Chapitre 16

Espaces vectoriels en dimension finie

16.1 Définitions

DÉFINITION 16.1: ev de dimension finie

On dit qu'un espace vectoriel E est de dimension finie si et seulement si il existe un système générateur $\mathcal{G} = (g_1, \dots, g_n)$ de E de cardinal fini. Par convention, on dit que $E = \{0\}$ est un espace de dimension finie.

Lemme 16.1: Augmentation d'un système libre

Soit un système de vecteurs $\mathcal{L} = (l_1; \ldots; l_n)$ libre d'un espace vectoriel E et un vecteur $x \in E$. Si $x \notin \text{Vect}(\mathcal{L})$, alors le système $\mathcal{L}' = (l_1; \ldots; l_n; x)$ est encore libre.

Lemme 16.2 : Diminution d'un système générateur

Soit un système formé de n+1 vecteurs de l'espace $E: S = (x_1; \ldots; x_n; x_{n+1}) \in E^{n+1}$. Si le vecteur x_{n+1} est combinaison linéaire des autres vecteurs: $x_{n+1} \in \text{Vect}(x_1; \ldots; x_n)$, alors on peut retirer le vecteur x_{n+1} sans modifier le sous-espace engendré par S:

$$Vect(x_1,\ldots,x_n,x) = Vect(x_1,\ldots,x_n)$$

THÉORÈME 16.3 : Théorème de la base incomplète

Si $\mathcal{L} = (l_1, \ldots, l_p)$ est un système libre de E et $\mathcal{G} = (g_1, \ldots, g_q)$ est un système générateur de l'espace E, alors il existe une base de E de la forme

$$\mathcal{B} = (l_1, \dots, l_p, l_{p+1}, \dots, l_n)$$

où $l_{p+1}, \ldots, l_n \in \mathcal{G}$. En d'autres termes, on peut compléter un système libre en une base en ajoutant des vecteurs puisés dans un système générateur.

Remarque 180. On dispose d'un algorithme pour construire une base à partir d'un système libre.

COROLLAIRE 16.4 : Existence de base

Tout espace vectoriel de dimension finie non-nul possède une base.

COROLLAIRE 16.5 : Complétion d'un système libre en une base

Si E est un ev de dimension finie n et $\mathcal{L} = (e_1, \ldots, e_p)$ un système libre, alors on peut compléter ce système en une base $e = (e_1, \ldots, e_p, e_{p+1}, \ldots, e_n)$.

16.2 Dimension d'un espace vectoriel

Théorème 16.6 : Lemme de Steinitz

Soit $S = (x_1, \dots, x_n)$ un système de vecteurs de E et $A = (a_1, \dots, a_n, a_{n+1})$ un autre système. Si

$$\forall i \in [1, n+1], a_i \in \text{Vect}(S)$$

alors le système A est lié.

Théorème 16.7 : Le cardinal d'un système libre est plus petit que celui d'un système générateur

Si \mathcal{L} est un système libre et \mathcal{G} un système générateur de E, on a

$$|\mathcal{L}| \leq |\mathcal{G}|$$

Remarque 181. D'après ce théorème, pour montrer qu'un espace vectoriel n'est pas de dimension finie, il suffit d'exhiber une famille $(x_i)_{i\in\mathbb{N}}$ de vecteurs vérifiant:

$$\forall n \in \mathbb{N}^*, (x_1, \dots, x_n) \text{ est libre}$$

Exercice 16-1

Montrer que $\mathbb{K}[X]$, $\mathcal{S}(\mathbb{R})$ et $\mathcal{F}(\mathbb{R},\mathbb{R})$ sont de dimension infinie.

Théorème 16.8 : Cardinal d'une base

Si E est de dimension finie, toutes les bases de E ont même cardinal.

DÉFINITION 16.2: dimension d'un ev

Si $E = \{0\}$, on dit que E est de dimension 0: dim E = 0.

Si E est un espace vectoriel de dimension finie non-nul, on appelle dimension de E, le cardinal commun des bases de E et l'on note $n = \dim E$.

Remarque 182. K^n est un K-ev de dimension n.

