Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Problem class 1^a

Nuisance parameters, the Normal model, and the Normal linear regression with unknown variance

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

^aAuthor: Georgios P. Karagiannis.

Nuisance parameters

Exercise 1. $(\star\star)$ Assume observable quantities $y=(y_1,...,y_n)$ forming the available data set of size n. Assume that <-story the observations are drawn i.i.d. from a sampling distribution which is judged to be in the Normal parametric family of distributions $N(\mu,\sigma^2)$ with unknown mean μ and variance σ^2 . We are interested in learning μ and the next outcome $z=y_{n+1}$. We do not care about σ^2 .

Assume You specify a Bayesian model

<-set-up

$$\begin{cases} y_i|\mu,\sigma^2 \sim \mathrm{N}(\mu,\sigma^2), \text{ for all } i=1,...,n & \text{, Statistical model} \\ \mu|\sigma^2 \sim \mathrm{N}(\mu_0,\sigma^2\frac{1}{\tau_0}) & \text{, prior} \\ \sigma^2 \sim \mathrm{IG}(a_0,k_0) & \text{, prior} \end{cases}$$

1. Show that

$$\sum_{i=1}^{n} (y_i - \theta)^2 = n(\bar{y} - \theta)^2 + ns^2,$$

where $s^2 = \frac{1}{2} \sum_{i=1}^n (y_i - \bar{y})^2$.

2. Show that the joint posterior distribution $\Pi(\mu, \sigma^2|y)$ is such as

$$\mu|y, \sigma^2 \sim N(\mu_n, \sigma^2 \frac{1}{\tau_n})$$

 $\sigma^2|y \sim IG(a_n, k_n)$

with

$$\mu_n = \frac{n\bar{y} + \tau_0\mu_0}{n + \tau_0};$$
 $\tau_n = n + \tau_0;$ $a_n = a_0 + n$

$$k_n = k_0 + \frac{1}{2}ns_n^2 + \frac{1}{2}\frac{\tau_0 n(\mu_0 - \bar{y})^2}{n + \tau_0}$$

Hint: It is

$$-\frac{1}{2}\frac{(\mu-\mu_1)^2}{v_1} - \frac{1}{2}\frac{(\mu-\mu_2)^2}{v_2}... - \frac{1}{2}\frac{(\mu-\mu_n)^2}{v_n} = -\frac{1}{2}\frac{(\mu-\hat{\mu})^2}{\hat{v}} + C$$

where

$$\hat{v} = \left(\sum_{i=1}^{n} \frac{1}{v_i}\right)^{-1}; \quad \hat{\mu} = \hat{v}\left(\sum_{i=1}^{n} \frac{\mu_i}{v_i}\right); \quad C = \frac{1}{2} \frac{\hat{\mu}^2}{\hat{v}} - \frac{1}{2} \sum_{i=1}^{n} \frac{\mu_i^2}{v_i}$$

3. Show that the marginal posterior distribution $\Pi(\mu|y)$ is such as

$$\mu|y \sim T_1\left(\mu_n, \frac{k_n}{a_n} \frac{1}{\tau_n}, 2a_n\right)$$

Hint-1: If $x \sim IG(a, b)$, y = cx, then $y \sim IG(a, cb)$.

Hint-2: The definition of Student T is considered as known

4. Show that the predictive distribution $\Pi(z|y)$ is Student T such as

$$z|y \sim T_1\left(\mu_n, \frac{k_n}{a_n}(\frac{1}{\tau_n} + 1), 2a_n\right)$$

Hint-1: Consider that

$${\rm N}(x|\mu_1,\sigma_1^2)\,{\rm N}(x|\mu_2,\sigma_2^2)\,=\,{\rm N}(x|m,v^2)\,{\rm N}(\mu_1|\mu_2,\sigma_1^2+\sigma_2^2)$$

where

$$v^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}; \quad m = v^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}\right)$$

Hint-2: The definition of Student T is considered as known

Proper/improper priors

Exercise 2. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x | \sigma & \sim \mathbf{N}(0, \sigma^2) \\ \sigma & \sim \mathbf{E}\mathbf{x}(\lambda) \end{cases}$$

where $\text{Ex}(\lambda)$ is the exponential distribution with mean $1/\lambda$. Show that the posterior distribution is not defined always.

• HINT: Precisely, show that the posterior is not defined in the case that you collect only one observation x = 0.

Conjugate priors

Exercise 3. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{IID}}{\sim} \mathbf{M} \mathbf{u}_k(\theta) \\ \theta & \sim \Pi(\theta) \end{cases}$$

where $\theta \in \Theta$, with $\Theta = \{\theta \in (0,1)^k | \sum_{j=1}^k \theta_j = 1\}$ and $\mathcal{X}_k = \{x \in \{0,...,n\}^k | \sum_{j=1}^k x_j = 1\}.$

Hint-1: Mu_k denotes the Multinomial probability distribution with PMF

$$\mathbf{Mu}_k(x|\theta) = \begin{cases} \prod_{j=1}^k \theta_j^{x_j} & \text{, if } x \in \mathcal{X}_k \\ 0 & \text{, otherwise} \end{cases}$$

Hint-2: $Di_k(a)$ denotes the Dirichlet distribution with PDF

$$\mathrm{Di}_k(\theta|a) = \begin{cases} \frac{\Gamma(\sum_{j=1}^k a_j)}{\prod_{j=1}^k \Gamma(a_j)} \prod_{j=1}^k \theta_j^{a_j-1} & \text{, if } \theta \in \Theta \\ 0 & \text{, otherwise} \end{cases}$$

- 1. Derive the conjugate prior distribution for θ , and recognize that it is a Dirichlet distribution family of distributions.
- 2. Verify that the prior distribution you derived above is indeed conjugate by using the definition.

