COMPATIBILITY TESTING OF HIGH DENSITY POLYETHYLENE (HDPE) FOR USE AS A SECONDARY CONTAINMENT LINER FOR A MIXED NITRATING ACID STORAGE TANK FARM

Craig A. Hempfling

Approved for public release; distribution is unlimited.

19950831 014

REPORT DOCUMENTATION PAGE

Form Approved

QMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson

1. AGENCY USE ONLY (Leave Blank)	2. report date 15 June 1995	 REPORT TYPE AND DATES COVE Final Report 	RED
(HDPE) FOR USE AS A	NG OF HIGH DENSITY PO SECONDARY CONTAINM ID STORAGE TANK FARI	IENT LINER FOR A	5. FUNDING NUMBERS
6. AUTHOR(S)			
Craig A. Hempfling			
7. PERFORMING ORGANIZATIONS NAM	E(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Indian Head Division Naval Surface Warfare Cen Indian Head, MD 20640-50			IHTR 1799
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STAT			12b. DISTRIBUTION CODE
Approved for public feleas	se; distribution is unlimited.		
13. ABSTRACT (Maximum 200 words)			
storage tank facility was invacids (mixtures of nitric actensile properties of the poly	vestigated. The chemical resident and sulfuric acid) was of particular to the sulfuric acid.	stance and compatibility of primary concern. Weight, vie chemical resistance. Sam	er for a mixed nitrating acid HDPE with mixed nitrating volume, specific gravity, and ples were immersed directly t and cold extremes.
14. SUBJECT TERMS HDPE Mixed	l acid Sp	ill containment	15. NUMBER OF PAGES 74
Nitric acid Comp	patibility Density Polyethylene		16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	CAD
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

FOREWORD

The work reported herein was performed at the Indian Head Division, Naval Surface Warfare Center, Indian Head, MD.

R. J. Urbanski

Manager, Chemical Engineering Branch

Approved by:

D.D. Clark

Director, Lova/Chemicals Division

Released by:

W.W. Pero

Head, Ordnance Department

A00985	ion Fo	r		機的
MTIS	GRA&I		J	1
DTIC T	AB			
Unanno	becau			Ì
Justif	icatio	מכ		
Ву		4:		and the second
Distr	ibutio		i Commente mario	
Ave1	labili	CX C	odda	
	Avail	end/	GZ,	
Dist.	Spec	REL		
- 1		4		1
		100 A	1 .44	egystery Partie
1	2	1	1	aria (di Maraja

CONTENTS

Hea	ding Page
Fore	word ii
	duction
	erimental
	ılts
Disc	ussion
	erimental Errors
	clusions
	ommendations 14
	iography
App	endix A. Preliminary Materials Testing Results A-1
App	endix B. Material Compatibility Testing Results
App	endix C. Physical Property Data
	endix D. Tensile Property Data D-1
	endix E. Error Estimate Data E-1
	TABLES
I.	HPDE/Mixed Nitrating Acid Compatibility Study Results
	FIGURES
1.	Corrosion Resistance of Materials to Mixtures of Sulfuric and Nitric Acid at Room Temperature— Less than 20 Mils per Year
2.	HDPE Weight Gain from Acid Exposure
3.	HDPE Stress–Strain Curve
4.	Modulus of Elasticity of HDPE Samples
5.	Yield Stress of Exposed HDPE Samples
6.	Yield Strain of Exposed HDPE Samples
7.	Maximum Stress of Exposed HDPE Samples
Q	Maximum Strain of Exposed HDPE Samples

INTRODUCTION

The outdoor mixed nitrating acid storage tank containment dike at the Indian Head Division, Naval Surface Warfare Center Biazzi Nitration Plant is constructed of a concrete slab and separately poured retaining walls. The joint between the retaining walls and floor has needed regular maintenance, frequently requiring the application of sealing compounds to eliminate leakage.

Long, thin fractures have also developed along the floor of the dike due to temperature fluctuations and earth settling throughout the dike's 11-year life. Additionally, contact with strong acids from fume condensation, sampling operations, and other exposure has deteriorated the concrete surface and integrity. The concrete has become spalled in some areas, breaking apart under little stress, and has required some resurfacing.

In order to slow the degradation of the dike, increase its integrity, and reduce maintenance, we searched for a cost-effective lining material which would meet the following criteria:

- Resistant to the various acid concentrations
- Flexible to prevent cracking due to earth settling and expansion
- Resistant to UV exposure from direct sunlight
- Capable of being applied over the surface of the dike and over the joints and cracks.

After a preliminary screening procedure of a variety of materials (Appendix A), the most cost-effective, resistant material appeared to be the high density polyethylene (HDPE) typically used in landfill and reservoir applications.

The HDPE lining material met all of the above criteria, but the chemical resistance appeared questionable. The manufacturer's specification sheet states that HDPE is suitable for secondary containment for sulfuric acid to 98% and in limited applications may be suitable for nitric acid to 100%, depending on specific conditions. A more extensive testing procedure was therefore developed to test the resistance of the HDPE to varying concentrations of nitric/sulfuric mixtures over time.

We felt that the liner must withstand a minimum of 48 hours of direct exposure to any given acid concentration it might experience. This would be sufficient to contain a spill until cleanup could be completed or the spill could be diluted to a concentration sustainable by the liner. This allows two full days after a spill for the acid to penetrate the liner and contact the concrete. The function of the concrete is then redefined from providing acid containment to that of providing a structural base for the containment liner.

EXPERIMENTAL

After preliminary screening, a sheet of 80 mil (0.080 inches nominal thickness) HDPE was obtained from SLT Corporation and cut into strips approximately 6 inches long and 2 inches wide. Seventy-eight samples were embossed, measured (length, width, and thickness) with a micrometer, and weighed (to 0.1 gram).

Four acid solutions were prepared from a solution of pure mixed nitrating acid. The pure mixed acid used consisted of 53% sulfuric acid and 47% nitric acid and is used in the production of propylene glycol dinitrate (PGDN), a nitrate ester and the primary component in the formulation of Otto Fuel II, the torpedo fuel for the Mks 46 and 48 torpedoes. These concentrations were used to simulate the varying concentrations of acidic media that might be encountered during a spill and over the life of the dike surface. The compositions were as follows:

Solution	Mixed Acid	Composition
1	5%	2.6% Sulfuric acid 2.4% Nitric acid 95% Water
2	30%	16% Sulfuric acid 14% Nitric acid 70% Water
3	65%	34% Sulfuric acid 31% Nitric acid 35% Water
4	100%	53% Sulfuric acid 47% Nitric acid

These concentrations were chosen based on the tertiary corrosion diagram for sulfuric/nitric/water mixtures in Figure 1. Each concentration change corresponds to a new corrosion zone or major deviation within a zone.

Eighteen samples were immersed in each solution. Six samples were not exposed to any acid and were used to determine baseline properties of the material. The temperature of the solutions were cycled between outdoor ambient temperature (averaging 30 to 40 °F) and 120 °F. High temperatures significantly increase corrosion attack, while temperature cycling allows the samples to expand and contract, thereby increasing potential exposure of the polymer structure to the acid solutions.

A temperature of 120 °F is a reasonable maximum temperature which might be expected on the surface of the dike during a spill cleanup. (The 100% mixed acid solution also emitted profuse fumes at temperatures greater than 120 °F.) Appendix B contains the raw data, laboratory notes, and temperature records of the acid solutions.

Six samples from each solution were withdrawn after 2, 5, and 15 temperature cycles (2, 8, and 23 days respectively). The final samples in the 100% mixed acid solution (solution 1) were withdrawn after 11 cycles (19 days) because they were badly deteriorated.

Each set of six samples withdrawn were washed first in fresh water, second in a solution of sodium carbonate, and lastly in fresh water. The samples were then dried in an oven at 120 °F until all visible moisture was gone. Each sample was remeasured and reweighed, then submitted for tensile properties testing.

CODE: (MATERIALS IN SHADED ZONES REPORTED CORROSION RATE LESS 20 MPY.)

	ZONE 1		
STEEL	GLASS	TANTALUM	GOLD
DURIMET 20 WORTHITE	SILICON IRON	PLATINUM	
WORTHITE	7015 0		
	ZONE 2		
CAST IRON	DURIMET 20	SILICON IRON	GOLD
STEEL	WORTHITE	TANTALUM	LEAD
18 CR-8 NI	GLASS	PLATINUM	
TO Ch-O NI	GEASS	LATINOM	
	701/5 0		
	ZONE 3		2212
DURIMET 20	GLASS	TANTALUM	GOLD
WORTHITE	SILICON IRON	PLATINUM	
	ZONE 4		
10 CD 0 NII	WORTHITE	SILICON IRON	PLATINUM
18 CR-8 NI			
DURIMET 20	GLASS	TANTALUM	GOLD
	ZONE 5		
18 CR-8 NI	GLASS	TANTALUM	GOLD
DURIMET 20	SILICON IRON	PLATINUM	ALUMINUM
WORTHITE	CILICON INDIA		

FIGURE 1. CORROSION RESISTANCE OF MATERIALS TO MIXTURES OF SULFURIC AND NITRIC ACID AT ROOM TEMPERATURE—LESS THAN 20 MILS PER YEAR

[Source: G.A. Nelson, Shell Development Co.]

RESULTS

Table I summarizes the physical properties and tensile properties of the samples before and after exposure to the acids.

TABLE I. HDPE/MIXED NITRATING ACID COMPATIBILITY STUDY RESULTS

Solution	Cycles	Days	Weight change (%)	Volume change (%)	Spec. grav. change (%)	Modulus of elasticity (psi)	Yield stress (psi)	Yield strain (%)	Maximum stress (%)	Maximum strain (%)
Baseline, no exposure			N/A	N/A	N/A	47,670	2,773	10.1	5,096	715
5% 5% 5%	2 5 15	2 8 23	0.23 0.00 0.00	2.51 -0.72 -0.01	-2.12 0.72 0.15	52,060 51,870 48,950	2,726 2,764 2,712	9.1 9.7 9.0	4,822 4,905 5,042	676 689 705
30% 30% 30% 65% 65%	2 5 15 2 5 15	2 8 23 2 8 23	0.58 0.11 0.33 0.21 0.32 0.55	-2.42 0.85 0.57 0.60 1.35 0.97	3.15 -0.68 -0.07 -0.36 -1.01 -0.41	54,060 53,820 55,340 53,940 54,560 53,190	2,807 2,777 2,822 2,755 2,848 2,830	9.2 9.1 8.8 9.4 9.4 8.9	5,149 4,711 5,264 5,197 4,583 3,823	716 666 727 730 643 440
100% 100% 100% Percent error ^a	2 5 15	2 8 23	1.48 1.68 N/A	1.51 -2.43 N/A 4.1	0.16 4.22 N/A 4.3	47,508 50,490 N/A 6.1	2,714 1,962 N/A 2.1	9.8 7.8 N/A 5.1	5,269 1,968 N/A	777 8.3 N/A 9.2

^aPercent error calculated for the physical properties from estimated experimental error. Percent error for tensile properties is the average standard deviation of the means. Percent error is the percentage error of the figures expressed in each column.

Physical Properties:

Appendix C contains experimental measurements and calculated values in spreadsheet form for the physical property data presented in Table I and discussed below.

