XC Vario 6.3

Software Version: 20.0608-14

XC Vario

Handbuch Ausgabe 1.3

e.voellm@mail.de

Inhaltsverzeichnis

1. Einleitung	Δ
2. Features	
3. XC Vario Beschreibung	
4. Bedienung	
5. Anzeige	
5.1. Variometer	
5.2. Mittleres Steigen	
5.3. Sollfahrt	
5.4. Höhenmesser	
5.5. Wölbklappen Empfehlung	
5.6. Batterie Anzeige	
5.7, Temperatur	
5.8. MC-Wert	
5.9. Bluetooth Symbol	
6. Setup	
6.1. MC	
6.2. Audio Volume	
6.3. QNH Setup	
6.4. Ballast	
6.5. Airfield Elevation	
6.6. Vario	
6.6.1. Range	
6.6.2. Damping	
6.6.3. Mean Climb Minimum	
6.6.4. Mean Climb Period	
6.6.5. Polar Sink	9
6.7. Audio	10
6.7.1. Default Volume	10
6.7.2. Tone Style	
6.7.3. Dual Tone Pitch	10
6.7.4. Audio Mode	10
6.7.5. Auto Speed	10
6.7.6. CenterFreq	10
6.7.7. Range	
6.7.8. Deadband	
6.7.9. Octaves	
6.8. Polar	11
6.9. System	
6.9.1. Software Update	
6.9.2. Bluetooth iVario-nnn	
6.9.3. Factory Voltmeter Adj	
6.9.4. Factory Reset	
6.9.5. Battery Limits	
6.9.6. Display Orientation	
6.9.7. Altimeter, IAS	
6.9.8. Altimeter Source	
6.9.9. IAS Calibration	
6.9.10. Units	
6.9.11. Rotary Default	
7. RS232 Serial Interface	
*	

7.1. Serial RS232 Speed	13
7.1.1. Serial BT Bridge	13
7.1.2. Serial TX	14
7.1.3. Serial TX Inversion	14
7.1.4. Serial RX Inversion	14
8. XC Soar	14
8.1. XC Soar Konfiguration	15
9. Installation	16
9.1. Bohrplan	16
9.2. Micro USB	17
9.3. Audio Ausgang	17
9.4. RJ45 Verbinder	17
9.4.1. Anschluß mit Patchkabel	18
9.4.2. Temperatursensor	19
9.4.3. Stromversorgung	19
9.4.4. Vario-Sollfahrt Umschalter	19
9.4.5. RS232 Schnittstelle	19
9.4.6. RS232 BT Bridge	19
10. Technische Daten	21
11. Wartung	22
12. Garantiebestimmungen	22
13. Haftungsbeschränkung	22
14. CE-Konformitätserklärung	22

1. Einleitung

Das XC Vario mit der Software, OpenIVario 'https://github.com/iltis42/OpenIVario bildet die Grundlage für ein modernes Variometer System mit Varioanzeige, Geschwindigkeit und Sollfahrt, Höhenmesser und optionaler Wölbklappen-Empfehlung. Weiter gibt es die Daten für eine Temperatur- und Batteriezustands-Anzeige, sowie eine Daten-Schnittstellen zur freien Flight-Computer Software XC-Soar. Das System ist ein hervorragender Ersatz für alte Variometersysteme mit zusätzlichen modernen Features.

Die Hardware wurde neu entwickelt basiert auf drei modernen Halbleiter-Druck Sensoren, mit herausragenden Eigenschaften wie Genauigkeit und Langzeitstabilität. Sie sind stromsparend und ab Werk fertig abgeglichen, besitzen eine bislang nicht dagewesene Auflösung und erkennen damit bereits Druckunterschiede bei einer Höhendifferenz von nur 8 cm.

Ein digitaler Temperatursensor liefert zusätzlich Informationen zur Außentemperatur, und bietet einen wichtigen Baustein für die Berechnungen im atmosphärischen Modell von XC Soar. Über den Druck der TE Düse wird das Vario kompensiert und bietet eine Audiofunktion über eingebautem Lautsprecher.

2. Features

- TE-Variometer mit optimiertem Kalman Filter, einstellbarem Bereich und Dämpfung
- Barometrischer Höhenmesser mit QNH Einstellung oder QNH Autosetup
- Geschwindigkeitsanzeige (IAS) mit Sollfahrt (S2F)
- Einstellbare Flächenbelastung und MC Cready Wert
- Eingebauter Lautsprecher mit Lautstärkeregelung
- Ton Style individuell konfigurierbar
- · Optionale Wölbklappen Anzeige
- Polaren Bibliothek mit mehr als 80 gängigen Polaren
- · User-Polare modifizierbar
- Außentemperatur Anzeige mit externem Fühler
- Batterie Ladezustandsanzeige
- Bluetooth Interface f
 ür XC Soar sowie RS232 Schnittstelle
- · Barometrischer Höhenmesser mit hoher Genauigkeit
- Sonnenlicht ablesbares, helles 2.4 inch IPS Display
- Schaltereingang f
 ür Vario/Sollfahrt Umschaltung
- Einfaches Setup Menu durch Drehschalter mit Push Funktion
- Leichtes und kleines Gerät für Standard 57mm Instrumentenausschnitte
- Robustes und geschirmtes CNC gefrästes mattschwarz eloxiertes ALU-Gehäuse
- Software Update über Wifi 'Over The Air' (OTA)

3. XC Vario Beschreibung

Das XC Vario ist mit modernsten und hochauflösenden barometrischen Sensoren aufgebaut das bedeutet es werden keine Ausgleichsgefäße mehr benötigt. Die Auflösung dieser Sensoren beträgt 0,01 hPa entsprechend etwa 8 cm Höhenunterschied werden bereits erkannt.

Der Sensor für den Staudruck bzw. Geschwindigkeit oder IAS, ermöglicht eine absolute Genauigkeit von besser als 1%, bei 100 km/h ist die Abweichung maximal 1 km/h. Der digitale Temperatursensor hat eine absolute Genauigkeit von 0,5 °C. Alle Komponenten sind langzeitstabil und sehr zuverlässig.

