FINAL

VOLUME II (Appendices A - F)

147TH FIGHTER INTERCEPTOR GROUP TEXAS AIR NATIONAL GUARD ELLINGTON FIELD HOUSTON, TEXAS

MAY 1995

HAZWRAP SUPPORT CONTRACTOR OFFICE

Oak Ridge, Tennessee 37831
Operated by MARTIN MARIETTA ENERGY SYSTEM, INC.
For the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-840R21400

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directions for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 2222-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0185), Washington, D. 23503.

1. AGENCY USE ONLY (Leave blank)		3. REPORT TYPE	ANO DATES COVERED Characterization Report
4. TITLE AND SUBTITLE Installation Restoration Progra 147th Fighter Interceptor Grou Ellington Field, Houston, Texas 6. AUTHOR(S) N/A	p	n Report Vol. II	92-30-168
7. PERFORMING ORGANIZATION NAME Halliburton NUS Corporation Post Office Box 4574 Houston, TX 77210-4574			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY Hazardous Waste Remedial Act Martin Marietta Energy System Oak Ridge, TN 37831	ions Program	5)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER RG-07-315-0432
11. SUPPLEMENTARY NOTES	}·		
Approved for public release; distribution is unlimited	EMENT		12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Site Characterization Report, Volume II

A Site Characterization was performed at one site at the 147th Fighter Interceptor Group. The site was the Base Petroleum, Oils, and Lubricants Storage Area. All contamination identified at the site was below the Texas Natural Resource Conservation Commission action limits.

The report recommended that the risk assessment performed as part of the Site Investigation be up-dated with the additional information from this report. If the risk assessment show that no significant risks to human health exist then performed no further action for the site is recommended.

Volume II of this report consist of the following Appendices: Field GC Data (A), Soil Boring Logs/Well Construction Diagrams (B), Soil Sample Log Sheets/Groundwater Sample Log Sheets (C), Monitoring Well Development Forms (D), Chain of Custody Forms (E), and Aquifer Test Data (F)

Installation Restoration Posite Characterization, Hou			15. NUMBER OF PAGES Approx 400 16. PRICE CODE
17. SECURITY CLASSIFICATION UnOfassification	18. SECURITY CLASSIFICATION OF THIS PAGE lassified	19. SECURITY CLASSIFICATION OF LABSEMANTIED	20. LIMITATION OF ABSTRAC

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- **Block 2.** Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block S. <u>Funding Numbers</u>. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project TA - Task

G - Grant PE - Program Element

WU - Work Unit Accession No.

- Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- Block 7. <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.
- Block 8. Performing Organization Report
 Number. Enter the unique alphanumeric report
 number(s) assigned by the organization
 performing the report.
- Block & Sponsoring/Monitoring/Agency Name(s) and Address(es). Self-explanatory.
- Block 10. Sponsoring/Agniteding Agency Report Number (If koops)

Block #1. Supplement Enter information not include a statement whether the new uport supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement</u>. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

- Block 13. <u>Abstract</u>. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
- Block 14. <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.
- Block 15. <u>Number of Pages</u>. Enter the total number of pages.
- Block 16. <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. Security Classifications. Selfexplanatory. Enter U.S. Security Classification in saccordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and shottomsof the page.
- Stack220. Limitation of Abstract. This block much baccompleted to assign a limitation to the sabstract. Enter either UL (unlimited) or SAR (makes report). An entry in this block is necessary to the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

FINAL

INSTALLATION RESTORATION PROGRAM SITE CHARACTERIZATION REPORT

VOLUME II APPENDICES A - F

147TH FIGHTER INTERCEPTOR GROUP TEXAS AIR NATIONAL GUARD ELLINGTON FIELD HOUSTON, TEXAS

PREPARED BY
HALLIBURTON NUS CORPORATION
PROJECT NUMBER 1K94

MAY 1995

Appendix A
Field GC Data

BTEX FIELD GC ANALYTICAL METHOD

Using a Photovac 10S Plus portable GC set up as shown in figure 1-1. A headspace sampling device was constructed using a 145 cc septum bottle with two 1/8 inch teflon tubing mounted though the septum to form a leak free connection. One of the tubing was connected to the (SAMPLE IN) port of the GC and the other was connected to the (PUMP OUT) port. 50 grams of soil or 40 ml of liquid sample is place in the septum bottle and the cap with the teflon lines attached is sealed on the bottle. The bottle is place in a sonic bath with the water maintained at 28 Deg. C. The run cycle is started on the GC and the sample pump pumps the air in though the 1ml sample loop and returns it to the bottle for 2 minutes. At the end of the 2 minutes the sample is injected into the GC column. The GC was calibrated daily with 1.0 PPM Benzene, 1.0 PPM Toluene, 1.0 PPM Ethylbenzene and 1.0 PPM O-Xylene (BETX) gas standard in nitrogen balance. A soil actual calibration standard was prepared by injecting a known amount of a BETX liquid standard on to 50 grams of clean soil then sealing it in a 145 cc septum bottle. A liquid actual calibration standard was prepared by injecting a known amount of a BETX liquid standard in to 40 mL of water then sealing it in a 40 mL septum bottle. Using the is made between headspace calibration standard a ratio concentration and the actual soil or liquid concentration. Using this ratio the actual concentration is calculated from the headspace concentration the GC prints out.

FIGURE 1-1

CL	IENT	
UL		

OPERATOR MAL

DATE

8/5/93

PAGE of

CALIBRATION

		HEAD SPACE TO
GAS STANDARD	GC RESPONCE	ACTUAL CONC.FACTOR
1.00 PPM BENZENE,	1.00 PPM	NA
1.00 PPM TOLUENE,	1.00 PPM	NA
1.00 PPM ETHYLBENZENE,	1.00 PPM	NA
1.00 PPM O-XYLENE	1.00 PPM	NA
LIQUID STANDARD		
0.25 ug/ml BENZENE,	2.86 PPM	0.0874
0.25 ug/ml TOLUENE,	3.25 PPM	0.0769
0.25 ug/ml ETHYLBENZENE,	2.55 PPM	0.0980
0.50 ug/ml M&P-XYLENE	7.00 PPM	0.0714
0.25 ug/ml O-XYLENE	3.71 PPM	0.0674
SOIL STANDARD		
0.01 ug/g BENZENE,	0.597 PPM	0.0168
0.01 ug/g TOLUENE,	7.190 PPM	0.0014
0.01 ug/g ETHYLBENZENE,	0.429 PPM	0.0233
0.02 ug/g M&P-XYLENE	1.110 PPM	0.0180
0.01 ug/g O-XYLENE	1.060 PPM	0.0094

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

PAGE___of__

MAL 8/5/93

		OANI LE ANALTOIO	HEAD SPACE	ACTUAL
SAMPLE DESCRIPTION COMPOUND		COMPOUND	PPM	CONC.
BORING #	16	BENZENE	0.082	1.4 ug/kg
DEPTH	4 TO 6 ft	TOLUENE	16	22.3 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.44	103.5 ug/kg
' ' ' '	0012 07 11711 22	M&P-XYLENE	1.45	26.1 ug/kg
1		O-XYLENE	1.84	17.4 ug/kg
BORING #	16	BENZENE	27.74	464.7 ug/kg
DEPTH	8 TO 10 ft	TOLUENE	332.9	463.0 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	77.97	1817.5 ug/kg
		M&P-XYLENE	25.14	453.0 ug/kg
		O-XYLENE	114.8	1083.0 ug/kg
BORING #	16	BENZENE	0.052	0.9 ug/kg
DEPTH	20 TO 22 FT	TOLUENE	3.49	4.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.624	14.5 ug/kg
		M&P-XYLENE	0.253	4.6 ug/kg
		O-XYLENE	1.528	14.4 ug/kg
BORING #	16	BENZENE	0.447	39.1 ug/L
DEPTH		TOLUENE	5.153	396.4 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.422	41.4 ug/L
		M&P-XYLENE	0.454	32.4 ug/L
		O-XYLENE	1.056	71.2 ug/L
BORING #	16	BENZENE	2.3	38.5 ug/kg
DEPTH	12 TO 14 FT	TOLUENE	25.92	36.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.99	46.4 ug/kg
		M&P-XYLENE	2.367	42.6 ug/kg
		O-XYLENE	1.873	17.7 ug/kg
BORING #	16	BENZENE	0.012	< 0.8 ug/kg
DEPTH	18 TO 20 FT	TOLUENE	1.269	1.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.092	2.1 ug/kg
		M&P-XYLENE	0.101	1.8 ug/kg
		O-XYLENE	0.31	2.9 ug/kg

ELLINGTON T-ANG

PAGE___of___

MAL 8/5/93

			HEAD SPACE	ACTUAL
SAMPLE DESCRIPTION COMPO		COMPOUND	PPM	CONC.
BORING #	20	BENZENE	0.142	2.4 ug/kg
DEPTH	2 TO 4 FT	TOLUENE	3.538	4.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.197	5.0 (1) ug/kg
		M&P-XYLENE	0.018	< 0.9 ug/kg
		O-XYLENE	0.011	< 0.5 ug/kg
BORING #	20	BENZENE	0.965	16.2 ug/kg
DEPTH	4 TO 6 FT	TOLUENE	13.5	18.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.5	128.2 ug/kg
}		M&P-XYLENE	2.919	52.6 ug/kg
		O-XYLENE	3.388	32.0 ug/kg
BORING #	20	BENZENE	3.731	62.5 ug/kg
DEPTH	8 TO 10 FT	TOLUENE	112.6	156.6 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	193.5	4510.5 ug/kg
		M&P-XYLENE	52.14	939.5 ug/kg
		O-XYLENE	58.01	547.3 ug/kg
BORING #	20	BENZENE	0.03	< 0.8 ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.27	0.4 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.126	2.9 ug/kg
		M&P-XYLENE	0.176	3.2 ug/kg
		O-XYLENE	0.481	4.5 ug/kg
BORING #	20	BENZENE	0.561	9.4 ug/kg
DEPTH	16 TO 18 FT	TOLUENE	5.096	7.1 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.938	21.9 ug/kg
		M&P-XYLENE	0.415	7.5 ug/kg
		O-XYLENE	0.522	4.9 ug/kg
BORING #	20	BENZENE	0.454	39.7 ug/L
DEPTH		TOLUENE	2.327	179.0 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.489	47.9 ug/L
		M&P-XYLENE	0.219	15.6 ug/L
		O-XYLENE	0.293	19.7 ug/L
BORING #	20	BENZENE	0.069	1.2 ug/kg
DEPTH	6 TO 8 FT	TOLUENE	9.299	12.9 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	8.934	208.3 ug/kg
		M&P-XYLENE	3.818	68.8 ug/kg
		O-XYLENE	4.824	45.5 ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

ELLINGTON T-ANG

PAGE___of___

MAL 8/5/93

			HEAD SPACE		ACTUA	\L
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.).
BORING #	21	BENZENE	0.033	<	0.8	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	3.667		5.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.194		4.5	ug/kg
		M&P-XYLENE	0.532		9.6	ug/kg
		O-XYLENE	0.385		3.6	ug/kg
BORING #	21	BENZENE	0.126		2.1	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	14.03		19.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.138		3.2	ug/kg
		M&P-XYLENE	0.317		5.7	ug/kg
		O-XYLENE	0.461		4.3	ug/kg
BORING #	21	BENZENE	0.064		1.1	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	1.285		1.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.071		1.7	ug/kg
		M&P-XYLENE	0.217		3.9	ug/kg
		O-XYLENE	0.151		1.4	ug/kg

CLIENT
OPERATOR
DATE

PAGE of

MAL 8/6/93

			HEAD SPACE		ACTUA	\L
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC) .
BORING #	21	BENZENE	2.036		67.0	ug/L
DEPTH		TOLUENE	9.445		28.1	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.013	<	1.0	ug/L
		M&P-XYLENE	0.101		0.3	ug/L
		O-XYLENE	0.155	<u> </u>	0.8	ug/L

PAGE___of___

OPERATOR DATE MAL 8/6/93

CALIBRATION

					HEAD SPACE TO
		EAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1	PPM	TOLUENE,	1.00	PPM	NA
1	PPM	ETHYLBENZENE,	1.00	PPM	NA
	PPM	O-XYLENE	1.00	PPM	NA
		QUID STANDARD			
0.0025	ua/ml	BENZENE,	0.076	PPM	0.0329
		TOLUENE,	0.840	PPM	0.0030
0.0025	ua/mi	ETHYLBENZENE,	0.120	PPM	0.0208
		M&P-XYLENE	1.475	PPM	0.0034
		O-XYLENE	0.509	PPM	0.0049
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.096	PPM	0.0208
		TOLUENE,	2.567	PPM	0.0008
		ETHYLBENZENE,	0.124	PPM	0.0161
		M&P-XYLENE	1.219	PPM	0.0033
0.002		O-XYLENE	0.590	PPM	0.0034

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/6/93

HEAD SPACE ACT						L
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.		
BORING #	15	BENZENE	0.007	<	1.0	ug/kg
DEPTH	4 TO 6 ft	TOLUENE	0.162		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.01	<	8.0	ug/kg
		M&P-XYLENE	0.142		0.5	ug/kg
		O-XYLENE	0.042	<	0.2	ug/kg
BORING #	15	BENZENE	0.007	<	1.0	ug/kg
DEPTH	0 TO 2 FT	TOLUENE	0.133		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.015	<	8.0	ug/kg
		M&P-XYLENE	0.196		0.6	ug/kg
1		O-XYLENE	0.044	<	0.2	ug/kg
BORING #	15	BENZENE	0.009	<	1.0	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	0.773		0.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.016	<	8.0	ug/kg
		M&P-XYLENE	0.294		1.0	ug/kg
		O-XYLENE	0.000	<	0.2	ug/kg
BORING #	15	BENZENE	0.017	<	1.6	ug/L
DEPTH		TOLUENE	17.690		52.6	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.036	<	1.0	ug/L
		M&P-XYLENE	0.000	<	0.2	ug/L
		O-XYLENE	0.120		0.6	ug/L

CLIENT
OPERATOR
DATE

MAL 8/6/93 PAGE of

			HEAD SPACE		ACTUAL	
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC	•
BORING #	17	BENZENE	0.010	٧	1.0	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.185		0.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.055		0.9 (1)	ug/kg
		M&P-XYLENE	0.000	<	0.2	ug/kg
		O-XYLENE	0.018	<	0.2	ug/kg
BORING #	17	BENZENE	0.062		1.3	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	10.020		7.8	ug/kg
TYPÈ	SOIL SAMPLE	ETHYLBENZENE	0.151		2.4	ug/kg
		M&P-XYLENE	1.198		3.9	ug/kg
		O-XYLENE	0.699		2.4	ug/kg
BORING #	17	BENZENE	0.046	<	1.6	ug/L
DEPTH		TOLUENE	3.307		9.8	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.020	<	1.0	ug/L
		M&P-XYLENE	0.134		0.5	ug/L
		O-XYLENE	0.091		0.4	ug/L
BORING #	17	BENZENE	0.019	<	1.0	ug/kg
DEPTH	18 TO 20 FT	TOLUENE	0.892		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.061		1.1 (1)	ug/kg
		M&P-XYLENE	0.057		0.2	ug/kg
		O-XYLENE	0.030	<	0.2	ug/kg

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR
DATE

PAGE of

MAL 8/6/93 DATE

			HEAD SPACE	ACTUAL			
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC		
BORING #	18	BENZENE	0.036	<	1.0	ug/kg	
DEPTH	6 TO 8 FT	TOLUENE	0.091		0.1	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.013	<	0.8	ug/kg	
		M&P-XYLENE	0.000	<	0.2	ug/kg	
		O-XYLENE	0.028	<	0.2	ug/kg	
BORING #	18	BENZENE	0.020	<	1.0	ug/kg	
DEPTH	0 TO 2 FT	TOLUENE	0.108		0.1	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.063		1.0 (1)	ug/kg	
		M&P-XYLENE	0.000	<	0.2	ug/kg	
		O-XYLENE	0.030	<	0.2	ug/kg	
BORING #	18	BENZENE	4.331		90.2 (1	ug/kg	
DEPTH	8 TO 10 FT	TOLUENE	19.130		14.9	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	27.850		449.2	ug/kg	
		M&P-XYLENE	326.300		1070.7	ug/kg	
		O-XYLENE	46.010		156.0	ug/kg	
BORING #	18	BENZENE	0.404		8.4	ug/kg	
DEPTH	10 TO 12 FT	TOLUENE	130.600		101.8	ug/kg	
TYPE	SOIL SAMPLE	ETHYLBENZENE	2.069		33.4	ug/kg	
		M&P-XYLENE	33.130		108.7	ug/kg	
		O-XYLENE	14.200		48.1	ug/kg	
BORING #	18	BENZENE	0.199		6.5	ug/L	
DEPTH		TOLUENE	9.011		26.8	ug/L	
TYPE	WATER SAMPLE	ETHYLBENZENE	0.351		7.3	ug/L	
		M&P-XYLENE	4.647		15.8	ug/L	
		O-XYLENE	0.667		3.3	ug/L	

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR

MAL

DATE

8/11/93

CAL	JBR/	ATIC	NC

PAGE of___

			HEAD SPACE TO		
		BAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.058	PPM	0.0431
0.0025	ug/ml	TOLUENE,	0.145	PPM	0.0172
		ETHYLBENZENE,	0.050	PPM	0.0500
		M&P-XYLENE	0.695	PPM	0.0072
1	_	O-XYLENE	0.073	PPM	0.0342
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.073	PPM	0.0274
0.002		TOLUENE,	0.212	PPM	0.0094 -
		ETHYLBENZENE,	0.028	PPM	0.0714
1	ug/g		0.317	PPM	0.0126
0.002	ug/g	O-XYLENE	0.072	PPM	0.0278

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE of

MAL 8/11/93 DATE

			HEAD SPACE	ACTUAL		₹L
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.).
BORING #	22	BENZENE	0.014	<	1.4	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.090		8.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	22	BENZENE	0.047	<	1.4	ug/kg
DEPTH	15 TO 16 ft	TOLUENE	0.030	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	22	BENZENE	0.039	<	2.2	ug/L
DEPTH		TOLUENE	0.524		9.0	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.5	ug/L
		M&P-XYLENE	0.000	<	0.4	ug/L
		O-XYLENE	0.000	<	1.7	ug/L

CLIENT
OPERATOR
DATE

PAGE__of__

MAL 8/11/93

HEAD SPACE ACTUAL								
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.		; .		
BORING #	23	BENZENE	0.007	٧	1.4	ug/kg		
DEPTH	2 TO 4 FT	TOLUENE	0.046	<	0.5	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	3.6	ug/kg		
		M&P-XYLENE	0.000	<	0.6	ug/kg		
		O-XYLENE	0.000	<	1.4	ug/kg		
BORING #	23	BENZENE	0.018	٧	1.4	ug/kg		
DEPTH	6 TO 8 FT	TOLUENE	0.136		1.3	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.400		28.6	ug/kg		
		M&P-XYLENE	4.844		61.1	ug/kg		
		O-XYLENE	0.423		11.8	ug/kg		
BORING #	23	BENZENE	0.024	<	1.4	ug/kg		
DEPTH	8 TO 10 FT	TOLUENE	0.007	<	0.5	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.141		10.1	ug/kg		
		M&P-XYLENE	2.296		29.0	ug/kg		
		O-XYLENE	0.000	<	1.4	ug/kg		
BORING #	23	BENZENE	0.011	<	1.4	ug/kg		
DEPTH	4 TO 6 FT	TOLUENE	0.066		0.6	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.036	<	3.6	ug/kg		
		M&P-XYLENE	0.000	<	0.6	ug/kg		
		O-XYLENE	0.029	<	1.4	ug/kg		
BORING #	23	BENZENE	0.008	<	2.2	ug/L		
DEPTH		TOLUENE	0.076		1.3	ug/L		
TYPE	WATER SAMPLE	ETHYLBENZENE	0.031	<	2.5	ug/L		
		M&P-XYLENE	0.000	<	0.4	ug/L		
		O-XYLENE	0.000	<	1.7	ug/L		

ELLINGTON T-ANG

PAGE___of___

MAL 8/11/93

			HEAD SPACE		ACTU	AL
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC	1
BORING #	19	BENZENE	0.006	<	1.4	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	0.193		1.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.167	.		ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.141		3.9	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	0.115		1.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.042	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.043	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.020	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.007	<	1.4	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.077		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.028	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.005	<	1.4	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	0.022	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.014	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.000	<	1.4	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.033	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.033	<	3.6	ug/kg
		M&P-XYLENE	0.000	<	0.6	ug/kg
		O-XYLENE	0.000	<	1.4	ug/kg
BORING #	19	BENZENE	0.025	<	2.2	ug/L
DEPTH		TOLUENE	0.039	<	0.9	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.017	<	2.5	ug/L
		M&P-XYLENE	0.000	<	0.4	ug/L
		O-XYLENE	0.000	<	1.7	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT	
--------	--

MAL

OPERATOR DATE

8/12/93

PAGE__of__

CALIBRATION

					HEAD SPACE TO
	(GAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.082	PPM	0.0305
0.0025	ug/ml	TOLUENE,	0.193	PPM	0.0130
0.0025	ug/ml	ETHYLBENZENE,	0.070	PPM	0.0357
0.0050	ug/ml	M&P-XYLENE	0.187	PPM	0.0267
0.0025	ug/ml	O-XYLENE	0.129	PPM	0.0194
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.144	PPM	0.0139
0.002	ug/g	TOLUENE,	0.143	PPM	0.0140 -
0.002	ug/g	ETHYLBENZENE,	0.054	PPM	0.0370
0.004	ug/g	M&P-XYLENE	0.160	PPM	0.0250
0.002	ug/g	O-XYLENE	0.079	PPM	0.0253

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT	
OPERATOR	
DATE	

PAGE___of___

MAL 8/12/93

SAIVIT LE AIVALISIO						
DECODIDEION	COMPOUND		II.		- 1	
· · · · · · · · · · · · · · · · · · ·						
· ·					ug/kg	
					ug/kg	
SOIL SAMPLE					ug/kg	
			<		ug/kg	
	O-XYLENE	0.115			ug/kg	
11	BENZENE	0.039	<		ug/kg	
16 TO 18 ft	TOLUENE	3.687		51.6	ug/kg	
SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg	
	M&P-XYLENE	0.000	<	1.3	ug/kg	
	O-XYLENE	0.000	<	1.3	ug/kg	
11	BENZENE	0.836		11.6	ug/kg	
14 TO 16 FT	TOLUENE	5.188		72.6	ug/kg	
SOIL SAMPLE	ETHYLBENZENE	0.160		5.9	ug/kg	
	M&P-XYLENE	0.461		11.5	ug/kg	
	O-XYLENE	0.371		9.4	ug/kg	
11	BENZENE	0.000	<	0.7	ug/kg	
10 TO 12 FT	TOLUENE	0.330		4.6	ug/kg	
SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg	
	M&P-XYLENE	0.000	<	1.3	ug/kg	
	O-XYLENE	0.000	<	1.3	ug/kg	
11	BENZENE	0.029	<	1.5	ug/L	
	TOLUENE	2.148		27.8	ug/L	
WATER SAMPLE	ETHYLBENZENE	0.000	<	1.8	ug/L	
	M&P-XYLENE	0.000	<	1.3	ug/L	
	O-XYLENE	0.000	<	1.0	ug/L	
	16 TO 18 ft SOIL SAMPLE 11 14 TO 16 FT SOIL SAMPLE 11 10 TO 12 FT SOIL SAMPLE	11 BENZENE TOLUENE SOIL SAMPLE 11 BENZENE M&P-XYLENE O-XYLENE 11 BENZENE TOLUENE SOIL SAMPLE 11 BENZENE TOLUENE ETHYLBENZENE M&P-XYLENE O-XYLENE 11 BENZENE TOLUENE ETHYLBENZENE M&P-XYLENE 11 BENZENE TOLUENE ETHYLBENZENE TOLUENE ETHYLBENZENE TOLUENE ETHYLBENZENE TOLUENE ETHYLBENZENE TOLUENE ETHYLBENZENE TOLUENE	11	DESCRIPTION COMPOUND PPM	DESCRIPTION COMPOUND PPM CONC 11 BENZENE 0.309 4.3 18 TO 20 FT TOLUENE 3.207 44.9 SOIL SAMPLE ETHYLBENZENE 0.000 < 1.9	

\bigcirc I	IENIT	
UL	IENT	

OPERATOR

MAL

DATE

8/13/93

PAGE___of__

CALIBRATION

					HEAD SPACE TO
	(GAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA .
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0025	ug/ml	BENZENE,	0.083	PPM	0.0301
0.0025	ug/ml	TOLUENE,	0.201	PPM	0.0124
0.0025	ug/ml	ETHYLBENZENE,	0.203	PPM	0.0123
0.0050	ug/mi	M&P-XYLENE	0.300	PPM	0.0167
0.0025	ug/ml	O-XYLENE	0.130	PPM	0.0192
		SOIL STANDARD			
0.002	ug/g	BENZENE,	0.141	PPM	0.0142
0.002	ug/g	TOLUENE,	0.244	PPM	0.0082
0.002	ug/g	ETHYLBENZENE,	0.203	PPM	0.0099
0.004	ug/g	M&P-XYLENE	0.190	PPM	0.0211
0.002	ug/g	O-XYLENE	0.114	PPM	0.0175

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

MAL 8/13/93 PAGE___of___

			HEAD SPACE		ACTUAL	
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	24	BENZENE	0.000	<	0.7	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	0.050		0.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	<	0.9	ug/kg
BORING #	24	BENZENE	0.000	<	0.7	ug/kg
DEPTH	3 TO 5 ft	TOLUENE	0.000	<	0.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	٧	0.9	ug/kg
BORING #	24	BENZENE	0.062		0.9	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	0.147		1.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.062		10.5 (1)	ug/kg
		M&P-XYLENE	0.638		13.4	ug/kg
		O-XYLENE	0.191		3.4	ug/kg
BORING #	24	BENZENE	0.117		1.7	ug/kg
DEPTH	7 TO 9 FT	TOLUENE	1.181	İ	9.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.963		9.5	ug/kg
		M&P-XYLENE	1.683		35.4	ug/kg
		O-XYLENE	0.427		7.5	ug/kg
BORING #	24	BENZENE	0.079		1.1	ug/kg
DEPTH	9 TO 11 FT	TOLUENE	0.384		3.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.254		51.8	ug/kg
_		M&P-XYLENE	4.153		87.4	ug/kg
		O-XYLENE	1.068	_	18.7	ug/kg
BORING #	24	BENZENE	0.452		6.4	ug/kg
DEPTH	11 TO 13 FT	TOLUENE	2.729		22.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	40.260		396.7	ug/kg
		M&P-XYLENE	32.850	1	691.6	ug/kg
		O-XYLENE	14.350	_	251.8	ug/kg
BORING #	24	BENZENE	0.059		1.8	ug/L
DEPTH		TOLUENE	0.254		3.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.311		3.8	ug/L
		M&P-XYLENE	0.000	<	8.0	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

ELLINGTON T-ANG

PAGE___of___

MAL 8/13/93

			HEAD SPACE		ACTUAL	
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	25	BENZENE	0.061		0.9	ug/kg
DEPTH	1 TO 3 FT	TOLUENE	0.105		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.049		10.3	ug/kg
		M&P-XYLENE	0.764		16.1	ug/kg
		O-XYLENE	0.345		6.1	ug/kg
BORING #	25	BENZENE	0.000	<	0.7	ug/kg
DEPTH	3 TO 5 FT	TOLUENE	0.113		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	0.5	ug/kg
		M&P-XYLENE	0.000	<	1.1	ug/kg
		O-XYLENE	0.000	<	0.9	ug/kg
BORING #	25	BENZENE	1.136		16.1	ug/kg
DEPTH	5 TO 7 FT	TOLUENE	5.516		45.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	40.430		398.3	ug/kg
		M&P-XYLENE	35.620		749.9	ug/kg
		O-XYLENE	13.900		243.9	ug/kg
BORING #	25	BENZENE	1.368		19.4	ug/kg
DEPTH	7 TO 9 FT	TOLUENE	8.761		71.8	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	32.380		319.0	ug/kg
		M&P-XYLENE	28.070		590.9	ug/kg
		O-XYLENE	9.866		173.1	ug/kg
BORING #	25	BENZENE	0.196		2.8	ug/kg
DEPTH	9 TO 11 FT	TOLUENE	2.862		23.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	9.246		91.1	ug/kg
		M&P-XYLENE	8.222		173.1	ug/kg
		O-XYLENE	2.250	<u> </u>	39.5	ug/kg
BORING #	25	BENZENE	0.033	<	0.7	ug/kg
DEPTH	15 TO 17 FT	TOLUENE	0.263		2.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.290		2.9	ug/kg
		M&P-XYLENE	0.852		17.9	ug/kg
		O-XYLENE	0.206		3.6	ug/kg
BORING #	25	BENZENE	0.134		4.0	ug/L
DEPTH		TOLUENE	5.769		71.8	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.247		3.0	ug/L
		M&P-XYLENE	0.000	<	0.8	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

ELLINGTON T-ANG

PAGE___of__

MAL 8/13/93

			HEAD SPACE	ACTUAL	
SAMPLE	DESCRIPTION	COMPOUND	PPM	CONC.	
BORING #	26	BENZENE	1.377	19.5	ug/kg
DEPTH	2 TO 4 FT	TOLUENE	4.535	37.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.222	2.2	ug/kg
		M&P-XYLENE	0.000	< 1.1	ug/kg
		O-XYLENE	0.000	< 0.9	ug/kg
BORING #	26	BENZENE	23.100	327.7	ug/kg
DEPTH	4 TO 6 FT	TOLUENE	201.800	1654.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	42.660	420.3	ug/kg
		M&P-XYLENE	48.780	1026.9	ug/kg
		O-XYLENE	43.430	761.9	ug/kg
BORING #	26	BENZENE	40.070	568.4	ug/kg
DEPTH -	6 TO 8 FT	TOLUENE	2902.000	23786.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	108.200	1066.0	ug/kg
		M&P-XYLENE	147.400	3103.2	ug/kg
		O-XYLENE	126.300	2215.8	ug/kg
BORING #	26	BENZENE	7.138	101.2	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	39.580	324.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	8.017	79.0	ug/kg
		M&P-XYLENE	21.210	446.5	ug/kg
		O-XYLENE	8.507	149.2	ug/kg
BORING #	26	BENZENE	2.636	37.4	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	27.100	222.1	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	3.000	29.6	ug/kg
		M&P-XYLENE	5.708	120.2	ug/kg
		O-XYLENE	9.356	164.1	ug/kg
BORING #	26	BENZENE	3.756	53.3	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	5.177	42.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.906	48.3	ug/kg
		M&P-XYLENE	5.954	125.3	ug/kg
	· · · · · · · · · · · · · · · · · · ·	O-XYLENE	2.232	39.2	ug/kg
BORING #	26	BENZENE	5.389	76.4	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	19.570	160.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	6.256	61.6	ug/kg
		M&P-XYLENE	12.110	254.9	ug/kg
		O-XYLENE	3.732	65.5	ug/kg

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/13/93

			HEAD SPACE	ACTUAL
SAMPLE	DESCRIPTION	COMPOUND	PPM	CONC.
BORING #	26	BENZENE	3.179	45.1 ug/kg
DEPTH	16 TO 18 FT	TOLUENE	16.690	136.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	4.789	47.2 ug/kg
		M&P-XYLENE	10.280	216.4 ug/kg
		O-XYLENE	3.324	58.3 ug/kg
BORING #	26	BENZENE	2.589	36.7 ug/kg
DEPTH	18 TO 20 FT	TOLUENE	43.040	352.8 ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.352	13.3 ug/kg
		M&P-XYLENE	57.930	1219.6 ug/kg
		O-XYLENE	3.164	55.5 ug/kg
BORING #	26	BENZENE	1.407	42.4 ug/L
DEPTH		TOLUENE	76.670	953.6 ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.100	1.2 ug/L
		M&P-XYLENE	45.360	756.0 ug/L
		O-XYLENE	2.859	55.0 ug/L

CLIENT	
--------	--

PAGE___of__

OPERATOR DATE

8/17/93

MAL

CALIBRATION

					HEAD SPACE TO
	(GAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.251	PPM	0.0199
0.0050	ug/ml	TOLUENE,	0.394	PPM	0.0127
0.0050	ug/ml	ETHYLBENZENE,	0.198	PPM	0.0253
0.0100	ug/ml	M&P-XYLENE	0.365	PPM	0.0274
0.0050	ug/ml	O-XYLENE	0.245	PPM	0.0204
		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.244	PPM	0.0164
0.004	ug/g	TOLUENE,	0.256	PPM	0.0156
0.004	ug/g	ETHYLBENZENE,	0.230	PPM	0.0174
0.008		M&P-XYLENE	0.500	PPM	0.0160
0.004	ug/g	O-XYLENE	0.231	PPM	0.0173

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

ELLINGTON T-ANG

PAGE__of_

MAL 8/17/93

		OAWI LE AIVALTOIO	HEAD SPACE		ACTUAL	
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	27	BENZENE	0.013	<	1	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.184		3	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.049	<	1	ug/kg
••		M&P-XYLENE	0.000	<	1	ug/kg
		O-XYLENE	0.071		- 1	ug/kg
BORING #	27	BENZENE	0.040	<	1	ug/kg
DEPTH	8 TO 10 ft	TOLUENE	3.709		58	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.352		6	ug/kg
		M&P-XYLENE	0.564		9	ug/kg
		O-XYLENE	0.380		7	ug/kg
BORING #	27	BENZENE	4.721		77	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	180.000		2813	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	36.890		642	ug/kg
		M&P-XYLENE	164.800		2637	ug/kg
		O-XYLENE	32.840		569	ug/kg
BORING #	27	BENZENE	27.090		444	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	124.000		1938	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	37.850		658	ug/kg
		M&P-XYLENE	62.540		1001	ug/kg
		O-XYLENE	15.590		270	ug/kg
BORING #	27	BENZENE	30.210		495	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	67.320		1052	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	24.780		431	ug/kg
		M&P-XYLENE	58.900		942	ug/kg
		O-XYLENE	9.450		164	ug/kg
BORING #	27	BENZENE	2.859		47	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	95.190		1487	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	18.280		318	ug/kg
		M&P-XYLENE	37.380		598	ug/kg
		O-XYLENE	18.310		317	ug/kg
BORING #	27	BENZENE	1.002		16	ug/kg
DEPTH	18 TO 20 FT	TOLUENE	29.500		461	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	1		ug/kg	
		M&P-XYLENE	19.630		314	ug/kg
		O-XYLENE	4.998		87	ug/kg

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/17/93

			HEAD SPACE		ACTUA	
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC	
BORING #	27	BENZENE	0.120		2	ug/kg
DEPTH	20 TO 22 FT	TOLUENE	2.198		34	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.912		16	ug/kg
		M&P-XYLENE	2.741		44	ug/kg
		O-XYLENE	0.582		10	ug/kg
BORING #	27	BENZENE	0.061		1	ug/kg
DEPTH	22 TO 24 FT	TOLUENE	1.051		16	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.319		6	ug/kg
		M&P-XYLENE	1.214		19	ug/kg
-		O-XYLENE	0.000	<	1	ug/kg
BORING #	27	BENZENE	5.711		114	ug/L
DEPTH		TOLUENE	5.753		73	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	8.632		218	ug/L
		M&P-XYLENE	22.910		628	ug/L
		O-XYLENE	0.041	<	1	ug/L

ELLINGTON T-ANG

MAL

8/17/93

PAGE of

	HEAD SPACE ACTUAL							
SAMPLE	DESCRIPTION	COMPOUND	РРМ		CONC.			
BORING #	28	BENZENE	0.042	<	1	ug/kg		
DEPTH	1 TO 3 FT	TOLUENE	0.292		5	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.175		3	ug/kg		
		M&P-XYLENE	0.691		11	ug/kg		
		O-XYLENE	0.000	<	1	ug/kg		
BORING #	28	BENZENE	0.128		2	ug/kg		
DEPTH	3 TO 5 FT	TOLUENE	2.069		32	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.339		6	ug/kg		
		M&P-XYLENE	1.081		17	ug/kg		
		O-XYLENE	0.292		5	ug/kg		
BORING #	28	BENZENE	0.107		2	ug/kg		
DEPTH	5 TO 7 FT	TOLUENE	1.803		28	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.224		4	ug/kg		
		M&P-XYLENE	0.511		8	ug/kg		
		O-XYLENE	0.082		1	ug/kg		
BORING #	28	BENZENE	0.151		2	ug/kg		
DEPTH	7 TO 9 FT	TOLUENE	2.650		41	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	5.861	1	102	ug/kg		
		M&P-XYLENE	0.000	<	1	ug/kg		
		O-XYLENE	0.284		S (1)	ug/kg		
BORING #	28	BENZENE	0.077		1	ug/kg		
DEPTH	9 TO 11 FT	TOLUENE	1.363		21	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.130		2	ug/kg		
		M&P-XYLENE	0.345		6	ug/kg		
505010 #		O-XYLENE	0.000	<	1	ug/kg		
BORING #	28	BENZENE	0.033	<	1	ug/kg		
DEPTH	11 TO 13 FT	TOLUENE	0.652		10	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.064		1	ug/kg		
		M&P-XYLENE	0.249		4	ug/kg		
DODING #	00	O-XYLENE	0.000	<	1	ug/kg		
BORING #	28	BENZENE	0.027	<	1	ug/kg		
DEPTH	13 TO 15 FT	TOLUENE	0.639		10	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.060		1	ug/kg		
		M&P-XYLENE	0.232		4	ug/kg		
(4) If the retard		O-XYLENE	0.000	<	1	ug/kg		

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT	
OPERATOR	

PAGE of

DATE

MAL 8/17/93

			HEAD SPACE	P	CTUA	L
SAMPLE	DESCRIPTION	COMPOUND	PPM	1	CONC	
BORING #	28	BENZENE	0.086		2	ug/L
DEPTH		TOLUENE	0.494		6	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.325		8	ug/L
		M&P-XYLENE	1.108		30	ug/L
		O-XYLENE	0.000	<	1	ug/L

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/17/93

HEAD SPACE ACTUAL								
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC			
BORING #	29	BENZENE	3.359		55	ug/kg		
DEPTH	1 TO 3 FT	TOLUENE	4.500		70	ug/kg		
	SOIL SAMPLE	ETHYLBENZENE	10.670		186	ug/kg		
TYPE	SUIL SAWIFLE	M&P-XYLENE	12.950		207	ug/kg		
		O-XYLENE	5.485		95	ug/kg		
DODING #	-00	BENZENE	0.525		9	ug/kg		
BORING #	29	TOLUENE	0.699	1	11	ug/kg		
DEPTH	3 TO 5 FT	ETHYLBENZENE	6.122		106	ug/kg		
TYPE	SOIL SAMPLE	M&P-XYLENE	3.817		61	ug/kg		
			1		34	1		
505010 #		O-XYLENE BENZENE	1.975 0.803		13	ug/kg		
BORING #	29				25	ug/kg		
DEPTH	5 TO 7 FT	TOLUENE	1.608		26	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	1.478			ug/kg		
		M&P-XYLENE	1.509	1	24	ug/kg		
		O-XYLENE	0.663	<u> </u>	11	ug/kg		
BORING #	29	BENZENE	0.025	<	1	ug/kg		
DEPTH	11 TO 13 FT	TOLUENE	0.186	1	3	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.112		2	ug/kg		
		M&P-XYLENE	0.148		2	ug/kg		
		O-XYLENE	0.000	<	1	ug/kg		
BORING #	29	BENZENE	0.055		1	ug/L		
DEPTH		TOLUENE	1.925		24	ug/L		
TYPE	WATER SAMPLE	ETHYLBENZENE	0.029	<	1	ug/L		
		M&P-XYLENE	0.140		4	ug/L		
		O-XYLENE	0.000	<_	1	ug/L		

CLIENT	
--------	--

MAL

OPERATOR DATE

8/18/93

PAGE of

CALIBRATION

				HEAD SPACE TO	
	(GAS STANDARD	GC RES	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.345	PPM	0.0145
0.0050	ug/ml	TOLUENE,	0.988	PPM	0.0051
0.0050	ug/ml	ETHYLBENZENE,	0.164	PPM	0.0305
0.0100	ug/ml	M&P-XYLENE	0.381	PPM	0.0262
0.0050	ug/ml	O-XYLENE	0.450	PPM	0.0111
		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.346	PPM	0.0116
0.004	uġ/g	TOLUENE,	0.389	PPM	0.0103
0.004	ug/g	ETHYLBENZENE,	0.169	PPM	0.0237
0.008	ug/g	M&P-XYLENE	0.500	PPM	0.0160
0.004	ug/g	O-XYLENE	0.329	PPM	0.0122

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of__

MAL 8/18/93

			HEAD SPACE		ACTUAL	
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.	
BORING #	11	BENZENE	3.173		46.0 (1)	ug/L
DEPTH		TOLUENE	15.250		77.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.085		2.6 (1)	ug/L
		M&P-XYLENE	0.000	<	1.3	ug/L
		O-XYLENE	0.000	<	0.6	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR
DATE

PAGE__of__

MAL 8/18/93 DATE

			HEAD SPACE	1	CTUA	9
SAMPLE	DESCRIPTION	COMPOUND	PPM		CONC.	
BORING #	30	BENZENE	0.014	<	0.6	ug/kg
DEPTH	8 TO 10 ft	TOLUENE	0.148		1.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.104		2.5	ug/kg
		M&P-XYLENE	0.048	<	8.0	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.007	<	0.6	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.118		1.2	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.2	ug/kg
		M&P-XYLENE	0.036	<	8.0	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.011	<	0.6	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	0.086		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.2	ug/kg
		M&P-XYLENE	0.032	<	8.0	ug/kg
		O-XYLENE	0.000	<	0.6	ug/kg
BORING #	30	BENZENE	0.014	<	0.7	ug/L
DEPTH		TOLUENE	0.162	Ì	8.0	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	1.5	ug/L
		M&P-XYLENE	0.000	<	1.3	ug/L
		O-XYLENE	0.000	<	0.6	ug/L

CLIENT OPERATOR DATE

ELLINGTON T-ANG

MAL

8/18/93

PAGE of

HEAD SPACE ACTUAL						
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.	
BORING #	31	BENZENE	0.009	<	0.6	ug/kg
DEPTH	6 TO 8 FT	TOLUENE	0.085		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.102		2.4	ug/kg
		M&P-XYLENE	0.000	<	8.0	ug/kg
	1	O-XYLENE	0.000	<	0.6	ug/kg
BORING #	31	BENZENE	0.007	<	0.6	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.063		0.6	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.018	<	1.2	ug/kg
		M&P-XYLENE	0.000	<	0.8	ug/kg
		O-XYLENE	0.000	V	0.6	ug/kg
BORING #	31	BENZENE	0.143		1.7 (1)	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	13.660		140.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	48.110		1138.7	ug/kg
		M&P-XYLENE	12.570		201.1	ug/kg
	1	O-XYLENE	14.310		174.0	ug/kg
BORING #	31	BENZENE	0.023	<	0.6	ug/kg
DEPTH	12 TO 14 FT	TOLUENE	2.907		29.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	7.311		173.0	ug/kg
		M&P-XYLENE	1.585		25.4	ug/kg
		O-XYLENE	3.263		39.7	ug/kg
BORING #	31	BENZENE	0.007	<	0.6	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	0.035	<	0.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.441		10.4	ug/kg
		M&P-XYLENE	0.303		4.8	ug/kg
		O-XYLENE	0.161	_	2.0	ug/kg
BORING #	31	BENZENE	0.028	<	0.7	ug/L
DEPTH		TOLUENE	0.030	<	0.3	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.157		4.8	ug/L
	BEFORE PURGE	M&P-XYLENE	0.044	<	1.3	ug/L
		O-XYLENE	0.000	<	0.6	ug/L
BORING #	31	BENZENE	0.018	<	0.7	ug/L
DEPTH		TOLUENE	0.044	<	0.3	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.151		4.6	ug/L
	AFTER PURGE	M&P-XYLENE	0.041	<	1.3	ug/L
<u> </u>		O-XYLENE	0.000	<	0.6	ug/L

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLI	EN	T	
			_

PAGE__of__

OPERATOR DATE

MAL 8/19/93

CALIBRATION

					HEAD SPACE TO
		GAS STANDARD	GC RESI	ONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.254	PPM	0.0197
0.0050	ug/ml	TOLUENE,	0.368	PPM	0.0136
0.0050	ug/ml	ETHYLBENZENE,	0.078	PPM	0.0641
		M&P-XYLENE	0.355	PPM	0.0282
		O-XYLENE	0.255	PPM	0.0196
		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.246	PPM	0.0163
0.004	ug/g	TOLUENE,	0.253	PPM	0.0158
		ETHYLBENZENE,	0.108	PPM	0.0370
		M&P-XYLENE	0.570	PPM	0.0140
0.004		O-XYLENE	0.268	PPM	0.0149

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES.
SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL)
LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/19/93

			HEAD SPACE	1	ACTUA	L
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.	
BORING #	32	BENZENE	0.012	<	8.0	ug/kg
DEPTH	10 TO 12 FT	TOLUENE	0.049	<	8.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	32	BENZENE	0.018	<	0.8	ug/kg
DEPTH	16 TO 18 ft	TOLUENE	0.045	<	8.0	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg
		M&P-XYLENE	0.000	<	0.7	ug/kg
		O-XYLENE	0.000	<	0.7	ug/kg
BORING #	32	BENZENE	0.013	<	1.0	ug/L
DEPTH		TOLUENE	0.085		1.2	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	3.2	ug/L
	BEFORE PURGE	M&P-XYLENE	0.000	<	1.4	ug/L
		O-XYLENE	0.000	<	1.0	ug/L
BORING #	32	BENZENE	0.008	<	1.0	ug/L
DEPTH		TOLUENE	0.041	<	0.7	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	3.2	ug/L
	AFTER PURGE	M&P-XYLENE	0.000	<	1.4	ug/L
		O-XYLENE	0.000	<	1.0	ug/L

CLIENT OPERATOR DATE

ELLINGTON T-ANG

MAL

8/19/93

PAGE of

HEAD SPACE ACTUAL								
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.			
BORING #	33	BENZENE	0.000	<	0.8	ug/kg		
DEPTH	0 TO 2 FT	TOLUENE	0.033	<	8.0	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
		M&P-XYLENE	0.000	<	0.7	ug/kg		
		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	0.007	<	0.8	ug/kg		
DEPTH	2 TO 4 FT	TOLUENE	0.015	<	8.0	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
		M&P-XYLENE	0.000	<	0.7	ug/kg		
		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	0.000	<	0.8	ug/kg		
DEPTH	4 TO 6 FT	TOLUENE	0.036	<	0.8	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
		M&P-XYLENE	0.000	<	0.7	ug/kg		
		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	0.019	<	0.8	ug/kg		
DEPTH	6 TO 8 FT	TOLUENE	0.083		1.3	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
		M&P-XYLENE	0.000	<	0.7	ug/kg		
		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	0.012	<	8.0	ug/kg		
DEPTH	8 TO 10 FT	TOLUENE	0.186		2.9	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
	,	M&P-XYLENE	0.000	<	0.7	ug/kg		
		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	0.057		0.9 (1)	ug/kg		
DEPTH	10 TO 12 FT	TOLUENE	0.124		2.0	ug/kg		
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.9	ug/kg		
		M&P-XYLENE	0.000	<	0.7	ug/kg		
5051110 #		O-XYLENE	0.000	<	0.7	ug/kg		
BORING #	33	BENZENE	26.100		424.4	ug/kg		
DEPTH	12 TO 14 FT	TOLUENE	283.500		4482.2	J. J		
TYPE	SOIL SAMPLE	ETHYLBENZENE	9.446		349.9	ug/kg		
		M&P-XYLENE	32.410		454.9	ug/kg		
<u> </u>	ion time of the analyte was	O-XYLENE	41.900		625.4	ug/kg		

⁽¹⁾ If the retention time of the analyte was out of the 15% tolerance range the analyses is labeled "S" as suspect

CLIENT
OPERATOR
DATE

PAGE___of___

MAL

8/19/93

			HEAD SPACE	ACTUAL	
SAMPLE DESCRIPTION		COMPOUND	PPM	CONC.	
BORING #	33	BENZENE	3.775	61.4	ug/kg
DEPTH	14 TO 16 FT	TOLUENE	24.650	389.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.705	26.1	ug/kg
		M&P-XYLENE	0.483	6.8	ug/kg
		O-XYLENE	3.176	47.4	ug/kg_
BORING #	33	BENZENE	0.041	< 0.8	ug/kg
DEPTH	16 TO 18 FT	TOLUENE	7.308	115.5	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.116	4.3	ug/kg
		M&P-XYLENE	0.224	3.1	ug/kg
		O-XYLENE	0.616	9.2	ug/kg
BORING #	33	BENZENE	0.192	3.8	ug/L
DEPTH		TOLUENE	25.270	343.3	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.888	56.9	ug/L
	BEFORE PURGE	M&P-XYLENE	2.946	83.0	ug/L
		O-XYLENE	0.868	17.0	ug/L
BORING #	33	BENZENE	0.241	4.7	ug/L
DEPTH		TOLUENE	27.040	367.4	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.197	12.6	ug/L
	AFTER PURGE	M&P-XYLENE	0.664	18.7	ug/L
		O-XYLENE	0.532	10.4	ug/L

OPERATOR DATE

MAL

8/20/93

PAGE of___

CALIBRATION

					HEAD SPACE TO
		GAS STANDARD	GC RESI	PONCE	ACTUAL CONC.FACTOR
1.00	PPM	BENZENE,	1.00	PPM	NA
1.00	PPM	TOLUENE,	1.00	PPM	NA
1.00	PPM	ETHYLBENZENE,	1.00	PPM	NA
1.00	PPM	O-XYLENE	1.00	PPM	NA
	LI	QUID STANDARD			
0.0050	ug/ml	BENZENE,	0.377	PPM	0.0133
		TOLUENE,	1.139	PPM	0.0044
		ETHYLBENZENE,	0.107	PPM	0.0467
		M&P-XYLENE	0.473	PPM	0.0211
		O-XYLENE	0.331	PPM	0.0151
-		SOIL STANDARD			
0.004	ug/g	BENZENE,	0.377	PPM	0.0106
0.004	ug/g	TOLUENE,	0.866	PPM	0.0046
0.004	ug/g	ETHYLBENZENE,	0.181	PPM	0.0221
		M&P-XYLENE	0.900	PPM	0.0089
	ug/g	O-XYLENE	0.458	PPM	0.0087

GAS STANDARD IS A SCOTTY IV MIX # 6677 FROM SCOTT SPECIALTY GASES. SOIL AND LIQUID STANDARDS WERE MADE FROM BTX-100 (100 ug/mL in METHANOL) LOT NO. G-0433 FROM ULTRA SCIENTIFIC.

CLIENT
OPERATOR
DATE

PAGE___of___

MAL 8/20/93

		SAIVIFEE AIVALTOIS	TIEAD CDACE		ACTUA	
			HEAD SPACE	9	_	<u> </u>
SAMPLE DESCRIPTION		COMPOUND	PPM		CONC.	,
BORING #	34	BENZENE	0.029	<	0.5	ug/kg
DEPTH	8 TO 10 FT	TOLUENE	0.187		0.9	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
		M&P-XYLENE	0.066		0.6	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg
BORING #	34	BENZENE	0.082		0.9	ug/kg
DEPTH	14 TO 16 ft	TOLUENE	0.300		1.4	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
		M&P-XYLENE	0.000	<	0.4	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg
BORING #	34	BENZENE	0.014	<	0.5	ug/kg
DEPTH	16 TO 18 ft	TOLUENE	0.145		0.7	ug/kg
TYPE	SOIL SAMPLE	ETHYLBENZENE	0.000	<	1.1	ug/kg
		M&P-XYLENE	0.000	<	0.4	ug/kg
		O-XYLENE	0.000	<	0.4	ug/kg
BORING #	34	BENZENE	0.019	<	0.7	ug/L
DEPTH		TOLUENE	0.343		1.5	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.3	ug/L
	BEFORE PURGE	M&P-XYLENE	0.000	<	1.1	ug/L
		O-XYLENE	0.000	<	0.8	ug/L
BORING #	34	BENZENE	0.018	<	0.7	ug/L
DEPTH		TOLUENE	0.257		1.1	ug/L
TYPE	WATER SAMPLE	ETHYLBENZENE	0.000	<	2.3	ug/L
	AFTER PURGE	M&P-XYLENE	0.000	<	1.1	ug/L
		O-XYLENE	0.000	<	8.0	ug/L
		10.11.00.10	0.000			

q		4		8	12	16	20	Time Printed: Aug 5,93 08:57
1 4	1	*-4		CO.	. (X	1000		Sample Time: Aug 5,93 08:48
					. \ ^			Method
28								Slope Up 1.000 mV/Sec
	3	•	•	•	•		•	Slope Down 3.000 mV/Sec
	5							Min Area 1.000 mVSec
	7							Min Height 0.000 mV
57	8							Analysis Delay 50.0 sec
			-					Window Percent 25.0 %
	15		.2					Det Flow 10 ml/min
	53							B/F Flow 10 ml/min
85	V	4						Aux Flow 0 ml/min
								Oven Temp 45 C
.	1				•			Amb Temp 33 C
	7						·	Max Gain 1000
1.1	4						•	Analysis Time 400.0 sec
		>,						Peak Report Pk Compound Name Area/Conc R.T.
	1	0			•	•		Pk Compound Name Area/Conc R.T. 1 Unknown 0.947 mVS 52.9
14	72							2 Benzene 53.04 ppb 59.7
1	ľ	•		•	•		. •	3 Unknown 4.413 mVS 66.8
) >							4 Unknown 5.355 mVS 76.0
1	ľ		•		•			5 Unknown 2.039 mVS 102.1
17	1.							6 Toluene 113.6 ppb 118.5
		•	٠	•	•		•	7 Unknown 4.655 mVS 149.0
								8 Unknown 9.560 mVS 191.2
			•		•	•		9 Unknown 7.884 mVS 196.2
20	0	8						10 Ethylbenzene 149.2 ppb 205.0
	9	•	•	•	•	•	•	11 m&p-xylene 8.059 ppb 241.3
1 !	10							12 Unknown 2.825 mVS 260.5
								13 O-xylene 19.88 ppb 306.6
22	8							
	11							
25	V_{-}						•	
	12							
	1. A.							
28	5							
	"	•	•	•	•		•	
			_					
			•		-			
31	4	13						Notes
		•	•	•	•	•	-	soil bottle headspace vol.=145cc
	}							50g of soil temp 28 c
								blank zero check
34	2							benzene
								ethlyb
								tol.
								0-xy.
37	1.							mxy "
								bx
					•			
40	0							
1	1 "	•			•	•	• •	

Hugiana 40	200, 00 (00)	CTOH HHSTABTE IZEBOLC
0 1 2	3 4 5 (x 100 mV)	Time Printed: Aug 5 ,93 04 :08 Sample Time: Aug 5 ,93 08 :50
42		Method Slope Up 2.000 mV/Sec
		Slope Down 6.000 mV/Sec
 	· ·	Min Area 10.00 mVSec
	1.	Min Height 0.000 mV
85		Analysis Delay 50.0 sec
		Window Percent 25.0 %
		Det Flow 10 ml/min
		B/F Flow 10 ml/min
128 2	<i>.</i> .	Aux Flow O ml/min
1.		Oven Temp 45 C
		Amb Temp 37 C
13		Max Gain 1000
171		Analysis Time 600.0 sec
		Peak Report
4		Pk Compound Name Area/Conc R.T.
5	•	1 Benzene 2.860 ppm 61.6
214		2 Toluene 3.252 ppm 119.7
6		3 Unknown 69.91 mVS 150.6
		4 Unknown 1.438 mVS 176.6
		5 Unknown 6.441 mVS 191.6
25 7		6 Unknown 5.198 mVS 208.2
1 → S _B · · ·		7 Ethylbenzene 2.546 ppm 239.8
		8 m&p-xylene 7.000 ppm 257.6
	•	9 O-xylene 3.706 ppm 303.4
300		y day a day o day
130		
		Ben 3 11
	•	
342		tol 13
		1/1/ EBM 17
		1/1/ 1/1/2
200		USY 7/1/3 XY 1802 14
385		
		Dn74
	•	1 2/ 1
an em em		
428		
471		Notes
		soil bottle headspace vol.=145cc
		100g of soil will be analyzed
		cal check 40cc of .25 ug/ml of
5:14		Benzene
		ethlyb
		tol.
	-	O-xy.
557		m-xy.
		pxy.
	•	
600		

P111 G	TARIE			100	,	1 (((1)))	TOU HUSTABLE Webon c
0	4		8	12	16	20	Time Printed: Aug 5,93 08:36
1 7	1		O	.(x		mV)	Sample Time: Aug 5,93 08:26
		•		. \ ^	4. 24	111 4 /	Method
100	-						Slope Up 1.000 mV/Sec
28			>			•	Slope Down 3.000 mV/Sec
	>			•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 /							,
57							Analysis Delay 50.0 sec Window Percent 25.0 %
		_	•				***************************************
1 .			2	- .			Det Flow 10 ml/min
							B/F Flow 10 ml/min
85		_			4		Aux Flow 0 ml/min
							Oven Temp 45 C
1.6							Amb Temp 33 C
1 7	~~~~						Max Gain 1000
111		6					Analysis Time 400.0 sec
		_		<u> </u>	·	•	Peak Report
						•	Pk Compound Name Area/Conc R.T.
		•		•	•		1 Unknown 156.3 mVS 53.2
142	8						2 Benzene 597.4 ppb 59.8
	Marine .	•	•	•		•	3 Unknown 457.8 mVS 67.2
		9					4 Unknown 696.2 mVS 76.2
1 1/		•		•	•		5 Unknown 4.558 mVS 95.0
117/1							6 Unknown 265.9 mVS 102.5
	•	•	•	•		•	7 Toluene 7.185 ppm 118.1
1	.0			_			8 Unknown 4.495 mVS 131.8
1 1	,	•		•	•		9 Unknown 439.2 mVS 149.2
200	1.1						10 Unknown 1.740 mVS 176.0
	•	•	•	•		•	11 Unknown 67.00 mVS 189.8.
1							12 Unknown 67.16 mVS 221.8
1 1		•		•	•		13 Ethylbenzene 428.9 ppb 239.4
22	3 12						14 m&p-xylene 1.110 ppm 256.8
	•	•	•	•		•	15 O-xylene 1.062 ppm 303.2
1 1	١						
1 1/	13	•		•	•		1 21 244
25							60=1 ppb Binz pl 1
	<u>)</u> 1.4	•	٠	•		•	
	<i>r</i>						700 = 1 ppb To!
		•		•	•		50= IPPB Eth.
285	ä						
	•	•	•	•		•	70 =1 xy/2015
1		•		•	•		
31	1 15						Notes
		٠	•	•		•	soil bottle headspace vol.=145cc
							50g of soil temp 28 c
		•		•	•		soil sample spiked .5ml 1ppm of
342	2						benzene
1		•	•	•			ethlyb
							tol.
		٠		•	•	•	O-XX"
37:	1.						w-xx"
171		٠	•	•			p-xy.
		•		-		•	
400	0						
	·		•	•			

11111111							
19	1.	2		3	4	5	Time Printed: Aug 5,93 09:08
				, (x	100	mV)	Sample Time: Aug 5,93 08:59
							Method
282							Slope Up 1.000 mV/Sec
	•		•				Slope Down 3.000 mV/Sec
(S							Min Area 1.000 mVSec
		•		•	•		Min Height 0.000 mV
57-							Analysis Delay 50.0 sec
- James	₁	•	•	•		•	Window Percent 25.0 %
-							Det Flow 10 ml/min
				•	•		B/F Flow 10 ml/min
85				4			Aux Flow O ml/min
		•	•	• "1			Oven Temp 45 C
1 /5							Amb Temp 33 C
1 1	-	•		•	•		Max Gain 1000
سرار دا							Analysis Time 400.0 sec
1.14		<u>. </u>		•		•	Peak Report
				>			Pk Compound Name Area/Conc R.T.
11 -		-					1 Unknown 295.4 mVS 53.4
1,151	C)						2 Benzene 82.40 ppb 60.6
1421	ത്					•	
	Harmony	4.75					1
	ممتحممم	'nΩ					
1.74							6 Unknown 806.7 mVS 103.0
							7 Toluene 16.04 PPM1 118.2
1 *							8 Unknown 9.341 mVS 133.7
							9 Unknown 15.05 mVS 139.0
500	11						10 Unknown 1.469 VSec 150.0
							11 Unknown 275.0 mVS 191.2
							12 Ethylbenzene 4.440 ppm 223.8
							13 m&p-xylene 1.451 ppm 244.5
228)							14 Unknown 282.8 mVS 265.6
1.	2						15 O-xylene 1.835 ppm 304.5
K							16 Unknown 276.7 mVS 317.0
13							
25							
	•	*		-	·	-	
14							
		•			·		
285							
1	•	•	•	•		•	
		•		•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314	1.5						Notes
1 11	***	•	•	•		•	soil bottle headspace vol.=145cc
16							50g of soil temp 28 c
		•		•	•		sample # 4 to 6 ft SB 16
342							the control for second 1.1 1 and the 1.1 Are the 1.1 A
	•	•	•	•		•	
		•		•	•		
371							
13/17							
		•					
400	•						

0 2 4 6 8 10 Time Printed: Aug 5,93 (x 10 mV) Sample Time: Aug 5,93 Method	10:02 09:52
Andrew Community and the community of th	mV/Sec
Slope Down 3.000 r	mV/Sec
	mVSec
	mV
	sec
	"/ "h
The state of the s	~ ml∕min
	ml/min
	ml/min
	С
	С
Max Gain 1000	
	sec
Peak Report	
7 Pk Compound Name Area/Com	nc R.T.
	pb 59.9
3 Unknown 120.6 m	
10 . 4 Unknown 254.8 m	
	VS 94.1
11 6 Unknown 140.4 m	VS 102.8
	pm 117.7
	VS 132.4
	VS 138.9
	VS 149.6
11 Unknown 65.00 m	
	VS 210.8
	pb 223.2
	pb 243.7
15 Unknown 81.49 m	VS 264.2
16 0-xylene 1.528 p	pm 317.0
1 14	
256	
)1.5	
285	
314 Notes	
	. . =145cc
1/16 50g of soil temp 28 c	
342	
371	
400	

Anal	ysis	\$3	1.5	1.03	st UU	Func:	tion Analysis Report
9	4	•	8	12 .(x	16 10	20 mV)	Time Printed: Aug 5,93 10:24 Sample Time: Aug 5,93 10:14 Method
28 2)))						Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec
85	1	<u></u>	2	- .3			Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C
11	5	· 	<u>-</u> -	> 6			Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 446.5 ppb 53.5
141	> ₇						2 Unknown 300.4 mVS 67.4 3 Unknown 560.4 mVS 76.6 4 Unknown 75.18 mVS 94.4 5 Unknown 188.3 mVS 103.0 6 Toluene 5.153 ppm 118.2
200							7 Unknown 277.5 mVS 150.0 8 Unknown 54.58 mVS 188.8 9 Unknown 48.76 mVS 211.8 10 Ethylbenzene 422.3 ppb 223.6 11 m&p-xylene 453.5 ppb 241.6
228	10						12 Unknown 73.74 mVS 264.0 13 O-xylene 1.056 ppm 316.5
257							
285 314							Notes
1.3 342							soil bottle headspace vol.=145cc 43.3ml H2O temp 28 c sample sb 16 water sample
371			•				
400							

Firetrysis Wiz 103	or oc runci	tion mnaiysis Report
9 1 2 3 (x	4 5 100 mV)	Time Printed: Aug 5,93 10:45 Sample Time: Aug 5,93 10:36
	rod ma)	Method
282		Slope Up 1.000 mV/Sec
		Slope Down 3.000 mV/Sec
		Min Area 1.000 mVSec
· ·		Min Height 0.000 mV
157		Analysis Delay 50.0 sec
i i		Window Percent 25.0 %
	_	Det Flow 10 ml/min
	2	B/F Flow 10 ml/min
85		Aux Flow O ml/min
		Oven Temp 45 C
1		Amb Temp 34 C
1		Max Gain 1000
114-55		Analysis Time 400.0 sec
***	<u> </u>	Peak Report
		Fk Compound Name Area/Conc R.T.
	, co	1 Benzene 2.300 ppm 53.6
142		2 Unknown 2.076 VSec 68.0
· · · · ·		
11	•	
		5 Unknown 1.214 VSec 103.3
1177)		6 Toluene 25.92 FFM2 118.8
[\langle \alpha]		7 Unknown 1.613 VSec 150.4
1 1 1		8 Unknown 238.8 mVS 169.2
		9 Unknown 308.4 mVS 191.6
299 9		10 Unknown 157.0 mVS 212.8
1 H		11 Unknown 271.5 mVS 224.2
		12 Ethylbenzene 1.990 ppm 241.0
 		13 m&p-xylene 2.367 ppm 261.0
228		14 Unknown 171.8 mVS 282.6
111		15 O-xylene 1.873 ppm 302.1
1 1		16 Unknown 297.2 mVS 315.4
//2		
25 2		
1 1)	•	
1/13		
1 4	-	
285	_	
1.4		
K	_	
1115	•	PPM1 = Alarm 1 PPM2 = Alarm2
3:14		Notes
16		soil bottle headspace vol.=145cc
		temp 28 c
	•	50g soil
34k		sample # sb 16 12 to 14 ft 845
		mental apertures and the state of the State of the State of the State Charles
	•	
371		
 		
	•	
1400		
400		
		1

Analysis #19	105+ GC Func	tion Analysis Report
9 1 2	3 4 5 (x 10 mV)	Time Printed: Aug 5,93 11:07 Sample Time: Aug 5,93 10:58 Method
28		Slope Up 1.000 mV/Sec
		Slope Down 3.000 mV/Sec
		Min Area 1.000 mVSec
L= -7 C		Min Height 0.000 mV
57		Analysis Delay 50.0 sec
1		Window Percent 25.0 %
		Det Flow 10 ml/min
85		B/F Flow 10 ml/min
0.1		Aux Flow O ml/min
		Oven Temp 45 C Amb Temp 34 C
1 1		Amb Temp 34 C Max Gain 1000
112 6		
3. 1. 4	• • • •	Analysis Time 400.0 sec Peak Report
	, 77	Pk Compound Name Area/Conc R.T.
		1 Unknown 37.36 mVS 53.6
142		2 Benzene 12.37 ppb 59.8
I'K · · ·		3 Unknown 68.59 mVS 67.7
		4 Unknown 157.9 mVS 76.8
		5 Unknown 11.88 mVS 94.5
1171		6 Unknown 41.84 mVS 103.2
		7 Toluene 1.269 ppm 118.5
		8 Unknown 66.27 mVS 150.0
		9 Unknown 11.69 mVS 191.6
200 9		10 Unknown 14.41 mVS 211.8
		11 Ethylbenzene 91.70 ppb 224.0
1 1		12 m&p-xylene 101.2 ppb 242.1
	•	13 Unknown 20.45 mVS 264.5
228		14 O-xylene 310.4 ppb 316.0
		1 O XYIMIE SIVIN DED SIGNO
) K		
1 1/12		
297		·
	• • •	
1 123		
285		
100 30 30		
	•	
3:14		Notes
1.4		soil bottle headspace vol.=145cc
		temp 28 c
		50g soil
342		sample #16 18 to 20 ft 902
free		
•		
371		
Sec. 7 46		
400		

Analysis	#21	108+	GC	Funct	ion Analysis Report
0 2	4	6	8	10	Time Printed: Aug 5,93 11:27
1 1	·· T	.(x		mV)	Sample Time: Aug 5,93 11:18
	•	. (^	41. 75	v /	Method
28 2					Slope Up 1.000 mV/Sec
	•		•		Slope Down 3.000 mV/Sec
					Min Area 1.000 mVSec
حسر ا	•	•	٠		Min Height 0.000 mV
57					Analysis Delay 50.0 sec
وحسرات	•				Window Percent 25.0 %
\					Det Flow 10 ml/min
		<u></u>	•		B/F Flow 10 ml/min
0.6		ユ━ ಼。^:.			Aux Flow O ml/min
85		. S			
h		a			
		'			1
114 5	<u> </u>				Analysis Time 400.0 sec
			> /		Peak Report Pk Compound Name Area/Conc R.T.
1			Ģ		· ·
142 7					
K ⁸					
1 1/7	•	•		į	
1,					
174					6 Toluene 3.538 ppm 118.9 7 Unknown 0.055 mVS 133.6
h.o					
1 1					8 Unknown 60.44 mVS 140.2
					9 Unknown 103.6 mVS 149.8
200 11					10 Unknown 1.735 mVS 170.4
N					11 Unknown 9.346 mVS 191.8
1 1)					12 Ethylbenzene 196.5 ppb 210.8
42					13 m&p-xylene 18.31 ppb 243.7
223					14 Unknown 7.311 mVS 267.7
					15 O-xylene 10.76 ppb 284.5
		•			
13					
257					
14					
285					
15					
314					Notes
					soil bottle headspace vol.=145cc
					temp 28 c
					50g soil
342					sample # 20 2 to 4 ft
	*	-			
371					
	•	•	•	-	
			•		
400					
	•	•		•	

Fireta y 5 1. 5 772. C)	TAD. OC LUIC	tion Analysis Report
9 1 2	3 4 5 (x 100 mV)	Time Printed: Aug 5,93 11:48 Sample Time: Aug 5,93 11:39
28		Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
57		Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec
1		Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min
85	.4	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C
1:14 6		Max Gain 1000 Analysis Time 400.0 sec Feak Report
142		Fk Compound NameArea/ConcR.T.1 Benzene964.8 ppb53.62 Unknown45.98 mVS62.2
174 10		3 Unknown 1.028 VSec 68.0 4 Unknown 1.644 VSec 76.8 5 Unknown 1.294 VSec 94.9
171 10	· · · · ·	6 Unknown 985.9 mVS 103.6 7 Toluene 13.50 PPM1 119.0 8 Unknown 1.207 VSec 140.5 9 Unknown 1.061 VSec 150.4
200 12		9 Unknown 1.061 VSec 150.4 10 Unknown 29.80 mVS 159.8 11 Unknown 330.0 mVS 170.0 12 Unknown 188.3 mVS 193.4
228 1.4		13 Unknown 963.1 mVS 212.0 14 Ethylbenzene 5.502 ppm 224.4 15 m&p-xylene 2.919 ppm 245.6
25 15	· · · · ·	16 Unknown 657.5 mVS 267.7 17 O-xylene 3.388 ppm 296.8 18 Unknown 223.6 mVS 322.4
284		
17		PPM1 = Alarm 1 PPM2 = Alarm2
31 4 		Notes soil bottle headspace vol.=145cc temp 28 c
342		50g soil sample # 20 4 to 6 ft
331		
400		

0	4		8	12 .(×	16	20 (mV)	Time Printed: Aug 5,93 13:11 Sample Time: Aug 5,93 13:02
28	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
							Min Area 1.000 mVSec
1 }							Min Height 0.000 mV
57							Analysis Delay 50.0 sec
	1						Window Percent 25.0 %
12	2						Det Flow 10 ml/min
85	<u></u>						B/F Flow 10 ml/min
100		•		•			Aux Flow O ml/min
la la							Oven Temp 45 C Amb Temp 34 C
		•		•		•	Amb Temp 34 C Max Gain 1000
114	5						Analysis Time 400.0 sec
	•		•	•	•	•	Peak Report
				_			Pk Compound Name Area/Conc R.T.
IN		•		•		•	1 Benzene 30.17 ppb 57.4
142	6	_	_	_		_	2 Unknown 34.17 mVS 67.7
1 1	•	•	•	•	•		3 Unknown 2.304 mVS 85.2
							4 Unknown 12.47 mVS 93.6
							5 Toluene 270.4 ppb 109.2
171							6 Unknown 92.32 mVS 132.8
							7 Unknown 19.68 mVS 179.8
7							8 Unknown 25.73 mVS 201.0
							9 Unknown 27.13 mVS 214.2
200							10 Ethylbenzene 126.4 ppb 228.4
l le							11 m&p-xylene 176.0 ppb 258.1
		•					12 O-xylene 480.7 ppb 306.4
							13 Unknown 4.269 mVS 361.6
228							
1.0	,						
		•		•		•	
257							
}		•	•		•		
1	••						
		٠		•		•	
285							
	•	•	٠	•	•		
		٠		٠		•	
314	12						Notes
	•	٠	•	•	•	•	soil bottle headspace vol.=145cc
							temp 28 c
				*		-	50g soil
342							sample # 20 10 to 12 ft
	-		-	,	•	•	
371	13						
1000							
440			•	•	•		
							1

enter r	ysis	#29	3.0	St UU	F un ci	tion Analysis Report
9	4	8	12 .(x	16 10	20 mV)	Time Printed: Aug 5,93 13:33 Sample Time: Aug 5,93 13:24 Method
28 }						Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
~	-					Min Area 1.000 mVSec
مسمر ا		•	•	•		Min Height 0.000 mV
15%-						Analysis Delay 50.0 sec
		Ĺ	•		•	Window Percent 25.0 %
		_				Det Flow 10 ml/min
Kg		•	•	•		B/F Flow 10 ml/min
85				3		Aux Flow O ml/min
	*			····	•	Oven Temp 45 C
1						Amb Temp 34 C
1		•	•	•		Max Gain 1000
1 1	ES,					Analysis Time 400.0 sec
1			•			
			<u>.</u>			Peak Report Pk Compound Name Area/Conc R.T.
1			6.			
						1 Benzene 560.9 ppb 53.4
142						2 Unknown 30.66 mVS 67.4
K						3 Unknown 620.6 mVS 76.5
B		•				4 Unknown 16.69 mVS 94.1
						5 Unknown 106.6 mVS 102.5
171						6 Toluene 5.096 ppm 117.7
9						7 Unknown 5.004 mVS 138.9
						8 Unknown 62.49 mVS 149.4
1 1						9 Unknown 0.926 mVS 168.2
2 0 0	10					10 Unknown 10.46 mVS 190.8
						11 Unknown 9.660 mVS 211.2
		_				12 Ethylbenzene 937.7 ppb 223.4
H ₁ :	1.					13 m&p-xylene 415.1 ppb 243.4
228)	12					14 Unknown 132.2 mVS 264.2
	•		•		•	15 O-xylene 522.1 ppb 295.2
\						16 Unknown 47.43 mVS 319.2
11.3		•	•	•		
23/2						
	•		•			
1)1.	4					
1 1/		•	•	•		
285						
	•		•		•	
1 115		•	•	•		
3:14						Notes
3.4		•	•		•	soil bottle headspace vol.=145cc
1 /						•
116		•	•	-		temp 28 c
						50g soil
342	•					sample # 20 16 to 18 ft
371						
		-				
, , ,						
440						
L						

		#31					T	on Analysis Repo			
9	2	4	6		8	10	ĺ	Time Frinted:			: 54
	_		.(x		10	mV)		•	Aug 5,93 thod	13:	: 45
28 _								Slope Up	1.000	mVZS	
			•	•	•	·		Slope Down	3,000	mVZ9	
-	<u></u> _							Min Area	1.000	mVSe	9 C
ſ								Min Height	0.000	mV	
57		-						Analysis Delay		sec %	
1		1.						Window Percent Det Flow	25.0 10	m1/a	nim
· (2		•	•					B/F Flow	10	ml/a	
85				_=	-		1	Aux Flow	0	m1/a	
3.1	•				Ş	•		Oven Temp	45	C	11 44 4 1
24							-	Amb Temp	34	Č	
		•	•		•		1	Max Gain	1000		
1 1	5						1	Analysis Time	400.0	sec	
		·	> .	•	•	•	F		Report		
سر [- 6				F	k Compound Name	Area/C		R.T.
10			-		-		1		453.9		53.7
14							12	2 Uniknown		mVS	67.3
N							3			mVS	76.5
S							4			mVS	94.1
							5			mVS	102.5 117.3
171			•	•		•	6			mqq 2Vm	138.9
7							8			mVS	149.4
ì		• .	٠		•		9			mVS	168.6
2db	10							LO Unknown		mVS	190.4
-71	0		•	•	•	•	- 1	L1 Unknown		mVS	211.6
1								12 Ethylbenzene		dqq	222.6
H11		•	•		•		1	l3 m&p-xylene	219.0	dqq	243.7
248)	12							l4 Unknown		mVS	264.5
								l5 O-xylene		qqq	294.4
1							1	l6 Unknown	27.73	mVS	316.5
1.3											
534			•								
1	,										
1/1"	ŧ	•	•		•						
28/5											
	•		•	•	•	•	-				
1.5											
		•	•		•						
314									otes		
116	-	•	•	-	•	•		soil bottle hea	dspace vo	1.=1	45cc
11								temp 28 c			
¥								43.1 ml			
342								sample # 20 wat	er sample	!	
			•								
- 1		•									
371											
71.				٠		•					
1											
1											
		•	•		•		1				

THE COLOR OF THE C	
9 4 8 12 16 20	Time Printed: Aug 5,93 14:15
(x 10 mV)	Sample Time: Aug 5,93 14:06
	Method
28 🗲	
	Slope Down 3.000 mV/Sec
	Min Area 1.000 mVSec
	Min Height 0.000 mV
57	Analysis Delay 50.0 sec
1	Window Percent 25.0 %
1	
. 2	
	B/F Flow 10 ml/min
185	Aux Flow O ml/min
	Oven Temp 45 C
5	Amb Temp 35 C
	Max Gain 1000
111/1	Analysis Time 400.0 sec
114 6	
	Feak Report
1	Pk Compound Name Area/Conc R.T.
	1 Unknown 163.7 mVS 53.5
142	2 Benzene 69.14 ppb 61.8
a · · · · ·	3 Unknown 551.0 mVS 67.7
, , , , , , , , , , , , , , , , , , ,	4 Unknown 1.035 VSec 76.5
1	
1711	6 Unknown 769.6 mVS 103.3
10	7 Toluene 9.299 ppm 118.4
	8 Unknown 872.1 mVS 140.0
	9 Unknown 883.2 mVS 150.4
200	10 Unknown 238.4 mVS 169.4
1	11 Unknown 1.276 VSec 213.0
	13 m&p-xylene 3.818 ppm 244.5
22/8	14 Unknown 1.138 VSec 266.9
12	15 O-xylene 4.824 ppm 295.4
	16 Unknown 347.8 mVS 320.2
1 1 313	
i i	
257	
1.1)	
1.4	
285	
(· · · · · · · · · · · · · · · · · · ·	
1.5	
314	Notes
	soil bottle headspace vol.=145cc
1)16	temp 28 c
1 1/2	soil sample 50 g
la contraction of the contractio	
347	sample # 20 6 to 8 ft
371	
4010	
	·

Analysis #36 1	105* GU	tunct	ion Analysis Report
9 2 4 6		10 mV)	Time Printed: Aug 5,93 14:52 Sample Time: Aug 5,93 14:43
	/ w	/	Method
28			Slope Up 1.000 mV/Sec
	• •		Slope Down 3.000 mV/Sec
1			Min Area 1.000 mVSec
			Min Height 0.000 mV
57			Analysis Delay 50.0 sec
1	•		Window Percent 25.0 %
22			Det Flow 10 ml/min
	<u>_</u>	_	B/F Flow 10 ml/min
85		4.	Aux Flow O ml/min
1		1	Oven Temp 45 C
1		1	Amb Temp 35 C
			Max Gain 1000 Analysis Time 400.0 sec
114 - 6	<u> </u>		
		., .	Peak Report Pk Compound Name Area/Conc R.T.
	•		Pk Compound Name Area/Conc R.T. 1 Unknown 94.06 mVS 53.4
142			2 Benzene 33.35 ppb 61.1
1 1 8 · · · ·			3 Unknown 324.6 mVS 67.4
1 > =			4 Unknown 470.0 mVS 76.4
	•		5 Unknown 102.5 mVS 94.2
174			6 Unknown 172.8 mVS 102.8
	• •		7 Toluene 3.667 ppm 118.1
			8 Unknown 114.4 mVS 139.0
1 1	•		9 Unknown 158.0 mVS 149.6
2d\$ 11			10 Unknown 2.211 mVS 168.8
	• •	.	11 Unknown 21.72 mVS 191.0
11)		1	12 Unknown 78.42 mVS 211.2
1 1/12			13 Unknown 94.36 mVS 223.2
228) 13		.	14 Ethylbenzene 194.4 ppb 244.0
			15 m&p-xylene 532.2 ppb 265.3
1 1	•		16 O-xylene 384.9 ppb 295.7
1.114			17 Unknown 31.75 mVS 320.8
25			
1 131.5			
1 1/10	•	1	
285			
11.6	•		
314			Notes
			soil bottle headspace vol.=145cc
1 11.7			temp 28 c
			soil sample 50 g
342			sample # 21 2 to 4 ft
371			
	•		
1440			
4do			

Analy	\$ 1.55	## D C3	LOS	* UU	runci	tion Analysis Report
9	1	2	3 .(x	4 100	5 mV)	Time Printed: Aug 5,93 15:13 Sample Time: Aug 5,93 15:04
28}	>>					Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57		- -				Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85	===		<u> </u>		4 .	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114	<u> </u>	<u>. </u>	·			Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec Peak Report
147	8		ر حــــــــــــــــــــــــــــــــــــ			Pk Compound Name Area/Conc R.T. 1 Unknown 731.7 mVS 53.5 2 Benzene 126.0 ppb 61.6 3 Unknown 1.076 VSec 67.6 4 Unknown 2.488 VSec 76.9
171	•					5 Unknown 46.01 mVS 94.8 6 Unknown 782.1 mVS 103.0 7 Toluene 14.03 PPM1 118.2 8 Unknown 639.8 mVS 149.8
200	9					9 Unknown 74.13 mVS 191.0 10 Unknown 150.7 mVS 222.8 11 Ethylbenzene 137.7 ppb 243.4 12 m&p-xylene 317.2 ppb 265.6 13 0-xylene 460.6 ppb 298.1
228	10		•		٠	
257	•					
285						
13 314			•			PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c
342						soil sample 50 g sample # 21 4 to 6 ft
371						
400						

en au	<u>ysis</u>	33 64 C)	LOST	C)C,	r carc.	tion Analysis Report
9	:1.	2	3 .(×	4 10	5 mV)	Time Printed: Aug 5,93 15:35 Sample Time: Aug 5,93 15:25
		·				Method
28			<u> </u>			Slope Up 1.000 mV/Sec
	التستمح			·		Slope Down 3.000 mV/Sec
. •		_				Min Area 1.000 mVSec
1.1						Min Height 0.000 mV
57						Analysis Delay 50.0 sec
	5	1				Window Percent 25.0 %
	Á					Det Flow 10 ml/min
			3			B/F Flow 10 ml/min
85					. 4	Aux Flow O ml/min
						Oven Temp 45 C
K	1 	•	•	•		Amb Temp 35 C
مارار وا	_>,					Max Gain 1000 Analysis Time 400.0 sec
114	6				•	Analysis Time 400.0 sec Peak Report
						Pk Compound Name Area/Conc R.T.
1 1/	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	. /	٠		1 Unknown 68.73 mVS 53.4
143						2 Benzene 64.26 ppb 59.9
1 1	- •	•		•	•	3 Unknown 86.80 mVS 67.4
	>8					4 Unknown 219.5 mVS 76.6
11/		•	•	-		5 Unknown 5.234 mVS 94.2
17/1						6 Unknown 47.42 mVS 103.0
	•			•	•	7 Toluene 1.285 ppm 118.2
						8 Unknown 63.82 mVS 150.6
1		•	•	•		9 Unknown 9.210 mVS 192.4
2db	9					10 Unknown 30.33 mVS 211.8
1 1/	•	•	• •	•	. •	11 Unknown 35.11 mVS 224.8
$\perp \Lambda$						12 Ethylbenzene 70.96 ppb 244.8
1	.0					13 m&p-xylene 217.1 ppb 266.4
228						14 O-xylene 150.6 ppb 298.6
1/1	. 1.					15 Unknown 12.68 mVS 319.7
1 11						
11.2						
257	٠					
	•••					
1 111	.3	•	•			
285	•					
	1	•	•	•		
3:14	Ŧ					Notes
	•	•		•	•	soil bottle headspace vol.=145cc
l la s	i.					temp 28 c
	••	•	•	•		soil sample 50 g
342						sample #21 10 to 12 ft
	•	•		•	•	
		•	•	•		
371						
	•			•	•	
		•	•	•		
400	_				_	
	•	•	• •	•	•	

2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 200 10 10 Unknown 28.41 mVS 191.2 11 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 228 12 14 m&p-xylene 1.475 ppm 259.2	rnieca				3. 1/4			LIGH MIRLYSIS REPORT
Slope Up	9	2	6	4				
Slope Up					.(x	1. Q	mV)	
Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Height 0.000 mV 0.0		->						1
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec Window Fercent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report 40.0 Amb Temp 40.0 Sec Feak Report 142 28 Enzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 53.5 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 Unknown 38.23 mVS 74.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 9 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.0 9 Unknown 28.41 mVS 176.0 12 Unknown 28.41 mVS 176.0	28 -		-				·	f '
Min Height 0.000 mV Analysis Delay 50.0 sec Window Fercent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 2.464 mVS 53.5 2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 188.9 9 B Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 150.0 9 Unknown 28.41 mVS 150.0 10 Unknown 28.41 mVS 210.0 11 Unknown 28.41 mVS 210.0 12 Unknown 28.41 mVS 250.0 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3	سر ا							
Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Flow 2.464 mVS 53.5 Early 2.8 Early 3.6.1 Early 3.8 Unknown 2.464 mVS 53.5 Early 4.1 Unknown 13.27 mVS 76.5 Early 5.2 Unknown 13.27 mVS 76.5 Early 6.3 Unknown 10.74 mVS 103.3 Early 7.7 Toluene 840.1 pph 118.9 Early 10 Unknown 13.02 mVS 176.8 Early 11 Unknown 12.41 mVS 191.2 Early 12 Unknown 12.58 mVS 223.4 Early 13 Ethylbenzene 120.3 ppb 241.0 Early 14 m&p-xylene 1.475 ppm 259.2 Early 14 m&p-xylene 1.475 ppm 259.3 Early 14 tol. 336ppb = 1ug/1 Early 10 Earl	1.							
Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Unknown 4 moven 13.27 mVS 76.5 5 moven 13.27 mVS 13.3 7 moven 13.27 mVS 13.3								"
Det Flow	57							·
B/F Flow								
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Peak Report 7 Peak Report 7 Peak Report 8 Unknown 2.464 mVS 53.5 2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 150.0 9 Unknown 119.4 mVS 150.0 9 Unknown 119.4 mVS 150.0 9 Unknown 28.41 mVS 176.8 10 Unknown 28.41 mVS 176.8 11 Unknown 28.41 mVS 176.8 11 Unknown 28.41 mVS 176.8 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 12 Unknown 21.58 mVS 225.4 13 Ethylbenzene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3	1 5	2						
Oven Temp	Ş							B/F Flow 10 ml/min
Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Peak Report	85	4						
Max Gain								
Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. Unknown 2.464 mVS 53.5 2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 4 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2 11 Unknown 28.41 mVS 191.2 11 Unknown 28.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3 13 257 14 265 371 4 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	. 5							Amb Temp 34 C
Peak Report						·		Max Gain 1000
Peak Report	1:14	6						Analysis Time 400.0 sec
1 Unknown 2.464 mVS 53.5 2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2 11 Unknown 38.01 mVS 210.0 12 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3 13 257 14 285 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	1	manage .	•	•	•		•	
1 Unknown 2.464 mVS 53.5 2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2 11 Unknown 38.01 mVS 210.0 12 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3 13 257 14 285 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	سر 📗	المست						
2 Benzene 75.69 ppb 60.1 3 Unknown 7.614 mVS 67.4 4 Unknown 13.27 mVS 76.5 5 Unknown 3.823 mVS 94.1 6 Unknown 10.74 mVS 103.3 7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 13.02 mVS 176.8 10 Unknown 13.02 mVS 176.8 11 Unknown 28.41 mVS 191.2 11 Unknown 28.41 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 O-xylene 509.3 ppb 305.3 13 257 14 285 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l			•		•	•		•
3 Unknown	142							2 Benzene 75.69 ppb 60.1
171	1		•	•	•		•	1
10	سر ا	> 8				_		4 Unknown 13.27 mVS 76.5
7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 28.41 mVS 171.2 11 Unknown 28.41 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 O-xylene 509.3 ppb 305.3 237 14 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l								5 Unknown 3.823 mVS 94.1
7 Toluene 840.1 ppb 118.9 8 Unknown 119.4 mVS 150.0 9 Unknown 28.41 mVS 176.8 10 Unknown 28.41 mVS 210.0 11 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 O-xylene 509.3 ppb 305.3 237 14 225 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	171							6 Unknown 10.74 mVS 103.3
9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2 11 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3 13 237		•	•	•	•		•	
9 Unknown 13.02 mVS 176.8 10 Unknown 28.41 mVS 191.2 11 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 0-xylene 509.3 ppb 305.3 13 257 14 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	9							1
200 10	1		-		•	•		
11 Unknown 38.01 mVS 210.0 12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 O-xylene 509.3 ppb 305.3 257 14 265 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	200	10						
12 Unknown 21.58 mVS 223.4 13 Ethylbenzene 120.3 ppb 241.0 14 m&p-xylene 1.475 ppm 259.2 15 O-xylene 509.3 ppb 305.3 257 14 265 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	l K	•	•	•	•		•	
11								
228 12	1 1/1 1				•	•		
15 O-xylene 509.3 ppb 305.3 257 14 265 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l) 4	12						
2857 287 287 287 287 287 288 289 301 301 301 301 301 301 301 301 301 301		•	•	•	•		•	
255 314 15 Notes soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	N.							
Notes	11.3		•		•	•		
Notes	257							
Notes	14	•	•	•	•		•	
Notes								
Notes			•		•	•		
Notes	285							
soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = iug/l tol. 336ppb = iug/l etb 48ppb = iug/l m-x 260 p-x 260ppb = iug/l			•	•	•		•	
soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = iug/l tol. 336ppb = iug/l etb 48ppb = iug/l m-x 260 p-x 260ppb = iug/l								
soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = iug/l tol. 336ppb = iug/l etb 48ppb = iug/l m-x 260 p-x 260ppb = iug/l			•		•	•		
soil bottle headspace vol.=145cc temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = iug/l tol. 336ppb = iug/l etb 48ppb = iug/l m-x 260 p-x 260ppb = iug/l	314	15						Notes
temp 28 c soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l			•	•	•		•	
soil sample 50 g calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l								1
342 calibration .0025 ug/ml of each liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l			•		•	•		
liquid sample ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	342							
ben. 30ppb = 1ug/l tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l		•	•	•	•		•	The state of the s
371 tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l								
371 tol. 336ppb = 1ug/l etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l			•		•			ben. 30oob = 1ua/1
etb 48ppb = 1ug/l m-x 260 p-x 260ppb = 1ug/l	371							, ,
m-x 260 p-x 260ppb = lug/l	171"	•	•	•	•		•	, ,
p-x 260ppb = lug/l) · · · · · · · · · · · · · · · · · · ·
					•	•		
1 144 M V WOLV	lado							
	1240	•	•	•	•		•	W 7 & WV

9	4	. 8	12 .(x	16 10	20 mV)	Time Printed: Aug 6,93 07:56 Sample Time: Aug 6,93 07:47
28	>				•	Method Slope Up 1.000 mV/Sec
						Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
1		٠	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
-	·					Window Percent 25.0 %
			- :L			Det Flow 10 ml/min
						B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
İ			•	•	•	Amb Temp 31 C
4 4 0						Max Gain 1000
114						Analysis Time 400.0 sec
	\Rightarrow_z	ı				Peak Report Pk Compound Name Area/Conc R.T.
	A.	•	•	•		1 Benzene 1.000 ppm 60.0
142					•	2 Toluene 1.000 ppm 118.5
	•	-	• •		•	3 m&p-xylene 18.30 ppb 199.6
						4 Ethylbenzene 999.9 ppb 239.0
		•	•	•		5 0-xylene 1.000 ppm 302.4
171	•					
		•				
200						
200 3	•	•			•	
3						
		•	*	•		
228						
	•	•			•	
	4					
257						
		•				
285						
		•			•	
X						
1)		•	•	•		
3:14	5					Notes
	•	•			•	soil bottle headspace vol.=145cc
			•			temp 28 c
						soil sample 50 g
342					•	calibration
		•	•	•		
3/1						
	•	•			•	
		•	•	•		
400						

