to the wells. The wells were purged for 5 minutes at 100 mL/minute (>10 well volumes) and sampled at the same rate. Once sampling was complete, the plug valves were closed, trapping the water column and not allowing air to re-enter the well lines.

Figure 16. Construction Details of EPA1 Cluster Well, Showing Locations of Well Screens in Relation to EPA1 and JP-4 Contamination in 80O Core.

C. OPERATION

1. Operational Summary

The complete operating history, showing operating events, total flows, shut-down intervals, water-level measurements, and rainfall data is provided in Appendix B. The most important of these operating events will be discussed more fully in later sections of this report, but are summarized as follows:

- (1) operation began Apr 7, 1994, with separate tracers being added to the sprinkler recharge waters for each of the two treatment cells during the first 2-week interval,
- (2) a second tracer study was conducted Jun 10-18, 1994,
- (3) nitrate levels were increased to 15-20 mg/L NO₃-N on July 15, 1994,
- (4) an Interim Performance Evaluation was conducted Aug 19-30, 1994,
- (5) a 30-foot x 30-foot plot inside each cell was stripped of vegetative cover and covered with weed barrier to enhance nitrate transfer into the subsurface on Nov 14-16, 1994,
- (6) the pilot project was discontinued and the Final Performance Evaluation was conducted May 13-30, 1995, and
- (7) a final round of water samples were collected Apr 19-21, 1996.

The schedule of operating events, relative to the amounts of water and nitrate added to the respective cells, is shown in Table 11.

2. Monitoring Schedule

Monitoring consisted of daily operational checks, periodic measurements of water levels in area wells, periodic water quality analyses from EPA wells, and two Performance Evaluations involving both extensive core and water analyses. For daily operational checks, the following parameters were measured for each cell: (1) sprinkler status, (2) totalizer volumes, (3) sprinkler water pressure, (4) fill flow rate, (5) stock flow rate, (6) cell flow rate, (7) mix tank level, and (8) stock tank level. In addition, both rainfall and weather conditions were recorded. Water level measurements were made on monitoring wells located both within and next to the two treatment cells to observe build-up of the water table mound during start-up operations and to monitor water table response to rainfall events. These wells included EPA1, EPA3, Well I1, and Well R4 in the Nitrate Cell, EPA2, EPA4, Well I2, and Well D in the Control Cell, and

TABLE 11. TIMELINES AND MASS LOADINGS FOR OPERATION OF PILOT DEMONSTRATION PROJECT ON NITRATE-BASED BIOREMEDIATION

Event	Parameter*	Nitrate Cell	Control Cell
	Elapsed Time (d)	0	0
Start-Up	Recharge (ft)	0	0
(Apr 7, 1994)	NO ₃ -N (kg)	0	0
	Elapsed Time (d)	95	95
Increase NO ₃ -N	Recharge (ft)	19.9	20.6
(Jul 15, 1994)	NO ₃ -N (kg)	57	0
Interim	Elapsed Time (d)	126	126
Performance	Recharge (ft)	26.5	27.4
Evaluation (Aug 19-30, 1994)	NO ₃ -N (kg)	94	0
Sod Removal and	Elapsed Time (d)	197	197
Stripped Plot	Recharge (ft)	41.9	43
Construction (Nov 14-16, 1994)	NO ₃ -N (kg)	176	0
Final Performance	Elapsed Time (d)	368	368
Evaluation	Recharge (ft)	79.0	80.2
(May 13-30, 1995)	NO ₃ -N (kg)	394	0

^{*} Elapsed time corrected for days the system was down.

EPA5, Well R2, Well R3, Well R4, and Well C downgradient of both treatment cells. These measurements were made daily for the first 2 weeks of operation and then weekly afterwards. Data for the daily operational checks and the water level measurements are in Appendix B. The seven fully-penetrating EPA wells (EPA1-4, EPA5A-5C) and the four EPA cluster sets were routinely monitored during pilot operation. Monitoring was done once every 3 to 4 days for the first 3 weeks, and then once every 2 weeks afterwards. Monitoring was done more frequently for the EPA cluster wells when tracer tests were being conducted. Water samples were either analyzed in the field or shipped back at RSKERL for analysis as described previously (Section IIB2). This resulted in an extensive dataset collected over a full year of operation (Appendix C). In addition, water samples were obtained periodically for additional analyses, such as dissolved gases or organic acid and phenolic intermediates of biodegradation. These are described more fully in the respective sections on the Performance Evaluations, which also include the acquisition of core samples for monitoring the progress of bioremediation.

SECTION IV

PERFORMANCE EVALUATION

A. WATER LEVEL RESPONSE

Rainfall data and monitoring well data were used to characterize the water table response to sprinkler application and rainfall events. These data have been tabulated in Appendix B. In general, the pattern of response was the same for all wells, as shown by the example data for the EPA wells at the centers and the edges of the treatment cell (Figure 17). The water table is very responsive to rainfall, and in fact the water table was at ground surface in the nitrate cell on July 4 following several heavy rainfall events (Figure 17). This frequent rainfall makes it difficult to gauge the extent of the water table mound created by operation of the pilot system. The initial water table rise at the start of the project was approximately 0.8 feet, but there were too few data taken previous to this event to determine whether regional levels had been rising or falling. During the two sampling intervals in which the operation was shut down for long periods of time, the water level in EPA1 dropped 1.2 feet in 12 days during the Interim Performance Evaluation and then 2.4 feet in 15 days during the Final Performance Evaluation (Figure 17). Assuming an average value of 1.5 feet for the water table mound, this is only 60% of the predicted mound of 2.5 feet (Section IIB5). The most likely reason for this discrepancy is that the effective aquifer thickness was underestimated. The effective thickness of the aquifer, that thickness which is affected by the surface application, is difficult to estimate. The initial predictive runs using BIOPLUME assumed an effective thickness of 5 feet. However, an effective thickness of 8 feet, with all other parameters remaining the same, yields the observed water table mound of 1.5 feet. Based on the tracer data, as discussed in the next section, the effective thickness was at least 8.5 feet. The water table mound was contoured based on area wells both before and during operation, and illustrates that the regional ground water gradient is overcome in the vicinity of the treatment cells (Figure 18).

B. WATER QUALITY ANALYSES

1. Tracer Studies

Tracer studies were conducted at two different times: (1) at the start of operation, to evaluate water movement when the vadose zone was initially low in water content, and (2) during operation, to evaluate water movement under saturated operating conditions. Two different tracers, bromide for the Nitrate Cell and chloride for the Control Cell, were used to differentiate between the Nitrate Cell recharge and the Control Cell recharge. There was no significant migration of tracer (ie, above background levels) from one cell to the next (Appendix C). In both tests, however,

Figure 17. Water Level Response to Sprinkler Application and Rainfall Events in Pilot Demonstration Wells. Arrows Denote Times Sprinklers were Turned Off for Sampling Events.

Figure 18. Water Elevation Contours Prior to (Mar 93) and During (Jun 94) Operation of the Pilot Project.

problems were encountered in maintaining steady influent tracer concentrations. This was because mixing of the nitrate and bromide salts in the stock tanks was incomplete, resulting in gradient separation. This incomplete mixing yielded influent tracer concentrations that were initially higher than the expected values, and then decreased and stabilized with time. This problem was not observed as much during the first tracer test, probably because adequate time was available for mixing due to several delays encountered in starting up the operation. In addition, heavy rainfall occurred at the end of the second tracer study, which could have affected travel times. In fact, EPA4-CL1, typically dry, began to yield water because of the rising water table. Due to these problems, estimates of breakthrough time are probably less relevant than observations of the depth of tracer migration and the sequential order of tracer appearance in the cluster wells.

For each cluster well, three graphs are presented: (1) overall tracer data for the entire duration of the pilot test, normalized to the highest concentration, (2) tracer data for the first month of operation, and (3) tracer data for the third month of operation. The latter two graphs are scaled up to better visualize the order of tracer breakthrough. Tracer data for the EPA1 Cluster Wells, located in the center of the Nitrate Cell, are shown in Figure 19. During wetting, breakthrough of bromide followed in sequence with depth, except for the lower two levels (Figure 19b). After the vadose zone was saturated, however, site heterogeneities began to become apparent, since the breakthrough order in the second tracer test was CL2 > CL4,5 > CL3,1 (Figure 19c). In particular, CL1 is somewhat isolated from the flow path, at least relative to the increased mass flux moving through the other levels. The hydraulic residence time is difficult to estimate from these data, but is on the order of 10 to 15 days for most of the levels. (Figure 19c). There did not appear to be any influence of the initial tracer test on the second tracer test. Tracer data for the EPA3 Cluster Wells, located at the edge of the Nitrate Cell, are shown in Figure 20. In the first tracer study, tracer flow is limited to the upper two levels, with CL1 breaking through before CL2 (Figure 20b). CL3 and CL5 began to show breakthrough long after influent concentrations were reduced, and in fact peaked during the second tracer test (Figure 20c). In contrast, CL4 only begins to show breakthrough during the second tracer test; this indicates that there are substantial differences in horizontal conductivity as well, since CL4 and CL5 broke through at roughly the same time in the center of the cell (Figure 19b). As with the initial test during the wetting phase, the only breakthrough evident in real time during the second test at the EPA3 cluster was at the upper two levels, in sequential order (Figure 20c). The amount of applied water which reached the deeper cluster wells at the edge of the cells is difficult to quantify, because we don't know at which depth the regional flow overcomes the mound effects at these locations. However, the chloride data obtained over the entire pilot demonstration period indicate that these deeper zones received substantial amounts of recharge (Appendix C). Initially, chloride levels were generally low (3-5 mg/L) for all cluster wells at this location, but gradually rose to recharge levels (8-10 mg/L) during the study, indicating that most of the aquifer had been cleared of the native ground water. These tracer data show that all of the edge

Figure 19. Breakthrough of Bromide in EPA1 Cluster, Center of Nitrate Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test

Figure 20. Breakthrough of Bromide in EPA3 Cluster, Edge of Nitrate Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test

cluster wells were therefore influenced by the applied water, although the deeper wells were probably less affected because of the increased travel time.

Tracer data for the EPA2 Cluster Wells, located in the center of the Control Cell, are shown in Figure 21. In contrast to the Nitrate Cell, breakthrough was much more evenly correlated with depth during the wetting phase (Figure 21b). Perhaps this is due to the ground surface being about a foot higher than the water table at this location, giving more vadose zone initially. Even during the second test, however, breakthrough followed in sequential order (Figure 21c). Compared to the Nitrate Cell, breakthrough occurred much more rapidly at CL1, about the same at CL2, and much slower at the lower levels. The degree of vertical heterogeneity was therefore much less in the Control Cell. This could be due to a number of reasons, including a lesser number of gravel trenches, plastic barriers, and abandoned wells remaining in this area from the hydrogen peroxide study (Figure 2). Tracer data for the EPA4 Cluster Wells, located at the edge of the Control Cell, are shown in Figure 22. Breakthrough for the first tracer study was again in sequential order (Figure 22b). At first, it may seem surprising that breakthrough occurs at the lower three levels during the wetting phase, since this was not observed at the edge of the Nitrate Cell, and breakthrough at the lower levels in the center of the Control Cell occurred later relative to those in the Nitrate Cell. However, this was probably due to two reasons: (1) the area around EPA4 Cluster contains 0.6 to 1.0 feet of red clay fill, which might have forced a stronger vertical gradient inward from the edge of the cell, and (2) horizontal trenches had been dug and backfilled with more permeable soils and sands, which would have accelerated this localized downward migration. A similar result was seen during the second tracer study (Figure 22c). Although it appeared as if tracer broke through at CL1 after CL2, this was probably an artifact caused by CL1 being dry until almost the end of the study. In summary, these tracer studies demonstrated that recharge could penetrate to below 11 feet at the edges of the treatment cells as well as at the centers, and therefore provided adequate transport of recharge water throughout he contaminated intervals.

The EPA5 cluster was used to monitor whether nitrate was not being utilized and was being transported to the bulk ground water. These wells were therefore analyzed for both tracers to better define migration of the recharge water. Figure 23 shows bromide and chloride concentrations downgradient of the treatment cells in the EPA5 cluster set. This cluster was indeed affected by operation of the Nitrate Cell, as shown by a gradual response to the bromide tracer studies at each level (Figure 23a). It is of interest to note that bromide breakthrough occurred in approximately the same manner for the two lower levels, indicating that the applied recharge was probably penetrating to well below 11 feet in the Nitrate Cell. It is difficult to say whether the tracer profiles for the EPA5 cluster wells result from the first, second, or combination of both sets of tracer studies. There appears to be a double spike at EPA5A, the highest level, but the data are too few to resolve this clearly. In any event, the apparent hydraulic residence time is on the order of 6 to 8 months for each of the levels (Figure

Figure 21. Breakthrough of Chloride in EPA2 Cluster, Center of Control Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test

Figure 22. Breakthrough of Chloride in EPA4 Cluster, Edge of Control Treatment Cell, Showing: a) Complete Profile, b) Profile at Start of Test, and c) Profile at Middle of Test

Figure 23. Breakthrough of a) Bromide and b) Chloride Tracers in EPA5 Cluster, Downgradient of Nitrate Treatment Cell

23a). The chloride data are more difficult to interpret (Figure 23b). This is because chloride, unlike bromide, is present naturally at the site, and can be leached from the soil, especially during sustained infiltration as occurred at the beginning of the study. This may be the cause of the chloride spike observed in EPA5A early in the study on May 29 (Figure 23b). Chloride concentrations increased in each of the EPA5 wells, although more gradually than bromide concentrations (Figure 23a, b). This increase was probably not due to the chloride tracer used in the Control Cell, but rather due to the background chloride present in the recharge water, which is about twice that initially present in the ground water at EPA5. This natural tracer gives a better assessment of the effect of treatment cell operation on ground water quality at this location, and shows that it took approximately 5, 7, and 14 months for recharge to replace the water in EPA5A, EPA5B, and EPA5C, respectively.

2. Monitoring Well Data

The complete monitoring well dataset for the EPA Project Wells has been archived as Appendix C. Because of the large amount of data available, it would not be beneficial to provide a thorough evaluation of all of the data within this report. In addition, reference will often be made to Appendix C rather than specific graphs, to limit the number of graphs and tables in this report. The following discussion focuses primarily on those data that contribute to the understanding of the microbial processes occurring in the subsurface.

a. Conventional Wells vs Cluster Wells

Monitoring well data were obtained from conventional, 2-inch PVC wells as well as 1/4-inch cluster wells. It soon became apparent that different results were obtained for the two types of wells, even after corrections were made for locations of screened intervals. For example, EPA1 was screened from 1-11 feet below ground surface, whereas the adjacent EPA1 Cluster had well points at approximately 4.0, 5.0, 6.5, 8.5, and 11 feet below ground surface. To provide a rough comparison to the conventional well, data from each of the five well points were simply averaged. This gave a reasonable match in conservative water quality indices, as illustrated by the tracer data for the four locations during each of the two tracer studies (Figure 24). In contrast, nonconservative parameters such as BTEXTMB, nitrate, and dissolved oxygen, were often quite different (Figure 25). For example, the conventional well in the Nitrate Cell showed a rapid loss of BTEXTMB and a gradual breakthrough of nitrate and, to a lesser extent, oxygen (Figure 25a). However, the cluster wells indicated that the ground water still had high concentrations of BTEXTMB, and nitrate and oxygen levels were much lower (Figure 25b). Similar discrepancies in the results, although to a lesser scale, were obtained for the well pairs in the center of the Control Cell (Figure 25c,d). One explanation for this discrepancy is that the conventional monitoring wells do not provide a true representation of the aquifer environment under these operating conditions. It is possible that the infiltrating recharge enters into the

Figure 24. Comparison of Tracer Data in Conventional PVC Wells vs Cluster Well Averages

Electron Acceptors (mg/L)

8

5

20

9

Oxygen

- - BTEXTMB

Figure 25. BTEXTMB and Electron Acceptor Levels in a) EPA1 Monitoring Well, b) EPA1 Cluster Wells, c) EPA2 Monitoring Well, and d) EPA2 Cluster Wells

monitoring well screen through more transmissive zones above the contaminated interval, providing sufficient electron acceptors to facilitate biodegradation of BTEXTMB within the well itself. It is surprising that this effect is not negated by purging approximately ten well volumes from the well, as was done each time before sampling. Regardless of the exact mechanism, the extent of bioremediation can be clearly overestimated using the conventional monitoring wells. Because of this, the cluster wells were used (where available) to provide a more accurate representation of the aguifer environment.

b. Distribution of BTEXTMB and Electron Acceptors in Cluster Wells

Contaminant and electron acceptor profiles were complex, and varied both temporally and spatially for the two treatment cells. In the following section, the cluster well data are presented in graphical format, with graphs oriented analogous to the well locations shown in Figure 14. Contaminant data are summed as BTEXTMB and are shown in Figure 26; additional information on the individual isomers is available in Appendix C. It should be noted that the scale for the two profiles at the edges of the treatment cells is five times that of the profiles located in the centers of the treatment cells. In addition to this spatial difference, the BTEXTMB profiles (ie, concentration vs time) were very different for the different locations. Near the source area (Figure 26c), contaminant concentrations were high and did not change much during the entire project period. Because the tracer studies showed that flow from the Nitrate Cell was moving through this area, this indicates that residual saturation was probably present at this location, causing slow release of contaminants as water moved through the different levels. In contrast, the initial contaminant levels were much higher at the edge of the Control Cell, but diminished at a constant rate, except for some unusually high spike intervals which occurred during Jun-Sept and again in Oct (Figure 26a). The cause of these peak concentrations of BTEXTMB is unknown, but may be related to the high water table elevations occurring during these times (Figure 17). This effect was observed to a lesser extent in the cluster wells located in the centers of the treatment cells (Figure 26b, d). In the center of the Control Cell, BTEXTMB concentrations initially diminished rapidly and then more slowly with time (Figure 26b). This was also observed in the center of the Nitrate Cell, but the anomalous spikes were more apparent (Figure 26d). Also, BTEXTMB levels did not drop as quickly in the upper cluster well of the Nitrate Cell, indicating the presence of residual saturation or less water movement through this level. It was observed earlier from the tracer study that this well appeared to be somewhat isolated from the general recharge flow path. Comparison of Figures 2 and 15 reveal that the center of the Nitrate Cell was in an area which had previously contained plastic-covered infiltration trenches from the previous study on hydrogen peroxide, and this probably restricted water movement through this level. Because of the differences in ground surface elevations, the upper two cluster levels at the edge of the Control Cell were not located in contaminated intervals, whereas only the upper cluster level was uncontaminated at the center of the Control Cell and at the edge of the Nitrate Cell. BTEXTMB was

→ CL3, 6.5 ft → CL4, 8.5 ft

→-CL5, 11 ft

Figure 26. Aqueous BTEXTMB Profiles in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell

detected at all levels at the center of the Nitrate Cell.

Electron acceptor profiles were quite variable as well. Although nitrate was the only electron acceptor which was intentionally added to the recharge for the Nitrate Cell, other potential electron acceptors were either present in the unamended recharge, incorporated during sprinkler application, formed during transformation processes, or available in the aquifer solids. For example, oxygen was incorporated during sprinkler application of the recharge to both cells. In general, oxygen levels were below 0.5 mg/L in all of the cluster wells, with the exception of EPA4-CL1, which was often at or above the water table (Appendix C). Nitrate profiles are shown in Figure 27. Except for an occasional spike, nitrate was undetected at the edge and in the center of the Control Cell (Figure 27 a,b). The initial spike was probably due to leaching of soil nitrate and/or nitrification of fertilizer ammonia-nitrogen. There were much higher spikes of nitrate initially detected in all cluster levels in the center of the Nitrate Cell as result of nitrate application, but these levels diminished rapidly, and there were only occasional spikes until about Sept (Figure 27d). At first it was thought that the system was working as planned, with denitification occurring in the upper contaminated interval. However, other sinks for nitrate were possible as well, and included uptake of nitrate by the vegetative cover and/or denitrification in the rhizosphere. Because of this, nitrate levels were increased to 20 mg/L NO₃-N on July 15 (Figure 27d). This did not have an immediate effect, and nitrate breakthrough did not start until Oct. In contrast to this, nitrate levels did not ever break through appreciably at the edge of the Nitrate Cell (Figure 27c). In this case, nitrate removal was most likely due to denitrification within the contaminated intervals beneath the Nitrate Cell, limiting treatment efficiency at the edge. It should be noted that we did not design our study to treat the contaminated sediments at EPA3; these wells were used simply to assess water quality as recharge exited from beneath the Nitrate Cell. However, core analyses show that some treatment occurred at this location (Section IVD4). Part of this could have been due to simply increasing nitrogen availability as ammonia (discussed below) to stimulate other anaerobic biological processes.

Denitrification results in the loss of nitrate; it can also produce nitrite and nitrous oxide as intermediate electron acceptors. The nitrite profile was similar to that of the nitrate profile, with most of the compound being detected after Oct in all levels at the center of the Nitrate Cell (data not shown; see Appendix C). Nitrous oxide was not routinely measured, but was detected during the performance evaluations (Sections IVC and IVD). Neither of these compounds were present in the recharge water for the treatment cells. The presence of these intermediates support the hypothesis that nitrate removal was due at least in part to denitrification, and not just nitrate uptake by the vegetative cover. Again, it cannot be determined whether denitrification was limited to the rhizosphere; however, the absence of nitrite in the EPA3 cluster wells again indicates that denitrification was occurring in the contaminated intervals as well. Interestingly, ammonia nitrogen levels were significantly higher in the cluster wells at the center and the edge of the Nitrate Cell

Figure 27. Occurrence and/or Breakthrough of Nitrate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell

than in the cluster wells in the corresponding Control Cell (Figure 28). Ammonia nitrogen was not detected in the recharge waters for the two treatment cells. Although ammonia nitrogen is not an electron acceptor in this instance, it most likely results from dissimilatory reduction of nitrate to ammonia, which can occur when concentrations of electron acceptors are limited relative to the available organic carbon (Tiedje, 1988), as would be the case for these cluster wells. This process complements rather than competes with denitrification, and, from a standpoint of contaminant reduction, is in fact more beneficial. This is because dissimilatory nitrate reduction to ammonia provides more electron-accepting capacity than denitrification, since nitrate-nitrogen is reduced to a valence of -3 (NH₄-N) rather than 0 (N₂). Although dissimilatory nitrate reduction to ammonia can be carried out by different groups of bacteria than the regular denitrifiers, some bacteria can accomplish both. The high concentrations of ammonia nitrogen at the edge of the Nitrate Cell lend further support to the hypothesis that the nitrate and nitrite are being reduced during transport through the contaminated intervals beneath the Nitrate Cell.

Along with the obvious addition of nitrate in the sprinkler recharge for the Nitrate Cell, sulfate is also present in the recharge water for both cells at about 10 mg/L. Sulfate can also be used as an alternate electron acceptor, and there are numerous studies which show biodegradation of aromatic hydrocarbons under sulfate-reducing conditions (Grbic-Galic, 1989; Haag et al, 1991; Edwards et al, 1992; Beller et al, 1992, Coates et al, 1996). When sprinkler application first began, large amounts of sulfate were initially mobilized from the surface soil layers in both cells (Figure 29). Most of this mobilization was complete by about Jun, and sulfate levels declined to low levels by Sept in all locations except for EPA4, which showed anomalous sulfate spikes after this time (Figure 29a). These spikes are again coincident with the elevated water table and the high BTEXTMB levels, indicating that other surface layers were probably being contacted and depleted of sulfate. The decline of sulfate in the other locations may be due to clipping and decay of vegetative matter during the growing season, which can lead to sulfate utilization. Although sulfate concentrations varied significantly in all levels at the different locations after this time, some patterns became evident. For example, there was generally extensive sulfate breakthrough at EPA1, located in the center of the Nitrate Cell (Figure 29d). This would be expected if nitrate were being used preferentially to sulfate as the alternate electron acceptor. Sulfate concentrations again began to drop for all cluster well levels at all locations after Feb, possibly in response to biodegradation of the clipped and decaying organic matter as the growing season commenced again. In contrast, except for the surface uncontaminated layer, there was never much sulfate breakthrough at EPA3, located downgradient in the highly contaminated area (Figure 29c). This indicates that sulfate reduction is occurring within the contaminated intervals. Sulfate concentrations varied markedly at EPA2, located in the center of the Control Cell, but in general were correspondingly less than those for the Nitrate Cell cluster wells (Figure 29b). Because nitrate was not available, it appears that sulfate became the primary electron acceptor at this location. Further evidence is given by

Figure 28. Formation of Ammonia-Nitrogen in Cluster Wells Located at a) Edge of Control Cell, Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell **Q**

Figure 29. Breakthrough of Sulfate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell

the field data for thiosulfate, a possible intermediate in sulfate reduction, which we began to analyze for in Feb. Higher concentrations were detected in the cluster wells at both the center and edge of the Control Cell than in the corresponding Nitrate Cell locations (Figure 30). These concentrations were generally high when sulfate concentrations were low, and vice versa. Thiosulfate was not detected in the recharge water.

Ferric iron can also serve as an alternate electron acceptor for the biodegradation of aromatic hydrocarbons under iron-reducing conditions (Lovely et al, 1989; Lovely et al, 1996). In addition, ferrous iron can also stimulate toluene biodegradation under sulfate-reducing conditions (Beller et al, 1992). Although iron was not detected in the recharge water, it was available in the soil and ground water. As with sulfate, continuous sprinkler application of recharge water caused an initial leaching of iron from the surface soils (Figure 31). The iron is measured as soluble iron, and can include both ferric and ferrous iron. However, given the neutral pH of the ground water, most of this iron is probably in the reduced state. Therefore, high levels of soluble iron can indicate both leaching from surface soils and the occurrence of iron-reducing conditions. In the case of EPA4, located at the edge of the Control Cell, iron concentrations dropped but then exhibited the same anomalous spike as was observed with BTEXTMB and sulfate (Figure 31a). Again, this is most likely due to leaching of these components out of previously uncontacted surface soils, since these spikes correspond to high water tables. In most cases, soluble iron levels decreased during the pilot demonstration project. However, soluble iron levels were higher and decreased more slowly for the upper cluster well at the center of the Nitrate Cell (Figure 31d). This level also had higher BTEXTMB concentrations and was, as discussed previously, somewhat isolated from the general recharge flow path. It cannot be determined whether iron reduction was more prevalent in the Nitrate Cell compared to the Control Cell, since the original electron acceptor was probably localized to aquifer solids and could not be measured. However, it is of interest to note that soluble iron levels were high in the lower three levels at the edge of the Nitrate Cell, which contained significant BTEXTMB contamination (Figure 31c). Because this does not follow the other patterns of rapidly declining iron concentrations, it may indicate that iron reduction is occurring at or upgradient of this location. Because this also coincided with sulfate reduction, the mechanism of iron reduction could be either biotic or abiotic.

c. Organic Acid Intermediates

Periodically, selected analyses would be done to better evaluate the role of biodegradation during the pilot demonstration project. An analysis of organic acids in the cluster wells was conducted during the second tracer study in Jun 94 to see if intermediates from the biodegradation of aromatic hydrocarbons could be detected. Water samples were collected in 160-mL serum bottles and preserved with 10% Na₃PO₄. Analyses for phenols, aliphatic acids, and aromatic acids were

Figure 30. Formation of Thiosulfate in Cluster Wells Located at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell

26-Sep 25-Nov 24-Jan 25-Mar 24-May

28-Jul

29-May

0 30-Mar

24-Jan 25-Mar 24-May

25-Nov

26-Sep

28-Jul

29-May

0 30-Mar

29-May 28-Jul 26-Sep 25-Nov 24-Jan 25-Mar 24-May

performed based on modifications from earlier procedures (Folgelqvist et al, 1980). The samples were then acidified, extracted with methylene chloride, and derivatized with pentafluorobenzyl bromide according to RSKERL SOP 177. The derivatized extracts were chromatographed on a 0.25 mm J&W DB5-MS capillary column with a 0.25 μm film thickness and a temperature program of 100°C to 300°C (16 minutes) at 6°C/minute. Analyses were conducted using a Finnegan 4615 GC/MS with a scan of 42 to 550 m/z in 0.5 sec. The only compound detected in the recharge water was benzoic acid at 10.3 µg/L; this was assumed to be a method contaminant and sample values were therefore corrected for this amount. The data for the cluster wells are shown in Table 12. Most of the hydrocarbon breakdown products were detected in the cluster wells at the edge of the Nitrate Cell, with concentrations up to and exceeding 500 μg/L (Table 12). Although much lower in concentration, the next most prevalent group of breakdown products was found in the EPA1 cluster wells, at the center of the Nitrate Cell. Operation of the pilot demonstration project had essentially reversed the regional ground water flow by this time (see Figure 18), and so it is doubtful that the breakdown products detected at the center of the Nitrate Cell originated from the source area. Similarly, although contaminant concentrations were highest at the edge of the Control Cell (EPA4), there were no detectable breakdown products at this location, and concentrations were also low in the center of the Control Cell (Table 12). This indicates that biodegradation was indeed occurring in the Nitrate Cell, and perhaps to a greater extent than in the Control Cell. However, it is also possible that processes other than denitrification (eg, sulfate reduction) may have been occurring to similar extents in the Control Cell, but that these intermediates were either not produced or were metabolized more quickly than the parent compounds.

C. INTERIM PERFORMANCE EVALUATION

General System Performance

An Interim Performance Evaluation was conducted Aug 19-30, 1994, approximately 120 days after sprinkler application first began. The purpose of this evaluation was to gather additional soil and water quality information to evaluate the performance of the pilot demonstration project for the first one-third of the operating period. During this time, approximately 27 feet of recharge had been added to the treatment cells, with 94 kg nitrate-nitrogen added to the Nitrate Cell. General system performance had been quite good, with few operational problems, no flooding or ponding of the recharge, and no nitrate being detected in the down-gradient wells (Appendices B, C). However, there was concern regarding the amount of applied nitrate which was actually being transported to the contaminated interval. Continuous sprinkler application caused increased vegetative growth in both cells, and each cell was mowed approximately once every 2 weeks. The grass clippings were not collected and discarded, but left in place. Vegetative growth had the potential for creating two additional sinks for nitrate: (1) nitrate uptake by the vegetation, for use as

TABLE 12. CONCENTRATIONS OF MONOAROMATIC HYDROCARBON BREAKDOWN PRODUCTS IN CLUSTER WELLS, COLLECTED 6/94 DURING OPERATION OF PILOT DEMONSTRATION PROJECT (CONCENTRATIONS IN µg/L)

							Nitro	Nitrate Cell F	E POP	F	ď	Control C	Cell, Ce	Center	\vdash	Control	trol Cell,	ill, Edge	ø
Monoaromatic Hydrocarbon	Hypothesized	Nitrate	ate Cell,	اڌ		4		310 Oct.,		╀			1	0.4.0	2.5	4-1 4-2	2 4-3	3 4-4	4-5
Breakdown Product	Parent Compound	1-1	1-2 1	1-3 1-4	1-5	3.1	3-5	3-3	3-4	C-2	- 2	7.7	27	Т	╄	1	L	ı	L
Benzoic Acid	Toluene	.0.1 △	<0.1 <0.1	.1 <0.1	1 <0.1	21.3	12.6	7.5	9.0	-0°	0.7	-0.1	0.7 <	<0.1 <(<0.1	.1 <0.1	1 <0.1	1 <0.1	-0.1
Phenylacetic acid	Ethylbenzene	J> 8.71	<0.1 <0.1	.1 16.5	5 47.8	3 18.7	20.3	128.0	314.0	11.6	<0.1 4	<0.1 <	<0.1 <	<0.1 <(<0.1 <0	<0.1 <0.1	1.00.1	1 <0.1	-0.1
p -Methylbenzoic acid	p -Xylene	14.7 <0	<0.1 <c< td=""><td><0.1 11.4</td><td>4 13.7</td><td>7 16.5</td><td>12.4</td><td>94.1</td><td>162.0</td><td>-0°.</td><td>-0.1</td><td>40.1</td><td><0.1 ^</td><td>^0.1 ∧</td><td><0.1 <0</td><td><0.1 <0.1</td><td>.1 <0.1</td><td>1.00</td><td>-0.1</td></c<>	<0.1 11.4	4 13.7	7 16.5	12.4	94.1	162.0	-0°.	-0.1	40.1	<0.1 ^	^0.1 ∧	<0.1 <0	<0.1 <0.1	.1 <0.1	1.00	-0.1
m -Methylbenzoic acid	m -Xylene	60.1 <	.0.1 .0.1	<0.1 <0.1	1.00.1	1 751.0	322.0	152.0	23.6	10.6	10.2	9.7	<0.1	<0.1 <	<0.1 A	<0.1 <0.1	.1 <0.1	1. <0.1	1.00.1
o -Methylbenzoic acid	o -Xylene	.0. ∧	-0.1 -0.1	<0.1 <0.1	1.1	1 14.6	14.2	138.0	328.0	40.2	60.1	٥. 1	<0.1	<0.1 △	40.1 A	<0.1 <0.1	1. <0.1	.1 <0.1	1 <0.1
3,5-Dimethylbenzoic acid	1,3,5-Trimethylbenzene (Mesitylene)	14.1	11.7 8	8.7 8.1	1 8.2	59.0	30.3	144.0	165.0	12.4	60.1	<0.1	-0.1	<0.1 <	40.1 A	<0.1 <0.1	1.1 <0.1	.1 <0.1	1 <0.1
2,4-Dimethylbenzoic acid 2,5-Dimethylbenzoic acid 3,4-Dimethylbenzoic acid	1,2,4-Trimethylbenzene (Pseudocumene)	<0.1 < <0.1 < <0.1 < <0.7 5	60.160.151.24	<0.1 <0.1 <0.1 <0.1 <0.1 <42.7 27.5	<0.1 <0.1 <0.1 <0.1 <27.5 16.1	.1 c0.1 .1 16.4 .1 14.8	1 <0.1 4 <0.1 3 19.7	29.0 37.0	65.7 132.0 170.0	38.4 31.7 158.0	60.1 60.1 60.1	60.1	60.1 60.1	0.00 0.1.00 0.1.00	60.1 60.1 60.1	6.1.0 0.1.0 0.1.0 0.1.0	6.1 6.1 6.1 6.1 6.1 6.1	1.00 1.00 1.00 1.00 1.00	6 6 6 1 6 6
2,3-Dimethylbenzoic acid 2.6-Dimethylbenzoic acid	1,2,3-Trimethylbenzene	.0.1 .0.1	6.1 0.1 0.1	60.1 60 60.1 8	<0.1 <0.1 8.8 9.6	.1 22.5 6 27.6	5 10.6	39.2	134.0 23.3	50.3 <0.1	60.1 60.1	60.1	60.1	60.1	60.1 0.1 0.1	0.1. 0.1. 0.1.	60.1 0.1 0.0	60.1 <0.1 60.1 <0.1	 6.0.1
3-Phenylpropanoic acid	Propylbenzene	¢0.1	6.1	<0.1 <€	<0.1 <0.1	11 30.4	4 13.7	30.8	18.8	<0.1	<0.1	6.1	<0.1	60.1	<0.1 				

a nitrogen fertilizer source, and (2) nitrate utilization by denitrifying bacteria in the rhizosphere, with the decaying vegetation providing the organic carbon as electron donor. Because of this, lysimeter samples were taken during the Interim Performance Evaluation to provide information on the extent of nitrate transport.

2. Lysimeter Samples

An attempt was made to quantify the amount of nitrate passing the root zone (0.0 - 0.5 feet below ground surface) by installing suction lysimeters in the underlying vadose zone. The sprinkler system was shut down prior to installation of the lysimeters to avoid channelling of infiltrate down the casings. In addition, the holes were backfilled with bentonite as a precautionary measure. The lysimeters were initially installed 1.3-1.5 feet below ground surface adjacent to core locations 80W, 80X, 80Y, 80Z, and 80ZA (Figure 32). However, we were unable to obtain water samples from locations 80X, 80Y, and 80ZA, and therefore these lysimeters were reinstalled 2.3-2.5 feet below ground surface. For some of the lysimeters, samples were taken on consecutive days to evaluate nitrate loss with time. Breakthrough of nitrate varied significantly across the nitrate cell, being about 50-60% in two locations and 4-6% in three others (Table 13). Those locations showing the lowest amount of nitrate also showed rapid loss with time, indicating that much of the loss was occurring at least one to two feet below ground surface. It is interesting to note that in each location, nitrate concentrations decreased with time and ammonium concentrations (except for location 80W) increased with time. This trend is consistent with the hypothesis that dissimilatory nitrate reduction to ammonia is occurring. Also, the three locations with the lowest nitrate concentrations had the highest ammonium concentrations. If it is assumed that the ammonium nitrogen arises from nitrate reduction, then the total nitrogen breakthrough more accurately depicts the percentage of nitrate which is not being taken up by the vegetation. In this case, nitrogen breakthrough increases to 50-70% in two locations and 15-20% in the other three. Because these data were taken during August, essentially in the middle of the growing season, they represent a worstcase scenario for nitrate loss. The data therefore indicate that, during most of the pilot demonstration period thus far, a significant percentage of the applied nitrogen was being transported to below one to two feet and presumably into the contaminated intervals.

3. Ground Water Samples

As with the initial site characterization, water samples were again collected from the POL wells and from selected points below ground surface using the geoprobe. Samples from the wells were analyzed for the constituents that were routinely monitored, as well as TOC, methane, and nitrous oxide. These data are shown in Table 2. Perhaps the most important aspect of this dataset is that nitrate, nitrite, and nitrous oxide concentrations were generally at or below the detection limit in water samples taken from wells both within and outside the pilot cells. Operation of

Location of Mid-Test Core Samples, Taken During Interim Performance Evaluation. Locations 80W, 80X, 80Y, 80Z, and 80ZA Were Also Sampled Using Lysimeters. Pre-Test Core Sample Locations are Shown for Reference. Figure 32.

TABLE 13. NITROGEN DATA FOR WATER SAMPLES OBTAINED FROM SOIL LYSIMETERS INSTALLED IN NITRATE CELL DURING INTERIM PERFORMANCE EVALUATION

Lysimeter	Depth	Date/Time	NO ₃ -N NO ₂ -N (ma/L)		NH ₄ -N	% NO ₃ -N Breakthrough	% NO ₃ -N, NO ₂ -N % Total Nitrogen Breakthrough Breakthrough	% Total Nitrogen Breakthrough
			1					
		00.07	7 80	0.14	0.64	48.0	48.8	52.8
80M	J.3-1.5	02:21 96/61/8	0. 1	- t	5 6	0 91	47.4	49.6
80W	1.3-1.5	8/20/94 8:08	7.53). ()	0.30	6.0	;	0 0 0
80W	1.3-1.5	8/20/94 14:24	6.28	0.17	0.18	38.6	39.7	40.0
	(, 000 000 000 000 000 000 000 000 000 0	7	0 0	2,0	4 4	5.8	20.5
80X	2.3-2.5	8/20/94 7:51	0.7	0.60	9 6		C	23.6
80X	2.3-2.5	8/20/94 14:28	0.02	0.11	3.68	 5.	<u>?</u>	
		!	•	0	,	ď	44	16.3
80√	2.3-2.5	8/20/94 7:58	0.64	0.08	 		• •	
			3	9	1 66	z. G	5.9	16.1
80Z	1.3-1.5	8/19/94 12:20	- - - - -	0.0	9.) i		16.1
007	1 2 1 5	8/20/94 8:12	0.12	0.05	2.45	0.7	<u> </u>	- (
200) (20.05	3.52	9.0	6.0	22.6
807	3.7-5.1	8/20/94 14:09		5	i)	•		
	1		000	0	78.0	63.3	65.4	70.7
80ZA	2.3-2.5				5 6	7 7 7	57.0	63.7
80ZA	2.3-2.5	8/20/94 14:15	8.96	0.3	9		2	

the pilot system did not appear to have caused any significant contamination of the bulk ground water by nitrate or its degradation products, even after doubling the influent nitrate concentrations.

A geoprobe was used to collect water samples at three depths (3.5-5.0, 6.5-8.0, and 9.5-11.0 feet below ground surface) next to core locations 80KC, 80X, 80Z, 80ZA, 80ZB, 80ZC, 80ZE, 80ZF, and 80ZG (Figure 32). These data are shown in Table 14. Ground water throughout the site was still contaminated, with dissolved BTEXTMB concentrations generally increasing in the lower depths. This is probably due to the increased vertical hydraulic gradient brought about by sustained infiltration, causing the leaching of aqueous BTEXTMB from the upper contaminated zones. These data were compared with those from the geoprobe samples taken prior to start-up of the pilot test to evaluate whether nitrate addition has caused any effect on aqueous BTEXTMB concentrations. This was done by averaging total BTEXTMB concentrations for a given level across either the nitrate cell or the control cell. This is by necessity a rough comparison, since geoprobe locations do not match up exactly with those done earlier. There was an average removal of about 83% of total dissolved BTEXTMB at each level, except for the lower two levels in the nitrate cell (Table 15). These data show that nitrate addition had not yet enhanced BTEXTMB removal relative to the control cell. This was not as expected, but the data are extremely variable, with coefficients of variation (standard deviation/mean) averaging 100%. The described analysis was done to provide a direct comparison of water quality between the treatment cells, and represents a conventional approach. A better way to evaluate the data would be to examine changes in mass ratios of selected components. This would eliminate some of the variability induced by "pockets" of contamination dispersed across given levels. This was done for mesitylene (1,3,5-trimethylbenzene) and 1,2,3trimethylbenzene. Both isomers are similar with respect to physical chemistry, but mesitylene is generally degraded under denitrifying conditions whereas 1,2,3 trimethylbenzene is recalcitrant (Hutchins, unpublished data). Mass ratios were calculated by dividing the concentrations of each isomer by the concentration of total BTEXTMB; coefficients of variation averaged 60% using this approach. Considering all of the data at all of the levels, the average ratio of mesitylene:1,2,3-trimethylbenzene was found to be 0.91±0.32 for the Nitrate Cell and 0.77±0.14 for the Control Cell before the pilot test. After 4 months operation, the ratio dropped to 0.49±0.46 for the Nitrate Cell and remained at 0.84±0.38 for the Control Cell. Preferential microbial degradation of mesitylene is the most likely explanation. It should be emphasized that the underlying mechanism for enhanced degradation cannot be discerned; enhanced degradation through other processes such as sulfate reduction could possibly contribute just as much as that through denitrification.

There did appear to be some migration of nitrate infiltrate water to the Control Cell. This is shown by the presence of high levels of nitrite and nitrous oxide in the upper levels of 80ZA (at the edge of the Nitrate Cell) and in the lowest level of 80ZB (at the adjacent edge of the Control Cell). This crossover probably occurred

16.3 12.2 20.0 36.6 14.6 12.5 34.3 16.6 13.1 TOC (mg/L) 19.1 20.1 18.0 14.5 12.8 22.5 14.8 9.9 15.4 2.6 6.8 6.3 5.1 4.4 7.9 9.5 14.9 9.0 1.3 5.3 TABLE 14. GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING INTERIM PERFORMANCE EVALUATION, 8/94 60.5 0.6 60.5 SO₄ (mg/L) 60.560.560.5 2.7 <0.5 <0.5 9.0 -0.5 2.8 60.560.560.5 7.1 60.5 60.5 4.3 8.9 2.1 1.8 0.5 10.2 9.5 4.9 5.0 <0.05<0.05<0.05 PO₄-P (mg/L) -0.050.050.05 -0.050.080.15 <0.05<0.05<0.05 <0.05 0.15 0.37 0.08 60.05 0.06 0.06 1.06 1.01 0.26 1.49 1.37 0.59 0.39 0.24 0.40 NO₃-N NO₂-N NH₄-N (mg/L) (mg/L) (mg/L) <0.05<0.05<0.05 3.38 1.83 2.86 0.80 1.40 2.15 1.23 0.49 0.07 0.22 0.28 0.93 0.77 1.30 1.59 4.07 3.35 4.32 0.39 1.35 1.97 0.06 0.15 0.66 1.74 0.80 3.74 <0.05<0.05<0.05 <0.05<0.05<0.05 <0.05<0.05<2.73 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05<0.05<0.05 0.28 <0.05 0.10 2.56 1.03 <0.05 6.056.056.05 <0.05 <0.05 60.0560.0560.05 0.23 <0.05 <0.05 <0.05 <0.05<0.05<0.05 <0.05 <0.05 6.056.056.05 0.64 0.05 0.05 1.70 <0.05 <0.05 0.62 0.09 0.07 0.0 0.0 0.0 Cl (mg/L) 11.8 9.9 8.8 10.1 10.1 2.2 3.2 2.7 9.5 9.9 9.0 9.3 9.7 9.1 8.9 8.6 9.5 9.4 9.5 4.1 3.1 7.0 (mg/L) <0.5</p><0.5</p> 60.5 60.5 60.5 0.7 <0.5 0.8 0.8 <0.5 <0.5 60.5 1.1 0.7 0.7 0.8 0.7 2.6 2.3 15.6 0.7 0.7 9.2 2.4 1.2 1.3 ă 44.30 21.10 5.28 Fe (sol) (mg/L) 1.10 1.42 2.24 2.03 1.10 3.32 6.00 3.85 3.96 1.59 6.45 13.50 6.21 7.60 10.20 5.59 2.54 3.73 2.70 3.13 13.50 2.62 2.86 4.08 1.59 2.03 6.21 DO (mg/L) 0.8 1.2 0.3 0.2 1.0 0.2 0.5 0.6 0.4 0.4 4.0 0.7 2.4 0.4 0.4 0.9 pH (pH units) 6.34 6.13 6.16 6.12 6.50 6.64 6.27 6.21 6.24 6.59 6.48 6.38 6.62 6.57 6.75 6.65 6.75 6.52 6.79 6.45 6.92 6.64 6.06 4.94 5.83 5.95 6.72 6.60 6.02 Bot. Screen Top Screen (# MSL) 9.70 6.70 3.70 7.31 8.72 5.72 2.72 9.24 6.24 3.24 7.53 4.53 1.53 8.48 5.48 2.48 8.94 5.94 2.94 8.36 5.36 2.36 8.92 5.92 2.92 9.01 6.01 3.01 7.22 4.22 1.22 8.20 5.20 2.20 4.74 4.74 1.74 6.86 3.86 0.86 24.4 24.2 1.42 6.03 3.03 0.03 6.98 3.98 0.98 4 4 4 8.81 5.81 2.81 7.51 4.51 1.51 Top Screen ((ft from GS) 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 3.50 6.50 9.50 Bot. Screen (ft from GS) 5.00 8.00 11.00 5.00 1.00 1.00 8.00 1.00 5.00 8.00 11.00 5.00 8.00 11.00 5.00 11.00 5.00 8.00 11.00 5.00 8.00 11.00 5.00 11.00 5.00 8.00 11.00 Grade Elev. (ft MSL) 13.20 13.20 13.20 12.44 12.44 12.44 12.22 12.22 12.22 12.74 12.74 12.74 11.03 11.03 11.03 11.98 11.98 11.98 13.81 13.81 13.81 12.42 12.42 12.42 11.86 11.86 11.86 12.51 12.51 12.51 80ZG-1 80ZG-2 80ZG-3 80ZB-1 80ZB-2 80ZB-3 80ZC-1 80ZC-2 80ZC-3 80ZE-1 80ZE-2 80ZE-3 80ZF-1 80ZF-2 80ZF-3 80ZA-1 80ZA-2 80ZA-3 Sample 80KC-1 80KC-2 80KC-3 80W-1 80W-2 80W-3 80X-1 80X-2 80X-3 80Z-1 80Z-2 80Z-3 Uncontaminated Control Control Source Area Nitrate Cell Area

TABLE 14 (cont). GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING INTERIM PERFORMANCE EVALUATION, 8/94

								т	
<1 91 1728	68 253 89	375 6840 1963	34 215 2441	350 520 719	627 1191 660	22 2934 1418	124 533 797	550 852	2258 7740 5438
1.0 5.6 2.8	7.8 7.7 33.2	40.7 60.0 44.4	6.8 31.5 147.0	121.0 167.0 245.0	220.0 303.0 222.0	2.8 414.0 430.0	56.2 90.6 188.0	1.0 171.0 274.0	303.0 321.0 253.0
				1	205.0 408.0	3.0 667.0 379.0	14.2 143.0 332.0	1.3 127.0 284.0	385.0 790.0 463.0
				71.4 11.6 13.2	162.0 196.0 7.1	1.9 326.0 341.0	51.8 143.0 194.0	<1.0 200.0 226.0	197.0 240.0 161.0
		·	•	1.5 3.9 68.6	17.9 65.9 36.6	1.0 350.0 90.6	<1.0 59.7 25.1	<1.0 17.7 17.2	20.6 5.5 3.8
1				2.2 12.8 11.0	11.4 129.0 13.0	1.3 708.0 99.5	1.0 48.3 33.8	3.3 18.3 25.2	799.0 3640.0 2590.0
,				1.8 18.8 16.1	9.8 73.6 20.1	1.0 400.0 66.8	1.0 39.5 20.1	1.3 13.0 23.3	348.0 1500.0 1070.0
``			-		1.2 15.2 1.1	<1.0 63.4 10.5	<1.0 8.9 3.0	<1.0 3.0 1.9	201.0 1220.0 880.0
1				•		10.8 5.7 1.0	6.1.0 1.1.0	<1.0 <1.0 <1.0	2.4 17.7 9.9
	1				0.1.0	41.041.061.0	6.1.0 6.1.0 6.1.0	0.1.0 0.1.0 0.1.0	1.8 5.6 7.2
					0.001 0.036 3.980	0.004 <0.001 <0.001	<0.001 <0.001 <0.001	0.001 <0.001 <0.001	-0.001 -0.001 -0.001
		• • •			2.93 < 4.64 0.06	2.71 4.81	0.14 0.43 1.73	0.01 1.35 0.50	5.23 9.26 11.90
		<u>`</u>			0ZB-1 0ZB-2 0ZB-3	30ZC-1 30ZC-2 30ZC-3	80ZE-1 80ZE-2 80ZE-3	80ZF-1 80ZF-2 80ZF-3	80ZG-1 80ZG-2 80ZG-3
	888	888	æ æ æ	888	888		<u> </u>		
Jncontaminated		Nitrate	Cell			Control	Cell		Source
	80KC-1 0.00 0.012 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80KC-1 0.00 0.012 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80KC-1 0.00 0.012 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80KC-1 0.00 0.012 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80KC-1 0.00 0.012 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80W-2 0.00 0.012 0.10	80W-1 0.39 0.166 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	80W-1 0.39 0.166	80W-1 6.00 0.012 6.1.0

TABLE 15. AVERAGE AQUEOUS BTEXTMB CONCENTRATIONS IN PILOT CELLS BEFORE AND AFTER FOUR MONTHS OF TREATMENT

Parameter	Treatment Cell	Screened Interval (ft from ground surface)	Mean BTEXTMB (μg/L)	Std. Dev. (µg/L)	Coefficient of Variation	Coefficient of Average Removal Variation (%)
3/93 Data Before	Nitrate Cell	3.5-5.0 6.5-8.0 9.5-11.0	1810 1750 1730	2300 629 2230	1.27 0.36 1.29	
Treatment	Control Cell	3.5-5.0 6.5-8.0 9.5-11.0	962 5440 6730	803 2970 11600	0.84 0.55 1.73	
8/94 Data	Nitrate Cell	3.5-5.0 6.5-8.0 9.5-11.0	207 1960 1300	181 3260 1090	0.87 1.66 0.83	89 -12 25
After Treatment	Control Cell	3.5-5.0 6.5-8.0 9.5-11.0	195 1300 932	293 1130 334	1.50 0.87 0.36	80 76 86

below the zone of residual contamination, since it was not as apparent at 6.5-8.0 feet below grade as it was at 9.5-11 feet below grade. Therefore, the effect on residual saturation was presumably minimal. However, it could have influenced aqueous BTEXTMB concentrations at the lower level in this portion of the site. In fact, the uncharacteristically low mass ratio of mesitylene at this location in the Control Cell was probably due to denitrifying processes.

4. Core Analyses

As with the initial site characterization, core samples were again taken during the Interim Performance Evaluation to: (1) determine vertical and spatial extent of contamination, (2) evaluate the soil nutrient status, (3) characterize the microbial populations, and (4) evaluate the change in sediment toxicity. The latter two tasks were carried out by personnel at Rice University and Oklahoma State University, respectively, and have been reported elsewhere (Thomas et al, 1995; Bantle et al, 1996). The following section focuses on the changes in contaminant distribution and nutrient status brought about by operation of the pilot demonstration project.

a. Contaminant Distribution

Locations of the mid-test core samples have been presented in Figure 32, with the pre-test core sample locations also included for reference. It had been decided to locate the mid-test cores far enough away from the pre-test cores to avoid sampling the same location twice, as well as to avoid sampling an area adjacent to the pre-test core location which might have been disturbed by the initial core sampling. This turned out to be a mistake, because we had underestimated the magnitude of site heterogeneity. As a consequence, contaminant concentrations did not decrease in a consistent pattern downgradient of the source area, and the location of the mid-test core samples provided data which indicated that contaminant concentrations were either stable or increasing across the site. The data have been archived in Appendix A, and cumulative mass contours were generated from these data in a manner analogous to those used in the initial site characterization. To facilitate interpretation of the data, these contours will be discussed in Section IVD along with those of the Final Performance Evaluation.

Based on this evaluation of the core data, the effects of nitrate based bioremediation had thus far been minimal. The deeper core samples in Location 80ZA did substantiate the preferential removal of mesitylene over 1,2,3-trimethylbenzene which was observed in the geoprobe water samples as described previously. However, the total concentrations of BTEXTMB had not declined in the Nitrate Cell relative to the Control Cell. Although this was in part due to the heterogeneity of the site, there were no substantive changes in ratios of BTEXTMB to JP-4, indicating that these compounds were not being preferentially degraded in comparison to other fuel constituents (data not shown). A similar analysis of labile constituents (toluene,

ethylbenzene, and *m*-xylene) also showed no net effect (data not shown). Again, part of the problem may lie in site heterogeneity; some core locations showed "wetting fronts", ie, clear breaks in the core profiles where BTEXTMB ratios increase sharply with depth, whereas others showed no such increase (Appendix A). This probably indicates preferential flow paths or age-related differences in the specific origin of the contaminants within those layers. Regardless of the exact cause, the net effect of averaging the data obscures any changes that occur locally within the core profile.

b. Nutrient Status

Locations 80W, 80X, 80Z, and 80ZA (Figure 32) were sampled using the anaerobic glovebox as described previously to provide core material at three different depths for evaluating the soil nutrient status as well as for microbial characterization. These core groups were taken in the Nitrate Cell at different locations from those in the initial site characterization. In addition, Locations 80JC and 80KC, downgradient of the Nitrate Cell and the Control Cell, respectively, were taken adjacent to Locations 80JB and 80KB sampled in the initial site characterization. Data are shown for the soil chemical analyses in Table 16. In general, operation of the pilot system resulted in increased pH, nitrate, ammonia-nitrogen, and orthophosphate levels throughout the Nitrate Cell. Total Kjeldahl nitrogen and total phosphate levels generally decreased. This probably results from the combined effects of nitrate assimilation and decomposition, denitrification, and leaching of minerals. Other parameters (TOC, BTEXTMB, JP-4) were too variable in concentrations to generalize. Operation of the pilot demonstration project also resulted in slightly higher cell counts, as determined by phospholipid fatty acids (Table 16). Similarly, researchers at Rice University found that the total number of denitrifiers increased by an order of magnitude in most of the samples from the Nitrate Cell, and total numbers of aerobic heterotrophs and JP-4-degrading microorganisms also increased (Thomas et al, 1995). In summary, these data indicate that the microbial activity at the site has been increased as a result of pilot operation. This is in contrast to the contaminant distribution data, which generally showed no beneficial effect at this time.

D. FINAL PERFORMANCE EVALUATION

General System Performance

The lysimeter data from the Interim Performance Evaluation had shown that most of the applied nitrate was being transported to below the root zone in some cases, but that there was substantial variability across the site, making it difficult to estimate the total mass of nitrate being delivered to the contaminated zone. To address this problem, it was decided that part of each test cell should be stripped of the vegetative cover to facilitate nitrate transport in the Nitrate Cell and provide a corresponding control in the Control Cell. The pilot system was shut down Nov 11, and

TABLE 16. CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 8/94, DURING INTERIM PERFORMANCE EVALUATION

											-									
PLFA (nM/g)	8.27	7.36	2.35	5.87	4.29	2.89	3.81	8.56	1.03		6.58	8.35	1.70	1.63	2.02	0.77	0	2 0		0.51
JP-4 (mg/kg)	9	1310	<10	4560	2620	2280	[~] 10	3750	8	,	138	2630	22	Ξ	410	410	7	7	2	40
BTEXTMB (mg/kg)	0.008	0.064	0.074	70.800	18.900	217.000	0.035	21.500	2.010	,	0.023	16.900	0.711	0.876	0.188	0.010	000	60.0	- OO:OO	0.308
TOC (mg/kg)	0.274	0.059	0.063	0.188	0.128	0.098	0.113	0.178	0.032		0.066	0.047	0.008	0.091	0.062	0.020	0.011	900	0.00	0.004
tot-PO ₄ -P (mg/kg)	87.2	8.0	68.0	26.2	27.6	21.6	26.0	15.4	56.6		295.0	44.2	123.0	31.6	21.4	14.6	2.6	· (0.	2.4
o-PO₄-P (mg/kg)	6.44	5.08	6.92	0.58	<0.5	1.49	1.47	1.28	0.90		4.68	3.31	1.01	1.16	1.33	2.03	, ,) (c.0>	<0.5
TKN (mg/kg)	73.8	8.2	52.0	148.0	95.2	72.4	53.6	56.6	15.2		142.0	0.99	73.2	54.6	37.4	27.2	ď	5 6	4.4	1.8
NO ₃ /NO ₂ -N (mg/kg)	6:0	8.0	6.0	60	6.0	0.8	6.0	6.0	8.0		1.4	0.8	1.2	0.8	0.8	6.0	α C	9 0	0.0	0.8
NH₄-N (mg/kg)	2.5	2.0	2.1	2.4	1.8	1.9	2.8	4.4	2.7		2.5	2.5	1.5	4.0	4.1	4.0	17	. 0	0.	1.8
pH (pH units)	7.11	7.24	7.16	7.44	7.17	69.2	06.9	6.80	7.02		7.03	2.06	7.26	6.56	6.55	6.77	A 12	000	0.03	6.69
a E	1.	-:	1.1	65	1.2	1.1	7:	1.1	1.1			1:1	1.1	7	1:1	1:1	0		<u>.</u>	Ξ.
Bot int (ft MSL)	8.6	7.5	6.1	0.6	7.8	6.4	8.6	7.5	5.0	-	8.4	7.3	5.9	6.7	5.6	3.1	α π	9 0	0.0	3.6
Lo int Hi int Top int (ft MSL)	9.7	9.8	7.2	10.3	9.0	7.5	9.7	9.8	6.1		9.2	8.4	7.0	7.8	6.7	4.2	7.5) L	o 0.	4.7
Hi int (ft)	3.4	4.5	5.9	80	5.0	6.4	2.4	3.5	0.9		3.4	4.5	5.9	3.4	4.5	7.0	9) L	c. /	6.8
Lo int (ft)	2.3	3.4	4.8	2.5	3.8	5.3	1.3	2.4	4.9		2.3	3.4	4.8	2.3	3.4	5.9	2	9 6	o.	7.8
Core Sample*	80W2	80W1	80W4	80X2	80X1	80X4	80Z2	80Z1	8024		80ZA2	80ZA1	80ZA4	80JC2	80JC1	807C3	ROKCO	20702	2000	80KC4

* Core Locations 80W, 80X, 80Z, and 80ZA were inside the Nitrate Cell. Locations 80JC and 80KC were downgradient and upgradient, respectively.

sod removal commenced Nov 15. A sod cutter was used to cut the roots 3 inches below ground surface, and the sod was removed manually. Two 31.5-foot x 31.5-foot areas were cleared, one in each test cell (Figure 33). The cleared area represented 10% of the total treatment area. The ground surface was then raked, cleared, and overlain with a black permeable plastic fiber designed to prevent weed growth but allow water transport (Dewitt Pro 5 Weed Barrier). The pilot system was restarted Nov 18, and operation was continued through the winter and spring of the following year. There were no observed problems with these stripped plots, which remained essentially vegetation-free for the duration of the study, and the applied recharge permeated quickly and did not pond on the surface. There were few operational problems for the pilot demonstration system in general, except for difficulties encountered in maintaining adequate nitrate concentrations in the stock tank due to the slow dissolution rate of the nitrate salt during the colder months. Because of decreased rainfall, water table elevations were more steady during this time, until about Apr 95 (Figure 17). The Final Performance Evaluation was conducted May 13-30, 1995, after approximately 1 year of continuous operation, and the pilot study was then discontinued.

2. Lysimeter Samples

Lysimeters were again installed during the Final Performance Evaluation to provide additional information on transport of nitrogen and carbon through the rhizosphere. Immediately after turning off the sprinklers, five PVC lysimeters were installed 1.5 feet below ground surface in the Nitrate Cell. Vacuums were applied and water was sampled 1 to 2 hours later using a peristaltic pump. Samples were taken for nitrate, nitrite, ammonia, sulfate, and TOC. The lysimeters were then extracted, cleaned, and the procedure was repeated for three more sets in the Nitrate Cell to provide 20 locations total, with one set being located within the stripped plot and the other sets located outside of the stripped plots (Figure 33). Higher concentrations of nitrate were generally found in water beneath the stripped plot compared to other areas of the cell and, correspondingly, this ground water was also generally lower in TOC (Figure 34). These data provide good evidence that operation of the pilot cells without removal of vegetation did not allow adequate transfer of electron acceptor to the subsurface at this time. However, it is still unknown whether the nitrate sink was due to decay of vegetative growth providing high levels of organic carbon that may be preferentially used for denitrification or to nitrate-nitrogen assimilation by the vegetation. Nitrite-nitrogen and ammonia-nitrogen were generally less than 0.5 mg/L and 1 mg/L, respectively, and there was no significant correlation between either of these and nitrate concentrations (data not shown). These data do show a high rate of nitrate transport beneath the stripped plot, in an area of the Nitrate Cell which is more highly contaminated (Figure 5). It should also be noted that the increased nitrate utilization outside of the stripped plot area may only be representative of the system performance in the spring, and that operation during the fall and winter may not have resulted in such high nitrate losses.

Locations of Lysimeters Which Were Installed in the Nitrate Cell During the Final Performance Location of Stripped Plots (Shaded Areas) Which Were Constructed Nov 94. Also Shown are Evaluation. Figure 33.

a) Nitrate-Nitrogen in Lysimeter Samples

b) Total Organic Carbon in Lysimeter Samples

Figure 34. Concentrations of a) Nitrate-Nitrogen and b) Total Organic Carbon in Nitrate Cell Lysimeters. Shaded Bars Represent Concentrations Beneath Stripped Plot.

3. Ground Water Samples

As with the previous Performance Evaluation, ground water samples were again taken from all of the area wells and from several locations at three depths using the geoprobe. The well data have been shown in Table 2, and the geoprobe data are shown in Table 17. The geoprobe locations correspond to the post-test core locations, and are shown in Figure 35. The POL well data are too variable to generalize, but there are some trends that are apparent. First, there again does not appear to be any significant contamination of the downgradient wells with nitrate or its degradation products. With the exception of R4, there was no detectable nitrate, nitrite, or nitrous oxide in any of the POL wells during the Final Performance Evaluation (Table 2). Second, BTEXTMB levels generally decreased relative to those observed during the Interim Performance Evaluation, with the exception of EPA1, located in the center of the Nitrate Cell. The reason for this is unknown, but it is probably an artifact, since all of the data prior to this sampling point showed no BTEXTMB in this well for several months (Figure 25a). Other exceptions were observed for the deeper PL wells, indicating that some of the BTEXTMB was mobilized to these deeper regions. It is of interest to note that this increase was much less in PL1, downgradient of the Nitrate Cell, than in PL2 and PL3, downgradient of the Control Cell (Table 2). Finally, the ratio of mesitylene to 1,2,3-trimethylbenzene was approximately 1:2 in the Nitrate Cell wells (EPA1, R4) and approximately 3:1 in the Control Cell wells (EPA2, D).

This again indicates that biodegradation is active in either one or both of these treatment cells. This trend is more evident in the geoprobe samples (Table 17). In the Nitrate Cell, most of the mesitylene to 1,2,3-trimethylbenzene ratios are below one in the Nitrate Cell, whereas the ratios increase to greater than one in the Control Cell. A notable exception is observed at Location 80ZT in the Control Cell, which has a MESIT:TMB ratio of much less than one in the lower level sampled with the geoprobe (Table 17). As with the Interim Performance Evaluation, these data also indicate some crossover of Nitrate Cell recharge into the Control Cell at the lower level, since nitrite and nitrous oxide concentrations were higher here than anywhere else in the Control Cell (Table 17). Another trend of interest is that areas that are heavily contaminated within the Nitrate Cell are also depleted of electron acceptors. For example nitrate, nitrite, and sulfate concentrations are all generally much lower at Locations 80ZM and 80ZO, which typically had higher aqueous BTEXTMB concentrations. Location 80ZM was adjacent to the stripped plot (Figure 35), and therefore presumably had received high concentrations of nitrate which had been transported to at least 1.5 feet below ground surface (Figures 33, 34). It is reasonable to expect that most of the applied electron acceptors were utilized within the contaminated intervals at this location. There was corresponding evidence of biodegradation under sulfate-reducing conditions in the Control Cell, as shown by much lower sulfate concentrations (except where BTEXTMB was low or absent) and higher thiosulfate concentrations than in the Nitrate Cell (Table 17). Again, these data support the conclusion that bioremediation was occurring in both cells.

TABLE 17. GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING FINAL PERFORMANCE EVALUATION, 5/95

N ₂ O (mg/L)	<0.001	<0.001	0.127	1.120	0.544	<0.001	<0.001	0.001	0.002	0.120	0.129	40.001	*0.00	<0.001	- 0,0	5.850	960			<0.001	0.00	9.200	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		0.00	3 6	3	<0.001	<0.001	<0.001		<0.001	<0.001		
CH, I		2.09			0.41			11.30			0.16		2.36			0.10						0.41	1.37	0.11	0.60	8	0.75	0.82		0.35	0.40	0.33	<0.01	0.37	2.38		2.29	10.90		
TOC (mg/L) (m		~	8.0		9.1.		_	10.5			8.	47	21.8	7.0		4. c	2 6			11.9	5.5	2.0	4.5	2.7	2.1	4	9 8	5.9		3.0	4 1	, ,	1.0	3.2	3.8		¥.	16.0		
S,O, T (mg/L) (n	ĺ	<0.5	<0.5	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6	60.5	<0.5		6.5	, ,	2		92.0		<0.5	<0.5	8.	1.34	40.5	2.49	2.05		96.0	1.45	3	<0.5	1.41	1.69			<0.5		
SO, (mg/L) (n	3.37			8.99		<0.5	<0.5		90	7.70	8.43	ç	8	1.62		9 9	84.7	0.00		0.51	<0.5	9.61	0.30	<0.5	1.41	90	5 6	0.55		2.11	<0.5	<0.5	9.20	1.24	<0.5			<0.5		
PO,-P	<0.05				1.55		90.0			0.7	0.52	9	920	0.55		0.63	74.0	. S.		0.21	90.0	0.50	<0.05	<0.05	<0.05	9	0.00	0.15	2	<0.05	0.13	0.22	<0.05	<0.05	0.15		<0.05	<0.05	<0.05	
NH,-N (mo/L)					2.03	2.29			5	0.91	0.59	5	8 8	1,64		0.70	0.97	0.56		1.29	1.04	1.24	0.31	0.14	60.0	8	0.32	2 5		0.53	0.27	0.29	010	0.25	0.13		97.6		3.76	
NO ₂ -N			0.27		60.0	<0.05			ģ			ě	20.05	<0.05		0.11	0.72	2.40		<0.05	<0.05	2.08	50.05	<0.05	<0.05	;	60.05	0.00	8.	<0.05	<0.05	<0.05	. 5	000	<0.05		ć	<0.05	<0.05	
NONO.					4.14	4	Ī			5 0			CD:05			1.23	<0.05	7.56		0.11	0.10	0.11	ç	0 0	0.10		60.05	50.03	2	<0.05	<0.05	0.10	9	0.00	1 0	2	9	0.12	<0.05	
Ci NG		8.4	<u> </u>	9.2	10.0	- 0					8.7		9. 6	_			_	10.3	T	10.5	11.2	9.5	9	9 9	10.4		0.6	10.9	7.	10.5	9.5	10.3	1	4.7	2 %	0.0	,	2.3	2.7	
Br (mo/l) (m		5 -	i	<0.5		4		, s		5 6 5 75	<0.5		0.5		<u>.</u>	1.0	0.7	<0.5		<0.5	<0.5	<0.5	ć	, e	6.5		<0.5	<0.5	9.0	1.5	<0.5	<0.5			<u> </u>	<u>.</u>	:	: [2.1	
Fe (sol)		₹ ₹	١.	¥			 			Y 4			¥ :			¥	¥	¥		ş	ž	¥	=	4 4	<u> </u>		¥	¥ :	₹ Z	¥	¥	¥	:	ž ž	2 2	Š		Z Z	ž	
1 -		0.6	1	9.0						9.0	0.8		6.0	N 5		6.0	0.7	0.7		80	0.5	¥	,	4. 0	0.0	;	1.7	6.0	9.0	1.0	9.0	0.7		6. F		6:5		6.0	0.5	۱
													6.69				7.16		Ì	7.5	; 6	7.21	,	6.57	6.00	2	6.78	68	6.97	16	00	6.92		6.95	5.81	6.77		6.39	6.19	
	3	6.40	ű	7.07	6.79		20.0	7.07		99	6.76		<u>.</u>	ە ض	ŏ —		7	- 2	+	ď	· ·			φ .	o (c	, 		9			-						\vdash			┥
Top Screen	9.01	3.01	900	5.36	2.36		8. 4. 24. 2	26.0		7.53	1.53		7.53	4.53		8.48	5.48	2.48		0	, d	2.94		9.81	7.31	•	9.81	7.31	4.31	07 B	5.72	2.72		9.24	6.24	3.24		9.20	3.70	
1 =	_	4.51 1.51	9	9 00	0.86		6.92	24.4	!	6.03	3.03	3	6.03	3.03	0.03	98	3.98	0.98		;		4 4		8.31	5.81	, , ,	8.31	5.81	2.81	1 33	3 5	1.22		7.74	4.74	1.74		7.70	2.20	
<u> </u>	2	6.50 9.50		3.50	9.50		8	6.50	3	3.50	6.50	200	3.50	6.50	9.50	3.50	9 29	9.50			00.50	6.50 9.50		6.0	6.50	 	4.00	6.50	9.50		20.00	9.50	}	3.50	6.50	9.50		4.00	6.50 9.50	
Screen	ш GS) 00	8.00 11.00		5.00	11.00		5.50	8.00	3	2.00	8.00	3	2.00	8.00	11.00	S.	000	11.00			5.00	11.00		5.50	8.00	1.8	5.50	8.00	11.00	;	5.00	8.00 1.00	3	2.00	8.00	11.00		5.50	11.00	
Grade Elev. Bo	(ft MSt.) (ft 12.51	12.51 12.51	T	11.86	11.86		12.42	12.42	12.42	11.03	11.03	50.17	11.03	11.03	11.03	8	00.1	11.98			12.44	12.44	 !	13.81	13.81	13.81	13.81	13.81	13.81		12.22	12.22	77.7	12.74		12.74			13.20	
Sample Gr	- OXO	80KD-2 80KD-3	\dagger	30ZK-1	80ZK-2 80ZK-3	_	90ZM-1	80ZM-2	80ZM-3	80ZN-1	80ZN-2	80ZN-3	80ZO-1	80ZO-2	80ZO-3	, 0,00	1-6708	80ZS-3			1-TZ08	80ZT-2 80ZT-3	2	80ZX-1	80ZX-2	80ZX-3	2077	8077-2	80ZY-3		80ZZ-1	80ZZ-2	8022-3	80ZZA-1	80ZZA-2	80ZZA-3		80ZL-1	80ZL-2	000
Area Sample Grade Elev. Bot.		Uncontaminated 8 Control 8				·	*	~			Nitrate																	lor free	3 3										Source	Aira

TABLE 17 (cont). GEOPROBE WATER QUALITY DATA FOR EGLIN AFB SITE DURING FINAL PERFORMANCE EVALUATION, 5/95

Area	Sample	ВZ (µg/L)	70L (19/L)	ETBZ (ug/L)	PXYL (Ug/L)	MXYL (ug/L)	OXYL.	MESIT PSCU (ug/L) (ug/L)		1 MB (μg/L)	тмв втехтмв (µg/L) (µg/L)
Uncontaminated Control	80KD-1 80KD-2 80KD-3	41.0 41.0	<1.0 118.0 7.1	<1.0 198.0 147.0	<1.0 340.0 279.0	<1.0 642.0 418.0	<1.0 362.0 179.0	<1.0 57.9 226.0	<1.0 189.0 465.0	<1.0 67.8 242.0	<1 1975 1963
	80ZK-1 80ZK-2 80ZK-3	2 2 2 0 0 0 0 0	0.1.2 0.1.0 0.0	0.1.2 0.1.2 0.1.0	6.5 0.0 0.0	0.12 0.12 0.12	41.0 41.0 61.0	1.4	2.9 3.3 1.4	1.5 1.8 46.6	6 49
Nitrate	80ZM-1 80ZM-2 80ZM-3 80ZN-1 80ZN-2	<1.0 129.0 53.1 4.5 6.6 <1.0	2.5 2.5 <1.0 <1.0	52.5 1130.0 853.0 6.7 10.2 4.1	69.8 646.0 862.0 11.4 10.1	126.0 2320.0 1590.0 10.6 5.5 3.4	1.8 2.1 143.0 3.7 <1.0 <1.0	153.0 202.0 149.0 13.9 3.3	532.0 667.0 522.0 100.0 10.4 6.0	334.0 225.0 31.9 5.8 5.2	1088 5434 4406 185 52 25
	80ZO-2 80ZO-3 80ZO-3 80ZS-1 80ZS-2 80ZS-3	1.7 13.4 2.1 <1.0 3.2 <1.0	1.1. 0.1.0 0.1.0 0.1.0 0.1.0 0.1.0	108.0 67.6 168.0 <1.0 6.0	174.0 214.0 243.0 <1.0 7.4 <1.0	336.0 344.0 68.6 1.1 3.3 <1.0	42.0 9.2 15.0 <1.0 <1.0	104.0 56.0 45.9 9.0 4.9	298.0 222.0 127.0 8.2 18.6 11.6	169.0 105.0 41.9 4.3 9.2 12.1	1234 1031 712 23 53 53
Control	80ZT-1 80ZT-3 80ZX-1 80ZX-3 80ZY-1 80ZY-1 80ZZ-2 80ZZ-3 80ZZA-3	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		4.0 4.0 2.8 2.3 1.8 4.6 5.1 5.5 6.1 6.1 7.0 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	21.0 21.0 21.0 21.0 24.1 24.1 16.6 1.4 5.9 2.7 2.7 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 4.5 5.9 6.0 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	<1.0 37.7 12.1 12.1 5.8 15.0 18.2 30.8 2.6 11.3 1.8 1.8 2.6 2.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	26.9 26.9 26.9 3.0 3.0 3.0 3.0 5.3 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	2.5 2.8.2 2.5 190.0 137.0 114.0 5.4 140.0 70.5 218.0 49.0	3.6 252.0 115.0 5.6 123.0 69.1 81.1 45.7 18.3 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.9 267.0 110.0 2.9 102.0 68.6 103.0 36.0 25.7 53.7 15.1 15.1	27 294 27 27 27 27 348 189 189 189 132 132 132 132 132 140 179
Source Area	80ZL-1 80ZL-2 80ZL-3	41.0 41.0 3.3	1.5	58.3 963.0	95.4 0 1290.0 .0 1400.0	209.0 0 2960.0 0 3270.0) 20.9 0 70.8 0 5.8	180.0 295.0 190.0	217.0 932.0 9 688.0	0 231.0 0 380.0 0 321.0	.0 1013 .0 6911 .0 7098

Figure 35. Location of Post-Test Core Samples, Taken During Final Performance Evaluation. Pre- and Mid-Test Core Sample Locations are Shown for Reference.

Summary data for BTEXTMB and electron acceptors in the cluster well averages for each treatment cell are shown in Figure 36. The data illustrate that, for most of the locations, the Interim Performance Evaluation was probably conducted too early to see significant reductions in contaminant levels, since aqueous BTEXTMB levels were still quite high and there was not yet any significant breakthrough of sulfate and/or nitrate/nitrite. Of interest is the increased breakthrough of nitrate/nitrite prior to sod removal in the Nitrate Cell, indicating that removal of sod was not solely responsible for enhanced transport of this electron acceptor. However, it may have contributed. Another contributing factor may have been the decreased grass growth during the winter months; active growth ceased from about mid-November to early March (Appendix B). There was increased sulfate breakthrough as well for all locations prior to sod removal, although the breakthrough was more complete at EPA1, in the center of the Nitrate Cell, than at EPA2, in the center of the Control Cell (Figure 36b, c). There was only limited breakthrough of either electron acceptor in the more contaminated region at EPA3, and this was probably due to the high concentrations of BTEXTMB which were still present (Figure 36c). These data do not show a direct benefit of sod removal in the stripped plots, but do illustrate the different microbial processes which were occurring in the separate treatment cells.

4. Core Analyses

As with the two previous site characterizations, core samples were obtained during the Final Performance Evaluation to: (1) evaluate the soil nutrient status, (2) determine vertical and spatial extent of contamination, (3) characterize the microbial populations, and (4) evaluate the change in sediment toxicity. Unlike the first two site characterizations, however, cores were obtained from locations adjacent to those in the Interim Performance Evaluation to minimize the effects of site heterogeneity and provide a better comparison of contaminant reduction (Figure 35). In addition, three locations within each of the stripped plots were sampled to determine whether removal of the vegetative cover enhanced bioremediation.

a. Nutrient Status

Locations 80ZK, 80ZM, 80ZO, and 80ZS (Figure 35) were sampled using the anaerobic glovebox as described previously to provide core material at three different depths for evaluating the soil nutrient status as well as for microbial characterization. These core groups were taken in the Nitrate Cell at adjacent locations to those for the Interim Performance Evaluation. In addition, Locations 80JD and 80KD, downgradient of the Nitrate Cell and the Control Cell, respectively, were taken adjacent to Locations 80JC and 80KC sampled in the Interim Performance Evaluation. Finally, Locations 80ZN and 80ZY, in the center of the Nitrate Cell and the Control Cell, respectively, were sampled at five depths each to compare the soil nutrient status between the two cells and provide core material for treatability studies. Data are shown for the soil chemical analyses in Table 18. Compared to the Interim

BTEXTMB (ug/L)

Figure 36. BTEXTMB and Electron Acceptor Levels in EPA Cluster Well Averages at a) Edge of Control Cell, b) Center of Control Cell, c) Edge of Nitrate Cell, and d) Center of Nitrate Cell

TABLE 18. CHEMICAL ANALYSES OF EGLIN AFB CORES, COLLECTED 5/95, DURING FINAL PERFORMANCE EVALUATION

		_												_																_
PLFA (nM/g)	1.29	3.58	0.80	4.02	2.31	1.74	0.57	0.77	0.76	0.90	2.81	1.58	1.24	96.0	99.0	0.24	0.69	0.19	0.28	09.0	0.47	1.10	1.07	0.58	0.84	0.64	ž	1.00	0.45	
JP-4 (mg/kg)	<10	200	0L>	2760	3920	14900	^{<10}	2160	<10	<10	1820	18	47	410	<10	6	9	1 0	<10	۲ ۱	1250	108	15	<10	운	۲ <u>۰</u>	1540	629	9	
BTEXTMB (mg/kg)	<0.001	0.005	<0.001	13.500	25.300	582.000	<0.001	5.830	0.169	<0.001	0.434	<0.001	6.970	0.855	<0.001	0.046	<0.001	<0.001	0.016	<0.001	0.247	0.752	0.195	0.017	0.209	0.045	0.340	7.440	. 0.055	
TOC (mg/kg)	0.146	0.045	0.020	0.135	0.062	0.082	0.223	0.258	0.029	0.096	0.048	0.026	0.130	0.033	0.024	0.021	0.006	900.0	0.007	0.281	0.374	0.058	0.058	0.035	0.115	0.065	0.091	0.037	0.011	
tot-PO ₄ -P (mg/kg)	276.0	88.4 4.0	30.4	27.8	24.0	17.4	56.8	30.8	28.4	82.6	41.8	12.4	41.0	19.4	20.6	16.5	4.6	3.4	3.2	211.0	88.4	23.0	40.0	13.6	28.8	30.2	25.0	12.6	8.6	
o-PO ₄ -P (mg/kg)	1.80	3.79	3.17	<0.5	0.80	0.57	0.51	0.60	1.52	2.32	1.29	0.94	1.29	0.59	1.07	<0.5	<0.5	<0.5	<0.5	2.89	2.25	1.69	3.95	1.54	<0.5	<0.5	<0.5	<0.5	<0.5	
TKN (mg/kg)	198.0	75.6	24.2	177.0	80.8	82.0	263.0	248.0	47.0	71.4	63.4	18.8	104.0	39.6	22.2	21.2	5.2	5.6	9.0	240.0	98.6	38.0	68.4	15.6	85.6	9.99	140.0	45.0	13.0	
NO ₃ /NO ₂ -N (mg/kg)	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	1.0	<0.5	<0.5	7:	6.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
NH ₄ -N (mg/kg)	2.0	0. 9	. 6:	2.7	1.8	1.2	1:	2.1	1.4	1.0	6.0	6.0	1.8	6.0	6.0	1.0	8.0	1.8	0.7	11	1.5	1.0	1.7	Ξ	1.0	6.0		1.0	0.8	
pH (pH units)	7.55	7.85	8.14	7.70	8.07	8.25	7.55	7.46	8.01	7.65	7.89	8.20	7.44	7.43	8.07	6.32	6.53	7.63	8.60	7.47	7.51	8.06	8.12	8.36	7.51	7.66	7.54	7.82	8.30	
± €	1.1	-	- :	8.0	Ξ	9.0	Ε:	-	Ξ.	1.0	1.0	1:	. .	1.1	1.0	1.	1.1		1:	Ξ.	-	-	Ξ:	Ξ	7	-	-	-	7	
Bot int (ft MSL)	8.7	9.7	5.1	9.1	8.0	9.9	8.8	7.7	5.2	8.5	7.5	6.1	9.9	4.3	3.3	6.7	6.5	5.4	4.0	8.8	7.7	6.3	5.2	3.5	10.0	6	7.5	6.4	4.7	
Top int (ft MSL)	9.8	8.7	6.2	6.6	9.1	7.4	6.6	8.8	6.3	9.5	8.5	7.2	7.7	5.4	4.3	9.0	7.6	6.5	5.1	6.6	8.8	7.4	6.3	4.6	1	10.0	8.6	7.5	5.8	
Hi int	3.2	4.3	8.9	3.4	4.5	5.9	2.2	3.3	5.8	3.3	4.3	5.7	3.6	5.9	6.9	4.8	6.2	7.3	8.7					8.0					8.0	
Lo int	2.1	3.5	5.7	2.6	3.4	5.1	7:	2.2	4.7	2.3	3.3	4.6	2.5	4.8	5.9	3.7	5.1	6.2	7.6	1.6	2.7	4.1	5.2	6.9	9	27	4.1	5.2	6.9	
Core Sample*	80ZK2	80ZK1	80ZK3	80ZM2	80ZM1	80ZM4	80ZO2	80ZO1	80Z08	80ZS2	80ZS1	80ZS4	80JD1	80JD4	807D3	80KD1	80KD4	80KD3	80KD6	80ZN2	80ZN1	80ZN4	80ZN3	80ZN5	80772	80771	80ZY4	80ZY3	80ZY5	

* Core Locations 80ZK, 80ZM, 80ZO, 80ZS, and 80ZN were in Nitrate Cell. Location 80ZY was in Control Cell. Locations 80JD and 80KD were downgradient and upgradient of Nitrate Cell, respectively.