Die Datenübermittlung zu XC Soar kann entweder über Bluetooth, alternativ über eine RS232 (TTL) Schnittstelle erfolgen, je nachdem über welches Interface das verwendete Gerät verfügt. Bluetooth hat den Vorteil, daß die hardwaremäßige Anbindung mit einem Kabel entfällt.

Die Temperatur der Luft wird über einen präzisen digitalen Temperatursensor im Lüftungsbereich gemessen, um bei der Berechnung atmosphärischer Parameter wie der Luftdichte in XC Soar berücksichtigt werden zu können, und damit präzisere Werte für Sollfahrt und Steigen liefen zu können.

Die Bedienung erfolgt über einen Drehknopf mit Drucktaster und gibt es einen Druckknopf für Power ON/OFF.

4. Bedienung

Nach dem Einschalten am Boden muß zunächst am **Drehknopf** (Rotary) das QNH eingestellt werden. Nach dem Drücken des Drehknopfs geht das Gerät in Betrieb.

Durch Links-Drehen wird die **Lautstärke** vermindert, entsprechend beim Rechts-Drehen vergrößert.

Im Betrieb wird nach **Knopfdruck** (Push) das **Menu** für die Parameter wie MC-Wert, Ballast, Polare und mehr gestartet.

Durch einfachen Push gelangt man in den obersten Punkt des Setup [<<Setup], welcher ohne zu Drehen, also Scrollen im Menu eine Rückkehr aus dem Setup anbietet. Nochmaliger Push ohne zu Scrollen wechselt somit zwischen **Setup** und **Normalbetrieb** hin und her.

Durch **Rechtsdrehen** entsprechend **Scroll Down**, oder **Linksdrehen** für **Scroll Up** werden im Setup die einzelnen Unterpunkte angewählt.

Die meisten Punkte im Setup-Menu kehren in die der obersten Punkt der vorherigen Ebene zurück, so daß **mehrere Einstellungen** vorgenommen werden können, ohne das Menu gänzlich zu verlassen.

Das Setup Menu ist **geschachtelt**, in die einzelnen Punkte kann durch Push weiter abgestiegen werden, der oberste Punkt kehrt wieder in das **vorherige** Menu zurück.

Alle Werte die verstellbar sind werden durch **Links-Drehen vermindert** und durch **Rechts-Drehen vergrößert**. Will man den Wert speichern kann man dies durch Push quittieren, das Speichern wird bestätigt und aus dem Dialog zurückgekehrt.

Dialoge für Parameter, die man in der Regel **separat** einstellt, wie zum Beispiel der MC Wert kehren **direkt zum Varioanzeige** zurück. Man spart sich damit einen weiteren Knopfdruck.

5. Anzeige

Die Anzeige besteht aus mehreren Komponenten für Vario, Geschwindigkeit, Sollfahrt und Höhe. Daneben wird der MC-Wert, die Außentemperatur, die Batteriespannung, der Status der Bluetooth Verbindung sowie optional die Empfehlung für die Wölbklappen angezeigt.

5.1. Variometer

Links befindet sich die wichtigste Anzeige, das Variometer. Nach Oben werden Steigwerte mit einem grünen Balken, nach unten mit einem roten Balken angezeigt.

Der weiße Pfeil wandert mit dem Steigwert mit.

Der über 5 Sekunden gemittelte Wert wird rechts davon digital angezeigt.

In der Voreinstellung wird in der Variometer Anzeige das polare Eigensinken in Abhängigkeit von der Geschwindigkeit als blauer Balken nach unten dargestellt. In vollkommen ruhiger Luft wird ab 50 km/h Staudruck ein blauer Balken nach unten gezeigt, welcher dem polarem Eigensinken bei der aktuellen Geschwindigkeit und Beladung entspricht. Bei zusätzlichem Fallen erweitert der roter Balken unterhalb des blauen Balken die Anzeige auf den aktuelle Sinkwert. Bei Steigen wird der blaue Balken mit einem grünen Balken entsprechend dem Steigen der umgebenden Luftmasse von unten her überschrieben. Die Länge des roten oder grünen Balkens entspricht dem Netto Variometer Wert, am Ende der Balken läßt sich der Brutto Variometer-Wert, das tatsächliche Steigen/Fallen gegenüber Grund ablesen. Die verschiedenen Variometer Anzeigen sind in nachfolgenden Skizzen dargestellt. Links mit der Option für polares Eigensinken aktiviert, rechts die klassische Anzeige ohne Darstellung des polaren Eigensinkens also ohne Information über die Nettosteigwerte.

5.2. Mittleres Steigen

Das mittlere Steigen wird als kleine rote Route links von der Variometer Skala dargestellt und bewegt sich entsprechend nach oben. Zu geringe Steigwerte, die man nicht zum Kernsteigen dazu zählen möchte, können im Vario Dialog ausgeblendet werden.

-3

5.3. Sollfahrt

In der Mitte des Displays befindet sich die Geschwindigkeitsanzeige. In dieser kleinen Box wird die aktuelle Geschwindigkeit in Form einer bewegten Skala dargestellt, der kleine weiße Pfeil in der Mitte der Box zeigt auf den aktuellen Geschwindigkeitswert. Über dieser Box ist zusätzlich eine Digitalanzeige des aktuellen IAS Werts. Rechts daneben der genaue Wert der Sollfahrt (engl. S2F Speed2Fly) ebenfalls digital.

Unterhalb des S2F Wertes ist der eigentliche Sollfahrtgeber in gewohnter Weise. Er zeigt nach unten in roter Farbe für drücken bzw. schneller, und nach oben in grüner Farbe für ziehen oder langsamer. Die Länge des Pfeils mißt sich mit der Sollfahrtdifferenz, ab etwa 45 km/h Differenz wird die Spitze des Pfeil abschnitten, der Pfeil wird mit zunehmender Abweichung immer breiter.

Bei mehr als 10 km/h Abweichung wird der genaue Wert der Abweichung unter oder über den Kommandopfeil angezeigt.

