МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи № 7 на тему:

ЧИСЕЛЬНІ МЕТОДИ РОЗВ'ЯЗУВАННЯ СИСТЕМ НЕЛІНІЙНИХ РІВНЯНЬ

Мета: ознайомлення на практиці з методом ітерацій та методом Ньютона розв'язування систем нелінійних рівнянь.

Достатньо велика кількість реальних задач інженерії програмного забезпечення зводиться до розв'язування системи нелінійних рівнянь. Це одна з найважчих задач в математичному забезпеченні програмних систем. Для розв'язування систем нелінійних рівнянь використовують наближені методи, основними з яких ϵ метод простої ітерації та метод Ньютона.

8.1. Метод простої ітерації

Розглянемо систему двох нелінійних рівнянь з двома невідомими

$$\begin{cases}
f_1(x, y) = 0, \\
f_2(x, y) = 0.
\end{cases}$$
(8.1)

Розв'язком цієї системи є пара чисел (x_*, y_*) , яка перетворює систему рівнянь (8.1) в тотожність (рівність).

Припустимо, що (x_0, y_0) - наближений розв'язок системи (8.1), яку перетворимо до такого вигляду

$$\begin{cases} x = \varphi_1(x, y), \\ y = \varphi_2(x, y), \end{cases}$$
(8.2)

де φ_1 , φ_2 - неперервно-диференційовані функції за змінними x та y .

Розглянемо ітераційний процес

$$\begin{cases}
x_{n+1} = \varphi_1(x_n, y_n), \\
y_{n+1} = \varphi_2(x_n, y_n),
\end{cases}$$
 $n = 1, 2, ...$
(8.3)

який породжує числові послідовності $\{x_n\}$, $\{y_n\}$.

Якщо ітераційний процес (8.3) збігається, тобто існують границі

$$x_* = \lim_{n \to \infty} x_n, \quad y_* = \lim_{n \to \infty} y_n, \tag{8.4}$$

то, використовуючи вирази (8.4), систему рівнянь (8.3) перепишемо у такому вигляді

$$\begin{cases} x_* = \varphi_1(x_*, y_*), \\ y_* = \varphi_2(x_*, y_*), \end{cases}$$
(8.5)

тобто x_* , y_* є розв'язком системи (8.2), а також еквівалентної їй системи (8.1).

Теорема. Нехай у деякій замкнутій області D $\{a \le x \le A, b \le y \le B\}$ існує єдина пара коренів $x = x_*$, $y = y_*$ системи (8.1), причому

- 1) функції $\varphi_1(x,y)$, $\varphi_2(x,y)$ визначені та неперервно-диференційовані в області D ;
- 2) початкове наближення (x_0, y_0) і всі наступні наближення (x_n, y_n) (n = 1, 2, ...) належать області D;
- 3) в області D виконуються нерівності

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial x} \right| \le q_1 < 1 , \qquad \left| \frac{\partial \varphi_1}{\partial y} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| \le q_2 < 1. \tag{8.6}$$

Тоді процес послідовних наближень (8.3) збігається до точних розв'язків системи рівнянь (8.2).

Зауваження. Умови (8.6) можна замінити аналогічними

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| \le q_1^* < 1, \qquad \left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| \le q_2^* < 1. \tag{8.7}$$

Оцінку похибки n-го наближення розв'язку визначають з нерівності:

$$|x_* - x_n| + |y_* - y_n| \le \frac{M}{1 - M} (|x_n - x_{n-1}| + |y_n - y_{n-1}|),$$

де M ϵ більшим з чисел q_1 , q_2 або q_1^* , q_2^* у співвідношеннях (8.6) або (8.7). Збіжність вважають доброю, якщо M < 1/2.

8.2. Метод Ньютона

Це найрозповсюдженіший метод розв'язування систем нелінійних рівнянь. Він забезпечує кращу збіжність, ніж метод простої ітерації.

