Week 15: Validation

Table of Contents

- 1. Model Selection Problem
 - Potential Approaches to Model Selection
- 2. Validation
 - Model Selection by Best E_{val}
 - Validation in Practice
- 3. Leave-One-Out Cross Validation
- 4. V-Fold Cross Validation

Model Selection Problem

- 1. Model selection problem
 - Argurably the most important practical problem of ML
 - Given: M models $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_{\mathcal{M}}$, each with corresponding algorithms $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\mathcal{M}}$
 - Goal: Select \mathcal{H}_{m^*} such that $g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$ has **low out-of-sample error** $E_{out}(g_{m^*})$
 - Problem: unknown E_{out} due to unknown input distribution P(X) and target distribution P(y|x)

Potential Approaches to Model Selection

1. By best E_{in}

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = \underline{E_{in}}(\mathcal{A}_m(D)))$$

- Risk of overfitting
 - Higher-order hypothesis set **always favored** for closer fitting to training data (ϕ_{1126} over ϕ_1)
 - No regularization always favored over regularization for ability to generate more complex fit
- High generalization error per VC theory
 - Week 7: The VC Dimension
 - g_{m^*} achieves minimal E_{in} by computing and comparing E_{in} for every hypothesis from every hypothesis set $\rightarrow d_{vc} = d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2 \cup \cdots \cup \mathcal{H}_M)$
- 2. By best E_{test}

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = \underline{E}_{test}(\mathcal{A}_m(D)))$$

- Choose the best hypothesis from each hypothesis set, then compute and compare E_{test} only for these **best candidates**
- E_{test} evaluated on a **fresh** D_{test}
- Generalization guarantee given by finite-bin Hoeffding

$$E_{out}(g_{m^*}) \leq \underline{E_{test}}(g_{m^*}) + O(\sqrt{\frac{\log M}{N_{test}}})$$

- See Week 7
- However, testing set \mathcal{D}_{test} is hard, if not impossible to obtain
 - Requires another iid sampling from target population ("locked in boss's safe")
- 3. By best E_{val}
 - E_{value} evaluated on an **validation set** $\mathcal{D}_{val} \subset \mathcal{D}$ previously **reserved** from available samples
 - $\mathcal{D}_{train} \cup \mathcal{D}_{val} = \mathcal{D}$
 - "Middle ground" between E_{in} and E_{test}
- 4. Comparing the approaches

in-sample error Ein	something in between: E_{val}	test error E _{test}
 calculated from D 	- calculated from $\mathcal{D}_{\text{val}} \subset \mathcal{D}$	 calculated from $\mathcal{D}_{\text{test}}$
 feasible on hand 	 feasible on hand 	 infeasible in boss's safe
 'contaminated' as ^D also used by A_m to 'select' g_m 	• 'clean' if \mathcal{D}_{val} never used by \mathcal{A}_m before	 'clean' as D_{test} never used for selection before

Validation

1. Validation set \mathcal{D}_{val}

- $\circ D_{val} \subset D$
- · Provides simulation of test set with data on-hand
- Validation set needs to be selected **at random** from available sample set \mathcal{D}_{val} in order to satisfy $\mathcal{D}_{val} \stackrel{iid}{\sim} P(x, y)$ and provide VC guarantee between \mathcal{D}_{val} and E_{out}
- Feed only \mathcal{D}_{train} to learning algorithm \mathcal{A}_m to get hypothesis g, to ensure that \mathcal{D}_{val} remains 'clean' and only used for validation

Model Selection by Best E_{val}

1. Choose the best model m^* as

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{val}(\mathcal{A}(\mathbf{D}_{train})))$$

The model selection process can be visualized as follows

2. The best hypothesis, g_m^- selected based on this process, has generalization guarantee (recall definition of generalization error from Week 7):

$$E_{out}(g_{\overline{m}}^-) \le E_{val}(g_{\overline{m}}^-) + O(\sqrt{\frac{\log M}{K}})$$

