Master in Control Engineering

Process Automation 2019-2020

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Master in Control Engineering

Process Automation

11. MPC BUILDING BLOCKS

Slides based on:

E.F. Camacho, C. Bordons Alba, "Model Predictive Control", *Advanced Textbooks in Control and Signal Processing*, Springer,-Verlag, XXII, 2nd ed., 2007, 405 p., ISBN 978-0-85729-398-5.

Outline

- Model Predictive Control (MPC) building blocks
 - Introduction
 - Prediction model
 - Free and forced response
 - Objective function
 - Control law
 - Summary

Introduction

- Basic elements to obtain a MPC controller
 - Definition of the process model
 - Definition of the cost function
 - Computation of the control law

Objective

- Predict *N* future samples of the output sequence $\{\hat{y}(t+k|t)\}_{k=1,...,N}$

• t: current time instant y(t): measured process output at time t $\hat{y}(t+k)$: predicted process output at time t+k N: prediction horizon

Models

- Input-output (reference-output, disturbace-output) models
 - Impulse response
 - Step response
 - Transfer function
- Sate-space model
- Trade-off
 - Complete enough to fully capture the «dominant» process dynamics
 - Simple enough to permit theoretic analysis

Impulse response models

- Impulse input: $u(t) = \delta(t) = \begin{cases} 1, & \text{if } t = 0 \\ 0, & \text{otherwise} \end{cases}$
- Measured sampled output: $y(t) = \sum_{i=1,\dots,\infty} h_i u(t-i)$, $t=0,1,2,\dots$

Impulse response models

- Assumption
 - Stable process without integrators
 - The response decays for t → ∞
 - Approximated sampled output for sufficiently large N (usually $40 \div 50$ samples)

$$y(t) \cong \sum_{i=1,\dots,N} h_i u(t-i) := H(z^{-1}) u(t), \quad t = 0,1,2,\dots$$

with $H(z^{-1}) = h(z^{-1}) + h_2 z^{-2} + \dots + h_N z^{-N}$

- $H(z^{-1})$ is the impulse response model of the process

$$- y_{\delta}(k) = H(z^{-1})\delta(k) \xrightarrow{\mathcal{Z}} y_{\delta}(z) = H(z^{-1})\mathcal{Z}\{\delta(k)\} = H(z^{-1})$$

$$\mathcal{Z}\{\delta(k)\} = H(z^{-1})\delta(k) \xrightarrow{\mathcal{Z}} \{\delta(k)\} = H(z^{-1})\delta(k) \xrightarrow{\mathcal{Z}} \{\delta(k)\} = H(z^{-1})\delta(k)$$

 z^{-1} : backward shift operator $z^{-1}x(t) = x(t-1)$ $z^{-2}x(t) = x(t-2)$

Impulse response models

- Input
 - Past control actions at time t: u(k), $k = \cdots$, t 3, t 2, t 1
 - Control actions computed at time t: u(k|t), k = t, t + 1, ..., t + N 1
- Output
 - Measured sampled output at time k = t: y(k), $k = \dots, t 2, t 1, t$
 - Predicted output at time k = t:

$$\hat{y}(t+k|t) = \sum_{i=1,\dots,N} h_i u(t+k-i|t) := H(z^{-1})u(t+k|t), \qquad k = 1,\dots,N$$

Remark:
$$u(k|t) = u(k)$$
, $\forall k < t$

$$u(t + k - N), ..., u(t - 1), u(t|t), ..., u(t + N - 1|t)$$

Past control actions

Future control actions

Remark

- u(t + N 1|t) is needed for k = N
- sequance of N future control actions to be computed at time t

- Impulse response models
 - Pros
 - Linear model
 - Simple
 - Superposition principles in the MIMO LTI case

$$\begin{split} \hat{y}^q(t+k|t) &= \sum_{p=1,\dots,P} \sum_{i=1,\dots,N} h_i^{pq} u(t+k-i|t) = \sum_{p=1,\dots,M} H^{pq}(z^{-1}) u(t+k|t)\,,\\ k=1,\dots,N,q=1,\dots,Q \end{split}$$

where P and Q are the number of inputs and outputs

- No a priori information on the process is needed
- Non-minimum phase processes and processes with time-delays are dealt with straightforwardly
- Cons
 - Applicable to stable systems without integrators
 - (Usualy) very large number N of parameters to be identified

• Step response models

- Step input: $u(k) = u_{-1}(k) = \begin{cases} 0, & \text{if } k < 0 \\ 1, & \text{if } k \ge 0 \end{cases}$
- Measured sampled output: $y(k)=\sum_{i=1,\dots,\infty}g_i\Delta u(k-i)$, $k=0,1,2,\dots$ with $\Delta u(k)=u(k)-u(k-1)$

