

ADA 079806

DDC FILE COPY

MCDONNELL DOUGLAS RESEARCH LABORATORIES
DDC

MCDONNELL DOUGLA

80 1 24 022

REPORT D	THIS PAGE (When Data Entered)	
	OCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACC	
14) MDC-QØ684		4
A. TITLE food Subtitles		5. TYPE OF REPORT A BERIOD COVERED
OF TITANIUM ALLOYS	EARTH ADDITIONS ON PROPE Plane-Strain Fracture	e \1 Apr 78-31 Mar 79,
	and High-Temperature Defo Erbium and Yttrium Addit	
7. AUTHOR(0) Richa	ule) - (Peter) -	8. CONTRACT OR GRANT NUMBER(s)
M. L. Sastry, E. S & E. S'Neal	J./Lederich, S./Pao	and N60014-76-C-0626
9. PERFORMING ORGANIZATIO	N NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
	Research Laboratories	AREA & WORK UNIT NUMBERS
McDonnell Douglas		(12) 70/
St. Louis, Missour	i 63166	
11. CONTROLLING OFFICE NAM		12. REPORT DAYS 31 May ●79
Office of Naval Res 800 N. Quincy Street		31 May 79
Arlington, Virginia		69
	E & ADDRESS(If different from Controlli	ing Office) 15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT	(of this Report)	
	c release; distribution	
17. DISTRIBUTION STATEMENT	(of the abstract entered in Block 20, if	different from Report)
18. SUPPLEMENTARY NOTES		
	erae side if necessary and identify by bl	
Titanium alloy	Grain refinement	Ductility Fracture toughness
Ti-6A1-4V Yttrium	Second-phase dispersi Yield stress	on Fracture toughness Superplasticity
Erbium	Ultimate tensile stre	
	Elongation	Forgeability
Microstructure 20. ABSTRACT (Continue on reve	erse side if necessary and identify by blo	

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE 405 325 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ingot-breakdown forging by suppressing the edge cracking. The Y-containing Ti-6Al-4V has lower flow stress and higher strain-rate sensitivity of flow stress and consequently better superplasticity than the reference alloy at 906°C at strain rates of 10-5-10-7 s T. The room-temperature plane-strain fracture toughness, yield stress, ductility, and high-temperature creep are not significantly altered by the rare-earth additions.

,00001 to ,001

PREFACE

This report presents the results of the third phase of an investigation of the effects of rare-earth additives on titanium alloys performed by the McDonnell Douglas Research Laboratories under Office of Naval Research contract No. N00014-76-C-0626. The scientific officer for the contract is Dr. Bruce A. MacDonald of ONR.

The principal investigator is Dr. Shankar M. L. Sastry; co-investigators are Mr. Richard J. Lederich, Dr. Peter S. Pao, and Mr. James E. O'Neal. The work was performed in the Solid State Sciences department under the direction of Dr. Charles R. Whitsett.

This report has been reviewed and is approved.

Charles R. Whiteett

Charles R. Whitsett

Chief Scientist - Solid State Sciences McDonnell Douglas Research Laboratories

D. P. ames

Donald P. Ames Staff Vice President McDonnell Douglas Research Laboratories Accession For

NTIS G.L. II

DDC TAB

Unamnounced

Justification

By

Distribution/

Availability Codes

Availand/or

pist.

Special

Bruce A. MacDonald
Office of Naval Research

TABLE OF CONTENTS

		Page
1	INTRODUCTION	. 1
2	ALLOY PREPARATION	. 4
	2.1 Ingot Melting, Forging, and Rolling of Phase III Ti-6Al-4V-RE	
	Alloys	. 4
	2.2 The Effects of Y and Er Additions on Forgeability of	
	Ti-6Al-4V	. 5
	2.3 Chemical Analyses of the Alloys	. 5
3	MICROSTRUCTURE AND TEXTURE CHARACTERIZATION	. 10
	3.1 Microstructure of As-Cast Alloys	. 10
	3.2 Microstructures of Hot-Worked and Annealed Alloys	. 10
	3.3 Crystallographic Texture of Phase III Ti-6Al-4V-RE Alloys	. 21
4	ROOM-TEMPERATURE TENSILE PROPERTIES	. 28
5	FRACTURE TOUGHNESS OF PHASE III Ti-6A1-4V-RE ALLOYS	. 30
6	HIGH-TEMPERATURE DEFORMATION OF PHASE III Ti-6A1-4V-RE ALLOYS	. 33
	6.1 High-Temperature High-Strain-Rate Deformation of Phase III	
	Ti-6A1-4V-RE Alloys	. 33
	6.2 Superplasticity of Phase III Ti-6Al-4V-RE Alloys	. 33
	6.3 Creep Deformation of Phase III Ti-6Al-4V-RE Alloys	. 37
7	CONCLUSIONS	. 42
RE	FERENCES	
	PPENDIX A. ROOM-TEMPERATURE TENSILE PROPERTIES OF Ti-6A1-4V-RE ALLOY	
	STRIBUTION LIST	

LIST OF ILLUSTRATIONS

Figure	Pa	ge
1	Outline of Phase III research on the effects of rare-earth	
	additions on the properties of titanium alloys	3
2	Forging and rolling schedule for Phase III Ti-6A1-4V-RE	
	alloys	4
3	Photographs of forged 80-mm (a) Ti-6A1-4V reference alloy,	
	(b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er	6
4	Photographs of forged and rolled 30-mm (a) Ti-6Al-4V reference	
	alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er	7
5	Photographs of rolled 13-mm (a) Ti-6Al-4V reference alloy,	
	(b) Ti-6A1-4V-0.05Y, and (c) Ti-6A1-4V-0.1Er	8
6	Microstructures of as-cast (a) Ti-6Al-4V reference alloy,	
	(b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er in the radial	
	direction	1
7	Microstructures of as-cast (a) Ti-6Al-4V reference alloy,	
	(b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er in the perpendicular	
	direction	2
8	Microstructures of forged 80-mm plates of (a) Ti-6Al-4V reference	
	alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er 1	3
9	Microstructures of forged and rolled 30-mm plates of	
	(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
	(c) Ti-6A1-4V-0.1Er	4
10	Microstructures of rolled 13-mm plates of (a) Ti-6A1-4V	
	reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er . 1	5
11	Microstructures of forged 80-mm plates of (a) recrystallization	
	annealed Ti-6Al-4V, and (b) mill annealed Ti-6Al-4V 1	6
12	Microstructures of recrystallization annealed Ti-6A1-4V and	
	Ti-6Al-4V-0.05Y alloys; (a) 30-mm plate Ti-6Al-4V, (b) 30-mm	
	plate Ti-6Al-4V-0.05Y, (c) 13-mm plate Ti-6Al-4V, and	
	(d) 13-mm plate Ti-6A1-4V-0.05Y	7
13	Microstructures of mill-annealed Ti-6Al-4V and Ti-6Al-4V-0.1Er	
	alloys; (a) 30-mm plate Ti-6A1-4V, (b) 30-mm plate	
	Ti-6A1-4V-0.1Er, (c) 13-mm plate Ti-6A1-4V, and (d) 13-mm	
	plate Ti-6A1-4V-0.1Er	8

LIST OF ILLUSTRATIONS (continued)

F	igure		Page
	14	Transmission electron micrographs of mill-annealed (a) Ti-6Al-4V	
		reference alloy, (b) Ti-6A1-4V-0.05Y alloy, and (c) Ti-6A1-4V-	
		0.1Er alloy	19
	15	Transmission electron micrographs of recrystallization-annealed	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y alloy, and	
		(c) Ti-6Al-4V-0.1Er alloy	20
	16	(0002) pole figures at quarter-thickness of 80-mm plates of	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
		(c) Ti-6Al-4V-0.1Er	22
	17	Texture gradient along thickness of 80-mm plate Ti-6A1-4V	
		reference alloy; (0002) pole figure distribution at (a) surface,	
		(b) quarter-thickness, and (c) center plane	23
	18	(0002) pole figures at half-thickness of 30-mm plates of	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
		(c) Ti-6Al-4V-0.1Er	24
	19	(0002) pole figures at half-thickness of 13-mm plates of	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
		(c) Ti-6Al-4V-0.1Er	25
	20	Effect of mill annealing on texture of 30-mm plate of	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
		(c) Ti-6A1-4V-0.1Er	26
	21	Effect of mill annealing on texture of 13-mm plate of	
		(a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and	
		(c) Ti-6Al-4V-0.1Er	27
	22	Flow stress of Ti-6Al-4V-RE alloys at 750°C	35
	23	Flow stress of Ti-6Al-4V-RE alloys at 885°C	35
	24	Flow stress of Ti-6Al-4V-RE alloys at 925°C	36
	25	Effect of yttrium addition on (a) flow stress and (b) strain-rate	2
		sensitivity of Ti-6Al-4V at 906°C	36
	26	Stress-dependence of steady-state creep rate for recrystalliza-	
		tion annealed Ti-6Al-4V-RE alloys at (a) 500°C, (b) 550°C,	
		and (c) 600°C	38
	27	Stress dependence of steady-state creep rate for mill-annealed	
		Ti-6Al-4V-RE alloys at (a) 550°C and (b) 600°C	39

LIST OF ILLUSTRATIONS (continued)

Figure		Page
28	Effect of orientation on stress and temperature dependence	
	of steady-state creep rate for (a) Ti-6Al-4V, (b) Ti-6Al-4V-	
	0.05Y, and (c) Ti-6Al-4V-0.1Er	40
29	Temperature dependence of steady-state creep rate for	
	recrystallization-annealed Ti-6Al-4V-RE alloys	41

LIST OF TABLES

Table		Page
1	CHEMICAL ANALYSES OF PHASE III Ti-6A1-4V ALLOY INGOTS PERFORMED	
	BY TIMET	9
2	CHEMICAL ANALYSES OF PHASE III T1-6A1-4V-RE ALLOY PLATES	
	PERFORMED BY UNITED STATES TESTING CO	9
3	ROOM-TEMPERATURE TENSILE PROPERTIES OF MILL-ANNEALED PHASE III	
	Ti-6A1-4V-RE ALLOYS WITH LOAD IN LONGITUDINAL (L), TRANSVERSE	
	(T), AND SHORT-TRANSVERSE (S-T) DIRECTIONS	29
4	ROOM-TEMPERATURE TENSILE PROPERTIES OF RECRYSTALLIZATION-ANNEALED	
	PHASE III Ti-6A1-4V-RE ALLOYS WITH LOAD IN LONGITUDINAL (L),	
	TRANSVERSE (T), AND SHORT-TRANSVERSE (S-T) DIRECTIONS	29
5	FRACTURE TOUGHNESS OF PHASE III Ti-6A1-4V-RE ALLOYS DETERMINED	
	FROM SLOW-BEND TESTS OF FATIGUE-PRECRACKED CHARPY V-NOTCHED	
	SPECIMENS	30
6	PLANE-STRAIN FRACTURE TOUGHNESS OF PHASE III Ti-6A1-4V-RE	
	ALLOYS	31
7	FRACTURE TOUGHNESS VALUES (KO) DETERMINED FROM SLOW-BEND,	
	PRECRACKED, CHARPY SAMPLES OF PHASE II Ti-6A1-4V-RE ALLOYS	31
8	PLANE-STRESS FRACTURE TOUGHNESS VALUES DETERMINED FROM CENTER-	
	CRACKED TENSION SPECIMENS OF PHASE II Ti-6A1-4V-RE ALLOYS	32
9	HIGH-TEMPERATURE COMPRESSION TEST RESULTS OF MILL-ANNEALED	
	PHASE III Ti-6Al-4V-RE ALLOYS	34
10	HIGH-TEMPERATURE COMPRESSION TEST RESULTS OF RECRYSTALLIZATION-	
	ANNEALED PHASE III Ti-6A1-4V-RE ALLOYS	34
A1	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg-56°C FOR 15 min	45
A2	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT T ₆ -56°C FOR 30 min	45
A3	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT T _β -56°C FOR 60 min	46
A4	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT T6-56°C FOR 180 min	46
A5	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT To-28°C FOR 15 min	47

LIST OF TABLES (continued)

Table		Page
A6	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg - 28°C FOR 30 min	47
A7	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg - 28°C FOR 60 min	48
A8	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg - 28°C FOR 180 min	48
A9	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT T ₈ + 28°C FOR 5 min	49
A10	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 28°C FOR 15 min	49
A11	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 28°C FOR 30 min	50
A12	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 28°C FOR 60 min	50
A13	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I T1-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 56°C FOR 5 min	51
A14	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 56°C FOR 15 min	51
A15	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 56°C FOR 30 min	52
A16	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6A1-4V-RE	
	ALLOYS ANNEALED AT Tg + 56°C FOR 60 min	52
A17	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6A1-4V-RE	
	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	HOT-ROLLED AND ANNEALED, AS RECEIVED	53
A18	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6A1-4V-RE	
	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	RECRYSTALLIZATION ANNEALED	53
A19	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6A1-4V-RE	
	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	BETA ANNEALED	54
A20	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6A1-4V-RE	
	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	SOLUTION-TREATED-AND-AGED	54

LIST OF TABLES (continued)

Table		Page
A21	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	SOLUTION-TREATED-AND-OVERAGED	55
A22	ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6A1-4V-RE	
	ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS;	
	α-β ANNEALED AND AGED	55

1. INTRODUCTION

A systematic investigation was conducted of the effects of metallic rare-earth (RE) additions on the microstructure and properties of Ti-6Al-4V. The objective of the program was to improve the high-temperature formability of Ti-6Al-4V without adversely affecting the room-temperature tensile properties and fracture toughness. In the first two phases of this contract 1,2 , the effects of yttrium, erbium, mischmetal, and yttria additions on the microstructure, room-temperature tensile properties, and fracture toughness (K_Q) of Ti-6Al-4V were determined. In Phase III, research was completed on the influence of metallic rare-earth additions on the microstructure and properties of Ti-6Al-4V by demonstrating that additions of 0.1 wt% Er or 0.05 wt% Y (1) improve the yield during initial forging of Ti-6Al-4V ingots, (2) reduce the high-temperature flow stress, (3) control grain size at β -processing temperatures, and (4) have no significant effect on yield strength and fracture toughness of α - β processed alloy.

A previous study 3 showed that Y_2O_3 -additive is a beta-grain refiner in Ti-6Al-4V and significantly improves ingot forgeability. However, when Y_2O_3 powder is added to Ti-6Al-4V, it remains as large (1-10 μ m) inclusions, which tend to agglomerate in Ti-6Al-4V and can degrade the tensile strength and fracture toughness, particularly in the short transverse direction. Previous studies $^{4-6}$ of metallic rare-earth additives to α -Ti showed that metallic Y and Er dissolve in the molten Ti and precipitate as fine and uniformly dispersed particles, which effectively refine the microstructure of titanium. In this investigation, the approach was to introduce into Ti-6Al-4V a uniform dispersion of fine (< 70 nm diam), second-phase, rare-earth particles, which are particularly effective for refining the alloy microstructure and retarding grain growth.

In Phase I of this investigation, 5-kg ingots of Ti-6Al-4V with various concentrations of Y, Er, and mischmetal were prepared and characterized. Concentrations of 0.1 wt% Er and 0.02-0.05 wt% Y in Ti-6Al-4V were determined to be effective for grain refinement and to not adversely affect the room-temperature tensile properties. In Phase II, 14-kg ingots of Ti-6Al-4V with 0.1 wt% Er, 0.02 wt% Y, 0.05 wt% Y, and 0.038 wt% Y₂O₃, which were cast, forged, and rolled by the Crucible Materials Research Center (CMRC), and were characterized with respect to the effects of different annealing

procedures on room-temperature tensile and fracture-toughness characteristics and crystallographic texture development. The Phase II alloys exhibited beta-grain refinement by Er and Y but were not significantly different at room temperature from the Ti-6Al-4V control alloy except for those properties directly dependent on prior beta-grain size.

In Phase III of the program, the emphasis was on the determination of plane-strain fracture toughness ($K_{\rm IC}$), creep, and high-temperature, high-strain-rate deformation characteristics of the RE-containing Ti-6Al-4V. Figure 1 is an outline of the Phase III studies. For Phase III (second year of the contract), 75-kg ingots of Ti-6Al-4V with 0.1 wt% Er and 0.05 wt% Y were cast, forged, and rolled by the Titanium Metals Corporation of America (TIMET) in Henderson, Nevada. These Phase-III ingots were the first prepared of sufficient size to simulate production ingots. The rare-earth additions reduced the high-temperature flow stress of Ti-6Al-4V at strain rates of 0.05 and 0.5 s⁻¹ and significantly improved ingot-breakdown forging. The room-temperature plane-strain fracture toughness, yield stress, and ductility and high-temperature creep were not significantly altered by the rare-earth additions.

Figure 1. Outline of Phase III research on the effects of rare-earth additions of the properties of titanium alloys.

2. ALLOY PREPARATION

2.1 Ingot Melting, Forging, and Rolling of Phase III Ti-6A1-4V-RE Alloys

One 75-kg ingot of each of the alloys Ti-6Al-4V (reference alloy), Ti-6Al-4V-0.1Er, and Ti-6Al-4V-0.05Y was cast and processed by TIMET in accordance with the plan shown in Figure 2. The rare-earth additions were made in the form of Ti-25Er and Ti-25Y master alloys. Small pieces of Ti-RE master alloy were intimately mixed with the Ti-sponge and Ti-Al-V master alloy, which were pressed into briquettes. The alloy ingots were prepared by consumable-electrode arc melting in vacuum into 160-mm diam, water-cooled, copper molds. The alloy ingots were forged and rolled to 80-mm, 30-mm, and 13-mm plates. The processing operations were selected to simulate the processing of large ingots.

Figure 2. Forging and rolling schedule for Phase III Ti-6Al-4V-RE alloys.

2.2 The Effects of Y and Er Additions on Forgeability of Ti-6Al-4V

A qualitative indication of the effects of Y and Er additions on the hot formability of Ti-6Al-4V was obtained by determining the extent of edge and surface cracking of Ti-6Al-4V during different stages of reduction. Figures 3-5 are photographs of the 80-mm, 30-mm, and 13-mm plates of Ti-6Al-4V-RE alloys processed according to the schedule shown in Figure 2. The significant beneficial effects of the rare-earth additions on the initial ingot break-down forging are clearly revealed in Figure 3. In contrast with the considerable edge- and surface-cracking that occurred on the reference alloy during initial forging, no cracking occurred on the alloys with 0.1Er and 0.05Y as is evident from the photographs of the 80-mm thick plates shown in Figure 3. The rare-earth additions effected an approximately 25% greater yield of crack-free alloy after initial forging. No significant differences in formability between the reference alloy and rare-earth containing alloys were observed after the initial forging step.

2.3 Chemical Analyses of the Alloys

The chemical analyses of the alloys were performed by TIMET and United States Testing Company (USTC), and the results are summarized in Tables 1 and 2. The TIMET analyses shown in Table 1 are for samples taken from the top and bottom of each 160-mm diam ingot. The USTC analyses are for samples cut from the 80-mm, 30-mm, and 13-mm plates. The USTC analytical method consisted of first converting the rare earths to oxalates by dissolving the rare-earth containing specimens in a mixture of hydrofluoric acid and nitric acid, precipitating the rare earths as oxides by heating the samples to 800°C, and analyzing the oxides by x-ray fluorescence. The Y analyses by both companies show lower than the aim chemistry, and this discrepancy is attributed by TIMET to volatilization of the rare earths during vacuum melting. The erbium concentrations determined by USTC are higher than the aim chemistry and those determined by TIMET.

Figure 3. Photographs of forged 80-mm (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 4. Photographs of forged and rolled 30-mm (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 5. Photographs of rolled 13-mm (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

TABLE 1. CHEMICAL ANALYSES OF PHASE III Ti-6AI-4V ALLOY INGOTS PERFORMED BY TIMET.

Alloy heat no.	Nominal composition		Concentration (wt%)						
			Al	V	Y	Er	N	0	Fe
V5604	Ti-6AI-4V	Т	6.14	3.78	-	_	0.016	0.145	0.153
		В	6.16	3.99	-	-	0.017	0.186	0.160
V5605	Ti-6AI-4V-0.05Y	Т	6.23	3.97	0.030	_	0.017	0.128	0.169
		B	6.05	4.12	0.030	-	0.017	0.144	0.165
V5606	Ti-6AI-4V-0.1Er	т	6.16	4.04	_	0.061	0.015	0.128	0.154
		B	6.28	4.15	_	0.065	0.016	0.133	0.134

T = Top of the ingot

GP79-0090-1

TABLE 2. CHEMICAL ANALYSES OF PHASE III Ti-6AI-4V-RE ALLOY PLATES PERFORMED BY UNITED STATES TESTING CO.

Alloy plate	Sample no.	Concentration of Y (wt%)	Concentration of Er (wt%)
80-mm thick plate	1	0.008	0.114
	2	0.011	0.178
	3	0.006	0.187
	4	0.013	0.181
	5	0.013	0.132
30-mm thick plate	1	0.025	0.111
	2	< 0.005	0.159
	3	< 0.005	0.261
	4	< 0.005	0.220
	5	0.018	0.090
13-mm thick plate	1	<0.005	0.490
	2	0.017	0.119
	3	0.015	0.136
	4	0.016	0.152
	5	0.008	0.127

GP79-0000-2

B = Bottom of the ingot

3. MICROSTRUCTURE AND TEXTURE CHARACTERIZATION

3.1 Microstructure of As-Cast Alloys

A 25-mm thick slice was cut from the middle of each 75-kg alloy ingot for characterization of the as-cast microstructure. Specimens for metallographic examination were prepared from the centers of the 25-mm thick slices. Figures 6 and 7 show the typical microstructures observed in the radial and perpendicular directions of the Ti-6Al-4V reference alloy and the Y- and Er-containing alloys. The as-cast microstructure of the reference alloy consists of large transformed-beta grains with several colonies of α platelets within each grain and coarse- α formed during cooling at the prior-beta grain boundaries. In contrast, the Y- and Er-containing alloys exhibit a more homogeneous structure with substantially smaller platelet length and colony size. The preferential α -nucleation at the prior-beta grain boundaries observed in the reference alloy is absent in the Y- and Er-containing alloys, in which the α -phase nucleates uniformly. These microstructural features are similar to those observed previously in Phase I and Phase II alloys.

