Power Series

Section 11.8, 11.9

Outline

- Power Series:
 - Definition
 - The Radius of Convergence and the Interval of Convergence
- Representations of Functions as Power Series
 - Geometric Power Series
 - Differentiation and Integration of Power Series

Power Series

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

where x is a variable and the $c_n s$ are constants called the **coefficients** of the series.

▶ The sum of the series is a function

$$f(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

whose domain is the set of all x for which the series converges.

Power Series

More generally, a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

is called a power series in (x - a) or a power series centered at a or a power series about a.

Notice that when x=a all of the terms are 0 for $n\geq 1$ and so the power series always converges when x=a .

Ex: Find χ s.t. $\sum_{n=0}^{\infty} \chi^n$ converges.

```
Ex: Find x s.t. \sum_{n=0}^{\infty} n! x^n converges. (Note: 0!=1)
```

Ex: Bessel function: $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$. Find x s.t. the power series converges. Sol:

Ex: Find
$$x$$
 s.t. $\sum_{n=1}^{\infty} \frac{(2n+1)^{2n}}{3^n}$ converges.

The Radius of Convergence

- Theorem: For a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ only one of the following is true.
- ▶ 1. It converges at only one point x = a .
- \triangleright 2. It converges for all x.
- ▶ 3. There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R.

The Radius of Convergence

The number R in case 3 is called the **radius of convergence** of the power series. By convention, R=0 in case 1 and $R=\infty$ in case 2.

The Radius of Convergence

- Theorem: If $\sum_{n=0}^{\infty} c_n (x_0 a)^n$ converges, then for any x such that $|x a| < |x_0 a|$, $\sum_{n=0}^{\infty} c_n (x a)^n$ converges absolutely.
- Corollary: If $\sum_{n=0}^{\infty} c_n (x_0 a)^n$ diverges, then for any x such that $|x a| > |x_0 a|$, $\sum_{n=0}^{\infty} c_n (x a)^n$ diverges.

Pf of the theorem:

Suppose that $\sum_{n=0}^{\infty} C_n(x_0-a)^n$ converges and x is a real number s.t. $|x-a| < |x_0-a|$.

The Interval of Convergence

- The interval of convergence of a power series is the interval that consists of all values of x for which the series converges.
- It may be the single point $\{a\}$, or the whole real line or a finite interval centered at a.
- When x is an *endpoint* of the interval, that is, $x=a\pm R$, anything can happen.

Examples of Power Series

Series	Radius of convergence	Interval of convergence
$\sum_{n=0}^{\infty} n! \ x^n$	R = 0	{0}
$\sum_{n=0}^{\infty} x^n$	R = 1	(-1, 1)
$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n}$	R = 1	[1, 3)
$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$	$R = \infty$	$(-\infty,\infty)$

Ex: Find the interval of convergence of $\sum_{n=0}^{\infty} (1+\frac{1}{2}+..+\frac{1}{2}n)(3x-1)^n$