NIKHIL VASAN

1. Casper FFG

Definition 1.1. CheckPoint: Let $B \in \mathcal{B}$, then B is a checkpoint iff $B = B_{genesis}$ or $h(B) \equiv 0(100)$, where $h : \mathcal{B} \to \mathbb{N}$ is the height function of the block-tree

The (CheckpointHeight) $\tilde{h}: \mathcal{B} \to \mathbb{Z}$, is defined as follows

$$(1.1) for B \in \mathcal{B}, h(B) = |h(B)|$$

Let V be the set of validators for the chain, then $d: V \to [0,1]$ is the deposit mapping, mapping validators to their respective deposits.

Definition 1.2. *Vote* : A signed message, $\langle v, s, t, h(s), h(t) \rangle$, where $s, t \in \mathcal{B}$, and h(s) >= h(t) + 1, $s \in child(t)$

Notice, that when a block $b \in \mathcal{B}$ is referred, generally, one refers to the merkle root hash of the contents of the block, as communication complexity would scale rapidly with the number of messages sent $/|\mathcal{V}|$. Further definitions follow,

Definition 1.3. We define

supermajority link: $SL \in \mathcal{B}^2$, where $(a,b) \in \mathcal{B}$ iff $sum_{v \in \mathcal{V}_{vate}(a,b)} d(v) >= 2/3$

conflicting: $B_1, B_2 \in \mathcal{C}$ (checkpoints) are conflicting iff, $B_1 \notin child(B_2)$ and $B_2 \notin child(B_1)$

justified: $c \in C$ is justified if (1) it is the root, or there exists $s \in SL$ where s = (c', c), where c' is justified.

finalized: $c \in C$ is justified if (1) it is the genesis block or (2) it is justified, and there is a supermajority link $c \to c'$ where c' is a direct child of c, that is h(c') = h(c) + 1

Definition 1.4 (slashing conditions). A validator, $v \in V$, is slashed, d(v) = 0 if, a validator publishes two votes $\langle v, s_1, t_1, h(s_1), h(t_1) \rangle$, $\langle v, s_2, t_2, h(s_2), h(t_2) \rangle$

(1)
$$h(t_1) = h(t_2)$$

(2)
$$h(s_1) < h(2_1) < h(t_2) < h(t_1)$$

2. PROOF OF SAFETY AND PLAUSIBLE LIVENESS

Theorem 2.1 ((Accountable Safety)). Two conflicting checkpoints a_m and b_n cannot both be finalized.

2.1. Fix $a_m, b_n \in \mathcal{C}$ where both $a_m \notin chain(b_n)$ and $b_n \notin chain(a_m)$. Intending contradiction, suppose both a_m and b_n are finalized. Naturally $h(a_m) \neq h(b_n)$, thus, we may assume WLOG that $h(a_m) > h(b_n)$. Denote b_{n+1} denote the checkpoint finalizing b_n ,

Date: September 2021.

1

where $h(b_{n+1}) = h(b_n) + 1$, a similar case follows for a_{m+1} . Denote $a' \in chain(a_n)$ to be the first ancestor of a_n where $h(a') < h(b_n)$. Naturally a'_n the block finalizing a_n satisfies $h(a'_n) > h(b_{n+1})$, violating slashin condition **II**.

Definition 2.2. Denote $DS : V \to \mathbb{Z}$, the mapping between validators and their start dynasty. Where DS(v) = d + 2, when v has submitted a deposit message at blockc with slot 2. The mapping $DE(v) : V \to \mathbb{Z}$ maps validators to their end dynasty.

3. Gasper

4. Tendermint

Concensus for each block at height h_p proceeds in rounds, $round_p$, three types of messages for each round are passed

Definition 4.1. The messages defined are...

(**Proposal**): $\langle PROPOSAL, h_p, round_p, proposal, validRound_p \rangle$, where proposal is the value on which all nodes will come to concensus upon, given the size of the msg, to reduce message complexity of later messages, id(v) a proof of fixed size is passed between nodes

(**Prevote**) : $\langle PREVOTE, h_p, round_p, id(v) \rangle$, this message type defines a vote for the corresponding value $decode_p(id(v))$, in the first round of voting,, notice id(v) = nil if isValid(v) = false.

