

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Когнитивная радиооптика (cognitive radio optics) ЭМИИА

- машинное зрение на принципах радиооптики с применением искусственных нейронных сетей. Детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн, в том числе и за радиопрозрачными преградами.

Встраиваемые нейросетевые решения

Разработка архитектуры автономной нейросетевой модели, наборов данных и методов обучения в области обработки цифровых сигналов и машинного зрении на принципах когнитивной радиооптики, с целью интеграции в продукты, комплексные решения и устройства.

Автоматизация, информационная безопасность, роботы, машины, устройства, цифровые двойники, IoT/IIoT, Industry 4.0..

- Снижение капитальных и операционных затрат (информационная безопасность, облачные вычисления)
- Экономия на smart устройствах (телекоммуникационная вычислительная сеть)
- Замещение датчиков и сенсоров (датчики движения, датчики присутствия, датчики приближения, датчики позиционирования, системы пассивной навигации)
 - Сокращение расхода электроэнергии

Автомобили, системы автоматического управления и безопасности движения...

Технология машинного зрения ЭМИИА как дополнение к навигатору, видеорегистратору, лидару, охранной сигнализации и как замена парктронику.

Роботы, производственные комплексы, платформы, машины, оборудование..

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, системам автоматизации и как замена датчиков движения, датчиков присутствия, датчиков приближения, датчиков позиционирования и систем пассивной навигации.

Розетки, климат системы, бытовая техника, роботы-пылесосы, свет, умные колонки..

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, автоматизации, аварийным системам и как замена датчикам движения, датчикам приближения, датчикам присутствия и охранным системам.

Варианты интеграции решений ЭМИИА:

- 1. Встраиваемый контроллер
- 2. Встраиваемое ПО (нейронная сеть)
 - 3. Встраиваемый модуль

IDC ожидает, что глобальные расходы на цифровые технологии будут поддерживать двузначный годовой темп роста в течение прогнозируемого периода 2017-2022 годов и превысят отметку в 1 триллион долларов к 2022 году.

Ежегодно в мире будет производиться более 10 млрд интеллектуальных устройств.

На данный момент стоимость решений проекта составляет от 3\$ (программные решения в структуре аппаратных решений при условии, что устройство в которое устанавливается система подходит по техническим параметрам и не требует аппаратной модификации путем интеграции в модуля ЭМИИА для задач радиооптики). Посредством дальнейших разработок мы сможем получить результат применяя только программные инструменты, таким образом упростим интеграцию и масштабирование, а также снизим стоимость внедрения наших решений до одного доллара (цена для конечного потребителя).

20% производимых интеллектуальных устройств (без учета уже эксплуатируемых) имеет необходимость в такого рода технологиях (2 млрд интеллектуальных устройств), планируем занять как минимум 50% данного рынка (когнитивная радиооптика), таким образом общая стоимость внедрения наших решений составит более \$1 млрд в год. Ожидается ежегодный рост рынка (ЕАЭС, ЕС, БРИКС, АТР – когнитивная радиооптика) 8% 2021-2030 гг..

Встраиваемые программные решения проекта смогут улучшить многие устройства, сделать их интеллектуальнее, снизить стоимость комплексных решений и повысить безопасность посредством функционирования системы в автономном режиме без использования облачных мощностей и локальных серверов для вычисления, обработки и хранения данных.

Технологии ЭМИИА позволяют сосредоточить требуемый функционал в границах одного двух устройств.

Замещается программно часть устройств, датчиков, сенсоров, а также технологических решений требуемых для мониторинга, сбора данных, автоматизации и машинного зрения.

Автоматизация, информационная безопасность, роботы, машины, устройства, цифровые двойники, IoT/IIoT, Industry 4.0..

10-30%

- Снижение капитальных и операционных затрат (информационная безопасность, облачные вычисления)
 - Экономия на smart устройствах (телекоммуникационная вычислительная сеть)
 - Замещение датчиков и сенсоров (датчики движения, датчики присутствия, датчики приближения, датчики позиционирования, системы пассивной навигации)
 - Сокращение расхода электроэнергии

Потенциальные потребители В2В-В2С

B2B-HONDA GENERAL MOTORS.. KUKA FANUC.. GOOGLE PHILIPS MI YANDEX DYSON BORK.. реализующие свои продукты конечному потребителю B2B/B2C на рынках EAЭC, EC, БРИКС, ATP:

- Компании по автоматизации, информационной безопасности, робототехнике (IoT/IIoT, Industry 4.0..);
- Компании разрабатывающие решения и производящие разного рода машины, оборудование и устройства (IoT/IIoT, Industry 4.0..);
- B2B компании которые провели цифровизацию бизнеса (наши решения расширяют характеристики, функционал и сферу применения);
- В2С потребители которые уже приобрели интеллектуальные устройства и эксплуатируют (наши решения расширяют характеристики, функционал и сферу применения).

