Ejemplo comparación de resultados predictores in sillico

Cambio de estudio KCNJ11 c.1054G>A (chr11:17387038 G/A, CM1111083 o NM 000525.4: c.1054G>A)

Exón 1 e intrones adyacentes:

aaagcggcgggggcgctccgggagggtggagtaggacatagggggcgcacctggaggag agacggggcggggtggccaggacctgagctggagcctgggagcccgaaggccagacagg tgaggcgggagacccggaggtgggggtgaggtccggttagtgggagagatccggaggtgt taagttctgagctgggctgggaaggcaggctgggcggggagaagggctcttagcgggagg cccaggggtggtcagctggtggggaagctgggggaggacgcaggtggagagcc TTGTTTTGTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCAGT GGCGTGATCTTGGCTCACTGCAACCTCCGCCTCTCGGGTTCAAGCGATTCTCCTGCCTCA **GC**TTCCTGAGTA**G**CTGGGA**T**TA**C**AGGTG**CG**CACCA**C**CATGCC**C**G**G**CTAACTTTTG**T**ATTT TTAGTAGAGATGGGGTTTCACCATGTTGGTCAGGCTGGTCTCGAACTCCTGACCTAGTGA TCTGCCCTCCTCAGCCTCCCAACGTACTGGGATTACAGGCGTGAGCCACCGCGCCCCGG GAGTTATCTCAGAAGTGAGGCCAGCACAGGCTGAGTGCAGCCCCAGGGTGAGAAGGTGCC ACGTCCGAGGGGTGCCTCCGATGGGG AAGCCCCTCCCTGGGGGTCACCGGAGCCATGCTGCTCCCGCAAGGGCATCATCCCCGAGGA <mark>G</mark>T<mark>G</mark>CTGA<mark>CACGCC</mark>TGG<mark>CA</mark>GA<mark>G</mark>GAC GAGGGCCCGCTTTGTGTCCAAGAAA<mark>GGCA</mark>AC<mark>TG</mark>CAA<mark>CG</mark>TGGCCCACAAGAACA G<mark>CAGGGCCG</mark>CTT<mark>C</mark>CT<mark>G</mark>CAGGA<mark>CGT</mark>GTTCACCA<mark>CG</mark>CT<mark>GGTG</mark>GA<mark>CC</mark>TCAA<mark>GT</mark>GG <mark>AT</mark>TG<mark>C</mark>TC<mark>ATC</mark>TTCAC<mark>C</mark>ATGTCCTTCC<mark>T</mark>GTGCA<mark>G</mark>CTGG<mark>C</mark>TGC<mark>T</mark>CTT<mark>CG</mark>CC<mark>A</mark>T<mark>G</mark>GCC' P<mark>CG</mark>CCTT<mark>CG</mark>CCC<mark>ACGG</mark>TGA<mark>CC</mark>TGG<mark>CCC</mark>C<mark>C</mark>AGCGAGGGCACTGCT<mark>G</mark>AG<mark>CC</mark> '<mark>GGGGGCC</mark>CAT<mark>GG</mark>TGACTGAGGAGTG<mark>C</mark>CCACTG<mark>G</mark>C<mark>C</mark>A<mark>T</mark>CC<mark>T</mark>GATCCT<mark>C</mark> TGCCCAGCCCAGGGCTGAGACCCTCATCTTCAGCAAGCATGCGGTGATCGCCCT GCGCCACGGCCGCCTCTGCTTCATGCTACGTGTGGGTGACCTCCGCAAGAGCATGATCAT CAGCGCCACCATCCACATGCAGGTGGTACGCAAGACCACCAGCCCCGAGGGCGAGGTGGT <mark>GGT</mark>GG<mark>CCCCGCTGATCATCTAC</mark>C<mark>AT</mark>GTCATTGATG<mark>C</mark>CAACA<mark>G</mark>C<mark>CCA</mark>CTCTA<mark>CG</mark>A<mark>CC</mark>TGGC <mark>ac</mark>cc<mark>agcga</mark>cctgc<mark>ac</mark>caccagga<mark>cctcg</mark>aga<mark>tcatcg</mark>tc<mark>a</mark>tcctggaag<mark>gcg</mark>t<mark>g</mark>gt

CAAG<mark>TTTGG</mark>CAA<mark>C</mark>AC<mark>CG</mark>TCAA<mark>A</mark>GTGC<mark>C</mark>CAC**A**CCACTCT<mark>G</mark>CACGGCC<mark>CGC</mark>CA<mark>GCT</mark>TGAT<mark>G</mark>A G<mark>EXCACASCCTACTGGAAGCTCTGAC</mark>CCTC<mark>G</mark>CCTC<mark>A</mark>GC<mark>CCGCG</mark>GG<mark>CCCC</mark>TG<mark>CG</mark>CA<mark>A</mark>GCG CAGCGTGCCCATGGCCAAGGC AGCCATGGTCTCTCGGGCCCCCACACGCGTGTGTACACACGGACCATGTGGTATGTAGC CCGCCAGGGCCTGGTGTGAGGCTGGGCCAGCCTCAGCTCAGCCTCCCCCTGCTGCTCAT CCAGGGTGTTACAAGGCACTTGTCACTATGCTATTTCTGGCCTCAGCAGGAACC GGGTTATTTTTGTCCCTGCTCCCCAACCCAATTCAGGACTGGCTCACCCCTCTCCCCC CTGGGTCCCCACGATTGACCAGCCACACTCTGGGCCGGTGGCTGGGGAAGAACAATCCCC GAGGGCTGCTTTGCGTCTGTGGCTCCAAGAAGTGCCTGTGGTCAGGCCCCAGCTCTA ATGAGAGGGTGTTCCCGCTGGAGGGTTGGTGCTGTGGAGCCTACACCGGCAGGGACAG AGATGCCAGGGCTCCTGCCTTTTGCCACATCGGCCTCGTGCAGTGAGGGCTCTGTGGGCT GGGGCTGCTGCCCTGCCTGCCTGTCCCCAGAGGCTGAGGAGAGGGGGTACTG TGCCCACCACACATGATTAGGCCTCAGACCCAACTCTGGTCCTGGCTCCACAACAGTGGC TGCCACTCACTTTGTCCAGAAGGTGGCTTGGGGTGGATATCTTTGGGTTGCTGGAAAAG **GT**GTG**G**GAAGG**T**TCAGG**A**T**G**GTG**G**GAGG**G**ACT**G**AGGT**C**CCTGAG**G**T**G**AAGAGGC**C**CTTGG TCCTGACGGGTTTGACCCGTGCCTGGACCCTTGGAGCAGTGTTGTGTGAACTTGCCTAGA ACTCTGCCTTCTCCGTTGTCAATAAAGCCTCCCCCTCATGA qqqactqqcaqctqccaccccttcaaqaqqcqccataqaccctaqcqqqqaqqqcaqqq gagggacggaaggctggcacctcttccaccagttcagggggactttcccctctctgtct caggtggcccagcctgtcagcctgtctggccaactcagcctttgggcactcaccaggct

ttgcagccctgggctctgtctctactcccagggacctgctggaaggctggagtgcccagg

Cambio de estudio

NetGene2

Donor splice	-					Donor splice		t strand	I		
	pos 5'->3' 532	•	strand +	confidence 0.00	5' exon intron 3' GGACCATGTG^GTATGTAGCN		pos 5'->3' 532	phase -	strand +	confidence 0.00	5' exon intron 3' GGACCATGTG^GTATGTAGCN
Donor splice						Donor splice	sites, comple		rand		
pos 3'->5' 220	pos 5'->3' 321	phase 0	strand -	confidence 0.41	5' exon intron 3' CATCGGCCAG^GTAGGAGGTG				strand -	confidence 0.41	5' exon intron 3' CATCGGCCAG^GTAGGAGGTG
Acceptor spli	ce sites dir	ect str	and			Acceptor spli	ce sites, di	ect str	and		
	-						_				
	-			reshold.			_			reshold.	
	r site predic	tions a	above th				r site predic	tions a	bove th		

