#### Technische Universität Darmstadt





# **TK3: Ubiquitous Computing**

Chapter 2: Infrastructure

Part 1: Connectivity

Lecturer: Dr. Immanuel Schweizer

Copyrighted material – for TUD student use only



# **Simple Architecture**







## **Taxonomy: An Attempt**



We may start to organize UC components in a real taxonomy:





## Summary "Sensing"



- From tagging to peoplecentric sensing
  - Mapping the virtual and real-world
  - Measure and act on the real-world
  - Measure and act on humans and their environment

- Challenges
  - Energy
  - Communication
  - Data processing
  - Context-awareness
  - Interaction with humans
  - Privacy



## **Recap: Communication Interfaces**





- Bluetooth Desktop / Personal Area Net: few, "valued" devices
- ZigBee scales up to sensor networks ("smart dust") in terms of power, #of nodes, management …

| Market Name<br>Standard | GPRS/UMTS<br>(TDMA/CDMA) | Wi-Fi™<br>802.11b    | Bluetooth™<br>802.15.1 | ZigBee™<br>802.15.4     |
|-------------------------|--------------------------|----------------------|------------------------|-------------------------|
| Application Focus       | LongDist.<br>Voice/Data  | Web, Email,<br>Video | Cable<br>Replacement   | Monitoring & Cntrl      |
| System Resources        | 16MB+                    | 1MB+                 | 250KB+                 | 4KB - 32KB              |
| Battery Life (days)     | 1-7                      | .5 - 5               | 1 - 7                  | 100 - 1,000+            |
| Network Size            | (1)                      | (32)                 | 7                      | 255 / 65,000            |
| Bandwidth (kb/s)        | 14 - 2000                | 11,000+              | 720                    | 20 - 250                |
| Transmission Range (m)  | 1,000+                   | 1 - 100              | 1 - 10+                | 1 - 100+                |
| Success Metrics         | Reach, Quality           | Speed, Flexibility   | Cost,<br>Convenience   | Reliab., Power,<br>Cost |



## **Recap: Communication Interfaces**



- Close coupling systems
  - Use very small ranges (<= 1cm)</li>
  - Transponder must be inserted into reader or positioned on surface
  - Greater amount of power can be provided

- Remote coupling systems
  - Read ranges of up to 1m
  - Almost always based on Inductive Coupling
  - ■Have 90% market share
- Long-range systems
  - Typical read ranges: 3m with passive tags,15m with active tags
  - Electromagnetic Backscatter Coupling or SAW-Transponders

|             | LF                                                              | HF                                                                                   | UHF                                                                             | Microwave                                                                                    |
|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Freq. Range | 125 - 134KHz                                                    | 13.56 MHz                                                                            | 866 - 915MHz                                                                    | 2.45 - 5.8 GHz                                                                               |
| Read Range  | 10 cm                                                           | 1M                                                                                   | 2-7 M                                                                           | 1M                                                                                           |
| Application | Smart Card,<br>Ticketing, animal<br>tagging,<br>Access, Laundry | Small item<br>management,<br>supply chain,<br>Anti-theft, library,<br>transportation | Transportation vehicle ID, Access/Security, large item management, supply chain | Transportation vehicle ID (road toll), Access/ Security, large item management, supply chain |



# **Recap: Communication Interfaces**



|                        | NFC                                                            | RFID                 | IrDa                          | Bluetooth                                |
|------------------------|----------------------------------------------------------------|----------------------|-------------------------------|------------------------------------------|
| Set -up time           | <0.1ms                                                         | <0.1ms               | ~O.5s                         | ~6 sec                                   |
| Range                  | Up to 10cm                                                     | Up to 3m             | Up to 5m                      | Up to 30m                                |
| Usability              | Human centric<br>Easy, intuitive,<br>fast                      | Item centric<br>Easy | Data<br>centric<br>Easy       | Data centric<br>Medium                   |
| Selectivity            | High, given, security                                          | Partly given         | Line of sight                 | Who are you?                             |
| Use cases              | Pay, get access,<br>share, initiate<br>service, easy set<br>up | Item tracking        | Control &<br>exchange<br>data | Network for<br>data exchange,<br>headset |
| Consumer<br>experience | Touch, wave, simply connect                                    | Get<br>information   | Easy                          | Configuration needed                     |