Платежеспособность целевой аудитории (спрос) на глобальном рынке B2C/B2B-EAЭC, EC, БРИКС, ATP оценивается в более чем два миллиарда долларов США из расчета на один год, без учета устройств которые уже реализованы конечному потребителю и уже эксплуатируются.

Бизнес-модель ЭМИИА генерирует цепочку технологических ценностей, посредством создания добавленной стоимости продуктам ключевых мировых производителей реализуемых свои решения конечным пользователям, на себестоимости и цене это не отразиться. Данный формат расширяет функционал устройств и дает возможность производителю извлекать дополнительную прибыль, не только с проданных продуктов, а и с тех которые уже реализованы и эксплуатируются.

Реализация бизнес-модели позволит проекту выйти на глобальный рынок, максимально быстро масштабировать свои решения с минимальными затратами, и привлечь инвестиции для задач усовершенствования решений, патентования и дальнейшей экспансии.

Кадровая политика

Привлечение инвестиций для задач патентования (патентные заявки)

и экспансии

Обеспечение прав на результаты интеллектуальной деятельности (РИД) — является одной из основных задач проекта и сдерживающим фактором для потенциальных конкурентов. В избежание влияния патентных рисков запланированы организационные мероприятия для формирование структуры по управлению инновациями и процессами связанными с оформлением интеллектуальной собственности, сертификацией и разработкой документации.

Патентные исследования

Маркетинговая стратегия

	КСК ГРААД
2015	ЭМИИА - продемонстрирован лабораторный прототип с технологией машинного зрения (радиооптика)
2016	Разработка аппаратной части (топология электронной схемы модуля) Разработка программной части (микропрограммы)
2017	Патентные исследования Разработка аппаратной части (топология электронной схемы модуля и контроллера) Разработка программной части (микропрограммы для модуля и контроллера с нейросетевыми элементами) Произведены тестовые устройства (когнитивная радиооптика/модули)
2018	Патентные и маркетинговые исследования Разработка нейронной сети для задач машинного зрения на принципах когнитивной радиооптики Произведены тестовые устройства с технологией машинного зрения (когнитивная радиооптика/контроллеры)
2019	НИОКР, исследование оптимальных программно-аппаратных инструментов ML Разработка методологии Machine Learning (ML)
2020	Разработка архитектуры цифровой векторной ML модели автономной нейронной сети Привлечение инвестиций, предпатентная подготовка (научные публикации), патентные заявки, патенты Тестирование бизнес-модели, формирование маркетинговой стратегии и кадровой политики Выход на рынки EAЭС (продукты, комплексные решения)
2021	Выход на рынки АТР и БРИКС (продукты, комплексные решения, устройства), патентные заявки, патенты
2022	Прибыль IPO

ОПЫТНЫЙ ОБРАЗЕЦ УСТРОЙСТВА НА ПРОГРАММНО-АППАРАТНОЙ БАЗЕ ВСТРАИВАЕМОГО SMART КОНТРОЛЛЕРА ЭМИИА MONOCLE (ТЕСТОВАЯ МОДЕЛЬ В КРУГЛОМ КОРПУСЕ)

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Transmitting antenna T_2

$$T_1 = -L_2$$
 $T_2 = L_1$

Damping Effect compensated. Zero forcing.

Фрагменты радиограмм и код модели ML движения взрослого человека в волновом фронте, цифровые векторные маркеры и значениями (id, x, y, z) без растровых аналоговых включений (HTML5/JS/JSON).

id="path818" d="m 94.87779,47.028008 c 0.0.336925 -0.263607,0.001613 -0.5991,0.601613 -0.359462.0 -0.623066,-0.264688 -0.623066, -0.601613 0,-0.336911 0.263604, -0.625678 0.623066,-0.625678 0.335493,0 0.5991, 0.288767 0.5991,0.625678 z"

id="path820" d="m 86.706063,53.357054 c 0,0.336911 -0.263604,0.601613 -0.623064,0.601613 -0.335496,0 -0.2599099,-0.264702 -0.599099,-0.601613 0,-0.336911 0.263603,-0.625692 0.599099,-0.625692 0,35946, 0.0.623064,0.288781 0.623064,0.625692 z"

id="path826" d="m 101.63564,47.028008 c 0.0.336925 -0.28757.0.601613 -0.62307.0.601613 -0.33549.0 -0.5991,-0.264688 -0.5991,-0.601613 0, -0.336911 0.26361, -0.625678 0.5991,-0.625678 0.3355,0 0.62307, 0.288767 0.62307,0.625678 z"