Anal;	ysis	#TO	1.0	57 U	r.uic.	tion Analysis Keport
9	4	8	12 .(×	16 1000	20 (uV)	Time Printed: Aug 6,93 09:48 Sample Time: Aug 6,93 09:39
<u> </u>						Method
28 <						Slope Up 1.000 mV/Sec
خر						Slope Down 3.000 mV/Sec
. حج						Min Area 1.000 mVSec
مم						Min Height 0.000 mV
57]						Analysis Delay 50.0 sec
-	<u> </u>		•	•		Window Percent 25.0 %
سنم		1				Det Flow 10 ml/min
1			•		•	B/F Flow 10 ml/min
85						Aux Flow O ml/min
0.5			•	•		Oven Temp 45 C
						Amb Temp 35 C
1		•	•		•	
114						
						Peak Report
.			•			Pk Compound Name Area/Conc R.T.
1						1 Benzene 59.97 ppb 60.3
142						2 Unknown 0.921 mVS 94.2
	•	•	•	•		
1		•	•		•	
171						
1	•		•	•		
		•				
		•	•		•	
200						
1200	•		•	•		
					•	
228			•			
		•				
257						
		-	-			
-		•	•			
285						
	•		•	•		
1 1		•	•		•	
314						Notes
3.TA4				•		soil bottle headspace vol.=145cc
					•	temp 28 c
						soil sample 50 g
342						calibration
						zero check
		•	-			
371						
	•	•	•	•		
		•	٠		•	
400						

	\prescription	11.00	1004	1.21.2	1 5.617 5	cron engrypra reporc
9	2	ą	6	8	10	Time Printed: Aug 6,93 08:52
		•	.(x	TÁ	mV)	Sample Time: Aug 6,93 08:37 Method
28	2					Slope Up 1.000 mV/Sec
	هم			•	•	Slope Down 3.000 mV/Sec
\						Min Area 1.000 mVSec
17		•	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
1 2						Window Percent 25.0 %
-	<i></i>	*				
	<i>i</i>	•				Det Flow 10 ml/min
13						B/F Flow 10 ml/min
85	4					Aux Flow O ml/min
						Oven Temp 45 C
25						Amb Temp 34 C
						Max Gain 1000
1116	6					Analysis Time 400.0 sec
		<u> </u>		•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
1 /		•	• •	•		1 Unknown 7.116 mVS 53.4
142						2 Benzene 96.18 ppb 60.2
1					•	1
		~> a				i i
						5 Unknown 10.06 mVS 94.2
174						6 Unknown 29.83 mVS 103.2
1 /\						7 Toluene 2.567 ppm 119.2
P						8 Unknown 322.6 mVS 150.0
				-		9 Unknown 30.64 mVS 176.4
200	10					10 Unknown 55.65 mVS 191.2
H	•				•	11 Unknown 43.78 mVS 209.8
						12 Unknown 34.01 mVS 223.8
		•	•	•		13 Ethylbenzene 123.8 ppb 243.4
246						, , ,
14					•	1 ' '
I William						15 0-xylene
1 11						
1 123						
25/7						
1 14						
			-	•		
285						
	•	•		•	•	
1 1		•	•			
	4 60					h.l.m., h
314	1.5				•	Notes
1 11						soil bottle headspace vol.=145cc
		-				temp 28 c
						soil sample 50 g
342						calibration
		•	•	•	-	●Q1 ug of each on 50 g clean
						soil KOPO2 ug/g
		•	•	•		ben. 500ppb = lug/kg
371						tol. 120QOppb = lug/kg
				•	•	etb 625ppb = 1ug/kg
lada						p-x 3000ppb = lug/kg
490	•				•	o-x 3000

	7 35 31, 25			J. 373		., , .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0	1.		2	3	4	5	Time Printed: Aug 6,93 09:59
11				_(x	10	Q mV)	Sample Time: Aug 6,93 09:49
		•		• •		•	Method
28	>						Slope Up 1.000 mV/Sec
	•	•	•	•	•		Slope Down 3.000 mV/Sec
2	_						Min Area 1.000 mVSec
1	•	•		•		•	Min Height 0.000 mV
15%-		_					Analysis Delay 50.0 sec
سر اس	سمسند	>	•	•	•		Window Percent 25.0 %
		.1.					Det Flow 10 ml/min
1 1	_	٠		•		•	B/F Flow 10 ml/min
0.5						45	Aux Flow O ml/min
85			•		٠	, him .	Oven Temp 45 C
1 1/							Amb Temp 35 C
		•		•		•	Max Gain 1000
	3						
1:164_	_			٠		• • • •	Analysis Time 400.0 sec
			\rightarrow	/1			Pk Compound Name Area/Conc R.T.
1		•		™ .		•	1 Benzene 2.036 ppm 54.0
1							
142							
1	e:						
	Ü					•	
171							
6							8 Unknown 18.12 mVS 210.0
							9 Ethylbenzene 13.51 ppb 244.5
200	7						10 m&p-xylene 101.8 ppb 264.5
							11 O-xylene 155.5 ppb 303.7
8							
228							
19							
257							
10							
285							
314	11						Notes
							soil bottle headspace vol.=145cc
							temp 28 c 43,/mL
							sert sempre ov 9
342							antibus tion
	,		-	-		-	sample # sb 21 water
371							
	•	•	•	•	•	•	
		•		-			
400		_					
	•		•				

9		4	٠	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 6,93 10:21 Sample Time: Aug 6,93 10:12 Method
28	· · · · · · · · · · · · · · · · · · ·		سمسند					Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57	B	·						Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 %
85		: > 4					•	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
1.1	5 4	6						Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec
		> ₇	· ' .	•			•	Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 3.207 mVS 54.0
1.4	2						٠	2 Benzene 6.826 ppb 60.6 3 Unknown 1.316 mVS 67.8 4 Unknown 16.67 mVS 77.0
17	:L	•			-			5 Unknown 0.462 mVS 95.0 6 Unknown 2.342 mVS 103.3 7 Toluene 162.1 ppb 118.2 8 Unknown 13.44 mVS 150.2
20	b	9						8
22	LO B						•	12 m&p-xylene 142.3 ppb 264.5 13 O-xylene 42.35 ppb 310.4
25	11.1							
	12	•		٠			•	
28	5			٠				
31	4 13	٠		٠	•	•		Notes soil bottle headspace vol.=145cc temp 28 c
34	2							soil sample 50 g sample # 15 4 to 6 ft
37	1.1							
							-	
40	io.			٠	•	•		

en et i.	ysis	22 1. 4.1	1.03	or uc	r curc.	tion Analysis Report
9	4	. 8	12 .(x	16 1000	20 uV)	Time Printed: Aug 6,93 10:41 Sample Time: Aug 6,93 10:33
						Method
28						Slope Up 1.000 mV/Sec
	,	. فين	•		•	Slope Down 3.000 mV/Sec
	parama					Min Area 1.000 mVSec
1 1	,	•	•	•		Min Height 0.000 mV
1 5						Analysis Delay 50.0 sec
57					•	, , ,
PL						
1 2			•	•		Det Flow 10 ml/min
1 3						B/F Flow 10 ml/min
85	4					Aux Flow O ml/min
	5					Oven Temp 45 C
6						Amb Temp 35 C
7						Max Gain 1000
114	8					Analysis Time 400.0 sec
1			•		•	Peak Report
1	9					Pk Compound Name Area/Conc R.T.
1		•	•	•		1 Unknown 0.506 mVS 53.6
142 -						2 Unknown 0.705 mVS 54.4
1	•		•		•	3 Benzene 7.022 ppb 60.2
1	^					4 Unknown 1.078 mVS 68.0
1	~	•	•			5 Unknown 10.49 mVS 76.6
1, -1,						
171						
						8 Unknown 5.169 mVS 103.8
						9 Toluene 133.6 ppb 118.8
200						10 Unknown 15.76 mVS 151.2
111						11 Unknown 6.153 mVS 195.4
1 1		_				12 Unknown 16.29 mVS 211.0
12						13 Ethylbenzene 14.72 ppb 249.6
228						14 m&p-xylene 196.2 ppb 263.4
	•		•		•	15 O-xylene 43.63 ppb 307.2
		•	•	•		
257	13					
171			•		•	
14						
1 1.4		•	•			
200						
285			•		•	
314	1.5		•			Notes
						soil bottle headspace vol.=145cc
						temp 28 c
						soil sample 50 g
342						
	•		•		•	sample # 15 O to 2 ft
		•	•	•		
371						
	٠		•	•		
		•	•		•	
400						
1440	•		•	•		
•						

		·							vacon interay sans iverpor c
	9	1.		2.	∵(>	(4 10	5 mV)	Time Printed: Aug 6,93 11:02 Sample Time: Aug 6,93 10:53
	<u>_</u>			-					Method
2	8	مسكند	<u> </u>						Slope Up 1.000 mV/Sec
	2								Slope Down 3.000 mV/Sec
ĺ	\cdot	>							Min Area 1.000 mVSec
5	-,[Min Height 0.000 mV
120									Analysis Delay 50.0 sec
	Po	.l.							Window Percent 25.0 %
	2-		•		•		•		Det Flow 10 ml/min
8	= =				· //				B/F Flow 10 ml/min
	1	•	٠	•	··· <u>·</u>	٠	•		Aux Flow O ml/min
	5								Oven Temp 45 C Amb Temp 35 C
	1		•		٠		٠		Max Gain 1000
11:	14	6							Analysis Time 400.0 sec
	-	<u>-:</u>	<u> </u>	•	•	٠	•	•	Peak Report
	_			ر حر					Pk Compound Name Area/Conc R.T.
	1		•	-	•		•		1 Unknown 18.56 mVS 54.4
1.	#e								2 Benzene 9.942 ppb 60.2
	1	•	•	•	•	•	•	•	3 Unknown 5.037 mVS 67.6
	1)8								4 Unknown 114.7 mVS 77.2
	Y								5 Unknown 0.198 mVS 95.0
17	11								6 Unknown 3.689 mVS 103.3
								•	7 Toluene 773.0 ppb 118.9
	Į								8 Unknown 24.23 mVS 150.6
	A								9 Unknown 5.945 mVS 193.0
20	ib –	9							10 Unknown 16.02 mVS 211.8
	ħ								11 Ethylbenzene 15.79 ppb 244.5
	ii.								12 m&p-xylene 294.3 ppb 268.8
100	1.0								13 Unknown 0.754 mVS 308.8
22	3								14 Unknown 7.743 mVS 318.9
ļ	ì								
	11.1		•		•		•		
25									
	1	•	•	•	•	٠	•		
	12		•		•		•		
28	15								
		•	•	•	•	•	•	•	
					•		•		
31	lti	1.3							Notes
	0			-	-	-	•	•	soil bottle headspace vol.=145cc
	14								temp 28 c
	1								soil sample 50 g
34	2								
									sample # 15 12 to 14 ft
	1								
37	J.L.								
1 .	ł								
100									
40	Y.	•		•					

Inti t et d.	/	11 38 7	410 36 30		1 441140	TION PRICES SEE NEEDS C
9	2	4	6	8	10	Time Printed: Aug 6,93 11:25
		•	,(x	100	mV)	Sample Time: Aug 6,93 11:13 Method
283						Slope Up 1.000 mV/Sec
1	•		•		•	Slope Down 3.000 mV/Sec
1	_					Min Area 1.000 mVSec
سسر	-5	•		•		Min Height 0.000 mV
5	_					Analysis Delay 50.0 sec
1 1		⇒ , .	•		•	Window Percent 25.0 %
K		.1.				Det Flow 10 ml/min
14.	>		٠	•		B/F Flow 10 ml/min
85			- /			Aux Flow O ml/min
101/	·		. "#		•	Oven Temp 45 C
					,	Amb Temp 35 C
1				•		Max Gain 1000
سمع ان ا) E					Analysis Time 400.0 sec
11	_ <u>.</u>	· ·	•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
1 1		. •	•	•		1 Unknown 1.505 VSec 54.0
1,16					•	(· · · · · · · · · · · · · · · · ·
142			•			1 1
N_						\
1 17		•				
171						6 Toluene 17.69 PFM1 118.4
						7 Unknown 314.0 mVS 150.6
8						8 Unknown 1.271 mVS 176.4
						9 Unknown 33.24 mVS 191.8
200	9					10 Unknown 6.633 mVS 211.4
						11 Unknown 12.58 mVS 222.6
			•			12 Ethylbenzene 35.84 ppb 246.1
10						13 Unknown 0.271 mVS 285.6
228	11					14 O-xylene 120.7 ppb 304.5
257	12					
285						
13		•				
				_		
		•	-	•		PPM1 = Alarm 1 PPM2 = Alarm2
314	1.4					Notes
	•	•	•	•	•	soil bottle headspace vol.=145cc
						temp 28 c
		•	•	•		
342						
	•		•		•	sample # 15 water 43.0 ml
		•	•	•		
371						
	•		•		•	
		•	•	•		
400						
140	•		•		•	

PHI CO. J	rysis	114	3. 57 5			CICHI PHIOLOGIST IN TOCHOUT S
Q	4	8	1.2	1.6	20	Time Printed: Aug 6,93 11:46
	•			1000		Sample Time: Aug 6,93 11:37
		•				Method
28						Slope Up 1.000 mV/Sec
2	٠	بسكمين	•		•	Slope Down 3.000 mV/Sec
	ستحسب					Min Area 1.000 mVSec
1 .	ラ					Min Height 0.000 mV
/						1
57	҉>.					,
1 />	. 1					
	2					Det Flow 10 ml/min
K.	3					B/F Flow 10 ml/min
85-	4					Aux Flow O ml/min
						Oven Temp 45 C
5						Amb Temp 35 C
						Max Gain 1000
114	6					Analysis Time 400.0 sec
	-		•		•	Peak Report
	ر.حسب					Pk Compound Name Area/Conc R.T.
		•	•			1 Unknown 6.319 mVS 53.7
142						2 Benzene 9.698 ppb 60.7
1 72	•		•		•	3 Unknown 5.245 mVS 68.0
1						4 Unknown 21.28 mVS 77.4
1 15	3	•	•	•		5 Unknown 0.365 mVS 94.9
171	L.7					6 Unknown 3.478 mVS 104.0
1-1-			•		•	7 Toluene 184.5 ppb 118.9
						8 Unknown 10.20 mVS 152.6
			•			9 Unknown 3.263 mVS 195.8
200	•					
9						W. W. C.
	_					12 O-xylene 18.27 ppb 308.5
1.0	0					
228						
			•			
257	11					
		-				
285			_			
	•	•	•		-	
					,	
		•	•	•		
314	12					Notes
	•		•	•		soil bottle headspace vol.=145cc
						temp 28 c
		•	•		•	50 g soil
342						"
	•		•	•		sample # 17 4 to 6 ft
		•	•		•	
371						
171	•		•	•		
			•		•	
400						
1-40	•		•	•		
1						

Time Printed: Aug 6,93 13:12 Sample Times Aug 6,93 13:12 Sample Times Aug 6,93 11:37 Whethod Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000	Analy	110 3. 25	#23	3.000 (300	1 (.(11()	tion Analysis Report
Slope Up	9	1.	2			
Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Min Min Min Min Min Min Min Min Min Min			•	·(x roo	mv)	
Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Qven Temp 45 C Amb Temp 34 C Amb	287					
Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. Unknown 436.1 mVS 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 75.8 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 FPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 5.053 mVS 133.4 9 Unknown 5.053 mVS 133.4 9 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 12 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 O-xylene 699.4 ppb 316.5 PPM1 = Alarm 1 FPM2 = Alarm2 Notes Soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft	>	•			•	
Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pek Compound Name Area/Conc R.T. 1 Unknown 436.1 m/5 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 m/5 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 m/5 53.8 2 Unknown 31.73 m/5 95.8 4 Unknown 497.1 m/5 10.02 PPM1 119.2 8 Unknown 5.053 m/5 137.4 9 Unknown 5.053 m/5 130.8 10 Unknown 100.02 PPM1 119.2 8 Unknown 5.053 m/5 150.8 10 Unknown 100.6 m/5 192.2 11 Unknown 100.6 m/5 192.2 11 Unknown 100.6 m/5 192.2 11 Unknown 100.6 m/5 192.2 11 Unknown 100.7 m/5 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5	1					Min Area 1.000 mVSec
Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 436.1 m/5 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 m/5 68.1 4 Unknown 47.1 m/5 103.7 7 Toluene 10.02 PFM1 119.2 8 Unknown 497.1 m/5 103.7 7 Toluene 10.02 PFM1 119.2 8 Unknown 5.053 m/5 150.8 10 Unknown 100.6 m/5 152.4 9 Unknown 525.1 m/5 150.8 10 Unknown 100.6 m/5 152.4 10 Unknown 100.6 m/5 152.4 11 Unknown 100.2 m/5 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 11 11 Unknown 10 Unk	1		•			Min Height 0.000 mV
Window Percent 25.0 %	157-					Analysis Delay 50.0 sec
88 4	1	1			•	
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 436.1 mVS 53.8 2 Benzene 61.39 ppb 61.8 3 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 FPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 11 Unknown 100.6 ppb 245.3 12 Ethylbenzene 1.98 ppm 265.8 14 O-xylene 699.4 ppb 316.5 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 sample # 17 8 to 10 ft	12-					
Oven Temp			3			
Amb Temp 34 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pek Compound Name Area/Conc R.T. 1 Unknown 436.1 mVS 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVS 68.1 4 Unknown 981.6 mVS 68.1 4 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 135.4 9 Unknown 5.053 mVS 135.4 9 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 12 Unknown 100.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 Unit Only 100 pph 316.5 PPM1 = Alarm 1 PPM2 = Alarm2 Notes Soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft	85		4			
Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 436.1 mVs 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVs 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVs 95.8 6 Unknown 497.1 mVs 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVs 133.4 9 Unknown 525.1 mVs 150.8 10 Unknown 100.6 mVs 192.2 11 Unknown 102.7 mVs 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 U-xylene 699.4 ppb 316.5 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft		•			•	
### Analysis Time ### A00.0 sec	I A					
Peak Report	2	>				
Pk. Compound Name Area/Conc R.T. 1 Unknown 436.1 mVS 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 4 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPH1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 100.6 mVS 150.8 10 Unknown 100.6 mVS 150.8 11 Unknown 100.6 mVS 150.8 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 1.50.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 Unknown 100.6 mVS 316.5 11 Soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 342 343 344 344 355 368 371 371	1.11	. 6				
1 Unknown 436.1 mVS 53.8 2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 5.053 mVS 133.4 9 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 11 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5 257 12 13 255 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 sample # 17 8 to 10 ft						,
2 Benzene 61.89 ppb 61.8 3 Unknown 981.6 mVs 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 171 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 132.4 9 Unknown 525.1 mVS 150.8 11 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5 314 14	1 1		7			
3 Unknown 981.6 mVS 68.1 4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mVS 95.8 6 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 200 10 10 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5 228 11						
4 Unknown 1.266 VSec 77.2 5 Unknown 31.73 mV5 95.8 4 Unknown 497.1 mV5 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mV5 133.4 9 Unknown 5.053 mV5 153.4 9 Unknown 100.6 mV5 192.2 11 Unknown 100.6 mV5 192.2 11 Unknown 102.7 mV5 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 342 341 342 342 343 344 344	147	8				
5 Unknown 31.73 mVS 95.8 4 Unknown 497.1 mVS 103.7 7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 1.0.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 Unknown 497.1 mVS 150.8 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 371						
171	19					
7 Toluene 10.02 PPM1 119.2 8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 O-xylene 699.4 ppb 316.5 225 225 226 237 24 PPM1 = Alarm 1 PPM2 = Alarm2 Notes 24 Soil bottle headspace vol.=145cc temp 28 c 50 g soil 342 351 351 351 351 351 351 351 351 351 351						
8 Unknown 5.053 mVS 133.4 9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 O-xylene 699.4 ppb 316.5 11	1 /11					
9 Unknown 525.1 mVS 150.8 10 Unknown 100.6 mVS 192.2 11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 3 m&p-xylene 1.178 ppm 265.8 14 U-xylene 699.4 ppb 316.5 PPM1 = Alarm 1						
200 10	1		•			
11 Unknown 102.7 mVS 224.0 12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 O-xylene 699.4 ppb 316.5 11 257 12 13 265 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft	adh	10				
12 Ethylbenzene 150.6 ppb 245.3 13 m&p-xylene 1.198 ppm 265.8 14 O-xylene 699.4 ppb 316.5 257 12 13 265 PFM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft	200	10			•	
13 m&p-xylene 1.198 ppm 265.8 14 0-xylene 699.4 ppb 316.5 257 12 13 285 FPM1 = Alarm 1						
223 14 0-xylene 699.4 ppb 316.5 257 12 13 285 PFM1 = Alarm 1 PPM2 = Alarm2 Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft	1 1		•			
257 12 13 265 PFM1 = Alarm 1	222					
257 12 13 265 PPM1 = Alarm 1	1 15	•			•	
285 PPM1 = Alarm 1						
285 PPM1 = Alarm 1			•			
285 PPM1 = Alarm 1	257	12				
### PFM1 = Alarm 1		•			•	
### PFM1 = Alarm 1	13					
FPM1 = Alarm 1			-	•		
Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft 371	285					
Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft 371			•	•	-	
Notes soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft 371						
soil bottle headspace vol.=145cc temp 28 c 50 g soil sample # 17 8 to 10 ft						
temp 28 c 50 g soil sample # 17 8 to 10 ft						
342 sample # 17 8 to 10 ft	1.4					
342 sample # 17 8 to 10 ft			•			
						50 g soil
371	342					
						sample # 1/8 to 10 Tt
400	241					
400						
400			•			
199777	ado					
	140				•	

PHI I et J.	ysls	?? /	1.00	or ou	r un u.	tion Analysis Report
9	4	8	12 .(x	16 10	20 mV)	Time Printed: Aug 6,93 13:51 Sample Time: Aug 6,93 13:40
28	> .					Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
1.5						Min Area 1.000 mVSec
1						Min Height 0.000 mV
157						Analysis Delay 50.0 sec
1			•		•	Window Percent 25.0 %
1						Det Flow 10 ml/min
1		•	•	•		B/F Flow 10 ml/min
85			71			Aux Flow O ml/min
10-1/-			****			Oven Temp 45 C
I						· ·
1 5						Amb Temp 34 C
						Max Gain 1000
1.14	6					Analysis Time 400.0 sec
		~~~	-		-	Peak Report
-		ا الرا مست				Pk Compound Name Area/Conc R.T.
1 /		•	•	•		1 Unknown 140.1 mVS 53.9
1.42						2 Benzene 46.15 ppb 60.4
	•	•	•		•	3 Unknown 183.5 mVS 68.0
)8						4 Unknown 525.9 mVS 77.2
I V°		•	•	•		5 Unknown 0.638 mVS 95.0
171						6 Unknown 83.91 mVS 103.6
! !						7 Toluene 3.307 ppm 118.6
						8 Unknown 75.99 mVS 150.8
						9 Unknown 14.84 mVS 193.4
200	9					10 Unknown 9.367 mVS 209.0
	•	•	•		•	11 Unknown 8.412 mVS 224.4
10						12 Ethylbenzene 20.82 ppb 246.1
1 1		•	•	•		13 m&p-xylene 134.0 ppb 266.1
228						
						14 O-xylene 90.70 ppb 306.9
111						
257	12					
		•	-	·		
13						
		-	•	•		
285						
		•	•		•	
		•	•	•		
	4.0					h f m dr m m
314	14		•			Notes
						soil bottle headspace vol.=145cc
						temp 28 c
						41.5 ml
342			_			
	•		•		•	sample # 17 water sample
		•	•	•		
371						
1711			•			
0.00						
400	-		•		•	
						<u> </u>

111144	lysis	TY Z 7	3.0201	(3)(3	1 ((11()	tion Analysis Report
Q	1.	2	3	4	5	Time Printed: Aug 6,93 14:14
			(x	10	mV)	Sample Time: Aug 6,93 14:06
		<u> </u>				Method
28						Slope Up 1.000 mV/Sec
						Slope Down 3.000 mV/Sec
1.	<u></u>		•			Min Area 1.000 mVSec
						Min Height 0.000 mV
57		<b>-</b>				Analysis Delay 50.0 sec
1 5		1				Window Percent 25.0 %
			•			Det Flow 10 ml/min
1 1						B/F Flow 10 ml/min
85			<del>.</del> . '	4 .		Aux Flow O ml/min
1 1						Oven Temp 45 C
						Amb Temp 34 C
	>					Max Gain 1000
1.14	5					Analysis Time 400.0 sec
						Peak Report
/		<del>.</del> 6	٠.			Pk Compound Name Area/Conc R.T.
						1 Unknown 63.05 mVS 53.7
142						2 Benzene 18.75 ppb 60.7 3 Unknown 28.48 mVS 67.8
IN	,					
	/	•		•		4 Unknown 164.6 mVS 76.9 5 Unknown 17.72 mVS 103.3
171						6 Toluene 891.7 ppb 118.6
1-1-	•				• •	7 Unknown 15.57 mVS 150.6
						8 Unknown 5.447 mVS 194.0
		•	•	•		9 Ethylbenzene 60.63 ppb 210.0
200	8					10 m&p-xylene 57.12 ppb 263.2
1-1	Ç.			•	•	11 O-xylene 30.35 ppb 314.6
						and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
9		•	•	•		
228						
	•			•	•	
		•	•	•		
257						
	•			•	•	
1	0					
			•	•		
285						
	•	•	•	-	-	
		•				
314						Notes
1	1.					soil bottle headspace vol.=145cc
						temp 28 c
						41.5 ml
342						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						sample # 17 18 to 20 feet
		•				
371						
			•			
400						
1400	٠			•	•	
						1

9	4	. 8	12 .(x	16 1000	20	Time Frinted: Aug 6,93 15:06 Sample Time: Aug 6,93 14:56 Method
28		نسخت				Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
٠. ا	آ ا	•	•			Min Area 1.000 mVSec Min Height 0.000 mV
57	· ·					Analysis Delay 50.0 sec Window Percent 25.0 %
15	:1.		•			Det Flow 10 ml/min
85	<u>3</u> 2				,	B/F Flow 10 ml/min Aux Flow 0 ml/min
4		•	•	•	•	Oven Temp 45 C
		•				Amb Temp 36 C
						Max Gain 1000
114	. 5					Analysis Time 400.0 sec Peak Report
	<b>્ટ</b>					Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 35.75 ppb 60.2
142	•					2 Unknown 4.216 mVS 66.9
1						3 Unknown 7.312 mVS 76.8 4 Unknown 1.134 mVS 82.8
		•	•	•		5 Unknown 1.686 mVS 102.8
171						6 Toluene 91.46 ppb 119.3
			•		•	7 Unknown 6.158 mVS 150.0
						8 Unknown 4.374 mVS 193.0
200	O					9 Unknown 2.816 mVS 209.4 10 Unknown 6.498 mVS 212.0
200	.8				. •	11 Ethylbenzene 13.38 ppb 240.2
9						12 O-xylene 28.03 ppb 303.2
110	0	•	•			
228						
1.	1	•	•	•		
257						
	•	•	•		•	
		•				
285						
	•		•			
		•				
314	12		•			Notes
						soil bottle headspace vol.=145cc temp 28 c
		•	•	•		41-5 ml 5011 5000/14 509
342						
	_	-	-	•	-	sample # 18 6 to 8 feet
			•			
371						
177	•				•	
		•				
490	•					

Analysis	#36	108+	GC	Function	Analysis	Report
----------	-----	------	----	----------	----------	--------

Ana	lysis	#36	1054	GC	Funct	tion Analysis Report
Q	:1.	22	-13 -13	4	5	Time Printed: Aug 6,93 15:31
1 1	.1.	£	_ (x		mV)	Sample Time: Aug 6,93 15:19
		•	. \ ^	w A	101 4 7	Method
28			•			Slope Up 1.000 mV/Sec
12.0	ستحر				•	Slope Down 3.000 mV/Sec
1 /						Min Area 1.000 mVSec
・)	•	•		-		Min Height 0.000 mV
						ii ii
57						1 ' ' 1
	1					
1	•••		•			
1 13	3 _					B/F Flow 10 ml/min
85	4				•	Aux Flow O ml/min
5						Oven Temp 45 C
6						Amb Temp 36 C
						Max Gain 1000
114	7					Analysis Time 400.0 sec
10						Feak Report
1	8					Pk Compound Name Area/Conc R.T.
						1 Unknown 0.143 mVS 52.9
142						2 Unknown 0.894 mVS 53.6
1 1						3 Benzene 19.99 ppb 60.3
19						4 Unknown 2.744 mVS 67.6
1.						5 Unknown 7.144 mVS 76.6
171						6 Unknown 0.770 mVS 95.0
						7 Unknown 2.217 mVS 103.0
						8 Toluene 108.4 ppb 118.1
						9 Unknown 9.782 mVS 150.8
200	10					10 Unknown 4.742 mVS 194.0
1 1						11 Ethylbenzene 63.16 ppb 212.6
						12 Unknown 0.160 mVS 264.2
1						13 Unknown 1.264 mVS 264.2
228						14 O-xylene 30.05 ppb 311.4
257						
3.	2					
1						
285						
	•	-	-	-		
						·
314						Notes
1	4	-	•	,	-	soil bottle headspace vol.=145cc
						temp 28 c
						soil sample 50g
342						
	•	•		•	=	sample # 18 0 to 2
			•			
		-	•	•		
371					_	
	•			•	•	
		-				
400						
1 1	•				•	



PHI CUL)			.1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			TATAL PRINCE AND THE POST OF
9	2	4	6	8	10	Time Printed: Aug 6,93 16:13
		•	,(x	100	mV)	Sample Time: Aug 6,93 16:04
\						Method
284		<b>-</b>				Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
		,				
. —						
						**************************************
57			•			Analysis Delay 50.0 sec Window Percent 25.0 %
		.1.				Det Flow 10 ml/min
1 - 4	<u> </u>					B/F Flow 10 ml/min
85			1			Aux Flow O ml/min
001					. 5	Oven Temp 45 C
1 1						Amb Temp 36 C
•			·			Max Gain 1000
114				7		Analysis Time 400.0 sec
1				<del></del>	Ť	Peak Report
					₈	Pk Compound Name Area/Conc R.T.
-	سر					1 Unknown 1.792 VSec 53.6
142	K					2 Benzene 403.5 ppb 62.2
1	<u> </u>		•		•	3 Unknown 2.462 VSec 67.8
		10ج		_		4 Unknown 2.466 VSec 70.2
	A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	-	-			5 Unknown 13.11 VSec 76.9
171						6 Unknown 1.953 VSec 94.5
/	-		-	•	•	7 Unknown 4.604 VSec 103.2
) . K						8 Toluene 130.6 PPM2 118.5
						9 Unknown 81.93 mVS 138.8
200/	11					10 Unknown 4.357 VSec 150.0
						11 Unknown 833.1 mVS 191.2
1 1 1						12 Unknown 1.078 VSec 212.0
	12					13 Unknown 1.616 VSec 223.4
228	13		,			14 Ethylbenzene 2.069 ppm 243.7
						15 m&p-xylene 33.13 PPM2 265.3 16 O-xylene 14.20 PPM1 314.9
1.	0					16 O-xylene 14.20 FPM1 314.9
121	r.\$					
254					•	
1 1	5					
1 1/	u.s	•	•			
285						
1-14	•	•	•		•	
1 11		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
1 1 1.	6		•		•	soil bottle headspace vol.=145cc
						temp 28 c
1 1/		•	•	•		soil sample 50g
342						
	•		•		•	sample # 18 10 to 12 ft
		_				·
371						
		•			i	
400						

9	:1.	22	3	4	ü	Time Printed: Aug 6,93 16:34
			.(×	100	mV)	Sample Time: Aug 6,93 16:25
1	_					Method
سر 28	حـ				•	Slope Up 1.000 mV/Sec
>						Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
			•			Min Area 1.000 mVSec Min Height 0.000 mV
57-						Analysis Delay 50.0 sec
137	<b>~</b>	•	•		•	Window Percent 25.0 %
(6)	.1.					Det Flow 10 ml/min
1			•	•		B/F Flow 10 ml/min
85			4			Aux Flow 0 ml/min
			•		•	Oven Temp 45 C
<b>D</b> 5						Amb Temp 36 C
						Max Gain 1000
11	<u>6</u>					Analysis Time 400.0 sec
		$\supset$				Feak Report
		. 7				Pk Compound Name Area/Conc R.T.
H						1 Unknown 381.0 mVS 53.8
1143						2 Benzene 198.6 ppb 59.8
I II 8						3 Unknown 96.75 mVS 67.3
			•	•		4 Unknown 1.699 VSec 76.8 5 Unknown 123.7 mVS 94.2
171	10					6 Unknown 203.5 mVS 102.9
1.71.	ir.O		•			7 Toluene 9.011 ppm 117.2
						8 Unknown 154.3 mVS 139.7
		•	•	•		9 Unknown 126.7 mVS 149.6
200	11					10 Unknown 81.51 mVS 160.4
			•		•	11 Unknown 27.67 mVS 192.0
1 /						12 Unknown 190.0 mVS 212.6
H.2		•	·	•		13 Unknown 210.1 mVS 222.4
22\$	13					14 Ethylbenzene 351.0 ppb 244.5
						15 m&p-xylene 4.647 ppm 265.6
1 1						16 O-xylene 667.1 ppb 298.1
14						17 Unknown 99.07 mVS 321.3
257		• , •				
1 11.5		4.*				
h.o		•	•	•		
285						
2	•	•			•	
.						
16		•	•	•		
314					_	Notes
	•	•	•	•	•	soil bottle headspace vol.=145cc
17						temp 28 c
						H2O sample 41.9 ml
342						
	•					sample # 18 water sample
371						
131					•	
		•	•	•		
400						
	•		•	•		

							croi eneralis vebor c
9	4		3	12 .(x	16 1000	20 uV)	Time Printed: Aug 11,93 08:25 Sample Time: Aug 11,93 08:09 Method
20				_			Slope Up 1.000 mV/Sec
28							Slope Down 3.000 mV/Sec
1							Min Area 1.000 mVSec
1 -3							
							1
57							Analysis Delay 50.0 sec
							Window Percent 25.0 %
1 8		1.					Det Flow 10 ml/min
							B/F Flow 10 ml/min
85							Aux Flow O ml/min
	•	•		-			Oven Temp 45 C
							Amb Temp 28 C
		•		•	•		Max Gain 1000
114							Analysis Time 400.0 sec
	•	•	•	•		•	Peak Report
							Pk Compound Name Area/Conc R.T.
		•		•	•		1 Benzene 46.05 ppb 59.8
142							
		•	•	•		•	
	-						
		•		•	•		
171							
1-1-	٠		•	•		•	
		٠		•			
1242							
200				•		•	
		•		•			'
228							
				•			
257							
285							
314							Notes
		•	-	-	•	-	soil bottle headspace vol.=145cc
	•						temp 28 c
							H2O sample 41.9 ml
342							Calibration zero check
	•	•	•	•		•	Sample #
		•		•	•		
371							
	•	•	•	•		•	
		•		•			
400							
1 1 "	•	•	•	•		· ·	

Analy	7818	#4	108+	GC	Funct	tion Calibrant Report
9	2	.4	6 .(x	8 10	10 mV)	Time Printed: Aug 11,93 07:52 Sample Time: Aug 11,93 07:45
28	>					Method Slope Up 1.000 mV/Sec Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
						Min Height 0.000 mV
57						Analysis Delay 50.0 sec
					<del>-</del>	Window Percent 25.0 %
V			•	•	1.	Det Flow 10 ml/min B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
3	•			•	•	Oven Temp 45 C
						Amb Temp 24 C
		•	•	•		Max Gain 1000
114				_		Analysis Time 400.0 sec
<b></b>	<u> </u>			•	•	Peak Report
		. 2				Pk Compound Name Area/Conc R.T.
. ]						1 Benzene 1.000 ppm 60.2
142						2 Toluene 1.000 ppm 118.8
						3 Ethylbenzene 1.000 ppm 237.8
		•	•	•		4 O-xylene 1.000 ppm 300.0
171						
/	•			٠	•	
		•	•	•	•	
2 <b>0</b> 0 -						
					·	
			•			
-4-						
228	•				•	
	~3.3°					
	-	•	•	•		
23/2						, , & ; b,
Ï	•			•	•	I DOM AT EACH OF THE
						1 ppm of Each of the Above
285						6-us standart
1						nitrogen Balance
$\left  \cdot \right  $	1	•	•	•		111110911. 13414.
31A						Notes
1			•	•	•	soil bottle headspace vol.=145cc
						temp 28 c
				-		H2O sample 41.9 ml
342						calibration
Ì						sample # 18 water sample
		•	•			
371						
W/1					•	
		•	•	•		
400			_			
ł		•	• •		•	

_	ict.i.			100%			tion mnalysis Report
		2	. 4	ے (x	8 10	10 mV)	Time Printed: Aug 11,93 09:24 Sample Time: Aug 11,93 09:12
28	}						Method Slope Up 1.000 mV/Sec
					•	•	Slope Down 3.000 mV/Sec
1.	1						Min Area 1.000 mVSec
	I			•			Min Height 0.000 mV
57	1						Analysis Delay 50.0 sec
							Window Percent 25.0 %
	1.						Det Flow 10 ml/min
							B/F Flow 10 ml/min
85		2					Aux Flow O ml/min
							Oven Temp 45 C
							Amb Temp 31 C
							Max Gain 1000
1.1	4						Analysis Time 400.0 sec
	<b>)</b>						Peak Report
	3		•				Pk Compound Name Area/Conc R.T.
	<i>(</i> **						1 Benzene 58.88 ppb 60.1
14	<i>A</i>						2 Unknown 2.278 mVS 76.0
	21						3 Toluene 145.2 ppb 118.4
	let.		•	•			4 Unknown 11.31 mVS 149.0
							5 Unknown 0.867 mVS 189.4
17	.l.						6 Unknown 5.373 mVS 209.8 7 Ethylbenzene 50.09 ppb 240.0
							1 1
			•		•		8 m&p-xylene 695.1 ppb 256.5 9 0-xylene 73.87 ppb 302.4
20	Δ	5					9 O-xylene 73.87 ppb 302.4
129	V	'			•	•	
	6		•	•	•		
22							
1-1	***	•			٠	•	
	7		•	•	•		
25	7						
	B	•			•	•	
			•	•	•		
28	5						
		•			٠	•	
					•		
3.1	4	9					Notes
		•	•		•	•	soil bottle headspace vol.=145cc
							temp 28 c
							50 g soil spiked
34	2						Calibration
							Sample # .1ml of lug/ml of below
							χ0.1ug/40ml H2O≕X 25ug/1 (ppb)
							benzene 235 = 1ug/l (ppb)
37	.1.						toluene 580 = ^
							ethylben. 200 = ^
			•				tot.xylene 1000 = ^
	^						
49	O						

		<del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del>				Oor	1.2.2.2	1 201120	Trou Mistra Valor c
1	}	1.		22	3		4	;;i	Time Printed: Aug 11,93 09:06
	1				. (	X	10	mV)	Sample Time: Aug 11,93 08:51
	L								Method
28	3		_						Slope Up 1.000 mV/Sec
				3 '			·	·	Slope Down 3.000 mV/Sec
	. 3	5							Min Area 1.000 mVSec
			•		•		•		Min Height 0.000 mV
57	2 (								Analysis Delay 50.0 sec
	1	⇒=	•	•	•	•	•	•	Window Percent 25.0 %
		1.							Det Flow 10 ml/min
	Ĭ,		•		•		•		B/F Flow 10 ml/min
85	<b>/</b>	2							Aux Flow O ml/min
		•	•	•	•	•	•	•	Oven Temp 45 C
	3								Amb Temp 30 C
			•		•		•		Max Gain 1000
11.1	4	4							Analysis Time 400.0 sec
	-		•	•	•	•	•	•	Peak Report
	سسما	5							Pk Compound Name Area/Conc R.T.
	r		•		•		•		1 Benzene 73.33 ppb 60.0
116	2								2 Unknown 3.695 mVS 76.0
		•	•		•	•	•	•	3 Unknown 1.791 mVS 93.6
	26								4 Unknown 1.393 mVS 102.9
	1		•		•		•		5 Toluene 211.7 ppb 118.5
17	1								6 Unknown 25.07 mVS 149.2
		•	•	•	-	•	•	•	7 Unknown 0.538 mVS 174.4
	7								8 Unknown 2.354 mVS 189.6
			•		•		•		9 Unknown 9.873 mVS 210.2
20	6	8							10 Ethylbenzene 28.97 ppb 239.2
		•	•		•		•	•	11 m&p-xylene 316.7 ppb 256.2
									12 O-xylene 72.22 ppb 301.6
	9		•		•		•		
22	8								
		•	•	•	•	•	•	•	
							_		
	10		-				•		
25	2					-	_		
	11		-	-	•	•	•	•	
							-		
28	5			_			_		
		•	•	•	•	•	•	•	
	12						•		
31	4						_		Notes
		•		•	•	•	•		soil bottle headspace vol.=145cc
									temp 28 c
					-		-		50 g soil spiked
34	2					_	_		Calibration
		•	•	•	•	•	•	•	Sample # .iml of lug/ml of below
									$\chi_{0,1}$ ug/50g soil = 0.2ug/kg (ppb)
			-		-		•		benzene 365 = lug/kg (ppb)
37	1.								toluene 1000 = ^
		•	•	•	•	•	•	•	ethylben. $140 = ^{\circ}$
	1								tot.xylene 650 = ^
			-		•		•		·
40	0								
L	'				•	•	•	•	

Analysis	#1.3	1.08+	GC	Funct	tion Analysis Report
q ı	2	3	4	5	Time Printed: Aug 11,93 09:58 Sample Time: Aug 11.93 09:49
		.(x	10	mV)	Method
28					Slope Up 5.000 mV/Sec Slope Down 5.000 mV/Sec
1.5	•				Min Area 1.000 mVSec
57					Min Height 0.000 mV Analysis Delay 50.0 sec
176			٠	•	Window Percent 25.0 %
1.51		•			Det Flow 10 ml/min
85					B/F Flow 10 ml/min Aux Flow 0 ml/min
0.0			٠	•	Oven Temp 45 C
	•				Amb Temp 32 C
114				. (	Max Gain 1000 Analysis Time 400.0 sec
		•	•	•	Peak Report
3		•			Pk Compound Name Area/Conc R.T. 1 Benzene 14.38 ppb 60.4
142					1 Benzene 14.38 ppb 60.4   2 Unknown 0.373 mVS 65.6
			•		3 Toluene 89.93 ppb 117.7
1	•				4 Unknown 9.561 mVS 148.2
171					
	•	•	•	•	
	•	•	•		
200					
	•	•	•		
228					
	•	•	•		
257					
	•				
O.C.			-		
285			•	•	
314					Notes
			•	•	soil bottle headspace vol.=145cc
	•				temp 28 c
342					50 g soil <del>spiked</del>
			•	•	Sample # 22 6 to 8 ft
	•	•			
371					
	•	•	•	-	
	•	•			
400					
1					

Anal	ysis	#15	1054	GC	Func	tion Analysis Report
0	1.	. 2	3 .(x	4 10	5 mV)	Time Printed: Aug 11,93 10:19 Sample Time: Aug 11,93 10:10
28			<b>-</b>			Method Slope Up 5.000 mV/Sec Slope Down 5.000 mV/Sec Min Area 1.000 mVSec
57	•					Min Height 0.000 mV Analysis Delay 50.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114						Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec  Peak Report
2 142						Pk Compound Name Area/Conc R.T. 1 Benzene 47.99 ppb 59.9 2 Toluene 30.28 ppb 118.2
171				•		
200	•				•	
					٠	
228					٠	
2\$7						
285						
314						Notes soil bottle headspace vol.=145cc temp 28 c
342						Sample # 22 15 to 16 ft
371						
400						

enn at	lysis	₹£ 1. /		J. O to	er tota	- P. COT C.	tion Analysis Report
0	:1.	2		3	4	5	Time Printed: Aug 11,93 10:46
				(x	10	(Vm	Sample Time: Aug 11,93 10:31
							Method
28		هم					Slope Up 5.000 mV/Sec
		_					Slope Down 5.000 mV/Sec
							Min Area 1.000 mVSec
1							Min Height 0.000 mV
57	-						Analysis Delay 50.0 sec
1	5 1.						Window Percent 25.0 %
	2						Det Flow 10 ml/min
1 }-					_		B/F Flow 10 ml/min
85					្ទី .		Aux Flow O ml/min
	·	-	-				Oven Temp 45 C
1							Amb Temp 32 C
					·		Max Gain 1000
114	5						Analysis Time 400.0 sec
	-	-					Feak Report
1		. 6					Fk Compound Name Area/Conc R.T.
1							1 Unknown 25.40 mVS 54.7
142							2 Benzene 39.60 ppb 61.6
	•	-			•	•	3 Unknown 161.4 mVS 76.9
1)							4 Unknown 0.168 mVS 94.6
							5 Unknown 1.506 mVS 103.4
171							6 Toluene 523.6 ppb 118.9
	-					-	
200							
	·	-					
228							
							·
257							
285							
							black as as
314							Notes
							soil bottle headspace vol.=145cc
							temp 28 c
							43 ml water sample
342							0
							Sample # 22 water sample
371							
440							

9	4		8	12 .(×	16 1000	20 uV)	Time Printed: Aug 11,93 11:18 Sample Time: Aug 11,93 11:08 Method
28	-	<u>ئىنى</u>					Slope Up 4.000 mV/Sec Slope Down 4.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV
57		•					Analysis Delay 50.0 sec Window Percent 25.0 %
85/	•	•	•	•			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C
114							Max Gain 1000 Analysis Time 400.0 sec
1 >							Peak Report Pk Compound Name Area/Conc R.T.
		•		٠	•		1 Benzene 6.649 ppb 60.1
142							2 Toluene 45.54 ppb 117.8
							_
171							
				•			
200							
		•		•	•		
228	•						
06.7		-		•	•		
257		•	•			•	
285							
	•	•	•	•		•	
3:14							Notes
		-	•	•		•	soil bottle headspace vol.=145cc
		•		•	•		temp 28 c
342							59 Solt gample
							Sample # 23 2 to 4 ft 23 2 70 4 ft
371							
		٠	•	٠		٠	
400							
<u>'</u>			•	•	•	•	

Q	4		8	1.2	16	20	Time Printed: Aug 11,93 11:45
						) uV)	Sample Time: Aug 11,93 11:35
4							Method
28			-				Slope Up 4.000 mV/Sec
				_			Slope Down 4.000 mV/Sec
	5						Min Area 1.000 mVSec
							Min Height 0.000 mV
57					•		Analysis Delay 50.0 sec
							Window Percent 25.0 %
1 .1		<b>:</b>					Det Flow 10 ml/min
		3					B/F Flow 10 ml/min
85	. 4						Aux Flow 0 ml/min
-							Oven Temp 45 C
-		á				•	Amb Temp 32 C
1,1,		,					Max Gain 1000
114	<del>-</del> -5,,	ö		•			Analysis Time 400.0 sec
1 -	_<″						Feak Report Fk Compound Name Area/Conc R.T.
1	- <b>C</b> B	٠		•		•	11 Unknown 6.785 mVS 53.6
142	3 2000	~					2 Benzene 18.37 ppb 61.1
	تسسن	رر (ي	•	•	•		3 Unknown
	-/	1					4 Unknown 13.98 mVS 74.4
	210	•		•	,	•	5 Unknown 25.13 mVS 94.5
171	L good and a						6 Unknown 51.96 mVS 102.5
1	· .	•	•	•	•		7 Toluene 136.0 ppb 114.4
							8 Unknown 27.07 mVS 124.4
1 1		•		•	•	•	9 Unknown 111.2 mVS 138.8
200	2						10 Unknown 90.00 mVS 159.2
	\	•	•	•	•	•	11 Unknown 226.0 mVS 220.4
							12 Ethylbenzene 400.0 ppb 242.4
	1						13 m&p-xylene 4.844 ppm 264.5
228	1.1						14 O-xylene 423.0 ppb 307.7
11							
1 1	١					•	
	/12						
123							
1 3							
1 1/	13			•			
285							
12.do	٠.	•	•	•		•	
1 1							
		•		•	٠		
314	14						Notes
		•	•			•	soil bottle headspace vol.=145cc
							temp 28 c
		•		•	•		45 ml water samming
342	2						509 Soil Sample
	•	•	•	•		•	Sample # 23 6 to 8 ft
		•		•	•		
371							
	•	•	•	•		•	
					_		
				=	•		
400							
				•		-	

	. /	882LS				tion Analysis Kepurc
9	4	8	12 (x	16 1000	20 uV)	Time Printed: Aug 11,93 13:07 Sample Time: Aug 11,93 11:56
		•	. \ ^	4. 17 17 17	/	Method
28			<u> </u>			
	~~					Slope Down 4.000 mV/Sec
	5					Min Area 1.000 mVSec
	process of the same					Min Height 0.000 mV
52 }						Analysis Delay 50.0 sec
1	ر حسے		•		•	Window Percent 25.0 %
	<u> </u>					Det Flow 10 ml/min
1 · L	<u></u>	→		•		1
$\Gamma$	_>	చ				1
85	- 4					Aux Flow 0 ml/min
1 (	•		•	•		Oven Temp 45 C
1	از جست				,	Amb Temp 32 C
1 1	~~~~		•			Max Gain 1000
1 1/2	شر	,				Analysis Time 400.0 sec
114	2	. co .				
	17					Feak Report
1	>				•	Fk Compound Name Area/Conc R.T.
1	<8					1. Unknown 9.222 mVS 53.4
142	Many.	_				2 Benzene 24.29 ppb 61.1
	سسسر	. چ <b>ہ</b>	•		•	3 Unknown 23.53 mVS 67.6
	<b>ラ</b>	,				4 Unknown 14.99 mVS 75.3
1 +	(	•	•	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.1.	<i>&gt;</i>					
171	5. 10					6 Unknown 68.45 mVS 102.9
1/						7 Toluene 7.054 ppb 114.6
				_		8 Unknown 17.20 mVS 125.3
11		•	•	•		9 Unknown 76.69 mVS 140.1
200						10 Unknown 42.56 mVS 160.2
1, 1, 1			•		•	11 Unknown 114.3 mVS 221.8
	1					13 m&p-xylene 2.296 ppm 265.6
228	باذكري	1.				
		•	•	•	-	
	12	•	•	•		
257	J. S. L.					
1-4/			•		•	
	\					
	)13					
/						
28\$						
	•		•	•	•	
111						
		•	•			
1-11						Notes
314						
						soil bottle headspace vol.=145cc
						temp 28 c
						CAS ml water, sample
342						509 Soil samply
	•		•	•		Sample # 23 8 to 10 ft
		•	•		•	
371						
		•	•		•	
400						
1.40			•	•		

enal)	7 120 21 110	114	3.01			CION Miletant Kebol C
Q	4	8	12	1.6	20	Time Printed: Aug 11,93 13:43
			(x	1000	uV)	Sample Time: Aug 11,93 13:34
		·				Method
28		5				Slope Up 3.000 mV/Sec
	Johnson	بسسيني	•		•	Slope Down 3.000 mV/Sec
ر ا	5					Min Area 1.000 mVSec
1		•	•			Min Height 0.000 mV
57						Analysis Delay 50.0 sec
	L.		•		•	Window Fercent 25.0 %
						Det Flow 10 ml/min
1 3		•	•			B/F Flow 10 ml/min
85						Aux Flow O ml/min
	•		•		•	Oven Temp 45 C
			_	_		Amb Temp 33 C
		-	-			Max Gain 1000
1114					_	Analysis Time 400.0 sec
1	a.		•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Benzene 10.80 ppb 57.1
148					_	2 Toluene 66.38 ppb 111.6
3	•	•	•	•	•	3 Unknown 9.923 mVS 140.9
						4 Ethylbenzene 36.34 ppb 197.8
						5 O-xylene 29.25 ppb 289.0
171						
	-	•	•	•		
200						
4	•		-	•	-	
228						
257						
		•				
285					•	
5						
						Notes
314					•	soil bottle headspace vol.=145cc
						temp 28 c
			•			42 ml water sample
342						50 9 seil Samply
1	•		•		•	Sample # 23 4 to 6 ft
		•	•			
371						
["]"	•	•	•			
		•	•		•	
400						
1		• •	•		•	

Analy	/sis	#29	1.09	S+ GC	Func	tion Analysis Report
9	4	. 8	12 .(×	16 1000	20 uV)	Time Printed: Aug 11,93 14:03 Sample Time: Aug 11,93 13:54 Method
28	٠ ح					Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1 . /	_					Min Area 1.000 mVSec
1						Min Height 0.000 mV
576	•					Analysis Delay 50.0 sec Window Percent 25.0 %
15	•					Det Flow 10 ml/min
1 3		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
						Amb Temp 33 C
1 114						Max Gain 1000 Analysis Time 400.0 sec
1175					•	Peak Report
11	•	_				Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 8.090 ppb 56.9
142						2 Toluene 75.70 ppb 112.5
1 23						3 Unknown 1.787 mVS 141.2
4		•	•	•		4 Unknown 6.267 mVS 142.8 5 Ethylbenzene 30.63 ppb 198.4
171						a meny abenia oveco ppo aros a
	•			•	•	
		•				
200						
5						
		•	•	٠		
228						
	•		•	•	•	
257						
		•	•	•		
285						
	•	•	•	•	•	
-7.07						h.1 m. d. m. m.
314					•	Notes soil bottle headspace vol.=145cc
						temp 28 c
		•	•	•		42 ml water sample
342						
	•	-	•	•	•	Sample # 23 √ater sample
371						
1314	•		•			
		•	•	•		
400						
<u> </u>						

r	111	I et d	λæ3	. 25	#32		1084	GC	Func	tion Analysis Report
4	(	}	1.		22	:	3	4	5	Time Printed: Aug 11,93 14:47
							(x		mV)	Sample Time: Aug 11,93 14:39
		ــــ		_				•		Method
Ì	26	3	ڪر ِ							Slope Up 3.000 mV/Sec
		کم	_							Slope Down 3.000 mV/Sec
		1								Min Area 1.000 mVSec
	£2: ***	,[								Min Height 0.000 mV
	57	6								Analysis Delay 50.0 sec
-		}								Window Percent 25.0 %
		50		•				•		Det Flow 10 ml/min
	35	7								B/F Flow 10 ml/min
T.			•	٠		٠		•	•	Aux Flow O ml/min
		3								Oven Temp 45 C
		4		•		•		•		Amb Temp 34 C Max Gain 1000
1:	1. 1	24h								A 41
		إحمر	5	•	•	•	•	•	•	Peak Report
		1				_				Pk Compound Name Area/Conc R.T.
	ı					•		٠		1 Benzene 6.156 ppb 57.3
:	1.4	£2	6					_		2 Unknown 10.05 mVS 72.4
	1	17			-	•	•	•	•	3 Unknown 4.104 mVS 89.8
	1	-								4 Unknown 4.739 mVS 98.1
1.										5 Toluene 193.2 ppb 112.9
	1	T								6 Unknown 0.356 mVS 133.0
										7 Unknown 14.34 mVS 142.1
		8		•		•				8 Unknown 1.476 mVS 183.6
12	20									9 Ethylbenzene 167.0 ppb 211.6
1	1	·/	•	•	•					10 O-xylene 141.0 ppb 305.3
	k	9		•		•		•		
2	:48	3								
	1		•	•	•	•	•	•	•	
								•		
12	\$	7								
10	85	=								
1	90			٠						
				•		•		٠		
3	1/2	ļ	10							New dress on
			•	•	•	•	٠	•		Notes soil bottle headspace vol.=145cc
										temp 28 c
				•		•		•		50g soil
3	42									
					•	•	•	•		Sample # 19 2 to 4 ft
	1.									
.5	71								.	
	1									
				•		•		٠		{
a	do	ı							1	
	1						•	•		

en act.	A818	#34	1024	tot.	runci	tion Analysis Report
0	1.	. 2	.(x	4 10	5 mV)	Time Printed: Aug 11,93 15:10 Sample Time: Aug 11,93 15:01
						Method
28		<del></del>				Slope Up 3.000 mV/Sec
						Slope Down 3.000 mV/Sec
1 . 5			_			Min Area 1.000 mVSec
1		•	·	•		Min Height 0.000 mV
57)						Analysis Delay 50.0 sec
5	•			•	•	Window Percent 25.0 %
						Det Flow 10 ml/min
1 (		•	•	•		1
						B/F Flow 10 ml/min
84						Aux Flow O ml/min
						Oven Temp 45 C
1.			•			Amb Temp 34 C
2						Max Gain 1000
1.184						Analysis Time 400.0 sec
13				•		Peak Report
1				-		Pk Compound Name Area/Conc R.T.
		•	•	•		1 Unknown 3.550 mVS 89.6
142						2 Unknown 1.559 mVS 98.2
1				•	•	3 Toluene 114.6 ppb 112.1
Y'						1
			•			
						5 Ethylbenzene 41.87 ppb 200.6
171						
				-		
200						
5	•		•	•	•	
		•	•	•		
228						
440						
						·
257						
				-		
285						
	•		• •	•	•	
		•	•	•		
314						Notes
3.4	٠			•	•	
						soil bottle headspace vol.=145cc
			•			temp 28 c
						50g soil
342						
						Sample # 19 4 to 6 ft
			-	•		
371						
	•			•	•	
		•	•	•		
400	•					
140	•					

Mh act	.ysi.s	##J6	3.00	st GC	Fiunia:	tion Analysis Report
	4		12 .(x	16 1000	20 uV)	Time Printed: Aug 11,93 15:30 Sample Time: Aug 11,93 15:21 Method
28			 <del>&gt;=</del> .			Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
		•	•	•		Min Area 1.000 mVSec Min Height 0.000 mV
57 }	i 3		•		•	Analysis Delay 50.0 sec Window Percent 25.0 %
3			•	•		Det Flow 10 ml/min B/F Flow 10 ml/min
85						Aux Flow O ml/min Oven Temp 45 C
		•	•			Amb Temp 34 C Max Gain 1000
117	I.		•			Analysis Time 400.0 sec Peak Report
		•		-		Pk Compound Name Area/Conc R.T. 1 Toluene 43.39 ppb 113.2
142						2 Unknown 4.636 mVS 142.4 3 Ethylbenzene 20.39 ppb 197.6
	-	•				
171						
			•			
200						
228						
257						
				,		
285						
314						Notes soil bottle headspace vol.=145cc
			٠			temp 28 c 50g soil
342						Sample # 19 8 to 10 ft
		•			•	
371				•		
			•			
400						

q	ć	ą	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 11,93 15:51 Sample Time: Aug 11,93 15:41
٠_						<b>-</b>	Method
28				<del></del>			Slope Up 3.000 mV/Sec
		تمسمر					Slope Down 3.000 mV/Sec
	-	7					Min Area 1.000 mVSec
•	A COMMENT			•	•		Min Height 0.000 mV
57	5						Analysis Delay 50.0 sec
/	5	•	•	•		•	Window Percent 25.0 %
- 1	.1.						Det Flow 10 ml/min
{				•			
1							
85/							Aux Flow O ml/min
- }							Oven Temp 45 C
{							Amb Temp 34 C
1		•		•	•		Max Gain 1000
1.1							Analysis Time 400.0 sec
	$\sum_{i\in I}$		•	•		•	Peak Report
							Pk Compound Name Area/Conc R.T.
				•	•		
. 1.							
148	<u>.</u> .						2 Toluene 77.22 ppb 112.1
	ో						3 Unknown 11.30 mVS 141.7
							4 Ethylbenzene 28.45 ppb 201.0
171							
	•	•	•	•		•	
1				•	•		
200	,						
240				•			
F	}						
				•			
228	}					_	
1	•		•	•		•	
		•		•	•		
257	,						
-1	•			•		•	
					•		
28 5	i .						
1							
					_		
}		•		•	•		
314	ļ						Notes
- 1	•			•		•	soil bottle headspace vol.=145cc
							temp 28 c
				•			
							50g soil
342							
							Sample # 19 10 to 12 ft
				•	·		
371							
				•			
1				_			
			•	•	•		
400			•	•	•		

Anau.	Asie	#40	1.05+ t	u runc	tion Analysis Report
9	4	. 8	12 16 (x 100		Time Frinted: Aug 11,93 16:09 Sample Time: Aug 11,93 16:00 Method
28	·	٠. ځمير			Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
. ,	5	•	•	•	Min Area 1.000 mVSec Min Height 0.000 mV
57					Analysis Delay 50.0 sec Window Percent 25.0 %
1					Det Flow 10 ml/min
85					B/F Flow 10 ml/min Aux Flow 0 ml/min
	•		• •		Oven Temp 45 C
			•	•	Amb Temp 34 C Max Gain 1000
1.14					Analysis Time 400.0 sec
\ \( \alpha \).					Pk Compound Name Area/Conc R.T.
142					1 Benzene 4.686 ppb 56.9 2 Toluene 22.02 ppb 112.4
	٠				3 Ethylbenzene 14.18 ppb 198.0
		•	•		
171					
200					
33	•	•			
		•	•	•	
228					
257					
	•				
		•	•	•	
285					
314					Notes
					soil bottle headspace vol.=145cc temp 28 c
740		•	•	·	50g soil
342	٠				Sample # 19 14 to 16 ft
		•			
371					
				•	
400					
1					

	Αn	aly	sis	#41	1.09	8+ GC	Func	tion Analysis Report
	9		4	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 11,93 16:19 Sample Time: Aug 11,93 16:10
	28		سحد ُ					Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
	57	5						Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 50.0 sec
	en est			•		•		Window Percent 25.0 %  Det Flow 10 ml/min  B/F Flow 10 ml/min  Aux Flow 0 ml/min
	85	}					•	Oven Temp 45 C Amb Temp 34 C Max Gain 1000
	1.1	3						Analysis Time 400.0 sec
		źń.						Pk Compound Name Area/Conc R.T. 1 Unknown 7.023 mVS 72.6
	14	) ²					•	2 Toluene 33.05 ppb 112.1 3 Ethylbenzene 33.44 ppb 209.8
	17	1						
-	20	þ						
		3		•				
	22	8	•				•	
Tradition of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	25	7	•					
	28	5					_	
	5		•				•	
	31	ķt						Notes soil bottle headspace vol.=145cc
***************************************	34	2		•				temp 28 c 50g soil
			•				•	Sample # 19 6 to 8 ft
	37	1.						
	40	6						

Anal	ysis	3844.S	3.03	5→ tata	F un ch	ion Analysis Report
0	4	8	12	16	20	Time Printed: Aug 11,93 16:36
1 4				1000		Sample Time: Aug 11,93 16:27
		•	. ` ` `	1. 52 52 52		Method
28				<b>=</b>		Slope Up 3.000 mV/Sec
	٠ حے		•		•	Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
1 1		•	•	•		Min Height 0.000 mV
57						Analysis Delay 50.0 sec
1	ا 1.				•	Window Percent 25.0 %
	.1.					Det Flow 10 ml/min
1 80		•	•	•		B/F Flow 10 ml/min
85	•					Aux Flow O ml/min
	•		•		•	Oven Temp 45 C
3						Amb Temp 35 C
		•	•	•		Max Gain 1000
114						Analysis Time 400.0 sec
2	•		•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
		-	•	•		1 Benzene 25.37 ppb 52.8
142						2 Unknown 10.01 mVS 72.6
5	•		•		•	3 Unknown 4.400 mVS 89.7
	-				•	4 Toluene 39.31 ppb 113.4
			-	·		5 Unknown 4.364 mVS 142.5
171						6 Ethylbenzene 17.28 ppb 201.4
		-	-	·		
200						
6						
228						
			•			
257						
129/					•	
		•	•	•		
285						
2.9.1			•		•	
		•	•			
314						Notes
	•	• • .	•		•	soil bottle headspace vol.=145cc
						temp 28 c
		•	•	•		42ml water sample
342						
	•	•	•		•	Sample # 19 water sample
		-	=	,		
371						
	-	•			-	
440						

Anad	lysis	s #7	108+	GC Fu	ction Analysis Report 4-12-93
	1.	2	3 .(x	4 ( 10 mV)	
28					Slope Up 3.000 mV/Sec
12.0	سسنس	<del></del>		• .	Slope Down 3.000 mV/Sec
ر ا	5				Min Area 10.00 mVSec
1.1		•	•	•	Min Height 0.000 mV
157L		_			Analysis Delay 45.0 sec
J		1.		• •	Window Percent 25.0 %
					Det Flow 10 ml/min
12					B/F Flow 10 ml/min
85					Aux Flow O ml/min
					Oven Temp 45 C
		•	•		Amb Temp 30 C
111					Max Gain 1000 Analysis Time 400.0 sec
1.1	33				Analysis Time 400.0 sec Peak Report
					Pk Compound Name Area/Conc R.T.
		•	•	•	1 Benzene 143.8 ppb 55.2
14/2	4				2 Unknown 0.617 mVS 70.0
	•	•			3 Toluene 142.9 ppb 108.9
					4 Unknown 8.863 mVS 136.5
					5 Unknown 5.721 mVS 191.4
171					6 Ethylbenzene 54.07 ppb 219.6
					7 M&P-Xylene 160.0 ppb 235.6
					8 O-Xylene 79.58 ppb 277.6
	4**				
200	,5				
		•	•	•	
228	6				
	•		•	. ,	
1					
257					
		•	•		
285	8				
2.4	in,				
		•	•	•	
314		_			Notes
	•				spike sample cal.check
					sample #
					soil volume 50g
342					water sample volume 43.0ml
					temp. of sample 28 c
		•	•	•	.iml of lug/ml BTEX on 50g soil
371					O.2ug/kg (ppb) benzene 700 = lug/kg
1311					benzene
					ethylben. 270 = lug/kg
			•	•	m,p&o-xylene 400 = lug/kg
400					A file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and a file and
1 1 "	•				

q	ì	4	8				
1 7			>-<	12	1.6	20	Time Printed: 3ac 1.90 01:49
1 1			ω.	.(x		mV)	Sample Time: Jan 1,90 01:39
				. \ ^	7. N.	mv /	Method
100	$\supset$						Slope Up 3.000 mV/Sec
28	, —			<b>—</b>			Slope Down 3.000 mV/Sec
	1						1
1							1
57	>						Analysis Delay 45.0 sec
	1						Window Percent 25.0 %
	Ì						Det Flow 10 ml/min
	2						B/F Flow 10 ml/min
85	•						Aux Flow O ml/min
							Oven Temp 45 C
							Amb Temp 32 C
							Max Gain 1000
111	<b>X</b>	3					Analysis Time 400.0 sec
	1	•		•	•	•	Peak Report
							Pk Compound Name Area/Conc R.T.
			•	•	•		1 Benzene 82.21 ppb 55.4
14	2	4					2 Unknown 0.854 mVS 69.6
-		• *		•		٠	3 Toluene 193.3 ppb 109.2
							4 Unknown 17.38 mVS 137.6
	1		•	•	•		5 Unknown 4.844 mVS 192.2
1.7	ļ.,						6 Ethylbenzene 69.51 ppb 219.6
1-1	1			•		•	7 M&P-Xylene 186.7 ppb 236.0
							8 O-Xylene 128.6 ppb 278.1
	1		•	•	•		the statement of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of
20		5					
2	<b>1</b>	. · ·		•			
			•	•	•		
		,					
22	ខ	6					
	$V_{-}$				•		
	l						
25	1			•			
	l		•				
	l						
3.5	5	8					
							11 J
33	4			•			Notes
							spike sample cal.check
							sample #
1							soil volume 50g
34	12						water sample volume 40.0ml
							temp. of sample 28 c
							.1ml of lug/ml BTEX on 40ml H20
	İ						.25ug/l (ppb)
37	1.						benzene 330 = 1ug/1
							toluene 760 = 1ug/l
							ethylben. $280 = 1 \text{ug/l}$
							m,p&o-xylene 400 = 1ug/l
4	<b>4</b> 0 -					•	
<u> </u>	'						

9	4	8	12	16 1000	20	Time Printed: Aug 12,93 02:12 Sample Time: Jan 1,70 02:02
28	- Sinos				<u> </u>	Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 10.00 mVSec Min Height 0.000 mV
57		<b>-</b> 1	•		•	Analysis Delay 45.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85_	•				·	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114						Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec
142	) <u>.</u>					Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 48.85 ppb 55.6
171						
200					٠	
228						
257						
285						
314						Notes zero check
342						sample # soil volume 50g water sanple volume 40.0ml temp. of sample 28 c
371						
400						

Anady	* No. A. No.	77 X., s.,)	3. 07 (3	,,.,,	1 ((111)	tion Calibrant Report
9	4	8	12 .(×	16 10	20 mV)	Time Printed: Aug 12,93 07:54 Sample Time: Aug 12,93 05:27
						Method
28/						Slope Up 3.000 mV/Sec
- 1	•	•	•		-	Slope Down 3.000 mV/Sec
1						Min Area 10.00 mVSec
1		•	•	•		Min Height 0.000 mV
,						
57-						
را			:1.			Window Percent 25.0 %
-						Det Flow 10 ml/min
		•				B/F Flow 10 ml/min
85						Aux Flow O ml/min
94	•		•		•	Oven Temp 45 C
						· ·
						· ·
						Max Gain 1000
1:14						Analysis Time 400.0 sec
-	:	ž i	•		•	Peak Report
ſ		•				Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 1.000 ppm 55.6
						<b>1</b>
142						
						3 Ethylbenzene 1.000 ppm 221.0
						4 O-Xylene 1.000 ppm 280.0
-						
171						
- 1.	•		•		•	
200						
	•		•	•	•	
N		•	•	•		·
228						
440	3				•	
Y						
1						
257						
	•		•		•	
, k			•			
_1						
285	4					
ſ						
		•	•	•		
314						Notes
307 31	•		•		•	zero check
		•				sample #
						soil volume 50g
342						water sanple volume 40.0ml
	•	•	•	·		temp. of sample 28 c
		•	•	•		
371						
400						·

Anati.)	y 10 J. 10	. ??	l.	3.373	31 00	1 (.(11(	cron energana kapon c
9	4		8	12 .(x	16 10	20 mV)	Time Printed: Aug 12,93 04:02 Sample Time: Aug 12,93 03:51
		•			•		Method
28 Z							Slope Up 3.000 mV/Sec
- A	₹.	•	•	•		•	Slope Down 3.000 mV/Sec
1 4	>						Min Area 10.00 mVSec
1					•		Min Height 0.000 mV
	<b>-</b> .						Analysis Delay 45.0 sec
57	- <u>.</u>						· · · · · · · · · · · · · · · · · · ·
<		<u></u>					Det Flow 10 ml/min
				4			B/F Flow 10 ml/min
85/							Aux Flow O ml/min
15							Oven Temp 45 C
	5					•	Amb Temp 32 C
1 K	_	•		•	,		Max Gain 1000
114		-	>7				Analysis Time 400.0 sec
1	سمسسند		, '	•		•	Peak Report
1 11							Pk Compound Name Area/Conc R.T.
IV		٠		•	•		1 Benzene 308.6 ppb 49.4
1, 1	co.						2 Unknown 0.758 mVS 56.1
142	is .		•	•			1
							1
				•			1
							5 Unknown 1.821 mVS 86.5
171							6 Unknown 104.1 mVS 94.8
1 1							7 Toluene 3.207 ppm 108.5
9							8 Unknown 55.95 mVS 137.6
		٠					9 Unknown 3.528 mVS 174.8
200							10 O-Xylene 115.1 ppb 289.8
	•	•	•	•		•	
		•		•			
228							
1.40	•	•	•				
		٠		•	•		
0.00							
257				•			
285							
10							
314							Notes
	•	•	•	•		•	soil sample
							sample # 11 18 to 20 ft
		•		•	•		soil volume 50g
342							water sample volume 40.0ml
1	•		•	•		•	temp. of sample 28 c
							Sisse 111 per til Ster 1 - nersestit på de Sic - An Sic - Sic
371							
440							

Anal	уртр	. ??.1	. 7	1. ()	or uc	r corc.	tion Analysis Keport
	4		8	12 .(×	16 10	20 mV)	Time Printed: Aug 12,93 03:38 Sample Time: Aug 12,93 03:27
\ \~							Method
28							Slope Up 3.000 mV/Sec
5							Slope Down 3.000 mV/Sec
							Min Area 10.00 mVSec
1		•		•	•		Min Height 0.000 mV
57		۱.و					Analysis Delay 45.0 sec
	•	.1;	•	•		•	Window Percent 25.0 %
			***				Det Flow 10 ml/min
			77)				B/F Flow 10 ml/min
				'	r. <del>†</del>		i e
85/							Aux Flow O ml/min
							Oven Temp 45 C
	<b>&gt;</b> 5						Amb Temp 33 C
1 1							Max Gain 1000
1.14				>6			Analysis Time 400.0 sec
	مسرسنس				• • •	•	Peak Report
							Pk Compound Name Area/Conc R.T.
<b>V</b>		•		٠	•		1 Unknown 194.0 mVS 49.4
1	,						
142	7			•			···
							3 Unknown 270.6 mVS 62.2
1							4 Unknown 628.9 mVS 70.6
							5 Unknown 124.7 mVS 94.8
171							6 Toluene 3.687 ppm 108.6
	•	•	•	•		•	7 Unknown 50.38 mVS 137.2
							8 Unknown 5.639 mVS 289.6
1		•		•	•		
200							
-40	•		•				
1							
228							
ł							
297							
	•	•	•	٠		•	
		•		•	•		
285							
~ '		•	•	•		•	
10							
8				•			
314							Notes
							soil sample
							sample # 11 16 to 18 ft
							soil volume 50g
342							water sample volume 40.0ml
	•		•	•		•	temp. of sample 28 c
1							·
		•		•	•		
371							
31.	•	•	•	•			
1							
ĺ							
400							
,							

1	Δ							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Slope Up			·	8	12 .(x			Sample Time: Aug 12,73 03:11	
Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   25.0 %   Det Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Oven Temp   45 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   33 C   Amb Temp   34 C   Amb Temp   35 C   Amb Temp   35 C   Amb Temp   35 C   Amb Temp   35 C   Amb Temp   35 C   Amb Temp   36 C   Amb Temp   36 C   Amb Temp   36 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp   37 C   Amb Temp	28	2							
Min Area   10.00 mVSec   Min Height   0.000 mV		سنمع	<u> </u>					(2.1	
Min Height								Irlia management and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second analysis of the second analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and an analysis of the second and	
Analysis Delay 45.0 sec Window Percent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Flat Compound Name Area/Conc R.T. 1 Benzene 835.5 ppb 49.2 Unknown 649.0 mVs 62.4 Unknown 36.08 mVs 87.0 Unknown 795.5 mVs 70.6 Unknown 36.08 mVs 87.0 Unknown 174.2 mVs 94.9 5 Unknown 174.2 mVs 94.9 5 Unknown 69.36 mVs 137.6 Ethylbenzene 241.9 ppb 175.4 Ethylbenzene 160.4 ppb 294.2 12 Max-Xylene 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.3 111  257 12  Notes  Notes  Soil sample # I1 14 to 16 ft soil volume 50g water sample # I1 14 to 16 ft soil volume 50g water sample 28 c	1						•	held my later to the	
Window Percent   25.0 %	57 L				1				
Det Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 835.5 ppb 49.2 2 Unknown 649.0 mVs 62.4 3 Unknown 795.5 mVs 70.6 4 Unknown 36.08 mVs 87.0 1111 5 Unknown 174.2 mVs 94.7 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mVs 137.6 8 Ethylbenzene 241.9 ppb 175.0 FRR 10 Unknown 5.105 mVs 199.4 10 Unknown 5.105 mVs 199.4 10 Unknown 64.11 mVs 208.5 FRR 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\	•	•		•		1 11: 1	
B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report  14 7 Enzene 835.5 ppb 49.2 Unknown 649.0 mlvs 62.4 Unknown 449.0 mlvs 62.4 Unknown 36.08 mlvs 87.0 Unknown 174.2 mlvs 94.9 6 Toluene 5.188 ppm 109.0 Unknown 69.56 mlvs 137.6 Ethylbenzene 241.2 ppb 175.5 ml FAR 9 Unknown 5.105 mlvs 137.6 Ethylbenzene 241.2 ppb 175.5 ml FAR 10 Unknown 64.11 mlvs 208.0 11 Ethylbenzene 160.4 ppb 224.2 12 mll May Explane 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.5						<b>—</b> ~		window Percent 25.0 %	
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report Fk Compound Name 878.5 5 ppb 49.2 2 Unknown 49.0 mvs 62.4 3 Unknown 79.5 mvs 70.6 4 Unknown 36.08 mvs 87.0 171 5 Unknown 36.08 mvs 87.0 171 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mvs 137.6 6 5 Ethylbenzene 241.2 ppb 175.0 FAR 10 Unknown 6.105 mvs 199.4 10 Unknown 64.11 mvs 208.0 7 10 Unknown 64.11 mvs 208.0 10 Unknown 64.11 mvs 208.0 10 Unknown 64.11 mvs 208.0 11 Ethylbenzene 160.4 ppb 284.2 12 M&P-Xylene 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.5 11 1 257 12 12 13 mple 371.1 ppb 280.5 13 14 14 to 16 ft soil volume 500 water sample volume 40.0ml temp. of sample 28 c						<u> </u>			
Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Soli   Sample   Sample   Soli   Sample   Sa	85/					*	)	B/F Flow 10 ml/min	
Amb Temp 33 C Max Gain 1000 Max Gain 1000 Analysis Time 400.0 sec  Feak Report  Pk Compound Name Area/Conc R.T.  Benzene 335.5 ppb 49.2  Unknown 649.0 mVs 62.4  Unknown 795.5 mVs 70.6  Unknown 36.08 mVs 87.0  Unknown 174.2 mVs 94.7  To Unknown 69.36 mVs 137.6  ER Ethylbenzene 241.9 ppb 178.8  Unknown 69.36 mVs 137.6  ER Ethylbenzene 241.9 ppb 178.8  Unknown 64.11 mVs 208.0  Unknown 64.11 mVs 208.0  The Ethylbenzene 160.4 ppb 224.2  M&P-Xylene 460.7 ppb 247.2  M&P-Xylene 460.7 ppb 247.2  Ample 371.1 ppb 280.5  Ample 8 soil sample 8 sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	1	kı .	•	•					
Max Gain	1	-							
Max Gain	1		•		•			Amb Temp 33 C	
Analysis Time 400.0 sec Feak Report Fek Compound Name Area/Conc R.T. 1 Benzene 835.5 ppb 49.2 2 Unknown 649.0 mVS 62.4 3 Unknown 795.5 mVS 70.6 4 Unknown 36.08 mVS 87.0 5 Unknown 174.2 mVS 94.9 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mVS 137.6 8 Ethylbenzene 241.9 ppb 178.8 9 Unknown 64.11 mVS 208.0 10 Unknown 64.11 mVS 208.0 10 Unknown 64.11 mVS 208.0 11 Ethylbenzene 160.4 ppb 254.2 12 M&P-Xylene 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.5  Analysis Time 400.0 sec Feak Report Fek Compound Name Area/Conc R.T. 1 Benzene 835.5 ppb 49.2 2 Unknown 36.08 mVS 87.0 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mVS 137.6 8 Ethylbenzene 140.4 mVS 208.0 10 Unknown 64.11 mVS 208.0 11 Unknown 64.11 mVS 208.0 12 M&P-Xylene 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.5	1116							I but	
Peak Report	1. 1.	·				<b>-</b> 6		An alteria was well and a	
Fk Compound Name   Area/Conc   R.T.     18enzene   835.5 ppb   49.2     2 Unknown   649.0 mVS   62.4     3 Unknown   795.5 mVS   70.6     4 Unknown   36.08 mVS   87.0     171   5 Unknown   36.08 mVS   87.0     171   6 Toluene   5.188 ppm   109.0     8	11/							Feak Report	
1 Benzene 835.5 ppb 49.2 2 Unknown 649.0 m/v 62.4 3 Unknown 36.08 m/v 87.0 4 Unknown 36.08 m/v 87.0 5 Unknown 174.2 m/v 94.9 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 m/v 137.6 8 Ethylbenzene 241.2 ppb 175.6 9 Unknown 64.11 m/v 208.0 10 Unknown 64.11 m/v 208.0 11 Ethylbenzene 160.4 ppb 224.2 12 M327-Xylene 460.7 ppb 247.4 13 0-Xylene 371.1 ppb 280.5  11  257 12  265 13  314  Notes  soil sample sample # 11 14 to 16 ft soil volume 50g water sanple volume 40.0m1 temp. of sample 28 c	1 1/				•			15th Commonweal Manager	
2 Unknown 649.0 mVs 62.4 3 Unknown 795.5 mVs 70.6 4 Unknown 36.08 mVs 87.0 5 Unknown 174.2 mVs 94.9 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mVs 137.6 8 Ethylbenzene 241.9 ppb 175.8 9 Unknown 5.105 mVs 199.4 10 Unknown 64.11 mVs 208.0 11 Ethylbenzene 160.4 ppb 244.2 12 MBP—Xylene 460.7 ppb 247.4 13 0—Xylene 371.1 ppb 280.5  314  Notes  soil sample # 11 14 to 16 ft soil volume 50g water sanple volume 40.0m1 temp. of sample 28 c	1	****						14 Vi	
3 Unknown 795.5 mVs 70.6 4 Unknown 36.08 mVs 87.0 5 Unknown 174.2 mVs 94.9 6 Toluene 5.188 ppm 109.0 7 Unknown 69.56 mVs 137.6 8 Ethylbenzene 241.9 ppb 175.86 9 Unknown 5.105 mVs 199.4 10 Unknown 64.11 mVs 208.0 11 Ethylbenzene 166.4 ppb 224.2 12 M3P-Xylene 460.7 ppb 247.4 13 O-Xylene 371.1 ppb 280.5 11 257 12  Notes  Soil sample # 11 14 to 16 ft soil volume 50g water sanple volume 40.0m1 temp. of sample 28 c	1.43	7						(2) Herting many	
171	1				-	•	•	7 11 0 11 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0	
171								7 Limited 70.8	
171   6 Toluene   5.188 ppm   109.0   7 Unknown   69.56 mVS   137.6   8 Ethylbenzene   241.8 pph   175.80   FRR   200   9 Unknown   5.105 mVS   199.4   10 Unknown   64.11 mVS   208.0   11 Ethylbenzene   160.4 pph   224.2   12 M&P-Xylene   460.7 pph   247.4   13 O-Xylene   371.1 pph   280.5   11   285   13   314   Notes   Soil sample   11   14 to 16 ft   Soil volume   50g   water sample   volume   40.0ml   temp. of sample   28 c   371.						•	•	15 11m1-m	
R	171							174.2 mvs 94.9	
8 Ethylbenzene 241.2 ppb 178.8 FRR 9 Unknown 5.105 mVS 199.4 10 Unknown 64.11 mVS 208.0 11 Ethylbenzene 160.4 ppb 224.2 12 M&P-Xylene 460.7 ppb 247.4 13 O-Xylene 371.1 ppb 280.5  11  257 12  Notes  soil sample sample # 11 14 to 16 ft soil volume 500 water sample volume 40.0ml temp. of sample 28 c	1			•	•		•	77 Um lim main 3 a 100 ppm 109 0	
9 Unknown 5.105 mVS 199.4 10 Unknown 64.11 mVS 208.0 11 Harmown 64.11 mVS 208.0 12 Mar-Xylene 160.4 ppb 224.2 12 Mar-Xylene 460.7 ppb 247.4 13 O-Xylene 371.1 ppb 280.5  11  257 12  Notes  soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	8							G 7.06 MV5 137.6	000
10 Unknown					•	•		(C) 11m1 m m m	TK.
10	200							10 University 5,105 mVS 199,4	
12 Map-xylene 460.7 ppb 247.4 13 0-xylene 371.1 ppb 280.5  257 12  258	19	•	•	•	•	•	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
228 13 0-Xylene 460.7 ppb 247.4 371.1 ppb 280.5  11  257 12  Notes  soil sample sample # 11 14 to 16 ft soil volume 50g water sanple volume 40.0ml temp. of sample 28 c	10							of all had so the form of the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the first to the f	160
257 12  265 13  Notes  soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0m1 temp. of sample 28 c			•		•	•		1 at 100 att. 1 at 1 at 1 at 1 at 1 at 1 at 1 at	
257 12  265 13  Notes  soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	228							371.1 ppb 280.5	
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c	111	•	•	•	•		•		
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c									
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c					•	•			
Notes  Soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	257	1.2							
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c	i	•	•	•			•		
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c									
Notes  Soil sample  Sample # 11 14 to 16 ft  Soil volume 50g  Water sample volume 40.0ml  temp. of sample 28 c			-		•	•			
Notes  Soil sample  sample # 11 14 to 16 ft  Soil volume 50g  water sample volume 40.0ml  temp. of sample 28 c	285	1.3							
Soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c		j	•	•	• •	•	•		
Soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c									
Soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c					•				
soil sample sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	314							LI. I.	
sample # 11 14 to 16 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c			•	•		•	•	Soil sample	
soil volume 50g water sample volume 40.0ml temp. of sample 28 c									
water sample volume 40.0ml temp. of sample 28 c					•	•			
temp. of sample 28 c	342							mater canal and out	
37 I.		•	•	•		٠		temp of comple volume 40.0ml	
								zemb. Oi sawbie 58 C	
			-		•	•			
	371						ł		
400			•	•		•	.		
400							-	İ	
40		•			•	•	1		
	400								
	'				<u>.                                    </u>	•			•

	ramra				1 3311 33	cron successors tempor c
0 .	4	8	1.2	16	20	Time Printed: Aug 12,93 02:47
				1000		Sample Time: Aug 12,93 02:37
				_		Method
28						Slope Up 3.000 mV/Sec
1					•	Slope Down 3.000 mV/Sec
1	5					Min Area 10.00 mVSec
1 1		•	•			Min Height 0.000 mV
57 2						Analysis Delay 45.0 sec
1 6	<b>3</b> .					Window Percent 25.0 %
1 2.	. d.					Det Flow 10 ml/min
1 7			خـــ			B/F Flow 10 ml/min
85			**	3		Aux Flow O ml/min
10.4					•	Oven Temp 45 C
						Amb Temp 33 C
		•	•	•		Max Gain 1000
1			а			· · · · · · · · · · · · · · · · · · ·
114		هبـــــ	** <del>†</del> .		•	Analysis Time 400.0 sec Peak Report
1						· ·
			•	•		1
1,1	622					
142	,5					
	-		•			1
,						5 Unknown 8.255 mVS 137.8
171						
1 1						
		•	•	•		
1242						
200					•	
		•		•		
220						
228			•		•	
		•		•		
257						
127	•				•	
		•	•	•		
285						
A C	•	•			•	
		•	•	•		
314						Notes
	•		•		•	soil sample
						sample # 11 10 to 12 ft
		•	•	•		soil volume 50g
342						water sample volume 40.0ml
	•		•		•	temp. of sample 28 c
		•	•	•		
371						
	•		•		•	
		•	•	•		
400						
1 "	•		•		•	·
	_					

Slope Down 3.000 mV/Sec Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 25.0 % Det Flow 10 ml/min 4 B/F Flow 10 ml/min	-						
Method   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   25.0 %   Det Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Oven Temp   45 C   Amb Temp   33 C   Max Gain   1000   Analysis Time   400.0 sec   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Report   Feak Repo	0	22	4	6			
Slope Up				.(x	10	mV)	
Slope Down	<u> </u>						
Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 25.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.17 ppb 50.2 Unknown 5.139 mVS 56.0 3 Unknown 414.6 mVS 70.8 Unknown 414.6 mVS 70.8 Unknown 3.721 mVS 94.9 6 Toluene 2.148 ppm 108.8 7 Unknown 24.45 mVS 138.0 8 Unknown 6.576 mVS 281.6	28	5.					
Min Height	5						
Analysis Delay 45.0 sec Window Fercent 25.0 % Det Flow 10 ml/min E/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Hax Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.17 ppb 50.2 2 Unknown 5.139 mVS 56.0 3 Unknown 6.727 mVS 62.2 4 Unknown 414.6 mVS 70.8 5 Unknown 3.721 mVS 94.9 6 Toluene 2.148 ppm 108.8 7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6 200  228  314  Notes sample # 11 Stolo ft soil volume 50g water sanple volume 40.0ml temp. of sample 28 c	. ?						· · · · · · · · · · · · · · · · · · ·
Window Fercent   25.0 %     Det Flow   10 ml/min     B/F Flow   10 ml/min     B/F Flow   0 ml/min     Aux Flow   0 ml/min     Oven Temp   45 C     Amb Temp   33 C     Max Gain   1000     Analysis Time   400.0 sec     Feak Report     Pk Compound Name   Area/Conc   R.T.     Benzene   29.17 ppb   50.2     Unknown   5.139 mVS   56.0     Unknown   5.139 mVS   56.0     Unknown   414.6 mVS   70.8     Unknown   3.721 mVS   94.9     Till   6 Toluene   2.148 ppm   108.8     Unknown   24.65 mVS   138.0     Unknown   24.65 mVS   281.6     Cool     Sample   11   Stolo ft     Soil volume   50g     water sample volume   40.0ml     temp. of sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample   28 c     Sample							
Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.17 ppb 50.2 Unknown 5.139 mVS 56.0 3 Unknown 6.727 mVS 62.2 Unknown 3.721 mVS 74.9 6 Toluene 2.148 ppm 1088.0 8 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6	572	1.					,
B/F Flow			•		·		
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report  Report  Report  Report  Renzene 29.17 ppb 50.2 Unknown 5.139 mV5 56.0 Unknown 41.4.6 mVS 70.8 Unknown 41.4.6 mVS 70.8 Unknown 3.721 mVS 94.9 Unknown 24.65 mVS 138.0 Unknown 24.65 mVS 281.6  Unknown 6.576 mVS 281.6  In Notes  Sample soil Sample # 11 8to10 ft Soil volume 50g water sample volume 40.0ml temp. of sample 28 c							Det Flow 10 ml/min
Oven Temp						<b>-</b> 4	B/F Flow 10 ml/min
Oven Temp	85/						Aux Flow 0 ml/min
Max Gain 1000 Analysis Time 400.0 sec    Feak Report		•	•	• •	•	•	Oven Temp 45 C
114 6 Analysis Time 400.0 sec Feak Report	l le						Amb Temp 33 C
Peak Report	1		•	•	•		· · · · · · · · · · · · · · · · · · ·
Peak Report	114			==6			i e
Pk Compound Name Area/Conc R.T.  1 Benzene 29.17 ppb 50.2  2 Unknown 5.139 mVS 56.0  3 Unknown 414.6 mVS 70.8  5 Unknown 3.721 mVS 94.9  6 Toluene 2.148 ppm 108.8  7 Unknown 24.65 mVS 138.0  8 Unknown 6.576 mVS 281.6  200  228  314  Notes  sample soil sample # 11 8to10 ft soil volume 50g water sanple volume 40.0ml temp. of sample 28 c				<del></del>	•	•	
1 Benzene 29.17 ppb 50.2 2 Unknown 5.139 mVS 56.0 3 Unknown 4.727 mVS 62.2 4 Unknown 414.6 mVS 70.8 5 Unknown 3.721 mVS 94.9 6 Toluene 2.148 ppm 108.8 7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6 200 228 257 285 314						. 4	• · · · · · · · · · · · · · · · · · · ·
14 7 2 Unknown 5.139 mVS 56.0 3 Unknown 6.727 mVS 62.2 4 Unknown 3.721 mVS 70.8 5 Unknown 3.721 mVS 94.9 6 Toluene 2.148 ppm 108.8 7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6  200  228  314  Notes sample soil sample # 11 8to10 ft soil volume 509 water sample volume 40.0ml temp. of sample 28 c	1 1		•	•	•	,	
3 Unknown   6.727 mVS   62.2   4 Unknown   414.6 mVS   70.8   5 Unknown   3.721 mVS   94.9   6 Toluene   2.148 ppm   108.8   7 Unknown   24.65 mVS   138.0   8 Unknown   6.576 mVS   281.6   200   228   314   Notes   Sample   501   Sample   # 11   8tol0   ft   soil volume   50g   water   sample   50g   water   sample   28   c   371   371	100	-7					
4 Unknown 3.721 wVS 70.8 5 Unknown 3.721 wVS 94.9 6 Unknown 2.148 ppm 108.8 7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6 200  Notes sample soil sample # 11 8to10 ft soil volume 50g water sanple volume 40.0ml temp. of sample 28 c	1	1			•	•	
5 Unknown 3.721 mVS 94.9 6 Toluene 2.148 ppm 108.8 7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6 200 228 257 265 8 314 342 Notes sample soil sample # 11 8toi0 ft soil volume 50g water sanple volume 40.0ml temp. of sample 28 c							•
171			•	•	•		
7 Unknown 24.65 mVS 138.0 8 Unknown 6.576 mVS 281.6 200 228 257 285 8 314  Notes sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	1,						
8 Unknown 6.576 mVS 281.6 200 228 257 265 8 314 Notes sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	1-1-	•			•		
228 257 265 8 314 Notes sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							1
257  265 8  314  Notes  sample soil sample # 11 Stoi0 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	{		•	•	•		See Section Converse Section Control on the Hone
257  265 8  314  Notes  sample soil sample # 11 Stoi0 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	200						
257  285 8  314  Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	1290	•				•	
257  285 8  314  Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
257  285 8  314  Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
257  285 8  314  Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  Sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	240	•				•	
Notes  Sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  Sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c					٠		
Notes  Sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	257						
Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
Notes  sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	1 1						
sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	8						
sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
sample soil sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c							L) 1
sample # 11 8to10 ft soil volume 50g water sample volume 40.0ml temp. of sample 28 c	314						
soil volume 50g water sample volume 40.0ml temp. of sample 28 c							
water sample volume 40.0ml temp. of sample 28 c							
temp. of sample 28 c							
371	342						
							temp. of sample 28 c
	371				_		
400		•	•	•	·		
400			•				
400				-	·		
	1400						
	1	·		•		•	

	S 374	20 00 00 00 00000	1 44114	tion calibrant Report
0 4	8	12 16 .(x 10	20 mV)	Time Printed: Aug 13,93 00:56 Sample Time: Aug 13,93 00:47
28				Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 10.00 mVSec Min Height 0.000 mV
57		<u> </u>		Analysis Delay 45.0 sec Window Percent 25.0 % Det Flow 10 ml/min
85 .				B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 28 C
114	*E			Max Gain 1000 Analysis Time 400.0 sec Peak Report
142			·	Fk Compound Name     Area/Conc     R.T.       1 Benzene     1.000 ppm     55.2       2 Toluene     1.000 ppm     108.5       3 Ethylbenzene     999.9 ppb     217.8       4 O-Xylene     1.000 ppm     275.7
171 .				
200 .				
222 3			٠	
257				
287 4				
314				Notes cal. check sample # 1 ppm BTEX gas standard
342				soil volume 50g water sanple volume 40.0ml temp. of sample 28 c
371				
400		•		

9 1 2 3 4 5 Time Print (x 10 mV) Sample Time 28 Slope Up Slope Down	ted: Aug 13,93 08:25 ne: Aug 13,93 00:58
	Method
	3.000 mV/Sec
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	n 3.000 mV/Sec
Min Area	10.00 mVSec
Min Height	
57 Analysis I	
1 Window Per	j
Det Flow	10 ml/min
B/F Flow	10 m1/min
85 Aux Flow	O ml/min
Oven Temp	45 C
Amb Temp	29 C
Max Gain	1000
	}
1.104 2 Analysis 7	
	Peak Report
Pk Compound h	
1 Benzene	48.06 ppb 55.3
142	6.280 mVS 109.4
	-
171	
200	
228	
257	
(43)	
285	
314	Notes
zero check	1
	i
sample # cl	
soil volume	
	le volume 40.0ml
temp. of sa	ample 28 c
371	1
lado	
490	

				20,2000			cron markers webort
	.l.	. : 	2	3 .(x	4 10	5 mV)	Time Printed: Aug 13,93 09:02 Sample Time: Aug 13,93 08:48
28			- <b>-</b>				Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1.1	7			•			Min Area 10.00 mVSec Min Height 0.000 mV
57/		<u> </u>					Analysis Delay 45.0 sec
			i.		•		Window Percent 30.0 % Det Flow 10 ml/min
85							B/F Flow 10 ml/min Aux Flow 0 ml/min
	•	•	•			•	Oven Temp 45 C
		•		•	• •		Amb Temp 32 C Max Gain 1000
1.14	<b>_</b>	•	•			•	Analysis Time 400.0 sec Peak Report
							Pk Compound Name Area/Conc R.T.
		•		•	•		1 Benzene 145.4 ppb 55.1
142	4						2 Unknown 1.424 mVS 70.0
				•		•	3 Toluene 212.4 ppb 108.9
	_			•			4 Unknown 21.41 mVS 136.8
171							5 Unknown 5.433 mVS 192.4
1-1-			•				6 Unknown 6.371 mVS 218.6
							7 M&P-Xylene 190.0 ppb 235.2 8 O-Xylene 94.92 npb 278.4
		•		•	•		8 O-Xylene 94.92 ppb 278.6
200	5						
	•	•	•	•	•	•	
1 1				_			
1					٠.		
228	6						
1							
1 1		•		•	٠		
257							
		•			•		
285	8						
[2.Q].1	O	•			•	.	
		•		•	•		
314						ŀ	Notes
	•	•		•	•	.	zero check
						1	sample#clean soil .tml of lug/ml
						1	soil volume 50g
342							water sample volume 40.0ml
							temp. of sample 28 c
		•					.1ug/50g=.002ug/g=2ug/kg
371						}	72 ppb benzene = lug/kg
"   "	•	•		•	٠		100 ppb toluene = lug/kg
							50 ppb m,p&o-xyle,= lug/kg
		•	•		•	-	blee makess varant redved
400							
<u> </u>				·			

Anal	ysis	*# {
9	1.	

Anal	. /					tion Analysis Report
9	1.	. 2	3 .(x	4 10	5 mV)	Time Printed: Aug 13,93 09:16 Sample Time: Aug 13,93 09:04
						Method
28	5					Slope Up 3.000 mV/Sec
	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA			. •	•	Slope Down 3.000 mV/Sec
1 5	ł.					Min Area 10.00 mVSec
1.1		•	•	•		Min Height 0.000 mV
57						Analysis Delay 45.0 sec
		· ·			•	Window Percent 30.0 %
		.l.				1
1 .						Det Flow 10 ml/min
12						B/F Flow 10 ml/min
85						Aux Flow O ml/min
3						Oven Temp 45 C
4						Amb Temp 32 C
		•	•	•		Max Gain 1000
114	<b>~</b>					Analysis Time 400.0 sec
1	***	•		•	•	Peak Report
1 1						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 137.1 ppb 55.2
1	. ,					
142	6					
						3 Unknown 0.489 mVS 85.4
						4 Unknown 0.483 mVS 94.2
						5 Toluene 276.9 ppb 108.4
171						6 Unknown 34.74 mVS 136.8
	•	•		•	•	7 Unknown 5.407 mVS 174.6
1 12						8 Ethylbenzene 203.9 ppb 192.2
l A		•	•	•		9 Unknown 2.429 mVS 219.2
200	8					10 Unknown 6.620 mVS 232.0
				•	•	11 Unknown 8.534 mVS 235.8
						12 O-Xylene 133.8 ppb 278.4
		•	•			and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o
la th	m					
223	9					
<b>B</b>						· ·
Ja. C						
1.1	l.					
257						
l h				-		
285	12					
			•		•	
		•	•	•		
314						Notes
D.11-4			•		•	zero check
						sample#clean soil .1ml of lug/ml
						soil volume 50g
342						water sanple volume 40.0ml
						temp. of sample 28 c
			•			.1ug/50g=.002ug/g=2ug/kg
						72 ppb benzene = lug/kg
371						135 ppb toluene = lug/kg
	•	•	•		•	100 ppb ethylbenz. = lug/kg
						65 ppb m,p&o-xyle.= lug/kg
		•	•	•		m = . laste m continue colo m m m m m m m m m m m
400						
1.440						

	**		9.1.000
On		ysis:	#9
L.11	44.	2 22 44 22	77 /

Anad	. ,						tion Analysis Report
9	4		8	12 .(x	16 10	20 mV)	Time Printed: Aug 13,93 09:35 Sample Time: Aug 13,93 09:19
	_	•				•	Method
28 -	≥						Slope Up 3.000 mV/Sec
Z(.)				<b>-</b>		•	Slope Down 3.000 mV/Sec
							Min Area 10.00 mVSec
1 1				•	•		1
							Min Height 0.000 mV
57							Analysis Delay 45.0 sec
1	Ĺ						Window Percent 30.0 %
							Det Flow 10 ml/min
2		•		•	•		B/F Flow 10 ml/min
85							Aux Flow 0 ml/min
104		٠	•	•		•	Oven Temp 45 C
							Amb Temp 33 C
				•			1
1							
1.104	:3						Analysis Time 400.0 sec
						,	Peak Report
							Fk Compound Name Area/Conc R.T.
		•		•	•		1 Benzene 75.49 ppb 55.2
142	4						2 Unknown 1.262 mVS 70.5
-   -	. •	٠	•	•		•	3 Toluene 135.5 ppb 108.8
							4 Unknown 8.290 mVS 136.9
				•	•		
							1
171							6 Unknown 21.72 mVS 235.6
							7 O-Xylene 96.69 ppb 277.6
		•		•	•		
200							
1 1	•	•	•	٠		•	
		•		•	•		
	ş						
228	5						
6							
257					_	_	
	•	•	•	•		•	
		•		•	•		
285	7						
Z.CJ	1		•	•		•	
314							Notes
							zero check
					-		sample#clean soil .1ml of lug/ml
		•		-	•		soil volume 50g
342							water sample volume 40.0ml
				•		•	temp. of sample 28 c
		•		•	•		1 "
11							30 ppb benzene = 1ug/1
371						•	50 ppb toluene = 1ug/l
							-30 ppb ethylbenz. = lug/l
							40 ppb m,p&o-xyle.= lug/l
		•		-	•		
400							
			•	•		•	
, '							

PHI KK J.						
0	4	8	1.22	16	20	Time Printed: Aug 13,93 09:51
	,	444	.(x		mV)	Sample Time: Aug 13,93 09:37
		•	. \ ^	*** ***	,	Method
00	1					Slope Up 3.000 mV/Sec
28 <			<b>-</b>			1
						Min Area 10.00 mVSec
						Min Height 0.000 mV
57						Analysis Delay 45.0 sec
	•		٠		•	Window Percent 30.0 %
						Det Flow 10 ml/min
						1
2						B/F Flow 10 ml/min
85						Aux Flow O ml/min
-	•		•		•	Oven Temp 45 C
						Amb Temp 33 C
		•	•	•		Max Gain 1000
	***					
113	્રૅં				•	1
						Peak Report
						Pk Compound Name Area/Conc R.T.
		-	-			1 Benzene 90.44 ppb 55.5
142	4					2 Unknown 2.335 mVS 70.5
- 1			•		•	3 Toluene 266.3 ppb 109.3
						4 Unknown 25.20 mVS 137.8
				•		
171						6 M&F-Xylene 300.0 ppb 220.0
	-		-			7 Unknown 20.86 mVS 236.6
						8 O-Xylene 177.7 ppb 279.7
		•	•	•		
lada	æ					
200	5	. ,				
			•			
						1
228	6					
17	:"		•		•	
<b>L</b> .,						
		•	•	•		
257						
		•	•			
285	8					
2	Ö					
314						Notes
	•	•	•		•	zero check
						sample#clean soil .1ml of lug/ml
		•	•	•		soil volume 50g
342						water sample volume 40.0ml
						temp. of sample 28 c
			4	_		.iug/40ml=.0025ug/ml = 2.5ug/l
		•	•	•		35 ppb benzene = lug/l
371						100ppb toluene = 1ug/1
127.	•	•			•	30 ppb ethylbenz. = lug/l
			•			60 ppb m.p&o-xyle.= lug/l
400						
1			• •		·	

est a cua	.,					croul augraphs report
9	4	8	12	16	20	Time Printed: Aug 13,93 10:09
			,(x	1000	uV)	Sample Time: Aug 13,93 09:58
L			· · · · · · · · · · · · · · · · · · ·			Method
28					_	Slope Up 3.000 mV/Sec
	٠. ٧				•	Slope Down 3.000 mV/Sec
						Min Area 10.00 mVSec
. ,	process of the same	•	•	•		Min Height 0.000 mV
57 6	<b>&gt;</b> .					Analysis Delay 45.0 sec
	7.5		•		•	Window Percent 35.0 %
و						Det Flow 10 ml/min
1.5		•	•	•		B/F Flow 10 ml/min
85						
1						
1						Max Gain 1000
113	3					Analysis Time 400.0 sec
						Peak Report
						Fk Compound Name Area/Conc R.T.
						1 Unknown 2.604 mVS 49.0
14)2	4					2 Unknown 1.359 mVS 55.2
	•		-	•	•	3 Toluene 50.42 ppb 109.3
			_			4 Unknown 5.912 mVS 136.9
-		•	-	•		
171						
	•	•	•		•	
		•	•	•		
200						
]	•	•	•		•	
		•	•	•		
228						
T	•		•		•	
1						
1		•	•	•		
257						
'I'	•		•		•	
		•	•	•		
285						
a			•		•	
1						
		•	•	•		
3:14						Notes
+۱۰۱ او. د			•		•	soil sample
						sample# 24 1 to 3 ft
		•	•	•		soil volume 50g
342						water sample volume 40.0ml
345	•					temp. of sample 28 c
						cempa or sempre 20 c
		•	٠			
371	•					
400						

mittal J. j					F COTA.	
्र	44	8	1.2	1.6	20	Time Printed: Aug 13,93 10:31
.]			.(x	1000	uV)	Sample Time: Aug 13,93 10:22
.[						Method
28				_		Slope Up 3.000 mV/Sec
	سممد				•	Slope Down 3.000 mV/Sec
	5					Min Area 10.00 mVSec
. 1	_	•	•	•		Min Height 0.000 mV
57 2						Analysis Delay 45.0 sec
سرا ^{۱۱}	, <del>حر</del>		•		•	Window Percent 50.0 %
IJ	.1.					Det Flow 10 ml/min
· §		•	•	•		
						1
85 <b>(</b> -						Aux Flow O ml/min
7						Oven Temp 45 C
.)						Amb Temp 33 C
k						Max Gain 1000
11			_			Analysis Time 400.0 sec
1/2	•	•	•	•	•	Peak Report
- 1						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Unknown 8.873 mVS 55.1
142						2 Unknown 5.328 mVS 109.7
1	•		•		•	
}						
		•	•	•		
171						
.t. / LL			•		•	
1						
. \		•	•			
1						·
20¢						
1						
ļ						,
22\$						
		•				
. ]						
}			•	-		
257						
]	•		•		•	
1		•	•	•		
285						
	•	•	•		•	
4						
. [		•	•			
314						Notes
			•		•	soil sample
1						sample # 24 3 to 5 ft
. [		•	•	•		soil volume 50g
342						water sample volume 40.0ml
1						temp. of sample 28 c
		•				
}						
371						
	•	•	•	•	•	
		_	_			
'		•	•	•	•	
400						
						1

enal	lysis	#17.52	1054	UU	r un ca	tion Analysis Report
9	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 13,93 10:43 Sample Time: Aug 13,93 10:35
28 5						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
4	نسس					Min Area 10.00 mVSec
سے · ا		•	•	•		Min Height 0.000 mV
157	> 1					Analysis Delay 45.0 sec
	<u> </u>			•	•	Window Percent 50.0 %
{-						Det Flow 10 ml/min
سرا ا		$\dot{a}$	•			B/F Flow 10 ml/min
85		•				Aux Flow O ml/min
		<u></u>	<u>ت</u> 5	•	•	Oven Temp 45 C
	56					Amb Temp 33 C
111		•	•	•		Max Gain 1000
1119						Analysis Time 400.0 sec
	,	•	• •	•	•	Peak Report
IK				_		Pk Compound Name Area/Conc R.T.
11	_>8		•	•		1 Unknown 41.56 mVS 48.9
142/						2 Benzene 62.01 ppb 57.1
	`	•		•	•	3 Unknown 87.23 mVS 62.4
11/	19					4 Unknown 105.7 mVS 69.3
						5 Unknown 292.8 mVS 87.0
171						6 Unknown 129.5 mVS 95.0
		•	-	-		7 Toluene 147.1 ppb 115.7
1 1			•			8 Unknown 200.3 mVS 129.0
						9 Unknown 108.9 mVS 148.0
200	10					10 Ethylbenzene 1.062 ppm 194.2
	)					11 M&P-Xylene 638.4 ppb 224.4
11/						12 Unknown 48.69 mVS 243.4
1 1						13 O-Xylene 190.8 ppb 298.1
223						
1 12.1						
1.1				•		
1.2	<b>:</b>					
257						
		•	•	•		
285						
Z. C. C.	•			•	•	
1 1						
1 1	3	•	•	•		
314						Notes
	•	•		•	•	soil sample
						sample # 24 5 to 7 ft
1		•	•	•		soil volume 50g
342					_	water sample volume 40.0ml
	•			•	•	temp. of sample 28 c
			•			
371						
		•				
400						

Anal	YS15	3375.O	1.03	5* UU	f tun c	tion Analysis Report
9	4	8	12 .(x	16 10	20 mV)	Time Printed: Aug 13,93 11:02 Sample Time: Aug 13,93 10:54 Method
28 2	<b>:</b> <b>:</b> =.		•			Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
2	٠					Min Area 10.00 mV/sec
1		•	•	•		Min Height 0.000 mV
57	1					Analysis Delay 45.0 sec
1 12:			•		•	Window Percent 50.0 %
		5				Det Flow 10 ml/min
0	- 4	ļ				B/F Flow 10 ml/min
85			<b>⇒</b> ട്			Aux Flow 0 ml/min Oven Temp 45 C
1	56		- ','			Amb Temp 33 C
11/		•	•	•	,	Max Gain 1000
1 14	7					Analysis Time 400.0 sec
					,	Peak Report
	-			•		Pk Compound Name Area/Conc R.T.
142/	and the second					1 Unknown 95.69 mVS 49.2 2 Benzene 116.9 ppb 57.3
177		•	•			2 Benzene 116.9 ppb 57.3 3 Unknown 192.3 mVS 62.4
112	LO					4 Unknown 227.9 mVS 69.3
	•		•	•		5 Unknown 505.2 mVS 87.0
171						6 Toluene 1.181 ppm 95.0
						7 Unknown 4.515 mVS 104.5
			•			8 Unknown 82.00 mVS 115.7 9 Unknown 450.7 mVS 129.0
200	1.1					9 Unknown
	12	•	•		٠	11 Ethylbenzene 962.7 ppb 194.8
						12 Unknown 267.5 mVS 201.2
1 K			•	•	•	13 M&P-Xylene 1.683 ppm 224.6
228						14 Unknown 91.97 mVS 244.5
M.3						15 O-Xylene 427.0 ppb 272.2
1 1			•			16 Unknown 108.5 mVS 297.3
250						
			•		•	
1.5						
285						
16	•		•	•		
314						Notes
	•	•	•		•	soil sample
				•		sample # 24 7 to 9 ft
342						soil volume 50g
2.4			•		•	water sample volume ****ml temp. of sample 28 c
						Secretary of the second positive ways to
	•		•	•		
371						
	•		•	•		
400						
1.4		•	•	•	٠	

Time Printed: Aug 13.95 11:10  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sample Time: Aug 13.95 11:12  Sampl	<b>AUSTABIS</b>	.2 11	3.375.2	10.7 1 0.01 1 0.0	crou suscribire value c
Sample Time: Aug 13,93 11:12   Method	0 1	2	3 4	. 5	Time Printed: Aug 13.93 11:20
Method   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   50.0 %   Det Flow   10 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min   20 ml/min	1 7	****			•
Slope Up		•		*	
Slope Down	200	<del></del>			T and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
Min Area 10.00 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Unknown 40.37 mVS 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVS 62.3 4 Unknown 103.2 mVS 62.3 4 Unknown 313.0 mVS 95.0 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 298.7 mVS 228.0 12 Unknown 298.7 mVS 223.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 227.0 15 Unknown 248.9 mVS 227.0 15 Unknown 248.9 mVS 2338.3	2.0	·			
Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Pak Report Pk Compound Name Area/Conc R.T. Unknown 60.37 mVS 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVS 62.3 4 Unknown 59.20 mVS 68.9 5 Unknown 40.76 mVS 68.9 5 Unknown 35.3 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.6 9 Unknown 210.2 mVS 148.6 10 Ethylbenzene 5.254 ppm 224.0 11 Unknown 210.2 mVS 243.4 13 O-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3	2				
Analysis Delay 45.0 sec Window Percent 50.0 % Det Flow 10 ml/min R/F Flow 10 ml/min R/F Flow 10 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. Unknown 60.37 mVS 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVS 62.3 4 Unknown 103.2 mVS 62.3 4 Unknown 59.20 mVS 68.9 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 15.6 8 Unknown 335.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 224.6 11 M&P-Xylene 4.153 ppm 224.6 11 MxP-Xylene 1.068 ppm 271.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 277.0 15 Unknown 248.9 mVS 277.0 15 Unknown 49.79 mVS 338.3	التسسر .	•	•	•	
Window Percent   50.0 %					3
Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sc Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 60.37 mVS 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVS 62.9 4 Unknown 59.20 mVS 68.9 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 8 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 Unknown 288.7 mVS 243.4 14 Unknown 288.9 mVS 238.3 11 12 Notes Soil sample \$\text{sample}\$ 4 24 9 to 11 ft soil volume \$\text{30}\$ water sample volume ****ml temp. of sample 28 c	57	<u> </u>			
B/F Flow		2	===		
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report  Pk Compound Name Area/Conc R.T. 1 Unknown 60.37 mVs 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVs 62.3 4 Unknown 59.20 mVs 68.9 5 Unknown 40.76 mVs 98.1 6 Unknown 313.0 mVs 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVs 128.6 9 Unknown 210.2 mVs 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVs 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVs 297.0 15 Unknown 49.79 mVs 338.3	1		્ૹ		
Oven Temp	1	4			
Amb Temp	85				
Max Gain 1000 Analysis Time 400.0 sec    Feak Report					
## Analysis Time ## 400.0 sec Feak Report		5		_	Amb Temp 33 C
Peak Report	1 7	-	6		Max Gain 1000
Peak Report	1.14	•			Analysis Time 400.0 sec
Pk. Compound Name   Area/Conc   R.T.   Unknown   60.37 mVS   49.32   62.33   40   40   40   40   40   40   40	7	>>7 °			
1 Unknown 60.37 mVS 49.3 2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVS 62.3 4 Unknown 59.20 mVS 68.9 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.1 228 11 Notes 10 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3	1	~~~			
2 Benzene 79.22 ppb 57.1 3 Unknown 103.2 mVs 62.3 4 Unknown 59.20 mVs 68.9 5 Unknown 40.76 mVs 88.1 6 Unknown 313.0 mVs 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVs 128.6 8 Unknown 210.2 mVs 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVs 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVs 297.0 15 Unknown 49.79 mVs 338.3			$\Longrightarrow_8$	•	
3 Unknown 103.2 mVS 62.3 4 Unknown 57.20 mVS 68.9 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 210.2 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes soil sample sample 49 to 11 ft soil volume 50g water sample wolume ****ml temp. of sample 28 c	142 -	_			1
4 Unknown 59.20 mVS 68.9 5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3	1				
5 Unknown 40.76 mVS 88.1 6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	-	ه مسترير			
6 Unknown 313.0 mVS 95.0 7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  12 257 285 13 314  Notes  soil sample sample yelume \$24.9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	11		•	•	
7 Toluene 384.1 ppb 115.6 8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 O-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	17/1				
8 Unknown 365.3 mVS 128.6 9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1-1-				t management of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c
9 Unknown 210.2 mVS 148.0 10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  285  14  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c					
200  10 Ethylbenzene 5.254 ppm 204.6 11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 O-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	11	and the same	•		•
11 M&P-Xylene 4.153 ppm 224.0 12 Unknown 298.7 mVS 243.4 13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1200				
10   12 Unknown   298.7 mVS   243.4   13 0-Xylene   1.068 ppm   271.2   14 Unknown   248.9 mVS   297.0   15 Unknown   49.79 mVS   338.3   285   13	1290 .		manged and it		
13 0-Xylene 1.068 ppm 271.2 14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  12  257  13  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c				1.0	
14 Unknown 248.9 mVS 297.0 15 Unknown 49.79 mVS 338.3  Notes soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c				ŕΩ	
11 15 Unknown 49.79 mVS 338.3  12 Notes  13 Notes  14 Soil sample  15 sample # 24 9 to 11 ft  15 soil volume 50g  Water sample volume ****ml  temp. of sample 28 c		_			
Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	223	<b>&gt;</b>			
Notes  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c		11			15 Unknown 49./9 mV5 338.3
Notes  Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1	marken .		•	
Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c		12			
Notes  Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1257				
Notes  Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 —				
Notes  Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c					
Notes  soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 / /13	3			
Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	285_/				
Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c		•	•	•	
Soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1.1				
soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c		1.4	-		
soil sample sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	314				Notes
sample # 24 9 to 11 ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 17	•			soil sample
soil volume 50g water sample volume ****ml temp. of sample 28 c					
water sample volume ****ml temp. of sample 28 c	'	•		•	· ·
temp. of sample 28 c	342				
37L					
	1 1/2				
	1		•	•	
400	13/11			•	
400	1				
400		•	•	•	
(*************************************	lach				
	1 - A				

ener	ysis	44.41.		J. O (	or uu	r corre.	tion Analysis Report
9	1.		22	3	4	5 ~U)	Time Printed: Aug 13,93 11:39 Sample Time: Aug 13,93 11:30
				.(x	roó	mV)	Method
287							Slope Up 3.000 mV/Sec
120	•	•	•	•		•	Slope Down 3.000 mV/Sec
1 3							Min Area 10.00 mVSec
17		•			•		Min Height 0.000 mV
57	,						Analysis Delay 45.0 sec
	<b>2</b> 5	•	•	•		•	Window Percent 50.0 %
		3					Det Flow 10 ml/min
	>4	• ***		•	•		B/F Flow 10 ml/min
85							Aux Flow O ml/min
1	<u></u> - <u></u> - <u></u>	•	•	•		•	Oven Temp 45 C
			<b>&gt;</b> 6				Amb Temp 33 C
1	سسمم	سنسسن		•	•		Max Gain 1000
1.14	ممع						Analysis Time 400.0 sec
		•	•	•		• .	Peak Report
	-	· Second					Pk Compound Name Area/Conc R.T.
			>8				1 Unknown 398.5 mVS 49.4
142	/						2 Benzene 451.9 ppb 57.3
	The same of						3 Unknown 603.1 mVS 62.2
	9						4 Unknown 292.1 mVS 69.0
						•	5 Unknown 321.3 mVS 88.0
174							6 Unknown 2.410 VSec 94.9
							7 Toluene 2.729 ppm 115.8
							8 Unknown 2.748 VSec 128.2
	,						9 Unknown 1.337 VSec 147.8
200		. ~	•				10 Ethylbenzene 40.26 PFM2 204.6
				)			11 M&F-Xylene 32.85 PFM2 223.8
				1,0			12 Unknown 2.315 VSec 243.4
	$\overline{}$						13 Unknown 982.8 mVS 257.8 14 O-Xylene 14.35 PPM1 271.7
228	シ.						1 7
	-> 1	.1.					15 Unknown 1.660 VSec 296.8 16 Unknown 450.8 mVS 338.3
	-	i2			•		TO OHMIOMI 420.9 m/2 220.0
237	ممر	a					
	1.	wį.	•			•	
	{	,					
1 1	$\sum_{\mathbf{L}}$	á		٠	•		
285		•					
	-{`	٠	•	•		•	
1	115	•		•			PPM1 = Alarm 1 PPM2 = Alarm2
314/							Notes
	•	•	•	•		•	soil sample
11							sample # 24
							soil volume 50g
342							water sample volume ****ml
1/1	. 6						temp. of sample 28 c
1 1							
3711							
				•			
400				•			

	,		13 81.7	AL 40 MI		1 2011 00 1	tion Analysis Report
	9	:1.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 13,93 13:22 Sample Time: Aug 13,93 13:13
21	8 ,		<del></del>				Method Slope Up 3.000 mV/Sec
	_						Slope Down 3.000 mV/Sec
	. /						Min Area 10.00 mVSec
	1						Min Height 0.000 mV
5	7 7	<b>—</b> [					Analysis Delay 45.0 sec
į	1 2						Window Percent 30.0 %
	.(3						Det Flow 10 ml/min
	14						B/F Flow 10 ml/min
8	<b>5</b> [					_	Aux Flow 0 ml/min
	>5	-	•	•	•	Ť	Oven Temp 45 C
	7			,			Amb Temp 33 C
	6			•	•		Max Gain 1000
1	<u> </u>	حظ					Analysis Time 400.0 sec
	1	. 8		•	•	•	Peak Report
	H						Pk Compound Name Area/Conc R.T.
	9		•	•	•		1 Benzene 59.48 ppb 51.2
1	42						2 Unknown 6.432 mVS 55.8
1	X.	٠			•	•	3 Unknown 1.845 mVS 61.9
	10						4 Unknown 6.183 mVS 70.0
	1		•	•	•		5 Toluene 45.44 ppb 87.2
4	11						6 Unknown 3.440 mVS 95.4
	T."				•		7 Unknown 4.565 mVS 98.5
							8 Toluene 253.8 ppb 109.6
	1		•	•	•		9 Unknown 29.37 mVS 128.5
2	$d\lambda$						10 Unknown 10.76 mVS 148.2
1	77				•	•	•
	)	ı					
	1.1	L	•	•			12 Unknown 4.262 mVS 223.6
-		., ,					13 Unknown 7.885 mVS 244.2
	233	12					
1							
	· 1			•			
	1.3						
12	57						
	}						
	- [		•				
23	85						
	1						
	1						
3	1/4					,	Notes
							water sample
	1		•				sample # 24
	1						soil volume 50g 43.0 mL
3	42						water sample volume ****ml
			•	•	-		temp. of sample 28 c
	-			•	-		
3	71						
		•			•	•	
			-	-	•		
4	do -						
	1	•	•			•	

Analysis #27 105+ GC Function Analysis	(verpu) u
0 1 2 3 4 5 Time Prin (x 10 mV) Sample Ti	
	Method
28 Slope Up	3.000 mV/Sec
Slope Dow	
Min Area	10.00 mVSec
Min Heigh	
57 1 Analysis	
Kag   Window Pe	
Det Flow	10 ml/min
B/F Flow	10 ml/min
85 Aux Flow	O ml/min
Oven Temp	
Amb Temp	33 C
	1000
Max Gain	
114 7 Analysis	
K	Peak Report
Pk Compound	
1 Unknown	26.50 mVS 48.9
142   2 Benzene	60.90 ppb 56.2
3 Unknown	31.93 mVS 62.2
1/10 4 Unknown	40.96 mVS 69.0
5 Unknown	91.54 mVS 86.7
171 6 Unknown	45.76 mVS 94.9
) N	105.3 ppb 106.9
8 Unknown	14.03 mVS 115.4
9 Unknown	81.02 mVS 128.4
200\	45.35 mVS 148.4
11 Ethylbenz	ene 1.049 ppm 204.2
11 12 M&F-Xylen	• •
13 Unknown	95.47 mVS 242.9
243 14 O-Xylene	345.2 ppb 271.7
15 Unknown	40.84 mVS 297.0
To chighown	Oakes Com moneth
_\13	
247	
1 H	
114	
28#	
1 4	
1/15	
31/4	Notes
soil sampl	
sample # 2	
soil volum	*
	le volume ****ml
temp. of s	ample 28 c
371	
lado	
1717 # 6 3	
440	

THE CV	.ysis	77	3.5255	0.00	r arra	tion Analysis Report
9	1.	2	3 .(x	4	5 mV)	Time Printed: Aug 13,93 14:01 Sample Time: Aug 13,93 13:52
				• ••		Method
28						Slope Up 3.000 mV/Sec
1.				•	•	Slope Down 3.000 mV/Sec
	ל					Min Area 10.00 mVSec
16		•	•	•		Min Height 0.000 mV
572	1.					Analysis Delay 45.0 sec
Ra				•	•	Window Percent 30.0 %
1 1	3					Det Flow 10 ml/min
-	>4	•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
		. <u>5</u>		•	•	Oven Temp 45 C
1						Amb Temp 33 C
16		•	٠.	•		Max Gain 1000
1114	7					Analysis Time 400.0 sec
	•			•	•	Peak Report
\						Pk Compound Name Area/Conc R.T.
1 1)8	3	•	•	•		1 Unknown 5.922 mVS 49.7
142					•	2 Unknown 5.249 mVS 56.5
1 1	•	•		•	•	3 Unknown 13.53 mVS 62.5
12						4 Unknown 27.74 mVS 70.1
1 7-		•	•	•		5 Toluene 293-0 ppb 87-3
171						6 Unknown 0.784 mVS 95.3
1 1	•	•		•	•	7 Toluene 112.8 ppb 108.6
						8 Unknown 26.15 mVS 129.8
1		•	•	•		9 Unknown 7.902 mVS 148.6
200						10 Unknown 8.559 mVS 196.0
L.C					•	11 Unknown 20.34 mVS 204.0
A1						12 Unknown 4.736 mVS 244.0
1 1		•	•	•		3. 3. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
228						
	•	•		•	•	
12	,	•	•	•		
257	•					
				•		
		•	•			
285						
2.0	•				•	
-		•	•	•		
314						Notes
13.44				•	•	soil sample
						· ·
		•				sample # 25 3 to 5 ft
342						soil volume 50g
342						water sample volume ****ml
						temp. of sample 28 c
			•	•		
371						
		•				
400	•					

P911 (CV.)	lysis #	Y 57 ()	3. 3.7.0.2		1 (.)11 (	cron wherkers weborc
9	2	4	6	8	10	Time Printed: Aug 13,93 14:22
			.(x	100	mV)	Sample Time: Aug 13,93 14:14
1 4						Method
281		•	•			Slope Up 3.000 mV/Sec
1 6						Slope Down 3.000 mV/Sec
سر. ا	<b>.</b>					Min Area 10.00 mVSec
1 6	_					Min Height 0.000 mV
157/-	. از حـ					Analysis Delay 45.0 sec
	Manage .					Window Percent 30.0 %
1 1	<del>~</del> 2.					Det Flow 10 ml/min
	3					B/F Flow 10 ml/min
85						Aux Flow O ml/min
			4			Oven Temp 45 C
	<b>→</b> 5 .					Amb Temp 34 C
-	-<					Max Gain 1000
114	26					Analysis Time 400.0 sec
	77	-	-	•	-	Peak Report
	have .					Pk Compound Name Area/Conc R.T.
		3				1 Benzene 1.136 ppm 49.4
142	<i>1</i>					2 Unknown 1.156 VSec 62.4
	1					3 Unknown 1.274 VSec 70.2
	9 .					4 Unknown 2.723 VSec 87.4
1/						5 Unknown 1.229 VSec 95.0
1174						6 Toluene 5.516 ppm 106.9
						7 Unknown 598.6 mVS 115.3
11,						8 Unknown 3.514 VSec 129.3
						9 Unknown 2.473 VSec 148.0
200	. 7.					10 Ethylbenzene 40.43 PPM2 203.4
	)					11 M&F-Xylene 35.62 PFM2 224.6
	. 1	.0				12 Unknown 3.011 VSec 243.7
						13 0-Xylene 13.90 PPM1 272.2
228	)					14 Unknown 2.098 VSec 297.6
{-	(1.1					15 Unknown 421.1 mVS 339.3
	\ ·		•			
	)12					
237	<i>(</i>				•	
-	1					
				•		
	)13					
285/		•				
	\					
	), .		•	•		
	/1.4					FPM1 = Alarm 1 FPM2 = Alarm2
314						Notes
						soil sample
			•			sample # 25 5 to 7 ft
11						soil volume 50g
342						water sample volume ****ml
I.	O.					temp. of sample 28 c
371		•				
			٠	•		
400						
1.40		•	•		•	



2 Benzene 195.5 ppb 57.1 3 Unknown 439.2 mVS 62.2 4 Unknown 400.1 mVS 69.8 5 Unknown 296.5 mVS 87.2 6 Unknown 401.3 mVS 94.9 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.8 9 Unknown 1.198 VSec 128.9	1111000 11110			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Notes   Slope Up   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Percent   30.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/m	9 4 8			· ·
Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Height 0.000 mVSec lysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 226.2 mVS 49.3 2 Benzene 195.5 ppb 57.1 3 Unknown 400.1 mVS 62.2 4 Unknown 400.1 mVS 62.2 5 Unknown 400.1 mVS 69.8 5 Unknown 400.1 mVS 94.5 7 Tolluene 2.862 ppm 106.6 8 Unknown 11.93 mVS 114.8 7 Tolluene 2.862 ppm 106.6 8 Unknown 11.98 VSec 128.9 10 Unknown 1.198 VSec 128.9 11 Unknown 19.93 mVS 114.8 11 Ethylbenzene 9.246 ppm 202.2 12 MSP-Xylene 8.222 ppm 223.0 13 Unknown 508.5 mVS 243.2 14 Unknown 498.3 mVS 297.0 16 Unknown 10.34 mVS 338.3		(x 1Q	mV)	
Slope Down   3.000 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Area   10.00 mV/Sec   Min Meight   0.000 mV   Analysis Delay   45.0 sec   Window Percent   30.0 %   Det Flow   10 ml/min   Min Meight   10 ml/min   Min Meight   10 ml/min   Min Meight   10 ml/min   Min Meight   10 ml/min   Min Meight   10 ml/min   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight   1000   Min Meight	<u></u>			Method
Slope Down   3.000 mV/Sec   Min Area   10.00 mVSec   Min Area   10.00 mVSec   Min Height   0.000 mV   Analysis Delay   45.0 sec   Window Fercent   30.0 %   Det Flow   10 ml/min   B/F Flow   10 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   Aux Flow   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/min   0 ml/	28			Slope Up 3.000 mV/Sec
##In Area	5		•	
Min Height				1
Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. Unknown 226.2 mVS 49.3 2 Benzene 195.5 ppb 57.1 3 Unknown 400.1 mVS 69.8 5 Unknown 400.1 mVS 69.8 5 Unknown 400.1 mVS 69.8 5 Unknown 18.93 mVS 114.8 9 Unknown 18.93 mVS 114.8 9 Unknown 18.93 mVS 114.8 9 Unknown 18.93 mVS 114.8 11 Ethylbenzene 9.246 ppm 106.6 8 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 223.0 12 MBP—Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3				
Window Percent	57			"
Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 226.2 m/S 49.3 Unknown 439.2 m/S 62.2 Benzene 195.5 ppb 57.1 3 Unknown 400.1 m/S 69.2 Unknown 400.1 m/S 69.2 Unknown 401.3 m/S 94.9 Toluene 2.862 ppm 106.6 8 Unknown 401.3 m/S 94.9 Toluene 2.862 ppm 106.6 8 Unknown 18.93 m/S 114.8 9 Unknown 11.98 VSc 128.9 10 Unknown 793.0 m/S 147.2 11 Ethylbenzene 9.246 ppm 202.2 12 MSP-Xylene 8.222 ppm 223.0 Unknown 505.5 m/S 243.2 14 0-Xylene 2.250 ppm 253.0 14 Unknown 505.5 m/S 243.2 15 Unknown 498.8 m/S 297.0 16 Unknown 10.34 m/S 338.3			•	
B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Max Gain 1000 Max Gain 1000 Analysis Time 400.0 sec Peak Report Flow Omax Gain 1000 Analysis Time 400.0 sec Peak Report 10 April 10 Mame Area/Conc R.T. 1 Unknown 226.2 mVS 49.3 2 Benzene 195.5 ppb 57.1 3 Unknown 400.1 mVS 69.8 5 Unknown 400.1 mVS 69.8 5 Unknown 401.3 mVS 94.2 6 Unknown 401.3 mVS 94.2 7 Toluene 2.862 ppm 106.6 8 Unknown 11.98 VSec 128.9 10 Unknown 793.0 mVS 114.8 9 Unknown 11.98 VSec 128.9 10 Unknown 793.0 mVS 114.8 11 Ethylbenzene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 8.222 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3		<del>-</del>		
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec  Feak Report  I Unknown 226.2 mVS 49.3 Benzene 195.5 ppb 57.1 Unknown 439.2 mVS 62.2 Unknown 400.1 mVS 69.8 Unknown 401.3 mVS 94.9 Unknown 401.3 mVS 94.9 Unknown 18.93 mVS 114.8 Unknown 18.93 mVS 114.8 Unknown 18.93 mVS 114.8 Unknown 18.93 mVS 114.8 Unknown 19.93 mVS 124.3 Unknown 10.34 mVS 338.3		**** .		
Oven Temp	0.15			1
Amb Temp 35 C Max Gain 1000 Analysis Time 400.0 sec  Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 226.2 mVS 49.3 2 Benzene 195.5 ppb 57.1 3 Unknown 439.2 mVS 62.2 4 Unknown 400.1 mVS 69.8 5 Unknown 296.5 mVS 87.2 6 Unknown 401.3 mVS 94.2 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 147.8 9 Unknown 793.0 mVS 147.8 9 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3	0.0			
Max Gain 1000 Analysis Time 400.0 sec  Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 226.2 mVS 49.3 10 10 4 Unknown 439.2 mVS 62.2 10 4 Unknown 400.1 mVS 69.8 11 Unknown 401.3 mVS 94.9 17 Toluene 2.862 ppm 106.6 18 Unknown 18.93 mVS 114.8 19 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 233.0 13 Unknown 505.5 mVS 243.2 14 Unknown 505.5 mVS 243.3 15 Unknown 10.34 mVS 338.3 15 Unknown 10.34 mVS 338.3	3			· · · · · · · · · · · · · · · · · · ·
Analysis Time 400.0 sec  Feak Report  Fek Compound Name Area/Conc R.T.  1 Unknown 226.2 mVS 49.3  2 Benzene 195.5 ppb 57.1  3 Unknown 439.2 mVS 62.2  4 Unknown 400.1 mVS 69.6  5 Unknown 296.5 mVS 87.2  6 Unknown 401.3 mVS 94.9  7 Toluene 2.862 ppm 106.6  8 Unknown 18.93 mVS 114.8  9 Unknown 18.93 mVS 114.8  9 Unknown 793.0 mVS 147.8  10 Unksnown 793.0 mVS 147.8  11 Ethylbenzene 9.246 ppm 202.2  12 M8P-Xylene 8.222 ppm 223.0  13 Unknown 505.5 mVS 243.2  14 0-Xylene 2.250 ppm 271.4  15 Unknown 498.8 mVS 297.0  16 Unknown 10.34 mVS 338.3	3.6			
Peak Report Fk Compound Name Area/Conc R.T. Unknown 226.2 mVS 49.3 Benzene 195.5 ppb 57.1 Unknown 439.2 mVS 62.2 Benzene 195.5 ppb 57.1 Unknown 439.2 mVS 62.2 Unknown 400.1 mVS 69.8 Unknown 296.5 mVS 87.2 Unknown 401.3 mVS 94.5 Unknown 401.3 mVS 94.5 Unknown 18.93 mVS 114.8 Unknown 18.93 mVS 114.8 Unknown 1.178 VSec 128.5 Unknown 793.0 mVS 147.8 Unknown 793.0 mVS 147.8 Unknown 793.0 mVS 147.8 Unknown 505.5 mVS 243.2 Unknown 505.5 mVS 243.2 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 338.3 Unknown 505.5 mVS 243.2 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS 297.0 Unknown 498.8 mVS	111111111111111111111111111111111111111			
Pk Compound Name   Area/Conc   R.T.     Unknown   226.2 mVs   49.3     28   Benzene   195.5 ppb   57.1     3   Unknown   439.2 mVs   62.2     4   Unknown   400.1 mVs   69.8     5   Unknown   401.3 mVs   94.9     7   Toluene   2.862 ppm   106.4     8   Unknown   18.93 mVs   114.8     9   Unknown   1.198 VSec   128.9     10   Unknown   793.0 mVs   147.8     11   Ethylbenzene   9.246 ppm   202.3     12   M&P-Xylene   8.222 ppm   223.0     13   Unknown   505.5 mVs   243.2     14   O-Xylene   2.250 ppm   271.4     15   Unknown   498.8 mVs   297.0     16   Unknown   10.34 mVs   338.3     17   342     4   285     4   285     342   342     4   285     344   345     4   285     5   345     6   346     7   7   7   7     8   7   7     9   7   7     9   7   7     10   10     10   10   10     11   12   10     12   13     13   14     14   15     15   15     16   16   17     17   17     18   17     19   18     10   18     11   19     12   19     13   10     14   17     15   17     16   17     17   18     18   19     19   19     10   10     10   10     11   10     12   10     13   10     14   17     15   10     16   10     17   10     18   10     19   10     10   10     10   10     10   10	114 .7			
142 9 1 Unknown 226.2 mVS 49.3 2 Benzene 195.5 ppb 57.1 3 Unknown 439.2 mVS 62.2 4 Unknown 400.1 mVS 67.6 5 Unknown 296.5 mVS 87.2 6 Unknown 401.3 mVS 94.5 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.6 9 Unknown 1.198 VSec 128.7 9 Unknown 1.198 VSec 128.7 10 Unknown 793.0 mVS 147.6 11 Ethylbenzene 9.246 ppm 202.2 12 M8F—Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 1 Notes  Soil sample sample volume *****m1  Left to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	8			
2 Benzene 195.5 ppb 57.1 3 Unknown 439.2 mVs 62.2 4 Unknown 400.1 mVs 69.8 5 Unknown 296.5 mVs 87.2 6 Unknown 401.3 mVs 94.9 7 Toluene 2.96.5 ppm 106.6 8 Unknown 18.93 mVs 114.8 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVs 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVs 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVs 297.0 16 Unknown 10.34 mVs 338.3 257  257  265  Notes  soil sample sample # 25 9tolift soil volume \$00 water sample volume *****m1 temp. of sample 28 c				· ·
3 Unknown 439.2 mVS 62.2 4 Unknown 400.1 mVS 69.8 5 Unknown 296.5 mVS 87.2 6 Unknown 401.3 mVS 94.9 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.8 9 Unknown 1.178 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 314  Notes  Soil sample sample # 25 9tolift soil volume 50g water sanple volume ****ml temp. of sample 28 c	11	<b></b> 9		•
10	142			
5 Unknown 296.5 mVS 87.2 6 Unknown 401.3 mVS 94.9 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.8 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 31 263 342 342 344 345 346 371 371	- The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the	•		
6 Unknown 401.3 mVS 94.9 7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.6 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.6 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 265  Notes soil sample sample # 25 9toilft soil volume 50g water sanple volume ****ml temp. of sample 28 c	10			
7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.8 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 O-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 257 265 314 285 314 326 3271 3371 3371				5 Unknown 296.5 mVS 87.2
7 Toluene 2.862 ppm 106.6 8 Unknown 18.93 mVS 114.8 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 257  Notes  soil sample # 25 9tol1ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	1174			6 Unknown 401.3 mVS 94.9
8 Unknown 18.93 mVS 114.8 9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 O-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3  257  Notes  soil sample sample # 25 9tol1ft soil volume 50g water sanple volume ****ml temp. of sample 28 c			•	•
9 Unknown 1.198 VSec 128.9 10 Unknown 793.0 mVS 147.8 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3  257  Notes  soil sample sample # 25 9toilft soil volume 50g water sample volume ****ml temp. of sample 28 c				• 1
10 Unknown 793.0 mVS 147.6 11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 O-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3  257  Notes soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c		•		
11 Ethylbenzene 9.246 ppm 202.2 12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVs 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVs 297.0 16 Unknown 10.34 mVs 338.3  Notes soil sample sample # 25 9tolift soil volume 50g water sample volume ****m1 temp. of sample 28 c	200			•
12 M&P-Xylene 8.222 ppm 223.0 13 Unknown 505.5 mVS 243.2 14 O-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257  Notes  soil sample sample # 25 9toilft soil volume 50g water sample volume ****m1 temp. of sample 28 c	11.		•	
13 Unknown 505.5 mVS 243.2 14 0-Xylene 2.250 ppm 271.4 15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3  257  257  257  257  257  257  257  25				
228 )12	11	•		
15 Unknown 498.8 mVS 297.0 16 Unknown 10.34 mVS 338.3 257 257 257 257 257 257 257 257 257 257	228 112			
16 Unknown 10.34 mVS 338.3  257  285  Notes  soil sample sample # 25 9toilft soil volume 50g water sample volume ****ml temp. of sample 28 c				
Notes  Soil sample sample # 25 9to11ft soil volume 50g water sample volume ****ml temp. of sample 28 c				
Notes  Soil sample sample # 25 9tolift soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1 7 2	•		TALOUR TO COMPANY TO COMPANY THE CONTROL OF COMPANY TO COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE COMPANY THE
Notes  Soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c	· · · · · · · · · · · · · · · · · · ·			
Notes  Soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c			•	
Notes  Soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c				
Notes  Soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1 1 .			
Notes  Soil sample sample # 25 9to11ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1 Y .			
Notes  soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1499			
Notes  soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c				
Notes  soil sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c	)			
soil sample sample sample # 25 9tol1ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 1 2			
sample # 25 9to11ft soil volume 50g water sample volume ****ml temp. of sample 28 c	3.49		•	
soil volume 50g water sample volume ****ml temp. of sample 28 c				
water sample volume ****ml temp. of sample 28 c	1 1			)
temp. of sample 28 c				
33 T · · · · · · · · · · · · · · · · · ·	1 1			
	L &			temp. of sample 28 c
4do	371			
400		•		
400				
4 <b>q</b> o				
1	400			
		•	*	

	9	4 .	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 13,93 15:40 Sample Time: Aug 13,93 15:31
* *;	28	5					Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 10.00 mVSec
	57 5	1	== 3				Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min
	3.5	 _> 5	4 .	•			B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 35 C
	134	, o				• ,	Max Gain 1000 Analysis Time 400.0 sec Peak Report
		<b>∑</b> 8					Pk Compound Name       Area/Conc       R.T.         1 Benzene       33.43 ppb       49.8         2 Unknown       3.164 mVS       55.6         3 Unknown       28.63 mVS       62.6         4 Unknown       27.42 mVS       70.9
•	1.71	·					4 Unknown     27.42 mVS     70.9       5 Unknown     17.05 mVS     87.2       6 Unknown     15.09 mVS     95.2       7 Toluene     262.7 ppb     109.0       8 Unknown     49.71 mVS     130.0
á	200	10					9 Unknown 35.64 mVS 148.8 10 Unknown 25.67 mVS 195.8 11 Ethylbenzene 290.0 ppb 205.2 12 M&P-Xylene 851.5 ppb 223.2
	K	) 12					13 Unknown 57.89 mVS 243.2 14 O-Xylene 206.1 ppb 299.2
7.4	257	13					
	28						
1.3	31 A	4 					Notes soil sample sample # 25 15to17ft
	342						soil volume 50g water sanple volume ****ml temp. of sample 28 c
	371		•				
	400					•	

1-111	St. J. 7	<b>7515</b>	. 44.	of ste	7. 17.	w	T COTT	tion Analysis Report
9		1.		2	3 _(x	4 100	5 mV)	Time Printed: Aug 13,93 13:41 Sample Time: Aug 13,93 13:32
1 L		_	•			•		Method
28								Slope Up 3.000 mV/Sec
	(_	•	•	•	•		•	Slope Down 3.000 mV/Sec
1	ممسم							Min Area 10.00 mVSec
1 1			٠		•	•		Min Height 0.000 mV
157		<b></b>						Analysis Delay 45.0 sec
	5		٠		•		•	Window Percent 30.0 %
	<i>/</i>							Det Flow 10 ml/min
	_				<del></del> .			B/F Flow 10 ml/min
85/					•			Aux Flow O ml/min
100	21	•	٠	•	•			Oven Temp 45 C
	i- <del>†</del>							· ·
16	10				•	-		1
	~~~		٠,,					Max Gain 1000
111	4 		د)اب					Analysis Time 400.0 sec
								Feak Report
								Fk Compound Name Area/Conc R.T.
	7							1 Unknown 386.4 mVS 49.6
1.4	2	8						2 Benzene 134.3 ppb 56.6
								3 Unknown 1.639 VSec 70.6
								4 Unknown 6.862 mVS 86.8
								5 Unknown 100.3 mVS 94.8
17	1.							6 Toluene 5.769 ppm 108.1
						•		7 Unknown 2.047 mVS 127.4
1 1	9							8 Unknown 15.35 mVS 137.6
								9 Unknown 5.218 mVS 176.2
20	0							10 Ethylbenzene 247.2 ppb 204.2
		•	-	٠.	•		•	11 Unknown 2.451 mVS 225.0
	10					-		12 Unknown 8.200 mVS 243.4
					•			
22	8							
	1.1.	•	•	•	•		•	
						-		
	12		-		•	•		
25								
		•	٠	•	•		•	
			•		•	•		
28	5							
1		•	•	•	•		•	
11			٠		•	•		
31	4							Notes
1	•	•	. •	•	•		•	water sample
								sample # 25
					•	•		soil volume **q
34:	(P							water sample volume 42.2ml
"	л		•	•			•	temp. of sample 28 c
								campa or sembra vo c
			•		•	•		
37	-1							
134	.l.		-		•			
					•	•		
	^							
40	U							

