MATH 8510, Abstract Algebra I

Fall 2016

Exercises 5-1

Shuai Wei

Exercise 1. Let G be a group.

(a) (3.1.36) Prove that if G/Z(G) is cyclic, then G is abelian. (See the hint in the text.)

Proof. At first, we show $Z(G) \subseteq G$.

We already know $Z(G) \leq G$. Besies, since

 $\forall g \in G, z \in Z(G), gz = zg$ by the definition of Z(G),

$$gzg^{-1} = zgg^{-1} = z \in Z(G), \forall g \in G, z \in Z(G)$$

Thus,

$$Z(G) \subseteq G$$
.

Since G/Z(G) is cyclic, there exist $x \in G$ such that $G/Z(G) = \langle xZ(G) \rangle$.

Next we show every element of G can be written in the form $x^a z$ for some integer $a \in Z$ and some element $z \in Z(G)$.

Then $\forall g \in G$, there exists $n \in \mathbb{Z}$ such that

$$gZ(G) = (xZ(G))^n = x^n Z(G)$$

since $Z(G) \subseteq G$.

Then

$$(x^n)^{-1}g \in Z(G).$$

So there exists $z \in Z(G)$ such that

$$(x^n)^{-1}q = z$$

Thus,

$$g = x^n z$$

At last, we have $\forall g, h \in G$, there exists $m, n \in Z, y, z \in Z(G)$ such that

$$g = x^m y$$
, and $h = x^n z$,

and we have

$$gh = x^m y x^n z$$

$$= x^m x^n y z$$

$$= x^{m+n} z y$$

$$= x^{n+m} z y$$

$$= z x^{n+m} y$$

$$= z x^n x^m y$$

$$= x^n z x^m y$$

$$= hg$$

So G is abelian.

(b) (3.2.4) Prove that if |G| = pq where p and q are (not necessarily distinct) primes, then either G is abelian or $Z(G) = \{e\}$.

Proof. We first show that if H is a group and |H|=p, where p is a prime, then G is cyclic.

Let $x \in H$ and $x \neq 1$, then $|x| \neq 1$ and $|x| \mid |H|$.

So |x| = p and then langlex = H.

Thus, H is cyclic.

Since $Z(G) \leq G$, Z(G) | | |G|.

Given |G| = pq and p, q are primes, we have |Z(G)| = 1 or p, q or pq.

- (i) If |Z(G)| = 1, then $Z(G) = \{e\}$.
- (ii) If |Z(G)| = pq, we know $Z(G) \le G$ and then Z(G) = G. So $\forall h \in Z(G)$, we have $h \in G$ arbitrary and

$$hg = gh, \forall g \in G.$$

by the definition of Z(G).

Thus G is abelian.

(iii) If |Z(G)| = p, we have

$$|G/Z(G)| = \frac{|G|}{|Z(G)|} = q.$$

Since q is a prime, G/Z(G) is cyclic by the previous proof.

Thus, G is abelian according to part (a).

(iv) If |Z(G)| = q, follow the similar process as (iii), we have G is abelian. In summary, if |G| = pq where p, q are primes, then either G is abelian or Z(G) = e.

Exercise 2 (Bonus, 3.2.9). Prove Cauchy's Theorem: If G is a finite group and p is a prime number such that $p \mid |G|$, then there is an element $x \in G$ such that |x| = p. (Note that the text includes an outline of a proof in Exercise 3.2.9.)

Proof. Let

$$S = \{(x_1, x_2, ... x_p) | x_i \in G \text{ and } x_1 x_2 ... x_p = 1\}.$$

(1) At first, we show $|S| = |G|^{p-1}$.

Let $x_i, i = 1, 2, ...p - 1$ be any element of G, then $x_p = x_1^{-1} x_2^{-1} ... x_{p-1}^{-1}$. Namely, $x_i, i = 1, 2, ...p - 1$ has |G| choices each, and then x_p only has one. So $|S| = |G|^{p-1}$.

Define a relation \sim on S by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

(2) Then we show a cyclic permutation of an element of S is again an element of S.

 $\forall s = (x_1, x_2, ... x_p) \in S$, we have $x_1 x_2 ... x_p = 1$. Define

$$r: S \to S$$

$$(x_1, x_2, ...x_p) \mapsto (x_p, x_1, ...x_{p-1})$$

Since $(x_1, x_2, ...x_p) \in G$, $x_1x_2...x_p = 1$.

So $x_p x_1 x_2 \dots x_{p-1} x_p^{-1} = x_p 1 x_p^{-1}$.

Namely, $x_p x_1 ... x_{p-1} = 1$. So $(x_p, x_1, ... x_{p-1}) \in S$.

Thus, f is well-defined. Similarly, define

$$l: S \to S$$

$$(x_1, x_2, ... x_p) \mapsto (x_2, x_3 ... x_p, x_1)$$

which is well-defined.

Hence, a cyclic permutation of an element of S is again an element of S.

- (3) Next we show \sim is an equivalence relation.
 - (a) By the definition of r and l, we have $r^p = e_r$ and $l^p = e_l$. Then $\forall s \in S, r^p(s) = e_r(s) = s$. So $s \sim s$.
 - (b) $\forall s, t \in S, \text{if } s \sim t, \text{ without loss of generality, assume } s = r^n(t) \text{ for some } n \in \mathbb{Z}. \text{ Then } t = l^n(s). \text{ As a result, } t \sim s.$
 - (c) Let $s, t, v \in G$ and $r \sim s$ and s t. Without loss of generality, assume $s = r^m(t)$ and $t = l^n(v)$ for some $m, n \in \mathbb{Z}$. Then $s = r^m(l^n(v)) = r^{m-n}(v)$ if $m \ge n$ or $s = l^{n-m}(v)$ if m < n. So $s \sim v$.

Thus, \sim is an equivalence relation.

(4) Then we show an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.

Assume an equivalence class contains a single element $s=(x_1,x_2,...,x_p)$ with $x_1x_2...x_p=1$.

Then $s = l(s) = l^2(s) = \dots = l^{p-1}(s)$.

Look at the first element of $s, l(s), l^{p-1}(s)$, we have $x_1 = x_2 = \dots = x_p$.

Therefore, such a element is of the form s = (x, x, ..., x) with $x^p = 1$.

Assume an equivalence class contains the element which is of the form s=(x,x,...,x) with $x^p=1$.

Then $l^n(s) = r^n(s) = s$ for any $n \in \mathbb{Z}$.

Thus, the equivalence only contains the single element s = (x, x, ..., x).

Exercise 3 (3.3.7). Let M and N be normal subgroups of G such that G = MN. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$.

Г