Universidade Federal de Santa Catarina

INE5607 – Organização e Arquitetura de Computadores

Prova 3 - Turmas 02238A/02238B - Semestre 2015/1

Eu, (nome completo do(a) aluno(a))	,
	o que as respostas nesta prova são de minha própria autoria
e que não consultei materiais externos ou o	utras pessoas durante a prova.
Assinado:	
Instruções adicionais:	
- As respostas devem ser escritas na folha d	e respostas e não neste documento.
- Todas as folhas devem ser devolvidas ao fin	al da prova.
- Rascunhos devem ser feitos apenas na folha	de respostas e não nas mesas ou neste documento.
- Questões envolvendo contas somente serão	consideradas com suas apresentações.

[1 p] Questão 1. Em sua empresa, a máquina servidora responsável pela aplicação de Simulação de Pipoqueira terá que ser trocada. Sabendo que a máquina possui um processador com uma cache L1 de dados de 32 KB com mapeamento direto, informe quais os tipos de falhas de cache que seriam afetados e como eles seriam afetados (aumentariam ou diminuiriam) com as seguintes propostas de processadores com diferentes caches:

- 1.1. Processador com cache L1 de dados de 32 KB totalmente associativa
- 1.2. Processador com cache L1 de dados de 16 KB com mapeamento direto
- 1.3. Processador com cache L1 de dados de 32 KB com mapeamento direto e mecanismo de prefetch
- 1.4. Processador com cache L1 de dados de 64 KB com mapeamento direto
- 1.1. Reduz falhas de conflito
- 1.2. Aumenta falhas de capacidade
- 1.3. Reduz falhas compulsórias
- 1.4. Reduz falhas de capacidade

[1 p] Questão 2. Considere um ambiente com 4 MB de memória primária compartilhada por aplicações que enxergam 16 MB de memória virtual. Sabendo que cada página ocupa 8 KB de memória e que cada entrada na tabela de páginas possui 1 byte de controle (validade e afins), **informe o tamanho da tabela de páginas** (em bits ou bytes).

```
4 MB = 2^22; 16 MB = 2^24; 8 KB = 2^13
```

16 MB / 8 KB = 2 K (2^11) páginas virtuais (entradas na tabela de páginas)

4 MB / 8 KB = 512 (2^9) páginas físicas (9 bits para endereçar uma página física)

Tamanho da tabela de páginas = 2048 entradas * (8 bits de controle + 9 bits de endereço) = 34816 bits ou 4352 bytes

[2 p] Questão 3. Sabendo que um programa tem 10% de instruções de acesso à memória, calcule quanto o CPI do processador será influenciado pelo acesso à memória para (i) busca de instruções e (ii) busca de dados para as duas configurações de cache abaixo. (Quatro respostas são esperadas, uma para cada combinação).

Configuração A	Taxa de acerto	Tempo de acerto	Configuração B	Taxa de acerto	Tempo de acerto
Cache L1 de instruções e cache L1 de dados	90%	2 ciclos	Cache L1 de instruções e cache L1 de dados	80%	1 ciclo
Cache L2	80%	20 ciclos	Cache L2	90%	30 ciclos
Memória principal	100%	100 ciclos	Memória principal	100%	80 ciclos

A)
$$Instruções = 2 + 0.1*(20 + 0.2*100) = 2 + 0.1*(20+20) = 2 + 4 = 6$$

A)
$$Dados = A$$
) $Instruções * 0,1 = 0,6$

B)
$$Instruções = 1 + 0.2*(30 + 0.1*80) = 1 + 0.2*(30+8) = 1 + 7.6 = 8.6$$

B)
$$Dados = B$$
) $Instruções * 0,1 = 0,86$

[3 p] Questão 4. Uma pessoa amiga sua se encontra envolvida em um projeto de processador. Essa pessoa lhe informa que é planejada uma arquitetura com endereços de 20 bits e uma cache L1 com 4 blocos de 16 bytes cada. Porém, você fica sabendo que ela está com dificuldades em visualizar todas as possibilidades de organização para essa cache e decide ajudá-la. Para cada organização possível para essa cache, informe:

- 4.1. O tipo de mapeamento usado;
- 4.2. O tamanho da tag; e
- 4.3. O espaço ocupado pela organização de cache em bits (considerando 1 bit de validade por bloco).

