Arquitetura e Organização de Computadores

Capítulo 12

Estrutura e função do processador

Estrutura da CPU

- CPU precisa:
 - Buscar instruções.
 - Interpretar instruções.
 - Obter dados.
 - Processar dados.
 - Gravar dados.

Registradores

- CPU precisa ter algum espaço de trabalho (armazenamento temporário).
- Registradores chamados.
- Número e função variam entre projetos de processador.
- Uma das principais decisões de projeto.
- Alto nível de hierarquia de memória.

Registradores visíveis ao usuário

- Uso geral.
- Dados.
- Endereços.
- Códigos condicionais.

Registradores de uso geral

- Podem ser de propósito geral verdadeiro.
- Podem ser restritos.
- Podem ser usados para dados ou endereçamento.
- Dados:
 - Acumulador.
- Endereçamento:
 - Segmento.

- Torne-os de uso geral:
 - Aumente flexibilidade e opções do programador.
 - Aumente tamanho de instrução e complexidade.
- Torne-os especializados:
 - Instruções menores (mais rápidas).
 - Menos flexibilidade.

Quantos registradores de uso geral?

- Entre 8 –32.
- Menos registradores = mais referências à memória.
- Mais não reduz as referências à memória e ocupa espaço no processador.
- Veja também RISC.

De qual tamanho?

- Grande o suficiente para manter endereço completo.
- Grande o suficiente para manter palavra completa.
- Normalmente, é possível combinar dois registradores de dados.
 - Programação C.
 - Double int a.
 - Long int a.

Registradores de código condicional

- Conjuntos de bits individuais.
 - P.e., resultado da última operação foi zero.
- Podem ser lidos (implicitamente) por programas.
 - P.e., Jump if zero.
- Não podem (normalmente) ser alterados por programas.

Registradores de controle e estado

- Contador de programa.
- Registrador de decodificação de instrução.
- Registrador de endereço de memória.
- Registrador de buffer de memória.
- Revisão: o que todos eles fazem?

Palavra de estado do programa

- Um conjunto de bits.
- Inclui flags (códigos condicionais).
- Sinal do último resultado.
- Zero.
- Carry.
- Igual.
- Overflow.
- Habilitar/desabilitar interrupção.
- Supervisor.

Modo supervisor

- Intel anel zero.
- Modo kernel.
- Permite execução de instruções privilegiadas.
- Usado pelo sistema operacional.
- Não disponível aos programas do usuário.

Outros registradores

- Podem ter registradores apontando para:
 - Blocos de controle de processo (ver S/O).
 - Vetores de interrupção (ver S/O).
- N.B. Projeto da CPU e projeto do sistema operacional são bastante interligados.

Ciclo de instrução

- Revisão.
- Stallings, Capítulo 3.

Ciclo indireto

- Pode exigir acesso à memória para obter operandos.
- Endereçamento indireto requer mais acessos à memória.
- Pode ser imaginado como subciclo de instrução adicional.

Fluxo de dados (busca de instrução)

- Depende do projeto da CPU.
- Em geral:
- Busca:
 - PC contém endereço da próxima instrução.
 - Endereço movido para MAR.
 - Endereço colocado no barramento de endereço.
 - Unidade de controle solicita leitura de memória.
 - Resultado colocado no barramento de dados, copiado para MBR, depois para IR.
 - Enquanto isso, PC incrementado em 1.

Fluxo de dados (busca de dados)

- IR é examinado.
- Se endereçamento indireto, ciclo indireto é realizado.
 - N bits da extrema direita do MBR transferidos para MAR.
 - Unidade de controle solicita leitura de memória.
 - Resultado (endereço do operando) movido para MBR.

Fluxo de dados (execução)

- Pode tomar muitas formas.
- Depende da instrução sendo executada.
- Pode incluir:
 - Leitura/escrita da memória.
 - Entrada/saída.
 - Transferências de registradores.
 - Operações da ALU.

Fluxo de dados (interrupção)

- Simples.
- Previsível.
- PC atual salvo para permitir retomada após interrupção.
- Conteúdo do PC copiado para MBR.
- Local especial da memória (p.e., ponteiro de pilha) carregado no MAR.
- MBR gravado na memória.
- PC carregado com endereço da rotina de tratamento de interrupção.
- Próxima instrução (primeira do tratador de interrupção) pode ser obtida.

