Question Number	Answer	Mark
17ai	Arrow down marked weight/W/mg (1)	2
	Arrow labelled T drawn at 40° downwards from horizontal by eye (1)	
	$T \downarrow W$	
17aii	There is a resultant force due to tension and weight (1)	2
	Resultant force is at 90° to the motion of the hammer (Accept resultant force directed towards the centre of the circular path) (1)	
17aiii	Use of velocity = $f \times 2\pi r$ (1) Or $\omega = f \times 2\pi$	3
	Use of $a = v^2/r$ Or $a = r \omega^2$	
	$a = 460 \text{ m s}^{-2} \tag{1}$	
	Example of calculation	
	$v = 2.8 \text{ s}^{-1} \times 2\pi \times 1.5 \text{ m} = 26.4 \text{ m s}^{-1}$	
	$a = 26.4^{2} (\text{m s}^{-1})^{2} / 1.5 \text{ m} = 464 \text{ m s}^{-2}$	

17b **Either** (1) Use of trigonometry for a component of velocity Use of $v^2 = u^2 + 2as$ (with a = g) (1) Use of v = u + at (with a = g) (1) **(1)** Use of v = s/t in the horizontal plane (1) range = 81 m so doesn't beat record Or (1) Use of trigonometry for a component of velocity (1) Use of $s = ut + \frac{1}{2} at^2$ (with a = g) (1) the ut term has the opposite sign to s and at^2 term (1) Use of v = s/t in the horizontal plane (1) range = 81 m so doesn't beat record Example of calculation Initial vertical component velocity = $28.0 \sin 40^{\circ} = 18.00 \text{ m s}^{-1}$ Horizontal component velocity = $28.0 \cos 40^{\circ} = 21.45 \text{ m s}^{-1}$ $s = \frac{v^2 - u^2}{2a} = \frac{0 - (18 \text{ m s}^{-1})^2}{2 \times 9.81 \text{ m s}^{-2}} = 16.5 \text{ m}$ Time to highest point, $t = \frac{v - u}{a} = \frac{(-18 - 0) \text{ m s}^{-1}}{-9.81 \text{ m s}^{-2}} = 1.83 \text{ s}$ Distance to ground = 16.5 m + 1.5 m = 18.0 mTime from highest point to ground, $t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2 \times (-18.0 \text{ m})}{-9.81 \text{ m s}^{-2}}} = 1.92 \text{ s}$ Total time of flight = 1.83 s + 1.92 s = 3.75 sRange = $21.45 \text{ m s}^{-1} \times 3.75 \text{ s} = 80.4 \text{ m}$ This is less than 83 m, so it would not break the record.

Total for question 17

12