OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approac

Danulan

OpenBrain: Backpropagation Free RL

Guss, Zhong Kuznetsov, Singhal, Kumar, Golmant, Johansen, Bartlett

April 22, 2016

Overview

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approac

Results

- 1 Problem
- 2 Background
- 3 Our Approach
- 4 Results

The Problem

OpenBrain

Guss & Zhong et. al

Problem

Background

. .

Doculto

Deep Reinforcment Learning is good, but not biologically plausible.

Reinforcement Learning is biologically plausble.

The Problem

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approac

Recul

Can we decentralize deep reinforcement learning?

The Problem

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approad

Can we decentralize deep reinforcement learning? **Yes.** Here's how.

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Result

The setup.

- **1** Environment, $E = (S, A, R, \rho, r)$.
 - **1** State space, $S = \mathbb{R}^n$
 - 2 Action space, $A = \mathbb{R}^m$
 - $oldsymbol{3}$ Reward space, $\mathcal{R}=\mathbb{R}$
 - 4 Transition function, $\rho(s' \mid s, a)$. Given a previous state s and action a, environment gives s'.
 - **5** Reward function $r(s, a) \in \mathcal{R}$.
- **2** Deterministic agent $\pi: \mathcal{S} \to \mathcal{A}$ acts in E.

$$s_1 \xrightarrow{\pi} a_1 \xrightarrow{\rho,r} s_2, r_2 \xrightarrow{\pi} a_2 \xrightarrow{\rho,r} \cdots$$

Eg. Pacman sees the screen, and decides to move $\uparrow, \downarrow, \rightarrow, \leftarrow$ and then gets a reward for eating food.

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Dagulag

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Result

The action-value function (simplified).

1 The future expected reward of an agent π is

$$Q^{\pi}(s_t, a_t) = \underbrace{r(s_t, a_t)}_{\text{reward for } a_t} + \sum_{n=t+1}^{\infty} \gamma^n r(s_n, \pi(s_n))$$

The Bellman equation gives us

$$Q^{\pi}(s_t, a_t) = r_t + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1}))$$

"

3 Given some state s_t , the **best** agent, π^* is one that take action

$$a_t = \arg \max_{a} Q(s_t, a).$$

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Resul

The action-value function (simplified).

1 The Q function for π^* is

$$Q^*(s_t, a_t) = r_t + \gamma \arg\max_{a} Q^{\pi}(s_{t+1}, a).$$

- 2 We can approximate this with deep learning!
 - Make a neural network $\mathcal{N}: \mathcal{S} \to \mathbb{R}^n$ which predicts the future reward of taking each possible action

$$\mathcal{N}(s_t) = \begin{pmatrix} Q^*(s_t, a_1) \\ Q^*(s_t, a_2) \\ \vdots \\ Q^*(s_t, a_n) \end{pmatrix}$$

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Result

Deep Q-Learning

OpenBrain

Guss & Zhong et. al

Problem

 $\mathsf{Background}$

Our Approac

Dagulta

Can we do better?

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

D 1

Deep Determisitic Policy Gradient

- **1** Actor neural network $\mu: \mathcal{S} \to \mathcal{A}$
- **2** Critic network $Q^{\mu}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- 3 Performance of μ is $Q^{\mu}(s_t, \mu(s_t))$. Maximize performance! $\nabla_W Q^{\mu}(s_t, a_t) = \nabla_a Q^{\mu}(s_t, a) \cdot \nabla_W \mu(s_t)$

Our Approach

OpenBrain

Our Approach

Neuromorphically Local Agents

- 1 Every neuron in the brain is an agent!
- Anterior neurons are the state that μ^n sees.
- **3** The action of each μ^n is its output:

$$\mu^{n}(s_{t}) = \sigma\left(\sum_{i=1}^{m} W_{in}s_{t}^{(i)}\right) = a_{t}$$
 Figure: A neuron environment, E^{n} .

Figure: A neuron *n* and its

Our Approach

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approach

Local Q Critics

- I Hypothesis: μ^n lives in an extremely **simple** environment.
- 2 Can we estimate Q^n without error backprop?
- **3 Remark.** Training whole μ is equivalent to training μ^n simultaneously:

$$\nabla_{\mathcal{W}^{(n)}} Q^n(\mu^n) = (\nabla_{\mathcal{W}} Q^{\mu}(\mu))^{(n)}$$

Figure: A linear critic for μ^n

Results

OpenBrain

Guss & Zhong et. al

Problen

Dackground

Results

The Training Regime

- We can train every neuron simultaneously without BP.
- 2 There is no "extra" Q network, just 2n parameters!
- 3 Could be biologically plausible (certainly more reasonable than BP)
- 4 Linear critic \iff compatability \iff no bias in Q^n

Figure: A linear critic for μ^n

Experiments

OpenBrain

Guss & Zhong et. al

Problem

Background

Results

Experiment 1.

- I Test if training μ with the full $Q^n \implies \operatorname{each} \mu^n$ acting optimal to Q^n
- 2 Is it true in practice that $\nabla_{W^{(n)}}Q^n(\mu^n)=(\nabla_WQ^\mu(\mu))^{(n)}$?

Experiment 2.

1 Train μ^n using $Q^n \implies Q$ optimal?

Experiment 3.

1 Beat the state of the art in Atari 2600 environments!

OpenBrain

Guss & Zhong et. al

Problem

Background

Our Approac

Results

Questions? wguss@berkeley.edu