【204】铁磁材料的磁滞回线测定

实验日期 9.21 实验组号 / 实验地点 215	- 10 A + 4±
实验日期 9.21 实验组号 1 实验地点 215	204 报 古 风 须
[实验目的]	人解入網
1. 认识铁磁版的磁址规律, 此较两种典型磁质	的动态磁色特性
2. 测定样品的基本或从曲线,作 N-H曲线	
3. 计算样品的Hc, Hr. Bm和 (Hm. Bm)等参量	0N =90
4. 测线样的的磁滞回线, 在算其磁沸损耗	
[实验仪器] 高大学人 从 岛岛岛日南海 西南南	成的经子也不得思虑
DH4516型磁滞回线实验仪,双踪示波器	TOTAL SECTION AND AND AND AND AND AND AND AND AND AN
[实验原理摘要]	/ 建铸线的
1. 铁磁材料具有独特的磁化性质。铁磁物质是一种性能	特异,用途广泛的材料。
其特征是在外磁场作用下能被 强 烈 磁化,故磁导率 和	2.5 GH JAN 188 TO WATER 10
即磁化场作用停止后,铁磁质仍保留磁化状态,图 3-19-2	2 为铁磁物质磁感应强度 B 与
磁化场强度 H 之间的关系曲线.铁磁材	料磁滞回线形成即是
在友变磁场强度由弱到强体次进行,石筝化过	程中, 得到面积用
少到大扩张的-额;滞回线	
2.磁化曲线和磁滞回线是铁磁材料分类和选用的主要	、 依据。软磁材料的磁滞回线
是线独长,矫顽力小、剩磁、弱。硬磁材料	的磁滞回线是 <u>绣</u> % % % % % % % % % %
力_大 、剩磁 强 ,可以用来制造 永 硫 体	£41
3. 由铁磁材料磁滞回线可以看出:	1,40
(1) 当 H=0 时, B≠0, 铁磁材料 38 具有 -	
为 石轨 滞 。	2.05
(2) 要消除 B _r , 必须加一个 友 何 私 场 , H _D 叫	
(3) H上升到某一值和下降到同一数值时,铁磁材料内的	的 B 值并不相同,即磁化过程

N= W-. UM

与 竭度及采回的额率 有关。

- (4) 通常用起始磁化曲线按 $\mu=B/H$ 定义铁磁材料的 Λ 不是 Λ 外 子 ,由于 Λ 和 Λ ,由于 Λ 和 Λ 不是 Λ ,所以铁磁材料的 Λ 不是 Λ 。
- (5) 为在示波器上显示出磁滞回线,必须将正比于样品中磁场强渡 H 的电压 U_x 输入到 A 端,同时将正比于样品中磁感强渡 B 的电压 U_y 输入到 A 端,这样在荧光平上就会得到样品的 B—A 曲线。
- (6) 磁场强渡的测量公式 H= $\frac{N_1}{LR_1}$ U_{R} , 磁感强渡的测量公式为 B= $\frac{CR_2}{N_2S}U_{B}$ 。
- 4. 实验中注意事项:

必须将正此于样品中石品物强度升的电压以输入到了输入端

[实验内容及步骤]

1.连接线路

开启示波器电源, 全光点位于坐标, 网络中心、

DH456型,3截,港回销桌延衣。双联企业署

网络神经金属等回绘, 化草基流进及起

2. 样的退磁

をU=2-2V. 并分别调节示波器力轴和y轴的司

3. 观察磁游回线

敏度,使是示威上出现图形大小后生的石兹游

4. 观察,基本磁化曲线

回线

预习遇到的问题:

未用过示液器,但心示波器的使用问题

[数据表格及处理]

1. 计算出相应的 B 和 H, μ , 画出基本磁化曲线和 μ ~H 曲线.

U(V)	0.5	0.9	1.2	1.5	1.8	2.1	2.4	2.7
$U_{\rm H}$ (mV)	76	104	130	150	178	204	242.	284
$U_{\rm B}$ (mV)	11.2	16.4	20.8	27.2	32.4	37.6	42.	47.6
B (mT)	124.4	182.2	231.1	302-2	360	417-8	466.7	528.9
H (A/m)	60.8	83.2	104	120/	142.4	163-2	193.6	227.2
μ (N·A ⁻²)	2.05	2-2	2.2	2.5	25	2.6	2.4	2.3

B= CR2 UB

W= BA

位前面

H= NI · UH

4

2. 利用原始数据记录表格 1 的数据在坐标纸上作基本磁化曲线与 μ-Η 曲线

3. U=3.0V, 计算出相应的H、B、 H_D 、Br

$$H_{D} = \frac{N_{1} \cdot \tilde{v}}{L} = \frac{N_{1}}{LR_{1}} \cdot U_{HID} = \frac{126.4 \text{ mA/m}}{128.9 \text{ mT}}$$

$$B_{r} = \frac{Q}{R} = \frac{CR_{2}}{N_{2}S} U_{BY} = \frac{288.9 \text{ mT}}{128.9 \text{ mT}}$$

$U_{ m H}$	U_{B}	- <i>U</i> _H	$-U_{ m B}$	$U_{ m HD}$.	$-U_{ m HD}$	$U_{ m Br}$:	$+U_{\mathrm{Br}}$
(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	(mV)	(mV)
310	54	-244	-48.8	158	-64	26	-36
Н	В	-H	-B	H_{D}	- H _D	B_{r}	- B _r
(A/m)	(mT)	(A/m)	(mT)	(A/m)	(A/m)	(mT)	(mT)
248	600	-195.2	-542-2	126.4	-51-2.	288.9	-400

4. 利用原始数据记录表格 2 的数据在坐标纸上作 U=3.0 时的磁滞回线,即 B-H 曲线.

[思考题]

1. 全部完成 B—H 曲线的测量以前,能不能变动示波器面板上的 X、Y 轴分度值旋钮?为什么?

能, 改变为 Y 轴上量程后记录数值的 改变对应的数量积 即可。

[实验体会与收获]

通过水次系验.我们不仅符名3用示液器 更用示波器显示3铁的3械游回线 [指导教师意见] X: 20mA

Y: 4 mA

铁磁材料的磁滞回线测定

原始数据记录

实验日期 9.21 实验组号 1 实验地点 204 仪器编号 7

[数据表格]

1. μ-H 曲线

<i>U</i> (V)	0.5	0.9	1.2	1.5	1.8	2.1	2.4	2.7
$U_{\rm H}$ (mV)	76	104	130	150	178	204	242	284
$U_{\rm B}$ (mV)	11.2	16.4	20.8	27.2	32.4	37.6	42	47.6

2. *U*=3.0V

$U_{ m H}$	U_{B}	$-U_{ m H}$	- <i>U</i> _B	$U_{ m HD}$	-U _{HD}	$U_{ m Br}$	$-U_{ m Br}$
(mV)	(mV)	(mV)	(mV)	(mV)	$(m\nabla)$	(mV)	(mV)
310	54	-244	-48.8	158	-64	26	-36

568.KE

指导教师签字:

日期:

9.21

85.6

多解超声说的字是,我们,在胸加捣败。

额条位额,高号多在器,成立较单约和正过器向侵用