Нехай (x_0,y_0) - наближений розв'язок системи (8.1), а Δ_x , Δ_y - деякі поправки до точного розв'язку.

Розглянемо систему рівнянь

$$\begin{cases}
f_1(x + \Delta_x, y + \Delta_y) = 0, \\
f_2(x + \Delta_x, y + \Delta_y) = 0.
\end{cases}$$
(8.8)

Розкладемо функції f_1 і f_2 в ряд Тейлора, обмежившись лінійними членами розкладу відносно Δ_x , Δ_y

$$\begin{cases} f_1(x_0, y_0) + \frac{\partial f_1}{\partial x} \Delta_x + \frac{\partial f_1}{\partial y} \Delta_y = 0, \\ f_2(x_0, y_0) + \frac{\partial f_2}{\partial x} \Delta_x + \frac{\partial f_2}{\partial y} \Delta_y = 0. \end{cases}$$
(8.9)

Запишемо якобіан або визначник матриці Якобі, складеної з частинних похідних функцій f_1 і f_2 в деякій точці

$$\Delta(x_0, y_0) = \begin{vmatrix} \frac{\partial f_1(x_0, y_0)}{\partial x} & \frac{\partial f_1(x_0, y_0)}{\partial y} \\ \frac{\partial f_2(x_0, y_0)}{\partial x} & \frac{\partial f_2(x_0, y_0)}{\partial y} \end{vmatrix} \neq 0,$$
 (8.10)

а поправки Δ_x і Δ_y визначимо за правилом Крамера із системи (8.9)

$$\Delta_{x} = -\frac{1}{\Delta(x_0, y_0)} \begin{vmatrix} f_1(x_0, y_0) & \frac{\partial f_1(x_0, y_0)}{\partial y} \\ f_2(x_0, y_0) & \frac{\partial f_2(x_0, y_0)}{\partial y} \end{vmatrix}, \tag{8.11}$$

$$\Delta_{y} = -\frac{1}{\Delta(x_0, y_0)} \begin{vmatrix} \frac{\partial f_1(x_0, y_0)}{\partial x} & f_1(x_0, y_0) \\ \frac{\partial f_2(x_0, y_0)}{\partial x} & f_2(x_0, y_0) \end{vmatrix}.$$
(8.12)

Наступне наближення розв'язку системи отримаємо у вигляді

$$\begin{cases} x_{n+1} = x_n + \Delta_x, \\ y_{n+1} = y_n + \Delta_y, \end{cases}$$
 $n = 0, 1, 2, ...$ (8.13)

Зауваження. Метод простої ітерації, який застосовують для знаходження розв'язку одного нелінійного рівняння або системи двох нелінійних рівнянь, має перший порядок збіжності (лінійну збіжність), а метод Ньютона — другий порядок збіжності (квадратичну збіжність).

Приклад 8.1. Методом простої ітерації розв'язати систему нелінійних рівнянь

$$\begin{cases} x^2 + y^2 = 1, \\ \sin(x + y) = 1,5x - 0,2. \end{cases}$$

Побудуємо графіки двох функцій $f_1(x,y) = 1 - x^2 - y^2$ та $f_2(x,y) = \sin(x+y) - 1.5x + 0.2$.

 $Puc.~8.1.~ \Gamma paфіки функцій <math>f_1$ і f_2

3 графіка на рис. 8.1 наближено визначаємо координати точки (x_0, y_0) перетину кривих. Зобразимо систему рівнянь у вигляді

$$x = \varphi_1(x, y) = \pm \sqrt{1 - y^2},$$

 $y = \varphi_2(x, y) = arc \sin(1.5x - 0.2) - x.$

Перевіримо умови збіжності (8.6) або (8.7).

