깔삼한 3조 김나현 김준혁 이성희 허승민

깔쌈하게 대출받자!

AGENDA

 1
 분석 목적 및 배경

 2
 데이터 이해 및 시각화

 3
 데이터 전처리 및 통합

분석 목적 및 배경

분석 배경

Home Credit의 상환 능력 예측 모델의 필요성

OUR MISSION

We focus on responsible lending primarily to people with little or no credit history. Our services are simple, easy and fast.

홈 크레딧은 과거의 신용 정보가 불충분 하거나 존 재하지 않아 은행에서 대출 서비스 이용이 어려운 고객들을 대상으로 서비스를 제공

예측목적

WHY? 홈 크레딧 고객에게 긍정적인 대출 경험을 제공

HOW? 신용이 낮은 고객들의 자사 데이터 신용평가 크레딧 뷰로의 데이터

WHAT? 고객들의 상환 능력을 예측

데이터 소개 - OWN DATA

Home Credit에 대출을 신청한 고객들의 APPLICATION 과 PREVIOUS APPLICATION

APPLICATION DATA

● TARGET 변수를 포함한 메인 테이블

- 대출 당시, 대출에 대한 정보와대출 신청자에 대한 개인적, 지역적인 정보
- 대출 신청자에 대한 외부 신용평가자료를 포함

PREVIOUS_APPLICATION

- 메인테이블에 있는 샘플이 이전에 HOME CREDIT에 대출한 정보
- 하나의 행은 과거의 하나의 대출 상품을 의미

 하나의 샘플이 여러 개의 과거 대출 기록이 존재.

데이터 소개 – OWN DATA

Home Credit에 대출을 신청한 고객들의 APPLICATION 과 PREVIOUS APPLICATION

POS_CASH_INSTALLMENTS

샘플들의 과거 POS loan과
 cash loan에 대한 월별 잔금

하나의 행은 샘플들과 관련된
 과거 Credit에 대한 정보

CREDIT_CRAD_BALANCE

샘플들의 과거 credit cards loan
 에 대한 정보

하나의 행은 샘플들과 관련된
과거 Credit에 대한 정보

INSTALLMENTS_PAYMENTS

 샘플들의 과거의 대출에 대한 상환 이력

하나의 행은 매달 상환 이력을 의미

데이터 소개 - Credit Bureau

Home Credit에 대출을 신청한 고객들의 APPLICATION 과 PREVIOUS APPLICATION

BUREAU

 HOME CREDIT이 아닌 외부 신용평가사가 sample을 평가한 자료

• 하나의 행은 외부 신용평가사의 고객의 하나의대출을 의미

BUREAU_BALANCE

 외부 신용평가사의 이전 credit에 대한 월별 잔액

 하나의 행은 sample의 각각의 대출에 대해 Credit을 의미

데이터 이해 및 시각화

변수 판별을 위한 데이터 시각화

RAW DATA

REMOVING OUTLIERS

변수 판별을 위한 데이터 시각화

NAME_EDUCATION_TYPE

NAME_EDUCATION_TYPE
Secondary / secondary special 5.164748
Higher education 3.040878
Incomplete higher 4.719631
Lower secondary 6.811820
Academic degree 0.645161
Name: NAME EDUCATION TYPE, dtype: float64

고등 교육을 받은 고객들은 상환 지연을 하지 않는 경향성을 보였다.

변수 판별을 위한 데이터 시각화

OCCUPATION_TYPE

OCCUPATION_TYPE 2.649757 Accountants Cleaning staff 5.392526 6.536857 Cooking staff Core staff 3.646025 Drivers 6.620990 HR staff 3.807615 High skill tech staff 3.451004 3.648069 IT staff 6.263485 Laborers Low-skill Laborers 10.292326 3.352777 Managers 3.818206 Medicine staff Private service staff 3.594080 4.984424 Realty agents Sales staff 5.802708 Secretaries 4.467354 Security staff 6.340261 Waiters/barmen staff 6.868867 Name: OCCUPATION_TYPE, dtype: float64

변수 판별을 위한 데이터 시각화

AMT_REQ_CREDIT_BUREAU

Credit Bureau에게 HOME CREDIT이 문의 횟수 데이터를 확인하였을 때 3달 이후부터 1년 이전까지 고객 정보만이 비교가 가능하여 주어진 기간 별 문의 횟수를 모두 합쳐 하나의 데이터로 만들었다.

변수 판별을 위한 데이터 시각화

DAYS_BIRTH가 DAY 단위로 되어 있어 숫자가 크고 범위가 넓어 이를 연도로 변환한 뒤 다시 범주화 시켜 나누었다.이때, 범주는 좌측 히스토그램을 참고하여 QUANTILE을 열 개 구간으로 나누었다.(DAYS_EMPLOYED 등도 유사 변환)

변수 판별을 위한 데이터 시각화

EXT_SOURCE

BUREAU

변수 판별을 위한 데이터 시각화

TARGET 데이터 별 CREDIT_ACTIVE에서는 유의미한 결과를 찾을 수 없었지만 CREDIT_ACTIVE 별로 TARGET = 1 의비율을 보았을 때 Bad Debt과 Sold에서 높은 값이 도출되었다.

BUREAU

변수 판별을 위한 데이터 시각화

전체 데이터를 확인 하였을 때는 CURRENCY 1 이 TARGET 1, 0 모두에서 높은 값을 차지 하고 있었다. CREDIT_CURRENCY 별로 TARGET = 1 의 비율을 보았을 때 CURRENCY 3 일 때 TARGET 1의 확률이 높은 것으로 확인 되었다.

BUREAU

변수 판별을 위한 데이터 시각화

가장 높은 비율의 CREDIT CARD와 CONSUMER CREDIT 이나 CREDIT_TYPE 별로 TARGET = 1 의 비율을 보았을 때 MICROLOAN 의 비율이 가장 높았다.

POS_CASH

변수 판별을 위한 데이터 시각화

계약서에 명시된 상환 기간을 의미한다. (단위:월)

신청 당시를 기준으로 계약서를 기준으로 남은 상환 기간을 의미한다. (단위:월)

POS_CASH

변수 판별을 위한 데이터 시각화

CREDIT_CARD 변수 판별을 위한 데이터 시각화

CNT_DRWAINGS_CURRENT 이전 크레딧에 대한 인출 횟수 160

CREDIT CARD 잔액 정보를 의미한다.

INSTALLMENTS

변수 판별을 위한 데이터 시각화

NUM_INSTALLMENT_NUMBER

INSTALLMENT 상환 지불 횟수

PREVIOUS_APPLICATION

변수 판별을 위한 데이터 시각화

CASH LOAN 에 대한 이유 및 목적 정보 XAP 가 가장 높게 나왔다

PREVIOUS_APPLICATION

변수 판별을 위한 데이터 시각화

PREVIOUS_APPLICATION

변수 판별을 위한 데이터 시각화

NAME_PAYMENT_TYPE

NAME_CONTRACT_TYPE

Previous application에서 대출 계약 유형에 consumer Loans 이 포함되는데 application의 테스트, 트레인 데이터 모두 우연히도 Cash loans 와 Revolving loans으로만 구성되었다

파생 변수

결측 값이 존재하는 변수처리하기

데이터 파일	변수 명	설명
previous_application.csv	INTEREST_RATE_PRE	AMT_ANNUITY / AMT_CREDIT
previous_application.csv	APP_CREDIT_PERC	AMT_APPLICATION / AMT_CREDIT

INTEREST_RATE_PRE

$$-$$
현재가치 = $\frac{1-(1+이자율)^{-\frac{1}{12}-12}}{0$ 자율 $imes$ 동일금액

고객이 기존에 HOME CREDIT 에서 신청했던 대출에 대한 이자를 의미하며, 이자율은 높을 수록 해당 상품이 위험하다고 간주한다.

APP_CREDIT_PERC

고객이 기존에 HOME CREDIT 에서 신청했던 대출에 대해 요청했던 금액과 실제로 승인된 금액 간의 비율을 의미한다

파생 변수

결측 값이 존재하는 변수처리하기

데이터 파일	변수 명	설명
installments_payments.csv	DAYS_RELATIVE_PAYMENT	DAYSINSTALMENT — DAYSENTRYPAYMENT
installments_payments.csv	PAYMENT_PERC	AMT_PAYMENT / AMT_INSTALMENT

DAYS_RELATIVE_PAYMENT

납부해야 하는 날짜보다 늦게 납부 했을 경우 negative

납부해야 하는 날짜에 납부하거나 더 일찍 납부했을 경우 positive

PAYMENT_PERC

실제로 낸 금액과 내야하는 금액의 비율

파생 변수

결측 값이 존재하는 변수처리하기

데이터 파일	변수 명	설명
bureau.csv	INTEREST_RATE	AMT_ANNUITY / AMT_CREDIT_SUM
bureau.csv	RATIO_DEBT_TO_CREDIT	AMT_CREDIT_SUM_DEBT / AMT_CREDIT_SUM

INTEREST_RATE_PRE

고객이 기존에 에서 신청했던 대출에 대한 이자를 의미하며, 이자율은 높을 수록 해당 상품이 위험하다고 간주한다.

RATIO_DEBT_TO_CREDIT

크레딧 뷰로에 신용도에 비해 빚을 얼마나 지고 있는 지에 대한 비율

데이터 전처리 및 통합

결측 값이 존재하는 변수처리하기

행을 삭제하지 않는다.

행 삭제는 실시하지 않았다. TRAIN 데이터의 경우는 괜찮더라도 TEST 데이터의 경우는 없어지면 예측을 못하는 ID가 생기므로 행을 삭제 하지 않았다.

NA가 많지 않은 경우에는 평균과 최빈값을 이용하여 랜덤 샘플링 하였다.

ex) AMT_REQ_CREDIT_BUREAU 의 경우 변수를 통합하였고 NA가 13% 정도 되었지만, Hinge Spread 범위 내(0~7)에서 랜덤 샘플링하여 넣음.

XNA 범주에 대해서는 Kaggle Discussion에서 출제자의 가이드로 NA 처리하였다.

결측값이 존재하는 변수처리하기

Na가 50%를 넘으면 Column 삭제를 원칙으로 하나, TARGET 데이터와 관련이 있을 경우 변수를 삭제하지 않는다

ex) OWN_CAR_AGE: NA가 65% 정도의 비율로 굉장히 높지만 TARGET과 관련이 있다고 판단하여 NA를 범주화시키고(XNA) 수치형 자료도 일정 구간으로 범주화 시켰다.

							ratio_NA	count_NA	
GE	WN CAR A	\bigcap		0.000	0	REG_REGION_NOT_WORK_REGION	0.000	0	SK_ID_CURR
GL	· · · · · · · · · · · · · · · · · · ·			0.000	0	LIVE_REGION_NOT_WORK_REGION	0.000	0	TARGET
			7	0.000	0	REG_CITY_NOT_LIVE_CITY	0.000	0	CNT_CHILDREN
			0.000	0	REG_CITY_NOT_WORK_CITY	0.000	0	AMT_INCOME_TOTAL	
				0.000	0	LIVE_CITY_NOT_WORK_CITY	0.000	0	AMT_CREDIT
*** *	······································		0 -	6.264	157655	EXT_SOURCE_1	0.004	12	AMT_ANNUITY
				0.214	599	EXT_SOURCE_2			30,00 specials
				19.724	55268	EXT_SOURCE_3	0.091	254	AMT_GOODS_PRICE
		_	GET	50.459	141388	APARTMENTS_AVG	0.000	0	REGION_POPULATION_RELATIVE
		_	TARGE	58.267	163267	BASEMENTAREA_AVG	0.000	0	DAYS_BIRTH
				18.504	135911	YEARS_BEGINEXPLUATATION_AVG	0.000	0	DAYS_EMPLOYED
				66.293	185757	YEARS_BUILD_AVG	0.000	0	DAYS_REGISTRATION
••			1 -	69.695	195289	COMMONAREA_AVG	0.000	0	DAYS ID PUBLISH
				53.020	148566	ELEVATORS_AVG	65.866	184561	OWN_CAR_AGE
				50.058	140266	ENTRANCES_AVG	0.000	0	FLAG_MOBIL
			_	19.472	138624	FLOORSMAX_AVG	0.000	0	FLAG_EMP_PHONE
0 80	40 60	20	0	67.658	189582	FLOORSMIN_AVG	0.000	0	FLAG_WORK_PHONE

