Solution of Tutorial Problems set-III

Note: All these problems can be solved using the results of Chapter-3.

- [0.0.1] Exercise Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ such that $R(T) = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$?
- [0.0.2] Exercise Can you construct a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $R(T) = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$?
- [0.0.3] *Exercise* Let $\mathbb{V} = \mathbb{R}^n$ and A be a $n \times n$ matrix. If Ax = 0 has a unique solution Ax = b has a unique solution for every $b \in \mathbb{R}^n$.
- [0.0.4] Exercise Let $T: \mathbb{V} \to \mathbb{V}$ be a linear map such that R(T) = Ker(T). What can you say about T^2 ?
- [0.0.5] *Exercise* Let \mathbb{V} and \mathbb{W} be two vector spaces over the field \mathbb{Q} . f is a map from \mathbb{V} to \mathbb{W} such that f(x+y)=f(x)+f(y) for all $x,y\in\mathbb{V}$. Sow that f is a linear transformation.
- [0.0.6] *Exercise* Let \mathbb{V} and \mathbb{W} be two vector spaces over the field \mathbb{R} . f is a map from \mathbb{V} to \mathbb{W} such that f(x+y)=f(x)+f(y) for all $x,y\in\mathbb{V}$. Is f a linear transformation.
- [0.0.7] Exercise Let f be a linear transformation from \mathbb{V} to \mathbb{W} . If S is a subspace of \mathbb{V} then f(S) is a subspace of \mathbb{W} . Moreover, if x_1, \ldots, x_k generates S then $f(x_1), \ldots, f(x_k)$ generates f(S).
- [0.0.8] Exercise Check that following are linear transformations.
 - 1. Let $\mathbb V$ be the vector space of all convergent real sequence. $T:\mathbb V\to\mathbb R$ be defined by $T(x_n)=\lim_{n\to\infty}x_n$
 - 2. Let $\mathbb{D}[0,1]$ be the set of set of all continuously differentiable function on [0,1] and let $T: \mathbb{D}[0,1] \to \mathbb{C}[0,1]$ defined by T(f) = f'.
 - 3. Let $\mathbb{V} = \mathbb{R}^n$ and \mathbb{W} be the subspace given by $\mathbb{W} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 0\}$. Consider $P : \mathbb{V} \to \mathbb{W}$ given by $P(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, 0)$.