Weight Gain: Figure 2 shows the percent weight gain after exposure in each acid solution and the experimental measurement error. All samples showed either no weight change or a slight increase in weight after exposure. None showed a weight decrease. This indicates that some acid solution may be absorbed into the HDPE and that if the HDPE is decomposed by the acid, more acid is absorbed than HDPE decomposed. Neither case is desirable.

FIGURE 2. HDPE WEIGHT GAIN FROM ACID EXPOSURE

An alternative explanation may be that the acid is chemically reacting with the polyethylene, forming a new product, which stays associated with the HDPE structure rather than the acid phase.

The weight gains for all acid solutions except the pure acid solution, however, were within the experimental measurement error discussed later; thus, only the weight gain in the 100% acid solution is a conclusive weight gain.

Volume Change and Specific Gravity Change: The volume change calculation was based on sample volume determination by length, width, and thickness measurements rather than by the standard immersion procedure due to the low specific gravity of the samples (they float in most liquids).

The 4.1% and 4.3% errors shown in Table I represent the error from actual values, which are taken to be the mean of several measurements along each dimension of the sample. To ensure that measurements were taken from the same point before and after immersion, however, all measurements were taken only from one point, the corner of the embossment. Therefore, if a sample's corners are not precisely square, the error will be greatest when taking measurements at a corner. This is the probable cause for the large standard deviations in sample volume and specific gravity changes (See Appendix C). Note that some data show increases while some show decreases in both of these properties.

Tensile Properties:

Tensile property testing was conducted in accordance with ASTM Specification D638/D882 (Type IV Dumbell). The crosshead speed (pulling speed of the sample) was set at 2.000 inches per minute. This is the standard testing method used by most manufacturers of HDPE linings in their tensile property publications.

Appendix D contains the tensile property test data, graphs, and photographs of the HDPE samples before and after immersion. These results are summarized in Table I and discussed below.

Figure 3 is an example of a stress-strain curve for HDPE. The slope of the straight line drawn through the origin is the modulus of elasticity. The modulus of elasticity is a measure of the stiffness, or rigidity, of the material before it has been stretched. The higher the modulus of elasticity, or the steeper the slope of the line, the stiffer the material.

FIGURE 3. HDPE STRESS-STRAIN CURVE

The yield point is the point on the curve where the first maximum is reached. The yield stress (force per area) and yield strain (percent elongation) are the stress applied and strain induced at that point. At this point the polymer chains start to separate, and irreversible destruction of the polymer begins. Prior to the yield point the polymer will return to its original shape if the stress is removed. This is known as the "rubber band effect."

After the sample yields, it will then stretch for a time under constant stress. As the sample is stretched still further, the stress will begin to increase linearly with increases in strain. In this region the polymer chains are being stretched to their limit; they are thereby getting stiffer and more force is required to stretch the sample. The sample then reaches the failure point and tears.

Modulus of Elasticity: Figure 4 shows the change in the HDPE modulus of elasticity over the exposure times in each acid concentration. The data show that there is roughly no change in the modulus of elasticity over the exposure times; all data after exposure are within one standard deviation of the nonexposed sample. This indicates that there is no change in the stiffness of the material prior to stretching. The material will retain its rigidity even after it has been exposed to acid as long as no stress is placed on it.

FIGURE 4. MODULUS OF ELASTICITY OF HDPE SAMPLES

Yield Stress and Yield Strain: Figures 5 and 6 show the yield stress and yield strain, respectively, for the exposed HDPE samples. The data show that 100% mixed acid has a profound effect on the yield stress and yield strain at some time after 48 hours of exposure. The yield stress and yield strain both begin much earlier. The polymer structure begins to yield, or become damaged, from a lower applied force and at dramatically lower elongation.

FIGURE 5. YIELD STRESS OF EXPOSED HDPE SAMPLES

FIGURE 6. YIELD STRAIN OF EXPOSED HDPE SAMPLES

There is also a slight decrease in the yield strain of the samples from each of the other solutions (5%, 30%, and 65%) after 23 days of exposure. This decrease is statistically inconclusive however. These data points lie outside of one standard deviation of the unexposed sample, but when the standard deviation of the exposed samples is accounted for, they could, in reality, fall within the statistical range of "no effect." (The standard deviations for the exposed samples are not shown.) Standard deviations for these three solutions show that the errors would overlap, while the 100% solution does show a conclusive decrease in yield strain.

Maximum Stress and Maximum Strain: Figures 7 and 8 show the maximum stress and maximum strain, respectively, for the exposed HDPE samples. The data show that the 100% mixed acid and the 65% mixed acid have affected these properties.

The 100% mixed acid solution has again shown a profound effect on both the maximum stress and maximum strain at some time after 48 hours of exposure. These data, taken with the yield point data, indicate that pure mixed acid will severely deteriorate the HDPE over a relatively short exposure time, but that the liner should withstand the 48 hours exposure criteria for the dike.

It is also worth mentioning that the tensile properties were run approximately 10 days after the two-day exposure samples were withdrawn. This would seem to indicate that if the liner is properly washed and rinsed after it has been exposed to pure acid, decomposition of the HDPE may be prevented.

The exposure of the HDPE to the 65% mixed acid solution also has resulted in a gradual decrease in both the maximum stress and maximum strain over the 23 days of exposure. It is difficult to say if this trend would continue if exposure time was extended; but it is also unlikely that under normal care the HDPE dike will be exposed to this acid concentration for this duration.

FIGURE 7. MAXIMUM STRESS OF EXPOSED HDPE SAMPLES

FIGURE 8. MAXIMUM STRAIN OF EXPOSED HDPE SAMPLES

DISCUSSION

The weight gain of the HDPE after exposure to the 100% mixed acid (Figure 2) indicates that either:

- Some acid is either absorbed into the HDPE structure, subsequently destroying the HDPE, or alternately,
- A reaction is taking place between the HDPE and the acid, resulting in a slightly different chemical structure with lower tensile properties.

In either case the tensile properties of the HDPE exposed to the 100% acid solution are diminished some time after 48 hours of direct, continuous immersion.

The HDPE samples were not tested immediately for tensile properties as originally planned due to scheduling conflicts. However, even though about 10 days elapsed between the time the two-day samples were withdrawn and the time the samples were tested, there appeared to be no adverse effects due to this waiting period. A weight gain after two days of exposure to 100% mixed acid was seen; therefore, it is not likely that a chemical reaction had yet taken place.

It is more likely that some acid was absorbed into the HDPE, resulting in a weight gain, but not enough was absorbed to cause destruction of the HDPE. After immersion was continued to the eight-day samples, destruction had taken place. There is no data between two days and eight days to show when the threshold exposure time occurs.

We also cannot conclude if the acid absorbed (weight gain) causes destruction or if destruction is caused mainly by exterior exposure. Exterior exposure seems to be the principal cause, though, since the period between two days and eight days yielded only a slight increase in weight, while the tensile properties were diminished considerably.

HDPE does expand and contract with changes in temperature; its coefficient of linear expansion is 1.2·10⁻⁴/ °C. A 130 °F temperature change (e.g., from summer to winter temperature) will result in a 0.86% elongation, or strain. Table I shows that the yield strain is much higher than the thermal expansion strain, even after immersion for all samples tested. Therefore, even when subjected to any of the conditions of this study, the HDPE used for the actual dike lining will not reach its yield point (or point of some polymer destruction) due to changes in outdoor temperature.

EXPERIMENTAL ERRORS

Experimental errors are identified and discussed in the following paragraphs. Appendix E provides the data and calculations for the error estimations.

Sample Dimension Measurement:

The rectangular HDPE samples immersed in the acid were cut on a guillotine using a square guide. The measurement errors for length and width are due to imprecise square corners on the samples plus the micrometer error. The error for these measurements are 2.2% and 2.5%, respectively, based on the average standard deviation of measurements of several samples.

The error for the thickness measurements relates to the ability of the manufacturer to produce a sheet of HDPE of uniform thickness plus the micrometer error. The error for thickness is 0.2%, also based on the average standard deviation of measurements of several samples.

Note that the die-cut "dumbbell" samples used for tensile property testing were cut from the rectangular samples after immersion rather than prior to immersion to prevent deformation of the die-cut samples' dimensions during immersion.

Scale Accuracy:

HDPE samples were weighed before and after immersion to determine whether samples were being decomposed by the acid or whether acid was being absorbed into the HDPE. The scale resolution was 0.1 gram; therefore, the error is 0.05 gram. In most cases the weight remained constant or increased by 0.1 gram. For increases of this magnitude (0.35%) a scale with higher resolution would yield more accurate figures.

Acid Absorption Offset by HDPE Decomposition:

It is likely that in some cases acid absorption by the HDPE (causing a weight increase) was offset by HDPE decomposition (causing a weight decrease). The sample weight increased more often than it decreased; but there was a change in the color of the acid solutions, particularly the higher concentrations, indicating decomposition was taking place.

In estimating the magnitude of this error, I noted that in many cases the weight change was zero and only slight color changes were noted. It is assumed then that the magnitude of this error does not exceed the scale accuracy. In other words, I would not expect greater than a 0.05-gram weight increase or decrease. This error was then added to the scale accuracy error to calculate the total weight change error.

Room Temperature Variation:

Room temperature was not consistent when "before" and "after" size measurements were determined. The maximum variation in room temperature was 7.5 °C, which corresponds to an error of 0.14%, calculated from manufacturer specifications.

Acid Composition Change:

Vapor pressure differences of the components in the acid solutions may cause the acid composition to change slightly over time since the test containers were not tightly sealed. This is particularly true with solution 1, where heavy NO_x fumes were observed during the high temperature periods. This should be a negligible error, however, since no acid level change was noted in the containers.

Tensile Properties Testing Delay:

There was a delay of up to ten days from the time the samples were withdrawn from the acid until the time the tensile properties were tested. If acid was indeed absorbed into the polymer structure, it is likely that further HDPE decomposition was taking place as the samples awaited testing.

CONCLUSIONS

Conclusions generated from this study of the compatibility of HDPE with mixed nitrating acid are summarized below:

- The HDPE liner is sufficient to contain a mixed acid spill for 48 hours without serious adverse effects.
 After 48 hours the spill could at least be diluted to a level no longer destructive to the liner and thereby be contained within the containment dike.
- HDPE samples immersed in 100% mixed acid will experience a weight gain after 48 hours of continuous immersion. It is inconclusive whether the weight gain is attributed to acid absorption or chemical reaction between HDPE and the acid.
- It is suspected, but not conclusively proven, that the weight gain is due to acid absorption. Mere acid absorption does not appear to affect the properties of the HDPE if it is removed from the acid.
- Long periods of acid exposure seem to be the principal cause of diminishing tensile properties, rather than
 acid absorption, since long exposure times yield slight increases in weight, but considerably poorer
 tensile properties.
- HDPE should be capable of withstanding any concentration of mixed nitrating acid generated from an
 initial concentration of 53% sulfuric acid and 47% nitric acid for at least 48 hours with no adverse effects
 on tensile properties. However, greater than 48 hours of continuous exposure to 100% mixed acid will
 drastically diminish the tensile properties.
- Thermal expansion of the HDPE in the dike lining may cause up to 0.86% elongation or strain. This is a factor of nine times lower than the lowest yield strain obtained in this study (100% acid for 8 days). The yield strain indicates how far the material can be stretched before the polymer chains begin to break.