3.2 Microstructures of Hot-Worked and Annealed Alloys

The microstructures of the Phase III reference alloy and Y- and Ercontaining alloys processed to 80-mm, 30-mm, and 13-mm plates are shown in Figures 8-10. The microstructure of 80-mm plates consists of acicular, basket weave, transformed beta as expected from beta forging. The acicular- α in the reference alloy is irregular and curved, whereas straight α -platelets are observed in the Er- and Y-containing alloys. The α -platelet lengths and colony sizes are smaller in Y- and Er-containing alloys than in the reference alloy. Upon increasing the amount of working in the alpha + beta field, the microstructure changes to equiaxed alpha in a transformed-beta matrix, as seen in the photomicrographs of 30-mm and 13-mm plates (Figures 9 and 10).

Figure 6. Microstructures of as-cast (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er in the radial direction

Figure 7. Microstructures of as-cast (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er in the perpendicular direction

Figure 8. Microstructures of forged 80-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 9. Microstructures of forged and rolled 30-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 10. Microstructures of rolled 13-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

The microstructures of the Phase III alloys after recrystallization annealing and mill annealing are shown in Figures 11-13. The recrystallization-annealed 30-mm and 13-mm alloy plates exhibit equiaxed two-phase microstructures, whereas the mill-annealed plates show no significant change in the elongated- α morphology. The grain size in the Y- and Er-containing alloys is smaller than in the reference alloy in the recrystallization-annealed condition.

Figures 14 and 15 are the electron micrographs of mill-annealed and recrystallization-annealed reference alloy and Er- and Y-containing alloys. The rare-earth-containing alloys contain small dispersoids; however, the number of dispersoids in the thin foils was much lower than expected from the nominal rare-earth concentrations in the alloys.

Figure 11. Microstructures of forged 80-mm plates of (a) recrystallization annealed Ti-6Al-4V, and (b) mill annealed Ti-6Al-4V

Figure 12. Microstructures of recrystallization annealed Ti-6Al-4V and Ti-6Al-4V-0.05Y alloys; (a) 30-mm plate Ti-6Al-4V, (b) 30-mm plate Ti-6Al-4V-0.05Y, (c) 13-mm plate Ti-6Al-4V, and (d) 13-mm plate Ti-6Al-4V-0.05Y

Figure 13. Microstructures of mill annealed Ti-6Al-4V and Ti-6Al-4V-0.1Er alloys;
(a) 30-mm plate Ti-6Al-4V, (b) 30-mm plate Ti-6Al-4V-0.1Er, (c) 13-mm plate Ti-6Al-4V, and (d) 13-mm plate Ti-6Al-4V-0.1Er

Figure 14. Transmission electron micrographs of mill-annealed (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y alloy, and (c) Ti-6Al-4V-0.1Er alloy

Figure 15. Transmission electron micrographs of recrystallization-annealed (a) Ti-6Al-4V reference alloy (b) Ti-6Al-4V-0.05Y alloy, (c) Ti-6Al-4V-0.1Er alloy

3.3 Crystallographic Texture of Phase III Ti-6Al-4V-RE Alloys

The crystallographic textures of the hot-worked and mill-annealed Ti-6Al-4V-RE alloys were determined by x-ray pole-figure goniometry. The texture development in the alloys was studied by determining the (0002) pole figures. The texture gradient in the thickness direction of 80-mm and 30-mm plates was determined from pole figures of specimens from the surface, quarter thickness, and mid-plane regions of the plates.

The 80-mm alloy plates have the intense multicomponent textures (Figure 16) expected from extensive forging in the beta field. The texture sharpnesses at the quarter-thickness and center planes are lower than at the surface (Figure 17). The 30-mm and 13-mm plates which were rolled in the alpha-beta field exhibit transverse-basal texture as shown in Figures 18 and 19. Mill annealing does not result in any significant changes in the texture (Figures 20 and 21). The deformation texture is unaffected by the rare-earth additives.

Figure 16. (0002) pole figures at quarter-thickness of 80-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 17. Texture gradient along thickness of 80-mm plate Ti-6Al-4V reference alloy; (0002) pole figure distribution at (a) surface, (b) quarter-thickness, and (c) center plane

Figure 18. (0002) pole figures at half-thickness of 30-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 19. (0002) pole figures at half-thickness of 13-mm plates of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 20. Effect of mill annealing on texture of 30-mm plate of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 21. Effect of mill annealing on texture of 13-mm plate of (a) Ti-6Al-4V reference alloy, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

4. ROOM-TEMPERATURE TENSILE PROPERTIES

The room-temperature mechanical properties of the Phase III alloys were determined for cylindrical specimens from the 80-mm and 30-mm plates and for rectangular cross-section specimens from the 13-mm plates. Standard-size cylindrical specimens per the ASTM E8-69 standard were used for 80-mm plates. Results for the Phase III alloys are summarized in Tables 3 and 4. The room-temperature tensile-properties data for the Phase I and Phase II alloys are listed for comparison in Tables Al to A22 of Appendix A.

From the results shown in Tables 3, 4, and Al-Al6, the rare-earth additives are seen to have little or no effect on the room-temperature tensile properties of Ti-6Al-4V-RE alloys. Although for the Phase I alloys, a slight lowering of yield stress and ultimate tensile stress was observed in rare-earth containing alloys, the Phase II and Phase III alloys showed no significant effect on strength by the Er and Y additions. There were slight differences in the tensile properties between the Phase I, Phase II, and Phase III alloys which is due likely to small differences in chemistry, processing, and heat treatment.

For the Phase III alloys, the anisotropy in the mechanical properties is least in the beta-forged and mill-annealed 80-mm thick plates, probably because of little texture development. In the 30-mm and 13-mm plates, the 0.2% offset yield stress is higher in the transverse direction than in the longitudinal direction because of the transverse basal texture in these alloys.

TABLE 3. ROOM-TEMPERATURE TENSILE PROPERTIES OF MILL-ANNEALED PHASE III
Ti-6AI-4V-RE ALLOYS WITH LOAD IN LONGITUDINAL (L), TRANSVERSE (T), AND
SHORT-TRANSVERSE (S-T) DIRECTIONS.

Alloy thickness and composition	Yield stress at 0.2% offset (MPa)		te	Ultimate tensile stress (MPa)			Uniform elongation (%)			Total elongation (%)		
	L	т	S-T	L	т	S-T	L	т	S-T	L	т	s-T
80-mm plate				100		* 1	_					
Ti-6AI-4V control	845	854	847	894	883	921	5.1	3.5	5.7	13.7	9.4	13.2
Ti-6AI-4V-0.1Er	825	829	838	867	882	915	4.8	6.5	5.7	10.6	7.8	10.7
Ti-6AI-4V-0.05Y	829	875	817	866	910	914	3.1	7.0	5.9	7.5	10.3	10.9
30-mm plate												
Ti-6AI-4V control	904	973		938	989		6.5	7.2		12.8	12.0	
Ti-6AI-4V-0.1Er	851	913		904	943		7.2	7.0		13.0	12.3	
Ti-6AI-4V-0.05Y	872	983		919	1012		6.8	7.5		11.4	12.5	
13- mm plate												
Ti-6Al-4V control	924	976		970	1009		6.2	6.0		18.4	17.1	
Ti-6AI-4V-0.1Er	865	952		924	1002		6.9	7.6		19.0	19.9	
Ti-6AI-4V-0.05Y	889	925		937	968		6.0	6.7		17.6	16.9	

GP79-0690-3

TABLE 4. ROOM-TEMPERATURE TENSILE PROPERTIES OF RECRYSTALLIZATION-ANNEALED PHASE III Ti-6AI-4V-RE ALLOYS WITH LOAD IN LONGITUDINAL (L), TRANSVERSE (T), AND SHORT-TRANSVERSE (S-T) DIRECTIONS.

Alloy thickness and composition		ield street of (MPa)			Ultimate tensile stress (MPa)		Uniform elongation (%)			Total elongation (%)		
	ι	т	S-T	L	т	S-T	L	т	S-T	L	т	S-T
80-mm plate		WARE !										
Ti-6AI-4V control	837	836	845	891	873	873	3.4	2.9	4.2	9.4	8.5	9.3
Ti-6AI-4V-0.1Er	802	825	770	860	876	867	7.0	5.7	4.6	14.0	11.8	11.5
Ti-6AI-4V-0.05Y	770	836	781	822	869	855	5.6	6.5	6.0	8.6	9.3	8.4
30-mm plate												
Ti-6AI-4V control	839	943		901	981		7.8	9.2		13.0	13.9	
Ti-6AI-4V-0.1Er	829	875		887	915		6.1	7.8		12.2	12.9	
Ti-6AI-4V-0.05Y	847	894		911	931		7.6	8.1		13.6	12.8	
13-mm plate												
Ti-6AI-4V control	876	896		940	955		7.8	7.9		20.2	20.7	
Ti-6AI-4V-0.1Er	821	875		895	931		7.0	. 7.5		18.8	20.2	
Ti-6AI-4V-0.05Y	851	851		919	904		7.4	6.7		21.1	15.6	

GP79-0690-4

5. FRACTURE TOUGHNESS OF PHASE III Ti-6A1-4V-RE ALLOYS

The plane-strain fracture toughness (K_{IC}) of the 80-mm plates in the TL, LT, SL, LS, TS, and ST directions and of the 30-mm plates in the TL and LT directions was determined in accordance with ASTM standard E399-74 for the mill-anneal and recrystallization-anneal conditions. The fracture toughness (K_Q) of 30-mm and 13-mm plates was determined from three-point-loaded slow-bend tests of Charpy V-notched and fatigue-precracked specimens. The K_{IC} and K_Q values for Phase III alloys are given in Tables 5 and 6, and K_Q and plane-stress fracture toughness values of Phase II alloys are given in Tables 7 and 8.

TABLE 5. FRACTURE TOUGHNESS OF PHASE III Ti-6AI-4V-RE ALLOYS DETERMINED FROM SLOW-BEND TESTS OF FATIGUE-PRECRACKED CHARPY V-NOTCHED SPECIMENS.