- 3. Heuristic gain from training set (N K) to full input set N
 - Due to the increase in data size, applying best hypothesis $g_{m^*}^-$ learned on training set \mathcal{D}_{train} onto the original input set \mathcal{D} leads to a **decrease in** $E_{out} \Rightarrow$ Heuristic gain
 - Refer to "The Learing Curve" section from Week 9: Linear Regression

$$E_{out}(\underbrace{g_{m^*}}_{\mathcal{A}_{m^*}(D)}) \leq E_{out}(\underbrace{g_{m^*}^-}_{\mathcal{A}_{m^*}(D_{train})})$$

4. Merging inequalities from 2 and 3 gives:

$$E_{out}(g_{m^*}) \le E_{out}(g_{m^*}^-) \le E_{val}(g_{m^*}^-) + O(\sqrt{\frac{\log M}{K}})$$

Validation in Practice

- 1. Compare E_{out} from different model selection mechanism
 - In-sample: Selection with E_{in}
 - Optimal: "Cheating" selection with E_{test}
 - Sub-g: Selection with E_{val} and report best hypothesis from **training set** $g_{m^*}^-$
 - Full-g: Selection with E_{val} and report best hypothesis from **full input set** g_{m^*}

- 2. Given the same input set, out-of-sample error of $g_{m^*}^-$ starts to deteriorate when the reserved validation set grows beyond a certain size
 - Not enough training data to produce good candidate hypothesis
 - $\circ~g_{m^*}$ exhibits similar trend, but to lesser degree
- 3. The dilemma about K

$$E_{out}(g) \approx E_{out}(g^{-}) \approx E_{val}(e^{-})$$
(large K)

- Reasoning behind validation is to obtain a good proxy of $E_{out}(g)$ through $E_{out}(g^-)$, which is in turn, proxied through $E_{val}(g^-)$
- However, first part of the proxy holds true only with small validation sets, and the second part only with large validation sets
 - Large K: **Every** $E_{val} \approx E_{out}$, but all g^- are much worse than g_m
 - Small K: **Every** $g_m \approx g_m$, but **all** E_{val} will be far from E_{out}
- 4. Practical rule of thumb for validation set size

$$K = \frac{N}{5}$$

Leave-One-Out Cross Validation

- 1. One-sample validation set
 - Extreme case of K = 1
 - Validation set consists of **one sample**, and validation error evaluated at single-sample level:

$$\mathcal{D}_{val}^{(n)} = \{(x_n, y_n)\}\$$

$$E_{val}^{(n)}(g_n^-) = err(g_n^-(x_n), y_n) = e_n$$

- Where $err(g_n^-(x_n), y_n)$ is the error measure for hypothesis g_n^- , given sample (x_n, y_n)
- 2. In order for the **single-sample** e_n to be a good approximation of $E_{out}(g)$ (which is evaluated on the **entire** out-of-sample set), need to take into account all possible values of $E_{val}^{(n)} \rightarrow \text{average over all possible } E_{out}^{(n)}$
- 3. Leave-one-out cross validation estimate

$$E_{loocv}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} err(g_n^-(x_n), y_n)$$

- 4. Choosing learning algorithm using leave-one-out cross validation
 - Assuming $E_{loocv}(\mathcal{H}, \mathcal{A}) \approx E_{out}(g)$, minimize $E_{loocv}(\mathcal{H}, \mathcal{A})$

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{loocv}(\mathcal{H}_m, \mathcal{A}_m))$$

5. Theoretical guarantee of leave-one-out estimate

$$\mathcal{E}_{D}E_{loocv}(\mathcal{H}, \mathcal{A}) = \mathcal{E}_{D} \frac{1}{N} \sum_{n=1}^{N} e_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{D_{n}} e_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{D_{n}} x_{n}, y_{n} err(g_{\overline{n}}(x_{n}), y_{n})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_{D_{n}} E_{out}(g_{\overline{n}})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \overline{E_{out}}(N-1) = \overline{E_{out}}(N-1)$$

- Notations
 - \mathcal{E} : Expected value (on a give data set)
 - \mathcal{D} : Full input sample set, comprised of \mathcal{D}_{train} and $\mathcal{D}_{val} = (x_n, y_n)$
 - \mathcal{D}_n : Abbreviated notation for \mathcal{D}_{train} in this context
- Interpretation

- Substitute in the definition of leave-one-out cross validation error
- Swap order of evaluation for summation and expected value, and decompose expected value into two parts
 - Expected value on training set (N-1): $\mathcal{E}_{\mathcal{D}_n}$
 - Expected value on **single-sample** validation set: $\underset{x_n, y_n}{\mathcal{E}}$
- Since g_n^- is found on **training set only**, each of the validation point is considered as **out-of-sample** from its perspective $\longrightarrow_{x_n,y_n} \mathcal{E}_{out}(g_n^-)$
- Since leave-one-out cross validation will be performed on each individual sample from the input set, the expected value of $E_{out}(g_n^-)$ is essentially the **average** $E_{out}(g)$ on data set of size (N-1). The full input set, minus single sample reserved for cross-validation each time.
- $E_{loocv}(\mathcal{H}, \mathcal{A})$ provides an **almost unbiased** estimate of $E_{out}(g)$
- 6. Leave-one-out cross validation in practice

• E_{loov} provides a much better proxy for E_{out} when used in model selection

V-fold Cross Validation

- 1. Disadvantages of leave-one-out estimate
 - High computation cost, linear to input size
 - For a set of N samples, by definition of $E_{loocv}(\mathcal{H}, \mathcal{A})$, N additional "trainings" are required (N-1 inputs each) to obtain the best model, which is not always feasible in practice
 - Except for special cases **with analytical solutions available** (e.g. linear regression), which allows for computation cost of leave-one-out estimate to decouple from input size
 - Stability
 - Validation errors calculated on **single sample** $\longrightarrow E_{loocv}(\mathcal{H}, \mathcal{A})$ could fluctuate significantly if there are outliers Averaging over all samples does not necessarily offsets such fluctuations.
 - Such flucuations could potentially impact outcome of the cross-validation, depending on contents of input set
- 2. V-fold cross validation
 - Key idea: **Partition** \mathcal{D} **into** N **parts**, and use N-1 parts for training, the remaining part for vaidation
 - Instead of *N* being the total number of samples, here *N* is the number of "folds" (partitions)
 - V-fold cross validation: **Random partition** of \mathcal{D} into V **equal parts**. Use V-1 for training and 1 for validation orderly

3. V-fold cross validation estimate:

$$E_{loocv}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{val}^{(v)}(g_{\overline{v}}^{-})$$

4. Model selection by V-fold cross validation

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}} (E_m = E_{cv}(\mathcal{D}_m, \mathcal{A}_m))$$

- 5. E_{cv} provides similar guarantee for $\overline{E_{out}}(N-1)$, just in a scaled fashion (by factor of V), compared to $E_{loocv}(\mathcal{H}, \mathcal{A})$
 - Refer to proof above, replacing definition of $E_{loocv}(\mathcal{H}, \mathcal{A})$ with that of E_{cv}
 - Leave-one-out can be viewed as a special case of V-fold cross validation, with partitions of size 1
- 6. V-fold cross validation in practice
 - Rule of thumb: V = 5 or 10
 - V-fold cross validation much more widely used than leave-one-out, and performing V-fold cross validation is generally preferred over performing a single validation if computation allows
 - More stable results from averaging E_{cv} across all partitions
- 7. Nature of validation
 - All training methods aim to select best hypothesis within a given hypothesis set ("Qualification")
 - All validation schemes aim to select best hypothesis out of the best one from each available

hypothesis set ("Final")

- All testing methods aim to **evaluate** the performance of the selected hypothesis on real out-of-sample data
- 8. Since validation uses samples from the input/training set, it still reports **more optimistic** errors than testing, which uses out-of-sample data
 - Always **choose** hypothesis using training+validation, but **report performance** on test set