By: Yash Gokhale, M.S. ChemE, Dec '20

<mark>Q1]</mark>

Data Given:

Velocity	V	100	ft/s
Height	h	200	ft
Mass	m	50	lb
Acceleration due to gravity	g	32	ft/s2
Work done on the system	W	300	BTU
Net Heat transfer from the system	Q		BTU

Calculations:

$$KE = \frac{1}{2}mv^2 = 0.5 * 50 * 100^2 = 250000 \ lb * \left(\frac{ft}{s}\right)^2$$

$$PE = mgh = 50 * 32 * 200 = 320000 \ lb * \left(\frac{ft}{s}\right)^2$$

Converting KE, PE to BTU with the following conversion units:

1 lbf	32.2 lb.ft/s ²
1 BTU	778 ft.lbf
1 BTU	25051.6 lb.ft ² /s ²
3.99176E-05 BTU	1 lb.ft ² /s ²

Thus:

KE= 9.979 BTU

PE= 12.77 BTU

Q=-50 BTU (As energy is transferred from the system to the surroundings)

W= -300 BTU (As work is done on the system

Using Energy Balance:

$$\Delta KE + \Delta PE + \Delta U = Q - W$$

$$\Delta U = Q - W - \Delta KE - \Delta PE$$

Substituting:

$$\Delta U = -50 - (-300) - 9.98 - 12.77$$

 $\Delta U = 227.25 BTU$

<mark>Q2]</mark>

Data:

Net work output	600 kJ
Energy input by heat transfer	1200 kJ
Hot gas temperature	600 K
Atmospheric temperature	300 K

Calculations:

$$\eta_{HE} = \frac{W_{out}}{Q_H} = \frac{600}{1200} = \mathbf{0.5}$$

$$\eta_{max} = 1 - \frac{T_c}{T_H} = 1 - \frac{300}{600} = \mathbf{0.5}$$

The inventor has to be working in ideal conditions as the actual efficiency equals the maximum efficiency possible.

Data:

Qc	12000	kJ/hr
W _{cycle}	5400	kJ/hr
T _{high}	294.15	K
T _{low}	255.15	K

Calculations:

a)

$$COP_{refrigerator} = \frac{Q_c}{W_{cycle}} = \frac{5400}{12000}$$

Thus,
$$COP_{refrigerator} = 2.222$$

b)

$$COP_{maximum} = \frac{Q_c}{Q_h - Q_c} = \frac{T_c}{T_h - T_c} = \frac{255.15}{294.15 - 255.15}$$

$$COP_{maximum} = 6.542$$

c)

Figure of Merit,
$$F = \frac{COP_{refrigerator}}{COP_{maximum}}$$

$$F = \frac{2.222}{6.542} = \mathbf{0.339}$$

<mark>Q4]</mark>

Radiation rate	0.18	kW/m2
Solar collector temperature	590	K
Electricity generation	300	kW
Surrounding temperature	290.15	K

Calculations:

Efficiency,
$$\eta = 1 - \frac{T_{surrounding}}{T_{collector}}$$

Thus,
$$\eta = 1 - \frac{290.15}{590} = 0.508$$

For steady state:

When the efficiency of the solar collector is maximum, the area required would be minimum.

Energy from radiation=Electricity generated

Let A be the area of the solar collector

Thus,
$$rate_{radiation} * \eta * A = Electricity_{gen}$$

$$A = \frac{Electricity_{gen}}{rate_{radiation}*\eta} = \frac{300}{0.18*0.508}$$

Minimum area: $A = 3279.42 \ m^2$

Q5]

Rated capacity of heat pump	66900	Btu/h
COP	3.8	
Cost of power	0.109	\$/kWh
Time of operation	270	hr

Calculations:

a) Energy usage of the system, E:

$$COP = \frac{\textit{Energy}_{out}}{\textit{Energy}_{in}} = \frac{\textit{Rated capacity}}{\textit{Energy input}}$$

$$E = 66900/3.8 = 17605.26 \frac{BTU}{h}$$

And:
$$1 BTU = 2.93 * 10^{-4} kWh^{1}$$

$$E = 5.16 \, kW$$

-

¹ https://www.rapidtables.com/convert/energy/BTU_to_kWh.html

b)

Cost of electricity in a month= (Cost per kWh) *(Number of hours used) * (Energy usage in kW)

The cost of operating the pump is 0.109 \$/kWh and is operated for 270 hours with a capacity of 5.16kW

$$Cost = 0.109 \frac{\$}{kWh} * 270 \frac{h}{month} * 5.16 \ kW$$

<mark>Q6]</mark>

Energy released per kg of CO₂ is calculated by the following method for a general fuel:

$$C_n H_m + (n + \frac{m}{4})O_2 \rightarrow (n)CO_2 + \frac{m}{2}H_2O$$
 [General mass balance]

Based on this mole balance equation, the amount of energy per kg of CO₂ is tabulated.

Reactions are:

a.
$$C_4H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$$

b.
$$CH_2O + 1.5O_2 \rightarrow CO_2 + H_2O$$

c.
$$C_8H_{18} + 12.5O_2 \rightarrow 8CO_2 + 9H_2O$$

d.
$$C + O_2 \rightarrow CO_2$$

The calculations are thus tabulated

Compound	Energy	Molecular	Moles	No. of CO ₂ -	Number of	Mass of	Energy
	(MJ/kg)	Weight	(mol/kg)	equivalents	moles of	CO ₂	released
		(g)			CO_2	released	per kg of
					released	(kg)	CO ₂
Butane	50	58.12	17.20578	4	68.82312	3.028217	16.51136
Wood	10	30.031	33.29892	1	33.29892	1.465153	6.825227
Gasoline	50	114.23	8.754268	8	70.03414	3.081502	16.22585
Coal	30	12	83.33333	1	83.33333	3.666667	8.181818

(e) Based on this, the least amount of energy per kg of CO₂ is released by wood.

<mark>Q7]</mark>

$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

For the combustion of CH₄ in presence of pure oxygen, the adiabatic flame temperature is calculated as follows:

Data:

C_p of CO_2	57.3 J/mol/K
$C_p of H_2 O$	46.1 J/mol/K
Enthalpy of rxn	-802.2 kJ/mol

In this case, 0.75 moles of CH₄ undergo combustion. Thus, in this case:

Heat from enthalpy (J) = -Heat released from products

Thus,

$$LHS = 0.75 \ mol * -802.2 \frac{kJ}{mol} = -601.65 \ kJ$$

Moles formed: CO₂: 0.75, H₂O: 1.5

$$RHS = 0.75 \ mol * 57.3 \frac{J}{mol * K} * \Delta T \ (K) + 1.5 \ mol * 46.1 \frac{J}{mol * K} * \Delta T \ (K)$$

Units of RHS are in J

Equating LHS=RHS

$$-601.65 * 10^3 = (0.75 * 57.3 + 1.5 * 46.1)\Delta T$$

$$\Delta T = \frac{601650}{112.125} = 5365.87 \, K$$

$$T_{ad} - T_{ref} = \Delta T$$

We are given that: $T_{ref} = 298 \ K$

Thus:
$$T_{adiabatic} = 298 + 5365.87 = 5663.87 K$$

Adiabatic Flame temperature is 5663.87 K