

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, P.O.Box 1450, Alexandria, Virginia 22313-1450 on

Hatie Hales

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 09/747,370

Attorney Docket: DP-303157

Filing Date: 12/21/2000

Applicant: William J. LaBarge et al.

Group Art Unit: 1764

Examiner: Tran, Hien Thi

Title: CATALYST SUBSTRATE HAVING IMPROVED THERMAL DURABILITY

Mail Stop: Appeal Brief – Patents Commissioner for Patents P.O. Box 1450

Alexandria, Virginia 22313-1450

APPEAL BRIEF

Sir:

Further to the Notice of Appeal filed March 24, 2005, the Applicants herewith respectfully present their Brief on Appeal, which has been revised in response to the Notification of Non-Compliant Appeal Brief mailed November 8, 2005.

The Commissioner is hereby authorized to charge any fees associated with the filing of this Appeal Brief to Deposit Account No. 50-0831.

I. REAL PARTY IN INTEREST

The real party in interest in this appeal is Delphi Technologies Inc.

II. RELATED APPEALS AND INTERFERENCES

There are no related appeals or interferences know to Applicants, their legal representatives, or assignee that will directly affect, be directly affected by, or have a bearing on the Board's decision in the pending appeal.

III. STATUS OF THE CLAIMS

Claims 15-24 are pending in the application. Claims 15-24 stand rejected. Claims 15-24, as they currently stand, are set forth in Appendix A. Appellants hereby appeal the final rejection of Claims 15-24.

IV. STATUS OF AMENDMENTS

The amendments to the claims submitted in an Amendment mailed February 28, 2006, after the final rejection, have been entered, per the Advisory Action mailed March 16, 2005.

V. SUMMARY OF CLAIMED SUBJECT MATTER

Claims 15 and 20 are independent claims.

The present invention relates to a catalytic converter of the type employed for treating automotive exhaust gas. The catalytic converter 10 comprises a substrate 12

housed in a shell 14, see Fig. 1. The substrate defines a plurality of passages through which exhaust gas flows. Catalyst, typically composed of noble metals, is dispersed on the passages for treating the exhaust gas.

The substrate is typically formed of a cordierite material. The surface of the cordierite material tends to develop microcracks that reduce the structural integrity of the substrate, page 3, lines 9-17. In conventional practice, the substrate is coated with an alumina coating that tends to fill the microcracks. However, at elevated temperatures, such as experienced during manufacture or use, the alumina tends to expand and enlarge the cracks, thereby further weakening the substrate structure, page 2, line 21, to page 2, line 3.

Claim 15 is directed to a catalytic converter of the type employed for treating automotive exhaust gas, page 3, lines 18-19. Referring to Fig. 1, converter 10 comprises a substrate 12, page 7, lines 13-14. Claim 15 more particularly calls for a substrate comprising cordierite, page 4, lines 2-3, and page 8, lines 2-5. In accordance with the claim, a zirconium phosphate layer is disposed on the substrate, page 5, lines 14-22, and page 8, lines 8-12. Claim 15 also calls for a catalyst layer disposed on the zirconium phosphate layer, see beginning at page 4, line 29, and page 8, lines 12-19, and a shell 14 disposed about the substrate, page 7, lines 1-12.

Applicants have found that when a zirconium phosphate layer is applied to a cordierite substrate to fill the microcracks, the zirconium phosphate coating possesses a crystalline structure and a coefficient of thermal expansion that allows it to expand at

elevated temperatures without enlarging the microcracks, page 9, lines 1-11. As a result, the structural integrity and thermal durability of the substrate is substantially improved.

It is an advantage of Applicants' invention that the substrate is formed of cordierite, a material preferred in the industry for such substrates, page 8, beginning at line 20. By improving the durability of cordierite, the need for exotic alternate materials is avoided. Also, it is common to add zirconia to cordierite material used to form the substrate, which results in improved bonding between the substrate and the coating. It is a further advantage that the zirconium phosphate coating may be applied by conventional techniques, and without having to resort to more costly processes, page 9, beginning at line 12.

