Exercise Sheet 6

Exercise 1: Prepare a script that computes

- ullet Lagrange polynomial Π_n in standard form,
- Piecewise Lagrange approximation.

INPUT:

- a, b the boundary of the domain,
- N number of subintervals of the partition of [a, b],
- *n* degree of the polynomial (for piecewise approximation),
- f the function you want to interpolate.

OUTPUT:

- The error in $\|\cdot\|_{\infty}$ between the function f and the polynomial approximation.,
- the plot of the polynomial approximation and the exact solution with different colors,
- \bullet the plot of the error when increasing the degree n of the plynomial.

You might test your code on the following functions

- a) $f(x) = \sin(3x)$ $0 < x < 2\pi$,
- b) $f(x) = \log(x)$ $1 \le x \le 1.5$,
- c) $f(x) = e^x$, 0 < x < 1,
- d) $f(x) = x^5 + 3x^4 + 2x^3 x^2 5 + 1$, $-5 \le x \le 5$,
- e) $f(x) = \frac{1}{1+x^2}$, $-5 \le x \le 5$,
- f) f(x) = |x|, $0 \le x \le 5$, and $-3 \le x \le 2$,
- g) $f(x) = \sin(x^2), \quad -5 \le x \le 5,$
- h) $f(x) = |\sin(x^2)|, -5 \le x \le 5$,
- i) f(x) = sgn(x), $-5 \le x \le 5$,

Exercise 2: Provide an estimate of the error (independent from the distribution of the nodes) approximating the function $f(x) = \sin^2(x)$ in the interval [-5,5] with a polynomial interpolation of degree 7. (This is a theoretical exercise)

Exercise 3:[optional] Write a script that computes the Hermite polynomial. Test your script with the functions provided in Exercise 1.