# Effective Approaches to Attention-based Neural Machine Translation

18/11/10

김보섭

# Agenda

- 1. Introduction
- 2. Neural Machine Translation
- 3. Attention-based Model
  - Global Attention
  - Local Attention
  - Input-feeding Approach
- 4. Experiments
- 5. Analysis
- 6. Conclusion

#### Introduction

본 논문에서는 Neural Machine Translation에서 활용할 수 있는 단순하면서도 매우 효과적인 두 가지의 attentional mechanism을 제안함

- Global approach: all source words are attended
  - → Global Attention
- Local approach: only a subset of source words are considered
  - → Local Attention

#### **Neural Machine Translation**

Neural Machine Translation은 neural network가 source sentence가 주어졌을 때, target sentence로 번역될 P(t|s)를 modeling 하는 것

#### A basic form of NMT consist of two components:

- $\blacksquare$  An encoder which computes a representations s for each source sentence
- A decoder which generates one target word at a time and hence decompose the conditional probability as

$$\log p(y|x) = \sum_{t=1}^{m} \log p(y_t|y_{< t}, s)$$

$$p(y_t|y_{< t}, s) = softmax(g(\mathbf{h}_t)), \mathbf{h}_t = f(\mathbf{h}_{j-1}, s)$$

$$J_t = \sum_{(x,y)\in D} -\log p(y|x)$$

$$source\ sentence: x_1, ..., x_n$$

$$target\ sentence: y_1, ..., y_m$$

# 일반적으로 neural net을 training하는 관점에서의 attention은 서로 다 른 두 modality의 alignment를 neural net이 배우게 하는 것

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. "soft" (top row) vs "hard" (bottom row) attention. (Note that both models generated the same captions in this example.)



Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)





A little girl sitting on a bed with a teddy bear.



A group of people sitting on a boat in the water.



A giraffe standing in a forest with trees in the background.

Neural Machine Translation에서의 attention은 source sentence와 target sentence의 alignment를 neural net이 배우게 하는 것

#### What is alignment?

Alignment is the correspondence between particular words in the translated sentence pair.

Note: Some words have no counterpart



# backbone으로 encoder, decoder가 stacked Istm인 구조를 활용하며, 해당 구조에 Attention 방법론을 추가

 $oldsymbol{c}_t$ 를 만드는 방식이 결국 논문에서 말하는 Global Attention과 Local Attention!

$$\log p(y|x) = \sum_{t=1}^{m} \log p(y_t|y_{< t}, \underline{s})$$

$$p(y_t|y_{< t}, s) = softmax(Wh_t),$$

$$h_t = f(h_{t-1}, s)$$

$$J_t = \sum_{(x,y)\in D} -\log p(y|x)$$

$$source\ sentence:$$

$$x_1, \dots, x_n$$

$$target\ sentence:$$

$$y_1, \dots, y_m$$





$$\log p(y|x) = \sum_{j=1}^{m} \log p(y_t|y_{< t}, c_t)$$

$$p(y_t|y_{< t}, c_t) = softmax(\widetilde{W}\widetilde{h}_t),$$

$$h_t = f(h_{t-1}, \widetilde{h}_{t-1}, s), \widetilde{h}_t = tanh(W_c[c_t; h_t])$$

$$J_t = \sum_{(x,y)\in D} -\log p(y|x)$$

$$source\ sentence: x_1, ..., x_n$$

$$target\ sentence: y_1, ..., y_m$$



#### **Global Attention**

Global Attention의 idea는 encoder의 모든 step의 hidden state를  $c_t$ 를 만들 때 고려하자는 것



Figure 2: Global attentional model – at each time step t, the model infers a *variable-length* alignment weight vector  $\mathbf{a}_t$  based on the current target state  $\mathbf{h}_t$  and all source states  $\bar{\mathbf{h}}_s$ . A global context vector  $\mathbf{c}_t$  is then computed as the weighted average, according to  $\mathbf{a}_t$ , over all the source states.

