

390 W 33rd St, Hialeah, FL 33012 atrium.info@atriumengineers.com (786) 991-7299

Job No. 23-007 "98 Court Residence"

5125 SW 98th Court, Miami, FL 33165

Yosniel Padron, PE, SE Lic. No-87492

INDEX

1-	Wind Load Calculation (Garage)	1-5
2-	Wood Trusses Reaction	6-8
3-	Structural Elements Design	9-17

MecaWind v2406

Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2020

```
Calculations Prepared by:
                                                     Calculations Prepared For:
                                                      Client: 98 Court Residence
Project #: 23-007
ATRIUM Consulting Engineers
Date: Feb 16, 2023
Designer: Yosniel Padron
File Location:
E:\STRUCTURE\Working Progress\23-007_Residence Renovation_Rafael\CALC\
23-007_98 Court Residence_V00.wnd
Wind Load Standard
                                       = ASCE 7-16 Exposure Category
= 175.0 mph Risk Category
= Building Building Type
Wind Design Speed
                                                                                               — TT
Structure Type
                                                                                               = Enclosed
General Wind Settings
Incl_LF = Include ASD Load Factor of 0.6 in Pressures
                                                                                         = True
           = Dynamic Type of Structure
                                                                                         = Rigid
DynType
           = Altitude (Ground Elevation) above Sea Level
                                                                                         = 0.000 \text{ ft}
Zq
          = Base Elevation of Structure
Bdist.
                                                                                          = 0.000 \text{ ft.}
          = Simple Diaphragm Building
                                                                                         = False
MWFRSType = MWFRS Method Selected
                                                                                         = Ch 27 Pt 1
Topographic Factor per Fig 26.8-1
Topo = Topographic Feature
Kzt = Topographic Factor
                                                                                         = None
                                                                                          = 1.000
Building Inputs
RoofType: Building Roof Type
                                                             : Width Perp to Ridge = 45.000 ft

: Eave Height = 9.500 ft

: Roof Entry Method = Slope
                                       = Hipped
                                                      W
                                    = Hipped w
= 54.000 ft EHt
= 9.000 ft RE
= 5.0:12 O_Ht
L : Length Along Ridge
         : Ridge Hipped Length
Slope : Slope of Roof
Theta : Roof Slope
                                                              : Override Mean Height (0 for default)= 13.500 ft
                                        = 22.62 Deg Par
                                                                : Is there a Parapet
                                                                                               = False
Exposure Constants per Table 26.11-1:
                                                               Table 26.11-1 Const
Table 26.11-1 Const
Table 26.11-1 Const
Alpha: Table 26.11-1 Const = 9.500
At: Table 26.11-1 Const = 0.105
                                                       Zg:
                                                                                               = 900.000 \text{ ft}
                                                       Bt:
                                                                                              = 1.000
        Table 26.11-1 Const
Table 26.11-1 Const
Am:
                                       = 0.154
                                                       Bm:
                                                                                               = 0.650
                                     = 0.200
                                                     Eps: Table 26.11-1 Const
C:
                                                                                              = 0.200
       = Overhangs on all sides are the same
           = Type of Roof Wall Intersections
                                                                                         = Overhang
OH
            = Overhang of Roof Beyond Wall
                                                                                          = 2 000 ft
Main Wind Force Resisting System (MWFRS) Calculations per Ch 27 Part 1:
           = Mean Roof Height above grade = 13.500
= Z < 15 ft [4.572 m]--> (2.01 * (15/zg)^(2/Alpha) {Table 26.10-1}= 0.849
h
Kh
           = Topographic Factor is 1 since no Topographic feature specified = 1.000
Kzt
           = Wind Directionality Factor per Table 26.6-1
Kd
           = Elevation above Sea Level
                                                                                          = 0.000 ft
Zq
            = Ground Elevation Factor: Ke = e^{-(0.0000362*Zg)} {Table 26.9-1} = 1.000
Ke
GCPi
           = Ref Table 26.13-1 for Enclosed Building
                                                                                          = +/-0.18
           = Roof Area
                                                                                         = 2836.17 sq ft
RA
LF
           = Load Factor based upon ASD Design
                                                                                         = 0.60
          = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF

= For Negative Internal Pressure of Enclosed Building use qh*LF
ah
                                                                                         = 33.94 psf
gin
                                                                                         = 33.94 psf
           = For Positive Internal Pressure of Enclosed Building use gh*LF
                                                                                        = 33.94 psf
gip
Gust Factor Calculation:
Gust Factor Category I Rigid Structures - Simplified Method
          = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85
Gust Factor Category II Rigid Structures - Complete Analysis

Zm = Max(0.6 * Ht, Zmin)
                                                                                          = 15.000 ft
          = Max(0.0 ft, 2mm)

= Cc * (33 / Zm) ^ 0.167

= L * (Zm / 33) ^ Eps
                                                                                          = 0.228
Izm
Lzm
                                                                                         = 427.057
          = Structure Width Normal to Wind

= (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5

= 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm))
В
                                                                                          = 54.000 \text{ ft}
                                                                                          = 0.914
0
G2
                                                                                         = 0.880
Gust Factor Used in Analysis
           = Lessor Of G1 Or G2
                                                                                         = 0.850
MWFRS Wind Normal to Ridge (Ref Fig 27.3-1)
      = Mean Roof Height Of Building
                                                                                          = 13.500 ft
            = Ridge Height Of Roof
                                                                                         = 18.875 ft
RHt
В
            = Horizontal Dimension Of Building Normal To Wind Direction
                                                                                         = 54.000 ft
          = Horizontal Dimension Of building Parallel To Wind Direction
Τ.
                                                                                         = 45.000 ft
          = Ratio Of L/B used For Cp determination
I./B
                                                                                         = 0.833
           = Ratio Of h/L used For Cp determination
h/L
                                                                                         = 0.300
           = Slope of Roof
                                                                                         = 22.62 \text{ Deg}
OH_Bot_-Y = Overhang Bottom Surface (Windward Only)
                                                                                         = 0.8, 0.8
OH_Top_+Y = Overhang Top +Y (Leeward)
                                                                                         = -0.6, -0.6
                                                                                         = 0.223, -0.268
OH_Top_-Y = Overhang Top Windward Edge
          = Overhang Top +/-X Coeff (0 to h/2) (0.000 ft to 2.000 ft)

= Overhang Top +/-X Coeff (0 to h/2) (2.000 ft to 6.750 ft)
                                                                                         = -0.18, -0.9
OH X
```

