Introdução à Estatística Multivariada

Disciplina: Modelagem Estatística Instrutor: Luiz Max Carvalho Monitores: Eduardo Adame & Ezequiel Braga

Março 2024

Introdução

A ideia desse documento é auxiliar na transição para a Estatística Multivariada. É importante estar bem afiado em Álgebra Linear e (obviamente) nos conteúdos vistos em Inferência Estatística. As referências principais serão o Petersen e Pedersen (2008) e o Soch et al. (2024).

Vetores Aleatórios

Ao invés de lidarmos com uma variável aleatória $X \in \mathcal{X} \subseteq \mathbb{R}$, com $\mu = \mathbb{E}[X]$ e $\sigma^2 = \mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$, introduzimos agora vetores aleatórios. Por exemplo, $X \in \mathcal{X}^n$, com **vetor de média** μ tal que $\mu_i = \mathbb{E}[X_i]$ (denotamos $\mu = \mathbb{E}[X]$) e **matriz de covariância** $\Sigma = \mathbb{E}[X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}$, que vem de um produto externo. Lembre-se que perdemos comutatividade ao trabalhar em $\mathcal{X}^{n \times n}$.

Formas Quadráticas

Uma forma quadrática é uma expressão polinomial em que cada termo possui grau 2. Por exemplo, $y_1^2 + y_2^2$ e $2y_1^2 + y_2^2 + 3y_1y_2$ são formas quadráticas em y_1 e y_2 , mas $y_1^2 + y_2^2 + 2y_1$ e $y_1^2 + 3y_2^2 + 2$ não são.

Seja **A** uma matriz simétrica. Então, a expressão $\mathbf{y}^{\top} \mathbf{A} \mathbf{y} = \sum_{i} \sum_{j} a_{ij} y_{i} y_{j}$ é uma forma quadrática nos y_{i} 's. Analogamente, a expressão $(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{V}^{-1} (\mathbf{y} - \boldsymbol{\mu})$ é uma forma quadrática nos termos $(y_{i} - \mu_{i})$. Quando $\mathbf{y}^{\top} \mathbf{A} \mathbf{y} > 0$, $\forall \mathbf{y} \neq \mathbf{0}$, diz-se que a forma quadrática (e a matriz **A**) é positiva definida. Além disso, o posto da matrix **A** é chamado de número de graus de liberdade da forma quadrática.

Teorema (Cochran). Seja X_1, X_2, \ldots, X_n uma amostra aleatória da distribuição normal com média 0 e varância σ^2 . Sejam $Q = \sum_{i=1}^n X_i^2$ e Q_1, \ldots, Q_k formas quadráticas tais que $Q = \sum_{i=1}^k Q_i$, onde Q_i possui m_i graus de liberdade. Então, Q_1, \ldots, Q_k são variáveis aleatórias independentes com $\frac{Q_i}{\sigma^2} \sim \chi^2(m_i)$ $(i = 1, \ldots, k)$ se, e somente se, $\sum_{i=1}^k m_i = n$.

Uma consequênsia do toerema acima é que se $X_1^2 \sim \chi^2(m)$ e $X_2^2 \sim \chi^2(k)$ são independentes, então, $X^2 = X_1^2 - X_2^2 \sim \chi^2(m-k)$, desde que $X^2 \geq 0$ e m > k.

Identidades Relevantes

Seja X variável aleatória com média μ e matriz de covariância Σ

- $\mathbb{E}[AX + B] = A\mu + B$
- $V[AX] = A\Sigma A^{\top}$
- $\mathbb{E}[XX^{\top}] = \Sigma + \mu\mu^{\top}$

Matrizes de Covariância

A noção de variância passa a ser representada, em geral, em termos de covariância. Sabemos desde a parte univariadada que Cov[X, X] = V[X] e isso continua valendo aqui.

