Week 08 F2F Example Solutions

1. Example 7.1

$$\begin{pmatrix}
1 & 3 & -1 & 2 & 0 \\
0 & -3 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & -\frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

So a general solution is

$$\begin{cases} x_1 &= 0 \\ x_2 &= \frac{s}{3} \\ x_3 &= s \\ x_4 &= 0, \quad s \in \mathbb{R} \end{cases}$$

A basis for the solution space is $\{(0,1,3,0)\}$ and the dimension is 1.

2. Example 7.2

(a)

$$c_1 \mathbf{u_1} + c_2 (\mathbf{u_1} + \mathbf{u_2}) + c_3 (\mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3}) = \mathbf{0}$$

$$\Rightarrow (c_1 + c_2 + c_3) \mathbf{u_1} + (c_2 + c_3) \mathbf{u_2} + c_3 \mathbf{u_3} = \mathbf{0}$$

$$\Rightarrow c_1 = c_2 = c_3 = 0.$$

So $\{v_1, v_2, v_3\}$ is a linearly indepenent set too and thus is a basis for V.

(b) No, the vectors v_1, v_2, v_3 are linearly dependent since $v_1 + v_2 + v_3 = 0$.

3. Example 7.3

- (a) For example, a = -2, b = -1, c = 1, d = 0.
- (b) $u_3 = 2u_1 + u_2$ and $u_4 = -2u_1 + u_2$.
- (c) $\{u_1, u_2\}$ is a basis for V and $\dim(V) = 2$.
- (d) For example, let $W = \text{span}\{u_1, u_2, (0, 0, 0, 1)\}$. Then $\dim(W) = 3$. Since $W \cap V = V$, $\dim(W \cap V) = \dim(V) = 2$.

4. Example 7.4

- (a) Since the reduced row-echelon form of A is B, they have the same row space.
- (b) $\{(1,0,0,1,2),(0,1,0,-1,-1),(0,0,1,0,1)\}$ is a basis for the row space of \boldsymbol{A} . Dimension of row space is 3.