第二十七章 调和函数 3

27.1 平均值性质

记 $C(\Omega)$ 为区域 Ω 上的连续实值函数全体. 对 $u \in C(\Omega)$, 称 u 满足平均值性质, 如果对任意的 $a \in \Omega$, 存在 $r_a > 0$ 使 $D(a, r_a) \subset \Omega$, 且对任意 $r \in (0, r_a)$, 成立

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta.$$

一个重要的事实是: 若 $u \in C(\Omega)$ 满足平均值性质, 则 u 必满足极值原理 (即: 若非常值, 则不能在区域内部取到最大值或最小值). 请自证 (或参考讲义中极值原理的证明).

以下定理表明, 平均值性质是调和函数的特征性质.

定理 27.1. 假设 $u \in C(\Omega)$ 满足平均值性质, 则 u 是 Ω 上的调和函数.

证明: 因调和是局部性质, 只需在每点的一个小圆盘邻域证明 u 调和即可. 任取 $z_0 \in \Omega$, 取 $\overline{D(z_0,r)} \subset \Omega$. 在 $D=D(z_0,r)$ 上由 Dirichlet 问题的可解性可知, 存在唯一有界调和函数 v, 满足 $v|_{\partial D}=u|_{\partial D}$. 因 u,v 都满足均值性质, 故 h=u-v 亦然 (因此也满足极值原理). 由极值原理, $h|_{\partial D}=0 \Longrightarrow h\equiv 0$. 因此在 D 上, $u\equiv v$. 这样就证明了 u 调和.

27.2 Schwarz 反射原理

本节介绍 Schwarz 反射原理 (Schwarz reflection principle).

假设 Ω 是平面区域. 称 Ω 关于实轴 \mathbb{R} 对称, 如果对任意 $z \in \Omega$, 有 $\bar{z} \in \Omega$. 由 Ω 的连通性, 如果 Ω 关于实轴 \mathbb{R} 对称, 则 Ω

必然与实轴相交. 记

$$\Omega^+ = \Big\{z \in \Omega; \ \operatorname{Im}(z) > 0\Big\}, \ \Omega^- = \Big\{z \in \Omega; \ \operatorname{Im}(z) < 0\Big\}.$$

先介绍调和函数的 Schwarz 反射原理

命题 27.1. 假设区域 Ω 关于实轴 \mathbb{R} 对称, u 在 Ω^+ 上调和, 并且当 $z \to \Omega \cap \mathbb{R}$ 时, $u(z) \to 0$. 则函数

$$v(z) = \begin{cases} u(z), & z \in \Omega^+, \\ 0, & z \in \Omega \cap \mathbb{R}, \\ -u(\bar{z}), & z \in \Omega^-. \end{cases}$$

在 Ω 上调和. 它满足 $-v(z) = v(\bar{z})$.

证明: 显然 v 连续. 为证明 v 调和, 只需证明 v 在 Ω 上满足平均值性质. 因 v 在 $\Omega^+ \cup \Omega^-$ 上调和, 故在 $\Omega^+ \cup \Omega^-$ 的每点处满足平均值性质, 只需证明 v 在 $\Omega \cap \mathbb{R}$ 上满足平均值性质. 任取 $a \in \Omega \cap \mathbb{R}$, 取 $r_a > 0$ 使得 $D(a, r_a) \subset \Omega$. 对任意 $r \in (0, r_a)$,

$$\begin{split} \int_0^{2\pi} v(a + re^{it}) dt &= \int_0^{\pi} v(a + re^{it}) dt + \int_{\pi}^{2\pi} v(a + re^{it}) dt \\ &= \int_0^{\pi} v(a + re^{it}) dt + \int_{\pi}^{2\pi} -u(a + re^{-it}) dt \\ &= \int_0^{\pi} u(a + re^{it}) dt - \int_0^{\pi} u(a + re^{it}) dt \\ &= 0 = 2\pi v(a). \end{split}$$

这说明 v 在 $\Omega \cap \mathbb{R}$ 上满足平均值性质.

