

Project Report - CMPE 256

Large Scale Analytics

Determining the type of Happy Moments using Natural Language Processing and Classification techniques

11.20.2019

Submitted to: Prof. Magdalini Eirinaki

Submitted By -

Hansraj Pabbati (SJSU ID : 012540541) Neha Bindle (SJSU ID: 013763126) Shrey Patel (SJSU ID: 012430652)

1

Table of Contents

Chapter 1 Introduction	3
Motivation	3
Objective	3
Chapter 2 System Design and Implementation	3
Algorithms	3
Technologies and Tools	4
System Design and Implementation	4
Chapter 3 - Experiments / Proof of Concepts and Evaluations	5
DataSet Description	5
Data Preprocessing	5
Methodology	5
Graphs	6
Analysis of Results	9
Chapter 4 Discussion & Conclusion	11
Chapter 5 Project Plan and Distribution	12
References	13
Appendix	14

Chapter 1 - Introduction

Motivation

What are the factors that contribute to the happiness of the people has always been one of the favorite research topics amongst psychologists. In our project, we are trying to leverage Machine learning and Natural language processing techniques to understand different attributes that affect happiness, and how different demographics are related to different categories of happiness. This is a rich dataset and it gave us the opportunity to predict multiple attributes based on different factors like demographics, and description of the moment

Objective

- 1. To predict the category of happiness based on the description of the moment using NLP text classification techniques.
- 2. To predict demographic variables such as Age, Country, Marital status, Parenthood, the Reflection period, and Gender depending on the description of a happy moment.

Chapter 2 - System Design and Implementation

Algorithms

For predicting the Happiness Category based on Moment Description

- **Multinomial Naive Bayes** We used MNB as it is best suited for text classification with discrete features
- **K Nearest Neighbor (KNN)** As it works on a similarity measure, so we tried predicting the category based on the similarity of different input descriptions.
- **SGD Classifier** It works well with data represented as dense or sparse arrays of floating-point values for the features which are basically our input after converting the text in the TFIDF sparse matrix.
- SVM (Linear Kernel) As it is suitable for multiclass classification, and is memory efficient.
- XGBoost Classifier As it is efficient and assumed to gibe better accuracy as compared to other algorithms. It can very well handle parallel processing, missing values, regularization, and Cross-Validation.
- Logistic Regression -
- RNN for Text Classification Regular ML classifiers were not giving good accuracy so we tried with several deep learning algorithms.
- **LSTM** This performs better than regular deep learning models due to its capability of selectively remembering patterns for long durations of time, thus giving better predictions.

For predicting the Demographic attributes based on Moment Description

• Multinomial Naive Bayes - We used MNB as it is best suited for text classification with discrete features.

For predicting the Age based on multiple attributes

- Decision Tree Regressor We used a decision tree regressor based on multiple parameters to
 predict the age. This model is best suited for situations where prediction depends on the presence
 of an attribute or not. We converted demographics attributes into binary and the decision tree
 works really well.
- Random Forest We used this one to predict the happiness category as well as to find an age range depending on the different parameters combined from two datasets.

Technologies and Tools

a. Scikit Learn, Keras, Tensorflow, Spacy, NLTK and NLP, Matplotlib, Wordcloud, Pandas, Numpy, Google Colab, Seaborn, HPC

System Design and Implementation

The most challenging part of this project was to extract meaningful words from the description of a happy moment. For this task, we worked on the following text-centric features-:

- Structural features: Review length, frequency of most common words.
- **Semantic features:** We used a pre-trained model Textblob to find out the polarity and sentiment for the description, and how polarity is related to different categories of happiness.
- **n-gram features:** We have extracted unigram, Bigram, Trigram features from the description of happy Moment
- Converting Categorical attributes into Binary Attributes.
- Label encoding for predicted category

System Flow for predicting the Happiness Category based on Moment Description

System Flow for predicting the Demographic attributes based on Moment Description

Chapter 3 - Experiments / Proof of Concepts and Evaluations

Dataset Description - HappyDB is a dataset of 100535 instances for happy moments crowd-sourced via Amazon's Mechanical Turk. It has two distinct datasets first one containing the description of happy moments and category describing the type of happy moments for 10,843 distinct workers. The second dataset contains the demographic details of those workers who described their happy moments. For our project, we have merged the dataset on the basis of worker ID.

