Markedness effects in paradigm reanalysis: Malagasy consonant alternations

Jennifer Kuo, University of California, Los Angeles jenniferkuo2018@ucla.edu

1 Overview

How do learners reconstruct a neutralized form?

- Possible factors:
 - distributional information (Ernestus and Baayen, 2003; Albright, 2002)
 - innate biases (Moreton, 2008)
- Paradigm reanalysis as window into phonological learning (Kiparsky, 1965)
- Case study: Malagasy consonant alternations
- Results: effects of markedness bias
 - not predicted by existing models (e.g. Albright, 2002; Nosofsky, 2011)

2 Background: Malagasy

- (C)V syllables, mostly penult stress.
- Weak stems: antepenult stress (if long enough) and end in "weak syllable" (ka, na, tra [t͡sa])
- Weak syllable's consonant may alternate under suffixation:

pattern		stem	passive (-ana
na \sim	n	a ⁿ drávi n a	a ⁿ dravá n ana
	m	aná ⁿ dra n a	a ⁿ drá m ana
ka \sim	h	a ⁿ gáta k a	a ⁿ gatá h ana
	f	anáha <mark>k</mark> a	anaháfana
$\widehat{tra} \sim$	r	iána <mark>tr</mark> a	ianárana
	t	aná ⁿ dra tr a	ana ⁿ drá t ana
	f	a ⁿ dráku tr a	a ⁿ drakú f ana

- Historically consonant-final (Dahl, 1951; Adelaar, 2012)
 - 1. Final consonant neutralization
 - 2. Vowel epenthesis to resolve codas
- Ex: development of $\widehat{tra} \sim r$ alternation:

ı	*bukiD	*bukiD-ən	Historical
	* wúkit	_	(*-D > *-t)
	_	*wukírən	(*D > *r)
	wúhitr	_	(-t > *-tr)
	*wúhitra	*wuhírəna	(Epenthesis)
\	vúhitra	vuhírina	Modern

Possible reanalyses for [pákutra]

 $\begin{array}{ll} \text{Direction} & \text{passive (stem+ana)} \\ t \rightarrow r & \text{pakut-ana} \rightarrow \text{pakur-ana} \\ r \rightarrow t & \text{pakur-ana} \rightarrow \text{pakut-ana} \end{array}$

3 Reanalysis in weak stems

Method: Compare historical and modern Malagasy

- Historical: Austronesian Comparative Dictionary (ACD; Blust and Trussel, 2010)
- Modern: Malagasy Dictionary & Encyclopedia of Madagascar (de La Beaujardière, 2004)

Predicted vs. Observed reanalyses:

- Distributional models predict reanalysis towards more likely alternant
- (1) Historical distribution of alternants (Proto-Malayo-Polynesian).

Reanalysis should be towards historically more frequent alternant (green)

(3) Actual distribution of alternants (modern Malagasy).

Unexpected preference for [r] in modern Malagasy

(2) Historical Distribution of tra stems.

Reanalysis should observe r-dissimilation

	does stem have [r]?		
Exp. alt	yes	no	
t	8	39	
r	0	17	

▷ Alternant never [r] when stem has preceding [r].

(4) Documented reanalyses

Туре	Change	Count
na (n=70)	$m \rightarrow n$	3
	$n{ ightarrow}m$	0
ka (n=60)	$h \rightarrow f$	0
	$f \rightarrow h$	4
tra (n=65)	t→r	33 Not Predicted
	$r \rightarrow t$	0
rtra (n=16)	$t{ ightarrow} r$	0
	$r \rightarrow t$	1

For tra-final stems, reanalysis is $t \rightarrow r$, NOT predicted by distributions

6 Model Results

Result: Reanalysis in Malagasy explained by successive generations of learning modulated by markedness bias

Bias terms: ($\mu \approx preferred weight)$

- Flat prior (control): uniform μ
- P-map (control): For *Map, perceptually similar mappings get lower μ
- Markedness: $\mu(*V[-cont]V) > \mu(Faith)$
- Markedness + P-map

 \triangle Figure: With markedness bias, model fit improves over iterations. (high R² and low L \Rightarrow better fit)

vukitra-vukirana

△ Figure: Models with markedness bias predict more tra~r alternation. (Change in P of tra-final candidates over 10 iterations; PMP='old' Malagasy, Mlg='new' Malagasy; models whose predictions are closer Mlg are better.)

4 Markedness bias

Markedness bias against intervocalic stops explains t→r reanalysis

- Constraint: *V[-cont]V
- Historically, intervocalic lenition in Malagasy (*b>v, *p>f, *d>r, *k, *g>h)
- Typologically common (Kirchner, 1998; Kaplan, 2010; Katz, 2016)
- Active as statistical phonotactic tendency

5 Model Implementation

Goal: Show effect of markedness bias through modeling

Model components:

- MaxEnt Harmonic Grammar (Goldwater and Johnson, 2003) to capture gradient alternations.
- Bias implemented as a Gaussian prior (Wilson, 2006; White, 2013).
- Iterative: Predictions of one iteration is input to next iteration.

Model constraints:

- Constraints enforcing alternation in weak stems: *tr]V, *k]V, *h]V
- Faithfulness constraints: *MAP (Zuraw, 2010, 2013)
- *r...r enforces r-dissimilation
- *V[-cont]V penalizes tra~t alternation.

Model evaluation:

- Compare models with markedness bias against controls with no bias.
- Results in Section 6

Takeaway

Markedness effects are found in reanalysis, and can be accounted for by augmenting distributional models with a bias term.

Acknowledgements

Thanks to Bruce Hayes, Kie Zuraw, Claire Moore-Cantwell, members of the UCLA Phonology Seminarm for their helpful comments; audience of TripleAFLA for their input; Vololona for her invaluable time and assistance.

References

See next page

References

- Adelaar, A. (2012). Malagasy phonological history and Bantu influence. *Oceanic Linguistics*, 51(1):123–159.
- Albright, A. C. (2002). *The identification of bases in morphological paradigms*. PhD thesis, University of California, Los Angeles.
- Blust, R. and Trussel, S. (2010). Austronesian comparative dictionary, web edition. *Blust's Austronesian Comparative Dictionary Website*.
- Dahl, O. C. (1951). Malgache et Maanjan: une comparaison linguistique. *Avhandlinger utgitt av Egede Instituttet*.
- de La Beaujardière, J.-M. (2004). Malagasy dictionary and encyclopedia of Madagascar.
- Ernestus, M. and Baayen, R. H. (2003). Predicting the unpredictable: Interpreting neutralized segments in dutch. *Language*, 79(1):5–38.
- Goldwater, S. and Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In *Proceedings of the Stockholm workshop on variation within Optimality Theory*, volume 111120.
- Kaplan, A. (2010). *Phonology shaped by phonetics: The case of intervocalic lenition*. PhD thesis, University of California, Santa Cruz.
- Katz, J. (2016). Lenition, perception and neutralisation. *Phonology*, 33(1):43–85.
- Kiparsky, P. (1965). *Phonological change*. PhD thesis, MIT.
- Kirchner, R. M. (1998). *An effort-based approach to consonant lenition*. PhD thesis, University of California, Los Angeles.
- Moreton, E. (2008). Analytic bias and phonological typology. *Phonology*, 25(1):83–127.
- Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. *Formal approaches in categorization*, pages 18–39.
- White, J. (2013). *Bias in phonological learning: Evidence from saltation*. PhD thesis, University of California, Los Angeles.
- Wilson, C. (2006). Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science*, 30(5):945–982.
- Zuraw, K. (2010). A model of lexical variation and the grammar with application to Tagalog nasal substitution. *NLLT*, 28(2):417–472.
- Zuraw, K. (2013). *map constraints. Ms, University of California, Los Angeles.