# Линейная алгебра

# Дима Трушин

# Билинейные формы

Пусть V – векторное пространство, можно думать для простоты, что  $V = \mathbb{R}^n$ . Тогда билинейная форма на V – это отображение  $\beta \colon V \times V \to \mathbb{R}$  такое, что

- 1.  $\beta(v_1 + v_2, u) = \beta(v_1, u) + \beta(v_2, u)$  для всех  $v_1, v_2, u \in V$ .
- 2.  $\beta(\lambda v, u) = \lambda \beta(v, u)$  для всех  $v, u \in V$  и  $\lambda \in \mathbb{R}$ .
- 3.  $\beta(v, u_1 + u_2) = \beta(v, u_1) + \beta(v, u_2)$  для всех  $v, u_1, u_2 \in V$ .
- 4.  $\beta(v, \lambda u) = \lambda \beta(v, u)$  для всех  $v, u \in V$  и  $\lambda \in \mathbb{R}$ .

Думать про эту процедуру надо так: у нас даны два вектора v и u из V, мы их «перемножаем» и получаем число  $\beta(v,u) \in \mathbb{R}$ . Самый важный пример билинейной формы – стандартное скалярное произведение: пусть даны два вектора  $x,y \in \mathbb{R}^n$ , зададим тогда  $\beta(x,y) = x^t y = \sum_{i=1}^n x_i y_i$ .

Основной план взаимодействия с билинейными формами такой. Среди всех билинейных форм мы выделим «хорошие» и назовем их скалярными произведениями. Эти товарищи будут иметь хороший геометрический смысл, с помощью которого мы определим движения в векторных пространствах. Но нашей конечной целью будет изучение самих движений с помощью скалярных произведений.

# Как задавать билинейные формы

Пусть V – векторное пространство с базисом  $e_1, \ldots, e_n$  и  $\beta$  – билинейная форма на V. Тогда определим числа  $b_{ij} = \beta(e_i, e_j)$  – произведения базисных векторов, и составим из них матрицу  $B \in \mathrm{M}_n(\mathbb{R})$ . Тогда для любых векторов  $v = x_1e_1 + \ldots + x_ne_n$  и  $u = y_1e_1 + \ldots + y_ne_n$  имеем

$$\beta(v,u) = \sum_{ij} x_i y_j \beta(e_i, e_j) = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

В частности, если  $V = \mathbb{R}^n$  и  $x, y \in \mathbb{R}^n$ , а  $e_i$  – стандартный базис. То получаем  $\beta(x, y) = x^t B y$ .

Таким образом и линейные операторы и билинейные формы задаются матрицами. Основная разница между ними – как эта самая матрица меняется при замене базиса. Для операторов ответы мы знаем, для билинейных форм мы сейчас займемся данным вопросом.

#### Смена базиса

Пусть в векторном пространстве V заданы два базиса  $e_1, \ldots, e_n$  и  $f_1, \ldots, f_n$  с матрицей перехода  $C \in \mathrm{M}_n(\mathbb{R})$ , т.е.  $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$ . Пусть нам даны два вектора v и u в V. Тогда их можно разложить по базисным векторам следующим образом

$$v = x_1 e_1 + \dots + x_n e_n = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad u = y_1 e_1 + \dots + y_n e_n = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
$$v = x_1' f_1 + \dots + x_n' f_n = \begin{pmatrix} f_1 & \dots & f_n \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}, \quad u = y_1' f_1 + \dots + y_n' f_n = \begin{pmatrix} f_1 & \dots & f_n \end{pmatrix} \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}$$

<sup>&</sup>lt;sup>1</sup>На самом деле можно рассматривать отображения  $\beta \colon V \times U \to \mathbb{R}$ , то есть можно перемножать вектора из разных пространств, но мы этого делать не будем.

Благодаря матрице перехода C, мы знаем, что

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = Cx' \text{ и } y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix} = Cy'$$

Тогда в базисе  $e_i$  форма записывается в виде  $\beta(v,u)=x^tBy$ , а в базисе  $f_i$  в виде  $\beta(v,u)=(x')^tB'y'$ . Но это одно и то же число посчитанное в разных базисах. Значит

$$(x')^t B' y' = x^t B y = (Cx')^t B C y' = (x')^t C^T B C y'$$

для всех  $x', y' \in \mathbb{R}^n$ . Значит  $B' = C^t B C$ .

