Глава 1. Введение §1. Множества и их отношения

Def. Множество - набор каких-то элементов, т.е. либо $x \in A$, либо $x \notin A(\forall x)$

Def. A, B - множества. $A \subset B$ - A подмножество B, т.е. $\forall x \in A \Rightarrow x \in B$

Def.
$$A = B \Leftrightarrow \begin{cases} A \subset B \\ B \subset A \end{cases}$$

Def. \emptyset - пустое множество, т.е. $\forall x, x \notin \emptyset$

Rem. $\forall A\emptyset \subset A$

Rem.
$$\forall A \emptyset \subset A$$
 Def. $\begin{cases} A \subset B \\ A \neq B \end{cases} \Leftrightarrow A \subsetneq B \Leftrightarrow A$ - собственное подмножество

Операции:

- Пересечение $A \cap B = \{x | \begin{cases} x \in A \\ x \in B \end{cases} \}$
- Объединение $A \bigcup B = \{x | x \in A$ или $x \in B\}$
- Разность $A \backslash B = \{x | \begin{cases} x \in A \\ x \notin B \end{cases} \}$
- Симметрическая разность $A \triangle B = (A \backslash B) \bigcup (B \backslash A)$

Способы задания множеств:

- Перечисление
- Неполное перечисление
- Словесно
- С помощью функции

Канонические обозначения:

- IN натуральные числа
- Z целые числа
- Q рациональные числа
- ullet вещественные числа
- С комплексные числа
- \bullet $\mathbb P$ простые числа

$$\mathbf{Def.} < a,b > (a \in A,b \in B)$$
 - упорядоченная пара
$$< a,b > = < p,q > \Leftrightarrow \begin{cases} a=p \\ b=q \end{cases}$$

 $\mathbf{Def.} < a_1, a_2 \cdots a_n > (a_k \in A_k \forall k)$ - кортеж (упорядоченная n-ка)

 $\langle a_1 \cdots a_n \rangle = \langle b_1 \cdots b_n \rangle \Leftrightarrow a_k = b_k \forall k$

Def. Декартово произведение $A \times B = \{ < a, b > | a \in A, b \in B \}$

Правила Д'Моргана:

1.
$$A \setminus (\bigcap_{\alpha \in I} B_{)} = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

2.
$$A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Доказательство 2

$$x \in A \setminus (\bigcup_{\alpha \in I} B_{\alpha}) \Leftrightarrow \begin{cases} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Leftrightarrow \begin{cases} x \in A \\ x \notin B_{\alpha}, \forall \alpha \in I \end{cases} \Leftrightarrow x \in A \setminus B_{\alpha}, \forall \alpha \in I \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha})$$

Теорема

•
$$A \bigcup (\bigcap_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} (A \bigcup B_{\alpha})$$

•
$$A \cap (\bigcup_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

Доказательство

$$x \in A \bigcap (\bigcup_{\alpha \in I} B_{\alpha}) \Leftrightarrow \begin{cases} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \end{cases} \Leftrightarrow \begin{cases} x \in A \\ \exists \alpha \in I : x \in B_{\alpha} \end{cases} \Leftrightarrow \exists \alpha \in I : x \in A \bigcap B_{\alpha} \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \bigcap B_{\alpha})$$

Def. Бинарным отношением R на $A \times B$ называется $R \subset A \times B$

$$R = \{ \langle a, b \rangle | a \in A, b \in B \}$$

$$\langle a, b \rangle \in R \Leftrightarrow aRb$$

 $\mathbf{Def.}\ \sigma_R = \{a \in A | \exists b \in B : \langle a,b \rangle \in R\}$ - область определения бинарных отношений

Def.
$$R^{-1} = \{ \langle b, a \rangle \mid \langle a, b \rangle \in R \}$$
 - обратное отношение

Def.
$$R_1 \circ R_2 \subset A \times C$$
; $\begin{cases} R_1 \subset A \times B \\ R_2 \subset B \times C \end{cases}$

Def.
$$\partial_R = \{a \in A | \exists b \in B : \langle a, b \rangle \in R\}$$
 - область определения бинарных отношений **Def.** $\rho_R = \{b \in B | \exists a \in A : \langle a, b \rangle \in R\}$ - множество значений бинарных отношений **Def.** $R^{-1} = \{\langle b, a \rangle | \langle a, b \rangle \in R\}$ - обратное отношение **Def.** $R_1 \circ R_2 \subset A \times C; \begin{cases} R_1 \subset A \times B \\ R_2 \subset B \times C \end{cases}$ $R_1 \circ R_2 = \{\langle a, c \rangle | \exists b \in B \end{cases} \begin{cases} \langle a, b \rangle \in R_1 \\ \langle b, c \rangle \in R_2 \end{cases}$

Свойства бинарных отнош

1. R - рефлексивное, если $\forall a \in A < a, a > \in R$

2. R - иррефлексивное, если $\forall a \in A < a, a > \notin R$

3. R - симметричное, если $\langle a, b \rangle \in R \Rightarrow \langle b, a \rangle \in R$

4. R - антисимметричное, если
$$\begin{cases} < a,b> \in R \\ < b,a> \in R \end{cases} \Rightarrow a=b$$

5. R - транзитивное, если
$$\begin{cases} < a,b> \in R \\ < b,c> \in R \end{cases} \Rightarrow < a,c> \in R$$

Def. R - отношение эквивалентности, если R рефлексивно, симметрично, транзитивно

Def. R - нестрогий частичный порядок, если R - рефлексивно, антисимметрично, транзитивно

Def. R - строгий частичный порядок, если R - иррефлексивно, транзитивно

$$\mathbf{Def.} egin{cases} < a,b> \in R \ < a,c> \in R \end{cases} \Rightarrow b=c,$$
 тогда R - функция f

Def. It - Строгии частичный порядок, сели It - прре
$$c = 1$$
 ($c = 1$) $c = 1$ ($c = 1$) $c = 1$ c

Def. f - сюрьективная, если $\forall y \in Y \exists x \in X : f(x) = y$

Def. f - биективная, если f - инъективная и сюрьективная

Вещественные числа

Две операции в ℝ

1. Сложение

$$A_1 \ a+b=b+a$$
 - коммутативность
$$A_2 \ (a+b)+c=a+(b+c)$$
 - ассоциативность
$$A_3 \ \exists 0 \in \mathbb{R}: a+0=a; \forall a \in \mathbb{R}$$
 - существование нейтрального
$$A_4 \ \forall a \in \mathbb{R} \exists -a: a+(-a)=0$$
 - существование обратного

2. Умножение

$$M_1$$
 $a\cdot b=b\cdot a$ - коммутативность
$$M_2$$
 $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ - ассоциативность
$$M_3$$
 $\exists 1\in\mathbb{R}:a\cdot 1=a; \forall a\in\mathbb{R}$ - существование нейтрального
$$M_4$$
 $\forall a\neq 0\in\mathbb{R} \exists a^{-1}\in\mathbb{R}:a\cdot a^{-1}=1$ - существование обратного

 $AM \ \forall a,b,c \in \mathbb{R}(a+b) \cdot c = a \cdot c + b \cdot c$ - дистрибутивность

Rem. Если соблюдаются все эти аксиомы, то поле

Аксиомы порядка:

- $\forall x, y \in \mathbb{R} x \leq y$ или $y \leq x$
- $OA \ a < b \Rightarrow a + c < b + c$

•
$$OM$$
 $\begin{cases} a \ge 0 \\ b \ge 0 \end{cases} \Rightarrow 0 \le a \cdot b$

