

WHEN PERFORMANCE MATTERS

DECICE (

Introduction to key technologies I: Containers and container orchestration systems

Riccardo Cavadini — riccardo.cavadini-ext@e4company.com DECICE Consortium Event — November 06, 2023

OUTLINE

- Softwaredeployment problems
- Containers a solution
- Containers examples
- Container or chestration systems
- Container orchestration systems examples

SOFTWARE DEPLOYMENT: APPLICATION COMPONENTS

WHEN PERFORMANCE MATTERS www.e4 company.com

SOFTWARE DEPLOYMENT: ENVIRONMENTS

Developer Laptop

Staging Server

Production Server

SOFTWARE DEPLOYMENT: PROCESS

SOFTWARE DEPLOYMENT: PROBLEMS

Complexenvironments

Increasing omplexity in softwared ependencies

Inconsistencies

Discrepancies etweendevelopmentandproduction environments

Scalingissues

Difficulty in scaling applications eamlessly

"It workedon my compute" problem

CONTAINERS: A SOLUTION

SOFTWARE DEPLOYMENT: ENVIRONMENTS

Developer Laptop

Staging Server

Production Server

CONTAINERS VS VIRTUAL MACHINES

WHEN PERFORMANCE MATTERS

www.e4 company.com

DOCKER

DOCKER: COMMANDS

- dockerbuild: to buildanimagefrom a Dockerfile
- dockerrun: to starta newcontaine from an image
- dockerps to listallthe running containers
- dockerstop: to stoparunningcontainer
- dockerrm: to remove stopped:ontainer
- dockerimages to listallthe images on the system
- dockerpull: to download nimage from a registry
- dockerexec to execute command nside running container
- docker-compose to managemulti- containerapplications

DOCKER: LIMITATIONS

Needsprivileges

Docker daemon needs root privileges (possible security concern)

Enterprise oriented

Allows for an easy micro-service virtualization, but is not compatible with traditional HPC

SINGULARITY: A (DIFFERENT) ALTERNATIVE

Doesnot needroot privileges Doesnot usea daemon

Born for scientific applications

Singularity is designed for general scientific use cases The resource request matches the actual usage It's easier to match resources requirements

HPC-oriented

Singularity containers offer native support for GPUs, InfiniBand, MPI

MULTIPLE CONTAINERS: A THREAT TO SCALABILITY

Manual work increases

To scale up services, to fix crashing nodes, to run services

Complexity increases

To run new elements in production, to correctly scale with many containers

Cost increases

In terms of human cost and public cloud cost

CONTAINER ORCHESTRATION

CONTAINER ORCHESTRATION

CONTAINER ORCHESTRATION

Deployment

Optimal resource usage, automatic scalability

Networking

Auto-discovery, accessibility from outside

Management

Load balancing, Fault tolerance, updates/rollbacks

KUBERNETES

Open source

Launched by Google, now part of the Cloud Native Computing Foundation with a big community Compatible with all cloud vendors, extensible and portable

Automatic

Automates container deployment, scaling, management and load balancing

KUBERNETES

GRAZIE THANK YO U