

AD-A065 473

NATIONAL AVIATION FACILITIES EXPERIMENTAL CENTER ATL--ETC F/G 1/5
EVALUATION OF A REMOTE TONE SIGNALING CONTROL/MONITOR SYSTEM AS--ETC(U)
JAN 79 J R BRANSTETTER

UNCLASSIFIED

FAA-NA-78-35

FAA-RD-78-149

NL

| OF |
AD
A065 473

END
DATE
FILMED
4 --79--
DDC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963

REPORT NO. FAA-RD-78-149

LEVEL 12
B/S

EVALUATION OF A REMOTE TONE SIGNALING CONTROL/MONITOR
SYSTEM AS LIGHTNING/TRANSIENT PROTECTION FOR SOLID
STATE INSTRUMENT LANDING SYSTEMS

AD A0 65473

DDC FILE COPY

James R. Branstetter

JANUARY 1979

FINAL REPORT

Document is available to the U.S. public through
the National Technical Information Service,
Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service

Washington, D.C. 20590

79 03 06 051

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No. 18 FAA-RD-78-149	2. Government Accession No.	3. Recipient's Catalog No. 14
4. Title and Subtitle 6 EVALUATION OF A REMOTE TONE SIGNALING CONTROL/MONITOR SYSTEM AS LIGHTNING/TRANSIENT PROTECTION FOR SOLID STATE INSTRUMENT LANDING SYSTEMS		5. Report Date January 1979
7. Author(s) 10 James R. Branstetter		6. Performing Organization Code 12 24 p.
9. Performing Organization Name and Address Federal Aviation Administration National Aviation Facilities Experimental Center Atlantic City, New Jersey 08405		10. Work Unit No. (TRAIS)
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Aviation Administration Systems Research and Development Service Washington, D.C. 20590		11. Contract or Grant No. 071-713-000
15. Supplementary Notes		13. Type of Report and Period Covered 9 Final rest Aug 1976-Apr 1978
16. Abstract A new technique in remote control and monitoring of a solid-state instrument landing system (ILS) was evaluated at the National Aviation Facilities Experimental Center (NAFEC) intended as a solution to problems caused by lightning and transients on phone lines and buried cables. The findings show the system effectively reduces or eliminates false transmitter cycling, erroneous status indications, and damage to the ILS equipment.		14. Sponsoring Agency Code
17. Key Words Remote Control, Monitoring ILS Lightning Transients Tone Signaling Microprocessor		18. Distribution Statement This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22151
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 20
22. Price		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