Data Preprocessing

As this dataset contained both numerical and categorical attributes, so different techniques for preprocessing was required.

Preprocessing steps for Text Data (Description of Happy Moments)

- Removal of regex, stopwords and converting all the text into lower case
- Dropping the instances with null values
- Removal of Noise and less meaningful words to get a better analysis
- Tokenization of sentences using Spacy
- Stemming and Lemmatization
- Using Countvectorizer() to convert into a sparse matrix
- Using TF IDF() to convert the input into CSR Matrix.

Preprocessing steps for Demographic attributes

For 6 attributes named Age, Gender, Reflection_Period, Country, Parenthood and Marital status we converted each one into binary attributes as described below -

- Age less than 25 as 0, and greater or equal to 25 as 1. For age, there were several records that did not contain the age in the proper format or was nan. Those instances were dropped from the data frame.
- Parenthood no as 0 and yes as 1.
- If Single, divorced, Widower or separated as 0, Married as 1
- For Reflection Period 24 hours as 0, and 3 months as 1
- For Gender Male as 0 and Female as 1
- For Country, all the instances from the USA were labeled as 1 and rest everything as 0
- For predicted category numerical labels were assigned. Exercise 1, Enjoy_the_moment 2, achievement 3, nature 4, bonding 5, affection 6, and leisure 7.
- If any instance contained age greater than 125 was dropped.
- Records containing null values were also dropped.

Methodology - For regular machine learning classification models following are the parameters used -

• For TFIDF - TfidfVectorizer(use_idf=True, min_df=3, max_df=0.5, ngram_range=(1,2) sublinear_tf= True,max_features=5000). These were decided on the basis of Grid Search.

- KNN 3 nearest neighbor was used to predict the category.
- SGD Classifier Pipeline was made with the following parameters, loss='hinge', penalty='l2',alpha=1e-3, random state=42, max iter=5, tol=None
- Logistic Regression was performed on the default parameters.
- RNN used the maximum length of vector as 1000, and the maximum number of words to be considered as 10,000 which was decided on the basis of the total number of words in the dataset. Below mentioned are other parameters used

Model: "sequential_8"		
Layer (type)	Output Shape	Param #
embedding_6 (Embedding)	(None, 1000, 64)	640000
lstm_5 (LSTM)	(None, 64)	33024
dense_7 (Dense)	(None, 7)	455
Total params: 673,479 Trainable params: 673,479 Non-trainable params: 0		

LSTM - Parameters used were : MAX_NB_WORDS = 50000, MAX_SEQUENCE_LENGTH = 250 EMBEDDING DIM = 100

- Train-test split was 80:20.
- 5 fold cross-validation used in Deep learning models.

Graphs

MetaData Analysis

Descriptive analysis of Description of Happy Moment

Bivariate analysis of Marital Status

Boxplot for the length of a sentence with predicted category

Bivariate analysis of age-ranges and predicted category.

HeatMap to see the correlation between different attributes

 importance

 sentimentPolarity
 0.273675

 sentimentSubjectivity
 0.272600

 length
 0.269831

 predicted_category
 0.068483

 marital
 0.054031

 parenthood
 0.047000

 reflection_period
 0.014380

Feature importance for predicting age_range as given by RandomForest Classifier.