Busca antecipada (prefetch)

- Busca acessando memória principal.
- Execução normalmente não acessa memória principal.
- Pode buscar próxima instrução durante execução da instrução atual.
- Chamada busca antecipada da instrução.

Desempenho melhorado

- Mas, não dobrado:
 - Busca normalmente mais curta que a execução.
 - Busca antecipada de mais de uma instrução?
 - Qualquer salto ou desvio significa que as instruções com busca antecipada não são as instruções solicitadas.
- Acrescente mais estágios para melhorar o desempenho.

Pipelining

- Buscar instrução.
- Decodificar instrução.
- Calcular operandos (ou seja, EAs).
- Buscar operandos.
- Executar instruções.
- Escrever resultado.
- Sobrepor estas operações.

Efeito de desvio condicional na operação do pipeline na instrução

			Tempo						Pe: ▼	nalidade	por des	vio >		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instrução 1	FI	DI	со	FO	EI	WO								
Instrução 2		FI	DI	co	F0	EI	wo							
Instrução 3			FI	DI	со	F0	EI	WO						
Instrução 4				FI	DI	со	FO							
Instrução 5					FI	DI	CO							
Instrução 6						FI	DI							
Instrução 7							FI							
Instrução 15								FI	DI	co	F0	EI	WO	
Instrução 16									FI	DI	co	F0	EI	wo

Hazards do pipeline

- Pipeline, ou alguma parte do pipeline, precisa parar.
- Também conhecida como bolha de pipeline.
- Tipos de hazards:
 - Recursos.
 - Dados.
 - Controle.

Hazards de recursos

- Duas (ou mais) instruções no pipeline precisam do mesmo recurso.
- Executados em série, e não em paralelo, parâmetro parte do pipeline.
- Também chamado hazard estrutural.
- P.e., considere pipeline simplificado em 5 estágios.
 - Cada estágio usa um ciclo de clock.
- No caso ideal, cada nova instrução entra no pipeline a cada ciclo de clock.
- Suponha que a memória principal tenha única porta.
- Considere buscas de instrução e leituras e escritas de dados uma por vez.
- Ignore a cache.
- Leitura ou escrita de operando n\u00e3o podem ser realizadas em paralelo com busca de instruc\u00e3o.
- Estágio de busca de instrução fica ocioso por um ciclo buscando I3.
- P.e., várias instruções prontas para entrar na fase de execução de instrução.
- Única ALU.
- Uma solução: aumentar recursos disponíveis.
 - Múltiplas portas da memória principal.
 - Múltiplas ALUs.

Hazards de dados

- Conflito no acesso de um local de operando.
- Duas instruções a serem executadas em sequência.
- Ambas acessam uma memória em particular ou operando do registrador.
- Se na sequência estrita, não ocorre problema.
- Se em um pipeline, valor do operando poderia ser atualizado para produzir resultado diferente da execução sequencial estrita.
- P.e., sequência de instruções de máquina do x86:
- ADD EAX, EBX /* EAX = EAX + EBX
- SUB ECX, EAX /* ECX = ECX EAX
- Instrução ADD não atualiza EAX até o fim do estágio 5, no ciclo de clock 5.
- Instrução SUB precisa do valor no início do seu estágio 2, no ciclo de clock 4.
- Pipeline precisa parar por dois ciclos de clock.
- Sem hardware especial e algoritmos de impedimento específicos, resulta em uso ineficaz do pipeline.

Exemplo de hazard de dados

Tipos de hazard de dados

- Leitura após escrita (RAW), ou dependência verdadeira:
 - Uma instrução modifica um registrador ou local de memória.
 - Instrução seguinte lê dados nesse local.
 - Hazard se leitura ocorre antes do término da escrita.
- Escrita após leitura (WAR), ou antidependência:
 - Uma instrução lê um registrador ou local da memória.
 - Instrução seguinte escreve no local.
 - Hazard se escrita termina antes que ocorra a leitura.
- Escrita após escrita (WAW), ou dependência de saída:
 - Duas instruções escrevem no mesmo local.
 - Hazard se a escrita ocorre na ordem contrária à sequência intencionada.
- Exemplo anterior é um hazard RAW.
- Ver também Capítulo 14.

