Statistics S2 Mark scheme

Question	Scheme	Marks
1(a)	X~Po(3.2)	B1
	$P(X=3) = \frac{e^{-3.2}3.2^3}{3!}$	M1
	= 0.2226 awrt 0.223	A1
		(3)
(b)	<i>Y</i> ~Po(1.6)	B1
	$P(Y \ge 1) = 1 - P(Y = 0)$	M1
	$= 1 - e^{-1.6}$	
	= 0.7981 awrt 0.798	A1
		(3)
(c)	X~Po(0.8)	
	$\frac{P(X=1) \times P(X=3)}{P(Y=4)} = \frac{\left(e^{-0.8} \times 0.8\right) \times \left(\frac{e^{-0.8} \cdot 0.8^{3}}{3!}\right)}{\frac{e^{-1.6} \cdot 1.6^{4}}{4!}}$	M1 M M1 A1
	_ 0.3594×0.0383	
	$=\frac{0.0551\times0.0505}{0.05513}$	
	= 0.25	A1
		(5)
(d)	A~Po(72) approximated by N(72,72)	B1
	$\frac{5000}{60} = 83.33$	M1
	$P(A \ge 84) = P\left(Z \ge \frac{83.5 - 72}{\sqrt{72}}\right)$	M1 M
	$= P(Z \ge 1.355)$	
	= 0.0869 awrt 0.087/0.088	A1
		(5)
		(16 marks
Notes:		
	writing or using Po(3.2)	
M1: $\frac{e^{-\lambda}}{3}$! !	
(b) B1: For	writing or using Po(1.6)	
M1: 1 –	$P(Y=0) \text{ or } 1 - e^{-\lambda}$	

Question 1 notes continued

(c)

M1: Using Po(0.8) with X=1 or X=3 (may be implied by 0.359... or 0.0383...)

M1: $\left(e^{-\lambda} \times \lambda\right) \times \left(\frac{e^{-\lambda} \lambda^3}{3!}\right)$ (consistent lambda) awrt 0.0138 implies 1st 2 M marks

M1: Correct use of conditional probability with denominator = $\frac{e^{-1.6}1.6^4}{4!}$

A1: Fully correct expressionA1: 0.25 (allow awrt 0.250)

(d)

B1: Writing or using N(72,72)

M1: For exact fraction **or** awrt 83.3 (may be implied by 84) (Note: Use of N(4320,4320) can score B1 and 1st M1)

M1: Using 84 + /- 0.5

M1: Standardising using 82.5, 83, 83.3 (awrt 83.3), 83.5, 83.8, 84 or 84.5, 'their mean' **and** 'their sd'

Question	Scheme	Marks
2(a)	P(X > 4) = 1 - F(4)	M1
	$=1-\frac{3}{5}$	
	$=\frac{2}{5}$ oe	A1
		(2)
(b)	1	B1
		(1)
(c)	$f(x) = \frac{dF(x)}{dx} = \frac{1}{5}$	M1
	$f(x) = \begin{cases} \frac{1}{5} & 1 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$	A1
		(2)
(d)	E(X) = 3.5	B1
		(1)
(e)	Variance = $\frac{(6-1)^2}{12}$ or $\int_1^6 \frac{1}{5} x^2 dx - (3.5)^2$	M1
	$=\frac{25}{12}$ awrt 2.08	A1
		(2)
(f)	$E(X^2) = Var(X) + [E(X)]^2$	
	$= \frac{25}{12} + 3.5^2 \text{or} \int_1^6 \frac{1}{5} x^2 dx \qquad \text{or } \int_1^6 \frac{1}{5} (3x^2 + 1) dx$	M1
	$=\frac{43}{3}$	
	$E(3X^{2}+1) = 3 E(X^{2}) + 1 = \left[\frac{3x^{3}}{15} + \frac{x}{5}\right]_{1}^{6}$	dM1
	= 44 = 44	Alcao
		(3)
	(1	1 marks)

(11 marks)

Notes:

(a)

M1: Writing or using 1 - F(4) o.e.

