.NET Conf

探索.NET新世界

Azure 上打造日資料量一百 TB 的資料分析系統

Herman Wu

台灣微軟前瞻技術合作事業部 資深軟體工程師

• Herman Wu

• 經歷:

- 微軟 資深軟體工程師 (前瞻技術合作部)
- 微軟 資深企業平台技術架構經理 (開發平台暨技術推廣部)
- 微軟 企業技術顧問 (企業顧問服務部)

Before you go Bankruptcy

How we design the solution

Lesson 1: Change of Data Schema is Normal

- Data is always dirty, and the format will change over time
- Strategy: Data Lake, Data Lake...
 - Lambda architecture
 - bronze, silver, and gold architecture
- Data Lake powered by
 - Elastic Search, Azure Data Lake Gen2, Azure Synapse, Azure Data Explorer, Delta Lake (Spark)/Databricks, Hbase/Hive, Casandra, Big Query...
- CSV, JSON, Parquet, ORC
- How easy is it to handle schema change

Lesson 2: Query & Charting is step 0

- Query Scenarios like:
 - Aggregate data by every 5, 20 mins, 6 hrs, 1 week.
 - Get time range of specific events
 - Some system error only happens a few times
 - Split an array into multiple rows
 - Dynamic object
 - Mv-expand
- Charting
 - Time series

- by bin(dataTime,10m)
- summarize count() by bin(dataTime, 7d)
- extend dt=todatetime(str) | extend dt_unixtime=toUnixTime(dt)
- let min_t = toscalar(subsetdata | summarize min(dataTime));let max_t = toscalar(subsetdata | summarize max(dataTime));

datatable (a:int, b:dynamic)[1,dynamic({"prop1":"a", "prop2":"b"})] | mv-expand b max(dataTime));

```
    a
    b

    1
    {"prop1":"a"}

    1
    {"prop2":"b"}
```


Example: default charting-Time Series Data

```
let ts=range t from 1 to 24*7*5 step 1
| extend Timestamp = datetime(2018-03-01 05:00) + 1h * t
| extend y = 2*rand() + iff((t/24)%7>=5, 10.0, 15.0) - (((t%24)/10)*((t%24)/10)) // generate a series with weekly seasonality
| extend y=iff(t==150 or t==200 or t==780, y-8.0, y) // add some dip outliers
| extend y=iff(t==300 or t==400 or t==600, y+8.0, y) // add some spike outliers
| summarize Timestamp=make_list(Timestamp, 10000),y=make_list(y, 10000);
ts
| extend series_decompose(y)
| render timechart
```


Azure Data Explorer A big data interactive platform

Comprehensive Strength

- Metrics and time-series data
- Text search and text analytics
- Multi-dimensional/relational analysis

Analytics Query language

- Simple and powerful data exploration
- Rich relational query language
- Full text Search
- ML Extensibility
- SQL/TDS endpoint

Data Ingestion and Management

- Low latency ingestion
- Compression and indexing
- Automatic Retention
- Hot/cold resource allocation

High performance over large data sets

- Scale out in hardware
- Scale out across geos
- Granular resource utilization Control
- Cross geo queries

Logical Entities

Cluster

- The ADX Azure Resource
- Top level entity holding a collection of Databases

Database

- A collection of tables, stored functions, policies
- Authorization model

Table

- Well defined schema ordered list of typed fields
- Columns
 - No PK/FK constraints between columns

Stored Functions

Supported Data Types

- ADX can store the following data types:
 - Boolean
 - Integer
 - Long
 - Real (double)
 - Decimal (SqlDecimal)
 - String
 - DateTime
 - TimeSpan
 - Dynamic
 - Guid
- ADX maintains an index for each field type
- The Dynamic type has special handling, intended for efficient handling of Json values
 - Nested values are all indexed, speeds up access in queries

Lesson 3: Balance the workload of each resources

Common components of End-to-End Historical/Log Data platform

Echo product is unique

Microsoft STUDY4 Build School

Lesson 3: Balance the workload of each resources

- Echo product is unique, and with some overlap
- Use Design Pattern to define the role & responsibly

