http://user.rol.ru/~nolamerz/

Конспект лекций по математической логике за II семестр

Лектор: Д. Е. Пальчунов.

По материалам лекций 2003-2004 гг.

Под редакцией Таранцова А., Таранцовой У., Чирухина О.

Этот документ распространяется на условии «как есть», без предоставления каких-либо гарантий. Разрешается свободное копирование данного документа в личных целях. По вопросам массового распространения и внесения изменений обращайтесь к авторам.

Оглавление

\S 17. Секвенциональное исчисление предикатов 3
\S 18. Теорема о существовании модели
\S 19. Исчисление предикатов гильбертовского типа
\S 20. Кодировка машин Тьюринга
\S 21. Универсальные функции
\S 22. Рекурсивные и рекурсивно-перечислимые множества
\S 23. Теорема Гёделя о неполноте
\S 24. Аксиоматизируемые классы
§ 25. Элементарные подсистемы
§ 26. Теорема Эрбрана

Секвенциональное исчисление предикатов

§ 17

Определение Пусть φ — формула. Тогда $\varphi(t_1,\ldots,t_n) \rightleftharpoons \left[\varphi(s_1,\ldots,s_n)\right]_{t_1,\ldots,t_n}^{x_1,\ldots,x_n}.$ Определение 17.1 (1) $\varphi \vdash \varphi$: (а) аксиомы (2) $\vdash \forall x (x = x);$ 17-12 (3) $\vdash \forall x \forall y \ ((x = y) \rightarrow (y = x));$ (4) $\vdash \forall x \forall y \forall z \left((x = y) \& (y = z) \right) \rightarrow (x = z) \right);$ 17-14 (5) $(t_i = q_i), \varphi(t_1, \ldots, t_n) \vdash \varphi(q_1, \ldots, q_n).$ 17-17 (1) $\frac{\Gamma \vdash \varphi; \ \Gamma \vdash \psi}{\Gamma \vdash \varphi; \ \varphi};$ (б) правила вывода 17-22 (2) $\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \varphi}$; 17-23 (3) $\frac{\Gamma \vdash (\varphi \& \psi)}{\Gamma \vdash \psi};$ 17-24 (4) $\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \varphi'}$; 17-25 (5) $\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \psi}$; 17-26 (6) $\frac{\Gamma, \varphi \vdash \xi; \ \Gamma, \psi \vdash \xi; \ \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \xi};$ 17-27 (7) $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash (\varphi \rightarrow \psi)}$ 17-28 (8) $\frac{\Gamma \vdash \varphi; \ \Gamma \vdash (\varphi \rightarrow \psi)}{\Gamma \vdash \varphi'};$ 17-29 (9) $\frac{\Gamma, \neg \varphi \vdash}{\Gamma \vdash \varphi}$; 17-30 (10) $\frac{\Gamma \vdash \varphi; \ \Gamma \vdash \neg \omega}{\Gamma \vdash};$ 17-31 (11) $\frac{\Gamma_1, \varphi, \psi, \Gamma_2 \vdash \xi}{\Gamma_1, \psi, \varphi, \Gamma_2 \vdash \xi}$; 17-32 (12) $\frac{\Gamma \vdash \varphi}{\Gamma \not = \varphi}$; 17-33 (13) $\frac{\Gamma \vdash \omega}{\Gamma \vdash \forall x \bowtie} \quad x \notin \mathsf{FV}(\Gamma);$ 17-34 (14) $\frac{\Gamma, \varphi(t) \vdash \psi}{\Gamma \ \forall \ x \ \varphi(x) \vdash \psi} \ \ \varphi(t) = \left[\varphi(x)\right]_t^x;$ 17-35 (15) $\frac{\Gamma \vdash \varphi(t)}{\Gamma \vdash \exists x \varphi(x)}$; 17-37 (16) $\frac{\Gamma, \varphi \vdash \psi}{\Gamma \exists x. \ \varphi \vdash \psi} \ x \notin FV(\Gamma \cup \{\varphi\}).$

17-52

17-60

17-63

17_78

17_82

₁₇₋₄₃ Опре∂еление 17.2

Доказательство, доказательство секвенции, дерево секцвенций, дерево вывода, допустимое правило вывода, производное правило вывода определяются аналогично соответствующим понятиям исчисления высказываний (ИВ).

Предложение 17.3

Секвенция доказуема $\iff \exists$ дерево вывода, заканчивающееся на эту секвенцию.

▶ (Упражнение.) ◀

Замечание 17.4

- (a) Если секвенция получена подстановкой в секвенцию, доказуемую в СИВ, вместо пропозициональной переменной формулы предикатов, то полученная секвенция доказуема в СИП.
- (б) Правила вывода, допустимые в ИВ, допустимы в ИП.
- Все правила вывода в ИВ совпадают с правилами вывода в ИП.
 (Упражнение.) ◀

Предложение 17.5

Следующие правила вывода являются производными в ИП: 17-65

(a)
$$\frac{\Gamma \vdash \forall x \ \varphi(x)}{\Gamma \vdash \varphi(x)}$$
;

(6)
$$\frac{\varphi \vdash \psi}{(\varphi \& \xi) \vdash (\psi \& \xi)};$$

(B)
$$\frac{\varphi \vdash \psi}{(\xi \& \psi) \vdash (\xi \& \psi)}$$
;

(r)
$$\frac{\varphi \vdash \psi}{(\omega \lor \xi) \vdash (\psi \lor \xi)}$$
;

(д)
$$\frac{\varphi \vdash \psi}{(\xi \lor \varphi) \vdash (\xi \lor \psi)}$$
;

(e)
$$\frac{\varphi \vdash \psi}{\neg (\varphi \vdash \neg \eta)}$$
;

(ж)
$$\frac{\varphi \vdash \psi}{(\xi \to \varphi) \vdash (\xi \to \psi)}$$
;

(3)
$$\frac{\varphi \vdash \psi}{(\varphi \to \xi) \vdash (\psi \to \xi)};$$

(и)
$$\frac{\varphi \vdash \psi}{\forall x \ \varphi \vdash \forall x \ \psi}$$
;

(K)
$$\frac{\varphi \vdash \psi}{\exists x \varphi \vdash \exists x \psi}.$$

Следствие 17.6

Пусть $\varphi_1 \equiv \psi_1$, $\varphi_2 \equiv \psi_2$, тогда:

(a)
$$(\varphi_1 \& \varphi_2) \equiv (\psi_1 \& \psi_2);$$
 17-85

(6)
$$(\varphi_1 \vee \varphi_2) \equiv (\psi_1 \vee \psi_2);$$

(B)
$$(\varphi_1 \rightarrow \varphi_2) \equiv (\psi_1 \rightarrow \psi_2);$$

(r)
$$\neg \varphi_1 \equiv \neg \psi_1$$
;

(д)
$$\forall x \varphi_1 \equiv \forall x \psi_1$$
;

(e)
$$\exists x \varphi_1 \equiv \exists x \psi_1$$
.

17-105

17-110

Теорема 17.7 о замене

Пусть $\varphi \equiv \varphi_1$, ψ_1 получена из ψ заменой одного из вхождений формулы φ на φ_1 . Тогда $\psi \equiv \psi_1$.

▶ Индукцией по длине n — длине ψ ($n = \ln \psi$). 17-98

> База индукции. Если $n < \ln \varphi$, то $\psi_1 = \psi \Rightarrow \psi_1 \equiv \psi$. Если $n = \ln \varphi$ phi. TO:

(1) $\varphi \neq \psi \implies \varphi$ не входит в $\psi \implies \psi_1 = \psi \Rightarrow \psi_1 \equiv \psi$;

(2)
$$\psi = \varphi \implies \psi_1 = \varphi_1 \implies \psi_1 \equiv \psi$$
.

Индукционный переход. $n > \ln \varphi$, поэтому $\psi = (\psi' \& \psi'')$ или $\psi =$ $= (\psi' \lor \psi'')$ или $\psi = (\psi' \to \psi'')$ или $\neg \psi'$ или $\forall x \ \psi'$ или $\exists x \ \psi'$; $\ln \psi' < n \text{ in } \psi'' < n.$

Обозначим через $\psi_{\mathbf{1}}'$ и $\psi_{\mathbf{1}}''$ результат замены φ на $\varphi_{\mathbf{1}}$ в формулах ψ' и ψ'' , если таковая замена имела место. Тогда $\psi' \equiv \psi_1'$ и $\psi'' \equiv \psi_1''$. Значит $\psi \equiv \psi_1$ по следствию 17.6. \blacktriangleleft

Определение 17.8

 $\Gamma \vdash \varphi$ тождественно истинна, если для \forall модели $\mathfrak{A} \in$ $\in K_{\sigma}(\Gamma \cup \{\varphi\})$, для \forall означивания переменных γ : **FV**($\Gamma \cup$ $\cup \{\varphi\}$) $\to |\mathfrak{A}|$ выполняется

$$\forall \psi \in \Gamma \ \mathfrak{A} \models \psi [\gamma] \implies \mathfrak{A} \models \varphi [\gamma].$$

 $\Gamma \vdash$ тождественно истинна, если для \forall модели $\mathfrak{A} \in K_{\sigma}$ ($\Gamma \cup$ \cup $\{\varphi\}$), для \forall означивания переменных γ : $\mathsf{FV}(\Gamma \cup \{\varphi\}) \to |\mathfrak{A}|$ выполняется

$$\exists \, \psi \in \Gamma \ \mathfrak{A} \not\models \psi \, [\gamma].$$

 $\vdash \varphi$ тождественно истинна (т. и.), если для \forall модели $\mathfrak{A} \in$ $\in K_{\sigma}(\Gamma \cup \{\varphi\})$, для \forall означивания переменных γ : **FV**($\Gamma \cup \{\varphi\}$) $\cup \{\varphi\}$) $\to |\mathfrak{A}|$ выполняется

$$\mathfrak{A} \models \varphi [\gamma].$$

Замечание 17.9 17-136

 $\vdash \varphi$ т.и. $\iff \varphi$ т.и.

Теорема 17.10 17-140 о корректности

Если секвенция доказуема, то она тождественно истинна.

17-146 Лемма 17.11

17-143

17-156

17-159

17-161

Аксиомы тождественно истинны.

▶ (Упражнение.) ◀

Лемма 17.12

Если S_1,\dots,S_n т. и. $(n\in\{1,2,3\})$ и $\frac{S_1,\dots,S_n}{S}$ — правило вывода, то S т. и.

▶ (Упражнение.) ◀

Пусть S доказуема, тогда \exists дерево вывода D вида $\stackrel{\dots}{::}$. Пусть n = h(D). Индукция по n:

Пусть n=1, тогда S- аксиома, значит т. и. по 17.11.

