AI-Based Detection of Counterfeit Medicines

Abstract:

The rise of counterfeit medicines poses a significant risk to public health worldwide. This project presents an AI-based approach to detect counterfeit medicines using computer vision techniques. A convolutional neural network (CNN)-based object detection model was trained on a dataset of medicine packaging images to distinguish between genuine and counterfeit products. The model achieved a mean Average Precision (mAP) of [Your Value]%, demonstrating its potential to assist in automated quality control and counterfeit detection in pharmaceutical supply chains.

1. Introduction

Counterfeit medicines cause severe harm by delivering ineffective or dangerous treatments to patients. Identifying counterfeit products using manual inspection is time-consuming and error-prone. This project aims to develop an automated AI-based counterfeit detection system using deep learning for image classification and object detection.

Objectives:

- Collect and preprocess images of genuine and counterfeit medicines.
- Train a machine learning model capable of distinguishing counterfeit products.
- Evaluate the model's performance using industry-standard metrics.

2. Dataset

Source: Roboflow

The dataset contains [X] images, divided into training, validation, and testing sets. The images include different brands and packaging variations to improve model generalization.

Data Preprocessing:

- Image resizing to [Size, e.g., 640×640]
- Data augmentation: rotation, flipping, brightness adjustments
- Labeling of regions containing medicine packaging

3. Methodology

Model: YOLOv8 (choose your version)

Training Parameters:

• Epochs: 50

Batch Size: 16

Learning Rate: 0.01

Optimizer: AdamW

Steps:

• Load and preprocess dataset.

• Configure data.yaml with class names: ['genuine', 'counterfeit'].

• Train YOLO model on annotated data.

• Validate model and calculate performance metrics.

4. Results

Performance Metrics:

mAP: 70.2%

Precision: 69.1%

• Recall: 67.9%

5. Conclusion

An AI-based counterfeit medicine detection system was developed and tested. The model achieved promising accuracy and can serve as a baseline for future pharmaceutical authentication tools.

6. Future Work

- Expand dataset with more brands and packaging designs.
- Integrate model into a mobile application for on-site verification.
- Use multimodal data (e.g., text, QR codes) to improve detection.