Exemplo de hazard de recursos

(a) Pipeline de cinco estágios, caso ideal

			Cidio de clock							
		1	2:	3	4	5	6	7	8	9
	11	FI	DI	FO	EI	wo				
Instrução	12		FI	DI	FO	EI	WO			
lnstr	13			0doso	FI	DI	FO	EI	wo	
	14					FI	DI	FO	EI	wo

(b) Operando de origem de l1 na memória

Hazard de controle

- Também conhecido como hazard de desvio.
- Pipeline toma decisão errada sobre previsão de desvio.
- Traz para o pipeline instruções que precisam ser descartadas subsequentemente.
- Lidando com desvios:
 - Múltiplos fluxos.
 - Busca antecipada do alvo do desvio.
 - Buffer de laço de repetição.
 - Previsão de desvio.
 - Desvio atrasado.

Fluxos múltiplos

- Têm dois pipelines.
- Busca antecipada de cada desvio em um pipeline separado.
- Usa pipeline apropriado.
- Ocasiona disputa por barramento e registrador.
- Múltiplos desvios exigem um fluxo adicional.

Busca antecipada do alvo do desvio

- Alvo do desvio buscado antecipadamente além das instruções após o desvio.
- Mantém alvo até que o desvio seja executado.
- Usada pelo IBM 360/91.

Buffer de laço de repetição

- Memória muito rápida.
- Mantido pelo estágio de busca do pipeline.
- Verifica buffer antes de buscar da memória.
- Muito bom para laços ou saltos pequenos.
- Compare com cache.
- Usado pelo CRAY-1.

Endereço do desvio Buffer de laço (256 bytes) Bits de endereço mais significativos comparados para determinar um acerto

Previsão de desvio

- Previsão nunca tomada:
 - Assume que salto não acontecerá.
 - Sempre busca próxima instrução.
 - 68020 & VAX 11/780.
 - VAX não fará busca antecipada após desvio se resultar em falta de página (projeto do S/O versus CPU).
- Previsão sempre tomada:
 - Assume que salto acontecerá.
 - Sempre busca instrução alvo.

- Previsão por opcode:
 - Algumas instruções são mais prováveis de resultar em um salto do que outras.
 - Pode chegar até 75% de sucesso.
- Chave tomada/não tomada:
 - Baseada no histórico de desvio.
 - Boa para laços.
 - Refinada pelo histórico de desvio com dois níveis ou baseado em correlação.
- Baseado em correlação:
 - Nos desvios de laço, o histórico é uma boa forma de previsão.
 - Em estruturas mais complexas, a direção do desvio é correlacionada com a direção de desvios condicionados.
 - Também usa histórico de desvios recentes.

- Desvio atrasado:
 - Não salta até que você realmente precise.
 - Reorganiza instruções.

Pipeline de Intel 80486

- Leitura:
 - Da cache ou da memória externa.
 - Colocadas em um de 2 buffers de busca antecipada de 16 bits.
 - Enche buffer com novos dados quando antigos são consumidos.
 - Em média, 5 instruções lidas por carga.
 - Independente de outros estágios para manter buffers cheios.
- Estágio de decodificação 1:
 - *Opcode* e informação de modo de endereçamento.
 - No máximo 3 primeiros bytes da instrução.
 - Pode direcionar estágio D2 para obter restante da instrução.
- Estágio de decodificação 2:
 - Expande opcode para sinais de controle.
 - Cálculo de modos de endereçamento complexos.
- Execução:
 - Operações da ALU, acesso a cache, atualização de registrador.
- Escrita:
 - Atualiza registradores e flags.
 - Resultados enviados à cache e buffers de escrita da interface de barramento.

Exemplos de pipeline da instrução do 80486

Leitura	D1	D2	EX	Escrita			MOV Reg1, Mem1
	Leitura	D1	D2	EX	Escrita		MOV Reg1, Reg2
		Leitura	D1	D2	ĐΧ	Escrita	MOV Mem2, Reg1

(a) Nenhum atraso para carregar dados no pipeline

Leitura	D1	D2	ĐΧ	Escrita		MOV Reg1, Mem1
	Leitura	D1		D2	EX	MOV Reg2, (Reg1)

(b) Atraso para carregar ponteiro

Leitura	D1	D2	ĐΧ	Escrita				CMP Reg1, Imm
	Leitura	D1	D2	EX				Jcc Target
				Leitura	D1	D2	ĐΧ	Target

(c) Temporização da instrução de desvio

Registradores do Pentium 4

(a) Integer Uni

Type	Number	Length (bits)	Purpose
General	8	32	General-purpose user registers
Segment	6	16	Contain segment selectors
Flags	1	32	Status and control bits
Instruction Pointer	1	32	Instruction pointer

