- **1.** Establezca cuales de las siguientes oraciones son proposiciones:
 - a) 87 es un número par
 - b) ¿Qué día es hoy?
 - c) Marte es un planeta pero la Luna no lo es.
 - d) x + 2 = 7
 - e) Hay algún número entero que satisface la ecuación x+2=7.
 - f) Ordena tu habitación.
- 2. Indique cuáles de las siguientes proposiciones son compuestas y expréselas de manera simbólica:
 - a) Si peso más de 60 kg, me voy a inscribir en el gimnasio.
 - b) Si me prometes guardar el secreto, entonces te cuento lo ocurrido.
 - c) La primera computadora digital completamente electrónica fue construida en el siglo XX.
 - d) 2+3>1 ó 2+3<1 ó 4-6=-2
 - e) Aprobarás si y sólo si estudias mucho.
 - f) Si llueve vamos al cine, en cambio si hay sol vamos al parque.
- **3.** Sean p, q, r, los siguientes enunciados:
 - p: En 1956 comenzó a funcionar la primera computadora electrónica, la ENIAC.
 - q: El uso de las computadoras se masificó hace 25 años con la llegada de las computadoras personales.
 - r: En la actualidad, la mayoría de las actividades humanas tienen algún soporte informático.

Enuncie en forma coloquial las siguientes expresiones simbólicas:

- a) p∧q
- b) $\neg q \rightarrow \neg r$
- 4. Exprese en forma simbólica y determine el valor de verdad de las siguientes proposiciones:
 - a) Si 7 > 5 entonces -7 < -5
 - b) Si 4-2=8 ó 6 es par, entonces 6>10.
 - c) O 2 es un entero positivo o bien $\sqrt{2}$ es un número irracional.
 - d) Si Roma es la capital de España, entonces Buenos Aires es una ciudad.
 - e) 4 es un número par y 26 es divisible por 13.
- **5.** Construya las tablas de verdad de las siguientes formas proposicionales; indique en cada caso si se trata de una tautología, una contradicción o una contingencia:
 - a) p ∧ ¬q

b) p ∧ ¬p

c) $(p \lor p) \leftrightarrow p$

d) $(p \land q) \lor \neg p$

e) $q \rightarrow (p \lor q)$

- f) $\neg p \rightarrow \neg q$
- **6.** Si v(p) = v(s) = V y v(q) = v(r) = F, determine el valor de verdad de:
 - a) $\neg [(p \land r) \leftrightarrow \neg q]$
 - b) $(\neg p) \vee [\neg (q \land s) \land (r \lor s)]$
- 7. Si $v((p \lor q) \rightarrow r) = F y v(q) = V$ ¿puede conocerse el valor de verdad de p y de r?
- **8.** Exprese la forma recíproca, contraria y contrarrecíproca de la siguiente proposición: "Si mañana es feriado, entonces estudio matemática"

- **9.** a) Explique la diferencia entre $p \rightarrow q$ y $p \Rightarrow q$
 - b) Idem con $p \leftrightarrow q y p \Leftrightarrow q$
 - c) ¿Toda equivalencia lógica es una tautología?
 - d) ¿Toda tautología es una equivalencia lógica?
 - e) Si p implica lógicamente a q, ¿son p y q lógicamente equivalentes?
- 10. Verifique que las siguientes formas son tautológicas, sin usar tablas de verdad. Justifique.
 - a) $[(p \land q) \rightarrow r] \leftrightarrow [p \rightarrow (q \rightarrow r)]$
 - b) $[\neg (p \rightarrow q)] \leftrightarrow (p \land \neg q)$
 - c) $(p \leftrightarrow q) \leftrightarrow (p \land q) \lor (\neg p \land \neg q)$
 - d) $[p \rightarrow (q \land r)] \leftrightarrow [(p \rightarrow q) \land (p \rightarrow r)]$
- **11.** Compruebe que las proposiciones $p_1 : \neg [p \rightarrow (q \lor (t \land r))]$ y $p_2 : \neg (p \rightarrow q) \land (t \rightarrow \neg r)$ son lógicamente equivalentes. Justifique la ley lógica utilizada en cada caso.
- 12. Utilizando leyes lógicas, simplifique las siguientes proposiciones:
 - a) $\neg(\neg p \rightarrow q)$
 - b) $\neg (p \land q) \land (\neg p \lor q)$
 - c) $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q)$
 - d) $\neg (\neg p \land \neg q) \land (\neg p \rightarrow \neg q)$
 - e) $(p \rightarrow q) \land [\neg q \land (r \lor \neg q)]$
 - f) $\neg \{ \neg \lceil (p \lor q) \land r \rceil \lor \neg q \}$
- 13. Escriba las expresiones simbólicas correspondientes a los circuitos lógicos dados y construya la correspondiente tabla de verdad:

14. Simplifique los siguientes circuitos lógicos a través de la simplificación de las proposiciones asociadas a ellos:

c)