Jeffreys priors

Exercise 4. $(\star\star)$ Consider the trinomial distribution

$$p(x, y | \pi, \rho) = \frac{n!}{x! \, y! \, z!} \pi^x \rho^y \sigma^z, \qquad (x + y + z = n)$$
$$\propto \pi^x \rho^y (1 - \pi - \rho)^{n - x - y}.$$

Specify a Jeffreys' prior for (π, ρ) .

HINT: It is $E(x) = n\pi$, $E(y) = n\rho$.

Exercise 5. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{iid}}{\sim} \text{Ga}(\alpha, \beta), \ \forall i = 1, ..., n \\ (\alpha, \beta) & \sim \Pi(\alpha, \beta) \end{cases}$$

where $Ga(a, \beta)$ is the Gamma distribution with expected value α/β . Specify a Jeffrey's prior for $\theta = (\alpha, \beta)$.

- **Hint-1:** Gamma distr.: $x \sim \operatorname{Ga}(a,b)$ has pdf $f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1_{(0,+\infty)}(x)$, and Expected value $E_{Ga}(x|a,b) = \frac{a}{b}$
- Hint-2: You may also need that the second derivative of the logarithm of a Gamma function is the 'polygamma function of order 1'. Ie,

 - $F^{(0)}(\alpha) = \frac{d}{d\alpha} \log(\Gamma(a))$ $F^{(1)}(\alpha) = \frac{d^2}{d\alpha^2} \log(\Gamma(a))$

Hint-3: You may leave your answer in terms of function $F^{(1)}(\alpha)$.

Exercise 6. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{iid}}{\sim} \operatorname{Ex}(\theta), \ \forall i = 1, ..., n \\ \theta & \sim \operatorname{Ga}(a, b) \end{cases}$$

Hint-1: The PDF of $x \sim G(a,b)$ is $Ga(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1_{(0,+\infty)}(x)$

Hint-2: The PDF of $x \sim \text{Ex}(\theta)$ is $\text{Ex}(x|\theta) = \text{Ga}(x|1,\theta)$

1. Show that the parametric model is member of the Exponential family, and the sufficient statistic for a sample of observables $x = (x_1, ..., x_n)$.

- 2. Show that the posterior distribution θ given x is Gamma and compute its parameters.
- 3. Show that the predictive distribution G(z|x) of a future z given $x = (x_1, ..., x_n)$, has PDF

$$g(z|x) = \frac{a^*(b^*)^{a^*}}{(z+b^*)^{a^*+1}} \mathbf{1}(x \ge 0)$$

Further practice

From the exercise sheet, have a look at Exercises 26, 31, 47, 6, and 50.

A About Nuisance parameters

Assume observable quantities $y=(y_1,...,y_n)$. Assume that the sampling distribution is $dF(y|\theta)$ labeled by an unknown parameter $\theta \in \Theta$. Let $\theta=(\phi,\lambda)^{\top}$ with $\phi \in \Phi$ and $\lambda \in \Lambda$. Assume You are interested in learning parameter $\phi \in \Phi$, and You are not interested in learning the unknown parameter $\lambda \in \Lambda$; but both ϕ, λ are parts of the statistical model parameterisation. The unknown quantity $\lambda \in \Lambda$ is called <u>nuisance parameter</u>. We an call $\phi \in \Phi$ <u>parameter of interest</u>.

Note 7. In Bayesian Stats, learning (or quantifying uncertainty about) parameter of interest ϕ under the presence of a nuisance parameter $\lambda \in \Lambda$ is performed according to the Bayesian paradigm as usual: You specify a prior $d\Pi(\phi,\lambda)$ with PDF/PMF $\pi(\phi,\lambda) = \pi(\phi|\lambda)\pi(\lambda)$ on the joint space of ALL Your unknown parameters $\theta = (\phi,\lambda)^{\top}$; you compute the joint posterior distribution $d\Pi(\theta|y)$ of $\theta = (\phi,\lambda)^{\top}$ via the Bayesian theorem. Reasonably, Your posterior degree of believe about the parameter of interest ϕ given the data $y = (1_1,...,y_n)$ is given through the marginal posterior distribution $d\Pi(\phi|y)$.