定理 27.2.(全纯函数的 Schwarz 反射原理) 假设区域 Ω 关于 \mathbb{R} 对称, $I = \Omega \cap \mathbb{R}$. 假设 f 在 Ω^+ 上全纯, 并且当 $z \to I$ 时, $\mathrm{Im} f(z) \to 0$, 则函数 f 可连续延拓到 I 上 (仍记为 f), 且

$$F(z) = \begin{cases} f(z), & z \in \Omega^+ \cup I, \\ \overline{f(\overline{z})}, & z \in \Omega^-. \end{cases}$$

在 Ω 上全纯, 满足 $F(\bar{z}) = \overline{F(z)}$.

注: 定理的条件 "当 $z \to I$ 时, $\operatorname{Im} f(z) \to 0$ " 不应理解为 "f 可连续延拓到 I 上",它只说明虚部可连续延拓到 I 上. 定理的结论蕴含 "f 可以连续延拓到 I 上",这个结论成立是由调和函

数的 Schwarz 反射原理 (命题27.1) 保证, 而命题27.1成立的本质 原因是平均值性质为调和函数的特征性质 (见定理27.1). 详见证 明.

证明: 令 v = Im f, 它在 Ω^+ 上调和. 由条件知, 当 $z \to I$ 时, $v(z) \to 0$. 由调和函数的 Schwarz 反射原理 (命题27.1), v 可以延 拓为 Ω 上的调和函数, 仍记为 v, 满足 $v(z) = -v(\bar{z})$.

对任意 $a \in I$, 取 r > 0 使 $D(a,r) \subset \Omega$, 则 v 在 D(a,r) 上可 表示为某全纯函数 q 的实部. 另一方面, 在 Ω^+ 上, 记 f = u + iv. 由 -if = v - iu 可知, 在 $D(a,r) \cap \Omega^+$ 上 v 也是全纯函数 -if 的 实部. 因此在 $D(a,r) \cap \Omega^+$ 上, Re(q+if) = 0, 由此可得

$$f(z) = ig(z) + c, \ z \in D(a,r) \cap \Omega^+,$$

其中 c 是实常数. 上式说明, f 可延拓为 D(a,r) 上的全纯函数 f_a . 同理, Ω^- 上的全纯函数 $\overline{f(z)}$ 亦可延拓为 D(a,r) 上的全纯 函数 \tilde{f}_a . 延拓所得两全纯函数 f_a , \tilde{f}_a 满足如下关系

$$f_a(x) = f(x) = \overline{f(x)} = \tilde{f}_a(x), \ x \in I \cap D(a, r).$$

由唯一性定理, 在 D(a,r) 上有 $f_a = f_a$.

由 $a \in I$ 的任意性可知, 如下定义的函数

$$F(z) = \begin{cases} f(z), & z \in \Omega^+ \cup I, \\ \overline{f(\overline{z})}, & z \in \Omega^-. \end{cases}$$

在 Ω 上全纯.

定理27.2中, 关于实轴对称的区域亦可换成关于圆周对称的区 域. 假设 C 是平面的圆周

$$C = \{z \in \mathbb{C}; |z - z_0| = r\}.$$

记 $z \in \mathbb{C}$ 关于圆周 C 的对称点为 $\sigma_C(z)$, 它满足方程

$$(\sigma_C(z) - z_0) \cdot \overline{(z - z_0)} = r^2 \Longleftrightarrow \sigma_C(z) = z_0 + \frac{r^2}{\overline{z} - \overline{z_0}}.$$

称区域 Ω 关于圆周 C 对称, 如果对任意 $z \in \Omega$ 都有 $\sigma_C(z) \in \Omega$. 此时, 记 Ω^+ 为 Ω 位于圆周 C 内部的部分, $I = \Omega \cap C$, Ω^- 为 Ω 位于圆周 C 外部的部分.

