







# Marco Congedo

Centre National de la Recherche Scientifique Université Grenoble Alpes Grenoble INP



# Riemannian Geometry for BCIs: Intuition and Theory

## **Generative Model of EEG**



$$X = AS$$
  $\longrightarrow$   $Cov(X) = ACov(S)A^{T}$ 

Constant for a given task

## **Riemannian Geometry of Covariance Matrices**



The tangent space at point G is the Euclidean vector space containing the tangent vectors to all curves on  $\mathcal{M}$  passing through G.

Inner product on tangent space (metric) → Riemannian Manifold

Fisher Metric of the SPD Manifold:  ${
m tr} \left( G^{^{-1}} \zeta_1 G^{^{-1}} \zeta_2 
ight)$ 

Norm:  $\left\|G^{-1}\zeta
ight\|_F$ 

# Mapping EEG data on the Manifold of SPD matrices



# Minimum Distance to Mean (MDM) Classifier



## The Fisher-Rao distance

$$\delta^{2}\left(C_{1},C_{2}\right) = \sum_{n} \log^{2} \lambda_{n}\left(C_{1}^{-1}C_{2}\right)$$



#### **Invariances**

Congruence (Affine) 
$$\delta(C_1, C_2) = \delta(BC_1B^T, BC_2B^T)$$
Inversion (Self-Duality) 
$$\delta(C_1, C_2) = \delta(C_1^{-1}, C_2^{-1})$$

## **Congruence Invariance**

(equivalence of sensor and source space)

First Order

$$X = AS$$

**Second Order** 

$$cov(X) = A cov(S) A^{T}$$

## **Inversion Invariance**

(adjust to heterogeneity of source power)

$$\lambda(C) = (10, 1, 0.1)$$

$$\lambda(C^{-1}) = (0.1, 1, 10)$$

# The PD Geodesic (t-weighted mean)



$$C_{1} \#_{t} C_{2} = C_{1}^{\frac{1}{2}} \left( C_{1}^{-\frac{1}{2}} C_{2} C_{1}^{-\frac{1}{2}} \right)^{t} C_{1}^{\frac{1}{2}}, \qquad t \in [0,1]$$

$$C_{1} \#_{0} C_{2} = C_{1}$$

$$C_{1} \#_{1} C_{2} = C_{2}$$

$$C_{1} \#_{\frac{1}{2}} C_{2} = G \quad \text{(Midpoint = Geometric Mean)}$$

Bhatia (2007) Positive Definite Matrices, Princeton press.

# **Interpolation & Extrapolation**



$$C_1 \#_{t} C_2 = C_1^{\frac{1}{2}} \left( C_1^{-\frac{1}{2}} C_2 C_1^{-\frac{1}{2}} \right)^{t} C_1^{\frac{1}{2}}$$

## **Geometric Mean**

(Karcher mean, Barycenter, Centre of Mass...)

$$\arg\min_{G} \sum_{k} \delta^{2} (G, C_{k})$$



Always exixts, is unique and satisfies

$$\sum_{k} \left\lceil \operatorname{Log} \left( G^{-1/2} C_{k} G^{-1/2} \right) \right\rceil = 0$$

Existence and uniqueness first proved by Elie Cartan on Lie groups Moakher M (2005) SIAM. J. Matrix Anal. Appl, 26 (3), 735-747.







# **International BCI Decoding Competitions**

| Nom de la Compétition    | Événement ou Organisateur | Clôture    | Participants | Score (%) |
|--------------------------|---------------------------|------------|--------------|-----------|
| DecMeg 2014              | BIOMAG 2014 Conference    | 27/07/2014 | 301          | 75.5      |
| BCI Challenge            | IEEE NER 2015 Conference  | 24/02/2015 | 311          | 87.2      |
| Grasp&Lift EEG Challenge | WAY European Project      | 31/08/2015 | 452          | 98.1      |
| Decoding Brain Signals   | Microsoft                 | 01/07/2016 | 688          | 93.7      |
| Biomag2016 competition   | BIOMAG 2016 Conference    | 25/09/2016 | 7            | 95.6      |

# **Code for Riemannian geometry**

https://sites.google.com/site/marcocongedo/science/code-resources

## P300-BCI Data

#### https://sites.google.com/site/marcocongedo/science/EEG-data

Databases

273 Subjects

1446 Sessions

#### BCI in Virtual Reality and on a PC

Description: Visual P300 BCI experiment on PC and virtual reality (passive head-mounted display) (2018)

# Subjects: 21

# Sessions: 2 # Electrodes: 16 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp Database ID: VR FEG 2018-GIPSA

Sampling Rate: 512 sps

#### Brain Invaders Multi-User Cooperation vs. Competition

Description: Multi-User Brain Invaders: Cooperation versus Competition condition (2015)

# Subjects: 44

# Sessions: 2 # Electrodes: 32 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps Database ID: bi2015b

#### Brain Invaders Multi-User flash duration

Description: Brain Invaders calibration-less P300-based BCI with modulation of flash duration (2015)

# Subjects: 50

# Sessions: 3

# Electrodes: 32 wet Silver/Silver Chloride electrodes EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps

Database ID: bi2015a

#### Brain Invaders Solo vs. Multi-User Collaboration

Description: Multi-User Brain Invaders in Solo versus Collaboration condition (2014)

# Subjects: 38

# Sessions: 3

# Electrodes: 32 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp Sampling Rate: 512 sps Database ID: bi2014b

#### Brain Invaders dry electrodes

Description: Brain Invaders calibration-less P300-based BCI with dry electrodes (2014)

# Subjects: 71

# Sessions: up to three per participant

# Electrodes: 16 metal dry electrodes EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps

Database ID: bi2014a

#### Brain Invaders Adaptive vs. Non-Adaptive

Description: First Brain Invaders dataset of a BCI working without calibration (2013)

# Subjects: 24

# Sessions: 8 for subjects 1-7, one for the remaining.

# Electrodes: 16 wet Silver/Silver Chloride electrodes

EEGMachine: g.tec g.USBamp

Sampling Rate: 512 sps

Database ID: BI.EEG.2013-GIPSA

#### **Building Brain Invaders**

Description: First Brain Invaders BCI dataset (2012)

# Subjects: 25

# Sessions: 2

# Electrodes: 16 wet Silver/Silver Chloride electrodes

EEG Machine: TMSI Porti

Sampling Rate: 128 sps

Database ID: BLEEG.2012-GIPSA



## Collaborators @GIPSA-lab

Prof. C. Jutten

Ingeneer: A. Andreev

Post-Doc: A. Barachant, P. Zanini

PhD Students: L. Korczowski, F. Barachant, P.L.C. Rodrigues, A. Bleuzé





