TD-6 PUISSANCE ET ÉNERGIE

EXERCICE 1

រថយន្ត មួយមានទម្ងន់ $12.5~kN~(\approx 1250~kg)$ ។ ម៉ាស៊ីនរបស់រថយន្តបញ្ជូនអានុភាព 75~kW ទៅគ្រប់កង់ ទាំងអស់ ។ ដោយសន្មតថា កង់វិលដោយគ្មានរអិលលើផ្លូវ គណនាមុំ α របស់ផ្លូវចំណោតមួយ ដើម្បីឲ្យរថយន្តបរ ឡើងដោយល្បឿនថេរ v=10~m/s ។

EXERCICE 2

ត្រាក់ទ័រមួយទម្ងន់ $80 \, kN \ (\approx 8000 \, kg)$ បរលើផ្លូវមួយដោយសំទុះថេពី $5 \, m/s$ ទៅ $10 \, m/s$ ក្នុងរយៈ ពេល $4 \, s$ ។ បើសិនជាការទប់ចលនាដោយកកិតមានអាំងតង់ស៊ីតេ $1625 \, N$ គណនាអានុភាពអតិបរមាដែល ត្រូវ ផល់ឲ្យទៅកង់ត្រាក់ទ័រនេះ ។

EXERCICE 3

កេសមួយទម្ងន់ $250\ N\ (\approx 25\ kg)$ ចាប់ផ្ដើមយោងទៅលើដោយល្បឿន $3\ m/s$ ក្នុងរយៈពេល $3\ s$ ។ បើ សិនជាសំទុះនៃការយោងបើរ គណនាអានុកាពផ្ដល់ (Puissance fournie) របស់ម៉ូទ័រ កាលណា $t=3\ s$ ។ គេមិនគិតម៉ាសរ៉ាក និងខ្សែកាប ។ មេគុណប្រសិទ្ធភាព បទិនផលរបស់ម៉ូទ័រ e =0.76 ។

EXERCICE 4

Une voiture de masse $m=1,5.10^3$ kg roule à la vitesse de 50 km·h⁻¹ sur une route horizontale. Devant un imprévu, le conducteur écrase la pédale de frein et s'arrête sur une distance d=15 m. On modélise la force de freinage par une force constante opposée à la vitesse.

- 1. Calculer le travail de la force de freinage.
- En déduire la norme de cette force.
- Quelle distance faut-il pour s'arrêter si la vitesse initiale est de 70 km·h⁻¹?
- 4. Commenter cette phrase relevée dans un livret d'apprentissage de la conduite : « La distance de freinage est proportionnelle au carré de la vitesse du mobile ».

EXERCICE 5

Une voiture roule sur une autoroute à la vitesse de $v'_0 = 130 \, km.h^{-1}$. On suppose qu'il y a des frottements solides entre la voiture et la route.

On rappelle qu'alors la réaction de la route se décompose en une composante normale $\overrightarrow{R_N}$ et une composante tangentielle $\overrightarrow{R_T}$ de sens opposé à la vitesse et dont la norme vérifie $R_T = f\,R_N$ en notant f le coefficient de frottement.

- Il faut D' 500 m pour que le véhicule s'immobilise lorsqu'on n'exerce aucune force de freignage.
- Calculer la distance de freinage D si la vitesse initiale était de v₀ = 110 km.h⁻¹
- 2) Le résultat est-il modifié si la route fait un angle α avec l'horizontale (la voiture montant ou descendant la pente)?

EXERCICE 6

Un point matériel M se déplace sans frottements à l'intérieur d'une gouttière circulaire (toboggan terminé par un cercle de rayon a). Il est lâché en A, d'une hauteur h, sans vitesse initiale. On note g l'intensité du champ de pesanteur.

- 1) Exprimer en fonction de a, h, g et θ la norme v_M de la vitesse du point M lorsqu'il est à l'intérieur du demi-cercle.
- 2) De quelle hauteur h_{\min} doit on lâcher le point matériel sans vitesse initiale en A pour qu'il arrive jusqu'au point le plus haut du demi-cercle ($\theta = \pi$).
- 3) Dans ces conditions, donner l'expression de la réaction du support au point I d'entrée du demi-cercle $(\theta=0)$.
- 4) Déterminer les limites h_1 et h_2 telles que :
- a) si $h < h_1$, le point M effectue des oscillations.
- b) si $h_1 < h < h_2$, M quitte la gouttière et chute pour $\frac{\pi}{2} < \theta < \pi$.
- c) si $h > h_2$, le point M fait des tours complets (si le guide circulaire se poursuit).

Conseil : problème unidimensionnel + question sur la vitesse \Rightarrow utiliser le Thm de l' \mathcal{E}_k entre A ct M.

EXERCICE 7

Une grue élève une charge de 450 kg sur une hauteur de 6 m en 25 s. On prendra $g = 10 \ m/s^2$.

- 1) Le travail du poids de pesanteur \vec{P} de la charge est-il moteur ou résistant ? Quel est son signe ?
- 2) Calculer le travail du poids \vec{P} de la charge lors de sa montée.
- 3) Le travail de la force motrice \vec{F} de la grue est-il moteur ou résistant ? Quel est son signe ?
- 4) Calculer le travail de la force motrice \vec{F} lors de la montée de la charge.
- 5) Quel est la puissance moyenne développée par le moteur de la grue ?
- 6) Si ce moteur a un rendement de 72%, quelle est la puissance électrique qu'il absorbe ?

EXERCICE 8

On considère un point matériel M(m) pouvant se déplacer le long de l'axe $(0, \vec{u}_x)$ dans le référentiel galiléen \Re ; il est soumis à une force $-F_0\vec{u}_x$ (constante) s'il se déplace dans le sens des x croissants et à une force $F_0\vec{u}_x$ s'il se déplace dans le sens des x décroissants.

- 1. Déterminer le travail de la force pour aller directement du point A(x = 1) au point B(x = 3) en suivant l'axe $(0, \vec{u}_x)$.
- 2 . Déterminer le travail de la force pour aller du point A(x = 1) au point B(x = 1)
- 3) en passant par le point C(x = 4) tout en restant sur l'axe $(0, \vec{u}_x)$.
- 3 . La force est-elle conservative ? Si oui, déterminer l'énergie potentielle associée.