### 4. Система уравнений термогазодинамического расчета.

### Типовые исходные данные:

- 1. Термохимические характеристики компонентов или топлива в целом УХФ,  $H_{\pi}$ ,  $\alpha$ ,
- 2. Условия в камере сгорания  $p_k$ ,
- 3. Условия в произвольном сечении p (на срезе сопла-  $p_a$ ).

#### Типовой состав топлива:

Для «простого» топлива принято включать четыре химических элемента: C, H, O, N. В РДТТ используют более сложные топлива, которые часто включают в себя металлические добавки: алюминий (Al), магний (Mg), бериллий (Be), бор (B).

### Типовой состав продуктов сгорания (ПС) 4-х элементного топлива:

Принято считать, что здесь можно получить 11 основных составляющих продуктов сгорания:

 $H_2O;CO_2;OH;CO;NO;H_2;O_2;N_2;H;O;N$ . При  $\alpha < 0,5$  может «выпадать» углерод (C) в виде сажи. При горении твердых топлив с металлами образуется конденсированная фаза (K-фаза), например  $Al_2O_3$ .

Обычно состав ПС выражают двумя способами:

- 1) через  $N_q$  –число молей газа в одном кг  $\Pi$ С,
- 2) через  $p_q$  –парциальное давление одного газа в ПС.

Известно, что  $\frac{p_q}{p} = \frac{N_q}{N}$ , где  $N = \sum N_q$  – суммарное число молей всех газов,

 $p = \sum p_q$  – полное давление всех газов в ПС.

### Типовое число неизвестных в расчете:

Число неизвестных величин определяется числом газов в ПС и температурой. 11 газов + 1 температура = 12 неизвестных. Значит, для решения требуется 12 уравнений.

1) Уравнение сохранения давления (уравнение Дальтона). Полное давление смеси газов равно сумме парциальных давлений каждого газа  $p = \sum p_{q} \, .$ 

### 2) Уравнение сохранения энергии.

Для камеры двигателя составляются два вида этого уравнения:

- а) Для камеры сгорания  $H_n^{\kappa} = H_n^{T}$ , где  $H_n^{\kappa}$  полная энтальпия ПС в КС,  $H_n^{T}$  полная энтальпия топлива. Здесь величина полной энтальпии ПС приравнивается к величине полной энтальпии топлива.
  - б) Для среза сопла (или любого сечения):

В общем случае 
$$H_n^{\kappa} = H_n^a + \frac{W_a^2}{2}$$
, или  $H_n^{\kappa} = H_n + \frac{W^2}{2}$ .

Здесь полная энтальпия  $\Pi C$  в любом сечении была бы дополнительной неизвестной, поэтому закон сохранения энергии используется в виде закона постоянства энтропии S по длине сопла:

$$S = const$$
, t.e.  $S_k = S_{\kappa p} = S_i = S_a$ ,

где  $S_k$  определяется для КС, величина которой уже известна.

**3) Уравнения сохранения вещества (баланс вещества)**. Массовая доля любого химического элемента в составе ПС равна массовой доле этого элемента в составе топлива.

Массовая доля элемента в топливе зависит от:

- а) массовой доли этого элемента в каждом компоненте,
- б) соотношения расходов компонентов в топливе.

Количество уравнений для 4-х элементного топлива будет равно 4. (Выводы этих уравнений — на семинарском занятии). При решении этих уравнений появляется ещё одно неизвестное N — суммарное число молей всех газов. И так:

число указанных выше уравнений = 6, число неизвестных =12+1=13. Значит требуется ещё 7 уравнений.

# 4) Уравнения констант химического равновесия $K_{\scriptscriptstyle p}$ .

В процессе химических реакций, проходящих с диссоциацией и рекомбинацией, может устанавливаться химическое равновесие. При равновесии концентрации газов находятся в определенных соотношениях между собой. Для количественного выражения этих соотношений используются константы химического равновесия. В расчете удобнее пользоваться не величинами концентрации, а величинами парциальных давлений газов.

Константа химического равновесия — это соотношение парциальных давлений газов в продуктах сгорания. Число независимых констант равновесия  $N_{\mathit{Kp}}$  равно разности числа газов  $N_{\mathit{casos}}$  и числа химических элементов в продуктах сгорания  $N_{\mathit{элементов}}$  элементов, т.е:

$$N_{\it Kp} = N_{\it газов} - N_{\it элементов}$$
 .

В нашем примере «простого» топлива  $N_{\mathit{Kp}} = 11_{\mathit{casos}} - 4_{\mathit{элементов}} = 7$  .

Таким образом, число неизвестных и число уравнений констант равновесия совпадают. Пример одной из реакций:

$$(+Q)CO_2 \longleftrightarrow CO + \frac{1}{2}O_2(-Q)$$
.

