Generalized Linear Models

Mark Andrews Psychology Department, Nottingham Trent University

mark.andrews@ntu.ac.uk

► The Poisson distribution is a discrete probability distribution over the non-negative integers 0, 1, 2....

Shown here is a Poisson distribution with $\lambda = 3.5$.

- ▶ The Poisson distribution is used to model the probability of a given number of events occurring in a fixed interval of time, e.g. the number of emails you get per hour, the number of shark attacks on Bondi beach every summer, etc.
- lt has a single parameter λ, known as the *rate*.
- ► If x is a Poisson random variable whose, its probability mass function is

$$P(x = k|\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter λ .
- lts variance is also equal to λ.

As λ increases, so too does the variance.

- ► The Poisson distribution can be seen as the limit of a Binomial distribution as $N \to \infty$, and $\lambda = pN$.
- Shown are (left) Binomial(N, $p = \lambda/N$) where N $\approx 10^3$ and $\lambda = 7.5$, and (right) Poisson(λ).

Poisson Regression

- ▶ In any regression problem, our data are $(y_1, x_1), (y_2, x_2)...(y_n, x_n)$, where each y_i is modelled as a stochastic function of x_i .
- In Poisson regression, we assume that each y_i is a Poisson random variable rate λ_i and

$$log(\lambda_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki},$$

or equivalently

$$\lambda_{i} = e^{\beta_0 + \sum_{k=1}^{K} \beta_k x_{ki}}.$$

Poisson Regression

- As an example of Poisson regression, we can look at the number visits to a doctor in a fixed period as a function of predictors such as gender.
- ▶ Using a data-set of over 5000 people, we estimate (using mle) that

$$log(\lambda_i) = 1.65 + 0.43 \times x_i$$

where $x_i = 1$ for a female, and $x_i = 0$ for a male.

Poisson Regression

Using this example, we see that for a female

$$\lambda_{\text{Female}} = e^{1.65 + 0.43} = 8.004$$

and for males

$$\lambda_{Male}=e^{1.65}=5.2$$

▶ In other words, the expected value for females is 8.2 and for males it is 5.2.

Coefficients

- ▶ In Poisson regression, coefficients can be understood as follows.
- ► In the previous example,

$$\begin{split} \lambda_{Female} &= e^{1.65+0.43}, \\ &= e^{1.65} e^{0.43}, \\ \lambda_{Male} &= e^{1.65}. \end{split}$$

- ▶ This means that the exponent of the gender coefficient, i.e. $e^{0.43}$, signifies the multiplicative increase to the average rate of doctor visits for women relative men.
- ▶ In other words, women visit doctors on average $e^{0.43} = 1.53$ times more than men.

Coefficients

In an arbitrary example with a single continuous predictor variable,

$$\lambda = e^{\alpha + \beta x_i},$$
$$= e^{\alpha} e^{\beta x_i},$$

If we increase x_i by 1, we have

$$\begin{split} \lambda^+ &= e^{\alpha + \beta (x_i + 1)}, \\ &= e^{\alpha + \beta x_i + \beta}, \\ &= e^{\alpha} e^{\beta x_i} e^{\beta}, \end{split}$$

As $\lambda^+ = \lambda e^{\beta}$, we see that e^{β} is the multiplicative effect of an increase in one unit to the predictor variable.

Example

```
doc_df <- read_csv(here('data/DoctorAUS.csv')) %>%
  mutate(gender = ifelse(sex == 1, 'female', 'male'))
M <- glm(doctorco ~ gender,
         data = doc df,
         family = poisson)
doc_df_new <- tibble(gender = c('female', 'male'))</pre>
doc_df_new %>%
  add predictions(M)
doc df new %>%
  add predictions(M, type='response')
```

Model comparison

- ► In some problems, the length of time during which events are measured varies across individuals.
- ▶ In the doctor visits example, we might have recordings of number of visits per year for some people and number of visits per 9 months, etc, for others.
- ► These situations are dealt with using an *exposure* term for each individual.

▶ When using an exposure term, we use the original count data as before, but treat

$$y_i \sim Poisson(\lambda_i/u_i)$$
,

where u_i is a term signifying the relative exposure time for person i.

According to this,

$$\begin{split} log(\lambda_i/u_i) &= \alpha + \beta x_i, \\ log(\lambda_i) &= \alpha + \beta x_i + log(u_i) \end{split}$$

▶ In other words, $y_i \sim Poisson(\lambda_i/u_i)$ is equivalent to $y_i \sim Poisson(\lambda_i)$, where $log(\lambda_i) = \alpha + \beta x_i + log(u_i)$.