定理 27.3. 假设区域 Ω 关于圆周 C 对称, $I = \Omega \cap C$. 假设 f 在 Ω^+ 上全纯, 不取零值, 可连续延拓到 I 上,且 f(I) 为一圆周或直线 γ 的一段. 则函数

$$F(z) = \begin{cases} f(z), & z \in \Omega^+ \cup I, \\ \sigma_{\gamma} \circ f \circ \sigma_C(z), & z \in \Omega^-. \end{cases}$$

在 Ω 上全纯, 满足 $\sigma_{\gamma} \circ F = F \circ \sigma_{C}$.

证明: 通过前后复合分式线性变换,可以将圆周 C, γ 变为实轴. 利用定理27.2即可.

27.3 Schwarz 反射原理的应用

例题 27.1. 假设 f 在上半平面 Π 上全纯, $I \subset \mathbb{R}$ 为一段开区间. 当 $z \to I$ 时, $f(z) \to a \in \mathbb{C}$. 证明 $f \equiv a$.

证明: 考虑函数 g(z) = f(z) - a. 当 $z \to I$ 时, $g(z) \to 0$. 由 Schwarz 反射原理 (定理27.2),

$$G(z) = \begin{cases} g(z), & z \in \mathbb{H} \cup I, \\ \overline{g(\overline{z})}, & z \in \mathbb{H}^- \end{cases}$$

在 $\coprod \cup I \cup \coprod^-$ 上全纯,且 $G|_I \equiv 0$. 由全纯函数的唯一性定理得 $G \equiv 0$,即 $f \equiv a$.

取 R > 1, 记 $A(R) = \{z \in \mathbb{C}; 1 < |z| < R\}$ 为环域, $C(R) = \{z; |z| = R\}$ 为圆周.

例题 27.2. 假设 $f: A(r) \to A(\rho)$ 全纯, f 在 $\overline{A(r)}$ 上连续, 且 当 |z| = 1 时, |f(z)| = 1; 当 |z| = r 时, $|f(z)| = \rho$.

- 1. 证明存在正整数 $n \ge 1$, 使得 $\rho = r^n$.
- 2. 如果 f 双全纯,则 $r = \rho$.

证明: 利用 f 在 $\overline{A(r)}$ 上连续, 且满足 $f(C(r)) \subset C(\rho)$ 可知,

$$F(z) = \begin{cases} f(z), & 1 < |z| \le r, \\ \rho^2 / \overline{f(r^2/\overline{z})}, & r < |z| < r^2. \end{cases}$$

在 $A(r^2)$ 上连续. 由 Schwarz 反射原理 (定理27.3), F 在 $A(r^2)$ 上 全纯, 满足 $F(A(r^2)) \subset A(\rho^2)$. 由 f 在 $\overline{A(r)}$ 上连续且 $f(\partial \mathbb{D}) \subset \partial \mathbb{D}$ 可知, F 可以连续延拓到 $A(r^2)$ 的外边界 $C(r^2)$ 上,并且满足 $F(C(r^2)) \subset C(\rho^2)$.

按此方式逐次延拓, 可以将 f 延拓为全纯映射 $F: \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus \overline{\mathbb{D}}$. 此时, 再越过圆周 $\partial \mathbb{D}$ 向内延拓, 可进一步延拓为全纯映射 $F: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$.

易知, 当 $z \to 0$ 时, $F(z) \to 0$, 这说明 0 是 F 的可去奇点,因此 F 为整函数; 当 $z \to \infty$ 时, $F(z) \to \infty$, 这说明 ∞ 是 F 的极点, 因此 F 为多项式. 由延拓函数的映射性质可知, $F^{-1}(0) = 0$, 因此 $F(z) = az^n$. 再利用 $F(\partial \mathbb{D}) \subset \partial \mathbb{D}$ 可知, |a| = 1, 即 $a = e^{i\theta}, \theta \in \mathbb{R}$. 由此得 $\rho = r^n$.

如果 f 双全纯, 则 $F: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ 也双全纯, 因此 $n=1, r=\rho$.

