Даниел Силађи

Гимназија Јован Јовановић Zmaj

мај 2014.

Теорија група

- У свакодневном животу срећемо "симетричне" објекте
- Шта је заправо симетрија?
- Нешто "изгледа исто" кад га гледамо са различитих страна
- Формалније: симетрија неког објекта је нека трансформација у простору која пресликава тај објекат у самог себе

Мотивација 2

Људи су приметили да такве трансформације имају нека својства заједничка за све њих:

- Трансформације су бијективне, за сваку трансофмацију постоји њиј инверзна трансформација која "поништава" њен ефекат.
- Комбиновањем (композицијом) две трансформације добијамо опет трансформацију
- Сваки објекат има једну тривијалну симетрију, идентичко пресликавање - свака тачка се слика у саму себе

- Ротације око центра троугла: r (за $\pi/3$), $r \circ r = r^2$ (за $2\pi/3$) и $r \circ r \circ r = r^3 = e$ (за 2π , односно 0 радијана идентичко пресликавање)
- Осне симетрије s_1 , s_2 и s_3 у односу на праве l, m, n.
- ullet Слично, важи $s_i \circ s_i = s_i^2 = e$, за $i \in \{1,2,3\}$, али и $s_1 s_2 = r^2$,

Теорија група

Пример - frieze и wallpaper цртежи

Пример - молекулске и кристалне симетрије

Основне дефиниције

Елементи неке групе не морају нужно да буду трансформације, већ елементи произвољног скупа G, за које смо дефинисали операцију "множења", са следећим особинама:

- $lue{f 0}$ Ако a и b припадају G, онда и њихов производ, ab припада G
- ② Операција множења је асоцијативна, односно важи a(bc) = (ab)c
- $oldsymbol{G}$ садржи јединични елемент e, за који важи ae=ea=a, за свако $a\in G$
- ① За свако $a\in G$ постоји $b\in G$, за које важи ab=ba=e. Такав b се зове *инверзни елемент* за a, и обележава се са a^{-1}

Иако операцију групе често називамо "множењем", она заправо и може а и не мора то да буде:

- Скуп рационалних (или реалних) бројева без 0 чини групу у односу на множење (у уобичајеном смислу)
- Скуп целих (али не и природних!) бројева чини групу у односу на сабирање
- Скуп свих инвертибилних (регуларних, њихова детерминанта је различита од 0) квадратних матрица, над пољем $\mathbb R$ или $\mathbb C$, димензија $n \times n$, чини групу, а операција групе је множење матрица.

Неке корисне ознаке и дефиниције

- Ако је операција групе комутативна, група је комутативна или Абелова
- $ullet a^n \equiv \underline{aa...a}$, и $a^{-n} \equiv (a^{-1})^n = (a^n)^{-1}$ n пута
- Ако су сви степени a различити, група је бесконачног реда. Иначе, ред елемента је најмање $n \in \mathbb{N}$ за које важи $a^n = e$
- Ред групе је број елементата те групе
- Непразан подскуп H групе G је *подгрупа* групе G, ако је Hгрупа у односу на рестрикцију операције групе G на H
- ullet $\langle A
 angle$ је подгрупа генерисана скупом A најмања подгрупа Gкоја садржи скуп A. Ако је $\langle A \rangle = G$, онда је A генераторни скуп групе G, а његови елементи - генератори групе G.

Пермутације

- Пермутације скупа $\{1, 2, ..., n\}$ су све функције π које бијективно пресликавају тај скуп у самог себе
- Записују се као

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix},$$

где важи
$$\{a_1,a_2,...,a_n\}=\{1,2,...,n\}$$
, и $\pi(i)=a_i$, за $1 \leq i \leq n$

- Пермутације n елемената чине групу S_n , симетричну групу
- Кејлијева (Cayley) теорема: Свака група G реда n је изоморфна са подгрупом симетричне групе S_n .

Лагранжова теорема

Теорема

Ако је G нека група реда n, и H њена подгрупа реда m, тада m дели n.

