Complexity Classes and NP-completeness

1 Complexity Classes

1.1 Polynomial Time

The class **P** contains all problems which can be solved in polynomial time. Formally, **P** contains all problems X such that there exists some algorithm A_X which always finishes in $P_{A_X}(n)$ steps (where P_{A_X} is a polynomial) on inputs of size n, and correctly solves X.

1.2 Nondeterministic Polynomial Time

An efficient certifier B is a program with a proposed solution s and certificate t such that B runs in polynomial time $T_B(|s|,|t|)$. It is a certifier for a problem X if the following holds:

- $s \notin X \implies B(s,t)$ answers "No" for all t.
- $s \in X \implies$ there exists a polynomial length t such that B(s,t) answers "Yes".

The class **NP** contains all problems with efficient certifiers. It is simple to show that $P \leq NP$ because a polytime solution algorithm with a null certificate is an efficient verifier.

It is an open question (perhaps the greatest open question in all of computer science) if $\mathbf{P} = \mathbf{NP}$. In other words, if it is easy to verify a solution, is it also easy to find a solution? \mathbf{NP} is one of the most important complexity classes because most problems computer scientists care about are in \mathbf{NP} . That's why we focus on it, and why finding out if $\mathbf{P} = \mathbf{NP}$ is so important.

Being in **NP** allows exhaustive search over candidate certificates, then running the certifier on each, to guarantee a runtime upper bound of $\mathcal{O}(2^{P(n)}T_B(n))$ and polynomial space. Thus, it can be shown that **NP** \subseteq **PSPACE** \subseteq **EXPTIME**.

1.3 Co-nondeterministic Polynomial Time

The class **co-NP** contains all problems which efficient "No" certifiers (there exists a polynomial time algorithm which can verify no counterexamples given the appropriate certificate t). In other words, **co-NP** contains all problems X such that $\bar{X} \in \mathbf{NP}$. It is an open question if $\mathbf{NP} = \mathbf{co-NP}$.

1.4 Karp Reductions

We are motivated to study the hardest problems in **NP**, but the definition of "hard" can be rather elusive. In computational complexity, we say that a problem X is harder than Y if $Y \leq pX$. That is, X is harder if X can be reduced to Y.

A Karp reduction A from X to Y is a polytime algorithm such that:

- $x \in X \iff A(x) \in Y$ ("Yes" maps to "Yes": completeness)
- $x \notin X \iff A(x) \notin Y$ ("No" maps to "No": soundness)

Karp reductions are the main tool in proving whether a problem is a member of a certain complexity class.

2 NP-hardness and NP-completeness

2.1 Definitions

A problem X is **NP**-hard if $Y \leq pX \ \forall Y \in \mathbf{NP}$.

A problem X is **NP**-complete if X is **NP**-hard and $X \in \mathbf{NP}$.

2.2 The Cook-Levin Theorem

Cook and Levin proved in the early 1970s that 3SAT is NP-complete – the first problem to be confirmed as such. 3SAT stands for three-boolean satisfiability, and asks for a solution to the formula $F = \bigwedge_{j=1}^{m} C_j$, where each $C_j = l_{j_1} \vee l_{j_2} \vee l_{j_3}$, and each l_{j_i} is a boolean variable. This theorem had several implications: NP-complete problems exist, and 3SAT is generic enough that it can easily reduce to other important problems.

2.3 Proving NP-completeness

Claim 1. Karp reduction is transitive (i.e, $Z \leq pX \leq pY \implies Z \leq pY$).

Proof. We have polytime algorithms A_Z reducing Z to X and A_X reducing X to Y. To obtain a polytime algorithm A reducing Z to Y, we simply run A_X on the output of A_Z , since two subsequent polytime algorithms (where the output of the first has polynomial size) still runs in polytime.

$$z \in Z \iff A_Z(z) \in X \iff A_X(A_Z(z)) \in Y \iff A(z) \in Y$$

Proposition 2. If X is NP-hard, $Y \in NP$, $X \leq pY$, then Y is NP-complete.

Proof. We know $Z \leq pX \ \forall Z \in \mathbf{NP}$ and $X \leq pY$, so by Claim 1, $Z \leq pY \ \forall Z \in \mathbf{NP}$. Since $Y \in \mathbf{NP}$, this is the definition of \mathbf{NP} -complete.

2.4 CERT is NP-complete

It's rather difficult to prove the Cook-Levin Theorem (which is why they won a Turing award for it), but we can provide an example on a simpler, yet less useful problem.

Let CERTIFICATION (CERT) is the following problem: Given a certifier algorithm B with time bound T_B , certificate length P_B , and input s, is there a certificate t with $|t| \leq P_B(|s|)$ such that B(s,t) answers "Yes" after at most $T_B(|s|,|t|)$ steps?

Theorem 3. CERT is NP-complete.

Proof. A two-part proof: first that $CERT \in \mathbf{NP}$, then that CERT is \mathbf{NP} -hard.

(1). CERT $\in \mathbf{NP}$:

Given an input (B, T_B, P_B, s) and proposed certificate t, we check if $|t| \leq P_B(|s|)$, then simulate B(s, t) for $T_B(|s|, |t|)$ steps. If both succeed, we answer "Yes".

(2). CERT is **NP**-hard:

Proposition 4. $X \leq p$ $CERT \forall X \in NP$

Proof. Because $X \in \mathbf{NP}$, it has an efficient certifier B_X with certificate length P_{B_X} and runtime T_{B_X} . Given an input string s, our reduction outputs B_X, T_{B_X}, P_{B_X} , and s. Then:

$$s \in X \iff \exists t : |t| \leq P_{B_X}(s) \text{ and } B(s,t) \text{ answers "Yes" in } T_{B_X}(|s|,|t|) \text{ steps} \iff (B_X,T_{B_X},P_{B_X},s) \in \text{ CERT}$$

Proposition 4 is the definition of NP-hardness, so CERT is proven NP-hard. Since it satisfies both conditions, CERT is NP-complete.