Alloy thickness	Specimen,		ure toughness √m (ksi√in.)]
and composition	orientation ^(a)	Mill annealed	Recrystallization annealed
30-mm plate			
Ti-6AI-4V control	L-S	74 (68)	125 (114)
Ti-6AI-4V-0.1Er	L-S	87 (79)	100 (91)
Ti-6AI-4V-0.05Y	L-S	91 (82)	97 (88)
Ti-6AI-4V control	T-S	43 (39)	47 (42)
Ti-6AI-4V-0.1Er	T-S	55 (50)	92 (84)
Ti-6AI-4V-0.05Y	T-S	48 (44)	77 (70)
13-mm plate			
Ti-6AI-4V control	T-L	-	82 (74)
Ti-6AI-4V-0.1Er	T-L	_	101 (91)
Ti-6AI-4V-0.05Y	T-L	50 (45)	114 (103)
Ti-6AI-4V control	L-T	65 (59)	102 (93)
Ti-6AI-4V-0.1Er	L-T	114 (104)	135 (123)
Ti-6AI-4V-0.05Y	L-T	78 (71)	-

⁽a) First letter indicates load direction, and second letter indicates crack direction; L, T, and S are longitudinal, long-transverse, and short-transverse directions, respectively

GP79-0690-5

TABLE 6. PLANE-STRAIN FRACTURE TOUGHNESS OF PHASE III TI-6AI-4V-RE ALLOYS.

Heat treatment	Alloy thickness and composition			KIC (M	Pa·√m)		
	and composition	T-L	L-T	L-S	S-L	T-S	S-T
Mill anneal	80-mm plate						
	Ti-6AI-4V	84.7	82.7	95.9	78.4	93.0	76.0
	Ti-6AI-4V-0.05Y	60.1	62.2	87.7	57.4	83.1	63.0
	Ti-6AI-4V-0.1Er	-	67.5	90.6	72.3	85.0	68.4
	30-mm plate						
	Ti-6AI-4V	48.6	49.5	_	_	-	_
	Ti-6AI-4V-0.05Y	46.3	_	_	_	_	_
	Ti-6AI-4V-0.1Er	53.6	50.3	-	-	-	-
Recrystallization	80-mm plate						
anneal	Ti-6AI-4V	75.2	76.8	_	86.8	100.4	85.8
	Ti-6AI-4V-0.05Y	68.3	75.7	86.9	76.8	105.6	65.6
	Ti-6Al-4V-0.1Er	70.2	73.8	97.2	74.8	90.1	75.9
	30-mm plate						
	Ti-6AI-4V	58.5	57.8	_	_	_	_
	Ti-6AI-4V-0.05Y	62.3	69.4	_	_	_	_
	Ti-6AI-4V-0.1Er	73.8	73.4	_	_	_	_

GP79-0690-6

TABLE 7. FRACTURE TOUGHNESS VALUES (KQ) DETERMINED FROM SLOW-BEND, PRECRACKED, CHARPY SAMPLES OF PHASE II Ti-6AI-4V-RE ALLOYS

Alloy composition	Rolling schedule	Reci	Recrystallization annealed			Beta annealed			ution - treat-and-aged		
		T-L	L-T	T-S	T-L	L·T	T-S	T-L	L-T	T-S	
Ti-6AI-4V	A	84.7 (77)	92.4 (84)	115.5 (105)	85.8 (78)	96.8 (88)	90.2 (82)		46.2 (42)	50.6 (46	
	8	127.6 (116)	94.6 (86)	116.6 (106)	94.6 (86)	85.8 (78)	89.1 (81)	52.8 (48)		51.7 (47	
Ti-6AI-4V-0.02Y	A	85.8 (78)	81.4 (74)	100.1 (91)	71.5 (65)	81.4 (74)	70.4 (64)	42.9 (39)	46.2 (42)	45.1 (41	
	В	86.9 (79)	95.7 (87)	86.9 (79)	69.3 (63)	74.8 (68)	72.6 (66)	33.0 (30)	41.8 (38)	40.7 (37	
Ti-6AI-4V-0.05Y	A .	80.3 (73)		96.8 (88)	58.3 (53)	75.9 (69)	59.4 (54)	37.4 (34)	33.0 (30)	40.7 (37	
	В	63.8 (58)	89.1 (81)	77.0 (70)	58.3 (53)	72.6 (66)	62.7 (57)	40.7 (37)	49.5 (45)	35.2 (32	
Ti-6AI-4V-0.10Er	A	75.9 (69)	83.6 (76)	78.1 (71)	63.8 (58)	72.6 (66)	72.6 (66)	44.0 (40)	_	42.9 (39	
	В	91.3 (83)	101.2 (92)	115.5 (105)	72.6 (66)	80.3 (73)	68.2 (62)	42.9 (39)	45.1 (41)	44.0 (40	
Ti-6AI-4V-0.038Y-0-	A	82.5 (75)	90.2 (82)	141.9 (129)	70.4 (64)	81.4 (74)	75.9 (69)	44.0 (40)	38.5 (35)		
2.3	8	-	102.3 (93)	92.4 (84)	73.7 (67)	77.0 (70)	75.9 (69)	33.0 (30)	45.1 (41)	45.1 (45	

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

8 = continuously rolled from 26 mm to 13 mm thickness from 1025°C

GP79.0000

TABLE 8. PLANE-STRESS FRACTURE TOUGHNESS VALUES DETERMINED FROM CENTER-CRACKED TENSION SPECIMENS OF PHASE II Ti-6AI-4V-RE ALLOYS

Alloy	Alloy composition	Rolling schedule					
	Composition	Zilogole	Beta annealed	Recrystallization annealed	Solution-treat and-aged		
		A	132 (120)	130 (118)	143 (130)		
31	Ti-6AI-4V	8	140 (127)	-	151 (137)		
		A	154 (140)	123 (112)	136 (124)		
33	Ti-6AI-4V-0.02Y	В	153 (135,	-	121 (110)		
		A	152 (138)	123 (112)	_		
34	Ti-6AI-4V-0.05Y	В	158 (144)		139 (126)		
		A	165 (150)	130 (118)	134 (122)		
32	Ti-6Al-4V-0.10Er	В	154 (140)		136 (124)		
		A	161 (146)	134 (122)	129 (117)		
36	Ti-6AI-4V-0.038Y2O3	В	143 (130)		150 (136)		

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

GP78-0635-14

The high $\rm K_{IC}$ values of 80-mm plates are as expected for beta processing. Because the 80-mm plates are only lightly worked, they are not microstructurally uniform throughout. Consequently, any apparent differences in $\rm K_{IC}$ values of the three alloys are likely due to microstructural variations rather than rare-earth effects. The 30-mm plates, on the other hand, have undergone significant hot working and have uniform microstructures. The results for the 30-mm plates indicate that Er and Y additions increase the $\rm K_{IC}$ of Ti-6Al-4V in the recrystallization-annealed condition.

From the data shown in Tables 5-8, it can be concluded that the fracture toughness of Ti-6Al-4V is not adversely affected by Er and Y additives. The small differences observed between the reference and rare-earth containing alloys are within the experimental scatter-band characteristic of fracture toughness measurements. In the instances where large differences are observed, the Y- and Er-containing alloys have higher fracture toughness than the reference alloy.

6. HIGH-TEMPERATURE DEFORMATION OF PHASE III Ti-6A1-4V-RE ALLOYS

6.1 High-Temperature, High-Strain-Rate Deformation of Phase III Ti-6Al-4V-RE Alloys

High-temperature compression tests were performed on cast, mill-annealed, and recrystallization-annealed Phase III alloys at 750, 885, and 925°C at strain rates of 0.005-0.5 s⁻¹. Cylindrical specimens of 8.9-mm diam and 12-mm height were compressed between flat faces of 60-mm diam stainless-steel compression rams. The specimens were heated to the desired temperature in a three-zone, resistance-wound, split furnace and maintained at temperature for 10 min before compression was begun. Flow stresses were calculated from the deformation load, and ram displacement was recorded by an x-y plotter.

The strain rate and temperature dependences of flow stress of the Ti-6Al-4V-RE alloys are shown in Tables 9 and 10 and Figures 22-24. The Er and Y additions reduce the flow stress of Ti-6Al-4V by 5-10% at strain rates of $0.005~\rm s^{-1}$ and $0.05~\rm s^{-1}$. The effect of Er and Y additions on the high-temperature flow stress decreases with increasing prior hot-working. Thus, for the 30-mm and 13-mm plates, no significant effect of Er and Y on flow stress is observed. From the flow-stress/strain-rate measurements, the strain-rate sensitivity, $m = [\partial \ln\sigma/\partial \ln\dot{\epsilon}]$, was evaluated at different temperatures. The Y and Er additions have no significant effect on m.

6.2 Superplasticity of Phase III Ti-6Al-4V-RE Alloys

The effect of Y additions on the superplastic behavior of Ti-6Al-4V was studied by determining the strain-rate dependence of flow stress and strain-rate sensitivity. Figures 25a and 25b show the flow stress as a function of strain rate and the strain-rate dependence of m determined by strain-rate cycling tests for Ti-6Al-4V and Ti-6Al-4V-0.05Y. The Y-containing alloy exhibits a lower flow stress and higher m, and consequently better superplasticity than the reference alloy at strain rates of 10^{-5} - 10^{-3} s⁻¹. The beneficial effects of the Y addition on the superplasticity of Ti-6Al-4V are due to the effectiveness of Y precipitates in retarding elevated-temperature grain growth, which is an essential requirement for superplastic behavior.

TABLE 9. HIGH-TEMPERATURE COMPRESSION TEST RESULTS OF MILL-ANNEALED PHASE III Ti-6AI-4V-RE ALLOYS.

	Yield stress (MPa)											
Alloy thickness and composition		T = 750°C			T = 885°C			T = 925°C				
	Strain rate (s ⁻¹)			Strain rate (s ⁻¹)			Strain rate (s ⁻¹)					
	$\dot{\epsilon}$ = 0.005	$\dot{\epsilon}$ = 0.05	$\dot{\epsilon}$ = 0.5	$\dot{\epsilon}$ = 0.005	$\dot{\epsilon}$ = 0.05	$\dot{\epsilon}$ = 0.5	$\dot{\epsilon}$ = 0.005	$\dot{\epsilon}$ = 0.05	$\dot{\epsilon}$ = 0.5			
80-mm plate												
Ti-6Al-4V control	224	304	430	77	135	207	54	81	132			
Ti-6Al-4V-0.1Er	234	308	441	69	113	206	46	77	138			
Ti-6AI-4V-0.05Y	184	303	428	71	119	194	39	70	133			
30-mm plate												
Ti-6Al-4V control	259	365	496	_	136	212	47	80	131			
Ti-6Al-4V-0.1Er	244	333	456	67	119	205	41	72	121			
Ti-6AI-4V-0.05Y	242	326	-	68	118	197	43	79	123			
13-mm plate												
Ti-6Al-4V control	244	349	472	65	117	185	45	74	127			
Ti-6AI-4V-0.1Er	251	348	479	71	122	208	41	73	125			
Ti-6AI-4V-0.05Y	230	332	456	61	109	197	41	76	119			

GP79-0690-8

TABLE 10. HIGH-TEMPERATURE COMPRESSION TEST RESULTS OF RECRYSTALLIZATION-ANNEALED PHASE III Ti-6AI-4V-RE ALLOYS.

