SSY098 - Image Analysis

Lecture 10 - Camera & 3D Geometry

Torsten Sattler (slides adapted from Olof Enqvist)

Jan. 20	Introduction, Linear classifiers and filtering	
Jan. 23	Filtering, gradients, scale	Lab 1
Jan. 27	Local features	
Jan. 30	Learning a classifier	Lab 2
Feb. 3	Convolutional neural networks	
Feb. 6	More convolutional neural networks	
Feb. 10	Robust model fitting and RANSAC	Lab 3
Feb. 13	Image registration	
Feb. 17	Camera Geometry	Lab 4
Feb. 20	More camera geometry	
Feb. 24	Generative neural networks	
Feb. 27	Generative neural networks	
Mar. 2	Visual Localization & Feature Learning	
Mar. 9	No lecture	

Homogeneous coordinates

$$\begin{pmatrix} x \\ y \end{pmatrix} \to w \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} , \quad w \neq 0$$

De-homogenization:

$$w \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \to \begin{pmatrix} x/w \\ y/w \end{pmatrix}$$

Homogeneous coordinates

$$\begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
or $\hat{\mathbf{x}} = \mathbf{H}\mathbf{x}$

- H needs to be invertible
- H has 8 Degrees-of-Freedom (DoF)

Projective mapping (homography)

• "Homogenize":

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• "Homogenize":
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• "Homogenize":
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 • Apply **H**:
$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \mathbf{H} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• "Homogenize":
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ 1 \end{pmatrix}$$

• Apply **H**:
$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \mathbf{H} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

• "Homogenize":
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
• Apply **H**:
$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \mathbf{H} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
• De-homogenize:
$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} \mapsto \begin{pmatrix} x''/z'' \\ y''/z'' \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

<u>Objective</u>

Given $n\geq 4$ 2D to 2D point correspondences $\{\mathbf{x}_{\perp}\leftrightarrow\mathbf{x}_{\perp}'\}$, determine the 2D homography matrix \mathbb{H} such that $\mathbf{x}_{\perp}'=\mathbb{H}\mathbf{x}_{\perp}$

<u>Algorithm</u>

- Normalize points: $\tilde{\mathbf{x}}_{i} = \mathbf{T}_{norm} \mathbf{x}_{i}, \tilde{\mathbf{x}}_{i}' = \mathbf{T}_{norm}' \mathbf{x}_{i}'$
- Apply DLT algorithm to $\tilde{\mathbf{X}}_{\mathbf{i}} \leftrightarrow \tilde{\mathbf{X}}'_{\mathbf{i}}$
- Denormalize solution: $\mathbf{H} = \mathbf{T}_{\text{norm}}^{\prime-1} \tilde{\mathbf{H}} \mathbf{T}_{\text{norm}}$

Normalization (independently per image):

- Translate points such that centroid is at origin
- Isotropic scaling such that mean distance to origin is $\sqrt{2}$

Hartley and Zisserman. *Multiple View Geometry in Computer Vision*, 2nd edition, Cambridge University Press, 2004.

Pinhole camera model

General intrinsic camera calibration matrix:

$$\mathbf{K} = \begin{pmatrix} f & s & p_x \\ 0 & \alpha f & p_y \\ 0 & 0 & 1 \end{pmatrix}$$

Projection

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = KX \mapsto \begin{pmatrix} x'/z' \\ y'/z' \end{pmatrix}$$

General intrinsic camera calibration matrix:

$$\mathbf{K} = \begin{pmatrix} f & s & p_x \\ 0 & \alpha f & p_y \\ 0 & 0 & 1 \end{pmatrix}$$

Projection

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = KX \mapsto \begin{pmatrix} x'/z' \\ y'/z' \end{pmatrix}$$

Mapping to pixel coordinates: $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x + p_y \\ y + p_y \end{pmatrix}$

Projection as matrix multiplication:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathtt{K} \left(\mathtt{R} \mathbf{X}_{\mathrm{global}} + \mathbf{t} \right) = \mathtt{K} \left[\mathtt{R} | \mathbf{t} \right] \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix} = \mathtt{P} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}$$