$$16 = 2^4$$
; $4 = 2^2$; $2 = 2^1$; $1 = 2^0$

Mapeamento direto:

$$Tag = 20 - 2 - 4 = 14 \text{ bits.}$$

 $Espaço = 4 * (1 + 14 + 128) = 4*143 = 572 \text{ bits}$

Mapeamento 2-associativo:

$$Tag = 20 - 1 - 4 = 15 \text{ bits.}$$

 $Espaço = 4 * (1 + 15 + 128) = 4*144 = 576 \text{ bits.}$

Mapeamento totalmente associativo:

$$Tag = 20 - 0 - 4 = 16 \text{ bits.}$$

 $Espaço = 4 * (1 + 16 + 128) = 4*145 = 580 \text{ bits}$

[2 p] Questão 5. O mecanismo de memória virtual usa uma tabela de páginas para supervisionar o mapeamento de páginas virtuais para páginas físicas. Levando em conta (i) as sequências de endereços virtuais requisitados por instruções do tipo lw e sw apresentadas abaixo (em binário) e (ii) o estado da tabela de páginas apresentada abaixo (seguindo o mesmo padrão usado em aula), apresente:

- 5.1. O número de faltas de páginas para cada sequência de acesso; e
- 5.2. O **estado final da tabela de páginas**. Para isso, considere que se uma página precisa ser trazida da memória secundária para a memória primária, o próximo endereço de página físico disponível após a página de maior número deve ser usado. Por exemplo, se entre todas as entradas na tabela de páginas, o endereço físico 20 for o maior de todos, o próximo endereço a ser usado deve ser o 21 e assim por diante.

Sequência de endereços 1: 01101000, 01111100, 11011100, 00000000, 00100100, 11101100, 11100000 Sequência de endereços 2: 01011000, 00011000, 00000100, 10101000, 11001000, 00110000, 00111100

Tabela de páginas

Validade	Endereço físico ou disco
1	14
0	Disco
0	Disco
1	7
0	Disco
1	3
1	28
0	Disco

```
Sequência 1:
011 01000: 3 -> hit
011 11100: 3 -> hit
110 11100: 6 -> hit
000 00000: 0 -> hit
001 00100: 1 -> miss (coloca na página física 29)
111 01100: 7 -> miss (coloca na página física 30)
111 00000: 7 -> hit
Total: 2 page faults.
Sequência 2:
010 11000: 2 -> miss (coloca na página física 29)
000 11000: 0 -> hit
000 00100: 0 -> hit
101 01000: 5 -> hit
110 01000: 6 -> hit
001 10000: 1 -> miss (coloca na página física 30)
001 11100: 1 -> hit
Total: 2 page faults.
```

[1 p] Questão 6. Você é responsável pela avaliação de um Código de Correção de Erros de Hamming (detecta e corrige erro em 1 bit) para a memória de um satélite. Tendo em vista a distribuição de bits de paridade e etapas vistas em aula, informe para cada uma das palavras abaixo se algum erro foi detectado e qual bit foi invertido.

	1	2	3	4	5	6	7	8	9	10	11	12
Palavra 1	0	1	1	1	0	0	1	0	1	1	0	1
Palavra 2	1	1	0	0	0	0	1	1	0	1	1	0

	1	2	3	4	5	6	7	8	9	10	11	12	
Palavra 1	0	1	1	1	0	0	1	0	1	1	0	1	
P1	0		1		0		1		1		0		1!
P2		1	1			0	1			1	0		0
P4				1	0	0	1					1	1!
P8								0	1	1	0	1	1!

Foi detectado um erro na posição 1101 = 13! Deve haver mais de um bit invertido!

	1	2	3	4	5	6	7	8	9	10	11	12	
Palavra 2	1	1	0	0	0	0	1	1	0	1	1	0	
P1	1		0		0		1		0		1		1!
P2		1	0			0	1			1	1		0
P4				0	0	0	1					0	1!
P8								1	0	1	1	0	1!

Foi detectado um erro na posição 1101 = 13! Deve haver mais de um bit invertido!

[1 p] Questão extra. Calcule o tempo de leitura médio para um disco ocioso com setores de 256 bytes, tempo de busca médio de 5 ms, 6000 RPM, taxa de transferência de 256000 B/s e atraso de controle de 0,1 ms.

```
Tempo de leitura médio = 5 \text{ ms} + 60/6000 -> 0,01 \text{ s} -> 10 \text{ ms} + 256/256000 -> 0,001 \text{ s} -> 1 \text{ ms} + 0,1 \text{ ms} = 16,1 \text{ ms}
```

[1 p] Questão extra. Tendo base nas técnicas de monitoramento discutidas em aula, informe qual seria a técnica mais indicada para um sistema de tempo real com taxa pré-determinada de transferência de dados.

Polling.