

AGH

Katedra Elektroniki

Podstawy Elektroniki dla TeleInformatyki

Diody półprzewodnikowe

Ćwiczenie

2

2014 r.

1. Wstęp.

Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami diody półprzewodnikowej.

2. Konspekt

Właściwości diody półprzewodnikowej. Obwód elektryczny z diodą spolaryzowaną w kierunku przewodzenia i w kierunku zaporowym. Prostownik jednopołówkowy. Prostownik dwupołówkowy. Prostownik z mostkiem Graetza. Filtrowanie tętnień w układach prostowników. Napięcie progowe diody półprzewodnikowej. Detektor szczytowy. Demodulator diodowy. Rodzaje diod półprzewodnikowych.

3. Działanie prostownicze diody półprzewodnikowej w obwodzie elektrycznym

Narysuj obwód elektryczny z diodą półprzewodnikową włączoną do obwodu prądu zmiennego jak na rys. 1.

Rys. 1. Obwód elektryczny prądu zmiennego z diodą półprzewodnikową pełniącą funkcję prostownika jednopołówkowego

Dołącz oscyloskop i obserwuj przebieg napięcia przed i za diodą. Pamiętaj o rozróżnieniu kolorami przebiegów w kanale A i B oscyloskopu. Za pomocą kursorów w oscyloskopie (rys.2) zmierz napięcie progowe diody U_P jako różnicę napięć przed i za diodą. Na pasku pod ekranem

oscyloskopu widoczne są współrzędne punktów przecięcia kursora z krzywymi napięć, i różnica tych współrzędnych umożliwia ustalenie napięcia progowego U_P.

Rys. 2. Dioda półprzewodnikowa jako prostownik jednopołówkowy – przebiegi na ekranie oscyloskopu (U_P – napięcie progowe diody).

Zaobserwuj również jednopołówkowe działanie prostownicze diody za pomocą analizy Transient (rys. 3). Dobierz parametry analizy (*Start time, End time, Outputs*), za pomocą kursora zmierz ponownie napięcie progowe U_P na diodzie prostowniczej. Wyniki zanotuj w Tabeli 1.

Rys. 3. Dioda półprzewodnikowa jako prostownik jednopołówkowy – Analiza Transient.

W układzie z rys. 1 dołącz dodatkowo multimetr i zmierz napięcie średnie $U_{\text{śr}}$ przebiegu wyprostowanego na wyjściu układu (rys. 4). Proponujemy dołączenie dodatkowo także Multimetru Agilent. Klikając dwukrotnie na symbol przyrządu pojawia się czołówka rzeczywistego multimetru firmy Agilent. Multimetr Agilent jest dostępny w pasku przyrządów programu MultiSim.

Rys. 4. Pomiar wartości średniej napięcia wyprostowanego Uśr.

W obwodzie elektrycznym z rys. 1 zmień sposób włączenia diody D1 na przeciwny. Zaobserwuj i zanotuj przebieg napięcia przed i za diodą i zmierz napięcie progowe U_P. Wyniki zanotuj w Tabeli 1.

Tabela 1. Obwód elektryczny z diodą półprzewodnikową pracującą jako prostownik jednopołówkowy

	Dioda włączona jak na rys. 1	Dioda włączona w kierunku przeciwnym
Napięcie progowe Up [V]:		
a) oscyloskop		
b) Analiza Transient		
Napięcie średnie wyprostowane [v]		

4. Prostownik jednopołówkowy z filtrem RC na wyjściu

Zbuduj układ prostownika jednopołówkowego z diodą półprzewodnikową oraz odbiornikiem RC na wyjściu (rys. 5). Na wejściu układu zastosuj transformator, który służy do separacji elektrycznej obwodu wejściowego od obwodu wyjściowego. Wprowadź na pulpit transformator z katalogu *Basics-Transformer-TS Ideal*. Jako odbiornik w obwodzie wyjściowym zastosuj układ rezystora R₁ i kondensatora C₁ połączonych równolegle.