(b) Floating-Point Unit

Type	Number	Length (bits)	Purpose
Numeric	8	80	Hold floating-point numbers
Control	1	16	Control bits
Status	1	16	Status bits
Tag Word	ı	16	Specifies contents of numeric registers
Instruction Pointer	ī	+8	Points to instruction interrupted by exception
Data Pointer	ī	48	Points to operand interrupted by exception

Registrador EFLAGS

ID = flag de identificação VIP

DF = flag direcional

VIF AC VM

RF NT = flag tarefa aninhada IOPL = de privilégio de EIS

flag de overfilow

Registradores de controle de x86

OSKSAVE — habilita bit XSAVE

SMXE — habilita bit XSAVE

SMXE — habilita extensões sõn modo de segurança

VMXE — habilita extensões sõn modo de segurança

VMXE — habilita extensões de māquina virtual

OSKMMEKCPT — Suporta excessões SIMD FP não mascaradas

OSKXIX — SUDORT EKSAVE, KSA TOR

PCE — habilita paginação global

MCE — habilita paginação global

MCE — habilita paginação de máquina

PAE — extensões de ramanho de página

DE — extensões de depuração

TSD — desabilitar time stamp

PVI — Interrupgões virtuals no modo protegido

VME — modo de extensão virtual ce 8086

PCD — desabilita cache de página
PWI — escrita transparente em nível de página
PG — paginação
CD — desabilita cache
NW — not write triough
AM — máscara de a inhamento
WF — proteção de escrita
NE — erro ramérico
EE — troca de cache
EM — emulação
EM — emulação
MF — monitor do coprocesador
PE — habilitação de proteção

Mapeamento de registradores MMX

- MMX usa vários tipos de dados de 64 bits.
- Usa campos de endereço de registrador de 3 bits.
 - 8 registradores.
- Nenhum registrador específico do MMX.
 - 64 bits de baixa ordem dos registradores de ponto flutuante existentes formam 8 registradores MMX.

Mapeamento de registradores MMX para registradores de ponto flutuante Marcação de ponto flutuante Registradores de ponto flutuante

MM1 MM0 Registradores MMX

Processamento de interrupção no Pentium

- Interrupções:
 - Mascaráveis.
 - Não mascaráveis.
- Exceções:
 - Detectadas pelo processador.
 - Programadas.
- Tabelas de vetores de interrupções:
 - Cada tipo de interrupção recebe um número.
 - Indexam para tabela de vetor.
 - 256 vetores de interrupção de 32 bits.
- 5 classes de prioridade.

Atributos do ARM

- RISC.
- Array moderado de registradores uniformes.
 - Mais do que a maioria dos CISC, menos que muitos RISC.
- Modelo carregar/armazenar:
 - Operações executam com operandos nos registradores.
- Instrução uniforme de tamanho fixo:
 - 32 bits para conjunto padrão e 16 bits para Thumb.
- Deslocamento ou rotação podem pré-processar registradores de origem:
 - Separa unidades de ALU e deslocamento.
- Pequeno número de modos de endereçamento:
 - Todos os endereços de carga/armazenamento de registradores e campos da instrução.
 - Nenhum endereçamento indireto ou indexado envolvendo valores na memória.
- Endereçamento com autoincremento e autodecremento:
 - Melhora operações de laço.
- Execução condicional de instruções minimiza desvios condicionais:
 - Limpeza do pipeline reduzida.

Organização simplificada do ARM

CPSR = registrador de estado de programa corrente (do inglês current program status register)

Organização do processador ARM

- Muitas variações dependem da versão do ARM.
- Dados trocados entre processador e memória através de barramento de dados.
- Item de dados (load/store) ou instrução (leitura).
- Instruções passam por decodificador antes da execução.
- Pipeline e geração de sinal de controle na unidade de controle.
- Dados vão para arquivo de registrador:
 - Conjunto de registradores de 32 bits.
 - Um byte ou meia palavra tratados como complemento de dois estendidos com sinal até 32 bits.
- Normalmente dois registradores de origem e um resultado.
- Rotação ou deslocamento antes da ALU.

Modos do processador ARM

- Usuário.
- Privilegiado.
 - 6 modos.
 - SO pode ajustar software de sistemas utiliza.
 - Alguns registradores dedicados a cada modo privilegiado.
 - Mudanças de contexto mais rápidas.
- Exceção:
 - 5 dos modos privilegiados.
 - Entrada nas exceções dadas.
 - Substitui alguns registradores para registradores do usuário.
 - Evita corromper informações.