id= pornsz8 d='m 103.81636.53.597704 c 0,0.360963 -0.2636,0.625679 -0.5991,0.625679 -0.35946, 0 -0.62306.-0.264716 -0.62306,-0.625679 0,-0.336911 0.2636 -0.601613 0.62306,-0.601613 0.3355,0 0.5991, 0.264702 0.5991,0.601613 z"

id="path822" d="m 94.87779,52.009423 c 0,0.336911 -0.263607,0.601627 -0.5991,0.601627 -0.359462.0 -0.623066-0.264716 -0.623066-0.601627 0,-0.360962 0.263604 -0.625691 0.623066-0.625691 0.335493,0 0.5991, 0.264729 0.5991,0.625691 z"

id="path824" d="m 89.413996.49.434488 c 0,0.336911 -0.263603,0.625678 -0.5991,0.625678 -0.335496, 0 -0.623064,-0.288767 -0.623064,-0.625678 0, -0.336884 0.287568,-0.625678 0.623064,-0.625678 0.335497 0 0.5991,0.288794 0.5991,0.625678 z"

Цифровая векторная модель ML, псевдо 3D, 2-10 Kbyte, HTML5/JS/JSON, без включения аналоговой растровой графики

 \rightarrow ТЕСТОВЫЙ КОД МОДЕЛИ ML

Data Set size (fragment 2D) of standard models ML: 100 Kbyte

Size of the Data Set (fragment 2D) of the EMIIA models ML: 2-10 Kbyte

Raster Analog Graphics ML

EMIIA Vector Digital Graphics ML

Сравнительные характеристики фрагментов растрового датасета (слева), и векторного датасета ЭМИИА (справа).

ПРЯМЫЕ КОНКУРЕНТЫ (ПРОГРАММНО-АППРАТНЫЕ РЕШЕНИЯ)

Сравнительные характеристики программно-аппаратных решений Направление: радиооптика, прямые конкуренты	Цена от (руб.)	Соответствие санитарным нормам использование в промышленных и бытовых помещениях	Интеграция технологии в бытовые и промышленные устройства loT/lloT	Нейронная сеть Online	Нейронная сеть Offline
Встраиваемые контроллеры и модули ЭМИИА Разработчик: ЭМИИА Россия	3 000	+	+	+	_
Радиолокатор Данник-5 Разработчик: ФГУП СКБ ИРЭ РАН Россия	200 000		_	_	_
Портативный радар РО-900 Разработчик: ЛОГИС-ГЕОТЕХ Россия	300 000	_	_	_	_
Прибор EMERALD на базе Wi-Fi poyтepa Разработчик: Массачусетский технологический институт MIT США	70 000	+	+	+	_

ЭМИИА: https://www.emiia.ru/p/radiooptics.html

EMERALD: https://www.emeraldinno.com/

PO-900: http://www.geotech.ru/safety equipment/bezopasnost/radary obnaruzhiteli lyudej za stenami stenovizory/portativnyj radar dlya operativnogo obnaruzh
eniya obektov za zhelezobetonnymi i raznesennymi stenami ro900/

Данник-5: http://www.sdbireras.ru/produkcziya/blizhnyaya-radiolokacziya/radiolokator-dlya-obnaruzheniya-lyudej-za-stenami-dannik-5

ПРЯМЫЕ КОНКУРЕНТЫ (ПРОГРАММНЫЕ РЕШЕНИЯ)

Сравнительные характеристики программных решений Направление: нейронные сети для задач машинного зрения на принципах радиооптики (когнитивная радиооптика), прямые конкуренты	Цена от (руб.)	Активная фазированная антенная решетка	Нейросетевая модель, (Offline самообучение)	Нейросетевые фильтры (обработка цифровых сигналов Offline)	Требуемые вычислительные мощности	Размер нейросетевых инструментов датасеты, скрипты, библиотеки, архивы
Встраиваемые нейросетевые элементы на базе контроллеров и модулей ЭМИИА Разработчик: ЭМИИА Россия	200		_		от 1 MFLOPS до 30 GFLOPS CPU/GPU/NPU, ARM 32,64 Linux, Android (в зависимости от задач и формата)	100-300 MB
Нейросетевые элементы в приборе EMERALD на базе Wi-Fi poyтера Разработчик: Массачусетский технологический институт МІТ США	5 000	+	_		140-300 GFLOPS CPU/GPU/NPU, ARM 32,64 Linux	1.7 GB

КОСВЕННЫЕ КОНКУРЕНТЫ КОМПАНИИ И ИХ ПРОДУКТЫ НА БАЗЕ КОТОРЫХ СТРОЯТСЯ СИСТЕМЫ IOT/IIOT, INDUSTRY 4.0: УСТРОЙСТВА, СЕНСОРЫ И ДАТЧИКИ ВКЛЮЧАЯ ПАРКОВОЧНЫЕ РАДАРЫ ДЛЯ АВТОМОБИЛЕЙ (ПАРКТРОНИК)

ABB Ltd, Siemens AG, Schneider Electric SE

Основные конкурентные преимущества нашего решения перед мировыми аналогами ABB Ltd, Siemens AG, Schneider Electric SE: встраиваемые нейросетевые элементы проекта не требуют аппаратной модификации и отдельного монтажа, установка нашего решения осуществляется программно на устройства с беспроводным сетевым интерфейсом Wi-Fi 2.4-5 ГГц.. Совокупная емкость данного рынка составит более \$8 млрд к 2022 году и годовым ростом более 10% до 2030 года на рынках EAЭC, EC, БРИКС, ATP.

