

MACHINE LEARNING

- "here are problems to which we simply don't know the answer yet, but there are some things we can take actions on now, which we should take actions on now."
- "Learning is any process by which a system improves performance from experience"
- "machine learning is concerned with computer programs that automatically improve their performance though experience"

QUOTES ON MACHINE LEARNING

• "... What we want is a machine that can learn from experience."

Alan Turing 1947

"A breakthrough in Machine Learning would be worth 10 Microsoft."

Bill Gates

"With artificial Intelligence we are summoning the demon."

Elon Mask

"Machine learning is the next Internet"

Tony Tether, Director, DARPA

SO WHAT IS MACHINE LEARNING?

Automating automation

Getting computers to program themselves

Writing software is the bottleneck

Let the data do the work instead!

Traditional Programming

Machine Learning

MAGIC?

No, more like gardening

- **Seeds** = Algorithms
- Nutrients = Data
- **Gardener** = You
- Plants = Programs

SAMPLE APPLICATIONS

REAL WORLD
APPLICATIONS
OF MACHINE
LEARNING

Tens of thousands of machine learning algorithms

ML IN A NUTSHELL

Hundreds new every year

Every machine learning algorithm has three components:

Representation **Evaluation** Optimization

REPRESENTATION

EVALUATION

Accuracy

Precision and recall

Squared error

Likelihood

Posterior probability

Cost / Utility

Margin

Entropy

K-L divergence

Etc.

Combinatorial optimization

• E.g.: Greedy search

OPTIMIZATION

Convex optimization

• E.g.: Gradient descent

Constrained optimization

• E.g.: Linear programming

TYPES OF LEARNING

INDUCTIVE LEARNING

- **Given** examples of a function (X, F(X))
- **Predict** function F(X) for new examples X
 - Discrete F(X): Classification
 - Continuous F(X): Regression
 - F(X) = Probability(X): Probability estimation

WHAT WE'LL COVER

Supervised learning

- Decision tree induction
- Rule induction
- Instance-based learning
- Bayesian learning
- Neural networks
- Support vector machines
- Model ensembles
- Learning theory

Unsupervised learning

- Clustering
- Dimensionality reduction

ML IN PRACTICE

Understanding domain, prior knowledge, and goals

Data integration, selection, cleaning, pre-processing, etc.

Learning models

Interpreting results

Deploying Models in Real

STEPS TO BUILD A MACHINE LEARNING MODEL

SKILLS REQUIRED

MACHINE LEARNING JOB SCOPE & SALARY TRENDS

INCREMENT WRT EXPERIENCE

QUERIES PLEASE?

THANKS