Programando con numpy, la teoría detrás de la red neuronal clásica

Road to Python Day #2

Historia

- IA Simbólica desde 1950 mediados y finales de la década de 1980 (Sistemas expertos).
- Minsky y Papert en su libro Perceptron desacreditan la utilidad del perceptrón (1969).
- Se retrasa en una década el desarrollo de métodos de optimización para el aprendizaje efectivo.

Historia

- 1986 Se publica en nature el artículo que revivió el hype con el uso de aprendizaje en base a gradientes.
- Geoffrey Hinton y Yann LeCu popularizan el método del gradiente aplicado los MLP (Muerte de la IA Simbólica).
- Se propone el modelo LeNet y la historia continúa . . .

Problemas

- El primer modelo de perceptron tenía demasiadas limitaciones y se hizo con una mala reputación.
- Minsky y Papert expusieron las limitaciones del perceptrón.
- Se asumió que esto se aplicaba a todos los modelos de redes neuronales.

Modelos de clasificación más comunes

- KNN
- Regresión Logística
- Árbol de decisiones
- SVM
- Perceptrón multicapa
- Redes convolucionales

Clasificación lineal y no lineal

Modelos de clasificación más comunes

- KNN
- Regresión Logística
- Árbol de decisiones
- SVM
- Perceptrón multicapa
- Redes convolucionales

Perceptrón multicapa

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

El modelo

- El aprendizaje para ajustar los valores de una red neuronal consiste en los siguientes pasos.
 - Propagación a las siguientes capas
 - Retropropagación (calculo de la derivada del error)
 - Actualización de parámetros.

Propagación a la siguiente capa

$$Z = \langle W, A^{[l-1]} \rangle + b$$
$$A^{[l]} = g(Z)$$

Donde $< W, A^{[l-1]} >$ significa producto matricial, y g(x) representa la aplicación de una función de activación

- Una neurona contiene la información propagada de la anterior capa de neuronas a través de los pesos aplicando una activación.
- De esta forma se propaga el conocimiento simulando la interacción sináptica de las neuronas en nuetro cerebro.

Funciones de activación

Sigmoid (σ)

- Función no lineal en rango (0,1).
- Función altamente saturada.

Relu (Rectified Linear Units)

- Equivalente a varias unidades logísticas apiladas.
- Es una función no linear no saturada.

Sigmoid (σ)

 Es una función no lineal que nos devuelve una probabilidad o vector de probabilidades (valores entre 0 y 1).

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Relu (Rectified Linear Units)

 Función no lineal no saturada que devuelve valores positivos.

$$Relu(x) = max(0, x)$$

Retropropagación

 El error de la salida se calcula usando la función de error de entropía cruzada.

$$L = -\sum_{i=1}^{n} y_i * log|\hat{y}_i|$$

$$L = -y * log|\hat{y}| - (1 - y) * log|1 - \hat{y}|$$

 Se deben calcular las derivadas del error con respecto a cada uno de los parámetros o pesos en las distintas capas

Retropropagación

 Se debe propagar el error usando derivadas iterativamente capa por capa.

$$\frac{\partial L}{\partial Z^{[l]}} = \frac{\partial L}{\partial A^{[l]}} * \frac{\partial A^{[l]}}{\partial Z^{[l]}}$$

$$\frac{\partial L}{\partial W^{[l]}} = \frac{\partial L}{\partial Z^{[l]}} * \frac{\partial Z^{[l]}}{\partial W^{[l]}}$$

$$\frac{\partial L}{\partial b^{[l]}} = \frac{\partial L}{\partial Z^{[l]}} * \frac{\partial Z^{[l]}}{\partial b^{[l]}}$$

$$\frac{\partial L}{\partial A^{[l-1]}} = \frac{\partial L}{\partial Z^{[l]}} * \frac{\partial Z^{[l]}}{\partial A^{[l-1]}}$$

Derivadas

Binary cross entropy

$$\frac{\partial L}{\partial \hat{y}} = \frac{(1-y)}{(1-\hat{y})} - \frac{y}{\hat{y}}$$

Sigmoid

$$d\sigma(Z) = \sigma(Z) * (1 - \sigma(Z))$$

Relu

$$dRelu(Z) = \begin{cases} 1, & \text{si } Z_i > 0 \\ 0, & \text{en otro caso} \end{cases}$$

Derivadas

Sustituyendo valores

Para la última capa

$$\frac{\partial L}{\partial Z^{[l]}} = [\frac{(1-y)}{(1-\hat{y})} - \frac{y}{\hat{y}}] * [\sigma(Z) * [1-\sigma(Z)]]$$

Para otras capas

$$\frac{\partial L}{\partial Z^{[l]}} = \frac{\partial L}{\partial A^{[l]}} * \begin{cases} 1, & \text{si } Z_i > 0 \\ 0, & \text{en otro caso} \end{cases}$$

$$\frac{\partial L}{\partial W^{[l]}} = \frac{1}{m} * < \frac{\partial L}{\partial Z^{[l]}}, (A^{[l-1]})^T >$$

$$\frac{\partial L}{\partial b^{[l]}} = \frac{1}{m} * \sum_{j=1}^{batch} \frac{\partial L}{\partial Z^{[l]}}$$

$$\frac{\partial L}{\partial A^{[l-1]}} = <(W^{[l]})^T, \frac{\partial L}{\partial Z^{[l]}}>$$

Train, Dev, Test

Train

 Dataset de entrenamiento siendo una gran parte de todo el data set.

Dev

 Dataset de validación usado para mejorar la elección de hiperparámetros.

Test

 Dataset de prueba sólo utilizado al final para verificar la capacidad de predicción en datos jamás vistos.

Gradient descent

Stochastic gradient descent

 Divide el training set en batches (pedazos de tamaño definido).

Adam

- Usa dos momentos, para suavizar la oscilación de los gradientes.
- Usa correción de sesgo de inicialización.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
       t \leftarrow t + 1
       g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
       m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Stochastic Gradient Descent

Gradient Descent

Función de coste o pérdida

- Para neuronas lineales es un paraboloide.
- Para funciones de activación no lineales multicapa, se vuelve una superficie hiperdimensional llena de minimos locales.

Sobre-entrenamiento y sub-entrenamiento

Sobre-entrenamiento

 Ocurre cuando la función de aproximación se memoriza los datos y no generaliza correctamente.

Sub-entrenamiento

 Ocurre cuando la función de aproximación no se entrena lo suficiente y no aprende las cualidades de los datos, siendo incapaz de realizar inferencias.

Regularización

- Un método muy útil para combatir el sobre entrenamiento es la regularización
- Regularización L2
 - Permite al modelo que automáticamente limite las neuronas no útiles mediante sus gradientes.
 - Hiperparámetro extra
 - Aproxima los valores a 0 para evitar sobre entrenamiento

Regularización

Dropout

- Apaga neuronas aleatoriamente en cada iteración
- Permite aprender múltiples modelos en una sola sesión de entrenamiento.

Referencias

Backpropagation (Nature)

https://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf

Relu

- http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.165.6419&rep=rep1&type=pdf
- https://papers.nips.cc/paper/4824-imagenet-classificationwith-deep-convolutional-neural-networks.pdf

Adam

https://arxiv.org/pdf/1412.6980.pdf

Dropout

- https://arxiv.org/pdf/1207.0580.pdf