(**PreCommit**): $\langle PRECOMMIT, h_p, round_p, id(v) \rangle$, this message defines the standard type for the second round of voting

At each round a set of 5 state variables are maintained by all correct processes

Definition 4.2. These variables are reset at the beginning of each concensus instance

 (h_p) Identifier of the current concensus instance... height

(round_p) Round number for this concensus instance

 $(decision_p...)$: the set of finalized blocks, where $decision_p(h_p) = Tendermint(v)$ (block to finalize at current height)

(lockedValue/lockedRound): These values store the most recent value precommited and the round at which the pre-commit was sent at which the process p received 2f+1 prevotes for a value v, and the value v, that is

```
prevotes := make([]Prevote)

if len(prevotes) >= 2 * f + 1 {
  lockedRound = curRound
  lockedValue = value
  broadcast(Precommit{
    step: PRECOMMIT,
    height: curHeight,
    round: curRound
```

```
id: hash(curValue),
})
```

(validValue/validRound) These values serve a similar purpose to the lockedRound/Value, except these values record the first value that represents a possible decision value.

Theorem 4.3. For all $f \ge 0$ all sets of 2f + 1 processes, have at least f + 1 process in common

Theorem 4.4. Notice, n = 3f + 1, where n is the total number of processes participating in the network. Therefore,

Proof.
$$2(2f+1) = 3f+1+f+1=n+f+1$$

therefore by the pigeonhole principle, there is at least f + 1 - f = 1 correct nodes in common between two sets.

Theorem 4.5. If f + 1 correct processes lock value v in round r_0 then in all round $r > r_0$ they send PREVOTE for id(v) or nil

Proof. The proof is by induction on i, where r_i designates the current round. For r_1 , the f+1 processes that had locked v, validValue=v, thus if they are the proposer they broadcast $\langle PREVOTE, h_p, r_1, id(v) \rangle$, if they are not the proposer, and receive a Proposal for v' where $v' \neq v$ notice $lockedRound \neq -1$ and $lockedValue \neq v'$ thus they broadcast a prevote for nil. Assuming the hypothesis holds for n, then for round r_{n+1} , validValue=v and $validRound=r_0$. That is, it is impossible for 2f+1 Prevotes to be signed for a conflicting value v', thus, the locked value will remain the same, and by the hypothesis, all nodes will broadcast prevotes for nil or v.

5. Cosmos Fee Distribution

Suppose a delegator x delegates x stake to validator y at block i and withdraws at block h, then the accum is defined as follows

$$accum = x\sum_{k=i}^{h} \frac{f_i}{s_i}$$

where f_i represents the total tx fees each block, and s_i represents the delegated stake for the validator at each block. Notice, the delegated stake only changes whenever a delegation is changed, as such, we may desigate the periods between delegation modifications as a period

Definition 5.1. *Period*: Time between a validator's stake S_v changing

The new calculation is as follows

(5.2)
$$accum_d = \sum_{k=p_{init}}^{p_{final}} \frac{T_p}{S_p}$$

where T_p is the total tx fees per period, and S_p is the total stake per period. Notice, this calculation lends itself to a recursive expression

$$(5.3) entry_f = entry_{f-1} + \frac{T_f}{s_f}$$

Each entry is a state object indexable by f (Period Number). The maximal number of entries stored in state is

$$(5.4) curPeriod - min_{d \in \mathcal{D}}(Period(d))$$

where $d \in \mathcal{D}$ represents iteration over all delegations. Each delegators reward earned from withdrawing may be represented as follows

$$(5.5) accum = x(entry_k - entry_f)$$

6. LP TOKEN PRICING
$$(xy = k)$$
 CFMM

Consider a pool obeying the following invariant, $r_0 * r_1 = k$, where r_0 is the reserves of $asset_0$ and r_1 is the reserve of $asset_1$. Notice, in this case the prices of $asset_0$ in terms of $asset_1$, is determined as follows

