Physik Cheatsheet

```
Physik Cheatsheet
   Hydrostatik
       Auftriebskraft
   Wärme
       Wärmekapazität
       Längenausdehnung
       Gasgesetze
       Wärme aus Reibung
    Mechanik
       Kräfte
           Kräftegleichgewicht
       Drehmoment
       Reibung
           Abhang & Reibung
    Geschwindigkeit
       Beschleunigung
       Strecke
       Zeit
       2. Newtonsches Axiom
   Arbeit
       Leistung
       Wirkungsgrad
       Hubarbeit/Potentielle Energie
       Spannarbeit/Federenergie
       Beschleunigungsarbeit/Kinetische Energie
    Horizontaler Wurf
       Bezugssystem nach unten
       Bezugssystem nach oben
    Kreisbewegung
   Schwingungen
       Harmonische Schwingung
       Lineare Welle
       Feder & Pendel
    Elektrizität
       Spezifischer Widerstand
       Ohmsches Gesetz
       Mehrere Widerstände
       Ungenauigkeiten durch Messgeräte
       Modell Spannungsquelle
   Acknowledgements
```

Hydrostatik

Druck ist keine gerichtete Grösse!

$$p$$
: Druck $[\frac{N}{m^2}]$ ho : Dichte $[\frac{kg}{m^3}]$

 p_0 : Luftdruck $[rac{N}{m^2}]$

 Δp : Hydrostatischer Druck/Überdruck [$rac{N}{m^2}$]

$$\Delta p =
ho_{Fl} \cdot g \cdot h$$
 $p(h) = p_0 + \Delta p = p_0 +
ho_{Fl} \cdot g \cdot h$

Auftriebskraft

 F_A : Auftriebskraft [N]

V: eingetauchtes Volumen des Körpers $[m^3]$

 ho_K : mittlere Dichte eines Körpers $[rac{kg}{m^3}]$

$$F_A =
ho_{Fl} \cdot V \cdot g$$

Schwimmen:

$$ho_K <
ho_{Fl} \ F_A = F_G$$

Schweben:

$$ho_K =
ho_{Fl} \ F_A = F_G$$

Sinken:

$$ho_K >
ho_{Fl} \ F_A < F_G$$

Wärme

Q: Wärmeenergie [J]

$$\Delta Q = mc \cdot \Delta T \\ 0K = -273.15^{\circ}C$$

Wärmekapazität

c: spez. Wärmekapazität [$rac{J}{kg \cdot K}$]

$$C = m_1 \cdot c_1 + m_2 \cdot c_2 + \dots$$

 $\Delta Q = m \cdot c \cdot \Delta T$
 $\Delta Q = C \cdot \Delta T$

$$\Delta Q_{zu} = \Delta Q_{ab} \ m_1 \cdot c_1 \cdot (T_1 - T_M) = m_2 \cdot c_2 \cdot (T_2 - T_M)$$

 ΔQ_f : Schmelzwärme [J]

 ΔQ_v : Verdampfungswärme [J]

 L_f : Schmelzwärme [$rac{J}{kg}$]

 L_v : Verdampfungswärme [$rac{J}{kg}$]

$$\Delta Q_f = m \cdot L_f \ \Delta Q_v = m \cdot L_v$$

Längenausdehnung

 α : Längenausdehnungskoeffizient $[\frac{1}{K}]$

$$\Delta l = l_0 \cdot lpha \cdot \Delta T \ l = l_0 \cdot (1 + lpha \cdot \Delta T)$$

$$\Delta V = V_0 \cdot \gamma \cdot \Delta T$$
 $V = V_0 \cdot (1 + \alpha \cdot \Delta T)$

Gasgesetze

Solange T konstant:

$$p_1 \cdot V_1 = p_2 \cdot V_2 \ p_3 \cdot V_3 = p_1 \cdot V_1 + p_2 \cdot V_2$$

Solange p konstant:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Allgemein:

 R_S : spezifische Gaskonstante [$\frac{J}{kg \cdot K}$] R: allg. Gaskonstante = $8.314 \frac{J}{kg \cdot K}$

n: Stoffmenge [mol]

$$\begin{split} \frac{p_1 \cdot V_1}{T_1} &= \frac{p_2 \cdot V_2}{T_2} \\ \frac{p \cdot V}{T} &= m \cdot R_S \\ \frac{p \cdot V}{T} &= n \cdot R \end{split}$$

Wärme aus Reibung

$$F_R \cdot s = mc \cdot \Delta T$$

Mechanik

Kräfte

Einheit: [N]

Formelzeichen: F

$$F = m * g$$

Kräftegleichgewicht

$$ec{F}_{res} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 = 0$$

Drehmoment

Einheit: [Nm] Formelzeichen: M

 M_r = Drehmoment nach rechts

 M_l = Drehmoment nach links

$$M_r = M_l \ M_r = F_1 * l_1 + F_2 * l_2 \cdots \ M_l = F_3 * l_3 + F_4 * l_4 \cdots$$

