Modelling The Negative Income Tax Experiments

Luke Swanson

Overview

The experiments

NIT experiments were conducted in the late 60's early 70's to test a brand new model for welfare.

Context

They were largely regarded as a failure.

 A negative income tax is called a universal basic income today

The Goal

Build a supervised model to predict employment status of NIT recipients.

RECORD FORMAT DESCRIPTION FOR THE GARYFILE PERSON RECORD

VARIABLE NUMBER	VARIABLE NAME	FIELD POSITION	LENGTH	VARIABLE DESCRIPTION
		τ	DEMOGRAPHIC VARIABLES	5
P0001	FAMNUM	1 - 4	4	FAMILY NUMBER
20002	PERNUM	5 - 10	6	PERSON NUMBER
20003- 20050	STATUS1- STATUS48	11 - 106	48 months x 2	PERSON STATUS CODE BY MONTH 00 = Family not active 01 = Family active, person not yet
			1	02 = Month person arrived, because family became active
			<i>i</i> 5	n3 = Month person arrived in already active family 13 = first arrival
				23 = second arrival n3 = nth arrival 04 = Continued presence in family
•=				<pre>n5 = Month person left family 15 = first departure n5 = nth departure</pre>
	₩ 18			<pre>06 = Person already left 07 = Month person left because family ended</pre>
20051-	MOPRES1-	107 - 154	48 months x 1	MONTHLY PRESENCE INDICATOR
20098	MOPRES48			<pre>0 = Family exists but person not there 1 = Birth</pre>
(-	2 = Present in family 3 = Death
				9 = Family not yet enrolled or famil :r

Treatment Levels

Poverty Levels

Class balance

Y

Class balance

y_test

The Models

DUMMY CLASSIFIER

precision	recall	f1-score	support
0.00	0.00	0.00	334
0.59	1.00	0.75	488
		0.59	822
0.30	0.50	0.37	822
0.35	0.59	0.44	822
	0.59	0.59 1.00 0.30 0.50	0.59 1.00 0.75 0.59 0.30 0.50 0.37

LOGISTIC REGRESSION

port	 f1-score	recall	precision	
334	0.00	0.00	0.00	Unemp
488	0.75	1.00	0.59	Emp
822	0.59			accuracy
822	0.37	0.50	0.30	macro avg
822	0.44	0.59	0.35	weighted avg

RANDOM FOREST

	precision	recall	f1-score	support	
Unemp	0.00	0.00	0.00	334	
Emp	0.59	1.00	0.75	488	
accuracy			0.59	822	
macro avg	0.30	0.50	0.37	822	
weighted avg	0.35	0.59	0.44	822	

GRADIENT BOOST

	precision	recall	f1-score	support	
Unamo	0.51	0 06	0.11	334	
Unemp	0.51	0.06	0.11	234	
Emp	0.60	0.96	0.74	488	
accuracy			0.59	822	
macro avg	0.56	0.51	0.42	822	
weighted avg	0.56	0.59	0.48	822	

Conclusions

- -> Across all models, employment numbers suggest that there is no such disincentive to work.
- -> Gradient boost was the best model in terms of weighted f-1 score average.
- -> The model of choice depends on the importance of error.

Further Considerations

- ->This is time-series data.
- ->There were many variables left unexplored due to time constraints.
- ->There are four other cities in the study.

Proposal

- -> for a better analysis:
 - + Variables are grouped 1-48, 1-43, 1-42, 1-9
 - + Create DataFrames for each group using PERNUM as primary key
 - + Impute using ffil
 - + Merge together to get more-complete data
 - + Analyze