Box plot for 'sentiment polarity' vs 'age'

	hmid	wid	${\tt num_sentence}$	${\tt predicted_category}$	length	age	country	reflection_period
count	100535.000000	100535.000000	100535.000000	100535.000000	100535.000000	100442.000000	100332.000000	100535.000000
mean	78213.756722	2746.619028	1.340767	4.413289	18.298503	0.818622	0.788014	0.504342
std	29178.959001	3535.010347	1.297159	1.688824	21.474146	0.385333	0.408717	0.499984
min	27673.000000	1.000000	1.000000	1.000000	2.000000	0.000000	0.000000	0.000000
25%	52941.500000	410.000000	1.000000	3.000000	9.000000	1.000000	1.000000	0.000000
50%	78204.000000	1125.000000	1.000000	5.000000	14.000000	1.000000	1.000000	1.000000
75%	103490.500000	3507.000000	1.000000	6.000000	21.000000	1.000000	1.000000	1.000000
max	128766.000000	13839.000000	69.000000	7.000000	1179.000000	1.000000	1.000000	1.000000

The statistical distribution of values for all the numeric attributes

Analysis of results

Machine learning models for predicting the Happiness Category based on Moment Description

Model Used	F1 score Regular	F1 Score with SMOTE	F1 Score with ROS	F1 score with Binary Conversion	
Multinomial Naive Bayes	0.39	0.36	0.36	0.60	
SGD	0.35	0.24	0.30	0.52	
SVM	0.31	0.22	0.30	0.48	
XGBoost	0.34	0.33	0.32	0.43	
KNN	0.34	0.13	0.33	0.43	
Logistic Regression	0.32	0.30	0.32	0.58	

Model Used	ROC Curve Regular	ROC with SMOTE	ROC with ROS	ROC Binary Conversion
Multinomial Naive Bayes	Testad qualitatic Materialist Materialis	Number operating described in Walterschild Section of the Control of the Contr	Source queding dars lands: National Mills 10 10 10 10 10 10 10 1	Teneral questing Association, Nullivariable Control
SGD	13			
SVM	Teacher uporting than States, 150 10 10 10 10 10 10 10	Tension question (headannis, 1964) 10 10 10 10 10 10 10 10 10 1	Necesser operating characteristic, SNR And	Recover opening characteristic SWI
XGBoost	The series repeting their brints; The series are specified to the series are		To Receiver operating Charachemic Videout To Part of Charache	Receiver operating characteristic violences
KNN			Ancient operating Characteristic DNN Solid Characteristic Chara	Meaning operating Characteristics CNN The state of the s
Logistic Regression	Tenner specifing baselinesis. Legislating received a specifing baselinesis. Legislating received a specific spe	Transcor operating there brinds: Lugdendraymous or 10 to 10		Nacional operating distriction Lingüischispeciani 12 13 14 15 15 16 17 18 18 18 18 18 18 18 18 18

Deep learning models for predicting the Happiness Category based on Moment Description

Model Used	Test Accuracy	Training and validation Accuracy	Training and validation Loss
RNN	0.87	Training and relatation accuracy using SIME Distriction of the Contract of th	Training and validation loss 14 Training and validation loss 15 15 15 15 15 15 15 15 15
LSTM	0.92	ACCUTACY 0.96 0.90 0.	05 tanin tan

Multinomial Naive Bayes Model for predicting the Demographic attributes based on Moment Description

	Age	Country	Gender	Marital	Parenthood	Reflection_period
Accuracy	0.80	0.87	0.66	0.68	0.69	0.64

Chapter 4 - Discussion & Conclusion

Decisions Made

- We analyzed the demographic attributes and plotted the correlation heatmaps to check about which attributes have more importance.
- For predicting the positive emotion, we decided to use the LSTM model, based on evaluation methods.
- For predicting the demographics, most features like gender, marital status, etc by converting them to binary data.
- Having obtained the poor accuracy (RMSE score) with predicting age, we decided to transform the age to the categorical attribute of age ranges and utilize a Random forest classifier.

Difficulties faced

- On extracting new features, (ex. Length of a happy moment, age ranges) the new features definitely propagate the errors from the original features.
- The presence of irrelevant words and stop words occupied the majority of word cloud plot (ex. "Today", "going", etc.). For this, we had to remove the stop words and the top irrelevant words.
- Deciding feature importances, feature extraction techniques, and hyperparameter tuning.

Things worked

- Deep learning models such as LSTM, gave a high accuracy of 0.9293 with a loss of 0.2 when trained with 5 iterations.
- Converting the demographic attributes to binary helped in some of the cases, as it made the attribute more balanced. Age_ranges turned out to be a stronger target variable than the age variable.

