ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА Факультет прикладної математики та інформатики

Звіт із

Теорії ймовірності та математичної статистики

Індивідуальне завдання №2

Виконав:

Готюк Максим

Група ПМі-23

Викладач:

Квасниця Галина Андріївна

Оцінка:

Постановка завдання:

У поданих нижче задачах наведено результати досліджень вибірок з деяких генеральних сукупностей.

- Зчитати дані з текстового файлу, побудувати полігон або гістограму частот;
- на основі графічного представлення сформулювати гіпотезу про закон розподілу досліджуваної ознаки генеральної сукупності (у задачах 1 5) рекомендуємо перевіряти вибірки на нормальний закон, а в задачах 6 -10 на інші, наприклад, рівномірний, показниковий, біномний, закон розподілу Пуассона);
- передбачити можливість користувачу задати параметри розподілу вручну або оцінити на основі даних вибірки;
- для заданого користувачем рівня значущості перевірити сформульовану гіпотезу за критерієм $\chi 2$

Варіант №5

ЗАДАЧА 1 (варіанти 1-6). Для вивчення технічних властивостей нової марки бетону досліджувалися окремі його зразки. Розподіл кількості ni зразків бетону і відповідного їм стискування X (тобто такого, що спричиняє руйнування зразка) наведено в таблиці

<i>X</i> , кг/см ²	170-	180-	190-	200-	210-	220-	230-	240-	250-	260-
	180	190	200	210	220	230	240	250	260	270
n_i (варіант 1)	4	9	32	54	72	65	50	25	12	7
n_i (варіант 2)	4	8	38	52	70	66	52	24	10	6
n_i (варіант 3)	4	8	26	52	76	66	48	24	11	6
n_i (варіант 4)	4	7	28	56	70	60	52	26	10	6
n_i (варіант 5)	4	9	28	48	70	72	52	22	10	6
n_i (варіант 6)	4	8	30	52	64	66	56	24	9	6

ЗАДАЧА 6 (варіант 1 - 5). Для вироблення рекомендацій щодо покращення роботи портів реєструвався час очікування кораблів на розвантаження в декількох портах країни. Розподіл за один рік кількості кораблів ni залежно від часу Т, який вони очікували на розвантаження, відображено в таблиці.

Т, год	0-6	6-12	12-18	18-24	24-30	30-36	36-42	42-48	48-54	>54
n_i (варіант 1)	518	384	284	211	156	116	86	63	44	34
n_i (варіант 2)	518	376	284	217	156	112	86	65	44	33
n_i (варіант 3)	502	384	292	211	150	116	90	63	42	35
n_i (варіант 4)	534	384	276	211	162	116	82	63	46	34
n_i (варіант 5)	518	392	284	205	156☑	120	86	61	44	34

Короткі теоретичні відомості:

Зважаючи на знання із попереднього індивідуального завдання теоретичні відомості в цьому індивідуальному завданні будуть наступні :

Однією з найбільш важливих задач математичної статистики є задача про визначення закону розподілу ймовірностей випадкової величини (ознаки генеральної сукупності) за даними вибірки. Якщо закон розподілу випадкової величини невідомий, то формулюють нульову гіпотезу про вигляд густини розподілу. Наприклад: "Випадкова величина має густину нормального розподілу ймовірностей". Для перевірки таких гіпотез часто застосовують критерій **Пірсона**:

$$K = \sum_{i=1}^{m} \frac{(n_i - np_i)^2}{np_i} = n \sum_{i=1}^{m} \frac{(w_i - p_i)^2}{p_i}$$

де n_i - емпіричні частоти, np_i - теоретичні частоти, w_i - емпіричні відносні частоти, p_i - теоретичні ймовірності, n - обсяг вибірки.