= -0.18, -0.9

OH X

```
= Overhang Top +/-X Coeff (h/2 to h) (6.750 ft to 13.500 ft) 
= Overhang Top +/-X Coeff (h to 2h) (13.500 ft to 24.500 ft) 
= Overhang Top +/-X Coeff (h to 2h) (24.500 ft to 27.000 ft)
OH X
                                                                                                                   = -0.18, -0.9
OH X
                                                                                                                   = -0.18, -0.5
OH X
                                                                                                                   = -0.18, -0.5
              = Overhang Top +/-X Coeff (>2h) (>27.000 ft)
OH_X
                                                                                                                   = -0.18, -0.3
              = Overhang Top +/-X Coeff (>2h) (>47.000 ft)
OH_X
                                                                                                                    = -0.18, -0.3
Roof_LW = Roof (Leeward)
Roof_WW = Roof (Windward)
                                                                                                                   = -0.6, -0.6
= 0.223, -0.268
Roof_X
             = Roof +/-X Coeff (0 to h/2) (2.000 ft to 6.750 ft)
                                                                                                                  = -0.18, -0.9
Roof_X
              = Roof +/-X Coeff (h/2 to h) (6.750 ft to 13.500 ft)
                                                                                                                   = -0.18, -0.9
                                                                                                                  = -0.18, -0.5
= -0.18, -0.3
            = Roof +/-X Coeff (h to 2h) (13.500 ft to 27.000 ft)
= Roof +/-X Coeff (>2h) (>27.000 ft)
Roof X
Roof X
C'ro WW
              = Windward Wall Coefficient (All L/B Values)
                                                                                                                    = 0.80
              = Leward Wall Coefficient using L/B
Cp_LW
                                                                                                                   = -0.50
                                                                                                                   = -0.70
Cp SW
              = Side Wall Coefficient (All L/B values)
CCP_SW = Side wall Coefficient (All L/B Values)
GCPn_WW = Parapet Combined Net Pressure Coefficient (Windward Parapet)
GCPn_LW = Parapet Combined Net Pressure Coefficient (Leeward Parapet)
                                                                                                                   = 1.50
Gust Factor Calculation: Normal to Ridge
Gust Factor Category I Rigid Structures - Simplified Method
                                                                                                                    = 0.85
G1
              = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85
Gust Factor Category II Rigid Structures - Complete Analysis

Zm = Max(0.6 * Ht, Zmin)

Izm = Cc * (33 / Zm) ^ 0.167

Lzm = L * (Zm / 33) ^ Eps

B = Structure Width Normal to Wind

Q = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5

G2 = 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm))
                                                                                                                    = 15.000 ft
                                                                                                                    = 0.228
                                                                                                                    = 427.057
                                                                                                                    = 54.000 ft
                                                                                                                    = 0.914
Gust Factor Used in Analysis
              = Lessor Of G1 Or G2
                                                                                                                    = 0.850
```

Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Normal to Ridge All wind pressures include a load factor of 0.6

Elev	Kz	Kzt	qz	GCPi	Windward	Leeward	Side	Total	Minimum
					Press	Press	Press	Press	Pressure*
ft			psf		psf	psf	psf	psf	psf
9.50	0.849	1.000	33.94	0.18	16.97	-20.53	-26.30	37.51	9.60

Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Normal to Ridge All wind pressures include a load factor of 0.6

Elev	Kz	Kzt	qz	GCPi	Windward	Leeward	Side	Total	Minimum	
					Press	Press	Press	Press	Pressure*	
ft			psf		psf	psf	psf	psf	psf	
9.50	0.849	1.000	33.94	-0.18	29.19	-8.32	-14.09	37.51	9.60	

Notes Wall Pressures:

```
Kz = Velocity Press Exp Coeff Kzt = Topographical Factor
qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient
Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp_WW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.1.5 no less than 9.60 psf (Incl LF) applied to Walls
+ Pressures Acting TOWARD Surface - Pressures Acting AWAY from Surface
```

Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Normal to Ridge All wind pressures include a load factor of 0.6

