AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD DEPARTMENT OF Electrical & Electronics Engineering

Sessional Test 2

Program: B.Tech Session: 2024-25

Subject: Fundamentals of Electrical Engg.

Max. Marks: 50

Semester: II Section: S11-S20

Subject Code: BEE201

Time: 2 Hours

OBE Remarks:

Q.No	1	2	3	4	5	6	7	8	9	10	11	12
CO No.	CO2	CO2	CO3	CO3	CO3	CO2	CO2	CO2	CO3	CO3	CO2	CO3
Bloom's Level* (L1 to L6)	L3	L2	L2	L2	L2	L3	L3	L3	L2	L2	L3	L3
Weightage CO	2: 26.5	5							V	Veighta	ge CO3	: 23.5

^{*}Bloom's Level: L1: Remember, L2: Understand, L3: Apply, L4: Anaiyze, L5: Evaluate, L6: Create

Note: Answer all the sections with all the questions

Section-A

(2*5=10)

- 1. A resistance of 15Ω , choke coil of 0.05H and the capacitor of 0.03F are connected in series. Find the impedance of the circuit if frequency is 50 Hz.
- 2. Why the power in a capacitor is zero?
- 3. Write any 4 points of analogy between electric and magnetic circuits.
- 4. Why a transformer cannot be operated on DC?
- 5. Why the power rating of a transformer is in VA?

Section-B

(5*5=25)

- 6. Define form factor and peak factor, find these factors for a half wave rectified waveform.
- 7. A coil is connected in series with a variable capacitor C. The supply voltage is 10 V at 1000rad/sec. The current in the circuit is maximum when C=10 microfarad. The current is 0.707 times the maximum current when C=12.5 microfarad. Find:
 - (i) Inductance and resistance of the coil.
 - (ii) Q factor of the coil at 1000rad/sec.
 - (iii) maximum current in the circuit.
- 8. An impedance of (2+j6) Ω is connected in series with two impedances of (10+j4) & (12-j8) Ω which are in parallel. The circuit is connected to 200V,50 Hz supply. Find:
 - (i) total circuit impedance
 - (ii) supply current & power factor
 - (iii) total power supplied by the source
- 9. Derive the emf equation of a transformer. Why the frequency of two sides is same?
- 10. Explain the working principle of transformer. Compare core and shell type transformer.

- 11. Derive the relation between line and phase quantities for a delta connected balanced load. A 3-phase voltage source has a phase voltage of 120V and supplies star connected load having impedance (36+j48) Ω/phase. Calculate:
 - (a) Line voltage
 - (b) line current
 - (c) power factor
 - (d) 3 phase power supplied to the load
- 12. A transformer on no load has core loss of 50W, draws a current of 2A and has induced emf of 230V. Determine:
 - (i) no load power factor
 - (ii) core loss current and magnetizing current.

Aiso calculate the no load circuit parameters of the transformer. Neglect winding resistance and leakage flux.

Faculty Sign

Hop Sign