- **15.** Dada la proposición $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$
 - a) Diseñe un circuito que represente la expresión simbólica dada.
 - b) Encuentre una red de conmutación que sea equivalente a la original mediante la simplificación de la expresión dada.
 - c) Represente la red simplificada
- 16. Exprese los siguientes razonamientos en forma simbólica y determine su validez:
 - a) Si fumar es saludable, entonces los cigarrillos son recetados por los médicos. Fumar es saludable. Por lo tanto, los cigarrillos son recetados por los médicos.
 - b) Si no soy famoso, entonces no soy actor, Soy famoso. Luego, soy actor.
 - c) Si el índice de inflación aumenta, los precios también lo hacen. La inflación no está aumentando. Por lo tanto, los precios tampoco aumentan.
- 17. Indique las reglas de inferencia o equivalencias lógicas utilizadas en cada paso de la prueba de validez dada para el razonamiento:

$$\begin{array}{c}
p \rightarrow r \\
\hline
 \therefore q \lor r
\end{array}$$

Prueba de validez:

Paso:

Justificación:

- 1) p ∨ q
- 2) $(\neg p) \rightarrow q$
- 3) $p \rightarrow r$
- 4) $(\neg r) \rightarrow (\neg p)$
- 5) $(\neg r) \rightarrow q$
- 6) $[\neg(\neg r)] \lor q$
- 7) r∨q
- 8) q∨r
- 18. Utilice las reglas de inferencia para demostrar la validez de los siguientes razonamientos:

a)
$$p \rightarrow q$$

$$r \rightarrow (\neg q)$$

$$p$$

$$\begin{array}{ccc}
p & \neg q \\
q & \neg r \\
d) & \underline{s \rightarrow (\neg p)} \\
& \therefore \neg s
\end{array}$$

e)
$$\frac{(p \rightarrow \neg q) \land q}{\neg (r \rightarrow s)}$$

$$\therefore r \land \neg (p \lor s)$$

$$\begin{array}{c}
(p \lor q) \land r \\
f) \quad q \to \neg r \\
\vdots \quad p
\end{array}$$

19. Demuestre con un contraejemplo que los siguientes razonamientos no son válidos:

$$p \to q$$

$$\neg p \to \neg r$$

$$\therefore \neg r \to p$$

$$\frac{\neg b \to d}{b}$$

- **20.** Indique cuáles de las expresiones siguientes son esquemas proposicionales:
 - a) x + 2 = 8
 - b) 3x-5
 - c) x es un número natural múltiplo de 5 y menor que 20.
 - d) $p(a) \wedge q(b)$
 - e) $(\forall x : p(x)) \lor q(x)$
 - f) $\exists x : [p(x) \rightarrow (q(x) \lor r(x))]$
- **21.** Determine el valor de verdad de las siguientes proposiciones, considerando el universo dado en cada caso:
 - a) $\exists x: x+3=5$

$$U = \{1,2,3\}$$

b) $\forall x: x+3=5$

$$U = \{1,2,3\}$$

c) $\forall x: x+3 \leq 10$

$$U = \{1,2,3,4\}$$

d) $\forall x : x + 3 \le 10$ e) $\exists x : x^2 = 5$

- f) $\exists x : x^2 = 5$
- U = N
- 22. Exprese en forma simbólica los siguientes enunciados:
 - a) Hay gatos que no son mimosos.
 - b) Algunos números son múltiplos de tres.
 - c) Para todo número real x, si $x \ge 0$, entonces $x^2 + 1 \ge 1$.
- 23. Niegue las siguientes proposiciones:
 - a) $\forall x : (p(x) \lor q(x))$
 - b) $(\forall x : p(x)) \land (\exists y : q(y))$
 - c) $\exists x : \exists y : x + y = 1$
 - d) $\forall y : [p(y) \rightarrow (\exists x : \neg q(x))]$
- **24.** Sea U el conjunto de los números enteros. Se definen en U las siguientes funciones proposicionales:

p(x): x es múltiplo de 15 ; q(x): x es múltiplo de 5 ; r(x): x es múltiplo de 10

Halle el valor de verdad de las siguientes proposiciones. Justificar.

- a) $\forall x \in U : (p(x) \lor \neg q(x))$
- b) $\forall x \in U: (p(x) \rightarrow q(x))$
- c) $\exists x \in U : (r(x) \rightarrow q(x))$

Algunos ejercicios resueltos

Ejercicio 12

Compruebe que las proposiciones $p_1 : \neg [p \rightarrow (q \lor (\dagger \land r))] \quad y \ p_2 : \neg (p \rightarrow q) \land (\dagger \rightarrow \neg r)$ son lógicamente equivalentes. Justifique la ley lógica utilizada en cada caso.