Аксиома полноты:

$$A \neq \emptyset, \ B \neq \emptyset, \ A, B \subset R$$
 $\forall a \in A$ $a \leq b \Rightarrow \exists c \in R : a \leq c \leq b (\forall a \in A, \forall b \in B)$ \mathbb{Q} не удовлетворяет аксиоме полноты: $A = \{x \in \mathbb{Q} | x^2 < 2\}$ $B = \{x \in \mathbb{Q} | x^2 > 2\}$ Между ними только $\sqrt{2} \notin \mathbb{Q}$ Следствие (принцип Архимеда): $\forall x \in \mathbb{R}$ $\forall y \in \mathbb{R}, y > 0$ $\exists n \in \mathbb{N} : x < ny$

$$\begin{array}{l} fix\; y>0 \\ A=\{x\in\mathbb{R}|\exists n:x< ny\} \\ \Pi \text{ усть } A\neq\mathbb{R}\Rightarrow\mathbb{R}\backslash A=B\neq\emptyset \\ A\neq\emptyset,\; \text{ т.к. } 0\in A \\ \exists \text{ Левее }\; \text{ ли } A,\; \text{ чем }B \\ \Pi \text{ усть } a\in A \\ \end{array}$$

$$\begin{array}{l} b\in B \\ a\in A \\ \end{array} : b< a< ny\Rightarrow b< ny\Rightarrow b\in A,\; \text{ но из }\mathbb{R}\backslash A=B\Rightarrow A\cap B=\emptyset\Rightarrow \\ \\ \left\{ \Rightarrow\forall a\in A,b\in B,a\leq b \\ A,B\subset\mathbb{R} \\ A\neq\emptyset \\ B\neq\emptyset \\ \end{array} \right. \Rightarrow \exists c\in\mathbb{R}: a\leq b\leq c(\forall a\in A,b\in B) \\ \left\{ c\cdot y< c\Rightarrow c-y\in A\Rightarrow\exists n\in\mathbb{N}: c-y< ny\Rightarrow c< (n+1)y \\ \left\{ c< c+y\Rightarrow c\in B \\ \end{array} \right. \Rightarrow c+y<(n+2)y\Rightarrow c+y\in A \; \text{ противо-} \\ \text{ речие } A\cap B=\emptyset\Rightarrow A=\mathbb{R} \\ \text{ Следствие: } \\ \text{ Следствие: } \\ \text{ То вас } \mathbb{R} : a\in\mathbb{R} : a\in\mathbb{R} \\ \text{ Следствие: } \\ \text{ То вас } \mathbb{R} : a\in\mathbb{R} : a\in\mathbb{R$$

$$\forall \varepsilon > 0 \; \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

 $\frac{1}{n} < \varepsilon \Leftrightarrow 1 < n\varepsilon$ - принцип Архимеда $x = 1, y = \varepsilon$

Аксиома индукции (метод математической индукции; принцип математической индукции)

 $P_1, P_2, \cdots P_n \cdots$ - последователььностьь утверждений

$$\left\{ egin{aligned} \mathbf{P}_1 \text{ - истина (база)} \\ \mathbf{P}_n \text{ - истина} &\Rightarrow P_{n+1} \text{ - истина (переход)} \end{aligned}
ight. \Rightarrow \forall n \in \mathbb{N} \ P_n \text{ - истина}$$

ть. Во всяком конечном множестве вещественных чисел есть наибольший и наименьший элементы

$$a = \max A \Leftrightarrow \begin{cases} a \in A \\ \forall x \in A \end{cases} \quad x \le a$$
$$b = \min A \Leftrightarrow \begin{cases} b \in A \\ \forall x \in A \end{cases} \quad x \ge b$$

Доказательство

 P_n - в множестве из n элементов есть наибольший и наименьший элементы

- 1. P_1 истина, т.к. в множестве из 1 элемента он и наибольший, и наименьший
- 2. $P_n \Rightarrow P_{n+1}$

$$A = \{a_1, a_2 \cdots a_{n+1}\}\$$

$$B = \{b_1, b_2 \cdots b_n\}$$
 - n элементов $\Rightarrow \exists max B = \tilde{a}$

$$\tilde{a} \in B \Rightarrow \tilde{a} \in A$$

$$\forall k, 1 \le k \le n \ a_k \le \tilde{a}$$

Случаи:

•
$$a_k \le \tilde{a} \le a_{n+1} \Rightarrow a_{n+1} = maxA$$

•
$$a_{n+1} < \tilde{a} \Rightarrow \tilde{a} = maxA$$

Def. Множество A называется ограниченным сверху, если $\exists c \in \mathbb{R} : a \leq c, \forall a \in A$

Def. Множество A называется ограниченным снизу, если $\exists c \in \mathbb{R} : a \geq c, \forall a \in A$

 $\mathbf{Def.}$ Множество A называется ограниченным, если оно ограничено и сверху, и снизу

$$\exists c_1, c_2 : c_1 \le a \le c_2, \forall a \in A$$

Th.

