"MIDI 2018"

The Musical Instrument Digital Interface Thirty-Five Years and Counting

Tom Moxon

- Product Design Consultant
 PatternAgents, LLC
 Halcyon Modular LLC
 (Audio, Video, Electronic Product Design)
- "HardLight VR" Suit HW/FW Design Full Body Motion Capture with Haptics

- Integrated Circuit & Chip Design consulting for Cray Research, SGI/MIPS/Nintendo, Hyundai, others
- Design Engineer, EMU Systems Applied Magic for the Arts Drumulator/E-Drum Emulator2 Sampler

Musical Instrument Digital Interface

 is an electronic musical instrument industry specification that allows a variety of digital musical instruments and other devices to connect and communicate with one another.

 The MIDI Standard is administered by the MIDI Manufacturers Association, on the web at :

http://www.midi.org

Source: MMA/midi.org

Musical Instrument Digital Interface

 is a set of standard commands that allow electronic musical instruments, performance controllers, computers and related devices to communicate, as well as a hardware standard that guarantees compatibility between them.

Commands include messages as : note on, note off, key pressure, pitch bend, etc.

MIDI control of a Yamaha Piano by Disklavier Module

MIDI Control Example

Control & Data Planes

The Dark Ages – Before MIDI

 Musicians realized early on that they needed a language to communicate, and the first machine printed music scores appeared around 1473, and this was the "manual control" standard until...

Source: wikipedia

Paper Roll Control

 The "Music Roll" appeared in 1877, and Player Pianos appeared in halls and bars

 Most had basic control: note on, note off an early equivalent of what MIDI does today...

Voltage Control

 In the 1960's voltage control of audio became popular with the analog synthesizers designed by Bob Moog, Don Buchla, and others

Source: wikipedia

Volt per Octave Pitch Control

- Voltage Control, or "CV" was often used with Volt per Octave Pitch control.
- "Subjective Pitch" can be nonlinear, and is measured in Mels.

Source: emusician.com

CV/Gate

 "Control Voltage/Gate" is the term used when an analog <u>Control Voltage</u> signal is used in conjunction with a digital <u>Gate</u> signal

Source: moxon

Early CV/Gate Disadvantages

- Wiring: it took many patch cables
- Compatibility: different voltages
- Calibration: many voltage sources
- Drift: with temperature, tuning issue
- Reliability: too many connections to fail
- Portability: too many connections to rewire
- Patches: each song required rewiring
- Polyphony: difficult for more than a solo voice

Digital/Computer Based

 Early computer music programs stated in the 1950's; and by the 1970's many universities and groups were using mini-computers for direct sound generation, the beginning of widely available Digital Signal Processing (a topic in itself...)

DEC PDP/11 Computer

Computer Interfaces

 Synthesizer makers started adding serial (RS-232) computer interfaces to their instruments; but there was no industry standard language or protocol for how to "talk" to each other, so interoperability was very limited between models

Babel and Confusion

- Before MIDI there were several competing interface standards from Roland (DCB), Emu, Yamaha, and others. Most were proprietary and worked only between their own gear
- There were physical incompatibility issues as well as software protocol incompatibility issues
- There was also concern about being able to retrofit older, or even recent gear to work together

Hardware Differences

Differential Signals vs. Single Ended

- USB, AppleTalk, and DMX are differential examples MIDI, and Modular CV are single-ended examples
- Differential is generally faster, more noise tolerant and works over longer distance, but more \$\$\$

Protocol Differences

- 1980's Newer communications chips (like the Zilog Z-80 SCC) could do both synchronous and asynchronous protocols as well as hardware addressing, multidrop
- Some companies (Emu, Oberheim, etc.)
 wanted to make use of those newer capabilities
- Bigger companies (Roland, Yamaha, etc) were more concerned with retrofitting existing gear

Universal Synthesizer Interface

 Dave Smith and Chet Wood of Sequential Circuits devised a "Universal Synthesizer Interface", and proposed it to the Acoustic Engineering Society (AES) in 1981

Source: Sequential Circuits

Standards Process

 It took another two years of negotiation between companies like Sequential Circuits, Roland, Korg, Kawai, Oberheim, Moog, Yamaha, and others to get all the makers to adopt a common standard, renamed MIDI, the Musical Instrument Digital Interface

Enter MIDI...

