PROPIEDADES ANALÍTICAS DE FUNCIONES L DE ARTIN

HÉCTOR PASTÉN

1. Teoría de grupos

Corolario del teorema de Artin:

Teorema 1.1 (Artin). Sea G grupo finito $y \chi$ un caracter de G. Existen subgrupos H_j de G, caracteres χ_j de cada H_j con dimensión 1 (i.e. $\chi_j(e) = 1$), y números racionales q_j tales que

$$\chi = \sum_{j} q_j \cdot \operatorname{Ind}_{H_j}^G(\chi_j).$$

Proof. Por Artin podemos tomar los H_j cíclicos pero a priori no sabemos si los χ_j son de dimensión 1. Como Ind es lineal y los caracteres irreducibles de grupos abelianos son de dimensión 1 obtenemos lo deseado.

Con una idea similar pero con más trabajo, el teorema de Brauer da

Teorema 1.2 (Brauer). Sea G grupo finito $y \chi$ un caracter de G. Existen subgrupos H_j de G, caracteres χ_j de cada H_j con dimensión 1 (i.e. $\chi_j(e) = 1$), y números enteros n_j tales que

$$\chi = \sum_{j} n_j \cdot \operatorname{Ind}_{H_j}^G(\chi_j).$$

2. Funciones L de Hecke

Hecke definió una noción de caracter ψ distinta, y asociados a ellos una función L que escribimos $L_h(s,\psi)$. Él demostró que estas funciones L coinciden con las de ciertas formas modulares (funciones theta) y de esto se sigue:

Teorema 2.1 (Hecke). Sea ψ un caracter de Hecke. Entonces la función $L_h(s,\psi)$ tiene extensión analítica a todo \mathbb{C} salvo un polo en s=1 cuando ψ es trivial. Además, $L_h(1,\psi) \neq 0$.

Esto generaliza las propiedades básicas de funciones L de Dirichlet.

Artin demostro un resultado muy importante:

Teorema 2.2 (Ley de reciprocidad de Artin). Si χ es el caracter de una representación de Galois $\rho: \operatorname{Gal}(L/K) \to \mathbb{C}^{\times}$ de dimensión 1, entonces existe un caracter de Hecke ψ tal que

$$L(s, \chi, L/K) = L_h(s, \psi).$$

En particular, $L(s, \chi, L/K)$ tiene extensión analítica salvo un polo en s=1 cuando ρ es trivial, y $L(1, \chi, L/K) \neq 0$.

Date: November 24, 2023.

3. Función L de caracteres virtuales

Un caracter virtual de un grupo G es una combinación lineal entera de caracteres de G. Si $\chi = \sum_j n_j \chi_j$ es un caracter virtual de $\operatorname{Gal}(L/K)$ con χ_j caracteres irreducibles distintos, entonces los n_j son únicos y se define

$$L(s, \chi, L/K) = \prod_{j} L(s, \chi_j, L/K)^{n_j}.$$

Propiedad básica que se sigue del formalismo de Artin: Si los $n_j \geq 0$ (o sea, χ es un caracter) entonces la definición anterior coincide con la función L de Artin clásica $L(s, \chi, L/K)$.

4. Aplicaciones a las funciones L de Artin

Recordemos que las funciones L de Artin solo convergen en un semiplano de \mathbb{C} . Artin conjeturó lo siguiente

Conjetura 4.1. Sea $L(s, \chi, L/K)$ una función L de Artin. Entonces ella admite continuación analítica a todo \mathbb{C} , salvo quizás un polo en s=1.

Usando la teoría anterior, Brauer demostró:

Teorema 4.2 (Artin-Brauer). Sea $L(s, \chi, L/K)$ una función L de Artin. Entonces ella admite continuación meromorfa a todo \mathbb{C} .

5. El orden del polo en
$$s=1$$

Recordamos la reciprocidad de Frobenius:

$$\langle \chi, \operatorname{Ind}_{H}^{G} \psi \rangle_{G} = \langle \operatorname{Res}_{H}^{G} \chi, \psi \rangle_{H}, \quad H \leq G.$$

Usando la teoría anterior se obtiene un resultado muy útil en una serie de problemas aritméticos como por ejemplo la conjetura de Tate:

Teorema 5.1. Sea $\rho: G \to GL(V)$ una representación de Artin donde $G = \operatorname{Gal}(L/K)$. Entonces $\dim V^G = -\operatorname{ord}_{s=1}L(s,\rho,L/K)$.

DEPARTAMENTO DE MATEMÁTICAS, PUC CHILE Email address, H. Pasten: hector.pasten@mat.uc.cl