### Симметричность и кососимметричность

Форма  $\beta: V \times V \to \mathbb{R}$  называется симметричной, если  $\beta(v,u) = \beta(u,v)$  для всех  $v,u \in V$ . Она называется кососимметричной, если  $\beta(v,u) = -\beta(u,v)$ .

Если в координатах  $\beta(x,y)=x^tBy$ , то  $\beta(y,x)=y^tBx$ . Так как выражение  $y^tBx$  является числом, то оно не меняется при транспонировании, то есть  $y^tBx=(y^tBx)^t=x^tB^ty$ . Значит симметричность означает  $x^tBy=x^tB^ty$  для всех  $x,y\in\mathbb{R}^n$ . А это равносильно тому, что  $B=B^t$ . Такая матрица B называется симметричной. Аналогично, форма кососимметрична, тогда и только тогда, когда  $B^t=-B$ . В этом случае матрица B называется кососимметричной.

### Характеристики билинейных форм

Как и выше  $\beta: V \times V \to \mathbb{R}$  – билинейная форма. И пусть в некотором базисе она задана в виде  $\beta(x,y) = x^t B y$  для некоторой матрицы  $B \in \mathrm{M}_n(\mathbb{R})$ . Посмотрим какие характеристики матрицы B не зависят от выбора базиса.

- 1. Ранг матрицы B не меняется при замене  $B \mapsto C^t BC$ , где  $C \in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица.
- 2. Знак определителя B не меняется при замене  $B \mapsto C^t BC$ , где  $C \in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица. Но сам определитель меняется на  $\det(C)^2$ . Потому можно лишь говорить о ситуации определитель меньше нуля, больше нуля или равен нулю.
- 3. Обратим внимание, что невырожденность матрицы B не меняется при замене  $B\mapsto C^tBC$ , где  $C\in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица.
- 4. След матрицы B вообще говоря может стать каким угодно при замене  $B\mapsto C^tBC$ . Потому он не несет никакой информации.
- 5. Симметричность и кососимметричность матрицы B не зависят от замены  $B \mapsto C^t B C$ .

#### Ядра и ортогональные дополнения

Как и выше  $\beta\colon V\times V\to\mathbb{R}$  – билинейная форма. Множества  $^\perp V=\{v\in V\mid \beta(v,V)=0\}$  и  $V^\perp=\{v\in V\mid \beta(V,v)=0\}$  называются левым и правым ядрами формы  $\beta$ . Эти подмножества являются подпространствами в V. Если в координатах форма задана  $\beta(x,y)=x^tBy$ , то  $^\perp\mathbb{R}^n=\{x\in\mathbb{R}^n\mid x^tB=0\}$  и  $(\mathbb{R}^n)^\perp=\{y\in\mathbb{R}^n\mid By=0\}$ . В частности отсюда видно, что ядра имеют одинаковую размерность равную  $n-\mathrm{rk}\,B$ . Если форма симметричная или кососимметричная, то нет разницы между правыми и левыми ядрами. Ядра – это неинтересная часть пространства, которая «ортогональна» всему относительно этой формы.

Более обще, пусть  $U\subseteq V$  – подпространство в V. Тогда его левым ортогональным дополнением является подпространство  $^{\perp}U=\{v\in V\mid \beta(v,U)=0\}$ . Аналогично, правое ортогональное дополнение это  $U^{\perp}=\{v\in V\mid \beta(U,v)=0\}$ . Если в координатах форма задана  $\beta(x,y)=x^tBy$  и  $U=\langle u_1,\ldots,u_k\rangle$ . Пусть D – матрица составленная из столбцов  $u_i$ . Тогда  $^{\perp}U=\{x\in\mathbb{R}^n\mid x^tBD=0\}$  и  $U^{\perp}=\{y\in\mathbb{R}^n\mid D^tBy=0\}$ . Обычно ортогональные дополнения и ядра интересны в случае симметрических или кососимметрических форм, так как в этом случае левые и правые ортогональные дополнения равны между собой.

<sup>&</sup>lt;sup>2</sup> Напомним, что матрица A линейного оператора  $\phi \colon V \to V$  меняется по правилу  $A' = C^{-1}AC$ .

### Симметричные формы

**Утверждение.** Пусть  $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  – симметрическая билинейная форма заданная  $\beta(x,y) = x^t By$ . Тогда существует такой базис, что матрица B диагональная u на диагонали стоят либо 1, либо -1, либо 0, т.е. блочно имеет вид  $B' = {E \choose 0}$ . При этом количество единиц u минус единиц на диагонали не зависит от базиса.

