«УТВЕРЖДАЮ» Директор ФГБНУ «Федеральный институт недагогических измерений»

> О.А. Решетникова 2020 г.

«СОГЛАСОВАНО»
Председатель
Научно-методического совета
ФГБНУ «ФИПИ» по математике

А.Л. Семенов <u>«10 » коз бря</u> 2020 г.

Единый государственный экзамен по МАТЕМАТИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2021 года по математике

Профильный уровень

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 2/30

Единый государственный экзамен по МАТЕМАТИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов единого государственного экзамена 2021 года по МАТЕМАТИКЕ

Профильный уровень

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов (КИМ) единого государственного экзамена (ЕГЭ) 2021 г. следует иметь в виду, что задания, включённые в него, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2021 г. Полный перечень элементов содержания, которые могут контролироваться на едином государственном экзамене 2021 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2021 г. по математике.

В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве заданий, об их форме и уровне сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

В демонстрационном варианте представлено по несколько примеров заданий на некоторые позиции экзаменационной работы. В реальных вариантах экзаменационной работы на каждую позицию будет предложено только одно задание.

Эти сведения позволят выпускникам выработать стратегию подготовки к ЕГЭ в 2021 г.

Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2021 года по МАТЕМАТИКЕ

Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 19 заданий. Часть 1 содержит 8 заданий с кратким ответом базового уровня сложности. Часть 2 содержит 4 задания с кратким ответом повышенного уровня сложности и 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–12 записываются по приведённому ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

Ответ: <u>-0,8</u>. -0,8

При выполнении заданий 13–19 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

© 2021 Федеральная служба по надзору в сфере образования и науки

Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 4/30

Ответом к заданиям 1–12 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

Часть 1

_	Поезд отправился из Санкт-Петербурга в 23 часа 50 минут (время московское) и прибыл в Москву в 7 часов 50 минут следующих суток. Сколько часов поезд находился в пути?
	Ответ:
	ИЛИ
	В среднем за день во время конференции расходуется 80 пакетиков чая. Конференция длится 3 дня. В пачке чая 50 пакетиков. Какого наименьшего количества пачек чая хватит на все дни конференции?
(Ответ:
	или
	Держатели дисконтной карты книжного магазина получают при покупке скидку 5%. Книга стоит 140 рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу?
(Ответ:
	ИЛИ
	Весь первый этаж 16-этажного дома занимают магазины, а на каждом из остальных этажей любого его подъезда расположено по 4 квартиры. На каком этаже этого дома находится квартира 165?
	Ответ:

или

На диаграмме показана среднемесячная температура воздуха во Владивостоке за каждый месяц 2013 г. По горизонтали указываются месяцы; по вертикали — температура в градусах Цельсия. Определите по приведённой диаграмме, сколько было месяцев с отрицательной среднемесячной температурой.

Ответ: .

3 На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найдите его площадь.

Ответ: .

или

На клетчатой бумаге с размером клетки 1×1 изображена трапеция. Найдите длину средней линии этой трапеции.

Ответ: ______.

На рисунке жирными точками показано суточное количество осадков, выпадавших в Томске с 8 по 24 января 2005 г. По горизонтали указаны числа месяца; по вертикали — количество осадков, выпавших в соответствующий день, в миллиметрах. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа в Томске впервые выпало ровно 1,5 миллиметра осадков.

Ответ: .

или

Мощность отопителя в автомобиле регулируется дополнительным сопротивлением. При этом меняется сила тока в электрической цепи электродвигателя: чем меньше сопротивление, тем больше сила тока и быстрее вращается мотор отопителя. На графике показана зависимость силы тока от величины сопротивления. На горизонтальной оси отмечено сопротивление в омах; на вертикальной оси — сила тока в амперах. Определите по графику, на сколько омов увеличилось сопротивление в цепи при уменьшении силы тока с 12 ампер до 4 ампер.

Ответ: ______.

	Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 7 / 30
4	В сборнике билетов по биологии всего 25 билетов. Только в двух билетах
	встречается вопрос о грибах. На экзамене выпускнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.
	Ответ:
	ИЛИ
	Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8, а вероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?
	Ответ:
	или
	Стрелок при каждом выстреле поражает мишень с вероятностью 0,3, независимо от результатов предыдущих выстрелов. Какова вероятность того, что он поразит мишень, сделав не более 3 выстрелов?
	Ответ:
5	Найдите корень уравнения $3^{x-5} = 81$.
	Ответ:
	ИЛИ
	Найдите корень уравнения $\sqrt{3x+49} = 10$.
	Ответ:
	или
	Найдите корень уравнения $\log_8 (5x + 47) = 3$.
	Ответ:

Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 8/30

или

	Решите уравнение $\sqrt{2x+3} = x$. Если корней окажется несколько, то в ответ запишите наименьший из них.
	Ответ:
6	Треугольник ABC вписан в окружность с центром O . Угол BAC равен 32° . Найдите угол BOC . Ответ дайте в градусах.
	Ответ:
	или
	Площадь треугольника ABC равна 24, DE — средняя линия, параллельная стороне AB . Найдите площадь треугольника CDE .
	Ответ:
	ИЛИ
	В ромбе $ABCD$ угол DBA равен 13°. Найдите угол BCD . Ответ дайте в градусах.
	Ответ:
	или
	Стороны параллелограмма равны 24 и 27. Высота, опущенная на меньшую из этих сторон, равна 18. Найдите высоту, опущенную на бо́льшую сторону параллелограмма.
	Ответ:

7 На рисунке изображён график дифференцируемой функции y = f(x). На оси абсцисс отмечены девять точек: $x_1, x_2, ... x_9$.

Найдите все отмеченные точки, в которых производная функции f(x) отрицательна. В ответе укажите количество этих точек.

Ответ: ______ .

или

На рисунке изображены график функции $y=f\left(x\right)$ и касательная к нему в точке с абсциссой x_{0} . Найдите значение производной функции $f\left(x\right)$ в точке x_{0} .

Ответ: ______.

8	В первом цилиндрическом сосуде уровень жидкости достигает
	16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр
	основания которого в 2 раза больше диаметра основания первого. На какой
	высоте будет находиться уровень жидкости во втором сосуде? Ответ дайте
	в сантиметрах.

Ответ: .

или

Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.

Ответ: ______.

ИЛИ

Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1:2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?

Ответ: ______

Не забудьте перенести все ответы в бланк ответов № 1.

,	
Часть 2	11 Весной катер идёт против течения реки в $1\frac{2}{3}$ раза медленнее, чем по течению.
Найдите $\sin 2\alpha$, если $\cos \alpha = 0.6$ и $\pi < \alpha < 2\pi$.	Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт
Ответ:	против течения в $1\frac{1}{2}$ раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).
ИЛИ	Ответ:
Найдите значение выражения $16\log_7 \sqrt[4]{7}$.	или
Ответ: ИЛИ	Смешав 45-процентный и 97-процентный растворы кислоты и добавив 10 кг чистой воды, получили 62-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 72-процентный раствор кислоты. Сколько килограммов 45-процентного раствора использовали для получения смеси?
Найдите значение выражения $4^{\frac{1}{5}} \cdot 16^{\frac{9}{10}}$.	Ответ:
Ответ:	или
Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением	Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона? Ответ:
$v = c \cdot \frac{f - f_0}{f + f_0},$	или
где $c=1500$ м/с — скорость звука в воде, f_0 — частота испускаемого сигнала (в МГц), f — частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.	Первая труба наполняет бассейн на 48 минут дольше, чем вторая. Обе трубы, работая одновременно, наполняют тот же бассейн за 45 минут. За сколько минут наполняет этот бассейн одна вторая труба?
Ответ:	Ответ:

Найдите наименьшее значение функции

$$y = 9x - 9\ln(x+11) + 7$$

на отрезке [-10,5;0].

Ответ: ______.

или

Найдите точку максимума функции $y = (x+8)^2 \cdot e^{3-x}$.