 MIDI was announced to the public in the October 1982 edition of Keyboard Magazine in an article by Bob Moog

First MIDI Demonstrations

 At the January 1983 NAMM show, the MMA was able to demonstrate a Sequential Circuits Prophet 600 connected to Roland Jupiter-6 using the new MIDI 1.0 interface

MIDI Cabling

MIDI uses a 180 degree, five (5) pin
 DIN connector as cable termination

MIDI Wiring

 MIDI connects a master device (OUT) to a slave device (IN) as a minimum

MIDI Signal Direction

 In order to receive data back from the Slave device, it's MIDI OUT needs to be wired back to the Master device MIDI IN

MIDI Daisy Chain

MIDI "THRU" passes data from MIDI "IN"

MIDI Distribution

 Better to use a "MIDI Thru Box" to distribute the MIDI output to many slave devices, this reduces timing jitter

Maximum MIDI cable length is 50 feet!

MIDI – Under the hood...

of the MIDI cable

MIDI Physical Layer (PHY)

- PHY is the abbreviation for the PHYsical layer of the OSI model
- The MIDI physical circuit is a 5mA current loop, with logic Zero (0) as current on.
- MIDI is generally optically isolated in order to avoid ground loops that can cause "hum" and "static" in the audio signal

MIDI PHY

- Opto-Isolator is Sharp PC-900 or HP 6N138
- Traditionally, 7404 or 7400 drivers used

MIDI Thru Box

MIDI Thru Box :

MIDI Link Layer

- MIDI is a simple asynchronous serial interface, readily available on microprocessors of the early 1980's
- MIDI uses a baud rate of 31.25K baud (your old 56K baud modem was faster!)
- MIDI uses a 10 bit frame, with 1 start bit,
 8 data bits, and 1 stop bit, no parity.

MIDI Protocol

- The MIDI protocol is made up of messages.
 A message consists of a series of bytes,
 from a single byte to many bytes.
 Most messages are from 1 to 3 bytes long.
- The first byte of every MIDI message is the Status byte, and it is special in that it is the only byte in a message to have Bit #7 set to a one, such as the Reset message

11111111 = 0xFF = MIDI Reset Status Message

MIDI Status Messages

Status Messages (bit 7 set) > 0x80 – 0xFF

Status	Explanation	Msg Size	Byte 1	Byte 2
0x8c	Note Off	2	pitch	velocity
0×9c	Note On	2	pitch	velocity
0×Ac	Key Pressure	2	key	pressure
0xBc	Controller Change	2	controller	value
0xCc	Program Change	1	preset	
OxDc	Channel Pressure	1	pressure	
0xEc	Pitch Bend	2	bend LSB	bend MSB
0xF0	System Exclusive	n	vendor ID	any thing
0xF2	Song Position	2	position LSB	position MSB
0xF3	Song Select	1	song number	
0xF5	Unofficial Bus Select	7	bus number	
0xF6	Tune Request	0		
0xF7	End of SysEx	0		
0xF8	Timing Tick	0		
0×FA	Start Song	0		
0×FB	Continue Song	0		
0xFC	Stop Song	0		
0×FE	Active Sensing	0		
0×FF	System Reset	0		

Decoding MIDI Messages

Command: Program Change to Program #128 on MIDI Channel #1

MIDI Channel Messages

Byte o Status Byte


```
• XXXX: 1000 = 0x8 = Note Off

1001 = 0x9 = Note On

1010 = 0xA = After Touch/Pressure

1011 = 0xB = Controller Change

1100 = 0xC = Program Change

1101 = 0xD = Channel Pressure

1110 = 0xE = Pitch Wheel

1111 = 0xF = System Common/Real Time
```

YYYY: MIDI Channel Number (1 – 16 channels)

Note On Message

Note Off Message

MIDI Notes

STANDARD PIANO KEYBOARD

MIDI NOTES

MIDI Note values outside the normal 88 key range

MIDI Controllers

 Pedals, Sliders, Knobs, etc. are referred to as "Controllers" or as "Continuous Controllers"

 The first 32 controllers have the ability to have two bytes of control information sent (14 bits)

