Výpočet marginálních podmíněných pravděpodobností v bayesovské síti

- Úmluva: Zajímáme se pouze o bayesovské sítě, jejichž graf je spojitý. Jinak uvažujeme každou komponentu zvlášť.
- Notace

Definition (Pojmy v orientovaném grafu)

- parents('either',chestdag\$dag) odkud vede hrana do 'either'
- children('tub',chestdag\$dag) kam vede hrana z 'tub'
- ancestralSet('either',chestdag\$dag) ancestrální množina, předkové

Moralizace, sousedé, klika, simpliciální uzly

Definition (Moralizace)

Moralizací grafu bayesovské sítě rozumíme následující dva kroky:

- Oženit (spojit hranou) rodiče společných dětí. (Neboli: spojit hranou každé dva vrcholy, které se společně vyskytují v některé tabulce dané bayesovské sítě.)
- Zapomenout orientaci hran, tj. vytvořit neorientovaný graf se stejnými hranami.

Definition (Pojmy v neorientovaném grafu)

Nechť X je uzel neorientovaného grafu. Pak mají označení následující význam:

N_X	sousedé X			
F_X	sousedé X včetně X samého (family)			

- Podgraf je úplný, pokud jsou každé dva jeho uzly spojeny hranou.
- Podgraf je klika, pokud je maximální úplný podgraf.
- Vrchol X je simpliciální, pokud je NX úplný podgraf.
 Ekvivalentně: vrchol X je simpliciální, je-li FX klika.

Graf domén

Definition (Graf domén)

Graf domén v konkrétním kroku eliminace proměnných je takový graf, kde

- uzly jsou právě všechny dosud neeliminované proměnné,
- dva uzly jsou spojeny hranou právě když se odpovídající proměnné vyskytují v aspoň jedné tabulce zároveň.
- Graf domén je na počátku moralizovaná bayesovská síť.
- Po eliminaci každé proměnné odstraníme jí příslušející uzel a spojíme všechny jeho sousedy (nově přidané hrany se nazývají doplněné, fill-in).
- Naším cílem jsou co nejmenší domény, tj. co nejméně doplněných hran.

Algoritmus eliminace proměnných

- INIT Do seznamu Φ_1 dáme všechny tabulky $P(A_i, e|pa(A_i))$, v každé tabulce odstraním "řádky"nekonzistentní s evidencí, tj. s nulovou pravděpodobností. Tj. předem evidencí vynásobíme a marginalizujeme přes proměnné s evidencí.
- ELIM Postupně budeme eliminovat (následujícím algoritmem) všechny proměnné bez evidence, které nás nezajímají (dostaneme P(A, e)).
- IORM Nakonec eliminujeme i zbývající proměnné bez evidence, čímž spočteme normalizační konstatnu $\alpha = P(e)$; touto konstantou vydělíme tabulku z předchozího kroku a dostaneme podmíněnou pravděpodobnost P(A|e).

Eliminace proměnné X v kroku i znamená:

- **1** Vyber z Φ_i všechny tabulky, které mají v doméně X, dej je do Φ_X .
- 2 Spočti $\phi = \sum_{x} \Pi_{T \in \Phi_{x}} T$
- **3** Nové Φ_{i+1} se rovná: $\Phi_i \setminus \Phi_X \cup \{\phi\}$

V jakém pořadí eliminovat? Špatné pořadí vede ke zbytečně velkým tabulkám ϕ .

- spatně Nejdřív nepozorované rodiče (např. v 'minách').
- právně Nejdřív barren tj. uzly bez dětí a bez evidence.
- becně Nejdřív simpliciální uzly.

Perfektní eliminační posloupnost

Definition (Perfektní eliminační posloupnost)

Perfektní eliminační posloupnost je taková posloupnost eliminace všech proměnných bayesovské sítě, která nevynucuje žádné doplněné hrany v grafu domén.

Lemma (6 Simpliciální uzel smí na začátek PEP)

Nechť je X_1, \ldots, X_k perfektní eliminační posloupnost (PEP), X_j uzel, jehož každí dva sousedi jsou spojeni hranou. Pak je posloupnost $X_j, X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_k$ také perfektní.

