

# Chapter 7

## Small-Signal Analysis for BJT and FET circuits

Dr. Henry Ohize

October 11, 2023

Electronics: Principles, Concepts and Practices

### Table of contents

1. Introduction

2. Important Metrics in AC Analysis



# **Intro**

#### Introduction

- 1. In the previous section, we introduced transistors and discussed their biasing methods for operation in specific regions.
- We mentioned that BJTs need to be biased in the active region for signal amplification, while FETs require biasing in the saturation region.
- 3. Now, our focus is on examining the AC signal response of our biased transistor circuit.
- 4. We will use the term "small-signal analysis" to describe this process.
- In small-signal analysis, we limit the AC signal to a relatively small percentage of the transistor amplifier's operational range to avoid signal distortion.



# Important Metrics in AC Analysis

## Important Metrics in AC Analysis

The important metrics in the AC domain for a two-port network<sup>1</sup> are the:

- Input impedance;
- Output impedance;
- Voltage gain;
- Current gain;
- Power gain; and
- Phase shift.



<sup>&</sup>lt;sup>1</sup>We shall give insight into two-port network in the next section.

# Input impedance

#### Input impedance

Input impedance, denoted as  $Z_i$ , is a crucial parameter in amplifiers that indicates how much load or resistance the amplifier presents to the signal source when the signal source is connected to the amplifier's input. It is like the "friendliness" of the amplifier towards the signal source.

When we connect a signal source  $v_s$  with internal resistance  $R_s$  so that a voltage  $v_i$  is seen across the amplifier's input, it results in a certain current  $i_i$ . Figure 5 shows the circuit for determining the input impedance  $Z_i$ , which is given as:

$$Z_i = \frac{|v_i|}{|i_i|}$$



## Input impedance continued ...

If the amplifier's input impedance  $Z_i$  is too low (much smaller than the source's internal resistance  $R_s$ ), it will impact the signal source. This means less voltage will be delivered to the amplifier, resulting in a weaker signal. Hence, a higher input impedance is desirable for effective signal transfer.





Figure 1: Determination of input impedance

#### **Output Impedance**

#### **Output Impedance**

Output impedance, denoted as  $Z_o$ , refers to the resistance that affects the change in output voltage when the amplifier is providing current to a load. It is measured at the output terminal when examining the system and setting the input signal to zero.



# References i