Performance Evaluation data (Table 16), continued operation of the pilot system resulted in increased pH levels throughout the Nitrate Cell. Other parameters did not change appreciably, although there was a slight decline in nitrate- and ammonianitrogen throughout the Nitrate Cell (Table 18). Other parameters (TOC, BTEXTMB, JP-4) were again too variable in concentrations to generalize. There was little discernable difference in the soil chemistry between the two cells (80ZN vs 80ZY, Table 18) other than an increased level of total phosphorus and total Kjeldahl nitrogen in the upper level of the Nitrate Cell. Continued operation of the pilot demonstration project resulted in lower cell counts, as determined by phospholipid fatty acids (Table 16). However, this could also result from seasonal variations rather than the pilot demonstration itself.

b. Contaminant Distribution

Locations of the post-test core samples have been presented in Figure 35, with the pre-test and mid-test core sample locations also included for reference. Individual core data have been archived in Appendix A, and the summed data for each core location (cumulative mass) have been presented in Table 5. Cumulative mass contours were generated from each dataset to facilitate interpretation of the extent of removal. Contours were generated using Surfer software for Windows, and then AutoCAD was used to establish cell boundaries and provide mass estimates at various times within each treatment cell (Dan West, Computer Data Services Inc, personal communication). This method was also used to re-evaluate the pre-test conditions for the initial site characterization to provide better mass estimates for comparison. The contour plots for BTEX, BTEXTMB, and JP-4 are shown in Figures 37-39. As has been discussed previously, some of the core locations in the Interim Performance Evaluation were in areas not adjacent to those sampled for the initial site characterization, and consequently produced samples that were more contaminated than those previously. This had the net effect of showing no significant removal in the more contaminated region of the Nitrate Cell (Figure 37a, b). However, in most cases, the lower mass contour levels were shifted towards the contaminant source zone during this time, indicating remediation on the eastern part of the treatment cells.

Substantial remediation was more evident between the Interim and the Final Performance Evaluations (Figure 37b, c). The curvature of the zero-level contour within the stripped plot of the Nitrate Cell suggests more remediation within the stripped plot than outside (Figure 37c). Similar changes in contour profiles were observed for BTEXTMB, although no effect of the stripped plots could be observed (Figure 38). In contrast, the JP-4 profiles were quite different (Figure 39). Operation for the first three months appeared to have "smoothed out" the hot spots, although again this could be an artifact caused by the dissimilarity between the relative core locations for the two sampling events (Figure 39a, b). Unlike the case with BTEX and BTEXTMB, continued operation did not simply "push" the profiles toward the original source area, but appeared to have redistributed the JP-4 to a much greater extent (Figures 37c,

Figure 37. Mass Removal of BTEX Based on Core Analyses. Shown are Cumulative Mass Contours (g/m^2) of BTEX Based on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and c) During Final Performance Evaluation.

BTEXTMB Based on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and Mass Removal of BTEXTMB Based on Core Analyses. Shown are Cumulative Mass Contours (g/m²) of c) During Final Performance Evaluation. Figure 38.

Mass Removal of JP-4 Based on Core Analyses. Shown are Cumulative Mass Contours (g/m²) of JP-4 on Cores Taken a) Prior to Remediation, b) During Interim Performance Evaluation, and c) During Final Performance Evaluation. Figure 39.

TABLE 19. MASS ESTIMATES OF CONTAMINANT GROUPS WITHIN TREATMENT CELL BOUNDARIES, BASED UPON CORE ANALYSES

Treatment	Performance	BTEX	BTEXTMB	JP-4
Cell	Evaluation	(kg)	(kg)	(kg)
	Initial	34.3	57.8	2380
Nitrate	Interim	70.8	160.0	5870
Cell	Final	20.4	53.7	3700
% Mass reduction	Interim vs Final	71.2	66.4	37.0
	Initial	13.3	25.5	1510
Control	Interim	13.4	32.9	1750
Cell	Final	3.1	11.5	1940
% Mass reduction	Interim vs Final	76.6	65.0	-10.9

38c, 39c). This is actually preferable, because the weathered hydrocarbons can then provide further sorptive capacity for BTEXTMB that continues to leach from the source area. In addition, this redistribution can help natural attenuation processes to become more effective, since toxicity effects associated with high fuel concentrations may be reduced. Mass estimates for these parameters are shown in Table 19. Mass reductions were calculated for the Interim versus the Final Performance Evaluation, since core locations corresponded more closely between these two events. Even though the Nitrate Cell contained 2-4 times more contaminants on a weight basis, the percent reduction was equivalent to that of the Control Cell. Based on core data from the Interim and Final Performance Evaluations, BTEXTMB was reduced by $66 \pm 1\%$ in both treatment cells, equivalent to a mass loss of 106 kg and 21 kg in the in the Nitrate Cell and Control Cell, respectively. This mass reduction led to a corresponding reduction in aqueous BTEXTMB concentrations (Appendix C). In fact, one year after the study was completed, the cluster wells in the centers of both treatment plots still showed the effects of the pilot study, with an average reduction in aqueous BTEXTMB concentrations of 80 \pm 21% and 87 \pm 12% in the Nitrate and Control Cells, respectively, compared to cluster well concentrations at the beginning of the study. In contrast, JP-4 decreased by 37% (2170 kg) in the Nitrate Cell and increased by 11% (210 kg) in the Control Cell (Table 19). Based on this information, both treatment cells

were remediated to the same extent, at least as regards the monoaromatic hydrocarbons. However, it is not possible to differentiate between remediation by biological activity versus soil washing based on these data alone.

Evidence of biological activity is provided by evaluating the changes in mass reduction of specific contaminants within and outside of the stripped plot for each treatment cell. In this analysis, estimates of mass reduction outside of the stripped plots were made by comparing cumulative masses for specific contaminants in adjacent core locations taken during the Interim and the Final Performance Evaluations. For the Nitrate Cell, Locations 80X and 80ZA were compared to 80ZM and 80ZS, respectively (Figure 35). For the Control Cell, Locations 80ZB and 80ZC were compared to 80ZT and 80ZX, respectively. Estimates of mass reduction within the stripped plots were made by comparing the average cumulative masses for specific contaminants in the same outside core locations taken during the Interim Performance Evaluations with those for the three separate locations within the stripped plots. Thus, for the Nitrate Cell, Locations 80X/80ZA were compared to 80ZP, 80ZQ, and 80ZR (Figure 35). For the Control Cell, Locations 80ZB/80ZC were compared to 80ZU, 80ZV, and 80ZW. This method of comparison provided fairly good reproducibility of results, considering that these measurements represent field data from a very heterogeneous environment. The data are tabulated in Tables 20 and 21.

In the Nitrate Cell, there was a significant increase in the mass reduction of the monoaromatic hydrocarbons within the stripped plot area compared to immediately outside of it, and this was observed to a lesser extent with JP-4 as well (Table 20). Mass reduction of BTEX increased from $60 \pm 22\%$ outside of the stripped plot to $100 \pm 4\%$ within the stripped plot area, and the corresponding mass reduction for BTEXTMB increased from $53 \pm 17\%$ to $96 \pm 4\%$. The stripped plot also enhanced removal in the Control Cell, although the extent was less (Table 21). Mass reduction of BTEX in the Control Cell increased from $89 \pm 16\%$ outside of the stripped plot to $96 \pm$ 7% within the stripped plot area, and the corresponding mass reduction for BTEXTMB increased from 41 \pm 42% to 68 \pm 28%. In contrast, there was no net mass reduction of JP-4 at most of the locations in the Control Cell (Table 21). Considering that there was generally less contamination initially within the Control Cell than the Nitrate Cell, the greater extents of removal in the Nitrate Cell argue against simple flushing as being the only removal mechanism. The discrepancy between these results and the net mass removals shown in Table 19 is probably due to the fact that the stripped plot within the Nitrate Cell provided greater transport of nitrate to the subsurface in this region than in the rest of the Nitrate Cell (see Figure 34), and mass removals were therefore correspondingly greater. This would lead to better performance in the Nitrate Cell than in the Control Cell, based on this comparison. Further evidence of biological activity is provided by evaluating mass removals of the different isomers, which are arranged in the order of increasing hydrophobicity in Figure 40. In the Nitrate Cell, removals of the xylene isomers and the trimethylbenzene isomers varied extensively outside of the stripped plot, but not according to the degree of hydrophobicity (Figure

TABLE 20. MASS REDUCTION ESTIMATES FOR SPECIFIC CONTAMINANTS WITHIN AND OUTSIDE OF STRIPPED PLOT IN NITRATE TREATMENT CELL

Treatment Cell	Area	Core	Date	Parameter	BZ	ŢQL	ETBZ	PXYL	MXYL	OXYL	MESIT	PSCU	TMB	ВТЕХ	втехтмв	JP-4
		X08 WZ08	Aug-94 Mav-95	Cum Mass (g/m²) Cum Mass (q/m²)	0.194	0.224	73.841	83.158 23.009	207.992 48.966	0.402 2	232.549	139.437 52.810	52.604 15.437	365.81 90.62	790.40 179.34	17967 7576
	Outside of			Fraction Removed	0.673	0.809	0.751	0.723	0.765	0.600	0.912	0.621	0.707	0.752	0.773	0.578
	Stripped Plot	80ZA	Aug-94	Cum Mass (g/m²)	<0.001	0.011	0.002	0.005	0.018	0.027	1.484	0.679	0.626	90.0	2.83	2703
		SZ08	May-95	Cum Mass (g/m²) Fraction Removed	N/A	0.692	1.000	-2.036	0.358	0.795	0.975	-0.260	0.353	0.448	0.530	0.235
	Outside of	80X/80ZA	Average	Fraction Removed	0.673	0.751	0.876	-0.656	0.561	969.0	0.944	0.181	0.530	0.600	0.652	0.407
Nitrate	Stripped Plot	80ZW/80ZS	Star		Š	0.083	0.176	1.951	0.288	0.138	0.045	0.623	0.250	0.215	0.172	0.243
Cell		80X/80ZA	Aug-94	Cum Mass (a/m²)	0.097	0.117	36.922	41.581	104.005	0.215	117.016	70.058	26.615	182.94	396.62	10335
		80ZP	May-95	Cum Mass (g/m²)	<0.001	0.005	0.018	0.312	0.143	0.084	10.155	16.290	5.894	0.56	32.90	4598
				Fraction Removed	1.000	0.960	1.000	0.993	0.999	609.0	0.913	0.767	0.779	0.997	0.917	0.555
	Within	80X/80ZA	Aug-94	Cum Mass (q/m²)	0.097	0.117	36.922	41.581	104.005	0.215	117.016	70.058	26.615	182.94	396.62	10335
	Stripped Plot	8020	May-95	Cum Mass (q/m²)	<0.00	<0.001	0.001	0.012	<0.001	0.001	0.105	8.940	1.946	0.02	11.01	4631
				Fraction Removed	1.000	1.000	1.000	1.000	1.000	0.994	0.999	0.872	0.927	1.000	0.972	0.552
		80X/80ZA	Aug-94	Cum Mass (q/m²)	0.097	0.117	36.922	41.581	104.005	0.215	117.016	70.058	26.615	182.94	396.62	10335
		80ZR	Mav-95	Cum Mass (q/m²)	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.356	0.129	<0.01	0.49	2590
				Fraction Removed	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.995	0.995	1.000	0.999	0.749
	Within Stripped Plot	80X/80ZA 80ZP/80ZO/80ZB	Average Star	Average Fraction Removed Standard Deviation	1.000 0.000	0.987	1.000	0.997	1.000	0.868	0.971	0.878	0.900	0.999	0.963	0.619
	200															

TABLE 21. MASS REDUCTION ESTIMATES FOR SPECIFIC CONTAMINANTS WITHIN AND OUTSIDE OF STRIPPED PLOT IN CONTROL TREATMENT CELL

Treatment Cell	Area	Core	Date	Parameter	BZ	TOL	ETBZ	PXYL	MXYL	OXYL	MESIT	PSCU	TMB	ВТЕХ	втехтмв	JP-4
		80ZB 80ZT	Aug-94 Mav-95	Cum Mass (g/m²) Cum Mass (q/m²)	0.002	0.010	0.025	0.121	0.161	0.023	1.060	1.287	1.441	0.34	4.13	1030 4224
	Outside of			Fraction Removed	1.000	1.000	0.878	0.793	0.808	0.311	-0.785	0.475	0.271	0.781	0.105	-3.101
	Stripped Plot	80ZC 80ZX	Aug-94 Mav-95	Cum Mass (g/m²) Cum Mass (q/m²)	0.002	0.022	0.650	4.769	7.720	4.315	12.371 7.250	18.596 5.140	9.098	17.48	57.54	3717
				Fraction Removed	1.000	0.611	1.000	1.000	1.000	1.000	0.414	0.724	0.491	1.000	0.704	0.596
Control	Outside of Stripped Plot	80ZB/80ZC 80ZT/80ZX	Average Stan	rage Fraction Removed Standard Deviation	1.000	0.806	0.939	0.896	0.904	0.656	-0.186	0.599	0.381	0.890	0.405	-1.252
Cell		80ZB/80ZC 80ZU	Aug-95 Mav-95	Cum Mass (g/m²) Cum Mass (q/m²)	0.002	0.016	0.338	2.445	3.940	2.169	6.715	9.942	5.270	8.91	30.84	2374
				Fraction Removed	1.000	1.000	0.807	0.913	0.902	0.806	-0.773	0.617	0.426	0.878	0.357	-0.696
	Within Stripped Plot	80ZB/80ZC 80ZV	Aug-95 Mav-95	Cum Mass (g/m²) Cum Mass (g/m²)	0.002	0.016	0.338	2.445	3.940	2.169	6.715	9.942	5.270	8.91	30.84	2374
				Fraction Removed	1.000	0.890	1.000	0.999	0.999	1.000	0.317	0.937	0.884	0.999	0.811	-0.300
		80ZB/80ZC 807W	Aug-95 Mav-95	Cum Mass (g/m²)	0.002	0.016	0.338	2.445	3.940	2.169	6.715	9.942	5.270	8.91	30.84	2374
				Fraction Removed	1.000	0.859	0.972	0.986	0.994	0.993	0.475	0.966	0.906	0.991	0.856	-0.772
	Within Stripped Plot	80ZB/80ZC 80ZU/80ZV/80ZW	Average	Average Fraction Removed Standard Deviation	1.000	0.916	0.927	0.966	0.965	0.933	0.007	0.840	0.738	0.956	0.675	-0.589

Figure 40. Effect of Stripped Plots on Mass Removal of Selected Contaminants in a) Nitrate Cell and b) Control Cell. Negative Fractions are Shown as No Removal.

40a). For example, if the mass removals were due solely to soil washing, then OXYL should exhibit less removal than PXYL and MXYL. Similarly, TMB should exhibit less removal than MESIT and PSCU. This was obviously not the case in the Nitrate Cell, which implies that other removal processes were operative. Mass removals of all isomers generally increased within the stripped plot area, which again could indicate enhanced soil washing and/or bioremediation. However, if enhanced soil washing were the only removal process, then the same result would be expected in the stripped plot of the Control Cell, and it was not (Figure 40b). Mesitylene was recalcitrant both within and outside of the stripped plot in the Control Cell, although there was quite a bit of variability and removals ranged from -79% to 48% (Table 21). In contrast, as has been observed previously with water and core data, mesitylene was quite labile under denitrifying conditions, both within and outside of the stripped plot in the Nitrate Cell (Figure 40). In summary, although it is not possible to separate out the effects of soil washing from bioremediation with these data, there was active bioremediation which was indeed responsible for part of the contaminant reduction.

c. Changes in Microbial Populations

As with the two previous performance evaluations, core samples were obtained for analysis of microbial populations and sediment toxicity by personnel from Rice University. These studies will be published in detail elsewhere (M. Thomas, personal communication), and are briefly described here. Preliminary analysis of the results from the microbial population counts indicates that the number of total denitrifiers in the Nitrate Cell increased during the Interim Performance Evaluation, but then declined to initial levels by the time of the Final Performance Evaluation. However, the number of JP-4-utilizing denitrifiers, heterotrophs, and JP-4 degraders declined and then increased during the corresponding period, even in the uncontaminated control samples (Thomas et al, unpublished data). These data suggest that seasonal factors unrelated to bioremediation may have affected the microbial ecology at the site. However, it is also possible that biological activity was enhanced in both treatment cells as a result of recharge application, and downgradient sample sites were positively affected as well. Some evidence for this is shown in the stimulation of protozoan activity, shown by increased numbers in the deeper subsurface as bioremediation proceeded (Table 22). The data in Table 22 are based on aerobic protozoa counts conducted in-house (Jim Sinclair, ManTech Environmental Services Inc) and are from the 1-foot intervals sampled for microbial characterization in the initial site characterization and subsequent performance evaluations. The data were obtained from several different core locations and are roughly arranged according to depth. In the Nitrate Cell, protozoan numbers increased substantially during the first four months and were still high, but sporadic, in the deeper regions during the Final Performance Evaluation. Numbers downgradient of the Nitrate Cell did not change much (Location 80JB-80JC), whereas numbers in the previously uncontaminated control site, which became downgradient of the Control Cell during pilot operation, showed a similar trend to that of the Nitrate Cell (80KB-

TABLE 22. CHANGES IN AEROBIC PROTOZOAN NUMBERS DURING PILOT DEMONSTRATION PROJECT

Pilot	Initial Site Cha		acterization	ation	Interim Performance Evaluation	∍rforman	ce Eva	luation	Final P	Final Performance Evaluation	nce Eva	luation
Demonstration	Core	Lo int		Hi int Protozoa	Core	Lo int	Hiin	Protozoa	Core	Lo int	Hi int	Protozoa
Area	Sample	(#)	(#)	(ber g)	Sample	(#)	(#)	(ber g)	Sample	(tt)	€	(per g)
	80BA3	1.0	2.2	350,000	80Z2	1.3	2.4	2,900	80Z02		2.2	24,000
	80BA2	2.2	3.4	92,000	80W2	2.3	3.4	24,000	80ZK2	2.1	3.2	ა
	80AA2	2.3	3.4	45,000	80ZA2	2.3	3.4	240,000	80ZO1	2.2	3.3	240,000
		•	•		80Z1	2.4	3.5	4,100	80ZS2	2.3	3.3	35,000
Nitrate	•	•	•	,	80X2	2.5	3.8	49,000	80ZM2	5.6	3.4	80
Cell	80EB2	3.2	4.2	240	80W1	3.4	4.5	13,000	80ZK1	3.2	4.3	240
	80AA1	3.4	4.5	3	80ZA1	3.4	4.5	41	80ZS1	3.3	4.3	>1,600,000
	80EB1	4.2	5.5	7	80X1	3.8	5.0	Ŋ	80ZM1	3.4	4.5	25
	80AA7	4.5	5.6	\$	80W4	4.8	5.9	49,000	80ZS4	4.6	2.7	5,400
	80BA5	4.5	5.6	2	80ZA4	4.8	5.9	79,000	80Z03	4.7	5.8	2
	ı	•	•	•	80Z4	4.9	6.0	240	80ZM4	5.1	5.9	33
	,	•	•	•	80X4	5.3	6.4	2	80ZK3	2.7	8.9	7
	80EB5	6.5	7.5	7	•	•	•	•	1	1	•	•
			,			,	,	•	Ġ	L C	9	000
Downgradient	80JB2	2.5	3.5	∞	80JC2	2.3	4	3	rdros	2.5	ט נ ס	24,000
of Nitrate Cell	80JB1	3.5	4.5	19	80JC1	3.4	4.5	α	80JD4	4.8	D.	33
	80JB5	0.9	7.0	ഹ	80JC3	5.9	7.0	7	807D3	5.9	6.9	53
	00//00	000	4 4	070	•	,	*	1	80KD1	3.7	4.8	13
Downgranerit	90KD2	7.5	- u	} (CONCO	ני	9	13 000	80KD4	5.1	6.2	2.400
or Control Cell	808	4.4	1 0	u '	20000	9 6	1 0	200,1	2700		7.3	0,7
(Previously Used	80KB6	5.5	0.7	27	80KC1	0.0	C: 7	240	5000	1 0	. 0	1 190
as Control Site)	•	t	•		80KC4	7.8	8.9	24,000	80KD6	9./	ò.	00/,1

80KD). For reference, the Nitrate Cell is about 1-2 feet lower and 1-2 feet higher than Locations 80K and 80J, respectively. This information, in addition to the core and ground water analyses, further indicates that bioremediation may be occurring in the Control Cell as well as the Nitrate Cell, since an increased microbial population is required to sustain the higher numbers of protozoans downgradient.

c. Changes in Sediment Toxicity

Core samples were also obtained for analysis of sediment toxicity by personnel from Oklahoma State University. These studies are being published in detail elsewhere (Bantle, 1996). In brief, the general pattern of decreasing toxicity with further distance from the source area did not change, and there was evidence of reduced toxicity in both treatment cells based on cores taken during the initial site characterization and the Final Performance Evaluation. However, toxicity varied both longitudinally and with depth, and there was often no consistent pattern which could be attributed to operation of either treatment cell. In addition, there was no clear reduction in toxicity in either of the stripped plots compared to their respective treatment cells, and in some instances core samples beneath the stripped plots were more toxic than those outside of the stripped plots. When different soil layers were taken into account, the following order of toxicity was derived:

Mortality: SS > NC > CC/SP > NC/SP > CC > UCS
Malformation: SS > CC/SP > NC > NC/SP > CC > UCS
Stunted Growth: SS > NC/SP > NC > CC/SP > CC > UCS

where SS = Spill Source, NC = Nitrate Cell, NC/SP = Nitrate Cell Stripped Plot, CC = Control Cell, CC/SP = Control Cell Stripped Plot, and UCS = Uncontaminated Control Site. In all cases, the only differences emerge between the respective toxicities of the Nitrate Cell, the Nitrate Cell Stripped Plot, and the Control Cell Stripped Plot, where contaminant levels are intermediate. For mortality and malformation, the Nitrate Cell Stripped Plot was less toxic than the Nitrate Cell, and the Control Cell Stripped Plot was more toxic than the Control Cell. Consideration of the cumulative mass contours of BTEXTMB (Figure 38c) and JP-4 (Figure 39c) show very different ranges of these contaminant groups within these areas, which may help to explain some of the variability. Although the causative agents for these toxicity indices are unknown, they do not appear to be directly related to the by-products or intermediates of nitrate-based bioremediation, since nitrate levels were highest beneath the Nitrate Cell Stripped Plot, and it represents the lower of the intermediate toxicity group in most of the cases above.

FETAX data were further evaluated to assess the overall effects of remediation on sediment toxicity (Figure 41). FETAX analyses from the different depths sampled at any given location during the Final Performance Evaluation were pooled and weighted to provide a direct comparison with the identical interval sampled during

Figure 41. Changes in Sediment Toxicity, as Measured by FETAX Assay, During a) Interim Performance Evaluation and b) Final Performance Evaluation. Also shown are JP-4 Cumulative Mass Contours (g/m^2) .

the Interim Performance Evaluation. Similar comparisons could not be made with the samples taken prior to remediation, since different depth intervals were used for the initial FETAX assay. Based on the contaminant data obtained prior to remediation, we were able to delineate the sample depths suspected of having the greatest toxicity at each location, and hence this analysis targeted the most contaminated intervals. Data for mortality indicate that the sediment toxicity for the Interim Performance Evaluation generally correlated with JP-4 concentrations (Figure 41a). Following remediation, areas of high toxicity still exist, but in general there has been substantial toxicity reduction beneath both treatment cells, particularly in the areas beneath and adjacent to the stripped plots (Figure 41b). For some locations (eg, 80Z, 80ZO),sediments still cause 100% mortality to the embryos, and it is unclear why these are still quite toxic while other adjacent cores (eg, 80ZK) have been substantially detoxified. Although site heterogeneity can indeed be a problem in some of these locations, additional work is clearly needed to better define the effects of nitrate-based bioremediation on toxicity reduction.

E. TREATABILITY STUDIES

Post-test treatability studies were conducted with aquifer material obtained using the anaerobic glovebox during the Final Performance Evaluation. These tests were conducted to better define microbial activity and function, and to help assess the role of the various microbial populations in contaminant reduction. The general procedures and methods of microcosm preparation were the same as those used in the initial site characterization, and have already been discussed (Section IIC). However, some of the tests were modified to address additional objectives, and are discussed in greater detail.

1. Distribution of Microbial Activity

As with the initial site characterization, core samples were obtained from three depths each at four locations within the Nitrate Cell, as well as at one location downgradient of the Nitrate Cell and one location downgradient of the Control Cell. Microcosms were prepared similar to those done for the previous survey, and spiked with nutrients, nitrate, and mixed BTEXTMB. In addition, live controls (not receiving nitrate) were prepared for each of the core samples to evaluate the contribution of microbial processes other than nitrate reduction for BTEXTMB removal. At selected time intervals, three replicate viable microcosms, plus one live control and one poisoned control, were sacrificed and analyzed for BTEXTMB, nitrate, nutrients, and pH to evaluate BTEXTMB biodegradation under denitrifying conditions.

There was variable activity in the selected core samples, although in general most of the alkylbenzenes were degraded, except for benzene and 1,2,3-trimethylbenzene (Figure 42). The combined results (as BTEXTMB) are shown in

Figure 42. Percent Removal of Individual BTEXTMB Compounds in Post-Test Cores Under Denitrifying Conditions. Removals are Corrected for Loss in Controls, and Negative Removals are Shown as Zero. Mean of Three Replicates per Set.

Figure 43. Combined BTEXTMB Removal in Cores Taken from Pilot Demonstration Area During Final Performance Evaluation. Mean of Three Replicates Per Set.

Figure 43. There was little consistent improvement in the degradation rate or extent in the Nitrate Cell cores compared to the activity observed during the initial site characterization (cf Figures 11 and 42, Figures 12 and 43). Similarly, there was no clear enhancement in the biodegradation of one compound versus another. Because the post-test cores were obtained from different locations than the pre-test cores, a direct comparison cannot be made. However, in certain cases the core locations were similar enough to allow a rough comparison. For example, Cores 80E (pre-test) and 80ZM (post-test) were obtained from approximately the same location. In this case, operation of the pilot demonstration project caused the microbial activity to decline at the lowest depth but increase in the upper depths (cf Figures 12 and 43). For some reason the microcosms for the mid-depth core of the 80ZM series showed little BTEXTMB removal activity in the last sample set (Figure 43); the cause of this is unknown.Cores 80BA (pre-test) and 80ZO (post-test) can similarly be compared, and the only difference was a slight increase in the rate of nitrate-based BTEXTMB removal at the lower depth (cf Figures 12 and 43). In most cases, there was little removal of BTEXTMB in the live controls relative to the poisoned controls, indicating that nitrate was required for anaerobic biodegradation of BTEXTMB in these microcosms, at least within this time period (Figure 43).

In contrast to these results, there was a definite enhancement in microbial activity downgradient of the Nitrate Cell (cf Figures 11 and 42, Figures 12 and 43). Although elevated nitrate concentrations were not detected in downgradient wells, transport of denitrifying microorganisms from the Nitrate Cell may indeed have occurred. However, another explanation is that operation of the pilot demonstration project could have resulted in transport of organic carbon or other nutrients which promoted changes in the microbial populations. This may be part of the reason that enhanced activity was also observed in the middle depth interval of Location 80K, which should have been hydrologically isolated from the Nitrate Cell but not from the Control Cell (cf Figures 11 and 42, Figures 12 and 43). However, the extent of this enhancement was not as great, and could have been due to other factors, including increased moisture content from the elevated water table.

2. Dissimilatory Nitrate Reduction to Ammonia

In the aforementioned microcosm test, two of the core samples (80ZS1 and 80ZS4, Table 18) were spiked with ¹⁵N-nitrate to evaluate whether nitrate-nitrogen was being reduced to ammonia-nitrogen through dissimilatory nitrate reduction to ammonia, rather than to nitrous oxide and dinitrogen through denitrification. As discussed previously, dissimilatory nitrate reduction to ammonia would more likely be expected under electron acceptor-limited conditions, and demonstration of the process in the microcosm test would provide supporting evidence that nitrate was being used as an electron acceptor in the contaminated subsurface. These microcosm were prepared, incubated, sampled, and analyzed in an identical manner to the other sample sets, except that ¹⁵N-sodium nitrate was used instead of ¹⁴N-potassium nitrate.

After the routine sampling procedure was completed, the microcosm supernatants were analyzed for ¹⁴N- and ¹⁵N-ammonia by derivatization and GC/MS. In brief, the supernatant was made basic with NaOH and amended with pentafluorobenzoyl chloride to complex the ammonium ion, afterwhich the complex was extracted with ethyl acetate and analyzed by GC/MS using a DB5-MS capillary column.

Results show that once nitrate and nitrite become limiting, production of ¹⁵N-ammonia nitrogen begins to occur in the 80ZS1 microcosm supernatants after about Day 14 (Table 23). Production is not extensive (only approximately 4 mg/L NH₄-N), but is significant relative to controls. In contrast, little ¹⁵N-ammonia nitrogen accumulates in the 80ZS4 microcosm supernatants, probably because the rate of nitrate reduction was much slower in this core sample and the microcosms had not yet become electron acceptor-limited (Table 23). These data demonstrate the potential for nitrate reduction to ammonia, which may help to explain the higher levels of ammonia-nitrogen found in water from the Nitrate Cell cluster wells. However, it is also possible that vegetative decay contributed to the increased ammonia-nitrogen levels. Regardless, these data indicate that dissimilatory nitrate reduction to ammonia can occur, although the extent of the contribution of this microbial process cannot be ascertained.

3. Alternate Electron Acceptors

To determine whether other anaerobic processes could have contributed to BTEXTMB removal in both the Nitrate and Control Cells, microcosms were prepared with core samples aseptically obtained from three depths at locations within the center of each cell. Replicate sets were spiked with nitrate and/or biocides to provide denitrifying and poisoned controls as described previously. In addition, one replicate set was spiked with ferric EDTA (approximately 5000 mg/L final concentration) to provide iron-reducing conditions. Two other replicate sets were reduced with sodium sulfide, and one of these reduced sets was spiked with sodium sulfate (approximately 150 mg/L SO₄-2 final concentration) to provide sulfate-reducing conditions whereas the other was unamended to provide methanogenic conditions. In addition to the standard analyses, microcosm supernatants were also analyzed for sulfate, thiosulfate, nitrous oxide, and methane. Microcosm supernatents were not analyzed for iron, because of anticipated problems with interpretations due to precipitation of iron species on the soil matrix. For the six time steps used in this study, this resulted in approximately 550 microcosms with over 5,000 individual analyses.

Because the size of this dataset makes it difficult to adequately address all of the results in this report, the following section provides a summary of the most relevant findings. In brief, in those cores which were metabolically active, biodegradation of BTEXTMB occurred predominantly under nitrate-and/or iron-reducing conditions (Figure 44). In the Nitrate Cell Cores, there was significant BTEXTMB removal at each depth under denitrifying conditions, although at two levels the extent of BTEXTMB

TABLE 23. PRODUCTION OF N-15 AMMONIA-NITROGEN FROM N-15 NITRATE REDUCTION IN SELECTED CORES COLLECTED FROM NITRATE CELL DURING FINAL PERFORMANCE EVALUATION

Parameters	Time (Days)	ZS1-1	ZS1-2	ZS1-3	ZS1-C*	ZS1-C* ZS1-Mean	ZS1-Stdev ZS4-1	ZS4-1	ZS4-2	ZS4-3	ZS4-C*	ZS4-Mean	ZS4-Stdev
	0	34.10	33.60	32.55	39.00	33.42	0.79	34.30	34.30	33.10	39.90	33.90	69.0
	7	22.30	22.00	25.10	42.10	23.13	1.71	22.70	21.10	23.30	45.00	22.37	1.14
N-,ON	14	12.60	14.30	11.80	41.60	12.90	1.28	22.10	23.80	20.10	44.90	22.00	1.85
(ma/L-N)	23	1.34	0.45	0.42	41.90	0.74	0.52	22.20	23.70	23.00	38.30	22.97	0.75
	78	<0.05	<0.05	<0.05	45.00	<0.05	•	18.00	15.50	16.95	¥	16.82	1.26
	26	<0.05	<0.05	<0.05	38.00	<0.05	1	12.00	15.20	14.10	40.50	13.77	1.63
	0	0.15	0.15	0.13	0.23	0.14	0.01	0.60	0.57	0.68	0.42	0.62	90.0
	7	0.15	0.58	0.54	0.25	0.42	0.24	8.80	90.6	6.48	0.42	8.11	1.42
N-QN	14	4.96	4.06	5.16	0.37	4.73	0.59	4.99	3.57	5.23	0.45	4.60	06.0
(ma/L-N)	21	7.47	1.74	3.21	0.30	4.14	2.98	3.78	3.28	4.06	0.46	3.71	0.40
	88	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	1.76	<0.05	<0.05	0.62	0.99
	26	<0.05	<0.05	<0.05	<0.05	<0.05	•	<0.05	<0.05	<0.05	<0.05	<0.05	
	0	30.70	23.20	25.80	39.70	26.57	3.81	28.50	26.20	28.20	42.10	27.63	1.25
	_	21.20	20.80	22.10	55.10	21.37	0.67	15.90	21.10	19.60	43.40	18.87	2.68
N-N	14	22.20	21.10	18.90	30.50	20.73	1.68	19.30	18.00	14.40	44.10	17.23	2.54
(ma/L-N)	21	20.70	20.20	21.20	50.50	20.70	0.50	20.30	30.00	18.20	41.40	22.83	6.29
	28	20.00	25.30	22.10	55.70	22.47	2.67	15.80	15.30	15.10	32.10	15.40	0.36
	26	32.30	32.50	32.30	57.20	32.37	0.12	21.10	13.50	7.84	52.80	14.15	6.65
		+	5	5	1 70	1 23	0.25	1 40	2	1.20	1.80	1.27	0.12
	۰ ۱	3 5	6 6		5	50	0.10	0.80	100	1.00	1.70	0.93	0.12
NIS NI	- 7		8 6	1.30	9	1 63	0.21	1.10	1.10	0.70	2.50	0.97	0.23
(N- 1/2m)	. 2	62	3.24	3.20	193	2.74	0.83	1.38	1.59	1.16	1.71	1.38	0.22
() () () () () () () () () ()	8	2.91	2.79	3.83	2.12	3.18	0.57	1.05	1.06	1.17	1.39	1.09	0.07
	92	6.32	3.54	5.22	2.30	5.03	1.40	1.66	1.19	<u>5.</u>	2.30	1.30	0.32

* ZS1-C and ZS4-C Are Poisoned Controls

Figure 44. Removal of Combined BTEXTMB in Core Samples from Different Depths in Each Treatment Cell Using Different Electron Acceptors.

Mean of Three Replicates Per Set.

removal under iron-reducing conditions was equal or greater. In contrast, BTEXTMB removal under denitrifying conditions occurred in only the deepest level in the Control Cell, and again the extent of removal under iron-reducing conditions was equivalent. (Figure 43). In the most contaminated interval in the Control Cell (80ZY4), there was no significant removal of BTEXTMB, although the high TPH levels in this core could have caused enhanced sorption and related effects. It is especially interesting that BTEXTMB removal was generally limited to iron-reducing conditions in the upper layer of the Control Cell and occurred under both denitrifying and iron-reducing conditions in the upper layer of the Nitrate Cell (Figure 44). This depth is just below the level sampled by the lysimeters (Section IVD2), and provides supporting evidence that nitrate which was transported to this interval in the Nitrate Cell was being used for biodegradation of BTEXTMB. These data also support the hypothesis that different biological processes are occurring in the different cells. This is further illustrated by the differences in the types of compounds being degraded in each cell under either condition (Figure 45). The most efficient removal of the largest number of compounds occurred in the Nitrate Cell under denitrifying conditions for the first 30-d period, with the highest removals observed for toluene, ethylbenzene, m-xylene, and p-xylene (Figure 45). In the Control Cell, under iron-reducing conditions, toluene and o-xylene were removed to the greatest extent. In other studies, benzene and 1,2,3trimethylbenzene are generally recalcitrant under denitrifying conditions, and o-xylene is often degraded only through cometabolic reactions (Hutchins, 1991a; Jorgensen and Aamand, 1991; Hutchins et al, 1995, Haner et al, 1997). Selected data for the ZY2 and ZN2 cores, however, show that these compounds can be degraded under ironreducing conditions (Figure 46). For example, there is some benzene removal under iron-reducing conditions in the Control Cell, but not the Nitrate Cell. Of interest, oxylene was completely removed under iron-reducing conditions in both cells, whereas it was more recalcitrant under denitrifying conditions. Also, 1,2,3-trimethylbenzene was degraded in both of these cores under iron-reducing but not nitrate-reducing conditions, although the extent of removal was greatest in the Nitrate Cell (Figure 46).

These data illustrate that iron-reducing activity may have been important in BTEXTMB biodegradation in the Control Cell, and that this activity may have also been expressed in the Nitrate Cell as well. Because equivalent treatability studies were not conducted prior to remediation, it is unknown if iron-reducing activity was actually stimulated by remediation. However, facilitated transport of ammonia nitrogen within both cells may have enhanced microbial activity in general, and this could possibly have benefitted iron reducers as well. The biodegradation of the more recalcitrant alkylbenzenes under iron-reducing conditions indicates that establishment of the combination of iron- and nitrate-reducing conditions may have facilitated BTEXTMB biodegradation in the contaminated sediments. There was generally no observed activity in either the Nitrate Cell or the Control Cell cores under either sulfate-reducing or methanogenic conditions, although in some microcosms BTEXTMB removal was observed for the upper core level in each cell after about 150 days (Figure 44). Toluene and *m*-xylene were the most labile compounds under these more reduced

Figure 45. Removal of BTEXTMB Isomers from Nitrate Cell and Control Cell Cores, With Either Nitrate or Iron Addition. Removals are Shown for First 30 Days of Incubation. Mean of Three Replicates per Set.

Figure 46. Removal of Benzene, *o* -Xylene, and 1,2,3-Trimethylbenzene in 80ZY2 and 80ZN2 Cores, Collected 1.6-2.7 ft from Beneath Control and Nitrate Cells, Respectively.

conditions (data not shown). The lack of observed methanogenic or sulfate-reducing activity is disappointing, but not surprising given the relatively short time duration of this test. Because these microbial processes depend more frequently on consortia of populations rather than individual species, longer incubation times are often needed following disturbance of the aquifer core during preparation of microcosms.

4. Mineralization Studies

The preceding microcosm tests focused on removal of BTEXTMB, with biodegradation being inferred though the use of both abiotic and live controls. To verify that removals observed under the various electron acceptor conditions could be attributed at least in part to biodegradation, additional microcosms were prepared at the same time for radiolabel studies. These microcosms were spiked with BTEXTMB as before, except that m-[ring-UL-14C]xylene was added as the test substrate. The microcosms were incubated for 200 days, and were then sacrificed and analyzed as before to determine the distribution of the aqueous radiolabel. Results are shown in Figure 47, and again illustrate that the most robust samples were located in the upper level of each cell. In the Nitrate Cell, mineralization occurred under denitrifying, ironreducing, sulfate-reducing, and methanogenic conditions in the upper core sample, but only under denitrifying (and, to a lesser extent, iron-reducing) conditions further beneath the Nitrate Cell (Figure 47). In the Control Cell, some mineralization occurred in the upper level under iron-reducing, sulfate-reducing, and methanogenic conditions, but not under nitrate-reducing conditions. This is surprising, given the long incubation time, but it does correlate with the decreased BTEXTMB removal observed under denitrifying conditions at this location compared with the Nitrate Cell (Figure 44). Mineralization of the radiolabeled m-xylene occurred predominantly under denitrifying conditions further beneath the Control Cell as well (Figure 47). There was significant mineralization even in the more contaminated 80ZY4 core, which indicates that these microorganisms were metabolically active despite the lack of significant BTEXTMB removal observed previously with this core (Figure 44). These data again show that biodegradation of BTEXTMB in this aquifer could occur under different electronacceptor conditions, and indicate that contaminant removal probably occurred through a combination of soil washing and bioremediation.

Figure 47. Recovery of Nonvolatile Carbon and Carbon Dioxide from Biodegradation of Radiolabeled m-Xylene in Microcosms from Each Treatment Cell Using Different Electron Acceptors. Mean of 2-3 Replicates, 200 Days.

SECTION V

CONSIDERATIONS FOR FULL-SCALE APPLICATION

The pilot demonstration project was designed to evaluate the extent of bioremediation through sprinkler application of recharge with and without nitrate as an added electron acceptor. Remediation occurred in both cells, in part because of soil washing through continuous application of recharge. In addition, based on collective monitoring well data, core data, and pre- and post-test laboratory treatability studies, bioremediation was most likely occurring in both cells as well. It was not our intent to provide the Control Cell with added electron acceptors; however, the presence of sulfate in the recharge, incorporation of oxygen through sprinkler application, and possible mobilization of solid phase electron acceptors such as bound iron and sulfate species were apparently sufficient to promote bioremediation in this cell, even without nitrate addition. The specific nature of these alternate anaerobic processes, as well as their relative contribution to remedial activity, cannot be quantitated based on the data available. For example, the monitoring well data indicate both methanogenic and sulfate-reducing conditions in the Control Cell, but we cannot prove conclusively that depletion of these electron acceptors was linked to oxidation of the contaminants; in fact, other electron donors could have been involved. From microcosm work with posttest cores, we have shown that iron reduction, methanogenesis, and sulfate reduction were linked to biotransformation of alkylbenzenes and mineralization of m-xylene, which demonstrates the potential for these processes in the Control Cell. Again, this does not prove that these processes were operating at that time, and we cannot evaluate the extent of their contribution in the Control Cell. In fact, these same processes were probably also operating in the Nitrate Cell, but perhaps to a lesser extent than denitrification linked to contaminant oxidation. As is often the case with field work, we can look for evidence of these processes, but cannot evaluate their relative contributions without more strict controls, which in turn would lessen the relevance of the work to actual operating conditions.

Regardless of the specific anaerobic process or processes involved, an important aspect of this research is that simple recirculation of recharge, without selected amendments, can still promote bioremediation in fuel-contaminated aquifers. In our study, we cannot assess the relative benefits of indigenous electron acceptors in the recharge versus the mobilization of electron acceptors in the vadose zone. Despite this, the field and laboratory data indicate that it may be advantageous to utilize this approach to promote a variety of anaerobic processes, rather than to try to establish one type of reaction, such as aerobic metabolism or denitrification. In heterogeneous environments, more than one microenvironment conducive to selective reactions is more likely to exist, and establishment of these separate microenvironments should be encouraged rather than controlled. These different environments would encourage biodegradation of compounds which are generally recalcitrant under denitrifying

conditions, such as benzene. Although benzene was not a significant contaminant at this particular site, it may not have been a problem even if it had occurred in higher concentrations within the treatment cells, since it can be degraded under iron-reducing, sulfate-reducing, and methanogenic conditions (Grbic-Galic and Vogel, 1987; Edwards and Grbic-Galic, 1992; Lovely et al, 1996), and these processes occurred in both treatment cells. However, the fate of benzene is an important issue, and it can be a problem at other sites, especially if strictly denitrifying conditions are established.

The pilot demonstration project was not originally designed to evaluate the effects of selected operating parameters. The only operating parameter which was varied was the effective nitrate concentration, and this was increased on two occasions, by: 1) increasing the aqueous nitrate concentration, conducted approximately one-quarter of the way through the demonstration period, and (2) removing the vegetative cover in the stripped plots, conducted approximately halfway through the demonstration period. The effect of both of these operational changes is difficult to measure. In the first case, doubling the influent nitrate concentration was done Jul 15, 1994, and there was little observed effect in the three near-surface cluster wells in the center of the Nitrate Cell (Figure 27). However, this also corresponded to a time of increased rainfall and a subsequent rise of the water table (Figure 17), and so other factors may have been involved. In the second case, sod removal was conducted Nov 14-16, 1994, to evaluate nitrate transport within the stripped plot compared to the rest of the Nitrate Cell. Based on lysimeter studies conducted May 13, 1995, there was indeed enhanced nitrate transport within the stripped plot, and this could be quantified. However, the lysimeter study was done in the spring, and may overestimate the contribution of sod removal during the winter months, when vegetative growth was minimal. In summary, these changes were done to enhance the effective nitrate concentration, but they do not provide a quantitative measure of the response that could be expected for the entire operating period.

Similarly, the effects of other operating parameters can only be theorized, since our intent was not to establish appropriate controls for optimizing system performance. For example, only one type of application scheme was employed, and this was by continuous sprinkler irrigation. Net water usage was 12 million gallons for 20,000 square feet of surface area, over the course of one year. Intermittent sprinkler application would reduce water consumption, but at the expense of maintaining a constant water table mound. For the shallow Eglin water table aquifer, this might not be a problem, since rainfall events have a more pronounced effect on the water table, anyway. In addition, intermittent application might create new flow paths in the vadose zone and enhance access to soil-bound electron acceptors. In fact, it is not known whether periodic oxidation of the vadose zone would facilitate or hinder the mobilization of soil-bound electron acceptors. In addition, switching from continuous to intermittent sprinkler application may result in decreased treatment of regions outside of the treatment cells. One of the limitations of sprinkler application would be that this

creates essentially vertical flow through the contaminated intervals, and zones of low permeability might not be remediated as efficiently. Despite these limitations, the effects of heterogeneity during surface infiltration are not expected to be any greater than those encountered during horizontal flow, as long as the water table is elevated sufficiently to contact the contaminated zones of interest. However, It is not known whether raising the water table to provide better contact within these zones does indeed alleviate this problem, and more work is needed to define the effects of sprinkler placement and vadose zone heterogeneity. The real advantage of surface application is that, for typically thin lenses covering a long or broad area, the recharge will have a shorter flowpath through the contaminated interval, thus maximizing mass transfer of electron acceptors. Clearly, more work is needed in this area to optimize the design application rate, frequency, and spatial orientation.

With respect to application of this technology to other fuel-contaminated sites, several factors need to be evaluated. First and foremost is the location of the fuel, residual saturation, and dissolved contaminants within the subsurface system. Sites with the bulk of contamination residing above the ambient or average water table are more likely to benefit from soil vacuum extraction or aerobic bioventing than with remediation using alternate electron acceptors. In some cases, a combined approach could be used, where dissolved contaminants are dispersed throughout the saturated zones. Sites that contain the bulk of contamination below the water table are not necessarily good candidates for sprinkler application of recharge, especially in heterogeneous aquifers or subsurface systems with thick vadose zones. Although an increased vadose zone might provide more electron acceptors that could be mobilized, consumption of electron acceptors by mineralization of native organic matter may negate this benefit. It is also uncertain how even the distribution of recharge would be after transport through a thick vadose zone. Site heterogeneity will also adversely affect this process, and many sites are quite heterogeneous. However, it is doubtful that the near-surface heterogeneity will be as drastic as that observed with the POL facility at Eglin AFB, where previous tests left behind a myriad of gravel infiltration trenches, open conduits, buried plastic liners, and other artifacts.

Other site-specific problems will include recharge water availability, recharge water quality, land use, and infrastructure. Recirculation of recharge water would be the optimum treatment strategy, but may not be feasible due to either regulatory constraints or, as in the case at Eglin, loss of infiltration capacity through mobilization of colloidal particulates. For anaerobic aquifers, careful attention would be required to prevent oxidation and precipitation of iron and manganese species during recirculation, as well as preventing deleterious interactions with indigenous or added electron acceptors. Sprinkler application would of course not be feasible in areas with substantial land development over the contaminated region, and in drier climates where water loss through evaporation would make costs prohibitive. The field demonstration project clearly showed the benefit of removing surface vegetation for enhanced nitrate transport, and this option should be considered even when utilizing

mixed electron acceptors or solubilizing soil-bound electron acceptors. Although removal of vegetative cover does incur an initial capital cost, the costs may not be significant, depending on current land usage. For example, where the cover consists primarily of grasses, relocation of the removed cover to other areas can provide a net benefit, and reseeding can be done to reestablish the cover once the project is complete. The use of herbicides should also be investigated; herbicides were not chosen as a maintenance option in this project because: (1) the effect of the herbicides on the microbial populations that degrade alkylbenzenes under denitrifying conditions was unknown, and (2) death and decay of the vegetation might have contributed an increased organic load which would compete with the contaminants for electron donor capacity. Although it may seem intuitive to remove surface vegetation prior to initiating remediation, this may not be the best strategy. Plant growth promotes microbial diversity within the rhizosphere, and higher denitrifier counts have been observed in soil systems with root structures (J. Schnoor, personal communication). One strategy might therefore be to prime the system by applying nitrate to vegetated surfaces initially, promote the growth and development of a robust denitrifier community, and then remove the vegetative cover and initiate high rate infiltration to transport bacteria to the deeper contaminated zones. More work is needed to evaluate the optimum strategy for reducing electron acceptor demand in the rhizosphere and vadose zones.

The time required for remediation to a specified regulatory endpoint using this process cannot be determined from the current pilot demonstration project. As stated previously, site heterogeneity precluded a direct and accurate comparison of mass contaminant levels between the time of the initial site characterization and the Interim Performance Evaluation. Based on core data from the Interim and Final Performance Evaluations, operation of the pilot demonstration project resulted in a BTEXTMB mass reduction of $66 \pm 1\%$ in both treatment cells, equivalent to a mass loss of 106 kg and 21 kg in the in the Nitrate Cell and Control Cell, respectively, following eight months of treatment. JP-4 decreased by 37% (2170 kg) in the Nitrate Cell and increased by 11% (210 kg) in the Control Cell during this same time interval. It is important to note that the previous study using hydrogen peroxide resulted in lower mass ratios of BTEXTMB in the contaminated sediments than expected for these types of spills, and hence more time may have been required had this site not already undergone partial remediation. Alternately, the observed mass reductions may have been increased if the entire vegetative surface had been stripped, facilitating nitrate transport to the contaminated intervals. Because nitrate distribution was uneven, the mass flux of nitrate to the contaminated intervals is unknown, and hence cannot be correlated to the rate of remediation. Water quality data alone are inadequate to predict the rate of remediation, because of the fluctuating water table and mass transport limitations that obscure the actual mass reduction in the aquifer solids. In addition, core samples were taken only three times during the project, and this proved insufficient to establish a rate expression for remediation. Modeling exercises are in progress and will provide some insight, but the validity of such predictions has not been established under these operating conditions, and certainly would not reflect the rate of remediation to be

expected if this process were conducted under ideal operating conditions.

The pilot demonstration project was invaluable in demonstrating remediation under mixed electron acceptor conditions, and in determining some of the controlling parameters. However, to provide an assessment of economic feasibility, nitrate distribution would first have to be uniform so that valid cost information can be derived and correlated back to mass reduction for several time intervals. Based on the potential shown here for mixed anaerobic processes, combined with the uncertainties regarding the effects of process operating variables, this approach should be investigated more fully at bench and pilot scale prior to utilization for remedial activities.

SECTION VI

CONCLUSIONS

The main objective of this project was to conduct a thorough and quantitative demonstration of the benefits of using nitrate as an alternate electron acceptor. Although this project represents a well-characterized study with extensive site characterization and monitoring, it is difficult to quantitatively evaluate the success of nitrate-based bioremediation because of three factors: (1) due to biological processes in the rhizosphere, nitrate was not uniformly and consistently delivered to the contaminated interval, (2) other biological processes in the Control Cell allowed bioremediation to proceed there as well as in the Nitrate Cell, and (3) near-surface site heterogeneities did not allow for even distribution of recharge and complicated the performance evaluation based on random core samples. Despite these problems, the pilot demonstration project demonstrated the efficacy of *in situ* bioremediation with alternate electron acceptors, and provided good evidence for nitrate-based bioremediation. The most relevant conclusions can be summarized as follows:

- 1. Sprinkler application was an efficient mechanism for transporting recharge through the contaminated interval, despite the selective removal of nitrate in the rhizosphere. Tracer studies, microbial counts, and treatability studies all show that recharge can penetrate through the contaminated interval over a large area, and therefore this method should be considered for relatively thin lenses (< 10 ft) of contamination in these cases.
- 2. Nitrate application by sprinkler recharge is compromised by vegetative cover, both due to uptake of the nutrient by the vegetation and the concomitant utilization of nitrate (and sulfate) during anaerobic decay of organic matter in the rhizosphere. Stripping of the vegetative cover, followed by the use of weed barriers to prevent regrowth, is an effective mechanism for overcoming this problem. This permits high rates of nitrate transport and reduces soluble organic carbon levels. However, additional studies are needed to determine whether stimulation and growth of the vegetative cover could enhance microbial diversity in the rhizosphere, leading to greater metabolic potential as bacteria are transported to the contaminated zones.
- 3. Recharge application had a positive effect in both cells, resulting in decreased contaminant loads, increased nutrient distribution, increased microbial populations, and decreased sediment toxicity. Based on core data from the Interim and Final Performance Evaluations, BTEXTMB was reduced by $66 \pm 1\%$ in both treatment cells, equivalent to a mass loss of 106 kg and 21 kg in the in the Nitrate Cell and Control Cell, respectively. In contrast, JP-4 decreased by 37% (2170 kg) in the Nitrate Cell and increased by 11% (210 kg) in the Control Cell.

- 4. Removal of the vegetative cover facilitated nitrate transport in the Nitrate Cell, which accelerated contaminant removal relative to the corresponding Control Cell. There was higher fractional contaminant mass removal of many of the isomers in the Nitrate Cell stripped plot compared to the Control Cell stripped plot. Core and water quality data show that mesitylene, which is labile under denitrifying conditions, was removed to a greater extent in the Nitrate Cell than in the Control Cell.
- 5. Bioremediation was stimulated in both treatment cells through the provision of additional and alternate electron acceptors to the contaminated intervals. Although nitrate was added to the sprinkler recharge for the Nitrate Cell, the recharge also contains sulfate, which was used more extensively in the Control Cell. It is likely that sulfate would have been used to the same extent in the Nitrate Cell if nitrate had not been added. Sprinkler application also incorporates oxygen into the recharge, and the resulting soil washing solubilizes additional sulfate which becomes available for *in situ* bioremediation. One consequence of remediation was increased ammonia nitrogen levels in both cells, which could enhance microbial activity in general.
- 6. Based on monitoring well information and the post-test core data and treatability studies, different microbial processes were occurring to various extents in the different treatment cells. Monitoring well data provided evidence of sulfate reduction in the Control Cell, but not in the Nitrate Cell. In addition, short-term post-test treatability studies demonstrated active BTEXTMB removal in the upper zone of the Nitrate Cell under both denitrifying and iron-reducing conditions. However, BTEXTMB removal occurred only under iron-reducing conditions in the corresponding upper zone of the Control Cell. Long-term treatability studies conducted with post-test core material from selected zones in both cells demonstrated removal of alkylbenzenes and mineralization of *m*-xylene under denitrifying, iron-reducing, sulfate-reducing, and/or methanogenic conditions.

Monitoring well data, geoprobe data, core data, and treatability studies all substantiate the occurrence of *in situ* bioremediation in both treatment cells. Due to the presence of site heterogeneity and the occurrence of bioremediation in the Control Cell, the relative contribution of biodegradation to BTEXTMB removal cannot be accurately determined. Modeling exercises are in progress and initial results indicate that biodegradation was a significant process in contaminant reduction in both treatment cells (Ouyang et al, 1997). These data collectively indicate that biotic processes related to BTEXTMB removal were occurring in both treatment cells, although to various extents in the different regions. Considering that the Nitrate Cell had approximately five times the BTEXTMB contaminant mass initially than the Control Cell, and the fractional removal of BTEXTMB in the stripped plot of the Nitrate Cell was also higher than that of the Control Cell, it is reasonable to conclude that the addition of nitrate as a supplemental electron acceptor provided greater mass removal of BTEXTMB through biodegradation.

SECTION VII

RECOMMENDATIONS

To derive the answers to satisfy the original objectives, this project should be repeated at a smaller scale to better control site heterogeneity and facilitate nitrate transport to the subsurface. However, performance of the pilot project was good, and demonstrated that subsurface microbial activity could be stimulated through sprinkler application of recharge containing natural as well as added electron acceptors. This approach should be investigated at field scale with a more homogeneous aquifer using multiple electron acceptors to enhance anaerobic bioremediation. Specific recommendations are as follow:

- Sprinkler application should be considered as an alternative strategy to vapor extraction or bioventing treatment strategies for in situ bioremediation of fuelcontaminated aquifers which contain much of the contamination within the saturated zone. This would avoid the use of extraction wells and take advantage of natural electron acceptors in the soil vadose zone as well as added electron acceptors. This of course would be dependent on a steady source of available recharge. However, design of a surface application system does require significant characterization of site hydrogeology as well as a quantitative understanding of site specific infiltration and water table mounding characteristics. In addition, even surface distribution of sprinkler recharge is required not only to build the water table mound, but to avoid "dead zones" of stagnant subsurface water which counteract overall efficiency of remediation. Recirculation of ground water would be recommended for those cases where it can be demonstrated that this would not result in aquifer plugging. However, recirculation of ground water will most likely have to undergo more review for approval and permitting due to the reinjection of contaminated ground water. Still, in cases where ground water can not be recovered, much greater care will be required to ensure that downgradient receptors are not impacted, and therefore these systems should be operated with ground water capture and recirculation or treatment and disposal whenever possible.
- 2. This project has demonstrated that different microbial processes can be stimulated with different electron acceptors in the recharge water. However, the optimum combination of electron acceptors is unknown, as well as are the effects on specific contaminants. Benzene was at low concentrations in this weathered material, and so the effects of iron-, sulfate-, and nitrate-reducing conditions on benzene biodegradation in the field could not be determined in this study. Combinations of multiple electron acceptors should be tested in complex soil systems such as this to determine optimum combinations for the removal of selected contaminants. Secondary effects, such as production of ammonia-nitrogen as a nutrient through dissimilatory nitrate reduction, should also be considered.

3. Future studies should incorporate several clustered downgradient wells and incorporate multiple tracers to better define the contribution of biodegradation to the overall removal process. Modeling in this project is limited to the immediate area of the treatment cells, but it is possible that mobilized electron acceptors contributed to bioremediation of solubilized contaminants downgradient of the treatment cells. If this is true, the contribution of bioremediation is being underestimated, and the efficacy of using this type of "one-pass" system, rather than recirculation of contaminated ground water, is not being realized. Again, however, caution must be used to avoid contamination of downgradient wells. One acceptable scenario would be to pump and either recirculate or treat and dispose the ground water resulting from the recharge, but to construct recovery wells sufficiently far downgradient to take advantage of the increased residence time.

SECTION VIII

REFERENCES

- Aamand, J., C. Jorgensen, E. Arvin, and B.K. Jensen. 1989. "Microbial Adaptation to Degradation of Hydrocarbons in Polluted and Unpolluted Groundwater," <u>J. Contam. Hydrol.</u> 4:299-312.
- Aelion, C.M., D.C. Dobbins, and F.K. Pfaender. 1989. "Adaptation of Aquifer Microbial Communities to the Biodegradation of Xenobiotic Compounds: Influence of Substrate Concentrations and Preexposure," <u>Environ. Toxicol. Chem.</u> 8:75-86.
- Aggarwal, P.K., J.L. Means, and R.E. Hinchee. 1991. Formulation of nutrient solutions for in situ biodegradation. In R.E. Hinchee and R.F. Olfenbuttel, eds., In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Butterworth Heinemann, Boston, MA, pp. 51-66.
- Al-Bashir, B., T. Cseh, R. Leduc, and R. Samson. 1990. "Effect of Soil/Contaminant Interactions on the Biodegradation of Naphthalene in Flooded Soil under Denitrifying Conditions," <u>Appl. Microbiol. Biotechnol</u>. 34: 414-419.
- Alexander, M. 1977. <u>Introduction to Soil Microbiology</u>, 2nd edn. John Wiley and Sons, New York.
- Anid, P.J., P.J.J. Alvarez, and T.M. Vogel. 1993. "Biodegradation of Monoaromatic Hydrocarbons in Aquifer Columns Amended with Hydrogen Peroxide and Nitrate," Water Res. 27:685-691.
- Atlas, R.M. 1991. Bioremediation of fossil fuel contaminated soils. In R.E. Hinchee and R.F. Olfenbuttel, eds., <u>In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation.</u> Butterworth-Heinemann, Boston, MA, pp. 14-32.
- Bantle, J.A. 1996. <u>Development and evaluation of reproductive and developmental toxicity tests for assessing the hazard of environmental contaminants.</u> Air Force Civil Engineering Support Agency, Tyndall Air Force Base, FL.
- Barker, J.F., G.C. Patrick, and D. Major. 1987. "Natural Attenuation of Aromatic Hydrocarbons in a Shallow Sand Aquifer," <u>Ground Water Monitor. Rev.</u> 7:64-71.
- Battermann, G. 1986. "Decontamination of Polluted Aquifers by Biodegradation," J.W. Assink and W.J. van den Brink (eds.), 1985 <u>International TNO Conference on Contaminated Soil</u>, Nijhoff, Dordrecht, Pp. 711-722.

Bell, R.A. and H.A. Hoffmann. 1991. Gasoline spill in fractured bedrock addressed with in situ bioremediation. In R.E. Hinchee and R.F. Olfenbuttel, eds., In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann, Boston, MA, pp. 437-443.

Beller, H.R., D. Grbic-Galic, and M. Reinhard. 1992. "Microbial Degradation of Toluene under Sulfate-Reducing Conditions and the Influence of Iron on the Process," <u>Appl. Environ. Microbiol.</u> 58:786-793.

Berry-Spark, K.L., J.F. Barker, D. Major, and C.I. Mayfield. 1986. "Remediation of Gasoline-Contaminated Ground-waters: a Controlled Experiment," <u>Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, NWWA/API, Water Well Journal Publishing, Dublin, pp. 613-623.</u>

Blazevic, D.J., M.H. Koepcke, and J.M. Matsen. 1973. "Incidence and Identification of *Pseudomonas fluorescens* and *Pseudomonas putida* in the clinical laboratory," <u>Appl. Environ. Microbiol.</u> 25:1:107-110.

Borden, R.C., C.A. Gomez, and M.T. Becker. 1995. "Geochemical Indicators of Intrinsic Bioremediation," <u>Ground Water</u> 33:180-189.

Bouchard, D.C., C.G. Enfield, and M.D. Piwoni. 1989. "Transport processes involving organic chemicals." In B.L. Sawhney and K. Brown, eds., <u>Reactions and Movement of Organic Chemicals in Soil</u>, Soil Science Society of America and American Society of Agronomy, SSSA Special Publication Number 22, pp 349-371.

Bouwer, E.J. and P.L. McCarty. 1983. "Transformations of Halogenated Organic Compounds under Denitrification Conditions," <u>Appl. Environ. Microbiol</u>. 45:1295-1299.

Bouwer, E.J., M.A. Trizinsky, and W. Zhang. 1992. Influence of redox conditions on organic contamination biotransformation. In S. Lesage, ed., <u>Proceedings, In-Situ Bioremediation Symposium</u>, Wastewater Technology Center, Burlington, Ontario, Canada, pp 203-223.

Britton, L.E., <u>Aerobic Denitrification as an Innovative Method for In-Situ Biological</u> <u>Remediation of Contaminated Subsurface Sites</u>, ESL-TR-88-40, Engineering and Services Laboratory, Headquarters Air Force Engineering Services Center, Tyndall AFB FL, 1989.

Brock, T.D. 1987. "The study of microorganisms in situ: progress and problems." In: M. Fletcher, T.R.G Gray and J.G. Jones, eds., <u>Ecology of Microbial Communities</u>,

Cambridge University Press, Cambridge, pp. 1-17.

Coates, J.D., R.T. Anderson, and D.R. Lovely. 1996. "Oxidation of Polycyclic Aromatic Hydrocarbons under Sulfate-Reducing Conditions," <u>Appl. Environ. Microbiol</u>. 62:1099-1101.

Cotruvo, J.A. and M. Regelski. 1989. "National primary drinking water regulations for volatile organic chemicals." In E.J. Calabrese, C.E. Gilbert, and H. Pastides, eds., <u>Safe Drinking Water Act: Amendments, Regulations, and Standards</u>. Lewis Publishers, Chelsea, MI, pp. 29-34.

Dangel, W., A. Tschech, and G. Fuchs. 1989. "Enzyme Reactions Involved in Anaerobic Cyclohexanol Metabolism by a Denitrifying *Pseudomonas* Species," <u>Arch. Microbiol</u>. 152:273-279.

Dolfing, J., J. Zeyer, P. Binder-Eicher, and R.P. Schwarzenbach. 1990. "Isolation and Characterization of a Bacterium that Mineralizes Toluene in the Absence of Molecular Oxygen," <u>Arch. Microbiol</u>. 154:336-341.

EA Engineering, Science, & Technology, Inc. 1987. <u>Site characterization of the POL area, floating fuel recovery and residual cleanup site</u>, Eglin AFB, Florida. EA Project DAF 71A.

EA Engineering, Science, & Technology, Inc. 1993. <u>Preliminary Contamination Report Including Soil Vapor Contaminant Assessment for the SS-36, POL tank farm, Eglin Air Force Base, Valparaiso, Okaloosa County, Florida</u>. (EA Project Draft).

Edwards, E.A., and D. Grbic-Galic. 1992. "Complete Mineralization of Benzene by Aquifer Microorganisms under Strictly Anaerobic Conditions," <u>Appl. Environ. Microbiol.</u> 58:2663-2666.

Edwards, E.A., L.E. Wills, M. Reinhard, and D. Grbic-Galic. 1992. "Anaerobic Degradation of Toluene and Xylene by Aquifer Microorganisms under Sulfate-Reducing Conditions," <u>Appl. Environ. Microbiol</u>. 58:794-800.

Evans, P.J., D.T. Mang, and L.Y. Young. 1991. "Degradation of Toluene and *m*-Xylene and Transformation of *o*-Xylene by Denitrifying Enrichment Cultures," <u>Appl. Environ.</u> <u>Microbiol</u>. 57:450-454.

EPA. 1977. Serial No. 95-12, U.S. Govt. Printing Office, Washington, D.C.

Flyvbjerg, J., E. Arvin, B.K. Jensen, and S.K. Olsen. 1993. "Microbial Degradation of Phenols and Aromatic Hydrocarbons in Creosote-Contaminated Groundwater Under Nitrate-Reducing Conditions", <u>J. Contam. Hydrol.</u> 12:133-150.

Fogelqvist, E., B. Jofesson, and C. Roos. 1980. "Determination of Carboxylic Acids and Phenols in Water by Extractive Alkylation using Pentafluorylbenzylation, Glass Capillary GC, and Electron Capture Detection", J. High Resol. Chromatogr. Capillary Comm. 570:568-574.

Fry, J.C. and T. Zia. 1982. "Viability of Heterotrophic Bacteria in Freshwater", <u>J. Gen. Microbiol.</u> 128:2841-2850.

Gelhar, L.W., C. Welty, and K.R. Rehfeldt. 1992. "A Critical review of Data on Field-Scale Dispersion in Aquifers," <u>Water Resources Research</u> 28: 1955-1974.

Ghiorse, W.C., and J.T. Wilson. 1988. "Microbial Ecology of the Terrestrial Subsurface," Adv. Appl. Microbiol. 33:107-172.

Grbic-Galic, D., and T.M. Vogel. 1987. "Transformation of Toluene and Benzene by Mixed Methanogenic Cultures," <u>Appl. Environ. Microbiol</u>. 53:254-260.

Grbic-Galic, D. 1989. "Microbial Degradation of Homocyclic and Heterocyclic Aromatic Hydrocarbons under Anaerobic Conditions," <u>Dev. Indust. Microbiol</u>. 30:237-253.

Haag, F., M. Reinhard, and P.L. McCarty. 1991. "Degradation of Toluene and *p*-Xylene in Anaerobic Microcosms: Evidence for Sulfate as a Terminal Electron Acceptor," <u>Environ. Toxicol. Chem</u>. 10:1379-1389.

Haggblom, M.M., M.D. Rivera, I.D. Bossert, J.E. Rogers, and L.Y. Young. 1990. "Anaerobic Biodegradation of *Para*-Cresol Under Three Reducing Conditions," <u>Microb. Ecol</u>. 20:141-150.

Häner, A., P. Höhener, and J. Zeyer. 1997. "Degradation of Trimethylbenzene Isomers by an Enrichment Culture Under N₂O Reducing Conditions," <u>Appl. Environ. Microbiol.</u> 63:1171-1174.

Hantush, M.S. 1967. "Growth and Decay of Groundwater Mounds in Response to Uniform Percolation," <u>Water Resources Research</u> 3: 227-234.

Hillel, D. <u>Soil and Water: Physical Principles and Processes</u>, Academic Press, New York, 1971.

Hillel, D. Introduction to Soil Physics, Academic Press, New York, 1982, pg 9.

Hilton, J., B. Marley, T. Ryther, and J. Forbes. 1992. "Pilot Test of Nitrate-Enhanced Bioremediation in a Moderate- to Low-Permeability Aquifer." <u>Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention.</u>

<u>Detection</u>, and <u>Restoration</u>. NWWA/API, Water Well Journal Publishing, Dublin, pp. 527-540.

Hinchee, R.E., D.C. Downey, J.K. Slaughter, D.A. Selby, M.S. Westray, and G.M. Long. 1989. Enhanced bioreclamation of jet fuels - a full-scale test at Eglin AFB FL. Air Force Engineering & Services Center, Tyndall Air Force Base, FL.

Hu, L.Z. and W.K. Shieh. 1987. "Anoxic Biofilm Degradation of Monocyclic Aromatic Compounds," <u>Biotechnol. Bioengrg</u>. 30:1077-1083.

Hutchins, S.R., G.W. Sewell, D.A. Kovacs, and G.A. Smith. 1991a. "Biodegradation of Aromatic Hydrocarbons by Aquifer Microorganisms under Denitrifying Conditions," Environ. Sci. Technol. 25:68-76.

Hutchins, S.R., W.C. Downs, J.T. Wilson, G.B. Smith, D.A. Kovacs, D.D. Fine, R.H. Douglass, and D.J. Hendrix. 1991b. "Effect of Nitrate Addition on Biorestoration of Fuel-Contaminated Aquifer: Field Demonstration," <u>Ground Water</u> 29:571-580.

Hutchins, S.R. 1991a. "Biodegradation of Monoaromatic Hydrocarbons by Aquifer Microorganisms Using Oxygen, Nitrate, or Nitrous Oxide as the Terminal Electron Acceptor," <u>Appl. Environ. Microbiol</u>. 57:2403-2407.

Hutchins, S.R. 1991b. "Optimizing BTEX Biodegradation Under Denitrifying Conditions," <u>Environ. Toxicol. Chem.</u> 10:1437-1448.

Hutchins, S.R., S.W. Moolenaar, and D.E. Rhodes. 1992. "Column studies on BTEX biodegradation under microaerophilic and denitrifying conditions." <u>Proceedings, 4th Annual Symposium of the Gulf Coast Hazardous Substance Research Center,</u> Beaumont, TX, Apr 2-3, 1992. pp. 67-90.

Hutchins, S.R. 1993. "Biotransformation and Mineralization of Alkylbenzenes Under Denitrifying Conditions," <u>Environ. Toxicol. Chem.</u> 12:1413-1423.

Hutchins, S.R. and J.T. Wilson. 1994. "Nitrate-based bioremediation of petroleum-contaminated aquifer at Park City, Kansas: site characterization and treatability study." In: R.E. Hinchee, B.C. Alleman, R.E. Hoeppel, and R.N. Miller (eds.), <u>Hydrocarbon Bioremediation</u>, Lewis Publishers, Ann Arbor, MI, pp. 80-92.

Hutchins, S.R., J.T. Wilson, and D.H. Kampbell. 1995. "In situ bioremediation of a pipeline spill using nitrate as the electron acceptor." In: R.E. Hinchee, J.A. Kittel, and H.J. Reisenger (eds.), <u>Applied Bioremediation of Petroleum Hydrocarbons</u>. Battelle Press, Columbus, OH, pp. 143-154.

Jorgensen, C. and J. Aamand. 1991. "Cometabolic transformation of o-xylene in

- groundwater." In J. Berthelin, ed., <u>Diversity of Environmental Biogeochemistry</u>, Elsevier, Amsterdam. pp. 239-244.
- Jørgensen, C., J. Flyvbjerg, B.K. Jensen, E. Arvin, S.K. Olsen, and E. Mortensen. 1991. Toluene metabolism and its effects on o-cresol transformation under nitrate reducing conditions. In B.N. Jackson, J. Zeyer, B. Jensen, P. Westermann, and B Ahring, eds., <u>Anaerobic Biodegradation of Xenobiotic Compounds. Proceedings</u>, COST Workshop 641, Nov 22-23, Copenhagen, Denmark, pp. 65-75.
- Kampbell, D.K. and J.T. Wilson. 1989. "Dissolved Oxygen and Methane in Water by a GC Headspace Equilibration Technique," <u>Int. J. Environ. Chem</u> 36:249-257.
- Kampfer, P., M. Steiof, and W. Dott. 1991. "Microbiological Characterization of a Fuel-Oil Contaminated Site Including Numerical Identification of Heterotrophic Water and Soil Bacteria," <u>Microb. Ecol.</u> 21:227-251.
- Kluge, C., A. Tschech, and G. Fuchs. 1990. Anaerobic Metabolism of Resorcyclic Acids (*m*-Dihydroxybenzoic Acids) and Resorcinol (1,3-Benzenediol) in a Fermenting and in a Denitrifying Bacterium," <u>Arch. Microbiol.</u> 155:68-74.
- Kopp, J.F., and G.D. McKee. 1979. Manual Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020.
- Kuhn, E.P., J. Zeyer, P. Eicher, and R.P. Schwarzenbach. 1988. "Anaerobic Degradation of Alkylated Benzenes in Denitrifying Laboratory Columns," <u>Appl. Environ. Microbiol</u>. 54:490-496.
- Leach, L.E., F.P. Beck, J.T. Wilson, and D.H. Kampbell. 1989. Aseptic subsurface sampling techniques for hollow-stem auger drilling. <u>Proceedings, Second National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods</u>, vol. 1, pp. 31-51.
- Lee, M.D., J.M. Thomas, R.C. Borden, P.B. Bedient, J.T. Wilson, and C.H. Ward. 1988. "Biorestoration of Aquifers Contaminated with Organic Compounds," <u>Crit. Rev.</u> Environ. <u>Control</u> 18:29-89.
- Lee, M.D. and R.L. Raymond, Sr. 1991. Case history of the application of hydrogen peroxide as an oxygen source for in situ bioreclamation. In R.E. Hinchee and R.F. Olfenbuttel, eds., In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Butterworth-Heinemann, Boston, MA, pp. 429-436.
- Lemon, L.A., J.R. Barbaro, and J.F. Barker. 1989. Biotransformation of BTEX under anaerobic denitrifying conditions: evaluation of field observations. <u>Proceedings.</u>

FOCUS Conference on Eastern Regional Ground Water Issues, NWWA, Dublin, pp 213-227.

Lloyd, D., L. Boddy, and K.J.P. Davies. 1987. "Persistence of Bacterial Denitrification Capacity Under Aerobic Conditions: The Rule Rather Than the Exception," <u>FEMS</u> Microbiol. Ecol. 45:185-190.

Lovely, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips, and D.S. Siegel. 1989. "Oxidation of Aromatic Contaminants Coupled to Microbial Iron Reduction," Nature 339:297-299.

Lovely, D.R., J.C. Woodward, and F.H. Chappelle. 1996. "Rapid Anaerobic Benzene Oxidation with a Variety of Chelated Iron Forms," <u>Appl. Environ. Microbiol</u>. 62:288-291

Mackay, D., W.Y. Shiu, and K.C. Ma. 1993. <u>Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, Volume I, Monoaromatic hydrocarbons, chlorobenzenes, and PCBs</u>. Lewis Publishers, Chelsea, MI, pp 96-102.

Madsen, E.L., J.L. Sinclair, and W.C. Ghiorse. 1991. "In Situ Biodegradation: Microbiological Patterns in a Contaminated Aquifer," <u>Sci</u>. 252:830-833.

Major, D.W., C.I. Mayfield, and J.F. Barker. 1988. "Biotransformation of Benzene by Denitrification in Aquifer Sand," <u>Ground Water</u> 26:8-14.

Metcalf & Eddy, Inc. 1972. <u>Wastewater Engineering: Collection, Treatment, Disposal.</u> Chow, V.T., R. Eliassen, and R.K. Linlsey (Eds.). McGraw-Hill Publishers, New York, pp. 662 - 665.

Mihelcic, J.R. and R.G. Luthy. 1988. "Microbial Degradation of Acenaphthene and Naphthalene under Denitrification Conditions in Soil-Water Systems," <u>Appl. Environ. Microbiol</u>. 54:1188-1198.

Miller, D.E. and S.R. Hutchins. 1995. "Petroleum hydrocarbon biodegradation under mixed denitrifying/microaerophilic conditions." In: R.E Hinchee, C.M. Vogel, and F.J. Brockman, eds., <u>Microbial Processes for Bioremediation</u>. Battelle Press, Columbus, OH, pp. 129-136.

Newell, C.J., J.W. Winters, H.S. Miller, J.R. Gonzales, and T.H. Wiedemeier. 1995. "Modeling Intrinsic Remediation With Multiple Electron Acceptors: Results From Seven Sites." <u>Proceedings of Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration.</u> NGWA, Water Well Journal Publishing, Dublin, pp. 33-48.

Newell, C.J., R.K. McLeod, and J.R. Gonzales. 1996. BIOSCREEN, Natural Attenuation

Support System, User's Manual, Version 1.3. EPA/600/R-96/087, August 1996.

O'Melia, C. R. and W. Ali. 1978. "The Role of Retained Particles in Deep Bed Filtration," Prog. Wat. Technol. 10:167-182.

Ottow, J.C.G. and W. Fabig. 1985. Influence of oxygen aeration on denitrification and redox level in different bacterial batch cultures. In D.E. Caldwell, J.A. Brierley, and C.L. Brierley, eds., <u>Planetary Ecology</u>, Van Nostrand Reinhold Company, Inc., New York, pp 427-440.

OUST, 1994. <u>LUST Trust Fund Fourth Quarter Report.</u> Sept 1994, Office of Underground Storage Tanks, U.S. EPA, Washington, D.C.

Ouyang, Y., B.M. Hill, and S.R. Hutchins. 1997. "Modeling Transport and Biodegradation of Trimethylbenzene Isomers in a Sandy Aquifer," <u>J. Contam. Hydrol</u>. (manuscript in preparation).

Patureau, D., J. Davison, N. Bernet, and R. Moletta. 1994. "Denitrification Under Various Aerobic Conditions in *Comamonas* Sp., Strain SGLY2," <u>FEMS Microbiol.</u> <u>Ecol.</u> 14:71-78.

Raymond, R.L., V.W. Jamison, J.O. Hudson, R.E. Mitchell, and V.E. Farmer. 1978. <u>Field application of subsurface biodegradation of gasoline in a sand formation. Final Report, Project No. 307-77.</u> American Petroleum Institute, Washington, D.C.