Ответ: ______.

или

Найдите точку минимума функции $y = -\frac{x}{x^2 + 256}$.

Ответ: ______.

или

Найдите точку максимума функции $y = (2x - 3)\cos x - 2\sin x + 2$ на промежутке $(0; 2\pi)$.

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Для записи решений и ответов на задания 13-19 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

а) Решите уравнение

$$2\sin\left(x+\frac{\pi}{3}\right)+\cos 2x=\sqrt{3}\cos x+1.$$

- б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.
- Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.
 - а) Докажите, что прямые *BM* и *MN* перпендикулярны.
 - б) Найдите угол между плоскостями ВМN и АВВ 1.

или

В правильной четырёхугольной пирамиде SABCD сторона AB основания равна 16, а высота пирамиды равна 4. На рёбрах AB, CD и AS отмечены точки M, N и K соответственно, причём AM = DN = 4 и AK = 3.

- а) Докажите, что плоскости MNK и SBC параллельны.
- б) Найдите расстояние от точки M до плоскости SBC.
- Решите неравенство $\log_{11} \left(8x^2 + 7 \right) \log_{11} \left(x^2 + x + 1 \right) \ge \log_{11} \left(\frac{x}{x+5} + 7 \right)$.
- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые *AD* и *BC* параллельны.
 - б) Найдите площадь треугольника АКВ, если известно, что радиусы окружностей равны 4 и 1.

- 15 января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
 - -1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r — **целое** число;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
 - 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг	1.0	0.6	0.4	0.3	0,2	0.1	0
(в млн рублей)	1,0	0,6	0,4	0,3	0,2	0,1	U

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

или

Строительство нового завода стоит 75 млн рублей. Затраты на производство x тыс. ед. продукции на таком заводе равны $0.5x^2 + x + 7$ млн рублей в год. Если продукцию завода продать по цене р тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит $px - (0.5x^2 + x + 7)$. Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении р строительство завода окупится не более чем за 3 года?

18

Найдите все положительные значения a, при каждом из которых система

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение

- Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 16/30
- В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.
- а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
- б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
- в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

или

На доске написаны десять различных натуральных чисел, которые удовлетворяют двум условиям: среднее арифметическое шести наименьших из них равно 5, а среднее арифметическое шести наибольших равно 15.

- а) Может ли наименьшее из этих десяти чисел равняться 3?
- б) Может ли среднее арифметическое всех этих десяти чисел равняться 11?
- в) Каково наибольшее возможное значение среднего арифметического всех этих десяти чисел при данных условиях?

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

Система оценивания экзаменационной работы по математике (профильный уровень)

Каждое из заданий 1–12 считается выполненными верно, если экзаменуемый дал верный ответ в виде целого числа или конечной десятичной дроби. Верный ответ на каждое задание оценивается 1 баллом.

Номер		Правильні	ый ответ	
задания	Пример 1	Пример 2	Пример 3	Пример 4
1	8	5	133	13
2	9	2	4	
3	6	6		
4	0,08	0,2	0,657	
5	9	17	93	3
6	64	6	154	16
7	4	-1,75		
8	4	12	52	
9	-0,96	4	16	
10	751			
11	5	15	7,5	72
12	-83	-6	16	1,5

Решения и критерии оценивания выполнения заданий с развёрнутым ответом

Количество баллов, выставленных за выполнение заданий 13–19, зависит от полноты решения и правильности ответа.

Общие требования к выполнению заданий с развёрнутым ответом: решение должно быть математически грамотным, полным; все возможные случаи должны быть рассмотрены. Методы решения, формы его записи и формы записи ответа могут быть разными. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается 0 баллов.

Эксперты проверяют только математическое содержание представленного решения, а особенности записи не учитывают.

При выполнении задания могут использоваться без доказательства и ссылок любые математические факты, содержащиеся в учебниках и учебных пособиях, входящих в Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ среднего общего образования.

