LDA2Net: Digging under the surface of COVID-19 topics in literature

Topic 73 companion sheet

G. Minello C.R.M.A. Santagiustina M. Warglien

This file contains the following supplementary information for Topic 73 of the manuscript "*LDA2Net*: Digging under the surface of COVID-19 topics in scientific literature":

- Human label and automatic n-gram label proposals (Table 1)
- Summary measures (Table 2)
- Network of top 25 bigrams (Figure 1)
- Wordclouds of top 25 words by node relevance measure (Figure 2)
- Wordclouds of top 25 bigrams by edge relevance measure (Figure 3)
- Filtered (0.99 percentile) topic network (Figure 4)

Table 1: Human and automatic label proposals. Automatic label candidate for largest word community of the topic. In parenthesis: absolute frequency of the walk out of a sample of size 1000.

Human label	2-gram label	3-gram label	4-gram label
paper info	web->response (47.6%)	web->response->one (16.4%)	web->response->disclosure->including (9%)

Here follows the set of topic-specific measures that have been used to classify the topic and to analyse its structural properties (see manuscript for details):

Table 2: Summary measures

	JSD	Mean propensity	Variance propensity	Modularity	Barrat Clustering Coeff.
value	0.618312	0.006976	0.000135	0.004368	0.585444
rank	48	7	17	56	75

Based on the aforementioned measures, Topic 73 has been classified as a CROSS-CUTTING topic.

Figure 1: Network of top 25 bigrams (i.e., edges) by weight.

provided as a pr

describe
dogs g important
to time of the content of

disclosure presented

distributed \(\text{\text{\text{distributed \text{\text{\text{\text{orange}}}}}} \)

source \(\text{\text{Septent}} \)

source \(\text{\text{\text{Septent}}} \)

source \(\text{\text{\text{Septent}}} \)

source \(\text{\text{\text{Septent}}} \)

source \(\text{\text{\text{\text{Septent}}}} \)

source \(\text{\text{\text{Septent}}} \)

source \(\text{\text{\text{\text{Septent}}}} \)

source \(\text{\text{\text{\text{Septent}}}} \)

source \(\text{\text{\text{\text{Septent}}}} \)

source \(\text{\t

describe access
line considered
important ≼ distributed
interest first oopen
source ≯ authors p
web present
article ⊕ ⊕ used %
several properties
found ipportant
output
used %

report presented different time work to open response of found interestone important used additional

Out-degree Betweenness PageRank

Figure 2: Top 25 unigrams (i.e., nodes) by measure.

Figure 3: Top 25 bigrams (i.e., edges) by measure.

Figure 4: Filtered topic network (by weight). Layout based on Fruchterman-Reingold algorithm. Node size is proportional to topic-specific word probability provided by LDA. Edge width is proportional to topic-specific bigram weight provided by LDA2Net method. Node and edge color represent their betweenness centrality. Isolated nodes have been removed after filtration.