CSE271 Section 2 Introduction to Digital Systems

Lecture 30

Instructor: Lin Li http://www.cse.psu.edu/~lili/cse271

Derivation of State Table/Diagram

- Recall the first three steps of sequential system design:
 - Determine what needs to be stored in memory -- what are the possible states?
 - Code the inputs and outputs in binary.
 - Derive a state table or state diagram.
- Now, we start with verbal description of sequential system and develop state table/diagram.

➤ A system with one input x and one output z, such that z=1 iff x has been 1 for at least three consecutive clock times.

Solution 1: store the last three inputs. Knowing them we could determine the output.

	q₁*q		
q₁q₂q₃	x = 0	x = 1	z
000	000	0 0 1	0
001	010	011	0
010	100	101	0
011	110	111	0
100	000	001	0
101	010	011	0
110	100	101	0
111	110	111	1

We store the oldest input in q_1 , and most recent one in q_3 .

When updating memory, we discard the oldest input stored.

8 states are required and 3 flip flops are needed.

$$q_3^*=x$$
 $q_2^*=q_3$ $q_1^*=q_2$

3

Example 1

A system with one input x and one output z, such that z=1 iff x has been 1 for at least three consecutive clock times.

Solution 2: store the number of consecutive 1's in memory.

A: none -- the last input was 0.

B: one C: two

D: three or more

	q		
q	x = 0	x = 1	z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

4 states are required and 2 flip flops are needed.

➤ A system with one input x and one output z, such that z=1 iff x is currently 1 and was also 1 at the previous two clock times.

5

Example 2

➤ A system with one input x and one output z, such that z=1 iff x is currently 1 and was also 1 at the previous two clock times.

Solution 1: store the last two inputs.

	q₁*	q ₂ *	2	Z
q_1q_2	x=0	x=1	x=0	x=1
0 0	0 0	0 1	0	0
0 1	10	11	0	0
10	0 0	0 1	0	0
11	10	11	0	1

➤ A system with one input x and one output z, such that z=1 iff x is currently 1 and was also 1 at the previous two clock times.

Solution 2: store the number of consecutive 1's in memory.

A: none -- the last input was 0.

B: one

C: two

	q	*	2	Z
q	x=0	x=1	x=0	x=1
Α	Α	В	0	0
В	Α	С	0	0
С	Α	С	0	1

7

Example 3

Design both a Moore and a Mealy system with one input x and one output z, such that z=1 iff x has been 1 for exactly three consecutive clock times.

Sample timing trace:

We cannot tell whether there should be a 1 output when the third consecutive 1 input occurs.

We have to wait the next input arrives.

Design both a Moore and a Mealy system with one input x and one output z, such that z=1 iff x has been 1 for exactly three consecutive clock times.

Solution for Mealy system:

A: no 1 in a row

B: one 1 in a row

C: two 1's in a row D: three 1's in a row

E: more than three 1's in a row

9

Example 3

Design both a Moore and a Mealy system with one input x and one output z, such that z=1 iff x has been 1 for exactly three consecutive clock times.

Solution for Moore system:

A: no 1 in a row

B: one 1 in a row

C: two 1's in a row

D: three 1's in a row

E: more than three 1's in a row

F: three 1's plus a 0

	C		
q	x = 0	x = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	F	Ε	0
Е	Α	Ε	0
F	Α	В	1

Design a Mealy system where the inputs are considered in blocks of three. The output is 1 iff the input is 1 for all three inputs in a block.

Sample timing trace:

X	0	1	1	1	1	1	1	0	1	1	1	0	1	1	1	
z	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	

11

Example 4

Design a Mealy system where the inputs are considered in blocks of three. The output is 1 iff the input is 1 for all three inputs in a block.

Solution 1:

Solution 2:

Design a Moore system whose output is 1 iff three consecutive 0 inputs occurred more recently than three consecutive 1 inputs.

Sample timing trace:

X	1	1	1	0	0	1	0	1	1	1	0
z	?	?	?	0	0	0	0	0	0	0	0
	-										
X	0	1	0	0	0	0	1	1	1	1	0