(6.1)
$$p_0 = \frac{\Delta r_0}{\Delta r_1}, p_1 = \frac{1}{p_0}$$

notice, Δr_0 may be determined as follows,

(6.2)
$$(r_1 + \Delta r_1)(r_0 - \Delta r_0) = k = r_0 * r_1$$

(6.3)
$$\Delta r_0 = r_0 - \frac{k}{r_1 + \Delta r_1} = \frac{r_0(r_1 + \Delta r_1)}{r_1 + \Delta r_1} - \frac{r_0 * r_1}{r_1 + \Delta r_1}$$

$$=\frac{r_0\Delta r_1}{r_1+\Delta r_1}$$

substituting this value into p_0 , one obtains

(6.5)
$$p_0 = \frac{\Delta r_0}{\Delta r_1} = \frac{r_0 \Delta r_1}{r_1 + \Delta r_1} * \frac{1}{\Delta r_1} = \frac{r_0}{r_1 + \Delta r_1}$$

Let $TVL = r_0 * p_0 + r_1 * p_1$, in this case, we may parametrize TVL in terms of Δr_1 and r_0, r_1 ,

(6.6)
$$TVL = r_0 * p_0 + r_1 = r_0 * \frac{r_0}{r_1 + \Delta r_1} + r_1$$

7. **M**ATH

Theorem 7.1. $\forall x_1, x_2, x_1 \leq x_2 \to f(x_1) \leq f(x_2), f(f(x)) = x \text{ implies that, } f(x) = x,$

Theorem 7.2. Let E be a non-empty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Proof. Denote \leq the ordering over E, that is, \leq a transitive relation. As such, fix $e \in E$. Notice, as α is a lower-bound of E, it follows that $\alpha \leq e$, furthermore, $e \leq \beta$, combining the relations, and applying the transitivity of \leq , obtains $\alpha \leq \beta$, as was to be shown. \square

Theorem 7.3. Let A be a non-empty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. It follows

$$(7.1) inf A = -sup(-A)$$

Fix b > 1

(6a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(7.2) (b^m)^{1/n} = (b^p)^{1/q}$$

Proof. Notice $(b^{1/n})^m = (b^{1/q})^p = b^{m/n} = b^{p/q} = b^r$

(6b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

Proof. Let
$$r=m/n$$
 and $s=p/q$, thus $b^{r+s}=b^{m/n+p/q}=b^{\frac{mq+np}{nq}}=(b^{mq}b^{np})^{\frac{1}{nq}}=b^rb^s$

6c If x is real, define B(x) t be the set of all numbers b^t , where t is rational and $t \le x$. Prove that

$$(7.3) b^r = \sup(B(r))$$

Proof. Fix $x \in \mathbb{Q}$, thus x = m/n for $m, n \in \mathbb{Z}$. Consider B(x), naturally B(x), is non-empty, furthermore, $B(x) \subset \mathbb{R}$, finally, B(r) is bound above by b^r , and thus $\alpha = supB(x)$ exists. Suppose, $\alpha \neq b^x$. WLOG (the other direction guarantees a similar maximal / minimal element), suppose $\alpha > b^x$ Notice, the archimedian proprty of real numbers guarantees

7d If w is such that $b^w < y$, then $b^{w+(1/n)} < y$ for sufficiently large n.

Proof. Via 7c, it suffices to show that $\frac{b-1}{yb^{-w}-1} < n$, for some n. Thus, $b-1 < n(yb^{-w}-1)$, for some n. Notice, as $b, (yb^{-w}-1) \in \mathbb{R}_{>0}$, there exists, $n \in \mathbb{Z}$, where $b-1 < n(yb^{-w}-1)$.

7e If $b^w > y$,then $b^{w-1/n} > y$ for sufficiently large n.

let A be a set, then A is infinite, if A is equivalent to one of its proper subsets.

Theorem 7.4. Every infinite subset of a countable set A is countable

Proof. Suppose $E \subset A$. Let $f: \mathbb{N} \to E$, as follows. Denote $f(1) = e_1$, where $e_1 \in E$, and for all $e \in E, e > e_1$, set f(i) to be the smallest $e_i \in E$, such that $e_i > f(i-1)$. Suppose $i, j \in \mathbb{N}$, where $i \neq j$. WLOG, i < j, in which case, f(i) < f(j), thus $f(i) \neq f(j)$, and f is injective. Suppose $\exists e \in E \subset A$, for which, no pre-image exists in \mathbb{N} , this is a contradiction.