< n
ightarrow n: пусть $D = rac{D_1; \dots; D_n}{S}; \ D_i \ -$ деревья, $D_i = rac{\dots}{S_i},$ значит $h(D_i) < n$. Следовательно, по индукции S_i — т. и. $\frac{S_1; \dots; S_n}{S}$ правило вывода, значит, $S - \tau$. и. (по 17.12). \blacktriangleleft

Версия 0.9.5

17-184

17-185

17-186

17-188

17-194

17-198

17-203

17-209

17-213

17-170 *Предложение 17.13* Имею

Имеют место следующие тождества ($x \notin \mathsf{FV}(\xi)$):

$$(1) \quad \forall x \ \xi \equiv \xi;$$

(2)
$$\exists x \, \xi \equiv \xi$$
;

(3)
$$\forall x \forall y \varphi(x,y) \equiv \forall y \forall x \varphi(x,y);$$

(4)
$$\exists x \exists y \varphi(x, y) \equiv \exists y \exists x \varphi(x, y)$$
;

(5)
$$\neg \exists x \ \varphi(x) \equiv \forall x \ \neg \varphi(x);$$

(6)
$$\neg \forall x \varphi(x) \equiv \exists x \neg \varphi(x);$$

(7)
$$(\forall x \varphi(x)) \& (\forall x \psi(x)) \equiv \forall x (\varphi(x) \& \psi(x));$$

(8)
$$(\exists x \varphi(x)) \& (\exists x \psi(x)) \equiv \exists x (\varphi(x) \& \psi(x));$$

(9)
$$(\forall x \varphi(x) \& \xi) \equiv \forall x (\varphi(x) \& \xi);$$

(10)
$$\exists x (\varphi(x) \& \xi) \equiv \exists x (\varphi(x) \& \xi);$$

(11)
$$\xi \& (\forall x \varphi(x)) \equiv \forall x (\xi \& \varphi(x));$$

(12)
$$\xi \& (\exists x \varphi(x)) \equiv \exists x (\xi \& \varphi(x));$$

(13)
$$(\forall x \varphi(x)) \lor \xi \equiv \forall x (\varphi(x) \lor \xi);$$

$$(14) (\exists x \varphi(x)) \lor \xi \equiv \exists x (\varphi(x) \lor \xi);$$

(15)
$$\xi \lor (\forall x \varphi(x)) \equiv \forall x (\xi \lor \varphi(x));$$

(15)
$$\xi \vee (\exists x \ \varphi(x)) \equiv \exists x \ (\xi \vee \varphi(x));$$
(17) $\forall x \ \varphi(x) \equiv \forall y \ \varphi(y);$
17-190

$$(11) \quad \forall x \quad \varphi(x) = \forall y \quad \varphi(y),$$

(18)
$$\exists x \ \varphi(x) \equiv \exists y \ \varphi(y).$$

▶ (Упражнение.) ◀

Определение 17.14

Говорят, что формула находится в предварённой (пренексной) нормальной форме, если она имеет вид

$$Q_1x_1 \ldots Q_nx_n \varphi(\overline{x}, \overline{y}),$$

где $Q_1, \ldots, Q_n \in \{\forall, \exists\}, \varphi$ бескванторная.

Теорема 17.15 (синтаксис)

 $\forall \varphi \exists \psi \equiv \varphi \quad | \quad \psi$ находится в предварённой НФ.

▶ Алгоритм приведения: 17-206

- (1) Избавляемся от импликаций.
- (2) С помощью 5 и 6 отрицание вносится под кванторы.
- (3) С помощью 17, 18 переменные переобозначим так, чтобы разные переменные действовали по разным кванторам и каждая переменная имела либо только свободное, либо только связанное вхождение.
- (4) С помощью 9–16 кванторы выносятся наружу.

В силу теоремы о замене, предложения 17.13 и транзитивности на каждом шаге получается формула, равносильная данной. Полученная формула — ПНФ. ◀

18-9

18-11

18-13

18-17

18-20

18-29

18-33

18-40

18-47

18-49

Теорема о существовании модели

§ 18

18-6 Определение 18.1

Пусть σ — сигнатура, $T \subseteq F(\sigma)$, $\varphi \in F(\sigma)$. Тогда:

- (1) $T \vdash \varphi$, если $\exists \varphi_1, \dots, \varphi_n \in T \mid \varphi_1, \dots, \varphi_n \vdash \varphi$ доказуема;
- **(2)** $T \vdash$, если $\exists \varphi_1, \dots, \varphi_n \in T \mid \varphi_1, \dots, \varphi_n \vdash$ доказуема (множество T противоречиво);
- (3) $T \not\vdash$ (множество T непротиворечиво), если T не является противоречивым.

Пусть $T\subseteq S$ (σ). Тогда T — meopus сигнатуры σ , если

$$\forall \varphi \in S(\sigma) \ T \vdash \varphi \implies \varphi \in T,$$

то есть множество предложений T является $\partial e \partial y \kappa m u в но замкнутым.$

Множество T полно в сигнатуре σ , если

$$\forall \varphi \in S(\sigma) \ \varphi \in T \lor \neg \varphi \in T.$$

Пусть $\mathfrak{A} \in K(\sigma)$. Говорят, что $\mathfrak{A}-$ модель множества предложений T ($\mathfrak{A} \models T$), если

 $\forall \varphi \in T \ \mathfrak{A} \models \varphi.$

₁₈₋₂₅ Определение 18.2

Элементарной теорией модели $\mathfrak A$ называется

$$\mathsf{Th}(\mathfrak{A}) \rightleftharpoons \{ \varphi \in S(\sigma(\mathfrak{A})) \mid \mathfrak{A} \models \varphi \} \, .$$

 $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$ эквивалентны ($\mathfrak{A}\equiv\mathfrak{B}$), если $\mathsf{Th}(\mathfrak{A})=\mathsf{Th}(\mathfrak{B})$, то есть $\forall\,\varphi\in S(\sigma)\,\,\,\mathfrak{A}\models\varphi\Rightarrow\mathfrak{B}\models\varphi.$

Такие модели неразличимы с точки зрения свойств логики предикатов.

₁₈₋₃₆ Замечание 18.3

Элементарная теория модели $\mathfrak A$ является полной непротиворечивой теорией сигнатуры σ .

▶ (Следите за обновлениями!) ◀

₁₈₋₄₆ Замечание 18.5

Для $T\subseteq S(\sigma)$ следующие условия эквивалентны:

- **(1)** *Т* противоречива;
- (2) $\forall \varphi \in S(\sigma) \ T \vdash \varphi;$
- (3) $\exists \varphi \in S(\sigma) \mid T \vdash \varphi \quad \mathsf{M} \quad T \vdash \neg \varphi$.
- ▶ (Следите за обновлениями!) ◀

₁₈₋₅₄ Следствие 18.6

Пусть $T = \mathsf{Th}(\sigma)$. Тогда $T \vdash \iff T = S(\sigma)$.

18-75

18-83

18-86

18-95

18-97

18-110

18-121

18-125

18-130

18-132

18-135

Конспект лекций по математической логике за II семестр $T \vdash \iff \forall \varphi \in S(\sigma) \ T \models \varphi \iff \varphi \in T \iff T = S(\sigma),$ 18-57 т. к. $T \subseteq S(\sigma)$. \triangleleft Замечание 18.7 Пусть $T \subseteq S(\sigma)$, T непротиворечиво и полно, тогда T теория. (Полное непротиворечивое множество предложений данной сигнатуры является теорией этой сигнатуры.) ▶ Пусть $T \vdash \varphi$. Пусть $\varphi \notin T$, $\varphi \in S(\sigma)$. Тогда $\neg \varphi \in T$, следовательно $\exists \varphi_1, \ldots, \varphi_n \in T \mid \varphi_1, \ldots, \varphi_n \vdash \langle \mathsf{To be continued} \ldots \rangle \blacktriangleleft$ Теорема 18.8 Пусть A, B бесконечны, ||A|| < ||B||. Тогда $||A \cup B|| = ||B||$. ▶ (Упражнение.) ◀ Теорема 18.9 Пусть A бесконечно, $A^* = \{(a_1, \ldots, a_n) \mid a_i \in A\}.$ Тогда $||A^*|| = ||A||$. ▶ (Упражнение.) ◀ Теорема 18.10 Пусть A — множество. Тогда \exists кардинал α | $\|\alpha\| = \|A\|$. Замечание

Если α — бесконечный кардинал, то α — предельный орди-

▶ Пусть $\beta = \alpha \cup \{\alpha\}$, тогда $\|\beta\| = \|\alpha\|$. ◀

Определение 18.11

Пусть X — множество переменных, $\mathfrak{A} \in K(\sigma)$, $\gamma: X \to |\mathfrak{A}|$ интерпретация переменных X. Пусть $\Gamma \subseteq F(\sigma)$, $\mathsf{FV}(\Gamma) \subseteq X$. Тогда говорят, что множество формул Γ истинно на модели ${\mathfrak A}$ при означивании переменных γ , и пишут $\mathfrak{A} \models \Gamma[\gamma]$, если

$$\forall\,\varphi\in\Gamma\ \mathfrak{A}\models\varphi\,\llbracket\gamma\rrbracket.$$

Если $FV(\varphi) = \{x_1, \dots, x_n\}$, т. е. $\varphi = \varphi(x_1, \dots, x_n)$, то $\varphi[\gamma] = \varphi(\gamma(x_1), \ldots, \gamma(x_n)),$

где $\gamma(x_i) \rightleftharpoons a_i \in \mathfrak{A}$.

Теорема 18.12 о сиществовании модели

Любое непротиворечивое множество формул выполнимо, т. е. 18-115 имеет модель:

 $\Gamma \not\vdash \implies \exists \mathfrak{A} \in K(\sigma(\Gamma)), \exists \gamma \colon \mathsf{FV}(\Gamma) \to |\mathfrak{A}|$ $\mathfrak{A} \models \Gamma[\gamma].$

Лемма 18.13

Лемма 18.14

 $\Gamma' \not\vdash$.

нал.

U — дерево вывода. При $\gamma \langle \langle ??? \rangle \rangle$ аксиомы, правила вывода сохраняются.

Лемма 18.15 Хенкина

 T^* — теория Хенкина для σ^* , т. е. выполнено:

- (a) T^* непротиворечива;
- **(б)** $\forall \varphi \in S(\sigma^*)$ $\varphi \in T^*$ либо $\neg \varphi \in T^*$, т. е. T^* полно;

Конспект лекций по математической логике за II семестр

(B) $\varphi \in S(\sigma)$,

18-138

18-140

18-143

18-152

18-157

18-158

 $T^* \models \varphi \implies \varphi \in T^*$. т. е. T^* полно:

- (r) $(\varphi \& \psi) \in T^* \iff \varphi \in T^* \text{ и } \psi \in T^*$;
- (д) $(\varphi \lor \psi) \in T^* \iff \varphi \in T^*$ или $\psi \in T^*$;
- (e) $(\neg \varphi) \in T^* \iff \varphi \notin T^*$:
- (ж) $(\varphi \to \psi) \in T^* \iff \text{если } \varphi \in T^*, \text{ то } \psi \in T^*;$
- (3) $\exists x \ \psi(x) \in T^* \iff \exists c \in C \mid \varphi(c) \in T^* \iff$

 \Leftrightarrow

 \exists замкнутый терм $t \in T(\sigma^*)$, т. е. $\mathsf{FV}(t) = \emptyset \mid \psi(t) \in T^*$;

(y) $\forall x \ \psi(x) \in T^* \iff \forall c \in C \mid \varphi(c) \in T^* \iff$ \Leftrightarrow

 \forall замкнутых термов $t \in T(\sigma^*)$ $\psi(t) \in T^*$.

18-147 Лемма 18.16

Пусть $U \cup \{\varphi\} \subseteq S(\sigma), c \in G(\varphi), c \notin G(U); U, \varphi \vdash$ доказуема. Тогда $U, [\varphi]^c \vdash$ доказуема.

▶ (Упражнение.) ◀

Определение 18-156

Логика предикатов без равенства — это:

- (1) В определении формул исключается пункт равенства термов.
- (2) В аксиомах ИП исключаются аксиомы с равенством.

Мы можем рассматривать логику предикатов без равенства и вводить равенство как внелогический символ, т.е. как обычный двухместный предикат.

18-165 Лемма 18.17

$$\mathfrak{A}^* \models T^* \iff \forall \, \varphi \in T^*$$

$$\mathfrak{A} \models \varphi.$$

$$t^{\mathfrak{A}^*} = t$$
.