Eliminace X_j nepřidá žádnou hranu, tj. nikomu nepřidá souseda, a při eliminaci se každý stará jen o své sousedy, tj. se na eliminaci ostatních nic nezmění (ledaže by nemuseli přidávat hranu do X_i , ale i původní posloupnost byla perfektní).

Definition (Množina maximálních domén)

Množina maximálních domén je množina všech domén tabulek, vzniklých během výpočtu, ze které vyřadíme ty domény, které jsou vlastní podmnožinou jiného prvku této množiny.

Lemma

Všechny perfektní posloupnosti vytvářejí stejnou množinu maximálních domén, a to množinu klik moralizovaného grafu.

- Kliky tam musí být, neboť tabulka jejich domény vznikne při eliminaci první proměnné z kliky.
- Nic většího tam nemůže být, neboť by to způsobilo doplněné hranu.

Triangulované grafy

- POZOR, něco jiného než triangulovaný planární graf!!!
- Pozn: Pro některé moralizované grafy neexistuje perfektní posloupnost.

Definition (triangulovaný graf)

Graf je **triangulovaný**, pokud pokud pro něj existuje perfektní eliminační posloupnost.

Lemma (Alternativní definice triang. grafu)

Graf je triangulovaný, pokud každý jeho cyklus délky větší než tři má aspoň jednu tětivu.

Je 'chestdag' triangulovaný?

Lemma

Nechť je G triangulovaný graf a X simpliciální uzel. Pak graf $G^{||}$ získaný eliminací X z G je také triangulovaný.

Důsledek lemmatu 6.

Theorem

- Triangulovaný graf s aspoň dvěma vrcholy má aspoň dva simpliciální uzly.
- Navíc: pokud není úplný, tak má aspoň dva simpliciální uzly, které nejsou spojeny hranou.

Důkaz indukcí podle počtu vrcholů.

- Pro tři vrcholy platí.
- Pro více: První uzel perfektní posloupnosti je simpliciální, vzniklý graf je triangulovaný.
- Pokud vzniklý graf není úplný,
 - z indukčního předpokladu má aspoň dva nesousední simpliciální uzly,
 - sousedé eliminovaného uzlu byly propojeni (simpliciální uzel)
 - proto aspoň jeden z nových simpliciálních uzlů nesousedil s eliminovaným uzlem.

Lemma

Pro každý vrchol A triangulovaného grafu existuje perfektní posloupnost, kde je A poslední prvek.

Důkaz: Vždy eliminuj simpliciální uzel různý od A.

Theorem

Neorientovaný graf je triangulovaný právě když můžeme eliminovat všechny uzly tak, že vždy eliminujeme simpliciální uzel.

- ⇒ Je–li graf triangulovaný, eliminací simpliciálního uzlu vznikne opět triangulovaný graf a můžeme pokračovat v eliminaci simpliciálních uzlů.
- Eliminací simpliciálních uzlů tvoříme perfektní posloupnost, tj. graf je triangulovaný.

Stromy spojení (Join trees)

Definition (Strom spojení)

Mějme množinu klik neorientovaného grafu G, kliky jsou organizovány do stromu T. T je **strom spojení**, pokud pro každé dva vrcholy $V \mid W \in T$ všechny uzly na cestě z V do W obsahují průnik $W \cap V$. Průnik dvou sousedních uzlů nazveme **separátor** těchto uzlů, separátorem V a W je $S_{V,W} = V \cap W$.

Theorem

Pokud kliky grafu G lze organizovat do stromu spojení, pak je G triangulovaný.

- ullet Vezměme list stromu spojení V, který sousedí jen s W.
- ullet V průnik libovolný uzel je částí W, proto V obsahuje uzel, který není v žádné jiné klice. Ten eliminujeme.
- Pokud byl poslední z $W\setminus V$, odstraníme uzel V a dostaneme zase strom spojení, který má list, pokračujeme prvním bodem.

Theorem

Pokud je G triangulovaný, pak kliky grafu G lze organizovat do stromu spojení.

Důkaz indukcí, pro grafy s jedním vrcholem platí.