- ▶ For example, suppose we monitor people's drinking at social occasions. We find that three people drink 12, 7 and 3 drinks over the course of 7, 5 and 2 hours, respectively.
- ► If we are trying to predict drinking as a function of predictor variables, we ought to calibrate by the different time frames.
- Treating e.g. 12 as a draw from $Poisson(\lambda_i/7)$ where $log(\lambda_i/7) = \alpha + \beta x_i$ is identical to treating 12 as a draw from $Poisson(\lambda_i)$ where $log(\lambda_i) = \alpha + \beta x_i + log(7)$.

- ▶ In general, exposure terms are treated as fixed offsets.
- ► If our data is $(y_1, x_1), (y_2, x_2) \dots (y_n, x_n)$ with exposures $u_1, u_2 \dots u_n$, then we treat

$$y_i \sim Poisson(\lambda_i)$$
,

where

$$log(\lambda_{i}) = log(u_{i}) + \beta_{0} + \sum_{k=1}^{K} \beta_{k} x_{ki}.$$

Example

- ightharpoonup The mean of a Poisson distribution is equal to its rate parameter λ.
- lts variance is also equal to λ.

As λ increases, so too does the variance.

Means and variances in a Poisson distribution:

- ► In a Poisson distribution, the variance of a sample should be approximately the same as the mean of a sample.
- Example 1:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))
#> [1] 5.120000 6.193333 1.209635
```

Example 2:

```
x <- rpois(25, lambda = 5)
c(mean(x), var(x), var(x)/mean(x))
#> [1] 5.640000 5.990000 1.062057
```

Overdispersion

- ▶ If the variance of a sample is greater than would be expected according to a given theoretical model, then we say the data is *overdispersed*.
- ► In count data, if the variance of a sample is much greater than its mean, we say it is overdispersed.
- Using a Poisson distribution in this situation, this is an example of model mis-specification.
- ► It will also usually underestimate the standard errors in the Poisson model.

Overdispersion

► In the bioChemists data set, we have counts of the number of articles published by PhD students in the last three years (publications):

var(publications)/mean(publications)
#> [1] 2.191358

Overdispersion

This leads standard errors to be underestimated if we use a Poisson model:

```
M <- glm(publications ~ 1, family=poisson) summary(M)$coefficients  
#> Estimate Std. Error z value Pr(>|z|)  
#> (Intercept) 0.5264408 0.02540804 20.71945 2.312911e-95
```

Fixing overdispersion using a Quasi-poisson model

► A *quasi* Poisson model allows us to correct over-dispersion

```
M <- glm(publications ~ 1, family=quasipoisson) summary(M)$coefficients  
#> Estimate Std. Error t value Pr(>|t|)  
#> (Intercept) 0.5264408 0.03761239 13.99647 1.791686e-40
```

- ▶ It does so by calculating an overdispersion parameter (roughly, the ratio of the variance to the mean) and multiplying the standard error by its square root.
- ▶ In this example, the overdispersion parameter is 2.1913892 and so its square root is 1.4803341.
- ▶ Alternatively, a *negative binomial regression* is an alternative to Poisson regression that can be used with overdispersed count data.

- ► A negative binomial distribution is a distribution over non-negative integers.
- ► To understand the negative binomial distribution, we start with the binomial distribution:
- ▶ If, for example, we have a coin whose probability of coming up heads is θ , then the number of Heads in a sequence of n flips will follow a binomial distribution.
- ▶ In this example, an outcome of Heads can be termed a *success*.

► Here is a binomial distribution where n = 25 and $\theta = 0.75$.

- ► A *negative* binomial distribution gives the probability distribution over the number of *failures* (e.g. Tails) before r *successes* (e.g. r Heads).
- For example, here we have the number of Tails (*failures*) that occur before we observe r = 2 Heads (*sucesses*), when the probability of Heads is $\theta = 0.75$:

Here, we have the number of Tails (*failures*) that occur before we observe r = 3 Heads (*successes*), when the probability of Heads is $\theta = 0.5$:

The probability mass function for the negative binomial distribution is:

$$P(x = k | r, \theta) = {r + k - 1 \choose k} \theta^{r} (1 - \theta)^{k}$$

or more generally

$$P(x = k|r, \theta) = \frac{\Gamma(r+k)}{\Gamma(r)k!} \theta^{r} (1-\theta)^{k},$$

where $\Gamma()$ is a Gamma function ($\Gamma(n) = (n-1)!$).

In R, for any k, r, and θ , we can calculate $P(x = k|r, \theta)$ using dnbinom, e.g. $P(x = k = 2|r = 3, \theta = 0.75)$ is

dnbinom(2, 3, 0.75) #> [1] 0.1582031

▶ In the negative binomial distribution, the mean is

$$\mu = \frac{\theta}{1 - \theta} \times r,$$

and so

$$\theta = \frac{r}{r + \mu}$$

and we can generally parameterize the distribution by $\boldsymbol{\mu}$ and $\boldsymbol{r}.$

Why use negative binomial distribution?

► A negative binomial distribution is equivalent as weighted sum of Poissons.

So it is appropriate to use when the data can be seen as arising from a mixture of Poisson distributions, each with different means.

Negative binomial regression

▶ In negative binomial regression, we have observed counts $y_1, y_2 ... y_n$, and some predictor variables $x_1, x_2 ... x_n$, and we assume that

$$y_i \sim NegBinomial(\mu_i, r)$$
,

where NegBinomial($\mu_i,r)$ is a negative binomial with mean μ_i and a dispersion parameter r, and then

$$log(\mu_{i}) = \beta_{0} + \beta x_{i}.$$

Example