Rifai, H. S., P. B. Bedient, R. C. Borden, and J. F. Haasbeek. 1987. BIOPLUME II - Computer Model of Two-Dimensional Transport under the Influence of Oxygen Limited Biodegradation in Groundwater, User's Manual, Version 1.0. Rice University. Houston, TX.

Robertson, L.A., T. Dalsgaard, N. Revsbech, and J.G. Kuenen. 1995. "Confirmation of 'Aerobic Denitrification' in Batch Cultures, Using Gas Chromatography and ¹⁵N Mass Spectrometry," <u>FEMS Microbiol. Ecol.</u> 18:113-120.

Rudolphi, A., A. Tschech, and G. Fuchs. 1991. Anaerobic Degradation of Cresols by Denitrifying Bacteria," <u>Arch. Microbiol.</u> 155:238-248.

Seyfried, B., A. Tschech, and G. Fuchs. 1991. Anaerobic Degradation of Phenylacetate and 4-Hydroxyphenylacetate by Denitrifying Bacteria," <u>Arch. Microbiol.</u> 155:249-255.

Shaler, T.A. and G.M. Klecka. 1986. "Effects of Dissolved Oxygen Concentration on Biodegradation of 2,4-Dichlorophenoxy Acid," <u>Appl. Environ. Microbiol</u>. 51:950-955.

Sheehan, P.J., R.W. Schneiter, T.K.G. Mohr, and R.M. Gersberg. 1988. "Bioreclamation

of gasoline contaminated groundwater without oxygen addition." <u>Proceedings</u>, <u>Second National Outdoor Action Conference on Aquifer Restoration</u>, <u>Ground Water Monitoring</u>, and <u>Geophysical Methods</u>, NWWA, Dublin, pp. 183-199.

Sinclair, J.L. and W.C. Ghiorse. 1987. "Distribution of Protozoa in Subsurface Sediments of a Pristine Groundwater Study Site in Oklahoma," <u>Appl. Environ. Microbiol</u>. 53:1157-1163.

Sinclair, J.L., D.H. Kampbell, M.L. Cook, and J.T. Wilson. 1993. "Protozoa in Subsurface Sediments From Sites Contaminated with Aviation Gasoline or Jet Fuel," Appl. Environ. Microbiol. 59:467-472.

Smith, G.A., J.S. Nickels, B.D. Kerger, J.D. Davis, S.P. Collins, J.T. Wilson, J. McNabb, and D.C. White. 1986. "Quantitative Characterization of Microbial Biomass and Community Structure in Subsurface Material: a Procaryotic Consortium Responsive to Organic Contamination," Can. J. Microbiol. 32:104-111.

Smith, J.H., J.C. Harper, and H. Jaber et al, 1981. <u>Analysis and environmental fate of Air Force distillate and high density fuels</u>. ESL-TR-81-54, Engineering and Services Laboratory, Headquarters Air Force Engineering Services Center, Tyndall AFB FL, 1981.

Sweed, H.G., P.B. Bedient, and S.R. Hutchins. 1996. "Surface Application System for *In Situ* Ground-Water Bioremediation: Site Characterization and Modeling," <u>Ground</u> Water 34: 211-222.

Swindoll, C.M., C.M. Aelion, D.C. Dobbins, O. Jiang, S.C. Long, and F.K. Pfaender. 1988. "Aerobic Biodegradation of Natural and Xenobiotic Organic Compounds by Subsurface Microbial Communities," <u>Environ. Toxicol. Chem.</u> 7: 291-299.

Thomas, J.M., M.D. Lee, P.B. Bedient, R.C. Borden, L.W. Canter, and C.H. Ward. 1987. Leaking underground storage tanks: remediation with emphasis on in situ biorestoration. EPA 600/2-87/008. RSKERL Publication. U.S. Environmental Protection Agency, Ada, OK.

Thomas, J.M., M.D. Lee, M.J. Scott, and C.H. Ward. 1989. "Microbial Ecology of the Subsurface at an Abandoned Creosote Waste Site," <u>J. Indus. Microbiol.</u> 54:291-299.

Thomas, J.M., V.R. Gordy, C.L. Bruce, S.R. Hutchins, J.L. Sinclair, and C.H. Ward. 1995. "Microbial activity in subsurface samples before and during nitrate-enhanced bioremediation." In: R.E Hinchee, C.M. Vogel, and F.J. Brockman, eds., Microbial Processes for Bioremediation. Battelle Press, Columbus, OH, pp. 271-280.

Thomas, J.M., C.L. Bruce, V.R. Gordy, K.L. Duston, S.R. Hutchins, J.L. Sinclair, and

C.H. Ward. 1997. "Assessment of the Microbial Potential for Nitrate-Enhanced Bioremediation of a JP-4 Fuel-Contaminated Aquifer," <u>J. Indust. Microbiol.</u> 18:213-221.

Tiedje, J.M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium," <u>Biology of Anaerobic Microorganisms</u>, (A.J.B. Zehnder, ed.) John Wiley and Sons, New York. pp. 179-244.

Trizinsky, M.A. and E.J. Bouwer. 1990. Biotransformations under denitrifying conditions. <u>Proceedings, ASCE National Conference on Environmental Engineering</u>, Washington, D.C., July 8-11, pp. 921-922.

Vandegrift, S.A. and D.H. Kampbell. 1988. "Gas Chromatographic Determination of Aviation Gasoline and JP-4 Jet Fuel in Subsurface Core Samples," <u>J. Chromatogr. Sci</u>. 26: 566-569.

Weston, R.F., Inc. 1984. Response to fuel in ground at POL area, Eglin Air Force Base, Florida. Air Force Engineering & Services Center, Tyndall Air Force Base, FL.

Wiesner, M.R., M. Grant, and S.R. Hutchins. 1996. "Reduced Permeability in Groundwater Remediation Systems: Role of Mobilized Colloids and Injected Chemicals," <u>Environ. Sci. Technol</u>. 30:3184-3191.

Wilson, J.L. and S.H. Conrad. 1984. Is physical displacement of residual hydrocarbons a realistic possibility in aquifer restoration? <u>Proceedings, Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration</u>. NWWA, API. Houston, TX. pp 274-298.

Wilson, J.T., J.F. McNabb, D.L. Balkwill, and W.C. Ghiorse. 1983. "Enumeration and Characterization of Bacteria Indigenous to a Shallow Water-Table Aquifer," <u>Ground Water</u> 21:134-142.

Wilson, J.T., L.E. Leach, M. Henson, and J.N. Jones. 1986. "In Situ Biorestoration as a Groundwater Remediation Technique," <u>Ground Water Monitor</u>. 6:56-64.

Zeyer, J., E.P. Kuhn, and R.P. Schwarzenbach. 1986. "Rapid Microbial Mineralization of Toluene and 1,3-Dimethylbenzene in the Absence of Molecular Oxygen," <u>Appl. Environ. Microbiol.</u> 52:944-947.

0.2 0.5 10. 0.	10.00 10.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.001 6.001 6.001 6.001 6.001 6.003	6.000 6.	40.001 40.001 40.001 40.001 40.001 40.001 40.001 40.002 40.001 40.002 40.001 40.002 40.002 40.003	0.002 0.002 0.003 0.004 0.004 0.002 0.002 0.003	0.003 0.003	6.001 6.003 6.003	40.001 40.001 40.001 40.001 7.660 4.110 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009	40.001 40.001 40.001 40.001 60.008 60.009 60.009 60.009 60.009 60.009 60.009 60.009 60.009 60.009 60.009	60.001 60.001 60.001 60.002 60.001 60.003 60.003 60.003 60.003 60.003 60.003 60.003 60.003 60.003 60.003	40.001 0.018 0.002 0.002 0.002 0.007 0.007	×10.0
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			6.001 6.001 6.001 6.001 6.002 6.003	6.000 6.000	40.001 40.001 40.001 40.001 40.001 60.005 60	0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.002 0.003	0.004 0.004 0.004 0.005 0.005 0.004 0.008	6.001 6.003 6.003	40.001 40.001 40.001 60.001 7.660 7.660 4.110 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009 9.009	40.001 40.001 40.001 40.001 60.008 6.550 6.550 6.009 6.009 0.003 0.003 0.003 0.003 0.003	60.001 60	40.001 0.018 40.001 0.002 0.007	× 10.0
0.5 1.0 1.5 1.0 1.5 1.0 2.5 2.5 2.0 3.5 3.8 3.5 3.8 3.8 4.8 4.8 5.3 3.8 5.9 6.5 6.5 7.0 1.0 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.5 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.			6.001 6.001 6.001 6.002 6.003	0.005 0.001	6.001 6.001 6.001 6.001 6.004 6.001 6.005 6.005 6.005 6.005 6.003	0.003 0.004 0.005 0.	0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.008 0.	6,001 6,001	6,001 6,001 6,001 6,001 6,002 7,680 7,680 6,003 6,003 6,003 6,001 6,003	40.001 40.001 60.001 60.008 60.001 18.000 9.730 6.550 6.550 0.008 0.008 0.008 0.008	60.001 0.006 0.006 0.019 0.019 0.023 0.023 0.008 0.008	0.0018 0.002 0.002 0.007	×10.0
1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			6.001 6.001 6.002 6.003	6.000 6.000	6.001 6.001 6.001 6.004 6.004 6.008	0.0001 0.0008 0.0015 0.015 0.015 0.016 0.021 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.004	40.001 40	6.001 6.001	6.0001 6.0001 6.0001 7.680 7.680 7.680 6.003 6.0	40.001 40.001 0.008 40.001 0.025 0.025 0.035 0.013 0.021 0.024	0.002 0.006 0.006 0.019 0.019 0.008 0.008	0.002 0.022 0.007	
1.5 2.0 2.5 2.5 2.0 3.5 3.0 3.5 3.0 3.5 3.0 3.5 3.8 4.3 4.8 4.3 4.8 5.3 5.9 5.9 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40.001 40.001 60.0037 60.00	6.001 6.001	40.001 40.001 60.001 1.140 0.005 0.005 0.005 0.002 0.002 0.003	0.008 0.015 0.015 0.015 0.015 0.016 0.006 0.021 0.023 0.023 0.023 0.023 0.024 0.024 0.004	40.001 40.001 40.001 15.400 15.400 15.400 10.018 0.043 0.043 0.043 0.081 0.081 0.081 0.088 0.	6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001	40.001 40.001 0.062 7.660 4.110 2.710 0.034 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.007 0.006 0.007 0.006	6.008 6.008 6.008 6.550 0.003 0.	0.002 0.006 0.019 0.019 0.008 0.008	0.002	<10.0
2.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			40,001 0,002 0,003 0,003 0,003 40,001 0,003 0,003 0,003 0,003 0,003 0,004 0,004 0,004	6.001 6.001	6.0.001 6.0.001 1.140 0.004 0.005 0.005 0.002	0.008 0.001 0.001 0.015 0.016 0.006 0.003 0.003 0.003 0.003 0.004 0.004	40.001 40.001 15.400 17.10 17.10 17.10 10.025 0.043 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.083 0.003	6.001 6.001	6.001 6.002 0.002 0.003 4.110 2.710 2.710 2.710 0.034 0.003 0.004 0.005 0.005 0.004 0.005 0.005 0.005 0.005 0.006 0.	0.008 0.025 0.025 18.000 9.730 6.550 0.003 0.013 0.024	0.006 0.008 0.008 0.008 0.008	0.0022	42.5
25 30 30 31 32 32 33 34 43 43 43 43 43 43 43 43		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.001 0.	0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	40.001 6.870 2.490 2.490 0.012 0.004 0.003 0.003 0.004 0.004 0.004	0.020 15.580 0.025 0.018 0.005 0.043 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081	6.007 6.007	0.002 0.002 7.660 2.710 2.710 0.034 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	6.000 9.730 6.550 0.035 0.013 0.021 0.029	2.200 2.200 3.350 0.008 0.008 0.008 0.008	0.007	297.0
30 35 35 38 4.3 4.8 4.3 4.8 5.3 6.5 6.5 7.0 7.0 7.6 7.0 7.6 7.0 7.6 7.0 7.6 7.0 7.6 7.0 7.0 7.0 7.0 7.0		000000000000000000000000000000000000000	0.005 0.0037 0.0037 0.003 0.003 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005	0.004 0.004 0.0001 0.000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.000001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000000 0.00000000	0.004 1.140 1.140 0.847 0.005 0.005 0.029 0.023 0.023 0.023 0.023 0.023 0.023 0.023	0.015 6.870 3.470 2.480 0.012 0.016 0.006 0.029 0.029 0.029 0.029 0.029 0.029 0.004 0.007	0.020 7,710 7,710 5,580 0.025 0.025 0.043 0.081 0.081 0.081 0.081 0.081 0.083 0.072 0.072 0.003	6.007 6.	0.062 7.666 4.110 0.034 0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.025 18.000 9.730 6.550 0.035 0.035 0.021 0.021 0.029	0.004 0.0023 0.0023 0.0004 0.006	277	235.0
35 38 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.025 0.037 0.021 0.003 0.003 0.003 0.005 0.005 0.004 0.006	0.002 0.000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0005	2.120 0.140 0.004 0.005 0.005 0.009 0.029 0.029 0.029 0.029 0.029 0.029	0.021 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004	15.400 5.580 0.025 0.018 0.004 0.004 0.008 0	0.005 0.007	7,660 4,110 2,710 0,034 0,003 0,004 0,004 0,004 0,006 0,006 0,006 0,000 0 0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18,000 9,730 6,550 0,080 0,013 0,013 0,029 0,029	2.3.350 0.0023 0.0004 0.006	2	145.0
3.8		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.037 0.0021 0.0034 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004	0.002 0.001	0.005 0.006 0.006 0.006 0.005 0.028 0.028 0.023 0.023 0.023	2.470 0.012 0.016 0.021 0.023 0.023 0.023 0.024 0.004	5.580 0.025 0.005 0.004 0.004 0.008 0.008 0.008 0.000 0.000	0.007 0.003 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	2.710 0.034 0.003 0.003 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003 0.003	6.550 0.060 0.013 0.013 0.029 0.029	2.200 2.200 0.023 0.008 0.004 0.006	56.084	921.0
4.3 4.8 4.8 5.3 5.3 5.9 5.3 5.9 6.5 7.0 7.0 7.0 7.0 82 8.2 8.8 8.8 9.4 10.0 10.5 10.0 10.		000000000000000000000000000000000000000	0.0021 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005	0.004 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.005 0.005 0.006 0.002 0.003 0.028 0.029 0.023 0.023	2.490 0.012 0.006 0.002 0.035 0.035 0.021 0.004 0.004	0.025 0.025 0.0018 0.0043 0.0081 0.0081 0.0084 0.0082 0.0072 0.0003	6.003 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001 6.001	2710 0.034 0.009 0.005 0.005 0.005 0.003 0.003 0.003 0.003 0.003	6.550 0.060 0.035 0.013 0.021 0.029 0.029	0.008 0.008 0.006 0.006	29.555	1850.0
4.8 5.3 6.5 6.5 6.5 7.0 7.0 7.6 7.0 7.6 8.2 8.8 8.8 8.8 8.8 9.4 10.0 1.0 10.5 1.0 10.5 1.0 1.5 1.5 1.9 1.9 2.3 2.7 2.3 2.7 2.7 2.7 3.0 2.7 2.7 2.7 3.0 4.0 4.5 4.0 4.5 4.0 4.5 4.0 6.5 6.0 6.5		000000000000000000000000000000000000000	0.004 40.001 40.003 0.003 0.003 0.004 0.004 0.004	0.000 0.000	0.006 0.006 0.0028 0.028 0.028 0.028 0.028 0.028 0.028	0.016 0.016 0.006 0.021 0.035 0.028 0.021 0.021 0.004	0.075 0.005 0.0043 0.0081 0.0081 0.0082 0.0020 0.003	6.000 6.000	0.034 0.008 0.006 0.005 0.005 0.005 0.003 0.003 0.003	0.060 0.035 0.013 0.021 0.029 0.029	0.008	20.401	1000.0
5.3 5.9 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5		000000000000000000000000000000000000000	0.003 0.003 0.007 0.003 0.004 0.004 0.004	6.000 6.000	0.006 0.002 0.028 0.029 0.023 0.023 0.002	0.016 0.006 0.025 0.028 0.028 0.021 0.004 0.001	0.018 0.043 0.081 0.084 0.086 0.072 0.020 0.003	6.001 6.0001 6.0001 6.0001 6.0001 6.0001 6.0001 6.0001	0.002 0.004 0.005 0.005 0.005 0.005 0.005 0.000 0.000	0.035 0.013 0.021 0.029 0.029	0.008	0.168	<10.0
6.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5		900000	0.003 0.003 0.003 0.005 0.004 0.004 0.004	6.000 6.000	0.002 0.015 0.028 0.029 0.023 0.009	0.006 0.035 0.035 0.021 0.021 0.004 0.004 0.001	0.005 0.043 0.081 0.084 0.058 0.072 0.020 0.003	6.001 6.001 6.001 6.001 6.001 6.001 6.001	0.002 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.013 0.021 0.029 0.029	0.004	960:0	<10.0
6.5 7.0 7.6 8.2 8.8 8.8 8.8 9.4 10.0 10.5 10.0 10.		0 0 0 0	0.003 0.007 0.005 0.004 0.004	6.000 6.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 1	0.015 0.028 0.029 0.023 0.003 0.005	0.021 0.035 0.036 0.023 0.021 0.004 0.001	0.043 0.081 0.084 0.068 0.072 0.072 0.003	0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.004 0.005 0.005 0.003 0.003 0.003	0.029	9000	0.034	×10.0
7.0 7.6 82 88 88 88 88 9.4 10.0 10.5 10.0 10.0		0.0	0.007 0.003 0.004 0.004 0.006	20.00 20.00	0.028 0.029 0.023 0.023 0.009	0.035 0.036 0.021 0.0021 0.004 0.0001	0.081 0.084 0.068 0.072 0.020 0.003	60.001 60.001 60.001 60.001 60.001	0.005 0.005 0.003 0.003 0.003	0.029	0.008	0.113	<10.0
7.6 8.2 8.8 9.4 9.4 10.0 10.0 10.5 -0.001 0.5 -0.001 0.5 1.9 1.9 1.9 2.3 2.7 2.7 2.7 3.0 2.7 3.0 4.0 4.5 4.0 4.5 4.0 4.5 5.5 6.0 6.0 6.5 6.0 6.5 6.0 6.5 6.1 7.4 7.4 7.8		9.0	0.003 0.005 0.004 0.004	20.00 20.00	0.029 0.023 0.023 0.009 0.005	0.036 0.021 0.0021 0.004 0.001	0.084 0.068 0.072 0.020 0.003	60.001 60.001 60.001 60.001	0.005 0.004 0.003 40.001 40.001	0.029	•	0.193	<10.0
8.8 8.8 9.4 10.0 10.		9.6	0.005	60.001 60.001 60.005 60.005	0.023	0.029 0.021 0.004 0.001 	0.068 0.072 0.020 0.003	0.00 0.	0.004 0.005 0.003 0.001	0.024	0.008	0.195	<10.0
8.8 9.4 10.0 10.5 10.0 10.5 1.0 1.5 1.9 1.5 1.9 1.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9		9	0.004	40.001 40.001 40.005 0.005	0.023	0.021 0.004 0.001 0.001	0.072 0.020 0.003	0.001	0.003 0.003 -0.001		0.007	0.159	<10.0
2.4 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.0		o:o	0.004	40.001 40.005 0.005	0.009	0.004 -0.001 -0.005	0.003	40.001 40.001	0.003 40.001	0.029	0.003	0.157	<10.0
0.00 10.5 0.00 10.5 0.00 10.5 1.0 1.0 1.5 1.9 1.2 2.3 2.7 2.3 2.7 3.0 2.7 3.0 2.8 4.0 3.5 4.0 3.5 5.0 6.0 6.5 6.0 6.5 6.0 6.5 6.1 7.4 7.4 7.8		9.0	9000	0.005	0.005	0.001 <0.001 0.005	0.003	<0.001	40.00	0.024	\$0.00	0.063	<10.0
20001 0.5 1.0 1.0 1.5 1.0 1.5 1.9 2.3 2.7 2.3 3.0 3.5 3.0 4.0 4.5 5.0 5.0 6.5 6.0 6.5 6.0 6.5 7.4 7.4		0.5		0.005		0.005	0.003	40.001	40.00	0.018	6.00	0.033	<10.0
0.000 0.5 10 1.0 1.5 10 1.5 1.9 1.9 1.3 10 2.7 2.3 2.7 2.3 3.0 2.7 3.0 3.5 4.0 3.5 4.0 4.0 5.5 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0				0.005	+	0.005	0.003	-0.001	60.00			2700	007
0.5 1.0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		0.5	0.007	9000	-0.00	0.005			2	<0.001	40.001	0.015	×10.0
1.5 1.9 1.5 1.9 2.3 2.7 2.3 3.0 3.5 3.0 3.5 5.0 5.5 5.0 6.0 6.5 6.0 6.5 6.0 7.4 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8		0.5	0.005	A	<0.001		0.008	0.00	3	0.004	40.001	0.046	V 0.0
1.5 1.9 1.9 2.3 2.7 2.7 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.0 6.5 6.0 7.4 7.8 7.4 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	-	0.5	0.018	0.00	9.00	0.00	0.007	0.006	40.001	0.003	\$0.00	9.0	V V V
23 2.7 2.7 30 30 3.5 3.5 4.0 4.5 4.5 5.0 5.5 5.0 6.5 6.0 6.5 6.0 7.4 7.4	+	0.4	0.00	40.001	6.0	40.001	40.001	40.001	- V- C-	9.60	9.00	300	7 000
2.3 2.7 3.0 2.7 3.5 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.5 7.0 7.4 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	_	0.4	0.005	0.00 1	<0.00 1	40.001	40.00	5.5	50.00	00.00	900	0.00	4000
2.7 3.0 3.0 3.5 3.0 4.5 4.5 5.0 5.0 5.5 6.0 6.5 7.4 7.4		0.4	0.001	9000	0.002	0.008	9.69	000	0.018	0.00	0.00	500	288
30 35 40 440 45 45 50 55 50 65 65 60 74 74	<u>i</u>	0.3	0.001	0.028	0.005	0.016	200	800	0.15	0.331	156	1 257	375.0
35 40 45 45 50 50 55 60 60 74 74 74	<u>.</u>	0.5	40.001	0.050	800	0.023	200	8 6	0.212	160	0.024	0.254	27.1
40 40 50 50 50 60 60 65 70 70 74 70	+	0.5	5.00	3 8	4 0	0.00	800	500	000	0.071	0.014	0.163	11.0
6.5 6.0 6.0 6.0 6.5 7.0 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4		0 u	900	0000	0.00	0.039	0.079	40.00	0.026	0.088	0.023	0.289	<10.0
5.5 6.0 6.0 6.5 6.5 7.0 7.0 7.4 7.4 7.8	÷	2.0	0.002	<0.001	0.024	0.034	0.069	<0.001	0.021	0.072	0.018	0.240	10.7
6.0 6.5 6.5 7.0 7.0 7.4 7.4 7.8	÷	0.2	0.004	<0.001	0.005	0.007	0.013	40.001	0.003	0.012	0.003	0.046	<10.0
6.5 7.0 7.0 7.4 7.4 7.8	-	0.5	<0.001	<0.001	0.008	0.010	0.003	<0.001	0.002	0.014	0.002	0.038	<10.0
7.0 7.4 7.8	-	0.5	-0.00	<0.001	200.0	0.00	0.009	0.00	0.003	0.012	<0.001	0.040	<10.0
7.4 7.8	:-	0.4	<0.001	-0.00 -	0.002	0.002	0.002	40.00 1	9.0	9000	100.00	0.013	0.00
		0.4	<0.001	<0.001	0.014	0.006	<0.001	<0.001	40.00	0.026	50.00	0.040	40.0
8.2	.1 2.7	0.4	<0.001	<0.001	0.002	40.001	40.001	00.00	5.5	500	00.00	0.00	
8.2 8.6		0.4	<0.00 1	<0.00 1	0.003	-0.00	600	5 6	500	9,50	888	4100	700
8.6 9.0	2.3 1.9	0.4	<0.00 1	0.001	×0.001	40.001	5.5	9.6	000	1000	8.6	0.00	210.0
9.6 0.6		9.0	\$0.00 \$0.00	40.001	0.001	40.00	9.6	899	000	800	5	0010	<10.0
9.6 10.2	1	9.0	9.00	-00.0v	0.002	9.00	9.60	3.5	8 6	410	5	0.014	<10.0
10.2 10.8	<u>-</u>	9.0	-00.00 -	0.00	\$0.00 50.00	3.5	90.00	3 6	8 6	200	500	0.017	<10.0
		9.0	<0.001	-0.00	Q.05	- V-	800	00.00	50.00	2000	8 8	0 043	<10.0
11.4 12.0	5	0.6	-90.06	50.00	-60.00 -	3.8	70.0V	3.3	3	2			
26 30	-	0.5	<0.001	0.013	0.004	0.005	0.005	0.00	0.003	0.003	0.008	0.051	198.0
Mai-93 2.3 3.0 3	0.0	3 0	5	000	<0.001	0.007	0.008	40.00	40.001	0.003	9000	0.024	206.0

0.020	1.0		0.015 0.002 0.003 0.0019 0.0019 0.0019 0.0010 0.0011 0.0011	0.003 0.004 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.008 0.008 0.008 0.008 0.009 0.008 0.009 0.008 0.009 0.009 0.009 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	\$\begin{array}{c} \cdot \text{COOM} & \cdot \t	0.5	0.5	7.3 0.5 4.0001 0.0005	7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 <th>7.5 7.0 0.5 40.001 0.005 0.005 0.015 7.5 7.6 0.5 40.001 40.001 0.0021 0.216 7.0 6.5 0.5 40.001 40.001 0.002 0.002 6.0 5.5 0.5 40.001 40.001 0.002 0.001 5.0 5.0 0.5 4.5 0.002 0.006 0.003 0.011 5.5 6.5 0.5 4.5 4.1 0.4 0.007 0.003 0.015 4.5 4.1 0.4 40.001 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.002 0.016 3.9 0.4 0.002 40.001 0.002 0.016 3.0 0.4 0.002</th>	7.5 7.0 0.5 40.001 0.005 0.005 0.015 7.5 7.6 0.5 40.001 40.001 0.0021 0.216 7.0 6.5 0.5 40.001 40.001 0.002 0.002 6.0 5.5 0.5 40.001 40.001 0.002 0.001 5.0 5.0 0.5 4.5 0.002 0.006 0.003 0.011 5.5 6.5 0.5 4.5 4.1 0.4 0.007 0.003 0.015 4.5 4.1 0.4 40.001 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.004 0.015 3.7 3.3 0.4 0.002 40.001 0.002 0.016 3.9 0.4 0.002 40.001 0.002 0.016 3.0 0.4 0.002
0.178	8 8 8 8 8 8		0.012 0.001 0.001 0.015 0.015 0.010 0.010 0.010 0.011 0.001	0.007 0.018 0.007 0.0012 0.006 0.004 0.0113 0.008 0.013 0.008 0.013 0.008 0.013 0.002 0.015 0.002 0.015 0.002 0.016 0.002 0.016 0.002 0.016 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.011 0.002 0.001	\$\begin{array}{c} \cdot \text{COD1} & \cdot \text{COD2} & \cdot \t	0.5	0.5	7.5 6.5 6.0001 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0012 0.0014 0.0014 0.0014 0.0016 0.0017 0.0011 0.0017 0.0011	7.0 6.5 6.0001 0.004 0.021 0.021 6.5 6.0 6.5 6.001 0.002 0.001 0.012 6.0 6.5 6.0 0.5 6.001 0.006 0.003 0.011 5.0 5.5 0.5 6.001 0.006 0.003 0.011 5.0 4.1 3.7 0.4 0.002 0.004 0.013 4.1 3.7 0.4 0.003 <0.001 0.004 0.019 3.7 3.3 0.4 0.002 <0.001 0.004 0.019 3.3 2.9 0.4 0.003 <0.001 0.004 0.019 3.3 2.9 0.4 0.002 <0.001 0.004 0.019 3.3 2.9 0.4 <0.002 <0.001 <0.001 <0.019 3.3 10.7 0.6 <0.001 <0.001 <0.001 <0.001 11.3 10.7 0.6 <0.001 <0.001 </td <td>5.0 7.2 6.5 6.001 0.012 0.021 0.021 6.0 6.5 6.0 0.5 <0.001</td> 0.002 0.001 0.012 6.0 6.5 6.0 0.5 <0.001	5.0 7.2 6.5 6.001 0.012 0.021 0.021 6.0 6.5 6.0 0.5 <0.001
0.241 3.830	0.003	005 011 006		6.001 6.003 6.004 6.004 6.004 6.007 6.	40.001 40	0.5	0.5	6.5 6.0 6.0 6.0 6.0 6.0 6.5 6.0	6.5 6.0 0.5 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0001 4.0002 4.0001 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001 4.0002 4.0001	6.5 6.0 6.5 6.0
0.004		011		0.005 0.004 0.004 0.008 0.002 0.002 0.003 0.001 0.003 0.001 0.003 0.001 0.003 0.001 0.003	0,0002	0.5 0,0002 0.006 0.005 0.5 0,0001 0.003 0.4 0,0001 0.003 0.4 0,0002 0.001 0.004 0.4 0,0002 0.001 0.002 0.4 0,0001 0.0002 0.6 0,0001 0.0002 0.6 0,0001 0.0002 0.6 0,0007 0.0001 0.0002 0.6 0,0007 0.0001 0.0001 0.6 0,0007 0.0001 0.0001 0.7 0,0001 0.0001 0.0001 0.8 0,0007 0.0001 0.0001 0.9 0,0007 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001 0.5 0,0001 0.0001 0.0001	0.5 0.002 0.006 0.005 0.5 <0.001 <0.003 0.4 0.003 <0.001 0.004 0.4 0.003 <0.001 0.004 0.4 0.003 <0.001 0.002 0.4 0.002 <0.001 0.002 0.5 0.003 0.003 <0.001 0.002 0.6 0.003 0.003 0.003 0.6 0.003 0.003 0.003 0.7 0.003 0.003 0.001 0.8 0.003 0.003 0.001 0.003 0.9 0.003 0.001 0.003 0.9 0.003 0.001 0.003 0.9 0.003 0.001 0.001 0.5 0.003 0.001 0.001 0.5 0.003 0.001 0.001 0.5 0.003 0.001 0.001 0.5 0.003 0.001 0.001 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003 0.5 0.003 0.001 0.003	6.0 5.5 0.5 0.002 0.006 0.005 5.5 5.0 0.5 <0.001	6.0 5.5 0.5 0.0005 0.0065 5.5 5.0 0.5 <0.001	65 60 5.5 0.5 0.005 0.006 0.005 7.0 5.5 5.0 0.5 <0.001
0.004	0.024	3		0.004 0.004 0.004 0.002 0.002 0.002 0.002 0.002 0.003	4,0001 4,0001 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0001 0,0004 0,	0.5	0.5	3.5 4.5 6.0001 0.003 4.5 4.1 0.4 0.003 0.004 4.1 3.7 0.4 0.003 0.001 0.008 3.7 3.3 0.4 0.002 0.001 0.008 3.3 2.9 0.4 0.002 0.001 0.002 3.3 2.9 0.4 0.001 0.002 11.3 10.7 0.6 0.001 0.002 11.3 10.7 0.6 0.008 0.001 0.002 11.3 10.7 0.6 0.008 0.001 0.002 10.1 0.6 0.008 0.001 0.001 0.001 10.1 0.6 0.008 0.001 0.001 0.001 10.1 0.6 0.008 0.001 0.001 0.001 11.3 10.4 0.001 0.001 0.001 0.001 11.2 1.6 0.5 0.001 0.001 0.001 1	5.5 5.0 4.5 6.0 6.0 0.0 <td>7.5 5.0 4.5 0.5 -0.001 -0.003 7.5 4.5 4.1 0.4 -0.001 -0.001 0.004 7.9 4.5 4.1 0.4 0.003 -0.001 0.004 8.7 3.7 3.3 0.4 0.002 -0.001 0.008 9.5 2.9 0.4 -0.001 -0.001 0.002 9.5 2.9 0.4 -0.001 -0.001 0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 <t< td=""></t<></td>	7.5 5.0 4.5 0.5 -0.001 -0.003 7.5 4.5 4.1 0.4 -0.001 -0.001 0.004 7.9 4.5 4.1 0.4 0.003 -0.001 0.004 8.7 3.7 3.3 0.4 0.002 -0.001 0.008 9.5 2.9 0.4 -0.001 -0.001 0.002 9.5 2.9 0.4 -0.001 -0.001 0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.002 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 <t< td=""></t<>
!	210.0	246		6.000 6.000	40.001	0.4	0.4	4.5 4.7 0.0 0.00 0.00 4.1 3.7 0.4 0.003 0.001 0.004 3.3 0.4 0.002 0.001 0.002 2.9 2.5 0.4 0.001 0.002 2.9 2.5 0.4 0.001 0.002 10.7 10.1 0.6 0.003 0.001 0.002 10.7 10.1 0.6 0.008 0.001 0.001 10.1 0.6 0.008 0.001 0.001 0.001 8.9 8.1 0.8 0.007 0.001 0.001 8.9 8.1 0.8 0.007 0.001 0.001 7.6 6.1 0.5 0.003 0.001 0.001 8.1 0.5 0.008 0.001 0.001 0.001 7.1 6.6 0.5 0.001 0.001 0.001 8.1 0.5 0.003 0.001 0.001 0.001	4.5 4.7 0.3 4.0001 0.0004 4.1 3.7 0.4 0.003 4.0001 0.0008 3.7 3.3 0.4 0.002 4.0001 0.0002 2.9 2.5 0.4 4.0001 4.0001 0.0002 10.7 10.1 0.6 4.0001 4.0001 0.0002 10.7 10.1 0.6 4.0001 4.0001 4.0001 10.7 10.1 0.6 4.0001 4.0001 4.0001 10.7 10.1 0.6 0.0008 4.0001 4.0001 8.9 8.1 0.6 4.0001 4.0001 4.0001 7.6 7.1 0.5 4.0001 4.0001 4.0001 7.1 6.6 0.5 0.0008 4.0001 4.0001 8.6 6.1 0.5 4.0001 4.0001 4.0001 8.6 6.1 0.5 4.0001 4.0001 4.0001 8.6 6.1 <	7.9 4.5 4.1 0.4 0.001 0.004 8.3 4.1 3.7 0.4 0.003 0.001 0.004 8.7 3.7 0.4 0.002 0.001 0.002 9.1 3.3 2.9 0.4 0.002 0.001 0.002 9.5 2.9 2.5 0.4 0.001 0.002 0.001 0.002 2.2 10.7 10.1 0.6 0.001 0.005 0.001 0.002 2.2 10.7 10.1 0.6 0.001 0.005 0.001 0.001 2.2 10.7 0.6 0.001 0.006 0.001 0.001 2.2 10.7 0.6 0.001 0.001 0.001 0.001 2.2 10.7 0.6 0.001 0.001 0.001 0.001 3.8 10.1 0.6 0.001 0.002 0.001 0.001 4.2 8.9 8.1 0.8 0.007<
40.00 10.00	0.023	913		0.008 0.002 0.002 0.002 0.001 0.001 0.001 0.001	0,000 0,0002 0,0001	0.4 0.003 < 0.001 0.008 0.4 0.002 < 0.001 0.002 0.4 0.002 < 0.001 0.002 0.4 0.001 < 0.001 0.002 0.6 0.008 < 0.001 0.002 0.6 0.008 < 0.001 < 0.001 0.6 0.007 < 0.001 < 0.001 0.5 0.008 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.001 0.5 0.000 < 0.001 < 0.0001	0.4 0.003 < 0.001 0.008 0.4 0.002 < 0.001 0.002 0.4 0.001 < 0.001 0.002 0.6 0.001 < 0.001 0.002 0.6 0.001 0.005 < 0.001 0.6 0.007 < 0.001 < 0.001 0.8 0.007 < 0.001 < 0.001 0.5 0.008 < 0.001 < 0.001 0.5 0.001 < 0.001 < 0.001 0.5 0.006 < 0.001 < 0.001 0.6 0.001 < 0.001 < 0.001 0.7 0.001 < 0.001 < 0.001 0.8 0.001 < 0.001 < 0.001 0.9 0.001 0.9 0.001 < 0.001 0.9	4.1 3.7 0.4 0.003 <.0.001 0.008 3.7 3.3 0.4 0.002 <0.001	41 37 0.4 0.0002 <0.0001 0.0008 3.7 3.3 0.4 0.0002 <0.001	8.3 4.1 3.7 0.4 0.003 <0.001 0.008 8.7 3.7 3.3 0.4 0.002 <0.001
<0.001	0.038	019		0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001	0.002	0.4 0.002	0.4 0.002 < 0.001 0.062 0.4 0.001	3.7 3.3 0.4 0.002 <0.001	3.7 3.3 0.4 0.002 <0.001	8.7 3.7 3.3 0.4 0.002 <0.001 0.062 9.1 3.3 2.9 0.4 <0.001
<0.001	0.030	015		0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001	40.001	0.4 <0.001 <0.0001 0.002 0.002 0.002 0.002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0	0.4 <0.001 <0.002 0.6 <0.001 <0.005 <0.001 0.6 <0.001 <0.005 <0.001 0.6 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.6 <0.001 <0.001 <0.001 0.7 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 0.9 <0.001 <0.001 0.9 <0.001 <0.001 0.9 <0.001 0.9	2.9 0.4 <0.001 <0.002 0.25 0.4 <0.001 <0.001 0.002 10.7 0.6 <0.001 <0.005 <0.001 10.1 0.6 <0.001 <0.001 <0.001 8.9 0.6 <0.001 <0.001 <0.001 8.1 0.8 0.007 <0.001 <0.001 7.1 0.5 <0.001 <0.001 <0.001 6.1 0.5 <0.001 <0.001 <0.001 6.001 <0.001 <0.001 6.001 <0.001 <0.001 6.001 <0.001 <0.001 6.001 <0.001 <0.001 6.001 <0.001 <0.001 6.0001 <0.0001 6.0001 <0.0001 6.0001 6.0001 <0.0001 6	3.3 2.9 0.4 <0.001	9.1 3.3 2.9 0.4 <0.001
0.00	0.017	010	1 1	6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000	0.006	0.6	0.6	10.7 0.6 -0.001 -0.005 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001	11.3 10.7 0.6 0.0001 0.005 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001	1.6 11.3 10.7 0.6 -0.001 -0.005 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.005 -0.001 2.2 10.7 10.1 0.6 -0.001 -0.001 -0.001 3.4 9.5 0.6 -0.001 -0.001 -0.001 4.7 8.1 0.6 0.005 -0.001 -0.001 5.2 7.6 7.1 0.5 0.008 -0.001 -0.001 5.2 7.6 7.1 0.5 0.008 -0.001 -0.001 5.7 7.1 0.6 0.0 0.001 -0.001 -0.001 6.7 6.6 6.1 0.5 -0.001 -0.001 -0.001 6.7 6.1 5.6 0.5 -0.001 -0.001 -0.001 7.2 5.6 5.1 0.5 0.006 -0.001 -0.001 7.6 5.1 4.7 0.4 -0.001 -0.001 -0.001<
20.00	0.016	<u>:</u>	: 1	6.001 6.001 6.001 6.001 6.001 6.001 6.001	0.006	0.6	0.6	10.7 0.6 -0.001 0.005 -0.001 0.005 0.001 0.005 0.001 0.005 0.001	11.3 10.7 0.6 -0.001 0.005 -0.001 0.005 0.001 0.001 0.005 0.001	16 11.3 10.7 0.6 <0.001 0.005 <0.001 2.2 10.7 10.1 0.6 0.008 <0.001
0.004 <0.001	0.004	5		6.001 6.001 6.001 6.001 6.001 6.001	0.008	0.6 0.008	0.6 0.008	10.1 0.6 0.008 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	10.7 10.1 0.6 0.008 <0.001 <0.001 10.1 9.5 0.6 <0.001	22 10.7 10.1 0.6 0.008 <0.001 <0.001 2.8 10.1 9.5 0.6 <0.001
1 <0.001 <0.001	<0.00	8		40.001 40.001 40.001 40.001 40.001	0.000 0.005 0.005 0.000	0.6	0.6	9.5 0.6 <0.001 <0.001 <0.001 8.9 0.6 0.005 <0.001 <0.001 7.1 0.5 0.007 <0.001 <0.001 6.6 0.5 <0.001 <0.001 <0.001 6.1 0.5 <0.001 <0.001 <0.001 5.1 0.4 <0.001 <0.001 <0.005 6.001 <0.001 <0.001 6.001 <0.001 <0.005 6.001 <0.001 <0.005 6.001 <0.001 <0.005 6.001 <0.001 <0.005 6.001 <0.001 <0.005 6.001 <0.001 6.001 <0.001 <0.005 6.001 <0.001 6.001 <0.001 6.001 6.001 <0.001 6.001	10.1 9.5 0.6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	2.8 10.1 9.5 0.6 <0.001 <0.001 <0.001 4.2 8.9 8.1 0.6 0.005 <0.001
1 <0.001 <0.001	<0.00	8	_	0.001 0.001 0.000 0.000	0.005	0.6 0.005 <0.001 <0.001 0.8 0.007 <0.001 <0.001 0.5 0.008 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 0.006 <0.001 <0.005 0.5 0.001 <0.005 0.5 0.005 0.5	0.6 0.005 <0.001 <0.001 0.8 0.007 <0.001 <0.001 0.5 0.008 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 0.001 <0.001 <0.001 0.5 0.001 <0.001 <0.006 0.4 <0.001 <0.001 0.008	8.9 0.6 0.005 <0.001 <0.001 7.6 0.5 0.000 <0.001 <0.001 7.1 0.5 0.001 <0.001 <0.001 6.6 0.5 <0.001 <0.001 <0.001 6.1 0.5 0.001 <0.001 <0.001 5.6 0.5 <0.001 <0.001 <0.001 5.7 0.00 <0.001 <0.001 6.8 0.5 0.001 <0.001 <0.001 6.9 0.001 <0.001 <0.001 6.001 <0.001 6.001	9.5 8.9 0.6 0.005 <0.001 <0.001 8.9 8.1 0.8 0.007 <0.001	3.4 9.5 8.9 0.6 0.005 <0.001 <0.001 4.2 8.9 8.1 0.8 0.007 <0.001
<0.001	<0.001	100	- !	60.001 100.00 100.00	0.007	0.8 0.007 <0.001 <0.001 0.5 0.008 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 0.006 <0.001 <0.001 0.6 0.006 <0.001 <0.001 0.7 0.006 <0.001 <0.001 0.8 0.006 <0.001 <0.001 0.9 0.006 <0.001 <0.0001 0.9 0.006 <0.001 <0.0001 0.9 0.006 <0.001 0.9 0.006 <0.001 0.9 0.006 <0.001 0.9 0.006 0.9 0.006 0.0 0.006 0.0 0.006	0.8 0.007 <0.001 <0.001 0.5 0.008 <0.001 <0.001 0.5 <0.001 <0.001 0.5 <0.001 <0.001 0.5 <0.001 <0.001 0.5 <0.001 <0.001 0.5 <0.001 <0.001 0.5 <0.001 0.5	10.8 0.007 0.001	8.9 8.1 0.8 0.007 <-0.001 <-0.001 8.1 7.6 0.5 0.008 <-0.001 <-0.001 7.1 0.5 <-0.001 <-0.001 <-0.001 6.6 6.1 0.5 <-0.001 <-0.001 <-0.001 6.6 6.1 0.5 <-0.001 <-0.001 <-0.001 5.6 5.1 0.5 0.006 <-0.001 <-0.001 7.7 4.3 0.4 <-0.001 <-0.001 7.7 0.001 <-0.001 7.7 0.001 <-0.001 7.7 0.001 <-0.001 7.7 0.001 <-0.001 7.7 0.001 7.7 0.001 7.	42 89 81 0.8 0.007 <0.001 <0.001 4.7 8.1 7.6 0.5 0.008 <0.001
<0.001	<0.001 100.001	100	:	60.001 0.001	6,008 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001 < 6,001	0.5 0.008 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.6 <0.001 <0.001 <0.001 0.7 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 <0.001 0.9 <0.001 <0.000 0.9 <0.001 0.9 <0.001 0.9	0.5	7.6 0.5 0.008 <0.001 <0.001 6.6 0.5 <0.001 <0.001 <0.001 6.1 0.5 <0.001 <0.001 <0.001 5.6 0.5 <0.001 <0.001 <0.001 5.1 0.5 0.006 <0.001 <0.001 4.7 0.4 <0.001 <0.001 <0.006 6.001 <0.001 6.001 <0.001 <0.006 6.001 <0.001 6.001 <0.001 6.001 6.001 <0.001 6.001	8.1 7.6 0.5 0.008 <0.001 <0.001 7.6 7.1 0.5 <0.001	47 8.1 7.6 0.5 0.008 <0.001 <0.001 5.2 7.6 7.1 0.5 <0.001
<0.001	<0.00 1	8	_	<0.001 40.001	40,001 40,001 40,001 40,001 40,001 40,001 40,001 40,001 40,001 40,001 40,001	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.6 <0.001 <0.001 <0.001 0.7 <0.001 <0.001 <0.001 0.8 <0.001 <0.001 <0.001 0.9 <0.001 <0.001 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.006 <0.001 0.007 0.00	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.4 <0.001 <0.001 0.006 0.4 <0.001 <0.001 0.012	7.1 0.5 < 0.001 < 0.001 < 0.001 6.6 0.5 < 0.001	7.6 7.1 0.5 <0.001 <0.001 7.1 6.6 0.5 <0.001	5.2 7.6 7.1 0.5 <0.001 <0.001 <0.001 6.7 6.6 0.5 <0.001
1 <0.001 0.008	<0.001	.8	 	<0.001	6,0001	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.4 <0.001 <0.001 <0.006	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.4 <0.001 <0.001 <0.006 0.4 <0.001 <0.001 0.012	6.6 0.5 < 0.001 < 0.001 < 0.001 6.1 0.5 < 0.001 < 0.001 < 0.001 5.6 0.5 < 0.001 < 0.001 < 0.001 4.7 0.4 < 0.001 < 0.001 0.005 4.3 0.4 < 0.001 < 0.001 0.012	7.1 6.6 0.5 <0.001 <0.001 <0.001 6.6 6.1 0.5 0.001 <0.001	5.7 7.1 6.6 0.5 <0.001 <0.001 <0.001 6.2 6.6 6.1 0.5 <0.001
<0.001	٥.00 م	.001			(-0.001	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.4 <0.001 <0.001 <0.006 0.006 <0.001 <0.006	0.5 <0.001 <0.001 <0.001 0.5 <0.001 <0.001 <0.001 0.5 <0.006 <0.001 <0.001 0.4 <0.001 <0.001 0.012	6.1 0.5 < 0.001 < 0.001 < 0.001 5.6 0.5 < 0.001 < 0.001 < 0.001 6.1 0.5 0.006 < 0.001 < 0.001 4.3 0.4 < 0.001 < 0.001 0.012	6.6 6.1 0.5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0	62 66 6.1 0.5 <0.001 <0.001 <0.001 6.7 6.1 5.6 0.5 <0.001
	<0.001	.001		-0.00	0.006 <0.001 <0.001	0.5 <0.001 <0.001 <0.001 0.5 0.006 <0.001 <0.001 0.4 <0.001 <0.001 0.006	0.5 <0.001 <0.001 <0.001 0.5 0.006 <0.001 <0.001 0.4 <0.001 <0.001 0.012	5.6 0.5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	6.1 5.6 0.5 <0.001 <0.001 5.6 5.1 0.5 0.006 <0.001 <0.001 5.1 4.7 0.4 <0.001 <0.001 <0.005 4.7 4.3 0.4 <0.001 <0.001 <0.012 7 4.0 0.2 <0.001 <0.001 <0.012	6.7 6.1 5.6 0.5 <0.001 <0.001 <0.001 7.2 5.6 5.1 0.5 0.006 <0.001
<0.001	0.002	1001	+	-0.00 -0.001	0.006 <0.001	0.4 < 0.001 < 0.001 0.006	0.000 < 0.001 < 0.001 0.012 0.001 0.012 0.001 0.012 0.	2.1 0.5 0.000 <0.001 0.006 4.3 0.4 <0.001 0.006 4.3 0.4 <0.001 0.012	5.6 5.1 0.5 0.006 <0.001 <0.001 5.1 4.7 0.4 <0.001 <0.001 4.7 4.3 0.4 <0.001 <0.001 6.001 0.012 6.001 0.012	7.6 5.1 6.5 0.006 7.6 5.1 6.1 6.3 6.0001 7.6 5.1 6.1 6.1 6.0001 7.0 6.0001

	5	BZ	헏	ETBZ	PXYL	MXYL	OXAL	MESIT			BTEXTMB: TPH (as JP-4	PH (as JP-4)
2 Mar-93 8.4 8.8 3.9 3.5 3.1 1 Mar-93 8.8 9.2 3.5 3.1 9 Mar-93 10.0 10.4 2.7 2.7 9 Mar-93 10.0 10.4 2.3 1.9 7 Mar-93 10.4 10.8 1.1 1.5 8 Mar-93 10.4 10.8 1.5 1.1 8 Mar-93 10.4 10.9 10.4 9.9 9 Mar-93 2.5 3.0 10.9 10.4 9 3.0 3.5 10.4 9.9 9.0 9 4.6 4.6 9.0 8.6 9.0 9 4.6 4.6 9.0 8.6 9.0 9 4.6 4.6 9.0 8.6 9.0 9 4.6 5.5 8.6 6.0 6.0 6.0 9 Mar-93 5.0 6.5 <td< th=""><th>ISC) (If MSC) (If)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th><th>TMB (mg/kg)</th><th>(mg/kg)</th><th>(mg/kg)</th></td<>	ISC) (If MSC) (If)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	TMB (mg/kg)	(mg/kg)	(mg/kg)
Mar-93 8.8 9.2 3.5 3.1 Mar-93 9.2 9.6 3.1 2.7 Mar-93 10.4 10.0 1.5 1.1 Mar-93 10.4 10.8 1.9 1.5 Mar-93 10.4 10.9 10.4 10.9 Mar-93 10.9 11.2 1.5 1.1 Mar-93 2.0 2.5 10.4 9.9 Mar-93 3.0 3.5 10.9 10.4 Mar-93 3.0 3.5 10.0 9.9 Mar-93 3.0 3.5 10.0 9.0 Mar-93 5.0 5.0 7.4 6.0 6.0 Mar-93 5.0 5.0 7.4 6.0 5.0 Mar-93 5.0 5.0 7.5 7.0 7.4 6.0 Mar-93 5.0 5.0 7.0 7.4 6.0 5.0 Mar-93 5.0 5.0 5.0 5.0	3.5	L	0.002	0.041	0.116	<0.001	<0.001	<0.001	0.133	40.001	0.308	×10.0
Mar-93 9.2 9.6 3.1 2.7 Mar-93 9.6 10.0 2.7 2.3 Mar-93 10.0 10.4 2.3 1.5 Mar-93 10.8 11.2 1.5 1.1 Mar-93 10.8 11.2 1.5 1.1 Mar-93 2.0 2.5 11.4 10.9 Mar-93 2.0 2.5 11.4 10.9 Mar-93 3.5 4.0 9.9 9.4 Mar-93 4.0 4.4 9.0 9.0 9.0 Mar-93 4.0 4.4 9.0 9.0 9.0 9.0 Mar-93 5.5 6.0 6.5 7.4 6.9 6.0<	3.1	0.011	0.002	0.021	0.048	0.007	0.003	<0.00 4	0.134	<0.001	0.227	<10.0
Mar-93 9.6 10.0 2.7 2.3 Mar-93 10.0 10.4 2.3 1.5 Mar-93 10.0 10.4 2.3 1.5 Mar-93 10.9 11.2 1.1 1.1 Mar-93 2.0 2.5 11.4 10.9 10.4 Mar-93 2.0 2.5 11.4 10.9 10.4 9.9 9.4 Mar-93 2.5 3.0 10.4 9.9 9.4 9.0 9.9 9.4 Mar-93 4.0 4.4 4.8 9.0 8.6 8.2 8.6 8.2 8.6 8.2 8.6 8.2 8.6 8.2 8.6 8.2 8.6 8.7 8.7<	2.7	9000	-0.00	0.004	0.003	<0.001	<0.001	-0.00 1	0.094	40.00	0.107	<10.0
Mar-93 100 104 2.3 1.9 Mar-93 104 108 1.9 1.5 Mar-93 10.4 10.8 1.9 1.5 Mar-93 2.0 2.5 11.4 10.9 Mar-93 3.0 4.4 9.4 9.0 Mar-93 3.5 4.0 9.4 9.0 Mar-93 3.5 4.0 9.9 9.4 Mar-93 4.4 4.8 9.0 8.6 Mar-93 5.2 5.5 8.6 8.2 7.9 Mar-93 5.0 6.5 7.4 6.9 8.4 Mar-93 5.5 6.0 6.5 7.9 8.6 Mar-93 5.0 6.5 7.4 6.9 8.5 8.0 Mar-93 5.0 6.5 7.0 6.5 7.0 8.5 Mar-93 5.0 6.5 7.0 6.5 7.0 8.5 Mar-93 6.0 6.5 <td>2.3</td> <td>0.004</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td>c0.001</td> <td><0.001</td> <td>c0.001</td> <td>0.077</td> <td>40.001</td> <td>0.080</td> <td><10.0</td>	2.3	0.004	<0.001	<0.001	<0.001	c0.001	<0.001	c0.001	0.077	40.001	0.080	<10.0
Mar-93 104 108 1.9 1.5 Mar-93 108 112 1.5 1.1 Mar-93 108 112 1.5 1.1 Mar-93 2.5 3.0 10.9 10.4 9.9 Mar-93 3.0 3.5 10.4 9.9 9.0 Mar-93 4.0 4.4 4.8 9.0 8.6 Mar-93 4.0 4.4 9.0 8.6 Mar-93 5.5 5.5 8.2 7.9 Mar-93 5.5 6.0 6.5 7.4 Mar-93 5.5 6.0 6.5 7.4 Mar-93 7.0 6.5 6.0 6.5 Mar-93 3.0 3.5 4.0 9.0 8.5 Mar-93 3.0 3.5 1.0 9.0 8.5 Mar-93 3.0 3.5 4.0 9.0 9.0 Mar-93 5.0 5.0 5.0 6.0 6.5	1.9	0.004	<0.001	0.001	40.001	-0.00	.0.00 1	<0.001	0.085	40.001	0.000	<10.0
Mar-93 10.8 11.2 1.5 1.1 10.9 Mar-93 2.0 2.5 11.4 10.9 10.4 Mar-93 3.0 3.5 10.4 9.4 9.0 Mar-93 3.0 3.5 10.4 9.9 9.4 Mar-93 5.2 5.5 8.2 7.9 7.4 6.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 3.0 3.5 10.0 9.5 Mar-93 3.0 3.5 10.0 9.5 Mar-93 5.5 6.0 7.5 7.0 Mar-93 3.0 3.5 10.0 9.5 Mar-93 5.5 6.0 7.5 7.0 Mar-93 5.5 6.0 7.5 7.0 Mar-93 7.8 8.2 5.5 8.0 7.5 7.0 Mar-93 5.5 6.0 7.5 7.0 6.5 Mar-93 7.8 8.3 5.7 7.0 6.5 6.0 7.5 7.0 Mar-93 7.8 8.3 5.7 7.0 6.5 6.0 7.5 7.0 Mar-93 3.0 3.5 10.0 3.2 3.0 Mar-93 3.0 3.5 10.0 3.2 3.0 Mar-93 3.5 6.5 6.5 7.0 6.5 6.5 7.0 Mar-93 3.5 4.0 3.5 7.5 7.0 Mar-93 3.5 4.0 3.5 7.5 7.0 Mar-93 3.5 4.0 3.5 7.5 7.0 Mar-93 3.5 6.0 6.5 6.5 6.5 6.0 7.5 7.0 Mar-93 3.5 6.0 8.5 7.5 7.0 Mar-93 3.5 6.0 8.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 7.0 6.5 Mar-93 6.0 6.5 6.5 6.5 7.5 7.5 7.0 7.0 6.5 7.0 8.0 7.5 7.5 7.0 7.0 6.5 7.0 8.0 7.5 7.5 7.0 7.0 6.5 7.0 8.0 7.5 7.0 7.0 6.5 7.0 8.0 7.0 6.5 7	1.5	<u>i</u>	40.00	0.002	0.007	<0.001	<0.001	40.00	0.042	-0.00	0.053	<10.0
Mar-93 2.0 2.5 11.4 10.9 Mar-93 3.5 10.4 9.9 9.4 Mar-93 3.5 4.0 4.4 9.4 9.0 Mar-93 5.0 6.0 7.9 7.4 Mar-93 5.0 6.0 7.9 7.4 Mar-93 5.0 6.0 7.9 7.4 Mar-93 7.0 7.4 6.0 6.0 Mar-93 7.0 7.4 6.0 6.0 Mar-93 7.0 7.4 6.0 6.0 Mar-93 3.0 3.5 6.0 7.5 Mar-93 5.0 5.0 8.5 6.1 Mar-93 5.0 5.5 8.0 7.5 Mar-93 5.0 5.5 7.7 7.7 <td>:</td> <td>-0.09 1</td> <td>0.002</td> <td>0.002</td> <td>0.016</td> <td><0.001</td> <td>c0.001</td> <td>40.001</td> <td>0.015</td> <td>49.00</td> <td>0.036</td> <td><10.0</td>	:	-0.09 1	0.002	0.002	0.016	<0.001	c0.001	40.001	0.015	49.00	0.036	<10.0
Mar-93 2.5 3.0 10.4 10.4 Mar-93 3.5 10.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.0 Mar-93 3.5 10.4 9.4 9.0 9.9 Mar-93 3.5 10.4 9.4 9.0 9.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 5.5 6.0 7.9 7.4 6.0 Mar-93 7.4 7.8 6.0 5.6 7.0 Mar-93 3.0 3.5 10.0 9.5 Mar-93 5.5 6.0 7.5 7.0 Mar-93 8.8 8.3 8.2 8.5 6.1 Mar-93 8.8 8.3 8.2 8.5 8.0 Mar-93 8.5 6.0 6.5 7.0 Mar-93 8.8 8.3 8.2 8.5 8.0 Mar-93 8.8 8.3 8.5 8.5 8.0 Mar-93 8.8 8.0 8.5 7.5 7.0 Mar-93 8.5 6.0 8.5 7.5 7.0 Mar-93 8.5 6.0 8.5 7.5 7.0 Mar-93 8.0 6.5 6.0 8.5 7.5 7.5 7.0 Mar-93 8.0 6.0 6.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.0 6.5 5.5 7.5 7.0 Mar-93 6.0 6.5 6.0 6.5 7.5 7.5 7.0 Mar-93 6.0 6.0 6.5 7.5 7.5 7.0 Mar-93 6.0 6.0 6.5 7.5 7.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	007	000	8000	3000	8000	0.017	6000	×0.001	0.00	40.00	0.075	<10.0
Mar-93 3.5 3.0 10.4 9.9 Nar-93 3.5 4.0 9.9 Mar-93 3.5 4.0 9.9 9.4 9.0 Mar-93 4.4 4.8 9.0 9.9 9.4 9.0 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 7.4 7.8 6.0 6.5 7.4 6.9 6.0 Mar-93 7.4 7.8 6.0 6.5 7.0 Mar-93 7.8 6.0 7.5 7.0 6.5 7.0 Mar-93 5.5 6.0 7.5 7.0 6.5 7.0 Mar-93 7.8 8.3 9.3 7.3 7.8 8.3 9.3 7.3 7.8 8.3 9.3 7.3 7.8 8.3 9.3 7.3 7.8 8.3 9.5 7.0 6.5 6.0 Mar-93 7.8 8.3 9.3 7.3 7.8 8.3 9.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 6.0 8.5 7.5 7.0 Mar-93 3.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 6.5 6.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 8.0 7.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 5.5 7.5 7.0 Mar-93 6.0 6.5 6.5 5.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.5 5.5 7.5 7.0 7.0 6.5 7.0 Mar-93 6.0 6.5 6.5 6.5 5.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	50.5	Ļ	2000	3	200	1000	\$0.00	\$0.00	<0.001	<0.001	<0.001 1	<10.0
Mar-93 3.5 4.0 9.9 9.4 Mar-93 3.5 4.0 9.9 9.4 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 7.8 8.2 5.5 8.0 7.9 Mar-93 3.5 6.0 6.5 7.0 6.9 6.5 Mar-93 3.5 6.0 6.5 7.0 6.9 6.5 Mar-93 3.5 6.0 6.5 7.0 6.5 8.0 Mar-93 3.5 6.0 6.5 7.0 6.5 8.0 Mar-93 5.5 6.0 7.5 7.0 6.5 8.0 Mar-93 6.0 6.5 7.0 6.5 6.1 Mar-93 6.0 6.5 7.0 6.5 6.1 Mar-93 6.0 6.5 7.0 6.5 6.1 Mar-93 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.	*:01		8 6	3 6	500	0000	0000	\$0.00 1	9.00	40.001	<0.001	<10.0
Mar-93 4.0 4.4 9.4 9.4 9.4 9.4 9.4 Mar-93 4.0 4.4 9.4 9.0 Mar-93 6.0 6.5 7.4 6.9 Mar-93 6.0 6.5 7.4 6.9 Mar-93 6.0 6.5 7.4 6.0 Mar-93 6.0 6.5 7.0 6.9 6.5 7.0 Mar-93 6.0 6.5 7.0 6.5 8.0 7.5 Mar-93 8.3 8.8 4.7 4.2 3.7 Mar-93 8.3 8.8 8.5 8.5 8.5 8.0 7.5 Mar-93 8.3 8.8 8.3 7.5 7.0 Mar-93 8.3 8.8 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	0.0	<u> </u>	899	500	000	00.00	0000	<0.001	<0.001	<0.001	<0.001	<10.0
Mar-93 4.4 4.8 9.0 8.6 Mar-93 4.4 4.8 9.0 8.6 Mar-93 5.5 5.5 8.2 7.9 7.4 Mar-93 6.0 6.5 7.4 6.9 Mar-93 5.5 6.0 7.4 6.9 6.4 6.0 Mar-93 7.4 8.2 5.6 6.0 7.4 6.9 Mar-93 7.4 8.2 5.6 6.0 6.5 7.4 6.9 Mar-93 8.2 8.6 5.2 4.8 Mar-93 8.5 6.9 9.5 8.0 7.5 7.0 Mar-93 8.5 6.9 6.5 6.1 8.7 8.3 8.0 8.5 8.0 7.5 7.0 Mar-93 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.	+ 0	8 6	00.00	00.00	0.00	40.00	<0.001	<0.001	<0.001	<0.001	40.001	<10.0
Mar-93 4.8 5.2 8.6 8.2 7.9 Mar-93 5.5 6.0 7.9 7.4 6.9 Mar-93 7.0 7.4 6.4 6.0 5.6 Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 3.0 3.5 10.0 9.5 9.0 Mar-93 5.5 6.0 7.5 7.0 6.5 Mar-93 6.5 6.0 7.5 7.0 6.5 Mar-93 7.3 7.8 8.3 5.7 7.0 6.5 Mar-93 7.3 7.8 8.3 5.7 7.0 6.5 Mar-93 7.3 7.8 8.3 5.7 7.0 6.5 Mar-93 9.8 10.0 3.2 3.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 8.5 8.5 8.5 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.5 7.0 Mar-93 5.5 6.0 7.0 5.9 5.5 Mar-93 6.5 6.5 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.3 5.9 5.5 Mar-93 6.0 6.5 6.5 5.5 7.5 7.0 7.0 5.9 5.5 7.5 7.0 Mar-93 6.0 6.5 6.3 5.9 5.5 7.5 7.0 Mar-93 6.0 6.5 6.3 5.9 5.5 7.5 7.0 7.0 5.9 5.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	2 4	500	900	0.00	90.00	<0.001	0.021	0.037	40.001	0.035	0.093	80.1
Mar-93 5.2 5.5 8.2 7.9 Mar-93 6.5 6.0 7.9 7.4 Mar-93 6.5 6.0 7.9 7.4 Mar-93 7.4 6.4 Mar-93 7.4 7.8 6.0 Mar-93 7.4 7.8 6.0 Mar-93 3.0 3.5 10.0 9.5 Mar-93 3.0 3.5 10.0 9.5 Mar-93 5.0 5.5 8.0 7.5 Mar-93 5.0 6.5 7.0 6.5 Mar-93 7.3 7.8 8.3 5.7 8.0 Mar-93 7.8 8.3 5.7 8.0 Mar-93 8.8 8.8 4.7 4.2 Mar-93 8.8 8.9 8.7 8.0 Mar-93 7.8 8.3 5.7 8.0 Mar-93 8.8 8.9 8.7 8.7 Mar-93 8.8 8.9 8.0 Mar-93 8.8 8.9 8.0 Mar-93 8.8 8.9 8.7 Mar-93 8.8 8.9 8.9 Mar-93 8.8 8.9	82	0.00	0.020	0.001	0.081	0.038	2.620	4.370	0.047	3.100	10.277	2640.0
Mar-93 5.5 6.0 7.9 7.4 6.9 6.4 6.0 7.4 6.9 6.4 6.0 7.4 6.0 6.0 7.4 6.0 6.0 7.4 6.0 6.0 7.4 6.0 6.0 6.0 6.0 7.4 6.0<	10.2	000	0.250	2.846	5.390	11.819	10.560	6.755	10.423	5.365	53.410	2610.0
Mar-93 6.0 6.5 7.4 6.9 Mar-93 6.0 6.5 7.4 6.9 6.4 Mar-93 7.0 7.4 6.4 6.0 Mar-93 7.0 7.4 6.4 6.0 Mar-93 7.0 7.4 6.4 6.0 Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 8.2 8.6 5.2 4.8 8.0 Mar-93 8.5 6.9 6.5 7.0 8.5 Mar-93 8.3 6.9 6.5 7.0 6.5 Mar-93 8.3 8.8 4.7 4.2 3.7 Mar-93 8.3 6.0 8.5 7.5 7.0 Mar-93 8.5 6.0 8.5 7.5 7.0 Mar-93 8.5 6.0 8.5 7.5 7.0 Mar-93 8.5 6.0 7.5 7.5 7.0 Mar-93 8.5 6.0 7.0 8.5 7.5 7.5 Mar-93 8.0 6.5 6.5 7.5 7.5 7.0 Mar-93 8.0 6.5 6.5 6.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.0 5.5 5.5	7.4	0.003	0.481	5.690	10.700	23.600	18.500	9.140	20.800	7.630	96.544	2570.0
Mar-93 6.5 7.0 6.9 6.4 6.0 Mar-93 7.0 7.4 6.4 6.0 5.6 Mar-93 7.7 7.8 6.9 6.4 6.0 5.6 Mar-93 7.8 8.2 5.2 4.8 Mar-93 3.5 5.0 5.5 8.0 7.5 7.0 Mar-93 5.0 5.5 8.0 7.5 7.0 Mar-93 6.9 7.3 6.1 5.7 Mar-93 6.9 7.3 6.1 5.7 Mar-93 7.3 7.8 5.7 7.8 5.7 7.8 6.1 Mar-93 7.3 7.8 5.7 7.8 6.1 Mar-93 7.3 7.8 5.7 7.5 7.0 Mar-93 5.5 6.0 7.5 6.5 6.3 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 6.5 6.3 Mar-93 6.0 6.5 6.3 5.9 5.5 5.0 5.0 5.9 5.5 5.0 5.0 5.9 5.5 5.0 5.0 5.9 5.5 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.8	500	0.028	0.135	0.198	0.487	0.363	0.049	0.188	0.061	1.509	10.6
Mar-93 7.0 7.4 6.4 6.0 5.6 Mar-93 7.0 7.4 6.4 6.0 5.6 Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 3.0 3.5 10.0 9.5 9.0 Mar-93 3.0 3.5 10.0 9.5 9.0 Mar-93 5.0 5.5 8.0 7.5 7.0 Mar-93 5.5 6.0 7.5 7.0 6.5 Mar-93 6.9 6.5 6.1 Mar-93 7.3 7.8 8.3 5.7 5.7 8.0 Mar-93 8.8 9.3 4.7 4.2 3.7 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 3.5 4.0 9.0 8.5 Mar-93 3.5 4.0 9.0 8.5 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 6.5 Mar-93 5.5 6.0 6.5 6.5 6.5 Mar-93 5.5 6.0 6.5 6.5 6.5 6.5 Mar-93 5.5 6.0 5.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.5 6.5 5.5 6.0 5.5 5.5 Mar-93 6.5 6.5 5.5 5.5 5.5 Mar-93 6.5 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	48	0000	0.020	0.139	0.215	0.537	0.372	090.0	0.229	0.071	1.643	14.2
Mar-93 7.4 7.8 6.0 5.6 Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 3.5 4.0 9.5 9.0 Mar-93 3.5 4.0 9.5 9.0 Mar-93 5.6 6.5 7.0 6.5 Mar-93 6.0 6.5 7.0 6.5 Mar-93 6.0 6.5 7.0 6.5 Mar-93 6.0 6.5 7.0 6.5 Mar-93 7.8 8.3 5.2 4.7 4.2 Mar-93 8.3 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 5.5 6.0 8.0 7.5 7.0 Mar-93 6.0 6.5 6.5 6.3 5.9 Mar-93 6.0 6.5 6.0 5.9 5.5 Mar-93 6.0 6.5 6.0 5.0 5.5 5.5 Mar-93 6.0 6.5 6.0 5.9 5.5 5.5 Mar-93 6.0 6.5 6.0 5.5 5.5 Mar-93 6.0 6.5 6.0 5.9 5.5 5.5 5.5 5.0 5.0 5.0 5.0 5.9 5.5 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.5	5 6	500	0.025	0.129	0.209	0.517	0.357	0.053	0.254	0.059	1.602	16.9
Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 7.8 8.2 5.6 5.2 4.8 Mar-93 3.0 3.5 10.0 9.5 9.0 Mar-93 6.0 6.5 7.0 6.5 Mar-93 8.3 8.8 4.7 4.2 3.7 Mar-93 8.3 9.8 9.3 4.2 3.7 Mar-93 8.0 6.0 6.5 7.5 7.0 Mar-93 3.0 4.5 5.0 8.5 7.5 7.0 Mar-93 3.0 3.5 4.0 9.0 8.5 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.0 5.9 5.5 Mar-93 6.0 6.5 6.3 5.9 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 5.5 5.5 Mar-93 6.0 6.5 5.9 5.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 5.5 5.5 Mar-93 6.0 6.5 6.3 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	2 4	500	0.035	0.127	0.183	0.480	0.348	0.032	0.147	0.040	1.392	10.9
Mar-93 8.2 8.6 5.2 4.8 Mar-93 3.5 10.0 9.5 9.0 Mar-93 3.5 4.0 9.5 9.0 8.5 Mar-93 5.0 5.5 8.0 7.5 7.0 Mar-93 5.0 6.5 6.0 6.5 Mar-93 7.3 7.8 8.3 8.4 7 5.7 8.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 6.0 8.5 7.5 7.0 Mar-93 3.5 6.0 8.5 7.5 7.5 7.0 Mar-93 3.5 6.0 8.5 7.5 7.5 7.0 Mar-93 5.5 6.0 6.5 6.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	200	000	0.014	0.064	0.106	0.243	0.176	0.013	0.071	0.025	0.712	<10.0
Mar-93 3.0 3.5 10.0 9.5 Nar-93 3.5 10.0 9.5 Nar-93 3.5 10.0 9.5 9.0 Nar-93 5.0 5.5 8.0 7.5 7.0 Mar-93 6.9 7.3 6.1 5.7 Nar-93 6.5 6.9 6.5 7.0 Mar-93 7.3 7.8 8.3 5.2 4.7 4.2 Nar-93 9.8 10.0 3.2 3.0 Nar-93 5.5 6.0 5.5 7.5 7.5 Nar-93 5.5 6.0 7.5 7.5 7.0 Nar-93 5.5 6.0 7.5 7.5 7.5 Nar-93 5.5 6.0 5.5 7.5 7.5 Nar-93 6.0 6.5 6.3 5.9 Nar-93 6.0 6.5 6.3 5.9 5.0 Nar-93 6.0 6.5 6.3 5.9 5.5 Nar-93 6.0 7.0 5.9 5.5 5.5 Nar-93 6.0 5.0 5.0 5.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.0 5.0 5.5 5.5 5.5 Nar-93 6.0 5.0 5.5 5.5 5.5 Nar-93 6.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.5 5.5 Nar-93 6.0 5.0 5.5 5.	4.8	40.001	0.00	0.007	0.011	0.011	0.021	<0.001	0.008	0.002	0.060	<10.0
Mar-93 3.0 3.5 10.0 9.5 9.0 Mar-93 3.5 4.0 9.5 9.0 Mar-93 4.5 5.0 9.0 8.5 Mar-93 5.5 6.0 7.5 7.0 6.5 Mar-93 6.9 7.3 6.1 5.7 Mar-93 6.9 7.3 6.1 5.7 Mar-93 7.8 8.3 5.7 5.7 6.1 5.7 Mar-93 8.8 8.3 5.2 4.7 4.2 Mar-93 8.8 9.3 4.7 4.2 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 3.5 4.0 9.0 8.5 Mar-93 5.5 6.0 8.0 7.5 7.0 Mar-93 5.5 6.0 8.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 5.5 7.5 7.5 7.0 Mar-93 5.5 6.0 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.0 5.5 7.5 7.0 5.9 5.5 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 5.9 5.5 Mar-93 6.0 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 5.0 5.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 7.0 5.9 5.5 5.0 5.0 5.9 5.5 7.0 5.9 5.5 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.9 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0												
Mar-93 4.0 9.5 9.0 8.5 Mar-93 4.0 4.5 9.0 8.5 Mar-93 5.0 5.0 8.5 7.0 Mar-93 6.0 6.5 7.0 6.5 7.0 6.5 Mar-93 7.3 7.8 8.3 5.7 5.7 Mar-93 8.8 8.3 5.7 5.7 8.2 Mar-93 8.8 8.3 5.7 5.7 8.2 Mar-93 8.8 9.3 4.2 3.7 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 5.0 6.5 6.5 6.5 6.5 Mar-93 5.0 6.5 6.5 6.5 6.5 Mar-93 5.0 6.5 6.5 6.5 6.5 6.5 Mar-93 5.5 6.0 5.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 5.5 5.5 5.5 Mar-93 6.0 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	9.5	-0.00 ₁	co.001	40.001	-0.00	40.00	40.001	40.00	8.8	<0.001	40.001	<10.0
Mar-93 4.0 4.5 9.0 8.5 8.0 Mar-93 5.0 6.5 6.0 7.5 Mar-93 6.0 6.5 7.0 6.5 Mar-93 6.9 6.5 6.9 6.5 6.1 Mar-93 6.9 6.5 6.1 Mar-93 8.3 8.3 8.3 8.2 A.7 A.2 A.7 Mar-93 8.3 8.3 8.3 A.2 A.7 A.2 A.7 Mar-93 8.3 8.3 8.3 A.2 A.7 A.2 A.7 Mar-93 8.3 9.8 10.0 3.2 3.0 Mar-93 3.5 6.0 8.5 A.0 8.5 A.0 8.5 A.0 A.7	0.6	<0.001	0.002	-0.001 -	-0.00	<0.001	0.002	6.03	6.0	40.001	0.00	12.0
Mar-93 4.5 5.0 8.5 8.0 7.5 Mar-93 5.0 6.5 8.0 7.5 Mar-93 6.0 6.5 7.0 6.5 6.1 Mar-93 6.9 7.3 6.1 5.7 Mar-93 8.3 8.8 4.7 4.2 3.7 Mar-93 8.9 9.8 4.2 3.7 Mar-93 9.8 10.0 3.2 9.0 Mar-93 3.5 6.0 8.5 Mar-93 3.5 6.0 8.5 Mar-93 3.5 6.0 8.5 Mar-93 3.5 6.0 8.5 Mar-93 5.0 6.5 6.5 6.5 6.0 Mar-93 5.0 6.5 6.5 6.5 6.5 6.5 6.5 6.3 Mar-93 6.0 6.5 6.5 6.5 6.5 6.3 Mar-93 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	8.5	0.005	0.033	0.004	0.203	0.180	1.400	1.540	0.086	2.020	5.47	2010.0
Mar-93 5.0 5.5 8.0 7.5 7.0 Mar-93 5.5 6.0 7.5 7.0 Mar-93 6.5 6.9 6.5 6.9 6.5 6.1 Mar-93 6.9 7.3 6.1 5.7 Mar-93 7.8 8.3 5.2 4.7 Mar-93 9.8 9.3 4.2 3.7 Mar-93 9.8 9.8 3.7 3.2 Mar-93 9.8 10.0 3.2 3.0 Mar-93 6.0 5.5 7.5 7.5 7.0 Mar-93 6.0 5.5 7.5 7.5 7.0 Mar-93 6.0 6.5 6.0 5.5 7.5 7.5 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0	<0.001	0.251	0.231	6.560	6.590	24.300	21.400	8.810	9.380	7.52	4230.0
Mar-93 5.5 6.0 75 7.0 6.5 Mar-93 6.0 6.5 7.0 6.5 Mar-93 6.9 7.3 6.1 5.7 6.1 Mar-93 7.3 7.8 5.7 6.1 5.7 Mar-93 7.8 8.3 5.2 4.7 6.2 Mar-93 9.8 10.0 3.2 3.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 5.5 5.0 8.0 7.5 7.0 Mar-93 5.5 6.0 7.0 6.5 Mar-93 6.0 6.2 6.5 6.3 5.9 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 Mar-93 6.0 7.0 5.9 5.5 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	7.5	-0.00 -	0.271	9.0	13.800	23.000	27.800	35.700	23.800	200	4 240	74.9
Mar-93 6.0 6.5 7.0 6.5 6.1 Mar-93 6.5 6.9 6.5 6.1 Mar-93 7.8 7.8 5.7 5.2 Mar-93 7.8 8.3 5.2 4.7 4.2 Mar-93 8.8 9.3 4.7 4.2 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 3.5 4.0 8.5 8.5 Mar-93 5.5 6.0 7.5 7.5 7.0 Mar-93 5.5 6.0 5.5 7.5 7.0 Mar-93 6.0 6.5 6.3 5.9 5.0 Mar-93 6.0 6.5 6.3 5.9 5.5 Mar-93 6.0 7.0 5.9 5.5 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 Mar-93 6.0 6.5 6.3 5.9 5.5 Mar-93 6.0 7.0 5.9 5.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	-	9.00	0.030	0.124	0.496	1.100	1.020	0.269	0.8.0	0.283	9 240	7 00
Mar-93 6.5 6.9 6.5 6.1 Mar-93 7.3 7.8 6.1 5.7 Mar-93 7.8 8.3 5.2 4.7 Mar-93 8.8 9.3 4.2 3.7 Mar-93 8.8 10.0 3.2 3.0 Mar-93 3.0 3.5 9.5 9.5 Mar-93 3.5 5.5 7.5 7.0 Mar-93 5.0 5.5 7.5 7.0 Mar-93 5.0 5.5 7.5 7.0 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.3 5.5 Mar-93 6.0 6.5 6.5 5.5 6.0 5.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.5 5.5 Mar-93 6.0 6.5 6.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 5.5 6.0 5.5 5.5 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	6.5	90.00	0.064	0.114	0.269	0.685	0.564	2 2	4 220	0.122	2.313	118.0
Mar-93 6.9 7.3 6.1 5.7 Mar-93 7.3 6.1 5.7 6.1 6.7 6.1 6.7 6.2 Mar-93 8.3 8.8 4.7 4.2 3.7 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 3.5 6.0 7.5 7.5 7.0 Mar-93 5.0 6.5 6.5 6.5 6.3 Mar-93 6.0 6.2 6.5 6.5 6.3 Mar-93 6.0 6.2 6.5 6.5 6.3 Mar-93 6.0 6.2 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	6.1	- VO.001	0.503	0.452	0.939	2.190	1.540	20.00	1.370	130	2 4 4 5	18.7
Mar-93 7.3 7.8 5.7 5.2 4.7 Mar-93 7.8 8.3 5.2 4.7 4.2 4.7 Mar-93 9.3 9.8 3.7 3.2 3.0 Mar-93 9.8 10.0 3.5 9.5 7.5 7.0 Mar-93 6.6 6.5 5.5 7.5 7.0 Mar-93 6.6 7.0 5.9 5.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0		\$ 6.8	0.298	0.192	0.348	0.842	0.030	5 5	0.400	0.123	1 200	200
Mar-93 78 83 5.2 4.7 Mar-93 88 9.3 4.2 3.7 Mar-93 9.3 9.8 3.7 3.2 Mar-93 9.3 9.8 3.7 3.2 Mar-93 3.0 3.5 9.5 9.0 Mar-93 4.5 5.0 8.0 7.5 Mar-93 5.5 6.0 7.0 6.5 Mar-93 6.5 6.6 6.3 5.9 Mar-93 6.5 6.6 6.3 5.9 Mar-93 6.5 6.6 5.5 Mar-93 6.6 7.0 5.9 5.5	+	0000	0.074	0.089	0.13/	0.232	00.190	900	0.019	0000	0.075	<10.0
Mar-93 8.3 8.8 4.7 4.2 Mar-93 8.3 9.3 3.7 3.2 Mar-93 9.3 9.8 3.7 3.2 Mar-93 3.0 3.5 9.5 9.0 Mar-93 4.5 5.0 8.0 7.5 7.5 Mar-93 5.5 6.0 7.0 6.5 Mar-93 6.2 6.6 6.3 5.9 Mar-93 6.2 6.6 6.3 5.9 Mar-93 6.2 6.6 6.3 5.9 Mar-93 6.5 6.6 6.3 5.9 5.5 Mar-93 6.5 6.6 6.3 5.9 5.5 Mar-93 6.5 6.6 6.3 5.9 5.5 Mar-93 6.6 7.0 5.9 5.5 5.9 Mar-93 6.6 7.0 5.9 5.5 5.5 5.5 Mar-93 6.6 7.0 5.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	i	- CO.OC	40.00	000	800	0.00	3	2000	010	0000	0.151	<10.0
Mar-93 8.8 9.3 4.2 3.7 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.0 3.5 9.5 9.0 Mar-93 4.5 5.0 8.0 7.5 7.6 Mar-93 5.5 6.0 6.5 6.3 Mar-93 6.2 6.6 6.3 5.9 Mar-93 6.6 7.0 5.9 5.5 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	+	Q.00	5.5	2000	0.029	0.00	300	0000	0000	0.012	0.312	<10.0
Mar-93 9.3 10.0 3.2 3.0 Mar-93 9.8 10.0 3.2 3.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 5.0 5.5 7.5 7.0 Mar-93 5.0 6.2 6.0 6.5 6.3 Mar-93 6.2 6.6 6.3 6.3 Mar-93 6.6 7.0 5.9 5.5 Mar-93 6.6 7.0 5.0 5.9 5.5 Mar-93 6.6 7.0 5.0 5.9 5.5 Mar-93 6.6 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1	00.00	50.5	0.022	0.111	0.292	0.015	0.040	0.068	0.038	0.586	<10.0
Mar-93 3.0 3.5 9.5 9.0 Mar-93 3.0 5.5 6.0 8.0 Mar-93 4.0 4.5 8.5 8.0 8.0 7.5 Mar-93 5.5 6.0 6.5 6.5 6.3 5.9 Mar-93 6.5 7.0 5.9 5.5 Mar-93 6.6 7.0 5.9 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	+	5	8 8	0.012	0.093	0.247	0.010	0.039	0.070	0.038	0.508	<10.0
Mar-93 3.0 3.5 9.5 9.0 Mar-93 3.5 4.0 9.0 8.5 Mar-93 4.0 4.5 8.5 8.0 Mar-93 5.0 5.5 7.5 7.0 Mar-93 5.0 6.0 6.5 6.3 Mar-93 6.6 6.5 6.5 6.3 Mar-93 6.6 7.0 5.9 5.5	\dagger	3							,			
Mar-93 3.5 4.0 9.0 8.5 Mar-93 4.5 4.5 8.5 8.0 Mar-93 4.5 5.0 8.0 7.5 Mar-93 5.0 5.5 7.5 7.0 Mar-93 6.0 6.5 6.5 6.3 6.3 Mar-93 6.6 6.3 5.9 5.5	0.6	<0.001	<0.001	<0.00v	-0.00	<0.001	<0.001	<0.001 1	\$0.00	-0.00	90.00	<10.0
Mar-93 4.0 4.5 8.5 8.0 Mar-93 5.0 5.5 7.5 7.0 Mar-93 5.5 6.0 7.0 6.5 Mar-93 6.2 6.6 6.3 6.9 Mar-93 6.6 7.0 5.9 5.5 Mar-93 6.6 7.0 5.9 5.5	8.5	1	<0.001	<0.001	<0.001	<0.001	60.00 1	*0.00	40.00 1	40.001	8.8	<10.0
Mar-93 4.5 5.0 8.0 7.5 7.0 Mar-93 5.0 6.5 7.5 7.0 6.5 Mar-93 6.0 6.2 6.5 6.3 Mar-93 6.2 6.6 6.3 5.9 Mar-93 6.6 7.0 5.9 5.5	8.0	20.001	\$0.00	<0.001	<0.001	<0.001	<0.001	*0.00	40.001	40.00 1	90.00	<10.0
Mar-93 5.0 5.5 7.5 7.0 Mar-93 5.5 6.0 7.0 6.5 6.3 Mar-93 6.2 6.5 6.3 Mar-93 6.2 6.3 5.9 Mar-93 6.6 7.0 5.9 5.5	7.5	_	40.00	<0.001	<0.001	<0.00 1	<0.00 1	40.00	40.001	40.00	9001	<10.0
Mar-93 5.5 6.0 7.0 6.5 Mar-93 6.0 6.2 6.5 6.3 Mar-93 6.6 7.0 5.9 5.5	7.0		0.001	40.001	0.004	0.008	0.002	0.031	0.050	0.019	0.115	<10.0
Mar-93 6.0 6.2 6.5 6.3 6.9 Mar-93 6.6 7.0 5.9 5.5	5.5	- VO.001	<0.001	<0.001	0.010	0.021	0.015	0.042	0.077	0.038	0.203	<10.0
Mar-93 6.2 6.6 6.3 Mar-93 6.6 7.0 5.9	6.3	_	0.003	0.002	900.0	0.011	0.005	0.033	0.052	0.019	0.131	<10.0
Mar-93 6.6 7.0 5.9	-	<0.001	0.003	0.003	0.008	0.016	0.005	0.018	0.052	0.018	0.122	0.012
2.5	ļ.	<0.001	-0.00 1	0.006	0.013	0.030	40.001	0.025	0.042	0.03	0.123	40.0
Mar-93 7.0 7.5 5.5	\dashv	<0.001	0.005	0.034	0.063	0.147	40.001	910.0	0.0/1	0.020	7000	22.7