RECOMMENDATIONS

Based on the results of this study, HDPE should be suitable for use as secondary containment for mixed nitrating acid storage. A periodic maintenance contract is recommended due to physical abuse and continual exposure to various acid concentrations.

The following additional studies to answer outstanding questions regarding the chemical resistance to HDPE would be beneficial:

- Collect data between two days of exposure and eight days of exposure to determine when the threshold
 exposure time occurs.
- Test some samples after removal from the acid immediately while delaying testing of others. This would
 determine if acid absorbed into the HDPE causes destruction or if the destruction is caused primarily by
 direct immersion.
- Determine the effects of temperature on the chemical resistance by maintaining the immersed samples at constant temperature rather than cycling the temperature through extremes.
- Test other types of geomembrane and geotextile liners. Note in Appendix A that the Hypalon sample also passed the preliminary screening. This sample was not tested further because the HDPE was thicker and more rigid and appeared to be capable of withstanding more physical abuse. However, given more testing time, other lining materials may have shown equal or better chemical resistance without the potential installation and maintenance problems associated with HDPE.

BIBLIOGRAPHY

- Burwell, Doug, PE, "Evaluating Plasticizer Loss in PVC Membranes," *Pollution Engineering*, February 1991, pp. 56-58.
- Fontana, Mars G., Corrosion Engineering, McGraw-Hill Book Company, New York, Third Edition, 1986.
- Halse, Y.H., Koerner, R.M., and Lord, A.E., Jr., Geosynthetic Research Institute, Drexel University, "Laboratory Evaluation of Stress Cracking in HDPE Geomembrane Seams." *Durability and Aging of Geosynthetics*, R.M. Korner (ed.), Geosynthetic Research Institute, Drexel University, 1988.
- Koerner, R.M. (ed.), Durability and Aging of Geosynthetics, Geosynthetic Research Institute, Drexel University, 1988.
- Laine, D.L., Miklas, M.P., and Parr, C.H., Southwest Research Institute, U.S.A., "Loading Point Puncturability Analysis of Geosynthetic Liner Materials." *Geosynthetics 1989 Conference*, San Diego, 1989.
- Landreth, Robert E., "Concerns and Opportunities Involving Geosynthetics and Waste Containment," *Geotechnical Fabrics Report*, September/October 1990, pp. 24-34.
- Martin, J.P., Koerner, R.M., and Whitty, J.E., Drexel University, "Experimental Friction Evaluation of Slippage Between Geomembranes, Geotextiles, and Soils." *International Conference on Geomembranes*.
- Peggs, Ian D., and Carlson, Daniel S., Geosyntec, Inc., "Stress Cracking of Polyethylene Geomembranes: Field Experience." *Durability and Aging of Geosynthetics*, R.M. Koerner (ed.), Geosynthetic Research Institute, Drexel University, 1988.
- Schoenbeck, M.A., "Comparison of HYPALON Synthetic Rubber and HDPE for Flexible Membrane Liners," E.I. DuPont de Nemours & Co., Inc., Wilmington, DE, E-85338.
- Schoenbeck, Melvin, E.I. DuPont de Nemours & Co., Wilmington, DE, "Performance of Chlorosulfonated Polyethylene Geomembranes after Long Term Weathering Exposure." *Durability and Aging of Geosynthetics*, R.M. Koerner (ed.), Geosynthetic Research Institute, Drexel University, 1988.
- SLT North America, Inc. "Tank Lining and Secondary Containment Systems Manual," Technical Publication, 1990.
- United States Environmental Protection Agency memorandum of 13 July 1989, Sylvia K. Lowrance, Director Office of Solid Waste (OS-320), Subject: Use of Construction Quality Assurance (CQA) Programs and Control of Stress Cracking in Flexible Membrane Liner Seams.

Appendix A PRELIMINARY MATERIALS TESTING RESULTS

MIXED ACID CHEMICAL RESISTANCE STUDY MATERIAL TESTING RESULTS

Sample Name	Liner Type	Test Length	Results/Comments
Overkote	Resin	24 hrs	Total destruction, completely dissolve
Overkote Plus	Resin	24 hrs	Total destruction, completely dissolve
DOW Silastic 732	Caulk	4 days	Sample nearly intact but exposed surface cracked
DOW Silastic 730	Caulk	4 days	Very small cracks in exposed surface; Sample intack below exposed surface
Hetron	Resin	4 days	Outer surface dissolved; bubbles form
Permagile	Caulk	4 days	Sample floated; sample bubbled until acid no longer in contact with sample
FX 571 Fox Ind.	Caulk	10 min	Sample dissolved
Essex Polyurethane	Poly- urethane	10 min	Sample dissolved
Morton Thiokol FE 1402	Caulk	10 min	Sample dissolved
Morton Thiokol FE 1407	Caulk	15 min	Sample dissolved
KOCH Permanite	Resin Polymer	3 days	All outer polymer dissolved; only cement base left
Pecora Synthacalk	Caulk	10 min	Sample dissolved
Morton Thiokol FE 2000	Caulk	15 min	Sample dissolved
Fabrico PVC Type 651	Liner	4 days	Sample hardened and curled but still intact
Fabrico PVC Type BOEE	Liner	4 days	Sample hardened and curled but still intact
Fabrico PVC Type 3134	Liner	4 days	Sample hardened and curled but still intact
HDPE SLT & Serrot	Liner	4 days	Not affected visually
Life Science 3510	Resin	2 min	Caused violent acid fume-off
Life Science 3116	Resin	3 days	Crust layer on acid; corrosion effect gradually increasing through sample
Hypalon	Liner	3 days	Not affected visually

HDPE Testing; FormTool; hdpe_r-2

Appendix B MATERIAL COMPATIBILITY TESTING RESULTS

MATERIAL COMPATABILITY TESTING

Sample Number	Weig Bef.	ght Aft.	Leng Bef.	gth Aft.	Wid Bef.	lth Aft.	Thickr Bef.	ness Aft.	Leachate	Expesures
Manmer	Der.	ALC.	Del.	ALC.	DCI.	ALC.	201.	711.		
01									NOEXPOUTE	0
20									'//	0
03									//	0
04									1/	
05									11	0
06	111 1	111 07	- 205	T 0: 0.2	1-973	1-972	0,084	0.082		DI AVI STURY
07	14-6	14-8	5-895	5-908	1-713	1-712	0-081	0.002	100 1-PGDH	BY ACK STUKY
09	15-20	15-4	J-851 J-700	5-918	2.020	2-021		0 076	NET- PLON	5
10	13-4	13-6	5-408	5.435	2-024	2-020		0.081	11	
11	13-6	13.47	5-407	5-440	1-971	1.973	0.082		11	J PARTES CF.
12	14-1	13086	5-438	J-770	1,750	1-117	0,086	0,017	.(H
		16-0	5-478	5-464	2-165	2-164	0-088	0-087	u	3
13	15-6	15-6	5-493	5523	2-077	2-078	0,083	0.081	et	5-WARTS
15	15-6	15-0		6.022	2.050	2-035	0,094	0.094	11	2
	16-6	16-7	6-072	>6,002	2-179	2-191	0.083	0.083	0	2
15 17	13-8	14-0	5-369	5-389	2.020	2.026	0-076	0.077	l1	2
18	14-1	14-3	5-381	J-396	1-928	1-937	0.457	0-087	u	2
19	13-5	13-7	5-373	5-384	1-923	1-924	0.082	0.084	ŧí	2
20	13-6	13-1	5-401	2-201	1-929	1-101	0.080		ec	l _{II}
21	13-6		5-338		1-788		0-082		"	11
22	13-0		5-389		1-970		0.080		tt.	11
23	14-7		J-906		2-009		0-069		- 11	14
24	14-5	14-7	5-841	5.852	1,988	1-792	0-079	0,080	"	12
25	15-2	15-2	T-918	5-930	1-771	1-978	0-093	0.091	65% PGON	2
26	14-7	14-7	J-892	5-882	1-9.10	1-960	0.071	0-073	11	2
27	14-8	14-9	6-043	6-063	1-990	1-981	0-084	0-084	- D	15
28	16-2	16-3	5-885	5-900	2-146	2-145	0-089	0-090	11	15
29	14-8	14.8	6.019	6,021	1,962	1-967	0.064	0,084	li .	15
30	15-16	15-7	5-518	5-538	2-084	2-091	0-088	0-089	tı .	3
31	15-0	15-1	1-543	5-573	2.118	2-/23	0-080	0.081	11	15
32	14-3	14-4	5-569	5-591	1-926	1-926	0-085	0,084	11	15
3-3	16-1	16,2	5-844	5-880	2-110	2-114	0.082	0-083	. 1/	15
34	14-4	14-5	5-533	5-555	2109	2-114	0-081	0-081	il.]2
35	15-0	15-1	5-972	6-004	1.955	1-960	0,082	OPEZ	H	2
36	13-0	12-9	5-236	5-269	1-956	1-966	0-082	2820	li .	2
37	15-0	15.0	5-848	5-886	1.953	1-962	0-077	0-078	*1	5
36	14.2	14-2	5-448	5-465	1,746	1-952	0.081	0.082	t)	15
39	13-1	13-1	5-328	5-351	1-558	1-967	0_081	0.081	11	5
40	16-3	16-4	6.003	6.003	2,065	2-070	100004	0,084	"	5
41	14-7	14-8	6-025	6-038	1,907	1-919		0.082		istanced reshared
42	14.7	14-8		5-990	1-988	1-987	E-084			personed reshard
73	ارک	15-2		5-724	1-966				307- PUDM	10-
44	14,1	14-1	J- 356			1-978	0.070	0-073		15
45	17/1	17-2	5-929		2-170	2-175		8-092		15
46	15-8	15-8	5-861	5.878	7-176			0-070		15
47	14,0	14-6	1.653	5-837	1-950	1-952	0-640		"	5 small warts
48	14.3	14-3	5-419	5-430	3-162	2-167	0.001		1e	15
49	15.5	15-7	1-482	5-482	3-087		0-086		11	15
50	13-2	13-3	2-444	5-44/	1-971		0.071		"	2
57	14/1	14-2	5-291	5-308	2-132	2-140		0-072		2
52	13-6	13-7	6-325	5-374	7-073			0,072	1	2
53	14-0	14.0	J-364	15-380	カルけ	2-067	10-076	0-074	f)	\mathbf{r}

Measurements taken at corner of sample with sample no.