Theorem 7.5. Let A be a countable set, and let B_n be the set of all n-tuples of A, that is A^n .

Proof. The hypothesis holds trivially for n=1, as $A^1=A$ which is countable. Suppose the theorem holds for n-1, then x inB^n , $x=(b,a), b \in B^{n-1}a \in A$, notice, for all $b \in B^{n-1}$, the set $(b,a), a \in A$ is countable. Thus $B^n=\bigcup_{b\in B^{n-1}}(b,a)$, this is a countable union of countable sets, and is countable by (15). Thus B^n is countable. The proof follows by induction.

Definition 7.6. Let A be a set, a function $f: A \to \mathbb{R}_{>0}$ is a metric function if

$$1 \ p, q \in A, d(p, q) = 0 \iff p = q,$$

2
$$p, q \in A, d(p, q) = d(q, p),$$

$$3 \ d(p,q) \le d(p,r) + d(r,q)$$

A metric space, is a tuple (A, σ) , where A is a set and σ is a metric function over A

Definition 7.7. A subset $E \subset \mathbb{R}^k$ is convex, if for all $x, y \in E$, $\lambda x + (1 - \lambda)y \in E$.

Theorem 7.8. *Balls are convex*

Proof. Fix a ball $E \subset \mathbb{R}^k$ with center $z \in \mathbb{R}^k$. Fix $x, y \in E$, fix $0 < \lambda < 1$, Thus, (7.4)

$$|z - (\lambda x + (1 - \lambda)y| = |\lambda(z - x) + (1 - \lambda)(z - y)| \le \lambda |z - x| + (1 - \lambda)|z - y|$$
(7.5)
$$< \lambda r + (1 - \lambda)r = r$$

Thus $(\lambda x + (1 - \lambda)y) \in E$, and E is a convex set.

Let *X* be a metrix space,

- (a) A neighbourhood of p, $N_r(p) := \{q \in X : d(q, p) < r\}$
- (b) A point p is a Limit Point of the set E if, $\forall r, \exists (q) (q \neq p) \in N_r(p), q \notin E$
- (c) $p \in E$ is an *Isolated Point* of E, if p is not a limit point of E
- (d) E is *closed* if every limit point p is an element of E
- (e) A point $p \in E$ is an *interior* point of E, if $\exists r, N_r(p) \subset E$
- (f) E is open if every point of E is an interior point of E
- (g) The complement of $E, E^c := \{ p \in X, p \notin E \}$
- (h) E is perfect, if E is closed, and every point of E is a limit point of E
- (i) E is bounded if $\exists M \in \mathbb{R}$ and $q \in X$ such that, $d(p,q) < M, \forall p \in E$
- (j) E is dense in X if every point of $p \in X$ is a limit point of E or $p \in E$.

Theorem 7.9. If X is a metric space, and $E \subset X$, then

- (a) \bar{E} is closed
- (a) $\bar{E} = E$ iff E is closed
- (c) $\bar{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

Proof. For (a), let $p \in \bar{E}^c$, that is $p \notin E \land p \notin \bar{E}$, as such, $\exists r > 0 \in \mathbb{R}$, where for all $q \in N_r(p), (p \neq q), q \notin E$. If $N_r(p) \cap \bar{E} = \{x..\}$. Then $\forall r \in \mathbb{R}, \exists x \in N_r(p) \cap \bar{E}$, thus, $x \in \bar{E}, x \notin \bar{E}^c$. As such, $\forall x \in \bar{E}^c, \exists r \in \mathbb{R}, N_r(x) \subset \bar{E}^c$, and \bar{E}^c is open, thus $\bar{E}^{c^c} = \bar{E}$