а) Решите уравнение

$$2\sin\left(x+\frac{\pi}{3}\right)+\cos 2x=\sqrt{3}\cos x+1.$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right]$.

Решение. а) Запишем исходное уравнение в виде:

$$\sin x + \sqrt{3}\cos x + 1 - 2\sin^2 x = \sqrt{3}\cos x + 1$$
; $\sin x - 2\sin^2 x = 0$; $\sin x \cdot (2\sin x - 1) = 0$.
Значит, $\sin x = 0$, откуда $x = \pi k$, $k \in \mathbb{Z}$, или $\sin x = \frac{1}{2}$, откуда $x = \frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$, или $x = \frac{5\pi}{6} + 2\pi m$, $m \in \mathbb{Z}$.

б) C помощью числовой окружности отберём корни, принадлежащие отрезку $\left[-3\pi;-\frac{3\pi}{2}\right].$

Получим числа: -3π ; -2π ; $-\frac{11\pi}{6}$.

Otbet: a)
$$\pi k$$
, $k \in \mathbb{Z}$; $\frac{\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$;

$$\frac{5\pi}{6} + 2\pi m, \ m \in \mathbb{Z};$$

6)
$$-3\pi$$
; -2π ; $-\frac{11\pi}{6}$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a , ИЛИ	1
получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта a и пункта δ	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

14

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ имеют длину 6. Точки M и N— середины рёбер AA_1 и A_1C_1 соответственно.

- а) Докажите, что прямые BM и MN перпендикулярны.
- б) Найдите угол между плоскостями ВМN и АВВ1.

Решение. а) Пусть точка H — середина AC . Тогда $BN^2 = BH^2 + NH^2 = \left(3\sqrt{3}\right)^2 + 6^2 = 63 \, .$

Вместе с тем

$$BM^2 + MN^2 = (3^2 + 6^2) + (3^2 + 3^2) = 63$$

тогда по теореме, обратной теореме Пифагора, треугольник BMN является прямоугольным с прямым углом M .

б) Проведём перпендикуляр NP к прямой A_1B_1 . Тогда $NP\perp A_1B_1$ и $NP\perp A_1A$. Следовательно, $NP\perp ABB_1$. Поэтому MP — проекция MN на плоскость ABB_1 .

Прямая BM перпендикулярна MN, тогда по теореме о трёх перпендикулярах $BM \perp MP$. Следовательно, угол NMP — линейный угол искомого угла.

Длина *NP* равна половине высоты треугольника $A_1B_1C_1$, т.е. $NP = \frac{3\sqrt{3}}{2}$.

Поэтому
$$\sin \angle NMP = \frac{NP}{MN} = \frac{3\sqrt{3}}{2 \cdot 3\sqrt{2}} = \frac{\sqrt{3}}{\sqrt{8}}.$$

Следовательно, $\angle NMP = \arcsin \sqrt{\frac{3}{8}}$.

Ответ: б) $\arcsin \sqrt{\frac{3}{8}}$.

ИЛИ

В правильной четырёхугольной пирамиде SABCD сторона AB основания равна 16, а высота пирамиды равна 4. На рёбрах AB, CD и AS отмечены точки M, N и K соответственно, причём AM = DN = 4 и AK = 3.

- а) Докажите, что плоскости MNK и SBC параллельны.
- б) Найдите расстояние от точки M до плоскости SBC .

Решение. а) Пусть O — центр основания пирамиды. Тогда $AO = 8\sqrt{2}$, $AS = \sqrt{AO^2 + SO^2} = 12$. Следовательно, AM : AB = AK : AS = 1:4, поэтому прямые SB и KM параллельны. Кроме того, MBCN — прямоугольник, поэтому прямые MN и BC также параллельны. Отсюда следует, что плоскости MNK и SBC параллельны.