- 1. В любом непустом ограниченном сверху множестве целых чисел есть наибольший элемент
- 2. В любом непустом ограниченном снизу множестве целых чисел есть наименьший элемент
- 3. В любом непустом ограниченном сверху множестве натуральных чисел есть наибольший и наименьший элементы

Доказательство

$$A; a \in \mathbb{Z}, \forall a \in A$$

b - верхняя граница

 $\forall a \in A \ a \leq b$. Возьмем $\tilde{a} \in A$

$$\begin{cases} B = \{a \in A | a \geq \tilde{a}\} \\ B \text{ - конечное множество} \end{cases} \Rightarrow \exists max B = \tilde{\tilde{a}}$$

 $\tilde{\tilde{a}} = maxA$, t.k. $\tilde{a} \leq \beta \in B \leq \tilde{\tilde{a}}$

Def. $x \in \mathbb{R}$; [x] = |x| - целая часть числа

[x] - наибольшее целое число, не превосходящее x

Свойства:

1.
$$[x] \le x \le [x] + 1$$

2.
$$x - 1 < [x] < x$$

- 1. [x] < x определение
- 2. Пусть $x \geq [x] + 1 \in \mathbb{Z}$, тогда [x] не наиболььшее, что противоречит определению

$$\mathbf{Th.} \ x,y \in \mathbb{R}: y > x \Rightarrow \begin{matrix} 1) \exists r \in \mathbb{Q}: x < r < y \\ 2) \exists s \notin \mathbb{Q}: x < s < y \end{matrix}$$

Доказательство

- 1. $x < y \Rightarrow y x > 0 \Rightarrow$ (по следствию из принципа Архимеда) $\exists n \in N : \frac{1}{n} < y x \Leftrightarrow \frac{1}{n} + x < y$ $r = \frac{[nx]+1}{n} > \frac{nx}{n} = x$ $r = \frac{[nx]+1}{n} = \frac{[nx]}{n} + \frac{1}{n} \le \frac{nx}{n} + \frac{1}{n} = x + \frac{1}{n} < y$ x < r < y
- 2. $\sqrt{2} \notin \mathbb{Q}$ $x < y \Rightarrow x - \sqrt{2} < y - \sqrt{2} \Rightarrow$ (по п.1) $\exists r \in \mathbb{Q} : x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow x < r + \sqrt{2} < y$

§3. Супремум и инфимум

Def. $A \subset \mathbb{R}, A \neq \emptyset, A$ - ограничено сверху supA - наименьшая (точная) верхняя граница **Def.** $A \subset \mathbb{R}, A \neq \emptyset, A$ - ограничено снизу infA - наибольшая (точная) нижняя граница Th.

- 1. У любого непустого ограниченного сверху множества вещественных чисел существует единственный супремум
- 2. У любого непустого ограниченного снизу множества вещественных чисел существует единственный инфимум

Доказательство

- 1. Единственность очевидно
- 2. Существование:

$$A \neq \emptyset, A \subset \mathbb{R}$$

B - множество всех верхних границ

$$B \neq \emptyset, B \subset \mathbb{R}$$

$$\forall a \in A \\ \forall b \in B \ a \le b$$

$$\forall b \in B \ a \leq b$$

Тогджа по аксиоме полноты $\exists c \in \mathbb{R} : a \leq c \leq b (\forall a \in A, \forall b \in B)$