http://www.oracle.com/technetwork/articles/javame/nfc-140183.html





ZigBee™

802.15.4

Monitoring &

Cost

- Connectivity mostly wireless
  - Easier installation and setup

No Wireless Band to rule them all

| Application Focus      | Voice/Data    | Video             | Replacement | Cntrl           |
|------------------------|---------------|-------------------|-------------|-----------------|
| System Resources       | 16MB+         | 1MB+              | 250KB+      | 4KB - 32KB      |
| Battery Life (days)    | 1-7           | .5 - 5            | 1 - 7       | 100 - 1,000+    |
| Network Size           | (1)           | (32)              | 7           | 255 / 65,000    |
| Bandwidth (kb/s)       | 14 - 2000     | 11,000+           | 720         | 20 - 250        |
| Transmission Range (m) | 1,000+        | 1 - 100           | 1 - 10+     | 1 - 100+        |
| Success Matrics        | Poach Quality | Spood Flovibility | Cost,       | Reliab., Power, |

Speed, Flexibility

Wi-Fi™

802.11b

Web Fmail

**GPRS/UMTS** 

(TDMA/CDMA)

Reach, Quality

LongDist

Market Name

Success Metrics

Standard

Communication is crucial for UC Bluetooth™

802.15.1

Convenience



## **System Properties**



- Computers need to be networked, distributed and transparently accessible
- 2. Computer *Interaction* with Humans needs to be more *hidden*
- 3. Computers need to be *aware* of *environment context*
- 4. Computers can operate autonomously, without human intervention, be self-governed
- 5. Computers can handle a multiplicity of dynamic actions and interactions, governed by intelligent decision-making and intelligent organisational interaction. This entails some form of artificial intelligence.







- Background: Elaborate Disciplines of
  - Computer Networks: connect computers around the world
  - Distributed Systems: software infrastructure atop Computer Networks
  - Distinction? Not clearly defined, but Distributed Systems establish a level of transparency
    - ... of location, distribution, mobility, concurrency, ...
- A rough layering of communication in UC:



Relation to IP stack is roughly: Layers 1+2 contain IP, layers 3+4 use IP



# **Internet Layer Architecture**







# Major Connectivity Approaches for UC



- 1. Meshing: how to interconnect adjacent computers
  - Traditional networks: mostly wired, since ~1990: shared → switched media
  - UC: several wireless technologies not all purposes served by a single one
    - increased importance of wireless networks
    - larger address space needed (cf. IPv6)
    - networks with Self-X capabilities: self-configuration, self-healing, ...
    - mobility support, handovers, roaming (cf. Mobile IP)
- 2. Nodes: computers are resources added to system
  - Today: mostly considered homogeneous, except for client/server distinction;
     resources mostly under control of computer owner
  - UC: from general-purpose to special-purpose nodes
    - Resource heterogeneity will play a major role
    - Novel classes of nodes emerge, e.g.:
      - Federated computers: self-contained display + headset + PDA combined ad-hoc
      - "handles": smart labels like RFIDs, pointing to the "digital shadow" of everyday objects



# **Major Connectivity Approaches for UC**



- Overlay Network: adds an abstraction layer atop physical network
  - ... to implement content-based addressing, caching/replication, fault tolerance, etc.
  - Today: used for special purposes, e.g., "content distribution"
  - UC: from "special case" to "standard case"
    - P2P networks: every participating computer is a "server" and adds resources to the system
    - Cloud Computing: users/enterprises rent fractions of datacenter → on-demand scalability
- 4. Platform (Middleware): everything that provides developers with a "powerful, easy-to-use" distributed system
  - Today: bloated communication stacks (cf. Web Services), using solely TCP/IP
  - UC: several new challenges
    - Resource heterogeneity: super-lean platforms vs. rich functionality
    - Zero-effort deployment due to "zillions of nodes"
    - How to achieve interoperability in presence of many, competing middleware systems?
       (N platforms on my smoke detector?)
    - Novel common middleware services (industry-standard context server?)
    - Scalable support for communication abstractions, in particular: efficient event routing