11113							1 331133	
Q		1.		2	3	4	5	Time Printed: Aug 13,93 15:57
					(x		mV)	Sample Time: Aug 13,93 15:47
			•		. ,			Method
282								Slope Up 3.000 mV/Sec
	,	•	•	•	•		•	Slope Down 3.000 mV/Sec
1 4	-							Min Area 10.00 mVSec
1 1	_		•		•	•		Min Height 0.000 mV
	_		t,					
57	·		.Ļ					Analysis Delay 45.0 sec
l ba								Window Percent 30.0 %
-	~<		5	3				Det Flow 10 ml/min
1			- 4					B/F Flow 10 ml/min
83				. •				Aux Flow O ml/min
1	i							Oven Temp 45 C
	>							Amb Temp 35 C
K	•					·		Max Gain 1000
114	, ~	>7						Analysis Time 400.0 sec
	*****	-	•	•	•		•	Peak Report
								Pk Compound Name Area/Conc R.T.
	}		•		•	•		1 Benzene 1.377 ppm 49.4
14	2	9						2 Unknown 0.888 mVS 56.6
		•	٠	•	•		•	3 Unknown 979.4 mVS 62.2
1	.0							4 Unknown 781.3 mVS 70.6
	. ~		•		•	•		5 Unknown 48.82 mVS 87.0
171								6 Unknown 188.3 mVS 94.9
111	•	•	•	•	•		•	7 Toluene 4.535 ppm 109.0
1	. 1.							8 Unknown 1.748 mVS 128.4
1 1	l.		•		•			9 Unknown 38.08 mVS 137.0
lada	,							
200	,							10 Unknown 4.445 mVS 147.2
	~							11 Unknown 3.105 mVS 176.0
1 1	.2				•			12 Ethylbenzene 222.1 ppb 203.8
								13 Unknown 8.173 mVS 221.6
228	3	13						14 Unknown 7.942 mVS 241.3
								15 Unknown 7.504 mVS 297.8
, ,	4							
257	,			•				
285	i							
						,	•	
1 1	S					3		
314	1			_				Notes
		•	•	•	•		•	soil sample
								sample # 26 2to4ft
			•		•	•		soil volume 50g
342	2							water sample volume ****ml
		•	•	•	•		•	temp. of sample 28 c
			•		•	•		
371								
	-	•	•	•	•		•	
			•		•	•		
400)							
1,4	r	•	•	•			•	
								1

HD & L)	y ::> J. ::>	24 A "I"	1.00		1 2011 2	Credit Later A parp 17 m ben 7
0	2	य	6	8	10	Time Printed: Aug 13,93 15:02
1 1	****	·	 . (x		ωV)	Sample Time: Aug 13,93 14:54
		•			,	Method
28 2						Slope Up 3.000 mV/Sec
/z(0)					•	Slope Down 3.000 mV/Sec
_						Min Area 10.00 mVSec
سر ا		سيسم	•			Min Height 0.000 mV
\				4		, , , , , , , , , , , , , , , , , , , ,
57				.f	•	
1 . 1						1
		_=				Det Flow 10 ml/min
1 1 -					ن	B/F Flow 10 ml/min
85-						Aux Flow 0 ml/min
1 (Oven Temp 45 C
1.		5				Amb Temp 35 C
	~~					Max Gain 1000
114				-	6 .	Analysis Time 400.0 sec
						Peak Report
	_					Pk Compound Name Area/Conc R.T.
1	-27					1 Benzene 7.138 ppm 49.5
1.42	\supset	8 .	*			2 Unknown 7.124 VSec 62.5
	policie	•	•	•	-	3 Unknown 6.080 VSec 70.8
						4 Unknown 1.716 VSec 87.0
1 7/						5 Unknown 2.435 VSec 94.8
174						6 Toluene 39.58 FPM2 108.9
	•		•		•	7 Unknown 1.287 VSec 128.2
19						8 Unknown 2.919 VSec 137.6
1 11		•	•	•		9 Unknown 428.0 mVS 175.4
200	10					10 Unknown 596.4 mVS 194.0
	•		•		•	11 Unknown 582.5 mVS 203.4
	1.					12 Ethylbenzene 8.017 ppm 220.4
1		•	•	•		13 M&P-Xylene 21.21 PFM2 238.2
228	\mathcal{I}_{12}					14 O-Xylene 8.507 ppm 265.6
			•		•	15 Unknown 59.35 mVS 334.9
1 1/1:	3	•	•	•		
250	V-1."					
	•		•		•	
1 1	4					
1	•	•	•			
285						
1	•		•		•	
		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Markasa
1	•		•			Sero-theck 501/ 3000/8
						sample # 2.6 % to 10
1		•	•	•		soil volume 50g
342	15					water sample volume ****ml
					•	temp. of sample 28 c
		•	•	•		
371						
	•				•	
		•	•			
400						
1,1		•		•	•	

Anal)	/83.8	\$\$54		100.	v. (30.	r care.	tion Analysis Report
0	2	4		6	8	1.0	Time Printed: Aug 13,93 16:49
				(x	100		Sample Time: Aug 13,95 16:40
		•	•	• •	•		Method
28 -5		_					Slope Up 3.000 mV/Sec
		-	•		•	•	Slope Down 3.000 mV/Sec
	>						Min Area 10.00 mVSec
-		•	•	•	•		Min Height 0.000 mV
57	<u> </u>	1.					Analysis Delay 45.0 sec
to-		···.	-		•	•	Window Percent 30.0 %
-			<u> </u>	ζ.			Det Flow 10 ml/min
		=	⇒ 2				B/F Flow 10 ml/min
85/							Aux Flow O ml/min
	i	•	•		•	•	Oven Temp 45 C
	-	_					Amb Temp 36 C
		.		6			Max Gain 1000
114				,			Analysis Time 400.0 sec
- 4			راسم		•		Peak Report
1 /	_						Pk Compound Name Area/Conc R.T.
	3	•	•	•	•		1 Benzene 2.636 ppm 49.4
142	50						2 Unknown 1.267 mVS 56.6
1. 7.	بمسم	•	•		•	•	3 Unknown 2.253 VSec 62.4
							4 Unknown 2.803 VSec 70.8
		•		•	•		5 Unknown 511.7 mVS 87.0
1 1/1							6 Unknown 1.427 VSec 95.7
1	•	•	•			•	7 Toluene 27.10 PPM2 108.8
I do							8 Unknown 24.41 mVS 128.1
I H		•		•	•		9 Unknown 1.814 VSec 137.7
200	1.1.						10 Unknown 372.3 mVS 175.6
1		•	•		•	•	11 Unknown 391.1 mVS 195.0
1/12	9						12 Ethylbenzene 3.000 ppm 204.8
		•	,	•	•		13 M&P-Xylene 5.708 ppm 223.8
228							14 Unknown 346.2 mVS 243.7
13	٠	•	•	•		•	15 O-Xylene 9.356 ppm 292.2
I K							16 Unknown 179.3 mVS 334.9
1 114		•		•	•		
25/2							
1	•	•	•			•	
		•		•	•		
285							
	•	•	•	•		•	
15							
1 1		•		•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314							Notes
1 1	•	•	•	•	•	•	soil sample
							sample # 26 10to12ft
		•		•	•		soil volume 50g
342	1.6						water sample volume ****ml
	30	•	•	•		•	temp. of sample 28 c
		•		•			
371							
1.77.	•	•	•	•		•	
		•		•	•		
400							
1 A	•	•	•	•			

F11 1 850 35	7 :: 3. ::	# O O	.1.	Am. mr	2 1 C.C.I.C	crou engryers webor c
9	1.	2	3		5 mV)	Time Printed: Aug 13,93 17:06 Sample Time: Aug 13,93 16:57
		•	. \	× 100	(1114)	Method
28 2						Slope Up 3.000 mV/Sec
1 /				•		Slope Down 3.000 mV/Sec
-						Min Area 10.00 mVSec
1		•	•		•	Min Height 0.000 mV
157/2	;>-,					Analysis Delay 45.0 sec
1.7/						Window Percent 30.0 %
				.8.		
1		့သဲ ″	•		•	1
		4				B/F Flow 10 ml/min
85						Aux Flow O ml/min
1 25						Oven Temp 45 C
	6				•	Amb Temp 36 C
1 4						Max Gain 1000
114		7				Analysis Time 400.0 sec
	-		•	•	•	Peak Report
IH						Pk Compound Name Area/Conc R.T.
1 12		•	•		•	1 Unknown 275.9 mVS 49.2
143	9					2 Benzene 3.756 ppm 55.8
17	!		•	•		3.736 ppm 33.6 3 Unknown 657.9 mVS 62.2
						1
					٠.	
						5 Unknown 126.3 mVS 86.8
171						6 Unknown 237.4 mVS 94.8
1						7 Toluene 5.177 ppm 108.6
110						8 Unknown 137.2 mVS 128.4
1						9 Unknown 255.6 mVS 137.4
200	1.1					10 Unknown 41.85 mVS 175.4
H	•	- •		•	•	11 Unknown 82.65 mVS 194.8
1 112						12 Unknown 79.32 mVS 204.2
1	_	•	•	,	'	13 Ethylbenzene 4.906 ppm 220.6
228	$>_{13}$					14 M&P-Xylene 5.954 ppm 238.0
			•	•		15 O-Xylene 2.232 ppm 293.8
1 14						16 Unknown 36.92 mVS 336.3
1 1/4		•	•			TO OURTIONU 20"4% IIIAO 230"3
257				•		
285						
	•	•	•	•	•	
1 15						
		•	•		•	
314						Notes
	•		•	•		soil sample
						sample # 26 12to14ft
		•	•		•	soil volume 50g
342	1 4					water sample volume ****ml
0.45	16			•		
						temp. of sample 28 c
			•			
371						
			_			
		-	•			
400						
7"			•	•		

i l	13,93	4	
	13,93		:18 :09
Slope Up	od 3.000	mVZ9	Sec
Slope Down	3.000	mVZ8	
Min Area	10.00	mVSe	
1		mV Se	:: \
Min Height	0.000		
57 Analysis Delay	45.0	sec	
2 Window Percent	30.0	%	
Det Flow	10	m1/a	
B/F Flow	10	m1/a	nin
85 Aux Flow	0	m1/a	nin
Oven Temp	45	C	
Amb Temp	36	C	
Max Gain	1000	-	
		مور پدر معو	
114 Analysis Time	400.0	sec	
Peak Re	•		gm,
Pk Compound Name	Area/C		R.T.
1 Unknown	784.4		49.4
142 8 2 Benzene	5.389	mcjq	55.9
3 Unknown	1.778	VSec	62.4
4 Unknown	2.511	VSec	70.8
5 Unknown	256.6		87.0
171 6 Unknown	917.4		94.9
7 Toluene	19.57		108.9
1 (1			
10 8 Unknown	806.3		138.0
9 Unknown	12.92		154.8
20%0 1.1	128.8	mVS	175.6
11 Unknown	104.9	mVS -	195.2
12 Unknown	136.2	mVS	205.4
13 Ethylbenzene	6.256	mag	220.8
248 13 14 M&P-Xylene	12.11	FFM1	238.0
15 O-Xylene	3.732	maga	290.9
16 Unknown	48.25		335.2
TO CHETOWIT	PPO II ALSO	m v O	JJ J 1 2
247			
285			
1.5			
PPM1 = Alarm 1	PPM2	= A1.	arm2
314 Note		1 1 46 5	
	: iD		
soil sample	, .cl.		
sample # 26 14to16) T T.		
soil volume 50g			
342 16 water sample volum		Km I.	
temp. of sample 28	3 C		
371			
400			
"tVV			

An all	A 20 T 10	WOO	J. 3.73.		1 551150	TOU WUSTARTS Vebour
9	:1.	2	3	4	5	Time Printed: Aug 13,93 17:30
			.(x	100	m∨)	Sample Time: Aug 13,93 17:21 Method
1						
28 2						
<						Slope Down 3.000 mV/Sec
1		-				Min Area 10.00 mVSec
				-		Min Height 0.000 mV
57						Analysis Delay 45.0 sec
1				2	•	Window Percent 30.0 %
						Det Flow 10 ml/min
1 1				- 4 '		B/F Flow 10 ml/min
85				•		Aux Flow 0 ml/min
and the	.	•	•		•	Oven Temp 45 C
-<		4				Amb Temp 36 C
1 1	***************************************	ri,	•	•		Max Gain 1000
				,		Analysis Time 400.0 sec
114				<i>f</i> .		Peak Report
		_				· · · · · · · · · · · · · · · · · · ·
	1					
IH						1 Unknown 606.8 mVS 49.4
142	>8					2 Benzene 3.179 ppm 55.7
	•	-	•			3 Unknown 1.434 VSec 62.4
						4 Unknown 1.945 VSec 70.8
10						5 Unknown 225.3 mVS 87.0
1.71						6 Unknown 754.3 mVS 94.9
1	_*		•		•	7 Toluene 16.69 PFM1 109.0
ho						8 Unknown 701.2 mVS 138.0
1 4		•	•			9 Unknown 9.296 mVS 154.8
200	1. 1.					10 Unknown 115.7 mVS 175.8
"Y	it. 11.		•		•	11 Unknown 94.61 mVS 195.0
1 11	,					12 Unknown 116.3 mVS 205.6
1 HC		•	•			10.70
	•					
228	1.3 همر					
1 K						
1 15	14					16 O-Xylene 3.324 ppm 291.2
/						17 Unknown 45.12 mVS 331.2
257						
1 1 5	ı	-				
H						
				-		
285						
			•		•	
1.6						
1 11		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
1	•		•		•	soil sample
1						sample # 26 16to18ft
		•	٠	•		soil volume 50g
						water sample volume ****ml
342	17					
1 1						temp. of sample 28 c
371						
	-	•	•			
		•	•		-	
400						
1,1	٠		•	•		

2	Anal)	y 10 J. 10	47 CD XII.		3. (7.5)	Y CIC	r corc.	tion Analysis Report
Slope Dp	9	2						Sample Time: Aug 13,93 17:32
Slope Dawn 3.000 mV/Sec Min Area 10.00 mVSec Min Area 10.00 mV	1 4							Method
Min Area 10.00 mVSec Min Height 0.000 mV	284							Slope Up 3.000 mV/Sec
Min Area 10.00 mVScc Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 1000 Analysis Time 400.0 sec Feak Report Fek Compound Name Area/Conc R.T. 1 ml/mown 1.276 VSec 49.5 2 ml/mown 1.276 VSec 49.5 2 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 3.090 VSec 49.5 4 ml/mown 3.090 VSec 49.5 4 ml/mown 3.090 VSec 42.5 4 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650 VSec 3.0 ml/mown 4.650					•		•	Slope Down 3.000 mV/Sec
Min Height	~		>					
Analysis Delay 45.0 sec Window Percent 30.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. Unknown 1.276 VSec 45.6 2 Eenzene 2.589 ppm 55.6 4 Unknown 3.090 VSec 62.5 4 Unknown 4.850 VSec 71.0 5 Unknown 501.9 mVS 87.0 7 Tolluene 43.04 PPM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 176.0 11 Unknown 335.7 mVS 176.0 11 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 175.4 12 Ethylbenzene 1.352 ppm 206.2 13 M8P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 571.2 mVS 289.3 16 Unknown 90.49 mVS 337.3	1		•		•			•
Window Percent 30.0 %	LE		,					
Det Flow			- ~ " ·					
## B/F Flow			_	_=	<u> </u>			
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 1.276 VSec 49.5 2 Benzene 2.589 ppm 55.6 3 Unknown 3.090 VSec 62.5 4 Unknown 4.850 VSec 71.0 5 Unknown 301.9 mVS 87.0 6 Unknown 1.896 VSec 75.0 7 Toluene 43.04 PFM2 109.2 6 Unknown 330.5 mVS 155.2 10 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 175.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PFM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 0-Xylene 3.164 ppm 276.8 17 Unknown 90.49 mVS 337.3 18 Unknown 90.49 mVS 337.3 18 Unknown 90.49 mVS 337.3 18 Unknown 90.49 mVS 337.3 14 temp. of sample 28 c								
Oven Temp	سر ا						4	
Amb Temp 3.6 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name 1.276 VSec 49.5 1.20 1.21 1.22 1.23 1.34 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.4	85							
Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name 1.276 VSec 49.5 1 Unknown 1.276 VSec 49.5 2 Benzene 2.589 ppm 55.6 3 Unknown 3.090 VSec 62.5 4 Unknown 4.650 VSec 71.0 10 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PPM2 109.2 20 Unknown 330.5 mVS 155.2 10 Unknown 335.7 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 FPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 0-Xylene 3.164 ppm 274.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3		ä						
Analysis Time 400.0 sec			⇒ 6					Amb Temp 36 C
Peak Report	-							Max Gain 1000
Peak Report	114						7	Analysis Time 400.0 sec
Pk Compound Name Area/Conc R.T. 1 Unknown 1.276 VSec 49.5 2 Benzene 2.589 ppm 55.6 3 Unknown 3.090 VSec 62.5 4 Unknown 4.650 VSec 71.0 5 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PPM2 109.2 8 Unknown 330.5 mVS 155.2 10 Unknown 335.7 mVS 176.0 11 Unknown 335.7 mVS 176.0 11 Unknown 355.7 mVS 176.0 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 18 Unknown 90.49 mVS 337.3 342 18							•	
1 Unknown 1.276 VSec 49.5 2 Benzene 2.587 ppm 55.6 3 Unknown 3.090 VSec 62.5 4 Unknown 4.850 VSec 71.0 5 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PPM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 200 10 Unknown 335.7 mVS 176.0 11 Unknown 98.52 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3		1						
2 Benzene 2.589 ppm 55.6 3 Unknown 3.090 VSec 62.5 4 Unknown 4.850 VSec 71.0 5 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PPM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 175.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 mVS 195.4 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.2 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample # 26 18to20ft soil volume 509 water sample volume ****m1 temp. of sample 28 c	11 -	1	•		•	•		
3 Unknown 3.090 VSec 62.5 4 Unknown 4.850 VSec 71.0 5 Unknown 501.9 mVS 87.07 6 Unknown 1.876 VSec 95.0 7 Toluene 43.04 PPM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 200 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes Soil sample sample # 26 18to20ft Soil volume 50g water sample volume *****m1 temp. of sample 28 c	11/2	•						
4 Unknown 4.850 VSec 71.0 5 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PFM2 109.2 8 Unknown 330.5 mVS 155.2 10 Unknown 335.7 mVS 176.0 11 Unknown 98.52 mVS 176.0 12	17/2.	ر محمد			•			
5 Unknown 501.9 mVS 87.0 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 PFM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 FFM2 221.2 14 Unknown 270.2 mVS 259.4 15 Unknown 270.2 mVS 259.4 16 0-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PFM1 = Alarm 1 PFM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c		Ö						
121 6 Unknown 1.896 VSec 95.0 7 Toluene 43.04 FFM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 FFM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 0-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 15 285 16 29			•			•		
7 Toluene 43.04 PFM2 109.2 8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PFM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PFM1 = Alarm 1 PFM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****m1 temp. of sample 28 c	1 11							
8 Unknown 1.467 VSec 138.1 9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 270.2 mVS 259.4 15 Unknown 270.2 mVS 259.4 16 0-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes Soil sample Sample # 26 18to20ft Soil volume 50g water sample volume ****ml temp. of sample 28 c	171							•••
9 Unknown 330.5 mVS 155.2 10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sanple volume ****ml temp. of sample 28 c								
10 Unknown 355.7 mVS 176.0 11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sanple volume ****ml temp. of sample 28 c	10							1
11 Unknown 98.52 mVS 195.4 12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 15 285 16 7 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 (1							
12 Ethylbenzene 1.352 ppm 206.2 13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 15 285 16 17 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sanple volume ****ml temp. of sample 28 c	2db							
13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c	h.	•	•	•	•		•	11 Unknown 98.52 mVS 195.4
13 M&P-Xylene 57.93 PPM2 221.2 14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c	112							12 Ethylbenzene 1.352 ppm 206.2
14 Unknown 1.655 VSec 238.4 15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c		_	•		•	•		
15 Unknown 270.2 mVS 259.4 16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1	228	\supset						
16 O-Xylene 3.164 ppm 276.8 17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	2.24	ال ١٠٠٠ معجم		•	•		•	
17 Unknown 571.2 mVS 289.3 18 Unknown 90.49 mVS 337.3 285 16 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c								1
285 16 285 16 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c	ر ا ا)	•			•		
265 16 PPM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c		1. **						i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
285 16 PPM1 = Alarm 1								18 Dukuomu A0"42 WA2 221"2
PFM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 (15							
PFM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 4							
PFM1 = Alarm 1 PPM2 = Alarm2 Notes soil sample sample # 26 18to2Oft soil volume 50g water sample volume ****ml temp. of sample 28 c								
Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	285	16						
Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	l H	•	•	•	•		•	
Notes soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 12							
Soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	1 11		•		•	•		PPM1 = Alarm 1 PPM2 = Alarm2
soil sample sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	7 1/2							
sample # 26 18to20ft soil volume 50g water sample volume ****ml temp. of sample 28 c	13.45		•	•	•			
soil volume 50g water sample volume ****ml temp. of sample 28 c								1
342 18 water sample volume ****ml temp. of sample 28 c			•		•			· ·
temp. of sample 28 c								· ·
371	342	18					•	
								temp. of sample 28 c
400	371						_	
400		•	•	-		•	-	
400								
1400			•		•	•		
	400							
	1 "	•	•	•	•		•	

2311603	.ys1.s	YY () Y	J. V.) Yr 1,040.	r care.	tion Analysis Report
9	2	4	6 .(x	8	10 mV)	Time Printed: Aug 13,93 17:54 Sample Time: Aug 13,93 17:45
		•	. (^	TAN	mv)	Method
28	ž					Slope Up 3.000 mV/Sec
****	مسسنر			• .	•	Slope Down 3.000 mV/Sec
						Min Area 10.00 mVSec
1			 -			
- F						Min Height 0.000 mV
57	-5	. .		1.		Analysis Delay 45.0 sec
	- 22					Window Percent 30.0 %
1 .						Det Flow 10 ml/min
					4	B/F Flow 10 ml/min
85 🛶	parameter .					Aux Flow O ml/min
	والمحترب		•		•	Oven Temp 45 C
						Amb Temp 36 C
1			•	•		Max Gain 1000
1114						Analysis Time 400.0 sec
	-					Peak Report
.						Pk Compound Name Area/Conc R.T.
1 1.						1 Unknown 2.503 VSec 49.6
142/	$\supset_{\mathbb{B}}$					2 Benzene 1.407 ppm 55.6
1			•	•	•	3 Unknown 7.008 VSec 62.6
						4 Unknown 9.399 VSec 70.9
- b-		•	•	•		5 Unknown 969.4 mVS 87.2
171						6 Unknown 2.438 VSec 95.0
1. / 1.			•		•	
1.0	ı		•			8 Unknown 486.2 mVS 137.8
						9 Unknown 31.14 mVS 155.0
200	11					10 Ethylbenzene - 1.671 ppm 176.0
						11 Unknown 9.004 mVS 194.2
1 2	<u>.</u>					12 Ethylbenzene 100.2 ppb 206.2
1	_	•	•	•		13 M&P-Xylene 45.36 PFM2 221.4
228	> 13					14 Unknown 1.670 VSec 237.8
1			•		•	15 O-Xylene 2.859 ppm 277.8
	114					16 Unknown 11.97 mVS 335.4
1 1 .	7 1.4	•	•	•		TO CHATCALL TTTAY MAD 2004.4
000						
250						
4						
1						
285	1.5					
	-	•	•	•	•	
		•	•	•		PPM1 = Alarm 1 PPM2 = Alarm2
314						Notes
	•	•	•			water sample
						·
1 1			•			sample # 26
						soil volume **g
342	16					water sanple volume 42.5ml
1 1						temp. of sample 28 c
			•	•		
371						
-		•	•		•	
		•	•	•		
lada.						
400			•			

Analy	115 11. 115	77 X	3.00	T OU	1" COTT.	tion Calibrant Report
	4	8	12 .(×	16 10	20 mV)	Time Printed: Aug 17,93 07:20 Sample Time: Aug 17,93 07:13
287						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
						Min Height 0.000 mV Analysis Delay 45.0 sec
157			- i			Analysis Delay 45.0 sec Window Percent 35.0 %
			.1.			Det Flow 10 ml/min
		•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C Amb Temp 23 C
			•		•	Amb Temp 23 C Max Gain 1000
114	-					Analysis Time 400.0 sec
1 1			•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Benzene 1.000 ppm 55.1
142			•			2 Toluene 1.000 ppm 107.4 3 Ethylbenzene 1.000 ppm 213.4
						3 Ethylbenzene 1.000 ppm 213.4 4 O-Xylene 1.000 ppm 270.1
		•	•	•		A O Warmer Trans blur many
171						
	•		•		•	
						·
200			•			
1123	5	•	•	•	•	
226					_	
	-	•	-	•	-	
257						
		•	•			
				_		
14		-	•	•		
28/5						
		•	•			
314						Notes
	•	•	•		•	calibration
						sample O.iml of lug/ml BTEX
77 4 67						soil volume 50g water sanple vol. ****ml
342					•	temp. of sample 28 c
						2ug/50g = 4ug/4sg
		•	•	•		85 benzene = lug/k g
371			• .			180 toluene = lug/kg
	-	•	•			40 ethylbenzene = lug/kg
						100 m.p&o-xylene = lug/kg
400						
1244	•		•		•	

Anal	ysis	#3	105*	GC	Func	tion Analysis Report
9	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 17,93 07:39 Sample Time: Aug 17,93 07:23 Method
28						Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
1./						Min Area 1.000 mVSec
						Min Height 0.000 mV
57/-		.			•	Analysis Delay 45.0 sec
1		1.				Window Percent 35.0 %
			•	•		Det Flow 10 ml/min B/F Flow 10 ml/min
85						Aux Flow O ml/min
3	•	•		•	•	Oven Temp 45 C
						Amb Temp 25 C
		•	•	•		Max Gain 1000
1119	4					Analysis Time 400.0 sec
						Peak Report
		•	•			Pk Compound Name Area/Conc R.T.
1.1						1 Benzene 244.1 ppb 55.0
142	5			•	•	2 Unknown -5.76 mVS 69.3 3 Unknown 0.269 mVS 85.6
						4 Toluene 256.0 ppb 107.8
		•	•	٠		5 Unknown 10.35 mVS 136.1
171						6 Unknown 5.472 mVS 188.2
	•	•		•	•	7 Ethylbenzene 230.0 ppb 217.2
		•				8 M&F-Xylene 500.0 ppb 232.6
						9 O-Xylene 231.4 ppb 273.8
200	6					
1 1		•	•			
228	7					
12.0	:	•		•	•	
B						
		•	•	•		
257						
			•			
200	9					
285	7			٠	•	
		•	•	•		
314						Notes
	•	•		•	•	calibration
		•				sample O.2ml of lug/ml BTEX
						soil volume 50g
342						water sample vol. ****ml
						temp. of sample 28 c .2ug/50g = 4ug/kg
		•	•	•		.2ug/30g = 4ug/kg 60 benzene = lug/kg
371			4			60 toluene = lug/kg
" "	•	•		•	•	60 ethylbenzene = lug/kg
						60 m,p&o-xylene = lug/kg
				•		
400						
<u> </u>			·			

PHI CUL	<u>ys1s</u>	55.65	1.05*	(3).5	F.COTC.	tion Analysis Report
9	22	ą	6 .(x	8	10 mV)	Time Frinted: Aug 17,93 07:51 Sample Time: Aug 17,93 07:40
		•				Method
28						Slope Up 3.000 mV/Sec
12.50					•	Slope Down 3.000 mV/Sec
ر ا	and the same					i i
1 . /						Min Area 1.000 mVSec
						Min Height 0.000 mV
57/-		- ,				Analysis Delay 45.0 sec
1 5		1.				Window Percent 35.0 %
1 .62						Det Flow 10 ml/min
13						B/F Flow 10 ml/min
85						Aux Flow O ml/min
la	•	•		•	•	Oven Temp 45 C
Jan.						Amb Temp 27 C
		•	•	•		Max Gain 1000
1 1 0	>/					
113	- C				•	Analysis Time 400.0 sec
					•	Peak Report
						Pk Compound Name Area/Conc R.T.
N						1 Benzene 251.2 ppb 54.4
142	7					2 Unknown 7.053 mVS 60.7
		•		•	•	3 Unknown 7.408 mVS 69.0
		_				4 Unknown 1.521 mVS 84.8
			•	•	•	5 Unknown 2.796 mVS 92.2
171						6 Toluene 394.5 ppb 106.9
] "	•				•	7 Unknown 25.53 mVS 134.2
						8 Unknown 12.32 mVS 187.8
8		•		•		1
1 15						1 ''
200						10 M&P-Xylene 364.5 ppb 231.0
						11 O-Xylene 244.8 ppb 272.2
l l						
19						
228						
1 1	•	•		•	•	
10						
		•	•			
257						
1-1	•					
1 1.		•				
11.1						
285						
			•			
314						Notes
	•				•	calibration
						sample O. Aml of lug/ml BTEX
		•	•	•		soil volume 50g
342						water sample vol. ** Onl
1						
						temp. of sample 28 c
						.2ug/ #0.ml = 5 ug/kg
						60 benzene = lug/kg
371						100 toluene ≕ lug/kg
			•	•	-	50 ethylbenzene = lug/kg
						60 m,p&o-xylene = 1ug/kg
		-	-	•		., , , , , , , , , , , , , , , , , , ,
400						
1 1	•			•	•	

	1 345 44.	7 52 55 55	: #6	3. (7 (3)		7 (((1)))	tion Analysis Report
)	:1.	2	3	4	5	Time Printed: Aug 17,93 08:11
			•	.(x	1.0	mV)	Sample Time: Aug 17,93 08:02 Method
28	3	_					Slope Up 3.000 mV/Sec
1 4		مسممنه	J		•	•	Slope Down 3.000 mV/Sec
-	5						Min Area 1.000 mVSec
	- [•			1
	. \$						Min Height 0.000 mV
57	8						Analysis Delay 45.0 sec
ļ	51						Window Percent 35.0 %
İ	Siz.						Det Flow 10 ml/min
	3						B/F Flow 10 ml/min
8:							Aux Flow 0 ml/min
	}	•			•	•	Oven Temp 45 C
)						Amb Temp 29 C
			•	•	•		Max Gain 1000
1	1	А					
13	مستر	4					7
							Peak Report
							Pk Compound Name Area/Conc R.T.
	K						1 Benzene 12.50 ppb 54.4
14	12	5					2 Unknown 3.822 mVS 60.7
			. ,		•	•	3 Unknown 12.35 mVS 69.2
							4 Toluene 183.7 ppb 107.0
	-		•	•	•		5 Unknown 10.72 mVS 134.8
117	1						6 Ethylbenzene 49.29 ppb 187.8
" /	٠. ا				•	•	7 0-Xylene 71.34 ppb 273.6
							2 to 257 at write 2 at a west paper and a second
	1,		•	•	•		
-	6						
20	10						
22	8						
		•	•		•	·	
			•	•	•		
23	7						
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	•			•		
	,		•	•			
	[7						
28	10						
3:	4						Notes
		•	•		•	•	soil sample
							sample # 27 6 to 8 ft
			•	•	•		soil volume 50g
34	12						water sample vol. ****ml
,"	-	•				•	temp. of sample 28 c
							Same of the same o
			•	•			
	1.						
37	{ I.						
	1						
1							
40) 0				_		
	1	•	<u> </u>	<u> </u>		•	

		C Tree A			3.000	44. 112		Cach Philaday Sans Issuper C
9		23	4		6	8	10	Time Printed: Aug 17,93 08:23
			•		(x	10	mV)	Sample Time: Aug 17,93 08:13
28	3 *							Slope Up 3.000 mV/Sec
	1		•	•	•	•	•	Slope Down 3.000 mV/Sec
								Min Area 1.000 mVSec
			•	•		•		Min Height 0.000 mV
57	سي		:L					Analysis Delay 45.0 sec
	Ham	<u> </u>			•	•	•	Window Percent 35.0 %
	-			بت				Det Flow 10 ml/min
							4	B/F Flow 10 ml/min
85	4							Aux Flow O ml/min
	RE				•	·	·	Oven Temp 45 C
	.[>> 6						Amb Temp 29 C
	T-							Max Gain 1000
1.1	.kt					<u>~~</u> "		Analysis Time 400.0 sec
	1							Feak Report
	11							Pk Compound Name Area/Conc R.T.
	16							1 Unknown 77.13 mVS 48.5
14	1	8						2 Benzene 40.39 ppb 55.2
	1							3 Unknown 199.1 mVS 61.2
	1							4 Unknown 391.5 mVS 69.4
	Ĭ							5 Unknown 15.07 mVS 85.6
1.7	11.							6 Unknown 102.4 mVS 93.0
	9							7 Toluene 3.709 ppm 106.6
	X							8 Unknown 24.11 mVS 134.4
	1							9 Unknown 2.986 mVS 171.4
20		_	_					10 Unknown 66.65 mVS 199.0
	1/10	oʻ c	•		·			11 Ethylbenzene 352.1 ppb 216.6
	ľ							12 M&P-Xylene 564.3 ppb 232.6
	1.1							13 O-Xylene 379.8 ppb 272.0
22	(8							
	11	,	•					
	12							
	¥							
25	\$7							
		•						
	ħ							
	13							
28	# 5							
31	4							Notes
1	1							soil sample
	1							sample # 27 8 to 10ft
	1							soil volume 50g
34	12		,					water sample vol. ****ml
								temp. of sample 28 c
	1							
37	11							
					•			
					,			
40)O							
	1							

9	2	4		6 (x	8 100	10 mV)		Time Printed: Sample Time:	Aug 17,93 Aug 17,93		
		•		• •	•				thod		
₂₈ े≥							į	Slope Up	3.000	mVZ8	ijes (**
a 0 -	٠							•		mV/9	
-								Slope Down	3.000		
								Min Area	1.000	mVS∈	9 C
<i></i>				_				Min Height	0000	mΨ	
57 📙					1			Analysis Delay	45.0	sec	
		•			<u> </u>	ہ نے	İ	Window Percent		%	
L						= 3		Det Flow	10	m1/a	nin
. [-7					
						4		B/F Flow	10	m1/a	
35 }⊸⊲							1	Aux Flow	0	-m1/a	ni.n
	~>	5	•	•		•	İ	Oven Temp	45	C	
}			_					Amb Temp	31	C	
·		===		· **	•			Max Gain	1000	***	
						7.7	l				
114								Analysis Time	400.0	sec	
		,,,,,					1	Peak	Report		
		1					FK	Compound Name	Area/C	lon c	R.T.
. —		-		•	•		1	Uniknown	2.304	VSec	48.8
142		$>_{\circ}$					2	Benzene	27.09		55.3
L " 7.4	~~~~~	- co									
+							3	Unknown	8.862		61.8
	9						4	Unknown	13.63		70.0
1							5	Uniknown	1.003	VSec	85.7
171							6	Unknown	3.860	VSec	93.4
	iò	•	•			•	2		124.0		107.3
1/3	LO						1	Toluene			
. H							8	Unknown	2.694		135.3
- 11							9	Uniknown	753.1	mVS	152.0
20 H	1.1						10	Uniknown	422.6	mVS	172.4
1	3	•	•	•		•	•	Unknown	269.4		190.6
$+t^{\prime}$	•••							Un known	479.9		201.8
	-						•				
		> 13						Ethylbenzene	37.85		216.6
22 3							14	M&P-Xylene	62.54		233.2
1		aire	•	•		•	15	Uniknown	650.3	mVS	252.8
		الجمسي	4)	O-Xylene	15.59		269.6
1 ~				•	•		17	Unknown	189.6		329 . 8
H							1.7	Unknown	1.07 10	III A (2)	war za w C
25/7											
	5										
		•		•	•						
1.6	2										
285[
11											
- 11-											
-1/		•		•	•			PPM1 = Alarm 1	ppmp	= A1	arm2
I							<u> </u>		lotes		
31/4									IO CWS		
1							1	soil sample			
, l							1	sample # 27 12	to 14 ft		
11/2		•		•	•			soil volume 50g			
3442								vater sanple vo		ì	
J. 1862										•	
1							1	temp. of sample	. 70 C		
1											
- 1											
37/1		•	•	•		•	1				
371							1				
371							1				
371							1				
371 400											

Anat.	λ => 1' =>	77 3. 3.7	J. W.C	3.6 (36.5	1 (.011 (Ition Augitars weborr
9	2.		.6 .(x	8 100	10 mV)	Time Frinted: Aug 17,93 09:15 Sample Time: Aug 17,93 09:06
28 2						Method Slope Up 3.000 mV/Sec
ļ · ·	ند				•	Slope Down 3.000 mV/Sec
<			,			Min Area 1.000 mVSec
		·	•	•		
						, , , , , , , , , , , , , , , , , , , ,
57		-		 	•	Analysis Delay 45.0 sec
-		-			2	Window Percent 35.0 %
1 .					3	Det Flow 10 ml/min
					4	B/F Flow 10 ml/min
185 /2	-					Aux Flow 0 ml/min
	≥:		•		•	Oven Temp 45 C
						Amb Temp 31 C
-	-			•		Max Gain 1000
1111						Analysis Time 400.0 sec
114				· ·	. ,	Feak Report
	/					· ·
1 .	كمسي	•				
1.1/	The same of the sa					1 Unknown 1.355 VSec 48.6
14#2	8مبر					2 Benzene 30.21 PPM2 55.4
						3 Unknown 4.061 VSec 61.6
(1.1/2)	9					4 Unknown 7.335 VSec 69.8
1						5 Unknown 471.2 mVS 85.6
171						6 Unknown 2.141 VSec 93.3
))1	oʻ		•		•	7 Toluene 67.32 FPM2 107.2
1 11						8 Unknown 649.9 mVS 135.0
		•	•	•		9 Unknown 335.6 mVS 152.2
200	1.1.					10 Unknown 646.9 mVS 172.2
			•			•
1 11:1:	<i>i</i>					
\	·		•			12 Unknown 59.83 mVS 201.6
	$\sum 1$	3				13 Ethylbenzene 24.78 PPM2 216.4
228	K.					14 M&P-Xylene 58.90 PPM2 233.0
		-				15 Unknown 489.9 mVS 252.5
		14				16 O-Xylene 9.450 ppm 268.8
						17 Unknown 138.8 mVS 330.9
257						
1 1/1	S.		•		•	
1 1/1.	6	•	•	•		
285	***					
1-41	•		•		•	
			•	•		PPM1 = Alarm 1 PPM2 = Alarm2
3:44						Notes
						soil sample
1						sample # 27 14 to 16 ft
						soil volume 50g
342	1.7					water sanple vol. ****ml
	•	•	•	•	•	temp. of sample 28 c
1 1		•	•	•		
371						
	•		•			
		•	•			
1000						
400						

