

AVALIAÇÃO DE DESEMPENHO DO ALGORITMO DE EVOLUÇÃO DIFERENCIAL ASSOCIADO AO DESIGN CONSTRUTAL PARA A OTIMIZAÇÃO DE UMA CAVIDADE EM FORMA DE DUPLO-T

G. V. Gonzales, L. A. Isoldi, L. A. O. Rocha, E. D. dos Santos e A. J. Silva Neto

Programa de Pós-Graduação em Modelagem Computacional - ${\rm FURG}$

- Introdução
 - Motivação
 - Objetivos
 - Breve Estado da Arte
- 2 Modelagem Matemática e Numérica
- Otimização
 - Design Construtal
 - Configuração dos Algoritmos
- 4 Resultados
- 6 Conclusão
- 6 Referências
- Agradecimentos

MOTIVAÇÃO

Com a miniaturização dos circuitos eletrônicos e desenvolvimento de dispositivos cada vez mais compactos, técnicas tradicionais de troca térmica por convecção forçada não são mais suportadas. Alternativas apontam para cavidades ou caminhos com material de alta condutibilidade.

OBJETIVOS

- Otimizar parcialmente uma cavidade em forma de Duplo-T;
- Comparar os resultados de diferentes versões do algoritmo de Evolução Diferencial (ED)
- Analisar diferentes parâmetros do algoritmo ED;
- Avaliar estatisticamente os resultados da reprodução dos efeitos dos graus de liberdade sobre a geometria ótima e a temperatura máxima mínima;
- Recomendar a configuração de parâmetros mais adequada ao problema de otimização;

BREVE ESTADO DA ARTE

- Cavidade em formato de "C"e "T"em Biserni et. al. (2004).
- Cavidade em forma de "H"em Biserni et. al. (2007).
- Cavidade em forma de "Y"em (Lorenzini et. al. (2011).
- Cavidade em forma de "Y"aplicação do Algoritmo Genético em Lorenzini et. al.(2014).
- Comparação entre aplicação do SA com GA na otimização da cavidade em forma de Y em Gonzales et. al.(2015a).
- Otimização parcial até 3 graus de liberdade da cavidade em duplo-T em Gonzales et. al. (2015b).

MODELAGEM MATEMÁTICA E NUMÉRICA

Figura: Domínio Computacional da Cavidade em Forma de Duplo-T.

MODELAGEM MATEMÁTICA E NUMÉRICA

Hipóteses Simplificativas:

- 1. Regime Permanente
- 2. Geração uniforme de calor
- 3. Condutividade térmica constante
- 4. Domínio bidimensional

$$\frac{\partial}{\partial x} \left(k \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial \theta}{\partial z} \right) + q^{""} = \rho C_p \frac{\partial \theta}{\partial t} \tag{1}$$

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{q'''}{k} = 0 \tag{2}$$

MODELAGEM MATEMÁTICA E NUMÉRICA

Restrições:

$$A = HL \tag{3}$$

$$A_c = A_0 + 2A_1 + 2A_2 \tag{4}$$

$$\phi_c = A_c/A \tag{5}$$

MODELAGEM MATEMÁTICA E NUMÉRICA

Problema na forma adimensional:

$$\tilde{x}, \tilde{y}, \tilde{H}_0, \tilde{H}_1, \tilde{H}_2, \tilde{L}_0, \tilde{L}_1, \tilde{L}_2, \tilde{H}, \tilde{L}, \tilde{S}_1 = \frac{x, y, H_0, H_1, H_2, L_0, L_1, L_2, H, L, S_1}{A^{1/2}}$$
(6)

$$\frac{\partial^2 \tilde{\theta}}{\partial \tilde{x}^2} + \frac{\partial^2 \tilde{\theta}}{\partial \tilde{y}^2} + 1 = 0 \tag{7}$$

$$\tilde{\theta}_{max} = \frac{\theta_{max} - \theta_{min}}{q''' \cdot \frac{A}{L}} \tag{8}$$

MODELAGEM MATEMÁTICA E NUMÉRICA

A função representada pela Eq. 8 é resolvida numericamente através da resolução da Eq. 7 para a determinação dos os campos de temperatura em todo o domínio computacional para diferentes configurações de $(H,\,L,\,H_0,\,L_0,\,H_1,\,L_1,\,H_2,\,L_2$ e $S_1)$ e calculando o $\tilde{\theta}_{max}$ para minimizar o seu valor através da variação da configuração geométrica.

A solução numérica é dada pela aplicação do método de Elementos Finitos (FEM), baseado em elementos triangulares, desenvolvido no ambiente MATLAB®, com o pacote PDE (partial-differential-equations) toolbox.

A malha utilizada é não-uniforme em ambos eixos x e y, e varia de uma geometria para outra. O tamanho é de 80649 mil elementos.

OTIMIZAÇÃO

A metodologia de otimização aplicada neste trabalho utiliza-se do método Constructal Design associado as meta-heurísticas Differential Evolution (DE) e Simulated Annealing (SA).

- Constructal Design: para definição dos objetivos, restrições, Graus de Liberdade (GL) e espaço de busca.
- Algoritmos de Otimização: neste trabalho são executadas diferentes versões do algoritmo ED com variações nos parâmetros do algoritmo.
- Avaliação dos Resultados: São comparados os valores de média e desvio padrão encontrados entre 30 execuções de cada algoritmo.

