1 Product

Definition 1.1 (Product). Let C a category and $A, B \in C$, $(A \times B, \pi_0, \pi_1)$ forms a product of A and B where $A \times B \in C$, $\pi_0 : A \times B \to A$ and $\pi_1 : A \times B \to B$, if for any $X \in C$ with $\pi'_0 : X \to A$ and $\pi'_1 : X \to B$, there is a unique arrow $u : X \to A \times B$ such that the following diagram commutes:

Furthermore, a product of A and B is a limit of diagram:

One may trying to show that $0 \times X \simeq 0$ by:

However, the red triangle needs not to commutes, that is, the arrow π_0 from $(0 \times X, \pi_0, \pi_1)$ to $(0, 1_0, !)$ may not exist.

Definition 1.2 (Product of Arrow). Suppose $(A \times B, \pi_0, \pi_1)$ and $(C \times D, \pi_2, \pi_3)$ are two product, and $f : A \to C$, $g : B \to D$. The product of arrow $f \times g$ is a

unique arrow from $A \times B$ to $C \times D$ such that the following diagram commutes:

2 Exponential

Definition 2.1. Let C a category. For any $B, C \in C$, (C^B, ev) forms an exponential where $C^B \in C$ and $ev : C^B \times B \to C$, if for any object $A \in C$ and $f : A \times B \to C$, there is a unique $u : A \to C^B$ such that $f = ev \circ (u \times 1_B)$. In other words, the follow diagram commutes.

3 Pullback

Theorem 3.1. Suppose we have two joined commuting squares like:

Then:

1. The outer rectangle is a pullback square if two inner squares are pullback squares.

2. The inner-left square is a pullback square if the ouer rectangle and the inner-right square are pullback squares.

Proof.

1. For any (A, a, b) such that $j \circ h \circ a = n \circ b$, then there is a unique $u: A \to M$ such that $h \circ a = m \circ u$ and $b = g \circ u$.

