Supplementary Material

Experiments on round-reduced key-recovery attacks.

According to Eq. (12), in our attack, the data to store is at least $2^{n/2}/pq$, where n is the block size. So it is difficult for us to perform experimental attacks on typical block ciphers. But it is rather straightforward to verify the attack on a cipher with 32-bit block size. So we make experiments on round-reduced Simon32, whose block size is 32. The round function of Simon32/63 is given in Figure 1. We give an example on Simon32/64 using a 6-round distinguisher with probability 2^{-2} in single-key setting. Appending 1-round E_b and 3-round E_f , we attack 10-round Simon32/64 as Table 1, where ΔX_r is the input difference in round r (0 < r < 10).

Fig. 1: rth Round function of Simon32/64

Table 1: The 10-round rectangle attack on Simon32/64.

	0100 0000 0000 0000 ?000 0000 0?00 0001
$\Delta X_1(\alpha)$	0000 0000 0000 0000 0100 0000 0000 0000
	•••
$\Delta X_7(\delta)$	0100 0000 0000 0000 0000 0000 0000 0000
ΔX_8	?000 0000 0?00 0001 0100 0000 0000 0000
ΔX_9	0?00 000? ?000 01?? ?000 0000 0?00 0001
ΔX_{10}	?000 0??? 0?01 ???? 0?00 000? ?000 01??

This experiment follows the single-key model in the submitted paper. As shown in Figure 1, the XORing of the first round K_0 can be placed at the input of left branch, hence, we just use the $\Delta X_1 = \alpha$ to collect the data, i.e., $m_b = 0$. We choose the expected number of right quartets s = 4, and construct 2^{18} pairs (P_1, P_2) satisfying the input difference α . The time of generating pair is 2^{18} . We invert the final round without guessing any key bits to derive ΔX_9 as filters to generate quartets. After the filter, the number of the remaining quartets is $2^{18+17-2\cdot 25} = 2^{-15}$. The time complexity to generate the quartets is 2^{18} with 2^{18} memory. The subkeys involved in E_f are 15 bits. We construct 2^{15} key counters. Using the remaining quartets, we first guess $K_9[0, 3-9, 12-15]$ to check whether

In total, the data complexity is 2^{18} and the memory complexity is $\cdot 2^{18} + 2^{15} \approx 2^{18.17}$. The time complexity is also 2^{18} (We don't make experiments on the exhaustive search process). Set h=4, and the success probability is 97.6%.

Experiments result. Testing with 100 different mater keys, if the right key candidate is in the top 2^{15-h} key counters, we consider the attack succeeds to gain a h=4-bit advantage than the exhaustive search. The experiment need about 1 minute on one computer and the success rate is 100%. The code of the experiment can be found in https://github.com/key-guess-rectangle/key-guess-rectangle

References