0

1). BULB PROBLEM

* EXPECTED LIFE TIME = 2,000 H E[x] = 2,000 H 2 = 1/2,000

* P(THAT 2 BIUBS SURVIVE MORE THAN 3,000 H)

. O BELAUSE THE BUIBS ARE INFERENCENT, AND THE WEUDLY-LESS PROPERTY

 $P(28085 5020106 0052 3,000 H) = P(A8018 50201065 3,000)^{2}$ P(x7, 3,000) x > 2,000) = 0.223130 $(0.223130)^{2} = 02846 0.04928 => 0.04978$

2). FIND PROBABILITY THAT BOTH BUIES DEACH 3,000 HOURS

BUBY \longrightarrow OPERATING FOR 1,000 H \longrightarrow $P(x>t+s|p>t) => e^{-2t}$ BUBY \longrightarrow OPERATING FOR 2,500 H \longrightarrow $P(x>t+s|p>t) => e^{-2t}$

* P(BUIB 1 REACHES 3,600 H) = C-(1/2000) , 2,000 & REACH 3,000 H 4 = C-2,000/2,000 = C-1

o P(BUIB 2 REACHES 3,000 H) = € (1/2000) = 500 => € (5/20)

0 P(BUB 1 AND BUB2 REACH 2,000 H) = C-1 - C-5/20

 $= e^{-1+(-5/20)} = 0.2865$

3) CHECK MY MATH :

GIVEN:

- O AVERAGE TIME FOR DISK = 5 ms
- O AVERAGE HUMBER OF DISUS / SOD = 2
- D NUMBER OF JOBS IN THE SYSTEM = 120
- O AVERAGE RESIDENCE TIME = 2 SEC.

* WE HAVE TO TAKE INTO ACCOUNT THE ABON AVERAGE TIME IT TAKES TO ACCESS EACH PISH

AVERAGE TOB NEEDS TO ASLESS BOTH DISUS

: 1 PISH ACCESS = 0.05 s

2 DISK ACCESS = (0.05) x 2 = 0.01

 $\forall N = 120 \text{ sobs } \lambda => \overline{R}/\overline{N} = 120 \text{ cost/sec } PREVIOUS ASSUMPTION$

4) UNBALANCED SERVICE COAPS

0.60 $9 \neq 2 \neq 2 \neq 2 \neq 3 \neq 4 \Rightarrow 0 = 80\%$ 0.40GIVEN:

* SERVER B = UB = 98. 28 -> 28 = 08/38 -> 28 = 0.60/250 = 0.024s 74 = V4 . 7 V4 = 0.25 - ARRAINAL PATE = 2.5/MIN

* STEVER A = VA = 3A. ZA = AFTE INA = 3A = VA/2A = SA =

* SERVER B RECIEVES 40%, SERVER A RELIEVES 60%

$$V_A/_{2A} = \bar{S}_A \implies \frac{0.80}{0.036} = 222$$

THE M/M/I QUEUE

- DEPARTURE TIME = EST [i] + ST[i] } DT
- O RESIDENCE TIME = DT AT

· EST -> ENTER SEPULE TIME

ODT -> DEPARTURE TIME

OAT -> APRIVAL TIME

ORT -> RESIDENCE TIME

APPAIVAL TIME	SERVICE TIME	SHTER SERVICE TIME	DI	RT
1	3	3 1 3	4 —	3
3	2	» 4 ·->	6 —	23
5	ч —	6	10 -	5 5
7	1	10-3	11-	D 4
0	1-3	, 11	12 —	24
13	2			
19	1	15	16 -	2 2
17 ——	3	1.7>	20 -	4 3