UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 8. oktober 2014.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 7 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Det desimale tallet 154 representeres i totallssystemet som

A: 1001 1110₂

B: 1011 1010₂

C: 1101 1010₂

 $\sqrt{\mathbf{D}}$: 1001 1010₂

E: 1011 1011₂

Oppgave 2. I 16-tallsystemet blir det binære tallet 1010 0010.11 $_2$ skrevet som

A: *c*2.3₁₆

 $\sqrt{\mathbf{B}}$: a2.c₁₆

C: *a*2.3₁₆

D: $c2.c_{16}$

E: $c4.c_{16}$

Oppgave 3. Det binære tallet 10 1001₂ representerer det desimale tallet

✓ A: 41

B: 31

C: 37

D: 43

E: 39

Oppgave 4. Det rasjonale tallet 17/32 kan skrives i 2-tallsystemet som

 $\mathbf{A} \colon 0.1101\ 1101\ 1101\ \cdots_2$ der sifrene 1101 gjentas uendelig mange ganger

✓B: 0.1000 1₂

C: 0.1000 01₂

D: 0.1101 1101₂

E: $0.1011\ 0011\ 0011\ \cdots_2$ der sifrene 0011 gjentas uendelig mange ganger

Oppgave 5. Det binære tallet $11\ 0100\ 1001_2$ representeres i 8-tallsystemet som

A: 1571₈

B: 1631₈

C: 1421₈

D: 1301₈

√**E**: 1511₈

Oppgave 6. Kun ett av følgende utsagn er sant, hvilket?

A: Det rasjonale tallet 65/29 kan representeres med en endelig sifferutvikling i 6-tallsystemet

 \mathbf{B} : Det rasjonale tallet 5/14 kan representeres med en endelig sifferutvikling i 7-tallsystemet

 $\mathbf{C} \colon$ Det rasjonale tallet 5/14 kan representeres med en endelig sifferutvikling i 2-tallsystemet

 $\checkmark\mathbf{D}\text{:}$ Både 1/7 og 1/8 kan representeres med endelige sifferutviklinger i 112-tallsystemet

 $\mathbf{E} \text{:}\ \mathrm{Det}\ \mathrm{rasjonale}\ \mathrm{tallet}\ 5/30\ \mathrm{kan}\ \mathrm{representeres}\ \mathrm{med}\ \mathrm{en}\ \mathrm{endelig}\ \mathrm{sifferutvikling}\ \mathrm{i}\ 15\text{-tallsystemet}$

Oppgave 7. Hva er minste øvre skranke for mengden

$$\{x \in \mathbb{R} \mid x^2 + x < 2\}?$$

A: -4

B: -2

√C: 1

D: 4

E: $\sqrt{2}$

Oppgave 8. For hvilken verdi av β har vi at $110_{\beta} = 36_{2\beta}$, med andre ord at 110 i β -tallsystemet er lik 36 i siffersystemet med grunntall 2β ?

- **A:** $\beta = 2$
- **B**: $\beta = 5$
- \checkmark **C**: $\beta = 6$
 - **D**: $\beta = 7$
 - **E**: $\beta = 8$

Oppgave 9. Subtraksjonen $434_{16}-152_{16}$ (der begge tallene er representert i 16-tallsystemet) gir som resultat

- **A:** $2e6_{16}$
- **B:** $1f2_{16}$
- \checkmark C: 2e2₁₆
 - **D:** 274₁₆
 - **E:** 282₁₆

Oppgave 10. For hvilke enkodinger vil særnorske bokstaver (som æ, \emptyset , å) kodes med en byte?

- A: ASCII og UTF-32
- ✓B: ISO Latin 1
 - C: ISO Latin 1 og UTF-8
 - **D:** UTF-16
 - E: ASCII og UTF-16

Oppgave 11. Anta at vi har en datamaskin som representerer tall på normalform i 10-tallsystemet, med 4 siffer for signifikanden og 1 siffer for eksponenten. Addisjonen 47.11 + 56.22 vil da gi resultatet

- **A:** 103.4
- **B:** 104
- **C:** 103
- **D:** 103.33
- **✓E:** 103.3

Oppgave 12. Hvilket av følgende uttrykk vil gi stor relativ feil om det evalueres for svært store positive flyttall?

- **A:** $\ln(x^2) + \ln(x)$
- **B:** $x e^x$
- C: $x \sin x$
- $\sqrt{\mathbf{D}}$: $\sqrt{x^2 + x} x$
 - **E:** $x^4 x^2$

Oppgave 13. Vi skal se på tallet $0.1100 \ 1100 \ 1100_2$ i totallssystemet. Hvis vi runder av dette tallet til 6 binære siffer blir den absolutte feilen

✓ **A:**
$$\frac{3}{1024}$$

B:
$$\frac{1}{1024}$$

C:
$$\frac{5}{1024}$$

D:
$$\frac{1}{256}$$

E:
$$\frac{3}{256}$$

Oppgave 14. Hvilken av følgende differensligninger er lineær med konstante koeffisienter?