Поглощение тепла (-Q) идет в реакции диссоциации (вправо), а выделение (+Q) – в реакции рекомбинации (влево). Таким образом, для данной реакции константа будет как:

$$K_p = \frac{p_{co} \cdot p_{o_2}^{\frac{1}{2}}}{p_{co_2}},$$

где p — парциальное давление;

 $K_{\scriptscriptstyle p}$  – константа химического равновесия;

1/2 – показатель степени.

В числителе  $K_p$  — с поглощением тепла, в знаменателе — с выделением тепла. Исключение составляет реакция для азота:

$$(-Q)N_2 + O_2 \rightleftharpoons 2NO(+Q); \qquad K_p = \frac{(p_{NO})^2}{p_{N_2} \cdot p_{O_2}}$$

Размерность у констант не учитывается.

Все уравнения констант химического равновесия составлены раз и навсегда и занесены в справочники под своими номерами.

| 1 | $CO_2 \longleftrightarrow CO = \frac{1}{2}O_2$  | $K_1 = \frac{P_{CO} \cdot (P_{O_2})^{1/2}}{P_{CO_2}} = f_1(T)$  |
|---|-------------------------------------------------|-----------------------------------------------------------------|
| 2 | $H_2O \longleftrightarrow H_2 + \frac{1}{2}O_2$ | $K_2 = \frac{P_{H_2} \cdot (P_{O_2})^{1/2}}{P_{H_2O}} = f_2(T)$ |
| 3 | $H_2O \longleftrightarrow OH + \frac{1}{2}H_2$  | $K_3 = \frac{P_{OH} \cdot (P_{H_2})^{1/2}}{P_{H_2O}} = f_3(T)$  |
| 4 | $N_2 + O_2 \rightleftharpoons 2NO$              | $K_4 = \frac{(P_{NO})^2}{P_{N_2} \cdot P_{O_2}} = f_4(T)$       |
| 5 | $H_2 \rightleftharpoons 2H$                     | $K_5 = \frac{(P_H)^2}{P_{H_2}} = f_5(T)$                        |
| 6 | $O_2 \rightleftharpoons 2O$                     | $K_6 = \frac{(P_O)^2}{P_{O_2}} = f_6(T)$                        |
| 7 | $N_2 \longleftrightarrow 2N$                    | $K_7 = \frac{(P_N)^2}{P_{N_2}} = f_7(T)$                        |

Иногда вводятся более универсальные константы, которые образуются из основных. Итак, число уравнений термодинамического расчета равно числу неизвестных, т.е. равно 13.

### 5) Методы выполнения термогазодинамического расчета.

Все методы можно условно разделить на две группы:

- 1) универсальные,
- 2) неуниверсальные.

Для универсальных методов можно использовать многокомпонентные и многоэлементные топлива, можно учитывать конденсированную фазу, исходные данные задаются практически произвольно, т.е. ограничений почти не существует. Это означает, что расчет можно провести только с помощью ЭВМ. Однако, в основе универсальных методов заложены перечисленная выше система уравнений. Наиболее распространенный универсальный метод – метод Трусова Б.Г. – программный комплекс «ASTRA.4».

Неуниверсальные методы применяются, если число неизвестных невелико и их проведение допустимо «вручную». Например:

### метод «3-х точек» (метод последовательных приближений)

Этот метод базируется на законе сохранения энергии в 2-х видах:

1) Для КС 
$$\longrightarrow H_n^{TC} = H_n^T$$
,

2) Для среза сопла 
$$\longrightarrow S_a = S_k$$
 , т.к.  $S = const$  .

а) для КС 
$$H_n^{nc} = H_n^T$$
 (см. рисунок).



Последовательность расчета:

- 1) Задается величина ожидаемой температуры в КС  $T_{\kappa}^{oscud}$  (из опыта).
- 2) Задается диапазон  $T_{\kappa}$  так, чтобы  $T_{\kappa}^{oscud}$  находилась в этом диапазоне. Диапазон может включать несколько конкретных  $T_{\kappa}$  (3 или более).
- 3) Задается число газов в продуктах сгорания (3...5).
- 4) По справочнику определяются константы равновесия  $K_{p} = f(T)$  .
- 5) По справочнику определяются величины  $H_n^{nc}$  ,  $S_{nc}$  ,  $\mu_{nc}$  .
- 6) Строятся графики  $H_{n}^{nc}, S_{nc}, \mu_{nc} = f(T_{\kappa})$  (см. рисунок).
- 7) По равенству  $\boldsymbol{H}_{n}^{T}=\boldsymbol{H}_{n}^{nc}$  определяются  $\boldsymbol{S}_{nc},\boldsymbol{\mu}_{nc},\boldsymbol{T}_{\kappa}$  (см. рисунок).
- 8) Определяется газовая постоянная в КС  $R_{nc} = \frac{R_o}{\mu_{nc}}$ .
  - б) для среза сопла  $S_a = S_k$  (см. рисунок):