Cample IC	gate	Lo int	Į į	Top int (ft MSL)	Bot int (ft MSL)	Œ €	BZ (mo/ka)	TOL (ma/ka)	ETBZ (ma/kg)	PXYL (ma/kg)	MXYL (mg/kg)	OXYL (mg/kg)	MESIT (mg/kg)	PSCU (mg/kg)	TMB (mg/kg)	BTEXTMB (mg/kg)	TPH (as JP-4) (mg/kg)
BOH10	Mar-93	7.5	O'K	2.0	45	5	0.005	0.030	0.083	0.146	0.328	<0.001	0.043	0.123	0:050	0.808	<10.0
0100	Mar.03	2 0) a	45	40	2 5	0.012	0.176	0.118	0.195	0.452	0.004	0.049	0.156	0.067	1.230	<10.0
S S	Mar 03	2 0	0	40	3.5	25.0	0.027	1 040	0.185	0.257	0.661	0.221	0.074	0.267	0.087	2.819	<10.0
80H7	Mar-93	0.6	9.5	3.5	3.0	0.5	0.049	2.570	0.361	0.478	1.200	0.819	0.142	0.457	0.125	6.201	12.2
															0.00		0.00
8018	Mar-93	2.5	2.9	8.0	9'.	9.	0.003	0.018	0.020	0.002	0.049	0.036	<0.001	0.074	0.012	0.214	1050.0
8017	Mar-93	2.9	3.4	9.7	7.1	0.5	0.003	0.029	0.00	0.027	0.025	0.063	0.048	0.051	0.165	0.448	1000.0
8016	Mar-93	3.4	3.8	7.1	6.7	0.4	0.024	0.594	0.356	1.180	2.250	4.320	0.000	0.634	0.026	9.384	2760.0
8015	Mar-93	3.8	4.3	6.7	6.2	0.5	0.056	1.040	0.837	2.540	5.050	8.450	0.000	2.120	0.192	20.285	2610.0
8014	Mar-93		<u>:</u>	6.2	5.8	0.4	0.055	1.050	1.060	2.590	5.410	6.510	0.494	0.688	0.368	18.225	2010.0
8013	Mar-93	4.7	<u> </u>	5.8	5.3	0.5	0.008	0.095	0.132	0.275	0.604	0.397	0.022	0.053	0.021	1.607	139.0
8012	Mar-93	5.2	5.6	5.3	4.9	0.4	0.008	0.003	0.052	0.125	0.271	0.011	0.017	0.038	0.020	0.546	10.4
8011	Mar-93	5.6	6.0	4.9	4.5	0.4	0.091	0.004	0.051	0.099	0.171	0.012	0.011	0.034	0.014	0.487	<10.0
	Mar-93												Į		000	, ,	
8078	Mar-93	2.0	2.5	89	9.7	0.5	\$0.00	0.005	0.162	0.155	0.058	0.003	0.077	0.568	0.066	1.094	21.4
80.7	Mar-93	2.5	3.0	7.6	7.1	0.5	0.002	0.002	0.114	0.093	0.054	<0.001	0.029	0.365	0.040	0.700	<10.0
80,16	Mar-93	3.0	3.5	7.1	9.9	0.5	0.005	0.003	0.121	0.037	0.053	<0.00 1	0.054	0.347	0.062	0.682	<10.0
80.15	Mar-93	3.5	4.0	9.9	6.1	0.5	0.004	0.006	0.057	0.008	0.033	<0.001	0.026	0.194	0.027	0.354	<10.0
80.14	Mar-93	4.0	4.5	9	5.6	0.5	0.003	<0.00	0.035	0.006	0.043	40.00 1	0.014	0.093	0.012	0.207	<10.0
80.13	Mar-93	4.5	2.0	5.6	5.1	0.5	0.004	0.002	0.035	0.005	0.025	<0.001	0.007	960.0	0.018	0.19	<10.0
80,12	Mar-93	2.0	5.5	5.1	4.6	0.5	0.005	0.003	0.028	0.012	0.013	40.00 10.00	0.006	0.084	0.009	0.159	<10.0
80.1	Mar-93	5.5	0.9	4.6	4.1	0.5	0.004	0.002	0.028	0.017	0.035	40.001	0.008	0.113	9000	0.214	<10.0
		_				į	100	7000	7000	100	400	5	100	5	5	5	7
80K5	Mar-93	4	C.	6.1	פיני	0.5	30.00	00.00	20.00	20.00	20.00	300	9 9	900	3 5	3 6	7, 1
80K4	Mar-93	4	2.0	1.0	10.5	0.5	40.00	9.60	-G-00-	5.00	0.00	20.00	00.00	0.00	90.00	3.5	V 10.0
80K3	Mar-93	2.0	2.5	10.5	10.0	0.5	100.00	5.00	500	0.00	00.00	00.00	800	8.6	8.00	3.6	700
220	Mar 93		0.0	2 0	0.0	2 0	3 6	500	800	1000	0000	00.00	\$0.00	\$0.001	<0.001	<0.001	<10.0
80K11	Mar-93	4	0 0	0	8.7	03	20.00	<0.001	×0.001	00.00	0.00	40.00 1	<0.001	<0.001	<0.001	<0.001	<10.0
80K10	Mar-93	_	43	8.7	8.2	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80K9	Mar-93	١	4.9	8.2	7.6	0.6	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80K8	Mar-93	Ļ	5.4	7.6	7.1	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80K7	Mar-93	_	6.0	7.1	6.5	9.0	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80K15	Mar-93		6.7	6.5	5.8	0.7	<0.001	<0.001	<0.001	<0.001	<0.001 1	-0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80K14	Mar-93	_	7.3	5.8	5.2	9.0	~0.001	<0.001	<0.001	0.007	0.011	0.011	<0.001	0.002	40.00·	0.031	<10.0
80K13	Mar-93		7.9	5.2	4.6	9.0	<0.001	<0.001	0.006	0.048	0.135	0.045	0.015	0.045	0.027	0.321	<10.0
80K12	Mar-93	4	8.5	4.6	4.0	9.0	<0.001	<0.001	0.009	0.095	0.265	0.036	0.029	0.063	0.042	0.538	0.01>
ROKCE	A110-94		27	10.3	8.6	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC4	Aug-94	_	3.1	8.6	9.6	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC3	Aug-94	3.1	3.6	L	8.9	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC2	Aug-94	_	1	<u> </u>	8.5	0.4	<0.001	<0.001	<0.001	<0.001	<0.00 100.00	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC1	Aug-94	L	-	-	8.0	0.5	<0.001	0.022	<0.001	<0.001	0.004	0.00 1	<0.001	0.003	0.004	0.033	<10.0
80KC11	Aug-94	_	-	-	7.7	0.3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC10	Aug-94	L	\vdash	_	7.3	0.4	<0.00	<0.001	<0.001	<0.001	\$0.00 1	<0.001	<0.001	<0.001	<0.001	٥٠.00 د0.00	<10.0
80KC9	Aug-94	<u> </u>	-	_	6.8	0.5	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	<0.001	<0.00	<0.001	<10.0
80KC8	Aug-94		-		6.4	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80KC7	Aug-94				5.9	0.5	<0.001	<0.001 1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 1	<0.001	<10.0
80KC6	Aug-94	9.9	7.0	5.9	5.5	0.4	<0.001	<0.001	0.005	<0.001	0.003	<0.001	<0.001	-0.001	<0.001	0.008	<10.0
80KC17	Aug-94	_	\exists	4	2.0	0.5	<0.001	0.007	0.023	0.133	0.323	<0.001	0.015	0.035	0.017	0.552	<10.0

TPH (as JP-4) (mg/kg)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	200	200	V V	40.0	V V	7 0.0	200	<10.0	<10.0	<10.0	<10.0	<10.0	3	4000	49.4	17.6	13.8	18.0	<10.0	<10.0	40.0 7	700	<10.0	<10.0	0.042	710.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	96.8	1180.0	
BTEXTMB 1 (mg/kg)	0.630	0.472	0.258	0.063	0.025	<0.001	40.001	40.001	600	8 6	3 5	9.60	20.00	3.6	8.6	08.0	0.125	960 0	0.121	0.126	0.112	200	300	0.000	1 257	1.306	1.742	1.173	0.586	0.257	0.210	0.216	0.113	6	3.6	20.00	40.00	0.039	0.227	0.526	0.511	0.020	0.073	
TMB (mg/kg)	0.024	0.021	0.016	0.005	<0.001	\$0.00	<0.001	40.001	500	3 5	3 6	50.00	20.00	50.00	00.00	8000	0.025	000	0.035	0.036	0.024	, , ,	9.9	90.00	0.00	0.070	0.085	0.070	0.046	0.052	0.045	20.0	0.025	6	8.6	1000	40.001	0.009	0.038	0.052	0.053	0.015	0.003	
PSCU (mg/kg) 1	0.054	0.051	0.053	0.016	600.0	<0.001	40.00	\$0.00	500	3 6	20.00	9.60	-00.00 -00.00	50.00	9.6	40.00	0.160	0.044	0.067	0.064	0.070		50.00	20.00	0.030	212	0.222	0.164	0.101	0.108	0.030	0.112	0.068	300	9.00	38	0.00	0.016	0.079	0.118	0.102	<0.001	0003	
MESIT (mg/kg)	0.025	0.025	0.022	90.00	40.001	<0.001	40.00	50.00	500	9.00	20.00	40.00	<0.001	40.001	9.6	2000	0.00	1000	0.014	0.019	0.013		50.00	50.00	0.030	2 6	0.115	0.081	0.047	0.038	450.0	0.020	0.003	,000	9.00	3 6	0000	0.008	0.037	0.044	0.032	0000	5	3
OXYL (mg/kg)	40.00¥	40.001	0.00	<0.001	¢0.00	×0.001	0000	500	200	300	9.60	40.001	40.001	40.00	49.00	90.00	200	8 6	8 6	0.00	<0.001		40.001	600	0.092	0.345	0.415	0.258	0.088	<0.001	0.00	9.5	<0.001		9.6	3.5	5	0.00	<0.001	<0.001	<0.001	0000	7600	
MXYL (mo/kg)	0.369	0.277	0.117	0.019	600.0	1000	1000	1000	3 5	5 6	\$0.00 100	<0.001	40.00	9.0	<0.001	50.00	9000	3	3 6	0000	40.00		40.001	40.001	0.073	0.30	0.492	0.323	0.179	0.040	0.023	0.015	0.007		60.00	00.00	8 6	9000	0.045	0.178	0.196	0000	950	-
PXYL (ma/kg)	0.140	0.091	0.034	0.010	900.0	60.67	1000	8	800	5.00	00.00	40.00	40.001	-0.00 100	<0.001	50.00	0.030	90.00	500	000	×0.001		-0.00	-0.00	0.033	0.140	020	0.166	0.085	0.013	0.00	500	6.00		40.001	9.00	8.6	0.002	0.019	0.075	0.084	6	300	
ETBZ (mo/ka)	0013	2000	0015	0.007	-0.00	5	200	8 6	300	90.00	40.001	-0.00 1	40.001	6.00	40.001	100.00	410.0	00.00	300	8000	0.005		40.00	<0.001	0.010	40.00	200	0.066	0:030	0.005	0.004	000	0000		<0.001	9.00	00.00	900	6000	0.040	0.044	600	3	֚֓֞֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֜֓֓֡֓֓֓֓֡֓֜֓֡֓֡֓֡֓֜֡֓֡֓֡֓֡֓֡֡֡֜֡֓֡֡֡֜֜֡֓֡֡֡֡֡֡
TOL	2000	500	500	20.001	<0.001	6000	200	8 6	00.00	40.001	40.00 10.00	<0.001	<0.001	-0.00	90.00	<0.001	50.00	0000	20.00	86	0000		0.001	-0.001	0.015	400.0	90.0	0.045	0.011	40.001	-0.00 -0.00	0.00	6.69		<0.001 1	40.00	5.5	8.00	<0.001	0.018	-0.00 1	Ş	3	2
BZ (movko)	1000	8 6	50.6	20.00	<0.001	1000	8 6	8.6	0.00	0.00	×0.001	40.001	6 0.001	40.001	9.00	40.001	40.001	20.00	500	800	000		<0.001	9.0	40.001	90.00	5 6	000	40.00 1000	40.001	40.00	6.00	9.00		<0.001	<0.001	0.00	8 6	000	0.00	<0.00 1	Š	3	٤
Œ €	2		3 6	2	0.4	4	2 0	0 0	C 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	9	9 6	3 6	5 0		0.5	0.5	0.5	0.5	0.0	3 6	0.5	0.4	9.4	0.0	0.0		0.5	0.5	o c	3.5), C	0.5	0.5	ľ	2	
Bot int	ű	0 0	ή α	3.4	3.0	0	7.0	0.0	2.5	7.7	7.2	6.7	6.2	5.7	5.2	4.7	4.2	3.8	4.0	0.0	2.0		8.1	7.6	7.	9.9	6.1	, r	9.4	4.2	3.8	3.4	3.0 9.0		8.0	7.5	7.0	Ç (4	ין היי	200	4.5		2	
Top int (ft MSL) (f	+	0.0	0.4	86	3.4	7.0		3.7	200	8.2	7.7	7.2	6.7	6.2	2.7	5.2	4.7	4.2	8. 6	4 0	2 6	}	8.6	æ	9.7	7.	9 4	- 4		4.6	4.2	3.8	4 6	}	8.5	8.0	7.5	0.7	0 6	3 6	2.0		7	•
ī €	t	25 0	20.00	3 5	9.5	C	0	3 ;	5.5	2.0	5.5	0.9	6.5	7.0	7.5	8.0	8.5	6.8	9.3	5	2 0	2	2.5	30	3.5	0.4		מ מ	0.9	6.4	6.8	7.2	9.7	3	3.5	4.0	4.5	5.0	0.0	2 6	7.0		22	
Lo int	75	, L	y. 0	0 0 7	2.6	c	2 2	0.0	0	5.5	20	5.5	6.0	6.5	7.0	7.5	80	8.5	0,0	20 0	2	2	2.0	2.5	3.0	3.5	0.4	1 4	ים ים	0.9	6.4	6.8	7.2	2	3.0	3.5	4.0	4. n	מ מ	90	6.5		7.0	
960	Vine of	Aug-94	AUG-94	A 10.014	Aug-94	3	ce-cew	May-95	May-95	May-95	May-95	May-95	May-95	May-95	Мау-95	Мау-95	May-95	May-95	May-95	S S	May-95	20 40	Mar-93	Mar-93	Mar-93	Mar-93	Mar-93	Mar 02	Mar-93	Mar-93	Mar-93	Mar-93	Mar-93	200	Mar-93	Mar-93	Mar-93	Mar-93	Mar 03	Mar.03	Mar-93		Mar-93	
Cl. olomo	ON CAR	0000	30KC15	1000 1000 1000 1000 1000 1000 1000 100	80KC12	20000	2000	BOKU4	80KD3	80KD2	80KD1	80KD10	80KD9	80KD8	80KD7	80KD6	80KD16	80KD15	80KD14	80KD13	2000	2	80L8	80L7	90Fe	80L5	80.4	300	3 5	80L13	80L12	80L11	80L10	3	80M8	80M7	80M6	80M5	POW4	SOMO	80M1		NO.	01100

	# €	<u> </u>	I Mori	(# MSi)	€	(mg/kg)	(m)(kg)	(100/00)	(mo/ka)	(mg/kg)	(mg/kg)	(ma/kg)	(mo/kg)	TMB (ma/kg)	(ma/ka)	(ma/ka)
┸		+	(10 m)	22.0		(gradin)	0000	(Sub) 0	0.016	0.016	0.050	1.370	0.109	0.134	1.707	807.0
) L	0 0	317		2 6	000	2000	000	3 580	8 890	4 600	11 200	29.00	7.170	66.294	3370.0
1	0, 0	0.0) c	2.6	C U	20.00	1000	000	2000	58 100	32.500	24 400	72.700	23.200	248,290	7850.0
١.	2 2	0.1	2.0	7.,	2 6	9000	900	57.500	100	000 602	129 000	40 700	138,000	41.900	714.406	14700.0
<u>. i</u>	0 1	, u	7 2	 	y 5	250	40.200	65 700	80.500	208.000	131.000	34,000	117.000	35.800	714.757	14800.0
1		. 9	2 7	99	0.5	0.017	0.737	0.309	0.387	0.955	0.649	0.109	0.401	0.128	3.692	32.5
į.	9.9	7.5	9.9	5.7	6.0	0.024	0:030	0.221	0.265	0.656	0.067	0.040	0.154	090'0	1.517	<10.0
L	7.5	8.0	5.7	5.2	0.5	0.003	<0.001	0.053	0.063	0.159	0.002	0.008	0.032	<0.001	0.320	<10.0
Mar-93	8.0	8.5	5.2	4.7	0.5	0.003	0.007	0.073	0.090	0.227	0.024	0.017	0.062	0.022	0.527	<10.0
_				1				1000	1000	2000	500	000	Š	10000	0	0.10
_	0.00	0.3	æ.	11.5	0.3	40.00	-0.00 -	40.001	40.00	-00.00 -00.00	-0.00 -0.00	20.00	0.00	5000	Q.00	21.2
_	0.3	6.0	1.5	10.9	90	×0.001	0.004	<0.00	<0.001	0.004	0.005	40.00	60.00	50.00	0.013	0.012
_	0.9	1.4	10.9	10.4	0.5	-0.00 -	0.007	<0.001	0.003	0.007	0.006	40.001	40.001	40.001	0.023	<10.0
_	4.1	5.0	10.4	9.8	9.0	0.00	0.164	0.14	0.189	0.546	0.458	0.089	0.265	0.096	1.961	14.3
Jul-93	2.0	2.3	9.8	9.5	0.3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00 1	-0.00 -	-0.00 1	22.0
-	2.3	2.9	9.5	8.9	9.0	-0.00 -	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	۰0.00 د	.00 0.00	14.5
-	2.9	3.4	8.9	8.4	0.5	<0.001	-0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
-	3.4	4.0	8.4	7.8	9.0	<0.001	0.278	0.022	0.043	0.063	<0.001	0.237	0.238	0.040	0.921	232.0
_	40	44	7.8	7.4	4.0	0.001	0,816	4.730	7.040	13.000	0.071	21.100	45.900	13.300	105.957	10700.0
_	44	67	7.4	6.9	0.5	0.00	0.086	1.750	3.100	5.410	0.152	7.440	14.200	4.620	36.758	2510.0
_	40	4	6	6.4	0.5	<0.001	0.047	0.011	0.018	0.022	9000	0.022	0.046	0.019	0.192	<10.0
2 2	4	9	49	2.0	90	<0.001	0.042	0.005	0.012	0.017	<0.001	0.017	0.046	0.022	0.160	<10.0
_	9	2 6	60	53	0.5	<0.001	0.041	9000	0.015	0.020	<0.001	0.032	0.087	0.039	0.240	<10.0
-	6.5	7.2	5.3	4.6	0.7	<0.001	0.054	0.005	0.012	0.017	-0.00 ₁	0.031	0.067	0.023	0.208	<10.0
_	7.2	7.8	4.6	4.0	9.0	<0.001	0.045	0.008	0.015	0.023	<0.001	0.015	0.037	0.013	0.156	<10.0
-	7.8	8.4	4.0	3.4	9.0	0.008	0.041	0.017	0.026	0.048	<0.001	0.017	0.041	0.010	0.206	<10.0
	8.4	9.0	3.4	2.8	9.0	0.025	0.047	0.079	0.085	0.204	40.00 1	0.034	0.072	<0.001	0.547	<10.0
T	9.0	9.3	2.8	2.5	0.3	0.028	0.057	0.097	0.141	0.178	<0.001	0.048	0.124	0.027	0.700	<10.0
Jul-93	9.3	9.6	2.5	2.0	0.5	0.033	0.044	0.113	0.163	0.197	<0.001	0.045	0.129	0.029	0.754	<10.0
1	9.8	10.3	2.0	1.5	0.5	0.022	<0.001	0.114	0.167	0.112	<0.00 1	0:030	0.102	0.022	0.569	<10.0
-	10.3	11.5	1.5	0.3	1.2	0.013	<0.001	0.066	0.112	0.108	<0.001	0.029	0.084	0.018	0.431	<10.0
ī	11.5	11.9	0.3	-0.1	0.4	0.005	<0.001	0.018	0.058	0.104	<0.001	0.027	0.065	0.015	0.293	<10.0
Jul-93	11.9	12.4	Ó.	-0.6	9.0	0.009	<0.001	0.036	0.112	0.175	<0.001	0.049	0.109	0.025	0.515	11.5
T	12.4	13.0	-0.6	- 2	9.0	0.023	0.039	0.073	0.150	0.293	<0.001	0.038	0.105	0.021	0.741	<10.0
3ul-93	13.0	13.5	-1.2	-1.7	0.5	0.020	<0.001	0.055	0.132	0.245	<0.001	0:030	0.090	0.021	0.593	×10.0
Jul-93	13.5	13.8	-1.7	-5.0	0.3	0.005	<0.001	0.017	0.032	0.085	<0.001 1	0.018	0.047	0.013	0.216	<10.0
Jul-93	13.8	14.3	-2.0	-2.5	0.5	0.005	<0.001	0.022	0.042	0.105	<0.001	0.025	0.065	0.019	0.283	<10.0
Jul-93	14.3	14.8	-2.5	-3.0	0.5	900.0	<0.001	0.028	0.052	0.115	<0.001	0.046	0.107	0.034	0.387	1.1
-93	14.8	16.0	-3.0	-4.2	1.2	0.003	-0.00 1	0.014	0.026	0.058	<0.001	0.023	0.054	0.017	0.194	<10.
Jul-93	16.0	16.4	-4.2	-4.6	0.4	<0.001	<0.00 1	<0.001	40.00 1	<0.001	<0.001	<0.001	<0.00 1	<0.001	<0.001	<10.0
Jul-93	16.4	16.8	-4.6	-5.0	0.4	<0.001	<0.001	<0.001	<0.001	-0.00	-0.00 -	<0.001	<0.00 1	<0.001	<0.001	<10.0
69	16.8	17.2	-5.0	-5.4	0.4	<0.001	<0.001	<0.001	<0.001	<0.00 1	<0.004 40.004	<0.001	0.003	<0.00 1	0.003	<10.
Jul-93	17.2	17.6	-5.4	5.8	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00 1	0.003	<0.001	0.003	<10.0
8	17.6	18.0	5.8	-6.2	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 40.001	¢0.001	<10.0
8	18.0	18.4	-6.2	9.9	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.00 -	<0.001	<0.001 1000	×10.0
Jul-93	<0.001	0.5	12.6	12.1	0.5	<0.001	0.163	<0.001	<0.001	0.011	600.0	<0.001	<0.001	<0.001	0.183	12.9
Jul-93	0.5	0.	12.1	11.6	0.5	<0.001	0.019	9000	0.008	0.013	0.011	40.001	<0.001	<0.001	0.057	15.
-93	0.	1.5	11.6	Ŧ.	0.5	<0.001	0.007	<0.001	-0.00 -0.001	0.00 1	\$0.00 1	& 8.8	6.00 100	6 9 9	0.007	<10.0

TPH (as JP-4) (mg/kg)	<10.0	18.5	11.2	10.6	116.0	3250.0	2350.0	51.8	40.7	23.9	16.5	12.3	14.0	12.6	11.1	10.7	<10.0	<10.0	×10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	1.8	=		200	7	<10.0	<10.0	<10.0	<10.0	18.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	×10.0	20.0	V V	20.0	410.0	10.0	200
BTEXTMB (mg/kg)	0.012	0.011	<0.001	<0.001	0.008	1.067	8.232	1.995	3.206	2.789	2.448	1.504	3.069	6.409	6.810	7.209	0.359	0.399	0.932	0.686	0.440	0.657	0.585	0.384	0.641	0.898	0.708		8.00	3.5	8 6	0.00	40.00	<0.001	-0.00	40.00	<0.001	40.001	0.365	0.539	0.714	0.543	0.411	0.380	0.147	0.117	3 5	3
TMB (mg/kg)	90.00	40.001	<0.001	<0.001	<0.001	0.036	0.920	0.223	0.275	0.284	0.281	0.111	0.163	0.229	0.244	0.270	0.025	0.027	0.058	0.042	0.026	0.038	0.033	0.024	0.039	0.054	0.042		5 6	3 6	8 6	000	40.00	40.001	<0.001	9.00	<0.001	40.00 1	<0.001	0.020	0.034	0.033	0.030	0.030	0.015	0.013	50.00	3.5
PSCU (ma/ka)	20.00	0000	40.00	-0.00	<0.001	0.004	1.370	0.512	0.655	0.637	0.587	0.266	0.421	0.554	0.615	0.715	0.067	0.075	0.155	0.108	0.061	0.100	0.082	0.059	0.093	0.127	0.100		5.00	50.00	3 5	8 6	0.00	0.00	<0.001	<0.001	<0.001	40.00	<0.00	0.024	0.047	0.057	0.059	0.064	0.033	0.030	25.5	5
MESIT (ma/kg)	1000	5000	0.00	<0.001	<0.001	0.976	5.070	0.348	0.285	. 0.252	0.235	0.127	0.192	0.216	0.234	0.256	0.026	0.029	0.062	0.042	0.022	0.037	0.033	0.024	0.045	990.0	0.055	,	40.001	0.00	00.00	6.00	000	000	<0.00	<0.00	<0.001	<0.001	<0.001	0.004	0.011	0.020	0.027	0.032	0.016	0.015	0.002	9.00
OXAL OXAL	200	200	000	<0.001	0.008	0.032	0.186	0.267	0.510	0.316	0.050	000	0.041	0.489	0.725	0.929	0.023	0.024	0.075	0.042	0.010	0.027	0.024	0.017	0.045	0.072	0.056		40.001	40.00	6.65	8.8	3 6	8 6	000	000	40.001	₹0.00	0.027	0.024	0.031	0.021	0.005	40.00	<0.001	-0.00 -	20.00	90.00
MXYL (moded)	9000	300	000	40.00	<0.001	40.001	0.324	0.336	0.825	0000	0.032	0.00	0.938	1 630	800	1.820	0.111	0.124	0.265	0.245	0.225	0.266	0.244	0.151	0.187	0.222	0.173		.00.00 10.00	-000v	-0.00 -0.00	5 6	8.6	8 6	000	000	00.00	<0.00v	0.240	0.323	0.410	0.266	0.185	0.169	0.066	0.052	0.018	0.003
PXYL	200	3 5	000	40.00	40.001	6000	0.226	0 159	0.362	25.0	0.343	0.302	200	0.727	2080	808	0.045	0.051	0.125	060.0	0.055	0.078	0.071	0.042	0.067	0.091	0.073		<0.001	40.001	40.001	00.00	00.00	0.00	000	8 6	5 6	<0.001	0.086	0.121	0.147	0.111	0.078	0.068	0.018	0.007	0.003	\$0.00 \$0.00
ETBZ	Supply of the su	20.00	0.00	20.00	40.00	0000	0.073	1000	198	0 0	0.10	5 5	200	93.0	0.320	388	0.017	0.018	0.053	0.031	0.010	0.021	0.019	0.013	0.027	0.041	0.032		-0.00	-0.00	40.00 10.00	0.001	5.6	50.00	3.6	3 6	50.00	500	0.013	0.023	0.034	0.035	0.027	0.018	<0.001	<0.001	40.00 1	5
TOL	(Bun)	8 6	9 6	000	000	2000	0.00	900	9000	0.030	0.10	4 6 6	0.130	007	200	1 080	200	0.049	0.133	0 0 0	200	0.086	0.076	0.051	0.135	0.219	0.171		-0.00	0.00	-0.00 1	0.001	40.001	0.00	5.5	0.00	9.60	3 6	6	0000	00.05	000	0000	<0.001	¢0.001	<0.00	<0.001	5
BZ	(mg/kg)	5.6	0.00	5	500	200	3.6	800	9.6	00.00	-0.00 -0.00 -0.00 -0.00	0.003	0.020	0.030	0.040	0.04	200	2000	900	800	500	700	000	2000	4000	9000	0000	}	<0.001	-0.00	<0.001	<0.001	0.00	-0.00	0.00	20.00	0.00	50.50	200	000	000	000	000	0.00	<0.001	40.00	<0.001	5
Œ é		9	5 0	2 4	2 4) u	0 0	2 0	9 10	0 0	9.0	0.5	N C	0 0	0 0	0 0	0 0	2 0	2 0) u	, u	2 0	3 6	2 0	9	2 0	9 0	}:	0.5	0.2	0.5	0.4	0.5	0.4		4.0	9.0	0	ם ני ס	2.0	† ¢	40		0.4		0.4	0.5	4
Bot int	I MOL	- -	9.6	- u	0 0	0 0	1.0	5 1	٠,٠	70	5.6	2.1		ا ان	5.0		0.7		2 .		† c						9 4		10.7	10.5	10.0	9.6	9.1	8.7	2.5	B (7.5	0	7.0	2	9 0	2 4	? .	0	9 6	3.2	2.7	000
Top int		10.6	0.6	0.0	- 0	0.0	9,7	0.7	2 5	6.7	6.2	5.6	5.1	9.4	6.4	7	- 6	0,7		0.		† C	, v				* O	3	11.2	10.7	10.5	10.0	9.6	-6	8.7	8.5	8.7	7 ,). 0	7 1		3 4	2 4	2 6	0 0	3.6	3.2	10
=	+	2.5	3.0	o c	5 1	0	0 0	500	5.0	6.4	0.7	7.5	7.7	23	6.9	9.5	0.0	0.0	-	0.5	13.0	2.0	0.4	0 0	0.0	2 9	0 0	2	2.5	2.7	3.2	3.6	1.4	4.5	2.0	5.4	0.9	6.5	7.0	0.1	9.0	2.0	0 0	0 0	9.0	10.0	10.5	
-	E	5.0	2.5	0.0	c c	5 i	4. r	0.0	5.3	5.9	6.4	+	7.5	7.7	60	6.0	5.6	2 5	0.0	۰ ۲	2	5 6	0.5	2 1		2 0	10.0	6.0	2.0	2.5	2.7	3.2	3.6	4.1	4.5	20	5.4	6.0	9.2	2 4	0 0	2 0	7.0	0 0	9 0	9	0.01	
	Date		Jul-93		26-15 26-15	3	Ju-93	SE-105	Jul-93	6 - 등	Jul-93	-6-lac	Jul-93	-6-33 	Jul-93	Ju-93	Jul-93	3	S - 53	25-35	56-PG	56	S 5	20.00	56-13 10	26-57	5	SE-IDC	.ha-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	56	56-ID	56-ID	26-III	200	Sp-117	- Int-93	-In-93	3
	₽		-		80P8			80P15	+	_	i	i	- 1	-	-	80P17	-	+		80P21	-	80P27	801-26	80.53	80F24		80628	80F28	1008	8007	9008	8005	8004	8003	8005	80012	80011	80010	8003	200	80019	2 CO	1000	9000	500	2001	80023	200

TPH (as JP-4)	700	2	13.2	<10.0	<10.0	<10.0	<10.0	<10.0	3910.0	7720.0	39.6	13.3	18.6	<10.0	<10.0	<10.0	<10.0	007	0.00	7,000	1830.0	19.00	2040.0	0.00711	16300.0	4720.0	<10.0	<10.0	<10.0	V .	<10.0	×10.0	<10.0	<10.0	<10.0	<10.0	<10.0	×10.0	<10.0	<10.0	<10.0	0.00	7	×10.0	<10.0	<10.0	1000
	-	-			_		_			Ω				"	-	_	=		-				4	<u> </u>	14	9	2	7	-	<u> </u>	5	4	24	9	5	5	5	5	- 9	20,	- 9	2.5	2 2	ę	E.	92	1
BTEXTMB (ma/kg)	L	3	<0.00	0.004	0.0	0.042	<0.001	<0.001	18.750	106.440	1.99	0.957	0.212	0.016	<0.00	<0.001	0.00	0	5 6	100	0.457	4.038	23.944	499.919	748.61	3.736	0.153	0.1	0.081	000 V	90.00	90.00	<0.001	9000	\$0.00	90.00	\$ 60.00	0000	0.051	0.428	0.411	0.680	9000	ğ Ö	0.021	0.026	300
TMB (mo/kg)	500	3.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	7.350	25.100	0.250	0.064	0.037	0.003	<0.001	<0.001	<0.001		00.00	00.00	0.083	1.210	0.250	58.200	51.400	0.293	0.013	0.010	0.007	<0.00	<0.001	\$0.00 0.00	<0.001	<0.001	0.00	40.001	40.001	40.001	0.008	0.026	0.028	0.043	0.045	40.0	900.0	<0.001	
PSCU	500	3.50	<0.001	<0.001	<0.001	9000	<0.001	<0.001	0.211	29.300	0.513	0.117	0.053	0.005	<0.001	<0.001	<0.001		20.00	0.00	0.014	0.213	3.170	128.000	122.000	0.596	0.019	0.017	0.016	<0.001	<0.001	0.002	<0.001	0.003	×0.001	40.001	<0.001	40.001	0.023	0.042	0.050	0.086	0.002	0.083	0.00	0.010	
MESIT	2000	20.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	8.580	25.300	0.219	0.057	0.033	0.002	40.001 100.00	<0.001	<0.001		\$0.00 \$0.00	90.0	0.723	1.390	5.650	20.000	49.400	0.209	0.010	0.008	0.007	<0.001	<0.001	<0.001 (0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.013	0.023	0.040	0.040	0.038	<0.001	<0.001	
OXYL	,000	3.	<0.001	<0.001	<0.001	0.008	<0.001	-00.0v	1.960	12.900	0.394	0.234	0.033	0.003	<0.00 ⁺	<0.001	40.001 1		40.00	50.001	0.099	0.448	1.940	62.300	117.000	0.290	0.033	0.021	0.010	<0.001	<0.001	×0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.03	0.007	0.076	0.012	0.003	0.004	-0.00	<0.001	<0.001	
MXYL (molko)		0.00	<0.001	0.004	0.004	0.013	<0.001	<0.001	0.336	7.620	0.378	0.289	0.033	0.003	<0.001	<0.001	<0.001 1		00.00	0.00	0.042	0.439	4.070	118.000	215.000	1.330	0.046	0.035	0.024	<0.001	<0.001	0.002	<0.001	0.003	<0.001	\$0.00	<0.001	<0.00 1	<0.001	0.170	0.220	0.373	0.417	0.454	0.006	0.007	
PXYL		0.00	<0.001	<0.001	<0.001	0.007	<0.001	<0.001	0.233	2.600	0.170	0.123	0.016	<0.001	<0.001	<0.001	<0.001		20.00 20.00	0.013	0.026	0.252	2.060	52.800	107.000	0.573	0.021	0.016	0.010	<0.001	40.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.04 40.001	0.013	0.092	0.077	0.133	0.152		<0.001	<0.001	
ETBZ	/Sugar	20.00	<0.001	<0.001	<0.001	0.004	<0.001	<0.001	40.001	0.591	0900	0.068	9000	<0.001	40.00 1	<0.001	40.00		40.001 100.00	-0.00 -	0.008	0.067	0.761	29.200	80.300	0.397	0.012	0.010	0.007	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.008	<0.0 1	0.003	0.00	0.005	<0.001	<0.001	
TOL	(Fugue)		<0.001	<0.001	<0.001	0.005	<0.001	<0.001	0.068	0.029	600	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	1,	00.0	40.001	0.061	0.019	0.043	1.410	6.470	0.043	<0.001	<0.001	<0.001	<0.001	-0.00 1	\$0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	c0.001	0.002	c0.00	<0.001	5.65	\$0.00	<0.00	600.0	
BZ	(Bugin)	- VO.00-	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.012	40.00 100.00	0000	×0.001	<0.00	40.00	<0.001	<0.001	<0.001		40.001	<0.001	<0.001	<0.001	<0.001	0.000	0.047	0.005	<0.001	<0.001	<0.001	<0.001	<0.001	6.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	c 0.001	<0.001	40.00	0.00	0.011	<0.001	<0.001	
ĭ €		0.5	0.5	0.5	0.5	0.5	0.5	0.5		9	9	0.7	0.4	0.4	0.4	0.4	0.4		0.5	9.0	90	9.0	0.7	0.3	9.0	9.0	0.5	0.5	9.0	9.0	9.0	0.7	0.5	0.5	0.5	0.5	9.0	9.0	9.0	0.7	9.0	9.0	0.6	0.7	0.5	0.5	
Bot int		1.2			10.2	9.7	9.5	87		7.5	0 9	6.0	80	5.4	5.0	4.6	4.2	:	10.6	10.0	9.4	8.8	8.	7.8	7.2	9.9	6.1	5.6	2.0	4.4	3.8	3.1	9.0	8.5	8.0	7.5	6.9	6.3	5.7	2.0	4.4	3.8	35.	2.5	11.2	10.7	
Top int	-+-		<u>.</u>	- -	10.7	10.2	9.7	6.5	7 2	- -		6	62	23	5.4	5.0	4.6		=	10.6	0.0	4.6	8.8	1.	7.8	7.2	9.9	6.1	5.6	2.0	4.4	3.8	9.5	9.0	8.5	8.0	7.5	6.9	6.3	5.7	5.0	4.4	3.6	3.2	11.7	11.2	
± int	+	12.0	2.5	30	_	-	4.5	20	9 4	0	i a	7.5	2 0	3	8.7	1.6	9.5		2.5		3.7	4.3	2.0	5.3	5.9	6.5	7.0	7.5	8.1	8.7	9.3	10.0	3.5	4.0	4.5	5.0	5.6	6.2	6.8	7.5	8.1	8.7	9.3	10.0	17	2.2	į
Lo int		÷	20	25	3.0	3.5	40	4.5		2 4	0 0	8	-	2.0	83	8.7	1.6		2.0	2.5	1.	3.7	4.3	5.0	5.3	5.9	6.5	7.0	7.5	8.1	8.7	9.3	3.0	3.5	4.0	4.5	2.0	5.6	6.2	6.8	7.5	8.1	8.9	9.3	_	1.7	
1	Dalle		111-93	Jul-93	Jul-93	11.93	101-93	11-93	20-1-1	8 5	200	6	1 3	6-1-	11193	Jul-93	Jul-93		Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Jul-93	Mar-94	Mar-94	
4	╁	80020	+	-	-		80B3		+	+		÷	+	-	80P13	+	80R11		80S1	80S5	80 874	80S3	80S2	6S08	80S8	80S7	9S08	•	80S13	80S12	80S11	80S10	80T4	80T3	80T2	80T1	80T8	4108	80T6	80T5	80T12	80T11	80T10	80T9	80.13	80012	

		Lo int	Ħ	Top int	Bot int	Ē	BZ	701	ETBZ	PXYL	MXYL	OXYL	MESIT	PSCU		<u>o</u>	TPH (as JP-4)
Sample ID	Date	£	€	(# MSL)	(# MSL)	€	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	TMB (mg/kg)	(mg/kg)	(mg/kg)
	Mar-94	32	3.5	9.7	9.4	0.3	<0.001	0.007	<0.001	200'0	0.011	0.038	0.919	0.068	0.402	1.452	898.0
301 55	Mar-94	3.5	3.7	9.4	9.2	00	<0.001	\$0.00	<0.001	0.015	0.008	0.011	0.228	0.023	0.020	0.30k	929.0
A 108	Mar-94	3.7	4.2	6	8.7	0.5	×0.001	0.007	0.068	0.183	0.287	0.329	3.750	0.952	1.060	9:93	4500.0
2000	Mar-04	42	4.7	8.7	8.2	0.5	0.021	8.390	21.100	32.000	72.200	49.700	43.600	90.500	39.200	356.711	12000.0
2010	Mar-94	4.7	5.2	8.2	7.7	0.5	0.151	39.800	90.00	80.800	184.000	120.000	57.700	153.000	60.200	755.651	15500.0
8011	Mar-94	52	5.7	7.7	7.2	0.5	0.237	57.500	51.400	59.700	138.000	84.200	26.700	76.000	30.300	524.037	10300.0
3	Mar-94	5.7	90	7.2	6.9	0.3	0.123	30.825	27.195	31.545	73.045	44.645	14.195	40.155	16.035	277.763	5491.0
01.08	Mar-94	0.9	6.4	6.9	6.5	0.4	0.010	4.150	2.990	3.390	8.090	5.090	1.690	4.310	1.770	31.490	682.0
200	Mar-94	8	8	6.5	9	70	40.001	1.260	0.590	0.683	1.600	1.030	0.320	0.622	0.247	6.352	44.2
2 2	Mar.od	2	7.0	1	5.7	0.4	0.005	1060	0.683	0.838	1.960	1.000	0.406	0.897	0.331	7.180	49.7
3 5	Mar 94	9 0	7 7	, v			000	0.405	0.441	0.569	1.330	0.312	0.255	0.641	0.241	4.194	29.9
9000	Mar-34	7.7	1.0	, c	2 6		500	0.240	0.364	0.468	1.080	0.185	0.224	0.662	0.248	3.471	21.9
90019	Mar-94	2,0	5 0	5 6	2 2	3 0	900	0.406	0.740	1.040	2.300	0.254	0.449	1.230	0.398	6.823	44.7
1000	Mail-94	6.0	0.0	2 4	2	2 0	300	0.054	0.372	0.503	1.200	0.028	0.272	0.572	0.195	3.196	19.1
90018	Mar-94	9 0	0 0	?	2 4) u	900	0.03	0.297	0.649	1.350	0.024	0.366	1.100	0.216	4.031	27.7
5	Mar-94	0 0	* 0	÷ c	2 6	2 0	8	0.00	0.220	0.419	0.698	0.014	0.252	0.955	0.121	2.695	19.6
4100	Mar-ga	t (200	0 0	2 0	2 0		0.00	0.159	0.302	0.480	0.046	0.159	0.693	0.095	1.973	16.8
. 00	Mar-94	200	0 .	200	3 -	3 0	2000	0.05	0.098	0.185	0.261	0.078	0.067	0.430	0.068	1.251	13.9
80022	Mar-94	2	- 9	4.0	2	2 0	5	9000	0.047	2600	0.079	0.040	0.044	0.268	0.079	0.679	<10.0
80021	Mar-up	- 9		9 0	3 0	2 4	3	0.020	0.031	0.110	0.053	0.016	0.009	0.293	0.115	0.647	<10.0
80020	Wal-94	0 9	7 7	5.0	0 0	3 0	2000	900	0000	0.130	0.067	0.021	0.014	0.215	0.133	0.656	<10.0
80019	Mar-94	127	12.0	20.00	3	0	600	0.05	2	3							
77,000	10	90	,	0 0	0.7	4	200	5	2000	<0.001	<0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
8004	Mar-34	0 4	4.	2 6	0.0	3 6	3 6	500	500	0000	<0.00	40.001	<0.001	<0.001	-0.0o	-0.00 100.00	53.4
8003	Mar-94	- (0,		9.6	2 0	3 6	757	0000	2 970	4.860	7.960	13,500	4.680	10.700	45.736	4060.0
8002	Mar-94	0			6) u	3 6	000	7.170	18 100	36.700	28.200	19.600	33.200	17.300	169.260	3340.0
- 80V1	Mar-94		0 0	1	7 0	0 0	3 6	4 867	3 794	9.340	19.020	14.615	9.975	17.088	8.815	87.513	1679.1
	Mar-94	0 0	0 0	į	2 6	9 6	600	0.744	0.418	0.580	1.340	1.030	0.350	0.975	0.329	5.766	18.2
200	Mar 04	ο α	2 0		9	9 0	00.00	1.960	0.857	1.140	2.640	1.960	0.487	1.460	0.445	10.949	34.8
- 6000	Marga	7.0	1 6		2	4	<0.001	1.480	0.731	1.040	2.400	1.660	0.510	1.510	0.454	9.785	35.9
9000	Mar OA	1 2	2 0	!	, rc	9	-0000	0.034	0.030	0.095	0.245	0.053	0.094	0.249	0.059	0.858	<10.0
9000	Mar 04	5 0	2 0	-	. 4	4	0000	0.007	<0.001	0.008	0.027	9000	0.018	0.053	0.012	0.131	<10.0
300	Mar-94	4	8 6	5.4	20	0.4	40.00	0.094	0.051	0.170	0.331	0.281	0.255	0.431	0.226	1.839	36.5
	Mar-94	88	9.5	1	4.3	0.7	<0.001	0.078	0.035	0.105	0.207	0.177	0.156	0.279	0.137	1.174	23.6
80V18	Mar-94	9.5	9.7	_	4	0.2	<0.001	0.061	0.019	0.041	0.083	0.072	0.058	0.126	0.048	0.508	10.7
80V17	Mar-94	9.7	10.0	-	3.8	0.3	<0.001	0.013	-0.00 -	0.007	0.021	0.012	0.014	0.043	300	2 6	V V
80V16	Mar-94	10.0	10.3	_	3.5	0.3	<0.001	0.007	6.00 100	<0.001	0.020	0.00	0.013	0.050	9.6	0.090	700
80V15	Mar-94	10.3	10.6	- 1	3.2	0.3	¢0.001	000	20.001	20.00	0.01	300	0.012	2000	8 8	7600	<10.0
80V14	Mar-94	10.6	10.9	- :	2.9	0.3	<0.001	<0.001	20.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.023	0.020	9.00	9	7600	8 6	0.049	<10.0
80V13	Mar-94	10.9	1.3	1	225	4.0	0.00	0.00	3.00	3 6	000	6	5	6200	0.00	0.043	<10.0
80V12	Mar-94	Ξ.	11.6		5.5	0.3	-C0.00-	200	V.00	00.00	0.00	9.00		0.117	0.033	0.687	<10.0
80V11	Mar-94	11.6	12.0	Ļ	1.8	0.4	50.05	0.124	0.030	85.0	8	2	5	3			
0,100				¥	9	00	000	0.007	6	0.006	0.010	0.008	0.006	0.006	<0.001	0.042	<10.0
SOWD	Ang-a	Ĺ	ų į		2 5	y u	5	2000	9	0.00	0.012	0.013	0.008	0.008	9000	0.062	<10.0
60W5	Aug-94		≥ ;	0.0	3 6	2	3 6	3 5	8 6	0.005	000	6000	0.00	0.007	0.005	0.041	16.8
80W4	Aug-94	j	7.7	10.3	8 6	9 0	0.00	3 5	8 8	0000	0000	0.010	0.006	0.007	0.004	0.040	27.5
BOWS	Aug-94	1	2.0	20.0	4 0	200	3 6	300	8	600	0000	0.004	9000	0.004	-0.0v	0.012	34.6
80W2	Aug-94	- 1	0.0	4.0	5 0	9 0	3 6	8 6	3 5	0000	000	0.00	<0.001	<0.001	<0.001	<0.001	16.5
80W1	Aug-94	9 6	6.0	ט ער מ	2 8	? .	9 0	6000	40.001	0.013	0.010	<0.001	0.012	0.015	0.010	690.0	162.0
2112	To John	2.5	3:5	255	3	,		-									

TPH (as JP-4)	0000	4900.0	3340.0	0.000	0.000	0.082	20.0	12.8	<10.0	<10.0	<10.0	<10.0	<10.0	0 0000	5570.0	2270.0	0.00.0	7,70.0	0.000	1//0.0	25300.0	25700.0	7290.0	524.0	10.2	<10.0	45.3	<10.0	<10.0	<10.0	10.2	12.0	<10.0	<10.0	<10.0	30.5	186.0	5350.0	1080.0	564.0	64.9	56.0	39.9	39.4	34.8	20.3	<10.0	10.2	
BTEXTMB TPH	(mg/ng)	1.024	7000	7.302	28.587	5003	0.820	7.146	.065	0.004	<0.001	0.008	0.059	17.4.74	45.175	60.479	0.094	30.032	10.502	14.168	978.020	1800.741	249.150	26.483	3.752	1.952	2.449	1.717	1.584	1.969	1.913	1.327	9000	40.001	0.005	0.004	0.010	1.449	20.789	15.378	2.962	3.046	1.812	1.563	1.432	0.898	0.364	0.661	
BTE	2			+		_	<u>.</u>	+				<0.001			7000		_	0.820	+			80.300	- ;	-	-	0.097	4	-	0.074	0.084	0.093	0.078	<0.001	<0.001	<0.001	<0.001	<0.001			2.110	0.334	0.318	0.207	0.223	0.249	0.149	0.049	0.089	
PSCU	(B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	9.130	8.310	3.200	25.400	1.290	0.386	0.080	0.035	0.004	<0.001	0.005	0.025	000	1.000	24.400	20.000	12.700	6.070	8.410	215.000	216.000	26.800	6.040	0.449	0.261	0.448	0.209	0.224	0.229	0.246	0.281	<0.001	-0000	<0.001	<0.001	<0.001	0.839	8.680	5.700	0.839	0.797	0.521	0.550	0.614	0.382	0.149	0.275	
MESIT	(mg/kg)	11.400	8.520	2.020	14.500	0./16	0.153	0.014	0.007	<0.001	<0.001	0.003	0.016		018.7	15.300	30.5	5.240	0.842	1.320	81.300	869.000	23.000	2.290	0.275	0.076	0.178	0.064	690:0	0.073	0.074	0.062	50.00	000	<0.001	<0.001	<0.001	0.109	3.700	2.180	0.359	0.337	0.194	0.205	0.226	0.143	0.061	0.111	
OXYL	(mg/kg)	0.421	0.572	0.077	1.040	0.070	6000	<0.00 10.00	<0.001	<0.001	<0.001	<0.001	<0.001		0.252	0.506	0.359	0.142	0.047	0.019	0.011	0.071	0.068	0.004	0.187	0.027	0.257	0.265	0.033	0.254	0.160	0.008	0000	000	0.001	<0.001	<0.001	0.101	1.110	1.140	0.357	0.410	0.213	0.131	0.080	0.053	0.026	0.046	
MXYL	(mg/kg)	0.282	0.288	0.054	0.686	0.043	0.008	°0.00	<0.001	<0.001	<0.001	<0.001	<0.001		9.210	17.800	10.100	2.540	0.223	0.209	363.000	356.000	70.700	8.940	0.892	0.742	0.740	0.609	0.659	0.715	0.667	0.245	5	5000	<0.00	<0.001	<0.001	090:0	2.380	2.550	0.594	0.644	0.372	0.225	0.101	0.072	0.044	0.074	
PXYL	(mg/kg)	0.272	0.346	0.067	0.746	0.047	0.008	40.001 100.00	<0.001	<0.001	<0.001	<0.001	<0.001		4.420	8.860	2.800	2.330	0.500	0.355	129.000	146.000	39.100	3.700	0.595	0.374	0.337	0.255	0.273	0.324	0.344	0.333	5	5 5	0.00	40.00	0.010	0.047	1.270	1.180	0.323	0.361	0.203	0.158	0.107	0.065	0.023	0.046	
ETBZ	(mg/kg)	0.019	0.038	0.008	0.078	0.007	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	<0.001	1	2.250	4.660	2.700	0.635	0.054	0.062	115.000	133.000	37.600	3.290	0.580	0.341	0.265	0.222	0.246	0.273	0.307	0.302	6	500	5000	1000	00.00	0.016	0.499	0.511	0.156	0.179	0.095	0.068	0.049	0:030	0.012	0.021	
TOL	(mg/kg)	40.001	0.013	0.007	0.037	40.001	<0.001	0.005	0.005	<0.001	<0.00	00.00	<0.001		0.108	0.204	0.107	0.039	0.016	0.016	0.132	0.143	0.052	0.010	0.259	0.014	0.020	0.014	90.00	0.017	0.014	0.004	900	35	2000	000	-000v	0.030	<0.001	0.007	<0.001	<0.001	0.007	0.004	900:0	0.003	<0.001	<0.001	
BZ	(mg/kg)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.00	00.00	-000	<0.00		0.025	0.049	0.028	0.016	0.00	0.007	0.077	0.227	0.130	0.028	0.260	0.020	<0.001	×0.001	<0.001	<0.001	600.0	0.014	200	-	00.00		1	!	!		<u> </u>	<0.001		!		<0.001		<0.001	
ĮĮ.	Œ	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0	0.0	0.4		0.3	0.4	0.5	0.4	0.5	0.4	0.5	0	0.4	0.4	0	0	C	0.4	0.5	0.4	0.5	0.4			1	- :	1	i	1	i .	1	1	1	i	ŀ	ı	0.5		İ
Bot int	(# MSL)	8.0	9.7	7.2	6.8	6.4	0.9	5.5	1	4.7	4.3	o o	3.5		10.2	9.8	9.3	8.9	8.4	8.0	7.5	7.1	6.7	8	6 4	5 10	5.5	4.8	4.3	3.9	3.4	3.0		20.00	4 0	9 0	2 0	77	7.6	7.2	6.8	6.4	6.0	5.6	5.2	4.3	3.8	3.4	
Top int		8.4	8.0	7.6	7.2	9	6.4	6.0	LC:	•	47	. 4	3.9	:		10.2		9.3		8.4	8.0	7.5	7.1	67		6	2,5	5.2	4.8	4.3	6	3.4	,	ļ	4	_	+	_	+	1	Ļ	1	+	<u> </u>	-	ļ.,	4.3	_	
Εij	(#)	4.0	4.4	4.8	5.2	5.6	6.0	6.5	9	2 6	5.4	. a	8.5		2.3	2.7	3.2	3.6	4.	4.5	5.0	ν.	ď	9 0	9 8	200	7.3	7.7	82	8	5	9.5	1		4	÷		+	+	+-	╀	+	╁	+-	-	⊢	8.4	<u> </u>	
Loint	(#)	3.6	4.0	4.4	4.8	5.2	5.6	0.9	5	0 9	2.0	2.7	. 18		5.0	23	2.7	3.2	3.6	4.1	4.5	6	2 4	α 	6.9	9 6	25	2.7	77	82	8	9.1				4	_	4.		_	-	⊥.	_		١.	┖	6.7	١.	
	Date	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	A10-04	A10-04	500	70 01 V	Aug-94		Aug-94	A. 0.4	A10-04	200	200	A10-04	A 10 04	A10-94	A10-04	Ain-94	A10-04	Aug-94		Aug-94	Aug-94	Aug-94	40-504	Aug-04	A10-04	Aug-94	AID-04	Atio-94	Ain-94	Aug-94	Aug-94	Alre-94	Aug-94	Aug-94	,						
	Sample ID	80W12 /		1	80W9			-	-	_		_	80W14	+				80X3				1	Ī	T	İ	90X2	Ī	1	Т	T	00X1X	80X13		80Y6	80Y5	8074	8073	9012	80V13	80712	80V11	80Y10	80V9	80X8	80Y7		80Y19	80Y18	

		Loint	H in	Top int	Bot int	Ĭ	BZ	701	ETBZ	PXYL	MXYL	OXYL	MESIT	PSCU		ш_	TPH (as JP-4)
Sample ID	Date	€	€	(# MSL)	(# MSL)	£	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	тмв (тужд)	1	(mg/kg)
80Y15	Aug-94	96	10.0	2.6	2.2	0.4	40.00 1	<0.001	0.024	0.049	0.089	0.052	0.080	0.216	0.075	0.584	×10.0
80Y14	Aug-94	10.0	10.4	2.2	1.8	0.4	<0.001	<0.001	0.017	0.036	0.058	0.038	0.071	0.189	0.064	0.473	×10.0
7200	A10.04	-	7 -	00	96	60	00.00	0.007	<0.001	0.004	0.008	0.007	0.004	9000	<0.001	0.036	<10.0
8076	A10-94	14	2	96	9.2	0.4	40.001	40.00	<0.001	<0.001	-0.00	<0.001	<0.001	<0.001	c0.001	-0.00 -	<10.0
8075	Aug-94	1.8	2.1	9.5	8.9	0.3	<0.001	0.008	<0.001	-0.00	0.008	<0.001	<0.001	0.007	40.001	0.022	<10.0
8074	A110-94	2	2.5	8.9		0.4	0.018	<0.001	0.022	0.040	0.057	20.00	0.043	0.031	0.033	0.244	109.0
8023	Aug-94	25	2.8	8.5	8.2	0.3	0.011	0.063	2.320	4.200	7.490	0.161	7.940	11.200	5.710	39.095	5630.0
8072	A10-94	8	32	8.2		0.4	6000	0.041	5.080	8.740	16.600	0.191	17.000	29.700	13.800	91.161	6490.0
8071	410	30	2.5	7.8	7.5	0.3	<0.001	0.051	12.500	19.800	36.200	0.214	25.800	55.700	20.100	170.365	9160.0
80714	A10-04	4 6	3.2	7.5	7.3	00	40.00	0.025	0.784	1.350	2.440	0.216	1.850	4.250	1.670	12.585	574.0
90214	A 10 01	5 6	3	7.3	2 2		000	0.012	1.110	1.930	3.690	0.284	2.490	5.940	2.200	17.656	800.0
80719	A10-04	40	44	202	6.6	0.4	<0.001	40.001	0.018	0.043	690'0	0.005	0.043	0.112	0.037	0.328	13.5
90714	A10.94	44	4.8	99	62	0.4	×0.001	<0.001	0.010	0.021	0.031	0.004	0.024	0.073	0.024	0.186	14.0
80710	A10-94	4.8	2.2	6.2	83	0.4	40.00	<0.001	0.004	0.007	0.013	-0.00 1	0.008	0.019	0.006	0.057	<10.0
8079	A10-94			80	5.4	0.4	0.00	<0.001	0.016	0.027	0.047	0.004	0.031	0.079	0.027	0.231	17.2
8078	Airo-94	2.0	9	5.4	5.0	0.4	<0.001	<0.001	0.037	0.061	0.110	600.0	0.072	0.176	0.064	0.529	25.3
80720	A10-94	0.9	6.5	5.0	4.5	0.5	<0.001	40.00	0.005	0.00	0.016	6.00 1	0.015	0.036	0.014	0.095	<10.0
80719	Aug-94	2	69	4.5	4	9	<0.001	40.001	<0.001	<0.001	40.001	40.00	0.010	0.025	0.010	0.044	<10.0
80718	A10-94	9	2 2	4.1	3.7	0.4	40.00	<0.001	40.001	-0.00v	40.001	6.00	0.010	0.024	0.008	0.042	<10.0
20212	200	2 6	7.	2.7	6	70	90	0000	0.00	0.005	0.00	-0.00	0.013	0.034	0.013	0.073	<10.0
80216	A 0.0	7.7			60	4	×0.00	0.00	<0.001	<0.001	9000	<0.001	0.006	0.012	0.005	0.028	<10.0
80715	A10-94	· ~	ς α	2.9	25	0.4	<0.001	<0.001	600.0	0.015	0.022	40.00 1	0.013	0.030	0.012	0.100	<10.0
21700		,	3														007
80ZA6	Aug-94	2.5	2.7	9.5	9.3	0.2	40.001	0.021	<0.001 100.001	40.00 10.00	0.014	0.010	90.00	0.011	40.00	0.056	V-10.0
80ZA5	Aug-94	2.7	3.2	9.3	8.8	0.5	<0.001	<0.001	<0.00 100.00	0.00	<0.001	40.00	90.00	-0.00 -0.001	40.00	40.001	0.012
80ZA4	Aug-94	3.2	3.6	8.8	8.4	0.4	<0.001	0.012	<0.00 1	40.001 1	6 0.00	<0.001	9.00	0000	40.00	120.0	0.000
80ZA3	Aug-94	3.6	4.1	8.4	7.9	0.5	<0.001	<0.001	<0.001	40.001	40.00 10.00	0.074	0.463	40.001	40.001	0.537	5290.0
80ZA2	Aug-94	4	4.5	7.9	7.5	0.4	<0.001	0.012	0.011	0.017	0.069	0.021	5.040	1.440	2.73	8.359	4040.0
80ZA1	Aug-94	4.5	2.0	7.5	7.0	0.5	40.001	0.004	9.00	0.003	40.00	-0.001	0.716	0.73	95.0	1.095	2000
80ZA13	Aug-94	5.0	5.1	7.0	6.9	0	<0.001	0.026	40.00	0.00	9.00	40.00	0.016	0.001	2000	5 5	200
80ZA12	Aug-94	5.1	5.5	6.9	6.5	0. 4.	<0.001	-000 -000	90.00	0.00	60.00	5.6	0.00	0.15	0.05	9 6	700
80ZA11	Aug-94	5.5	5.9	6.5	-6.	0.4	40.001	<0.001	00.0	000	0.00	5 6	888	0.132	90.0	0.13	<10.0
80ZA10	Aug-94	2.9	6.3	9	2.7	0	40.001 0.001	9.00	5000	20.00	8,6	3 5	5	5 6	9600	000	<10.0
80ZA9	Aug-94	6.3	6.7	5.7	5.3		60.00	30.00	0.00	500	8 6	6	000	00.00	0.063	0.034	<10.0
80ZA8	Aug-94	6.7	7	5.3	20. 1	9 6	0.00	9.0	9.00	500	300	5	000	0.117	0.071	0.196	<10.0
80ZA7	Aug-94	7	7.5	9.	Ç.	2. 0	50.00	500	600	5	000	0000	0.00	0.048	0.030	0.085	<10.0
802420	Aug-94		و و	Ç.	4 0	3	3 6	3 6	8 8	600	900	\$0.001	<0.001	0.083	0.049	0.133	<10.0
80ZA19	Aug-94	9.0	2 0	4. 4	4 0	5 6	3 5	8 6	000	000	40.001	0.00	<0.001	0.110	0.068	0.188	<10.0
002A10	5-5-1	9 6	9 0	2 9	2 6	3 6	6	5	000	×0.001	<0.001	9000	-0.00 -0.00	0.187	0.092	0.285	11.9
802A17	Aug-94	0 0	0 0	2 6	3 6	5 0	000	0000	0000	0.00	<0.001	0.014	0.023	0.371	0.139	0.547	24.3
002410	to Since	0 0	y 0	9 0	2 0	5	000	000	9000	40,00	40.00	0.005	0.018	0.146	0.035	0.204	<10.0
002A13	to-for-	9 0	5	2 6	100	č	000	0000	<0.00v	0.00	<0.001	40.00	0.013	0.118	0.043	0.174	<10.0
\$05×14	* And	0	2	j	3	3											
ROZRS	Ain-94		30	6.6	4.6	0.5	<0.00	<0.001	<0.001	-0.00	40.00	9.00	<0.001	40.00	60.05 10.00	V0.00	<10.0
80ZB4	Aug-94	30	3.5	9.4	8.9	0.5	<0.001	40.001	<0.001	60.00 1	-0.00	40.00	-0.09 	40.00	40.00	40.00	14.4
80ZB3	Aug-94	1	4.0	8.9	8.4	0.5	<0.00	<0.001 F00.001	<0.001	-0.00 -	9.00	6.8 2	90.001	40.00	40.001	5.55	20.0
80ZB2	Aug-94	:	4.5	8.4	7.9	0.5	0.006	0.023	0.007	0.028	0.055	0.018	0.212	0.024	3 5	0.500	705.0
80ZB1	Aug-94	_	5.0	7.9	7.4	0.5	<0.001	0.005	0.028	0.108	0.145	0.024	1.140	0.46/	1.855	0.041	2:22

TPH (as JP-4) (mg/kg)	596.0	11.3	<10.0	12.7	<10.0	13.5	12.4	<10.0	<10.0	<10.0	15.3		0.0	0.00	0.00	0.010	V 10.0	200.0	2/80.0	0.000	67.0	2.70	0.00	2.0	4.70	V V	0.00	×10.0	000	VIO.0	<10.0	<10.0	<10.0	41.9	271.0	3560.0	320.0	1270.0	36.2	20 0	1,0	9	10.0	<10.0	<10.0	<10.0	<10.0
HGT.				: i						:	: ·		÷				:		İ	İ				İ						i		_	i				-										
BTEXTMB (mg/kg)	8.480	0.270	0.214	0.580	0.253	0.192	0.164	0.089	0.142	0.184	0.025	6	00.00	0000	200	20.00	0.00	8400	13.243	92.209	26.730	0.040	3.173	3.702	1.930	0 0	0.103	0.208	707.0	0.403	0.018	<0.001	0.010	0.011	0.037	1.292	0.961	4.585	760.0	9 5	000	0.064	0.052	0.084	0.137	0.254	<0.001
MB (mg/kg)	2.620	0.073	0.043	260.0	0.056	0.058	0.051	0.029	0.047	0.053	0.008	5	00.00	00.00	00.00	0.00	00.00	0.013	20,00	4060	7300	0.339	0.400	0.518	0.200	0.043	0.00	0.00	0.083	2	<0.001	<0.00 1	<0.001	<0.001	0.010	0.053	0.143	0.665	0.028	0.00	0.010	0.012	0.011	0.016	0.027	0.050	<0.001
PSCU (mg/kg)	3.320	0.104	0.077	0.215	0.112	0.081	0.078	090.0	0.086	0.108	0.017	Ç	00.00	00.00	00.00	500	9.00	00.00	200	0000	900	0.040	4 010	1.030	0.047	0.044	0000	900	0.032	2	0.00	<0.001	<0.001	40.00 1	<0.001	0.168	0.225	1.130	0.016	200	8100	0000	0.020	0.029	0.048	0.082	<0.001
MESIT (mg/kg)	2.080	0.093	0.045	0.077	0.043	0.040	0.032	<0.001	<0.001	<0.001	<0.001	5	8 6	3 6	20.00	3 6	5 6	7000	06.00	4470	7.470	240	0.400	0.049	0.000	0.00	6000	0.009	0.000	60.0	<0.001	<0.001	<0.001	<0.001	<0.001	0.988	0.582	2.750	0.052	0.03	0.034	0.030	0.021	0.023	0.034	0.067	<0.001
OXYL (mg/kg)	0.024	<0.001	<0.001	0.007	0.005	×0.00	<0.001	<0.001	0.004	0.010	<0.001	5	8 6	900	900	8 6	0.00	20.00	200	2.500	0.000	2000	0.333	0.000	2000	20.00	5 5	20.00	0.00	9	<0.001	<0.001	<0.001	<0.001	0.008	<0.001	<0.001	0.000	50.00	20.00	2000	-000	0.00	0.004	0.007	0.015	<0.001
MXYL (mg/kg)	0.212	<0.001	0.027	0.103	0.019	0.007	0.004	<0.001	<0.001	0.005	<0.001	Ş	500	800	00.00	8.00	5.8	80.50	20.00	0.440	0.410	2 4	0.010	0.070	2000	2000	3 5	20.00	0.00	7.0.4K	<0.001	60.001	0.004	0.004	0.005	0.005	50.001	20.012	50.00	30.00	800	-0 00 P	0.00	0.007	6000	0.020	<0.001
PXYL (mg/kg)	0.192	<0.001	0.017	0.062	0.014	9000	-0.00 1	<0.001	0.005	600.0	<0.001	5	3 5	200	3 6	3 8	20.00	0.0	2 50	1.50	4.020	24.0	1000	0.599	200	00.00	3 5	00.00	0.003	0000	<0.001	<0.00 1	<0.001	<0.001	0.007	0.045	40.001	0.013	10000	00.00	200	<0.001	<0.001 1	0.005	0.008	0.015	<0.001
ETBZ (mg/kg)	0.025	<0.001	900.0	0.018	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	Š	3 6	3.0	3.6	3 6	00.00	0.00	0.023	200	0.00	2 6	0.034	0.003	1000	00.00	8 8	90.00	2000	3	<0.001	<0.001	<0.001	<0.001	.00 .00	0.012	100.02	0.00	0.00	300	5000	20.00	<0.001	<0.001	0.003	0.005	<0.001
TOL (mg/kg)	0.008	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	Ş	9000	0.00	0.00	000	9.00	0.021	000	0.00	900	5	3.00	50.00	2000	00.00	3 6	0.00	00.00	3	0.00	<0.001	0.006	0.007	0.007	0.021	0.011	0.00	\$ 00.00 \$ 00.00	300	86	0000	<0.001	<0.001	<0.001	<0.001	<0.001
BZ (mg/kg)	40.001	<0.001	<0.001	<0.001	<0.001	-0.00	<0.001	<0.001	<0.001	<0.001	<0.001	0	00.00	900	00.00	5 6	8.8	20.00	8 6	3 5	3 5	3 5	9.00	50.00	3 5	3.5	3 5	0.00	40.00	100.00	<0.001	<0.001	<0.001	40.001	<0.00-	<0.001	<0.001	60.00	50.00	50.00	3.5	000	40.001	<0.001	<0.001	-0.001	<0.001
토 (Đ	0.5	0.5	0.5	0.5	0.5	0.3	0.4	0.5	0.4	0.5	0.4	C	3 6	# L	0	† L	0 0	9 0	0 0	1	t 5	3 3	1 0		2 5	7 6	5 6	4 2	3 3	5	0.3	0.4	0.5	0.4	0.5	4.	5	C) C	C C	2	7.0	5	0.5	0.5	0.5	0.5	0.1
Bot int (ft MSL)	6.9	6.4	5.9	5.4	4.9	4.6	4.2	3.7	3.3	2.8	2.4	9 0	9 0	2.0		2 0	0.0	1 0	5.7	? .	6.7	200	2 0	D 4	† C	0.0	2 5	2.4	0.0	5	9.6	9.2	8.7	8.3	7.8	7.4	5.3	000	D. 0	0.0	4.0	44	3.9	3.4	2.9	2.4	9.2
Top int (ft MSL)	7.4	6.9	6.4	5.9	5.4	4.9	4.6	4.2	3.7	3.3	2.8	0	5 0	9 9	7.0	7.0		0 0	9 7	2 7	7.1	.,	200	2.0	2 2	4 0	2 4	0. 4	7 0	0.0	6.6	9.6	9.5	8.7	œ (%	7.8	4.7	5.	0.0	2 0	5.4	4	4.4	3.9	3,4	5.9	9.3
Ĭ €	5.5	6.0	6.5	7.0	7.5	7.8		8.7	9.1	9.6	10.0	c	0 0	,	1 0	9 ,		0 0	0.0	0	0 0	1 0	0 0	0 0	2 0	0 0	ָ ק	3.7	2 2	2	3.3	3.7	4.2	4.6	5.1	5.5	5.6	6.0	0.0	- 1	0.0	8.5	9.0	9.5	10.0	10.5	3.1
£ (#	5.0	5.5	6.0	6.5	7.0			8.2	8.7	9.1	9.6	c	2 0	1 0	, c	7 0	O +	- 1	0.0	2 4	τ α ο α	2 6	ų , r	0.0	0 0	0 0	0 0	S 6	7.6	2	3.0	3.3	3.7	4.2	4.6	5.1	2.5	2.6	ם ט	0.0	7.5	80	8.5	9.0	9.5	10.0	3.0
Date	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	, C. V	5 5 5 V	of the second	16-50 V	Aug-94	# 6 6 V	Aug-94	Aug-94	6000	A10.01	500	to one	Aug-94	Aug of	Aug-94	200	Aug-94	PG-Gny	te-fine	Aug-94	Aug-94	Aug-94	Ang-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	46-50A	A10-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94	Aug-94
Sample ID	80ZB10	80ZB9	80ZB8	80ZB7	80ZB6	80ZB16	80ZB15	80ZB14	80ZB13	80ZB12	80ZB11	00200	90200	00200	90204	00203	20202	80201	802012	002040	80200	90203	90709	80ZC/	007010	802017	902010	802015	802C14	002013	80ZD6	80ZD5	80ZD4	80ZD3	80ZD2	80ZD1	80ZD12	80ZD11	802010	80209	80200	807017	80ZD16	80ZD15	80ZD14	80ZD13	80ZE6

Samole ID	Date	<u>₹</u>	ĒĒ	Top int (ft MSL)	(ft MSL)	€	BZ (ma/ka)	TOL (ma/kg)	ETBZ (ma/kg)	PXYL (mg/kg)	MXYL (mo/kg)	OXYL (mo/kg)	MESIT (mg/kg)	PSCU (mo/kg)	TMB (mo/kg)	(mg/kg)	TPH (as JP-4)
807016	A110-04	7	ď	8 4	20	90	5	2000	0.515	0.734	1 640	8000	247	0.047	0 050	7.27	200
00200	- C C C		2 u	2 0	7.7	2 1	3 6	50.0	0.00	0.00	0.040	0.000	0.047	100	0.330	1007	20.7
00700	100	0 0	0.0	3.5		0 0	00.00	0.00	0.079	0.947	0/6/	0.00	0.400	0.120	0.403	2.002	0.87
802G14	Aug-94	Ç.	0.6	4.7	4.2	0.5	×0.001	0.013	0.561	0.738	1.640	0.005	0.242	0.726	0.254	4.179	27.5
80ZG13	Aug-94	0.0	9.5	4.2	3.7	0.5	<0.001	0.008	0.425	0.532	99.	0.00 100	0.137	0.411	0.164	2.837	19.2
ROZHS	A110-04	2.0	25	117	11.9	0.5	5	5	.000	5	5	0000	5	000	5	Ş	0.04
007114	200		2 6	0 1	1 1	2 4	5	600		0000	3 6	500	000	9 6	3 6	300	V V V
#U700	Aug a	3 6	0,1	7 !		2	20.00	20.00	20.00	20.00	90.00	V.00	9.00	20.00	ςη. (Δ.)	-00.00 -00.00	<10.0
80ZH3	Aug-94	3.0	3.5	10.7	10.2	0.5	<0.00-	<0.001	-00.00 -	<0.00 40.001	40.00±	<0.001	<0.001	<0.001	<0.001	-00.00 -	<10.0
80ZH2	Aug-94	3.5	4.0	10.2	9.7	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 40.001	<0.001	<0.001	40.001 1	<10.0
80ZH1	Aug-94	4.0	4.5	9.7	9.5	0.5	<0.00 1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZH12	Aug-94	4.5	4.8	9.2	8.9	0.3	<0.001	0.011	<0.001	<0.001	40.00 1	<0.001	<0.00	<0.001	<0.001	0.011	<10.0
80ZH11	Aug-94	4.8	5.2	8.9	8.5	0.4	<0.001	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	00.0	0000	7
80ZH10	Aug-94	5.2	5.7	8.5	8.0	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	<0.001	000	40.00	
80ZH9	Aug-94	5.7	9	8.0	9.2	0.4	×0.001	\$0.001	0.00	<0.00	\$0.00	\$0.001	00.00	<0.00 0.001	000	000	7 7
80ZH8	Aug-94	6.	99	7.6	7.1	0.5	<0.001	00.00	40.00 40.00	40.00	00.00	<0.001	<0.00	<0.001	0001	40.00	7
80ZH7	Aug-94	99	7.0	7.1	6.7	0.4	0.001	<0.001	×0.001	<0.00 1000 1000 1000 1000 1000 1000 1000	\$0.00 1	<0.00	\$0.00 \$0.00	000	000	5 6	7 7
80ZH6	Aug-94	7.0	7.5	6.7	6.2	0.5	<0.001	40.00	<0.001	<0.00	00.0	00.00	0000	0000	000	000	7 7
		:		;		}			}	}				2000	0000	200	7
80ZI5	Aug-94	2.5	3.0	11.4	10.9	0.5	<0.001	0.009	<0.001	9000	0.010	9000	<0.001	0.005	<0.001	0.035	<10.0
80ZI4	Aug-94	3.0	3.5	10.9	10.4	0.5	<0.001	<0.001	<0.001	<0.001	40.00 40.00	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZI3	Aug-94	3.5	4.0	10.4	9.9	0.5	6.00	<0.001	<0.001	<0.001	40.00 1	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZI2	Aug-94	4.0	4.5	9.9	9.4	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	40.001	<10.0
80ZI1	Aug-94	4.5	5.0	9.4	8.9	0.5	<0.001	0.010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.010	<10.0
80Z112	Aug-94	5.0	5.2	8.9	8.7	0.2	<0.001	600.0	<0.001	0.008	<0.001	0.010	0.074	<0.001	0.034	9.13	326.0
80ZI11	Aug-94	5.2	5.5	8.7	8.4	0.3	0.007	0.014	<0.001	090.0	0.069	0.025	2.100	0.007	0.340	2.622	2580.0
80ZI10	Aug-94	5.5	5.9	8.4	8.0	0.4	<0.001	0.010	<0.001	0.065	<0.001	0.036	18.400	0.296	7.340	26.147	5150.0
80Z19	Aug-94	5.9	6.3	8.0	7.6	0.4	<0.001	0.013	<0.001	0.011	<0.001	0.007	4.230	0.272	2.250	6.783	925.0
80ZI8	Aug-94	6.3	6.7	7.6	7.2	0.4	<0.001	<0.001	<0.001	<0.00 1	-0.00 -	<0.001	0.014	<0.001	<0.001	0.014	13.6
80ZI7	Aug-94	6.7	7.1	7.2	6.8	0.4	0.002	<0.001	<0.001	<0.00	<0.00 1	<0.00 1	0.061	<0.001	0.032	0.095	11.8
90ZI6	Aug-94	7.	7.5	6.8	6.4	4.0	\$0.00	0.003	×0.00	<0.00	0.00 10.00	<0.001	0.220	0.011	0.115	0.349	32.9
		ļ															
80ZJ6	Aug-94	2.5	2.8	11.4	1.1	0.3	<0.001	<0.001	<0.001	0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80205	Aug-94	7.8	3.2	11.1	10.7	0.4	CO:001	<0.001	-0.00	<0.001	×0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
802.14	Aug-94	3.2	3.7	10.7	10.2	0.5	<0.001	<0.001	<0.001	<0.001	<0.04 1	<0.001	-0.00 1	×0.001	<0.001	<0.001	<10.0
802.03	Aug-94	7	4.	70.5	20.00	4.0	20.00	50.00	40.00J	×0.001	- 40.001 - 6.001	<0.001	<0.001	<0.001	×0.001	<0.00 1	<10.0
80202	Aug-94	4. 4	0.4	D 0	20.00	0.5	00.00	00.00	2000	50.00	20.00	100.05	20.001 20.001	40.001	40.00	40.001	<10.0
00201	Aug-94	9 4	0.0	200	0.0	4.0	00.00	20.00	0.00	0.00	0.023	200	0.00	0.01	0.005	0.073	<10.0
002013	700-014	0 0	0 1	0 0	0.0	3	0000	0.023	0.014	0.000	0.045	0.029	00,00	0.094	0.266	2.280	3060.0
807.111	A10-04	7.0		200	7.0	1 0	500.0	0.025	6640	000	200.2	002.14	00 500	22.000	13.300	400 065	10.00
807.110	A: 0-94	9	8	7.0	7.5	200	000	0.315	10.400	23 000	24 200	20.50	25.30	407 000	00.000 AF 200	400.000	19700.0
80Z.19	Aug-94	6.4	6.7	7.5	7.2	6	×0.001	0.050	2.430	5.030	11 100	4 700	5 290	14 800	070.5	48.470	1460.0
802.18	Aug-94	6.7	7.1	7.2	8.9	4.0	<0.001	0000	0.574	1.110	1 890	1 270	0.866	2 240	0.00	8 874	100.0
802.17	Aug-94	7.1	7.5	6.8	6.4	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	40.00 1	9000	9000	0.007	0.019	100
																	7
80ZK4	May-95		2.0	10.4	6.6	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZK3	May-95		2.5	6.6	9.4	0.5	<0.00 1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZK2	May-95	2.5	3.0	9.4	8.9	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZK1	May-95		3.5	8.9	8.4	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZK10	May-95	┙	3.6	8.4	8.3	0.1	6 0.00	<0.001	<0.001	<0.001	40.001	<0.001	0.035	<0.001	<0.001	0.035	<10.0

