Mixed Hybrid Finite Element Eddington Acceleration of Discrete Ordinates Source Iteration

American Nuclear Society Student Conference Presentation

Samuel S. Olivier

March 21, 2017

Department of Nuclear Engineering, Texas A&M University

Table of contents

- 1. Introduction
- 2. Background
- 3. Eddigton Acceleration
- 4. Results
- 5. Conclusion

Introduction

Motivation

Radiation transport simulations are expensive

Multiphysics Coupling

- Operator split requires iteration
- Efficient solution methods are often incompatible

Radiation Hydrodynamics

- Mixed Hybrid Finite Element Method for hydro
- Linear Discontinuous Galerkin for transport

Goal

Develop an acceleration scheme that

- Robustly reduces the number of source iterations in Discrete Ordinates calculations
- 2. Remains compatible with MHFEM multiphysics

Test in 1D slab geometry case

Background

Boltzmann Equation

Steady-state, mono-energetic, istropically-scattering, fixed-source Linear Boltzmann Equation in 1D slab geometry:

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) = \frac{\Sigma_s(x)}{2} \int_{-1}^1 \psi(x,\mu') d\mu' + \frac{Q(x)}{2}$$

 $\mu = \cos \theta$ the cosine of the angle of flight θ relative to the x-axis

 $\Sigma_t(x)$, $\Sigma_s(x)$ total and scattering macroscopic cross sections

Q(x) the isotropic fixed-source

 $\psi(\mathbf{x},\mu)$ the angular flux

Factors of 1/2 come from

$$\phi(x) = \int_{-1}^{1} \psi(x, \mu) \,\mathrm{d}\mu$$

Integro-differential equation

Discrete Ordinates Angular Discretization

Compute angular flux on N discrete angles

$$\psi(x,\mu) \xrightarrow{S_N} \begin{cases} \psi_1(x), & \mu = \mu_1 \\ \psi_2(x), & \mu = \mu_2 \\ \vdots \\ \psi_N, & \mu = \mu_N \end{cases}$$

 $\mu_1, \, \mu_2, \, \ldots, \, \mu_N$ defined by N-point Gauss Quadrature Rule

$$\phi(x) = \int_{-1}^{1} \psi(x, \mu) d\mu \xrightarrow{S_N} \sum_{n=1}^{N} w_n \psi_n(x)$$

S_N Equations

$$\mu_n \frac{\mathrm{d}\psi_n}{\mathrm{d}x}(x) + \Sigma_t(x)\psi_n(x) = \frac{\Sigma_s(x)}{2}\phi(x) + \frac{Q(x)}{2}, \ 1 \le n \le N$$
$$\phi(x) = \sum_{n=1}^N w_n \psi_n(x)$$

N coupled, ordinary differential equations

Source Iteration

Lag scattering term

$$\mu_n \frac{\mathrm{d}\psi_n^{\ell+1}}{\mathrm{d}x}(x) + \Sigma_t(x)\psi_n^{\ell+1}(x) = \frac{\Sigma_s(x)}{2}\phi^{\ell}(x) + \frac{Q(x)}{2}, 1 \leq n \leq N$$

Source Iteration

- 1. Given previous estimate for $\phi^\ell(x)$, solve for $\psi^{\ell+1}_n$
- 2. Compute $\phi^{\ell+1}(x) = \sum_{n=1}^{N} w_n \psi_n^{\ell+1}(x)$
- 3. Update scattering term with $\phi^{\ell+1}(x)$ and repeat until:

$$\frac{\|\phi^{\ell+1}(x) - \phi^{\ell}(x)\|}{\|\phi^{\ell+1}(x)\|} < \epsilon$$

N independent, first-order, ordinary differential equations

Need For Acceleration in Source Iteration

If
$$\phi^0(x) = 0$$

$$\mu_n \frac{\mathrm{d}\psi_n^1}{\mathrm{d}x}(x) + \Sigma_t(x)\psi_n^1(x) = \frac{\Sigma_s(x)}{2}\phi^0(x) + \frac{Q(x)}{2}, 1 \le n \le N$$

 $\Rightarrow \phi^1(x)$ is the uncollided flux

Each source iteration adds scattering information

 $\phi^\ell(x)$ is the scalar flux of particles that have undergone at most $\ell-1$ collisions

Number of iterations is linked to the number of collisions in a particle's lifetime

Slow to converge in optically thick systems with minimal losses to absorption and leakage

Diffusion Synthetic Acceleration

Large, highly scattering systems \Rightarrow Diffusion Theory is accurate!