Последовательность расчета:

- 1) Принимается равенство констант равновесия  $K_p^a = K_p^\kappa$ , т.к. процесс в сопле равновесный.
- 2) Определяется  $T_a$  для 3-х заданных ранее точек  $T_{\kappa}$  ( $T_{a1}= au_{a1}\cdot T_{\kappa1}$  и.т.п., где  $au_a-\Gamma \Box \Phi$ ).
- 3) По справочнику определяются  $H_n$  ,  $S_{nc}$  ,  $\mu_{nc} = f(T_a)$  для всех  $T_a$  .
- 4) Строятся графики  $H_n^{\it IIC}, S_{\it nc}, \mu_{\it nc} = f(T_a)$  по 3-м точкам (см. рисунок).
- 5) По равенству  $S_a = S_\kappa$  определяются искомые значения  $H_n^{\Pi C}, \mu_{nc}, T_a$  (см.рисунок).
- 6) Определяется газовая постоянная  $R_{nc} = \frac{R_o}{\mu_{nc}}$ .

Т.к. в сопле идут практически только реакции рекомбинации, то для среза сопла из числа газов в продуктах сгорания можно исключить  $H,\,O,\,N,\,OH,\,NO,\,O_2,\,N_2$  .

### 6) Анализ результатов термогазодинамического расчета.

Это анализ зависимостей термодинамических характеристик от основных переменных факторов (параметров), которыми являются  $p_{\kappa}$  и  $\alpha$ . Наиболее важными характеристиками камеры сгорания являются  $I_{yn}$  и  $\beta$ . В свою очередь,  $I_{yn}$ , и  $\beta$  зависят и от других параметров, например  $T_{\kappa}$ , R, n, которые так же зависят от  $p_{\kappa}$  и  $\alpha$ .

1)  $T_{\kappa}$  имеет максимальное значение, которое определяется только термодинамическим расчетом, однако это не означает оптимальность режима, поскольку  $W_a \sim \sqrt{R_{\kappa} T_{\kappa}}$ . Видно, что увеличение скорости истечения, а, значит, удельного импульса возможно лишь при увеличении комплекса  $R_{\kappa} T_{\kappa}$ .



- 2) С увеличением  $\alpha \to R$  падает из-за увеличения массы молекул продуктов сгорания ( $R = \frac{R_0}{\mu}$ ). Величина  $T_\kappa$  имеет максимум, который не совпадает по  $\alpha$  с максимумом  $I_{yn}$ .
- 3) С увеличением  $p_{\kappa}$  максимум  $T_{\kappa}$  смещается вверх и вправо по  $\pmb{\alpha}$ , т.к.  $p_{\kappa}$  подавляет реакции диссоциации и при  $p_{\kappa} = \infty \to T_{\kappa} = T_{\kappa}^{\max}$ .



$$p_{\kappa 3} > p_{\kappa 2} > p_{\kappa 1}$$

4) Удельный импульс и расходный комплекс имеют максимум, который не совпадает по lpha между собой. При  $lpha_{onm} o I_{yn} = I_{yn}^{\max}$  .



Расчет с помощью модели равновесного течения предпочтительнее по  $I_{yn}$ , т.к. в неравновесном течении (процессе) не учитываются реакции рекомбинации в сопле, идущие с выделением тепла



«Р» – равновесный процесс, «Н/Р» – неравновесный процесс.

Особенностью расчета для  $H_2+O_2$  является то, что для этого топлива  $lpha_{onm}\approx 0.55...0.60$ . Однако на практике закладывается  $lpha_{onm}\geq 0.60$  ( $\approx 0.65$ ). Это объясняется тем, что  $ho_{H_2}^*\approx 70 rac{\kappa \mathcal{E}}{M^3}, 
ho_{O_2}^*\approx 1100 rac{\kappa \mathcal{E}}{M^3}, 
ho_{O_2}>> 
ho_{H_2}$  и бак водорода становится чрезвычайно большим и тяжелым.



# Раздел 3. Характеристики неидеальной камеры.

### 1. Внутренние потери энергии в камере двигателя.

Процесс горения топлива в камере сгорания и ускорение продуктов сгорания в сопле сопровождаются потерями энергии, а, значит, и потерями удельного импульса. Компенсация этих потерь, при заданной величине тяги может компенсироваться только одним способом — увеличением расхода топлива над его «теоретическим» (расчетным) значением. В свою очередь, увеличение расхода требует увеличения проходной площади сопла по его длине, в т.ч. площади минимального и выходного сечений. При проектировании проточной части сопла в первую очередь определяют три параметра:  $\dot{m}, F_{\kappa p}, F_{a}$ .