Modos privilegiados

- Modo do sistema:
 - Sem exceção
 - Usa mesmos registradores do modo usuário.
 - Pode ser interrompido por...
- Modo supervisor:
 - SO.
 - Interrupção de software usada para invocar serviços do sistema operacional.
- Modo de abortamento:
 - Faltas de memória.
- Modo indefinido:
 - Tenta instrução que não é aceita pelo núcleo principal nem por um dos coprocessadores.
- Modo de interrupção rápido:
 - Sinal de interrupção da fonte de interrupção rápida designada.
 - Interrupção rápida não pode ser interrompida.
 - Pode interromper interrupção normal.
- Modo de interrupção.
- Sinal de interrupção de qualquer outra fonte de interrupção.

Organização dos registradores do ARM

- 37 registradores de 32 bits.
- 31 registradores de uso geral.
 - Alguns têm propósitos especiais.
 - P.e., contadores de programa.
- Seis registradores de *status* de programa.
- Registradores em bancos parcialmente sobrepostos.
 - Modo processador determina banco.
- 16 registradores numerados e um ou dois registradores de *status* de programa visíveis.

Organização dos registradores do ARM

			Modos									
	Modos privilegiados											
		Modos de exceção										
Usuário	Sistema	Supervisor	Abortamento	Indefinido	Interrupção	Interrupção rápida						
RO	R0	R0	R0	RO	RO	RO						
R1	R1	R1	R1	R1	R1	R1						
R2	R2	R2	R2	R2	R2	R2						
R3	R3	R3	R3	R3	R3	R3						
R4	R4	R4	R4	R4	R4	R4						
R5	R5	R5	R5	R5	R5	R5						
R6	R6	R6	R6	R6	R6	R6						
R7	R7	R7	R7	R7	R7	R7						
R8	R8	R8	R8	R8	R8	R8_fiq						
R9	R9	R9	R9	R9	R9	R9_fiq						
R10	R10	R10	R10	R10	R10	R10_fiq						
R11	R11	R11	R11	R11	R11	R11_fiq						
R12	R12	R12	R12	R12	R12	R12_fiq						
R13(5P)	R13(5P)	R13_5WL	R13_dbtR	13_und	R13_frq	R13_flq						
R14(LR)	R14(LR)	R14_svc	R14_abt	R14_und	R14_irq	R14_fiq						
R15 (PC)	R15(PC)	R15(PC)	R15(PC)	R15(PC)	R15(PC)	R15(PC)						
CPSR	CPSR	CPSR	CPSR	CPSR	CPSR	CPSR						
		SPSR swc	SPSR abt	SPSR und	SPSR irg	SPSR fig						

Sombreado indica que o registrador normal usado pelo modo usuário ou de sistema foi substituído por um registrador específico para modo de exceção.

SP = ponteiro de pilha

LR = registrador de ligação

PC = contador de programa

CPSR = registrador de estado de programa corren:

Registradores de propósito geral

- R13- normalmente ponteiro de pilha (SP).
 - Cada modo de exceção tem seu próprio R13.
- R14 registrador de ligação (LR).
 - Endereço de retorno da sub-rotina e retornos do modo de exceção.
- R15 contador de programa.

CPSR

- CPSR processa registrador de estado.
 - Modos de exceção têm SPSR dedicado.
- 16 bits mais significativos flags do usuário.
 - Códigos de condição (N,Z,C,V).
 - Q- estouro ou saturação em instruções SMID.
 - J– instruções Jazelle (8 bits).
 - GE[3:0] SMID usam bits [19:16] como flag de maior ou igual.
- 16 bits menos significativos contêm flags para modo privilegiado.
 - E- endian.
 - Desabilitar interrupção.
 - T- instrução normal ou Thumb.
 - Modo.

Formato de CPSR e SPSR do ARM

Processamento de interrupção (exceção) ARM

- Mais de uma exceção permitida.
- Sete tipos.
- Execução forçada por vetores de exceção.
- Múltiplas exceções tratadas em ordem de prioridade.
- Processador para a execução após instrução atual.
- Estado do processador preservado no SPSR para exceção:
 - Endereço da instrução a executar colocado no registrador de ligação.
 - Retorna movendo SPSR p/ CPSR e R14 p/ PC.