 $\forall a \in A \ a \leq c \Rightarrow c$ - верхняя граница $A \Rightarrow c \in B$

$$\forall b \in B \ c \leq b \Rightarrow c = minB \Rightarrow c = supA$$

Следствия:

1.
$$\begin{cases} A \neq \emptyset \\ A \subset B \subset \mathbb{R} \\ B \text{ - ограничено сверху} \end{cases} \Rightarrow sup A \leq sup B$$

2.
$$\begin{cases} A \neq \emptyset \\ A \subset B \subset \mathbb{R} \\ B \text{ - ограничено снизу} \end{cases} \Rightarrow inf A \geq inf B$$

Доказательство

$$\begin{cases} B \neq \emptyset \\ B \subset \mathbb{R} \\ B \text{ - ограничено сверху} \end{cases} \Rightarrow \exists supB \Rightarrow \forall b \in B \ b \leq supB \Rightarrow \forall a \in A \ a \leq supB \Rightarrow \exists supA \Rightarrow supA \leq supB$$
 Обозначения:

- 1. A не является ограниченным сверху $\Rightarrow sup A = +\infty$
- 2. A не ограничено снизу $\Rightarrow infA = -\infty$

Th. (характеристика супремума и инфимума)

1.
$$a = supA \Leftrightarrow \begin{cases} \forall x \in A, x \leq a \\ \forall \varepsilon > 0, \exists x \in A : x > a - \varepsilon \end{cases}$$

$$2. \ b = infA \Leftrightarrow \begin{cases} \forall x \in A, x \geq b \\ \forall \varepsilon > 0, \exists x \in A : x < b + \varepsilon \end{cases}$$

Доказательство

- 1. $\forall x \in A, x \geq b \Rightarrow b$ нижняя граница A
- 2. $\forall \varepsilon>0, \exists x\in A: x< b+\varepsilon \Rightarrow$ все числа >b не являются нижними гранциами множества $A\Rightarrow b$ наибольшая нижняя граница $\Rightarrow b=infA$

Th. о вложенных отрезках

$$[a_1;b_1]\supset [a_2;b_2]\supset\cdots\supset [a_n;b_n]\supset\cdots$$
, тогда $\exists c\in\mathbb{R}:c\in[a_n;b_n] \forall n\in\mathbb{N}$ Другими словами $\bigcap_{n=1}^{+\infty}[a_n;b_n]\neq\emptyset$

Доказательство

$$\begin{aligned} a_1 &\leq a_2 \leq a_3 \cdots, \ A = \{a_1, a_2 \cdots\} \\ b_1 &\geq b_2 \geq b_3 \cdots, \ B = \{b_1, b_2 \cdots\} \\ A &\neq \emptyset, B \neq \emptyset; A, B \subset R \\ \forall a_n \leq b_n \\ ?a_k &\leq b_m \end{aligned}$$

- 1. $k < m, a_k \le a_m \le b_m$
- 2. k > m. $a_k \le b_k \le b_m$
- 3. $k = m, a_k \leq b_m$

По аксиоме полноты $\exists c \in \mathbb{R} : a \leq c \leq b (\forall a \in A, \forall b \in B) \Rightarrow \forall n \ a_n \leq c \leq b_n \Rightarrow c \in [a_n; b_n] \forall n \in \mathbb{N}$ Замечания:

- 1. Таких точек может быть много
- 2. Интервалов недостаточно
- 3. Лучей недостаточно

Глава 2. Последовательности вещественных чисел §1. Пределы последовательности

Def. Последовательность - функция натурального аргумента $f: \mathbb{N} \to \mathbb{R} \Leftrightarrow \{f_n\}_{n=1}^{+\infty}$ $f(1) \leftrightarrow f_1$

Как задавать последовательность?