- Eliminuji simpliciální uzel X, jeho rodina F_X je klika (označíme jí C).
- Pro vzniklý graf $G' = G \setminus \{X\}$ najdu strom spojení T' dle indukčního předpokladu.
- Pokud je $C \setminus \{X\}$ klika G', k uzlu odpovídajícímu této klice v T' přidám 'popisku' X a mám strom spojení grafu G.
- Pokud $C \setminus \{X\}$ není klika G':
 - musí být částí kliky C_? grafu G',
 - Ke stromu T' přidáme uzel C a připojíme separátorem $C \setminus \{X\}$ k uzlu kliky $C_{?}$. Vzniklý strom je strom spojení pro G.

Alternativní konstrukce

- Najdi kliky.
- Vytvoř graf, uzly=kliky, hrany váhy počtu veličin v průniku.
- Najdi kostru (spanning tree) nejvyšší váhy (Prim's or Kruskal's algorithm).

Tato kostra je strom spojení, protože

- \bullet Je-li proměnná X v j klikách, může být maximálně v j-1 separátorech stromu spojení.
- Číslo j-1 dosáhneme jen v případě, že všechny kliky obsahující X budou spojeny separátorem obsahujícím X.
- Proto má strom spojení nejvyšší možný součet velikostí separátorů přes všechny kostry grafu.

Join tree, Junction tree

Strom spojení

Používám termín **strom spojení** ve třech významech:

- viz definice výše, strom klik splňující vlastnost průniků
- strom dle definice výše, kde jsou navíc hrany označeny separátory
- strom dle definice výše, kde je navíc v každé klice "schránka" na seznam pravděpodobnostních tabulek a v každém separátoru jsou dvě schránky na zprávy – tabulky – jdoucí jednotlivými směry. Tomuto se říká junction tree.

Strom spojení reprezentující bayesovskou síť

Mějme bayesovskou síť s množinou pravděpodobnostních tabulek Φ a evidenci e. Nechť množina tabulek Φ_e vznikne z Φ vložením evidence e do příslušných tabulek, tj. "vyříznutím"konkrétních "řádků"v pravděpodobnostních tabulkách. **Strom spojení reprezentuje bayesovskou síť s evidencí** e, pokud každou tabulku $\phi \in \Phi_e$ přiřadíme do schránky některé z klik C_i takových, že $dom(\phi) \subseteq C_i$.

- Pozn: pokud strom spojení vznikl z moralizovaného a triangularizovaného grafu bayesovské sítě, tak takové klika vždy existuje.
- Pokud moralizovaný graf není triangulovaný, doplníme ho hranami na triangulovaný a z něj vytvoříme strom spojení.
- Pokud některý uzel stromu spojení nemá žádnou tabulku, přiřadíme tabulku dávající identicky 1 na doméně dané kliky.

Propagace ve stromu spojení

- Propagace (výpočet) ve stromu spojení spočívá v posílání zpráv, kterými se postupně plní schránky separátorů.
- Každý uzel (klika) posílá v každém směru právě jednu zprávu.
- Uzel (klika) může poslat zprávu v daném směru, pokud už ze všech ostatních směrů zprávy dostala.
- Protože se jedná o strom, vždycky někdo může poslat zprávu, nebo jsou již všechny schránky plné.

Poslání zprávy

Uvažujme kliku C se sousedními separátory S_1, \ldots, S_k , směr separátoru S_1 (bez újmy na obecnosti). **Poslat zprávu** z C do S_1 znamená zapsat do odchozí schránky S_1 tabulku, která vznikne součinem příchozích zpráv v separátorech S_2, \ldots, S_k a tabulek obsažených v C. Tento součin marginalizujeme přes všechny veličiny $C \setminus S_1$ a výsledek zapíšeme do S_1 .

Theorem

Nechť strom spojení reprezentuje bayesovskou síť a evidenci e, všechny schánky byly naplněny. Potom:

• Nechť V je klika obsahující tabulky Φ_V a k ní směřující separátory S_1,\dots,S_k obsahují zprávy $\phi_1,\dots,\phi_k.$

$$P(V,e) = \prod_{\phi \in \Phi_V} \phi \cdot \prod_{i=1}^k \phi_i$$

• Nechť S je separátor se zprávami ϕ_1, ϕ_2 .

