

TEST REPORT

FCC ID: 2AAVAMVBTHP

Product: MVBTHP

Model No.: HP6508

Additional Model: JP758

Trade Mark: N/A

Report No.: TCT160704E004

Issued Date: July 15, 2016

Issued for:

SHENZHEN ACADIA ELECTRONIC CO., LTD

39 Building, B Industry Zone Tang Lang, Xili Lake, Shenzhen, China

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

	Certification			
2. Test F	Result Summary		(0)	4
3. EUT [Description			5
4. Gene	ra Information	(6)		6
4.1. Te	est environment and mode			6
4.2. De	escription of Support Units			6
5. Facili	ties and Accreditations		<u>(d)</u>	7
5.1. Fa	cilities			7
	ocation			
5.3. Me	easurement Uncertainty	(0)	(O)	7
	Results and Measurement Data			
	ntenna requirement			
6.2. Co	onducted Emission			9
6.3. Co	onducted Output Power			13
6.4. 20	dB Occupy Bandwidth			14
6.5. Ca	arrier Frequencies Separation			15
	opping Channel Number			
	vell Time			
6.8. Ps	seudorandom Frequency Hopping Sec	quence		18
6.9. Co	onducted Band Edge Measurement			19
6.10. C	onducted Spurious Emission Measur	rement	()	20
6.11. R	adiated Spurious Emission Measurer	ment		21
Appendi	ix A: Test Result of Conducted T	Γest		
Appendi	ix B: Photographs of Test Setup	(
Appendi	ix C: Photographs of EUT			
	• .			

ITRE TECHNOLOGY Report No.: TCT160704E004

1. Test Certification

Product:	MVBTHP
Model No.:	HP6508
Additional Model:	JP758
Applicant:	SHENZHEN ACADIA ELECTRONIC CO., LTD
Address:	39 Building, B Industry Zone Tang Lang, Xili Lake, Shenzhen, China
Manufacturer:	SHENZHEN ACADIA ELECTRONIC CO., LTD
Address:	39 Building, B Industry Zone Tang Lang, Xili Lake, Shenzhen, China
Date of Test:	July 04 – July 14, 2016
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Borge Than	Date:	July 14, 2016	
	Beryl Zhao			
Reviewed By:	Zandhon	Date:	July 15, 2016	
	Joe Zhou	7		
Approved By:	Tomsin	Date:	July 15, 2016	

Page 3 of 78

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Tomsin

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1) §2.1046	PASS
20dB Occupied Bandwidth	§15.247 (a)(1) §2.1049	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	\$15.205/§15.209 \$2.1053, §2.1057	
Band Edge	§15.247(d) §2.1051, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Report No.: TCT160704E004

Product Name:	MVBTHP
Model:	HP6508
Additional Model:	JP758
Trade Mark:	N/A
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	0dBi
Power Supply:	Rechargeable Li-ion Battery DC3.7V
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency each of channel for GFSK, $\pi/4$ -DQPSK, 8DPSK

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0 0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	- 58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

Remark: Channel 0, 39 &78 have been tested for GFSK, π /4-DQPSK, 8DPSK modulation mode.

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Notebook	G485			Lenove

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165
 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005
 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

Report No.: TCT160704E004

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an internal antenna which permanently attached, and the best case gain of the antenna is 0dBi.

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane	201				
Test Setup:	Test table/Insulation plane Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Refer to item 4.1						
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the m The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	e impedance stable impedance stable vides a 500hm leasuring equipm less are also connects. With 500hm term diagram of the line are checked line are checked less must be change impositions of equipments.	pilization network n/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of led according to				
Test Result:	PASS						

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)										
Equipment Manufacturer Model Serial Number Calibration										
EMI Test Receiver	R&S	ESCS30	100139	Sep. 11, 2016						
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 16, 2016						
Coax cable	TCT	CE-05	N/A	Sep. 11, 2016						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

