ARM 프로세서 개요

Hancheol Cho

ARM (Advanced RISC Machine)

branch

Proprietary

Open

ARM, originally Acorn RISC Machine, later Advanced RISC Machine, is a family of <u>reduced instruction set computing</u> (RISC) <u>architectures</u> for <u>computer processors</u>, configured for various environments. **British** company <u>ARM Holdings</u> develops the architecture and licenses it to <u>other companies</u>, who design their own products that implement one of those architectures

<u>출처</u>

日 소프트뱅크, 모바일 반도체 1위 ARM 전격 인수...로봇·Al·loT 융합 ... 조선비즈 - 2016. 7. 17.

일본 소프트뱅크가 영국 반도체 회사 암(ARM) 홀딩스를 234억 파운드(약 35조1800억원)에 전격 인수키로 해 배경에 관심이 쏠리고 있다. ARM은 ...

소프트뱅크, 영국 ARM 인수 의미와 파장은 심층 뉴스 - 전자신문 - 2016. 7. 17.

모두 보기

소프트뱅크, 미 보스턴 다이나믹스와 샤프트 인수! 스마트 로봇업계 지각 ...

www.seminartoday.net/news/articleView.html?idxno=9773 ▼ 5일 전 - 소프트뱅크는 알파벳(Alphabet) 산하의 로봇기업 2개사, 보스턴 ... 보스턴 다이나맥스의 개발된 로봇군(사진:보스턴 다이나맥스) ...

ARM Processor Family

ARM Architecture 분류

- A The *Application* profile defines a VMSA based microprocessor architecture. It is targeted at high performance processors, capable of running full feature operating systems. It supports the ARM and Thumb instruction sets.
- R The *Real-time* profile defines a PMSA based microprocessor architecture. It is targeted at systems that require deterministic timing and low interrupt latency. It supports the ARM and Thumb instruction sets.
- The *Microcontroller* profile provides low-latency interrupt processing accessible directly from high-level programming languages. It has a different exception handling model to the other profiles, implements a variant of the PMSA, and supports a variant of the Thumb instruction set only.

Profile	Architecture	Instruction Set	Processor
A-Profile	ARMv7-A	A32, T32	Cortex-A Series
R-Profile	ARMv7-R	A32, T32	Cortex-R Series
M Duefile	ARMv7-M	T32	Cortex-M Series
M-Profile	ARMV6-M	T32	Cortex-M0 Series

Cortex-M Processor

Cortex-M3	Corte	x-M4	Corte	k- M 7	Cortex-M33	
Performance efficiency	Mainst control a		Maxim perform control a	ance,	Flexibility, control and DSP with TrustZone	Performance efficiency
Corte	ex-M0	Cortex-	M0+		Cortex-M23	
low p	ot cost, ower DesignStart	Highest er efficien			TrustZone in smallest area, lowest power	Lowest power & area
SC	000	SC30	0			
	ed area, mpering	Performa anti-tamp	77.74			SecurCore

	Cortex-M0	Cortex-M0+	Cortex-M3	Cortex-M4	Cortex-M7
Instruction set	ARMv6-M	ARMv6-M	ARMv7-M	ARMv7-M	ARMv7-M
architecture	Thumb, Thumb-2	Thumb, Thumb-2	Thumb, Thumb-2	Thumb, Thumb- 2,	Thumb, Thumb-2, DSP, FP (1. SP or
				DSP, FP (SP)	2. SP+DP)

Cortex-M Instruction Set support

Programmer's model

Real Time OS?

Context

- 스레드/태스크가 실행되기 위한 최소한의 데이터
 - CPU 레지스터, 스택포인터 등등...

ARM State Program Status Registers

Context Switching

Thread-control blocks prgm ctr t0 prgm ctr t1 registers registers stack ptr stack ptr etc. etc. Save Restore Time (Virtual processor) Thread t0 Thread t1 Context switch

스케줄러

Figure 4.1: Preemptive scheduling of tasks

스케줄러

RTOS

Exception Vector

0

- 스택포인터 초기값을 지정 가능
 스타트업 코드도 C언어로 작성 가능
 - Exception ARMv6-M ARMv7-M Type 255 47 Device Specific Interrupts Device Specific Interrupts 17 16 15 SysTick SysTick 14 PendSV PendSV 13 Not used Not used 12 **Debug Monitor** 11 SVC SVC 10 9 Not used 8 Not used Usage Fault 6 5 **Bus Fault** MemManage (fault) 4 3 HardFault HardFault 2 NMI NMI