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.81.31.12339.0 : Donor site predictions for 85.53.81.31.12274.0 :

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
525	539	0.86	ccatgtg gt atgtag	525	539	0.86	ccatgtg gt atgtag

Acceptor site predictions for 85.53.81.31.12339.0: Acceptor site predictions for 85.53.81.31.12274.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
246	286	0.59	agcgctttgtg	cccattgt ag ctgaggaggacggacgttac	246	286	0.59	agcgctttgtgccc	attgt ag ctgaggaggacggacgttac
378	418	0.56	aagctctgacc	ctcgcctcagccggggcccctgcgcaag	378	418	0.56	aagctctgaccctc	gcctc ag cccgcgggcccctgcgcaag
447	487	0.81	ccaagttcagc	atctctccagattccctgtcctgagccatg	447	487	0.81	ccaagttcagcatc	tctcc ag attccctgtcctgagccatg

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance		Ranking (L1)
atgag(g/a)accac	tgagga	tgagaa	24919		42%
				Г	

CRYP-SKIP

	٥.5
AAGTGCCCACACCACTCTGCACGGCCCGCCAGCTTGATGAG <mark>G</mark> ACCACAGCCTACTGGAAGCTCTGACCCTCGCCTCAGCC	0.0
	1.0

Human Splicing Finder

Туре	†↓	Interpretation	ŢŢ
No significant impact on splicing signals.		No significant impact on splicing signals.	

SVM-BPfinder

seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off ppt	t_len ppt_scr	svm_scr				seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	13	407	cgctgatca	2.37514887589 0.5	542288557214	1	9	13	1.5647118	mut	13	407	cgctgatca	2.37514887589	0.542288557214	1	9	13	1.5647118
wt	13	404	tgatcatct	-1.73967262935 0.5	541353383459	26	10	14	-1.6198794	mut	13	404	tgatcatct	-1.73967262935	0.541353383459	26	10	14	-1.6198794
wt	13	392	atgtcattg	-1.95880536641 0.5	537467700258	14	10	14	-0.94735534	mut	13	392	atgtcattg	-1.95880536641	0.537467700258	14	10	14	-0.94735534
wt	13	388	cattgatgc	1.74739133819 0.5	537859007833	10	10	14	0.75711549	mut	13	388	cattgatgc	1.74739133819	0.537859007833	10	10	14	0.75711549
wt	13	323	agatcatcg	-2.26800510867 0.5	534591194969	1	10	16	-0.22784085	mut	13	323	agatcatcg	-2.26800510867	0.534591194969	1	10	16	-0.22784085
wt	13	317	tcgtcatcc	-1.19884322252 0.5	532051282051	31	9	11	-1.7555626	mut	13	317	tcgtcatcc	-1.19884322252	0.532051282051	31	9	11	-1.7555626
wt	13	284	gcatcacca	-0.673617040347 0.5	548387096774	10	16	23	-0.10358086	mut	13	284	gcatcacca	-0.673617040347	0.548387096774	10	16	23	-0.10358086
wt	13	250	cgatgagat	-1.27372607449 0.5	538775510204	17	15	20	-0.81269197	mut	13	250	cgatgagat	-1.27372607449	0.538775510204	17	15	20	-0.81269197
wt	13	211	agctgagga	-0.953646914644 0.5	538834951456	13	9	15	-0.48073257	mut	13	211	agctgagga	-0.953646914644	0.538834951456	13	9	15	-0.48073257
wt	13	196	acgttactc	-1.675598472 0.5	560209424084	47	9	12	-2.9365979	mut	13	196	acgttactc	-1.675598472	0.560209424084	47	9	12	-2.9365979
wt	13	161	ccgtcaaag	-1.73500560039 0.5	557692307692	12	9	12	-0.74523028	mut	13	161	ccgtcaaag	-1.73500560039	0.557692307692	12	9	12	-0.74523028
wt	13	124	gcttgatga	-0.104270961811 0.5	554621848739	24	16	24	-0.75550196	mut	13	124	gcttgatga	-0.104270961811	0.554621848739	24	16	24	-0.75550196
wt	13	121	tgatgagga	-2.43834989987 0.5	560344827586	21	16	24	-1.4776609	mut	13	121	tgatgagaa	-2.30765056677	0.560344827586	21	16	24	-1.4264859
wt	13	95	ctctgaccc	3.92167998102 0.5	5888888889	1	10	18	2.2318817	mut	13	95	ctctgaccc	3.92167998102	0.58888888889	1	10	18	2.2318817
wt	13	84	gcctcagcc	0.909174006341 0.5	556962025316	60	9	17	-2.701885	mut	13	84	gcctcagcc	0.909174006341	0.556962025316	60	9	17	-2.701885
wt	13	26	agttcagca	-1.38458682825 0.7	714285714286	2	9	17	0.12211276	mut	13	26	agttcagca	-1.38458682825	0.714285714286	2	9	17	0.12211276