240 550

79 03 06 051

JCB

METRIC CONVERSION FACTORS

Approximate Conversions to Metric Measures

Symbol	When You Know	Multiply by	To Find	Symbol	When You Know	Multiply by	To Find
LENGTH							
inches	12.5	centimeters	millimeters	inches	0.04	inches	inches
feet	30	centimeters	centimeters	inches	0.4	inches	inches
yards	0.9	meters	meters	feet	3.3	feet	feet
miles	1.6	kilometers	kilometers	yards	1.1	yards	yards
AREA							
square inches	6.5	square centimeters	square centimeters	square inches	0.16	square inches	square inches
square feet	0.09	square meters	square meters	square feet	1.2	square feet	square feet
square yards	0.8	square meters	square meters	square yards	0.4	square yards	square yards
square miles	2.5	square kilometers	square kilometers	square miles	2.5	square miles	square miles
acres	0.4	hectares	hectares	acres	-	acres	acres
MASS (weight)							
ounces	28	grams	grams	ounces	0.028	ounces	ounces
pounds	0.45	kilograms	kilograms	pounds	2.2	pounds	pounds
short tons (2000 lb)	0.9	tonnes	tonnes	short tons	1.1	short tons	short tons
VOLUME							
teaspoons	5	milliliters	milliliters	fluid ounces	0.03	fluid ounces	fluid ounces
tablespoons	15	milliliters	milliliters	fluid ounces	2.1	fluid ounces	fluid ounces
fluid ounces	30	liters	liters	liters	1.06	liters	liters
cups	0.24	liters	liters	gallons	0.26	gallons	gallons
pints	0.47	liters	liters	cubic feet	.36	cubic feet	cubic feet
quarts	0.96	liters	liters	cubic yards	1.3	cubic yards	cubic yards
gallons	3.8	cubic meters	cubic meters				
cubic feet	0.03	cubic meters	cubic meters				
cubic yards	0.76	cubic meters	cubic meters				
TEMPERATURE (exact)							
Fahrenheit temperature	5/9 (after subtracting 32)	Celsius temperature	Celsius temperature	°C	°C	°F	°F
°F	-	°C	°C	°C	°C	°F	°F
32	0	0	0	32	0	32	32
50	10	10	10	50	10	50	50
60	20	20	20	60	20	60	60
70	30	30	30	70	30	70	70
80	40	40	40	80	40	80	80
90	50	50	50	90	50	90	90
100	60	60	60	100	60	100	100
110	70	70	70	110	70	110	110
120	80	80	80	120	80	120	120
130	90	90	90	130	90	130	130
140	100	100	100	140	100	140	140
150	110	110	110	150	110	150	150
160	120	120	120	160	120	160	160
170	130	130	130	170	130	170	170
180	140	140	140	180	140	180	180
190	150	150	150	190	150	190	190
200	160	160	160	200	160	200	200
210	170	170	170	210	170	210	210
220	180	180	180	220	180	220	220
230	190	190	190	230	190	230	230
240	200	200	200	240	200	240	240
250	210	210	210	250	210	250	250
260	220	220	220	260	220	260	260
270	230	230	230	270	230	270	270
280	240	240	240	280	240	280	280
290	250	250	250	290	250	290	290
300	260	260	260	300	260	300	300
310	270	270	270	310	270	310	310
320	280	280	280	320	280	320	320
330	290	290	290	330	290	330	330
340	300	300	300	340	300	340	340
350	310	310	310	350	310	350	350
360	320	320	320	360	320	360	360
370	330	330	330	370	330	370	370
380	340	340	340	380	340	380	380
390	350	350	350	390	350	390	390
400	360	360	360	400	360	400	400
410	370	370	370	410	370	410	410
420	380	380	380	420	380	420	420
430	390	390	390	430	390	430	430
440	400	400	400	440	400	440	440
450	410	410	410	450	410	450	450
460	420	420	420	460	420	460	460
470	430	430	430	470	430	470	470
480	440	440	440	480	440	480	480
490	450	450	450	490	450	490	490
500	460	460	460	500	460	500	500
510	470	470	470	510	470	510	510
520	480	480	480	520	480	520	520
530	490	490	490	530	490	530	530
540	500	500	500	540	500	540	540
550	510	510	510	550	510	550	550
560	520	520	520	560	520	560	560
570	530	530	530	570	530	570	570
580	540	540	540	580	540	580	580
590	550	550	550	590	550	590	590
600	560	560	560	600	560	600	600
610	570	570	570	610	570	610	610
620	580	580	580	620	580	620	620
630	590	590	590	630	590	630	630
640	600	600	600	640	600	640	640
650	610	610	610	650	610	650	650
660	620	620	620	660	620	660	660
670	630	630	630	670	630	670	670
680	640	640	640	680	640	680	680
690	650	650	650	690	650	690	690
700	660	660	660	700	660	700	700
710	670	670	670	710	670	710	710
720	680	680	680	720	680	720	720
730	690	690	690	730	690	730	730
740	700	700	700	740	700	740	740
750	710	710	710	750	710	750	750
760	720	720	720	760	720	760	760
770	730	730	730	770	730	770	770
780	740	740	740	780	740	780	780
790	750	750	750	790	750	790	790
800	760	760	760	800	760	800	800
810	770	770	770	810	770	810	810
820	780	780	780	820	780	820	820
830	790	790	790	830	790	830	830
840	800	800	800	840	800	840	840
850	810	810	810	850	810	850	850
860	820	820	820	860	820	860	860
870	830	830	830	870	830	870	870
880	840	840	840	880	840	880	880
890	850	850	850	890	850	890	890
900	860	860	860	900	860	900	900
910	870	870	870	910	870	910	910
920	880	880	880	920	880	920	920
930	890	890	890	930	890	930	930
940	900	900	900	940	900	940	940
950	910	910	910	950	910	950	950
960	920	920	920	960	920	960	960
970	930	930	930	970	930	970	970
980	940	940	940	980	940	980	980
990	950	950	950	990	950	990	990
1000	960	960	960	1000	960	1000	1000

*1 in = 2.54 (exact). For other exact conversions and more detailed tables, see NBS Misc. Publ. 265, Units of Height and Measures, Part 12, 25, SD Catalog No. C13.1(2.26).

°C

°F

PERFACE

The author wishes to thank the Eastern Region maintenance personnel of the Atlantic City Sector, AFSFO-823.6, who were most helpful and cooperative during the course of this project.

ACCESSION for	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	Buff Section <input type="checkbox"/>
ANNOUNCED <input type="checkbox"/>	
J-S-TIFICATION _____	
RV _____	
DISTRIBUTION/AVAILABILITY CODES	
SPECIAL	
A	

Preceding Page BLANK - FILED

TABLE OF CONTENTS

	Page
INTRODUCTION	1
Purpose	1
Background	1
DISCUSSION	2
System Description	2
Evaluation	4
RESULTS OF EVALUATION	4
CONCLUSIONS	6
RECOMMENDATIONS	7
REFERENCES	8

LIST OF ILLUSTRATIONS

Figure	Page
1 CAT III ILS System Interconnections	9
2 Microprocessor-Controlled Data Communication System	10
3 Typical Field Unit	11
4 Line Protection Techniques	12
5 Central Microcomputer and Display Units at the Control Tower	13
6 Status Frame	14
7 Maintenance Monitor Frame	15
8 Log Frame	16

INTRODUCTION

PURPOSE.

This project was established to evaluate a remote control and monitoring system for solid-state instrument landing systems (ILS) designed to reduce equipment damage, false transmitter cycling, and erroneous status indications caused by lightning and control line transients.

BACKGROUND.

The remote status and control lines interconnecting ILS field units with associated monitor and control stations located in the control tower are highly susceptible to lightning and line transients. The attendant undesirable effects have, on numerous occasions, resulted in extensive damage to ILS circuitry and caused many nuisance transfers and shutdowns of operating equipment. During a lightning strike, several thousand volts can be induced on control and power lines located in the vicinity of the strike. Previous vacuum-tube equipment was generally capable of dissipating the high voltages without damage to operating circuits, since it was designed for relatively high B+ voltages in normal operation. In solid-state ILS equipment, the circuitry operates at voltages considerably less than its tube-type predecessor and thus has a lesser margin of tolerance for any transient voltages.

At the present time, the lines used with most ILS systems in the field carry direct current (d.c.) levels to effect signaling and control. This type of operation includes the use of unbalanced lines which greatly increases their susceptibility to damaging transients. Additionally, the large number of lines used to interconnect the system, 100 individual wires for the Texas Instruments-type Federal Aviation Administration (FAA) Mark III ILS (figure 1), may have contributed to the probability of incurring circuit damage or causing transfers and shutdowns.

Previous work in the lightning/transient protection area for the FAA had been conducted by Georgia Institute of Technology. Their effort was limited to developing designs for connecting protective devices across existing lines. Results of their studies are found in references 1 and 2.