For (b). Suppose E is closed, then $x \in E' \subset E$ implies that $x \in E$, $\bar{E} = E' \cup E = E$. Suppose $\bar{E} = E$, then suppose $x \in E' \subset \bar{E} = E$, and $x \in E$, therefore, E is closed. For (c),

Definition 7.10. *Open Cover* - Let X be a metric space, $E \subset X$. Then an Open Cover of E, is $\{G_{\alpha}\}, \forall \alpha, G_{\alpha} \subset \mathcal{O}(X)$, and $E \subset \cup_{\alpha} G_{\alpha}$

Definition 7.11. Compactness - A set E of metric space X, is Compact if every open cover of E, $\{G_{\alpha}\}_{\alpha}$, has finitely many indices $\alpha_1, \dots, \alpha_n$, where $E \subset \bigcup_i, G_{\alpha_i}$

Definition 7.12. Suppose $K \subset Y \subset X$. Then K is compact relative to X iff K is compact relative to Y

Proof. Suppose K is compact in X, then $K \subset \cup_{i=1...n} G_{\alpha_i}$, where $\{G_{\alpha}\}$ are open relative to Y. As such, $G'_{\alpha} \cap Y = G_{\alpha}$ where G'_{α} are open in X, and $K \subset \cup_i G'_{\alpha_i}$, as $\{G'_{\alpha_i}\}$ is an open cover of K in X, there exists $\alpha_1...\alpha_n$, where $K \subset G'_{\alpha_1} \cup ... \cup G'_{\alpha_n}$. As such, $K \cap Y = K \subset (G'_{\alpha_1} \cup ... \cup G'_{\alpha_n}) \cap Y = G_{\alpha_1}...G_{\alpha_n}$, and every open cover relative to Y has a finite subcover, thus K is compact in Y.

Suppose K is compact in $Y \subset X$, then for every open cover $\{G_{\alpha}\}_{\alpha}$ in Y, there exist G'_{α} open in X, where $G'_{\alpha} \cap Y = G_{\alpha}$. And, $K \subset \bigcup_{\alpha_i} G_{\alpha} \subset \bigcup_i G'_{\alpha_i}$, and K is compact in X.

Definition 7.13. Compact subsets of metric spaces are closed.

Proof. Let K be a compact subset of a metric sapce X. Fix $p \in K^c$, and $q \in K$, let V_q be a neighbourhood of p with r < 1/2d(p,q), notice $V_q \cap W_q = \emptyset$. Notice, $K \subset \cup_{q \in K} W_q$, as K is compact, $K \subset \cup_{i=1...n} W_{q_i}$, furthermore, $V = \cap_{i=1...n} V_{q_i}$, $V \cap W = \emptyset$, and $r = min_{i=q..n}(d(p,q_i)), N_r(p) \subset V$, thus there exists $N_r(p) \subset K^c$, for all $p \in K^c$, and K^c is open.

Definition 7.14. Closed subsets of compact sets are compact

Proof. Let, $L \subset K \subset X$, where X is a metric space, K is compact, and L is closed. Fix V_{α} , an open cover of K, notice $(\cup_{\alpha}V_{\alpha}) \cup L^{c}$ covers K, thus there exists a finite-subcover $V_{\alpha_{i}} \cup L^{c}$, as $L \not\subset L^{c}$, V_{α} has a finite subcover covering L, and L is compact.

Theorem 7.15. If F is closed and K is compact, then $F \cap K$ is compact.

Proof. Notice, $F \cap K \subset K$ is closed, thus, $F \cap K$ is compact.

Theorem 7.16. If $\{K_{\alpha}\}$ is a collection of compact sets of metric space X, such that, the intersection of every finite subcollection of K_{α} is non-empty, then $\cap K_{\alpha}$ is not empty.

Proof. Suppose $\cap_{\alpha} K_{\alpha} = \emptyset$, then $\cup_{\alpha} K_{\alpha}^{c} = X$, as such, there exists $K \in K_{\alpha}$, $K \subset \cup_{\alpha} K_{\alpha}^{c}$, notice, $\{K_{\alpha}^{c}\}$ is an open-cover of K, and $K \subset \cup_{i=1..n} K_{\alpha_{i}}^{c}$, however, $K \cap (\cap_{i=1..n} K_{\alpha_{i}}) \neq \emptyset$, a contradiction.

