Ebola Dynamics

Chelsea Sandridge, Colton Bryant, Kelsey Kalmbach, Paul Diaz, and Sean Lopp

Colorado School of Mines

May 2, 2015

Outline

- Introduction
- The Model
 - Model Assumptions
 - Variable Definitions
 - State Diagram
 - The Model
- Simulations
 - Speed Test
 - Accuracy Analysis
 - Model Simulation
 - Sensitivity in the Inverse Problem
 - MCMC

State Diagram

Figure 1: Illustration of mathematical model

 $\alpha = \text{population growth constant}[3]$

Parameters:

```
\beta_1= transmission rate between infected and susceptible \beta_2= transmission rate between removed and still infectious and susceptible \beta_3= transmission rate between hospitalized and susceptible \delta= rate at which people move from exposed to infected [4] \gamma_1= (\text{average time with disease for unhospitalized individuals})^{-1} \gamma_2= (\text{average time with disease for hospitalized individuals})^{-1} \psi= (\text{average time that people become hospitalized})^{-1} \rho_1=1.1\times\rho_2=\text{the proportion of people who die of the disease who are not hospitalized [5]} \rho_2=\text{the proportion of people who die of the disease who are hospitalized [5]} \omega= (\text{time until one is buried})^{-1}
```

The Model

The Model

$$\frac{dS}{dt} = \alpha S - \beta_1 SI - \beta_2 SR_I - \beta_3 SH$$

$$\frac{dE}{dt} = \beta_1 SI + \beta_2 SR_I + \beta_3 SH - \delta E$$

$$\frac{dI}{dt} = \delta E - \gamma_1 I - \psi I$$

$$\frac{dH}{dt} = \psi I - \gamma_2 H$$

$$\frac{dR_I}{dt} = \rho_1 \gamma_1 I - \omega R_I$$

$$\frac{dR_B}{dt} = \omega R_I + \rho_2 \gamma_2 H$$

$$\frac{dR_R}{dt} = (1 - \rho_1) \gamma_1 I + (1 - \rho_2) \gamma_2 H$$

The Model

Speed Test

Speed Test

Simulations •••••••

Errors for varying tolerances

Accuracy Analysis

Times to compute and resulting errors

Model Simulation

Model Simulation

Sensitivity in the Inverse Problem

Sensitivity in the Inverse Problem

he Model

MCMC

MCMC

MCMC

Results

Sample Size	Noise $\sim N(0, s^2)$	$\bar{\beta_1}$	$\bar{\beta_2}$	$\bar{\beta_3}$	$SD(\hat{\beta_1})$	$SD(\hat{\beta_2})$	$SD(\hat{\beta_3})$
25	0	1.83e-8	5.49e-9	2.16e-9	4.98e-10	5.04e-10	4.97e-10
50	0	1.99e-8	2.01e-9	2.00e-9	5.17e-10	5.60e-10	4.99e-10
25	5	2.00e-8	7.02e-9	1.82e-9	5.28e-10	6.16e-10	5.00e-10
50	5	1.55e-8	4.40e-9	2.59e-9	5.01e-10	5.04e-10	4.96e-10
25	10	na	na	na	na	na	na
50	10	2.01e-8	2.99e-9	2.11e-9	5.077e-10	5.23e-10	5.01e-10

Table 1: Results of MCMC for different sample sizes and different random noise

MCMC

Questions?

References

- Center for Disease Control. Questions and Answers: Estimating the Future Number of Cases in the Ebola Epidemic, 2015.
- [2] J. Lewnard et. al. Dynamics and Control of Ebola virus Transmission in Montserrado, Liberia: a mathematical modeling analysis Department of Epidemiology of Microbial Diseases. Yale, CT. Dec 2014. ttthttp://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa-mmwr-estimating-future-cases.html
- [3] "Population Growth (annual %)." The World Bank. Web. 26 Mar. 2015. http://data.worldbank.org/indicator/SP.POP.GROW.
- [4] "Signs and Symptoms." Centers for Disease Control and Prevention. N.p., n.d. Web. 27 Mar. 2015. http://www.cdc.gov/vhf/ebola/symptoms/index.html.
- [5] "Case Fatality Rate for Ebolavirus." Epidemic: Molecular Epidemiology and Evolution of Viral Pathogens. Web. 17 Apr. 2015. http://epidemic.bio.ed.ac.uk/ebolavirus-fatality-rate.
- [6] Nielsen, Carrie F., Sarah Kidd, Ansumana Sillah, Edward Davis, and Jonathan Mermin. "Improving Burial Practices and Cemetery Management During an Ebola Virus Disease Epidemic — Sierra Leone, 2014." Centers for Disease Control and Prevention. Centers for Disease Control and Prevention, 16 Jan. 2015. Web. 26 Mar. 2015.
- [7] Epatko, Larisa. "70 percent Ebola death rate? Here's how they calculate it." PBS News Hours. N.p., 16 Oct. 2014. Web. 26 Mar. 2015. http://www.pbs.org/newshour/rundown/70-percent-ebola-death-rate-calculate/.
- [8] Shaby, Ben. "Fitting the SIR model to data" Statistical and Applied Mathematical Sciences Institute Undergraduate Workshop. 18 May, 2010. http://www.samsi.info/sites/default/files/Shaby.sir.lab.pdf
- [9] Rivers, Caitlin. "Consolidated, machine-readable ebola situation reports" Virgina Tech Network Dynamics and Simulation Science Laboratory. 31 Dec, 2014. https://github.com/muxspace/ebola.sitrep