#### Location-based function

 $a_t = \text{softmax}(W_a h_t)$  location

#### Content-based function

$$a_t(s) = \operatorname{align}(\boldsymbol{h}_t, \overline{\boldsymbol{h}}_s) = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \overline{\boldsymbol{h}}_s)\right)}{\sum_{s'} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \overline{\boldsymbol{h}}_{s'})\right)}$$

$$\operatorname{score}(\boldsymbol{h}_t, \overline{\boldsymbol{h}}_s) = \begin{cases} \boldsymbol{h}_t^T \overline{\boldsymbol{h}}_s & dot \\ \boldsymbol{h}_t^T \boldsymbol{W}_a \overline{\boldsymbol{h}}_s & general \\ \boldsymbol{v}_a^T \operatorname{tanh}(\boldsymbol{W}_a[\boldsymbol{h}_t; \overline{\boldsymbol{h}}_s]) & concat \end{cases}$$

#### Local Attention (1/2)

Global attention의 경우 source sentence가 길어지면 translate하기가 impractical, expensive해지는 문제가 발생 → source sentence의 subset만 고려하는 것



Figure 3: Local attention model – the model first predicts a single aligned position  $p_t$  for the current target word. A window centered around the source position  $p_t$  is then used to compute a context vector  $c_t$ , a weighted average of the source hidden states in the window. The weights  $a_t$  are inferred from the current target state  $h_t$  and those source states  $\bar{h}_s$  in the window.

than the hard attention approach. In concrete details, the model first generates an aligned position  $p_t$  for each target word at time t. The context vector  $c_t$  is then derived as a weighted average over the set of source hidden states within the window  $[p_t-D, p_t+D]$ ; D is empirically selected Unlike the global approach, the local alignment vector  $a_t$  is now fixed-dimensional, i.e.,  $\in \mathbb{R}^{2D+1}$ . We consider two variants of the model as below.

Monotonic alignment (local-m) — we simply set  $p_t = t$  assuming that source and target sequences are roughly monotonically aligned. The alignment vector  $a_t$  is defined according to Eq. (7)

#### Local Attention (2/2)

Global attention의 경우 source sentence가 길어지면 translate하기가 impractical, expensive해지는 문제가 발생 → source sentence의 subset만 고려하는 것



Figure 3: Local attention model – the model first predicts a single aligned position  $p_t$  for the current target word. A window centered around the source position  $p_t$  is then used to compute a context vector  $c_t$ , a weighted average of the source hidden states in the window. The weights  $a_t$  are inferred from the current target state  $h_t$  and those source states  $\bar{h}_s$  in the window.

*Predictive* alignment (**local-p**) – instead of assuming monotonic alignments, our model predicts an aligned position as follows:

$$p_t = S \cdot \operatorname{sigmoid}(\boldsymbol{v}_p^{\top} \tanh(\boldsymbol{W}_p \boldsymbol{h}_t)), \quad (9)$$

 $W_p$  and  $v_p$  are the model parameters which will be learned to predict positions. S is the source sentence length. As a result of sigmoid,  $p_t \in [0, S]$ . To favor alignment points near  $p_t$ , we place a Gaussian distribution centered around  $p_t$ . Specifically, our alignment weights are now defined as:

$$\boldsymbol{a}_t(s) = \operatorname{align}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s) \exp\left(-\frac{(s-p_t)^2}{2\sigma^2}\right)$$
 (10)

We use the same align function as in Eq. (7) and the standard deviation is empirically set as  $\sigma = \frac{D}{2}$ . Note that  $p_t$  is a *real* number; whereas s is an *integer* within the window centered at  $p_t$ .

#### Input-feeding Approach

Global Attention, Local Attention은 time step마다 independent 하게 결정되므로 suboptimal → suboptimal을 최대한 줄이기 위해 이전 step의 attention 정보를 전달



Figure 4: Input-feeding approach – Attentional vectors  $\tilde{h}_t$  are fed as inputs to the next time steps to inform the model about past alignment decisions.

