${\bf SEMINAR\ NOTES\ ON}$ ${\bf GEOMETRIZATION\ OF\ THE\ LOCAL\ LANGLANDS\ COORRESPONDENCE}$

LSG

Contents

1.	Talk I by Lin: the big picture	1
1.1.	What is the local Langlands correspondence?	1
1.2.	What is geometrization?	2
1.3.	Why Fargues–Fontaine curve?	5
1.4.	What can be translated from Geometric Langlands?	5
1.5.	What else?	5
Refe	5	

1. Talk I by Lin: the big picture

 \dots once we could merely formulate Fargues' conjecture, enough mathinery is available to apply Lafforgue's ideas to get the "automorphic-to-Galois" direction...

[FS21, Sect. I.11]

1.1. What is the local Langlands correspondence?

Notation 1.1.1. We fix the following notations:

- E is a local field (e.g. ... $\mathbb{R}, \mathbb{C}, \mathbb{Q}_p, \mathbb{F}_p((t)))^1$;
- G is a reductive group over E;
- \hat{G} is the Langlands dual group over \mathbb{Z} ;
- W_E is the Weil group for E.

Conjecture 1.1.2. There is a canonical map between sets:

$$\left\{irreducible\ objects\ \operatorname{Rep}_{\mathbb{C}}(G(E))\right\} \to \left\{W_E \to \hat{G}(\mathbb{C})\right\},\ \pi \mapsto \varphi_{\pi}$$

 $subject\ to\ certain\ compatibilities.$

Remark 1.1.3. Several remarks are in order.

- (0) In general this is not a bijection.
- (1) From easy to hard: archimedean, char p nonarchimedean, char 0 nonarchimedean. E.g., the conjecture is unknown for $E = \mathbb{Q}_p$ and general redcutive group.
- (2) G(E) is a topological group and we require π to be smooth, i.e., any vector is fixed by some compact open subgroup.

Notes taken by Lin.

 $^{^{1}}$ The colors are chosen to be compatible with [SW20, Figure 12.1].

(3) W_E is a modification of $\operatorname{Gal}(\overline{E/E})$. $W_{\mathbb{C}} = \mathbb{C}^{\times}$, $W_{\mathbb{R}}$ is the canonical extension of $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ by \mathbb{C}^{\times} . For nonarchimedean E with residue field $k = \mathbb{F}_q$,

The necessity of W_E instead of $Gal(\overline{E}/E)$ can be already seen in local class field theory.

- (4) W_E is a topological group and we require φ_{π} to be continuous. However, it is not equipped with the subspace topology from $Gal(\overline{E}/E)$. Instead, I_E has the subspace topology from $Gal(\overline{E}/E)$, which is pro-finite, and is forced to be open in W_E , which is therefore locally pro-finite.
- (5) φ_{π} is the so-called L-parameter of π .
- (6) Part of the compatible requirements are about L-functions and ε-factors. Lin knows nothing about them. Maybe someone can explain later?

1.2. What is geometrization?

Answer 1.2.1. Do global geommetric Langlands on the Fargues–Fontaine curve, which behaves like a genus 0 curve in nonarchimedean geometry.

To explain what this mean, we need some basic notions in analytic geometry.

Notation 1.2.2. From now on, we restrict to the case $E = \mathbb{Q}_p$. There is no essential difference for general E, and the char p case is even easier.

Analogy 1.2.3. Tutorials on analytic geometry will be provided by Lin and Yuchen in the next weeks. For now, let us be satisfied by the following:

	algebraic geometry	$analytic \ geometry$
affine	Fine Spec $R, R \in CAlg$ Spa (R, R^+) ,	
		(R, R^+) is a Huber pair: $R^+ \subset R \in \text{CAlg}(\text{Top})$
		$satisfying\ certain\ conditions$
globalization	scheme	(pre-)adic space
	as locally ringed spaces	as locally topologically ringed spaces
point	$\operatorname{Spec} K, K \text{ is a field}$	$\operatorname{Spa}(K, K^+), (K, K^+)$ is an affinoid field
		analytic if K is nondiscrete
		nonanalytic if K is discrete

Notation 1.2.4. In most cases, people make the canonical choice $R^+ := R^\circ$ being the subring of power-bounded elements and write $\operatorname{Spa} R := \operatorname{Spa}(R, R^\circ)$.

