Logistic Regression

Aissata Bah Brice Laurent Linh Vu
2023-12-10

From the UN website, a country is classified as low human development when HDI is less than 0.550. So, I will create a logisitic regression for this using our choosen variables over the countries in 2021.

```
# Load Libraries
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(ggpubr)
library(knitr)
library(car)
## Loading required package: carData
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
data = read.csv("./data/data_clean.csv")
selected_columns = data[, c("country", "year", "region", "hdi", "x1.6", "x3.2", "x5.1", "x6.4", "x7.3")]
selected_columns_2021 = selected_columns[selected_columns$year == "2021",]
selected_columns_2021$low_HD = as.numeric(selected_columns_2021$hdi <= 0.550)
# Fit logisitic regression
logreg = glm(low_HD~x1.6+x3.2+x5.1+x6.4+x7.3+region,data=selected_columns_2021,family="binomial")
```

summary(logreg)

```
##
## Call:
## glm(formula = low_HD \sim x1.6 + x3.2 + x5.1 + x6.4 + x7.3 + region,
      family = "binomial", data = selected_columns_2021)
##
##
## Deviance Residuals:
##
       Min
                  1Q
                        Median
                                      3Q
                                               Max
## -2.69800 -0.06671 -0.00005 -0.00001
                                           2.22328
##
## Coefficients:
                                       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                                       -16.4894 3438.9872 -0.005
## x1.6
                                         8.8816
                                                    4.5466
                                                           1.953
                                                                    0.0508 .
## x3.2
                                        -3.8248
                                                    6.4076 -0.597
                                                                    0.5506
## x5.1
                                                    4.3682 -0.248
                                        -1.0829
                                                                    0.8042
## x6.4
                                                    5.2367 -1.391
                                        -7.2821
                                                                    0.1644
## x7.3
                                        -9.2245
                                                    4.4534 -2.071
                                                                    0.0383 *
## regionEastern Europe & Central Asia 0.6260 5778.0978
                                                           0.000
                                                                    0.9999
                                        2.9538 4440.9708
## regionEU + EFTA + North America
                                                            0.001
                                                                    0.9995
                                                            0.005
## regionLatin America & Caribbean
                                        16.5993 3438.9861
                                                                    0.9961
                                                           0.000
                                                                    0.9999
## regionMiddle East & North Africa
                                       0.7979 6464.6016
## regionSouth Asia
                                        19.8033 3438.9859
                                                           0.006
                                                                    0.9954
## regionSub-Saharan Africa
                                        21.7462 3438.9859
                                                           0.006
                                                                    0.9950
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 127.522 on 137 degrees of freedom
## Residual deviance: 43.444 on 126 degrees of freedom
## AIC: 67.444
##
## Number of Fisher Scoring iterations: 19
```

kable(summary(logreg)\$coefficients)

	Estimate	Std. Error	z value	$\frac{\Pr(> z)}{}$
(Intercept)	-16.4894055	3438.987249	-0.0047948	0.9961743
x1.6	8.8815832	4.546560	1.9534733	0.0507635
x3.2	-3.8247623	6.407582	-0.5969119	0.5505662
x5.1	-1.0829325	4.368209	-0.2479123	0.8042023
x6.4	-7.2820756	5.236693	-1.3905867	0.1643508
x7.3	-9.2244655	4.453396	-2.0713330	0.0383277
regionEastern Europe & Central Asia	0.6259511	5778.097818	0.0001083	0.9999136
regionEU + EFTA + North America	2.9537822	4440.970799	0.0006651	0.9994693
regionLatin America & Caribbean	16.5993435	3438.986100	0.0048268	0.9961488
regionMiddle East & North Africa	0.7978667	6464.601585	0.0001234	0.9999015