## **Major Connectivity Approaches for UC**



#### 5. Communication Paradigm: abstraction crucial for programmers!

- Today: mainly information pull, client/server paradigm
- UC: evolution "pull -> push"
  - Scalable system architecture and scalable event routing algorithms
  - Standards for subscription languages? (use XQuery+XPath, SQL,...?)
  - Need for pull model remains how to integrate?

#### 6. Distributed Applications themselves

- Today: rather "closed", i.e., developed top-down by a team
- UC: more open systems, service interoperability
  - further (exponential) growth in size, further diversification
  - How to better accommodate openness? (spontaneous integration of services provided by environment, service interoperability across multiple component vendors)
  - How to accommodate multimodal interaction?
  - "tapping into items": reduce gap between real world state and enterprise information system (cf. RFID)
  - "tapping into humans": reduce gap between humans (=subjects in a business process) and the information in the process engine (cf. order picking)





# Meshing



The basis of the basis: wireless network technologies

... and the basis thereof: some "physics"

(promise: understanding it will help a lot in understanding wireless technologies)



## **Electromagnetic Spectrum**





- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency
- UHF = Ultra High Frequency
- SHF = Super High Frequency
- EHF = Extra High Frequency
- UV = Ultraviolet Light

```
f * \lambda = c
(c: speed of light, 3* 10<sup>8</sup> m/s)
```

note: above figure shows orders-of-magnitude (log)

rules-of-thumb (remember!):

MHz: 300 m

100 MHz: 3 m

10 GHz: 3 cm



#### **Data Transmission**



- Playground: Electromagnetic Spectrum
  - Above FM (e.g. FM-Radio, ~ **10**<sup>8</sup> Hz)
  - Below visible light (~ 10<sup>15</sup> Hz) in other words
     microwaves 0.5 100 GHz or
     infrared > 100 THz
- Rules-of-Thumb
  - higher carrier frequencies mean
  - 1. (-) needs higher energy, more difficult (expensive) electronics
  - 2. (+) fewer competing "networks" (a mess up to 2 GHz, difficult up to 10)
  - 3. (+) larger bandwidths and/or # of channels
    - -> higher data rates or more subscribers
  - signal energy ~ data rate · reach
    - related to: electrosmog, energy consumption, cost
  - the higher the frequency, the more behavior resembles that of light
    - very low frequencies: "surface waves"
    - medium freq: e.g., reflection at ionosphere ...
    - very high freq.: "line-of-sight" (cf. shadowing, distortion…)





Signal strength decreases with distance

 Only in vacuum: signal strength ~ 1/d² (Newton's inverse-square law)

- Signal propagation ranges
  - Transmission range
    - communication possible, low error rate
  - Detection range
    - signal detection possible, high error rate
  - Interference range
    - no signal detection, signal adds to noise
- Never circular shapes in real scenarios!
  - cf. cellular networks use higher cell density in city centers









#### Signal attenuation ("path loss") is crucial

- Function of distance d, landscape, obstacles (buildings, walls)
- Single most important difference to wired communications (most substantial effect on protocol design etc.)!
- A simple model for path loss (Friis transmission equation)
   (A: mean received signal power, related to transmitted power):
  - decreases w/ square of frequency
  - decreases w/ power-of- $\alpha$  of distance ( $\alpha$  = 2 in free space, up to 5 in urban environment)

A = (g: constant) 
$$P_r = g^{-1}$$
  
 $P_s = f^2 d^{\alpha}$   
A ... amplification (1 / attenuation)



## **Basics: SNR, Decibel**



"Design center" of all networks (layer 1):

Signal-2-Noise-Ratio SNR (or S/R)

i.e., power of ,signal of interest' related to power of ,what disturbs'

Decibel: unit used to express relative differences in signal strengths.