б) Пусть P, Q, R — середины отрезков AD, MN и BC соответственно. Тогда плоскость SPR перпендикулярна прямой BC, а по доказанному в п. а) плоскости MNK и SBC параллельны, поэтому искомое расстояние равно расстоянию от точки Q до плоскости SBC. Проведём из точки Q перпендикуляр QH к прямой SR. Тогда

$$QH = QR \cdot \sin \angle QRH = QR \cdot \frac{SO}{SR} = 12 \cdot \frac{4}{\sqrt{4^2 + 8^2}} = \frac{12}{\sqrt{5}}.$$

Ответ: б) $\frac{12}{\sqrt{5}}$.

Содержание критерия	Баллы		
Обоснованно получены верные ответы в пунктах а и б	2		
Выполнен только один из пунктов – a или δ	1		
Решение не соответствует ни одному из критериев, приведённых	0		
выше			
Максимальный балл	2		

Решите неравенство
$$\log_{11} \left(8x^2 + 7 \right) - \log_{11} \left(x^2 + x + 1 \right) \ge \log_{11} \left(\frac{x}{x+5} + 7 \right)$$
.

Решение. Правая часть неравенства определена при x < -5 и $x > -\frac{35}{8}$.

Поскольку при любых значениях x выражение $8x^2 + 7$ принимает положительные значения, при x < -5 и $x > -\frac{35}{8}$ неравенство принимает вид:

$$\frac{8x^{2}+7}{x^{2}+x+1} \ge \frac{8x+35}{x+5}; \frac{8x^{3}+40x^{2}+7x+35}{(x+5)(x^{2}+x+1)} \ge \frac{8x^{3}+43x^{2}+43x+35}{(x+5)(x^{2}+x+1)};$$
$$\frac{3x^{2}+36x}{(x+5)(x^{2}+x+1)} \le 0; \frac{3x(x+12)}{(x+5)(x^{2}+x+1)} \le 0,$$

откуда $x \le -12$; $-5 < x \le 0$. Учитывая ограничения x < -5 и $x > -\frac{35}{8}$, получаем: $x \le -12$; $-\frac{35}{8} < x \le 0$.

Ответ: $(-\infty; -12]; \left(-\frac{35}{8}; 0\right].$

Содержание критерия	Баллы			
Обоснованно получен верный ответ	2			
Обоснованно получен ответ, отличающийся от верного	1			
исключением точек -12 и/или 0,				
ИЛИ				
получен неверный ответ из-за вычислительной ошибки, но при этом				
имеется верная последовательность всех шагов решения				
Решение не соответствует ни одному из критериев, перечисленных	0			
выше				
Максимальный балл	2			

- Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.
 - а) Докажите, что прямые *AD* и *BC* параллельны.
- б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Решение. а) Обозначим центры окружностей O_1 и O_2 соответственно. Пусть общая касательная, проведённая к окружностям в точке K, пересекает AB в точке M. По свойству касательных, проведённых из одной точки, AM = KM и KM = BM. Треугольник AKB, у которого медиана равна половине стороны, к которой она проведена, прямоугольный.

Вписанный угол AKD прямой, поэтому он опирается на диаметр AD. Значит, $AD \perp AB$. Аналогично получаем, что $BC \perp AB$. Следовательно, прямые AD и BC параллельны.

б) Пусть, для определённости, первая окружность имеет радиус 4, а вторая — радиус 1.

Треугольники *BKC* и *AKD* подобны,
$$\frac{AD}{BC}$$
 = 4 . Пусть S_{BKC} = S , тогда
$$S_{AKD}$$
 = 16 S .

У треугольников AKD и AKB общая высота, следовательно, $\frac{S_{AKD}}{S_{AKB}} = \frac{DK}{KB} = \frac{AD}{BC}$, т.е. $S_{AKB} = 4S$. Аналогично, $S_{CKD} = 4S$. Площадь трапеции ABCD равна 25S. Вычислим площадь трапеции ABCD. Проведём к AD перпендикуляр O_2H , равный высоте трапеции, и найдём его из прямоугольного треугольника O_2HO_1 :

$$O_2H = \sqrt{O_1O_2^2 - O_1H^2} = 4$$

Тогда

16

$$S_{ABCD} = \frac{AD + BC}{2} \cdot AB = 20.$$

Следовательно, 25S = 20, откуда S = 0.8 и $S_{AKB} = 4S = 3.2$.