Дана випадкова величина K має закон розподілу χ^2 , який описується густиною

$$R(x,n) = \begin{cases} 0, & x \le 0; \\ \frac{x^{n-2}e^{-x^2/2}}{A_n}, & x > 0, \end{cases}$$

і він не залежить від невідомого закону розподілу ймовірностей досліджуваної випадкової величини, а залежить лише від k = m - s - 1 ступенів вільності, де m – число інтервалів інтервального розподілу статистичних ймовірностей, s – число параметрів теоретичного розподілу.

Перевірка гіпотези про вигляд густини розподілу ймовірностей неперервної випадкової величини за критерієм Пірсона має наступний вигляд:

•	статистичні	дані вно	осятся у	табли	ицю вигляду:
	$(z_{i-1}, z_i]$	$(z_0, z_1]$	$(z_1, z_2]$		$(z_{m-1}, z_m]$
	n_i	n_1	n_2		$n_{\scriptscriptstyle m}$

де n_i - число варіант вибірки що попадають в інтервал, $[z_{i-1}$, $z_i]$ - інтервал

• оскільки перевіряється гіпотеза про те, що генеральна сукупність задовольняє певному закону розподілу з густиною p(x), то для кожного інтервалу можна визначити теоретичні ймовірності p_i попадання значень випадкової величини в

$$p_i = P(z_{i-1} < Z \le z_i) = F(z_i) - F(z_{i-1}),$$

цей інтервал;

• одержані результати обчислень записуємо у таблицю:

$(z_{i-1},z_i]$	$(-\infty, z_1]$	$(z_1, z_2]$	 $(z_{m-1}, +\infty)$
n_i	n_1	n_2	 $n_{_m}$
p_i	p_1	p_2	 p_m

$$\chi_{emn}^2 = \sum_{i=1}^m \frac{(n_i - np_i)^2}{np_i}$$

- обчислюється емпіричне значення критерію Пірсона
- за даним рівнем значущості α і кількістю k=m-s-1 ступенів вільності знаходимо критичну точку $k_{\kappa p}=\chi^2_{\kappa p}(\alpha,k)$ за таблицею критичних значень розподілу χ^2 . (Додаток 5)
- ullet Порівнюємо χ $^2_{
 m em\pi}$ і χ $_{
 m kp}$:
 - $\circ~$ якщо $\chi~^2_{\rm emn} \geq \chi~_{\rm kp}$, то нашу гіпотезу $\rm H_0$ (про вигляд густини розподілу) відхиляють
 - \circ якщо χ $^2_{_{\mathrm{EMI}}}$ < χ $_{_{\mathrm{Kp}}}$, то гіпотезу приймають

Перевірка гіпотези про вигляд закону розподілу ймовірностей дискретної випадкової величини має практично ідентичний план, але з незначними відмінностями:

•	статистичні	дані ві	носятся у	табл	ицю вигля	яду:
	\boldsymbol{x}_{i}	x_{l}	x_2		\boldsymbol{x}_{m}	
	n_i	n_1	n_2	•••	$n_{_m}$	

 на підставі гіпотетичного закону розподілу знаходимо теоретичні ймовірності р_ітого, що випадкова величина приймає значення x_i. Але тут є невелике зауваження: критерій Пірсона застосовують для великих обсягів вибірок, n ≥100.
 Також мають виконуватись умови n_i ≥ 5, np_i ≥ 10 в окремих групах. Якщо ці умови не виконуються, сусідні групи слід об'єднати. Гіпотетичний закон розподілу може містити невідомі параметри, тоді за їх значення беруть їх точкові оцінки на основі даної вибірки.