- Given: two signals with powers P1, P2
- $\rightarrow$  compute 10 \*  $\log_{10}$  (P1/P2)
- E.g.: P1 is 100 times P2:
  - P1/P2 = 100,  $log_{10}(100) = 2$ , ,relation P1 : P2' is 20 dB
- ,relation' may be: SNR; power sent vs. received (attenuation); ...
- E.g.: signal over 2 hops, no amplifier
  - attenuation is 20:1, then 7:1  $\rightarrow$  overall attenuation. is 140:1
  - or:  $13.01 \text{ dB} + 8.45 \text{ dB} = 21.46 \text{ dB} (10*\log_{10}20 + 10*\log_{10}7 = 10*\log_{10}140)$

(note: power is f(amplitude<sup>2</sup>)  $\rightarrow$  20\*log<sub>10</sub> (A1/A2) yields same result





#### Signal path is crucial

- Straight line only in open space (line-of-sight = LOS)
- Additional effects in real environments
  - Frequency dependent fading
    - Changes in signal power due to changing signal propagation paths
  - Shadowing (high frequency -> quasi-optical behavior)
  - Reflection at large obstacles
  - Refraction depending on medium density
  - Scattering at small obstacles
  - Diffraction at edges (relation wavelength : object size matters)











shadowing

reflection

refraction

scattering

diffraction





## Multipath propagation

- Due to multiple signal propagation effects, parts of a signal can travel along different paths → arrive at slightly different times
- Effect (Inter-Symbol Interference (ISI)
  - Different parts of different symbols may overlap
  - High data rate  $\rightarrow$  reflections of symbol n interfere with symb. n+i
  - Consequence: ISI limits data rate!

Considered big(gest) difference over wired Xmission (worse than









- 1. Path Loss  $\rightarrow$  no listen-while-talk (LWT)
- Given goal: uncoordinated access of N senders to 1 medium
- Problem: collisions → detect, resolve
- Wire (Ethernet): LWT possible
  - during Xmit: if signal-on-wire ≠ signal-sent: → collision
- Wireless: LWT impossible (received signal much too low-energy)

- 2. Path Loss no full duplex traffic
- Wire: full duplex possible (2 peers use same wire)
- Wireless: needs two channels (= two carrier frequencies)
  - Mobile station MS → base (transceiver) station BTS: "uplink"
  - Base station → mobile station: "downlink"
  - (Satellite jargon)





Hidden-Terminal Problem 🗡 listen-before-talk (LBT) may be too optimistic

- Given goal: uncoordinated access of N senders to 1 medium
- Problem: collisions → avoid by checking first if medium free
- In example:
  - S1 & S2 check: LBT o.k.
  - BUT: R experiences collision (S2 may also be in "shadow" of S1)



- 4. Exposed-Terminal Problem → LBT may be too pessimistic
- In example:
  - Both S1 and S2 could send
  - But S2 senses S1 during LBT







#### **Doppler Effect**

Mobile sender stretches/quenches waves -> wireless technologies have a (mobility) speed limitation

- Slow (walk): WLAN (Laptop), cordless phone
- Medium (drive): cell phone < 250 km/h (high-speed trains need extension!)</p>
- Fast (fly): airplane phone system (uses satellites)







#### **Signal Latency**

#### Often not an issue

- In speed-of-light range: 2/3 c (air) ... 1/1 c (in space)
- Depends (in range above) on altitude (air), frequency, ...
- Example: GSM 9.6 kbps data or 10Mbps WiFi, 120B (SMS?) msg.:
  - GSM over 3km: 10-5 s latency, 0.1s transmission time 4 orders of magnitude
  - WiFi over 30m: 10<sup>-7</sup> s latency, 10<sup>-4</sup> s transmission time 3 orders of magnitude

#### •Often crucial (!)

- Multipath  $\rightarrow$  ISI (see above)
- Timing, synchronization of stations, etc. (see later)
- GPS etc.: calculation of distance, position
- High tier antennas, in particular geostationary satellites:
  - 35.800 km orbit  $\rightarrow$  up + down: some 7\*10<sup>7</sup> m, speed some 3\*10<sup>8</sup> m/s  $\rightarrow$  ~ ¼ s delay
  - 1Mbps link: 120B "put on ether" in only ~ 10-3 s