1 11 1 5.5	. w X 222 21.			4. 57			Catality and an insurance of
0	2		4	6	8	10	Time Printed: Aug 17,93 09:32
1 1	<i>/</i>		··Y			mV)	Sample Time: Aug 17,93 09:23
				.(x	TOÓ	mv)	Method
1	~						
28	-						Slope Up 3.000 mV/Sec
							Slope Down 3.000 mV/Sec
			>				Min Area 1.000 mVSec
1 .		•		•	•		Min Height 0.000 mV
57 (= ,				Analysis Delay 45.0 sec
157		=_	.1.	•		•	Window Percent 35.0 %
1 [7					Det Flow 10 ml/min
1 . [
1 1						- 4	
85							Aux Flow 0 ml/min
1 +			-				Oven Temp 45 C
1 1							Amb Temp 32 C
1 .	<			•			Max Gain 1000
114	ı					7.7	Analysis Time 400.0 sec
1.1.4		•	سمند			 /	Peak Report
		/	1				
.		فششير		•			
		,	8				1 Unknown 1.302 VSec 48.8
14	! /	9					2 Benzene 2.859 ppm 54.8
		•	•	•	•	•	3 Unknown 3.988 VSec 61.6
	1						4 Unknown 8.496 VSec 70.0
1 1	1	o .		•	•		5 Unknown 585.6 mVS 85.7
17							6 Unknown 2.775 VSec 93.4
1 1	1 4	•		•		•	7 Toluene 95.19 PPM2 107.2
	¥1l.						
.	Ì			•			
	1						
200							10 Unknown 757.8 mVS 152.4
1 1)12	•	-		·	•	11 Unknown 153.5 mVS 172.8
-	-(12 Unknown 1.505 VSec 201.8
1	\rightarrow 1	3		•	•		13 Ethylbenzene 18.28 FPM1 216.6
228							14 M&P-Xylene 37.38 FFM2 233.0
	- Minne	٠		•		•	15 Unknown 1.211 VSec 253.8
		4 21					16 O-Xylene 18.31 FPM1 268.5
-	parameter	1.4		. •			
 							17 Unknown 327.2 mVS 332.2
250	1 .						
1 -	_ 1.5						
	}						
1	/16	•		-	•		
285	1						
	1	•	•	٠		•	
	{						
1 1.)						PFM1 = Alarm 1 PFM2 = Alarm2
314	ł .						Notes
							soil sample
							sample # 27 16 to 18 ft
1 1		•		•	•		soil volume 50g
34	2 17						water sample vol. ****ml
J. 4	;t. /	•	٠	•		•	temp. of sample 28 c
							cempa or sempre co c
37	l.			_			
	•	•	•	•			
				•		•	
lade	``						
499							
L							

	\analigned \alpha \alph						CAUTI PHICLY BAB INSPECT
()	22		4	6	8	1.0	Time Printed: Aug 17,93 09:49
				_(x	100	mV)	Sample Time: Aug 17,93 09:40
<u></u>		•		•	,		Method
28 ર							Slope Up 3.000 mV/Sec
				•		•	Slope Down 3.000 mV/Sec
-		3					Min Area 1.000 mVSec
-		•		•	•		Min Height 0.000 mV
57/~							Analysis Delay 45.0 sec
- -	<u>>;~</u>	·	_ •			•	Window Percent 35.0 %
<u> </u>		_	- 3				Det Flow 10 ml/min
· } -		=	_	4	•		B/F Flow 10 ml/min
85				. 5			Aux Flow 0 ml/min
		•	٠			•	Oven Temp 45 C
-	777						Amb Temp 32 C
		•			•		Max Gain 1000
114				23			Analysis Time 400.0 sec
T T.	مسمر		,			٠.	Peak Report
	1						Pk Compound Name Area/Conc R.T.
1	0	٠		•	•		1 Unknown 746.9 mVS 48.6
142	10						2 Benzene 1.002 ppm 54.8
1. 11	'nΟ					•	3 Unknown 1.969 VSec 61.5
K							4 Unknown 1.332 VSec 69.8
12.							5 Unknown 1.821 VSec 72.1
	. 1.						6 Unknown 240.6 mVS 85.7
171							7 Unknown 1.016 VSec 93.3
11.2	:						8 Toluene 29.50 PPM2 107.2
-)							
adh							
29p.							
(J. J	3						
	h. a. a.						10 Au 10 Au
)14						
228							at 1 to stry in the street of
)						
/	15						
\mathcal{H}							17 O-Xylene 4.998 ppm 268.2
257							18 Unknown 101.0 mVS 331.4
Hr.	ó						
1							
14.7	7						
285							
							PFM1 = Alarm 1 FFM2 = Alarm2
314							Notes
	-						soil sample
							sample # 27 18 to 20 ft
							soil volume 50g
342	1.8						water sample vol. ****ml
	-		-		-		temp. of sample 28 c
371							
	•	•	•	•		-	
		-					
400			_				
1		•	•	•	•	•	

Analy	The dates	97.1.7	#00m	0.00	1 ((1))	ion Analysis Report
9	:[.	2	3 .(x	4 10	5 mV)	Time Printed: Aug 17,93 10:06 Sample Time: Aug 17,93 09:57
1			_			Method
28						Slope Up 3.000 mV/Sec
,				•	•	Slope Down 3.000 mV/Sec
1 <						
-سر .	سمم					***************************************
F-						Min Height 0.000 mV
57 -		L				Analysis Delay 45.0 sec
		<u></u>		•		Window Percent 35.0 %
 		پ کنت				Det Flow 10 ml/min
•				_	/ 1	B/F Flow 10 ml/min
					1-P	
85						Aux Flow O ml/min
He =	_					Oven Temp 45 C
1 1	>> 6					Amb Temp 32 C
1 1/2-		<u>. </u>	•	•		Max Gain 1000
1.1.4					. ,	Analysis Time 400.0 sec
T. T. 1.	·		· ·		1.	Peak Report
	ſ					·
لر ا ا)					Pk Compound Name Area/Conc R.T.
116						1 Unknown 37.91 mVS 48.6
1.47	8					2 Benzene 120.1 ppb 54.6
				•	•	3 Unknown 83.71 mVS 61.3
						4 Unknown 201.9 mVS 69.6
1/9		•	•	•		5 Unknown 4.722 mVS 85.3
1 .						
171						
I ILO						7 Toluene 2.198 ppm 106.6
				_		8 Unknown 17.28 mVS 134.8
		•	-	•		9 Unknown 15.68 mVS 152.8
200						10 Unknown 2.397 mVS 171.6
1 1	•	• •.			•	11 Unknown 5.954 mVS 200.2
1 1						
1						12 Ethylbenzene 912.4 ppb 216.2
	> 12					13 M&F-Xylene 2.741 ppm 232.6
22 8 <	_					14 Unknown 35.91 mVS 254.1
	-	and the		•	•	15 O-Xylene 581.6 ppb 266.1
		1.3				16 Unknown 14.40 mVS 333.3
	_	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	•		
1254						
114						
1 715	j					
28\$						
	•			•	•	
		•	•	•		
						Many de any an
3:14						Notes
						soil sample
} }		•				sample # 27 20 to 22 ft
l h				-		soil volume 50g
342	1.6					water sample vol. ****ml
				•	•	temp. of sample 28 c
						wanti je ti sic i maati je di an Anati an
		•	•			
371						
		•	•			
400						
1.40	•					
						1 and the second

		99 st. J.	100%			CTON LANCTABIE (Ambo) C
9	1.	22	3 .(x	4	5 mV)	Time Printed: Aug 17,93 10:21 Sample Time: Aug 17,93 10:13
			. \ ^	n vi	v /	Method
28						Slope Up 3.000 mV/Sec
1				•	•	Slope Down 3.000 mV/Sec
>	•		•			Min Area 1.000 mVSec
1						Min Height 0.000 mV
57	<u>.</u> j.					Analysis Delay 45.0 sec
	<u>-</u> 2					Window Percent 35.0 %
1	-33					Det Flow 10 ml/min
 			ŀ			B/F Flow 10 ml/min
85(Aux Flow O ml/min
E						Oven Temp 45 C
1.00	•	•				Amb Temp 32 C
						Max Gain 1000
114		وحبسب				Analysis Time 400.0 sec
111						Feak Report Pk Compound Name Area/Conc R.T.
1 1/		•				Pk Compound Name Area/Conc R.T. 1 Unknown 18.17 mVS 48.6
1.15	O					2 Benzene 60.53 ppb 54.7
142	8					3 Unknown 32.29 mVS 61.3
1						4 Unknown 103.2 mVS 69.4
1		•	•	•		5 Unknown 2.504 mVS 85.6
171						6 Unknown 17.60 mVS 92.9
10	•	•			•	7 Toluene 1.051 ppm 106.6
						8 Unknown 10.55 mVS 135.3
11		•	•	•		9 Unknown 5.568 mVS 151.8
200						10 Ethylbenzene 16.76 ppb 173.0
111	•	•			•	11 Unknown 0.274 mVS 201.6
						12 Ethylbenzene 318.8 ppb 216.8
1 1		•	•	•		13 M&P-Xylene 1.214 ppm 232.8
225	12					
1 -	3					
سرا.	1.3					
1						
257						·
.						
285						
-		•	•			
77.46						Notes
314						soil sample
						sample # 27 22 to 24 ft
		•	•	•		soil volume 50g
342						water sample vol. ****ml
	•			•	•	temp. of sample 28 c
		•	•	•		
371						
	•			•		
		•	•	•		
400						
1	•	•			•	

Anal	Aere	98 x:	1.0	3.03	ar uu	r corc.	tion Analysis Report
9	22		4	.6 .(x	8 100	10 mV)	Time Printed: Aug 17,93 10:38 Sample Time: Aug 17,93 10:29
		•		. \ ^			Method
28 >							Slope Up 3.000 mV/Sec
J		_=	•	•		•	Slope Down 3.000 mV/Sec
_							Min Area 1.000 mVSec
1		•		•	•		Min Height 0.000 mV
157/2	> ,						Analysis Delay 45.0 sec
						•	Window Percent 35.0 %
	پي			ř			Det Flow 10 ml/min
	⊃કું્ર	•		•	•		B/F Flow 10 ml/min
0.0	-+						Aux Flow O ml/min
85	•		•	•		•	Oven Temp 45 C
Ko							
16							
1	*						Max Gain 1000 Analysis Time 400.0 sec
114	17						
							Peak Report
							Pk Compound Name Area/Conc R.T.
							1 Unknown 376.1 mVS 48.6
142	.8						2 Benzene 5.711 ppm 55.1
							3 Unknown 641.8 mVS 61.4
							4 Unknown 775.7 mVS 69.6
9							5 Unknown 73.96 mVS 85.7
171							6 Unknown 116.8 mVS 93.3
10			-	-		-	7 Toluene 5.753 ppm 107.2
							8 Unknown 17.77 mVS 135.4
							9 Unknown 9.064 mVS 152.6
200	1.1					_	10 Ethylbenzene 161.8 ppb 173.4
12		•	•	•			11 Unknown 0.435 mVS 190.6
							12 Unknown 0.083 mVS 193.0
117		٠		•	•	•	13 Ethylbenzene 8.632 ppm 217.0
228	1.3						14 M&F-Xylene 22.91 PPM2 233.0
	`	٠	•	•			15 O-Xylene 40.97 ppb 270.4
	7 14						
		•		•	•	•	
297							
	•	•	٠	•	•		
115				•	•	•	
285							
	•		٠	•	•		
		٠		•		•	PPM1 = Alarm 1 PPM2 = Alarm2
314							Notes
	•	•	٠	•	•		water sample
							sample # 27
		•		•		•	soil volume **g
342							water sample vol. 42.4ml
5-12-		•	٠	•	•		temp. of sample 28 c
							STABLE DE H. SEE L. DESISTE DE DESIGNA GUARE, AN
		•		-		•	
371				٠			
						•	
440				•			
							<u> </u>

PH 1 65. J.	.ysis	77.27	4. 7/		1 (.(11 (tion Analysis Report
0	4	8	1.2	16	20	Time Printed: Aug 17,93 11:06
	1	***		1000		Sample Time: Aug 17,93 10:57
		•				Method
00						1
28				⇒		t and the second
	ے۔					Slope Down 3.000 mV/Sec
	مسسم	عم	•			Min Area 1.000 mVSec
1 8						Min Height 0.000 mV
57 /	سانسم					Analysis Delay 45.0 sec
1 <i>-</i>		2	•		•	Window Percent 35.0 %
1 /	~~~~	3				Det Flow 10 ml/min
1 1-		s _a	•	•		B/F Flow 10 ml/min
850		•				Aux Flow O ml/min
1000	`		•			Oven Temp 45 C
1 1	- U					
1	Ó			•		
		- <u>-</u> -				Max Gain 1000
114	مسسميد	. 77				Analysis Time 400.0 sec
111						Peak Report
						Pk Compound Name Area/Conc R.T.
H			=	•		1 Unknown 7.409 mVS 48.7
142	8					2 Benzene 41.50 ppb 55.0
			•		•	3 Unknown 20.29 mVS 61.5
1 4						4 Unknown 25.96 mVS 69.6
1 16		•	•	•		5 Unknown 7.439 mVS 86.0
1, 1,						
171	•					
						, .
1		•				8 Unknown 8.163 mVS 135.3
1 1						9 Unknown 2.632 mVS 153.0
200						10 Ethylbenzene 175.3 ppb 217.6
	-	•	•	•	•	11 M&P-Xylene 690.6 ppb 234.6
{						
1.1	4	•	•	•		
228/	10					
1	Marie V		•		•	
	\supset	1, 1				
1 1/	and the same of th	ri rr	•	•		
L. V						
25]						
1 .1			•			
286						
			-			
314						Notes
	•	•				soil sample
						sample # 28 1 to 3 ft
1 1		•	•	•		soil volume 50g
77 10						water sample vol. ****ml
342					•	· ·
1 1						temp. of sample 28 c
			-			
371						
				_		
		-	•	•		
400						
1 1	•		•		•	
<u> </u>						

8 Unknown 93.41 mVS 19 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 228 13 14 M&P-Xylene 1.081 ppm 2	
Slope Up 3.000 mV/Se Slope Down 3.000 mV/Se Min Area 1.000 mV/Se Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/m: Aux Flow 0 ml/m: Aux Flo	
Slope Down 3.000 mV/Sc Min Area 1.000 mV/Sc Min Area 1.000 mV Sc Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/m: B/F Flow 10 ml/m: B/F Flow 10 ml/m: Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc 1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 2 Benzene 127.8 ppb 3 Unknown 312.7 mVS 5 Unknown 312.7 mVS 5 Unknown 92.84 mVS 10 Unknown 93.41 mVS 10 Unknown 93.41 mVS 10 Unknown 93.41 mVS 10 Unknown 58.33 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 7.586 mVS 12 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M8F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3 Unknown 292.4 ppb	
Slope Down 3.000 mV/Sc Min Area 1.000 mV/Sc Min Area 1.000 mV Sc Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/m: B/F Flow 10 ml/m: Aux Flow 0 ml/m: Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc 1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 2 Benzene 127.8 ppb 3 Unknown 312.7 mVS 5 Unknown 312.7 mVS 5 Unknown 92.84 mVS 10 Unknown 93.41 mVS 10 Unknown 93.41 mVS 9 Unknown 93.41 mVS 9 Unknown 93.41 mVS 10 Unknown 58.33 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3 Unknown 292.4 ppb 3 Unknown 292.4 ppb 3 Unknown 292.4 ppb 3 Unknown 292.4 ppb 3 Unknown 3	ijas jer
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/m: Aux Flow 0 ml/m: Aux	
Min Height	
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/m: B/F Flow 10 ml/m: Aux Flow 0 ml/m: Aux Flow 0 ml/m: Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc 1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 312.7 mVS 4 Unknown 312.7 mVS 5 Unknown 92.86 mVS 11 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 50.82 mVS 11 Unknown 50.82 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3 Unknown 292.4 ppb	C
Window Percent 35.0 % Det Flow 10 ml/m: Det Flow 10 ml/m: Det Flow 10 ml/m: Det Flow 10 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow 0 ml/m: Det Flow	
Window Percent 35.0	
Det Flow	
## B/F Flow	
Aux Flow	
Oven Temp	in
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc 1 Unknown 108.3 mVS 142 9 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 4 Unknown 312.7 mVS 5 Unknown 92.86 mVS 171 4 Unknown 92.86 mVS 171 5 Unknown 93.41 mVS 9 Unknown 93.41 mVS 200 10 Unknown 50.82 mVS 201 10 Unknown 50.82 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 314	in
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc 1 Unknown 108.3 mVS 142 9 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 4 Unknown 312.7 mVS 5 Unknown 92.86 mVS 171 4 Unknown 92.86 mVS 171 5 Unknown 93.41 mVS 9 Unknown 93.41 mVS 200 10 Unknown 50.82 mVS 201 10 Unknown 50.82 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 314	
Max Gain	
Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc 1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 4 Unknown 312.7 mVS 5 Unknown 92.86 mVS 171 6 Unknown 92.86 mVS 1 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 50.82 mVS 11 Unknown 50.82 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 G-Xylene 292.4 ppb 314	
Peak Report Pk Compound Name Area/Conc 1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 3 Unknown 312.7 mVS 5 Unknown 86.72 mVS 5 Unknown 92.86 mVS 11 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 15 O-Xylene 292.4 ppb 314 315 314 315 314 315 314 315 316 31	
Fk	
Fk Compound Name Area/Conc 1 Unknown 108.3 mVS 142.9 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 10 4 Unknown 84.72 mVS 171 4 Unknown 92.86 mVS 171 4 Unknown 92.86 mVS 171 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 15 O-Xylene 292.4 ppb 15 O-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb 20 O-Xylene 292.4 ppb	
1 Unknown 108.3 mVS 2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 4 Unknown 312.7 mVS 5 Unknown 86.72 mVS 6 Unknown 92.86 mVS 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 58.33 mVS 12 Unknown 7.586 mVS 12 Unknown 106.7 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3	R.T.
2 Benzene 127.8 ppb 3 Unknown 175.9 mVS 10 4 Unknown 312.7 mVS 5 Unknown 86.72 mVS 171 6 Unknown 92.86 mVS 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 50.82 mVS 11 Unknown 58.33 mVS 12 Unknown 106.7 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3	
3 Unknown 175.9 mVS 4 Unknown 312.7 mVS 5 Unknown 86.72 mVS 6 Unknown 92.86 mVS 7 Toluene 2.069 ppm 8 Unknown 50.82 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 2	48.4
## Unknown	56.2
## Unknown	61.0
5 Unknown 86.72 mVS 6 Unknown 92.86 mVS 7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 15 285	69.0
171	85.3
7 Toluene 2.069 ppm 8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 2 15 O-Xylene Notes	
8 Unknown 93.41 mVS 9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&F-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 3	92.9
9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 2	106.6
9 Unknown 50.82 mVS 10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 2	126.5
10 Unknown 58.33 mVS 11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 14 M&P-Xylene 1.081 ppm 15 O-Xylene 292.4 ppb 2 15 S 285	134.1
11 Unknown 7.586 mVS 12 Unknown 106.7 mVS 13 Ethylbenzene 339.1 ppb 2 14 M&P-Xylene 1.081 ppm 2 15 O-Xylene 292.4 ppb 3 15 285	
12 Unknown 106.7 mVS 2 13 Ethylbenzene 339.1 ppb 2 14 M&P-Xylene 1.081 ppm 2 15 O-Xylene 292.4 ppb 3 15 285	145.4
13 Ethylbenzene 339.1 ppb 2 14 M&F-Xylene 1.081 ppm 2 15 O-Xylene 292.4 ppb 2 15 285	173.6
13 Ethylbenzene 339.1 ppb 2 14 M&F-Xylene 1.081 ppm 2 15 O-Xylene 292.4 ppb 2 15 285	201.8
228 13	219.6
15 O-Xylene 292.4 ppb 2 257 15 285	235.8
257 255 285 Notes	
257 15 285 314 Notes	268.8
15 285 314 Notes	
15 285 314 Notes	
285 285 314 Notes	
285 314 Notes	
285 314 Notes	
285 314 Notes	
314 Notes	
314 Notes	
i is a second of the second of	
sample # 28 3 to 5 ft	
soil volume 50g	
342 water sample vol. ****ml	
temp. of sample 28 c	
a mere per a mere a mere a mere a mere a mere a mere a mere a mere a mere a mere a mere a mere a mere a mere a	
371	
4do	

0	2	ď	4	6		8	1.0	Time Printed: Aug 17,93 12:33
				(x			mV)	Sample Time: Aug 17,93 12:24
		•		. \ .				Method
lac	-							
28								
	==							Slope Down 3.000 mV/Sec
j		•						Min Area 1.000 mVSec
1		•		•		•		Min Height 0.000 mV
57		1						Analysis Delay 45.0 sec
1-1/	<u>-55</u> ;				•	•	•	Window Percent 35.0 %
1 1	7							
1 .)			<u></u>	<u> </u>				Det Flow 10 ml/min
				- 4				B/F Flow 10 ml/min
85	-							Aux Flow 0 ml/min
		š .	•	•	•	•	•	Oven Temp 45 C
1 1	— ~ ~, `	••						Amb Temp 32 C
1 .		•		•		•		
1 1								Max Gain 1000
111	4		ويحب					Analysis Time 400.0 sec
1						-		Peak Report
'l T	1							Pk Compound Name Area/Conc R.T.
1 1	\sum_{i}	•				-		1 Unknown 86.57 mVS 48.7
1!	5 0~							
140	4 7							
1 1)							3 Unknown 146.3 mVS 61.3
	[10]							4 Unknown 256.5 mVS 69.4
	-							5 Unknown 92.26 mVS 85.8
1.7	1							6 Unknown 77.30 mVS 93.3
" / A	11	•	•	٠	٠	•	•	7 Toluene 1.803 ppm 106.9
	11L							1
1 .								
	1							9 Unknown 41.36 mVS 134.9
200	্						_	10 Unknown 51.92 mVS 145.4
	12	•	•	•	٠	•	•	11 Unknown 6.616 mVS 173.4
	/							12 Unknown 85.82 mVS 201.0
·H		•		•		•		13 Ethylbenzene 223.5 ppb 219.2
	1							
22	3 13							1
	1							15 O-Xylene 81.76 ppb 270.6
	114							
	1	•		-		•		
25	7							
		•	٠	•			•	
.								
1 8	1.5							
28	5							
	•	•	•	•	•	•	•	
1								
1 1		•		•				
								L1L
31	4 .							Notes
								soil sample
								sample # 28 5 to 7 ft
1		•		•		•		soil volume 50g
34	' 9							water sample vol. ****ml
0.4								
								temp. of sample 28 c
37	1							
1	•••	•	•	•	•		•	
40	O .							
1 1		-	-	•	•	•	-	

Time Printed: Aug 17,93 12:51 Sample Time: Aug 17,93 12:42 Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Method 100 mV/Sec Min Area 1.000 mVSec M	11	He	uysis	77.	ww.	J. V/	,, (,)(,)	1 (311)	tion Analysis Report
Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 43 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fe Compound Name Area/Conc R.T. 1 Unknown 114.7 mVS 48.8 2 Benzene 150.6 ppb 56.7 10 14 14.5 mVS 49.4 10 14.5 mVS 49.4 10 14.5 mVS 61.4 4 14.5 mVS 61.4 4 14.5 mVS 61.4 4 14.5 mVS 61.4 4 14.5 mVS 61.4 4 14.5 mVS 61.4 15.5 mVS 93.4 15.5 mVS 93.4 16.5 mVS 17.5 16.5 mVS 17.5 17.5 mVS 17.5 17.5 mVS 17.5 mVS 17.5 17.5 mVS 17.5		9	22		4)
Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min	ł	L		•			*** **;	,	
Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV Sec Min Height 0.000 mV Analysis Delay 45.0 sec Mindow Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pea	10	o	-						í l
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. I Unknown 114.7 mVS 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 154.5 mVS 61.4 4 Unknown 356.8 mVS 69.4 5 Unknown 122.5 mVS 85.8 d Unknown 122.5 mVS 83.4 7 Toluene 2.650 ppm 107.0 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 134.2 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 369.0	14	ω			•			•	
Min Height				_					
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Unknown 114.7 mVS 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 mVS 61.4 4 Unknown 128.5 mVS 69.4 5 Unknown 128.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 11 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 265 314 Notes soil sample sample # 28 7 t 9 ft soil volume 50g water sanple vol. ************************************		٠,							
Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Amb Temp 34 C Amb Temp 35 C Amb Temp 35 C Amb Temp 36 C A	}	- }-		=					
Det Flow	- 5	7}	-	_1					1 ' '
B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Unknown 114.7 m/S 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 m/S 61.4 4 Unknown 356.8 m/S 69.4 10 4 Unknown 126.9 m/S 85.8 11 5 Unknown 126.9 m/S 85.8 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	<u></u>	_					
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Unknown 114.7 mVS 48.8 12 Benzene 150.6 ppb 56.7 3 Unknown 194.5 mVS 61.4 4 Unknown 356.8 mVS 69.4 5 Unknown 128.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 265 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c	1	 							Det Flow 10 ml/min
Oven Temp	Ì	1		_			4		B/F Flow 10 ml/min
Oven Temp	18	:1/							Aux Flow O ml/min
Amb Temp 33 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pek Compound Name Area/Conc R.T. 1 Unknown 114.7 mVS 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 mVS 61.4 4 Unknown 126.9 mVS 67.4 5 Unknown 126.9 mVS 85.8 6 Unknown 126.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 227 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. *****ml temp. of sample 28 c	1	1.	احتتار	13	•	•		•	
Max Gain				•••					
Analysis Time 400.0 sec		-		•		•	•		
Peak Report	١.			_					
Pk Compound Name Area/Conc R.T. Unknown 114.7 m/S 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 m/S 61.4 4 Unknown 356.8 m/S 69.4 4 Unknown 126.9 m/S 85.8 6 Unknown 126.9 m/S 85.8 6 Unknown 128.5 m/S 93.4 7 Toluene 2.650 ppm 107.0 10 Unknown 100.5 m/S 134.4 10 Unknown 207.9 m/S 134.4 10 Unknown 207.9 m/S 134.4 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 m/S 369.0 237 285 314 3 Unknown 212.9 m/S 369.0 342 342 342 342 344 3	11	14	مسمست		·	- /		•	
1 Unknown 114.7 mVS 48.8 2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 mVS 61.4 4 Unknown 356.8 mVS 69.4 5 Unknown 126.9 mVS 85.8 6 Unknown 126.9 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 74.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 228 257 265 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c		-						•	·
2 Benzene 150.6 ppb 56.7 3 Unknown 194.5 mVS 61.4 4 Unknown 356.8 mVS 69.4 5 Unknown 126.9 mVS 85.8 6 Unknown 128.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 265 314 Notes Soil sample sample # 28 7 to 9 ft Soil volume 50g Water sanple vol. ****ml temp. of sample 28 c			1						
3 Unknown 194.5 mVS 61.4 4 Unknown 356.8 mVS 69.4 5 Unknown 126.9 mVS 85.8 6 Unknown 128.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 200 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 228 Notes Soil sample sample 212.9 mVS 369.0 257 285 314 Notes 369.0 374 2 water sanple vol. ****ml temp. of sample 28 c	ĺ	-	_ _(18						
10	1	42	29						2 Benzene 150.6 ppb 56.7
10	Ì	Γ	7	•	•	•		•	
5 Unknown 126.9 mVS 85.8 6 Unknown 128.5 mVS 93.4 7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c	ļ		(10						
120		1	<i>f</i> "" "	•		•	•	•	
7 Toluene 2.650 ppm 107.0 8 Unknown 161.8 mVS 127.2 9 Unknown 207.9 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. ****m1 temp. of sample 28 c	1	-16							
1	٠١.	TI'	• •		•	•			
9 Unknown 100.5 mVS 134.4 10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c		Ц	4						•
10 Unknown 207.9 mVS 145.8 11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sanple vol. ****ml temp. of sample 28 c		14	.l.			•			
11 Unknown 83.05 mVS 174.6 12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 265 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c									•
12 Ethylbenzene 5.861 ppm 201.0 13 0-Xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 Soil sample sample 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c 374 13 14 374	2	90	. /						
13 0-xylene 283.7 ppb 361.0 14 Unknown 212.9 mVS 369.0 257 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c)12						1
228 14 Unknown 212.9 mVS 369.0 257 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1	1	<i>r</i>				_		
228 14 Unknown 212.9 mVS 369.0 257 285 314 Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	}	تم		•		-	•		
Notes Soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	2	218	}						
Notes Soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c		T	•	•	•	٠		•	
Notes Soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c									
Notes Soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1			•		•	•		
Notes Soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1,	اي	,						
Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	Y.	9/							
Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c									
Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c									
Notes soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1								
soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	2	85	i						
soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c			·	•	•	•	•	•	
soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c									
soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c				•		•	•		
soil sample sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	77	10	Į						Notes
sample # 28 7 to 9 ft soil volume 50g water sample vol. ****ml temp. of sample 28 c	1		٠.	•	•	•		•	
soil volume 50g water sample vol. ****ml temp. of sample 28 c	1	1							
water sample vol. ****ml temp. of sample 28 c						•			
temp. of sample 28 c	}								
37/1 13	13	4%							
									temp. of sample 28 c
		6		-		-	•		
		7/	1.3						
400		16	4	•	•	•		•	
400			. ·Υ						
400	İ	Ψ		•		•			
490		1							
	14	qc	'.						
	L								

								Target Priory Sim Report
9	.1	L .	2		3 (x	4 10	5 mV)	Time Printed: Aug 17,93 13:07 Sample Time: Aug 17,93 12:59
			_					Method
28	ے۔ سیس	_=	-					Slope Up 3.000 mV/Sec
	=		_					Slope Down 3.000 mV/Sec
								Min Area 1.000 mVSec
57			<u>-</u> -					Min Height 0.000 mV
137			1.					Analysis Delay 45.0 sec
					,			Window Percent 35.0 %
•	/							Det Flow 10 ml/min
85						64	•	B/F Flow 10 ml/min
		5	٠	•		•	•	Aux Flow O ml/min
		6						Oven Temp 45 C Amb Temp 33 C
'	~	<u> </u>		•		•		
114	7				-	7		
	_			•	• '		•	Peak Report
] .]	1							Fk Compound Name Area/Conc R.T.
}	- ∕8	-		•		:		1 Unknown 65.47 mVS 48.6
14	9							2 Benzene 76.76 ppb 56.1
)			·		•	•	3 Unknown 104.8 mVS 61.1
.	10							4 Unknown 187.8 mVS 69.2
								5 Unknown 41.45 mVS 85.4
17								6 Unknown 49.43 mVS 92.9
1	.1.							7 Toluene 1.363 ppm 106.5
	. Aci							8 Unknown 44.62 mVS 126.1
200	1							9 Unknown 29.49 mVS 134.0
200	1		٠,					10 Ethylbenzene 310.7 ppb 145.2
	M. W							11 Unknown 0.668 mVS 171.6
1 .		•		•		•		12 Unknown 2.679 mVS 173.8
22	14							13 Unknown 42.88 mVS 199.8
	,,	•	٠	•	•	•		14 Ethylbenzene 130.3 ppb 217.8 15 M&P-Xylene 345.4 ppb 232.8
	15							15 M&P-Xylene 345.4 ppb 232.8
		•		•		•		
257								
	•	•	•	•	•	•	·	
1.								
285								
1 1								
314							ļ	
	•				•			Notes
							l	soil sample
1 1		•		٠		٠	ĺ	sample # 28 9 to 11 ft
342							1	soil volume 50g
	•	•		•	•	•	.	water sanple vol. ***ml temp. of sample 28 c
							1	while of pembre 50 C
		•		•		•		
371								
	•	•	•	•	•	•	.	
						•		
400							.	

Slope Down 3. Min Area 1. Min Height 0. Analysis Delay	000 mV/S 000 mV/S 000 mVSe 000 mV 5.0 sec 5.0 %	ec ec
Slope Up 3. Slope Down 3. Min Area 1. Min Height 0. Analysis Delay 4. Window Percent 3.	000 mV/S 000 mVSe 000 mV 5.0 sec 5.0 % 10 m1/m	ec
Slope Down 3. Min Area 1. Min Height 0. Analysis Delay 4 Window Percent 3	000 mV/S 000 mVSe 000 mV 5.0 sec 5.0 % 10 m1/m	ec :
Min Area 1. Min Height 0. Analysis Delay 4 Window Percent 3	000 mVSe 000 mV 95.0 sec (5.0 % 10 m1/m	
57 1 Min Height 0. Analysis Delay 4 Window Percent 3	000 mV \$5.0 sec \$5.0 % 10 ml/m	
57 Analysis Delay 4 Window Percent 3	95.0 sec 95.0 % 10 ml/m	
Window Percent 3	5.0 % 10 ml/m	
	10 m1/m	
1 1760 1 17 1 1.100		vie
4 B/F Flow	10 ml/m	
	0 ml/m	
85 Aux Flow Oven Temp	45 C	1.611
Amb Temp	34 C	
	.000	
	00.0 sec	
7 Analysis Time 40		
	rea/Conc	R.T.
).76 mVS	48.5
The same of the sa	dqq 00.8	55.2
	2.47 mVS	61.2
	3.28 mVS	69.3
1	.608 mVS	85.6
	74 mVS	92.9
1 1	51.9 ppb	106.5
	.693 mVS	126.2
	.050 mVS	135.2
	.250 mVS	171.6
	0.56 mVS	195.8
) (7	3.86 ppb	217.6
1 .)	18.7 ppb	234.0
1 / 1	TOBY PAGE	A_07 1 8 07
22 12		
$ \rangle_{13}$		
1.1.3		
257		
nos:		
295		
314 Notes		
soil sample		
	· የ ተ	
soil volume 50g	1 %	
342 water sample vol. **	kwwm1	
temp. of sample 28 of		
Company of South State S		
371		
400		

171116	uysis	.2 115.2		3. 07			tion Analysis Report
9	4		3	12 .(×	16 1000	20 (uV)	Time Frinted: Aug 17,93 13:40 Sample Time: Aug 17,93 13:31
-							Method
28		-					Slope Up 3.000 mV/Sec
	٠ ح	5	•	•		•	Slope Down 3.000 mV/Sec
	حجر _	_					Min Area 1.000 mVSec
	January .	٠		•	•		Min Height 0.000 mV
[:: ····		4					
57		Ť					, , ,
1 . 1	<u> </u>					_	Det Flow 10 ml/min
						4	B/F Flow 10 ml/min
85							Aux Flow O ml/min
	<u>7</u> 5	•	·	•		•	Oven Temp 45 C
	> 6						Amb Temp 34 C
	·	<u> </u>			·		Max Gain 1000
114						7	Analysis Time 400.0 sec
" "]						•	Peak Report
	{						Pk Compound Name Area/Conc R.T.
1 +	₹	•		•			1 Unknown 14.47 mVS 49.2
146	\supset_{α}						
174	13						1
							3 Unknown 9.076 mVS 61.4
		•					4 Unknown 77.79 mVS 69.2
	-						5 Unknown 2.638 mVS 85.4
17							6 Unknown 6.032 mVS 92.6
1 \$							7 Toluene 638.6 ppb 106.2
1.1							8 Unknown 19.08 mVS 133.7
		-		-	•		9 Unknown 0.691 mVS 172.2
200	10						10 Unknown 4.298 mVS 193.2
	•	•	•	•		•	11 Ethylbenzene 59.91 ppb 215.6
							12 M&P-Xylene 231.5 ppb 231.6
1.1	11	•		•	•		man cried engenicina and entre preperior and entre in the
22	7 ·L ·L						· ·
2.2.		•	•				
),						
1 .1	12	•					
25							
1							
1.							
28	i						
1	•	•	•	•		•	
1 1							
1 1		•		•			
314	L						Notes
1 3 Th							
							soil sample
							sample # 28 13 to 15 ft
							soil volume 50g
342							water sample vol. ****ml
							temp. of sample 28 c
371							
		•	•	•			
{							
11		•		•		•	
400)						
140	· .	•	•	٠	•		
L							

Slope Up	9	ą		8	12 .(×	16 1000	20 uV)	Time Printed: Aug 17,93 10:54 Sample Time: Aug 17,93 10:45
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 7.150 mVS 49.2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 69.4 4 Unknown 55.34 mVS 69.4 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 2.419 mVS 135.4 9 Unknown 2.419 mVS 135.4 9 Unknown 2.419 mVS 135.4 10 Ethylbenzene 325.4 ppb 217.4 11 M&P-Xylene 1.108 ppm 233.6 314 Notes water sample sample # 28 soil volume **g water sanple vol. 42.8m1	28	٠		=				· · · · · · · · · · · · · · · · · · ·
Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. Unknown 7.150 mVS 49.2 Benzene 86.20 ppb 54.8 Unknown 18.05 mVS 61.4 Unknown 18.05 mVS 61.4 Unknown 2.492 mVS 85.8 Unknown 2.492 mVS 85.8 Unknown 8.041 mVS 93.6 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.2 Unknown 2.419 mVS 135.3 Unknown 1.0 Ethylbenzene 325.4 ppb 217.6 Unknown 2.419 mVS 135.3 Unknown 1.108 ppm 233.6 Notes water sample sample # 28 soil volume **g water sample vol. 42.8ml		محسر						Min Area 1.000 mVSec
Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Unknown 7.150 mVS 49.2 2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.4 4 Unknown 55.34 mVS 69.4 5 Unknown 2.492 mVS 85.8 6 Unknown 2.492 mVS 85.8 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 135.4 9 Unknown 2.419 mVS 135.3 10 Ethylbenzene 325.4 ppb 217.6 11 M&F-Xylene 1.108 ppm 233.6 228 10 11 25 28 28 28 28 28 28 28	\ <i>\</i>	٠.						,
Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Unknown 7.150 mVS 49.2 Benzene 86.20 ppb 54.8 Unknown 18.05 mVS 61.4 Unknown 55.34 mVS 69.6 Unknown 2.492 mVS 85.8 Unknown 8.041 mVS 93.6 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 2.419 mVS 153.2 Unknown 10 Ethylbenzene 325.4 ppb 217.6 Unknown 1.108 ppm 233.6 228 10 Notes water sample sample # 28 soil volume **kg water sample vol. 42.8ml	157 E				•			
## B/F Flow	1		<u>-</u> -33		<i>i</i>			
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Unknown 7.150 mVS 49.2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 Unknown 55.34 mVS 69.6 Unknown 2.492 mVS 85.8 Unknown 2.492 mVS 85.8 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 Unknown 4.510 mVS 135.4 10 Ethylbenzene 325.4 ppb 217.6 11 M&P-Xylene 1.108 ppm 233.6 11 M&P-Xylene 1.108 ppm 233.6 11 Unknown 4.510 mVS 135.2 11 M&P-Xylene 1.108 ppm 233.6 11 Unknown 135.2 11 M&P-Xylene 1.108 ppm 233.6 11 Unknown 135.2 11 M&P-Xylene 1.108 ppm 233.6 11 Unknown 135.2 11	11/					ŧ .		3
Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 7.150 mVS 49.2 2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 200 10 Ethylbenzene 325.4 ppb 217.6 11 M&P-Xylene 1.108 ppm 233.6 228 10 Notes water sample sample # 28 soil volume **Kg water sanple vol. 42.8m1	85							•
Max Gain	R5	i	•	•	•		•	i i
## Analysis Time ## 400.0 sec Feak Report	1	₹6						•
Feak Report Pk Compound Name Area/Conc R.T. 1								
Pk Compound Name Area/Conc R.T. Unknown 7.150 mVS 49.2 2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.6 11 M&F-Xylene 1.108 ppm 233.6 228	1. 1. 14	سسسنمم		·	- /		•	
1 Unknown 7.150 mVS 49.2 2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 2.419 mVS 135.2 9 Unknown 2.419 mVS 135.2 10 Ethylbenzene 325.4 ppb 217.6 11 M&F-Xylene 1.108 ppm 233.6 223 10 Notes water sample sample # 28 soil volume ***g water sample vol. 42.8m1	+1/	r						
2 Benzene 86.20 ppb 54.8 3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.6 11 M&P-Xylene 1.108 ppm 233.6 222 10 10 Notes water sample \$28 soil volume **\$ water sanple vol. 42.8m1	1 12		•		•	•		
3 Unknown 18.05 mVS 61.4 4 Unknown 55.34 mVS 69.6 5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.6 11 M&F-Xylene 1.108 ppm 233.6 228 10 11 25 314 Notes water sample sample # 28 soil volume ***g water sanple vol. 42.8m1	14	8						2 Benzene 86.20 ppb 54.8
5 Unknown 2.492 mVS 85.8 6 Unknown 8.041 mVS 93.6 7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.2 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.6 11 M&P-Xylene 1.108 ppm 233.6 228 10 Notes water sample sample # 28 soil volume **g water sanple vol. 42.8m1			•	•	•		•	
171	1							
7 Toluene 494.4 ppb 107.0 8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.4 11 M&F-Xylene 1.108 ppm 233.4 228 10 Notes water sample sample # 28 soil volume **g water sample vol. 42.8ml	19							1
8 Unknown 4.510 mVS 135.4 9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.4 11 M&P-Xylene 1.108 ppm 233.4 221 10 11 25 Notes water sample sample # 28 soil volume **g water sample vol. 42.8ml	1171							1
9 Unknown 2.419 mVS 153.2 10 Ethylbenzene 325.4 ppb 217.4 11 M&P-Xylene 1.108 ppm 233.4 228 10 Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1								i i
200 10 Ethylbenzene 325.4 ppb 217.6 11 M&P-Xylene 1.108 ppm 233.6 228 10			٠		•	•		
11 M&P-Xylene 1.108 ppm 233.6 228 10 11 25 285 314 Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1	200							
228 10 25 285 314 Notes water sample sample # 28 soil volume **g water sample vol. 42.8ml		•	•	٠			•	
285 Notes Water sample sample # 28 soil volume **g water sample vol. 42.8m1								
285 Notes Water sample sample # 28 soil volume **g water sample vol. 42.8m1		~	•		•	•		
255 285 Notes Water sample sample # 28 soil volume **g water sanple vol. 42.8m1	228	\sim 1.0			•			
255 285 Notes Water sample sample # 28 soil volume **g water sanple vol. 42.8m1								
314 Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1	ر ا ا			11	•			
314 Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1	254							
Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1	21		•		٠		٠	
Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1								
Notes water sample sample # 28 soil volume **g water sample vol. 42.8m1			•		•	•		
water sample sample # 28 soil volume **g water sample vol. 42.8ml	285							
water sample sample # 28 soil volume **g water sample vol. 42.8ml								
water sample sample # 28 soil volume **g water sample vol. 42.8ml	1 1							
water sample sample # 28 soil volume **g water sample vol. 42.8ml	34/4							hlande an an
sample # 28 soil volume **g water sample vol. 42.8ml	3.04	•	٠	•	•		•	
soil volume **g 342 water sample vol. 42.8ml								
342 water sample vol. 42.8ml					•	•		
	342							<u> </u>
temp. of sample 28 c		•	•	•	•		•	temp. of sample 28 c
						٠.		
371	371							
			•		•	•		
400	400							
	1	•	•	•			•	

Musika	11 1502	4. 57 50		1 3377 33	crou whereas verbour
9 2	4	6 (x	8 100	10 mV)	Time Printed: Aug 17,93 14:10 Sample Time: Aug 17,93 14:01
	•	. \ ~	a o v	v /	Method
285					Slope Up 3.000 mV/Sec
	• •	•		•	Slope Down 3.000 mV/Sec
3					Min Area 1.000 mVSec
	•	•	•		Min Height 0.000 mV
57 1					Analysis Delay 45.0 sec
The same of		•		•	Window Percent 35.0 %
					Det Flow 10 ml/min
3	•	•	•		B/F Flow 10 ml/min
85					Aux Flow 0 ml/min
	-	. 4	•	•	Oven Temp 45 C
\sum_{5}		•			Amb Temp 35 C
I K	•	•	•	•	Max Gain 1000
114 6					Analysis Time 400.0 sec
177		•		٠	Peak Report
					Pk Compound Name Area/Conc R.T.
1 (27	•	•	:		1 Unknown 281.8 mVS 48.2
142 8					2 Benzene 3.359 ppm 61.1
1		•		•	3 Unknown 791.9 mVS 68.5
H10					4 Unknown 1.416 VSec 84.2
1 7	•	•	-		5 Unknown 565.9 mVS 93.0
1 71					6 Toluene 4.500 ppm 106.2
1 1 .		•		•	7 Unknown 1.018 VSec 126.5
					8 Unknown 520.4 mVS 134.0
	•	•	•		9 Unknown 510.6 mVS 144.8
200 11					10 Unknown 333.7 mVS 152.2
12		•	•	•	111 Unknown 1.321 VSec 190.4
1 / 1/2					12 Unknown 882.2 mVS 200.2
	•	•	•		13 Ethylbenzene 10.67 FFM1 217.4
228 13					14 M&P-Xylene 12.95 PPM1 240.0
TY		•		•	15 O-Xylene 5.485 ppm 267.4
					16 Unknown 570.1 mVS 290.9
1114	•	•	•		17 Unknown 231.6 mVS 332.5
257					de a sactification and a fine and
1-11					
1 1/15	. \	•	•		
285					
· · · · · · · · · · · · · · · · · · ·	•	•		•	
1.6					
11	•	•	•		FPM1 = Alarm 1 PPM2 = Alarm2
314					Notes
		•		•	soil sample
					sample # 29 1 to 3 ft
	•	•	•		soil volume 58 g
342 17					water sample vol. 42.7 ml
1		•		•	temp. of sample 28 c
					ne need to the contract of the
		•	•		
371					
131 .		•			
	•	•	•		
400					
1.40		•		•	
					I

) pp T pp			Opt			TEMPORE STATE OF STATE
()	4	8	12	:	1.6	20	Time Printed: Aug 17,93 14:27
			. (Х	1.0	mV)	Sample Time: Aug 17,93 14:18
لـــــــــــــــــــــــــــــــــــــ	9						Method
28 <							Slope Up 3.000 mV/Sec
		. ,	•	•	•	•	Slope Down 3.000 mV/Sec
~~	Z-2-						Min Area 1.000 mVSec
		•	•		•		Min Height 0.000 mV
57							Analysis Delay 45.0 sec
		· ·	•	•	•	•	Window Percent 35.0 %
							Det Flow 10 ml/min
سسراً:		K	•		•		B/F Flow 10 ml/min
85		***					Aux Flow O ml/min
0						•	Oven Temp 45 C
	5			·_1			Amb Temp 35 C
·	(۵) تستميم	•					Max Gain 1000
	,						
11/4							Analysis Time 400.0 sec Peak Report
	D						·
		>					
1 11		У.					
142		řΟ.					
	J.L.1.						
	X 22						4 Unknown 258.6 mVS 68.0
11							5 Unknown 575.4 mVS 85.0
174							6 Unknown 234.8 mVS 92.4
- 1							7 Toluene 698.7 ppb 104.6
	_						8 Unknown 121.8 mVS 112.6
							9 Unknown 446.8 mVS 125.7
200	113						10 Unknown 370.0 mVS 133.2
							11 Unknown 213.1 mVS 143.7
	-						12 Unknown 160.9 mVS 151.4
	- >1	4					13 Unknown 754.3 mVS 189.0
228/							14 Ethylbenzene 6.122 ppm 215.8
							15 M&F-Xylene 3.817 ppm 234.4
17	15						16 O-Xylene 1.975 ppm 265.8
1							17 Unknown 281.4 mVS 289.6
257							18 Unknown 116.7 mVS 331.2
	•		,				
1.	6						
285				_			
	•		•	•	•	•	
1	7		_				
17		•	•		•		
314							Notes
H	•	•		•	•	•	soil sample
					_		sample # 29 3 to 5 ft
11		•	•		•		soil volume 50g
342	18						water sample vol. ****ml
	•	•		•	•	•	temp. of sample 2 c
		•	•		•		
371							
	•	•		•	•	•	
			_				
		•	•		•		
400							
•	•		• •			<u> </u>	

1 Unknown 64.94 mVS 47 2 Benzene 803.2 ppb 60 3 Unknown 280.5 mVS 68 4 Unknown 327.7 mVS 84 5 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 200 10 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290		rnic	dysis	77"7 /	3. 570	7 1 1.71.7	5 (.(11(cion Analysis Report
## Slope Up		0	2	4	6			•
Slope Up					.(×	10	mV)	
Slope Down								
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R 1 Unknown 280.5 mVS 63 Unknown 280.5 mVS 64 Unknown 327.7 mVS 84 Unknown 280.5 mVS 65 Unknown 149.5 mVS 92 Unknown 149.5 mVS 92 Unknown 149.5 mVS 92 Unknown 149.7 mVS 125 8 Unknown 94.71 mVS 132 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 125 8 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 125 11 Ethylbenzene 1.478 ppm 214 12 MSP—XVlene 1.509 ppm 234 13 0—Xylene 662.6 ppb 262 14 Unknown 106.2 mVS 297 15 Unknown 106.2 mVS 297 15 Unknown 25.83 mVS 332		zi di		بمسسمني				1
Min Height			-					, and the second
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R. Unknown 64.94 mVS 47 2 Benzene 803.2 ppb 60 3 Unknown 149.5 mVS 68 4 Unknown 327.7 mVS 84 5 Unknown 149.5 mVS 68 4 Unknown 149.5 mVS 68 4 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 146 10 Unknown 294.2 mVS 185 11 Unknown 294.2 mVS 185 11 Unknown 106.2 mVS 296 12 M&P-Xylene 1.509 ppm 234 13 O-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 296 15 Unknown 25.83 mVS 332 285 14 314 314 314 314 315 326 342 15 342 15 35 36 37 38 38 38 38 38 39 38 30 38 30 31 32 342 15 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Ì				 .	-		
Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. Unknown 64.94 mVs 47 2 Benzene 803.2 ppb 60 3 Unknown 280.5 mVs 68 4 Unknown 280.5 mVs 68 4 Unknown 27.7 mVs 84 5 Unknown 149.5 mVs 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVs 125 8 Unknown 246.2 mVs 125 8 Unknown 274.2 mVs 185 15 Unknown 274.2 mVs 185 15 Unknown 274.2 mVs 185 15 Unknown 274.2 mVs 185 15 Unknown 106.2 mVs 290 15 Unknown 25.83 mVs 332 285 14 Unknown 25.83 mVs 332 285 14 Unknown 25.83 mVs 332 285 14 Unknown 25.83 mVs 332 285 14 Unknown 25.83 mVs 332 285 14 Unknown 25.83 mVs 332 285			-	_				
Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Gven Temp 45 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Feak Report 7		57	-	.j				
B/F Flow								
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 36 C Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pea								
11					3			
Amb Temp 36 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pek Compound Name Area/Conc R. 1 Unknown 64.94 mVs 47 2 Benzene 803.2 ppb 60 3 Unknown 280.5 mVs 64 4 Unknown 327.7 mVs 84 5 Unknown 149.5 mVs 92 6 Toluene 1.608 ppm 105 7 Unknown 94.71 mVs 133 9 Unknown 160.9 mVs 144 10 Unknown 160.9 mVs 144 10 Unknown 160.9 mVs 144 10 Unknown 160.2 mVs 28 11 Ethylbenzene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVs 290 15 Unknown 25.83 mVs 332		85		<u> </u>				1
Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R. 1 Unknown 64.94 mVS 47 2 Benzene 803.2 ppb 60 3 Unknown 280.5 mVS 68 4 Unknown 149.5 mVS 92 17		(- 4 '	•	
## Analysis Time ## 400.0 sec Feak Report				5	_	-		
Peak Report Pk Compound Name Area/Conc R.	J	•	—(~~~	-	•	•		Max Gain 1000
Feak Report Fk Compound Name Area/Conc R.	Í	114		ہ حتہ				
Pk Compound Name Area/Conc R. 1 Unknown 64.94 mVS 47 2 Benzene 803.2 ppb 60 3 Unknown 327.7 mVS 84 4 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 133 9 Unknown 274.2 mVS 133 9 Unknown 274.2 mVS 133 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 295 15 Unknown 25.83 mVS 332		-			•		• ,	
1 Unknown 64.94 mVS 47 2 Benzene 803.2 ppb 60 3 Unknown 280.5 mVS 68 4 Unknown 327.7 mVS 84 4 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 244.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332			Manage .	~				
2 Benzene		.[<u>ج</u> ر	•	•		
3 Unknown 280.5 mVS 68 4 Unknown 327.7 mVS 84 5 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 160.9 mVS 144 11 Ethylbenzene 1.478 ppm 216 12 M8P-Xylene 1.509 ppm 234 13 O-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sanple vol. ****ml temp. of sample 2\$c		10	8 رم ہ	•				
4 Unknown 327.7 mVS 84 5 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 214 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 255 13 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sanple vol. *****ml temp. of sample 2\$c		1					٠	1
5 Unknown 149.5 mVS 92 6 Toluene 1.608 ppm 105 7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 245 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 26c		ſ	5					The state of the s
17		-	مج	•	٠	•		
7 Unknown 246.2 mVS 125 8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 184 10 Unknown 294.2 mVS 185 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 255 13 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sanple vol. ****ml temp. of sample 2 5 c	1	1-1						
8 Unknown 94.71 mVS 133 9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 214 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 25		1/	· ·		•		•	
9 Unknown 160.9 mVS 144 10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 0-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 255 14 314 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sanple vol. ****ml temp. of sample 2 6 c	- [1						•
10 Unknown 294.2 mVS 189 11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 O-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 255 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 500 water sample vol. ****ml temp. of sample 26c		·	1	•	•			1
11 Ethylbenzene 1.478 ppm 216 12 M&P-Xylene 1.509 ppm 234 13 O-Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 255 13 265 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 6 c	-	201	, 2,					
12 M&P—Xylene 1.509 ppm 234 13 0—Xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c	1	201) Ino				•	
13 0-xylene 662.6 ppb 265 14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c	1		_/					The same state of the same sta
14 Unknown 106.2 mVS 290 15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 4 c	-	.[V.	•	•			
15 Unknown 25.83 mVS 332 285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c	!		7 L.L					
285 14 314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c	-	i i i k	<u></u>					
257 14 Soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c)_					12 OUKUOMU 52"99 WAS 995"A
314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c			12	•	•			
314 Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c			(
Notes Soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c		25	1 .					
Notes Soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c								
Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 6 c			113					
Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 6 c			l					
Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c		28	ţ.					
Notes soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c			}					
soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c			<i>f</i> 1.4					
soil sample sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c								
sample # 29 5 to 7 ft soil volume 50g water sample vol. ****ml temp. of sample 2 % c		314	4 .					
soil volume 50g water sample vol. ****ml temp. of sample 2 % c	Į							
342 15 water sample vol. ****ml temp. of sample 2 % c								
temp. of sample 2 % c		I						•
		34	2 15					
37 1			•	-	•		•	temp. of sample 2 % c
37 1		-		_	_			
37 1				-	•	•		
		37	1.					
			٠	•			•	
				•	•	•		
4do		40	0					
		1		•			•	

Pillet J.						CION PHRELYSIS (Nepo) C
9	4	8	12	1.6	20	Time Printed: Aug 17,93 15:00
			.(x	1000	uV)	Sample Time: Aug 17,93 14:51
-						Method
28						Slope Up 3.000 mV/Sec
ļ		. – سیر	•	•	,	Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
1 /		•	•	•		Min Height 0.000 mV
157 A	≥ ₁					Analysis Delay 45.0 sec
le le			•		•	Window Percent 35.0 %
5						Det Flow 10 ml/min
-/_		> /	•	•		B/F Flow 10 ml/min
C) C		*				1
85						1
1 10	i					Oven Temp 45 C
1 76	•		•			Amb Temp 36 C
1						Max Gain 1000
114	لتمسسب	7				Analysis Time 400.0 sec
17						Peak Report
1 1						Pk Compound Name Area/Conc R.T.
Ka	;					1 Unknown 6.858 mVS 48.8
142	9					2 Benzene 24.64 ppb 54.4
	•	•	•		•	3 Unknown 2.963 mVS 61.0
						4 Unknown 25.22 mVS 69.2
1 1		•	•	•		5 Unknown 5.515 mVS 84.8
171						6 Unknown 2.859 mVS 92.2
1 1	•		•		•	7 Toluene 185.8 ppb 107.0
						8 Unknown 4.649 mVS 125.8
1		•	٠			9 Unknown 4.707 mVS 133.6
200	10					10 Unknown 12.01 mVS 191.4
1290	10				•	1
1 7						
1 1.		•	•			12 M&P-Xylene 147.7 ppb 233.4
31	. 1					
224						
1./1	.2					
257						
285			_		_	
] }	•	•	•		•	
			_			
11		•	•	•		
314						Notes
	•		•		•	soil sample
						sample # 29 11to 13ft
		•	•	•		soil volume 50g
342						water sample vol. ****ml
10,4%	•		•		•	temp. of sample 28c
						rempa or sempre you
			•			
371						
400					.	
<u>'</u>						
					-	

mna.L)	y to J. Si	77 - 4 .	•	TAG	or City	r curc	grou engryers wahor c
9	4	8		.2 (x	16	20 mV)	Time Printed: Aug 17,93 13:55 Sample Time: Aug 17,93 13:46
		•		. (×	тó	1114)	Method
قمر 28							Slope Up 3.000 mV/Sec
		•	•				Slope Down 3.000 mV/Sec
F							Min Area 1.000 mVSec
1_		•	,	•	•		Min Height 0.000 mV
57	1.						Analysis Delay 45.0 sec
Ka .	· .	•	•	•		•	Window Percent 35.0 %
<u> </u>				_			Det Flow 10 ml/min
				- 4			B/F Flow 10 ml/min
85 /				_			Aux Flow O ml/min
15	•	•				•	Oven Temp 45 C
26							Amb Temp 35 C
J	-						Max Gain 1000
114	لمسميد	7					Analysis Time 400.0 sec
1							Peak Report
II .							Fk Compound Name Area/Conc R.T.
							1 Unknown 68.20 mVS 48.6
142	8						2 Benzene 54.65 ppb 54.5
ı							3 Unknown 7,022 mVS 60.8
1							4 Unknown 564.9 mVS 69.3
							5 Unknown 1.200 mVS 84.8
171						•	6 Unknown 30.28 mVS 92.6
9							7 Toluene 1.925 ppm 105.8
					-		8 Unknown 59.28 mVS 134.6
240	4.7						
200	10						
							11 Ethylbenzene
111		•		•	•		12 Nor Xyrene 10710 ppb 20010
228							
~~	•	•	•	•		•	
12							
		•		•	•		
257							
		•	•	•		•	
}							
1		•		•	·		
285							
1	•	•	•			·	
1							
314							Notes
					·		water sample
							sample # 29
							soil volume **g
342							water sample vol. 42.9ml
I							temp. of sample 28 c
1							
<u></u>							
371							
371						٠	
371						٠	
371							

Analy	si.s	#4	109+	GC	Funct	ion Calibrant Report
9	4	8	12 .(×	16 10	20 mV)	Time Printed: Aug 18,93 07:29 Sample Time: Aug 18,93 07:20 Method
287	•					Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57			• 1.			Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85				•		B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
134	> 2					Amb Temp 22 C Max Gain 1000 Analysis Time 400.0 sec Peak Report
142						Pk Compound Name Area/Conc R.T. Benzene 999.9 ppb 52.3 Toluene 1.000 ppm 100.4 Ethylbenzene 999.9 ppb 203.2 O-Xylene 1.000 ppm 260.8
171				•		
200	3					
228	•					
257	•					
285						
3:14						Notes calibration sample # 1 ppm BTEX gas standard
342					•	soil volume 50g water sanple vol. ****ml temp. of sample 28c
371						
8991	veic	·#4.	-108-	GG	Func	tion Analysis Report
9	2	4	6 .(x	8	10 mV)	Time Printed: Aug 18,93 07:50 Sample Time: Aug 18,93 07:33 Method
28			==-	• .	•	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec

1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230	(x 10 mV) Sample Time: Aug 18,93 07:33 Method Slope Up	(x 10 mV) Sample Time: Aug 18,93 07:33 Method	(x 10 mV) Sample Time: Aug 18,93 07:33 Method	(x 10 mV) Sample Time: Aug 18,93 07:33 Method
Slope Up	Slope Up 3.000 mV/Sec	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 68.5 3 Unknown 1.283 mVS 68.5 Unknown 13.45 mVS 134.5 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 Sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 Sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fek Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Window Percent 35.0 % Det Flow	Window Percent 35.0 % Det Flow
Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 68.5 3 Unknown 1.283 mVS 68.5 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Det Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&P-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Oven Temp 45 C
Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Feak Report Feak Report 142 5 2 Unknown 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Oven Temp 45 C Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Peak Report Peak Report Pk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Max Gain 1000 Analysis Time 400.0 sec Peak Report Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	Max Gain 1000 Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R. Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Analysis Time 400.0 sec Peak Report	Analysis Time 400.0 sec Peak Report Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 Unknown 2.641 mVS 68.5 Unknown 1.283 mVS 84.6 Toluene 389.7 ppb 107.2 Unknown 13.45 mVS 134.5 Unknown 13.45 mVS 134.5 Ethylbenzene 169.0 ppb 215.0 M&P-Xylene 500.0 ppb 230.6	Analysis Time 400.0 sec Feak Report Fk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Feak Report Pk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Peak Report Pk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 Unknown 2.641 mVS 68.5 Unknown 1.283 mVS 84.6 Toluene 389.7 ppb 107.2 Unknown 13.45 mVS 134.5 Unknown 13.45 mVS 215.0 M&P-Xylene 500.0 ppb 230.6	Peak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Feak Report Fk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Peak Report Pk Compound Name Area/Conc R. 1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	Feak Report Fk Compound Name Area/Conc R.T. Benzene 354.6 ppb 54.6 Unknown 2.641 mVS 68.5 Unknown 1.283 mVS 84.6 Toluene 389.7 ppb 107.2 Unknown 13.45 mVS 134.5 Ethylbenzene 169.0 ppb 215.0
1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
1 Benzene 354.6 ppb 54 2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	1 Benzene 354.6 ppb 54.6 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
2 Unknown 2.641 mVS 68 3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	5 2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	2 Unknown 2.641 mVS 68.5 3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
3 Unknown 1.283 mVS 84 4 Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&P-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	3 Unknown 1.283 mVS 84.6 4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
Toluene 389.7 ppb 107 5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&F-Xylene 500.0 ppb 230.6	4 Toluene 389.7 ppb 107.2 5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
5 Unknown 13.45 mVS 134 6 Ethylbenzene 169.0 ppb 215 7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	5 Unknown 13.45 mVS 134.5 6 Ethylbenzene 169.0 ppb 215.0
6 Ethylbenzene 169.0 ppb 215 7 M&P-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	6 Ethylbenzene 169.0 ppb 215.0 7 M&P-Xylene 500.0 ppb 230.6	6 Ethylbenzene 169.0 ppb 215.0 mm 7 mm 7 mm 500.0 ppb 230.6	6 Ethylbenzene 169.0 ppb 215.0
7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272	7 M&F-Xylene 500.0 ppb 230.6	7 M&F-Xylene 500.0 ppb 230.6	7 M&F-Xylene 500.0 ppb 230.6	141
7 M&F-Xylene 500.0 ppb 230 8 O-Xylene 329.1 ppb 272		7 M&P-Xylene 500.0 ppb 230.6	7 M&F-Xylene 500.0 ppb 230.6	17 M&P-XVlene 500.0 ppb 230.6
	8 0-Xylene 329.1 ppb 272.0	8 0-Xylene 329.1 ppb 272.0	1 mm a m a mm a mm a mm a mm a mm a mm	
			18 O-XAIeue 25Art bbb 5140	
200				
	<u> </u>			
			290	
226				
				200
	i			
V				200
				200
				226
				226
1 A				226
(IX				226
				226
				257
zes .				257
295				257
2d5				257
			257	226
3:14 Notes		257 B 265 5 Notes	228 257 285 314 Notes	200
314 Notes calibration	calibration calibration	B 285 Notes calibration	257 255 255 314 Notes calibration	200 228 257 285 295 Notes calibration
314 Notes	calibration	B 285 Notes calibration	257 255 275 285 314 Notes calibration	200 228 257 285 295 Notes calibration
314 Notes calibration sample #.2ml of lug/ml BTEX	calibration sample #.2ml of lug/ml BTEX	B 285 Notes calibration sample #.2ml of lug/ml BTEX	257 257 255 314 Notes calibration sample #.2ml of lug/ml BTEX	228 257 257 285 314 Notes calibration sample #.2ml of lug/ml BTEX
314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g	calibration sample #.2ml of lug/ml BTEX soil volume 50g	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g	228 257 257 257 265 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g	200 226 257 257 265 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g
314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml	200 226 257 257 257 257 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml
314 Calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c	200 228 257 257 265 314 Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g water sample vol. ****ml temp. of sample 28c
314 Calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ***ml temp. of sample 28c .2ug/50g soil=4ug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg	200 226 257 257 258 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ***ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water Sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg	226 7 257 257 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg	257 B 255 314 Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water Sample vol. ****ml temp. of Sample 28c .2ug/50g Soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sanple vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	226 257 257 257 258 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ***ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	Notes Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sanple vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	226 257 257 257 258 314 Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg
Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ***ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg 70 t.xylene = lug/kg	Notes calibration sample #.2ml of lug/ml BTEX soil volume 50g water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg 70 t.xylene = lug/kg	226 227 257 257 258 265 314 Calibration Sample #.2ml of lug/ml BTEX Soil volume 50g Water sample vol. ****ml temp. of sample 28c .2ug/50g soil=4ug/kg 90 benzene = lug/kg 100 toluene = lug/kg 40 ethylben. = lug/kg 70 t.xylene = lug/kg
257				200
		O O-VATERIA SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SELATION OF SEL	IQ (IVV) and Syy I nnn 2/2 "V	
	S O-XXIGUG 352 t bbn 575 t	8 O-XATEUS 352 t bbn 575 n	The state of the s	
	8 O-Xylene 329.1 ppb 2/2.0	8 O-Xylene 329.1 ppb 2/2.0	1 AND AND A A A B CONFERENCE OF A A A A A A A A A A A A A A A A A A	
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	m m m m m m m m m m m m m m m m m m m	
8 O-Xylene 329.1 ppb 272				
8 O-Xylene 329.1 ppb 272				
8 O-Xylene 329.1 ppb 272				17 LIGHT A T ENTEN A A T ENTEN A A A A A A A A A A A A A A A A A
8 O-Xylene 329.1 ppb 272				
8 O-Xylene 329.1 ppb 272			1	
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	1 mm	
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0		
	S O-VATERIE STATE DAY TAKEN	a o-xxreng arver blu rivers	to ri…Volumen Sev inno 272°.∪	
			- I 18 O-XAJene SZA*i bbo sivero	
200			8 O-XAIeue 25A-1 bbo 5/5-0	[8 O-Xylene 329.1 ppb 2/2.0
200			8 O-XATEUE 25A-1 bbp 515-0	- [8 O-XATEUS SEAT bbo sivero
200			B n-xxreue oran bbo rvr.o	- Is n-xxreue ozarr bbb zvern
200			8 O-XATeue 25AT bbo 51540	18 O-XAIeue SEAT bbp Elen
200			Is n-xxreue oxar bho xxx.o	(8 O-XXTebe Ottor the cycle
200			8 n-xyreue 25%r bbp 5/4"o	[8 O-XATeue oran bbo rivero
200			8 O-XATeue 25AT bbp 51540	- I 18 O-XATGUG SEART DDD ENGRAN
200			18 O-XAIeue 25Art bbp 514-0	[8 O-Xylene 329.1 ppb 272.0
			18 O-XAIGUG 25A'T bbp 575'0	[8 O-Xylene 329.1 ppb 272.0
			IS U-XAIGHG SEAT DDD WAYNA	
		C Omygrania Server Server	to nYvlana Syy.inbn 2/2∪	
		O O NATELIE STATE DED TOTAL	TO DELIVER SEWELL BOOK SEEDING SEEDING	
		a onythene or the box rivers	TO CLUVOLENCE SOME INDO ANALE	
		g nyxrene avar bbn vvv	TO CONTRACT SOME AND A CASE.	
		8 O-XATeue 25Ant bbo 514nc		
		8 O-Xylene 327.1 ppb 272.0		
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	1 m m 1 m m m m m m m m m m m m m m m m	
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	1 m m n m m m m m m m m m m m m m m m m	
8 O-Xylene 329.1 ppb 272			1	
8 O-Xylene 329.1 ppb 272			1	
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	1 m m m m m m m m m m m m m m m m m m m	
	8 O-Xylene 327.1 ppb 272.0	8 O-Xylene 327.1 ppb 272.0		
	S O-XXTGUG OTAL PAD TATE	S O-XXTGUG OSART NAD SYSTEM	ten en Maria man en en en en en en en en en en en en en	
		O O Ayasana	IS U-X∨lana SZY.L DDD ∠/≼∘V	
			18 O-XAjene SZA"t bbo zita"?	18 O-Xylene 329.1 ppb 272.0
200			a naxima ariar bbs rivers	IQ O_VATGIG
200		1	S O-XXTGUG OF1 DDD TVT.	IS O-XXTGUE OFFER PARTY PARTY
			ls n-xxreue 35% pho 57%	IS O-XATGUG OTALL DED TALE
			8 O-XATEUE STATE bbb TATE	[8 O-XATeue OTALT bbo tivel
			18 O-XAIeue SEAT bbo SISTO	[8 O-Xylene 329.1 ppb 2/2.0
			18 O-XAjene SZA"t bbb zize"?	
			IS U-X>1ene SZ≯*1 DDD ≪\~~?	8 O-Xvlene 329.1 ppb 272.0
			-{ 18 O-X∧Tebe 25A°T bbb ₹\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	18 O-Xylene 329.1 ppb 272.0
		O O-Arene Sever blo vive	TO DELYGIANA SOVER DED 272 C	
		8 O-Xylene 327.1 ppb 272.0		
	8 O-Xylene 329.1 ppb 2/2.0	8 O-Xylene 329.1 ppb 272.0	1 m m a m a m m m m m m m m m m m m m m	
8 O-Xylene 329.1 ppb 272	1			
8 O-Xylene 329.1 ppb 272				
	8 O-Xylene 329.1 ppb 272.0	8 O-Xylene 329.1 ppb 272.0	1	
		C O. VATERIE CT. 12 PAGE 1	$1Q = \Omega_m V_M I_{mmm} = S_M V_m I_m I_m I_m I_m I_m I_m I_m I_m I_m I$	
			18 O-XAIteue STAT bbp SISTO	[8 O-Xylene 329.1 ppb 272.0
			lo navarene artist bbp river	TO OTAL SECTION OF A PROPERTY
200		1		
290			1	
		edo l	nda	
		200	24.4	
		edo l	salas I	
		edo.	vda .	
		odo.	od a	
		į l		
200				
		oda 1	odo.	
		00	1	
	į .		'QO	
	ı		:qo	
	ļ			
		A		
190				
M. T. C. C. C. C. C. C. C. C. C. C. C. C. C.			200	
24 3				

Analysis #	Ana	1. v s	5 i S	#9
------------	-----	--------	-------	----

Anad	/	11.7	3. 00 0.0	*****	(0.011 0)	non Analysis Report
9	2.		6 .(x	8 10	10 mV)	Time Printed: Aug 18,93 08:33 Sample Time: Aug 18,93 08:23
-						Method
28	•					Slope Up 3.000 mV/Sec
1				•	,	Slope Down 3.000 mV/Sec
1 1						Min Area 1.000 mVSec
1 1		•	•	•		Min Height 0.000 mV
1574	-1					Analysis Delay 45.0 sec
1		<u>3</u> ——		٠	•	Window Percent 35.0 %
I D.		i				Det Flow 10 ml/min
			•	•		B/F Flow 10 ml/min
1001						Aux Flow O ml/min
85						
1 18						
1 16		•	•			
	-					Max Gain 1000
114_	وحسب					Analysis Time 400.0 sec
111						Peak Report
H						Pk Compound Name Area/Conc R.T.
1	`					1 Unknown 10.70 mVS 48.3
142	9.8					2 Benzene 345.1 ppb 54.4
1 1		-	-			3 Unknown 28.12 mVS 60.8
						4 Unknown 42.45 mVS 69. 0
1 19						5 Unknown 13.82 mVS 84.4
1 7/1						6 Unknown 18.00 mVS 92.9
lho				•	•	7 Toluene 987.5 ppb 107.0
1 4						8 Unknown 120.9 mVS 134.5
1 11		•	•	•		9 Unknown 0.865 mVS 158.2
200	1.1.					10 Unknown 22.87 mVS 170.8
				•		11 Unknown 43.95 mVS 189.0
						12 Ethylbenzene 164.0 ppb 215.4
1 12		•	•	•		13 M&P-Xylene 380.7 ppb 230.6
228						14 O-Xylene 449.9 ppb 272.5
123					•	T. A. O. VA T. C. 11. 11. 11. 11. 11. 11. 11. 11. 11.
1 170						
		•	-	•		
257						
4.9					•	
Ma			•			
i 11".						
1285						
						hlm h
314						Notes
						calibration
		•				sample #.2ml of lug/ml BTEX
						soil volume **g
342						water sample vol. 40.0ml
						temp. of sample 28c
						.2ug/40m1 H2O=5ug/1
1 }						70 benzene = 1ug/l
371						200 toluene = lug/l
						35 ethylben. = lug/l
						60 t.xylene = 1ug/l
400						
'		-				

Ana.	lysis	#10	109	8+ GC	Funct	ion Analysis Report
ं	22	<i>ą</i>	.6 .(x	8 1000	10 uV)	Time Printed: Aug 18,93 08:43 Sample Time: Aug 18,93 08:36 Method
28	3					Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57			1.			Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C
1.14						Max Gain 1000 Analysis Time 400.0 sec Feak Report
142						Pk Compound Name Area/Conc R.T. 1 Benzene 49.76 ppb 54.3
171						
	•				٠	
200					٠	
228					·	
257						
285						
314						Notes zero ch ec k
342)	•	•			sample # soil volume **g water sample vol. 40.0ml
-	•			•	•	temp. of sample 28c
371						
400						

111150	dysis	TT .JJ.	3. 57 (1 1313	F COLL C.	tion Analysis Report
9	1.	. 2	3 .(x	4 100	5 mV)	Time Printed: Aug 18,93 08:54 Sample Time: Aug 18,93 08:45 Method
28	3					Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57			1.			Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85					<u> </u>	B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C
114		<u> </u>	· >	5 .		Max Gain 1000 Analysis Time 400.0 sec Peak Report
142	ا ا				. •	Pk Compound Name Area/Conc R.T. 1 Benzene 3.173 ppm 48.7 2 Unknown 332.3 mVS 61.1 3 Unknown 2.633 VSec 69.6 4 Unknown 514.0 mVS 93.0
171	·, ·					5 Toluene 15.25 PPM1 106.1 6 Unknown 179.4 mVS 134.5 7 Ethylbenzene 85.28 ppb 171.4
200					•	
228						
257						
285						
314						PPM1 = Alarm 1 PPM2 = Alarm2 Notes water sample sample # 11
342						soil volume **g water sanple vol. 41.9ml temp. of sample 28c
371						
400	· .	•				

		77 .1. **7	44. 52.5		1 551155	tion Analysis Report
	4		12 _(x	16 1000	20 uV)	Time Printed: Aug 18,93 09:22 Sample Time: Aug 18,93 09:13 Method
28						
2.0		·				Slope Up 3.000 mV/Sec
	~~~					Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
1		•		•		Min Height 0.000 mV
57 🕏	>,					
100	>∴					Analysis Delay 45.0 sec
1 2	Z					Window Percent 35.0 %
-	<u> </u>					Det Flow 10 ml/min
سسمياً ا	4			•		B/F Flow 10 ml/min
ខន						
1			•		•	
1.5						Oven Temp 45 C
						Amb Temp 31 C
1						Max Gain 1000
1114_						
1		•	•			
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 2.979 mVS 48.8
14/2	6					2 Benzene 13.99 ppb 54.3
	•				•	
		•	•	•		11 1 11 11 11 11 11 11 11 11 11 11 11 1
						5 Toluene 148.2 ppb 106.5
171						6 Unknown 4.610 mVS 134.2
	•		•		•	7 Ethylbenzene 104.1 ppb 191.8
						The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
		• .		•		
	****					9 M&F-Xylene 47.95 ppb 233.0
200	7					
					•	
		•		•		
lada	C)					
228	ä					
[ ]}						
10						
		•	•	•		
257						
1-1	•		•			
		•				
				•		
285						
			•			
1 1						
314						Notes
	•	•	•	•	•	
						soil sample
						sample # 30 8 to 10 ft
						soil volume 50g
342						water sample vol. ****ml
	•		•			temp. of sample 28c
						comba or sembra you
	,		•			
371						
	•		•		•	
400						
1 '				•		

a	4	. 8	12 .(×	16 1000	20 uV)	Time Printed: Aug 18,93 09:40 Sample Time: Aug 18,93 09:31
28	·	_===				Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
	5					Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
1 1		•		•		Min Height 0.000 mV
57 R	, ,					1
	<b>5</b>		•		٠	Analysis Delay 45.0 sec Window Percent 35.0 %
1 8	- Command					Det Flow 10 ml/min
	<b>?</b> a	•	•	•		B/F Flow 10 ml/min
85						Aux Flow O ml/min
03	•				•	
1 5						•
1		•				Amb Temp 31 C Max Gain 1000
114	<b>`</b>					
1. 19 6	er (i				•	Analysis Time 400.0 sec
						Peak Report
			•			Pk Compound Name Area/Conc R.T.
1. 1.	,					1 Unknown 1.434 mVS 48.2
142	.6					2 Benzene 7.223 ppb 54.4
						3 Unknown 1.630 mVS 61.3
						4 Unknown 7.329 mVS 69.2
1.1.						5 Toluene 117.8 ppb 107.0
171						6 Unknown 5.089 mVS 134.4
						7 M&P-Xylene 36.26 ppb 233.0
			•			
200						
248						
1						
17						·
257						
-						
}						
285						
1						
314						Notes
				·	•	soil sample
						sample # 30 10 to 12 ft
				·		soil volume 50g
342						water sanple vol. ****ml
	-	•	•	•	•	temp. of sample 28c
			•	_		
			•	•		
371				_		
	•		*		•	
		-	•	•		
400			_			
'		•				

	/	#18				tion Analysis Report
()	ZĮ.	8	12	1.6		Time Printed: Aug 18,93 09:57
			(x	1000	Q uV)	Sample Time: Aug 18,93 09:48
<u> </u>						Method
28						Slope Up 3.000 mV/Sec
	· word		•	•		Slope Down 3.000 mV/Sec
,	,>					Min Area 1.000 mVSec
1			•		•	Min Height 0.000 mV
57 L						Analysis Delay 45.0 sec
	1		•	•		Window Percent 35.0 %
1	•••					Det Flow 10 ml/min
->		•	•		•	B/F Flow 10 ml/min
85						Aux Flow O ml/min
~~	•		•	•		Oven Temp 45 C
1						Amb Temp 31 C
		•	•		•	Max Gain 1000
1.1 3	Æ					Analysis Time 400.0 sec Peak Report
					•	
1. 1.	****					
142	ß					2 Toluene 86.11 ppb 107.3
						3 Unknown 4.026 mVS 134.8
						4 M&F-Xylene 32.08 ppb 232.0
171						
200			_			
	•		•	-	•	
		•	-			1
228						
١	•		•	•	•	
la						
		•	•		•	
257						
	•		•	•		
Í						
		•	٠		•	
285						
	•		•	•		
1		•	•		-	
314						Notes
				•		soil sample
						sample # 30 16 to 18 ft
		•	•		•	soil volume 50g
342						water sample vol. ****ml
S-12			•	•		temp, of sample 28c
						cempa or sempre sec
		•				
371						
			-			
		•	•		•	
400						1

minet.	TÄRIR	972\/	3.VW C U	C 1 C(11C	crou wustaara wahor c
Q.	4	8	12 16	20	Time Printed: Aug 18,93 10:14
			(x 100	Q uV)	Sample Time: Aug 18,93 10:05
_ <u>_</u>					Method
28					Slope Up 3.000 mV/Sec
-	-				Slope Down 3.000 mV/Sec
	garden .		•		Min Area 1.000 mVSec
	ζ				Min Height 0.000 mV
57	الحك				Analysis Delay 45.0 sec
1 5	2				Window Percent 35.0 %
1.5	<b>-</b> >				Det Flow 10 ml/min
1	3				B/F Flow 10 ml/min
84					Aux Flow O ml/min
(					Oven Temp 45 C
17					Amb Temp 32 C
	manage is				Max Gain 1000
114	4 مسيس				Analysis Time 400.0 sec
			4		Peak Report
		•			Pk Compound Name Area/Conc R.T.
LA	ł**				1 Unknown 2.959 mVS 48.3
142	5				2 Benzene 14.42 ppb 54.5 3 Unknown 9.705 mVS 68.9
		•			
1, 1,					5 Unknown 6.199 mVS 135.3
171					
1 1		•	•	•	
200					
1290	•				
11					
1 1		•	•	•	
228					
		•	•	•	
257					
	•		•		
		•	•	•	
285					
	•		• •	•	
314					Notes
	•	•	•	•	water sample
					sample # 30
					soil ∨olume **g
342					water sanple vol. 43.2ml
		-	-	•	temp. of sample 28c
				•	
371					
400					
1					

: 1114.5.3.	y ma. m	99 2020	.1		1 55115	tion Analysis Report
q	4	8	12 ( v	16 1000	20 nV)	Time Printed: Aug 18,93 10:33 Sample Time: Aug 18,93 10:24
1		•	. \ ^	row	W.A.)	Method
28						Slope Up 3.000 mV/Sec
1x100	سب	. حتب				
	5					· ·
1 . 1	<i>,</i>					Min Area 1.000 mVSec
1 . (						Min Height 0.000 mV
57 6						Analysis Delay 45.0 sec
1 5	1.	,	·			Window Percent 35.0 %
1 2						Det Flow 10 ml/min
1	3	•	•	•		B/F Flow 10 ml/min
85	***					Aux Flow 0 ml/min
173	•		•		•	Oven Temp 45 C
(						
11		•				1
1						Max Gain 1000
119	4					Analysis Time 400.0 sec
		•	•			Peak Report
			_			Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 8.842 ppb 54.5
142	5					2 Unknown 1.402 mVS 60.8
	•		•			3 Unknown 6.597 mVS 69.6
						4 Toluene 85.15 ppb 107.4
		•	•			5 Unknown 2.887 mVS 135.3
						· ·
171			•		•	6 Unknown 7.016 mVS 175.2
						7 Unknown 3.701 mVS 177.8
6						8 Ethylbenzene 102.4 ppb 193.6
1 7						
200	8					
			•			
		•	•	•		
228						
LAC			•		•	
1 1						
1 1						
237						
285						
1	•		•		•	
		•	•			
314						Notes
13.4	•					soil sample
						The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
						sample # 31 6 to 8 ft
						soil volume 50g
342						water sample vol. ****ml
						temp. of sample 28c
		•	•	•	'	
371						
			•			
			•			
440						

179 1 GV J.	A 10 T 10	#24	3. (7.	or ut	runc	tion Analysis Report
9	4	. 8	12 .(×	16 1000	20 αV)	Time Frinted: Aug 18,93 10:49 Sample Time: Aug 18,93 10:40 Method
28	سسن	سسست.				Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
57	رم ا.					Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85						Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
1.14	2					Oven Temp 45 C Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec
	<i></i>	•	•		•	Peak Report
1 <b>4</b> 2	ğ					Fk Compound Name Area/Conc R.T.  1 Benzene 7.345 ppb 54.8  2 Toluene 62.51 ppb 107.6  3 Ethylbenzene 17.84 ppb 136.5
171						
200					•	
228						
257						
285						
314						Notes soil sample
342						sample # 31 8 to 10ft soil volume 50g water sample vol. ***ml temp. of sample 28c
371						
400						

Anas	lysis	99 ki 6	)	1.05	r tata	runci	ion Analysis Report
9	il.	2	3	3 .(x	4 1.00	5 mV)	Time Printed: Aug 18,93 11:09 Sample Time: Aug 18,93 11:00
1 L		•		•			Method
17							Slope Up 3.000 mV/Sec
28							
							Slope Down 3.000 mV/Sec
				_			Min Area 1.000 mVSec
1 1		•		•	•		Min Height 0.000 mV
57	•1						Analysis Delay 45.0 sec
101	,l.						1
							77 10 10 10 10 10 10 10 10 10 10 10 10 10
							Det Flow 10 ml/min
1		4					B/F Flow 10 ml/min
85		-					Aux Flow O ml/min
0.0		<u>.</u>		•		•	
	_<	<u> </u>	_				1
							Amb Temp 32 C
1 1	~					•	Max Gain 1000
1.14							Analysis Time 400.0 sec
1	مسمن			•		•	Peak Report
1	<						
			~~~~				
				8			1 Benzene 143.0 ppb 48.5
142							2 Unknown 49.26 mVS 57.3
1	· / / ~	•	•	•			3 Unknown 369.8 mVS 61.7
							•
1 [フ						
	ا 1.0						5 Unknown 728.4 mVS 86.4
12/11							6 Toluene 13.66 PFM1 94.0
" " \	/ ·	•	•	•			7 Unknown 1.151 VSec 114.1
	1						
	- Tonara	`					
		1	_				9 Unknown 1.484 VSec 144.6
200			The same of				10 Unknown 700.3 mVS 153.4
1		•	. ~~	*		•	11 Ethylbenzene 48.11 FFM2 202.4
1 1							
	-	-	_	. 1.1			
	$\overline{}$						13 Unknown 2.685 VSec 241.6
228	λ	2					14 O-Xylene 14.31 FPM1 267.7
			•	•		•	15 Unknown 1.408 VSec 292.8
	Manage						16 Unknown 443.7 mVS 333.0
	~	`					TO OHEROMI ALON MAD OPENA
		∤ 13					
257	port						
1 —	- (`	•	•	•			
	1						
1 1)						
	1.4						
285	4					_	
	1.	•	•	•		•	
	15						
1 1	J. 1. 1. 1	•		•			PPM1 = Alarm 1 PPM2 = Alarm2
314							Soil Somple Notes
1 11	•		•	•		•	The state of the s
IH							sample #31 10 to 12 ft
1 11		•					· ·
1 13							soil volume 50g
344	16						water sample vol. ****ml
		-	-		Ī	•	temp. of sample 28c
		•		•			
371							
	•						
		•					
lank							
400						•	

17111003	.ysis	77 .C. 1	(D)	J. W.C	3. OC	i carra	cron wherkers weight c
9	ZĮ.	8	3	12	16	20	Time Printed: Aug 18,93 11:26
				\cdot (\times	1.0	mV)	Sample Time: Aug 18,93 11:16
	>						Method
285							Slope Up 3.000 mV/Sec
1 1							Slope Down 3.000 mV/Sec
]							Min Area 1.000 mVSec
							Min Height 0.000 mV
57	1.						Analysis Delay 45.0 sec
1	· ·	•	•	•		•	Window Percent 35.0 %
							Det Flow 10 ml/min
ر[.3	•		B/F Flow 10 ml/min
85							Aux Flow O ml/min
		į	•	•		•	Oven Temp 45 C
		≱5					Amb Temp 32 C
	proportion .	• •		•	•		Max Gain 1000
1140	,						Analysis Time 400.0 sec
1 1	and and a second			•		•	Peak Report
		\overline{z}	۷.				Pk Compound Name Area/Conc R.T.
			پ ر حد	•			1 Benzene 22.73 ppb 48.4
142			-				2 Unknown 154.7 mVS 62.2
T X.	10		•			•	3 Unknown 178.0 mVS 68.8
	yΩ						4 Unknown 236.8 mVS 86.2
	ი	•		•	•		5 Toluene 2.907 ppm 93.8
1, 1	y						1
174						•	
							7 Unknown 740.2 mVS 126.0
1 1 '					•		8 Unknown 249.6 mVS 139.7
							9 Unknown 173.8 mVS 153.4
290	. \						10 Ethylbenzene 7.311 ppm 202.2
	1 (ر	.0					11 M&P-Xylene 1.585 ppm 220.6
	Market .						12 Unknown 275.2 mVS 241.8
							13 O-Xylene 3.263 ppm 255.7
228/	1.1.						14 Unknown 399.1 mVS 269.0
1 H							15 Unknown 214.7 mVS 292.5
	١.						16 Unknown 56.21 mVS 332.0
	<u>.</u> ħ.2						
237	1						
	<i>]</i> i.3	-	•	-	•	•	
	\						
	/14			-	•		
285/							
IH	•	•	•	•		•	
]]]1	. 5						
		-		•	•		
3:14							Notes
	•	•	٠	•		•	soil sample
							sample #31 12 to 14 ft
		•			•		soil volume 50g
342	1.6						water sample vol. ****ml
		•		•		•	temp. of sample 28c
		•		•	•		
371							
177		-		•			
		•		•			
1000							
440	•	•				•	
1							1

	Lysis					TOU MIGGAN DATE INTERNAL
0	4	8	12	16	20	Time Printed: Aug 18,93 11:44
1 1	٠٠٠					Sample Time: Aug 18,93 11:35
			. (X	1.000	UV J	
						Method
28						Slope Up 3.000 mV/Sec
			•		•	Slope Down 3.000 mV/Sec
	5					Min Area 1.000 mVSec
	gar.	•				11
1 (f					
1576	_					Analysis Delay 45.0 sec
1	1		•		•	Window Percent 35.0 %
1 0.	***					Det Flow 10 ml/min
1 0	4î.	•	•	•		B/F Flow 10 ml/min
1 1	.ii					
85						
1						Oven Temp 45 C
	5					Amb Temp 32 C
	••	•	•	•		Max Gain 1000
	,					Analysis Time 400.0 sec
1144	6					
IH						Peak Report
						Pk Compound Name Area/Conc R.T.
	<i>-</i> 2y		-	·		1 Benzene 7.022 ppb 55.0
142	8					2 Unknown 0.907 mVS 61.0
1-76	1.5		•		•	3 Unknown 2.718 mVS 68.9
\ \ \						
						1 32
						5 Toluene 35.48 ppb 93.8
1171						6 Unknown 16.71 mVS 107.2
	•		•		•	7 Unknown 21.70 mVS 126.1
1						8 Unknown 12.75 mVS 136.0
		•	•			9 Ethylbenzene 441.0 ppb 202.0
1 '	\					
200	\ .					
) 9					11 O-Xylene 160.8 ppb 268.0
						12 Unknown 10.13 mVS 292.8
110		•	•	•		
228						
1 3						
}	μO					
	İ					
237						
1-11	•		٠		•	
1 1		•				
1 1	1.1					
285						
			•	•	•	
}	2					
1 1		•	•	•		
						Notes
314						
						soil sample
						sample #31 16 to 18 ft
						soil volume 50g
342						water sample vol. ****ml
					•	temp. of sample 28c
						A STATE OF THE STA
			•			
371						
	•		•	- ,	•	
		•	•			
la.	,					
490	' ·		•	•		

Αŧ	nal)	/S1S	#32	105*	GC	Funct	tion Analysis Keport
		1.	. 2	3 .(x	4 10	5 mV)	Time Printed: Aug 18,93 11:56 Sample Time: Aug 18,93 11:47
20	 ∃ ∕						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
	ج.			•			Min Area 1.000 mVSec Min Height 0.000 mV
5	7						Analysis Delay 45.0 sec
-	1	iL .					Window Percent 35.0 % Det Flow 10 ml/min
	1		•		•		B/F Flow 10 ml/min
8	\$						Aux Flow O ml/min Oven Temp 45 C
	3						Amb Temp 32 C
		a					Max Gain 1000 Analysis Time 400.0 sec
].].	14	4			٠		Peak Report
	1						Pk Compound Name Area/Conc R.T.
	15						1 Benzene 27.60 ppb 54.6 2 Unknown 5.397 mVS 85.6
11	42						2 Unknown 5.397 mVS 85.6 3 Unknown 4.234 mVS 92.9
							4 Toluene 30.31 ppb 107.2
			•	•			5 Unknown 6.972 mVS 125.8
1.	71						6 Ethylbenzene 156.9 ppb 202.4
							7 M&F-Xylene 43.78 ppb 240.0
			•	•	•		
2	db -						
		•					
	6		•	•	•		
2	28						
	17		*	•	•		
2	\$7						
				•	•		
2	4 5						
			•	•	•		
13	14				,		Notes
							water sample sample #31 before purge
			•	•			soil volume 80 g
	142	,					water sample vol. 43×8ml
							temp. of sample 28c
The state of			•	•			
3	371						
		-	-				
			•			•	
4	100						
)		•	· ·			

enal)	/81.8	#34	105+	GC	Func:	tion Analysis Report
()	1.	2	3	4	55	Time Printed: Aug 18,93 12:08
			.(x	1.0	mV)	Sample Time: Aug 18,93 11:59
٠		>				Method
28 ,	لتستج					Slope Up 3.000 mV/Sec
- م						Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
						Min Height 0.000 mV
57/						Analysis Delay 45.0 sec
)						Window Percent 35.0 %
2						Det Flow 10 ml/min
35						B/F Flow 10 ml/min Aux Flow 0 ml/min
°52				٠		1
5.						Oven Temp 45 C Amb Temp 32 C
1			•	٠		Max Gain 1000
1.1/4	6					Analysis Time 400.0 sec
1.4	,				•	Peak Report
ħ						Pk Compound Name Area/Conc R.T.
1		•	•	•		1 Benzene 18.58 ppb 55.0
142						2 Unknown 5.933 mVS 61.3
	•			•	•	3 Unknown 17.95 mVS 68.8
						4 Unknown 14.77 mVS 85.6
1		•	•	•		5 Toluene 43.50 ppb 95.2
171						6 Unknown 12.49 mVS 106.8
	•			•	•	7 Unknown 10.73 mVS 125.8
į						8 Ethylbenzene 151.3 ppb 199.8
Ŋ.						9 M&P-Xylene 41.49 ppb 239.4
2 (þ						
B						
¥						
22/8						
ĺ.						
257						
a ay						
1		•	•	٠		
285						
				٠	•	
1		•	•	•		
314						Notes
	•			٠		water sample
						sample #31 after purge
and the second s		•	•	•		soil volume *Og
342				_	_	water sample vol. ************************************
	-	•	- •	•	·	temp. of sample 28c
			÷			
371						
490						
400						

1711 1 GK JL	ysis	77 4.1	3.373.73	1.31.3	, c.tii c., .	CTOH AMEGIASTS DADOLC
9	23	4	6 .(x	8	10 mV)	Time Printed: Aug 19,93 08:04 Sample Time: Aug 19,93 07:53
		•	. \ ^	vç	111 4 7	Method
28			-			Slope Up 3.000 mV/Sec
4.0	٠				•	Slope Down 3.000 mV/Sec
5	-					Min Area 1.000 mVSec
1./		•		•		1
57						Analysis Delay 45.0 sec
ا		1.				Window Percent 35.0 %
1.1						Det Flow 10 ml/min
12						B/F Flow 10 ml/min
85						Aux Flow O ml/min
	•		•	•	·	Oven Temp 45 C
						Amb Temp 26 C
[•	•	•		Max Gain 1000
111	3					Analysis Time 400.0 sec
1 1	*			•	•	Peak Report
9						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 245.6 ppb 56.0
1	0					
142	.4			•		
						3 Toluene 253.2 ppb 109.3
						4 Unknown 6.557 mVS 136.4
						5 Unknown 5.561 mVS 190.2
171						6 Ethylbenzene 107.9 ppb 215.6
1 1						7 M&P-Xylene 570.0 ppb 231.6
						8 O-Xylene 268.3 ppb 273.0
200	5					
	•			•	•	
l k		•	•	•		
228						
				•	•	
1						
		•	•	•		
257						
1-1				•	•	
1			•	•		
138						
285						
						·
314						Notes
	•	-	•	-		calibration
				_		sample #0.2ml of lug/ml BTEX
			-	•		soil volume 50g
342						water sample vol. ****ml
				•	•	temp. of sample 28c
						0.2ug/50g soil=4ug/kg
		•	•			60 benzene = 1 ug/kg
371						65 toluene = 1 ug/kg
171					•	30 ethylbenzene = 1 ug/kg
		•	•			70 total xylenes = 1 ug/kg
0.00						
440					•	

	TAPTE	79 /	7004			CILCH PHICKLY STABLES INC. POST O
Q	2	a	6	8	10	Time Printed: Aug 19,93 08:29
"	<i></i>	'	(x		mV)	Sample Time: Aug 19,93 08:19
		•	. 5 ^	ar sig	111 V /	Method
28						Slope Up 3.000 mV/Sec
2.0	٠			• .		Slope Down 3.000 mV/Sec
	سسسم					
1 . 1			•			
(Min Height 0.000 mV
57						Analysis Delay 45.0 sec
		1				Window Percent 35.0 %
1 1	2					Det Flow 10 ml/min
1 8		-	=	-		B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
la la	•	•		•	•	Oven Temp 45 C
1						Amb Temp 29 C
1 4		•	•	•		Max Gain 1000
	~ /					Analysis Time 400.0 sec
114	(i)					Peak Report
1						i '
		•			,	Pk Compound Name Area/Conc R.T.
						1 Benzene 254.4 ppb 55.0
142	7					2 Unknown 0.735 mVS 61.2
1						3 Unknown 6.685 mVS 69.7
						4 Unknown 1.217 mVS 86.2
						5 Unknown 2.279 mVS 94.0
171						6 Toluene 368.4 ppb 108.2
	•			•	•	7 Unknown 18.71 mVS 136.0
						8 Unknown 14.57 mVS 190.6
1 1		•	•	•		9 Ethylbenzene 77.87 ppb 217.6
200	8					10 M&P-Xylene 354.5 ppb 233.4
1240	Θ				•	11 O-Xylene 254.8 ppb 275.4
1 1						TT CAVATELIE TOLLO PAR TAGES
1 1						
228	9					
1						
1 1/1	0					
257						
	•			•	•	
		•	•			
285	1.1					
4	;tt.				•	
1		•	•			
						klay di ayan
314	•					Notes
						calibration
						sample #0.2ml of lug/ml BTEX
						soil volume **g
342						water sanple vol. 40.0ml
	•			•	-	temp. of sample 28c
						0.2ug/40ml H20=5ug/1
		•	•	•		50 benzene = 1 ug/l
371						75 toluene = 1 ug/l
171	•				•	15 ethylbenzene = 1 ug/l
						40 total xylenes = 1 ug/l
		•				
400						
<u> </u>						

30

65

TE

Χ

400

80

Ana.i						LOW PHISTY SEE INSPORT
q	4	8	1.2	1.6	20	Time Printed: Aug 19,93 09:24 Sample Time: Aug 19,93 09:15
			.(x	1000	uV)	Sample Time: Aug 19,93 09:15 Method
1	-			•		
28						
	-					
	/					Min Area 1.000 mVSec
1	,					Min Height 0.000 mV
157 L	-					Analysis Delay 45.0 sec
1	i.					Window Percent 35.0 %
1						Det Flow 10 ml/min
17			-			B/F Flow 10 ml/min
85						Aux Flow O ml/min
}	٠		•		•	Oven Temp 45 C
1 {						Amb Temp 31 C
		•	•	•		Max Gain 1000
113	22					Analysis Time 400.0 sec
	•	•	•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
		•	•	•		1 Benzene 17.97 ppb 55.5
142						2 Toluene 45.15 ppb 109.0
1. 7/2			•		•	
			•			
4 -9 -4						
171					•	
			•			
200						
228						'
257						
	-	•				
285					ē	
	•		•		•	
		•	•	•		
314						Notes
1-1.	٠				•	soil sample
						sample # 32 16 to 18 ft
		•	•	•		soil volume 50g
342						water sample vol. ****ml
27						temp. of sample 28c
						Secretaria de la consecutaria de servicio.
			•		-	
						man i i i i i janu i i d
371						soil liquid
						B 65 50
						T 70 80
						E 30 15
400						× 65 40

		99 J. Cl			CTOH MISTRANT INTERNAL
0	1.	2	3 (4 5	Time Printed: Aug 19,93 09:59
			(x :	iQ mV)	Sample Time: Aug 19,93 09:50
	_	•			Method
00		a			Slope Up 3.000 mV/Sec
28	2				
				-	Slope Down 3.000 mV/Sec
. /					Min Area 1.000 mVSec
1 1					Min Height 0.000 mV
571					Analysis Delay 45.0 sec
1 2:	1.				Window Percent 35.0 %
					Det Flow 10 ml/min
3		•	•	•	B/F Flow 10 ml/min
OB					
85					
					Oven Temp 45 C
					Amb Temp 31 C
					Max Gain 1000
1114					Analysis Time 400.0 sec
14					Feak Report
					Pk Compound Name Area/Conc R.T.
		•	•	•	1 Benzene 13.49 ppb 55.8
1,10					1
142)
5					3 Unknown 2.168 mVS 70.5
					4 Toluene 84.66 ppb 109.7
					5 Unknown 4.493 mVS 138.1
171					
	•				
		•	•	•	
200					
200					
228					
	•				
		•	٠		
29.5					
257					
285					
	•	•	•	•	
		•	•	•	
314					Notes
	•		•		
					water sample
					sample # 32 before purge (0920)
					soil ∨olume **g
342					water sanple vol. 41.9ml
	· ·	•	•	•	temp. of sample 28c
		•	•	•	
371					soil liquid
1217					B 65 50
		•	•		T 70 80
					E 30 15
440					X 65 40
	-	-	•	•	

,	7 112 II. 112	99 J. /	3. 0. 0.	4.5 446	1 5517 55	CIOI Midther Nation C
9	2	<i>a</i> .	6 .(x	8 10	10 mV)	Time Printed: Aug 19,93 10:17 Sample Time: Aug 19,93 10:08 Method
28 2	· 	<u> </u>				Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57						Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85						B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C
						Max Gain 1000 Analysis Time 400.0 sec
1114					•	Feak Report
142		•	•			Pk Compound Mame Area/Conc R.T. 1 Benzene 7.909 ppb 55.9 2 Toluene 41.09 ppb 110.2
	•				•	
171	٠				•	
200						
228						
257						
285						
314						Notes
	-					water sample sample # 32 after purge (0944) soil volume **g
342						water sanple ∨ol. 4 3 .√ml temp. of sample 28c
371						soil liquid B 65 50 T 70 80
400						E 30 15 X 65 40

(x 1000 uV) Sample Times Aug 19.93 10:26 Method	g	4	9	12	1.6	20	Time Printed: Aug 19,93 10:35
Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Toluene 32.51 ppb 106.5 142 171 1				.(x ===	1000	uV)	
Min Area 1.000 mVSec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Amb Temp 31 C Amb Temp 31 C Amb Temp 45 C Amb Temp 31 C Amb Temp 45 C Amb Temp 31 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 33 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 32 C Amb Temp 33 C Amb Temp 34 C Amb Temp 34 C Amb Temp 34 C Amb Temp 35	28	سمد					
Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Toluene 32.31 ppb 106.5 114 Notes 228 257 265 314 Notes soil sample sample sample # 33 0 to 2 ft soil volume 50g water sanple vol. *****ml temp. of sample 28c 371 soil liquid B 45 50 T 70 80 E 30 15		2	•				Min Area 1.000 mVSec
Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pk Compound Name Area/Conc R.T. 1 Toluene 32.31 ppb 106.5 142 171	1 1	/					
B/F Flow	۶ ۱۳	•				٠	Window Percent 35.0 %
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 31 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Pek Compound Name Area/Conc R.T. 1 Toluene 32.51 ppb 106.5 171	1.5						1
Oven Temp	85						
Max Gain		•		•		•	Oven Temp 45 C
Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Toluene 32.51 ppb 106.5 171 200 228 257 285 314 Soil sample sample sample # 33 0 to 2 ft soil volume 50g water sample vol. *****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15			•	•			1
Peak Report Pk Compound Name Area/Conc R.T. 1 Toluene 32.51 ppb 106.5 171 200 228 257 265 314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sanple vol. *****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15	1.13	1.					Analysis Time 400.0 sec
1 Toluene 32.51 ppb 106.5 171 200 228 257 285 314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15	1	•		•	•	•	1
171 200 228 257 285 314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. *****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15			•	•	•		
228 257 285 314 Soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15	142					•	
228 257 285 314 Soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15							
228 257 285 314 Soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15			•	•	•		
228 257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15	171						
228 257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15							
228 257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 65 50 T 70 80 E 30 15			•				
257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15	200					•	·
257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15							
257 285 314 Notes soil sample sample # 33 O to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15	228						
285 314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15		•		•		•	
285 314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15					-		
314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15	257						
314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15							
314 Notes soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15				•	•		
soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15	285						
soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15							
soil sample sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15			•	•	•		h London ou
sample # 33 0 to 2 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15	314					•	1
342 water sample vol. ****ml temp. of sample 28c 371 soil liquid B 65 50 T 70 80 E 30 15							sample # 33 0 to 2 ft
temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15	720						
B 65 50 T 70 80 E 30 15		•				•	
B 65 50 T 70 80 E 30 15							
B 65 50 T 70 80 E 30 15	371						
E 30 15		•		•		•	
4do X 65 40				•			
	400						X 65 40

E

X

400

30

65

9 4	8	12 16 20 _(x 1000 αV)	Time Printed: Aug 19,93 10:55 Sample Time: Aug 19,93 10:47 Method
28			Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57 }			Analysis Delay 45.0 sec Window Percent 35.0 %
.\ 85			Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min
			Oven Temp 45 C Amb Temp 31 C Max Gain 1000
117			Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T.
142			1 Toluene 35.99 ppb 110.5
171			
200			
228	٠	•	
257			
285			
31/4			Notes
			soil sample sample # 33 4 to 6 ft soil volume 50g
342			water sanple vol. ****ml temp. of sample 28c
371			soil liquid B 65 50
400			T 70 80 E 30 15 X 65 40

15

40

20

30 65

Υ.