Sabemos também que essa matriz será, ao menos, semi-definida positiva, pois $\forall \ w \in \mathbb{R}^n$ temos que:

$$\begin{split} \mathbb{V}[w^{\top}X] &= w^{\top}\mathbb{V}[X]w = w^{\top}\mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}\right]w, \\ &= \mathbb{E}\left[w^{\top}(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}w\right], \\ &= \mathbb{E}\left[\left[w^{\top}(X - \mathbb{E}[X])\right]^{2}\right] \geq 0. \end{split}$$

Principais Distribuições Multivariadas

Multivariada Normal

Seja $X \in \mathbb{R}^n$. Então, X é normalmente distribuido com média $\mu \in \mathbb{R}^n$ e matriz de covariância $\Sigma \in \mathbb{R}^{n \times n}$ ($X \sim \mathcal{N}(\mu, \Sigma)$) se, e somente se, sua p.d.f é dada por

$$f(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n \mid \boldsymbol{\Sigma} \mid}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right].$$

Dirichlet (Generalização da Beta)

Seja $X \in \mathbb{R}^n$. Então, X segue a distribuição Dirichlet com parâmetros de concentração $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]$ ($X \sim \text{Dir}(\alpha)$) se, e somente se, sua p.d.f é dada por

$$f(\mathbf{x};\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{n} \alpha_i)}{\prod_{i=1}^{n} \Gamma(\alpha_i)} \prod_{i=1}^{n} x_i^{\alpha_i - 1},$$

onde $\alpha_i > 0$, $\forall i = 1, ..., n$ e a densidade é zero se $x_i \notin [0,1]$ para algum i = 1, ..., n ou $\sum_{i=1}^n x_i \neq 1$.

Multinomial (Generalização da Binomial)

Seja $X \in \mathbb{R}^k$. Então, X segue a distribuição multinomial com número de tentativas n e probabilidades p_1, \ldots, p_k ($X \sim \text{Mult}(n, [p_1, \ldots, p_k])$) se X é o número de observações pertencentes a k categorias distintas em n ensaios independentes, cuja densidade é dada por

$$f(\mathbf{x}; n, p_1, \dots, p_k) = \frac{n!}{\prod_{i=1}^k x_i!} \prod_{i=1}^k p_i^{x_i},$$

onde
$$\sum_{i=1}^{k} x_i = n$$
; $x_i \ge 0$, $\forall i = 1, ..., k$; e $\sum_{i=1}^{k} p_i = 1$.

Pareto

Seja $X \in \mathbb{R}^k$. Então, X segue a distribuição de Pareto com parâmetros $a = (a_1, \dots, a_k)$ e p se sua p.d.f é dada por

$$f(\mathbf{x}; a, p) = \frac{p(p+1)\dots(p+k-1)}{\left(\prod_{i=1}^{k} a_i\right) \left[\left(\sum_{i=1}^{k} a_i^{-1} x_i\right) - k + 1\right]^{p+k}},$$

para
$$x_i > a_i > 0$$
, $i = 1, ..., k$, $p > 0$.

Normal Matricial

Seja $X \in \mathbb{R}^{n \times p}$. Então, X segue a distribuição normal com média M, covariância entre linhas U e covariância entre colunas V ($X \sim \mathcal{MN}(M, U, V)$) se, e somente se, sua p.d.f é dada por

$$f(X; M, U, V) = \frac{1}{\sqrt{(2\pi)^{np} |V|^n |U|^p}} \exp\left[-\frac{1}{2}tr(V^{-1}(X - M)^\top U^{-1}(X - M))\right].$$

Wishart (Generalização da Gamma)

Seja $X \in \mathbb{R}^{n \times p}$, com $X \sim \mathcal{MN}(0, I_n, V)$. Tome $S = X^\top X$. Então, S segue a distribuição de Wishart com matriz de escala V e n graus de liberdade ($S \sim \mathcal{W}(V, n)$), com n > p - 1 e V simétrica positiva definida. Sua p.d.f é dada por

$$f(X; V, n) = \frac{1}{2^{np/2} |V|^{n/2} \Gamma_p(\frac{n}{2})} |X|^{(n-p-1)/2} \exp\left(-\frac{1}{2}tr(V^{-1}X)\right),$$

onde
$$\Gamma_p(\frac{n}{2}) = \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma(\frac{n}{2} - \frac{j-1}{2}).$$