Variant Effect Predictor tool

ENST00000339994.4:c.1054G>A 11:17387038- T 17387038	missense_variant	KCNJ11	ENSG00000187486 Transcript	ENST00000339994.4	protein_coding	1/1	1622	1054	352	D/N	GAC/AAC	rs1242156391, CM1111083, COSV60594722
ENST00000339994.4:c.1054G>A 11:17387038- 17387038 T	upstream_gene_variant	KCNJ11	ENSG00000187486 Transcript	ENST00000526747.1	processed_transcript	-	-	-	-	-	-	rs1242156391, CM1111083, COSV60594722
ENST00000339994.4:c.1054G>A 11:17387038- 17387038 T	downstream_gene_variant	KCNJ11	ENSG00000187486 Transcript	ENST00000526912.1	protein_coding	-	-	-	-	-	-	rs1242156391, CM1111083, COSV60594722
ENST00000339994.4:c.1054G>A 11:17387038- 17387038 T	missense_variant	KCNJ11	ENSG00000187486 Transcript	ENST00000528731.1	protein_coding	2/2	967	793	265	D/N	GAC/AAC	rs1242156391, CM1111083, COSV60594722
ENST00000339994.4:c.1054G>A 11:17387038- T 17387038	downstream_gene_variant	KCNJ11	ENSG00000187486 Transcript	ENST00000528992.1	protein_coding	-	-	-	-	-	-	rs1242156391, CM1111083, COSV60594722

ESEfinder

Las puntuaciones para las matrices 5'SS y 3'SS salen todas con puntuaciones negativas.

En los sitios ESE, el único resultado donde descienden las puntuaciones es en el 1920, que pasan a ser negativas, por lo que podría estar perdiéndose un sitio ESE.