$$\frac{\partial \varphi_1}{\partial x} = \frac{1,5}{\sqrt{1 - (1,5x - 0,2)}} - 1, \quad \frac{\partial \varphi_1}{\partial y} = 0, \quad \frac{\partial \varphi_2}{\partial x} = 0, \quad \frac{\partial \varphi_2}{\partial x} = \frac{-y}{\pm \sqrt{1 - y^2}}.$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = \left| \frac{1,5}{\sqrt{1 - (1,5x - 0,2)}} - 1 \right| < 1, \qquad \left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| = \frac{|y|}{|\sqrt{1 - y^2}|} < 1.$$

Будуємо такий ітераційний процес:

$$\begin{cases} x_{n+1} = \pm \sqrt{1 - y_n^2}, \\ y_{n+1} = arc \sin(1.5x_n - 0.2) - x_n, & n = 0.1.2, \dots \end{cases}$$

Обчислення здійснюємо доти, поки не досягнемо заданої точності ε шуканого розв'язку, тобто повинна виконуватися умова

$$|x_{n+1} - x_n| + |y_{n+1} - y_n| < \varepsilon.$$
 (8.14)

Приклад 8.3. Розв'язати методом Ньютона з точністю $\varepsilon = 0{,}0001$ систему нелінійних рівнянь:

$$\begin{cases} x_1 + 2x_2 + x_3 + 4x_4 = 20,700 \\ x_1^2 + 2x_1x_2 + x_4^3 = 15,880 \\ x_1^3 + x_3^2 + x_4 = 21,218 \\ 3x_2 + x_3x_4 = 7,900 \end{cases}$$
(8.15)

Розв'язування. Сформуємо матрицю Якобі, знайшовши частинні похідні для кожного рівняння системи в початковій точці $x_1 = x_2 = x_3 = x_4 = 1,0$

$$J = \begin{pmatrix} 1 & 2 & 1 & 4 \\ 2x_1 + 2x_2 & 2x_1 & 0 & 3x_4^2 \\ 3x_1^2 & 0 & 2x_3 & 1 \\ 0 & 3 & x_4 & x_3 \end{pmatrix}.$$

Для знаходження розв'язку $X = (x_1, x_2, x_3, x_4)$ системи (8.15) ітераційно застосуємо метод Гауса для розв'язування системи лінійних алгебраїчних рівнянь

$$\begin{pmatrix} 1 & 2 & 1 & 4 \\ 2x_1 + 2x_2 & 2x_1 & 0 & 3x_4^2 \\ 3x_1^2 & 0 & 2x_3 & 1 \\ 0 & 3 & x_4 & x_3 \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \end{pmatrix} = \begin{pmatrix} -x_1 - 2x_2 - x_3 - 4x_4 + 20,700 \\ -x_1^2 - 2x_1x_2 - x_4^3 + 15,880 \\ -x_1^3 - x_3^2 - x_4 + 21,218 \\ -3x_2 - x_3x_4 + 7,900 \end{pmatrix}$$

відносно вектора поправок $\Delta X = (\Delta x_1, \Delta x_2, \Delta x_3, \Delta x_4)$ з заданою точністю. Результати обчислень помістимо в таблицю 8.1.

Таблиия 8.1

Номер	v	r	r	r
ітерації	\mathcal{X}_1	X_2	x_3	X_4
0	1,0000	1,0000	1,0000	1,0000
1	2,75037	4,6763	7,8958	0,1753
2	1,3448	5,2971	5,9494	0,7029
3	1,4775	3,8437	4,3419	1,7983
4	1,5427	6,2434	4,1204	0,6376
5	1,2364	5,7274	4,3436	0,9163
6	1,2024	5,5986	4,2995	1,0002
7	1,2000	5,6000	4,3000	1,0000
8	1,2000	5,6000	4,3000	1,0000

Розв'язок системи (8.15) буде X = (1,2; 5,6; 4,3; 1,0).

Варіанти завдань

Розв'язати систему нелінійних рівнянь з точністю $\varepsilon = 10^{-3}$ методом ітерацій та методом Ньютона.

