

AD-A103 534

NAVAL RESEARCH LAB WASHINGTON DC
SYNTHESIS OF TAYLOR AND BAYLISS PATTERNS FOR LINEAR ANTENNA ARR--ETC(U)
AUG 81 J P SHELTON
UNCLASSIFIED

F/0 9/5

NL

100
40
5003534

END
DATE
FILED
40-811
DTIC

AD A103534

LEVEL
12

NRL Report 8511

Synthesis of Taylor and Bayliss Patterns for Linear Antenna Arrays

J. P. SHELTON

*Electromagnetics Branch
Radar Division*

August 31, 1981

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

81 9 01 052

DTIC FILE COPY

(12)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Report 8511	2. GOVT ACCESSION NO. AD-A103 534	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) SYNTHESIS OF TAYLOR AND BAYLISS PATTERNS FOR LINEAR ANTENNA ARRAYS	5. TYPE OF REPORT & PERIOD COVERED Interim report on a continuing NRL problem.	
7. AUTHOR(s) J. P. Shelton	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, DC 20375	8. CONTRACT OR GRANT NUMBER(s) 101-11111	
11. CONTROLLING OFFICE NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62712N; SF 12141491 53-0604-0	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	12. REPORT DATE August 31, 1981	
18. DISTRIBUTION STATEMENT (of this Report)	13. NUMBER OF PAGES 19	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. SUPPLEMENTARY NOTES	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE DTIC C-1 H	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Antennas Linear arrays Pattern synthesis Sidelobe control	17. ABSTRACT (Continue on reverse side if necessary and identify by block number) The history of synthesis techniques for designing linear antenna arrays with low sidelobe patterns is reviewed briefly, and the limitations that are encountered with very low sidelobes and/or small arrays are pointed out. Taylor's continuous aperture synthesis procedure is outlined, and a technique for transforming it for application to a discrete array is described. Discrete-array design equations for Taylor and Bayliss synthesis procedures are given. A set of programs for use on a programmable calculator are presented.	

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

18. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

CONTENTS

INTRODUCTION	1
REVIEW OF TAYLOR SYNTHESIS PROCEDURE	2
ARRAY PATTERN FUNCTIONS IN TERMS OF ZEROS	4
ACKNOWLEDGMENT	6
REFERENCES	6
APPENDIX A — Design Equations for Linear Arrays with Taylor-Type Patterns	7
APPENDIX B — Design Equations for Linear Arrays with Bayliss-Type Difference Patterns	9
APPENDIX C — Programs for the HP-41C CALCULATOR	11

Accession For	NTIS GPO	<input checked="" type="checkbox"/>
	DTIC T/R	<input type="checkbox"/>
	Unannounced	<input type="checkbox"/>
Justification		
By _____		
Distribution/ _____		
Availability Codes		
Avail and/or Dist Special		
P		

SYNTHESIS OF TAYLOR AND BAYLISS PATTERNS FOR LINEAR ANTENNA ARRAYS

INTRODUCTION

The requirement for low sidelobes from array-type antennas is a long-standing one. The contributions to this theory extend from Dolph's utilization of Chebyshev polynomials, through Taylor's papers on linear and circular apertures, Bayliss's extension to difference-type patterns, and finally to recently developed techniques which provide arbitrary pattern control for linear arrays [1-8].

The purpose of this report is to examine some of the more recent applications of these synthesis techniques in light of their limitations and also the computational capabilities which are now available. For example, at the time Taylor published his synthesis procedure, engineers had only slide rules, mathematical tables, and mechanical desk calculators to generate the distribution functions. The computational capability available to today's engineer is vastly different, and we will show how Taylor's and Bayliss's procedures can be modified to give better results.

A more careful look at the synthesis procedures previously mentioned is presented in Table 1.

Dolph's synthesis is precise and gives minimum beamwidth for given sidelobe levels, but these constant amplitude sidelobes are not desirable for larger arrays because it is possible to radiate most of the energy into the sidelobes. Taylor solved this problem by allowing the far-out sidelobes to fall off as dictated by an amplitude discontinuity at the ends of the aperture. Taylor, and later Bayliss, synthesized continuous distributions and sampled these to obtain array excitations.

Table 1 — Synthesis Procedures for Linear Array Apertures

Procedure/ Date	Continuous or Discrete	Limitations
Dolph/47	Discrete	Poor results for large arrays
Taylor/52	Continuous	Inexact for low sidelobes, small arrays
Bayliss/68	Continuous	Inexact for low sidelobes, small arrays
Hyneman/68	Continuous	Inexact for low sidelobes, small arrays—iterative
Stutzman/72	Continuous	Inexact for low sidelobes, small arrays—iterative
Elliott/76	Continuous	Inexact for low sidelobes, small arrays—iterative
Elliott/77	Discrete	Applies all continuous procedures to discrete arrays

Manuscript submitted June 15, 1981.

