Lecture 24: Improper Integral

October 10, 2019

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Remark 24.1 It is useful to keep in mind that the convergence of an improper integral $\int_a^\infty f(x)dx$ is not affected by changing the initial point a of the interval $[a,\infty)$, although the value of improper integral may change by doing so. Indeed, if $a' \geq a$, then

$$\int_a^\infty f(x)dx \text{ is convergent } \iff \int_{a'}^\infty f(x)dx \text{ is convergent }.$$

and if this holds, then the values are related by the equation

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{a} f(x)dx + \int_{a'}^{\infty} f(x)dx$$

Example 24.2 The improper integral $\int_0^\infty \cos x \, dx$ is divergent, since for all $x \in \mathbb{R}$, $\int_0^x \cos t \, dt = \sin x$ and $\lim_{x \to \infty} \sin x$ does not exist.

Definition 24.3 An improper integral $\int_a^{\infty} f(x)dx$ is said to be absolutely convergent if the improper integral $\int_a^{\infty} |f(x)|dx$ is convergent.

Proposition 24.4 An absolutely convergent improper integral is convergent.

Converse is not true. We shall see an example later.

24.1 Convergence Tests for Improper Integrals

Theorem 24.5 (Comparison Test for Improper Integrals) Suppose $a \in \mathbb{R}$ and $f, g : [a, \infty) \to \mathbb{R}$ are such that both f and g are integrable on [a, x] for every $x \ge a$ and $|f| \le g$. If $\int_a^\infty g(x)dx$ is convergent, then $\int_a^\infty f(x)dx$ is absolutely convergent and

$$\left| \int_{a}^{\infty} f(x) dx \right| \le \int_{a}^{\infty} g(x) dx.$$

Example 24.6 Determine if the improper integral $\int_1^\infty \frac{\cos x}{x^2} dx$ converges.

Solution: Note that $\left|\frac{\cos x}{x^2}\right| \leq \frac{1}{x^2}$ for all $x \geq 1$. Since $\int_1^\infty \frac{1}{x^2} dx$ converges, hence improper integral $\int_1^\infty \frac{\cos x}{x^2} dx$ converges.

Theorem 24.7 (Limit Comparison Test for Improper Integrals) Let $a \in \mathbb{R}$ and $f, g : [a, \infty) \to \mathbb{R}$ be such that both f and g are integrable on [a, x] for every $x \ge a$ with f(t) > 0 and g(t) > 0 for all large t. Assume that

$$\lim_{t \to \infty} \frac{f(t)}{g(t)} = l, \quad \text{where } l \in \mathbb{R} \text{ or } l = \infty$$

- 1. If $l \in \mathbb{R}, l \neq 0$, then $\int_a^{\infty} f(x)dx$ converges $\iff \int_a^{\infty} g(x)dx$ converges.
- 2. If l = 0 and $\int_{a}^{\infty} g(x)dx$ converges, then $\int_{a}^{\infty} f(x)dx$ converges.
- 3. If $l = \infty$ and $\int_{a}^{\infty} f(x)dx$ converges, then $\int_{a}^{\infty} g(x)dx$ converges absolutely.

Example 24.8 Let $q \in \mathbb{R}$. Discuss the convergence of improper integral $\int_{1}^{\infty} e^{-t}t^{q} dt$.

Solution Let $f(t) = t^q e^{-t}$, $g(t) = t^{-2}$. Clearly, f(t) > 0, g(t) > 0 for all $t \ge 1$. Now

$$\lim_{t\to\infty}\frac{f(t)}{g(t)}=\lim_{t\to\infty}\frac{e^{-t}t^q}{t^{-2}}=\lim_{t\to\infty}\frac{t^{q+2}}{e^t}=0\quad\text{for any }q\in\mathbb{R}\text{ (By L'Hôpital rule in case }q+2>0)$$

Since
$$\int_1^\infty \frac{1}{x^2} dx$$
 converges, hence by Limit Comparison Test $\int_1^\infty e^{-t} t^q dt$ converges.

Theorem 24.9 (Dirichlet's Test for Improper Integrals) Let $a \in \mathbb{R}$ and $f, g : [a, \infty) \to \mathbb{R}$ be such that f is monotonic, $f(x) \to 0$ as $x \to \infty$, g is continuous, and the function $G : [a, \infty) \to \mathbb{R}$ defined by $G(x) := \int_a^x g(t)dt$ is bounded. Then the improper integral $\int_a^\infty f(t)g(t)dt$ is convergent.

Example 24.10 Discuss the convergence of $\int_{1}^{\infty} \frac{\sin t}{t} dt$.

