Alexander N. Gorban Balázs Kégl Donald C. Wunsch Andrei Zinovyev (Eds.)

Principal Manifolds for Data Visualization and Dimension Reduction

With 82 Figures and 22 Tables

Contents

	-	ments and Applications of Nonlinear	
	-	Component Analysis – a Review	
Uwe	Kruge	r, Junping Zhang, and Lei Xie	1
1.1	Introd	uction	
1.2	PCA I	Preliminaries	3
1.3	Nonlin	nearity Test for PCA Models	6
	1.3.1	Assumptions	7
	1.3.2	Disjunct Regions	7
	1.3.3	Confidence Limits for Correlation Matrix	8
	1.3.4	Accuracy Bounds	10
	1.3.5	Summary of the Nonlinearity Test	11
	1.3.6	Example Studies	12
1.4	Nonlin	near PCA Extensions	15
	1.4.1	Principal Curves and Manifolds	16
	1.4.2	Neural Network Approaches	24
	1.4.3	Kernel PCA	29
1.5	Analys	sis of Existing Work	31
	1.5.1	Computational Issues	
	1.5.2	Generalization of Linear PCA?	33
	1.5.3	Roadmap for Future Developments (Basics and Beyond)	37
1.6	Conclu	uding Summary	38
Refe	rences		39
2 N	online	ar Principal Component Analysis:	
		etwork Models and Applications	
		cholz, Martin Fraunholz, and Joachim Selbig	44
2.1		action	
2.2		ard Nonlinear PCA	
2.3		chical Nonlinear PCA	
4.0		The Hierarchical Error Function	-
2.4		ar PCA	
4.4	Oncur	all OA	OΤ

XIV	Contents
~ X T A	COHOCHO

2.5	Inverse	e Model of Nonlinear PCA	52
	2.5.1	The Inverse Network Model	53
	2.5.2	NLPCA Models Applied to Circular Data	55
	2.5.3	Inverse NLPCA for Missing Data	56
	2.5.4	Missing Data Estimation	57
2.6		eations	58
2.0	2.6.1	Application of Hierarchical NLPCA	59
	2.6.2	Metabolite Data Analysis	60
	2.6.3	Gene Expression Analysis	62
2.7		ary	64
		tury	65
1010	TCHCCB		
3 L	earnin	g Nonlinear Principal Manifolds	
		rganising Maps	
Huj	un Yin		68
3.1	Introd	luction	68
3.2	Biolog	gical Background	69
	3.2.1	Lateral Inhibition and Hebbian Learning	69
	3.2.2	From Von Marsburg and Willshaw's Model	
		to Kohonen's SOM	72
	3.2.3	The SOM Algorithm	75
3.3	Theor	ries	76
	3.3.1	Convergence and Cost Functions	76
	3.3.2	Topological Ordering Measures	79
3.4	SOM	s, Multidimensional Scaling and Principal Manifolds	80
	3.4.1	Multidimensional Scaling	80
	3.4.2	Principal Manifolds	82
	3.4.3	Visualisation Induced SOM (ViSOM)	84
3.5	Exan	ples	86
	3.5.1	Data Visualisation	87
	3.5.2	Document Organisation and Content Management	88
Ref	erences		91
		Maps and Nets for Approximating Principal	
		s and Their Application to Microarray Data	
	ualiza		
	xander	N. Gorban and Andrei Y. Zinovyev	
4.1		duction and Overview	96
	4.1.1	Fréchet Mean and Principal Objects:	
		K-Means, PCA, what else?	96
	4.1.2	Principal Manifolds	98
	4.1.3	Elastic Functional and Elastic Nets	
4.2		mization of Elastic Nets for Data Approximation	
	4.2.1	Basic Optimization Algorithm	103