SHELTON

Some recent applications have called for lower sidelobes and smaller arrays, thereby pressing the limitations of the Taylor and Bayliss synthesis procedures. The problem of discretizing continuous aperture distributions has been treated [9-10]. The technique used in this report is different from those of Winter and of Elliott, but it is mathematically related to Elliott's technique.

REVIEW OF TAYLOR SYNTHESIS PROCEDURE

A brief review of the Taylor synthesis procedure is given here. The key to this procedure is the equal-sidelobe pattern function which is the continuous-aperture analog to the Chebyshev polynomial pattern for arrays:

$$E(u) = \cos \pi \sqrt{u^2 - A^2}, \quad (1)$$

where $u = \pi a \sin \theta / \lambda$, a is the length of the aperture and θ is the angle measured relative to the normal to the array. This function has a maximum value of $\cosh \pi A$ at $u = 0$ and unit sidelobes extending to $u = \pm \infty$. Taylor showed that the pattern of Eq. (1) is not physically realizable from a continuous aperture distribution, just as the Dolph array excitation becomes increasingly impractical in the limit of large arrays. His brilliant solution to this problem was:

1. For all zeros of the synthesized pattern functions, which we will call $E_s(u)$, from the n th from the origin to ∞ , the locations will be the same as those from a uniformly illuminated aperture of the same size. That is,

$$E_s(u) = 0 \text{ for } u = n \text{ for } n \geq \bar{n}.$$

2. For the first $\bar{n} - 1$ zeros, their locations will be determined by the zeros of $E(u)$, scaled so that the n th zero is located at $u = \bar{n}$.

The aperture distribution is determined by performing a Woodward synthesis of $E_s(u)$. That is, we define a set of functions of the form

$$F_n(u) = \sin (u - n)\pi / (u - n)\pi,$$

and then construct $E_s(u)$ from the $F_n(u)$

$$E_s(u) = \sum_{n=-\infty}^{\infty} E_s(n) F_n(u). \quad (2)$$

Since we have defined $E_s(n) = 0$ for $n \geq \bar{n}$, Eq. (3) becomes

$$E_s(u) = \sum_{n=-\bar{n}+1}^{\bar{n}-1} E_s(n) F_n(u). \quad (3)$$

Fourier transformation of Eq. (3) yields the aperture distribution:

$$\begin{aligned} A(x) &= \int_{-\infty}^{\infty} E_s(u) e^{j2xu\pi/a} du \\ &= \int_{-\infty}^{\infty} \sum_{n=-\bar{n}+1}^{\bar{n}-1} E_s(n) F_n(u) e^{j2xu\pi/a} du. \end{aligned} \quad (4)$$

That is, $A(x)$ is a weighted sum of integrals of the form,

$$\int_{-\infty}^{\infty} \frac{\sin(u-n)\pi}{(u-n)\pi} e^{j2xu\pi/a} du.$$

Letting $u' = u - n$ results in

$$e^{j2n\pi x/a} \int_{-\infty}^{\infty} \frac{\sin u'\pi}{u'\pi} e^{j2xu'\pi/a} du'.$$

Since the imaginary part of the integrand is odd, this becomes

$$\begin{aligned} &e^{j2n\pi x/a} \int_{-\infty}^{\infty} \frac{\sin u'\pi \cos 2xu'\pi/a}{u'\pi} du' \\ &= e^{j2n\pi x/a} \int_{-\infty}^{\infty} \frac{1}{2} \left[\frac{\sin u'\pi(1-2x/a) + \sin u'\pi(1+2x/a)}{u'\pi} \right] du'. \end{aligned} \quad (5)$$

A standard definite integral is

$$\int_{-\infty}^{\infty} \frac{\sin bzdz}{z} = \begin{cases} \pi & \text{for } b > 0 \\ 0 & \text{for } b = 0 \\ -\pi & \text{for } b < 0 \end{cases}$$

Application of this integral to Eq. (5) and thence to Eq. (4) yields

$$\begin{aligned} A(x) &= \sum_{n=-\bar{n}+1}^{\bar{n}-1} E_s(n) e^{j2\pi nx/a} \\ &= E_s(0) + 2 \sum_{n=1}^{\bar{n}-1} E_s(n) \cos 2\pi nx/a \quad \text{for } |x| \leq a/2 \\ &= 0 \quad \text{for } |x| > a/2. \end{aligned} \quad (6)$$

The continuous aperture distribution given by Eq. (6) is sampled to give the element excitation values for a discrete array. This last step is approximate, and the pattern function of the array is obviously different from $E_s(u)$. This approximation is acceptable provided that the number of elements in the array is much greater than \bar{n} and the sidelobe level is not extremely low. Figure 1 is an example of a case in which the synthesis procedure gives an unsatisfactory result. For a sidelobe level of 50 dB below mainbeam and $\bar{n} = 8$, a 30-element array has the computed pattern function shown. The near-in sidelobes are unduly low, whereas the first eight sidelobes should be about the same level.

