1. međuispit iz Naprednih metoda digitalne obrade signala

24.11.2014.

- 1. Zaustavio policajac Heisenberga zbog prebrze vožnje i upita ga: "Znate li kojom ste brzinom vozili?" Heisenberg odgovori: "Ne, ali točno znam gdje sam."
 - a. Objasnite Heisenbergov odgovor na primjeru STFT.
 - b. Zadan je svevremenski signal $x(t)=e^{-3t}$ i vremenski otvor $g(t)=\delta(t)$. Odredite STFT $X(\tau,\omega)$ zadanog signala i njegovu amplitudnu karakteristiku.
 - c. U kojoj domeni zadani signal ima bolju rezoluciju?
- 2. Kontinuirana valićna transformacija:
 - a. Objasnite razlike u razlučivosti u T-F ravnini za CWT i STFT.
 - b. Usporedite wavelet funkciju kod CWT u slučaju kada se mijenja skala, s umnoškom $g(t-\tau)e^{-j\omega t}$ kod STFT kada se mijenja frekvencija, dok je sve ostalo konstantno.
 - c. Navedite izraz za oktavnu diskretnu wavelet funkciju $\psi_{m,k}(t)$, te koje su njene prednosti.
- 3. Zadan je filtarski slog sa dva pojasa bez decimacije. Filtri prvog pojasa su $H_0(z)=3+z^{-1}+3z^{-2}$ i $H_1(z)=1-3z^{-1}+z^{-2}$.
 - a. Koristeći energetski okvir preslikavanja (pomoću DTFT-a skicirajte energetski raspon) odredite je li moguća potpuna rekonstrukcija koristeći ovakav filtarski slog. Objasnite.
 - b. Odredite rekonstrukcijske filtre $F_0(z)$ i $F_1(z)$ koji imaju dva uzorka impulsnog odziva, a koji omogućuju potpunu rekonstrukciju uz kašnjenje L=3.
- 4. Za zadani diskretni signal $x(n)=\{1,-4,\underline{5},-4,1\}$ ODREDITE spektar $X(e^{j\omega})$, te ODREDITE i SKICIRAJTE decimirani (s faktorom 2) signal v(n) i spektar $V(e^{j\omega})$, te interpolirani (s faktorom 2) signal u(n) i spektar $U(e^{j\omega})$. Objasnite je li došlo do pojave aliasinga?

5. Poznati su impulsni odzivi filtara filtarskog sloga prikazanoga slikom.

$$h_0(n) = \{\underline{4}, 1\},$$
 $h_1(n) = \{\underline{2}, -2\},$
 $f_0(n) = \{\underline{2}, 3\},$ $f_1(n) = \{\underline{-2}, 1\}.$

Impulsni odziv ulaznog signala je $x(n) = \{3, -2\}.$

- a. Odredite analizirajuću modulacijsku matricu zadanog filtarskog sloga.
- b. Koristeći analizirajuću modulacijsku matricu, odredite impulsni odziv rekonstruiranog signala $x_r(n)$.
- c. Kako glasi uvjet potpune rekonstrukcije, a kako uvjet poništenja aliasinga?
- d. Da li je zadovoljen uvjet potpune rekonstrukcije i uvjet poništenja aliasinga?

1		
	k	
		i.