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbb{K} \left(\mathbf{R} \mathbf{X}_{\text{global}} + \mathbf{t} \right) = \underline{\mathbb{K}} \left[\mathbf{R} | \mathbf{t} \right] \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix} = \mathbf{P} \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}$$

Extrinsic and intrinsic camera parameters

Radial Distortion

Radial Distortion

Project 3D point into camera coordinates

$$\mathbf{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} X/Z \\ Y/Z \end{pmatrix}$$

Compute radial distortion factor

$$r(\mathbf{u}) = 1 + \kappa_1 ||\mathbf{u}||^2 + \kappa_2 ||\mathbf{u}||^4$$

Compute pixel position

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f \cdot r(\mathbf{u}) \cdot u_x + p_x \\ f \cdot r(\mathbf{u}) \cdot u_y + p_y \end{pmatrix}$$

Global shutter

Rolling shutter

Image recorded line by line

Slide credit: Cenek Albl

Image recorded line by line

Rolling shutter effect

Slide credit: Cenek Albl

Image recorded line by line

Rolling shutter effect

- Rolling shutter cameras cheaper
- Faster frame rates
- Better adaption to illumination changes

More Camera Geometry

Today

3D Reconstruction

Structure-from-Motion

Structure-from-Motion

The Measurements

Scale of a 3D Model

Recovering Scale?

photo credit: Zuzana Kukelova

Recovering Scale?

photo credit: Miguel Mendez

3D point **X** seen from camera with pose R, **t**, intrinsics K

$$\mathtt{K}\left(\mathtt{R}\mathbf{X} + \mathbf{t}\right) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$$

3D point **X** seen from camera with pose R, **t**, intrinsics K

$$\mathtt{K}\left(\mathtt{R}\mathbf{X} + \mathbf{t}\right) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$$

Scale 3D scene by arbitrary factor $s \neq 0$

$$K(R(sX) + st) = sK(RX + t)$$

3D point **X** seen from camera with pose R, **t**, intrinsics K

$$\mathtt{K}\left(\mathtt{R}\mathbf{X} + \mathbf{t}\right) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$$

Scale 3D scene by arbitrary factor $s \neq 0$

$$K(R(sX) + st) = sK(RX + t)$$

$$= s\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{sx}{sz} \\ \frac{sy}{sz} \end{pmatrix}$$

3D point **X** seen from camera with pose R, **t**, intrinsics K

$$\mathtt{K}\left(\mathtt{R}\mathbf{X} + \mathbf{t}\right) = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$$

Scale 3D scene by arbitrary factor $s \neq 0$

$$\mathbf{K} (\mathbf{R}(s\mathbf{X}) + s\mathbf{t}) = s\mathbf{K} (\mathbf{R}\mathbf{X} + \mathbf{t})$$

$$= s \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \frac{sx}{sz} \\ \frac{sy}{sz} \end{pmatrix} = \begin{pmatrix} \frac{x}{z} \\ \frac{y}{z} \end{pmatrix}$$

Sequential Structure-from-Motion

Initialize motion from two views

Relative pose for two images

Sequential Structure-from-Motion

Initialize motion from two views

Initialize structure from two views

Triangulate 3D points

Initialize motion from two views

Initialize structure from two views

Triangulate 3D points

Initialize motion from two views

Initialize structure from two views

Triangulate 3D points

Initialize motion from two views

Initialize structure from two views

Initialize motion from two views

Initialize structure from two views

Extend motion

Match features

Initialize motion from two views

Initialize structure from two views

Extend motion

Transfer matches to 3D

Initialize motion from two views

Initialize structure from two views

Extend motion

Camera pose for third camera

Initialize motion from two views

Initialize structure from two views

Extend motion

Extend structure

Triangulate points

Initialize motion from two views

Initialize structure from two views

Extend motion

Extend structure

Triangulate points

Camera pose for fourth image

Today

Relative Pose Estimation

Initialize motion from two views

Triangulation

Initialize structure from two views

Absolute Pose Estimation

Extend motion

Extend structure

Today

Relative Pose Estimation

Initialize motion from two views

Triangulation

Initialize structure from two views

Absolute Pose Estimation

Extend motion

Extend structure

Cross Product as Matrix Multiplication

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = [\mathbf{a}]_{\times} \mathbf{b}$$