Purdue University was awarded a contract, DOT-FA74WA-3518, in June 1974, to perform a study and recommend an alternate solution to the existing problem. In their first report (reference 3), previous equipment failures and operational upsets were investigated and analyzed. The report also presented reliable signal processing and line protection techniques and described a proposed prototype to be built and installed at the National Aviation Facilities Experimental Center (NAFEC). The new system would employ a single pair of wires carrying audio tones in lieu of the existing multipair d.c. cables running to each site. This was expected to provide superior protection from transient interference.

As an added benefit, a substantial savings in the cost of leasing telephone company (telco) services and/or laying of buried cables can be realized.

During the summer of 1975, a rudimentary tone-signaling system was connected to the category (CAT) II ILS localizer, inner marker, and far-field monitor serving runway 31. The system was operated for several months affording NAFEC and maintenance personnel the opportunity to obtain experience in the new techniques. A second report (reference 4) gave a technical description of the first generation (prototype) equipment and commented on insight gained during the trial period. The report delineated plans for installing a complete tone-signaling system utilizing the CAT III ILS serving runway 13. This system would connect all of the ILS components: the tower status and control stations, the localizer, the glide slope, the inner, middle, and outer markers, and the far-field monitor. The second generation equipment was designed, constructed, and installed bypassing all previously existing d.c. signal lines. In August 1976 this equipment was placed in full time service and operated continually until April 1978.

DISCUSSION

SYSTEM DESCRIPTION.

The technique, which Purdue devised, consisted of a new interface between the remote control and monitor stations located in the control tower and each ILS component facility in the field. In approaching the problem two steps were taken: signal processing and line protection. As the first step, signals from the ILS field units were processed and converted into a tone format for transmission to the central processing facility at the tower. There, the tones were reconverted into the original format necessary to drive the existing ILS remote control and monitor panels in the tower cab and equipment room. (This gave air traffic control (ATC) and maintenance personnel their familiar displays and control capability.) A stand-alone video terminal was included as part of the project to demonstrate the versatility of consolidated micro-computer-generated displays; this was located in the maintenance equipment room at the tower. Upon request, as entered from the keyboard, status and maintenance-monitor information could be displayed on the cathode-ray-tube (CRT). In addition, logged data could be recalled and control of the ILS effected via coded keyboard commands. Figure 2 shows the overall system concept. The status and control signals were picked up directly at the equipment terminals where they connect to the multipair cables. As a result, modification to any of the ILS equipment was unnecessary. The existing signal lines remained as a backup in the event that a failure of the Purdue equipment, during the evaluation period, would cause the loss of monitoring and control. As a convenient means of transferring between the system under test and the multipair d.c. system, quick-change plugs were provided at the tower and at each site. With this arrangement, each facility could be removed independently for testing or repairs.

At the individual sites, the ILS monitor and control signals exist as d.c.

voltages which are normally sent directly to the tower over leased telephone lines or buried cables, each signal being assigned to a separate line. In the Purdue system, however, these signals were conditioned, coded, and multiplexed using a microprocessor at the site yielding a string of binary bits representative of the cumulative status indications. The field unit that performed these functions is shown in figure 3. The bits, zeros and ones, were fed to a modem wherein they were converted into pairs of audio-frequency tones capable of being sent over a single pair of wires. (Of interest, here, is the fact that these same tones can be sent over a radio link to and from sites where running landlines would be impractical due to terrain or cost.) Through the judicious choice of tone-pair frequencies and filtering, bidirectional data communications were accomplished over the same pair of wires. In this way, only a single pair of wires is required for each facility. Voltage transients do not resemble the tone signals used and thus could not be misinterpreted as false cycle commands or indications, as was the case when using d.c. signaling.

In the second step, to protect the operating circuits from the effects of voltage transients on the lines, a balanced twisted-pair of wires was used in conjunction with center-tapped transformers, one at each end (figure 4). (This is the same technique that telephone companies use for carrying voice and data with much success.) The transformers isolate the large induced voltages from sensitive circuits which are then safely diverted to ground through grounded center-taps. By their nature, balanced twisted-pairs cause any voltage surges to be applied equally to both lines with minimum transfer through the transformer. As a final precaution, gas-discharge arrestors were connected across the line, at each end, to short high-level transients to ground.

