

AMENDMENT

To the Claims:

Claim 1. (currently amended) An UV photodetector, comprising:

a substrate;

a GaN-based semiconductor layer, disposed on the substrate and comprising a first protrusion portion having a top surface facing away from the substrate, wherein the GaN-based semiconductor layer comprises:

a nucleation layer, disposed on the substrate;

an ohmic contact layer, disposed on the nucleation layer, wherein the ohmic contact layer comprises a second protrusion portion;

an active layer disposed on the second protrusion portion, wherein the first protrusion portion is constructed by the second protrusion portion of the ohmic contact layer and the active layer; and

a high-resistivity GaN-based interlayer, disposed on the first protrusion portion of the GaN-based semiconductor layer and covering the entire top surface of the first protrusion portion, and a material of the GaN-based interlayer comprising $\text{Al}_x\text{In}_y\text{Ga}_{1-x-y}\text{N}$, wherein $x \geq 0$, $y \geq 0$, $1 \geq x + y$;

a first electrode, disposed on the GaN-based interlayer; and

a second electrode disposed on a portion of the GaN-based semiconductor layer except for the first protrusion portion,

Customer No.: 31561
Application No.: 10/707,084
Docket No.:10722-US-PA

wherein a Schottky contact is formed between the high-resistivity GaN-based interlayer and the first electrode ~~when a reversed bias is applied to the GaN-based semiconductor layer through the first electrode and the second electrode.~~

Claim 2. (original) The UV photodetector of claim 1, further comprising a first bonding pad, wherein the first bonding pad is disposed on the first electrode.

Claim 3. (original) The UV photodetector of claim 1, further comprising a second bonding pad, wherein the second bonding pad is disposed on the second electrode.

Claim 4. (previously presented) The UV photodetector of claim 1, wherein the substrate comprises at least one material selected from a group consisting of aluminum oxide (sapphire), silicon carbide (SiC), zinc oxide (ZnO), silicon, gallium phosphide (GaP), and a gallium arsenide (GaAs).

Claim 5. (original) The UV photodetector of claim 1, wherein the high-resistivity GaN-based interlayer is constructed by doping at least one dopant selected from a group consisting of iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), arsenide (As), phosphorus (P), carbon (C) and beryllium (Be) or by a GaN-based

Customer No.: 31561
Application No.: 10/707,084
Docket No.:10722-US-PA

semiconductor layer formed by a low temperature process (a temperature of growth less than 800°C).

Claim 6. (cancelled)

Claim 7. (previously presented) The UV photodetector of claim 1, wherein a material of the nucleation layer comprises $\text{Al}_a\text{In}_b\text{Ga}_{1-a-b}\text{N}$ semiconductor, wherein $a, b \geq 0$ and $0 \leq a + b \leq 1$.

Claim 8. (previously presented) The UV photodetector of claim 1, wherein a material of the ohmic contact layer comprises N-type $\text{Al}_c\text{In}_d\text{Ga}_{1-c-d}\text{N}$ semiconductor, wherein $c, d \geq 0$ and $0 \leq c + d \leq 1$.

Claim 9. (previously presented) The UV photodetector of claim 1, wherein a material of the active layer comprises undoped $\text{Al}_e\text{In}_f\text{Ga}_{1-e-f}\text{N}$ semiconductor, wherein $e, f \geq 0$ and $0 \leq e + f \leq 1$.

Claim 10. (original) The UV photodetector of claim 1, wherein a material of the first electrode and the second electrode comprises Ni/Au, Cr/Au, Cr/Pt/Au, Ti/Al, Ti/Al/Ti/Au, Ti/Al/Pt/Au, Ti/Al/Ni/Au, Ti/Al/Ti/Au, Ti/Al/Pd/Au, Ti/Al/Cr/Au, Ti/Al/Co/Au, Cr/Al/Cr/Au, Cr/Al/Pt/Au, Cr/Al/Pd/Au, Cr/Al/Ti/Au, Cr/Al/Co/Au,

Customer No.: 31561
Application No.: 10/707,084
Docket No.:10722-US-PA

Cr/Al/Ni/Au, Pd/Al/Ti/Au, Pd/Al/Pt/Au, Pd/Al/Ni/Au, Pd/Al/Pd/Au, Pd/Al/Cr/Au, Pd/Al/Co/Au, Nd/Al/Pt/Au, Nd/Al/Ti/Au, Nd/Al/Ni/Au, Nd/Al/Cr/Au Nd/Al/Co/A, Hf/Al/Ti/Au, Hf/Al/Pt/Au, Hf/Al/Ni/Au, Hf/Al/Pd/Au, Hf/Al/Cr/Au, Hf/Al/Co/Au, Zr/Al/Ti/Au, Zr/Al/Pt/Au, Zr/Al/Ni/Au, Zr/Al/Pd/Au, Zr/Al/Cr/Au, Zr/Al/Co/Au, TiN_x/Ti/Au, TiN_x/Pt/Au, TiN_x/Ni/Au, TiN_x/Pd/Au, TiN_x/Cr/Au, TiN_x/Co/Au, TiWN_x/Ti/Au, TiWN_x/Pt/Au, TiWN_x/Ni/Au, TiWN_x/Pd/Au, TiWN_x/Cr/Au, TiWN_x/Co/Au, NiAl/Pt/Au, NiAl/Cr/Au, NiAl/Ni/Au, NiAl/ Ti/Au, Ti/NiAl/ Pt/Au, Ti/NiAl/ Ti/Au, Ti/NiAl/Ni/Au, Ti/NiAl/Cr/Au, N-type conductive indium tin oxide (ITO), cadmium tin oxide (CTO), aluminum zinc oxide (ZnO:Al), indium zinc oxide (ZnO:In), zinc gallate (ZnGa₂O₄), SnO₂:Sb, Ga₂O₃:Sn, AgInO₂:Sn, In₂O₃:Zn, P-type conductive CuAlO₂, LaCuOS, NiO, CuGaO₂ or SrCu₂O₂.

