#### CS151 Intro to Data Structures

Balanced Search Trees, AVL Trees

### Announcements

Last lab will be this week

HW07 due Friday 12/08 Hashmaps & Sorting

HW08 due 12/14

#### HW07

- Check correctness on small ArrayList<Integer>
- All five of your deduplication methods should return identical lists
- The one that calls Collections.sort is probably most trustworthy
- doubleHash should result in better hashing stats over linearHash

## Faculty Interview/Mock Lecture

• Friday 12/08 – 11-11am

Binary Search Tree

Location: TBD

Tea & Snacks

### Outline

**Review Balanced Binary Trees** 

**AVL Trees** 

**Splay Trees** 

Skip List

Sets

## Binary Search Trees

Performance is directly affected by the height of tree

All operations are O(h)

- h = O(n) worst case
- h = O(logn) best case

Expected O(logn) if tree is balanced



### **Balanced Trees**

 The difference between the height of the left and right subtree for any node is at most 1

Left subtree of a node is balanced

Right subtree of a node is balanced

# Types of imbalances

• Left Left

• Left Right

• Right Left

• Right Right

## Types of imbalances

• Left Left

• Left Right

• Right Left

• Right Right



#### Rotations

#### Right rotation:

- Root node's left child becomes the new root
- Root node becomes the left child's right child

#### Left rotation:

- Root node's right child becomes the new root
- Root node becomes the right child's left child



### Types of imbalances

- Left Left
  - Right rotation
- Left Right
  - Left rotation (makes LL)
  - Then Right rotation
- Right Left
  - Right rotation (makes RR)
  - Then left rotation
- Right Right
  - Left rotation





### Outline

Double Hashing Review (Homework 07)

**Balanced Binary Trees** 

**AVL Trees** 

**Splay Trees** 

**Red-Black Trees** 

#### **AVL Tree**

Height of a subtree is the number of edges on the longest path from subtree root to a leaf

Height-balance property

 For every internal node, the heights of the two children differ by at most 1

Any binary tree satisfying the height-balance property is an AVL tree

### AVL Tree Example

leaves are sentinels and have height 0



### AVL Tree Example

leaves are sentinels and have height 0



## AVL height

The height of an AVL is O(logn)

n(h) denotes the number of minimum internal nodes for an AVL with height h

• 
$$n(1) = 1$$
 and  $n(2) = 2$ 

• 
$$n(h) = 1 + n(h-1) + n(h-2)$$

• 
$$n(h) > 2 \cdot n(h-2) > 2^i \cdot n(h-2i)$$

• 
$$h - 2i = 1 \implies i = \frac{h}{2} - 1$$

• 
$$\log(n(h)) = \frac{h}{2} - 1 \Longrightarrow h < 2\log(n(h)) + 1$$

### Insert 54



## Insertion (54)

New node always has height 1
Parent may change height
All ancestors may become
unbalanced

Perform rotations for unbalanced ancestors



### O(1) Rotation Restores Global Balance





#### After rebalance:

- x, y and z are balanced after
- root of subtree returns to height h+2, as before





#### Exercise

- Create an AVL tree by inserting the nodes in this order:
  - M, N, O, L, K, Q, P, H, I, A



- AVL balance marked on nodes
- balance(n) = height of right subtree height of left subtree
- AVL balance property:  $|balance(n)| \le 1$

### **AVL** Animation

#### Exercise

- Create an AVL tree by inserting the nodes in this order:
  - M, N, O, L, K, Q, P, H, I, A



- AVL balance marked on nodes
- balance(n) = height of right subtree height of left subtree
- AVL balance property:  $|balance(n)| \le 1$

### Rebalance: no null checks

```
rebalance(n):
 updateHeight(n) // update height from children
 lh = n.left.height rh = n.right.height
  if (lh > rh+1) // left subtree too tall
    llh = n.left.left.height lrh = n.left.right.height
    if (llh >= lrh)
      return rotateRight(n) //left-left
    else
      return rotateLeftRight(n) //left-right
 else if (rh > lh+1) // right subtree too tall
    // ... symmetric
 else return n // no rotation
```