5.4. Höhenmesser

Unterhalb der Sollfahrtanzeige wird die aktuelle Höhe und der dazugehörige QNH Wert angezeigt.

5.5. Wölbklappen Empfehlung

Am rechten Rand unterhalb des kleinen Profils befindet sich die Wölbklappen Anzeige, welche eine Empfehlung für die zu rastende Position bei Wölbklappenflugzeugen gibt. Es können fünf verschiedene Stellungen in Form einer bewegten Skala gezeigt werden: -2, -1, 0, +1, +2. Das kleine Profil bewegt die rot dargestellte Wölbklappe analog zu der Empfehlung. Die zugehörigen optimalen Geschwindigkeiten entsprechend der Polare können im Setup je nach Modell angepasst werden. Die Anzeige muß dazu im Setup unter /Flap (WK) Indicator/Flap Indicator Option/ [Enable] aktiviert werden.

5.6. Batterie Anzeige

Die Batterie Anzeige zeigt den Ladezustand der Batterie in Form eines Symbols verschiedenfarbig an. Der genaue Wert in Prozent wird ebenfalls angezeigt. Bei zu Neige gehender Batterie wechselt die Farbe von Grün nach Gelb, danach Rot. Zusätzlich blinkt das Symbol bei Rot. Die entsprechenden Spannungen sind für einen Bleiakku voreingestellt, und können im Setup modifiziert werden.

5.7. Temperatur

Die Temperatur am unteren Rand des Display zeigt in °C den Wert der Außentemperatur an. Ist kein Sensor vorhanden, oder ist der Sensor defekt, zeigt der Wert "---" an.

5.8. MC-Wert

Der MC Wert zeigt den aktuell eingestellten MC-Wert. Der MC Wert ist der oberste Wert im Setup-Menu und kann über dessen Auswahl und Drücken des Knopfes leicht erreicht und modifiziert werden.

5.9. Bluetooth Symbol

Das Bluetooth Symbol zeigt mit blauer Farbe eine bestehende Verbindung zur XC Soar Gerät an, und den Austausch von Daten. Besteht keine Verbindung oder werden keine Daten mehr ausgetauscht, wird das Symbol grau dargestellt.

6. Setup

Im Setup Menu können viele Parameter detailliert eingestellt werden. Die wichtigsten Parameter sind im Hauptmenü

6.1. MC

Hier kann der MC Wert von 0 in 0.1 m/s Schritten bis 9.9 m/s eingestellt werden. Nach Bestätigung durch Push, befinden sich das Vario wieder im Normalbetrieb.

6.2. Audio Volume

Lautstärkeregelung. Ist anstelle der Lautstärke im Setup/System/Rotary Default/ [MC Value] anstelle von [Volume] eingestellt, hier die Lautstärke von 0..100% voreingestellt werden. Diese Einstellung macht Sinn falls über den externen Audio z.B. der Audio-Eingang des Funkgeräts benutzt wird, und damit dessen Lautstärkeregler genutzt werden kann.

6.3. QNH Setup

Dialog zur Einstellung des QNH Wertes. Am Boden stellt man den Wert so ein, daß die Höhenmesser Anzeige, ebenfalls eingeblendet, die Flugplatzhöhe (Airfield Elevation) anzeigt, oder auf den QNH Wert der nächstgelegenen ATC.

6.4. Ballast

Im Ballast Dialog kann die Flächenbelastung nach oben justiert werden, um Wasserballast oder eine zusätzliche Person im Doppelsitzer zu berücksichtigen. Hierbei wird bei 0% Ballast die Flächenbelastung angezeigt, für welche die Polare erflogen und erfaßt wurde.

Beispiel: Ein Segelflugzeug mit **10 m2** Flügelfläche hat ein Rüstgewicht von 260kg, der Pilot wiegt 80kg, 100 Liter Wasser (100kg) sind getankt. Das Abfluggewicht beträgt damit *440kg*, entsprechend die Flächenbelastung 440kg/10m2 = **44 kg/m2**. Die Polare wurde ohne Wasser bei 34.4 kg/m2 erflogen.

Die Einstellung des Ballastes kann nun in Prozent-schritten oder noch einfacher entsprechend der ebenfalls dargestellten Flächenbelastung vergrößert werden, also auf 28% entsprechend ca. 44 kg/m2.

Nach Ablassen des Wassers ist der Ballast wieder auf 0% zurückzudrehen.

6.5. Airfield Elevation

Sofern hier der Wert für die Flugplatzhöhe erfaßt wird, wird das QNH automatisch nach dem Einschalten auf die gegebene Platzhöhe (Airfield Elevation) einjustiert. Im QNH Dialog ist dies nur zu bestätigen. Sollte auf einem anderen Platz mit verschiedener Höhe gelandet werden, ist die Einstellung manuell auf dessen Platzhöhe zu korrigieren, oder das QNH der nächstgelegenen ATC zu verwenden.

6.6. Vario

Im Vario Dialog können die Einstellungen für die Varioanzeige angepasst werden.

6.6.1. Range

Mit dem Bereich (engl. Range), wird die Skala des Variometers eingestellt. Es kann ein Bereich von 1 m/s bis 30 m/s für die min/max Werte gewählt werden. Voreinstellung sind 5 m/s,

6.6.2. Damping

Die Dämpfung (engl. Damping), regelt die Zeitkonstante zur Glättung der Variometer Anzeige. Normale Thermik ist vom Wesen her turbulent was bedeutet daß eine ungedämpfte Vario Anzeige dem Piloten kaum auswertbare Information liefert. Üblich sind Zeitkonstanten von einigen Sekunden. Eine zu starke Dämpfung

verzögert bei einfachen Tiefpässen die Anzeige. Die optimierte Kalman Filterung, welche physikalische Gegebenheiten berücksichtigt und vorausdenkt, reagiert schnell ohne nervös zu wirken. Voreingestellt sind 3 Sekunden. Für eine noch ruhigere Anzeige können Werte bis 6 Sekunden sinnvoll sein.