Roof Var	Start Dist ft	End Dist ft	Cp_min	Cp_max	GCPi	Pressure Pn_min* psf	Pressure Pp_min* psf	Pressure Pn_max psf	Pressure Pp_max psf
OH_BotY	N/A	N/A	0.800	0.800	0 000	23.08	23.08	23.08	23.08
OH_BOtI	N/A	N/A	0.800	0.800		23.08	23.08	23.08	23.08
OH_BOC1 OH Top +Y	N/A			-0.600		-17.31	-17.31	-17.31	-17.31
OH_TOP_+T	N/A			-0.600		-17.31	-17.31	-17.31	-17.31
OH_TOP_+1 OH_TOPY	N/A N/A	N/A		-0.268		6.43	6.43	-7.72	-7.72
OH_TOPI OH_TOPY	N/A N/A	N/A		-0.268		6.43	6.43	-7.72	-7.72
OH_1OP1 OH_X (+X)	0.000			-0.200		0.43	-11.30	-19.86	-32.07
OH_X (+X)	0.000			-0.900		0.92	-11.30	-19.86	-32.07
	2.000			-0.900		0.92	-11.30	-19.86	-32.07
OH_X (+X)	2.000			-0.900		0.92	-11.30	-19.86	-32.07
OH_X (-X)		13.500				0.92	-11.30	-19.86	-32.07
OH_X (+X)						0.92	-11.30	-19.86	
OH_X (-X)		13.500							-32.07
OH_X (+X)		24.500				0.92	-11.30	-8.32	-20.53
OH_X (-X)		24.500				0.92	-11.30	-8.32	-20.53
OH_X (+X)		27.000				0.92	-11.30	-8.32	-20.53
OH_X (-X)		27.000				0.92	-11.30	-8.32	-20.53
OH_X (+X)		47.000				0.92	-11.30	-2.55	-14.76
OH_X (-X)		47.000				0.92	-11.30	-2.55	-14.76
OH_X (+X)		49.000				0.92	-11.30	-2.55	-14.76
OH_X (-X)		49.000				0.92	-11.30	-2.55	-14.76
Roof_LW	N/A			-0.600		-11.20	-23.42	-11.20	-23.42
Roof_WW	N/A	N/A		-0.268		12.54	0.32	-1.61	-13.83
Roof_X (+X)	2.000			-0.900		0.92	-11.30	-19.86	-32.07
Roof_X (-X)	2.000	6.750	-0.180	-0.900	0.180	0.92	-11.30	-19.86	-32.07

```
Roof_X (-X) 13.500 27.000 -0.180 -0.500 0.180
                                                                  0.92
                                                                           -11.30
                                                                                       -8.32
                                                                                                 -20.53
      Roof_X (+X) 27.000 47.000 -0.180 -0.300 0.180
                                                                  0.92
                                                                           -11.30
                                                                                       -2.55
                                                                                                 -14.76
                                                               0.92
      Roof_X (-X) 27.000 47.000 -0.180 -0.300 0.180
                                                                           -11.30
      Notes Roof Pressures:
      Notes Root Pressures:

Start Dist = Start Dist from Windward Edge

Cp_Max = Largest Coefficient Magnitude

Cp_Min = Smallest Coefficient Magnitude

Pp_max = qh*G*Cp_max - qip*(+GCPi)

Pp_min* = qh*G*Cp_min - qip*(+GCPi)

Pn_min* = qh*G*Cp_min - qin*(-GCPi)

Pn_min* = qh*G*Cp_min - qin*(-GCPi)
      OH = Overhang X = Dir along Ridge Y = Dir Perpendcular to Ridge Z = Vertical

* The smaller uplift pressures due to Cp_Min can become critical when wind is combined with roof live load or snow load; load combinations are given in ASCE 7
      + Pressures Acting TOWARD Surface
                                                          - Pressures Acting AWAY from Surface
MWFRS Wind Parallel to Ridge (Ref Fig 27.3-1)
h = Mean Roof Height Of Building
                                                                                            = 13.500 ft
                                                                                            = 18.875 ft
RHt.
            = Ridge Height Of Roof
В
            = Horizontal Dimension Of Building Normal To Wind Direction
                                                                                            = 45.000 \text{ ft.}
            = Horizontal Dimension Of building Parallel To Wind Direction
                                                                                            = 54.000 ft
L
L/B
           = Ratio Of L/B used For Cp determination
                                                                                            = 1.200
           = Ratio Of h/L used For Cp determination
h/L
                                                                                            = 0.250
Slope
           = Slope of Roof
                                                                                            = 22.62 Deg
Hip_End
           = Hipped End Coeff (0 to h/2) (2.000 ft to 6.750 ft)
                                                                                            = -0.18, -0.9
           = Hipped End Coeff (h/2 \text{ to } h) (6.750 \text{ ft to } 13.500 \text{ ft})
Hip_End
           = Hipped End Coeff (h to 2h) (13.500 ft to 24.500 ft)
Hip End
                                                                                            = -0.18, -0.5
Hip_End = Hipped End Coeff (>2h) (>33.500 ft)
                                                                                            = -0.18, -0.3
OH_Bot
           = Overhang Bottom (Windward Face Only)
                                                                                            = 0.8, 0.8
           = Overhang Top Coeff (0 to h/2) (0.000 ft to 2.000 ft)

= Overhang Top Coeff (0 to h/2) (2.000 ft to 6.750 ft)
qoT_HO
                                                                                            = -0.18, -0.9
QOT_HO
                                                                                            = -0.18, -0.9
           = Overhang Top Coeff (h/2 to h) (6.750 ft to 13.500 ft) 
= Overhang Top Coeff (h to 2h) (13.500 ft to 27.000 ft)
                                                                                            = -0.18. -0.9
goT HO
OH_Top
                                                                                            = -0.18, -0.5
OH_Top
           = Overhang Top Coeff (>2h) (>27.000 ft)
                                                                                            = -0.18, -0.3
OH_Top
           = Overhang Top Coeff (>2h) (>29.000 ft)
                                                                                            = -0.18, -0.3
OH_Top
           = Overhang Top Coeff (>2h) (>56.000 ft)
                                                                                             = -0.18, -0.3
Roof
           = Roof Coeff (0 to h/2) (2.000 ft to 6.750 ft)
= Roof Coeff (h/2 to h) (6.750 ft to 13.500 ft)
                                                                                            = -0.18, -0.9
Roof
                                                                                            = -0.18, -0.9
Roof
           = Roof Coeff (h to 2h) (13.500 ft to 27.000 ft)
                                                                                            = -0.18, -0.5
Roof
           = Roof Coeff (>2h) (>27.000 ft)
                                                                                            = -0.18. -0.3
           = Windward Wall Coefficient (All L/B Values)
Cp WW
                                                                                            = 0.80
Cp_LW
           = Leward Wall Coefficient using L/B
                                                                                            = -0.46
           = Side Wall Coefficient (All L/B values)
                                                                                            = -0.70
Cp SW
GCpn_WW
           = Parapet Combined Net Pressure Coefficient (Windward Parapet)
                                                                                            = 1.50
GCpn_LW
          = Parapet Combined Net Pressure Coefficient (Leeward Parapet)
Gust Factor Calculation: Parallel to Ridge
Gust Factor Category I Rigid Structures - Simplified Method
G1 = For Rigid Structures (Nat. Freq.>1 Hz) use 0.85
                                                                                            = 0.85
Gust Factor Category II Rigid Structures - Complete Analysis

Zm = Max(0.6 * Ht, Zmin)

Izm = Cc * (33 / Zm) ^ 0.167

Lzm = L * (Zm / 33) ^ Eps
                                                                                            = 15.000 \text{ ft}
                                                                                             = 0.228
                                                                                            = 427.057
           = Structure Width Normal to Wind
В
                                                                                            = 45.000 ft
           = (1 / (1 + 0.63 * ((B + Ht) / Lzm)^0.63))^0.5
                                                                                             = 0.921
          = 0.925*((1+0.7*Izm*3.4*Q)/(1+0.7*3.4*Izm))
Gust Factor Used in Analysis
           = Lessor Of G1 Or G2
                                                                                             = 0.850
      Wall Wind Pressures based On Positive Internal Pressure (+GCPi) - Parallel to Ridge
                            All wind pressures include a load factor of 0.6
                    Kzt qz GCPi Windward Leeward
      Elev Kz
                                                                      Side
                                                                                  Total
                                                                                             Minimum
                             Press Press psf psf psf
                                                                                  Press Pressure*
                                                                                   psf
                                                                                             psf
      9.50 0.849 1.000 33.94 0.18 16.97 -19.38 -26.30
      Wall Wind Pressures based on Negative Internal Pressure (-GCPi) - Parallel to Ridge
                            All wind pressures include a load factor of 0.6
      Elev Kz
                     Kzt
                                      GCPi Windward Leeward
                                                                        Side
                                                                                   Total
                                                                                             Minimum
                             psf psf psf
                               qz
                                                                       Press
                                                                                  Press
                                                                                            Pressure*
                                                                       psf
                                                                                   psf
                                                                                             psf
                                                                      ----
      9.50 0.849 1.000 33.94 -0.18
                                               29.19 -7.16 -14.09
                                                                                 36.35
                                                                                                9.60
      Notes Wall Pressures:
      Kz = Velocity Press Exp Coeff Kzt = Topographical Factor
qz = 0.00256*Kz*Kzt*Kd*V^2 GCPi = Internal Press Coefficient
Side = qh * G * Cp_SW - qip * +GCPi Windward = qz * G * Cp_WW - qip * +GCPi
Leeward = qh * G * Cp_LW - qip * +GCPi Total = Windward Press - Leeward Press
* Minimum Pressure: Para 27.1.5 no less than 9.60 psf (Incl LF) applied to Walls
      + Pressures Acting TOWARD Surface
                                                         - Pressures Acting AWAY from Surface
```

