Bonus Lecture: Numerical Integration

C.Conlon

Fall 2020

Numerical Integration

- We are interested in lots of problems that require computing difficult integrals (e.g.: evaluating expectations).
- Often the problem looks like this:

$$I = \int_{a}^{b} h(x)dx$$
$$E_{f|\theta}[g(x)] = \int_{a}^{b} g(x)f(x|\theta)dx$$

• Either just integrating h(x) from [a,b] or computing the expectation of g(x) over some density f(x).

Integration Rules

• Our goal is to construct an integration rule to approximate the function:

$$\int_{a}^{b} f(x)dx \approx \sum_{s=1}^{S} w_{s} \cdot f(x_{s})$$

- ullet Rules consist of nodes x_s and weights w_s
- This is probably how you learned integration in high school.

The Midpoint Rule

$$I = \frac{b-a}{S} \cdot \sum_{s=1}^S f(x_s^*) \quad \text{ with } x_s^* = \frac{x_{s+1} + x_s}{2}$$

We are fitting piecewise constants and adding up rectangles

The Trapezoid Rule

$$I = \frac{b-a}{2S} \cdot [f(x_0) + 2 \cdot (f(x_1) + \dots, f(x_{S-1})) + f(x_S)]$$

- (1) Fit a (piecewise) line from $f(x_s), f(x_{s+1})$; (2) Evaluate trapezoid area analytically;
- (3) Add up trapezoids.

Simpson's Rule

$$I = \frac{b-a}{3S} \cdot [f(x_0) + 4(f(x_1) + f(x_3) + \ldots) + 2(f(x_2) + f(x_4) + \ldots) + f(x_S)]$$

(1) Fit a (piecewise) quadratic through $f(x_s), f(x_{s+1}), f(x_{s+2})$; (2) Analytically integrate the quadratic; (3) Add up areas.

Choosing Integration Rules

Not a lot to choose here

- Choose the number of points S or interval width $h = \frac{b-a}{S}$.
- Points are generally equally spaced

How accurate is it?

- Bounds analysis is possible (based on series approximations)
- For Simpson's Rule:

$$\frac{h^4}{180}(b-a) \max_{\xi \in [a,b]} \left| f^{(4)}(\xi) \right|$$

• Quadratic approximation does poorly where $f^{(4)}$ is large (and gets up to order 3 polynomials exact).

Newton-Cotes Formulas

Summary of formulas for a single interval:

	$Degree\ n$	Step size h	Common name	Formula	Error term
	1	b-a	Trapezoid rule	$\frac{h}{2} (f_0 + f_1)$	$-\frac{1}{12}h^3f^{(2)}(\xi)$
	2	$\frac{b-a}{2}$	Simpson's rule	$\frac{h}{3}(f_0 + 4f_1 + f_2)$	$-\frac{1}{90}h^5f^{(4)}(\xi)$
	3	$\frac{b-a}{3}$	Simpson's 3/8 rule	$\frac{3h}{8}\left(f_0 + 3f_1 + 3f_2 + f_3\right)$	$-\frac{3}{80}h^5f^{(4)}(\xi)$
	4	$\frac{b-a}{4}$	Boole's rule	$\frac{2h}{45} \left(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4 \right)$	$-\frac{8}{945}h^7f^{(6)}(\xi)$
https://em.silsimodia.com/silsi/Nosstan Cotos formulas					

https://en.wikipedia.org/wiki/Newton-Cotes_formulas

Can we do better?

Can use adaptive rules (built-in many software routines)

- Divide up [a, b] evenly into sub-intervals
- Some are relatively flat or well-approximated, some are not.
- Use more points in the sub-intervals that are the most difficult to approximate
- Don't waste points in intervals that are easy to approximate.

Drawbacks

- ullet Points used in approximation are $f(\cdot)$ dependent
- Points used in approximation x_s may not be the same for $f(x|\theta)$ at all values of parameters θ .

Gaussian Quadrature: Same Basic Idea

- Choose a degree of polynomial approximation for f(x) on [a,b].
- ullet "Fit" the polynomial by evaluating $f(x_s)$ at various values of x_s
- ullet Integrate the polynomial analytically by adjusting coefficients on $f(x_s)$.

In practice, much easier: get a pre-specified set of weights and nodes (w_s, x_s) .

Gaussian Quadrature: But a little different

- $[1, x, x^2, x^3, \ldots]$ is not the only polynomial basis.
- For example Chebyshev Basis (of first kind) is orthogonal $[1, x, 2x^2 1, 4x^3 3x, \ldots]$
- Concept remains the same:
 - 1. Approximate f(x) with a polynomial basis
 - 2. Integrate the polynomial exactly
 - 3. In practice we just get a pre-determined set of points and weights (x_s, w_s) for a given polynomial order.
- Rules have some additional properties
 - What interval to integrate over [-1,1] or $[0,\infty)$ or $(-\infty,+\infty)$.
 - Can we exploit properties of f(x): is it proportional to $\frac{1}{\sqrt{1-x^2}}$ or e^{-x} or e^{-x^2} ?
- May need to do change of variables on $f(x) \to f(v)$ to better satisfy conditions above.

Gaussian Quadrature

Formulas look like:

$$\int_{a}^{b} f(x)dx \approx \sum_{s=1}^{S} w_{s} f(x_{s})$$

for some quadrature nodes $x_s \in [a, b]$ and weights w_s .

