Measure Theory and Integration

Luc Veldhuis

4 December 2017

Existence of product measures

```
(X, \mathcal{A}, \mu) and (Y, \mathcal{C}, r) \sigma-finite measure spaces. \rho: \mathcal{A} \times \mathcal{C} \to [0, \infty). \rho(\mathcal{A} \times \mathcal{C}) = \mu(\mathcal{A})r(\mathcal{C}). \rho extents to a measure on (X \times Y, \mathcal{A} \otimes \mathcal{C}) \rho(\mathcal{E}) = \int_{Y} \int_{X} 1_{\mathcal{E}}(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} 1_{\mathcal{E}}(x, y) dr(y) d\mu(x)
```

Proof

 $A_i \in \mathcal{A} \uparrow X \ \mu(A_i) < \infty$ because σ -finite.

$$C_i \in \mathcal{C} \uparrow Y \ r(C_i) < \infty.$$

$$E_i = A_i \times C_i \uparrow X \times Y$$
.

Let D_j be the collection of all sets $D \in X \times Y$ such that

$$\int_{Y} \int_{X} 1_{D \cap E_{i}}(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} 1_{D \cap E_{i}}(x, y) dr(y) d\mu(x).$$

Suppose we can show that each D_j is a Dynkin-system.

Then $\mathcal{A} \times \mathcal{C}$ is closed under intersections so

$$\mathcal{A} \otimes \mathcal{C} = \sigma(\mathcal{A} \times \mathcal{C}) = \delta(\mathcal{A} \times \mathcal{C}).$$

So $A \otimes C \subseteq D_j$ by some previous theorem.

Proof (continued)

To proof:

- $A \times C \subseteq D_j$ $\int \int 1_{(A \times C) \cap E}(x, y) d\mu(x) dr(y) =$ $\int \int 1_{A_j \cap A}(x) 1_{C_j \cap C}(y) d\mu(x) dr(y) =$ $\int 1_{C_j \cap C}(y) \int 1_{A_j \cap A}(x) d\mu(x) dr(y) = \mu(A \cap A_j) r(C_j \cap C)$
- $D \in D_j$ then $D^c \in D_j$ We have that $D^c \cap E_j = E_j \setminus (E_j \cap D)$. $\int_Y \int_X 1_{D^c \cap E}(x,y) d\mu(x) dr(y) =$ $\int_Y \int_X 1_{E_j}(x,y) d\mu(x) dr(y) - \int_Y \int_X 1_{E_j \cap D}(x,y) d\mu(x) dr(y).$ Allowed because of σ -finiteness. $= \int_X \int_Y 1_{E_j}(x,y) dr(y) d\mu(x) - \int_X \int_Y 1_{E_j \cap D}(x,y) dr(y) d\mu(x)$ by using the previous proof and work backwards.

Proof (continued)

To proof:

• $D = \bigcup_k D_k$ disjoint union with $D_k \in D_j \ \forall k$. Write $\int_Y \int_X 1_{D \cap E_j}(x,y) d\mu(x) dr(y) =$ $\int_Y \sum_{k=1}^{\infty} \left(\int_X 1_{D_k \cap E_j}(x,y) d\mu(x) \right) dr(y) =$ $\sum_{k=1}^{\infty} \int_Y \int_X 1_{D_k \cap E_j}(x,y) d\mu(x) dr(y) =$ $\sum_{k=1}^{\infty} \int_X \int_Y 1_{D_k \cap E_j}(x,y) dr(y) d\mu(x)$ and work backwards.

Also need to proof that ρ is countable additive, but that is implied by the last proof of the dynkin-system.

Is $\int \int 1_{(A \times C) \cap E}(x, y) d\mu(x) dr(y)$ measurable? Yes, because $1_{A \times C) \cap E_i} = 0$ or 1 on a measurable set.

Tonelli's theorem

 $u: X \times Y \to [0, \infty)$ $\mathcal{A} \otimes \mathcal{C}$ -measurable. $\int_{X \times Y} u d\rho = \int_{Y} \int_{X} u(x, y) d\mu(x) dr(y) = \int_{X} \int_{Y} u(x, y) dr(y) d\mu(x).$

Fubini's theorem

 $u: X \times Y \to \mathbb{R} \ \mathcal{A} \otimes \mathcal{C}$ -measurable.

- - If one is finite ⇒ all are finite.
 - In that case Tonelli's theorem holds again.
 - $x \to u(x, y)$ is $\mathcal{L}'(\mu)$ for r almost all y. $x \to \int_Y u(x, y) dr(y)$ is in $\mathcal{L}'(\mu)$.

Explanation

$$\begin{array}{l} x \rightarrow u^{\pm}(x,y) \\ y \rightarrow \int_{X} u^{\pm}(x,y) d\mu(x) \\ u^{\pm} \leq |u| = u^{+} + u^{-} \\ \int_{X} u^{\pm} d\mu(x) \leq \int_{X} |u(x,y)| d\mu(x) < \infty \text{ for } r \text{ almost all } y. \\ \text{Also } \int_{Y} \int_{X} u^{\pm}(x,y) d\mu(x) dr(y) \leq \int_{Y} \int_{X} |u(x,y)| d\mu(x) dr(y) < \infty. \end{array}$$

Theorem 13.11

 (X, \mathcal{A}, μ) is a σ -finite measure space.

 $u:X \to [0,\infty)$ measurable.

Then $\int_X u d\mu = \int_{(0,\infty)} \mu(u \geq t) d\lambda(t)$

Proof

$$\begin{array}{l} \int_X u(x) d\mu(x) = \int_X \int_{(0,\infty)} \mathbf{1}_{(0,u(x)}(t) d\lambda(t) d\mu(x) = \\ \int_X \int_{(0,\infty)} \mathbf{1}_E(x,t) d\lambda(t) d\mu(x) \text{ with } E = \{(x,t) | u(x) \geq t\}. \\ \text{With Tonelli:} \\ = \int_{(0,\infty)} \int_X \mathbf{1}_E(x,t) d\mu(x) d\lambda(t) = \int_{(0,\infty)} \int_X \mu(u \geq t) d\lambda(t) \end{array}$$

Special case

 $\phi: [0,\infty) \to [0,\infty)$ increasing and $\phi(0) = 0$ and continuous differentiable.

$$\int_{X} (\phi \circ u)(x) d\mu(x) = \int_{(0,\infty)} \mu(\phi(u(x)) \ge t) d\lambda(t).$$

Is this equal to: $\int_0^\infty \mu(\phi(u(x)) \ge t) dt$?

Take $\phi(s) = t$ for some s.

Then we have that

$$\int_0^\infty \phi'(s)\mu(\phi(u(x)) \ge \phi(x))ds = \int_0^\infty \phi'(s)\mu(u(x) \ge s)ds$$