Roof_X (+X) 6.750 13.500 -0.180 -0.900 0.180 Roof_X (-X) 6.750 13.500 -0.180 -0.900 0.180 Roof_X (+X) 13.500 27.000 -0.180 -0.500 0.180

0.92 -11.30 0.92 -11.30

-11.30

0.92

-19.86

-19 86

-8.32

-32.07

-32.07

-20.53

Roof Wind Pressures for Positive & Negative Internal Pressure (+/- GCPi) - Parallel to Ridge
All wind pressures include a load factor of 0.6

Roof Var	Start Dist ft	End Dist ft				Pn_min* psf	Pressure Pp_min* psf	Pn_max psf	Pp_max psf
Hip End (-X)								-19.86	
Hip_End (-X)								-19.86	
Hip_End (-X)									
Hip_End (-X)						0.92	-11.30	-2.55	-14.76
OH Bot	N/A		0.800			23.08	23.08	23.08	23.08
OH_BOT	N/A N/A		0.800			23.08	23.08	23.08	
OH_BOC OH Top (-X)	0.000		-0.180			-5.19	-5.19	-25.97	-25.97
OH_TOP (-X) OH Top (-X)	0.000		-0.180			-5.19			
OH_TOP (-X)	0.000		-0.180			-5.19			
OH_TOP (-X) OH Top (-X)	0.000		-0.180						
			-0.180					-25.97	
OH_Top (+Y)	0.000					-5.19			
OH_Top (-Y)	0.000		-0.180			-5.19			
OH_Top (+Y)			-0.180			-5.19			
OH_Top (-Y)			-0.180			-5.19	-5.19	-25.97	
OH_Top (+Y)	6.750					-5.19			
OH_Top (-Y)			-0.180			-5.19			
OH_Top (+Y)			-0.180			-5.19			-14.43
OH_Top (-Y)			-0.180			-5.19			-14.43
OH_Top (+Y)			-0.180			-5.19			-8.66
(Y-) qoT_HO			-0.180			-5.19			-8.66
OH_Top (+Y)			-0.180			-5.19			
OH_Top (-Y)			-0.180			-5.19			-8.66
(X+) qoT_HO			-0.180			-5.19			
OH_Top (+X)			-0.180			-5.19			
OH_Top (+X)			-0.180			-5.19			
OH_Top (+X)			-0.180			-5.19		-8.66	-8.66
OH_Top (+Y)			-0.180			-5.19			-8.66
OH_Top (-Y)			-0.180			-5.19			-8.66
Roof (+Y)	2.000	6.750	-0.180	-0.900	0.180	0.92	-11.30	-19.86	-32.07
Roof (-Y)	2.000	6.750	-0.180	-0.900	0.180	0.92	-11.30	-19.86	-32.07
Roof (+Y)	2.000 6.750 6.750	13.500	-0.180	-0.900	0.180	0.92	-11.30	-19.86	-32.07
	6.750	13.500	-0.180	-0.900	0.180	0.92	-11.30	-19.86	-32.07
Roof (+Y)	13.500	27.000	-0.180	-0.500	0.180	0.92	-11.30	-8.32	-20.53
Roof (-Y)	13.500	27.000	-0.180	-0.500	0.180	0.92	-11.30	-8.32	-20.53
Roof (+Y)	27.000	56.000	-0.180	-0.300	0.180	0.92	-11.30	-2.55	-14.76
Roof (-Y)	27.000	56.000	-0.180	-0.300	0.180	0.92	-11.30	-2.55	-14.76
Notes Roof P: Start Dist =			om Wind	ward Edg	ge End	d Dist = 1	End Dist 1	from Windy	ward Edge

Components and Cladding (C&C) Zone Summary per Ch 30 Pt 1:

```
= Ratio of mean roof height to building width
h/W
                                                                                  = 0.300
           = Ratio of mean roof height to building length
h/L
                                                                                  = 0.250
          = Mean Roof Height above grade = 13.500
= Z < 15 ft [4.572 m]--> (2.01 * (15/zg)^(2/Alpha) {Table 26.10-1}= 0.849
                                                                                   = 13.500 ft
          = Topographic Factor is 1 since no Topographic feature specified = 1.000
Kd
          = Wind Directionality Factor per Table 26.6-1
                                                                                  = 0.85
GCPi
          = Ref Table 26.13-1 for Enclosed Building
                                                                                  = +/-0.18
                                                                                  = 0.60
LF
          = Load Factor based upon ASD Design
          = (0.00256 * Kh * Kzt * Kd * Ke * V^2) * LF
                                                                                  = 33.94 psf
ah
LHD
         = Least Horizontal Dimension: Min(B, L)
                                                                                  = 45.000 \, \text{ft}
          = Min(0.1 * LHD, 0.4 * h)
= Max(a1, 0.04 * LHD, 3 ft [0.9 m])
a1
                                                                                  = 4.500 ft
                                                                                   = 4.500 ft
          = Ratio of mean roof height to least hor dim: h / B
```

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 1 of 2) All wind pressures include a load factor of 0.6

Zone Figure		A <=	A =	A =	A =
		7.00 sq ft	10.00 sq ft	20.00 sq ft	50.00 sq ft
		psf	psf	psf	psf
1	30.3-2G	29.87 -53.63	29.87 -53.63	25.78 -47.50	20.38 -39.39
1_OH	30.3-2G	9.60 -64.49	9.60 -64.13	9.60 -63.43	9.60 -62.50
2e	30.3-2G	29.87 -73.99	29.87 -73.99	25.78 -66.14	20.38 -55.76
2e_OH	30.3-2G	9.60 -84.85	9.60 -83.05	9.60 -79.54	9.60 -74.90
2r	30.3-2G	29.87 -73.99	29.87 -73.99	25.78 -66.14	20.38 -55.76
2r_OH	30.3-2G	9.60 -84.85	9.60 -83.05	9.60 -79.54	9.60 -74.90
3	30.3-2G	29.87 -73.99	29.87 -73.99	25.78 -66.14	20.38 -55.76
3_OH	30.3-2G	9.60 -105.22	9.60 -99.44	9.60 -88.21	9.60 -73.37
4	30.3-1	40.05 -43.45	40.05 -43.45	38.25 -41.64	35.86 -39.26
5	30.3-1	40.05 -53.63	40.05 -53.63	38.25 -50.02	35.86 -45.25

Wind Pressure Summary for C&C Zones based Upon Areas Ch 30 Pt 1 (Table 2 of 2)

All wind pressures include a load factor of 0.6

Zone	Figure 	A = 100.00 sq ft psf	A = 200.00 sq ft psf	A > 500.00 sq ft psf
1	30.3-2G	16.29 -33.26	16.29 -33.26	16.29 -33.26
1_OH	30.3-2G	9.60 -61.80	9.60 -61.10	9.60 -61.10
2e	30.3-2G	16.29 -47.90	16.29 -40.05	16.29 -40.05
2e_OH	30.3-2G	9.60 -71.39	9.60 -67.88	9.60 -67.88
2r	30.3-2G	16.29 -47.90	16.29 -40.05	16.29 -40.05
2r_OH	30.3-2G	9.60 -71.39	9.60 -67.88	9.60 -67.88
3	30.3-2G	16.29 -47.90	16.29 -40.05	16.29 -40.05
3_OH	30.3-2G	9.60 -62.14	9.60 -50.91	9.60 -50.91
4	30.3-1	34.06 -37.45	32.25 -35.65	29.87 -33.26
5	30.3-1	34.06 -41.64	32.25 -38.03	29.87 -33.26

- * A is effective wind area for C&C: Span Length * Effective Width * Effective width need not be less than 1/3 of the span length
- * Maximum and minimum values of pressure shown.
- * + Pressures acting toward surface, Pressures acting away from surface

- * Overhang pressures calculated per Para 30.9

 * Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] {Includes LF}

 * Interpolation can be used for values of A that are between those values shown.

_ Wood Truss Reaction

- Wood Truss

Effective wind area =
$$\frac{29.0^3}{3}$$
 = 280 s/.

Aeff > 100 st

- Wood Truss ?