При заданных  $P_{\scriptscriptstyle n}, p_{\scriptscriptstyle K}, p_{\scriptscriptstyle a}$  в реальной камере будет:

$$T_{\scriptscriptstyle {
m K}\partial} < T_{\scriptscriptstyle {
m K}{
m T}}, \; F_{\scriptscriptstyle {
m K}{
m p}\partial} > F_{\scriptscriptstyle {
m K}{
m p}{
m T}}, \; F_{\scriptscriptstyle {
m a}\partial} > \; F_{\scriptscriptstyle {
m a}{
m T}}, \; \dot{m}_{_\partial} > \; \dot{m}_{_{
m T}}$$
. Здесь:

«д» - действительное, «т» - теоретическое (расчетное) значения.

Различие действительных и теоретических параметров объясняется наличием потерь энергии в реальной камере. Потери энергии в камере определяются в виде потерь удельного импульса в пустоте через коэффициент удельного импульса  $\varphi_I = \frac{I_{\text{уп}\partial}}{I_{\text{упт}}}.$ 

Диапазон  $\, {\pmb \varphi}_{\!\scriptscriptstyle I} = 0,94...0,97 \,.$  С другой стороны,  $\, {\pmb \varphi}_{\!\scriptscriptstyle I} = \, {\pmb \varphi}_{\!\scriptscriptstyle \kappa}. \, {\pmb \varphi}_{\!\scriptscriptstyle c} \,,$  где

 $\phi_{\kappa}$  - коэффициент камеры сгорания (см.ниже),

 $\boldsymbol{\varphi}_{c}$  - коэффициент сопла (см.ниже).

Коэффициент  $\phi_I$  определяется расчетно-экспериментальным способом:

$$I_{\scriptscriptstyle 
m yng} = \, rac{P_{\scriptscriptstyle 
m ng}}{\dot{m}_{\scriptscriptstyle \partial}}, \, \dot{m}_{\scriptscriptstyle \partial}$$
 - из эксперимента,  $I_{\scriptscriptstyle 
m ynr} = \, rac{P_{\scriptscriptstyle 
m nr}}{\dot{m}_{\scriptscriptstyle 
m T}}, \, \dot{m}_{\scriptscriptstyle 
m T}$  - из расчета.

Следует учитывать, что  $P_{_{\Pi \partial}} = P_{_{\Pi T}}$ , где  $P_{_{\Pi \partial}} = P_{_{\partial}} + p_{_{H}}F_{_{a}}$ .

$$I_y = \frac{P}{\dot{m}} = I_{yn} - \frac{P_{_{\!\it H}} F_a}{\dot{m}}$$
, а величина  $\frac{P_{_{\!\it H}} F_a}{\dot{m}} \ll I_{yn}$ .

### 2. Внутренние потери энергии в камере сгорания.

Причины потерь в камере сгорания:

- 1. Неоднородные распыливание, смешение и соотношение компонентов по поперечному сечению камеры сгорания;
  - 2. Неполное сгорание топлива;
  - 3. Наличие охлаждения (в первую очередь внутреннего);
  - 4. Высокочастотные и низкочастотные колебания при горении;
  - 5. Другие причины.

Эти потери при заданном  $\,p_{_{\!\scriptscriptstyle K}}\,$  приводят к снижению  $\,T_{_{\!\scriptscriptstyle K}}\,$ . Они оцениваются через коэффициент камеры сгорания  $\,\varphi_{_{\!\scriptscriptstyle K}}\,$ :

$$m{\phi}_{\!\scriptscriptstyle K} = \; rac{C_{\scriptscriptstyle \partial}^*}{C_{\scriptscriptstyle 
m T}^*}$$
 , где  $\, C^*$  - характеристическая скорость, м/с. При этом:

$$C_{\scriptscriptstyle \partial}^* = \; rac{p_{\scriptscriptstyle \kappa p}^{\scriptscriptstyle o} \cdot F_{\scriptscriptstyle \kappa p} \cdot \mu_{\scriptscriptstyle c}}{\dot{m}_{\scriptscriptstyle \partial}}; \quad C_{\scriptscriptstyle \mathrm{T}}^* = \; rac{p_{\scriptscriptstyle \kappa p}^{\scriptscriptstyle o} \cdot F_{\scriptscriptstyle \kappa p}}{\dot{m}_{\scriptscriptstyle \mathrm{T}}},$$
 где

 $p_{\kappa p}^{o}$  - полное давление в критическом сечении,

$$\mu_c$$
 - коэффициент расхода сопла,  $\mu_c = \frac{\dot{m}_{_{\mathrm{T}}}}{\dot{m}_{_\partial}}$  .

