

SH366000

Preliminary

SBS Solution用戶指南

一、特点

- 实现2-, 3-, 4-串锂电池的充放电管理及安全保护
- 兼容SMBus v1.1和SBData1.1规范
- 库仑积分法和开路电压法相结合,确定电池剩余容量
- 根据当前温度和电流,结合内嵌模型动态计算放电截止电压
- 具有自学习功能,通过一次完整的充放电过程即可获取实际最大容量
- 提供过载及短路保护,实现过压/低压/过温/低温时电池组的保护
- 提供二级安全保护
- 提供电池平衡功能,延长电池使用寿命
- 支持4-, 5-LED输出,显示绝对或相对剩余电量百分比
- 低功耗系统设计

二、引脚配置

Figure 1 TQFP48引脚配置图

1 V 0.6

Figure 2 TSSOP38引脚配置图

三、引脚描述

引脚	名称	输入/输出	TQFP48引脚描述		
1	NC	-	NC		
2	AGND	Р	模拟地		
3	VCC	Р	3V电压输出端		
4	NC	-	NC		
5	VPACK	Р	PACK端供电输入端		
6	OD	0	预充电MOSFET控制端		
7	CHG	0	充电MOSFET控制端		
8	DSG	0	放电MOSFET控制端		
9	BAT	Р	BAT端供电接入端		
10-12	NC	-	NC		
13	VC1	I	电芯第一高电压接入端		
14	VC2	I	电芯第二高电压接入端		
15	VC3	I	电芯第三高电压接入端		
16	VC4	I	电芯第四高电压接入端		
17	VC5	I	电芯最低电压点接入端		

18	ARS1	Ι	电流保护接入端	
19	ARS2	I	电流保护接入端	
20	RSTB	0	复位控制端,连接到 RESETB	
21	SMBD	I/O	SMBus通讯线	
22	SMBC	I/O	SMBus通讯线	
23	NC	-	NC	
24	SAFE	0	二级保护输出端	
25	PFIN	I	二级保护检测	
26	PU	0	系统接入检测输出端	
27	PRES	I	系统接入检测输入端	
28	DISP	I	显示按键输入端	
29~33	LED4~LED0	0	LED输出端	
34~35	NC	-	NC	
36	RESETB	I	复位输入端	
37	PLL	I	PLL输入端	
38	GND	Р	数字地	
39	OSCI	I	RC振荡器输入端	
40	VDD	Р	数字电源	
41	RS2	I	电流测量输入端	
42	RS1	I	电流测量输入端	
43	AVDD	Р	模拟电源	
44	AGND	Р	模拟地	
45	AN1	Ι	温度测量输入端	
46	AN0	I	电压测量输入端	
47	AAN0	0	电压转换输出端	
48	TEMP	0	温度测量输出端	

Table 1 TQFP48引脚描述

引脚	名称	输入/输出	TSSOP38引脚描述		
1	DSG	0	放电MOSFET控制端		
2	BAT	Р	BAT端供电接入端		
3	VC1	I	电芯第一高电压接入端		
4	VC2	I	电芯第二高电压接入端		
5	VC3	I	电芯第三高电压接入端		
6	VC4	I	电芯第四高电压接入端		
7	VC5	İ	电芯最低电压点接入端		

8	ARS1	I	电流保护接入端
9	ARS2	I	电流保护接入端
10	SMBD	1/0	SMBus通讯线
11	SMBC	I/O	SMBus通讯线
12	LED4	0	LED输出端
13	SAFE	0	二级保护输出端
14	PFIN	I	二级保护检测
15	PU	0	系统接入检测输出端
16	PRES	I	系统接入检测输入端
17	DISP	I	显示按键输入端
18	LED3	0	LED输出端
19	LED2	0	LED输出端
20	LED1	0	LED输出端
21	LED0	0	LED输出端
22	RESETB	I	复位输入端
23	PLL	I	PLL输入端
24	GND	Р	数字地
25	OSCI	I	RC振荡器输入端
26	VDD	Р	数字电源
27	RS2	I	电流测量输入端
28	RS1	I	电流测量输入端
29	AVDD	Р	模拟电源
30	AGND	Р	模拟地
31	AN1	I	温度测量输入端
32	AN0	I/O	电压测量输入端
33	TEMP	0	温度测量输出端
34	AGND	Р	模拟地
35	VCC	Р	3V电压输出端
36	VPACK	Р	PACK端供电输入端
37	OD	0	预充电MOSFET控制端
38	CHG	0	充电MOSFET控制端

Table 2 TSSOP38引脚描述

四、概述

SH366000可实现充放电电流、各串Cell和电池组电压、以及温度的检测。通过库仑积分、自放电、以及电子负载的补偿来计算电池组剩余电量。提供电池平衡功能。并对电流、电压、温度等安全状态进行保护。

五、功能描述

5.1 工作状态判断

SH366000每秒通过检测 PRES 引脚电平来判断电池组是否接入应用系统。当检测到电池组接入应用系统时,SH366000进入正常操作状态,在1秒内打开充电MOSFET和放电MOSFET; 当检测到电池组脱离应用系统时,关闭所有充放电MOSFET。

5.2 参数测量

SH366000通过采样电阻来计算电流值,通过库仑积分获取剩余电量,并每秒更新一次剩余电量RemCap。 SH366000每秒测量一次温度、各串Cell电压及电池组电压。通过PackConfig中Bit4-3可配置电池组结构为2 串、3串或4串电芯。

Figure 3 电量计量示意图

5.3 电量计量

SH366000电量计量流程如Figure 3所示,由充放电放电、电子负载补偿、带温度补偿的自放电三部分组成。 RemainCapacity() (RemCap)表示电池组当前可用电量。依据BatteryMode()中的Bit15设置有mAh和 10mWh两种表示方式。SH366000在EDV2,EDV1,EDV0三个EDV电压和VOC25,VOC50,VOC75三个可编程中间校准电压处均可进行容量调整。

FullChargeCapacity() (FCC) 是电池实际最大容量,可通过一次Learning循环 (完全放电,完全充电,完全放电)进行更新,新的FCC不会小于目前FCC-256mAh或大于目前FCC+512mAh。。

DischargeCountRegister() (DCR)为放电计数器,用于更新FCC。DCR只在放电时计数,由放电计数、电子负载补充、自放电补偿三部分组成。SH366000放电开始时DCR=FCC-RC,在电池电压降至EDV2时终止DCR的计数,并更新当前FCC。

5.3.1 放电截止电压 (EDV)

SH366000通过EDV2,EDV1,EDV0三个电压点进行容量和电压的统一。通过配置GasGaugeConfig,可设置SH366000依据电压最低的Cell电压或整个电池组的电压进行EDV调整、采用固定EDV电压或动态CEDV电压作为当前EDV电压、以及是否采用固定EDV0电压等。

若SH366000电压先降到EDV点而RemCap未到阈值时,调整RemCap到当前EDV所对应的容量;若RemCap到EDV所对应阈值而电压未到EDV时,在电压降至EDV之前RemCap不再减少。

当放电电流超过Overload时,暂停EDV的判断和计算;电流恢复正常后重新开始EDV判断和计算。EDV0对应容量为0%,EDV1对应容量为3%,EDV2对应容量为BatteryLow%,可根据需求设定。

5.3.2 有效放电及自学习

SH366000通过一次Learning过程(放空、满充、放空)来更新FCC。放电起始时剩余电量应大于FCC-NearFull,并对DCR赋值 DCR=FCC-RemCap。当电池电压降至EDV2时终止DCR计数。FCC更新为DCR计数值和EDV2对应剩余容量之和: FCC(最新)= DCR(最终) +FCC x BatteryLow%。

放电中满足如下条件时为有效放电,置位VDQ。任一条件不满足时为无效放电,清除VDQ:

- 1) 自放电和电子负载补偿总计不超过256mAh
- 2) 温度始终低于自学习温度阈值LearningLowTemp
- 3) 电压达到EDV2, 且SH366000检测到EDV2时电压不低于EDV2-256mV
- 4) 无中间校准发生
- 5) 当到达EDV2或BatteryLow时,放电电流大于3C/32
- 6) 当到达EDV2或BatteryLow时,无过载现象(放电电流大于Overlaod)出现
- 7) 没有充电状态出现