결측값이 존재하는 변수처리하기

Na가 50%를 넘으면 Column 삭제를 원칙으로 하나, TARGET 데이터와 관련이 있을 경우 변수를 삭제하지 않는다

EXT_SOURCE_1	157655	56.264
EXT_SOURCE_2	599	0.214
EXT_SOURCE_3	55268	19.724

Ex) EXT_SOURCE: 타 변수들을 이용해

Regression 을 돌려 NA 값을 채워 넣었다.

결측 값이 존재하는 변수처리하기

TARGET과의 관계 외에도 NA자체가 MNAR 상태라면, 하나의 범주로 해석하였다

ex) DAY_EMPLOYED의 경우 고용 기간이 1000년에 해당하는 자료가 존재하는데 이는 NA라고 간주해야 한다. 하지만 이러한 값들은 실제로 NAME_INCOME_TYPE에서 PENSIONER로 확인되며, 따라 OCCUPATION_TYPE 에서도 NA라고 판단된다. 즉 이러한 NA들은 아무런 의미가 없는 것이 아니라 특정한 의미를 지니기 때문에 이를 NA로 범주화 시켰다

로드맵

bureau_balance 테이블을 bureau 에 통합

1 BUREAU_BALANCE

SK_ID_BUREAU	MONTHS_BALANCE	DAYS_CREDIT
5715448	0	С
5715448	-1	-1
5715448	-2	X

SK_ID_BUREAU	MONTHS_TOTAL	DAYS_CREDIT_MEAN
5715448	3	-0.33

MONTHS_TOTAL이라는 총 빈도수를 나타내는 변수로 생성 DAYS_CREDIT에서 C,X,0은 0으로 취급하여 평균을 냄.

bureau_balance 테이블을 bureau 에 통합

2 BUREAU_BALANCE 와 BUREAU 조인

SK_ID_CURR	SK_ID_BUREAU	CREDIT_CURRENCY	DAYS_CREDIT	MONTHS_TOTAL
215354	5714462	Currency 1	-497	3
215354	5714463	Currency 2	-208	20
215354	5715448	Currency 1	-203	33

SK_ID_CURR	CREDIT_CURRENCY	DAYS_CREDIT	MONTHS_TOTAL
215354	Currency 1	-385	18

Bureau에 Bureau_Balance를 조인하였다. 이때 범주형은 최빈값, 수치형은 평균값으로 설정

Application 테이블에 previous_application에 통합

3 PREVIOUS_APP

SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_APPLICATION
113582	232145	Cash Loan	11000
113583	232145	Cash Loan	84000
113584	232145	Consumer Loan	50500

SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_APPLICATION
232145	Cash Loan	48500

변수 판별을 위한 탐색적 데이터 조사

4 COMBINED APP

SK_ID_CURR	GENDER	NAME_CONTRACT_TYPE	AMT_APPLICATION	CREDIT_CURRENCY
113582	F	Cash Loan	11000	Currency 1
113583	М	Cash Loan	84000	Currency 1
113584	М	Consumer Loan	50500	Currency 2