	Yield stress (MPa)										
Alloy thickness		T = 750°C			T = 885°C		T = 925°C				
and composition	Strain rate (s ⁻¹)			St	Strain rate (s ⁻¹)			train rate (s ⁻¹	,		
	$\dot{\epsilon}$ = 0.005	ė = 0.05	$\dot{\epsilon}$ = 0.5	ė = 0.005	ė = 0.05	<i>è</i> = 0.5	$\dot{\epsilon}$ = 0.005	<i>è</i> = 0.05	ė ≈ 0.5		
80-mm plate											
Ti-6Al-4V control	249	311	452	90	129	217	47	82	131		
Ti-6Al-4V-0.1Er	247	271	458	83	123	204	47	75	126		
Ti-6AI-4V-0.05Y	250	282	440	87	124	201	47	76	127		
30-mm plate								•			
Ti-6Al-4V control	248	_	479	91	137	234	62	85	142		
Ti-6Al-4V-0.1Er	231	262	444	76	120	220	51	73	121		
Ti-6AI-4V-0.05Y	235	269	456	83	128	212	59	74	130		
13-mm plate											
Ti-6Al-4V control	232	_	451	83	124	214	54	71	127		
Ti-6Al-4V-0.1Er	236	301	436	76	117	208	51	64	118		
Ti-6AI-4V-0.05Y	218	278	425	77	113	197	49	68	113		

GP79-0690-9

Figure 22. Flow stress of Ti-6Al-4V-RE alloys at 750°C

Figure 23. Flow stress of Ti-6Al-4V-RE alloys at 885°C

Figure 24. Flow stress of Ti-6Al-4V-RE alloys at 925°C

Figure 25. Effect of yttrium addition on (a) flow stress and (b) strain-rate sensitivity of Ti-6Al-4V at 906°C

6.3 Creep Deformation of Phase III Ti-6Al-4V-RE Alloys

The influence of Y and Er additions on the steady-state creep rate, stress exponent, and creep activation energies of Ti-6Al-4V was determined at $350\text{-}600^{\circ}\text{C}$. Figures 26 and 27 show the stress dependence of steady-state creep rates of recrystallization-annealed and mill-annealed Ti-6Al-4V, Ti-6Al-4V-0.05Y, and Ti-6Al-4V-0.1Er alloys at 500, 550, and 600°C . The steady-state creep rate at any given stress is lower for Ti-6Al-4V-0.1Er than for the reference alloy, whereas the Y-containing alloy exhibits slightly higher creep rates. The creep resistance is higher in the mill-annealed condition than in the recrystallization-annealed condition in all alloys. The stress dependence of steady-state creep rate follows a power law with exponent ≈ 3 at low stresses and ≈ 9 at high stresses.

The effect of orientation on stress dependence is shown in Figure 28. The alloys are more creep resistant when the stress direction is parallel to <0001> (long transverse direction) than when the stress is in the longitudinal direction. This is because of the higher critical resolved shear stress for <c+a> slip ($<11\overline{2}3>$ slip) and a low Schmidt factor for 'a' slip in the <0001> orientation.

The temperature dependence of the steady-state creep rate at 164 MPa and 330 MPa is shown in Figure 29 for recrystallization-annealed Ti-6Al-4V-RE alloys. The activation energy (AH) of 188 kJ/mol observed at low stresses at 450-600°C agrees with the activation energy for self-diffusion in titanium, and hence creep in this region is controlled by dislocation climb. The rate-controlling creep mechanism associated with the high activation energy at higher stresses, however, is not clear at present. The Er and Y additions do not alter the stress exponent and activation energy significantly.

Figure 26. Stress dependence of steady-state creep rate for recrystallization-annealed Ti-6Al-4V-RE alloys at (a) 500°C, (b) 550°C, and (c) 600°C

Figure 27. Stress dependence of steady-state creep rate for mill-annealed Ti-6Al-4V-RE alloys at (a) 550°C and (b) 600°C

Figure 28. Effect of orientation on stress and temperature dependence of steady-state creep rate for (a) Ti-6Al-4V, (b) Ti-6Al-4V-0.05Y, and (c) Ti-6Al-4V-0.1Er

Figure 29. Temperature dependence of steady-state creep rate for recrystallization-annealed Ti-6AI-4V-RE alloys

7. CONCLUSIONS

Based on the results of Phases I, II, and III of the study, the following conclusions are drawn:

- The major effect of metallic yttrium and erbium additions to Ti-6Al-4V is to improve the forgeability of Ti-6Al-4V and thus increase the yield from each ingot. The Y and Er additions also improve the hot workability by reducing the high-temperature, high-strain-rate flow stress of Ti-6Al-4V.
- 2. The Y and Er additions refine the prior-beta grain size and Widmanstätten colony size, and they retard grain growth at elevated temperatures.
- The room-temperature yield stress, ultimate tensile stress, and fracture toughness are not adversely affected by the Y and Er additions.
- 4. The Y and Er additions increase the ductility of Ti-6Al-4V.

REFERENCES

- C. R. Whitsett, S. M. L. Sastry, J. E. O'Neal, and R. J. Lederich, Influence of Rare-Earth Additions on Properties of Titanium Alloys: Microstructures and Room-Temperature Tensile Properties of Ti-6Al-4V with Yttrium, Erbium, and Mischmetal Additions, Technical Report for period 1 April 1976 - 31 March 1977 for ONR contract NO0014-76-C-0626, McDonnell Douglas Report MDC Q0627 (31 May 1977).
- C. R. Whitsett, S. M. L. Sastry, J. E. O'Neal, and R. J. Lederich, Influence of Rare-Earth Additions on Properties of Titanium Alloys: Room-Temperature Tensile Properties and Fracture Toughness of Ti-6Al-4V with Erbium, Yttrium, and Yttria Additions, Technical Report for period 1 April 1977 - 31 March 1978 for ONR contract NO0014-76-C-0626, McDonnell Douglas Report MDC Q0654 (31 May 1978).
- M. J. Buczek, G. S. Hall, S. R. Seagle, and H. B. Bomberger, Grain Refinement of Titanium Alloys, AFML-TR-74-255, November 1974.
- B. B. Rath, R. J. Lederich, and J. E. O'Neal, Recrystallization and Grain Growth in Ti-Rare-Earth Alloy, ASM-AIME Materials Science Symposium, Cincinnati, OH, November 1975.
- 5. B. B. Rath, R. J. Lederich, and J. E. O'Neal, The Effects of Rare-Earth Additions on the Grain Refinement of Ti, in Grain Boundaries in Engineering Materials, ed. by J. L. Walter, J. H. Westbrook, and D. A. Woodford (Claitors Publ. Div., Baton Rouge, LA, 1975), p. 39.
- B. B. Rath, J. E. O'Neal, and R. J. Lederich, Grain Refinement in Ti-Er Alloys, in <u>Proc. Electron Microscopy Soc. Am.</u>, ed. by C. J. Arceneaux, (Claitors Publ. Div., Baton Rouge, LA, 1974), p. 522.

APPENDIX A. ROOM-TEMPERATURE TENSILE PROPERTIES OF Ti-6A1-4V-RE ALLOYS

Tables Al-A22 list the room-temperature tensile properties for the Ti-6Al-4V reference alloy, Ti-6Al-4V-Y, Ti-6Al-4V-Er, Ti-6Al-4V-MM, and Ti-6Al-4V-Y $_2$ O $_3$ alloys that were determined in Phases I and II of this contract.

TABLE A1. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT ${\rm T}_{\beta}$ – 56°C FOR 15 min

Alloy composition	Annealing temperature, $T_{\beta} = 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPs)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	954	136	965	1005	860	5.5	14.4
Ti-6AI-4V-0.020Y	954	137	945	985	840	5.0	13.0
Ti-6AI-4V-0.050Y	932	124	825	905	780	4.4	9.3
Ti-6Al-4V-0.10Y	932	129	870	940	760	6.0	13.5
Ti-6AI-4V-0.30Y	932	140	900	940	790	5.7	13.2
Ti-6Al-4V-0.010MM	932	123	845	920	795	6.1	12.9
Ti-6AI-4V-0.030MM	932	128	840	900	770	4.8	12.9
Ti-6AI-4V-0.080MM	932	137	890	930	825	6.4	13.3
Ti-6AI-4V-0.10Er	948	139	930	995	815	5.5	16.1
Ti-6Al-4V-0.30Er	926	103	870	910	760	5.1	14.0
Ti-6Al-4V-0.80Er (Ingot 27)	926	144	855	965	760	4.9	13.2
Ti-6Al-4V-0.80Er (Ingot 29)	926	129	875	905	720	5.9	14.2

TABLE A2. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}-56^{o}$ C FOR 30 min

Alloy composition	Annealing temperature, Tβ – 56°C (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	954	142	1010	1050	870	4.9	14.2
Ti-6AI-4V-0.020Y	954	134	950	990	835	5.0	12.5
Ti-6AI-4V-0.050Y	932	128	860	945	780	5.8	14.6
Ti-6AI-4V-0.10Y	932	135	920	980	815	5.7	12.7
Ti-6AI-4V-0.30Y	932	139	885	950	810	6.0	13.0
Ti-6AI-4V-0.010MM	932	126	905	945	800	6.8	14.4
Ti-6AI-4V-0.030MM	932	134	915	950	815	5.9	12.9
Ti-6AI-4V-0.080MM	932	147	925	970	935	6.8	14.2
Ti-6AI-4V-0.10Er	948	168	950	1010	830	5.2	14.8
Ti-6AI-4V-0.30Er	926	106	860	915	735	5.5	15.7
Ti-6Al-4V-0.80Er (Ingot 27)	926						
Ti-6Al-4V-0.80Er (Ingot 29)	926	138	880	910	755	5.6	13.6

GP77-0400-23

TABLE A3. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}-56^{\rm O}{\rm C}$ FOR 60 min

Alloy composition	Annealing temperature, $T_{\beta} - 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6AI-4V	954	118	950	1030	885	4.7	12.0
Ti-6AI-4V-0.020Y	954	158	885	975	950	5.9	13.8
Ti-6AI-4V-0.050Y	932	150	885	935	845	6.1	15.2
Ti-6AI-4V-0.10Y	932	135	910	1000	840	5.3	13.7
Ti-6AI-4V-0.30Y	932	124	935	965	830	6.0	13.4
Ti-6AI-4V-0.010MM	932	128	855	940	810	5.8	12.0
Ti-6AI-4V-0.030MM	932	142	890	930	780	6.2	14.1.
Ti-6AI-4V-0.080MM	932	132	925	970	870	6.1	12.8
Ti-6AI-4V-0.10Er	948	154	975	1025	830	4.9	14.8
Ti-6Al-4V-0.30Er	926	102	850	900	740	4.7	13.6
Ti-6Al-4V-0.80Er (Ingot 27)	926	131	865	925	780	4.9	12.1
Ti-6Al-4V-0.80Er (Ingot 29)	926	150	890	915	780	5.4	11.7

TABLE A4. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT ${\rm T}_{\beta}-56^{\rm O}{\rm C}$ FOR 180 min)