Remark 1.2.5. Among all the (pre)-adic spaces, there is a class of objects, called perfectoid spaces, that are well-adapted to connect char 0 and char p. Affine perfectoid spaces are given by $\operatorname{Spa}(R, R^+)$ such that R is a perfectoid ring. Basic examples of perfectoid rings include $\mathbb{F}_p((t^{1/p^\infty}))$, which is the completion of $\bigcup_n \mathbb{F}_p((t))(t^{1/p^n})$, and $\mathbb{Q}_p^{\operatorname{cycl}}$, which is the completion of $\mathbb{Q}_p(\mu_{p^\infty})$. Any perfectoid ring is defined over \mathbb{Z}_p although the latter itself is not a perfectoid ring. In fact, there is no final object in Perfd. As we will see, this is a feature rather than a bug.

Analogy 1.2.6. Sanath will talk about the details about FF curves. For now, let us be satisfied by the following:

	$Global\ Geometric\ Langlands$	Geometrized Local Langlands
	$for\ functional\ field$	
geometry	algebraic geometry over \mathbb{F}_p	"perfectoid geometry"
test objects	$schemes \ S \in \mathrm{Sch}_{/\mathbb{F}_p}$	$char\ p\ perfectoid\ space\ S \in \mathrm{Perfd}_p$
final test object	$\operatorname{Spec} \mathbb{F}_p$	$\mathbf{not} \ \mathbf{exist} \ \mathrm{Spa} \mathbb{F}_p \notin \mathrm{Perfd}_p$
spaces	$prestacks \supset fpqc\text{-}stacks \supset algebraic spaces$	$prestacks \supset v\text{-}stacks \supset diamonds$
absolute curve	$X \ over \mathbb{F}_p$	not exist/sci-fi
relative curve	$X_S \coloneqq S imes_{\mathbb{F}_p} X$	$\mathcal{X}_S \coloneqq \mathcal{Y}_S / \operatorname{Frob}_S \coloneqq (S \times \operatorname{Spa} \mathbb{Q}_p) / \operatorname{Frob}_S$

Question 1.2.7. Wait, how dare you multiply a char 0 object $\operatorname{Spa}\mathbb{Q}_p$ with a char p object S!

Warning 1.2.8. There is a dot over the product sign in the notation $S \times \operatorname{Spa}\mathbb{Q}_p$, which means it is not a fiber product, at least not naively. For example, $\operatorname{Spa}(R, R^+) \times \operatorname{Spa}\mathbb{Q}_p$ is an open subspace of $\operatorname{Spa}W(R^+)$, where $W(R^+)$ is the ring of p-Witt vectors in R^+ . In fact, it is the open subspace where the functions $p, [\varpi] \in W(R^+)$ are invetible, where $\varpi \in R^+$ is a pseudo-uniformizer. Whatever this means, we see $S \times \operatorname{Spa}\mathbb{Q}_p$ is of char 0.

Question 1.2.9. Wait, if \mathcal{X}_S is of char 0, is it okay to study it using char p test objects? For example, when talking about Hecke modifications, you need a notion of Cartier divisors of \mathcal{X}_S relative to the base, but where is your base? It can't be S or S/Frob_S because they are char p.

Answer 1.2.10. No, at least not in the naive way. The correct way to relate \mathcal{X}_S to char p objects is via its associated diamond $(\mathcal{X}_S)^{\diamond}$, which we will explain now.

Construction 1.2.11 ([FS21, Sect. 6.2]). For any commutative ring R, the (p-)tilt of R is

$$R^{\flat} := \lim(\dots \xrightarrow{\operatorname{Frob}} R \xrightarrow{\operatorname{Frob}} R \xrightarrow{\operatorname{Frob}} R).$$

A priori this is only a multiplicative monoid. If R is equipped with a good enough complete topology, such as a perfectoid ring, then one can define a ring structure where the addition law is

$$(x^{(0)}, x^{(1)}, \dots) + (y^{(0)}, y^{(1)}, \dots) \coloneqq (z^{(0)}, z^{(1)}, \dots),$$

where

$$z^{(i)} := \lim_{n \to \infty} (x^{(i+n)} + y^{(i+n)})^{p^n}.$$

In particular, when R is a perfectoid ring, we obtain a char p perfectoid ring R^{\flat} . We say R is a untilt of R^{\flat} .

We define

$$\operatorname{Spd}(R, R^+) := \operatorname{Spa}(R, R^+)^{\flat}.$$

Using gluing, we can define X^{\flat} for any prefectoid space X.

Remark 1.2.12. For perfectoid ring R, we have $(R^{\flat})^{\circ} \simeq (R^{\circ})^{\flat}$.

Example 1.2.13. Any char p prefectoid ring R is the tilt of itself, and is the only char p untilt of itself. But there are char 0 untilts.

Example 1.2.14. The tilt of $\mathbb{Q}_p^{\text{cycl}}$ is $\mathbb{F}_p((t^{1/p^{\infty}}))$.

Theorem 1.2.15 (Tilting Equivalence). For any perfectoid space X, the functor $Y \mapsto Y^{\flat}$ induces an equivalence between the categories of perfectoid spaces over X and X^{\flat} . This equivalence preserves (finite) étale covers.

Definition 1.2.16. For any pre-adic space X, define X^{\Diamond} to be the prestack

$$X^{\diamondsuit}: \operatorname{Perfd}_p^{\operatorname{op}} \to \operatorname{Set}, \ S \mapsto \bigsqcup_{S \notin \operatorname{Untilt}(S)} \operatorname{Maps}(S^{\sharp}, X).$$

Theorem 1.2.17. Whatever it means, the underlying topological spaces of X and X^{\diamondsuit} are canonically homeomorphic.

Example 1.2.18. Spd $\mathbb{Z}_p := (\operatorname{Spa} \mathbb{Z}_p)^{\diamondsuit}$ classifies all untilts; $\operatorname{Spd} \mathbb{Q}_p := (\operatorname{Spa} \mathbb{Q}_p)^{\diamondsuit}$ classifies all char 0 untilts.

Example 1.2.19. If X is already a perfectoid space, then $X^{\diamondsuit} \simeq X^{\flat}$ by the tilting equivalence.

Example 1.2.20. For char p pre-adic space X, the functor $X \mapsto X^{\Diamond}$ is just

$$\operatorname{PreAdic}_{p} \to \operatorname{Funct}(\operatorname{PreAdic}_{p}^{\operatorname{op}}, \operatorname{Set}) \to \operatorname{Funct}(\operatorname{Perfd}_{p}^{\operatorname{op}}, \operatorname{Set}).$$

This is because only char p untilts S^{\sharp} can map to X.

Example 1.2.21. By the tilting equivalence, if X is the quotient of $R \rightrightarrows Y$ of perfectoid spaces connected by pro-étale maps, then X^{\diamondsuit} is the quotient of $R^{\flat} \rightrightarrows Y^{\flat}$. Essentially, diamonds are defined to be such quotients. In fact, any nalytic pre-adic space, which means all its residue fields are not discrete, over \mathbb{Z}_p can be written as such a quotient.

Remark 1.2.22. Yifei will talk about the pro-étale topology and explain why it is powerful.

Example 1.2.23. Unfortunately/fortunately, $\operatorname{Spa}\mathbb{Q}_p$ is not a perfectoid space but it has a perfectoid pro-étale cover $\operatorname{Spa}\mathbb{Q}_p^{\operatorname{cycl}} \to \operatorname{Spa}\mathbb{Q}_p$ whose Galois group is \mathbb{Z}_p^{\times} . Hence

$$\operatorname{Spd} \mathbb{Q}_p \simeq \operatorname{Spd} \mathbb{Q}_p^{\operatorname{cycl}}/\mathbb{Z}_p^{\times} \simeq \operatorname{Spa} \mathbb{F}_p((t^{1/p^{\infty}}))/\mathbb{Z}_p^{\times},$$

where \mathbb{Z}_p^{\times} is the discrete group diamond.

Theorem 1.2.24. For any char p perfectoid space S, we have

$$(S \times \operatorname{Spa} \mathbb{Q}_p)^{\diamondsuit} \simeq S \times \operatorname{Spd} \mathbb{Q}_p.$$

Remark 1.2.25. For a char p perfectoid space S, a map $S \to \operatorname{Spd}\mathbb{Q}_p$ provides a char 0 until S^{\sharp} , which will provide a closed immersion $S^{\sharp} \to \mathcal{Y}_S := S \times \operatorname{Spa}\mathbb{Q}_p$ once we know the precise definition of the target. This is a Cartier divisor and so is the composition $S^{\sharp} \to \mathcal{X}_S$. Also, the latter only depends on the composition $S \to \operatorname{Spd}\mathbb{Q}_p \to \operatorname{Spd}\mathbb{Q}_p / \operatorname{Frob}$. This suggests $\operatorname{Spd}\mathbb{Q}_p / \operatorname{Frob}$ should be the moduli prestack of Cartier divisors on FF curves.

In fact, as we have seen (or will see) in geometric Langlands, we use $\overline{\mathbb{F}_p}$ -points on the curve to define Hecke modifications. Hence we should restrict our attension to S defined over $\overline{\mathbb{F}_p}$ rather than \mathbb{F}_p . The effect is to change $\operatorname{Spd} \mathbb{Q}_p^{\operatorname{ur}}/\operatorname{Frob}$, where $\mathbb{Q}_p^{\operatorname{ur}}=\operatorname{Frac}(W(\overline{\mathbb{F}_p}))$ is the maximal unramified extension of \mathbb{Q}_p .

We can finally define the moduli of divisors on FF curves:

Definition 1.2.26. The moduli diamond of degree 1 closed Cartier divisors on FF curves is

$$\operatorname{Div}^1 := \operatorname{Spd} \mathbb{Q}_p^{\operatorname{ur}} / \operatorname{Frob}.$$

Warning 1.2.27. Unlike in algebraic geometry, Div¹ is not the curve itself. They live in different characteristics. In fact, we do not have the absolute FF curve.

Remark 1.2.28. An amazing thing is this tilting/untilting game allows us to consider products of the "curve", or in fact, consider $\operatorname{Div}^1 \times \cdots \times \operatorname{Div}^1$. Unlike the self product of $\operatorname{Spa}\mathbb{Q}_p$, this product, which is taken in the category of diamonds, is not boring. Lin thinks this is essentially because Perfd_p lacks a final object.

1.3. Why Fargues–Fontaine curve? Please read [FS21, Sect. I.11] (titled "The origin of the ideas"). For now, let me explain how the automorphic and Galois sides naturally appear in this geometrization picture.

For the Galois side:

Theorem 1.3.1. $\pi_1(\text{Div}^1) \simeq W_E$.

Remark 1.3.2. Heuristically this follows from the definition $\operatorname{Div}^1 := \operatorname{Spd} \mathbb{Q}_p^{\operatorname{ur}} / \operatorname{Frob}$. Indeed, W_E is the extension of $\mathbb{Z}(\operatorname{Frob})$ by $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{ur}})$.

Question 1.3.3. Wait, didn't you say FF curves behaved like genus 0 curves?

Answer 1.3.4. Yes. But $\mathcal{X}_{\mathcal{C}}$ is not defined over \mathcal{C} or any algebraically closed field. Instead, we have:

Theorem 1.3.5. $\Gamma(\mathcal{X}_C, \mathcal{O}) \simeq \mathbb{Q}_p$.

For the automorphic side, we consider the v-stack Bun_G whose values $\operatorname{Bun}_G(S)$ classify G-torsors on \mathcal{X}_S . Taeuk will explain the precise meaning of the following:

Theorem 1.3.6. Bun_G has a stratification labelled by the poset B(G) such that each stratum is of the form */H, where H is a group diamond which is an extension of a discrete group $M(\mathbb{Q}_p)$ by a unipotent group, where M is an inner form of a Levi subgroup of G.

Corollary 1.3.7. For any \mathbb{Z}_l -algebra Λ , the category $D(\operatorname{Bun}_G, \Lambda)$ can be glued from categories $\operatorname{Rep}(M(\mathbb{Q}_p))$ for M being inner forms of Levi subgroups of G.

Yifei will explain how to define $D(-,\Lambda)$ and play with them.

1.4. What can be translated from Geometric Langlands?

Answer 1.4.1. Essentially any pure geometric constructions in Geometric Landlands can be or at least should be translated. Things already done in [FS21]: geometric Satake, Lafforgue's automorphic-to-Galois construction via shitukas, formulation of categorical Langlands conjecture, the spectral action...

1.5. What else? The story is not complete without talking about p-adic Hodge theory. After all, FF curves were born during the study of Fontaine's peroid rings.

References

[FS21] Laurent Fargues and Peter Scholze. Geometrization of the local langlands correspondence. arXiv preprint arXiv:2102.13459, 2021.

[SW20] Peter Scholze and Jared Weinstein. Berkeley lectures on p-adic geometry. Princeton University Press, 2020.