

Strukturált kábelezés

Számítógép-hálózatok

Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu

A strukturált kábelezés lényege

- Egy végpontról nem kell előre eldönteni, hogy mire használjuk:
 - Lehet telefon (hagyományos)
 - Lehet számítógép (vagy más eszköz, akár IP-telefon)
- Ugyanaz a csavart érpáras végpont mindkét célra alkalmas, a szerepe időközben változhat is.

Illusztráció: egy kiépített rendszer

A strukturált kábelezési rendszer részei

- Főrendező (számítógép-hálózati, illetve telefonos rendező együtt)
- Gerinckábelezés (vertikális kábelezés, újabban optikai közegen)
- Alrendezők (vízszintes kábelezés elosztóközpontjai)
- Vízszintes kábelezés (rézalapú sodrott érpáras kábelezés)
- Fali csatlakozók, padló dobozok

Strukturált kábelezés elemei

Végződtetés, szerelés – 1

- A kábelek a rendezőszekrényekben patch paneleken végződnek.
- Hierarchikus rendszerben számozzák, például: "R1 2/15": 1. rendező szekrény, 2. patch panel, 15. végpont
- Az aktív eszközök is a rendező szekrényekben vannak, azokat patch kábellel kötik be.
- A kábel túlsó végén is ott van ugyanaz a szám, ott is patch kábelt (lengőkábel) használnak.

Végződtetés, szerelés – 2

- Telefonok bekötéséhez is RJ45 csatlakozót kell használni, mert az RJ11 tönkreteszi az aljzatot!
- Kábelkategória (Cat5, Cat6, Cat7,...) kiválasztása
 - Az élőmunka a költségek jelentős részét adja, olcsó kábelt behúzni rossz döntés!
 - Jó esetben 10-15 éves garanciát szoktak adni!
- Kábelfajta (árnyékolás van-e) kiválasztása
 - Kell-e a rendszert védeni (pl. ipari környezet)?
 - Kell-e a rendszertől védeni (pl. orvosi környezet)?
 - Ha árnyékolás van, annak a teljes rendszerre ki kel terjedni és földelni is kell!

Csatlakozók száma:

- Fali csatlakozó:
 - 1 munkahely / 10 négyzetméter
 - 2 csatlakozó / munkahely (telefon + LAN)
 - 2 tartalék csatlakozó / szoba (vagy: +10 %)
 - Például: iroda 2000 négyzetméter = 220 dupla csatlakozó

Padlódoboz

- Mint fent, de a csatlakozók 1/3 része nem hozzáférhető a bútorok miatt
 - A példában: 330-ból marad 220 db.

- Port szám és a rendezők szükséges mérete:
 - Patch panel 24 vagy 32 portos (24-gyel kezelhetőbb)
 - Rendező szekrény magasságába beletervezni:
 - minden 2 patch panel után egy kábelterelőt
 - aktív eszközöket
 - szünetmentes tápegységet
 - villamoshálózati elosztót
 - esetleges szervereket
 - hűtést (a levegőt szűrni kell!)
 - Szélesség: jobb a 800mm: kétoldalt van hely a patch kábelek függőleges elvezetésére

- Kábelhosszak a falban:
 - Szigorú szabály EIA/TIA 568 és ISO/IEC 118021:
 Minden link (patch paneltől az aljzatig) kevesebb legyen mint 90 m!
 - Egy végpont kábelezésének a hossza:
 - az épület szintjeinek belmagassága +
 - a rendező és a gerinc közötti nyomvonal hossza +
 - a kábel gerincen futásának hossza +
 - a szoba hossza +
 - a szobában való ráhagyás +
 - 1,5 m ráhagyás a bekötésnél

Patch kábel hossza:

- Szigorú szabály EIA/TIA 568 és ISO/IEC 118021:
 Minden channel (switch patch kábel patch panel fali kábel aljzat patch kábel számítógép)
 kevesebb kell legyen, mint 100 méter.
- A rendező oldali patch kábel minimum 1 m, a számítógép lengőkábele maximum 9 m.
 - Vegyük észre, hogy a legfeljebb 100 méter szegmenshosszból legfeljebb 10 m lehet patch kábel és legfeljebb 90 m fali kábel. Ez azért van, mert a fali kábel és a patch kábel különböző felépítésű, a patch kábel hajlékonyabb, de kedvezőtlenebbek a villamos jellemzői.

- Struktúra meghatározása:
 - Mindig kellő biztonsági távolsággal tervezzünk
 - Megfelelő helyekre tervezzük a nyomvonalakat
 - Kellő távolság az erősáramú hálózattól
 - Csillag topológiával tervezzünk

FONTOS:

- A fentiekben a Krone tervezési szabályok egyszerűsített kivonatát láttuk Kárpáti László 2005. évi vendég előadása alapján.
- Mindez senkit sem jogosít fel tervezésre!

Kérdések?

KÖSZÖNÖM A FIGYELMET!

Dr. Lencse Gábor egyetemi docens Széchenyi István Egyetem, Távközlési Tanszék lencse@sze.hu