- Wood Truss 3 Ae11 > 15pst Pwze-oH=80,0pst; Pwze=zr=70,0pst ZeoH Zetzr 12' 1 6' X G=480# ; U=690# Ltrib = 2' - Wood Truss A Aeff > 100 s/ Pwze-OH = 71,39pst; Pwze=2r= 47,9psl 2e-04 6,= 980# , 62= 1280# , 63= 480# U1 = 8304 U2 = 10804 U3 = 500# - Wood Truss S Aeff > 100 st Pwze-0#=7139 pst : Pwze=zv = 47,9 pst 6,=1220#; 6z=980# Uz=830# 01=1160# - Wood Truss 6 Aeff 3,100 st. PWZE-OH = 7139 pst. Pwze=2r=47,9 pst. ZeOH Ze + Zr Ze-OH 6=1200# ; 0=1100# - Wood Truss 7 6 = 2100H Idem to truss 6 w/ Ltnib=3's 1 0=1900# - Wood Truss 8' Aeff = 15 st Pwze-o+= 80,0psf; Pwze=zr= 70,0psf. 6=440 H ; U= 640 H

- Wood Truss 9

$$6_1 = 750 \#$$
 ; $6_2 = 960 \#$ $0_1 = 640 \#$ $0_2 = 900 \#$

- Wood Truss 11

Idem to truss 11 W/Ltnib=3,5

- Wood Truss 13

+ Structural Elements Design

$$Pweg = \frac{69.4 \times (z' + 6.5/2)}{z'}$$

$$= 182 ps/.$$

- Wall Footing (WF-16)

Concrete Beam

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

Description: RB-1 (8x12)

CODE REFERENCES

Calculations per ACI 318-14, IBC 2018, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

f'c =	3.0 ksi	h Phi Values	F	lexure:	0.90
$f'c$ = $f'c^{1/2} * 7.50$	= 410.792 psi	•		Shear:	0.750
ψ Density	= 145.0 pcf	β_1	=		0.850
λ LtWt Factor	= 1.0	•			
Elastic Modulus =	3,122.02 ksi	Fy - Stirrups		4	0.0 ksi
fy - Main Rebar =	60.0 ksi	E - Stirrups	=	29,00	0.0 ksi
E - Main Rebar =	29,000.0 ksi	Stirrup Bar Size	#		3
		sting Legs Per Stirru	ıp =		2

Cross Section & Reinforcing Details

Rectangular Section, Width = 8.0 in, Height = 12.0 in Span #1 Reinforcing....

2-#5 at 2.20 in from Top, from 0.0 to 14.0 ft in this span

2-#5 at 2.20 in from Bottom, from 0.0 to 14.0 ft in this span Service loads entered. Load Factors will be applied for calculations.

Applied Loads

Beam self weight calculated and added to loads

Load for Span Number 1

Uniform Load: D = 0.0250, L = 0.020 ksf, Tributary Width = 5.50 ft

DESIGN SUMMARY

Maximum Bending Stress Ratio
Section used for this span
Mu : Applied
Mn * Phi : Allowable
Location of maximum on span
Span # where maximum occurs

- 0.451 : 1
Typical Section
11.196 k-ft
24.813 k-ft
Span # 1

Maximum Deflection

Design OK

Vertical Reactions Support notation: Far left is #1

Load Combination	Support 1	Support 2	
Overall MAXimum	2.409	2.409	
Overall MINimum	0.770	0.770	
+D+H	1.639	1.639	
+D+L+H	2.409	2.409	
+D+Lr+H	1.639	1.639	
+D+S+H	1.639	1.639	
+D+0.750Lr+0.750L+H	2.217	2.217	
+D+0.750L+0.750S+H	2.217	2.217	
+D+0.60W+H	1.639	1.639	
+D+0.70E+H	1.639	1.639	
+D+0.750Lr+0.750L+0.450W+H	2.217	2.217	
+D+0.750L+0.750S+0.450W+H	2.217	2.217	10 of 17
+D+0.750L+0.750S+0.5250E+H	2.217	2.217	10 01 11

Concrete Beam

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

RB-1 (8x12) Description :

Vertical Reactions			Support notation : Far left is #1
Load Combination	Support 1	Support 2	
+0.60D+0.60W+0.60H	0.983	0.983	
+0.60D+0.70E+0.60H	0.983	0.983	
D Only	1.639	1.639	
Lr Only			
L Only	0.770	0.770	
S Only			
W Only			
E Only			
H Only			

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use stirrups spaced at 0.000 in

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L+H	1	0.1222	7.000		0.0000	0.000

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

Description: Masonry Wall (h=10.0')

Code References

Calculations per ACI 530-13, IBC 2018, CBC 2016, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Calculations per ACI 530-13, IBC 2018, CBC 2016, ASCE 7-16

Construction Type: Grouted Hollow Concrete Masonry

Nom. Wall Thickness 1.50 ksi 8 in Temp Diff across thickness deg F **Actual Thickness** Min Allow Out-of-plane Defl Ratio = 0 Fy - Yield 60.0 ksi in 3.8125 in Rebar "d" distance Fr - Rupture 125.0 psi Minimum Vertical Steel % 0.0020 Lower Level Rebar . . . Em = f'm * 900.0 Bar Size 5 Max % of ρ bal. 0.1035

Bar Spacing

Grout Density = 140 pcf
Block Weight Normal Weight
Wall Weight = 55.0 psf
Wall is grouted at rebar cells only

One-Story Wall Dimensions

A Clear Height = 10.0 ft
B Parapet height = ft
Wall Support Condition Top & Bottom Pinned

a 10.0 ft ft B Roof Attachment

A Floor Attachment

48.0 in

Lateral Loads

Wind Loads: Seismic Loads:

Full area WIND load 69.40 psf Wall Weight Seismic Load Input Method : Direct entry of Lateral Wall Weight Seismic Wall Lateral Load psf

