Theorem 5.10

For every positive integer n, $\lambda(K_n) = n - 1$.

Proof:

By definition, $\lambda(K_1)=0$. Let $G=K_n$ for $n\geq 2$. Since every vertex of G has degree n-1, if we remove the n-1 edges incident with a vertex, then a disconnected graph results. Thus $\lambda(G)\leq n-1$. Now let X be a minimum edge-cut of G. So $|X|=\lambda(G)$. Then G-X has exactly two components of G_1 and G_2 , where G_1 has order k, and G_2 has order n-k. Since (1) X consists of all edges joining G_1 and G_2 and (2) G is complete, it follows that |X|=k(n-k). Because $k\geq 1$ and $n-k\geq 1$, we have $(k-1)(n-k-1)\geq 0$ and so

$$(k-1)(n-k-1) = k(n-k) - n + 1 \ge 0$$

Hence $\lambda(G) = |X| = k(n-k) \ge n-1$. Therefore, $\lambda(K_n) = n-1$.