The Lean Proof Assistant

CS242

Lecture 15

Review

- Dependent types are a foundation for mathematics
 - And typed programming
- A single formalism for defining programs, proofs, and proof rules
 - And ensuring they are used in a consistent way
- Relies on constructive interpretations of mathematics
 - We must construct (compute) evidence for every assertion
 - Constructive proofs exclude proofs by contradiction

Once More, From the Top ...

- Today we will look at Lean (version 3)
 - The proof assistant you will use in a homework assignment ...
- Illustrate basic features with examples

- Focus on using Lean for proofs
 - Not exploring new type theory

Basics

Type assertions are written ``e:t'', meaning expression e has type t Examples:

```
constant n : nat
constant f : nat -> nat
```

The #check command prints out information about a name

Useful for debugging

```
#check n
#check f
#check f n
```

Browser-Based Lean

- There is a nice WebAssembly implementation of Lean
 - Simply type expressions into the browser and see the results
 - Makes it easy to experiment

https://leanprover-community.github.io/lean-web-editor/

Recall: Programs as Proofs

$$A \vdash e_1 : t \rightarrow t'$$

$$A \vdash e_2 : t$$

$$A \vdash e_1 e_2 : t'$$
 $A \vdash e_1 e_2 : t'$
[App]

From a proof of $t \rightarrow t'$ and and a proof of t, we can prove t'.

$$\frac{A, x : t \vdash e : t'}{A \vdash \lambda x.e : t \rightarrow t'}$$
 [Abs]

If assuming t we can prove t', then we can prove $t \rightarrow t'$.

Function Definitions

• Lambda calculus (or implication) is built-in to Lean

• Two equivalent definitions of a function:

```
def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := lam g x, g x
```

Notes

```
def app (g: nat -> nat) (x:nat) : nat := g x
def app2 : (nat -> nat) -> nat -> nat := lam g x, g x
```

- λ is ascii for λ
 - Lean takes unicode seriously!
- Note λ 's can have multiple variables (no need to repeat λ)
- The punctuation is different from other languages
 - Definition uses := instead of =
 - Write λx , e not λx . E
 - A list of variables is separated by spaces, not commas
 - Parens often needed if variables are given types (c.f., the arguments to app)
 - Types can often be omitted, but not always
 - Lean has type inference, but still need enough types for Lean to figure out all the types

Polymorphic Functions

```
def polyapp (\alpha: Type) (g: \alpha -> \alpha) (x:\alpha) : \alpha := g x def polyapp2 : \Pi \alpha : Type, (\alpha -> \alpha) -> \alpha -> \alpha := \lambda t g x, g x def polyapp3 : \forall \alpha : Type, (\alpha -> \alpha) -> \alpha -> \alpha := \lambda t g x, g x
```

- These polymorphic versions take a type argument
 - And it is a dependent type the type of the function depends on the type argument!
 - Which is why we use Π (or \forall , they are synonyms)
- Unicode: $\$ is $\$, $\$ forall is $\$, $\$ a is α

Propositions as Types

A theorem:

```
constants p q : Prop
theorem t1 : p -> q -> p := \lambda hp: p, \lambda hq : q, hp
```

- But Prop = Type
- And theorem = def!
- Just alternative syntax to emphasize proofs instead of computation

And More Options

We could also write this proof

```
theorem t2 : p \rightarrow q \rightarrow p := assume hp : p, assume hq : q, hp
```

- This means exactly the same thing
- assume is just longhand for λ

The Polymorphic Version

We could also write this proof so it works for any p and q

```
theorem t3 (p,q: Prop) : p \rightarrow q \rightarrow p := assume hp : p, assume hq : q, hp
```

Conjunction: And Introduction

```
A few proofs of p \to q \to p \land q lemma a1 (hp:p) (hq:q): p \land q := and.intro hp hq or lemma a2: p \to q \to p \land q := \lambda hp: p, \lambda hq: q, \lambda and.intro hp hq or lemma a3: p \to q \to p \land q := assume hp: p, \lambda assume hq: p, \lambda and.intro hp hq or lemma a4 (hp:p) (hq:q): p \land q := \langle hp, hq \rangle
```

Note: lemma is another synonym for def, the angle brackets are special syntax for and.intro