Cross Product as Matrix Multiplication

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = [\mathbf{a}]_{\times} \mathbf{b}$$

skew symmetric matrix

Relative Pose Estimation

$$\mathbf{X} = \lambda_2 \hat{\mathbf{x}}_2 = \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + \mathbf{t}$$

$$\mathbf{X} = \lambda_2 \hat{\mathbf{x}}_2 = \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + \mathbf{t}$$
 unknown

$$\lambda_2 \hat{\mathbf{x}}_2 = \mathtt{R} \lambda_1 \hat{\mathbf{x}}_1 + \mathbf{t}$$

$$\lambda_2 \mathbf{x}_2 = \mathbf{R} \lambda_1 \mathbf{x}_1 + \mathbf{t}$$

$$\Rightarrow [\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = [\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + [\mathbf{t}]_{\times} \mathbf{t}$$

$$\Rightarrow$$
 $[\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = [\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + [\mathbf{t}]_{\times} \mathbf{t}$

$$\Rightarrow \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1$$

$$\Rightarrow$$
 $[\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = [\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + [\mathbf{t}]_{\times} \mathbf{t}$

$$\Rightarrow \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1$$
 scalar!

$$\Rightarrow \hat{\mathbf{x}}_{2}^{T}[\mathbf{t}]_{\times} \lambda_{2} \hat{\mathbf{x}}_{2} = \hat{\mathbf{x}}_{2}^{T}[\mathbf{t}]_{\times} \mathbf{R} \lambda_{1} \hat{\mathbf{x}}_{1} \qquad \text{scalar!}$$

$$\Rightarrow 0 = \hat{\mathbf{x}}_{2}^{T}[\mathbf{t}]_{\times} \mathbf{R} \lambda_{1} \hat{\mathbf{x}}_{1}$$

$$\lambda_2 \hat{\mathbf{x}}_2 = \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + \mathbf{t}$$

$$\Rightarrow [\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = [\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1 + [\mathbf{t}]_{\times} \mathbf{t}$$

$$\Rightarrow \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \lambda_2 \hat{\mathbf{x}}_2 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1$$
 scalar!

$$\Rightarrow 0 = \hat{\mathbf{x}}_2^T[\mathbf{t}] \times \mathbf{R} \lambda_1 \hat{\mathbf{x}}_1$$

$$\Rightarrow 0 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \hat{\mathbf{x}}_1$$

epipolar constraint:
$$0 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{ imes} \mathbf{R} \hat{\mathbf{x}}_1$$

epipolar constraint:
$$0 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \hat{\mathbf{x}}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

• Essential matrix E

epipolar constraint:
$$0 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \hat{\mathbf{x}}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

- Essential matrix E
- E is 3x3 matrix, has 5 DoF (degrees-of-freedom)

epipolar constraint:
$$0 = \hat{\mathbf{x}}_2^T[\mathbf{t}]_{\times} \mathbf{R} \hat{\mathbf{x}}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

- Essential matrix E
- E is 3x3 matrix, has 5 DoF (degrees-of-freedom)
- E has two equal singular values, third singular value is 0

epipolar constraint:
$$0 = \hat{\mathbf{x}}_2^T [\mathbf{t}]_{\times} \mathbf{R} \hat{\mathbf{x}}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

- Essential matrix E
- E is 3x3 matrix, has 5 DoF (degrees-of-freedom)
- E has two equal singular values, third singular value is 0
- E has rank 2

The Fundamental Matrix

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

$$0 = \mathbf{x}_2^T \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \mathbf{x}_1$$