Step response models

- Assumption
 - Stable process without integrators:
 - The response stabilizes for $k \to \infty$
 - Approximated sampled output for sufficiently large N (usually $40 \div 50$ samples)

$$y(k) \cong \sum_{i=1,\dots,N} g_i \Delta u(k-i) := G(z^{-1}) \Delta u(k), \quad k = 0,1,2,\dots$$

with
$$G(z^{-1}) = g_1 z^{-1} + g_2 z^{-2} + \dots + g_N z^{-N}$$

$$G(z^{-1})$$
 is the step response model of the process

with
$$G(z^{-1}) = g_1 z^{-1} + g_2 z^{-2} + \dots g_N z^{-N}$$

$$Z\{u_{-1}(k)\} = (1 - z^{-1})^{-1}$$

$$G(z^{-1}) \text{ is the step response model of the process}$$

$$v_{u_{-1}}(k) = G(z^{-1}) \left(u_{-1}(k) - u_{-1}(k-1) \right) \xrightarrow{Z} y_{u_{-1}}(z) = G(z^{-1}) (1 - z^{-1}) Z\{u_{-1}(k)\} = G(z^{-1})$$

- Step response models
 - Predicted output at time k = t:

•
$$\Delta u(k) = u(k) - u(k-1) = (1-z^{-1})u(k), \forall k$$

•
$$\hat{y}(k|t) = \sum_{i=1,\dots,N} g_i \Delta u(k-i|t) = G(z^{-1}) \Delta u(k|t)$$

= $G(z^{-1})(1-z^{-1})u(k|t), k=t+1,\dots,t+N$

- Equivalent to the impulse response model
 - Impulse input: $u(k) = \delta(k) = \begin{cases} 0, & \text{if } k < 0 \\ 1, & \text{if } k \ge 0 \end{cases} = u_{-1}(k) u_{-1}(k-1)$
 - · It follows that:

$$h_i = g_i - g_{i-1}$$

and

$$g_i = \sum_{j=0,\dots,i} h_j$$

- Transfer function
 - Process model:

$$y(t) = \frac{B(z^{-1})}{A(z^{-1})}u(t-1)$$

$$A(z^{-1}) = 1 + a_1z^{-1} + a_2z^{-2} + \dots + a_{n_a}$$

$$B(z^{-1}) = 1 + b_1z^{-1} + b_2z^{-2} + \dots + b_{n_b}$$

– Predicted output:

$$\hat{y}(t+k|t) = \frac{B(z^{-1})}{A(z^{-1})}u(t+k-1|t)$$

- Pros
 - Valid also for unstable processes
 - Smaller number of parameters
- Cons
 - · Needs a priori knowledge of the process
 - (at least, the order of the polynomials A and B)

- State space
 - Process model (LTI):
 - Implicit representation (input-state-output)

$$\begin{cases} x(t) = Ax(t-1) + Bu(t-1) \\ y(t) = Cx(t) \end{cases}$$

x(t): state space variables

Explicit representation

$$y(t+1) = Cx(t+1) = C(Ax(t) + Bu(t))$$

Predicted output:

$$\hat{y}(t+k|t) = C\hat{x}(t+k|t) = C\left(A^kx(t) + \sum_{i=1,\dots,k} A^{i-1}Bu(t+k-i|t)\right)$$

- Pros
 - It can be extended to
 - Multivariable processes
 - Nonlinear processes
 - Hybrid systems
 - **–** ...

by means of standard control-theoretical approaches

- Cons
 - Complex
 - E.g., it often needs a state observer

Disturbance model

- As important as the process model
 - Process output depends on both input and disturbance

$$y(t + k|t) = f(u(t + k - 1|t)) + g(n(t + k - 1|t))$$

n(t): disturbance

Output prediction requires both input and disturbance predictions

$$\hat{y}(t+k|t) = f(\hat{u}(t+k-1|t)) + g(\hat{n}(t+k-1|t))$$

Disturbance model

Controlled AutoRegressive Integrated Moving Average (CARIMA)

$$n(t) = \frac{C(z^{-1})}{D(z^{-1})}e(t)$$

- e(t): white noise
- $C(z^{-1})$: used to model coloured noises

-
$$C(z^{-1})e(t) = \begin{cases} \text{coloured noise if } C(z^{-1}) \neq 1 \\ \text{white noise if } C(z^{-1}) = 1 \end{cases}$$

- The disturbance models both the actual disturbances and model uncertainties
 - Often the model imperfections are attributed to (modelled as) a disturbance $e(t) := y(t) \hat{y}(t)$
- Appropriate for
 - Random changes occurring at random instants
 - E.g., changes in the quality of a material
 - Brownian motion