Theorem 7.17. Let $\{I_n\}$ be an infinite collection of intervals in \mathbb{R}^1 , where $I_{n+1} \subset I_n$, then $\cap_i I_i \neq \emptyset$

Proof. Let $I_n = [a_n, b_n]$, let $E = \{a_n \in \mathbb{R} : I_n = [a_n, b_n]\}$, then $E \subset \mathbb{R}$, and is bound above, namely by b_1 . Fix sup(E) = x. Fix n, then $I_n = [a_n, b_n]$, naturally, $a_n \leq x$. Suppose $b_n < x$, then there exists, $a_m \in E, a_m > b_n$, and, $I_m \cap I_n = \emptyset$, this is impossible, and $x \leq b_n$, thus $x \in I_n$, and $x \in \cap_i I_i$.

Theorem 7.18. Suppose $\{I_n\}$ is a seq. of k-cells, where $I_{n+1} \subset I_n$, then, $\cap_i I_i \neq \emptyset$.

Proof. For I_n , let $I_{n,i} = [a_{n,i}, b_{n,1}]$, where $I_n = \times_{1 \leq i \leq k} I_{n,i}$ then, for each $\{I_{n,i}\}$, where $1 \leq i \leq k$, there exists, $x_i \in \cap_{1 \leq i \leq k} I_{n,i}$, let $\vec{x} = (x_1, ..., x_k)$, then $\vec{x} \in \cap_i I_i$.

Theorem 7.19. Every k - cell is compact

Proof. Let $I \subset \mathbb{R}^k$, where $I = \times_{1 \le i \le k} I_i$, where $I_i = [a_i, b_i]$. Fix

(7.6)
$$\delta = (\Sigma_{1 \le i \le k} (a_i - b_i)^2)^{1/2}$$

as such, for $x, y \in I$

$$(7.7) |x - y| = (\sum_{1 \le i \le k} (x_i - y_i)^2)^{1/2} \le \delta$$

Fix $c_j=(a_j+b_j)/2$, notice, $I_j\subset [a_j,c_j]\cup [c_j,b_j]$, as such, we have Q_i , a set of 2^k k-cells, where $\cup_i Q_i\supset I$. If I is not compact, then for open-cover $\{G_\alpha\}_\alpha$, there exists Q_i such that for any finite subcollection $\{G_{\alpha_i}\}_{\alpha_i}, \cup_i G_{\alpha_i}\not\supset Q_i$, continue this process indefinitely, and one obtains, $\{I_n\}$, where $I_n\supset I_{n+1}$ (where I_n is the k-cell obtained from the nth round of this subdvision process). Furthermore, for $x,y\in I_n, |x-y|\le 1/2^n\delta$, and $I_n\not\subset \cup_{\alpha_i}G_{\alpha_i}$. Notice, that 7.18 leaves $x\in \cap_i I_i$, there exists G_α where $x\in G_\alpha$ ($\{G_\alpha\}$ is an open cover of I). For n large enough, $I_n\subset G_\alpha$ (some neighbourhood of x is contained in G_α), this is a contradiction.

Theorem 7.20. Any infinite subset $L \subset K$, where K is compact, must have a limit pt. $x \in K$.

Proof. Suppose $L \subset K$ is infinite, and no limit point of L exists in K, that is, for all $k \in K$ for any neighbourhood of k, $V_k \setminus \{k\} \cap L = \emptyset$ consider the open cover of K, $\{V_k\}_{k \in K}$, no finite subcollection of $\{V_k\}$ covers $L \subset K$, a contradiction.

Theorem 7.21 (Heine-Borel). For, metric space $X \subset \mathbb{R}^k$, and $E \subset X$ $E \subset X$ the following statements are equivalent

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Any infinite subset of E, has a limit point in E.