At the control tower, modems on each of the lines coming from the six field units converted the tones back into binary bits which were fed to a central microcomputer. Here the data were processed and formatted for display on a CRT display (figure 5). Three types of information could be requested for viewing, the first being a "status" frame showing the status of each component of the ILS (figure 6). Next, a "maintenance-monitor" frame showed the status of the prealarm signals on the maintenance monitor (figure 7). The maintenance monitor is part of the CAT III ILS at NAFEC. The third type was a random access "log" programmed to store selected data, including manual entries made from the keyboard (figure 8).

Control of the ILS units was accomplished in a similar manner as the remoting of the status signals. Upon closure of the "cycle" switch in the tower cab (or through coded keyboard commands), a control message was sent to the appropriate site, and the unit cycled main-off-standby as normally would be done.

As part of the demonstration, analog signals were remoted from the far-field monitor to both the tower and localizer. The three difference-in-depth-of-modulation (DDM) signals, normally relayed in analog form over the d.c. lines, were converted to digital form and processed in a fashion similar to the digitized status signals. After transmission, via the tone-signaling system, the digitized data were converted back into analog form for display as part of the maintenance-monitor frame on the tower CRT and on the front panel meter at the localizer.

EVALUATION.

Evaluation of the tone-signaling technique was conducted on the second generation equipment from August 1976 to April 1978 with all ILS facilities connected to it. The approach taken was to allow the system to run on a continuous, unattended basis and only make repairs when required. Periodic inspections were also made of the computer-maintained status and log entries to ensure the proper operation of the CRT displays.

All ILS facility or monitoring outages that occurred during this time period were reported by Eastern Region maintenance personnel to NAFEC project engineers. The NAFEC project personnel would then examine the tone-signaling equipment to ascertain if it was at fault. The nature of the failure and probable cause were determined and noted, and appropriate repairs were made to damaged components. As previously mentioned, it was a simple matter to reconnect the d.c. signal lines for an individual facility when necessary for making repairs.

RESULTS OF EVALUATION

During the test period, the ILS system exhibited satisfactory immunity to all forms of external interference; i.e., lightning and line transients except for the instances noted below. No false cycle commands nor erroneous status indications were observed in the course of normal operation.

The operating programs (software) for the field unit microprocessors and the central microcomputer at the tower performed flawlessly. The field units were operated from battery-supplied power sources and experienced no operational upsets. At the central microcomputer, only a long-term power interruption (one having a duration longer than several seconds) would require a manual reset. This problem could have been eliminated by the addition of an uninterruptable power source; i.e., one backed up with batteries as was done in the field units.

Failures in the Purdue equipment encountered over the test period were found to be due primarily to direct lightning strikes at the sites where voltage surges came in over the powerlines. Table 1 gives a listing of those failures recorded during the course of operations. In each case, the outage was localized to an individual site, and overall system operation was not affected. Components damaged were primarily semiconductor devices, integrated circuits, and resistors. The balanced-pair signaling lines and their associated modems showed no signs of damage from the strike. The worst instance occurred with the Purdue equipment at the far-field monitor, where improper installation of a lightning arresting device across the incoming powerlines was determined to be the cause. Extensive damage was also sustained by the far-field monitor circuits as well. Except for this case, operation of the ILS equipment remained unaffected by lightning/transients as a result of using the tone-signaling system.

