Software Engineering for Business Applications Lecture Notes

Efe Kamasoglu

February 8, 2023

1 IT Support for Business Applications

1.1 Classification of Business Applications

- Definition "Business Application":
 - in narrower sense: totality of all programs, i.e. application software, and associated data for a concrete business use case
 - in broader sense: additionally hardware, system software and necessary communication facilities required for the use of application software
- Two roles of Business Applications:
 - **supporting**, **improving** or **automating** existing operational processes in bookeeping, accounting, etc. (size, speed, correctness...)
 - enabling new products and services (e.g. online shopping and banking)
- Classification of Business Applications by Business Purpose:

Examples of

- administrative systems: financial accounting, payroll accounting, administration of stocks
- disposition systems: calculation and cost accounting, material procurement, field service control
- management information systems (MIS): use of internal company data, use of external data, combination of multiple data sources in a flexible form
- planning systems: planning of individual functional areas, integrated planning of several functional areas, corporate planning

• Cross-Cutting Applications:

- independent of compant hierarchy and fuctional domains
- used either directly via user interface or programmatically via administration and disposition systems
- Examples: office suites, groupware, workflow management systems

- Enterprise Resource Planning (ERP): ERP system is an integrated business application (suite, collection of programs), which supports all essential functions of administration, disposition and management with a common interface and a shared and integrated data management.
 - consists of platform and function-oriented application components that exchange info and events
 - is realized as (customizable) standard software
 - Examples: external accounting, controlling, procurement
 - Today's ERP systems support an **extended value chain**¹.

1.2 Standard and Custom Software

- Standard Software vs. Custom Software:
 - Standard software (e.g. SAP)
 - * developed for specific market
 - * distributed by a software house
 - * can be used by **several companies**
 - * implements "standard business processes" at its core
 - * maintained by manufacturer, adapted to changes
 - * must or can be **customized** to company (e.g. authorizations and roles, currencies)
 - Custom software
 - * specifically developed for one company
 - * tailored to specific business processes/requirements
 - * result of a project for a known client
 - * individually maintained and adapted to changes

 $^{^{1}}$ Value chain is a business model that describes the full range of activities needed to create a product or service.

• Adaptation Techniques for Standard Business Software:

 Adaptation of operational standard software can be divided into Configuration, Extension and Coupling (= Customizing).

- Configuration describes functionalities and techniques
 - * that are obligatory on first deployment
 - * that allow to define predefined settings
 - * that lead to an individual variation of standard software
- Extension describes functionalities and techniques
 - * that are optional for productive use
 - * that allow to map requirements not foreseen by manufacturer
 - * implemented by manufacturer to expand the range of services
- Coupling refers to functionalities and techniques
 - * to connect external systems of other manufacturers
 - * to connect external systems of the same type
 - \ast that are predefined in the form of data file formats, APIs, or communication protocols
- Example: mapping the structure of a company to SAP applications via organizational units (can be assigned to single or multiple apps)

• Configuration: Challenges

- A standard software must
 - \ast provide all relevant configuration options
 - \ast support a wide range of different corporate structures and processes
 - * check dependencies between these many variants
 - * provide appropriate documentation about the effects of individual configurations

Consequences:

- * need for experts who are familier with configuration options of each release and componant
- * scarcity of such experts

- * expensive training
- * expensive consultancy services

• Examples for Extensions:

- automation of multi-step business workflows
- integration of company-specific calculations/rules/checks
- connecting customers

• Coupling Options:

- different coupling options depending on the scenario
- programming language used for coupling
- available mechanisms to couple
- Multi Tenancy: Software multitenancy is a software architecture in which a single instance of software runs on a server and serves multiple tenants (e.g. companies).
 - sevearal companies can be represented in one system
 - distinction between tenant-dependent and -independent data
 - supporting tenant-dependent authorization (e.g. A may only perform transactions in client 002)
 - individual adaptations of tenants (e.g. currency, couplings)

• Multilingualism:

- Multilingualism of a business information system makes it possible to
 - * store and display texts in different languages in the system
 - \ast assing graphics and symbols specific to different languages
- Multilingualism requires
 - * that one system can process all relevant character sets at once
 - * storage and recognition of words, numbers etc.
 - * that a system can assign users to languages or user can choose their own
 - * that texts (graphics, symbols) can be assigned to a language
- Localization (l10n): Adaptation of a software product to meet the language, culture, and other requirements of each locale (e.g. adaptation of graphics, currencies, date and time)
- Internationalization (i18n): Process of preparing a software-based product for localization (to support global markets)

1.3 Characteristics of Business Applications

• Multiple Stakeholders and changing requirements:

- Requirements Elicitation and Requirements Management

- * many stakeholders, different views and concerns
- * Waterfall: upfront requirements document and/or technical specification => Req. Documentation
- * Issue: changing requirements once IT support is implemented
- * Agile: incremental and iterative => Agile Req. Engineering
- * typically, very large number of requirements
- * need for formalization and early consistency checking => Conceptual Modeling
- * need for cost and time prediction => Software Estimation

- Programming Challenges

- * design, implement and test changes in an existing complex system => Change Mgmt.
- * deliver incremental changes without invalidating existing data => Release Mgmt.
- * parallel development at manufacturer and at customer site => Version Mgmt.
- * automated and quality-controlled assembly of application software => Build Mgmt.