### Helpers

```
updateHeight(n):
rotateRight(r):
 p = r.left
                                 lh = n.left.height
  r.left = p.right
                                 rh = n.right.height
 p.right = r
                                 height = 1+max(lh, rh)
 updateHeight(r)
 updateHeight(p)
  // let caller set parent
  // return new subtree root
  return p
rotateLeftRight(r):
  r.left = rotateLeft(r.left)
  return rotateRight(r)
```

## Insert with parent

```
insertRec(root, key):
  if root == null:
    return new Node (key)
  if root.key > key:
    root.left = insertRec(root.left, key)
    root.left.parent = root
 else
    root.right = insertRec(root.right, key)
    root.right.parent = root
  return root
```

### Delete 32



### Deletion

Deletion structurally removes a node with 0 or 1 child

- predecessor has 0 or 1 left child
- successor has 0 or 1 right child

Deletion may reduce the height of parent

Ancestors may become unbalanced Rotate to rebalance just like insertion



# O(logn) Rotations

Unlike insertion where rotation of the nearest unbalanced ancestor restores the balance globally

On deletion, rotation of the nearest unbalanced ancestor only guarantees balance locally to the subtree

Worst-case requires O(logn) rotations up the tree to restore balance globally

## Performance of AVLTreeMap

| Method                                            | Running Time    |
|---------------------------------------------------|-----------------|
| size, isEmpty                                     | <i>O</i> (1)    |
| get, put, remove                                  | $O(\log n)$     |
| firstEntry, lastEntry                             | $O(\log n)$     |
| ceilingEntry, floorEntry, lowerEntry, higherEntry | $O(\log n)$     |
| subMap                                            | $O(s + \log n)$ |
| entrySet, keySet, values                          | O(n)            |

## Book's Implementation of AVL

- 17 classes!
- Interfaces
  - Entry
  - Position
  - Queue
  - Tree
  - BinaryTree
  - Map
  - SortedMap

#### Abstract classes:

- AbstractTree
- AbstractBinaryTree
- AbstractMap
- AbstractSortedMap

#### Concrete classes

- SinglyLinkedList
- LinkedQueue
- LinkedBinaryTree
- TreeMap
- AVLTreeMap

### Outline

**Review Balanced Binary Trees** 

**AVL Trees** 

**Splay Trees** 

Skip List

Sets

### Splay Tree

- A binary search tree that doesn't enforce a  $O(\log n)$  bound on the height
- Efficiency is achieved due to a move-to-root operation, called splaying
- Performed at the leaf reached during every insert, delete and search
- Causes the more frequently accessed elements to be near the top

# Splaying

• Swapping a BST node x up depends on the relative position of x, its parent y and its grandparent z

Zig/zag: y has no parent



Splaying will continue these rotations until x becomes root

# Splaying

zig-zig (zag-zag):
 x and y are both
 right/left children





• zig-zag (zag-zig): one right one left



# Example – insert 14



# Example



# When/what to Splay

- On search for x: if x is found, splay x else splay x's parent
- On insert x: splay x after insertion



- On delete x: splay parent of removed node
  - *x* is removed
  - in-order successor/predecessor removed

### Deletion



## How to Splay



# Analysis of Splaying

- Splay trees do rotations after every operation (even search)
- Runtime of each search/insert/delete is proportional to the time for splaying
- Each zig-zig, zig-zag or zig is O(1)
- Splaying a node at height h is O(h)
- Worst case height of a splay tree is O(n)

#### Amortized Performance

- A splay tree performs well in amortization in a sequence of mixed searches, insertions and deletions
- Splay tree performs better for many sequences of non-random operations
- Amortized cost for any splay operation is O(logn)
- Must faster search than O(logn) on frequently requested items

#### **AVL** Rotations

- AVL insert O(logn)
  - Find the lowest out-of-balance ancestor also known as the critical node, rotate critical node to balance. Loop ends after single rotation
  - O(logn) search up the tree to find critical node + O(1) rotations
- AVL delete O(logn)
  - O(logn) rotations on delete