Control		
Number	On/Off	Function
Ō		undefined
1		Modulation Wheel
2 3		Breath Controller
3		undefined
4		Foot Controller
4 5 6		Portamento Time
6		Data Entry Slider (uses Parameter Number)
7		Main Volume
8		Balance
9		undefined
10		Pan
11		Expression Controller
12-15		undefined
16-19		General Purpose Controllers 1-4
20-31		Undefined
32-63		LSB for controllers 0-31
64	√	Damper Pedal
65	l √	Portamento
66	- √	Sostenuto
67	- √	Soft Pedal
68		undefined
69	- √	Hold 2
70-79		undefined
80-83		General Purpose Controllers 5-8
84-91		undefined
92		Tremolo Depth
93		Chorus Depth
94		Celeste (Detune) Depth
95		Phaser Depth
96		Data Increment
97		Data Decrement
98		Non-Registered Parameter Number LSB
99		Non-Registered Parameter Number MSB
100		Registered Parameter Number LSB
101		Registered Parameter Number MSB
102-121		undefined
122-127		Channel Mode Messages

Controller Message (Course)

Controller Message (Fine)

System Realtime Messages

 System Realtime messages are only a single byte long to reduce timing delay and overhead

```
    Realtime: 0xF8 = Timing Clock
0xF9 = Reserved
0xFA = Start Sequencer
0xFB = Continue Sequencer
0xFC = Stop Sequencer
0xFD = Reserved
0xFE = Active Sensing
0xFF = System Reset
```

 Active Sensing handles runaway devices by silencing them if a new MIDI message is not received by the timeout time of 300 milliseconds

System Common Messages

 The System Exclusive Message can be any length in bytes and is terminated the "End of SYSEX" message.

```
• Realtime: 0xF0 = System Exclusive Message
```

0xF1 = MIDI Time Code Quarter Frame

0xF2 = Sequencer Song Position

0xF3 = Sequencer Song Select

0xF4 = Reserved

0xF5 = Reserved

0xF6 = Tune Request

0xF7 = End of System Exclusive Message

System Exclusive Message

- The SYSEX message type allows manufacturers to create their own messages (such as bulk dumps, patch parameters, and other non-MIDI specified data)
- It uses both a Manufacturer's ID code and Model ID Code to exchange information specific to a particular instrument
- Two of the Manufacturer's IDs are reserved for extensions called Universal Exclusive Messages, which are not manufacturer-specific, and was a built-in way to expand the MIDI specification later.
- If a device recognizes the ID code as its own (or as a supported Universal message) it will listen to the rest of the message. Otherwise, the message will be ignored.
- Only Real-Time messages may be interleaved with a System Exclusive message

MIDI Protocol Examples

- MIDI Status is <u>stateful</u>, in that it only needs to be sent once (unless it changes)
- Note On, Middle C, Channel #1, ½ velocity 0x90, 0x3C, 0x40
- Note, On, G above C, Channel #1, ½ velocity 0x43, 0x40
- This is known as <u>running status</u>, and applies only to Channel messages

So, MIDI 1.0 solved everything?

- Hardly most synthesizers had different internal formats and patch tables
- For example one synthesizer might have a piano sound on Program #1, while another might have a trumpet sound on Program #1
- Overuse of the SYSEX messages for custom purposes made it difficult for software design

Enter General MIDI...

 It took until 1991 for the first version of General MIDI to be published

 A basic list of requirements that synthesizers needed to meet to get the General MIDI stamp of approval.

24 Voice Polyphony (16 melodic, 8 drum) Support 16 MIDI channels (Drums on #10) Support Note Velocity control Support 128 Standard Program Table

General MIDI

 Finally with General MIDI, you could issue a Program Change to Program #1 and expect to get an "Acoustic Grand Piano" sound on all of your General MIDI gear (or the closest sound to an "Acoustic Grand Piano" that particular gear could create...)

