Algorytm podnoszenia do potęgi modulo n.

Chcemy obliczyć $a^b \pmod{n}$.

- 1. Zapisujemy liczbę b w systemie przy podstawie 2. Niech $b=(b_kb_{k-1}\dots b_1b_0)_2$.
- 2. Przyjmujemy m=1. Wykonujemy następujące obliczenia:

$$t_0 = a, \quad m = \left\{ \begin{array}{ll} m \cdot t_0 (\bmod \ n) & \text{jeżeli} \quad b_0 = 1 \\ m & \text{jeżeli} \quad b_0 = 0 \end{array} \right.$$

$$t_1 = t_0^2 (\bmod \ n), \quad m = \left\{ \begin{array}{ll} m \cdot t_1 (\bmod \ n) & \text{jeżeli} \quad b_1 = 1 \\ m & \text{jeżeli} \quad b_1 = 0 \end{array} \right.$$

$$\vdots$$

$$t_k = t_{k-1}^2 (\bmod \ n), \quad m = \left\{ \begin{array}{ll} m \cdot t_k (\bmod \ n) & \text{jeżeli} \quad b_k = 1 \\ m & \text{jeżeli} \quad b_k = 0 \end{array} \right.$$

3. $a^b \pmod{n} = m$.

Przykład. Niech a = 110, b = 101, n = 221. Wtedy $b = (1100101)_2$, m = 1

$$t_0 = 110, \quad m = 1 \cdot 110 \equiv 110 \pmod{221}$$
 $t_1 = 110^2 \equiv 166 \pmod{221}, \quad m = 110$
 $t_2 = 166^2 \equiv 152 \pmod{221}, \quad m = 110 \cdot 152 \equiv 145 \pmod{221}$
 $t_3 = 152^2 \equiv 120 \pmod{221}, \quad m = 145$
 $t_4 = 120^2 \equiv 35 \pmod{221}, \quad m = 145$
 $t_5 = 35^2 \equiv 120 \pmod{221}, \quad m = 145 \cdot 120 \equiv 162 \pmod{221}$
 $t_6 = 120^2 \equiv 35 \pmod{221}, \quad m = 162 \cdot 35 \equiv 145 \pmod{221}$

stad $a^b \equiv 145 \pmod{221}$.

Zadanie A Oblicz $2^{1000000} \pmod{238}$.