	Estimate	Std. Error	z value	$\Pr(> z)$
regionSouth Asia	19.8032694	3438.985864	0.0057585	0.9954054
regionSub-Saharan Africa	21.7461763	3438.985874	0.0063234	0.9949547

```
logreg_noRegion = glm(low_HD~x1.6+x3.2+x5.1+x6.4+x7.3,data=selected_columns_2021,family="binomial")
anova(logreg_noRegion, logreg, test = "LRT")
## Analysis of Deviance Table
##
## Model 1: low_HD ~ x1.6 + x3.2 + x5.1 + x6.4 + x7.3
## Model 2: low_HD ~ x1.6 + x3.2 + x5.1 + x6.4 + x7.3 + region
         Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
                    132
                                   79.457
## 2
                    126
                                   43.444 6
                                                         36.012 2.742e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Plot regression
dummy_x1.6 = seq(0,max(selected_columns_2021$x1.6,na.rm=T),0.01)
dummy_x3.2 = seq(0,max(selected_columns_2021$x3.2,na.rm=T),0.01)
dummy_x5.1 = seq(0,max(selected_columns_2021$x5.1,na.rm=T),0.01)
dummy_x6.4 = seq(0, max(selected_columns_2021\$x6.4, na.rm=T), 0.01)
dummy_x7.3 = seq(0, max(selected_columns_2021\$x7.3, na.rm=T), 0.01)
average_x1.6 = mean(selected_columns_2021$x1.6,na.rm=T)
average_x3.2 = mean(selected_columns_2021$x1.6,na.rm=T)
average_x5.1 = mean(selected_columns_2021$x1.6,na.rm=T)
average x6.4 = mean(selected columns 2021$x1.6,na.rm=T)
average x7.3 = mean(selected columns 2021$x1.6,na.rm=T)
yhat_x1.6 = predict(logreg,new=data.frame(x1.6=dummy_x1.6, x3.2 = rep(average_x3.2, length(dummy_x1.6))
yhat_x3.2 = predict(logreg,new=data.frame(x1.6=rep(average_x1.6, length(dummy_x3.2)), x3.2 = dummy_x3.2
yhat_x5.1 = predict(logreg,new=data.frame(x1.6=rep(average_x1.6, length(dummy_x5.1)), x3.2 = rep(average_x1.6, length(dummy_x5.1))
yhat_x6.4 = predict(logreg,new=data.frame(x1.6=rep(average_x1.6, length(dummy_x6.4)), x3.2 = rep(average_x1.6, length(dummy_x1.6, lengt
yhat_x7.3 = predict(logreg,new=data.frame(x1.6=rep(average_x1.6, length(dummy_x7.3)), x3.2 = rep(average_x1.6, length(dummy_x7.3))
phat_x1.6 = exp(yhat_x1.6)/(1+exp(yhat_x1.6))
phat_x3.2 = exp(yhat_x3.2)/(1+exp(yhat_x3.2))
phat_x5.1 = exp(yhat_x5.1)/(1+exp(yhat_x5.1))
phat_x6.4 = exp(yhat_x6.4)/(1+exp(yhat_x6.4))
phat_x7.3 = exp(yhat_x7.3)/(1+exp(yhat_x7.3))
p1 = ggplot() + geom_point(data = selected_columns_2021, aes(x=x1.6, y=low_HD)) + geom_line(aes(x=dummy
p2 = ggplot() + geom_point(data = selected_columns_2021, aes(x=x3.2, y=low_HD)) + geom_line(aes(x=dummy
p3 = ggplot() + geom_point(data = selected_columns_2021, aes(x=x5.1, y=low_HD)) + geom_line(aes(x=dummy
p4 = ggplot() + geom_point(data = selected_columns_2021, aes(x=x6.4, y=low_HD)) + geom_line(aes(x=dummy
p5 = ggplot() + geom_point(data = selected_columns_2021, aes(x=x7.3, y=low_HD)) + geom_line(aes(x=dummy
```

ggarrange(p1,p2,p3,p4,p5, nrow = 2, ncol=3, labels = c("A", "B", "C", "D", "E"))

Logistic Regression Assumptions

```
# Check for linearity between explanatory variables and residuals, as well as with residuals and fitted residuals = as.data.frame(cbind(selected_columns_2021, logreg$fitted.values, logreg$residuals))

p2 = ggplot() + geom_point(data = residuals, aes(x=x1.6, y=(logreg$residuals+x1.6)), color = "#1a84b8", p3 = ggplot() + geom_point(data = logreg, aes(x=x3.2, y=(logreg$residuals+x3.2)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x5.1, y=(logreg$residuals+x5.1)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x6.4, y=(logreg$residuals+x6.4)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = "#1a84b8", algebra = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color = ggplot() + geom_point(data = logreg, aes(x=x7.3, y=(logreg$residuals+x7.3)), color
```

Partial Residual Plots

Check for multicollinearity of explanatory variables
plot(logreg)

kable(t(vif(logreg)[,1]))

x1.6	x3.2	x5.1	x6.4	x7.3	region
3.598187	2.107906	1.739619	3.392325	2.485649	2.334165

kable(data.frame("Category" = c("Constraints on Government Powers","Open Government","Order and Securit

Category	Representative_Variable	Name
Constraints on Government Powers	Transition of power is subject to the law	x1.6
Open Government	Right to information	x3.2
Order and Security	Crime is effectively controlled	x5.1
Regulatory Enforcement	Due process is respected in administrative proceedings	x6.4
Civil Justice	Civil justice is free of corruption	x7.3