Deep Learning for Side Channel Attack

Group 19

E/17/038	Anurudda
E/17/101	Anjalee
E/17/292	Rilwan

Contents

- Problem & Solution
 - What is SCA?
 - Side Channel Attacks
 - Power Analysis Attack
 - Leakage Models
 - Countermeasures
 - O What is RFTC?
 - O Why RFTC?
 - Our Aim
- Our Progress
 - Taking Power Traces
 - Converting traces to h5
 - Attacking unprotected AES using AISY Framework
 - Increasing the success rate
- Plan
 - Remaining work
 - Work plan

PROBLEM & SOLUTION

What is SCA?

Attack that exploits information leaked through the physical implementation

Side Channel Attacks

- Power Analysis Attacks
- Differential Power Analysis (DPA)
- Simple Power Analysis (SPA)
- Timing Attacks
- Electromagnetic Radiation Analysis (e.g., Van Eck phreaking)
- Acoustic Cryptanalysis

Power Analysis Attack

- Revealing the secret information via the power dissipation of the device (proposed by Paul Kocher in 1999)
- Why?
 - CMOS gates are the most popular building blocks of IC manufacturing
 - Power dissipation of CMOS gates depend on inputs

AISY framework

- a deep learning-based framework for profiling side-channel analysis
- brings state of-the-art deep learning-based side-channel attacks
- enables the users to run the analyses and report the results efficiently
- web application provides a user-friendly way to visualize analysis, plots, results, and tables

Leakage Models

Observable information that leaks via side-channels like power consumption

- Hamming Weight ("HW"):
 - number of '1' bits (set bits)
 - o eg: "10101100" has a Hamming weight of 4
- Hamming Distance ("HD"):
 - differences between the two states
 - o eg: State 1: "10101100" State 2: "101111100" → HD is 2 (bit 4 and bit 5).
- Bit:
 - each individual binary bits is treated as a separate class
 - eg: a bit value has 2 different classes that is 0 or 1

Countermeasures

- Masking: randomizing or masking the sensitive data during cryptographic operations
- Noise Injections: introduces additional noise in the side-channel signals
- Random Delay Insertion (RDI): inserts random delays into the execution of instructions.
- Random Clock Dummy Data (RCDD): inserts random dummy data into the clock signal.

What is RFTC?

- Random Frequency Tuning Countermeasure
- Introduces random frequency variations in the clock signal during the execution of cryptographic operations
- Instead of using a fixed clock frequency, RFTC dynamically changes the clock frequency at different phases of the operation.

Why RFTC?

- None of the countermeasures were tested and proven to be secure against
 Correlation Power Analysis (CPA) based attacks (Preprocessed methodologies):
 - Dynamic Time Warping based CPA attacks (DTW-CPA)
 - Principal Component Analysis based CPA attacks (PCA-CPA)
 - Fast Fourier Transform based CPA attacks (FFT-CPA)
- RFTC is tested against all three attacks and shown to be secure for up to four million encryptions.
- But not tested against ML attacks

Project - Our Aim

- Testing RFTC against Machine Learning models using AISY framework
- Improving MLP and CNN models to attack RFTC

OUR PROGRESS

Taking Power Traces

- Have used a FPGA prototyping board with an isolated power line, signal amplifier.
- Have used a program which sends secret key, and random plain text and receive the cipher text.
- Have used another program to save plaintext, ciphertext, power traces and also key, because we want to verify if we received the key.
- Power traces are saved as a binary file.

Unprotected Power traces

Power traces of all 10 rounds are aligned

Protected Power traces (Using RFTC) - 1M traces

Encryption happens during variable random frequency

Converting Traces to h5

- Convert traces into h5 format because it is the supported format by aisy framework.
- In the saseboprocess power traces, cipher text, plain text and keys are separated into profiling and attack

Converting Traces to h5

- Data Preprocessing
- Reading waveform data
- Handling Text Data
- Creating an HDF5 Dataset
- Storing Traces in to h5 format

Converting traces to h5

- ✓ S new_dataset.h5
 ✓ Attack_traces
 III metadata
 III traces
 - ✓ Profiling_traces
 III metadata
 III traces