Proof. For $(a) \to (c)$, if E is closed and bounded, then $E \subset I$, where I is a k-cell. As I is compact, and E is closed, it follows that E is compact. $(b) \to (c)$. For $(c) \to (a)$, suppose E is not bounded, then let $E' = \{|x_n| > n, n = 1, 2, 3, \cdots\}, E' \subset E$. Suppose $x \in \mathbb{R}^k$ is a limit point of E', then for all r > 0, $N_r(x) \cap S \neq \emptyset$, fix n', n' + 1, where $|x_{n'}| < |x|$, and $x_{n'+1}| > |x|$, then set $r < \min(|x_{n'} - r|, |x_{n'+1} - r|)$, and $N_r(x) \cap S = \emptyset$, a contradiction, thus E must be bounded. Suppose E is not closed, fix x_0 a limit pt. of E, where $x_0 \notin E$. Let $S = \{x_n \in E : |x_n - x_0| < 1/n, n \in \mathbb{N}\}$. Naturally S is infinite, furthermore if S is also a limit pt. of S, then

$$(7.8) |x_0 - y| \le |x_0 - x_n| + |x_n - y| < 1/n + |x_n - y|$$

If $|x_0-y|=\epsilon>0$, then for $n\in\mathbb{N}$, where $1/n<\epsilon$, $r<\epsilon-1/n$, $N_r(y)\cap S=\emptyset$, otherwise, $|x_n-x_0|<1/n$, and $|x_n-y|< r$, a contradiction. Thus $x_0=y$, and E must be closed. \square

Theorem 7.22. Let P be a non-empty perfect set in \mathbb{R}^k . Then \mathbb{R}^k is un-countable.

Definition 7.23. The Cantor Set - A perfect set in \mathbb{R}^1 which contains no segment. Let $E_n = \bigcup_{0 \le i < \lfloor n^2/2 \rfloor} \lfloor \frac{2*i}{n^2}, \frac{2*i+1}{n^2} \rfloor$. A few properties

(a)
$$E_1 \supset E_2 \supset \cdots \supset E_n$$

Finally, the Cantor Set is $\cap_n E_n$

As E_1 is compact, $E_n \subset E_1$, is a closed subset of a compact set, and is itself, compact. Furthermore, as $E_i \neq \emptyset$, and the intersection of any finite collection of $\cap_i \{E_i\} = E_{i'}$, where $i' = min(j \in \mathbb{N}, E_j \in \{E_i\}), \cap_n E_n$ is non-empty.

Theorem 7.24. The Cantor Set is perfect.

Proof. The Cantor Set contains no segment.

Definition 7.25. *Separated Set - Let* $A, B \subset X$, *where* X *is a metric space, then* A, B *are separated iff,* $\overline{A} \cap B = \overline{B} \cap A = \emptyset$

Definition 7.26. Connected Set - $E \subset X$, a metric space. E is connected iff, E is not the union of two connected sets.

(1) Prove that the empty set is a subset of every set.

Proof. Suppose $\emptyset \not\subset A$, in which case, $A \cap \emptyset = \emptyset$, a contradiction.

(2) Prove that the set of *algebraic* numbers is countable.

Proof. For $n \in \mathbb{N}$, denote $A_n = \{z \in \mathbb{C} : P(z)_n = 0\}$, where $P_n(z) = a_0 z^n + \cdots + a_{n-1}z + a_n$. Notice, there are at most $|\mathbb{Z}^n|$, polynomials of degree n, as such, $\bigcup_n A_n \subset \bigcup_n P_n$, thus $\bigcup_n A_n$ is countable, as it is at most an infinite subset, of a *countable* set.

(3) Prove that there exist real numbers which are not algebraic.

Proof. Suppose otherwise, then $\mathbb{R} \subset \mathbb{A}$, and \mathbb{R} is countable.

(4) Is the set of all irrational real numbers countable?

Proof. Notice, $\mathbb{R} = \mathbb{Q} \cup \mathbb{R} \setminus \mathbb{Q}$, \mathbb{Q} is countable, thus $\mathbb{R} \setminus \mathbb{Q}$ is un-countable.

(5) Construct bounded set of real numbers with exactly three limit points.

Proof. $\{0 + 1/n : n \in \mathbb{N}\} \cup \{2 + 1/n : n \in \mathbb{N}\} \cup \{4 + 1/n : n \in \mathbb{N}\}$, notice, 0, 2, 4 are the only limit points. □

(6) Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and \bar{E} have the same limit points. Do E and E' have the same limit points?