Diffusion Synthetic Acceleration

- 1. Given previous estimate for $\phi^{\ell}(x)$, solve for $\psi_n^{\ell+1/2}$
- 2. Compute $\phi^{\ell+1/2}(x) = \sum_{n=1}^{N} w_n \psi_n^{\ell+1/2}(x)$
- 3. Solve diffusion equation for a correction factor, $f^{\ell+1}(x)$
- 4. Update scattering term with $\phi^{\ell+1}(\mathbf{x}) = \phi^{\ell+1/2}(\mathbf{x}) + \mathbf{f}^{\ell+1}(\mathbf{x})$ and repeat until:

$$\frac{\|\phi^{\ell+1}(x) - \phi^{\ell}(x)\|}{\|\phi^{\ell+1}(x)\|} < \epsilon$$

8

DSA Problems

Transport and Diffusion steps must be consistenly differenced to prevent non-convergence

Consistently differenced diffusion is much more expensive to solve

Transport and MHFEM are not compatible

A new acceleration scheme is needed!

Eddigton Acceleration

Zeroth Angular Moment

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) = \frac{\Sigma_s(x)}{2}\phi(x) + \frac{Q(x)}{2}$$

Zeroth Angular Moment

$$\int_{-1}^{1} \mu \frac{\partial \psi}{\partial x}(x,\mu) + \Sigma_t(x)\psi(x,\mu) d\mu = \int_{-1}^{1} \frac{\Sigma_s(x)}{2} \phi(x) + \frac{Q(x)}{2} d\mu$$

Zeroth Angular Moment

$$\frac{\mathrm{d}}{\mathrm{d}x}J(x) + \Sigma_a(x)\phi(x) = Q(x)$$

First Angular Moment

$$\frac{\mathrm{d}}{\mathrm{d}x}\langle\mu^2\rangle(x)\phi(x)+\Sigma_t(x)J(x)=0$$

Eddington Acceleration

Use S_N to compute $\langle \mu^2 \rangle(x)$ and Moment Equations to find $\phi(x)$

Eddington Acceleration

- 1. Given the previous estimate for the scalar flux, $\phi^{\ell}(x)$, solve for $\psi_n^{\ell+1/2}(x)$
- 2. Compute $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 3. Solve the moment equations for $\phi^{\ell+1}(x)$ using $\langle \mu^2 \rangle^{\ell+1/2}(x)$
- 4. Update the scalar flux estimate with $\phi^{\ell+1}(x)$ and repeat the iteration process until the scalar flux converges

Eddington Acceleration Properties

Angular shape of the angular flux converges quickly \Rightarrow Eddington factor quickly converges

Solution to moment equations models all scattering events at once

Reduces dependence on source iterations to introduce scattering information

Benefits

- 1. Moment Equations are conservative
- 2. Transport and Acceleration steps can be differenced with arbitrarily different methods
- 3. Accelerates source iterations

Metropolis titleformats

metropolis supports 4 different titleformats:

- Regular
- Smallcaps
- ALLSMALLCAPS
- ALLCAPS

They can either be set at once for every title type or individually.

Small caps

This frame uses the smallcaps titleformat.

Potential Problems

Be aware, that not every font supports small caps. If for example you typeset your presentation with pdfTeX and the Computer Modern Sans Serif font, every text in smallcaps will be typeset with the Computer Modern Serif font instead.

all small caps

This frame uses the allsmallcaps titleformat.

Potential problems

As this titleformat also uses smallcaps you face the same problems as with the smallcaps titleformat. Additionally this format can cause some other problems. Please refer to the documentation if you consider using it.

As a rule of thumb: Just use it for plaintext-only titles.

ALL CAPS

This frame uses the allcaps titleformat.

Potential Problems

This titleformat is not as problematic as the allsmallcaps format, but basically suffers from the same deficiencies. So please have a look at the documentation if you want to use it.

Results

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- SMALLCAPS
- Bold
- Bold Italic
- Bold SmallCaps
- Monospace
- Monospace Italic
- Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatos

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

• This is important

- This is important
- Now this

- This is important
- Now this
- And now this

- This is really important
- Now this
- And now this

Figures

Figure 1: Rotated square from texample.net.

Tables

Table 1: Largest cities in the world (source: Wikipedia)

City	Population
Mexico City	20,116,842
Shanghai	19,210,000
Peking	15,796,450
Istanbul	14,160,467

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default	Default
Block content.	Block content.
Alert	Alert
Block content.	Block content.
Example	Example
Block content.	Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici

Frame footer

metropolis defines a custom beamer template to add a text to the footer. It can be set via

\setbeamertemplate{frame footer}{My custom footer}

My custom footer 2

References

Some references to showcase [allowframebreaks] $\cite{Mathematical Properties}$ [?, ?, ?, ?, ?]

Conclusion

Summary

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Backup slides

Sometimes, it is useful to add slides at the end of your presentation to refer to during audience questions.

The best way to do this is to include the appendixnumberbeamer package in your preamble and call \appendix before your backup slides.

metropolis will automatically turn off slide numbering and progress bars for slides in the appendix.

References I