• У доказу, поделили смо групу G на k дисјунктних подскупова:

$$G = H \cup a_1 H \cup a_2 H \cup \dots \cup a_{k-1} H$$

- ullet Број k се зове *индекс* подгрупе H у групи G
- ullet Скупови $a_i H$ се зову леве класе H у G
- ullet Скуп свих левих класа неке подгрупе се обележава са G/H

Инваријантне подгрупе

За елемент b групе G кажемо да је конјугован елементу aако постоји $u \in G$ за који важи

$$uau^{-1} = b$$

- Релација конјугације је релација еквиваленције, разбија групу на класе конјугације
- Посматрајмо подгрупу H групе G. Тада се лако показује да је и aHa^{-1} (сви производи aha^{-1} , где $h \in H$) подгрупа од G, при чему је a произвољни елемент из G. Уколико за свако $a \in G$ важи

$$aHa^{-1} = H$$
,

тада кажемо да је H инваријантна или нормална подгрупа групе G, и то обележавамо са $H \triangleleft G$.

Инваријантне подгрупе - наставак

- За неку групу G и њену нормалну подгрупу H дефинишимо операцију $\cdot: G/H \to G/H$ као $aH \cdot bH := abH$
- Скуп свих левих класа G/H (у случају да је $H \lhd G$) група у односу на овако дефинисану операцију
- Јединични елемент је eH = H, а инверзни елемент за класу aH ie $a^{-1}H$
- Овако добијена група се назива фактор-група, обележава ce ca G/H
- Њен ред индекс групе H у G
- Пример: $\mathbb{Z}/n\mathbb{Z}$, и сабирање

Векторски простори

Нека је (V,+) комутативна група, а $(F,+,\cdot)$ поље. V је векторски простор над пољем F, ако је дефинисано пресликавање $F\times V\to V$, при чему слику пара (α,v) означавамо са αv , тако да за свако $\alpha,\beta\in F$, $u,v\in V$ важи:

- $(\alpha + \beta)v = \alpha v + \beta v$
- $(\alpha \cdot \beta)v = \alpha(\beta v)$
- **4** 1v = v

где је са 1 означен неутрални елеменат за множење поља F. Елементи скупа F се називају *скалари*, а елементи скупа V-вектори. Ми ћемо у овом раду посматрати искључиво поља реалних и комплексних бројева.

База векторског простора

- База векторског простора је низ вектора који је линеарно независан и који генерише векторски простор.
- Још алтернативних дефиниција:
 - Низ вектора је база ако и само ако је тај скуп максималан линеарно независан скуп.
 - Низ вектора је база ако и само ако је тај скуп минималан скуп генератора
 - Низ вектора $v_1, ..., v_n$ је база ако и само ако се сваки вектор $x \in V$ може на јединствен начин написати у облику

$$x = \sum_{1}^{n} \alpha_i v_i, \quad \alpha_1, ..., \alpha_n \in F$$

Све базе неког одређеног векторског простора Vимају исти број елемената - димензија векторског простора, $\dim V$

Нека је V векторски простор над пољем F (где је $F=\mathbb{R}$ или $F=\mathbb{C}$). Унутрашњи (скаларни) производ на V је свака функција $(,): V \times V \to F$, при чему слику уређеног пара вектора $(x,y)\in V imes V$ означавамо са (x,y), за коју за свако $x,y,z\in V$ и свако $\alpha \in F$ важи

- (x + y, z) = (x, z) + (y, z)
- $(\alpha x, y) = \alpha(x, y)$
- **4** $(x, x) \ge 0$
- $(x, x) = 0 \Leftrightarrow x = 0$

• У унитарном векторском простору V функција $\| \ \| : V \to \mathbb{R}$, дефинисана са

$$||x|| = \sqrt{(x,x)}$$

назива се *норма* на V

- ullet Ненегативан реалан број $\|x\|$ назива се *норма вектора* x
- ullet *Растојање* вектора x и y је дефинисано са

$$d(x, y) = ||x - y||.$$

• У унитарном векторском простору V за свако $x,y\in V$ важи

$$|(x, y)| \le ||x|| ||y||,$$

при чему једнакост важи ако и само ако су вектори x и y линеарно зависни.