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

$$0 = \mathbf{x}_2^T \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \mathbf{x}_1$$

$$0 = \mathbf{x}_2^T \mathbf{F} \mathbf{x}_1$$

Fundamental Matrix F

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

$$0 = \mathbf{x}_2^T \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \mathbf{x}_1$$

$$0 = \mathbf{x}_2^T \mathbf{F} \mathbf{x}_1$$

- Fundamental Matrix F
- F has 7 DoF
- F has rank 2

$$0 = \hat{\mathbf{x}}_2^T \mathbf{E} \hat{\mathbf{x}}_1$$

$$0 = \mathbf{x}_2^T \mathbf{K}_2^{-T} \mathbf{E} \mathbf{K}_1^{-1} \mathbf{x}_1$$

$$0 = \mathbf{x}_2^T \mathbf{F} \mathbf{x}_1$$

- Fundamental Matrix F
- F has 7 DoF
- F has rank 2
- Computing F does not require intrinsic calibration

Computing E and F

- Estimate 2D-2D matches between images
- Compute E / F using RANSAC:
 - Linear solver (8 points): E and F
 - Minimal solver (7 points): E and F
 - Calibrated solver (5 points): Only E
 - Measure error using Sampson Error (see exercise)
- Refine E / F based on all inliers
- Search for additional matches
- Refine E / F using inliers and additional matches

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

Algorithm

(i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

- (i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ by

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

- (i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ by
 - (a) **Linear solution:** Determine \hat{F} from the singular vector corresponding to the smallest singular value of \hat{A} , where \hat{A} is composed from the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ as defined in (11.3).

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

- (i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ by
 - (a) **Linear solution:** Determine \hat{F} from the singular vector corresponding to the smallest singular value of \hat{A} , where \hat{A} is composed from the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ as defined in (11.3).
 - (b) Constraint enforcement: Replace \hat{F} by \hat{F}' such that $\det \hat{F}' = 0$ using the SVD (see section 11.1.1).

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

Algorithm

- (i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ by
 - (a) **Linear solution:** Determine \hat{F} from the singular vector corresponding to the smallest singular value of \hat{A} , where \hat{A} is composed from the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ as defined in (11.3).

rank 2 constraint!

Constraint enforcement: Replace \hat{F} by \hat{F}' such that $\det \hat{F}' = 0$ using the SVD (see section 11.1.1).

Objective

Given $n \ge 8$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i'\}$, determine the fundamental matrix F such that $\mathbf{x}_i'^\mathsf{T} \mathbf{F} \mathbf{x}_i = 0$.

- (i) **Normalization:** Transform the image coordinates according to $\hat{\mathbf{x}}_i = T\mathbf{x}_i$ and $\hat{\mathbf{x}}_i' = T'\mathbf{x}_i'$, where T and T' are normalizing transformations consisting of a translation and scaling.
- (ii) Find the fundamental matrix $\hat{\mathbf{F}}'$ corresponding to the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ by
 - (a) **Linear solution:** Determine \hat{F} from the singular vector corresponding to the smallest singular value of \hat{A} , where \hat{A} is composed from the matches $\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i'$ as defined in (11.3).
 - (b) Constraint enforcement: Replace \hat{F} by \hat{F}' such that $\det \hat{F}' = 0$ using the SVD (see section 11.1.1).
- (iii) **Denormalization:** Set $F = T'^T \hat{F}' T$. Matrix F is the fundamental matrix corresponding to the original data $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$.

$$0 = \mathbf{x}_2^T \mathbf{F} \mathbf{x}_1$$

$$0 = \mathbf{x}_2^T \mathbf{F} \mathbf{x}_1$$

F maps points in first image to lines in second image

F maps points in first image to lines in second image

• F maps points in first image to lines in second image

- F maps points in first image to lines in second image
- ullet $\mathbb{F}^{\mathbb{T}}$ maps points in second image to lines in first image

- F maps points in first image to lines in second image
- ullet $\mathbb{F}^{\mathbb{T}}$ maps points in second image to lines in first image
- Lines are called epipolar lines

- F maps points in first image to lines in second image
- ullet $\mathbb{F}^{\mathbb{T}}$ maps points in second image to lines in first image
- Lines are called epipolar lines

- F maps points in first image to lines in second image
- ullet $\mathbb{F}^{\mathbb{T}}$ maps points in second image to lines in first image
- Lines are called epipolar lines

- F maps points in first image to lines in second image
- ullet $\mathbb{F}^{\mathbb{T}}$ maps points in second image to lines in first image
- Lines are called epipolar lines

- F maps points in first image to lines in second image
- F^T maps points in second image to lines in first image
- Lines are called **epipolar lines**
- All epipolar lines intersect in the epipoles

Epipolar Lines

Brief Recap

Brief Recap

http://danielwedge.com/fmatrix/

Finding More Matches

- Find matches close to epipolar line
- Same criterion used to filter outliers

Relative Pose Estimation

Compute E / F

Relative Pose Estimation

- Compute E / F
- Decompose E / F to obtain rotation and translation

Relative Pose Estimation

Today

Relative Pose Estimation

Initialize motion from two views

Triangulation

Initialize structure from two views

Absolute Pose Estimation

Extend motion

Extend structure

Triangulation

Triangulation using RANSAC

• Given: Projection matrices, track of 2D features

Triangulation using RANSAC

- Given: Projection matrices, track of 2D features
- Inside RANSAC loop:
 - Triangulate point using minimal solver
 - Determine inliers based on reprojection error

Triangulation using RANSAC

- Given: Projection matrices, track of 2D features
- Inside RANSAC loop:
 - Triangulate point using minimal solver
 - Determine inliers based on reprojection error
- Refine point position by minimizing sum of squared errors

Perspective projection in homogeneous coordinates

$$\lambda \mathbf{x} = P\mathbf{X}$$

Perspective projection in homogeneous coordinates

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X} \Leftrightarrow \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{pmatrix} \mathbf{X}$$

Perspective projection in homogeneous coordinates

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X} \Leftrightarrow \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{pmatrix} \mathbf{X}$$

Re-arrange, insert last row into first two rows:

$$\mathbf{P}_3 \mathbf{X} x = \mathbf{P}_1 \mathbf{X}$$

 $\mathbf{P}_3 \mathbf{X} y = \mathbf{P}_2 \mathbf{X}$

Perspective projection in homogeneous coordinates

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X} \Leftrightarrow \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix} = \begin{pmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{pmatrix} \mathbf{X}$$

Re-arrange, insert last row into first two rows:

$$\mathbf{P}_3 \mathbf{X} x = \mathbf{P}_1 \mathbf{X}$$

 $\mathbf{P}_3 \mathbf{X} y = \mathbf{P}_2 \mathbf{X}$

Results in two linear equations:

$$\begin{pmatrix} \mathbf{P}_3 x - \mathbf{P}_1 \\ \mathbf{P}_3 y - \mathbf{P}_2 \end{pmatrix} \mathbf{X} = \mathbf{0}$$

Need two images to solve for the 4 unknowns

$$\begin{pmatrix} \mathbf{P}_3 x - \mathbf{P}_1 \\ \mathbf{P}_3 y - \mathbf{P}_2 \\ \mathbf{P}_3' x - \mathbf{P}_1' \\ \mathbf{P}_3' y - \mathbf{P}_2' \end{pmatrix} \mathbf{X} = \mathbf{0}$$

The Reprojection Error

 \mathbf{X}

 C_1

The Reprojection Error

The Reprojection Error

Maximum likelihood estimate:

$$\min_{\mathbf{X}} \sum_{i} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

Maximum likelihood estimate:

$$\min_{\mathbf{X}} \sum_{i} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i}$$
 $\Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i}\mathbf{X}}{\mathbf{P}_{3}^{i}\mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i}\mathbf{X}}{\mathbf{P}_{3}^{i}\mathbf{X}} \end{pmatrix}$

Maximum likelihood estimate:

$$\min_{\mathbf{X}} \sum_{i} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i}$$
 $\Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}$

Cost function non-linear ...

Maximum likelihood estimate:

$$\min_{\mathbf{X}} \sum_{i} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i}$$
 $\Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix}$

Cost function non-linear ...

