

UNIVERSIDAD NACIONAL DEL ALTIPLANO

Escuela Profesional del Ingeniería de Sistemas

LÓGICA PARA INTELIGENCIA ARTIFICIAL Árboles de Decisión

Prof. Ing. José Luis Juarez Ruelas

Puno, Mayo del 2019

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp	
M	Work	Snapchat	
F	Work	WhatsApp	
M	Study	Pokemon Go	
M	Study	Pokemon Go	

¿Cual aplicación recomendamos?

- -Para una mujer que trabaja en oficina
- -Para un hombre que trabaja en fabrica
- -Para alguien que va al colegio

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp	
M	Work	Snapchat 💍	
F	Work	WhatsApp	
M	Study	Pokemon Go	
M	Study	Pokemon Go	

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp	
M	Work	Snapchat 💍	
F	Work	WhatsApp	
M	Study	Pokemon Go	
M	Study	Pokemon Go	

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp	
M	Work	Snapchat	
F	Work	WhatsApp	
M	Study	Pokemon Go	
M	Study	Pokemon Go	

Entre género y
ocupación
¿Cuál variable le
parece más decisivo
para predecir la
aplicación descargarán
los usuarios?

Gender	Occupation	Арр	
F	Study	Pokemon Go	
F	Work	WhatsApp	
M	Work	Snapchat	
F	Work	WhatsApp	
M	Study	Pokemon Go	
M	Study	Pokemon Go	

Entre género y
ocupación
¿Cuál variable le
parece más decisivo
para predecir qué
aplicación descargarán
los usuarios?

Recommending Apps

Gender	Occupation	Арр
F	Study	•
F	Work	<u>Q</u>
М	Work	*
F	Work	<u>Q</u>
М	Study	●
М	Study	●

Clasificación

Regresión

La mejor recta de división para ser aceptado en un programa de estudios

¿Cuál es la mejor recta de división?

La mejor recta de división

Creando el árbol de decisión

Creando el árbol de decisión

Entropy

Solido Entropía baja

Liquido Entropía media Vapor Entropía alta

Def. En termodinámica, la entropía (simbolizada como S) es una magnitud física para un sistema termodinámico en equilibrio. Mide el número de microestados compatibles con el macroestado de equilibrio, también se puede decir que mide el grado de organización del sistema.

Entropía media

Entropía alta

Game

Win lots of money!

No money

Probability of Winning

	$P \ (red)$	$P \ (blue)$	$P \ (winning)$
0000	1	1	$1 \times 1 \times 1 \times 1 = 1$
0000	0.75	0.25	$0.75 \times 0.75 \times 0.75 \times 0.25 = 0.105$
	0.5	0.5	$0.5 \times 0.5 \times 0.5 \times 0.5 = 0.0625$

¿Qué función nos ayudará a convertir los productos en sumas?

Products

 $0.75^*0.75^*0.75^*0.25 = 0.105$

- Sin
- Cos
- Log
- Exp

¿Qué función nos ayudará a convertir los productos en sumas?

Log(ab) = Log(a) + Log(b)

$-Log_2$, promedio de entropía

Entropy

	$P \ (red)$	$P \ (blue)$	$P \ (winning)$	$-\log_2 \ (P(winning))$	$Entropy \ (average)$
0000	1	1	$1 \times 1 \times 1 \times 1 = 1$	0 + 0 + 0 + 0 = 0	0
0000	0.75	0.25	$0.75 \times 0.75 \times 0.75 \times 0.75 \times 0.25 = 0.105$	0.415 + 0.415 + 0.415 + 2 = 3.245	0.81
	0.5	0.5	$0.5 \times 0.5 \times 0.5 \times 0.5 = 0.0625$	1 + 1 + 1 + 1 = 4	1

Resumen

Entropy

$$Entropy = -\frac{5}{8}log_2\left(\frac{5}{8}\right) - \frac{3}{8}log_2\left(\frac{3}{8}\right) = 0.9544$$

Ecuación: Entropía

Entropy

$$Entropy = -\frac{m}{m-n}log_2\left(\frac{m}{m+n}\right) - \frac{n}{m+n}log_2\left(\frac{n}{m+n}\right)$$