E

Χ

Pill 6							tion Analysis Repurt
q		4	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 19,93 11:16 Sample Time: Aug 19,93 11:07
j L							Method
28							Slope Up 3.000 mV/Sec
	•	-		•		•	Slope Down 3.000 mV/Sec
i	5						i i
	ستمم		,				1
	6						Min Height 0.000 mV
57	/ 1						Analysis Delay 45.0 sec
1 4	Q		•	•		•	Window Percent 35.0 %
1 4	<u></u>						Det Flow 10 ml/min
	<u> </u>			•			B/F Flow 10 ml/min
85							Aux Flow O ml/min
							Oven Temp 45 C
l b		-					Amb Temp 32 C
	Į		,	•	•		Max Gain 1000
114	_	~~					Analysis Time 400.0 sec
1. 4	*	، مس		•		•	
1	_	£:	1				Peak Report
							Pk Compound Name Area/Conc R.T.
							1 Unknown 4.916 mVS 49.6
142	2						2 Benzene 11.55 ppb 62.7
	•			•		•	3 Unknown 26.13 mVS 71.0
							4 Unknown 1.241 mVS 95.4
							5 Toluene 186.3 ppb 110.0
171							
			•	•	•		
lad.	,						
200	· .						
			•				
228	3						
1-7				•		•	
			•				
257	7		_				
	•			•		•	
land.			•	•	•		
285	:		•	•	•		
	. ë						
	5 .						
	5 .						
	ä .					. <u>.</u>	
3.416	•						Notes
314	•						Notes soil sample
314	•						soil sample
314	•						soil sample sample # 33 8 to 10 ft
	į.						soil sample sample # 33 8 to 10 ft soil volume 50g
314	į.						soil sample sample # 33 8 to 10 ft
	į.						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml
	į.						soil sample sample # 33 8 to 10 ft soil volume 50g
	į.						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml
342	2 .						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c
	2 .						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid
342	2 .						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50
342	2 .						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid
342	2 .						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50
342	2 . t						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80 E 30 15
342	2 . t						soil sample sample # 33 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 65 50 T 70 80

ा	<i>4</i>	8	12 .(x	16 1000	20 uV)	Time Printed: Aug 19,93 11:27 Sample Time: Aug 19,93 11:18
28	-		· ·			Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57	}					Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85	· ·	il · ·				Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114	> 2					Amb Temp 32 C Max Gain 1000 Analysis Time 400.0 sec
1						Peak Report
		•	•			Pk Compound Name Area/Conc R.T. 1 Benzene 57.06 ppb 70.9
142	.3					1 Benzene 57.06 ppb 70.9 2 Toluene 124.0 ppb 108.5
.1. " /2	3.3				•	3 Unknown 2.313 mVS 137.2
						we write a twenty to do not do to the visit of the fill V to the total V to the total V to the total V to the total V to the total V to the total V to the total V to the total V to the total V total
		•	•	•		
171						
	•	•	•		•	
200			•		• .	
		•	•	•		
228						
1	•		•		•	
		_	_			
		•	•	•		
257	•				•	
La						
285					•	
		•	٠	•		
3:14						Notes
	•		•		•	soil sample
				_		sample # 33 10 to 12 ft
				•		soil volume 50g
342	•					water sample vol. ****ml
						temp. of sample 28c
371						en en d T Tri en cristel
1341	•		٠		-	soil liquid B 65 50
						T 70 80
		•		•		E 30 15
400						X 65 40
	•	•	•	•	•	

9	2 2	4	6 .(x	8	10 mV)	Time Printed: Aug 19,93 11:37 Sample Time: Aug 19,93 11:28
28						Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec
] 2	<u>`</u>					Min Area 1.000 mVSec
· ,		-	•	•		Min Height 0.000 mV
57				- -1		Analysis Delay 45.0 sec
1"	-		•	. •!•	٠	Window Percent 35.0 %
1 1						Det Flow 10 ml/min
.		•	7	·	3	B/F Flow 10 ml/min
85						Aux Flow O ml/min
		ai ·	•		•	Oven Temp 45 C
1 1		<u> </u>				Amb Temp 32 C
1 1					5	
1.1	a					Analysis Time 400.0 sec
" "	٠.	•	•			
		_				Pk Compound Name Area/Conc R.T.
1			•	•		1 Unknown 2.944 VSec 50.0
14	9	-				2 Benzene 26.10 FPM2 63.0
'				7	•	3 Unknown 18.91 VSec 71.7
				-		4 Unknown 1.104 VSec 87.8
1 1) 3	•	•	•		5 Unknown 8.652 VSec 96.0
17	1. J					6 Toluene 283.5 PPM2 111.0
1"1	marie .		•		•	7 Unknown 6.899 VSec 138.9
	\rightarrow					8 Unknown 1.133 VSec 155.8
1 1	1	•	•	•		9 Unknown 2.817 VSec 177.2
20	-					10 Unknown 2.433 VSec 207.6
120	Y (·		•		•	11 Ethylbenzene 9.446 ppm 222.4
1 1)10					12 M&F-Xylene 32.41 PPM2 242.1
1 1		•	•	•		13 Unknown 1.599 VSec 260.8
	· 1					14 Unknown 2.344 VSec 279.2
22	CO MILIL		•		•	15 O-Xylene 41.90 FPM2 290.4
1						16 Unknown 232.2 mVS 306.4
1 1	12	•	•			17 Unknown 681.4 mVS 338.0
100						TA OHESTOWN CONTRACT CONTRACT
25	/ (.		•		•	
1/) -1 -27					
1 1	(13	•	•	•		
1	E 1.44					
28	5 14				•	
),					
-	/15			-		PFM1 = Alarm 1 PPM2 = Alarm2
	1					Notes
31	4//16				•	soil sample
						son sample sample # 33 12 to 14 ft
	Н	-		-		
	1					soil volume 50g water sanple vol. ****ml
34	4					
	/12					temp. of sample 28c
		•				
37	1 .					soil liquid
						B 65 50
						T 70 80
						E 30 15
40	o .					× 65 40
	•					

An a.l.	ysis	#27	108+ 60	: Func	tion Analysis Report
9	2	4	6 8 (x 100	10 mV)	Time Printed: Aug 19,93 11:53 Sample Time: Aug 19,93 11:44
		•	'(x roc	100)	Method .
284					Slope Up 3.000 mV/Sec
9			•		Slope Down 3.000 mV/Sec
					Min Area 1.000 mVSec
1		•	•	•	Min Height 0.000 mV
57	>:i.				Analysis Delay 45.0 sec
1		•			Window Percent 35.0 %
	رجــــــــــــــــــــــــــــــــــــ	<u>:</u>			Det Flow 10 ml/min
1				3	B/F Flow 10 ml/min
85					Aux Flow O ml/min
131					Oven Temp 45 C
1	>				Amb Temp 33 C
					Max Gain 1000 Analysis Time 400.0 sec
1.14		_ جسن			Analysis Time 400.0 sec Peak Report
		a			Pk Compound Name Area/Conc R.T.
1/		•		•	1 Unknown 524.8 mVS 49.8
143					2 Benzene 3.775 ppm 62.8
17	٠		•		3 Unknown 2.397 VSec 72.5
					4 Unknown 111.9 mVS 87.4
1 1		•	•	•	5 Unknown 877.7 mVS 95.6
171					6 Toluene 24.65 PPM2 109.7
1	•	•		,	7 Unknown 643.5 mVS 138.8
/e					8 Unknown 181.9 mVS 176.8
					9 Ethylbenzene 705.0 ppb 207.6
200					10 M&P-Xylene 483.1 ppb 225.0
1					11 Unknown 96.95 mVS 245.0
9					12 O-Xylene 3.176 ppm 291.4 13 Unknown 6.655 mVS 337.0
					13 Unknown
228 10					
1 110					
111		•	•	•	
257					
1-1			•		
				_	
		•	•	-	
285					
	•	•	•	•	
12					
					PPM1 = Alarm 1 PPM2 = Alarm2
314					Notes
					soil sample
			•		sample # 33 14 to 16 ft soil volume 50g
342	4 ""				water sample vol. ****ml
1345	13				temp. of sample 28c
					second triple in the research periods on the second terms
		•	•	•	
371					soil liquid
					B 65 50
			•		T 70 80
		•			E 30 15
400					X 65 40
1					

Q 4 8 12 16 20 Time Printed: Aug 19,9	
(x 10 mV) Samole Time: Aug 19,9	
Method	440 490 41 795° 5
28 Slope Up 3.000) mV/Sec
Slope Down 3.000	
Min Area 1.000	
Min Height 0.000) mV
57 Analysis Delay 45.0	
Window Percent 35.0	
Det Flow 10	
4 B/F Flow 10	
85/ Aux Flow	
Oven Temp 4:	
Amb Temp 33	
Max Gain 1000	
114 Analysis Time 400.0	
7 Peak Report	
	/Conc R.T.
	3 mVS 49.9
	7 ppb 57.0
1 11	5 mVS 62.9
	2 mVS 71.4
	1 mVS 88.0 3 mVS 95.8
	3 mVS 95.8 3 ppm 110.0
	2 mVS 139.2
	4 mVS 178.0
200 10 Ethylbenzene 116.:	
11 M&F-Xylene 224.0	• •
	5 mVS 243.4
1 1 1	4 ppb 281.0
228	
1.1	
1.2	
2.97	
245	
1.33	
314 Notes	
soil sample	
sample # 33 16 to 18 f	t.
soil volume 50g	4
342 water sample vol. ****	m T
temp. of sample 28c	
371 soil liquid a 45 50	
B 65 50 T 70 80	
E 30 15	
400 X 65 40	
TYV	

	me Printed: Aug 19,93 12:23
(x 100 mV) San	mple Time: Aug 19,93 12:15 Method
	1
i *	ope Down 3.000 mV/Sec
	n Area 1.000 mVSec
Mir	n Height 0.000 mV
57 1 Ana	alysis Delay 45.0 sec
Wir	ndow Percent 35.0 %
	t Flow 10 ml/min
	F Flow 10 ml/min
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	x Flow 0 ml/min
	en Temp 45 C
i is 1	1
	x Gain 1000
114	alysis Time 400.0 sec
	Peak Report
Pk Com	mpound Name Area/Conc R.T.
1 Uni	known 689.6 mVS 49.8
142 2 Ber	nzene 191.5 ppb 57.4
	known 594.2 mVS 62.6
; # 1	known 3.033 VSec 71.3
· · · · · · · · · · · · · · · · · · ·	known 7.497 mVS 87.2
1 1	known 769.4 mVS 95.6
1 #	
	known 336.4 mVS 138.2
	known 77.39 mVS 176.0
200 10 Uni	
11 Etl	hylbenzene 887.6 ppb 221.6
10 12 M&F	P-Xylene 2.946 ppm 238.8
13 0->	Xylene 867.8 ppb 279.7
223 11	•
12	
257	
285 13	
PPI	Mi = Alarm i PPM2 = Alarm2
314	Notes
	er sample
	ple # 33 before purge
	l volume **g
1 1	· ·
	er sanple vol. 43.3ml
tem	p. of sample 28c
("")"	oil liquid
B	65 50
l r	70 80
	30 15
: :	65 40

Init ties	dys	.l. 115	YY	·/	.1. 5.7		*****		TION PRINCIABLE VEDOUC
q		2		4	6 .(x		8	10 mV)	Time Printed: Aug 19,93 12:39 Sample Time: Aug 19,93 12:30
			•		. (×	.1.	VV.	mv)	Method
									Slope Up 3.000 mV/Sec
287									and the same for the same state of the same stat
>	>								307 111 011 101 101 101 101 101 101 101 1
1 1									1 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	_								Min Height 0.000 mV
57		1.							Analysis Delay 45.0 sec
1	<u> </u>		•	•	•	•	-		Window Percent 35.0 %
-	- <u>;</u> -								Det Flow 10 ml/min
1 -						4	•		B/F Flow 10 ml/min
85/						5			Aux Flow 0 ml/min
			•	•	•		•	•	Oven Temp 45 C
1 5	·								Amb Temp 33 C
1 L	ر هممم		•		•		•		Max Gain 1000
					- (2)				Analysis Time 400.0 sec
114	٠.				2 05			•	Peak Report
	سسسمم								
1 1/	1								1
1 1									1 Unknown 814.3 mVS 50.0
14)	2							•	2 Benzene 240.6 ppb 57.4
1	<i>)</i>		-	•					3 Unknown 310.3 mVS 62.7
									4 Unknown 1.449 VSec 71.4
			•		•		•		5 Unknown 2.026 VSec 74.2
17	1								6 Unknown 1.713 mVS 86.9
1 1			•	-	•	•	•	•	7 Unknown 807.0 mVS 95.7
.	10								8 Toluene 27.04 FFM2 109.2
	LO.		•		٠		-		9 Unknown 297.2 mVS 138.5
1.1	Λ.								10 Unknown 70.79 mVS 176.4
290	<i>.</i>							•	11 Unknown 27.59 mVS 207.8
									ale els services and services
	1.1								The Association and the As
228	3 1	.2							14 Unknown 101.9 mVS 238.8
	13								15 O-Xylene 531.7 ppb 279.2
	14								
25									
	•			•	•	•	•	•	
1 1									
					•		•		
20	E 4	CI,							
28	ا. ا	. 5		•		•			
									PPM1 = Alarm 1 PPM2 = Alarm2
31	4.								Notes
									water sample
1 1									sample # 33 after purge
									soil volume **g
34	2								water sample vol. 43.0ml
				•	-	•		•	temp. of sample 28c
			•		•			•	
37	1								soil liquid
171	٠		•	•	٠	•			B 65 50
									T 70 80
					•			•	E 30 15
									X 65 40
49	O.								A 00 40
1 '									

9		2	4	6 (X	8	10 mV)	Time Printed: Aug 20.93 07:42 Sample Time: Aug 20,93 07:32
28							Method Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec Min Height 0.000 mV
57		·				. 1	Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min
85					•		B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
1.11	 			•	٠		Amb Temp 23 C Max Gain 1000 Analysis Time 400.0 sec
					٠		Peak Report Pk Compound Name Area/Conc R.T.
1.4	2					٠.	1 Benzene 1.000 ppm 53.5 2 Toluene 1.000 ppm 104.6 3 Ethylbenzene 1.000 ppm 216.0 4 O-Xylene 1.000 ppm 278.6
17	i.						_
200	0						
22		X 3					
25	7			·			
28	5	4					
31	4						Notes calibration
34:	2				•		sample # 1ppm BTEX gas standard soil volume 50g water sanple vol. ****ml temp. of sample 28c
37	1.						soil liquid B
40	0						T E X

Analy	sis	#2	108+	GC	Funct	ion Analysis Report
0	2	4	6 .(x	8 10	10 mV)	Time Printed: Aug 20,93 08:00 Sample Time: Aug 20,93 07:44 Method
28						Slope Up 3.000 mV/Sec Slope Down 3.000 mV/Sec Min Area 1.000 mVSec
57	<u> </u>	 :		٠		Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 %
85						Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C
114						Amb Temp 26 C Max Gain 1000 Analysis Time 400.0 sec
					•	Feak Report Pk Compound Name Area/Conc R.T. 1 Unknown 2.007 mVS 49.3
142	8	: . -		•		2 Benzene 377.3 ppb 55.8 3 Unknown 7.218 mVS 62.0 4 Unknown 22.11 mVS 70.8 5 Unknown 0.693 mVS 86.2
171 -	•			•		6 Unknown 5.419 mVS 94.9 7 Toluene 865.5 ppb 109.3 8 Unknown 44.64 mVS 137.3
2 c b	9	· · ·		-	. .	9 Unknown 21.44 mVS 192.0 10 Ethylbenzene 180.8 ppb 220.6 11 M&P-Xylene 900.0 ppb 236.8 12 O-Xylene 457.8 ppb 280.2
228	10			•		
2.57	•					•
28	12					
314		•			•	Notes calibration sample # .2ml of lug/ml BTEX
342						soil volume 50g water sanple vol. ****ml temp. of sample 28c 0.2ug/50g soil=4ug/kg
371						soil liquid B 90 = lug/kg orl T 210 = = E 45 =
400						× 115

15 Sec Sec sin sin sin sin 11 R.T 49 56
R.T 49.
R.T 49.
R.T 49.
R.T 49
R.T 49.
R.T 49.
R.T 49.
R.T 49.
R.T 49. 56.
R.T 49. 56.
49. 56.
56.
62
71.
87.
95.
110.
138.
193.
199
222.
238.
281.
_

	soil	liquid		
\mathbf{E}	95	90	=1ug/kg	orl
Υ	230	220	0000 0000	
E	40	20	****	
X	105	55	****	

9	22		4	.6 .(x	8 1000	10 uV)	Time Printed: Aug 20,93 08:46 Sample Time: Aug 20,93 08:41
 28							Method Slope Up 3.000 mV/Sec
Z., ()	حرز.	•	•	•		•	Slope Down 3.000 mV/Sec
	حکے						Min Area 1.000 mVSec
• ,	paralle	•		•			Min Height 0.000 mV
57 L							Analysis Delay 45.0 sec
~/ <u> </u>			_	<u> </u>	• • •	•	Window Percent 35.0 %
7				.1.			Det Flow 10 ml/min
· }		•		•			B/F Flow 10 ml/min
85{							Aux Flow O ml/min
	٠	٠	•	•		•	Oven Temp 45 C
- (Amb Temp 29 C
- \$		•		•	•		Max Gain 1000
114							Analysis Time 400.0 sec
T. T. Jr.		•	•	•		•	Peak Report
- {							Pk Compound Name Area/Conc R.T.
`		•		•	•		1 Benzene 44.30 ppb 56.1
142							a water and the same and the sa
1	•	•	•	•		•	
- (·
٠, ١		•		•	•		
171							
-1-	•	٠	٠	•		•	
1							
₹		•		•	•		
200							
XV V	•	•	٠	٠		•	
•		•		•	•		
228							
	•	•	•	•		•	
•		•					
257							
	-	•	•	•		•	
285							
	•						
314							Notes Charle
							calibration ZINO COICH
							sample # .2ml of lug/ml BTEX
erg 21 .m.							soil volume 500
342							water sample vol. ****ml
							temp. of sample 28c
				•			0.2ug/40ml H20=5ug/1
							man i I I i mu i d
371	٠						soil liquid B 95 70 =lug/kg orl
							T 230 240 =
						•	E 40 20 =

B 95 80 = lug/kg orl T 230 230 = E 40 20 =	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>		11. 17 11.	<i></i>		tion Analysis Report
Slope Up	9	ïl.	22				
Slope Up			_	• '	•	·	
Slope Down 3.000 mV/Sec Min Area 1.000 mV/Sec Min Area 1.000 mV/Sec Min Height 0.000 mV Analysis Delay 45.0 sec Window Percent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVS 62.2 2 Unknown 2.240 mVS 62.2 2 Unknown 2.240 mVS 62.2 3 Unknown 8.172 mVS 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVS 139.3 6 M8F-Xylene 66.21 ppb 238.8 6	28			•			i
Min Area 1.000 mVSec Min Height 0.000 mV	1	•				•	
Min Height 0.000 mV Analysis Delay 45.0 sec Window Fercent 35.0 % Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVs 62.2 3 Unknown 8.172 mVs 139.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVs 139.3 71 M8P-Xylene 66.21 ppb 238.8 A 237 200 228 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid R 95 80 =lug/kg orl T 230 230 = E 40 20 =							1
Analysis Delay 45.0 sec Window Fercent 35.0 7 Det Flow 10 ml/min B/F Flow 10 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 m/5 62.2 3 Unknown 8.172 m/5 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 m/5 139.3 6 M&F-Xylene 66.21 ppb 238.8 200 228 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid R 95 80 =lug/kg or1 T 230 230 = E 40 20 =		سمسمسم					
Window Percent 35.0 %	('					
Det Flow 10 ml/min B/F Flow 10 ml/min Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 m/s 62.2 3 Unknown 8.172 m/s 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 m/s 139.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 m/s 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 321 soil liquid B 95 80 = lug/kg or1 T 230 230 = E 40 20 =	57						
B/F Flow	حم	1.		•	•	•	Window Percent 35.0 %
B/F Flow	1 12						Det Flow 10 ml/min
Aux Flow 0 ml/min Oven Temp 45 C Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Feak Report Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVS 62.2 3 Unknown 8.172 mVS 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVS 139.3 6 M&P-Xylene 66.21 ppb 238.8	>×		•	•	•		4
Oven Temp	013						
Amb Temp 30 C Max Gain 1000 Analysis Time 400.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVs 62.2 3 Unknown 8.172 mVS 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVS 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 200 228 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg or1 T 230 230 = E 40 20 =	0.4						
Max Gain 1000 Analysis Time 400.0 sec Peak Report							
### Analysis Time ### 400.0 sec Feak Report)						
Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVs 62.2 3 Unknown 8.172 mVs 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVs 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 205 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	1 6						
Feak Report Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVs 62.2 3 Unknown 8.172 mVs 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mVs 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 205 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	1114	•					Analysis Time 400.0 sec
Pk Compound Name Area/Conc R.T. 1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mVS 62.2 3 Unknown 8.172 mVS 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.97 mVS 139.3 6 M8P-Xylene 66.21 ppb 238.8 6	1	4	•		•		
1 Benzene 29.03 ppb 56.2 2 Unknown 2.240 mV5 62.2 3 Unknown 8.172 mV5 71.3 4 Toluene 186.8 ppb 110.2 5 Unknown 4.974 mV5 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 237 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sanple vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							· ·
2			•	•	•		t t
S	1,1						
4 Toluene							
5 Unknown 4.974 mVS 139.3 6 M&P-Xylene 66.21 ppb 238.8 200 228 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid 8 95 80 =1ug/kg orl T 230 230 = E 40 20 =	5						
171 6 M&P-Xylene 66.21 ppb 238.8							
228 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 95 80 = lug/kg orl T 230 230 = E 40 20 =							
228 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =lug/kg orl T 230 230 = E 40 20 =	171					•	6 M&P-Xylene 66.21 ppb 238.8
228 66 257 285 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 ==lug/kg orl T 230 230 == E 40 20 ==		•			•	•	
228 66 257 285 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 ==lug/kg orl T 230 230 == E 40 20 ==							
228 66 257 285 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =			•	•	•		
228 66 257 285 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 Soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	lada						
Notes Soil sample Sample Sample Sample Sample Sample Soil volume Sog Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 = lug/kg orl T 230 230 = E 40 20 = E 40 40 40 40 40 40 40	290						
Notes Soil sample Sample Sample Sample Sample Sample Soil volume Sog Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 = lug/kg orl T 230 230 = E 40 20 = E 40 40 40 40 40 40 40							
Notes Soil sample Sample Sample Sample Sample Sample Soil volume Sog Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 = lug/kg orl T 230 230 = E 40 20 =							
Notes Soil sample Sample Sample Sample Sample Sample Sample Soil volume Sog Water sample vol. ****ml temp. of sample 28c Soil liquid B 95 80 = 1ug/kg orl T 230 230 = E 40 20 E 40 20 E 40 20 E 40 20 E 40 20 E 40 40 40 40 40 40 40							
Notes Soil sample Sample Sample Sample Sample Sample Sample Soil volume Sog Water sample vol. ****ml temp. of sample 28c Soil liquid B 95 80 = 1ug/kg orl T 230 230 = E 40 20 E 40 20 E 40 20 E 40 20 E 40 20 E 40 40 40 40 40 40 40	228						
257 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =		•				•	
257 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	1						
257 265 314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =			•	•			
Notes Soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c Soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	16						
314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	257						
314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							
314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =			•				
314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =			•	-	•		
314 Notes soil sample sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	285						
soil sample sample sample	-	٠			•	•	
soil sample sample sample							
Soil sample Sample Sample Sample Sample Sample Soil Volume Sog Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 Soil T 230 230 Soil E 40 20 Soil			•				
Soil sample Sample Sample Sample Sample Sample Soil Volume Sog Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 Soil T 230 230 Soil E 40 20 Soil							
sample # 34 8 to 10 ft soil volume 50g water sample vol. ****ml temp. of sample 28c soil liquid B 95 80	314						f
Soil Volume 50g Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							
Soil Volume 50g Water sample Vol. ****ml temp. of sample 28c Soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							sample # 34 8 to 10 ft
342 water sample vol. ****ml temp. of sample 28c 371 soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =			•	•	•		
temp. of sample 28c soil liquid B 95 80 =1ug/kg orl T 230 230 = E 40 20 =	340						
371 soil liquid B 95 80 = lug/kg orl T 230 230 = E 40 20 =	J. 72	•				•	
B 95 80 =1ug/kg or1 T 230 230 = E 40 20 =							temps of semple for
B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							
B 95 80 =1ug/kg orl T 230 230 = E 40 20 =							
B 95 80 =1ug/kg or1 T 230 230 = E 40 20 =	371						soil liquid
T 230 230 = E 40 20 =		•	. ,		•	•	·
E 40 20 =							1
			•	•			
4do X 105 50 =							
400 × 105 50 =	171757						1 V 100 OO

Analysis #9	1.08+	GC	Function	Analysis	Report
-------------	-------	----	----------	----------	--------

Anal	ysis	#9	LUbr	unu	runci	ion Analysis Report
0	:[.	2	3	Q.	5	Time Printed: Aug 20,93 09:17
	***	6000			mV)	Sample Time: Aug 20,93 09:08
		•				Method
28		<u></u>				Slope Up 3.000 mV/Sec
2.0	•			•		Slope Down 3.000 mV/Sec
						Min Area 1.000 mVSec
1 . 6	and the same of th			•		
1573						Analysis Delay 45.0 sec
1 KI						Window Percent 35.0 %
HE_	_					Det Flow 10 ml/min
	~ 3					B/F Flow 10 ml/min
83						Aux Flow O ml/min
						Oven Temp 45 C
1 14						Amb Temp 30 C
						Max Gain 1000
1114	> .					Analysis Time 400.0 sec
	5	•	•	-	-	Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Benzene 81.74 ppb 56.3
142	_					2 Unknown 13.38 mVS 63.5
6	•		•	•	•	3 Unknown 54.63 mVS 71.3
						4 Unknown 12.90 mVS 95.0
		•	•	•		5 Toluene 300.7 ppb 110.5
171-						6 Unknown 7.018 mVS 138.6
	•			•	•	
		•	•	•		
200						
	•		•	•	•	
		•				
		•	•	•		
228						
		. ,		•	•	
		•	•	•		
257						
	•			•	٠	
		•	•	٠		
285						
	•	•		•	•	
		•	•			
314						Notes
	•	• •		•	•	soil sample
						sample # 34 14 to 16 ft
		•	•	•		soil volume 50g
342						water sample vol. ****ml
	•			•	•	temp. of sample 28c
						- T
		•	•	•		
371						soil liquid
1"1"	•			•	•	B 95 80 =lug/kg orl
						T 230 230 =
		•	•	•		E 40 20 =
400						× 105 50 =
1 1 M W					•	
,						

1 11 1 444	lysis	11 .1	.1. \		1	tion Analysis Report
9	4	8	12 .()	16 < 1000	20 (uV)	Time Printed: Aug 20,93 09:33 Sample Time: Aug 20,93 09:24
~						Method
28		-		<u> </u>	_	Slope Up 3.000 mV/Sec
1	•					Slope Down 3.000 mV/Sec
	<<	2				Min Area 1.000 mVSec
	سمممر					
						Min Height 0.000 mV
57	2					Analysis Delay 45.0 sec
1 6	,->:		•	•		Window Percent 35.0 %
1)						Det Flow 10 ml/min
1 -	~~~	•			•	
1	<i>i</i>					B/F Flow 10 ml/min
85						Aux Flow O ml/min
						Oven Temp 45 C
1 (Amb Temp 30 C
1		•	•		•	· ·
1.						
114	\rightarrow					Analysis Time 400.0 sec
1/	3	-	-	-	-	Peak Report
1						Pk Compound Name Area/Conc R.T.
		•	•		•	1 Benzene 13.59 ppb 56.2
1, 1						
142						2 Unknown 11.58 mVS 71.0
14						3 Toluene 145.4 ppb 110.2
						4 Unknown 3.921 mVS 139.0
		•	•		-	
171						
1-1-						
			-			
200						
1				•		
228						
	•		•	•		
}						
257						
	•		•	•		
		•				
285						
	,		•	•	•	
1 1		•	•		•	
]]						
314						Notes
		-	•		•	soil sample
						sample # 34 16 to 18 ft
		•	•		•	
_						soil volume 50g
342						water sample vol. ****ml
						temp. of sample 28c
		•	•		•	
11.						
221						soil liquid
						B 95 80 =1ug/kg or1
						T 230 230 =
		•	•		•	E 40 20 =
						X 105 50 =
490						

Anla	Лy	si	Œ.	**	1.	5
------	----	----	----	----	----	---

	(Time Printed: Aug 20,93 09:56
q	4	8	12	16 1000	20	Time Printed: Aug 20,93 09:56 Sample Time: Aug 20,93 09:47
L		•	. (×	TOOÓ	wv)	Method
28				:		Slope Up 3.000 mV/Sec
1	•	·			•	Slope Down 3.000 mV/Sec
	~~					Min Area 1.000 mVSec
		•	•	•		Min Height 0.000 mV
57	/==1					Analysis Delay 45.0 sec
	F-52		•		•	Window Percent 35.0 %
1	<u></u>					Det Flow 10 ml/min
			~ ઙં	•		B/F Flow 10 ml/min
85						Aux Flow 0 ml/min
]	•	• ·	•		·	Oven Temp 45 C
1 .	>					Amb Temp 31 C
16	4					Max Gain 1000
1.1	1	> .				Analysis Time 400.0 sec
		5				Peak Report
1 1						Pk Compound Name Area/Conc R.T.
						1 Unknown 11.53 mVS 50.2
1.4	2 .					2 Benzene 17.80 ppb 56.1
11					•	3 Unknown 42.77 mVS 71.6
						4 Unknown 2.170 mVS 96.5
						5 Toluene 256.7 ppb 110.4
1171						
		•	•			
290					•	
		•	•	•		
228	5					,
2270			•		•	
1 1		•	•	•		
25	7					
1	•		٠		•	
		•	•	•		
28	5					
	•		•		•	
1		-	•	•		
31	4					Notes
	•		-	•	•	water sample
		•				sample # 34 after purge
						soil volume **g
347	2 .					water sample vol. 42.7ml
1 1						temp. of sample 28c
37	1	٠				soil liquid B 95 80 =1ug/kg orl
1 }		•	•			T 230 230 = E 40 20 =
1,1	^					X 105 50 =
49	٠.		•			V 100 00
1						A

1313 60 3	iysis	11 44 44				ion Analysis Report
q	4	8	12	1.6	20	Time Printed: Aug 20,93 09:45
		*****		1000		Sample Time: Aug 20,93 09:35
1 1		•	` ^	was si	, ,	Method
28				>		Slope Up 3.000 mV/Sec
250				₽	•	Slope Down 3.000 mV/Sec
	5	,				Min Area 1.000 mVSec
	1	•	•			Min Height 0.000 mV
57	f	-1				Analysis Delay 45.0 sec
13/ /	-5,	.i	•		•	Window Percent 35.0 %
1 5	fin.					Det Flow 10 ml/min
1.5						B/F Flow 10 ml/min
1				ప		****
85						
1						
I D						1
1	+	_				
114						Analysis Time 400.0 sec
1		C	•			Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 15.12 mVS 50.5
140	.6					2 Benzene 18.81 ppb 56.4
						3 Unknown 55.18 mVS 71.6
						4 Unknown 3.349 mVS 96.4
						5 Toluene 343.1 ppb 110.4
171						6 Unknown 0.642 mVS 137.4
	-	-				
200			_		_	
	•		•		• •	
			_			
11		•	•	•		
228						·
{	•		•		•	
		•	•			
257						
	•		•		•	
1 1		•	•	•		
285						
	•		•	•	•	
		•	•		•	
314						Notes
1 1	•		•	•		water sample
						sample # 34 before purge
		•	•		•	soil volume **g
342						water sample vol. 43.0ml
3.4	•		•			temp. of sample 28c
						Constitution for the association of the second second
}		•	•		•	
371						soil liquid
247	٠					B 95 80 =1ug/kg orl
						T 230 230 =
1 1		•			•	E 40 20 =
1000						X 105 50 =
490			•			V 100 00

Appendix B

Soil Boring Logs

Well Construction Diagrams

COORDINATES N 659,070 E 3,218,195

BORING

SB-15

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

	TOLELLY ATTOM 20.0								0.0.00
N O		d		SAMI	PLE INF	ORM	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	/ Inches	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	GROUND SURFACE CLAY (CH) - black (2.5 YR 0), stiff, rootlets			SPT	6B-15A	Rec. 24/12	Courts	0/0	
	CLAY (CH) - black (5 YR 2.5/1), stiff to hard, rootlets, calcareous nodules, slightly silty			SPT		24/24		0/0	·
-20	CLAY (CH) -black (5 YR 2.5/1), with brown streaks, stiff, dry, rootlets, white to buff calcareous nodules		- 5 -	SPT		24/8		0/1	
	CLAY (CL) - very dark gray (7.5 YR 3/0), medium stiff, plastic, slightly silty, brown inclusions			SPT		24/8		0/14	
	CLAY (CL) -olive gray (5 YR 4/2), occasional yellow streaks, medium stiff, plastic, slightly silty		- 10 -	SPT		24/8		0/8	
-15	CLAY (CL) - yellowish red (5 YR 4/6), mottled with gray, occasional black staining, stiff, slightly silty, dry, occasional <1/8-inch calcareous nodules		, ,	SPT		24/18		0/3	Water level 10.7 feet BLS after 20 minutes
	CLAY (CL) - yellowish red (5 YR 4/6), occasional gray streaks, medium stiff, plastic, slightly silty, damp		-	SPT	\/BB-15E	24/15		0/10	
-10	CLAY (CL) - strong brown (7.5 YR 4/6), occasional gray and yellow streaks, medium stiff, plastic, slightly silty, damp SILTY CLAY (CL) - strong brown (7.5 YR		- 15 -	SPT		24/18		0/0	
	5/6), variegated with gray, green and brown, medium stiff, slightly silty to very silty with depth, occasional <1/8-inch calcareous		-	SPT		24/18		0/0	
	nodules SILTY CLAY (CL) - A/A, very silty, damp at base		- 20 -	SPT	MSB-150	24/20		0/6	
-5	SILT (ML) - brown (7.5 YR 5/4), clayey, slightly sandy in parts, saturated Total depth = 22 feet BLS			SPT		24/20	:	0/3	
								!	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 659,077 E 3,218,131

BORING **SB-16**

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.5

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/4/93

SURF	ACE ELEVATION 25.5 DATUM WISL		LUG	JED BY	L. Basino)			DATE DRILLED 8/4/93
NO		4		SAM	PLE INF	ORM	ATION		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
25	Concrete and road base								
20	CLAY (CH) - very dark gray (2 YR 3/2), medium firm, plastic		- 5 -	SPT	 	24/18		36/20	
	CLAY (CH) - gray brown (2.5 YR 5/2), yellow streaks, medium stiff, plastic			SPT		24/12		36/16	
	CLAY (CL) - gray brown (2.5 YR 5/2), more yellow, moderately soft to medium stiff, plastic, silty, occasional gravel			SPT	SB-168	24/18	2	84/17	77
15	CLAY (CL) - dark brown (7.5 YR 4/4), variegated with black and brown, stiff		- 10 -	SPT		24/18	·	116/70	¥Water level 9.95 feet BLS after 20 minutes
	CLAY (CL) - dark brown (7.5 YR 4/4), variegated with black and gray, stiff, dry, slightly silty			SPT		24/24		4/50	
10	CLAY (CL) - A/A, medium stiff		- 15 -	SPT		24/24	2	52/10	
	CLAY (CL) - dark brown (7.5 YR 4/4), stiff		-	SPT		24/24		4/15	
	CLAY (CL) - brown (7.5 YR 5/4), occasional gray, medium stiff, plastic			SPT		24/18		0/7	
5	SILT (ML) - dark brown (7.5 YR 5/4), with gray mottling, clayey to very sandy, saturated		- 20 -	SPT	SB-16C	24/18		0/0	
	Total depth = 22 feet BLS								
						:			
				:					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,988 E 3,218,203

BORING

SB-17

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

SURFACE ELEVATION 25.4

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

SUKFA	ICE ELEVATION 25.4 DATOW WISE		LUG	SED BI	L. Dasiii	,			DATE DIRECTO CICIO
N		a		SAME	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches	Penetr- ometer Blow	PID/ FID (ppm)	REMARKS
-	GROUND SURFACE CLAY (CH) - black, stiff, rootlets, gravelly		_	SPT		Rec.	Counts	0/0	
- -	CLÀY (CH) - black (5 YR 2.5/1), stiff,			SPT	6B-17 <i>A</i>	24/18		0/0	
- - 20	occasional rootlets, plastic, occasional iron staining		- 5 -	SPT		24/12		0/0	
-	CLAY (CH) - dark gray (10 YR 4/1), medium stiff, some yellow iron staining CLAY (CH) - olive gray (5 YR 2.5/1),			SPT		24/12		0/1	
-	variegated with yellow, gray and brown, some iron staining, stiff CLAY (CH) - very dark gray (5 YR 3/1), some iron staining, medium stiff, plastic,		- 10 -	SPT	SB-17E	24/8		0/12	☑ ☑ Water level 9.35 feet BLS after 70 minutes
⊢15 -	occasional <1/8-inch calcareous nodules CLAY (CH) - olive gray (5 YR 5/2), variegated with brown and yellow, some iron f		-	SPT		24/8		0/10	arter 70 minutes
	\staining, medium stiff CLAY (CL) - brown (7.5 YR 5/4), gray mottling, medium stiff, plastic, damp, silty in parts			SPT		24/18		0/4	
-10	CLAY (CL) - strong brown (7.5 YR 4/6), gray streaks, medium stiff, soft and damp in gray areas, slightly silty		- 15 - -	SPT M		24/24 /		0/4	
-	CLAY (CL) - strong brown (7.5 YR 4/6), abundant gray mottling towards base, medium stiff to stiff, plastic, slightly silty, dry		-	SPT		24/22		0/3	
-5	SILTY CLAY (CL) - A/A, silty to very silty in parts, damp at base SILTY CLAY (CL) - strong brown (7.5 YR		- 20 -	M SPT		24/22		0/0	
	SILT (ML) - brown (7.5 YR 5/4), clayey, wet SAND (SM) - brown (7.5 YR 5/4), fine			SPT	∬6B-170	/		0/2	
	grained, silty to clayey, saturated Total depth = 24 feet BLS		-			/			

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,919 E 3,218,254

BORING

SB-18

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/6/93

١	SURFA	CE ELEVATION 23.6 DATUM IVISL		200	JED B1	L. basino	,			DATE DRILLED 6/0/93
Ī	N		d		SAME	PLE INF	ORMA	NOITA		
	ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample	/	Penetr- ometer Blow	PID/ FID	REMARKS
	ш	GROUND SURFACE CLAY (CH) - very dark gray (2.5 YR 3/0),	1111		1,7,50	/5B-18A	Inches Rec.	Counts	(ppm)	
		stiff, rootlets, dry		-	SPT		24/12		0/0	
	-20	OLAY (OLD) shall are a (O.E. VD 4/O) must			SPT		24/6		0/0	
-		CLAY (CH) - dark gray (2.5 YR 4/0), rust colored iron staining, medium stiff		- 5 -	SPT		24/12		0/0	
		CLAY (CL) - dark gray (7.5 YR 4/0), yellowish brown streaks, medium stiff, plastic, slightly silty, occasional <1/8-inch calcareous nodules		-	SPT		24/12		0/14	
	-15	CLAY (CL) - yellowish brown (10 YR 5/4), mottled with gray, medium stiff to occasionally soft, plastic, slightly silty, slight		- 10 -	SPT	CD 105	24/15		52/200	포 Water level 9.80 feet BLS
		petroleum odor CLAY (CL) - yellowish brown (10 YR 5/6) to strong brown (7.5 YR 5/6) with depth, gray			SPT	SB-186	24/18		52/150	after 10 million
ŀ	-10	mottling, soft to medium stiff, very slight petroleum odor CLAY (CL) - brown (7.5 YR 5/3), gray mottling, medium stiff to stiff, gray is soft,			SPT		24/24		0/3	
ŀ		slightly silty, dry SILTY CLAY (CL) - brown, (7.5 YR 5/4), occasional gray and black streaks, iron		- 15 - 	SPT		24/18		0/0	
		SAND (SM) - dark brown (7.5 YR 4/4), moist to wet			SPT		24/24		0/1	
-	-5	SILT (ML) - brown and gray, slightly clayey to slightly sandy, moist SILT (ML) - strong brown (7.5 YR 4/4),		- 20 -	SPT	\BB-180	24/24		0/0	
		clayey to very clayey at top, saturated Total depth = 20 feet BLS		- 20 -						
- 1										

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING

SB-19

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 658,929 E 3,218,171

SURFACE ELEVATION 25.7

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

	ACE ELEVATION 25.7 DATON MISL		200		L. Dasiii				DATE DRIELED 6/11/93
N	·			SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	Concrete and road base					11001			
- -	CLAY (CH) - black (2.5 YR 2.5/0), occasional iron stains, soft to medium stiff, plastic		_	SPT	_ √5B-19 <i>A</i>	24/12		0/290	
•	CLAY (CH) - A/A		- 5 -	SPT	∏SB-19E	24/9		0/30	
-20	CLAY (CH) - very dark gray (10 YR 3/1), moderately soft, plastic		-	SPT		24/18		0/12	
	SILTY CLAY (CL) - gray (10 YR 5/1), variegated with dark gray, black and brown, silty, damp, plastic		- - 10 -	SPT		24/18		0/8	
-15	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), variegated with red and gray, medium stiff, slightly silty, plastic SILTY CLAY (CL) - reddish brown (5 YR 5/4),		-	SPT		24/12 24/18		0/0	▼ Water level 11.45 feet BLS after 5 minutes
-10	gray mottling, silty, stiff to medium stiff, plastic, occasional gray calcareous nodules >1/4-inch SILTY CLAY (CL) - strong brown (7.5 YR		- 15 -	SPT		24/18		0/15	
	4/6), occasional gray streaks, silty, stiff, black iron nodules > 1/4-inch SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, silty, stiff,			SPT		24/20		0/0	•
	occasional black iron nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), occasional gray, silty to very silty,			SPT		24/18		0/0	
-5	grades to clayey silt, medium stiff SILT (ML) - brown (7.5 YR 5/4), occasional gray, clayey to sandy at base, saturated at base		- 20 -	SPT	√sв-190 Д	24/20		0/0	
	Total depth = 22 feet BLS								
								·	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,995 E 3,218,132

SB-20 BORING

SHEET 1 OF 1

Ellington Field - POL Storage Area PROJECT

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.6

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/5/93

301117	CE ELEVATION 25.6 DATON IVISL				L. Dasiii				DATE DIRECTED 0/3/30
NC		4		SAM	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	GROUND SURFACE Concrete and road base		-			Rec.	Courts		
	CLAY (CH) - black (2.5 YR), soft to stiff, plastic, occasional rootlets, very slight petroleum odor			SPT	SB-204	24/12		4/150	
- -20	CLAY (CL) - black (2.5 YR N2.5), soft, silty, occasional iron staining		- 5 -	SPT		24/24		12/450	
	CLAY (CL) - dark gray (2.5 YR N4), iron staining, soft to medium stiff, slightly silty			SPT		24/12		0/15	
-	CLAY (CL) - light gray with greenish tint, firm to stiff, silty, slight petroleum odor		_	SPT	SB-20E	24/24		878/	
- 15 	CLAY (CL) - reddish brown (5 YR 4/4), variegated with gray, pink and green, stiff, dry, silty		- 10 - -	SPT		24/18		1000 + 0/7	☑ Water level 10.85 feet BLS after 70 minutes
-	CLAY (CL) - reddish brown (5 YR 5/4), occasional black and gray staining, medium stiff, silty in parts			SPT		24/18		0/0	arter 70 milities
- -10	CLAY (CL) - yellowish red (5 YR 5/6), abundant gray streaks, moderately soft, plastic, damp, slightly silty in parts		15 -	SPT		24/18		0/2	
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/6), abundant gray streaks, occasional black, medium stiff, gray and back areas are			SPT		24/24		0/35	
-	soft, very silty SILTY CLAY (CL) - dark brown (7.5 YR 4/4), occasional gray streaks, medium soft to			SPT		24/24		0/2	
-5 -	medium stiff, silty SANDY SILT (ML) - dark brown (7.5 YR 4/4), soft, sandy, saturated		- 20 -	SPT	SB-200	24/24		0/0	
	Total depth = 22 feet BLS	11(6)				,			

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-21

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,914 E 3,218,136

PROJECT NUMBER 1K94

SURFA	CE ELEVATION 25.8 DATUM MSL		LOGG	SED BY	L. Basilio		DATE DRILLED 8/5/93		
N		4		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
25	Concrete and road base					TICC.			
20	CLAY (CH) - black (2.5 YR N2.5), stiff, rootlets CLAY (CH) - black (2.5 YR N2.5), occasional gray and iron staining, moderately soft, plastic CLAY (CH) - black (2.5 YR N2.5), occasional yellow iron staining, medium stiff, plastic CLAY (CH) - dark gray (5 YR 4/1), some yellow iron staining, stiff, plastic SILTY CLAY (CL) - dark yellowish brown (10		- 5 -	SPT SPT SPT	SB-21A	24/8		0/0 0/110 0/40 0/10	♥ Water level 9.40 feet BLS after 16 hours
15	YR 4/6), variegated with gray, green and yellow, silty SILTY CLAY (CL) - red brown (5 YR 4/4), stiff, silty, occasional calcareous nodules			SPT		24/10 24/18		0/10	arter to nodis
10	SILTY CLAY (CL) - yellowish red (5 YR 4/6), abundant gray streaks, silty to very silty in spots, damp		- 15 -	SPT		24/24		0/2	
	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), abundant gray towards base, soft to firm, silty, damp, gray matter is soft and moist			SPT		24/18		0/1	
5	SAND (SM) - brown (7.5 YR 5/4), silty to slightly clayey, moist SAND (SM) - A/A, saturated		- 20 -	SPT	VSB-210	24/22 24/24		0/0	
	Total depth = 22 feet BLS								

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-22

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,834 E 3,218,140

PROJECT NUMBER 1K94

SURFACE ELEVATION 26.4 DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

SURFA	CE ELEVATION 26.4 DATUM MISL		LOGG	SED BY	L. Basilio)			DATE DRILLED 8/11/93
Z				SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth	Sample	Sample	Inches Adv.	Penetr- ometer	PID/ FID	REMARKS
ELE	GROUND SURFACE	S	Feet	Туре	ID	Inches Rec.	Blow Counts	(ppm)	
- -25	SILT (OL) - tan with gravel, rootlets, fill	1111		SPT		24/12		0/0	
- 23			-	SPT		24/0			
- - -	CLAY (CH) - dark gray (7.5 YR 4/0), soft to medium stiff, plastic, some gravel, occasional rootlets		- 5 -	SPT	 SB-22A 	24/12		0/0	
-20	CLAY (CH) - very dark gray (5 YR 3/0), occasional brown streaks, soft to medium stiff, plastic, calcareous nodules		_	SPT	БВ-22E	24/12		0/0	
-	CLAY (CH) - dark gray (2.5 YR 4/0), soft to medium stiff, plastic, damp		10	SPT		24/8		0/0	
- 15	CLAY (CL) - reddish brown (5 YR 5/4), variegated with black and clive gray, medium stiff, plastic, slightly silty, occasional <1/8-inch calcareous nodules		- 10 -	SPT		24/20		0/0	
	CLAY (CL) - yellowish red (5 YR 5/6), gray streaks, occasional black, medium stiff, occasional pebbles			SPT		24/18		0/0	
-	SILTY CLAY (CL) - strong brown (7.5 YR 5/8), occasional gray, silty, medium stiff		- 15 -	SPT		24/24		0/0	
-10 -	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, medium stiff, plastic, silty in parts, black iron nodules (>1/4-inch) at base			SPT		24/18		0/0	
-	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional black and gray, medium stiff, plastic, silty, damp		- - 20 -	SPT		24/24		0/0	
- -5	CLAYEY SILT (ML) - strong brown (7.5 YR 5/6), occasional gray streaks, clayey, less clay with depth, wet at base		_	SPT		24/24		0/0	
<u> </u>	SILT (ML) - A/A, saturated		_	SPT	SB-220	24/24		0/0	
	Total depth = 24 feet BLS								
			CONANAE		11	L	<u> </u>	L	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-23

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 658,770 E 3,218,132

SURFACE ELEVATION 26.0

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/11/93

001117	CC ELLVATION 20.0 DATON MOL								DATE BILLED OFFITO
N O		4		SAME	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	CLAY (OL) - tan, dry, abundant gravel	///		SPT	6B-23A	24/ 9		0/0	
	CLAY (CH) - dark gray (7.5 YR 4/0), soft to medium stiff, plastic, iron staining		_	SPT		24/12		0/2	
20	CLAY (CH) - very dark gray (7.5 YR 3/0), medium stiff, plastic, dark brown iron staining		- 5 -	SPT		24/14		0/1	
20	CLAY (CH) - dark gray (2.5 YR 2.5/0), iron staining, medium stiff to stiff, plastic, white to tan calcareous gravel			SPT	∬5B-23E	24/9		0/3	
	SILTY CLAY (CL) - light gray (7.5 YR 6/0)		- 10 -	SPT		24/12		0/4	
15	and reddish yellow (7.5 YR 7/8), medium stiff, silty CLAY (CL) - olive gray (5 Y 4/2), gray with depth, iron staining, medium stiff, occasional			SPT		24/18		0/0	
	<1/8-inch calcareous nodules CLAY (CL) - brown (7.5 YR 5/4), mottled with gray, medium stiff, plastic, slightly silty CLAY (CL) - A/A			SPT		24/19 /		0/0	
10	SILTY CLAY (CL) - brown (7.5 YR 5/3), gray		- 15 -	SPT		24/19 /		0/0	
	mottling, medium stiff, silty, plastic in parts SILT (ML) - strong brown (7.5 YR 5/6), gray			SPT		24/20 /		0/0	
	mottling, clayey, damp at base SILT (ML) - strong brown (7.5 YR 4/6),		- - 20 -	SPT	∫/SB-230	24/18		0/0	
5	clayey, sandy at base, saturated at base Total depth = 22 feet BLS			SPT		24/24		0/0	
	Total depth = 22 feet BLS		-						
							'		
	NG CONTRACTOR: Custom Caring Inc		COMME	NTS					

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-24

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,846 E 3,218,085

PROJECT NUMBER 1K94

SURFA	CE ELEVATION 24.3 DATUM MSL		LOG	GED BY	L. Basilio	DATE DRILLED 8/13/93			
N N		₫		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- o <u>meter</u> Blow Counts	PID/ FID (ppm)	REMARKS
	Concrete and road base CLAY (CH) - dark gray (2.5 YR 4/0), iron staining, medium stiff, plastic, gravelly (fill?), very slight petroleum odor		-	SPT	∬\$B-24 <i>F</i>	24/12		150	Photoionization detector not operational
- -20	CLAY (CH) - dark gray (5 Y 4/1), medium stiff, plastic, iron staining		- 5 -	SPT		24/8		14	
	CLAY (CH) - gray (10 YR 5/1) medium stiff, plastic, iron staining CLAY (CH) - light olive brown (2.5 Y 5/2),			SPT		24/12		40	
- - -15	medium stiff, plastic, occasional iron staining, occasional calcareous nodules CLAY (CL) - strong brown (7.5 YR 5/6),			SPT		24/9		15	∇
-	mottled with gray and green, stiff, silty in parts, 1/4-inch calcareous nodules SILTY CLAY (CL) - brown (7.5 YR 5/3),		- 10 -	SPT	√5B-24E	24/12		100	¥Water level 9.55 feet BLS after 5 minutes
-	mottled with gray, stiff, moderately plastic, silty, dry to damp SILTY CLAY (CL) - strong brown (7.5 YR			SPT	M	24/18		30	
-10 -	4/6), occasional gray, stiff, very silty in parts, iron staining, occasional black iron nodules (<1/8-inch) SILTY CLAY (CL) - brown (7.5 YR 5/4),		- 15 -	SPT SPT		24/18		0	
-	occasional gray, silty to very silty, grades to clayey silt, stiff SILT (ML) - strong brown (7.5 YR 5/6), gray mottling, clayey in parts, moist to wet at			SPT	 SB-240	24/24		0	
	base Total depth = 19 feet BLS	11111	_			,			

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-25

SHEET 1 OF 1

PROJECT

LOGGED BY D. Gibson

Ellington Field - POL Storage Area

LOCATION Houston, Texas

SURFACE ELEVATION 23.8

COORDINATES N 658,922 E 3,218,065

DATUM MSL

PROJECT NUMBER 1K94

DATE DRILLED 8/13/93

SURFA	CE ELEVATION 23.8 DATOW WISE		LOG	GED BY	D. Gibso	11			DATE DRILLED 6/13/93
N		4		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv.	Penetr- ometer Blow	PID/ FID (ppm)	REMARKS
	GROUND SURFACE Concrete and road base					Rec.	Counts	фриц	
	CLAY (CH) - dark brown (7.5 YR 3/0), minor iron staining, plastic			SPT	∭ SB-25 <i>A</i>	24/ 9		0/32	
-20	CLAY (CH) - dark brown (7.5 YR 4/0), plastic		_	SPT		24/7		0/28	
	CLAY (CH) - dark brown (7.5 YR 4/0), occasional Fe/Mn stains, plastic, petroleum hydrocarbon odor		- 5 -	SPT		24/ 9		26/66	
-15	CLAY (CH) - olive (5 Y 4/2), pockets of dark gray mottling, Fe/Mn streaks, plastic, occasional calcareous nodules			SPT	SB-258	24/12		19/50	
	CLAY (CH) - light olive brown (2.5 Y 5/3), dark gray and reddish mottling, gravelly, slight petroleum hydrocarbon odor		- 10 -	SPT		24/15		10/100	Water level 10.2 feet BLS
	CLAY (CH) - reddish brown (5 YR 5/4), gray mottling, occasional calcareous nodules			SPT		24/24		0/0	after 10 minutes
-10	CLAY (CH) - brown (7.5 YR 5/4), gray and black mottling,		15	SPT		24/24		0/0	
	CLAY (CH) - strong brown (7.5 YR 4/6), blue gray mottling		- 15 -	SPT		24/24		0/0	
-5	SILT (ML) - strong brown (7.5 YR 4/6), no odor		-	SPT	√SB-250	24/24		0/0	
	No recovery. Sampler is wet.		- 20 -	SPT		24/0			
	Total depth = 21 feet BLS		-			,			
								:	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-26

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 659,010 E 3,218,168

PROJECT NUMBER 1K94

SURFA	CE ELEVATION 26.1 DATUM MSL		LOGG	SED BY	L. Basilio		DATE DRILLED 8/13/93		
NC		A		SAM	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	SILT (OL) - black (7.5 YR 2/0), pinkish gray mottling, dry, gravel, rootlets			SPT	SB-26/	24/12		0/2	
-	SILT (OL) - black (10 YR 2/1), soft to medium stiff, slightly clayey, dry to damp			SPT		24/12		0/20	
-	SILTY CLAY (CL) - dark reddish brown (5 YR 2.5/2), very silty, grades to clayey silt in parts, slight petroleum odor		- 5 -	SPT		24/18		97/420	
-20 -	CLAY (CH) - dark gray (7.5 YR 4/0), iron staining, medium stiff, plastic			SPT	SB-266	24/12		71/200	
-	CLAY (CH) - light olive brown (2.5 Y 5/3), mottled with gray, black and brown, iron staining, medium stiff, white calcareous nodules (<1/4-inch), petroleum odor		- 10 -	SPT		24/12	6	8/1000	+
_15 -	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), variegated with gray, red and black,		-	SPT		24/18		80/150	♥ Water level 10.7 feet BLS after 8 minutes
-	medium stiff, silty, occasional calcareous nodules CLAY (CL) - strong brown (7.5 YR 4/6), occasional gray, medium stiff to stiff, slightly			SPT		24/18		0/20	
- -10	silty, dry SILTY CLAY (CL) - brown (7.5 YR 5/3), occasional gray, silty, stiff		- 15 - 	SPT		24/19		76/600	,
-	SILTY CLAY (CL) - A/A SILT (ML) - strong brown (7.5 YR 4/6),			SPT	\/SB-260	24/18	8	7/1000	+
-	occasional gray, clayey, soft to stiff, moist to wet at base SILT (ML) - strong brown (7.5 YR 4/6),		- 20 -	SPT	Å	24/24		3/1000	
5	Clayey to sandy, saturated Total depth = 22 feet BLS		-	SPT		24/18		32/150	
			:						
			CON 40 45	NTO	<u> </u>	1	1	1	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-27

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 659,020 E 3,218,217

SURFACE ELEVATION 25.9

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/16/93

N C		4		SAME	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-25	CLAY (OL) - dark reddish brown (5 YR 3/2), variegated with white, red and black, stiff to hard, dry, gravel, rootlets CLAY (OL) - very dark gray (10 YR 3/1), stiff		- <u>-</u>	SPT	/SB-27A			0	PID not operational
	to hard, dry, iron stains, pebbles, rootlets			SPT		24/4		0	
-20	CLAY (CH) - very dark gray (5 Y 3/1), medium stiff, plastic, occasional iron staining		- 5 -	SPT		24/10		o	
	CLAY (CH) - A/A, occasional calcareous nodules (< 1/4-inch)			SPT		24/12		2	
	CLAY (CH) - dark gray (7.5 YR 4/0), medium stiff, plastic, iron staining			SPT		24/12		15	목 Water level 9.65 feet BLS
-15	CLAY (CH) - dark gray (2.5 Y 4/0), brown streaks, medium stiff, iron staining, petroleum odor		- 10	SPT		24/10		90	after 14 hours
	CLAY (CH) - strong brown (7.5 YR 5/6), minor amounts of gray and black, medium stiff to stiff, occasional iron staining, slight			SPT		24/18		200	
10	petroleum odor CLAY (CH) - dark brown (7.5 YR 4/4), minor amounts of gray and black, medium stiff to stiff, plastic, slight petroleum odor		- 15 -	SPT	√SB-27E	24/18		400	
10	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), gray mottling, silty, stiff, plastic, <1/8-inch calcareous nodules			SPT		24/18		380	
	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), gray streaks, iron staining, stiff, silty			SPT		24/20		30	
5	SILT (ML) - strong brown (7.5 YR 4/6), clayey, gravelly, damp		- 20 -	SPT		24/24		12	
	SILT (ML) - strong brown (7.5 YR 4/6), sandy to clayey, moist to wet at base			SPT	SB-270	24/18		3	
	Total depth = 24 feet BLS	:	-			ŕ			
								•	

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

SB-28

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,867 E 3,218,038 DATUM MSL PROJECT NUMBER 1K94

SURFA	ACE ELEVATION 24.0 DATUM MSL		LOG	SED BY	L. Basilio		DATE DRILLED 8/17/93		
N				SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION GROUND SURFACE	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
	Concrete					nec.			
	CLAY (CH) - very dark gray (7.5 YR 3/0), soft to medium stiff, plastic CLAY (CH) - very dark gray (2.5 Y 3/0),			SPT	∏SB-284	24/8		12/130	
-20	medium stiff, plastic, occasional iron staining			SPT		24/8		0/110	
	CLAY (CH) - dark gray (2.5 Y 4/0), occasional brown and green streaks, soft to medium stiff, plastic, minor iron staining		- 5 -	SPT		24/14		0/600	
-	CLAY (CH) - dark gray (5 Y 4/1), medium stiff, plastic, iron staining, occasional <1/8-inch calcareous nodules			SPT	6B-28E	24/12		0/650	
⊢15 - -	CLAY (CH) - reddish brown (5 YR 5/4) to olive yellow (2.5 Y 6/6), mottled with gray and black, medium stiff, plastic, iron staining		- 10 -	SPT		24/13		0/150	
-	CLAY (CL) - yellowish red (5 YR 5/6), occasional gray and black streaks, slightly silty, plastic			SPT		24/19		7/0	
-10	CLAY (CL) - reddish brown (5 YR 5/4), minor gray which increase with depth, medium stiff, slightly silty, siltier with depth		- 15 -	SPT		24/22		0/0	
-	SILTY CLAY (CL) - reddish brown (5 YR 5/3), occasional gray and black streaks, medium stiff, plastic, silty, iron staining, black iron nodules <1/8-inch			SPT		24/24		0/2	☑ Water level 16.05 feet BLS after 5 minutes
- 5	SILTY CLAY (CL) - light gray (7.5 YR 7/0) and reddish brown, silty, gray is very silty,			SPT	\/sB-28¢	24/24		0/1	
-	plastic SILT (ML) - strong brown (7.5 YR 5/6), gray mottling, clayey, moist to wet at base		- 20 -	SPT		24/24		0/0	
	Total depth = 21 feet BLS								
				1	11				

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING SB-29 SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,946 E 3,218,025

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.7 DATUM MSL

LOGGED BY D. Gibson

DATE DRILLED 8/17/93

301	PACE ELEVATION 23.7 DATON NOL				J. G.000	••			
N		d		SAME	PLE INF	ORMA	NOITA		
ELEVATION	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches	Penetr- ometer Blow	PID/ FID (ppm)	REMARKS
	GROUND SURFACE Concrete					Rec.	Counts		
-	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic			SPT	SB-29A	24/12		7/70	
-20	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic, occasional Fe/Mn pockets		- 5 -	SPT		24/12		0/70	
-	CLAY (CH) - very dark gray (10 YR 3/1), medium stiff, plastic, occasional gravel, limonite streaks CLAY (CH) - dark gray (10 YR 4/1), medium		-	SPT	√SB-29B	24/12		0/65	
-15	stiff, plastic CLAY (CL) - light olive brown (2.5 YR 5/3),		-	SPT	NBB-236	24/8		0/10	도 Water level 9.05 feet BLS
-	mottled blue gray and tan, medium stiff, plastic, slightly silty, scattered calcareous pockets		- 10 -	SPT		24/14		0/30	after 13 minutes
-10	CLAY (CL) - dark yellowish brown (10 YR 4/6), gray mottling, medium stiff, plastic, occasional gravel CLAY (CL) - yellowish brown (10 YR 5/6),			SPT		24/24		0/7	
	orange and gray mottling, stiff, plastic, slightly silty SILTY CLAY (CL) - dark yellow brown (10		- 15 -	SPT		24/18		0/9	
-	YR 4/4), stiff, plastic, silty SILT (ML) - strong brown (7.5 YR 5/6), sandy, saturated			SPT	VSB-290	24/18		0/6	
-5	Total depth = 19 feet BLS			M		24/24		0,,	
			<u> </u>						

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 659,016 E 3,218,335

SB-30 BORING/WELL NUMBER

SHEET 1 OF 1

Ellington Field - POL Storage Area PROJECT

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.2

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/18/93

SURFA	ACE ELEVATION 23.2 DATUM MSL		LOG	GED BY	L. Basilio)			DA	TE DRILLED 8/18/93
N _O		4		SAM	PLE INF	ORMA	NOITA			WELL
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth	Sample	Sample	Inches Adv.	Penetr- ometer	PID/ FID		CONSTRUCTION DETAIL & REMARKS
ELE	GROUND SURFACE	G	Feet	Туре	ID	Inches Rec.	Blow Counts	(ppm)		T.O.C. Elev. 23.14
	CLAY (OL) - very dark gray (10 YR 3/1), stiff, moderately plastic, iron staining, rootlets			SPT	6B-30A	24/15		0/0		Monitor Well MW-12
-20	CLAY (CH) - gray (10 YR 5/1), iron staining, medium stiff, plastic		-	SPT		24/6		0/0		
-	CLAY (CH) - gray (10 YR 5/1), brown streaks, gold iron staining, medium stiff, plastic		- 5 -	SPT		24/ 7		0/0		Cement grout
-	CLAY (CH) - yellow brown (10 YR 5/6), variegated with gray, red and black, medium stiff, plastic, occasional < 1/8-inch			SPT		24/ 7		0/0		Ψ
15 	calcareous nodules SILTY CLAY (CL) - yellowish red (5 YR 4/6), occasional gray, medium stiff, moderately plastic, silty, hackly fracture in silty parts		- 10 -	SPT	∏SB-30E	24/ 9		0/5		Water level 7.86 feet TOC measured 8/27/93
_	SILTY CLAY (CL) - reddish brown (5 YR 5/4), occasional gray laminae and streaks, medium stiff to stiff, moderately plastic, occasional			SPT		24/12		0/3		Bentonite seal
-10	iron staining, silty SILTY CLAY (CL) - reddish brown (5 YR 5/4), occasional gray, stiff, moderately plastic,			SPT		24/16		0/0		
-	silty SILTY CLAY (CL) - strong brown (7.5 YR 5/8), occasional gray, medium stiff, silty to very silty, siltier with depth, occasional		- 15 -	SPT		24/22		0/0		20/40 filter pack
	Very Sittly, states with depth, occasional / <1/4-inch calcareous nodules in upper part SILT (ML) - strong brown (7.5 YR 5/8), very slightly clayey at top, sandy at base, moist			SPT	Бв-300	24/18		0/1		•
-5 -	SAND (SM) - strong brown (7.5 YR 5/8), fine grained, unconsolidated, silty, pebbles at 19		- 20 -	SPT		24/22				•
	feet, saturated SAND (SM) - A/A, no clay or pebbles, saturated			SPT		24/16				#10 slot screen
-0				SPT		24/18				
	SAND (SC) - strong brown (7.5 YR 5/8), saturated, gray clay laminae (<1-inch) towards base, stiff, moist		- 25 -	SPT		24/16				•
	SAND (SM) - strong brown, saturated, no clay			SPT		24/12				•
	Total depth = 28 feet BLS									

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

DRILLING EQUIPMENT:

Hollow Stem Auger

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.21-24.51 ft 12.0-28.0 ft / 4 bags 20/40

silica sand

10.0-12.0 ft / 1 bucket 1/2-inch bentonite

SB-31

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,920 E 3,218,290

SURFACE ELEVATION 23.3

DATUM MSL

PROJECT NUMBER 1K94 LOGGED BY L. Basilio

DATE DRILLED 8/18/93

Z O		A		SAME	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
-	GROUND SURFACE CLAY (OL) - very dark gray (7.5 YR 3/0), stiff to hard, rootlets, iron staining and nodules (<1/8-inch) CLAY (CH) - dark gray (10 YR 4/1), brown			SPT	/SB-314	24/6		0/0	
-20	streaks, medium stiff, plastic, occasional iron staining CLAY (CH) - dark gray (10 YR 4/1), occasional iron stain, medium stiff, plastic		- 5 -	SPT SPT		24/6		0/0	
15	CLAY (CH) - grayish brown (10 YR 5/2), gray and brown mottling, soft to medium stiff, plastic CLAY (CH) - yellowish red (5 YR 4/6), minor		-	SPT		24/8		0/6	
-15 - -	gray and black, medium stiff, plastic, black iron nodules (<1/8-inch)		- 10 -	SPT	\/SB-31E	24/9		0/100	
-	SILTY CLAY (CL) - light gray (7.5 YR 7/0) and red yellow (7.5 YR 6/6), mottled, medium stiff, plastic, silty, slight petroleum odor			SPT	Å	24/15		5/90	☑ Water level 12.7 feet BLS
-10	CLAY (CL) - strong brown (7.5 YR 5/6), gray mottling, medium stiff to stiff, moderately plastic, slightly silty CLAY (CL) - strong brown (7.5 YR 5/6),		- 15 -	SPT		24/19		0/0	after 13 minutes
-	variegated with gray, red, yellow, medium stiff to stiff, iron staining, tan calcareous nodules (<1/4-inch) SILT (ML) - strong brown (7.5 YR 5/6), gray in clayey parts, clayey at top to sandy at			SPT	5B-310	24/20		0/0	
	base, moist to wet at base Total depth = 18 feet BLS								

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

COORDINATES N 658,915 E 3,218,350

BORING/WELL NUMBER

SB-32

SHEET 1 OF 1

Ellington Field - POL Storage Area PROJECT

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.5

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/19/93

						-			1	
Z		4		SAME	PLE INF	ORMA	NOITA			WELL
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample	Inches Adv.	Penetr- ometer Blow	PID/ FID		CONSTRUCTION DETAIL & REMARKS
ш	GROUND SURFACE		1000	1 400		Inches Rec.	Counts	(ppm)		T.O.C. Elev. 23.11
-	CLAY (OL) - very dark gray (2.5 YR 3/0), stiff to hard, rootlets, dry, iron staining			SPT	∫5B-32A	24/13		0/0		Monitor Well MW-13
-20	CLAY (CH) - dark gray (7.5 YR 4/0), soft, plastic, minor iron staining, rootlets			SPT		24/6		0/0		
	CLAY (CH) - gray (10 YR 5/1), soft to medium stiff, plastic, minor iron staining		- 5 -	SPT		24/9		0/0		Cement grout
	CLAY (CL) - strong brown (5 YR 5/8), variegated with red gray and black, stiff to medium stiff, moderately plastic, slightly silty, iron staining, black iron nodules			SPT		24/8		0/0		☑ Water level 7.75 feet
-15 -	(<1/8-inch), minor amount calcareous gravel CLAY (CL) - yellowish red (5 YR 5/6) minor gray and black, medium stiff, plastic, very		- 10 -	SPT	VSB-32E	24/12		0/0		TOC measured 8/27/93
	slightly silty, occasional gypsum crystals SILTY CLAY (CL) - reddish yellow (7.5 YR 6/8), mottled with gray and black, silty to			SPT		24/18		0/0		Bentonite seal
-10	very silty in parts, medium stiff, moderately plastic SILTY CLAY (CL) - reddish brown (5 YR 5/4), minor gray and black, silty to very silty,			SPT		24/18		0/0		20/40 filter pack
	medium stiff, moderately plastic SILTY CLAY (CL) - yellowish red (5 YR 4/6), mottled with gray, silty, medium stiff,		- 15 - -	SPT	√6B-320	24/24		0/0		20, to this pask
	\text{moderately plastic} SILT (ML) - strong brown (7.5 YR 4/6), clayey to sandy in parts, wet to saturated at			SPT		24/24		1/1		
-5 -	SAND (SC) - gray (10 YR 6/1), fine grained, clayey, gray clay seams with iron staining,		20 -	SPT		24/18				#10 slot screen
	pebbles at top, saturated SAND (SC) - gray (10 YR 6/1), abundant brown mottling, clayey, no clay laminae, saturated			SPT		24/18				# 70 Sist Scroot
-0	SAND (SM) - strong brown (7.5 YR 5/6), fine grained, unconsolidated, slightly clayey to			SPT		24/12				
_	silty, saturated SAND (SM) - A/A, occasional gray SAND (SM) - A/A, occasional pebbles		- 25 -	SPT		24/18				
-				SPT		24/12				
	Total depth = 28 feet BLS									

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.53-24.50 ft 12.5-28.1 ft / 5 bags 20/40

silica sand

10.0-12.5 ft / 1 bucket

1/2-inch bentonite

COORDINATES N 659,054 E 3,218,288

BORING/WELL NUMBER SB-33 SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 24.1

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/19/93

SURFA	CE ELEVATION 24.1 DATUM WISL		LOGG	PED BA	L. Basilio)			DA	1E DRILLED 8/19/93
No		A	SAMPLE INFORMATION WELL							WELL CONSTRUCTION
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches	Penetr- ometer Blow	PID/ FID (ppm)		DETAIL & REMARKS
	GROUND SURFACE CLAY (OL) - dark reddish gray (5 YR 4/2), stiff, slightly plastic, dry, rootlets, platy			SPT	6B-334	Rec. 24 8	Counts	12/0		Monitor Well MW-14
	gypsum crystals CLAY (CH) - very dark gray (10 YR 3/1), stiff, moderately plastic			N SPT		24/24		5/2		WOULDS WEST WIW-14
-20			- 5 -	SPT		24/8		16/0		Cement grout
	CLAY (CH) - dark gray (5 Y 4/1), minor iron staining, medium stiff, plastic, tan calcareous nodules (<1/8-inch)		_	SPT		24/12		4/0		
-15	CLAY (CL) - olive (5 Y 5/3), variegated with gray, black, and tan, iron staining, very slightly silty, plastic		10 -	SPT		24/12		1/5		¥ Water level 8.28 feet TOC measured 8/27/93
	CLAY (CL) - strong brown (7.5 YR 5/6), minor gray and black, iron stains, medium stiff to stiff, plastic			SPT		24/18		14/90		Bentonite seal
-	CLAY (CL) - brown (7.5 YR 5/4), minor gray, medium stiff to stiff, plastic, iron staining			SPT	√SB-32E	24/18		15/120		
-10 - -	SILTY CLAY (CL) - strong brown (7.5 YR 4/6), minor gray, iron staining, medium stiff to stiff, plastic, silty in parts, occasional calcareous nodules (<1/8-inch)		- 15 -	SPT	√6B-330	24/19		3/65		20/40 filter pack
-	SILT (ML) - strong brown (7.5 YR 4/6), minor gray and black, medium stiff, wet at		-	SPT	X	24/18		0/7		
-5 -	bottom SILT (ML) - brown (7.5 YR 5/4), clayey, saturated, clay laminae in lower part, clay is moist not saturated		- - 20 -	SPT		24/18				#10 slot screen
-	SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, silty to very silty, silt laminae, silt is wet, clay is moist			SPT		24/15				" To oler bolesin
- -0	SILTY CLAY (CL) - A/A, grades to silt SILT (ML) - reddish brown (5 YR 5/4), clayey at base, sandy at top, saturated to wet at			SPT		24/20				
_	base SILT (ML) - A/A, wet SAND (SM) - reddish brown (5 YR 5/4), fine	7777	- 25 - -	SPT		24/20				
-	grained, unconsolidated, saturated SILTY CLAY (CL) - reddish brown (5 YR 5/4), iron staining, silty, moist to wet		-	SPT		24/24				
	SAND (SM) - strong brown (7.5 YR 5/6), fine grained, unconsolidated, silty, saturated Total depth = 28 feet BLS									
						İ				
		L	L		Ц	ــــــــــــــــــــــــــــــــــــــ	I	I		

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.53-24.52 ft 12.5-28.2 ft / 5 bags 20/40

silica sand

10.0-12.5 ft / 1 bucket 1/2-inch bentonite

SB-34

SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

COORDINATES N 658,866 E 3,218,273

PROJECT NUMBER 1K94

SURFACE ELEVATION 23.5

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/20/93

SURFA	CE ELEVATION 23.5 DATON WISL		500	JED D1	L. Dasiii	,			DATE DRIELED 6/20/33
N		۵		SAMI	PLE INF	ORMA	NOITA		
ELEVATION FEET	SOIL DESCRIPTION	STRATA	Depth Feet	Sample Type	Sample ID	Inches Adv. / Inches Rec.	Penetr- ometer Blow Counts	PID/ FID (ppm)	REMARKS
	GROUND SURFACE CLAY (OL) - very dark gray (2.5 YR 3/0), stiff, rootlets, dry		_	SPT	√5B-34A	24/15		0/0	
-20	CLAY (CH) - gray (10 YR 5/1), soft to		-	SPT		24/5		0/0	
-	medium stiff, plastic, minor iron stains		- 5 -	SPT		24/12		0/0	
- -15	CLAY (CH) - yellowish red (5 YR 5/8), variegated with gray, black, brown and gold, medium stiff, plastic			SPT		24/12		0/1	
_	CLAY (CH) - reddish yellow (5 YR 7/4), with gray, medium stiff, plastic		- 10 -	SPT		24/12		0/0	♥ Water level 11.3 feet BLS after 5 minutes
_10 _	CLAY (CL) - reddish yellow (5 YR 6/6), medium stiff, plastic, small calcareous nodules, slightly silty SILTY CLAY (CL) - reddish yellow (5 YR			SPT	√SB-34E	1 1		0/0	arter 5 millutes
-	6/6), gray mottling, minor black, silty, medium stiff, moderately plastic, moist, occasional iron stain SILT (ML) - light reddish brown (5 YR 6/4), some gray, slightly clayey to sandy in parts,		- 15 -	SPT	∬ √6B-340	24/24		0/0	
	wet to saturated Total depth = 18 feet BLS					/			
						•			
						:			
		1			Ц	1			

DRILLING CONTRACTOR: Custom Coring Inc.