6.6.3. Mean Climb Minimum

Für die Berechnung des mittleren Steigens können geringe Steigwerte, die etwa im Geradeausflug bei hoher Geschwindigkeit vorhanden sind ausgeblendet werden. Einer modernen Empfehlung folgend soll für den MC Wert nur das Kernsteigen beim Kreisen herangezogen werden, nicht die Steigwerte im Geradeausflug oder beim Zentrieren. Diese Wert legt das Minimum des Steigens fest, ab welchem ein Steigwert noch in der Berechnung berücksichtigt wird. Voreingestellt sind 0.5 m/s.

6.6.4. Mean Climb Period

Einer Empfehlung folgend sollen die Steigwerte der letzten 3 Aufwinde als mittleres Steigen für den MC Wert berücksichtigt werden. Aus der Analyse viele Flüge erkennt man daß ca. alle 15 Minuten ein neues Aufwindgebiet angeflogen wird. Mit einer Voreinstellung von 45 Minuten wird dem Rechnung getragen, es werden also nur Werte aus den letzten 45 Minuten berücksichtigt. Der Wert nach in Minuten Schritten verändert werden.

6.6.5. Polar Sink

Durch die Auswahl von [ENABLE] (Voreinstellung), wird in der Variometer Anzeige das polare Eigensinken in Abhängigkeit von der Geschwindigkeit dargestellt. Mit [DISABLE] läßt sich diese Einstellung verändern, das Polare Sinken wird dann nicht mehr angezeigt.

6.7. Audio

Der Tongenerator ist das ein wichtiger Teil zu Verbesserung der Sicherheit im Cockpit, da er erlaubt die Aufmerksamkeit auf andere Flugzeuge zu richten. Der Ton ändert sich mit der Vario oder Sollfahrt Anzeige in Tonhöhe und Intervall zwischen 100 mS langen Pausen (oder einem zweiten Ton), und wird über den internen Lautsprecher an der Rückseite des Gehäuses abgegeben.

6.7.1. Default Volume

In dieser Einstellung wird die Lautstärke die nach dem Einschalten des Geräts eingestellt ist konfiguriert. Voreingestellt sind 40% Lautstärke.

6.7.2. Tone Style

In dieser Einstellung wird gewählt ob ein einfacher Ton [Single Tone] mit kurzen Unterbrechungen gewünscht ist (di di di), oder ob das Vario im Zweiton Modus [Dual Tone] (di da di da) arbeitet. Voreingestellt ist der Zweiton-Modus.

6.7.3. Tone Chopping

Beim Audio im Vario oder Sollfahrtmodus (S2F) kann der Ton bei Werten über Null mit kurzen Unterbrechungen (100 mS), deren Häufigkeit mit dem angezeigten Vario oder S2F Wert zunimmt gewählt werden. Diese Unterbrechung kann abgeschaltet werden [Disabled], oder nur für Vario [Vario only] oder die Sollfahrt [S2F only] gelten. Eine vierte Option ist eine Unterbrechung für Beide [Vario and S2F], was voreingestellt ist.

6.7.4. Dual Tone Pitch

Diese Einstellung ist nur im Zweiton Modus relevant. Es gibt den Pitch, also die Tonhöhen Änderung des zweiten Tons an. Der zweite Ton wird um diesen Prozentsatz in der Tonhöhe noch oben versetzt. Voreingestellt sind 12%.

6.7.5. Audio Mode

Der Audio Mode gibt an inwiefern der Tongenerator dem Variometer oder dem Sollfahrtgeber folgt. Es gibt vier Optionen. Der Tongenerator kann entweder fest auf Vario [Vario] oder Sollfahrt [S2F] eingestellt werden. Weiter gibt es dann die Option über den externen Schalter, z.B. einen Knüppelschalter oder Schalter im Panel den Modus Vario/Sollfahrt umzuschalten [Switch]. Soll die Umschaltung automatisch ab einer bestimmten Geschwindigkeit erfolgen, so ist [AutoSpeed] (Voreinstellung) zu wählen.

6.7.6. Auto Speed

Dies ist die Geschwindigkeit ab welcher der Tongenerator von Variometer auf Sollfahrt wechselt. Voreingestellt sind 100 km/h. Bei höherer Flächenbelastung und modernen Segelflugzeugen kann der Wert entsprechen höher eingestellt werden.

6.7.7. CenterFreq

Gibt die Mittenfrequenz des Tongenerators an, und kann in 10 Hz Schritten modifiziert werden. Voreingestellt sind 500 Hz.

6.7.8. Range

Hiermit wird festgelegt ob der Tongenerator einer festen
Bereichseinstellung folgt [Max eq. 5 m/s], oder der aktuellen

5 m/s or Variable?

Variometer Bereichseinstellung folgt [Variable (X m/s)]. Der Bereich legt fest ab welche Wert der Tongenerator die höchste oder tiefste Frequenz und Intervall-folge ausgibt. Es kann Sinn machen bei schwachem Steigen den Bereich dynamisch zu vergeben. Bei dynamischer Einstellung und einem Range von 2 m/S des Vario's, hören sich dann 2 m/S gleich an wie ansonsten 5 m/s bei fester Einstellung. Die Voreinstellung ist [Max e.q. 5 m/s].

6.7.9. Deadband

Mit dem Deadband wird der Bereich angegeben an dem das Vario keinen Ton abgibt. Es gibt den [Lower Val] für den negativen Wert und den [Upper Val] für positive Werte. Voreingestellt sind +-0.3 m/s für das Deadband. Das Deadband hilft kleine Steigwerte auszublenden und am Boden für Ruhe zu sorgen ohne die Lautstärke ab-regeln zu müssen.

6.7.10. Octaves

Hiermit wird festgelegt über wieviel Oktaven sich die Tonänderung zwischen den Nullwert und dem tiefsten, sowie dem Nullwert und dem höchsten Ton erstreckt. Der Wert läßt sich in 0.1 Schritten zwischen 1.5 fach und 4.1 fach verändern. Voreingestellt ist 2 fach. Ein zu hoher Wert erzeugt Töne außerhalb des optimalen Spektrums für den Lautsprecher und das menschliche Gehör.