Rys. 5. Prostownik jednopołówkowy

Zaobserwuj na oscyloskopie przebieg napięcia wyjściowego i zmierz przy pomocy kursorów napięcie tętnień U_T (rys. 6).

Rys. 6. Jednopołówkowe prostowanie napięcia przemiennego i filtrowanie tętnień (U_T – napięcie tętnień)

Analiza Transient umożliwia dokładniejsze określenie napięcia tętnień niż obserwacja na oscyloskopie. Uruchom Analizę Transient, dobierz parametry analizy (*Start time, End time, Outputs*). Za pomocą kursorów zmierz ponownie napięcie tętnień U_T układu. Na wyjście układu dołącz, oprócz oscyloskopu, multimetr i zmierz wartość średnią napięcia wyprostowanego.

Wyniki zanotuj w tabeli 2 dla dwóch różnych kombinacji bez kondensatora C₁ oraz dla dwóch różnych wartości C₁. Jedną z tych wartości pojemności C₁ dobierz tak, aby napięcie tętnień osiągnęło wartość mniejszą od 10% maksymalnej wartości napięcia tętnień (bez kondensatora).

Tabela 2. Jednopołówkowe prostowanie napięcia przemiennego i filtrowanie tętnień

	$R_1 = 1 \text{ k}\Omega$ bez C_1	$R_1 = 1 kΩ$ $C_1 = 5 μF$	$R_1 = 1 \text{ k}\Omega$ $C_1 = \dots$
Napięcie tętnień U⊤ [V]:			
a) oscyloskop			
b) Analiza Transient			
Napięcie średnie wyprostowane [v]			

W sprawozdaniu należy zamieścić obrazy przebiegów na oscyloskopie lub Analizy Transient dla różnych wartości RC jak również wnioski z eksperymentów.

5. Prostownik w układzie Graetza

Zbuduj układ prostownika dwupołówkowego napięcia przemiennego w układzie Graetza (rys. 7). Do układu dołącz oscyloskop, zaobserwuj przebieg napięcia wyjściowego i zmierz napięcie tętnień U_T bez kondensatora C_1 oraz dla dwóch różnych wartości pojemności C_1 . Dobierz tak jedną z wartości pojemności C_1 , aby napięcie tętnień osiągnęło wartość mniejszą od 10% maksymalnej wartości napięcia tętnień. Dołącz multimetr i zmierz w każdym przypadku wartość średnią napięcia wyprostowanego. Wypełnij tabelę 3.

Tabela 3. Dwupołówkowe prostowanie napięcia przemiennego z zastosowaniem mostka Graetza

	$R_1 = 1 k\Omega$ bez C	$R_1 = 1 kΩ$ $C_1 = 5 μF$	$R_1 = 1 \text{ k}\Omega$ $C_1 = \dots$
Napięcie tętnień U _⊤ [V]:			
a) oscyloskop			
b) Analiza Transient			
Napięcie średnie wyprostowane [v]			

Rys. 7. Prostownik w układzie Graetza

Załóżmy, że wystąpiły uszkodzenia diod w układzie Graetza w sekwencji przedstawionej na rys. 7a, 7b oraz 7c. Przeanalizuj odpowiedzi układu w tych przypadkach i udokumentuj je (zamieść w sprawozdaniu odręczny szkic przebiegu sygnału lub zrzut z ekranu oscyloskopu).

Rys. 7a. Prostownik w układzie Graetza – uszkodzenie diody w gałęzi mostka – wariant a

Rys. 7b. Prostownik w układzie Graetza – uszkodzenie diod w gałęziach mostka – wariant b

Rys. 7c. Prostownik w układzie Graetza – uszkodzenie diod w gałęziach mostka – wariant c

6. Detektor szczytowy

Zbuduj układ detektora szczytowego jako przykład zastosowania diody półprzewodnikowej (rys. 8). Jako źródło napięcia zastosuj źródło napięcia AM z katalogu *Sources* o takich parametrach jak na rys. 8. Dołącz oscyloskop tak, aby możliwa obserwacja przebiegu napięcia z generatora w węźle 1 i przebiegu napięcia na wyjściu układu w węźle 2. Schemat układu z dołączonym oscyloskopem jak również przebiegi napięcia w węzłach 1 i 2 zamieść w sprawozdaniu. Wyjaśnij na czym polega działanie układu jako detektora szczytowego.