Remarque 183. La dimension dépend du corps de base. Par exemple, \mathbb{C} est un \mathbb{C} -ev de dimension 1, mais un \mathbb{R} -ev de dimension 2.

Théorème 16.9 : Caractérisation des bases

Soit E un espace vectoriel de dimension finie n et $S = (x_1, \ldots, x_p)$ un système de vecteurs de E.

- 1. S est une base de E ssi S est libre et p = n;
- 2. S est une base de E ssi S est $g\acute{e}n\acute{e}rateur$ et p=n.

Remarque 184. On vérifie en général que le système S est libre et $|S| = \dim E$, ce qui évite de montrer que S est générateur (fastidieux en général).

Exercice 16-2

Soit $E = \mathbb{R}^n$ et $S = (e_1, \dots, e_n)$ avec $e_1 = (1, 0, \dots, 0), e_2 = (1, 1, 0, \dots, 0), \dots, e_n = (1, \dots, 1)$. Montrer que S est une base de E.

Exercice 16-3

Dans l'espace $E = \mathbb{R}_n[X]$, si $S = (P_0, \dots, P_n)$ est un système de polynômes tels que $\forall i \in [0,n]$, deg $P_i = i$. Montrer que S est une base de E.

Exercice 16-4

Soit E un K-ev de dimension finie n et un endomorphisme $u \in L(E)$ nilpotent d'indice $n : (u^n = 0 \text{ et } u^{n-1} \neq 0)$. Montrer qu'il existe $x \in E$ tel que $S = (x, u(x), \dots, u^{n-1}(x))$ soit une base de E.

16.3 Sous-espaces vectoriels en dimension finie

Théorème 16.10 : dimension d'un sev

Soit E un ev de dimension finie n et F un sev de E.

- 1. F est de dimension finie et dim $F \leq \dim E$;
- 2. $(\dim F = \dim E) \iff (F = E)$.

Remarque 185. On utilise souvent ce résultat pour montrer que deux sev F et G sont égaux:

$$F \subset G \text{ et } \dim F = \dim G \Rightarrow F = G$$

Théorème 16.11 : Base adaptée à une somme directe

Si E est un ev de dimension finie et E_1, E_2 deux sev supplémentaires: $E = E_1 \oplus E_2$, Si (e_1, \ldots, e_p) est une base de E_1 et (f_1, \ldots, f_k) une base de E_2 , alors $(e_1, \ldots, e_p, f_1, \ldots, f_k)$ est une base de E.

Théorème 16.12 : dimension d'une somme directe

$$E = E_1 \oplus E_2 \Rightarrow \dim E = \dim E_1 + \dim E_2$$

THÉORÈME 16.13 : Existence de supplémentaires en dimension finie

Si E est un ev de dimension finie, et F un sev de E, alors il existe des supplémentaires de F dans F

Remarque 186. Ne jamais parler du supplémentaire de F, car en général il en existe une infinité. Penser à F qui est une droite vectorielle de \mathbb{R}^2 (voir figure 16.3).

Fig. 16.1 – Deux supplémentaires d'un s.e.v

Théorème 16.14: dimension d'une somme

Soit E de dimension finie et F,G deux sev de E. Alors:

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

Fig. 16.2 – Dimension de $F + G : F = F_1 \oplus (F \cap G)$ et $F + G = G \oplus F_1$

Théorème 16.15 : Caractérisation des supplémentaires

Soit E un ev de dimension finie n et F,G deux sev de E. Alors

$$(E=F\oplus G) \Longleftrightarrow (F\cap G=\{0\} \text{ et } \dim F + \dim G=n)$$

$$(E = F \oplus G) \iff (F + G = E \text{ et } \dim F + \dim G = n)$$

Remarque 187. En pratique, on utilise souvent la première caractérisation, car il est simple de montrer que $F \cap G = \{0\}$.

Exercice 16-5

Soit $E = \mathbb{R}^4$, F = Vect((1,2,1,1),(0,1,1,1)) et $G = \{(x,y,z,t) \in \mathbb{R}^4 \mid x+y+z+t=0 \text{ et } x=y\}$. Montrer que $F \oplus G = E$.

Exercice 16-6

Soit $E = \mathbb{R}^4$ et F = Vect((1,0,1,0),(1,2,0,0)). Trouver un supplémentaire de F dans E

Exercice 16-7

Soit $E = \mathbb{R}^4$ et

$$F = \text{Vect}((1,1,\lambda,3),(0,1,1,2))$$
 $G = \{(x,y,z,t) \in E \mid x-y+z=0,x+2y-t=0\}$

A quelle condition sur $\lambda \in \mathbb{R}$ a-t-on F = G?

Exercice 16-8

Soit E un K-ev de dimension finie n et H un hyperplan de E. Déterminer dim H.

Théorème 16.16: Dimension d'un espace produit

Si E et F sont deux ev de dimension finie,

$$\dim(E \times F) = \dim E + \dim F$$

16.4 Applications linéaires en dimension finie — formule du rang

THÉORÈME 16.17: Une application linéaire est déterminée par l'image d'une base

Soit E un ev de dimension finie n, F un ev quelconque , $e=(e_1,\ldots,e_n)$ une base de E et $f=(f_1,\ldots,f_n)$ un système de n vecteurs de F.

1. Il existe une unique application linéaire $u \in L(E,F)$ telle que

$$\forall i \in [1,n], \quad u(e_i) = f_i$$

- 2. $(u \text{ injective}) \iff (f \text{ libre });$
- 3. $(u \text{ surjective}) \iff (f \text{ générateur}).$

Remarque 188. Le théorème précédent est important: il dit que pour déterminer une application linéaire, il suffit de donner l'image d'une base par cette application.

Théorème 16.18: Dimension de L(E,F)

Si E et F sont de dimension finie, alors L(E,F) est également de dimension finie et

$$\dim L(E,F) = \dim E \times \dim F$$

Remarque 189. En particulier, si l'espace E est de dimension finie, son dual E^* est également de dimension finie et dim $E^* = \dim E$.

THÉORÈME 16.19 : Espaces isomorphes

Soient deux ev E et F de dimension finie. On dit qu'ils sont isomorphes s'il existe un isomorphisme $u: E \mapsto F$. On a la caractérisation

$$(E \text{ et } F \text{ isomorphes}) \iff (\dim E = \dim F)$$

DÉFINITION 16.3: Rang d'un système de vecteurs, d'une application linéaire

Soit un espace vectoriel E de dimension finie et un système de vecteurs $S = (x_1, \dots, x_n)$. On appelle rang du système S, la dimension du sous-espace vectoriel engendré par S:

$$rg(S) = dim Vect(S)$$

Si E et F sont de dimension finie et $u \in L(E,F)$, on appelle rang de u, la dimension du sous-espace vectoriel Im u:

$$rg(u) = dim(Im u)$$

THÉORÈME 16.20 : Le rang d'une application linéaire est le rang du système de vecteurs image d'une base par l'application

Si (e_1, \ldots, e_n) est une base de E et $u \in L(E, F)$,

$$rg(u) = rg(u(e_1), \dots, u(e_n))$$

Théorème 16.21 : Formule du rang

Soit E un espace vectoriel de dimension finie, F un espace vectoriel quelconque et une application linéaire $u \in L(E,F)$. On a la formule du rang:

$$\dim E = \dim \operatorname{Ker}(u) + \operatorname{rg} u$$

Fig. 16.3 – Formule du rang: $E = \operatorname{Ker} u \oplus V$ et $V \approx \operatorname{Im} u$

Remarque 190. On montre dans la démonstration de la formule du rang, que $\operatorname{Im} u$ est isomorphe à tout supplémentaire de $\operatorname{Ker} u$, mais en général, si u est un endomorphisme, $\operatorname{Ker} u$ et $\operatorname{Im} u$ ne sont pas supplémentaires. Trouver un exemple d'endomorphisme de \mathbb{R}^2 pour lequel $\operatorname{Im} u = \operatorname{Ker} u$!