6.8. Polar

Im Polar Dialog lassen sich der Flugzeugtyp wählen, sowie die Polare manuell justieren. Es gibt eine Polare [User-Polar], die sich unabhängig von den Polaren aus der Bibliothek pflegen lässt, z.B. für einen Flugzeug Typ der nicht in der Bibliothek enthalten ist.

Unter [PolarAdjust] kann die Flächenbelastung [Wingload], und die entsprechenden Geschwindigkeit [Speed 1,2,3] und Sink-Werte [Sink 1,2,3] an drei Stützpunkten modifiziert werden.

6.9. System

Im System Menu verschiedene Dinge welche mit der Hard- und Software in Zusammenhang stehen gemanaged.

6.9.1. Software Update

Die Software des Geräts ist als OpenSource frei zugänglich auf github Seite: https://github.com/iltis42/OpenIVario

Software Releases werden auf: https://github.com/iltis42/OpenIVario/tree/master/images veröffentlicht, und können OTA (Over The Air) über einen Wifi Access Point des Vario's eingespielt werden. Hierzu ist die neue Firmware, z.B. die Datei sensor-20.0505-10.bin zunächst auf einen Android Gerät (Handy) lokal zu speichern.

Danach im Vario Setup unter System/Software Update/ [Start Wifi AP] der Update zu starten und enstprechend dem Dialog auf das WiFi "ESP32 OTA" zu wechseln. Ist das erfolgt kann die neue Firmware auf der Webseite http://192.168.0.1 selektiert und hochgeladen werden. Der Dialog führt dabei mit Fortschritts Anzeige durch den Download und zeig den Erfolg sowohl auf der Webseite, als auch am Variometer an.

Wurde der Software Download am Vario selektiert, aber keine Datei ausgewählt und geladen, gibt es nach 15 Minuten einen automatischen Timeout und die alte Software startet neu. Der Timeout ist in dem Falle abzuwarten.

6.9.2. Bluetooth iVario-nnn

Der Dialog dient zum Aktivierung [Sender ON] und Deaktivierung [Sender OFF] der Bluetooth Schnittstelle. Weiterhin wird der Name der Bluetooth Verbindung angezeigt. Der Bezeichner: iVario-nnn bezeichnet zum Einen die Software kommend von OpenIVario plus die dreistellige Seriennummer des Geräts. Voreingestellt ist [Sender ON]

6.9.3. Factory Voltmeter Adj

Optionaler Dialog welcher nur im Werk zu präzisen Feinjustage der Batteriespannungs-Messung verwendet werden kann um maximale Genauigkeit zu erreichen. Ist die Justage bereits erfolgt, wird der Dialog unterdrückt. Nach einem Factory Reset erscheint der Dialog, und ermöglicht eine präzise Justierung. Ohne diese Einstellung die Messung auf ca. 1% genau. Zur Durchführung ist ein Multimeter notwendig, mit dem die Spannung exakt gemessen wird.

6.9.4. Factory Reset

Ermöglicht einen Reset auf Voreinstellung aller Settings des Gerätes.

6.9.5. Battery Limits

Einstellung der Spannungen für Batterie Low (0%), Red (10%), Yellow (20%) und Full (100%). Die Spannungen sind für einen **Bleiakku** voreingestellt.

6.9.6. Display Orientation

Die Display Ausrichtung kann **invertiert** werden, damit verschiebt sich der Drehknopf auf die andere Seite. [NORMAL, Rotary left] und [TOPDOWN, Rotary right] stehen zur Auswahl.

6.9.7. Altimeter, IAS

6.9.8. Altimeter Source

Als Quelle für den Höhenmesser kann entweder der [TE Sensor] oder der [Baro Sensor] ausgewählt werden. Voreingestellt ist der **Baro Sensor**. Der TE Sensor macht nur dann Sinn wenn man die Energiehöhe angezeigt haben möchte, oder zu Testzwecken.

6.9.9. IAS Calibration

Mit der IAS Calibration kann eine proportionale Kalibrierung der Indicated Air Speed (IAS), der angzeigten Geschwindigkeit vorgenommen werden. Die Kalibrierung lässt sich in 1% Schritten im Bereich von +-10% einstellen. Mit einer Kalibrierung von beispielsweise +5% werden anstelle von 100, 105 km/h angezeigt. Dies ist normalerweise nicht nötig, da die Genauigkeit des Sensors normalerweise völlig ausreicht, jedoch können die Druckabnahmen im Flugzeug fehlerhafte Werte liefen, und somit besteht hier die Option diese Fehler zu minimieren. Voreingestellst sind 0% Kalibrierung.

6.9.10. Units

Für internationalen Einsatz lassen sich die Einheiten für beliebig einstellen, die Einstellmöglichkeiten sind wie folgt, fett gedruckt die Voreinstellung:

m ft FL kph mph kt m/s ft/min knots

Höhenmesser [Altimeter]: Meter (m), Foot (ft) or Flightlevel (FL)

IAS [Indicated Airspeed]: Km per hour (km/h), Miles per hour (mph) or Knots (kt)

Vario [Vario]: Meters/sec (m/s), Foor per min (ft/min) or Knots (knots)

6.9.11. Rotary Default

Über die (Vor-) Einstellung für den Drehschalter (engl.

Rotary Default), wird festgelegt welche Einstellung im Variobetrieb durch Drehen des Rotary verändert wird. Zur Auswahl stehen [Volume] für die Lautstärke, sowie [MC Value] für den MC Wert. Voreingestellt ist [Volume]. Wir die Lautstärkeregelung nicht benötigt, z.B. bei Verwendung eines externen Audio Gerätes mit eigenem Lautstärkeregler, oder falls das verändern der Lautstärke über das Setup ausreicht, kann hier auch der MC Wert verwendet werden.