5.3.3 自放电补偿

SH366000可对电池进行自放电补偿,补偿速度由SelfDischargeRate(缺省为0.2%/Day)设定:

Temperature (℃)	Self-Discharge Rate
Temp <10	1/4 Y%
10≤Temp<20	1/2 Y%
20≤Temp<30	Υ%
30≤Temp<40	2 Y%
40≤Temp<50	4 Y%
50≤Temp<60	8 Y%
60≤Temp<70	16 Y%
70≤Temp	32 Y%

Table 3 自放电率

5.3.4 电子负载补偿

SH366000可对自身系统进行电子负载补偿,参数由ElectronicsLoad设定。

5.3.5 中间校准

SH366000可进行中间校准,根据电池组的开路电压调整电池剩余电量。当温度在19℃~31℃之间,电流在-64~0mA之间的时间超过20秒时,执行中间校准。SH366000可通过GasGaugeConfig中VCOR设置是否进行中间校准,各中间校准电压由VOC25,VOC50,VOC75设定。中间校准优先级自上而下如Table3所示:

Condition	Result
Voltage ()≥VOC75 and RSOC ≤63	RSOC→75
VOC50≤Voltage() <voc75 and="" rsoc≥87<="" td=""><td>RSOC→75</td></voc75>	RSOC→75
VOC50≤Voltage() <voc75 and="" rsoc="" td="" ≤38<=""><td>RSOC→50</td></voc75>	RSOC→50
VOC25≤Voltage() <voc50 and="" rsoc≥62<="" td=""><td>RSOC→50</td></voc50>	RSOC→50
VOC25≤Voltage() <voc50 and="" rsoc="" td="" ≤13<=""><td>RSOC→25</td></voc50>	RSOC→25
Voltage () <voc25 and="" rsoc≥37<="" td=""><td>RSOC→25</td></voc25>	RSOC→25

Table 4 中间校准对应表

5.4 充电管理

SH366000基于CC/CV模式进行充电控制。当充电电压恒定,充电电流小于设定值时充电终止。SH366000每20秒对充电器广播一次充电电压和充电电流。充电电流可以分为三个:正常充电电流,预充电电流和零充电电流。

5.4.1 预充电控制

当电池组电压Voltage<PrechargeVoltageThreshold或低于EDV0阈值时,进入预充电模式;在Voltage> (PrechargeVoltageThreshold + PrechargeVoltageResetMargin)且高于EDV0后恢复至正常充电状态。

当温度低于预充电温度阈值(PrechargeTemperatureThreshold)时,进入预充电状态;在温度高于预充电温度阈值(PrechargeTemperatureThreshold+3)以上时恢复至正常充电状态。

SH366000可在PackConfig中禁用预充电功能,此时预充电MOSFET处于常关状态,须由充电器提供预充功能。

5.4.2 充电暂缓

SH366000充电过程中,检测到温度高于ChargeSuspendHighTemp时,置位TCA,对充电器广播零充电电流和零充电电压。在温度低于(ChargeSuspendHighTemp-5)时恢复至正常充电状态。

SH366000充电过程中,检测到温度低于ChargeSuspendLowTemp时,置位TCA,对充电器广播零充电电流和零充电电压。在温度超过(ChargeSuspendLowTemp+5)时恢复至正常充电状态。

5.4.3 充电终止

SH366000充电过程中,当电池组电压Voltage大于(ChargingVoltage –TaperVoltage)、平均电流小于TaperCurrent的时间超过CurrentTaperWindows时终止充电,关闭充电MOSFET,并置位TCA和FC。

SH366000在无充电电流或电池与应用系统分离时清除TCA。在FC被清除前,重新处于充电状态时置位TCA。在RSOC小于FullChargeClear时,清除TCA和FC。

5.4.4 充电平衡

SH366000提供充电平衡功能。当充电电流大于BlancelMin、VCELL_{MAX} – VCELL_{MIN} > CellBalanceMin且VCELL_{MAX}>Cell BalanceThreshold时,对电压最高的Cell进行平衡。

当所有Cell的电压均高于CellBalanceThreshold或Cell中最高电压VCELL_{MAX}超过(CellBalanceThreshold + CellBalanceWindow)时,CellBalanceThreshold=CellBalanceThreshold+CellBalanceWindow。每次充电开始时CellBalanceThreshold恢复至初始设定值。

当电池不平衡严重,即VCELL_{MAX} – VCELL_{MIN} > CellImbalanceMax且充电电流大于 BlancelMin时,置位严重失衡标志CIM (PF Status),熔断FUSE。

Name	Description		
Cell Balance Threshold	平衡电压阈值,执行充电平衡的最低阈值		
Cell Balance Min	执行平衡所需的最小压差		
Cell Balance Window	执行平衡时 Cell Balance Threshold 的最小增量		
CellImbalanceMax	严重电压失衡所需的压差		
BlancelMin	平衡所需最小充电电流		

Table 5 充电平衡管理

5.5 LED显示

SH366000可通过相对方式或绝对方式显示剩余电量。采用相对方式时,使用RSOC显示剩余电量百分比;采用绝对方式时,使用ASOC显示剩余电量百分比。

SH366000采用4个或5个 LED显示显示剩余电量。SH366000采用4个LED方案时,每个LED显示25%;采用5个LED方案时,每个LED显示20%。

SH366000通过检测DISP引脚低电平来激活LED显示。

5.6 安全保护

SH366000检测电池系统的电压、电流和温度。当有异常状况出现时,关闭充放电MOSFET或熔断FUSE,保护电池不受损害。整个保护可分为三个部分:

5.6.1 硬件一级保护

SH366000硬件具有过载(Overload), 充电短路(Short Circuit in Charge), 放电短路(Short Circuit in Discharge)三种保护。

SH366000发生硬件充电短路时,关闭所有充放电MOSFET;一分钟后开启充放电MOSFET。电池组重新插拔时开启充放电MOSFET(或预充电MOSFET)。

SH366000发生硬件过载或放电短路时,关闭所有充放电MOSFET; 一分钟后开启充放电MOSFET。电池组重新插拔时开启充放电MOSFET(或预充电MOSFET)。

5.6.2 软件一级保护

SH366000充电过程中发生单串Cell过压、电池组过压、过流或过温时关闭充电MOSFET(或预充电MOSFET)。 电池组重新插拔或放电电流Current < -CurrentDetectedThreshold时开启充电MOSFET(或预充电MOSFET)

SH366000放电过程中发生单串Cell低压、过流或过温时关闭放电MOSFET。电池组重新插拔或充电电流Current>CurrentDetectedThreshold时开启放电MOSFET。

5.6.3 软件二级保护

SH366000充电过程中发生电池组电压超过安全高压、充放电过程中电流超过安全电流、温度超过安全温度、电池严重失衡、充电MOSFET或放电MOSFET关闭失败、内部通信失败、ADC超量程等现象时,关闭充放电MOSFET,熔断FUSE,设置Pflag为0x66。

当SH366000检测到 PFIN 为低电平时,也启动二级保护。

对DataFlash中Pflag写0x12可清除二级保护状态。

5.7 SMBus 通讯

SH366000兼容SBData v1.1指令。主机通过向SH366000发送相应的指令以获得电池信息。另外,SH366000可以广播报警和充电信息给主机。下表为SBData命令汇总。

SMData Function Name	Command Code	Access	Units
ManufacturerAccess	0x00	R/W	-
RemainingCapacityAlarm	0x01	R/W	mAh or 10mWh
RemainingTimeAlarm	0x02	R/W	Minutes
BatteryMode	0x03	R/W	Bit Code
AtRate	0x04	R	mAh Or 10mWh
AtRateTimeToFull	0x05	R	Minutes
AtRateTimeToEmpty	0x06	R	Minutes
AtRateOK	0x07	R	Binary 0/1 (LSB)
Temperature	0x08	R	0.1°K
Voltage	0x09	R	mV
Current	0x0a	R	mA
AverageCurrent	0x0b	R	mA
MaxError	0x0c	R	%
RelativeStateOfCharge	0x0d	R	%
AbsoluteStateOfCharge	0x0e	R	%
RemainingCapacity	0x0f	R	mAh or 10 mWh
FullChargeCapacity	0x10	R	mAh or 10 mWh
RunTimeToEmpty	0x11	R	Minutes
AverageTimeToEmpty	0x12	R	Minutes