Note 8. To summarize; Specify the Bayesian model as:

<sum-up

$$\begin{cases} y | \overrightarrow{\phi}, \overrightarrow{\lambda} \sim F(y | \overrightarrow{\phi}, \overrightarrow{\lambda}) & \text{, the statistical model} \\ (\overrightarrow{\phi}, \overrightarrow{\lambda}) \sim \Pi(\overrightarrow{\phi}, \overrightarrow{\lambda}) & \text{, the prior model} \end{cases}$$

The joint posterior of θ given y is $d\Pi(\theta|y) = d\Pi(\lambda|y,\phi)d\Pi(\phi|y)$ is with PDF/PMF

$$\pi(\overbrace{\phi,\lambda}|y) = \underbrace{\frac{f(y)\overbrace{\phi,\lambda})\pi(\overbrace{\phi,\lambda})}{f(y)}}_{=\pi(\lambda|y,\phi)} = \underbrace{\frac{f(y|\phi,\lambda)\pi(\lambda|\phi)}{f(y|\phi)}}_{=\pi(\lambda|y,\phi)} \underbrace{\frac{f(y|\phi)\pi(\phi)}{f(y)}}_{=\pi(\phi|y)} = \pi(\lambda|y,\phi)\pi(\phi|y)$$

The (marginal) likelihood $f(y|\phi)$ of y given ϕ is

$$f(y|\phi) = \underbrace{\int_{\Lambda} f(y|\phi,\lambda) \mathrm{d}\Pi(\lambda|\phi)}_{= \mathrm{E}_{\Pi(\lambda|\phi)}(f(y|\phi,\lambda)|\phi)} = \begin{cases} \int_{\Lambda} f(y|\phi,\lambda) \pi(\lambda|\phi) \mathrm{d}\lambda & \text{, if } \lambda \text{ cont} \\ \\ \sum_{\forall \lambda \in \Lambda} f(y|\phi,\lambda) \pi(\lambda|\phi) & \text{, if } \lambda \text{ discr} \end{cases}$$

The PDF/PMF $\pi(\phi|y)$ of marginal posterior $d\Pi(\phi|y)$ of ϕ is

$$\pi(\phi|y) = \underbrace{\int_{\Lambda} \pi(\phi, \lambda|y) d\lambda}_{=\mathrm{E}_{\Pi(\lambda|y)}(\pi(\phi|y,\lambda))} \qquad \text{or equivalently} \qquad \pi(\phi|y) = \frac{f(y|\phi)\pi(\phi)}{f(y)}$$

The predictive distribution dG(z|y) of the next outcome $z = (y_{n+1}, ..., y_{n+m})$ given y has pdf/pmf

$$g(z|y) = \int f(y|\overbrace{\phi,\lambda}) \mathrm{d}\Pi(\overbrace{\phi,\lambda}|y)$$

and the marginal likelihood f(y) is

$$f(y) = \int f(y|\overbrace{\phi,\lambda}) \pi(\overbrace{\phi,\lambda}) \mathrm{d}\phi \mathrm{d}\lambda$$

B Criteria for integrals

General: Let integrable functions f(x), and g(x) for $x \ge a$.

Let

$$0 \le f(x) \le g(x)$$
, for $x \ge a$

Then

$$\int_{a}^{\infty} g(x) \mathrm{d}x < \infty \implies \int_{a}^{\infty} f(x) \mathrm{d}x < \infty$$
$$\int_{a}^{\infty} f(x) \mathrm{d}x = \infty \implies \int_{a}^{\infty} g(x) \mathrm{d}x = \infty$$

Type I: Let integrable functions f(x), and g(x) for $x \ge a$, and let g(x) be positive.

Let

$$\lim_{n \to \infty} \frac{f(x)}{g(x)} = c$$

Then

• If
$$c\in(0,\infty)$$
 :
$$\int_0^\infty g(x)\mathrm{d}x < \infty \iff \int_0^\infty f(x)\mathrm{d}x < \infty$$

• If
$$c=0$$
 :
$$\int_a^\infty g(x)\mathrm{d}x < \infty \implies \int_a^\infty f(x)\mathrm{d}x < \infty$$

• If
$$c=\infty$$
 :
$$\int_a^\infty f(x)\mathrm{d}x = \infty \implies \int_a^\infty g(x)\mathrm{d}x = \infty$$

Type II: Let integrable functions f(x), and g(x) for $a < x \le b$, and let g(x) be positive.

Let

$$\lim_{n \to a^+} \frac{f(x)}{g(x)} = c$$

Then

• If
$$c\in(0,\infty)$$
 :
$$\int_{a}^{\infty}g(x)\mathrm{d}x<\infty\Longleftrightarrow\int_{a}^{\infty}f(x)\mathrm{d}x<\infty$$

• If
$$c=0$$
:
$$\int_0^\infty g(x)\mathrm{d}x < \infty \implies \int_0^\infty f(x)\mathrm{d}x < \infty$$

• If
$$c=\infty$$
 :
$$\int_a^\infty f(x)\mathrm{d}x = \infty \implies \int_a^\infty g(x)\mathrm{d}x = \infty$$

Note: A useful test function is

$$\int_0^\infty \left(\frac{1}{x}\right)^p \mathrm{d}x \quad \begin{cases} <\infty &, \text{ when } p>1 \\ =\infty &, \text{ when } p\leq 1 \end{cases}$$