ARRAY PATTERN FUNCTIONS IN TERMS OF ZEROS

Elliott used a synthesis technique which relates the discrete array distribution directly with the array pattern [9]. We also use this relationship, and our procedure achieves identical results with those of Elliott. However, the actual computations are different, and it is desirable to compare the techniques.

Elliott expresses the pattern function as a polynomial in w , where $w = e^{j(2\pi s/\lambda)\sin \theta}$. The zeros of this polynomial are given by w_n , which are normally located on the unit circle. Once he has the w_n properly adjusted, he completes the synthesis by multiplying out the product expression, $\prod(w - w_n)$, into the polynomial. The coefficients of the polynomial are the excitations of the array elements.

Fig. 1 — Conventional Taylor synthesis, $N = 30$,
 $\bar{n} = 8$, 50-dB sidelobes

Our procedure also uses the pattern function zeros in a product expression. Since the patterns are symmetric, our expression can be of the form, $\Pi(\cos z - \cos z_n)$, where $z = (2\pi s/\lambda) \sin \theta$. We cannot multiply this product expression out to obtain the coefficients directly since we require terms of the form $\cos nz$ rather than $\cos^n z$. Rather, we carry out a synthesis exactly analogous to that used by Taylor. Uniformly spaced pattern function samples are found by using the product expression. These pattern samples are used in a Fourier series to find the array illumination.

The procedure relies on the equivalent location of pattern function zeros for the line source and for the discrete array. Whereas the zeros for the pattern of a uniform line source distribution are located at $u = n$, the analogous relationship for a discrete array is $z = n\pi/N$, where $z = 2\pi s \sin \theta/\lambda$, where s is element spacing and N is the number of elements in the uniformly excited array.

The transformation of Taylor's procedure is easily seen to consist of locating the zeros in step 1 above at $z = n\pi/N$ for $n \geq \bar{n}$ and then scaling the first \bar{n} zeros of Eq. (1) so that the \bar{n} th zero is located at $z = \bar{n}\pi/N$.

Appendix A lists the resulting equations for Taylor arrays of both even and odd N , and Appendix B lists the equations for Bayliss arrays (yielding monopulse difference patterns) of both even and odd N . Figure 2 is an example of a Taylor array pattern with sidelobe levels of 50 dB with $\bar{n} = 8$ and $N = 30$. These equations can be straightforwardly programmed for automatic processing by a digital computer. Many programmable calculators now have sufficient memory to implement these programs. Appendix C lists programs for carrying out the synthesis and evaluating the pattern functions with an HP-41C programmable calculator.

Fig. 2 — Discretized Taylor synthesis,
 $N = 30, \bar{n} = 8, 50$ -dB sidelobes

SHELTON

ACKNOWLEDGMENT

I thank Dr. Robert J. Adams for his careful and constructive review of the initial draft of this report. His questions led to a clarification of the relationship between this synthesis and that of Elliott [9].

REFERENCES

1. C. L. Dolph, "A Current Distribution for Broadside Arrays which Optimizes the Relationship between Beam Width and Side Lobe Level," *Proc. IRE*, Vol. 34, June 1946, pp. 335-348.
2. T. T. Taylor, "Design of Line-Source Antennas for Narrow Beamwidth and Low Side Lobes," *IRE Trans. Antennas Propagat.*, Vol. AP-3, Jan. 1955, pp. 16-28.
3. T. T. Taylor, "Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes," *IRE Trans. Antennas Propagat.*, Vol. AP-8, Jan. 1960, pp. 17-22.
4. E. T. Bayliss, "Design of Monopulse Antenna Difference Patterns with Low Sidelobes," *BSTJ*, Vol. 47, May-June 1968, pp. 623-650.
5. R. S. Elliott, "Design of Line Source Antennas for Sum Patterns with Sidelobes of Individually Arbitrary Heights," *IEEE Trans. Antennas Propagat.*, Vol. AP-24, Jan. 1976, pp. 76-83.
6. R. S. Elliott, "Design of Line-Source Antennas for Difference Patterns with Sidelobes of Individually Arbitrary Heights," *IEEE Trans. Antennas Propagat.*, Vol. AP-24, May 1976, pp. 310-316.
7. R. F. Hyneman, "A Technique for the Synthesis of Line-Source Antenna Patterns, Having Specified Sidelobe Behavior," *IEEE Trans. Antennas Propagat.*, Vol. AP-16, July 1968, pp. 430-435.
8. W. L. Stutzman, "Sidelobe Control of Antenna Patterns," *IEEE Trans. Antennas Propagat.*, Vol. AP-20, Jan. 1972, pp. 102-104.
9. R. S. Elliott, "On Discretizing Continuous Aperture Distributions," *IEEE Trans. Antennas Propagat.*, Vol. AP-25, Sept. 1977, pp. 617-621.
10. C. F. Winter, "Using Continuous Aperture Illuminations Discretely," *IEEE Trans. Antennas Propagat.*, Vol. AP-25, Sept. 1977, pp. 695-700.

Appendix A

DESIGN EQUATIONS FOR LINEAR ARRAYS WITH TAYLOR-TYPE PATTERNS

These equations will determine the aperture illumination coefficients for a linear array of N elements to produce a Taylor-type pattern function with \bar{n} sidelobes on each side of the main beam at a level of L dB.

This design procedure involves three steps. The first $\bar{n} - 1$ zeros of the pattern are determined. Then the appropriate pattern function samples are determined. Finally, the array element illumination coefficients are determined by a harmonic analysis of the pattern function samples.

A particular advantage of this synthesis is that the knowledge of all of the pattern function zeros allows the computation of the pattern function as a product rather than as a polynomial. The product computation involves only one trigonometric function evaluation for each pattern function value. All other constants need to be evaluated only once for each array.

The pattern function zeros are given by

$$z_n = \frac{2\pi\bar{n}\sqrt{A^2 + (n - 1/2)^2}}{N\sqrt{A^2 + (\bar{n} - 1/2)^2}} \quad \text{for } n = 1 \text{ to } \bar{n} - 1 \quad (\text{A1a})$$

$$= \frac{2\pi n}{N} \quad \text{for } n = \bar{n} \text{ to } M, \quad (\text{A1b})$$

where

$$M = \text{int}\left(\frac{N-1}{2}\right)$$

and A is given by

$$A = \frac{1}{\pi} \cosh^{-1} \left[10^{(L/20)} \right] \quad (\text{A2a})$$

$$\approx (L + 6.02)/27.29, \quad (\text{A2b})$$

where L is the sidelobe level (positive) in dB. Equation (A2b) is an excellent approximation, especially for large L .

SHELTON

The pattern function is given by

$$E(z) = \cos \frac{z}{2} \prod_{n=1}^M \left(\frac{\cos z - \cos z_n}{1 - \cos z_n} \right) \quad N \text{ even}$$

$$= \prod_{n=1}^M \left(\frac{\cos z - \cos z_n}{1 - \cos z_n} \right) \quad N \text{ odd} \quad (\text{A3})$$

The pattern samples to be used to find the array element illumination coefficients are given by

$$a_m = E \left(\frac{2\pi m}{N} \right) \quad \text{for } m = 1 \text{ to } \bar{n} - 1. \quad (\text{A4})$$

The element excitation coefficients are given by

$$e_p = 1 + 2 \sum_{m=1}^{\bar{n}-1} a_m \cos \frac{m(2p-1)\pi}{N} \quad N \text{ even}, p = 1 \text{ to } M+1$$

$$= 1 + 2 \sum_{m=1}^{\bar{n}-1} a_m \cos \frac{2mp\pi}{N} \quad N \text{ odd}, p = 0 \text{ to } M, \quad (\text{A5})$$

where p is an index or element number starting at the center and moving to either end of the array.

Appendix B

DESIGN EQUATIONS FOR LINEAR ARRAYS WITH BAYLISS-TYPE DIFFERENCE PATTERNS

Appendix A gave the design equations for linear arrays with Taylor-type patterns, which produce a main beam with slightly larger beamwidth than that of the Dolph synthesis but in general with higher gain. In some applications; such as monopulse, we might require a difference pattern. Bayliss presented a synthesis procedure for difference patterns, analogous to that of Taylor. In this appendix we adapt the Bayliss procedure to discrete arrays.

As in the case of the Taylor synthesis, the application of discrete arrays involves three steps. The first $\bar{n} - 1$ off-axis zeros of the pattern are determined. Then the appropriate pattern function samples are determined. Finally the array element illumination coefficients are determined by a harmonic analysis of the pattern function samples.