COMMENTS:

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

BORING/WELL NUMBER

PROJECT

SB-35

Ellington Field - POL Storage Area

SHEET 1 OF 1

LOCATION Houston, Texas PROJECT NUMBER 1K94

COORDINATES N 659,057 E 3,218,347

SURFA	ACE ELEVATION 23.9 DATUM MSL	LOGGED BY L. Basilio								DATE DRILLED 8/24/93		
NO		A		SAM	PLE INF	ORMA		WELL				
ATIC	SOIL	STRATA	Denth	Sample	Sample	Inches Adv.	Penetr-	PID/		CONSTRUCTION DETAIL &		
ELEVATION FEET	DESCRIPTION	ST	Feet	Туре	ID	Inches	o <u>meter</u> Blow	FID		REMARKS		
	GROUND SURFACE CLAY (OL) - brown (7.5 YR 5/4), black			1.1	\ /SB-35/	Rec.	Counts	(ppm)		T.O.C. Elev. 23.45		
-	streaks, stiff, rootlets, dry	===		SPT	W	24/12		0/0		Monitor Well MW-15		
	CLAY (CH) - very dark gray (5 Y 3/1), stiff, moderately plastic, iron stains		-	SPT		24/6		0/0				
-20				A SFI		24/ 6		0,0				
-	CLAY (CH) - dark gray (10 YR 4/1), minor brown iron stains, medium stiff, plastic		- 5 -	SPT		24/ 7		0/0		Cement grout		
-	CLAY (CH) - light brown (7.5 YR 6/4),			$\langle \cdot \rangle$		1						
	variegated with black and gray, minor iron stains, medium stiff, plastic, pebbles		-	SPT		24/ 8		0/0		Z I		
-15	CLAY (CH) - reddish brown (2.5 YR 4/6), variegated with brown, gray and black,			SPT		24/12		0/0		Water level 7.82 feet TOC measured		
-	medium stiff, plastic, dry CLAY (CL) - reddish yellow (7.5 YR 6/6),		- 10 -	A		7,		0,0		8/27/93		
-	minor gray, medium stiff, moderately plastic,			SPT		24/18		0/0		Bentonite seal		
	CLAY (CL) - yellowish red (5 YR 5/6), minor gray and gray laminae, medium stiff,			V		1/10		5 / 5	X X			
10	moderately plastic, silty, occasional white calcareous nodules (<1/8-inch)			SPT		24/18		0/0				
-	SILTY CLAY (CL) - yellowish red (5 YR 4/6), minor gray and black, some iron staining,		- 15 -	SPT		24/18		0/0		20/40 filter pack		
-	medium stiff, moderately plastic, silty to very silty at base, gravels at base				∫ √5B-350	1						
-	SILT (ML) - brown (7.5 YR 5/4), minor gray, slightly clayey to sandy, wet		-	SPT	X	24/12		0/0				
-5	SAND (SM) - brown (7.5 YR 5/4), minor			SPT		24/18						
-	gray, silty, some gravel, saturated SAND (SM) - brown (7.5 YR 5/4), fine grain,		- 20 -			24/10	:			#10 -		
-	silty, some pebbles, saturated SAND (SM) - brown (7.5 YR 5/4), pebbles at			SPT		24/18				#10 slot screen		
-	top, clayey towards base, saturated SAND (SM) - A/A, some pebbles			ď		//						
-0			- 1	SPT		24/18						
	SAND (SM) - A/A, clayey at base		- 25 -	SPT		24/12						
-	SAND (SM) - A/A		-			1						
- !				SPT		24/24						
	Total depth = 28 feet BLS		-			,			A			

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

Z. Ruffin

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 15.38-24.40 ft 12.0-28.0 ft / 4 bags 20/40

silica sand

10.0-12.0 ft / 1 bucket 1/2-inch bentonite

COORDINATES N 659,050 E 3,218,215

BORING/WELL NUMBER MW-11 SHEET 1 OF 1

PROJECT Ellington Field - POL Storage Area

LOCATION Houston, Texas

PROJECT NUMBER 1K94

SURFACE ELEVATION 25.8

DATUM MSL

LOGGED BY L. Basilio

DATE DRILLED 8/12/93

SOIL DESCRIPTION Depth Sample		TOT TOTAL TO									
CROUND SURFACE Rec. Counts Section Counts Cou	N O		Ø								
CROUND SURFACE Rec. Counts Section Counts Cou	ATI		*AT	Donth	Sample	Sampla			PID/		
CROUND SURFACE Rec. Counts Section Counts Cou	LEV	DESCRIPTION	STE				/		FID		
SPT SPT	ш			reet	туре		Rec.		(ppm)		T.O.C. Elev. 28.31
brown streaks, stiff, minor amount of pebbles, platy gypsum crystals present, dry CLAY (CH) - very dark gray (10 YR 3/1), "medium stiff, plastic, iron staining, occasional rootlets, darmy CLAY (CH) - dark gray (10 YR 4/1), occasional brown streaks, iron stains, medium stiff, losstic (iron stains, medium stiff, plastic) stiff, plastic (iron stains, medium stiff, plastic) stiff, plastic (iron stains, medium stiff, plastic) stiff, plastic (iron stains, medium stiff, plastic) stiff, plastic (iron stains, medium stiff, plastic) stiff, plastic, slightly silty otherwise, silty to silty in parts 15 CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, stiff why to damp at beautiff, plastic, slightly silty at journal of the plastic, slightly silty at journal stiff, plastic, slightly cocasional gray streaks, stiff dry to damp at seasonal gray streaks, stiff to medium stiff, plastic, slity to vory silty in parts 10 SILTY CLAY (CL) - strong brown (7.5 YR 5/8), occasional gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (MM) - strong brown (7.5 YR 5/6), clayey, sliff, dry SAND (SM) - SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated	- 25			_	SPT	W-11			0/0		Monitor Well MW-11
medium stiff, plastic, iron staining, occasional rottlets, damp CLAY (CH) - dark gray (10 YR 4/1), occasional brown streaks, iron stains, medium stiff stiff, plastic stif		brown streaks, stiff, minor amount of pebbles, platy gypsum crystals present, dry		-	SPT		24/12		0/0		
CLAY (CH) - dark gray (10 YR 4/1), accasional brown streaks, iron stains, medium stiff to stiff, plastic SILTY CLAY (CL) - light olive brown (2.5 Y 5/2), mottled with brown and gray, iron stains, medium stiff, plastic, slightly silty to slity in parts CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, medium stiff, plastic, SILTY CLAY (CL) - strong brown (7.5 YR 8/4), occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff to medium stiff, plastic, silty, occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), clayey, stiff, silty, damp SILTY CLAY (CL) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, stiff, dry cocasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, sat	-20	medium stiff, plastic, iron staining, occasional rootlets, damp		- 5 -	SPT		24/20		0/0		Cement grout
5/2), mottled with brown and gray, iron statins, medium stiff, plastic, slightly silty to slity in parts CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, medium stiff, plastic slity plastic, slity, digray to psilty CLAY (CL) - strong brown (7.5 YR 5/6), mottled with gray, stiff, dry to damp at base, slightly silty, silty at top SILTY CLAY (CL) - brown (7.5 YR 5/6), occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff pastic, silty, occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, sliff, dry SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty, slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A no clay, saturated SAND (SM) -	-	occasional brown streaks, iron stains, medium stiff to stiff, plastic			SPT		24/18		0/0		
CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, medium stiff, plastic SILTY CLAY (CL) - strong brown (7.5 YR 5/6), mottled with gray, stiff, dry to damp at base, slightly silty, silty at top SILTY CLAY (CL) - brown (7.5 YR 5/4), occasional gray streaks, stiff, plastic, silty, occasional gray streaks, stiff, plastic, silty, occasional gray streaks, stiff, plastic, silty, occasional gray streaks, stiff, plastic, silty, occasional gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), occasional gray, stiff, silty, damp SPT	-	5/2), mottled with brown and gray, iron stains, medium stiff, plastic, slightly silty to		- 10 -	SPT		24/8		0/1		
SPT SPT SPT SPT SPT SPT SPT SPT SPT SPT	-15 -	CLAY (CL) - strong brown (7.5 YR 5/8), mottled with gray, medium stiff, plastic			SPT		24/10		17/20		Bentonite seal
occasional gray streaks, stiff. plastic, silty, occasional 1/8-inch calcareous nodules SILTY CLAY (CL) - strong brown (7.5 YR 5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), occasional gray, stiff, silty, damp SPT	-	5/6), mottled with gray, stiff, dry to damp at base, slightly silty, silty at top			SPT	N/1\A/-11	/		8/42		feet TOC measured 8/27/93
5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts SILTY CLAY (CL) - strong brown (7.5 YR 5/6), occasional gray, stiff, silty, damp SPT 24/15 SPT 24/15 208/20 #10 slot screen #10 slot screen #10 slot screen #10 slot screen SPT 24/20 O/1	- -10	occasional gray streaks, stiff. plastic, silty, occasional 1/8-inch calcareous nodules		- 15 - -	SPT		1 /		0/50		20/40 filter pack
5/6), occasional gray, stiff, silty, damp SPT 24/15 SILT (ML) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, stiff, dry SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty, slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A	-	5/6), gray streaks, stiff to medium stiff, moderately plastic, silty to very silty in parts			SPT		/		0/30		
SILT (ML) - strong brown (7.5 YR 5/6), clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, stiff, dry SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty, slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A	-			- 20 -	SPT	A Privo-11			208/20		#10 also assessed
clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6), clayey, stiff, dry SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty, slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A SPT 24/22 0/2 24/20 0/1 SPT 24/20 0/1 SPT 24/24 0/1	-5 -	SILT (ML) - etropg brown (7.5 VR 5/6)		-	SPT		24/ 0				# I U slot screen
SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty, slightly clayey in parts with occasional 1-inch thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A SPT 24/20 0/1 24/20 0/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1 30/1	-	clayey, loose, saturated SILT (ML) - strong brown (7.5 YR 5/6),			SPT		24/22		0/2		
thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated SAND (SM) - A/A SAND (SM) - A/A SPT 24/20 0/1	- -o	SAND (SM) - strong brown (7.5 YR 5/6), very fine grained, unconsolidated, silty,		- 25 - -	SPT		24/20		0/1		
SPT 24/24 0/1	_	thick clay laminae, saturated SAND (SM) - A/A, no clay, saturated			SPT		24/20		0/1		
I otal depth = 30 feet BLS	-			- - 30 -	SPT		24/24		0/1	<u> </u>	
		iotal depth = 30 feet BLS									

DRILLING CONTRACTOR: Custom Coring Inc.

DRILLER:

H. Gompert

DRILLING METHOD:

Hollow Stem Auger

DRILLING EQUIPMENT:

Mobile B-61

DIAMETER, TYPE & INTERVAL OF CASING: 2-inch schedule 40 PVC

WELL SCREEN/INTERVAL:

FILTER PACK-INTERVAL/QUANTITY:

WELL SEAL-INTERVAL/QUANTITY:

#10 slot / 16.92-25.90 ft 14.5-29.5 ft / 5 bags 20/40 silica sand

12.0-14.5 ft / 1 bucket 1/2-inch bentonite

Appendix C
Soil Sample Log Sheets
Groundwater Sample Log Sheets

SURFACE SOIL
SUBSURFACE SOIL

		SEDI PONE	/LAGOON					
PROJECT NAME Ellington		ח חועב	R PROJECT NUMBE	ER	1494			
HNUS SAMPLE NO. D2-5B15-A-	14	_ soul	RCE Soil	borin	, 15			
SAMPLE METHOD:					AMPLE DATA			
California Sampler	SAMPLI	E	TIME		COLOR/DESCRI PTI ON			
DEPTH SAMPLED: 0-2								
SAMPLE DATE & TIME: 8/6/93 858			30.00					
SAMPLED BY: BASILIO								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION				-				
GRAB COMPOSI TE								
GRAB - COMPOSITE				PLE DA				
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.) Clay (CH) - black (2.5 × R O); stiff							
				ack	(2.5 yr 0); Stiff,			
ANALYSI S:		V	rootlets					
TPH	OBSERVAT	I ONS/	NOTES:					
117	1							
	1							
	4							
	-							
	1							
	1		,					
P10 - 0 ppm								
F10 - 0 ppm								
					•			

Environmental Corporation	☐ SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington		PROJECT NUMBE	R_ 1K94							
HUS SAMPLE NO. 02 -SB15-B-A	9	SOURCE Soil B	boring 15							
SAMPLE METHOD:		COMPOS	ITE SAMPLE DATA							
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION							
DEPTH SAMPLED:										
12-14										
SAMPLE DATE & TIME:										
8/6/93 926										
SAMPLED BY:										
Basilio										
SI GNATURE(S):										
1 Com										
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION										
DA GRAB										
COMPOSI TE		200	SI E DATA							
GRAB - COMPOSITE	201.00		PLE DATA							
			D, CLAY, DRY, MOIST, WET, ETC.)							
			vish red (5 yr. 4/6)							
ANALYSI S:	0	ccasional an	ay streaks, medium stiff,							
TPH		lastic, slightly	y silty damp							
	OBSERVATI Ó	N3/NU1E3:								
	-									
	4									
	4									
	-									
	4									
	_									
	_									
PID- 0 ppm										
FID- 10 ppm										
1										
	1									

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington	PROJECT NUMBER 1K94									
HNUS SAMPLE NO. 02-SB15-C-A	source Soil Boring - 15									
SAMPLE METHOD:	COMPOSITE SAMPLE DATA									
California Sampler	SAMPLE		TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED:										
20-22										
SAMPLE DATE & TIME:										
816193 945										
SAMPLED BY:										
Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
LOW CONCENTRATION										
☐ HIGH CONCENTRATION ☑ GRAB										
COMPOSI TE			SAM	PLE DATA						
GRAB - COMPOSITE	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)									
	Silt (MI)-brown (7.5 4R 5/4), Clayey,									
ANALYCI C	Slighty sandy in parts, saturated									
ANALYSIS:				3						
TTH	OBSERVAT	I ONS.	NOTES:							
	(.11	. , t-	d duplicate	sample						
	-	02	- F015- C-	A						
	1									
	1									
07	1									
bID- o bbw										
FID-3ppm										
170-266.11										
				•						

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94						
INUS SAMPLE NO. 02-SBIG-A-A		SOUR	CE Soil E	Boring 16						
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA						
California Sampler	SAMPLE		TIME	COLOR/DESCRIF	PTI ON					
DEPTH SAMPLED:										
4-6										
SAMPLE DATE & TIME:										
8/5/93 816										
SAMPLED BY: Basilio										
SI GNATURE(S):										
26										
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION										
™ GRAB										
☐ COMPOSI TE ☐ GRAB - COMPOSI TE			SAM	PLE DATA						
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)									
		Clay	CCH)- very	y dark gray (2	YR 3/2),					
ANALYSI S:		Me	edium firm	m, plastic						
TPH	OBSERVAT	T ONE /	NOTES.							
BLEX	OBSERVAT	1 01137 1	10123.		-					
	-									
	1									
	4									
PID- 3G PPM										
FID - 20 ppm										

☐ SURFACE SOIL

	SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
ROJECT NAME Ellington		PRI	DJECT NUMBER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
NUS SAMPLE NO. 02-SBIG-B-A	4									
SAMPLE METHOD:	COMPOSITE SAMPLE DATA									
California Sampler	SAMPLE	E	TIME	COLOR/DESCRIPTION						
DEPTH SAMPLED:										
8-10										
SAMPLE DATE & TIME:										
8/5/93 834										
SAMPLED BY: Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
LOW CONCENTRATION										
HIGH CONCENTRATION										
ITI COMPOSI TE			2415	F DATA						
GRAB - COMPOSITE		DECCRI (CLAY, DRY, MOIST, WET, ETC.)						
	COLOR	DESCRIP	TIUN: (SHNU,	100 C 2 5 40 5/2 \ mass						
ANALYSIS		Clay C	CLJ-grau	brown C2.5 yR 5/2), more						
ANALYSIS:		docto	silfu c	occasional gravel						
TCL VOA	OBSERVAT									
TCL BNA	1									
PID-284 PPM										
FID-170 Ppm										
				·						

SURFACE SOIL

	SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER										
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94							
INUS SAMPLE NO. 02 - SBIG-C-A											
SAMPLE METHOD:	COMPOSITE SAMPLE DATA										
California Sampler	SAMPL	.E	TIME	COLOR/DESCRIPTION	٧						
DEPTH SAMPLED:											
20-22											
SAMPLE DATE & TIME:											
81593 907											
SAMPLED BY:		-									
Basilio											
SI GNATURE(S):											
TYPE OF SAMPLE											
LOW CONCENTRATION											
HIGH CONCENTRATION											
GRAB COMPOSI TE											
GRAB - COMPOSITE			SAM	PLE DATA							
_	COLOR	DESC	RIPTION: (SAND	, CLAY, DRY, MOIST, WET,	ETC.)						
				brown (7.5 yR 5/4).	NHW						
ANALYSIS:		ara	y mottling,	Chyey to very	sandy						
TPH		Sati	urated	03							
BTEX	OBSERVA	TI ONS/	NOTES:								
	1										
,											
	1										
]										
]		•								
PID-Oppm											
EID- o bbw											
	İ			•							
	1										

☐ SURFACE SOIL

SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER											
PROJECT NAME Ellington			PROJECT NUMBE	R_1K94							
HNUS SAMPLE NO. 02-SBIT-A-A											
SAMPLE METHOD:		COMPOSITE SAMPLE DATA									
California Sampler	SAMP	LE	TIME	COLOR/DESCRI PTI ON							
DEPTH SAMPLED:											
2-4											
SAMPLE DATE & TIME:	· · · · · ·										
8/6/93 1107											
SAMPLED BY: Basilib											
SI GNATURE(S):											
TYPE OF SAMPLE											
LOW CONCENTRATION											
☐ HIGH CONCENTRATION ☑ GRAB											
COMPOSI TE			CAM	PLE DATA							
GRAB - COMPOSITE	COLOR	DESC		, CLAY, DRY, MOIST, WET, ETC.)							
	COLUN			(54R 2.5/1), stiff,							
ANALYSI S:		occas	toon langie	lets, plastic, occasional							
- TPH			staining								
BTEX	OBSERVA										
	1										
	4										
	-										
	-										
	-										
PID- O PPM											
FID- O PPM											
ŀ											
				•							
	1										

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington		1	PROJECT NUMBE							
HNUS SAMPLE NO. 02-5B17-B-A		SOUR	CE Soil 1	Boring 17						
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA						
California Sampler	SAMPLE		TIME	COLOR/DESC	CRI PTI ON					
DEPTH SAMPLED:										
8-10										
SAMPLE DATE & TIME:										
8/6/93 1/22										
SAMPLED BY: Basilio										
SI GNATURE(S):										
205										
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION										
I 52€GRAB										
☐ COMPOSI TE ☐ GRAB - COMPOSI TE			SAM	PLE DATA						
Guillo Solve State	COLOR	DESC	RIPTION: (SAND	, CLAY, DRY, MOIS	T, WET, ETC.)					
		Clay	CCH)-very a	dark gray C54k	? 3/1), some					
ANALYSI S:	iron staining, medium, stiff, plastic occasional <1/8-inch calcareous nodules									
	enessua.			inch calcareous	- nodules					
TPH	OBSERVAT	I UN2/I	NUTES:		-					
BTEX	1									
	1									
	1									
	1									
]									
	4									
610 - 0 bb w										
FID- 12 PPM										
120 1- 11										
	1			•						
-										

Environmental Corporation	☐ SURFACE SOIL DECSUBSURFACE SOIL ☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER					
PROJECT NAME Ellington			PROJECT NUMBE			
HUS SAMPLE NO. 02 -SBIT -C-C		sou	RCE Soil F	3 oring 14		
SAMPLE METHOD:	COMPOSITE SAMPLE DATA					
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION		
DEPTH SAMPLED:						
22 - 24						
SAMPLE DATE & TIME:						
8/6/93 1159						
SAMPLED BY: Basilio						
SI GNATURE(S):						
~ Q						
TYPE OF SAMPLE						
LOW CONCENTRATION						
☐ HIGH CONCENTRATION GRAB						
TI COMPOSI TE						
GRAB - COMPOSITE				PLE DATA		
	COLOR			CLAY, DRY, MOIST, WET, ETC.)		
				on (7.5 YR 5/4), fine		
ANALYSI S:		arai	ined, silty 7	o clayey, saturated		
	ODCEDVA	TI ONC	MOTEC.			
HOT	OBSERVA	110027	MUTES:			
Blex	1					
	1					
	1					
	1					
	1					
	1					
	1					
PID-0 ppm						
- 0 100:00						
FID - 2 PPM						

SURFACE SOIL
SUBSURFACE SOIL

	SEDIMENT POND/LAGOON OTHER					
PROJECT NAME Ellington			PROJECT NUMBE			
HNUS SAMPLE NO. 02-SB18-A-A			RCE Soil		ig 18	
SAMPLE METHOD:			COMPOS	ITE SAMPLE	DATA	
California Sampler	SAMPL	Ε	TIME	COL	OR/DESCRIPTION	
DEPTH SAMPLED:						
0-2				-		
SAMPLE DATE & TIME: 810193 1440						
SAMPLED BY: Rosilio						
SI GNATURE(S):						
TYPE OF SAMPLE						
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION						
GRAB COMPOSITE						
GRAB - COMPOSITE				PLE DATA		
	COLOR	DESC	RIPTION: (SAND	CLAY, DR	Y, MOIST, WET, ETC.)	
		Clau	rootlets	dry dark	gray (2.5 yr 3/0).	
ANALYSI S:		2111	1 10011013	3		
TPH	OBSERVA	TI ONS/	NOTES:			
RJEX						
	1					
]					
PID- 0 PP M						
FID - 0 PPM						

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington			PROJECT NUMBE				
INUS SAMPLE NO. 02-SB18-B-A		sou	rce Soil F	Boring - 18			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE TIME COLOR/DESCRIPTION						
DEPTH SAMPLED:							
10-12							
SAMPLE DATE & TIME:							
8/6/93 1502							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
200							
TYPE OF SAMPLE							
LOW CONCENTRATION HIGH CONCENTRATION							
TX GRAB							
GRAB - COMPOSITE			SAM	PLE DATA			
Gomis correction	COLOR	DESC	CRIPTION: (SAND	, CLAY, DRY, MOIST, WET, ETC.)			
				h brown (10 4R 5/6) to strong			
ANALYSIS:		proup	(7.5 YR 5/6)	with depth aray mottling,			
- INTERIOR OF		soft	to medium s	tiff, very slight petroleum odor			
TPH .	OBSERVA	TI ONS/	NOTES:	3			
TCL YOA							
TCL BNA							
							
PID- 52 pp M							
FID- 150 PPM							
, 10							
				•			
				•			

☐ SURFACE SOIL

SSUBSURFACE SOIL

	☐ PON	☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER					
ROJECT NAME Ellington		_PROJECT NUMBE	R IK94				
NUS SAMPLE NO. 02-SB18-C-A		RCE Soil					
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:							
18-20							
SAMPLE DATE & TIME: 8/6/93 1520							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
⊠ GRAB							
COMPOSITE GRAB - COMPOSITE		SAM	PLE DATA				
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
			brown (1.5 yr. 4/4),				
ANALYSIS:			ery clayey at top				
		ivated.					
TPH	OBSERVATI ONS/	NUTES:	-				
81EX							
	1						
	1						
]						
PID-0 ppm							
EID - 0 bbum							
1-70 - 0 4hm							
			•				

☐ SURFACE SOIL

SUBSURFACE SOIL

	l	SEDI PONI	D/LAGOON							
PROJECT NAME Ellington	PROJECT NUMBER \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
HNUS SAMPLE NO. 02-SB19-A-A		sou	rce <u>Soil</u>	Boring 19						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA									
California Sampler	SAMPL	E	TIME	COLOR/DESCR	IPTION					
DEPTH SAMPLED:										
2-4										
SAMPLE DATE & TIME: 8/11/93 1435										
SAMPLED BY: Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION										
♥ GRAB										
☐ COMPOSI TE ☐ GRAB - COMPOSI TE				MPLE DATA						
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)									
		Cla	y CCH)-blo	ck (2.54R 2.5	10), occasional					
ANALYSI S:		iron	stains, s	soft to medium	still, plastic					
	OBSERVA	TIONS	NOTES.							
TPH TCL VOA	OBSERVA	111 01137	110125.							
TCL BNA										
, , ,										
	4									
	4									
	-									
Mgg 0 - OIG										
FID - 290 PPM										
				•						

Environmental Corporation	SURFACE SOIL SI SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
ROJECT NAME Ellington			PROJECT NUMBE	•			
NUS SAMPLE NO. 02-5819-8-A		_ SOUF	ice Soil	Boring 19			
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA	SAMPLE DATA		
California Sampler	SAMPLE TIME			COLOR/DESCRIPTION			
DEPTH SAMPLED:							
4-6							
SAMPLE DATE & TIME:	`						
SAMPLED BY: BASILIO							
SI GNATURE(S):							
TYPE OF SAMPLE					·····		
LOW CONCENTRATION							
HIGH CONCENTRATION KI GRAB			· · · · · · · · · · · · · · · · · · ·				
GRAB - COMPOSITE			SAM	PLE DATA			
GRAB - COPFOSITE	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
	GGGGI	Cla	u CCHI- ,	A/A blade (2.5 YR 2.	5/0)		
ANALYSIS:		00	casional Ivon	stains, soft to medic	m		
THE COLUMN TO TH		5 1	iff, clastic				
TPH	OBSERVAT	TI ONS/	NOTES:				
BTEX	1						
	1						
	-						
	1						
	1						
277 - D 20W	1						
mgg 0 -029							
FID - 30 ppm							
				•			
	1						

☐ SURFACE SOIL

Eavirenmental Cerperation	SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER PROJECT NUMBER						
PROJECT NAME Ellington							
HNUS SAMPLE NO. 02-SB19-C-A		_ SOURC					
SAMPLE METHOD:				TE SAMPLE DATA COLOR/DESCRIPTION	\dashv		
California Sampler	SAMPL	E	TIME	CULUR/DESCRIPTION			
DEPTH SAMPLED:							
20-22							
SAMPLE DATE & TIME: 8 II 93 1525							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
HIGH CONCENTRATION							
COMPOSITE GRAB - COMPOSITE	SAMPLE DATA						
GRAB - COM GST 12	COLOR	DESC	RIPTION: (SAN	D, CLAY, DRY, MOIST, WET, ET	<u>C.)</u>		
		41.0	CMI /- hron	10 (1.5 4R 5/4), occasion	nal_		
ANALYSI S:		grav	, clayey t	o sandy at base, satu	100169		
Figure 10100		at 1	case_				
TPH	OBSERVA	TI ONS/	NUTES:				
BLEX	-						
	_						
	-						
	-						
PID- O PPM							
LID- o bbw							
				•			
	1						
	1						

Environmental Corporation	,		/LAGOON		
PROJECT NAME Ellington				ER_ IK94	-
HUS SAMPLE NO. 02-5820- A	- A	SOUR	E Soil E	Boring 20	
SAMPLE METHOD:			COMPOS	ITE SAMPLE DATA	
California Sampler	SAMPLE TIME COLOR/DESCRIPTION				
DEPTH SAMPLED:					
2 -4					
SAMPLE DATE & TIME: 8/5/93 1055					
SAMPLED BY:					
Basilio					
SI GNATURE(S):					
23					
TYPE OF SAMPLE					
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION					
TAGRAB ☐ COMPOSITE					
GRAB - COMPOSITE				PLE DATA	
	COLOR			D, CLAY, DRY, MOIST, WET, ETC.)
				(2,54R), soft to stiff,	
ANALYSI S:				al rootlets, very slight	
	ODOEDVA		leum ode		
TPH	OBSERVA	11 UN2\N	UIES:	-	
BIEX	_				
PID- 4 ppm1					
FID- 150 Ppm					

PROJECT NAME Ellington

California

SAMPLE METHOD:

DEPTH SAMPLED:

SAMPLED BY:

SI GNATURE(S):

ANALYSIS:

8-10 SAMPLE DATE & TIME: 8/5/93

HNUS SAMPLE NO. 02-SB20- B-A

Basilio

☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION

GRAB COMPOSI TE

H9T

TCL

TCL VOA

BNA

Mgg 818-019

mgg +0001 - 017

TYPE OF SAMPLE

Sampler

1110

	SUBS SEDI PONO)/LAGO(R	SOIL	7 IKO	14		
			Soil			0	
			COMPOSI		~		
SAMPL	E	T	ME			DESCRIPTION	
							
			CAME	LE DAT	^		
COLOR	DECL	RIPTIC				OIST, WET, I	ETC.)
COLUN	Clau	(CL)	- light	cyrau	with	greenish	tint.
	firm	to	. Hite	Silty.	slight	petroleum	odor
				- 0			
OBSERVA	TI ONS/	NOTES:					
					·		
1							

SURFACE SOIL
SUBSURFACE SOIL

		EDIMENT OND/LAGOON THER	
PROJECT NAME Ellington		PROJECT NUMB	
HUS SAMPLE NO. 02-5820-C-4	<u> </u>	DURCE Soil	Boring - 20
SAMPLE METHOD:		COMPOS	SITE SAMPLE DATA
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION
DEPTH SAMPLED:			
20-22			
SAMPLE DATE & TIME: 8/5/93 1140			
SAMPLED BY: Basilio			
SI GNATURE(S):			
TYPE OF SAMPLE			
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION			
TALGRAB			
COMPOSITE GRAB - COMPOSITE		SAI	PLE DATA
	COLOR DE	SCRIPTION: (SAN	D. CLAY, DRY, MOIST, WET, ETC.)
	Si	It CML)-dark	< brown (7.5 YR 4/4).
ANALYSI S:	So	ft, Sandy.	saturated
	OBSERVATI ON	C (NOTEC.	
TPH	OBSENVHITON	57 NO 1E3:	
BTEX			
	1		
·			
	_		
	-		
PID-0 ppm			
EID- O bbw			
1-70 - 11			
			•
	_		

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington				ER_1K94			
INUS SAMPLE NO. 02 - 5321 - A - A		SOURCE	Soil 1	Boring	21		
	COMPOSITE SAMPLE DATA						
SAMPLE METHOD: California Sampler	SAMPLE	Ε	TIME	С	OLOR/DESCRIPTION		
DEPTH SAMPLED:							
2-4							
SAMPLE DATE & TIME: 8/5/93 14/5							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
CTLOW CONCENTRATION				-			
☐ HI GH CONCENTRATION ☐ GRAB							
TT COMPOSI TE	SAMPLE DATA						
GRAB - COMPOSITE	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
		Clau C	CH/-black	((2.54	RN 2.5), Stiff,		
ANALYSI S:		rootlet					
FILTE							
TPH	OBSERVAT	TI ONS/NOT	ES:				
BTEX							
	1						
	1						
	1						
]						
PID- O PPM							
FID- O PPM							
170, 0 64,,,							
					•		

Environmental Corporation	X D	SURFACE SO SUBSURFACE SEDI MENT POND/LAGOO OTHER	SOIL				
PROJECT NAME Ellington				1K94			
HNUS SAMPLE NO. 02-5821-8-A	source Soil Boring 21						
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA			
California Sampler	SAMPLE	TI	ME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:							
SAMPLE DATE & TIME: 8 5 93 1420							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION							
Ø GRAB □ COMPOSI TE			2015	DATA			
GRAB - COMPOSITE	COL OD	DECEDIBILO		PLE DATA CLAY, DRY, MOIST, WET, ETC.)			
	COLOR	The CCH	- plack	(2.5 4RN 2.5), occasional			
ANALYSI S:		gray and	iron	staining, moderately			
HINHLI 31 3:			stic				
TAI	-	CONS/NOTES:	iate s	cample			
	0.	1-F021	- B-A				
	1						
	1						
PID- oppm							
EID- 110 pm.							

		☐ SEDI	D/LAGOON		
PROJECT NAME Ellington			PROJECT NUMBE	R IK94	_
HUS SAMPLE NO. 02-8821- C-A	7	SOU	RCE Soil R	30ring 21	-
SAMPLE METHOD:	T		COMPOSI	TE SAMPLE DATA	
California Sampler	SAMPI	LE	TIME	COLOR/DESCRIPTION	
DEPTH SAMPLED:					_
20-22					_
SAMPLE DATE & TIME:					_
8/5/93 1505					_
SAMPLED BY:					-
Basilio					-
SI GNATURE(S):					_
TYPE OF SAMPLE					-
LOW CONCENTRATION					-
☐ HIGH CONCENTRATION SCI GRAB	ļ				-
☐ COMPOSI TE		***	CAME	PLE DATA	-
GRAB - COMPOSITE	COLOR	DESC		, CLAY, DRY, MOIST, WET, ETC.)	-
	COLOR			VA , Saturated	-
ANALYSI S:		by	own (7.5 XR	5/4) silty to slightly	-
HIGHE I 31 3:			axex, mois		•
TPH	OBSERVA				
BTEX					
	_				
	_				
mgg 0-019					
FID - 0 ppm					
•					_

SURFACE SOIL
SUBSURFACE SOIL

POND/LAGOON OTHER PROJECT NAME Ellington PROJECT NUMBER K94							
ROJECT NAME Ellington							
NUS SAMPLE NO. 02-SB22-A-A	SOURCE Soil Boring - 22						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME		COLOR/DESCRIPTION		
DEPTH SAMPLED:							
4-6							
SAMPLE DATE & TIME:							
8/11/93 815							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
⊠ GRAB	<u> </u>						
COMPOSI TE			SAM	PLE DATA			
GRAD COLL COLLE	COLOR	DESC			DRY, MOIST, WET, ET	C.)	
		Clav	(CH)-dark an	ay (7.5 36	24/0), soft to ma	lium	
ANALYSIS:		stiff.	plastic some	gravel	occasional rooth	ets	
TPH	OBSERVA	TI ONS/	NOTES:				
BTEX	-						
	-						
	-						
	-						
	1						
	1						
	7		•				
PID-0 ppm	1						
FID-0 ppm							
					•		

SURFACE SOIL
SUBSURFACE SOIL

	1	□ Sedi □ Poni □ Othe	D/LAGOON		
PROJECT NAME Ellington			PROJECT NUMB	ER 1K94	
HNUS SAMPLE NO. 02-SB22-B-A				Boring - 22	
SAMPLE METHOD:			COMPOS	ITE SAMPLE DATA	-
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION	
DEPTH SAMPLED:				·	
6-8					
SAMPLE DATE & TIME: 8/11/93 820					
SAMPLED BY: Basilio					
SI GNATURE(S):					
TYPE OF SAMPLE					
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION					
ST GRAB COMPOSI TE					
GRAB - COMPOSITE			SAM	PLE DATA	
	COLOR	DESC	RIPTION: (SAND	D. CLAY, DRY, MOIST, WET, ETC.)
		Clay	(CH)-very o	dark gray (54R 310), occasion soft to medium stiff,	ial
ANALYSI S:					
	ODCEDVA	_	c, calcareous	nodules	_
TPH	OBSERVA	11 UN5/	NUIES:		
BTEX	-				
	-				
	4				
PID-Oppm					
EID - O bbw					
				•	

Environmental Corporation) ((SUBS SEDI PONI	D/LAGOON ER				
ROJECT NAME Ellington			PROJECT NUMB	BER 1494			
INUS SAMPLE NO. 02 - SB22 - C-A							
SAMPLE METHOD:			COMPOS	SITE SAMPLE DATA			
California Sampler	SAMPL	E	TIME	COLOR/D	ESCRIPTION		
DEPTH SAMPLED: 22 - 24							
SAMPLE DATE & TIME: 8/11/93 906							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION X GRAB COMPOSITE GRAB - COMPOSITE ANALYSIS: TPH BTEX PTO- 0 0000000000000000000000000000000000	COLOR	Silt Str	CRIPTION: (SAN TCUL) - A/ rong brown eaks, clay-cy	(7,5 YR 5/6)	1		
PID-0 ppm				•			

Environmental Corporation	[SUBSU SEDIM POND/ OTHER	LAGOON		
PROJECT NAME Ellington		Р	ROJECT NUMBE	R IK94	
INUS SAMPLE NO. 02-8823-A-	A	SOURC	E Soil 1	Boring - 23	
SAMPLE METHOD:				ITE SAMPLE DATA	
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION	_
DEPTH SAMPLED:					
0-2					
SAMPLE DATE & TIME: 8/11/93 1/00					
SAMPLED BY: Basilit					
SI GNATURE(S):					
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE					
GRAB - COMPOSITE				PLE DATA	
	COLOR	DESCR	IPTION: (SAND	D, CLAY, DRY, MOIST, WET, ETC.)	
		Clay	COL)- tan	, dry, abundant gravel	
ANALYSI S:	-				
TPH	OBSERVA	TI ONS/N	OTES:		
PID-0 ppm					
FID-Oppm					
				•	

Environmental Corporation	j	SEDI	D/LAGOON				
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94			
INUS SAMPLE NO. 02-SB23-B-A		SOU	RCE Soil 1	Boring - 23			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTI	ON		
DEPTH SAMPLED:							
G-8							
SAMPLE DATE & TIME:							
8/11/93 1116							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION							
☐ COMPOSI TE							
GRAB - COMPOSITE			SAM	PLE DATA			
	COLOR	DESC	RIPTION: (SAND	, CLAY, DRY, MOIST, WET	. ETC.)		
		Clay	(CH)-dark on	au (2.5 4R 2.5/0), ire	วก		
ANALYSIS:		staini	ing, medium	stiff to stiff, plastic.	white		
		to to	an calcareou	lavara 2			
TPH	OBSERVA	TI ONS/	NOTES:				
BTEX							
PID-0ppm							
LID- 3 bbw							
				·			

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER PROJECT NUMBER						
ROJECT NAME Ellington							
NUS SAMPLE NO. 02-5823-C-A	Source Soil Boring 23						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE		TIME	COLOR/DESCRIPTI ON			
DEPTH SAMPLED:							
20-22							
SAMPLE DATE & TIME: 8 11193 1157							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE				-			
TILOW CONCENTRATION							
☐ HI GH CONCENTRATION ☑ GRAB							
COMPOSITE			CA1/	DI F DATA			
GRAB - COMPOSITE	001.00	DECERTAT		PLE DATA			
	COLOR DESCRIPTION: (SAND. CLAY, DRY, MOIST, WET, E Silt (ML) - strong brown (7.5 4R 46)						
www.woro		Clauren	Sandy	at base Saturated at			
ANALYSI S:		base	auridy !	<u> </u>			
TPH		ONS/NOTE	S:				
BTEX	- 11		1				
10.127	Colla	ect du	plicate	sample			
	1		23 - C-				
] ''	K - 1 - 0	~3	•			
	Ì						
PID- Oppm							
EID- 0 bbw							
	<u> </u>						

Environmental Corporation] [[SUBS SEDI POND OTHE	/LAGOON R				
PROJECT NAME Ellington				ER\K94			
INUS SAMPLE NO. 02-SB24-A-A	SOURCE Soil Boring - 24						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCR	I PTI ON		
DEPTH SAMPLED:							
1-3							
SAMPLE DATE & TIME:	· · ·						
8/13/93 805							
SAMPLED BY:							
Basilio							
SI GNATURE! ST:							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HI GH CONCENTRATION GRAB							
FT COMPOSI TE			CA	NOLE DATA			
GRAB - COMPOSITE	COLOR	DECC		MPLE DATA D, CLAY, DRY, MOIST,	WET, ETC.)		
	COLUR			gray (2.5 4R 4/0), in			
ANALYSIS:		etain	ing modition	etiff, plastic, grave	Ilu Cfill?),		
ANAL 1313:		veru	slight Detr	sleum odor	- 3		
TPH	OBSERVA				_		
BTEX							
	4						
	-						
	1						
	1						
FID- 150 ppm							
				•			

	ĵ I	□ SEDI	/LAGOON	
PROJECT NAME Ellington			PROJECT NUMBE	
INUS SAMPLE NO. 02-5824-13-	Α	SOUF	RCE Soil	Boring-24
SAMPLE METHOD:			COMPOSI	ITE SAMPLE DATA
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION
DEPTH SAMPLED:				
11-13				
SAMPLE DATE & TIME:				
8113193 830				
SAMPLED BY:				
Basilio				
SI GNATURE(S):				
TYPE OF SAMPLE				
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION				
DA GRAB				
COMPOSI TE			SAM	PLE DATA
	COLOR	DESC	RIPTION: (SAND	, CLAY, DRY, MOIST, WET, ETC.)
				n (7.5 YR 5/3) mottled
ANALYSI S:		with	aray, stiff	r, moderately plastic,
				damp
TPH	OBSERVA	TI ONS/	NOTES:	
BTEX				
	_			
	_			
	_			
	_			
	ļ.			
FID-30 ppm				
1 , 3 5 6 // (
1				•

Environmental Corporation		SED	D/LAGOON				
PROJECT NAME Elling ton			_PROJECT NUMBE	R_ 1K94			
HNUS SAMPLE NO. 02-SB24-C-A	source Soil Boring - 24						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION			
DEPTH SAMPLED: '							
SAMPLE DATE & TIME:							
8/13/93 845							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
1100							
TYPE OF SAMPLE		w-					
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
GRAB							
GRAB - COMPOSITE			CANO	I DATA			
GONAR - CONTOSTIC	COLOR	DECC		LE DATA			
	COLUR			CLAY, DRY, MOIST, WET, ETC.)			
ANALYSI S:				g brown (7.5 4R 5/6).			
HNHL 131 3:				layey in parts, moist to			
TPH	OBSERVA		at base				
	ODSCITTA	11 01137	110123.				
<i>B</i> T€X							
FID-0 ppm							

☐ SURFACE SOIL
☐ SUBSURFACE SOIL

	☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER					
PROJECT NAME Ellington			PROJECT NUMB			
INUS SAMPLE NO. 02-SB25-A-A	4	SOU	RCE Soil	Baring-25		
SAMPLE METHOD:			COMPOS	ITE SAMPLE DATA		
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION		
DEPTH SAMPLED:						
1-3						
SAMPLE DATE & TIME: 8/13/93 1019						
SAMPLED BY:	·					
Basilio						
SI GNATURE(S):	<u> </u>					
TYPE OF SAMPLE	<u> </u>					
TILOW CONCENTRATION						
☐ HIGH CONCENTRATION ☐ GRAB						
1 COMPOSI TE						
GRAB - COMPOSITE	COLOD	DECC		PLE DATA D, CLAY, DRY, MOIST, WET, ETC.)		
	COLOR	1		; brown (1.5 4R 3/0);		
ANALYSI S:		mir	or from	staining, plastic	_	
HINE I ST S.		1	01	Sisting) + Sister Siste		
TPH	OBSERVA	TI ONS/	NOTES:			
BLEX						
	1					
	1					
	1					
	1			-		
	1					
PID-0 ppm						
FID-32 PPM						
1				•		
	I					

Environmental Corporation	,	(SUBS	FACE SOIL SURFACE SOIL MENT D/LAGOON ER				
PROJECT NAME Ellington			PROJECT NUMBE	r_\K94			
HNUS SAMPLE NO. 02-SB25-B-A	source Soil Boring-25						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPLE		TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:							
5-N							
SAMPLE DATE & TIME:							
8/13/93 1039 SAMPLED BY:							
Basillo							
SI GNATURE(S):							
20							
TYPE OF SAMPLE							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION							
GRAB							
GRAB - COMPOSITE			SAME	PLE DATA			
GONAD CONTOSTIC	COLOR	DESC		, CLAY, DRY, MOIST, WET, ETC.)			
		Clau	CHI-dine (54412) Dockets of dark			
ANALYSI S:		gray	mottling, Fe	/Mn streaks, plastic			
	(∞	tional calcare	eous nodules			
TPH	OBSERVATI	CONS/	NOTES:	-			
BTEX							
	{						
	†						
	1						
PID- 19 ppm							
FID-50 ppm							
\ \							
				•			
	1						

	SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington			PROJECT NUMBE	r 1K94				
HUS SAMPLE NO. 02-SB25-CA		SOUR	ice <u>Soil</u>	Boring- 25				
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA				
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
19-19								
SAMPLE DATE & TIME:								
8/13/93 1108 SAMPLED BY:								
Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION								
☐ HIGH CONCENTRATION								
GRAB COMPOSI TE								
GRAB - COMPOSITE				PLE DATA				
	COLOR			rong brown (7.5 JR 4/6).				
ANALYSIS:		211		rong brown (113 3R cres)				
HINE I 31 3:		110	CCC					
TPH	OBSERVAT	TI ONS/N	OTES:					
BLEX								
	-							
	1							
	1							
]							
PID-0 ppm								
Tr.: -								
FID- O ppm								
				•				

SURFACE SOIL
SUBSURFACE SOIL

] SEULM] POND/] OTHER	LAGOON		
PROJECT NAME Ellination		P	ROJECT NUMBI	ER 1K94	
INUS SAMPLE NO. 02-SB26-A-	A	SOURC	E Soil	Boring - 26	
SAMPLE METHOD:			COMPOS	ITE SAMPLE DATA	
California Sampler	SAMPLE		TIME	COLOR/DESCRIPTION	
DEPTH SAMPLED:					
0-2				·	
SAMPLE DATE & TIME:					
81393 1340					
SAMPLED BY: Basilib					
SI GNATURE(S):					
702					
TYPE OF SAMPLE					
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION					
MGRAB ☐ COMPOSI TE					
GRAB - COMPOSITE			SAM	PLE DATA	
	COLOR	DESCR	PTION: (SAND	D, CLAY, DRY, MOIST, WET, ETC.)
				(7.5 4R 2/0), pinkish	
ANALYSI S:		gray	mothing, a	dry, gravel rootlets	
To 11	OBSERVATI	T ONE /NO	TEC.		
TPH	OBSERVATA	1 01137 110	1123.		
BTEX	1				
	1				
	-				
PID-0 ppm					
FID-2 ppm					
` `					
				•	

	ĺ I	SEDIII POND. OTHEI	/LAGOON R		
ROJECT NAME Ellington			PROJECT NUMBE		_
NUS SAMPLE NO. 02-5826-8-1	Δ	SOUR	ICE Soil F	soring	_
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA	
California Sampler	SAMPL	LE	TIME	COLOR/DESCRIPTION	4
DEPTH SAMPLED:					-
6-8					-
SAMPLE DATE & TIME: 1355	`				
SAMPLED BY: Basilio					_
SI GNATURE(S):					_
10h					_
TYPE OF SAMPLE					
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION					
TOT GRAB					
COMPOSITE GRAB - COMPOSITE				PLE DATA	_
~	COLOR	DESC	RIPTION: (SAND	, CLAY, DRY, MOIST, WET, ETC.)	_
		Clay	(CH)-dark	gray (7.5 3R 4/0), iron	
ANALYSI S:		stair	ing, medi	um stiff, plastic	_
701	OBSERVA	TT ONS /	NOTES:		_
TPH TCL VOA	- ODSERVE				
TCL ISNA					
101 101011	1				
]				
	4				
	4			-	
	-				
PIO-71 Ppm					
FID- 200 66W					
				•	
					-

AN EINMINISTED COMPLETION	SUI SEI	SSURFACE SOIL DIMENT ND/LAGDON HER	
PROJECT NAME Ellington		_PROJECT NUMB	
INUS SAMPLE NO. 02-SB26-C-	<u>A</u>	urce Soil	Boring - 26
SAMPLE METHOD:		COMPOS	SITE SAMPLE DATA
California Sampler	SAMPLE	TIME	COLOR/DESCRI PTI ON
DEPTH SAMPLED: 18-20			
SAMPLE DATE & TIME: 8/13/93 1422			
SAMPLED BY: Basilio			
SI GNATURE(S):			
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE			
ANALYSI S:	occ	asional gr	ray, clayey, soft to stiff,
		st to wet	t at base
BLEX	ŧ	MOTES: duplicate FD26-C-	
20-73 ppmc			
EID-1000+ 66mm			,

) !	SEDIN PONDA	URFACE SOIL MENT VLAGOON		
PROJECT NAME Ellington			PROJECT NUMBI		
HNUS SAMPLE NO. 02-5827-A-A		SOURI	CE Soil	Boring-	21
SAMPLE METHOD:				ITE SAMPLE [
California Sampler	SAMPL	E	TIME	COL	OR/DESCRIPTION
DEPTH SAMPLED:			·		
O2					
SAMPLE DATE & TIME: 1534					
SAMPLED BY: Basilio					
SI GNATURE(S):					
TYPE OF SAMPLE					
LOW CONCENTRATION					
☐ HIGH CONCENTRATION GRAB					
COMPOSI TE			CVM	PLE DATA	
COURD - COLLOST IC	COLOR	DESCR			, MOIST, WET, ETC.)
					crown (54R 3/2).
ANALYSIS:		varie	yated with	1 white, re	ed and black, stiff
		to ha	rd, dry, as	ravel, root	lets
TPH	OBSERVA	TI ONS/N	OTES:		
BTEX	4				
	-				
	1				
	1				
]				
FID-0 ppm					
, 23					
					•
	1				

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER						
PROJECT NAME Ellington			PROJECT NUMB	er 1K94			
HNUS SAMPLE NO. 02-SB27-B-A		SOU	rce Soil	Boring - 27			
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	E	TIME	COLOR/DESCR	I PTI ON		
DEPTH SAMPLED:							
SAMPLE DATE & TIME: 8/10/93 1602							
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE							
GRAB - COMPOSITE				PLE DATA			
·	COLOR			O. CLAY, DRY, MOIST.			
ANALYSI S:		of a	ray and b	lack, medium stif	to stiff,		
	ODOEDWA.		ic, slight pe	stroleum odor			
TPH BTEX	OBSERVA	11 UNS/	NUTES:				
FID- 400 ppm							

Environmental Corporation) [SUBS SEDI POND	/LAGOON R			
PROJECT NAME Ellington			PROJECT NUME	BER 1K94		
INUS SAMPLE NO. 02-SB27-C-A		SOUF	RCE Soil	Boring -	27	
	COMPOSITE SAMPLE DATA					
SAMPLE METHOD: California Sampler	SAMPL	Ε	TIME		OR/DESCRIPTION	
DEPTH SAMPLED: 22-24						
SAMPLE DATE & TIME: 81693 1620						
SAMPLED BY: Basilio						
SI GNATURE(S):						
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE						
GRAB - COMPOSITE	COLOR	DESC		MPLE DATA	, MOIST, WET, ETC.)	
	COLOR	Silt	CMI 1-Str	ona pramu	C7.5 YR 4/6/	
ANALYSIS:		Sand	y to d	ayey, mois	(7.5 YR 4 6). It to wet at loase	
			3	-0-0		
TPH BTEX	OBSERVA	TI ONS/	NOTES:			
FID-3 ppm						

SURFACE SOIL
SUBSURFACE SOIL

		SEDI POND OTHE	/LAGOON		
PROJECT NAME Ellington	_		PROJECT N	UMBER	1K94
HNUS SAMPLE NO. 02-SB28-A-A					oring - 28
SAMPLE METHOD:			COM	POSI 1	TE SAMPLE DATA
California Sampler	SAMPL	E	TIME		COLOR/DESCRIPTION
DEPTH SAMPLED:					
1-3					
SAMPLE DATE & TIME: 0854					
SAMPLED BY: Basilio					
SI GNATURE(S):					
TYPE OF SAMPLE			·		·
LOW CONCENTRATION HIGH CONCENTRATION					
GRAB COMPOSITE					
GRAB - COMPOSITE	001.00	DECC			E DATA
	COLOR				iark aray (1.54R 3/0).
ANALYSI S:			to med	_	0 1
			,,,,,		
TPH	OBSERVAT	I ONS/I	NOTES:		-
BLEX					
]				
]				
	4				
PID-12 ppm					•
FID-130 Ppm					
					•

☐ SURFACE SOIL ☐ SUBSURFACE SOIL

	SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington			_PROJECT NUMBE	ER 1K94				
HNUS SAMPLE NO. <u>02-8B28-B-A</u>		SOU	RCE Soil B	boring - 28				
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
7-9 SAMPLE DATE & TIME:								
8/19/93 0919								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
☐ GRAB ☐ COMPOSI TE								
GRAB - COMPOSITE			SAM	PLE DATA				
	COLOR			, CLAY, DRY, MOIST, WET, ETC				
		Clay	(CH) dark (gray (5 y 4/1), medium s ing, occasional < 1/8 - in	Hiff,			
ANALYSI S:					ch			
TAH	OBSERVA		reous node	ries				
BTEX		11 01137	NOTES:					
	1							
]							
	1							
PID-0 ppm								
•								
FID-G50 PPM								
				'				
				•				

)]]]	SURFA SUBSU SEDIM POND/ OTHER	RFACE SOIL ENT			
PROJECT NAME Ellination		P	ROJECT NUMBE	R 1K94	·	
PROJECT NAME Ellington HNUS SAMPLE NO. 02-5828-C	- A	SOURC	E Soil	Boring - 28	3	
SAMPLE METHOD:	COMPOSITE SAMPLE DATA					
California Sampler	SAMPL	E	TIME	COLOR/DE	SCRIPTION .	
DEPTH SAMPLED: 20-22						
SAMPLE DATE & TIME: 8/17/93 0943						
SAMPLED BY: Basilio						
SI GNATURE(S):						
TYPE OF SAMPLE						
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION						
☐ GRAB ☐ COMPOSI TE						
GRAB - COMPOSITE			SAME	PLE DATA		
" "	COLOR			CLAY, DRY, MOIS		
ANALYSIS				brown (7.5 y		
ANALYSI S:		mottlin	g, chaye	y moist to vu	rel at base	
TPH	OBSERVAT	I ONS/NO	TES:		· · · · · · · · · · · · · · · · · · ·	
BTEX	4					
	-					
PID-0 ppm						
PID-0 ppm FID-0 ppm						

SURFACE SOIL
SUBSURFACE SOIL

SEDI MENT

		☐ PONE	D/LAGOON ER					
PROJECT NAME Ellinaton			PROJECT	NUMBER	1 /K	94		
INUS SAMPLE NO. 02-8829- A-	- 1	soul	RCE				7	
SAMPLE METHOD:			C	OMPOSI	TE SAMP	LE DATA		
California Sampler	SAMPL	E	TIME			COLOR/D	ESCRI PT	ION
DEPTH SAMPLED:	,							
SAMPLE DATE & TIME:					`			
SAMPLED BY: Basilia								
SI GNATURE(S):								
TYPE OF SAMPLE	-							
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
(XGRAB ☐ COMPOSITE								<u> </u>
GRAB - COMPOSITE				SAMP	LE DATA	-		
	COLOR		RIPTION:					
				very	dark	gray	CID	9R 3/1).
ANALYSI S:		meo	lium	Stiff.	plas	stic		
TPH	OBSERVA	TI ONS/I	NOTES:					
BTEX								
	ł						••	
			•					
PID-7 Ppm								
EJO-40 bb wr								
						•		
	1							

		SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER					
PROJECT NAME Ellington		PROJECT NUMBE					
HNUS SAMPLE NO. 02-5829-B-	Δ	SOURCE Soil F	Boring - 29				
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMP	LE TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:							
5-1							
SAMPLE DATE & TIME:							
01.11.13	-						
SAMPLED BY: Basilio							
SI GNATURE(S):							
TYPE OF SAMPLE							
LOW CONCENTRATION							
☐ HIGH CONCENTRATION ☐ GRAB							
COMPOSI TE							
GRAB - COMPOSITE	SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)						
	COLOR	Clay (CH) - dark gray (10 YR 4/1), medium stiff, plastic					
ANALYSI S:		medium stiff	Marke				
HNHL1313:		meaturi, sitil	program				
TPH	OBSERVA	TI ONS/NOTES:	_				
BTEX							
	_						
	4						
	_						
			•				

SURFACE SOIL
SUBSURFACE SOIL

		SEDI	D/LAGOON					
PROJECT NAME Ellington			PROJECT NUME	BER 1K94				
HNUS SAMPLE NO. 02-SB29-C-A	\	soul	RCE Soil	Boring	- 29	_		
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMP	LE	TIME	CO	LOR/DESCRIPTION			
DEPTH SAMPLED:								
IT - 19 SAMPLE DATE & TIME:						_		
8/17/93 /245						_		
SAMPLED BY:						-		
Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE						-		
LOW CONCENTRATION						-		
☐ HIGH CONCENTRATION								
☐ GRAB ☐ COMPOSI TE						_		
GRAB - COMPOSITE	SAMPLE DATA							
	COLOR				Y, MOIST, WET, ETC.)			
ANALYSIS:	 			ong brown	(1.5 yr 5/6),	_		
HNHLTSIS:		Sand	y, satur	area		-		
TPH	OBSERVA	TI ONS/N	OTES:	_		-		
BLEX								
	1							
	-							
	1							
	1		•					
]							
PID- 0 ppm								
FID- 7 PPM								
	1							
					•			
1	1							

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington			_PROJECT NUMBE					
HNUS SAMPLE NO. 02-SB30-AA		SOU	irce <u>Soil</u>	Boring-30				
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMP	LE	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED:								
0-2								
SAMPLE DATE & TIME: 8/18/93 856								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE		-						
LOW CONCENTRATION								
☐ HI GH CONCENTRATION ☑ GRAB	·							
COMPOSI TE								
GRAB - COMPOSITE				PLE DATA				
	COLOR			CLAY, DRY, MOIST, WET, ETC.)				
ANALYSIS:			moderately	dark gray (10 yr 3/1),				
HUNF 1212:		root		y plastic, iron staining				
TPH	OBSERVA							
BTEX								
·								
PID-0 Ppm								
EID- O 65m								
, ,				•				
				•				

Environmental Corporation	/	SUB SED PON	D/LAGOON ER			
PROJECT NAME Ellington			PROJECT NUM	BER 11	(94	
HNUS SAMPLE NO. 02-SB30-	B-A	sou	RCE Soil			
SAMPLE METHOD:			COMPO	SITE SA	MPLE DATA	
California Sampler	SAMP	LE	TIME		COLOR/DES	CRI PTI ON
DEPTH SAMPLED:						
SAMPLE DATE & TIME: 8/18/93 910						
SAMPLED BY: Basilio						
SI GNATURE(S):						
TYPE OF SAMPLE			·		•	
LOW CONCENTRATION						
☐ HIGH CONCENTRATION ☑ GRAB						
COMPOSITE			SA	MPLE DAT	ΤΔ	
30.11.5	COLOR	DESC				T, WET, ETC.)
						:\. occasional
ANALYSI S:		aray	, medium	Stiff	moderately	y plastic
	0005014		hackly f	racture	e in silty	parts
TPH BTEX	OBSERVA	11 0N2/	NUTES:			
BIEX	-					
	7					
	-					
	-					
PID-0 ppm						
FID-5 ppm						

SURFACE SOIL
SUBSURFACE SOIL

	/	SEDI	D/LAGOON		
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94	
HNUS SAMPLE NO. <u>02-SB30-C~</u>	A			Boring - 30	
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA	
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION	
DEPTH SAMPLED:					
SAMPLE DATE & TIME:	 				
8/18/93 929					
SAMPLED BY:					
Basilib	ļ				
SI GNATURE(S):					
TYPE OF SAMPLE					
LOW CONCENTRATION					
☐ HIGH CONCENTRATION ☐ GRAB					
COMPOSI TE					
GRAB - COMPOSITE	COLOR	DECC		LE DATA	
	COLON			brown C7.5 YR 5/8)	• /
ANALYSI S:				ayey at top, sandy at	+
		base	moist to		
TPH	OBSERVA	TI ONS/N	NOTES:		-
BTEX	-				
	1				
]				
	4				
	-				
mpg 0 - DIG					
ETIN LOWAN					
EID-16pm					

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
PROJECT NAME Ellington HNUS SAMPLE NO. 02-5831-A-A		SOUR	ce Soil 1	3oring-31				
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON				
DEPTH SAMPLED: O : 2								
SAMPLE DATE & TIME: 8/18/93 1005	·							
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB								
GRAB - COMPOSITE			SAM	PLE DATA				
	COLOR	DESCR		. CLAY, DRY, MOIST, WET, ETC.)				
				dark gray (7.5 4R 3/0)				
ANALYSI S:				potlets, iron staining and				
TPH	OBSERVAT		os < 18-ina OTES:	ch)				
BTEX								
PID-0 ppm								
FID-0 ppm								
				•				

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
ROJECT NAME Ellington			PROJECT NUMB	ER	(94				
INUS SAMPLE NO. 02-8831- 8-A	source Soil Boring - 31								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMPL	Ε	TIME		COLOR/DES	CRI PTI ON			
DEPTH SAMPLED:									
SAMPLE DATE & TIME: 8/18/93 1025									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB									
COMPOSITE GRAB - COMPOSITE			SAI	MPLE DA	TA				
	COLOR					T, WET, ETC.)			
		Clay	y CCL) - light	gray	(7.5 YR	7/0/ and red			
ANALYSI S:			tic, silty,			ledium stiff,			
BLE X LbH	OBSERVA			<u>-91-91(1)</u>	*				
PIO-5 ppm									
FID-90 ppm									

Environmental Corperation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER									
PROJECT NAME Ellington		PROJECT NUMBE	R 1K94							
HNUS SAMPLE NO. 02-SB31-C-A	s	OURCE Soil	Boring-31							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA									
California Sampler	SAMPLE	TIME	COLOR/DESCRIPTION							
DEPTH SAMPLED:										
SAMPLE DATE & TIME:										
8/18/93 1037										
Basilio										
SI GNATURE(S):										
TYPE OF SAMPLE										
LOW CONCENTRATION	·									
☐ HIGH CONCENTRATION GRAB										
COMPOSI TE										
GRAB - COMPOSITE	SAMPLE DATA									
			CLAY, DRY, MOIST, WET, ETC.)							
ANALYOT C	1.	IF CMLJ-Stron	ig brown (7.5 4R 5/6) gray, clayey at top to sandy							
ANALYSI S:	at		to wet at base							
H9T	OBSERVATI ON		TO EVEL CO.							
RTE X										
6167	Collect	- duplicate	sample							
	01-	F031-C-A	4							
										
PID-0 ppm										
FID-Offm										
			•							

Environmental Corperation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington			PROJE	CT NUMBE	r 1K94			
HNUS SAMPLE NO. 02-SB32-A-A		sou	RCE	Soil	Boring-32			
SAMPLE METHOD:				COMPOSI	TE SAMPLE DATA			
California Sampler	SAMP	LE	T	IME	COLOR/DESCRIPTION			
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 833								
SAMPLED BY:	·							
Basilio SIGNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION								
HIGH CONCENTRATION								
COMPOSI TE		·						
GRAB - COMPOSITE				SAMP	LE DATA			
	COLOR	-			CLAY, DRY, MOIST, WET, ETC.)			
ANALYSIS		Clay	COL	-very	dark gray C2.5 yp 3/0/,			
ANALYSIS:		Stitt	to ho	and, re	otlets dry, iron staining			
HAT	OBSERVA	TI ONS/N	NOTES:					
BTEX								
	ļ							
PID-oppm								
FID-oppm								
					•			

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington	PROJECT NUMBER 1K94								
INUS SAMPLE NO. 02-SB32-B-A	SOURCE Soil Boring-32								
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA					
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED:									
8-10									
SAMPLE DATE & TIME: 846									
SAMPLED BY:									
Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
FILOW CONCENTRATION									
☐ HI GH CONCENTRATION R GRAB									
COMPOSI TE									
GRAB - COMPOSITE	COLOR	DESC		PLE DATA , CLAY, DRY, MOIST, WET, ETC.)					
				th red (5 YR 5/6) minor					
ANALYSIS:				medium stiff plastic, very					
		0		sional gypsum crystals					
H9T	OBSERVAT	TI ONS/	NOTES:	33.					
BTEX	4								
	-								
	-								
	1								
	1								
	1								
	1			•					
PIO-0 ppm									
FTN- n non									
FID-0 ppm									
				•					

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington	PROJECT NUMBER 1K94								
HNUS SAMPLE NO. 02-SB32-C-A	source Soil Boring-32								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMPL	E	TIME	COLOR/DESCRI PTI ON					
DEPTH SAMPLED:									
SAMPLE DATE & TIME:									
8 19 93 0909									
SAMPLED BY:									
Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
LOW CONCENTRATION									
☐ HI GH CONCENTRATION									
GRAB COMPOSITE									
GRAB - COMPOSITE	001.00	250		PLE DATA					
,	COLOR			ong brown (7.5 4R 4/6)					
ANALYSI S:				dy in Parts, wet to					
FRANCISTO			rated at	base					
HAT	OBSERVA								
BTEX			. 1	1					
	(0	Hect	- duplicate	: sample					
	0	ユ -	FD32 - C-	A					
]								
	1								
	-								
PIO- 1 ppm									
FID- 1 ppm									
				•					
	1								

Environmental Corporation	j C C	SUBS	D/LAGOON	·			
PROJECT NAME Ellington			PROJECT NUMBE	r 1K94	_		
HNUS SAMPLE NO. 02 - SB33 - A-A		sou	RCE Soil	Boring-33	_		
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMPL	Ε	TIME	COLOR/DESCRI PTI ON			
DEPTH SAMPLED:					-		
0-2					_		
SAMPLE DATE & TIME: 8/19/93 1006					_		
SAMPLED BY: Basilio					_		
SI GNATURE(S):					_		
20							
TYPE OF SAMPLE					_		
LOW CONCENTRATION					_		
☐ HIGH CONCENTRATION GRAB					_		
COMPOSITE GRAB - COMPOSITE			SAM	PLE DATA	_		
Golden Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	COLOR	DESC		, CLAY, DRY, MOIST, WET, ETC.)	_		
		Clau	COL)-dark	reddish gray (5 YR 4/2):			
ANALYSI S:		Stiff	slightly pla	stic, dry, rootlets, platy			
		gyp:	sum crustal	5			
HQT	OBSERVA	TI ONS/	NOTES:				
BLE X							
	1						
	1						
	1						
PID- 12 gpm							
FID- Offm							
				•			
1	1				_		

Environmental Corporation	Ź	SUB!	D/LAGOON				
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94			
HNUS SAMPLE NO. 02-SB33-B-A	source Soil Boring-33						
SAMPLE METHOD:	COMPOSITE SAMPLE DATA						
California Sampler	SAMP	E	TIME	COLOR/DESCRIPTION			
DEPTH SAMPLED:							
12-14	,						
SAMPLE DATE & TIME: 8/19/93 1034							
SAMPLED BY:							
Basilio							
SI GNATURE(S):							
12							
TYPE OF SAMPLE	<u> </u>						
LOW CONCENTRATION JUGH CONCENTRATION							
GRAB ☐ COMPOSI TE							
GRAB - COMPOSITE			SAM	PLE DATA			
	COLOR			CLAY, DRY, MOIST, WET, ETC.			
				(7.5 YR 5/4), minor gray			
ANALYSI S:		med	ium stiff to	stiff, plautic, iron staining	na		
	OBSERVA	TIONS	MOTEC.				
#PH ~	UBSERVE	111 01137	NOTES:		_		
BLE X	1						
	1						
	1						
	1						
PIO-15 PP M							
FID-120 Ppm							
1 120 PPINC							
	1			•			

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
ROJECT NAME Ellington			PROJECT NUMBE	R_ 1K94					
INUS SAMPLE NO. 02-5833-C-A	source Soil Boring - 33								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA								
California Sampler	SAMP	E	TIME	COLOR/DESCRIP	TION				
DEPTH SAMPLED: \6~ 18									
SAMPLE DATE & TIME: 1042									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE									
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION									
GRAB COMPOSI TE									
GRAB - COMPOSITE				LE DATA					
} - v ~ -	COLOR	COLOR DESCRIPTION: (SAND. CLAY, DRY, MOIST, WET, ETC.) Silt (ML) - strong brown (7.5 4R 4/6), minor							
ANALYSI S:			and black	medium stiff, wet	at				
		botto							
TPH	OBSERVA	TI ONS/	'NOTES:						
BLE X	-								
]								
	4.								
	-								
	1								
PIO-Oppm									
EID- 1 Ppm									
				· · · · · · · · · · · · · · · · · · ·					

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
HNUS SAMPLE NO. 02-8834- A-A								
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPLE TIME COLOR/DESCRIPTION							
DEPTH SAMPLED:								
SAMPLE DATE & TIME:								
8/20/93 735								
SAMPLED BY: Basilio								
SI GNATURE(S):								
22								
TYPE OF SAMPLE								
□LOW CONCENTRATION □HIGH CONCENTRATION								
GRAB COMPOSI TE								
GRAB - COMPOSITE				LE DATA				
	COLOR				MOIST, WET, ETC.)			
					C2.5 YR 3/0),			
ANALYSIS:		Still	, rootlets.	ary				
HAT	OBSERVA	TI ONS/	NOTES:					
BTEX								
6.6]							
	-							
	-{.							
	-							
	1							
PIO-0ppm								
FID-0 ppm								
- 5)1				•				

SUBSURFACE SOIL

SEDI MENT

	☐ PONDZLAGOON ☐ OTHER							
PROJECT NAME Ellington			PROJECT NUMBE	R 1K94				
INUS SAMPLE NO. 02-SB34-B-A		sour	RCE Soil	Boring-34				
SAMPLE METHOD:			COMPOST	TE SAMPLE DATA				
California Sampler	SAMPL	E	TIME	COLOR/DESCRIPTI ON				
DEPTH SAMPLED:								
14-16								
SAMPLE DATE & TIME: 8/20/93 807								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION								
HIGH CONCENTRATION								
COMPOSI TE			CAV	DI F. DATA				
GRAB - COMPOSITE	SAMPLE DATA COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)							
	CULUR			yellow C5 YR G/G/ gray mottling				
ANALYSI S:		Ciuy	black silty m	nedium stiff, moderately plastic,				
ANALTSIS:			, becasional i					
HAT	OBSERVA							
BTEX	1							
3.9.								
	4.							
	4			••				
PID-0 ppm								
FID-0 ppm								
	1			•				

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER							
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
HNUS SAMPLE NO. 02-SB34-C-A	source Soil Boring-34							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMPLE TIME COLOR/DESCRIPTION							
DEPTH SAMPLED:								
SAMPLE DATE & TIME: 8/20/93 8(1)								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION JIGH CONCENTRATION								
GRAB	<u> </u>							
GRAB - COMPOSITE	SAMPLE DATA							
	COLOR DESCRIPTION: (SAND, CLAY, DRY, MOIST, WET, ETC.)							
			eddish brown (54R G/4),					
ANALYSIS:	Sc	ome gray, sligh	tly clayey to sandy in parts					
701		ret to saturat	ed					
TPH	OBSERVATIO	INS/NOTES:	_					
BTE X	Colle	ct duplicate	sample					
	02	-F034-C-A	1					
PID-0 ppm								
FID-0 Ppm								

Environmental Corporation	SURFACE SOIL SUBSURFACE SOIL SEDIMENT POND/LAGOON OTHER								
PROJECT NAME Ellington	PROJECT NUMBER 1K94								
HNUS SAMPLE NO. 02-WWII- A-A									
SAMPLE METHOD:	COMPOSI TE SAMPLE DATA								
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION					
DEPTH SAMPLED: O- 2									
SAMPLE DATE & TIME: 8/12/93 0817									
SAMPLED BY: Basilio									
SI GNATURE(S):									
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB									
COMPOSITE GRAB - COMPOSITE	SAMPLE DATA								
	COLOR			. CLAY, DRY, MOIST, WET, ETC.)					
			•	2.5 JR 2.5/0) hard dry.					
ANALYSIS:		grave	elly, rootlet	\$					
TPH BTEX	OBSERVA'	TI ONS/	NOTES:						
PIO-0 ppm									
FID- O PPM									
				•					

Environmental Corporation		SUB SED	D/LAGOON					
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
HNUS SAMPLE NO. 02-MWII- B-A	SOURCE Soil Boring-MWII							
SAMPLE METHOD:	COMPOSITE SAMPLE DATA							
California Sampler	SAMP	LE	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
SAMPLE DATE & TIME:								
SAMPLED BY: (Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
LOW CONCENTRATION								
☐ HI GH CONCENTRATION GRAB								
COMPOSITE			CAMP	LE DATA				
	COLOR	DESC		CLAY, DRY, MOIST, WET, ETC.)				
				(7.5 yr 5/4) occasional				
ANALYSIS:		aray	streaks, st	if, plastic, silly, occasional				
For	ODCEDVA	1/8-11		ous noduler				
TPH BTEX	OBSERVA'	11 UNS/	NU (ES:					
BI CX								
			•					
PID-OPPM								
1								
FID-50 Ppm								
				·				

SURFACE SOIL
SUBSURFACE SOIL

☐ SEDIMENT ☐ POND/LAGOON ☐ OTHER								
PROJECT NAME Ellington	PROJECT NUMBER 1K94							
HNUS SAMPLE NO. 02-MWII-C-A	SOURCE Soil Boring - MWII							
SAMPLE METHOD:			COMPOSI	TE SAMPLE DATA				
California Sampler	SAMPI	LE	TIME	COLOR/DESCRIPTION				
DEPTH SAMPLED:								
18-20 SAMPLE DATE & TIME:					_			
8/12/93 0921								
SAMPLED BY: Basilio								
SI GNATURE(S):								
TYPE OF SAMPLE								
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION								
GRAB COMPOSI TE								
GRAB - COMPOSITE			SAMF	PLE DATA	_			
	COLOR			CLAY, DRY, MOIST, WET, ETC.)				
		Clay	(CL) - strong	g brown (7.5 4R 5/6).				
ANALYSIS:		Occas	ional gray:	stiff, silly damp	_			
TPH	OBSERVA	TI ONS/	NOTES:					
BTEX]							
	1							
	1							
	1							
PID- 208 Ppm								
FID- 20 Ppm								
\ '								
				•				

Environmental Corporation) [SEDI	/LAGOON			
ROJECT NAME Ellington			PROJECT NUMB		K94	
NUS SAMPLE NO. O2-5835-A-1	4	SOUR	RCE	1 borin	35	
SAMPLE METHOD:						
California Sampler	SAMPL	E	TIME		COLOR/DESCRIP	TION
DEPTH SAMPLED: 0-2					~	
SAMPLE DATE & TIME: 8/35						
SAMPLED BY: BASILIO						
SI GNATURE(S):						
TYPE OF SAMPLE LOW CONCENTRATION HIGH CONCENTRATION GRAB COMPOSITE GRAB - COMPOSITE				MPLE DAT		ET ETC \
	COLOR		(OL) - b	rowa (DRY, MOIST, W), black
ANALYSIS:			treaks, s	tiff, vo	pothets, dry	
TPH BTEX	OBSERVA	TI ONS/	NOTES:			-
			•			
P10 - 0 ppm						
F10 - 0 Ppm						

SURFACE SOIL

Elvirolation Corporation		UBSURFACE SOIL EDIMENT OND/LAGOON THER	11-94
ROJECT NAME Ellington		PROJECT NUMB	ER 1494
ROJECT NAME <u>Ellington</u> NUS SAMPLE NO. <u>02-5035-6</u>	<u>3 - 4</u>	DUNCE	
SAMPLE METHOD:			SITE SAMPLE DATA COLOR/DESCRIPTION
California Sampler	SAMPLE	TIME	CULUN/ DESCRIT 12 OK
DEPTH SAMPLED: 16-18			
SAMPLE DATE & TIME: 8/24/93 913			
SAMPLED BY: BASILID			
SI GNATURE(S):			
TYPE OF SAMPLE			
☐ LOW CONCENTRATION ☐ HIGH CONCENTRATION			
₹ GRAB			
COMPOSITE GRAB - COMPOSITE		SA	AMPLE DATA
GRAD SOLI SOLI VE	COLOR	DESCRIPTION: (SAN	ND. CLAY, DRY, MOIST, WET, ETC.)
	3	11+ (ML) -	brown (7.5 YR 5/4), MINOR
ANALYSIS:		gray, Slist	hthy clayey to sandy
HITELOGO		wet	
TrH	OBSERVATIO	ONS/NOTES:	
BTEX			
P10-0 Ppm			
P10- 0 ppm F10- 0 ppm			
			,

MONITORING WELL DATA

DOMESTIC WELL DATA □ OTHER

PROJECT NAME E	Ilington		PR0	JECT NU	JMBER	IK	74		
NUS SAMPLE NO. O	2-MW07-	A-A	SOURCE		Mw-7				
TOTAL WELL DEPTH:					PURGE	DATA (0. 0.		
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (°C)			TURBI DI TY	
	28.03 (TOC)	(6.98	1130	24.1	1.19	Clear	19	
STATIC WATER LEVEL:									
ONE CASING VOLUME:		2	6.95	1120	24.1	1.09	Clear	10	
START PURGE (HRS.):						,			
END PURGE (HRS.):	1316	3	6.98	1110	23.4	1.33	Clear	2	
TOTAL PURGE TIME (M	IN.): 34								
TOTAL AMOUNT PURGED	(GAL.): 45								
MONITOR READING:									
1 0 pr	om								
PURGE METHOD: Susi	nersible Pump								
SAMPLE METHOD: To	flow backer								
DEPTH METHOD: E	- line								
SAMPLE DATE & TIME:				9	SAMPLE DAT	D. C			
8/27/93	1330	PH	S. C.	TEM	P.(*C)	TBS	COLOR &	TURBI DI TY	
SAMPLED BY:			115	2.	_	1 45	Clear	11	
BASILI	0	6.99 1130 23.8 1.45 (lear 1)							
SI GNATURE(S):	/	OBSERVATI ONS/NOTES:							
260			,	,			,	a ¬ '	
Many	(F)	Wat	er Leve	d pri	or to s	ampl	inf = 6	7 /	
TYPE OF	SAMPLE								
LOW CONCENTRA		·							
☐ HI GH CONCENTR	KAIIUN								
☐ COMPOSI TE									
☐ GRAB - COMPOS	SITE								
ANALYSI S:	PRESERVATIVE]							
		1							
TPH									
TIL VOA									
TLL BNA									
TOS									
]							
]							
]							

MONITORING WELL DATA
DOMESTIC WELL DATA ☐ OTHER

PROJECT NAME E	lling ton		PR0	JECT NU	MBER	IKG	34	
NUS SAMPLE NO.	22-MW08-	A-4	SOURCE		nw-8			
TOTAL WELL DEPTH:					PURGE	DATA (), O.	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (°C)	JBS	COLOR &	TURBI DI TY
2"- PUC	27.37 (TOC)	1	7.03	990	23,4	1.73	Clear	5
	7,51 (TOC)							
ONE CASING VOLUME:	14.9 sal	2	7.04	990	22.9	1.76	Clar	2
START PURGE (HRS.):	1248							
END PURGE (HRS.):	1323	3	6.98	990	23,4	0.84	Char	5_
TOTAL PURGE TIME (M	IN.): 35							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
OPI	om							
PURGE METHOD: Sub	nersible Pump							
SAMPLE METHOD: To	flow bailer							
DEPTH METHOD: G	-line							
SAMPLE DATE & TIME:				S	AMPLE DAT	A D.C	2.	
8/27/93	1348	PH	S. C.	TEM	P.(°C)	IBS	COLOR &	TURBI DI TY
SAMPLED BY:			000	0.4.4		19//	1/100	(/)
BASILI	0	7.04 990 24.4 1.94 Clear 42						
SI GNATURE(S):		OBSERVAT	I ONS/NOTE	S:				
7.64	Z	141-4	loul	Atra A	to sa	res uli		7,71
Many	US .	VVAIR	11001	PVIN	10 390		U	
TYPE OF								
LOW CONCENTRA								
GRAB	KHIIUN							
☐ COMPOST TE								
☐ GRAB - COMPOS								
ANALYSIS:	PRESERVATI VE							
Tali								
TPH		ł						
BTEX								
		1						
		ŀ						
		1						
		1						
		l						

MONITORING WELL DATA
DOMESTIC WELL DATA
OTHER

PROJECT NAME E	ling ton		PRO	JECT NU	IMBER	IKG	14	
NUS SAMPLE NO. 02-1	W09-A-A		SOURCE		MW-9			
TOTAL WELL DEPTH:					PURGE	DATA (0.0.	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (°C)	_		TURBI DI TY
	32.65 (704)	1	6.80	1170	24.3	.95	Clear	1
STATIC WATER LEVEL:	9,50 (toc)							
ONE CASING VOLUME:		2	6.83	1180	24.0	1,95	Clear	4
START PURGE (HRS.):	1057							
END PURGE (HRS.):	1174	3	6.84	1150	24.2	1.29	Clar	0
TOTAL PURGE TIME (M	IN.): 27							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
O PY	m							
PURGE METHOD: Sub1								_
SAMPLE METHOD: To	flow backer							
DEPTH METHOD: G	-line							
SAMPLE DATE & TIME:				S	AMPLE DAT	4		
8/27/93	1505	PH	S. C.	TEM	P.(°C)	TDS	COLOR &	TURBI DI TY
SAMPLED BY:				26	2	2.20	- 1	
BASILI	0	7.04	1170	26:	3	2.20	clear	15
SI GNATURE(S):			TI ONS/NOTE				-	
7-Bain	lis	Wate	r level	prior	to s	amp	huy =	7,55
TYPE OF	SAMPLE							
□ LOW CONCENTRA □ HIGH CONCENTR	TION						-	
☐ COMPOSITE					•			
GRAB - COMPOS	I TE						-	-
ANALYSIS:	PRESERVATI VE				e			
TPH BTEX								
BTEX								
		ŀ						
						-		

MONITORING WELL DATA
DOMESTIC WELL DATA ☐ OTHER

PROJECT NAME	lling ton		PR	DJECT NU	JMBER	IK	74	
NUS SAMPLE NO. 0		-A	SOURCE		mw-	10		
TOTAL WELL DEPTH:					PURGE	DATA O	0.0.	
WELL CASING SIZE &	_	VOLUME	PH	S. C.	TEMP. (° C)			TURBI DI TY
2"- PUC	34.83 (TOL)	1	6.95	1290	22,7	.85	Clear	4
STATIC WATER LEVEL:	11.50 (TOC)							
ONE CASING VOLUME:	1511 50	2	6.97	1310	23.1	.92	Clear	5
START PURGE (HRS.):	1140						7,0 00	
END PURGE (HRS.):	1220	3	6.95	1300	23,2	.85	Clear	5
TOTAL PURGE TIME (M	(IN.): 40						71-2-	
TOTAL AMOUNT PURGED	(GAL.): 45							
MONITOR READING:								
0 P1	pm							
PURGE METHOD: Sub	mersible Pump	4						
SAMPLE METHOD: To	eflou bailer							
DEPTH METHOD: E	-line							
SAMPLE DATE & TIME:				S	AMPLE DATA	D, E),	
8/27/93	PH	S. C.		P.(°C)	JBS	COLOR &	TURBI DI TY	
SAMPLED BY:			2.7	0	150	. [14	
BASILI	1.05	1290	23,	0	1/3 1	Clav	17	
SI GNATURE(S):		OBSERVAT	TI ONS/NOTE	S:				
2-barr	lis	Wate	er Leva	el pria	r to s	ampl	ly = 1.	1,56
TYPE OF	SAMPLE			•	•			
LOW CONCENTRA	TI ON	colle	et du	plicate	sam	ole		
GRAB					'			·
☐ COMPOSI TE ☐ GRAB - COMPOS	I TE		02-	FOIC)-A-A			
ANALYSIS:	PRESERVATI VE							
TPH								
TCL VOA								
TCC BNA								
TOS								

MONITORING WELL DATA

DOMESTIC WELL DATA ☐ OTHER

PROJECT NAME	lling ton		PR0	DJECT NU	IMBER	IK	74	
NUS SAMPLE NO					MW-1			
TOTAL WELL DEPTH:		1			PURGE	DATA (2.0.	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (°C)	_		TURBI DI TY
2"- PUC	_	1	6.83	1390	22.8	2.79	light tan	
STATIC WATER LEVEL:			10100					
ONE CASING VOLUME:	14.1	2	6.89	13/0	22.9	2.24	Clear	27
START PURGE (HRS.):								
END PURGE (HRS.):	12 10	3	4.76	1410	22.5	2.78	Clear	34
TOTAL PURGE TIME (M	(IN.): 65							
TOTAL AMOUNT PURGED	(GAL.): 45							
MONI TOR READING:								
O P	pm							
PURGE METHOD: Sub	mersible Pump							
SAMPLE METHOD: To	eflou bailer							
DEPTH METHOD: E	-line							
SAMPLE DATE & TIME:				S	AMPLE DATA		0.	
8/27/93	1600	PH	S. C.	TEM	P.(°C)	705	COLOR &	TURBI DI TY
SAMPLED BY:		6.81	1400	22.	9	204	Tan	277
BASILI	D					اعها	194	× / /
SI GNATURE(S):			TI ONS/NOTE					
7-Bass	lis	W. L	ost T	Eflou	bailer	dou	un. me	U,
TYPE OF	SAMPLE .	1			•			
☐ LOW CONCENTRA ☐ HIGH CONCENTR								
GRAB								
☐ COMPOSITE ☐ GRAB - COMPOS	TTE							
ANALYSIS:	PRESERVATI VE							
TPH					•			
TCL VOA								
TIL BNA								
TOS								
11113								
		1						
		1						

MONITORING WELL DATA
DOMESTIC WELL DATA □ OTHER

PROJECT NAME			PR(OJECT N	IUMBER	IK	94			
NUS SAMPLE NO.	02-MW12-	A - A	SOURCE		MW-1'	2				
TOTAL WELL DEPTH:		T			PURGE	DATA (0.0			
WELL CASING SIZE &		VOLUME	E PH	S. C.	TEMP. (° C)			TURBI DI TY		
2"- PUC	27.18 (TOC)	1	6.92	1060	21.7	670	Clear	42		
STATIC WATER LEVELS										
ONE CASING VOLUME:	14.9	2	6.88	924	21.7	.73	tan	535		
START PURGE (HRS.):	: 957					1	,,,,,			
END PURGE (HRS.):	1028	3	6.88	924	21.7	.72	Clear	66		
TOTAL PURGE TIME (
TOTAL AMOUNT PURGE	D (GAL.): 55	3,5	6.88	922	21.6	.73	Clear	21		
MONITOR READING:								•		
	pm									
PURGE METHOD: Sub										
SAMPLE METHOD: T.	effon baiter									
	- line									
SAMPLE DATE & TIME:				S	SAMPLE DATA	A				
8/27/93	1428	PH	S. C.	TEM	P.(°C)	TDS	COLOR &	TURBI DI TY		
SAMPLED BY:										
BASILI	0	7.04	1050							
SI GNATURE(S):		OBSERVAT	TI ONS/NOTES	S:						
na.	/						1	~ ~ /		
Man	11s	Wata	es lev	el pr	rior to	Sam	pling =	1, 2 1		
TYPE OF	SAMPLE	I			•		•			
LOW CONCENTRA		i								
☐ HI GH CONCENTE	RATION	i								
☐ COMPOSI TE	1	I								
☐ GRAB - COMPOS	SITE	1								
ANALYSI S:	PRESERVATI VE						-a.			
							·			
TPH		ı								
BTEX						•				

MONITORING WELL DATA

DOMESTIC WELL DATA ☐ OTHER

PROJECT NAME	11ington		PR0	DJECT NI	JMBER	IK	74						
NUS SAMPLE NO.	a d												
TOTAL WELL DEPTH:		T			PURGE	DATA 2	0.0.						
WELL CASING SIZE &	DEPTH:	VOLUME	E PH	S. C.	TEMP. (°C)			& TURBI	T DT TY				
2"- PUC	27.64 (TOL)	1	6.91	934	21.7	179	1,54+		241				
STATIC WATER LEVEL:		 		1,50		1	- 113 17	7-1	- 11				
ONE CASING VOLUME:	14.1	7	6.90	939	21.7	.44	-((15	-6				
START PURGE (HRS.):						-		-					
END PURGE (HRS.):	1038	3	6.92	934	21.6	,89	11	1	50				
TOTAL PURGE TIME (•									
TOTAL AMOUNT PURGE) (GAL.): 43												
MONITOR READING:								,					
	pm												
PURGE METHOD: Sub									-				
SAMPLE METHOD: T	eflou bailer												
DEPTH METHOD: G - line													
SAMPLE DATE & TIME:	_			S	AMPLE DATA	0,0),						
	1437	PH	S.C.		P.(*C)	JBS		& TURBI	DI TY				
SAMPLED BY:			1-6	2.2	_	1 7	1.1.	an 1	100				
BASILI	0	7,03	1060	23.	, 3	1,14	11/47 T	au i	01				
SI GNATURE(S):		OBSERVAT	TI ONS/NOTE	S:			-						
7-Bary	lis	Wat	er leve	(price	or to !	sam	plug :	: 7.8	D				
TYPE OF	SAMPLE			•		•	U						
LOW CONCENTRA													
☐ HI GH CONCENTE	RATION							-					
☐ COMPOSI TE								_					
☐ GRAB - COMPOS	I TE												
ANALYSIS:	PRESERVATI VE												
					f								
TPH BTEX					•								
BTEX													
					-	•							

MONITORING WELL DATA
DOMESTIC WELL DATA ☐ OTHER

PROJECT NAME E	lling ton		PRO	DJECT NU	JMBER	IK	74	
NUS SAMPLE NO. D	2-MW14-A	- A	SOURCE	^	1W-14			
TOTAL WELL DEPTH:						DATA P) 6.	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S.C.	TEMP. (° C)			TURBI DI TY
2"- PUC		1	6.81	1260	21.9	1.36	Brown	999
STATIC WATER LEVEL:				/ - 40				
ONE CASING VOLUME:	14.6	2	6.80	1250	21.9	1.29	Brown	999
START PURGE (HRS.):								
END PURGE (HRS.):	1004	3	6.80	1250	21.9	1,14	Brown	957
TOTAL PURGE TIME (M	IN.): 54							
TOTAL AMOUNT PURGED	(GAL.): 45				:			
MONITOR READING:								
Opp	om							
PURGE METHOD: Sub	nersible Pump							
SAMPLE METHOD: To	flow bailer							
DEPTH METHOD: E	-line							
SAMPLE DATE & TIME:				9	SAMPLE DATA	A 0,0		
8/27/93	1408	PH	S. C.	TEM	P. (° C)	JESS.	COLOR &	TURBI DI TY
SAMPLED BY:		10-	1220	24	7 1	1.63	clear	121
BASILI	0	6.73	1230	24	٠ ٨		CHAP	751
SI GNATURE(S):			TI ONS/NOTE					
2-barr	lis	Wata	er leu	d pri	or h	samp	ling =	9,25
TYPE OF	SAMPLE			•				
LOW CONCENTRA								
☐ HI GH CONCENTR								
GRAB COMPOSI TE								
GRAB - COMPOS	SITE							
ANALYSIS:	PRESERVATI VE							
		1						
TPH								
BTEX								
		1						
		1						
		1						
		1						
		1.						