		Contents	ΧV
	4.2.2	Missing Data Values	105
	4.2.3	Adaptive Strategies	
4.3		c Maps	
1.0		Piecewise Linear Manifolds and Data Projectors	
	4.3.2	Iterative Data Approximation	
4.4		pal Manifold as Elastic Membrane	
4.5		od Implementation	
$\frac{4.5}{4.6}$		ples	
4.0		Test Examples	
		Modeling Molecular Surfaces	
17		Visualization of Microarray Data	
4.7		sion	
Reie	erences		127
5 T	opolog	gy-Preserving Mappings for Data Visualisation	
		$ar{n}a$, Wesam Barbakh, and Colin Fyfe \dots	131
5.1		luction	
5.2	Cluste	ering Techniques	$\dots 132$
	5.2.1	K-Means	
	5.2.2	K-Harmonic Means	
	5.2.3	Neural Gas	135
	5.2.4	Weighted K-Means	
	5.2.5	The Inverse Weighted K-Means	
5.3		ogy Preserving Mappings	
0.0	5.3.1	Generative Topographic Map	
	5.3.2	Topographic Product of Experts ToPoE	
	5.3.3	The Harmonic Topograpic Map	
	5.3.4	Topographic Neural Gas	
	5.3.5	Inverse-Weighted K -Means Topology-Preserving Map \dots	
5.4		iments	
0.4	5.4.1	Projections in Latent Space	
	5.4.2	Responsibilities	
	5.4.2	U-matrix, Hit Histograms and Distance Matrix	
	5.4.4	The Quality of The Map	
5.5		usions	
rere	erences		143
6 T	he Ite	rative Extraction Approach to Clustering	
		in	151
6.1		luction	
6.2		ering Entity-to-feature Data	
	6.2.1	Principal Component Analysis	
	6.2.2	Additive Clustering Model and ITEX	
	6.2.3	Overlapping and Fuzzy Clustering Case	
	6.2.4	K-Means and iK-Means Clustering	
	·		

6.3	TEX Structuring and Clustering for Similarity Data	
	5.3.1 Similarity Clustering: a Review	
	3.3.2 The Additive Structuring Model and ITEX	
	3.3.3 Additive Clustering Model	165
	3.3.4 Approximate Partitioning	166
	3.3.5 One Cluster Clustering	168
	6.3.6 Some Applications	171
Refe	ences	174
7 R	presenting Complex Data Using Localized Principal	
Cor	ponents with Application to Astronomical Data	
Joch	n Einbeck, Ludger Evers, and Coryn Bailer-Jones	178
7.1	Introduction	178
7.2	Localized Principal Component Analysis	181
	7.2.1 Cluster-wise PCA	181
	7.2.2 Principal Curves	185
	7.2.3 Further Approaches	188
7.3	Combining Principal Curves and Regression	189
	7.3.1 Principal Component Regression and its Shortcomings	189
	7.3.2 The Generalization to Principal Curves	190
	7.3.3 Using Directions Other than the Local Principal	
	Components	192
	7.3.4 A Simple Example	
7.4	Application to the Gaia Survey Mission	194
	7.4.1 The Astrophysical Data	194
	7.4.2 Principal Manifold Based Approach	196
7.5	Conclusion	
Ref	rences	199
8 A	uto-Associative Models, Nonlinear Principal Component	
	lysis, Manifolds and Projection Pursuit	
	hane Girard and Serge Iovleff	
8.1	Introduction	
8.2	Auto-Associative Models	
	8.2.1 Approximation by Manifolds	
	8.2.2 A Projection Pursuit Algorithm	
	8.2.3 Theoretical Results	
8.3	Examples	. 207
	8.3.1 Linear Auto-Associative Models and PCA	
	8.3.2 Additive Auto-Associative Models and Neural Networks	
8.4	Implementation Aspects	. 209
	8.4.1 Estimation of the Regression Functions	
	8.4.2 Computation of Principal Directions	. 211
8.5	Illustration on Real and Simulated Data	
Ref	rences	.216