AverageTimeToFull	0x13	R	Minutes
ChargingCurrent	0x14	R	mA
ChargingVoltage	0x15	R	mV
BatteryStatus	0x16	R	Bit Code
CycleCount	0x17	R	Integer
DesignCapacity	0x18	R	mAh or10 mWh
DesignVoltage	0x19	R	mV
SpecificationInfo	0x1a	R	Coded
ManufactureDate	0x1b	R	Coded
SerialNumber	0x1c	R	Not specified
Reserved	0x1d-0x1f	-	-
ManufacturerName	0x20	R	ASCII text string
DeviceName	0x21	R	ASCII text string
DeviceChemistry	0x22	R	ASCII text string
Pack Status	0x2f(LBS)	R	-
Pack Configuration	0x2f(MBS)	R	-
Vcell4	0x3c	R	mV
Vcell3	0x3d	R	mV
Vcell2	0x3e	R	mV
Vcell1	0x3f	R	mV
AFEData	0x46	R	-
Ssafe	0x47	R	-

Table 6 SBData 列表

5.7.1 SBData标准协议

1). ManufactureAccess (0x00)

内部指令。写不同的子命令可读取到下表内容。

Command Code	Name	Description
0x0001	Device Type	返回内部信息
0x0002	Firmware Rev	返回软件版本号
0x0003	EDV Level	返回当前EDV电压
0x0005	ShutDown Command	强制SH366000进入关闭模式
0x062b	Seal	封存Flash参数,解密之前无法对DataFlash进行读写
0x0041	Reset	强制系统复位,程序重新开始

Table 7 ManufactureAccess 子命令

2). RemainingCapacityAlarm (0x01)

设定或读取剩余容量报警值。当剩余容量低于剩余容量报警值时,RemainingCapacityAlarm置1,并广播至SMBus主机。设为0可禁用剩余电量报警功能。

3). RemainingTimeAlarm (0x02)

设定或读取剩余时间报警值。当AverageTimeToEmpty小于剩余时间报警值时, RemainingTimeAlarm 置1,并广播至SMBus主机。设为0可禁用剩余时间报警功能。

4). BatteryMode (0x03)

设定电池的工作模式,并向主机报告电池的容量、工作模式及运行状况信息。 该控制字可以分为两部分:高8bit为可读/可写部分,低8bit为只读。

INTERNAL_CHARGE_CONTROLLER: 是否具有内部充电控制器。SH366000内部没有充电控制器PRIMARY_BATTERY_SUPPORT: 是否可作为系统主电池应用。SH366000不支持作为主电池应用RELEARN_FLAG: 电池再学习标志。当系统复位或需要进行再学习时,此位置1;通过一个Learning过程(满充,满放,满充)后,此位清零。

CHARGE_CONTROLLER_ENABLED: 内部充电器控制。SH366000不支持此功能

PRIMARY_BATTERY: 系统主电池控制。SH366000不支持此功能

ALARM_MODE: 控制SH366000是否对Host和充电器发送AlarmWarning信息。置1时系统在60秒内不进行广播;清零时,如有报警信息,则随时广播出去。在PackConfig中SM=1时,AlarmMode设置无效,SH366000不对Host和充电器进行广播。

- ●缺省状态,SH366000每20秒广播一次;AlarmMode写1后60秒内,禁止广播;60秒后重新开始广播。若不希望SH366000广播报警信息,应以不超过59秒的间隙禁用该功能。
- ●当SH366000进入sleep状态时,系统不会进行广播。

CHARGE_MODE: 控制SH366000是否对充电器广播ChargingCurrent()和ChargingVoltage()。置1时停止广播; 清零时广播两者到充电器。在PackConfig中SM=1时, ChargeMode设置无效, SH366000不对充电器进行广播。

CAPACITY_MODE:控制SH366000采用何种模式报告容量信息。置1时,采用10mW / 10mWh为单位通讯;清零时,采用mA/10mWh为单位进行通讯。该位的设置会影响到如下变量:RemainingCapacity Alarm(),AtRate(),RemainingCapacity(),FullChargeCapacity(),Design Capacity()。

CapacityMode的设置会影响到下列变量的计算: AtRateOK(), AtRateTimeToEmpty(), AtRateTimeToEmpty(), AtRateTimeToEmpty(), AverageTimeToEmpty(), AverageTimeToFull(), Remaining Time Alarm(), BatteryStatus。

Battery Mode	Bits	Format	Allowable Values
INTERAL_CHARGE_CONTROLLER	0	Read Only	0- 总是0
PRIMARY_BATTERY_SUPPORT	1	Read Only	0- 总是0
Reserved	2-6	=	0- 总是0
RELEARN_FLAG	7	Read Only	0- 系统OK
NELEANN_1 EAG	,	itead Only	1- 系统需要再学习
CHARGE_CONTROLLER_ENABLED	8	R/W	0- 总是0
PRIMARY_BATTERY	9	R/W	0- 总是0
Reserved	10-12	=	0- 总是0
ALARM MODE	13	R/W	0- 使能报警广播(Default)
ALARM_MODE	13	IX/ VV	1- 禁止报警广播
CHARGE MODE	14	R/W	0- 使能充电广播(Default)
OTANGE_MODE		IX/ VV	1- 禁止充电广播
CAPACITY MODE	15	R/W	O- 采用mAh/mA报告信息(Default)
CALACITI_MODE			1- 采用10mWh/10mW报告信息

Table 8 Battery Mode 列表

5). AtRate (0x04)

电流(mA)或功率(10mW)参数值,用于以下三个参数计算: AtRateTimeToFull, AtRateTimeToEmpty, AtRateOK。

- ●AtRateTimeToFull返回充电电流为AtRate时的预测充满所需时间
- ●AtRateTimeToEmpty返回放电电流 / 功率为AtRate时的预测可继续操作时间
- ●AtRateOK函数返回一个布尔值,预测是否有能力连续10秒提供大小为AtRate的额外放电时间。

6). AtRateTimeToFull (0x05)

返回以AtRate电流值(mA)进行充电至电池满充的剩余时间(分钟)。若AtRate为0或负值,则返回65535。

7). AtRateTimeToEmpty (0x06)

返回以AtRate电流值(mA) / 功率值(10mW)进行放电直到放空的预测剩余时间(分钟)。若AtRate为0或正值,则返回65535。

8). AtRateOK (0x07)

返回布尔变量。显示电池是否有连续10秒提供电流为AtRate的能力。若AtRate为0或正值,则返回总为真。

9). Temperature (0x08)

返回以0.1K为单位的电池组温度值。

10) . Voltage (0x09)

返回电池组的电压值(mV)。

11) . Current (0x0A)

返回电池组的电流值(mA)。

12) . AverageCurrent (0x0B)

返回电池组的电流平均值(mA)。

13) . MaxError (0x0C)

返回剩余电量的预期误差范围(%)。当MaxError返回值为10%,而RelativeStateOfCharge的返回值为50%时,RelativeStateOfCharge的实际值范围在50%-60%之间。

SH366000重新上电或中间校准后MaxError()设为25%;经过一次再学习过程之后, MaxError值恢复到 2%。在FCC改变量达到+512/-256mAh时, MaxError为8%。CycleCount()每增加4, MaxError()增加1。

14) . RelativeStateOfCharge (0x0D)

返回电池的相对剩余容量百分比。表示为RemainingCapacity()/FullChargeCapacity()的百分比形式。

15). AbsoluteStateOfCharge (0x0E)

返回电池的绝对剩余容量百分比。表示为RemainingCapacity()/DesignCapacity()的百分比形式。

16). Remaining Capacity (0x0F)

返回电池当前的剩余电量。单位为mAh或者10mWh,具体取决于CapacityMode的设置。

17) . FullChargeCapacity (0x10)