		Lo int	Hi iut	Top int	Bot int	互	BZ	TOL	ETBZ	PXYL	MXYL	OXYL (molka)	MESIT (ma/kg)	PSCU (ma/kg)	TMB (mg/kg)	BTEXTMB (mg/kg)	TPH (as JP-4) (mg/kg)
Sample ID	Date	E)	E	(II MOL)	(HC MOL)	3	(mg/kg)	(Back)	(Name	(Sugar	,000	500	0000	\$0.00 100.00	40.001	\$0.00	1320.0
80ZK9	May-95	3.6	4.1	8.3	7.8	0.5	40.00	3.5	8.6	3.6	88	5	40.00	6000	<0.001	600.0	561.0
80ZK8	May-95	4.1	4.5	7.8	7.4	4	0.00	5.00	8.6	3 5	8 6	8 6	0.028	40.00	40.00	0.028	65.2
80ZK7	May-95	4.5	20	4.4	20.0	0 0	9.00	39.5	3 5	5	1000	\$0.00	40.00	<0.001	<0.001	<0.001	<10.0
80ZK6	May-95	5.0	Ç. 0	9	9.0	0 0	3.5	3 6	500	20.001	0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<10.0
80ZK5	May-95	2.0	0.0	4.0	5 6	0 0	3 6	8 6	500	1000	6.00	40.001	<0.001	40.001	<0.001	<0.001	<10.0
80ZK15	May-95	9 0	5	n 4	0 0	2 6	3 6	5	0000	0.00	9.00	<0.001	<0.001	-0.001	<0.001	40.001	<10.0
802K14	May-95	200	9	0 0	3.6	- u	8	500	9.00	<0.001	<0.001	40.001	*0.00	<0.001	<0.001	\$0.00	<10.0
80ZK13	May-95	٥,	77	7.0	,	3 3	3 6	5	500	000	40.001	<0.001	*0.00	<0.001	<0.001	<0.001	<10.0
80ZK12	May-95	7.2	9./	4.	5.4	5 0	3.5	300	8	000	900	0000	<0.00	\$0.00	-0.00v	<0.00v	<10.0
80ZK11	May-95	2.6	8.0	4 .3	6.	o •	50.00	9.00	3.0	3							
		,	,	Ç	9 + +		600	500	1000	<0.001	<0.001	40.00	<0.001	-0.00	<0.001	<0.001	<10.0
80ZL5	May-95	2 .	ر د ر	12.1	0 +	0 0	3 6	500	1000	900	0.00	<0.001	<0.001	40.001	<0.001	<0.001	<10.0
80ZL4	May-95	3	2.0	9	- 00	0 0	300	8 6	200	900	9001	40.001	60.001	&.00 1	<0.001	<0.001	<10.0
80ZL3	May-95	2.0	2.5	- 3	10.6	0 0	9.00	3 5	500	200	000	<0.001	<0.001	<0.001	60.00	40.001	<10.0
80ZL2	May-95	2.5	30	9.0	10.1	ر دن ر	0.00	3 6	3 6	8 6	6	000	0.00	<0.001	<0.001	40.00	19.1
80ZL1	May-95	30	3.5	9	9.6	0.5	20.00	00.00	5000	3 6	8	5	000	\$0.00	<0.001	<0.001	127.0
80ZL10	May-95	3.5	4.0	9.6	9.1	0.5	20.001	9.00	3.6	900	3 5	5	500	0.021	0.010	0.030	160.0
80ZL9	May-95	4 0:	4.5	9.1	9.6	0.5	9.00	40.001	9.65	20.00	4 950	0.05	908	8 400	4.850	25.833	3940.0
80ZL8	May-95	4.5	2.0	9.6	8.1	0.5	90.00	0.148	0.559	1.110	000	0.000	200	9	15,600	112 467	5960.0
80ZL7	May-95		5.5	8.1	9.2	0.5	40.00	0.477	4.220	7.940	14.900	0000	37 700	000	31 200	426.270	8640.0
80ZL6	May-95		9.0	2.6	7.1	0.5	<0.00 -	2.470	35.000	23.200	12.000	90.00	36.0	13 400	4 020	65 220	1040.0
80ZL13	May-95		6.5	7.1	9.9	0.5	40.001	1.190	5.380	8.320	3 6	9.070	0.550	0.576	0.272	4.039	48.9
80ZL12	May-95	6.5	7.0	9.9	6.1	0.5	-0.001	0.049	0.549	0.745	0/6.	0.020	0.232	244	0.223	4 063	45.6
80ZL11	May-95	Ш	7.5	6.1		0.5	-0.001	0.194	0.610	0.814	9	0.250	0.921	*	300	200	
						::		1000	9	Š	6	7000	9000	<0.001	<0.001	40.001	<10.0
80ZM4	May-95	7.	5.0	÷.	10.5	0.5	<0.001	-Q-00-00-00-00-00-00-00-00-00-00-00-00-0	Q. 60	0.00	20.00	8200	5 970	8 730	6.240	21.760	2870.0
80ZM3	May-95	_	2.5	10.5	10.0	0.5	<0.001	<0.001	0.032	9.400	0.242	0.00	7,780	020	0.917	15.836	4250.0
80ZM2	May-95		3.0	10.0	9.5	0.5	0.00	-0.00	0.051	0.268	920	0.09	2710	7 950	5.150	16.282	3210.0
80ZM1	May-95		3.5	9.5	0.6	0.5	40.00±	20.001	0.028	0.283	0.00	8000	0.504	080	1170	10.975	3340.0
80ZM9	May-95			9.0	8.5	0.5	40.001	40.00	0.042	20.102	0.00	950	67.0	31 800	0.888	60 838	3580.0
80ZM8	May-95	4.0	4.5	8.5	8.0	0.5	900	<0.001	4.330	5.140	9.200	300	25.500	3 100	28.800	305.616	7930.0
80ZM7	May-95	_	2.0	8.0	7.5	0.5	0.025	0.070	31.400	90.400	90.300	0.020	15,700	30.00	14.700	184.834	3710.0
80ZM6	May-95	_	5.5	7.5	0.7	0.5	0.066	0.053	23.900	3 6	302	2000	0.824	2.060	0.863	12.532	225.0
80ZM5	May-95	_	0.9	2.0	6.5	0.5	0.063	0.028	0.7.1	0202	2000	0.014	4.500	10.800	4.110	53.762	1210.0
80ZM16	May-95		6.2	6.5	6.3	0.5	0.049	90.00	1.160	000	0.780	500	0 125	0.281	0.127	1.899	<10.0
80ZM15	May-95	62	9.9	6.3	5.9	0.4	0.020	0.00	0.507	0.230	0.462	000	0.104	0.257	0.105	1.391	<10.0
80ZM14	May-95		6.9	5.9	2.6	, ,	0.00	3 6	0.133	9	0.313	0000	0.070	0.180	0.080	0.941	<10.0
80ZM13	May-95		7.3	2.6	2.5	9 0	200	500	1200	0.170	0.240	0.00	0.055	0.169	0.062	0.780	<10.0
80ZM12	May-95	7.3	7.7	2.2	Σ,		2 5	3 6	000	0.200	0.255	0.033	0.073	0.187	0.086	0.935	<10.0
80ZM11	May-95	i	8.	6.4	4.4	5 6	000	3 6	0.00	0.215	0.155	0.078	0.088	0.237	0.112	0.959	11.7
80ZM10	May-95		ຄ	4.4	7	<u>;</u>	3	3	-				:				
014200	20			9.5		.0	<0.00	00.00	-0.001	40.001	<0.001	40.00	<0.001	<0.001	<0.001	\$0.00	<10.0
BUZNO	May 30	1	+	3 6	, a	-	00.0	\$0.00	-0.00	40.001	-0.00	<0.001	-0.00 -	6.00 1	\$0.00	40.001	0.015 10.0
CN700	May-35	4) c	2 0	0 0	4	6	<0.001	40.00t	40.001	-0.00 -	<0.001	-0.00	9.00	<0.00 1	<0.001	0.012
802N4	ce-kew	-		0 0	5 6		000	0.00	0.046	0.130	0.049	0.055	0.220	0.404	0.177	1.081	4510.0
80ZN3	May-95		+	7.0	7.5	0.5	0000	40.00	0.183	0.622	0.388	0.289	13.200	29.000	10.300	53.982	9870.0
BOZNZ	CS ABM	4	4	7 2	5 6	2	0000	0.015	0.795	2.760	296.0	2.060	12.000	27.900	11.800	58.297	1620.0
LNZ02	May-95	-	4 .	3 5	2. 4	2 0	20.00	0.00	0.053	0.153	0.041	0.129	0.220	0.625	0.362	1.584	28.0
80ZN12	May-95	0.0	-	2 4	2 6	0	0.00	<0.001	0.039	0.107	0.027	0.099	0.116	0.431	0.269	1.088	11.0
000	INGY-V	4	1	<u>;</u>							1						

May St.			Lo int	Ħ Œ	Top int	Bot int	₹	BZ	TOL	ETBZ (molkg)	PXYL	MXYL (ma/kg)	OXYL	MESIT (ma/kg)	UDSCU (Mayka)	TMB (ma/kg)	BTEXTMB (mg/kg)	TPH (as JP-4) (mg/kg)
May 85 15 15 15 15 15 15 15	Sample ID	Date	€ 3		(IC IMISE)	(11 mOr)	1	(Budin)	Sugar, Constitution of the constitution of the	1000	2000	0000	<0.001	0.022	4.530	1.270	5.822	0.777
May-955 25.0	80ZQ7	May-95	5.	2.5	7.7	000	* L	300	3 6	300	9800	500	0005	000	0.221	0.128	0.395	22.2
Mayer Maye	90Z08	May-95	5.5	0.0	000	200	0.0	800	3 5	335	350	0000	900	00.00	0.103	0.055	0.158	<10.0
Mayer	802016	May-95	0.0	200	50	0	3 6	00.00	3 6	8 6	5000	0000	40.001	9.00	0.150	0.084	0.234	<10.0
May 95 7.1 7.8 5.2 4.0 6.0<	802015	May-95	6.2	9 0	١٥	7.0	3 6	300	36	88	1000	-0.00	\$0.00	\$0.00	0.120	0.065	0.185	<10.0
May-26 1, 1 1, 2 1, 3 1, 4 1, 4	802014	CS-AS	000	? ;	2.0	200	3	3 5	100	500	00.00	\$0.00	40.00	0.007	0.071	0:030	0.107	<10.0
May 55 1.3 1.6 1.0 1	802013	May-95	7.4	4.7	0.0	4.5	. 6	6.00	40.001	<0.001	9000	<0.001	<0.001	40.001	0.170	0.119	0.295	<10.0
May-55 1.3 1.6 1.0 1.	212	may 30	3	?	2	2												
May-95 1.5 2.2 10.4 10.0 10.5 4.0	POZDE	May 05	6	4	6.01	10.4	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	40.001	90.00	<10.0
May-95 2.7 2.9 2.	20208	May OF	2	20	10.4	10.0	0.4	<0.001	<0.001	<0.004	<0.001	<0.001	<0.001	-0.00 1	-0.00 -0.001	40.00 1	40.00	<10.0
May-95 21 21 21 21 21 21 21 21	90209	May 35	9 6	7 6	00	5 6	0.5	<0.00	40.001 1	<0.001	<0.001	<0.001	-0.001 -	<0.001	-0.00	6 0.001	€0.00	<10.0
May-95 51 52 52 52 52 52 52 52	SU200	May-35	7 0	7	2 0	3 6	4	900	<0.001	40.001	<0.001	-0.00	40.001	<0.001	<0.00 1	<0.00 1	40.001	<10.0
May 55 3.5 3.6 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4 3.7 3.4<	802HZ	May-90	770	5 0	0.0	2	2	500	20.00	\$0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.00 -	<10.0
May-56 3.6 4.2 6.4 6.0 -0.001 -0.001 -0.001 -0.001 -0.003 -0.001 -0.003 -0.001 -0.003 -0.001	0020	May-93	9 0	200		5 0	ć	0000	00.00	40.001	40.00	-0.00	<0.001	<0.001	<0.001	-0.00 -	-0.00 1	214.0
May-55 4.2 6.0 7.5 6.0<	60ZH11	May-90	0.0	0 0	à	c	2	000	20.00	<0.001	<0.001	<0.001	40.001	0.010	0.078	6.00 100	0.088	4990.0
May-55 4.7 5.0 7.1 6.6 6.0001 -0.0001	80ZH10	May-95	9	7.	* C	20.0	, ,	800	5	000	000	0.00	<0.001	<0.001	0.965	0.404	1.369	4890.0
May-95 5.1 5.6 6.2 5.0 4.0<	80ZH9	May-95	7	4.6	1 0		3, 6	8 6	5	5000	<0.001	40.001	<0.001	<0.001	0.035	0.016	0.051	118.0
May-95 5.6 6.0 6.1 2.0 4.0<	80ZH8	May-95	4		6.	. 0	† u	3 6	000	500	00.00	-0.00	<0.001	<0.001	0.019	<0.001	0.019	22.5
May-55 5.6 6.4 6.5 5.8 6.0 6.2 5.8 6.0<	80ZR7	May-95	ó	5.6	:	0.0	3	8.00	300	500	500	000	900	40.00	0.015	40.001	0.015	14.0
May-55 6.0 6.4 6.8 5.8 0.4 -0.001 <t< td=""><td>80ZH6</td><td>May-95</td><td>2.6</td><td>9</td><td>9</td><td>2.0</td><td>5 0</td><td>00.00</td><td>300</td><td>3 5</td><td>600</td><td>500</td><td>5</td><td>900</td><td>0.030</td><td>40.001</td><td>0.030</td><td><10.0</td></t<>	80ZH6	May-95	2.6	9	9	2.0	5 0	00.00	300	3 5	600	500	5	900	0.030	40.001	0.030	<10.0
May-56 6.4 6.9 5.8 5.3 0.0 4,0001 <t< td=""><td>80ZR15</td><td>May-95</td><td>0.0</td><td>6.4</td><td>6.2</td><td>2.9</td><td>9.0</td><td>00.00</td><td>3.5</td><td>300</td><td>3 6</td><td>5</td><td>000</td><td>0000</td><td>0.049</td><td>00:00</td><td>0.058</td><td><10.0</td></t<>	80ZR15	May-95	0.0	6.4	6.2	2.9	9.0	00.00	3.5	300	3 6	5	000	0000	0.049	00:00	0.058	<10.0
May-56 6.3 7.3 7.3 4.4 0.4 4.0001 <t< td=""><td>80ZR14</td><td>May-95</td><td>6.4</td><td>6.9</td><td>5.8</td><td>5.3</td><td>2</td><td>0.00</td><td>20.00</td><td>3 5</td><td>5</td><td>500</td><td>600</td><td>9.00</td><td>0.055</td><td>0.011</td><td>0.065</td><td><10.0</td></t<>	80ZR14	May-95	6.4	6.9	5.8	5.3	2	0.00	20.00	3 5	5	500	600	9.00	0.055	0.011	0.065	<10.0
May-56 7.3 7.8 4.9 0.4 CUOTI CUOTI<	80ZR13	May-95	6.9	7.3	5.3	6.9	4	0.00	000	3 5	8 6	5	500	000	0.037	0.015	0.052	<10.0
May-95 1.0 1.5 10.8 10.3 6.5 -0.001	80ZR12	May-95	7.3	7.8	9 ,	4.4	3	OO.	86.8	3	2000	33						
May-55 1.5 1.0<	10100	10			9 04	10.2	. r.	5	20.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-0.00 1	-0.09 1	<10.0
May-95 1.5 2.0<	80725	May-95	2 .		2 9	2 6) u	600	000	000	<0.00	<0.001	<0.001	<0.001 1	40.00	<0.001	40.001	<10.0
May-95 2.0 2.5 3.6 8.8 8.5 -0.001 <t< td=""><td>80ZS4</td><td>May-95</td><td><u>د</u> و</td><td>O 1</td><td>2.0</td><td>ם מ מ</td><td>0 0</td><td>500</td><td>800</td><td>0000</td><td>40.00</td><td><0.00 1</td><td><0.001</td><td><0.001</td><td><0.001</td><td>40.001</td><td>-0.00 -</td><td><10.0</td></t<>	80ZS4	May-95	<u>د</u> و	O 1	2.0	ם מ מ	0 0	500	800	0000	40.00	<0.00 1	<0.001	<0.001	<0.001	40.001	-0.00 -	<10.0
May-95 2.5 3.0 8.8 8.0 0.00 0.000 0.000 0.000 0.000 0.001 </td <td>80253</td> <td>May-95</td> <td>į</td> <td>0 0</td> <td>0 0</td> <td>2 0</td> <td>2 0</td> <td></td> <td>900</td> <td>000</td> <td><0.001</td> <td>40.001</td> <td><0.001</td> <td>40.001</td> <td>40.00</td> <td><0.001 1</td> <td>-0.00 100</td> <td><10.0</td>	80253	May-95	į	0 0	0 0	2 0	2 0		900	000	<0.001	40.001	<0.001	40.001	40.00	<0.001 1	-0.00 100	<10.0
May-95 3.5 3.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0<	80ZS2	May-95		0 1	20.00	0 0	0 0	5 6	0.00	0000	0.050	0.040	0.019	0.012	0.021	0.013	0.168	816.0
May-95 3.5 4.0 6.5 6.0001	80ZS1	May-95	1	C	0.0	Ç 0	0 C	8 6	000	\$0.00	0.00	<0.001	<0.001	0.045	2.760	1.270	4.075	6370.0
May-95 4.0 4.0 7.0 6.001 6.0001	80ZS10	May-95	_	5 r	0 0	1,0	3 0	9 6	500	1000	0.00	<0.001	<0.00	40.001	0.083	0.050	0.133	59.0
May-95 5.5 6.6 6.3 6.5 6.001 coord coord<	80ZS9	May-95		Ç	1 0	3.0	0 0	8 6	5	2000	<0.001	40.001	<0.001	<0.001	0.008	-9.00 .	0.008	<10.0
May-95 5.0 5.5 6.0 6.3 5.8 6.4 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.3 6.0 6.0 6.3 6.0<	80228	May-95		ט ני	3.0	0 0	9 0	5	600	000	40.001	<0.001	<0.001	<0.001	0.019	0.011	0.031	29.0
May-95 6.0 6.4 6.0001	8025/	S S	Ĺ	0	0.0	2 4		8 6	40.00	00.00	<0.001	<0.001	<0.001	0.018	0.055	0.033	0.106	23.6
May-95 6.4 6.4 6.001 6.	80236	May-95		2 3	2 0	9 4	2 0	6	0000	<0.001	<0.001	<0.001	<0.001	0.022	0.035	0.021	0.079	<10.0
May-95 2.5 3.6 4.6 0.4 4.0001	907576	May-93		2 0	2 4	י כ	0.4	\$0.00 1000	00.00	<0.001	<0.001	<0.001	<0.001	0.030	0.031	0.025	0.085	<10.0
May-95 2.5 7.6 4.6 4.2 0.4 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <t< td=""><td>907644</td><td>May 35</td><td></td><td>200</td><td>6</td><td>4.6</td><td>0.4</td><td><0.001</td><td><0.001</td><td><0.001</td><td><0.001</td><td><0.001</td><td>40.001</td><td>0.016</td><td>0.014</td><td>0.012</td><td>0.042</td><td><10.0</td></t<>	907644	May 35		200	6	4.6	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	0.016	0.014	0.012	0.042	<10.0
May-95 2.5 3.0 4.2 3.8 0.4 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <t< td=""><td>807043</td><td>May 05</td><td></td><td>7 9</td><td>4.6</td><td>4.2</td><td>0.4</td><td><0.001</td><td><0.001</td><td>-0.00v</td><td><0.001</td><td>60.00</td><td><0.001</td><td>\$0.00</td><td>0.008</td><td>0.006</td><td>0.014</td><td>V10.</td></t<>	807043	May 05		7 9	4.6	4.2	0.4	<0.001	<0.001	-0.00v	<0.001	6 0.00	<0.001	\$0.00	0.008	0.006	0.014	V10.
May-95 2.5 3.0 9.9 4.0 6.001<	00200	Move	:	0	4.2	3.8	7	0.00	<0.00	<0.001	<0.001	40.00	6.09 20.09	<0.001	9.65	8.00	\$	010
May-95 2.5 3.0 9.9 9.4 0.5 6.0001 <t< td=""><td>80ZS11</td><td>May-95</td><td>:</td><td>8.4</td><td>3.8</td><td>3.4</td><td>0.4</td><td><0.001</td><td><0.001</td><td><0.001</td><td><0.00</td><td>-0.00 -0.00</td><td>×0.001</td><td>6.8 2.8</td><td>6.00</td><td>90.00</td><td>VO.00</td><td>410.F</td></t<>	80ZS11	May-95	:	8.4	3.8	3.4	0.4	<0.001	<0.001	<0.001	<0.00	-0.00 -0.00	×0.001	6.8 2.8	6.00	90.00	VO.00	410.F
May-95 2.5 3.0 3.9 9.4 0.5 0.001 <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td>5</td> <td>900</td> <td>9000</td> <td><0.001</td> <td><0.001</td> <td><0.001</td> <td>40.001</td> <td>900.0</td> <td><10.0</td>	1			1				:		5	900	9000	<0.001	<0.001	<0.001	40.001	900.0	<10.0
May-95 3.0 3.5 9.4 8.5 0.5 0.001 <td>80ZT5</td> <td>May-95</td> <td></td> <td>30</td> <td>9.0</td> <td>4 0</td> <td>0 0</td> <td>i</td> <td>3 6</td> <td>3 5</td> <td>500</td> <td>00.00</td> <td>40.00</td> <td>40.001</td> <td>40.001</td> <td><0.001</td> <td><0.001</td> <td><10.0</td>	80ZT5	May-95		30	9.0	4 0	0 0	i	3 6	3 5	500	00.00	40.00	40.001	40.001	<0.001	<0.001	<10.0
May-95 5.0 6.0<	80ZT4	May-95		3.5	4 0	90.0	0 0	ŀ	300	5	<0.00	0.00	<0.001	<0.001	40.00	<0.001	<0.001	162.0
May-95 4.0 4.5 8.4 7.3 0.5 0.001 0.001 0.010 0.010 0.014 1.760 0.146 2.090 May-95 4.5 5.0 7.4 6.9 6.5 0.001 0.010 0.016 0.010 0.014 1.270 1.030 0.707 May-95 5.0 5.5 7.4 6.9 0.5 0.001 0.010 0.010 0.010 0.014 0.239 0.163 May-95 5.5 6.0 6.5 6.0 0.5 0.001 0.010 0.010 0.010 0.014 0.239 0.163 May-95 6.6 6.5 6.4 0.5 0.001 0.011 0.021 0.033 0.001 0.136 0.186 May-95 6.6 6.5 6.4 5.9 0.5 0.001 0.011 0.021 0.033 0.001 0.137 0.241 0.158	80ZT3	May-95	_	0.	200	0 1	2 C	1	5	6	0000	40.00	<0.001	-0.09 -	<0.001	<0.001	<0.001	3430.0
May-95 4.5 5.0 7.4 0.5 0.001 0.001 0.016 0.010 0.014 1.270 1.030 0.707 May-95 5.0 5.5 7.4 6.9 0.5 0.001 0.001 0.010 0.010 0.014 0.239 0.163 May-95 5.5 6.0 6.9 0.5 0.001 0.011 0.010 0.010 0.013 0.246 0.186 May-95 6.0 6.5 6.4 0.5 0.001 0.011 0.021 0.033 0.001 0.113 0.246 0.186 May-95 6.6 6.5 6.4 6.5 0.001 0.001 0.021 0.033 0.001 0.134 0.158	80ZT2	May-95	_	5.4	20 1		0 L		5000	5	000	\$0.00	<0.001	4.760	0.146	2.090	966'9	11000.0
May-95 5.0 5.5 7.4 6.9 0.5 0.001 0.010 0.010 0.010 0.0124 0.239 0.163 May-95 5.5 6.0 6.9 6.4 0.5 0.001 0.011 0.021 0.033 0.001 0.143 0.246 0.186 May-95 6.0 6.5 6.4 0.5 0.001 0.011 0.021 0.034 0.197 0.241 0.158 May-95 6.0 6.5 6.4 0.5 0.001 0.001 0.027 0.036 0.034 0.197 0.241 0.158	80ZI1	May-95		5.0	ج ا ج	4.7	0 0	İ	3 6	300	0.016	0.010	0.014	1.270	1.030	0.707	3.046	245.
May-95 5.5 6.0 6.5 6.4 6.9 0.5 4.0 0.0	011Z08	May-95	4			מ מ	מייני מייני	i	900	20.001	0.010	0.010	<0.001	0.124	0.239	0.163	0.545	20.
Mary C 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0	80219	May-95	-	ָ מי	6.0	5 G	5,5		<0.001	0.011	0.021	0.033	40.00 1	0.113	0.246	0.185	609.0	19.0
	80218	May-95	-	3 6	2 4	5.4	5.5	į.	<0.001	<0.001	0.027	0.036	0.034	0.197	0.241	0.158	0.693	13.

Ci olumes	ģ	<u></u>	[€	(ft MSL)	(# MSL)	E €	BZ (mg/kg)	TOL (mg/kg)	ETBZ (mo/kg)	PXYL (ma/ka)	(ma/ka)	OXYL (ma/kg)	(ma/kg)	(ma/kg)	TMB (ma/kg)	BTEXTMB (ma/kg)	(ma/kg)
dinple in	Mon of	5	,		1	u	2000	1000	200	0.015	0000	8000	111	0.169	0 134	0.457	12.5
80216	May-95	2 1	υ.,	4.0	1	0	20.00	3.6	0.00		0.020	8	0.0	0 133	123	900	
80ZT14	May-95	7.5	7.9	6.4		0.4	-CO:CO	5	-0.001	00.00	×0.001	20.00	000	0.132	0.123	0.500	V 10.0
80ZT13	May-95	7.9	83	4.5		0.4	\$0.00 100	<0.001	<0.001	<0.001	<0.001	40.001	0.045	611.0	711.0	0.281	<10.0
80ZT12	May-95	8.3	8.7	4.1	3.7	0.4	<0.001	<0.001	<0.001	<0.001	<0.001 -	<0.001	0.030	0.105	0.057	0.188	<10.0
80ZT11	May-95	8.7	9.1	3.7	- 1	0.4	<0.00 1	<0.001	<0.001	-0.00 -	<0.001	40.00 1	<0.001	0.055	0.058	0.112	<10.0
						-	- 100	,000	,000	700	100		1000	50.0	50	5	Ç
80ZU5	May-95	3.0	3.5	0.0	3.5	c.	Ş. Ş.	- S00	\$.001	V0.00	20.00	20.001	00.00	0.00	0.00	300	0.00
80ZU4	May-95	3.5	4.0	9.5	9.0	0.5	40.00 10.00	40.00 40.00	<0.001	<0.001	<0.001	<0.001	<0.001	00:00	-0.00 -0.00	50.00	<10.0
80ZN3	May-95	4.0	4.5	9.0	8.5	0.5	\$0.00 1	<0.001 0.001	<0.001 0.001	<0.001	40.00 40.00	<0.001	<0.001	<0.001	<0.001	40.001 40.001	731.0
80ZU2	May-95	4.5	2.0		8.0	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1.210	0:049	<0.00 1	1.259	4150.0
8071.11	May-95	5.0	5.5	8.0	7.5	0.5	<0.001	<0.001	0.043	0.100	0.105	0.048	40.000	12.100	9.770	62.166	9320.0
8071110	May-95		9	7.5	7.0	5.0	<0.001	<0.001	600.0	0.032	0.052	0.080	0.177	0.260	0.177	0.787	<10.0
BOZI IQ	May OF	9		7.0	2		000	000	0.043	0.137	0.274	0.333	0.114	0.227	0.162	1.290	<10.0
00710	20,00	2 4	2 6	4	2 0	2 4	000	0	0.041	0.143	0.273	908.0	0 105	0.144	0.126	1.141	70.0
90709	May-33	0,1	2	0 0	0 1	3 6	3 6	3 5	7700	7	25.0	2000	1040	181	0.158	1 222	7 7
80ZU7	May-95	9	ç:/	0.0	2.5	S S	5.5	50.00	0.044	2	0.515	0.330	0.121	0.00	0.100	200	0.0.0
90Z08	May-95	7.5	8.0	5.5	5.0	0.5	.00 -00 -00 -00 -00 -00 -00 -00 -00 -00	<0.00 1	0.044	0.153	0.298	0.328	0.112	0.213	28.1.0	1.280	<10.0
80ZU14	May-95	8.0	8.4	5.0	4.6	0.4	-0.00 100.00	40.00±	9000	0.029	0.050	0.033	0.070	0.144	0.074	0.405	<10.0
80ZU13	May-95	8.4	8.8	4.6	4.2	0.4	<0.001	<0.001	<0.001	0.008	0.013	0.007	0.088	0.139	0.081	0.337	<10.0
8071112	May-95	88	9.2	4.2	3.8	0.4	40.001	<0.001	<0.001	<0.00	0.008	<0.001	0.074	0.114	690.0	0.265	<10.0
8071111	May-05	0	9 6	8	3.4	0.4	<0.001	<0.00	<0.001	0.065	0.011	0.008	0.076	0.113	0.085	0.357	<10.0
1000	may 55	;	2	3	5	; ;											
807/5	May-05	30	3.5	10.3	8 6		<0.001	<0.001	<0.001	<0.001	<0.001	60.001	<0.001	<0.001	40.001 1	<0.001	<10.0
27708	May 05	2 2		α	0	2	500	000	0000	00.00	600	40.001	<0.001	<0.001	<0.001	0.00	<10.0
8027/3	May-05	40	7	0	2 0		000	0000	000	00.00	<0.001	0.001	0.001	0.00	40.00 1	40.00	218.0
0,4200	May OF	2 4	2	0	0 0	2 4	500	500	000	5	500	000	0.033	0.018	500	0.051	2870 0
90274	May of	2 4	2 4	0 0	2 2	2 0	1000	500	500	500	000	600	13 900	1 410	1 230	16.540	7430 0
902744	May 05	2 4	2 4	200	7.5	9 6	500	0.010	000	000	40.00	000	006 6	0.575	0.922	4 407	580.0
907/40	May OF	1	2 0	7.5	2.0	2 6	000	1000	1000	000	20.00	000	0.114	0.020	0.021	0.155	16.4
807/0	May 05	ļ.,	6.7	7.0	9	200	1000	0000	c0.004	0001	\$0.00	\$0.00	0.039	<0.001	\$0.00	0.039	<10.0
00200	May 35	-	12	9	9 4	, u	500	50.0	500	600	1000	000	0.045	0.007	0.013	0.065	2100
002/0	May-95	_	7.7	9 4	- L	2 2	5	8 6		5	600	500	0.055	0000	0.014	0.000	000
0020	May-93	7 .	0.	- 1			300	300	3 5	300	000	500	2000	2000	9000	250	200
90708	Sey-Sey	0,0	0.0	, u	200	4 n	00.00	\$0.00	50.00	900	0000	50.5	0.70	0.037	0.030	0.382	700
902014	May 05	4	0	2 4	2 4	2 0	0.00	50.00	000	500	2000	0000	0.10	0.152	0.134	0.388	<10.0
807/12	May-05	4	2 0	4.3	8 6	200	0000	<0.00	<0.00	0.00	<0.001	0.00	0.091	0600	0.084	0.265	<10.0
7	20.	1	3		2	}								1			
80ZW4	May-95	3.5	4.0	9.4	8.9	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	<0.001	<0.001	<0.001	<0.001	53.8
80ZW3	May-95	4	4.5	8.9	8.4	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	40.001	<0.001	<0.00 1	0.089	0.089	2060.0
80ZW2	May-95	4.5	2.0	8.4	7.9	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.609	0.021	0.744	1.374	5330.0
80ZW1	May-95		5.5	7.9	7.4	0.5	<0.001	0.008	0.033	0.118	0.081	0.054	11.100	0.972	0.800	13.166	7340.0
80ZW10	May-95	_	5.8	7.4	7.1	0.3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.355	0.065	0.044	0.464	96.0
80ZW9	May-95	5.8	6.3	7.1	9.9	0.5	<0.001	<0.001	<0.001	. <0.001	<0.001	<0.001	0.116	0.050	0.014	0.180	<10.0
80ZW8	May-95	L	6.7	9.9	6.2	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.117	0.039	0.011	0.167	<10.0
80ZW7	May-95	_	7.2	6.2	5.7	0.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.078	0.031	0.020	0.129	<10.0
80ZW6	May-95	Ĺ	7.6	5.7	5.3	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.072	0.022	0.028	0.122	<10.0
80ZW5	May-95	_	8.0	5.3	4.9	9.0	×0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.040	0.008	0.007	0.056	<10.0
80ZW14	May-95	L	8.2	4.9	4.7	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.056	<0.001 1	0.015	0.071	<10.0
80ZW13	May-95		8.6	4.7	4.3	0.4	<0.001	<0.001	<0.001	<0.001	<0.001 1	<0.001	0.084	0.015	0.015	0.114	<10.0
80ZW12	May-95	8.6	9.0	4.3	3.9	0.4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.066	0.014	0.010	0.091	<10.0
80ZW11	May-95	_	9.4	3.9	3.5	0.4	<0.001	<0.001	<0.001	<0.001	40.00 1	<0.001	0.061	0.013	<0.001	0.074	<10.0

(ft MSL) (ft) (mg/kg) (mg/kg)	(ft MSL) (ft) (mg/kg)	(ff) (mg/kg)	
3 0.5 <0.001	9.3 0.5 <0.001	9.3 0.5 <0.001	9.8 9.3 0.5 <0.001
8 0.5 <0.001	3 8.8 0.5 <0.001	3 8.8 0.5 <0.001	9.3 8.8 0.5 <0.001
8	8 8.3 0.5 <0.001	3 0.5 0.001	8 8.3 0.5 <0.001
3 0.5 <0.001	8 7.3 0.5 <0.001	8 7.3 0.5 <0.001	7.8 7.3 0.5 <0.001
8 0.5	3 6.8 0.5 <0.001	3 6.8 0.5 <0.001	7.3 6.8 0.5 <0.001
3 0.5 <0.001	8 6.3 0.5 <0.001	8 6.3 0.5 <0.001	6.8 6.3 0.5 <0.001
8 0.5 <0.001	3 5.8 0.5 <0.001	3 5.8 0.5 <0.001	6.3 5.8 0.5 <0.001
3 0.5 <0.001	8 5.3 0.5 <0.001	8 5.3 0.5 <0.001	0 5.8 5.3 0.5 <0.001
4.6 0.7 <0.001	3 4.6 0.7 <0.001	3 4.6 0.7 <0.001	7 5.3 4.6 0.7 <0.001
	1 3.6 0.5 <0.001	1 3.6 0.5 <0.001	1 3.6 0.5 <0.001
3000	30 00	30 00	1000
20.00	9.2	9.2	9.7 9.2 0.00
0.5	8.2 0.5 <0.001	8.2 0.5 <0.001	8.7 8.2 0.5 <0.001
0.5 <0.001	7.7 0.5 <0.001	7.7 0.5 <0.001	8.2 7.7 0.5 <0.001
0.5 <0.001	7.2 0.5 <0.001	7.2 0.5 <0.001	7.7 7.2 0.5 <0.001
0.5 <0.001	6.7 0.5 <0.001	6.7 0.5 <0.001	6.0 7.2 6.7 0.5 <0.001
0.5 <0.001	6.2 0.5 <0.001	6.2 0.5 <0.001	6.7 6.2 0.5 <0.001
0.5 <0.001	5.7 0.5 <0.001	5.7 0.5 <0.001	6.2 5.7 0.5 <0.001
47 05 <0.001 <0.001	47 05 <0.001	0.5	47 05 <0.001
0.5 <0.001	4.2 0.5 <0.001	4.2 0.5 <0.001	4.7 4.2 0.5 <0.001
0.5 <0.001	3.7 0.5 <0.001	3.7 0.5 <0.001	4.2 3.7 0.5 <0.001
0.5	3.2 0.5	3.2 0.5	3.7 3.2 0.5
2.7 0.5 <0.001	2 2.7 0.5	2.7 0.5	3.2 2.7 0.5
8.8 0.5 <0.001	8.8	9.3 8.8 0.5	9.3 8.8 0.5
	8.3 0.5	8.8 8.3 0.5	0 8.8 8.3 0.5
0.5	7.8 0.5	8.3 7.8 0.5	8.3 7.8 0.5
0.5	7.3 0.5	7.8 7.3 0.5	7.8 7.3 0.5
+	0.0	6.0	6.0
2.0	200	200	200
0.5	5.3 0.5	5.8 5.3 0.5	5.8 5.3 0.5
0.5	4.8 0.5	5.3 4.8 0.5	5.3 4.8 0.5
_	4.3 0.5	4.8 4.3 0.5	4.8 4.3 0.5
0.5 <0.001	3.8 0.5 <0.001	4.3 3.8 0.5 <0.001	4.3 3.8 0.5 <0.001
0.5 <0.001	3.3 0.5 <0.001	3.8 3.3 0.5 <0.001	3.8 3.3 0.5 <0.001
0.5 <0.001	2.8 0.5 <0.001	3.3 2.8 0.5 <0.001	3.3 2.8 0.5 <0.001
2.3 0.5 <0.001 <0.00	8 2.3 0.5 <0.001	2.8 2.3 0.5 <0.001	2.8 2.3 0.5 <0.001
2	92 05 50001	92 05 50001	6 07 09 05 0001
87 05 <0.001	87 05	87 05	00 87 05
200	82 0.5	82 0.5	87 89 05
7.7 0.5 <0.001	7.7 0.5	0.5	7.7 0.5
0.5	7.2 0.5	7.2 0.5	5 7.7 7.2 0.5
	6.7 0.5	6.7 0.5	0 7.2 6.7 0.5

TPH (as JP-4)	(64/6)	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	
_					-	-					
BTEXTA	(mg/kg)	<0.001	0.026	0.033	0.067	0.131	0.093	0.040	0.00	0.035	
	TMB (mg/kg)	<0.001	<0.001	<0.001	0.018	0.077	0.030	<0.001	<0.001 100.001	<0.00	200
PSCU	(mg/kg)	<0.001	<0.001	<0.001	0.010	0.034	0.013	<0.001	<0.001	<0.001	7000
MESIT	(mg/kg)	<0.001	0.026	0.033	0.039	0.020	0.049	0.040	0.009	0.035	,000
OXYL	(mg/kg)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
MXYL	(mg/kg)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
PXYL	(mg/kg)	<0.001	-0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	1000
ETBZ	(mg/kg)	<0.001	<0.001	<0.001	<0.001	-0.00 1	<0.001	<0.001	<0.001	<0.001	
TOL	(mg/kg)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
BZ	(mg/kg)	<0.001	<0.001	-0.00	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Ξ	Ê	0.5	0.5	0.5	0.5	0.3	0.5	0.4	0.5	0.4	
Bot int	(ft MSL)	6.2	5.7	5.2	4.7	4.4	3.9	3.5	3.0	2.6	
Top int	(# MSL)	6.7	6.2	5.7	5.2	4.7	4.4	3.9	3.5	3.0	
Ξ	£	6.5	7.0	7.5	8.0	8.3	8.8	9.2	9.7	10.1	
Lo int	€	0.9	6.5	2.0	7.5	8.0	8.3	8.8	9.5	9.7	
	Date	Mav-95	May-95	May-95	May-95	May-95	May-95	May-95	May-95	May-95	
	Sample ID	80ZZA9	80ZZA8	80ZZA7	80ZZA6	80ZZA16	80ZZA15	80ZZA14	80ZZA13	80ZZA12	

						Nitrate Cell	Cell	
Date	Background Rain Gauge (in)	Weather	Comments	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO3 Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)
3/30/94 17:00	000		Background sampling. Rice personnel took other water levels.					
4/1/94 8:30	000		Mixed stock solutions				150	200
4/1/94 2:30	0.0		Started system with all sprinklers	3,660				
4/1/94 19:30	000		Shut down system due to problems					
4/2/94 8:30	0.0		Rice personnel took water levels					
4/3/94 8:45	0.00		Rice personnel took water levels					
4/4/94 16:00	00:0		Started system with all sprinklers, after emptying and then refilling mix tanks	9,11				
4/4/94 17:00	0.00		Shut down system due to problems	10,200				
4/5/94 14:40	0.00		Tested peristaltic pump; started up again with all sprinklers atternating	10,200				
4/5/94 19:00	0.0		Emptied rain gauges; left system running overnight	20'5'	1	•		
4/6/94 7:00	0.00		System had shut down overnight due to flow imbalance; plumbed in peristatic pump	4 6		- 0		
4/6/94 17:30	0.00		Restart system with center/side sprinklers only	20.00		0.0		
4/7/94 14:00	0:00		System had shut down overnight due to flow imbalance; restarted using booster pump	32,000	T +			
4/8/94 0:30	0.00		Midnight check, system about to shut down. Heset talk libes. Fugut to tuill of stock back on.	55				
4/8/94 8:30	000		System on and running title, turned back of of stock flow.	48.820		1.1		
4/8/94 18:30	8 6		Overlam on	51,710				
4/0/34 23:00	8 6		System on replaced burned-out pump. Stocks off for about one hour.	57,420	84	=		
4/9/94 13:15	88	Cloudy, light east wind	System still on, SRH left for Ada	61,220				
4/9/94 20:10	00:0	1	System on	65,980	4	i	-	
4/10/94 15:40	0.0	h east wind	System on.	78,570				
4/11/94 9:20	0.00	70F, clear, windy	System on. Everything okay at first, but then had to shut down at 17:00 due to pump leak.	90,280	!			
4/12/94 13:00	0.00	70F, cloudy, breezy	Pump fixed and system restarted at 10:30	94,840	3 4	7.7		
4/13/94 8:50	0.95	67F, cloudy, rainy	System on.	108,080				
4/14/94 9:20	0.0	70F, cloudy	System on Shut off for 2 of to take Er'A samples. Mixed remaining hack tracel such	137.820		İ		
4/15/94 8:50	000	65F, cloudy, windy, humid	System on Equalized mix tanks	157,660				
4/16/94 15:00	9 6	ASE clear light breeze	System on Increased stock flow from 108/111 to 110/115.	173,780		. !		
4/18/94 8:30	8 8	60F clear, light breeze	System on.	184.690			-	
4/19/94 9:00	80	70F, cloudy, breezy	System on	200,170	1	i		
4/20/94 8:50	0.0	65F, partly cloudy, it breeze	System on	215,720	\$ 4	= =	95	200
4/21/94 9:10	0.20	70F, overcast, rainy	Sytem on, Mixed KNO3 stock	030 080	:	i		:
4/22/94 9:00	0.60	70F, cloudy, breezy	System off (power outage=>flow imbalance?)	240,500	45	11.1		
4/22/94 10:30	0.0	1.00	Hestarred system; readings taker at 12:10	259,910	- - 			
4/23/94 18:00	800	75F, Clear, II Dreeze	System on Timed off Cifeed and Cistock bump (only 25 gal left)	275,150	4		6	
42434 1.20	3 6	755 H OF brooze	System on	285,520			6	
4/23/34 9.20 4/26/94 9:10	88	Clear humid	System on.	298,680		-		
4/20/34 9.10	86	75F very light SE wind	System on. Rerouted pump intake lines on mixer tanks	313,980		ĺ	6	+
A/28/04 8:45	800	70F humid SE 8-10moh	System on,	328,330			6	
4/29/94 10:20	000	80F humid. SE 10-17mph	System on.	344,660	9			
4/30/94 17:35	800	80F cldv ovest. NE 5-10mph	-	364,550				
5/1/94 18:15	06.0	70F, rainy, NW wind	-	380,090			50	
5/2/94 9:00	0.10	70F, rainy, NW 5-10mph	System on.	389,390		10.5	0	
5/3/94 9:00	0.10	Cloudy, showers, SE wind	System on.	12,404,122			0.14	
5/4/94 9:50	0.00	75F, clear, NW breeze	System on.	419,630	9 8		0 4	
5/5/94 0:00	0.00	75F, clear SE breeze	System on.	*****				

						Nitrate Cell	Cell	
Ba- Ra- Ra-	Background Rain Gauge (in)	Weather	Comments	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO3 Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)
5/6/94 9:30	0.0	75F, SE breeze	System on.	449,180	4	10.4		
5/7/94 19:30	0.00	70F, clear SE 10mph	System off. NO3 stock got too low. Mixed stock	458,500			130	420
5/8/94 16:40	0.10	80F, clear SW 10-15mph	System on.	471,280	46	10.5		_
5/9/94 13:10	0.00	75F, clear, It SE breeze	System on. Totalizers may have trash build-up.	483,480	9	10.2	:	1
5/10/94 9:15	800		System on.	495,550	\$	10.2		i
5/11/94 9:15	0.00	:	System on.	209,620	9	10.2		
5/12/94 9:10	0.0	E	System on.	524,080	4	0		:
5/13/94 10:05	0.60	75F, cloudy, E 5 mph	System on. Sprinkler maintenance on Control cell.	539 490	\$	0.0		:
5/14/94 18:15	0.00	75F, NW 5-10mph	System on.	000,800	8.5	2 9		
5/15/94 16:45	0.0	80F, NE breeze	System on. Algal growth on bottom of Nitrate Stock tank.	571,370	\$ 4	0 5		
5/16/94 8:45	8	75F, clear	System on. Turned off for 15 min to mow grass.	580,740	\$	2.0		
5/17/94 9:45	88	72F, It SW breeze	System on.	593,290	4 4	5 5		
5/18/94 8:15	3 8	ase, sw 10-15mpn	System on	624 600	4	5		
5/13/34 11:35	3 8	70F SW breeze	System on Cleaned out totalizers.	637.770		10.1		
5/21/94 17:30	800	70F it N breeze	System on.	657,960		11.3		
5/22/94 17:00	8	75F. SW 8-15mph	System on.	673,040	4	11.4		
5/23/94 11-25	8	80F W 5-10mph	System on Covered Control Mix Tank and removed aloae.	685,590	46	11.4		
5/24/94 9:25	000	80F. SW 10-15mph	System on, Flow gauge maintenance.	700,580		11.3		
5/25/94 9:30	000	85F. W 11-17mph	System on, Mixed NO3 stock.	716,900	46	11.3	150	200
5/26/94 10:05	8.0	75F, SE 10-15mph	System on.	733,630	46	11.4		
5/27/94 9:50	8.	75F. W 10-15mph	System on. NO3 stock flow off due to trash obstruction.	749,850	46	4.1.4		
5/28/94 13:20	0.00	SW 5-15mph	System on, Influent = 6.8 mg/L NO3-N. Increased NO3 stock flow rate.	768,550	9	11.4	1	
5/29/94 16:30	0.0	75F, SW 5-15mph	System on. Influent = 6.6-7.0 mg/L. NO3-N. Increased NO3 stock flow rate.	787,090	9	11.4		
5/30/94 18:00	800	72F, It SW breeze	System on. Replaced North comer sprinkler in Control Cell since it wasn't rotating.	804,380	-	11.4		
5/31/94 9:55	0.45	Rain, It SE breeze	System on.	815,030		4.1.4		:
6/1/94 10:25	000	85F, cldy	System on.	947 650		4. 1.		
6/2/94 9:30	200	80F, cidy, SE 0-10mpn	System on.	864 620	\$ 4	114		
6/4/94 17:30	8 6	SW 10-15mph	System on.	885,890		11.4		
6/5/94 18:40	0.10	75F. rainev	System on.	903,110	ļ	11.4		
6/6/94 13:35	2.70	75F, rain, SE 10-20mph	System on.	916,050	46	11.4		
6/7/94 9:10	0.10	Cldy, SW 5-15mph	System on.	929,510		4.1		
6/8/94 9:05	0.00	80F, cldy, SW 5-15mph	System on.	963,710		4.1.4		
6/9/94 10:00	80.0	85F, cldy, SE 10-15mph	System on. Partial mix of NOS stock in prep for Shi tracer study. Southern on Shift Journ of 7:30 due to low stock Bested water only at 11:00 stocks at 3:00	902,090	47	+ +	150	202
07.074.07.0	8 8	SOE It Named	System on	992 170		11.3	-	
6/12/94 14-04	8 6	90F cldv mod SW wind	System on.	1,011,960		11.3		
6/13/94 7:45	000	Cldv. calm	System on. EPA sampling.	1,023,840		11.4		
6/14/94 9:30	000	Clear, It SW breeze	System on.	1,042,100				
6/15/94:10:00	800	90F, clear, calm	System on.	1,057,750		11.4		
6/16/94 8:20	0.00	Clear, It NE breeze	System on.	1,072,870		-		
6/17/94 9:30	1.40	75F, cldy, calm	System on.	1,090,040				
6/18/94 9:30	0.00	79F, cldy, SE 5-15mph	System on.	1,106,170				
6/19/94 14:20	0.05	78F, cldy, it NE breeze	System on. Center sprinkler had been off 8-11 AM. Surveying; sprinkers off periodically.	1,125,600	4	11.4		
6/20/94 7:30	3.00	77F, rainey, It E breeze	System off. NO3 center sprinkler had been off. Restarted at 7:40.	1,131,520				
6/21/94 7:00	8.0	75F, cldy, calm	System off. Mix tanks again out of balance.	1,146,030			-	
6/22/94 11:15	800	Cldy, S 5-15mph	System on. Disconnected CI stock pump.	1,164,800	46	11.3		

			Nitrat	Nitrate Cell	
Westher	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO3 Added to Stock Tank (ibs)	Volume Water Added to Stock Tank (gal)
80F rain. SE 10-20mmh System on.	1,181,220	94	11.3		
یے	1,196,840	46	11.3		
	1,203,670			150	200
	1,219,070	8	11.3		
	1,228,600	8	11.3		
80F, cldy, SE 5-15mph System on.	1,245,550	3	11.3		
85F, ddy, S 5-15mph System on.	1,262,380	4	1.3		
85F, it SE breeze System on.	1,278,220	\$	17.5		
	1,294,370	47	11.2		
80F, W 20mph System on.	1,312,090	47	11.2		
o, 60mph wind	1,328,040		71.		
	200,000	,	* *		
5-10mph	1 376 220	7	11.4		
	1 301 630	47	11.0		
	4 407 450		10.5		
n, S.5-10mph	4 420 640		1 5		
	1 445 340	46	1 2		15
Dreeze	1 455 920	-	410	-	
	1 470 680		1.3	5	005
:	1 480 230		11.2		
80F, rain, it SW breaze	503 000		112		
	1 519 240		11.3	18	0
1	1 538 130		1.3		
15mpn	1 557 520	!	120		
BOL, GOV, Calm System on System of S	1 568 760	-	11.2		
Ī	1 585 420		11.3		
92	1 600 410		11.2		
r, W 10mph	1 617 170	+	11.2		
1	1 632 750	!	1 5		
	1 651 860	-	113		
AST, CIO, IT E DIRECT STATE OF THE CONTRACT STATE STAT	1.669.850	 	11.2	-	
AZADIO MC II	1,681,320	 - -	11.3	-	
Sylv Geel Bale July # CE heave	1,696,820		11.3	_	i
:	1,714,450		11.3		
	1,729,490	46	11.3		
	1,745,920	.4	11.3		
-	1,761,630			300	200
!	1,780,490	8	-	<u></u>	
:	1,792,630			8	
	1,805,450			8	
E 5-10mph	1,826,740			8	
	1,839,470	8		8	-
	1,854,930		1.5	9	
:	1,860,350		Ì		
	1,875,950	94		2	
264	1,886,300		11.5	9	+
	1,902,170			2	
/ breeze	1,918,620			2	
•		1,918,62		47	

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

				<u>.</u>		Nitrate Cell	e Cell	
Date	Background Rain Gauge (in)	Weather	Comments	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO3 Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)
8/11/94 9:25	0.15	80F, rain, W 3-10mph	System on	1,935,510	47	11.5		
8/12/94 12:00	0.0	90F, cldy, SW 5-10mph	System on	1,953,700	47	11.5		
8/13/94 12:45	0.00	85F, cldy, SE 5-12mph	System on	1,970,770	47	11.5		
8/14/94 19:30	0.15	75F, rain, calm	System on	1,992,010	47	11.5	1	
8/15/94 12:00	0.00	85F, cldy, SE 5-25mph	System on	2,003,210	47	11.5		
8/16/94 9:05	8. 0.	85F, cldy,E 5-20mph	System on, Shut down at 0900 hr to let drain for lawn maintenance.	2,017,460	47	11.5	300	200
8/18/94 10:00	0.10	80F, rain, It SE breeze	System off. Restarted at 1000 hr.	2,018,330	47			
8/19/94 0900	8	80F, clear, It SE breeze	System on. Shut down at 0900 hr for interim performance evaluation.	ž	ž		1	•
8/22/94 0:00	1.40	80F, clear, It SE breeze	System still off	Ž	≨.	1	:	:
8/31/94 15:40	0.00	70F, It SE breeze	System off. Restarted at 1540 hr.	2,033,940	₩.	11.5	1	
9/1/94 9:00	o. 80	80F, clear, it E breeze	System on	2,045,580	\$			
9/2/94 10:50	0.00	85F, clear, It SE breeze	System on	2,063,270	8		-	
9/6/94 10:10	0.00	80F, clear, It W breeze	System on	2,128,820	₩.		:	
9/7/94 9:00	80	75F, rain, It SE breeze	System on	2,143,690	84 6			
9/8/94 9:45	000	80F, cldy, E 5-10mph	System on	2,160,590	\$ 5	1		1
9/9/94 9:00	0.20	80F, clear, it var breeze	System on	2,176,700	\$ 6			
9/10/94 13:00	8	80F, cldy, var wind	System on	2,195,880	84 3			
9/11/94 14:00	0.0	80F, cldy, it NW breeze	System on	2,213,150	\$ 5	5.1.5		
9/12/94 8:50	0.15	75F, clear, it var breeze	System on	2,220,250	\$ 6	i		
9/13/94 9:00	0.00	72F, clear, SE 10-20mpn	System on	2,242,300	9 4			000
9/14/94 8:30	3 ;	/zr, clear, E 10-zumpn	System on due to low much stock, mixed mus.	2,233,020	<u> </u>	\$	300	3
9/15/94 9:00	0.15	rain it ENE brosto	System on	2 287 870	-			
9/10/34 0.30	0.50	POE class CE 10. 20mph	Overland on	2 306 760	:			
0/18/04 14:00	8 8	ROF CICK IT ESE breeze	System on	2,324,700	84	1.5		
9/19/94 9:00	8.0	75F, clear, It SE breeze	System on	2,337,810	84			
9/20/94 9:15	0.00	65F, cldy, It SE breeze	System on	2,353,640				
9/21/94 9:00	0.00	75F, clear, SE 5-10mph	System on	2,369,960	87			
9/22/94 9:00	0.00	80F, clear, SE 5-10mph	System on	2,386,440	48			
9/23/94 13:50	1.10	80F, cldy, SW 5-10mph	System on	2,406,360	84	1		
9/24/94 12:45	0.00	80F, clear, SE 5-10mph	System on	2,422,030		į		
9/25/94 15:30	0.10	75F, cldy, SW 5-10mph	System on	2,440,480				
9/26/94 9:20	0.00	60F, clear, It var breeze	System on	2,452,810		2.1.5		
9/2//94 8:40	8.6	/Ur, clear, it SW breeze	System on	2,466,730	ş	Ĺ		
9/28/94 9:15	800	75F, Clear, It SW Dreeze	System on Chirt down at 1616 by to let drain for lawn maintenance	2 502 190				
9/30/94 12:00	88	90F clear E5-10mb	System off Restart at 1335 hr.	2 506 670				
10/1/94 16:00	0.70	70F rain. SF 10-30mph	System on	2.524.820	_	!	300	200
10/2/94 18:20	6.00	rain, SE 5-30mph	System on	2,543,110				
10/3/94 9:30	0.10	75F, cldy, SE 5-10mph	System on	2,553,430				
10/4/94 10:15	0.00	72F, cldy, S 5-15mph	System on	2,570,120	-	:		***************************************
10/5/94 8:55	0.00	72F, clear, It SE breeze	System on	2,585,750	-			
10/6/94 11:35	88	80F, clear, it SE breeze	System on	2,603,880	_			
10/7/94 9:00	0.00	65F, clear, SE 10-20mph	System on	2,618,650				
10/8/94 12:10	00.0	75F, cldy, SE 10-15mph	System on	2,637,310				
10/9/94 18:05		70F, rain, it var breeze	System on	2,657,810	-			
10/10/94 12:45	1	ddy, rain	System on	2,070,510				
10/1/94 9:00	0.55	SOF, Clay, NE 10-20mpn	System on Surday on	2,004,330	9 9	1 5		
10.0040.10	4	ומיווטין יאב ט־וטוויטיו	System on	C11 V 11VV				

						Nitrate Cell	e Cell	
Date	Background Rain Gauge (in)	Weather	Comments	Totalizer (gallons)	Pressu (psi)	8 2 9	Mass KNO, Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)
10/13/94 9:15	0.00	70F, cldy, SE 5-10mph	System on. Shut down 0930-1620 to mow.	2,717,550	84			
10/14/94 9:55	0.00	68F, cldy, N 5-15mph	System on	2,729,890				
10/15/94 13:00	0.0	75F, cldy, SE 5-15mph	System on	2,731,710				
10/16/94 13:30	0.00	75F, clear, SE 10-20mph	System on	2,765,090				3
10/17/94 8:45	0.00	65F, cldv, E 5-15mph	System on	2,778,360			900	3
10/19/94 16:45	00.0	70F. clear. SE 5-10mph	System shut off yesterday to repair sprinkler seals; restarted 12:50 hr	2,791,750				
10/20/04 9:30	800	75F clear It SE breeze	System on	2,803,350				
10/21/04 8-35	88	70F Ody It SE breeze	System on	2,819,590				
10/22/94 14:30	920	75F cldv NNW5-20moh	System on	2,840,260				
10/23/94 15:30	000	78F. cldv. SE 5-10mph	System on	2,857,920	8	į		
10/24/94 9:10	000	70F. clear. It SE breeze	System on	2,869,810				
10/25/94 9:10	000	65F, clear, SE 0-8mph	System on	2,886,500				
10/26/94 9:00	800	60F, cldy, N 10-20mph	System on	2,903,000				
10/27/94 12:00	0.00	65F, clear, E 5-20mph	System on	2,921,620				
10/28/94 10:00	0.0	65F,cldy, SE 5-10mph	System on	2,936,820				
10/29/94 13:00	0.00	70F, ddy, SE 5-10mph	System on	2,955,850				
10/30/94 16:30	0.00	70F, cldy, it var breeze	System on	2,975,470		ľ		
10/31/94 9:10	0.15	75F, cldy, N 5-10mph	System on	2,987,040	\$ 6	5		
11/1/94 8:45	0.00	65F, clear, NW10-20mph	System on	3,002,450		ľ		
11/2/94 9:00	0.0	65F, clear, NW 5-15mph	System on. Shut down 1015-1220 to mow.	3,013, 30		-	300	95
11/3/94 9:00	0.00	70F, clear, it var breeze	System on	3 049 930	4			
11/4/94 9:30	0.0	75F, clear, calm	System on	3.069.540			-	
11/5/94 14:00	8 6	John State State	Surfam of	3,089,360	L			
11/6/94 19:00	8 8	FOE plant it was brooze	Cyclem on	3,098,250	4	11.5		
11/1/94 / 33	8 8	ARE offer it var brooze	System on	3,114,050			9	
11/0/04 11:20	3 8	BOF clear SW 0-5mph	System on	3,133,440		=		
11/10/94 9:20	000	65F, cldv. calm	System on	3,148,550				
11/11/94 10:00		65F, cldy, E 5-15mph	System on. Shut down at 1630 to let drain for EPA sod-removal work	3,165,390	1	: ;	<u></u>	
11/18/94 13:00	00:0	75F, clear, E 5-10mph	System off. Restart system at 1300 hr	3,169,440		2 :		-
11/19/94 19:15		75F, clear, It SE breeze	System on	3,189,820	\$ 6			
11/20/94 18:00		75F, cldy, it var breeze	System on	3.205,500		=		
11/21/94 10:00		75F, cldy, SW 10-20mph	System on	3 232 400				
11/22/94 9:30	i	65F, cldy, N 10-15mph	System on. Replaced center sprinkler on control cell - Ingrier Illow rate	3 268 390				
11/24/94 14:15	-	60F, cldy, it SE breeze	System on	3.277.010	-	_	300	2005
11/25/94 17:25		BUF, Clay, It E Dreeze	System on Superior in the contract of the cont	3,294,450	L		2	
11/26/94 18:20	900	Ser Adv. E 5.15mph	System on	3,310,520		11.5	2	
11/29/94 13:30		60F. rain, W 10-25mph	System off due to imbalance. Restarted 0925 hr.	3,335,200			2	
11/30/94 9:30	i	53F cldv. NE 5-15mph	System on. Replaced center sprinkler on nitrate cell - higher flow rate.	3,348,860			2	
12/1/94 9:30	0.0	55F, cldy, SE 5-15mph	System on	3,365,540			6	
12/2/94 11:00	00.0	60F, cldy, SE 5-10mph	System on. Replaced two side sprinklers in control cell to balance rate.	3,383,650			20 0	
12/3/94 16:30	000	65F, cldy, SW 5-15mph	System on	3,404,380			0.00	
12/4/94 18:35	<u>.</u>	69F, cldy, SE 5-10mph	System on	3,422,700	2		0 0	-
12/5/95 10:20	0.00	63F, cldy, SW 5-10mph	System on	3,433,020		!	ο α	
12/6/94 9:25	8.	63F, cldy, calm	System on	3,450,170		Ĺ	οα	
12/7/94 8:15	80	65F, cldy, calm	System on	3,400,330	-		ο α	
12/8/94 8:35		65F, clear, It N wind	System on	3,483,580	2 G		o &	
12/9/94 11:25	0.00	70F, cldy, SE 5-10mph	System on	VIAVE, V	١			

Background Rain Gauge							
	Weather	Comments	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO, Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)
70F.	cldy, SE 5-15mph	System off due to low nitrate; restart at 12:30	3,518,350	49	11.8	300	200
0.70 55F,	55F, cldy, W 5-15mph	System on	3,538,830		-		
4	40F, clear, E 5-10mph	System on	3,549,560	:			
45F	45F, clear, It SE breeze	System on	3,565,000	!			1
	45F, clear, It SE breeze	System on	3,581,910] 			:
i	50F clear, SW 5-10mph	System on	3,598,700		. F		
	SUF, cldy, NE S-15mpn	System on	3 638 200	1			
	60F, cldy, if NE breeze	System on	3,659,200		- ; -		-
	SOF CIGY, II INE DIBEZE	Ovariant on	3 667 870		:		
20.00	ARE CICK NE 5-15mph	System on	3.683.840				
-	clay, red compa	System on	3,701,680			200	340
	60F. rain. SE 5-15mph	System on	3,836,000	:	11.8		
!	55F. cldv. calm	System on	3,851,850				
	60F, cldv, NE 5-15mph	System on	3,873,090	49			
	60F. cldv. It NE breeze	System on	3,890,320	49			
	50F, cldv, NE 5-15mph	System on	3,906,590	49	11.7		
ļ	40F clob It NE breeze	System on	3,918,030		Ĺ	~	
	40F. cldv. NE 5-15mph	System on	3,935,090				
	30F. clear, NE 5-15mph	System off due to low nitrate; restart at 11:40 hr	3,954,210			300	200
	55F. rain. SE 15-35mph	System on	3,965,050	49	11.7	2	
	40F, clear, SE 5-15mph	System on	3,987,620		11.7		
	60F, clear, calm	System on	4,003,690				
0.00 45F	45F, clear, NW 5-10mph	System on. Some of nitrate not dissolving in stock tank.	4,015,310			7	
0.00 60F	60F, clear, It NE breeze	System on	4,031,560			7	
	60F, clear, it NE breeze	System on	4,047,850			7	
	60F, clear, It var breeze	System on	4,064,650		i		
	65F, cldy, NE 5-25mph	System on	4,081,420			7	
	60F, cldy, It NE breeze	System on	4,104,560	49		7	
	55F, cldy, NNW 5-10mph	System on	4,120,650				
	55F, cldy, N 5-15mph	System on	4,131,390				
1	60F, cldy, it NW breeze	System on	4,153,340	49		,	
	55F, cldy, It var breeze	System on	4,164,400	1		,	
0.95 55F	55F, cldy, W 10-20mph	System on	4,181,260	2 4		7	18
	45F, clear, W 5-20mpn	System on due to low nitrate, restain at 17:00 in	4,197,740				3
00.0	FEET AND A FEET AND A STREET	Cystell VII	4 232 020	49	L	1	
Ī	oor, day, w o-tompil	Oysielli Oli	4 241 660			7	
	45F App. W. F. Jensh	Cyatom on	4 260 790			7	
	tor does WE townsh	Cyclen on	4 274 600	-		7	
	clear, wo-10mpn	Overeill Oil	000,000				
Ī	GOOF, CIBBLY ILINE DIBEZE	Curtom on	4 308 800		49 117		
	20E oldy, W. C. Comple	System on	4 327 300				
T	Cody, SW (Coding)	Cystem on	4 346 750			7	
	est, day, sw s-10mpn	System on	4,040,130				
	SUF, clay, NW 10-20mph	System on	4,336,330		İ		
	32F, clear, NW 5-10mpn	System on	4,374,400	-		, 1	
Ĭ	50F, clear, it NW breeze	System on	4,331,110		44 7	-	
00.0	65F, Clear, NW 5-15mpn	Oysiem on	4 405 000			-	

Background Rain Gauge	Weather	Comments	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass KNO, Added to Stock Tank (ibs)	Volume Water Added to Stock Tank (gal)
(E)		2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	4,435,120	8	11.7	300	480
-	55F, clear, NE 10-40mph	System on due to low initiate, testan at 15.50 in	4,451,880	3	11.7		
	65F, Gear, NW 10-40mpil	Cyalain Oil	4,464,370	\$	11.7		
	39F, Clear, NW 10-Zumpii	Oyagan on	4,479,530	\$	11.7		
	40F, clear, calm	System of	4,496,500	8	11.7		
	35F, clear, W 10-15mpn	System on	4,512,980	49	11.7		
	30F, clear, S 5-10mph	System on	4.531,210	€	11.7		
2/10/95 11:30 0.30	68F, cldy, SW 5-10mph	System on	4 549 200	6	11.7		
	50F, cldy, NE 10-20mph	System on	4.561.750	67	11.7		
_	55F, cldy, NE 5-20mph	System on	4 579 570	64	11.7		
	48F, cldy, SW 5-10mph	System on	4 595 400	2	11.7		
_	50F, cldy, SW 5-10mph	System on	4 612 720	64	11.7		
2/15/95 9:00 0:00	63F, cldy, SW 5-10mph	System on	4 628 780	9	11.7		
L	66F, cldy, It SE breeze	System on	4 647 430	07	11.7		
2/17/95 11:55 0.00	70F, cldy, calm	System on	A SSA RAD	64	11.7	300	475
2/18/95 13:00 0.10	70F, cldy, SE 5-10mph	System on	A 602 180	40	11.7		
L	65F, cldy, it SW breeze	System on	4 604 460	9	11.7		
	65F, clear, NW 10-20mph	System on	A 700 550	9	11.7		
_	60F, clear, NW 10-20mph	System on	4 726 180	67	11.7		
2/22/95 8:30 0:00	45F, clear, NW 5-10mph	System on	4 743 250	64	11.7		
-	65F, clear, NW 10-20mph	System on	4 760 200	67	11.7		
	65F, clear, NW 10-20mph	System on	4 777 590	49	11.7		
	65F, clear, NW 5-15mph	System on	4 795 940	6	11.7		
	70F, clear, SW 5-10mph	System on	4 809 460	6	11.7		
L	68F, cldy, SW 10-20mph	System on	4 824 920	6	11.7		
-	68F, cldy, S 5-10mph	System on	4.841.470	\$	11.7		
3/1/95 8:50 0.48	60F, cldy, NW 10-20mph	System on	4,857,880	6	11.7		
3/2/95 8:40 0.00	50F, cldy, NW 5-15mph	System on	4,873,730	67	11.7		
_	55F, cldy, N 5-15mph	System on	4.891,170	67	11.7	300	480
_	65F, clear, NW 5-15mph	System off due to low nitrate; restart at 14.40 iii	4,909,770	49	11.7		:
	65F, clear, It SW breeze	System on	4,920,020	49	11.7		
3/6/95 9:00 0:00	68F, cldy, calm	System on	4,935,570	49	11.6		
	68F, clear, SW 5-10mph	System on	4,951,240	49	11.6		
3/8/95 7:30 1.15	46F, cldy, N 10-20mph	System on	4,968,760	49	1.6		
3/9/95 9:00 0:00	50F, clear, NE 10-20mph	System on	4,985,860	6	7.0	-	
3/10/95 9:50 0.00	55F, clear, NW 10-15mph	System on	5,005,530	49	11.6	9	
3/11/95 14:30 0.00	65F, cldy, It E breeze	System on	5,020,430	64	11.6	9	
	65F, clear, E 10-30mph	System on	5,035,180		11.6		
-	68F, clear, E 10-20mph	System on Chirt down at 00:22 hr to mow	5,051,360		!		
-	65F, cldy, E 10-20mpn	System on Shart and State in the state of th	5,651,580			9	
_		System on the lo yeardings a morning.	5,066,880			9	
3/16/95 7:20 0.55	j	System on	5,083,670	49		9	
		System on	5,106,000		11.6		
3/18/95 16:30 0.00	•	System on	5,119,720	49	11.6	300	480
-		System off due to low nitrate; restart at 16:30 nr	5.130.740		11.6	9	
		System on	5 147 240		11.6	9	
	Ī	System on	5 163 340			9	
		System on. Shut down at 10:05 hr to mow	E 464 340	49		9	
_	75F clear S 10-25mph	System still off from mowing yesterday. Restart at 9:10	000 000				
_				_	7	7	_

System on System
non non non
00 00
u.
9
Curtor on
System on
System on
System on
System on
System off due to low nitrate and mowing: restart at 15:37 hi
System on
System on: Shut down at 19:00 hr to dry out for mowing
System off for mowing; restart at 09:10 hr
System on
U
System on
The second secon
System on
System on
System on
System on
System on. Replaced wom sprinklers.
System on
System on. Shut down for final sampling.

