${\bf Aula~2} \\ {\bf Medidas~de~Distribuição~de~Frequências}$

Gabriel Vasconcelos Ferreira

3 de abril de 2025

Capítulo 1

Medidas de dispersão ou variabilidade

1.1 Variância da amostra

Fórmula:

$$S = \sqrt{\frac{\sum (X_i - \overline{X})^2 \cdot f_i}{n-1}} \text{ onde: } \begin{cases} X_i = \text{variável } \mid X_i = Pmi = \text{pontos médios} \\ n = \text{total de dados} = \sum f_i \\ f_i = \text{frequências das classes} \\ \overline{X} = \text{média aritmética} \end{cases}$$

1.2 Desvio padrão da amostra

Fórmula:

$$S = \sqrt{\frac{\sum (X_i - \overline{X})^2 \cdot f_i}{n - 1}} \text{ ou } S = \sqrt{\text{Variância}}$$

1.3 Medida de dispersão relativa

Coeficiente de variação:

$$C.V = \frac{S}{\overline{X}} \cdot 100(\%)$$

Capítulo 2

Exemplos

2.1 Exemplo 1

Os resultados de uma amostra do número de crianças por família em uma região estão dispostos na tabela abaixo. Determine a variância e o desvio padrão.

i	X_i	f_i	$X_i f_i$	$(X_i - \overline{X})^2 f_i$
1	0	10	0	$(0-1.8)^2 \cdot 10 = 32.4$
2	1	19	19	$(1-1.8)^2 \cdot 10 = 12.16$
3	2	7	14	$(2-1.8)^2 \cdot 7 = 0.28$
4	3	7	21	$(3-1.8)^2 \cdot 7 = 10.08$
5	4	2	8	$(4-1.8)^2 \cdot 2 = 9.68$
6	5	1	5	$(5-1.8)^2 \cdot 1 = 10.24$
7	6	4	24	$(6-1.8)^2 \cdot 4 = 70.56$
		$\sum_{i=1}^{n} f_i = 50$	$\sum_{i=1}^{n} X_i f_i = 91$	$\sum_{i=1}^{n} (X_i - \overline{X})^2 f_i = 145, 4$

Média:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i f_i}{\sum_{i=1}^{n} f_i} = \frac{91}{50} = 1.8 \text{ crianças}$$

Variância:

$$s^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2 \cdot f_i}{n-1} = \frac{145.4}{50-1} = 2.967$$
 crianças

Desvio padrão:

$$s = \sqrt{2.967} = 1.7$$
 crianças

2.2 Exemplo 2

O resultado de uma sondagem na qual mil adultos foram indagados sobre quanto gastavam anualmente na preparação de uma viagem de férias resultou na distribuição de frequência abaixo. Estime a média, a variância e o desvio padrão amostrais do conjunto de dados.

i	Gastos (US\$)	f_i	$X_i = Pm_i$	$X_i f_i$	$(X_i - \overline{X})^2 f_i$
1	0 ⊢ 100	380	$\frac{(0+100)}{2} = 50$	$50 \cdot 380 = 19000$	$(50 - 189)^2 \cdot 380 = 7341980$
2	100 ⊢ 200	230	$\frac{(100+200)}{2} = 150$		$(150 - 189)^2 \cdot 230 = 349830$
3	200 ⊢ 300	210	$\frac{(200+300)}{2} = 250$		$(250 - 189)^2 * 210 = 781410$
4	300 ⊢ 400	50	$\frac{(300+400)}{2} = 350$	$350 \cdot 50 = 17500$	$(350 - 189)^2 * 50 = 1296050$
5	400 ⊢ 500	60	$\frac{(400+500)}{2} = 450$	$450 \cdot 60 = 27000$	$(450 - 189)^2 * 60 = 4087260$
6	500 ⊢ 600	70	$\frac{(500+600)}{2} = 550$	$550 \cdot 70 = 38500$	$(550 - 189)^2 * 70 = 9122470$
		$\sum_{i=1}^{n} f_i = 1000$		$\sum_{i=1}^{n} X_i f_i = 189000$	$\sum_{i=1}^{n} (X_i - \overline{X})^2 f_i = 22979000$

Média:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i f_i}{\sum_{i=1}^{n} f_i} = \frac{189000}{1000} = 189 \text{ d\'olares}$$

Variância:

$$s^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2 \cdot f_i}{n-1} = \frac{22979000}{1000 - 1} = 230002.002 \text{ d\'olares}$$

Desvio padrão:

$$s = \sqrt{230002.002} = 151.66$$
 dólares