TABLE 1. TABULATION OF FAILURES AND CAUSES IN PURDUE TONE EQUIPMENT OVER TEST PERIOD
(INITIAL INSTALLATION--AUGUST 1976)

<u>Date (1977)</u>	<u>Facility</u>	<u>Components and Circuitry Affected</u>	<u>Probable Cause</u>	<u>Remarks</u>
Feb. 17	Far-Field Monitor and Middle Marker	Solid-State components in power supply, micro-processor, interface, analog/digital converter cards.	Direct lightning strike at site and improperly installed lightning arrester on power lines.	Repaired by Purdue
Mar. 17	Outer Marker	(Overall Operation)	Lossy Lines	Repaired by Telephone Co.
Mar. 23	Middle Marker	(Overall Operation)	Noisy Lines-Hum due to water in Telco cables.	Repaired by Telco
Apr. 14	Localizer	Modem Integrated Circuit (MC6860)	Component Failure	
May 19	Central Processor	Interface Integrated Circuit (3404)	Lightning Strike at tower	
July 20	Localizer	Interconnect board printed circuit wiring for cycling control, burned up.	Lightning Strike at localizer site.	Voltage surge through ILS equipment
Aug. 14	Central Processor	Interface Integrated Circuit (3216)	Lightning strike at tower	
Sep. 15	Far-Field Monitor	Power Supply transistors (2-N8066)	Component Failure	

A final report published by Purdue in two parts (references 5 and 6) gives further details on the second generation tone-signaling system as installed at NAFEC. Reference 5 reiterates the basics of signaling and line protection and explains the hardware used at the tower and in the field units. Operator information for the system is included as is a software listing for the field microprocessors. Reference 6 lists the program used by the central micro-computer servicing the tower displays and field units.

The system was observed by many technical groups during its operation at NAFEC. Because the equipment incorporated certain features incidental to its primary function of providing transient protection, it has proven useful as a model for current programs in remote maintenance monitoring that are expanding on its demonstrated capabilities. The evaluation showed that a microprocessor-controlled tone-signaling control and monitor system is indeed feasible for use to improve maintenance procedures and enhance remote equipment analysis. Some of the additional features which were demonstrated and show merit for incorporation in future systems include: analog to digital conversion of equipment parameters, automatic logging of these parameters and associated events for self-diagnosis and trend analysis, providing alarms and recording the times of significant operational changes, display of system data in a consolidated format on a video terminal, plus recall from memory and display of operating instructions and maintenance procedures. Such a system affords the capability of handling additional information, remoted from the field sites, to the degree of sensing device availability and funding. Disc or magnetic tape units for mass data accumulation as well as page printers for hard copy could easily have been added for long-term information storage and analysis.

CONCLUSIONS

From the results, it is concluded that:

1. The tone-signaling techniques used on the commissioned ILS at NAFEC proved to be highly reliable in meeting the needs of remote control and monitoring of a solid-state ILS while minimizing the effects caused by lightning/transients.
2. While no system can be immune to the effects of a direct lightning strike, a system of the type tested provides a high degree of protection from transient voltages induced in the control and monitoring lines.

RECOMMENDATIONS

It is recommended that:

1. In future ILS procurements, specifications state that monitor and control functions be performed using techniques similar to those reported herein (references 4 and 5).
2. Retrofit hardware be procured and installed at existing solid-state ILS facilities to increase system reliability and reduce leased telco costs, particularly at sites where lightning interference still poses a problem.
3. Microprocessor-controlled data communications be incorporated in the remote control and monitoring of all FAA facilities requiring constant attention, e.g., VOR, DME, and communication sites. The equipment and techniques being similar enough, the functions of various remote facilities could be handled by a single central processing unit.