Entropía multiclase

$$entropy = -\frac{m}{m+n}\log_2(\frac{m}{m+n}) - \frac{n}{m+n}\log_2(\frac{n}{m+n})$$

$$p_1 = \frac{m}{m+n} \qquad \qquad p_2 = \frac{n}{m+n}$$

$$entropy = -p1 log_2(p1) - p2 log_2(p2)$$

Esta ecuación de entropía se puede extender al caso de varias clases, donde tenemos tres o más valores posibles:

$$entropy = -p1 log_2(p1) - p2 log_2(p2) - ... - pn log_2(pn)$$

$$entropy = -\sum_{i=1}^{n} pi \ log_2(pi)$$

Information Gain

Information Gain =

Entropy(parent)

- 0.5 [Entropy(child 1) + Entropy(child 2)]

Information gain 1-0.72 = 0.28

Information gain 1 - 1 = 0

Information gain 1 - 0 = 1

Maximizando la Ganancia de información

Gender	Occupation	Арр
F	Study	○
F	Work	<u>Q</u>
М	Work	
F	Work	<u>Q</u>
М	Study	●
М	Study	●

Maximizando la Ganancia de información

Recommending Apps

Gender	Occupation	Арр
F	Study	<u>•</u>
F	Work	<u>Q</u>
М	Work	*
F	Work	<u>Q</u>
М	Study	●
М	Study	-

Recommending Apps

Gender	Occupation	Арр
F	Study	<u>•</u>
F	Work	
М	Work	*
F	Work	<u>Q</u>
М	Study	●
М	Study	●

Occupation **◆ Entropy** 0 0.92 Information gain = 1.46 - 0.46 = 1

Recommending Apps

0.54

Gender	Occupation	Арр
F	Study	<u></u>
F	Work	<u>Q</u>
М	Work	*
F	Work	<u>Q</u>
М	Study	•
М	Study	-

Overfitting

GRADES

Overfitting

Large Tables

Gender	Age	Location	Platform	Job	Hobby	Арр
F	15	US	iOS	School	Videogames	•
F	25	France	Android	Work	Tennis	<u>Q</u>
М	32	Chile	iOS	Temp	Tennis	
F	40	China	iOS	Retired	Chess	<u>Q</u>
М	12	US	Android	School	Tennis	•
М	14	Australia	Android	School	Videogames	•

Random Forests

Random Forests

Gender	Age	Location	Platform	Job	Hobby	Арр
F	15	US	iOS	School	Videogames	•
F	25	France	Android	Work	Tennis	<u>Q</u>
М	32	Chile	iOS	Temp	Tennis	
F	40	China	iOS	Retired	Chess	<u>\$</u>
М	12	US	Android	School	Tennis	•
М	14	Australia	Android	School	Videogames	•

Hiperparametros para Árboles de Decisión

Maximum Depth (Profundidad máxima)

La profundidad máxima de un árbol de decisión es simplemente la longitud más grande entre la raíz y una hoja. Un árbol de longitud máxima k puede tener como máximo 2^k hojas.

Hiperparametros para Árboles de Decisión

Minimum number of samples per leaf (Número mínimo de muestras por hoja)

Cuando se divide un nodo, uno podría tener el problema de tener 99 muestras en una de ellas y 1 en la otra. Esto no nos llevará demasiado lejos en nuestro proceso, y sería una pérdida de tiempo y recursos.

Si queremos evitar esto, podemos establecer un mínimo para el número de muestras que permitimos en cada hoia.

45

Hiperparametros para Árboles de Decisión

Minimum number of samples per split (Número mínimo de muestras por división)

Este es el mismo que el número mínimo de muestras por hoja, pero se aplica en cualquier división de un nodo.

Maximum number of features (Número máximo de características)

A menudo, tendremos demasiadas características para construir un árbol. Si este es el caso, en cada división, tenemos que verificar el conjunto de datos completo en cada una de las funciones. Esto puede ser muy costoso. Una solución para esto es limitar la cantidad de funciones que uno busca en cada división. Si este número es lo suficientemente grande, es muy probable que encontremos una buena característica entre las que buscamos

Árboles de decisión en Sklearn

Installation Documentation -

Examples

Google Custom Search

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- . Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest. ... - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering.

mean-shift. ... Examples

Dimensionality reduction

Reducing the number of random variables to consider

Applications: Visualization, Increased efficiency

Algorithms: PCA, feature selection, nonnegative matrix factorization. - Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter

Modules: grid search, cross validation. Examples

metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Examples

47 Who uses scikit-learn? News Community

Árboles de decisión en Weka

Árboles de decisión en Orange