27.4 调和 Schwarz 引理

定理 27.4. (调和函数的 Schwarz 引理) 假设 u 是 \mathbb{D} 上的调和函数, 取值于 (-1,1), 满足 u(0)=0, 则成立不等式:

$$|u(z)| \leq \frac{4}{\pi}\arctan|z|, \ \forall z \in \mathbb{D}; \ \left|\frac{\partial u}{\partial z}(0)\right| \leq \frac{2}{\pi}.$$

证明: 因 \mathbb{D} 单连通, 故 u 是 \mathbb{D} 上某全纯函数 f(z) = u(z) + iv(z) 的实部. 通过将 v 换成 v - v(0), 不妨假设 f(0) = 0. 显然 f 是从 \mathbb{D} 到带域 $B = \{w \in \mathbb{C}; |\text{Re}(w)| < 1\}$ 的全纯映射.

证明想法: 先构造双全纯映射 $g: B \to \mathbb{D}$, 满足 g(0) = 0; 之后对 $G = g \circ f: \mathbb{D} \to \mathbb{D}$ 应用全纯函数的 Schwarz 引理.

为求出 g, 我们考虑映射的复合

$$\zeta \mapsto \zeta_1 = \frac{\pi i \zeta}{2} \mapsto \zeta_2 = e^{\zeta_1} \mapsto \zeta_3 = \frac{\zeta_2 - 1}{\zeta_2 + 1}.$$

上述映射序列对应区域 (含标记点) 变换

$$(B,0) \to \left(\frac{\pi i}{2}B,0\right) \to (\mathbb{H}_R,1) \to (\mathbb{D},0),$$

其中 \mathbb{H}_R 为右半平面. 以上三个映射的的复合记为 $g: B \to \mathbb{D}$,

$$g(\zeta) = \frac{e^{\pi i \zeta/2} - 1}{e^{\pi i \zeta/2} + 1}.$$

对任意 $x_0 \in (-1,1)$, 直线 $\ell_{x_0} = \{z \in \mathbb{C}; \operatorname{Re}(z) = x_0\}$ 在 g 下的像为经过 -1,1 两点的圆弧,与 x-轴夹角大小为 $\theta = \pi |x_0|/2$. 圆弧所在圆周半径为 $1/\sin\theta$. 利用平面几何,圆弧与原点的距离为

$$\frac{1}{\sin \theta} - \frac{1}{\tan \theta} = \frac{1 - \cos \theta}{\sin \theta} = \tan \left(\frac{\theta}{2}\right) = \tan \left(\frac{\pi}{4}|x_0|\right).$$

这说明对任意 $\zeta \in B$,

$$|g(\zeta)| = \left| \frac{e^{\pi i \zeta/2} - 1}{e^{\pi i \zeta/2} + 1} \right| \ge \tan\left(\frac{\pi}{4}|\text{Re}(\zeta)|\right).$$

考虑复合函数 $G = g \circ f : \mathbb{D} \to \mathbb{D}$:

$$G(z) = \frac{e^{\pi i f(z)/2} - 1}{e^{\pi i f(z)/2} + 1}.$$

它全纯且满足 G(0) = 0. 由 Schwarz 引理,

$$|z| \ge |G(z)| \ge \tan\left(\frac{\pi}{4}|\operatorname{Re}(f(z))|\right) = \tan\left(\frac{\pi}{4}|u(z)|\right).$$

由此可得

$$|u(z)| \le \frac{4}{\pi} \arctan |z|, \ \forall z \in \mathbb{D}.$$

另一方面, 计算知

$$G'(z) = \frac{\pi i f'(z)}{(1 + e^{\pi i f(z)/2})^2}.$$

仍由 Schwarz 引理,

$$|G'(0)| = \frac{\pi}{4}|f'(0)| \le 1 \Longrightarrow |f'(0)| \le \frac{4}{\pi}.$$

利用 $f'(z) = 2\frac{\partial u}{\partial z}$, 可得结论.