Vector Table	Vector address (initial)
Interrupt#239 vector 1	0x000003FC
Interrupt#31 vector 1	0x000000BC
Interrupt#1 vector 1	0x00000044
Interrupt#0 vector 1	0x00000040
SysTick vector 1	0x0000003C
PendSV vector 1	0x00000038
Not used	0x00000034
Debug Monitor vector 1	0x00000030
SVC vector 1	0x0000002C
Not used	0x00000028
Not used	0x00000024
Not used	0x00000020
SecureFault (ARMv8-M Mainline) 1	0x0000001C
Usage Fault vector 1	0x00000018
Bus Fault vector 1	0x00000014
MemManage vector 1	0x00000010
HardFault vector 1	0x0000000C
NMI vector 1	0x00000008
Reset vector 1	0x00000004
MSP initial value	0x00000000

성능 비교

• 데이터 처리 속도

	Dhrystone DMIPS/MHz (v2.1) – official	Dhrystone DMIPS/MHz (v2.1) – full optimization	Coremark/MHz (v1.0)
Cortex-M0	0.84	1.21	2.33
Cortex-M0+	0.94	1.31	2.42
Cortex-M3	1.25	1.89	3.32
Cortex-M4	1.25	1.95	3.40
Cortex-M7	2.14	2.55	5.01

Interrupt Latency

	Interrupt latency (number of clock cycles)		
Cortex-M0	16		
Cortex-M0+	15		
Cortex-M3	12		
Cortex-M4	12		
Cortex-M7	Typically 12, worst case 14		

Interrupt Latency

Interrupt Latency?

• 기존 마이크로 컨트롤러와 비교

ST사의 MCU 구성

DSP?

DSP 장점

- 연산모듈이 8개 (최대 1Clock에 8개의 명령어 실행 가능)
- Very-Long-Instruction-Word (VLIW)
- 데이터 버스 최대 **256bit**

○ 소프트 파이프라인을 통한 병렬 실행

```
MVKL L1DCC, A0
                   ; \
|| MVKL L1PCC, BO
                   ; | Generate L1DCC pointer in A0
 MVKH L1DCC, A0
                  ; | and L1PCC pointer in B0
|| MVKH L1PCC, B0
                  ; \ OPER encoding for 'freeze'
|| MVK 1b, A1
|| MVK 1b, B1
                 ; / in both Al and Bl.
  STW A1, *A0
                 ; Write to L1DCC.OPER
II STW B1, *B0
                 ; Write to L1PCC.OPER
 LDW *A0, A1
                 ; Get old freeze state into Al from L1DCC
|| LDW *B0, B1
                   ; Get old freeze state into B1 from L1PCC
  NOP 4
 ; At this point, L1D and L1P are frozen.
 ; The old value of L1DCC.OPER is in bit 16 of Al.
 ; The old value of L1PCC.OPER is in bit 16 of B1.
```

DSP?

- DSP 장점
 - o DMA 기능이 강력함
 - DMA 기능만으로도 일부 이미지 처리가 가능함

- DSP 단점
 - 인터럽트 발생시 명령어가 길어서 연산속도에 영향을 많음
 - 최적화시 기본적으로 인터럽트가 Disable됨으로 인터럽트 사용시에는 최적화 옵션 사용시 주의가 필요함
 - ARM 프로세서와 듀얼로 많이 사용
 - 최적화에 따른 속도 편차가 심함
 - 연산모듈은 8개이나 명령어 종류에 따른 동시 실행이 안되는 경우가 있음
 - 컴파일러 옵션만으로는 최적화의 한계가 있음으로 TI에서 제공하는 최적화 라이브러리 사용 권장
 - 캐시에 대한 영향이 크다
 - 명령어도 길고 데이터도 크기때문에 캐시 메모리에서 실행시와 외부메모리에서 실행시 속도 편차가 큼

- STM32F746ZGT6 216Mhz, Cortex-M7, 1MB Flash, 320KB SRAM
- 아두이노 우노 핀 헤더
- 아두이노 IDE 개발환경 지원
- 다이나믹셀/올로/UART/CAN 인터페이스
- 배터리 입력 및 전원 출력(12V/5V/3.3V)

• Turtlebot3 Burger/Waffle의 제어기로 사용됨

활용 예제
 https://youtu.be/-_kBflS6w]s

- 하드웨어 자료
 - https://github.com/ROBOTIS-GIT/OpenCR-Hardware
- 펌웨어 자료
 - https://github.com/ROBOTIS-GIT/OpenCR