CONSTRUCTAL DESIGN

Definição dos Graus de Liberdade e Restrições:

- Nove variáveis $(H, L, H_0, L_0, H_1, L_1, H_2, L_2 \in S_1)$;
- Quatro restrições $(A, A_c, A_1 \in A_2)$;

$$\phi_c = A_c/A = \tilde{H}_0 \tilde{L}_0 + 2\phi_1 + 2\phi_2 \tag{9}$$

$$\phi_1 = \tilde{H}_1 \tilde{L}_1 \tag{10}$$

$$\phi_2 = \tilde{H}_2 \tilde{L}_2 \tag{11}$$

• Temos cinco Graus de liberdade $(H/L, H_0/L_0, H_1/L_1, H_2/L_2$ e $S_1/H_0)$ para o fechamento das equações;

CONSTRUCTAL DESIGN

- Durante o processo de otimização, foram mantidos constantes os valores das restrições ($\phi_c = 0.1, \phi_1 = \phi_2 = 0.015$)
- Para a otimização de 4 GLs, o grau de liberdade H/L foi variado entre 0.3 = < H/L <= 30;
- Sendo otimizados os graus de liberdade: H_0/L_0 , H_1/L_1 , H_2/L_2 e S_1/H_0 ;

CONFIGURAÇÃO DOS ALGORITMOS

Tabela: Configurações das Diferentes Versões do Algoritmo ED

Parâmetros	ED1	ED2	ED3	ED4
Amplificação F	1.5	2.0	1.5	2.0
${\it Cruzamento}$	0.7	0.9	0.7	0.9
Mutação	$\mathrm{rand}/1/\mathrm{bin}$	$\mathrm{rand}/1/\mathrm{bin}$	$\mathrm{best}/2/\mathrm{bin}$	$\mathrm{best/2/bin}$

CONFIGURAÇÃO DOS ALGORITMOS

Tabela: Combinações dos Parâmetros de Tamanho da População (NP) e Número de Gerações (G)

	(G)	Total de Iterações
5	10	50
10	10	100
10	15	150
15	20	300

Figura: Média e Desvio Padrão do Efeito de H/L sobre $(\theta_{max})_{4m}$ registrados por diferentes versões do algoritmo ED com diferentes combinações de população e gerações: a)ED1 b)ED2

Figura: Média e Desvio Padrão do Efeito de H/L sobre $(\tilde{\theta}_{max})_{4m}$ registrados por diferentes versões do algoritmo ED com diferentes combinações de população e gerações: c)ED3 d)ED4

Figura: Média e Desvio Padrão do Efeito de H/L sobre $(\tilde{\theta}_{max})_{4m}$ para $H/L \leq 0.5$, registrados por diferentes versões do algoritmo ED com diferentes combinações de população e gerações: a)NP = 5, G = 10 b)NP = 10, G = 10.

Figura: Média e Desvio Padrão do Efeito de H/L sobre $(\tilde{\theta}_{max})_{4m}$ para $H/L \leqslant 0.5$, registrados por diferentes versões do algoritmo ED com diferentes combinações de população e gerações: c) $NP=10,\,G=15$ d) $NP=15,\,G=20.$

Figura: Média e Desvio Padrão do Efeito de H/L sobre a geometria ótima, registrados por diferentes versões do algoritmo ED com limite de 150 iterações: b) Efeito de H/L sobre $(H_2/L_2)_{3o}$, c) Efeito de H/L sobre $(H_1/L_1)_{2o}$.

CONCLUSÃO

- Dentre os algoritmos pesquisados e as configurações de parâmetros avaliadas, as versões ED2 e ED3 apresentaram um desempenho inferior as versões do ED1 e ED4.
- Melhores resultados e menor desvio padrão para os algoritmos com os parâmetros de cruzamento (CR) de 0.9 e fator de amplificação (F) de 1.5;
- Portanto, para o problema de interesse, esses são os parâmetros recomendados para o algoritmo ED, pois foram aqueles que reproduziram de maneira mais precisa as curvas de efeito dos graus de liberdade sobre a geometria ótima e performance térmica do problema.

REFERÊNCIAS

A. Bejan, Constructal-theory Network of Conducting Path for Cooling a Heat Generating Volume. *Int. J. Heat Mass Transfer*, vol. 40, n. 4, pp.799-816, 1996.

C. Biserni, L. A. O. Rocha, A. Bejan, Inverted Fins: Geometric Optimization of the Intrusion Into a Conducting Wall. *Int. J. Heat and Mass Transfer*, 47, pp. 2577-2586, 2004.

G. V. Gonzales, E. D. Dos Santos, L. A. Isoldi, E. da S. D. Estrada, L. A. O. Rocha, Constructal Design of Isothermal Double-T Shaped Cavity By Means of Simulated Annealing. In *Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering*, Rio de Janeiro, RJ, Brazil, 2015.

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, M. P., Optimization by Simulated Annealing. *Science*, New Series., v. 220, No 4598, pp 671-680, 1983.

REFERÊNCIAS

G. Lorenzini, C. Biserni, E. da S. D. Estrada, E. D. Dos Santos, L. A. Isoldi, L. A. O. Rocha, Genetic Algorithm Applied to Geometric Optimization of Isothermal Y-Shaped Cavities. *Journal of Electronic Packaging*, vol 136, p. 031011-031011-9, 2014.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines. *The Journal of Chemical Physics.*, v 21, p 1088-1092, 1953.

R. Storn, K. Price, Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. *Journal of Global Optimization.*, v 11, p 341-359, 1997.

AGRADECIMENTOS

