

University of Saskatc College of Enginee

EE 342: Power Systems I

Midterm Examination

A one formula sheet is allowed

Instructor: S.O. Faried Duration: 75 minutes

October 29, 2003

- 1. Each of a proposed three-phase 1200-kV, 600 kilometers transmission line consists of a conductor bundle composed of 12 solid conductors symmetrically spaced around a circle 100 cm in diameter. Each conductor has a diameter of 1.2 cm. Each phase bundle is placed in a corner of an equilateral triangle of 15 m side.
 - (a) Compute the inductance and capacitance per phase and meter of the line. \(\lambda\)
 - (b) If the resistance of each conductor in the bundle is 0.461 Ohms per kilometer, find the ABCD constants of the line.
 - (c) If the load on this line is 6500 MW at 1200 kV and 0.8 power factor lagging, find the line efficiency.
 - (d) Determine the wavelength and velocity of propagation of the line.
 - (e) Find the MVAR generation per kilometer.
- 2. Draw the one line reactance diagram for the power system shown in Fig. 1. Select 1000 MVA base and 20 kV base at Generator 3.

Fig. 1

 G_1 , 400 MVA, 26 kV, x = 0.8 pu. G_2 , 600 MVA, 13 kV, x = 0.8 pu. G_{35} , 500 MVA, 18 kV, x = 1.0 p.u. T_1 , 400 MVA, 26/500 kV, x = 0.1 pu. T_2 , 700 MVA, 13/500 kV, x = 0.1 pu. T_3 , 600 MVA, 18/500 kV, x = 0.1 pu. TL_{AB} , x = j50 Ω TL_{BC} , x = j40 Ω TL_{AC} , x = j60 Ω S_L , 0.05+ j0.2 Ω

FEGELAS /

$$D_{14} = \sqrt{2} P_{1}$$

H/m

$$D_{5} = \sqrt{11.9988} \times r' \times R''$$

$$D_5 = \sqrt{11.9988 * e^{-0.25}} * 0.006 * (0.5)$$

$$D_5 = 0.4/67 m$$

$$L = 2 * 10^{-7} lm \cdot \frac{15}{9.4/67}$$
 H/m

PHOB; FMS

CLASS

NAME

DATE

$$Z_{c} = \sqrt{\frac{2}{\gamma}} = 215.364 \ L - 4.04819 \ UZ$$

$$\delta = \sqrt{27} = 0.7603 \ \angle 85.95390$$

$$\delta = \alpha + J\beta = 0.0536 + J 0.7584$$

$$\lambda = \frac{2T}{\beta} = \frac{2\pi}{(0.7584 / 600000)}$$

$$D = 4970.8745 \text{ Km}$$

$$9 = 298252.4671 \text{ Km/sec}$$

$$A = D = 6.7279 2.9068$$

$$C = 0.003203 \frac{190.8084}{\sqrt{}}$$

$$I_{R} = \frac{6500 * 10^{6}}{\sqrt{3} * 1200 * 10^{3} * 0.8} = 3909.1424 \left[-36.869.1^{\circ} A \right]$$

PROBLEMS.

CLASS

NAME

DATE

$$Is = 0.003203 \frac{190.8084}{\sqrt{3}} \times \frac{1200000}{\sqrt{3}}$$

$$I_5 = 2412.2279 15.1207$$
 A

$$P_{S} = \sqrt{3} * 1749.744 * 1000 * 2412.2279 Cm [25.965]-15.120$$

$$rac{p_{R}}{P_{S}} = \frac{P_{R}}{P_{S}} = 90.5286 \%$$