ДЗ №1: Регулярные языки и конечные автоматы

Новичихин И.В.

8 апреля 2022 г.

Задание №1. Построить конечный автомат, распознающий язык

1)
$$L_1 = \{ \omega \in \{a, b, c\}^* : |\omega|_c = 1 \}$$

2)
$$L_2 = \{ \omega \in \{a,b\}^* : |\omega|_a \le 2, |\omega|_b \ge 2 \}$$

Разделим язык L_2 на два языка $A=\{\omega\in\{a,b\}^*:|\omega|_a\leqslant 2\}$ и $B=\{\omega\in\{a,b\}^*:|\omega|_b\geqslant 2\}$

 $L_2 = A \times B$

Множество конечных состояний в L_2 : 13, 23, 33 Таблица переходов:

A	В	переход по а	переход по b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	-	32
3	2	-	33
3	3	-	33

Автомат для L_1 :

3)
$$L_3 = \{ \omega \in \{a,b\}^* : |\omega|_a \neq |\omega|_b \}$$

Этот язык не получится описать ДКА, потому что автоматы беспамятные <> , то есть не получится запомнить в ДКА разное ли количество символов а и $\rm b$

4)
$$L_4 = \{\omega \in \{a,b\}^* : \omega\omega = \omega\omega\omega\}$$

2 Задание №2. Построить конечный автомат, используя прямое произведение

1)
$$L_1 = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2 \land |\omega|_b \geqslant 2\}$$

$$A = \{\omega \in \{a,b\}^* : |\omega|_a \geqslant 2\}$$

$$B = \{\omega \in \{a,b\}^* : |\omega|_b \geqslant 2\}$$

$$L_1 = A \times B,$$
 $\Sigma = \{a,b\},$ $s = \{11\},$ $T = \{33\}.$ переходы:

1	D		
A	B	переход по a	переход по b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	31	32
3	2	32	33
3	3	33	33

2)
$$L_2 = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3 \land |\omega|$$
 нечётное $\}$ $A = \{\omega \in \{a,b\}^* : |\omega| \geqslant 3\}$ $B = \{\omega \in \{a,b\}^* : |\omega|$ нечётное $\}$

$$L_2 = A \times B$$
 $\Sigma = \{a,b\},$ $s = 11,$ $T = \{33\}.$ переходы:

A	B	переход по a или b
1	1	22
1	2	21
2	1	32
2	2	31
3	1	42
3	2	41
4	1	42
4	2	41

ДКА можно упростить до следующего вида:

3) $L_3 = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\wedge |\omega|_b$ кратно $3\}$ $A = \{\omega \in \{a,b\}^* : |\omega|_a$ чётно $\}$ $B = \{\omega \in \{a,b\}^* : |\omega|_b$ кратно $3\}$:

 $L_3 = A \times B,$ $\Sigma = \{a,b\},$ s = 11, $T = \{11\}.$ переходы:

A	В	переход по а	переход по b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

$$4) L_4 = \neg L_3$$

$$T_4 = Q_3 \setminus T_3 = \{12, 13, 21, 22, 23\}$$
 всё остальное такое же как в L_3

$$\Sigma = \{a,b\},$$
 $s = 11,$ переходы:

A	B	переход по a	переход по b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

$$5) L_5 = L_2 \setminus L_3$$

$$L_5 = L_2 \setminus L_3 = L_2 \cap \neg L_3 = \neg L_3 \times L_2,$$

$$\begin{split} \Sigma &= \{a,b\}, \\ s &= \langle 11,11\rangle, \\ T &= \{\langle 12,42\rangle, \langle 13,42\rangle, \langle 21,42\rangle, \langle 22,42\rangle, \langle 23,42\rangle\} \end{split}$$

переходы для L_5 :

$\neg L_3$	L_2	переход по а	переход по b
11	11	21, 22	12, 22
11	22	21, 31	12, 31
11	31	21, 42	12, 42
11	42	21, 41	12, 41
11	41	21, 42	12, 42
12	11	22, 22	13, 22
12	22	22, 31	13, 31
12	31	22, 42	13, 42
12	42	22, 41	13, 41
12	41	22, 42	13, 42
13	11	23, 22	11, 22
13	22	23, 31	11, 31
13	31	23, 42	11, 42
13	42	23, 41	11, 41
13	41	23, 42	11, 42
21	11	11, 22	22, 22
21	22	11, 31	22, 31
21	31	11, 42	22, 42
21	42	11, 41	22, 41
21	41	11, 42	22, 42
22	11	12, 22	23, 22
22	22	12, 31	23, 31
22	31	12, 42	23, 42
22	42	12, 41	23, 41
22	41	12, 42	23, 42
23	11	13, 22	21, 22
23	22	13, 31	21, 31
23	31	13, 42	21, 42
23	42	13, 41	21, 41
23	41	13, 42	21, 42