The pattern function zeros are given by

$$z_n = \frac{2\pi q_n \left(\bar{n} + \frac{1}{2} \right)}{N \sqrt{A^2 + \bar{n}^2}} \quad \text{for } n = 1, 2, 3, 4 \quad (\text{B1a})$$

$$= \frac{2\pi \left(\bar{n} + \frac{1}{2} \right) \sqrt{A^2 + n^2}}{N \sqrt{A^2 + \bar{n}^2}} \quad \text{for } n = 5 \text{ to } \bar{n} - 1 \quad (\text{B1b})$$

$$= \frac{2\pi \left(n + \frac{1}{2} \right)}{N} \quad \text{for } n = \bar{n} \text{ to } M \quad (\text{B1c})$$

where

$$M = \text{int} \left(\frac{N - 2}{2} \right).$$

In this case it is necessary to find both A and q_n from graphs in Bayliss's paper [4]. For 50 dB sidelobes, $A = 2.42$, $q_1 = 2.78$, $q_2 = 3.18$, $q_3 = 3.85$, and $q_4 = 4.65$.

The pattern function is given by

$$E(z) = \sin \frac{z}{2} \prod_{n=1}^M [\cos z - \cos z_n] / \sin \frac{z_1}{4} \prod_{n=1}^M \left[\cos \frac{z_1}{2} - \cos z_n \right] \quad N \text{ even} \quad (\text{B2})$$

$$= \sin z \prod_{n=1}^M [\cos z - \cos z_n] / \sin \frac{z_1}{2} \prod_{n=1}^M \left[\cos \frac{z_1}{2} - \cos z_n \right] \quad N \text{ odd}$$

SHELTON

$E(z)$ is normalized to unity at $z = z_1/3$, which is near the pattern maximum. If a more precise pattern maximum is desired, a better multiplying constant can easily be found.

The pattern samples to be used to find the array element illumination coefficients are given by

$$b_m = E \left(\frac{\pi}{N} (2m - 1) \right) \quad \text{for } m = 1 \text{ to } \bar{n}. \quad (\text{B3})$$

The element excitation coefficients are given by

$$\begin{aligned} e_p &= 2 \sum_{m=1}^{\bar{n}} b_m \sin \frac{\pi(2m-1)(2p-1)}{2N} \quad \text{for } N \text{ even, } p = 1 \text{ to } M+1 \\ &= 2 \sum_{m=1}^{\bar{n}} b_m \sin \frac{\pi(2m-1)p}{N} \quad \text{for } N \text{ odd, } p = 1 \text{ to } M+1 \end{aligned} \quad (\text{B4})$$

where p is an index of the element number starting with zero at the center of the array. For N odd, the center element of the array always has zero excitation. The excitations on one side of the array are the negative of those on the other side.

Appendix C

PROGRAMS FOR THE HP-41C CALCULATOR

This appendix presents programs for the HP-41C calculator for the design equations of Appendices A and B. The software consists of four programs, SUM, DIF, IN, and SL. "SUM" contains the equations for synthesizing Taylor-type sum patterns; "DIF" contains equations for Bayliss-type difference patterns; "IN" contains subroutines that are used by both programs; and "SL" is a routine for calculating the peaks of the sidelobes of the synthesized array. The number of registers used by the programs and the number of card sides required for storage are:

<u>Program</u>	<u>Registers</u>	<u>Card Sides</u>
SUM	30	2
DIF	42	3
IN	39	3
SL	19	2
	<hr/> 130	<hr/> 10 (5 cards) .

It is possible to synthesize aperture distributions using either SUM and IN or DIF and IN. These programs require at least one additional memory module. Furthermore, the programs use nine registers for variables, indices, and constants. Table C1 correlates the number of registers available for synthesis parameters with the number of additional memory modules in use. The available registers are used for the pattern samples a_m and b_m and for the pattern function zeros (cosines) z_p . The number of these registers is $\bar{n} + M$. Therefore, the size of array that can be synthesized for any given configuration of Table C1 depends on \bar{n} . For a 50-dB sidelobe requirement, \bar{n} will be about 8. Roughly speaking, an array of 55 to 65 elements for difference and 80 to 90 for sum can be synthesized using one memory module by trading programs in and out of the machine, and an array of 90 to 100 elements can be synthesized with all programs loaded using two modules. The maximum array size that can be handled using three modules is 310 to 320 for difference and about 340 for sum. It appears that one or two memory modules should suffice for most requirements.