Things that didn't work

- Due to the highly imbalanced nature of the dataset, simple models such as SVM, XGBoost and Naive Bayes didn't give acceptable F1-score.
- Even with random over-sampling, these models gave only moderate accuracy.
- It turned out that for several demographic related target variables such as "age", none of the other attributes were strong predictors.

Conclusion & Future Scope

- Considering the variety and volume of the HappyDB dataset, we discovered some very interesting patterns of this data. For instance, in the bivariate analysis of age_range with predicted_emotion_category, we found that age_bin=2 have the opposite relationship with age_bin=6, on "affection" and "bonding" emotions.
- We successfully developed models to predict the emotion category based on the text data. While
 analyzing and developing models for predicting other demographics of users such as gender,
 marital status, parenthood, etc we achieved moderate results, while certain attributes such as
 "age" had no strong predictors.

Chapter 5 - Project Plan and Task Distribution

Task	Contributor
Data Cleaning and Preprocessing	Hansraj, Neha, Shrey
Model Applications	
MNB	Hansraj
SGD	Neha
KNN	Neha
Logistic Regression	Hansraj
SVM	Shrey
XGBoost	Shrey
LSTM	Shrey and Neha
RNN	Hansraj and Neha

Random Oversampling with SMOTE MNB SGD KNN Logistic Regression SVM XGBoost	Hansraj Neha Neha Hansraj Shrey Shrey
Random Oversampling with ROS MNB SGD KNN Logistic Regression SVM XGBoost	Hansraj Neha Neha Hansraj Shrey
Model Application with Binary Conversion MNB SGD KNN Logistic Regression SVM XGBoost	Hansraj Neha Neha Hansraj Shrey
Evaluation of Results Report and Presentation Presentation	Hansraj, Neha, Shrey Hansraj, Neha, Shrey Hansraj, Neha, Shrey

Our team made sure that everyone contributes in every step. We divided our work equally and ended up working as a team where everyone gave their best inputs.

As we have implemented multiple models, each one of us ran a few models to combine and evaluate the final result.

References:

- [1] https://www.kaggle.com/ydalat/happydb-what-100-000-happy-moments-are-telling-us
- [2] https://www.kaggle.com/powderist/happydb-analysis
- [3] https://towardsdatascience.com/multi-class-text-classification-model-comparison-and-selection-5eb066197568
- [4] https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
- [5] https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
- [6] https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-data-predictive-python/

Appendix

hm:	d
achievement 3399	3
affection 3416	
bonding 1072	
enjoy_the_moment 1114	
exercise 120	
leisure 74	58
nature 184	13
hmid	
1 79063	
0 18236	Count of the country before binary
PHL 279	conversion
MEX 150	
VNM 126	
BRA 123	
AUS 117	
MKD 104	
hmid country 1.0 79063	
0.0 21269	Count for the country variable after binary conversion
hmid parenthood n 60937 y 39520	Count of Parenthood
hmid marital 0 59035	Count of marital status
1 41343	