...contd

- ✓ S new_dataset.h5
 - → Attack_traces
 - metadata
 - traces 🏻
 - → Profiling_traces
 - metadata
 - traces

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	52224.0	51968.0	52224.0	41728.0	44288.0	28928.0	31232.0	45312.0	44800.0	38144.0	42496.0	49152.0	46848.0
1	52736.0	52224.0	51968.0	41984.0	45056.0	30720.0	32768.0	46080.0	45568.0	38912.0	43264.0	49408.0	47104.0
2	52480.0	51712.0	52224.0	41728.0	44288.0	29696.0	32000.0	45824.0	45312.0	38400.0	42752.0	49152.0	46848.0
3	52480.0	51968.0	52480.0	41728.0	44544.0	29952.0	32512.0	45312.0	45568.0	38400.0	42496.0	49408.0	46592.0
4	51200.0	51456.0	51456.0	41984.0	43008.0	28672.0	31744.0	45312.0	43776.0	37120.0	42240.0	48640.0	45824.0
5	51712.0	51968.0	51712.0	42496.0	43264.0	28672.0	32000.0	45568.0	44288.0	37376.0	42496.0	49152.0	46336.0
6	52480.0	52480.0	52736.0	41728.0	45056.0	29696.0	31488.0	45568.0	45312.0	38144.0	42496.0	49408.0	47360.0
7	51456.0	51200.0	51712.0	40704.0	44544.0	29696.0	31744.0	45056.0	44544.0	38144.0	41984.0	48384.0	46592.0
8	52480.0	52736.0	52736.0	43520.0	43520.0	28672.0	33024.0	46592.0	44544.0	37888.0	43264.0	49408.0	46592.0
9	52224.0	52736.0	51968.0	42496.0	43520.0	28928.0	32512.0	46336.0	44800.0	38656.0	43008.0	49152.0	46848.0
10	52480.0	52480.0	52736.0	43520.0	45056.0	30976.0	33792.0	46848.0	46080.0	39424.0	43776.0	50176.0	47360.0
11	52736.0	52736.0	52480.0	41472.0	45056.0	31232.0	32768.0	46080.0	46336.0	39936.0	43520.0	49664.0	47616.0
12	51968.0	51712.0	51712.0	41216.0	44032.0	28928.0	31744.0	45056.0	44800.0	37632.0	42240.0	48640.0	46336.0
13	51712.0	51712.0	51712.0	41472.0	43776.0	28672.0	31744.0	45312.0	44800.0	37632.0	42240.0	48640.0	46080.0
14	51712.0	51968.0	51968.0	39680.0	44544.0	29952.0	30464.0	44544.0	45056.0	37888.0	41472.0	48640.0	46592.0
15	51968.0	51968.0	51968.0	41472.0	45056.0	31744.0	33024.0	46080.0	46080.0	39168.0	43008.0	49408.0	47104.0
16	51968.0	51968.0	51712.0	43264.0	43776.0	28928.0	33024.0	46080.0	44544.0	37888.0	43520.0	48896.0	46080.0
17	52224.0	52224.0	52224.0	40448.0	45568.0	32000.0	32512.0	45568.0	46336.0	39168.0	42496.0	49408.0	47616.0
18	52736.0	52736.0	52736.0	40192.0	45568.0	30720.0	31488.0	45568.0	46336.0	38656.0	42752.0	49920.0	47104.0

Attack unprotected AES using aisy framework

 AISY framework have already defined multilayer perceptron and convolution neural network models

```
import sys
sys.path.append('D:/CA/UOP/4th year/Sem7/CO421/AISY framework')
import aisy sca
from app import *
from custom.custom models.neural networks import *
new dataset dict = {
    "filename": "new dataset 2rounds.h5",
    "key": "000102030405060708090A0B0C0D0EF0",
    "first sample": 0,
    "number of samples": 100,
    "number of profiling traces": 60000,
    "number of attack traces": 40000
aisy = aisy sca.Aisy()
aisy.set resources root folder(resources root folder)
aisy.set database root folder(databases root folder)
aisy.set datasets root folder(datasets root folder)
aisy.set database name("database ascad.sqlite")
aisy.set dataset(new dataset dict)
aisy.set aes leakage model(leakage model="ID", byte=4, round=1,
                           target state="Sbox", direction="Encryption", cipher="AES128")
aisy.set batch size(400)
aisy.set epochs(22)
aisy.set neural network(mlp)
aisy.run(key rank attack traces=10000)
```