**Table C1 — Registers Available after Loading
Indicated Program Complements**

<u>Program Complement</u>	<u>Number of Memory Modules</u>		
	<u>1</u>	<u>2</u>	<u>3</u>
SUM + IN	48	112	176
DIF + IN	35	99	163
SUM + DIF + IN	11	71	135
SUM + DIF + IN + SL	—	54	118

SHELTON

The procedure for running the programs is:

1. Allocate memory by XEQ SIZE ($9 + M + n$).
2. Load the appropriate program complement.
3. Enter either XEQ SUM or XEQ DIF.
4. The display will prompt for N , L , and $NBAR$. N can be even or odd. L is sidelobe level in positive dB. DIF will also prompt for A , $Q1$, $Q2$, $Q3$, $Q4$.
5. After calculating z_n and loading $\cos z_n$ into registers starting with $(9 + \bar{n})$, the display will ask whether you want a listing of peak sidelobes (SL) or aperture distribution (EP). After the sidelobes or excitation coefficients are listed, the display will ask whether you want the other set of parameters calculated and listed.

The routine SL computes the sidelobe level relative to the main beam level by evaluating the pattern value at a point midway between pattern zeros. This computation is admittedly approximate because the pattern maximum is in general not exactly midway between zeros. The main beam pattern value is computed for $z = 0$. The difference pattern maximum is computed for $z = z_1/3$. This factor was found to be accurate for 50 dB sidelobes. The exact multiplying factor will be somewhat larger for higher sidelobes ($L < 50$), and it can be found quickly by obtaining z_1 and executing PA:

RCL ($9 + \bar{n}$)	gives $\cos z_1$
ACOS	gives z_1
k	new multiplying factor, such as .4
*	
COS	
STO 02	
XEQ PA .	

Alternatively, k can be found from Fig. 4 of Bayliss^{C1}, which defines the beam maximum by p_o , where $k = p_o / \S_1$. (\S_1 corresponds to our z_1)

Once the desired value of k has been found, go to lines 110, 111 in DIF, and exchange k , * for 3/. It is now necessary to reload the reference main beam pattern value into R08. This calculation starts at line 61 of SUM and 105 of DIF. Alternatively, you can simply rerun the program.

The pattern value, in voltage and normalized to mainbeam level, is found by keying in the value of z in degrees, then keying COS, STO 02, XEQ PA.

The registers used are:

00	N
01	M
02	A^2 and $\cos z_m$ for PA
03	n
04, 05	loop indices
06	multiplying constants

^{C1}E. T. Bayliss, BSTJ, May-Jun 1968, pp. 623-650.

NRL REPORT 8511

07	accumulator for $E(z)$, e_p
08	main beam reference value
09 to $(8 + \bar{n})$	computed values of a_m , b_m
$(9 + \bar{n})$ to $(8 + \bar{n} + M)$	computed values of $\cos z_n$.

Program IN contains the following subroutines:

IN	Asks for input data N , L , $NBAR$
ZN	Completes calculation and storage of $\cos z_n$
BR	Asks for choice of sidelobes or aperture distribution and branches to EP or SL
PR	Prints element excitations e_p
PA	Computes pattern value for a_m , b_m , or SL routines
EP	Completes calculation of e_p .

The programs use flags 00 and 01 to indicate the following conditions:

Flag 00 is set for N even
clear for N odd

Flag 01 is set for DIF execution
clear for SUM execution.

The use of registers by program PA precludes the use of the plot subroutines resident in the printer.

Note that the sidelobes and pattern values obtained with these programs are all relative to the main beam level. No information concerning gain or aperture illumination efficiency is computed. The aperture distribution can be used to compute aperture efficiency or gain.

The programs and sample printouts are listed on the following pages.

SHELTON

0.000000000	55 LBL 02	106 *	23 RCL
02 SF 01	56 RCL 04	109 *	24 *
03 INT 04	57 INT	110 STO 04	25 36RT
04 RCL 08	58 XEQ "ZN"		26 *
05 *	59 ISG 04	111 LBL 04	27 RCL 03
06 *	60 GTO 08	112 1	28 5
07 *	61 1	113 RCL 03	29 *
08 *	62 STO 02	114 1	30 *
09 INT	63 STO 08	115 -	31 STO 06
10 STO 01	64 XEQ "FA"	116 1 E-3	32 5
11 360	65 STO 08	117 *	33 RCL 03
12 RCL 03	66 XEQ "BR"	118 *	34 XCV
13 *		119 STO 05	35 GTO 07
14 RCL 06	67 LBL "S"	120 0	36 1.000
15 *	68 RCL 05	121 STO 07	37 STO 04
16 RCL 03	69 1		38 GTO 06
17 .5	70 -	122 LBL 05	
18 -	71 1 E-3	123 XEQ "EP"	39 LBL 07
19 X12	72 *	124 ISG 05	40 1
20 RCL 07	73 1	125 GTO 05	41 -
21 +	74 +	126 2	42 1 E-3
22 SQRT	75 STO 05	127 RCL 07	43 *
23 *	76 360	128 *	44 *
24 STO 06	77 RCL 08	129 1	45 STO 04
25 RCL 03	78 *	130 *	
26 1	79 STO 06	131 XEQ "PR"	46 LBL 06
27 -		132 GTO 04	47 RCL 04
28 1 E-3	80 LBL 03	133 END	48 INT
29 *	81 RCL 06		49 ENT A
30 1	82 RCL 05		50 FIX 6
31 +	83 INT		51 RCL X
32 STO 04	84 *	PRP "DIF"	52 PROMPT
	85 COS		53 XCV
33 LBL 01	86 STO 02	81 LBL "DIF"	54 "0"
34 RCL 04	87 XEQ "PA"	82 SF 01	55 RCL X
35 INT	88 RCL 05	83 XEQ "IN"	56 RCR
36 .5	89 8	84 RCL 06	57 "
37 -	90 +	85 2	58 RCR
38 X12	91 XCV	86 -	59 RDN
39 RCL 02	92 STO IND Y	87 2	60 FIX 2
40 +	93 ISG 05	88 *	61 ACX
41 SQRT	94 GTO 03	89 INT	62 PRBUF
42 XEQ "ZN"	95 90	90 STO 61	63 XEQ "ZN"
43 ISG 04	96 RCL 08	91 "R="	64 ISG 04
44 GTO 01	97 -	92 PROMPT	65 GTO 06
45 RCL 01	98 STO 06	93 FIX 2	66 5
46 1 E-3	99 1	94 RCL X	67 RCL 03
47 *	100 1	95 PRA	68 1
48 RCL 03	101 FC0 00	96 X12	69 -
49 *	102 0	97 STO 02	70 XCV
50 STO 04	103 FC0 00	98 360	71 GTO 16
51 360	104 0	99 RCL 06	72 1 E-3
52 RCL 08	105 RCL 01	100 *	73 *
53 *	106 *	101 RCL 02	74 *
54 STO 06	107 1 E-3	102 RCL 03	75 STO 04

NRL REPORT 8511

76+ LBL 80	126		
77 RCL 80	125 STO 04	81+LBL 14	51 PROMPT
78 RCL 84		82 RTN 0	54 X=0?
79 14	130+LBL 14	83 SF 00	55 RTN
80 + 2	131 RCL 00	84 N	56 STO 18
81 -	132 INT	85 PROMPT	56+LBL 17
82 300?	133 2	86 SF00	57 E1
83 AEG 21	134 *	87 STO 00	58 RCL 00
84 105 04	135 *	88 1	59 INT
85 GTD 00	136 -	89 -	60 RTN 0
	137 RCL 00	90 -	61 RCL 0
86+LBL 10	138 *	91 ENTER	
87 368	139 COS	92 FRC	62 RCR
88 RCL 00	140 STO 00	93 X=0?	63 F1 4
89 *	141 XEG "PA"	94 SF 00	64 T=1
90 STO 00	142 RCL 00	95 LF1	65 RCR
91 RCL 03	143 0	96 PROMPT	66 PBN
92 RCL 01	144 *	97 ARCL X	67 RTN
93 1 E-3	145 X001	98 PBR	68 PREUP
94 *	146 STO IND Y	99 20	69 ISG 04
95 *	147 ISG 05	100 -	70 RTN
96 STO 04	148 STO 14	101 1	71 RTN
	149 RCL 01	102 LOG	72 "SLT" 0"
97+LBL 11	150 1	103 -	73 PROMPT
98 RCL 04	151 *	104 -	74 X=0?
99 INT	152 1 E-3	105 E1X	75 GTD 18
100 15	153 *	106 LOG	76 STOP
101 *	154 1	107 PI	
102 XEG "2N"	155 *	108 *	77+LBL "PP"
103 ISG 04	156 STO 04	109 *	78 RCL 01
104 GTD 11	157 98	110 RT2	79 1 E-5
105 RCL 03	158 RCL 00	111 STO 02	80 *
106 3	159 *	112 "MEAR="	81 1
107 *	160 STO 00	113 PROMPT	82 *
108 RCL IND 1		114 ARCL X	83 STO 04
109 ACOS	161+LBL 15	115 PRA	84 1
110 3	162 1	116 STO 03	85 STO 07
111	163 RCL 00	117 RTN	
112 COS	164 1 E-3		86+LBL 00
113 STO 02	165 *	118+LBL 12N	87 RCL 04
114 1	166 *	119 RCL AR	88 RCL 03
115 STO 00	167 STO 05	120 *	89 *
116 XEG "PA"	168 0	121 COS	90 0
117 STO 00	169 STO 07	122 RCL 00	91 *
118 XEG "PA"		123 RCL 00	92 RCL 00
	170+LBL 16	124 *	93 RCL IND 1
119+LBL "PP"	171 XEG "PF"	125 RCL 00	94 -
120 RCL 03	172 ISG 05	126 *	95 ST* RT
121 1 E-3	173 STO 16	127 100 1	96 ISG 04
122 *	174 2	128 STO IND	97 STO 00
123 1	175 RCL 07	129 RTN	98 1
124 *	176 *		99 FST 06
125 STO 05	177 XEG "PR"	130+LBL "PR"	100 GTD 01
126 108	178 GTD 15	131 STO 1000 0	101 FGT 01
127 RCL 00	179 STOP		102 GTD 07
	180 END		103 RCL 00