Fp 1.0 = 0.0 psf

DESIGN SUMMARY

Results reported for "Strip Width" of 12.0 in

	Governing Load Combination		Actual Values		Allowable Values		
PASS	Moment Capacity Check W Only	(Maximum Bending Max Mu	Stress Ratio = 0.8656 k-ft	0.6780 Phi * Mn	1.277 k-ft	
PASS	Service Deflection Chec +0.60W	k	Actual Defl. Ratio L/ Max. Deflection	5,738 0.02091 in	Allowable Defl. Ratio	150	
PASS	Axial Load Check W Only		Max Pu / Ag Location	0.0 psi 5.167 ft	Max. Allow. Defl. 0.2 * f'm	0.80 in 300.0 psi	
PASS	Reinforcing Limit Check		Controlling As/bd	0.001694	As/bd 0.1035 rho bal	0.1035	
			Maximum Reactions .	bination			
			Top Horizontal	W Only		0.3470 k	
			Base Horizontal	W Only		0.3470 k	
			Vertical Reaction	n W Only		0.0 k	

E Only

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

0.00 k

0.000 k

Design Maximum Combinations -	Axial	l oad			N/	loment Values			0.0.4
Load Combination		0.2*f'm*k k	o*t Mo		Phi	Phi Mn k-ft		As Ratio	0.6 * rho bal
	0.000	0.000	0.0	0.00	0.00	0.00	0.000	0.0000	0.0000
-0.50W at 5.00 to 5.33	0.000	16.560	0.9	0 0.43	0.90	1.28	0.078	0.0017	0.1035
0.50W at 5.00 to 5.33	0.000	16.560	0.9	0 0.43	0.90	1.28	0.078	0.0017	0.1035
V Only at 5.00 to 5.33	0.000	16.560	0.9	0 0.87	0.90	1.28	0.078	0.0017	0.1035
W at 5.00 to 5.33	0.000	16.560	0.9	0 0.87	0.90	1.28	0.078	0.0017	0.1035
	0.000	0.000	0.0	0.00	0.00	0.00	0.000	0.0000	0.0000
Design Maximum Combinations -	Deflections					Results	reported fo	or "Strip W	idth" = 12 in.
oad Combination	Axial Load Pu k		Momei Mcr k-ft	nt Values Mactual k-ft	I gross in^4	Stiffness I cracked in^4	I effective		eflections ion Defl. Ratio
	0.000		0.00	0.00	0.00	0.00	0.000	0.00	0.0
0.60W at 5.00 to 5.33	0.000		0.90	0.52	331.10	17.04	331.100	0.02	5,737.8
	0.000		0.00	0.00	0.00	0.00	0.000	0.00	0.0
0.450W at 5.00 to 5.33	0.000		0.90	0.39	331.10	17.04	331.100	0.01	6 7,650.4
	0.000		0.00	0.00	0.00	0.00	0.000	0.00	0.0
	0.000		0.00	0.00	0.00	0.00	0.000	0.00	0.0
Reactions - Vertical & Horizontal						Results	reported fo	or "Strip W	idth" = 12 in.
oad Combination	Base	Horizon	tal			Top Horiz	ontal	Vertic	al @ Wall Base
		0.0 k				0.00	0 k		0.000 k
0.60W		0.2 k				0.21	1 k		0.000 k
Only * 0.70		0.0 k				0.00	0 k		0.000 k
0.450W		0.2 k				0.16	6 k		0.000 k
Only * 0.5250		0.0 k				0.00	0 k		0.000 k
V Only		0.3 k				0.01	5 k		0.000 k

0.0 k

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

deg F

0

0.0020

Description: Masonry Jamb (h=10.0', L=6'-6")

Code References

Calculations per ACI 530-13, IBC 2018, CBC 2016, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Calculations per ACI 530-13, IBC 2018, CBC 2016, ASCE 7-16

Temp Diff across thickness

Minimum Vertical Steel %

Min Allow Out-of-plane Defl Ratio =

Construction Type : Grouted Hollow Concrete Masonry
F'm = 1.50 ksi Nom. Wall Thickness

Fm = 1.50 ksi Fy - Yield = 60.0 ksi Fr - Rupture = 125.0 psi Em = fm * = 900.0

Wall Weight = 61.0 psf
Wall is grouted at rebar cells only

One-Story Wall Dimensions

A Clear Height = 10.0 ft
B Parapet height = 0.0 ft
Wall Support Condition Top & Bottom Pinned

Lateral Loads

Full area WIND load

Wind Loads:

182.0 psf

Seismic Loads:

Actual Thickness

Bar Size

Rebar "d" distance

Bar Spacing

Lower Level Rebar . . .

 $Wall\ Weight\ Seismic\ Load\ Input\ Method:$

Direct entry of Lateral Wall Weight

Seismic Wall Lateral Load 0.0 psf

8 in

3.8125 in

5

24.0 in

in

Fp 1.0 = 0.0 psf

DESIGN SUMMARY

Results reported for "Strip Width" of 12.0 in

DECIO					
	Governing Load Combina	tion Actual Values .		Allowable	e Values
PASS	Moment Capacity Check	Maximum Bending S	Stress Ratio =	0.9276	
	W Only	Max Mu	2.270 k-ft	Phi * Mn	2.447 k-ft
PASS	Service Deflection Check +0.60W	Actual Defl. Ratio L/ Max. Deflection	574 0.2090 in	Allowable Defl. Ratio	150
PASS	Axial Load Check	Max Pu / Ag	0.0 psi	Max. Allow. Defl.	0.80 in
	W Only	Location	5.167 ft	0.2 * f'm	300.0 psi
PASS	Reinforcing Limit Check	Controlling As/bd	0.003388	As/bd ⊕.1212 rho bal	0.1212
		Maximum Reactions .	for Load Comb	bination	
		Top Horizontal	W Only		0.910 k
		Base Horizontal	W Only		0.910 k
		Vertical Reaction	W Only		0.0 k

