ROME: REALISTIC ONE-SHOT MESH-BASED HEAD AVATARS

Presenter: Jaeseong Lee

ECCV Under-Review
(Released to Arxiv 17/June)
Samsung Al Moscow

Contents

- Preliminaries
- Overview
- Results
- Limitations

Preliminaries – Taxonomy

LIA(ICLR 2022)

OVERVIEW(CONT'D) - STRENGTHS

- Strengths from two Perspectives
 - Head recon.: Viable to handle non-facial parts(e.g., hear and torso)

- Talking head: Viable to handle unseen facial parts or large drv/src-discrepancy (e.g., one-side facing smthng)

* From DECA(SIGGRAPH 2021)

** From DAGAN(CVPR 2022)

Overview - Pipeline(cont'd)

I. Rule-based data process

Overview - Pipeline(cont'd)

2. How 3DMM works? How to reconstruct the Initial Mesh?

*Src: Shape

*Tgt: Expression and Cam/Head pose

$$\mathbf{v}(\phi, \psi, \theta) = W(\mathbf{v}_{base} + \beta \phi + D\psi, \theta)$$

Where,

 ϕ : Shape parameter

 ψ : Expression parameter

 θ : Head pose parameter

Overview – Loss functions

Novel losses

$$\mathcal{L}_{\text{occ}} = \lambda_{\text{hair}} \| \hat{\mathbf{o}}_{t}^{\text{hair}} - \mathbf{s}_{t}^{\text{hair}} \|_{2}^{2} + \lambda_{\text{o}} \| \hat{\mathbf{o}}_{t} - \mathbf{s}_{t} \|_{2}^{2}.$$

$$\mathcal{L}_{\text{chm}} = \frac{1}{2N_{t}} \sum_{\hat{p}_{t} \in \hat{\mathbf{p}}_{t}} \| \hat{p}_{t} - \arg\min_{p \in \mathbf{p}_{t}} \| p - \hat{p}_{t} \| \| + \frac{1}{2N_{t}} \sum_{p_{t} \in \mathbf{p}_{t}} \| p_{t} - \arg\min_{\hat{p} \in \hat{\mathbf{p}}_{t}} \| \hat{p} - p_{t} \| \|.$$

$$\mathcal{L}_{\text{lap}} = \frac{1}{V} \sum_{i=1}^{V} \| \Delta \hat{\mathbf{v}}_{i} - \frac{1}{\mathcal{N}(i)} \sum_{j \in \mathcal{N}(i)} \Delta \hat{\mathbf{v}}_{j} \|_{1},$$

Where.

 p_t : sampled set of 2D points in the predicted segmentation mask \boldsymbol{s}_t

 $p_t^{\hat{}}$: projected 2D vertices coordinate at the target align

regularization

Widely-used losses

$$L_{adv} + L_{perc} + L_{arcface} + L_{dice}$$

Results(cont'd)

Comparison with Head Reenactment models

	self-reenactment			cross-reenactment		
Method	LPIPS↓	SSIM†	PSNR↑	FID↓	CSIM†	IQA↑
FOMM	0.09	0.87	25.8	52.95	0.53	55.9
Bi-Layer	0.08	0.83	23.7	51.4	0.56	50.48
TPSMM	0.09	0.85	26.1	49.27	0.57	59.5
ROME	0.08	0.86	26.2	45.32	0.62	66.3

Result

Limitations

Mesh resolution

Long hair Ear cover Failed renders

(b) Limitations