Automatika

Klasszikus szabályozás elmélet

VII.

Kompenzálás az eredő szakasz körfrekvencia függvénye alapján

Óbudai Egyetem

Dr. Neszveda József

A Bode diagram elemzése

A Bode diagram népszerű, mert papír – ceruza módszerrel is elfogadható pontossággal és munkaráfordítással megvalósítható a kompenzáló tag méretezése.

Méréssel felvett értékekkel vagy mért értékekből identifikált átviteli függvény esetén is alkalmazható.

 Meg kell állapítani, hogy az eredő szakasz arányos vagy integráló jellegű.

Ez a fázismenetből lehetséges.

 Meg kell állapítani, hogy mennyire egymáshoz közeliek az eredő szakasz időállandói.

Ez az amplitúdó menetből lehetséges.

Önbeálló eredő szakasz Pl kompenzálás

Európai struktúra

Önbeálló eredő szakasz

A fázismenetből lehet meghatározni az önbeálló jelleget.

Kellően alacsony körfrekvencián közel nulla a fázistolás Önbeálló jelleg esetén a PI a leggyakrabban alkalmazott kompenzáló struktúra, sok és/vagy egymáshoz közeli időállandó esetén PIDT1.

A zárt szabályozási kör túllendülésre való hajlama az eredő szakasz időállandóink számától valamint egymástól való távolságától, és ezzel összefüggésben a $G_0(s)$ felnyitott hurok átviteli függvény fázistartalékától függ.

A PI kompenzáló tag átviteli függvénye

$$G_{C}(s) = G_{PI}(s) = K_{C} \left\{ 1 + \frac{1}{sT_{I}} \right\} = K_{C} \frac{sT_{I} + 1}{sT_{I}}$$

Két változó van.

Első lépésben a vizsgálathoz legyen $K_C = 1$, és $T_I = 1$ rad/sec.

$$G_{PI}(s) = \frac{s+1}{s}$$

A PIDT kompenzálás menete a PDT kompenzáláshoz hasonló! PIDT kompenzáló tag esetén be kell tartani a $T_{\rm I} > 4T_{\rm D}$ és a $T_{\rm D} > 5T$ feltételt. $T_{\rm I}$ túl nagy értéke lassítja a szabályozási kört.

Pl arányos, integráló tag

Az amplitúdó átvitel az ω_l körfrekvencián közel 1.4, és a magasabb körfrekvenciákon tart az egységnyihez. A K_c erősítés méretezésével állítjuk be a felnyitott hurok amplitúdó átvitelét!

$$ω = 2ω_{\rm I}, φ_{\rm PI} = -26.5^{\circ},$$
 $ω = 5ω_{\rm I}, φ_{\rm PI} = -11.3^{\circ},$
 $ω = 10ω_{\rm I}, φ_{\rm PI} = -5.7^{\circ}.$

A $2\omega_I$ és $5\omega_I$ közötti értéket szokás választani!

PI kompenzálás elve az eredő szakasz körfrekvencia függvényéhez illesztés esetén

Válasszunk egy megfelelőnek tartott fázistartalékot!

Ököl szabály. Több egymáshoz közeli időállandó esetén 90°> pm° > 75°; Domináns időállandóval rendelkező szakasz esetén 75°> pm °> 60°. pm: phase margin, fázistartalék

Az eredő szakasz fázismenetén meg kell keresni a választott fázistartalékhoz tartozó leendő ω_{C} vágási körfrekvenciát.

Ez a ps° = pm° - ϕ_{PI} ° - 180° fázistoláshoz tartozó körfrekvencia. ps: phase shift, fázistolás

A K_C értéket úgy kell megválasztani, hogy a leendő ω_C vágási körfrekvenciánál legyen egységnyi az amplitúdó átvitel.

A leendő $\omega_{\rm C}$ vágási körfrekvencián a $K_{\rm C} \equiv 1$ értékkel definiált g0 hurokátviteli függvény amplitúdó átvitelének reciprok értéke lesz a tényleges $K_{\rm C}$.

PI kompenzálás menete

- Ábrázolni kell a Bode diagramját. Választani kell ϕ_{PI}° értéket és így $\omega = k\omega_{I}$ arányt! Az eredő szakasz fázismenetén meg kell keresni a $ps^{\circ} = pm^{\circ} \phi_{PI}^{\circ} 180^{\circ}$ fázistoláshoz tartozó körfrekvenciát.
- Ennek a körfrekvenciának a k-ad része az ω_I , és az ω_I reciprok értéke a T_I .
- Ábrázolni kell a

Bode diagramját.

• Ezen a g0 átviteli függvényen kell megkeresni a pm fázistartalékhoz tartozó körfrekvenciánál az amplitúdó erősítést Ennek az erősítésnek a reciprok értéke legyen a K_C erősítés

A mért $G_E(j\omega)$ Bode diagramja

A mért értékekből identifikált LTI modell

A mért átviteli függvényből látszik az önbeálló jelleg, és hogy négy időállandója van.

Legyen a pm = 75°, miután az amplitúdó átvitel határ eset. Viszonylag nehéz megkülönböztetni a törésponti körfrekvenciákat, de nem lehetetlen!

Legyen a keresendő $\omega=2\omega_{l}$ és így a $\varphi_{Pl}^{\circ}=-26.5^{\circ}!$

A keresendő fázistolás értéke: ps° \approx 75° +26.5° -180° \approx -78.5°

A mért G_F(jω) Bode diagramja

Az $\omega_I = 0.5*\omega = 0.05 \text{ rad/sec}$, és így $T_I = 20 \text{ sec}$.

A g₀ meghatározása

A g_{PI} a PI kompenzáló tag átviteli függvénye $K_C = 1$ esetén:

$$g_{PI}(s) = \frac{20s+1}{20s}$$

Összeszerkesztve a mért értéket a g_{PI} kompenzáló tag fenti értékének megfelelő diagrammal kapjuk a g0 hurokátviteli függvény Bode diagramját. (Az ábrán piros színnel) Az összeszerkesztett ábrán először a pm=75°-hoz tartozó körfrekvenciát kell megkeresni.

Az amplitúdó meneten az ehhez a körfrekvenciához tartozó k_C erősítést kell meghatározni.

Normál számértékeken ennek a reciprok értéke lesz a PI kompenzáló tag K_C erősítés értéke.

A mért $G_E(j\omega)$ Bode diagramja

A leendő $\omega_{\rm C}$ =0.097rad/sec. Az amplitúdó meneten k_C=-1.82 dB.

A K_C meghatározása és ellenőrzés

Decibelben az előjelváltás a reciprok értéket adja!

Az átszámítás képlete:

$$K_{\rm C} = 10^{\frac{-k_{\rm C}}{20}} = 10^{\frac{1.82}{20}} = 1.23$$

A PI kompenzáló tag átviteli függvénye:

$$G_{PI}(s) = 1.23 \cdot \frac{20s + 1}{20s}$$

Ezzel a PI kompenzáló taggal megtervezve, majd a zárt szabályozási kört ellenőrizve kapjuk a következő ábrát.

A szabályozási kör átmeneti függvénye

Óvatos volt a pm megválasztása. A K_C értéke növelhető vagy T_I érték csökkenthető! Lehet, hogy a PIDT most jobb lenne!

A szabályozási kör átmeneti függvénye

A K_C =1.6 értéknél láthatóan gyorsabb, de T_I még nagy. A K_C -t visszaállítva és T_I -t csökkentve:

A szabályozási kör átmeneti függvénye

A K_C =1.23 és a T_I =15sec. Gyorsabb a tolerancia sávon belüli túllendüléssel.

Integráló eredő szakasz PDT1 kompenzálás

Európai struktúra

Integráló eredő szakasz

A fázismenetből lehet meghatározni az integráló jelleget.

Kellően alacsony körfrekvencián közel -90° a fázistolás.

Integráló jelleg esetén a leggyakrabban alkalmazott kompenzáló struktúra PDT1, esetleg P.

$$G_{C}(s) = G_{PDT}(s) = K_{C} \left\{ 1 + \frac{sT_{D}}{sT+1} \right\} = K_{C} \frac{s(T_{D} + T) + 1}{sT+1}$$

$$G_{PDT}(s) = K_C \frac{sT(A_D + 1) + 1}{sT + 1}$$

A PDT kompenzáló tag átviteli függvénye

$$G_{PDT}(s) = K_C \frac{sT(A_D + 1) + 1}{sT + 1}$$

Három változó van. Ebből A_D független az eredő szakasztól. Első lépésben legyen $K_C = 1$, $A_D = 9$, és T = 0.1sec.

$$G_{PDT}(s) = \frac{s+1}{0.1s+1}$$

PDT1 kompenzáló tag esetén be kell tartani az

$$20 > A_D > 5$$
 feltételt!

PDT1 arányos, differenciáló tag

A φ_{max} fázistolás az A_D differenciálási erősítéstől függ.