E Only

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

0.00 k

0.000 k

Design Maximum Combinations -	Moments						Results	reported for	"Strip Wid	th" = 12 in.
	Axial	Load				М	loment Values			0.6 *
Load Combination	Pu k	0.2*f'm* k	b*t	Mcr k-ft	Mu k-ft	Phi	Phi Mn k-ft	As A	s Ratio	rho bal
	0.000	0.000		0.00	0.00	0.00	0.00	0.000	0.0000	0.0000
-0.50W at 5.00 to 5.33	0.000	18.720)	0.97	1.13	0.90	2.45	0.155	0.0034	0.1212
0.50W at 5.00 to 5.33	0.000	18.720)	0.97	1.13	0.90	2.45	0.155	0.0034	0.1212
N Only at 5.00 to 5.33	0.000	18.720	1	0.97	2.27	0.90	2.45	0.155	0.0034	0.1212
W at 5.00 to 5.33	0.000	18.720)	0.97	2.27	0.90	2.45	0.155	0.0034	0.1212
	0.000	0.000		0.00	0.00	0.00	0.00	0.000	0.0000	0.0000
Design Maximum Combinations -	Deflections	5					Results	reported for	"Strip Wid	th" = 12 in.
oad Combination	Axial Load Pu		Mcr	ment Valu Mact	tual	l gross	Stiffness I cracked	I effective	Deflectio	flections n Defl. Ratio
	0.000	'	0.00	k-ft	.00	in^4 0.00	0.00	0.000	0.000	0.0
-0.60W at 5.00 to 5.33	0.000		0.00		.36	353.60	29.64	33.629	0.000	574.1
0.00W at 5.00 to 5.55	0.000		0.97		.00	0.00	0.00	0.000	0.209	0.0
0.450W at 5.00 to 5.33	0.000		0.97		.02	353.60	29.64	56.081	0.050	2,395.9
0.450W dt 5.00 to 5.55	0.000		0.00		.00	0.00	0.00	0.000	0.000	0.0
	0.000		0.00		.00	0.00	0.00	0.000	0.000	0.0
Reactions - Vertical & Horizontal								reported for		
Load Combination	Base	Horizor	ntal				Top Horiz			@ Wall Base
		0.0					<u> </u>) k		0.000 k
-0.60W			k					, k		0.000 k
E Only * 0.70			k				0.00			0.000 k
-0.450W			k k					l k		0.000 k
E Only * 0.5250			k) k		0.000 k
W Only		0.9	k				0.91	k		0.000 k

0.0 k

Wall Footing

File = E:\STRUCT~1\WORKIN~1\23-007~1\CALC\23-007~1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

WF-16 Description:

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2016, ASCE 7-16

Load Combinations Used: IBC 2018

General Information

Material Properties			Soil Design Values		
f'c : Concrete 28 day strength	=	3.0 ksi	Allowable Soil Bearing	=	2.0 ksf
fy : Rebar Yield	=	60.0 ksi	Increase Bearing By Footing Weight	=	No
Éc : Concrete Elastic Modulus	=	3,122.0 ksi	Soil Passive Resistance (for Sliding)	=	250.0 pcf
Concrete Density	=	145.0 pcf	Soil/Concrete Friction Coeff.	=	0.30
φ Values Flexure	=	0.90			
Shear	=	0.750	Increases based on footing Depth		
Analysis Settings			Reference Depth below Surface	=	ft
Min Steel % Bending Reinf.	=		Allow. Pressure Increase per foot of depth	=	ksf
Min Allow % Temp Reinf.	=	0.00180	when base footing is below	=	ft
Min. Overturning Safety Factor	=	1.0:1	Increases based on footing Width		
Min. Sliding Safety Factor	=	1.0:1	Allow. Pressure Increase per foot of width	=	ksf
AutoCalc Footing Weight as DL	:	Yes	when footing is wider than	=	ft
J • J • • •			Adjusted Allowable Bearing Pressure	=	2.0 ksf

Dimensions Reinforcing 1.330 ft 12.0 in Footing Width Footing Thickness Bars along X-X Axis Wall Thickness 8.0 in Rebar Centerline to Edge of Concrete... Bar spacing 9.00 Wall center offset at Bottom of footing = 3.0 in Reinforcing Bar Size 4

Applied Loads

		D	Lr	L	S	W	Е	<u>H</u>
P : Column Load OB : Overburden	= =	0.960		0.330				k ksf
V-x	=							k
M-zz	= annlied =	in a	have tan of fa	otina				K-ft

in above top of footing Vx applied

Wall Footing

File = E:\STRUCT-1\WORKIN-1\23-007-1\CALC\23-007-1.EC6 ENERCALC, INC. 1983-2016, Build:6.16.8.31, Ver:6.16.8.31

Description: WF-16

ESIGN SL	JMMARY				Design OK
I	Factor of Safety	Item	Applied	Capacity	Governing Load Combination
PASS PASS PASS	n/a n/a n/a	Overturning - Z-Z Sliding - X-X Uplift	0.0 k-ft 0.0 k 0.0 k	0.0 k-ft 0.0 k 0.0 k	No Overturning No Sliding No Uplift
I	Utilization Ratio	Item	Applied	Capacity	Governing Load Combination
PASS PASS PASS PASS	0.5575 0.007536 0.004091 n/a 0.0	Soil Bearing Z Flexure (+X) Z Flexure (-X) 1-way Shear (+X) 1-way Shear (-X)	1.115 ksf 0.07903 k-ft 0.04290 k-ft 0.0 psi 0.0 psi	2.0 ksf 10.486 k-ft 10.486 k-ft 82.158 psi 0.0 psi	+D+L+H +1.20D+0.50Lr+1.60L+ +0.90D+E+0.90H n/a n/a