... but we have initial guess from RANSAC

Maximum likelihood estimate:

$$\min_{\mathbf{X}} \sum_{i} ||\mathbf{x}_i - \hat{\mathbf{x}}_i||^2$$

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i}$$
 $\Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i}\mathbf{X}}{\mathbf{P}_{3}^{i}\mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i}\mathbf{X}}{\mathbf{P}_{3}^{i}\mathbf{X}} \end{pmatrix}$

Cost function non-linear ...

... but we have initial guess from RANSAC

... use Gradient Descent for minimization

Today

Relative Pose Estimation

Initialize motion from two views

Triangulation

Initialize structure from two views

Absolute Pose Estimation

Extend motion

Extend structure

Initialize motion from two views

Initialize structure from two views

Initialize motion from two views

Initialize structure from two views

Extend motion

Match features

Initialize motion from two views

Initialize structure from two views

Extend motion

Transfer matches to 3D

Initialize motion from two views

Initialize structure from two views

Extend motion

Camera pose for third camera

n-Point Pose Problem (PnP)

- Given: n 2D-3D correspondences (\mathbf{x}_{i} , \mathbf{X}_{i})
- Compute pose [R|t] s.t. $K[R|t]X_i = \alpha_i x_i, \alpha_i > 0$

n-Point Pose Problem (PnP)

- Given: n 2D-3D correspondences (\mathbf{x}_{i} , \mathbf{X}_{i})
- Compute pose [R|t] s.t. $K[R|t]X_i = \alpha_i x_i, \alpha_i > 0$
- Optionally: Also estimate internal calibration matrix K
 - In form of individual parameters
 - In form of projection matrix P = K[R|t]

3-Point Pose Problem (P3P)

- Case: Intrinsic calibration known [Haralick et al., ICVJ'94]
- Recover depths: Solve 4th degree univariate polynomial [Fischler, Bolles, CACM'91]
- Recover pose by aligning local and global point positions
- Very efficient: ~2µs total [Kneip et al., CVPR'11] [code]
- Up to four solutions: Disambiguate using 4th point

Unknown Focal Length

P4Pf: Estimate focal length and pose from 4 matches [Bujnak et al., CVPR'08] [code]

- Solve system of multivariate polynomials
- Recover variables as Eigenvectors of 10×10 matrix
- Usually returns multiple solutions
 - Disambiguate using 5th point

General projection equation:

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{PX}$$

General projection equation:

$$\lambda \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{PX}$$

6-point DLT algorithm, similar to homography DLT:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \times \mathbf{PX} = \mathbf{0}$$

Two linear independent equations per 2D-3D match:

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

Two linear independent equations per 2D-3D match:

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

12 unknowns (11 DoF): 6 points for minimal solution

Two linear independent equations per 2D-3D match:

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

12 unknowns (11 DoF): 6 points for minimal solution

Linear least squares solution for >6 points

Two linear independent equations per 2D-3D match:

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

12 unknowns (11 DoF): 6 points for minimal solution

Linear least squares solution for >6 points

Don't forget normalization (normalized DLT)

Two linear independent equations per 2D-3D match:

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \mathbf{X}_i^{\top} & y_i \mathbf{X}_i^{\top} \\ w_i \mathbf{X}_i^{\top} & \mathbf{0}^{\top} & -x_i \mathbf{X}_i^{\top} \end{bmatrix} \begin{pmatrix} \mathbf{P}^1 \\ \mathbf{P}^2 \\ \mathbf{P}^3 \end{pmatrix} = \mathbf{0}$$

12 unknowns (11 DoF): 6 points for minimal solution

Linear least squares solution for >6 points

Don't forget normalization (normalized DLT)

Degenerate if all points in single plane

 \mathbf{X}_i

 $[\mathtt{R}_j|\mathbf{t}_j]$

argmin camera poses, 3D points

$$\sum_{i} \sum_{j} \Delta_{ij} ||\mathbf{x}_{ij} - \rho_j (\mathbf{R}_j \mathbf{X}_i + \mathbf{t}_j)||^2$$

argmin camera poses, 3D points

$$\sum_{i} \sum_{j} \Delta_{ij} ||\mathbf{x}_{ij} - \rho_{j}(\mathbf{R}_{j}\mathbf{X}_{i} + \mathbf{t}_{j})||^{2}$$
point i visible in image j?