- Формулой (форму общего члена последовательности)
- Описательно
- Рекуррентно
- График последовательности (двумерный или одномерный, но второй неудобен, если какие-то точки дублируются)

Def. x_n называется ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} \ x_n \leq M$

Def. y_n называется ограниченной снизу, если $\exists m \in \mathbb{R} : \forall n \in \mathbb{N} \ y_n \geq m$

Def. z_n называется ограниченной, если она ограничена и сверху, и снизу $\Leftrightarrow \exists c > 0 : \forall n \in \mathbb{N} \ |z_n| < c$

Def. x_n называется монотонно возрастающей, если $\forall n \in \mathbb{N} \ x_{n+1} \geq x_n$

Def. y_n строго монотонно возрастает, если $\forall n \in \mathbb{N} \ y_{n+1} > y_n$

Def. x_n монотонно убывает, если $\forall n \in \mathbb{N} \ x_{n+1} \leq x_n$

Def. y_n строго монотонно убывает, если $\forall n \in \mathbb{N} \ y_{n+1} < y_n$

Def. z_n монотонная, если она мотонно возрастает или монотонно убывает

Def. z_n строго монотонная, если она строго монотонно возрастает или строго монотонно убывает

Def.(1) (неклассическое)

 $a \in \mathbb{R}$

 $a=\lim_{\substack{n\to\infty\\\mathrm{cne}$ довательности

Rem. Можно рассматривать тольько симметричные интервалы

Def.(2) (классическое)

 $a \in \mathbb{R}$

$$a = \lim_{n \to \infty} x_n \Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n \geq N \ |x_n - a| < \varepsilon$$

Последнее неравенство равносильно выбору симметричного интервала, отсюда равносильность определений

$$\exists N \in \mathbb{N} \Leftrightarrow N = N(\varepsilon)$$

Свойства:

1. Если предел существует, то он единственный

Доказательство

От противного:
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} x_n = b \\ a \neq b \end{cases}$$

Пусть $\varepsilon = \frac{|b-a|}{3}$, тогда окрестности будут непересекающимися \Rightarrow либо вне $(a-\varepsilon, a+\varepsilon)$ бесконечно много членов и вне $(b-\varepsilon, b+\varepsilon)$ бесконечно много членов, либо число n - конечно, оба варианта неверны

- 2. Если из последовательности удалить конечное число членов, то предел не изменится
- 3. Если переставить члены последовательности, то предел не изменится
- 4. Если записать некоторые члены последовательности с конечной кратностью, то предел не изменится
- 5. Если добавить конечное число членов последовательности, то предел не изменится
- 6. Если изменить конечное число членов последовательности, то предел не изменится
- 7. Если последовательность имеет предел, то она ограничена

Окрестность (a-1, a+1)

Снаружи лишь конечное число членов, в их множестве существует наибольший и наименьший элемент

Пусть $x_{\tilde{N}}$ - наибольший, а $x_{\tilde{N}}$ - наименьший, тогда

$$M=\max\{a+1,x_{\tilde{N}}\}$$
 и $m=\min\{a-1,x_{\tilde{\tilde{N}}}\}$

$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \forall \varepsilon > 0 \exists N : \forall n \ge N \begin{cases} |x_n - a| < \varepsilon \\ |y_n - b| < \varepsilon \end{cases}$$

Доказательство

Для
$$x_n \ \forall \varepsilon_1 > 0 \ \exists N_1 : \forall n \geq N_1 \ |x_n - a| < \varepsilon_1$$

Для $y_n \ \forall \varepsilon_2 = \varepsilon_1 \ \exists N_2 : \forall n \geq N_2 \ |y_n - b| < \varepsilon_2$
 $\varepsilon = \varepsilon_2 = \varepsilon_1; \ N = \max\{N_1, N_2\}$

8. Предельный переход в неравенстве

$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \\ \forall n \in \mathbb{N}; x_n \le y_n \end{cases} \Rightarrow a \le b$$

Доказательство

Пусть b < a

Возьмем $\varepsilon = \frac{|a-b|}{3}$, окрестности не пересекаются

По лемме для нашего
$$\varepsilon$$
 $\exists N: \forall n \geq N \begin{cases} |x_n - a| < \varepsilon \\ |y_n - b| < \varepsilon \end{cases}$

По лемме для нашего
$$\varepsilon$$
 $\exists N: \forall n \geq N \begin{cases} |x_n-a| < \varepsilon \\ |y_n-b| < \varepsilon \end{cases}$ Рассмотрим $\begin{cases} x_N \in (a-\varepsilon,a+\varepsilon) \\ y_N \in (b-\varepsilon,b+\varepsilon) \end{cases} \Rightarrow x_N > y_N$??