General MIDI Instruments

A brief look at some of the supported voices

Piano		Bass		Reed		Synth Effect	
• 1	Acoustic Grand Piano	33	Acoustic Fretless Bass	65	Soprano Sax	97	loe Rain
2	Bright Acoustic Piano	• 34	Electric Bass Fingered	• 66	Alto Sax	98	Sound Tracks
3	Electric Grand Piano	35	Electric Bass Picked	67	Tenor Sax	99	Crystal
4	Honky-tonk Piano	36	Fretless Bass	68	Baritone Sax	100	Atmosphere
• 5	Rhodes Piano	• 37	Slap Bass 1	• 69	Oboe	101	Brightness
6	Chorused Piano	38	Slap Bass 2	70	English Horn	102	Goblins
• 7	Harpsichord	39	Synth Bass 1	71	Bassoon	103	Echoes
• 8	Clayinet	40	Synth Bass 2	• 72	Clarinet	104	Space
Chromatic Percussion		Strings and Orchestra		Pipe		Ethnik	
9	Celesta	+ 41	Violin	73	Piccolo	• 105	Sitar
10	Glockenspiel	42	Viola	• 74	Flute	• 106	Banjo
11	Music Box	43	Cello	75	Recorder	107	Shamisen
• 12	Vibraphone	44	Contrabass	• 76	Pan Flute	108	Koto
• 13	Marimba	45	Tremolo Strings	77	Bottle Blow	109	Kalimba
14	Xylophone	46	Pizzicato Strings	78	Shakuhachi	110	Вадріре
15	Tubular bells	47	Orchestral Harp	• 79	Whistle		Fidale

80 Ocarina

+ 48 Timpani

Source: midi.org

16 Dulcimer

SMF – Standard MIDI Files

- MIDI data can also be stored as files The standard MIDI file (.smf, or .mid) is
 slightly different from the "live" MIDI data in
 that it contains <u>time-stamping</u> information
- There two main types of SMF, namely;
 Type-0 (all data in a single track)
 Type-1 (data is in multiple tracks)

(Type-2 never caught on - and is obsolete)

MIDI File Structure

Composed of "Chunks" of information

```
SMF =

 <header_chunk>
     + <track_chunk>
     [+ <track_chunk> ...]
```


SMF File Header

header_chunk =

"MThd"

+ <header_length>

+ <format>

+ <n>

+ <division>

Literal Header
Header Length
Type-0/1
of Track Chunks
Timing Units/Beat

SMF Track Chunk

track_chunk =

"MTrk" + <length>

+ <track_event> [+ <track_event> ...]

Literal Header Bytes in Track Chunk

A Track Event more track events...

SMF Track Event

track_event =

```
<d_time>
+ <midi_event>
| <meta_event>
| <sysex_event>
```

Delta Time Stamp MIDI Message SMF Meta Event SYSEX Event

 Meta Events are for non-MIDI data like track name, copyright, labels

USB MIDI Class

 MIDI over USB possible with MIDI USB Class USB has replaced older MIDI interfaces on computers for the most part, but the MIDI interface is still used on instruments, and low cost USB to MIDI adaptors are available

Is MIDI Obsolete now?

- No. The MIDI standard keeps evolving
- MIDI is now on several different transports such as USB, FireWire, Ethernet, others
- MIDI has IETF MIME mapping for internet
- MIDI has eXtensible Music Format (XMF)
- MIDI also has XML mappings now

MIDI – Thirty-Five Years and Counting

- It's been thirty-five (35) years since the MIDI specification was released, and it remains as relevant and useful today as when it was first released.
- MIDI continues to evolve and find new applications for controlling musical instruments as well as other devices.

Source : MMA/midi.org

MIDI – What's next?

- MIDI Polyphonic Expression (MPE)
 MPE is a method of using MIDI which enables multidimensional controllers to control multiple parameters of every note within compatible systems
- Normally MIDI Channel-wide messages (such as Pitch Bend) are applied to all notes being played on a single MIDI Channel. In MPE, each note is assigned its own MIDI Channel so that those messages can be applied to each note individually

Source : MMA/midi.org

MIDI – What's next?

- MIDI-CI "Capability Inquiry"
 - Protocol Negotiation (fallback)
 - Profile Configuration (controller maps)
 - Property Exchange (ask for capabilities)
- Similar to what RDM-512 did for DMX-512, the electronic lighting standard

Source: MMA/midi.org

MIDI - What's next?

Source: MMA/midi.org

Sources and References:

- MIDI Manufacturer's Association: http://www.midi.org
 The MIDI logos and graphics are Copyrighted Material owned by the MMA, and used here with their kind permission.
- Wikipedia : en.wikipedia.org/wiki/MIDI/
- eMusician: http://www.emusician.com/news/0766/pitch-vs-frequency/146705

Thank You!

Questions?

Notes: