2022力成科技 暑期數據分析實習成果

張祐瑋,系統支援課

工作內容

1.

預測下一個時間點數值

(預防點膠異常情況發生)

2

預測點膠pass fail

(輔助人工判斷點膠成功與否)

與AI廠商結果做比較

上蓋點膠點位

Number of data

建模方法

- 訓練資料範圍
 - 以全部6個點位的面積數據訓練,預測下一個時間的第6點位面積以第6個點位的面積數據訓練,預測下一個時間的第6點位面積
- 訓練時間單位 每6個時間點為一次訓練單位 每12個時間點為一次訓練單位
- 模型
 Linear Regression
 XGBoost
 XGBoost + Random grid search
- 評估指標
 MAE、MAPE、R²

預測上蓋第六 點面積(mm²)	Linear Regression			XGBoost			XGBoost + Random GS		
	MAE	MAPE	R^2	MAE	MAPE	R^2	MAE	MAPE	R^2
全部點位+ 每6個時間點	43.593	2.899%	49.19%	38.741	2.539%	49.014%	34.29	2.261%	63.127%
全部點位+ 每12個時間點	43.55	2.897%	49.669%	41.929	2.744%	49.506%	34.831	2.292%	62.135%
第六個點位+ 每6個時間點	45.886	3.051%	44.241%	38.306	2.519%	53.519%	36.316	2.389%	59.502%
第六個點位+ 每12個時間點	45.257	2.998%	46.648%	39.974	2.618%	52.245%	37.031	2.427%	58.993%

模型誤差

小補充

綠色:實際面積數值

黄色:預測面積數值

藍色: |綠色- 黃色

成果1結論

結果

- 1. 以全部6個點位面積前期數據訓練的誤差 < 只以第6個點位面積為前期數據訓練的誤差。
- 2. 以每6個時間點為一次訓練單位的誤差 < 以每12個時間點為一次訓練單位的誤差。
- 3. 調整過超參數的XGBoost模型的預測誤差最小。

• 改善方向

- 1. 加入下蓋數據進行預測。
- 2. 增加數據量,避免過程中有機台維護的資料
- 3. 嘗試其他模型進行預測, ex: LSTM...

• 應用

根據模型預測下一個時間的數值,若下一個時間的數值脫離正常範圍,可立即停機進行維護,以預防點膠的異常情況發生。

Ί,

預測下一個時間點數值 (預防點膠異常情況發生)

2.

預測點膠pass fail

(輔助人工判斷點膠成功與否) 與AI廠商結果做比較

下蓋資料

pass

fail

預測下蓋點膠pass fail

	Logic Regression	SVM
採樣方式	Oversampling(SMOTE)	Oversampling(SMOTE)
特徵	X位置、Y位置、膠體長、膠體寬、面積	X位置、Y位置、膠體長、膠體寬、面積
Precision	66%	99%
Recall	82%	97%
F1score	65%	98%
Accuracy	73%	99%

小補充

邊界最大化讓少數位於模糊地帶的 資料較不容易影響模型的判斷標準

Confusion matrix

	真實狀況							
預測狀況	TP 6516	FP 61						
	FN 19	TN 1001						

排除膠體相連的 fail資料,真正fail 的100筆資料中只 有5筆判斷錯誤

與AI廠商結果比對

針對產品為良品或不良品建模 分數: 0.992

算法順序 💠 準	準確率↓	調合準確率 ‡		混淆矩陣 💠			召回率 ≑	精確率 ≎	ff ±	ROC 曲線下面積	準確率(非CV) 💠	調合準確率(非CV)
	+#+ v	MOTAT V	真陽性 💠	假陽性 💠	假陰性 🗢	真陰性 💠	00+ +	mar v	ff \$	*	+x=+ (1101) +	MUTAT (NVI)
0_Super_Stacked	0.9924	0.9537	129	386	12	51732	0.9149	0.2505	0.3933	0.9537	0.9932	0.9966

預測上蓋pass fail									
模型	採樣方式	Precision	Recall	F1score	Accuracy				
SVM	Oversampling/ Undersampling	100%	62%	70%	100%				

小補充

25% 代表模型在判斷Fail資料時, 可能4個fail只能抓到一個或是預測 4個fail只有一個是真的fail的情況 預測fail的成 功率 **25%**

成果2結論

結果

- 1. SVM模型判斷下蓋點位的膠體是否異常的準確率達99%,較Logic Regression的模型準確度高。說明在此模型中輸入膠體位置、面積等特徵,可判斷點膠結果是否異常。
- 2. 與廠商預測結果部份相符,可能原因在於上下蓋的fail資料過少,造成廠商在沒有分類或整理數據的情況下進行預測,而有模型precision較差的結果。

• 改善方向

- 1. 加入上蓋數據進行預測
- 2. 目前fail的資料依然過少,oversampling的採樣方式可能造成模型偏誤,未來還需增加fail的資料量,並 嘗試用其他較不容易有偏誤的採樣方法。
- 3. 結合成果1,若要預測下一個時間點是否會Fail,需增加fail的時間註記。

應用

將此模型結合影像辨識可輔助人工判斷點膠成功與否,可減少人力。 可結合成果1,判斷下一個時間點的點膠是否會fail。

Thank you for your listening!