3 Задание №3. Построить минимальный ДКА по регулярному выражению

$1) (ab + aba)^*a$

Сначала составим недетерминированный конечный автомат, а потом детерминированный

	a	b
1	3, 6, 10	
3, 6, 10		4, 7
4, 7	3, 6, 8, 10	
3, 6, 8, 10	3, 6, 10	4, 7

ДКА

2) $a(a(ab)^*b)^*(ab)^*$ HKA

Построим эквивалентный ДКА

Q	a	b
0	1,2,9,10,13	-
1,2,9,10,13	3,4,7,11	-
3,4,7,11	5	2,8,9,10,12,13
5	-	4,6,7
2,8,9,10,12,13	3,4,7,11	-
4,6,7	5	2,8,9,10,13
2,8,9,10,13	3,4,7,11	-

 $\{1,2,9,10,13\},\ \{2,8,9,10,12,13\},\ \{2,8,9,10,13\}$ эквивалентны

$\{3,4,7,11\},\ \{4,6,7\}$ эквивалентны

3)
$$(a + (a + b)(a + b)b)^*$$

HKA

Построим эквивалентный ДКА

Q	a	b
1	12	2
12	123	23
2	3	3
123	123	123
23	3	13
3	-	1
13	12	12

4)
$$(b+c)((ab)^*c + (ba)^*)^*$$

HKA

Построим эквивалентный ДКА

Q	a	b	c
1,2,4	-	3,6,7,8,9,12,14,15,18,19,20	5,6,7,8,9,12,14,15,18,19,20
3,6,7,8,9,12,14,15,18,19,20	10	16	7,8,9,12,13,14,15,18,19,20
5,6,7,8,9,12,14,15,18,19,20	10	16	7,8,9,12,13,14,15,18,19,20
10	-	9,11,12	-
16	7,8,9,12,14,15,17,18,19,20	-	-
7,8,9,12,13,14,15,18,19,20	10	16	7,8,9,12,13,14,15,18,19,20
9,11,12	10	-	7,8,9,12,13,14,15,18,19,20
7,8,9,12,14,15,17,18,19,20	10	16	7,8,9,12,13,14,15,18,19,20

уберем эквивалентные вершины:

5) $(a+b)^+(aa+bb+abab+baba)(a+b)^+$

НКА

минимальный ДКА

4 Задание №4. Определить является ли язык регулярным или нет

1) $L = \{(aab)^n b (aba)^m : n \geqslant 0, m \geqslant 0\}$ Язык является регулярным, построим ДКА

2)
$$L = \{uaav : u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = b^n aaa^n$, $|\omega| = 2n + 2 \ge n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0$, $|xy| \le n$:

$$x=b^k,\,y=b^l,\,z=b^{n-k-l}aaa^n,$$
 где $1\leq k+l\leq n\,\wedge\,l>0$

Других разбиенний, удовлетворяющих данным условиям, нет. Для любого из таких разбиений слово $xy^0z\notin L$. Лемма не выполняется, значит, L не регулярный язык.

3)
$$L = \{a^m w : w \in \{a, b\}^*, 1 \ge |w|_b \ge m\}$$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b^n$, $|\omega| = 2n \geqslant n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x=a^l,\;y=a^m,\;z=a^{n-l-m}b^n,$$
 где $l+k\leqslant n\;\wedge\;m\neq 0$

Других разбиенний, удовлетворяющих данным условиям, нет. Накачка:

$$xy^0z=a^l(a^m)^0a^{n-l-m}b^n=a^{n-m}b^n\notin L,\;i\geqslant 0\in\mathbb{N}$$

Лемма не выполняется, значит, L не регулярный язык.

4)
$$L = \{a^k b^m a^n : k = n \lor m > 0\}$$

Применим лемму о разрастании. Зафиксируем $\forall n \in \mathbb{N}$ и рассмотрим слово $\omega = a^n b a^n$, $|\omega| = 2n+1 \geqslant n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x=a^i,\;y=a^j,\;z=a^{n-i-j}ba^n,$$
 где $i+j\leqslant n$

Других разбиенний, удовлетворяющих данным условиям, нет. Накачка: $xy^kz=a^i(a^j)^ka^{n-i-j}ba^n=a^{n+j(k-1)}ba^n\notin L,\ k\geqslant 2\in \mathbb{N}$ Получили противоречие, значит лемма не выполняется, следовательно, L не регулярный язык.

5)
$$L = \{ucv : u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$$

Рассмотрим отрицание языка L
 $\overline{L} = \{ucv \mid u \in \{a,b\}^*, v \in \{a,b\}^*, u = v^R\}$

Применим лемму о разрастании. Зафиксируем $\forall n > 0$. Возьмем слово $w = a^n c a^n, |w| = n + 1 + n \ge n$.

Пусть 0 < i < n. Тогда составим разбиение:

$$x = a^{n-i}$$
$$y = a^i$$

$$y = a$$

 $z = ca^n$

$$\forall k \ge 0, xy^k z \in L.$$

 $xy^k z = a^{n-i}a^{ik}ca^n = a^{n-i+ik}ca^n = a^{n+i(k-1)}ca^n$

При k>1 условие $u=v^R$ не выполняется. Значит язык \overline{L} не регулярный

Следовательно и язык L не регулярный.