• Persistent Data and Concurrent Data Modification:

- Data consistency is a must:
 - * many users perform **transactions** simultaneously on central databases
 - * data must not be lost even in case of system failures.

- Programming challenges:

- * database is managed by an independent application, on a different server / hardware
- * object orientation is not supported by common data bases
- * database concepts must be transferred to the application logic (transactions, rights, primary keys)

• Distributed Actors and Data Repositories:

- Many users access central data concurrently:

- * users need data in different locations at different times
- * Client-Server architecture => Layered Architectures
- * web clients => REST protocol

- Programming challenges:

- * software components must be able to found in network => Naming services
- \ast communication always via a network => Serialization^2 & failed execution
- * authentication and authorization => Security
- * concurrent accesses => Transactions

• Integeration of Data and Application from (Semi-)Autonomous Sources:

- Separation of applications and data repositories:

- * multiple apps work on independent or shared data resources
- * multiple apps communicate with each other => RPC, Message Passing
- * business processes involve multiple apps => Workflow Mgmt. Systems
- * application landscapes with lots of interacting applications => Enterprise Architecture Mgmt.

- Programming challenges:

- * integration of multiple languages and databases
- * loose coupling through interfaces to avoid code change propagationi
- * error recovery to avoid runtime failure propagation

• Scalability:

- Growing number of users and data volume

- * business apps are used by thousands of employees world-wide around the clock
- * customers and business partners interact directly with business apps and expect real-time sub-second response times
- * volatile load (e.g. online shop in christmas season vs. summer season)

- Programming challenges:

- * delayed execution of resource-intesive operations => Batch processing 3
- \ast dynamically increasing/decreasing number of users => Instance pools
- * single server cannot handle the load => Load balancing, Caching

 $^{^2}$ Serialization is the process of translating a data structure into a format that can be stored or transmitted and reconstructed later.

³Batch processing is when a computer processes a number of tasks that it has collected in a group. It is designed to be a completely automated process, without human intervention.

2 Requirements Engineering

- Software requirements express the needs and constraints placed on a software product.
- Requirements engineering is concerned with elicitation, analysis, specification and validation of software requirements as well as the management of requirements.
- Requirements Management deals with the administration and maintenance of requirements documents, in particular:
 - change requirements (change management)
 - trace and link requirements (requirements tracing)
 - verify requirements

2.1 Traditional Requirements Engineering

- Objectives of Requirements Management:
 - Efficient preparation of high quality requirements and system specifications,
 - * coordinated with all stakeholders (different objectives and interests)
 - * coordinated with all specifications and constraints
 - * evaluated according to profitability and feasibility
 - **Specification documents** are basis for:
 - * contract negotiation and contractual agreements
 - * coordination between the stakeholders (customers, developers)
 - * design, realization, integration
 - * software acceptance (test specification)
 - * future developments, projects
- Requirement Classification: Distinction between <u>functional and non-functional requirements</u> and constraints:
 - **Functional requirements** describe <u>interactions</u> between the system and its environment independent of their realization.
 - Non-functional requirements describe general properties of the system.
 - Restrictions (Constraints) determine the <u>solution space</u> for the realization.
- Stakeholder Management: It includes

- processes required to identify people that could impact or be impacted by the project
- to analyze stakeholder expectations and their impact on the project
- to develop appropriate management strategies for effectively engaging stakeholders in project decisions and execution

• Requirement Specification:

- technical result document of requirement identification phase
- **contains** stakeholder identification, functional and non-functional requirements, constraints, evaluation plan and metrics
- list of all deliverables and services to be fulfilled by contractor within contract as defined by customer
- what is to expect from the solution (product)
- formulation of requirements should be as general as possible and as restrictive as necessary
- enables the contractor to develop optimal solutions
- Requirements Validation: Validation, Consistency check (no conflicts), Completeness check, Reality check, Verifiability

• Functional Specification:

- defines the purpose of the system
- solution proposal created by contractor based on the requirement specification provided by client
- **contains** target determination, product usage, environment (e.g. hardware), functions, UI, global test cases
- system description or solution specification, which describes how the solutions is to be realized (concrete solution approaches)
- the what from requirement specification is detailed

2.2 Agile Requirements Engineering

- Requirements Engineering and Agile Software Development:
 - Agile software development focuses more on continuous collabration (workshops, interviews etc.) with stakeholders instead of relying on specification documents (example: SCRUM)
 - Traditional requirements engineering
 - * focuses on customer collabration mainly at an <u>early phase of the</u> project (longer change cycles)
 - * emphasizes a heavy-weight process with extensive, **static specification documents**

