Digital Signal Analysis (CS7.303)

Spring 2022, IIIT Hyderabad 05 Feb, Saturday (Lecture 8)

Taught by Prof. Anil Kumar Vuppala

Fast Fourier Transform (contd.)

We have seen that the discrete Fourier transform is calculated as

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{kn},$$

where w_N , the twiddle factor, is

$$e^{-j\frac{2\pi}{N}}$$
.

The symmetry of the twiddle factor, however, enables us to calculate the N-point DFT using the $\frac{N}{2}$ -point DFT. Note that this means that we calculate only DFTs where N is a power of 2.

There are two types of FFT: decimation in frequency and decimation in time.

Decimation in Frequency and Time

Decimation in Frequency (DIF)

We have

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{kn}.$$

We can rewrite

$$\begin{split} X(k) &= \sum_{n=0}^{\frac{N}{2}-1} x(n) w_N^{kn} + \sum_{n=\frac{N}{2}}^{N-1} x(n) w_N kn \\ &= \sum_{n=0}^{\frac{N}{2}-1} x(n) w_N^{kn} + \sum_{n=0}^{\frac{N}{2}-1} x(n+\frac{N}{2}) w_N^{k(n+\frac{N}{2})} \\ &= \sum_{n=0}^{\frac{N}{2}-1} x(n) w_N^{kn} + w_N^{k\frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} x(n+\frac{N}{2}) w_N^{kn} \\ &= \sum_{n=0}^{\frac{N}{2}-1} x(n) w_N^{kn} + e^{-j\pi k} \sum_{n=0}^{\frac{N}{2}-1} x(n+\frac{N}{2}) w_N^{kn} \\ &= \sum_{n=0}^{\frac{N}{2}-1} x(n) w_N^{kn} + (-1)^k \sum_{n=0}^{\frac{N}{2}-1} x(n+\frac{N}{2}) w_N^{kn} \\ &= \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) + (-1)^k x \left(n + \frac{N}{2} \right) \right] w_N^{kn}. \end{split}$$

Here, k varies from 0 to N-1. We can now divide it into even and odd terms to get

$$\begin{split} X(2m) &= \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) + x \left(n + \frac{N}{2} \right) \right] w_N^{2mn} \\ &= \sum_{n=0}^{\frac{N}{2}-1} a(n) w_{\frac{N}{2}}^{mn}, \end{split}$$

where $a(n) = x(n) + x\left(n + \frac{N}{2}\right)$. Similarly,

$$X(2m+1) = \sum_{n=0}^{\frac{N}{2}-1} b(n) w_N^n w_{\frac{N}{2}}^{mn},$$

where $b(n) = x(n) - x\left(n + \frac{N}{2}\right)$.

These expressions are simply the $\frac{N}{2}$ -point DFTs of a(n) and $b(n)w_N^n$.

The term decimation of frequency indicates that the output is not in order, *i.e.*, we find the odd terms and the even terms separately. The output is obtained in bit reversal order, which means that the reversed binary representations of the positions are in order -[0,4,2,6,1,5,3,7].

Figure 1: Calculation of 8-Point DFT $\,$

Figure 2: Complete Recursion of 8-Point DFT $\,$

Decimation in Time (DIT)

Again, we have

$$X(k) = \sum_{n=0}^{N-1} x(n) w_N^{kn}.$$

This time, however, we rewrite it as

$$X(k) = \sum_{m=0}^{\frac{N}{2}-1} x(2m) w_N^{2mk} + \sum_{m=0}^{\frac{N}{2}-1} x(2m+1) w_N^{(2m+1)k}$$

and use this to calculate X(k).

In this case, the input is taken in the bit reversal order, and the output is obtained in the normal order.

Figure 3: 8-Point DFT using DIT

Inverse DFT Using FFT

We know that the IDFT is given by

$$x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(k) w_N^{*kn}.$$

Thus the IDFT can be calculated in the same way, using DFT, but taking care to normalise by division by N and using w_N^* instead of w_N .