Linear Model for Description

川田恵介

Table of contents

1	線形モデルによる記述	2
1.1	Linear Model による記述	2
1.2	OLS	2
1.3	数值例: OLS	3
1.4	例: OLS (独立の場合)	3
1.5	例: OLS (相関の場合)	4
1.6	LASSO	4
1.7	例: LASSO	5
1.8	まとめ	5
2	比較	5
2.1	シンプルな比較研究	5
2.2	シンプルな比較研究	6
2.3	踏み込んだ研究課題: 差の理由	6
2.4	例: Dube et al. (2020)	6
2.5	伝統的な方法	6
3	OLS の別解釈	7
3.1	OLS Algorithm: 単回帰	7
3.2	OLS Algorithm: General case	7
3.3	OLS の解釈	7
4	Constant Difference モデルによる解釈	8
4.1	Constant Difference	8
4.2	単回帰の解釈	8
4.3	単回帰の解釈	8
4.4	母集団への含意 (事例数無限大)	9
4.5	重回帰の解釈・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4.6	重回侵の解釈	Q

4.7	母集団への含意	9
4.8	Mis-specification	10
4.9	Overfit	10
4.10	まとめ	10
5	Double Selection	10
5.1	Naive なアイディア	10
5.2	問題点	10
5.3	Double Selection Algorithm	11
5.4	重要な仮定: Sparsity	11
5.5	実装	11
5.6	実践	11
5.7	Next Step	12
Referen	ce	12

1 線形モデルによる記述

- $Y \ge X$ の関係性を"簡潔な"関数で記述する
 - 非常に難しいチャレンジであり、(私見では)経済学においては主流ではない
- 1.1 Linear Model による記述

•

$$g_Y(X) = \beta_0 + \beta_1 X_1 + ... + \beta_L X_L$$

- 記述モデルの研究者が設定
- "モデル上の"関係性は容易に解釈可能
 - $-\beta_1 = X_1$ が一単位大きい時に、Yの平均値はどのくらい大きいか?

1.2 OLS

- X の数が少ない (記述モデルがシンプル) であれば、OLS は有効
 - 信頼区間も導出可能
 - * 多重検定への対応は必要 (ISL Chap 13 等参照)
- Estimand (Best Linear Projection) $\neq E[Y|X]$ であり、必ずし直感的ではないことに注意

1.3 **数値例**: OLS

$$\bullet \ \ Y = \underbrace{D}_{\in \{0,1\}} + \underbrace{X^2}_{\sim Uniform(-2,2)} + \underbrace{u}_{\sim N(0,10)}$$

- 独立している場合:

$$\ast \ \Pr(D=1)=0.5$$

- 相関している場合:

$$*\ \Pr(D=1|1\geq X\geq -1)=0.9$$

$$*\ \Pr(D=1|X\geq 1|X\leq -1)=0.1$$

1.4 **例**: OLS (独立の場合)

1.5 **例**: OLS (相関の場合)

1.6 LASSO

- Xの数が多くても、変数の数を減らしてくれるので、一見良さそうだが、
 - 信頼区間の導出が難しい
 - 変数選択の精度はそこまで高くない

1.7 **例**: LASSO

1.8 まとめ

- Yと 大量の X の関係性を記述する、は非常に難しい課題
 - -Xの中から特に関心がある変数 D を選んで、Yとの関係性を記述することが現実的

2 比較

- 本講義では、研究課題の段階で、関心とする変数を絞り込むことを推奨
 - 比較研究に持ち込む

2.1 シンプルな比較研究

- 特定の Y と D の関係性について関心があるケースが多い
 - 例: 男女間賃金格差
 - $*\ Y = Wage, D = Gender$
 - 年功型賃金体系の程度

* Y = Wage, D = Tenure

2.2 シンプルな比較研究

- 有力な Estimand は、母平均の差 E[Y|D=1]-E[Y|D=0] ないし、Population OLS $Y\sim D$ データ上で Y を D で回帰すれば OK
- Yと関係していそうな X がデータに含まれていたとしても、"無視"して良い

2.3 踏み込んだ研究課題: 差の理由

- なぜ差が生まれるのか?
 - データから観察可能な他の変数 X に注目
 - * X についての格差が、Y の差をもたらしている
 - * X 以外についての格差が、Y の差をもたらしている
- 注目されてきた Estimand であり、多様な方法論開発が進む
 - 機械学習の導入も有力視されている

2.4 **例**: Dube et al. (2020)

- Online 労働市場において、求人が提示する賃金水準 (=D) と応募者数 (=Y) はどのような関係にあるのか?
 - 賃金が高い仕事は、高い技能が要求される/きつい... (=X) 可能性がある
 - 求人内容 (= X) 以外の要因で、どの程度の差が生じているのか?
 - * 労働市場の不完全性 (独占力) の指標 (Langella and Manning 2021)

2.5 伝統的な方法

• X をコントロールする: 以下を推定

$$g_Y(D,X) = \underbrace{\beta_D}_{=X$$
以外による格差
$$D + \underbrace{\beta_0 + \beta_1 X_1 + \dots}_{X の 影響を除去}$$

- 課題
 - 何が Estimand なのか?
 - * コントロールとは?