Пусть
$$t \in T(\sigma^*)$$
, $t = t(x_1, \dots, x_n)$; $q_1, \dots, q_n \in T(\sigma^*)$, $\mathsf{FV}(q_i) = \emptyset$. Тогда $t^{\mathfrak{A}^*}(q_1, \dots, q_n) = t(q_1, \dots, q_n)$.

Определение: 18-179 сигнатурное объединение

Модель $\mathfrak{A} \rightleftharpoons \mathfrak{A}^*/\sigma$ — это та же самая модель σ , в которой мы забыли про все сигнатурные символы из множества $\sigma^* \setminus \sigma$. Означивание то же самое.

Лемма 18.20 18-185

18-187

18-189

18-192

Для $\forall t, q, S, t_i, q_i \in T(\sigma)$ выполняется:

- (a) $\vdash t = t$;
 - (6) $t=t\vdash$:
 - **(B)** $t = q \& q = s \vdash t = s;$

 - (r) $t_1 = q_1, \dots, t_n = q_n \vdash \left[s\right]_{t_1, \dots, t_n}^{x_1, \dots, x_n} = \left[s\right]_{q_1, \dots, q_n}^{x_1, \dots, x_n}$ (д) $t_1 = q_1, \dots, t_n = q_n, \left[\varphi\right]_{t_1, \dots, t_n}^{x_1, \dots, x_n} \vdash \left[\varphi\right]_{q_1, \dots, q_n}^{x_1, \dots, x_n}$

18-270

```
Лемма 18.21
                                     Пусть t \in T(\sigma), \mathsf{FV}(t) = \emptyset. Тогда \exists c \in C \mid (t = c) \in T^*.
Определение 18.22
                                     Пусть e, s \in C. Тогда e \sim s \iff (e = s) \in T^*.
                                                                                                                                           18-202
Лемма 18.23
                                                                                                                                           18-206
                                     \sim — отношение эквивалентности.
Определение 18.24:
                                     A = C/\sim = \{[c] \mid c \in C\}.
                                                                                                                                           18-210
модель
                                     \mathfrak{A}^* = \langle A : \sigma^* \rangle.
                                     Выводимость на модели \mathfrak{A}^*:
                                                                                                                                           18-213
                                     (1) для \forall p^n \in \sigma^*, c_1, \ldots, c_n \in C:
                                                \mathfrak{A}^* \models p([c_1], \dots, [c_n]) \iff p(c_1, \dots, c_n) \in T^*:
                                     (2) для \forall f^n \in \sigma^*:
                                                                                                                                           18-216
                                          f^{\mathfrak{A}^*}([c_1],\ldots,[c_n]) = [c] \iff (f(c_1,\ldots,c_n) = c) \in T^*;
                                     (3) для \forall d \in \sigma^*:
                                                                                                                                           18-218
                                                              d^{\mathfrak{A}^*} = [c] \iff (d = c) \in T^*.
Лемма 18.25
                                     Предыдущее определение корректно.
                                                                                                                                           18-222
                                     Пусть t \in T(\sigma^*), FV(t) = \emptyset. Тогда f^{\mathfrak{A}^*} = c \iff (t = c) \in T^*.
Лемма 18.26
                                                                                                                                           18-226
Лемма 18.27
                                     Пусть t, q \in T(\sigma^*), FV(t) = FV(q) = \emptyset.
                                                                                                                                           18-231
                                     Тогда \mathfrak{A}^* \models (t = q) \iff (t = q) \in T^*.
                                    Пусть p^n \in T(\sigma^*); t_1, \ldots, t_n \in \sigma^*; \mathsf{FV}(t_i) = \emptyset. Тогда \mathfrak{A}^* \models p(t_1^{\mathfrak{A}^*}, \ldots, t_n^{\mathfrak{A}^*}) \iff p(t_1, \ldots, t_n) \in T^*.
Лемма 18.28
                                                                                                                                           18-236
Лемма 18.29
                                     Для \forall \varphi \in S(\sigma^*) выполняется \mathfrak{A}^* \models \varphi \iff \varphi \in T^*.
                                                                                                                                           18-241
Следствие 18.30
                                    \mathfrak{A}^* \models T^*.
                                \triangleright \varphi \in T^* \implies \mathfrak{A}^* \models \varphi. \blacktriangleleft
Определение 18.31
                                     Пусть \Gamma \subseteq F(\sigma).
                                                                                                                                           18-252
                                     \Gamma совместно, если \exists \mathfrak{A} \in K(\sigma) \exists \gamma \colon \mathsf{FV} \to |\mathfrak{A}| \mid \mathfrak{A} \models \Gamma[\gamma].
                                                                                                                                           18-254
                                     \Gamma локально совместно, если \forall локального \Gamma_0 \subseteq \Gamma \Gamma_0 сов-
                                     местно.
 Теорема 18.32
                                     \Gamma совместно \iff \Gamma локально совместно.
                                                                                                                                           18-261
Мальиева о
                                ▶ (Следите за обновлениями!) ◄
                                                                                                                                           18-264
компактности
```

Любая тождественно истинная формула доказуема.

▶ (Следите за обновлениями!) ◄

Теорема 18.33

Гёделя о полносте

Следствие 18.34

arphi доказуема $\iff arphi$ тождественно истинна.

18-274

18-276

18-281

▶ (⇒). φ доказуема $\implies \varphi$ тождественно истинна $\implies \vdash \varphi$ доказуема (теорема о корректности) $\implies \varphi$ т. и.

(⇐). Теорема о полноте. ◀

₁₈₋₂₈₆ Теорема 18.35

Секвенция S доказуема \iff S тождественно истинна.

18-288

▶ (**⇒**). Теорема о корректности.

(⇐). Аналогично доказательству для СИВ. ◀

18-295 ВыВо∂

Синтаксис в точности равен семантике.

18-299 **Теорема 18.36 Мальцева о** расширении Пусть $\Gamma\subseteq S(\sigma)$; \exists бесконечная $\mathfrak{B}\models\Gamma$; α — кардинал $\mathfrak{B}\in K(\sigma)$. Тогда $\exists\,\mathfrak{A}\in K(\sigma)\mid \mathfrak{A}\models\Gamma$, $|\mathfrak{A}|>\alpha$.

₁₈₋₃₀₅ Следствие 18.37

Пусть $\mathfrak A$ бесконечна, lpha — кардинал.

--

Тогда $\exists \mathfrak{B} \equiv \mathfrak{A} \mid \|\mathfrak{B}\| \geq \alpha$.

18-310 Предложение 18.38 о существовании нестандартных натиральных чисел

Скипнуто. Скипнуто.

Скипнуто.

Скипнуто.

18-317

10_8

19-10

19-12

19-14

19_16

19-21

19-37

19-43

19-47

Исчисление предикатов гильбертовского типа

§ 19

Определение 19.1 аксиомы исчисления предикатов (ИП)

(1)
$$arphi
ightarrow (\psi
ightarrow arphi)$$

(2)
$$(\varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow (\psi \rightarrow \xi)) \rightarrow (\varphi \rightarrow \xi))$$

(3)
$$(\varphi \& \psi) \rightarrow \varphi$$

(4)
$$(\varphi \& \psi) \rightarrow \psi$$

(5)
$$(\varphi \rightarrow \psi) \rightarrow ((\varphi \rightarrow \xi) \rightarrow (\varphi \rightarrow (\psi \& \xi)))$$

(6)
$$\varphi \rightarrow (\varphi \lor \psi)$$

(7)
$$\psi \rightarrow (\varphi \lor \psi)$$

(8)
$$(\varphi \rightarrow \xi) \rightarrow ((\psi \rightarrow \xi) \rightarrow ((\varphi \lor \psi) \rightarrow \xi))$$

$$(9) \quad (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi)$$

(10)
$$\neg \neg \varphi \rightarrow \varphi$$

(11)
$$\forall x \varphi \rightarrow [\varphi]^x$$

(12)
$$\left[\varphi\right]_t^x \to \exists x \ \varphi$$

аксиомы исчисления предикатов равенства (ИП=)

(13)
$$x = x$$

(14)
$$(x = y) \rightarrow ([\varphi]_x^z \rightarrow [z]_y^y)$$

правила вывода

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \quad \text{(MP)} \qquad \frac{\varphi \to \psi}{\varphi \to \forall x \ \psi} \qquad \frac{\psi \to \varphi}{\exists \ \psi \to \varphi}$$

(MP) — правило «modus ponens»; во всех правилах $x \notin \mathsf{FV}(\varphi)$ 19-32 (множеству свободных переменных φ).

Определение 19.2 доказательство формилы

Доказательством формулы φ называется такая последовательность формул $\varphi_1, \dots, \varphi_n = \varphi$, что $\forall i \leq n \ \varphi_i$ либо аксиома, либо получена из предыдущих однократным применением одного из правил вывода.

Если \exists доказательство формулы φ , то формула φ называется ∂ оказуемой. Обозначение:

 $\triangleright \varphi$.

Определение 19.3 вывод из Г Выводом формулы φ из множества формул Γ называется последовательность $\varphi_1,\dots,\varphi_n=\varphi$ такая, что $\forall\,i\leq n$ φ_i либо аксиома, либо $\varphi_i\in\Gamma$, либо φ_i получается из предыдущих однократным примененим одного из правил вывода.

Если \exists вывод формулы φ из множества формул Γ , то говорят, что φ выводима из множества формул Γ . Обозначение: $\Gamma \rhd$

19-75

Кодировка машин Тьюринга

§ 20

20=5

20-9

20-14

20-18

20-20

20-22

20-24

20-26

20-28

20-32

20-36

Предложение 20.1

Следующие функции правильно вычислимы:

(a)
$$O(x) = 0$$
;

- (6) S(x) = x + 1:
- **(B)** $I_n^m(x_1,\ldots,x_n) = x_m$.
- ▶ (Упражнение.) ◀

Предложение

 $\mathsf{ЧР}\Phi\subset\mathsf{\Pi}\mathsf{BT}$ (правильно вычислимые по Тьюрингу функции).

Базовые машины Тьюринга

- **(А)** (перенос нуля)
- **(Б**⁺) (правый сдвиг)
- **(Б**⁻)(левый сдвиг)
- (В) (транспозиция)
- **(Г)** (удвоение)
- (\mathbf{U}_n) (циклический сдвиг)
- (\mathbf{K}_n) (копирование)
- **(Л)** (ликвидация)
- (R) (вычитание единицы)

▶ Пусть $X = (x_1, ..., x_n)$. Тогда:

(S) (прибавление единицы)

Предложение 20.2

Пусть функции f, g_1, \ldots, g_n правильно вычислимы на МТ. Тогда функция $f(g_1(x), \ldots, g_n(x))$ правильно вычислима на машине Тьюринга. (Их местность согласована.)

$$q_{0}01^{x_{1}+1}0\dots01^{x_{n}+1}0\overset{K_{n}}{\Rightarrow}$$

$$q_{1}01^{x_{1}+1}0\dots01^{x_{n}+1}01^{x_{1}+1}0\dots01^{x_{n}+1}0\overset{\mathsf{b}^{+}}{\Rightarrow}$$

$$01^{x_{1}+1}0\dots01^{x_{n}+1}0q_{1}01^{x_{1}+1}0\dots01^{x_{n}+1}0\overset{\mathsf{b}}{\Rightarrow}$$

$$01^{x_{1}+1}0\dots01^{x_{n}+1}01g(x_{1},\dots,x_{n})0\overset{\mathsf{b}^{+}}{\Rightarrow}\dots\Rightarrow$$

$$01^{g_{1}(X)}0\dots q_{2}01^{g_{n}(X)}\overset{\mathsf{b}^{-}}{\Rightarrow}$$

$$q_{0}01f(g_{1}(x)\dots g_{n}(x))+10\dots$$

$$H=\underbrace{\overset{n-1}{=}}(K_{n}(\mathsf{b}^{+})^{n}g_{i}(\mathsf{b}^{-})^{n}\mathsf{L}_{n+1}\,\mathsf{b}^{+})\cdot\mathsf{L}_{n}\,(\mathsf{b}^{-})^{n-1}F.$$

Предложение 20.3

Пусть f получена из g и h с помощью оператора примитивной рекурсии. Пусть g, h правильно вычислимы на MT. Тогда f правильно вычислима на MT.