REFERENCES

1. Huddleston, Gene K. and Bush, Gary G., FAA Lightning Protection Requirements for Mark III Instrument Landing System, Report No. FAA-RD-11, February 1975.
2. Huddleston, Gene K., FAA Lightning Protection Study: Circuit Modification for Mark III Instrument Landing System to Prevent Operational Upsets Due to Electrical Transients on Cables, Report No. FAA-RD-76-61, February 1976.
3. Bass, S. C., et al., Reliable Line Signaling Techniques for the FAA-GRN 27V and CAT-III ILS, Report No. FAA-RD-75-11, March 1975.
4. Bass, S. C., et al., Application of Balanced Lines, Tone Signaling, and Microprocessor Control Techniques to a Category III Instrument Landing System, Report No. FAA-RD-76-24, February 1976.
5. Belter, S. E., et al., Microprocessor-Controlled Communications In Air Terminal Navigation Systems, Report No. FAA-RD-78-25, January 1978.
6. Bass, S. C., Microcomputer Software for Advanced Instrument Landing System Communications System, Report No. FAA-RD-78-26, January 1978.

FIGURE 1. CAT III ILS SYSTEM INTERCONNECTIONS

FIGURE 2. MICROPROCESSOR-CONTROLLED DATA COMMUNICATION SYSTEM

FIGURE 3

FIGURE 3. TYPICAL FIELD UNIT

FIGURE 4. LINE PROTECTION TECHNIQUES

FIGURE 5. CENTRAL MICROCOMPUTER AND DISPLAY UNITS AT THE CONTROL TOWER

FIGURE 6. STATUS FRAME

SUMMARY 13 MAINTENANCE MONITOR INFORMATION
 OCT 00 - 14:37:48
 SYSTEM NORMAL

LOCALIZER PRE-ALARMS		FAIRFIELD MONITOR		GLIDE SLOPE PRE-ALARMS				
INTEGRAL MONITORS	RFM	CLOSE SENS	OPEN CLR	CLOSE	INT. MONITORS	RFM		
					CLOSE SENS	CLR	CLOSE	
01	OK	OK	OK	OK	01	OK	OK	OK
02	OK	OK	OK	OK	02	OK	OK	OK
03	OK	OK	OK	OK	03	OK	OK	OK
STAND-BY TRANSMITTER		RELATED TO LOCALIZER		STAND-BY TRANSMITTER				
CLOSE SENS	OPEN CLR	CAT 2 SHUT. ALERT	OK	CLOSE SENS	CLR			
OK	OK	CAT2 SHUTDOWN	OK	OK	OK			
MISCELLANEOUS ALARMS		MONITOR MISMATCH		MISCELLANEOUS ALARMS				
BATTERY OK	TEMP OK	PWR/TEMP FAIL	OK	BATTERY OK	TEMP OK			
		FFM BY-PASSED						

TYPE H FOR HELP

FIGURE 7. MAINTENANCE MONITOR FRAME

OCT 00	00:11:00	LOC	PARITY ERROR REPORTED
OCT 00	00:12:00	LOC	SYSTEM GO
OCT 00	00:33:00	LOC	FRAMING ERROR REPORTED
OCT 00	01:00:00	LOC	SYSTEM GO
OCT 00	01:26:00	LOC	FRAMING ERROR REPORTED
OCT 00	01:27:00	LOC	SYSTEM GO
OCT 00	02:55:00	FFN	PARITY ERROR REPORTED
OCT 00	02:56:00	FFN	SYSTEM GO
OCT 00	03:15:00	LOC	PARITY ERROR REPORTED
OCT 00	03:16:00	LOC	SYSTEM GO
OCT 00	06:30:00	FFN	PARITY ERROR REPORTED
OCT 00	06:31:00	FFN	SYSTEM GO
OCT 00	10:11:59	FFN	PARITY ERROR REPORTED
OCT 00	10:13:00	FFN	SYSTEM GO
OCT 00	11:02:00	LOC	FRAMING ERROR REPORTED
OCT 00	11:03:00	LOC	SYSTEM GO
OCT 00	14:21:00	FFN	PARITY ERROR REPORTED
OCT 00	14:22:00	LOC	DATA ERROR REPORTED
OCT 00	14:22:00	FFN	SYSTEM GO
OCT 00	14:23:00	LOC	SYSTEM GO

TYPE H FOR HELP

)

FIGURE 8. LOG FRAME