Resolución

La idea para resolver este ejercicio será la siguiente: comenzaremos trabajando con la proposición p_1 y, mediante la aplicación de las leyes lógicas, llegaremos a la proposición p_2 .

$$\neg [p \rightarrow (q \lor (t \land r))] \Leftrightarrow \neg \Big[\neg p \lor \Big(q \lor (t \land r) \Big) \Big] \qquad \text{por equivalencia del condicional}$$

$$\Leftrightarrow \neg (\neg p) \land \neg \Big(q \lor (t \land r) \Big) \qquad \text{por Ley de De Morgan}$$

$$\Leftrightarrow p \land \neg \Big(q \lor (t \land r) \Big) \qquad \text{por ley de doble contradicción}$$

$$\Leftrightarrow p \land \Big(\neg q \land \neg (t \land r) \Big) \qquad \text{por ley de De Morgan}$$

$$\Leftrightarrow \Big(p \land \neg q \Big) \land \neg \Big(t \land r \Big) \qquad \text{por ley asociativa para el conectivo "} \land \neg \Big(p \land \neg q \Big) \land \Big(\neg t \lor \neg r \Big) \qquad \text{por ley de De Morgan}$$

$$\Leftrightarrow \neg \Big(\neg p \lor q \Big) \land \Big(\neg t \lor \neg r \Big) \qquad \text{por ley de De Morgan}$$

$$\Leftrightarrow \neg \Big(p \rightarrow q \Big) \land \Big(t \rightarrow \neg r \Big) \qquad \text{por equivalencia del condicional}$$

Comprobamos luego que las proposiciones dadas en el enunciado son lógicamente equivalentes, es decir, $\neg [p \rightarrow (q \lor (\dagger \land r))] \Leftrightarrow \neg (p \rightarrow q) \land (\dagger \rightarrow \neg r)$

Ejercicio (similar al ejercicio13)

Utilizando leyes lógicas, simplifique la siguiente proposición: $\neg (p \lor q) \lor [(\neg p \land q) \lor \neg q]$

Resolución

$$\neg (p \lor q) \lor [(\neg p \land q) \lor \neg q] \iff \neg (p \lor q) \lor [(\neg p \lor \neg q) \land (q \lor \neg q)] \quad \text{por ley distributiva} \\ \Leftrightarrow \neg (p \lor q) \lor [(\neg p \lor \neg q) \land T \ 0] \quad \text{por ley del inverso} \\ \Leftrightarrow \neg (p \lor q) \lor (\neg p \lor \neg q) \quad \text{por ley del neutro} \\ \Leftrightarrow (\neg p \land \neg q) \lor (\neg p \lor \neg q) \quad \text{por ley de De Morgan} \\ \Leftrightarrow [\neg p \lor (\neg p \lor \neg q)] \land [\neg q \lor (\neg p \lor \neg q)] \quad \text{por ley distributiva} \\ \Leftrightarrow (\neg p \lor \neg q) \land (\neg q \lor \neg p) \quad \text{ley asociativa / ley conmutativa / ley de idempotencia} \\ \Leftrightarrow \neg p \lor \neg q \quad \text{por ley de idempotencia}$$

Ejercicio 19, ítem e)

Utilice las reglas de inferencia para demostrar la validez de los siguientes razonamientos:

$$(p \rightarrow \neg q) \land q$$

$$\frac{\neg (r \rightarrow s)}{\therefore r \land \neg (p \lor s)}$$

Resolución

1.
$$(p \rightarrow \neg q) \land q$$
 premisa

2.
$$\neg$$
 (r \rightarrow s) premisa

3.
$$(\neg p \lor \neg q) \land q$$
 equivalencia del condicional en 1.

$$5.\,\neg \big(\neg \; r \vee \; s\big) \qquad \text{ equivalencia del condicional en 2.}$$

6. r
$$\land \neg s$$
 ley de De Morgan / doble contradicción en 5.

7.
$$\neg p \land (r \land \neg s)$$
 regla de conjunción entre 4 y 6

8.
$$r \land (\neg p \land \neg s)$$
 ley conmutativa / ley asociativa del " \land " en 7.

9.
$$r \land \neg (p \lor s)$$
 ley de De Morgan en 8.

Ejercicio similar al ejercicio 24: Niegue la siguiente proposición:

$$\forall y : [p(y) \rightarrow (\exists x : \neg q(x))]$$

Resolución

$$\neg \left(\forall y : \forall y : [p(y) \rightarrow (\exists x : \neg q(x))] \right) \Leftrightarrow \exists \ y : \neg \left[p(y) \rightarrow (\exists x : \neg q(x)) \right] \quad \text{por negación del cuantificador universal} \\ \Leftrightarrow \exists \ y : \neg \left[\neg \left[p(y) \lor (\exists x : \neg q(x)) \right] \right] \quad \text{por equivalencia del condicional} \\ \Leftrightarrow \exists \ y : \left[p(y) \land \neg \left(\exists x : \neg q(x) \right) \right] \quad \text{por ley de De Morgan / ley de doble contradicción} \\ \Leftrightarrow \exists \ y : \left[p(y) \land \left(\forall \ x : \ q(x) \right) \right] \quad \text{negación del cuantificador existencial /} \\ \text{ley de doble contradicción}$$