На это утверждение еще можно смотреть так. Для любой симметрической матрицы  $B \in \mathrm{M}_n(\mathbb{R})$  можно найти такую невырожденную матрицу  $C \in \mathrm{M}_n(\mathbb{R})$ , что матрица  $C^tBC$  имеет описанный диагональный вид.

Суммарно количество единиц и минус единиц дает ранг матрицы B, то есть ранг билинейной формы. Тот факт, что количество единиц и минус единиц является инвариантом формы надо понимать так: у нас ранг как бы складывается из положительной и отрицательной части и размеры этих частей определены однозначно.

Количество единиц #1 в таком виде называется положительным индексом инерции формы, количество минус единиц # -1 – отрицательным индексом, а количество нулей #0 – нулевым индексом. Вместе набор чисел (#1, # -1, #0) называется сигнатурой формы.

# Определение сигнатуры формы

Для определения сигнатуры формы используется метод Якоби. Этот метод работает почти всегда и я поясню, что это значит и что делать, когда он не работает. Но прежде всего я хочу обратить внимание, что у него есть ограничения на входные данные. Матрица B обязательно должна быть невырождена. Это в частности означает, что метод работает только для форм у которых в сигнатуре только единицы и минус единицы и совсем нет нулей.

**Метод Якоби** Пусть  $B \in \mathrm{M}_n(\mathbb{R})$  – симметричная невырожденная матрица и  $\beta(x,y) = x^t B y$ . Выделим в матрице B верхние левые блоки:

То есть  $B_k$  – подматрица состоящая из первых k строк и столбцов. Теперь определим числа  $\Delta_k = \det(B_k)$ , которые называются угловыми минорами. Если так получилось, что все числа  $\Delta_k$  НЕ равны нулю, то мы строим последовательность

$$\Delta_1, \frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_2}, \dots, \frac{\Delta_n}{\Delta_{n-1}}$$

Тогда положительный индекс инерции для B равен количеству положительных чисел в этой последовательности, а отрицательный индекс инерции равен количеству отрицательных чисел в этой последовательности.

**Что делать, если встретились нули** Нам на самом деле надо чуть-чуть пошевелить матрицу B правильным образом. Мы можем сгенерировать случайную матрицу C. Она с вероятностью один будет невырожденной. Потом надо рассмотреть матрицу  $B' = C^t B C$  и применить метод Якоби к матрице B' вместо B. Сделаю одно замечание по организации вычислений. В этом методе надо генерировать случайную матрицу C и НЕ проверять ее на невырожденность. Вместо этого, надо сразу применить метод Якоби к матрице B'. Если все  $\Delta_k$  оказались не нулевые, то нам повезло и метод и так сработал (матрица C в этом случае автоматически окажется невырожденной). А если не повезло, то нам все равно надо будет генерировать новую матрицу C и не важно какой она была.

**Продвинутый метод определения сигнатуры** Пусть  $B \in \mathrm{M}_n(\mathbb{R})$  – симметричная матрица и  $\beta(x,y) = x^t B y$ . Тогда найдем спектр матрицы B с кратностями. В случае симметрической матрицы окажется, что спектр будет обязательно вещественным. Тогда количество положительных чисел в спектре с учетом кратности равно положительному индексу инерции, количество отрицательных чисел в спектре с кратностью равно отрицательному индексу инерции, а количество нулей – нулевому индексу. Надо понимать, что сам спектр

не является корректно определенной величиной для билинейной формы, он может измениться кардинальной при смене базиса, но знаки собственных значений, оказывается, не изменятся.

# Квадратичные формы

Если нам дана какая-то билинейная форма  $\beta\colon V\times V\to\mathbb{R}$ , то отображение  $Q\colon V\to\mathbb{R}$  вида  $Q(x)=\beta(x,x)$  называется квадратичной формой. Если векторное пространство  $V=\mathbb{R}^n$ , то билинейная форма превращается в  $\beta(x,y)=x^tBy$ , а соответствующая квадратичная форма в  $Q(x)=x^tBx$ . Если расписать явно последнее выражение, то мы получим

$$Q(x) = \beta(x, x) = x^t B x = \sum_{ij} b_{ij} x_i x_j = \sum_{i} b_{ii} x_i^2 + \sum_{i < j} (b_{ij} + b_{ji}) x_i x_j$$

Обратите внимание, что в отличие от билинейной формы, квадратичная форма не однозначно задается матрицей B. Действительно,

$$Q(x_1,x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2x_1x_2$$

За счет этого эффекта, при переходе к квадратичным формам от билинейных, мы теряем часть информации. Однако, квадратичная форма однозначно задается симметрической матрицей B, то есть матрицей B с условием  $B^t=B$ . В примере выше – это последний случай.

