Day - 05 | Elastic Load Balancing & **Auto Scaling Groups | AWS Cloud Practitioner Certification CLF-C02**

Created on 2024-07-21 08:08 Published on 2024-07-21 10:44

➤ Elastic Load Balancing & Auto Scaling Groups

→ → Scalability & High Availability

→ → Vertical Scalability

→ → Horizontal Scalability

→ → High Availability

→ → Scalability vs Elasticity vs Agility

→ → High Availability & Scalability For EC2

→ → What is load balancing?

→ Why use a load balancer?

→ Why use an Elastic Load Balancer?

→ Auto Scaling Groups Scaling Strategies

→ → What's an Auto Scaling Group?

→ → ELB & ASG Summary

Scalability refers to the ability of a system to handle increased load by adding resources.

Scalability & High Availability

It can be:

• **Vertical Scalability**: Increasing the capacity of existing resources (e.g., upgrading

a server's CPU or memory).

- **Horizontal Scalability** (= *elasticity*): Adding more instances of resources (e.g., adding more servers to a pool).
- **Vertical Scalability** Vertical scalability (or scaling up) involves increasing the capacity of a single instance

or server. This can be done by adding more CPU, RAM, or storage. For example, your

application runs on a t2.micro. Scaling that application vertically means running it on a

database. There's usually a limit to how much you can vertically scale (hardware limit).

t2.large. Vertical scalability is very common for non distributed systems, such as a

Horizontal Scalability

cloud offerings such as **Amazon EC2**. **Scalability**

Horizontal Scalability means increasing the number of instances / systems for your

application. This implies distributed systems. It's easy to horizontally scale thanks the

components fail. The goal of high availability is to survive a data center loss (disaster).

This involves:

failure.

• **Redundancy**: Having multiple instances of critical components in at least 2 Availability Zones.

• Failover Mechanisms: Automatically switching to a standby component upon

• Load Balancing: Distributing incoming traffic across multiple instances to prevent

overload. **High Availability & Scalability For EC2**

\rightarrow To: u-12tb1.metal – 12.3 TB of RAM, 448 vCPUs

→ From: t2.nano - 0.5G of RAM, 1 vCPU

• Horizontal Scaling: Increase number of instances (= scale out / in)

• Vertical Scaling: Increase instance size (= scale up / down)

- → Auto Scaling Group
- → Auto Scaling Group multi AZ

ability to accommodate a

larger load by making the

hardware stronger (scale

up), or by adding nodes

Scalability vs Elasticity vs Agility

(scale out)

Scalability vs Elasticity vs Agility

→ Load Balancer multi AZ

→ Load Balancer

Scalability Elasticity Agility

elasticity means that there will

be some "auto-scaling" so that

the system can scale based on

friendly": pay-per-use, match

(not related to scalability -

distractor) new IT resources are

only a click away, which means

make those resources available

to your developers from weeks

that you reduce the time to

to just minutes.

once a system is scalable,

the load. This is "cloud-

demand, optimize costs

• High Availability: Run instances for the same application across multi AZ

What is load balancing?
Load balancing is the process of distributing network or application traffic across
multiple servers. It ensures no single server becomes a bottleneck, thus improving
performance and reliability.
Why use a load balancer?

Elastic Load Balancing (ELB) is a managed load balancing service provided by AWS.

• **Integration with ASG**: Works seamlessly with Auto Scaling Groups to provide

• Security: Supports integration with AWS Certificate Manager (ACM) for SSL

termination, and can work with AWS Web Application Firewall (WAF) for

• Provide SSL termination (HTTPS) for your websites

• Spread load across multiple downstream instances

• Seamlessly handle failures of downstream instances

• Do regular health checks to your instances

• High availability across zones

Why use an Elastic Load Balancer?

to healthy instances.

high availability and fault tolerance.

• Expose a single point of access (DNS) to your application

• Automatic Scaling: Automatically scales to handle incoming traffic. • **Health Checks**: Monitors the health of registered instances and routes traffic only

enhanced security. • 3 kinds of load balancers offered by AWS:

→ Network Load Balancer (ultra-high performance, allows for TCP) – Layer 4

→ Application Load Balancer (HTTP / HTTPS only) – Layer 7

→ Classic Load Balancer (slowly retiring) – Layer 4 & 7

What's an Auto Scaling Group?

An Auto Scaling Group (ASG) is a collection of EC2 instances that are treated as a logical group for the purposes of scaling and management.

• Manual Scaling: Manually adjust the number of instances based on anticipated

⇒ Target Tracking Scaling: Maintain a target value for a specific metric (e.g., average

⇒ Ensure we have a minimum and a maximum number of machines running

□ Replace unhealthy instances

demand.

CPU usage).

Auto Scaling Groups Scaling Strategies

The goal of an Auto Scaling Group (ASG) is to:

⇒ Scale out (add EC2 instances) to match an increased load

⇒ Scale in (remove EC2 instances) to match a decreased load

⇒ Automatically register new instances to a load balancer

• Dynamic Scaling: Automatically adjust based on real-time metrics such as CPU utilization or network traffic. Types include:

↔ I want the average ASG CPU to stay at around 40%

⇔ Anticipate a scaling based on known usage patterns

• **Scheduled Scaling**: Scale based on a predefined schedule.

⇔ Example: increase the min. capacity to 10 at 5 pm on Fridays ⇒ **Simple** / **Step Scaling:** Add or remove instances when a specific condition is met.

⇔ Scheduled Scaling: Scale in steps based on specified thresholds.

⇔ When a CloudWatch alarm is triggered (example CPU > 70%), then add 2 units

ELB & ASG Summary • High Availability vs Scalability (vertical and horizontal) vs Elasticity vs Agility in

⇔ When a CloudWatch alarm is triggered (example CPU < 30%), then remove 1

☐ Distribute traffic across backend EC2 instances, can be Multi-AZ

Supports health checks □ 3 types: Application LB (HTTP – L7), Network LB (TCP – L4), Classic LB (old)

Scale EC2 instances based on the demand on your system, replace unhealthy

• Auto Scaling Groups (ASG)

Happy Learning!

the Cloud

• Elastic Load Balancers (ELB)

Implement Elasticity for your application, across multiple AZ

☞ Integrated with the ELB