Attack unprotected AES using aisy framework

Attack using existing models (MLP)

- Can work on highly non-linear data.
- MLPs are capable of capturing these non-linear patterns, making them suitable for modeling such complex relationships
- Four hidden layers, each with 200 neurons, using SELU activation
- Use the Adam optimizer with a 0.001 learning rate and categorical cross-entropy as the loss function.

```
def mlp(classes, number_of_samples):
    model = Sequential(name="basic_mlp")
    model.add(Dense(200, activation='selu', input_shape=(number_of_samples,)))
    model.add(Dense(200, activation='selu'))
    model.add(Dense(200, activation='selu'))
    model.add(Dense(200, activation='selu'))
    model.add(Dense(classes, activation='softmax'))
    model.summary()
    optimizer = Adam(lr=0.0001)
    model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
    return model
```

Attack unprotected AES using aisy framework

Attack using existing models (CNN)

- More suitable for processing data that has a grid-like topology, such as an image.
- All the layers use the ReLU activation function, and the fully-connected layers have 128 neurons each.
- Use the Adam optimizer with a 0.001 learning rate and categorical cross-entropy as the loss function.

Increasing success rate for existing model

- Success rate number of occurrences where we get the real key ranked first within the probability vector out of total number of attacks.
- Used;
 - existing MLP model in AISY framework.
 - traces consisting 1 round, 2 rounds, 3 rounds, and all the rounds of AES to attack.
- Attacked;
 - different key bytes.
 - different states of AES.
- Changed
 - leakage model used to attack.(HW, HD, ID)
 - the number of epochs.
 - number of key rank attack traces.

Increasing success rate for existing model

Analysis ID ↑↓	Dataset ↑↓	Datetime	Key Rank			Elapsed Time	NN Name	Results		
91	new_dataset_2rounds.h5		Key Byte	Metric	Guessing Entropy	Success Rate	00:02:03	mlp		
			4	Attack Set	1	0.76				
92	new_dataset_2rounds.h5	Sep 04, 2023 12:47:33	Key Byte	Metric	Guessing Entropy	Success Rate	00:02:05	mlp		
			4	Attack Set	2	0.41				
93	new_dataset_2rounds.h5	Sep 04, 2023 12:50:35	Key Byte	Metric	Guessing Entropy	Success Rate	00:02:36	mlp		
			4	Attack Set	1	0.73				
94	new_dataset_2rounds.h5	Sep 04, 2023 12:54:26	Key Byte	Metric	Guessing Entropy	Success Rate	00:01:59	mlp		
			4	Attack Set	ttack Set 1 0.95					
95	new_dataset_2rounds.h5	Sep 04, 2023 12:57:19	Key Byte	Metric	Guessing Entropy	Success Rate	00:02:00	mlp		
			4	Attack Set	1 0.63					
96	new_dataset_2rounds.h5	Sep 04, 2023 13:00:17	Key Byte	Metric	Guessing Entropy	Success Rate	00:01:58	mlp		
			4	Attack Set 1 0.8		0.8				
97	new_dataset_2rounds.h5	Sep 04, 2023 13:06:08	Key Byte	Metric	Guessing Entropy	Success Rate	00:02:20	mlp		
			4	Attack Set	1	0.7				
98	new_dataset_2rounds.h5	Sep 04, 2023 13:09:56	Key Byte	Metric	Guessing Entropy	Success Rate	00:02:40	mlp		
			4	Attack Set	1	0.65				

Increasing success rate for existing model

PLAN

Remaining work

- Getting success rate = 1 for unprotected AES.
- Attack Protected AES using existing models.
- Attack protected AES using custom model.
- Preparing paper.

Work Plan

Semester 8

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Attack unprotected AES using MLP															
Attack unprotected AES using CNN															
Attack AES protected with RFTC using MLP															
Attack AES protected with RFTC using CNN															
Evaluation															
Report Writing															
Finalize report															

Thank You

Q & A