Ответ: 3.2.

- Содержание критерия Баллы Имеется верное доказательство утверждения пункта а, и обоснованно получен верный ответ в пункте δ Получен обоснованный ответ в пункте δ . 2 ИЛИ имеется верное доказательство утверждения пункта a, и при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки Имеется верное доказательство утверждения пункта a, ИЛИ при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте δ с использованием утверждения пункта a, при этом пункт a не выполнен Решение не соответствует ни одному из критериев, приведённых выше 0 Максимальный балл
- 15 января планируется взять кредит в банке на шесть месяцев в размере 1 млн рублей. Условия его возврата таковы:
 - 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r **целое** число;
 - со 2-го по 14-е число каждого месяца необходимо выплатить часть долга:
 - 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата	15.01	15.02	15.03	15.04	15.05	15.06	15.07
Долг	1.0	0.6	0.4	0.3	0.2	0.1	0
(в млн рублей)	1,0	0,6	0,4	0,3	0,2	0,1	U

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

Решение. По условию, долг перед банком (в млн рублей) на 15-е число каждого месяца должен уменьшаться до нуля следующим образом:

Пусть $k = 1 + \frac{r}{100}$, тогда долг на 1-е число каждого месяца равен:

$$k$$
; 0,6 k ; 0,4 k ; 0,3 k ; 0,2 k ; 0,1 k .

Следовательно, выплаты со 2-го по 14-е число каждого месяца составляют:

$$k-0.6$$
; $0.6k-0.4$; $0.4k-0.3$; $0.3k-0.2$; $0.2k-0.1$; $0.1k$.

Общая сумма выплат составляет:

$$k(1+0,6+0,4+0,3+0,2+0,1) - (0,6+0,4+0,3+0,2+0,1) =$$

$$= (k-1)(1+0,6+0,4+0,3+0,2+0,1) + 1 = 2,6(k-1)+1.$$

По условию, общая сумма выплат будет меньше 1,2 млн рублей, значит,

$$2,6(k-1)+1<1,2$$
; $2,6\cdot\frac{r}{100}+1<1,2$; $r<7\frac{9}{13}$.

Наибольшее целое решение этого неравенства — число 7. Значит, искомое число процентов — 7.

Ответ: 7.

ИЛИ

Строительство нового завода стоит 75 млн рублей. Затраты на производство x тыс. ед. продукции на таком заводе равны $0.5x^2+x+7$ млн рублей в год. Если продукцию завода продать по цене p тыс. рублей за единицу, то прибыль фирмы (в млн рублей) за один год составит $px-\left(0.5x^2+x+7\right)$.

Когда завод будет построен, фирма будет выпускать продукцию в таком количестве, чтобы прибыль была наибольшей. При каком наименьшем значении p строительство завода окупится не более чем за 3 года?

$$px - (0.5x^2 + x + 7) = -0.5x^2 + (p-1)x - 7.$$

Это выражение является квадратным трёхчленом и достигает своего наибольшего значения при x=p-1. Наибольшее значение равно $\frac{\left(p-1\right)^2}{2}-7$.

Строительство завода окупится не более чем за 3 года, если

$$\frac{(p-1)^2}{2} - 7 \ge \frac{75}{3}; (p-1)^2 \ge 64; (p-9)(p+7) \ge 0,$$

то есть при $p \ge 9$, поскольку цена продукции не может быть отрицательной. Таким образом, наименьшее значение p = 9 .

Ответ: p = 9.

Содержание критерия	Баллы
Обоснованно получен верный ответ	3
Верно построена математическая модель, решение сведено	
к исследованию этой модели и получен результат: — неверный ответ из-за вычислительной ошибки; — верный ответ, но решение недостаточно обосновано	2
Верно построена математическая модель, решение сведено к исследованию этой модели, при этом решение может быть не завершено	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	3

Найдите все положительные значения a, при каждом из которых система

$$\begin{cases} (|x|-5)^2 + (y-4)^2 = 9, \\ (x+2)^2 + y^2 = a^2 \end{cases}$$

имеет единственное решение.