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

Date 3/30/94 17:00 4/1/94 8:30 4/1/94 8:30 4/1/94 8:30 4/2/94 8:30 4/2/94 8:30 4/4/94 16:00			5	Control Cell			Cell				Mater Levels III Collins			Wate	r Levei	s Oursia	Water Levels Outside Treatment	Tient C	Cells
3/30/94 17:00 4/1/94 8:30 4/1/94 2:30 4/1/94 18:30 4/2/94 8:30 4/3/94 8:45	Totalizer	Pressure (psi)	Cell Flow Rate (GPM)	Mass NaCl Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gai)	EPA-1 (ft from TOC)	EPA-3 v (ft from ()	Well 11 v (ft from (Weil R4 (ft from TOC)	(ft from (TOC)	EPA-4 (ft from (TOC)	Well 12 (ft from (TOC)	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-58 (ft from TOC)	EPA-5C (it from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
4/1/94 8:30 4/1/94 2:30 4/1/94 19:30 4/2/94 8:30 4/3/94 8:45 4/4/94 16:00						5 12	5.89	7.56	3.21	6.01	6.67	7.98	6.57	3.61	3.77	3.67	2.03	3.33	5.00
4/1/94 8:30 4/1/94 19:30 4/2/94 8:30 4/3/94 8:45 4/4/94 16:00				\$	002	5	3									L			
4/1/94 19:30 4/2/94 8:30 4/3/94 8:45 4/4/94 16:00	001			96	3		-			 	-								
4/1/94 8:30 4/3/94 8:45 4/4/94 16:00	080'0		1				-			-	-								:
4/3/94 8:45		:				5.23	66	7.76	3.40	6.12	6.82	8.20	6.78	3.85	4.02	6	2.23	3.56	5.20
4/4/94 16:00						5.29	60	7.82	3.4	6.18	6.92	8.25	6.83	3.88		6		3.60	5.26
	8,111	<u> </u>									i						Ī		
4/4/94 17:00	9,910	+=								-				T					
4/5/94 14:40	9,910							-				+						-	-
4/5/94 19:00	12,380						-					Ī	-						
4/6/94 7:00	15,650		1.4								1	1							
4/6/94 17:30	21,351	i	1.6													1	į	į	
4/7/94 14:00	33,850	-				5.07	8.9	7.61	3.30	8	6.84	8	6.70	3.98	4.21	3.	C1.2	20.0	6
4/8/94 0:30	38,020						. !					ij		1			:		90 7
4/8/94 8:30	43,520					4.76	5.86	7.46	3.16	5.83	6.70	26.	6.32	3.93	3	4 2	5	3.00	4
4/8/94 18:30	50,340		11.4				1	-				-			-	:		!	
4/8/94 23:00	53,280						-+	+		- - -	1			-		!	1	:	
4/9/94 7:30	29,080	. 4					:	-	:		;	:				:		!	!
4/9/94 13:15	62,930	1						-		+	-					-			
4/9/94 20:10	67,810	1	11.4			60	2, 1	1 30	2.10	5.67	6.52	777	6.31	3.94	8	3.98	1.93		
4/10/94 15:40	80,460					3 9) u	2 5		,	4	7.75	6.33	3.88	1	က်	-	:	:
4/11/94 9:20	92,980					3 5		7 76	336	1	6.81	808	6.67	!	1				. ;
4/12/94 13:00	100,540	4:6	5 5			4 43		717	2.90		:	7.63	6.22			į	. :	1	- 1
4/13/94 8:50	114,180			130	200		il un	7.08	2.82	1		7.45	6.15				:	i	- 1
4/14/94 9:20	30,050		i	1		i	i	7.10	2.80		6.37	7.56	9		3.79	3.71		1	- 1
4/16/94 15:00	165,060	!_			:	4.52	, L	7.02	2.78	1		7.50	- 1	3.55		- 1			1
4/17/94 16:00	181,830	8				4.41	2	7.11	2.85	5.48		7.57		:		1		2 6	
4/18/94 8:30	193,180					4.38	ທີ່	7.11	20.0	5.45	8	8	0 0	2 6	i	ļ	1	1	i.
4/19/94 9:00	209,330	:	11.3		:	4	5.57	7 15	8 6	2 0		2.5	2 0		!	3.79	1.74	3.38	
4/20/94 8:50	225,550	:	11.3	-	-			7 8	2 83	5.45	889	7.55	6.14	3.68	!	;	I		
4/21/94 9:10	242,130		1	· :	:	· · ·	, 	3	}	}				:	1				
4/22/94 9:00	250,400	-	1			4 70	5.74	7.37	3.08	5.74	9.56	7.84	6.42	3.55	3.75	3.68	1.85	3.34	4.80
4/22/94 10:30	+	!	i				L			į.			L.						i
4/23/94 18:00	÷	1	46			:			!								i	- 1	
472434 17.23	208 190	:	1			4.52	5.72	7.23	2.98	2.60	6.51	7.70	6.29	3.75	3.90	3.83		3.41	4.72
4/26/94 9:20	312,560		i		:								!	1	-	-	:		-
4/27/94 8:40	328,300		46 11.2	2			_				1		-		-	-	-		1
4/28/94 8:45	342,920			2			-							-		-	-	<u> </u>	ļ Ļ
4/29/94 10:20	359,820		11.1				-	:	:	:	-	-			-		-	:	
4/30/94 17:35			i	1	!		-				1	!	:			İ L			
5/1/94 18:15	396,430	!		6		70.7	200	7.05	OB C	5.41	6.34	7.53	6.10	3.52	3.70	3.63	1.60	3.26	3 4.50
5/2/94 9:00	406,030	1	i	80 1		,	o	3		Ĺ				İ					
5/3/94 9:00	421,240		į	0	-	İ	1	1			1							-	1
5/4/94 9:50	457,180	:	47 10.8	οα	-	-													

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

			Control Cell	Cell		Water	Water Levels in Cell		Nitrate	Water Levels in Control Cell	Levels	in Cor	itrol	Water	r Levels	Water Levels Outside Treatment Cells	te Treat	ment C	ells
Date	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass NaCl Added to Stock Tank (ibs)	Volume Water Added to Stock Tank (gal)	EPA-1 (ft from TOC)	EPA-3 (ft from (TOC)	Well 11 W (ft from (f	Well R4 E (ft from (ft TOC)	EPA-2 E (ft from (ft TOC) T	EPA-4 v (fit from (f TOC)	Well 12 v (ft from (f)	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-5C (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
5/6/94 9:30	467,610	47	10.8					-	H	-		l	T						
5/7/94 19:30	477,420	!							-	L	 		:					:	
5/8/94 16:40	490,450	47	10.8		:	1		1				-			:	!	:	1	:
5/9/94 13:10	502,980	47	10.4						-			-							
5/10/94 9:15	515,400	47	10.4		!	:					:							:	-
5/11/94 9:15	529,920	47	10.4				_					 	_				-		:
5/12/94 9:10	544,760		10.3	:	:				: :		; :	İ					_		
5/13/94 10:05	560,470	47	10.3			:										:			:
5/14/94 18:15	579,700	-	10.3	:			•				-								
5/15/94 16:45	593,560		10.3				:	-:				-							
5/16/94 8:45	603,180		10.3		1		:			_	-			-					
5/17/94 9:45	617,740	47	10.0		:				-				-						
5/18/94 8:15	631,110		6.6		1	-			:		-	:	-						
5/19/94 11:35	647,130		1				-	:					-	-	:				
5/20/94 9:20	660,370		10.1						-						:				
5/21/94 17:30	096'089	47	11.4								-			:	!	:		:	
5/22/94 17:00	695,950	47	11.4					,						:			;		1
5/23/94 11:25	708,560	47	11.4			4.95	6.02	7.64	3.34	5.98	06.9	8.10	69.9	4.07	4.26	4.15	2.19	3.73	5.09
5/24/94 9:25	723,640	47	11.4				!	:	1	 		:					!	İ	i
5/25/94 9:30	740,000				i				:	-		<u> </u>							
5/26/94 10:05	756,730		11.4									-	-	!				:	
5/27/94 9:50	772,930		11.4											:					
5/28/94 13:20	791,570		11.4							-	-		1	i					
5/29/94 16:30	809,950																		
5/30/94 18:00	827,300				ř									 					
5/31/94 9:55	838,360					4.67	5.87	4.	3.15	5.79	6.75	7.92	6.49	3.85	4.02	3.95		3.56	4.90
6/1/94 10:25	855,790		11.8							-					:		!	1	
6/2/94 9:30	872,190		11.8								-				!				
6/3/94 10:20	889,840	47	11.8							-	-								
6/4/94 17:30	911,960		11.8								-		:						
6/5/94 18:40	929,890		11.8					-		-									
6/6/94 13:35	943,390		11.8	:		4.30	5.49	7.03	2.75	5.38	6.43	7.59	6.14	3.26	3.54	3.48	1.36	3.14	4.40
6/7/94 9:10	957,460										1	1				į			
6/8/94 9:05	974,410							1											
6/9/94 10:00	992,360									1	-	-] 				
6/10/94 15:20	1,010,730	94		200	300	-		:	:				:		:		-		
6/11/94 8:45	1,022,870							-	-	+	1								
6/12/94 14:04	1,043,460	4							- 60	- 1	-	1	1		1	- !	ĺ		
6/14/94 0:30	1 073 840		5.0			4.42	20.00	41.7	8	5.49	6.43	19.7	6.19	3.58	3.74	3.66	1.69	3.28	4.62
6/15/94 10:00	1 091 150	L					İ	1	:	1	T	+	-	-		1			
6/16/94 8:20	1 106 950	L	Ĺ		1		-	i	-	+	-	1	i			1			
6/17/94 9:30	1,124,830							-	+	+	-	+	-		-				
6/18/94 9:30	1,141,380					L				1.	-	T							T
6/19/94 14:20	1,161,020							-					Ī			-			
6/20/94 7:30	1,167,550				:	3.38	4.35	2.30	181	4.22	5.21	6.29	4.79	2.19	24.	237	0 60	2.06	3.40
6/21/94 7:00	1,182,600						Ĺ		!					i	-				
6/22/94 11:15	1,202,300	0 47	11.8							H									

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

			Control Cell	I Cell		Water	Water Levels in	1	Nitrate	Water	Levels	Water Levels in Control Cell	itro	Wate	r Levels	Water Levels Outside Treatment Cells	e Treat	ment C	s s
1	Totalizer	Pressure	Cell Flow Rate	Mass NaCl Added to Stock	Volume Water Added to Stock Tank	(it from	EPA-3 (ft from (# E 6	Well R4	EPA-2 (ft from (EPA-4 (fit from (TOC)	Well 12 V (ft from ()	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-5C (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
E/23/04 11:35	1 219 480	(1001)		ı	(in)				┰	+	_								
6/24/94 10:15	1,235,470																		
6/25/94 17:25	1,243,180																`		
6/26/94 17:30	1,259,180	47													9	000	6		000
6/27/94 7:40	1,269,110		:	1		3.46	4.46	6.05	230	4	2.30	6.54	4	8	27.7	80.7	5	3	200
6/28/94 9:05	1,286,300	47	:					-						1					
6/29/94 10:05	1,304,270	47						+		1	1	+	1						
6/30/94 9:35	1,320,780						-	†			+		1						
7/1/94 9:30	1,337,630		1				+	+		+	1	+							
7/2/94 11:50	1,356,110		i :				-			†	T	+	-						
7/3/94 11:30	1,372,760	1	1				8	8	3	30.5	30	5.21	377	8	2.03	1.95	0.05	1.46	2.74
7/4/94 11:00	1,389,220		1			7.5/	3	3	7	07.5	0.0	7 .		3	3				
7/5/94 10:40	1,405,860		į					1			-								
7/6/94 11:00	1,423,090	8				č	100	8	0.35	230	284	422	2 80	1.61	1.61	1.51	0.0	0.88	2.26
7/7/94 10:00	1,439,220		1			2	.9	B	3	3	<u>.</u>	1							
7/8/94 9:30	1,455,780	84	-					İ	-	+	:	+							
7/9/94 16:40	1,477,920		i					1		+	-	1	1					-	
7/10/94 17:30	1,495,430		11.8			000	C	5	8	270	4 46	5.78	4.35	2.05	220	2.13	0.42	1.87	3.05
7/11/94 9:25	1,506,540		1			8	2	3	¥.	2	?	5	}	i		Ĺ	i I		i
7/12/94 9:10	1,522,090						1	+	-	1			-		1				
7/13/94 12:45	1,541,540		_					-	-	+									
7/14/94 10:30	1,556,890			1			-		-	1	:	-		-			L	1	
7/15/94 9:15	1,572,920		-					+		i	1			1	:		-		
7/16/94 13:10	1,592,660	1	E :		1			-		!	!				: 1		!	!	
7/17/94 18:20	1,613,090				+	0	200	6	4	3.51	4 33	2	4.24	2.05	220	2.12	0.30	1.62	2.96
7/18/94 10:55	1,624,620	-				10.7	60.0	3	2	5	3	-			1	L	<u> </u>	1	Ĺ
7/19/94 0:00	1,641,870		_				1			1	1	!		1			!	: !	
7/20/94 9:45	1,657,350	į	-!-					+	-	:			1	-	-			: 	
7/21/94 10:35	1,674,710	1	= ;		-			†			:		:		:	!	: :		
7/22/94 9:35	1,690,820	-	=				1	!		!									
7/23/94 13:55	1,710,600	1	= :								1	!							į
7/24/94 16:25	080,827,1		= ;	: : :	-	3 15	3	5.55	55.	4	4.84	6.12	4.73	2.35	2.56	2.50	0.55	1.98	3.32
7/25/94 9:30	00,147,1		0 0		-	3			1	 	i	!			!			-	
//20/94 8:00	0,4,00,1	2															-	1	
7/20/04 10:25	4 701 470		-										İ				-	-	
70004 10.60	1 007 000	-										!			-	-		!	
7/20/04 15:05	+		: :														:	-	
7/31/04 19:20	-	. 4					1		i		:	1		- !'			1	200	9 50
8/1/94 13:20	+-		7 11.8			3.26	4.17	5.90	1.77	4.33	5.13	6.41	2.00	2.65	2.03	70.7	4,0	1	
8/2/94 8:05	1.869.550	4		60					;					1		-	1	1	
8/3/94 16:00	┿	4	7 11.8	60												-			
8/4/94 10:45	+	4	7	80						-			1			-	-		
8/5/94 9:10	1,920,370	0 74	7 11.8	90			1							:	-	1	-		
8/6/94 19:00	-													-		-	1		-
8/7/94 17:50	÷	4	7	8			- [i		ì		97.3	7	200	700	216	0 18	1.63	2.83
8/8/94 8:50	1,957,200			80		2.63	3.14	90.0	CI.1	3.	4	Ĺ	Ĺ	-	1			İ	
8/9/94 8:55	1,968,470			8			-		1		1		!		-	-	-		
8/10/94 8:50	1,985,280		11.8	8															

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

			Control Cell	ol Cell		Water	Water Levels in Cell		Nitrate	Water	Levels	Water Levels in Control Cell	ıtrol	Wate	r Level	Water Levels Outside Treatment Cells	e Treat	ment C	s s
Date	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass NaCl Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gat)	EPA-1 (ft from TOC)	(ft from (f	Well If W (ft from (f TOC)	Well R4 E (ft from (f)	EPA-2 if (it from (TOC)	EPA-4 (ft from (TOC)	Well I2 (ft from (TOC)	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-5C (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
8/11/94 9:25	2,002,510	48	ı						1	_	1		Ī						
8/12/94 12:00	2,021,000	8																	
8/13/94 12:45	2,038,460	:	i								-								
8/14/94 19:30	2,060,120	1				:	-	-	•				:			:		1	
8/15/94 12:00	2,071,530	-			: : : : : : : : : : : : : : : : : : : :	:	4		+	-	-	-		:	1			-	1
8/16/94 9:05	2,086,080									-	1			:	:		1		
8/18/94 10:00	2,087,000	:	-!				1			-		1	1	į.	1				
8/19/94 0900	X	-	!			3.68	4.69	6.34	2.12	4 70	5.56	9.80	9	305	3.25			2.69	3.87
8/31/04 15:40	0 100 P.V	!	¥ .		-	4 6	20.02	2 6	2.55	9 9	5.93	7.24	5.85		333	:	9.8	2.82	4.30
0/1/04 0.00	2 445 060	1				3	20.00	3	3	8	\$	0) ()	3	3.74	20.		3.24	4.80
9/2/94 10:50	2 132 890					1	1	-	:	i		1	:	!	:				Ī
9/6/94 10:10	2.199.140		!			3 97	5 10	671	2 48	25	5 95	7 14	5.74	3.35	2 50	5	1 30	200	4 40
9/7/94 9:00	2,214,190		İ			3	;	;	ì	3	3		5	3	5	,	50.	30.0	<u>.</u>
9/8/94 9:45	2,231,310	! !						! !		 	:		:						
9/9/94 9:00	2,247,600		11.7						:			-	1			!			1
9/10/94 13:00	2,267,070							-					:			!			:
9/11/94 14:00	2,284,530						-			-	-								
9/12/94 8:50	2,797,800					3.95	5.15	6.74	2.48	5.09	9.00	7.19	5.78	3.31	3.53	3.45	1.35	3.00	4.23
9/13/94 9:00	2,314,710		11.8						i			İ -				i			
9/14/94 8:30	2,327,840	İ	-																
9/15/94 9:00	2,343,810		± :					-	1						į				
9/16/94 8:30	2,360,320						-	+		1	1	1							
9/1//94 12:00	2,3/9,2/0		7.1.				+	+		+		+						-	
9/10/34 14:00	2,397,000						1	7.				1					-		
9/19/94 9:00	2,477.900	i	1.8			3.75	4.92	6.53	2.28	4.88	5.81	96.9	5.57	3.04	3.26	3.20	1.12	2.74	4.00
9/21/94 9:00	2 444 000						-		+		1	1							
9/22/94 9:00	2.460.870	5							+										
9/23/94 13:50	2,481,280									† 					-				
9/24/94 12:45	2,497,290					L			-	<u> </u>		1							
9/25/94 15:30	2,516,170	-	ļ																
9/26/94 9:20	2,528,780		11.8			3.84	5.05	6.63	2.35	4.98	5.89	7.07	5.65	3.13	3.35	3.29	1.22	2.84	4.09
9/2 //94 8:40	2,545,060							1		+	Ī								
9/29/94 9:30	2 579 300							+		+	1	1							
9/30/94 12:00	2.583,890		Ĺ		-		1		-		!	-					-		1
10/1/94 16:00	2,602,270									T			Ī						
10/2/94 18:20	2,620,790																		Ī
10/3/94 9:30	2,631,160		11.8			2.70	3.38	5.17	1.15	3.51	4.23	5.48	4.08	1.99	2.16	8	0.00	1 63	2 87
10/4/94 10:15	2,648,220														i	1	1_	3	2.01
10/5/94 8:55	2,664,280	45	11.8						-				!						-
10/6/94 11:35	2,682,750																		
10/7/94 9:00	2,697,760																!		
10/8/94 12:10	2,716,730																		
10/9/94 18:05	-+	æ :					1									<u>.</u>	H		
10/10/94 12:45	-					2.73	3.86	5.50	1.31	3.89	4.85	2.30	4.56	1.93	2.18	2.10	0.24	1.62	2.97
00:948/101	2,764,630	5 7							-								_		
0.034 9.10	5,/01,410									1									

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

									-				T						
			Control Cell	I Cell	13 3135	Water	Water Levels in Nitrate Celi	E_		Water	Water Levels in Control Cell	in Co	ıtrol	Wate	r Levels	Water Levels Outside Treatment Cells	e Treat	ment C	SIIs
Date	Totalizer	Pressure (osi)	Cell Flow Rate (GPM)	Mass NaCl Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (qal)	EPA-1 (ft from (TOC)	EPA-3 (ft from (ft TOC)	Well II w	Well R4 E (ft from (ft	EPA-2 E (ft from (f	EPA-4 (ft from (TOC)	Well 12 (ft from (TOC)	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-5C (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
10/13/94 9:15	2,798,100	45	1			Ħ													
10/14/94 9:55	2,810,480	2 4 54	11.6					+		T	+	†							
10/16/94 13:30	2.845.570	\$						-											
10/17/94 8:45	2,858,850	54	11.7			3.35	4.30	6.05	88	4.48	5.33	6.59	5.20	2.69	2.93	2.85	0.83	2.39	3.68
10/19/94 16:45	2,872,350	\$								+						1			
10/20/94 9:30	2,884,000	45					-	+	-	+			1						
10/21/94 8:35	2,900,200	\$ \$	11.7				+	-	-	-									
10/23/94 15:30	2,938,800	₹				-													
10/24/94 9:10	2,950,650	₹				3.54	4.76	6.35	2.11	4.73	5.61	6.85	5.43	2.91	3.15	3.06	1.05	2.62	3.89
10/25/94 9:10	2,967,420	45	11.7					-		+	+	1						1	
10/26/94 9:00	3,002,710	8 8	1			İ		-											
10/28/94 10:00	3,018,000	\$	11.7																
10/29/94 13:00	3,037,090										1								
10/30/94 16:30	3,056,620			: : : : : : : : : : : : : : : : : : : :		-	-	-	i	1	1	100	1	8	100		100	02.0	5
10/31/94 9:10	3,068,200		11.6			3.82	96	6.54	222	8	5.79	86. 96.	5.55	28	3.24	i	1	S.	4
11/1/94 8:45	3,083,560	₹ 4	1.6				-	:	+	+	1	 -				1			
11/3/94 9:00	3 115 220	-	11.6			1		i !	!	-			!						
11/4/94 9:30	3,130,830	!	11.5					-	-										
11/5/94 14:00	3,150,450	!	11.6															:	
11/6/94 19:00	3,170,310	! !	1.5					į	10	,	5	70.	ō	00.0	73.0	248	1 27	301	415
11/7/94 7:55	3,179,230	-	11.6			5	r.	6/3	XC.	0.	3	ţ.	0.0	8.9	5	,		3	ř
11/8/94 7:00	3,195,070	-	1.6				-		:	1		T							
11/10/04 0:20	3 220 710	3 2	11.5			:	+-			:							ij		
11/11/94 10:00	3,246,610	 -	11.6			4.10	5.25	6.83	2.58	5.19	6.10	7.93	5.93	3.36	3.60	3.52	54.	3.06	4.32
11/18/94 13:00			11.6		:		+	+	-		!	+		i		-			
11/19/94 19:15	3,271,200	₹ 5	2.5	!			-	+-	· :	:	1				:		!		
11/21/94 10:00	-		11.5			4.41	5.63	7.20	2.90	5.55	6.46	7.69	6.28	3.70	3.94	3.85	1.76	3.40	4.67
11/22/94 9:30	_	45	11.5								-	-	:					Ī	
11/24/94 14:15	-	-	12.3					i	+	-	1				 		-		
11/25/94 17:25	3,362,240	8 A	12.3		-			-									: !		
11/27/94 17:50	-		12.3													,	1	1	-
11/29/94 13:30	+	 	12.3			4.34	5.45	7.03	2.70	5.39	6.29	7.51	6.10	3.39	3.55	3.47	S.	3.08	4.45
11/30/94 9:30	_	45	12.3						1	1					1	-			
12/1/94 9:30	3,457,550	45	12.3					+	1	+									
12/2/94 11:00	3,476,520	4	11.8					1		-+									
12/3/94 16:30	3,497,030	:	T :							1									
12/4/94 18:35	3,515,110	5 4 5 4	11.7	:		3.69	4.86	6.41	2.18	4.79	5.69	6.90	5.18	2.90	3.17	3.09	1.03	2.67	3.91
12/6/94 9:25	3 542 150	3 4	11.7				1				П								
12/7/94 8:15	3,558,080	:	11.7														-		
12/8/94 8:35	3,575,210		11.7						-							 -	-		
12/9/94 11:25	3,593,870	45	11.8																

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

				100		Water	Water Levels in	1	Nitrate V	Water Levels in Control	evels	in Con	frol						
			Control Cell				Cel	_			Sell			wate	Levels	Water Levels Outside Treatment Cells	le ireat	Jent Ç	8
d d	Totalizer	Pressure	Cell Flow Rate	Mass NaCl Added to Stock	Volume Water Added to Stock Tank	EPA-1 (ft from	EPA-3 W	Well 11 W	Well R4 Er	EPA-2 EF	EPA-4 W	Well 12 V	Well D	EPA-5A (ft from	EPA-5B (ft from	EPA-5C (ft from	Well R2 (ft from	Well R3 (ft from	Well C
12/10/94 12:30	3,609,430	45	11.8	(ca) with	T								+-		3	3		3	3
12/11/94 17:35	3,629,520		11.8			-	-	-		-	-			:	:		-	1	-
12/12/94 8:45	3,640,060		11.7			3.89	5.12	6.73	2.43	5.09	6.02	7.20	5.81	3.23	3.48	3.39	1.31	2.94	4.20
12/13/94 8:15	3,655,240	45	11.8				_			-									
12/14/94 8:10	3,671,940	45	11.7								-	-		:					
12/15/94 8:10	3,688,510	45	11.7																
12/16/94 8:40	3,705,510		11.7						_										
12/17/94 16:20	3,727,500		11.7					-	_						: :		:		
12/18/94 12:30	3,741,880	\$	11.7		:				-					. :	. !				
12/19/94 10:30	3,756,810		11.7	1		4.10	5.35	6.94	3.19	5.30	6.22	7.34	6.0 2	3.47	3.72	3.64	1.51	2.66	4.40
12/20/94 9:15	3,772,600		11.7			+	-		-				:						
12/21/94 10:30	3,790,240	\$	11.7								- !			-	:				
12/29/94 9:30	3,923,110	:	11.7			3.94	5.31	6.87	2.59	5.18	6.19	7.32	2.30	3.28	3.60	3.51	.	3.06	4.32
12/30/94 8:40	3,938,760		11.7					1	:	-	+	-		:				-	
12/31/94 16:00	3,959,810		11.6	: ::::		1		+			;			:	:	:	!		
1/1/95 17:00	3,976,820		11.6		:		-			-						į			
1/2/95 16:10	3,992,920	45	11.6			4.16	5.35	6.99	3.21	5.35	6.29	7.50	6.07	3.50	3.74	3.65	72	2.70	4.45
1/3/95 8:25	4,004,250	₽ ₽	11.7								_								
1/4/95 8:45	4,021,140	45	11.6							_				:		:			
1/5/95 17:30	4,040,130		11.6							:		-	i						
1/6/95 8:50	4,050,950	45	11.6						!	-	-					Ĺ			
1/7/95 17:20	4,073,510	45	11.6											:		L		1	
1/8/94 16:20	4,089,570	45	11.6																
1/9/94 9:00	4,101,210	45	11.6			4.19	5.51	7.03	2.82	5.44	6.36	7.55	6.13	3.64	3.88	3.80	1.68	3.36	4.56
1/10/95 9:10	4,117,370	45	11,7				_	-											
1/11/95 8:30	4,133,620	45	11.7					-		-							!		
1/12/95 8:35	4,150,430	45	11.7				 		-	-	!	:							
1/13/95 8:45	4,167,200	45	11.7							-	-						-		
1/14/95 18:00	4,190,340	45	11.7								-								
1/15/95 17:00	4,206,410	45	11.7								 								
1/16/95 8:20	4,217,130	45	11.7			3.95	5.33	6.82	2.63	5.21	6.14	7.35	5.94	3.36	3.67	3.54	4.	3.09	4.31
1/17/95 8:30	4,239,080	45	11.7																
1/18/95 7:35	4,250,120	45	11.7														:		
1/19/95 7:50	4,266,960		11.7					+	-		+	1							
1/20/95 / 45	4,283,430		7.5					+	-		-								
1/22/05 18:00	4,230,300	\$ 4	11.				+		-	-	-	-	-	!					
1/23/95 9:00	4 327 260		417			2.44	A 75	6 47	20.0	7 55	2	20.0	107	2	000	į		1	
1/24/95 12:25	4 346 370	-	117			5	2	ó	3	CC.+	0.0	0.00	0.0	6.5	ξ.3	i,8		2.42	3.63
1/25/95 8:55	4,360,090	L	11.7				+	-		-					-				
1/26/95 10:15	4.377.430		117				-	-	+	1		+	†	-					
1/27/95 10:15	4,394,210		11.7				-	-			i	-	!	1					
1/28/95 13:00	4,412,720		11.7					-			+	-				-			
1/29/95 17:00	4.432.190		117						+		+	T							
1/30/95 10:00	4,444,010		11.7			3.80	200	6.54	244	491	5 25	7.04	5 62	3.05	2.51	3.44	60	000	7 00
1/31/95 8:45	4,459,880		11.7						-		3		5	3	2	5	ĺ	6.33	4.02
2/1/95 8:50	4,476,630		11.7					-		<u> </u>		+					I		T
2/29/95 8:10	4,492,810		11.7							-	H								
2/3/95 11:00	4,511,410	45	11.7					 -	Н		H								

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

													ľ	İ					
			Control Cell	- Ce		Water	Water Levels in Cell	Ź E_	Nitrate	Water	Levels	Water Levels in Control Celi	ıtrol	Wate	Water Levels Outside Treatment Cells	Outsid	e Treatr	nent Ce	s =
Date	Totalizer (gallons)	Pressure (psi)	Cell Flow Rate (GPM)	Mass NaCl Added to Stock Tank (lbs)	Volume Water Added to Stock Tank (gal)	EPA-1 (ft from TOC)	EPA-3 (ft from (ft TOC)	Well 11 V (ft from (Well R4 (if from ()	EPA-2 (ft from (TOC)	EPA-4 (ft from TOC)	Well 12 (ft from (TOC)	Well D (ft from TOC)	EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-SC (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
2/4/95 12:00	4,520,800	45							1			i	П	+					
2/5/95 15:30	4,537,600	\$				8		000	0	90	90	1 40	20	2.74	2.75	88.0	69	2.41	4.47
2/6/95 9:40	4,550,140	45				77	ų Ž	8	3	8	9.69	9.	3	5	2	3	<u> </u>	5	
2/7/95 8:25	4,565,390	£ ;					- 		+	1	İ								
2/8/95 9:00	4,582,500	\$!	1		+	1	+	+	-	-						-	
2/9/95 9:00	4 617 520	\$ A	11.7			1	+		-	-		 	İ						
2/11/95 14:00	4.635.870	₹					 -	-											
2/12/95 15:00	4,653,420	\$,		1
2/13/95 9:30	4,666,400	45				3.83	5.10	6.58	2.38	4.95	5.94	2.70	5.67	3.28	3.55	3.48	2.0	3.06	4.03
2/14/95 8:30	4,682,420	\$4			:									-				+	i
丁	4,699,440						-	-		-		-						1	
	4,716,150	\$ 45	11.7				-		+										
2/10/05 13:00	4,759,900	3 4				i	-		1	Ī	+-								
2/19/95 13:00	4 769 830	₹	ĺ										!						
2/20/95 9:10	4,782,300	45				3.89	5.16	69.9	2.42	5.01	5.98	7.15	5.71	3.28	3.58	3.50	1.25	3.07	4.12
2/21/95 8:20	4,797,600	3																-	
2/22/95 8:30	4,814,420	45	11.7			1		-				1						1	
2/23/95 9:30	4,831,650	\$	11.7				1			-		:				-		1	
2/24/95 10:20	4,848,810	45						+		Ī	1	1							
2/25/95 11:40	4,866,400		11.7				:	-	-		-		-	-	1			-	
2/26/95 14:00	4,884,750		11.7	-				1		200	96	7.50	90	2 70	4 03	8	1 87	3.54	4 53
2/27/95 10:15	4,898,700	₹ 4	11.7	:	:	2	200	3	5	3	3,	!	3	5					
3/1/05 8:50	4 931 000	1	117				-												
3/2/95 8:40	4.947,580		11.7											İ				1	
3/3/95 7:50	4,963,560		11.7								-								
3/4/95 12:35	4,981,140	\$	11.7				;	-			-	1	-	-	:				-
3/5/95 18:05	4,999,830	-	11.7			00.1	U	7 + 7	8	5.40	6.40	7.63	919	9	4.14	4.07	1.79	3.66	4.63
3/6/95 9:00	5,016,130	-				1	9		3	? 5	;	3	5; 5;		! !	i			
3/8/95 0:30	5,041,530	3 ₹					!	:			ĺ								
3/9/95 9:00	5.059.140		11.6					!				:							1
3/10/95 9:50	5,076,280		11.6																
3/11/95 14:30	5,096,050	45	11.6			-	-	-	-	İ			1						
3/12/95 12:00	5,111,020		11.6			1		1	18	5 43	30	7.40	6 15	3.80	4 05	3.95	1.74	3.55	4.60
3/13/95 9:20	5,125,750	\$ ×	9.1.0	1		3	1	1	3	3		2	5		Ļ				
3/14/95 6:50	5 147 180	1	11.0	:	!		:		!			:	:	!					
3/16/05 7:20	5 157 650		11.0					1											
3/17/95 8:00	5 174 630		11.6										1						
3/18/95 16:30	5,197,150	54	11.6									•							
3/19/95 15:00	5,210,880	45	116							-	-	:	:	:	-				
3/20/95 9:10	5,222,000	45	11.6					-											
3/21/95 9:20	5,238,730		11.6			00.7	Ĺ	1	274	5.32	98,99	7.43	6.00	3.55	3.79	3.70	1.58	3.29	4.45
3/22/95 9:00	5,255,020		9.1.6			4.40	ń:	7.		500		1	}						Ĺ
3/24/95 9:15	5,272,580	45											i						

APPENDIX B (cont.)
OPERATIONS AND MAINTENANCE LOG FOR PILOT DEMONSTRATION PROJECT

6.60 2.234 4.91 5.85 7.04 5.60 3.15 6.60 2.234 4.40 5.28 6.40 6.99 5.56 3.43 6.60 1.02 3.75 4.68 5.89 6.90 5.38 3.06 6.30 1.02 3.37 4.18 5.80 6.30 5.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 3.37 4.18 5.42 3.39 1.86 5.00 1.02 5.00 1.86 5.00 1.02 5.00 1.86 5.00 1.02 5.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.86 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00				Control Cell	i Cell		Wate	Water Levels in	i	Nitrate	Water Levels in Control	Levels	ii Co	trol	Water	Water Levels Outside Treatment Cells	Outsid	e Treat	nent Q	S S
5,290,450 46 116 429 5.59 7.10 285 5.6 6.0 7.00 6.17 3.66 5,230,820 46 116 429 5.59 7.10 285 5.6 6.0 7.00 6.17 3.66 5,230,820 46 116 6.40 7.00 6.17 3.66 5.00 6.0 2.34 4.91 5.60 6.0 7.00 6.17 3.66 5,426,300 45 116 3.18 3.06 6.00 2.34 4.91 5.60 3.15 5.00 6.00 3.34 4.91 5.60 3.15 5.00 6.00 3.14 5.00 6.00 3.14 5.00 6.00 3.14 5.00 6.00 3.14 5.00 6.00 3.15 5.00 3.15 5.00 5.00 3.15 5.00 5.00 3.15 5.00 3.15 5.00 3.15 4.00 5.00 3.15 5.00 5.00 3.15 5.00	Date	Totalizer		Cell Flow Rate		Volume Water Added to Stock Tank (nal)	EPA-1 (ft from								EPA-5A (ft from TOC)	EPA-5B (ft from TOC)	EPA-5C (ft from TOC)	Well R2 (ft from TOC)	Well R3 (ft from TOC)	Well C (ft from TOC)
6,209,8200 45 11.6 4,29 5,50 71.3 2.66 5,40 70 61.7 7 61.7 7 61.7 7 61.7 7 61.7	3/25/95 11:00	5,290,430	45	4					+	+-										
6,252,830 45 11.6 4,26 5,56 71.3 2.66 5,46 6,40 760 16.7 6,252,830 45 11.6 3.78 5.05 6.00 2.34 4.91 5.66 6.00 <	3/26/95 15:00	5,309,820	\$																	
5,535,970 45 11.6 6.69 2,34 4.91 5.69 7.04 5.69 5.53 7.04 5.69 5.69 5.59 7.04 5.69 5.69 5.69 5.69 5.69 7.04 5.69	3/27/95 11:00	5,323,630	45				4.28	5.58	7.13	2.85	5.46	6.40	7.60	6.17	3.66	3.90	3.82	7	3.42	4.60
6,426,380 45 11.6 3.78 5.05 6.90 2.34 4.91 5.60 7.04 5.60 6,432,890 45 11.6 3.78 3.05 6.90 2.34 4.91 5.60 5.60 6,432,890 45 11.6 3.78 5.05 6.90 2.34 4.91 5.60 5.60 5,430,400 45 11.6 3.78 11.2 4.07 5.34 6.89 2.63 7.04 5.60 5,440,400 45 11.2 4.07 5.34 6.89 2.63 7.04 5.60 5,440,400 45 11.2 4.07 5.34 6.89 2.61 7.04 5.60 5,440,400 45 11.2 4.07 5.34 6.89 2.61 7.04 5.60 5,460,610 45 11.2 4.07 5.34 6.89 6.89 7.04 5.90 5,646,810 46 11.2 3.00 4.83 6.51	3/28/95 9:00	5,338,930	\$	j				- i	:		1	-		•	1				-	
5,371,100 45 11.6 3.79 5,05 6.00 2.34 4.91 5.65 7.04 5.60 5,440,020 45 11.6 3.79 5.05 6.00 2.34 4.91 5.65 7.04 5.60 5,440,020 45 11.6 3.70 4.07 5.34 6.05 5.05 6.00 2.34 4.91 5.65 7.04 5.60 5,440,020 45 11.2 4.07 6.34 6.05 6.00 2.34 4.91 5.65 7.04 5.60 5,440,020 45 11.2 4.07 6.34 6.06 2.34 4.91 5.60 6.00 5,447,200 45 11.2 4.07 4.07 6.34 6.06 6.00	3/29/95 9:30	5,355,970	45	i					-	-i		:	:	-	:	-	:		:	-
5,409,6020 45 11.6 3.778 5.05 6,60 2.34 4.91 5,60 7.04 5.60 6,402,630 45 11.6 3.778 5.05 6,60 2.34 4.91 5,60 7.04 5.60 6,402,630 45 11.6 3.778 5.05 6.60 2.34 4.91 5,60 5.60 5.00 6.60 2.34 4.91 5,60 5.60 6.60 2.34 4.91 5,60 5.60	3/30/95 8:30	5,371,910									-	:	-	:					,	-
5,440,020 45 11.6 3.78 5.05 6.60 2.24 4.91 5.65 7.04 5.60 5,440,020 45 11.6 3.78 5.05 6.60 2.24 4.91 5.60	3/31/95 8:45	5,388,820		ļ				:			i	i		1		:	::		!	
5,440,020 65 11.6 3.78 5.05 6.60 2.24 4.91 5.85 7.04 5.60 5,440,020 65 11.6	4/1/95 14:00	5,409,050	:						-	:									:	
5,444,120 45 11.5 3.78 3.09 6.09 6.24 4.31 1.00 7.78 5.09 6.00 6.24 4.31 1.00 7.78 5.00 6.00	4/2/95 13:00	5,425,390			-			1	0	-	2	i.			,	ç			č	
5,546,440 45 116 407 5.34 688 2.63 5.21 6.16 7.36 5.96 5,546,400 45 11.5 407 5.34 688 2.63 5.21 6.16 7.36 5.96 5,546,500 45 11.3 407 5.34 688 2.63 5.21 6.16 7.36 5.96 5,545,610 45 11.3 407 5.34 6.88 2.63 5.21 6.16 7.36 5.96 5,545,610 45 11.3 407 5.34 6.88 2.63 5.21 6.16 7.36 5.96 5,545,610 45 11.3 3.70 4.63 6.51 2.31 4.44 5.96 5.96 5,546,610 45 11.2 3.70 4.63 6.51 2.31 4.42 5.96 5,683,200 45 11.2 3.77 4.63 6.51 2.31 4.42 5.96 5,683,200 45<	4/3/95 11:40	5,440,020	₹ 5	i		:	3.78	1	9	45.2	25	n n	<u>.</u>	20.00	S. 13	2.42	4	771	5.3	5
5,480,640 46 112 407 5,34 6.88 2.63 6.16 7.35 5.95 5,540,620 46 11.3 407 5,34 6.88 2.63 6.16 7.35 5.95 5,543,610 46 11.3 407 5,34 6.88 2.63 6.16 7.35 5.95 5,545,610 46 11.3 407 5,34 6.88 2.63 6.16 7.35 5.95 5,545,610 46 11.3 40.7 5,34 6.88 6.51 2.31 4.44 5.96 5.95 5,648,620 45 11.2 3.70 4.88 6.51 2.31 4.44 5.96 5.96 5,648,630 46 11.2 3.70 4.88 6.51 2.31 4.44 5.96 6.96 5,707,700 45 11.2 3.30 4.32 6.03 1.82 4.42 4.42 5,786,800 46 11.2 3.30 4	4/4/95 8:25	5,454,120	ę.					İ	+		+	+	-		:		:	:		1
5,487,200 45 11.2 407 5.34 6.88 2.65 6.16 7.35 5.95 5,546,200 45 11.3 407 5.34 6.88 2.65 6.16 7.35 5.95 5,546,610 45 11.3 407 5.34 6.88 2.65 6.16 7.35 5.95 6,547,610 45 11.3 407 5.34 6.89 2.65 6.99 5.95 6,547,610 45 11.3 407 5.34 6.81 6.99 5.95 6,577,610 45 11.2 2.86 3.70 4.94 5.96 5.96 5,686,320 45 11.2 2.86 3.67 5.45 1.28 5.86 5,686,320 45 11.2 2.86 3.67 5.45 1.28 5.86 5,686,320 45 11.2 2.86 3.67 5.45 1.29 5.86 5,702,300 45 11.2 3.30 4	02.80.80	3,404,440	9 4	i					1		:	!		1	-			:		1
6,516,200 46 11.3 407 5,34 6.88 2.63 5.21 6.16 7.35 5.95 6,546,610 45 11.3 407 5,34 6.88 2.63 5.21 6.16 7.35 5.95 6,546,610 45 11.3 7 4.88 6.51 2.31 4.84 5.80 6.99 5.56 6,544,600 45 11.3 7 4.89 6.51 2.31 4.84 5.80 6.99 5.56 6,60,320 45 11.2 7 4.89 6.51 2.31 4.84 5.80 6.99 5.56 5,60,320 45 11.2 7 4.89 6.51 2.31 4.84 5.80 6.99 5.56 5,60,320 45 11.2 3.70 4.89 6.51 2.31 4.42 5.66 5.99 5.56 5,60,320 45 11.2 3.37 4.41 6.33 2.19 4.42 5.86	4/6/95 8:50	5,460,040	:	!						•					;					
5,533,120 65 113 4,07 5,34 6.88 2.63 6.16 7.35 5.95 5,545,100 45 11,3 4,07 5,34 6.88 2.63 6.16 7.35 5.95 5,543,220 45 11,3 7 4,83 6.51 2.31 4,84 5.80 6.99 5.56 5,643,220 45 11,3 3.70 4,83 6.51 2.31 4,84 5.80 6.99 5.56 5,643,220 45 11,2 3.70 4,83 6.51 2.31 4,84 5.80 6.99 5.56 5,643,220 45 11,2 3.70 4,83 6.51 2.31 4,84 5.80 6.99 5.56 5,643,220 45 11,2 3.70 4,83 6.51 2.31 4,84 5.80 6.99 5.56 5,643,220 45 11,2 3.70 4,83 6.51 2.31 4,84 5.80 6.99	4/9/0E 13:30	5,437,210					:	:	-		1	+	;		1	-		:	!	
5,546,610 45 113 4,07 5,34 6,88 2,63 5,16 7,35 5,98 5,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,3 2,547,610 45 11,2 2,547,610 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 45 11,2 2,548,620 47 2,548,620 47 2,548,620 47 <th>4/0/35 13:30</th> <td>2,010,200</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>1</td> <td>-</td> <td>+</td> <td>+-</td> <td>:</td> <td>-</td> <td>:</td> <td></td> <td>:</td> <td>:</td> <td></td> <td>1</td> <td> </td>	4/0/35 13:30	2,010,200	-	-			-	1	-	+	+-	:	-	:		:	:		1	
6,587,510 45 11.3 70 483 6,51 23 484 580 6,99 5,56 5,587,510 45 11.3 3.70 483 6,51 231 484 5,80 6,99 5,56 5,682,470 45 11.2 3.70 483 6,51 231 484 5,80 6,99 5,56 5,682,530 46 11.2 3.70 483 6,51 231 484 5,80 6,99 5,56 5,680,330 45 11.2 3.70 483 6,51 231 484 5,80 6,99 5,56 5,680,330 45 11.2 3.70 48 11.2 3.70 4,89 5,81 4,42 5,56 5,700,780 45 11.2 3.30 4,32 6,03 1,42 5,56 5,89 5,89 4,42 5,56 6,89 5,89 5,89 5,89 4,42 5,59 5,89 5,89 5,42	4/3/30 14:40	5,555,120	-				107	i -	00	0 63	20.4	4	7.25	140	2 43	9	3.60	7	2 1.4	A 2.4
5,570,1500 45 11.3 5,594,220 46 11.3 5,594,220 46 11.3 5,594,220 46 11.3 5,594,220 46 11.3 5,648,650 45 11.2 5,648,650 46 11.2 5,648,650 46 11.2 5,677,270 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,707,300 46 11.2 5,896,600 46 11.2 <t< td=""><th>4100000</th><td>0,040,010</td><td></td><td>İ</td><td></td><td>-</td><td>}</td><td>ı</td><td>9</td><td>3</td><td>7.7</td><td>3</td><td>3</td><td>0</td><td>?</td><td>3</td><td>-</td><td>i</td><td>5</td><td>5</td></t<>	4100000	0,040,010		İ		-	}	ı	9	3	7.7	3	3	0	?	3	-	i	5	5
5,594,220 45 11.3 6,610,050 45 11.3 6,610,050 45 11.3 6,610,050 45 11.3 6,610,050 45 11.3 6,610,050 45 11.2 6,518,620 6,519 5,568 5,594	00.6 20047	5,561,400	1	-					-		+	-	-	-	!		-	-		!
5,610,050 45 11.3 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5,626,050 45 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5,656,830 45 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5,696,330 45 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5,696,330 45 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5,707,380 45 11.2 3.77 4.61 4.72 4.42	4/12/95 9:00	5,5/7/510		1		:	Ī	+	+	-	-	1	:			:	· :		1	
5.628,470 4.5 11.3 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.58 5.686,530 4.5 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.58 5.690,350 4.5 11.2 3.70 3.80 4.5 1.2 4.8 4.8 4.8 5.80 5.690,350 4.5 11.2 3.8 4.5 1.2 4.8 4.8 5.80 5.	4/13/35 10:00	5,534,250					:		+		İ	1	-	1	!	:		:		
5,648,650 4,5 11.2 3.70 4,83 6,51 2.31 4,84 5,80 6.99 5.56 5,686,830 4,6 11.2 2,60,324 4,6 11.2 2,60,324 4,6 11.2 2,60,324 4,6 11.2 2,60,323 4,6 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 11.2 2,70,330 4,5 1,2 3,75 4,6 6,83 2,14 2,6 6,83 2,14 2,6 6,83 2,14 2,6 6,83 2,14	4/15/95 13:00	5 628 470	-				-	1	i i		-	-		1	-		1	1		
5.688.500 46 11.2 3.70 4.83 6.51 2.31 4.84 5.80 6.99 5.56 5.673.240 45 11.2 2.88 3.67 5.45 1.28 6.89 5.56 5.707,380 45 11.2 2.86 3.67 5.45 1.28 5.83 4.42 5.707,380 46 11.2 2.86 3.67 5.45 1.28 5.83 4.42 5.707,700 45 11.2 2.86 3.67 5.45 1.28 5.83 4.42 5.770,070 45 11.2 3.30 4.32 6.03 1.82 4.40 5.29 6.89 5.781,700 45 11.2 3.30 4.32 6.03 1.82 4.42 5.49 5.817,710 45 11.2 3.51 4.61 6.33 2.19 4.69 5.59 6.90 5.39 5.817,710 45 11.2 3.51 4.61 6.33 2.19	4/16/95 19:00	5 648 650	Ĺ	i							-	1	:							
5,673,240 46 11.2 6,673,240 46 11.2 6,673,240 46 11.2 6,630,330 46 11.2 6,630,330 46 11.2 6,630,330 46 11.2 6,630,340 46 11.2 6,630,340 47 4	4/17/95 9:40	5.658.530					3.70	<u>.</u>	6.51	2.31	4.84	5.80	6.9	5.56	3.14	3.40	3.34	1.15	2.86	4.01
5,690,350 45 11.2 6.690,350 45 11.2 6.696,310 45 11.2 6.696,310 45 11.2 6.727,700 45 11.3 6.727,700 45 11.2 6.727,700 45 11.2 6.727,700 45 11.2 6.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 45 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 7.727,700 47 11.2 <td< td=""><th>4/18/95 9:10</th><td>5,673,240</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td></td<>	4/18/95 9:10	5,673,240							-		1						1			1
5.696.310 45 11.2 2.86 3.07 5.45 1.29 3.75 4.59 5.83 4.42 5.707.380 45 11.2 2.86 3.67 5.45 1.29 3.75 4.59 5.83 4.42 5.742.810 45 11.2 2.86 3.67 5.45 1.29 3.75 4.59 5.83 4.42 5.770,070 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.89 5.49 5.801,690 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.89 5.69 5.817,710 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.89 5.49 5.49 5.49 5.817,700 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.89 5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	4/19/95 11:00	5.690.350				! ! !	1				-	-	!							
5,727,700 45 11.3 42 42 5,727,700 45 11.2 2.86 3.67 5.45 1.29 3.75 4.58 5.83 4.42 5,742,810 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.49 5,776,070 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.49 5,786,340 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.89 5.89 5,881,770 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.89 5.89 5,881,770 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.89 5.38 5,896,640 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.89 5.38 5,992,200 45	4/20/95 9:00	5,696,310		:						1		:	!	:			:			
5.727,700 46 11.3 2.86 3.67 5.45 1.29 3.75 4.58 5.81 4.42 5.732,810 45 11.2 2.86 3.67 5.45 1.29 3.75 4.58 5.83 4.42 5.786,340 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.49 5.817,70 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 5.89 5.817,70 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 5.89 5.817,810 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.80 5.932,800 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.80 5.39 5.932,800 45 11.2 3.51 4.18 5.42 3.39 6.29 3.59 4.18 5.42 <t< th=""><th>4/21/95 9:30</th><th>5,707,380</th><th>ĺ</th><th></th><th></th><th></th><th>:</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>!</th><th></th><th></th><th></th><th></th><th></th></t<>	4/21/95 9:30	5,707,380	ĺ				:				-				!					
5,742,810 45 112 2.86 3.67 5.45 1.29 5.83 4.42 5,783,170 45 11.2 2.86 3.67 5.46 1.29 5.42 5,786,340 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.40 5,801,690 45 11.2 3.51 4.61 6.33 2.19 4.68 5.49 5.49 5,881,270 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.90 5.38 5,881,270 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.90 5.38 5,881,270 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.90 5.38 5,943,530 45 11.2 3.51 4.18 5.42 3.59 5.52 3.59 5.52 3.59 6,036,016 45 <	4/22/95 15:40	5,727,700	-	ļ i																
5.753.170 45 11.2 2.86 3.67 5.45 1.29 3.75 4.58 5.83 4.42 5.770,070 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.49 5.801,690 45 11.2 3.30 4.32 6.03 1.82 4.61 6.33 2.19 4.68 5.89 6.80 5.38 5.891,700 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.80 5.38 5.896,990 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.80 5.38 5.891,810 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.80 5.38 5.892,820 45 11.2 3.51 4.61 6.33 2.19 4.68 5.89 6.80 5.38 5.992,820 45 11.2 3.51 4.18	4/23/95 14:00	5,742,810				!			1		1	-	1			- [İ	1		
5,770,070 45 11.2 3.30 4.32 6.03 1.82 6.40 5.49 5.49 5,801,600 45 11.2 3.30 4.32 6.03 1.82 4.40 5.29 6.49 5.49 5,805,640 45 11.2 3.51 4.61 6.33 2.19 4.68 5.59 6.80 5.38 5,805,640 45 11.2 3.51 4.61 6.33 2.19 4.68 5.59 6.80 5.38 5,805,640 45 11.2 3.51 4.61 6.33 2.19 4.68 5.59 6.80 5.38 5,805,690 45 11.2 3.51 4.61 6.33 2.19 4.68 5.59 6.80 5.38 5,805,600 45 11.2 3.57 4.18 5.42 3.39 6,036,010 45 11.7 2.59 3.05 5.03 1.02 3.37 4.18 5.42 3.39	4/24/95 8:40	5,753,170		İ			2.86	j	5.45	8 3	3.75	4.58	5.83	4.42	2.11	2.34	2.29	0.31	1.80	3.02
5,786,340 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.40 5,817,760 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 5.89 5,817,760 45 11.2 3.51 4.61 6.33 2.19 4.68 5.69 6.80 5.38 5,817,810 45 11.2 2.59 2.69 6.80 5.38 2.19 4.68 5.69 6.80 5.38 5,843,530 45 11.2 2.59 11.2 2.59 2.69 3.05 2.69 3.99 5,896,040 45 11.2 2.69 3.05 5.03 1.02 3.37 4.18 5.42 3.99 6,026,010 45 11.7 2.59 3.05 5.03 1.02 3.37 4.18 5.42 3.99	4/25/95 8:40	5,770,070	:	į			:		:											
5,801,890 45 11.2 3.30 4.32 6.03 1.82 4.40 5.28 6.49 5.49 5,806,640 45 11.2 3.51 4.61 6.33 2.19 4.68 5.58 6.80 5.38 5,806,640 45 11.2 6.38	4/26/95 10:15	5,786,340					-		+		+	Ť								
5,881,210 45 112 3.50 4.51 6.33 2.19 4.68 5.58 6.90 5.38 5.91 5.91 112 3.51 4.61 6.33 2.19 4.68 5.58 6.90 5.38 5.91 112 5.91 112 5.926,870 45 112 5.945,330 45 112 5.945,330 45 112 5.945,330 45 113 5.945,330 45 113 5.945,330 45 113 5.945,330 45 113 5.945,341 112 5.945,	4/2//95 9:10	2,801,09,0					8	1	5	5	4	00	9	7	000		00.0		0,0	2
5,896,300 6,896,300 45 112 3.51 6,896,300 45 112 4.61 6,896,300 45 112 4.61 6,896,300 45 112 4.61 6,896,300 45 112 4.61 6,903,400 45 112 4.61 6,003,400 45 112 4.61 6,003,160 45 45 11.2 6,003,100 45 47 11.7 2,59 3.05 5,003 1.02 3,37 4.18 5,42 3.39	4/28/95 9:00	5,817,715					9.9 S	1	6.03	70	₹.	27.0	0.43	9.43	8	2.93		9.0	54.7	3.53
5,896,860 45 11.2 5,911,810 45 11.2 5,926,870 45 11.2 5,932,200 45 11.2 5,902,400 45 11.2 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7 6,036,010 45 11.7	5/1/95 10:45	5,000,040	-	ĺ.			2		933	2 10	89 7	, u	000	5 28	8	200	2 03		0.74	284
5.971.810 45 11.2 5.826.870 45 11.2 5.932.200 45 11.2 6.003.700 45 11.2 6.003.700 45 11.3 6.003.700 45 11.3 6.003.700 45 11.3 6.003.700 45 11.3	5/3/95 0:00	5 896 960					3		3	4	3	3	3	3	3		-	i	7	
6,526,870 45 11.2 6,932,230 45 11.2 6,930,200 45 11.2 6,030,100 45 11.2 6,036,010 45 11.7 6,036,010 45 11.7	5/4/95 9:45	5 911 810							İ							i				
5,943,530 45 112 5,972,200 45 113 6,030,450 45 112 6,036,010 45 117 6,036,010 45 117	5/5/95 8-10	5 926 870	1										-							
5,972,200 45 11.2 5,990,460 45 11.2 6,036,010 45 11.7	5/6/95 15:00	5 943 530	-								+			İ	1					
5,590,460 45 11.2 6,003,700 45 11.3 6,036,010 45 11.7	5/8/95 9:30	5,972,200		L			:	!	1		:		;		:	: :			1	
6,003,700 45 112 6,020,160 45 113 6,036,010 45 117 2.59 3.05 5.03 1.02 3.37 4.18 5.42 3.99	5/9/95 12:40	5 990 460							! 						i i i					
6,036,010 45 11.7 2.59 3.05 5.03 1.02 3.37 4.18 5.42 3.99	5/10/95 8:00	6 003 700										-	-					-		
6,036,010 45 11.7 2.59 3.05 5.03 1.02 3.37 4.18 5.42 3.99	5/11/95 8:40	6 020 160									T	İ		-		Ĺ		-		
	5/12/95 8:30	6.036.010		L			2.59	i	:	1.02	3.37	4.18	5.42	3.99	1.86	2.09	2.00	0.15	1.42	2.75
	5/13/95 9:00			L.					1							į				
																		ļ 		L

BTEXTMB	2.50	773	343	ଷ	2	ŧσ	5	7	ß	8	V	6	S	9	000	8 4	0	1	, «	V	7 0	V	V	⊽	⊽	⊽	₽	⊽. !	√,	⊽.	V 7	; ∵⊽	, en	171		4216	1819	527	141	1 1	3 8	3 3	406	159	110	32	185	153	212
TMB		60.7	56.9	4.5	9	2 5	333	0.0	10.8	14.3	۲- 1.0	2.9	۷. دان	9.	7 2 2	2 0	4 0	2 5	7 7	7	2 5	O V	, C	4.0	<1.0	<1.0	0.5	V-1.0	41.0	0. Q	2 0	7 V:V	0.10	37.2		190.0	172.0	28.0	85.4	5.0	27.4	12.7	2	55.5	22.7	23.6	34.0	33.8	45.9
PSCU	7	250.0	111.0	0.0	6.	47		9	20.5	26.2	۰ <u>۲</u> ۰	4.3	Į.	6.0	20.00	6 -	2	2 5	7 7	7	7 7	2 5	2	0.5	0.1°	۰. م	۸.	۸. م	۰. د	0.0	0.0	5 5	0.7	103.0		528.0	329.0	1000	200	20.00	3 9	2 6	128.0	54.1	30.8	46.3	47.8	44.3	ž.
MESIT	+-	20.1	51.1	4.4	0.0	2 C	2 6	0.0	4.0	5.9	۷. م.	<1.0	0.10	0.0	0.0	0 7	2 5	2 5	7 7	7 7	7	2 5	7	0.0	0.10	<1.0	۷. د.	0.1	0.	0. V	0.0	Ç 7	7 7	7.7		170.0	148.0	199	2	20.00	8 8	15.5	8	37.0	26.9	77.8	37.4	55.5	0.00
OXYL	1	8.3	3.5	0,1	6.	20 0	9 -	0.1	0.1	۵. 0.	0.10	0.10	۵.۲	6.	0 5	20.0	2 5	2 5	2 +	- 5	2 5	7	7	0.0	0.	4.0	م 0.	۰ <u>.</u>	٠ <u>.</u>	0.0	0.10	0 0	7.7	0.10		0.10	95.5	48.6	37.8	4.7	7.0	- 6	200	4.5	8.9	1.6	17.5	6.4	6.3
MXYL	┿	115.0	59.8	1.4	3.1	- 0	2 5	2 0	5.5	24.4	٥٠٢٧	۰. 0.	1.3	6.	4.	0,	ų	2 5	? ?	3 5	2 5	7 7	7 7	0	410	0.0	۸ 1.0	<1.0	٠ <u>.</u>	0.	V.	0.0	V 7	30		1270.0	0.10	148.0	238.0	21.2	0 0 0 0	3 0	2 2	43	12.0	1.3	23.1	6.4	9.3
PXYL	+	180.0	41.6	2.9	1.7	D C	200	10.12	5.0	17.1	4.0	1.3	5.6	7.	1.8	n (2 9	2 5	2 .	2	2 0	2 5	2 5	0.0	410	0.10	٥. ٥.	۸. م	٥. د	V .	V.	0.0) C	5 4		969.0	302.0	72.2	110.0	10.4	0 0	2. a	2 0	23	5.6	1.5	19.1	4.5	9.9
ETBZ	(100)	55.0	14.7	Ξ	0.	0 0	2 5	0 0	4.	7.0	0.	۰. 0.	٠ <u>۲</u>	0. V	0.0	0.6	2	2 9	2 4	2 4	2 7	7 0	7	0.0	0	٥.٢	0.0	4.0	0.1	0.	٠ 0	0 C	v 7	2 6	5	244.0	107.0	33.9	4	4.4	0 0	4.0	r a	3 0	2.9	۰. م	6.4	1.7	2.6
힏	7,60	7.6	4.3	0.	1.9	23	2.5	2 0	3.5	0.12	0.10	0.	4.0	۸. م	0.0	2;	0.0	÷ •	2.0	2	D 0	2 5	2 0	 	0	0.5	0.10	٥. د	0.10	0. V	۰ ا	<u>^</u> .	? 'ư	3.7	2	633.0	28.4	13.8	10.9	0	0	4. c	3 6	2	0.	۰. 0.	0. ∆	<1.0	1.3
28	7,60	26.5	41.0	0.10	٥. د.	0.0	0.5) V V	0.10	0	410	0.0	۰1.0	<1.0	0.0	0.0	0.0	0 0	0.0) V, V	0.0	2 0	Q Q	Q Q	7	0.	0.12	۰ ۱۰	4.0	0	۸. 0.	0.0) C	4	5	11.4	6.4	۸ <u>۱.</u> 0	-	0 V	0.0	2.0	7	7 5	0.10	0.12	۸.0	41.0	41.0
S,O,	┩-	×	₹	ž	¥	≨ :	<u> </u>	ž ž	ž	Ž	ž	ž	ž	ž	≨':	≨:	<u> </u>	≨ :	≨ :	Ž:	<u> </u>	5 5	<u></u> ≨	ž ž	Y	ź	ž	60.5	ž	0.5	<0.5	0.5	S 6	7	?	ž	¥	ž	¥	≨ :	≨ :	ž	£ 5	ž	ž	ž	ž	¥	¥
°SO		2.4	14.6	23.7	13.6	.3	17.2		103	100	12	ş	1.	8.9	7.	2.0	11.7	8.7	20.0	D 0	9 5	2.5	2 9	10.0	2 4	7.5	11.0	10.5	9.3	<u>o</u>	11.6	10.3	2 6	5 5	2	3.6	3.4	12.4	14.4	12.9	0.7	13.6	7 2	10.7	8.5	ž	9.3	2.3	4.6
PO.P	(mg/L)	8	0.53	0.08	0.15	0.15	0.17	20.0	0.41	0.45	0.25	0.33	0.53	0.76	96.0	0.99	0.48	9	0.53	0.39	98	20.0	2.6	5 C	3	0.41	0.37	0.40	<0.05	0.35	0.38	0.38	4.4	6	ò	<0.05	<0.05	<0.05	<0.05	<0.05	2002	000	0 0	2	0.05	<0.05	<0.05	<0.05	<0.05
Z-ĬZ	(mg/L)	293	0.94	5.06	0.83	0.50	2 1	7.0	15 5	2 2	0.05	0.27	0.34	0.91	0.99	1.47	9	<0.05	<0.05	500	V 005	0.0 0.0	0.00	000	2 5	000	<0.05	<0.05	<0.05	<0.05	0.29	<0.05	- 6	4 46	P	0.67	0.84	0.52	0.42	T	0.24	0.23	8.5	5 6	0.05	0.73	0.36	0.14	0.33
	(mg/L)	500	000	<0.05	40.05	9002	40.05	8 6	900	3 0	0.0	40.05	0.07	<0.05	<0.05	20.05	Q.05	9	40.05	9002	900	500	90	- K	3 8	3 6	0.08	0.0	0.08	0.07	<0.05	900	9.02	2 2	8	<0.05	<0.05	0.07	<0.05	<0.05	9.05	90.0	9.5	8 8	40.05	<0.05	0.07	<0.05	<0.05
N- ON	(mg/L)	5	88	11.70	9.75	9.15	7.56	\$ 8	5.57	2 4	21.50	2	0.15	<u>4</u>	0.91	0.79	1.50	13.40	8.8	1.20	16.60	6.29	17.10	19.90	2 6	5 5	20.50	34.40	15.90	15.00	20.40	19.50	13.60	2 2	8	+		-		-	+	-+	+	+	0.65	+	-	++	0.08
ō	_	- 1	1	14.8	!	- 1	- i		-	1	13.4	1	1	i i				:	i							_	4	<u>.</u>			-			- i-					<u> </u>	<u>:</u>	-		-+	+	2 6	+	-	! - :	\dashv
Β̈́	7	0	6.0	46.1	40.9	50.4	280	25.3	2 4	9 7	150.0	9.7	5.6	<u>د</u>	1.5	1.6	0.5	0.5	6.	0.5 0.5	<0.5	17	0	00.0	0 4	5 6	0.5	40.5	<0.5	<0.5	6 0.5	1.3	0.5	5.4	S.	2	2.2		-		÷	÷	+	+	o -	+	÷	:	\dashv
Fe (sol)	(mg/L) (mg/L)	9	9 6	0.5	0.	6. L	٥ -	9	÷	9 6	8 6	0	23	2.0	5.9	4	ç.	٥. د	6.	& -	6	ę.	ę.	03	5 6	5	0	8	6	6	6 -	0	ଚ	Ş .	5	. ~		-	H		1.6	1.5				1.	-	-	4
	(mg/L)	+	+	24	1	\perp		1 12	4		0 0	<u> </u>	-	┶		i	i	_				i	_	8 9	-		_	-			_		_	0 0		1	7 0.4		ا ا			7 0.1		4 0 4		0	<u> </u>		
표		1	2 2	2,5	4.98	5.40	4.	5.58	6 6	20.0	0. 6 7. 6	62	6.60	6.33	6.40	6.07	6.3	6.3	6.5	8	9.9	9.9	6.7	8 6	0 0	7 0	7 4	7.05	7.01	9.9	6.90	6.82	8.	9.0	0	5.6	6.2	5.1	5.2	6.0	5.9	5.97	9	6.2	4.0	6.07	62	6.02	5.9
Water Level	(It from TOC)	c u	507	4.56	4.36	4.38	4.36	4.52	6.33	6.00	4 42	3.46	2.66	3.15	2.63	4.34	3.97	3.75	2.70	3.35	3.82	4.10	4.34	388	6.5	9 4	2 2	380	4.32	4.28	3.78	3.70	330	2.59	4.28	6.01	90	5.65	5.44	5.45	5.45	2.60	5.41	2.3	5.79	1	Ļ	4 2	3.46
Date	1	70000	4700	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/34	2000	5/13/04	6/27/04	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/1/94	11/30/94	12/12/94	12/29/94	1/9/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/11/95	4/28/95	5/12/95	4/20/96	3/30/94	47/94	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/27/94	7/11/94	7/25/94	8/8/94
Well			EPAI	EPA1	EPA1	EPA1	EPA1	EPA1	E A	EFA	EPA1	EDA+	FPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	E A	L P A	FPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA1	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2	EPA2

												_				_		_		,		_	,,	-			<u> </u>	-		,		_		-	1		1		:	Ţ	-	_	1	1	_	ı		1		_	T	٦
втехтмв	(1) (1)	588	618	233	ا ر	3 3	15,	3 -		⊽ .	⊽	6	⊽	⊽	4	9	4	⊽	⊽	4	S	280		2096	2535	6298	2402	5319	2906	6313	6881	9000	0169	2125	167	3303	623	7336	4368	1647	2	CZC1	2752	2870	2448	4420	3672	1623		1	4403	╛
TMB	(<u>1</u>	9.02	99.5	55.9	38.7	26.0	2 2	0 7	2 .	0.[^	0. V	5.6	0.15	۰ <u>۲</u>	1.4	5.	9.4	41.0	<1.0	×10	5.4	139.0	1	182.0	189.0	240.0	238.0	229.0	243.0	249.0	237.0	232.0	241.0	1120	6.0	57.0	15.9	166.0	141.0	101.0	, c	2 2	2 2	131.0	2 6	1580	156.0	95.9	118.0	175.0	2.0	1/0.7
PSCU	(Jg/L)	83.8	101.0	71.9	27.5	31.6	144.0	:	2 5	o. ⊽	0.	1.8	41.0	٠ ٠	11.6	0,0	6.0	41.0	×1.0	012	5	176.0		516.0	479.0	503.0	416.0	401.0	435.0	453.0	443.0	426.0	464.0	20.0	9.4	88.0	18.8	306.0	246.0	135.0	11,0	4. 5	2,50	202.0	149.0	269.0	264.0	164.0	213.0	334.0	332.0	300.0
/ESIT	(ng/L)	116.0	9.98	96.5	82.8	42.7	0.00	0.4	0 9	0.	0.	4.4	41.0	4.0	15.6	3.3	26.0	010	0	3.0	47.5	132.0		122.0	152.0	163.0	156.0	157.0	167.0	168.0	157.0	0.45	170.0	138.0	4.9	27.7	8.4	93.7	96.0	53.7	5.7	31.7	5 4	3 8	20 00	4 68	98.2	65.7	78.8	114.0	0.00	113.0
Ē				-	0) C	0:0	0.	0.0	41.0	<1.0	0.1>	0.5	4.0	0.10	0	0 5	0	7	0.0		577.0	814.0	170.0	1190.0	100.0	1170.0	1280.0	1230.0	1280.0	981.0	0.080.0	33.8	420.0	84.5	0.668	576.0	323.0	12.7	307.0	455.0	465.0	200	3420	432.0	255.0	0.14	257.0	399.0	092.0
-	_	-		-	=		_	0. 6	+	-+-	0.	4.0	4.0	0.10	0.1	0.12	0.1	0	0	- -	7	73.4	1			. 0.097	380.0	1410.0	1500.0	1620.0	1770.0	1700.0	1980.0	0.0161	33.2	893.0	152.0	2120.0	1320.0	418.0	16.3	375.0	900.0	7020	727.0	15100	1190.0	512.0	882.0	1680.0	1560.0	15/0.0
F	_			_	0.				-	0	0	0	0.0	0.	0	0.1	0	C	0			0	<u>i</u>	737.0 1	-		_	586.0	-+	-+	753.0	_			15.6	-	+	-	-	-+	_	168.0		330.0	205.0	687.0	517.0	217.0	364.0	736.0	688.0	658.0
F	_	_			0.1>		-:		+	-	-,-	_		0.	0.	. 0	0		Ċ	-	, ,	-	<u>i —</u>	527.0 7					533.0	-	-	286.0		535.0	<u> </u>	+-	56.4	-		138.0	-	0.44	<u>-</u> ;-		2000		+	-	38.0	<u> </u>		656.0
-	-) (ug/L)		-		-		+	-	÷					0	0	. 0	· · ·			, \	/ \ : :	, -	<u> </u>	\vdash	-		-		_i	-+	-+	-+	+		-		224.0		-+	_	-	+	242.0	+	2.00	+-	+	-	2.0	+	+	908.0
TOL	_	0.	_				i	1	+			_		41.0	!		<u>.</u>	7	╁		717	\ \ \ \	-	H	816.0					-	+	- 1	i	_i_		1	1						+			<u>.</u>	j	┶	5.0 10	_	-	156.0
┝	(ug/L)	0.1 ₀	v.1.0	V.	0.	V.	0.	0.0	0: V:	0 V	V.	- - -	V-	0.	×10		0	+	7	7	7 17	7 V		-	0.6	_		_	_	24.4		+	-	÷	5.0	+	+-	-	-	+	-	+	+	+		287.0	+	╀	-	1.0 269.0	A .	125
S _O	(mg/L	ž	ž	ž	ž	¥:	ž:	ž:	ž	≨:	ž	ž	ž	ž	<0.5	Ž	2	2 4	, c	9 6	9 6	5 6) 	₹	ž	ž	ž	ž	ž	≨	ž	₹	ž	≥ 3	Z	₽	Ż		-		≨.	- -	+	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	÷	4-	-	ــ	-	-1:	Z .	
so.	(mg/L)	3.4	10.1	8.8	8.6	92	8.5	9.1	6.8	9.7	9.0	9.0	9.5	10.0	8.9	α.	7.5	2	ν α	ā	9 6	13.0	2	1.7	4.	0.7	<u>د</u> .	62	11.2	13.7	5.7	2.9	<0.5	9.0	¥ 8	+-	+	<0.5	<0.5	4	4.8		-	3 9	+	1	0.5	╁			0	90
POP	(mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5	900	300	200	3 0		0.03	2	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	000	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.0	0.0	5 5	0 0	0000	0.05	<0.05	<0.05	<0.05	Q-03	<0.05
N-TN	(mg/L)	0.49	0.87	99.0	<0.05	0.07	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	000	0.05	5.	200	3 6	3 4	3 4	3 8	20.00		1.06	0.79	0.53	0.31	0.33	0.45	0.56	0.69	1.28	2.42	2.62	1.40	1	<u>.</u>	1.86		-	_i		-		-4		357	+		2.74	2.77	2.51
N- ₂ ON	(mg/L)	<0.05	0.07	<0.05	<0.05	<0.05	60.0	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	0 05	0.05	200	3 6	2 4	3 6	3 6	0.03	0.05	3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	9.05	<0.05	<0.05	<0.05	<0.05	0.05	50.5	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.05			0.00	-	0.36	بنا	<0.05	40.05	<0.05
N-,ON	(mg/L)	<0.05	0.78	0.26	0.49	0.36	0.73	0.45	0.39	0.37	0.22	0.17	0.34	0 23	3.6	9	2 6	9 0	9 8	200	5 6	0 6	3	<0.05	<0.05	0.12	0.08	0.15	0.07	<0.05	<0.05	<0.05	0.12	<0.05	000	300	0.05	<0.05	<0.05	90.0	1.16	0.21	0.08	0.0	S 5	0.05	20.05	0.11	<0.05	<0.05	<0.05	80
ਠ	2		12.1	10.4	9.5	4.6	5	-	8.0	1.6	9.1	8.6	7.5	α.	0 0	0 0) C	0.0	1 1	0 0	0 0	0.00	9	1.3	2.5	22	4.6	7.4	9.6	6.6	.	9.1	6.9	8.5	5.5	9 9	30	8.9	7.2	9.6	3.2	7.5	7.1	6.0	9.2	0 0	ν α		<u> </u>	-+	7.6	8.5
ā	(mg/L)		4	<0.5	2.0	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	5	2 5	2 4	? •	2 2	9	5	0.0	5 5 7 7	2	<0.5	3.5	2.8	9.4	10.4	16.7	23.9	20.5	23.0	10.6	14.0	0.0	0 -	2.4	5.9	5.6	4.5	نې 1-	6.	0.5	3.0		<u> </u>	2 -	0.5	<0.5	1.6	≨	- 8
Fe (sof)			1.7	1	0.5	,		- :	-		,	!	6		1	.,	, ç			÷ ;		5 6		3.5	2.5	3.0	2.5	2.5	2.8	2.5	2.7	2.5	1.5	2.2	0.5	40.4	3.4	3.9	4.2	5.1	1.4	5.5	3.4	30	32	50 0	200	12	2.4	3.9	2,5	1.7
8	~	, 6	6.1	1.0	0	-	6.1	4.	1.5	1.6	5.9	2.6	32	2		2 4	2	2 ,	0	5) C	S C	5	9	0.7	8	0	5	-	8	0.2	8 7	& 1.	9.	0.2	8	3 5	9	8	6.	6	0.7	0.1	6	6.	0	5	- 0	200	ž	L	9	9
Ha			60.9	1	6.38	i 1	_ :		i		7.10	2.08	7.15	7 1 4	7 4.5	1 0	2 0	0 0	5 6	5 6	K K	6.87	ς. Ο .	5.42	593	5 43	206	5.43	4.5	5.32	5.33	5.63	5.81	5.87	90.9	3 5	90.00	2,08	5.83	5.83	6.32	6.10	6.19	6.21	90.9	9 2	2 g	5.55	6.38	6.41	6.45	6.43
-	_	_	!		3.51	. :		:					4.55	1	,	:	-		1		-	3.37	Ī	5.89	00.9	571	5.52	5.53	5.54	5.72	5.51	5.94	5.87	5.58	4.46	0.0	41.0	202	5.10	4.92					5.45	4	5.31	4.75	5.44			4
Date		R/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/24/95	30/3/0	2/24/05	20,070	0000	CR/77/S	CS (5)	4/1/95	4/28/95	5/12/95	4/20/30	3/30/94	47/94	4/11/04	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	\$ 10 E DA	V0/8/8	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	1/11/94	11/30/94	12/12/94	12/23/34	1/24/95	2/6/95	2/21/95	3/6/95	3/22/95
Well			FPA2	EPA2	EPA2		EPA2			Г	EPA2	;		5	200	2 6	7 5	F &	7	7.7	EPA2	EPA2	EPAZ	FPA3	FPA3	EPA3	FPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EFA3	EPAS	FPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EPA3	EP 43	EPA3	EP A3	EPA3	EPA3	EP 43	EPA3	EPA3

										_		_		-			_									-	,		-							_							-		1	_	T	_
(ug/L)	2000	949	4 6 6	4976		15271	9594	25578	23994	22223	16049	10594	8596	6435	5225	4827	4894	16161	29271	22318	21607	33291	10287	2741	8 8	2046	1970		772	1		3 8					//	!	200	228	218	23	1	<u> </u>	25 25	_	8	_
(ug/L)	2 2	20.00	N C	189.0	3	329.0	232.0	570.0	596.0	802.0	675.0	9	484	487.0	468.0	496.0	361.0	343.0	639.0	563.0	509.0	947.0	642.0	4430	308.U	4340	446.0	343.0	195.0	203.0	2240	227.0	1830	192.0	120.0	157.0	48.8	200	0.40	42.9	32.9	8	27.8	0 5	4 5 5 8	38.9	36.98	24.0
(Lgg)	2.0.0	65.3	0 0	200	3	1120.0	804.0	1580.0	1640.0	2540.0	1760.0	1110	120	839.0	783.0	743.0	664.0	735.0	2020.0	1700.0	1610.0	3190.0	1450.0	637.0	9/00	505.0	0.609	464.0	216.0	249.0	274.0	247.0	251.0	249.0	157.0	198.0	75.5	0.00	1240.0	50.6	39.4	39.9	28.2	, s	20.00 4.04	59.7	53.2	28.9
 -	4.		0.0	+	<u> </u>	298.0	٠	•	+	+	-		4-	327.0	307.0	+	-	220.0	÷	 	443.0	,—		287.0	377.0	307.0	276.0	302.0	247.0	255.0	246.0	2000	243.0	284.0	213.0	208.0	8	195.0	386.0	21.9	17.5	19.4	12.6	4. 8	C.22.5	26.7	23.0	4
	-;-	167.0		04.0	2:	2810.0			i .		-		!	4	1390.0	1320.0	1340.0	3360.0	5310.0	4410.0	4140.0			429.0	1450.0	274.0	186.0	145.0	43.2	6.5	42.1	21.3	23.1	17.1	10.9	15.3	4.4	80	2110.0	37.9	33.3	30.2	21.7	93.0	7.2	53.7	S 5.	
(John 2)	-i-			52.9		3980.0		+								<u> </u>		·	-	5290.0						207.0	267.0	158.0	38.2	49.0	44.7	0 6	20.0	21.1	17.7	32.9	7.9		3450.0	39.1	43.1	50.6	43.0	168.0	185.0	150.0	119.0	,
4	-	+	51.6		<u></u>	_i	1050.0		-		_i.				.i		7140		4		4	3610.0			 -	707.0	-			34.7	33.3	_ ;	0.0	16.9	12.4	23.7	0.9		1290.0	25.2	30.4	36.1	30.3	88.7	010	25.55 85.00	65.4	3 6
(ng/L)	-+	-		86.0	_	-	563.0	_				<u> </u>	-	+-	+		157.0	<u> </u>	2000	-	-	1980.0		<u> </u>	<u> </u>	39.5			5.4	9.9	2.0	5.6	4. 6	6.0	2.1	1.7	0.	9.	827.0	9.9	6.7	10.9	66	37.5	41.3	200	27.4	j
+-	223.0	-		25.3	+	+	-		50000				+	0.64		<u> </u>		4630.0			-	6480.0			<u>.</u>	12.5				 0. 0.	<1.0	0.0	9 9	0.0	4.0	0.10	0.5	0	1570.0	2.0	1.7	2.9	5.6	14.9	8.5	- 4	٠ 5 7	j
+-	+	\dashv		1.0	1	+		-	200	-		÷	÷		2 0	_		- -	<u> </u>	22.7						0.0		0.0		<1.0	<1.0	0.0	 0: 0	0.0	0.1	<1.0	<1.0	0.0	17.3	6.	11.3	1.3	8.9	2.2	1.3	N C	0, 0	2
		40.5		40.5	-	ξ.	4		\$ \$	5 •	<u> </u>	<u>-</u>	≸ :	v ≸!:	¥	¥	¥	· • •	<u> </u>	<u> </u>	. A		_		_	<u>.</u> ≨ :	_	. ¥	_		_	¥.	_	ξ 6 π	_		40.5	9.5	-0.5	-	_	_	÷	_	÷	÷	¥ ¥	
		-		2.8		00	1		0 0	9 9	12.9	20.2	33.5	21.4	2 0	2 .	0 2	S u	* u	0,0	9 0	5.3	8.8	6.0	5.3	3.7	7 7	. 7.6	5.0	8.9	0.6	0.6	4 0	2 0	83		. 1	-	9.5	3.1	2.3	<0.5	12	4.	1.7	E .	8 6	7.7
(mg/L) (n		_		<0.05		÷	2007	-	<u> </u>	63		+	+	<0.05	÷	-	0.00	÷	-	-		000	i		<0.05		0.05	-		<0.05	<0.05	<0.05	<0.05 0.05	0.00	40.05	<0.05	<0.05	0.05	<0.05	<0.05	0.10	0.11	0.11	0.10	60.0	0.1	0.0	90.0
i		_	_	<u></u>	+	+	-	-	÷	÷			-	<u>-</u>	4	+	+	S 5	-	07.0	÷	331	-	_	0.71	-+	0.05			<u>:</u>	<u></u>			0.00			<0.05	50.0	8	3	<u>.</u>	:	! !	43	28	.37	8 8	3
(mg/L)	_	-	-	1.45			2 2		2 2	_			-+	+				+		5 6		٠.					50.05			-	بسن	-	-	S 5				0.05 ✓	0.50	05	40.05	40.05	<0.05	<0.05	<0.05			_
			L			-	3 6	÷ -	5.5	÷		÷	+	-+							-1-	***	<u></u>	•					-			<u></u>						5	0						+			
	0.0	1.93	4	0.15	0.50	2	3:4	5 6	S. C	0	0.0				\$0.02 0.02	4			5.0	0.00		6.63					·-	20.0		٠.				0.0				-	0.5	<0.05								<0.05
2 E	8.9	5.3	4	6.7	5		i c	5	4	6.5	19.7	63.2	79.6	90.5	44.6	4 .	8.8	26.5	80 1	4.0	0 0	4 . 4	0		<u> </u>	5.9	_:				-			80 0		-	7.9	· -	13.5			3.0	3.7	3.0	2.9	27	33	4
mg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	9	20.0	0 0	23	2.7	<0.5	<0.5	<0.5	<0.5	0.5	0.	1.7	27	=:	3.0) ()	7 6	3 0	5.6	<0.5	<0.5	2.5	0 T	5.5	<0.5	<0.5	40.5	<0.5	S :	-	} -	5.	<0.5	<0.5	Ç	0	0.7	0.8	2.4	Ξ	2.	2,4	0.4
(mg/L)		1	:	<u>-</u>		,	9 0	9.0	7.6	7.3	4.5	4.5	3.0	=	7	0	0.3	6.0	9.	0.0	9.	0.0	. 4	2.4	1.8	4	.	9 6	5 0	0.5	0.0	0.	0.1	0.0	\$ 6	9 6	60.1	6	8	4		4	9	6.5	7.0	7.3	7.0	6.5
3 5	-	8	0.1	0.2	6		, i	5	8	5.	6.	6.	٥. د.	<u>.</u>	0	0.5	6	-	0	ę.	0.1	÷ 5	5 0	6.0	٥ د	<u>6</u>	6.	5		. 0	0.5	ž	0.5	- c	5 5	9 0	0	0	6	0	, C		2	8		<u>6</u>		ç
 E	-	<u></u>	-	5.54	6.04	1	2.80	8	6.01	90.9	6.40	6.50	6.58	6.33	6.25	09.9	6.41	6.26	6.54	5.92	5.91	5.80	0.90	6.23	6.48	6.33	6.28	6.51	6.02	673	06.9	6.90	6.90	6.85	0.0	5 8	6.78	6.70	6.16	ď	2 2	5 8	6.5	9	6.17	6.18	5.93	A PA
Water Level (ft from TOC)	į	Ī	1	3.05	: ;	1			- 1	- ,		6.38	6.51	6.3 4	6.81	6.75	6.43	5.30	4.46	48.4	4.18	5.93	0.83	2.5	5.33	5.79	6.10	6.29	5.02	9	5.53	6.26	5.98	6.42	6.26	9.00	25.28	4 18	2.90	5	0.0	88	3.65	3.66	3.68	3.75	3.52	204
Date	4/3/95	4/17/95	4/28/95	5/12/95	4/20/96		3/30/94	47/94	4/11/94	4/14/94	4/18/94	4/21/94	4/55/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/1/94	7/25/94	8/8/94	8/23/94	4000	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	1/0/05	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/30	4/28/95	5/12/05	4/20/96	70/00/0	4300	1110	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	E/46/04
Weil	EDA3	+	+	:	EPA3 4							EPA4		-	EPA4					- 1	EPA4	T	1	EPA4	i			_		!		EPA4	:	EPA4	EPA4	F 44	E PA4	EDAA		4040	EPASA	A VOU	FPASA	EPA5A	EPA5A	EPA5A	EPASA	FPASA

