Zadania na drugą kartkówkę

1. Wyznaczyć funkcję charakterystyczną rozkładu o gęstości

$$g(x) = (1 - |x|)1_{[-1,1]}(x).$$

2. Rozstrzygnąć, dla jakich a funkcja

$$\phi_a(x) = \begin{cases} 1 - a|x| & \text{dla } |x| \le 1, \\ 1 - a & \text{dla } |x| > 1 \end{cases}$$

jest funkcją charakterystyczną pewnego rozkładu na prostej.

Wskazówka: Odpowiedź: dla $a \in [0, 1]$. Być może warto skorzystać z poprzedniego zadania.

3. Załóżmy, że ϕ jest funkcją charakterystyczną pewnego rozkładu na prostej. Czy $(\text{Re}\phi)^2 - (\text{Im}\phi)^2$ jest funkcją charakterystyczną pewnego rozkładu na prostej?

4. Dane są ciągi $(X_n), (Y_n)$ oraz (Z_n) zmiennych losowych, przy czym dla każdego $n \geq 1$ zmienne X_n, Y_n, Z_n są niezależne oraz

$$\mathbb{P}(X_n = 1 - 1/n) = 1/n = 1 - \mathbb{P}(X_n = n),$$

 Y_n ma rozkład normalny o średniej $1/n^2$ i wariancji n, a Z_n ma rozkład jednostajny na przedziale $[0, n^{-1/2}]$. Rozstrzygnąć, czy ciąg $(X_n + Y_n \cdot Z_n)$ jest zbieżny według rozkładu. W przypadku odpowiedzi pozytywnej podać rozkład graniczny.

5. Rozstrzygnąć, czy suma dwóch niezależnych zmiennych posiadających ten sam rozkład może mieć rozkład jednostajny na przedziale [-1,1].

6. Dany jest ciąg (X_n) zmiennych losowych oraz niezależna od niego zmienna Z o standardowym rozkładzie normalnym. Udowodnić, że ciąg $(X_n + Z)$ jest zbieżny według rozkładu wtedy i tylko wtedy, gdy (X_n) jest zbieżny według rozkładu.

7. Podać warunek konieczny i dostateczny jaki musi spełniać zbiór $\Lambda \subseteq (0, \infty)$, by rodzina rozkładów $(\operatorname{Exp}(\lambda))_{\lambda \in \Lambda}$ była ciasna.

8. dany jest ciąg (X_n) niezależnych zmiennych losowych o tym samym rozkładzie o średniej 0 i wariancji $\sigma^2 > 0$. Udowodnić, że ciąg

$$\frac{X_1 + X_2 + \ldots + X_n}{\sqrt{X_1^2 + X_2^2 + \ldots + X_n^2 + 1}}, \qquad n = 1, 2, \ldots$$

jest zbieżny według rozkładu i wyznaczyć rozkład graniczny.

9. Dany jest ciąg (X_n) niezależnych zmiennych losowych takich, że dla $n \geq 1$,

$$\mathbb{P}(X_n = n) = \frac{1}{n+1} = 1 - \mathbb{P}(X_n = -1).$$

Czy ciąg ten spełnia warunek Lindeberga?

10. Dany jest ciąg (X_n) niezależnych zmiennych losowych, przy czym dla $n \ge 1$ zmienna X_n ma rozkład jednostajny na przedziale [-n,n]. Rozstrzygnąć, czy ciąg

$$\frac{X_1 + X_2 + \ldots + X_n}{n^{3/2}}, \qquad n = 1, 2, \ldots$$

jest zbieżny według rozkładu. W przypadku odpowiedzi pozytywnej wyznaczyć rozkład graniczny.

11. Dany jest ciąg (X_n) niezależnych zmiennych losowych, przy czym dla $n \geq 1$ zmienna X_n ma rozkład wykładniczy z parametrem n. Rozstrzygnąć, czy ciąg sum $(X_1+X_2+\ldots+X_n)$ jest zbieżny według rozkładu. W przypadku odpowiedzi pozytywnej podać rozkład graniczny.