Classification	Report - MI precision		f1-score	support	
0.0	0.70 0.67	0.83 0.49	0.76 0.57	17623 12491	Classification report for Multinomial
accuracy macro avg weighted avg	0.68	0.66	0.69 0.66 0.68	30114 30114 30114	Naive Bayes for Demographic variables
Confusion Matr		Predicted: 29			
Actual: 1	6403	60			
	precision	recall	f1-score	support	
achievement	0.47	0.45	0.46	6905	
affection bonding	0.43	0.50	0.46	6768 2236	Classification report for Multinomial
enjoy_the_moment	0.16	0.18	0.17	2165	Naive Bayes for predicting the
exercise leisure	0.01	0.01	0.01	225 1461	
nature	0.02	0.01	0.01	347	category
accuracy			0.39	20107	
macro avg	0.25	0.23	0.24	20107	
weighted avg	0.39	0.39	0.38	20107	
	precision	recall	f1-score	support	
achievement	0.34	0.92	0.50	6905	
affection bonding	0.42	0.09	0.15	6768 2236	Classification report for Stochastic
enjoy_the_moment	0.09	0.00	0.00	2165	*
exercise leisure	0.00	0.00	0.00	225 1461	Gradient Descent for predicting the
nature	0.14	0.01	0.03	347	category
accuracy macro avg weighted avg	0.20 0.30	0.15 0.35	0.35 0.10 0.22	20107 20107 20107	
	precision	recall f	1-score s	upport	
achievement	0.36	0.73	0.48	6905	Classification report for Support
affection bonding	0.39	0.10	0.17	6768 2236	Classification report for Support
enjoy_the_moment	0.14	0.16	0.15	2165	Vector Machine for predicting the
exercise leisure	0.00	0.00	0.00	225 1461	category
nature	0.04	0.02	0.03	347	
accuracy macro avg weighted avg	0.18 0.30	0.16 0.31	0.31 0.14 0.25	20107 20107 20107	
	precision	recall	f1-score	support	
achievement	0.34	0.96	0.51	6905	
affection bonding	0.38	0.03	0.05	6768 2236	
enjoy_the_moment	0.00	0.00	0.00	2165	Classification ranget for VCD and
exercise leisure	0.00	0.00	0.00	225 1461	Classification report for XGBoost
nature	0.13	0.02	0.02	347	
accuracy			0.34	20107	
macro avg	0.17	0.15	0.09	20107	
weighted avg	0.27	0.34	0.19	20107	
	precision	recall	f1-score	support	
achievement	0.34	0.95	0.51	6905	
affection bonding	0.36	0.02	0.04	6768 2236	
enjoy_the_moment exercise	0.11	0.02	0.03	2165 225	Classification report for KNN
leisure	0.30	0.04	0.07	1461	Classification report for KININ
nature	0.00	0.00	0.00	347	
accuracy macro avg weighted avg	0.19 0.30	0.15 0.34	0.34 0.09 0.20	20107 20107 20107	

	04534343				
accuracy 0.31765056		recall	fl-score	support	
P	200202011	100411	11 00010	Dupporo	
achievement	0.38	0.50	0.43	6905	
affection	0.40	0.29	0.34	6768	
bonding	0.25	0.19	0.22	2236	
enjoy_the_moment	0.13	0.17	0.15	2165	Classification report for Logistic
exercise	0.02	0.00	0.01	225	
leisure	0.13	0.09	0.11	1461	Regression
nature	0.02	0.02	0.02	347	1108100001
accuracy			0.32	20107	
macro avg	0.19	0.18	0.18	20107	
weighted avg	0.32	0.32	0.31	20107	
I made the most de	ction	eal for my	y significa	ant	
Predicted label: a	affection				
I spent time with Actual label:bond: Predicted label: h	ing	s at a wo	rk conferer	nce	
I donated a bunch			to the loc	al	
Actual label:enjoy					C1- C11111
Predicted label: 6	enjoy_the_m	noment			Sample for an actual and predicted
					label for predicted setagon; from
I attended the wed	ding of my	cousin.			label for predicted_category from
Actual label:affec		COUDIN			RNN
					KININ
Predicted label: a	affection				
- 4 1 4-4 1					
I found \$50 in my		cket			
Actual label:achie	evement				
Predicted label: a	achievement	Ė			
I Went to the Doll Actual label:achie Predicted label: a	evement		nd was able	e to	
I got a big lead a	at work and	d was reco	ognized for	it	
Actual label:achie	evement				
Predicted label: a	achievement	5			
		_			
Watch a movie of t	error at h	nome, eat:	ing cotufas	an	
Actual label:leisu		,	,		
Predicted label: 1					
rredicted rapel:	rerpure				
I got a really nic	e desert 1	last night	and a fid	lget	
Actual label:achie		3			
Predicted label: a		1			
		-			
last month i went Actual label:enjoy Predicted label:	_the_momer	nt	, and i en	joye	

Future Scope

• Future work may include the usage of this model to other ML pipelines, for better recommendations of items or ideas, based on the provided user inputs and demographics. This can help users to get new ideas/suggestions to spread more happiness!