																			_					_					_											-			_	-	_	_	-	-	_		-	\neg
STEXTMB (ug/L)	187	379	490	245	195	580	246	560	629	318	405	178	333	246	244	354	452	447	425	297	996	0000	333	557	234	175		\$	216	268	χ. Σ	449	609	592	258	236	254	380	3/3	8 8	200	202	040	8 8	3 6	790	250	000	25.50	252	191	208
TMB (ug/L)	32.3	53.6	9,0	33.3	2 2	4.4	37.4	43.6	58.2	57.5	72.4	30	52.8	48.7	292	56.9	66.2	55.8	93	2 4	2 6	5.0	87.8	689	42.8	35.7		28.8	35.0	36.5	36.4	36.7	40.5	38.3	39.2	45.0	4	8 8 8	53.5	0.0	0.8	4.77	9	4 6	0.00	3 4	20.0	2 2	į	2 2	18.7	19.3
SCU (ng/L)	35.9			\$88.7				-		_		47.8	85.3	77.5	85.5	142.0	171.0	163.0	13.10	9 6		0.52	162.0	217.0	9.69	56.6	1	4.0	152.0	173.0	157.0	150.0	173.0	161.0	142.0	155.0	160.0	157.0	120.0	0.00	0 0	233.0	3 6	0.28	0 0	2 2	2 5	7.00	200	1480	139.0	160.0
MESIT F (uq/L) (16.9		-	24.7		-		+			55.4	-		35.4		51.2		•		70.0			49.1	58.7	27.7	25.1	: !	17.5	20.3	23.5	230	23.7	27.3	56.9	26.5	28.1	35.3	29.4	37.4	0.5	9.00	7.7	0 0	7.7	0 6	0 0	20.0	5.	0, 0	5 0 4	6.2	6.7
) (T/on)				5.3							2.5		2 0	2 0	2 0	- T	0	0	7	, ,	2 0	0.10	0.	0.6	<u>د</u> 0.5	<1.0	i,	3.8	0.7	7.5	80	7.7	8.2	8.9	5.9	4	×1.0	0.	2.5	⊃. 6	9 9	50.0	2 4) ·	2 2	2 5	2 5	0 0	2:5	, c	10	410
	_,			45.6				-			2.68	0 96	6.00	46.7	35.5	44.3	73.3	80.1	07.5	7 4 4	1 0	S	55.6	109.0	56.5	33.9		93.4	121.0	132.0	137.0	239.0	156.0	159.0	166.0	151.0	129.0	61.8	76.8	14.7	30.5	4.7	5.	2 0	0 0	4.00	29.2	0	- c	3 6	5.3	3.5
PXYL (<u>.</u>	_										÷	-		+ i c	م ا ا	93.0	58.6	86.5	28.5	19.0		99.2	113.0	126.0	119.0	115.0	129.0	127.0	117.0	103.0	103.0	62.6	51.4	6.19	29.6	25.2	707	21.6	50.0	1 0	3,0	9.00	7.07	2 0	14.3	10.7
ETBZ P			1 1							<u> </u>						<u> </u>				2 6	n (6.7	4.01	17.3	8.9	4.7		43.6	- !	49.8	- 1		- 1					_						٠		<u> </u>	-	-	-!	<u>-</u> -	5.3	₩
TOL E			-					-				-	_						-	-			:	0	1.0	0.	-	- :	- :		-		-		2.8				<u>-</u>	÷		÷					+	+	+	+	0.0	
		-	-	011	- 4								- c											0.	0.	0		20.5	-!		_:		_					_					+		÷	<u>.</u>	- 17	_	o (0.4	2 2	2.3
, BZ	-	4.	13.4	3.7	7.7				0. 4		· ·	_		7 7	_	7: 7		_			_		_	<0.5	_				_						_							÷	-	_	÷	_	_		4	≨ ≤	Y X	¥
S,O,	2	2 2 	Ž	2 :	≥ 2 	¥ 2												? <	7 2	ž (₹	ଟ	₹	₩.	٧ 	₽								-	<u>.</u>				_			+				-	<u>-</u> -			N	. L	
SO,		S Z	3.6	2.	S			v •	 	. 4	2 5	5 5		0.0		5 0		- 0	7 0	- (2.4	24	-	9.0	2.0	6.3		8	2	8	٥.	-	7	-	6	₽,	ά	õ	Ž	-	ò	o	-	L		-+	50	-+	₽.	+	7 8	-
POP		900	0.07	0.17	0.30	4 0	. 4	0 4	2 00	0 0	2 4	2.0	80.0	0.00	0.00	200	2 4	2 0	3 6	9	<0.05	90.0	<0.05	0.17	0.14	0.07		<0.05	0.24	0.27	0.19	0.14	0.12	0.17	0.18	0.15	0.1	0.12	0.18	0.0	0.13	0.14	9	0.14	0.14	C	0.15	0 18	0 18	0 0	0 0	0.17
N-HN	7 0	90.0	2.52	1.83	£ (2.77	2000	0.00	5 6	5.40	5 6	20 0	3 60	200	30.00	0 0 0	2 6	6.0	5 0	2.3/	5.26	2.23	2.17	3.57	1.65	0.82		2.91	αi	2.65	;			l		i		i	_	i		i				_	_	i		3.7	400	3.67
N-ON	700	0.00	<0.05	<0.05	<0.05	0.05 50.05	3 6	0.00	0.03	0.00	000	0.00	0.05	0.00	0.05	0.00	0.00	0.00	0.00	8	900	0.05	<0.05	<0.05	<0.05	0.50		<0.05	90.0																				<0.05	40.05	2.5	<0.05
N-,ON	(mg/L)	5.50	<0.05	<0.05	<0.05	0.05 5 7	20.00	00.0	0.05	9 1	0.0	Q.03	<0.05	0.05 50.05	0.07	2 2	00.00	0.00	0.0	<0.05	0.08	0.05	<0.05	<0.05	0.14	0.50		<0.05	<0.05	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	0.07	0.08	<0.05	<0.05	0.00	<0.05
5	(mg/L)	20 r	8	4.8	7.8	ω, ο Εύ, ο	0 0	n n	5.0	י מ	7.5	4.1	7.5	4 0	8 6	20 0	סנ	0	0	8.5	6.6	9.1	8.7	8.2	5.6	8.7		3.5	3.0			_		_	3.1	-	-			_+	_		_		<u> </u>	-+		8.3	8.9	9.0	א א	10.3
ā,	(mg/L)	5.0	5, 75	9.7	80	9. 0	0 0	8.0	ς . α	23.9	3.5	6	£. [5.7		0.0	9	4 0	, i	ž	53	<0.5	2.2	2.4	0.5	<0.5		<0.5	3.0	<0.56	_	5.0	0.7	3.0	28	1.0	1.5	3.0	4.0	2.4	8.2	9.5	6.8	9.5	10.3	1.3	4.4	1.1	13.3	9	2 6	8.2
	<u>-</u> -	9.0	99	0.0	8.4	8. 4		6	4 0	27 I	3.7	4.5	6.5	2.0	0.9	4.0	0.0	9 0		3.9	2.4	5.8	5.0	30	20	0		15.2	12.7	6.8	7.7	9.9	6.8	7.7	5.3	14.8	9.5	11.9	9.9	9.5	10.5	9.6	11.6	10.2	8.9	10.9	12.7	11.6	12.3	10.2	3.5	6.4
	Ξ-	Q .	- Q	-	0.1	Q: 3	5'6	0.0	0.0	9	6.	8	٥. -			9	2	1.0	Ņ O	-	6	0.1	-	0	5	8		6	0.2	0	0.1	8	6	6	0.1	10	6	0	0.1	0.1	٥ 1.	-	6	0.1	8	-0	9	0.1	2.	8	5 6	2
E		5.87		٠.,				5.85	5.95	80	6.11	5.98	6.20	6.10	9.08	6.10	3	6.30	90.0	6.22	6.16	6.12	6.15	6.03	8	6.40		2.90	6.27	6.25	5.96	6.30	6.13	6 12	5.97	6.12	5.98	6.37	5.84	5.91	5.76	5.71	5.77	5.91	9.0	5.9	6.0	6.01	9	9	9 5	6.16
\vdash	3	3.58	-	•	_		3.35	1			2.99				3.28	36.	2.51	3.71	3.28	3.90	3.55	3.15	3.14	2.68	98	2.89		3.77	4.21	4.03	3.75	3.80	3.81	8	3.70	4 12	4.02	3.74	2.76	2.22	2.56	2.24	3.33		_					3.55	_	1
Date	_	6/13/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/1/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/05	4/20/96		3/30/94	4/1/94	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	1/9/95
Well		EPA5A	FPASA	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	EPASA	EPA5A	EPASA	EPA5A	EPA5A	EPA5A	EPA5A	EPA5A	FPA5A	FPASA	EDASA	EPA5A		EPASB	FPASB	EPASB	EPASB	FPASR	FPASB	EDASB	FPASB	FPASB	FPASB	EPA58	EPASB	EPA5B	EPA5B	EPA5B	EPA58	EPASB	EPA5B	EPA5B	EPA5B	EPA5B	EPA5B	EPA5B	EPASB	EPA5B

<u> </u>	1		_	_	i	_	1	-	Τ-	-	1			-	ī	ī		T	ĺ	1	Ţ	1	-	-	,	-	i		_		-	i	1			- 1		_		;					_					_	٦
(J/gu)	ង្គ	8	8 9	473	12	155	5	~	8	}	4	4	2	4	∞	2		5	2	6	-	- 4	2 5	2 2	9	ğ		-	:	i		-	-	128			_			ļ	3 6			2	٠, ٦	v		951	:		_
(<u>S</u>	171	11.0	6.9	- i 6:	7.9	5.8	2.7	i	7.4		41.0	V 10	0.	12	0	2	-	? -	7	7	7	2 .	4.	4 6	2 1	710	ه د ا	9 6	- L	3 2	38	23.6	11.7	12.3	24.5	22.4	14.2	10.3	7.3	2	0 0	? ?	, .	7 7	2 C	?! V		132.0			-4
(LQ/L)	182.0	180.0	180.0	155.0	155.0	143.0	8	7 2	17.4		12	i c	α	9	0	j -		i a	3 0	5 6	3 0	2 0	0,	2	4//	0.20	20.00	26.	4 6	2 6		23	38.5	45.1	103.0	97.2	102.0	122.0	112.0	23.2	47.7	5.0	1 0	, c	2 ,	? V	275.0	265.0	280.0	272.0	258.0
	-	-		D) (C	+-	010	5		2 0	0	1012	2 0	7	, ,	7 7	7 7		, T	2 5	2 0) (). V		5.6	13.3	75.	- 1	,	4 (0 6	7 6	2 8	2 6	6.2	18.3	14.2	10.6	10.5	6.8	3.1	6 1 1 1 1 1 1	S .) (2:0	4 i) V	149.0	135.0	152.0	155.0	149.0
-	o. V	0.0	0	0.0	+	-	+) C	÷	2	0	7		2 0	, c	2 0	, ,	2 0	ر د د ا	2 0	0.0	0.0	0.	76	95.5	123.0	76.5	26.9	5.6	4.22	200	10.6	0 0	0	۷-1°	<1.0	0. 1.0	۰. د. د.	0.1	0 V	0.0	0.0	ᆣ.		0.0	0.15	<1.0	0.10	٠ <u>٠</u>	1.7	1.5
		-		0 0	-	$\dot{+}$	+-	1	+	6	00	7 7	1		2 4	0 0	4 0	7 0	9 0	,		0.10	~	89		_		-	_	5.0	0 0	0.00	40.5	47.1	1.98	6.99	36.4	23.7	7.	7.5	3.6	0.0	0.0	0 0	0	0.	207.0	199.0	226.0	239.0	229.0
		- 4		- 14 - 14 - 14	+-	+-	 -	+-	+	4.2	+	-10	2 4	0	- 0) u	- i	y c	2	4 .	ç.	0.	3.4	33.1	0.10	116.0	77.6	26.5	6.9	23	* *	4 6	4 6		22.9	20.7	14.6	7.8	4.4	6.	0.0	۰. آک	0.0	0.0	v.	0.	108.0	110.0	119.0	117.0	110.0
		- 1	<u>.</u>	2, 0	÷	+	+	<u>.</u>	-	ö	, 7) C) c	2.0	٠,٠	2 5	- ·	2.5	2	o	- - -	۰. د.	-			47.1	41.7	25.3	3.8	15.7	0.47	7 0	 	1 0	6.7	3.3	17	9.1	4.	Ξ	0.	0.	0.	0.0	0.	0	50.6	517	53.6	57.7	55.1
10L (1gVL)	_	0.0		0.0	÷	+-	+	+	+	0.0	- :- -	2 9	÷	i	اج و اج	٥. ٩	2 9	0.0	0 0	0.0	0.	0.0	0.1	0	2.4	د .	0.	0.	۰. د. د.	0. 9	o ())) C	, 7 , 6	0.0	-0.1>	4.0	0.	41.0	0.	×1.0	0.0	0.	0	0.5	0.	63.5	58.2	63.0	6.09	55.1
, (1/gu)		-		0.5	+	+	÷				<u>.</u>) (+		÷	i		0.1		+	0.	-			12.4	9.5	6.2			5.1	t. 6	, c	5 0		3.6	3.0	3.1	5.9	1.6	0	<1.0	0.5	0.	0.5	0.1	0.	- T	0.0	0.10	4.0	41.0
S,O, (mg/L)	-			<u>.</u>	÷	÷		_	-	+	· ·	¥ :	٠ ٤ :	¥ :	¥ :	ž:	<u>.</u>		-	_		_		_		-	_		_	¥:	<u>.</u>	<u>.</u>	<u> </u>	¥ \$	٠ <u>٠</u>	¥	¥	¥	<0.5	¥	<0.5	<0.5	<0.5	8.5	0.5	40.5	Ą	ž	¥	ž	¥
SO, (mg/L) (m	-			5.		÷	<u>.</u>		÷		1	7.7	ი ! _წ	0	0	- 1	/0	0.0	9.7	4.	9.5	8.3	¥	48	3.0	5.9	3.3	3.7	<u>+.</u>	5.9		9.0	5.5	- 0		<0.5	9.0	<0.5	<0.5	<0.5	<0.5	<0.5	2.0	6.	3.4	4.7		. 89	11.6	32.2	41.8
		-		0.14		+				+		50.05	÷	Q.05	-	÷		+	+	-			_	<0.05			<0.05		<0.05	0.05	<0.05	0.05	0.05	0.00	0.00	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	- - - - - - - - - - - - - - - - - - -	<0.05	<0.05	<0.05	7	3	8	96.0	0.83
		<u>!</u> _			_i	÷		$\dot{+}$		22									÷	<u>.</u>	57	_				_	· ·	0.58			99.0			2 6				-		_				_	_	1.80	ä	391	. 42	30	36
Z (Jew)				5 3.25					-	αi		5 0.64			_:	0.65		0.72	_	_	_	_	_	_		_			0											_	_		_		_			2 5	-		
NO,-N				<0.05	_			٧	-	0		<0.05		8.05				3 40.05					< 0.05	5 <0.05			•—	5 <0.05	5 <0.05	<u> </u>	_			·	0.00	-		-					_		_	0.50				-	
NO ₃ -N		909	<0.05	<0.05	0.08	0.05	40.05	<0.05	0.13	0.50		<0.05	<0.05	0.08	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	0.13	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.0	0.08	0.0	<0.05	-+-	-		<0.05		-				_		0.50		5 5			-
CI (ma/L)	9	96	6	6	9.6	9.4	8.5	9.5	9.0	16.3		4.3	4.6	5.8	6,3	4.0	4.5	4.3	4.4	4.3	4.2	33	6.8	2.7	3.5	4.7	4.9	4.7	5.2	6.2	6.5	6.4	6.2	9.0	0 u	2 4	2 6	82	7.8	7.4	8	7.9	8.0	8.6	8.7	5.7		3.6	÷-	+	13.4
Br (mo/L)	7.5		4.7	¥		6.0				<0.5		5.9	4.4	0.7	0	8	1.2	80	2.2	0.7	0.8	1.7	0.7	5.	5.1	8.4	7.4	1.7	7.7	9.6	10.8	10.8	10.7	6. :	7.3	t ' C	9 6	4	3.7	ž	4.9	2	4.2	3.5	1.4	40.5		S -	· -	į	35.3
Fe (sol)) a	0 5	6.1	10.9				83	7.3	0.0		16.4	13.1	16.1	17.1	181	12.7	19.3	12.3	8.3	14.8	25.5	19.8	13.5	18.1	16.1	18.7	19.2	17.6	17.1	25.3	21.7	30.0	22.1	280	0.00	23.0	8	29.0	262	24.5	19.8	21.2	25.3	20.4	5.	;	5: o	ο σ	0. 1	8.9
OQ (5	8 6	0.2	0.5	8 1:	0	-	-	0.2	8		6	٥. د	٥ -	0.2	8	0	0.	<u>.</u>	6.	0.1	0.1	0.2	90	0	6.	0	0	6	6	0.1	6. 1.	٥ <u>.1</u>	0	0	- - -	- c	3 5	0	6	0	0.1	0	0.1	8	8		- 2			8
표.		2 2	6.17	6.30	6.17	6.07	6.15	6.20	60.9	6.41		2.90	6.39	6.73	6.29	6.55	6.36	6.58	5.77	6.12	6.18	6.37	5.62	9	6.35	5.52	6.08	6.38	6.37	6.29	6.48	6.15	9.00	6.50	6.51	0.00	0.0	9 4	50.5	6.48	6.53	6.46	6.39	6.55	6.40	6.40		6.30	2/0	20.0	6.40
Water Level	-	-	1	4.14								3.67	40.4	3.95	3.69	3.73	3.74	3.83	3.63	40.4	3.95	3.66	69 6	2 13	202	2.16	3,25	3.50	3.20	5.09	2.85	3.17	3.52	3.47	3.39	3.51	0.00	3 88	9 6	4 07	02.6	334	3.34	2.88	000	3.11	:	≨.5	ž š	₹ <u>₹</u>	₹ ₹
Date	10:00	20/2/05	201/05	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	4/20/96	! .	3/30/94	4/1/94	4/11/4	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	8/27/04	7/11/04	105/94	8/8/94	8/23/94	76/9/6	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	C6/6/	20/2/0	2/01/05	3/8/04	3/22/65	4/3/95	4/17/95	4/28/95	5/12/05	4/20/96		3/30/94	46/2/4	47174	4/18/94
Well	+	EPASS	Ī	:					-	EPA5B 4	:	EPA5C 3	_	-	-	_	_	EPASC	EPASC	<u> </u>	FPASC		-	1		,	FPA5C	-		_	_	EPA5C	_			_	EPASC	EPASC FDAEC	EDAEC	EDA50	C 250	FPASC	FPASC	FPA5C	FPASC	EPASC		EPA1-CL1	EPA1-CL1	EPA1-CL1	EPAICLI

																																				_		_		_		.,		_	,	,	- :	-	_	_	٦
втехтив	(ng/L)	1028	086	808	751	795	980	908	6/0	682	77.	673	672	664	658	631	648	8	290	625	270	557	534	904	95.	5	200	448	372	364	516		327	376	510	384	364	374	340	992	355	200	13	5	153	112	Ξ	8 5	2 8	2 C	20
ТМВ	(Lg0,	153.0	143.0	133.0	114.0	119.0	132.0	0.00	0 :	114.0	0.611	105.0	104.0	110.0	117.0	107.0	109.0	109.0	93.4	99.2	97.2	95.9	0.40	90.6	02.0	3 5	200	15.0	88.2	84.1	100.0		42.8	42.4	200	49.3	44.6	48.0	41.8	78.7	54.6	200	27.3	403	31.3	20.8	18.9	68	C. 12	10.0	#Z.4
PSCU	ر الح	64.0	248.0	35.0	0.06	210.0	228.0	0.0	0.0	200.0	198.0	0.7	174.0	187.0	189.0	187.0	199.0	195.0	156.0	186.0	172.0	178.0	182.0	151.0	1/3.0	0.29	0.70	1000	158.0	153.0	177.0	i	74.3	5 2	1080	96.5	83.8	95.4	82.3	153.0	121.0	200	3 6	58.6	40.3	24.6	18.9	29.0	2 2	- 0	03.0
						130.0						- 1					25.0	24.0	97.7	0.4	0.0	94.5	80.2	55.3	52.2	36.5	- 6	23.50	39.8	42.7	69.2		25.6	24.8	38.1	37.4	4.48	31.4	32.3	65.0	21.7	1 0	1 0	2 6	0.9	5,3	4.7	21.6	20.5	0.2	0.01
OXYL M			1.8	_	4	0.7		v.							_		3.2					_		$\overline{}$	-		1	2 5	0 0	0	41.0		25.1	25.7	0.00	2.6	=	6.8	11.2	21.6	2.6	4. 0	20 00		4	3.3	3.3	2.7	9.0	2 1	7
L	_			203.0	1.0	8.0	88.0	188.0	0							:	112.0	- 1	-				8.8	4.4	2.7	8.3	4 0	0 0	0 0	6.	66	! 	7.4	4 0	100	+	.5.0	9.9	73.0	53.0	57.0	2 .0	15.7	90	21.0	17.7	22.5	27.6	17.7	י מ ס	2.0
									_									_:					6	က က	. 2	N 0	0	† -	- r.	0	m		4.0	52.3	Ť	-					57.8		-	+		-	-		1 00	, ,	200
				_		9.68		<u> </u>	-+	-					ш.						_						_		7 . E		8 2	_			<u>.</u>	1		<u> </u>			_	+	-	<u>.</u>	-	-	-		g (0 (, ,
ETBZ	(ug/L	55.5		-				50.6							-					-	-	-	+		-	+	+	ž Ç	į c	-	13	-	8	27.1	+	+		i-		<u></u>	+	+	+	<u>.</u>	. <u>. </u>			Ť	2	4 0	4
TOL	(ng/L)	57.5	50.9	44.0	32.5	30.6	33.6	30.0	17.5	14.4	15.5	12.9	13.0	6.6	6.9	5.7	5.4	5.0	4.3	4	3.0	5.6	8.	0.	0.	V.	0.0	0.0	7	7	1.6		5.7	7.7	0.74	108	20.4	18.8	7.6	31.5	8.9	0.4	2 7	-	4	1.0	1.0	2.0	2	7	V
BZ	(ng/L)	4.0	×10	٠ <u>٠</u>	٠ <u>٠</u>	۸. م	0. V	×	o. ∇	1.0	0.1	4.0	0.1	41.0	0.0	0.12	o. ⊽	۰ ت	0 V	V V	۰ <u>۲</u>	×1.0	٥. ٥.	0.	0. V	v: V:	0.0	o 0	V 7	7	0.5		٥. م.	o o	o	7 7	0.0	<1.0	<u>م</u> 1.0	0.1 V	0.0	o. '	O 7	7 7	0.	4.0	٠ 0	×1.0	∆ 0,0	2,0	21.0
S _O	(mg/L)	Ϋ́	¥	¥	ž	ž	ž	ž	ž	Š	ž	ž	Ϋ́	ž	¥	ž	¥	ž	¥ Z	ž	ž	¥.	ž	ž	0.5	ž	S	5	S 6	ć	0.5			ž:		-		-			<u>.</u>	:		-	<u>.</u>		<u> </u>	ž	≨ :	ž	Z
SO.	(mg/L)	39.5	30.7	5.1	7	4.8	4	¥	7.	<0.5	6 0.5	<0.5	<0.5	5.0	2.0	3.9	4.6	1,8	12.5	6.7	10.9	11.2	9.6	8.6	10	10.2	7.7	υ. υ.	0 0	9 6	0.5		<0.5	60	3.7	2 5	43.4	33.5	12.2	3.4	1.5	0.5	\$ \$	- c	0.5	<0.5	13	1.6	120	1.5	10.0
PO,-P	(mg/L)	0.36	0.38	1.23	4	1.35	53	1.25	8	1.57	1.50	1.31	1.47	1.72	1.66	1.47	1.40	1.40	1.10	1.17	0.62	0.53	4	0.38	0.48	0.27	0.69	£. 5	3 5	1 4	1.79		0.79	0.74	6.9	9	000	0.26	0.97	₽. -	5.1	1.12	0.24	5 6	8	0.79	0.86	1.24	0.92	4 5	0.46
Z-, H	mg/L)	5.47	4.89	3.61	3.72	6.67	5.42	4.93	2.88	1.79	1.1	3.01	3.07	2.81	2.84	2.20	1.49	1.18	1.30	0.91	0.78	0.63	0.36	0.93	0.81	0.62	0.56	06.0	20.00	9 0	0.85		2.01	2.03	2.45	4.50 A 5.3	5 6	4.11	4.04	4.25	6.52	5.09	0.92	0.00	1.13	3.04	3.13	2.66	26.	0.65	0.38
N-Q	mg/L)		_	<0.05	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	0.27	0.17	4	1.46	1.61	1.95	2.72	0.10	0.86	<0.05	0.0	3 4	5.0		<0.05	<0.05	0.05	3 5	4	0.48	<0.05	<0.05	<0.05	<0.05	9.02	0.00	000	<0.05	<0.05	0 005	1.43	1.60	4.16
N-ON	mq/L)	23	90	0.05	<0.05	0.17	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	0.51	0.08	<0.05	<0.05	4.09	0.13	6.1	2.56	2	1.26	2.08	7.52	0.05	0.05	0.0	300	0.02	3	<0.05	<0.05	<0.05	0 5	5 4	0.67	<0.05	<0.05	0.69	0.50	11.30	0.00	0.00	<0.05	<0.05	0.08	2.20	0.25	2.18
ō	(mg/L)	1,7	2	10.0	0.6	12.7	8.8	10.4	8.8	8.8	10.0	11.5	11.2	10.7	10.5	9.7	8.8	9.1	9.5	7.7	1.6	4.0	-6	9.6	8.3	9.7	8.7	6	0 0	5	42		٠,	1.9		- 1	- 1		1	1	12.6	- 1	- 1						10.8	9.5	8.7
ă	i		430	53.9	10.9	بع 1	5.0	61.9	6.9	5.6	3.2	_	5.6	5.0	<0.5	<0.5	<0.5	Ξ	<0.5	Ξ	6 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	60.5	40.5	9.8	9	5 5 5	200	<0.5	<0.5	0.7	3 .0	3 8	414	46.2	1.1	2.5	3.0	120.0	200	2 0	9 6	1.9	1.2	6 0.5	40.5	<0.5
Fe (sol)			Ţ.		:	4.8			i	i							3.0					1.7	4	6.0	0.8	0.0	1.8	2.7	2.5	2		2	3.7	6.5	80.0	200	9 6	20	2.6	3.0	3.0	5.9	2.7	5.5	2 4	2 2	2.7	2.4	9.0	0.5	0.4
8	-	_			0.3	.0 1.0	0.1	0.2	6.	6.1	0.1	0	-	0	6		9	0.1	0.	0.2	0.3	0.2	ž	ج 1.	6.		0.5	0.1	9.	3 0	2 0	5	0.1	0.1					0.1	<u> </u>	0.7		0.2	_!_		-	┼-	1		0.	4
늄		6 24	-	5 5	-	6.19	5.98	5.85	6.05	5.55	5.62	5.75	5.77	5.87	10	9 24	6.27	6.24	6.40	6.46	6.23	6.49	6.80	6.72	6.81	6.68	6.55	75.	6.57	0.0	6.49	3	6.30	6.70	6.37	9	0 0	8 46	6.16	6.30	6.1	5.83	5.85	90.0	, ,	2 6	6.08	8	98.9	6.48	6.52
Water Level	(# from TOC)	NIA	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ą	¥	Ą	ž	¥	¥Z	Ϋ́	¥	¥	Ą	ď	ξ Z	ž	¥	ž	¥	ž	¥	ž	¥	ž	ž	¥	¥.	¥.	<u> </u>	¥ Z	<u></u>	¥ Z	₹	¥	ž:	Y Z	2	Ž	¥	₹	ž	¥	¥.	¥ X	S A	ž		ž		
Date			4/05/04	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	76/9/6	9/19/94	10/2/01	10/17/04	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	06/12/1	3/30/94	4/7/94	4/11/94	4/14/94	4/8/7	4/25/04	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	<u> </u>	46/5/94	0000	9/6/94	9/19/94	\vdash	_	10/31/94
Well	1				-		_		EPA1-CL1	EPA1-CL1	EPA1-CL1	FPA1-CI 1	EPA1-CI 1	EPA1-C11	EDA1-OL1	PA 10	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	FPA1-CL1	FPA1-CL1	FPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	EPA1-CL1	ELAI-CE	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPAI-CLA	FPA1-CL2	FPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CLZ	FPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2	EPA1-CL2

BTEXTMB	(Jg/	<u>‡</u>	8	8 8	8 8	65	8	227	8	2	121	35	88	99	8	613	1931	795	233	531	573	044	328	372	239	107	8	287	200	330	2523	443	2	414	2 3	626	5 6	142	151	8	-	619	176	35	80 ;	5	R 9	296	9
Н				-	_	Ļ								4	4		Ļ	Ļ								į	ļ	.!		_	ᆜ	Ľ		ıŭ .	0	0 .		, i.v.	4	Z,	4.	0.	65	0		2 -	0	8.0 a	-
TMB	_		_	28.2	<u> </u>	+	-		\vdash			11.3	_	-	24.4	217.0	╀	+-	1	_					1		-			+	255.0	٠	-		- i	-+-	-	+	├	-	-	-	-+	-+	÷	1	_	+	+-1
PSCU	(<u>1</u> 00)	52.2	48.2	37.2	3 8	65.5	46.5	117.0	105.0	106.0	80.9	70.0	36.0	49.6	41.7		3710	4-	1	┺		<u> </u>	ш		├		-+		-		405.0	₩	<u>+</u> -	-+	+	- -	-	+-	i -			\dashv	-+	-+	8.0	19.0	13.8	2 5	316.
MESIT	(John)	18.3	-	6,5	22 4	3,8	5.6	8.1	7.3	8.2	5.8	6.8	3.6	4.3	3.8	1					1	i	i '			,	- 1				92.9	1 1			- 1			· i · · ·	_		_	_		2.4	4	4.	7 ?	3 1	Ö
OXYL	(Ligh.	5.	1.3	0.	0,5	3	6.	0.	<1.0	0.15	0.1	0.10	0.10	41.0	=	339.0	236.0	83.9	53.6	29.1	33.4	20.5	9.7	÷.	7.3	6.9	23.4	0.	6.8	10700	510.0	69.5	14.5	105.0	5.1	200.0	2 2	5 6	23	3.0	£.	29.9	8.	0	0 V	0.0	0.0	Ç 7	0.0
MXYL	(J/gn)	6.2	3.7	6.8	12.1	104	8.2	10.8	6.7	2.0	3.8	8.4	4.2	5.3	1.4	746.0	277	1800	640	106.0	112.0	206	63.5	58.5	31.5	8.0	9.2	40.5	16.5	14500	20602	72.5	16.8	1.8	5.4	53.5	n a	9 6	7.6	22	1.5	5.6	۸ <u>1.0</u>	٥. د	٠. م	٠ <u>٠</u>	0.0	⊋. V	4 .
PXYL	(ng/L)	30.2	31.3	45.0	38.8	39.7	29.2	31.2	19.8	18.7	15.1	41.8	19.3	23.1	5.7	303.0	200	112.0	8	79.5	86.4	69.2	55.2	55.4	41.1	33.4	32.7	31.5	2.0	409.0	371.0	108.0	32.1	65.0	15.3	342.0	0.00	0.0	19.7	3.2	2.4	16.1	1.7	9.4	£.	9.	4.		t. 4
ETBZ	_	<u> </u>	5.6	0.6	9.7	7.0	6.0	7.2	5.0	4.8	3.6	9.2	3.9	5.1	2.0	187.0	2 5	5 5	i u	39.0	4	33.6	22.8	23.2	11.8	5.5	7.2	10.7	5.4	20 40	177.0	41.3	5.7	4.9	5.0	111.0	0 7	2 4	9	0.12	0.10	4.9	۸.1	6.4	۲- 0.	۲- 0.1	0.1°	0 V	21.4
10L	(John)	41.0	0.	0.10	60 C	2.6	4	9	-:	0.1	0.10	2.2	-	4.	0.	4	2 6	20.00	£2.4	26.3	36.3	15.4	2.9	4.7	3.3	۸.1م	0.	٠ ١ ٥	0.0	0 0	300	4.0	۷.10 د	٥.٢	0.	9) (, c	V	0.5	<1.0	٥. م	<1.0	0.15	0.	٠ <u>۲</u>	٠. د د	0.5	0.12
28	(Sec.)	41.0	4.0	0.5	0.5	2 5	0.0	0.0	41.0	<1.0	0.10	0.0	0.5	0.1	0.10		2 9	2 5	2 5	0 0	0.10	0	V-1.0	×10	0.10	٥.	0.1	0.	0.0) (V V	=	o.1.o	۸. 0.	o: ⊽	0	0.0	- C	- C	4.0	V-	0.10	0.	4.0	0.	۷.0 د	0. V	0. 0	2.5
50.	(mg/L)	ļ.,	1	ž	-	+	+	<u> </u>	⊹	÷	<0.5	9.5	7	40.5	<0.5	¥ X	£ :	<u> </u>	5 2	¥ ×	ž	¥	ž	ž	ž	ž	ž	ž	₹ Z	ž š	Z Z	₹	ž	ž	ž	ž	≨ :	2 2	Ž	Ž	ž	9.5	ž	<0.5	<0.5	9.5	40.5	0.5	9.5
SO	-		14.0	6.8	12.3	ų c	10.3	10.7	12.8	11.6	15.7	0	13	6.4	40.5		ų : c	5. c	3 9	36.0	8 0	30.7	17.0	5.5	14.6	8.8	ž	1 .	- 1	, i	0 6	0.8	13.1	7.4	12.1	2.2	7.	2 2	α 2 2	10.4	9.5	Ξ	12.7	7.6	10.0	12.2	11.6	11.3	<0.5
d-0d	+-	m	0.49	0.94	0.40	7 6	0.30	0.37	¥6.0	0.43	0.45	0.88	66	10.1	1.1	9	816	4 6	5 6	0.03	8	8	0.70	8	0.51	99.0	0.62	0.73	0.92	0.67	20.00	220	0.89	0.91	0.51	0.63	0.65	0.00	27.5	50	990	0.58	8.0	0.59	0.73	0.45	0.56	0.79	0.71
N-HN	1_	-	Ŀ	0.38	\perp	4	+	+	-	1	-	-	-	ļ	\vdash		2 2	33.0	9 9	4 01	4 22	414	3.47	3 7.3	4.57	9.	3.80	0.74	76.0	0.42	1.5/	3.75	1.38	0.22	<0.05	0.92	99.0	70.0	3 5	9	000	0.30	60.0	0.59	0.77	3.16	0.62	0.65	4.03
N-CN			-	+-+		+-	8 8	+-		+	+	50.05	-	+	+ -:	100	5.5	S S	5 5	2 5	3	8 8	900	500	0.30	40.05	40.05	<0.05	<0.05	0.05	6.65	000	99.0	<0.05	42	<0.05	<0.05	9 6	3 5	6.76	2 2	6.18	0.09	0.14	40.05	4.97	7.50	40.05	0.50
N-ON	 -		1_	<0.05			+	<u>.</u>	-	4	+		-	-	0.50	_+			-		-+-	+-	+		+		↓ —			-	0.05	800	0.08	0.12	98.0	<0.05	8.	0.49	20.00	267	9	06.9	26.80	90.0	<0.05	5.93	1.14	<0.05	0.50
2	=		÷	7.9		-				+-	-	<u>.</u>	<u>.</u>	÷	22	- 1	20		$\dot{+}$	υ q.		1		÷	11.6	+	- -			4	0.0		10.9	5.3	9.3	0.6	4	0.0	t (י ע ע ע	7.4	8.7	7.9	8.1	7.9	8.7	10.1	13.0	11.4
à	(1/04)	> 	÷				-		-	-				+	<0.5		0.5	0.7	4	N 8	0 0	2.46	40.0	1 0	? -	33	37.2	2.4	<u>د</u>	2.2	5.8		0.5	<0.5	6 0.5	9.0	<0.5	6.0	5 6	0. 6	2 4	0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
Eq (eq)			. 0	0.7	0.2	6.0		; ç	5 6	5 6	5 6	2 5	3 5	9 6	1.0		80	_	+		÷		+	-+	0	1	-	-			2.7	:			-		_		5.4				;	Ξ	i_	Ξ		6 1.	
2	7		+-	+	0.2	0.3	₹ ₹	9 9		9 0	3 5	5 5	5 6	- 6	0.3		2:0	0.2	8	6.5 6.5	4 6	2 4	5 6	3 5	30	8	6	-	6	6	6.0	5 5		6	6	0.2	ج 1	6	2 0	y s	چ اچ	9 6	6	8	-	6	9.1	8	4.0
-	<u>.</u>		┷-	6.61			6.75	_i_	-	8 2	4		-	+-	نب		0.10	_	6.24		÷	200	-4-	+		5.71	8		5.86	5.91	5.89	0 4 Z 1	6.76	6.59	6.57	6.52	6.91	7.03	9.50	2 6	3 4	7 2	6.85	6.76	6.95	7.13	7.12	6.93	6.50
Motor Land	Water Level	NA SOL	Y Z	ž	¥	≨:	¥ S	3	S S	£ 2	X X	<u> </u>	2	Z AZ	¥		≨	ž	ž	₹ :	<u> </u>	X	ž ž	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z Z	Ą	ž	¥	¥	¥	¥:	X 2	£ ≤	≨	¥	¥	¥	¥:	₹:	E	<u> </u>	4	AN	ž	¥	¥	ž	ž	¥
۲	S &	11/11/04	11/30/04	12/12/94	12/29/94	1/9/95	1/25/95	2000	CELLED	30000	3/22/35	26/2/42	10000	5/12/05	4/21/96		3/30/94	4/7/94	4/11/94	4/14/94	4/18/94	4/21/94	4/23/94	1000	5/31/04	6/13/04	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	19/95	00/07/1	20105	3/6/05	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	4/21/96
	Me	C 10 10 10	+	+	-	+	÷	÷	EPAI-CLZ	+	- 1	EPAI-CLZ	÷	EDATO	<u> </u>	: 	EPA1-CL3	+	+	<u> </u>		1	FFAICLE	<u> </u>	EPA1-CL3	+	-	÷		EPA1-CL3	EPA1-CL3	EPA1-CL3			÷	_	EPA1-CL3	EPA1-CL3	EPA1-CL3	EPAI-CL3	EPA1-CL3	EPAI-CL3	EPA1-CL3	EPA1-CL3	EPA1-CL3	EPA1-CL3	EPA1-CL3	EPA1-CL3	EPA1-CL3

						_						_												_					_												_							,	
BTEXTMB (ug/L)	1358	1 2	2536	2624	1388	1250	23.00	178	4	?	2 2	1,545	1024	518	895	118	320	207	107	79	110	8	88	137	271	88	35	4	504	20.00	3 8	6 ±	ō &	⊽		į			İ		į	Ì				Ĺ		8	Ц
TMB (ug/L)	33.7	46.8	119.0	145.0	0.22	0.00	0 00	100	4.0	2	- 9	8	193.0	296	146.0	157.0	53.0	31.5	45.7	26.1	18.9	17.5	35.0	30.0	63.7	30.0	16.5	19.4	197.0	43.6	0.0	0 K	2	0.15				-	<u> </u>	-	;			-	_		_	45.9	-
PSCU (ug/L)	343.0	256.0	338.0	384.0	389.0	372.0	78.4	33.1	=		4 4	200	340.0	1410	215.0	277.0	90.3	56.1	38.2	31.0	16.8	14.9	48.3	61.4	132.0	58.5	16.9	24.5	236.0	22.0	90.0	ν 1.0	o un	۰ <u>۲</u> ۰		475.0	3310	465.0	533.0	408.0	204.0	50.9	33.0	51.7	285.0	215.0	413.0	63.0	48.1
MESIT (ug/L)	104.0	94.0	113.0	136.0	148.0	200	5.5	- 6	200	,	Ξ α	7. 7.	45.0	7.2	19.2	76.3	34.9	15.0	2.1	13.3	13.9	0.1	2.1	1.7	8.7	1.5	٥. ده	0	0.	0.0	2 .	ن د	2 0	0.1	0	2 9	90.00 8.00	160.0	195.0	173.0	63.4	3.4	6.3	3.3	65.5	10.5	20.0	11.9	12.9
OXYL OXYL	129.0	203.0	415.0	367.0	0.01	4. 0	20.00	17.2	. 4	5 0	200	72.0	183.0	105.0	142.0	187.0	15.3	4.6	7.4	<u>φ</u>	41.3	5.	Ξ	0.0	<u>د</u> 10	×1.0	٥. د	ς.	58.6	3,5	S 5	, c	7 7	0.1		2 6	457.0	1030.0	451.0	373.0	218.0	117.0	26.0	28.2	818.0	921.0	0.000	10.4	5.5
MXYL (ug/L)	404.0	554.0	925.0	914.0	0.848.0	673	3 0	46.8	4.5	2 2	<u>.</u> .	235.0	120.0	6.99	200.0	221.0	39.7	27.5	5.8	8.	5.4	1.2	9.	13.2	15.3	6	0.	0		0. 6	2 .	4 0	2 0	0.10		700	773.0	1670.0	767.0	480.0	203.0	15.7	48.9	118.0	920.0	69.8	170.0	31.6	21.3
PXYL (ug/L)	213.0	289.0	436.0	457.0	0.45	5. 6	5 6	47.6	3 5	2 2	1110	0.00	1110	72.8	123.0	132.0	61.7	53.5	8.5	5.4	16.9	8.	6.8	23.9	39.5	6.3	-		6.9	2 .	0.1			0.1	9	244.0	3880	848.0	404.0	280.0	169.0	81.2	91.1	21.7	488.0	519.0	0.4.0	25.5	15.4
ETBZ (ug/L)	53.7	0.69	156.0	0.48	. 60.5 C. 0.0	20.04	9 6	10.8	0 0	3 6	30.0	2	3.5	26.9	49.1	49.2	24.2	15.8	0.	4.0	0.10	0.	۰ <u>۲</u> 0.	5.9	9.4	0.	0	۰. د	2.7		Ç 7	2 5	2 5	0.	Ç	75.0	136.0	504.0	225.0	164.0	109.0	50.3	31.0	<1.0	277.0	267.0	0.44	6.6	6.3
TOL (ug/L)	74.0	30.1	32.6	37.4	5 6	ים מים		0	0 0	, ,) V V	<u>}</u>	4 C	100	0.1	41.0	0.	5.	0.1.0	0.0	41.0	0.10	4.0	0,	2.2	4.0	0.10	0.	0 9	0.10	0 0) C	2 0	0.15	ç	0.70	24.4	50.2	50.0	35.6	14.8	10.6	4.0	0.0	5.7	3.6	2 5	0.0	0.10
BZ (ug/L)						-											:	·				<u>.</u>		,					_	÷	1.		i	↓		2.0	5.4	0.10	۸. د.	۸ <u>-</u>	<1.0	<1.0	۷.0 د ۲.0	۲.0	V.	0.0	V: ₹	0.0	×1.0
S,O, (mq/L)			_	-	_					_		_		_	_	_		_	_	_	-	-	-		_			_	_	-	-	_		1	1	(d	¥ ¥	ž	ž	ž	ž	ž	ž	Ϋ́	ž:	ž:	<u> </u>	ž	≨
SO,	30	8.4	2.7	6.	5.1	4.0	7 7 7	- 4		9 4	0. A	<u> </u>	2.1	10	<0.5	<0.5	6.7	9.1	11.4	10.4	10.2	10.9	10.1	10.6	6.6	10.5	8.6	10.7	12.7	2 .) ;	2; ¢	3 2	<0.5	(0.0	0 0	4.5	16.7	17.2	20.5	13.5	6	9.9	5.6	≨ :	5.5	0.7	<0.5
PO,-P (mq/L)	0.36	=======================================	4.	1.36	1.31	0.48	5.5	2 8	0.0	7 6	5 6	200	20.0	120	0.73	0.81	0.99	1.19	0.48	0.49	0.47	0.46	0.47	0.46	0.48	0.43	0.48	0.57	0.45	20.0	20.0	0.00	5 5	8	6	7 7	; ;	123	1.17	0.90	0.44	0.47	0.89	0.71	0.80	0.59	0 0	0.80	0.73
NH.N mg/L)	187	1.74	1.63	1.66	2.20	0.0	0 4	00	5 6	1 0	24.0	2 0	98.0	690	140	2.44	2.92	3.69	29.0	0.43	0.30	<0.05	<0.05	<0.05	0.43	<0.05	0.20	0.12	0.15	S	7 6	02.0	20.5	2.07	,	2 0	2.40	191	3.25	3.89	4.04	5.22	4.99	2.34	0.98	0.56	45.0	0.87	3.20
NO, N (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	3 6	200	20.00	3 5	5 G	3 6	50.00	000	<0.05	<0.05	<0.05	<0.05	0.33	0.31	4.71	0.61	7.08	3.50	3.60	9.91	5.13	8.85	0.09	8	0.0	1 50	200	0.50	Č	0 0	0.00	0.05	<0.05	<0.05	0.18	<0.05	<0.05	<0.05	9002	<0.05	9 9	900	<0.05
NO.h	<0.05	0.07	<0.05	<0.05	0.13	5 5	000	800	0.46	2 6	4 40.05	2 4	A 86.03	005	<0.05	<0.05	0.08	0.81	0.48	0.57	2.41	11.90	2.73	7.50	4.36	2.79	<0.05	5.40	16.00	0.59	0.05	00.05	 	0.50		0.00	20.00	<0.05	0.0	1.51	3.18	<0.05	<0.05	0.14	<0.05	3.51	0.02 8	0.05	<0.05
C (Jag	4	3.3	2.1	2.7	5.5	9.7	0.0	0 0	10.0	1 5	- ; `	- 1			, .	1	;			1		i					- 1	- 1	- 1					4.2	<u> </u>	_	- -	÷	<u> </u>			\vdash			<u>.</u>		-	89	14
Br (mg/L)	< 0 5	6.0	0.7	6.0	27.5	x 3	3.0	11.7	-	0 0	- 1 <u>c</u>	2 0	5. F		22	8.	<u>د</u>	<0.5	40.5	<0.5	0.8	<0.5	Ξ	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	0.5	0.5	0,0	0.00	<0.5		2 6	200	0 29	6.4	20.2	35.2	48.1	10.8	4.	22	10.8	4.0	22	1.9
Fe (sol) (ma/L)	10.5	0.5	2.0	2.9	3.1	4. c	0,0	96	9 4	2	- 6	÷	 ∂ . π	17	4.5	3.3	3.2	1.5	6. 1.	0.	6.	6 1.0	٠ 9	6 2	٥. 1	0.1	6 1.1	6 -	ç.	Ş.	9	Ş ç	9	6.1		5 0	0 7	4	2.4	2.4	2.4	2.0	5.0	1.3	2.4	4.		5 6	3.7
		0.2	6 1.	0.	0	5 6	אָרָאָ סוֹכ		5 6	3 6	5.6	9 9	5 6	, -	9	6	8	6	6	6.1	0	6 1.	0.	0.1	0.1	0.9	6.	-0	0.5	-	5	5	5 5	9		2 0	2 0	6	6	6 1.0	6 1	0.1	6 	0.1	<u>.</u>		÷ ;	-	1
五	9	6.41	622	6.07	6.41	9 9	0 0	9 8	3 4	- 6	90.0	200	5 7	70.0	5.94	6.18	6.20	6.31	6.59	6.57	6.67	6.70	6.79	6.51	6.70	6.75	6.88	6.93	6.92	6.78	98.9	5 6	3 8	6.70		9	4 60	6.13	6.42	6.1	6.34	6.14	6.15	6.21	5.93	6.21	0.00 1	60.0	9.05
Water Level	AN	ž	ž	¥ Z	¥ :	¥.	¥ ×	4 A	2 2	<u> </u>	∀ < Z Z	<u> </u>	2 2	¥ Z	¥	¥	ž	Ą	¥	ž	ž	¥	¥	¥	ž	Š	Š	Š	¥.	¥.	≨i Ži	¥ S	Ç A	¥		¥ 5	¥ 2	Ą	ž	¥	¥	ž	¥	¥	¥	Ą	Y Y	§ §	¥
Date	3/30/04	477/94	4/11/94	4/14/94	4/18/94	4/21/94	4/22/4	5/16/94	7/21/04	0,01,04	6/13/94	500	7/25/04	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/11/95	5/12/05	4/21/96		3,000	47.17	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	8/8/94	8/23/94
Well	FPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPAI-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	1000	EPA1-CL4	1	EDA1 CL4	FPA1-CI4	FPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPA1-CL4	EPAI-CL4	EPA1-CL4		EPAI-CL5	EPA1-CL5	FPA1-CI 5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	EPA1-CL5	FPA1-CL3	EPA1-CL5

BTEXTMB	(100)	223	8 5	3	139	86	88	411	161	98	183	- 56	48	얾	37	3	33	52	8	3	c	2	9		N C	2		σ	60	Ç	13	=	9.	\ \$	2 6	2 7	. 60	. 60	0	2	7	eo .	4	0	20	4 0	⊽	⊽	-	⊽
-	100	31.0	S 4	5.00	43.0	24.3	31.7	30.1	8.7	10.8	4	38.3	22.7	18.1	13.9	21.5	3.6	20	16.5	27.4	,	2 9	2.0	ار دارد) V	2 0	2 5	2 6	0.	5.1	2.1	2.0	6.	4.0	0.0	3 0	4	8	1.7	4.	2.0	5.	4.	4.	0.0	2 -	4.0	Q.12	۰. ۲۰	V.
L-+-		33.4	57.1	35.0	59.4	37.4	40.4	51.3	53.1	27.5	87.0	82.8	17.9	29.7	21.9	28.0	0.89	9.7	8	0.44	,	0.0	0.0	0.0	0.0	2 4	2 5	2 5	6	2.4	3.2	3.0	2.0	22	0,0	9 0	0	21	2.5	1.9	2.3	9.	1.7	2.0	21 0	4 4	0.10	4.0	1.0	V V V
H	-	+			6.0	 	+-	┝	-		+-	Ļ-		1	-	1	15.	6.	3.0	1.7		0.10	0.5	0	0.0	0.0	2 5	? «	17	22	2.3	6	1.7	23	4 0	200	1.0	-6	1.7	12	-	<1.0	0.0	0.	0.5	2 5	0.0	41.0	c1.0	√ 1.0
_	(ag/L)	7.2	4.2	2 9	9		0.0	0.15	4.0	41.0	410	0.	0.	0.15	0.0	0.	٠ 0	0.	4.0	5.9	1	0.1	0.1	0 V	0	0.0	0 0	2 5	7 7	41.0	0.10	۰. د.	۰ ۱ ۰	0.0	0 0	2 0	2 0	0	0	۷٠٠	~1.0	٥. د	4.0	0.	0. 1.0	2 5	0	41.0	o.1>	o. 0.0
-	(ng/L)	9.71	¥.	4.0	20 0	27	20	3.4	18.3	26	6	0.9	8.	1	<u>د</u> 0.	0.	5.4	6 .	3.2	0.9	11	ار ا	۲۰ د ۲۰	0.	e. (7 .	N (2 4	2 6	55	3.1	2.9	1.3	6.	9.0	2 .	7 -		<u>د</u>	د1.0 د	1.2	۷. د	0.	0.	o. ∨	O . V	7 V V	0.5	۰. 0.	6 0.5
PXYL	(<u>1</u>	19.7	45.8	7.7	. c	5 0	10.7	22.9	43.9	92	31.2	18.8	3.6	1.6	4.	2.4	33.9	4.9	9.6	4.0	1	0.	۰. د.	۰ د	0	0.0	0.0	2.	ţ e	4	80	1.6	٠ <u>٠</u>	٠ <u>٠</u>	N I			2 0	7	4.0	o.1>	٥. ٥.	۰ <u>.</u>	٥. د	٥ ۲	O 0	7 7	0.0	v V	0. V
ETBZ	(<u>1</u>	8.0	15.6	2.	- L	2 6	5 -	8 4	13.9	3.4	62	3.9	0.10	0.	۵. 0	0.1	9.9	1.2	3.7	1.6	1	o. ⊽	٥. ده	٠ <u>.</u>	۰ 0	V .	0.0	o: 0 V ¹	7 7	0.	V 10			V-1.0	o. 0	0.0	2 7	7 7	0.	۸. م.ن	٠ <u>۲</u>	o. 10.	٥. ٥.	O.	V.	<u>^</u> .	, c	0 7 V	0.10	V-1.0
헏	(<u>1</u> 8	0.	4.2	0.0	0 0	2 5	2 0	5	2 00	2	7	0.	5	0.5	0.10	- -	0.0	۵.	0.1 ≥	7		5.8	53	×1.0	٠. د.	5	V.	٠ ا	V	0.10		٥. د	٥. م.	v.	۲. د د د	0.5	0. 5	7 7	0.10	×1.0	4.0	6.10	٥. ٥	٠ <u>1</u> .0	۲٠0 د ۲۰0	<u>.</u>	7	0	v.1.0	٥ 9
82	(<u>7</u>	٥.	<1.0	0, 0	0 0	7.7	7 7	7.7	7 7	7 7	, ,	0.0	7	0.0	0.5	0.0	0.1>	0.0	0.	٥.	:	۰. د ۲	۰. د.	۸.1.	4.0 .0	0.		V) (7. 7	0	41.0	0.	<1.0	0:	×1.0	0.0	2 5	0	0.₽	4.0	0. 1.0	م. 0.	٥. د	٥. م	o.^-	o	2 0	v 10	٥ .
S,O,	_	_	¥	ĕ	≨ :	<u> </u>	¥ 2	2	2	2	2 2	ž	5	ž	0.5	<0.5	<0.5	9.5	<0.5	9.5		ž	¥.	¥	ž	ž	ž	<u>₹</u> :	¥	Ž	Ž	ž	ž	ž	¥.	ž:	≨ ∶	<u> </u>	Ž	Ž	ž	ž	ž	ž	ž	ž	¥ C	Ž	E.	9.5
\vdash	Ξ	<0.5	<0.5	11.7	1.5	2 0	20.5	- Ç	5 6	ς α α	5	. 0	0	12.2	86	8.5	ص -	5.6	<0.5	<0.5		4.	47.8	9.96	9.79	42.6	39.3	33.0	9.62	2,46	0	ž	9	<0.5	2.7	×0.5	2.4		ς α	80	11.0	9.6	8.5	8.8	8.7	6.6	5	111	9.3	8.0
PO,-P	(mg/L)	0.84	1.24	0.76	0.71	200	0.37	0 7	2.73	. c	8 8	2,0	100	0.43	0.50	0.56	0.67	06.0	20.	1.15		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	20.05	0.05	8 8	8 8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	9 6	3 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.05	8 6	40.05	<0.05
Z-TZ	(mg/L)	3.73	2.43	3.37	0.71	2 2	(c.0	5 6	3 2	2 2	2 6	2 6	200	800	005	0.50	1.31	1.13	1.25	0.52		0.21	0.47	- 89.	22	0.66	0.41	0.32	90.05	0 0	5 6	0.78	0.63	0.62	0.35	0.47	0.88	28.0	20.00	0.17	0.28	<0.05	<0.05	_	\rightarrow	<0.05	<0.05	8 6	0.05	0.24
N-ço	(mg/L)	<0.05	<0.05	1.68	1.12	\$ 6	2.3	77.0	3	9 9	8 6	2 6	3 4	0 0	17.0	11.40	40.05	40.05	<0.05	0.50		<0.05	0.13	0.07	0.10	90.05	<0.05	<0.05	<0.05	0.00	2 6	900	<0.05	<0.05	<0.05	<0.05	40.05 0.05	000	8 8	900	0.05	<0.05	90.0	<0.05	<0.05	<0.05	0.05	8 6	<0.05	<0.05
N- ON	(mg/L)	<0.05	90.0	3.30	1.03	51.0	1.25	2 8	9 6	25.0	0 9	5 t c	5 6	12.5	69	1.20	0.18	<0.05	20	0.50		<0.05	0.85	2.20	0.47	0.19	0.07	<0.05	0.05	0.00	2 6	000	000	<0.05	<0.05	<0.05	<0.05	0.07	9 8	9 0	9	0.17	90.0	0.15	c 0.05	<0.05	0.05	3 5	5 5	<0.05
ច	(mg/L)	-	11.7	10.8	9.7	- (c	6.0	5	4.	- c	D 0	D 0	0 0	2 C	ď	10.0	8	10.01	120	6.		3.4	5.0	67.6	848	82.2	80.7	99.3	26.3	0 7	0	63.2	2.0	1.7	8.7	10.0	Ξ	10.8	0.0	0 0	5.6	4	9.6	9.5	9.6	8.9	8.8	e C	2 6	7.7
ă	(mg/L)	2.3	1.8	<0.5	<0.5	90.5	6.0	ç,		5.0	وا د د	0 0 0	0.0	ر دن د	2 4	0.05	5.05	2.0	5	40.5		<0.5	<0.57	<0.5	<0.5	<0.5	<0.5	0°5	<0.5	0.5 0.5	0 0	9 6	9 6	<0.5	0.8	<0.5	0.7	<0.5	9	0 6	2 6	2.5	12	<0.5	<0.5	<0.5	<0.5	00.0	0.0	<0.5
Fe (sol)	(mg/L)	2.9	3.0	1.5	2	6	6	5	E 0	77	5			9 6	, <	9 6	5		0	0	i i	4.3	4.5	4.5	5.1	2.2	2.2	1.7	6.0	4.0	2 6	6 C	0 0	60	0.3	5.6	5.	0.5	6 C	9 6	0 0	9 0	0.0	8	6	6 1-	°0.1	6	5 6	9
8	(mg/L)	8	6	6 -	& 	Ş	0.1	₽.	ę; ;	5	0.1	8.0	5.0	2 0	9 0	0 0	Ę		5	6		0.1	0	0	0.1	9	0.1		9.		<u> i </u>	5.0			-	:		٧.	Ĺ.	3 5					;	9.0	ž	-		0 2
Ħ		6.17	6.08	6.45	6.50	6.55	6.68	6.71	6.61	6.48	6.81	6.76	80.0	9 8	3 6	9 0	2,3	8.74	70	6.85		8	6.56	6.32	6.15	6.14	6.33	6.24	6.51	6.93	9 9	0 4 5 5	0 4	6.21	6.28	6.16	6.10	6.49	6.50	0.49	0.00	0 0	9 6	9	7.03	7.19	7.23	7.08	7.06	6.97
Water Level	(ft from TOC)	AN	Ž	¥	ž	ž	¥	¥	ĕ	¥:	≨	¥ :	ž	¥ s	2	Z A	VAN	§ 8	2	¥		Ž	¥	¥	¥	¥Z	Y.	ž	ž	¥:	ž:	Ž Ž	\$ \$	≨	¥	¥	¥	¥.	≨:	¥ S	2 2	<u> </u>	Ş Z	Ą	ž	¥	¥	≨:	≨ .≨	S S
Date	1	0/8/04	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	26/95	2/21/95	0,000	3/2/30	4/17/05	4/20/05	14000	4/21/96		3/30/94	47/64	4/11/04	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	5/17/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	46/1/01	10/31/94	1000	12/12/04	10/06/64	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	4/3/95
Well		EDA1-CI S	+	+-	-	- 1	+	_	+	+	- 1		-	÷	EPAI-CL9	EPAI-CL5	÷	÷	1	EPA1-CLS		FPA2-Ci 1	EPA2-CI 1	EPA2-CI 1	FPA2-CI 1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	FASCLI	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	FPACLI	EP 44 CL	EPA2-CL1	EDA2-C11	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1	EPA2-CL1

						_						-		_			-	_			-	-			-	_		<u> </u>	1	- !	-	1	;	T	1	T		-		-						1	T		T	T	7
BTEXTMB (ug/L)	-	⊽:	⊽.	: ⊽	200	175	244	169	173	173	89	146	2 2	, 1, 5,	7 7	5	1 2	= =	2	5 5	5	3 5	2 2	8 9	20 5	3 !	6	0 8	3 8	2 2	ŧ,ş	, K	2 29	9	123	32	55	84	2	8	4522	3652	1058	740	64 3	222	543	463	577	116	2
	0.	-1.0 -1.0	0.0	O:	26.4	25.3	7.3	24.1	23.6	24.3	23.2	2 4	. 6	9 9	2 2	18.2	1 0	17.7	17.3	1 2	3 5	3 0	2 5	5	5.3	2 :	14.4	70.7	0 0	0 0	20 0	0 4	0.6	9.4	73.7	6.2	6.2	6.0	8.0	6.7	320.0	261.0	114.0	73.7	7.07	63.4	63.8	99.0	1170	0.71	22.50
PSCU (ug/L)	0.	٥.	0.0	0. V	36.7	32.8	37.5	30.5	30.8	30.6	3 6	27.7	7 72	5 6	5.0	8	5 0	0 0	47.5	2 4	2 3	ų (ה ה ה	0.0	12.9	2.2	13.0	2.6	4 0	1 12	7.7	0 0	6.7		2	4.2	4.3	3.6	6.2	7.0	765.0	0.609	272.0	163.0	146.0	119.0	127.0	133.0	148.0	135.0	25.55
MESIT (ug/L)	<1.0 <1.0	0.0	0.1	0.0	107.0	93.1	106.0	94.5	96.4	8 26	2 7 7	0 0	2 4	2 5	7 2	7	2 4	100	2 2	2 6	0 'S	0 6	6.0	2.1	7.8	4.5	69.7	55.0	29.0	20.00	00.00	7	2.5	6.05	43.7	44.6	4.2	38.1	32.4	49.4	247.0	219.0	179.0	181.0	197.0	173.0	178.0	189.0	202.0	233.0	135.5
	0. V	0.	V-	<u>د</u> 0.	5.2	4.3	3.8	3.4	60	2 6	1 0	1 a	0 0	- 'c	0	90) C	5 C	2 7	2 0	o' c	2	> °	Ş	V .	0.0	V.	0.0	0.0	0.0	2 C) V	2 0) C	10	0.	4.0	د. 0.	13.0	ç.	<u> </u>	<u> </u>	Ĺ	64.8	48.7	44.0	39.7	12.4	8 6	20.00	200
MXYL (ug/L)	~1.0	0.0	0.0	o:	7.2	4.4	6.4	3.9	4.3	. 0	n α	9 0	, c	- 0	0 0	2 6) •	- 5	? ;	- 0	2 9	ų (2 (2	0	Ç	٠. د	0. V	0.0	0.0	2 2	> C	7 7	7 7	2 0	×1.0	×1.0	<1.0	15.4	1.3	-	1350.0	-	115.0	78.8	9.69	64.0	32.2	20.8 20.8	4 0	0.6
PXYL (ug/L)	0.1.0	V-1.0	ر 0:۲	0.	4.4	3.0	3.2	5.6	2.7	ic	ט ע) (0 0	3 4	 vi o	000	4:0	ų :	- (4 6	⊃' (2 9	2	0	4	0. V	0.	0 V	0 V	0.0	5 C	O C	, v	7 7	2 0	×1.0	<1.0	٥. د.	6.9	٠ <u>٠</u>	748.0	579.0	97.8	57.4	41.5	37.6	32.7	16.4	10.5	20,00	7.
(ug/L)	0.5	×1.0	0.0	0.	2.5	2.3	1.7	4	,	5 0	ų -	- :	- 0	2 5	7 7	7 7	2 9	D. 0	2 5	<u> </u>	O (O. 6	0 V	V.	V.	0. V	o: ∵	0 V	0. V	0.0	ο. Ο.	Ç .	- T	7 7	7 7	0	, v	41.0	5.9	4.0	369.0	293.0	47.2	29.5	20.6	17.8	14.5	7.9	0.4	7 10	-
10t (19k)	0.10	<1.0	<u>د</u> 0.	0.	10.7	9.9	9.6	0.6	2	2 0) u	0 0	5	7 ,	, v	2 5) (0.0	<u> </u>) (0.10	0 V	v.	V-	0 V	۲- 	0. V	0.	v-1.0	0.0	0.0	Ç ₹	2 5	7 7	0	0.1	0.10	62	V-1.0	195.0	214.0	71.1	56.0	39.2	32.1	23.6	2.7	1.7	2.0	2.
BZ (ug/L)	<1.0	<1.0	0.1	1. 0	<1.0	0.	0.	0		7, 7		2 9	0.0	 V	0, 0	2:0	0 0	0.0	 V	> c	٠ د	O	0	0.	0.1	٠. د	۰. ۲	V.	V .	۷- 0.	o. (0.10	0.0	7	2 0	2 0	v.1.0	Q. V	×1.0	<1.0	6.6	7.8	41.0	0.10	41.0	0. V	د. 1.0	<1.0	۲.0 د	V.	21.0
S,O, (mg/L)	<0.5	<0.5	0.7	0.5	Ž	×	ž	ž	Ą	<u> </u>	<u> </u>	<u> </u>	¥ :	<u> </u>	<u> </u>	5 5	<u> </u>	₹:	ž:	<u> </u>	≦ :	≨ :	ž	≨.	ž	ĕ	ž	ž	ž	Ž:	Ž:	₹:	Ž c	7.4 V	70	24	1.8	1.6	2.7	0.5	ž	¥	ž	ž	ž	ž	ž	ž	≨ :	≨:	ž
	8.2	8.5	7.9	6.2	<0.5	<0.5	20.5	84.6	909	0.0	2.04	200	8.04	20.0	0.0	3	Y C	9,0	5.0	20.5	9.5	9	7.4	7.9	8.8	9.1	6.8	4.9	3.4	8.9	4.0	25	6.6	0.5	0 2	5 6	14	0.1	1,5	<0.5	<0.5	<0.5	<0.5	3.4	23.2	22.0	14.9	10.9	7.1	7.8	15.2
PO.P (1/gm)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	20.05	0005	200	200	0.00	0.00	\$0.02 50.03	2 9	50.0	9 6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	0.00	0.05	500	<0.05	<0.05	<0.05	<0.05	0.10	0.24	0.13	0.07	<0.05	<0.05	<0.05	<0.05	0.09	0.07	0.0
NHN (mg/L)	<0.05	0.20	0.14	0.27	0.19	18	080	200	2 7	4 6	5 6	4 :	0.41	97.0	0.93	<u>ا</u>	6/.	0.92	0.57	0.49	0.87	2.03	1.55	0.43	0.40	0.18	0.41	0.07	<0.05	<0.05	<0.05	0.05	90.05	0.00	0.00	225	000	0.15	0.12	0.41	1.17	1.59	1	-	-	L-	! —		<0.05	-+	0.81
NO,-N (mg/L)	<0.05	<0.05	<0.05	0.50	<0.05	0.05	5	15	2 6	0.03	50.05	CO:05	<0.05	90.02	0.00	5.5	0.02	<0.05	0.05	9.03	\$0.05	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	40.05	<0.05	40.05	0.00	0.00	8 8	0.05	<0.05	<0.05	0.50		000	4-		0.19	<u> </u>	-	₩.		-	9.05
NO,-N (mg/L)	<0.05	<0.05	<0.05	0.50	900	20.0	3	3 6	200	0.00	60.05	60.05	<0.05	<0.05	0.12	0.05	40.05	0.15	<0.05	<0.05	<0.05	<0.05	0.07	0.08	0.03	0.08	0.13	<0.05	<0.05	90.0	<0.05	<0.05	40.05	0.00	500	3 0	0.05	<0.05	0.05	0.50	005	000		+	0	+	<u> </u>			0.11	40.05
C (mg/L)	9.4	7.5	9.5	2.3	6 7	9 00			000	9 1	75.3	88.8	92.1	12.0	13.7	0 (68.2	4.				- 1						:					8.8		<u> </u>			6	<u>.</u>	2.2	i	5 5	1.	-		<u>. </u>	↓	999	-	\dashv	9.6
Br (mg/L)	<0.5	<0.5	<0.5	<0.5	ć r	200		, ¢	0.0	0.1	<0.5	v0.5	0	×0.5	0 ;	0.1	0.5	<0.5	<0.5	_	0 20	4	<0.5	<0.5	<0.5	<0.5	0.	40.5	6.0	<0.5	0.5	<0.5	0.5	6.5	0.0	0 6	3 6	6 5	<0.5	<0.5	, C	8	000	5	5.5	40.5	<0.5	<0.5	<0.5	<0.52	<0.5
Fe (sol) (mg/L)	0.1	0.0	ç	٥ -	40	2 4	3 6	. T	2 0	2.0	3.9	2.8	1.7	9.0	- (6.	Ξ	-	0.3	0	4	0.4	0.5	9.0	4.0	0.5	0.	0.1	0.3	0	6. 6.	9	٥. د	6.1 1.1	9	\$ 6	? 5	Ę	8	8	7.7	ď	0 4	+	-	╀	-	0.7	\dashv	5.	0.2
DO (mg/L)	0.1	0.1	0.5	0.5	0	1 0	3 6		5	5	5	6	0.5	0	0.2	₹.	0	8	0	₹.	0.	<u>.</u>	Q 1.	0.1	6.	٥ 1.	_	6 1.		L.i	_		ž	- +	4	2 2		1	1	<u>-</u>	5	_		-	9	4-	-	8	1	 _	<u>6</u>
표		6.83	6.94	6.39	7.	2 2	5 4	20.00	20.1	200	9.01	6.13	6.24	6.68	6.73	6.58	9.1	6.57	90.9	6.02	6.14	6.02	6.45	6.37	6.49	6.59	6.68	6.88	6.92	9.9	7.0	7.05	7.1	7.02	7.07	9 9	90.0	2 5	6.93	6.30	7	3 8	3 6	3 6	3 6	i de	5.93	5.62	6.13	6.35	6.41
Water Level (ft from TOC)	¥	¥	¥	₹	ΨN	(e	2	2 2	X :	Š.	¥	≨	¥	ž	¥	Ą Z	¥	¥	¥	ž	¥	¥	¥	¥	¥	¥	¥	¥	ž	Ā	Ą	Ϋ́	₹ Ž	¥	¥.	¥.	<u> </u>	2 2	Ą	¥	V.V	2 2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 2	AN	.	_	₹		Ϋ́
Date	4/17/95	4/28/95	5/12/95	4/21/96	70/06/6	10000	5	4/11/34	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/90	4/00/05	5/12/95	4/21/96	POLOCIO	4700	10/1/1	10/4/4	1/10/07/	4/01/04	4/25/04	5/2/94	.	-	6/13/94
Well	FPA2-CL1 1			EPA2-CL1			-	÷			_		_			-	-	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	-	H	1	1	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	EPA2-CL2	FPACCIZ	2040	EPA2-CI2	EPA2-CL2	0	FARCES	EPARCLS	2000	EPAC-CL3	EL ACTO	EPA2-CL3	EPA2-CL3	EPA2-CL3	EPA2-CL3	EPA2-CL3

														_									,	_	-							-	_					_	-		_		7			-		_			\neg
BTEXTMB (ug/L)	143	253	247	585	329	526	83	5	1228		24.5	i	:								1	1	_	:	Ĺ			L		- 1	į	_	_	1	Ĵ		-		293		_		_			276	300	374	284	297	274
TMB (ug/L)	82.9	41.0	46.4	64.0	7.	26.3	10.9	7.5	234.0				- 1					- 6			1			1			i		l		i			_					164.0				-			4.4	45.3	59.1	49.6	\$. 8.	49.4
PSCU (ug/L)	9.7	48.5	38.0	57.3	92.0	47.4	9.0	9.4	408.0		143.0	236.0	208.0	330.0	923.0	829.0	432.0	170.0	209.0	141.0	159.0	33.0	210.0	573.0	70.07	72.8	546.0	7.	100.0	36.0	32.2	56.1	0.50	125.0	50.6	282	40.4	5 9	164.0	142.0	58.9	58.7	6.1	15.7	6.9	21.9	23.3	29.8	22.8	29.6	26.2
MESIT (ug/L)	52.8	163.0	163.0	160.0	212.0	152.0	17.8	1.84	18.4	0	0.00	5	128.0	393.0	329.0	257.0	189.0	158.0	178.0	14.8	191.0	51.4	125.0	259.0	62.6	94.3	260.0	112.0	207.0	52.9	80.3	143.0	194.0	236.0	209.0	218.0	100.0	155.0	265.0	255.0	149.0	162.0	34.8	73.7	5.5	39.1	37.8	47.3	45.1	41.6	43.0
OXYL (ug/L)		0.10		<u></u>		-	-	-	-		269.0	113.0	286.0	3160.0	319.0	0.0	71.7	34.6	39.4	14.9	24.4	14.2	21.4	763.0	17.9	26.9	701.0	9.4	5.9	3.2	1.6	0.0	×1.0	0.	V-1.0	0:0	<u> </u>	7 7	41.0	<1.0	۲٠0 د	۸.15 م	×1.0	-5	183.0	56.8	63.8	79.6	57.2	56.9	20.0
MXYL (ug/L)	4.0	<1.0	0.5	0	0.	0.	<u>۲</u> 0.	19.0	296.0	000	1930.0	0.0511	1500.0	4550.0	1570.0	1400.0	226.0	101.0	61.4	22.1	27.3	2.9	33.4	570.0	8.6	24.6	1050.0	10.2	3.3	5.9	7.	0.1	v.	۰. د.	0	0.0	, v	7 7	0.10	٠ <u>.</u>	×1.0	۸.1 م	<u>م</u> 1.0	16.5	259.0	46.2	51.9	67.3	49.9	53.2	50.6
PXYL (ug/L)	×1.0	~1.0	0.1	0.	0.	0.	0.	8.0	184.0	. 6	724.0	443.0	0.179	2000.0	755.0	650.0	110.0	52.1	36.6	13.6	22.8	11.4	29.0	349.0	14.1	16.1	526.0	7.0	2.5	5.5	8.	0.1	×1.0	0.1	0.	0.0	Q. Q	7 7	<1.0	41.0	٥. م	<1.0	۲.0	4.	158.0	28.7	31.7	38.6	27.8	30.7	56.9
ETBZ (ug/L)	41.0	<1.0	<1.0	<1.0	·	0.	0. 1.0	8.2	74.0	9	249.0	88	3/20	1060.0	329.0	283.0	50.4	56.9	18.0	5.0	11.0	20	13.7	42.5	7.2	6.5	125.0	1.8	1.0	4.	0.	<1.0	0.1	0.10	0.√	0.0	- C	7 7	0.5	v.1.0	<u>د</u> 6	۰ <u>۲</u>	<1.0	=	81.8	17.1	19.9	25.5	18.2	18.2	17.4
TOL (ug/L)	<1.0	<1.0	×1.0	V-	٠ د	V.	۷. د ۲.0	۰. ن	7.2	0	1700.0	313.0	1280.0	3390.0	298.0	78.8	34.3	16.8	4.9	0.10	0.1	<10	41.0	×10	<10	0.10	41.0	<1.0	<1.0	<u>م</u> 1.0	<1.0	<1.0	×1.0	<1.0	۷- ا	0.0) V	7	40	٠ .	۰ <u>1</u> .0	4.0	۰. 0.	o. V	121.0	21.3	25.9	26.8	13.2	11.5	10.4
BZ (ug/L)	0.10	41.0	<1.0	0.	0	0.	0.	۰. 0.	7.		20.0	6.0	18./	48.3	17.5	3.3	0. V	٠ <u>1.0</u>	4 1.0	0.1	- 1.0 - 1.0	0	0.10	10	0	0.15	41.0	۰. د	o. 1.0	×1.0	<1.0	٠ <u>٠</u>	<1.0	۰. د	<1.0	0.10	⊃ (7	0.5	4.0	<1.0	۰. 1.0	41.0	1.3	1.6	7.0	<1.0	v 1.0	۰. 0.	<1.0	0. 0.
S,O ₃	¥	3.9	ž	3.9	4.4	28	ص -	3.6	<0.5	i	₹ :	Ž.	¥∶	ž	≨.	Ž.	ž	ž	¥	ž	ž	×	ž	ž	ž	¥	¥	¥	ž	ž	ž	¥.	ž	ž	ž	≨ :	ž ž	Z Q	ž	3.7	4.1	3.0	<0.5	<0.5	<0.5	Ž	ž	ž	Š	¥	¥
SO, (mg/L)	4.2	9.0	2.9	0	Ξ	21.	4	0.8	<0.5	. 1	9.5	9.0	<0.5	0.5	0.8	0.4	3.5	6.0	9.7	10.9	3.8	Ž	3.	<0.5	90	<0.5	<0.5	<0.5	2.1	6.3	<0.5	3.5	3.9	1.7	<0.5	0.6	4 c	ρ α ο C	4	0	0.	0.	7.2	4.6	0.5	31.2	18.5	49.5	29.5	13.2	13.7
PO,-P (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		80.05	9005	<0.05	×0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	0.07	900	<0.05	<0.05	1	0.07	0.07	0.09	0.10	0.07	0.07	0.08	0.07	<0.05	90.0	<0.05	5 5	200	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
NH,-N	<0.05	<0.05	<0.05	<0.05	0.22	<0.05	0.12	0.23	0.21		0.38	0.29	0.30	0.91	1.42	0.84	0.79	1.58	0.19	<0.05	0.34	9	0.32	<0.05	0 16	0.21	09.0	1.29	69.0	0.45	0.11	0.18	0.30	<0.05	<0.05	40.05	00.0	20.00	0.05	<0.05	0.14	<0.05	<0.05	0.09	<0.05	<0.05	<0.05	0.69	4.15	8.34	8.58
NO,-N	_			_		<0.05	_	_	0.50		<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	000	<0.05	0.05	20.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.05	<0.05	50.05	0.00	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.50	<0.05	<0.05	0.68	0.83	3.64	1.59
NO,-N	<0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	0.50	-	<0.05		+	-				_				-				•				_			_		_				<0.05	7	<0.05	<0.05	<0.05	<0.05	0.67	0.31	<0.05	7.64	17.10	5.02	3.08
CI (mg/L)	7.7	9.8	10.1	9.1	1.6	 	8.8	10.3	27.0		4.4	3.2	6.	0.4	0.9	6.4	9.7	90.8	83.8	9.6	13.0	900	76.6	6	3 =	6.7	10.0	Ξ	9.5	11.2	5.9	9.4	9.5	4.1	9.0	-6	o 1	, a	9 6	8.6	8.3	7.4	8.2	11.7	24.5	28	3.5	46.1	14.9	5.8	8.2
Br (mo/L)	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5		0.7		17	5.0	2.	=	<0.5	0.5	<0.5	9.0	×0.5	. 0	0.5	0.50	2	<0.5	23	د	<0.5	<0.5	<0.5	9.0	<0.5	0.	<0.5	0.5	0.5	0.5	0.5	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	2.9	5.5	56.1	47.9	20.0	33.3
Fe (sol) (mg/L)	_	9	6 1.	0.1	٥	ç.	٥ <u>.</u>	6.	0.1		23	9.	0	5.	22	1.5	7.0	2.	8.	.5	0.5	7	3.0	9	200	4	0.5	0.7	٥ -	12	1.0	0.7	0.7	0.3	6 1.	6	0	9 5	9	6 1	8	٥. 1.	6 1.0	6 0.1	¢0.1	2.5	2.0	1.5	9.0	3.0	0.3
2 2 2 3		0.3	0.1	 1.	-	0	٥. 1.	6 	6.		4	2.	6	8	0.1	6.	6	₽	6.	0	6	č	6	ę	5	8	0	6	6	6	6 1.	٥٠.1 د0.1	6 1.	6 1	-:	ę.	0.2	2 0	0.1	0.1	0.	0.1	6. 1.	60.1	6. L	ç	1_	<u> </u>	1		
돕	7.15	7.08	7.09	9.30	7.01	7.05	7.02	7.02	90.9		2.80	6.13	5.93	5.87	6.03	6.10	6.01	5.51	5.91	6.49	6.71	2	9	8	4	6.12	6.20	6.17	6.30	6.31	6.42	6.58	6.71	6.95	6.9 24	7.03	96.0	4 . 4	7.10	6.92	6.95	6.98	7.03	6.94	5.89	8	5.43	5.26	5.47	6.22	6.12
Water Level	¥	ž	¥	¥	¥	ž	¥	¥ Z	¥		¥	ž	¥	¥	¥ Z	ž	ž	¥	¥	Ą	Ą	ΨN	Y Z	ΨN	42	¥	ž	ž	¥	ž	¥	¥	Ą	Ą	¥	ž	₹:	¥ ×	Ž	ž	ž	¥	¥	¥	₹	ΨN	ž	₹	₹	≨	Ψ
Date	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	4/21/96		3/30/94	4/7/94	411/9	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/04	7/11/04	7/25/04	10/0/8	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/93	3/6/95	3/22/95	4/3/95	4/11/95	4/28/95	5/12/95	4/21/96	3/30/94	4/7/94	4/11/94	4/14/94	4/18/94	4/21/94
Well	FPA2-C14	-	_	EPA2-CL4	_			_	_		_	_	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	FPA2-CL5	FPA2-CI 5	EDA2-CI S	EPA2-CI 5	EPA2CI 5	EDA2016	FPA2-CL5	FPA2-CI 5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPAZ-CL5	EPA2-CL3	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EPA2-CL5	EDA2-Ci 1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1