## Multiple Access (xxMA)



Several stations (mobile stations MS, base transceiver stations BTS = cell towers) share ether

- Multiplex: Ether is "divided", fractions (channels) are assigned to individual MS (xDM: x-division multiplex)
  - what is divided? frequency F (carrier/bands), time(-slots) T, etc. (below)
  - terms: frequency division multiplex FDM, time ... TDM, ...
- Multiple Access: (xxMA)
  - major issue is "how to assign fractions, how to share ..."
  - multiplex is *one* way, at link establishment (is there any?), (rather) fixed
    - → each xDM is also called xDMA, synonymous
  - or: assignment is dynamic (on-the-fly, concurrent)
    - in many cases: methods (e.g., ALOHA) add distributed coordination to TDMA
- Multiple Access (xxMA) options
  - concurrent (always decentralized): optimistic access ("I think Ether is free")
    - Collision? → "repair / retransmit"
  - controlled-centralized: BTS assigns "fractions", informs MS
    - typical for cellular PLMN (GSM, UMTS, etc.)
    - but: how can MS tell "I am switched on", "I am in your cell"?
    - usually, separate "channel" for concurrent access
  - controlled-decentralized: for cases with no master (no BTS) → not for public mobile networks



# Multiplex / Multiple Access



#### What is divided? $\geq$ four options (order $\sim$ tech. complexity):

- 1. Space (SDM / SDMA):
  - "bands" are re-used at a certain distance (remote cell)
  - attenuation → remote re-use won't interfere (much) with local cell
- 2. Frequency (FDM / FDMA):
  - different MS use different carrier frequencies
  - allocated frequency band divided into subbands
  - GSM900: 124\*200kHz, GSM1800: 374\*200kHz
- 3. Time (TDM / TDMA):
  - different MS use different time-slots
  - often: revolving frames, MS knows "its" pos. (slot) in frame
- 4. Code (CDM / CDMA):
  - different MS use different "characteristic" codes
  - receiver tunes to this code



# **Multiple Access: SDMA**

- SDMA (SDM): frequency bands re-used in remote cells
- Different re-use patterns possible: (repeated) clusters of cells
  - N = 3, 4, 7 (shown), 12, ... cells per cluster
  - Each band used only once per cluster
- Design parameters:
  - Reuse distance d=f(r,pattern)
  - Cell radius r (coverage)
- For different N (cluster sizes, patterns):
  - Different d/r ratios → different SNR induced by remote cells of same band
  - Tradeoff: 1/N of all bands usable per cell
- Again, remember realistic example (from Book by B. Walke):





#### **Multiple Access: FDMA**



#### Channels = subbands, distributed over available bandwidth



#### Example GSM900:

Carrier frequency of uplink/downlink F<sub>u</sub>/F<sub>d</sub>:

• 
$$F_{\parallel}(n) = 890.2 \text{ MHz} + (n-1) * 0.2 \text{ MHz}, n=1 ... 124$$

• 
$$F_d(n) = F_u(n) + 45 \text{ MHz}$$

Note: high-speed (wLAN, wATM etc.) → increasing use of OFDM:

Overlapping bands, orthogonal frequencies (harmonic distances of subcarriers, equals carrier distance) dyn. bandwidth assignment ...



## **Multiple Access: TDMA**



- Entire frequency dedicated to single sender-receiver pair, but only for a short period of time (time slot, slice)
- Not applicable in analog transmission systems (old telephone net)
- E.g., 9.6 kbps per channel  $\rightarrow$  > 80 kbps on ether for 8 channels
- GSM: 8 slots (TDMA+FDMA!)
- Practical systems: TDMA always w/ FDMA
- CON: Need for time synchronization





