Symplectic Algebra

• Sp(2n,R)

For real
$$2n - by - 2n$$
 matrix R , if $R^T J R = J$, then $R \in \operatorname{Sp}(2n, R)$

where
$$J = I \otimes (i \sigma_2) \equiv \begin{pmatrix} O & | & I \\ - & - & - \\ -I & | & O \end{pmatrix}$$

note that
$$J(-J) = I$$
, $J^{-1} = -J$, $(\det J)^2 = 1$

• Sp(2n,C)

For complex 2n - by - 2n matrix C, if $C^T J C = J$, then $C \in \operatorname{Sp}(2n, C)$

• det R=1

Proof

Define characteristic polynomial of R as $P(\lambda)$

$$P(\lambda) = \det(R - \lambda I) = \lambda^{2n} \det(\lambda^{-1} R - I)$$

$$= \lambda^{2n} \det R \det(\lambda^{-1} I - R^{-1})$$

$$= \lambda^{2n} \det R \det(\lambda^{-1} I - J^{-1} R^{T} J)$$

$$= \lambda^{2n} \det R \det(\lambda^{-1} I + J R^{T} J)$$

$$= \lambda^{2n} (\det R) (\det J) (\det J) \det(\lambda^{-1} J^{-1} J^{-1} + R^{T})$$

$$= \lambda^{2n} (\det R) (\det J) (\det J) \det(\lambda^{-1} J^{-1} (-J) + R^{T})$$

$$= \lambda^{2n} (\det R) (\det J) (\det J) \det(\lambda^{-1} J^{-1} (-J) + R^{T})$$

$$= \lambda^{2n} (\det R) (\det J) (\det J) \det(R^{T} - \lambda^{-1} I)$$

$$= \lambda^{2n} (\det R) (\det R) \det(R^{T} - \lambda^{-1} I)$$

$$= \lambda^{2n} (\det R) \det(R) P(\lambda^{-1})$$

$$P(\lambda) = \lambda^{2n} \det R P(\lambda^{-1})$$
(1)

From (1), if $P(\lambda) = 0$, then $P(1/\lambda) = 0$, which is to say, if R has λ as a eigenvalue, then

 $1/\lambda$ is also its eigenvalue! Then, diagonalized *R* would be shown as below.

$$d^{R} = \begin{pmatrix} \lambda_{1} & 0 & \cdots & 0 & 0 \\ 0 & 1/\lambda_{1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} & 0 \\ 0 & 0 & \cdots & 0 & 1/\lambda_{n} \end{pmatrix}$$

Since det $d^R = \det R$, (recall that d^R is similarity transformation of R),

$$\det R = \det d^R = 1$$