EXAMINATION COVERSHEET

Winter 2023 Final Examination

THIS EXAMINATION CONTENT IS STRICTLY CONFIDENTIAL Students must comply with requirements stated in the Examination Policy & Procedures	
Student Number:	
First Name:	
Family Name:	
Date of Examination: (DD/MM/YY)	01/04/2023
Subject Code:	Math 142
Subject Title:	Essentials of Engineering Mathematics
Time Permitted to Write Exam:	2 Hours
Total Number of Questions:	11 (6 MCQ's + 5 written questions)
Total Number of Pages (including this page):	9

INSTRUCTIONS TO STUDENTS FOR THE EXAM

- 1. Please note that subject lecturer/tutor will be unavailable during exams. If there is a doubt in any of the exam questions i.e. problem solving etc. students should proceed by assuming values etc. Students should mention their assumption on the question paper.
- 2. Answers must be written (and drawn) in black or blue ink
- 3. Any mistakes must be crossed out. Whitener and ink erasers must not be used.
- 4. Part A (MCQ): Answer ALL/ 6 questions. The marks for each question are shown next to each question. The total for Part A is 30 marks.
- 5. Part B (Written): Answer ALL/ 5 questions. The marks for each question are shown next to each question. The total for Part B is 70 marks.)
- 6. Total marks: 100. This Exam is worth 40% of your final marks for MATH 142.

EXAMINATION MATERIALS/AIDS ALLOWED

Approved Calculator and Formula Sheet

<u>Exam Unauthorised Items</u> - Students bringing these items to the examination room must follow the instructions of the invigilators with regards to these items.

- 7. Bags, including carrier bags, backpacks, shoulder bags and briefcases
- 8. Any form of electronic device including but not limited to mobile phones, smart watches, MP3 players, handheld computers and unauthorised calculators;
- 9. Calculator cases and covers, opaque pencil cases
- 10. Blank paper
- 11. Any written material

NOTE: The University does not guarantee the safe-keeping of students' personal items during examinations. Students concerned about the safety of their valuable items should make alternative arrangements for their care.

Part 1 MCQ's 30% (Circle Your Choice)

(5pts) Problem 1

Evaluate the improper integral

$$I = \int_6^8 \frac{4}{\sqrt{x-6}} dx$$

- A) I=8
- $B) \quad I = 8\sqrt{2}$
- C) I=6
- D) $I=\infty$
- E) $I = 2\sqrt{2}$

(5pts) Problem 2

Evaluate the improper integral

$$I = \int_{10}^{\infty} \frac{1}{x \ln x} dx$$

- $A) \quad I = 10 \ln 10$
- B) I = 100
- $C) \qquad I = \sqrt{10}$
- $D) \qquad I = 10\sqrt{10}$
- E) $I = \infty$

(5pts) Problem 3

Consider the differential equation

$$\frac{dy}{dx} = \frac{-2xy}{x^2 + y^2}$$

Which of the following is TRUE.

- A) The differential equation is linear
- B) The differential equation is separable
- C) The differential equation is homogeneous
- D) The differential equation is exact
- E) None of the above is true

(5pts) Problem 4

Let a_n be the sequence given by

$$\ln \frac{2}{1}$$
, $\ln \frac{3}{2}$, $\ln \frac{4}{3}$,...

 $\lim_{n\to\infty} a_n \text{ is equal to}$

- A) = 0
- B) 1
- C) 2
- D) 3
- E) 4

(5pts) Problem 5

$$S = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \dots,$$

 $\quad \text{then} \quad$

$$A)$$
 $S=\infty$

$$S = 1$$

$$C)$$
 $S = 10000$

$$D) \quad S = 0.0001$$

$$E) S = 90909$$

(5pts) Problem 6 If

$$\mathcal{L} = \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1},$$

then

$$A) \hspace{0.5cm} {\cal L} = rac{1}{4}$$

$$B)$$
 $\mathcal{L}=rac{1}{2}$

$$C$$
) $\mathcal{L} = \infty$

$$D)$$
 $\mathcal{L}=4$

$$E)$$
 $\mathcal{L}=7$

Part 2 Written Questions (70%)

(16pts) Problem 1

Determine convergence or divergence of the following series.

(A)
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$$

(B)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{2n+1}$$

(A)
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$$
 (B) $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{2n+1}$ (C) $\sum_{n=0}^{\infty} \frac{n+1}{\sqrt{n^2+n+1}}$ (D) $\sum_{n=0}^{\infty} \frac{7}{n\sqrt{n}}$

(D)
$$\sum_{n=0}^{\infty} \frac{7}{n\sqrt{n}}$$

(14pts) Problem 2 Find the interval of convergence of the following power series $\frac{1}{2}$

$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}.$$

(12pts) Problem 3

The diagram in the Figure below represents an electrical circuit whose total resistance is a constant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. There is a switch whose terminals at a and b can be closed to connect a constant electrical source of V volts.

Ohm's Law, V = RI, has to be modified for such a circuit. The modified form is a linear differential equation given by

$$L\frac{di}{dt} + Ri = V$$

where i is the intensity of the current in amperes and t is the time in seconds. By solving this equation, we can predict how the current will flow after the switch is closed. If the switch is closed at time t=0 (i=0), How will the current flow as a function of time if $\frac{R}{L}=3$ and $\frac{V}{L}=5$?

(14pts) Problem 4 Show that the differential equation is exact and solve the initial value problem

$$(\cos x - x\sin x + y^2) dx + 2xydy = 0, y(\pi) = 1.$$

(14pts) Problem 5

Show that the equation is Bernoulli and solve it.

$$\frac{dy}{dx} = y\left(xy^3 - 1\right)$$

Hint:
$$\int -3xe^{-3x}dx = \frac{1}{3}e^{-3x}(3x+1) + C$$