ПОТЕНЦИАЛЬНЫЕ КОНКУРЕНТЫ

Глобальные компании **Google, Huawei, Яндекс..** понимая емкость рынка и перспективы развития данной технологии способны купить научные разработки в этой области у наших прямых конкурентов, доработать технологию и включить в свои продукты. На начальную разработку или доработку с последующей адаптацией и усовершенствование таких решений им потребуется не менее трех лет. Таким образом из потенциальных конкурентов они смогут перейти в статус прямых конкурентов относительно нашего проекта.

AIIMA | EMIIA

Результаты исследований и разработок, технико-экономические характеристики, конкурентная среда, программные инструменты, (научно-технический задел)

 $\rightarrow \PiO\Delta POSHEE (PDF)$

ВЛАДИМИР СТАРОСТИН

АЛЕКСЕЙ ЛЮМАН

СЕО/СТО – экономика/программирование C++/MATLAB/Simulink. Руководитель проекта, разработчик интеллектуальных систем. Опыт управления собственным бизнесом и разработки в сфере информационных технологий более 10 лет. Опыт разработок, управления процессом разработки. Опыт продвижения решений на рынок Германии и Швеции.

Автор **технологии** машинного на принципах когнитивной радиооптики.

Автор **технологии** определения емкости объекта по цифровым SVG контурам радиоволн и обучению нейронной сети на SVG данных для задач машинного зрения (радиооптика). Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*: https://cscgraad.blogspot.com/

Опыт разработок программно-аппаратных решений и управления техническим процессом более 10 лет. Опыт сертификации. Опыт сотрудничества в сфере разработок с Huawei и Axis Communications.

Автор **топологии** активных фазированных антенных решеток для задач машинного зрения (когнитивная радиооптика). Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*:https://cscqraad.blogspot.com/

НАТАЛЬЯ ФИЛИППОВА

СОО – инженер по машинному обучению Кандидат филологических наук, MATLAB/Simulink (текст, голос offline).
Опыт научной деятельности более 10 лет: www.ma.cfuv.ru.

Научная школа: «Теория языковых смыслов» (в процессе адаптации к голосовым и диалоговым функциям в Machine Learning для задач ЭМИИА). Автор методологии формирования библиотек машинного обучения для голосовых функций (диалоговая система) в offline-режиме.

дмитрий прокопенко

СМО (O) – маркетинговая стратегия, кадровая политика, операционный и стратегический маркетинг, PR.

Опыт управления собственным бизнесом в инжиниринге более 10 лет. Опыт продвижения и интеграции программно-аппаратных решений Ниаwei, Хіаоті на рынке ЕАЭС. Руководил процессом вывода проекта КСК ГРААД на рынки ЕАЭС, интернет-ресурс проекта: https://cscgraad.blogspot.com/ Реализованные проекты в инжиниринге и интеграции Группа компаний СИНЕРГИЯ: http://gksynergy.ru/

* Группа разработчиков проекта принимала участие в создании и коммерциализации комплексной системы контроля программно-аппаратного решения КСК ГРААД (умный дом, умный офис, умное производственное предприятие). На базе данного исследовательского потенциала сформирована архитектура разрабатываемой в данный момент технологии машинного зрения на принципах когнитивной радиооптики.

Интернет-ресурс проекта: https://cscgraad.blogspot.com/

* Участники проекта Старостин В.В. и Люман А.Н. разработали микропрограммы (прошивки) интегрируемые в сетевое оборудование Asus и видеокамеры Axis, что позволило увеличить функционал устройств и сферу применения. Данный продукт был выведен проектом на рынки EAЭС и EC с последующей монетизацией.

Репозиторий GitHub: https://github.com/EMIIA/GRAAD

AIIMA | EMIIA

124683 г. Москва, г. Зеленоград корп. 1818

Интернет-ресурс проекта: <u>emiia.ru</u>

Блог проекта: <u>blog.emiia.ru</u>

Репозиторий GitHub: github.com/EMIIA

+7 (916) 368-36-89 +7 (978) 898-60-83

<u>emiia@emiia.ru</u>