返回电池的最大可用电量。单位为mAh或者10mWh,具体取决于CapacityMode的设置。

18) . RunTimeToEmpty (0x11)

返回以当前电流放电至电池放空的可继续运行时间(分钟)。当电流为0或正值时,返回65535。

19) . AverageTimeToEmpty (0x12)

返回以当前平均电流放电的可继续运行时间(分钟)。当平均电流为零或正值时,返回65535。

20) . AverageTimeToFull (0x13)

返回以当前平均电流充电至满充所需要的时间(分钟)。当电流为零或负值时,返回65535。

21) . ChargingCurrent (0x14)

返回允许充电器提供的最大充电电流(mA)。

22) . ChargingVoltage (0x15)

返回允许充电器提供的最大充电电压(mV)。

23). BatteryStatus (0x16)

返回SH366000的状态字。电源管理系统Host可通过BatteryStatus来获取电池的预警信息、状态标志位及错误代码。

Name	Bits	Set	Clear
	DIIS		
OVERCHARGEALARM	15		剩余容量小于FCC-2或放电电流
(OCA)		Charge)	<-CurrentDetectedThreshold
		1. 电压电流满足充电结束条件	
		2. FC置位时有充电电流> Current	
TERMINATECHARGEA	14	DetectedThreshold	所有条件均不满足
LARM (TCA)	'-	3. 一级 / 二级充电安全发生	或电池组重新插拔
		4. 充电超时	
		5. 充电温度暂停	
OVERTEMPALARM	4.0		所有条件均不满足
(OTA)	12	一级或二级过温发生	或电池组重新插拔
TERMINATEDISCHARG	11	容量低于EDV0	所有条件均不满足
EALARM (TDA)	1.1	或一级 / 二级放电安全发生	或电池组重新插拔
			RemainingCapacity()>
REMAININGCAPACITY	9	RemainingCapacity()<	RemainingCapacityAlarm()
ALARM (RCA)		RemainingCapacityAlarm()	或充电电流>
			CurrentDetectedThreshold
REMAININGTIMEALAR	8	AverageTimeToEmpty()	AverageTimeToEmpty()
M (RTA)	U	<remainingtimealarm()< td=""><td>>RemainingTimeAlarm()</td></remainingtimealarm()<>	>RemainingTimeAlarm()
INITIALIZED (INT)	7	外部校准完成	未作外部校准
DISCHARGING (DSG)	6	放电状态	充电状态
FULLYCHARGED (FC)	5	电池满充状态	RSOC小于FCCclear
FULLYDISCHARGED (FD)	4	电压或容量低于EDV2水平	RSOC大于20%

Table 9 Battery Status 列表

Error_Code	Code	Description
Error	0x0007	系统错误
ок	0x0000	系统正常

Table 10 Battery Error 列表

24) . CycleCount (0x17)

返回电池组的放电循环次数。单次循环的阈值由CycleThreshold确定。

25) . DesignCapacity (0x18)

返回电池组的理论容量。单位为mAh或者10mWh,具体取决于CapacityMode的设置。

26) . DesignVoltage (0x19)

返回电池组的理论电压(mV)。

27) . SpecificationInfo (0x1A)

返回电池组所支持的SMBus版本编号。SH366000支持版本为spec1.1,无PEC校验和电流/电压放大。

Field	Bits	Allowable values
SpecID_L	0-3	Spec1.0 = 0x0 Spec1.1 = 0x1
SpecID_H	4-7	Spec1.0 = 0x1 Spec1.1 without PEC = 0x2 Spec1.1 with PEC =0x3
Vscale	8-11	0-3(真实电压值为返回值×10^ Vscale)
IPScale	12-15	0-3(真实电流或容量值为返回值×10 [^] Vscale)

Table 11 SpecificationInfo参数表

28) . ManufactureDate (0x1B)

返回电池组的制作日期。格式定义为(年-1980)*512 + 月*32 + 日。

Field	Bits	Allowable Values
日	0-4	1-31(具体日期)
月	5-8	1-12(具体月份)
年	9-15	0-127(相对于1980年的差值)

Table 12 ManufactureDate 参数表

29) . SerialNumber (0x1C)

返回电池组的序列号。

30) . ManufactureName (0x20)

返回生产厂家的名称。

31). DeviceName (0x21)

返回电池的名称。

32) . DeviceChemistry (0x22)

返回电芯的材料。本软件固定为LION。

Chemistry	Abbreviations
铅酸	PbAc
锂离子	LION
镍铬	NiCd
镍氢	NiMH
镍锌	NiZn
可重复充电碱性锰电池	RAM
锌空气	ZnAr

Table 13 化学特性列表

33) . ManufacturerData (0x23)

返回芯片内部数据。

34) . PackStatus (0x2f LBS)& PackConfig (0x2f MSB)

返回电池组状态和配置。

Name	Bits	Allowable Values
		LED显示ASOC或RSOC
DMODE	15	0- LED显示ASOC
		1- LED显示RSOC
		电量显示采用4个LED或5个LED
LED	14	0- 使用4个LED显示,每段表示25%
		1- 使用5个LED显示,每段表示20%
		是否使能SH366000对外广播功能,此处禁用后, BatteryMode()中
CM	4.0	ChargeMode和AlarmMode设置无效
SM	13	0- 能够作为Master对Host和charger端进行广播
		1 - 禁止广播功能
		电池组串数选择
		00- 保留(等同与01)
CC	12-11	01- 二串电池
		10- 三串电池
		11- 四串电池
		预充电功能设置
ENPCHG	10	0- 支持预充电功能
		1- 无预充电功能
Reserved	9	Reserved
		电池是否可以从应用系统脱离
NR	8	0- 电池可以从应用系统脱离
		1- 电池不可从应用系统脱离
		SH366000是否接入应用系统:
PRES	7	0- SH366000未接入应用系统
		1- SH366000已接入应用系统
		单颗电芯或电池组(由GasGaugeConfig中CEDV位选择)电压小于
		EDV2电压
EDV2	6	0- 电压值大于EDV2电压
		1- 电压值小于EDV2电压
		DataFlash是否处于加密状态
ss	5	0- DataFlash处于未加密状态
		1- DataFlash处于加密状态
		当前放电是否为有效放电
VDQ	4	0- 系统处于无效放电状态
		1- 系统处于有效放电状态
		SH366000模拟前端工作是否正常
AFEFAIL	3	0- 模拟前端工作正常
		1- 模拟前端工作异常
		是否发生二级安全保护
PF	2	0- 电池组处于正常状态,Pflag= 0x00
	_	1- 电池组有安全状况出现,Pflag=0x66
		充电 / 预充电MOSFET状态显示
cvov	1	0- 充电或预充电MOSFET处于开启状态
0 v 0 v	[1- 充电和预充电MOSFET处于关闭状态
		放电MOSFET状态显示
CVUV	0	0- 放电MOSFET处于开启状态
O V O V		1- 放电MOSFET处于关闭状态
		II- 从电MOOILI处于人内价态

Table 14 PackStatus&Packconfig 参数表

35) . VCell4-Vcell1 (0x3C-0x3F)

返回自最高到最低四串电池的电压值(mV)。

36) . AFEData(0x46)

返回SH366000模拟前端的状态。

Name	Bits	Description				
Reserved	7-4	Reserved				
		AFE模拟前端WDT状态				
WDF	3	0- 正常				
		1- 前端WDT报警				
		AFE模拟前端是否发生过载				
OL	2	0- 正常				
		1- 前端检测到电流过载现象				
		AFE模拟前端是否发生充电短路				
SCCHG	1	0- 正常				
		1- 前端检测到充电短路现象				
		AFE模拟前端是否发生放电短路				
SCDSG	0	0- 正常				
		1- 前端检测到放电短路现象				

Table 15 AFEData 列表

37) . Ssafe(0x47)

