5	expanding the tubular mesh against the body tissue by a radially-expandable		
6	element within the tubular mesh causing the tubular mesh to make intimate contact with		
7	the body tissue; [and]		
8	dispensing the agent from the tubular mesh into the body tissue;		
9	contracting the radially-expandable element and the tubular mesh; and		
10	removing the radially-expandable element and the tubular mesh from the body.		
1	27. (Restricted out) The method according to claim 26 wherein the expanding		
2	step is carried out using a balloon.		
1	28. The method according to claim 26 further comprising:		
2	selecting an absorbent fiber tubular mesh;		
3	selecting the agent; and		
4	applying the agent to the absorbent fibers of the tubular mesh prior to the		
5	positioning step.		
1	29. The method according to claim 26 wherein the dispensing step is carried		
2	out as a result of the expanding step		
1	30. (Amended) A method for dispensing an agent into body tissue defining a		
2	passageway comprising:		
3	positioning a porous tubular mesh, comprising a contact-dispensable agent, at a		
4	target site within a passageway of a body;		
5	expanding the tubular mesh against the body tissue by a radially-expandable		
6	element within the tubular mesh causing the tubular mesh to make intimate contact with		
7	the body tissue;		
8	dispensing the agent from the tubular mesh into the body tissue, [The method		
9	according to claim 26 wherein] the dispensing step [is] being carried out using		
10	iontophoresis		

1	31.	The method according to claim 26 wherein the positioning step is carried
2	out using an a	xially-compressible and radially-expandable porous tubular braid as the
3	porous tubula	r mesh.

- 32. The method according to claim 26 wherein the positioning step is carried out using a porous tubular mesh which is not bioabsorbable.
- 1 33. (Canceled)

1

2

7

8

9

10

1

2

1

2

- 1 34. (Amended) A method for placing an endovascular structure at a target site 2 within a passageway of the body comprising:
- positioning an inflatable balloon, located at a first position along a catheter shaft of a catheter device, at a target site within a body passageway;
- 5 inflating the balloon at the target site;
- 6 deflating the balloon;
 - moving the catheter shaft through the passageway so to displace the balloon from the target site and positioning an axially-compressible, radially-expandable, tubular braid scaffolding, mounted to the catheter shaft at a second position along the catheter shaft, at the target site;
- expanding the tubular braid scaffolding against the wall of the passageway at the target site; and
- removing the catheter shaft and the balloon therewith from the passageway.
 - 35. The method according to claim 34 wherein the expanding step is carried out using a self-expanding scaffolding.
 - 36. The method according to claim 34 wherein the expanding step comprises axially compressing the scaffolding.
- 1 37. The method according to claim 34 further comprising the step of 2 dispensing an agent into the target site after the expanding step.
- 1 38. The method according to claim 34 further comprising releasing the scaffolding from the catheter shaft after the expanding step.