AULA 3 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS

Seja uma dada sequência (array) de números inteiros. Pretende-se determinar quantos elementos da sequência são iguais à soma dos elementos anteriores. Ou seja:

$$array[0] + array[1] + ... + array[i-1] = array[i], para i > 0$$

- Implemente uma função inteira **eficiente** e **eficaz** que determina quantos elementos (resultado da função) de uma sequência com n elementos respeitam esta propriedade.

 <u>Depois de validar o algoritmo apresente-o no verso da folha</u>
- Determine experimentalmente a ordem de complexidade do número de adições efetuadas envolvendo elementos da sequência. Considere as seguintes dez sequências de dez inteiros, todas diferentes e que cobrem todas as situações possíveis distintas de execução do algoritmo. Calcule para cada uma delas o número de elementos que obedecem à condição e o número de adições executadas.

10	3	15	7	9	20	11	25	27	29	Resultado	N° de operações
10	3	15	7	35	33	20	55	27	29	Resultado	N° de operações
10	3	15	7	33	68	20	156	99	27	Resultado	N° de operações
1	6	3	10	33	20	73	146	99	27	Resultado	N° de operações
1	6	3	10	33	20	73	146	-96	196	Resultado	N° de operações
2	1	3	6	12	20	44	-14	74	16	Resultado	N° de operações
2	1	3	6	12	24	48	-20	-18	58	Resultado	N° de operações
2	1	3	6	12	24	48	96	-98	94	Resultado	N° de operações
2	2	4	8	16	31	63	126	252	504	Resultado	N° de operações
2	2	4	8	16	32	64	128	256	512	Resultado	N° de operações

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de adições efetuadas podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo. Tenha em atenção que deve obter uma expressão matemática exata e simplificada. <u>Faça a análise no verso da folha</u>
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.

NOME: N° MEC:

Nome:

	APRESENTAÇÃO DO ALGORITMO	
	Análise Formal do Algoritmo	
E(N) -		
E(N) =		

 N° MEC:

Seja uma dada sequência (array) de números inteiros em que se pretende baralhar aleatoriamente os seus elementos.

Como sugestão, armazene o primeiro elemento sorteado na última posição da sequência, trocando-o com esse elemento, armazene o segundo elemento sorteado na penúltima posição da sequência, trocando-o com esse elemento, e assim sucessivamente. Considerando uma sequência com n elementos, quantos sorteios aleatórios tem que efetuar?

- Implemente uma função inteira **eficiente** e **eficaz** para baralhar uma sequência de números inteiros com n elementos. (Observação: a utilização da função *rand* está apresentada no programa aula3_2.c). Depois de validar o algoritmo apresente-o no verso da folha
- Determine experimentalmente a **ordem de complexidade do número de invocações da função** *rand* **e do número de trocas** envolvendo elementos da sequência.

Considere a sequência { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, execute três vezes o programa e apresente de seguida a sequência baralhada, o número de invocações da função *rand* e o número de trocas.

1ª simulação	Rand =	Trocas =	
2ª simulação	Rand =	Trocas =	
3ª simulação	Rand =	Trocas =	

Depois da execução do algoritmo responda às seguintes questões:

- Em termos do número de invocações da função *rand* executadas podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo para as invocações da função rand. Tenha em atenção que deve obter uma expressão matemática exata e simplificada. Faça a análise no verso da folha
- Calcule o valor da expressão para N = 10 e compare-o com os resultados obtidos experimentalmente.
- Em termos do número de número de **trocas efetuadas** podemos distinguir alguma variação na execução do algoritmo? Ou seja, existe a situação de melhor caso e de pior caso, ou estamos perante um algoritmo com caso sistemático?
- Qual é a ordem de complexidade do algoritmo?
- Determine formalmente a ordem de complexidade do algoritmo para as trocas. Tenha em atenção que deve obter expressões matemáticas exatas e simplificadas. <u>Faca a análise no verso da folha</u>

Nome: N° MEC:

Nome:

APRESENTAÇÃO DO ALGORITMO
Análise Formal do Algoritmo
Nº DE INVOCAÇÕES DA FUNÇÃO RAND
N° DE TROCAS DE ELEMENTOS

 N° MEC: