

Description

The VST15N060 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- VDS =150V,ID =110A
 RDS(ON) <7.8mΩ @ VGS=10V
- Excellent gate charge x RDS(on) product(FOM)
- Very low on-resistance RDS(on)
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST15N060-T7	VST15N060	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	150	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	110	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	93	А
Pulsed Drain Current	I _{DM}	440	А
Maximum Power Dissipation	P _D	300	W
Derating factor		2	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	1296	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.5	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	150		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	-	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =55A	-	6	7.8	mΩ
Forward Transconductance	G FS	V _{DS} =10V,I _D =55A	70	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =75V,V _{GS} =0V,	-	10000	-	PF
Output Capacitance	C _{oss}		-	2046	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	55	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	30	-	nS
Turn-on Rise Time	t _r	V_{DD} =75V, I_{D} =55A V_{GS} =10V, R_{G} =4.7 Ω	-	52	-	nS
Turn-Off Delay Time	t _{d(off)}		-	69	-	nS
Turn-Off Fall Time	t _f		-	21	-	nS
Total Gate Charge	Qg	\/ -75\/ -55A	-	150		nC
Gate-Source Charge	Q _{gs}	V _{DS} =75V,I _D =55A,	-	50		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	26		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V_{GS} =0 V , I_F = I_S	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	110	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	140		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	498		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance