Diagramas de Voronoi

Julio García

14 de octubre de 2020

1. Introducción

En el presente trabajo se busca como objetivo principal el estudio los diagramas de Voronoi con aplicaciones principalmente en el área de materiales, haciendo uso de la Simulación. El diagrama de Voronoi sirve para dividir un campo en regiones, de forma que cada región sabrá que todos los puntos contenidos en ella están más cerca de la semilla de esa región que de cualquier otra semilla. Dentro de las aplicaciones más conocidas de este tipo de diagramas se encuentra el diagnóstico de tumores, evitar colisiones de barcos en la costa y estudio de propagación de fracturas en un material.

En la tarea 4 se busca estudiar el efecto que se tiene la variación de numero de semillas y de la zona de distribución de una grieta en términos de la distancia euclidiana entre la grieta y el exterior de la pieza.

2. Desarrollo

En este trabajo se busca analizar el siguiente problema: Examina de manera sistemática el efecto del número de semillas y del tamaño de la zona en la distribución en las grietas que se forman en términos de la mayor distancia euclideana entre la grieta y el exterior de la pieza. El código de este trabajo usa como base los códigos encontrados en el documento de la Práctica 4: Diagramas de Voronoi hechos por la Dra. Shaeffer [2], modificando el numero de semillas en el campo y el tamaño de la grieta.

Se realizaron variaciones de semillas con: 20,30,40 semillas; y con: 10 y 20 réplicas.

3. Experimentación y resultados

En esta sección se describe el ambiente computacional y los resultados obtenidos con la simulación. El código de dicha simulación fue realizado en el lenguaje computacional Python, en una computadora personal con procesador 1 Intel Core i7, con memoria RAM de 16GB y hasta 8 núcleos de procesamiento. Dicho código fue incorporado en el repositorio [1]. Como se mencionó anteriormente se realizaron variaciones de semillas con: 20,30,40 semillas; y con: 10 y 20 réplicas.

En la realidad, uno de los principales problemas ocasionado por una grieta, es cuantificar el daño causado por dicha grieta. Normalmente, este daño es medido a través de la profundidad de dicha grieta comparado con los ejes. A continuación, se definen las siguientes métricas para tratar de simular dicho efecto:

Las métricas utilizadas están dadas de la siguiente manera:

Métrica 1: Distancia euclidiana entre la grieta y el exterior de la pieza. Dicha distancia se obtiene calculando el mínimo de todas las distancias de cada punto de grieta al exterior de la pieza. A cada punto se le calculan 4 distancias para obtener la distancia al marco superior, inferior, derecho e izquierdo acorde a la siguiente imagen, la distancia del punto al marco de la pieza es el máximo de estas 4 distancias:

Figura 1: Métrica 1

Métrica 2: Distancia euclidiana entre el punto central del campo y la grieta. Se propone esta métrica como una segunda medición de qué tan profunda (cerca del centro del campo) fue la grieta simulada. Pc representa el punto central del campo, Pg representa un punto de la grieta.

Figura 2: Métrica 2

Se muestran los resultados en las siguientes tablas.

Cuadro 1: Resultados de las métricas 1 y 2 con 20 semillas y 10 replicas

Experimento	Métrica 1	Métrica 2
1	71	23.632
2	66	43.846
3	63	82.901
4	76	81.991
5	69	16.688
6	49	24.668
7	64	83.501
8	66	24.423
9	64	75.474
10	44	42.101
Promedio	63.2	49.923
Min	44	16.688

Cuadro 2: Resultados de las métricas 1 y 2 con 30 semillas y 10 replicas

Experimento	Métrica 1	Métrica 2
1	51	40.577
2	58	21.272
3	75	106.060
4	51	33.771
5	47	66.47179
6	62	26.086
7	73	74.111
8	55	54.208
9	62	76.814
10	53	41.382
Promedio	58.7	54.075
Min	47	21.272

Cuadro 3: Resultados de las métricas 1 y 2 con 40 semillas y 10 replicas

Experimento	Métrica 1	Métrica 2
1	71	70.8978
2	56	46.2222
3	71	65.5171
4	75	84.7614
5	54	48.8108
6	74	87.2954
7	65	59.6699
8	73	80.9845
9	72	75.5546
10	72	58.5021
Promedio	68.3	67.82158
Min	54	46.2222

Cuadro 4: Resultados de las métricas 1 y 2 con 20 semillas y 20 replicas

Experimento	Métrica 1	Métrica 2
1	74	86.7784
2	77	0.7071
3	72	77.7978
4	65	55.5562
5	76	76.58
6	68	75.5016
7	73	98.4504
8	57	76.1347
9	74	27.5045
10	77	82.2344
11	57	31.5356
12	62	56.5022
13	55	24.135
14	72	49.5025
15	75	0.7071
16	77	83.2856
17	65	12.349
18	69	86.7784
19	70	30.6022
20	62	0.7071
Promedio	68.85	51.66749
Min	55	0.7071

Cuadro 5: Resultados de las métricas 1 y 2 con 30 semillas y 20 replicas

Experimento	Métrica 1	Métrica 2
1	75	93.7043
2	69	54.8862
3	53	38.5032
4	70	11.5974
5	75	7.5166
6	62	76.4885
7	74	70.5443
8	71	50.5222
9	61	51.2298
10	46	44.9054
11	69	19.5576
12	59	59.3
13	59	81.8077
14	74	74.783
15	40	39.7555
16	54	10.6066
17	75	71.5856
18	48	42.0297
19	45	39.7555
20	62	55.5202
Promedio	62.05	49.729965
Min	40	7.5166

Cuadro 6: Resultados de las métricas 1 y 2 con 40 semillas y 20 replicas

Experimento	Métrica 1	Métrica 2
1	59	12.0208
2	75	80.0156
3	69	66.5169
4	57	77.1913
5	69	74.3807
6	73	67.7237
7	60	45.5686
8	61	59.0635
9	60	59.6699
10	43	58.7068
11	77	15.508
12	73	20.506
13	69	46.5026
14	72	31.5039
15	71	89.9027
16	67	69.7316
17	57	69.7316
18	77	0.7071
19	71	18.5067
20	67	71.4737
Promedio	66.35	51.746585
Min	43	0.7071

4. Conclusiones

Tomando como referencia los resultados mostrados en la tabla con las variaciones en la cantidad de semillas y de tamaño mínimo de grieta podemos presentar las siguientes conclusiones:

- 1. Conforme va aumentando la cantidad de semillas en un campo va aumentando también dificultad con la que una grieta se propaga hacia el interior del campo, esto se refleja ya que alcanza puntos mas profundos del campo en el que se está trabajando cuando se tienen menos semillas, alcanzando en ocasiones incluso a agrietar muy cerca del centro de la figura. Esto se debe probablemente a que cuando hay una mayor cantidad de semillas se tiene por tanto una mayor cantidad de regiones y por tanto una mayor cantidad de puntos frontera por los cuales es más fácil que se expanda la grieta, sin embargo, como la grieta puede seguir muchos caminos diferentes, cada vez es menos probable que se vaya hacia el centro del campo.
- 2. Con respecto a la distancia entre la grieta y el exterior de la pieza se sigue un comportamiento similar al anterior cuando se realiza el experimento con 10 réplicas, sin embargo, el comportamiento no es consistente cuando hay 20 réplicas.

Referencias

- [1] Julio César García. Repositorio. julio garcía, 2020. URL https://github.com/Julio-Garcia-Garcia/Simulacion/tree/master/Tarea4.
- [2] Elisa Schaeffer. Práctica 4: Teoría de colas, 2020. URL https://elisa.dyndns-web.com/teaching/comp/par/p4.html.