9 B	$\mathbf{e}\mathbf{yond}$	The Concept of Manifolds: Principal Trees,	
		aps, and Elastic Cubic Complexes	
Alex	ander .	N. Gorban, Neil R. Sumner, and Andrei Y. Zinovyev	. 219
9.1	Introd	luction and Overview	. 219
	9.1.1	Elastic Principal Graphs	. 22:
9.2		nization of Elastic Graphs for Data	
	Appro	eximation	. 222
	9.2.1	Elastic Functional Optimization	. 222
	9.2.2	Optimal Application of Graph Grammars	. 223
	9.2.3	Factorization and Transformation of Factors	. 224
9.3	Princi	pal Trees (Branching Principal Curves)	. 22
	9.3.1	Simple Graph Grammar	
		("Add a Node", "Bisect an Edge")	. 225
	9.3.2	Visualization of Data Using "Metro Map"	
		Two-Dimensional Tree Layout	. 226
	9.3.3	Example of Principal Cubic Complex: Product	
		of Principal Trees	. 227
9.4		sis of the Universal 7-Cluster Structure	
	of Bac	eterial Genomes	
	9.4.1		
	9.4.2		
9.5	Visua	lization of Microarray Data	
	9.5.1		
	9.5.2	Principal Tree of Human Tissues	
9.6		ssion	
Refe	rences		. 235
10 T	Diffusi	on Maps - a Probabilistic Interpretation for Spectral	
		ng and Clustering Algorithms	
		er, Stephane Lafon, Ronald Coifman,	
		s G. Kevrekidis	238
		luction	
		ion Distances and Diffusion Maps	
		Asymptotics of the Diffusion Map	
10.3		ral Embedding of Low Dimensional Manifolds	
		ral Clustering of a Mixture of Gaussians	
	_	ary and Discussion	
		unds for Diffusion, Discrepancy and Fill Distance	
Met			
		$ extit{Damelin} \ldots$	
		luction	261
11.2		y, Discrepancy, Distance and Integration	
	on Me	easurable Sets in Euclidean Space	262

XVIII Contents

11.3 Set Learning via Normalized Laplacian Dimension Reduction	
and Diffusion Distance	. 266
11.4 Main Result: Bounds for Discrepancy, Diffusion	
and Fill Distance Metrics	. 268
References	. 269
12 Geometric Optimization Methods for the Analysis	
of Gene Expression Data	
Michel Journée, Andrew E. Teschendorff, Pierre-Antoine Absil,	
Simon Tavaré, and Rodolphe Sepulchre	. 271
12.1 Introduction	. 271
12.2 ICA as a Geometric Optimization Problem	
12.3 Contrast Functions	
12.3.1 Mutual Information	
12.3.2 \mathcal{F} -Correlation	
12.3.3 Non-Gaussianity	
12.3.4 Joint Diagonalization of Cumulant Matrices	
12.4 Matrix Manifolds for ICA	
12.5 Optimization Algorithms	
12.5.1 Line-Search Algorithms	
12.5.2 FastICA	
12.5.3 Jacobi Rotations	
12.6 Analysis of Gene Expression Data by ICA	
12.6.1 Some Issues About the Application of ICA	. 284
12.6.2 Evaluation of the Biological Relevance of the Expression	207
Modes	401
Data Set	288
12.7 Conclusion	
References	
200200000000000000000000000000000000000	200
13 Dimensionality Reduction and Microarray Data	
David A. Elizondo, Benjamin N. Passow, Ralph Birkenhead,	
and Andreas Huemer	
13.1 Introduction	
13.2 Background	
13.2.1 Microarray Data	
13.2.2 Methods for Dimension Reduction	
13.2.3 Linear Separability	
13.3 Comparison Procedure	
13.3.1 Data Sets	
13.3.3 Perceptron Models	
13.4 Results	
13.5 Conclusions	
References	

14 PCA and K-Means Decipher Genome
Alexander N. Gorban and Andrei Y. Zinovyev
14.1 Introduction
14.2 Required Materials
14.3 Genomic Sequence
14.3.1 Background
14.3.2 Sequences for the Analysis
14.4 Converting Text to a Numerical Table
14.5 Data Visualization
14.5.1 Visualization
14.5.2 Understanding Plots
14.6 Clustering and Visualizing Results
14.7 Task List and Further Information
14.8 Conclusion
References
Color Plates

XIX

Contents