Alloy composition	Annealing temperature, Tβ – 56°C (°C)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	954	138	970	1055	930	4.6	10.2
Ti-6AI-4V-0.020Y	954	125	920	995	855	3.9	10.4
Ti-6AI-4V-0.050Y	932	136	860	950	825	3.7	8.5
Ti-6AI-4V-0.10Y	932	125	900	975	810	4.8	13.3
Ti-6AI-4V-0.30Y	932	136	905	970	835	4.8	10.0
Ti-6Al-4V-0.010MM	932	145	875	950	825	5.4	11.0
Ti-6AI-4V-0.030MM	932	127	815	925	815	6.1	12.8
Ti-6AI-4V-0.080MM	932	133	870	955	855	6.3	13.8
Ti-6AI-4V-0.10Er	948	145	955	1005	835	4.4	13.0
Ti-6AI-4V-0.30Er	926	113	885	935	810	4.7	12.1
Ti-6Al-4V-0.80Er (Ingot 27)	926	125	840	900	765	5.1	12.6
Ti-6AI-4V-0.80Er (Ingot 29)	926	123	885	920	795	5.0	11.8

GP77-0480-25

TABLE A5. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT $T_{\beta}-28^{\rm O}{\rm C}$ FOR 15 min

Alloy composition	Annealing temperature, $T_{\beta} - 28^{0}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	982	129	970	1050	915	3.7	10.0
Ti-6Al-4V-0.020Y	982	140	965	1010	835	4.3	12.1
Ti-6Al-4V-0.050Y	960	127	855	960	805	5.1	11.2
Ti-6AI-4V-0.10Y	960	126	880	965	820	5.2	12.3
Ti-6AI-4V-0.30Y	960	128	930	965	825	3.5	10.5
Ti-6Al-4V-0.010MM	960	133	870	935	815	5.7	11.7
Ti-6AI-4V-0.030MM	960	127	855	940	820	5.1	10.8
Ti-6AI-4V-0.080MM	960	133	920	970	845	5.6	13.5
Ti-6AI-4V-0.10Er	976	133	985	1030	830	4.3	12.8
Ti-6Al-4V-0.30Er	954	109	965	1020	820	4.3	12.2
Ti-6Al-4V-0.80Er (Ingot 27)	954	133	955	1005	825	4.8	12.0
Ti-6Al-4V-0.80Er (Ingot 29)	954	140	970	1015	860	3.9	10.3

TABLE A6. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}$ — 28°C FOR 30 min

Alloy composition	Annealing temperature, $T_{\beta} - 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6AI-4V	982	126	1020	1085	930	5.1	14.9
Ti-6AI-4V-0.020Y	982	128	970	1040	925	3.7	8.3
Ti-6AI-4V-0.050Y	960	134	905	980	815	5.1	12.2
Ti-6AI-4V-0.10Y	960	147	990	1030	865	5.1	12.4
Ti-6AI-4V-0.30Y	960	142	1000	1040	900	4.9	12.3
Ti-6AI-4V-0.010MM	960	128	905	970	830	6.1	12.5
Ti-6AI-4V-0.030MM	960	140	845	950	840	6.3	12.3
Ti-6AI-4V-0.080MM	960	124	950	1000	885	5.1	11.6
Ti-6AI-4V-0.10Er	976	130	1010	1060	850	4.2	13.8
Ti-6AI-4V-0.30Er	954	108	960	1015	840	4.6	13.3
Ti-6Al-4V-0.80Er (Ingot 27)	954						
Ti-6Al-4V-0.80Er (Ingot 29)	954	140	930	980	840	4.6	11.7

GP77-0/80-2

TABLE A7. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT ${\rm T}_{\beta}-28^{\rm O}{\rm C}$ FOR 60 min

Alloy composition	Annealing temperature, $T_{\beta} - 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6AI-4V	982	131	950	1025	910	4.8	12.3
Ti-6AI-4V-0.020Y	982	142	970	1040	930	3.8	8.3
Ti-6AI-4V-0.050Y	960	138	905	995	865	5.0	11.5
Ti-6AI-4V-0.10Y	960	142	930	1015	890	5.1	13.8
Ti-6AI-4V-0.30Y	960	135	960	1045	900	4.9	12.5
Ti-6Al-4V-0.010MM	960	150	900	995	875	4.7	9.8
Ti-6AI-4V-0.030MM	960	137	920	980	830	5.8	13.3
Ti-6AI-4V-0.080MM	960	119	980	985	910	6.0	13.1
Ti-6AI-4V-0.10Er	976	147	1030	1085	865	4.1	15.2
Ti-6AI-4V-0.30Er	954	103	940	1000	825	4.6	13.4
Ti-6Al-4V-0.80Er (Ingot 27)	954	129	935	985	860	4.0	8.6
Ti-6Al-4V-0.80Er (Ingot 29)	954	142	965	1015	870	3.8	10.2

TABLE A8. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT ${\rm T}_{\beta}-28^{\rm O}{\rm C}$ FOR 180 min

Alloy composition	Annealing temperature, $T_{\beta} - 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	982	120	985	1060	970	3.8	9.2
Ti-6AI-4V-0.020Y	982	121	1005	1075	915	3.3	10.8
Ti-6AI-4V-0.050Y	960	136	930	1005	870	4.4	10.4
Ti-6AI-4V-0.10Y	960	130	920	1010	880	3.9	10.9
Ti-6AI-4V-0.30Y	960	142	1000	1060	945	4.7	11.3
Ti-6AI-4V-0.010MM	960	126	955	1020	895	4.7	10.8
Ti-6AI-4V-0.030MM	960	123	900	960	865	5.7	12.2
Ti-6AI-4V-0.080MM	960	143	915	990	890	5.4	11.9
Ti-6AI-4V-0.10Er	976	140	1020	1080	860	3.5	14.0
Ti-6Al-4V-0.30Er	954	107	985	1040			2.6
Ti-6Al-4V-0.80Er (Ingot 27)	954	139	935	995	850	3.2	9.2
Ti-6Al-4V-0.80Er (Ingot 29)	954	140	970	1020	905	4.2	11.4

GP77-0400-20

TABLE A9. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}$ + 28 $^{\rm o}$ C FOR 5 min

Alloy composition	Annealing temperature, $T_{\beta} + 28^{0}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1038	138	1045	1125	990	2.5	12.0
Ti-6AI-4V-0.020Y	1038	148	990	1060	940	3.6	10.9
Ti-6AI-4V-0.050Y	1016					3.8	10.5
Ti-6AI-4V-0.10Y	1016	148	960	1060	940	3.3	10.0
Ti-6AI-4V-0.30Y	1016	143	1010	1080	950	3.8	11.5
Ti-6AI-4V-0.010MM	1016	150	945	1030	945	3.9	9.1
Ti-6AI-4V-0.030MM	1016	141	985	1055	1000	5.0	9.5
Ti-6AI-4V-0.080MM	1016	120	1015	1070	1035	3.5	7.7
Ti-6AI-4V-0.10Er	1032	135	1015	1075	925	3.4	11.8
Ti-6AI-4V-0.30Er	1016	132	1005	1075	910	3.5	12.2
Ti-6Al-4V-0.80Er (Ingot 27)	1010						
Ti-6Al-4V-0.80Er (Ingot 29)	1010	148	980	1060	960	3.6	10.4

TABLE A10. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}$ + 28°C FOR 15 min

Alloy composition	Annealing temperature, $T_{\beta} + 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1038	150	1085	1165	1105	2.4	9.2
Ti-6AI-4V-0.020Y	1038	154	1040	1110	1000	3.4	9.9
Ti-6AI-4V-0.050Y	1016	152	1025	1085	950	3.0	9.0
Ti-6AI-4V-0.10Y	1016	124	1030	1090	980	3.9	10.4
Ti-6AI-4V-0.30Y	1016	156	1045	1105	960	3.4	9.8
Ti-6AI-4V-0.010MM	1016	144	1030	1095	1040	3.3	8.2
Ti-6AI-4V-0.030MM	1016	150	1015	1055	990	3.8	9.1
Ti-6AI-4V-0.080MM	1016	153	1005	1090	1050	3.0	6.8
Ti-6AI-4V-0.10Er	1032	138	1060	1125	1000	3.7	11.0
Ti-6AI-4V-0.30Er	1016	132	1005	1075	925	3.3	10.5
Ti-6Al-4V-0.80Er (Ingot 27)	1010	135	970	1050	910	4.3	10.8
Ti-6Al-4V-0.80Er (Ingot 29)	1010	144	1000	1070	955	3.9	10.3

QP77-0400-31

TABLE A11. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT $\rm T_{\beta}$ + 28 $^{\rm O}C$ FOR 30 min

Alloy composition	Annealing temperature, $T_{\beta} + 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1038	147	1085	1040	1110	2.2	7.2
Ti-6AI-4V-0.020Y	1038	128	1000	1055	945	4.5	11.1
Ti-6AI-4V-0.050Y	1016	165	980	1095	975	4.1	11.1
Ti-6AI-4V-0.10Y	1016	135	1030	1115	1005	4.3	11.3
Ti-6AI-4V-0.30Y	1016	168	1045	1120	960	3.9	11.1
Ti-6AI-4V-0.010MM	1016	134	1030	1090	990	3.2	8.3
Ti-6AI-4V-0.030MM	1016	146	1040	1090	1030	4.1	9.1
Ti-6AI-4V-0.080MM	1016	150	1035	1105	1055	4.3	9.9
Ti-6AI-4V-0.10Er	1032	132	1055	1115	995	3.5	9.6
Ti-6Al-4V-0.30Er	1016	135	1015	1105	960	3.5	12.0
Ti-6Al-4V-0.80Er (Ingot 27)	1010						
Ti-6Al-4V-0.80Er (Ingot 29)	1010	147	1010	1080	970	3.4	9.7

TABLE A12. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT T $_{\beta}$ + 28 ^{o}C FOR 60 min

Alloy composition	Annealing temperature, $T_{\beta} + 28^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1038	138	1070	1155	1140	1.9	3.2
Ti-6Al-4V-0.020Y	1038	150	1030	1090	1000	3.0	9.2
Ti-6Al-4V-0.050Y	1016	165	990	1090	975	4.4	11.4
Ti-6AI-4V-0.10Y	1016	158	1025	1110	1010	3.3	9.2
Ti-6Al-4V-0.30Y	1016	142	1090	1145	1020	3.6	10.6
Ti-6Al-4V-0.010MM	1016	144	1020	1080	1005	2.9	7.3
Ti-6Al-4V-0.030MM	1016	136	985	1050	995	2.1	5.3
Ti-6AI-4V-0.080MM	1016	154	1050	1110	1095	4.2	9.4
Ti-6AI-4V-0.10Er	1032	134	1045	1120	1015	3.5	9.9
Ti-6Al-4V-0.30Er	1016	130	975	1040	870	3.8	11.9
Ti-6Al-4V-0.80Er (Ingot 27)	1010	165	980	1080	930	3.8	10.2
Ti-6Al-4V-0.80Er (Ingot 29)	1010	164	1000	1095	940	4.1	11.8

GP77-0400-33

TABLE A13. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT $\rm T_{\beta}+56^{o}C$ FOR 5 min