Диапазоны изменения  $\varphi_{\kappa}$  и  $\mu_c$ :  $\varphi_{\kappa} = 0.96...0.99$ ,  $\mu_c = 0.98...0.99$ .

# 3. Связь между $C^*$ и $\beta$ , $\varphi_{\kappa}$ и $\varphi_{\beta}$ .

Можно выразить  $p_{\kappa p}^o = \sigma \cdot p_{\kappa}$ , где  $\sigma < 1$  – коэффициент потерь полного давления в дозвуковой части камеры. Эти потери вызваны «тепловым сопротивлением», которое связано с растянутостью процесса горения по длине, неоднородностью и др. Диапазон изменения  $\sigma$  равен 0,99...0,995.

И тогда 
$$C_{\delta}^{*} = \frac{p_{\kappa p}^{\circ} \cdot F_{\kappa p} \cdot \mu_{c}}{\dot{m}_{\delta}} = \frac{\sigma \cdot p_{\kappa} \cdot F_{\kappa p} \cdot \mu_{c}}{\dot{m}_{\delta}} = \sigma \cdot \beta_{\delta} \cdot \mu_{c}.$$

Для «теоретической» камеры  $p_{\kappa p}^{0} = p_{\kappa}$ ,  $\sigma = 1$ ,  $\mu_{c} = 1$ ,  $\beta_{T} = \frac{p_{\kappa} F_{\kappa p}}{\dot{m}_{\tau}}$ ,  $C_{T}^{*} = \beta_{T}$ .

Отсюда 
$$\boldsymbol{\varphi}_{\scriptscriptstyle K} = \frac{C_{\scriptscriptstyle \partial}^*}{C_{\scriptscriptstyle \mathrm{T}}^*} = \frac{\boldsymbol{\beta}_{\scriptscriptstyle \partial} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\mu}_{\scriptscriptstyle \mathcal{C}}}{\boldsymbol{\beta}_{\scriptscriptstyle \mathrm{T}}}$$
, где  $\boldsymbol{\beta}_{\scriptscriptstyle \partial} = \frac{p_{\scriptscriptstyle K} \cdot F_{\scriptscriptstyle KP}}{\dot{m}_{\scriptscriptstyle \partial}}$ ,  $\boldsymbol{\beta}_{\scriptscriptstyle \partial} < \boldsymbol{\beta}_{\scriptscriptstyle \mathrm{T}}$ .

Обозначим  $\varphi_{\beta} = \frac{\beta_{\delta}}{\beta_{x}}$  – коэффициент расходного комплекса. Отсюда  $\varphi_{\kappa} = \varphi_{\delta} \cdot \sigma \cdot \mu_{c}$  .

Величина  $oldsymbol{eta}_{\!\scriptscriptstyle \partial}$  определяется из эксперимента, а величина  $oldsymbol{eta}_{\!\scriptscriptstyle \mathrm{T}}$  - из расчета.

Величину  $\pmb{\varphi}_{\kappa}$  определить практически невозможно ни в расчете, ни в эксперименте (из-за неопределенности  $p_{\kappa p}^{o}$ ), поэтому на практике используется величина  $\pmb{\varphi}_{\beta}$ . При этом, если камера сгорания изобарическая, то можно принять  $\pmb{\sigma}=1$ , а если камера двигателя достаточно крупногабаритная, то можно принять  $\pmb{\mu}_{c}=1$ . И тогда  $\pmb{\varphi}_{\kappa}=\pmb{\varphi}_{\beta}$ .

### 4. Внутренние потери энергии в сопле.

Причины потери энергии в сопле:

- 1. Трение газа о стенку сопла (потери учитываются через коэффициент  ${\pmb \varphi}_{{ {\rm \scriptscriptstyle T} \! {\rm \scriptscriptstyle P}}});$
- 2. Неодномерность потока на срезе сопла (через коэффициент  $\varphi_{\alpha}$ );
- 3. Недовыделение тепла из-за химической неравновесности (через коэффициент  $\varphi_0$ );
- 4. Наличие конденсированной фазы (через коэффициент  $\phi_s$ );

### 5. Другие причины (через коэффициент $\phi_i$ ).

Полные потери энергии в сопле учитываются через коэффициент сопла  $\boldsymbol{\varphi}_c$  . По определению:  $\boldsymbol{\varphi}_c = \boldsymbol{\varphi}_{\text{тр}} \cdot \boldsymbol{\varphi}_{\alpha} \cdot \boldsymbol{\varphi}_{\text{O}} \cdot \boldsymbol{\varphi}_{\text{s}} \cdot \boldsymbol{\varphi}_{\text{i}}$  .