Значит a < b

Rem. $\forall n \ x_n < y_n \not\Rightarrow a < b$

Rem. Необязательно $\forall n \ x_n \leq y_n$, можно использовать $x_n \leq y_n \ \forall n \geq N_0$

9. Стабилизация знака

$$\lim_{n \to \infty} x_n = a \neq 0 \Rightarrow \exists N : \forall n \ge N \ x_n \cdot a > 0$$

Доказательство

Пусть
$$\varepsilon = \frac{|a|}{3}$$

 $\exists N : \forall n > N \mid x_n - a \mid < \varepsilon$

10. Принцип двух миллиционеров (теорема о сжатой переменной)

$$\begin{cases} \lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a \\ \forall n; x_n \le y_n \le z_n \end{cases} \Rightarrow \exists \lim_{n \to \infty} y_n = a$$

Хотим
$$\varepsilon > 0$$
 $\exists N : n \ge N \ |y_n - a| < \varepsilon$

$$fix\varepsilon > 0$$

По лемме
$$\exists N: \forall n \geq N \begin{cases} |x_n - a| < \varepsilon \\ |z_n - a| < \varepsilon \end{cases} \Leftrightarrow \begin{cases} a - \varepsilon < x_n < a + \varepsilon \\ a - \varepsilon < z_n < a + \varepsilon \end{cases}$$

$$fix \varepsilon > 0$$
По лемме $\exists N: \forall n \geq N \begin{cases} |x_n - a| < \varepsilon \\ |z_n - a| < \varepsilon \end{cases} \Leftrightarrow \begin{cases} a - \varepsilon < x_n < a + \varepsilon \\ a - \varepsilon < z_n < a + \varepsilon \end{cases}$
Возьмем $\begin{cases} a - \varepsilon < x_n \\ z_n < a + \varepsilon \end{cases} \Rightarrow a - \varepsilon < x_n \leq y_n \leq z_n < a + \varepsilon \Rightarrow a - \varepsilon < y_n < a + \varepsilon \Leftrightarrow |y_n - a| < \varepsilon \Rightarrow a \leq y_n \leq z_n \end{cases}$
 $\exists \lim_{n \to \infty} y_n = a$

Rem. Можно вместо $\forall n \in \mathbb{N}$ использовать $\exists N_0 : \forall n \geq N_0$

Следствие:
$$\forall n \in \mathbb{N} \begin{cases} |y_n| \leq z_n \\ \lim\limits_{n \to \infty} z_n = 0 \end{cases} \Rightarrow \lim\limits_{n \to \infty} y_n = 0$$

Доказательство

$$|y_n| \le z_n \Leftrightarrow -z_n \le y_n \le z_n$$
, дальше очев

Rem. Вместо
$$\forall n \in \mathbb{N}$$
 можно $\exists N_0 : \forall n \geq N_0$

Теорема о пределе монотонной последовательности

- 1. Если x_n монотонно возрастает и ограничена сверху, то у нее существует пределе
- 2. Если y_n монотонно убывает и ограничена снизу, то у нее есть предел
- 3. Если z_n монотонна, то существование предела равносильно ограниченности z_n

Доказательство

1.
$$\begin{cases} \{x_1,x_2,x_3\cdots x_n\cdots\}=X\\ \exists M: \forall n; x_n\leq M \end{cases} \Rightarrow X$$
 - Ограничена сверху $\Rightarrow \exists supX=a$

Докажем, что
$$\lim_{n\to\infty} x_n = \sup X = a$$

$$\forall \varepsilon > 0 \ \exists N : \forall n \ge N \ |x_n - a| < \varepsilon \Leftrightarrow a - \varepsilon < x_n < a + \varepsilon$$