▶ (Упражнение.) ◀

Предложение 20.4

Пусть $f = \mu y [g(\overline{x}y) = 0]$. Если g правильно вычислима ₂₀₋₆₂ на МТ, то f правильно вычислима на МТ.

20-66 ▶ (Упражнение.) ◀

²⁰⁻⁷⁰ Предложение 20.5

 $\mathsf{ЧР}\Phi\subset\mathsf{\Pi}\mathsf{BT}.$

▶ Индукция по построению ЧРФ. (Упражнение.) ◀

20-75 Теорема 20.6: основная теорема арифметики

20-81

20-96

20-100

 \forall числа $n \in \mathbb{N}$

 \exists единственное разложение $n=p_0^{x_0}\cdot\ldots\cdot p_n^{x_n}$, где p_i-i -е простое число ($p_0=2,\ p_1=3$). Если $n\neq 0$, то $x_n\neq 0$.

Это называется каноническим разложением натурального числа в произведение степеней простых сомножителей.

₂₀₋₈₅ Определение 20.7

Нумеруя кортежи a_1, \ldots, a_n , обозначим $\gamma(a_1, \ldots, a_n) = 2 \cdot p_1^{a_1} \ldots p_n^{a_n}$.

₂₀₋₉₀ Предложение 20.8

Пусть $A_1 = \{\gamma(S) \mid S \in \{0,1\}^*\}$. Обозначим $B \subseteq \mathbb{N}, \chi_B(x) = \{ \begin{subarray}{ll} 1, & \text{если } x \in B, \\ 0, & \text{если } x \notin B, \end{subarray}$ тогда $\chi_{A_1} - \Pi P\Phi.$

 χ_B называется xapaкmepucmuчecкой функцией множества <math>B. В таком случае множество B_χ называется примитивно рекурсивным множеством.

▶ (Упражнение.) ◀

₂₀₋₁₀₄ Предложение 20.9

Следующие функции являются ПРФ:

- (1) $L(n,a) \rightleftharpoons \begin{cases} \gamma(a \alpha), & \alpha \in \{0,1\}^*, \ \gamma(\alpha) = n, \ a \in \{0,1\} \\ 0 & \text{иначе}; \end{cases}$
- (2) $R(n,a) \rightleftharpoons \begin{cases} \gamma(\alpha a), & \alpha \in \{0,1\}^*, \ \gamma(\alpha) = n, \ a \in \{0,1\}, \\ 0 & \text{иначе}; \end{cases}$
- (3) $L(n) \rightleftharpoons \begin{cases} 2, & 2 = n = \gamma(0) \\ \gamma(\alpha), & \gamma(a \alpha) = n, \ a, \alpha \in \{0, 1\}^* \\ 0 & \text{иначе}; \end{cases}$
- (4) $R(n) \rightleftharpoons \left\{ egin{array}{ll} 2, & 2 = n = \gamma(\mathbf{0}) \\ \gamma(\alpha), & \gamma(\alpha\,a) = n, \ a, \alpha \in \{\mathbf{0},\mathbf{1}\}^* \\ \mathbf{0} & \text{иначе;} \end{array} \right.$
- (5) $xy \rightleftharpoons \begin{cases} \gamma(\alpha \beta), & x = \gamma(\alpha), \ y = \gamma(\beta), \ \alpha, \beta \in \{0, 1\}^* \\ 0 & \text{иначе}; \end{cases}$
- (6) $K(x) \rightleftharpoons \begin{cases} a+1, & x = \gamma(a \alpha), \ a, \alpha \in \{0, 1\}^* \\ 0 & \text{иначе}; \end{cases}$
- (7) $k(x) \rightleftharpoons \begin{cases} a+1, & x = \gamma(\alpha a), \ a, \alpha \in \{0, 1\}^* \\ 0 & \text{иначе;} \end{cases}$
- ▶ (Упражнение.) ◄

20-108

20-106

20-111

20-114

20-117

20-120

20-123

20-126

Определение 20.10

Номером машинного слова $\alpha q_i j \beta \ (\alpha j \beta \in \{0,1\}^*)$ называют $\gamma(\alpha q_i j\beta) = 2^2 \cdot 3^i \cdot 5^j \cdot 7^{\gamma(\alpha)} \cdot 11^{\gamma(\beta)}.$

Предложение 20.11: 20-136 кодировка команд

Пусть $k_{ij} = q_i j \rightarrow q_s l \Delta$, где $\Delta = \{R, L, \emptyset\}$.

Тогда Б =
$$\begin{cases} 1, & \Delta = \emptyset, \\ 2, & \Delta = R, \\ 3, & \Delta = L. \end{cases}$$

Тогда $\gamma(k_{ij}) = p_c(i, j)$. $\langle\langle ??? \rangle\rangle$

20-144 Пусть Π — программа на MТ. Тогда кодом будет называться $\gamma(\Pi) = 2^3 \cdot 3^4 \cdot \prod_{k_{ij} \in \Pi} \gamma(k_{ij})$, где $n = \max\{i \mid q_i \text{ входит в } \Pi\}$.

20-140

Определение 20.12

$$\textbf{(1)} \quad t(x,y) \rightleftharpoons \begin{cases} \gamma(\alpha'q_l a\beta'), & \text{если } x = \gamma(\Pi), \quad y = \gamma(\alpha q_i j\beta), \\ & \alpha q_i j \beta \stackrel{\Pi}{\rightarrow} \alpha' q_l a'\beta, \\ \textbf{0} & \text{иначе.} \end{cases}$$

(1)
$$t(x,y) \rightleftharpoons \begin{cases} \gamma(\alpha'q_l a\beta'), & \text{если } x = \gamma(\Pi), \quad y = \gamma(\alpha q_i j\beta), \\ & \alpha q_i j \beta \xrightarrow{\Pi} \alpha' q_l a'\beta, \\ 0 & \text{иначе.} \end{cases}$$
(2) $T(x,y,z,t) = \begin{cases} 1 & \text{если } x = \gamma(\Pi), \quad y = \gamma(\alpha q_i j\beta), \\ & \alpha q_i j \beta \xrightarrow{\Pi} \alpha q_0 0 1^{z+1} 0 \beta', \\ 0 & \text{иначе.} \end{cases}$

(3)
$$T^n(a, x_1, \dots, x_n, z, t) \rightleftharpoons \begin{cases} 1 & \text{если } a = \gamma(\Pi), \\ q_1 \mathbf{0} \mathbf{1}^{x_1 + 1} \mathbf{0} \dots \mathbf{0} \mathbf{1}^{x_n + 1} \mathbf{0} \overset{\Pi}{\Longrightarrow} \\ & \overset{\Pi}{\underset{\leq t}{\Longrightarrow}} \alpha q_0 \mathbf{1}^{z + 1} \mathbf{0} \beta, \\ \mathbf{0} & \text{иначе.} \end{cases}$$

Предложение 20.13 $t. T. T^n - \Pi P \Phi$.

▶ (Упражнение.) ◀

20-170 20-173

20-163

20-158

Теорема 20.14 о нормальной форме Клини

Пусть $f(\overline{x})$ — ВМТ. Тогда \exists ПРФ $g(\overline{x}, y)$ такая, что $f(\overline{x}) =$ $=l(\mu y [g(\overline{x},y)=0]).$

► Пусть f – BMT с номером Π , $a \rightleftharpoons \gamma(\Pi)$, $g(\overline{x}, y) \rightleftharpoons T^n(a, x_1, \dots, x_n, y_n)$ 20-181 $l(y), r(y) - 1), g(\overline{x}, y) - \Pi P \Phi.$

Покажем, что $f(\overline{x}) = l(\mu y [q(\overline{x}, y) = 0]).$

20-186 Пусть $f(\overline{x})$ не определена. Т. к. П вычисляет f, то, начав со 20-188 слова $q_1 0 1^{x_1+1} 0 \dots 0 1^{x_n+1} 0$, Π не остановится. Значит, $\forall z, t \ T^n (a, t)$ $x_1,\ldots,x_n,z,t) = 0 \implies \forall y \ T^n(a,\overline{x},l(y),T(y)) = 0 \implies$ $\forall y \ g(\overline{x}, y) = 1, \neq 0 \implies f(\overline{x})$ не определена.

(2) Пусть
$$f(\overline{x})$$
 определена. $f(\overline{x})=z \implies q_1 0 1^{x_1+1} 0 \dots 0 1^{x_n+1} \stackrel{\Pi}{\underset{\leq t \text{ шагов 20-195}}{\longrightarrow}} \alpha q_0 0$ $\Longrightarrow T^n(a,\overline{x},z,t)=1$.

Если $T^n(a, \overline{x}, z_1, t_1) = 1$, то $z_1 = z, t_1 > t$.

Докажем, что это y_0 будет минимальным. Пусть $g(\overline{x}, y_1) = 0$, $z_1 \rightleftharpoons$ $l(y_1), t_1 = r(y_1)$. Тогда $T^n(a, \overline{x}, z_1, t_1) = 1$, значит $z_1 = z, t_1 > t$.

Отсюда $y_1 = c(z, t_1) > c(z, t) = y_0$, значит y_1 минимально.

Обозначим $y_0 \rightleftharpoons c(z,t)$, тогда по условию $q(\overline{x},y_0) = 0$.

Следствие 20.15

20-200

Следствие 20.16

Если f — ЧРФ, то \exists ПРФ g такая, что $f(\overline{x}) = l(\mu y [g(\overline{x}, y) = 20-215 = 0]).$

lacktriangle Пусть f- ЧРФ. Тогда f- ПВТ, значит f- ВТ.

Следовательно $\exists g \mid f(\overline{x}) = l(\mu y [g(\overline{x}, y) = 0]). \blacktriangleleft$

20-225 **Следствие 20.17**

Если f — $OP\Phi$, то f может быть получена из простейших конечным числом применений операторов суперпозиции и примитивной рекурсии $\langle\langle , \mathbf{npuчem?} \rangle\rangle$ таким образом, что на каждом шаге будут получаться всюду определенные функции.

20-232 Теорема 20.18:

 $\mathsf{HP}\Phi = \mathsf{BT} = \mathsf{\Pi}\mathsf{BT}.$

осн. о вычислимых функциях

▶ ЧРФ ⊂ ПВТ ⊂ ВТ ⊂ ЧРФ. ◀

₂₀₋₂₃₉ Следствие 20.19

 $OP\Phi =$ всюду определённые BT = всюду опред-ные ΠBT .

20-243 Тезис Чёрча

Всякая интуитивно вычислимая функция является ЧРФ: $MBT = \text{ЧР}\Phi$.

Универсальные функции

§ 21

Определение 21.1	Пусть k — некоторое множество n -местных функций. $f(x_0, x_1, \ldots, x_n)$ — универсальная функция для K , если: (1) $\forall m \in \mathbb{N}$ $f(m, x_1, \ldots, x_n) \in K$; (2) $\forall g(x_1, \ldots, x_n) \in K$ $\exists m \in \mathbb{N}$ $\mid f(m, x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$. То есть $K = \{f(m, x_1, \ldots, x_n) \mid m \in \mathbb{N}\}$.	21=6 21-8 21-10 21-13
Следствие 21.2 ▶	K имеет универсальную функцию $\Longleftrightarrow K$ счётно. $\langle\!\langle \ref{eq:continuous} angle \rangle\!\rangle$ — взаимооднозначное отображение. (Упражнение.) \blacktriangleleft	21-17 21-20
Следствие 21.3	Если K континуально, то $\neg \exists$ универсальной функции для K .	21-23
Следствие 21.4	Класс $K_n=\{f\colon \mathbb{N}^n \to \mathbb{N}$ — частичные функции $\}$ не имеет универсальной функции.	21-28
Следствие 21.5 ►	ПРФ, ОРФ, ЧРФ имеют универсальные функции. Известно, что ПРФ бесконечно, ЧРФ счётно, ЧРФ = ПВТ. Т. к. ПВТ ≤ множество программ , а каждая программа — это конечный набор инструкций конечного языка, то множество программ счётно. ◀	21-32 21-35
Замечание 21.6 ►	Пусть $h: \mathbb{N} \to \mathbb{N}$ взаимооднозначна, f универсальна для K . Тогда $f(h(x_0), x_1, \dots, x_n)$ универсальна для K . $\mathbb{N} \xrightarrow{h} N \xrightarrow{f} K$. $\mathbb{N} \xrightarrow{h} N \xrightarrow{g_3, \text{ одн.}} K$. $\mathbb{N} \xrightarrow{g_3, \text{ одн.}} K \xrightarrow{g_3, \text{ одн.}} K$. $\mathbb{N} \xrightarrow{g_3, \text{ одн.}} K \xrightarrow{g_3, \text{ одн.}} K$.	21-43 21-48 21-51
Следствие 21.7	(a) Если K счётно, то K имеет континуум различных универсальных функций. (б) ОРФ, ПРФ, ЧРФ имеют континуум различных универсальных функций.	21-57 21-60
Предложение 21.8	 (а) ¬∃ универсальной ПРФ для ПРФⁿ; (б) ¬∃ универсальной ОРФ для ОРФⁿ; (в) ¬∃ универсальной ЧРФ для ОРФⁿ. 	21-64 21-66

21_78

21-89

21-94

21-119

21-124

21-127

21-131

21-141

21-143

21-145

21-69

▶ Метод диагонализации.

(a) От противного. Пусть f — универсальная для $\Pi P\Phi^n$, f — $\Pi P\Phi$. Определим $\Pi P\Phi$ $g(x_1,\ldots,x_n) \rightleftharpoons f(x_1,x_1,x_2,\ldots,x_n) + 1$. Тогда $\exists m \in \mathbb{N} \mid \forall \overline{x} \ f(m,x_1,\ldots,x_n) = g(x_1,\ldots,x_n)$. Но тогда $f(m,\ldots,m) = g(m,\ldots,m) = f(m,\ldots,m) + 1$. Противоречие.

(б) Аналогично, только g получается ОРФ.

(в) От противного. Т. к. функция $f(x_0, x_1, \ldots, x_n)$ определена для $\forall x_0$ (как универсальная функция для $OP\Phi^n$), то она всюду определена, т. е. является $OP\Phi$. А это противоречит пункту (б). \blacktriangleleft

₂₁₋₈₆ Теорема 21.9

 $\mathsf{ЧР}\Phi^n$ имеет универсальную $\mathsf{ЧР}\Phi$.

- ▶ Обозначим $K = \mathsf{ЧР}\Phi^n$. Докажем, что универсальной для K явл-ся $f(x_0,\dots,x_1) \rightleftharpoons l\left(\mu y\left[\left|T^n(x_0,\dots,x_n,l(y),r(y))-1\right|\right]\right).$
 - (a) Пусть $a \in \mathbb{N}$, тогда $f(a, x_1, \dots, x_n) \mathsf{ЧР}\Phi$, значит $f \in K$.
 - **(6)** Пусть $g \in K$, тогда $g(\overline{x})$ ЧРФ, а значит, g ПВТ, то есть $\exists \Pi$, вычисляющая g. Пусть $a \rightleftharpoons \gamma(\Pi)$. Тогда $g(x_1, \ldots, x_n) = l\left(\mu y\left[\left|T^n(a, \ldots, x_n, l(y), r(y)) 1\right|\right]\right) = f(a, x_1, \ldots, x_n)$.

$$\varphi^{2}(x_{0},x_{1})=l\left(\mu y\left[\left|T^{2}(x_{0},x_{1},l(y),r(y))-1\right|=0\right]\right).$$

₂₁₋₁₀₈ Следствие 21.11

 $\varphi^{2}(x_{0}, x_{1})$ универсальна для ЧР Φ^{1} .

21-112 **Определение 21.12**

$$\varphi^n(x_0,x_1,\ldots,x_n)=\varphi^2(x_0,c^n(x_1,\ldots,x_n)).$$

₂₁₋₁₁₆ Предложение 21.13

 φ^{n+1} универсальна для ЧР Φ^n .

▶ Утверждение для φ^2 , ЧРФ¹ доказано.

- Пусть n>1. Докажем, что φ^{n+1} универсальная для $\Psi \Phi^n$. (a) Пусть $a\in \mathbb{N}$, тогда $\varphi^{n+1}(a,x_1,\ldots,x_n)=\varphi^2(a,c(x_1,\ldots,x_n))$ —
- $\Psi P \Phi$, значит $\varphi^{n+1} = \Psi P \Phi$.

(6) Пусть
$$f(x_1, \dots, x_n)$$
 — ЧРФ. Обозначим

$$g(y) \rightleftharpoons f(c_{n1}(y), \dots, c_{nn}(y)).$$

Т. к. $g - \mathsf{ЧР}\Phi$, то $\exists a \in \mathbb{N} \mid \varphi^2(a, y) = g(y)$.

Тогда $\varphi^{n+1}(a, x_1, \dots, x_n) = \varphi^2(a, c_n(x_1, \dots, x_n)) = g(c(x_1, \dots, x_n)) = f(x_1, \dots, x_n). \blacktriangleleft$

21-136 **Определение 21.14:** 21-139 клинивские скобочки

[x,y] = c(l(x), c(r(x), y))

 $[x_1,\ldots,x_n]=[[x_1,\ldots,x_{n-1}],x_n]$

 $[k]_{21} = c(l(k), l(r(k)))$

 $[k]_{22} = r(r(k))$

 $[k]_{n,1} = [[k]_{21}]_{n-1,1}$

$$[k]_{n,n-1} = [[k]_{21}]_{n-1,n-1}$$

 $[k]_{nn} = [k]_{22}$

Предложение 21.15 Все функции из предыдущего определения являются ПРФ.

21-159

21-163

21-167

21-169

21-195

21-199

21-202

21-213

21-223

▶ (Упражнение.) ◀

21-152

Предложение 21.16 (а)
$$\Gamma(r_4) = r_- \Gamma$$

(a) $[[x_1,\ldots,x_n]]_{nl}=x_l;$

(6) $[[k]_{n1}, \ldots, [k]_{nn}] = k;$

▶ (Упражнение.) ◀

Следствие

 $[]: \mathbb{N}^n \to \mathbb{N}$ взаимооднозначно.

Предложение 21.17

(a)
$$[c(x_0, x_1), x_2] = c(x_0, c(x_1, x_2));$$

(6)
$$c^n(c(x_1, x_2), x_2, \dots, x_{n+1}) = c^{n+1}(x_1, \dots, x_n);$$

(B)
$$[x_1,\ldots,x_n] = [[x_1,\ldots,x_m],x_{m+1},\ldots,x_n].$$

Определение 21.18: Клиневские уравнения финкции

$$K^{2}(x_{0}, x_{1}) = \varphi^{2}(l(x_{0}), c(r(x_{0}), x_{1}))$$

 $K^{n+1}(x_{0}, \dots, x_{n}) = K^{n}([x_{0}, x_{1}], x_{2}, \dots, x_{n}).$

Предложение 21.19

$$K^{n}(c(x_{0}, x_{1}), x_{2}, \dots, x_{n}) = \varphi^{n+1}(x_{0}, \dots, x_{n}).$$
 21-177

▶
$$l([a_0 \dots a_n]) = l([[a_0 \dots a_{n-1}]a_n]) = l([a_0 \dots a_{n-1}]) = \dots = l(a_0).$$
 21-180
 $r([a_0 \dots a_n]) = r([[a_0 \dots a_{n-1}]a_n]) = c(r([a_0, \dots, a_{n-1}]), a_n) =$
 $= \dots = c(c(\dots c(r(a_0), a_1), a_2) \dots a_n) = c^{n+1}(r(a_0), a_1, \dots, a_n).$
 $K^{n+1}(c(x_0, x_1, \dots, x_n)) = K^2([c(x_0, x_1), \dots], x_n).$ 4

Теорема 21.20

$$K^{n+1}$$
 — универсальная ЧРФ для ЧРФ n .

(а)
$$K^{n+1}$$
 — ЧРФ по определению. $\forall \, a \in \mathbb{N} \, K^{n+1}$ (a, x_1, \dots, x_n) — ЧРФ, т. е. \in ЧРФ n .

(6) Пусть
$$f(x_1, ..., x_n) - \text{ЧР}\Phi$$
. Определим функцию $g(y, x_1, ..., x_n) \rightleftharpoons f(x_1, ..., x_n) + 0 \cdot y . \langle (???) \rangle$

$$q(y,\overline{x})$$
 — ЧР Φ^{n+1} , поэтому $\exists a \in \mathbb{N} \ \varphi^{n+2}(a,y,\overline{x}) = q(y,\overline{x})$.

Т. к.
$$\varphi^{n+2}(a,y,\overline{x})=K^{n+1}(c(a,y),\overline{x})$$
, полагая $y=0$, получаем $f(\overline{x})==q(0,\overline{x})=K^{n+1}(a,0,\overline{x})$.

Введём обозначение
$$b=c(a,\mathbf{0})-\kappa$$
линивский номер. Тогда $f(\overline{x})=$ 21-20 $f(x)=K^{n+1}(b,\overline{x})$.

Следствие 21.21

Любая ЧРФ имеет бесконечно много клиневских номеров. $c(a, 0), c(a, 1), \ldots, c(a, m)$ — это всё номера.

Теорема 21.22: S-m-n-теорема

$$\forall m, n \exists \Pi P \Phi S_m^n(x_0, \dots, x_n) \mid K^{n+m+1}(x_0, \dots, x_{m+n}) = K^{m+1}(S_m^n(x_0, \dots, x_n), x_{n+1}, \dots, x_{n+m}).$$

►
$$S_n^n(x_0, \dots, x_n) \rightleftharpoons [x_0, \dots, x_n].$$

 $K^{n+m+1}(x_0, \dots, x_{n+m}) = K^{n+m}([x_0, x_1], \dots, x_{n+m}) =$
 $= K^{n+m-1}([[x_0, x_1], x_2], \dots, x_{n+m}) = \dots =$
 $= K^{m+1}([\dots [x_0, x_1], x_2], \dots, x_n], x_{n+1}, \dots, x_{n+m}) =$
 $= K^{m+1}([x_0, \dots, x_n], x_{n+1}, \dots, x_{n+m}).$ ◀

Теорема 21.23 о неподвижной точке \forall ЧРФ $h(x_1,\ldots,x_{n+1})$ \exists ПРФ $g(x_1,\ldots,x_n)$ такая, что $K^2(h(x_1,\ldots,x_n,g(x_1,\ldots,x_n)),y)=K^2(g(x_1,\ldots,x_n),y).$

21-239

21-244

► $K^2(h(x_1,\ldots,x_n,[z,z,x_1,\ldots,x_n]),y) - \text{ЧР}\Phi.$ Тогда $\exists \, a \in \mathbb{N} \,\, \langle\!\langle ???? \rangle\!\rangle = K^{n+3}(a,z,x_1,\ldots,x_n,y).$ $g(x_1,\ldots,x_n) = [a,a,x_1,\ldots,x_n] - \text{ПР}\Phi.$

 $K^2(h(x_1,\ldots,x_n,[a,a,x_1,\ldots,x_n]),y) =$ = $K^{n+3}(a,a,x_1,\ldots,x_n,y) = (\text{по }S\text{-}m\text{-}n\text{-}\text{теореме})$ = $K^2([a,a,x_1,\ldots,x_n],y) = K^2(q(x_1,\ldots,x_n),y).$

₂₁₋₂₅₂ Определение 21.24

 $\varkappa: \mathbb{N} \to \Psi P\Phi^1, \quad \varkappa(h) = K^2(n, x).$

₂₁₋₂₅₆ Следствие 21.25

 $\forall \ \mathsf{ЧР\Phi} \ h, \ \exists x \in \mathbb{N} \quad | \quad \varkappa(h(x)) = \varkappa(x).$

21-261 **Теорема 21.26** Райса Пусть $A \subseteq \mathsf{ЧР}\Phi^1$, $A \neq \emptyset$, $A \neq \mathsf{ЧР}\Phi^1$. Тогда $B = \{u \mid \varkappa(u) \in A\}$ не рекурсивно, т. е. χ_B — не $\mathsf{ЧР}\Phi$.

Pauca

▶ От противного. Пусть $\chi_B - \Pi P\Phi$. $A \neq \emptyset \Longrightarrow B \neq \emptyset; \quad A \neq \Psi P\Phi^1 \Longrightarrow B \neq \mathbb{N} \quad \Longrightarrow \exists \, a,b \in \mathbb{N} \quad | \quad a \in B, \, b \notin B.$

21-272

По теореме о неподвижной точке $\exists n \mid \varkappa(n) = \varkappa(f(n))$.

Проверим, выполняется ли $\varkappa(n) \in A$:

(1) $\varkappa(n) \in A \implies n \in B$. $f(n) \in A$

(1) $\varkappa(n) \in A \implies n \in B, \ f(n) = b, \ b \notin B \implies \varkappa(n) = \varkappa(f(n)) \notin A;$

(2) $\varkappa(n) \notin A \implies n \notin B \implies f(n) = a \in B \implies \varkappa(n) = \varkappa(f(n)) \in A.$

Противоречие, значит, χ_{B} — не ПРФ. \blacktriangleleft

21-279

21-276

21-266

22-20

22-27

22-36

22-40

22-44

22-48

22-49

22-51

22-56

Рекурсивные и рекурсивноперечислимые множества

§ 22

Определение 22.1

Множество $A \subseteq \mathbb{N}^k$ рекурсивно (примитивно рекурсивно), если $\chi_A(\overline{x})$ — ЧРФ (ПРФ).

Множество $A \subseteq \mathbb{N}^k$ — рекурсивно-перечислимое, $A = \emptyset$ либо $A = \rho_f \rightleftharpoons \{f(n) \mid n \in \mathbb{N}\}$ для ПРФ f. если $\chi_A(\overline{x})$ — ЧРФ (ПРФ).

Предложение 22.2

Пусть $A, B \subseteq \mathbb{N}^k$; $C \subseteq \mathbb{N}^l$; $A, B, C - \mathsf{PM}$ (ПРМ). Тогда 22-14 $A \cup B$, $A \cap B$, $\overline{A} = \mathbb{N}^k \setminus A$, $A \setminus B$, $A \times C - \mathsf{PM}$ (ПРМ).

▶ (Следите за обновлениями!) ◀

Предложение 22.3

Пусть $A \subseteq \mathbb{N}^k$; $B = \{C^k(\overline{x}) \mid \overline{x} \in A\}$. Тогда $A - \mathsf{PM}$ (ПРМ) $\iff B - \mathsf{PM}$ (ПРМ).

▶ (Следите за обновлениями!) ◀

Замечание

Понятие РМ (ПРМ) — частный случай разрешимого множества (\exists алгоритм для ответа на вопрос о принадлежности элемента), перечислимого множества (\exists алгоритм перечисления).

Теорема 22.4 Поста

 $A - PM \iff A, \overline{A} - P\Pi M.$

Предложение 22.5

Пусть $A,B\subseteq\mathbb{N}^k;\ C\subseteq\mathbb{N}^l;\ A,B,C$ — РПМ. Тогда $A\cup B,$ $A\cap B.\ A\times C$ — РПМ.

▶ (Упражнение.) ◄

Теорема 22.6 об эквивалентных определениях РПМ

Пусть $A \subseteq \mathbb{N}$. Следующие утверждения эквивалентны:

(1) $A - P\Pi M$;

 $(3) \quad A = \emptyset$

либо

 $\exists \Pi P \Phi f \mid A = \rho_f;$

- **(4)** \exists ПРМ $B \in \mathbb{N}^2$ | $A = \{x \mid \exists y \ (x, y) \in B\}$, где A 22-проекция ПРМ;
- **(5)** $\exists \ \mathsf{PM} \ B \in \mathbb{N}^2 \ | \ A = \{x \ | \ \exists y \ (x, y) \in B\}, \ \mathsf{где} \ A \ z$ проекция PM ;
- **(6)** $\exists \ \mathsf{ЧР\Phi} \ f \mid \ A = \delta_f = \{x \mid f(x) \text{определена}\}.$
- ▶ (Следите за обновлениями!) ◀

Следствие 22.7

Пусть $A\subseteq \mathbb{N}^k$. Тогда $A=\mathsf{P}\Pi\mathsf{M}\iff \exists\, f=\mathsf{Ч}\mathsf{P}\Phi \,\mid\, A=\delta_f$.

22-65 ▶ (Следите за обновлениями!) ◀

₂₂₋₆₉ Предложение 22.8

Пусть $A \subseteq \mathbb{N}^k$, $B \rightleftharpoons \{C^k(\overline{x}) \mid \overline{x} \in A\}$. Тогда $A - \mathsf{Р}\Pi\mathsf{M} \iff B - \mathsf{Р}\Pi\mathsf{M}$.

▶ (Упражнение.) ◀

22-76 Теорема 22.9

22-72

22-79

22-94

22-101

22-105

22-113

22-125

Пусть $k\subseteq\mathbb{N}$. Тогда $\exists\, A\subseteq\mathbb{N}^k \;\mid\; A-\mathsf{Р}\Pi\mathsf{M},$ но $A-\mathsf{He}\;\mathsf{P}\mathsf{M}.$

▶ (Следите за обновлениями!) ◀

22-83 Теорема 22.10 о проекции

Пусть $A - P\Pi M$, $B = \{ \overline{x} \mid \exists y (\overline{x}, y) \in A \}$. Тогда $B - P\Pi M$.

22-86 ▶ (Следите за обновлениями!) ◀

22-90 Следствие 22.11

Пусть $A \subseteq \mathbb{N}^{k+1}$, $A - P\Pi M$; $B \subseteq \mathbb{N}^k$, $B = \{\overline{x} \mid \exists y (\overline{x}, y) \in A\}$. Тогла $B - P\Pi M$.

▶ (Упражнение.) ◀

22-98 Теорема 22.12 о графике Функция является ЧРФ \iff $G_f \rightleftharpoons \{(\overline{x}, y) \mid f(\overline{x}) = y\} - \mathsf{Р}\Pi\mathsf{M}.$

▶ (Следите за обновлениями!) ◀

Определение 22.13

Пусть $A\subseteq \mathbb{N}^k$, тогда $\chi_A^*(x_1,\ldots,x_k)=\left\{ egin{array}{ll} 1, & \overline{x}\in A, \\ \text{неопр.}, & \overline{x}\notin A. \end{array} \right.$ называется частичной характеристической функцией множества A.

₂₂₋₁₁₀ Предложение 22.14

 $A - PΠM \iff \chi_A^* - 4PΦ.$

▶ (Следите за обновлениями!) ◀

22-117 Теорема 22.15 о составном определении Пусть $A_1,\ldots,A_n\in\mathbb{N}^k;\;A_i\cap A_j=\emptyset$ при $i\neq j;$ пусть $A_1,\ldots,A_n-\operatorname{РПM},\;g_1(\overline{x}),\ldots,g_n(\overline{x})-\operatorname{ЧР\Phi}.$ Тогда $\left\{\begin{array}{ll}g_1(\overline{x}),&\overline{x}\in A_1,\end{array}\right.$

$$f(x_1,\ldots,x_n) = \left\{egin{array}{ll} g_1(\overline{x}), & \overline{x} \in A_1, \ dots & \ g_n(\overline{x}), & \overline{x} \in A_n, \
m{неопред.} &
m{иначе,} \end{array}
ight.$$

то $f-\mathsf{ЧР}\Phi$

▶ (Следите за обновлениями!) ◀

Теорема Гёделя о неполноте

§ 23

23-10

23-12

23-14

23-16

23-18

23-20

23-22

23-26

23-33

23-38

23-43

Определение 23.1

 $\Sigma_0 \rightleftharpoons <, \le, +, *, S_1, 0 >$ —сигнатура сигма, S_i — а одноместная формула. $F(\Sigma_0)$ — множество формул сигнатуры Σ_0 , $T(\Sigma_0)$ — множество термов сигнатуры Σ_0 .

Определение 23.2 Геделевая нумерация термов и формул сигнатуры Σ_0

(1)
$$\gamma(0) \rightleftharpoons l(0, 1); \gamma(v_i) \rightleftharpoons c(1, i)$$

(2)
$$\gamma(S(t)) \rightleftharpoons c(2, \gamma(t))$$

(3)
$$\gamma(t+q) \rightleftharpoons c(3, c(\gamma(t), \gamma(q)))$$

(4)
$$\gamma(t*q) \rightleftharpoons c(4, c(\gamma(t), \gamma(q)))$$

(5)
$$\gamma(t=q) \rightleftharpoons c(5, c(\gamma(t), \gamma(q)))$$

(6)
$$\gamma(t \leq q) \rightleftharpoons c(6, c(\gamma(t), \gamma(q)))$$

(7)
$$\gamma(\varphi \& \psi) \rightleftharpoons c(7, (\gamma(\varphi), \gamma(\psi)))$$

(8)
$$\gamma(\varphi \lor \psi) \rightleftharpoons c(8, c(\gamma(\varphi), \gamma(\psi)))$$

(9)
$$\gamma(\varphi \rightarrow \psi) \rightleftharpoons c(9, c(\gamma(\varphi), \gamma(\psi)))$$

(10)
$$\gamma(\neg\varphi) \rightleftharpoons c(10, c(\gamma(\varphi))$$

(11)
$$\gamma(\exists v_i \varphi) \rightleftharpoons c(11, c(i, \gamma(\varphi)))$$

(12)
$$\gamma(\forall v_i \varphi) \rightleftharpoons c(12, c(i, \gamma(\varphi)))$$

Предложение 23.3

$$\gamma(T(\Sigma_0)) \rightleftharpoons \{\gamma(t) \mid t \in T(\Sigma_0)\} - \Pi PM,$$

 $\gamma(F(\Sigma_0)) \rightleftharpoons \{\gamma(f) \mid f \in F(\Sigma_0)\} - \Pi PM$

▶ (Упражнение.) ◀

Определение 23.4

Пусть $X \subset T(\Sigma_0) \cup F(\Sigma_0)$. Тогда:

X разрешимо, если $\gamma(X) \rightleftharpoons \{\gamma(p) \mid p \in X\} - PM;$

X перечислимо, если γ (X) — РПМ.

 $\nu \colon \mathbb{N} \to Y$ называется *нумерацией* множества Y;

Y разрешимо, если $\nu(Y) - PM$; Y перечислимо, если $\nu(Y) - P\Pi M$.

Замечание 23.5

Для
$$\forall\,n$$
 $\forall\,a_0\,\ldots\,a_n$ $\exists\,x=p_0^{a_0}\ldots p_n^{a_n}$ такой, что $\operatorname{ex}(0,x)=a_0,\;\ldots\;,\;\operatorname{ex}(n,x)=a_n.$

Определение 23.6

$$\pi_{\Sigma_0} \rightleftharpoons \{ \varphi \in F(\Sigma_0) \mid \varphi - \mathsf{т. u} \}$$

Предложение 23.7 Множество π_{Σ_0} перечислимо.

23-53

23-49

23-68

23-72

23-91

23-93

23-95

23-97

▶ (Следите за обновлениями!) ◀

Лемма 23.8

 $f - \mathsf{OP}\Phi$ (общерекурсивная функция.

23-60

23-56

▶ (Упражнение.) ◀

- ₂₃₋₆₆ Следствие 23.9
- (1) если $A\subseteq F(\Sigma_0)$, A перечислимо, тогда перечислимо $A' \rightleftharpoons \{\varphi \in F(\Sigma_0) \mid A \triangleright \varphi\}$.
- (2) если $A\subseteq S(\Sigma 0)$, A перечислимо, тогда перечислимо $A'' \implies \{\varphi\in S(\Sigma_0)\mid A \triangleright \varphi\}\,.$

(Если множество аксиом перечислимо, то и множество следствий перечислимо.)

▶ (Следите за обновлениями!) ◀

- ₂₃₋₇₆ Предложение 23.10
- $\gamma(S(\Sigma_0)) \langle\langle ??? \rangle\rangle$
- 23-78 ▶ (Упражнение.) ◀
- 23-82 **Теорема 23.11** Полная перечислимая теория сигнатуры Σ_0 является разрешимой.
- 23-84 ▶ (Следите за обновлениями!) ◀
- ₂₃₋₈₉ Определение 23.12 Формальная
- (1) $\forall V_0 \neg (S(V_0) = 0)$
- арифметика Пеано: система аксиом An
- (2) $\forall V_0 \ \forall V_1 \ ((S(V_0) = S(V_1)) \rightarrow (V_0 \rightarrow V_1))$
- (3) $\forall V_0 \ (V_0 + 0 = V_0)$
- (4) $\forall V_0 \forall V_1 \ (V_0 + S(V_1) = S(V_0 + 1)$
- (5) $\forall V_0 \ (V_0 * 0 = 0)$
- (6) $\forall V_0 V_1 (V_0 * S(V_1)) = V_0 V_1 + V_0$
- (7) $\forall V_0 \neg (V_0 < 0)$
- (8) $\forall V_0 \forall V_1 \ ((V_0 < S(V_1)) \rightarrow ((V_0 < V_1) \lor (V_0 = V_1)))$
- (9) $\forall V_0 \forall V_1 \ (((V_0 < V_1) \cup (V_0 = V_1)) \rightarrow (V_0 < S(V_1)))$
- (10) $\forall V_0 \forall V_1 \ (\neg (V_0 = V_1) \rightarrow ((V_0 < V_1) \lor (V_1 < V_0)))$
- ²³⁻¹⁰¹ Определение 23.13
- $\underline{0} \rightleftharpoons 0; \underline{1} \rightleftharpoons 1; n+1 \rightleftharpoons S(n); n \rightleftharpoons S(S(0)...(п раз)) -$ термы сигнатуры σ_0
- 23-106 Определение 23.14 $F: \mathbb{N}^k \to \mathbb{N}$, горорят что f представляется в A_0 , если $\exists \varphi(V_0, \dots, V_{10}) \in F(\Sigma_0)$, что для $\forall n_0, \dots, n_k \in N$, если $f(n_0, \dots, n_k)$, то $A_0 \vdash \varphi(\underline{n_0}, \dots, \underline{n_k})$, если $f(n_0, \dots, n_{k-1}) \neq 0$, то $A_0 \vdash \neg \varphi(n_0, \dots, n_k)$
- 23-112 **Теорема 23.15** Каждая ОРФ представима в A_0 .
- 23-115 ▶ (Следите за обновлениями!) ◀

Теорема 23.16

23-119

3-113	Геделя о неразрешимо- сти	неразрешима. Любая непротиворечивая теория, содержащая $\langle\!\langle ????\rangle\!\rangle$ неразрешима.	
	•	(Следите за обновлениями!) ◀	23-122
	Замечание 23.17	$\gamma(F(\Sigma_0))$ $\langle\!\langle ??? \rangle\!\rangle$	23-126
	•	(Упражнение.) ◀	23-128
	Лемма 23.18	$f - \Pi P \Phi$	23-132
	•	(Упражнение.) ◀	23-134
	Теорема 23.19 Черча о неразрешимо- сти ►	Мнгожество теорем И Π_{Σ_0} неразрешимо. (Следите за обновлениями!) \blacktriangleleft	23-138 23-140
	Теорема 23.20 Геделя о неполноте	$T\subseteq S$ (Σ_0), $A_0\le T$, T — перечислима и $T\not\vdash$. Тогда T не полна.	23-144
	•	(Следите за обновлениями!) ◀	23-146
	Следствие 23.21	$A ightleftharpoons \{\gamma(\varphi) \mid A_0 \vdash \varphi\} - Р\PiM,$ но не $PM.$	23-150

▶ (Следите за обновлениями!) ◀

Пусть $T \
ightleftharpoons \ S(\Sigma_0), \ T$ — теория, тогда если $A_0 \subset T$, то T

24-28

24-34

24-45

24-49

24-50

24-53

24-58

Аксиоматизируемые классы

§ 24

- Иннерование 24.1 $K_{\sigma} \rightleftharpoons K(\sigma) = \{\mathfrak{A} \mid \mathfrak{A} \text{модель сигнатуры } \sigma\} \quad K \subseteq K_{\sigma}$ $ThK \rightleftharpoons \{\varphi \in S(\sigma) \mid K \models \varphi\} \quad K \models \varphi : \forall \mathfrak{A} \in K \mathfrak{A} \models \varphi.$
- Определение 24.2 $\Gamma \subseteq S(\gamma)$, $K(\Gamma) \rightleftharpoons K_{\sigma}(\Gamma) \rightleftharpoons \{\mathfrak{A} \in K_{\sigma} \mid \mathfrak{A} \models \Gamma\}$ $\mathfrak{A} \models \Gamma$: $\forall \varphi \in \Gamma \mathfrak{A} \models \varphi$.
- Иласс K называется аксиоматизированным, если $K \subseteq K_{\sigma}$, $\exists \Gamma \subset S(\gamma)$, такое что $K = K(\Gamma)$
 - 9 Предложение 24.4 K- аксиоматизируем $\iff K=K(Th(K))$
 - ▶ (Следите за обновлениями!) ◀
- 24-26 Предложение 24.5 Пусть $K \subseteq K_{\sigma}$. Тогда $K \subseteq K$ (Th(K)).
 - ▶ (Следите за обновлениями!) ◀
- ₂₄₋₃₂ Предложение 24.6 Пусть K=K(Γ), тогда $\Gamma\subseteq ThK$
 - ▶ (Следите за обновлениями!) ◀
- 24-38 Следствие 24.7 Для каждого аксиоматизированного класса существует наибольшее по включению множество аксиом. Это в точности теория K.
 - *Предложение 24.8* Аксиоматизированный класс замкнут относительно элементарной эквивалентности, то есть если K акс., $\mathfrak{A} \in K$, $\mathfrak{B} \equiv \mathfrak{A}$, , то $\mathfrak{B} \in K$.
 - ▶ (Следите за обновлениями!) ◀
 - Предложение 24.9 Пусть Γ_1 , $\Gamma_2 \subseteq S(\sigma)$ K_1 , $K_2 \subseteq K_{\sigma}$
 - (1) $\Gamma_1 \subseteq \Gamma_2 \implies K(\Gamma_2) \subseteq K(\Gamma_1)$
 - $(2) K_1 \subseteq K_2 \implies ThK_2 \subseteq ThK_1$
 - ▶ (Следите за обновлениями!) ◀
- 24-57 **Замечание 24.10** В общем случае не верно что:
 - $(1) \quad K = K(ThK)$
 - (2) $\Gamma = ThK(\Gamma)$
- 24-61 ▶ (Следите за обновлениями!) ◀

Предложение 24.11

 $\Gamma = ThK(\Gamma) \iff \Gamma - \text{теория}$

Следствие 24.15 K конечно аксиоматизированно $\Longleftrightarrow \overline{K}$ конечно аксиомати- 24- зирован.

Теорема 24.16 Класс K конечно аксиоматизирован $\iff K$, \overline{K} аксиоматизирован.

▶ (Следите за обновлениями!) \blacktriangleleft 24-90

Элементарные подсистемы

§ 25

25-6 Определение 25.1: подсистема Пусть \mathfrak{A} , $\mathfrak{B} \in K_{\sigma}$, $|\mathfrak{A}| \subseteq |\mathfrak{B}|$. Тогда \mathfrak{A} — *подсистема* \mathfrak{B} (обозначается $\mathfrak{A} \leq \mathfrak{B}$), если $\forall p^n, f^n, c \in \sigma \ \forall a_1, \ldots, a_n \in \mathfrak{A}$:

- (1) $\mathfrak{A} \models p^{\mathfrak{A}}(\overline{a}) \iff \mathfrak{B} \models p^{\mathfrak{B}}(\overline{a});$
- (2) $f^{\mathfrak{A}}(a_1,\ldots,a_n)=f^{\mathfrak{B}}(a_1,\ldots,a_n);$
- (3) $c^{\mathfrak{A}} = c^{\mathfrak{B}}$.
- 25-17 **Определение:** элементарная подсистема

25-11

25_13

25-28

25-40

25-61

 $\mathfrak A$ называется элементарной подсистемой $\mathfrak B$ (обозначается $\mathfrak A \leq \mathfrak B$), если $\forall \varphi(x_1,\ldots,x_n) \in F(\sigma) \ \forall a_1,\ldots,a_n \in |\mathfrak A|$: $\mathfrak A \models \varphi(a_1,\ldots,a_n) \iff \mathfrak B \models \varphi(a_1,\ldots,a_n).$

- -25 Предложение 25.3 Пусть $\mathfrak{A} \preceq \mathfrak{B}$, тогда $\mathfrak{A} \equiv \mathfrak{B}$
- ₂₅₋₃₄ Предложение *25.4*

 $\mathfrak{A},\mathfrak{B}\in K(\sigma)$ и $|\mathfrak{A}|\subseteq |\mathfrak{B}|$, тогда $\mathfrak{A}\leq \mathfrak{B}\iff \emptyset$ бескванторной $\varphi(x_1,\ldots,x_n)\in F(\sigma)$, $\forall (a_1,\ldots,a_n)\in \mathfrak{A}$ выполняется $\mathfrak{A}\models \varphi(a_1,\ldots,a_n)\iff \mathfrak{B}\models \varphi(a_1,\ldots,a_n)$

▶ (⇒). Пусть \forall бескванторной формулы φ выполняется. Покажем что $\mathfrak{A} \leq \mathfrak{B}.$

 $p^n, f^n, c \in \sigma; a_1, \dots, a_n, d \in \mathfrak{A}; p^n(x_1, \dots, x_n) \in F(\sigma) \implies \mathfrak{A} \models p(a_1, \dots, a_n);$

 $f(x_1,...,x_n) = y \in F(\sigma) \Longrightarrow f^{\mathfrak{A}}(a_1,...,a_n) = f^{\mathfrak{B}}(a_1,...,a_n);$

Пусть $d=c^{\mathfrak{A}}$, тогда формула $(c=x)\in F(\sigma) \implies \mathfrak{A}\models (d=c) \iff \mathfrak{B}\models (d=c) \implies c^{\mathfrak{A}}=c^{\mathfrak{B}}$

 (\Leftarrow) . $\mathfrak{A} \models \mathfrak{B} \; \; orall \;$ безкванторной arphi условия выполняются

$$\mathfrak{A} \models \varphi(\overline{a}) \iff \mathfrak{B} \models \varphi(\overline{a})$$

Индукцией по построению формулы arphi доказываем предложение lacktriangle

₂₅₋₅₃ Предложение 25.5

 $t(x_1,\ldots,x_n)\in T(\sigma)$, $a_1,\ldots,a_n\in\mathfrak{A}$, тогда $t^{\mathfrak{A}}(a_1,\ldots,a_n)=t^{\mathfrak{B}}(a_1,\ldots,a_n),$ если $\mathfrak{A}\models\mathfrak{B}$

25-58

(1) t=x, тогда $t^{\mathfrak{A}}(\overline{a})=a$, $t^{\mathfrak{B}}(\overline{a})=a \Longrightarrow t^{\mathfrak{A}}(\overline{a})=a=t^{\mathfrak{A}}$. t=c (const), тогда $t^{\mathfrak{A}}=c^{\mathfrak{A}}=c^{\mathfrak{B}}=t^{\mathfrak{B}}$

(2) $t = f(t_1(x_1, \ldots, x_n), \ldots, t_k(x_1, \ldots, x_n)), a_1, \ldots, a_n \in \mathfrak{A} \Longrightarrow t_i(a_1, \ldots, a_n) = d_i, i = 1 \ldots k; t^{\mathfrak{A}}(a_1, \ldots, a_n) = f^{\mathfrak{A}}(t^{\mathfrak{A}}(\overline{a}), \ldots, t^{\mathfrak{A}}(\overline{a})) = \blacksquare$

Версия 0.9.5

вниз

$$f^{3}(d_{1},...,d_{k}) = f^{3}(d_{1},...,d_{k}) = f^{3}(t_{1}^{3}(\overline{\alpha})...t_{k}^{3}(\overline{\alpha})) = t^{3}(\overline{\alpha}).$$
(1) $\varphi(x_{1},...,x_{n}) = (t(\overline{x}) = q(\overline{x}), a_{1},...,a_{n} \in \mathfrak{A}.$ Тогла $\mathfrak{A} \models \varphi(\overline{\alpha}) \Leftrightarrow f^{3}(\overline{\alpha}) = q^{3}(\overline{\alpha}) \Leftrightarrow t^{3}(\overline{\alpha}) = q^{3}(\overline{\alpha}) = q^{3}(\overline{\alpha}) \Rightarrow t^{3}(\overline{\alpha}) = q^{3}(\overline{\alpha}) \Rightarrow q^{3}(\overline$

25_120

25-140

25-143

25-149

25-156

25-171

25-123

Определение 25.10

Пусть $\mathfrak{A} \in K_{\sigma}, \;,\; A = |\mathfrak{A}|$ Рассмотрим множество констант

 $C_A \rightleftharpoons \{C_a \mid a \in A\}$

Пусть

$$C_A \cap \sigma = \emptyset$$
$$\sigma_A \rightleftharpoons \sigma \cup C_A$$

Рассмотрим отношение модели:

$$\mathfrak{A}_A \in K(\sigma_A), \ a \in A, \ C_a^{\mathfrak{A}_a} \rightleftharpoons a, \, \mathfrak{A}_A \lceil \sigma = \mathfrak{A} \rceil$$

Элементанрная диаграмма модели $\mathfrak A$ Обозначается

$$\mathfrak{D}(\mathfrak{A}) \rightleftharpoons \{ \varphi \in S(\sigma_A) \mid \mathfrak{A}_A \models \varphi \}$$

где φ - бескванторная. Множество всех счетных на $\mathfrak A$ безкванторных предложений сигнатуры σ :

$$F\mathfrak{D}(\mathfrak{A}) \rightleftharpoons \{ \varphi \in S(\sigma_A) \mid \mathfrak{A} \models \varphi \}$$
$$F\mathfrak{D}(\mathfrak{A}) = Th(\mathfrak{A}_A)$$

(теории) Если $C \in A$, то

$$\sigma_c \rightleftharpoons \sigma \cup \{C_a \mid a \in C\}$$

$$\mathfrak{A}_c \rightleftharpoons \mathfrak{A}_A \lceil \sigma_c$$

25-138 Замечание 25.11

Пусть $\mathfrak{A},\mathfrak{B}\in K_{\sigma}$, $A=|\mathfrak{A}|\in |\mathfrak{B}|$

- (1) $\mathfrak{A} \in \mathfrak{B} \iff \mathfrak{B}_A \models D(\mathfrak{A})$
- (2) $\mathfrak{A} \in \mathfrak{B} \iff \mathfrak{B}_A \models FD(\mathfrak{A})$

Доказательство на семинаре

5-147 Замечание 25.12

- (1) $D(\mathfrak{A}) \in FD(\mathfrak{A})$
- (2) $Th\mathfrak{A} \in FD(\mathfrak{A})$

▶ (Следите за обновлениями!) ◀

25-153 **Теорема 25.13** Ливенгейма-Скулема Пусть \mathfrak{A} — бесконечно, $\mathfrak{A} \in K_{\sigma}$, $\alpha \geq \max \{ \|\mathfrak{A}\|, \|\mathfrak{B}\| \}$. Тогда $\exists \mathfrak{B} \mid \|\mathfrak{B}\| = \alpha, \mathfrak{A} \prec \mathfrak{B}$

вверх

▶ (Следите за обновлениями!) ◀

25-160 *Следствие 25.14*

Теорема Ливенгейма-Скулема вверх показывает, что следствем языка первого порядка мы не можем описывать никаких ограничений для бесконечной мощности.

₂₅₋₁₆₄ Определение 25.15

Пусть формула $\psi(\overline{x},\overline{y})$ - бескванторная. Тогда формула

$$\exists x_1, \ldots, \exists x_n \ \psi(\overline{x}, \overline{y})$$

∃-формула;

$$\forall x_1, \ldots, \forall x_n \ \psi(\overline{x}, \overline{y})$$

─ ∀-формула.

Говорят, что класс K

∃-аксиоматизирован, если

$$\exists \Gamma \leq S(\sigma(K)) \,, \; K \; = \; K(\Gamma) \,, \; \forall \varphi \in \Gamma \,, \; \varphi - \exists -f.$$

25-18/

25-186

25_188

25-192

25-193

25-197

25-199

25-200

25-201

25-208

25-213

25-216

 Γ оворят, что класс K

∀-аксиоматизирован, если

$$\exists \Gamma \leq S(\sigma(K)), K = K(\Gamma), \forall \varphi \in \Gamma, \varphi - \exists - f.$$

Говорят что класс K замкнут относительно подсистем, если вместе с каждой своей системой он содержит все ее подсистемы:

$$K: \forall \mathfrak{A} \in K, \forall \mathfrak{B} \in \mathfrak{A}, \mathfrak{B} \in K.$$

Говорят что класс K замкнут относительно надсистем, если вместе с каждой своей системой он содержит все ее надсистемы:

$$K: \forall \mathfrak{A} \in K, \forall \mathfrak{B}: \mathfrak{A} < \mathfrak{B} \rightarrow \mathfrak{B} \in K.$$

Обозначим
$$Th_{\exists}(K) \rightleftharpoons \{\varphi \in Th(K) \mid \varphi - \exists - f\}.$$

Обозначим $Th_{\forall}(K) \rightleftharpoons \{\varphi \in Th(K) \mid \varphi - \forall - f\}.$

Предложение 25.16

Пусть $K \in K_{\sigma}$. Тогда:

- (1) $K \in K(Th_{\forall}(K))$
- (2) $K \in K(Th_{\exists}(K))$
- ▶ (Следите за обновлениями!) ◀

Предложение 25.17

- (1) $K \forall$ -аксиоматизируем $\iff K = K(Th_{\forall}(K))$
- (2) $K \exists$ -аксиоматизируем $\iff K = K(Th_{\exists}(K))$
- ▶ (Следите за обновлениями!) ◀

Теорема 25.18

Пусть К аксиоматизируем.

- (1) $K \forall$ -аксиоматизируем $\iff K$ замкнут относительно надсистем;
- (2) $K-\exists$ -аксиоматизируем $\iff K$ замкнут относительно подсистем:
- ▶ (Следите за обновлениями!) ◀

Теорема 25.19 Интерполяционная теорема Крейга

 $\varphi \vdash \psi$ доказуема, $\sigma_0 = \sigma(\varphi) \cap \sigma(\psi)$, пусть $X_0 \rightleftharpoons FV(\varphi) \cap FV(\psi)$, тогда $\exists \xi$, такой что $\varphi \vdash \xi$, $\xi \vdash \varphi$

▶ (Доказательства теоремы не требуется.) ◀

Следствие 25.20

Пусть $\varphi \in F(\sigma)$. Тогда:

- (1) $\exists \psi \equiv \varphi$, так что $\sigma(\psi)$ наименьшая по включению среди 25-214 $\sigma(\psi')$, т.к. $\psi' \equiv \varphi$; $FV(\varphi)$ наименьш с. рас. $FV(\psi')$ т.ч. $\psi' \equiv \varphi$
- (2) \forall сигнатурного символа входящего в φ , \forall свободного первого вхождения в φ можно сказать, входит этот символ (переменная) фиктивно или по существу.
- ▶ (Следите за обновлениями!) ◀

25-219

Теорема Эрбрана

§ 26

№ Определение 26.1

$$\varphi = Q_1 y_1 , \ldots , Q_n y_n \quad \psi(\overline{x}, \overline{y})$$
 где $Q_i \in \{\forall, \exists\}, \psi$ - бескванторная
$$\varphi_H = \exists y_{i_1}, \ldots, \exists y_{i_k} \quad \psi_k(\overline{x}, y_{i_1}, \ldots, y_{i_k})$$
 называется Эрбрановой нормальной формой, где
$$(\exists y_1 \ldots \exists y_n \quad \forall y_{n+1} \xi(\overline{x}, \ \overline{y}, \ y_{k+1}, \ \ldots))_H$$

$$\rightleftharpoons \\ \exists y_1 \ldots y_n \quad \xi(\overline{x}, \ \overline{y}, \ f(\overline{y}), \ \ldots))_H$$

$$\forall y \quad \xi(\overline{x}, \ y, \ \ldots))_H \rightleftharpoons (\xi(\overline{x}, \ y, \ \ldots))_H$$

₂₆₋₁₇ Теорема 26.2

 $\vdash \varphi \iff \vdash \varphi_H$

26-19

▶ (Следите за обновлениями!) ◀

26-23 **Теорема 26.3** теорема Эрбрана

 $\varphi \in F(\sigma), \ \varphi = \varphi(\overline{x}) = \varphi(x_1, \dots, x_n), \ \vdash \varphi \iff \exists$ наборы термов $\overline{t}_1(\overline{x}), \dots, \overline{t}_k(\overline{x})$, такие что $\vdash \psi_H(\overline{x}, \overline{t}_1(x), \cup \dots \cup \psi_k(\overline{x}, \overline{t}_k(\overline{x}))$