

Διαχείριση Δικτύων - Κ34

Project: OpenDaylight + Mininet-WiFi

Σπουδαστική Ομάδα:

- 1. Αλέξης Χάιδος -- 1115201300197
- 2. Βαγγέλης Μάνος -- 1115201400293
- 3. Βασίλης Αργυράκης -- 1115201400263
- 4. Ιωάννης Κυριακόπουλος -- 1115201400243
- Κώστας Αργυρόπουλος -- 1115201500012
- 6. Κώστας Μπότσικας -- 1115201500104

Για την υλοποίηση της εργασίας μας ζητήθηκε να χρησιμοποιήσουμε ως controller τον odl controller. O controller που εγκαταστήσαμε είναι ο $\underline{Boron-0.5.4}$. Για την εγκατάσταση και την σύνδεση του OpenDaylight χρησιμοποιήθηκαν οι εντολές που βρίσκονται στο ακόλουθο link --> $\underline{https://john.soban.ski/how-to-install-}$ opendaylight-as-a-service-on-ubuntu.html?fbclid=IwAR32deOpj6FOfI8amGpxrk0T32gQtSOkmE-7yADAd9aKeUaM41Iddkz0u74 .

• <u>Task 1</u>

<u>Phase 1:</u> Στην 1^n φαση του task 1 μας ζητείται να εξετά-σουμε τα throughput, packet loss, jitter, latency από το car 0 στον client. Στην φάση 1 του task 1 πρέπει να κάνουμε 2 διαφορετικές μετρήσεις, μία από το car 0 στο car 3 και μία από το ENodeB 1 στον client και στο τέλος να τις συμψηφίσουμε.

Ακολουθούνοιγραφικές παραστάσεις των throughput, packet loss, jitter και το latency.

Μέτρηση από car0 σε car3

Μέτρηση από ENodeB1 σε client

<u>Jitter:</u>

Latency:

Phase 2: Στην φάση 2 το car0 επικοινωνεί απυθείας με τα access points (RSU1, ENodeB2), έτσι δεν χρειάζονται επιπλέον μετρήσεις όπως στην φάση 1.

Ακολουθούνοιγραφικές παραστάσεις των throughput, packet loss, jitter και το latency.

<u>Jitter:</u>

Latency:

Phase 3: Στην φάση 3 το car0 επικοινωνεί απυθείας με τα access points (ENodeB2), έτσι δεν χρειάζονται επιπλέον μετρήσεις όπως στην φάση 1.

Ακολουθούνοι γραφικές παραστάσεις των throughput, packet loss, jitter και το latency

<u>Jitter:</u>

Latency:

Task 2

Στο 2° Task δεν υπάρχει V2V επικοινωνία, υπάρχει μόνο ένα αυτοκίνητο (το car0), επομένως τα υπόλοιπα αυτοκίνητα έχουν σβηστεί από το topology().

Phase 1

<u>Jitter:</u>

Latency:

Phase 2

<u>Jitter:</u>

Latency:

Phase 3

<u>Jitter :</u>

Latency:

