Topology - Homework 09

Question 1.

Consider a locally compact Hausdorff space X, then for arbitrary $x \in X$ and its arbitrary neighborhood U, there exists a neighborhood V such that \overline{V} is compact and $\overline{V} \subset U$.

Consider a closed set $B \subset X$ not containing x.

Since $x \notin B = \overline{B}$, is not a limit point of B, and then there is a neighbor of x containing no point of B.

Denote this neighborhood by U and find another neighborhood of x, V with $\overline{V} \subset U$. According to the property of locally compact Hausdorff space, we know that can be done.

Then V and $X - \overline{V}$ are two open sets that contain x and B respectively and have no intersection, which means that X is regular.

Question 2.

(i)

Consider arbitrary distinct $x, y \in X$.

Since X is T_3 , we know that X is Hausdorff and there are open sets U containing x and Y containing y with U and Y have no intersection.

Since X is regular, for every $p \in X$ and an open set A containing p, let B = X - A and B is a closed set not containing p. Then there are open set W_1 and W_2 containing p and B respectively and $\overline{W_1} \subset A$.

Then we know there is some open set U_1 containing x such that $\overline{U_1} \subset U$, and there is some open set V_1 containing y such that $\overline{V_1} \subset V$.

Since U and V have no intersection, we know that U_1 and V_1 have no intersection.

And then U_1 and V_1 are what we need.

(ii)

Since X is T_4 , we know that X is normal.

Considering arbitrary closed set $A \subset X$ and an open set U containing A, let $U_1 = X - U$ and then U_1 is closed.

For closed set A and U_1 , we can find two open sets W_1 and U_2 containing A and U_1 respectively with $W_1 \cap U_2 = \emptyset$.

Then W_1 is an open set containing A and $\overline{W_1} \subset U$.

Similarly, for a closed set B disjoint with A and an open set V containing B, we can find an open set W_2 containing B and $\overline{W_2} \subset V$.

Since X is normal, we can make U and V have no intersection and then W_1 and W_2 will have no intersection.

Then W_1 and W_2 is what we need.

Question 3.

"if":

Assume that d is a metric.

Then for arbitrary distinct $x, y \in X$, there is r = d(x, y) > 0.

Then B(x, r) is an open set containing x but not containing y.

This shows that X is T_0 .

"only if":

Assume that X is T_0 .

If there are distinct $x, y \in X$ with d(x, y) = 0, all open sets containing x will also contain y, which makes contradiction.

Then we know every two distinct points in X have an positive distance, and d is a metric.

Question 4.

(i)

Consider a completely regular space X and arbitrary $x \in X$, arbitrary closed set A not containing x.

There is a continuous function $f: X \to [0,1]$ such that f(x) = 0 and $f(A) = \{1\}$.

Let
$$U = f^{-1}([0, \frac{1}{2}))$$
 and $V = f^{-1}((\frac{1}{2}, 1])$.

Then U and V have no intersection and are both open since $[0, \frac{1}{2})$ and $(\frac{1}{2}, 1]$ are open.

Obviously, $x \in U$ and $A \subset V$.

Then we know that *X* is regular.

(ii)

Consider a pseudo metric space X.

For arbitrary $x \in X$ and arbitrary closed set A not containing x.

Define $d(p, A) \triangleq \inf_{a \in A} d(a, p)$ for $p \in X$.

Since A is closed, if there is some $y \in A$ such that d(x,y) = 0, every neighborhood of x will containing some points in A, because a neighborhood of x is also a neighborhood of y. Then we know that x is a limit point of A and $x \in A$, which contradicts with $x \notin A$.

Thus we have d(x, A) > 0.

Let
$$g(p) = \frac{d(p,A)}{d(x,A)}$$

$$g(x) = 1, g(A) = \{0\}.$$

Since the metric function $d_A(p) \triangleq d(p,A)$ is continuous, we know that g(p) is continuous and $f(p) \triangleq 1 - g(p)$ is also continuous.

$$f(x) = 0, f(A) = \{1\}.$$

Then we know that *X* is completely regular.

Metric space implies T_1 and pseudo pseudo metric. So every metric space is Tychonoff.

Question 5.

Let \mathcal{T} be the standard topology on \mathbb{R}^2 and we have $\mathcal{T}_{ro} \supset \mathcal{T}$.

So an open set with respect to \mathcal{T} is also open with respect to \mathcal{T}_{ro} , and a closed set with respect to \mathcal{T} is also closed with respect to \mathcal{T}_{ro} .

Consider the closed set $L: \{(x, x) \in \mathbb{R}^2\}$.

Each subset of L is closed.

Let *D* be a subset of \mathbb{R}^2 with rational coordinates and then *D* is dense in \mathbb{R}^2 .

Define
$$f: \mathcal{P}(L) \to \mathcal{P}(D)$$
:

$$f(A) = D \cap U$$
, if A is a true subset of L,

$$f(\varnothing)=\varnothing$$
,

$$f(L) = D$$
.

If B is a true subset of D and $B \neq A$, assume $x \in A$ and $x \notin B$.

Then we have $x \in L - B$.

Assume that \mathbb{R}^2 is normal with respect to \mathcal{T}_{ro} , we can find two open set U_B and V_B containing B and L-B respectively and have no intersection.

Then $x \in U_A \cap V_B$. This nonempty open set must containing some points in D, which belongs to U_A but doesn't belong to U_B . Hence $D \cap U_A \neq D \cap U_B$, and f is an injection.

D is countable and L has the same cardinality with \mathbb{R} (uncountable).

So there is a injection from $\mathcal{P}(D)$ to L.

And then there is a injection from $\mathcal{P}(L)$ to L.

But this is impossible, which means a contradiction.

Then we know that $(\mathbb{R}^2, \mathcal{T}_{ro})$ is not normal.

Since a metrizable space must be normal, we know that $(\mathbb{R}^2, \mathcal{T}_{ro})$ is not metrizable.