## **Multiple Access: CDMA**



#### CDMA, also called "spread spectrum" SS

- Versions: FH (FHSS), DS (DSSS) (chaotic crosstalk, but not ,concurrent'!)
- Each sender uses "entire" bandwidth & time, "spreads" code
- Wideband (W-CDMA): plus FDMA, but huge subbands (~5MHz)
  - Narrow (N-CDMA): smaller (~1MHz), but still >> FDMA+TDMA-subbands
- Receiver knows coding rules of sender:
  - Autocorrelations → transforms signal back (to lo-bandwidth/hi-power)
  - All other signals appear as noise (→ # of senders limited, cf. TDM,FDM)
- No channel assignment → simpler plus better spectrum utilization
   → used in wireless LANs, increasingly in PLMN
- No synchronization needed (each code is self-synchronizing)
- Problem: needs fine-grained transmission power control
  - E.g., MSes must adjust such that all signals reach BTS w/ ~same power
  - But: signal loss may change very fast (as MS moves)
  - IS-95 (USA Qualcomm): 1kbps "adjustment channel" per MS



# Multiple Access: CDMA-FH



#### Frequency-Hopping FH:

- Sender+receiver constantly change (hop-2-new) frequency
  - Basis: pseudo-random sequence, initial value agreed
  - Origin: military networks (sequence unknown → secret comm.)
- "Hope"; few collisions → high probability of correction
  - Fast-FH; several / many hops per bit
    - "a few" collisions per bit don't harm
- Slow-FH several bits per hop
  - GSM: optional (deterministic) slow-FH
    - Reason: distribute errors in "noisy" bands over all channels
    - Hope: corrected by forward-error-correction FEC







Hedy Lamarr (Hedwig Kiesler), US Pat. 1942 w/ George Antheil



# Multiple Access: CDMA-DS



#### Direct Sequence (by far most commonly used today):

- Each bit mapped onto sequence of mini-bits ("chips")
- 10 chips / needs 10 times higher data rate (reality: up to ~1000)
- Bit "1"  $\rightarrow$  chip-sequence, Bit "0"  $\rightarrow$  inverse sequence
- Receiver autocorrelates → reconstructs original signal
  - Again: secrecy is by-product (IFF chip-seq. per station is random)
     SNR near 0 → not even existence of communication detectable
  - Again: much more dynamic than FDM, TDM
  - Plus: no (,expensive') synchronous frequency-hopping needed!





## **Concurrent Access: ALOHA**



- Concurrent Access is mostly about 'coordinating' medium access over time
- Developed at U Hawaii (islands, hills!) since 1970:
  - Wireless net connects terminals(/hubs) ⇔ host system
  - Compares well to: MS ⇔ BTS
  - ,grand father' of concurrent access schemes (wireless and Ethernet)
- Channels: 407,350 MHz uplink, 413,475 downlink
  - Concurrent access (ALOHA) on uplink only
  - Downlink: packets + acknowledgements (ACK) for uplink packets
- MS send whenever packet ready
- BTS sends corresponding ACK on downlink
- If 2-or-more MS send with time overlap → collision
  - → BTS ignores "jam" received → no ACK
- MSes: timeout (no ACK received) → send again
  - → collision repeated?

No: since random "backoff" (waiting time)



# Concurrent Access: Pure ALOHA





- packets 1.1 (station A), 2.1 (B), 3.2 (C) transmitted ok
- packets 1.2/3.1 collide, 1.3/2.2 too (partial as bad as total!)





## **Concurrent Access: Slotted ALOHA**





- Fixed (maximum) packet size, equals time slots
- common clock for slots (xmitted at downlink → latency was rel. low)
- start xmit w/ slot only (end ≤ slot end) → all collisions are total
- ,surprise': mean throughput increased by factor of 2!
  - why? xmission slightly later, but ,just hit'-overlaps avoided





## Concurrent Access: **CSMA**





## Idea: stations ,sense' channel before sending

- CS = carrier sense ("cs = on" means: channel busy)
- CS also called LBT = listen-before-talk
- Advantage: channel busy → somebody sends -> don't disturb
- Total avoidance of collisions? NO
  - MS<sub>1</sub> ready2send, MS<sub>2</sub> just started (signal has not arrived yet)
    - -> MS<sub>1</sub>: CS=off (no ,busy' sensed) -> collision
- Collision probability high at end of a transmission:
  - several MS want to send, sense channel during CS=on
    - all MS realize CS=off → immediate xmit
  - CSMA variants therefore wrt. "when/how to start xmit"



## **Concurrent Access: CSMA variants**



```
Major distinction: procedure applied when station is ready2send
1. non-persistent)
          snd. while <cs=on> DO < delay (t)>; /** t constant or random
                        /** no polling, no danger after end of Xmit
2. p-persistent.
         spd: WHILE <cs=on> DO <active wait>; /** usually: cs=off→ interrupt
               IF <random-bool(p)> THEN <send> /** true with probability p < 1
               ELSE { <delay t>; GOTO snd } /** t may be random # of .slots'
          ** lower p reduces probability of ,competition' after end of xmission
3. 1-persistent: (the one used for 'wired' Ethernet = CSMA/CD – LWT is possible there!)
         spd: WHILE <cs=on> DO <active wait>; /** as above
                          /** high competition → backoff algo.
          IF <collision> THEN { /** here: binary exponential backoff
               IF <subsequent-collision> THEN T:=T*T ELSE T:=Tstart;
               <delay (random(0,T)>; GOTO snd } /** heavy traffic: interval grows exp
               passive delay
                                   → non persistent: S xmits here
channel busy (cs=on)
                                                            time
                                   ←slot
            active
             wait
                                                            Optional slotting; Reason: slots large enough for
               1-persistent:
station S
                                                            ,cs' to reach all stations → no collision if other
              S xmits here
ready2send
                                                            station starts earlier (successful as CSMA/CA)
```



## Concurrent Access: CSMA/CA





- CA = collision avoidance; several minor variants as described here: ≈ slotted variant of p-persistent CSMA with p=0
- Contention window CW = time interval considered collision intensive
- After active wait; cs=off → delay during IFS (interframe spacing)
  - minimum IFS determined by wireless signal latency
  - 3 different IFSs (signal/priority/data: SIFS, PIFS, DIFS) priorities
- Then:
  - draw random  $\eta \in [0,1)$
  - wait for slot that ,contains' time  $\eta \cdot CW$  (active wait: maybe cs  $\rightarrow$  on)
    - $\eta \rightarrow risk$  of collision ,spread' over CW
  - ■if still collision → increase CW exponentially (up to maximum)
  - Fairness, if preceded by other station, # of slots waited count next time







# Low bandwidth → needs highly efficient modulation

- Known: carrier frequency:
  - •s(t) = A·sin (  $2\pi f \cdot t + \varphi$  )
  - bits modulate amplitude A, frequency F, phase φ (P)
  - A/F/P-"modulation" AM, FM …
  - also: shift keying ASK, FSK, PSK
  - $\blacksquare A \rightarrow F \rightarrow P$ : better, more complex





## Data Rate vs. Signaling Rate



#### Signaling rate:

:= number of times per time unit (second) the signal parameter may change (usually isochronous)

v<sub>s</sub>, measured in **bauds** (1/s), symbols/second

#### Data rate:

:= number of bits transmitted per time unit (second)

v<sub>B</sub>, measured in bits per second (bit/s)

#### Question: how many **bits** per **symbol**, i.e. $v_s \leftrightarrow$

- 1. binary signal:  $v_B = v_S$
- 2. synchronization, clock, redundancy part of encoding:  $v_B < v_S$
- 3. one symbol carries several bits (eg.: 00, 01, 10, 11):  $v_B > v_S$ 
  - for symbol with n values:  $v_B = v_S Id(n)$
  - n = 2 (binary), 4 (quarternary / **DIBIT**), ...





## **Modulation: PSK**



- Binary PSK (BPSK; = old PSK):
  - phase change 0° or 180°
  - this is the simplest method; last 30 years: move to very sophisticated PSK!!



