

Department of Physics, Shandong University

Compressed EWK study(ISRC1N2)

Chengxin Liao

liaocx@ihep.ac.cn

Jun, Wed 25, 2025

Tasklist

- Technical tool
 - Git and Docker(Pro Git, Docker Docs)
 - GNU make & CMake, follow how to write makefile and Official CMake Tutorial
- Update the FF and correct some bug after double check with wenyi(About Systematic error for FF?)
- Analysis the Run 2 and Run 3 samples separately and check the modeling in SR

Fake Factor Update

Prev

Same setting but different result Don't know why for now

Fake Factor Update

Cite from yuchen's thesis, so what's systematic error for our case?

本分析参数化 τ_{had} 主要依赖于三个独立变量,他们分别是 p_T 、 η 和 prong 数量。考虑到选取的变量需使 $\tau 1$ 、 $\tau 2$ 的 FF 对变量的依赖性较高, $\tau 1$ 采用 p_T 分 bin, τ^2 采用 η 分 bin, bin 的宽度也因统计量的限制而进行了优化。同时考 虑到误重建为 τ_{had} 的喷注来源有夸克 (q) 和胶子 (g) 等不同的物理对象,所 以可以将喷注类型作为新的独立参数。因为统计量的限制,最终将 FFCR-Wh 和 SR 内 fake- τ_{had} 的喷注类型的事例数比例(q/g)作为 FF 的系统误差,结果表明 W+jets 的 q/g 的差别在统计误差范围内, top 过程的 q/g 差别在 20% 以内。通过 在 FFCR-Wh 中计算 FF, 最终发现 1-prong τ_{had} 的 FF 在 0.4 左右, 3-prong 的 FF 在 0.1 左右, 他们在各 bin 的中心值与误差如图 5-6所示, 其中 FF 的系统误差 包含统计误差和 MC 样本中 $N_{\text{MC}}^{\geq 1 \text{ truth tau}}$ 部分的系统误差。由于拟合策略的限制, MC 样本中 $N_{\mathrm{MC}}^{\geq 1}$ truth tau 部分的系统误差采用了保守估计,因为 SR 最后的系统误 差约为30%, 所以本研究采用了30%的相对误差作为系统误差。