- 1) Біномний закон розподілу. Випадкова величина ξ може набувати цілих значень 0, 1,, N з ймовірностями $p_i = P(\xi=i) = \mathcal{C}_N^i p^i (1-p)^{N-i}$, де p параметр розподілу (0<p<1), який, якщо він
 - 2) Закон розподілу Пуассона Випадкова величина ξ може набувати цілих значень 0, 1, ..., m, ... з ймовірностями $p_i = P(\xi = i) = e^{-\lambda} \ \frac{\lambda^i}{i!}$, де λ >0 параметр розподілу, який, якщо він відомий, можна оцінити на основі даних вибірки $\lambda = x$
 - 3) Рівномірний закон розподілу. Функція розподілу має вигляд:

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x < b \\ 1, & x \ge b \end{cases}$$

відомий, можна оцінити на основі даних вибірки $p=rac{x}{N}$

Тут a,b - параметри розподілу, можуть бути

оцінені на основі даних вибірки $a = x - \sqrt{3}s$, $b = x + \sqrt{3}s$

4) Показниковий закон розподілу. Функція розподілу має вигляд:

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

 $\lambda > 0$ - параметр розподілу, його точкова оцінка на основі вибірки $\lambda = \frac{1}{x}$.

$$F(x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-a)^2}{2\sigma^2}} dt$$

5) Нормальний закон розподілу має вигляд : параметри розподілу оцінюються на основі даних вибірки $a=x, \ \sigma=s$

Програмна реалізація

Програма реалізована на допомогою мови python в середовищі Jupyter Notebook. Спочатку я ввів дані з файлу, тоді побудував за допомогою них гістограму, щоб зрозуміти, на функцію якого розподілу вона схожа. Тоді, згідно з результатом, формулював гіпотезу, рахував умовні ймовірності, якщо це було необхідно для можливості перевірки критерієм Пірсона, то об'єднував деякі дані вибірки. Тоді рахував χ^2 критичне та емпіричне і на основі порівняння робив висновок щодо того, приймати гіпотезу, чи ні.

Отримані результати

Завдання 1

На основі графіку можна зробити висновок, що перевіряти потрібно на нормальний закон розподілу.

Хочете ввести параметри розподілу вручну або оцінити їх на основі вибіркових даних? (в/о) о Введіть рівень значущості (альфа): 0.005

Інтервали: [170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270] Значення: [4, 9, 28, 48, 70, 72, 52, 22, 10, 6]

Стандартне відхилення (сигма): 17.75 Рівень значущості (альфа): 0.005

Теоретичні ймовірності: [0.011866208334873729, 0.03288298094112024, 0.08350850081496819, 0.15564661369023178, 0.212 9449204785182, 0.21386964487383, 0.15768332273832403, 0.08533800061895674, 0.033896200305875535, 0.0123636072033015

Об'єднання інтервалів привело до такого розподілу:

[170, 190, 200, 210, 220, 230, 240, 260, 270] [13, 28, 48, 70, 72, 52, 22, 16] [0.04474918927599397, 0.08350850081496819, 0.15564661369023178, 0.2129449204785182, 0.21386964487383, 0.15768332273 832403, 0.08533800061895674, 0.046259807509177076]

Х2 критичне: 9.99573227355399 Х2 емпіричне: 1.6516000009137015

Гіпотеза приймається

Завдання 2

На основі графіку можна зробити висновок, що перевіряти потрібно на експонентний закон розподілу.

Хочете ввести параметри розподілу вручну або оцінити їх на основі вибіркових даних? (в/о) о

Введіть рівень значущості (альфа): 0.005

Інтервали: [0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60] Значення: [518, 392, 284, 205, 156, 120, 86, 61, 44, 34]

Лямбда: 0.059

Рівень значущості (альфа): 0.005

Теоретичні ймовірності: [0.298924845244395, 0.2095687821400095, 0.1469234663707507, 0.10300439192310418, 0.07221382 000799714, 0.050627315037599985, 0.03549355272484622, 0.024883647969397793, 0.01744530735102956, 0.040914871230869 91

Розподіл не потребував злиття.

X2 критичне: 12.298317366548037 X2 емпіричне: 50.73649296969306

Гіпотеза не приймається

Висновки

За час виконання лабораторної роботи я навчився працювати з критерієм Пірсона, а саме розуміти, як визначити тип розподілу, на який варто перевіряти, за допомогою графіку, обчислювати необхідні значення та робити висновок щодо правдивості гіпотези.