$$P(S, e) = \phi_1 \cdot \phi_2$$

Zprávy směřující do V odpovídají perfektní elim. posl., která má V na svém konci. Pro separátor, odchozí zpráva vznikla marginalizací z V, jen tam nebyla započtena zpráva přicházející z tohoto směru.

$$P(S_1, e) = \sum_{V \setminus S_1} P(V, e) = \sum_{V \setminus S_1} (\Pi_{\phi \in \Phi_V} \phi \cdot \Pi_{i=1}^k \phi_i)$$

$$= \sum_{V \setminus S_1} (\Pi_{\phi \in \Phi_V} \cdot \Pi_{i=2}^k \phi_i \cdot \phi_1) = (\sum_{V \setminus S_1} \Pi_{\phi \in \Phi_V} \cdot \Pi_{i=2}^k \phi_i) \cdot \phi_1$$

což je odchozí krát příchozí zpráva. Poslední řádek plyne z toho, že $dom(\phi_1) = S_1$.

Výpočet pomocí stromu spojení (shrnutí)

- BN moralizujeme
- doplníme hrany na triangulovaný graf
- vytvoříme strom spojení
- naplníme tabulkami
- vypočteme posíláním zpráv
- pravděpodobnost na veličině A zjistíme tak, že najdeme libovolnou kliku C obsahující A a marginalizujeme, tj. $P(A,e) = \sum_{C \setminus \{A\}} P(C,e)$
- pokud nás zajímá sdružená distibuce na množině, která není částí žádné kliky, musíme použít Eliminaci proměnných.
 Nebo předem zajistit výskyt v jedné klice:
 - Nebo předem zajistit výskyt v jedné klice:
 - $m3 = compile(grain(plist), root = c('lung', 'bronc', 'tub'), \ propagate = TRUE).$

Separace, rozložitelnost

Definition (Separace)

Buď G neorientovaný graf nad V. Řekneme $\mathcal C$ separuje A a B, psáno $A \perp\!\!\!\perp_G B \mid \mathcal C$ v G, pokud každá cesta z A do B v G vede přes $\mathcal C$.

Definition (Rozklad)

Buď G neorientovaný graf nad V. Jestliže $S,T\subseteq V$ jsou takové, že

- \circ $S \cup T = N$
- \bigcirc $S \cap T$ je úplná množina v G a
- $3 S \setminus T \perp_{G} T \setminus S | S \cap T$,

Pak dvojici indukovaných podgrafů G_S , G_T nazveme **rozkladem** G. Tento rozklad nazveme netriviální, jestli že $S \setminus T \neq \emptyset \neq T \setminus S$.

Neorientovaný graf G nazveme rozložitelný

- buď G je úplný
- nebo existuje netriviální rozklad G_S , G_T grafu G takový, že G_S a G_T jsou rozložitelné.

Markovské vlastnosti

Definition

Markovská vlastnost, Globální, lokální, párová Buď G neorientovaný graf nad V. Pravděpodobnostní míra P nad V je (globálně) markovská vzhledem k G, jestliže:

$$\forall (A, B \in V, C \subseteq V) \ A \perp\!\!\!\perp_G B | C \Rightarrow A \perp\!\!\!\perp B | C \lor P.$$

- Míra je lokálně markovská, pokud $\forall A \in V \ A \perp \!\!\!\perp V \setminus Fa_A | N_A \ [P]$
- Míra je párově markovská, pokud $\forall A,B\in V,A\neq B$, nespojené hranou, $A\perp\!\!\!\perp B|V\setminus\{A,B\}$ [P]

Pro strikně positivní míry (bez nul) jsou všechny tři vlastnosti ekvivalentní. Jinak protipříklady s mírou v bodech (0,0,0) a (1,1,1) viz Studený.

Definition (d-separace)

Dvě veličiny $A,B\in V$ bayesovské sítě G=(V,E) jsou **d-separované** $A\perp\!\!\!\perp_d B|\mathcal{C}$ množinou $\mathcal{C}\subseteq V\setminus\{A,B\}$ právě když pro každou (neorientovanou) cestu z A do B platí aspoň jedno z následujících:

- cesta obsahuje uzel $Blocking \in C$ a hrany se v Blocking nesetkávají 'head-to-head'.
- cesta obsahuje uzel *Blocking* kde se hrany **setkávají** 'head-to-head' a ani on ani nikdo z jeho následníků není v C, $\{Blocking, succ(Blocking)\} \cap C = \emptyset$.