Facilities and Equipment; Formtool; HDPE_1

MATERIAL COMPATABILITY TESTING

Sample Number	Weig Bef.	ght Aft.	Leng Bef.	oth Aft.	Wid Bef.	lth Aft.	Thicks Bef.	ness Aft.	Leachate	
54	13-8	13-9	J-263	5-282	1-029	2-030	0.090	0-093	307- PWN	15
55	13-2	13-2	J-239	5-259	1-956	1-963	0.095	0-099	41	5
56	15-9	15-9	5-892	5-909	2-062	2-072	0-090	0,088	ŧı	と
57	15-1	15=2	5-848	5-905	2-031	2-034	0-088	0-089	£ş.	2
58	16-1	16-2	5-981	6-007	2-113	2-118	0-097	0.091	n n	2
59	14-9	15-0	T-936	5-948	1-957	1.958	0-092		h-	5
60	15-6	15-6	6-034	6-049	2020	2-024	0-082		-11	5
61	150	15-0	6072	76-073	1-954	1-953	0284	0-084	51-PEDH	15
62	13-8	13-8	5-233	5.236	1-989	1-990	0,086	0-083	'1	15
63	13-5	13-5	5-295	5-307	1-968	1-970	0-083		н	15
64	13-6	13-6	5-343	5-352	2,384	2-089	0.080	0-079	11	4
65	13-9	13-9	5-480	5-493	2008	2-012	0.082	0-081	10	2
66	13-5	13-5	5-358	5-369	1-921	1-925	0,084	0-084	11	5
67	14-5	14-5	5-245	5-251	1-984	1-985	0287	0.08		4 '
68	14-2	14-3 .	5-266	5.275	2-067	2-072	0.286	0,086	10	2
69	13-1	13-1	5-221	5-224	1,946	1-950	0.063	0-083		
70	14-35	14.5	J-196	5-201	2-160	2-164	0294	0,09	11	5 43/T) 011 13 15ide
7/	14-2	14-2	5-180	J-19/	2-026	2-090	0-099	0.094		
72	12-7	12-7	5-188	5-182	1-959	1-961	0.089	0.093	11	15
73	13-6	13-6	5-180	5-190	2.029	2.030	0-076	0-075	11	peterned my
74	15-1	15-2	5-995	6-029	1-957	1-965	0-076	0.076	18	but reshaped 2
75	13-2	13-2	5-323	J=345	1-904	1-910	0,090	0-092	; t	2
76	13-4	13-4	5-255	5-279	1-956	1-965	0.087	0.095	11	5
77	14-1	14-1	5-277	5-289 5-345	1-910	1-908	0-074	8,077	71	15
78	13-4	13-4	1-332	J 343	1-16)	17761	0-019	0,017	· · · · · ·	1
										1
										1
								<u> </u>	t	1
							 		1	1
										1
										1
										1
Ocycle	= 1007	10-70	wes cold	espai	1/4 600	2nd ho	It of s	myles		1
2 Cycle	5 = 1000	temp	when m	20501575	= /6-3	r°C]
Jeycle.	= 4	ų/	ic	4	= 13-0	"C				1
1 11	41	ካ	٠,	и	300	= 401	12.5	10		4
										4
								<u> </u>	<u> </u>	4
Error			sampki	(corv.	ture)					-
	Meo	PORATION	Tomp					ļ	-	4
	evo	paration						<u> </u>	-	4
	AL	until			-			-	ļ	-
	320	sure w	me pla	100				-		-
					-			 	 	1
						 	1	-	 	1
							-	 	 	-
								-		1
								 	-	1
								}		1
					-	-		-		1
					1	 	 	 	1	1
				L			1	11	1	_

Measurements taken at corner of sample with sample no.

Facilities and Equipment; Formtool; HDPE_1

HDPE Test Plan

Acid Solutions: 100% PEDN Mixed Acid
65% PEDN Mixed Acid
30% PEDN Mixed Acid
5% PEDN Mixed Acid

Tests: Dimensions: taken at 1 corner
Weight: on lab scale
Specific Gravity: calculated
Tensile Properties: 6 ea/cycle/solution

Cycles: \$ cycles: nonexposure
2 cycles
5 cycles
15 cycles

Temperature: Ambient - 120°F through 5 cycles (49°C)
Ambient - 140°F 5-15 cycles (60°C)

Samples: 18 samples per solution
6 samples nonexposure
78 samples total

HDPE Testing Cycle Time

22-141 22-142 22-144

$$\frac{(onduction)}{t_{\tau}} = \frac{f_{\tau}^{n}}{9.87 L} \left(n \frac{o_{-608} \left(T_{s} - T_{e} \right)}{T_{s} - T_{b}} \right) = \frac{k}{4 - \rho C_{p}}$$

$$t_{\tau} = \frac{(7in)^{2} \left(\frac{167}{12in} \right)^{2}}{9.87 (o_{-0} courses 47/4)} \left(n \frac{o_{-608} \left(\frac{140 - 25}{1} \right)}{140 - 135} \right) = \frac{a_{-2} c_{p} c_{p}}{(1.72)(8.345 \frac{140}{16})(0.35 \frac{140}{140})} = 0.005588 \frac{f_{p}^{2}}{hr}$$

$$= 16.3 hr$$

(onvection;

$$g = hA (T_h - \overline{T_b}) \qquad A = \pi r^2 + \pi dL$$

$$= (0.2 \frac{8t^{4}}{ft^{2}} - h^{-6} =)(2.01ft^{2})(140 - 135) = 290 \text{ in } ^{2} = 2.01 \text{ ft}^{2}$$

$$= 2.0126 \frac{8t^{4}}{hr}$$

$$t = \frac{1,444}{2.0126} \qquad g = mc_{p}\Delta T$$

$$= 717.6 hr \qquad g = (35.88 \text{ lb})(0.35 \frac{8t^{4}}{hr})(140 - 25)$$

$$= 1,444 \text{ Bty} \qquad (120-25)$$

$$= 1,444 \text{ Bty} \qquad (120-25)$$

Rediation:
$$g = \sigma \mathcal{E}_{\omega} A \left(T_{\omega}^{4} - T^{4}\right)$$
 $g = \sigma_{\omega} A \left(T_{\omega}^{4} - T^{4}\right)$
 $f = \sigma_{\omega} A \left(T_{\omega}^{4} - T^{4$

IHTR 1	1799 	1	1		
٠,	HDPE Toting	Acid Prepar	estion	2-19-91	
	65 % PEDN Mix	ed Arīd	Water	Acid >	4CIDact
	-/- = M.A. +H20	= 0-65	450-0 4 19-9- 450-0	8357	6365
			463-0	859.9	
	35 MA = -	7.A. +. 65H20			
SHEETS SHEETS SHEETS		357143 H20			
22-141 59 5 22-142 100 5 22-144 200 5	Bright red-oran		Alot of Nox	formed	
A	307- PEDN M==	red Apl			
	$-30 = \frac{MA}{MA+H}$	20		Acidatt Acidatt Acidatt	id act 每 341-7
	MA = -30 .70M4 = -	MA+-30Hz0 30 Hz0	5/6-5	221-4	222-2
	MA = 0	-428571 H20			
	5% PED~ Mixed $OJ = \frac{mA}{matHz}$		Water — 812-0	Acid et 42-7	
	MA = .05MA		575-1	26.6	
	,95M4 = .				
	MA = 0,05	2632 H20	•		
					•
yen	+	_			
exhaust	2cac		Room Temp =	: <i>58%</i>	
	1 sected	7			

HDPE Testing Sample Innersion 2-20-91 2-20-91 Begin testing 100% PEDN in square desicator \$ 07-24 Temp = 0721 when immersed 0735 All samples in solution and over turned on set on 69°C instially 100 100% some floating on top of others -- not all immersed jut ones that are are completely 22-141 22-142 22-144 imeried 6 65% - slightly over half way -almost all the way -- just corners sticking out

```
HDPE Testing
                               Temperature lycling =
       After in oven
          THIS 49"L
        2-20-9/ 1730 46°C $ 46°C 45°C W Set over to 55°C for tonorow
                                                                  46°C
              No change appearing in samples
Brought to flamable locker
       2-21-91 0845 70
                                                     8°C
                                                                7°C
I SHEETS
                                        7ºC
                    Turned samples over flipped )
           R
                   so floating ones samples on before ventically
                  All samples floating & same as yesterday
4
                                                                   510
                                        52°C
                1726 Put outside in locker
   2 2-22-91
                 0855-0430
                   withdrew 6 samples from each solution
                   1 F.W. Wash
                   1 SIW w256
                   1 Fur wasit
                   over to day
                  flipped all samples insolution & put in over "0915
                1815 Took samples outside in lacker
         2-25-91
                 0930-0975
    3
                     Flipped samply over and put in oven @ 55°C
             Fo-yot to take samples out in fim-
       3-26-91
               Samples out of even to locker
               NOx fines in 180% container - 100% solution was dock brown-black; samples downposing slightly??

simples appeared to be intact
```

B-10

HDPE Testing Temperature Cycling 2 4 2-27-9/ ~//00 Samples into oven 100-1- solution dark brown changed temp chart 1935 Samples into lockur More NOx fines above 100% Soluting 2-28-91 0900 E somples withdrawn 200 Vertilation remaining samples flipped back in over Not work 22-141 22-142 22-144 Washes = FW 6 5 W FW In 100% samples = when bent, surface would crack Didn't nappen also black, sometimes residue. It was stick in 5% 301 and would ripe off on tord with some offert 5% samples Itill had yollow grease percil ma-kings on ther 30% samples surface insuked, it become sticky, like when was absorbed into meterial diid 2-28-9\$ 1705 samples to laker Sample to oven flipped over 3-1-41 0800 * Might want to 1 temp 3-1-41 1622 Renae from over NO. IN 100% B-11

```
Temperature Cycling
       HAPE Testing
      3-2-9/ Set ~1300
          Flipped samples & put into over sor
       3-3-91 501
            Samples to locker
            Black residue forming on side of desicuator in 100% solution; forming apparent level of top of deid solution
            Alot of NOx tunes wer 100% solution
50
100
200
      3-4-91 OB50
Samples into even 55°C
6
                 1735
       3-4-91
               Somples to locker
                 Dark Nox tures over 100/- solution
      3-5-91
                0900
   9
                Samples into over
                 1920 Simples to locker
  3-6-91
                 0910
                                          went on Travel & Foget
                 Samples into over 55°C
                                           To Take then out
                0900
       3-8-91
              Porch NOX over 100 h
   11 3-11-91 May 5900
           100% samples proken down
                 brittle chunks that broke on touch
                removed, meetalized, and discarded
            others flighed and into overy
       3-11-91 1810
             Samples to locker
```

```
3-12-91 0850
       12
                   Samples into oven
             3-12-9/ 17/0
                    Samples out to locker
50 SHEETS
100 SHEETS
200 SHEETS
        Put Epoty Samples in (NOTE) for tomorrow)
          3-13-91
22-141
22-142
22-144
                         0920
       13
                        Samples into excu
(Styles
                                      little miley
           Epoxy samples
                                        Public 307-
          100%
                                                            5%
          0-8 g (floated)

After a few minutes

As surface appeared
Jubbly & bloated
                                                           offect
                                        ofen
                                                effect
                                                noticed noticed
                                        end
             No samples fund
          1100 - 100-1- Sample dissolved (Epoxy)
            Alet of NOx T- 657 $ 30%
Steel 77 65% bubbling
                                          to 502 1/00-1/30
          Moved
          1950 Samples to locker
        1720 Samples to lockersty. all
   14 0850 Samples to over
       # Samples from each soll still had graise
pencil many
```

Appendix C PHYSICAL PROPERTY DATA

HIPE TESTING IN ACID SOLUTIONS WEIGHT/DIMENSIONS DATA BEFORE AND AFTER

HDPE Testing; quattro; hdpe-2

Sample		ro; hdpe Acid	Weight	Weight	% Weight	Length	Length	Width	Width	% Width	Thick.	Thick	Volume	Volume
-	ExposuresCo		_	After	Change	Before	After	Before	After	Change	Before	After	Before	After
1	0	0												
2	0	0												
3	0	0												
4	Ð	0												
5	0	0												
6	0	0												
66	2	5	13.5	13.5	0	5.358	5.369	1.921	1.925	0.208225	0.084	0.084	0.864588	0.868167
68	2	5	14.2		0.704225	5.266	5.275	2.067		0.241896	0.086	0.086	0.936095	0.93996
	2	5	13.1	13.1	0.7012.20	5.221	5.224	1.946		0.20555	0.083	0.083	0.843285	0.845504
69						5.995	6.029	1.957		0.408789	0.076		0.891648	
74	2	5	15.1		0.662252					0.315126	0.090		0.912149	
75	2	5	13.2	13.2	0	5.323	5.345	1.904			0.087		0.895625	
76	2	5	13.4	13.4	0	5.255	5.279	1.959		0.306279				
verage:			13.75	13.78333	0.227746		5.420167	1.959		0.280977			0.890565	
tandard	Deviation:		0.699405	0.742556	0.32231	U.268541	0.2/6414	0.052131	0.022110	0.0/14/5	0.004546	0.006191	0.03021	0.01/2
64	5	5	13.6	13.6	0	5.343	5.352	2.084		0.239923	0.080	0.079	0.890785	0.88324
65	5	5	13.9	13.9	0	5.480	5.493	2.008		0.199203	0.082	0.081	0.902315	0.89520
67	5	5	14.5	14.5	0	5.245	5.251	1.984		0.050403	0.087		0.905329	
	5	5	14.5		0	5.196	5.204	2.160		0.185185	0.094		1.054996	
70	5 5	5	13.6	13.6	0	5.180	5.190	2.029		0.049285	0.076		0.798777	
73				14.1	0	5.277	5.289	1.910		-0.10471	0.092		0.927274	
77	5	5				5.286833				0.103215				
Average:	5			14.03333						0.118006	0.00644			
Standard	Deviation:		0.3/26/6	0.372678	U	0.101036	0.103031	0.070323	0.00027	0.110000	0.00011	0.000022	0.0.000	••••
61	15	5	15.0	15.0	0	6.072		1.954	1.953	-0.05118	0.084	0.084	0.996634	
62	15	5	13.8	13.8	0	5.233	5.236	1.989	1.990	0.050277	0.086	0.083	0.895126	0.8648
63	15	5			0	5.295	5.307	1.968	1.970	0.101626	0.083	0.082	0.864906	0.85729
71	15	5				5.180	5.191	2.086	2.090	0.191755	0.099	0.094	1.069743	1.01982
72	15	5				5.188	5.182	1.959		0.102093	0.089	0.093	0.904533	0.94505
78	15	5				5.332	5.345	1.965		0.101781	0.074		0.775326	
	13	,		13.76667		5.383333		1.986833		0.082726			0.917711	
Average: Standard	Deviation:			0.713364						0.07299		0.006076	0.094064	0.07433
o candar d	peviacion.		0.713001	01713301	Ü	0.312/3	0.001211	0101000		*****				
50	2	30	13.2	13.3	0.757576	5.444	5.441	1.971	1,979	0.405885	0.071	0.071	0.761839	0.7645
51	2	30			0.70922		5.308		_	0.375235	0.076	9.072	0.857311	0.8178
52	2	30			0.735294		5.374			0.247158	0.076		0.822859	
56	2	30					5.909			0.484966	0.090		1.093437	
57	2	30			0.662252		5.905			0.14771	0.088		1.054138	
58		30			0.621118					0.23663			1.225872	
		30	14.66667		0.58091					0.316264			0.96924	
Average:					0.263691									
Standard	Deviation	•	1.100553	1.090489	0.263691	0.200015	0.28/334	0.054/68	0.034336	0.113107	0.005230	0.00000	. 0.10000	. 4.137
4.7	5	30	14.6	14.6	. 0					0.102564			1.022814	
48	5	30	14.3	14.3	3 0	5.419	5.430	2.162	2.167	0.231267	0.081		0.948986	
49	5	30	15.2	2 15.2	2 0	5.485	5.482	2.087	2.087	7 0	0.086		0.984459	
			13.2	13.7	2 0	5.239	5.259	1.956		0.357873	0.095			1 1.0220

IHTR 1799

% Volume So. Gr. Sp. Gr. % Sp. Gr. Change Before After Change

0.413953 0.952847 0.948919 -0.41225 0.413218 0.925694 0.928377 0.28981 0.263128 0.947972 0.945484 -0.26244 0.978247 1.033433 1.030199 -0.31293 2.968168 0.883094 0.857638 -2.88261 10.03008 0.913014 0.829785 -9.11576 2.511132 0.942675 0.9234 -2.11603 3.486786 0.046702 0.065394 3.290434 -0.84634 0.931676 0.939628 0.853562 -0.78794 0.94006 0.947526 0.794196 -0.98646 0.977373 0.987111 0.996293 -0.72801 0.838718 0.844869 0.733345 -1.07655 1.038992 1.050299 1.088264 0.122452 0.927918 0.926783 -0.1223 -0.71714 0.942456 0.949369 0.723893 0.393372 0.060046 0.062102 0.396833 0.918448 -3.38449 0.940793 0.973749 3.503054 -0.88029 0.952497 0.960956 0.88811 -4.66642 0.810043 0.849693 4.894832 4.480091 0.856797 0.820058 -4.28799 4.413915 1.054676 1.010092 -4.22732 -0.00744 0.922209 0.92291 0.154137 3.83559 0.077119 0.074259 3.825122 0.350555 1.057328 1.061616 0.405599 -4.60214 1.003643 1.059522 5.567589 -4.63862 1.008584 1.065421 5.635314 -1.46455 0.887364 0.900554 1.486318 1.405963 0.874135 0.867724 -0.7334 -5.55479 0.801456 0.853864 6.539141 -2.41726 0.938752 0.968117 3.150094 2.668886 0.090198 0.095099 2.854475 2.485086 0.871074 0.849952 -2.42483 0.434726 0.919549 0.915569 -0.43284 -1.21685 0.942204 0.95381 1.231839

4.982718 0.827431 0.788159 -4.74623

														4 050000
59	5	30	14.9	15.0	0.671141	5.936	5.948	1.957	1.958	0.051099	0.092		1.068741	
60	5	30	15.6	15.6	0	6.034	6.049	2.020		0.19802	0.082		0.999472	
Average:			14.63333	14.65	0.111857	5.656833	5.6675	2.022	2.025167	0.156804	0.087667	0.088167	0.999664	1.00789
-	Deviation:		0.763035	0.76974	0.250119	0.291594	0.291731	0.079156	0.079237	0.119983	0.005121	0.006491	0.038278	0.038813
ocanana i	Device 1													
42	15	20	15.1	15.2	0.662252	5.710	5.724	1.966	1 969	0.152594	0.094	0.096	1.055231	1.081973
43	15	30				5.856	5.870	1.971	_	0.35515	0.070		0.807952	
44	15	30	14.1	14.1	0						0.091		1.1708	
45	15	30	17.1		0.584795	5.929	5.946	2.170		0.230415				0.877644
46	15	30	15.8	15.8	0	5.861	5.878	2.126		0.329257	0.076			
53	15	30	14.0	14.0	0	5.364	5.380	2.061		0.291121	0.076			0.822914
54	15	30	13.8		0.724638	5.263	5.282	2.029		0.049285	0.090			0.997189
Average:			14.98333	15.03333	0.328614	5.663833				0.234637				0.969518
Standard :	Deviation:		1.176742	1.19257	0.331094	0.257816	0.257034	0.075218	0.075826	0.106279	0.009136	0.010801	0.123197	0.133375
25	2	65	15.2	15.2	0	5.918	5.930	1.971	1.978	0.35515	0.093	0.091	1.084787	1.067388
26	2	65	14.7	14.7	0	5.892	5.882	1.950	1.960	0.512821	0.071	0.073	0.815747	0.841597
34	2	65	14.4		0.694444	5.533	5.555	2.109	2,114	0.237079	0.081	0.081	0.945197	0.951205
	2	65	15.0		0.666667	5.972	6.004	1.955		0.255754				0.964963
35					-0.76923	5.236	5.269	1.956		0.511247	0.082			0.849426
36	2	65	13.0							-0.0503	0.084			0.987877
42	2	65	14.7		0.680272	5.947	5.990	1.988						0.943743
Average:			14.5	14.53333	0.212025	5.749667	5.771667	1.988167	1.994167	0.303625	0.082167			
Standard	Deviation:		0.716473	0.767391	0.534081	0.27318	0.270342	0.055508	0.054468	0.192141	0.006414	0.005228	0.090908	0.070604
30	5	65	15.6	15.7	0.641026	5.518	5.538	2.084	2.091	0.335893	0.088			1.030616
37	5	65	15.0	15.0	0	5.848	5.886	1.953	1.962	0.460829	0.077			0.90077
38	5	65	14.2	14.2	. 0	5.448	5.465	1.946	1.952	0.308325	0.081	0.082	0.858746	0.87475
39	5	65	13.1	13.1	0	5.328	5.351	1.958	1.967	0.459653	0.081	0.081	0.84501	0.852559
40	5	65			0.613497			2.065	2.070	0.242131	0.084	0.084	1.04128	1.043802
41	5	65			0.680272			1.907		0.629261		0.082	0.942153	0.950128
	3	00			0.322466			1.9855						3 0.942104
Average:							0.271669							1 0.073603
Standard	Deviation:		1.0122/2	1.051454	: 0.32304/	0.2/3130	0.2/1005	0.063263	0.003073	0.12/1/1	0.003337	0.0055	0.07333	. 0.075000
							c 063	1 070	1 001	0.558376	0.084	0.09/	0 000004	5 1.008907
27	15	65			0.675676			1.970						4 1.138995
28	15	65			0.617284			2.146		-0.0466			_	
29	15	65						1.962		0.254842				9 0.994838
31	15	65	15.0	15.1	0.666667	5.543	5.573	2.118		0.236072				6 0.95835
32	15	65	14.3	14.4	0.699301	5.569	5.591	1.926						1 0.904534
33	15	65	16.1	16.2	0.621118	5.844		2.110		0.189573				9 1.031717
Average:					0.546674					0.198711				5 1.006223
Standard	Deviation:		0.704746	0.715115	0.24621	0.197409	0.191901	0.08774	0.08675	0.197337	0.002769	0.00274	9 0.06705	2 0.071935
16	2	100	16.6	16.7	0.60241	6.072	2	2.179	2.19	0.550711	0.083	0.08	3 1.09816	4
15		100			2.564103	6.011	6.022	2.030	2.035	0.246309	0.094	0.09	4 1.14701	9 1.151948
17		100			1.449275			2.020	2.026	0.29703	0.076	0.07	7 0.82424	9 0.840695
18		100			1.41844					7 0.466809				7 0.909329
		100			7 1.481481					1 0.052002				7 0.870141
19										2 0.201207				1 0.932575
24		100			7 1.37931									1 0.940937
Average:			14.68333		1.482503			2.011333		0.302343				
Standard	Deviation:		1.085383	1.08781	0.571588	0.308043	0.2735	0.085467	0.08789	0.16573	2 0.00579	0.00539	0 U.12253	2 0.110141
7	5	100	14.6	14.8	3 1.369863	5.89	5.908	1.973	1.97	2 -0.0506	3 0.08	-		9 0.955347
9	5	100	15.2	2 15.4	4 1.315789	5.90	5.918	2.020	2.02	1 0.04950	0.08	1 0.07	8 0.96535	8 0.932902
10	5	100	13.4	13.6	5 1.492537	5.40	5.435	2.024	2.02	0.1976	3 0.08	4 0.08	1 0.91944	7 0.889275
11		100			7 0.735294	5.40	7 5.440	1.971	1.97	3 0.10147	0.08	2 0.07	9 0.8738	9 0.847916