# **QPSK** (Q=quadrature):

- 4 phases: 0°, 90°, 180°, 270° (a)
- only phase changes, same amplitude
- 2 bits per symbol (dibit)
- Problem: 180° phase change
  - -> zero crossing
  - -> decoding at receiver problematic, because temporarily no carrier





#### **Modulation: PSK**



## • π/4-QPSK)

- add 45° phase jump after each symbol, independent of data
- carrier signal always present

**OQPSK**: Offset-QPSK

- change of real part/imaginary part delayed by half symbol time
- max. phase change reduced to 90°

**QAM**: quadrature amplitude modulation

PSK + ASK

- e.g., 16 values, 4 bits: I/Q-diagram for 4-QAM (,optimal' I/Q-diag on 2 amplitude ,rings'? or else?)
- wired-modem 4-QAM example (9600 baud):12 phases, 4 phases w/ 2 amplitudes
- 16QAM and 64QAM exist (need good SNR)







#### **Modulation: OFDM**



**Orthogonal FDM** (OFDM) --- called OFDMA if used to multiplex multiple channels

- Large number of closely-spaced, orthogonal sub-carriers used for transmission
- Minimizes crosstalk between carriers
- When A is at peak, B, C, D, E are all zero
- Sub-carriers use "conventional modulation" (e.g., 16QAM)
- N slowly-modulated narrowband signals instead of 1 rapidly-modul. broadband signal
- For a single fast bit stream: serial-to-N\*parallel, then each of N slower signals controls one carrier frequency → IFFT applied → "integrated" signal transmitted
- Condition for orthogonality:

$$\Delta f = \frac{1}{T_S}$$
  $\approx \frac{1}{1}$ 

Δf ... sub-carrier spacing

T<sub>s</sub> ... symbol length (time)

B ... bandwidth

N ... number of sub-carriers



When A is at the peak, B, C, D and E are all zero.



## **Modulation: OFDM**



• Primary advantage of OFDM: ability to cope with severe channel conditions

|                                | single rapidly-modulated broadband signal                       | OFDM: many slowly-modulated narrowband signals                             |
|--------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| intersymbol interference       | inevitable for reasonable bitrates                              | can be reduced or eliminated                                               |
| narrowband<br>interference     | destroys whole signal                                           | sub-carriers can be selectively disabled                                   |
| frequency-<br>selective fading | requires complex channel equalization                           | equalization simple, because sub-<br>carriers are narrowband and separated |
| spectral efficiency            | space multiplex = "waste of spectrum" (cf. SDMA reuse patterns) | Single Frequency Networks                                                  |
| complexity of RF electronics   | lowmedium (depends on modulation)                               | computationally very complex (-> energy!)                                  |





- Multiple Input Multiple Output (MIMO)
  - "Multipath is not enemy, but ally"
  - Uses multiple antennas at transmitter and receiver -> N x M signal paths
  - Variety of paths is a result of objects in the environment
  - Moving antennas even a small distance-> paths will change
- MIMO channel matrix H
  - h<sub>ij</sub> are complex numbers (amplitude + phase)
  - Number of spatial streams: rank(H) ≤ min(M, N)
  - Line of sight? -> rank(H) ~ 1!
    - -> MIMO requires multipath to work!
  - Estimation of H is difficult; ,multipath resilient' modulation helps -> combine MIMO with OFDM
- MIMO capacity
  - Capacity improves linearly w/ antenna pairs
  - Same data is coded & transmitted through different antennas
    - → multiplies power in the channel
    - → improves SNR







### Wireless Classification



- Five major most relevant classes of wireless (non broadcast) networks:
  - Wireless Wide Area Networks
    - GSM, UMTS, LTE
  - Wireless Distribution Networks
    - WiMAX, LTE
  - Wireless Local Area Networks (WLAN)
    - **802.11**
  - Wireless Personal Area Networks (WPAN)
    - Bluetooth, (ZigBee)
  - Wireless Sensor Networks (WSN)
    - ZigBee
  - Near Field Communication (NFC)
    - RFID enhanced(introduced in chapter 2)
- Note: we use this classification here;
  - in general: "acronym / classification Babylon reigns!"
  - "4G convergence" → maybe this looks different in 5-10 years

