MATH 375 Handout # 5

Higher Order Linear Differential Equations

- 1. In each case, determine whether the set S is linearly independent on the interval $(-\infty, \infty)$. Use the Wronskian test or the definition.
 - a) $\mathbf{S} = \{x^2 + x, x^2 + 1, x^2 1\}$
 - b) $\mathbf{S} = \{\cos(2x), -3, 2\sin^2 x\}$
 - c) $S = \{1, t, e^t\}$
- 2. Find the general solution of the following differential equations
 - a) $y^{(4)} 17y'' + 16y = 0$
 - b) $y^{(3)} 64y = 0$
 - c) $y^{(4)} 81y = 0$
 - d) $y^{(4)} + 12y'' + 11y = 0$
 - e) $u^{(5)} 10u^{(3)} + 9u' = 0$
 - f) $y^{(3)} + 6y'' + 12y' + 8y = 0$
- 3. Find the general solution to each of the following differential equations. The primes denote derivatives with respect to t, and $D \equiv \frac{d}{dt}$.
 - a) $\frac{d^3x}{dt^3} 6\frac{d^2x}{dt^2} + 11\frac{dx}{dt} 6x = 0$
- b) x''' 6x'' + 2x' + 36x = 0
- c) $(D^4 + 8D^3 + 24D^2 + 32D + 16)x = 0$ d) $(D^5 D^4 2D^3 + 2D^2 + D 1)x = 0$
- e) $D^3(D^2 + 6D + 25)(D^4 16)x = 0$ f) $(D^4 16)^3x = 0$
- 4. According to the method of undetermined coefficients, find the form of the particular solution for the following equations. Do not compute the coefficients.
 - a) $y^{(4)} 17y'' + 16y = x \cos x$
 - b) $y^{(3)} 64y = 7e^{4x}$
 - c) $y^{(4)} 81y = x^2e^{2x} + 6\cos(3x)$
 - d) $y^{(4)} + 12y'' + 11y = 3x^2 + e^x$
 - e) $y^{(5)} 10y^{(3)} + 9y' = 3x^2 + e^x$
 - $y^{(3)} + 6y'' + 12y' + 8y = xe^{-2x}$
- 5. Find a homogeneous linear differential equation with constant coefficients whose characteristic equation has the roots:
 - b) $\{7, 7, 0, 0, 0, 2, 5i, 2, 5i, 2, 5i, 2, 5i\}$ a) $\{1, i, -i\}$
- 6. Find the homogeneous linear differential equation with constant coefficients of the minimal order which has the following solution:
 - a) $x \cos x$ b) $x^2 e^{2x}$ c) $x^5 + e^{5x}$