返回SH366000二级保护安全状态情况。

Name	Bits	Description
CIM	15	电池是否严重失衡
CIM	15	0- 正常 1- 电池失衡严重
		电池组电压是否超过二级保护阈值SafetyOverVolThreshold
SOV	14	0- 正常
		1- 电池组电压大于二级保护阈值
		电池充电电流是否大于二级保护阈值SafetyOverCurrentThreshold
SCC	13	0- 正常
		1- 充电电流大于充电二级保护电流阈值
		电池放电电流是否大于保护阈值SafetyOverCurrentThreshold
SCD	12	0- 正常
		1- 放电电流大于放电二级保护电流阈值
		充电时电池温度是否大于二级保护阈值SafetyOverTempThreshold
SOTC	11	0- 正常
		1- 充电时温度大于充电二级保护温度阈值
		放电时电池温度是否大于二级保护阈值SafetyOverTempThreshold
SOTD	10	0- 正常
		1- 放电时温度大于放电二级保护温度阈值
		充电MOSFET关闭后充电电流是否大于FETFailCurrent
CFETF	9	0- 正常
		1- 充电MOSFET关闭后充电电流过大
		放电MOSFET关闭后放电电流是否大于FETFailCurrent
DFETF	8	0- 正常
		1- 放电MOSFET关闭后放电电流过大

		是否检测到系统有烧FUSE动作
PFIN	7	0- 正常
		1- 探测到有烧FUSE动作
		AFE模拟前端有不可恢复错误发生
AFEF	6	0- 正常
		1- 模拟前端有错误产生
		SH366000烧FUSE是否成功
PEF	5	0- 正常
		1- 烧FUSE后仍有电流流过
		SH366000 ADC是否发生量程错误
ADCF	4	0- 正常
		1- ADC量程错误
Reserved	3-0	Reserved

Table 16 Ssafe 列表

5.7.2 SMBus广播

SM=1 且 CHARGE_MODE=1 时, SH366000 对 Charger (Addr=0x12) 广播 CharingingCurrent(Command Code = 0x14)和 ChargingVoltage(Command Code= 0x15)。

SM=1且AlarmMode=1时,SH366000对Charger(Addr=0x12)和Host(Addr=0x10广播BatteryStatus(0x16),Error_Code均为1。

5.7.3 SMBus时序

SBData1.1支持如下三种通讯格式:写双字节,读双字节,读字符串。

Figure 4 SMBus通讯示意图

5.8 电池组系统参数

SH366000 依据不同的应用需求,如下参数需要配置:

5.8.1 应用系统配置,系统配置列表PackConfig,在SBData中作为 指令0x2f的高8位返回给主机

Name	Bits	Allowable Values
DMODE	_	LED显示ASOC或RSOC
DMODE	7	0- LED显示ASOC 1- LED显示RSOC
		电量显示采用4个LED或5个LED
LED	6	0- 使用4个LED显示,每段表示25%
		1- 使用5个LED显示,每段表示20%
		是否使能SH366000对外广播功能,此处禁用后, BatteryMode()中
SM	5	ChargeMode和AlarmMode设置无效
Sivi	3	0- 能够作为Master对Host和charger端进行广播
		1- 禁止广播功能
		电池组串数选择
		00- 保留(等同于01)
CC	4-3	01- 二串电池
		10- 三串电池
		11- 四串电池
		预充电功能设置
ENPCHG	2	0- 支持预充电功能
		1- 无预充电功能
		低功耗模式(NR=1)下充电MOS状态
NRCHG	1	0- NR=1情况下,SH366000进入低功耗模式后,充电MOSFET关闭
		1- NR=1情况下,SH366000进入低功耗模式后,充电MOSFET开启
		表示电池是否可以从应用系统脱离,即PRES表示有无接入应用系统
		0- 电池可以从应用系统脱离,PRES低电平表示电池接入应用系统,高
NR	0	电平表示从应用体系脱离。只有在PRES高电平时可以进入低功耗模
		式。低功耗模式下关闭充放电MOSFET。
		1- 电池固定在应用系统中,PRES维持始终为低电平。只需满足其它条
		件即可进入低功耗模式。低功耗模式下开启放电MOSFET。

Table 17 PackConfig 配置参数表

5.8.2 充放电管理配置,系统配置列表中GasGaugeConfig

Name	Bits	Description
Reserved	7	缺省设置为1,请勿改动
		配置采用固定电压或动态CEDV电压进行EDV调整
CEDV	6	0- 采用固定电压进行EDV调整
		1- 采用动态CEDV电压进行EDV调整
		配置在CEDV置1时采用固定电压或动态CEDV电压进行EDV0调整
FEDV0	5	0- 采用动态CEDV0电压
		1- 采用固定EDV0电压
		配置基于各串电池的最小电压值或整个电池组电压进行EDV调整
EDVV	4	0- 基于各串电池的电压最小值进行EDV判断
		1- 基于整个电池组电压进行EDV判断
		配置是否允许系统进行中间调整
VCOR	3	0- 禁用中间调整功能
		1- 开启中间调整功能
		配置放电到EDV0时是否允许关放电MOSFET
XEDV0	2	0- 放电电压低于EDV0时仍开启放电MOSFET
		1- 放电电压低于EDV0时关闭放电MOSFET
		配置充电到满充条件时是否允许关充电MOSFET
XFULL	1	0- 充电到满充条件时仍开启充电MOSFET
		1- 充电到满充条件时关闭充电MOSFET
		配置是否允许二级保护
XSP	0	0- 禁止二级保护
		1- 允许二级保护

Table 18 Gas Gauge 配置参数表

六、DataFlash参数列表

该部分为DataFlash的参数列表,按照功能大致分为如下几部分:

- ●系统配置
- ●校准参数
- ●充电管理
- ●模拟前端配置
- ●安全管理
- ●客户自有信息

6.1. 系统配置

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
RemainingTimeAlarm	2	0	65535	10	剩余时间预警值(分钟),对应SBData中RemainingTime Alarm
RemainingCapactiyAlarm	2	0	65535	360	剩 余 容 量 预 警 值 (mAh), 对 应 SBData 中 Remaining CapacityAlarm
CycleCount	2	0	65535	0	电池组循环次数,对应SBData中CycleCount
FullChargeCapacity	2	0	65535	4200	电池满充容量(mAh),对应SBData中FullChargeCapacity
CycleThreshold	2	0	65535	4100	单次循环阈值(mAh),用于更新CycleCount
DesignVoltage	2	0	65535	16800	设计理想电压(mV)
DesignCapacity	2	0	65535	4400	设计理想容量(mAh)
ElectronicsLoad	1	0	2.55	2	电子负载补偿(mA)
SelfDischargeRate	1	0	2.55	0.2	电池自放电率(%)
GasgaugeConfig	1	-	-	0xD6	Gas Gauge配置参数,详见Table17
					满充条件(mAh)
NearFull	2	0	65535	200	RemainingCapacity >(FullChargeCapacity – NearFull)置
					位 Fullycharged
PackConfig	1	-	-	0xFA	电池组配置参数,详见Table16
Specification Info	2	-	-	0x0021	软件支持SMBus协议版本信息

Table 19 系统配置参数表

6.2. 计算 / 校准参数

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
Overload	2	-32768	0	-5000	正常应用的最大负载(mA)。 当Current <overload时,清零有效放电标志vdq,暂停 EDV的计算和判断</overload时,清零有效放电标志vdq,暂停
MaxOverCharge	2	0	65535	360	判断过充与否阈值(mAh),具体见充电管理部分
ChargeCurrent	2	0	65535	2500	正常充电电流(mA),对应SBData中ChargingCurrent
ChargeVoltage	2	0	65535	16800	正常充电电压(mV),对应SBData中ChargingVoltage
PrechargeVoltageThreshold	2	0	65535	10000	预充电电压阈值(mV),具体见充电管理部分
PrechargeCurrent	2	0	65535	300	预充电模式电流(mA),对应SBData中ChargingCurrent
PrechargeTemperatureThreshold	2	0	6553.5	0	预充电温度阈值,具体见充电管理部分
PrechargeVoltageResetMargin	2	0	65535	200	预充电状态恢复电压(mV),具体见充电管理部分
FullChargeClear	1	0	100	95	满充状态解除阈值(%) 当RSOC <fullchargeclear时满充状态解除< td=""></fullchargeclear时满充状态解除<>
TaperCurrent	2	0	65535	200	终止充电电流阈值(mA),具体见充电管理部分