THÉORÈME 16.22 : Isomorphismes en dimension finie

Soient deux espaces vectoriels (E,n) et (F,n) sur le corps \mathbb{K} de $m\hat{e}me$ dimension finie n. Soit une application linéaire $u\in L(E,F)$. Alors

$$(u \text{ injective}) \iff (u \text{ surjective}) \iff (u \text{ bijective})$$

Remarque 191. Ce théorème est bien entendu faux si les deux espaces n'ont pas la même dimension.

16.5 Endomorphismes en dimension finie

Théorème 16.23: Caractérisation des automorphismes

Soit un espace vectoriel E de dimension finie et un endomorphisme $u \in L(E)$. On a :

$$(u \text{ injective}) \iff (u \text{ bijective})$$

$$(u \text{ surjective}) \iff (u \text{ bijective})$$

Remarque 192. Ce théorème est très utile en pratique. On montre qu'un endomorphisme est injectif (le plus facile) et alors en dimension finie il est automatiquement bijectif.

Exercice 16-9

Soit E un K-ev de dimension finie n, F un K-ev de dimension finie p et $u \in L(E,F)$. Montrer que $\operatorname{rg}(u) \leq \min(n,p)$.

Exercice 16-10

Soit E un K-ev de dimension finie p et $u,v \in L(E,F)$. Montrer que

$$|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$$

Exercice 16-11

Soit E un K-ev de dimension finie n, et $u \in L(E)$. Montrer que

$$(\operatorname{Ker} u = \operatorname{Im} u) \iff (u^2 = 0 \text{ et } n = 2\operatorname{rg}(u))$$

Exercice 16-12

On considère (n+1) réels distincts $(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}$ et l'application

$$\phi: \left\{ \begin{array}{ccc} \mathbb{R}_n[X] & \longrightarrow & \mathbb{R}^{n+1} \\ P & \mapsto & \left(P(x_0), \dots, P(x_n)\right) \end{array} \right.$$

- a) Montrer que ϕ est un isomorphisme.
- b) En déduire que si $(y_0, \ldots, y_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme $P \in \mathbb{R}_n[X]$ tel que $\forall i \in [0,n], P(x_i) = y_i$ (polynôme interpolateur de Lagrange). c) Soient deux réels distincts $(a,b) \in \mathbb{R}^2$ et quatre réels $(\alpha,\beta,\delta,\gamma) \in \mathbb{R}^4$. Montrer qu'il existe un unique polynôme $P \in \mathbb{R}_3[X]$ vérifiant

$$P(a) = \alpha$$
, $P'(a) = \beta$, $P(b) = \delta$, $P'(b) = \gamma$

THÉORÈME 16.24 : Inverses à gauche et à droite

Soit E un espace vectoriel de dimension finie et un endomorphisme $u \in L(E)$. On dit que

- 1. u est inversible à gauche ssi il existe $v \in L(E)$ tel que $v \circ u = \mathrm{id}$;
- 2. u est inversible à droite ssi il existe $w \in L(E)$ tel que $u \circ w = \mathrm{id}$;
- 3. u est inversible ssi il existe $u^{-1} \in L(E)$ tel que $u \circ u^{-1} = u^{-1} \circ u = \mathrm{id}$.

On a la caractérisation:

 $(u \text{ inversible à gauche}) \iff (u \text{ inversible à droite}) \iff (u \text{ inversible})$

Remarque 193. Ce résulat est faux en dimension infinie comme le montre le contre-exemple suivant. Soit \mathcal{S} l'espace des suites réelles. On définit deux endomorphismes (le « shift » à gauche et à droite):

$$s_q:(a_0,a_1,\dots)\mapsto (a_1,a_2,\dots)$$

$$s_d:(a_0,a_1,\dots)\mapsto(0,a_1,a_2,\dots)$$

Etudier l'injectivité, la surjectivité de s_q , s_d . Calculer $s_q \circ s_d$ et $s_d \circ s_q$.

Exercice 16-13

Soit E un K-ev de dimension finie n et $u,v \in L(E,F)$. Montrer que

$$u^2 \circ v - u \circ v \circ u + \mathrm{id} = 0 \Rightarrow u \in GL(E)$$

Exercice 16-14

Soit $E = \mathbb{R}_n[X]$ et $Q \in E$. Montrer qu'il existe un unique polynôme $P \in E$ vérifiant P' + P = Q.