الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة : علوم تجريبية

اختبار في مادة: الرياضيات المدة: 3 ساعات ونصف

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (05 نقاط)

 $u_{n+1} = \sqrt{2u_n + 3}: n$ عدد طبيعي $u_0 = 1$ المعرّفة بحدّها الأول $u_0 = 1$ و من أجل كل عدد طبيعي المعرّفة بحدّها الأول

- التكن h الدالة المعرّفة على المجال $\left[-\frac{3}{2};+\infty\right]$ كما يلي: $\left[-\frac{3}{2};+\infty\right]$ تشار الدالة $\left[-\frac{3}{2};+\infty\right]$
 - (Δ) و تمثیلها البیاني و (C) و $h(x) = \sqrt{2x+3}$ المستقیم ذو معادلة y = x في المستوي المنسوب إلى معلم متعامد ومتجانس. (انظر الشكل المقابل).
 - أ) أعد رسم الشكل المقابل على ورقة الإجابة ثم مثل على محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4
 - (دون حسابها و موضحا خطوط الإنشاء).
 - ب) ضع تخمينا حول اتجاه تغيّر (u_n) و تقاربها.
- $0 < u_n < 3$: n برهن بالتراجع أنَّه من أجل كل عدد طبيعي (2
 - . (u_n) ادرس اتجاه تغیّر المتتالیة (3
 - . $\lim_{n\to +\infty} u_n$ بستنج أنّ المنتالية (u_n) متقاربة، ثم احسب (ب

التمرين الثاني: (04 نقاط)

- $z=rac{3i\left(z+2i
 ight)}{z-2+3i}$:المعادلة ذات المجهول z التالية الأعداد المركبة المعادلة ذات المجهول التالية (1
 - $(z \neq 2 3i)$ حيث
 - حل في $\mathbb C$ هذه المعادلة.
- ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($O; \overrightarrow{u}, \overrightarrow{v}$) ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($z_B = 1 i\sqrt{5}$) ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($z_B = 1 i\sqrt{5}$) ينسب المستوي المركب إلى المعلم المتعامد و المتجانس ($z_B = 1 i\sqrt{5}$) ينسب المستوي المركب إلى المعلم المتعامد و المت
 - تحقق أنّ A و B تنتميان إلى دائرة مركزها O يطلب تعيين نصف قطرها.
- $z' = \frac{3i(z+2i)}{z-2+3i}$ کر فق بکل نقطة M من المستوي لاحقتها $z \neq 2-3i$ النقطة M لاحقتها $z \neq 2-3i$ من المستوي لاحقتها $z \neq 2-3i$ النقطة $z \neq 2-3i$ النقطة $z \neq 2-3i$ من المستوي لاحقتها $z \neq 2-3i$ النقطة $z \neq 2-3i$

.
$$[CD]$$
 محور القطعة $z_{C}=3i$ و $z_{D}=2-3i$ ، $z_{C}=-2i$ النقط E ، D ، C النقط E ، D ، C النقط E ، D ، E

صفحة 1 من 4

DM و CM المسافة OM' بدلالة المسافتين DM و

M عبين مركزها M من أجل كل نقطة M من M من M فإنّ النقطة M تنتمي إلى دائرة M يطلب تعيين مركزها و نصف قطرها. تحقق أن M تنتمي إلى M تنتمي إلى M

التمرين الثالث: (04 نقاط)

الفضاء منسوب إلى المعلم المتعامد و المتجانس (C; \vec{i} , \vec{j} , \vec{k}) نعتبر المستوي (C) ذا المعادلة: C(-1;3;1) ، B(2;2;-1) ، A(1;-2;5) و النقط (14x + 16y + 13z - 47 = 0

1) أ – تحقق أنّ النقط A، B و C ليست في استقامية.

$$.(P)$$
 هو (ABC) هو بيّن أنّ المستوي

(AB) جد تمثيلا وسيطيا للمستقيم (2

[AB] أ – اكتب معادلة ديكارتية للمستوي المحوري (Q) للقطعة

.
$$(Q)$$
 يتتمي إلى المستوي $D\bigg(-1;-2;\frac{1}{4}\bigg)$ تتتمي إلى المستوي ب

(AB) و المستقيم D النقطة بين النقطة D

التمرين الرابع: (07 نقاط)

 $f(x)=x+5+6\ln\left(rac{x}{x-1}
ight)$: كما يلي: $\int -\infty;0$ لتكن $\int -\infty;0$ الدالة المعرّفة على المجال $\int -\infty;0$ المنسوب إلى المعلم المتعامد والمتجانس (C_f)

النتيجة هندسيا. $\lim_{x \stackrel{<}{\longrightarrow} 0} f(x)$ النتيجة هندسيا. (1

 $\lim_{x \to -\infty} f(x) \quad (x) \quad -\infty$

.
$$f'(x) = \frac{x^2 - x - 6}{x(x - 1)}$$
، $]-\infty;0[$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي (2

استنتج اتجاه تغيّر الدالة f ، ثم شكّل جدول تغيّر اتها.

. $-\infty$ بجو ال (C_f) الذي معادلة له: y=x+5 هو مستقيم مقارب مائل للمنحنى بجو ال (Δ) بجو ال (Δ) بجو ال (Δ) بالنسبة للمستقيم (Δ) .

-1,1<eta<-1 و -3,5<lpha<-3,4 و eta حيث eta و eta تقبل حلّين $f\left(x
ight)=0$ و $f\left(x
ight)=0$

 (Δ) أنشئ المنحنى (C_f) و المستقيم (5)

$$A\left(-2; \frac{5}{2} + 6\ln\left(\frac{3}{4}\right)\right)$$
 و $A\left(-1; 3 + 6\ln\left(\frac{3}{4}\right)\right)$ و أ- نعتبر النقطتين (6

(AB) بيّن أن $y = \frac{1}{2}x + \frac{7}{2} + 6\ln\frac{3}{4}$ بيّن أن

. بيّن أنّ المستقيم (AB) يمس المنحنى (C_f) في نقطة M_0 يطلب تعيين إحداثيتيها

$$g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$$
: لتكن $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$ كما يلي: $g\left(x\right) = \frac{x^2}{2} + 5x + 6x \ln\left(\frac{x}{x-1}\right) + 6\ln(1-x)$

صفحة 2 من 4

الموضوع الثاني

التمرين الأول: (04,5 نقاط)

$$u_{n+1} = 3 + \sqrt{u_n - 3} : n$$
 يعددية المعرّفة بحدّها الأوّل $u_0 = \frac{13}{4}$ و من أجل كل عدد طبيعي (u_n)

 $3 < u_n < 4$: n بر هن بالتراجع أنَّه من أجل كل عدد طبيعي (1

. استنتج أن
$$(u_n)$$
 متزايدة تماما . $u_{n+1} - u_n = \frac{-u_n^2 + 7u_n - 12}{\sqrt{u_n - 3} + u_n - 3}$: n متزايدة تماما . (2) بين أنه من أجل كل عدد طبيعي

برّر لماذا (u_n) متقاربة.

$$v_n = \ln(u_n - 3)$$
 :ب المنتالية المعرّفة على $\mathbb N$ بية المعرّفة المعرّفة على (4

أ) برهن أنّ
$$(v_n)$$
 متتالية هندسية أساسها $\frac{1}{2}$ ، ثم احسب حدّها الأول.

$$\lim_{n\to +\infty} u_n$$
 بدلالة u ، ثم احسب v_n و v_n بدلالة v_n اكتب كلاً من

$$P_n = (u_0 - 3)(u_1 - 3)(u_2 - 3) \times ... \times (u_n - 3) : n$$
 عدد طبیعی $P_n = (u_0 - 3)(u_1 - 3)(u_2 - 3) \times ... \times (u_n - 3) : n$ خصنع من أجل كل عدد طبيعي

$$\lim_{n\to+\infty} P_n = \frac{1}{16}$$
 اکتب P_n بدلالة n ، ثم بیّن أن

التمرين الثاني: (04 نقاط)

، $A\left(-1;0;1
ight)$ نعتبر النقط المتعامد و المتجانس و المتجانس ($O;\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}$) نعتبر النقط المعام المتعامد و المتجانس

$$.C\left(1;-1;0\right)$$
 $_{\mathcal{S}}$ $B\left(2;1;0\right)$

1) بيّن أنّ النقط A ، B و C تُعيّن مستويا.

$$.(ABC)$$
 بيّن أنّ $2x-y+5z-3=0$ هي معادلة ديكارتية للمستوي (2

$$H\left(\frac{13}{15}; -\frac{13}{30}; \frac{1}{6}\right)$$
 و $D\left(2; -1; 3\right)$ عن الفضاء حيث: $D\left(2; -1; 3\right)$ و $D\left(2; -1; 3\right)$

(ABC) أ- تحقّق أنّ النقطة D لا تنتمى إلى المستوي (ABC).

. (ABC) على المستوي H هي المسقط العمودي للنقطة D على المستوي H

- استنتج أنّ المستويين (ADH) و (ABC) متعامدان، ثم جد تمثيلا وسيطيا لتقاطعهما.

التمرين الثالث: (04,5 نقاط)

$$.P(z) = z^3 - 12z^2 + 48z - 72$$
 : حيث z حيث المركب كثير الحدود للمتغيّر المركب $P(z) = z^3 - 12z^2 + 48z - 72$

P(z) أ- تحقّق أنّ 6 هو جذر لكثير الحدود

$$P(z) = (z-6)(z^2 + \alpha z + \beta)$$
: عدد مركب عدد مركب و β و β بحيث من أجل كل عدد مركب $z = -1$

$$P(z)=0$$
 المعادلة \mathbb{C} ، المعادلة الأعداد المركبة

صفحة 3 من 4

C، B ، A . $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى المعلم المتعامد و المتجانس $z_{B}=3+i\sqrt{3}$ ، $z_{A}=6$. $z_{C}=3-i\sqrt{3}$ و $z_{B}=3+i\sqrt{3}$ ، $z_{A}=6$. المستوي المركب لواحقها على الترتيب $z_{C}=3+i\sqrt{3}$ ، $z_{A}=6$. و $z_{C}=3-i\sqrt{3}$ و $z_{B}=3+i\sqrt{3}$. الشكل الأسي.

ب-اكتب العدد المركب $\frac{z_A-z_B}{z_A-z_C}$ على الشكل الجبري، ثم على الشكل الأسي. -2 استنتج طبيعة المثلث -2 .

. $\frac{\pi}{2}$ التشابه المباشر الذي مركزه C ، نسبته $\sqrt{3}$ و زاويته (3

أ- جد الكتابة المركبة للتشابه S.

. S النقطة A صورة النقطة A بالتشابه A

ج- بيّن أنّ النقط A '، B ، A في استقامية.

التمرين الرابع: (07 نقاط)

- $g\left(x\right)=1-x\;e^{x}$ كما يلى: \mathbb{R} كما يلى (I
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ احسب (1
 - 2) ادرس اتجاه تغيّر الدالة g، ثم شكل جدول تغيّراتها.
- . $[-1;+\infty[$ المعادلة α على المجال g(x)=0 تقبل حلاً وحيدا α على المجال g(x)=0 . \mathbb{R} على g(x) ، ثم استنتج إشارة g(x) على g(x) على .
- $f(x) = (x-1)e^x x 1$: يعتبر الدالة $f(x) = (x-1)e^x x 1$
 - $\lim_{x\to\infty} f(x)$ احسب (1
- . f'(x) = -g(x) فإن: f فإن: f فإن: f فإن: f التكن f مشتقة الدالة f . بيّن أنّه من أجل كل عدد حقيقي f من f مشتقة الدالة f . f على المجال f المجال f . f شكّل جدول تغيّر ات الدالة f .
 - . (10^{-2} يين أنّ $f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$ ثم استنتج حصرا للعدد ($f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$ ثم استنج حصرا للعدد ($f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$
- y=-x-1 هو مستقيم مقارب مائل للمنحنى (Δ) ذا المعادلة y=-x-1 هو مستقيم مقارب مائل للمنحنى (Δ) بجوار y=-x-1 بجوار (Δ) بالنسبة إلى (Δ).
 - . $1,5 < x_2 < 1,6$ و $-1,6 < x_1 < -1,5$ و x_2 حيث $x_1 < 1,5$ و $x_2 < 1,6$ و $x_1 < -1,5$ د (5 أ بيّن أنّ المعادلة $x_1 < 1,5$ تقبل حلّين عن x_1 تقبل حلّين x_2 و x_2 تقبل حلّين x_2 و x_2 تقبل حلّين x_1 تقبل حلّين x_2 و x_2 تقبل حلّين x_2 و x_2 انشئ x_2 و x_2
 - $h(x) = (ax + b)e^x$ كما يلي: \mathbb{R} كما يلي (6

 \mathbb{R} على $x\mapsto x\,e^x$ المحددين الحقيقيين a و a بحيث تكون a دالة أصلية للدالة a على \mathbb{R} على \mathbb{R} على \mathbb{R} .

صفحة 4 من 4

حل بكالوريا :دورة جوان 2012

حل الموضوع الأول

التمرين الأول: 1 - أ) الرسم:

. u_n التخمين: u_n متتالية متزايدة و متقاربة نحو العدد $0 < u_n < 3 : n$ نضع: p(n) ، من أجل كل عدد طبيعي -2* المرحلة 1: من أجل n=0 لدينا n=0 الدينا n=0 ، أي: n=0 محققة. p(n+1) اي: p(n+1) اي: p(n+1) اي: p(n+1) اي: $0 < u_{n+1} < 3$ $0 < 2u_n + 3 < 9$ ومنه $0 < 2u_n + 3 < 9$ ومنه $0 < 2u_n < 6$ ومنه $0 < u_n < 3$ $0 < u_{n+1} < 3$. ومنه: $0 < \sqrt{2u_n + 3} < 3$ ، أي: $u_n \le 6 : n$ الخلاصة: من أجل كل عدد طبيعي * $.u_{n+1}-u_n$ ندرس إشارة الفرق، (u_n) ندرس المتالية الجاه تغير المتالية (u_n) $u_{n+1} - u_n = \sqrt{2u_n + 3} - u_n = \left(\sqrt{2u_n + 3} - u_n\right) \times \frac{\sqrt{2u_n + 3} + u_n}{\sqrt{2u_n + 3} + u_n}$ Lesi $= \frac{\left(\sqrt{2u_n+3}\right)^2 - u_n^2}{\sqrt{2u_n+3} + u_n} = \frac{-u_n^2 + 2u_n + 3}{\sqrt{2u_n+3} + u_n}$ -2ين متمايزين هما -1 و $-2u_n^2 + 2u_n + 3$ ومنه: $-u_n^2 + 2u_n + 3 = -(u_n + 1)(u_n - 3) = (u_n + 1)(3 - u_n)$ $u_{n+1} - u_n = \frac{(u_n + 1)(3 - u_n)}{\sqrt{2u_n + 3} + u}$ إذن: $\left(u_{n}+1\right)>0$ إن إشارة الفرق $u_{n+1}-u_{n}$ هي من إشارة $\left(3-u_{n}\right)$ ، لأن $\left(3-u_{n}+3+u_{n}-u_{n}\right)$ و $.0 < u_n < 3$ لكون بما أن: $3-u_n>0$ فإن $u_n<3$ ومنه $u_n<3$ ومنه $u_n<3$ إذن $u_n<3$ بما أن: ب حسب النظرية ، بما أن (u_n) متزايدة و محدودة من الأعلى فهي متقاربة . $\lim_{n\to+\infty} u_n$: حساب النهاية . لتكن l نهاية المتتالية $(u_{_n})$ حيث l عدد حقيقي $.\,l=\sqrt{l+3}$ لدينا: $\lim_{n \to +\infty} u_{n+l} = \lim_{n \to +\infty} u_n = l$ ومنه: ا ر مرفوض) l=-l: بالتربيع نجد $l^2-2l-3=0$ ، بحل المعادلة l=-l: ، نجد نجد $l^2=2l+3$ $\lim_{n\to+\infty}u_n=3$ أو l=3 وهو مقبول. إذن:

التمرين الثاني:

$$z(z-2+3i) = 3i(z+2i)$$
 تعني $z = \frac{3i(z+2i)}{z-2+3i}$. 1

أي $z^2-2z+6=0$ ، بعد التبسيط نجد $z^2-2z+3iz=3iz+6i^2$ ، وهي معادلة من

$$\Delta = -20 = \left(\sqrt{20}i\right)^2 = \left(2\sqrt{5}i\right)^2$$
 الدرجة الثانية بمعاملات حقيقية مميزها

$$z_{2} = \overline{z_{1}} = 1 + \sqrt{5}i$$
 , $z_{1} = \frac{2 - 2\sqrt{5}i}{2} = 1 - \sqrt{5}i$ تقبل حلین مرکبین مترافقین

$$.OA = \sqrt{6}$$
 . الدينا: $|z_A| = \left|1 + i\sqrt{5}\right| = \sqrt{6}$. كدينا: 2

$$.OB = \sqrt{6}$$
 ولدينا: $\left|z_{\scriptscriptstyle B}\right| = \left|I - i\sqrt{5}\right| = \sqrt{6}$. ولدينا

 $\sqrt{6}$ ومنه $OA=OB=\sqrt{6}$ ، أي A و B تنتميان إلى دائرة مركزها O و نصف قطرها

$$|z'| = \left| \frac{3i(z+2i)}{z-2+3i} \right|$$
 : أ-لدينا $|z'| = \frac{3i(z+2i)}{z-2+3i}$ ، بتطبيق خواص الطويلة نجد:

$$|z'| = \frac{|3i||z - (-2i)|}{|z - (2 - 3i)|} ; |z'| = \frac{|3i||z + 2i|}{|z - 2 + 3i|} ; |z'| = \frac{|3i(z + 2i)|}{|z - 2 + 3i|} ; |z'| = \frac{|3$$

$$OM' = 3\frac{CM}{DM}$$
 : اَي $OM' = \frac{3CM}{DM}$ اَي $|z'| = \frac{|3i||z - z_C|}{|z - z_D|}$ اَي اَدْن

CM=DM فإن M=CD ن بالتعويض في M بالتعويض في M

$$.OM'=3$$
 العلاقة $OM'=3$ ، نجد $OM'=3$ ، نجد $OM'=3$

. ومنه النقطة M' تنتمي إلى الدائرة (γ) التي مركزها O و نصف قطرها M'

E التحقق من أن E تنتمي إلى التحقق التحق التحقق التحقق التحقق التحقق التحقق التحق التحقق التحقق التحق التحقق التحق التحقق التحقق التحقق التحقق التحقق التحقق التحقق ا

OE = 3 يكفى أن نبين أن

 $OE = |z_E| = |3i| = 3$ بالفعل لدينا:

التمرين الثالث:

اً -لدينا: $\overline{AB}\left(l;4;-6\right)$ وهذا كاف للقول أن $\overline{AC}\left(-2;5;-4\right)$. وهذا كاف للقول أن $\overline{AB}\left(l;4;-6\right)$

الشعاعين \overrightarrow{AB} و \overrightarrow{AC} غير مرتبطين خطيا وبالتالي النقط B ، A و A ليست في استقامية فهي تشكل مستو وحيد هو المستوي (ABC)

B ، A و B تحقق معادلة المستوي B ، A و B تحقق معادلة المستوي A

14(1)+16(-2)+13(5)-47=47-47=0 لأن: (p) لأن: (p)+13(-1)+13(-1)-47=47-47=0 لأن: (p)+13(-1)+13(-1)-47=47-47=0 لأن: (p)+13(-1)+13(-1)+13(1)-47=47-47=0 لأن: (p)+13(1)+13(1)-47=47-47=0 وحداثيات (p)+13(1)+13(1)-47=47-47=0 يتمثيلا وسيطيا للمستقيم (ab)+1ab=1: (ab)+1ab=1

 $\overrightarrow{AM} = t \overrightarrow{AB}$: المستقيم (AB) هو مجموعة النقط (x;y;z)

$$\left(AB\right)$$
: $\begin{cases} x = 1 + t \\ y = -2 + 4t \end{cases}$; $t \in \mathbb{R}$ تڪافئ $\overrightarrow{AM} = t \overrightarrow{AB}$

[AB] للقطعة. [AB] للقطعة. [AB]

AM=BM المستوي المحوري (Q) للقطعة [AB] هو مجموعة النقط $(x\,;y\,;z\,)$ بحيث AM=BM تكافئ AM=BM

$$\sqrt{(x-1)^2 + (y+2)^2 + (z-5)^2} = \sqrt{(x-2)^2 + (y-2)^2 + (z+1)^2}$$

$$(x-1)^2 + (y+2)^2 + (z-5)^2 = (x-2)^2 + (y-2)^2 + (z+1)^2 + (z+1)^2$$

$$(Q) : 2x + 8y - 12z + 21 = 0 : 2x + 21 = 0 :$$

المستوي المحوري (Q) للقطعة [AB]، يشمل منتصف القطعة [AB] و [AB] شعاع ناظم له . (Q) . (Q) تحقق في معادلة (Q) . (Q) تحقق في معادلة (Q) .

بتعويض إحداثيات النقطة $D\left(-1;-2;rac{1}{4}
ight)$ نجد:

$$2(-1)+8(-2)-12\left(\frac{1}{4}\right)+21=-21+21=0$$

ID جـ-المسافة بين النقطة D و المستقيم (AB)هي الطول

- حيث النقطة I هي منتصف I (AB) لدينا: حيث النقطة المي منتصف

$$ID = \sqrt{\left(\frac{3}{2} + 1\right)^2 + \left(0 + 2\right)^2 + \left(2 - \frac{1}{4}\right)^2} = \sqrt{\frac{213}{16}} = \frac{\sqrt{213}}{16}$$
$$d\left(D; (\Delta)\right) = ID = \frac{\sqrt{213}}{16}$$
 \text{i.i.}

التمرين الرابع:

$$\lim_{x \to 0} f(x)$$
 أ حساب.

$$\lim_{\substack{x \to 0 \\ x \to 0}} (x + 5) = 5$$
 لدينا:

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = -\infty$$
 ومنه: $\lim_{\substack{x \to 0 \\ x \to 0}} 6 \ln \left(\frac{x}{x-1} \right) = -\infty$

 $-\infty$ نستنتج أن المستقيم الذي معادلته x=0 بجوار x=0 معادلته أن المستقيم الذي معادلته و x=0

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} f(x)$$

$$\lim_{x\to -\infty} (x+5) = -\infty$$
 لدينا:

$$\lim_{x \to -\infty} \ln\left(\frac{x}{x-1}\right) = 0$$
وبما أن $\lim_{x \to -\infty} \ln\left(\frac{x}{x-1}\right) = 0$ وبما أن $\lim_{x \to -\infty} \ln\left(\frac{x}{x-1}\right) = 0$ وبما أن

$$\lim_{x \to -\infty} f(x) = -\infty$$
 ومنه: $\lim_{x \to -\infty} 6 \ln \left(\frac{x}{x-1} \right) = 0$

ولدينا: $-\infty$ والدالة f تقبل الاشتقاق على المجال $-\infty$

$$f'(x) = 1 + 6 \frac{\left(\frac{x}{x-1}\right)'}{\frac{x}{x-1}} = 1 + 6 \times \frac{(-1)}{\left(x-1\right)^2} \times \frac{x-1}{x} = 1 - \frac{6}{x(x-1)} = \frac{x^2 - x - 6}{x(x-1)}$$

$$\frac{x}{x-1} > 0$$
 الدينا $-\infty$; 0 لكون على المجال $-\infty$ من إشارة x^2-x-6 لدينا $f'(x)$

$$x(x-1) > 0$$
 ومنه

ڪثير الحدود $x^2 - x - 6$ يقبل جذرين متمايزين هما $x^2 - x - 6$ و إشارته موضحة في الجدول التالي :

(1)	2				**
x	$-\infty$		-2		0
$x^2 - x - 6$		+	0	9 0	

وبالتالي الدالة f متزايدة تماما على المجال [-2;0] و متناقصة تماما على المجال [-2;0] . يكون جدول التغيرات كما يلي:

 $f(-2) = 3 + 6 \ln \frac{2}{3}$ حيث

ا - لدينا:
$$0 = \lim_{x \to -\infty} \left[f(x) - (x+5) \right] = \lim_{x \to -\infty} 6 \ln \left(\frac{x}{x-1} \right) = 0$$
. أ- لدينا: 3

ومنه المستقيم (Δ) الذي معادلة له: y=x+5 هو مستقيم مقارب مائل للمنحنى $-\infty$ بجوار (C_f)

f(x)-(x+5) ب-لدراسة وضع المنحنى C_f و المستقيم Δ ، ندرس إشارة الفرق وضع المنحنى

$$f(x)-(x+5)=6ln\left(\frac{x}{x-1}\right)$$
 لدينا:

على المجال -1يكون x>x-1 ومنه بالقسمة على العدد السالب x>x-1 نجد

$$6\ln\left(\frac{x}{x-1}\right)$$
 ومنه $\ln\left(\frac{x}{x-1}\right)$ ومنه $\ln\left(\frac{x}{x-1}\right)$ ومنه $\ln\left(\frac{x}{x-1}\right)$ ومنه $\ln\left(\frac{x}{x-1}\right)$

.]- ∞ ; θ [المجال (Δ) على المجال f(x)-(x+5)<0 إذن: f(x)-(x+5)

على المجال $\left[-3,5;-3,4\right]$ الدالة f مستمرة و متزايدة تماما ولكون . 4

و $f(-3,4)\approx 0,05>0$ و $f(-3,5)\approx -0,01<0$ فإنه حسب مبرهنة القيم المتوسطة

[-3,5;-3,4] المعادلة f(x)=0 تقبل حلا وحيدا α من المجال

 $f\left(-1,1\right)pprox0,02>0$ الدالة $f\left(-1,1;-1
ight)$ مستمرة و متناقصة تماما ولكون $\left[-1,1;-1
ight]$

و 0 < 16 < 0 فإنه حسب مبرهنة القيم المتوسطة المعادلة f(x) = 0 قبل حلا

-1,1;-1[وحيدا eta من المجال eta

. eta و lpha المنحنى (C_f) يقطع محور الفواصل في نقطتين فاصلتاهما

 $:(\Delta)$ رسم المنحنى (C_f) و المستقيم . 5

ر (AB) النقطتان A و B متمايزتان فهما تعينان مستقيما وحيدا هو المستقيم B و A متمايزتان فهما تعينان مستقيما وحيدا هو المستقيم B و A بيكفي أن نبين أن إحداثيات كلا من A و B تحقق المعادلة B من بيك أن إحداثيات A تحقق المعادلة لأن: A المعادلة A تحقق المعادلة لأن: A المعادلة A أي A المعادلة A المعادلة B بالتالي نحل المعادلة B بالتالي نحل المعادلة B بالتالي نحل المعادلة B مقبول أو B مقبول أو B هو B مقبول أو B مقبول أو B هو B مقبول أو B مقبول أو B

ومنه: المستقيم (AB)يمس المنحنى $(C_f$) في نقطة M_0 فاصلتها (AB)يمس المنحنى

$$\frac{1}{2}(-3)+\frac{7}{2}+6\ln\left(\frac{3}{4}\right)=2+6\ln\left(\frac{3}{4}\right)$$
 بالسهل من معادلة (AB) ڪما يلي

$$M_{0}\left(-3;2+6ln\left(\frac{3}{4}\right)\right)$$
 ومنه:

7. - الدالة g تقبل الاشتقاق على المجال $-\infty$; 0 [لأنها عبارة عن مجموع و جداء و مركب دوال قابلة للاشتقاق على المجال $-\infty$; 0 [.

 $[-\infty;0]$ من المجال كل x من المجال .

$$g'(x) = x + 5 + 6\ln\left(\frac{x}{x - 1}\right) + 6x \times \frac{(-1)}{x'(x - 1)} + 6 \times \frac{(-1)}{1 - x}$$

$$= x + 5 + 6\ln\left(\frac{x}{x - 1}\right) + \frac{-6}{1 - x} + \frac{-6}{1 - x}$$

$$= x + 5 + 6\ln\left(\frac{x}{x - 1}\right) + \frac{-6}{x - 1} + \frac{6}{x - 1}$$

$$= x + 5 + 6\ln\left(\frac{x}{x - 1}\right)$$

$$= f(x)$$

 $[-\infty; 0[$ ومنه g دالةأصلية للدالة f على المجال

حل الموضوع الثاني

التمرين الأول:

 $a < u_n < 4 : n$ نضع: p(n) ، من أجل كل عدد طبيعي 1.

. المرحلة
$$1$$
: من أجل $n=0$ لدينا $n=0$ لدينا $n=3$ ، أي: $n=3$ محققة $*$

$$p\left(n+1\right)$$
 المرحلة 2: نفرض صحة $p\left(n+1\right)$ أي : $3 < u_n < 4$ و نبرهن صحة $p\left(n+1\right)$ أي : $3 < u_{n+1} < 4$

: ومنه
$$0 < \sqrt{u_n - 3} < 1$$
 ومنه $0 < u_n - 3 < 1$ ومنه $0 < u_n < 3$

$$3 < u_{n+1} < 4$$
 : أي: $3 < 3 + \sqrt{u_n - 3} < 4$

 $3 < u_n < 4 : n$ الخلاصة: من أجل كل عدد طبيعي *

: n من أجل كل عدد طبيعي 2

$$u_{n+1} - u_n = 3 + \sqrt{u_n - 3} - u_n = \left[\sqrt{u_n - 3} + (3 - u_n)\right] \times \frac{\sqrt{u_n - 3} - (3 - u_n)}{\sqrt{u_n - 3} - (3 - u_n)}$$

$$=\frac{\left(\sqrt{u_{n}-3}\right)^{2}-\left(3-u_{n}\right)^{2}}{\sqrt{u_{n}-3}-\left(3-u_{n}\right)}=\frac{u_{n}-3-\left(9-6u_{n}+u_{n}^{2}\right)}{\sqrt{u_{n}-3}+u_{n}-3}=\frac{-u_{n}^{2}+7u_{n}-12}{\sqrt{u_{n}-3}+u_{n}-3}$$

$$|u_{n}=1|=\frac{\left(\sqrt{u_{n}-3}\right)^{2}-\left(3-u_{n}\right)^{2}}{\left(\sqrt{u_{n}-3}+u_{n}-3\right)}=\frac{-u_{n}^{2}+7u_{n}-12}{\sqrt{u_{n}-3}+u_{n}-3}$$

إشارة الفرق
$$u_{n+1} - u_n$$
 هي من إشارة البسط $u_{n+1} - u_n - u_n$ إشارة الفرق $u_{n+1} - u_n$ إشارة البسط

$$3 < u_n$$
 کن ، $u_n - 3 > 0$ و $\sqrt{u_n - 3} + u_n - 3 > 0$ کن ، $\sqrt{u_n - 3} + u_n - 3 > 0$

ڪثير الحدود
$$2 - u_n^2 + 7u_n - 12$$
 يقبل جذرين متمايزين هما 3 و منه:

$$-u_n^2 + 7u_n - 12 = -(u_n - 3)(u_n - 4) = (u_n - 3)(4 - u_n)$$

$$(u_n - 3)(4 - u_n) > 0$$
 فإن $3 < u_n < 3$ و $(4 - u_n) > 0$ و منه $3 < u_n < 4$ ومنه

. بالتالي
$$22-u_n^2+7u_n-12$$
 وعليه $u_n>0$ وعليه $u_n=u_n^2+7u_n-12$ إذن

. بما أن
$$(u_n)$$
 محدودة من الأعلى و متزايدة تماما ، فحسب النظرية ، (u_n) متقاربة . 3

$$v_n = \ln(u_n - 3)$$
 .4 فمنه: .4

$$v_{n+1} = ln(u_{n+1} - 3) = ln(3 + \sqrt{u_n - 3} - 3) = ln(\sqrt{u_n - 3})$$

$$=\frac{1}{2}\ln\left(u_{n}-3\right)=\frac{1}{2}v_{n}$$

$$v_0 = \ln(u_0 - 3) = \ln\left(\frac{13}{4} - 3\right) = \ln\frac{1}{4} = -\ln 4 = -2\ln 2 :$$
 حدها الأول
$$v_0 = \ln(u_0 - 3) = \ln\left(\frac{13}{4} - 3\right) = \ln\frac{1}{4} = -\ln 4 = -2\ln 2 :$$
 إذن
$$v_0 = -2\ln 2 :$$
 إذن
$$v_n = -\frac{\ln 2}{2^{n-1}} :$$
 إذن
$$v_n = v_0 \times q^n = \left(-2\ln 2\right) \left(\frac{1}{2}\right)^n = \frac{-2\ln 2}{2^n} = \frac{-\ln 2}{2^{n-1}} :$$
 ولدينا:
$$v_n = -\frac{\ln 2}{2^{n-1}} :$$
 إذن
$$v_n = \ln(u_n - 3) :$$
 ولدينا:
$$v_n = \ln(u_n - 3) :$$

$$v_n = \ln(u_n - 3) :$$

$$v_n = -\frac{\ln 2}{2^{n-1}} :$$

$$v_n = -\frac{$$

$$\lim_{n\mapsto +\infty}u_n=4$$
 : ومنه $\lim_{n\mapsto +\infty}\left[3+e^{\left(rac{-m^2}{2^{n-l}}
ight)}
ight]=4$: ومنه $\lim_{n\mapsto +\infty}e^{\left(rac{-m^2}{2^{n-l}}
ight)}=e^0=1$: ومنه $\lim_{n\mapsto +\infty}v_n=\ln\left(u_n-3\right)$: $\lim_{n\mapsto +\infty}e^{\left(rac{-m^2}{2^{n-l}}
ight)}=e^0=1$: $\lim_{n\mapsto +\infty}v_n=\ln\left(u_n-3\right)$: $\lim_$

ولدينامن أجل كل عدد طبيعي n فإن: $u_n - 3 = e^{\nu_n}$ ومنه: $P_{n} = e^{v_{0}} \times e^{v_{1}} \times e^{v_{2}} \times ... \times e^{v_{n}} = e^{(v_{0} + v_{1} + v_{2} + ... + v_{n})}$

 $\cdot (v_n)$ هو مجموع (n+1) حدا الأولى للمتتالية الهندسية $v_0 + v_1 + v_2 + \ldots + v_n$ المجموع

$$v_0 + v_1 + v_2 + \dots + v_n = v_0 \times \frac{1 - q^{n+1}}{1 - q} = (-2 \ln 2) \times \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}}$$
 : each $v_0 + v_1 + v_2 + \dots + v_n = (-4 \ln 2) \left[1 - \left(\frac{1}{2}\right)^{n+1}\right] = \left(\ln \frac{1}{16}\right) \left[1 - \left(\frac{1}{2}\right)^{n+1}\right]$: إذن:

كتاب الحوليات المغنى في الرياضيات (علوم تجريبيت) ــــ ص 83 www.mathonec.com

$$P_n=e^{v_0} imes e^{v_1} imes e^{v_2} imes ... imes e^{v_n}=e^{\left(lnrac{1}{16}
ight)\!\left[l-\left(rac{1}{2}
ight)^{n+l}
ight]}$$
 :وبالتالي: $\lim_{n\mapsto +\infty}p_n=rac{1}{16}:$ اثبات أن :

$$\lim_{n\mapsto +\infty} \left\lceil 1-\left(rac{1}{2}
ight)^{n+l}
ight
ceil$$
 ومنه $\lim_{n\mapsto +\infty} \left(rac{1}{2}
ight)^{n+l}=0$ فإن $-1<rac{1}{2}<1$

.
$$\lim_{n \to +\infty} \left(\ln \frac{1}{16} \right) \left[1 - \left(\frac{1}{2} \right)^{n+1} \right] = \ln \frac{1}{16}$$
 ومنه:

$$\lim_{n \to +\infty} e^{\left(\ln \frac{1}{16}\right)\left[1-\left(\frac{1}{2}\right)^{n+1}\right]} = e^{\left(\ln \frac{1}{16}\right)} = \frac{1}{16}$$
 ومنه:

$$\lim_{n \to +\infty} p_n = \frac{1}{16}$$
 إذن:

التمرين الثاني:

ومنه ،
$$\frac{3}{2} \neq \frac{1}{-1}$$
 و منه $\overrightarrow{AC}\left(2;-1;-1\right)$ و $\overrightarrow{AB}\left(3;1;-1\right)$. الشعاعان $\overrightarrow{AB}\left(3;1;-1\right)$

ABC النقط B ، A و C ليست في استقامية فهي تعين مستو وحيد هو المستوي

يكفي أن نبين أن إحداثيات كل من النقط B ، A و B تحقق المعادلة C

: بالفعل لدينا ، 2x - y + 5z - 3 = 0

$$2(-1)-0+5(1)-3=3-3=0$$
 إحداثيات A تحقق لأن: $0=3-3=3$

$$2(2)-1+5(0)-3=3-3=0$$
 إحداثيات B تحقق لأن: $B=3-3=0$

$$2(1)-(-1)+5(0)-3=3-3=0$$
 احداثیات C تحقق لأن: C

$$2(2)-(-1)+5(3)-3=20-3=17\neq 0$$
 أ – إحداثيات D لا تحقق المعادلة لأن $O=17=0$. O ومنه O لا تنتمي إلى المستوي O .

ب- نبين أن:

$$(ABC)$$
 تنتمي إلى المستوي H

$$(ABC)$$
ناظم للمستوي \overrightarrow{DH} .

أولا: H تنتمي إلى المستوي (ABC) لأن احداثياها

$$2\left(\frac{13}{15}\right) - \left(-\frac{13}{30}\right) + 5\left(\frac{1}{6}\right) - 3 = \frac{52 + 13 + 25}{30} - 3 = 3 - 3 = 0$$
 تحقق المعادلة لأن

$$D \uparrow$$
 H_{λ} (ABC)

المغني في الرياضيات (علوم تجريبية) — ص 84 سيست كتاب الحوليات www.mathonec.com

$$\overrightarrow{DH}\left(\frac{13}{15}-2;-\frac{13}{30}+1;\frac{1}{6}-3\right)$$
 الأن: (ABC) ناظم للمستوي \overrightarrow{DH} ناظم للمستوي

.
$$(ABC)$$
 ناظم للمستوي ، $\overrightarrow{DH}\left(-\frac{17}{15};\frac{17}{30};-\frac{17}{6}\right)$ نازي: أي:

$$\overrightarrow{DH}$$
 نلاحظ أن $\overrightarrow{DH} = \frac{17}{5} = \frac{17}{30} = \frac{17}{5} = \frac{17}{5} = \frac{17}{30}$ ، ومنه \overrightarrow{DH} و \overrightarrow{DH} مناظم للمستوي ((ABC)).

 $\left(DH
ight)$ يحوي المستقيم $\left(ADH
ight)$ يحوي المستقيم

(ABC) ولكون (DH)عمودي على

(ABC) و (ADH) نستنتج أن المستويين

متعامدان. (أنظر تعريف تعامد مستويين في السنة الأولى)

المستويان (ADH) و (ABC)متقاطعان وفق المستقيم (AH) ، لنعين تمثيلا وسيطيا للمستقيم (AH) .

المستقيم (AH) هو مجموعة النقط (x;y;z) بحيث (AH) بحيث عوسيط حقيقي .

$$.\overrightarrow{AH}\left(\frac{28}{15};-\frac{13}{30};-\frac{5}{6}\right)$$
 و $\overrightarrow{AM}\left(x+l;y;z-l\right)$ لدينا

$$\begin{cases} x=-1+rac{28}{15}t \ y=-rac{13}{30}t \end{cases}$$
 أي: $\begin{cases} x+1=rac{28}{15}t \ y=-rac{13}{30}t \end{cases}$ وهذه الجملة هي تمثيل $\overrightarrow{AM}=t\,\overrightarrow{AH}$ $z=1-rac{5}{6}t$

وسيطي للمستقيم (AH).

التمرين الثالث:

1. أ- لدينا $P(6) = 6^3 - 12 \times 6^2 + 48 \times 6 - 72 = 0$. ومنه $P(5) = 6^3 - 12 \times 6^2 + 48 \times 6 - 72 = 0$. الحدود $P(5) = 6^3 - 12 \times 6^2 + 48 \times 6 - 72 = 0$.

$$(z-6)(z^2+\alpha z+\beta) = z^3+\alpha z^2+\beta z-6z^2-6\alpha z-6\beta$$

 $=z^3+(\alpha-6)z^2+(\beta-6\alpha)z-6\beta=P(z)$

 $=z^3-12z^2+48z-72$

.
$$\beta=12$$
 ، $\alpha=-6$ ومنه:
$$\begin{cases} \alpha-6=-12\\ \beta-6\alpha=48 \end{cases}$$
 بالمطابقة نجد:
$$-6\beta=-72$$

$$P(z) = (z-6)(z^2-6z+12)$$
 إذن:

$$z^{2}-6z+12=0$$
 أو $z-6=0$ معناه $P(z)=0$

$$z = 6$$
 معناه: $z - 6 = 0$

$$\Delta=-12=\left(i\sqrt{12}\right)^2=\left(2i\sqrt{3}\right)^2$$
 المعادلة $z^2-6z+12=0$ من الدرجة الثانية مميزها

$$z_{2} = \overline{z_{1}} = 3 + i\sqrt{3}$$
, $z_{1} = \frac{6 - 2i\sqrt{3}}{2} = 3 - i\sqrt{3}$ تقبل حلين مرڪبين ماترافقين

$$z=3+i\sqrt{3}$$
 ومنه: $P(z)=0$ معناه $z=6$ أو $z=3+i\sqrt{3}$

$$z_{C} = 3 - i\sqrt{3}$$
, $z_{B} = 3 + i\sqrt{3}$, $z_{A} = 6$.

$$k\in\mathbb{Z}$$
 دينا: $|z_A|=|arg(z_A)=arg(6)=0+2\pi k$ و $|z_A|=|b|=6$

$$z_A = 6e^{i0}$$
 ومنه:

ـ كتابة z_B على الشكل الأسي:

$$.|z_{B}| = |3 + i\sqrt{3}| = \sqrt{12} = 2\sqrt{3}$$
 لدينا:

$$cos\theta=rac{3}{2\sqrt{3}}=rac{\sqrt{3}}{2}$$
 المنه: $heta=arg(z_B)$ المنه: $heta=arg(z_B)$ المنه: $heta=arg(z_B)$

$$z_B = 2\sqrt{3}e^{i\frac{\pi}{6}}$$
 إذن:

على الشكل الأسي: z_c على الشكل الأسي:

$$z_{C}=2\sqrt{3}e^{-irac{\pi}{6}}$$
 بما أن: $z_{C}=\overline{z_{B}}$ ، فإن

ب — كتابة العدد المركب
$$\frac{z_A-z_B}{z_A-z_C}$$
 على الشكل الجبري:

$$\frac{z_{A}-z_{B}}{z_{A}-z_{C}} = \frac{6-\left(3+i\sqrt{3}\right)}{6-\left(3-i\sqrt{3}\right)} = \frac{3-i\sqrt{3}}{3+i\sqrt{3}} \times \frac{3-i\sqrt{3}}{3-i\sqrt{3}} = \frac{1}{2}-i\frac{\sqrt{3}}{2}$$

$$\frac{z_A - z_B}{z_A - z_C} = \frac{1}{2} - i \frac{\sqrt{3}}{2}$$
 ومنه:

$$\theta' = arg\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$
لدينا: $\left|\frac{1}{2} - i\frac{\sqrt{3}}{2}\right| = 1$ لدينا:

$$. heta'=-rac{\pi}{3}+2\pi k$$
 ومنه $\begin{cases} \cos\theta'=rac{1}{2}=rac{1}{2} \\ -rac{\sqrt{3}}{2} \end{cases}$ الدينا: $\sin\theta'=rac{-rac{\sqrt{3}}{2}}{1}=-rac{\sqrt{3}}{2}$

$$\frac{z_A - z_B}{z_A - z_C} = e^{i\left(-\frac{\pi}{3}\right)}$$
 إذن:

جـ طبيعة المثلث ABC:

.
$$z_A-z_B=e^{i\left(-rac{\pi}{3}
ight)}\left(z_A-z_C
ight)$$
 لدينا: $rac{z_A-z_B}{z_A-z_C}=e^{i\left(-rac{\pi}{3}
ight)}$ الدينا:

 $-rac{\pi}{3}$ و زاويته A و بالدوران الذي مركزه A و زاويته و مدا يعني أن

إذن المثلث ABC متقايس الأضلاع.

. أ الكتابة المركبة للتشابه 3

$$a=\sqrt{3}e^{irac{\pi}{2}}=i\sqrt{3}$$
 . ومنه: $arg(a)=rac{\pi}{2}$ ومنه: $S:z'=az+b$. لدينا: $a=i\sqrt{3}$

$$b=-4i\,\sqrt{3}$$
 . ومنه: $b=(1-i\,\sqrt{3})\Big(3-i\,\sqrt{3}\Big)=-4i\,\sqrt{3}$. ومنه: $b=(1-a)z_c$.
$$S:z'=i\,\sqrt{3}z-4i\,\sqrt{3}$$
 وبالتالي: $S:z'=i\,\sqrt{3}z-4i\,\sqrt{3}$

ب- باستعمال الكتابة المركبة نجد:

$$z_{A'}=2i\,\sqrt{3}$$
 . إذن: $z_{A'}=i\,\sqrt{3}z_{A}-4i\,\sqrt{3}=6i\,\sqrt{3}-4i\,\sqrt{3}=2i\,\sqrt{3}$

 $\frac{z_A-z_{A'}}{z_A-z_B}$ حقيقي أن نبين أن العدد

$$\frac{z_A - z_{A'}}{z_A - z_B} = \frac{6 - 2i\sqrt{3}}{6 - \left(3 + i\sqrt{3}\right)} = \frac{6 - 2i\sqrt{3}}{3 - i\sqrt{3}} = \frac{2\left(3 - i\sqrt{3}\right)}{3 - i\sqrt{3}} = 2$$
 لدينا: 2

بما أن $\frac{z_A-z_{A'}}{z_A-z_B}$ حقيقي فإن النقط A' ، B ، A في استقامية .

التمرين الرابع:

$$g(x) = 1 - xe^x$$
 (I

$$\lim_{x\to +\infty} g(x)$$
 و $\lim_{x\to -\infty} g(x)$ عساب (1

$$\lim_{x\to -\infty} g(x) = 1$$
 فإن $\lim_{x\to -\infty} xe^x = 0$ بما ان

$$\lim_{x\to +\infty} g(x) = -\infty$$
 ومنه $\lim_{x\to +\infty} -xe^x = -\infty$ فإن $\lim_{x\to +\infty} e^x = +\infty$ ومنه $\lim_{x\to +\infty} e^x = +\infty$

الدالة g تقبل الاشتقاق على \mathbb{R} و لدينا:

$$g'(x) = 0 - (1 \times e^x + x \times e^x) = -(1 + x)e^x$$

بما أن $e^x>0$ فإن إشارة g'(x) من إشارة g'(x) من الجدول الموالي:

x	$-\infty$		-1	+∞
g'(x)		+	0	

ومنه الدالة g متزايدة تماما على المجال $[-1;+\infty[$ و متناقصة تماما على المجال g متزايدة تماما على المجال g :

x	$-\infty$		-1/		$+\infty$
g'(x)		+	0	_	
g(x)	1		$1+e^{-1}$		▲ -∞

$$g(-1) = 1 - (-1)e^{-1} = 1 + e^{-1} = 1,37 > 0$$
 حيث:

g(-1)>0 الدالة g مستمرة و متناقصة تماما وبما أن g(-1)>0 الدالة g مستمرة و متناقصة تماما وبما أن g(x)=0 تقبل حلا وحيدا وحيدا $\lim_{x\to +\infty}g(x)=0$ تقبل حلا وحيدا

 $-1;+\infty$ على المجال α

$$0,5 < \alpha < 0,6$$
 ب – التحقق من أن

g(0,5) بما ان المجال $[-1;+\infty[$ محتوى في المجال المجال $[-1;+\infty[$ محتوى في المجال $[-1;+\infty[$ محتلفتين .

 $g(0,6) \approx -0.09 < 0$ و $g(0,5) \approx 0.18 > 0$ بحاسبت نجد

 \mathbb{R} على g(x)

x	-∞		α		$+\infty$
g(x)		+	0	<u></u>	

المغني في الرياضيات (علوم تجريبية) — ص 88 سيست كتاب الحوليات www.mathonec.com

$$f(x) = (x-1)e^{x} - x - 1 \quad (\mathbf{II})$$
$$: \lim_{x \to -\infty} f(x) = (1)$$

$$x \to -\infty$$

(x) = $xe^x - e^x - x - 1$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 بما أن $\lim_{x \to -\infty} f(x) = +\infty$ و $\lim_{x \to -\infty} (-x - 1) = +\infty$ و $\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} xe^x = 0$

عدد حقيقي x من أجل كل عدد حقيقي x من أجل كل عدد عقيقي x

$$f'(x) = 1 \times e^x + (x-1) \times e^x - 1 = xe^x - 1 = -(1-xe^x) = -g(x)$$

بما أن: $g(x) = -\infty$ فإن إشارة هي عكس إشارة g(x) على المجال g'(x) = -g(x) ومنه:

x	-∞	α	2
f'(x)	_	0	+ ~ 0

f: f: f: f: f: f:

x	$-\infty$		α		2
f'(x)		-	0	+	
f(x)	8/		$lack f(\alpha)$		e^2-3

$$f(2) = (2-1)e^2 - 2 - 1 = e^2 - 3 \approx 4,39$$
 - حيث:

$$f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$$
: أثبات أن 3

$$1-\alpha e^{\alpha}=0$$
 لدينا: $g\left(\alpha\right)=0$: ومن جهة لدينا: $f\left(\alpha\right)=\left(\alpha-1\right)e^{\alpha}-\alpha-1$ لدينا

$$e^{\alpha}=rac{1}{lpha}$$
 ومنه $e^{\alpha}=rac{1}{lpha}$ ، بتعويض $e^{\alpha}=rac{1}{lpha}$ في العلاقة $e^{\alpha}=rac{1}{lpha}$ نجد:

$$f(\alpha) = -\left(\frac{\alpha^2 + 1}{\alpha}\right)$$
 : ومنه: $f(\alpha) = (\alpha - 1)\frac{1}{\alpha} - \alpha - 1 = \frac{\alpha - 1 - \alpha^2 - \alpha}{\alpha} = \frac{-1 - \alpha^2}{\alpha}$

 $: f(\alpha)$ يجاد حصر للعدد

$$(1)$$
 ... $1,25<\alpha^2+1<1,36$. ومنه: $0,25<\alpha^2<0,36$ ومنه: $0,5<\alpha<0,6$ لدينا:

ولدينا:
$$\frac{1}{0.5} < \frac{1}{\alpha} < \frac{1}{0.5}$$
 من (2) وبالضرب طرفا بطرف نجد:

:نجد:
$$-1$$
 نجد: نجد: $\frac{1,25}{0,6} < \frac{\alpha^2+1}{\alpha} < \frac{1,36}{0,5}$

$$-2,72 < f(\alpha) < -2,08$$
: أي: $-\frac{1,36}{0,5} < -\left(\frac{\alpha^2 + 1}{\alpha}\right) < -\frac{1,25}{0,6}$

$$\lim_{x \to -\infty} [f(x) - (-x - 1)] = \lim_{x \to -\infty} (x - 1)e^x = \lim_{x \to -\infty} (xe^x - e^x) = 0$$
ادينا: 0 الدينا: 4

 $-\infty$ ومنه المستقيم (C_f) ذو المعادلة y=-x-1 مقارب مائل للمنحني ومنه المستقيم

 $\cdot(\Delta)$ بالنسبة إلى (C_f) بالنسبة إلى ب

لدينا: $f(x)-(-x-1)=(x-1)e^x$ ومنه إشارة الفرق $f(x)-(-x-1)=(x-1)e^x$ هي من إشارة $[-\infty;2]$ على المجال $[-\infty;2]$ ، ومنه:

x	$-\infty$		1	2
f(x)-(-x-1)		-	0	+

ومنه:

- .]- ∞ ;-I[المجال Δ) على المجال (C_f) .
 - .]-1;2[يقع فوق (Δ) على المجال (C_f) .
- . (1;-2) في النقطة ذات الإحداثيين (1;-1-1) ، أي ذات الإحداثيين (C_f) يقطع (Δ) .

الدالة f مستمرة و متناقصة تماما ولكون [-1,6;-1,5] الدالة المستمرة و المتاقصة تماما ولكون

و $f(-1,6) \approx -0.6 < 0$ و $f(-1,6) \approx -0.6 < 0$ و و $f(-1,6) \approx -0.08 > 0$

 $1.6 < x_1 < -1,5$ المعادلة f(x) = 0 تقبل حلا وحيدا

 $f(1,5) \approx -0.26 < 0$ على المجال f(1,5;1,6) الدالة $f(1,5) \approx -0.26 < 0$ مستمرة و متزايدة تماما ولكون f(x) = 0.37 > 0 و f(x) = 0.37 > 0 قإنه حسب مبرهنة القيم المتوسطة المعادلة f(x) = 0.37 > 0 تقبل حلا وحيدا f(x) = 0.37 > 0 حيث f(x) = 0.37 > 0 .

 x_1 بيانيا: المنحنى (C_f) على المجال $[-\infty;2]$ يقطع محور الفواصل في نقطتين فاصلتاهما x_1 و x_2

 $:\left(C_{f}
ight.
ight)$ و $\left(\Delta
ight)$ و ب-رسم

 $h(x) = (ax + b)e^{x} (6$

اً - h دالة أصلية للدالة $x\mapsto xe^x$ على $x\mapsto xe^x$ معناه : من أجل كل عدد حقيقي x فإن: $h'(x)=xe^x$

 $axe^x + a + b = xe^x$ أي $ae^x + (ax + b)e^x = xe^x$ أي $h'(x) = xe^x$ بالمطابقة نجد a = 1 و a = 1 و منه a + b = 0 و a = 1 إذن: $h(x) = (x - 1)e^x$

ب-لدينا: g معرفت ، g ، ومنه G ، ومنه G دالتا أصلية للدالة والمعرفة ب $G(x)=1-xe^x$. ومنه $G(x)=x-(x-1)e^x$. إذن: G(x)=x-h(x)