

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso de Engenharia Eletrônica

1. Considere o sistema apresentado na Fig. 1, sendo o período de amostragem de 0,15 s e a função de transferência discreta do controlador digital é dada por:

Fig. 1: Sistema de controle digital.

- a) Determine os parâmetros de β e Kc do controlador digital de maneira que o sistema apresente polos dominantes de segunda ordem em malha fechada que tenham um fator de amortecimento ζ = 0,7 e uma frequência natural ω_n = 2,5 rad/s. (demonstre, prove matematicamente). Considere que o zero do controlador cancelará o polo da função de transferência de ramo direto da planta. (45%)
- b) Encontre a equação recursiva de cada um dos blocos discretos indicados na Figura 1 e elabore um programa que utilize estas equações e a equação do somador para visualizar graficamente os valores de c(kt) para uma entrada do tipo RAMPA UNITÁRIA em r(kt), considerando um tempo final de 5 s. (45%)

As equações recursivas devem determinar o valor atual da saída de cada bloco.

Equação recursiva do bloco C:

Equação recursiva do bloco G:

Equação recursiva do boco GH:

c) Determine o erro de regime permanente para a entrada tipo RAMPA UNITÁRIA em r(kt). (demonstre, prove matematicamente, apresentando as equações utilizadas).
 (10%)

Formulário

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso de Engenharia Eletrônica

$$H(z) = \mathcal{Z}[ZOH(s)G(s)] = \mathcal{Z}[\frac{1-e^{-Ts}}{s}G(s)] = (1-z^{-1})\mathcal{Z}\left[\frac{G(s)}{s}\right]$$

$$C(z) = \frac{G(z)}{1 + GH(z)}R(z)$$

$$\mathbf{M}_{\mathbf{P}} = e^{-\frac{\pi \cdot \zeta}{\sqrt{1-\zeta^2}}}$$

$$K_p = \lim_{z \to 1} G(z)H(z)$$

$$K_v = \lim_{z \to 1} \frac{(1 - z^{-1})G(z)H(z)}{T}$$

$$K_{\alpha} = \lim_{z \to 1} \frac{(1 - z^{-1})^2 G(z) H(z)}{T^2}$$

$$K_p = \lim_{z \to 1} GH(z)$$

$$K_v = \lim_{z \to 1} \frac{(1-z^{-1})GH(z)}{T}$$

$$K_\alpha = \lim_{z \to 1} \frac{(1-z^{-1})^2 GH(z)}{T^2}$$

$$t_{85\%} = 3\tau = \frac{3}{\zeta \cdot \omega_n}$$

$$t_{82\%} = 3.9\tau = \frac{3.9}{\zeta \cdot \omega_n}$$

$$t_{S1\%} = 4.6\tau = \frac{4.6}{\zeta \cdot \omega_n}$$

$$|z| = e^{-T\zeta \omega_{\kappa}}$$

$$\angle z = T\omega_n \sqrt{1-\zeta^2}$$

$$\frac{360^{\circ}}{\theta} = \frac{360^{\circ}}{\angle z} = \frac{\omega_a}{\omega_d}$$
$$\omega_a = \frac{2\pi}{T}$$

$$\angle F(z) = \pm 180^{\circ} (2k+1), \qquad k = 0, 1, 2, \dots$$

$$|F(z)|=1$$

$$\lim_{k \to \infty} x(k) = \lim_{z \to 1} (z - 1)X(z)$$

$$C(z) = \frac{G(z)}{1 + G(z)H(z)}R(z)$$

$$R(P_i) = \left[(s - P_i)F(s) \frac{z}{z - e^{sT}} \right]_{s = P_i}$$

$$R(P_i) = \frac{1}{(m-1)!} \frac{d^{m-1}}{ds^{m-1}} \left[(s - P_i)^m F(s) \frac{z}{z - e^{sT}} \right]_{s=P_i}$$

$$\mathcal{Z}[x(kT + T)] = zX(z) - zx(0)$$

$$\mathcal{Z}[x(kT+2T)] = z^2 X(z) - z^2 x(0) - zx(T)$$

$$\mathcal{Z}[x(k+m)] = z^m X(z) - z^m x(0) - z^{m-1} x(1) - \dots - zx(m-1)$$

$$F(s) = \frac{B(s)}{A(s)} = \frac{a_1}{s + p_1} + \frac{a_2}{s + p_2} + \dots + \frac{a_n}{s + p_n}$$

$$a_k = \left[(s + p_k) \frac{B(s)}{A(s)} \right]_{s = -p_k}$$

$$e_{SS} = \lim_{z \to 1} \left[(1 - z^{-1}) \frac{1}{1 + GH(z)} R(z) \right]$$

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA - CAMPUS FLORIANÓPOLIS Departamento Acadêmico de Eletrônica Curso Superior de Tecnologia em Sistemas Eletrônicos

TABELA 3.4

Erros em regime estacionário em termos do ganho K								
Tipo do sistema	Entrada em degrau	Entrada em rampa	Entrada em parábola					
Sistema tipo 0	$\frac{1}{1+K}$	∞	∞					
Sistema tipo 1	0	$\frac{1}{K}$	∞					
Sistema tipo 2	0	0	$\frac{1}{K}$					
Sistema tipo 3 ou maior	0	0	0					

TARLE 2-1 TABLE OF z TRANSFORMS

TAB	TABLE 2-1 TABLE OF 2 TRANSFORMS					
	X(s)	x(t)	x(kT) or $x(k)$	X(z)		
1.	_	_	Kronecker delta $\delta_0(k)$ 1, $k = 0$ 0, $k \neq 0$	1		
2.	. —	·	$ \delta_0(n-k) 1, $	z ^{-k}		
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$		
4.	$\frac{1}{s+a}$	e^{-at}	e^{-akT}	$\frac{1}{1-e^{-aT}z^{-1}}$		
5.	$\frac{1}{s^2}$	· t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$		
6.	$\frac{2}{s^3}$	t^2	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$		
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$		
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$		
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-at}-e^{-bt}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$		
10.	$\frac{1}{(s+a)^2}$	te ^{-ai}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$		
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1-akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$		

13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
18.			a ^k	$\frac{1}{1-az^{-1}}$