

Objectives

- Explain how a list may be implemented as a static or dynamic data structure
- Describe the linked list data structure
- Show how to create, traverse, add data to and remove data from a linked list

Abstraction

- All programming languages have data types such as real, integer, character and operations which can be performed on them
- In order to deal with complex problems, we need more complex data types that will lead to more efficient problem-solving methods
- This is the idea behind the creation of abstract data types

Abstraction

A queue is an Abstract Data Type (ADT)

- The methods used to implement the queue (e.g. enqueue, dequeue) can be used without knowledge of how they work
- The data (e.g. the pointers) used in implementing a queue are hidden from the user

List - An ADT

- A list is another example of an Abstract Data Type
- Many languages (e.g. Python) have a built-in
- An abstrace data type (ADT) allows us to view the data and perform operations that are allowed without regard to how they will be implemented

Dynamic vs static

- In relation to size, what does static mean?
- In relation to size, what does dynamic mean?

Dynamic vs static

- A static data structure cannot change size after it has been created
- A dynamic data structure can grow or shrink
- Programming languages often have an inbuilt dynamic list
- Python, Java, VB.Net, and Delphi all have dynamic list support
 - What controls how many items can be added to a dynamic list?

Implementation of a dynamic list

- The implementation of an inbuilt list ADT is hidden from the user
- A new location is taken from the 'heap' memory locations used for dynamic allocation
- When an item is deleted from a list, the memory location is freed up and returned to the 'heap'
- A system of pointers keeps the list in the order specified by the user

Applications of lists

 What are some examples of lists in real life and information processing

systems?

				22:15 Istanbul
	10			22:15 Istanbul 22:15 Istanbul
na	rivals		-04	22:15 Internal 22:30 Funchal 22:30 Lebon
	:10		Expected 19:46	0.00
	MA		Expected 19:46 Expected 20:09	22:40 Munich 22:50 Munich Flights for Wed
AT			4400	22 worts for
H.		NOK		Flights Singapo
,		ast V	40.5	05:55 Chicag
		19:50 Oublin 19:50 Cairo	CADDO 40.50	05-55 Rangk
	- No.		Expected 19:58 Expected 19:57 Expected 19:57	05:55 Bangk
	Barra delivered	19:55 Stockhourgh	CXOCO.	
	Bags delivered Bags delivered	19:65 Shouton 20:10 Ednburgh 20:10 Munich	121:11	
	Bags delivered	20:10 Education 20:20 Munich 20:20 Toronto	Expected 21:11	-0.50
	Bags delivered Bags delivered	20:30 Toronto 20:30 Frankfurt		06:55 A
m	Arrived 18:51	20:30 Torondurk 20:45 Frankfurk	105	06:55
	Arrived Tolerered Bass delivered	20:49 Interiord	acted 21:23	06:55
	Bogs delivered Bogs delivered	20:45 Planbul 21:00 Istanbul	Expected 21:25	
	Bags arriving	21:00 Dublin 21:05 Dublin 21:10 Brussells 21:10 Athens		
10	Bags arriving	21:10 57000		
HER	Bags arms 18:53 Arrived 18:51	21:15		
na	Arrived 18:51	21:15 Cork 21:15 Copenhagen 21:15 Copenhagen		
ixturt	Arrived 19:01 Landed 19:01			
neidorf	Landed thered		Expected	21:05
test City		21:20 Vienna	Expected	
bin		21:25 Vienna 21:25 Vienna		
MODOR				
mangel	Arrived 19:01 Arrived 19:10	21:25 Newark 21:25 Newark		
word to		25		
ingapore	Experience 19:18	21:35 Oslo		-72
cioque	Expected 19:18	21:35 murich		ected 21:57
dinburgh		10 70	EXP	
Taipei	Expected 19:03		100	
via: Bangkok			gion	
a vielt				
Zurich	Expected 19:24	22:05 Dublin		
Aberdeen	Expected 19:24	9		

Applications of lists

- List of students in a class and their marks, component parts of a product, songs, friends, items in a queue, etc.
- "Items in a queue" suggests that we could use the list ADT to implement a queue, with added conditions specified
 - In general, what operations would it be useful to include in a list?

Programming operations

 Can you suggest some operations needed to implement a list? Here are two to get you going

List operation	Operation
isEmpty()	Test for empty list
append(item)	Add a new item to the end of a list

Programming operations

List operation	Operation	
isEmpty()	Test for empty list	
append(item)	Add a new item to the end of a list	
remove(item)	Remove first occurrence of an item from list	
count(item)	Return the number of occurrences of item in list	
len(item)	Return the number of items in the list	
index(item)	Return the position of item	
insert(pos,item)	Add a new item at position pos	
pop()	Remove and return the last item in the list	
pop(pos)	Remove and return the item at position pos	

Worksheet 3

 Complete the 'Random Clothing' Task 1 on the worksheet

Sorting a list

- You will cover sorting methods in due course
 - In Python, there is a built-in method for sorting a list, which you can try in interactive mode

```
>>> numbers = [4,78,66,2,99,37]
>>> numbers.sort()
>>> numbers
[2, 4, 37, 66, 78, 99]
```


Implementing a queue as a list

- Using a dynamic data structure such as a list to implement a queue, is there any point in holding items in a circular queue?
- Is it necessary to update the size variable as items are added and removed?
- Do we need a variable maxSize?
- Do we need a function isFull?

