AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Minimum & Maximum Velocity

Aircraft Performance

$$L = W$$

Range = How <u>FAR</u> can an aircraft fly?

Endurance = How LONG can an aircraft fly?

 V_{max} = How <u>FAST</u> can an airplane fly?

 V_{min} = How <u>SLOW</u> can an airplane fly?

Ceiling = How <u>HIGH</u> can an airplane fly?

Flight Envelope

Min Speed Video

How FAST can an airplane fly in steady, level flight?

In steady, level flight, the maximum velocity of the airplane is determined by the high-speed intersection of the thrust required and the thrust available curves

$$T_{available} = D$$

Minimum Velocity

$$T = D$$

$$L = W$$

How SLOW can an airplane fly in steady, level flight?

In steady, level flight, the minimum velocity of the airplane is determined by the low-speed intersection of the thrust required and the thrust available curves

$$T_{available} = D$$

 $\frac{T}{W}$ ~ Thrust to Weight Ratio

$$C_D = C_{D_0} + K C_L^2 \sim Drag Polar$$

$$T_A = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right)$$
 ~ Thrust Available (jet)

Min & Max Velocity

Min & Max Velocity

$$T_A = D = q S (C_{D_0} + K C_L^2)$$

$$V_{max} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) + \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho \ C_{D_0}} \right]^{1/2}$$

$$V_{min} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) - \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho \ C_{D_0}} \right]^{1/2}$$

$$\frac{T}{W} \uparrow \qquad V_{\text{max}} \uparrow$$

$$\frac{W}{S} \uparrow \qquad V_{\text{max}} \uparrow$$

$$C_{D_0} \text{ or } K \uparrow \qquad V_{\text{max}} \downarrow$$

$$V_{max} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) + \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho \ C_{D_0}} \right]^{1/2}$$

Thrust Required

1300

0.1023

$$\begin{split} &C_D = C_{D_0} + K \, C_L \\ &\text{Gulfstream IV} \\ &\text{twin-turbofan biz jet:} \\ &C_{D_0} = 0.0150 \quad K = 0.08 \\ &W = 73,000 \text{ lb} \\ &h = 30,000 \text{ ft} \\ \end{split}$$

CD0	0.0150	Wt	73,000	lb	
K	0.08	Alt	30,000	ft	
		QMS	439.9		
		а	994.67	ft/sec	
		S	950	sq ft	
Vel (fps)	CL	CD	D (lb)		
300	1.9203	0.3100	11785		
350	1.4108	0.1742	9015		
400	1.0801	0.1083	7322		
450	0.8535	0.0733	6267		
500	0.6913	0.0532	5621		
550	0.5713	0.0411	5253		
600	0.4801	0.0334	5085		
650	0.4091	0.0284	5066		
700	0.3527	0.0250	5164		
750	0.3072	0.0226	5358		
800	0.2700	0.0208	5632		
850	0.2392	0.0196	5975		
900	0.2134	0.0186	6378		
950	0.1915	0.0179	6837		
1000	0.1728	0.0174	7345		
1050	0.1568	0.0170	7901		
1100	0.1428	0.0166	8501		
1150	0.1307	0.0164	9142		
1200	0.1200	0.0162	9825		
1250	0.1106	0.0160	10546	UNIVERS	
1200	0.4022	0.0450	11205		

0.0158

11305

$$\frac{T}{W} = \frac{15,357 \text{ lb}}{73,000 \text{ lb}} = 0.2104$$

$$\frac{W}{S} = \frac{73,000 \text{ lb}}{950 \text{ ft2}} = 76.84 \text{ lb/ft}^2$$

$$C_{D_0} = 0.0150$$
 $K = 0.08$

$$V_{max} = \left[\frac{\left(\frac{T}{W}\right)\left(\frac{W}{S}\right) + \left(\frac{W}{S}\right)\sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho C_{D_0}} \right]^{1/2} = 1,535 \text{ ft/sec}$$

Minimum Velocity

$$\frac{T}{W} = \frac{15,357 \text{ lb}}{73,000 \text{ lb}} = 0.2104$$

$$\frac{W}{S} = \frac{73,000 \text{ lb}}{950 \text{ ft}^2} = 76.84 \text{ lb/ft}^2$$

$$C_{D_0} = 0.0150$$
 $K = 0.08$

$$V_{min} = \left[\frac{\left(\frac{T}{W}\right) \left(\frac{W}{S}\right) - \left(\frac{W}{S}\right) \sqrt{\left(\frac{T}{W}\right)^2 - 4C_{D_0}K}}{\rho C_{D_0}} \right]^{1/2} = 260 \text{ ft/sec}$$

Minimum Velocity Constraints

We already know about Minimum Velocity where T=D, what else would be considered a minimum velocity?

- 1. Velocity for maximum lift ($C_{L_{max}}$) or stall speed (V_{stall})
- 2. Buffet limitations
- 3. Stability and control constraints

$$C_{L} = \frac{W}{qS} = \frac{W}{\frac{1}{2} \rho V^{2} S}$$

$$C_{L_{max}} = \frac{W}{\frac{1}{2} \rho V_{stall}^2 S} \longrightarrow V_{stall} = \sqrt{\frac{2}{\rho} \frac{W}{S} \frac{1}{C_{L_{max}}}}$$

Maximum Velocity Constraints

We already know about Maximum Velocity where T=D, what else would be considered a maximum velocity?

- 1. Velocity for maximum dynamic pressure (q_{max})
- 2. Velocity for maximum Mach number (M_{max})
- 3. Stability and control constraints

At any altitude, an aircraft's maximum velocity is constrained to the lesser of these two speeds:

$$V_{max} = \sqrt{rac{2}{
ho}} \; q_{max}$$
 - or - $V_{max} = M_{max} \; a$

Homework Assignment

HW #10 – Min & Max Velocity (due by 11:59 pm ET on Monday) Reading – Chapters 5.5, 5.8 - 5.9

HW Help Session Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #10 Assignment with instructions, tips, and checklist
HW #10 Template for data table in Excel

Homework

Plotting Charts

Weight	900	lb		QMS	1481.4	lb/ft^2				
Altitude	0	ft		а	1116.45	ft/sec				
				rho	0.00237688	slugs/ft^3				
	,									
Mach	Vel	CL	CD0	CDL	CD	D	CL/CD	EF	CL0.5/CD	RF
	(ft/sec)					(lb)		(hr)		(NM)
0.05	55.82	6.4291	0.0200	2.5627	2.5827	361.5	2.4893	1.91	0.9818	63.33
0.06	66.99	4.4647	0.0200	1.2359	1.2559	253.2	3.5551	2.73	1.6825	108.53
0.07	78.15	3.2802	0.0200	0.6671	0.6871	188.5	4.7740	3.67	2.6359	170.03
							N			

x axis

y axis

Add a column for Thrust

Questions?