ML Fundamentals: Session 3

Unsupervised Learning with scikit-learn
Alia Hamwi

Types of Learning

Unsupervised learning
 -Given: training data (without desired outputs)

Clustering: K-means

Measuring Performance of K-means

How to Choose K (# of Clusters)

• To determine the optimal number of clusters, we have to select the value of k at the "elbow" ie the point after which the distortion/inertia start decreasing in a linear fashion. Thus for the given data, we conclude that the optimal number of clusters for the data is 3.

• inertia tells how far away the points within a cluster are. Therefore, a

small of inertia is aimed for.

Hierarchical Clustering

- The approach in words:
 - Start with each point in its own cluster.
 - Identify the closest two clusters and merge them.
 - Repeat.
 - Ends when all points are in a single cluster.

Hierarchical Clustering

Different linkage methods for hierarchical clustering

Principal component analysis (PCA)

- PCA produces a low-dimensional representation of a dataset. It finds a sequence of linear combinations of the variables that have maximal variance, and are <u>mutually</u> <u>uncorrelated</u>
- Apart from producing derived variables for use in supervised learning problems, PCA also serves as a tool for data visualization.

Face recognition: Eigenfaces

Face recognition: Eigenfaces

Non-negative Matrix-Factorization

Non-negative Matrix-Factorization

• In the example above, the Topics (p) are set to 6. Each column of the W matrix represents a probability that the topic is in the document. Each row of the W matrix represents a distribution of topic frequencies in each Document. Each row of the H matrix represent the distribution of term frequencies in each topic, and can be seen as the degree to which each term is activated in each topic.

References

- https://towardsdatascience.com/nmf-a-visual-explainer-and-python-implementation-7ecdd73491f8
- https://www.pyimagesearch.com/2021/05/10/opencv-eigenfaces-for-face-recognition/

Thank You