При этом правая часть верна всегда, докажем левую

$$fix\varepsilon > 0$$

$$a=supX\Rightarrow a\cdot arepsilon
eq supX\Rightarrow \exists x_{\tilde{N}}: x_{\tilde{N}}>a-arepsilon \Rightarrow \forall n\geq \tilde{N}\ x_n>a-arepsilon,$$
 так как x_n монотонно возрастает

$$\Leftarrow \begin{cases} \exists m, M; m \leq z_n \leq M \\ z_n - \text{монотонная} \end{cases} \Rightarrow \begin{bmatrix} z_n \uparrow \Rightarrow z_n \leq M \\ z_n \downarrow \Rightarrow m \leq z_n \end{cases}$$

Def. Последовательность x_n называется бесконечно малой, если $\lim_{n\to\infty}x_n=0$

Свойства:

1.
$$\begin{cases} x_n - \mathsf{б}/\mathsf{M} \\ y_n - \mathsf{ограниченa} \end{cases} \Rightarrow x_n \cdot y_n$$
 - $\mathsf{б}/\mathsf{M}$

2.
$$\begin{cases} \lim_{n \to \infty} x_n = 0 \\ \lim_{n \to \infty} y_n = 0 \end{cases} \Rightarrow \lim_{n \to \infty} x_n + y_n = 0$$

3.
$$\lim_{n\to\infty}x_n=a\Leftrightarrow x_n=a+\alpha_n$$
, где α_n - б/м

1.
$$y_n$$
 - ограничена $\Rightarrow \exists M > 0: |y_n| \leq M \ \forall n \in \mathbb{N}$

$$\lim_{n \to \infty} x_n = 0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \forall n \leq N \ |x_n| < \frac{\varepsilon}{M}$$
Хотим $\forall \varepsilon > 0 \ \exists N: \forall n \geq N \ |x_n \cdot y_n - 0| < \varepsilon$

$$fix\varepsilon > 0$$

Знаем, что
$$\exists N: \forall n \geq N \ \begin{cases} |x_n| < \frac{\varepsilon}{M} \\ |y_n| \leq M \end{cases} \Rightarrow |x_n \cdot y_n| < \varepsilon$$

2.
$$fix\varepsilon > 0$$

$$\begin{cases} \lim_{n\to\infty} x_n = 0 \\ \lim_{n\to\infty} y_n = 0 \end{cases} \Rightarrow \text{по лемме } \varepsilon > 0 \; \exists N : \forall n \geq N \begin{cases} |x_n| < \frac{\varepsilon}{2} \\ |y_n| < \frac{\varepsilon}{2} \end{cases} \\ |x_n + y_n| \leq |x_n| + |y_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow \forall \varepsilon > 0 \; \exists N : \forall n \geq N \; |(x_n + y_n) - 0| < \varepsilon \Rightarrow \lim_{n\to\infty} x_n + y_n = 0 \Rightarrow (x_n + y_n) - 0 \end{cases}$$

3.
$$\forall \varepsilon > 0 \; \exists N : \forall n \geq N \; |x_n - a| < \varepsilon \Leftrightarrow |(x_n - a) - 0| < \varepsilon$$
 Обозначение $x_n - a = \alpha_n$, тогда
$$|\alpha_n - 0| < \varepsilon$$

$$|\alpha_n| < \varepsilon, \; \text{т.e.} \; \lim_{n \to \infty} \alpha_n = 0 \Rightarrow \alpha_n \; \text{- 6/m}, \; \text{а} \; x_n = a + \alpha_n, \; \text{где} \; \alpha_n \; \text{- 6/m}$$

Тh. об арифметических действиях с пределами

1.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \exists \lim_{n \to \infty} x_n + y_n = a + b$$

2.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \end{cases} \Rightarrow \exists \lim_{n \to \infty} x_n \cdot y_n = a \cdot b$$

3.
$$\begin{cases} \lim_{n \to \infty} x_n = a \\ \lim_{n \to \infty} y_n = b \neq 0 \end{cases} \Rightarrow \exists \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$$