Functions to implement a linear queue as a dynamic

Write pseudocode to implement the following operations for a queue which can hold a maximum of maxSize items:

- enqueue
- dequeue
- isEmpty
- isFull

Pseudocode

```
procedure dequeue(item)
procedure enqueue(item)
   if q.isFull() then
                              if q.isEmpty() then
                                     print ("queue
         print ("queue
full")
                           empty")
   else
                              else
                                     q.pop(0)
         q.append(item)
                              endif
   endif
                           endprocedure
endprocedure
function isFull()
                           function isEmpty()
                               return (len(q) == 0)
   return (len(q) ==
maxSize)
                           endfunction
endfunction
```


Operations on lists

- Merging, sorting, searching and comparing lists are very common operations in computing
 - How could you find how many times numbers in the range
 80 -100 occur in a list of unsorted integers?
 - How could you remove all these numbers from the list?

Worksheet 3

 Try these operations in Task 2 on the worksheet

Linked lists

- A dynamic abstract data structure which can be implemented as an array and pointers
- Composed of 'nodes'
- Each node is composed of two parts
 - The data (which may be a complex data structure)
 - A pointer (the index) of the next node
- A start pointer identifies the first node in the list
- A nextfree pointer shows the index of the next free space in the array

Array implementation

- The empty array is intialised as a linked list of free spaces
- start will point to the first element in the list

Index	Data	Pointe r
0		1
1		2
2		3
3		4
4		null

start
null
nextfree
0

Adding elements to the list We will add the names Nancy, Ava, Dave, Peter to the list

Start with Nancy

Index	Data	Pointe r
0	Nancy	null
1		2
2		3
3		4
4		null

start

0

nextfree

Adding elements to the list We will add the names Nancy, Ava, Dave, Peter to the list

Now add Ava

Index	Data	Pointe r
0	Nancy	null
1	Ava	0
2		3
3		4
4		null

start

1

nextfree

Adding elements to the list we will add the names Nancy, Ava, Dave,

Now add Dave

Peter to the list

Index	Data	Pointe r
0	Nancy	null
1	Ava	2
2	Dave	0
3		4
4		null

start

1

nextfree

Peter to the list

Adding elements to the We will add the names Nancy, Ava, Dave,

 Now add Peter. What will be the state of the array and the pointers?

Index	Data	Pointe r
0	Nancy	null
1	Ava	2
2	Dave	0
3		4
4		null

nextfree

Adding elements to the list We will add the names Nancy, Ava, Dave, Peter to the list

Now Peter has been added

Index	Data	Pointe r
0	Nancy	3
1	Ava	2
2	Dave	0
3	Peter	null
4		null

start

1

nextfree

Linked List - diagram

- start points to the head of the list
- Each pointer field holds the index of the next node
- Last node has a null pointer start

Adding a new node

- Put the data in the node pointed to by nextfree
- Follow the pointers to find where the new node needs to be linked in
- Adjust the pointers

Deleting a node

- To delete a node, we just need to adjust the pointers
- The deleted node can be linked back in to the list of free nodes by adjusting the pointer in nextfree and the pointer in the deleted node

Peeking ahead

- We can examine the data and the pointer in the current node p and the next one.
 - Suppose p = 1
 - List[p]. Data = Ava
 - List[p].Pointer = 2
 - next = List[p].pointer
 - What is List[next].data?
 - What is List[next].pointer?

Index	Data	Point er	start
0	Nanc y	3	nextfree
1	Ava	2	4
2	Dave	0	
3	Peter	null	
4		null	

Peeking ahead

- We can examine the data and the pointer in the current node p and the next one.
 - Suppose p = 1
 - List[p]. Data = Ava
 - List[p].Pointer = 2
 - next = List[p].pointer
 - List[next].data = Dave
 - List[next].pointer = 0
- This technique is used in processing a linked list

Index	Data	Point er	start 1
0	Nanc y	3	nextfree
1	Ava	2	1
2	Dave	0	
3	Mike	null	
4		null	

Worksheet 3 - Operations

- Complete **Task 3** on the worksheet to develop the algorithms for:
 - Inserting a node
 - Deleting a node

Plenary

- A dynamic data structure such as list is useful for implementing other ADTs such as queues, stacks and trees
 - What is the difference between a static and dynamic data structure?
 - What operations can be performed on a dynamic list?
- You should practise writing and tracing through algorithms for processing a linked list implemented as an array of records

Copyright

© 2016 PG Online Limited

The contents of this unit are protected by copyright.

This unit and all the worksheets, PowerPoint presentations, teaching guides and other associated files distributed with it are supplied to you by PG Online Limited under licence and may be used and copied by you only in accordance with the terms of the licence. Except as expressly permitted by the licence, no part of the materials distributed with this unit may be used, reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic or otherwise, without the prior written permission of PG Online Limited.

Licence agreement

This is a legal agreement between you, the end user, and PG Online Limited. This unit and all the worksheets, PowerPoint presentations, teaching guides and other associated files distributed with it is licensed, not sold, to you by PG Online Limited for use under the terms of the licence.

The materials distributed with this unit may be freely copied and used by members of a single institution on a single site only. You are not permitted to share in any way any of the materials or part of the materials with any third party, including users on another site or individuals who are members of a separate institution. You acknowledge that the materials must remain with you, the licencing institution, and no part of the materials may be transferred to another institution. You also agree not to procure, authorise, encourage, facilitate or enable any third party to reproduce these materials in whole or in part without the prior permission of PG Online Limited.