# **Experiments**

#### **English-German Results**

| System                                                                            | Ppl  | BLEU                          |
|-----------------------------------------------------------------------------------|------|-------------------------------|
| Winning WMT'14 system – phrase-based + large LM (Buck et al., 2014)               |      | 20.7                          |
| Existing NMT systems                                                              |      |                               |
| RNNsearch (Jean et al., 2015)                                                     |      | 16.5                          |
| RNNsearch + unk replace (Jean et al., 2015)                                       |      | 19.0                          |
| RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)     |      | 21.6                          |
| Our NMT systems                                                                   |      |                               |
| Base                                                                              | 10.6 | 11.3                          |
| Base + reverse                                                                    | 9.9  | 12.6 (+ <i>1</i> . <i>3</i> ) |
| Base + reverse + dropout                                                          | 8.1  | 14.0 (+1.4)                   |
| Base + reverse + dropout + global attention ( <i>location</i> )                   | 7.3  | 16.8 (+2.8)                   |
| Base + reverse + dropout + global attention (location) + feed input               | 6.4  | 18.1 (+ <i>1.3</i> )          |
| Base + reverse + dropout + local-p attention ( <i>general</i> ) + feed input      | 5.9  | 19.0 (+0.9)                   |
| Base + reverse + dropout + local-p attention (general) + feed input + unk replace | 3.9  | 20.9 (+1.9)                   |
| Ensemble 8 models + unk replace                                                   |      | <b>23.0</b> (+2.1)            |

Table 1: **WMT'14 English-German results** – shown are the perplexities (ppl) and the *tokenized* BLEU scores of various systems on newstest2014. We highlight the **best** system in bold and give *progressive* improvements in italic between consecutive systems. *local-p* referes to the local attention with predictive alignments. We indicate for each attention model the alignment score function used in pararentheses.

| System                              | BLEU |
|-------------------------------------|------|
| SOTA - NMT + 5-gram rerank (MILA)   | 24.9 |
| Our ensemble 8 models + unk replace | 25.9 |

Table 2: **WMT'15 English-German results** – *NIST* BLEU scores of the existing WMT'15 SOTA system and our best one on newstest2015.

# **Experiments**

#### German-English Results

| System                                 | Ppl. BLEU |             |
|----------------------------------------|-----------|-------------|
| WMT'15 systems                         |           |             |
| SOTA – <i>phrase-based</i> (Edinburgh) |           | 29.2        |
| NMT + 5-gram rerank (MILA)             |           | 27.6        |
| Our NMT systems                        |           |             |
| Base (reverse)                         | 14.3      | 16.9        |
| + global (location)                    | 12.7      | 19.1 (+2.2) |
| + global (location) + feed             | 10.9      | 20.1 (+1.0) |
| + global $(dot)$ + drop + feed         | 9.7       | 22.8 (+2.7) |
| + global $(dot)$ + drop + feed + unk   | ] 9.7     | 24.9 (+2.1) |

Table 3: **WMT'15 German-English results** – performances of various systems (similar to Table 1). The *base* system already includes source reversing on which we add *global* attention, *drop*out, input *feed*ing, and *unk* replacement.

#### Learning curves & Effects of Translating Long Sentences

제안한 Attention mechanism이 적용된 NMT가 그렇지 않은 것보다 학습의 수렴속도가 빠르며, long sentences를 처리하는데 효과적임을 알 수 있음



Figure 5: **Learning curves** – test cost (ln perplexity) on newstest2014 for English-German NMTs as training progresses.



Figure 6: **Length Analysis** – translation qualities of different systems as sentences become longer.

#### Choices of Attentional Architectures & Alignment Quality (1/2)

| System            | Ppl  | BLEU   |             |  |
|-------------------|------|--------|-------------|--|
| System            | I pi | Before | After unk   |  |
| global (location) | 6.4  | 18.1   | 19.3 (+1.2) |  |
| global (dot)      | 6.1  | 18.6   | 20.5 (+1.9) |  |
| global (general)  | 6.1  | 17.3   | 19.1 (+1.8) |  |
| local-m (dot)     | >7.0 | X      | X           |  |
| local-m (general) | 6.2  | 18.6   | 20.4 (+1.8) |  |
| local-p (dot)     | 6.6  | 18.0   | 19.6 (+1.9) |  |
| local-p (general) | 5.9  | 19     | 20.9 (+1.9) |  |

Table 4: **Attentional Architectures** – performances of different attentional models. We trained two local-m (dot) models; both have ppl > 7.0.

| Method            | <b>AER</b> |
|-------------------|------------|
| global (location) | 0.39       |
| local-m (general) | 0.34       |
| local-p (general) | 0.36       |
| ensemble          | 0.34       |
| Berkeley Aligner  | 0.32       |

Table 6: **AER scores** – results of various models on the RWTH English-German alignment data.