7. RS232 Serial Interface

7.1. Serial RS232 Speed

Das RS232 Interface dient zur Ausgabe der seriellen OpenVario Daten (TX), sowie als Serial to Bluetooth Bridge (RX) um ein weiteres Serielles Gerät, z.B. ein Flarm mit dem Gerät auf dem XC Soar läuft zu verbinden. Unter der Option

[Serial RS232 Speed] kann die Geschwindigkeit zwischen 4800 und 115200 baud in den üblichen Baudraten eingestellt, oder abgeschaltet werden [Serial OFF]. Die Schnittstelle ist voreingestellt abgeschaltet. Die Einstellung der Geschwindigkeit gilt immer für beide Richtungen RX und TX.

7.1.1. Serial BT Bridge

Die Option [**Serial BT Bridge**] aktiviert die Bridge Funktion [Enable] oder schaltet sie ab [Disable]. Die Daten eines am RJ45 Verbinder Pin 2 angeschlossenen seriellen Gerätes z.B. eines FLARM werden gepuffert jeweils bei Zeilenumbruch (\n) via Bluetooth an XC Soar gesendet. Die Voreinstellung der Bridge ist abgeschaltet.

7.1.2. Serial TX

Mit dieser Option lässt sich das **Senden der NMEA Daten** auf der Seriellen Leitung Pin 3 (RS232 TX) am RJ45 Verbinder ein oder ausschalten. Voreingestellt ist das Senden ausgeschaltet.

7.1.3. Serial TX Inversion

Normalerweise wird nach dem RS232 Standard mit Pegelwandlern eine negative Logik verwendet. Bei RS232 TTL gibt es diese Pegelwandlung und Inversion nicht, kann aber softwareseitig erfolgen und ist notwendig wenn an ein Gerät mit Pegelwandlung gesendet wird. Voreingestellt ist die TX Invertierung eingeschaltet.

7.1.4. Serial RX Inversion

Wie bei der TX Invertierung aber für die Empfangsseite. Ein FLARM hat zum Beispiel Pegelwandlung das Signal kann aber mit dem RS232 TTL Eingang verstanden werden wenn die Invertierung eingeschaltet ist (voreingestellt).

8. XC Soar

XC Soar ist eine freie OpenSource Software und kann auf beliebigen Android Geräten installiert werden. Diese beinhalten in der Regel bereits einen GPS Empfänger

welcher ausreichend genaue GPS Daten für die aktuelle Position, oder die Geschwindigkeit über Grund liefert.

Für einen vollständigen Segelflugrechner fehlen aber weitere Werte wie Staudruck, TE-Düsendruck, Statischer Druck, um eine brauchbare Varioanzeige oder Informationen für den Vorflug für die aktuelle Sollfahrt liefen zu können. Das **XC Variometer** liefert genau diese Daten an XC Soar entweder über Bluetooth oder eine serielle RS232 Schnittstelle. Die XC Soar Software ist auf vielen HA Plattformen lauffähig, darunter Android Geräte wie moderne Smartphones, oder Android Navis mit hellem Farbdisplay und 7 Zoll Bildschirm.

Diese sind am Markt mittlerweile mit ausreichend hellen Display's und Touchscreens fertig erhältlich, und eignen sich für den Einsatz im Cockpit gut. Mit dem XC Vario steht damit zu einem erschwinglichen Preis diese Technik zur Verfügung.

Im Vorflugmodus kann Varioanzeige in XC Soar damit ebenfalls genaue Sollfahrtinformationen liefern. Insgesamt bietet XC Soar zusammen mit dem XC Vario einen Segelflugrechner neuester Technologie mit intuitiver Touchscreen Bedienung, vielen Screens voller Features für Thermik-Kurbeln, Vorflug, Endanflug mit frei konfigurierbaren Info Boxen, Darstellung von Gelände mit Luftraum incl. Seitenansicht. Anzeigen mit Topographie und Landefeldern, Assistenten für Wettbewerbe, Vario mit Akustikfunktion, Sollfahrtgeber für MC- oder Delfin-Vorflug und vieles mehr.

8.1. XC Soar Konfiguration

Auf dem Gerät mit XC Soar, z.B. Tablet oder Smartphone lässt sich das XC Vario mit wenigen Klicks in XC Soar integrieren. Hierzu muß **Bluetooth aktiviert** sein, und zunächst muß das Vario im Android als Bluetooth Gerät gepaart gepaart werden.

Hierzu im Android Gerät unter Bluetooth einen Gerätescan durchführen, und das Vario, welche als "iVario-[nnn]" auftauchen sollte im **Pairing Dialog paaren**. Die dreistellige Nummer ist die dabei die **Seriennummer** des Geräts.

Sollte ein Bluetooth Passwort abgefragt werden, ist diese mit "1234" anzugeben.

Danach in XC Soar ist unter **Konfig** → **NMEA-Anschluss**, einem bislang freien (deaktivierten) Anschluß A..F zum 'Bearbeiten' anwählen. Das Vario sollte dort dann z.B. als 'iVario-123' auftauchen. Dort dieses auswählen, und in dem folgenden Dialog als Treiber '**OpenVario**' angeben, der Schalter K6Bt bleibt dabei auf 'Aus'. Nach Quittierung des Dialogs mit "OK", wird sich XC Soar innerhalb weniger Sekunden mit dem Vario verbinden, welches dann als regulärer NMEA Anschluß mit Status "Verbunden; Baro, Vario" angezeigt wird.

Jetzt sollten unter 'Überwachen' die \$POV NMEA-Sentences des Vario's zu sehen sein, mit Abschnitten für die einzelnen Drücke, Temperatur oder Spannung. Das Protokoll ist unter: http://www.openvario.org/doku.php?id=projects:series_00:software:nmea dokumentiert.

OpenVario Daten Beispiel:

```
$POV,P,978.1,Q,0.0,E,-0.0,T,15.0*4F

$POV,P,978.1,Q,0.0,E,-0.1,T,15.0*4F

$POV,P,978.0,Q,0.0,E,0.5,T,15.0*47

$POV,P,978.0,Q,0.0,E,1.0,T,15.0*47

$POV,P,977.9,Q,0.0,E,1.3,T,15.0*42
```

P: Barometrischer Druck (hPa), Q: Staudruck (Pa), E: TE-Vario (m/s), T: Temperatur (°C)

9. Installation

Das XC Vario wurde einfach gehalten in Bezug auf Installation und Konfiguration.

Der Einbau im Cockpit ist denkbar einfach. Mittels 6 mm T- oder Y-Stücken können die für das XC Vario benötigten Drücke mit den Instrumentenschläuchen der mechanischen Instrumente verbunden werden. Falls diese Verbindungen nicht bereits von einem vorherigen Vario vorhanden sind, kann der Instrumentenschlauch an geeigneter Stelle aufgetrennt, und mittels T-Stück der Anschluß für das Vario hergestellt werden.

- Statischer Druck = Static = ST
- Staudruck = Pitot = Gesamtdruck = PI
- TE-Düsendruck = TE

Die elektrischen Verbindungen sind über den RJ45 Verbinder und optional für einen externen Lautsprecher oder Audio-Eingang an der 3,5 mm Audio-Klinken Buchse an der Rückseite des Gerätes herzustellen.

9.1. Bohrplan

Das Instrument entspricht mechanisch der Luftfahrtnorm für Instrumente mit 57mm Durchmesser. Die Bohrungen für vier M4 Instrumentenschrauben sollten mindestens 4.5 mm betragen. Die Instrumentenschrauben dürfen nicht mehr als 10 mm in das Gehäuse hineinragen. Keine Garantie auf fehlerfreien Betrieb bei gewaltsam eingedrehten Schrauben > 10 mm. Empfohlen sind je nach Dicke des Instrumentenpanels Schrauben von M4x12 bis maximal M4x16.

9.2. Micro USB

Über den Micro USB Verbinder auf der Sensor-Platine wird das Gerät im Werk erstmalig programmiert, und ist nur bei abgenommenem Deckel zugänglich. Das Gerät kann mit dem Micro Anschluss zur Diagnose mit einem PC verbunden werden und auch über deren Speisung der USB versorgt werden. Um Kontakt mit dem seriellen Interface des ESP32 herzustellen werden u.U. Treiber für den Serial-USB Wandler Chip CH340G benötigt.

Der Anschluss wird für den Betrieb als Variometer nicht benötigt.

9.3. Audio Ausgang

Eine 3.5mm Klinkenbuchse bietet einen externen Ausgang für das Audio-Signal des Variometers. Daran kann entweder eine eigener externer Lautsprecher angeschlossen werden, oder ein Audio-Eingang eines Funkgerätes genutzt werden. Im Normalfall reicht der interne Lautsprecher des Variometers, es kann aber Sinn machen z.B. bei Betrieb mit Headsets das Signal dort hören zu können, oder in lauten Cockpits einen externen Lautsprecher näher am Kopf zu verbinden. Der Interne Lautsprecher schaltet sich ab sofern ein externes Audiogerät gesteckt ist.

9.4. RJ45 Verbinder

Rückseitig befindet sich die RJ45 Buchse, welche für ein 8 poliges LAN Patchkabel vorgesehen ist. Über diese Kabel werden alle Versorgung, RS232 Interface, Temperatursensor und der Schalter für die Sollfahrtumschaltung angeschlossen.

9.4.1.Anschluß mit Patchkabel

Es können eigene RJ45 Stecker mit geeigneten Kabeln konfektioniert werden, oder auf ein handelsübliches LAN-Patch Kabel zurückgegriffen werden, welcher folgende Farbcodierung aufweist. Es gibt europäische (568A) und amerikanische (568B) Standards, mit Unterschieden in der Farb-Kodierung. Im Zweifel messen. Bei einem 568A Kabel wäre weiß/grüner Strich, Pin 1 also Pluspol Versorgung und braun mit weißem Strich (oder braun), wäre Pin 8 also Minuspol. Bei einen 568B Kabel ist der Pluspol orange/weiss. Am gebräuchlichsten ist der 568B Standard, nachfolgend blau unterlegt:

Pin RJ45	Bezeichner	Richtung	568A	568B	Anschluss
1	Plus 528 VDC	Ð	grün-weiss	orange-weiss	Bordnetz +12VDC
2	RS232 TTL RX	€	grün	orange	Flarm Pin 5 (Tx), Patch: blau-weiss
3	RS232 TTL TX	⊖	orange-weiss	grün-weiss	Navi mit Serial RX
4	Vario Switch	∌	blau	blau	Schalter Pin 1 (Pin2 nach Masse)
5	T-Sensor +3.3 VDC	→	blau-weiss	blau-weiss	DS1820 +VDD
6	T-Sensor Data	Ð	orange	grün	DS1820 DQ
7	GND	Ð	braun-weiss	braun-weiss	DS1820 GND
8	GND	Ð	braun	braun	Bordnetz Masse

Kabelkonfektionierung

9.4.2.Temperatursensor

Der Temperatursensor ist ein fertig konfektionierter Dallas DS1820B
Sensor mit wasserdichter Ummantelung und einer 1,5 Meter langen
Zuleitung. Diese Sensoren eine drei farbige Leitungen, welche in der
Regel mit den Farben Rot, Gelb und Schwarz codiert sind. Wird ein
eigener Sensor verwendet, sind die Angaben des Herstellers zu beachten.
Um die Außentemperatur zu messen, wird dieser die vordere Lüftung eingelegt.
Dies kann auch im Lüftungsrohr erfolgen sofern vorhanden. In dem Falle wird mit einem
Cuttermesser ein kleiner Schlitz geschnitten, der Temperatursensor eingeschoben und z.B. mit
Aluminium-Klebetape oder Silikon abgedichtet.

9.4.3. Stromversorgung

Die Stromversorgung wird mit dem Bordnetz verbunden. Eine eigene Absicherung eines Variometers ist für Segelflugzeuge nicht vorgeschrieben, wird aber empfohlen. Alternativ kann das XC Vario kann parallel zu einem anderen Gerät das mindestens mit 0,5 A abgesichert ist dazugeschaltet werden. Die Verkabelung kann mit Kupferlitze ab 0,14 mm² erfolgen, empfohlen wird 0,25 mm². Das Gerät verträgt Spannungen im Bereich von 5-28V ideal ist eine Versorgung mit 12V.