	l 1i	I &	l
1916	1916	1916	1916
(-1486) GATGAGG -3.45732	(-1486) GATGAGG -3.63559	(-1486) GATGAGGA -1.33389	(-1486) GATGAGG -1.21825
1917	1917	1917	1917
(-1485) ATGAGGA 2.11103	(-1485) ATGAGGA 1.24471	(-1485) ATGAGGAC -6.05007	(-1485) ATGAGGA -4.15139
1918	1918	1918	1918
(-1484) TGAGGAC -7.41570	(-1484) TGAGGAC -4.30267	(-1484) TGAGGACC -4.38589	(-1484) TGAGGAC -0.18649
1919	1919	1919	1919
(-1483) GAGGACC -5.45113	(-1483) GAGGACC -4.58432	(-1483) GAGGACCA -0.48166	(-1483) GAGGACC -3.92803
1920	1920	1920	1920
(-1482) AGGACCA 0.81271	(-1482) AGGACCA 0.53481	(-1482) AGGACCAC -3.58941	(-1482) AGGACCA -4.14892
1921	1921	1921	1921
(-1481) GGACCAC -3.52338	(-1481) GGACCAC -2.57394	(-1481) GGACCACA 3.06984	(-1481) GGACCAC -0.14892
1922	1922	1922	1922
(-1480) GACCACA -1.08323	(-1480) GACCACA -1.46471	(-1480) GACCACAG 4.59528	(-1480) GACCACA -3.52956
1916	1916	1916	1916
(-1486) GATGAGA -2.73054	(-1486) GATGAGA -3.20022	(-1486) GATGAGAA -0.03700	(-1486) GATGAGA -3.59998
1917	1917	1917	1917
(-1485) ATGAGAA -0.46670	(-1485) ATGAGAA -0.53494	(-1485) ATGAGAAC -6.41156	(-1485) ATGAGAA -4.71922
1918	1918	1918	1918
(-1484) TGAGAAC -9.33532	(-1484) TGAGAAC -6.00905	(-1484) TGAGAACC -3.96063	(-1484) TGAGAAC 2.36807
1919	1919	1919	1919
(-1483) GAGAACC -2.54255	(-1483) GAGAACC -2.86457	(-1483) GAGAACCA -0.48166	(-1483) GAGAACC -3.77273
1920	1920	1920	1920
(-1482) AGAACCA -1.25107	(-1482) AGAACCA -0.84894	(-1482) AGAACCAC -2.29252	(-1482) AGAACCA -1.54012
1921	1921	1921	1921
(-1481) GAACCAC -3.07616	(-1481) GAACCAC -2.87216	(-1481) GAACCACA 2.70899	(-1481) GAACCAC -1.59409
1922	1922	1922	1922
(-1480) AACCACA -2.01111	(-1480) AACCACA -1.70226	(-1480) AACCACAG 2.84321	(-1480) AACCACA -2.07484

EX-SKIP

No se puede analizar porque la secuencia es demasiado larga.