Claim 11. (currently amended) An UV photodetector, comprising:
a substrate;
a GaN-based semiconductor layer disposed on the substrate and having a top surface facing away from the substrate, wherein the GaN-based semiconductor layer comprises:
a nucleation layer, disposed on the substrate;
an active layer disposed on the nucleation layer, wherein a material of the active layer comprises undoped Al_eIn_fGa_{1-e-f}N semiconductor, wherein e, f ≥ 0 and 0 ≤ e + f ≤ 1; and

a high-resistivity GaN-based interlayer disposed on the GaN-based semiconductor layer and covering the entire top surface of the GaN-based semiconductor layer, and a material of the GaN-based interlayer comprises $\text{Al}_x\text{In}_y\text{Ga}_{1-x-y}\text{N}$, wherein $x \geq 0$, $y \geq 0$, $1 \geq x + y$;

a first electrode disposed on the high-resistivity GaN-based interlayer; and
a second electrode disposed on the high-resistivity GaN-based interlayer, wherein the first electrode comprises a plurality of first finger-shaped protrusions, the second electrode comprises a plurality of second finger-shaped protrusions, and the first finger-shaped protrusions and the second finger-shaped protrusions are mutually interlaced;

wherein a Schottky contact is formed between the high-resistivity GaN-based interlayer and the first electrode and the second electrode ~~when a reversed bias is applied to the GaN based semiconductor layer through the first electrode and the second electrode.~~

Claims 12-13. (cancelled)

Claim 14. (previously presented) The UV photodetector of claim 11, further comprises a first bonding pad, wherein the first bonding pad is disposed on the first electrode.

Customer No.: 31561
Application No.: 10/707,084
Docket No.:10722-US-PA

Claim 15. (previously presented) The UV photodetector of claim 11, further comprises a second bonding pad, wherein the second bonding pad is disposed on the second electrode.

Claim 16. (previously presented) The UV photodetector of claim 11, wherein the substrate comprises at least one material selected from a group consisting of aluminum oxide (sapphire), silicon carbide (SiC), zinc oxide (ZnO), a silicon, gallium phosphide (GaP), and a gallium arsenide (GaAs).

Claim 17. (original) The UV photodetector of claim 11, wherein the high-resistivity GaN-based interlayer is constructed by doping at least one dopant selected from a group consisting of iron (Fe), magnesium (Mg), zinc (Zn), copper (Cu), arsenide (As), phosphorus (P), carbon (C) and beryllium (Be) or by a GaN-based semiconductor layer formed by a low temperature process (a temperature of growth less than 800°C).

Claim 18. (cancelled)

Claim 19. (previously presented) The UV photodetector of claim 11, wherein a material of the nucleation layer comprises $\text{Al}_a\text{In}_b\text{Ga}_{1-a-b}\text{N}$ semiconductor, wherein a , $b \geq 0$ and $0 \leq a + b \leq 1$.

Claim 20. (cancelled)

Claim 21. (original) The UV photodetector of claim 11, wherein a material of the patterned electrode layer comprises Ni/Au, Cr/Au, Cr/Pt/Au, Ti/Al, Ti/Al/Ti/Au, Ti/Al/Pt/Au, Ti/Al/Ni/Au, Ti/Al/Ti/Au, Ti/Al/Pd/Au, Ti/Al/Cr/Au, Ti/Al/Co/Au, Cr/Al/Cr/Au, Cr/Al/Pt/Au, Cr/Al/Pd/Au, Cr/Al/Ti/Au, Cr/Al/Co/Au, Cr/Al/Ni/Au, Pd/Al/Ti/Au, Pd/Al/Pt/Au, Pd/Al/Ni/Au, Pd/Al/Pd/Au, Pd/Al/Cr/Au, Pd/Al/Co/Au, Nd/Al/Pt/Au, Nd/Al/Ti/Au, Nd/Al/Ni/Au, Nd/Al/Cr/Au Nd/Al/Co/A, Hf/Al/Ti/Au, Hf/Al/Pt/Au, Hf/Al/Ni/Au, Hf/Al/Pd/Au, Hf/Al/Cr/Au, Hf/Al/Co/Au, Zr/Al/Ti/Au, Zr/Al/Pt/Au, Zr/Al/Ni/Au, Zr/Al/Pd/Au, Zr/Al/Cr/Au, Zr/Al/Co/Au, TiN_x/Ti/Au, TiN_x/Pt/Au, TiN_x/Ni/Au, TiN_x/Pd/Au, TiN_x/Cr/Au, TiN_x/Co/Au, TiWN_x/Ti/Au, TiWN_x/Pt/Au, TiWN_x/Ni/Au, TiWN_x/Pd/Au, TiWN_x/Cr/Au, TiWN_x/Co/Au, NiAl/Pt/Au, NiAl/Cr/Au, NiAl/Ni/Au, NiAl/ Ti/Au, Ti/NiAl/ Pt/Au, Ti/NiAl/ Ti/Au, Ti/NiAl/Ni/Au, Ti/NiAl/Cr/Au, N-type conductive indium tin oxide (ITO), cadmium tin oxide (CTO), aluminum zinc oxide (ZnO:Al), indium zinc oxide (ZnO:In), zinc gallate (ZnGa₂O₄), SnO₂:Sb, Ga₂O₃:Sn, AgInO₂:Sn, In₂O₃:Zn, P-type conductive CuAlO₂, LaCuOS, NiO, CuGaO₂ or SrCu₂O₂.