

Deep Reinforcement Learning

Prof. Joongheon Kim Korea University, Seoul, Korea https://joongheon@korea.ac.kr

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

Imitation Learning and Autonomous Driving

Introduction and Motivation

- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Deep Reinforcement Learning DRL Theory

- Introduction and Motivation
- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Small-Scale Q-Values

Q-table update example

Q-Network

- Large-Scale Q-Values
 - It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Lecture Roadmap

Introduction and Preliminaries

Deep Reinforcement Learning Theory

Deep Reinforcement Learning Implementation

DDPG-based Vehicular Caching

Imitation Learning and Autonomous Driving

- Introduction and Motivation
- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Deep Reinforcement Learning DRL Theory

- Introduction and Motivation
- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Introduction and Basics

- Linear Classifiers
 - Linear Regression
 - Binary Classification (Logistic Regression)
 - Softmax Classification
- Artificial Neural Network (ANN)

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

All weights in units are trained/set (under cost minimization)

INPUT: Data

• One-Dimension Vector

OUTPUT: Labels

One-Hot Encoding

We need a lot of training data for generality (otherwise, we will suffer from overfitting problem).

- How Deep Learning Works?
 - Deep Learning Computation Procedure

Deep Learning Model Setup

- MLP, CNN, RNN, GAN, or Customized
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

Intelligent Surveillance Platforms

INPUT: Real-Time Arrivals

OUTPUT: Inference

 Computation Results based on (i) INPUT and (ii) trained weights in units (trained model).

How Deep Learning Works?

• Issue - Overfitting

What if we do not have enough data for training (not enough to derive Gaussian/normal distribution)?

or Custon Gaussian/

- MLP, CNN, RNN, GAN, or Custon
- # Hidden Layers, # Units, Input/Output, ...
- Cost Function / Optimizer Selection

Training (with Large-Scale Dataset)

- Input: Data, Output: Labels
- Learning → Weights Updates for Cost Function Minimization

Inference / Testing (Real-Word Execution)

- Input: Real-World Input Data
- Output: Interference Results based on Updated Weights in Deep Neural Networks

Situation becomes worse when the model (with insufficient training data) accurately fits on training data.

To Combat the Overfitting

- More training data
- Autoencoding (or variational auto-encoder (VAE))
- Droupout
- Regularization

Two Major Deep Learning Models → CNN vs. RNN

Convolutional Neural Network (CNN)

- In conventional neural network architectures, the input should be one-dimensional vector.
- In many applications, the input should be multidimensional (e.g., 2D for images). Thus, we need architectures in order to recognize the features in high-dimensional data.
- Mainly used for visual information learning

Recurrent Neural Network (RNN)

- In conventional neural network architectures, there is no way to introduce the concept of time.
- The time index can be represented as the chain of neural network models.
- The representative models are LSTM and GRU.
- Mainly used for time-series information learning

Interpolation vs. Linear Regression

Interpolation vs. Linear Regression

Interpolation with Polynomials

$$y = a_2 x^2 + a_1 x^1 + a_0$$

where three points are given.

 \rightarrow Unique coefficients (a_0 , a_1 , a_2) can be calculated.

Is this related to **Neural Network Training?**

Interpolation and Neural Network Training

$$Y = a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0)$$

where training data/labels (X: data, Y: labels) are given.

- \rightarrow Find $W_1, b_1, W_2, b_2, W_o, b_o$
- → This is the mathematical meaning of neural network training.
- **→ Function Approximation**
- → The most well-known function approximation with neural network:
 Deep Reinforcement Learning

Example (Deep Reinforcement Learning)

- It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Deep Reinforcement Learning DRL Theory

- Introduction and Motivation
- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Small-Scale Q-Values

Q-table update example

Q-Network

- Large-Scale Q-Values
 - It is inefficient to make the Q-table for each state-action pair.
 - → ANN is used to approximate the Q-function.

Q-Network Training (Linear Regression)

$$H(x)=Wx$$

$$Cost(W)=\frac{1}{m}\sum_{i=1}^{m}(Wx^{i}-y^{i})^{2}$$

Q-Network Training (Linear Regression)

Deep Reinforcement Learning DRL Theory

- Introduction and Motivation
- Deep Neural Network Summary
- Deep Q-Network (DQN)
- Performance Improvement on DQN

Algorithm 1 Deep Q-learning

Initialize action-value function Q with random weights

for episode =
$$1, M$$
 do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ If preprocessing is not needed, $\phi(s) = s$ for t = 1, T do

With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ ϵ -greedy

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Learning

Set
$$y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

Play Atari with Deep Reinforcement Learning

Q-Network

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

- Converges to Q^* using table lookup representation
- However, diverges using neural networks due to
 - Correlations between samples → [Issue #1]
 - Non-stationary targets → [Issue #2]

Tutorial by Google DeepMind: Deep Reinforcement Learning

• [Issue #1] Correlations between Samples

- Solution) Capture and Replay
 - Store learning states in buffers → random sampling and learning

- [Issue #1] Correlations between Samples
 - Capture and Replay → Experience Replay
 - Store learning states in buffers → random sampling and learning

Random Sampling Results are **Uniformed Distributed**.

• [Issue #2] Non-Stationary Targets

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

- Both sides uses same network θ.
 Thus, if our Q_predict is trained, our target is consequently updated.
 → Non-stationary targets.
- Solution) Separate Networks → create a target network

• [Issue #2] Non-Stationary Targets

Target

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta) \right) \right]^2$$

$$\min_{\theta} \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t | \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \overline{\theta}) \right) \right]^2$$

And periodic update!

References

- V. Mnih, et. al., "Playing Atari with Deep Reinforcement Learning," NIPS Deep Learning Workshop (2013).
 - https://arxiv.org/abs/1312.5602
 - Citation: 2561+ (as of today)
- V. Mnih, et. al., "Human-Level Control through Deep Reinforcement Learning," Nature (2015).
 - https://www.nature.com/articles/nature14236
 - Citation: 6066+ (as of today)