6.057 Introduction to MATLAB

Orhan Celiker, IAP 2019

Revised by Min Ding, Feb 1 2021

1

Analyze Code

In the top ribbon, navigate to: Home -> Environment -> Preferences

PUBLISH

New Variable

VIEW

HOME

PLOTS

APPS

Allows you to customize your MATLAB experience (colors, fonts, etc.)

C Search Documentation

Log In

In the top ribbon, navigate to:
 Home -> Environment -> Add-Ons

PUBLISH

VIEW

 Allows you to install toolboxes included with your license

Recommended toolboxes:

Curve Fitting Toolbox

HOME

PLOTS

APPS

- Computer Vision System Toolbox
- Image Processing Toolbox
- Optimization Toolbox
- Signal Processing Toolbox
- o and anything related to your field!

Q Search Documentation

Log In

Help/Docs

- help
 - The most important command for learning MATLAB on your own!
- To get info on how to use a function:
 - o help sin
 - Help lists related functions at the bottom and links to the documentation
- To get a nicer version of help with examples and easy-to-read description:
 - o doc sin
- To search for a function by specifying keywords:
 - docsearch sin trigonometric

Official Documentation

http://www.mathworks.com/help/matlab/

Outline

- Example 1. Variables, Index, and Numerical Operations

 Example 2. Optimization & User-defined Functions

 Example 3. Image Processing
- Example 3. Image Processing
- 4. Statistics and ML Toolbox

2. Optimization Toolbox

Optimization Toolbox

Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox™ provides functions for finding parameters that minimize or maximize objectives while satisfying constraints. The toolbox includes solvers for linear programming, mixed-integer linear programming, quadratic programming, nonlinear optimization, and nonlinear least squares. You can use these solvers to find optimal solutions to continuous and discrete problems, perform tradeoff analyses, and incorporate optimization methods into algorithms and applications.

Examples

Functions

Release Notes

PDF Documentation

Getting Started

Learn the basics of Optimization Toolbox

Optimization Problem Setup

Choose solver, define objective function and constraints, compute in parallel

Nonlinear Optimization

Solve constrained or unconstrained nonlinear problems with one or more objectives, in serial or parallel

Linear Programming and Mixed-Integer Linear Programming

Solve linear programming problems with continuous and integer variables

Quadratic Programming

Solve problems with quadratic objectives and linear constraints

Least Squares

Solve least-squares (curve-fitting) problems

Systems of Nonlinear Equations

Find roots of sets of nonlinear equations

Optimization Results

Understand solver outputs and improve results

3. Image Processing Toolbox

http://www.mathworks.com/help/images/index.html

Courtesy of The MathWorks, Inc. Used with permission. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See <u>www.mathworks.com/trademarks</u> for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

... and also Computer Vision

http://www.mathworks.com/help/vision/index.html

47

... and also Computer Vision

http://www.mathworks.com/help/vision/functionlist.html

Feature Detection, Extraction, and Matching

 detectFASTFeatures
 Find corners using FAST algorithm

 detectHarrisFeatures
 Find corners using Harris—Stephens algorithm

 detectMinEigenFeatures
 Find corners using minimum eigenvalue algorithm

detectMSERFeatures Detect MSER features
detectSURFFeatures Detect SURF features

extractFeatures Extract interest point descriptors

extractHoGFeatures Extract Histograms of Oriented Gradients (HOG) features

matchFeatures Find matching features

showMatchedFeatures Display corresponding feature points
binaryFeatures Object for storing binary feature vectors

cornerPoints Object for storing corner points

Object for storing SURF interest points

MSERRegions Object for storing MSER regions

vision.BoundaryTracer Trace object boundary
vision.CornerDetector Detect corner features
vision.EdgeDetector Find object edge

Also consider OpenCV+MATLAB http://www.mathworks.com/discovery/matlab-opencv.html

configureKalmanFilter	Create Kalman filter for object tracking
disparity	Disparity map between stereo images
trainCascadeObjectDetector	Train cascade object detector model
detectFASTFeatures	Find corners using FAST algorithm
detectHarrisFeatures	Find corners using Harris-Stephens algorithm
detectMinEigenFeatures	Find corners using minimum eigenvalue algorithm
detectMSERFeatures	Detect MSER features
detectSURFFeatures	Detect SURF features
extractFeatures	Extract interest point descriptors
extractHOGFeatures	Extract Histograms of Oriented Gradients (HOG) features
insertObjectAnnotation	Annotate truecolor or grayscale image or video stream
assignDetectionsToTracks	Assign detections to tracks for multiobject tracking
matchFeatures	Find matching features
cornerPoints	Object for storing corner points
SURFPoints	Object for storing SURF interest points
MSERRegions	Object for storing MSER regions
vision.KalmanFilter	Kalman filter for object tracking
vision.BlockMatcher	Estimate motion between images or video frames
vision.CascadeObjectDetector	Detect objects using the Viola-Jones algorithm
vision.ForegroundDetector	Detects foreground using Gaussian mixture models
vision.HistogramBasedTracker	Histogram-based object tracking
vision.OpticalFlow	Estimate object velocities
vision.PeopleDetector	Detect upright people using HOG features
vision.PointTracker	Track points in video using Kanade-Lucas-Tomasi (KLT) algor
vision.TemplateMatcher	Locate template in image

Object Detection Motion Estimation and Tracking

48

SURFPoints

4. Machine Learning (Stats Toolbox)

http://www.mathworks.com/help/stats/index.html

Supervised Learning

Regression, support vector machines, parametric and nonparametric classification, decision trees

Linear Regression

Multiple, stepwise, multivariate regression models, and more

Nonlinear Regression

Nonlinear fixed and mixed-effects regression models

Generalized Linear Models

Logistic regression, multinomial regression, Poisson regression, and more

Classification Trees and Regression Trees

Decision trees for regression and classification

Support Vector Machines

Support vector machines for binary classification

Discriminant Analysis

Linear and quadratic discriminant analysis classification

Naive Bayes Classification

Train Naive Bayes classifiers

Nearest Neighbors

Find nearest neighbors for classification

Model Building and Assessment

Feature selection, cross validation, predictive performance evaluation

Unsupervised Learning

Clustering, Gaussian mixture models, hidden Markov models

Hierarchical Clustering

Produce nested sets of clusters

k-Means Clustering

Cluster by minimizing mean distance

Gaussian Mixture Models

Cluster based on Gaussian mixture models using the EM algorithm

Hidden Markov Models

Markov models for data generation

Cluster Evaluation

Evaluate number of clusters

Ensemble Learning

Ensembles for Boosting, Bagging, or Random Subspace

Boosting

Improve predictions using AdaBoost, RobustBoost, GentleBoost, and more

Bagging

50

Improve predictions using bootstrap aggregation

Random Subspace

Improve predictions using random subspace

48