Solution Let $f(t) = \frac{1}{t}$, $g(t) = \sin t$. Clearly, f is monotonically decreasing on $[1, \infty)$, $f(x) \to 0$ as $x \to \infty$, g is continuous, and $\int_1^x g(t)dt = \cos 1 - \cos x$. Hence $|\int_1^x g(t)dt| \le |\cos 1| + 1$ for all $x \ge 1$. Hence by Dirichlet's test $\int_1^\infty \frac{\sin t}{t} dt$ converges. But $\int_1^\infty \frac{\sin t}{t} dt$ does not converge absolutely. Note that $a^2 \le |a|$ if $|a| \le 1$. This tells us that $\sin^2 x \le |\sin x|$ for all $x \in \mathbb{R}$. Hence

$$\left| \frac{\sin t}{t} \right| \ge \frac{\sin^2 t}{t} = \frac{1 - \cos 2t}{2t}, \ \forall t \ge 1.$$

Hence for each $x \geq 1$ we have

$$\int_{1}^{x} \left| \frac{\sin t}{t} \right| dt \ge \int_{1}^{x} \frac{1}{2t} dt - \int_{1}^{x} \frac{\cos 2t}{2t} dt$$
Now
$$\int_{1}^{\infty} \frac{\cos 2t}{2t} dt \text{ converges by Dirichlet's test } \left(\left| \int_{a}^{x} \cos 2t dt \right| = \left| \frac{\sin 2x - \sin 2}{2} \right| \le \frac{1 + |\sin 2|}{2} \right)$$
But
$$\int_{1}^{\infty} \frac{1}{2t} dt \text{ diverges to infinity, hence } \int_{1}^{\infty} \left| \frac{\sin t}{t} \right| dt \text{ diverges to infinity.}$$

24.2 Other improper integrals of the first kind

Suppose $b \in \mathbb{R}$ and $f: (-\infty, b] \to \mathbb{R}$ is integrable on [x, b] for every $x \leq b$. Then an integral of the form $\int_{-\infty}^{b} f(x)dx$ is called an improper integral of the first kind. One can convert improper integral $\int_{-\infty}^{b} f(x)dx$ to the type $\int_{a}^{\infty} g(t)dt$ by using substitution x = -t. Next, let $f: \mathbb{R} \to \mathbb{R}$ be a function that is integrable on [a, b] for all $a, b \in \mathbb{R}$ with $a \leq b$. We say that $\int_{-\infty}^{\infty} f(t)dt$ is convergent if both $\int_{0}^{\infty} f(t)dt$ and $\int_{-\infty}^{0} f(t)dt$ are convergent.

24.3 Cauchy Principle value

If the limit $\lim_{x\to\infty} \int_{-x}^{x} f(t)dt$ exists, then this limit is called the Cauchy principal value of the improper integral $\int_{-\infty}^{\infty} f(t)dt$.

If improper integral $\int_{-\infty}^{\infty} f(t)dt$ converges, then since

$$\int_{-x}^{x} f(t)dt = \int_{-x}^{0} f(t)dt + \int_{0}^{x} f(t)dt, \text{ for all } x \ge 0.$$

Therefore Cauchy principal value of $\int_{-\infty}^{\infty} f(t)dt$ exists and is equal to $\int_{-\infty}^{\infty} f(t)dt$. But Cauchy principal value may exit even when integral $\int_{-\infty}^{\infty} f(t)dt$ is divergent. For example consider the improper integral $\int_{-\infty}^{\infty} \sin t dt$. It diverges because $\int_{0}^{x} \sin t dt = 1 - \cos x$, and $\lim_{x \to \infty} \cos x$ does not exist. But

 $\int_{-x}^{x} \sin t dt = 0, \text{ for all } x \ge 0$

So Cauchy principle value exists and it is equal to zero.

24.4 Improper Integral of Second Kind

Definition 24.11 Let $a,b \in \mathbb{R}$ with a < b. Suppose $f : (a,b] \to \mathbb{R}$ be such that f is unbounded on (a,b] but integrable on [x,b] for each $x \in (a,b]$. Then the symbol $\int_a^b f(t)dt$ is called an improper integral of the second kind. We say that $\int_a^b f(t)dt$ is convergent if the right (hand) limit

$$\lim_{x \to a^+} \int_x^b f(t)dt$$

exists.

Example 24.12 Let $p \in \mathbb{R}$ and $f: (0,1] \to \mathbb{R}$ be defined by $f(x) := \frac{1}{x^p}$. (Since f is continuous hence integrable on [x,1] for every $x \in (0,1]$.) As $x \to 0$, $f(x) \to \infty$, hence f is unbounded on (0,1]. consider the improper integral $\int_0^1 \frac{1}{x^p} dx$. Given any $x \in (0,1]$, we have

$$\int_{x}^{1} \frac{1}{t^{p}} dt = \begin{cases} \frac{1 - x^{1-p}}{1 - p} & \text{if} \quad p \neq 1\\ -\ln x & \text{if} \quad p = 1 \end{cases}$$

It follows that if p > 1, then $\lim_{x \to 0^+} x^{1-p} = \infty$ and if p < 1, then $\lim_{x \to 0^+} x^{1-p} = 0$. Hence if p < 1, $\int_0^1 \frac{1}{x^p} dx$ converges to $\frac{1}{1-p}$, while if $p \ge 1$, then it diverges to ∞ .