```
M <- glm.nb(publications ~ gender, data = biochemists_Df)
M1 <- glm.nb(publications ~ gender + married + I(children > 0),
```

Binomial logistic regression

▶ If y_i is the number of "successes" in n_i "trials", we can model this as

$$y_i \sim Binomial(\theta_i, n_i),$$

$$logit(\theta_i) = \beta_0 + \sum_{k=1}^{K} \beta_k x_{ki}$$

- ▶ If $n_i = 1$ for all i, then this is exactly binary logistic regression.
- ▶ In general, it models the probability of something happening in a number of independent trials, and how the probability varies by the values of predictors.

Example

A sample from a Poisson distribution with $\lambda = 5.5$.

Zero inflated Poisson Distribution

A sample from a zero inflated Poisson distribution with $\lambda = 5.5$, with probability of *zero-component* is 0.2.

Poisson regression to Zero-Inflated Poisson regression

- ▶ In Poisson regression (with a single predictor, for simplicity), we assume that each y_i is a Poisson random variable with rate λ_i that is a function of the predictor x_i .
- ► In Zero-Inflated Poisson regression, we assume that each y_i is distributed as a Zero-Inflated Poisson mixture model:

$$y_i \sim \begin{cases} Poisson(\lambda_i) & \text{if } z_i = 0, \\ 0, & \text{if } z_i = 1 \end{cases}$$

where rate λ_i and $P(z_i = 1)$ are functions of the predictor x_i .

Zero-Inflated Poisson regression

Assuming data $\{(x_i, y_i), (x_2, y_2) \dots (x_n, y_n)\}$, Poisson regression models this data as:

$$\begin{split} y_{\mathfrak{i}} \sim \begin{cases} Poisson(\lambda_{\mathfrak{i}}) & \quad \text{if } z_{\mathfrak{i}} = 0, \\ 0, & \quad \text{if } z_{\mathfrak{i}} = 1 \end{cases}, \\ z_{\mathfrak{i}} \sim Bernoulli(\theta_{\mathfrak{i}}), \end{split}$$

where θ_i and λ_i are functions of x_i .

Zero-Inflated Poisson regression

► The θ_i and λ_i variables are the usual suspects, i.e.

$$log(\lambda_i) = \alpha + \beta x_i,$$

and

$$\log\left(\frac{\theta_{\mathfrak{i}}}{1-\theta_{\mathfrak{i}}}\right) = a + bx_{\mathfrak{i}}.$$

In other words, λ_i is modelled just as in ordinary Poisson regression and θ_i is modelled in logistic regression.

Examples

```
smoking_df <- read_csv(here('data/smoking.csv'))</pre>
M <- glm(cigs ~ educ, data = smoking df)
M zip <- zeroinfl(cigs ~ educ, data=smoking df)</pre>
Df new <- data.frame(educ = seq(20))
# Predited average smoking rate
Df new %>%
  add_predictions(M_zip, type='response')
# Predicted average smoking rate of "smokers"
Df new %>%
  add_predictions(M_zip, type='count')
# Predicted probability of being a "smoker"
Df new %>%
  add_predictions(M_zip, type='zero') %>%
  mutate(pred = 1-pred)
```