(c)

M1: For differentiating to get $\frac{1}{5}$

Question 2 notes continued

A1: Both lines correct with ranges

(e)

M1:
$$\frac{(6-1)^2}{12}$$
 or $\int_1^6 \frac{1}{5} x^2 dx$ - 'their 3.5'²

(f)

M1: "Their Var(X)" + ["their E(X)"]² (which must follow from the 1st method in (e))
$$\frac{\mathbf{or}}{n} \int_{1}^{6} \frac{1}{5} x^{2} dx \text{ and integrating } x^{n} \to \frac{x^{n+1}}{n+1} \text{ (may be seen in (e)) } \underline{\mathbf{or}} \text{ writing } \int_{1}^{6} \frac{1}{5} (3x^{2} + 1) dx$$
(May be implied by $\frac{43}{3}$ seen)

dM1: Using $3 \times$ 'their $E(X^2)$ ' + 1 or $\int_1^6 \frac{1}{5} (3x^2 + 1) dx$ and integrating $x^n \to \frac{x^{n+1}}{n+1}$

Question	Scheme	Marks	
3(a)	(A random variable) that is a function of a (random) sample involving no		
	unknown quantities/parameters		
	or	B1	
	A quantity calculated solely from a random sample		
	The state of the s	(1)	
		(1)	
(b)	If all possible samples are chosen from a population;		
	then the values of a statistic and the associated probabilities is a sampling distribution	B1	
	or a probability distribution of a statistic		
		(1)	
(c)	Mean = $100 \times \frac{4}{7} + 200 \times \frac{3}{7}$		
	$=\frac{1000}{7}$ awrt 143	B1	
	Variance = $100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - \left(\frac{1000}{7}\right)^2$	M1	
	$= \frac{120000}{49}$ awrt 2450 (to 3sf)	A1	
		(3)	
(d)	(100,100,100)		
	(100,100,200) (100,200,100) (200,100,100) or 3 x (100,100,200)		
	(100,200,200) (200,100,200) (200,200,100) or 3 x (100,200,200)		
	(200,200,200)	(2)	
(0)		(2)	
(e)	$\left(100,100,100\right) \qquad \left(\frac{4}{7}\right)^3 = \frac{64}{343} \qquad \text{awrt } 0.187$		
	(200,200,200) $ \left(\frac{3}{7}\right)^3 = \frac{27}{343} $ awrt 0.0787	B1 both	
	(100,100,200) $3 \times \left(\frac{4}{7}\right)^2 \times \left(\frac{3}{7}\right) = \frac{144}{343}$ awrt 0.420 (allow 0.42)	M1	
	(100,200,200) $3 \times \left(\frac{4}{7}\right) \times \left(\frac{3}{7}\right)^2 = \frac{108}{343}$ awrt 0.315	A1	

Question			Scheme			Marks
3(e) continued	m	100	400/3 awrt 133	500/3 awrt 167	200	
	P(M=m)	$\frac{64}{343}$ or awrt 0.187	$\frac{144}{343}$ or awrt 0.420 (allow 0.42)	$\frac{108}{343}$ or awrt 0.315	$\frac{27}{343}$ or awrt 0.0787	A1
						(4)

(11 marks)

Notes:

(a)

B1: For a definition which includes each of the following 3 aspects

A function¹ of a (random) sample² involving no unknown quantities/parameters³

- 1. function/quantity/calculation/value/random variable
- 2. sample/observations/data
- 3. no unknown parameters/no unknown values/solely (from a sample)

(b)

B1: Requires all underlined words: <u>All values</u> of a <u>statistic</u> with their associated <u>probabilities</u> or <u>probability distribution</u> of a <u>statistic</u>

(c)

M1:
$$100^2 \times \frac{4}{7} + 200^2 \times \frac{3}{7} - (\text{their mean})^2$$

(d)

