微分方程概论 23 期末部分解析

-.

Peano 存在定理+ $\varepsilon - \delta$ 语言叙述解对初值的连续依赖性

 \equiv

计算

 \equiv .

- 三阶矩阵常系数微分方程组的初值问题
- 四. (本题第二部分解答来自24第六次习题课讲义)

$$\frac{d^2\varphi}{dt^2} + \frac{\mu}{m}\frac{d\varphi}{dt} + \frac{g}{l}\sin\varphi = 0$$

其中1为绳长 m为质量 g为重力加速度 μ 为阻力系数。

- (1) µ=0 时画出方程的相图
- (2) $\mu \ge 0$ 时讨论方程零解的稳定性

解:

(1) 也就是求 $\frac{d^2\varphi}{dt^2} + \frac{g}{l}\sin\varphi = 0$ 的相图,不妨把 $\frac{g}{l}$ 记成 k

仿照书上5.1节做法

做换元
$$v = \frac{d\varphi}{dt}$$

 $vdv = -k\sin\varphi d\varphi$

最后得到 $v^2 = 2k\cos\varphi + C$

相图如下:

(2) 法一: (Lyapunov 函数)

$$\Re V(x,y) = \frac{1}{2}y^2 + \frac{g}{l}(1 - \cos x) \quad \text{im} \mathcal{Z} V(0,0) = 0$$

$$\frac{dV}{dt} = \frac{\partial V}{\partial x} \cdot \dot{x} + \frac{\partial V}{\partial y} \cdot \dot{y} = \frac{g}{l} y \sin x - \frac{y}{l} y \sin x - \frac{\mu}{m} y^2$$

当无阻力时 $(\mu = 0)$: 有 $\frac{dV}{dt} \equiv 0$ 故零解是稳定的

当有阻力时 $(\mu > 0)$: $\frac{dV}{dt}$ 为常负 (见书上定义)。由于满足 $\frac{dV}{dt} = 0$ 的集合是 y = 0 ,而在原点邻域中 y = 0 直线上除了零解x = 0 ,y = 0 之外不含有方程组的整条正半轨线,又由补充定理可以知道是渐近稳

补充定理: (王高雄 P270 定理 5)

如果存在定正函数 V(x),其通过方程组的全导数 $\frac{dv}{dt}$ 为常负。但使 $\frac{dv(x)}{dt} = 0$ 的点 x 的集合中除了零解外不包括方程组的整条正半轨线,则零解是渐近稳定的

法二 (线性近似)

将方程组写成
$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{l}x - \frac{\mu}{m}y - \frac{g}{l}(\sin x - x) \end{cases}$$
 考虑线性近似方程组
$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{l}x - \frac{\mu}{m}y \end{cases}$$

非线性项:

$$N(x,y) = -\frac{g}{l}(\sin x - x) = -\frac{g}{l}\left(-\frac{x^3}{3!} + \frac{x^5}{5!}\cdots\right)$$

满足
$$N(t,0)=0$$
; $\lim_{|(x,y)|\to 0}\frac{|N(x,y)|}{|(x,y)|}=0$

考虑
$$A = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{\mu}{m} \end{pmatrix}$$
 特征值即可

特征值为
$$\lambda_{1,2} = -\frac{\mu}{2m} \pm \frac{1}{2} \sqrt{\left(\frac{\mu}{m}\right)^2 - 4\frac{g}{l}}$$

 $\mu > 0$ 时:特征值均有负实部,则零解渐近稳定

 $\mu = 0$ 时:特征值为纯虚数,无法判断非线性方程组是否稳定

五.

$$\begin{cases} \frac{dx}{dt} = x(2y - 1) \\ \frac{dy}{dt} = y(3 - 4x) \end{cases}$$

且 $\varphi(t) = {x(t) \choose y(t)}$ 为方程周期为 ω 的解

求证:
$$\int_0^\omega \frac{\varphi(t)}{\omega} dt = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \end{pmatrix}$$

证: 先证 $\int_0^\omega \frac{x(t)}{\omega} dt = \frac{3}{4}$.

我们考虑将 x(t) 降次为某个函数的导数

$$\frac{dy}{dt} = y(3-4x)$$
 移项得到 $\frac{dy}{y} = (3-4x)dt$.

$$\Rightarrow d(\ln|y|) = (3 - 4x)dt.$$

$$\Rightarrow xdt = \frac{3dt - d(\ln|y|)}{4}$$

$$\Rightarrow \int_0^\omega x dt = \int_0^\omega \frac{3}{4} dt - \frac{1}{4} \int_0^w d(\ln|y|).$$
$$= \frac{3}{4} \omega - \frac{1}{4} \ln|y| \begin{vmatrix} w \\ 0 \end{vmatrix}$$

注意条件给出 y(t) 周期为 $\omega \Rightarrow y(\omega) = y(0)$ 则 $\int_0^\omega x dt = \frac{3}{4}\omega$

另一边同理
$$\int_0^{\omega} y dt = \frac{1}{2}\omega$$

六.

考虑非齐次线性方程组

$$x' = Ax + F(x)$$

F 连续且 $\int_{x0}^{+\infty} \|F(x)\| dx$ 有界, 设其有基本解组 $\Phi(t)$

- (1) 求证: 若 $\| \Phi(t) \|$ 有界,则任意解在 $[0, + \infty]$ 有界
- (2) 求证: 若 $\lim_{t\to +\infty} \|\Phi(t)\| = 0$ 则任意解趋于 0

证(1)通解 $x(t) = \Phi(t)\left(c + \int_{t_0}^t \Phi^{-1}(s)f(s)ds\right)$.

只需证 $\int_{t_0}^t \Phi^{-1}(s) f(s) ds$ 有界

又 $\Phi(t)$ 有界 \Rightarrow 其元素有界 $\Rightarrow A_{ij}$ 有界且 $\det(\Phi)$ 有界且 $\det(\Phi) \neq 0$

 $\chi \Phi(t) \Phi^*(t) = \det(\Phi)I$

$$\Rightarrow \Phi^{-1}(t) = \frac{\Phi^*(t)}{\det(\Phi)}$$
 有界 M

 $\textstyle\int_{x_0}^{+\infty} \parallel F(x) \parallel dx \text{ 有界 } \Rightarrow \textstyle\int_{t_0}^{t} \parallel F(x) \parallel dx \text{ 有界}$

则 $\int_{t_0}^t \Phi^{-1}(s)F(s)ds \leq M \int_{t_0}^t F(s)ds$ 有界

(2) 仿照 1 证明 $\Phi^{-1}(t)$ 在 $t \to + \infty$ 有界即可