-0.83635 0.850771 0.863704 1.520207 -0.77786 0.952473 0.95994 0.783959 0.845245 0.893917 0.888523 -0.67798 2.224513 0.046942 0.060925 2.246438 2.534283 0.873229 0.857286 -1.82576 4.906287 1.064957 1.015151 -4.67683 1.622393 0.891276 0.882176 -1.02103 -7.32344 1.01814 1.098595 7.90215 -2.05684 1.016826 1.038179 2.100033 3.75749 0.876234 0.850621 -2.92302 0.573362 0.956777 0.957001 -0.07408 4.146003 0.07835 0.097364 4.115294 -1.60391 0.855063 0.869001 1.630055 3.16877 1.099665 1.06589 -3.07144 0.635636 0.929692 0.930235 0.058437 0.792959 0.956114 0.954916 -0.1253 1.144722 0.944626 0.926751 -1.89229 -0.52609 0.90328 0.914235 1.212745 0.602014 0.948073 0.943504 -0.36463 1.475301 0.075335 0.060515 1.65145 1.843873 0.940722 0.929611 -1.18107 2.426783 1.040854 1.016193 -2.36929 1.863567 1.009072 0.990611 -1.82947 0.893319 0.946037 0.937661 -0.88541 0.242131 0.955254 0.958793 0.370469 0.846386 0.952126 0.950558 -0.16472 1.352676 0.974011 0.963905 -1.00991 0.747957 0.037458 0.030321 0.929532 0.891185 0.903155 0.901226 -0.21361 1.334103 0.879524 0.873302 -0.70738 0.288155 0.910454 0.907838 -0.28733 2.038305 0.974606 0.961505 -1.34424 -0.78607 0.957155 0.971485 1.497144 2.036108 0.971669 0.958194 -1.38675 0.966964 0.932761 0.928925 -0.40703 0.997104 0.03667 0.036595 0.966613 0.922444 0.429754 0.829952 0.84759 2.125215 1.995259 1.021691 1.016222 -0.5353 0.746865 0.953298 0.959653 0.666596 2.702125 0.97235 0.960793 -1.18853 1.660668 0.964575 0.961906 -0.27676 1.506934 0.944052 0.949233 0.158244 0.828082 0.058908 0.055175 1.149907 -2.21526 0.91193 0.945364 3.666346 -3.3621 0.960846 1.007358 4.840638 -3.28152 0.889359 0.933258 4.936035 -2.97219 0.949688 0.985976 3.821053

13	5	100	15.6	16.0	2.564103	5.448	5.464	2.165	2.164	-0.04619	0.088	0.087	1.037953	1.028696
14	5	100	15.2	15.6	2.631579	5.493	5.523	2.077	2.078	0.048146	0.083	0.081	0.946944	0.92962
Average:			14.6	14.85	1.684861	5.591833	5.614667	2.038333	2.038	-0.0159	0.083667	0.081333	0.95343	0.930626
Standard	Deviation:		0.832666	0.919692	0.688409	0.218056	0.212896	0.066937	0.066671	0.097731	0.002211	0.002867	0.050605	0.055955
8	11	100	14.2	0	-100	5.851	0	1.980	0	-100	0.081	0	0.938383	0
12	11	100	14.1	0	-100	5.438	0	1.950	0	-100	0.086	0	0.911953	0
20	11	100	13.6	0	-100	5.401	Ð	1.989	٥	-100	0.080	0	0.859407	0
21	11	100	13.6	0	-100	5.338	0	1.988	0	-100	0.082	0	0.870179	0
22	- 11	100	13.0	0	-100	5.389	0	1.970	0	-100	0.080	0	0.849306	0
23	11	100	14.7	0	-100	5.906	0	2.009	0	-100	0.069	0	0.818696	0
Average:			13.86667	0	-100	5.553833	0	1.981	0	-100	0.079667	0	0.874654	0
-	Deviation:		0.540576	0	0	0.231969	0	0.018166	0	0	0.005185	0	0.039747	0

-0.89181 0.917161 0.949143 3.487014 -1.82941 0.979531 1.024042 4.544116 -2.42538 0.934753 0.97419 4.215867 0.881342 0.031091 0.033808 0.578188

-100	0.923436	ERR	ERR
-100	0.943508	ERR	ERR
-100	0.965692	ERR	ERR
-100	0.953738	ERR	ERR
-100	0.934066	ERR	ERR
-100	1.095705	ERR	ERR
-100	0.969358	ERR	ERR
0	0.058085	ERR	ERR

Appendix D TENSILE PROPERTY DATA

MECHANICAL PROPERTIES LABORATORIES NAVAL ORDNANCE STATION INDIAN HEAD, MD.

ASTM D TYPE IV

Test type: Tensile

Instron Corporation

Series IX Automated Materials Testing System v4.05a

Test Date: December 7,1990

Operator name: HUNTER

Sample Identification: HDP-1

Interface Type: 4500 Series Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTE

Humidity (%): 50

Temperature (deg. F): 73

DATE

MARCH 4, 1991

PROGRAM

HIGE DENSITY POLYETEYLENE

ASTM SPECIFICATION D638/D882 SAMPLES 1 TERU 5 COMMENTS

COMMENTS

BASELINE

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) .086000 .086000 .083000 .086000 .083000 Width (in) .24400 .24400 .24500 .24400 .24400 Gauge length (in) 2.5000 2.5000 2.5000 2.5000 2.5000 Specimen G.L. (in) 3.0000 3.0000 3.0000 3.0000 3.0000

Out of 5 specimens, 0 excluded. Sample comments: SHORE D HARDNESS 65

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	475.4	762.2	.09794	240.6	51290.
2	418.9	675.5	.09204	242.1	54250.
3	354.2	614.8	.09293	229.4	55150.
4	471.3	787.0	.11570	230.6	35380.
5	442.6	734.1	.10660	233.0	42280.
Mean:	432.5	714.7	.10100	235.1	47670.
Standard Deviation:	49.4	89.6	.01002	5.8	8549.

NAVAL ORDNANCE STATION INDIAN ERAD. MD.

ASTH D TYPE IV

Test type:

Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HONTER

Sample Identification: HDP-2 Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTM

Humidity (%): 50

Temperature (deg. F): 73

DATE

MARCE 11, 1991

PROGRAM

BIGH DENSITY POLYETHYLENE

ASTM SPECIFICATION D638/D882

COMMENTS COMMENTS 2 CYCLES 30% SAMPLES 50,51,52,56,& 57

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) Width (in)

.079000 .080000 .080000 .085000 .080000

Gauge length (in)

.24500 .24400 .24500 .24300 .24400 2.5000 2.5000 2.5000 2.5000 2.5000

Specimen G.L. (in) 3.0000 3.0000 3.0000 3.0000 3.0000

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	381.7	680.7	. 08251	217.5	54730.
2	401.1	694.7	.09477	224.1	54200.
3	447.3	765.5	.09421	224.7	53830.
4	419.8	694.8	.09438	242.5	52880.
5	429.5	745.3	.09358	225.4	54640.
Mean:	415.9	716.2	.09189	226.8	54060.
Standard					
Deviation:	25.4	36.9	.00526	9.3	750.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, ED.

ASTR D TYPE IV

Instron Corporation Test type: Tensile

Series II Automated Materials Testing System v4.05a

Test Date: December 8,1990 Operator name: HUNTER

Sample Type: ASTM Sample Identification: EDP-3

Interface Type: 4500 Series

Machine Parameters of test:

Humidity (%): 50 Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000 Temperature (deg. F): 73

DATE MARCE 11, 1991

PROGRAM HIGH DENSITY POLYETHYLENE

ASTM SPECIFICATION D638/D882 SHORE D 65

COMMENTS 2 CYCLES 65%

COMMENTS SAMPLES 25,26,34,35, & 36

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) .084000 .083000 .079000 .082000 .682000 Width (in) .24500 .24400 .24400 .24400 .24400 2.5000 2.5000 2.5000 2.5000 2.5000 Gauge length (in) 3.0000 3.0000 3.0000 3.0000 3.0000 Specimen G.L. (in)

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	473.5	788.5	.09244	233.9	55460.
2	361.6	626.5	.09703	232.1	52630.
3	435.2	770.6	.09463	217.5	54700.
4	476.2	792.8	.09552	225.8	53350.
5	383.2	668.9	.09246	220.4	53570.
Mean:	425.9	729.5	.09441	225.9	53940.
Standard Deviation:	52.1	76.6	.06199	7.1	1126.

MECHANICAL PROPERTIES LABORATORIES NAVAL ORDNANCE STATION INDIAN EEAD. MD.

ASTE D TYPE IV

Test type:

Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HUNTER

Sample Identification: HDP-4

Interface Type: 4500 Series Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTE

Humidity (%): 50

Temperature (deg. F): 73

DATE

MARCH 11, 1991

PROGRAM EIGH DENSITY POLYETHYLERE ASTN SPECIFICATION D638/D882 SHORE D 65

COMMENTS

2 CYCLES 5%

COMMENTS

SAMPLES 25,28,39,75, & 75

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) .083000 .083000 .082000 .081000 .083000 Width (in) .24400

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	389.2	661.5	.09666	229.3	51490.
2	394.0	667.9	.08781	218.7	50760.
3	442.2	747.1	.09103	224.4	52300.
4	324.6	570.4	.08908	222.3	52110.
5	437.7	733.7	.09268	228.4	53660.
Mean:	397.5	676.1	.09145	224.6	52060.
Standard Deviation:	47.5	70.4	.00345	4.4	1077.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, MD.

ASTE D TYPE IV

Test type:

Tersile

Instron Corporation

Series IX Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HUNTER

Sample Identification: HDP-5

Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTE

Bumidity (%): 50

Temperature (deg. F): 73

DATE

MARCH 8, 1991

PROGRAM BIGH DENSITY POLYETHYLENE ASTM SPECIFICATION D638/D882

COMMENTS 2 CYCLES 100%

COMMENTS

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

.082000 .081000 .082000 .089000 .083000 Thickness (in) .24400 .24500 .24400 .24200 .24400 2.5000 2.5000 2.5000 2.5000 2.5000 Width (in) Gauge length (in) 3,0000 3,0000 3,0000 3,0000 3,0000 Specimen G.L. (in)

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	435.7	784.2	.11190	228.5	39490.
2	433.9	796.8	.08965	214.1	48320.
3	434.8	776.9	.10110	224.4	49030.
4	451.7	743.6	.09404	241.4	49270.
Excluded	449.2	792.9	.09886	230.6	50130.
Mean:	439.0	775.4	.09917	227.1	46530.
Standard Deviation:	8.5	22.7	.00970	11.3	4711.