$$m{arphi}_c = rac{K_{T\!\Pi_{\partial}}}{K_{T\!\Pi_{T}}}$$
 . Диапазон значений  $m{arphi}_c = 0,95 \div 0,99$  , где

$$K_{TII} = \frac{P_{II}}{p_{\scriptscriptstyle K} F_{\scriptscriptstyle KP}}$$
 коэффициент тяги в пустоте,

 $P_{\!\scriptscriptstyle H}$  - тяга камеры в пустоте,  $\,p_{\scriptscriptstyle K} F_{\scriptscriptstyle KP}$  - основная составляющая тяги.

Основными потерями являются потери на трение и неодномерность потока на срезе сопла.

В РДТТ это также потери на двухфазность (наличие K-фазы). Для ЖРД  $\pmb{\varphi}_{\!\scriptscriptstyle C}$  можно представить как  $\pmb{\varphi}_{\!\scriptscriptstyle C} = \pmb{\varphi}_{\!\scriptscriptstyle mp} \cdot \pmb{\varphi}_{\!\scriptscriptstyle \alpha}$  .

### а) Внутренние потери на неодномерность (веерность) потока на срезе сопла.

Рассмотрим на примере конического сопла (см. рисунок).



Здесь точка O – фокус,  $\,2oldsymbol{\beta}\,$  - угол раствора сопла.

По определению вектор тяги будет равен  $\overrightarrow{P}=m\overrightarrow{W}_a+\left(\overrightarrow{p_a-p_n}\right)F_a$  .

«Теоретически»  $\overrightarrow{W}_a \parallel \overrightarrow{X}$ , однако это справедливо только на оси сопла. На произвольной линии тока  $W_{ai} = W_{ai} \cdot \cos \pmb{\beta}_i$ . Диапазон изменения  $\pmb{\beta}_a$  на практике:  $\pmb{\beta}_{a_{KOH}} = 10 \div 12^0$ .

Для конического сопла можно точно определить коэффициент  $\pmb{\varphi}_{\alpha}$ , учитывая потери на неодномерность потока на срезе как

$$\varphi_{\alpha} = \frac{1 + \cos \beta_{a}}{\lambda}.$$

Диапазон изменения величины  $arphi_{lpha}$  при этом будет:  $arphi_{lpha} = 0.98 \div 0.99$  .

Для профилированных сопел можно прибдиженно использовать эту же формулу при угле на срезе сопла  $oldsymbol{eta}_{a_{\pi p O \phi}} = 6 \div 10^{0}$  .

### б) Внутренние потери на трение потока о стенку сопла.

Рассмотрим кольцевой участок сверхзвуковой части сопла с бесконечно малой площадью dS . Вязкое трение газа о стенку создает силу трения  $dF_{TP}$ , действующую вдоль стенки, и как результат – осевую силы трения  $dP_{TP}$ , направленную против тяги.



$$dF_{\mathit{TP}} = C_{f} \cdot \frac{\rho W^{2}}{2} dS_{\mathit{TP}}, \ dP_{\mathit{TP}} = dF_{\mathit{TP}} \cdot \cos oldsymbol{eta}$$
, где

где  $C_{\scriptscriptstyle f}$  - коэффициент трения,

ho ,W - плотность и скорость в районе dS ,

 $oldsymbol{eta}$  - угол наклона стенки к оси сопла.

$$C_f = C_{fo} \left( 1 + r \frac{k-1}{2} M^2 \right)^{-0.55},$$

где  $C_{\it fo}$  - коэффициент трения для несжимаемой жидкости,

r - коэффициент восстановления температуры,  $r=\sqrt[3]{P_r}$  ,

M – число Маха в районе dS

Для курсового проекта принимаем r=0,89. В общем случае величина  $C_{fo}=0,002\div0,006$ . Для серийных ЖРД:  $C_{fo}=0,003$ , для полированных поверхностей:  $C_{fo}=0,002$ , для ЖРД малой тяги:  $C_{fo}=0,006$ .

На конечном участке сопла потери тяги на трение будут равны  $\triangle P_{\mathit{TP}} = \int\!\! dP_{\mathit{TP}}$  .

И тогда:  $P_{TP} = \sum_{\Delta} P_{TP}$  - потери тяги на всем сопле, а коэффициент, учитывающий эти потери  $\phi_{TP}$  будет определяться как

$$\varphi_{TP} = \frac{p_n - p_{TP}}{p_n}.$$

Диапазон величины  $\phi_{TP}$  обычно равен  $\phi_{TP} = 0.98...0.99$  .