Gradient Descent

$$\min_{\mathbf{X}} f(\mathbf{X}) = \min_{\mathbf{X}} \sum_{i} \Delta_{i}^{T} \Delta_{i} \text{ , } \Delta_{i} = \mathbf{x}_{i} - \begin{pmatrix} \frac{\mathbf{P}_{1}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \\ \frac{\mathbf{P}_{2}^{i} \mathbf{X}}{\mathbf{P}_{3}^{i} \mathbf{X}} \end{pmatrix} \text{, } \Delta = \begin{pmatrix} \Delta_{1} \\ \vdots \\ \Delta_{n} \end{pmatrix}$$

Initialization: $\mathbf{X}_k = \mathbf{X}_0$

Iterate until convergence extstyle ext

–Update: $\mathbf{X}_{k+1} = \mathbf{X}_k - \eta
abla f(\mathbf{X}_k)$

$$\mathtt{J} = rac{\partial f(\mathbf{X})}{\partial \mathbf{X}}$$
: Jacobian η : Step size

Slow convergence near minimum point!

Newton's Method

2nd order approximation (quadratic Taylor expansion):

$$f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k} = f(\mathbf{X}) + \nabla f(\mathbf{X})^T \delta + \frac{1}{2} \delta^T \mathbf{H} \delta \Big|_{\mathbf{X} = \mathbf{X}_k}$$

Hessian matrix:
$$\mathbf{H}=\left.\frac{\partial^2 f(\mathbf{X}+\delta)}{\partial^2 \delta}\right|_{\mathbf{X}=\mathbf{X}_k}$$

Find δ that minimizes $f(\mathbf{X} + \delta)|_{\mathbf{X} = \mathbf{X}_k}$

slide credit: Gim Hee Lee

Newton's Method

Differentiate and set to 0 gives:

$$\delta = -\mathbf{H}^{-1}\nabla f(\mathbf{X}_k)$$

Update:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \delta$$

Computation of H is not trivial (2nd order derivatives) and optimization might get stuck at saddle point!

Gauss-Newton

Approximate Hessian matrix by dropping 2nd order terms:

$$\mathtt{H} pprox \mathtt{J}^T \mathtt{J}$$

Solve normal equation:

$$\mathsf{J}^T\mathsf{J}\delta=-\mathsf{J}^t\Delta$$

Might get stuck and slow convergence at saddle point!

slide credit: Gim Hee Lee

Levenberg-Marquardt

Regularized Gauss-Newton with damping factor

$$\left(\mathtt{J}^T\mathtt{J} + \lambda \mathtt{I}\right)\delta = -\mathtt{J}^t\Delta$$

 $\lambda \to 0$: Gauss-Newton (when convergence is rapid)

 $\lambda
ightarrow \infty$: Gradient descent (when convergence is slow)

Adapt λ during optimization:

- Decrease λ when function value decreases
- Increase λ otherwise

slide credit: Gim Hee Lee

Lessons Learned

- Main lessons from this lecture
 - Incremental Structure-from-Motion
 - Relative pose estimation via essential / fundamental matrix
 - Triangulation via RANSAC
 - Absolute pose estimation
- Next lecture: Generative Neural Networks

Next Lecture

Jan. 20	Introduction, Linear classifiers and filtering	
Jan. 23	Filtering, gradients, scale	Lab 1
Jan. 27	Local features	
Jan. 30	Learning a classifier	Lab 2
Feb. 3	Convolutional neural networks	
Feb. 6	More convolutional neural networks	
Feb. 10	Robust model fitting and RANSAC	Lab 3
Feb. 13	Image registration	
Feb. 17	Camera Geometry	Lab 4
Feb. 20	More camera geometry	
Feb. 24	Generative neural networks	
Feb. 27	Generative neural networks	
Mar. 2	Visual Localization & Feature Learning	
Mar. 9	No lecture	