Transformações Tridimensionais

José Luis Seixas Junior

Ciência da Computação Universidade Estadual do Paraná

> Computação Gráfica 2017

Índice

- Transformações Tridimensionais
- 2 Mesh
- 3 Arquivos .obj
- 4 Atividade

Translação

$$P' = T(\Delta x, \Delta y, \Delta z)$$

Matriz

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Leftrightarrow \begin{cases} x' = x + \Delta x \\ y' = y + \Delta y \\ z' = z + \Delta z \end{cases}$$

Escala

$$P'=E(Ex,Ey,Ez)$$

Matriz

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} Ex & 0 & 0 & 0 \\ 0 & Ey & 0 & 0 \\ 0 & 0 & Ez & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \Leftrightarrow \begin{cases} x' = x * Ex \\ y' = y * Ey \\ z' = z * Ez \end{cases}$$

Rotação

- Rotação varia de acordo com a orientação desejada;
- Rotacionar de acordo com os eixos x, y ou z;
- Qualquer rotação intermediária é uma composição das rotações nessas direções;

Rotação como na Escala

• Rotação sempre acontece com o centro de massa na origem; $P' = T(cmx, cmy, cmz) * Rz_{(\alpha)} * T(-cmx, -cmy, -cmz) * P$

Rotação Z

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x' = x \cos(\alpha) - y \sin(\alpha) \\ y' = x \sin(\alpha) + y \cos(\alpha) \end{cases}$$

$$z' = z$$

Observador em Z

Rotação X

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} y' = y\cos(\alpha) - z\sin(\alpha) \\ z' = y\sin(\alpha) + z\cos(\alpha) \end{cases}$$

Observador em X Observador X

Rotação Y

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} y' = y \\ z' = z \cos(\alpha) - x \sin(\alpha) \end{cases}$$

 $\int x' = z \sin(\alpha) + x \cos(\alpha)$

Observador em Y

Genérica no centro de massa

$$P' = T(cmx, cmy, cmz) * G_{(\gamma)} * T(-cmx, -cmy, -cmz) * P$$

Composição Mesh Polígonos e/ou face que compõem o esqueleto de um objeto:

Exemplo

Vértices

vertex	x	У	z
0	0	0	0
1	1	0	0
2	1	1	0
3	0.5	1.5	0
4	0	1	0
5	0	0	1
6	1	0	1
7	1	1	1
8	0.5	1.5	1
9	0	1	1

Normais

normal	n _x	n _y	n _z
0	-1		
1	-0.707	0.707	0
2	0.707	0.707	0
3	1	0	0
	0	-1	0
4	0	0	1
5	0	0	-1
6			

UNESPAR

Faces

face	vertices	associated normal
0 (left)	0,5,9,4	0,0,0,0
1 (roof left)	3,4,9,8	1,1,1,1
2 (roof right)	2,3,8,7	2,2,2,2
3 (right)	1,2,7,6	3,3,3,3
4 (bottom)	0,1,6,5	4,4,4,4
5 (front)	5,6,7,8,9	5,5,5,5,5
6 (back)	0.4.3.2.1	6,6,6,6,6

Arquivos .obj

Arquivos .obj

Arquivos .obj

Faces

Atividade 07

Atividade 07/1

- Ler e desenhar a estrutura de arames contida em um arquivo .obj:
 - Aplique as transformações de rotação tridimensionais;
 - Projeção paralela;

Data

26 de outubro de 2017

Observação

Recomenda-se a implementação da Classe Mesh.

Referências I

Hill, F. S.

Computer Graphics Using OpenGL.

Prentice Hall, 2013.

Shreiner, D.; Woo M.; Neider, J.; Davis, T.

OpenGL Programming Guide.

Addison Wesley, 4° edição, 2013.