A:
$$x_{n+1}^2 + 2x_n = 3$$

B:
$$x_{n+2} + x_{n+1} x_n = 1$$

C:
$$x_{n+3} - \sin nx_{n+2} + 3x_{n+1} - x_n = \cos n$$

D:
$$x_{n+2} + nx_{n+1} - x_n = 4$$

✓ **E:**
$$x_{n+2} + 4x_{n+1} - x_n = \sin n$$

Oppgave 15. Differensligningen

$$x_{n+1} + 2x_n = 3n, \ n \ge 0$$

med startverdi $x_0=1$ har løsningen

A:
$$x_n = \frac{4}{3}(-2)^n + n + \frac{1}{3}$$

B:
$$x_n = \frac{4}{3}2^n + n - \frac{1}{3}$$

C:
$$x_n = n - \frac{1}{3}$$

D:
$$x_n = (-2)^n$$

$$\checkmark$$
 E: $x_n = \frac{4}{3}(-2)^n + n - \frac{1}{3}$

Oppgave 16. En annenordens lineær og homogen differensligning med konstante koeffisienter har den generelle løsningen

$$x_n = C2^{-n} + D(-4)^n.$$

Hva kan da ligningen være?

$$\checkmark$$
A: $2x_{n+2} + 7x_{n+1} - 4x_n = 0$

B:
$$2x_{n+2} + 7x_{n+1} + 4x_n = 0$$

C:
$$x_{n+2} + 7x_{n+1} - 2x_n = 0$$

D:
$$3x_{n+2} + 7x_{n+1} + 4x_n = 0$$

E:
$$2x_{n+2} - 7x_{n+1} - 4x_n = 0$$

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdier,

$$x_{n+2} - 4x_{n+1} + 4x_n = 2$$
, $n \ge 0$, $x_0 = 5$, $x_1 = 10$.

Hva er løsningen?

A:
$$x_n = 2 + 3 \cdot 2^n - n2^n$$

B:
$$x_n = 2 + 3 \cdot 2^n$$

$$\checkmark \mathbf{C} : x_n = 2 + 3 \cdot 2^n + n2^n$$

(Fortsettes på side 5.)

D: $x_n = 5 \cdot 2^n$

E: $x_n = 5$

Oppgave 18. Vi har differensligningen

$$5x_{n+1} - x_n = 1/3$$
, $n \ge 0$, $x_0 = 1/12$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

 \checkmark A: verdier nær 1/12, men aldri eksakt 1/12

B: 1/12

C: 5^{-n}

D: overflow

 $\mathbf{E} \colon 0$

Oppgave 19. Vi har differensligningen

$$3x_{n+2} - 10x_{n+1} + 3x_n = 0, \quad n \ge 0.$$

For hvilket par av startverdier vil den eksakte løsningen forbli begrenset mens den simulerte løsningen (med 64 bits flyttall) vil gi overflow?

A: $x_0 = 1$, $x_1 = 3$

B: $x_0 = 0$, $x_1 = 1$

C: $x_0 = 1$, $x_1 = 2$

D: $x_0 = 2$, $x_1 = 6$

 $\sqrt{\mathbf{E}}$: $x_0 = 1$, $x_1 = 1/3$

Oppgave 20. Vi lar $\{x_n\}$ være løsningen av differenslikningen

$$x_{n+2} - x_{n+1} - x_n = 0$$
, for $n \ge 1$, $x_1 = 3$, $x_2 = 1$.

For hvert naturlig tall n lar vi P_n betegne påstanden

$$P_n: x_n \leq 2^n.$$

Et induksjonsbevis for at P_n er sann for alle naturlige tall kan være som følger:

- 1. Vi ser lett at P_1 og P_2 er sanne.
- 2. Anta nå at vi har bevist at P_n er sann for $n=1,2,\ldots,k$. For å fullføre induksjonsbeviset må vi vise at da er også P_n sann for n=k+1. Vi ser at

$$x_{k+1} = x_k + x_{k-1}$$

$$\leq 2^k + 2^{k-1}$$

$$= 2^{k+1} \left(\frac{1}{2} + \frac{1}{4}\right)$$

$$= 2^{k+1} \cdot \frac{3}{4} \leq 2^{k+1}.$$

Dermed stemmer formelen også for n = k+1, så påstanden P_n er sann for alle naturlige tall n.

(Fortsettes på side 7.)

Hvilket av følgende utsagn er sant?

- **A:** Påstanden P_n er sann for $n \geq 1$, men del 2 av induksjonsbeviset er feil
- **B:** Påstanden P_n er ikke sann for alle $n \geq 1$, og del 2 av induksjonsbeviset er feil
- $\checkmark\mathbf{C}\text{:}$ Påstanden P_n er ikke sann for alle $n\geq 1,$ og del 1 av induksjonsbeviset er feil
 - $\mathbf{D} \text{: } \mathbf{P} \| \mathbf{x} \|$ er riktig for alle $n \geq 1$ og induksjonsbeviset er riktig
 - E: Beviset er riktig, men det er ikke noe induksjonsbevis

 $Det\ var\ det!$