#### Choices of Attentional Architectures & Alignment Quality (2/2)



Figure 7: **Alignment visualizations** – shown are images of the attention weights learned by various models: (top left) global, (top right) local-m, and (bottom left) local-p. The *gold* alignments are displayed at the bottom right corner.

#### **Sample Translations**

| Engli | sh-German translations                                                                            |
|-------|---------------------------------------------------------------------------------------------------|
| src   | Orlando Bloom and Miranda Kerr still love each other                                              |
| ref   | Orlando Bloom und <i>Miranda Kerr</i> lieben sich noch immer                                      |
| best  | Orlando Bloom und <i>Miranda Kerr</i> lieben einander noch immer .                                |
| base  | Orlando Bloom und Lucas Miranda lieben einander noch immer.                                       |
| src   | "We're pleased the FAA recognizes that an enjoyable passenger experience is not incompatible      |
|       | with safety and security, " said Roger Dow, CEO of the U.S. Travel Association.                   |
| ref   | "Wir freuen uns, dass die FAA erkennt, dass ein angenehmes Passagiererlebnis nicht im Wider-      |
|       | spruch zur Sicherheit steht ", sagte <i>Roger Dow</i> , CEO der U.S. Travel Association .         |
| best  | "Wir freuen uns, dass die FAA anerkennt, dass ein angenehmes ist nicht mit Sicherheit und         |
|       | Sicherheit <i>unvereinbar</i> ist ", sagte <i>Roger Dow</i> , CEO der US - die .                  |
| base  | "Wir freuen uns über die <unk>, dass ein <unk> mit Sicherheit nicht vereinbar ist mit</unk></unk> |
|       | Sicherheit und Sicherheit ", sagte Roger Cameron, CEO der US - <unk>.</unk>                       |
| Gern  | nan-English translations                                                                          |
| src   | In einem Interview sagte Bloom jedoch, dass er und Kerr sich noch immer lieben.                   |
| ref   | However, in an interview, Bloom has said that he and <i>Kerr</i> still love each other.           |
| best  | In an interview, however, Bloom said that he and <i>Kerr</i> still love.                          |
| base  | However, in an interview, Bloom said that he and <b>Tina</b> were still < unk > .                 |
| src   | Wegen der von Berlin und der Europäischen Zentralbank verhängten strengen Sparpolitik in          |
|       | Verbindung mit der Zwangsjacke , in die die jeweilige nationale Wirtschaft durch das Festhal-     |
|       | ten an der gemeinsamen Währung genötigt wird, sind viele Menschen der Ansicht, das Projekt        |
|       | Europa sei zu weit gegangen                                                                       |
| ref   | The austerity imposed by Berlin and the European Central Bank, coupled with the straitjacket      |
|       | imposed on national economies through adherence to the common currency, has led many people       |
|       | to think Project Europe has gone too far .                                                        |
| best  | Because of the strict austerity measures imposed by Berlin and the European Central Bank in       |
|       | connection with the straitjacket in which the respective national economy is forced to adhere to  |
|       | the common currency, many people believe that the European project has gone too far.              |
| base  | Because of the pressure imposed by the European Central Bank and the Federal Central Bank         |
|       | with the strict austerity imposed on the national economy in the face of the single currency,     |
|       | many people believe that the European project has gone too far .                                  |

Table 5: **Sample translations** – for each example, we show the source (*src*), the human translation (*ref*), the translation from our best model (*best*), and the translation of a non-attentional model (*base*). We italicize some *correct* translation segments and highlight a few **wrong** ones in bold.

### Conclusion & QnA

NMT에 적용할 수 있는 attentional mechanism으로 Global approach와 Local approach를 제안하고, WMT'14, WMT'15에서 SOTA임을 확인