Recursos para manipulação algébrica

Completar Quadrado Multidimensional

Tome ${\pmb X}$ matriz simétrica positiva definida $d \times d$ e ${\pmb {\rm u}}, {\pmb {\rm v}} \in \mathbb{R}^d.$ Vale que

$$\mathbf{u}^{\top} X \mathbf{u} - 2 \mathbf{v}^{\top} \mathbf{u} = \left(\mathbf{u} - X^{-1} \mathbf{v} \right)^{\top} X \left(\mathbf{u} - X^{-1} \mathbf{v} \right) - \mathbf{v}^{\top} X^{-1} \mathbf{v}.$$

Para verificar isso, basta expandir a forma quadrática e usar a simetria da matriz *X*:

Distribuição Normal Multivariada

Distribuição Marginal

Seja $X \sim \mathcal{N}(\mu, \Sigma)$, com $\mu \in \mathbb{R}^d$ e $\Sigma \in \mathbb{R}^{d \times d}$. Suponha que X pode ser particionado de forma que tenha-se

$$X=egin{bmatrix} X_1 \ X_2 \end{bmatrix}$$
 , $\mu=egin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix}$, $\Sigma=egin{bmatrix} \Sigma_1 \ \Sigma_2^{ op} \ \Sigma_3 \end{bmatrix}$

 $\begin{array}{l} \operatorname{com} \mu_1 \in \mathbb{R}^k, \ \mu_2 \in \mathbb{R}^{d-k}, \ \Sigma_1 \in \mathbb{R}^{k \times k}, \ \Sigma_2 \in \mathbb{R}^{k \times (d-k)} \ \mathrm{e} \ \Sigma_3 \in \mathbb{R}^{(d-k) \times (d-k)}, \ \mathrm{para} \ k < d. \\ \operatorname{Ent\~ao}, X_1 \sim \mathcal{N}(\mu_1, \Sigma_1) \ \mathrm{e} \ X_2 \sim \mathcal{N}(\mu_2, \Sigma_3). \end{array}$

Distribuição Condicional

Considere X como anteriormente. Então,

$$\begin{split} X_1 \mid X_2 &\sim \mathcal{N}(\hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}}_1) \text{ com } \begin{cases} \hat{\boldsymbol{\mu}}_1 = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_3^{-1} (X_2 - \boldsymbol{\mu}_2) \\ \hat{\boldsymbol{\Sigma}}_1 = \boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_3^{-1} \boldsymbol{\Sigma}_2^\top \end{cases}, \\ X_2 \mid X_1 &\sim \mathcal{N}(\hat{\boldsymbol{\mu}}_2, \hat{\boldsymbol{\Sigma}}_2) \text{ com } \begin{cases} \hat{\boldsymbol{\mu}}_2 = \boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{-1} (X_1 - \boldsymbol{\mu}_1) \\ \hat{\boldsymbol{\Sigma}}_2 = \boldsymbol{\Sigma}_2 - \boldsymbol{\Sigma}_2 \boldsymbol{\Sigma}_1^{-1} \boldsymbol{\Sigma}_2^\top \end{cases}. \end{split}$$

Combinação Linear

Tome $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ e $Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$. Então,

$$AX + BY + \mathbf{c} \sim \mathcal{N}\left(A\mu_X + B\mu_Y + \mathbf{c}, A\Sigma_X A^\top + B\Sigma_Y B^\top\right).$$

Referências

Petersen, K. B. e M. S. Pedersen (out. de 2008). *The Matrix Cookbook*. Version 20081110. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274.

Soch, Joram et al. (jan. de 2024). StatProofBook/StatProofBook.github.io: StatProofBook 2023. Versão 2023. DOI: 10.5281/zenodo.10495684. URL: https://doi.org/10.5281/zenodo.10495684.