Для полноты картины добавлю, что в случае симметричной матрицы B или что то же самое симметричной билинейной формы  $\beta$ , мы можем вернуться от квадратичной формы к билинейной с помощью так называемой поляризационной формулы, а именно

$$\beta(x,y) = \frac{Q(x+y) - Q(x) - Q(y)}{2}$$

Идейно это означает, что изучать симметричные билинейные формы – это то же самое, что изучать квадратичные формы. Но у квадратичных форм есть красивый геометрический смысл. Его мы и обсудим далее.

#### Графики квадратичных форм

Пусть  $V = \mathbb{R}^2$ . Тогда квадратичная форма Q(x,y) задает функцию от двух переменных, а именно z = Q(x,y). Давайте нарисуем ее графики в некоторых частных случаях.

1. 
$$z = x^2 + y^2$$
. Начало координат – точка минимума. Матричная запись  $z = Q(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}^t \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ 



2. 
$$z=-x^2-y^2$$
. Начало координат – точка максимума. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



3.  $z=x^2$ . Минимум достигается на прямой x=0. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}1&0\\0&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



4.  $z=-x^2$ . Максимум достигается на прямой x=0. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}-1&0\\0&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



5.  $z=x^2-y^2$ . Начало координат — седловая точка. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



Обратите внимание, что поведение графика зависит от знаков чисел на диагонали матрицы два на два. В общем случае поведение графика зависит от сигнатуры формы.

**Классификация билинейных и квадратичных форм** Ниже я все определения отразил в единой табличке. В ней подразумевается, что билинейная форма задана на пространстве размерности n.

| Термин          | Обозначения                           | Условие                                    | Индексы            |
|-----------------|---------------------------------------|--------------------------------------------|--------------------|
| Положительная   | $\beta > 0$ или $Q > 0$               | $\forall x \neq 0 \Rightarrow Q(x) > 0$    | #1 = n             |
| Отрицательная   | $\beta < 0$ или $Q < 0$               | $\forall x \neq 0 \Rightarrow Q(x) < 0$    | # - 1 = n          |
| Неотрицательная | $eta\geqslant 0$ или $Q\geqslant 0$   | $\forall x \Rightarrow Q(x) \geqslant 0$   | # - 1 = 0          |
| Неположительная | $\beta\leqslant 0$ или $Q\leqslant 0$ | $\forall x \Rightarrow Q(x) \leqslant 0$   | #1 = 0             |
| Неопределенная  |                                       | $\exists x,y\Rightarrow Q(x)>0$ и $Q(y)<0$ | #1 > 0 и $#-1 > 0$ |

### Скалярные произведения

Билинейная форма  $\beta\colon V\times V\to\mathbb{R}$  называется скалярным произведением, если она

- 1. симметрична  $\beta(v, u) = \beta(u, v)$ .
- 2. положительно определена, т.е. для любого ненулевого вектора  $v \in V$  имеем  $\beta(v,v) > 0$ .

В этом случае пишут (v,u) вместо  $\beta(v,u)$ . Самый важный пример – стандартное скалярное произведение:  $(x,y)=x^ty$ , где  $x,y\in\mathbb{R}^n$ . Векторное пространство, в котором зафиксировано какое-либо скалярное произведение называется Eеклидовым пространством.

По определению скалярного произведения у него в сигнатуре присутствуют только единицы, а минус единиц и нулей нет. В частности это означает, что матрица скалярного произведения всегда невырождена. Кроме того это еще означает, что для любого скалярного произведения существует такой базис, что в нем матрица B становится единичной матрицей. По-другому, на этот факт можно смотреть так: какие-бы два евклидовых пространства одинаковой размерности вы ни взяли бы, они оказываются одинаковыми (формально изоморфными).