#### Outline

**Review Balanced Binary Trees** 

**AVL Trees** 

**Splay Trees** 

**Skip List** 

Sets

#### The Problem with lists

- If you must use a linked list
  - because of frequent insertions and deletions
- How do you arrange a fast search?
- What if the list is sorted?
- Still no way to arrange binary search
- java.util.Concurrent.ConcurrentSkipListMap

## Skip List

A skip list for a set S of (key, value) pairs is a series of lists  $S_0, S_1, \dots, S_h$  such that

- each list contains special keys  $-\infty$  and  $+\infty$
- $S_0$  contains all keys of S in nondecreasing order
- Each list is a subsequence of the one before:

$$S_0 \supseteq S_1 \supseteq \dots \supseteq S_h$$

•  $S_h$  only contains the two special keys



#### Search

#### Search for a key x in a skip list:

- start at the first position p of  $S_h$
- compare x with y=next(p)
  - x == y return y
  - x > y: scan forward p=next(p)
  - x < y: drop down p=below(p)



# Example



### Search for 50



### Skip List

- provides a clever compromise to realize a faster search on a sorted list (map)
- insertion is randomized
  - always insert into  $s_0$
  - flip a coin for how many more lists to insert
  - expected runtime of O(logn)
- search is O(logn) expected
- remove via search then up O(logn) expected

#### Insert 42



#### Insert 42



### Remove 25



### Remove 25



# Skip List Analysis

| Method                                              | Running Time                                      |
|-----------------------------------------------------|---------------------------------------------------|
| size, isEmpty                                       | O(1)                                              |
| get                                                 | $O(\log n)$ expected                              |
| put                                                 | $O(\log n)$ expected                              |
| remove                                              | $O(\log n)$ expected                              |
| firstEntry, lastEntry                               | O(1)                                              |
| ceilingEntry, floorEntry<br>lowerEntry, higherEntry | $O(\log n)$ expected                              |
| subMap                                              | $O(s + \log n)$ expected, with s entries reported |
| entrySet, keySet, values                            | O(n)                                              |

#### Outline

**Review Balanced Binary Trees** 

**AVL Trees** 

**Splay Trees** 

Skip List

Sets

#### Set

- A set is an unordered collection of elements, without duplicates
- A set supports an efficient search
- A hashtable is a set
- A multi-set (bag) allows duplicates
- A multi-map allows the same key to be mapped to multiple values

#### set ADT

```
add(e): Adds the element e to S (if not already present). remove(e): Removes the element e from S (if it is present). contains(e): Returns whether e is an element of S. iterator(): Returns an iterator of the elements of S.
```

There is also support for the traditional mathematical set operations of *union*, *intersection*, and *subtraction* of two sets *S* and *T*:

```
S \cup T = \{e \colon e \text{ is in } S \text{ or } e \text{ is in } T\}, S \cap T = \{e \colon e \text{ is in } S \text{ and } e \text{ is in } T\}, S - T = \{e \colon e \text{ is in } S \text{ and } e \text{ is not in } T\}. addAll(T): Updates S to also include all elements of set T, effectively replacing S by S \cup T. retainAll(T): Updates S so that it only keeps those elements that are also elements of set T, effectively replacing S by S \cap T. removeAll(T): Updates S by removing any of its elements that also occur in set T, effectively replacing S by S - T.
```

### Implementation

- Recall that maps do not allow duplicate keys
- A set is simply a map in which keys have no associated values (or null)
- java.util.HashSet
- java.util.Concurrent.ConcurrentSkipListSet
- java.util.TreeSet

# Java Built-ins: java.util.\*

- Linked List
  - LinkedList
- Stack
  - Stack (linked)
- Queue
  - ArrayDqueue
- BST (unbalanced)
  - none
- Heap
  - PriorityQueue

- Hashtable
  - HashMap (chained)
- Set
  - HashSet
- Balanced BST
  - TreeMap (R&B)
- Search/Sort
  - Collections.bina rySearch
  - Collections.sort

# Framework Diagram

