BNAIC/BeNeLearn 2022

November 8, 2022

Ozgur Taylan Turan

When MAML Learns Quickly, Does It Generalize Well?

O. Taylan Turan¹, David M.J. Tax¹, and Marco Loog¹

¹ Delft University of Technology, Pattern Recognition and Bioinformatics Laboratory

Meta-Learning

- Introduced in 90s
- Leverage different learning problems for a target problem
- Especially useful in few-shot learning

- Assume you have task distribution p_T
- Sample a batch of tasks $\{\mathcal{T}_i\}_{i=1}^M$
- Provide an initialization for mode parameters
- Get a target task T_{target}
- Adaptation to a target task with limited gradient steps (quick adaptation)

¹C. Finn, P. Abbeel, and S. Levine (July 2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: arXiv:1703.03400 [cs]. arXiv:1703.03400 [cs]

- Assume you have task distribution p_T
- Sample a batch of tasks $\{\mathcal{T}_i\}_{i=1}^M$
- Provide an initialization for mode parameters
- Get a target task T_{target}
- Adaptation to a target task with limited gradient steps (quick adaptation)

¹C. Finn, P. Abbeel, and S. Levine (July 2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: arXiv:1703.03400 [cs]. arXiv: 1703.03400 [cs]

- Assume you have task distribution p_T
- Sample a batch of tasks $\{\mathcal{T}_i\}_{i=1}^M$
- Provide an initialization for model parameters
- Get a target task T_{target}
- Adaptation to a target task with limited gradient steps (quick adaptation)

¹C. Finn, P. Abbeel, and S. Levine (July 2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: arXiv:1703.03400 [cs]. arXiv: 1703.03400 [cs]

- Assume you have task distribution p_T
- Sample a batch of tasks $\{\mathcal{T}_i\}_{i=1}^M$
- Provide an initialization for mode parameters
- Get a target task \mathcal{T}_{target}
- Adaptation to a target task with limited gradient steps (quick adaptation)

¹C. Finn, P. Abbeel, and S. Levine (July 2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: arXiv:1703.03400 [cs]. arXiv:1703.03400 [cs]

- Assume you have task distribution p_T
- Sample a batch of tasks $\{\mathcal{T}_i\}_{i=1}^M$
- Provide an initialization for mode parameters
- Get a target task T_{target}
- Adaptation to a target task with limited gradient steps (quick adaptation)

¹C. Finn, P. Abbeel, and S. Levine (July 2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks". In: arXiv:1703.03400 [cs]. arXiv:1703.03400 [cs]

What is the problem?

- Generalization
- Quick adaptation is not needed by many settings
- Robotics/image classification/regression applications

AIM

Investigate the effect of gradient step limitation on generalization performance!

• Tasks: linear/nonlinear regression problems with noisy ($\varepsilon \sim \mathcal{N}(0, \sigma^2)$) observations of functions $f(\mathbf{x})$

- Estimator: model \hat{M} trained with a given dataset $\mathcal{Z} := \{\mathbf{x}_i, y_i\}_{i=0}^N$
- ullet Performance: expected error over the task distribution $p_{\mathcal{T}}$ and data distribution $p_{\mathcal{Z}}$

$$\mathcal{E} := \iiint (\hat{\mathcal{M}}(\mathbf{x}) - y)^2 p(\mathbf{x}, y) p_{\mathcal{Z}} p_{\mathcal{T}} d\mathbf{x} dy d\mathcal{Z} d\mathcal{T}$$
 (1)

Models under investigation;

- Linear and Kernel Ridge Regression
- ullet MAML (initialized from w_{meta}) with limited adaptation
- Randomly initialized gradient descent

(Some) Results

• Task Variance (c) for 1D-Linear Problem with $\sigma=1,\,m=0,\,k=1,\,c=1,\,n_{iter}=1$ and N=1,10,50

(Some) Results

• What is happening?

(Some) Results

• Task Variance (c_2) for 1D-Nonlinear Problem with $\sigma=1,\,k=1,\,c_1=2,\,n_{iter}=10$ N=1,10,50

Conclusions

- A single-task learner can outperform MAML with limited gradient step adaptation in expectation.
- Small task variance is crucial for MAML performance in expectation.
- A similar study for supervised benchmark datasets can be done to understand the generalization performance of MAML and its variants better.

Conclusions

Thanks for your attention!