- 定式化の影響は?

3 OLS **の別解釈**

- $g_Y(D) = \beta_0 + \beta_D D + \beta_1 X_1 + ...$ を OLS で推定する
 - 議論の簡略のために、X は標準化されているとする
- (BLP ではなく)Weight 推定としても再解釈できる

3.1 OLS Algorithm: 単回帰

• $g_{Y}(D) = \beta_{D}D + \beta_{0}$ を OLS 推定すると

$$\beta_D = \sum_{i:D_i=1} \underbrace{\frac{1}{N_1}}_{=\widetilde{W}_i} Y_i - \sum_{i:D_i=0} \underbrace{\frac{1}{N_0}}_{=\widetilde{W}_i} Y_i$$

• 事例数の逆数を Weight とした比較と解釈できる

$$-$$
 注: $\sum_{i:D_i=1} W_1 = \sum_{i:D_i=0} W_0 = 1$

3.2 OLS Algorithm: General case

1. 全ての $X = [X_1, ..., X_L]$ について、

$$\begin{split} \sum_{i:D_i=1} W_i X_{i,l} &= \sum_{i:D_i=0} W_i X_{i,l}, \\ \sum_{i:D_i=1} W_i &= \sum_{i:D_i=0} W_i = 1 \end{split}$$

を満たす W から、分散が最も小さいものを選ぶ

2.

$$\beta_D = \sum_{i:D:=1} W_i Y_i - \sum_{i:D:=0} W_i Y_i$$

3.3 OLS **の**解釈

- Yの Weight 付き平均差として解釈できる
 - データ上で、D間で X の平均値が"Balance" するように Weight は選ぶ
- X^2 もモデルに加えれば、 X^2 の平均値 (分散) も等しくなるように選ばれる
- $X_1 * X_2$ もモデルに加えれば、 X_1, X_2 の共分散も等しくなるように選ばれる

4 Constant Difference モデルによる解釈

- 母集団に対する、かなり強い仮定を用いて、OLSの推定結果を解釈
- 注記: 不必要に強い仮定であり、将来緩める

4.1 Constant Difference

- E[Y|1,X]-E[Y|0,X]= au を母集団上で仮定
 - $-\tau = X$ が全く同じ集団間での平均格差
 - * "Xをコントロール/Ceteris paribus"
- 以下のモデルで表現できる

$$Y = au imes D + \underbrace{b(X)}_{\text{なんらかの関数}} + \underbrace{u}_{=E[u|X]}$$

- Semiparametric estimation では、h(X) は Nuisance function と呼ばれる

4.2 単回帰の解釈

• Y を代入すると

$$\begin{split} \beta_D &= \frac{\sum_{i:D_i=1} Y_i}{N_1} - \frac{\sum_{i:D_i=0} Y_i}{N_0} \\ &= \frac{\sum_{i:D_i=1} (\tau_D + h(X_i) + u_i)}{N_1} \\ &- \frac{\sum_{i:D_i=0} (h(X_i) + u_i)}{N_0} \end{split}$$

4.3 単回帰の解釈

$$\beta_D = \tau_D + \underbrace{\left[\frac{\sum_{i:D_i=1} h(X_i)}{N_1} - \frac{\sum_{i:D_i=0} h(X_i)}{N_0}\right]}_{\text{属性のずれ}}$$

$$+ \underbrace{\frac{\sum_{i:D_i=1} u_i}{N_1} - \frac{\sum_{i:D_i=0} u_i}{N_0}}_{\text{観察できない属性のずれ}}$$

4.4 母集団への含意 (事例数無限大)

$$\begin{split} \beta_D &= \tau_D + \beta_X \underbrace{\left[\frac{\sum_{i:D_i=1} h(X_i)}{N_1} - \frac{\sum_{i:D_i=0} h(X_i)}{N_0} \right]}_{\underset{N_1,N_0 \rightarrow \infty}{\xrightarrow{E_X[h(X)|D=1]-E_X[h(X)|D=0]}} \\ &+ \underbrace{\frac{\sum_{i:D_i=1} u_i}{N_1} - \frac{\sum_{i:D_i=0} u_i}{N_0}}_{=:D_i} \end{split}$$

• 観察できる属性のずれの影響が残る

4.5 重回帰の解釈

Yを代入すると

$$\begin{split} \beta_D &= \sum_{i:D_i=1} W_i Y_i - \sum_{i:D_i=0} W_i Y_i \\ &= \sum_{i:D_i=1} W_i (\tau_D + h(X_i) + u_i) \\ &- \sum_{i:D_i=0} W_i (h(X_i) + u_i) \end{split}$$

4.6 重回帰の解釈

• Yを代入すると

$$\begin{split} \beta_D &= \tau_D \\ &+ \underbrace{\left[\sum_{i:D_i=1} W_i h(X_i) - \sum_{i:D_i=0} W_i h(X_i) \right]}_{h(X) = \beta_0 + \beta_1 X \text{To divise}} \\ &+ \sum_{i:D_i=1} W_i u_i - \sum_{i:D_i=0} W_i u_i \end{split}$$