Reibung

 F_R : (maximal mögliche) Reibungskraft [N]

 F_N : Normalkraft [N] (Reaktionskraft)

 μ : Reibungskoeffizient

Solange keine Kraft auf den Körper drückt, gilt ${\cal F}_N={\cal F}_G$

$$\mu = rac{F_R}{F} \ F_R = \mu \cdot F_N$$

Abhang & Reibung

 F_H : Hangabtriebskraft [N]

 $F_{G\perp}$: Kraft senkrecht zur Ablage [N]

$$egin{aligned} F_H &= F_G \cdot \sin(lpha) \ F_N &= F_{G \perp} = F_G \cdot \cos(lpha) \ F_R &= \mu \cdot F_N \ F_R &= \mu \cdot F_G \cdot \cos(lpha) \end{aligned}$$

Wenn $F_h=F_R$ gilt, gilt auch

$$FG \cdot \sin(\alpha) = \mu \cdot F_G \cdot \cos(\alpha)$$
$$\sin(\alpha) = \mu \cdot \cos(\alpha)$$
$$\mu = \frac{\sin(\alpha)}{\cos(\alpha)}$$
$$\mu = \tan(\alpha)$$

Geschwindigkeit

- a: Beschleunigung $\left[\frac{m}{s^2}\right]$
- v: Geschwindigkeit $\left[\frac{m}{s}\right]$
- *t*: Zeit [*s*]
- s: Strecke [m]

Mit Anfangsgeschwindigkeit

 v_0 : Anfangsgeschwindigkeit $[\frac{m}{s}]$

$$v=\sqrt{v_0^2+2as} \ v(t)=at+v_0$$

Ohne Anfangsgeschwindigkeit

$$egin{aligned} v &= at \ v &= \sqrt{2as} \ v &= \sqrt{v_0^2 + 2as} \ v &= at \end{aligned}$$

Beschleunigung

$$a = \frac{\Delta v}{\Delta t}$$

Strecke

$$s=v\cdot t \ s=rac{1}{2}at^2 \ s(t)=s_0+v_0\cdot t+rac{1}{2}at^2$$

Zeit

$$t = \frac{s}{v}$$

$$t = \frac{s}{\overline{v}} = \frac{2s}{v1 + v2}$$

2. Newtonsches Axiom

$$F_{Res}=ma$$

Arbeit

W: Arbeit/Energie [Nm/J/Ws]

Arbeit = Kraft (in Wegrichtung) * Strecke

$$W = F \cdot s$$

Leistung

P: Leistung [W]

Leistung = Kraft (in Wegrichtung) * Geschwindigkeit (* Reibungskoeffizient) pro Zeit

$$P = rac{\Delta E}{t}$$
 $P = F \cdot v$
 $P = F \cdot v \cdot \mu$

Wirkungsgrad

Der Wirkungsgrad stellt die Übersetzung von aufgewandter Energie zu gebrauchter Energie dar. Er ist ein Mass der Effizienz.

$$\eta = rac{E_{Nutzen}}{E_{Aufwand}}$$

Hubarbeit/Potentielle Energie

$$W_H = F \cdot s = m \cdot g \cdot s = E_{pot}$$

Spannarbeit/Federenergie

D: Federkonstante $\left[\frac{N}{m}\right]$

$$F_F = D \cdot \Delta x$$
 $W_S = rac{1}{2} D \cdot \Delta x^2 = E_F$

Beschleunigungsarbeit/Kinetische Energie

$$W_B = rac{1}{2} m \cdot v^2 = E_{kin}$$

Horizontaler Wurf

OHNE Berücksichtigung des Luftwiderstandes.

 t_F : Fallzeit [s]

$$h=rac{1}{2}g\cdot t^2=>t_F=\sqrt{rac{2h}{g}}$$
 $x_W=v_0\cdot t_F$ $v=\sqrt{v_0^2+v_Z^2}$ $\phi=tan^{-1}(rac{v_z}{v_0})$

Bezugssystem nach unten

Kann *generell* angewendet werden wenn Objekte *keine* Anfangsposition haben und nach *unten* fallen

$$h(t)=rac{1}{2}gt^2$$
 $h(t)=v_0t+rac{1}{2}gt^2$ $v=\sqrt{2gh}$ $v=\sqrt{v_0^2+2gh}$

$$h=\overline{v}t \ t_F=\sqrt{rac{2h}{g}}$$

Bezugssystem nach oben

Kann *generell* angewendet werden wenn Objekte *eine* Anfangsposition haben und nach *unten* fallen.

z': Position eines Objekts nach einer bestimmten Fallzeit.

z'': Position eines Objekts nach einer bestimmten Fallzeit, das eine Startgeschwindigkeit hat.