MONITORING WELL DATA

DOMESTIC WELL DATA □ OTHER

PROJECT NAME E	lling ton		PR0	DJECT NU	IMBER	IKG	14	
NUS SAMPLE NOO	2-MW15-A-	4	SOURCE	/	4W-1	7		
TOTAL WELL DEPTH:		<u> </u>				DATA D	. D	
WELL CASING SIZE &	DEPTH:	VOLUME	PH	S. C.	TEMP. (° C)		COLOR &	URBI DI TY
	26.38 (Tuc)	1	6.69	1070	22.2		Clear	103
STATIC WATER LEVEL:	7.82 (Tx)							
ONE CASING VOLUME:	14.7	2	4.43	1030	21.8	1,21	Clear	15
START PURGE (HRS.):	915							
END PURGE (HRS.):	946	3	4.95	1030	21.7	1.40	Clear	33
TOTAL PURGE TIME (M	IN.): 31							
TOTAL AMOUNT PURGED	(GAL.): 48							
MONITOR READING:								
Opr	om							
PURGE METHOD: Sub1	nersible Pump							
	flow bailer			<u> </u>				
	- lin-c							
SAMPLE DATE & TIME:			·	9	AMPLE DAT	A		
8/27/93	1415	PH	S. C.	TEM	P. (° C)	TDS	COLOR &	TURBI DI TY
SAMPLED BY:			1024	24.	7	2.84	Clear	40
BASILI	0	7,05	1030				CHAV	90
SI GNATURE(S):			TI ONS/NOTE					
7- Basis	1/1-	11/4	- 104	1 44	ior to	Cha	naline =	7.85
TYPE OF	CAMPLE	walk	, 1-ev	i po		347	4	
TLOW CONCENTRA								
HIGH CONCENTR								
GRAB								
☐ COMPOSITE ☐ GRAB - COMPOS	RT TF							
	PRESERVATIVE							
					•			
TPH								
TPH BTEX								
		1						
]						
		1						

Appendix D

Monitor Well Development Forms

WELL DEVELOPMENT FIELD SHEET

DATE 8/16/93

WELL DEVELOPMENT FIELD SHEET

DATE 8/20/93

		J0	B NUMBER 1/1	94 LOCATION	SITE NUMBER
WELL NUMBE	R: MW	-12		LITHOLOGY OF SCREENED IN S, 1+ , S	
WELL CASIN	IG SIZE AND T			JIIF , 30	,
WELL DEPTH		00		Before development	COMMENTS 24.66 TOC
STATIC WAT	FR FVFI :			Alter developmen	
		7.28	Toc		
ONE CASING	VOLUME: 3	118 5	<u>ما</u>	27,18 - 7.28 =	19.9 x 1/6 = 3.18
PURGE METH	OD:			Pump rate 2	1.3 gpm
START PURG	e / Subi	mersible	Pump		
END PURGE:	/3/	<u> </u>			
	14	42			clear, non turbid,
TOTAL AMOU	NT PURGED: (GALLONS)	90		J. C. Trocky
	NT PURGED: ()	VELL VOLUMES			
1 2		5 6	(28)	Tunbiolty	DISSONUED DZ
VOLUME #	TEMPERATURE	рН	SPECIFIC CONDUCTIVITY	(NTU)	DISSOLUED D2
60 Sal	23.9	NA	905	241	0.57
70 sal	23,5	NA	903	66	2.25
80 sal	23.2	NA	1030	34	0.76
905al	22-7	NA	902	23	0.40
10 3-00					0.40
	1	ı	F		

WELL DEVELOPMENT FIELD SHEET

DATE 8/24/93

CLIENT E	llinston	JO	B NUMBER 1/1	44 LOCATION	SITE NUMBER
WELL NUMBE				LITHOLOGY OF SCREENED	
**CI C1C13	MW-1	3		Sand and	5.1+
WELL CASIN	MW-13	TPE:			COMMENTS
WELL DEPTH	:			Before developme	at - 22.35 TOC
	55 1505			After develop	ment - 27.64 Toc
STATIC WAT		38 T	`o c		
ONE CASING	VOLUME:			77/1/2 73% 2	1024 V // = 324
	3	1,24 5	al	21.69 - 1.38 -	$20.26 \times .16 = 3.24$
PURGE METH				Pump rate &	1,3 5pm
Surga	e / Su	bmersibl	le Vump		
START PURG	E:	2 /			
END PURGE:	/32	36			
END PURGE:	15	05		tinal water -	clear, non turbil, no sediment
TOTAL AMOU	NT PURGED: (GALL ONS 1			
		8	5		
		WELL VOLUMES		TUNBIDITY	01550/VED 02
1 2	3 4	5 6	(26)	(NTU)	
VOLUME #	TEMPERATURE	рH	SPECIFIC CONDUCTIVITY		
1. 1		- · ·	4		
60 gal	23,4	7.28	1050	294	0.82
65 gal	22.8	7.15	1100	167	0,87
				1 4 7	
70 sal	22-6	7.14	970	84	0,80
	22 9	211	1.3.		
70.5	22.8	1011	1030	44	0.64
80 sal	22.8	7.10	1050	30	0.63
		11.0		20	0,63
85 Sal	22.7	7.12	1040	28	0.65

WELL DEVELOPMENT FIELD SHEET

DATE 8/24/93

CLIENT Ellington JOB NUMBER 1/794 LOCATION_ SITE NUMBER LITHOLOGY OF SCREENED INTERVAL: MW-14 Silt, Sitty clay WELL CASING SIZE AND TYPE: WELL DEPTH: Before development -22.96 TOC After development -27.70 Tol STATIC WATER LEVEL: 8,25 TOC ONE CASING VOLUME: 27.70 - 8.25 = 19.45 X ,16 = 3.11 3, 11 gallons PURGE METHOD: Pump vate 2 1,3 9pm Surging / Submersible Pump START PURGE: / D 2 6
END PURGE: FINAL WATER clear, very st turbed 1225 train sidement TOTAL AMOUNT PURGED: (GALLONS) 160 TOTAL ANOUNT PURGED: (WELL YOLUMES) DISSOLUTO OX TURBIDITY TEMPERATURE VOLUME # CONDUCTIVITY (NTU) 60 gal 22.9 フィノス 1220 999 2.35 70 50 | 22.8 7.04 1230 736 2.55 6.98 80 52 22.6 1220 746 2.19 6.99 22.8 90 gal 1230 375 2.18 100 sal 22.9 6.97 1210 329 2.03 6.94 110 cal 22.8 1220 530 2,13 6,87 12050 23.0 1210 2.16 315 130 gal 22.8 6.87 1220 2.24 245 140 50 23.1 6.89 1210 149 2.18 6.91 150 50 22.8 1210 240 2,50 160 gal 23.1 6.89 1190 118 2.68

WELL DEVELOPMENT FIELD SHEET

DATE 8/25/93

CLIENT <u>L</u>	llington	J0	B NUMBER 1K9	4 LOCATION	SITE NUMBER
WELL NUMBE	R:			LITHOLOGY OF SCREENED INTE	RVAL:
	mw-			Sand and	Silt
WELL CASIN	2 SIZE AND T	VC			COMMENTS
WELL DEPTH	:			Before development	COMMENTS 24.27 TOC
				After developmen	+ - 26.38 TOC
STATIC WAT		7 66			
ONE CASING	VOLUME:	7,89		2/38 756 6	100 119 11 11 11 12 12 1
	2	,96		26.30 - 7.07 -	18,49 × .16 = 2.96
PURGE METH	00:	mersble	_	Pump vate = 1	1.3 Spm
Surg	c / Sub	omers 64	fump	•	
START PURG	£; 	20			
END PURGE:				Final water - 11	car, non turbid,
	9	56			no Sediment
TOTAL AMOU	NT PURGED: ((5 6		×
TOTAL AMOU	NT PURGED: ()	VELL VOLUMES	00		4
1 2			(34)	(URBIDITY	DISSOLUED D2
VOLUME #	TEMBERATURE	-11	SPECIFIC	(///۵)	
VOLUME #	TEMPERATURE	pH	CONDUCTIVITY		
70 sal	229	7.30	908	48	2 // 2
^			100		ړ، 43
80 sal	23.(7.17	1000	255	1,32
Δ.		211	1.000		
905el	11.7	7.16	1000	50	1.40
100 sel	23.1	7,16	1000	38	1,60
700	,		7000	30	11.40
4					

Appendix E

Chain of Custody Forms

CHAIN-OF-CUSTODY RECORD Analytical Request

pamentel Report To: Lila Stell 2.	1.91	P.O. # / Billing Reference	Project Name / No. (/) ** Requested Due Date:	PRESERVATIVES ANALYSES /	TAIN	COOL	O°		1 2 5 5	A XX A XX	A 1140 S - S 0411 A	3 1	\text{\frac{1}{3}}{3}	1600 W	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1545 W Y X X	SHIPMENT METHOD ITEM RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION DATE TIME	1 PAC 815 1645	000	のでは、「大きなでは、「大きなでは、「大きなでは、「大きなない」では、「大きなない」では、「大きなない」では、「大きなない」では、「大きなない」では、「大きなない」では、「大きなない」では、「大きな 大きなない 大きなない 大きなない アンド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1000000000000000000000000000000000000
Client B+ M CHULDAMENTE	Address		Phone	Sampled By (PRINT):	Larry 15a51110	Date Sampled	Come a	MATRIX	D2-5820-A-A	2 B2-5B20-8-A 1110 S		1	5 D2- 7802- A-A - W	8		FB02- A-A 1545	SHIPMENT SHIPMENT OUT / DATE		Additional Comments		

SEE REVERSE SIDE FOR INSTRUCTIONS

H245825-843

CHAIN-OF-CUSTODY RECORD Analytical Request

Report To: LIN la Straphla P.O. # / Billing Reference / 1/4 9 4 区川いかわ Project Name / No. **PRESERVATIVES** NO. OF CONTAINERS B+R Chummak Sampled By (PRINT): Address Client Phone

Pace Project Manager Requested Due Date: Pace Project No. Pace Client No.

ANALYSES REQUEST

REMARKS

AOV

^EONH OS²H

PACE NO.

NAPRESERVED

8/1/83

Date Sampled

Lavir

Sampler Signature

XXXQ

TO THE SOUTH OF THE STATE OF TH

10日本の大学の大学の大学の

90

A-2-51818-60

A-A-2105-co

9

S

02- FD21-8-A

က

S021- C- 4

02-5B11-B-A

a

02-5821-A-A

OUT / DATE

COOLER NOS

Additional Comments

Derrigo (100) 1945 8/15 1(45) ACCEPTED BY / AFFILIATION The second of th

A CONTRACTOR OF THE PROPERTY O

H 245 825-843 THE PARTY OF THE P

ORIGINAL

SEE REVERSE SIDE FOR INSTRUCTIONS

THE ASSURANCE OF QUALITY

CHAIN-OF-CUSTODY RECORD Analytical Request

REMARKS Pace Project Manager Requested Due Date: Pace Project No. Pace Client No. THE REPORT OF THE PARTY OF THE The second secon 42416033-044 メメ 1800 P.O. # / Billing Reference \mathcal{H}_{q} Report To: Lluch Steally Ellington Buc RELINGUISHED BY / AFFILIATION ANALYSES REQUEST Project Name / No. E Const Treatment **PRESERVATIVES** AOV ^EОNН [†]OS^zH UNPRESERVED RETURNED / DATE OF CONTAINERS PACE NO. TIME MATRIX OUT / DATE 828 726 (5+1/2 Consuman Date Sampled D2-5015-8-A D2-5015-C-A 02- FD15-C-A 02-5B15-A-A 02-5018-B-A 07-5018-A-A 02-5018-6-4 SAMPLE DESCRIPTION イロのメ Sampled By (PRINT): Additional Comments Sampler Signature Client Address Phone

127933

ECORD	
STODY R	uest
-OF-CUS	ical Req
CHAIN	Analyt

testhey Pace Client No.	Pace Project Manager	1494 Pace Project No.	Pequested Due Date:		\ \	19/07/2/X	10/0/0/9/	/ / / / / / REMARKS	***		- X	×	××××		Jan /		FILIATION ACCEPTED BY / AFFILIATION DATE TIME	Com (May / Mac 8 11/13 1800	
Report To: Linda Steakley	Bill To: \$ KC	P.O. # / Billing Reference	Project Name / No.	PRESERVATIVES ANALYSES	ED	SEBA). OF PRE O₄		-		_	7					METHOD RETURNED / DATE NUMBER RELINQUISHED BY / AFFILIATION	Malebu	04/
B+R Chrisometal					1508.11.	Date Sampled	1010	SAMPLE DESCRIPTION TIME MATRIX	2 roll A-A-	7-B-A 1122 S	7-C-A 1157 S	3-A-A - W	2-A-A 1600 W	M SIal	1340 6	1802/10	BAILERS SHIPMENT METHOD OUT / DATE RETURNE		
Client $\beta + \mathcal{R}$	Address		Phone	Sampled By (PRINT):	(ann)	Sampler Signature	10	ITEM SAMPLE NO.	1 01-5B17-A-A	2 Oz SB17-B-A	3 02 - 5B17-C-A	4 02- TB03-A-A	5 01- KBO2- A-A	51-95	7 50-17	8 58 -18	COOLER NOS.		Additional Comments

 128121

CHAIN-OF-CUSTODY RECORD Analytical Request

Ubbans/PACF 8/11 1715 REMARKS Pace Project Manager Requested Due Date: Pace Project No. Pace Client No. ACCEPTED BY / AFFILIATION Report To: Mach Secret Ellington ANALYSES REQUEST P.O. # / Billing Reference Project Name / No. **PRESERVATIVES** AOV OS2H ONPRESERVED OF CONTAINERS TIME MATRIX PACE NO. OUT / DATE 1750 1435 525 8 B+N Khussumerts Date Sampled 575 4750 OL-5823-C-A 02-5823-8-4 02-FD23-C-A 02-5819-C-A 02-5B23-A-A 02-TBO4-A 02-5019-A-A 02-5819-B-A Additional Comments Sampled By (PRINT): Sampler Signature Address Client

80C-C600H2H

 CHAIN-OF-CUSTODY RECORD Analytical Request

Client B+R Envisormental	Report To:
Address	Bill To:

Pace Client No.	Pace Project Manager	Pace Project No.	*Requested Due Date:			REMARKS				· ·	Hold, Bourt	AMAYCZUE		ACCEPTED BY AEEI IATION
Report To: May Steure	Bill To: BAKE	P.O. # / Billing Reference // 94	Project Name / No. (1/45 + 24	PHESEHVATIVES ANALYSES REQUEST REQUEST		00 ОF Н2504 Н2504	××	>	× ×			;		DELINGUEDED DV. A RECH IATION
Client By L [NOISON Mechal			Phone < 75 4750	Sampled By (PRINT): (SMS/L/)	Sampler Signature	ITEM SAMPLE DESCRIPTION TIME MATRIX PAGENO.	1 62-5822-A-A 815 S	2 W2-5B22-B-A 820 S	3 O2-5B22-C-A 906 5	4 02-11803-4-4 1635 W	5 SB22 959 B	6 SB23 (345 W	7 SB19 16	8 SHIPMENT METHOD

3-Clobers 1PACE 3/11 8 のないをできないというないのでは、これのははいいのできないできない。

4246697-708

SEE REVERSE SIDE FOR INSTRUCTIONS

Additional Comments

CHAIN-OF-CUSTODY RECORD Analytical Request

Client Blunt Rust Environmen	4	16 Speacet	Pace Client No.
Address		Bill To: BAE	Pace Project Manager
		P.O. # / Billing Reference K 94	Pace Project No.
Phone (513) 575 4750		Project Name / No. Elling for	*Requested Due Date:
Sampled By (PRINT):		PRESERVATIVES ANALYSES / / /	
0. 6.6500		Œ	
Sampler Signature Date Sampled		EBVI	
1/80	08/12/93	°(
ITEM SAMPLE DESCRIPTION	TIME MATRIX PACE NO.	H ₂ S ₂ H HNC VOA	/ REMARKS
03-5BMU11-A-A	15.5 T180	X X NOTE TO THE REST OF THE PARTY OF THE PAR	
	-	•	
3 02-5BMW11-C-A	0921 Se; (
4 UZ-TB05-A	1 12 10		
5 02-R804-A-A	130 mil.		
800h: 34050	2000 P. P. P. P. P. P. P. P. P. P. P. P. P.		
COOLER NOS. BAILERS	SHIPMENT METHOD	ITEM RELINQUISHED BY / AFFILIATION ACCEPTED BY / AFFILIATION	AFFILIATION DATE TIME
			8-12 1800
Additional Comments			

SEE REVERSE SIDE FOR INSTRUCTIONS

42472 -776

127931

CHAIN-OF-CUSTODY RECORD
Analytical Request

Report To: Mark Spece Client No. Bill To: Billing Reference / Agy Project Name / No. Lingter Pace Client No.
Client S - 1 (- h U (w w < t tree to be the second we can be second which the second we can be second with the second we can be second with the second we can be second with the second we can be second with the second with the second we can be second with the second wi

150-0HOLHEH

Pace Client No.	Pace Project Manager	Pace Project No.	*Requested Due Date:			/// REMARKS			1 4.11 Po Nor	> conspr.	_				ACCEPTED BY / AFFILIATION DATE TIME	Ada 1946 8/4 1100	
Report To: Mark Spencer	Bill To: BRE	P.O. # / Billing Reference $/\mathcal{H}\mathcal{G}\mathcal{H}$	Project Name / No. Ellyston	PRESERVATIVES ANALYSES ARGUEST ARGUEST ARGUEST ARGUEST	ε(*	18 12 N	×		**************************************	X		ITEM RELINQUISHED BY / AFFILIATION		Arend 1000
Client 13 + 12 [Mountain	Address		Phone \$75-4750	Sampled By (PRINT):	or Signature,	ITEM SAMPLE DESCRIPTION TIME MATRIX PACE NO. S	1 02-KB05-A-A 1530 W 4	2 02-TBOG-A-A - W 2	3 5B-26 1305 W	4 SB-25 1145 W	5 SB-14 940 W	6 02-5826-C-A 1422 5	7 62-FD26-C-41 1422 5 1	ω	COOLER NOS. BAILERS OUT / DATE RETURNED / DATE		Additional Comments

CHAIN OF CUSTODY

GARIYSE SCAPIC 02-5827-8-1 REMARKS Note: Please on 24her turational PHONE # INVOICE REQUESTED ANALYSIS Same DATE/TIME RECEIVED BY: SIGN H247375-384 ADDRESS COMPANY ATT. 21P ンメバク 375 4761 PHONE # STATE REPORT TO: RELINQUISHED BY: SIGN X X 4524 DATE/TIME SAMPLE CONDITION X BRE city fors for ADDRESS BOX Mark Z ⊃ 🗷 🛈 🗆 🥸 Seif COMPANY SUBSURFALE SAMPLE SOURCE & DESCRIPTION 所16.10 22-26 ر رح IVED BY: SIGN PROJECT NUMBER

| | 694

PMS CODE PROJECT NAME ton SKAB COMPOSITE 1602 1620 1534 TI XE DATE/TIME DATE/TIME DATE 3//8 (23) HALLIBURTON NUS × 16360 PARK 10 PLACE DRIVE, SUITE 300 HOUSTON, TEXAS 77084 (713) 492-1888 02-5/327-4-4 02-5827-C-A 02-51327-B-A SAMPLE NUMBER REC INDUISHED BY: SIGN

14 15

10

12 5

CHAIN OF CUSTODY

REMARKS 21P ë PHONE # San INVOICE STATE REQUESTED ANALYSIS DATE/TIME RECEIVED BY: SIGN ADDRESS H247375-384 1963565 STATE 4574 PHONE # REPORT TO: RELINOUISHED BY: SIGN X \bowtie × DATE/TIME SAMPLE CONDITION X ADDRESS PO BOX CITY fors to. z p z a u c MI Mack Solc COMPANY SAMPLE SOURCE & DESCRIPTION SUBSULFALL , 51-, 41 WARK 7-9' 12-21 1-3 ٠٠/ 7-9' PROJECT NAME
FOLSECT NUMBER 94 PACE IVED BY × × 3 × × 6 NHHONDEOC PMS CODE 0543 085% 7160 TI ME DATE/TIME DATE/TIME DATE 2/13 63 HALLIBURTON NUS 16360 PARK 10 PLACE DRIVE. SUITE 300 HOUSTON, TEXAS 77084 02- RB 06- A-A 02-5B28-A-A 07-5828-C-A 02-5B28-13-A 02-5B29-C-A 02-TBC7-A-A 03-5B29-A-A 02-5029-B-A SAMPLE NUMBER HEL INQUISHED BY: SIGN (713) 492-1888

14

12 13

9 Ξ

CHAIN OF CHOTON DECORD	UNCOUNT TOUCHOUT MECONING	Anglytical Bounet	שומו אוכמות ווכמות ב

Client BAR Environmental	Report To: Mark Spencer	Pace Client No.
Address	BIII To: BRE	Pace Project Manager
	P.O. # / Billing Reference //c 94	Pace Project No.
Phone 575 4753	Project Name / No. Filing for	*Requested Due Date:
Sampled By (PRINT):		
Sampler Signature Date Sampled SO OOO OOO OOOOOOOOOOOOOOOOOOOOOOOOOO	ESEBAEI	
ITEM SAMPLE DESCRIPTION TIME MATRIX PACE NO.		// REMARKS
1 02 - RBOC-A-A 1333 WATER 3	X X X TO THE TABLE OF THE PARTY	
r		
4	COMPUNE ADMINISTRAÇÃO DA COMPANSA DE ADMINISTRAÇÃO DE COMPUNE ADMINISTR	
م		
000		5
SHIPMENT METHOD SOULER NOS. BAILERS OUT / DATE RETURNED / DATE	ITEM RELINQUISHED BY / AFFILIATION	ACCEPTED BY / AFFILIATION DATE TIME
	0 4 - M	dow /ACE 8/18 1350
Additional Comments		
	H217411-419-42	

Instructions for completing Chain of Custody (COC)

- Complete all Client Information at top of sheet: name, address, phone, contact (person to whom report will be sent and contact can be made if questions arise). billing information if different from client, PO#, Project Name and/or Project Number as it will appear on the report.
- PACE Client No., Project Manager and Project No. will be completed by PACE.

0

:5

- A separate COC must be filled out for each day of sample collection.
- Sampler should print their name in the space provided and sign their name followed by the date of the sampling event.
- Complete Sample Description as it will appear on the laboratory report; include time of sampling, sample matrix, no. of containers and container types.
- Analyses Requested: Complete analyses on the lines provided and place a check in the column for the samples requiring the analysis. It may be necessary to use the space provided for additional comments or include attachments for extended lists of parameters. 6
- indicate method of shipment used for return of samples and date sent.
- Submission of samples to laboratory: Indicate Item Number of those samples being transferred; sign relinquished by, and include your affiliation. ∞

'IMPORTANT NOTE:

Standard Turnaround Time is 3-4 weeks. If this does not satisfy your requirements, arrangements must be made prior to samples being submitted to the laboratory. Contact your project manager. Special Project Requirements such as Low Level Detection Limits or level of QC reported must be indicated on the chain of custody. (Use Additional Comments Section.)

4

IALLIBURTON NUS PROJECT NAME A

NOTHING THE NEW YORK	1110		•)				REPORT TO:	T0:		-		INVOICE TO:	E T0:	
Finite mental Corporation		PROJECT NAME	¥.	404		8 & Suco		Envisormenta	ntal		COMPANY		Same		
		PROJECT NU	150 150	7		ADDRESS	304	457	7		ADDRESS		1		
16360 PARK 10 PLACE DRIVE. SUITE 300	00	PMS COD	111			CITY	3	STATE	ш	21P 012CC	CITY		STATE	3. ZIP	
HDUSTON, TEXAS 77084 (713) 492-1888						MIT. Spincer	3000		PHONE #	4701	ATT.			PHONE #	
			卜	-			۲				32	QUESTED	REQUESTED ANALYSIS		
SAMPLE NUMBER	DATE (93)	TINE	N-H-NOTEON	Ω K < B	SAMPLE SOURCE & DESCRIPTION	88	NDXF K-ZEKS	HG7	KA18					REW	REMARKS
102-58 83-A-A	61/8	833		2	C'-2' Subsurpacé	2005	7	X							
32 - 8-11	8/19	748		ω ~	8,-10,		~	X							
4-7	51/8	0 909		K //	16-18		7	とく							
	8/19	1001		5 7	٥٠٦١		~	イン							
	8/19	1034		, 7	12/4		~	7				-			
5833-6-4	3/19	1042		, ,	10,-18,		~	イイ							
4-1	8/19	9969		/ ×	10,-18,			イス							
-TB09-A-A	8/18	1		×	water		re	×							
01				-											
								_							
12															
13															
15															
RELINGATION SOLD		BESTITAL RECEIVED BY: SIGN	CE IVE	.D BY:	SIGN	æ	EL INOUIS	RELINQUISHED BY: SIGN	ICN	a	ATE/T INE	DATE/TIME RECEIVED BY: SIGN	Y: SIGN		
RELINDUISHED BY: SIGN	Va	TE/TIME HE	CEIVE	r POR	DATE/TIME RECEIVED FOR LABORATORY BY: SIGN	DATE/TIME SAMPLE CONDITION	AWPLE CO		677	A4347475-82	-51	3			
		₹ ()	4	*	1										

	_	,	
i	7		
- 1		,	
ì	ĭ	í	
1	•	=	
-	2	;	
1	Ē	5	5
	H		ne
	_	ś	2
	4	Ç	ĕ
	نيا	=	-e
	۲	2	<u>ت</u>
	2	Ę	5
	<	ζ	2
	ל	5	۵

BID Friend A		Report To: $eta A oldsymbol{arepsilon}$	Pace Client No.	
driess P.O. Bu 4574		Bill To: 5,	Pace Project Manager	
14. to tx 77210		P.O. # / Billing Reference / 1/2 5 /	Pace Project No.	
1206		Project Name / No. Elling for	*Requested Due Date:	
ed By (I		PRESERVATIVES ANALYSES /		
Gibson				
Sampler Signature Bare Sampled	/ 25			
ITEM SAMPLE DESCRIPTION	TIME MATRIX PACE NO.	UNPI PAOV		
02-5834-A-A	735 801	XX 10 CONTRACTOR OF THE CONTRA		
2 OL-5B34 - B-A	208	★ ★		
3 C1-5834-C-A	88	✓ X		
	7 "8	ODANS GROBER SAME SERVERS		
5 02-7804-4-4	- com	×		
6 02- RB67-A-A	7 6911	X X X X X X X X X X X X X X X X X X X		
		TANK TO AN AN AN AN AN AN AN AN AN AN AN AN AN		

COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED / DATE	ITEM RELIN	ACCEPTED BY / AFFILIATION DATE TIME	
		They But	Voriginal PACE 8/20 1245	Ŋ
Additional Comments		0371 68/71/8) [
			15-05:25-018-23:50-21	

SEE REVERSE SIDE FOR INSTRUCTIONS

		CHAIN-OF-CUSTODY RECORD Analytical Request
Toites Men to	Report To: Mar K Spenier	Pace Client No.
	Bill To: 13.R.E	Pace Project Manager

Pace Client No.	Pace Project Manager	Pace Project No.	*Requested Due Date:				/// REMARKS						Di Nice.	ACCEPTED BY / AFFILIATION DATE TIME	12,000 - 1AKE 8/21 1709			48156-158
Report To: Man K Spenier	BIII To: 132 E	P.O. # / Billing Reference 1 < 9 4	Project Name / No. Ellins to	PRESERVATIVES ANALYSES / / REQUEST	ED	o [†] VEREEN	HASSH HACOV	→ Constitution of the state of	*	×				ITEM RELINQUISHED BY / AFFILIATION	8/min	424/63 17030		#H348156
Client Brown & Reit Envisor menth	Address (24514	He., h. 74 77210	1964	d By (PRINT):	D. G. 5 sv.	1	PACE NO.	1 02-5B35-A-A 835 501L	2 OL-5 BS5-B-A 913 Soic 1	3 62-TB11-AA - wm 2	4	ın	•	SHIPMENT METHOD COOLER NOS. BAILERS OUT / DATE RETURNED / DATE		Additional Comments These are the 14st of the Soil	Samples from Ellinston.	

IN CORPORATED		CHAI	CHAIN-OF-CUSTODY RECORD Analytical Request
Client S/2 E		Report To: Mauli Spencer Pace	Pace Client No.
Address		Bill To: BAC Pace	Pace Project Manager
		P.O. # / Billing Reference / 1194 Pace	Pace Project No.
07(5) -1(2)		Project Name / No. C. /// My for "Requ	*Requested Due Date:
Sampled By (PRINT):		PRESERVATIVES ANALYSES ARGUEST	
e Sampled	8/17/93	CONTACTOR OF THE PROPERTY OF T	
ITEM SAMPLE DESCRIPTION	U / L () TIME MATRIX PACE NO.	UNPRE \$OOs HUO3 VOA	REMARKS
1 02-MW07-A-A	130 W	XXX	
2 OL- MWO8- A-A	1348 W		
3 02-MW 09- A-A	1505 W	2 2	
4 02- MW10-17-14	1534 6	XXX X	
5 02-MW11-A-A	No W	X X X	
	W 405/	X	
7 82-MW12-4-A	1428 W	くく	
·	W rety	$ \mathcal{S} $	
COOLER NOS. BAILERS	SHIPMENT METHOD OUT / DATE RETURNED / I	TEM RELINQUISHED BY / AFFILIATION ACCE. TED BY / AFFILIATION ACCE. TED BY / AFFILIATION	FILIATION DATE TIME
			eb 8-27-93 (730
Additional Comments Per Larry Baarle 8/30/93 - Change analysis	hange analysis	8/11/63 /736	
Leguest to TOH and BTEX ONLY TO SIDABOIN.	1)+3-A-A , 8/30/9	·38/n; / harmone was a second of the second	
02-111818 11 11 11 11 11 11 11 11 11 11 11			こうこうかい 一大のない こうしゅう こうしゅ かんしゅうしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう かんしゅう しゅうしゅう しゅうしゅう

C SCC, 08C- 20C3/18H

INCORPORATED THE ASSURANCE OF QUALITY			CHAIN-OF-CUSTODY RECORD Analytical Request
Slent KKE		Report TO: Mark Spencer	Pace Client No.
Arthrese		Bill To: BMC	Pace Project Manager
, remote the second sec		P.O. # / Billing Reference // 94	Pace Project No.
Phone		Project Name / No. Ellutto	*Requested Due Date:
Sampled By (PRINT):			
Sampler Signature Date Sampled X 127/93	~	77/2/2/	
	TIME MATRIX PACE NO.		// REMARKS
p-4-4mw -20	M 30H	3 X North Telegraphy and State State College State Sta	
	3	2	
3 02-TB12-A-A	3	*	
4 D2- RBO8-A-A 1645	is W	TO THE REPORT OF THE PARTY OF T	- NO. 10 10 10 10 10 10 10 10 10 10 10 10 10
ın (200	Company of the Compan
September 1997	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20		
COOL FR NOS. BAILERS	SHIPMENT METHOD	ITEM RELINQUISHED BY / AFFILIATION ACC'ST	ACC:EPTED BY / AFFILIATION DATE TIME
	ne i onve	J. Hall 16	48/MLE 8-27-95 1750
Additional Comments		120 LSO 120	
		1.20 SOLS 424	

Appendix F

Aquifer Test Data

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>
AQTESOLV RESULTS Version 1.10	
09/09/93	07:34:34
TEST DESCRIPTION	= = = = = = = = = = = = = = = = = = =
Data set	
Knowns and Constants: No. of data points	
ANALYTICAL METHOD	======================================
Bouwer-Rice (Unconfined Aquifer Slug Test)	

<<<<<<<<<<<<<<<<<<>>>>>

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 5.9701E-004 +/- 2.5658E-006

y0 = 1.7227E + 000 + /- 1.9588E - 003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Number of residuals...... 109 Number of estimated parameters.... 2 Degrees of freedom...... 107 Residual mean...... 0.00326 Residual standard deviation..... 0.01126 Residual variance...... 0.0001268

Model Residuals:

	Time	Observed	Calculated	Residual	Weight
	0.0067	1.74	1.7157	0.024332	1
	0.01	1.72	1.7122	0.0077747	1
	0.0134	1.72	1.7087	0.011315	1
	0.0167	1.72	1.7053	0.014743	1
	0.02	1.7	1.7018	-0.0018348	1
	0.0234	1.7	1.6983	0.0016836	1
	0.0267	1.7	1.6949	0.0050916	1
	0.03	1.69	1.6915	-0.0015073	1
	0.0334	1.69	1.688	0.0019898	1
	0.0367	1.69	1.6846	0.0053771	1
	0.04	1.69	1.6812	0.0087575	1
	0.0434	1.69	1.6778	0.012233	1
	0.0467	1.69	1.6744	0.0156	1
	0.05	1.67	1.671	-0.0010399	1
	0.0534	1.67	1.6676	0.0024148	1
	0.0567	1.67	1.6642	0.0057611	1
	0.06	1.67	1.6609	0.0091007	1
	0.0634	1.66	1.6575	0.0025344	1
	0.0667	1.66	1.6541	0.0058604	1
	0.07	1.66	1.6508	0.0091797	1
	0.0734	1.66	1.6474	0.012593	1
	0.0767	1.66	1.6441	0.015898	1
	0.08	1.64	1.6408	-0.00080235	1
	0.0834	1.64	1.6374	0.0025899	1
_	0.0867	1.64	1.6341	0.0058756	1
INSERT	0.09	1.62	1.6308	-0.010845	1
	JU.U234	1.62	1.6275	-0.0074736	1
0.0967	0.1134	1.61	1.6078	0.0022189	1
	0.1301	1.59	1.5915	-0.0015205	1
	0.1467	1.58	1.5755	0.0044798	1
	0.1634	1.56	1.5596	0.00041406	1
	0.1801	1.54	1.5438	-0.0038128	1
	0.1967	1.53	1.5283	0.0017078	1
	0.2134	1.51	1.5128	-0.0028355	1
	0.2301	1.5	1.4975	0.0024648	1
	0.2467	1.48	1.4825	-0.0024798	1
	0.2634	1.46	1.4675	-0.0074865	1
	0.2801	1.45	1.4526	-0.0026448	1

0.2964	1.43	1.4383	-0.0083033	1	
0.3134	1.42	1.4235	-0.0034968	1	
0.3301	1.4	1.4091	-0.0091	1	
0.3467	1.38	1.3949	-0.014934	1	
0.3634	1.37	1.3808	-0.010826	1	
0.3801	1.35	1.3669	-0.016861	1	
0.3967	1.35	1.3531	-0.003119	1	
0.4134	1.34	1.3394	0.00056605	1	
0.4301	1.32	1.3259	-0.0058873	1	
0.4467	1.31	1.3126	-0.0025576	1	
0.4634	1.29	1.2993	-0.0092828	1	
0.4801	1.29	1.2861	0.0032525	1	
0.4967	1.27	1.2732	-0.0032122	1	
0.5134	1.26	1.2603	-0.00032122	1	
0.5301	1.24	1.2476	-0.0075887	1	
0.5467	1.24	1.235	-0.0050461	1	
		1.2226			
0.5634	1.21		-0.012555	1	
0.5801	1.21	1.2102	-0.00019073	1	
0.5967	1.19	1.198	-0.0080242	1	
0.6134	1.18	1.1859	-0.0059077	1	
0.6301	1.16	1.1739	-0.013914	1	
0.6467	1.16	1.1621	-0.002112	1	
0.6634	1.15	1.1504	-0.00035874	1	
0.6801	1.13	1.1387	-0.0087244	1	
0.6967	1.11	1.1273	-0.017276	1	
0.7134	1.11	1.1159	-0.0058754	1	
0.7301	1.1	1.1046	-0.0045898	1	
0.7467	1.08	1.0935	-0.013485	1	
0.7634	1.08	1.0824	-0.0024257	1	
0.9634	0.94	0.95836	-0.018358	1	
1.1634	0.83	0.84851	-0.018511	1	
1.3634	0.73	0.75125	-0.021254	1	
1.5634	0.65	0.66515	-0.015145	1	
1.7634	0.59	0.58891	0.0010939	1	
1.9634	0.53	0.52141	0.0085944	1	
2.1634	0.46	0.46164	-0.0016419	1	
2.3634	0.41	0.40873	0.0012716	1	
2.5634	0.37	0.36188	0.0081201	1	
2.7634	0.34	0.3204	0.019599	1	
2.9634	0.29	0.28368	0.0063233	1	
3.1634	0.26	0.25116	0.0088384	1	
3.3634	0.24	0.22237	0.017627	1	
3.5634	0.24	0.19688	0.017027	1	
3.7634	0.21	0.17432	0.015115		
				1	
3.9634	0.18	0.15434	0.025662	1	
4.1634	0.16	0.13665	0.023353	1	
4.3634	0.13	0.12098	0.0090152	1	
4.5634	0.13	0.10712	0.022883	1	
4.7634	0.11	0.09484	0.01516	1	
4.9634	0.1	0.083969	0.016031	1	
5.1634	0.1	0.074345	0.025655	1	
5.3634	0.08	0.065823	0.014177	1	
5.5634	0.08	0.058278	0.021722	1	
5.7634					
0.700.	0.06	0.051599	0.0084014	1	

1		0.014316	0.045684	0.06	5.9634
1		0.009552	0.040448	0.05	6.1634
1		0.014188	0.035812	0.05	6.3634
1		0.018293	0.031707	0.05	6.5634
1		0.021927	0.028073	0.05	6.7634
1)	0.0051449	0.024855	0.03	6.9634
1	}	0.0079938	0.022006	0.03	7.1634
1		0.010516	0.019484	0.03	7.3634
1		0.012749	0.017251	0.03	7.5634
1	1	0.0047267	0.015273	0.02	7.7634
1	i	0.0064773	0.013523	0.02	7.9634
1	i	0.0080273	0.011973	0.02	8.1634
1		0.0093996	0.0106	0.02	8.3634
1	í	0.010615	0.0093854	0.02	8.5634
1		0.01169	0.0083096	0.02	8.7634
1	i	0.012643	0.0073572	0.02	8.9634
1	;	0.013486	0.0065139	0.02	9.1634

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 5.9701E-004y0 = 1.7227E+000

TYPE CURVE DATA

K = 5.59992E-004y0 = 1.60594E+000

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(2.222)						
0	0.0000	-0.2366	10.978	0.48	1.23	0.72	0.56
1	0.0033	-0.2333	9.067	-1.43	3.14	1.84	1.43
2.	0.0067	-0.2299	9.290	-1.21	2.91	1.71	1.32
3	0.0100	-0.2266	9.402	-1.10	2.80	1.64	1.27
4	0.0133	-0.2233	10.978	0.48	1.23	0.72	0.56
5	0.0167	-0.2199	10.421	-0.08	1.78	1.05	0.81
6	0.0200	-0.2166	11.535	1.04	0.67	0.39	0.30
7	0.0233	-0.2133	9.020	-1.48	3.18	1.87	1.45
8	0.0267	-0.2099	8.988	-1.51	3.22	1.89	1.46
9	0.0300	-0.2066	9.641	-0.86	2.56	1.50	1.17
10	0.0333	-0.2033	10.214	-0.29	1.99	1.17	0.90
11	0.0366	-0.2000	11.885	1.39	0.32	0.19	0.15
12	0.0400	-0.1966	10.532	0.03	1.67	0.98	0.76
13	0.0433	-0.1933	9.052	-1.45	3.15	1.85	1.43
14	0.0466	-0.1900	10.596	0.10	1.61	0.94	0.73
15	0.0500	-0.1866	10.484	-0.02	1.72	1.01	0.78
16	0.0533	-0.1833	9.131	-1.37	3.07	1.80	1.40
17	0.0566	-0.1800	9.242	-1.26	2.96	1.74	1.35
18	0.0600	-0.1766	9.720	-0.78	2.48	1.46	1.13
19	0.0633	-0.1733	9.306	-1.19	2.90	1.70	1.32
20	0.0666	-0.1700	11.280	0.78	0.92	0.54	0.42
21	0.0700	-0.1666	11.360	0.86	0.84	0.50	0.38
22	0.0733	-0.1633	10.261	-0.24	1.94	1.14	0.88
23	0.0766	-0.1600	10.166	-0.33	2.04	1.20	0.93
24	0.0800	-0.1566	10.389	-0.11	1.82	1.07	0.83
25	0.0833	-0.1533	10.214	-0.29	1.99	1.17	0.90
26	0.0866	-0.1500	10.277	-0.22	1.93	1.13	0.88
27	0.0900	-0.1466	10.293	-0.21	1.91	1.12	0.87
28	0.0933	-0.1433	10.277	-0.22	1.93	1.13	0.88
29	0.0966	-0.1400	10.230	-0.27	1.97	1.16	0.90
30	0.1000	-0.1366	10.293	-0.21	1.91	1.12	0.87

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	-0.1333	10.437	-0.06	1.77	1.04	0.80
32	0.1066	-0.1300	10.214	-0.29	1.99	1.17	0.90
33	0.1100	-0.1266	10.325	-0.18	1.88	1.10	0.85
34	0.1133	-0.1233	10.325	-0.18	1.88	1.10	0.85
35	0.1166	-0.1200	10.309	-0.19	1.90	1.11	0.86
36	0.1200	-0.1166	10.341	-0.16	1.86	1.09	0.85
37	0.1233	-0.1133	10.325	-0.18	1.88	1.10	0.85
38	0.1266	-0.1100	10.309	-0.19	1.90	1.11	0.86
39	0.1300	-0.1066	10.357	-0.14	1.85	1.08	0.84
40	0.1333	-0.1033	10.293	-0.21	1.91	1.12	0.87
41	0.1366	-0.1000	10.421	-0.08	1.78	1.05	0.81
42	0.1400	-0.0966	10.341	-0.16	1.86	1.09	0.85
43	0.1433	-0.0933	10.309	-0.19	1.90	1.11	0.86
44	0.1466	-0.0900	10.437	-0.06	1.77	1.04	0.80
45	0.1500	-0.0866	10.341	-0.16	1.86	1.09	0.85
46	0.1533	-0.0833	10.325	-0.18	1.88	1.10	0.85
47	0.1566	-0.0800	10.468	-0.03	1.74	1.02	0.79
48	0.1600	-0.0766	10.341	-0.16	1.86	1.09	0.85
49	0.1633	-0.0733	10.389	-0.11	1.82	1.07	0.83
50	0.1666	-0.0700	10.389	-0.11	1.82	1.07	0.83
51	0.1700	-0.0666	10.389	-0.11	1.82	1.07	0.83
52	0.1733	-0.0633	10.421	-0.08	1.78	1.05	0.81
53	0.1766	-0.0600	10.389	-0.11	1.82	1.07	0.83
54	0.1800	-0.0566	10.405	-0.10	1.80	1.06	0.82
55	0.1833	-0.0533	10.421	-0.08	1.78	1.05	0.81
56	0.1866	-0.0500	10.405	-0.10	1.80	1.06	0.82
57	0.1900	-0.0466	10.421	-0.08	1.78	1.05	0.81
58	0.1933	-0.0433	10.421	-0.08	1.78	1.05	0.81
59	0.1966	-0.0400	10.421	-0.08	1.78	1.05	0.81
60	0.2000	-0.0366	10.437	-0.06	1.77	1.04	0.80
61	0.2033	-0.0333	10.437	-0.06	1.77	1.04	0.80

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	` ,						
62	0.2066	-0.0300	10.437	-0.06	1.77	1.04	0.80
63	0.2100	-0.0266	10.437	-0.06	1.77	1.04	0.80
64	0.2133	-0.0233	10.437	-0.06	1.77	1.04	0.80
65	0.2166	-0.0200	10.405	-0.10	1.80	1.06	0.82
66	0.2200	-0.0166	10.484	-0.02	1.72	1.01	0.78
67	0.2233	-0.0133	10.437	-0.06	1.77	1.04	0.80
68	0.2266	-0.0100	10.452	-0.05	1.75	1.03	0.80
69	0.2300	-0.0066	10.468	-0.03	1.74	1.02	0.79
70	0.2333	-0.0033	10.421	-0.08	1.78	1.05	0.81
71	0.2366	0.0000	10.500	0.00	1.70	1.00	0.77
72	0.2400	0.0034	10.468	-0.03	1.74	1.02	0.79
73	0.2433	0.0067	10.468	-0.03	1.74	1.02	0.79
74	0.2466	0.0100	10.484	-0.02	1.72	1.01	0.78
75	0.2500	0.0134	10.484	-0.02	1.72	1.01	0.78
76	0.2533	0.0167	10.484	-0.02	1.72	1.01	0.78
77	0.2566	0.0200	10.500	0.00	1.70	1.00	0.77
78	0.2600	0.0234	10.500	0.00	1.70	1.00	0.77
79	0.2633	0.0267	10.500	0.00	1.70	1.00	0.77
80	0.2666	0.0300	10.516	0.02	1.69	0.99	0.77
81	0.2700	0.0334	10.516	0.02	1.69	0.99	0.77
82	0.2733	0.0367	10.516	0.02	1.69	0.99	0.77
83	0.2766	0.0400	10.516	0.02	1.69	0.99	0.77
84	0.2800	0.0434	10.516	0.02	1.69	0.99	0.77
85	0.2833	0.0467	10.516	0.02	1.69	0.99	0.77
86	0.2866	0.0500	10.532	0.03	1.67	0.98	0.76
87	0.2900	0.0534	10.532	0.03	1.67	0.98	0.76
88	0.2933	0.0567	10.532	0.03	1.67	0.98	0.76
89	0.2966	0.0600	10.532	0.03	1.67	0.98	0.76
90	0.3000	0.0634	10.548	0.05	1.66	0.97	0.75
91	0.3033	0.0667	10.548	0.05	1.66	0.97	0.75
92	0.3066	0.0700	10.548	0.05	1.66	0.97	0.75

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.0734	10.548	0.05	1.66	0.97	0.75
94	0.3133	0.0767	10.548	0.05	1.66	0.97	0.75
95	0.3166	0.0800	10.564	0.06	1.64	0.96	0.75
96	0.3200	0.0834	10.564	0.06	1.64	0.96	0.75
97	0.3233	0.0867	10.564	0.06	1.64	0.96	0.75
98	0.3266	0.0900	10.580	0.08	1.62	0.95	0.74
99	0.3300	0.0934	10.580	0.08	1.62	0.95	0.74
100	0.3333	0.0967	10.548	0.05	1.66	0.97	0.75
101	0.3500	0.1134	10.596	0.10	1.61	0.94	0.73
102	0.3667	0.1301	10.612	0.11	1.59	0.93	0.72
103	0.3833	0.1467	10.628	0.13	1.58	0.92	0.72
104	0.4000	0.1634	10.644	0.14	1.56	0.92	0.71
105	0.4167	0.1801	10.659	0.16	1.54	0.91	0.70
106	0.4333	0.1967	10.675	0.18	1.53	0.90	0.69
107	0.4500	0.2134	10.691	0.19	1.51	0.89	0.69
108	0.4667	0.2301	10.707	0.21	1.50	0.88	0.68
109	0.4833	0.2467	10.723	0.22	1.48	0.87	0.67
110	0.5000	0.2634	10.739	0.24	1.46	0.86	0.67
111	0.5167	_0.2801	10.755	0.26	1.45	0.85	0.66
112	0.5333	0.2967	10.771	0.27	1.43	0.84	0.65
113	0.5500	0.3134	10.787	0.29	1.42	0.83	0.64
114	0.5667	0.3301	10.803	0.30	1.40	0.82	0.64
115	0.5833	0.3467	10.819	0.32	1.38	0.81	0.63
116	0.6000	0.3634	10.835	0.34	1.37	0.80	0.62
117	0.6167	0.3801	10.851	0.35	1.35	0.79	0.61
118	0.6333	0.3967	10.851	0.35	1.35	0.79	0.61
119	0.6500	0.4134	10.866	0.37	1.34	0.79	0.61
120	0.6667	0.4301	10.882	0.38	1.32	0.78	0.60
121	0.6833	0.4467	10.898	0.40	1.31	0.77	0.59
122	0.7000	0.4634	10.914	0.41	1.29	0.76	0.59
123	0.7167	0.4801	10.914	0.41	1.29	0.76	0.59

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.4967	10.930	0.43	1.27	0.75	0.58
125	0.7500	0.5134	10.946	0.45	1.26	0.74	0.57
126	0.7667	0.5301	10.962	0.46	1.24	0.73	0.56
127	0.7833	0.5467	10.978	0.48	1.23	0.72	0.56
128	0.8000	0.5634	10.994	0.49	1.21	0.71	0.55
129	0.8167	0.5801	10.994	0.49	1.21	0.71	0.55
130	0.8333	0.5967	11.010	0.51	1.19	0.70	0.54
131	0.8500	0.6134	11.026	0.53	1.18	0.69	0.54
132	0.8667	0.6301	11.041	0.54	1.16	0.68	0.53
133	0.8833	0.6467	11.041	0.54	1.16	0.68	0.53
134	0.9000	0.6634	11.057	0.56	1.15	0.67	0.52
135	0.9167	0.6801	11.073	0.57	1.13	0.66	0.51
136	0.9333	0.6967	11.089	0.59	1.11	0.65	0.51
137	0.9500	0.7134	11.089	0.59	1.11	0.65	0.51
138	0.9667	0.7301	11.105	0.61	1.10	0.64	0.50
139	0.9833	0.7467	11.121	0.62	1.08	0.64	0.49
140	1.0000	0.7634	11.121	0.62	1.08	0.64	0.49
141	1.2000	0.9634	11.264	0.76	0.94	0.55	0.43
142	1.4000	1.1634	11.376	0.88	0.83	0.49	0.38
143	1.6000	1.3634	11.471	0.97	0.73	0.43	0.33
144	1.8000	1.5634	11.551	1.05	0.65	0.38	0.30
145	2.0000	1.7634	11.615	1.12	0.59	0.35	0.27
146	2.2000	1.9634	11.678	1.18	0.53	0.31	0.24
147	2.4000	2.1634	11.742	1.24	0.46	0.27	0.21
148	2.6000	2.3634	11.790	1.29	0.41	0.24	0.19
149	2.8000	2.5634	11.838	1.34	0.37	0.21	0.17
150	3.0000	2.7634	11.869	1.37	0.34	0.20	0.15
151	3.2000	2.9634	11.917	1.42	0.29	0.17	0.13
152	3.4000	3.1634	11.949	1.45	0.26	0.15	0.12
153	3.6000	3.3634	11.965	1.47	0.24	0.14	0.11
154	3.8000	3.5634	11.997	1.50	0.21	0.12	0.09

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
155	4.0000	3.7634	12.013	1.51	0.19	0.11	0.09
156	4.2000	3.9634	12.028	1.53	0.18	0.10	0.08
157	4.4000	4.1634	12.044	1.54	0.16	0.09	0.07
158	4.6000	4.3634	12.076	1.58	0.13	0.08	0.06
159	4.8000	4.5634	12.076	1.58	0.13	0.08	0.06
160	5.0000	4.7634	12.092	1.59	0.11	0.07	0.05
161	5.2000	4.9634	12.108	1.61	0.10	0.06	0.04
162	5.4000	5.1634	12.108	1.61	0.10	0.06	0.04
163	5.6000	5.3634	12.124	1.62	0.08	0.05	0.04
164	5.8000	5.5634	12.124	1.62	0.08	0.05	0.04
165	6.0000	5.7634	12.140	1.64	0.06	0.04	0.03
166	6.2000	5.9634	12.140	1.64	0.06	0.04	0.03
167	6.4000	6.1634	12.156	1.66	0.05	0.03	0.02
168	6.6000	6.3634	12.156	1.66	0.05	0.03	0.02
169	6.8000	6.5634	12.156	1.66	0.05	0.03	0.02
170	7.0000	6.7634	12.156	1.66	0.05	0.03	0.02
171	7.2000	6.9634	12.172	1.67	0.03	0.02	0.01
172	7.4000	7.1634	12.172	1.67	0.03	0.02	0.01
173	7.6000	7.3634	12.172	1.67	0.03	0.02	0.01
174	7.8000	7.5634	12.172	1.67	0.03	0.02	0.01
175	8.0000	7.7634	12.188	1.69	0.02	0.01	0.01
176	8.2000	7.9634	12.188	1.69	0.02	0.01	0.01
177	8.4000	8.1634	12.188	1.69	0.02	0.01	0.01
178	8.6000	8.3634	12.188	1.69	0.02	0.01	0.01
179	8.8000	8.5634	12.188	1.69	0.02	0.01	0.01
180	9.0000	8.7634	12.188	1.69	0.02	0.01	0.01
181	9.2000	8.9634	12.188	1.69	0.02	0.01	0.01
182	9.4000	9.1634	12.188	1.69	0.02	0.01	0.01
183	9.6000	9.3634	12.204	1.70	-0.00	-0.00	-0.00
184	9.8000	9.5634	12.204	1.70	-0.00	-0.00	-0.00
185	10.0000	9.7634	12.204	1.70	-0.00	-0.00	-0.00

,,,,,,,,,,,,,,,,,,,,,,		
AQTESOLV REST Version 1.10	ULTS	
09/14/93	08:52:42	
TEST DESCRIPTION		
Data set 11out Data set title SLUG OUT TEST MW-11 Company Halliburton NUS Project 1K94 Client Ellington Field (ANG) Location POL Storage Area Test date 09/03/93 Obs. well MW-11 Knowns and Constants: No. of data points No. of data points 182 Radius of well casing 0.08333 Radius of well 0.3438 Aquifer saturated thickness 13.5 Well screen length 10 Static height of water in well 15.81 Log(Re/Rw) 2.825 A, B, C 0.000 0.000	00 1 940	
======================================	=======================================	
Bouwer-Rice (Unconfined Aquifer Slug Test)		

<<<<<<<<<<<<<<<<>>>>>

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

 $K = \frac{\text{Estimate}}{5.8477\text{E}-004} + \frac{\text{Std. Error}}{2.9403\text{E}-006}$

y0 = 2.1053E + 000 + / - 2.4768E - 003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	2.17	2.1012	0.068805	1
0.0067	2.15	2.0969	0.05306	1
0.01	2.15	2.0928	0.057182	1
0.0133	2.13	2.0887	0.041295	1
0.0167	2.13	2.0845	0.045525	1
0.02	2.13	2.0804	0.049622	1
0.0233	2.12	2.0763	0.043711	1
0.0267	2.12	2.0721	0.047916	1
0.03	2.12	2.068	0.051989	1
0.0333	2.1	2.0639	0.036054	1
0.0366	2.09	2.0599	0.03011	1
0.04	2.09	2.0557	0.034282	1
0.0433	2.09	2.0517	0.038322	1
0.0466	2.07	2.0476	0.022355	1
0.05	2.07	2.0435	0.026502	1
0.0533	2.05	2.0395	0.010518	1
0.0566	2.05	2.0355	0.014527	1
0.06	2.04	2.0314	0.0086491	1
0.0633	2.04	2.0274	0.012642	1
0.0666	2.04	2.0234	0.016627	1
0.07	2.04	2.0193	0.020724	1
0.0733	2.02	2.0153	0.0046932	1
0.0766	2.02	2.0113	0.0086545	1
0.08	2.02	2.0073	0.012728	1
0.0833	2.01	2.0033	0.006673	1
0.0866	2.01	1.9994	0.010611	1
0.09	2.01	1.9953	0.01466	1
0.0933	1.99	1.9914	-0.0014184	1
0.0966	1.99	1.9875	0.0024958	1
0.1	1.99	1.9835	0.0065207	1
0.1033	1.97	1.9796	-0.0095807	1
0.1066	1.97	1.9757	-0.0056897	1
0.11	1.97	1.9717	-0.0016888	1
0.1133	1.96	1.9678	-0.0078133	1
0.1166	1.96	1.9639	-0.0039454	1
0.12	1.96	1.96	3.1716E-005	1
0.1233	1.94	1.9561	-0.016116	1
0.1266	1.94	1.9523	-0.012271	1

0.13	1.94	1.9483	-0.0083175	1
0.1333	1.94	1.9445	-0.0044879	1
0.1366	1.93	1.9407	-0.010666	1
0.14	1.93	1.9367	-0.0067359	1
0.1433	1.93	1.9329	-0.0029291	1
0.1466	1.91	1.9291	-0.01913	1
0.15	1.91	1.9252	-0.015223	1
0.1533	1.91	1.9214	-0.013223	1
0.1566	1.91	1.9177	-0.0076623	1
0.16	1.91	1.9138	-0.0037789	1
0.1633	1.9	1.9136	-0.010017	1
0.1666	1.9	1.9063	-0.006263	1
0.1000	1.9	1.9024	-0.0024027	1
0.1733	1.88	1.8987	-0.0024027	1
0.1755	1.88	1.8949	-0.014931	1
0.1766	1.88	1.8911	-0.014931	1
0.1833	1.88	1.8874	-0.011094	
				1
0.1866	1.86	1.8837	-0.023667	
0.19	1.86	1.8799	-0.019853	1
0.1933	1.86	1.8762	-0.016158	1
0.1966	1.86	1.8725	-0.01247	1
0.2	1.85	1.8687	-0.018678	1
0.2033	1.85	1.865	-0.015005	1
0.2066	1.85	1.8613	-0.011339	1
0.21	1.85	1.8576	-0.00757	1
0.2133	1.85	1.8539	-0.0039188	1
0.2166	1.85	1.8503	-0.00027478	1
0.22	1.83	1.8465	-0.016528	1
0.2233	1.83	1.8429	-0.012898	1
0.2266	1.83	1.8393	-0.009276	1
0.23	1.82	1.8356	-0.015551	1
0.2333	1.82	1.8319	-0.011943	1
0.2366	1.82	1.8283	-0.0083427	1
0.24	1.82	1.8246	-0.0046401	1
0.2433	1.8	1.8211	-0.021054	1
0.2466	1.8	1.8175	-0.017474	1
0.25	1.8	1.8138	-0.013794	1
0.2533	1.8	1.8102	-0.010229	1
0.2566	1.8	1.8067	-0.0066705	1
0.26	1.78	1.803	-0.023012	1
0.2633	1.78	1.7995	-0.019468	1
0.2666	1.78	1.7959	-0.015931	1
0.27	1.78	1.7923	-0.012294	1
0.2733	1.78	1.7888	-0.0087712	1
0.2766	1.77	1.7853	-0.015255	1
0.28	1.77	1.7816	-0.01164	1
0.2833	1.77	1.7781	-0.0081381	1
0.2866	1.77	1.7746	-0.004643	1
0.29	1.77	1.771	-0.0010492	1
0.2933	1.75	1.7676	-0.017568	1
0.2966	1.75	1.7641	-0.014094	1
0.3	1.75	1.7605	-0.010521	1
0.3033	1.74	1.7571	-0.017061	1
0.3066	1.74	1.7536	-0.013607	1

0.31	1.74	1.7501	-0.010056	1
0.3133	1.74	1.7466	-0.0066163	1
0.3166	1.74	1.7432	-0.0031833	1
0.32	1.74	1.7397	0.00034681	1
0.3233	1.72	1.7362	-0.016234	1
0.3266	1.72	1.7328	-0.012821	1
0.33	1.72	1.7293	-0.009312	1
0.3333	1.72	1.7259	-0.0059129	1
0.35	1.7	1.7088	-0.0088137	1
0.3667	1.69	1.6919	-0.0018839	1
0.3833	1.66	1.6752	-0.015222	1
0.4	1.64	1.6586	-0.018625	1
0.4167	1.62	1.6422	-0.022192	1
0.4333	1.61	1.626	-0.016019	1
0.45	1.61	1.6099	9.0214E-005	1
0.4667	1.58	1.594	-0.01396	1
0.4833	1.56	1.5783	-0.018262	1
0.5	1.54	1.5626	-0.022626	1
0.5167	1.53	1.5471	-0.017144	1
0.533	1.53	1.5322	-0.0021814	1
0.55	1.51	1.5167	-0.0067303	1
0.5667	1.5	1.5017	-0.0017035	1
0.5833	1.48	1.4869	-0.0069143	1
0.5655	1.46	1.4722	-0.012183	1
0.6167	1.45	1.4576	-0.0075975	1
0.6333	1.43	1.4432	-0.013243	1
0.65	1.42	1.4289	-0.0089439	1
0.6667	1.4	1.4148	-0.014787	1
0.6833	1.4	1.4009	-0.00085358	1
0.0033	1.38	1.387	-0.0069748	1
0.7167	1.37	1.3732	-0.0032336	1
0.7333	1.35	1.3597	-0.0097096	1
0.75	1.35	1.3462	0.0037615	1
0.7667	1.32	1.3329	-0.012901	1
0.7833	1.32	1.3198	0.00022602	1
0.8	1.31	1.3067	0.0033015	1
0.8167	1.29	1.2938	-0.0037526	1
0.8333	1.27	1.281	-0.011011	1
0.85	1.27	1.2683	0.0016801	1
0.8667	1.26	1.2558	0.0042458	1
0.8833	1.24	1.2434	-0.0033872	1
0.9	1.23	1.2311	-0.0010685	1
0.9167	1.23	1.2189	0.011128	1
0.9333	1.21	1.2069	0.003132	1
0.95	1.19	1.1949	-0.0049112	1
0.9667	1.19	1.1831	0.0069272	1
0.9833	1.18	1.1714	0.0085785	Î.
1	1.16	1.1598	0.00018416	1
1.2	1.02	1.0294	-0.0094439	1
1.4	0.91	0.91373	-0.0037267	1
1.6	0.81	0.81102	-0.001017	i
1.8	0.73	0.71985	0.010147	î
2	0.75	0.63894	0.011064	1
2.2	0.59	0.56711	0.022885	1
ىد. س	0.57	0.50,11		•

2.4	0.53	0.50337	0.026633	1
2.6	0.48	0.44678	0.033215	1
2.8	0.43	0.39656	0.033437	1
3	0.38	0.35199	0.028014	1
3.2	0.34	0.31242	0.02758	1
3.4	0.3	0.2773	0.022698	1
3.6	0.27	0.24613	0.023869	1
3.8	0.24	0.21846	0.021536	1
4	0.22	0.19391	0.026093	1
4.2	0.21	0.17211	0.03789	1
4.4	0.18	0.15276	0.027236	1
4.6	0.16	0.13559	0.024408	1
4.8	0.14	0.12035	0.019649	1
5	0.13	0.10682	0.023178	1
5.2	0.11	0.094815	0.015185	1
5.4	0.11	0.084157	0.025843	1
5.6	0.1	0.074697	0.025303	1
5.8	0.08	0.0663	0.0137	1
6	0.08	0.058848	0.021152	1
6.2	0.06	0.052233	0.0077672	1
6.4	0.06	0.046361	0.013639	1
6.6	0.05	0.04115	0.0088499	1
6.8	0.05	0.036525	0.013475	1
7	0.05	0.032419	0.017581	1
7.2	0.05	0.028775	0.021225	1
7.4	0.03	0.02554	0.0044597	1
7.6	0.03	0.022669	0.0073307	1
7.8	0.03	0.020121	0.0098789	1
8	0.03	0.017859	0.012141	1
8.2	0.02	0.015852	0.0041482	1
8.4	0.02	0.01407	0.00593	1
8.6	0.02	0.012488	0.0075116	1
8.8	0.02	0.011085	0.0089154	1
9	0.02	0.0098386	0.010161	1
9.2	0.02	0.0087327	0.011267	1
9.4	0.02	0.0077511	0.012249	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 5.8477E-004y0 = 2.1053E+000

TYPE CURVE DATA

K = 5.36463E-004y0 = 1.86343E+000

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 1.863E+000 1.000E+001 7.850E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	0.0000	14.512	0.00	2.18	1.00	0.99
1	0.0033	0.0033	14.496	0.02	2.17	0.99	0.98
2	0.0067	0.0067	14.480	0.03	2.15	0.99	0.98
3	0.0100	0.0100	14.480	0.03	2.15	0.99	0.98
4	0.0133	0.0133	14.464	0.05	2.13	0.98	0.97
5	0.0167	0.0167	14.464	0.05	2.13	0.98	0.97
6	0.0200	0.0200	14.464	0.05	2.13	0.98	0.97
7	0.0233	0.0233	14.449	0.06	2.12	0.97	0.96
8	0.0267	0.0267	14.449	0.06	2.12	0.97	0.96
9	0.0300	0.0300	14.449	0.06	2.12	0.97	0.96
10	0.0333	0.0333	14.433	0.08	2.10	0.96	0.96
11	0.0366	0.0366	14.417	0.10	2.09	0.96	0.95
12	0.0400	0.0400	14.417	0.10	2.09	0.96	0.95
13	0.0433	0.0433	14.417	0.10	2.09	0.96	0.95
14	0.0466	0.0466	14.401	0.11	2.07	0.95	0.94
15	0.0500	0.0500	14.401	0.11	2.07	0.95	0.94
16	0.0533	0.0533	14.385	0.13	2.05	0.94	0.93
17	0.0566	0.0566	14.385	0.13	2.05	0.94	0.93
18	0.0600	0.0600	14.369	0.14	2.04	0.93	0.93
19	0.0633	0.0633	14.369	0.14	2.04	0.93	0.93
20	0.0666	0.0666	14.369	0.14	2.04	0.93	0.93
21	0.0700	0.0700	14.369	0.14	2.04	0.93	0.93
22	0.0733	0.0733	14.353	0.16	2.02	0.93	0.92
23	0.0766	0.0766	14.353	0.16	2.02	0.93	0.92
24	0.0800	0.0800	14.353	0.16	2.02	0.93	0.92
25	0.0833	0.0833	14.337	0.18	2.01	0.92	0.91
26	0.0866	0.0866	14.337	0.18	2.01	0.92	0.91
27	0.0900	0.0900	14.337	0.18	2.01	0.92	0.91
28	0.0933	0.0933	14.321	0.19	1.99	0.91	0.90
29	0.0966	0.0966	14.321	0.19	1.99	0.91	0.90
30	0.1000	0.1000	14.321	0.19	1.99	0.91	0.90

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.1033	14.305	0.21	1.97	0.91	0.90
32	0.1066	0.1066	14.305	0.21	1.97	0.91	0.90
33	0.1100	0.1100	14.305	0.21	1.97	0.91	0.90
34	0.1133	0.1133	14.289	0.22	1.96	0.90	0.89
35	0.1166	0.1166	14.289	0.22	1.96	0.90	0.89
36	0.1200	0.1200	14.289	0.22	1.96	0.90	0.89
37	0.1233	0.1233	14.274	0.24	1.94	0.89	0.88
38	0.1266	0.1266	14.274	0.24	1.94	0.89	0.88
39	0.1300	0.1300	14.274	0.24	1.94	0.89	0.88
40	0.1333	0.1333	14.274	0.24	1.94	0.89	0.88
41	0.1366	0.1366	14.258	0.25	1.93	0.88	0.88
42	0.1400	0.1400	14.258	0.25	1.93	0.88	0.88
43	0.1433	0.1433	14.258	0.25	1.93	0.88	0.88
44	0.1466	0.1466	14.242	0.27	1.91	0.88	0.87
45	0.1500	0.1500	14.242	0.27	1.91	0.88	0.87
46	0.1533	0.1533	14.242	0.27	1.91	0.88	0.87
47	0.1566	0.1566	14.242	0.27	1.91	0.88	0.87
48	0.1600	0.1600	14.242	0.27	1.91	0.88	0.87
49	0.1633	0.1633	14.226	0.29	1.90	0.87	0.86
50	0.1666	0.1666	14.226	0.29	1.90	0.87	0.86
51	0.1700	0.1700	14.226	0.29	1.90	0.87	0.86
52	0.1733	0.1733	14.210	0.30	1.88	0.86	0.85
53	0.1766	0.1766	14.210	0.30	1.88	0.86	0.85
54	0.1800	0.1800	14.210	0.30	1.88	0.86	0.85
55	0.1833	0.1833	14.210	0.30	1.88	0.86	0.85
56	0.1866	0.1866	14.194	0.32	1.86	0.85	0.85
57	0.1900	0.1900	14.194	0.32	1.86	0.85	0.85
58	0.1933	0.1933	14.194	0.32	1.86	0.85	0.85
59	0.1966	0.1966	14.194	0.32	1.86	0.85	0.85
60	0.2000	0.2000	14.178	0.33	1.85	0.85	0.84
61	0.2033	0.2033	14.178	0.33	1.85	0.85	0.84

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
62	0.2066	0.2066	14.178	0.33	1.85	0.85	0.84
63	0.2100	0.2100	14.178	0.33	1.85	0.85	0.84
64	0.2133	0.2133	14.178	0.33	1.85	0.85	0.84
65	0.2166	0.2166	14.178	0.33	1.85	0.85	0.84
66	0.2200	0.2200	14.162	0.35	1.83	0.84	0.83
67	0.2233	0.2233	14.162	0.35	1.83	0.84	0.83
68	0.2266	0.2266	14.162	0.35	1.83	0.84	0.83
69	0.2300	0.2300	14.146	0.37	1.82	0.83	0.83
70	0.2333	0.2333	14.146	0.37	1.82	0.83	0.83
71	0.2366	0.2366	14.146	0.37	1.82	0.83	0.83
72	0.2400	0.2400	14.146	0.37	1.82	0.83	0.83
73	0.2433	0.2433	14.130	0.38	1.80	0.82	0.82
74	0.2466	0.2466	14.130	0.38	1.80	0.82	0.82
75	0.2500	0.2500	14.130	0.38	1.80	0.82	0.82
76	0.2533	0.2533	14.130	0.38	1.80	0.82	0.82
77	0.2566	0.2566	14.130	0.38	1.80	0.82	0.82
78	0.2600	0.2600	14.114	0.40	1.78	0.82	0.81
7 9	0.2633	0.2633	14.114	0.40	1.78	0.82	0.81
80	0.2666	0.2666	14.114	0.40	1.78	0.82	0.81
81	0.2700	0.2700	14.114	0.40	1.78	0.82	0.81
82	0.2733	0.2733	14.114	0.40	1.78	0.82	0.81
83	0.2766	0.2766	14.098	0.41	1.77	0.81	0.80
84	0.2800	0.2800	14.098	0.41	1.77	0.81	0.80
85	0.2833	0.2833	14.098	0.41	1.77	0.81	0.80
86	0.2866	0.2866	14.098	0.41	1.77	0.81	0.80
87	0.2900	0.2900	14.098	0.41	1.77	0.81	0.80
88	0.2933	0.2933	14.082	0.43	1.75	0.80	0.80
89	0.2966	0.2966	14.082	0.43	1.75	0.80	0.80
90	0.3000	0.3000	14.082	0.43	1.75	0.80	0.80
91	0.3033	0.3033	14.067	0.45	1.74	0.80	0.79
92	0.3066	0.3066	14.067	0.45	1.74	0.80	0.79

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.3100	14.067	0.45	1.74	0.80	0.79
94	0.3133	0.3133	14.067	0.45	1.74	0.80	0.79
95	0.3166	0.3166	14.067	0.45	1.74	0.80	0.79
96	0.3200	0.3200	14.067	0.45	1.74	0.80	0.79
97	0.3233	0.3233	14.051	0.46	1.72	0.79	0.78
98	0.3266	0.3266	14.051	0.46	1.72	0.79	0.78
99	0.3300	0.3300	14.051	0.46	1.72	0.79	0.78
100	0.3333	0.3333	14.051	0.46	1.72	0.79	0.78
101	0.3500	0.3500	14.035	0.48	1.70	0.78	0.77
102	0.3667	0.3667	14.019	0.49	1.69	0.77	0.77
103	0.3833	0.3833	13.987	0.53	1.66	0.76	0.75
104	0.4000	0.4000	13.971	0.54	1.64	0.75	0.75
105	0.4167	0.4167	13.955	0.56	1.62	0.74	0.74
106	0.4333	0.4333	13.939	0.57	1.61	0.74	0.73
107	0.4500	0.4500	13.939	0.57	1.61	0.74	0.73
108	0.4667	0.4667	13.907	0.61	1.58	0.72	0.72
109	0.4833	0.4833	13.891	0.62	1.56	0.72	0.71
110	0.5000	0.5000	13.875	0.64	1.54	0.71	0.70
111	0.5167	0.5167	13.860	0.65	1.53	0.70	0.69
112	0.5333	0.5333	13.860	0.65	1.53	0.70	0.69
113	0.5500	0.5500	13.844	0.67	1.51	0.69	0.69
114	0.5667	0.5667	13.828	0.68	1.50	0.69	0.68
115	0.5833	0.5833	13.812	0.70	1.48	0.68	0.67
116	0.6000	0.6000	13.796	0.72	1.46	0.67	0.67
117	0.6167	0.6167	13.780	0.73	1.45	0.66	0.66
118	0.6333	0.6333	13.764	0.75	1.43	0.66	0.65
119	0.6500	0.6500	13.748	0.76	1.42	0.65	0.64
120	0.6667	0.6667	13.732	0.78	1.40	0.64	0.64
121	0.6833	0.6833	13.732	0.78	1.40	0.64	0.64
122	0.7000	0.7000	13.716	0.80	1.38	0.64	0.63
123	0.7167	0.7167	13.700	0.81	1.37	0.63	0.62

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(
124	0.7333	0.7333	13.684	0.83	1.35	0.62	0.61
125	0.7500	0.7500	13.684	0.83	1.35	0.62	0.61
126	0.7667	0.7667	13.653	0.86	1.32	0.61	0.60
127	0.7833	0.7833	13.653	0.86	1.32	0.61	0.60
128	0.8000	0.8000	13.637	0.88	1.31	0.60	0.59
129	0.8167	0.8167	13.621	0.89	1.29	0.59	0.59
130	0.8333	0.8333	13.605	0.91	1.27	0.58	0.58
131	0.8500	0.8500	13.605	0.91	1.27	0.58	0.58
132	0.8667	0.8667	13.589	0.92	1.26	0.58	0.57
133	0.8833	0.8833	13.573	0.94	1.24	0.57	0.56
134	0.9000	0.9000	13.557	0.96	1.23	0.56	0.56
135	0.9167	0.9167	13.557	0.96	1.23	0.56	0.56
136	0.9333	0.9333	13.541	0.97	1.21	0.55	0.55
137	0.9500	0.9500	13.525	0.99	1.19	0.55	0.54
138	0.9667	0.9667	13.525	0.99	1.19	0.55	0.54
139	0.9833	0.9833	13.509	1.00	1.18	0.54	0.54
140	1.0000	1.0000	13.493	1.02	1.16	0.53	0.53
141	1.2000	1.2000	13.350	1.16	1.02	0.47	0.46
142	1.4000	1.4000	13.239	1.27	0.91	0.42	0.41
143	1.6000	1.6000	13.143	1.37	0.81	0.37	0.37
144	1.8000	1.8000	13.064	1.45	0.73	0.34	0.33
145	2.0000	2.0000	12.984	1.53	0.65	0.30	0.30
146	2.2000	2.2000	12.920	1.59	0.59	0.27	0.27
147	2.4000	2.4000	12.857	1.66	0.53	0.24	0.24
148	2.6000	2.6000	12.809	1.70	0.48	0.22	0.22
149	2.8000	2.8000	12.761	1.75	0.43	0.20	0.20
150	3.0000	3.0000	12.713	1.80	0.38	0.18	0.17
151	3.2000	3.2000	12.666	1.85	0.34	0.15	0.15
152	3.4000	3.4000	12.634	1.88	0.30	0.14	0.14
153	3.6000	3.6000	12.602	1.91	0.27	0.12	0.12
154	3.8000	3.8000	12.570	1.94	0.24	0.11	0.11

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	4.0000	12.554	1.96	0.22	0.10	0.10
156	4.2000	4.2000	12.538	1.97	0.21	0.09	0.09
157	4.4000	4.4000	12.507	2.01	0.18	0.08	0.08
158	4.6000	4.6000	12.491	2.02	0.16	0.07	0.07
159	4.8000	4.8000	12.475	2.04	0.14	0.07	0.07
160	5.0000	5.0000	12.459	2.05	0.13	0.06	0.06
161	5.2000	5.2000	12.443	2.07	0.11	0.05	0.05
162	5.4000	5.4000	12.443	2.07	0.11	0.05	0.05
163	5.6000	5.6000	12.427	2.09	0.10	0.04	0.04
164	5.8000	5.8000	12.411	2.10	0.08	0.04	0.04
165	6.0000	6.0000	12.411	2.10	0.08	0.04	0.04
166	6.2000	6.2000	12.395	2.12	0.06	0.03	0.03
167	6.4000	6.4000	12.395	2.12	0.06	0.03	0.03
168	6.6000	6.6000	12.379	2.13	0.05	0.02	0.02
169	6.8000	6.8000	12.379	2.13	0.05	0.02	0.02
170	7.0000	7.0000	12.379	2.13	0.05	0.02	0.02
171	7.2000	7.2000	12.379	2.13	0.05	0.02	0.02
172	7.4000	7.4000	12.363	2.15	0.03	0.01	0.01
173	7.6000	7.6000	12.363	2.15	0.03	0.01	0.01
174	7.8000	7.8000	12.363	2.15	0.03	0.01	0.01
175	8.0000	8.0000	12.363	2.15	0.03	0.01	0.01
176	8.2000	8.2000	12.347	2.17	0.02	0.01	0.01
177	8.4000	8.4000	12.347	2.17	0.02	0.01	0.01
178	8.6000	8.6000	12.347	2.17	0.02	0.01	0.01
179	8.8000	8.8000	12.347	2.17	0.02	0.01	0.01
180	9.0000	9.0000	12.347	2.17	0.02	0.01	0.01
181	9.2000	9.2000	12.347	2.17	0.02	0.01	0.01
182	9.4000	9.4000	12.347	2.17	0.02	0.01	0.01
183	9.6000	9.6000	12.331	2.18	-0.00	-0.00	-0.00
184	9.8000	9.8000	12.331	2.18	-0.00	-0.00	-0.00
185	10.0000	10.0000	12.331	2.18	-0.00	-0.00	-0.00

<<<<<<<<<<	:<<<<<<>>>>>
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>
AQTESOLV RESULTS Version 1.10	
09/08/93	11:20:09

TEST DESCRIPTION

Knowns and Constants:

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 2.0716E-003 +/- 1.9934E-005y0 = 1.1757E+000 +/- 4.5939E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed Calculated Residual		Weight	
0.0033	1.24	1.1676	0.07236	1
0.0067	1.21	1.1594	0.050631	1
0.01	1.18	1.1514	0.028602	1
0.0133	1.16	1.1435	0.016518	1
0.0167	1.16	1.1354	0.024617	1
0.02	1.16	1.1276	0.032423	1
0.0233	1.15	1.1198	0.030175	1
0.0267	1.15	1.1119	0.038107	1
0.03	1.13	1.1042	0.025752	1
0.0333	1.11	1.0967	0.013344	1
0.0367	1.11	1.0889	0.021111	1
0.04	1.1	1.0814	0.018598	1
0.0433	1.08	1.074	0.0060325	1
0.0467	1.08	1.0664	0.013639	1
0.05	1.07	1.059	0.010971	1
0.0533	1.07	1.0517	0.018252	1
0.0567	1.05	1.0443	0.0057014	1
0.06	1.05	1.0371	0.012881	1
0.0633	1.04	1.03	0.010012	1
0.0667	1.02	1.0227	-0.002693	1
0.07	1.02	1.0157	0.0043383	1
0.0733	1.02	1.0087	0.011321	1
0.0767	1	1.0015	-0.0015343	1
0.08	0.99	0.99465	-0.0046485	1
0.0833	0.99	0.98781	0.00219	1
0.0867	0.99	0.98081	0.0091866	1
0.09	0.97	0.97407	-0.0040701	1
0.0933	0.97	0.96737	0.002627	1
0.0967	0.96	0.96052	-0.00052124	. 1
0.1	0.96	0.95392	0.0060826	1
0.1033	0.94	0.94736	-0.0073589	1
0.1067	0.94	0.94065	-0.00064887	1
0.11	0.92	0.93418	-0.014182	1
0.1133	0.92	0.92776	-0.0077589	1
0.1167	0.91	0.92119	-0.011188	1
0.12	0.91	0.91485	-0.0048542	1
0.1233	0.89	0.90856	-0.018564	1
0.1267	0.89	0.90213	-0.012129	1

0.13	0.89	0.89593	-0.0059267	1
0.1333	0.88	0.88977	-0.0097669	1
0.1367	0.88	0.88346	-0.0034648	1
0.14	0.86	0.87739	-0.017391	1
0.1433	0.86	0.87136	-0.011358	1
0.1467	0.86	0.86519	-0.0051866	1
0.15	0.84	0.85924	-0.019238	1
0.1533	0.84	0.85333	-0.013331	1
0.1567	0.83	0.84729	-0.017287	1
0.16	0.83	0.84146	-0.011461	1
0.1633	0.81	0.83568	-0.025676	1
0.1667	0.81	0.82976	-0.019757	1
0.17	0.81	0.82405	-0.014052	1
0.1733	0.8	0.81839	-0.018387	1
0.1767	0.8	0.81259	-0.01259	1
0.18	0.8	0.807	-0.0070033	1
0.1833	0.78	0.80145	-0.021455	1
0.1867	0.78	0.79578	-0.015778	1
0.19	0.76	0.79031	-0.030307	1
0.1933	0.76	0.78487	-0.024873	1
0.1967	0.76	0.77931	-0.019314	1
0.2	0.76	0.77396	-0.013956	1
0.2033	0.75	0.76864	-0.018635	1
0.2067	0.75	0.76319	-0.013191	1
0.21	0.75	0.75794	-0.0079438	1
0.2133	0.73	0.75273	-0.022733	1
0.2167	0.73	0.7474	-0.017401	1
0.22	0.73	0.74226	-0.012263	1
0.2233	0.72	0.73716	-0.017159	1
0.2267	0.72	0.73194	-0.011938	1
0.23	0.72	0.72691	-0.0069058	1
0.2333	0.7	0.72191	-0.021908	1
0.2367	0.7	0.71679	-0.016795	1
0.24	0.7	0.71187	-0.011867	1
0.2433	0.68	0.70697	-0.026972	1
0.2467	0.68	0.70197	-0.021965	1
0.25	0.68	0.69714	-0.017139	1
0.2533	0.68	0.69235	-0.012346	1
0.2567	0.67	0.68744	-0.017442	1
0.26	0.67	0.68272	-0.012716	1
0.2633	0.67	0.67802	-0.0080218	1
0.2667	0.65	0.67322	-0.023219	1
0.27	0.65	0.66859	-0.018591	1
0.2733	0.65	0.66399	-0.013994	1
0.2767	0.64	0.65929	-0.019291 -0.014758	1
0.28	0.64	0.65476		1
0.2967	0.62 0.59	0.63229 0.6106	-0.012293 -0.020598	1 1
0.3134	0.59	0.5106	-0.020398	1
0.33	0.56	0.56954	-0.019772	1
0.3634	0.54	0.54999	-0.009330	1
0.3634	0.53	0.53123	-0.0099947	1
0.38	0.55	0.51301	-0.001233	1
	0.31	0.31301	-0.0054061	1
0.4134	0.49	0.49341	-0.0034001	1

0.43	0.46	0.47851	-0.018508	1	
0.4467	0.46	0.46209	-0.0020903	1	
0.4634	0.45	0.44624	0.0037644	1	
ن 48° [©] 0.4797	0.43	0.43129	-0.0012854	1	
0.4967	0.41	0.41623	-0.0062264	1	
0.5134	0.4	0.40195	-0.0019454	1	
0.53	0.4	0.38824	0.011765	1	
0.5467	0.38	0.37491	0.0050853	1	
0.5634	0.37	0.36205	0.0079489	1	
0.58	0.37	0.3497	0.020298	1	
0.5967	0.35	0.3377	0.012297	1	
0.6134	0.33	0.32612	0.0038836	1	
0.63	0.33	0.31499	0.015007	1	
0.6467	0.32	0.30419	0.015815	1	
0.6634	0.32	0.29375	0.026252	1	
0.68	0.3	0.28373	0.016271	1	
0.6967	0.3	0.27399	0.026006	1	
0.7134	0.29	0.26459	0.025407	1	
0.73	0.27	0.25557	0.014432	1	
0.7467	0.27	0.2468	0.023201	1	
0.7634	0.27	0.23833	0.031669	1	
0.78	0.25	0.2302	0.019798	1	
0.7967	0.25	0.2223	0.027696	1	
0.8134	0.24	0.21468	0.025324	1	
0.83	0.24	0.20735	0.032646	1	
0.8467	0.24	0.20024	0.039761	1	
0.8634	0.22	0.19337	0.026631	1	
0.88	0.22	0.18677	0.033227	1	
0.8967	0.21	0.18037	0.029635	1	
0.9134	0.21	0.17418	0.035823	1	
0.93	0.21	0.16824	0.041764	1	
0.9467	0.21	0.16246	0.047537	1	
1.1467	0.14	0.10695	0.033054	1	
1.3467	0.13	0.070401	0.059599	1	
1.5467	0.09	0.046344	0.043656	1	
1.7467	0.08	0.030507	0.049493	1	
1.9467	0.06	0.020082	0.039918	1	
2.1467	0.06	0.01322	0.04678	1	
2.3467	0.05	0.0087023	0.041298	1	
2.5467	0.05	0.0057286	0.044271	1	
2.7467	0.05	0.003771	0.046229	1 .	
2.9467	0.03	0.0024824	0.027518 0.028366	1	
3.1467	0.03	0.0016341	0.028366	1	
3.3467	0.03	0.0010757 0.00070811	0.028924	1	
3.5467	0.03			1	
3.7467	0.03	0.00046614	0.029534	1	
3.9467	0.03	0.00030685	0.029693	1	
4.1467	0.02	0.00020199 0.00013297	0.019798 0.019867	1 1	
4.3467	0.02 0.02	8.7531E-005	0.019867	1	
4.5467	0.02	8.7331E-003 5.762E-005	0.019912	1	
4.7467 4.9467	0.02	3.762E-005 3.793E-005	0.019942	1	
5.1467	0.02	2.4969E-005	0.019902	1	
5.3467	0.02	1.6436E-005	0.019973	1	
3.3407	0.02	1.04205-003	0.019904		

5.5467	0.02	1.082E-005	0.019989	1
5.7467	0.02	7.1224E-006	0.019993	1
5.9467	0.02	4.6886E-006	0.019995	1
6.1467	0.02	3.0864E-006	0.019997	1
6.3467	0.02	2.0317E-006	0.019998	1
6.5467	0.02	1.3374E-006	0.019999	1
6.7467	0.02	8.8041E-007	0.019999	1
6.9467	0.02	5.7956E-007	0.019999	1
7.1467	0.02	3.8151E-007	0.02	1
7.3467	0.02	2.5114E-007	0.02	1
7.5467	0.02	1.6532E-007	0.02	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.6504E-003y0 = 9.4905E-001

TYPE CURVE DATA

K = 1.65044E-003y0 = 9.49047E-001

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 9.490E-001 4.000E+000 1.213E-003

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0533	5.369	-0.77	2.02	1.61	0.92
1	0.0033	-0.0500	5.767	-0.37	1.62	1.29	0.74
2	0.0067	-0.0466	6.150	0.02	1.24	0.99	0.56
3	0.0100	-0.0433	5.927	-0.21	1.46	1.16	0.67
4	0.0133	-0.0400	5.417	-0.72	1.97	1.57	0.90
5	0.0167	-0.0366	7.296	1.16	0.09	0.08	0.04
6	0.0200	-0.0333	6.532	0.40	0.86	0.68	0.39
7	0.0233	-0.0300	6.563	0.43	0.83	0.66	0.38
8	0.0267	-0.0266	6.054	-0.08	1.34	1.06	0.61
9	0.0300	-0.0233	5.974	-0.16	1.42	1.13	0.64
10	0.0333	-0.0200	5.847	-0.29	1.54	1.23	0.70
11	0.0366	-0.0167	5.911	-0.22	1.48	1.18	0.67
12	0.0400	-0.0133	6.086	-0.05	1.31	1.04	0.59
13	0.0433	-0.0100	6.229	0.09	1.16	0.92	0.53
14	0.0466	-0.0067	6.261	0.13	1.13	0.90	0.51
15	0.0500	-0.0033	6.197	0.06	1.19	0.95	0.54
16	0.0533	-0.0000	6.134	0.00	1.26	1.00	0.57
17	0.0566	0.0033	6.150	0.02	1.24	0.99	0.56
18	0.0600	0.0067	6.181	0.05	1.21	0.96	0.55
19	0.0633	0.0100	6.213	0.08	1.18	0.94	0.54
20	0.0666	0.0133	6.229	0.09	1.16	0.92	0.53
21	0.0700	0.0167	6.229	0.09	1.16	0.92	0.53
22	0.0733	0.0200	6.229	0.09	1.16	0.92	0.53
23	0.0766	0.0233	6.245	0.11	1.15	0.91	0.52
24	0.0800	0.0267	6.245	0.11	1.15	0.91	0.52
25	0.0833	0.0300	6.261	0.13	1.13	0.90	0.51
26	0.0866	0.0333	6.277	0.14	1.11	0.89	0.51
27	0.0900	0.0367	6.277	0.14	1.11	0.89	0.51
28	0.0933	0.0400	6.293	0.16	1.10	0.87	0.50
29	0.0966	0.0433	6.309	0.17	1.08	0.86	0.49
30	0.1000	0.0467	6.309	0.17	1.08	0.86	0.49

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.0500	6.325	0.19	1.07	0.85	0.48
32	0.1066	0.0533	6.325	0.19	1.07	0.85	0.48
33	0.1100	0.0567	6.341	0.21	1.05	0.84	0.48
. 34	0.1133	0.0600	6.341	0.21	1.05	0.84	0.48
35	0.1166	0.0633	6.356	0.22	1.04	0.82	0.47
36	0.1200	0.0667	6.372	0.24	1.02	0.81	0.46
37	0.1233	0.0700	6.372	0.24	1.02	0.81	0.46
38	0.1266	0.0733	6.372	0.24	1.02	0.81	0.46
39	0.1300	0.0767	6.388	0.25	1.00	0.80	0.46
40	0.1333	0.0800	6.404	0.27	0.99	0.79	0.45
41	0.1366	0.0833	6.404	0.27	0.99	0.79	0.45
42	0.1400	0.0867	6.404	0.27	0.99	0.79	0.45
43	0.1433	0.0900	6.420	0.29	0.97	0.77	0.44
44	0.1466	0.0933	6.420	0.29	0.97	0.77	0.44
45	0.1500	0.0967	6.436	0.30	0.96	0.76	0.43
46	0.1533	0.1000	6.436	0.30	0.96	0.76	0.43
47	0.1566	0.1033	6.452	0.32	0.94	0.75	0.43
48	0.1600	0.1067	6.452	0.32	0.94	0.75	0.43
49	0.1633	0.1100	6.468	0.33	0.92	0.73	0.42
50	0.1666	0.1133	6.468	0.33	0.92	0.73	0.42
51	0.1700	0.1167	6.484	0.35	0.91	0.72	0.41
52	0.1733	0.1200	6.484	0.35	0.91	0.72	0.41
53	0.1766	0.1233	6.500	0.37	0.89	0.71	0.41
54	0.1800	0.1267	6.500	0.37	0.89	0.71	0.41
55	0.1833	0.1300	6.500	0.37	0.89	0.71	0.41
56	0.1866	0.1333	6.516	0.38	0.88	0.70	0.40
57	0.1900	0.1367	6.516	0.38	0.88	0.70	0.40
58	0.1933	0.1400	6.532	0.40	0.86	0.68	0.39
59	0.1966	0.1433	6.532	0.40	0.86	0.68	0.39
60	0.2000	0.1467	6.532	0.40	0.86	0.68	0.39
61	0.2033	0.1500	6.548	0.41	0.84	0.67	0.38

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
62	0.2066	0.1533	6.548	0.41	0.84	0.67	0.38
63	0.2100	0.1567	6.563	0.43	0.83	0.66	0.38
64	0.2133	0.1600	6.563	0.43	0.83	0.66	0.38
65	0.2166	0.1633	6.579	0.44	0.81	0.65	0.37
66	0.2200	0.1667	6.579	0.44	0.81	0.65	0.37
67	0.2233	0.1700	6.579	0.44	0.81	0.65	0.37
68	0.2266	0.1733	6.595	0.46	0.80	0.63	0.36
69	0.2300	0.1767	6.595	0.46	0.80	0.63	0.36
70	0.2333	0.1800	6.595	0.46	0.80	0.63	0.36
71	0.2366	0.1833	6.611	0.48	0.78	0.62	0.35
72	0.2400	0.1867	6.611	0.48	0.78	0.62	0.35
73	0.2433	0.1900	6.627	0.49	0.76	0.61	0.35
74	0.2466	0.1933	6.627	0.49	0.76	0.61	0.35
75	0.2500	0.1967	6.627	0.49	0.76	0.61	0.35
76	0.2533	0.2000	6.627	0.49	0.76	0.61	0.35
77	0.2566	0.2033	6.643	0.51	0.75	0.60	0.34
78	0.2600	0.2067	6.643	0.51	0.75	0.60	0.34
79	0.2633	0.2100	6.643	0.51	0.75	0.60	0.34
80	0.2666	0.2133	6.659	0.52	0.73	0.58	0.33
81	0.2700	0.2167	6.659	0.52	0.73	0.58	0.33
82	0.2733	0.2200	6.659	0.52	0.73	0.58	0.33
83	0.2766	0.2233	6.675	0.54	0.72	0.57	0.33
84	0.2800	0.2267	6.675	0.54	0.72	0.57	0.33
85	0.2833	0.2300	6.675	0.54	0.72	0.57	0.33
86	0.2866	0.2333	6.691	0.56	0.70	0.56	0.32
87	0.2900	0.2367	6.691	0.56	0.70	0.56	0.32
88	0.2933	0.2400	6.691	0.56	0.70	0.56	0.32
89	0.2966	0.2433	6.707	0.57	0.68	0.54	0.31
90	0.3000	0.2467	6.707	0.57	0.68	0.54	0.31
91	0.3033	0.2500	6.707	0.57	0.68	0.54	0.31
92	0.3066	0.2533	6.707	0.57	0.68	0.54	0.31

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.2567	6.723	0.59	0.67	0.53	0.30
94	0.3133	0.2600	6.723	0.59	0.67	0.53	0.30
95	0.3166	0.2633	6.723	0.59	0.67	0.53	0.30
96	0.3200	0.2667	6.739	0.60	0.65	0.52	0.30
97	0.3233	0.2700	6.739	0.60	0.65	0.52	0.30
98	0.3266	0.2733	6.739	0.60	0.65	0.52	0.30
99	0.3300	0.2767	6.755	0.62	0.64	0.51	0.29
100	0.3333	0.2800	6.755	0.62	0.64	0.51	0.29
101	0.3500	0.2967	6.770	0.64	0.62	0.49	0.28
102	0.3667	0.3134	6.802	0.67	0.59	0.47	0.27
103	0.3833	0.3300	6.818	0.68	0.57	0.46	0.26
104	0.4000	0.3467	6.834	0.70	0.56	0.44	0.25
105	0.4167	0.3634	6.850	0.72	0.54	0.43	0.25
106	0.4333	0.3800	6.866	0.73	0.53	0.42	0.24
107	0.4500	0.3967	6.882	0.75	0.51	0.40	0.23
108	0.4667	0.4134	6.898	0.76	0.49	0.39	0.22
109	0.4833	0.4300	6.930	0.80	0.46	0.37	0.21
110	0.5000	0.4467	6.930	0.80	0.46	0.37	0.21
111	0.5167	0.4634	6.946	0.81	0.45	0.35	0.20
112	0.5333	0.4800	6.961	0.83	0.43	0.34	0.20
113	0.5500	0.4967	6.977	0.84	0.41	0.33	0.19
114	0.5667	0.5134	6.993	0.86	0.40	0.32	0.18
115	0.5833	0.5300	6.993	0.86	0.40	0.32	0.18
116	0.6000	0.5467	7.009	0.88	0.38	0.30	0.17
117	0.6167	0.5634	7.025	0.89	0.37	0.29	0.17
118	0.6333	0.5800	7.025	0.89	0.37	0.29	0.17
119	0.6500	0.5967	7.041	0.91	0.35	0.28	0.16
120	0.6667	0.6134	7.057	0.92	0.33	0.27	0.15
121	0.6833	0.6300	7.057	0.92	0.33	0.27	0.15
122	0.7000	0.6467	7.073	0.94	0.32	0.25	0.14
123	0.7167	0.6634	7.073	0.94	0.32	0.25	0.14