TaperVoltage	2	0	65535	100	终止充电电压阈值(mV),具体见充电管理部分
CurrentTaperWindows	1	0	255	40	终止充电时间阈值(秒),具体见充电管理部分
Currentrapervindows		0	200	70	再学习的最低温度阈值(C)。
LearnLowTemperature	2	0	6553.5	0	温度低于此值时,清零有效放电标志VDQ
					单次最长充电时间(秒)
MaxChargeTime	2	0	65535	30000	充电时间大于MaxChargeTime时关闭充电MOSFET
					系统充放电状态阈值(mA)
					无二级保护时,Current< - CurrentDetectedThreshold
CurrentDetectedThreshold	2	0	32767	20	则开启充电MOSFET; Current> CurrentDetected
					Threshold 则开启放电MOSFET
					高温充电暂停温度阈值(C)
					Temperature> ChargeSuspendHighTemp 或
					Temperature< ChargeSuspendLowTemp 时 置 位
ChargeSuspendHighTemp	2	0	6553.5	50	OTA,进行报警广播;
					Temperature< (ChargeSuspendHighTemp –5)
					且Temperature>(ChargeSuspendLowTemp+5)时清
					零OTA,并终止报警广播。
ChargeSuspendLowTemp	2	0	6553.5	0	低温充电暂停温度阈值(C),详解如上
ShutDownVoltage	2	0	65535	9000	系统工作最低电压(mV),具体见低功耗模式
IdleCurrent	1	0	255	2	ldle模式电流阈值(mA),具体见低功耗模式
VpackThreshold	2	0	65535	12000	电池组低压保护电压(mV),详见低功耗模式

Table 20 计算 / 校准参数表

6.3. 安全管理配置

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
CellOverVoltageThreshold	2	0	65535	4350	Cell过压保护阈值(mV) 当Vcell _(max) > CellOverVoltageThreshold的时间超过 OverVoltageTimeThresholde时Cell过压状态成立 当Vcell _(max) < CellOverVoltageResetThreshold的时间 超过OverVoltageTimeThreshold时,Cell过压状态解 除
OverVoltageTimeThreshold	2	0	65535	3	电压保护延时(秒),详解如上
CellOverVoltageResetThreshold	2	0	65535	4150	Cell过压保护复位阈值(mV),详解如上
PackOverVoltageResetMargin	2	0	65535	500	Pack过压保护复位阈值(mV) 当V _{VPACK} >(ChargeVoltage+ PackOverVoltageMargin) 的时间超过OverVoltageTimeThreshold 时Pack过压 状态成立 当V _{VPACK} <(ChargeVoltage- PackOverVoltageReset Margin)的时间超过OverVoltageTimeThreshold时 Pack过压状态解除
PackOverVoltageMargin	2	0	65535	1000	Pack过压保护阈值(mV),详解如上
CellUnderVoltageThreshold	2	0	65535	2800	Cell低压保护阈值(mV) 当Vcell _(min) < CellUnderVoltageThreshold的时间超过 OverVoltageTimeThreshold时Cell低压状态成立 当Vcell _(min) > CellUnderVoltageThresholdReset的时间 超过OverVoltageTimeThreshold时Cell低压状态解 除
CellUnderVoltageResetThreshold	2	0	65535	3000	Cell低压保护复位阈值(mV),详解如上

					充电过流保护阈值(mA)
ChargeOverCurrentThreshold	2	0	32767	4000	当Current> ChargeOverCurrentThreshold的时间超过 OverCurrentTimeThreshold时充电过流状态成立 当 AverageCurrent< ChargeOverCurrentReset
					Threshold的时间超过OverCurrentTimeThreshold时充电过流状态解除
OverCurrentTimeThreshold	2	0	65535	3	过流保护延时(秒),详解如下
ChargeOverCurrentReset Threshold	2	0	32767	3000	充电过流保护复位阈值(mA),详解如上
DischargeOverCurrentThreshold	2	-32768	0	-6000	放电过流保护阈值(mA) 当Current< DischargeOverCurrentThreshold的时间超过OverCurrentTimeThreshold时放电过流状态成立当Current> DishargeOverCurrentResetThreshold的时间超过OverCurrentTimeThreshold时放电过流状态解除
DischargeOverCurrentReset Threshold	2	-32768	0	-5000	放电过流保护复位阈值(mA),详解如上
OverTempDischargeThreshold	2	0	6553.5		放电过温保护阈值(C) 当 Temperature>OverTempDischargeThreshold 时间 超过OverTempTimeThreshold时放电过温状态成立 当 Temperature <overtempdischargeresetthreshold 的时间超过OverTempTimeThreshold时放电过温状态解除</overtempdischargeresetthreshold
OverTempTimeThreshold	2	0	65535	3	过温保护延时(秒),详解如上
OverTempDischargeResetThresh old	2	0	6553.5	50	放电过温保护复位阈值(C),详解如上
OverTempChargeThreshold	2	0	6553.5	60	充电过温保护阈值(C) 当Temperature> OverTempChargeThreshold时间超 过OverTempChargeTime时充电过温成立 当Temperature< OverTempChargeResetThreshold 时间超过OverTempChargeTime时充电过温解除
OverTempChargeResetThresold	2	0	6553.5	60	充电过温保护复位阈值(C),详解如上
SafetyOverVolThreshold	2	0	65535	20000	二级安全保护电压阈值(mV), 电池组电压超过此值时,置位Pflag,关闭所有 MOSFET,熔断FUSE
SafetyOverCurrentThreshold	2	0	32767	10000	二级安全保护充电电流阈值(mA) Current> SafetyOverCurrentThreshold 或 Current<- SafetyOverCurrentThreshold时,置位Pflag, 关闭所有MOSFET,熔断FUSE
SafeOverTempThreshold	2	0	6553.5	75	二级安全保护充电温度阈值(C) 充电或放电过程中温度大于此值时,置位Pflag,关闭 所有MOSFET,熔断FUSE
FETFailCurrent	2	0	32767	10	MOSFET关闭失效电流阈值(mA) 关闭充电MOSFET后Current> FETFailCurrent 或放电 MOSFET关闭后 Current <- FETFailCurrent时,置位 Pflag,关闭所有MOSFET,熔断FUSE
AFEFailTime	2	0	65535	4	AFE失败次数 AFE通讯失败次数达到此值时,置位Pflag,关闭所有 MOSFET,熔断FUSE

Table 21 安全管理配置参数表

6.4. 充电管理配置

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
VOC75	2	0	65535	15300	中间调整75%对应电压值(mV)
VOC50	2	0	65535	14600	中间调整50%对应电压值(mV)
VOC25	2	0	65535	14200	中间调整25%对应电压值(mV)
BatteryLow	1	0	25.5	7	CEDV2对应容量百分比(%)
ADJP0	2	0	65535	14050	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP1	2	0	65535	307	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP2	1	0	255	0	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP3	2	0	65535	5547	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP4	2	0	65535	10847	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP5	1	0	255	9	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP6	2	0	65535	3603	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP7	2	0	65535	720	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP8	2	0	65535	987	CEDV计算参数,填入工具计算值,不建议随意改动
ADJP9	1	0	255	0	CEDV计算参数,填入工具计算值,不建议随意改动
FEDV2	2	0	65535	13200	固定EDV2电压值(mV)
FEDV1	2	0	65535	12900	固定EDV1电压值(mV)
FEDV0	2	0	65535	12400	固定EDV0电压值(mV)
ReferenceResistor	2	0	655.35	20	采样电阻 (mΩ)

Table 22 充电管理配置参数

6.5. 模拟前端配置

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
CellBalanceThreshold	2	0	65535	3800	平衡电压阈值(mV), 详见充电管理部分
CellBalanceWindow	2	0	65535	100	执行平衡时 CellBalanceThreshold的最小增量(mV),详见充电管理部分
CellBalanMin	1	0	255	40	执行平衡所需的最小压差(mV), 详见充电管理部分
CellImbalanceMax	2	0	65535	200	严重电压失衡所需的压差(mV), 详见充电管理部分
BlancelMin	2	0	32767	2000	平衡最小充电电流(mA)
Pflag	1	-	-	0×00	0x00: 系统正常,无安全保护异常出现 0x12: 通过对此处写0x12将清除所有安全状态,系 统恢复正常,并清零Pflag 0x66: 系统有温度 / 电压 / 电流安全状态出现,熔 断Fuse,关闭所有MOSFET 其它: Reserved
AFE OLV	1	0	31	0x0F	仿真前端Overload电压设定,详见列表
AFE OLT	1	-	-	0x0F	模拟前端Overload延时设定,详见列表
AFE SCC	1	-	-	0x77	仿真前端充电短路电压及延时设定,详见列表
AFE SCD	1	-	-	0x77	仿真前端放电短路电压及延时设定,详见列表

