

SOSC 4300 FINAL PROJECT Fake Online Job Posting Detection

Team HaHa
Hui Ka Ming (20506919)
Lam Wing Yi (20510178)
Law Po Yi (20510673)
Lo Wing Ching (20521892)

TABLE OF CONTENTS

About the Project 01

Methodology

Background

02

Preliminary Results

Data

03

Conclusions

Recruitment Fraud

INTRODUCTION

- Fake recruitment posts, emails, URLs
- Offer fake job opportunity to job-seekers
- Taking money from job seekers
- A Getting personal data
- প্রি Stealing personal identity

(Aurecon, n.d.)

BACKGROUND

\$6 trillion

Cost of cybercrime damages

Over 600M 🖾

2030 Growth in Job Generation

- Employment scam is getting serious (Alghamdi & Alharby, 2019)
- Violation of reputed company (Dutta & Bandyopadhyay, 2020)
- Reliable Source Vidros, Kolias, Kambourakis, & Akoglu (2017) added many features of ORF to the public dataset (EMSCAD)

Text Analytics

Model 1

Logistics Regression

Model 2

 Multinomial Naive Bayes Classifier

Model 3

SVC

Model 4

Random Forest

ABOUT THE PROJECT

Using Machine Learning based classification techniques to

Avoid fraudulent for job in the internet.

Objectives

- 1— Enhance accuracy of the model through pre-processing data
- 2— Apply feature selection techniques which assist to reduce dimensionality
- 3-Build a reliable model to detect ads with highest accuracy

Find the best classification algorithm used for detecting Online

Recruitment Fraud

DATA

- Employment Scam Aegean Dataset (EMSCAD)
- Published by the University of the Aegean
- Consist of 178800 online job advertisements
- Including title, location of job, company profile, description of the job etc.
- Columns "fraudulent" > legitimate job=0and advertisements=1

METHODOLOGY

Pre-Processing & Cleaning

METHODOLOGY

Train-Test Split TRAIN DATASET TEST DATASET Fit the machine **Evaluate the fit** learning model machine learning Split percentage: 80% model Split percentage: 20%

Estimate the performance of machine learning algorithms

METHODOLOGY

works best on binary classification problems to examine the association of independent variable(s) with one dichotomous dependent variable. describe the probability of observing counts among a number of categories and most appropriate for features that represent counts or count rate analyze data used for classification and regression analysis and helpful in text and hypertext categorization

construct a multitude of decision trees and output mean prediction of the individual trees

Classification Report of Logistic Regression:

	precision	recall	f1-score	support	Accuracy= 0.963501
0	0.96 1.00	1.00 0.30	0.98 0.46	332 4 183	Weighted F1-score= 0.95
accuracy			0.96	3507	(best value at 1; worst value at 0)
macro avg weighted avg	0.98 0.96	0.65 0.96	0.72 0.95	3507 3507	

LOGISTIC REGRESSION

← ROC Curve

AUC= 0.897131 (larger AUC, better prediction performance)

MULTINOMIAL NAIVE BAYES CLASSIFIER

Bag-of-words model:

Classification Report of Multinomial Naive Bayes Classifier:

	precision	recall	f1-score	support
0	0.95	1.00	0.97	3324
1	0.88	0.08	0.14	183
accuracy			0.95	3507
macro avg	0.91	0.54	0.56	3507
weighted avg	0.95	0.95	0.93	3507

Accuracy= 0.94407

Weighted F1-score= 0.93 (best value at 1;

worst value at 0)

MULTINOMIAL NAIVE BAYES CLASSIFIER

← ROC Curve

Classification Report of SVC:

	precision	recall	f1-score	support	Accuracy= 0.972626
0	0.97	1.00	0.99	3324	
1	1.00	0.48	0.64	183	Weighted F1-score=
accuracy			0.97	3507	0.97
macro avg	0.99	0.74	0.82	3507	(best value at 1;
weighted avg	0.97	0.97	0.97	3507	worst value at 0)

← ROC Curve

RANDOM FOREST CLASSIFIER

Classification Report of Random Forest:

	precision	recall	f1-score	support
0	0.97	1.00	0.99	3324
1	0.98	0.53	0.69	183
accuracy			0.97	3507
macro avg	0.98	0.76	0.84	3507
weighted avg	0.98	0.97	0.97	3507

Accuracy=0.97490

Weighted F1-score=0.97 (best value at 1;

worst value at 0)

RANDOM FOREST CLASSIFIER

← ROC Curve

CONCLUSIONS

Predictive Research

> Find the **best** algorithm to detect fake job posting online

Four models

- > used (1) Logistic Regression, (2) Multinomial Naive Bayes Classifier, (3) SVC, and (4) Random Forest
- > Further compare the predictive performance by evaluating the

accuracy, f1 score, AUC of each model

Future Discussion

> Method for detecting topics from unlabelled data (topic modelling, clustering, similarity)

THANKS!

Q&A SECTION