#### Углы и расстояния

Пусть V – евклидово пространство. Тогда *длина* вектора v это  $|v| = \sqrt{(v,v)}$ . Если  $v,u \in V$  – два вектора, то определим *угол*  $\alpha_{v,u}$  между этими векторами из равенства  $\cos \alpha_{v,u} = \frac{(v,u)}{|v||u|}$ .

Два вектора v и u называются ортогональными, если (v,u)=0, т.е. угол между векторами  $90^\circ$ . Базис  $e_1,\ldots,e_n$  называется ортогональным, если любая пара векторов из базиса ортогональна, т.е.  $(e_i,e_j)=0$  при  $i\neq j$ . Базис называется ортонормированным, если он ортогонален и все вектора имеют длину 1, т.е.  $(e_i,e_j)=0$  при  $i\neq j$  и  $(e_i,e_i)=1$ . По определению матрицы билинейной формы  $b_{ij}=(e_i,e_j)$ , а значит в ортонормированном базисе скалярное произведение имеет вид  $(x,y)=x^ty$ .

# Отртогонализация Грама-Шмидта

Дано Множество векторов  $v_1, \ldots, v_k \in \mathbb{R}^n$ .

**Задача** Найти множество  $u_1, \ldots, u_s$  такое, что  $u_i$  попарно ортогональны и  $\langle v_1, \ldots, v_k \rangle = \langle u_1, \ldots, u_s \rangle$ .

#### Алгоритм

- 1. Берем первый ненулевой вектор среди  $v_i$ . Пусть это будет  $v_1$ . Тогда полагаем  $u_1 = v_1$ .
- 2. Рассмотрим  $v_2 \frac{(v_2, u_1)}{(u_1, u_1)} u_1$ . Если этот вектор не ноль, то обозначим его за  $u_2$ . Если ноль, то выкинем  $v_2$  и перенумеруем вектора так, что  $v_3$  теперь будет вектором  $v_2$ . Повторяем этот шаг до тех пор, пока не найдем  $u_2$  или пока не закончатся вектора  $v_i$ .
- 3. Рассмотрим  $v_3 \frac{(v_3, u_1)}{(u_1, u_1)} u_1 \frac{(v_3, u_2)}{(u_2, u_2)} u_2$ . Если он не ноль, то обозначим его за  $u_3$ . Иначе как и в предыдущем пункте переходим к следующему вектору и повторяем этот шаг.
- 4. Для поиска  $u_i$  надо рассмотреть вектор  $v_i \frac{(v_i, u_1)}{(u_1, u_1)} u_1 \ldots \frac{(v_i, u_{i-1})}{(u_{i-1}, u_{i-1})} u_{i-1}$ . Аналогично предыдущему пункту, если этот вектор не ноль, то это  $u_i$ . Если ноль, то рассматриваем следующий  $v_{i+1}$  вместо него и повторяем этот шаг.

Пример Пусть у нас заданы векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} \text{ if } v_4 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} \in \mathbb{R}^4$$

Первый вектор не ноль, значит  $u_1 = v_1$ . Теперь рассмотрим

$$v_2 - \frac{(v_2, u_1)}{(u_1, u_1)} u_1 = \begin{pmatrix} 3\\3\\1\\1 \end{pmatrix} - \frac{3+3+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\-1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$$

Значит  $u_2 = v_2$ . Теперь рассмотрим

$$v_3 - \frac{(v_3, u_1)}{(u_1, u_1)} u_1 - \frac{(v_3, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix} - \frac{2+2+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - \frac{2+2-1-1}{1+1+1+1} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = 0$$

Значит забываем про  $v_3$  и переходим к следующему вектору.

$$v_4 - \frac{(v_4, u_1)}{(u_1, u_1)} u_1 - \frac{(v_4, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} - \frac{2+1-1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2-1+1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

Таким образом ответ

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \text{ if } u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

#### Движения и ортогональные матрицы

Так как углы и расстояния выражаются через скалярное произведение и наоборот, мы получаем следующее.

**Утверждение.** Пусть теперь  $\phi: V \to V$  – линейный оператор в евклидовом пространстве. Следующие утверждения эквивалентны:

- 1.  $\phi$  сохраняет скалярное произведение, т.е.  $(\phi(v), \phi(u)) = (v, u)$  для любых  $v, u \in V$ .
- 2.  $\phi$  сохраняет длины и углы, т.е.  $|\phi(v)| = |v|$  и  $\alpha_{\phi(v),\phi(u)} = \alpha_{v,u}$  для всех  $v,u \in V$ .