Alloy composition	Annealing temperature, $T_{\beta} + 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6AI-4V	1066	130	1020	1105	990	3.8	12.1
Ti-6AI-4V-0.020Y	1066	144	1035	1090	980	4.0	10.3
Ti-6AI-4V-0.050Y	1044	154	1000	1070	930	4.5	12.3
Ti-6AI-4V-0.10Y	1044	148	1020	1090	955	3.9	12.0
Ti-6AI-4V-0.30Y	1044	148	1030	1105	965	3.4	10.2
Ti-6AI-4V-0.010MM	1044	159	970	1065	965	4.0	10.7
Ti-6AI-4V-0.030MM	1044	134	1015	1085	980	3.0	8.8
Ti-6AI-4V-0.080MM	1044	144	1020	1090	1030	3.8	8.7
Ti-6AI-4V-0.10Er	1060	149	1020	1105	970	3.7	11.2
Ti-6AI-4V-0.30Er	1044	132	955	1010	880	3.7	10.8
Ti-6Al-4V-0.80Er (Ingot 27)	1038	139	965	1055	925	4.5	10.7
Ti-6Al-4V-0.80Er (Ingot 29)	1038	158	955	1065	940	4.2	11.3

TABLE A14. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT $\rm T_{\beta}$ + 56°C FOR 15 min

Alloy composition	Annealing temperature, $T_{\beta} + 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6AI-4V	1066	141	1090	1170	1155	2.6	5.8
Ti-6AI-4V-0.020Y	1066	158	1015	1095	1040	3.8	9.9
Ti-6AI-4V-0.050Y	1044	138	1005	1070	940	4.1	12.1
Ti-6AI-4V-0.10Y	1044	136	1005	1070	925	3.8	13.0
Ti-6AI-4V-0.30Y	1044	150	1020	1115	970	4.3	12.5
Ti-6AI-4V-0.010MM	1044	158	1005	1075	1035	3.8	8.3
Ti-6AI-4V-0.030MM	1044	150	1025	1080	1040	4.3	9.5
Ti-6AI-4V-0.080MM	1044	141	1020	1085	1050	3.7	8.3
Ti-6AI-4V-0.10Er	1060	138	1045	1105	985	3.7	10.7
Ti-6AI-4V-0.30Er	1044	138	975	1045	895	3.5	10.6
Ti-6Al-4V-0.80Er (Ingot 27)	1038						
Ti-6Al-4V-0.80Er (Ingot 29)	1038	140	1015	1085	1035	3.7	9.2

GP77-0490-35

TABLE A15. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6AI-4V-RE ALLOYS ANNEALED AT τ_{β} + 56°C FOR 30 min

Alloy composition	Annealing temperature, $T_{\beta} + 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1066	170	1090	1145	1120	3.2	7.8
Ti-6AI-4V-0.020Y	1066	170	1035	1105	1065	3.8	9.4
Ti-6AI-4V-0.050Y	1044	150	1045	1100	970	4.0	11.7
Ti-6AI-4V-0.10Y	1044	151	1015	1075	955	3.7	10.6
Ti-6AI-4V-0.30Y	1044	162	1050	1120	960	4.2	14.2
Ti-6Al-4V-0.010MM	1044	156	1010	1060	1020	3.3	8.0
Ti-6Al-4V-0.030MM	1044	129	1005	1070	1030	3.3	8.0
Ti-6AI-4V-0.080MM	1044	158	1020	1085	1055	3.9	8.6
Ti-6AI-4V-0.10Er	1060	142	1080	1150	1020	3.3	11.4
Ti-6Al-4V-0.30Er	1044	142	985	1070	930	3.5	10.2
Ti-6Al-4V-0.80Er (Ingot 27)	1038	146	960	1045	910	3.6	10.5
Ti-6Al-4V-0.80Er (Ingot 29)	1038	148	1030	1070	970	3.4	8.7

TABLE A16. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE I Ti-6Al-4V-RE ALLOYS ANNEALED AT ${\rm T}_{\beta}$ + 56°C FOR 60 min

Alloy composition	Annealing temperature, $T_{\beta} + 56^{\circ}C$ (oC)	Elastic modulus (GPa)	Yield stress at 0.2% offset (MPa)	Ultimate tensile stress (MPa)	Fracture stress (MPa)	Uniform elongation (%)	Total elongation (%)
Ti-6Al-4V	1066	128	1105	1165	1160	2.4	4.8
Ti-6AI-4V-0.020Y	1066	150	1070	1130	1015	3.6	8.4
Ti-6AI-4V-0.050Y	1044	128	975	1050	895	3.4	12.2
Ti-6AI-4V-0.10Y	1044	142	1030	1100	975	4.0	11.5
Ti-6AI-4V-0.30Y	1044	140	1035	1100	970	2.8	8.5
Ti-6Al-4V-0.010MM	1044	147	995	1075	1020	3.0	8.8
Ti-6AI-4V-0.030MM	1044	141	1025	1070	1045	3.3	6.3
Ti-6AI-4V-0.080MM	1044	142	1000	1055	1045	3.3	6.6
Ti-6AI-4V-0.10Er	1060	143	1055	1125	1095	4.2	8.6
Ti-6AI-4V-0.30Er	1044	165	1005	1095	950	3.7	12.1
Ti-6Al-4V-0.80Er (Ingot 27)	1038	147	945	1010	875	3.1	9.6
Ti-6Al-4V-0.80Er (Ingot 29)	1038	150	1040	1110	. 990	3.2	9.7

QP77-0400-31

TABLE A17. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; HOT-ROLLED AND ANNEALED, AS RECEIVED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
		L	T	L	Т	L	Т	L	T
Ti-6Al-4V	A	930	998	960	1028	5.6	3.8	11.6	10.3
	В	-	923	-	975	-	2.9	-	11.1
Ti-6Al-4V-0.02Y	A	998	910	1028	975	4.8	4.5	11.8	12.6
	В	870	960	945	1005	5.5	4.5	13.5	13.5
	A	938	1005	975	1020	4.8	4.0	14.5	11.8
Ti-6AI-4V-0.05Y	В	900	923	960	1012	5.3	4.1	13.7	12.7
T: 0.11 41/ 0.405	A	900	960	930	1013	6.3	3.8	14.3	12.6
Ti-6AI-4V-0.10Er	В	870	930	938	997	5.5	4.0	13.0	13.4
T: 0.11 41/ 0.000V 0	A	953	990	983	1043	5.8	5.1	15.8	13.2
Ti-6Al-4V-0.038Y2O3	В	870	953	908	998	5.1	3.8	12.2	12.8

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

TABLE A18. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; RECRYSTALLIZATION ANNEALED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
		L	Т	L	T	L	T	L	Т
T. A. I. J.	A	_	848	_	894	_	8.2		16.3
Ti-6AI-4V	В	765	758	855	848	7.3	4.0	16.2	10.8
Ti-6Al-4V-0.02Y	A	780	863	855	938	5.7	8.0	12.0	16.2
	В	780	780	855	863	6.2	4.3	16.0	16.0
	A	870	855	938	930	7.2	7.2	15.4	14.1
Ti-6Al-4V-0.05Y	В	833	745	915	878	7.2	4.5	16.2	15.8
T: 0.11 41/ 0.405	A	758	862	833	910	6.0	7.2	15.3	14.8
Ti-6Al-4V-0.10Er	В	788	780	870	870	7.2	4.2	16.3	14.9
T: 641 41/ 0 0001/ 0	A	855	870	923	953	6.9	8.1	16.2	16.2
Ti-6AI-4V-0.038Y2O3	В	795	780	880	870	5.9	4.0	16.1	14.4

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

GP78-0635-6

GP78-0635-5

TABLE A19. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; BETA ANNEALED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
		L	T	L	T	L	Т	L	Т
T: 0.11 41/	A	870	855	920	923	3.3	3.6	8.5	7.7
Ti-6Al-4V	В	840	863	923	915	3.9	3.1	10.1	9.2
Ti-6Al-4V-0.02Y	A	877	848	953	930	5.3	3.9	12.0	8.8
	В	840	848	923	930	5.1	4.5	12.6	13.3
	A	863	855	953	947	4.4	4.9	11.5	11.0
Ti-6Al-4V-0.05Y	В	840	863	930	953	5.4	5.4	14.5	13.9
T: 041 41/ 0 105-	A	840	-	915	_	4.8	_	12.8	-
Ti-6Al-4V-0.10Er	В	848	863	938	945	5.3	5.1	13.5	14.2
T: 0.41 41/ 0.000V 0	A	885	855	960	945	5.4	4.3	11.0	9.3
Ti-6Al-4V-0.038Y2O3	В	877	885	945	945	4.9	3.8	14.0	11.2

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

TABLE A20. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; SOLUTION-TREATED-AND-AGED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
		L	T	L	Т	L	Т	L	Т
T. 0.1. 41/	A	1020	1072	1110	1178	2.4	1.8	5.0	3.8
Ti-6AI-4V	В	1080	-	1163	-	2.4	-	4.6	-
Ti-6Al-4V-0.02Y	A	1230	_	1298	_	-	1.8	_	4.5
	В	1103	1080	1178	1170	2.8	2.4	7.2	6.8
	Α	1125	_	1200	_	_	1.7	_	4.1
Ti-6AI-4V-0.05Y	В	1110	1013	1205	1133	3.8	2.9	7.9	7.1
	A	_	_	_	_	_	_	_	_
Ti-6Al-4V-0.10Er	В	-	-	-	-	-	-	-	-
	A	1103	-	1193	_	2.7	_	5.6	_
Ti-6AI-4V-0.038Y2O3	В	1110	1133	1193	1200	2.8	2.4	6.6	6.1

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

GP78-0635-8

GP78-0635-7

TABLE A21. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS; SOLUTION-TREATED-AND-OVERAGED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
	4	L	T	L	Т	L	Т	L	T
Ti-6Al-4V	A	_	1020	_	1088	_	2.7	_	5.8
	В	990	975	1057	1050	3.7	3.1	7.6	5.7
Ti-6Al-4V-0.02Y	A	983	1028	1073	1080	3.8	2.9	7.8	6.9
	В	998	998	1080	1073	3.5	3.2	10.2	9.0
	A	1013	990	1088	1073	3.8	2.8	10.0	7.0
Ti-6Al-4V-0.05Y	В	998	1028	1080	1088	3.8	3.6	10.7	9.5
T: 0.11 41/ 0.405	A	983	990	1050	1065	3.0	2.8	9.8	6.7
Ti-6Al-4V-0.10Er	В	990	975	1073	1057	3.0	3.8	8.0	10.3
T: 0.41 41/ 0.0201/ 0	A	998	998	1070	1080	3.2	3.0	6.8	6.2
Ti-6Al-4V-0.038Y2O3	В	1020	998	1088	1080	4.2	3.5	9.9	7.8

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

GP78-0635-9

GP78-0635-10

TABLE A22. ROOM-TEMPERATURE TENSILE PROPERTIES OF PHASE II Ti-6AI-4V-RE ALLOYS IN THE LONGITUDINAL (L) AND TRANSVERSE (T) DIRECTIONS): α - β ANNEALED AND AGED

