Computação Gráfica

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Este material foi cedido pelo Prof. Jorge Cavalcanti da UNIVASF (UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO)

Representação e Modelagem

- Modelagem (em Computação Gráfica) consiste em todo o processo de descrever um modelo, objeto ou cena, de forma que se possa desenhá-lo.
- Modelos são utilizados para representar entidades físicas ou abstratas e fenômenos no computador, não só com o objetivo de elaborar e visualizar imagens, mas também para representar sua estrutura e/ou comportamento.
 - A "chave" da modelagem está no projeto e implementação dos modelos, de maneira que estes reflitam adequadamente as propriedades das entidades.
- Porém, existe um problema neste processo, que consiste em determinar quais informações geométricas e não-geométricas devem ser incluídas no modelo e como estas informações serão incluídas.

- São vários métodos de representação de objetos.
 - Cada um com vantagens e desvantagens (processamento, armazenamento etc.)
 - Uma solução ideal seria uma forma híbrida.

- Representação Aramada (wireframe)
 - Objetos descritos por um conjunto de arestas que define as bordas do objeto.

Vantagem

 Velocidade na exibição dos modelos, sendo necessário apenas exibir um conjunto de linhas.

Desvantagem

Gera uma representação ambígua com margem para várias interpretações.

Representação Aramada (wireframe)

- Representação por Faces B-Rep
 - Usa suas superfícies limites para descrever seus contornos.
 - Consiste em definir um modelo através de um conjunto de superfícies que delimita a região fechada do espaço que define o interior do modelo

É a forma mais encontrada na modelagem de sólidos em

geral.

- Representação por Faces Poligonais
 - Pode ser considerada um caso particular da representação por faces.
- Tesselation (tilling)
 - Cobertura de uma área plana, por repetições sem fim de uma forma sem deixar vazios
- Quais são os polígonos regulares que nos permitem fazer tesselation?
 - Triângulos equiláteros, quadrados e hexágonos.

- Representação por Enumeração da Ocupação Espacial.
 - Decompõe o sólido em pedaços, como uma tesselation espacial.
 - Apenas o cubo permite o preenchimento total do espaço com repetições infinitas dele mesmo.
 - Cada pequeno cubo é chamado de Voxel.

- Representação por Enumeração da Ocupação Espacial.
 - Para se determinar se um ponto pertence ao sólido, basta verificar se ele pertence a algum dos voxels.
 - É simples verificar se dois objetos se interferem.
 - Possibilita a realização de operações booleanas entre os sólidos.
 - Fácil obtenção da massa e do volume do objeto.
 - Desvantagem na representação de objetos complexos e detalhados (memória).

- Decomposição do Espaço por Octrees.
 - Caso particular da subdivisão espacial, com voxels de tamanhos diferentes.
 - Octree representa uma árvore de oito filhos, que envolve o objeto por um cubo.
 - Em seguida, cada cubo é dividido em oito cubos menores de igual tamanho (octantes).

- Decomposição do Espaço por Octrees.
 - Cada cubo é classificado em:
 - Cheio Se o objeto ocupa todo o cubo classificado.
 - Vazio Se o objeto n\u00e3o ocupa nenhuma parte do cubo.
 - Cheio-Vazio(parcial) Caso o objeto ocupe parte do cubo.
 - Quando um octante for classificado como Cheio-Vazio ou parcial, ele é novamente dividido em oitos partes iguais.
 - O processo de classificação é refeito para as novas partes, sucessivamente.

• Decomposição do Espaço por Octrees.

Decomposição do Espaço por Octrees.
Representação em octree

Numeração das células da octree

Imagem que a octree representa

- Podemos dividir as técnicas de modelagem em três formas: modelagem manual, automática ou matemática.
- O método matemático de modelagem usa uma descrição matemática e algoritmos para gerar um objeto.
- A modelagem automática é a mais sofisticada, mais rápida e poderosa.
 - Através de equipamentos especiais como scanners 3D, podemos obter o modelo tridimensional de quase tudo.
- A modelagem manual é, sem dúvida, o método mais fácil, barato e antigo que utiliza basicamente as medidas de um modelo real e a intuição do modelador.
 - Foi inicialmente usada pela indústria automobilística e aeronáutica para a concepção e teste de novos modelos.

- Instanciamento de primitivas
 - A partir de um conjunto de formatos sólidos primitivos, é possível gerar uma família de sólidos que variam em relação a alguns parâmetros.
 - Novos objetos podem ser criados a partir de transformações geométricas aplicadas nas primitivas.

Representação por instanciamento de primitivas.

- Combinação de Objetos
 - Outra forma intuitiva e popular de se criar objetos é a combinação de objetos conhecidos para gerar novos objetos.
 - Operações booleanas de união, intersecção e diferença são maneiras de se combinar objetos, embora algumas dessas operações não gerem representações válidas.

Varredura

 O sólido é representado por uma região (geralmente bidimensional) e por um caminho diretor, sendo que o sólido é gerado pela varredura desta região pelo caminho diretor.

Representação por varredura.

- Varredura por extrusão
 - O objeto é obtido pela translação por uma distância D, de uma superfície C, ao longo do vetor V.

Varredura rotacional

- A superfície do objeto é descrita por uma superfície ou curva que gira em torno de um eixo.
- Diversas formas s\u00e3o poss\u00edveis de cria\u00e7\u00e3o usando esse modelo.

Geometria sólida construtiva

 O sólido é definido por um conjunto de sólidos primitivos simples combinados por operações booleanas.

- Os modificadores permitem mudar a estrutura geométrica do objeto.
- Todos os sistemas de modelagem possuem modificadores para auxiliar na tarefa de modelagem e animação.
 - Sem o uso de modificadores seria muito custoso realizar alterações na geometria dos objetos.
 - É possível aplicar um número ilimitado de modificadores para um objeto ou parte de um objeto;
 - É possível alterar os parâmetros de modificação para realizar uma animação;
 - Os modificadores podem ser retirados e todas as suas mudanças para o objeto desaparecem.

 Os modificadores que descritos a seguir podem ser considerados como genéricos para todos os sistemas 3D.

Bend

 Permite curvar a seleção corrente até 360 graus sobre um eixo único e em várias direções.

Optimize

- Permite reduzir progressivamente o número de faces e vértices em um objeto;
- É quase obrigatório para a modelagem de objetos que serão usados em sistemas real-time rendering.

Lattice

- Converte os segmentos ou extremidades de um objeto em uma estrutura de barras.
- Usado para criar uma geometria estrutural, como por exemplo, alcançar um efeito wireframe no objeto.

- Bevel
 - Realiza a extrusão de objetos 2D para 3D e arredonda os cantos das extremidades.

- Melt
 - Permite aplicar um efeito de "derretimento" realista a todos os tipos de objetos.

Skew

- Permite produzir um deslocamento uniforme em qualquer parte da geometria do objeto;
- Pode-se controlar a quantidade e direção da distorção em quaisquer dos três eixos.

- Squeeze e Stretch
 - Simulam o tradicional efeito de "espreme-e-estica" em animação.
 - Squeeze Apertar ou espremer o objeto.
 - Stretch Estirar o objeto.

- Taper
 - Produz um contorno mais ou menos afilado.

- Twist
 - Retorce a geometria do objeto.

Referências desta aula

- AZEVEDO, Eduardo; CONCI, Aura. 2007. Computação Gráfica:
 Teoria e Prática. Elsevier, Vol. 2, 2007.
- Aula montada com base no material do Prof. Jorge Cavalcanti -UNIVASF.