Seminar 2

Homogeneous relation $\varphi: M \to M$.

A graph of a relation φ is a set $A = \{(x,y) \mid x\varphi y\}$, i.e. all the pairs of elements, which are in relation φ with each other. A relation is also given by its graph.

An equivalence relation has to be reflexive (R), transitive (T) and symmetric (S).

We say that $(A_i)_{i\in I}$ is a partition if $\bigcup_{i\in I} A_i = A$ and $A_i \cap A_j = \emptyset, \forall i, j \in I, i \neq j$.

1.
$$x r y \Rightarrow x < y \Rightarrow R = \{(2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)\}$$

 $x s y \Rightarrow x \mid y \Rightarrow S = \{(2,4), (2,6), (3,6), (2,2), (3,3), (4,4), (5,5), (6,6)\}$
 $x t y \Rightarrow gcd(x,y) = 1 \Rightarrow T = \{(2,3), (3,2), (2,5), (5,2), (3,4), (4,3), (3,5), (5,3), (4,5), (5,4), (5,6), (6,5)\}$
 $x v y \Rightarrow x \equiv y (mod 3) \Rightarrow V = \{(3,6), (6,3), (2,5), (5,2), (2,2), (3,3), (4,4), (5,5), (6,6)\}$

2. i $\varphi:A\to B\Rightarrow$ Number of $\varphi=2^{|A\times B|}=2^{mn}$ Because we have m elements from A, which can form pairs with n elements from B, so mn pair in the end. But those pairs can be written in 2 different ways, like (a,b),(b,a), so it gives us the number stated before.

ii
$$\varphi:A\to A\Rightarrow$$
 Number of $\varphi=2^{|A\times A|}=2^{n^2}$

3.
$$A = \{1, 2, 3\}$$

 $R = \{(1, 1), (2, 2), (3, 3)\}$
 $T = \{(1, 2), (2, 3), (1, 3)\}$
 $S = \{(1, 2), (2, 1)\}$

4.
$$(\mathbb{R}, \neq)$$

$$R : \forall x \in \mathbb{R}, x \neq x(false)$$

$$(\mathbb{N}, |)$$

$$R : \forall x \in \mathbb{N}, x \mid x(true)$$

$$T : \forall x, y, z \in \mathbb{N}y \mid x, z \mid y \Rightarrow z \mid x(true)$$

$$S : \forall x, y \in \mathbb{N}, x \mid y \iff y \mid x(false)$$

The same goes for $(\mathbb{Z}, |)$.

$$(V^{3}, \bot)$$

$$R : \forall x \in V^{3}, x \perp x(false)$$

$$(V^{3}, \parallel)$$

$$R : \forall x \in V^{3}, x \parallel x(false)$$

$$(V^{2}, \equiv)$$

$$R : \forall x \in V^{2}, x \equiv x(true)$$

$$T : \forall x, y, z \in V^{2}, x \equiv y, y \equiv z \Rightarrow x \equiv z(true)$$

$$S : \forall x, y \in V^{2}, x \equiv y \iff y \equiv x(true)$$

$$(V^{2}, \sim)$$

$$R : \forall x \in V^{2}, x \sim x(true)$$

$$T : \forall x, y, z \in V^{2}, x \sim y, y \sim z \Rightarrow x \sim z(true)$$

$$S : \forall x, y \in V^{2}, x \sim y \iff y \sim x(true)$$

- 5. i $R_1 = \{(1,1), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (4,4)\}$. From the pairs (1,1), (2,2), (3,3), (4,4) we can say that R_1 is reflexive. From pairs like (1,2), (2,1) we check that R_1 is symmetric. And from pairs like (1,2), (2,3), (1,3) we check that R_1 is transitive. So r_1 is an equivalence. $\Rightarrow \pi = \{1,2,3,4\}$. $R_2 = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3)\}$. We check that R_2 is reflexive, transitive, but not symmetric. So r_2 is not an equivalence.
 - ii For $\pi_1 \Rightarrow \{1\} \cup \{2\} \cup \{3,4\} = \{1,2,3,4\} = M$, $\{1\} \cap \{2\} = \emptyset$, $\{1\} \cap \{3,4\} = \emptyset$, $\{2\} \cap 3,4\} = \emptyset \Rightarrow \pi_1$ is a partition of $M \Rightarrow Gr = \{(1,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$. For $\pi_2 \Rightarrow \{1\} \cup \{1,2\} \cup \{3,4\} = \{1,2,3,4\} = M$, but $\{1\} \cap \{1,2\} = \{1\} \neq \emptyset \Rightarrow \pi_2$ is not a partition of M.
- 6. We check if r is reflexive, transitive and symmetric, which it is, so r is an equivalence relation. We compute $\mathbb{C}/r = \{r(z) \mid z \in \mathbb{C}\} = \{zrz \mid z \in \mathbb{C}\} = \{r(z) \mid z \mid = \mid \overline{z} \mid, z \in \mathbb{C}\} = \{0\} \cup \{C(0, |z|)\}.$

We now check the same for s and by simple computations, we get that s is also an equivalence relation. And we compute $\mathbb{C}/s = \{s(z) \mid z \in$

 \mathbb{C} = { $zsz \mid arg(z) = arg(\overline{z}), z \in \mathbb{C}$ } = { the line starting from $O \mid$ which has the angle arg(z) with Ox} \cup {0}.

7.

$$R: \forall x \in \mathbb{Z}: x \rho_n y \Rightarrow n \mid (x-x), (true)$$

$$T: \forall x, y, z \in \mathbb{Z}: x\rho_n y, y\rho_n z \Rightarrow n \mid (x-y), n \mid (y-z) \Rightarrow n \mid [(x-y)+(y-z)] \Rightarrow n \mid (x-z), (true)$$
$$S: \forall x, y \in \mathbb{Z}: x\rho_n y \Rightarrow n \mid (x-y) \iff n \mid (y-x) \Rightarrow y\rho_n x, (true)$$

So, ρ_n is an equivalence relation.

$$\mathbb{Z}/\rho_0 = \emptyset \iff 0 \nmid x - y$$

$$\mathbb{Z}/\rho_1 = \mathbb{Z} \times \mathbb{Z} \iff 1 \mid x - y$$

$$\mathbb{Z}/\rho_n = \{\hat{0}, \hat{1}, \dots, \widehat{n-1}\}\$$

8. From the set $M = \{1, 2, 3\}$ we can get the partitions: $\{\{1\}, \{2\}, \{3\}\}, \{\{1, 2\}, \{3\}\}, \{\{1, 3\}, \{2\}\}, \{\{2, 3\}, \{1\}\}, M$. With each partition, we get the graph of a relation. For example, for the first partition, we get $\{(1, 1), (2, 2), (3, 3)\}$. So this can be the equality relation, which is an equivalence relation. And it goes like this for every partition.