

KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

Number Theory: Integers, Division, Prime Number

Discrete Math Team

Outline

- Integer and Division
- Primes
- GCD (Great Common Divisor)
- LCM (least Common Multiple)

Division

- **Definition**: if a and b are integers $(a \ne 0)$, a divides b if $\exists c$ such that b = ac.
- When a divides b, we say that a is a factor of b and that b is a multiple of a.

Notation:

- a | b : a divides b (a habis membagi b; b habis dibagi a)
- a ł b : a does not divide b (a tidak habis membagi b; b tidak habis dibagi a)

• Example:

- 3 | 7 ?3 | 12 ?
- 3 ∤ 7 since 7/3 is not an integer
- \circ 3 | 12 because 12/3 = 4

Theorem 1

- Let a, b, and c be integers, then:
 - If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$
 - If a | b, then a | bc for all integers c
 - If $a \mid b$ and $b \mid c$, then $a \mid c$

Proof:

- If a | b and a | c, then a | (b + c)
 - \bullet b = ma and c = na
 - b + c = ma + na = (m + n)a
 - b + c = (m + n)a
 - \circ So, a | (b+c)

Proof

- If a | b, then a | bc for all integers c
 - \bullet b = ma, bc = (ma)c = (mc)a
 - bc = (mc)a
 - So, a | bc
- If $a \mid b$ and $b \mid c$, then $a \mid c$
 - b = ma, c = pb = p(ma) = (pm)a
 - \circ c = (pm)a
 - So, a | c

Corollary 1

• $a \mid b \text{ and } a \mid c \rightarrow a \mid mb + nc$

Proof:

- \bullet b = pa
- \circ c = qa
- \bullet mb = (mp)a
- \circ nc = (nq)a
- \bullet mb + nc = (mp + nq)a
- So, a | mb + nc

Division Algorithm

• **Theorem 2**: Let a be an integer and d a positive integer. Then there exist unique integers q and r, with $0 \le r < d$, such that a = dq + r.

Definition

- q = a div d; q = quotient, d = divisor, a = divident
- $r = a \mod d$; r = remainder

Division Algorithm Examples

- What are the quotient and remainder when 101 is divided by 11?
 - $0 101 = 11 \cdot 9 + 2$
 - The quotient is: 9 = 101 **div** 11
 - The remainder is: 2 = 101 **mod** 11
- What are the quotient and remainder when -11 is divided by 3?
 - -11 = 3(-4) + 1
 - The quotient is: 4 = 11 **div** 3
 - The remainder is: 1 = 11 **mod** 3
 - Note: the remainder can't be negative
 - $-11 = 3 (-3) 2 \rightarrow r = -2 \text{ doesn't satisfy } 0 \le r < 3$

Modular Arithmetic

Definition: If a and b are integers and m is positive integer, then a is congruent to b modulo m if m divides a – b.

Notation:

- $a \equiv b \pmod{m}$; a is congruent to b modulo m
- $a \not\equiv b \pmod{m}$; a and b are not congruent to modulo m

• Theorem 3:

• $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$.

• Example:

- $17 \equiv 12 \mod 5$, $17 \mod 5 = 2$, $12 \mod 5 = 2$
- $-3 \equiv 17 \mod 10$, $-3 \mod 10 = 7$, $17 \mod 10 = 7$

Modular Arithmetic

Theorem 4:

• Let m be a positive integer, $a \equiv b \pmod{m}$ iff $\exists k \text{ such that } a = b + km$.

