

Jason Geng

Founder and CEO at Data Application Lab
University of Southern California • Texas A&M University
Greater Los Angeles Area • 500+ &

JasonGeng@DataAppLab.com

https://www.linkedin.com/in/gengjason/

Big Data Analytics Fundamental

Jason Geng jason@DataAppLab.com

Disclaimer

- All data and information in this presentation were from public resource
- This is a vendor-independent talk that expresses teacher own opinions
- Copyright 2017@ Data Application Lab

What is Big Data

Business Requirements

 Data scientists need to work with business people and those with expertise in understanding the data, understanding the business

Specify the business requirements

For instance, the healthcare data

Database:

Healthcare:

Readmissions Database

Understand the data:

e.g. 'DISCWT':

'This the discharge-level weight on the HCUP nationwide data to produce national estimates'

Understand the Business:

Goal:

Predict Readmission Rate

Feature Exploring

Modeling

Data Collection

- Data from product line
- Purchase third party data
- Social media (Facebook, LinkedIn)
- Web crawling
- Open source data (Opendata, U.S. Census Data)

Challenge

Data Storage

Data Management

Data Source

Data Lake

Data Analytics

OLTP Web Log

Web Crawler

XML

CSV

LOG

SQL

ETL

Open Source

Third Party Data

Social Media Data

Legacy data

Product Line

Apache Hive

Business Intelligence

Data Science App

Data Preparation (Data Wrangling)

- Cleaning data (semantic errors, missing entries, or inconsistent formatting)
- Challenge: data integration
- 80% time in project workflow

Feature Engineering

Modeling

Deploy to Product Line

Hadoop Data Warehouse

Computer cluster

From Wikipedia, the free encyclopedia

Not to be confused with data cluster or computer lab.

"Cluster computing" redirects here. For the journal, see Cluster Computing (journal).

A **computer cluster** consists of a set of loosely or tightly connected computers that work together so that, in many respects, they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software. [1] [better source needed]

The components of a cluster are usually connected to each other through fast local area networks ("LAN"), with each *node* (computer used as a server) running its own instance of an operating system. In most circumstances, all of the nodes use the same hardware^[2] and the same operating system, although in some setups (i.e. using Open Source Cluster Application Resources (OSCAR)), different operating systems can be used on each computer, and/or different hardware.^[3]

They are usually deployed to improve performance and availability over that of a single computer, while typically being much more cost-effective than single computers of comparable speed or availability.^[4]

Computer clusters emerged as a result of convergence of a number of computing trends including the availability of low-cost microprocessors, high speed networks, and software for high-performance distributed computing. [citation needed] They have a wide range of applicability and deployment, ranging from small business clusters with a handful of nodes to some of the fastest supercomputers in the world such as IBM's Sequoia. [5]

Technicians working on a large Linux cluster at the Chemnitz University of Technology, Germany

Contents [hide]

- 1 Basic concepts
- 2 History
- 3 Attributes of clusters
- 4 Benefits
- 5 Design and configuration
- 6 Data sharing and communication
 - 6.1 Data sharing
 - 6.2 Message passing and communication
- 7 Cluster management
 - 7.1 Task scheduling
 - 7.2 Node failure management
- 8 Software development and administration
 - 8.1 Parallel programming
 - 8.2 Debugging and monitoring

Sun Microsystems Solaris Cluster

DAL Cluster

How to install putty on Windows https://www.youtube.com/watch?v=a4K9mvKxrwI

how to use winscp https://www.youtube.com/watch?v=e7AgOFS_g8Q

how to use SSH on Mac https://www.youtube.com/watch?v=J 8ZsXP1EYk

how to use scp on mac https://www.youtube.com/watch?v=EJOoiYtyPTE

VI tutorial https://www.youtube.com/watch?v=TBu6qxd5uAc

HDFS Design Goal

- Recover from hardware failure
- Streaming data access
- Large data file/dataset
- Write-once-read-many IO model
- Move computation to data
- Commodity hardware
- Do not conflict with OS file system
- Not good low-latency and many small files

From local machine to remote machine

Login

ssh jason@montana.dataapplab.com -p 49233

Copy files

scp -P 49233 /Users/jason/folder/file jason@montana.dataapplab.com :/home/useraccount/folder

Remote server montana.dataapplab.com

df [options]	Display used and available disk space.
du [options]	Show how much space each file takes up.
file [options] filename	Determine what type of data is within a file.
find [pathname] [expression]	Search for files matching a provided pattern.
grep [options] pattern [filesname]	Search files or output for a particular pattern.
kill [options] pid	Stop a process. If the process refuses to stop, usekill -9 pid.

less [options] [filename]	View the contents of a file one page at a time.
In [options] source [destination]	Create a shortcut.
locate filename	Search a copy of your filesystem for the specified filename.
Ipr [options]	Send a print job.
Is [options]	List directory contents.
man [command]	Display the help information for the specified command.
mkdir [options] directory	Create a new directory.
mv [options] source destination	Rename or move file(s) or directories.

passwd [name [password]]	Change the password or allow (for the system administrator) to change any password.
ps [options]	Display a snapshot of the currently running processes.
pwd	Display the pathname for the current directory.
rm [options] directory	Remove (delete) file(s) and/or directories.
rmdir [options] directory	Delete empty directories.
ssh [options] user@machine	Remotely log in to another Linux machine, over the network. Leave an ssh session by typing exit.
su [options] [user [arguments]]	Switch to another user account.
tail [options] [filename]	Display the last n lines of a file (the default is 10).
tar [options] filename	Store and extract files from a tarfile (.tar) or tarball (.tar.gz or .tgz).
top	Displays the resources being used on your system. Press q to exit.
touch filename	Create an empty file with the specified name.
who [options]	Display who is logged on.

Hortonworks

Spark

Spark **MLlib** GraphX Spark SQL Streaming graph machine & Shark real-time learning processing processing Spark Core YARN Standalone Scheduler Mesos

DAL Cluster

HDFS Commands

- hdfs dfs ls
- Hdfs dfs put
- Hdfs dfs put /home/jason/test2.csv /user/jason/temp2
- Hdfs dfs mkdir
- Hdfs dfs rmdir
- Hdfs dfs rm

• Reference :

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html

Demo

Thank you