Claim 20 is directed to Applicants' catalyst substrate that includes a substrate, a zirconium phosphate layer and a catalyst layer similar to claim 1. In contrast to claim 1, claim 20 does not explicitly require a shell.

VI. GROUNDS OF REJECTION TO BE REVIEWED UPON APPEAL

- A. Claims 15-17 and 20-22 were rejected under 35 U.S.C. § 102(e) as anticipated by United States Patent Number 6,375,910, to Deepa et al.
- B. Claims 18-19 and 23-24 were rejected under 35 U.S.C. § 103(a) unpatentable over the same Deepa et al. patent.

VII. ARGUMENT

A. Rejection of claims 15-17 and 20-22

Applicants' catalytic converter comprises a cordierite substrate having an applied

zirconium phosphate layer.

Deepa et al. is directed to a multi-zoned catalytic trap for adsorbing, releasing and treating NO_x, col. 3, lines 50-51, and col. 4, lines 58-63. For this purpose, NO_x sorbent may be applied as a washcoat to a carrier member, col. 6, beginning at line 10. Deepa et al. teaches that the carrier member may be cordierite or the like, col. 6, lines 37-38, and col. 7, lines 7-8. Beginning at col. 7, line 3, Deep et al. teaches a method for manufacturing the trap that includes applying a washcoat of fine particulate refractory oxide, e.g., activated alumina, col. 7, lines 9-10. Deep et al. does not describe a washcoat containing zirconium phosphate, as in Applicants' invention.

The rejection points to the disclosure at col. 8, lines 41-52. As stated at the beginning of the paragraph, the cited text is directed to alternate refractory materials for the carrier. The text does not mention or apply to the washcoat. Zirconium phosphate is listed as a typical refractory material for the carrier. The list also includes refractory metals, including stainless steel, iron/chromium alloy or titanium. The practitioner would readily appreciate that such metals are not suited for use in washcoats, and that the list is intended to mean carrier materials, not coating materials.

Moreover, nothing in col. 8, or anywhere else in Deepa et al., it concerned with microcracking of the carrier surface. Deepa et al. does not point to the coefficient of thermal expansion and other properties that allow zirconium phosphate to fill microcracks in the cordierite, but not expand when heated to elevated temperatures, so as

to enhance the structural integrity and thermal durability of the substrate, see page 9, lines 6-11. Without these features, Deepa et al. does not anticipate, or even suggest Applicants' invention.

Claim 15 is directed to Applicants' catalytic converter that includes a substrate comprising cordierite and a zirconium phosphate layer disposed on the substrate. Deepa et al. particularly points to cordierite, but lists other suitable metals and ceramics. However, Deepa does not disclose a coating that contains zirconium phosphate. Moreover, Deepa et al. does not disclose that a zirconium phosphate coating fills microcracks in the cordierite and extends the useful life of a cordierite substrate. Therefore, Deepa et al. does not teach, or even suggest, Applicants' invention in claim 15.

Claims 16-17 are dependent upon claim 15 and so not taught or suggested by Deepa et al. at least for the reasons set forth with regard to that claim. It is noted that in claim 16, the substrate also includes zirconia. As described at page 9, lines 12-13, bonding of the zirconium phosphate coating is enhanced by the addition of zirconia in the cordierite, a further feature not taught or suggested by Deepa et al.

Claim 20 is directed to Applicants' catalyst substrate that includes a cordierite substrate material and a zirconium phosphate layer disposed thereon. For the reasons set forth above, Deepa et al. does not show a cordierite substrate material having a zirconium phosphate layer, and so does not teach or suggest Applicants' catalyst substrate in claim

20, or claims 21-22 dependent thereon.

Accordingly, it is respectfully requested that the rejection of the claims 15-17 and 20-22 based upon Deepa et al. be reconsidered and withdrawn, and that the claims be allowed.

B. Rejection of claims 18-19 and 23-24

Claims 18-19 and 23-24 are dependent upon claims 15 and 20, respectively, and were rejected based upon the same Deepa et al. patent.

For the reasons set forth above with regard to the independent claims 15 and 20, Deepa et al. does not teach or suggest Applicants' invention as set forth in claims 18-19 and 23-24.

Therefore, it is respectfully requested that the rejection of the claims 18-19 and 23-24 based upon Deepa et al. be reconsidered and withdrawn, and that the claims be allowed.

Respectfully submitted,

Douglas D. Fekete

Reg. No. 29,065

Delphi Technologies, Inc.

Legal Staff - M/C 480-410-202

P.O. Box 5052

Troy, Michigan 48007-5052

(248) 813-1210

APPENDIX A

CLAIMS

- 1-14. (Canceled)
- 15. (Previously Presented) A catalytic converter, comprising:
 a substrate comprising cordierite;
 a zirconium phosphate layer disposed on said substrate;
 a catalyst layer disposed on said zirconium phosphate layer; and
 a shell disposed around said substrate.
- 16. (Previously Presented) The catalytic converter of Claim 15, wherein the substrate further comprises zirconia.
- 17. (Previously Presented) The catalytic converter of Claim 15, wherein said catalyst layer comprises a catalyst material selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, ruthenium, tantalum, zirconium, yttrium, cerium, nickel, copper, and oxides, mixtures, and alloys comprising at least one of the foregoing.

18. (Previously Presented) The catalytic converter of Claim 15, wherein said zirconium phosphate has a thickness of up to about 10 nanometers.

- 19. (Previously Presented) The catalytic converter of Claim 18, wherein said thickness is up to about 4 nanometers.
- 20. (Previously Presented) A catalyst substrate for use with a catalytic converter, comprising:

a substrate material comprising cordierite;

- a zirconium phosphate layer disposed on said substrate material; and a catalyst layer disposed on said zirconium phosphate layer.
- 21. (Previously Presented) The catalytic converter of Claim 20, wherein the substrate material further comprises zirconia.
- 22. (Previously Presented) The catalytic converter of Claim 20, wherein said catalyst layer comprises a catalyst material selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, ruthenium, tantalum, zirconium, yttrium, cerium, nickel, copper, and oxides, mixtures, and alloys comprising at least one of the foregoing.

Atty Docket DP-303157

Serial No. 09/747,370

- 23. (Previously Presented) The catalytic converter of Claim 20, wherein said zirconium phosphate has a thickness of up to about 10 nanometers.
- 24. (Previously Presented) The catalytic converter of Claim 23, wherein said thickness is up to about 4 nanometers.

25-26. (Cancelled)

Evidence Appendix

None

Related Proceedings Appendix

None

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner For Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on 9-501-06

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.: 09/747,370

Attorney Docket: DP-303157

Filing Date: 12/21/2000

Applicant: William J. LaBarge et al.

Group Art Unit: 1764

Examiner: Tran, Hien Thi

Title: CATALYST SUBSTRATE HAVING IMPROVED THERMAL DURABILITY

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

Reply to Notification of Non-Compliant Appeal Brief

Sir:

This is in response to the Notification of Non-Compliant Amendment mailed November 8, 2005.

Please substitute the attached Appeal Brief for the one mailed August 24, 2005.

The Notification states that the earlier brief did not contain required items, or that the items were not shown under proper headings or in proper order. The attached Brief includes all items set forth in 37 CFR 41.37 (c), under the headings and in the order set forth therein.

It is requested that the enclosed attached Appeal Brief be entered, that all objections be withdrawn and that the Appeal proceed.

Respectfully submitted,

Douglas D. Fekete Reg. No. 29,065

Delphi Technologies, Inc.

Legal Staff – M/C 480-410-202

P.O. Box 5052

Troy, Michigan 48007-5052

(248) 813-1210