MECHANICAL PROPERTIES LARORATORIES EALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, MD

ASTH D TYPE IV

Test type:

Tensile

Instron Corporation

Series IX Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HONTER

Sample Identification: HDP-54 Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTM

Humidity (%): 50

Temperature (deg. F):

DATE

MARCE 8, 1991

PROGRAM

HIGH DERSITY POLYETEYLENE

ASTM SPECIFICATION D638/D882

COMMENTS

2 CYCLES 100%

COMMENTS

SAMPLE #24

Dimensions:

Spec. 1

.080000

Thickness (in) Width (in) Gauge length (in)

Specimen G.L. (in)

.24400 2.5000 3.0000

Specimen Number	Load/Width at Max.Load (lbs/in)	X Strain at Max.Load (X)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	423.8	785.6	.09352	215.5	51430.
Mean:	423.8	785.6	. 09352	215.5	51430.
Standard Deviation:					

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, MD.

ASTE D TYPE IV

Test type: Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HUNTER

Sample Type: ASTM

Sample Identification: HDP-6 Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00 Crosshead Speed (in/min): 2.000 Bumidity (%): 50

Temperature (deg. F): 73

DATE

MARCE 11, 1991

PROGRAM

BIGE DENSITY POLYETHYLENE

ASTH SPECIFICATION D638/D882 SHORE D 60

COMMENTS 5 CYCLES 5%

COMMENTS

SAMPLES 64,65,67,70, & 73

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) Width (in) Gauge length (in)

.080000 .080000 .088000 .083000 .083000 .24600 .24500 .24700 .24500 .24500 2.5000 2.5000 2.5000 2.5000 2.5000

3.0000 3.0000 3.0000 3.0000 3.0000

Specimen G.L. (in) Out of 5 specimens, 0 excluded.

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	363.8	658.3	.09265	217.3	51510.
2	424.1	726.6	.09769	225.1	52580.
3	403.8	652.6	.09883	241.8	52260.
4	431.8	725.3	.09486	230.6	53170.
5	405.3	681.9	.09949	229.4	49850.
Mean:	405.8	688.9	.09670	228.8	51870.
Standard Deviation:	26.4	35.5	.00288	8.9	1278.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD. ND.

ASTE D TYPE IV

Test type:

Tensile

Instrom Corporation

Series IX Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: EUNTER

Sample Identification: HDP-7 Interface Type: 4500 Series

Eachine Parameters of test:

Sample Rate (pts/sec): 50.00 Crosshead Speed (in/min): 2.000 Sample Type: ASTM

Bumidity (%): 50

Temperature (deg. F): 73

DATE

MARCH 12, 1991

PROGRAM

EIGH DENSITY POLYETEYLENE

ASTM SPECIFICATION D638/D862

COMMENTS

5 CYCLES 30% SHORE D 58

COMMENTS

SAMPLES 47,48,49,55, & 59

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in)
Width (in)
Gauge length (in)
Specimen G.L. (in)

.083000 .078000 .087000 .080000 .081000 .24500 .24500 .24400 .24400 .25000 2.5000 2.5000 2.5000 3.0000 3.0000 3.0000 3.0000

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Eax.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	397.8	680.4	.09060	231.8	52270.
2	322.7	592.8	.09289	216.1	53590.
3	396.0	650.8	.09266	242.3	52410.
4 5	395.4	694.9	.09314	219.9	54330.
5	415.6	708.7	.08652	225.8	56480.
Mean:	385.5	665.5	.09116	227.2	53820.
Standard Deviation:	36.1	46.0	.00278	10.4	1717.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION HAVAL ORDNANCE STATION INDIAN HEAD, MD.

ASTM D TYPE IV

Test type:

Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HONTER

Sample Type: ASTE

Sample Identification: HDP-8 Interface Type: 4500 Series Machine Parameters of test:

Sample Rate (pts/sec): 50.00 Crosshead Speed (in/min): 2.000 Rumidity (%): 50

Temperature (deg. F): 73

DATE PROGRAM MARCH 12, 1991

EIGH DENSITY POLYETHYLENE

ASTE SPECIFICATION D638/D882

COMMENTS

5 CYCLES 65% SHORE D 58

COMMENTS

SAMPLES 30,37,38,39, & 40

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

3.0000 3.0000 3.0000 3.0000 3.0000

Thickness (in) Ridth (in) Gauge length (in) Specimen G.L. (in) .087000 .083000 .080000 .080000 .083000 .24500 .24500 .24400 .24400 .24500 2.5000 2.5000 2.5000 2.5000 2.5000

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load {%}	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	264.9	447.5	.09626	244.5	53870.
2	433.5	732.9	.09006	233.4	54990.
3	426.6	709.6	.09561	241.6	56560.
4	427.9	750.0	.09174	220.8	54720.
5	329.2	576.5	.09595	235.6	52670.
mean:	376.4	643.3	.09392	235.2	54560.
Standard Deviation:	76.0	129.0	.00284	9.2	1436.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION HAVAL ORDNANCE STATION INDIAN HEAD, MD.

ASTH D TYPE IV

Test type:

Tensile

Instrom Corporation

Series IX Automated Materials Testing System v4.05a

Test Date: December 8,1990

Operator name: HONTER

Sample Type: ASTM

Sample Identification: HDP-9

Interface Type: 4500 Series Machine Parameters of test:

Sample Rate (pts/sec): 50.00 Crosshead Speed (in/min): 2.000 Humidity (%): 50

Temperature (deg. F): 73

DATE

MARCE 11, 1991

PROGRAM

BIGE DENSITY POLYETEYLENE

ASTM SPECIFICATION D638/D882 COMMENTS

5 CYCLES 100%

COMMENTS

SAMPLES 7,9,10,11, & 13

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5

Thickness (in) Width (in) Gauge length (in) Specimen G.L. (in) .078000 .080000 .077000 .078000 .084000 .24400 .24500 .24300 .24400 .24400 2.5000 2.5000 2.5000 2.5000 2.5000 3.0000 3.0000 3.0000 3.0000 3.0000

Specimen Number	Load/Width at Max.Load (1bs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	159.3	8.470	.08606	159.2	48200.
2	160.4	8.362	.08181	160.3	47610.
3	138.5	7.629	.07637	138.5	56120.
4	156.1	8.392	.08394	156.1	43700.
4 5	167.4	8.798	.06245	165.2	56810.
Mean:	156.3	8.330	.07813	155.9	50490.
Standard Deviation:	10.8	. 429	.00948	10.3	5728.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, ED.

ASTE D TYPE IV

Test type: Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 9,1990

Operator name: HONTER

Sample Identification: HDP-10

Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTM

Eumidity (%): 50

Temperature (deg. F): 73

DATE

MARCH 19, 1991

PROGRAM

EIGH DENSITY POLYETHYLENE

ASTM SPECIFICATION D638/D882 SHORE D 62

COMMENTS COMMENTS

SAMPLES 61,62,63,71, & 73 5% 15 CYCLES

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6 Spec. 7

Thickness (in) Width (in)

.080000 .082000 .082000 .082000 .082000 .082000 .081000 .24500 .24400 .24400 .24400 .24400 .24400 .24500 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000

Gauge length (in) Specimen G.L. (in)

3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Specimen Number	Load/Width at Max.Load (lbs/in)	X Strain at Max.Load (X)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	406.50	717.900	.089560	217.700	49070.
Excluded	67.87	9.292	.052900	14.020	4740.
Excluded	10.18	5.281	.002583	2.404	11710.
4	430.30	724.600	.090860	224.500	54040.
5	469.70	779.700	.088900	223.200	46480.
€	462.70	796.000	.090430	216.500	42860.
7	284.30	508.500	.091520	221.800	52300.
Mean:	410.70	705.300	.090260	220.700	48950.
Standard Deviation:	75.09	115.100	. 001038	3.472	4481.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, ND.

ASTM D TYPE IV

Test type:

Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 9,1990

Operator name: HUNTER

Sample Type: ASTM

Sample Identification: HDP-11 Interface Type: 4500 Series

Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Humidity (%): 50

Temperature (deg. F): 73

Crosshead Speed (in/min): 2.000

DATE

MARCH 19, 1991

PROGRAM

HIGH DENSITY POLYETHYLENE

ASTM SPECIFICATION D638/D882 SHORE D 64 SAMPLES 43,44,45,46, & 53

COMMENTS COMMENTS

30% 15 CYCLES

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6

Thickness (in) Width (in)

.082000 .080000 .080000 .081000 .081000 .082000 .24400 .24400 .24400 .24400 .24400 .24400 .24400 .25000 2.5000 2.5000 2.5000 2.5000 3.0000 3.0000 3.0000 3.0000 3.0000

Gauge length (in)

Specimen G.L. (in)

Specimen Number	Load/Width at Max.Load (lbs/in)	% Strain at Max.Load (%)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)
1	468.0	758.3	. 08799	239.6	55920.
Excluded	468.0	759.6			1858000.
3	439.8	782.9	.09020	218.0	52010.
4	481.1	785.9	.09034	239.2	58420.
5	371.9	646.2	.08141	225.4	57480.
5	376.1	550.7	.08761	223.6	52890.
Mean:	427.4	726.8	.08751	229.2	55340.
Standard Deviation:	51.0	68.0	.00363	9.7	2806.

MECHANICAL PROPERTIES LABORATORIES BALLISTIC TEST DIVISION NAVAL ORDNANCE STATION INDIAN HEAD, ND.

ASTE D TYPE IV

Test type:

Tensile

Instron Corporation

Series II Automated Materials Testing System v4.05a

Test Date: December 9,1990

Operator name: HUNTER

Sample Identification: HDP-12

Interface Type: 4500 Series Machine Parameters of test:

Sample Rate (pts/sec): 50.00

Crosshead Speed (in/min): 2.000

Sample Type: ASTE

Humidity (%): 50

Temperature (deg. F): 73

DATE

MARCE 19, 1991

PROGRAM BIGH DENSITY POLYETHYLENE ASTM SPECIFICATION D638/D882 SHORE D 64 COMMENTS

COMMENTS

SAMPLES 27,28,29,31, & 32 65% 15 CYCLES

Dimensions:

Spec. 1 Spec. 2 Spec. 3 Spec. 4 Spec. 5 Spec. 6

Thickness (in) .081000 .081000 .081000 .080000 .081000 .081000 Width (in) .24400 .24400 .24400 .24400 .24400 .24400 Gauge length (in) 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 Specimen G.L. (in) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Specimen Number	Load/Width at Max.Load (lbs/in)	* Strain at Max.Load (*)	Strain at z-slp Yield (in/in)	Load/Width at z-slp Yield (lbs/in)	Modulus (psi)	
1	310.1	602.30	.08433	225.0	54930.	,
2	411.9	776.00	.08636	225.8	53480.	
3	425.8	795.00	.09031	227.7	52340.	
4	229.0	10.42	.08737	226.5	53600.	
5	247.8	10.41	.08909	245.4	56720.	
6	230.7	444.50	.09440	222.2	48090.	
Mean:	309.2	439.80	.08864	228.8	53190.	
Standard Deviation:	90.0	356.20	.00351	8.4	2913.	

