ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 9

Aufgabe 31. (4 Punkte)

Arbeite die Details zur Mittelwerteigenschaft von Lösungen der Wärmeleitungsgleichung aus. Quelle: Kapitel 2.3, L. Evans: Partial Differential Equations.

Die dort auftretenden "heat balls" sind kompakt. Wieso steht diese Mittelwerteigenschaft trotzdem nicht im Widerspruch zur unendlichen Ausbreitungsgeschwindigkeit?

Aufgabe 32. (4 Punkte)

Formuliere und beweise mit Hilfe der Mittelwerteigenschaft der Wärmeleitungsgleichung eine einfache Variante von Theorem 3.8.

Aufgabe 33. (3 Punkte)

Gib einen einfacheren Beweis von Lemma 3.14 für Lösungen der Wärmeleitungsgleichung. Benutze zum Beispiel die Darstellungsformel für Lösungen.

Aufgabe 34. (3 Punkte)

Seien $a^{ij}, b^i \in L^{\infty}$. Sei a^{ij} gleichmäßig elliptisch. Dann hat die Gleichung

$$-\dot{u} + a^{ij}u_{ij} + b^i u_i = 0$$

unendliche Ausbreitungsgeschwindigkeit. Formuliere eine entsprechende präzise Aussage und beweise diese.

Aufgabe 35. (2 Punkte)

Seien $m \in \mathbb{R}$, $\varepsilon > 0$.

Finde eine C^2 -Funktion $\rho = \rho_{\varepsilon} : \mathbb{R} \to \mathbb{R}$ mit den folgenden Eigenschaften:

- (i) ρ ist stückweise polynominal,
- (ii) $\rho(t) = t \text{ für } z \leq m \varepsilon$,
- $(\text{iii}) \ \rho(t) = m \frac{\varepsilon}{2} \ \text{für} \ m \le z,$
- (iv) $0 \le \rho' \le 1$, (v) $\rho'' \le 0$.

Abgabe: Bis Dienstag, 16.01.2018, 10:00 Uhr, in die Mappe vor Büro F 402.