- Agile requirements engineering

- * fosters communication with the customer during the whole development process to continuously update requirements
- * focuses less on extensive documentation, but specification documents **might be necessary** because of legal or contracting reasons etc.
- * includes activities and artifacts that are similar to classical requirements engineering activities

• Typical Requirement Artifacts in Agile Software Development:

-user story, story card, use case, scenario, UML diagram, prototype

• User Stories:

- explanation of a software feature written from the perspective of the end user
- most frequently used artifact in agile software development
- mnemonic for writing good user stories: INVEST⁴

• Typical Requirements Engineering Challenges:

- different interest groups can raise conflicting requirements
- the people who **pay** for the system are rarely the ones who **use** it
- the organization and the technical environment may change after the system rollout
- requirements that change during implementation (Change Requests)
 can lead to additional costs -> project duration/milestones can be affected significantly

3 Conceptual Modeling with UML

Conceptual Class Diagram vs. Implementation-Oriented Diagram:

	Conceptual	Implementation-Oriented
Visibility (private, public)	No	Yes
Attributes with data types	Yes	Yes
Methods	No	Yes
Generalization / Inheritance	Sparingly	If useful / meaningful
Abstract classes	No	If useful / meaningful
Association classes	Yes	No (resolved)

• Associations between Classes:

 $^{^4}$ independent, negotiable, valuable, estimable, small, testable

- Multiplicity:

A Lawyer can <u>create</u> multiple Contracts, whereas every Contract has a single Lawyer. -> <u>creates</u> (action) on the side of Lawyer (actor)

- **Aggregation:** implies a relationship where the child can exist independently of the parent (part of the parent)
- Composition: implies a relationship where the child <u>cannot exist</u> independent of the parent
- Example:

4 Software Estimation

4.1 Fundamentals of Estimation Methods

• Software Estimation:

- In principle, software estimation relies on forecasting effort, from which cost and duration are derived.
- Regardless of the project and software methodology applied, every initiative requires the definition of a budget and a specific time frame necessary to deliver a final outcome.
- These two are obtained during the early stages of the project lifecycle through the process of estimation.

- Estimation aims to provide an approximation of the amount of recources required to complete project activities and produce a product or service in accordance to specified functional and non-functional characteristics.
- Software estimation conducted in early phases of the project lifecycle:
 - * necessary for contract negotiations
 - $\ast\,$ predict expected efforts (and derived costs) for a software project before implementation
 - * best possible estimation given the available info

- Agile estimation:

- * estimation of individual requirements during project
- * incremental allocation of developers in the most efficient manner
- * cost estimates are made several times during development project with varying degrees of detail

• Software Estimation: Cone of Uncertainty

- At the beginning of the project, not much is known about the product/project -> estimates underly high uncertainty
- As the project progresses, more information is available -> decrease in uncertainty

• Software Estimation: Costs

- Cost categories:
 - * Development costs: costs to produce a software product
 - * **Personnel costs:** major share of development costs for personnel
 - · usually low costs for office materials etc. in relation to the personnel costs
 - · proportionate allocation of CASE⁵ environment costs (including hardware and software) for product development

4.2 Traditional Software Estimation

- Sneed's Devil's Square:
 - Quantity
 - Quality
 - Development duration
 - Cost

 $^{^5{\}rm Computer}$ power-assisted software package Engineering

are mutually dependent.

• Quantity:

- size of program code (example basis of assesment: LOC⁶)
- functional and data scope
- possible additional weighting with complexity

• Quality:

- higher quality requirements => greater effort
- no **THE quality**, but different quality characteristics

• Productivity:

- influenced by many different factors
- number of communication links grows quadratically with the team size

• Development time:

- need more members to shorten development time
- more members => more communication effort
- higher communication => decrease in productivity

• Methods for Effort Estimation:

Estimation Strategies:

- * **Top-Down:** estimation of the total project effort using mathematical algorithms based on the functional requirements
- * **Bottom-Up:** expenses for each expense item are calculated separately and added to calculate the total project effort

Comparison methods:

 $\ast\,$ estimation based on effort analysis of already accomplished similar developments

- Algorithmic methods:

- * effort calculated with algorithmic methods
- * based on statistical models or actual expenditure of already completed projects

- Key figure methods:

- * total cost of the software product determined by estimating the cost of individual units or project phases
- None of the listed basic methods alone is sufficient.

⁶Lines of Code

 Depending on the point in time and knowledge of effort-relative data, one or the other method should be used.

• Concrete Procedures for Effort Estimation:

- Goal: Combine advantages of several effort estimation methods to deliver accurate results. (example: Function Point Method)
- Function Point Method: It is a combined relation and weighting method.