Clam-Check Pattern

Lesson 4: I hate duplicated data

- It will be great if we can ignore it
- Strategy
 - Ingestion Time Check
 - Update Policy in AXD
 - Handle duplicate rows during query

DeviceEventsAll | where EventDateTime > ago(90d) | summarize hint.strategy=shuffle arg_max(EventDateTime, *) by DeviceId, EventId, StationId

- Understand the infrastructure
 - At least once v.s Exactly once
 - Checkpoint files in Databricks

Lession 5:
Performance
comes from
deep
understanding
of products

- Databricks
 - # of Cores, memory
 - Job, Stage, Tasks
 - Fair scheduler
 Pool
 - Structured
 Steaming: maxfiles, max-size
 per trigger
 - Shuffle partitions
 - Shuffle spill (memory)
 - •

- Azure Data Explore
 - Ingestion
 - MaximumBatchingTimeSpan
 - MaximumNumberOfItems
 - MaximumRawDataSizeMB
 - Capacity policy
 - Ingestion capacity
 - Extents merge capacity
 - Extents purge rebuild capacity
 - Export capacity
 - Extents partition capacity
 - Materialized views capacity policy....

Lesson 6: Every small problem can be BIG

Cloud is a Live Infrastructure

Network Transient Failure

Have you heard about "Re-Try"

Waiting before retrying

• Polly (.net core), Tenacity (python)...

Defragment of Disk 1/0

Storage API call: Store 1 file is not 1 API call

Shard, extents, delta-table merge

Partioning, sorting will increase file fragmentation

Log exploding

Lesson 7 Testing

Your code works good in everywhere, except in production

- Unit Testing & Integration Testing no longer enough
- System Testing is essential
- CI/CD pipeline becomes more complicated

Behavior-driven development

<u>Title</u>: Returns and exchanges go to inventory.

As a store owner,

I want to add items back to inventory when they are returned or exchanged, so that I can track inventory.

Scenario 1: Items returned for refund should be added to inventory.

Given that a customer previously bought a black sweater from me and I have three black sweaters in inventory, when they return the black sweater for a refund, then I should have four black sweaters in inventory.

Scenario 2: Exchanged items should be returned to inventory.

Given that a customer previously bought a blue garment from me and I have two blue garments in inventory and three black garments in inventory, when they exchange the blue garment for a black garment,

Lesson 8 Measure your Data Drift

You will not be notified!

and your performance fine-tuned code think $5 \times 20 = 20 \times 5$ 1+2+2+15 = 5+5+5+5

Application Insight, Log Analytics, Azure Monitor are your friends

Monitoring Azure Databricks in an Azure Log Analytics Workspace

(https://github.com/mspnp/sparkmonitoring)

Lesson 9 The necessary of Chaos Engineering

- Chaos engineering is the discipline of experimenting on a software system in production in order to build confidence in the system's capability to withstand turbulent and unexpected conditions - "Principles of Chaos Engineering", principlesofchaos.org
- Finding faults in a distributed system goes beyond the capability of standard application testing

Chaos Engineering will

- Identify weak points in a system.
- See in real-time how a system responds to pressure.
- Prepare the team for real failures.
- Identify bugs that are yet to cause system-wide issues.

The goal of a chaos test is to generate new knowledge about the system.

How Chaos Engineering Works

source: https://phoenixnap.com/blog/chaos-engineering

Chaos Engineering Tools

- Chaos Monkey
- Gremlin
- Chaos Toolkit
- Pumba
- Litmus

The architecture is been used in several production systems to process terabytes data every day

A LAB for codes/deployment scripts of the architecture will be published in Kusto-Lab soon.

https://github.com/Azure/azure-kusto-labs

Thanks for joining!

Ask questions on Twitter using #dotNETConf

Reference

- Big data analytics with Azure Data Explorer
- Modern Data Warehouse Architecture
- Describe bronze, silver, and gold architecture
- Chaos Engineering: How it Works, Principles, Benefits, & Tools

NET conf 特別感謝

以及各位參與活動的你們