HDPE SAMPLE TESTING IN ACID
CALCULATE LOAD/AREA FROM LOAD/WIDTH (AS REPORTED)
HDPE Testing; quattro; bdpe-1

		. 1	- 1/2		/
Baseline	m1 : 1	Ld/Wld.M	Ld/A Max	Ld/Wid.Y	ra/a Ala
		1D/1n	lb/in2	מג/מו	10/1n2
			5527.91		
	0.086	418.9	4870.93	242.1	2815.12
	0.083	354.2	4267.47	229.4	2763.86
			5480.23		
	0.083				
	Mean	432.48	5332.53 5095.81	235.14	2773.05
			474.81		
2 x 5%		IA/WSa.M	Ld/A Max	ta/wia.y	Ld/A Vid
2 x 30			lb/in2		
			4689.16		
	0.083	394	4746.99	218.7	2634.94
	0.082	442.2	5392.68 4007.41	224.4	2736.59
	0.081	324.6	4007.41	222.3	2744.44
	0.083	437.7	5273.49	228.4	2751.81
			4821.95		
			493.23		
5 x 5%		Ld/Wid.M	Ld/A Max	Id/Wid.Y	Ld/A Vld
		lb/in	lb/in2	lb/in	
	0.08		4547.50	217 3	2716 25
	0.08				
	0.088	403 8	5301.25 4588.64	241 8	2013.73
	0.083	431.0	5202.41	230.6	2779 31
			4883.13		
	Mean Std Daw	200.70	4904.59	7.00	2/03.30
	Std. Dev.	. 43.58	307.84	7.98	32.33
15 x 5%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
	Thick		lb/in2		
	n na		5081.25	217 7	
	0.082				
	0.082	730.3	5247.561 5728.049	222.3	2721 051
		167.7	5642.683	216 5	2640 244
			3509.877		
	Mean		5041.884		
	Std. Dev.	. 67.18	802.83	3.12	36.58
2 x 30%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
	Thick	lb/in	lb/in2	lb/in	lb/in2
	0.079	381 7	4831.65	217.5	2753.16
			5013.75		
	0.08	147.3	5591.25	224.1	2000.73

		419.8			
	0.08	429.5	5368.75	225.4	2817.50
	Mean	415.88	5148.84	226.84	2806.72
	Std. Dev.	22.69	285.33	8.33	
5 x 30%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
	Thick	lb/in	lb/in2	lb/in	lb/in2
	0.083	397.8	4792.77	231.8	2792.77
	0.078	322.7	4137.18	216.1	2770.51
	0.087	396	4551.72	242.3	2785.06
	0.08	395.4	4942.50	242.3 219.9	2748.75
	0.081		5130.86	225.8	2787.65
	Mean			227.18	
		32.28			
		-			
15 x 30%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
		lb/in			
	0.082	468	5707.32	239.6	2921.95
	0.08	439.8			
		481.1			
	0.081	371.9	4591.36	225.4	2782.72
	0.082	376.1	4586.59	223.6	2726.83
		427.38			
		45.60			
2 x 65%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
		lb/in			
	0.084	473.5	5636.90	233.9	2784.52
	0.083	361.6	4356.63	232.1	2796.39
	0.079	435.2	5508.86	217.5	2753.16
	0.082	476.2	5807.32	225.8	2753.66
	0.082	476.2 383.2	4673.17	220.4	2687.80
	Mean	425.94	5196.58	225.94	2755.11
		. 46.56			
					• • • • • • • • • • • • • • • • • • • •
5 x 65%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
		lb/in			
	0.087	264.9	3044.83	244.5	2810.34
	0.083		5222.89		2812.05
	0.08		5332.50		
	0.08		5348.75		
	0.083		3966.27		
	Mean		4583.05		2848.19
	sta. bev	. 67.96	761.10	0.22	89.59
15 x 65%	L.	14/0224	12/2 H	raho:a u	14/2 013
72 X 024	9	Pril MIG · W	nc/ s nax	Ld/Wid.Y	ren's 11d
	Mai ele	75/3-	15/:-2	1h/i-	76/5-2
	Thick	lb/in	lb/in2	lb/in	lb/in2
	Thick 0.081 0.081	310.1	3828.40		2777.78

	0.081	425.8	5256.79	227.7	2811.11
	0.08	229	2862.50	226.5	2831.25
	0.081	247.8	3059.26	245.4	3029.63
	0.081	230.7	2848.15	222.2	2743.21
	Mean	309.2167	3823.38	228.7667	2830.11
	Std. Dev.	90.01	1104.99	8.15	98.97
2 x 100%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	rq/y Alq
	Thick	lb/in	lb/in2	lb/in	lb/in2
	0.082	435.7	5313.41	228.5	2786.59
	0.081	433.9	5356.79	214.1	2643.21
	0.082				
	0.089	451.7	5075.28	241.4	2712.36
	0.08	423.8	5297.50	215.5	2693.75
	Mean				
		8.96			
5 x 100%		Ld/Wid.M	Ld/A Max	Ld/Wid.Y	Ld/A Yld
	Thick	lb/in	lb/in2		
		159.3		159.2	2041.03
	0.08				
	0.077				
	0.078				
	0.084				
	Mean				
		9.65			

Appendix E ERROR ESTIMATE DATA

HDPE TESTING IN ACID SOLUTIONS
DIMENSION MEASUREMENTS FOR ERROR CALCULATIONS
HDPE Testing; Quattro; hdpe-4

		Length (in)		Thickness (in)	Sam		Length (in)		
	1	5.872	2.047	0.084		6	5.643	1.941	0.085
		5.893	2.037	0.080			5.625	1.935	0.080
		5.886	2.015	0.079			5.616	1.922	0.083
			2.023					1.913	
	Άνg.	5.884	2.031	0.081	Avg.		5.628	1.928	0.083
	Sid. Dev.	0.01069	0.01427	0.00265	Std.	Dev.	0.01375	0.01263	0.00252
	2	6.000	2.028	0.081		7	5.512	2.153	0.082
		5.995	2.030	0.082			5.493	2.164	0.082
		5.998	2.027	0.083			5.469	2.168	0.084
			2.025					2.170	0.083
	Avg.	5.998	2.028	0.082	Avg.				
_	Std. Dev.	0.00252	0.00208	0.00100	Std.	Dev.	0.02155	0.00759	0.00096
	3	5.797	2.161	0.087		3	5.865	2.010	0.084
		5.821	2.152	0.092			5.889	2.018	0.081
		5.839	2.134	0.088			5.892	2.015	0.081
			2.128					2.018	0.082
	Aνg.	5.819	2.144	0.089	Avg.		5.882	2.015	0.082
	Std. Dev	. 0.02107	0.01537	0.00265	Std	Dev.	0.01480	0.00377	0.00141
	4	5.907	1.966			9	5.465		
		5.938	2.080					2.035	
		5.961	2.158				5.492		
			2.212					2.046	
	-	5.935			-		5.479		
	Std. Dev	. 0.02710	0.10677	0.00208	Std	. Dev	0.01353	0.00457	0.00150
	5	5.182	2.234	0.074		10	5.527		
		5.128	2.304	0.081			5.456		0.082
		5.075	2.354	0.083			5.454		0.078
			2.411						0.083
	Avg.	5.128					5.479		
	Std. Dev	. 0.05350	0.07518	0.00473	Std	. Dev	. 0.04158	0.00776	0.00216

HDPE Testing Error (alculations

A. Weight Change
$$\Delta W = f(W_1, W_2) \text{ offset,}$$

$$E_T = \sqrt{\sum \left(\frac{E_i}{x_i}\right)^2} \qquad E_{w_1} = E_{w_2} = E_{\text{offset}} = 0.05g$$

$$\times_{w_1} = \times_{w_2} = 2vg = 14.49g$$

$$\Delta W = \frac{w_1 - w_2}{v_2}$$

$$\Delta W = \frac{\omega_1 - \omega_2}{\omega_1}$$

$$\epsilon_T = \sqrt{\left(\frac{\epsilon_{wi}}{w_1}\right)^2 + \left(\frac{\epsilon_{mi}}{w_1}\right)^2 + \left(\frac{\epsilon_{oriset}}{v_1}\right)^2}$$

$$= -\sqrt{\left(\frac{\epsilon_{wi}}{y_1 + \beta_0}\right)^2 3}$$

$$= 0.00597 = 0.597 \% \left(\frac{g \ error}{g \ total}\right)$$

B. Volume (heinge
$$\Delta V = f(L_1, L_2, W_1, W_2, T_1, T_2, \Delta Temp)$$
 $L_1 = L_2 = L_{AV} = 5.595$

$$E_T = \sqrt{\frac{.022}{5.595}}^2 \times 2 + (\frac{.025}{2.017})^2 \times 2 + (\frac{.00217}{.0839})^2 \times 2 + (0.0014)^2 \times 3$$

$$= 0.0410$$

$$= 4-10\%$$

C. Specific Gravity (hange
$$\Delta S-g = f(W_1, W_2, L_1, L_2, W_1, W_2, T_1, T_2, \Delta Temp, offset)$$

$$= \sqrt{(0.00168196)} + (0.00014280)_{from A}$$

$$= 0.000168196$$

$$= 4.27%$$

HDPE Testing Dimension Error (skilein

Basis: a) Straightedes marked on quillotine

Therefore, for L and W, I am measuring error

on quillotine cutting plus error of micrometer

measuring technique

b) Thickness error is due to manufacturing process

quality in producing sheet of uniform

thickness and how frequently the thickness

varies

Measured three samples in several places:

Sample	<u>L</u> 5=872 5-893 5-886	<u>W</u> 2-047 2-037 2-015	I 0-084 0-080 0-079	
A vg = 5-0.=	5-884	2-023	0.081	
5- D. 2-1	0.01069	0-01427	0.002646	zzí
2	6-000	2-028	0-031	2 8
	5-995	2,030	0.082	ation se en
	5-998	2-027	0.083	tinuation of ten
		2-025		ting on t
A vs = 5-D =	5-998	2-028	0.082	Continuation of fer
5. D.n.	0.002517	0-002082	0-001000	se + doesn't
				~ .U
3	5-797	2-161	0-087	Seste enough
	5.821	2-152	0-092	\sim \sim \sim \sim
	5,839	2-134	0 1088	Pose tisticated
		2-128		Dolose tistical
A 49 =	5-819	2-144	0-089	, 13,
2-12-1	0-02107	0-01537	0.002646	

 $S.D._{avg} = 0.0220$ $S.D._{avg} = 0.0250$ $S.D._{avg} = 0.00217$

$$\epsilon_{\tau} = \sqrt{\sum \left(\frac{\epsilon_{\tau}}{\kappa_{c}}\right)^{2}}$$
 for $+ - x = (all linear operations)$

DISTRIBUTION

		Internal:	
Administrator		102	J
Defense Technical Information Center		OE	J
Attn: DTIC-OCC		PM4A	J
Cameron Station, Bldg. 5		095	J
Alexandria, VA 22304-6145	2	20]
		230]
JHU/CPIA		2320	J
Attn: Security Officer		2320C	5
10630 Little Patuxent Parkway, Ste. 202		8510	3
Columbia, MD 21044-3200	I	8530	3
•		9130]
SLT Corporation			
Four Greenspoint Plaza		•	
16945 Northcase, Suite 1750			
Houston, TX 77060	1		
Gundle Lining Construction Corp			
19103 Gundle Road			
Houston, TX 77073-3593	1		
National Seal Company			
1245 Corporate Blvd., Suite 300			
Aurora, IL 60504	1		