$$\cos \alpha = \frac{(x, y)}{\|x\| \|y\|}$$

- ullet За два вектора x и y кажемо да су *ортогонални* ако је (x,y)=0.
- За базу $B = \{b_1, ..., b_n\}$ неког унитарног векторског простора V кажемо да је *ортонормирана*, ако је

$$(b_i,b_j)=egin{cases} 1 & ext{ako } i=j \ 0 & ext{ako } i
eq j \end{cases}$$

 Сваки унитарни векторски простор поседује бар једну ортонормирану базу, и она се може добити из произвољне базе применом Грам-Шмитовог поступка

Линеарне трансформације

Дефиниција

Нека су V_1 и V_2 векторски простори над истим пољем F. Пресликавање $A: V_1 \to V_2$ такво да је

$$(\forall a, b \in V_1)(\forall \alpha, \beta \in F)A(\alpha a + \beta b) = \alpha A(a) + \beta A(b)$$

назива се линеарна трансформација (линеарни оператор, хомоморфизам) векторског простора V_1 у V_2 . Уколико је $V_1 = V_2 = V$, тада је A просто линеарна трансформација векторског простора V.

Матрица линеарне трансформације

Претпоставимо да је $\{a_1, ... a_n\}$ база векторског простора V. Тада, линеарну трансформацију A можемо задати са

$$A(a_1) = b_1, A(a_2) = b_2, ..., A(a_n) = b_n$$

где cv $b_1, ..., b_n \in V$.

• Пошто је $\{a_1, ... a_n\}$ база, сваки од вектора b_i може се на јединствен начин написати као линеарна комбинација вектора базе, па имамо:

$$A(a_1) = \alpha_{11}a_1 + \alpha_{21}a_2 + \dots + \alpha_{n1}a_n$$

$$A(a_2) = \alpha_{12}a_1 + \alpha_{22}a_2 + \dots + \alpha_{n2}a_n$$

. . .

$$A(a_n) = \alpha_{1n}a_1 + \alpha_{2n}a_2 + \dots + \alpha_{nn}a_n$$

Ако напишемо коефицијенте α_{ij} као матрицу, вредност функције A(x) (као линеарне трансформације произвољног вектора $x \in V$) можемо израчунати простим множењем матрица:

$$[A(x)] = [A][x] = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{bmatrix} \begin{bmatrix} \zeta_1 \\ \zeta_2 \\ \vdots \\ \zeta_n \end{bmatrix}$$

при чему је $x = \zeta_1 a_1 + \zeta_2 a_2 + ... \zeta_n a_n$.

Матрични запис линеарне трансформације зависи од избора базе!

Групе матрица

- Општа линеарна група, $GL(n,\mathbb{C})$ скуп свих $n \times n$ регуларних (инвертибилних, детерминанта различита од 0) матрица над \mathbb{C} , у односу на множење матрица. Ове матрице одговарају свим инвертибилним линеарним трансформацијама простора \mathbb{C}^n . Њена подгрупа је $GL(n,\mathbb{R})$, скуп свих инвертибилних реалних матрица $n \times n$ у односу на множење.
 - Специјална линеарна група,

$$SL(n, \mathbb{C}) = \{ M \in GL(n, \mathbb{C}) | \det M = 1 \}.$$

Слично,

$$SL(n, \mathbb{R}) = \{ M \in GL(n, \mathbb{R}) | \det M = 1 \}.$$

$$U(n) = \{ M \in GL(n, \mathbb{C}) | MM^{\dagger} = I \}.$$

Чува скаларни производ вектора $x=(x_1,...,x_n)$, $y=(y_1,...y_n)$: $(Mx,My)=(x,y)=\sum_{i=1}^n x_i\overline{y}_i$.

- Специјална унитарна група: $SU(n) = \{M \in U(n) | \det M = 1\}.$
- Ортогонална група: $O(n) = \{M \in GL(n,\mathbb{R}) | MM^T = 1\}.$ Слично као унитарна група, чува стандардни скаларни производ $(Mx, My) = (x, y) = \sum_{i=1}^n x_i y_i.$
- Специјална ортогонална група, $SO(n) = \{ M \in O(n) | \det M = 1 \}.$

Псеудоортогонална група

- Нека је g дијагонална матрица $g=\mathrm{diag}(\underbrace{1,..,1}_p,\underbrace{-1,...,-1}_q)$.
- Псеудоортогонална група $\mathit{O}(\mathit{p},\mathit{q})$ се дефинише као

$$O(p,q) = \{ M \in GL(n,\mathbb{R}) | M^T g M = g \}.$$

• То управо матрице које чувају квадратну форму

$$\sum_{i=1}^{p} x_i y_i - \sum_{i=1}^{q} x_{p+i} y_{p+i}.$$

• Најпознатија група ове врсте је Лоренцова група O(1,3), са којом ћемо се позабавити на крају овог рада.

Групе у физици

Симетрије унитарних векторских простора

Дефиниција

Нека је дат еуклидски векторски простор V коначне димензије.

Изометријске трансформације су трансформације (пресликавања) $M: V \to V$, које чувају растојање, тј. за свако $u,v\in V$ важи

$$||u - v|| = ||M(u) - M(v)||$$

Ортогоналне трансформације су трансформације $M\colon V o V$ које чувају скаларни производ, тј. за све $u, v, \in V$

$$(u, v) = (M(u), M(v))$$

Две теореме

Теорема

Нека је $M: V \to V$ ортогонално пресликавање еуклидског векторског простора. Тада је M изометријска трансформација која чува 0, тј. M(0) = 0.

Теорема

Нека је M изометрија неког еуклидског векторског простора и нека је M(0) = 0. Тада је M ортогонална трансформација

...и трећа теорема

Теорема

Ако је M ортогонална трансформација коначнодимензионалног еуклидског простора, тада важи

- М је линеарна трансформација
- ② Ако је [M] матрица трансформације M у односу на неку ортонормирану базу, тада важи $[M]^T[M] = I$
- $oldsymbol{3} M$ је инвертибилна и M^{-1} је такође изометрија
- $\bigcirc \det[M] = \pm 1$ (у било којој бази)

Лоренцове трансформације и метрика Минковског

• У специјалној теорији релативности, једина инваријантна метрика у простор-времену је метрика Минковског:

$$\Delta s^2 = c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$

- Лоренцове трансформације можемо посматрати као "ротације" простор-времена, аналогно ротацијама тродимензионалног еуклидског простора (које чувају метрику $s^2 = x^2 + y^2 + z^2$)
- Такође, $s^2 = X \cdot X = X^T \eta X$, при чему је матрица η (понекад и њу називамо метриком Минковског) дата са

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- ullet Тражимо решења матричне једначине $\Lambda^T\eta\Lambda=\eta$
- Очекујемо и добијамо 6 независних решења, подељених у 2 класе: просторне ротације и Лоренцови потисци

$$\Lambda = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & & & \ 0 & & R & \ 0 & & & \end{bmatrix}$$
 или $\Lambda = egin{bmatrix} \gamma & -\gamma v/c & 0 & 0 \ -\gamma v/c & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$

- ullet R је матрица ротације у 3 димензије, а $\gamma=rac{1}{\sqrt{1-rac{v^2}{c^2}}}.$
- Ове матрице чине групу, O(1,3) ($\det \Lambda = \pm 1$). Подгрупе: SO(1,3) ($\det \Lambda = 1$) и њена подгрупа $SO^+(1,3)$ ($\Lambda_{11} > 0$)

• Представимо вектор X = (ct, x, y, z) као (Хермитску) матрицу

$$\hat{X} = \begin{bmatrix} ct + z & x - iy \\ x + iy & ct - z \end{bmatrix}$$

- Све 2×2 Хермитске матрице се могу записати у овом облику
- Згодно својство $X \cdot X = \det \hat{X} = c^2 t^2 x^2 y^2 z^2$
- Испоставља се да је $SO(1,3)^+\cong SL(2,\mathbb{C})/\mathbb{Z}_2$, односно да се све Лоренцове трансформације могу представити матрицама из $SL(2,\mathbb{C})$, и обрнуто
- Свели смо један потпуно "физички" проблем на чисту математику!