10

(7.9)

Proof. Yes

(23) d(x,y) = |x - 2y|Proof. No

(24) $d(x,y) = \frac{|x-y|}{1+|x-y|}$

(25) Let $K \subset \mathbb{R}$ consist of 0 and 1/n, where $n = 1, 2 \cdots$. Prove K is compact from the definition.

Proof. Notice $[0,1] \subset \mathbb{R}$ is compact, and $K \subset [0,1]$ and is closed, thus it is compact.

- (25a) *Proof.* Fix A_i , an open cover where for $i \neq j$, $A_i \cap A_j \neq \emptyset$ (a set A_i can be obtained for every OC of K). Fix $0 \in A_{\alpha_0}$, then as A_{α_0} is open, let $r > 0, N_r(0) \subset$ A_{α_0} , then fix $min_{n\in\mathbb{N},r<1/n}$, subsequently, there exists A_{α_i} , where $1/n\in A_{\alpha_i}$, the process may be repeated, to obtain a finite open cover $\{A_{\alpha_i}\}$
- (26) construct a compact set of real numbers whose limit points form a countable set. *Proof.* $A = \{0\} \cup \{1/n, n \in \mathbb{N}\} \cup \{1/m + 1/n, n \in \mathbb{N}\}, \text{ notice, } A \subset [0, 2],$ and is closed, as such, it is compact. Furthermore, its limit points are 0, 1/m, 1+ $1/m, m \in \mathbb{N}$.

12

(27)	Give an example of an open cover of $(0,1)$ which has no finite subcover.
	Proof. $A_i = N_{1/2i}(1-i), i \in \mathbb{N}$
(28)	Show that theorem 2.36, and its corollary become false if the word "compact" is replaced by "closed" or "bounded"".
	<i>Proof. bounded:</i> Let $K_i = [-1/i, 0) \cup (0, 1/i]$
	closed:
(29)	Regard \mathbb{Q} ,
(30)	If A and B are disjoint closed sets in some metric space X , prove that they are separated.
	<i>Proof.</i> Notice, $\emptyset = \bar{A} \cap \bar{B} \supset \bar{A} \cap B = \emptyset$, a similar proof exists that $A \cap \bar{B} = \emptyset$.
(31)	Prove the same for disjoint open sets.
	<i>Proof.</i> Let $A, B \subset X$, be disjoint open sets. Suppose $b \in \overline{A} \cap B$, then $b \in A' \cap B$
	thus $b \in B$ and is not an interior pt. of B, a contradiction.
(32)	Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $d(p,q) < \delta$, define B to be the set of all l where $d(p,l) > \delta$. Prove that A and B are separated.
	<i>Proof.</i> A, B are open sets, the proof follows from 32.
(33)	Prove that every connected metrc space with at least two points is uncountable
(35)	Let A,B be separated subsets of \mathbb{R}^k , fix $a\in A,b\in B$, and define
(7.10)	p(t) = (1 - t)a + tb
	where $t \in \mathbb{R}$, put $A_0 = p^{-1}(A), B_0 = p^{-1}(B)$. Prove that A_0 and B_0 are separated subsets of \mathbb{R} .
	<i>Proof.</i> Let $l \in \bar{A}_0 \cap B$, then $p(l) \in B$, and, for all $\epsilon, l + \epsilon \in A_0$, thus $p(l + \epsilon) = p(l) + \epsilon * (a + b) \in A$, however, there exists some $N_{\delta}(p(l)) \cap A = \emptyset$ as $p(l) \notin A'$.
	thus $d(p(l), p(l+\epsilon)) > \delta$, $\epsilon * \ (a+b)\ > \delta$, and $\epsilon > \delta/\ a+b\ > 0$, contradicting that $l \in \overline{A_0}$. A similar proof holds that $\overline{B_0} \cap A_0 = \emptyset$.
(36)	Prove that there exists $t_0 \in (0,1)$ such that $p(t_0) \not\in A \cup B$