Rys. 8. Detektor szczytowy

7. Demodulator diodowy

Zbuduj układ demodulatora jako przykład zastosowania diody półprzewodnikowej (rys. 9). Jako źródło napięcia zastosuj źródło napięcia zmodulowanego AM z katalogu *Sources*. Dołącz oscyloskop tak, aby możliwa obserwacja przebiegu napięcia z generatora w węźle 1 i przebiegu napięcia na wyjściu układu w węźle 2. Zmieniaj wartość rezystora R_1 począwszy od 1 kΩ, poprzez $10~k\Omega$ do $100~k\Omega$ i obserwuj sygnał wyjściowy układu. Dla której wartości rezystora R_1 układ działa jako demodulator? Zamieść w sprawozdaniu schemat układu demodulatora z odpowiednio dobranym rezystorem R_1 oraz trzy przebiegi napięcia w węźle 2 dla R_1 =1 kΩ, 10 kΩ, $100~k\Omega$.

Rys. 9. Demodulator diodowy

8. Ogranicznik diodowy

Obwód elektryczny z diodą półprzewodnikową może znaleźć zastosowanie jako ogranicznik poziomu napięcia wyjściowego. Obwody takie noszą w języku angielskim nazwę *limiters*. Przykładowe konfiguracje takich obwodów przedstawiają rys. 10 i rys. 11. Zbuduj te układy

oraz przeanalizuj ich działanie. Dołącz oscyloskop i pokaż przebiegi napięcia na wejściu (w węźle 1) i wyjściu układu (w węźle 2) dla obydwu konfiguracji. Określ poziomy ograniczające napięcie wyjściowe dla dodatniej i ujemnej połówki sinusoidy.

Rys. 10. Ogranicznik diodowy – wersja 1

Rys. 11. Ogranicznik diodowy – wersja 2

Poziom ograniczenia napięcia wyjściowego można regulować przez zastosowanie kilku szeregowo połączonych diod. Przykładowe konfiguracje takich układów przedstawiają rys. 12 i rys. 13. Zbuduj układy z rys. 12 i rys. 13 oraz przeanalizuj ich działanie. Dołącz oscyloskop i pokaż przebieg napięcia na wejściu w węźle 1 i wyjściu układu w węźle 2 dla obydwu konfiguracji. Określ poziomy ograniczające napięcie wyjściowe dla dodatniej i ujemnej połówki sinusoidy.

Rys. 12. Ogranicznik diodowy – wersja 3

Rys. 13. Ogranicznik diodowy – wersja 4

Poziomy napięć w ogranicznikach diodowych mogą być dodatkowo ustawiane za pomocą źródła napięcia polaryzującego włączonego szeregowo z diodą półprzewodnikową. Przykładowe konfiguracje takich obwodów przedstawiają rys. 14 i rys. 15. Zbuduj te układy oraz przeanalizuj ich działanie. Dołącz oscyloskop i pokaż przebieg napięcia na wejściu i wyjściu układu w punkcie A dla obydwu konfiguracji. Określ poziomy ograniczające napięcie wyjściowe dla dodatniej i ujemnej połówki sinusoidy.

Rys. 14. Ogranicznik diodowy – wersja 1 – z dodatkowym źródłem napięcia polaryzującego

Rys. 15. Ogranicznik diodowy – wersja 2 – z dodatkowym źródłem napięcia polaryzującego

9. Opracowanie wyników

Sprawozdanie powinno zawierać schematy ideowe, tabele wyników, zrzuty z ekranów

przebiegów kluczowych dla zagadnień poruszanych w czasie ćwiczeń laboratoryjnych oraz

interpretację otrzymanych wyników symulacji.

Opracowanie:

B.Dziurdzia, M.Sapor, Zb. Magoński 18.11.2013

Updated: 5.11.2014

12