B1: Any 2 of (100,100,100), (100,100,200) any order, (100,200,200) any order, (200,200,200)

B1: All correct, allow $3 \times (100,100,200)$ and $3 \times (100,200,200)$ and (100,100,100) and (200,200,200)

(Note: Allow other notation for 100 and 200 e.g. Small and Large)

(e)

B1: Both probabilities for (100,100,100) and (200,200,200) correct

 $\mathbf{M1:} \quad 3 \times p^2 \times (1-p)$

A1: Either correct

Al: All means correct **and** all probabilities correct (table not required but means must be associated with correct probabilities)

Question	Scheme	Marks
4(a)	$X \sim \text{Po}(6)$	M1
	$P(5 \le X < 7) = P(X \le 6) - P(X \le 4) \text{ or } \frac{e^{-6}6^{5}}{5!} + \frac{e^{-6}6^{6}}{6!}$	M1
	= 0.6063 - 0.2851	A 1
	= 0.3212 awrt 0.321	A1
		(3)
(b)	H_0 : $\lambda = 9$ H_1 : $\lambda < 9$	B1
	X ~Po(9) therefore $P(X \le 4) = 0.05496$ or CR $X \le 3$	B1
	Insufficient evidence to reject H_0 or Not Significant or 4 does not lie in the critical region.	dM1
	There is no evidence that the mean number of <u>accidents</u> at the crossroads has <u>reduced/decreased</u> .	A1cso
		(4)

(7 marks)

Notes:

(a)

M1: Writing or using Po(6)

M1: Either
$$P(X \le 6) - P(X \le 4)$$
 or $\frac{e^{-\lambda} \lambda^5}{5!} + \frac{e^{-\lambda} \lambda^6}{6!}$

(b)

B1: Both hypotheses correct (λ or μ) allow 0.5 instead of 9

B1: Either awrt 0.055 or critical region $X \le 3$

dM1: For a correct comment (dependent on previous B1)

Contradictory non-contextual statements such as "not significant" so "reject H_0 " score M0. (May be implied by a correct contextual statement)

A1: Cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.

Question	Scheme	Marks
5(a)	$\int_{-1}^{2} k(x^2 + a) dx + \int_{2}^{3} 3k \ dx = 1$	M1
	$\left[k\left(\frac{x^{3}}{3} + ax\right)\right]_{-1}^{2} + \left[3kx\right]_{2}^{3} = 1$	dM1
	$k\left(\frac{8}{3} + 2a + \frac{1}{3} + a\right) + 9k - 6k = 1$	A1
	6k + 3ak = 1	
	$\int_{-1}^{2} k(x^{3} + ax) dx + \int_{2}^{3} 3kx dx \left[= \frac{17}{12} \right]$	M1
	$\left[k\left(\frac{x^4}{4} + \frac{ax^2}{2}\right)\right]_{-1}^2 + \left[\frac{3kx^2}{2}\right]_{2}^3 = \frac{17}{12}$	dM1
	$k\left(4+2a-\frac{1}{4}-\frac{a}{2}\right)+\frac{27k}{2}-6k=\frac{17}{12}$	A1
	$\frac{45k}{4} + \frac{3ak}{2} = \frac{17}{12}$	
	$ \begin{array}{r} 135k + 18ak = 17 \\ 99k = 11 \end{array} $	ddM1
	$a=1, k=\frac{1}{9}$	A1
		(8)
(b)	2	B1
		(1)

(9 marks)

Notes:

(a)

M1: Writing or using $\int_{-1}^{2} k(x^2 + a) dx + \int_{2}^{3} 3k dx = 1$ ignore limits.

dM1: Attempting to integrate at least one $x^n \to \frac{x^{n+1}}{n+1}$ and sight of correct limits (dependent on previous M1).

A1: Correct equation – need not be simplified.