										_				,	,	_		_	_	. –	_				_	_		_		-				_	_	_	ï	,	_	_		_	-	-	-	1	T	1	\neg
(uo/L)	222	170	147	157	27	2 5	8	3 4	ß	69	 	8	47	- - -	8	ස	8	٤	8	51	8	ഗ്ഗ	5	45	2	8	8	57	4	12061	11906	12650	1235	1952	192	10519	1					1		20 8		1	4	8307	Ц
MB (2)	45.6	39.7	36.4	35.0	28.0	5 0	1 1 1	α 2 C	12.1	15.9	13.5	0.0	86	110	12.4	1.1	11.3	10.2	9.5	7.3	24.5	8.2	7.2	6.8	7.2	6.1	4.4	5.1	5.5	283.0	298.0	324.0	305.0	334.0	3250		-	3000		·		265.0	_÷	-		30.00	289.0	288.0	275.0
PSCU	24.8	19.6	18.1	19.2	16.7	7.0	5 0	5 4	0 0	40		7	9	7.2	8.6	8.0	6	9.3	8.6	9.7	7.9	9.0	T.	7.5	8.4	6.8	4.8	5.6	5.8	6510	622.0	709.0	592.0	653.0	686.0	535.0	200	6130	596.0	624.0	550.0	552.0	277.0	478.0	517.0	0.55	5000	559.0	538.0
MESIT	40.6	36.7	29.5	37.9	28.5	7.0	7 7	5 4	0.6	2 0	18.0	3 6	17.5	0 0	19.6	15.1	16.9	16.6	16.0	13.4	13.6	13.5	12.6	10.8	11.2	8.6	7.4	7.5	0.5	165.0	1640	176.0	178.0	193.0	185.0	163.0	2 6	180.0	179.0	180.0	158.0	161.0	174.0	154.0	165.0	159.0	163.0	176.0	167.0
	34.7	-	L .	17.4		۰	+		-i-	+-			٠.	÷		+-	+	-	- -	+-	-		₩.	·		12.0	8.7	7.3	5.3	2400.0	2470.0	2580.0	2410.0	2610.0	2720.0	2400.0	00000	2370.0	2200	2270.0	2090.0	2160.0	2010.0	1930.0		2010.0	1810	1850.0	1740.0
MXYL	38.9	27.0	23.0	22.9	23.5	12.5	0 0	4 0	7.4		0 0	, c	0 L	2 4	ά α	6	- E	200	96	4.5	0.4	3.5	2.7	1.9	2.2	4.	0	=	8.5	3240.0	32200		2820.0	2990.0	3160.0	2830.0	2740.0	2870.0	2760.0	3060.0	2550.0	2610.0	2490.0	2300.0	2450.0	2670.0	2300.0	2210.0	2050.0
	(ug/L)	14.0	╁	1.5	+	+	+			÷		****		Ť	+		-	1	÷	7	•	•			٠		0. □	0.1×	4.4	9	11600	1250.0	1200.0	1260.0	1340.0	1190.0	2 6	1000	1040	1070.0	1020.0	1030.0	993.0	903.0	947.0	999.0	97.0	948.0	894.0
	12.7	<u> </u>	+-	7.2	7.6	4.0	2.7		0 0	2 1	7.0	0 7	1.7	- 6	2 0	2 4		7	C	0	28	2	15	0	0	۰ <u>۲</u> ۰	0.1	√ 1.0	5.9	0000	0.000	1080.0	1070.0	1100.0	1200.0	1060.0	0.00	200.0	0.250	955.0	884.0	893.0	878.0	766.0	824.0	871.0	0000	2.00	7910
+	37	0	2.9	0.9	3.8	27	0.0	3.6	80.0	2 6	2.2	5 6	0 0	2 9	2 5	? •	2 4	2 0	2 0	, C	0	0	0	0	0.0	0.1	4.0	۸. د. د.	2.7	0 0200	0000	2990.0	2650.0	2740.0	2900.0	2640.0	0.0752	2450.0	2250.0	1980.0	1770.0	1730.0	1660.0	1610.0	1670.0	1780.0	1540.0	1430.0	1320.0
BZ	_	2 0	0.0	-1.0 -1.0	.0 .0	+	+	0	+	0.0	+		0.0	÷). c) C	- i-) C) C	7.7	, C	, V	100		0.	0.1	0.10	٠ ١ ٥	4.0		73.0	71.2	70.2	71.5	74.0	65.3	i-	-		35.4	<u> </u>	.	21.1	- 1	19.4	16.6	16.8	13.5	13.5
°°°	(JAN	4 Z	₹ ₹	¥	¥	¥:	≨	_	≨ :	<u> </u>	<u>₹</u>	≨:	<u></u>	<u> </u>	¥	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>ا</u>	2	<u>.</u>	Ž	6	0.5	<0.5	<0.5	<0.5	<0.5		Z 2	≨: <u>≸</u>	ž	ž	ž	ž	≨ :	ž:	≨ <u>\$</u>	¥ 2	. ≨	¥	ž	ž	ž	ž	≨ :	§ §	≨≨
SO.	(mg/L)	2 6	2 5	3.7	8.0	¥	9.5	- - -	0.5	Ç	0.5	0.5	9) i	0 0	0 0	4 .	0 0	0 1	. 4	2	i 0	i a	9 6	80	8.3	5.7	11.7	69.7	. 1	0.0	9 6	15.1	17.7	17.1	15.9	4.	5.5	S .	0 4	<0.5	60.5	<0.5	<0.5	40.5	2.0	0.5	-	1.9
	(mg/L)	+	<u></u> -		•	<0.05			<0.05	•	+-	•			-				-	0.0		-	-				<0.05	<0.05	<0.05		2 5	8 8	<0.05	<0.05	<0.05	<0.05	90.0	<0.05	0.0	0.02	005	90.0	90.0	<0.05	90.0	<0.05	<0.05	<0.05	40.05 40.05
Z I	mg/L)	0 0	0 80	4.18	1.83	1.29	0.88	1.85	5.99	4.62	5.50	8.81	3.15	1.76	0 1	4 t	5.5	2.2/	2 6	8 6	7 20	0.00		9	2.49	157	149	2.55	2.02		0.22	2.2	99.0	0.85	69.0	0.61	0.45	40	2.23	25.0	164	205	3.27	4.88	6.01	8.09	9.49	5.57	5.59
F	\exists	N 0		<u>.</u>	-	\dashv				90.05	<0.05	<0.05	0.10	0.10	<0.05	0.07	90.05	0.05	5.5	9 9	2 5	20.0	200	5.5	2 0	0.50	0.72	2.03	0.50		<0.05	50.0	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	Q 02	0.0	0.00	2005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	\$0.05 50.05
<u> </u>	(mg/L)		4 6		;	+			<0.05				0.14	<u> </u>	-+	-+-	i-	-		3 6					2 4	28.0	1.67	6	0.50		0.06	0.05	33	5.66	2.20	0.87	<0.05	<0.05	0.13	0.00	20.00	200	000	40.05	<0.05	0.07	0.07	0.10	0.17 <0.05
			-	- 6	-								 	7.4	9.0	2.7	o.	6.7	on .	00 1	0 0	1 0		D 0	2. C	7 7	. 6	11.6	13.5		3.5	9 9		14.5	13.2	11.3	6.6	8.9	8.6	80.0	0 5	α	0	3.7	3.8	1.1	10.9	9.	9.5
	Ξ	5	15.4	7	6	9.6	<0.53	2.4	6.0	0.7	9.	2.4	0.8	<0.5	<0.5	0	2.5	7	0.5	c0.5	S (0.0	٠ د د	S. 5	7 6	2 4	200	0.5	<0.5		0,4	2.0	5 6	27.8	33.3	40.1	30.8	15.1	7.7	25.2	0.0	, t	. 4	0.8	1.9	1.8	1.7	<0.5	0 4.
-	₹.	0	0.2	3 6	0.2	0.	0.3	0.5	4.0	4.0	0.7	6.0	0.	9.0	0.5	0.4	9.0	0.5	0.2	5	÷ ;	0.2	5	4.0	2 0	9 6		3 6	0		4.5	6. 0	0,0	0	4	3.0	5.0	0.	0	= {) O	9 6	5 5	03	0.4	6:0	! !	0.3	0.0
8	(mg/L)	0.3	0	9 -	0	0.2	5	6	ج د	0.1	0.	٥. 1.	0.1	6	₽.			-0	0	0		≨.¦				5 9			1				5 5		1			0.8		-		9 6		4	-			1	6 6
Æ		97.9	90.0	5.63	4	6.01	6.37	6.07	6.51	6.42	6.39	6.20	6.44	6.80	6.85	6.92	6.78	6.71	6.92	9	6.82	6.92	2.08	7.06	9.99	0 0	7 0	2 6			4.90	5.12	3 5	2 2	4 95	5.25	5.27	5.76	5.96	620	6.05	0 0	0 0	3 5	6.0	6.20	6.13	6.26	6.35
Water Level	(ft from TOC)	¥ Z	¥:	X 2	Y Z	¥	¥	¥	¥	¥	ž	¥	¥	Ϋ́	¥	¥ Z	¥	¥	ž	ž	ž	¥	¥	Ą	Y S	¥ S	Ž Ž	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ξ Υ		¥	¥	2 2	S A	¥	¥Z	¥2	Ą	¥	ž	Š.	¥ S	¥ \$	2 2	₹ Z	ž			₹ Ž
Date	_	4/25/94	5/2/94	5/16/94	6/13/94	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	06/6/4	2010014	20/07/2	4/21/96	200	3/30/94	4/7/94	4/11/94	1/18/04	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	45/11/	45/07/	8/03/04	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94
Well	_			EPA3-CL1	+		_	_	_	EPA3-CL1	_	_		EPA3-CL1	-		EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	EPA3-CL1	F ASC	1000 C	EPA3-CL1	2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPAS-CLZ	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CLZ	EPA3-CL2	FPA3-CL2	EPA3-CL2	EPA3-CL2	EPA3-CL2 FPA3-CL2

	_				_		_											_			_		_		-							_				-	_			_	-		-		÷	-	-		_	1	-	_	, ,	_
BTEXTMB (ug/L)	8790	8745	9207	9271	8475	8592	877.1	8197	70.38	1930	8366	7548	7224	7176	5562		13365	13137	13382	1264	10600	12580	2017	11010	940	27.20	12587	11645	12549	12099	12636	11581	11592	12053	13248	300	0871	9560	10052	6/911	10000	//01	200	245	1	1085	200	100	11151	6296	8923	6657		10888
TMB (ug/L)	294.0	296.0	328.0	327.0	286.0	325.0	339.0	3140	215	0.00	O.	304.0	314.0	318.0	287.0		227.0	223.0	243.0	235.0	277	236.0	2 0	2000	208.0	213.0	231.0	215.0	211.0	208.0	215.0	227.0	189.0	221.0	246.0	0.00	0.00	0.00	202.0	225.0	0.60	0.0	0.00	0.420	200	2000	2 50	2 6	2300	2260	206.0	220.0		303.0
PSCU (ug/L)	009	606.0	632.0	680.0	629.0	613.0	641.0	620	9130	2.0	5 4 0	626.0	601.0	625.0	558.0	•	489.0	495.0	5140	473.0	720	77.0	2 0	0.00	2000	388.0	439.0	0404	420.0	378.0	389.0	378.0	331.0	372.0	421.0	37.0	395.0	0.46	5.04.0	0.00	200.0	0.424	0.00	437.0	;	453.0	200	469.0	4640	4070	410.0	383.0		834.0
MESIT (ug/L)	155.0	173.0	185.0	179.0	178.0	193.0	207.0	188.0	0.00	0.00	0.96.0	182.0	181.0	177.0	164.0	•	138.0	141.0	143.0	145.0	0 0	144	2 2	5 5	116.0	122.0	133.0	127.0	125.0	113.0	116.0	119.0	109.0	119.0	121.0	0.911	0.60	0.021	113.0	0.51	2 6	3 6	0 0	30.0	2 0	137.0	107.0	137.0	143.0	1200	122.0	119.0		233.0
OXYL (ug/L)	0.076	2020.0	0.000									1690.0	0.079	0.0791	960.0		2350.0	2300.0	0.092	2170 0	2150.0	0.000	2 6	0.00	0.060	2240.0	2220.0	1990.0	2180.0	2120.0	2250.0	2020.0	1990.0	2010.0	2230.0	1940.0	1950.0	2000.0	1990.0	0.0512	0.02	0.00	2230.0	0.0122	20000	2210.0	21000	22500	0 0666	2020	2020.0	415.0		1360.0
MXYL (ug/L)		2410.0 2										·	1910.0	0.0661	0.0681		350.0	3370.0	001			2880.0			2720.0	2910.0	3140.0	2790.0	3060.0	2790.0	2830.0	2540.0	2510.0	2710.0	3230.0	2460.0	2520.0	2480.0	2420.0	2690.0	2380.0	2/30.0	20000	2820.0	0.000		2720.0			2530.0	2430.0	2920.0		3860.0
PXYL N					1000.0	_			0.00	-	-		831.0	•	793.0		1260.0																		1180.0											740.0	7 7 0	11300	1170 0	078.0	1010.0	1120.0		1450.0
		861.0 9		-	850.0				+	-	_			_	+		_	1090.0		17001															1160.0															1070	1040	1200.0		1140.0
-		1400.0	-	+-	1240.0 8				÷	-	-		_	+	153.0			-		4180.0			-	-						_	-+		_		4550.0	-	-	-		_	_	7		3220.0		3340.0	ء أو	o - c	730.0	040	650.0	272.0	++	1690.0
<u> </u>		·	<u>:</u>	-	11.5						_	2	8	. 60	9			58.1	+-				Ĺ	- • •	·		38	-+			-+				110.0		- +	+				+	-	+	+	+	+-	÷	1 0	2 0	7.4	7.9	++	18.0
), BZ (L) (uo/L)	_		4	13	=		12 10	-	-	-	_	5.	. 5.	2	5		A 51	- A	- A	-	· •		2:5	٠.	φ::	•	₩.	-				÷	-		¥.	_	-	_		÷	÷	÷		÷	+	<u> </u>	+	0 6	2.0	2 2	37	0.5	+ +	NA
S,O,S		2	2	2	Ż			<u>.</u>			_		<u>و</u> -	-	9		2	.Z	. z				2 6	z :	20.5		Z.				_;			:	2:	1					4	÷		<u> </u>	÷	0.0 2.0	2 4	, u	2 1	1	0.5	0.5	<u> </u>	<0.5
SO,		2 4	-	-			-		-	_	_		6						:	9 6	-				_			- :	- ;				-+		-	_	-+	-		+	_÷	+	-	+	+		+		3 5	3 5	3 6	. Y	$\dot{+}\dot{+}$	\dashv
PO,-P	,	000	000	000	000	000	000	ç	9 9	0.0 0.0	0.0°	40.0°	×0.00	Ç	<0.05		0.14	0.05		9 6	3 4	9 6	2.0	9	<0.05	0.0	0.0 -	0.0	00	0.0	0.0	0.0	0.0	0.0	<0.05	00	9	V-0.0	0.0 V	0.0	9.0	5.0	9.	0.05	÷	0	3 4	V C	3 5	3 5	Ç	é		<0.05
NH'-N	5.7E	4.36	63	1.76	151	1.52	1.72	7	2 6	8	5.28	2.67	2.50	3 35	1 22		1,35	2	6	6	5	1 5	3	1.24	0.96	1.25	1.39	1.35			_:		_ i	_;	3.08		<u>i</u>					÷			1	0.30	-		2.67	2 48	2 93	2.11	 	8
NO,-N	200	0.00	000	<0.05	000	<0.05	<0.05	9	0.00	90.0	<0.05	<0.05	0.12	000	0.50		<0.05	5	8 6	3 2	0.00	000	0.00	40.05 40.05	<0.05	90.02	<0.05			<0.05	:		\rightarrow		<0.05	0.05	0.05	0.05							<u>.</u>	40.05	-		-	200	60.0	0.50	+-+	<0.05
NO, N	700	8 6	900	<0.05	<0.05	000	<0.05	9 0	20.00	50.0	<0.05	0.75	1.14	2005	0.50		<0.05	200	200	9 6	20.00	9 6	0.0	<0.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.0	0.07	0.07	0.08	<0.05	<0.05	<0.05	3 3	<0.05	40.05	S.5	0.05	20.00	5 6	3 6	3 5	300	0.50		<0.05
[] []	,	- «	2 0	6	0	7.7	7.4	ć	ر دن	x0 x0	8.0	8.3	6	=		;	3.9	2	2 0	5.0	2 0		!	i_			- 1	_ `		- 1	_	_	_		7.2		_i	8.7	6.9	9.4	- 1	- i		- 1	- 1	4.7	- 1	1	0 0	000	0.0	, e	1.1	4.3
Br (mo/l)	, 4	0.0	5	0.5	6	6	5	,	Ç.,	=	<0.5	Ξ	2	5	0.5	}	36	2	2	, c	9 0	0.1	4	5.6	7.5	18.9	27.9	24.2	15.7	14.3	7.7	5.0	2.	3.7	3.4	2.2	<0.5	=	2.2	2.7	9.	\$ \$	<0.5	40.5	50.5	<0.5	5	2 4	0,0	F. C	7	40.5	;	3.5
Fe (sol)) +	5, 5	5	ç	Ş	ç	ç		- -	6 -	6	. 20	0	<u>-</u>	0	;	6.5	o d	2 6	ų c	y (4. r	Ö	3.2	9.	5.4	9.	3.0	4.3	8.4	3.5	2.9	2.4	3.6	3.3	3.6	4.3	5.8	6.2	5.6	4.8	4.2	3.6	5.9	7.5	2.0	- ·	٠. د	+	* 3	-	0	;	3.0
Q ()	, 4	5 5		-	; c	¥	0	1 9	5,0	6	6	0.0	-	5	-	· ·	0.3	0		5	5 6	9 2	- -	-	٠.	0.2	6	0.1	٥. 1.	6.	٥ ک	6 -	0	6 -	6 -	8	6	6	₽	₹	9	-i	i	1	-	-	_1_	-	3 5	+	- - -	+		0.5
표		2 2	200	8	9	7 05	0 0		2	8	6.97	6.93	8	27.0	5.76	;	5.30	7	2 4	2 6	0.7	0 1	5.47	6.19	5.33	5.45	5.43	5.36	5.28	5.58	5.65	5.40	5.61	5.70	5.66	5.77	5.93	90.9	6.17	6.18	6.31	6.48	6.46	6.65	9./	6.78	8 6	9 9	000	9 6	ά «	200	\$	5.80
Water Level	NIA	¥ .	2	ΨZ	Ą Z	42	Ą		Ž.	¥ Z	Ž	×	Ą	ΨN.	Z Z		Ą	¥ 2	ζ <u>ς</u>	<u> </u>	₹':	Š:	Š:	¥.	¥	¥.	¥	¥	Ϋ́	¥	¥	¥	ž	¥	¥	₹	¥	ž	¥.	₹	¥	¥	ž	ž	ž	¥:	ž	¥ :	2	<u> </u>	C AN	¥ X	<u>ç</u>	ΑΝ
Date	_	11/30/94	12/20/04	1/0/05	1/25/05	2/6/05	2/21/05	20,000	3/9/8	3/22/95	4/3/95	4/17/95	4/28/95	5/12/05	4/21/96	200	3/30/94	47704	10111	10/1	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/95	3/6/95	3/22/95	08/5/4	06/1/14	5/40/05	4/21/96	2014	3/30/94
Well	_	EPA3-CLZ	<u> </u>		EDA3-CIO	EDA3-C12	EPA3-CL2	2 6	EPA3-CL2	EPA3-CL2	EPA3-CL2	FPA3-CI2	EPA3-CI2	0.000	EPA3-CI 2	2	EPA3-C13	0 0 0	2000	FFAGCES	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EPA3-CL3	EFAGCLS	EPA3-CL3	FFAGCLS	EPA3-CL3	27.52	EPA3-CL4

																																							_				_			-				٦
	9693	10638	10093	9782	4609	40764	500	12432	11624	11920	10148	11027	10801	9785	9187	9318	7274	9728	8613	8756	7308	9448	8624	36.	8228	2000	7224	75.45	7426	8038	5991	5854	5784	0077	1409	1794	1835	1485	5300	2791	3860	6356	9335					8 8	200	2000
1 / C	306.0	322.0	319.0	307.0	319.0	304.0	2007	275.0	249.0	2080	248.0	227.0	240.0	198.0	237.0	253.0	247.0	421.0	0.62	238.0	220	2230	219.0	214.0	0.00	0.63	235.0	2120	243.0	263.0	234.0	238.0	299.0	000	0.20	10.0	100	ğ	2 5	105.0	103.0	159.0	252.0	251.0	246.0	200.0	198.0	13.7	168.0	135.7
PSCU	809.0	890.0	798.0	742.0	788.0	741.0	0.70	0.570	580.0	532.0	5000	4880	461.0	396.0	453.0	453.0	443.0	422.0	460.0	454.0	412.0	433.0	419.0	434.0	0.65	20.00	2000	4720	5340	566.0	469.0	467.0	673.0	0	0.00	2000	225.0	010	25.0	265.0	300	390.0	604.0	648.0	619.0	514.0	530.0	7.1	0.05	2
+-	235.0	 	-	Н	-+	-	4	0.66	+	+-	+	4-	+	┨—	1	140.0	141.0	139.0	152.0	126.0	11.0	120.0	119.0	123.0	125.0	0.0	192.0	7000	151.0	159.0	138.0	142.0	208.0		8.03	200	200	2 2	2 6	3 5	000	113.0	168.0	179.0	179.0	154.0	163.0	16.3	139.0	2.20
	0.0226	-	i-	1	-	_	_	-1	14/0.0	+			. l .	1	╁	1200.0	\dashv	i	_			- 1		_		<u> -</u>	1390.0	2000	918.0	4200	371.0	136.0	23.4	-	23.5	2 2	20.4	200	2 0	2 4	8	287.0	774.0	806.0	677.0	875.0	919.0	3.0	822.0	0.16
	37700	+-	-	1	- -	\rightarrow	j-		2930.0	_	3100.0	→~		-+	+	-	1	2580.0 1	1	i			1	i-		i_	2760.0	<u> </u>	- -	- -		670.0	2560.0	+	615.0	9/20	1100	200	20.4	12100	0.00	25200	3040.0	2630.0	2910.0	2680.0	2880.0	5.6	2350.0	2160.0
	(UQVL)		ᆜ	-		- 1	_	- 1	-1-	-		0.001	- 1	-				_	1090.0				+				1200.0		1200	-	<u> </u>	0.020	<u> </u>		338.0		0.04	<u> </u>			2 0			1	-				-	130.0
-+-		٠.			Ľ.					_			0.000	_!_	-		1		1130.0 10					1050.0	<u> </u>				0.00	-	-				_				_:_	<u> </u>	200		٠	-	<u>. </u>		0		_	850.0
÷		+	+-	+	┞	\vdash	-+	i		-			-	-i- -	+	+	·—		_	├	_	-		+		-+		÷			-				-			+		2.52		-	+-	+	+	-	Hi	+	+	109.0
10	(ug/L)	2,00	1470.0	1690.0	1740.0	-			-+	-÷		2750.0	÷		-				1400.0	÷	728.0			<u> </u>	_	<u>.</u>		<u> </u>	-	2 2		+	24.3		- :	-	283	+	+		-	<u>.</u>	Ĺ.	_	ــــــــــــــــــــــــــــــــــــــ		Щ	-	+	\dashv
BZ	(ug/L)	0 F	10.4	0.50	16.8	22.1	69.2	163.0	344.0	280.0	4210	136.0	45.3	8 8	2 C	2	78.6	106.0	102.0	108.0	95.3	152.0	257.0	456.0	217.0	182.0	318.0	414.0	-	-	135.0	+		. :	17.5	15.0		-	18.9	-	÷	-	507.0	÷	+	<u> </u>	+	_	38.9	41
	(Joe	≨¦\$	2 2	Ž	ž	ž	ž	ž	ž	ž	1	≨¦	1	_	2 2		ž	ž	ž	ž	ž	ž	ž	ž	ž	ž	0.7	ž		-	S 5	÷	-		ž		_:			<u> </u>	<u>.</u>	2 2	i.	-	+	. ¥	Z Z	ij	¥ Z	S X
ŎS.	(mg/L)	6	5 4	5 6	0.5	<0.5	40.5	<0.5	+	4		6 0.5	90.5	0.5	5 6		0.5	_	8	+-	Ļ	-	H	-	-	0.8		. .	⇔	₹.	6.5	₹.5	, 0		٧	-	9.5	+	-	÷	S .	+	÷	+	o Z		8	8	8	5 6
PO-P	(mg/L)	0.05	5.5	0.00	000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	000	5 6	000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	<0.05	000	000	40.05		<0.05	<0.05	<0.05	20.05	<0.05	<0.05	9.09	0.05	0.00	5 5	2 6	000	<0.05	<0.05	<0.05	₹0.05
Z-TZ	(mg/L)	69	99.	2,4	3 8	1.90	1.83	1.95	1.97	1.94	2.02	2.12	2.15	2.38	4 .	7 T	. 6	201	2.76	5.89	6.16	7.14	9.40	7.24	5.85	5.34	3.34	2.17	1.76			9 6	2.67	į, 	1.75		1.72	1.82	1.88	-				2 2	4		<u> </u>			\dashv
N-ç ON	(mg/L)	<0.05	0.05	0.00	500	<0.05	90.05	<0.05	40.05	90.05	<0.05	<0.05	<0.05	<0.05	000	0 0	000	500	500	900	50.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0	40.05 40.05	}.	<0.05	<0.05	<0.05	<0.05	40.05		_	-+	<u> </u>	0.0	<u> </u>		<u> </u>	-		<0.05
N-SON	(mg/L)	900	<0.05	5 6	5 5	40.05	<0.05	<0.05	0.12	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	0 8	8 5	5	3	500	5	0.00	900	0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	40.05	0.03	3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.05	900	0.14	0.0	0.03 0.03 0.03	40.05	<0.05	<0.05	<0.05
ō	(mg/L)	3.2	8, 6	o 1	2.1	32	3.6	3.6	10.6	5.4	8.2	8.5	1.4	8.9	7.5		4, r.	9 6	2 0		0	0	ι σ σ	10.9	8.6	9.5	9.5	10.3	8.7	8.9		9	0 u	5	3.5	3.0	2.5	3.5	2.4	3.0	E.	3.4		<u>.</u>		- c	, v	11.7	12.9	12.3
ă	=	3.3	5.6	2,2	2.0	3.4	5.1	4.6	5.0	14.9	20.0	16.5	15.3	1.3	6.3	8.6	4 +	0 4	9 0	ο α ο α) (27	5,-	9	<0.5	1.8	ž	1.2	<0.5	0.8	0	6 0 0 1	?	4.4	3.5	5.9	3.2			3.6	4:	2.7	8.8	29.4	1001	11.9	12.2	9.9	6.9
Fe (sol)	(mg/L)	1.1	2.7	5.6	4.0	32	3.0	3.1	30	2.7	3.4	3.2	3.3	2.2	22	2.7	N C	2 0	4 0	י ע	0 0	, r	2 4	7.0	2.6	65	0.9	6.2	3.6	3.3	3.1	9.	5.5	· ·	3.9	4	3.4	4.1	4	4.5	4.8	4.5	4.2	5.6	33	4 6	1 4	3.0	. 6	3.7
8	$\overline{}$	0.1	ج 1.	8	9 3	9		1.0	6.	0.1	6	8	9.1	٥. ئ	0.1	ଟ	9	9	9	9 9	9	\$ 6	5			-	0			8			6 4			0.1	6.	8					;		0			8 8		
표	-	6.16	5.92	5.75	6.11	0.30	5. R4	5.92	5.86	5.66	5.42	5.56	5.35	5.27	5.55	5.66	5.63	0 0	3 5	2 5	2 2	20.0	3 6	2 0	9 9	6.48	6.47	6.50	6.45	6.51	6.57	6.56	6.65	0.0	5 80	6.15	5.94	5.75	6.10	9.0	6.24	5.92	6.08	9.9	5.92	5.78	5.70	5.50	5.7	5.78
Water Level	(ft from TOC)	ΑN	¥	ž	¥.	¥ Z	ĄZ	¥	ž	¥	ž	¥	¥	¥	¥	ž	≨:	4	ž	¥.	Š	¥ s	¥ ×	2 2	S A	ΨZ.	₹	ž	≨	ž	₹	¥	≨ :	<u></u>	AZ	Y.	ž	ž	¥	ž	ž	ž	₹	ž	₹	≨ :	\$ \$;	¥
Date	Ī	4/1/94	4/11/94	4/14/94	4/18/94	4/21/34	20/0/2	2/16/94	5/31/94	6/13/94	6/22/94	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/1/01	10/31/94	36/11/1	11/30/94	46/20/21	12/23/34	1/36/05	2/8/05	2/21/95	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	4/21/36	3/30/04	477/94	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	8/8/94		÷
Mel		EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	10 CV CV	EPA3-CI4	FPA3-CL4	FPA3-CI 4	FPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	CDA2 CL4	EPA3-CL4	FPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EPA3-CL4	EDA2 CLS	EPA3-C15	FPA3-CL5	FPA3-CL5	FPA3-CI 5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EPA3-CL5	EDA2-CLS	EDA3 CLS

												_		_				_																			_					٠,	_				i	_		_	_
BTEXTMB (ug/L)	6605	6712	6257	6616	6995	5945	6905	9229	5337	4092	4348	4569	2007	0001	2306	5927	6113	5286	5296	3126	(40)	25	20	20	(25)	(Ag	(dz)	(d ₂)	(Ap)	(day)	(duX)	ଷ	ଛ	8 %	8 8	ଷ	. 61	=	8	φ.	<u>.</u>	4	2	2	(du)	- ~	-	(dry)	4	⊽	⊽
TMB (no/L)	246.0	272.0	240.0	245.0	242.0	219.0	224.0	217.0	231.0	216.0	217.0	2140	200	2 6	221.0	246.0	280.0	235.0	243.0	83.7	(AP)	2	2	(d ₁)	200	(d 2)	(dry)	(dry)	(duy)	(dry)	(day)	2.2	2.8	4.9 8.6	3.9	4.1	2.5	1.7	3.5	2.8	2.8	20	-	4.	(d ,		2 -	(dry)	2.0	o. 1.0	×1.0
PSCU (uo/L)	538.0	546.0	525.0	538.0	531.0	442.0	472.0	462.0	470.0	492.0	526.0	589.0	2000	0 0	0.500	/50.0	775.0	648.0	653.0	415.0	(ALD)	200	200	20	2	()	(div	(dry)	(dry)	(dry)	(dry)	5.6	3.9	5.6	4.0	3.9	2.1	1.4	3.2	2.6	3.0	0.[5	0.1	=	(A)	14	0.10	(dry)	17	۸4.0	<1.0
MESIT (ua/L)	163.0	182.0	169.0	173.0	167.0	130.0	141.0	138.0	144.0	152.0	161.0	17.0	9	5 6	0.69	205.0	229.0	182.0	179.0	123.0	(0)	(25)	2 2	2	20	(d)	(g <u>r</u>	(gr	(dry)	(day)	(day)	<u>ن</u> ا	1.6	2.8	2.4	5.0	1.6	0.	2.0	6,	7.7	- ;	o: V	-	(ary)	7 7	v 10	(dry)	v-1.0	د. 0.1	۰. 0.
OXYL (ug/L)	10801	925.0	921.0	1180.0	1440.0	778.0	918.0	111.0	84.3	70.1	51.0	48.6	200	1 0	0.70	25.6	97.9	74	149.0	10.2	(<u>A</u>	2	3	20	25	(d.)	(AZ)	(gry)	(duy)	(dry)	(day)	6.0	2.0	17.0	96	7.8	4.7	2.3	5.3	4.7	3.4	4.	0.	V	(a)	7 7	0.10	(day	<1.0	۰ <u>1</u> ۰	<1.0
MXYL (ug/L)							i				-		450.0	2 0	0.000	2260.0	2370.0	1750.0	1920.0	1700.0		-		+	₩					-	\rightarrow			4.4 8.8	-i	+-					+	_	_+	•					1	i	41.0
PXYL (ua/L)		_				—÷				-	-		•••									÷	•	+	+	•	:			-	-		+	8.5	+				-			1	1				: -		۷. د.	×1.0	410
		1010.0												_				_			(Ap)	200	3 2	25	20	g (d	(<u>d</u>	<u> </u>	(dry)	(dry)	(dry)	0	0 1	3.7		8.	Ξ	0.	2.1	1.7	1.7	5.	o. ⊽	V	(a)	2 5	0	(dry)	o.F>	~1.0	4.0
TOL (ua/L)								_													(dry)	2	(20)	(ds)	20 0	<u> </u>	(Q S)	(dry)	(dry)	(dry)	(du)	0	٠ <u>٠</u> ٠	5.8	3.8	ا. ئ	1.2	0.	0.	0.	4.0	0.10	2.0	0	(a)	2 5	100	(dry)	4.0	4.0	0.5
BZ (ua/L)				. :			_ :		<u>.</u>								i						1_	1_	!	į_	ļ	<u> </u>			_ i			7 0.0	⊥_	L						4	i	4		.i.	L	1	\sqcup	\perp	
S,O,	-		_	_	_				-	_	-		_		_	_	_	_	-			-	<u>.</u>	-	_	-	_	<u>.</u>	_	_	-			Y Y	-	-			-	-	-	-	+	+	÷	-	+	1			┪
SO, (ma/L) (n				اـــــا	Щ.	:			-		-	-	÷-			÷	_÷		-			4_	į.		i	-		-		1		_∔	+	0.9	+-	<u> </u>			-	-	+	+	4	+		-i	+	+	+	+	ᅥ
PO.P			-	_			-		-	•	+		-		+	_					<u>(</u>	2	120	3 2	2	(dry)	(dry)	g)	(duy)	(dry)	(dry)	<0.05	<0.05	0.05	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	50.05	0.00	0.05	90.05	(a)	0.05	<0.05	(dry)	<0.05	<0.05	<0.05
N.H.	, ,	42	<u>. </u>	2.06				_	<u> </u>		÷	_				5 1	÷	-:	66.0			<u>.</u>	1	;	L	<u>. </u>	1	_					. +	50.05	<u> </u>	-	-		-	_	+	+	4	+	÷	-i-	+	-		-	\exists
N-,OV	7 2	<0.05	:				:	-	-	_		<u>.</u>				90.05			\$0.05 											. ;	- 1	•	1	0.00		1						<u>i</u> _		_i	i-	-	<u> </u>	-	 4	\rightarrow	- -⊦
NON									•								<u> </u>				-+	-	,		+	-	-		-		-+			0.05	-			-					-+	-	-		1			1	
CI (I		-	+-		—			<u> </u>	<u> </u>	•	_	-	- i -	+		_	-		-	-	(Ap)	2	(20)	(dg)	25	(dry)	(day)	(day)	(d ₁₇)	(dry)	(day)	24.0	3.7	رن در ۲	0	3.7	24.3	15.5	1.	10.3	13.1	9.5	9.6	10.7	(a)	D 67	0.80	(dny)	7.7	8.3	6.6
		0.9			-			<u> </u>	-	: -	-	 -	-	_	-	•	-		_	_	(Ap)	25	3	(d 2)	2	(day	(dry)	(dry)	(day)	(dry)	(dry)	5.6	6.0	6.1	0	4.	2.9	2.0	<0.5	<0.5	2.6	50.5	0.8	0.5	(G)	5.0	9.5	(dry)	1.5	<0.5	1.5
Fe (sol)	1 4 6	22	2.7	5.6	2.5	2.3	3.0	0.4	3.4	53	32	0	0	0 0	010	80	2.	3.3	23	6.1	20	3	2	25	20	(dry)	(dp.)	(dry)	(dry)	(dry)	(day)	0.5	0.7	1.3	3.7	2.1	3.5	1.2	1.4	9.	1.3	9	9	0.1	g d	9 6	9	(day)	0.1	٥٠. دو.	ç0.
DO (1/0m)	, ,	9	ۍ ک	٥ 	٥. د.	0.1	6.1	6 1.0	6.	0	ž		3 5	9	5 6	8	ç.	0.1	٥	8	Ωb	25	3	2	3	(dy)	(dZ	(day	(dry)	(dry)	(dry)	4.	0	\perp		<u> </u>	0.1	0.1		_ ;	4	_		_i.	1	2 4	4	<u> </u>		3.1	_
Ŧ	5 73	5.74	5.79	5.82	5.77	5.78	6.10	6.16	6.20	6.25	623	98	3 0	. 0	4.0	9.50	6.52	6.42	6.40	90.9	<u>Ş</u>	2	Ş	3 2	20	(dy)	(dry)	(dry)	g G	(day)	(day	6.52	6.69	6.55	6.35	6.37	6.22	6.79	6.60	6.69	999	9.63	985	6.3	2 2	3 8	7.06	g (g	6.92	6.86	6.83
Water Level	NA	¥	Ϋ́	ž	ž	ž	¥	¥	ž	¥	Ą	Δ Z	S N	<u> </u>	₹ :	¥.	ž	ž	ž	¥	¥	Ą	¥2	¥Z	ĄZ	ž	ž	¥	¥	¥	¥	¥	₹	¥ ₹	ž	ž	Ą	Ϋ́	NA	¥.	ž:	ž	¥	ž	4 5	2 2	¥	ž	¥	Y.	ΑN
Date	0/10/07	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	2/21/05	2/6/05	20000	3/22/93	4/3/95	4/17/95	4/28/95	5/12/95	4/21/96	3/30/94	47/04	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/13/94	6/27/94	7/11/94	7/25/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	2/29/94	1/9/95	2/6/95	2/21/95	3/6/95	3/22/95	4/3/95	4/17/95
Well	EDA2-CI S		-	_	_	÷	_	EPA3-CL5		EPA3-CL5		-	+	<u> </u>		÷	+	-	-	EPA3-CL5	EPA4-CL1	-	EPA4-CL1	EPA4-CL1	-	-	+	F	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4CL1	EPAA-CLI	FPA4-CI 1	EPA4-CL1	EPA4-CL1	EPA4-CL1	EPA4-CL1

BTEXTMB	(ug/L)	-	⊽	œ	2	8	4	ဗ္တ	ß	22	8	147	58	202	220	8 8	8 44	2	80	9	2	3 8	3 8	3 3	5 5	3 5	2 8	110	8	20	87	ሄ	3	8	ţ	3 8	8	127		38667	20806	13312	9032	11138	11730	9514	8803	8124	7130	3832
Н	(ug/L)	1.0	4.0	2	<1.0	0.10	1.8	1.8	6.	2.7	2.5	1.1	5.4	9.0	8.3	6,0	4 0	200	0 0	0 0	G. 7	n 0	20.	ψ. c	9	200	0 7	ů, c	2.9	3.5	4.2	2.8	2.6	6.	0 1	9	1.7	8.8		620.0	-		+	488.0		-	_	521.0	475.0	4/1.0
PSCU	(ng/L)	<1.0	4.0	1.7	41.0	0.1	3.1	1.	2.7	30	3.7	7.8	10.4	17.0	15.3	20	- 6	0 0	Z C	200	001	S	0	ز و	4	200	1 0	7.0	30	5.7	6	4.0	3.8	5.8	0 0	23.0	2.7	16.1	1.	1910.0	1700.0	1080	983.0	000	1130.0	964.0	918.0	1060.0	0.00	7. 45 .C
MESIT	(ug/L)	۷. م	0.1	⊽	0.15	۰. د.	6.	1.2	1.2	9.	1.7	2.7	3.5	9.0	5.3	6.	4.0	2	20 0	2.7	2.2	2.7	1.7	23	1.0	N 0	N 0	0 0	3 +	5.0	50	1.5	1.3	0: 6	2 0	7	v V	5.4	:	206.0				3300	\perp	323.0	1		312.0	307.0
Н	<u> </u>	0.1>	۸.10	12																																		19.8		6790.0		20.00	-		2800.0			1990.0	1810.0	1730.0
MXYL	(J/gn)	0.10	0.15	2.3		1	1		. 1	1		: 1	Ι.		- 1			- 1			- 1					_ 1.		-						9.4			_			7410.0						2470.0			2120.0	1480.0
PXYL	(J/gn)	0.0	0.1	4.1	<1.0	3.6	8.4	4.5	15.5	9.7	13.2	19.6	21.7	25.2	24.5	9.5	8.	17.8	æ :	14.8	15.0	12.7	7.5	0.0		1.6	12.6		χ. α.	10.4	110	7.2	6.9	4.2	0.0	0 7	4	17.5				-	_			1380.0			1080.0	803.0
ETBZ	(ng/L)	0.1	×1.0	4.0	0.15	23	2.3	2.5	4.0	5.1	8.9	13.5	15.3	20.7	23.0	9.1	66	15.4	6.2	12.2	8.6	0.0	6.2	83	10.3	=	60	0 1	0 0	4	σ	6.5	6.2	3.8	3.6	4 6	5 6	14.8			_		_		-	444.0	•	283.0	254.0	138.0
ĪŌĮ	(no/r)	0.1	41.0	0.0	-	7.4	11.2	8.9	14.7	16.7	14.5	24.5	23.3	30.7	38.3	12.5	13.7	22.4	-6	21.2	15.6	14.5	7.9	9.8	1.3	1.3	13.4	13.9	. a	9	F	6.2	6.1	3.8	e .	4 0	9 0	22		15400.0	13000.0	200	3.080	1040	1810.0	1100.0	662.0	330.0	168.0	109.0
182 182	(Mg/L)	×1.0	0.10	0.10	0	0	0.10	410	0.1	0.5	٥. د د	v.	٠ <u>۲</u>	<1.0	<u>د</u> 0.1	۲۰۰	0.	٥. د	٥. د	۰. د	~1.0	۰ ۱	4.0	0.0	o: ∇	۷. 0.	V .	V.	o: 0	2 Q	7	, V	o.1.o	<1.0	V.	0.0	- C	0.5		20.7	47.3	9 0	20	⊃ Ç	? ?	0.0	<1.0	< 1.0	1.6	×1.0
0.8	3	9 6	6.5	40.5	Ą	AN	¥	ž	ž	ž	ž	ž	ž	ž	¥	ž	≨ Ž	¥	ž	ž	ž	ž	ž	ž	ž	ž	¥.	≨ ∶	¥ ×	¥ Z	ž	0.5	ž	<0.5	Q.5	0.5	8 6	6.5		¥	≨:	≨ :	¥ S	ž	¥ 2	2 2	ž	ž	ž	ž
-	÷		11.5		0	3	43.8	713	67.6	35.0	24.5	12.9	2.4	1.0	6.2	ž	5.0	0.5	4.	23.2	21.6	3.7	19.3	33	9.0	38	5.	8.6	0.6	2 -	2	66	11.3	10.4	9.7	8.8	20.0	<0.5		0.5	12.7	2.7	19.9	<u>ء</u> و	27.3	17.3	2,9	8.4	5.9	Ϋ́
9.09	-	-!	40.05	+		3 6	50.05	0.05	0.05	40.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	0 6	3 6	000	<0.05	<0.05	<0.05	<0.05	0.0	<0.05	:	<0.05	<0.05	×0.05	<0.05	0.00	0 0 0	60.05	40.05	<0.05	<0.05	<0.05
N. H.	(J/ou/	200	900	<0.05	ģ	2 6	946	200	40.05	40 OS	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.26	0.45	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	000	3 8	000	<0.05	<0.05	<0.05	<0.05	91.0	0.05		2.46	1.87	3.51	0.73	0.05	CO.U5	6.00 0.00 0.00	40.05	<0.05	<0.05	<0.05
2	() () ()	200	000	0.50	ç	2 6	5 5	200	900	5.05	000	<0.05	000	40.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.47	€0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	500	3 6	0.00	0.05	<0.05	<0.05	<0.05	0.10	0.50		<0.05	<0.05	<0.05	0.73	0.05	8 5	6.05	40.05	<0.05	<0.05	<0.05
Z			+	0.50	-	200	2 2	2 0	0.00	5	500	0005	000	0.16	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5.60	<0.05	<0.05	0.10	0.09	<0.05	<0.05	<0.05	<0.05	000	2 6	0 0	0 12	0.15	<0.05	<0.05	0.05	0.55 55.55	3	<0.05	<0.05	<0.05	8	9	<0.05	6 6 6 6	\$ 50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.16	<0.05	<0.05
ŀ	5 (2)	_ <u></u>	2 e	6.0	c	9 0	0 4	2 2	85.5	200	76.8	1010	5 5	10.5	10.0	47.7	3.6	4.5	3.1	9.7	7.8	18.1	16.0	3.3	9.6	=	11.2	6.6	10.0	ю с о	ו כ ו מ		9 6	9.5	9.5	0.0	œ ;	E. 6	ì							76.3			8.8	16.9
	7/04	0	0 6	<0.5	C	6.7		5 6	0.0	2	5 5	9 6	2 0	2 5	2.4	0.5	6.0	0	1.7	5	2.5	3.0	5.6	<0.5	<0.5	2.3	<0.5	<0.5	<0.5	0.5	5	0 0	5 6	1.7	<0.5	1.2	5.0	S 6) /	2.0	2.0	2.	.3	40.5	0.5	0.5	3 5	, c	1.7	3.5
(100)	(ne) a	7	5 5	0,0		7	4 0	ų c	S 4	-	5 0	4.0	4: -	- 7	C	4	0.3	0.3	5.	3.0	0.7	3.5	<u>د.</u>	1.2	2.2	1.5	<u>.</u>	0.5	4.0	0.3	9	9 9	7 6	6	0.	6	٥ -	6. 6	;	15.2	15.7	7.7	22	2.	0.9	1.2	0.0		03	6.0
2	marks and	Ξ-	7	7		, ,	5 6	y (, c	3 0	5	5 6	- 'œ	5 6	5	0	0	6.	6	0.2	0.2	0.0	6	6	0.1	6.	0.1	0.2	0.1	0 0	<u>ر</u>	ž ;					0.4	0 0	9	0.2			0.2	<u> </u>	0.4		5 6			6
	<u>.</u>	0	0 0 0 0	88	8	3 6	0.32	5	9.0	000	3 0	67.0	9 0	2 2 2	9	6.57	6.79	6.50	6.36	6.14	6.33	622	6.68	6.70	69.9	6.57	6.58	6.80	6.82	86.6	9	90.0	2 0	6.88	6.80	6.84	6.82	6.87	60.	5.70	5.93	6.03	6.0	6.44	6.68	6.63	6.61	8 9	6.43	6.53
	Water Level	(301 mon 1)	¥ Z	ž		ž	\$	Š	¥ 4	2 4	5	<u> </u>	2	¥ 4	42	ž	¥	ž	ž	ž	¥	¥	Ą	¥	¥	ž	¥	¥	¥	ž:	ž	₹	¥ ×	₹ ₹	¥	ž	ž	¥ ž	٤	¥	ž	¥	¥	ž	¥	¥:	£ £	Į Ą	. ≨	¥
ı	nare	_	4/28/95	4/21/96		3/30/94	46/1/4	45/17	4/14/94	5 6	4/20/24	4/22/34	1000	5/21/04	10/07/3	6/27/94	7/11/94	7/25/94	8/8/94	8/23/94	76/9/6	76/61/6	10/3/04	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	1/9/95	1/25/95	2/6/95	20/2/2	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	08/12/4	3/30/94	4/1/94	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	2/21/04	6/13/94	6/27/94
	Weil	+	EPA4-CL1	+		+	EPA4-CL2		EPA4-CL2	÷	÷	EPA-CL2		EPA4-CLZ	+	<u></u>	: -		-	FPA4-CL2	FPA4-CI 2	FPA4-CI2	FPA4-CI 2	FPA4-CL2	FPA4-CL2	-	:			EPA4-CL2	EPA4-CL2	EPA4-CL2	EPA4CLZ	FPA4-CL2	EPA4-CL2	EPA4-CL2	EPA4-CL2	EPA4-CL2	EFA4-0-Z	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	FPA4-CL3	EPA4-CL3

															_											_		,		_			_	-		-,-	-	-			-	-	_	_	_		Т	7	_	1		\neg
ВТЕХТИВ	(ng/L)	8729	2908	7718	25366	15583	4/14	6419	3330	4188	3364	3083	2642	2165	2090	1824	1803	1588	1513	1312	1138	1176	1	932	26712		28039	3929	30036	37059	15564	12248	13828	5	7649	7051	17462	33681	33860	34914	42010	33677	3320	715	200	0/0/0	202	1327	1566	1102	90	1093
TMB	(ng/L)	523.0	264.0	554.0	488.0	477.0	5.0	569.0	525.0	553.0	512.0	481.0	455.0	435.0	470.0	452.0	451.0	413.0	400.0	334.0	295.0	284.0	297.0	233.0	652.0		620.0	173.0	706.0	801.0	638.0	528.0	2530	501.0	492.0	4810		678.0		_ 1		_i	220.0	i-	_i_	0.00	450.0	328.0	443.0	309.0	123.0	226.0
PSCU	(ug/L)	938.0	910.0	001.0	927.0	978.0	5	8450	747.0	892.0	790.0	758.0	778.0	734.0	754.0	709.0	683.0	6410	633.0	548.0	478.0	498.0	478.0	382.0	1670.0		2070.0	576.0	2220	2330.0	1580.0	1190.0	1230.0	1030.0	813.0	0.000	795.0	1970.0	2870.0	2870.0	2890.0	3090.0	0.00	0220	1330.0	0.0	0.7.0	448.0	568.0	372.0	154.0	361.0
MESIT	(ug/L)	337.0	373.0	349.0	904.0	315.0	282.0	342.0	327.0	369.0	342.0	292.0	303.0	306.0	338.0	334.0	331.0	350.0	322.0	344.0	294.0	304.0	291.0	267.0	507.0		516.0	216.0	556.0	657.0	220.0	391.0	3330	351.0	310.0	323.0	294.0	473.0	695.0	751.0	710.0	779.0	30.0	20,70	0.724	3000	309.0	302.0	326.0	308.0	234.0	319.0
OXYL	(ug/L)	2520.0	1750.0	2280.0	4320.0	2940.0	0.0201	2030.0	672.0	776.0	522.0	462.0	302.0	150.0	113.0	77.7	2.69	39.8	34.2	18.3	15.6	19.8	15.0	12.5	6070.0		4860.0	389.0	6240.0	7210.0	3820.0	3420.0	3940.0	3400.0	2470.0	2470.0	4130.0	7380.0	6740.0	7180.0	7760.0	7040.0	468.0	0.400	4250.0	183.0	7.202.0	60.5	54.4	26.6	19.0	38.3
	(ug/L)					_			-	—∔		_			-	_		+	+			-		-	6550.0		7760.0		8020.0	\rightarrow	4220.0	3540.0	4120.0	3160.0	2050.0	2230.0	3890.0	9080.0	8240.0	8720.0	8870.0	8090.0	0.960	0.880	4610.0	0.000	2000	1 06	83.9	41.2	33.2	76.5
××			-+	947.0					-	_									•	-				-	0.008				3240.0	3930.0	2060.0	740.0	2070.0	0.0091	1110.0	1130.0	1730.0	3990.0	3840.0	4170.0	3670.0	3610.0	348.0	320.0	2000	00,00	5 5	46.1	49.4	25.9	15.9	1.4
TBZ F				_		839.0			-				_						-			10.5	8.0	9.9	0.070																									11.6		16.9
ا ا	(ng/L) (t	_	9.0	_		5530.0 8			-+	_				- -			•		-	-		7.1	Ξ	9.6	6380.0 2		- 1				- 1	- 1		1	- 1		-i			_		_		_				\rightarrow		6.3	_	11.3
H		=	35	-	÷		- i -	×1.0	-					-	⊢	•	·	+	+			0	0	<u> </u>	_		→					\rightarrow	+	-+	-	-+-	+	-	-		+	-+		-	-			-		5		-7
8	(ug/L	V	√.	⊽	17.4	€.	-	⊽	V	⊽	٧	v	. ▽	⊽	⊽	⊽	⊽	₽	⊽	V	⊽	⊽	~	⊽	=		=:	=	8	6	9	m	-	v	ν.		-	-	_	+	-	+	+	+	+	1	V '	_	L		_	4
8,0,	(mg/L)	ž	ž	Ž.	ž	ž	ž	ž	ž	ž	¥	Ž	Ž	ž	ž	ž	ž	3.4	ž	3.9	4.6	3.1	2.7	3.2	<0.5		ž	ž	≨.	ž	≨:	ž	≨ ∶	≨ :	≨ :	¥ ¥	₹ 2	ž	ž	ž	ž	≨ :	ž :	ž :	4	+	Ž	\$ \$	ž	₹	₹	ž
°SO	(mg/L)	=	5.7	1.8	<u>.</u> ت	6.	e:	4.6	3.2	<0.5	0.8	7.3	2.1	0.7	.6	3.6	12	40	5.0	0.8	4.	0	6.0	1.6	0		4.9	<0.5	0.8	9	23.6	47.9	-			8 6	+	9.	9.0	7.3	6.0	-	7	+	+	÷	+	+	-	7.6		8.6
PQ-P	(mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	6 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	000	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	5 5	40.05 10.05	0.05	0.0	50.00	<0.05	<0.05	<0.05	<0.05
N-TN	(mg/L)	<0.05	0.50	0.92	7.49	4.49	0.07	<0.05	0.32	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.75		0.28		0.47		0.63	_4.				_						\rightarrow	-+	-				+	<0.05	- 1	<0.05	<0.05
N-,ON	(mg/L)	<0.05	<0.05	<0.05	40.05	<0.05	Q.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.50		<0.05	<0.05	<0.05	40.05 50.05	0.13	<0.05	9.05	<0.05	<0.05	0.05	50.50					-	<0.05	8.05	9.05	5.0	0.00	20.00	40.05	\$0.05	<0.05	<0.05
ų- ON	(mg/L)	<0.05	0.14	0.24	<0.05	<0.05	90.0	<0.05	0.09	0.08	<0.05	<0.05	<0.05	900	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	<0.05	<0.05	<0.05	<0.05	0.50		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.16	50.05	<0.05	<0.05	<0.05	<0.05	<0.05	90.0	0.07	0.10	90.0	5.5	5 5	90.0	<0.05	<0.05	<0.05
0	(mg/L)	5.5	10.5	22.6	10.3	8.8	6.0	12.1	5.7	4.8	9.1	12.2	9.7	10.0	7.0	9.6	7.3	8	7.8	7.7	0.6	9.7	8.7	10.1	16.7	1 5	<0.5	- 3	- 1	5.6		i	- :	i		5		-1		\perp	3.0		-	10.8	- 6	20 0	5	2.0	9.3	7.8	œ.	8.4
ă	(mg/L)	0.8	1.7	2.2	2.5	333	2.0	3.0	<0.5	<0.5	<u>6</u> .	<0.5	<0.5	6 05	<0.5	<0.5	<0.5	0.5	40.5	-	40.5	4.	1.6	0.5	<0.5		<0.5	2.0	2.1	32	<0.5	0.5	<0.5	<0.5	0.	4.	200	2.4	3.8	4.6	1.5	3.3	 	2.2	0.5	9.5	200	0.0	0.5	<0.5	<0.5	<0.5
Fe (sol)	(mg/L)	0.5	4	1 .	11.2	10.5	0.	1.2	0.7	4.	0.8	0.5	0.2	Ş	ç	0	Ŷ	ç	8	0	0	0,	9	8	6		22	1.7	2.5	5.4	7.6	2.7	4.	9.0	0.2	0.3	0	00	4.	6.6	2.8	7.6	9	89	5.		<u>-</u> ;	ני	0.5	6 2.	¢0.1	90.1
8	(mg/L)	0.1	٥. 1.	ô.1	6.	٥. 1.	0.	-	& 	0.1	6	6.	0	-	0	0	Ž	03	6	0.3	0	0.2	0	0.1	50		0.2	6 -	6.	0.2	2	0.2	0.2	0.3	8	8	3 6	<u>6</u>	6.1	6. 1.	6. L.	_	i_	_	_	6.	_	5 5	<u> </u>			ž
핆		6.50	6.19	6.00	5.82	6.17	6.22	6.65	6.56	6.72	6.58	6.58	6.73	6 73	8	66.9	26.9	6	6	6.85	67	689	9	88	5.84		5.90	6.24	5.78	5.79	6.27	9.90	6.44	6.17	6.15	6.65	24	6.55	5.74	5.67	5.78	2.90	6.27	9.56	6.41	6.52	6.43	0. A	8.2	6.78	6.87	6.95
Water Level	_	i				:	¥	¥	¥	ž	ž	¥	¥	¥	¥ Z	¥	¥	Ą	Ą	¥	Ą	Ž	Ą	¥	ž		¥	¥ Z	¥	¥	Y.	¥	¥	AN	¥	¥ S	ξ Δ	ž	Ą	¥	¥	¥	¥	¥	¥.	≨ :	¥ :	Z Z	5 ₹	ž	AA	¥
Date	_	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	11/30/94	12/12/94	12/29/94	70/0/	1/25/95	2/6/05	2/21/05	3/6/95	3/22/95	4/3/95	4/17/95	4/28/95	5/12/95	4/21/96		3/30/94	46/7/4	4/11/94	4/14/94	4/18/94	4/21/94	4/25/94	5/2/94	5/16/94	5/31/94	6/27/04	7/11/94	7/25/94	8/8/94	8/23/94	9/6/94	9/19/94	10/3/94	10/17/94	10/31/94	11/11/94	17/30/94	12/29/94	1/9/95	1/25/95	2/6/95
Well	_		_	EPA4-CL3	EPA4-CL3	EPA4-CL3	EPA4-CL3	-	-	EPA4-CL3	EPA4-CL3			FPA4-Cl3	FPA4-CL3	FPA4-CL3	FPA4-Cl3	EPA4-C13	FPA4-Cl3	FPA4-CI3	EPA4-Cl3	FPA4-CI3	FPA4-CI3	FPA4-CL3	EPA4-CL3		EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	FPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4	FPA4-CL4	EPA4-CL4	EPA4-CL4	EPA4-CL4

			l	ı		ļ			:				ŀ	1	Ę.	CT07	XX	MXVI	IXXO	MESIT	PSCII	TMB	BTEXTMB
Well	Date	-	표		Fe (sol)			N-ON	Y ON	Z-, T.	1 20	700	ည် ကို ရိ	79		(1/0/1)	(uc/L)	(no/L)	1	(1/00)	(ug/L)	_	(Jgr)
+	19790	(3) For E	-⊢	7	1	(110/L)	1 C 8	200	5 5	3.5	-			×1.0	3.5	13.5	39.0	73.1	26.6	268.0	237.0	219.0	880
EPA4-CL4	CR/12/2	2 2	98	4 5	? 5	_	2 00	000	0.05	<0.05	Ť		٠.,	0.	1.6	9.3	13.7	26.5	9.6	288.0	236.0	189.0	775
+	3/00/5	Q A	67.8	5	9		7.7	0.07	<0.05	<0.05	 	4.3	├-	٠. م	3.3	8.7	9.0	20.5	9.1	182.0	97.6	62.5	33
	4/3/95	Ą	6.74	0.1	6.		9.1	<0.05	<0.05	<0.05	<0.05	7.6	<0.5	۰ 0	۸ <u>۱۰</u>	7.4	9.1	18.6	6.5	210.0	118.0	81.5	451
-	4/17/95	¥	69.9	5.0	6.		8.6	<0.05	40.05	<0.05	<0.05	ь. 6.	4	0.5	=	6.9	7.3	16.5	20.0	0.141	200	0.5	- 10
<u> </u>	4/28/95	Ą	6.84 48	6 1.	\$ 0.1	1.6	9.6	<0.05	\$0.05	<0.05	<0.05	3.0	+	0.6	0,0	7.0		6.0	4 6	118.0	50.0	2 5	3 8
EPA4-CL4	5/12/95	ΑN	6.76	₽	٥ 1.	<0.5	10.7	<0.05	9.05	<0.05	<0.05	-	-	0.0	2.5	5.00	4	7.7	2.5	2 5	2000	2470	4539
EPA4-CL4	4/21/96	¥	5.97	-	- -	<0.5	22.7	0.50	0.50	0.77	<0.05	40.5	8.5	9.	0.20	0.5	2	6300.U	2.1.52	3	2000	2	3
	10,000		8	C	00		1.4	200	900	81.0	50.05	905	×	13.7	85.0	31.9	40.8	182.0	50.4	48.4	90.3	19.2	295
EPA4-CL5	3/30/94	Y S	20.00) (7 6	1.7	40	000	900	0.15	0.05	0.	ž	9.3	84.6	38.1	56.5	161.0	70.4	8.9	136.0	19.3	584
EPA4-CL3	101174	¥ 2	60.60	5 6	ο α	: =	2.2	<0.05	<0.05	0.26	<0.05	<0.5	¥	19.9	1110.0	296.0	516.0	1270.0	883.0	149.0	505.0	119.0	4868
EPA4-CL5	10/1/4	2 2	5.02	0	0.0	- 6	2.0	<0.05	<0.05	0.35	<0.05	6.	ž	12.1	68.0	36.7	73.9	320.0	60.7	75.8	217.0	37.5	805
EPA4-CL3	4/18/94	Y Y	5.75	1 0	36	3.9	6.4	<0.05	<0.05	<0.05	<0.05	2.5	ž	63.9	8170.0	1860.0	2830.0	6190.0	4980.0	287.0	979.0	395.0	25755
FPA4-CI 5	4/21/94	Ž	6.33	0.2	7.6	<0.5	43.4	2.46	1.10	1.09	<0.05	36.3	¥	14.8	3490.0	1880.0	3050.0	6320.0	5540.0	670.0	2200.0	795.0	23360
EPA4-CL5	4/25/94	¥	6.40	6. L	6.7	<0.5	63.3	2	0.17	0.54	<0.05	19.1	ž	4.9	562.0	839.0	1890.0	3740.0	3850.0	524.0	1510.0	288.0	3308
EPA4-CL5	5/2/94	L	5.81	0.3	1.5	<0.5	89.5	<0.05	<0.05	<0.05	<0.05	43.6	ž	٥.5	97.5	314.0	933.0	1630.0	22000	315.0	0.21	467.0	4413
EPA4-CL5	5/16/94		5.68	0.1	0.3	<0.5	57.4	<0.05	<0.05	<0.05	<0.05	10.3	≨ :	4.0	16.2	177.0	- L	0.090.0	1570.0	242.0	920.0	4000	4735
EPA4-CL5	5/31/94		6.10	8	60	4.	11.2	0.0	\$0.05	<0.05	<0.05	8.5	Ž:	5.3	0.15	0.42	0.69	0.750	2000	0000	423.0	456.0	1905
EPA4-CL5	6/13/94	NA NA	6.01	0.1	0.8	2.4	8.7	<0.05	90.05	<0.05	900	8.7	§ S	20 0	8.18	2.6		- 1	21100		738.0	456.0	989
EPA4-CL5	6/27/94	Ϋ́	5.45	6 1.	0.7	5.9	10.1	4005	40.05	0.09	900	ž.	≦ :	2 0	4.53.4	2750			_		1800	6130	31363
EPA4-CL5	7/11/94	Š	6.58	6.	200	2.6	13.9	<0.05	8.05	CO.05	0.00	ψ. ς.	Y Z	ם ט ט	4860.0	1380.0	2260.0	4620.0	3650.0	496.0	1750.0	529.0	19550
EPA4-CL5	1/25/94	₹	5.80	9	2 6	7.7	7.7	000	20.00	2 2	3 6	5 6	Į.	43.0	8050.0	2000	3170.0		-	L.	2170.0	805.0	29214
EPA4-CL5	8/8/94	¥ :	5.03	5 9	2.5) T	ט ע	3 5	3.5	0.0	900	0.7	Ž	6.5	3450.0	976.0	1480.0		-	1	769.0	312.0	12345
EPA4-CL3	0/5/04	Y AV	20.00	-	200	- 8	7	<0.05	<0.05	0.32	<0.05	=	¥	2.7	968.0	437.0	854.0				466.0	243.0	6207
EPA4-CI 5	4/9/97/9	Y X	6.27	8	2.0	3.6	10.9	90.0	<0.05	0.18	<0.05	9.0	ž	۰. 1.0	110.0	109.0			\rightarrow		764.0	576.0	3379
FPA4-CI 5	10/3/94	ž	6.14	0	8.	2.4	11.3	0.07	<0.05	<0.05	<0.05	5.1	ž	<1.0	66	0.40				_1	623.0	2250	3264
EPA4-CL5	10/17/94	¥	6.49	6	27	<0.5	12.0	0.11	<0.05	<0.05	90.0	0.7	ž	٠ <u>.</u>	4050.0	2180.0			-	0.00	0.00	260.0	0690
EPA4-CL5	10/31/94		6.15	٥ -	2.3	<0.5	3.6	0.19	0.20	3.41	<0.05	10.6	≨:	5.4	434.0	702.0		_ `			2010	456.0	1546
EPA4-CL5	11/11/94		6.20	6 		2.5	10.3	<0.05	<0.05	40.05	<0.05	2.6	≨ :	0.0	4.	30.0			+	4	860.0	473.0	2471
EPA4-CL5	11/30/94		6.38	8	9.0	<0.5	10.3	<0.05	40.05	<0.05	6.00 5.00	0.0	¥ 2	4 0	5 6	100		-+-	+-	343.0	465.0	414.0	1400
EPA4-CL5	12/12/94		6.40	ଟ୍ଟ	3.7	S. C	C. 5	0.00	8 6	0.00	20.00	0 10	Y Y	7 4	2	21.4		-	+-	ļ.,,	163.0	173.0	805
EPA4-CL5	12/29/94	₹ S	6.55	5 9	- C	0.0	0.6	0.00		000	2005	8.7	ž	4.	V-1.0	10.3	12.3	22.6	6.9	257.0	136.0	138.0	585
EPA4-CL3	1/2/95		200		9	40.5	50	<0.05	,	<0.05	<0.05	7.0	ž	0.	۲ 0	16.1		\rightarrow			188.0	205.0	768
FPA4-CL5	2/6/95	_	6.79	i.	8	<0.5	8.3	<0.05	i —	<0.05	<0.05	7.7	ž	2.1	<1.0	15.7		-+	_	\rightarrow	156.0	153.0	615
EPA4-CL5	2/21/95		6.80	1	6.	<0.5	8.8	<0.05	 i	<0.05	<0.05	8.0	<0.5	6	- -	22.0					0.487	2//2	950
EPA4-CL5	3/6/95		6.72		6	<0.5	7.9	<0.05		<0.05	<0.05	9.9	Ž į3	0 5	0: 0 V: 1	9 6			_	-	138.0	128.0	55.
EPA4-CL5	3/22/95		6.75	- 1	0. 1.	.3	0.6	0.07	9.05	40.05	0.00	4.1	200	7	2 5	12.7		_	-	+	84.5	84.6	419
EPA4-CL5	4/3/95	¥:	9.0		0 0	0.5	9.0	0.00	8 6	S 5	5.55		22	0	0.0	8.9			-	+-	87.7	61.8	365
EPA4-CL5	4/1//95	1	000	4	÷	ų	9 0	200	2 5	5 6	5		2.5	9	7	9.7	0.4	13.7		├	87.1	135.0	458
EPA4-CL5	4/28/95	1	0 0	8 6	Ş Ç	S 6	10.7	300	0.05	0000	<0.05	90	2.6	0.	<1.0	0.9	2.5	8.8	Ш	133.0	52.6	34.8	539
EPA4-CL5	90/10/4	1	6.02	-	9	0.5	3.8	0.50	0.50	0.39	<0.05	<0.5	9.5	2.5	93.3	8 .	96.1	346.0	120.0	<u>%</u>	195.0	43.8	1016
	11200	_		1	<u> </u>																		
Nitrate Feed	3/30/94	ž	ž	ž	ž	ž	<u> </u>	ž	-		ž	ž	ž	ž	¥	ž	≨ :	≨ :	₹ :	₹ (₹ .	ž,	√ ₹
Nitrate Feed	477/94	_	8.13	_	6 1	60.2	:	10.60		40.05	<0.05	9.7	ž:	0.0	0.0	0.0	o. •	0.0) V	2 7	2 5	y 7	7 7
Nitrate Feed	4/11/94	ž	7.80		6 1.	40.0	+	7.79	<0.05	-	0.05	9.2	₹:	2.5	0.0	2.5	2 4	Ç 7	7	7 7	2 5	7 7	7
Nitrate Feed	4/14/94		7.29		6	51.4		9.71	40.05	i_	90.05	2.6	Y Y	7 7	1.0	2 C	7	2 0	7 0	7 0	0	0.15	-
Nitrate Feed	-		7.62	- 1	0	50.7	+	54.5	S S	0.00	0.00	0 0	2	7 7	7 0	7 7	2 0	10	0 5	4.0	200	۸ 0.1	⊽
Nitrate Feed	-	¥ :	7.61	5.0	0 6	50.6	ο α α	9.0	8 8		40.05 0.05	9.7	5 ₹	410	, to	0.	o. 10	6.1	4.0	<1.0	o.1.o	<1.0	⊽
Nitrate Feed	4/25/94		7.33	_		2.5	-1	2.0	77.77	17.77	12:27											İ	

Well	Date	Water Level	Hd		\vdash	┝╾╅	⊢	1	N- ₂ ON	H		°S	S,O,	BZ	TOL	ETBZ	PXYL	MXYL	OXAL	MESIT	PSCU	_	втехтмв
	1	8		$\overline{}$	<u> </u>	$\overline{}$		_		i	-:			(ug/L)	(ug/L)	(Jgn)	(Light)	(ng/L)	(Lgh	(J/gn)	(Jgn)	(Lgn)	(ug/L)
Nitrate Feed	5/2/94		_	1	Ç 1.	8.2	-	-+		<0.05	<u>.</u>	0.0	¥.	٠ ٠	0. V	0.1.	0.5	ر د د	v.	۰. د	۷. د.٥	0.0	⊽
Nitrate Feed	5/16/94			+	+	4	4			_	<0.05	9.3	≨	V V	۸. م.0	۷.0 داره	41.0	0.0	۷. د.0	۰. م	۰. د.	٥. د.	⊽
Nitrate Feed	5/31/94	¥	_	0.3	_	<0.5	8.0	9.88	<0.05	_	<0.05	9.4	¥	4.0 V	0.	V-	0.0	۰. د	<1.0	٥.	۷. د. د.	0.0	۸.0 د
Nitrate Feed	6/13/94	¥	_	+	+	-+	-	+	_	 	+	6.9	+	0.	۷- 0	0.10	0.	٠ <u>٠</u>	V-1.0	v-1.0	V-	0.	0.
Nitrate Feed	6/27/94	ž	_	+	Ť	$\dot{-}$	-	9.53	-	1	<0.05	ž.	-	0.0	0.0	0.0	V .	۰ <u>۱</u> ۰	o. [٠ ١ ٠	V.0	0.0	0.0
Nitrate Feed	13/2	Ž	_	+	7	_i	$\dot{+}$	-+		4	+	10.0	+	0.0	0.0	0.0	0.10	0.[2	0.0	0.0	0.0	0.10	0.[
Nitrate Feed	452/	₹:	-	+	+	_i_	+	-+-	+		500	0.0	÷	0.10	⊃!¢	o! c	2 0	0.0	0.0	0.0) V) V	<u>_</u>
Nitrate Feed	4888	₹ :	+	4:	+			+	_	+	+	2 .	+	0.5	0.	2	2	0.5	0.5	0.5	0.5	2.5	V 3
Nifrate Feed	8/23/94	≨ :	_;	\$	1	-	-+-		-	¥ S	¥ c	¥ ;	-	≨ .	٤,	£ .	₹ .	Ž,	₹ .	¥ ,	₹ ;	₹ .	ξ,
Nitrate Feed	6/9/6	¥:	4	0.8	+	- !	+		Q0.05	90.05	÷	0.1	-	0.0	0.0	0.0	0, 6	0.	0,0	0.0	0.0	0,0	v.
Nitrate Feed	9/19/94	₹	_	0.4	+	<0.5		18.80		<0.05	<0.05		₹ :	0 0	0.0	Ç.	4.0	o.i.	0. V	۷. د د د د	2.0	0.5	⊽
Nifrate Feed	10/3/94	¥:	4	4.0		_	-+	_:		<0.05	Q0.02	9.7	+	0.10	0.10	0.10	0.15	0.15	0.15	0.10	0.0	0.0	⊽
Nitrate Feed	10/17/94	¥	4	\dashv		-	+		<0.05	0.57	40.05	0.0	+	۰ ۱ ۰	۰. د.	0.0	v. 0.	0. V	~	۰ 0	V-	۰. د	⊽
Nitrate Feed	10/31/94	Ą	_	4	_	_	_	_		<0.05	<0.05	8.6	_	۰. 0.	۰. د	0.1	0.6	۸ 0.	o.1.o	٥. م	٥.	4.0	₹
Nitrate Feed	11/11/94	¥	-	\dashv					<0.05	<0.05	<0.05	10.2	+	<1.0	0.15	0,10	4.0	۰. د	4.0	4.0	~1.0	0.5	⊽
Nitrate Feed	11/30/94	¥	i	0.	7		+		-	- !	<0.05	10.1	+	0.10	0	۰. د.	۷. ای	۷- -	4.0	۰. 0.	0.P	۰. 0.	⊽
Nitrate Feed	12/12/94	ž	_	0.7	\dashv	_	-			_	<0.05	10.3	≨	0.5	4.0	۷. 0.	41.0	41.0	4.0	د. 1.0	<u>د</u> 0:0	٥. ٥	٧
Nitrate Feed	12/29/94	ž		0.5	寸	<0.5	9.0	- 1	\rightarrow		40.05	9.8	≨	0.5	۰. 1.0	۰. م	۰ <u>.</u>	<u>د</u> 0.	۰. 0.	~1.0	٥. د	0.0	⊽
Nitrate Feed	1/9/95	¥	6.98	0.8	٥ <u>.</u>	<0.5	-		-	<0.05	<0.05	9.1	ž	<1.0	<u>د</u> 0.	0. 1.0	٥. م	۰. 0.	<1.0	د. 1.0	0.0	۰. 0.	⊽
Nitrate Feed	1/25/95	Ϋ́	_	4.0	i	<0.5	-			_:	<0.05	10.4	₹	<1.0	41.0	0.1	۰1°	0.15	<1.0	~1.0	۸.0	۰1.0	⊽
Nitrate Feed	2/6/95	¥		¥	٥. 1.	<0.5	8.8	-		<0.05	<0.05	10.1	¥	~1.0	<1.0	0.	۰ <u>۲</u>	0.10	۰ <u>۲</u> ۰	۰. 0.	×1.0	41.0	⊽
Nitrate Feed	2/21/95	ΑΝ	7.57	9.0	<0.1	<0.5	-	-	_	<0.05	<0.05	9.3	<0.5	<1.0	4.0	۸ 0.	۸ 1.0	د <u>1</u> 0	د. 10	د. 0.	۰ <u>1</u> .0	0. 0.	7
Nitrate Feed	3/6/95	ΑN		0.7	<0.1	<0.5		17.30		<0.05	<0.05	9.3	¥	4.0	۸. 0.	٥. ٥.	م 1.0	م 0.5	<u>م</u>	٠ <u>٠</u>	o. 1.0	<u>م</u> 1.0	⊽
Nitrate Feed	3/22/95	Ϋ́	7.67	9.0	۰0.1 د	<0.5		17.70	<0.05	0.39	<0.05	9.7	6 .5	۰. 0.	4.0	0.10	4.0	<u>م</u>	٠ <u>٠</u>	٠ 1 .0	4.0	۸.5	⊽
Nitrate Feed	4/3/95	Ϋ́	Щ	0.5	60.1	<0.5	H	20.50		0.29	<0.05	10.3	40.5	٠. 0.	4.0	×1.0	41.0	۰۲ م	د. 1.0	41.0	41.0	o.1.o	⊽
Nitrate Feed	4/17/95	ΝA		0.5	٥ <u>.</u>	6 0.5	9.1	21.60	_	<0.05	<0.05	6.6	8	4.0	٠ <u>.</u>	۸.1٥	۸1.0	۰. م	<u>م</u> 1.0	41.0	41.0	<1.0	⊽
Nitrate Feed	4/28/95	Ϋ́	7.52	0.5	6.	<0.5	\dashv	12.90		<0.05	<0.05	9.4	0.5	41.0	0.0	۰. م	۲۰	×1.0	×1.0	<1.0	4.0	41.0	⊽
Nitrate Feed	5/12/95	¥	7.27	9.0	60.1	<0.5	12.4	17.20	<0.05	<0.05	<0.05	10.4	9.5	0.₽	<1.0	۸ <u>۰</u>	~1.0	<1.0	٥.٢	<1.0	×1.0	۸ <u>.</u>	⊽
			4									1											
Control Feed	3/30/94	¥	_	¥	П	ž	\rightarrow	≨	\rightarrow	≨	ž	ž	≨	¥	¥	₹	ž	≨	ž	≨	ž	≨	⊽
Control Feed	47794	₹	_	2.3	\neg	<0.5	93.7	40.05		\$0.05	<0.05	8.7	≨	0 V	۰ ۲	0. V	٠ <u>٠</u>	0. V	v 0.	0. V	٠ ٠	٥. د	⊽
Control Feed	4/11/94	¥	-	3.9		<0.5	-+	<0.05		<0.05	<0.05	8.3	≨	٥. د	0.12	۷. د.0	۰. د.	0. ₹	٥ د	٥. د ٥	ō.	0. V	⊽
Control Feed	4/14/94	ΑN	_	2.2	6.1	<0.5		<0.05	-+	<0.05	<0.05	7.8	ž	۲٠0 د ۲۰0	4.0	<1.0	۰.1 م	۰ <u>۲</u>	۰. م	د. 1.0	4 .0	4.0	⊽
Control Feed	4/18/94	Ϋ́	_	2.2		<0.5	+	<0.05		<0.05	<0.05	7.7	¥	۰. م	-	<1.0	۲.0 م	4.0	٠ <u>۲</u>	۰. م.0	4.0	۷. ۲.	-
Control Feed	4/21/94	¥	_	2.4		<0.5	-+	40.05	_	<0.05	\$0.02	7.9	ĕ	۷. د.0	٠ <u>٠</u>	۰. د	v.	٥. د	٥. م	۷ <u>.</u>	o. V	۸. 0.	⊽
Control Feed	4/25/94	¥.	4	3.0	7	0.5	0.0	<0.05	9.05	9.05	4 0.05	9.5	≨ :	Q. V	٠. د د د	o. V	o. V	7	o. 9	۰ د د د	٠ ن	Ç.	₽.
Control Feed	+	¥:	٠	80.0	Ī	Q.5	+	0.05		50.00	0.05	0.0	ž :	0 0	D .	o 0	5 S	> C	2 S	0.5	0.0	0.0	₽,
Control Feed	46.00 E	≨ \$	2 5	, c	Т	0.0	+	20.02	-	00.00	20.02	- ·	¥ :	0.5	0 5) V	2 5	2 4	0.0	0.0	2 0	2 4	~
Control Food	+	\$ 2	+	4	9 6	5 5	1	5 6	-	3 5	3 6	7.4	2 2	7	2 5	7	7 7	7 7	7	2 5	7	7 7	7
Control Food	+	Y Y	4	5 6	Ţ	5 6	+	300	-	3 5	5 5	t d	42	7 7	7	7	1 5	7	7	2 5	7 7	2 5	7
Control Feed	+-	Ą	\downarrow	4	T	0.5	6	<0.05	+	0.05	<0.05	8.6	ž	0.0	4.0	0.10	0.10	0.10	0.10	41.0	0.15	41.0	\
Control Feed	٠.	¥	┞-	0.3		<0.5	\vdash	<0.05	+	<0.05	<0.05	9.1	¥	41.0	41.0	<1.0	4.0	V. 0.10	<1.0	41.0	4.0	41.0	⊽
Control Feed	┿	¥	7.60	0.3	ç 0.1	<0.5	9.4	<0.05	-	<0.05	<0.05	9.2	¥	4.0	6.	٠. 1.0	v. 1.0	د 1.0	۰ <u>۲</u> ۰	د. 1.0	41.0	<1.0	⊽
Control Feed	8/23/94	¥	ž	ž	ž	ž	¥	AN	ž	¥	ΑA	¥	¥	¥	Ϋ́	¥	Ϋ́	ž	ž	ΑA	¥	AN	Ϋ́
Control Feed	<u> </u>		-	0.5	<0.1	<0.5	8.9	<0.05	<0.05	<0.05	<0.05	9.6	Ψ	<1.0	۲- 0.	۰. م	۰. 0.	<1.0	٠1.0	<1.0	<1.0	o.1>	⊽
Control Feed	9/19/94	¥	7.42	0.5	<0.1	<0.5	11.8	0.21	<0.05	<0.05	<0.05	9.7	¥	<1.0	41.0	۲.0 م	<1.0	۸ 0.	۲. م	<u>م</u> 1.0	<1.0	<1.0	⊽
Control Feed	10/3/94	¥	7.59	9.0	<0.1	0.7	10.0	<0.05	<0.05	<0.05	<0.05	9.5	¥	٥.	<u>م</u>	o. ∇	۰ 10	۸ 0.	<u>د</u> 1.0	۰ 0.	۸.0	<1.0	₽
Control Feed	_		7.33	0.4	6.1	<0.5	9.1	0.13	<0.05	<0.05	<0.05	9.5	¥	۲٠°	Q.5	v.	۰. م	۰ 0	۸. 0.	0. 0.	4.0	<1.0	⊽
Control Feed	-		7.51	4.0	6.1	<0.5	8.2	9.10	40.05	<0.05	<0.05	9.5	ž	0.1	Q.10	۰. د	o. V	<u>د</u>	0. V	0. 0.	۰. 0.	۷ ۲ ۰	⊽
Control Feed			7.48	4.0	٥. 1.	<0.5	9.4	<0.05	<0.05	<0.05	<0.05	9.6	ž	0.10	4.0	۰. 0.	٥. ده	۰. 0.	0. 0.	٥. م	Q. V	0. V	⊽
Control Feed	_	¥.	7.50	4.0	6.1	<0.5	9.5	<0.05	<0.05	<0.05	<0.05	9.7	ž	×1.0	<1.0	۲٠ د ۲۰	v.	0.1×	o.1>	۸.0 م	<1.0	Q.F≥	⊽
Control Feed	12/12/94	╛	7.43	4.0	6	<0.5	9.7	40.05	<0.05	40.05	<0.05	9.7	¥	4.0	×1.0	v-10	v. 10	0. 0.	0.5	4.0	×1.0	9	V

11.544	2	I love I setol	7	2	Fo (en)	à	2	Z-CN	N-ON	N-II	POP	SO.	80	28	TOL	ETBZ	PXYL	MXYL	OXAL	MESIT	PSCU	Æ	BTEXTMB
Ä	eg C		+	7-		-		+-	+	(mg/L)	(mo/L)	(mg/L)	(mg/L)	(ng/L)	(ng/L)	(J/gv)	(Jgn)	(ug/L)	(ng/L)	(ug/L)	(JQ)	<u></u> 8	(ng/L)
1000	40,000,04	AIA OU	7 48) 2		005		<0.05	<0.05	92	ž	0.10	0.10	4.0	4.0	<1.0	<1.0	<1.0	v. 0.	٥. د د	⊽
Control Food		S N	1	90	5	50.5	89	<0.05	<0.05	40.05	40.05	8.6	ž	41.0	۸. م	4.0	6.1 0	<1.0	<1.0	<1.0	۰ 0.10	د.0 م	⊽
Control Feed	7	Y AZ	2 2	40	6	<0.5	1.7	<0.05	900	<0.05	<0.05	8.6	≨	0.10	0.6	<1.0	41.0	√1.0	o.1>	<1.0	۰ <u>۲</u>	٥. د.٥	⊽
Control Feed		Ą.	7.54	¥	60.1	40.5	-	<0.05	<0.05	<0.05	<0.05	10.1	ž	4.0 -	~1 .0	4.0	<1.0	<1.0	4.0	0.5	۰. م	o. 1.0	⊽
Control Feed	2/21/95	ž	7.56	9.0	6.	<0.5	7.7	<0.05	<0.05	<0.05	<0.05	9.0	90.5	<1.0	<1.0	۲۰0	0.10	~1.0	o.1>	O. -	V	o. V	⊽.
Control Feed	3/6/95	ž	7.55	0.5	6	0.7	8.5	<0.05	40.05	<0.05	<0.05	10.0	¥	۸ 0.	<u>م</u>	٠ <u>٠</u>	٥. ٥.	0. V	٠ ١ ٥	0:	O.	0.	V
Control Feed	302/05	¥	7.65	0.5	6.	<0.5	7.7	0.12	90.05	<0.05	<0.05	9.1	40.5	۲- 0.1	د.0	٠ <u>1</u> .0	٥. د	۰. 0.	o. V-	_	V-	v V-0.	V
Control Feed		Ą	7.74	40	6	<0.5	7.5	0.05	9.05	<0.05	<0.05	9.6	6 .5	۷.1	<1.0	۸. 0.	٥. م	<1.0	۰. م		0. V	0. V	٧
Control Feed	1	ĄZ	7 53	0.4	9	90.5	7.8	<0.05	40.05	<0.05	<0.05	9.1	40.5	6.1 0	<1.0	1.0	۰. م	٠ <u>1</u> .0	۰ <u>۲</u>	۰ 0	٥. ٥.	٥. ٥.	⊽
Control Feed	1	ΨN	7.53	40	6	<0.5	11.5	<0.05	40.05	<0.05	<0.05	1.6	40.5	<1.0	. <1.0	<u>د</u> 0.0	4.0	<u>م</u>	۰ <u>1</u> 0	۰. 0	۸. م	0. 0.	⊽
Control Feed	1_	ž	7.35	1.0	6	<0.5	11.7	<0.05	<0.05	<0.05	<0.05	9.1	40.5	~1.0	<1.0	41.0	41.0	۸۲۰	4.0	٥. 0.	٥. ٥.	5.0	⊽
																						,	
Pre-C Water	4/8/4	¥	2.6	6.	¥	20.5	6.7	90.0	<0.05	<0.05	<0.05	ž	≨	0.10	۰. 1.0	۰. 0.	o.1.0	۰. م	0. V	0. V	0. V	۰. د	¥.
						_																	
Doct C Mator	7/0/07	AN	7.74	5	Ą	60.5	7.0	200	90.05	40.05	<0.05	ž	ž	۰ 0	<1.0	<1.0	<u>م</u> 1.0	<1.0	<1.0	۰ او	o.[>	2	Ą