Для определения  $P_{TP}$  следует разбить сопло на ряд участков. Чем больше участков, тем точнее расчет. На каждом из участков определяются средние для него параметры  $\rho$ , w, M . Потери тяги в дозвуковой части сопла на трение незначительны из-за малых скоростей, поэтому определяем такие потери только в сверхзвуковой части.

### 5. Оптимизация угла раствора конического сопла.

Рассмотрим, к примеру, три сопла с разными углами раствора. При этом:

$$eta_{\rm l} < eta_{\rm 2} < eta_{\rm 3}$$
 ,  $F_{\rm KP} = const$  ,  $F_a = const$  (см. рис.).



Для идеального сопла и параметры на срезе, и тяга всех сопл будут одинаковы. В реальном сопле из-за различия угла раствора и площади боковой поверхности сопл и потери на трение, и на рассеивание будут различными. Чем меньше угол раствора, тем больше потери на трение (больше площадь трения) и меньше потери на рассеивание (меньше неодномерность на срезе).

Для определения потерь на трение каждого из сопел разобьем сверхзвуковую часть сопл на некоторое одинаковое количество участков (5-6).

### Порядок определения оптимального угла раствора

- -Определить параметры на концах участков и соответствующие им «средние» параметры ho, w, M на каждом участке.
  - -Выполнить расчет площади боковой поверхности участков.
  - -Определить  $\phi_{TP}$  и  $\phi_{\alpha}$  на каждом участке.
  - -Отсюда  $\boldsymbol{\varphi}_{\scriptscriptstyle \mathcal{C}} = \boldsymbol{\varphi}_{\scriptscriptstyle TP} \cdot \boldsymbol{\varphi}_{\scriptscriptstyle \boldsymbol{\alpha}}$ .
- -По полученным данным построить графики  $\pmb{\varphi}_c, \pmb{\varphi}_{TP}, \pmb{\varphi}_{\alpha}$ . Одна из полученных кривых падающая, а другая возрастающая, значит произведение  $\pmb{\varphi}_{TP} \cdot \pmb{\varphi}_{\alpha}$  даст максимальное значение  $\pmb{\varphi}_c$ , которое определяет оптимальный угол раствора сопла  $\pmb{\beta}_{OHT}$ .



В курсовом проекте принять диапазон  $\beta = 8 \div 12^0$  (через  $1^0$ ). После определения  $\beta_{OHT}$  округлить его значение до целого числа.

# 6. Определение действительных значений расхода, площадей критического и выходного сечений сопла.

### а) расход топлива $\dot{m}$ .

По определению:

$$\dot{m} = \frac{P}{I_{\scriptscriptstyle V}}$$
, или  $\dot{m}_{\scriptscriptstyle T} = \frac{P_{\scriptscriptstyle n}}{I_{\scriptscriptstyle Vn}}$  .

Отсюда следует, что действительный расход определяется как

$$\dot{m}_{\partial} = \frac{P_{\partial}}{I_{v\partial}}$$
, или  $\dot{m}_{\partial} = \frac{P_{n\partial}}{I_{vn\partial}}$ .

Здесь индекс «д» – действительный. При этом должно выполняться условие:

$$P_{\partial} = P_T$$
,  $P_{n\partial} = P_{nT} = P_n$ ,  $I_{VII\partial} = I_{VIIT} \cdot \varphi_I = I_{VIIT} \cdot \varphi_K \cdot \varphi_C$ .

Здесь индекс «т» – теоретический (расчетный, без потерь).

Удобнее определять  $\dot{m}_{\delta}$  через параметры в пустоте:

$$\dot{m}_{\partial} = \frac{P_{n\partial}}{I_{vn\partial}} = \frac{P_n}{I_{vnT} \cdot \varphi_K \cdot \varphi_C} = \frac{\dot{m}_T}{\varphi_K \cdot \varphi_C} \cdot \left[ \dot{m}_{\partial} = \frac{\dot{m}_T}{\varphi_K \cdot \varphi_C} \right].$$

Вывод:  $\dot{m}_{\partial} > \dot{m}_{T}$ , так как  $\phi_{K} < 1$ и  $\phi_{C} < 1$ . Разница  $(\dot{m}_{\partial} - \dot{m}_{T})$  компенсирует потери тяги реальной камеры для достижения заданной тяги. В этой формуле не следует учитывать коэффициент расхода сопла  $\mu_{C}$ , который участвует при определении  $F_{KP}$ .