Theorem (d-separace)

Pokud jsou A, B d-separované dáno \mathcal{C} (A $\perp \!\!\! \perp_d$ B| \mathcal{C}) v BN B, pak jsou i podmíněně nezávislé (A $\perp \!\!\! \perp$ B| \mathcal{C}).

- $E \perp \!\!\! \perp_d B$ ano
- $E \perp \!\!\! \perp_d D$ ne
- $E \perp \!\!\! \perp_d D | A$ ne
- $E \perp \!\!\! \perp_d D | C$ ano
- $E \perp \!\!\! \perp_d D | \{C, F\}$ ne
- $E \perp \!\!\!\perp_d B | F$ ne

21 / 27

Podmíněná nezávislost

Tabulka ukazuje zadané hodnoty P(A, B, C). Pro která x, y, v, w platí podmíněná nezávislost $A \perp \perp B \mid C$?

	c1			c2
	b1	b2	b1	b2
a1	X	0,2	٧	W
a2	у	0,1	0,1	0,1

$$\frac{P(a_1,b_1,c_1)}{P(a_2,b_1,c_1)} = \frac{P(a_1|c_1) \cdot P(b_1|c_1) \cdot P(c_1)}{P(a_2|c_1) \cdot P(b_1|c_1) \cdot P(c_1)} = \frac{P(a_1,b_2,c_1)}{P(a_2,b_2,c_1)}$$

tedy $x = 2 \cdot y$

obdobně v = w.

Navíc celkový součet musí být 1, tedy:

$$0,5+3y+2v = 1$$

 $v = 0,25-1,5y$

Přibližný výpočet bayesovské sítě

- Základní myšlenkou je vygenerovat data dle zadaných podmíněných pravděpodobností a z nich spočítat pravděpodobnosti, které nás zajímají.
- Přesnost výpočtu samozřejmě závisí na počtu vygenerovaných vzorků.
- Metody generující náhodné vzorky se nazývají metody Monte Carlo.
- Základem je generátor náhodného výsledku podle zadané pravděpodobnosti, např. (¹/₄, ¹/₂, ¹/₄).

Přímé vzorkování bez evidence

- Uspořádáme vrcholy BN tak, aby každá hrana začínala v uzlu menšího čísla než končí.
- Vytvoříme N vzorků, každý následovně
 - Pro první uzel A_1 vygenerujeme náhodně výsledek a_1 podle $P(A_1)$.
 - Pro druhý uzel A_2 vygenerujeme náhodně výsledek a_2 podle $P(A_2|A_1=a_1)$ (je–li hrana, jinak nepodmíněně)
 - Pro n-tý uzel vygenerujeme výsledek podle $P(A_n|pa(A_n))$, na rodičích už známe konkrétní hodnoty.
- Z N vzorků spočteme pravděpodobnost jevu, který nás zajímá. Pro N jdoucí k nekonečnu podíl výskytu jevu konverguje k správné pravděpodobnosti.

Přímé vzorkování s evidencí e (rejection sampling)

- N(e) značí počet vzorků konzistentních s evidencí e, tj. nabývající na příslušných veličinách správné hodnoty.
- Vzorky tvoříme úplně stejně, jako dříve, jen ty, co nejsou konzistentní s e vyšktneme, tj. $\hat{P}(X|e) = \frac{N(X,e)}{N(e)}$
- Problém je v tom, že je-li P(e) malé, tak většinu vzorků zahazujeme.

Vážení věrohodností (Likelihood weighting)

- Generuje jen vzorky konzistentní s e.
- Váhy vzorků jsou různé, podle P(e|vzorek) (což je věrohodnost L(vzorek|e), odtud likelihood weighting).

Algoritmus vytvoření váženého vzorku pro (bn, e)

```
w=1 v pořadí topologického uspořádání bn, for i=1 to n if A_i má evidenci a_i v e w=w\cdot P(A_i=a_i|pa(A_i)) else a_i \text{ vyber podle rozložení } P(A_i=a_i|pa(A_i)) return (w,\langle a_1,\ldots,a_n\rangle)
```