HOT-SKIP

aaagcggcgggggcgctccggggaggtggagtaggacatagggggcgcacctggaggagagacgggggcggggtggcca ggacctgagctggagcctgggagcccgaaggccagacaggtgaggcgggagacccggaggtgggggtgaggtccggttag cccaggggtggtcagctggtgggggaagctgggggaggacgcaggtcaggtggagagccGGCAGGGTTGGGGGCTCCCT CGCCCAGGCTGGAGTGCGTGATCTTGGCTCACTGCAACCTCCGCCTCTCGGGTTCAAGCGATTCTCCTGCCTCA GCTTCCTGAGTAGCTGGGATTACAGGTGCGCACCACCATGCCCGGCTAACTTTTGTATTTTAGTAGAGATGGGGTTTCA CCATGTTGGTCAGGCTGGTCTCGAACTCCTGACCTAGTGATCTGCCCTCCTCAGCCTCCCAACGTACTGGGATTACAGGC GTGAGCCACCGCGCCCGGCCTGAGGCTGGTATTAAGAAGTGAAGTGGGACCCAGGTGGAGGTAAGGAAGAGTCTGGTGGG GAGTTATCTCAGAAGTGAGGCCAGCACAGGCTGAGTGCAGCCCCAGGGTGAGAAGGTGCCCACCGAGAGGACTCTGCAGT AAGGGCATCATCCCCGAGGAATACGTGCTGACACGCCTGGCAGAGGACCCTGCCAAGCCCAGGTACCGTGCCCGCCAGCG GAGGGCCCGCTTTGTGTCCAAGAAAGGCAACTGCAACGTGGCCCACAAGAACATCCGGGAGCAGGGCCGCTTCCTGCAGG CTCTTCGCCATGGCCTGGTGGCTCATCGCCCTTCGCCCACGGTGACCTGGCCCCAGCGAGGGCACTGCTGAGCCCTGTGT CACCAGCATCCACTCCTTCTCGTCTCCCTTTTCTCCATTGAGGTCCAAGTGACTATTGGCTTTGGGGGGGCGCATGG TGACTGAGGAGTGCCCACTGGCCATCCTGATCCTCATCGTGCAGAACATCGTGGGGGCTCATGATCAACGCCATCATGCTT GCGCCACGGCCGCTCTGCTTCATGCTACGTGTGGGTGACCTCCGCAAGAGCATGATCATCAGCGCCACCATCCACATGC AGGTGGTACGCAAGACCACCAGCCCCGAGGGCGAGGTGGTGCCCCCTCCACCAGGTGGACATCCCCATGGAGAACGGCGTG GGTGGCAACAGCATCTTCCTGGTGGCCCCGCTGATCATCTACCATGTCATTGATGCCAACAGCCCACTCTACGACCTGGC ACCCAGCGACCTGCACCACCACCAGGACCTCGAGATCATCGTCATCCTGGAAGGCGTGGTAGAAACCACGGGCATCACCA CCCAGGCCCGCACCTCCTACCTGGCCGATGAGATCCTGTGGGGCCAGCGCTTTGTGCCCATTGTAGCTGAGGAGGACGGA CGTTACTCTGTGGACTACTCCAAGTTTTGGCAACACCGTCAAAGTGCCCACACCACTCTGCACGGCCCGCCAGCTTGATGA GACCACAGCCTACTGGAAGCTCTGACCCTCGCCTCAGCCCGCGGGCCCCTGCGCAAGCGCAGCGTGCCCATGGCCAAGG CCAAGCCCAAGTTCAGCATCTCTCCAGATTCCCTGTCCTGAGCCATGGTCTCTCGGGCCCCCCACACGCGTGTGTACACA CGGACCATGTGTATGTAGCCCGGCCAGGGCCTGGTGTGTGAGGCCTGGCCCAGCCTCAGCCTCCCCCTGCTGCTCAT CCAGGGTGTTACAAGGCACTTGTCACTATGCTATTTCTGGCCTCAGCAGGAACCTGTACTGGGTTATTTTTTGTCCCTGCT CCTCCCAACCCAATTCAGGACTGGCTCACCCCTCTCCCCCGCCCAAGGCTGCAGAGGCTGTGGGGAGGTACTGGGGCCCTAG AGCTGTGCGTCCAGCCAGTCCTGGGTCCCCACGATTGACCAGCCACACTCTGGGCCGGTGGCTGGGAAGAACAATCCCC GAGGGCTGCTTTGCGTCTGTGGCTCCAAGAAGTGCCTGTGGTCAGGCCCCAGCTCTACTTGGTCCCTGAAAAAGCAC CTGGCTAAGGGCTGGGCCTGGCCAGCAGGGAGGGCAGTTGATGAGAGAGGGTGTTCCCGCTGGAGGGTTGGTGGA GCCTACACCGGCAGGGACAGCCTGGGGCTGACAGGGCTCCCCTCCGAGGGCCAGTTTCAGGTCTGGAAGGGGAGGAAGCA GGGGAAGGTGACCTGAGGAGGCTCGGCTTTGTAGAGCCCCGCTCAGGCACAGGGAGGAGGAGATGCCAGGGCTCCTGCCT GCTGAGGAGAGGGGGTACTGTGCCCACACACACAGATTAGGCCTCAGACCCAACTCTGGTCCTGGCTCCACAACAGTGGC TGCCACTCACTTTGTCCAGAAGGTGGCTTGGGGGTGGATATCTTTGGGTTGCTGGAAAAGGTGTGGGAAGGTTCAGGATG GTGGGAGGACTGAGGTCCCTGAGGTGAAGAGGCCCTTGGTCCTGACGGGTTTGACCCGTGCCTGGACCCTTGGAGCAGT GTTGTGTGAACTTGCCTAGAACTCTGCCTTCTCCGTTGTCAATAAAGCCTCCCCCTCATGAcctaaactctgggcttttc ttgctggggaggcagcaagcatgctggtgggaagggaggcagggactggcagctgccaccccttcaagaggcgccatag accctagcggggagggcagggagggacggaaggctggcacctcttccaccagttcagggggactttcccctctcctgtc tcaggtggcccagccctgtcagcctgtctggccaactcagcctttgggcactcaccaggctttgcagccctgggctctgt ctctactcccagggacctgctggaaggctggagtgcccagg