

Towards Transparent AI:

Understanding Text-Based Model Predictions

Janhavi Mahajan and Ehi Nosakhare

Janhavi Mahajan Software Engineer Microsoft

Ehi Nosakhare, PhD

Data Science Manager

Microsoft

Tutorial Goal

Learn how to interpret sentiment analysis results

After this tutorial you will know:

- How to use the interpret-text package to understand state-of-art model in sentiment analysis
- 2. Get familiar with different techniques in interpret-text python package
- 3. Resources for building transparent AI applications

Setup Instructions

Go to: https://github.com/janhavi13/TowardsTransaparentAl_vGHC2020

Agenda

Why Responsible AI?

Introduce Natural Language Processing

Interpretability for Text

Getting Started with Interpret-Text

The Three explainers

Hands on tutorial for interpretability in a sentiment analysis task

Al will have a considerable impact on business and society as a whole

Al impact raises a host of complex and challenging questions

Automated Recruiting

Criminal Justice System

Financial Industry

"When your technology changes the world, you bear a responsibility to help address the world you have helped create."

Responsible AI Principles

Responsible Al Principles

Transparency

Al systems should have algorithmic interpretability

Learning refers to methods and models that make the behavior and predictions of machine learning systems understandable to humans.

Natural Language Processing

Field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages¹

Growing in popularity with applications in topic classification, sentiment analysis, and entailment in a wide variety of business scenarios.

Classical NLP Pipeline

Deep learning NLP Pipeline

Interpretability Tools

Interpret-Text

- Can explain ML models locally for each document
- Incorporates innovative text interpretability techniques
- Provides an interactive visualization dashboard
- Community can further expand its offerings

Facebook's Captum

- Supports a wide range of explanation methods and scenarios
- Visualization offerings for text methods
- Requires neural networks in Pytorch

AllenNLPInterpret

- Comprehensive coverage of scenarios.
- Gradient based saliency methods
- Requires neural networks in Pytorch
- Supports two Adversarial attacks and attention maps

Others:

- <u>INNvestigate</u> Similar to captum
- <u>Tf-explain</u>, <u>IBM-AIX360</u> Does not support text use cases
- Layerwise relevance propagation toolbox (LRP)
- <u>VisBERT</u>, <u>BertVIS</u> Specifically visualize inner workings of BERT

Interpret-text

 We have implemented one classical and two state-of-the-art explainers for text classification scenario to cover both NLP approaches.

Classical Text Explainer (glass-box)

Unified Information Explainer (post-hoc and model agnostic)

Introspective Rationale Explainer (plug-in during training, model agnostic)

ClassicalText Explainer

- Modular API
- Handles text preprocessing, encoding, training, and hyperparameter tuning
- Inherently interpretable models
- Compatible with scikit-learn's linear and tree-based ensemble models

Default Configuration: 1-gram bag-of-words + scikit-learn count vectorizer + Logistic regression

Unified Information Explainer

- Mutual Information based post-hoc interpretability model
- Provides unified and coherent explanations on intermediate layers of a variety of DNNs
- BERT is currently implemented
- Future work will extend API to LSTM and RNN

<u>Towards A Deep and Unified Understanding of</u>
<u>Deep Neural Models in NLP, Guan et al. [ICML 2019]</u>

Towards A Deep and Unified Understanding of Deep Neural Models in NLP

Introspective Rationale Explainer

- End-to-end training routine
- Incorporates an introspective generator as a pre-processing step
- Divides input text into rationales and antirationales
- Training routine maximizes the model's accuracy only using the rationales
- Since the model only sees the rationale, strong guarantees are provided on what's important

Rethinking Cooperative Rationalization: Introspective Extraction and Complement Control, Yu et al. [EMNLP 2019]

Comparing Explanation Methods

	Classical Text Explainer	Unified Information Explainer	Introspective Rationale Explainer
Input model support	Scikit-learn linear models and tree-based models	PyTorch	PyTorch
Explain BERT	No	Yes	Yes
Explain RNN	No	No	Yes
NLP Pipeline Support	Handles text pre- processing, encoding, training, hyperparameter tuning	Uses BERT tokenizer however user needs to supply trained/fine-tuned BERT model, and samples of trained data	Generator and predictor modules handle the required text preprocessing.

M InterpretML

Interpretability for Text Data

https://github.com/interpretml/interpret-text

M InterpretML

We welcome contributions – if you have further questions and thoughts please reach out!

https://github.com/interpretml/interpret-text

Responsible ML Resources

Microsoft Responsible AI Resource Center https://aka.ms/RAIresources

InterpretML

https://github.com/interpretml
https://aka.ms//InterpretMLWhitepaper
https://docs.microsoft.com/azure/machinelearning/how-to-machine-learninginterpretability

Thank You

@janhavi_m

/in/janhavimahajan

@_ehinosa

/in/ehinosa