Proof:

- If $a \equiv b \pmod{m}$, then $m \mid (a b)$.
- This means that $\exists k \text{ such that } a b = km$, so that a = b + km.
- Conversely, if $\exists k \text{ such that } a = b + km$, then km = a b.
- Hence, m divides a b, so that $a \equiv b$ (mod m)

Modular Arithmetic

Theorem 5:

- Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then
 - $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Proof:

- Because a = b (mod m) and c = d (mod m), there are integers s and t with b = a + sm and d = c + tm. Hence:
 - o b+d=(a+sm)+(c+tm)=(a+c)+m(s+t)
 - bd = (a + sm)(c + tm) = ac + m(at + cs + stm)
- Hence, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

Corollary 2

- Let m be a positive integer, a and b be integers. Then:
 - $(a + b) \mod m \equiv ((a \mod m) + (b \mod m))$ $\mod m$
 - $ab \equiv (a \mod m)(b \mod m) \pmod m$

• Proof:

- o By the definitions of mod m and congruence modulo m, we know that $a \equiv (a \mod m) \pmod m$ and $b \equiv (b \mod m) \pmod m$
- Hence theorem 5 tells us that:
 - $(a + b) \mod m \equiv ((a \mod m) + (b \mod m)) \mod m$
 - $ab \equiv (a \mod m)(b \mod m) \pmod m$

Caesar Cipher

- Alphabet to number: $a\sim0$, $b\sim1$, ..., $z\sim25$.
- Encryption: $f(p) = (p + k) \mod 26$.
- Decryption: $f^{-1}(p) = (p k) \mod 26$.
 - Caesar used k = 3.
- This is called a substitution cipher
 - You are substituting one letter with another

Caesar Cipher Example

- Encrypt "go cavaliers"
 - Translate to numbers: g = 6, o = 14, etc.
 - Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
 - Apply the cipher to each number: f(6) = 9, f(14) = 17, etc.
 - Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
 - Convert the numbers back to letters 9 = j, 17 = r, etc.
 - Full sequence: jr wfdydolhuv
- Decrypt "jr fdydolhuv"
 - Translate to numbers: j = 9, r = 17, etc.
 - Full sequence: 9, 17, 5, 3, 24, 3, 14, 11, 7, 20, 21
 - Apply the cipher to each number: $f^{-1}(9) = 6$, $f^{-1}(17) = 14$, etc.
 - Full sequence: 6, 14, 2, 0, 21, 0, 11, 8, 4, 17, 18
 - Convert the numbers back to letters 6 = g, 14 = 0, etc.
 - Full sequence: go cavaliers

Caesar Cipher Example

- Encrypt "MEET YOU IN THE PARK"
 - Translate to numbers:
 - Full sequence: 12, 4, 4, 19, 24, 14, 20, 8, 13, 19, 7, 4, 15, 0, 17, 10
 - Apply the cipher to each number:
 - Full sequence: 15, 7, 7, 22, 1, 7, 23, 11, 16, 22, 10, 7, 18, 3, 20, 13
 - Convert the numbers back to letters:
 - Full sequence: PHHW BRX LQ WKH SDUN

Caesar Cipher Example

• What letter replaces the letter K when the function $f(p) = (7p + 3) \mod 26$ is used for encryption?

Solution:

- First, note that 10 represents K, then using the encryption function specified, it follows that f(10) = (7.10 + 3) mod 26 = 21
- Because 21 represents V, K is replaced by V in the encrypted message.

Prime Numbers

- Definition: A positive integer p is prime if the only positive factors of p are 1 and p
 - If there are other factors, it is composite
 - Note that 1 is not prime!
 - It's not composite either it's in its own class
- Definition: An integer n is composite if and only if there exists an integer a such that a | n and 1 < a < n

Fundamental theorem of arithmetic

- Every positive integer greater than 1 can be uniquely written as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size
- Examples
 - 100 = 2 * 2 * 5 * 5
 - 182 = 2 * 7 * 13
 - 29820 = 2 * 2 * 3 * 5 * 7 * 71

Composite Factors

 If n is a composite integer, then n has a prime divisor less than or equal to the square root of n

Showing a number is prime

- Show that 113 is prime
- Solution
 - The only prime factors less than $\sqrt{113}$ = 10.63 are 2, 3, 5, and 7
 - Neither of these divide 113 evenly
 - Thus, by the fundamental theorem of arithmetic, 113 must be prime

