ASYMPTOTIC NOTATION

ANALYSIS OF ALGORITHM

- Asymptotic analysis refers to computing the running time of any operation in mathematical units of computation. Example: $T_A(N)=O(n^2)$
- Types
- Big oh or upper bound
- Big theta or tight bound
- Big omega or lower bound

■ The function f(n) = O(g(n)) iff \exists positive constant c and n_0 such that f(n) < = cg(n) for \forall $n > n_0$

■ The function f(n) = O(g(n)) iff \exists positive constant c and n_0 such that f(n) < = cg(n) for \forall $n > n_0$

Example-
$$f(n)=6n+7$$

$$6n+7 \le 6n+7n$$

$$c=13 g(n)=n$$
 so complexity= $O(n)$, $n_0=1$

■ The function f(n) = O(g(n)) iff \exists positive constant c and n_0 such that f(n) < = cg(n) for \forall $n > n_0$

Example-
$$f(n)=6n+7 \\ 6n+7 <= 6n^2+7n$$

$$c=13 \ g(n)=n^2 \quad \text{so complexity}= O(n^2) \quad , \ n_0=1$$

■ The function f(n) = O(g(n)) iff \exists positive constant c and n_0 such that f(n) < = cg(n) for \forall $n > n_0$

Example-
$$f(n)=6n+7$$
 so complexity= $O(n^2)$ or $O(n)$, $n_0=1$

$$1 < logn < \sqrt{n} < n < nlogn < n^2 < n^3 < \dots < 2^n < 3^n < n^n$$

N.B- choose Closest one

■ The function $f(n) = \Omega(g(n))$ iff \exists positive constant c and n_0 such that $f(n) \ge cg(n)$ for \forall $n \ge n_0$.

■ The function $f(n) = \Omega(g(n))$ iff \exists positive constant c and n_0 such that $f(n) \ge cg(n)$ for \forall $n \ge n_0$

Example-
$$f(n)=6n+7$$

$$6n+7>=n\;,n0=0$$

$$c=1\;g(n)=n\quad \text{so complexity=}\;\Omega(n)\;\;,\; n_0=0$$

■ The function $f(n) = {}_{\Omega}(g(n))$ iff \exists positive constant c and n_0 such that f(n) > = cg(n) for \forall $n > n_0$

Example-
$$f(n)=6n+7$$

$$6n+7>= log n$$

$$c=l\ g(n)=log n \quad \text{so complexity}=\ \Omega(log n) \quad , \quad n_0=l$$

■ The function $f(n) = \Omega(g(n))$ iff \exists positive constant c and n_0 such that f(n) > = cg(n) for \forall n>n₀ Example- f(n) = 6n + 7

so complexity=
$$O(logn)$$
 or $O(n)$, $n_0 = 1$

$$1 < logn < \sqrt{n} < n < nlogn < n^2 < n^3 < \dots < 2^n < 3^n < n^n$$

N.B- choose Closest one

BIG THETA OR TIGHT BOUND

■ The function $f(n) = \Theta(g(n))$ iff \exists positive constant c1,c2 and n_0 such that

$$c2g(n) = \langle f(n) \rangle = c | g(n)$$
 for $\forall n > n_0$

for
$$\forall$$
 n>n_{0.}

BIG THETA OR TIGHT BOUND

■ The function $f(n) = \Theta(g(n))$ iff \exists positive constant c1,c2 and n_0 such that

$$c2g(n) = \langle f(n) \langle = c | g(n) \rangle$$
 for $\forall n > n_0$.

Example-
$$f(n)=6n+7$$

 $n \le 6n+7 \le 13n$
 $c1=1, g(n)=n$ $f(n) c2=13, g(n)=n$ $f(n)=\Theta(n)$

BIG THETA OR TIGHT BOUND

The function $f(n) = \Theta(g(n))$ iff \exists positive constant c1,c2 and n_0 such that $c2g(n) = \langle f(n) \rangle = c1g(n)$ for $\forall n > n_0$

Example-
$$f(n)=6n+7$$

 $n \le 6n+7 \le 13n$
 $c1=1, g(n)=n$ $f(n) c2=13, g(n)=n$ $f(n)=\Theta(n)$

■ $1 < logn < \sqrt{n} < n < nlogn < n^2 < n^3 < \dots < 2^n < 3^n < n^n$

ASYMPTOTIC NOTATION

$$f(n) = \Omega(g(n))$$

$$f(n) = \Theta(g(n))$$

■ Find the all possible complexities of f(n)=4n³+3n+5

$$=$$
 $<=f(n), n_0=$ $f(n)<=, n_0=$

$$<=f(n)<=, n_0=$$

■ Find the all possible complexities of f(n)=4n³logn+2n+5

?<=
$$f(n)$$
, n_0 = ? $f(n)$ <= ? , n_0 =?

?
$$<=f(n)<=$$
 ? $, n_0=$?

- Find the all possible complexities of f(n)=4n³logn+2n+5
- $n^3 \log n <= f(n), n_0 = I || f(n) <= I I n^3 \log n, n_0 = I$
- $n^{3}logn <=f(n)<=IIn^{3}logn , n_{0}=I$
- $= \Omega(n^3 log n)$ $\Theta(n^3 log n)$ $O(n^3 log n)$

■ Find the all possible complexities of f(n)=n!

$$f(n)=n.(n-1).(n-2)......3.2.1$$

■ Find the all possible complexities of f(n)=log(n!)

$$f(n) = log(n.(n-1).(n-2).....3.2.1)$$

$$\log() \le f(n) \le \log() , n_0 =$$

Reflexive -

If
$$f(n)$$
 is given Then $f(n)=O(f(n))$

Example-
$$f(n)=n$$
 $f(n)=O(n)$

Transitive-

If
$$f(n)$$
 is $O(g(n))$ and $g(n)=O(h(n))$ Then $f(n)=O(h(n))$
Example- $f(n)=5n$ $g(n)=n^2$ $h(n)=n^3$
 $O(n^3)$

■ Symmetric- (only true for Θ notation)

If
$$f(n)$$
 is $\Theta(g(n))$ then $g(n) = \Theta(f(n))$.

Example-
$$f(n)=5n^2$$
 $g(n)=n^2$

■ Transpose Symmetric- (only true for $O \& \Omega$ notation)

If f(n) is O(g(n)) then $g(n) = \Omega(f(n))$.

Example-
$$f(n)=5n$$
 $g(n)=n^2$ Then $n=O(n^2)$ and $n^2=\Omega(n)$

If
$$f(n) = O(g(n))$$
 and $d(n)=O(e(n))$ then
$$f(n)+d(n)=O(\max(g(n),e(n))$$
 Example- $f(n)=5n$ $d(n)=n^2$ Then
$$f(n)+d(n)=O(n) +O(n^2)=O(n^2)$$

If
$$f(n) = O(g(n))$$
 and $d(n)=O(e(n))$ then
$$f(n)*d(n)=O(g(n)*d(n))$$
 Example- $f(n)=5n$ $d(n)=n^2$ Then
$$f(n)*d(n)=O(n^3)$$