변수 판별을 위한 탐색적 데이터 조사

5 범주형 → One Hot Encoding

SK_ID_CURR	GENDER	NAME_CONTRACT_TYPE	AMT_APPLICATION	CREDIT_CURRENCY
113582	F	Cash Loan	11000	Currency 1
113583	М	Cash Loan	84000	Currency 1
113584	M	Consumer Loan	50500	Currency 2

SK_ID_CURR	GENDER_M	GENDER_W	NAME_CONTRACT_TYPE _Cash Loan	NAME_CONTRACT_TYPE _Consumer Loan	AMT_APPLICATION
113582	0	1	1	0	11000

로드맵

범주형 변수들을 ONE HOT ENCODING 하는 이유?

XG Boost는 팩터 변수를 받지 않기 때문!

변수 판별을 위한 탐색적 데이터 조사

EX) 범주형 → One Hot Encoding

SK_ID_CURR	GENDER	NAME_CONTRACT_TYPE	AMT_APPLICATION	CREDIT_CURRENCY
113582	F	Cash Loan	11000	Currency 1
113583	М	Cash Loan	84000	Currency 1
113584	М	Consumer Loan	50500	Currency 2

3	SK_ID_CURR	GENDER_M	GENDER_W	NAME_CONTRACT_TYPE _Cash Loan	NAME_CONTRACT_TYPE _Consumer Loan	AMT_APPLICATION
	113582	0	1	1	0	11000

범주형 변수들을 모두 One Hot Encoding 시킴!

변수 선택

Feature Selection

STEP1

도메인 지식 이해를 통한 주관적 선택

173 credit_card_balance.csv	NAME_CONTRACT_STATUS	Contract status (active signed,) on the previous credit	
174 credit_card_balance.csv	SK_DPD	DPD (Days past due) during the month on the previous credit	
175 credit_card_balance.csv	SK_DPD_DEF	DPD (Days past due) during the month with tolerance (debts with low loan amounts are ignored	of the pro
176 previous_application.csv	SK_ID_PREV	ID of previous credit in Home credit related to loan in our sample. (One loan in our sample can l	hashed
177 previous_application.csv	SK_ID_CURR	ID of loan in our sample	hashed
178 previous_application.csv	NAME_CONTRACT_TYPE	Contract product type (Cash loan, consumer loan [POS] ,) of the previous application	
179 previous_application.csv	AMT_ANNUITY	Annuity of previous application	
180 previous_application.csv	AMT_APPLICATION	For how much credit did client ask on the previous application	
181 previous_application.csv	AMT_CREDIT	Final credit amount on the previous application. This differs from AMT_APPLICATION in a way th	at the AM1
182 previous_application.csv	AMT_DOWN_PAYMENT	Down payment on the previous application	
183 previous_application.csv	AMT_GOODS_PRICE	price of goods that client asked for (if applicable) on the previous application	
184 previous_application.csv	WEEKDAY_APPR_PROCESS_STAF	On which day of the week did the client apply for previous application	
185 previous_application.csv	HOUR_APPR_PROCESS_START	Approximately at what day hour did the client apply for the previous application	rounded
186 previous_application.csv	FLAG_LAST_APPL_PER_CONTRAC	Flag if it was last application for the previous contract. Sometimes by mistake of client or our cler	rk there co
187 previous_application.csv	NFLAG_LAST_APPL_IN_DAY	Flag if the application was the last application per day of the client. Sometimes clients apply for	more appli
188 previous_application.csv	NFLAG_MICRO_CASH	Flag Micro finance loan	

변수 선택

Feature Selection

STEP2 XGBoost 와 LGBM 을 통한 importance 확인

앞선 도메인 지식 기반의 주관적 선택과 비교하며 변수를 선택하여 모델링 계획

변수 선택

Feature Selection

STEP3

최종 데이터 셋

도메인 정보 기준에서 무의 미한 변수 나온 변수

총 423개의 변수와 80만개의 OBS

다음 주차 흐름

모델링 기법 및 방향

