Modelling the effects of domestication in Wheat through novel computer-vision techniques

Nathan Hughes

March 17, 2018

Description of Topic

Materials and Image Capture Setup

Completed Work

Work in Progress

Additional Aims

What is the project?

Description

The project is aiming to use computational methods to answer biologically significant questions on wheat grain morphology and domestication using μCT images.

How?

To do this, I will be using:

- Computer vision on 3D image sets
- Statistical analysis and data science
- Scientific theory to create reproducible results

Research Question:

Is it possible to use μCT imaging to answer questions about Wheat domestication?

I hope so!

Null-Hypothesis

- ullet $H_0 = Domestication$ has no effect on the morphometric properties of wheat
- H_0 = Ploidy has no effect on the morphometric properties of wheat
- H_0 = There is no difference in hulled and non-hulled genotypes
- *Hulling is a trait associated with domestication

Extracted Features

Features List

The features I am collecting are:

- Length
- Width
- Depth
- Volume
- Surface Area
- Crease Depth
- Crease Volume
- X,Y,Z coordinates of grains

Figure 1: Major features extracted from analysis

Aims

Primary Aims

I am wanting to produce:

- ullet A software library (in Python) which can be used to help analysis of μCT scanned seeds
- A GUI application for researchers to use to auto analyse seeds
- Answers to my hypothesis

Description of Topic

Materials and Image Capture Setup

Completed Work

Work in Progress

Additional Aims

Materials (Plant)

Wheat information

I have a wide range of Wheat genotypes, these are:

- Ranged between diploid, tetraploid and hexiploid
- 12 total genotypes
- Divided between domestication status

Figure 2: Two wheat spikes, showing diversity in Population

Methods (Image Generation)

Capture Methods

In order to generate this data a μ CT100 scanner (ScancoMedical, Switzerland) was used Each spike was:

- ~1000 slices (51 slices per stack),
- ullet 125 projections/180° were taken and a
- binning of 6 was used.
- Output images are a 0.2 megapixel (512 imes 512) resolution (68.8 μ/pixel)

Description of Topic

Materials and Image Capture Setur

Completed Work

Work in Progress

Additional Aims

Data Gathering

MATLAB Software

Data has been extracted from the μCT images using a method I previously developed at IBERS [Hughes et al. (2017)]. A lot of additions and novel augmentations have been added in order to work with the range of Wheat genotypes.

- This is done via separating non-grain from grain ROIs in the image data
- Measurements are taken on a per grain level
- Measurements are in mm, mm² and mm³ based on type
- Data is exported as CSV files

Example Data

Image Analysis Output (Data Truncated for Presentation)

Each 3D image scan results in an individual CSV file, the contents of which is similar to the example below, where each row is an individual grain:

	scanid	length	width	depth	crease_depth	circularity	surface_area	volume
0	C02871	4.47	3.74	3.693	0.65	0.8283	56.1	31.7688
1		5.29	3.80	3.106	0.3	0.923	53.7	31.059
2		4.05	4.49	3.728	0.59	0.848	57.722	32.978
3		4.05	4.03	2.725	0.79	0.779	49.0	25.41
4		3.99	3.84	3.5	0.616	0.785	54.67	30.99
5		4.8	3.86	3.1	0.482	0.913	50.4	28.288
6		3.7	3.82	2.9	0.75	0.816	47.30	24.16
7		3.99	4.46	3.584	0.638	0.85	53.7	30.88

Improved Watershedding Algorithm

Algorithm for Quasi-Euclidean Distance

$$|x_1 - x_2| + (\sqrt{2} - 1), |x_1 - x_2| > |y_1 - y_2| (\sqrt{2} - 1) |x_1 - x_2|, \text{ otherwise}$$
 (1)

Visual Example

Figure 3: A showing the chessboard method, B improved quasi-euclidean method

Grain Analyser Library example output - 1

Figure 4: Statistical Python Library Boxplot output

Grain Analyser Library example output - 2

Figure 5: Statistical Python Library Boxplot output style 2

Grain Analyser Library example output - 3

Figure 6: Statistical Python Library PCA output

Description of Topic

Materials and Image Capture Setur

Completed Work

Work in Progress

Additional Aims

Data Analysis WIP

Statistical Methods to be implemented

These will be implemented in Python using the library SciPy [Jones et al. (2014)]

- ANOVA
- MANOVA
- GLMs

- χ^2 Tests
- PCA
- T/F-Tests

Graphing Methods to be implemented

All Graphing is being implemented using Matplotlib [Hunter (2007)]

- Box
- Swarm
- Scatter / LM

- Violin
- Correlation Maps
- Frequency/Histograms

Reproducible Analysis GUI - 1 WIP

Figure 7: Inital GUI

Reproducible Analysis GUI - 2 WIP

Figure 8: GUI select folders to search for data

Reproducible Analysis GUI - 3 WIP

Figure 9: GUI with data loaded sucessfully

Reproducible Analysis GUI - 4 WIP

Figure 10: GUI dynamically graphing crease_depth

Reproducible Analysis GUI - 5 WIP

Figure 11: GUI dynamically graphing crease_volume

Description of Topic

Materials and Image Capture Setu

Completed Work

Work in Progress

Additional Aims

Additional Aims

Not yet started, but would like to implement by end of project

- Automate error finding and identification
- Visually Display Errors in Data
- Write testing suite for software

Ideas for future work

- Test software library on other datasets
- Grow more plants and create more replicates for more robust study

Description of Topic

Materials and Image Capture Setu

Completed Work

Work in Progress

Additional Aims

Thanks to

All these people:

Dr. Wayne Aubrey Prof Dr. Candida Nibau Dr. Dr. Kim Kenobi Ever

Prof. John Doonan Dr. Kevin Williams Everyone at the NPPC

References

Hughes N, Askew K, Scotson CP, Williams K, Sauze C, Corke F, et al. Non-destructive, high-content analysis of wheat grain traits using X-ray micro computed tomography. Plant Methods 2017;13.

Hunter JD. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 2007;9(3):90–95.

Jones E, Oliphant T, Peterson P. {SciPy}: open source scientific tools for {Python} 2014;.