3.  $\phi$  сохраняет длины, т.е.  $|\phi(v)| = |v|$  для всех  $v \in V$ .

Линейные операторы, обладающие одним из эквивалентных свойств выше, называются движениями. Пусть в V выбрали ортонормированный базис. Это значит, что V можно отождествить с  $\mathbb{R}^n$  и при этом скалярное произведение превращается в стандартное  $(x,y)=x^ty$ . Пусть отображение  $\phi\colon \mathbb{R}^n\to\mathbb{R}^n$  задано матрицей  $A\in \mathrm{M}_n(\mathbb{R})$ . Тогда условие движения записывается так (Ax,Ay)=(x,y). То есть  $x^tA^tAy=x^ty$  для любых  $x,y\in\mathbb{R}^n$ . То есть  $A^tA=E$ . Теперь заметим следующее.

**Утверждение.** Для матрицы  $A \in \mathrm{M}_n(\mathbb{R})$  следующие условия эквивалентны:

- 1.  $A^t A = E$ .
- 2.  $AA^t = E$ .
- 3.  $A^t = A^{-1}$ .

Матрица обладающая одним из этих эквивалентных условий называется *ортогональная*. Таким образом в ортонормированном базисе движение задается ортогональной матрицей.

**Утверждение.** Пусть  $C \in \mathrm{M}_n(\mathbb{R})$  – ортогональная матрица и пусть  $\lambda \in \mathbb{C}$  – ее собственное значение. Тогда

- 1.  $\bar{\lambda}$  тоже является собственным значением для C.
- 2.  $|\lambda| = 1$ .

### Примеры

- 1. Пусть  $V = \mathbb{R}^2$  со стандартным скалярным произведением. Тогда любое движение это:
  - (a) центральная симметрия относительно начала координат  $C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ .
  - (b) симметрия относительно какой-то прямой  $C = D^t \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} D$ , где D матрица поворота (см. далее).
  - (c) поворот на некоторый угол,  $C = \begin{pmatrix} \cos \alpha \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$  матрица поворота.
- 2. Пусть  $V = \mathbb{R}^3$  со стандартным скалярным произведением и  $C \in \mathrm{M}_3(\mathbb{R})$  ортогональная матрица. Тогда  $\chi_C(t)$  многочлен степени 3. Любой многочлен нечетной степени имеет хотя бы один вещественный корень. А значит это  $\pm 1$ . То есть соответствующий собственный вектор v либо неподвижен, либо отражается в -v под действием C. Кроме того, ортогональное дополнение  $\langle v \rangle^{\perp}$  является двумерной плоскостью, на которой C действует одним из трех способов описанных в предыдущем пункте. Короче говоря, если задано движение в трехмерном пространстве, то в каком-то ортонормированном базисе оно имеет один из следующих видов:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix} \quad \text{или} \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}$$

Первое из них является поворотом вокруг некоторой оси, а второе является поворотом вокруг оси и отражение вдоль оси.

**Утверждение.** Пусть V евклидово пространство  $u \phi \colon V \to V$  – некоторый оператор. Тогда эквивалентно

- 1.  $\phi$  является движением (ортогональный оператор).
- 2. В некотором ортонормированном базисе матрица оператора ф имеет вид:

$$A_{\phi} = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_r \end{pmatrix}, \quad \textit{ide} \quad A_i \quad \textit{nubo} \quad 1, \quad \textit{nubo} \quad -1, \quad \textit{nubo} \quad \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Для ортогональной матрицы  $\det C = \pm 1$  (примените  $\det \kappa$  равенству  $C^t C = E$ ). Если  $\det C = 1$ , движение называется собственным и если  $\det C = -1$ , то несобственным.

Если  $e_1, \ldots, e_n$  и  $f_1, \ldots, f_n$  – ортонормированные базисы пространства V и пусть  $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$ , где C – матрица перехода. Тогда C является ортогональной матрицей. Это вторая ситуация, когда появляются ортогональные матрицы.

<sup>&</sup>lt;sup>3</sup>Потому что такое многочлен устроен  $\chi(t)=t^n(1+o(1))$  при  $t\to\pm\infty$ . То есть на плюс бесконечности многочлен уходит в плюс бесконечность, а на минус бесконечность – в минус бесконечность. То есть по не прерывности он где-то должен был пересечь горизонтальную ось координат. А эта точка и есть корень.