Alloy composition	Processing condition	Yield stress at 0.2% offset (MPa)		Ultimate tensile stress (MPa)		Uniform elongation (%)		Total elongation (%)	
		L	T	L	Т	L	Т	L	Т
T: CALAN	A	825	878	923	945	5.6	7.3	14.2	16.3
Ti-6Al-4V	В	795	848	900	923	6.8	5.6	16.1	13.8
Ti-6Al-4V-0.02Y	A	848	885	945	945	6.6	4.9	14.8	12.1
	В	810	855	915	923	6.1	5.2	14.2	12.2
	A	885	893	975	960	7.7	5.6	16.5	14.6
Ti-6Al-4V-0.05Y	В	825	885	923	945	5.8	5.1	15.4	10.9
Ti-6Al-4V-0.10Er	A	840	848	938	923	6.7	4.7	14.4	12.7
11-0A1-4 V-U. TUEF	В	803	870	893	945	6.2	6.6	15.1	14.6
T: CAL AV C 020V O	A	893	893	975	960	8.3	5.4	16.2	11.4
Ti-6Al-4V-0.038Y2O3	В	775	885	900	907	4.9	4.1	13.6	11.9

Processing condition: A = continuously rolled from 26 mm to 13 mm thickness from 940°C

B = continuously rolled from 26 mm to 13 mm thickness from 1025°C

DISTRIBUTION

	Copies		Copies
Defense Documentation Center		Naval Construction Batallion	
Cameron Station		Civil Engineering Laboratory	
Alexandria, VA 22314	12	Port Hueneme, CA 93043	
Alexandria, VA 22314	12	Attn: Materials Division	1
Office of Naval Research		Atti. Materials Division	•
Department of the Navy		Nevel Flootropics Laboratory	
		Naval Electronics Laboratory	
800 N. Quincy Street		San Diego, CA 92152	
Arlington, VA 22217		Attn: Electron Materials	
Attn: Code 471	1	Sciences Division	1
Code 102	1		
Code 470	1	Naval Missile Center	
		Materials Consultant	
Commanding Officer		Code 3312-1	
Office of Naval Research		Point Mugu, CA 92041	1
Branch Office			
Building 114, Section D		Commanding Officer	
666 Summer Street		Naval Surface Weapons Center	
Boston, MA 02210	1	White Oak Laboratory	7-
		Silver Spring, MD 20910	
Commanding Officer		Attn: Library	1
Office of Naval Research			
Branch Office		David W. Taylor Naval Ship R&D	Center
536 South Clark Street		Materials Department	
Chicago, IL 60605	1	Annapolis, MD 21402	1
Office of Naval Research		Naval Undersea Center	
San Francisco Area Office		San Diego, CA 92132	
One Hallidie Plaza Suite 601		Attn: Library	1
San Francisco, CA 94102	1	Attii. Library	1
San Francisco, CA 94102		Nevel Underwater Custom Conten	
N1 R1 7-1		Naval Underwater System Center	
Naval Research Laboratory		Newport, RI 02840	
Washington, D. C. 20375		Attn: Library	1
Attn: Code 6000	1		
6100	1	Naval Weapons Center	
6300	1	China Lake, CA 93555	
6400	1	Attn: Library	1
2627	1		
		Naval Postgraduate School	
Naval Air Development Center		Monterey, CA 93940	
Code 302		Attn: Mechanical Engineering	
Warminster, PA 18964		Department	1
Attn: Mr. F. S. Williams	1		
		Naval Air Systems Command	
Naval Air Propulsion Test Center	r	Washington, D.C. 20360	
Trenton, NJ 08628	1	Attn: Code 52031	1
Attn: Library	1	52032	1

	Copies		Copies
Naval Sea System Command		NASA Headquarters	
Washington, D.C. 20362		Washington, D.C. 20546	
Attn: Code 035	1	Attn: Code RRM	1
Name 1 Part 1 de de la Part de maior		W.G.	
Naval Facilities Engineering Command		NASA	
Alexandria, VA 22331		Lewis Research Center 21000 Brookpark Road	
Attn: Code 03	1	Cleveland, OH 44135	
Attn: code os	CONT.	Attn: Library	1
Scientific Advisor			
Commandant of the Marine Corps		National Bureau of Standards	
Washington, D.C. 20380		Washington, D.C. 20234	
Attn: Code AX	1	Attn: Metallurgy Division	1
		Inorganic Materials Div.	1
Naval Ship Engineering Center			
Department of the Navy		Director Applied Physics Laborat	ory
Washington, D.C. 20360		University of Washington	
Attn: Code 6101	1	1013 Northeast Forthieth Street	
		Seattle, WA 98105	1
Army Research Office		D-5 W1 - 1.6	
P.O. Box 12211		Defense Metals and Ceramics Information Center	
Triangle Park, NC 27709 Attn: Metallurgy & Ceramics		Battelle Memorial Institute	
Program	1	505 King Avenue	
Tiogram		Columbus, OH 43201	1
Army Materials and Mechanics		7,5201	
Research Center		Metals and Ceramics Division	
Watertown, MA 02172		Oak Ridge National Laboratory	
Attn: Research Programs Office	1	P.O. Box X	
		Oak Ridge, TN 37380	1
Air Force Office of Scientific			
Research		Los Alamos Scientific Laboratory	
Bldg. 410		P.O. Box 1663	
Bolling Air Force Base		Los Alamos, NM 87544	
Washington, D.C. 20332		Attn: Report Librarian	1
Attn: Chemical Science	1	Arganna National Laboratory	
Directorate Electronics & Solid State		Argonne National Laboratory Metallurgy Division	
Sciences Directorate	1	P.O. Box 229	
belences birectorate	No Walter	Lemont, IL 60439	1
Air Force Materials Laboratory		201101101, 12 00435	
Wright-Patterson AFB		Brookhaven National Laboratory	
Dayton, OH 45433	1	Technical Information Division	
		Upton, Long Island	
Library		New York 11973	
Building 50, Rm 134		Attn: Research Library	1
Lawrence Radiation Laboratory			
Berkeley, CA	1	Office Of Naval Research	
		Branch Office	
		1030 East Green Street	
		Pasadena, CA 91106	1

Professor J. W. Morris, Jr. University of California College of Engineering Berkeley, CA 94720	1	Dr. C. R. Whitsett McDonnell Douglas Research McDonnell Douglas Corporation Saint Louis, MO 63166 1	
		Julie Bolls, no ostoo	
Dr. Neil E. Paton Rockwell International Science Center 1049 Camino Dos Rios		Dr. J. C. Williams Carnegie-Mellon University Department of Metallurgy and Materials Sciences	
P.O. Box 1085		Schenley Park	
Thousand Oaks, CA 91360	1	Pittsburgh, PA 15213 1	
Mr. A. Pollack Naval Ships R&D Center Code 2821 Annapolsi, MD 21402	1	Professor H. G. F. Wilsdorf University of Virginia School of Engineering and Applied Sciences	
		Charlottesville, VA 22903 1	
Professor W. F. Savage Rensselaer Polytechnic Institute School of Engineering		Professor R. Mehrabian University of Illinois at Urbana-	
Troy, New York 02181	1	Champaign 144 Mechanical Engineering Building	
Professor O. D. Sherby Stanford University		Urbana, IL 61801 1	
Materials Sciences Division		Dr. N. J. Grant	
Stanford, CA 94300	1	Massachusetts Institute of Technology Department of Materials Science	y
Dr. G. Ecer Westinghouse Electric Corporation		and Engineering Cambridge, MA 02139 1	
Research & Development Center		1	
Pittsburgh, PA 15235	1	Professor P. R. Strutt University of Connecticut	
Dr. E. A. Starke, Jr. Georgia Institute of Technology		School of Engineering Department of Metallurgy	
School of Chemical Engineering		Storrs, CT 06268 1	
Atlanta, GA 30332	1		
Atlanta, GA 30332 Professor David Turnbull Harvard University	1	Mr. I. Caplan David W. Taylor Naval Ship Research and Development Center	
Atlanta, GA 30332 Professor David Turnbull Harvard University Division Engineering and Applied Physics		Mr. I. Caplan David W. Taylor Naval Ship Research	
Atlanta, GA 30332 Professor David Turnbull Harvard University Division Engineering and Applied Physics Cambridge, MA 02138	1	Mr. I. Caplan David W. Taylor Naval Ship Research and Development Center Code 2813 Annapolis, MD 21402 1 Dr. G. R. Leverant	
Atlanta, GA 30332 Professor David Turnbull Harvard University Division Engineering and Applied Physics Cambridge, MA 02138 Dr. F. E. Wawner University of Virginia		Mr. I. Caplan David W. Taylor Naval Ship Research and Development Center Code 2813 Annapolis, MD 21402 1 Dr. G. R. Leverant Southwest Research Institute 3500 Culebra Road	
Atlanta, GA 30332 Professor David Turnbull Harvard University Division Engineering and Applied Physics Cambridge, MA 02138 Dr. F. E. Wawner		Mr. I. Caplan David W. Taylor Naval Ship Research and Development Center Code 2813 Annapolis, MD 21402 1 Dr. G. R. Leverant Southwest Research Institute	

Professor G. S. Ansell		Professor D. G. Howden	
Rensselaer Polytechnic Institute		Ohio State University	
Dept. of Metallurgical Engineering		Dept. of Welding Engineering	
Troy, New York 02181	1	190 West 19th Avenue	
		Columbus, OH 43210	1
Professor H. K. Birnbaum			
University of Illinois		Dr. C. S. Kortovich	
Department of Metallurgy		TRW, Inc.	
Urbana, IL 61801	1	23555 Euclid Avenue	
01001		Cleveland, OH 44117	1
Dr. E. M. Breinan		Cieverand, on 44117	-
United Technology Corporation		Professor D. A. Koss	
United Technology Research Laborato	riec		
East Hartford, CT 06108	1	College of Metallurgical Engineering	_
East Haitible, CI 00100	•	Houghton, MI 49931	ıg
Duefaces II D Buode		noughton, MI 49931	1
Professor H. D. Brody		Dungfarana A. T1	
University of Pittsburgh		Professor A. Lawley	
School of Engineering		Drexel University	
Pittsburgh, PA 15213	1	Dept. of Metallurgical Engineering	
		Philadelphia, PA 19104	1
Mr. R. Morante		P. C. W. V.	
General Dynamics		Professor Harris Marcus	
Electric Boat Division		The University of Texas at Austin	
Eastern Point Road		College of Engineering	
Groton, CT 06340	1	Austin, TX 78712	1
Professor J. B. Cohen		Dr. H. Margolin	
Northwestern University		Polytechnic Institute of New York	
Dept. of Material Sciences		333 Jay treet	
Evanston, IL 60201	1	Brooklyn, N.Y. 11201	1
Professor M. Cohen		Professor K. Masubuchi	
Massachusetts Institute of Technolo	pgy	Massachusetts Institute of Technolo	gy
Department of Metallurgy		Department of Ocean Engineering	
Cambridge, MA 02139	1	Cambridge, MA 02139	1
Professor Thomas W. Eagar			
Massachusetts Institute of Technolo	ogy		
Department of Materials Science			
and Engineering			
Cambridge, MA 02139	1		

1

Professor B. C. Giessen Northwestern University Department of Chemistry

02115

Boston, MA