Table 23 AFE仿真前端配置参数表

AFE 参数设置表

Name AFE OLV	Bits	AFE放电过载阈值 00000: 0.050V	•	scription		
AFE OLV		00000: 0.050V				
AFE OLV				00040 0 0001/	00044 0 0051/	
AEE OLV			00001: 0.055V	00010: 0.060V	00011: 0.065V	
AEE OLV		00100: 0.070V	00101: 0.075V	00110: 0.080V	00111: 0.085V	
	4.0	01000: 0.090V	01001: 0.095V	01010: 0.100V	01011: 0.105V	
AI L OLV	4-0	01100: 0.110V	01101: 0.115V	01110: 0.120V	01111: 0.125V	
		10000: 0.130V	10001: 0.135V	10010: 0.140V	10011: 0.145V	
		10100: 0.150V	10101: 0.155V	10110: 0.160V	10111: 0.165V	
		11000: 0.170V	11001: 0.175V	11010: 0.180V	11011: 0.185V	
		11100: 0.190V	11101: 0.195V	11110: 0.200V	11111: 0.205V	
		AFE放电过载延迟				
		0000: 1ms	0001: 3ms	0010: 5ms	0011: 7ms	
AFE OLT	3-0	0100: 9ms	0101: 11ms	0110: 13ms	0111: 15ms	
		1000: 17ms	1001: 19ms	1010: 21ms	1011: 23ms	
		1100: 25ms	1101: 27ms	1110: 29ms	1111: 31ms	
		AFE充电短路延	退时间			
		0000: 0µs	0001: 61µs	0010: 122µs	0011: 183µs	
	7-4	0100: 244µs	0101305µs	0110: 366µs	0111: 427μs	
		1000: 488µs	1001: 549µs	1010: 610µs	1011: 671µs	
AFE SCC		1100: 732µs	1101: 791µs	1110: 854µs	1111: 915µs	
AIL OOC		AFE充电短路阈	值			
		0000: 0.100V	0001: 0.125V	0010: 0.150V	0011: 0.175V	
	3-0	0100: 0.200V	0101: 0.225V	0110: 0.250V	0111: 0.275V	
		1000: 0.300V	1001: 0.325V	1010: 0.350V	1011: 0.375V	
		1100: 0.400V	1101: 0.425V	1110: 0.450V	1111: 0.475V	
		AFE放电短路延	迟时间			
		0000: 0µs	0001: 61µs	0010: 122µs	0011: 183µs	
	7-4	0100: 244µs	0101: 305µs	0110: 366µs	0111: 427µs	
		1000: 488µs	1001: 549µs	1010: 610µs	1011: 671µs	
AFF CCD		1100: 732µs	1101: 791µs	1110: 854µs	1111: 915µs	
AFE SCD —		AFE放电短路阈		• -	•	
		0000: 0.100V	0001: 0.125V	0010: 0.150V	0011: 0.175V	
	3-0	0100: 0.200V	0101: 0.225V	0110: 0.250V	0111: 0.275V	
	-	1000: 0.300V	1001: 0.325V	1010: 0.350V	1011: 0.375V	
		1100: 0.400V	1101: 0.425V	1110: 0.450V	1111: 0.475V	

Table 24 AFE过载 / 短路参数表

6.6. 客户自有信息

Name	Bytes	Lower Limit	Higher Limit	Typical value	Description
ManufactureDate	2	-	-	1980-1-1	生产日期,对应SBData中ManufactureDate
SerialNumber	2	0	65535	0	电池序列号,对应SBData中SerialNumber
Manufacture Password1	2	-	-	aa	DataFlash密码,解封DataFlash时使用
Manufacture Password2	2	-	-	bb	如上所述
Manufacture Password3	2	-	-	CC	如上所述
Manufacture Password4	2	-	-	dd	如上所述
ManufactureName	16	-	-	Sinowealth	电池厂家名称,对应SBData中ManufactureName
DeviceName	16	-	-	SH366000	电池器件名称,对应SBData中DeviceName
ChemistryName	16	-	-	LION	电池化学特性,对应SBData中DeviceChemistry

Table 25 客户自有信息参数表

七、低功耗模式

SH366000有两个低功耗模式,分别应用于电池可从应用系统脱离(NR=0)和不可从应用系统脱离两种模式(NR=1),对于不可从应用系统脱离的模式,有仅开启放电MOSFET和开启充放电MOSFET两种模式:

SH366000应用于电池可从应用系统脱离(NR=0)时,当电流绝对值小于IdleCurrent、SMBus为低电平的维持时间超过2秒、PRES为高电平、且无安全条件发生则系统进入低功耗模式(Sleep Mode)。当上述任一条件不满足时退出低功耗模式。SH366000进入低功耗模式后,关闭充放电MOSFET。SH366000周期性检测系统的电压、电流和温度,并进行容量更新。

SH366000应用于电池不可从应用系统脱离(NR=1)时,当电流绝对值小于IdleCurrent、SMBus为低电平的维持时间超过2秒、PRES为低电平、且无安全条件发生则系统进入低功耗模式(Sleep Mode)。当上述任一条件不满足时退出低功耗模式。在NRCHG=0时,SH366000进入低功耗模式后,关闭充电MOSFET、开启放电MOSFET;在NRCHG=1时,SH366000进入低功耗模式后,开启充放电MOSFET。SH366000周期性检测系统的电压、电流和温度,并进行容量更新。

NR	NRCHG	低功耗状态	进入低功耗条件	退出条件
0	Х	充放电MOSFET均关闭	1. 绝对电流小于IdleCurrent 2. SMBus维持低超过2s 3. 无安全保护 4. PRES为高	任意条件不满足
1	0	关闭充电MOSFET 开启放电MOSFET	 绝对电流小于IdleCurrent SMBus维持低超过2s 无安全保护 	任意条件不满足
1	1	充放电MOSFET均开启	1. 绝对电流小于IdleCurrent 2. SMBus维持低超过2s 3. 无安全保护	任意条件不满足

Table 26 低功耗模式列表

SH366000处于放电模式,电池组电压小于ShutdownVoltage,且pack端电压小于VpackThreshold时,SH366000进入关闭模式(Ship Mode)。此时,关闭所有的MOSFET,切断所有器件的供电。充电器重新连接VPACK时,系统重新启动。

SH366000也可通过指令进入关闭模式。当SH366000处于放电状态,上位机通过SMBus下达关闭指令时,SH366000将进入关闭模式,关闭所有的MOSFET,切断供电。当有充电器连接到VPACK时,系统重新上电启动。

Figure 5 低功耗模式示意图

八、电气特性

8.1. 绝对极限参数

管脚	最小值	最大值	单位	备注
BAT、VPACK、VC1	-0.3	29	V	與spec不統一?
CHG, OD	-0.3	VPACK+0.3	V	
DSG	-0.3	BAT+0.3	V	
VC2-VC4	-0.3	VC1+0.3	٧	
VC5	-0.3	4	٧	
ARS1, ARS2, RS1, RS2	-1	1	٧	
AVDD, VDD	-0.3	7	٧	
SMBC, SBMD	-0.3	7	V	
其它IO	-0.3	VDD+0.3	V	
工作温度	-40	85	°C	