Решение. Если $x \ge 0$, то уравнение $(|x|-5)^2+(y-4)^2=9$ задаёт окружность ω_1 с центром в точке $C_1(5;\ 4)$ радиусом 3, а если x<0, то оно задаёт окружность ω_2 с центром в точке $C_2(-5;\ 4)$ таким же радиусом (см. рисунок).

При положительных значениях a уравнение $(x+2)^2+y^2=a^2$ задаёт окружность ω с центром в точке C(-2;0) радиусом a. Поэтому задача состоит в том, чтобы найти все значения a, при каждом из которых окружность ω имеет единственную общую точку с объединением окружностей ω_1 и ω_2 .

Демонстрационный вариант ЕГЭ 2021 г. МАТЕМАТИКА, 11 класс. Профильный уровень. 26 / 30

Из точки C проведём луч CC_1 и обозначим через A_1 и B_1 точки его пересечения с окружностью ω_1 , где A_1 лежит между C и C_1 . Так как

$$CC_1 = \sqrt{(5+2)^2 + 4^2} = \sqrt{65}$$
, to $CA_1 = \sqrt{65} - 3$, $CB_1 = \sqrt{65} + 3$.

При $a < CA_1$ или $a > CB_1$ окружности ω и ω_1 не пересекаются.

При $CA_1 < a < CB_1$ окружности ω и ω_1 имеют две общие точки.

При $a = CA_1$ или $a = CB_1$ окружности ω и ω_1 касаются.

Из точки C проведём луч CC_2 и обозначим через A_2 и B_2 точки его пересечения с окружностью ω_2 , где A_2 лежит между C и C_2 . Так как

$$CC_2 = \sqrt{(-5+2)^2 + 4^2} = 5$$
, To $CA_2 = 5 - 3 = 2$, $CB_2 = 5 + 3 = 8$.

При $a < CA_2$ или $a > CB_2$ окружности ω и ω_2 не пересекаются.

При $CA_2 < a < CB_2$ окружности ω и ω_2 имеют две общие точки.

При $a = CA_2$ или $a = CB_2$ окружности ω и ω_2 касаются.

Исходная система имеет единственное решение тогда и только тогда, когда окружность ω касается ровно одной из двух окружностей ω_1 и ω_2 и не пересекается с другой. Так как $CA_2 < CA_1 < CB_2 < CB_1$, то условию задачи удовлетворяют только числа a=2 и $a=\sqrt{65}+3$.

Ответ: 2; $\sqrt{65} + 3$.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получены оба верных значения	3
параметра, но	
 или в ответ включены также и одно-два неверных значения; 	
 или решение недостаточно обосновано 	
С помощью верного рассуждения получено хотя бы одно верное	2
значение параметра	
Задача сведена к исследованию:	1
 или взаимного расположения трёх окружностей; 	
 или двух квадратных уравнений с параметром 	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

В школах № 1 и № 2 учащиеся писали тест. Из каждой школы тест писали, по крайней мере, 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешёл из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

- а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?
- б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?
- в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Решение. а) Пусть в школе № 1 писали тест 2 учащихся, один из них набрал 1 балл, а второй набрал 19 баллов и перешёл в школу № 2. Тогда средний балл в школе № 1 уменьшился в 10 раз.

б) Пусть в школе $N \ge 2$ писали тест m учащихся, средний балл равнялся B, а перешедший в неё учащийся набрал u баллов. Тогда получаем:

$$u = 0.9(m+1)B - mB$$
; $10u = (9-m)B$.

Если B=7, то (9-m)B не делится на 10, а 10u делится на 10. Но это невозможно, поскольку 10u=(9-m)B.

в) Пусть в школе № 1 средний балл равнялся A. Тогда получаем:

$$u = (9-m)A - 0.9(8-m)A$$
; $10u = (18-m)A = (9-m)B$.