Conjunction: And Elimination

Proofs of p \land q \rightarrow q \land p

lemma a5 (hpq: $p \land q$) : $q \land p$:= and.intro (and.right hpq) (and.left hpq)

lemma a6 (hpq: $p \land q$) : $q \land p := and.intro hpq.right hpq.left$

lemma a7 (hpq: $p \land q$) : $q \land p := \langle hpq.right, hpq.left \rangle$

Disjunction: Or Introduction

```
Proofs of p \rightarrow p \vee q and q \rightarrow p \vee q
lemma o1 (hp : p) : p V q := or.intro_left q hp
lemma o2 : q \rightarrow p \lor q :=
  assume hq: q,
  or.intro_right p hq
```

Disjunction: Or Elimination

```
Proofs of p \vee q \rightarrow q \vee p
lemma o3 (h : p V q) : q V p :=
 or.elim h
    (assume hp:p,
    or.intro right q hp)
    (assume hq:q,
    or.intro left p hq)
```

or.elim does a case analysis

Specifically, or.elim is a function taking three arguments:

```
an object of type p \lor q
a function of type p \rightarrow r
a function of type q \rightarrow r
```

In this example $r = q \lor p$

Show: Making the Conclusion Explicit

```
lemma o3 (h : p V q) : q V p :=
 or.elim h
   (assume hp:p,
   show q V p,
   from or.intro right q hp)
   (assume hq:q,
   show q V p,
   from or.intro_left p hq)
```

- show allows the user to state the goal
 - The proposition (type) we are trying to prove
- Helpful for making proofs clearer
- And detecting bugs in the proof earlier

Structuring Longer Proofs

```
lemma a8 (h : p \land q) : q \land p := have hp : p, from and.left h, have h from t in e have hq : q, from and.right h, is equivalent to show q \land p, from and.intro hq hp (\lambdah.e) t
```

Recall (λ h.e) t is also equivalent to let h = t in e

Useful for structuring longer arguments in a series of steps

A More Complex Lemma

```
(p \rightarrow q) \rightarrow (p \rightarrow r) \rightarrow (p \rightarrow q \wedge r) lemma imp (f1: p -> q) (f2: p -> r) (x:p) : q \lambda r := have hq: q, from f1 x, have hr: r, from f2 x, show q \lambda r, from \lambda hq, hr \rangle
```

Quantifiers

• We've already seem examples of universal quantifiers

Recall

```
def polyapp (\alpha : Type) (g: \alpha -> \alpha) (x:\alpha) : \alpha := g x def polyapp2 : \Pi \alpha : Type, (\alpha -> \alpha) -> \alpha -> \alpha := \lambda t g x, g x def polyapp3 : \forall \alpha : Type, (\alpha -> \alpha) -> \alpha -> \alpha := \lambda t g x, g x
```

If we define polymorphic functions, we are carrying out universal proofs.

The intro and elimination of universal quantifiers is implicit in polymorphic typechecking.

A very common case, though there are times we want explicit \forall -intro and \forall -elim.

Existential Quantifier Elimination

Eliminating an existential quantifier from h: $\exists x: t, p x$ has the form

```
exists.elim h

(assume y:t,

assume z:p y,

e)
```

Existential Quantifier Introduction

Consider a proposition of the form E(p)

The exists.intro p $E(p) = \exists x. E(x)$

We replace the subexpression p by the existentially bound variable

 Not entirely trivial, as p could be a complex expression that the system needs to search for in E(p)

A Proof with Quantifiers

```
If x is even, then x^2 is even.
definition even (x : nat) := \exists k, x = 2 * k
theorem x_even_x2_even (x: nat) (h: even x) : even (x * x) :=
  exists.elim h
   (assume k,
    assume hk : x = 2 * k,
    show even (x * x),
    from exists.intro (k * x)
      (calc x * x = (2 * k) * x : by rw hk
           \dots = 2 * (k * x) : by rw nat.mul assoc
```

Calculational Proofs and Tactics

```
calc x * x = (2 * k) * x : by rw hk
... = 2 * (k * x) : by rw nat.mul_assoc
```

Calc is a special proof mode for "calculation"

- Proofs that involve the transitivity of equality
- At each step we must show the justification for the equality
 - rw stands for "rewrite", any rule that involves an algebraic rewrite
 - rw hk means a substitution using the type of hk (recall hk: x = 2 * k)
 - rw nat.mulassoc means apply the associativity law for multiplication (x * y)* z = x * (y * z)
- Lean automates some patterns of rules (tactics)

Summary

- There are many more features of Lean
 - Many other propositions, functions, and proof combinators
 - Lots of libraries
 - Many other alternative shorthands
- But this much is a good starting point
 - You will need to learn more from the documentation
 - The Lean tutorial is quite good!
- With practice, writing proofs becomes like programming
 - Dependent type theory shows, in fact, that it is just programming!