: FCC	Part 15E	3 Class B C	conduction	n(QP)	Pow	ver:	AC 120V/60Hz		Humidity:	54 %
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
*	0.1852	40.45	11.48	51.93	64.24	-12.31	QP			
	0.1852	26.66	11.48	38.14	54.24	-16.10	AVG			
	0.1930	38.90	11.46	50.36	63.90	-13.54	QP			
	0.1930	22.92	11.46	34.38	53.90	-19.52	AVG			
	0.2594	30.42	11.43	41.85	61.45	-19.60	QP			
	0.2594	14.51	11.43	25.94	51.45	-25.51	AVG			
	0.4742	31.83	11.31	43.14	56.44	-13.30	QP			
	0.4742	14.42	11.31	25.73	46.44	-20.71	AVG			
	0.5289	27.58	11.29	38.87	56.00	-17.13	QP			
	0.5289	11.23	11.29	22.52	46.00	-23.48	AVG			
	4.3477	22.47	10.85	33.32	56.00	-22.68	QP			
	4.3477	12.07	10.85	22.92	46.00	-23.08	AVG			
	Mk.	Mk. Freq. MHz * 0.1852 0.1852 0.1930 0.1930 0.2594 0.2594 0.4742 0.4742 0.5289 0.5289 4.3477	Mk. Freq. Reading Level MHz dBuV * 0.1852 40.45 0.1852 26.66 0.1930 38.90 0.1930 22.92 0.2594 30.42 0.2594 14.51 0.4742 31.83 0.4742 14.42 0.5289 27.58 0.5289 11.23 4.3477 22.47	Mk. Freq. Reading Level Factor Correct Factor MHz dBuV dB * 0.1852 40.45 11.48 0.1852 26.66 11.48 0.1930 38.90 11.46 0.1930 22.92 11.46 0.2594 30.42 11.43 0.2594 14.51 11.43 0.4742 31.83 11.31 0.4742 14.42 11.31 0.5289 27.58 11.29 0.5289 11.23 11.29 4.3477 22.47 10.85	Mk. Freq. Reading Level Level Factor Factor Factor Ment Measurement * 0.1852 40.45 11.48 51.93 0.1852 26.66 11.48 38.14 0.1930 38.90 11.46 50.36 0.1930 22.92 11.46 34.38 0.2594 30.42 11.43 41.85 0.2594 14.51 11.43 25.94 0.4742 31.83 11.31 43.14 0.4742 14.42 11.31 25.73 0.5289 27.58 11.29 38.87 0.5289 11.23 11.29 22.52 4.3477 22.47 10.85 33.32	Mk. Freq. Reading Level Level Factor Factor Factor Factor Measure- Factor Ment Limit Limit Measure-	Mk. Freq. Reading Level Correct Factor Factor ment Measurement Limit Over Memory * 0.1852 40.45 11.48 51.93 64.24 -12.31 0.1852 26.66 11.48 38.14 54.24 -16.10 0.1930 38.90 11.46 50.36 63.90 -13.54 0.1930 22.92 11.46 34.38 53.90 -19.52 0.2594 30.42 11.43 41.85 61.45 -19.60 0.2594 14.51 11.43 25.94 51.45 -25.51 0.4742 31.83 11.31 43.14 56.44 -13.30 0.4742 14.42 11.31 25.73 46.44 -20.71 0.5289 27.58 11.29 38.87 56.00 -17.13 0.5289 11.23 11.29 22.52 46.00 -23.48 4.3477 22.47 10.85 33.32 56.00 -22.68	Mk. Freq. Reading Level Correct Factor Factor ment Measurement Limit Over * 0.1852 40.45 11.48 51.93 64.24 -12.31 QP 0.1852 26.66 11.48 38.14 54.24 -16.10 AVG 0.1930 38.90 11.46 50.36 63.90 -13.54 QP 0.1930 22.92 11.46 34.38 53.90 -19.52 AVG 0.2594 30.42 11.43 41.85 61.45 -19.60 QP 0.2594 14.51 11.43 25.94 51.45 -25.51 AVG 0.4742 31.83 11.31 43.14 56.44 -13.30 QP 0.4742 14.42 11.31 25.73 46.44 -20.71 AVG 0.5289 27.58 11.29 38.87 56.00 -17.13 QP 0.5289 11.23 11.29 22.52 46.00 -23.48 AVG 4.3477	Mk. Freq. Reading Level Correct Factor Factor Measurement Limit Limit Limit Dover Over * 0.1852 40.45 11.48 51.93 64.24 -12.31 QP 0.1852 26.66 11.48 38.14 54.24 -16.10 AVG 0.1930 38.90 11.46 50.36 63.90 -13.54 QP 0.1930 22.92 11.46 34.38 53.90 -19.52 AVG 0.2594 30.42 11.43 41.85 61.45 -19.60 QP 0.2594 14.51 11.43 25.94 51.45 -25.51 AVG 0.4742 31.83 11.31 43.14 56.44 -13.30 QP 0.4742 14.42 11.31 25.73 46.44 -20.71 AVG 0.5289 27.58 11.29 38.87 56.00 -17.13 QP 0.5289 11.23 11.29 22.52 46.00 -23.48 AVG 4	Mk. Freq. Reading Level Correct Factor Measure-ment Limit Over * 0.1852 40.45 11.48 51.93 64.24 -12.31 QP 0.1852 26.66 11.48 38.14 54.24 -16.10 AVG 0.1930 38.90 11.46 50.36 63.90 -13.54 QP 0.1930 22.92 11.46 34.38 53.90 -19.52 AVG 0.2594 30.42 11.43 41.85 61.45 -19.60 QP 0.2594 14.51 11.43 25.94 51.45 -25.51 AVG 0.4742 31.83 11.31 43.14 56.44 -13.30 QP 0.4742 14.42 11.31 25.73 46.44 -20.71 AVG 0.5289 27.58 11.29 38.87 56.00 -17.13 QP 0.5289 11.23 11.29 22.52 46.00 -23.48 AVG 4.3477 </td

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site Chamber #2	Pnase:	N	remperature	25 (C)
Limit: FCC Part 15B Class B Conduction(QP)	Power:	AC 120V/60Hz	Humidity:	54 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1852	40.39	11.48	51.87	64.24	-12.37	QP	
2		0.1852	27.32	11.48	38.80	54.24	-15.44	AVG	
3		0.1969	38.18	11.46	49.64	63.74	-14.10	QP	
4		0.1969	20.37	11.46	31.83	53.74	-21.91	AVG	
5		0.2359	31.16	11.44	42.60	62.24	-19.64	QP	
6		0.2359	14.03	11.44	25.47	52.24	-26.77	AVG	
7		0.2437	32.90	11.44	44.34	61.97	-17.63	QP	
8		0.2437	20.36	11.44	31.80	51.97	-20.17	AVG	
9		0.4352	31.48	11.33	42.81	57.15	-14.34	QP	
10		0.4352	18.29	11.33	29.62	47.15	-17.53	AVG	
11		0.4703	32.13	11.31	43.44	56.51	-13.07	QP	
12		0.4703	14.68	11.31	25.99	46.51	-20.52	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
Test Result:	PASS					

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016
RF Cable	TCT	RE-06	N/A	Sep. 12, 2016
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016

6.4. 20dB Occupy Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	N/A					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 					
Test Result:	PASS					

6.4.2. Test Instruments

RF Test Room					
Equipment Manufacturer Model Serial Number Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016	
RF cable	TCT	RE-06	N/A	Sep. 12, 2016	
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016	

6.5. Carrier Frequencies Separation

6.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

RF Test Room					
Equipment Manufacturer Model Serial Number Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016	
RF cable	тст	RE-06	N/A	Sep. 12, 2016	
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016	

6.6. Hopping Channel Number

6.6.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)				
ANSI C63.10:2013 and DA00-705				
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Spectrum Analyzer EUT				
Hopping mode				
 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥1% of the span; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data derived from spectrum analyzer. 				
PASS				

6.6.2. Test Instruments

RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Du						
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
RF cable	тст	RE-06	N/A	Sep. 12, 2016		
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016		

6.7. Dwell Time

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013 and DA00-705				
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The testing follows FCC Public Notice DA 00-705 Measurement Guidelines. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 				
Test Result:	PASS				
Test Result:	PASS				

6.7.2. Test Instruments

C.Y						
RF Test Room						
Equipment Manufacturer Model Serial Number Calibration Du						
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016		
RF cable	TCT	RE-06	N/A	Sep. 12, 2016		
Antenna Connector	тст	RFC-01	N/A	Sep. 12, 2016		

6.8. Pseudorandom Frequency Hopping Sequence

Test Requirement:

FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9. Conducted Band Edge Measurement

6.9.1. Test Specification

FCC Part15 C Section 15.247 (d)					
ANSI C63.10:2013 and DA00-705					
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.					
Spectrum Analyzer EUT					
Transmitting mode with modulation					
 The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 					
PASS					

6.9.2. Test Instruments

RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2016						
RF cable	тст	RE-06	N/A	Sep. 12, 2016						
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016						

6.10. Conducted Spurious Emission Measurement

6.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.						
Test Setup:	Spectrum Analyzer EUT						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 						
Test Result:	PASS						

6.10.2. Test Instruments

RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016						
RF cable	тст	RE-06	N/A	Sep. 12, 2016						
Antenna Connector	TCT	RFC-01	N/A	Sep. 12, 2016						

6.11. Radiated Spurious Emission Measurement

6.11.1. Test Specification

		スト				
Test Requirement:	FCC Part15	C Sectio	n 15.209	(0,)		KO.
Test Method:	ANSI C63.10	D: 2013				
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m				1/0	
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector		VBW	+	Remark
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-pea Quasi-pea		1kHz 30kHz		si-peak Value si-peak Value
·	30MHz-1GHz	Quasi-pea		300KHz		si-peak Value
	Above 1GHz	Peak	1MHz	3MHz		eak Value
		Peak	1MHz	10Hz	Ave	erage Value
	Frequen	ісу	Field Stre (microvolts	/meter)		asurement nce (meters)
	0.009-0.4	-	2400/F(F		300	
	0.490-1.7		24000/F(KHz)	30	
	1.705-3 30-88		30 100			30
	88-216		150		6	3
Limit:	216-96		200			3
	Above 9	60	500			3
	Frequency		eld Strength rovolts/meter)	Measure Distan (mete	се	Detector
	Above 1GHz	,	500	3		Average
	7,5010 1011		5000	3		Peak
Test setup:	For radiated emis	stance = 3m	w 30MHz		Compu	iter
	30MHz to 1GHz					
		-17-				

PASS

Test results:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

6.11.2. Test Instruments

Report No.: TCT160704E004

Radiated Emission Test Site (966)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Sep. 11, 2016						
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Sep. 11, 2016						
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep. 12, 2016						
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 11, 2016						
Pre-amplifier	HP	8447D	2727A05017	Sep. 11, 2016						
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 13, 2016						
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 13, 2016						
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 13, 2016						
Horn Antenna	Schwarzbeck	BBHA 9170	373	Sep. 13, 2016						
Antenna Mast	ccs	CC-A-4M	N/A	N/A						
Coax cable	TCT	RE-low-01	N/A	Sep. 11, 2016						
Coax cable	TCT	RE-high-02	N/A	Sep. 11, 2016						
Coax cable	TCT	RE-low-03	N/A	Sep. 11, 2016						
Coax cable	тст	RE-high-04	N/A	Sep. 11, 2016						
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A						

6.11.3. Test Data

Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 00

DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = (2.896*27+2.218)/100=0.8041
- 2. Worst case Duty cycle correction factor = 20*log (Duty cycle) = -1.89dB
- 3. DH5 has the highest duty cycle worst case and is reported.
- 4. The average levels were calculated from the peak level corrected with duty cycle correction factor (-1.89dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Page 25 of 78

Report No.: TCT160704E004

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site Polarization: Horizontal Temperature: 25
Limit: FCC Part 15B Class B RE_3 m Power: DC 3.7V Humidity: 54 %

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		64.9870	38.91	-13.28	25.63	40.00	-14.37	QP		0	
2		200.0432	47.81	-10.82	36.99	43.50	-6.51	QP		0	
3		233.4881	45.97	-10.19	35.78	46.00	-10.22	QP		0	
4	*	276.3817	48.56	-8.82	39.74	46.00	-6.26	QP		0	
5		401.1050	44.03	-5.35	38.68	46.00	-7.32	QP		0	
6		598.7066	35.81	-0.37	35.44	46.00	-10.56	QP		0	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		200.0432	40.30	-10.82	29.48	43.50	-14.02	QP		0	
2		300.6988	41.62	-7.71	33.91	46.00	-12.09	QP		0	
3	×	401.1050	40.15	-5.35	34.80	46.00	-11.20	QP		0	
4		602.9287	34.88	-0.23	34.65	46.00	-11.35	QP		0	
5		665.2610	33.83	-0.28	33.55	46.00	-12.45	QP		0	
6		718.7246	30.59	2.84	33.43	46.00	-12.57	QP		0	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and GFSK) was submitted only.