Jelen példában:

$$A_D \equiv 9$$
, és így $\phi_{max} \equiv 54.9^{\circ}$.

PDT1 kompenzálás elve az eredő szakasz körfrekvencia függvényéhez illesztés esetén

Válasszunk egy megfelelőnek tartott fázistartalékot!

A szabály azonos, mint a PI kompenzálásnál volt.

Az eredő szakasz fázismenetén meg kell keresni a választott fázistartalékhoz tartozó leendő $\omega_{\rm C}$ vágási körfrekvenciát.

Ez a ps° = pm° - φ_{PDT} ° - 180° fázistoláshoz tartozó körfrekvencia.

A K_C értéket úgy kell megválasztani, hogy a leendő ω_C vágási körfrekvenciánál legyen egységnyi a K_0 hurokerősítés.

A leendő $\omega_{\rm C}$ vágási körfrekvencián a $K_{\rm C}$ = 1 értékkel definiált g0 hurokátviteli függvény amplitúdó átvitelének reciprok értéke lesz a tényleges $K_{\rm C}$.

PDT1 kompenzálás menete

- A Bode diagramja alapján választjuk a PDT kompenzálást és választani kell az A_D értéket is. Az eredő szakasz fázismenetén meg kell keresni a $ps = pm \phi_{max} 180$ fázistoláshoz tartozó körfrekvenciát.
- Ha $A_D = 8$ akkor ennek a körfrekvenciának a háromszorosa az ω_T . A reciprok érték a T és $T_D = A_D *T$.
- Ábrázolni kell a

Bode diagramját.

• Ezen a g0 átviteli függvényen kell megkeresni a pm fázistartalékhoz tartozó körfrekvenciánál az amplitúdó erősítést Ennek az erősítésnek a reciprok értéke legyen a K_C erősítés

A G_F(jω) Bode diagramia

Legyen PDT kompenzáló tag $A_D = 8$ értékkel.

A PDT tag Bode diagramja

$$A_{\rm D} = 5$$

 $\phi_{\rm max} = 45.6^{\circ}$
 $A_{\rm D} = 8$
 $\phi_{\rm max} = 53.1^{\circ}$
 $A_{\rm D} = 9$
 $\phi_{\rm max} = 54.9^{\circ}$
 $A_{\rm D} = 15$
 $\phi_{\rm max} = 61.9^{\circ}$

A T és a T_D meghatározása

Legyen az AD=8 és a fázistartalék 65°! $ps^{\circ} \approx pm-\phi_{max}-180 \approx ps^{\circ} \approx 65-51.3 -180 = -166.3^{\circ}$

A PDT kompenzáló tag paraméterei

Az
$$\omega(\phi) = 0.41 \text{r/s}$$
, és $A_D = 8$, így $\omega_T = 3\omega(\phi) = 1.23 \text{ r/s}$.
Ebből $T = 1/1.23 = 0.813 \text{ sec.}$ és $T_D = 8*T = 6.5 \text{ sec.}$

$$G_{PDT}(s) = \frac{6.5s + 1}{0.81s + 1}$$

Ezt kell összeszerkeszteni az eredő szakasszal.

A K_C meghatározása

$$K_C = +17 dB$$
, ami $KC = 7.1$.

A minőségi jellemzők.

Nem egyszerű hangolni!
A felnyitott hurok Bode diagramján látszik, hogy T_D értékét célszerű csökkenteni!

PIDT1 kompenzálás elve önbeálló eredő szakasz esetén

Válasszunk fázistartalékot, AD értéket, és T_I/T_D arányt! Ez a kettő meghatároz egy ϕ_{PIDT}° maximális pozitív fázistolást. Az eredő szakasz fázismenetén meg kell keresni a választott fázistartalékhoz tartozó leendő ω_C vágási körfrekvenciát. Ez a ps° = pm° - ϕ_{PIDT}° - 180° fázistoláshoz tartozó körfrekvencia. A PDT kompenzálásnál megismert módon meghatározhatjuk az ω_T -t, abból a T-t, abból $T_D = A_D$ *T-t, végül T_I értékét. A K_C értéket úgy kell megválasztani, hogy a leendő ω_C vágási

A K_C értéket úgy kell megválasztani, hogy a leendő ω_C vágási körfrekvenciánál legyen egységnyi a hurokerősítés.

A leendő ω_C vágási körfrekvencián a $K_C = 1$ értékkel definiált g0 hurokátviteli függvény amplitúdó átvitelének reciprok értéke lesz a tényleges K_C .