

Exercise 13A

Question 15:

(a) Each edge of a cube
$$= 9m$$
 \therefore Volume of a cube $= a^3$
 $= (9)^3 \, m^3 = 729 \, m^3$
 \therefore Lateral surface area of cube $= 4a^2$
 $= 4 \times (9)^2$
 $= (4 \times 81) \, m^2$
 $= 324 \, m^2$
 \therefore Total surface area of a cube $= 6a^2$
 $= 6 \times (9)^2$
 $= (6 \times 81) \, m^2$
 $= 486 \, m^2$
 \therefore Diagonal of cube $= \sqrt{3} \, a$
 $= \sqrt{3} \times 9$
 $= (1.73 \times 9) \, m = 15.57 \, m$
(b) \therefore Each edge of a cube $= 6.5 \, cm$
Volume of a cube $= a^3 = (6.5)^3 \, cm^3$
 $= 274.625 \, cm^3$
 \therefore Lateral surface area of a cube $= 4a^2$
 $= 4 \times (6.5)^2 \, cm^2$
 $= (4 \times 42.25) \, cm^2$
 $= 169 \, cm^2$
Total surface area of a cube $= 6a^2$
 $= 6 \times (6.5)^2 \, cm^2$
 $= (6 \times 42.25) \, cm^2$
 $= (6 \times 42.25) \, cm^2$
 $= 253.5 \, m^2$
 \therefore Diagonal of cube $= \sqrt{3} \, a$
 $= \sqrt{3} \times 6.5$
 $= (1.73 \times 6.5) \, cm$
 $= 11.245 \, cm$.

Question 16:

Let each side of the cube be a cm.

Then, the total surface area of the cube =
$$(6a^2) \text{ cm}^2$$

 $\therefore 6a^2 = 1176$
 $\Rightarrow a^2 = \frac{1176}{6} = 196$
 $\Rightarrow a = \sqrt{196} = 14 \text{ cm}$
 $\therefore \text{ Volume of the cube} = a^3$
 $= (14)^3 = (14 \times 14 \times 14) \text{ cm}^3$
 $= 2744 \text{ cm}^3$.

******* END ******