9.4.4. Vario-Sollfahrt Umschalter

Der Vario-Sollfahrt Umschalter läßt sich am Knüppel oder im Instrumenten-Paneel anbringen. Sein zweites Pin muß nach Masse (Minuspol Versorgung), gelegt werden. Bei Massekontakt an Pin 4 ist das Vario im Sollfahrt-Modus, bei offenem Schalter im Vario-Modus. Die Sollfahrt-Anzeige ist ständig in Betrieb, aber es wechselt der Tongenerator auf Sollfahrt als Input.

Der Umschalter ist nicht unbedingt notwendig, da es möglich ist die Sollfahrt automatisch ab einer bestimmten Geschwindigkeit umzuschalten. Dies läßt sich im Menu Audio/AudioMode durch die Einstellung "Autospeed" erreichen. Die "AutoSpeed" ist diejenige Geschwindigkeit, bei deren Überschreitung das Variometer in den Sollfahrt Modus wechselt.

9.4.5.RS232 Schnittstelle

Die RS232 Schnittstelle dient an **Pin 3** als **Ausgang** (TX) zu einem Gerät ohne Bluetooth Support. Diese Leitung muß mit dem Eingang des externen Gerätes (RX) verbunden werden. Hierbei werden ähnlich Bluetooth, mit dem seriellen RS232 Protokoll etwa 10 Mal die Sekunde die aktuellen Meßdaten übermittelt.

9.4.6.RS232 BT Bridge

Eine weitere Möglichkeit der seriellen Schnittstelle ist über den **Eingang Pin 2** (RX) die Möglichkeit serielle Daten eines weiteren Gerätes wie

z.B. einem FLARM zu empfangen und über die Bluetooth Schnittstelle zu übermitteln. Dies erfolgt über die Einstellung im Setup unter System/RS232 Serial Interface/Serial BT Bridge [Enable]. Voreingestellt ist Disable. Das Feature ist neu und konnte bisher noch nicht im Fluge getestet werden, wird aber alsbald nachgeholt.

10. Technische Daten

Stromversorgung	5-28V DC
Spannung empfohlen	11-14 V DC
Stromaufnahme bei 12V typisch	50 mA
Variometer Bereich	+- 1m/s bis +-30m/s
Baro und TE Drucksensor Auflösung 0,01 hPa (0,1 m)	
Baro Sensor relative Genauigkeit	0,12 hPa (1 m)
Baro Sensor absolute Genauigkeit	1 hPa (8 m)
Baro Sensor Bereich 0-9.000 m kalibri bis 16.000 m unka	
Staudrucksensor Genauigkeit bei 100 km/h	1 km/h
Staudrucksensor Bereich	10 – 280 km/h
Temperatursensor Bereich	-1085 °C
Temperatursensor Genauigkeit	<0.5 °C
Abmessungen des Gehäuse (Breite x Höhe x Tiefe)	64x68x35 mm
Ausschnitt im Instrumenten-Paneel	57mm
Elektrischer Anschluß	RJ45 Buchse 8 polig
Audio Ausgang	3.5 mm Klinke geschaltet
Pneumatik Anschlüsse	drei 6 mm Nippel
Gewicht	ca. 200g

11. Wartung

Das Variometer bedarf keiner weiter Wartung, da im Normalfall im Rahmen des Instanhaltungsprogamms (IHP) des Flugzeugs eine turnusmäßige Dichtigkeitsprüfung der Instrumentierung ohnehin vorgeschrieben ist. Damit ist die Prüfung des Variometer mit abgedeckt. Selbstverständlich wird im Werk eine Prüfung vorgenommen, diese enthält aber nicht die flugzeugseitige Instrumenten-Verschlauchung, sowie deren Alterung und die Alterung von O-Dichtringen im Variometer selbst. Sollte die Prüfung auf Dichtheit im IHP fehlen, sollte eine entsprechende Ergänzung vorgenommen werden.

12. Garantiebestimmungen

Für das Vario leistet bluevario eine Garantie von zwei Jahren ab Kaufdatum hinsichtlich Aufwand und Materialkosten der Instandsetzung. Innerhalb dieser Zeitspanne werden Komponenten, die unter normalen Betriebsbedingungen ausfallen, kostenlos repariert oder getauscht, vorausgesetzt das Gerät wurde kostenfrei an den Hersteller gesendet.

Die Garantie deckt keine Schäden ab, die durch fehlerhafte Bedienung, Mißbrauch, Unfälle, unautorisierte Änderungen oder Reparaturen oder mangelnde Wartung entstehen.

13. Haftungsbeschränkung

Mit dem Kauf des Geräts erklärt sich der Kunde einverstanden daß keine Haftung für jegliche unmittelbaren oder mittelbaren Schäden, Schadenersatzforderungen oder Folgeschäden gleich welcher Art und aus welchem Rechtsgrund, die durch die Verwendung des Geräts entstehen.

Das Gerät ist ein rein streckenflugtaktisches Gerät, zählt somit nicht zur Sollinstrumentierung bei Segelflugzeugen, und darf im Zweifel nicht als primäre Quelle für die Steuerung des Flugzeugs, insbesonsers in kritischen Flugphasen genommen werden. Hierzu ist die Sollinstrumentierung zu verwenden. Das Gerät benötigt daher auch keiner FAA oder EASA Zulassung.

14. CE-Konformitätserklärung

DECLARATION OF CONFORMITY

Dipl. Ing (FH) Eckhard Völlm, Panoramastr. 86/1, D-71665 Vaihingen/Enz, erklärt dass in normaler Konfiguration die Variometer Hardware den Anforderungen der CE entspricht, siehe hierzu auch das Zertifikat des ESP32 WROOM-32 Moduls: https://www.espressif.com/sites/default/files/Espressif%20Systems%20ESP32-WROOM-32E%20CE%20B2004079%20RED%20Final.pdf

Die EMC Vertäglichkeit entspricht EN 301 489-3:2002-08 für ein Class 3 SRD Device (equipment type I).