- Let \mathcal{F}_k be the space of degree k polynomials
- ullet Quadrature formulas are exact of degree k if it correctly integrates each function in \mathcal{F}_k
- ullet Gaussian quadrature formulas use S points and are exact of degree 2s-1.

Approximation Error

$$\int_{a}^{b} w(x)f(x)dx - \sum_{s=1}^{S} w_{s}f(x_{s}) = \frac{f^{(2S)}(\xi)}{(2S)!}(p_{S}, p_{S})$$

Gaussian Quadrature

```
Legendre Domain: [-1,1], w(x) = 1
```

Chebyshev Domain: [-1,1], $w(x) = \frac{1}{\sqrt{1-x^2}}$

Laguerre Domain: $[0,\infty)$, $w(x)=\exp[-x]$ (useful for present value)

Hermite Domain: $(-\infty, \infty)$, $w(x) = \exp[-x^2]$ (useful for normal)

Helpful if function is C^{∞} or real-analytic (comports with series expansion).

Alternative: Monte Carlo Integration

$$E_{f|\theta}[g(x)] = \int_{a}^{b} g(x)f(x|\theta)dx$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} g(x_s)$$

- Sample $[x_1, \ldots, x_S]$ by drawing from $f(x|\theta)$.
- Weight everything equally $\frac{1}{S}$
- Can't bound errors, but can discuss rate of convergence
- Convergence is slow $\frac{1}{\sqrt{S}}$ but mostly unrelated to curvature of $f(\cdot)$.

Monte Carlo Integration: Change of Variables

Still often want to change variables. Consider $f(x|\theta) \sim N(\mu, \sigma^2)$

- Should we sample from $x_s \sim N(\mu, \sigma)$?
- Might be better to sample $z_s \sim N(0,1)$ and then $x_s = z_s \cdot \sigma + \mu$
- For complicated distributions $v_s \sim U[0,1]$ and then $x_s = \Phi^{-1}(v_s) \cdot \sigma + \mu$

Discuss approximating π .

Example: Gauss Herrmite

Let $Y \sim N(\mu, \sigma^2)$ and apply COV $x = (y - \mu)/\sqrt{2}\sigma$

$$E[f(Y)] = (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(y) \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right] dy$$
$$\int_{-\infty}^{\infty} f(y) \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right] dy = \int_{-\infty}^{\infty} f(\sqrt{2}\sigma x + \mu) e^{-x^2} \sqrt{2}\sigma dx$$

Gives the quadrature formula using Gauss Hermite (x_s, w_s) .

$$E[f(Y)] = \frac{1}{\sqrt{\pi}} \sum_{s=1}^{S} w_s f(\sqrt{2}\sigma x_s + \mu)$$

notice that we don't have the e^{-x^2} anymore.

Quasi Monte Carlo

Lots of ways to improve on purely pseudorandom sampling

- Antithetic draws
- Low-discrepancy sequence (Halton, Sobol, Low-discrepancy sequence etc.)
- Think about these as ensuring more even coverage (stratified).
- Koksma-Hlawka inequality gives bounds but is hard to characterize the Hardy-Kruse variation of $f(\cdot)$.

Many of these are built-in routines in Python, R, Matlab, etc.

Higher Dimensional Integration

- In higher dimension we can use product rules of 1-D integrals. $\mathbf{x}_s^{(1)} \times \mathbf{x}_s^{(2)}$ and $\mathbf{w}_s^{(1)} \times \mathbf{w}_s^{(2)}$
- ullet This grows exponentially in dimension D (Curse of Dimensionality)
 - 10 points in dimension one, means 10,000 points in dimension 4.
- Monte Carlo is not cursed but slow to converge $\frac{1}{\sqrt{S}}$ vs $\frac{1}{2S!}f^{(2S)}$
- Some monomial rules (Judd), (Skrainka and Judd) aren't cursed
- Sparse Grids show how to combine 1-D rules more efficiently (www.sparse-grids.de)

Correlated Normals

How do we draw from a correlated normal?

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \sim N \left[\begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix}, \begin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \sigma_{23}^2 \\ \sigma_{31}^2 & \sigma_{32}^2 & \sigma_{33}^2 \end{pmatrix} \right]$$

Or as a vector:

$$\mathbf{Y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Correlated Normals

- 1. Find the Cholesky Root of $L \cdot L' = \Sigma$ where Σ is $D \times D$ covariance matrix (scipy.linalg.cholesky, chol in R and Matlab).
- 2. Draw a $n \times D$ dimensional standard normal ${\bf Z}$ (either at random or via quadrature nodes/ weights).
- 3. $L \cdot \mathbf{Z} \sim N(0, \Sigma)$, now we have n correlated normals of dimension D.
- 4. Add back in the mean $\mathbf{Y} = \boldsymbol{\mu} + L \cdot \mathbf{Z} \sim N(0, \Sigma)$

Correlated Normals: Why do we do this?

- L is a $D \times D$ lower triangular matrix
- ullet Cholesky root has nice properties that guarantees Σ is positive semi-definite.
- ullet We can get correlated normals just be pre-multiplying by some L matrix.
 - Allows me to draw Z once
 - ullet re-evaluate at difference covariance matrices Σ using different L.
- In most cases, optimize over L not Σ .
 - Use delta method to get standard errors for: $L \times L' = \Sigma$
 - In BLP $\mu_{ijt}(\Sigma) = (L\,Z_i) \cdot x_{jt}$ where (\cdot) gives inner product.