SHELTON

104 A003	151•LBL 05
105 SIN	152 RCL 05
106 GTO 03	153 *
	154 *
107•LBL 01	155 X(X)
108 RCL 02	156 RCL IND
109 COS	157 *
110 *	158 ST+ 07
111 *	159 RTN
112 F52 01	160 END
113 GTO 02	
114 COS	
115 GTO 03	
	PRP "SL"
116•LBL 02	
117 SIN	91•LBL "SL"
	02 "SL PEAKS, DE"
118•LBL 03	03 PRG
119 RCL 07	04 FIX 2
120 *	05 1
121 RCL 06	06 RCL 03
122 *	07 1
123 RTN	08 -
	09 1 E-3
124•LBL "EP"	10 *
125 -1	11 *
126 FC? 00	12 GTO 05
127 0	
128 RCL 04	13•LBL 00
129 INT	14 RCL 03
130 *	15 6
131 *	16 *
132 +	17 RCL 05
133 RCL 05	18 *
134 INT	19 RCL IND X
135 2	20 ACOS
136 *	21 X(X)
137 FC? 01	22 1
138 GTO 03	23 +
139 1	24 X(X)
140 -	25 RCL IND Y
	26 ACOS
141•LBL 03	27 *
142 *	28 2
143 RCL 06	29 *
144 *	30 COS
145 F57 01	31 XEW 03
146 GTO 04	32 ISG 05
147 COS	33 GTO 00
148 GTO 05	34 RCL 03
	35 RCL 01
149•LBL 04	36 1 E-3
150 SIN	37 *
	38 +
	39 STG 05

NRL REPORT 8511

N=20		N=21	
L=50		L=50	
NBAR=3		NBAR=3	
E1= 1.9453		E0= 1.9573	
E2= 1.8433		E1= 1.9111	
E3= 1.6549		E2= 1.7766	
E4= 1.4621		E3= 1.5763	
E5= 1.1166		E4= 1.3156	
E6= 0.8294		E5= 1.0463	
E7= 0.5684		E6= 0.7766	
E8= 0.3527		E7= 0.5291	
E9= 0.1983		E8= 0.3306	
E10= 0.0965		E9= 0.1812	
		E10= 0.0957	

SL PEAKS, DE

36.33	***	36.35	***
49.93	***	49.95	***
49.82	***	49.86	***
49.72	***	49.77	***
49.60	***	49.67	***
49.45	***	49.56	***
49.29	***	49.43	***
49.09	***	49.26	***
49.09	***	49.29	***
		49.31	***

N=20

L=50		N=21	
NBAR=2		L=50	
A=3.42		NBAR=3	
Q1= 2.78		H=2.42	
Q2= 3.18		Q1= 2.78	
Q3= 3.85		Q2= 3.18	
Q4= 4.65		Q3= 3.85	
E1= 0.4886		Q4= 4.65	
E2= 1.3673		E1= 0.9093	
E3= 1.9531		E2= 1.6543	
E4= 2.2448		E3= 2.1161	
E5= 2.1554		E4= 2.2516	
E6= 1.6061		E5= 2.0875	
E7= 1.3679		E6= 1.7813	
E8= 0.8188		E7= 1.2231	
E9= 0.4184		E8= 0.7656	
E10= 0.1751		E9= 0.3353	
		E10= 0.1726	

SL PEAKS, DE

49.54	***	49.56	***
48.41	***	48.44	***
47.31	***	47.34	***
46.39	**	46.51	***
47.04	***	47.15	**
46.30	**	46.08	**
46.55	**	46.64	***
46.56	*+	46.55	***
45.64	***	45.51	**