Showing a number is composite

- Show that 899 is prime
- Solution
 - Divide 899 by successively larger primes (up to $\sqrt{899} = 29.98$), starting with 2
 - We find that 29 and 31 divide 899

Primes are infinite

- Theorem (by Euclid): There are infinitely many prime numbers
- Proof by contradiction
- Assume there are a finite number of primes
- List them as follows: $p_1, p_2 ..., p_n$.
- Consider the number $q = p_1 p_2 \dots p_n + 1$
 - This number is not divisible by any of the listed primes
 - If we divided p_i into q, there would result a remainder of 1
 - We must conclude that q is a prime number, not among the primes listed above
 - This contradicts our assumption that all primes are in the list $p_1, p_2 ..., p_n$.

The prime number theorem

- The ratio of the number of primes not exceeding x and x/ln(x) approaches 1 as x grows without bound
 - Rephrased: the number of prime numbers less than x is approximately x/ln(x)
 - Rephrased: the chance of an number x being a prime number is
 1 / ln(x)
- Consider 200 digit prime numbers
 - In $(10^{200}) \approx 460$
 - The chance of a 200 digit number being prime is 1/460
 - If we only choose odd numbers, the chance is 2/460
 = 1/230

Greatest common divisor

- The greatest common divisor of two integers a and b is the largest integer d such that d | a and d | b
 - Denoted by gcd (a, b)

- Examples

 - \circ gcd (17, 22) = 1
 - \circ gcd (100, 17) = 1

Relative primes

- Two numbers are relatively prime if they don't have any common factors (other than 1)
 - Rephrased: a and b are relatively prime if gcd(a, b) = 1

• gcd (25, 39) = 1, so 25 and 39 are relatively prime

Pairwise relative prime

- A set of integers $a_1, a_2, ... a_n$ are pairwise relatively prime if, for all pairs of numbers, they are relatively prime
 - Formally: The integers $a_1, a_2, ... a_n$ are pairwise relatively prime if gcd $(a_i, a_i) = 1$ whenever $1 \le i < j \le n$.
- Example: are 10, 17, and 21 pairwise relatively prime?
 - gcd (10,17) = 1, gcd (17, 21) = 1, and gcd (21, 10) = 1
 - Thus, they are pairwise relatively prime
- Example: are 10, 19, and 24 pairwise relatively prime?
 - Since gcd $(10,24) \neq 1$, they are not

More on gcd's

• Given two numbers a and b, rewrite them as:

$$a = p_1^{a_1} p_2^{a_2} ... p_n^{a_n}, b = p_1^{b_1} p_2^{b_2} ... p_n^{b_n}$$

- Example: gcd (120, 500)
 - $120 = 2^{3*}3^*5 = 2^{3*}3^{1*}5^{1}$
 - \circ 500 = $2^{2*}5^3$ = $2^{2*}3^{0*}5^3$
- Then compute the gcd by the following formula:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} ... p_n^{\min(a_n,b_n)}$$

• Example: gcd (120,500) = $2^{\min(3,2)} 3^{\min(1,0)} 5^{\min(1,3)} = 2^2 3^0 5^1 = 20$

Least common multiple

- The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b.
 - Denoted by Icm (a, b)
 - $\operatorname{lcm}(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} ... p_n^{\max(a_n,b_n)}$
- Example: lcm(10, 25) = 50
- What is Icm (95256, 432)?
 - \circ 95256 = $2^33^57^2$; $432 = 2^43^3$
 - o Icm $(2^33^57^2, 2^43^3) = 2^{\max(3,4)} 3^{\max(5,3)} 7^{\max(2,0)} = 2^43^57^2$ = 190512

Icm and gcd theorem

• Let a and b be positive integers. Then $a*b = \gcd(a, b) * lcm(a, b)$

- Example: gcd(10, 25) = 5, lcm(10, 25) = 50
 - 0.10*25 = 5*50

- Example: gcd (95256, 432) = 216, lcm (95256, 432) = 190512
 - 95256*432 = 216*190512