Free and forced response

Definition of free and forced input

-
$$u(t)\coloneqq u_f(t)+u_c(t),$$
Free input: $u_f(t+k)\coloneqq \begin{cases} u(t+k), \forall k<0\\ u(t-1), \forall k\geq 0 \end{cases}$
Forced input: $u_c(t+k)\coloneqq \begin{cases} 0, \forall k<0\\ u(t+k|t)-u(t-1)\coloneqq \Delta u(t+k|t), \forall k\geq 0 \end{cases}$

Free and forced output prediction

$$\hat{y}(t+k|t) \coloneqq \hat{y}_f(t+k|t) + \hat{y}_c(t+k|t), \forall k \ge 1$$

- Free response
 - Output prediction considering $\Delta u(t+k) = 0, \forall k \geq 0$
 - · Evolution of the process from current state
- Forced response
 - Output prediction considering the forced control action $u_C(t+k) \coloneqq \Delta u(t+k) u(t-1), \forall k \geq 0$
 - Evolution of the process due to the control action variations

Free and forced responce

Objective function

- Generally, it penalizes
 - The difference between the future output and the reference during the prediction horizon
 - The control effort during the control horizon

$$J(N_1, N_2, N_u) = \sum_{k=N_1}^{N_2} \delta(k) (\hat{y}(t+k|t) - \hat{w}(t+k|t))^2 + \sum_{k=1}^{N_u} \lambda(k) (\Delta u(t+k-1))^2$$

- N_1 , N_2 define the horizon during which it is desirable that $\hat{y} \rightarrow w$
 - E.g., if N_1 is too small, the smoothness of the output may be affected
 - E.g., if the process has a dead time τ , it must hold that $N_1 \ge \tau$
 - E.g., in case of a non-minimum phase process, with inversion period τ , it must hold that $N_1 \geq \tau$
- N_u defines the control horizon
- $\delta(k)$, $\lambda(k)$ are parameters which weight the future behaviour
 - E.g., $\delta(k) = \alpha_2^{N-k}$, with $\alpha \in (0,1)$
 - First errors are more penalized for faster control

Objective function

- Reference
 - \hat{w} is the prediction of the reference signal
 - The reference trajectory may be known a priori
 - E.g., robotics, servos, ...
 - The reference trajectory w may not coincide with the real reference r
 - E.g., at a set-point change at time t, the reference may be computed as a moving average starting from y(t)

$$w(t) = y(t)$$

$$w(t+k) = \alpha w(t+k-1) + (1-\alpha)r(t+k), k = 1,2,..., \alpha \in (0,1)$$

• E.g., $w(t+k) = r(t+k) - \alpha^k (y(t) - r(t)), k = 1, 2, ..., \alpha \in (0,1)$

Constraints

E.g., quadratic optimization problem

$$\min_{u} J(u)$$

$$s.t.$$

$$u_{min} \leq u(t) \leq u_{max}, \forall t$$

$$\Delta u_{min} \leq u(t) - u(t-1) \leq \Delta u_{max}, \forall t$$

$$y_{min} \leq y(t) \leq y_{max}, \forall t$$

Generally, no closed-form solution

Control law

• Control horizon N_u

$$J(N_1, N_2, N_u) = \sum_{k=N_1}^{N_2} \delta(k) (\hat{y}(t+k|t) - \hat{w}(t+k|t))^2 + \sum_{k=1}^{N_u} \lambda(k) (\Delta u(t+k-1))^2$$

- N_u is usually less than N_2 for scalability issue
- Free evolution of u(t + k) for $k > N_u$ may produce undesirable high-frequency control signals, up to instability
- Control horizon concept:

$$u(t + k) = u(t + k - 1),$$
 $k = N_u + 1, N_u + 2, ...$
 $\Delta u(t + k) = 0,$ $k = N_u + 1, N_u + 2, ...$

– Equivalently, in the control function, we may set $\lambda(k) = \infty$, $k = N_u + 1$, $N_u + 2$, ...

Control law

- Structured control laws
 - The control signal can be expressed as a linear combination of base functions

$$u(t+k) = \sum_{i=1}^{n_B} \mu_i(t)B_i(k)$$

- n_B : number of base functions
- $B_i(k)$: k-th sample of the i-th base function
 - Selected based on the nature of the process
 - E.g., polynomial base functions

$$B_0 = 1, B_1 = k, B_2 = k^2, \dots$$

- $\mu_i(t)$: *i*-th coefficient computed at time t
- At time t, the optimization problem has n_B unknowns (vs. N_u of the standard objective f.)

Summary

- MPC building blocks introduced
 - Introduced the main prediction models
 - Input-output models
 - Impulse response model
 - Step response model
 - Transfer function model
 - State-space models
 - Disturbance model
 - CARIMA
 - Introduced the free and forced response concept
 - Defined the optimization problem
 - Objective function
 - Control law