

A prediction model that forecasts the risk of having a cardiovascular disease

Viorelia Magari, June 2024

Overview

Subject area:

- Detect the population with the higher risk of CVD
- Identify key risks that influence the apparition of CVD
- Make recommendations to minimize the risk

Proposed solution:

- Build the best model with accuracy and False Negative predictions
- Make a user-friendly web app, predict CVD and display recommendations

Potential impact:

- The overall wellbeing of the population
- Income of people, government

Dataset pre-processing

Overview:

70000 records of patients:

- Personal data
- Medical data
- Lifestyle data

Data cleaning:

- Dropped 1,57% of invalid data (negative blood pressure, too short/tall patients, etc.)
- 68903 records remained
- Dropped id column

Data pre-processing:

- Mapped categorical columns: gender, smoking, drinking, active, cardio
- OneHotEncoder columns: cholesterol, glucose

Findings EDA

High risk:

- The oldest patients, 55+ years old
- Men, with 0.8%
- Overweight and obese patients, >25 BMI
- High blood pressure, >120mmHg
- Patients who have very high cholesterol and/or glucose
- Patients who have a sedentary lifestyle, with 7.7%

Age of patients, by having a CVD

The relationship between blood pressure and presence of a CVD

Baseline Modelling

Model Evaluation	Logistic Regression	Decision Tree	K-Nearest Neighbors
Accuracy	0.73	0.73	0.73
Train score	0.73	0.73	0.74
Test score	0.73	0.73	0.73
Precision	0.75	0.76	0.74
Recall	0.68	0.68	0.69
F1-score	0.71	0.73	0.72

Confusion Matrix

K-nearest neighbors:

KNN with threshold 0.43:

Next steps

