Course Code	Course Title	Total Credits
MCA CT 202	Data structures and Algorithm Analysis	4

Course Objectives

- To impart the basic concepts of data structures, algorithms and the analysis phase of algorithms.
- To Understand basic concepts, implementation and applications of stacks, queues, lists, trees and graphs ·
- To understand concepts about searching and sorting techniques.
- To be familiarized with various algorithm design strategies.
- To choose the appropriate data structure and algorithm design method for a specified application.

Module	Title & Contents	No. of	
No.		Sessions	
1	Introduction: Data Structures, Concepts of Data Structures, Implementation of Data Structures.	10	
	Algorithms: Definition, Performance analysis— Space complexity, Time		
	complexity Asymptotic notation, Practical Complexities, Performance		
	Measurement.		
	Arrays: Ordered lists – representation of array, polynomial addition.		
	Stacks and Queues: Definition and concepts, Operations on stacks.		
	Application of stacks- Evaluation of arithmetic expression, infix to		
	postfix conversion, evaluation of postfix expressions. Queue:-		
	representation of queue, Operations on queue, Circular queue,		
	Deque, Priority queue, Application of queues.		
2	Linked List: Singly linked list- Insertion, deletion, traversing and	10	
	searching. Linked stacks and queues, Doubly linked list- Insertion,		
	deletion, Traverse and Search operations.		
	Trees: Basic terminology, binary trees, binary tree representation,		
	algebraic expressions, binary tree traversals, Binary Search Tree –		
	Insertion and Searching, Balanced Trees – AVL Tree.		
2	Graphs: Terminology and representations, Traversals- BFS, DFS	0	
3	Searching and Sorting: Searching — Linear search, Binary search,	8	
	Comparison of both methods.		
	Sorting – Insertion, Selection, Heap, Radix, Comparison of various sorting methods.		
	Hashing: Hashing Concept, Hash functions, Collision Resolution		
4	Divide and Conquer method – General method, Finding the maximum	10	
-	and minimum, Analysis of Binary search, Quick sort and Merge sort.	10	
	and minimum, Analysis of bindry scarcif, Quick soft and Merge soft.		

	Greedy Method – The general method, Knapsack Problem, Minimum	
	cost spanning tree- Prim's algorithm and Kruskal's algorithm.	
5	Dynamic programming Method- General method, Multistage graphs,	10
	All pairs shortest paths. Backtracking:-The general method, The 8-	
	Queens problem.	
	Branch and Bound General Method, Least Cost search, control	
	abstraction for LC search. Lower Bound Theory- Comparison Trees for	
	Ordered searching, Sorting	

Text Books & References

- 1. Fundamentals of data structures Ellis Horowitz and Sartaj Sahni (Galgotia, 1994)
- 2. Data Structures (Schaum's Outline Series) by Lipschutz Seymour, Tata Mcgraw-hill
- 3. Classic data structures D Samanta, 2 Edn. (PHI, 2009).
- 4. Fundamentals of computer algorithms- Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajeshekharan (Universities Press, 2008)
- 5. Data Structures a pseudocode approach with C –Richard F Gilberg, Behrouz A Forouzan, Thomson Learning, 2 Edn., Cengage Learning C 2005
- 6. Data Structures Through C in Depth, S.K. Srivastava, Deepali Srivastava, (BPB Publications, 2003).

Learning Outcomes

After completing this course the students will

- Have deep knowledge about the organization of data structures, Arrays, Linked Lists, Stacks, Queues, Trees and Graphs.
- ② be able to select the appropriate data structures for solving the given problem.
- ② be familiar with different sorting and searching methods and their features.
- In Know the various algorithm design strategies and their applications. Thus will be able to choose the more suitable method for the given scenario.
- Know how to analyze the performance of devised algorithms using different analysis methods.