## б) площадь критического сечения сопла $F_{{\scriptscriptstyle K\!P}}$ .

Известно, что равенство  $\dot{m}\beta = p_{_K} \cdot F_{_{KP}}$  справедливо и для идеальной и для реальной камеры. Отсюда  $F_{_{KP}} = \frac{m\beta}{p_{_{K}}}$ 

В реальной камере  $F_{KP\partial} = \frac{\dot{m}_{\partial} \cdot \beta_{\partial}}{p_{\kappa}} (1)$ ,

где 
$$\dot{m}_{\partial} = \frac{\dot{m}_{T}}{\varphi_{K} \cdot \varphi_{C}}$$
,  $\beta_{\partial} = \varphi_{\beta} \cdot \beta_{T}$ ;  $\varphi_{\beta} = \frac{\varphi_{K}}{\sigma \cdot \mu_{C}}$ ;  $\beta_{T} = \frac{p_{K} \cdot F_{KPT}}{\dot{m}_{T}}$ ,  $p_{\kappa \partial} = p_{\kappa T} = p_{\kappa}$ .

Подставим в (1): 
$$F_{\textit{KPO}} = \frac{\dot{m}_{\textit{T}}}{\phi_{\textit{K}} \cdot \phi_{\textit{C}}} \; \frac{\phi_{\textit{K}}}{\sigma \cdot \mu_{\textit{C}}} \; \frac{p_{\textit{K}} \cdot F_{\textit{KPT}}}{\dot{m}_{\textit{T}}} \; \frac{1}{p_{\textit{K}}} = \frac{F_{\textit{KPT}}}{\sigma \cdot \mu_{\textit{C}} \cdot \phi_{\textit{C}}} \; .$$

$$\boxed{F_{{\scriptscriptstyle KP}{\scriptscriptstyle \partial}} = \frac{F_{{\scriptscriptstyle KPT}}}{{m{arphi}_{\scriptscriptstyle C} \cdot m{\mu}_{\scriptscriptstyle C} \cdot m{\sigma}}} \; ext{Вывод:} \; F_{{\scriptscriptstyle KP}{\scriptscriptstyle \partial}} > F_{{\scriptscriptstyle KPT}} \,, \, ext{так как} \; m{arphi}_{\scriptscriptstyle C} < 1 \,, \; m{\sigma} < 1 \,\,$$
и  $\mu_{\scriptscriptstyle C} < 1 \,.$ 

Величина  $F_{KP\partial}$  не зависит от  $\varphi_K$ . Коэффициент  $\varphi_K$  характеризует потери полного давления и температуры из-за несовершенства процессов в КС. Поэтому для компенсации этих потерь требуется:

- 1) с одной стороны, увеличение  $F_{\mathit{KP}}$  для пропускания большего расхода  $\dot{m}_{\partial} = \frac{\dot{m}_T}{m{\varphi}_{\mathit{K}} \cdot m{\varphi}_{\mathit{C}}}$  .
- 2) с другой стороны, для поднятия  $p_{\scriptscriptstyle K}$  (из-за этого увеличения  $F_{\scriptscriptstyle KP}$ ) до заданного значения требуется такое же уменьшение  $F_{\scriptscriptstyle KP}$  .

Для крупногабаритных камер, у которых толщина пограничного слоя несопоставимо мала с геометрическими размерами, можно принять  $\mu_c=1$ . Для изобарических КС ( $p_K=const$ ,  $F_K \ge 3...5F_{KP}$ ) можно принять  $\sigma=1$ .

И тогда 
$$\overline{F_{{\scriptscriptstyle KP}{\scriptscriptstyle \partial}}} = \overline{F_{{\scriptscriptstyle KP}{\scriptscriptstyle T}}}{}_{{\scriptstyle {m Q}}_{\scriptscriptstyle {C}}}$$
 .

## в) площадь среза сопла $F_a$ .

Известно, что  $\frac{F_a}{F_{_{KP}}}=f\Bigg(n,\frac{p_a}{p_{_{K}}}\Bigg)$  - однозначно (см. выше),

$$p_{a\delta}=p_{aT},\;p_{K\delta}=p_{KT}.\;$$
 Отсюда  $\left(rac{p_a}{p_K}
ight)_{\delta}=\left(rac{p_a}{p_K}
ight)_{T}.$ 

Если допустить, что  $n_{\partial}=n_T$  (что близко к действительности), то  $\left(\frac{F_a}{F_{_{KP}}}\right)_{_T}=\left(\frac{F_a}{F_{_{KP}}}\right)_{_T}.$ 

Вывод: 
$$\boxed{F_{a\partial} = \dfrac{F_{aT}}{oldsymbol{arphi}_C}}$$
.  $F_{a\partial} > F_{aT}$  т.к.  $oldsymbol{arphi}_C < 1$ .

Зная величины  $F_{\mathit{KPd}}$  и  $F_{\mathit{ad}}$ , можно спроектировать весь контур сверхзвуковой части сопла.