Заметим, что если B=1 или B=3, то 10u=(9-m)B не делится на 10. Если B=2 или B=4, то m=4. В первом случае 14A=10, а во втором 14A=20. Значит, ни один из этих случаев не возможен.

При B=5 и m=3 получаем u=3 и A=2. Этот случай реализуется, например, если в школе № 1 писали тест 6 учащихся, 3 из них набрали по 1 баллу, а 3 — по 3 балла, в школе № 2 писали тест 3 учащихся и каждый набрал по 5 баллов, а у перешедшего из одной школы в другую учащегося — 3 балла.

Ответ: а) да; б) нет; в) 5.

или

На доске написаны десять различных натуральных чисел, которые удовлетворяют двум условиям: среднее арифметическое шести наименьших из них равно 5, а среднее арифметическое шести наибольших равно 15.

- а) Может ли наименьшее из этих десяти чисел равняться 3?
- б) Может ли среднее арифметическое всех этих десяти чисел равняться 11?
- в) Каково наибольшее возможное значение среднего арифметического всех этих десяти чисел при данных условиях?

Решение. а) Наименьшее число не может равняться 3, так как в противном случае сумма шести наименьших чисел будет не меньше 3+4+5+6+7+8=33, а их среднее арифметическое — не меньше $\frac{33}{6}>5$, что противоречит условию.

б) Пусть $a_1, a_2, ..., a_{10}$ — написанные на доске числа, расположенные в порядке возрастания. Тогда из условия вытекают равенства

$$a_1 + a_2 + ... + a_6 = 30$$
, $a_5 + a_6 + ... + a_{10} = 90$.

Если среднее арифметическое всех чисел равно 11, то

$$a_1 + a_2 + \dots + a_{10} = 110$$
,

откуда

$$a_5+a_6=\left(a_1+...+a_6\right)+\left(a_5+...+a_{10}\right)-\left(a_1+...+a_{10}\right)=30+90-110=10,$$
что невозможно, так как $a_5\geq 5$ и $a_6\geq 6$.

в) Покажем, что $a_5+a_6 \ge 15$. Действительно, если $a_5+a_6 \le 14$, то

$$a_1 + a_2 + a_3 + a_4 \ge 30 - 14 = 16$$
,

но тогда $a_4 \ge 6$ (так как иначе $a_1 + a_2 + a_3 + a_4 \le 2 + 3 + 4 + 5 = 14$) и поэтому $14 \ge a_5 + a_6 \ge 7 + 8 = 15$ — противоречие.

Таким образом, получаем

$$a_1 + a_2 + ... + a_{10} = 120 - (a_5 + a_6) \le 105$$

а значит, среднее арифметическое всех 10 чисел не превосходит значения 10,5. Это значение реализуется: все условия задачи выполнены для чисел

а их среднее арифметическое равно как раз 10,5.

Ответ: а) нет; б) нет; в) 10,5.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	
Верно получен один из следующих результатов:	1
– обоснованное решение пункта <i>a</i> ;	
$-$ обоснованное решение пункта δ ;	
искомая оценка в пункте в;	
$-$ пример в пункте ϵ , обеспечивающий точность предыдущей оценки	
Решение не соответствует ни одному из критериев, перечисленных	0
выше	
Максимальный балл	4

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 07.11.2018 № 190/1512, зарегистрирован Минюстом России 10.12.2018 № 52952)

 \ll 82. <...> По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы ЕГЭ с развернутым ответом <...>

В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенными считаются следующие расхождения.

- 1. Расхождение между баллами, выставленными двумя экспертами за выполнение любого из заданий 13–19, составляет 2 или более балла. В этом случае третий эксперт проверяет только те ответы на задания, которые были оценены со столь существенным расхождением.
- 2. Расхождения между баллами, выставленными двумя экспертами за выполнение хотя бы двух из заданий 13–19. В этом случае третий эксперт проверяет ответы на все задания работы.