1.
$$\begin{cases} \sin(x+1) - y = 1,2\\ 2x + \cos y = 2 \end{cases}$$

2.
$$\begin{cases} \cos(x-1) + y = 0.5 \\ x - \cos y = 3 \end{cases}$$

3.
$$\begin{cases} \sin x + 2y = 2 \\ \cos(y - 1) + x = 0.7 \end{cases}$$

4.
$$\begin{cases} \cos x + y = 1,5 \\ 2x - \sin(y - 0,5) = 1 \end{cases}$$

5.
$$\begin{cases} \sin(x+0.5) - y = 1 \\ \cos(y-2) + x = 0 \end{cases}$$

6.
$$\begin{cases} \cos(x+0.5) + y = 0.8 \\ \sin y - 2x = 1.6 \end{cases}$$

7.
$$\begin{cases} \sin(x-1) = 1, 3 - y \\ x - \sin(y+1) = 0, 8 \end{cases}$$

8.
$$\begin{cases} 2y - \cos(x+1) = 0 \\ x + \sin y = -0.4 \end{cases}$$

9.
$$\begin{cases} \cos(x+0.5) - y = 2\\ \sin y - 2x = 1 \end{cases}$$

10.
$$\begin{cases} \sin(x+2) - y = 1,5\\ x + \cos(y-2) = 0,5 \end{cases}$$

11.
$$\begin{cases} \sin(y+1) - x = 1,2\\ 2y + \cos x = 2 \end{cases}$$

12.
$$\begin{cases} \cos(y-1) + x = 0.5 \\ y - \cos x = 3 \end{cases}$$

13.
$$\begin{cases} \sin y + 2x = 2\\ \cos(x-1) + y = 0.7 \end{cases}$$

14.
$$\begin{cases} \cos y + x = 1,5\\ 2y - \sin(x - 0,5) = 1 \end{cases}$$

15.
$$\begin{cases} \sin(y+0.5) - x = 1\\ \cos(x-2) + y = 0 \end{cases}$$

16.
$$\begin{cases} \cos(y+0.5) + x = 0.8\\ \sin x - 2y = 1.6 \end{cases}$$

17.
$$\begin{cases} \sin(y-1) + x = 1,3\\ y - \sin(x+1) = 0,8 \end{cases}$$

18.
$$\begin{cases} 2x - \cos(y+1) = 0 \\ y + \sin x = -0.4 \end{cases}$$

19.
$$\begin{cases} \cos(y+0.5) - x = 1.5\\ \sin x - 2y = 1 \end{cases}$$

20.
$$\begin{cases} \sin(y+2) - x = 1,5 \\ y + \cos(x-2) = 0,5 \end{cases}$$

21.
$$\begin{cases} \sin(x+1) - y = 1 \\ 2x + \cos y = 2 \end{cases}$$

24.
$$\begin{cases} \cos x + y = 1,2\\ 2x - \sin(y - 0,5) = 2 \end{cases}$$

22.
$$\begin{cases} \cos(x-1) + y = 0.8 \\ x - \cos y = 2 \end{cases}$$

25.
$$\begin{cases} \sin(x+0.5) - y = 1.2\\ \cos(y-2) + x = 0 \end{cases}$$

23.
$$\begin{cases} \sin x + 2y = 1,6 \\ \cos(y-1) + x = 1 \end{cases}$$

Контрольні запитання

- 1. Пояснити суть методу простої ітерації розв'язування систем нелінійних рівнянь.
- 2. Сформулювати достатню умову збіжності ітераційного процесу методу простої ітерації.
- 3. На чому ґрунтується метод Ньютона розв'язування системи нелінійних рівнянь?
- 4. Пояснити суть методу Ньютона розв'язування системи нелінійних рівнянь.
- 5. Записати загальний вигляд матриці Якобі, яку використовують в методі Ньютона для розв'язування систем нелінійних рівнянь.
- 6. Записати умову завершення ітераційного процесу в методі Ньютона.