Name:

Definition 1. A partitioned set is a pair (X, \mathcal{C}) , where X is a set, and \mathcal{C} is a partition of X.

Problem 1. Let (X, \mathcal{C}) and (Y, \mathcal{D}) be partitioned sets, and let $f: X \to Y$. Consider the following conditions on f.

- (1) for every $C \in \mathcal{C}$ there exists $D \in \mathcal{D}$ such that $f(C) \subset D$.
- (2) for every $C \in \mathcal{C}$ there exists $D \in \mathcal{D}$ such that f(C) = D.
- (3) for every $D \in \mathcal{D}$ there exists $C \in \mathcal{C}$ such that $f(C) \subset D$.
- (4) for every $D \in \mathcal{D}$ there exists $C \in \mathcal{C}$ such that f(C) = D.
- (5) for every $D \in \mathcal{D}$ there exists a unique $C \in \mathcal{C}$ such that $f(C) \subset D$.
- (6) for every $D \in \mathcal{D}$ there exists a unique $C \in \mathcal{C}$ such that f(C) = D.

Carefully answer the following questions.

- (a) Do any of these imply that f is injective? surjective? bijective? Are any of these situations impossible?
- (b) Do any of these conditions imply any of the other conditions? Which of the conditions is the weakest in this sense? Which is strongest?
- Solution. (a) None of these imply injectivity. For example, let $X = \{1, 2\}$ and $Y = \{3\}$. Let $\mathcal{C} = \{X\}$ and $\mathcal{D} = \{Y\}$. Define $f: X \to Y$ by f(x) = 3 for x = 1, 2. Then f satisfies all six conditions, and is not injective. This also shows that each of the six situations is possible.
 - Types (4) and (6) imply surjectivity, since every D is covered by f, and \mathcal{D} is a partition. The other types do not imply surjectivity.
- (b) If C = D, then $C \subset D$; thus, it is clear that $(1) \Rightarrow (2)$, $(3) \Rightarrow (4)$, and $(5) \Rightarrow (6)$. Moreover, if something exists uniquely, then it exists; thus $(3) \Rightarrow (5)$ and $(4) \Rightarrow (6)$. The first two are independent of the last four, so there is no strongest or weakest condition.

Definition 2. Let (X, \mathcal{C}) and (Y, \mathcal{D}) be partitioned sets, and let $f: X \to Y$. We will say that f is partition preserving if for every $C \in \mathcal{C}$ there exists $D \in \mathcal{D}$ such that $f(C) \subset D$.

Problem 2. Let $X = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $\mathcal{B} = \{\{1\}, \{2, 3\}, \{4, 5\}, \{6, 7, 8\}\}$ be a partition of X. How many partition preserving bijective functions $X \to X$ exist? Justify your answer.

Solution. Label the blocks A through D, in the order given. A bijective function will map blocks to blocks of the same size. Thus $\{1\}$ is fixed. There are 3!=6 permutations of D. There are 2!=2 permutations of each block B and C, and it is also possible to swap them. That makes $6 \cdot 2 \cdot 2 \cdot 2 = 48$ partition preserving permutations of X.

Problem 3. Let $a, b, c \in \mathbb{Z}$ be positive integers. Show that

- (a) $a \mid a$;
- **(b)** $a \mid b$ and $b \mid a$ implies a = b;
- (c) $a \mid b$ and $b \mid c$ implies $a \mid c$.

Solution. Recall that $x \mid y$ means y = kx for some $k \in \mathbb{Z}$.

- (a) Since $a = 1 \cdot a$, $a \mid a$.
- (b) Suppose that $a \mid b$, and $b \mid a$. Then b = ia and a = jb for some $i, j \in \mathbb{Z}$. Thus b = ijb, so ij = 1, and since i and j are integers, we have $i, j = \pm 1$. But a and b are positive, so i, j = 1. Thus a = b.
- (c) Suppose that $a \mid b$ and $b \mid c$. Then b = ia and c = jb for some $i, j \in \mathbb{Z}$. Thus c = (ji)a, and $ji \in \mathbb{Z}$, so $a \mid c$.