$$z(t)' = z_0 - \frac{1}{2}gt^2$$

 $z(t)'' = z_0 + v_0t - \frac{1}{2}gt^2$
 $v = \sqrt{2gh}$
 $v = \sqrt{v_0^2 - 2gh}$

$$v(t) = -gt$$
$$v(t) = v_0 - gt$$

Kreisbewegung

 ω : Winkelgeschwindigkeit/Kreisfrequenz $[\frac{1}{s}]$

v: Bahngeschwindigkeit [$\frac{m}{s}$]

r: Bahnradius

U: Umfang [m]

f: Frequenz der Umdrehung $\left[\frac{1}{s}/Hz\right]$

$$\omega = \frac{\Delta \phi}{\Delta t} = \frac{2\pi}{T} = 2\pi \cdot f$$

$$v = \frac{U}{T} = \frac{2\pi \cdot r}{T} = \omega \cdot r$$

$$T = \frac{1}{f} \Rightarrow f = \frac{1}{T}$$

 a_z : Anzugsbeschleunigung zum Zentrum $\lfloor m/s
floor$

 F_z : Anzugskraft zum Zentrum (= F_R) [N]

$$a_z = rac{2\pi \cdot v}{T} = \omega \cdot v = \omega^2 \cdot r = rac{v^2}{r}$$
 $\phi = \omega \cdot t$ $F_z = m \cdot a_z$

Schwingungen

Welle	Stehende Welle	
Wasserwelle Elektromagnetische Welle (Licht)	Wasserwelle in Resonator Licht in Laserresonator feste Seilwelle	transversal
Schallwelle	Schallwelle in Resonator	longitudinal

Harmonische Schwingung ist gegeben wenn $F=-D\cdot y$.

Harmonische Schwingung

 \hat{y} / \hat{x} : Amplitude [m]

y / x: (momentane) Auslenkung [m]

$$y = \hat{y} \cdot sin(\omega \cdot t)$$

 $\hat{v} = \omega \cdot \hat{y}$
 $\hat{a} = \omega \cdot \hat{v} = \omega^2 \cdot \hat{y}$

Lineare Welle

k: Wellenzahl $\left[\frac{1}{m}\right]$

v / c: Ausbreitungsgeschwindigkeit [$\frac{m}{s}$]

 λ : Wellenlänge [m]

$$egin{aligned} k &= rac{2 \cdot \pi}{\lambda} \ y &= \hat{y} \cdot sin(\omega \cdot t \pm k \cdot x) \ c &= rac{\lambda}{T} = \lambda \cdot f \end{aligned}$$

 $\label{eq:condition} \mbox{Der Operand} \ \pm \ \mbox{kann geändert werden je nachdem in welche Richtung sich die Welle im Koordinatensystem ausbreitet.} - \mbox{f\"ur rechts oder ins positive } x \mbox{ und } + \mbox{f\"ur links oder ins negative } x$

Feder & Pendel

m: Masse des schwingenden Körpers [kg]

D: Federkonstante $\lfloor \frac{N}{m} \rfloor$

l: Pendellänge [m]

$$T=2\pi\sqrt{rac{m}{D}}$$
 $T=2\pi\sqrt{rac{l}{g}}$

Elektrizität

Q: Ladung [C (Coulomb)]

I: Strom [A]

U: Spannung [V]

P: Leistung [W]

$$\begin{aligned} 1C &= 6.24 \cdot 10^{18} e \\ I &= \frac{\Delta Q}{\Delta t} \\ U &= \frac{\Delta W}{\Delta Q} \\ P &= U \cdot I = \frac{U^2}{R} = R \cdot I^2 \end{aligned}$$

Spezifischer Widerstand

 σ : spezifische Leitfähigkeit []

ho: spezifischer Widerstand [$\Omega \cdot m$ / $\Omega \cdot \frac{mm^2}{m}$]

A: Fläche Leiter [m^2]

l: Länge Leiter [m]

$$I = \sigma \cdot \frac{A}{l} \cdot \Delta U$$

$$\Delta U = \frac{1}{\sigma} \cdot \frac{l}{A} \cdot I$$

$$\rho = \frac{1}{\sigma}$$

$$R = \rho \cdot \frac{l}{A}$$

Ohmsches Gesetz

R: Widerstand [Ω]

$$U=R\cdot I\Rightarrow R=\frac{U}{I}$$

Mehrere Widerstände

Seriell:

$$I = I_1 = I_2$$

 $U = U_1 + U_2$
 $R = R_1 + R_2$

Parallel:

$$I = I_1 + I_2 \ U = U_1 = U_2 \ R = rac{1}{rac{1}{R_1} + rac{1}{R_2}}$$

Ungenauigkeiten durch Messgeräte

- 1. Schaltung: $I_1
 eq I$ weil $I_2 > 0$, für kleine Widerstände für R geeignet
- 2. Schaltung: $U_2
 eq U$ weil $U_1 > 0$, für grosse Widerstände für R geeignet

$$I_1=I-I_2=I-rac{U}{R_V}$$
 $U_2=U-U_1=U-R_A\cdot I$

Modell Spannungsquelle

$$U_a = U_0 - \Delta U = U_0 - R_i \cdot I$$

Acknowledgements

Author(s): d20cay

Last updated: See changelog