MAT237 - Multi-variable Calculus

Callum Cassidy-Nolan

September 5, 2019

Contents

1	Lec	Lecture 1 - Review			
	1.1	Sets & tuples	6		
	1.2	Functions	10		

4 CONTENTS

List of Definitions

1	Definition (Tuple)	9
2	Definition (Cartesian Product)	9
3	Definition (Function)	0
4	Definition (Image)	0
5	Definition (Pre-Image)	1
6	Definition (Graph)	1
7	Definition (Injective)	1
8	Definition (Onto)	1
9	Definition (Bijective)	1
10	Definition (Inverse)	2

List of Theorems

Chapter 1

Lecture 1 - Review

1.1 Sets & tuples

Definition 1 (Tuple)

A n tuple is an ordered list of n elements (x_1, \ldots, x_n) notation

- couple, a 2-tuple
- triple, a 3-tuple

Fundamental Property

$$(x_1,\ldots,x_m)=(y_1,\ldots,y_m) \Leftrightarrow \forall i\in\{1,\ldots,m\}, x_i=y_i$$

Recall

$$\{1,2,3\}=\{3,2,1\}$$

But

$$(1,2,3) \neq (3,2,1)$$

In addition

$$(1,2,2,3) \neq (1,2,3)$$

Also the comparison here doesn't even make sense since they are different sizes.

Definition 2 (Cartesian Product)

For sets A, B

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Note if we have $A = \emptyset$ or $B = \emptyset$ then $A \times B = \emptyset$

Example 1.1.1

$$A = \{\pi, e\} \text{ and } B = \left\{1, \sqrt{2}, \pi\right\}$$
$$A \times B = \left\{(\pi, 1), \left(\pi, \sqrt{2}\right), (\pi, \pi), \dots\right\}$$

For multiple cartesian products we have

$$A_1 \times A_2, \dots, A_n = \{(a_1, a_2, \dots, a_m) : a_i \in A_i\}$$

Exercise 1.1.1

Is the following true?

$$(A \times B) \times C = A \times (B \times C) = A \times B \times C$$

No, observe the tuples of $(A \times B) \times C$ are of the form

In the same way we observe that none of them are equal. Though in a functional type of sense, they are equal as they all still convey the same fundamental idea.

1.2 Functions

Definition 3 (Function)

A function is the data of two sets, A and B together with a "rule" that associates to each $x \in A$ a unique $f(x) \in B$.

We define a function like this

$$f:A\to B$$

Where A is the domain and B is the codomain.

Definition 4 (Image)

The image of $E \subseteq A$ by f is

$$f(E) = \big\{ f(x) : x \in E \big\}$$

1.2. FUNCTIONS

Definition 5 (Pre-Image)

The pre-image of $F \in B$ by f is

$$f^{-1}(F) = \{x \in A : f(x) \in F\}$$

Definition 6 (Graph)

The graph of f is

$$\Gamma f = \{(x, y) \in A \times B : y = f(x)\}\$$

Definition 7 (Injective)

A function $f: A \to B$ is injective or one-to-one

$$\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$$

We have the contrapositive

$$\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

Definition 8 (Onto)

A function is surjective or onto if

$$\forall y \in B, \exists x \in A, y = f(x)$$

Definition 9 (Bijective)

 $f: A \rightarrow B$ is bijective if it is injective and surjective.

$$\forall y \in B, \exists ! x \in A, y = f(x)$$

Definition 10 (Inverse)

 $f:A\to B$ has an inverse if and only if there exists a function $g:B\to A$ such that

$$\forall x \in A, g \circ f(x) = x$$

and

$$\forall x \in B, f \circ g(x) = x$$

then we say that g is the inverse of f and $g = f^{-1}$