8.2. DC特征参数(BAT=14V, V_{CC} =3V, GND = 0V, TA = -40~85°C, unless otherwise noted)

符号	特性	最小值	典型值	最大值	单位	备注				
	MainPower									
V _{BAT} , V _{VPACK}	: 工作电压	5		25	V					
I _{OP}	工作电流		750		uA					
I _{SLEEP}	低功耗电流		110		uA					
I _{SHUTDOWN}	掉电电流		0.1		uA					
			LDO							
V _{CC}	LDO输出	-4%	3	2%	٧	8.0V < V_{BAT} or V_{VPACK} <25V, I_{LOAD} <25mA, TA = -40°C to 85°C				
V_{CC}	LDO输出	-9%	3	2%	V	$6.5V < V_{BAT}$ or $V_{VPACK} < 8V$ $I_{LOAD} < 25mA$, TA = $-40^{\circ}C$ to $85^{\circ}C$				
Vcc	LDO输出	-9%	3	2%	٧	$5.4V < V_{BAT}$ or $V_{VPACK} < 6.5V$, I_{LOAD} < $16mA$, $TA = -40$ °C to 85 °C				
Vcc	LDO输出	-2%	3	2%	٧	$4.5V < V_{BAT}$ or $V_{VPACK} < 25V I_{LOAD} < 2mA$, TA = -40° C to 85° C				
ΔV_{TEMP}	LDO温度稳定性		±0.2		%	lout = 2mA, TA = -40°C to 85°C				
$\Delta V_{VCCLOAD}$	LDO负载能力		7	15	mV	0.1mA< I _{LOAD} <2mA				
$\Delta V_{VCCLOAD}$	LDO负载能力		40	100	mV	0.1mA< I _{LOAD} <25mA				
ΔI_{LINE}	LDO负载能力		3	10	mV	5.4V <v<sub>BAT<25V, I_{LOAD} = 2mA</v<sub>				
			GPIO							
V_{IL}	SMBC,SMBD	-0.3		8.0	V					
V _{IH}	SMBC,SMBD	2		6	V					
V _{OL}	SMBD,SMBC	0		0.4	V	I _{OL1} =-1mA				
V_{OL2}	LED0-LED4	0.8	ADC	1.2	V	I _{OL2} =-4mA				
NR	中EADC 中海ADC				D:4	VCC=3V				
	电压ADC,电流ADC		16		Bit					
RAIN	ADC输入阻抗		2.5		ΜΩ	ADC输入阻抗				
V_{AN0}, V_{AN1}	AN0,AN1输入电压	0		1	V	DOL DOS DOS AGNID				
RS1-RS2	差分输入电压	-0.25		0.25	V	RS1-RS2, RS2=AGND				

符号	特性	最小值	典型值	最大值	单位	备注
			MOSFET			
R_{BAL}	VC _n -VC _{n+1} 内部平衡电阻		150	±50%	Ω	$VC_{n}-VC_{n+1}=2V$
R _{DS(on)}	TEMP串联电阻		50	100	Ω	I = 1 mA, TA = -40°C to 85°C
V_{DSGON}	DSG输出低电平			1	V	$V_{BAT} = 5\sim20V, I_{O} = -0.5mA$
V _{CHGON}	CHG输出低电平			1	V	$V_{VPACK} = 5 \sim 20 V, I_0 = -0.5 mA$
V_{DSGOFF}	DSG输出高电平	V _{BAT} -1			V	$V_{BAT} = 5 \sim 20 V$, $I_{O} = 0.5 mA$
V_{CHGOFF}	CHG输出高电平	V _{PACK} -1			V	$V_{VPACK} = 5 \sim 20 V$, $I_{O} = 0.5 mA$
t _R	CHG 上升沿时间		40	200	μs	C _L = 4700pF, V _{DSG} : 10%~90%
t _R	DSG 上升沿时间		40	200	μs	C _L = 4700pF, V _{CHG} : 10%~90%
t _F	CHG 下降沿时间		40	200	μs	C _L = 4700pF, V _{DSG:} 90%~10%
t⊧	DSG 下降沿时间		40	200	μs	C _L = 4700pF, V _{CHG} : 90%~10%
I _{OD}	OD 驱动能力	6	10	-	mA	外部输入 5V

8.3. AC特征参数(BAT=14V,V_{CC} =3V, GND = 0V, TA = -40~85°C, unless otherwise noted)

符号	特性	最小值	典型值	最大值	单位	备注
			MainPower			
f _{AD}	ADC工作频率		65.535		kHz	
f _{RC}	RC工作频率		32.768	±2%	kHz	V _{DD} = 3V,外部电阻330KΩ,精度 0.1%,温漂50ppm
			SMBus			
f _{SMB}	SMBus通讯频率	10		100	kHz	
t _{BUF}	停止和起始间总线空闲时间	4.7			μs	
t _{LOW}	时钟低电平时间	4.7			μs	
t _{HIGH}	时钟高电平时间	4.0		50	μs	
t _{HD: DAT}	数据保持时间	300			ns	
t _{SU: DAT}	数据建立时间	250			ns	
t _{HD: STA}	起始保持时间	4.0			μs	
t _{SU: STA}	起始建立时间	4.7			μs	
t _{su: sто}	停止建立时间	4.0			μs	

符号	特性	最小值	典型值	最大值	单位	备注
t_R	时钟/数据上升时间	-	=	1000	ns	(V _{ILMAX} – 0.15V) to (V _{IHMIN} + 0.15V)
t _F	时钟 / 数据下降时间			300	ns	0.9V _{DD} to (V _{ILMAX} – 0.15)
t _{TIMEOUT}	时钟低电平超时时间		25		ms	

Figure 6 SMBus 通讯示意图

九、参考电路

Figure 7 SH366000(TQFP48)参考电路原理图

Figure 8 SH366000(TSSOP38)参考电路原理图

十、订货信息

产品编号	封装		
SH366000U/048UR	TQFP48		
SH366000X/038XY	TSSOP38, Tape & Reel		

十一、 封装信息

TQFP48 Outline Dimensions

Symbol	Dimens	ions in	Dimensions in mm		
Syllibol	Min.	Max.	Min.	Max.	
Α	0.346	0.362	8.80	9.20	
A1	0.270	0.278	6.85	7.05	
A2	0.006	0.010	0.15	0.25	
A3	0.020	Тур.	0.5 Typ.		
A4	0.026 Typ.		0.65 Typ.		
В	0.346	0.362	8.80	9.20	
B1	0.270	0.278	6.85	7.05	
B2	0.026 Typ.		0.65 Typ.		
С	0.035	0.041	0.90	1.05	
C1	0.004	0.008	0.09	0.20	
C2	0.002	0.006	0.05	0.15	
C3	0.017 Typ.		0.4365 Typ.		
C4	0.017 Typ.		0.4365 Typ.		
D	0.033	0.045	0.85	1.15	
D1	0.018	0.030	0.45	0.75	
R1	R1 0.006 Typ.		0.15 Typ.		
R2	0.006 Typ.		0.15 Typ.		
θ1	12° Typ.		12° Typ.		
θ2	12° Typ.		12° Typ.		
θ3	0° - 7°		0° - 7°		
θ4	7° Typ.		7° Тур.		

TSSOP 38外形尺寸

Cross boat	Dimensions 1	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A		1. 200		0.047	
A1	0.050	0. 150	0.002	0.006	
A2	0.800	1.000	0.031	0.039	
b	0.170	0. 270	0.007	0.011	
c	0.090	0. 200	0.004	0.008	
D	9.600	9.800	0.378	0.386	
E	6. 250	6. 550	0. 246	0. 258	
E1	4. 300	4. 500	0.169	0.177	
e	0.50 (BSC)		0. 020 (BSC)		
Н	0.25(TYP)		0.01(TYP)		
L	0. 500	0.700	0.020	0.028	
θ	1°	7°	1°	7°	

技术要求:

- 1. 载带颜色为黑色
- 2. 配套13.30宽盖带
- 3. 盖带颜色无色透明
- 4. 单位面积表面阻抗为10⁵~10¹¹ Ohm/SQ
- 5. 10个传送定位孔间距累计公差0.20Max6. 载带直线弯曲度≤1mm/100mm
- 7. 所有单位为mm
- 8. 视图方向: → •

技术要求:

- 每盘装产品2500只
 A、B说明仅供参考,依实际要求加以调整,但必须满足载带、编带要求
 卷盘颜色为蓝色