Page 27 of 78

Above 1GHz

Modulation	Modulation Type: GFSK										
Low channel: 2402 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
2390	Н	44.04		-8.27	35.77		74	54	-18.23		
4804	Н	44.21		0.66	44.87		74	54	-9.13		
7206	H	34.27		9.5	43.77		74	54	-10.23		
	,CH		+.G		(·C `} -		(-C)			
2390	V	43.81		-8.27	35.54		74	54	-18.46		
4804	V	45.25		0.66	45.91		74	54	-8.09		
7206	V	40.27		9.5	49.77		74	54	-4.23		
O')	V	(40)		K)		(C-)		1/4		

Middle cha	Middle channel: 2441 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4882	Ŧ	41.62		0.99	42.61		74	54	-11.39		
7323	Η	38.75	-	9.87	48.62	-	74	54	-5.38		
	Η		-				I				
									(6)		
4882	V	43.03		0.99	44.02		74	54	-9.98		
7323	V	39.09		9.87	48.96		74	54	-5.04		
	V										

High channel: 2480 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
2483.5	I	45.65		-7.83	37.82		74	54	-16.18		
4960	Н	47.91		1.33	49.24		74	54	-4.76		
7440	Н	39.71		10.22	49.93		74	54	-4.07		
	Н										
2483.5	V	47.98		-7.83	40.15	(74	54	-13.85		
4960	CV	47.09	-420	1.33	48.42	(O-)	74	54	-5.58		
7440	V	39.25		10.22	49.47	<u></u>	74	54	-4.53		
	V										

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

Page 28 of 78

Appendix A: Test Result of Conducted Test

20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	1.185	1.0166	PASS
GFSK	MCH	1.174	1.0067	PASS
GFSK	HCH	1.175	1.0119	PASS
π /4DQPSK	LCH	1.398	1.2207	PASS
π /4DQPSK	MCH	1.399	1.2173	PASS
π /4DQPSK	HCH	1.393	1.2183	PASS
8DPSK	LCH	1.335	1.2346	PASS
8DPSK	MCH	1.341	1.2456	PASS
8DPSK	HCH	1.336	1.2376	PASS

Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.015	PASS
GFSK	MCH	1.173	PASS
GFSK	HCH	0.981	PASS
π/4DQPSK	LCH	1.182	PASS
π/4DQPSK	MCH	1.253	PASS
π/4DQPSK	HCH	1.078	PASS
8DPSK	LCH	1.140	PASS
8DPSK	MCH	1.057	PASS
8DPSK	HCH	1.245	PASS

Dwell Time

Result Table

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

- The duration for dwell time calculation:0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];
- The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.
- The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s]
- The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];
- The total hops for all channels within the dwell time calculation duration:3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];
- The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

Mode	Chann el	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdic t
GFSK	LCH	2.908	106.7	0.31	81.54	PASS
GFSK	MCH	2.908	106.7	0.31	80.23	PASS
GFSK	HCH	2.908	106.7	0.31	81.73	PASS
π/4DQPSK	LCH	2.908	106.7	0.31	80.23	PASS
π/4DQPSK	MCH	2.975	106.7	0.317	82.07	PASS
π/4DQPSK	HCH	2.917	106.7	0.311	81.78	PASS
8DPSK	LCH	2.967	106.7	0.317	81.84	PASS
8DPSK	MCH	2.9	106.7	0.309	81.50	PASS
8DPSK	HCH	2.967	106.7	0.317	81.84	PASS

Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	-4.812	PASS
GFSK	MCH	-8.215	PASS
GFSK	HCH	-8.752	PASS
π/4DQPSK	LCH	-4.924	PASS
π/4DQPSK	MCH	-8.705	PASS
π/4DQPSK	HCH	-9.475	PASS
8DPSK	LCH	-5.061	PASS
8DPSK	MCH	-8.451	PASS
8DPSK	HCH	-9.522	PASS