4.7 母集団への含意

$$\begin{split} \beta_D &= \tau_D + \beta_X \underbrace{\left[\sum_{i:D_i=1} W_i h(X) - \sum_{i:D_i=0} W_i h(X) \right]}_{h(X) = \beta_0 + \beta_1 X \text{ to find } = 0} \\ &+ \underbrace{\sum_{i:D_i=1} W_i u_i - \sum_{i:D_i=0} W_i u_i}_{\rightarrow 0} \end{split}$$

4.8 Mis-specification

- $g_Y(D,X)=\beta_0+\beta_DD+\beta_1X$ を OLS 推定するが、 $h(X)=\beta_0+\beta_1X+\beta_2X^2$
 - X の分散 (X^2) は Balance しないので、 β_D は τ_D に (事例数が無限大でも) 収束しない

4.9 Overfit

- Mis-specification を避けるためには、X を十分に複雑にしてモデルに導入する必要がある
- より多くの変数の平均値を揃える必要があるので、Weight W_i の分散が大きくなる
- 特定の個人 (u_i) の影響が非常に強くなり、推定精度が悪化

4.10 まとめ

- OLS = X の平均値を Balance させる Algorithm
 - 高次項 $(X_1^2, X_1^3, X_1 \times X_2...)$ を導入すると、X の分布を Balance させられる
 - 弊害: Weight の分散が大きくなり、推定精度が悪化する
- 課題: "重要な"X のみ Balance させたい

5 Double Selection

- LASSO の"副産物"である変数選択を利用
 - "AI" によるダブルチェックを行い、変数選択のミスを減らす
- Belloni, Chernozhukov, and Hansen (2014)
 - Gentle introduction: Angrist and Frandsen (2022)

5.1 Naive なアイディア

- X を全てバランスさせるのではなく、Yとの相関が強いものだけをバランスさせる
 - $-g_Y(X)$ を LASSO で推定し、選択された変数だけを OLS に加える

5.2 問題点

• 問題点: LASSO による変数選択は、Yとそこそこ相関がある変数も除外されてしまう可能性がある

- Y の予測のためであれば、(Tuning parmeter が正しく選ばれている限り)、許容できる (Biasvariance Tradeoff)
- D との相関が強い (分布が Unbalance) な変数が除外されると β_D の推定結果が大きな影響を受ける
 - τの推定という目標について、モデルが過度に単純化される (Regulization bias)

5.3 Double Selection Algorithm

- 1. $g_Y(X)$ および $g_D(X)$ を LASSO で推定し、選択された変数を記録
- 2. **どちらかの**予測モデルで選択された変数 (Z) のみを用いて、 $Y \sim D + Z$ を回帰
- Yの予測モデルと D の予測モデルによる" ダブルチェック"

5.4 重要な仮定: Sparsity

•

$$E[Y|D,X] = \tau D + \beta_0 + \underbrace{\beta_1 X_1 + \ldots + \beta_L X_L}_{L>\text{spMBTbOK}}$$

- (Approximately) sparsity: 事例数に比べて、十分に少ない変数数 S < L で、母平均をうまく近似できる
- 実戦: 十分に複雑なモデルについて LASSO を推定し、変数選択
 - もともとのモデルには、"trivial" な変数も含まれていると仮定

5.5 実装

• hdm package が有益

```
rlassoEffect(
  x = X, # Must be matrix
  d = D, # Must be vector
  y = Y # Must be vector
)
```

• 注: Tuning parameter は、交差推定ではなく、理論値を使用

5.6 実践

- かなり制約的なアプローチ (Variable selection を行う Algorithm しか使えない)
 - 後日、より柔軟なアプローチを紹介

- 今でも多くの応用研究が、Robustness check として活用
 - 最終的には OLS なので、Editor/Referee に理解させやすい!?
 - すぐに活用できるという意味で、十分に実践的
 - * OLS でコントロールしている自身の研究があれば、使ってみてください!!!

5.7 Next Step

- ここまでの議論は以下に限定
 - Algorithm: Liner Model
 - Estimand: 平均値関数/平均差の推定
- 課題: より幅広い Algorithm (Tree/Stacking model)/Estimand ("Exact" Average Difference/Heterogeneity)

Reference

Angrist, Joshua D, and Brigham Frandsen. 2022. "Machine Labor." *Journal of Labor Economics* 40 (S1): S97–140.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2014. "Inference on Treatment Effects After Selection Among High-Dimensional Controls." Review of Economic Studies 81 (2): 608–50.

Dube, Arindrajit, Jeff Jacobs, Suresh Naidu, and Siddharth Suri. 2020. "Monopsony in Online Labor Markets." *American Economic Review: Insights* 2 (1): 33–46.

Langella, Monica, and Alan Manning. 2021. "Marshall Lecture 2020: The Measure of Monopsony." Journal of the European Economic Association 19 (6): 2929–57.