数学笔记

BeBop

September 22, 2024

Contents

Ι	知识整理	5
II	杂题集萃	7
II	I 易错知识	9
	Lie 群 1.1 Lie 群的连通性和单连通性在重要定理中的作用	11 11

4 CONTENTS

Part I 知识整理

Part II

杂题集萃

Part III

易错知识

Chapter 1

Lie **群**

1.1 Lie 群的连通性和单连通性在重要定理中的作用

开始前我们先叙述 Lie 群中的一个重要定理:

定理 1.1.1 (Lie 代数同态提升为 Lie 群同态). 设 G, H 是 Lie 群, G 既连通 又单连通, g, h 分别是 G, H 的 Lie 代数. 若 $\rho: g \to h$ 是一个 Lie 代数同态,则存在唯一的 Lie 群同态 $\Phi: G \to H$ 满足 $d\Phi = \rho$.

需要注意定理中 G 的单连通和连通的条件缺一不可.

例 1.1.2. 若 G 不是单连通的,则这样的 Φ 不一定存在.

Lie 群 (S^1,\cdot) 和 $(\mathbb{R},+)$ 的 Lie 代数均为 \mathbb{R} ,但不存在 S^1 到 \mathbb{R} 的非平凡 Lie 群同态. 设 $\varphi:S^1\to\mathbb{R}$ 为 Lie 群同态, 取 S^1 的一个稠密子群 $e^{i\pi\mathbb{Q}}:=\{e^{i\pi\theta}\,|\,\theta\in\mathbb{Q}\}$,则因为 $e^{i\pi\mathbb{Q}}$ 中的元素都是有限阶的, $\varphi(e^{i\pi\mathbb{Q}})=\{0\}$. 由 φ 的连续性可得 $\varphi(S^1)=\{0\}$. 因此 φ 只能是平凡群同态.

例 1.1.3. 若 G 不是连通的,则就算每个连通分支都是单连通的也不一定存在这样的 Φ .

考虑 $\mathbb{R} \times \mathbb{Z}_2$, \mathbb{Z}_2 在 \mathbb{R} 上的作用由 $0 \to \mathrm{id}$, $1 \to -\mathrm{id}$ 给出. $\mathbb{R} \times \mathbb{Z}_2$ 和 \mathbb{R} 的 Lie 代数均为 \mathbb{R} , 但 \mathbb{R} 到自身的恒同映射无法提升为 $\mathbb{R} \times \mathbb{Z}_2$ 到 \mathbb{R} 的同态.

假设这样的同态 φ 存在, 取 $\mathbb{R} \times \mathbb{Z}_2$ 包含 (0,0) 的分支, 它是连通且单连通的 Lie 群, 因此由定理1.1.1的唯一性知

$$\varphi: \mathbb{R} \times \{0\} \to \mathbb{R}$$
$$(t,0) \mapsto t, \quad \forall \, t \in \mathbb{R}$$

又因为 (0,1) 是 $\mathbb{R} \times \mathbb{Z}_2$ 的 2 阶元, 因此

$$\varphi:(0,1)\mapsto 0$$

但是

$$\varphi\Big((0,1)\cdot(t,0)\Big) = \varphi(-t,0) = -t \neq 0 + t = \varphi(0,1) + \varphi(t,0), \quad t \neq 0.$$

因此这样的群同态 φ 不可能存在.