M1: $\int_{-1}^{2} k(x^3 + ax) dx + \int_{2}^{3} 3kx dx \text{ ignore limits.}$

dM1: Setting $=\frac{17}{12}$ and attempting to integrate at least one $x^n \to \frac{x^{n+1}}{n+1}$ and sight of correct limits (dependent on previous M1).

Question 5 notes continued

A1: A correct equation – need not be simplified.

ddM1: Attempting to solve two simultaneous equations in a and k by eliminating 1 variable (dependent on 1^{st} and 3^{rd} M1s).

A1: Both a and k correct.

Question	Scheme	Marks
6(a)	$P(X=5) = {}^{20}C_5(0.3)^5(0.7)^{15}$ or $0.4164 - 0.2375$	M1
	= 0.17886 awrt 0.179	A1
		(2)
(b)	Mean = 6	B1
	$sd = \sqrt{20 \times 0.7 \times 0.3}$	M1
	= 2.049 awrt 2.05	A1
		(3)
(c)	H_0 : $p = 0.3$ H_1 : $p > 0.3$	B1
	X∼ B(20,0.3)	M1
	$P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	A1
	Insufficient evidence to reject H ₀ or Not Significant or 8 does not lie in the critical region.	dM1
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief</u> /There is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new curriculum</u> is greater than 30%	A1 cso
		(5)
(d)	X∼ B(2n, 0.25)	
	$X \sim B(8, 0.25) P(X \ge 4) = 0.1138$	M1
	$X \sim B(10, 0.25) P(X \ge 5) = 0.0781$	
	2n = 10	A1
	n=5	A1
		(3)

(13 marks)

Notes:

(a)

M1: ${}^{20}C_5(p)^5(1-p)^{15}$ or using $P(X \le 5) - P(X \le 4)$

(b)

M1: Use of $20 \times 0.7 \times 0.3$ (with or without the square root).

(c)

B1: Both hypotheses correct (p or π).

M1: Using $X \sim B(20,0.3)$ (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133)

A1: Awrt 0.228 or CR $X \ge 10$

dM1: A correct comment (dependent on previous M1)

A1: Cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored.

Question 6 notes continued

(d)

M1: For 0.1138 or 0.0781 or 0.8862 or 0.9219 seen.

A1: B(10, 0.25) selected (may be implied by n = 10 or 2n = 10 or n = 5). An answer of 5 with no incorrect working seen scores 3 out of 3.

Special Case: Use of a normal approximation.

M1: For $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8}n}} = z$ with $1.28 \le z \le 1.29$, 1^{st} A1 for n=4.2/4.3, 2^{nd} A1 for n=5

Question	Scheme	Marks
7	$Y \sim N\left(\frac{n}{5}, \frac{4n}{25}\right)$	B1
	$P(Y \ge 30) = P\left(Z > \frac{29.5 - n/5}{\frac{2}{5}\sqrt{n}}\right)$	M1 M1 A1
	$\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = 2$	B1
	$n+4\sqrt{n}-147.5=0$ or $0.04n^2-12.44n+870.25=0$	dM1
	$\sqrt{n} = 10.3$ $n = 106.26$ or $n = 204.73$	A1
	n = 106	A1 cao

(8 marks)

Notes:

B1: Writing or using $N\left(\frac{n}{5}, \frac{4n}{25}\right)$

M1: Writing or using 30 + -0.5

M1: Standardising using 29, 29.5, 30 or 30.5 and their mean and their sd

A1: Fully correct standardisation (allow +/-)

B1: For z = +/-2 or awrt 2.00 must be compatible with their standardisation

dM1: (Dependent on 2^{nd} M1) getting quadratic equation **and** solving leading to a value of \sqrt{n} or n

A1: Awrt 10.3 **or** awrt (106 **or** 107 **or** 204 **or** 205)

A1: For 106 only (must reject other solutions if stated)

(Note: $\frac{29.5 - \frac{n}{5}}{\frac{2}{5}\sqrt{n}} = -2 \text{ leading to an answer of 106 may score B1M1M1A1B0M1A1A1})$