定理27.4可进一步推广为调和映射的情形

定理 27.5. (调和映射的 Schwarz 引理) 假设 $f: \mathbb{D} \to \mathbb{D}$ 为调和映射, 满足 f(0) = 0, 则成立不等式:

$$|f(z)| \le \frac{4}{\pi} \arctan |z|, \ \forall z \in \mathbb{D}.$$

证明: 记 f(z) = u(z) + iv(z), 其中 u, v 都是调和函数, 满足 $u^2 + v^2 < 1$. 下面将对任意 $a \in \mathbb{D}$, 证明 f(a) 满足定理中的模长估计. 不妨假设 |f(a)| > 0(否则, 不等式总成立). 定义调和函数

$$w_a(z) = (u(a)u(z) + v(a)v(z))/|f(a)|, z \in \mathbb{D}.$$

27.5 习题 239

显然, $w_a(0) = 0$, $w_a(a) = |f(a)|$. 由 Cauchy-Schwarz 不等式,

$$|w_a(z)| \le |f(a)||f(z)|/|f(a)| = |f(z)| < 1.$$

这说明 w_a 取值于 (-1,1). 由定理27.4得, $|w_a(z)| \leq \frac{4}{\pi}\arctan|z|$, $\forall z \in \mathbb{D}$. 特别地,

$$|f(a)| = |w_a(a)| \le \frac{4}{\pi} \arctan |a|.$$

27.5 习题

- 1. (平均值性质的应用: 调和函数列的紧性) 设 $\{u_n\}$ 是区域 Ω 上一列调和函数, 内闭一致收敛于函数 u, 证明 u 在 Ω 上调和.
- 2. (Schwarz 反射原理的应用) 假设 f 在单位圆盘 \mathbb{D} 上全纯, $\gamma = \{e^{it}; a \leq t \leq b\}$ 为 $\partial \mathbb{D}$ 上的一段圆弧 (非单点), 满足当 $z \to \gamma$ 时, $f(z) \to 0$, 证明 $f \equiv 0$.
 - 3. (Schwarz 反射原理的应用) 给定 a,b>0, 定义矩形

$$R(a,b) = \Big\{ x + iy; 0 < x < a, 0 < y < b \Big\}.$$

假设 $f: R(a,b) \to R(A,B)$ 是两个矩形之间的全纯映射, 在 R(a,b) 闭包上连续, 保持顶点对应:

$$(0, a, a + bi, bi) \mapsto (0, A, A + Bi, Bi),$$

且 f 保持顶点之间的边界对应. 证明:

$$\frac{a}{b} = \frac{A}{B}.$$

4. (调和函数 Schwarz 反射原理的应用) 记 $A(R) = \{z \in \mathbb{C}; 1 < |z| < R\}$ 为环域. 假设 $f: A(R_1) \to A(R_2)$ 全纯, 满足当 $|z| \to 1$ 时, $|f(z)| \to 1$; 当 $|z| \to R_1$ 时, $|f(z)| \to R_2$. 证明 f 可连续延拓到 $\overline{A(R_1)}$ 上.

(思路之一: 注意到 $g(w) = \log(f(e^w))$ 是垂直带域之间的全纯映射. 对 g 的实部利用调和函数 Schwarz 反射原理)

- 5. (调和函数 Schwarz 引理的应用) 假设 u 是单位圆盘上的调和函数,满足 -1 < u < 1 并且 u(0) = 0. 求 u(1/2) 的最大值.取到最大值时, u 具有怎样的形式?
- 6. (调和函数的 Hadamard 三圆定理) 设 $0 < r_1 < r_2 < \infty$, $\Omega = \{z \in \mathbb{C}; r_1 < |z| < r_2\}$. $u \in \Omega$ 上调和, 在闭包 $\overline{\Omega}$ 上连续, 记

 $M(r)=\max_{|z|=r}u(z)(r_1\leq r\leq r_2)$,证明 M(r) 在 $[r_1,r_2]$ 上是 $\log r$ 的凸函数,即

$$M(r) \le \frac{\log r_2 - \log r}{\log r_2 - \log r_1} M(r_1) + \frac{\log r - \log r_1}{\log r_2 - \log r_1} M(r_2).$$

等号对某 $r \in (r_1, r_2)$ 成立的充要条件是什么?