

Lecture 6 Motion II: Spatiotemporal filters

703142. Computer Vision

Assoz. Prof. Antonio Rodríguez-Sánchez, PhD.

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

Introduction

- We have considered the analysis of spatial structure.
 - Oriented, bandpass representations.
- We have considered analysis of the temporal dimension
 - Motion
- Now we consider the integrated analysis and interpretation of the spatial and temporal dimensions.
 - Spatiotemporal analysis

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

Intuition

Intuition: XY

Intuition: XT

Intuition: YT

Intuition: Another example

Intuition: Another example

Intuition: Another example

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

- The local orientation (or lack thereof) of a pattern is one of its most salient characteristics.
- Geometrically, orientation captures the local first-order structure of a pattern.
- For vision, local spatiotemporal orientation can have additional interpretations.
 - Image velocity is manifest as spatiotemporal orientation.
 - And more...

- Goal is to analyze spatiotemporal data according to its local orientation structure.
- Consider orientation in x-t and y-t planes, with local weighted averaging in orthogonal spatial dimension.
- Choose a representation with multiple bands each tuned for certain orientations in a spatiotemporal plane, R, L, S, F and U, D, S, F. ≡
- Consider single spatiotemporal scale (for now).

- Apply filters tuned to 4
 different orientations in
 both *x-t* and *y-t* domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Apply filters tuned to 4
 different orientations in
 both x-t and y-t
 domains.
 - In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

- Normalization
 - For any given orientation, the filter response is a joint function of orientation and contrast.
- Normalization yields purer measure of orientation

$$R(x, y, t) = \frac{r(x, y, t)}{r(x, y, t) + l(x, y, t) + s_x(x, y, t) + f_x(x, y, t) + \varepsilon}$$

- With
 e a small bias added for stability
- Similarly for l, s_x , f_x and their y-t counterparts

Velocity

Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

Velocity

Consider the response to a horizontally moving pattern of r, l and s filters.

Velocity

 Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

Velocity

- Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.
- By taking the difference *r-l*we get a single response
 that is properly signed WRT
 velocity.

Velocity

- Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.
- By taking the difference *r-l*we get a single response
 that is properly signed WRT
 velocity.
- Dividing to get (r-l)/s yields
 a response that is
 (approximately) linear with
 velocity.

Velocity: Comparison with the optical flow constraint equation

$$E_x u + E_v v + E_t = 0$$

Velocity: Comparison with the optical flow constraint equation

$$E_x u + E_v v + E_t = 0$$

Let us restrict consideration to one spatial dimension
 + time

$$E_x u + E_t = 0$$

Now, we can directly solve for (1D) velocity

$$u = -E_t / E_x$$

- Velocity: Comparison with the optical flow constraint equation
 - In contrast, let us consider simple differential filters for leftward and rightward movement

- Velocity: Comparison with the optical flow constraint equation
 - In contrast, let us consider simple differential filters for leftward and rightward movement

- Velocity: Comparison with the optical flow constraint equation
 - In contrast, let us consider simple differential filters for leftward and rightward movement

- Velocity: Comparison with the optical flow constraint equation
 - In contrast, let us consider simple differential filters for leftward and rightward movement

$$\tilde{l} = (E_t + E_x)/2$$
 $\tilde{r} = (E_t - E_x)/2$

- Velocity: Comparison with the optical flow constraint equation
 - In contrast, let us consider simple differential filters for leftward and rightward movement

$$\tilde{l} = (E_t + E_x)/2$$
 $\tilde{r} = (E_t - E_x)/2$

Indeed, as we are concerned not with sign for a given direction, but rather magnitude, it suffices to consider the squared filter responses

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

Velocity: Comparison with the optical flow constraint equation

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

Velocity: Comparison with the optical flow constraint equation

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

 To get a single (signed) measure of movement, we difference the two squared responses

$$r-l=-E_x E_t$$

Velocity: Comparison with the optical flow constraint equation

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

 To get a single (signed) measure of movement, we difference the two squared responses

$$r-l=-E_x E_t$$

– Finally, to avoid being biased by locally large values of image contrast, we divide through by the square of a first-order measure of local contrast $s=E_x^2$

$$(r-l)/s = -E_t/E_x$$

Velocity: Comparison with the optical flow constraint equation

$$(r-l)/s = -E_t/E_x$$

 We now recognize that this computation of velocity is equivalent to that based on the optical flow constraint equation

$$E_x u + E_t = 0 \Rightarrow u = -E_t / E_x$$

- Velocity: Conclusion
 - Oriented filters in visual space-time support the recovery of image velocity, along a particular direction.
 - A "bank" of such filters
 can be used to span
 direction and provide an
 approach to optical flow
 estimation.

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

Motivation

- When confronted with spatiotemporal data, an intelligent system can be overwhelmed by sheer quantity.
- An initial organization would be a key enabler for dealing effectively with data of this nature.
- The organization should afford distinctions that can guide subsequent processing.
- Distinctions that go beyond that of simple velocity.

General approach

- Parse stream of spatiotemporal data into primitive, yet semantically meaningful categories at the earliest stages of processing.
- Make distinctions along the following lines
 - Are the moving objects behaving coherently?
 - How much of the variance in the data is due to temporal brightness change?
 - Which portions of the data are simply too unstructured to support further analysis?

- General approach
 - Integrate information across both the spatial and temporal dimensions.
 - Build on analysis of local orientation.
 - The simplest non-trivial characterization of local geometric structure.

- Primitive patterns
 - Consider a spatiotemporal slice

Example

Example

- Opponency and summation
 - The R and L (U and D)
 components are
 ambiguous WRT coherent
 and incoherent motion.

- Opponency and summation
 - The R and L (U and D)
 components are
 ambiguous WRT coherent
 and incoherent motion.
 - Solution: Combine via
 - opponency R-L (U-D)
 - summation R+L (U+D)
- Geometrically a rotation of coordinate axes.

Proposal

 A four band representation for both the x-t and y-t dimensions.

x-t	y-t
R-L	U-D
R+L	U+D
S_{x}	S_y
$F_{_{\scriptscriptstyle X}}$	$F_{_{\mathbf{y}}}$

.55	Unstruc- tured
, a_	
	-
R-L	0
R+L	0
S_x	0
F_x	0

	Unstruc- tured	Static
		Ш
+		-
R-L	0	0
R+L	0	++
S_x	0	++
F_x	0	0

	Unstruc- tured	Static	Flicker
		Ш	
		-	
R-L	0	0	0
R+L	0	++	++
S_x	0	++	0
F_x	0	0	++

	Unstruc- tured	Static	Flicker	Coherent Motion
		Ш		
+		-	-	8
R-L	0	0	0	++
R+L	0	++	++	++
S_x	0	++	0	+
F_x	0	0	++	+

	Unstruc- tured	Static	Flicker	Coherent Motion	Incoherent Motion
, s		Ш			8
	-	+	-	8	*
R-L	0	0	0	++	0
R+L	0	++	++	++	++++
S_x	0	++	0	+	+
F_x	0	0	++	+	+

	Unstruc- tured	Static	Flicker	Coherent Motion	Incoherent Motion	Scintil- lation
,		Ш			88	
		+	-	8	*	\oplus
R-L	0	0	0	++	0	0
R+L	0	++	++	++	++++	++
S_x	0	++	0	+	+	+
F_x	0	0	++	+	+	+

- Examples (Wildes and Bergen, 2000)
 - A natural image sequence of each proposed class was acquired, (x,y,t) = (64,64,40).
 - Unstructured: featureless sky
 - static: motionless tree
 - flicker: smooth surface illuminated by lightning flashes
 - coherent motion: field of flowers under camera motion
 - incoherent motion: overlapped legs in complex motion
 - scintillation: rain striking a puddle
 - Each sequence brought under proposed representation.

Unstructured

Static

Flicker

Coherent motion

Incoherent motion

Scintillation

Example: Results x-t

	Unstruc- tured	Static	Flicker	Coherent Motion	Incoherent Motion	Scintil- lation
, , , , , , , , , , , , , , , , , , ,						
,						
R-L	0.00	0.00	0.00	0.37	0.05	0.02
R+L	0.01	0.40	0.36	0.53	0.58	0.50
S_x	0.00	0.55	0.00	0.21	0.17	0.25
F_x	0.00	0.04	0.63	0.26	0.25	0.23

Example: Results y-t

	Unstruc- tured	Static	Flicker	Coherent Motion	Incoherent Motion	Scintil- lation
y ,						
t Y	150.00				7	77.5
U-D						
	0.00	0.00	0.00	0.34	0.02	0.02
U+D						
	0.01	0.38	0.36	0.52	0.45	0.50
S_y	8				43	
(1.50)	0.00	0.59	0.00	0.19	0.24	0.28
F_{y}				E TO		
	0.00	0.03	0.64	0.29	0.29	0.21

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

Boundaries

 Zero-crossings in the double-opponent motion operator output indicate coherent motion boundaries.

Boundaries

- Zero-crossings in the double-opponent motion operator output indicate coherent motion boundaries.
- Slope magnitude taken as strength of boundary signal.

$$D_{xx}(R-L)$$

Boundaries

- Zero-crossings in the double-opponent motion operator output indicate coherent motion boundaries.
- Slope magnitude taken as strength of boundary signal.
- Sum signals from x-t and y-t dimensions.

111

Pyramids

Pyramids

Outline

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking

Detection and tracking

 Vision-based detection and tracking can be led astray by background clutter.

 Typical targets of interest exhibit motion that is locally coherent in space-time.

 Make use of proposed spatiotemporal representation of coherent motion as a cue to distinguish salient targets.

Detection and tracking

Detection and tracking

Summary

- Introduction
- Intuition
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- Application to detection and tracking