CS 4510

Spring 2015

Test 2 Practice questions

Notes:

- Please write neat and legible answers.
- You can use any of the theorems/facts/lemmas that we covered in *class* without re-proving them unless explicitly stated otherwise. You can also cite homework problems and test practice problems from this course.
- Please state clearly any assumptions you make.
- Topics:
 - Context-free grammars: simplifications, normal forms such as CNF, ambiguity, special forms such as linear grammars.
 - Push-down automata.
 - Pumping lemma for CFLs.
 - Closure properties of CFLs.
 - Algorithms involving CFGs.
- 1. Circle all the violations that make this grammar one that is not in Chomsky-Normal Form.

$$S \rightarrow bB$$

$$A \rightarrow AS \mid \epsilon$$

2. Describe an algorithm to decide if a given CFG G generates the empty string.

Solution: We saw in class a CFG simplification algorithm to remove all ϵ -rules from G and produce a CFG G' such that:

- if $\epsilon \notin L(G)$ then G' has no ϵ -rules, and
- if $\epsilon \in L(G)$ then G' has only the following ϵ -rule: $S' \to \epsilon$.

Use this algorithm to produce the grammar G' and test to see if there is a rule of the form $S' \to \epsilon$.

3. A linear grammar is a context-free grammar in which each rule is in one of the four forms below:

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow Ba$$

$$A \rightarrow \epsilon$$

where A, B are variables and a is a terminal symbol. That is, the right hand side of each rule has at most one variable in it.

Answer TRUE/FALSE and justify your answer: A linear grammar is unambiguous.

Solution: FALSE. The grammar G below is a linear grammar but it is ambiguous.

4. Answer TRUE/FALSE with a brief justification: Every regular language is generated by an unambiguous context-free grammar.

Solution: TRUE. Let L be a regular language. Let M be a DFA for L. On input $w \in L$, there is a unique path in the DFA from the start state to a final accepting state labeled by the symbols in w. Let G be the CFG constructed from M as shown in class/text. The derivation for w corresponds to the accepting computation path in the DFA and thus is unique.

5. Answer TRUE/FALSE with a brief justification: Every context-free language without ϵ can be generated by a context-free grammar in which every rule is of the form:

$$\begin{array}{ccc} A & \rightarrow & BCD \\ A & \rightarrow & a \end{array}$$

where a is an alphabet symbol and A,B,C, and D are variables.

Solution: FALSE. Such a grammar can generate only odd length strings.

6. What is the language generated by the CFG below. Informally justify your answer.

$$S \rightarrow ASB \mid AB$$

$$A \rightarrow 0$$

$$B \rightarrow 11$$

Solution: $L = \{0^k 1^{2k} \mid k \geq 1\}.$

The second S-rule generates $011 \in L$. Assuming inductively that the variable S in the first S-rule generates a string in L, the first S-rule generates the "next" string in L. That is, all strings generated by G are in L.

2

Let $w = 0^k 1^{2k}$ be a string in L. If k = 1 then w is generated as follows:

$$S \Rightarrow AB \Rightarrow 0B \Rightarrow 011.$$

Let k > 1. Then, w is generated as follows:

$$S \Rightarrow ASB \Rightarrow 0SB \Rightarrow \cdots \Rightarrow 00^{k-1}1^{2k-2}B \Rightarrow 0^k1^{2k}$$
.

7. Construct a context-free grammar for the language: $\{a^nb^{2m}c^md^{2n}\mid n,m>0\}$. Briefly justify your construction.

Solution:

$$S \rightarrow aAdd \mid B$$

$$A \rightarrow aAdd \mid B$$

$$B \rightarrow bbBc \mid bbc$$

- 8. A variable A is said to be *terminating* if there is a rule of the form $A \to \alpha$ such that either α is a string of terminals or all the variables in α are terminating variables.
 - (a) What are the terminating variables in the grammar below? (The alphabet is $\{a\}$.)

$$S \rightarrow BD \mid CS \mid CC$$

$$A \rightarrow AC \mid aF$$

$$B \rightarrow aB \mid aA$$

$$C \rightarrow DA \mid a$$

$$D \rightarrow aD \mid E$$

$$E \rightarrow aE \mid CE \mid D$$

$$F \rightarrow aB \mid CSB$$

- (b) Delete from the grammar above all variables that are not terminating and all rules that involve these variables. What is the language generated by this grammar?
- 9. Show that the language $\{a^ib^jc^id^j\mid i,j\geq 1\}$ is not context-free using the pumping lemma.

Solution: Let $s = a^p b^p c^p d^p$ where p is the pumping lemma constant.

10. Construct a push-down automaton for the language: $\{0^i 1^j \mid i \leq j \leq 3i\}$.

Solution: For every 0 in the input, nondeterministically push one or two or three 1's onto the stack. For every 1 in the input, match it with a 1 in the stack.

11. Construct a PDA for the language $\{x^R \# y \mid x, y \in \{0, 1\}^* \text{ and } x \text{ is a substring of } y\}$.

A string $x = x_1 x_2 \cdots x_k$ is a substring of a string $y = y_1 y_2 \cdots y_n$, where $x_i, y_i \in \Sigma$, if there exist $1 \leq j \leq n - k + 1$ such that $y_{j+p-1} = x_p$ for $1 \leq p \leq k$.

Solution: Read x and push it onto the stack. Guess the position j in y where the string x occurs as a substring. From this position onwards, read a symbol in y and match it with the stack symbol.

12. Show that the complement of the the context-free language $\{a^ib^ic^j\mid i,j\geq 0\}$ is also context-free.

Solution: The complement is the union of the two context-free languages below:

- The set of all strings in which that characters a, b, c are not in order.
- The set of all strings in $a^*b^*c^*$ in which the number of a's and b's are different.

The first language is regular and hence context free. The second language is context-free. A PDA for this language stacks all the a's, pops an a for each b in the input, rejects if the stack becomes empty when the b's are exhausted, ignores the c's.

13. A restricted pushdown automaton is defined as a pushdown automaton with the restriction that the stack alphabet has exactly one symbol, say A other than the stack bottom marker \$. That is, the stack in a pushdown automaton is always of the form $A^n\$$ for some $n \ge 0$.

Construct a restricted pushdown automaton for the following languages:

- (a) $\{0^n 1^n \mid n \ge 0\}$.
- (b) $\{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}.$