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(2.222 / 2 2 2 2)						
124	0.7333	0.6800	7.089	0.96	0.30	0.24	0.14
125	0.7500	0.6967	7.089	0.96	0.30	0.24	0.14
126	0.7667	0.7134	7.105	0.97	0.29	0.23	0.13
127	0.7833	0.7300	7.121	0.99	0.27	0.21	0.12
128	0.8000	0.7467	7.121	0.99	0.27	0.21	0.12
129	0.8167	0.7634	7.121	0.99	0.27	0.21	0.12
130	0.8333	0.7800	7.137	1.00	0.25	0.20	0.12
131	0.8500	0.7967	7.137	1.00	0.25	0.20	0.12
132	0.8667	0.8134	7.153	1.02	0.24	0.19	0.11
133	0.8833	0.8300	7.153	1.02	0.24	0.19	0.11
134	0.9000	0.8467	7.153	1.02	0.24	0.19	0.11
135	0.9167	0.8634	7.168	1.03	0.22	0.18	0.10
136	0.9333	0.8800	7.168	1.03	0.22	0.18	0.10
137	0.9500	0.8967	7.184	1.05	0.21	0.16	0.09
138	0.9667	0.9134	7.184	1.05	0.21	0.16	0.09
139	0.9833	0.9300	7.184	1.05	0.21	0.16	0.09
140	1.0000	0.9467	7.184	1.05	0.21	0.16	0.09
141	1.2000	1.1467	7.248	1.11	0.14	0.11	0.07
142	1.4000	1.3467	7. 264 .	1.13	0.13	0.10	0.06
143	1.6000	1.5467	7.296	1.16	0.09	0.08	0.04
144	1.8000	1.7467	7.312	1.18	0.08	0.06	0.04
145	2.0000	1.9467	7.328	1.19	0.06	0.05	0.03
146	2.2000	2.1467	7.328	1.19	0.06	0.05	0.03
147	2.4000	2.3467	7.344	1.21	0.05	0.04	0.02
148	2.6000	2.5467	7.344	1.21	0.05	0.04	0.02
149	2.8000	2.7467	7.344	1.21	0.05	0.04	0.02
150	3.0000	2.9467	7.360	1.23	0.03	0.02	0.01
151	3.2000	3.1467	7.360	1.23	0.03	0.02	0.01
152	3.4000	3.3467	7.360	1.23	0.03	0.02	0.01
153	3.6000	3.5467	7.360	1.23	0.03	0.02	0.01
154	3.8000	3.7467	7.360	1.23	0.03	0.02	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9467	7.360	1.23	0.03	0.02	0.01
156	4.2000	4.1467	7.375	1.24	0.02	0.01	0.01
157	4.4000	4.3467	7.375	1.24	0.02	0.01	0.01
158	4.6000	4.5467	7.375	1.24	0.02	0.01	0.01
159	4.8000	4.7467	7.375	1.24	0.02	0.01	0.01
160	5.0000	4.9467	7.375	1.24	0.02	0.01	0.01
161	5.2000	5.1467	7.375	1.24	0.02	0.01	0.01
162	5.4000	5.3467	7.375	1.24	0.02	0.01	0.01
163	5.6000	5.5467	7.375	1.24	0.02	0.01	0.01
164	5.8000	5.7467	7.375	1.24	0.02	0.01	0.01
165	6.0000	5.9467	7.375	1.24	0.02	0.01	0.01
166	6.2000	6.1467	7.375	1.24	0.02	0.01	0.01
167	6.4000	6.3467	7.375	1.24	0.02	0.01	0.01
168	6.6000	6.5467	7.375	1.24	0.02	0.01	0.01
169	6.8000	6.7467	7.375	1.24	0.02	0.01	$0.01 \cdot$
170	7.0000	6.9467	7.375	1.24	0.02	0.01	0.01
171	7.2000	7.1467	7.375	1.24	0.02	0.01	0.01
172	7.4000	7.3467	7.375	1.24	0.02	0.01	0.01
173	7.6000	7.5467	7.375	1.24	0.02	0.01	0.01
174	7.8000	7.7467	7.391	1.26	0.00	0.00	0.00
175	8.0000	7.9467	7.375	1.24	0.02	0.01	0.01
176	8.2000	8.1467	7.375	1.24	0.02	0.01	0.01
177	8.4000	8.3467	7.391	1.26	0.00	0.00	0.00
178	8.6000	8.5467	7.391	1.26	0.00	0.00	0.00
179	8.8000	8.7467	7.391	1.26	0.00	0.00	0.00
180	9.0000	8.9467	7.391	1.26	0.00	0.00	0.00
181	9.2000	9.1467	7.391	1.26	0.00	0.00	0.00
182	9.4000	9.3467	7.391	1.26	0.00	0.00	0.00
183	9.6000	9.5467	7.391	1.26	0.00	0.00	0.00
184	9.8000	9.7467	7.391	1.26	0.00	0.00	0.00
185	10.0000	9.9467	7.391	1.26	0.00	0.00	0.00

AOTESOLV RESULTS Version 1.10 09/08/93 10:56:58 TEST DESCRIPTION Data set...... 12out Data set title..... SLUG OUT TEST MW-12 Company...... Halliburton NUS Project...... 1K94 Client..... Ellington Field (ANG) Location...... POL Storage Area Test date..... 09/03/93 Obs. well...... MW-12 Knowns and Constants: Radius of well casing...... 0.08333 Radius of well............... 0.3438 Aguifer saturated thickness....... 13.5 Well screen length...... 10 Static height of water in well..... 16.6 A, B, C...... 0.000, 0.000, 1.940 ______

<<<<<<<<<<<<<<<<<<<<<><<<<<<<<<>>>>>

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 2.4071E-003 + /- 2.2587E-005

y0 = 1.5348E + 000 + /- 6.5953E - 003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.59	1.5226	0.067448	1
0.0067	1.58	1.51	0.069971	1
0.01	1.56	1.498	0.062027	1
0.0133	1.54	1.486	0.053987	1
0.0167	1.53	1.4738	0.05621	1
0.02	1.51	1.462	0.047977	1
0.0233	1.5	1.4504	0.04965	1
0.0267	1.48	1.4384	0.041579	1
0.03	1.46	1.4269	0.033064	1
0.0333	1.45	1.4155	0.034457	1
0.0366	1.43	1.4042	0.025759	1
0.04	1.42	1.3927	0.027309	1
0.0433	1.4	1.3816	0.018428	1
0.0466	1.4	1.3705	0.029459	1
0.05	1.38	1.3593	0.020732	1
0.0533	1.37	1.3484	0.021584	1
0.0566	1.35	1.3376	0.01235	1
0.06	1.34	1.3266	0.013353	1
0.0633	1.32	1.3161	0.0039448	1
0.0666	1.3	1.3055	-0.0055475	1
0.07	1.3	1.2948	0.0051907	1
0.0733	1.29	1.2845	0.0055287	1
0.0766	1.27	1.2742	-0.0042158	1
0.08	1.26	1.2637	-0.0037353	1
0.0833	1.26	1.2536	0.0063546	1
0.0866	1.24	1.2436	-0.0036361	1
0.09	1.23	1.2334	-0.003407	1
0.0933	1.21	1.2236	-0.013559	1
0.0966	1.21	1.2138	-0.0037902	1
0.1	1.19	1.2038	-0.013807	1
0.1033	1.18	1.1942	-0.014195	1
0.1066	1.18	1.1847	-0.0046605	1
0.11	1.16	1.1749	-0.014917	1
0.1133	1.15	1.1655	-0.015536	1
0.1166	1.15	1.1562	-0.00623	1
0.12	1.13	1.1467	-0.01672	1
0.1233	1.11	1.1376	-0.027564	1
0.1266	1.11	1.1285	-0.018482	1

0.13 1.1 1.1192 -0.0192 1 0.1366 1.08 1.1014 -0.021399 1 0.14 1.07 1.0836 -0.013619 1 0.1433 1.07 1.0836 -0.013619 1 0.1466 1.05 1.075 -0.024967 1 0.15 1.05 1.0661 -0.013619 1 0.1533 1.03 1.0576 -0.024967 1 0.1566 1.03 1.0492 -0.019169 1 0.1660 1.02 1.0405 -0.02399 1 0.1633 1 1.0322 -0.032322 1 0.1666 1 1.024 -0.02399 1 0.170 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.1833 0.95 0.95328 -0.033281 1 0.1866					
0.1333 1.1 1.1103 -0.010264 1 0.1366 1.08 1.1014 -0.021399 1 0.14 1.07 1.0923 -0.02234 1 0.1433 1.07 1.0836 -0.013619 1 0.1466 1.05 1.075 -0.024967 1 0.15 1.05 1.0661 -0.016125 1 0.1533 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0492 -0.019169 1 0.1633 1 1.0322 -0.03299 1 0.1633 1 1.0322 -0.03299 1 0.1666 1 1.024 -0.02399 1 0.170 0.99 1.0156 -0.025568 1 0.1766 0.97 0.99942 -0.024915 1 0.18 0.97 0.99912 -0.021195 1 0.1833 0.95 0.98328 -0.033221 1 0.1833	0.13	1.1	1.1192	-0.0192	1
0.1366 1.08 1.1014 -0.021399 1 0.14 1.07 1.0923 -0.02234 1 0.1433 1.07 1.0836 -0.013619 1 0.1466 1.05 1.0661 -0.024967 1 0.15 1.05 1.0661 -0.016125 1 0.1566 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0492 -0.019169 1 0.16 1.02 1.0405 -0.025399 1 0.1633 1 1.0322 -0.032399 1 0.1666 1 1.024 -0.02399 1 0.177 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.022415 1 0.1766 0.97 0.99942 -0.022415 1 0.18 0.97 0.99912 -0.021195 1 0.1833 0.95 0.983228 -0.0323281 1 0.1966 <td>0.1333</td> <td></td> <td>1.1103</td> <td></td> <td></td>	0.1333		1.1103		
0.14 1.07 1.0923 -0.02234 1 0.1433 1.07 1.0836 -0.013619 1 0.1466 1.05 1.075 -0.024967 1 0.15 1.05 1.0661 -0.016125 1 0.1533 1.03 1.0576 -0.027613 1 0.16 1.03 1.0492 -0.019169 1 0.16 1.02 1.0405 -0.02539 1 0.16 1.02 1.0405 -0.02539 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1766 0.97 0.99942 -0.024195 1 0.1766 0.97 0.99942 -0.02195 1 0.1803 0.99 1.0075 -0.02195 1 0.1809 1.01766 0.97 0.99942 -0.022415 1 0.1800 0.97 0.99412 -0.02195 1					
0.1436 1.07 1.0836 -0.013619 1 0.1466 1.05 1.075 -0.024967 1 0.15 1.05 1.0661 -0.016125 1 0.1533 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0492 -0.019169 1 0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1766 0.97 0.9912 -0.021459 1 0.1766 0.97 0.99942 -0.024415 1 0.18 0.97 0.9912 -0.021459 1 0.18 0.97 0.9912 -0.021459 1 0.18 0.97 0.9912 -0.021459 1 0.18 0.97 0.9912 -0.02145 1 0.18 0.97 0.9912 -0.027408 1 0.18 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.1466 1.05 1.075 -0.024967 1 0.15 1.05 1.0661 -0.016125 1 0.1533 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0495 -0.019169 1 0.16 1.02 1.0405 -0.022539 1 0.1666 1 1.024 -0.023299 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.18 0.97 0.99912 -0.021195 1 0.18 0.97 0.99942 -0.022415 1 0.1866 0.97 0.9932 -0.0323281 1 0.1866 0.95 0.98328 -0.032431 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.024191 1 0.2066					
0.15 1.05 1.0661 -0.016125 1 0.1533 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0492 -0.019169 1 0.16 1.02 1.0405 -0.020539 1 0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.1766 0.97 0.99912 -0.021195 1 0.1883 0.95 0.98328 -0.03281 1 0.1866 0.95 0.97543 -0.025431 1 0.1966 0.92 0.95202 -0.032021 1 0.1933 0.94 0.95741 -0.024191 1 0.2066 0.92 0.95202 -0.032021 1 0.207<					
0.1533 1.03 1.0576 -0.027613 1 0.1566 1.03 1.0492 -0.019169 1 0.16 1.02 1.0405 -0.020539 1 0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.95 0.98328 -0.032281 1 0.18 0.95 0.98328 -0.022440 1 0.1933 0.94 0.95968 -0.019684 1 0.194419					
0.1566 1.03 1.0492 -0.019169 1 0.16 1.02 1.0405 -0.020539 1 0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.18 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.18 0.994 0.95743 -0.025431 1 0.19 0.94419 -0.024191 1 0.024191 1 0					
0.16 1.02 1.0405 -0.020539 1 0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.97543 -0.025431 1 0.1866 0.95 0.97543 -0.025431 1 0.1966 0.95 0.97543 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.22 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21<					
0.1633 1 1.0322 -0.032232 1 0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.18 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.98328 -0.033281 1 0.1966 0.95 0.97543 -0.025431 1 0.19 0.94 0.95744 -0.027408 1 0.1966 0.92 0.95202 -0.032021 1 0.2033 0.94 0.95685 -0.019684 1 0.2046 0.91 0.93665 -0.024191 1 0.2033 0.91 0.93665 -0.024191 1 0.2046 0.91 0.92153 -0.031531 1 0.21 0.89 0.92153 -0.031531 1 0.213<					
0.1666 1 1.024 -0.02399 1 0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99912 -0.021195 1 0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.98328 -0.032281 1 0.1966 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1966 0.92 0.95202 -0.032021 1 0.2033 0.91 0.93665 -0.026652 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.21 0.89 0.92153 -0.031531 1 0.21 0.89 0.92153 -0.036875 1 0.22					
0.17 0.99 1.0156 -0.025568 1 0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.98328 -0.033281 1 0.1866 0.95 0.97543 -0.027408 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92153 -0.031531 1 0.21 0.89 0.91417 -0.024174 1 0.21 0.89 0.91417 -0.024174 1 0.21 0.89 0.92687 -0.036875 1 0					
0.1733 0.99 1.0075 -0.017459 1 0.1766 0.97 0.99942 -0.029415 1 0.18 0.97 0.9912 -0.021155 1 0.1833 0.95 0.98328 -0.03281 1 0.1866 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.20 0.92 0.95419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92153 -0.031531 1 0.21 0.89 0.92153 -0.031531 1 0.213 0.89 0.91417 -0.024174 1 0.216 0.87 0.89687 -0.036875 1					
0.1766 0.97 0.9942 -0.029415 1 0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.98328 -0.03281 1 0.1866 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2033 0.91 0.93665 -0.026652 1 0.2033 0.91 0.92917 -0.019174 1 0.2036 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.213 0.89 0.92153 -0.031531 1 0.214 0.89 0.92153 -0.031531 1 0.215 0.89 0.92153 -0.036875 1 0.226 0.87 0.89942 -0.029416 1					
0.18 0.97 0.9912 -0.021195 1 0.1833 0.95 0.98328 -0.033281 1 0.1866 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.991417 -0.024174 1 0.21 0.89 0.991417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.221 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89923 -0.022234 1 0.2266 0.86 0.88511 -0.022511 1					
0.1833 0.95 0.98328 -0.033281 1 0.1866 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.213 0.89 0.91417 -0.024174 1 0.216 0.87 0.90687 -0.036875 1 0.221 0.87 0.90687 -0.036875 1 0.224 0.87 0.89223 -0.022234 1 0.225 0.87 0.89942 -0.0229416 1 0.230 0.86 0.88511 -0.0225111 1				•	
0.1866 0.95 0.97543 -0.025431 1 0.19 0.94 0.96741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.213 0.89 0.91417 -0.024174 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.89942 -0.029416 1 0.223 0.87 0.89923 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.233 0.86 0.87783 -0.017831 1 0.233 0.84 0.86387 -0.026764 1					
0.19 0.94 0.95741 -0.027408 1 0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.92917 -0.019174 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.222 0.87 0.89942 -0.022234 1 0.2233 0.87 0.89923 -0.022234 1 0.22466 0.86 0.88511 -0.025111 1 0.233 0.86 0.87783 -0.017831 1 0.2340 0.83 0.84582 -0.030822 1 0.2353 0.84 0.86387 -0.023869 1					
0.1933 0.94 0.95968 -0.019684 1 0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.221 0.87 0.89942 -0.029416 1 0.222 0.87 0.89923 -0.02234 1 0.223 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.03822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.84992 -0.019923 1 <					
0.1966 0.92 0.95202 -0.032021 1 0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.22466 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.86387 -0.023869 1 0.2340 0.83 0.85676 -0.026764 1 0.2440 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1					
0.2 0.92 0.94419 -0.024191 1 0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.22566 0.86 0.88511 -0.025111 1 0.233 0.86 0.87783 -0.017831 1 0.2366 0.84 0.87082 -0.03822 1 0.2366 0.84 0.86387 -0.023869 1 0.240 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1					
0.2033 0.91 0.93665 -0.026652 1 0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89923 -0.02234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.233 0.86 0.87783 -0.017831 1 0.233 0.86 0.87783 -0.017831 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.843414 -0.013137 1					
0.2066 0.91 0.92917 -0.019174 1 0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.899223 -0.02234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.233 0.84 0.87082 -0.030822 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.82953 -0.019526 1					
0.21 0.89 0.92153 -0.031531 1 0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.2366 0.84 0.86387 -0.023869 1 0.246 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.255 0.81 0.82953 -0.019526 1 0.2566 0.81 0.82299 -0.012903 1					
0.2133 0.89 0.91417 -0.024174 1 0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.2366 0.84 0.86387 -0.023869 1 0.244 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.019923 1 0.255 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.266 0.8 0.81613 -0.01634 1					
0.2166 0.87 0.90687 -0.036875 1 0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.253 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.266 0.8 0.81613 -0.016134 1 0.2666 0.78 0.80315 -0.023154 1					
0.22 0.87 0.89942 -0.029416 1 0.2233 0.87 0.89223 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.266 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
0.2233 0.87 0.89223 -0.022234 1 0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2703 0.78 0.80315 -0.023154 1 0.271 0.78 0.79655 -0.016548 1					
0.2266 0.86 0.88511 -0.025111 1 0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2666 0.78 0.80315 -0.023154 1 0.2733 0.78 0.79655 -0.016548 1 0.27733 0.78 0.79019 -0.010188 1 0.28 0.76 0.77388 -0.023879 1					
0.23 0.86 0.87783 -0.017831 1 0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.266 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.27 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.276 0.78388 -0.023879 1 0.28 0					
0.2333 0.84 0.87082 -0.030822 1 0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.28 0.76 0.77438 -0.017432 1					
0.2366 0.84 0.86387 -0.023869 1 0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2866 0.76 0.78388 -0.023879 1 0.2833 0.76 0.77743 -0.017432 1 0.2966 0.75 0.76507 -0.015067 1					
0.24 0.83 0.85676 -0.026764 1 0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.2933 0.73 0.75877 -0.002716 1					
0.2433 0.83 0.84992 -0.019923 1 0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2966 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3					
0.2466 0.83 0.84314 -0.013137 1 0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2966 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.74671 -0.016706 1 0.2966 0.73 0.74671 -0.016706 1					
0.25 0.81 0.8362 -0.026202 1 0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.299 0.75 0.75877 -0.0087742 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 <	0.2466	0.83	0.84314		
0.2533 0.81 0.82953 -0.019526 1 0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1					
0.2566 0.81 0.8229 -0.012903 1 0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2533				
0.26 0.8 0.81613 -0.016134 1 0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2566				
0.2633 0.8 0.80962 -0.0096181 1 0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.26	0.8		-0.016134	
0.2666 0.78 0.80315 -0.023154 1 0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2633	0.8	0.80962		
0.27 0.78 0.79655 -0.016548 1 0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2666	0.78			
0.2733 0.78 0.79019 -0.010188 1 0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.27	0.78			
0.2766 0.76 0.78388 -0.023879 1 0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2733	0.78	0.79019	-0.010188	
0.28 0.76 0.77743 -0.017432 1 0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2766	0.76			
0.2833 0.76 0.77122 -0.011225 1 0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.28	0.76	0.77743		
0.2866 0.75 0.76507 -0.015067 1 0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2833	0.76	0.77122	-0.011225	
0.29 0.75 0.75877 -0.0087742 1 0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2866	0.75	0.76507	-0.015067	
0.2933 0.73 0.75272 -0.022716 1 0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.29	0.75	0.75877		
0.2966 0.73 0.74671 -0.016706 1 0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2933	0.73	0.75272		
0.3 0.73 0.74056 -0.010564 1 0.3033 0.72 0.73465 -0.014652 1	0.2966	0.73	0.74671	-0.016706	
0.3033 0.72 0.73465 -0.014652 1	0.3	0.73	0.74056	-0.010564	
	0.3033	0.72	0.73465	-0.014652	
	0.3066	0.72	0.72879	-0.008786	I

0.31	0.72	0.72279	-0.0027917	1
0.3133	0.7	0.71702	-0.017021	1
0.3166	0.7	0.7113	-0.011296	1
0.32	0.7	0.70545	-0.0054455	1
0.3233	0.68	0.69981	-0.019813	1
0.3266	0.68	0.69423	-0.014226	1
0.33	0.68	0.68852	-0.0085156	1
0.3333	0.64	0.68302	-0.043018	1
0.35	0.65	0.65586	-0.0058649	1
0.3667	0.62	0.62979	-0.0097909	1
0.3833	0.61	0.6049	0.0050996	1
0.3633	0.57	0.58085	-0.010853	1
0.4167	0.56	0.55776	0.0022393	1
0.4107	0.54	0.53572	0.0022333	1
0.45	0.53	0.51442	0.01558	1
		0.49397	0.01558	
0.4667	0.51 0.49	0.49397	0.015051	1 1
0.4833		0.47445		1
0.5	0.48	0.43338	0.024415 0.022527	1
0.5167	0.46			
0.533	0.43	0.42049	0.0095107	1 1
0.55	0.43	0.40348	0.026521	
0.5667	0.41	0.38744	0.022562	1 1
0.5833	0.4	0.37213	0.027874	
0.6	0.38	0.35733	0.022668	1
0.6167	0.37	0.34313	0.026874	1
0.6333	0.37	0.32957	0.040435	1
0.65	0.35	0.31646	0.033537	1
0.6667	0.33	0.30388	0.026118	1
0.6833	0.33	0.29187	0.038128	1
0.7	0.32	0.28027	0.039731	1
0.7167	0.3	0.26913	0.030873	1
0.7333	0.3	0.25849	0.041509	1
0.75	0.29	0.24821	0.041786	1
0.7667	0.29	0.23835	0.051654	1
0.7833	0.27	0.22893	0.041073	1
0.8	0.27	0.21983	0.050174	1
0.8167	0.25	0.21109	0.038914	1
0.8333	0.25	0.20274	0.047256	1
0.85	0.25	0.19468	0.055316	1
0.8667	0.24	0.18694	0.053056	1
0.8833	0.22	0.17956	0.040444	1
0.9	0.22	0.17242	0.047583	1
0.9167	0.22	0.16556	0.054437	1
0.9333	0.21	0.15902	0.05098	1
0.95	0.21	0.1527	0.057302	· 1
0.9667	0.21	0.14663	0.063373	1
0.9833	0.19	0.14083	0.049168	1
1	0.19	0.13523	0.054767	1
1.2	0.13	0.083194	0.046806	1
1.4	0.11	0.05118	0.05882	1
1.6	0.1	0.031485	0.068515	1
1.8	0.08	0.019369	0.060631	1
2	0.06	0.011916	0.048084	1
2.2	0.05	0.0073303	0.04267	1

2.4	0.05	0.0045095	0.045491	1
2.6	0.05	0.0027742	0.047226	1
2.8	0.03	0.0017066	0.028293	1
3	0.03	0.0010499	0.02895	1
3.2	0.03	0.00064588	0.029354	1
3.4	0.03	0.00039734	0.029603	1
3.6	0.02	0.00024444	0.019756	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.7472E-003y0 = 1.1100E+000

TYPE CURVE DATA

K = 1.83635E-003y0 = 1.15000E+000

Time Drawdown Time Drawdown Time Drawdown
-----0.000E+000 1.150E+000 4.000E+000 6.941E-004

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
0	0.0000	0.0000	8.936	0.00	1.61	1.00	0.73
1	0.0033	0.0033	8.920	0.02	1.59	0.99	0.72
2	0.0067	0.0067	8.904	0.03	1.58	0.98	0.72
3	0.0100	0.0100	8.888	0.05	1.56	0.97	0.71
4	0.0133	0.0133	8.872	0.06	1.54	0.96	0.70
5	0.0167	0.0167	8.856	0.08	1.53	0.95	0.69
6	0.0200	0.0200	8.840	0.10	1.51	0.94	0.69
7	0.0233	0.0233	8.824	0.11	1.50	0.93	0.68
8	0.0267	0.0267	8.808	0.13	1.48	0.92	0.67
9	0.0300	0.0300	8.792	0.14	1.46	0.91	0.67
10	0.0333	0.0333	8.776	0.16	1.45	0.90	0.66
11	0.0366	0.0366	8.761	0.18	1.43	0.89	0.65
12	0.0400	0.0400	8.745	0.19	1.42	0.88	0.64
13	0.0433	0.0433	8.729	0.21	1.40	0.87	0.64
14	0.0466	0.0466	8.729	0.21	1.40	0.87	0.64
15	0.0500	0.0500	8.713	0.22	1.38	0.86	0.63
16	0.0533	0.0533	8.697	0.24	1.37	0.85	0.62
17	0.0566	0.0566	8.681	0.26	1.35	0.84	0.61
18	0.0600	0.0600	8.665	0.27	1.34	0.83	0.61
19	0.0633	0.0633	8.649	0.29	1.32	0.82	0.60
20	0.0666	0.0666	8.633	0.30	1.30	0.81	0.59
21	0.0700	0.0700	8.633	0.30	1.30	0.81	0.59
22	0.0733	0.0733	8.617	0.32	1.29	0.80	0.59
23	0.0766	0.0766	8.601	0.33	1.27	0.79	0.58
24	0.0800	0.0800	8.586	0.35	1.26	0.78	0.57
25	0.0833	0.0833	8.586	0.35	1.26	0.78	0.57
26	0.0866	0.0866	8.569	0.37	1.24	0.77	0.56
27	0.0900	0.0900	8.554	0.38	1.23	0.76	0.56
28	0.0933	0.0933	8.538	0.40	1.21	0.75	0.55
29	0.0966	0.0966	8.538	0.40	1.21	0.75	0.55
30	0.1000	0.1000	8.522	0.41	1.19	0.74	0.54

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.1033	8.506	0.43	1.18	0.73	0.54
32	0.1066	0.1066	8.506	0.43	1.18	0.73	0.54
33	0.1100	0.1100	8.490	0.45	1.16	0.72	0.53
34	0.1133	0.1133	8.474	0.46	1.15	0.71	0.52
35	0.1166	0.1166	8.474	0.46	1.15	0.71	0.52
36	0.1200	0.1200	8.458	0.48	1.13	0.70	0.51
37	0.1233	0.1233	8.442	0.49	1.11	0.69	0.51
38	0.1266	0.1266	8.442	0.49	1.11	0.69	0.51
39	0.1300	0.1300	8.426	0.51	1.10	0.68	0.50
40	0.1333	0.1333	8.426	0.51	1.10	0.68	0.50
41	0.1366	0.1366	8.410	0.53	1.08	0.67	0.49
42	0.1400	0.1400	8.394	0.54	1.07	0.66	0.48
43	0.1433	0.1433	8.394	0.54	1.07	0.66	0.48
44	0.1466	0.1466	8.379	0.56	1.05	0.65	0.48
45	0.1500	0.1500	8.379	0.56	1.05	0.65	0.48
46	0.1533	0.1533	8.363	0.57	1.03	0.64	0.47
47	0.1566	0.1566	8.363	0.57	1.03	0.64	0.47
48	0.1600	0.1600	8.347	0.59	1.02	0.63	0.46
49	0.1633	0.1633	8.331	0.61	1.00	0.62	0.46
50	0.1666	0.1666	8.331	0.61	1.00	0.62	0.46
51	0.1700	0.1700	8.315	0.62	0.99	0.61	0.45
52	0.1733	0.1733	8.315	0.62	0.99	0.61	0.45
53	0.1766	0.1766	8.299	0.64	0.97	0.60	0.44
54	0.1800	0.1800	8.299	0.64	0.97	0.60	0.44
55	0.1833	0.1833	8.283	0.65	0.95	0.59	0.43
56	0.1866	0.1866	8.283	0.65	0.95	0.59	0.43
57	0.1900	0.1900	8.267	0.67	0.94	0.58	0.43
58	0.1933	0.1933	8.267	0.67	0.94	0.58	0.43
59	0.1966	0.1966	8.251	0.69	0.92	0.57	0.42
60	0.2000	0.2000	8.251	0.69	0.92	0.57	0.42
61	0.2033	0.2033	8.235	0.70	0.91	0.56	0.41

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.2066	8.235	0.70	0.91	0.56	0.41
63	0.2100	0.2100	8.219	0.72	0.89	0.55	0.40
64	0.2133	0.2133	8.219	0.72	0.89	0.55	0.40
65	0.2166	0.2166	8.203	0.73	0.87	0.54	0.40
66	0.2200	0.2200	8.203	0.73	0.87	0.54	0.40
67	0.2233	0.2233	8.203	0.73	0.87	0.54	0.40
68	0.2266	0.2266	8.187	0.75	0.86	0.53	0.39
69	0.2300	0.2300	8.187	0.75	0.86	0.53	0.39
70	0.2333	0.2333	8.171	0.77	0.84	0.52	0.38
71	0.2366	0.2366	8.171	0.77	0.84	0.52	0.38
72	0.2400	0.2400	8.156	0.78	0.83	0.51	0.38
73	0.2433	0.2433	8.156	0.78	0.83	0.51	0.38
74	0.2466	0.2466	8.156	0.78	0.83	0.51	0.38
75	0.2500	0.2500	8.140	0.80	0.81	0.50	0.37
76	0.2533	0.2533	8.140	0.80	0.81	0.50	0.37
77	0.2566	0.2566	8.140	0.80	0.81	0.50	0.37
78	0.2600	0.2600	8.124	0.81	0.80	0.50	0.36
79	0.2633	0.2633	8.124	0.81	0.80	0.50	0.36
80	0.2666	0.2666	8.108	0.83	0.78	0.49	0.35
81	0.2700	0.2700	8.108	0.83	0.78	0.49	0.35
82	0.2733	0.2733	8.108	0.83	0.78	0.49	0.35
83	0.2766	0.2766	8.092	0.84	0.76	0.48	0.35
84	0.2800	0.2800	8.092	0.84	0.76	0.48	0.35
85	0.2833	0.2833	8.092	0.84	0.76	0.48	0.35
86	0.2866	0.2866	8.076	0.86	0.75	0.47	0.34
87	0.2900	0.2900	8.076	0.86	0.75	0.47	0.34
88	0.2933	0.2933	8.060	0.88	0.73	0.46	0.33
89	0.2966	0.2966	8.060	0.88	0.73	0.46	0.33
90	0.3000	0.3000	8.060	0.88	0.73	0.46	0.33
91	0.3033	0.3033	8.044	0.89	0.72	0.45	0.33
92	0.3066	0.3066	8.044	0.89	0.72	0.45	0.33

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.3100	8.044	0.89	0.72	0.45	0.33
94	0.3133	0.3133	8.028	0.91	0.70	0.44	0.32
95	0.3166	0.3166	8.028	0.91	0.70	0.44	0.32
96	0.3200	0.3200	8.028	0.91	0.70	0.44	0.32
97	0.3233	0.3233	8.012	0.92	0.68	0.43	0.31
98	0.3266	0.3266	8.012	0.92	0.68	0.43	0.31
99	0.3300	0.3300	8.012	0.92	0.68	0.43	0.31
100	0.3333	0.3333	7.966	0.97	0.64	0.40	0.29
101	0.3500	0.3500	7.981	0.96	0.65	0.41	0.30
102	0.3667	0.3667	7.949	0.99	0.62	0.39	0.28
103	0.3833	0.3833	7.933	1.00	0.61	0.38	0.28
104	0.4000	0.4000	7.901	1.04	0.57	0.36	0.26
105	0.4167	0.4167	7.885	1.05	0.56	0.35	0.25
106	0.4333	0.4333	7.869	1.07	0.54	0.34	0.25
107	0.4500	0.4500	7.853	1.08	0.53	0.33	0.24
108	0.4667	0.4667	7.837	1.10	0.51	0.32	0.23
109	0.4833	0.4833	7.821	1.12	0.49	0.31	0.22
110	0.5000	0.5000	7.805	1.13	0.48	0.30	0.22
111	0.5167	0.5167	7.789	1.15	0.46	0.29	0.21
112	0.5333	0.5333	7.758	1.18	0.43	0.27	0.20
113	0.5500	0.5500	7.758	1.18	0.43	0.27	0.20
114	0.5667	0.5667	7.742	1.19	0.41	0.26	0.19
115	0.5833	0.5833	7.726	1.21	0.40	0.25	0.18
116	0.6000	0.6000	7.710	1.23	0.38	0.24	0.17
117	0.6167	0.6167	7.694	1.24	0.37	0.23	0.17
118	0.6333	0.6333	7.694	1.24	0.37	0.23	0.17
119	0.6500	0.6500	7.678	1.26	0.35	0.22	0.16
120	0.6667	0.6667	7.662	1.27	0.33	0.21	0.15
121	0.6833	0.6833	7.662	1.27	0.33	0.21	0.15
122	0.7000	0.7000	7.646	1.29	0.32	0.20	0.14
123	0.7167	0.7167	7.630	1.31	0.30	0.19	0.14

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.7333	7.630	1.31	0.30	0.19	0.14
125	0.7500	0.7500	7.614	1.32	0.29	0.18	0.13
126	0.7667	0.7667	7.614	1.32	0.29	0.18	0.13
127	0.7833	0.7833	7.598	1.34	0.27	0.17	0.12
128	0.8000	0.8000	7.598	1.34	0.27	0.17	0.12
129	0.8167	0.8167	7.582	1.35	0.25	0.16	0.12
130	0.8333	0.8333	7.582	1.35	0.25	0.16	0.12
131	0.8500	0.8500	7.582	1.35	0.25	0.16	0.12
132	0.8667	0.8667	7.566	1.37	0.24	0.15	0.11
133	0.8833	0.8833	7.551	1.39	0.22	0.14	0.10
134	0.9000	0.9000	7.551	1.39	0.22	0.14	0.10
135	0.9167	0.9167	7.551	1.39	0.22	0.14	0.10
136	0.9333	0.9333	7.535	1.40	0.21	0.13	0.09
137	0.9500	0.9500	7.535	1.40	0.21	0.13	0.09
138	0.9667	0.9667	7.535	1.40	0.21	0.13	0.09
139	0.9833	0.9833	7.519	1.42	0.19	0.12	0.09
140	1.0000	1.0000	7.519	1.42	0.19	0.12	0.09
141	1.2000	1.2000	7.455	1.48	0.13	0.08	0.06
142	1.4000	1.4000	7.439	1.50	0.11	0.07	0.05
143	1.6000	1.6000	7.423	1.51	0.10	0.06	0.04
144	1.8000	1.8000	7.407	1.53	0.08	0.05	0.04
145	2.0000	2.0000	7.391	1.55	0.06	0.04	0.03
146	2.2000	2.2000	7.375	1.56	0.05	0.03	0.02
147	2.4000	2.4000	7.375	1.56	0.05	0.03	0.02
148	2.6000	2.6000	7.375	1.56	0.05	0.03	0.02
149	2.8000	2.8000	7.360	1.58	0.03	0.02	0.01
150	3.0000	3.0000	7.360	1.58	0.03	0.02	0.01
151	3.2000	3.2000	7.360	1.58	0.03	0.02	0.01
152	3.4000	3.4000	7.360	1.58	0.03	0.02	0.01
153	3.6000	3.6000	7.344	1.59	0.02	0.01	0.01
154	3.8000	3.8000	7.344	1.59	0.02	0.01	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	4.0000	7.344	1.59	0.02	0.01	0.01
156	4.2000	4.2000	7.344	1.59	0.02	0.01	0.01
157	4.4000	4.4000	7.344	1.59	0.02	0.01	0.01
158	4.6000	4.6000	7.344	1.59	0.02	0.01	0.01
159	4.8000	4.8000	7.344	1.59	0.02	0.01	0.01
160	5.0000	5.0000	7.344	1.59	0.02	0.01	0.01
161	5.2000	5.2000	7.328	1.61	0.00	0.00	0.00
162	5.4000	5.4000	7.328	1.61	0.00	0.00	0.00
163	5.6000	5.6000	7.344	1.59	0.02	0.01	0.01
164	5.8000	5.8000	7.344	1.59	0.02	0.01	0.01
165	6.0000	6.0000	7.344	1.59	0.02	0.01	0.01
166	6.2000	6.2000	7.344	1.59	0.02	0.01	0.01
167	6.4000	6.4000	7.344	1.59	0.02	0.01	0.01
168	6.6000	6.6000	7.344	1.59	0.02	0.01	0.01
169	6.8000	6.8000	7.344	1.59	0.02	0.01	0.01
170	7.0000	7.0000	7.344	1.59	0.02	0.01	0.01
171	7.2000	7.2000	7.344	1.59	0.02	0.01	0.01
172	7.4000	7.4000	7.344	1.59	0.02	0.01	0.01
173	7.6000	7.6000	7.344	1.59	0.02	0.01	0.01
174	7.8000	7.8000	7.344	1.59	0.02	0.01	0.01
175	8.0000	8.0000	7.344	1.59	0.02	0.01	0.01
176	8.2000	8.2000	7.344	1.59	0.02	0.01	0.01
177	8.4000	8.4000	7.344	1.59	0.02	0.01	0.01
178	8.6000	8.6000	7.344	1.59	0.02	0.01	0.01
179	8.8000	8.8000	7.344	1.59	0.02	0.01	0.01
180	9.0000	9.0000	7.344	1.59	0.02	0.01	0.01
181	9.2000	9.2000	7.344	1.59	0.02	0.01	0.01
182	9.4000	9.4000	7.344	1.59	0.02	0.01	0.01
183	9.6000	9.6000	7.344	1.59	0.02	0.01	0.01
184	9.8000	9.8000	7.344	1.59	0.02	0.01	0.01
185	10.0000	10.0000	7.344	1.59	0.02	0.01	0.01

TEST DESCRIPTION

Knowns and Constants:

 No. of data points
 133

 Radius of well casing
 0.08333

 Radius of well
 0.3438

 Aquifer saturated thickness
 13.5

 Well screen length
 10

 Static height of water in well
 16.39

 Log(Re/Rw)
 2.846

 A, B, C
 0.000, 0.000, 1.940

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 2.0970E-003 +/- 2.6353E-005 y0 = 1.0309E+000 +/- 5.2426E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.1	1.0237	0.076295	1
0.0067	1.08	1.0163	0.063654	1
0.01	1.07	1.0093	0.060746	1
0.0133	1.05	1.0022	0.047788	1
0.0167	1.04	0.99501	0.044992	1
0.02	1.02	0.98806	0.031935	1
0.0233	1.02	0.98117	0.03883	1
0.0267	1	0.97412	0.025883	1
0.03	1	0.96732	0.03268	1
0.0333	0.99	0.96057	0.02943	1
0.0367	0.97	0.95367	0.016335	1
0.04	0.97	0.94701	0.022989	1
0.0433	0.96	0.9404	0.019597	1
0.0467	0.96	0.93364	0.026357	1
0.05	0.94	0.92713	0.012872	1
0.0533	0.92	0.92066	-0.00065899	1
0.0567	0.92	0.91404	0.0059591	1
0.06	0.91	0.90766	0.002337	1
0.0633	0.91	0.90133	0.0086705	1
0.0667	0.89	0.89485	-0.0048504	1
0.07	0.89	0.88861	0.0013937	1
0.0733	0.88	0.88241	-0.0024059	1
0.0767	0.88	0.87606	0.0039373	1
0.08	0.86	0.86995	-0.0099498	1
0.0833	0.86	0.86388	-0.0038795	1
0.0867	0.84	0.85767	-0.01767	1
0.09	0.84	0.85168	-0.011685	1
0.0933	0.84	0.84574	-0.0057421	1
0.0967	0.83	0.83966	-0.0096626	1
0.1	0.83	0.8338	-0.0038036	1
0.1033	0.81	0.82799	-0.017986	1
0.1067	0.81	0.82203	-0.012034	1
0.11	0.81	0.8163	-0.0062977	1
0.1133	0.8	0.8106	-0.010602	1
0.1167	0.8	0.80477	-0.0047748	1
0.12	0.78	0.79916	-0.019159	1
0.1233	0.78	0.79358	-0.013583	1
0.1267	0.77	0.78788	-0.017878	1

0.13	0.77	0.78238	-0.012381	1
0.1333	0.77	0.77692	-0.0069215	1
0.1367	0.75	0.77134	-0.021337	1
0.14	0.75	0.76595	-0.015954	1
0.1433	0.75	0.76061	-0.01061	1
0.1467	0.73	0.75514	-0.025142	1
0.15	0.73	0.74987	-0.019873	1
0.1533	0.73	0.74464	-0.014641	1
0.1567	0.72	0.73929	-0.019288	1
0.16	0.72	0.73413	-0.014129	1
0.1633	0.7	0.72901	-0.029007	1
0.1667	0.7	0.72377	-0.023766	1
0.17	0.7	0.71872	-0.018716	1
0.1733	0.7	0.7137	-0.013701	1
0.1767	0.69	0.70857	-0.018571	1
0.18	0.69	0.70363	-0.013626	1
0.1833	0.69	0.69872	-0.0087166	1
0.1867	0.67	0.69369	-0.023694	1
0.19	0.67	0.68885	-0.018854	1
0.1933	0.67	0.68405	-0.014047	1
0.1967	0.65	0.67913	-0.02913	1
0.2	0.65	0.67439	-0.024391	1
0.2033	0.65	0.66969	-0.019685	1
0.2067	0.64	0.66487	-0.024871	1
0.21	0.64	0.66023	-0.020232	1
0.2133	0.64	0.65562	-0.015625	1
0.2167	0.64	0.65091	-0.010912	1
0.22	0.62	0.64637	-0.02637	1
0.2233	0.62	0.64186	-0.02186	1
0.2267	0.62	0.63725	-0.017246	1
0.23	0.61	0.6328	-0.022799	1
0.2333	0.61	0.62838	-0.018384	1
0.2367	0.61	0.62387	-0.013867	1
0.24	0.61	0.61951	-0.0095136	1
0.2433	0.59	0.61519	-0.025191	1
0.2467	0.59	0.61077	-0.020769	1
0.25	0.59	0.60651	-0.016507	1
0.2533	0.59	0.60227	-0.012275	1
0.2567	0.59	0.59795	-0.0079453	1
0.26	0.57	0.59377	-0.023773	1
0.2633	0.57	0.58963	-0.01963	1
0.2667	0.57	0.58539	-0.015391	1
0.27	0.57	0.58131	-0.011307	1
0.2867	0.54	0.56107	-0.021068	1
0.3034	0.53	0.54153	-0.011535	1
0.32	0.51	0.52279	-0.012792	1
0.3367	0.49	0.50459	-0.014591	1
0.3534	0.48	0.48702	-0.007024	1
0.37	0.46	0.47017	-0.010168	1
0.3867	0.45	0.4538	-0.0037992	1
0.4034	0.43	0.438	-0.0080002	1
0.42	0.41	0.42284	-0.012841	1
0.4367	0.4	0.40812	-0.0081198	1
0.4534	0.4	0.39391	0.0060888	1

0.4700	0:4697~	0.38	0.38052	-0.00052	1
	0.4867	0.37	0.36704	0.0029615	1
	0.5034	0.37	0.35426	0.01574	1
	0.52	0.35	0.342	0.0080009	1
	0.5367	0.33	0.33009	-9.2449E-005	1
	0.5534	0.33	0.3186	0.0114	1
	0.57	0.32	0.30757	0.012426	1
	0.5867	0.32	0.29687	0.023135	1
	0.6034	0.3	0.28653	0.01347	1
	0.62	0.29	0.27661	0.013387	1
	0.6367	0.29	0.26698	0.023017	1
	0.6534	0.27	0.25769	0.012312	1
	0.67	0.27	0.24877	0.021231	1
	0.6867	0.25	0.24011	0.0098915	1
	0.7034	0.25	0.23175	0.018251	1
,	0.72	0.25	0.22373	0.026272	1
	0.7367	0.24	0.21594	0.024061	1
	0.7534	0.24	0.20842	0.031579	1
	0.77	0.24	0.20121	0.038792	1
	0.7867	0.22	0.1942	0.025797	1
	0.8034	0.22	0.18744	0.032558	1
	0.82	0.22	0.18095	0.039046	1
	0.8367	0.21	0.17465	0.035346	1
	0.8534	0.21	0.16857	0.041426	1
	0.87	0.21	0.16274	0.047261	1
	0.8867	0.19	0.15707	0.032926	1
	0.9034	0.19	0.15161	0.038395	1
	0.92	0.19	0.14636	0.043642	1
	0.9367	0.18	0.14126	0.038737	1
	1.1367	0.14	0.092411	0.047589	1
	1.3367	0.11	0.060453	0.049547	1
	1.5367	0.1	0.039547	0.060453	1
	1.7367	0.08	0.025871	0.054129	1
	1.9367	0.06	0.016924	0.043076	1
	2.1367	0.05	0.011071	0.038929	1
	2.3367	0.05	0.0072427	0.042757	1
	2.5367	0.05	0.004738	0.045262	1
	2.7367	0.03	0.0030995	0.026901	1
	2.9367	0.03	0.0020276	0.027972	I

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.0970E-003y0 = 1.0309E+000

<<<<<<<<<<<<<<<>>>>>

TYPE CURVE DATA

K = 1.65959E-003y0 = 8.54744E-001

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 8.547E-001 3.000E+000 5.546E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
0	0.0000	-0.0633	6.373	0.10	1.00	0.91	0.46
1	0.0033	-0.0600	6.054	-0.22	1.32	1.20	0.60
2	0.0067	-0.0566	5.497	-0.78	1.88	1.71	0.85
3	0.0100	-0.0533	5.003	-1.27	2.37	2.16	1.08
4	0.0133	-0.0500	4.828	-1.45	2.55	2.32	1.16
5	0.0167	-0.0466	4.892	-1.39	2.48	2.26	1.13
6	0.0200	-0.0433	5.003	-1.27	2.37	2.16	1.08
7	0.0233	-0.0400	5.401	-0.88	1.98	1.80	0.90
8	0.0267	-0.0366	7.853	1.58	-0.48	-0.43	-0.22
9	0.0300	-0.0333	6.755	0.48	0.62	0.57	0.28
10	0.0333	-0.0300	6.978	0.70	0.40	0.36	0.18
11	0.0366	-0.0267	6.293	0.02	1.08	0.99	0.49
12	0.0400	-0.0233	6.054	-0.22	1.32	1.20	0.60
13	0.0433	-0.0200	5.943	-0.33	1.43	1.30	0.65
14	0.0466	-0.0167	5.959	-0.32	1.42	1.29	0.64
15	0.0500	-0.0133	6.134	-0.14	1.24	1.13	0.56
16	0.0533	-0.0100	6.277	0.00	1.10	1.00	0.50
17	0.0566	-0.0067	6.341	0.06	1.04	0.94	0.47
18	0.0600	-0.0033	6.325	0.05	1.05	0.96	0.48
19	0.0633	-0.0000	6.277	0.00	1.10	1.00	0.50
20	0.0666	0.0033	6.277	0.00	1.10	1.00	0.50
21	0.0700	0.0067	6.293	0.02	1.08	0.99	0.49
22	0.0733	0.0100	6.309	0.03	1.07	0.97	0.48
23	0.0766	0.0133	6.325	0.05	1.05	0.96	0.48
24	0.0800	0.0167	6.341	0.06	1.04	0.94	0.47
25	0.0833	0.0200	6.357	0.08	1.02	0.93	0.46
26	0.0866	0.0233	6.357	0.08	1.02	0.93	0.46
27	0.0900	0.0267	6.373	0.10	1.00	0.91	0.46
28	0.0933	0.0300	6.373	0.10	1.00	0.91	0.46
29	0.0966	0.0333	6.388	0.11	0.99	0.90	0.45
30	0.1000	0.0367	6.404	0.13	0.97	0.88	0.44

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0400	6.404	0.13	0.97	0.88	0.44
32	0.1066	0.0433	6.420	0.14	0.96	0.87	0.43
33	0.1100	0.0467	6.420	0.14	0.96	0.87	0.43
34	0.1133	0.0500	6.436	0.16	0.94	0.86	0.43
35	0.1166	0.0533	6.452	0.17	0.92	0.84	0.42
36	0.1200	0.0567	6.452	0.17	0.92	0.84	0.42
37	0.1233	0.0600	6.468	0.19	0.91	0.83	0.41
38	0.1266	0.0633	6.468	0.19	0.91	0.83	0.41
39	0.1300	0.0667	6.484	0.21	0.89	0.81	0.41
40	0.1333	0.0700	6.484	0.21	0.89	0.81	0.41
41	0.1366	0.0733	6.500	0.22	0.88	0.80	0.40
42	0.1400	0.0767	6.500	0.22	0.88	0.80	0.40
43	0.1433	0.0800	6.516	0.24	0.86	0.78	0.39
44	0.1466	0.0833	6.516	0.24	0.86	0.78	0.39
45	0.1500	0.0867	6.532	0.25	0.84	0.77	0.38
46	0.1533	0.0900	6.532	0.25	0.84	0.77	0.38
47	0.1566	0.0933	6.532	0.25	0.84	0.77	0.38
48	0.1600	0.0967	6.548	0.27	0.83	0.75	0.38
49	0.1633	0.1000	6.548	0.27	0.83	0.75	0.38
50	0.1666	0.1033	6.563	0.29	0.81	0.74	0.37
51	0.1700	0.1067	6.563	0.29	0.81	0.74	0.37
52	0.1733	0.1100	6.563	0.29	0.81	0.74	0.37
53	0.1766	0.1133	6.579	0.30	0.80	0.73	0.36
54	0.1800	0.1167	6.579	0.30	0.80	0.73	0.36
55	0.1833	0.1200	6.595	0.32	0.78	0.71	0.36
56	0.1866	0.1233	6.595	0.32	0.78	0.71	0.36
57	0.1900	0.1267	6.611	0.33	0.77	0.70	0.35
58	0.1933	0.1300	6.611	0.33	0.77	0.70	0.35
59	0.1966	0.1333	6.611	0.33	0.77	0.70	0.35
60	0.2000	0.1367	6.627	0.35	0.75	0.68	0.34
61	0.2033	0.1400	6.627	0.35	0.75	0.68	0.34

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
62	0.2066	0.1433	6.627	0.35	0.75	0.68	0.34
63	0.2100	0.1467	6.643	0.37	0.73	0.67	0.33
64	0.2133	0.1500	6.643	0.37	0.73	0.67	0.33
65	0.2166	0.1533	6.643	0.37	0.73	0.67	0.33
66	0.2200	0.1567	6.659	0.38	0.72	0.65	0.33
67	0.2233	0.1600	6.659	0.38	0.72	0.65	0.33
68	0.2266	0.1633	6.675	0.40	0.70	0.64	0.32
69	0.2300	0.1667	6.675	0.40	0.70	0.64	0.32
7 0	0.2333	0.1700	6.675	0.40	0.70	0.64	0.32
71	0.2366	0.1733	6.675	0.40	0.70	0.64	0.32
72	0.2400	0.1767	6.691	0.41	0.69	0.62	0.31
73	0.2433	0.1800	6.691	0.41	0.69	0.62	0.31
74	0.2466	0.1833	6.691	0.41	0.69	0.62	0.31
75	0.2500	0.1867	6.707	0.43	0.67	0.61	0.30
76	0.2533	0.1900	6.707	0.43	0.67	0.61	0.30
77	0.2566	0.1933	6.707	0.43	0.67	0.61	0.30
78	0.2600	0.1967	6.723	0.45	0.65	0.59	0.30
79	0.2633	0.2000	6.723	0.45	0.65	0.59	0.30
80	0.2666	0.2033	6.723	0.45	0.65	0.59	0.30
81	0.2700	0.2067	6.739	0.46	0.64	0.58	0.29
82	0.2733	0.2100	6.739	0.46	0.64	0.58	0.29
83	0.2766	0.2133	6.739	0.46	0.64	0.58	0.29
84	0.2800	0.2167	6.739	0.46	0.64	0.58	0.29
85	0.2833	0.2200	6.755	0.48	0.62	0.57	0.28
86	0.2866	0.2233	6.755	0.48	0.62	0.57	0.28
87	0.2900	0.2267	6.755	0.48	0.62	0.57	0.28
88	0.2933	0.2300	6.770	0.49	0.61	0.55	0.28
89	0.2966	0.2333	6.770	0.49	0.61	0.55	0.28
90	0.3000	0.2367	6.770	0.49	0.61	0.55	0.28
91	0.3033	0.2400	6.770	0.49	0.61	0.55	0.28
92	0.3066	0.2433	6.786	0.51	0.59	0.54	0.27
						•	·

		H					
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.2467	6.786	0.51	0.59	0.54	0.27
94	0.3133	0.2500	6.786	0.51	0.59	0.54	0.27
95	0.3166	0.2533	6.786	0.51	0.59	0.54	0.27
96	0.3200	0.2567	6.786	0.51	0.59	0.54	0.27
97	0.3233	0.2600	6.802	0.52	0.57	0.52	0.26
98	0.3266	0.2633	6.802	0.52	0.57	0.52	0.26
99	0.3300	0.2667	6.802	0.52	0.57	0.52	0.26
100	0.3333	0.2700	6.802	0.52	0.57	0.52	0.26
101	0.3500	0.2867	6.834	0.56	0.54	0.49	0.25
102	0.3667	0.3034	6.850	0.57	0.53	0.48	0.24
103	0.3833	0.3200	6.866	0.59	0.51	0.46	0.23
104	0.4000	0.3367	6.882	0.60	0.49	0.45	0.22
105	0.4167	0.3534	6.898	0.62	0.48	0.43	0.22
106	0.4333	0.3700	6.914	0.64	0.46	0.42	0.21
107	0.4500	0.3867	6.930	0.65	0.45	0.41	0.20
108	0.4667	0.4034	6. 6 46 9	0.37	0.73.43	0.66	0.33
109	0.4833	0.4200	6.962	0.68	0.41	0.38	0.19
110	0.5000	0.4367	6.978	0.70	0.40	0.36	0.18
111	0.5167	0.4534	6.978	0.70	0.40	0.36	0.18
112	0.5333	0.4700	6.993	0.72	0.38	0.35	0.17
113	0.5500	0.4867	7.009	0.73	0.37	0.33	0.17
114	0.5667	0.5034	7.009	0.73	0.37	0.33	0.17
115	0.5833	0.5200	7.025	0.75	0.35	0.32	0.16
116	0.6000	0.5367	7.04 1	0.76	0.33	0.30	0.15
117	0.6167	0.5534	7.041	0.76	0.33	0.30	0.15
118	0.6333	0.5700	7.057	0.78	0.32	0.29	0.14
119	0.6500	0.5867	7.057	0.78	0.32	0.29	0.14
120	0.6667	0.6034	7.073	0.80	0.30	0.28	0.14
121	0.6833	0.6200	7.089	0.81	0.29	0.26	0.13
122	0.7000	0.6367	7.089	0.81	0.29	0.26	0.13
123	0.7167	0.6534	7.105	0.83	0.27	0.25	0.12

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.6700	7.105	0.83	0.27	0.25	0.12
125	0.7500	0.6867	7.121	0.84	0.25	0.23	0.12
126	0.7667	0.7034	7.121	0.84	0.25	0.23	0.12
127	0.7833	0.7200	7.121	0.84	0.25	0.23	0.12
128	0.8000	0.7367	7.137	0.86	0.24	0.22	0.11
129	0.8167	0.7534	7.137	0.86	0.24	0.22	0.11
130	0.8333	0.7700	7.137	0.86	0.24	0.22	0.11
131	0.8500	0.7867	7.153	0.88	0.22	0.20	0.10
132	0.8667	0.8034	7.153	0.88	0.22	0.20	0.10
133	0.8833	0.8200	7.153	0.88	0.22	0.20	0.10
134	0.9000	0.8367	7.168	0.89	0.21	0.19	0.09
135	0.9167	0.8534	7.168	0.89	0.21	0.19	0.09
136	0.9333	0.8700	7.168	0.89	0.21	0.19	0.09
137	0.9500	0.8867	7.184	0.91	0.19	0.17	0.09
138	0.9667	0.9034	7.184	0.91	0.19	0.17	0.09
139	0.9833	0.9200	7.184	0.91	0.19	0.17	0.09
140	1.0000	0.9367	7.200	0.92	0.18	0.16	0.08
141	1.2000	1.1367	7.232	0.96	0.14	0.13	0.07
142	1.4000	1.3367	7.264	0.99	0.11	0.10	0.05
143	1.6000	1.5367	7.280	1.00	0.10	0.09	0.04
144	1.8000	1.7367	7.296	1.02	0.08	0.07	0.04
145	2.0000	1.9367	7.312	1.04	0.06	0.06	0.03
146	2.2000	2.1367	7.328	1.05	0.05	0.04	0.02
147	2.4000	2.3367	7.328	1.05	0.05	0.04	0.02
148	2.6000	2.5367	7.328	1.05	0.05	0.04	0.02
149	2.8000	2.7367	7.344	1.07	0.03	0.03	0.01
150	3.0000	2.9367	7.344	1.07	0.03	0.03	0.01
151	3.2000	3.1367	7.344	1.07	0.03	0.03	0.01
152	3.4000	3.3367	7.360	1.08	0.02	0.01	0.01
153	3.6000	3.5367	7.360	1.08	0.02	0.01	0.01
154	3.8000	3.7367	7.360	1.08	0.02	0.01	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9367	7.360	1.08	0.02	0.01	0.01
156	4.2000	4.1367	7.360	1.08	0.02	0.01	0.01
157	4.4000	4.3367	7.360	1.08	0.02	0.01	0.01
158	4.6000	4.5367	7.360	1.08	0.02	0.01	0.01
159	4.8000	4.7367	7.360	1.08	0.02	0.01	0.01
160	5.0000	4.9367	7.360	1.08	0.02	0.01	0.01
161	5.2000	5.1367	7.360	1.08	0.02	0.01	0.01
162	5.4000	5.3367	7.360	1.08	0.02	0.01	0.01
163	5.6000	5.5367	7.376	1.10	-0.00	-0.00	-0.00
164	5.8000	5.7367	7.376	1.10	-0.00	-0.00	-0.00
165	6.0000	5.9367	7.376	1.10	-0.00	-0.00	-0.00
166	6.2000	6.1367	7.360	1.08	0.02	0.01	0.01
167	6.4000	6.3367	7.360	1.08	0.02	0.01	0.01
168	6.6000	6.5367	7.360	1.08	0.02	0.01	0.01
169	6.8000	6.7367	7.360	1.08	0.02	0.01	0.01
170	7.0000	6.9367	7.344	1.07	0.03	0.03	0.01
171	7.2000	7.1367	7.344	1.07	0.03	0.03	0.01
172	7.4000	7.3367	7.344	1.07	0.03	0.03	0.01
173	7.6000	7.5367	7.360	1.08	0.02	0.01	0.01
174	7.8000	7.7367	7.360	1.08	0.02	0.01	0.01
175	8.0000	7.9367	7.360	1.08	0.02	0.01	0.01
176	8.2000	8.1367	7.360	1.08	0.02	0.01	0.01
177	8.4000	8.3367	7.360	1.08	0.02	0.01	0.01
178	8.6000	8.5367	7.360	1.08	0.02	0.01	0.01
179	8.8000	8.7367	7.360	1.08	0.02	0.01	0.01
180	9.0000	8.9367	7.360	1.08	0.02	0.01	0.01
181	9.2000	9.1367	7.360	1.08	0.02	0.01	0.01
182	9.4000	9.3367	7.360	1.08	0.02	0.01	0.01
183	9.6000	9.5367	7.360	1.08	0.02	0.01	0.01
184	9.8000	9.7367	7.376	1.10	-0.00	-0.00	-0.00
185	10.0000	9.9367	7.376	1.10	-0.00	-0.00	-0.00

AOTESOLV RESULTS Version 1.10 13:00:14 09/08/93 _____ _____ TEST DESCRIPTION Data set...... 13out Data set title..... SLUG OUT TEST MW-13 Company...... Halliburton NUS Project...... 1K94 Client..... Ellington Field (ANG) Location...... POL Storage Area Test date...... 09/03/93 Obs. well...... MW-13 Knowns and Constants: No. of data points......149

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error

K = 2.7570E-003 +/- 4.1493E-005y0 = 1.4065E+000 +/- 1.0291E-002

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.56	1.3936	0.16643	1
0.0067	1.51	1.3804	0.12959	1
0.01	1.48	1.3678	0.11224	1
0.0133	1.45	1.3552	0.094773	1
0.0167	1.43	1.3424	0.087567	1
0.02	1.42	1.3301	0.089869	1
0.0233	1.38	1.3179	0.062058	1
0.0267	1.37	1.3055	0.064499	1
0.03	1.35	1.2935	0.056463	1
0.0333	1.32	1.2817	0.038317	1
0.0366	1.3	1.2699	0.030062	1
0.04	1.29	1.2579	0.03205	1
0.0433	1.27	1.2464	0.023578	1
0.0466	1.26	1.235	0.025	1
0.05	1.24	1.2233	0.016659	1
0.0533	1.23	1.2121	0.017869	1
0.0566	1.19	1.201	-0.011023	1
0.06	1.19	1.1897	0.00031493	1
0.0633	1.18	1.1788	0.001217	. 1
0.0666	1.16	1.168	-0.0079808	1
0.07	1.15	1.157	-0.0069548	1
0.0733	1.13	1.1464	-0.016353	1
0.0766	1.11	1.1358	-0.025848	1
0.08	1.11	1.1251	-0.015125	1
0.0833	1.1	1.1148	-0.014814	1
0.0866	1.08	1.1046	-0.024598	1
0.09	1.07	1.0942	-0.024171	1
0.0933	1.05	1.0841	-0.034144	1
0.0966	1.05	1.0742	-0.024209	1
0.1	1.03	1.0641	-0.034068	1
0.1033	1.02	1.0543	-0.034317	1
0.1066	1.02	1.0447	-0.024656	1
0.11	1	1.0348	-0.034794	1
0.1133	0.99	1.0253	-0.035311	1
0.1166	0.97	1.0159	-0.045915	1
0.12	0.97	1.0063	-0.036325	1
0.1233	0.95	0.9971	-0.047103	1
0.1266	0.95	0.98797	-0.037966	1

0.13	0.94	0.97864	-0.038639	1
0.1333	0.94	0.96967	-0.029671	1
0.1366	0.92	0.96079	-0.040785	1
0.14	0.91	0.95172	-0.041715	1
0.1433	0.91	0.94299	-0.032994	1
0.1466	0.89	0.93435	-0.044352	1
0.15	0.89	0.92553	-0.035532	1
0.1533	0.87	0.91705	-0.04705	1
0.1566	0.87	0.90865	-0.038647	1
0.16	0.86	0.90007	-0.040069	1
0.1633	0.86	0.89182	-0.031821	1
0.1666	0.84	0.88365	-0.043648	1
0.17	0.84	0.87531	-0.035306	1
0.1733	0.83	0.86729	-0.037285	1
0.1766	0.83	0.85934	-0.029337	1
0.18	0.81	0.85123	-0.041225	1
0.1833	0.81	0.84342	-0.033425	1
0.1866	0.8	0.8357	-0.035696	1
0.19	0.8	0.82781	-0.027806	1
0.1933	0.78	0.82022	-0.04022	1
0.1966	0.78	0.8127	-0.032704	1
0.1900	0.78	0.80503	-0.025032	1
0.2033	0.76	0.79765	-0.037655	1
0.2066	0.76	0.79035	-0.030345	1
0.2000	0.75	0.78288	-0.032884	1
0.2133	0.75	0.77571	-0.02571	1
0.2166	0.73	0.7686	-0.038601	1
0.2100	0.73	0.76135	-0.031346	1
0.2233	0.73	0.75437	-0.024369	1
0.2266	0.72	0.74746	-0.027456	î
0.23	0.72	0.7404	-0.0204	1
0.2333	0.72	0.73361	-0.033615	1
0.2366	0.7	0.73501	-0.026892	1
0.24	0.7	0.72003	-0.020032	1
0.2433	0.68	0.71343	-0.033432	1
0.2466	0.68	0.70689	-0.026894	1
0.25	0.68	0.70022	-0.020221	1
0.2533	0.67	0.6938	-0.023804	1
0.2566	0.67	0.68745	-0.017446	1
0.26	0.67	0.68096	-0.010956	1
0.2633	0.65	0.67472	-0.024716	1
0.2666	0.65	0.66853	-0.018533	1
0.27	0.64	0.66222	-0.022222	1
0.2733	0.64	0.65615	-0.016154	1
0.2766	0.64	0.65013	-0.010134	1
0.28	0.64	0.644	-0.0040032	1
0.2833	0.62	0.6381	-0.018102	1
0.2866	0.62	0.63225	-0.012254	1
0.2800	0.62	0.62629	-0.012254	1
0.2933	0.6	0.62055	-0.020286	1
0.2933	0.6	0.62033	-0.020346	1
0.2966	0.6	0.60906	-0.01486	1
0.3033	0.59	0.60347	-0.013474	
		0.59794		1
0.3066	0.59	0.39794	-0.0079439	1

0.31	0.59	0.5923	-0.0022992	1
0.3133	0.59	0.58687	0.0031286	1
0.3166	0.57	0.58149	-0.011493	1
0.32	0.57	0.576	-0.006004	1
0.3233	0.57	0.57073	-0.00072559	1
0.3266	0.57	0.5655	0.0045045	1
0.33	0.56	0.56016	-0.00015713	1
0.3333	0.56	0.55502	0.0049761	1
0.35	0.54	0.52976	0.010241	1
0.3667	0.51	0.50564	0.0043553	1
0.3833	0.49	0.48276	0.0072375	1
0.4	0.48	0.46079	0.019213	1
0.4167	0.46	0.43981	0.020188	1
0.4333	0.44	0.41991	0.020091	1
0.45	0.41	0.40079	0.009205	1
0.4667	0.4	0.38255	0.017449	1
0.4833	0.4	0.36524	0.034761	1
0.4833	0.38	0.30324	0.031387	1
0.5167	0.38	0.33274	0.037255	1
		0.33274	0.037233	1
0.5333	0.35		0.032047	1
0.55	0.33	0.30323		
0.5667	0.33	0.28942	0.040577	1
0.5833	0.32	0.27633	0.043675	1
0.6	0.32	0.26375	0.056253	1
0.6167	0.3	0.25174	0.048259	1
0.6333	0.29	0.24035	0.049651	1
0.65	0.29	0.22941	0.060591	1
0.6667	0.27	0.21897	0.051034	1
0.6833	0.27	0.20906	0.060943	1
0.7	0.25	0.19954	0.050459	1
0.7167	0.25	0.19046	0.059542	1
0.7333	0.25	0.18184	0.068161	1
0.75	0.24	0.17356	0.066439	1
0.7667	0.24	0.16566	0.074339	1
0.7833	0.22	0.15816	0.061836	1
0.8	0.22	0.15096	0.069035	1
0.8167	0.22	0.14409	0.075907	1
0.8333	0.21	0.13757	0.072428	1
0.85	0.21	0.13131	0.07869	1
0.8667	0.19	0.12533	0.064667	1
0.8833	0.19	0.11966	0.070339	1
0.9	0.19	0.11421	0.075786	1
0.9167	0.19	0.10901	0.080985	1
0.9333	0.18	0.10408	0.075918	1
0.95	0.18	0.099344	0.080656	1
0.9667	0.18	0.094822	0.085178	1
0.9833	0.18	0.090531	0.089469	1
1	0.16	0.08641	0.07359	1
1.2	0.11	0.049459	0.060541	1
1.4	0.1	0.02831	0.07169	1
1.6	0.06	0.016204	0.043796	1
1.8	0.05	0.0092749	0.040725	1
2	0.05	0.0053088	0.044691	1
2.2	0.03	0.0030387	0.026961	1

2.4	0.03	0.0017393	0.028261	1
2.6	0.02	0.00099554	0.019004	1
2.8	0.02	0.00056983	0.01943	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.7570E-003y0 = 1.4065E+000

TYPE CURVE DATA

K = 1.71994E-003y0 = 9.18665E-001

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 9.187E-001 3.000E+000 4.963E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	0.0000	8.936	0.00	1.56	1.00	0.71
1	0.0033	0.0033	8.936	0.00	1.56	1.00	0.71
2	0.0067	0.0067	8.888	0.05	1.51	0.97	0.69
. 3	0.0100	0.0100	8.856	0.08	1.48	0.95	0.67
4	0.0133	0.0133	8.824	0.11	1.45	0.93	0.66
5	0.0167	0.0167	8.808	0.13	1.43	0.92	0.65
6	0.0200	0.0200	8.792	0.14	1.42	0.91	0.64
7	0.0233	0.0233	8.760	0.18	1.38	0.89	0.63
8	0.0267	0.0267	8.745	0.19	1.37	0.88	0.62
9	0.0300	0.0300	8.729	0.21	1.35	0.87	0.61
10	0.0333	0.0333	8.697	0.24	1.32	0.85	0.60
11	0.0366	0.0366	8.681	0.26	1.30	0.84	0.59
12	0.0400	0.0400	8.665	0.27	1.29	0.83	0.59
13	0.0433	0.0433	8.649	0.29	1.27	0.82	0.58
14	0.0466	0.0466	8.633	0.30	1.26	0.81	0.57
15	0.0500	0.0500	8.617	0.32	1.24	0.80	0.56
16	0.0533	0.0533	8.601	0.33	1.23	0.79	0.56
17	0.0566	0.0566	8.570	0.37	1.19	0.77	0.54
18	0.0600	0.0600	8.570	0.37	1.19	0.77	0.54
19	0.0633	0.0633	8.554	0.38	1.18	0.76	0.54
20	0.0666	0.0666	8.538	0.40	1.16	0.74	0.53
21	0.0700	0.0700	8.522	0.41	1.15	0.73	0.52
22	0.0733	0.0733	8.506	0.43	1.13	0.72	0.51
23	0.0766	0.0766	8.490	0.45	1.11	0.71	0.51
24	0.0800	0.0800	8.490	0.45	1.11	0.71	0.51
25	0.0833	0.0833	8.474	0.46	1.10	0.70	0.50
26	0.0866	0.0866	8.458	0.48	1.08	0.69	0.49
27	0.0900	0.0900	8.442	0.49	1.07	0.68	0.48
28	0.0933	0.0933	8.426	0.51	1.05	0.67	0.48
29	0.0966	0.0966	8.426	0.51	1.05	0.67	0.48
30	0.1000	0.1000	8.410	0.53	1.03	0.66	0.47

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.1033	8.394	0.54	1.02	0.65	0.46
32	0.1066	0.1066	8.394	0.54	1.02	0.65	0.46
33	0.1100	0.1100	8.378	0.56	1.00	0.64	0.46
34	0.1133	0.1133	8.363	0.57	0.99	0.63	0.45
35	0.1166	0.1166	8.347	0.59	0.97	0.62	0.44
36	0.1200	0.1200	8.347	0.59	0.97	0.62	0.44
37	0.1233	0.1233	8.331	0.61	0.95	0.61	0.43
38	0.1266	0.1266	8.331	0.61	0.95	0.61	0.43
39	0.1300	0.1300	8.315	0.62	0.94	0.60	0.43
40	0.1333	0.1333	8.315	0.62	0.94	0.60	0.43
41	0.1366	0.1366	8.299	0.64	0.92	0.59	0.42
42	0.1400	0.1400	8.283	0.65	0.91	0.58	0.41
43	0.1433	0.1433	8.283	0.65	0.91	0.58	0.41
44	0.1466	0.1466	8.267	0.67	0.89	0.57	0.40
45	0.1500	0.1500	8.267	0.67	0.89	0.57	0.40
46	0.1533	0.1533	8.251	0.69	0.87	0.56	0.40
47	0.1566	0.1566	8.251	0.69	0.87	0.56	0.40
48	0.1600	0.1600	8.235	0.70	0.86	0.55	0.39
49	0.1633	0.1633	8.235	0.70	0.86	0.55	0.39
50	0.1666	0.1666	8.219	0.72	0.84	0.54	0.38
51	0.1700	0.1700	8.219	0.72	0.84	0.54	0.38
52	0.1733	0.1733	8.203	0.73	0.83	0.53	0.38
53	0.1766	0.1766	8.203	0.73	0.83	0.53	0.38
54	0.1800	0.1800	8.187	0.75	0.81	0.52	0.37
55	0.1833	0.1833	8.187	0.75	0.81	0.52	0.37
56	0.1866	0.1866	8.172	0.76	0.80	0.51	0.36
57	0.1900	0.1900	8.172	0.76	0.80	0.51	0.36
58	0.1933	0.1933	8.156	0.78	0.78	0.50	0.35
59	0.1966	0.1966	8.156	0.78	0.78	0.50	0.35
60	0.2000	0.2000	8.156	0.78	0.78	0.50	0.35
61	0.2033	0.2033	8.140	0.80	0.76	0.49	0.35

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.2066	8.140	0.80	0.76	0.49	0.35
63	0.2100	0.2100	8.124	0.81	0.75	0.48	0.34
64	0.2133	0.2133	8.124	0.81	0.75	0.48	0.34
65	0.2166	0.2166	8.108	0.83	0.73	0.47	0.33
66	0.2200	0.2200	8.108	0.83	0.73	0.47	0.33
67	0.2233	0.2233	8.108	0.83	0.73	0.47	0.33
68	0.2266	0.2266	8.092	0.84	0.72	0.46	0.33
69	0.2300	0.2300	8.092	0.84	0.72	0.46	0.33
70	0.2333	0.2333	8.076	0.86	0.70	0.45	0.32
71	0.2366	0.2366	8.076	0.86	0.70	0.45	0.32
72	0.2400	0.2400	8.076	0.86	0.70	0.45	0.32
73	0.2433	0.2433	8.060	0.88	0.68	0.44	0.31
74	0.2466	0.2466	8.060	0.88	0.68	0.44	0.31
75	0.2500	0.2500	8.060	0.88	0.68	0.44	0.31
76	0.2533	0.2533	8.044	0.89	0.67	0.43	0.30
77	0.2566	0.2566	8.044	0.89	0.67	0.43	0.30
78	0.2600	0.2600	8.044	0.89	0.67	0.43	0.30
79	0.2633	0.2633	8.028	0.91	0.65	0.42	0.30
80	0.2666	0.2666	8.028	0.91	0.65	0.42	0.30
81	0.2700	0.2700	8.012	0.92	0.64	0.41	0.29
82	0.2733	0.2733	8.012	0.92	0.64	0.41	0.29
83	0.2766	0.2766	8.012	0.92	0.64	0.41	0.29
84	0.2800	0.2800	8.012	0.92	0.64	0.41	0.29
85	0.2833	0.2833	7.996	0.94	0.62	0.40	0.28
86	0.2866	0.2866	7.996	0.94	0.62	0.40	0.28
87	0.2900	0.2900	7.980	0.96	0.60	0.39	0.27
88	0.2933	0.2933	7.980	0.96	0.60	0.39	0.27
89	0.2966	0.2966	7.980	0.96	0.60	0.39	0.27
90	0.3000	0.3000	7.980	0.96	0.60	0.39	0.27
91	0.3033	0.3033	7.965	0.97	0.59	0.38	0.27
92	0.3066	0.3066	7.965	0.97	0.59	0.38	0.27

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
93	0.3100	0.3100	7.965	0.97	0.59	0.38	0.27
94	0.3133	0.3133	7.965	0.97	0.59	0.38	0.27
95	0.3166	0.3166	7.949	0.99	0.57	0.37	0.26
96	0.3200	0.3200	7.949	0.99	0.57	0.37	0.26
97	0.3233	0.3233	7.949	0.99	0.57	0.37	0.26
98	0.3266	0.3266	7.949	0.99	0.57	0.37	0.26
99	0.3300	0.3300	7.933	1.00	0.56	0.36	0.25
100	0.3333	0.3333	7.933	1.00	0.56	0.36	0.25
101	0.3500	0.3500	7.917	1.02	0.54	0.35	0.25
102	0.3667	0.3667	7.885	1.05	0.51	0.33	0.23
103	0.3833	0.3833	7.869	1.07	0.49	0.32	0.22
104	0.4000	0.4000	7.853	1.08	0.48	0.31	0.22
105	0.4167	0.4167	7.837	1.10	0.46	0.30	0.21
106	0.4333	0.4333	7.821	1.12	0.44	0.29	0.20
107	0.4500	0.4500	7.789	1.15	0.41	0.26	0.19
108	0.4667	0.4667	7.773	1.16	0.40	0.25	0.18
109	0.4833	0.4833	7.773	1.16	0.40	0.25	0.18
110	0.5000	0.5000	7.758	1.18	0.38	0.24	0.17
111	0.5167	0.5167	7.742	2.22	0.37	0.23	0.17
112	0.5333	0.5333	7.726	1.21	0.35	0.22	0.16
113	0.5500	0.5500	7.710	1.23	0.33	0.21	0.15
114	0.5667	0.5667	7.710	1.23	0.33	0.21	0.15
115	0.5833	0.5833	7.694	1.24	0.32	0.20	0.14
116	0.6000	0.6000	7.694	1.24	0.32	0.20	0.14
117	0.6167	0.6167	7.678	1.26	0.30	0.19	0.14
118	0.6333	0.6333	7.662	1.27	0.29	0.18	0.13
119	0.6500	0.6500	7.662	1.27	0.29	0.18	0.13
120	0.6667	0.6667	7.646	1.29	0.27	0.17	0.12
121	0.6833	0.6833	7.646	1.29	0.27	0.17	0.12
122	0.7000	0.7000	7.630	1.31	0.25	0.16	0.12
123	0.7167	0.7167	7.630	1.31	0.25	0.16	0.12

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7333	7.630	1.31	0.25	0.16	0.12
125	0.7500	0.7500	7.614	1.32	0.24	0.15	0.11
126	0.7667	0.7667	7.614	1.32	0.24	0.15	0.11
127	0.7833	0.7833	7.598	1.34	0.22	0.14	0.10
128	0.8000	0.8000	7.598	1.34	0.22	0.14	0.10
129	0.8167	0.8167	7.598	1.34	0.22	0.14	0.10
130	0.8333	0.8333	7.583	1.35	0.21	0.13	0.09
131	0.8500	0.8500	7.583	1.35	0.21	0.13	0.09
132	0.8667	0.8667	7.567	1.37	0.19	0.12	0.09
133	0.8833	0.8833	7.567	1.37	0.19	0.12	0.09
134	0.9000	0.9000	7.567	1.37	0.19	0.12	0.09
135	0.9167	0.9167	7.567	1.37	0.19	0.12	0.09
136	0.9333	0.9333	7.551	1.39	0.18	0.11	0.08
137	0.9500	0.9500	7.551	1.39	0.18	0.11	0.08
138	0.9667	0.9667	7.551	1.39	0.18	0.11	0.08 •
139	0.9833	0.9833	7.551	1.39	0.18	0.11	0.08
140	1.0000	1.0000	7.535	1.40	0.16	0.10	0.07
141	1.2000	1.2000	7.487	1.45	0.11	0.07	0.05
142	1.4000	1.4000	7.471	1.47	0.10	0.06	0.04
143	1.6000	1.6000	7.439	1.50	0.06	0.04	0.03
144	1.8000	1.8000	7.423	1.51	0.05	0.03	0.02
145	2.0000	2.0000	7.423	1.51	0.05	0.03	0.02
146	2.2000	2.2000	7.407	1.53	0.03	0.02	0.01
147	2.4000	2.4000	7.407	1.53	0.03	0.02	0.01
148	2.6000	2.6000	7.391	1.55	0.02	0.01	0.01
149	2.8000	2.8000	7.391	1.55	0.02	0.01	0.01
150	3.0000	3.0000	7.376	1.56	0.00	0.00	0.00
151	3.2000	3.2000	7.376	1.56	0.00	0.00	0.00
152	3.4000	3.4000	7.376	1.56	0.00	0.00	0.00
153	3.6000	3.6000	7.391	1.55	0.02	0.01	0.01
154	3.8000	3.8000	7.391	1.55	0.02	0.01	0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	` ,						
155	4.0000	4.0000	7.391	1.55	0.02	0.01	0.01
156	4.2000	4.2000	7.391	1.55	0.02	0.01	0.01
157	4.4000	4.4000	7.391	1.55	0.02	0.01	0.01
158	4.6000	4.6000	7.391	1.55	0.02	0.01	0.01
159	4.8000	4.8000	7.391	1.55	0.02	0.01	0.01
160	5.0000	5.0000	7.391	1.55	0.02	0.01	0.01
161	5.2000	5.2000	7.391	1.55	0.02	0.01	0.01
162	5.4000	5.4000	7.391	1.55	0.02	0.01	0.01
163	5.6000	5.6000	7.391	1.55	0.02	0.01	0.01
164	5.8000	5.8000	7.391	1.55	0.02	0.01	0.01
165	6.0000	6.0000	7.391	1.55	0.02	0.01	0.01
166	6.2000	6.2000	7.391	1.55	0.02	0.01	0.01
167	6.4000	6.4000	7.391	1.55	0.02	0.01	0.01
168	6.6000	6.6000	7.376	1.56	0.00	0.00	0.00
169	6.8000	6.8000	7.376	1.56	0.00	0.00	0.00
170	7.0000	7.0000	7.376	1.56	0.00	0.00	0.00
171	7.2000	7.2000	7.376	1.56	0.00	0.00	0.00
172	7.4000	7.4000	7.360	1.58	-0.02	-0.01	-0.01
173	7.6000	7.6000	7.376	1.56	0.00	0.00	0.00
174	7.8000	7.8000	7.360	1.58	-0.02	-0.01	-0.01
175	8.0000	8.0000	7.360	1.58	-0.02	-0.01	-0.01
176	8.2000	8.2000	7.360	1.58	-0.02	-0.01	-0.01
177	8.4000	8.4000	7.360	1.58	-0.02	-0.01	-0.01
178	8.6000	8.6000	7.344	1.59	-0.03	-0.02	-0.01
179	8.8000	8.8000	7.344	1.59	-0.03	-0.02	-0.01
180	9.0000	9.0000	7.360	1.58	-0.02	-0.01	-0.01
181	9.2000	9.2000	7.344	1.59	-0.03	-0.02	-0.01
182	9.4000	9.4000	7.344	1.59	-0.03	-0.02	-0.01
183	9.6000	9.6000	7.360	1.58	-0.02	-0.01	-0.01
184	9.8000	9.8000	7.360	1.58	-0.02	-0.01	-0.01
185	10.0000	10.0000	7.360	1.58	-0.02	-0.01	-0.01

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
186	12.0000	12.0000	7.391	1.55	0.02	0.01	0.01

TEST DESCRIPTION

Knowns and Constants:

 No. of data points
 155

 Radius of well casing
 0.08333

 Radius of well
 0.3438

 Aquifer saturated thickness
 13.5

 Well screen length
 10

 Static height of water in well
 16.13

 Log(Re/Rw)
 2.837

 A, B, C
 0.000, 0.000, 1.940

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 8.7549E-004 +/- 1.2416E-005

y0 = 1.4669E + 000 + /- 5.6587E - 003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weigh
0.0034	1.58	1.4624	0.11758	 1
0.0067	1.53	1.4581	0.071859	:
0.01	1.51	1.4539	0.05613	1
0.0134	1.51	1.4495	0.060517	
0.0167	1.51	1.4452	0.064762	
0.02	1.51	1.441	0.068995	1
0.0234	1.5	1.4367	0.063344	1
0.0267	1.48	1.4324	0.047552	
0.03	1.47	1.4283	0.041747	1
0.0334	1.47	1.4239	0.046057	
0.0367	1.47	1.4198	0.050228	
0.04	1.47	1.4156	0.054386	1
0.0434	1.45	1.4113	0.038658	
0.0467	1.43	1.4072	0.022791	
0.05	1.42	1.4031	0.016913	1
0.0534	1.42	1.3989	0.021147	
0.0567	1.42	1.3948	0.025244	
0.06	1.42	1.3907	0.029329	1
0.0634	1.4	1.3865	0.013526	
0.0667	1.4	1.3824	0.017586	
0.07	1.39	1.3784	0.011635	1
0.0734	1.39	1.3742	0.015795	
0.0767	1.39	1.3702	0.01982	
0.08	1.37	1.3662	0.0038329	
0.0834	1.37	1.362	0.0079554	
0.0867	1.35	1.3581	-0.0080553	
0.09	1.35	1.3541	-0.0040777	
0.0934	1.35	1.35	8.3402E-006	
0.0967	1.34	1.346	-0.0060376	
0.1	1.34	1.3421	-0.0020952	1
0.1034	1.34	1.338	0.0019547	
0.1067	1.32	1.3341	-0.014126	
0.11	1.32	1.3302	-0.010219	:
0.1134	1.31	1.3262	-0.016205	
0.1167	1.31	1.3223	-0.01232	
0.12	1.31	1.3184	-0.0084474	
0.1234	1.31	1.3145	-0.0044689	
0.1267	1.29	1.3106	-0.020619	

0.13	1.29	1.3068	-0.01678	1
0.1334	1.29	1.3028	-0.012837	1
0.1367	1.29	1.299	-0.009021	1
0.14	1.27	1.2952	-0.025216	1
0.1434	1.27	1.2913	-0.021308	1
0.1467	1.26	1.2875	-0.027526	1
0.15	1.26	1.2838	-0.023755	1
0.1534	1.26	1.2799	-0.019881	1
0.1567	1.26	1.2761	-0.016132	1
0.16	1.24	1.2724	-0.032394	1
0.1634	1.24	1.2686	-0.028555	1
0.1667	1.24	1.2648	-0.024839	1
0.17	1.24	1.2611	-0.021135	1
0.1734	1.23	1.2573	-0.027329	1
0.1767	1.23	1.2536	-0.023647	1
0.18	1.23	1.25	-0.019975	1
0.1834	1.23	1.2462	-0.016203	1
0.1867	1.21	1.2426	-0.032553	1
0.19	1.21	1.2389	-0.028914	1
0.1934	1.21	1.2352	-0.025175	1
0.1967	1.21	1.2316	-0.021557	1
0.2	1.19	1.228	-0.03795	1
0.2034	1.19	1.2242	-0.034245	1
0.2067	1.19	1.2207	-0.030659	1
0.21	1.19	1.2171	-0.027084	1
0.2134	1.18	1.2134	-0.033411	1
0.2167	1.18	1.2099	-0.029857	1
0.22	1.18	1.2063	-0.026314	1
0.2234	1.18	1.2027	-0.022674	1
0.2267	1.18	1.1992	-0.019151	1
0.23	1.16	1.1956	-0.035639	1
0.2334	1.16	1.192	-0.032031	1
0.2367	1.16	1.1885	-0.02854	1
0.24	1.16	1.1851	-0.025058	1
0.2434	1.15	1.1815	-0.031482	. 1
0.2467	1.15	1.178	-0.028022	1
0.25	1.15	1.1746	-0.024572	1
0.2534	1.15	1.171	-0.021027	1
0.2567	1.15	1.1676	-0.017597	1
0.26	1.15	1.1642	-0.014178	1
0.2634	1.15	1.1607	-0.010665	1
0.2667	1.15	1.1573	-0.0072651	1
0.2834	1.16	1.1402	0.019786	1
0.3001	1.16	1.1234	0.036587	1
0.3167	1.15	1.107	0.043041	1
0.3334	1.13	1.0906	0.039351	1
0.3501	1.1	1.0746	0.025421	1
0.3667	1.08	1.0588	0.02116	1
0.3834	1.05	1.0432	0.0067613	1
0.4001	1.04	1.0279	0.012133	1
0.4167	1	1.0128	-0.012812	1
0.4334	0.99	0.99789	-0.0078894	1
0.4501	0.97	0.98319	-0.013186	1
0.4667-0.4664	0.96	0.96904	-0.0090441	1

0.4834	0.94	0.95451	-0.014511	1
0.5001	0.92	0.94045	-0.020447	1
0.5167	0.91	0.92667	-0.016673	1
0.5334	0.89	0.91302	-0.023019	1 .
0.5501	0.88	0.89957	-0.019566	1
0.5667	0.86	0.88639	-0.026391	1
0.5834	0.84	0.87333	-0.03333	1
0.6001	0.83	0.86046	-0.030462	1
0.6167	0.83	0.84786	-0.01786	1
0.6334	0.81	0.83537	-0.025367	1
0.6501	0.8	0.82306	-0.023058	1
0.6667	0.78	0.811	-0.031003	î
0.6834	0.78	0.79905	-0.019054	1
0.7001	0.77	0.78728	-0.017034	1
0.7167	0.75	0.77575	-0.025749	1
0.7107	0.75	0.76432	-0.014319	1
	0.73	0.75306	-0.023057	1
0.7501		0.74203	-0.023037	1
0.7667	0.73		-0.012028	1
0.7834	0.72	0.73109		
0.8001	0.7	0.72032	-0.020322	1
0.8167	0.7	0.70977	-0.0097719	1
0.8334	0.69	0.69931	-0.0093139	1
0.8501	0.69	0.68901	0.00098997	1
0.8667	0.67	0.67892	-0.0089183	1
0.8834	0.67	0.66891	0.0010851	1
0.9001	0.65	0.65906	-0.009059	1
0.9167	0.65	0.64941	0.00059408	1
0.9334	0.64	0.63984	0.00016261	1
1.1334	0.54	0.53563	0.0043705	1
1.3334	0.48	0.44839	0.031606	1
1.5334	0.41	0.37537	0.034635	1
1.7334	0.37	0.31423	0.055769	1
1.9334	0.34	0.26305	0.076947	1
2.1334	0.3	0.22021	0.079789	1
2.3334	0.27	0.18435	0.085654	1
2.5334	0.24	0.15432	0.085678	1
2.7334	0.21	0.12919	0.080812	1
2.9334	0.19	0.10815	0.081852	1
3.1334	0.18	0.090534	0.089466	1
3.3334	0.16	0.075789	0.084211	1
3.5334	0.14	0.063446	0.076554	1
3.7334	0.13	0.053113	0.076887	1
3.9334	0.11	0.044462	0.065538	1
4.1334	0.1	0.037221	0.062779	1
4.3334	0.1	0.031159	0.068841	1
4.5334	0.08	0.026084	0.053916	1
4.7334	0.06	0.021836	0.038164	1
4.9334	0.06	0.01828	0.04172	1
5.1334	0.06	0.015302	0.044698	1
5.3334	0.05	0.01281	0.03719	1
5.5334	0.05	0.010724	0.039276	1
5.7334	0.05	0.0089773	0.041023	1
5.9334	0.03	0.0075152	0.022485	1
6.1334	0.03	0.0062912	0.023709	1

•

6.3334	0.03	0.0052666	0.024733	1
6.5334	0.03	0.0044089	0.025591	1
6.7334	0.03	0.0036908	0.026309	1
6.9334	0.02	0.0030897	0.01691	1
7.1334	0.02	0.0025865	0.017414	1
7.3334	0.02	0.0021652	0.017835	1
7.5334	0.02	0.0018126	0.018187	1
7.7334	0.02	0.0015174	0.018483	1
7.9334	0.02	0.0012703	0.01873	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 8.7549E-004y0 = 1.4669E+000

TYPE CURVE DATA

K = 5.67094E-004y0 = 1.02274E+000

				\mathbf{H}			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0666	5.417	-1.16	2.76	1.73	1.25
1	0.0033	-0.0633	5.481	-1.10	2.69	1.69	1.22
2	0.0067	-0.0599	5.465	-1.12	2.71	1.70	1.23
3	0.0100	-0.0566	5.338	-1.24	2.83	1.78	1.29
4	0.0133	-0.0533	5.274	-1.31	2.90	1.82	1.32
5	0.0167	-0.0499	5.385	-1.20	2.79	1.75	1.27
6	0.0200	-0.0466	5.417	-1.16	2.76	1.73	1.25
7	0.0233	-0.0433	5.561	-1.02	2.61	1.64	1.19
8	0.0267	-0.0399	5.561	-1.02	2.61	1.64	1.19
9	0.0300	-0.0366	6.150	-0.43	2.02	1.27	0.92
10	0.0333	-0.0333	6.771	0.19	1.40	0.88	0.64
11	0.0366	-0.0300	7.232	0.65	0.94	0.59	0.43
12	0.0400	-0.0266	6.850	0.27	1.32	0.83	0.60
13	0.0433	-0.0233	6.627	0.05	1.55	0.97	0.70
14	0.0466	-0.0200	6.484	-0.10	1.69	1.06	0.77
15	0.0500	-0.0166	6.436	-0.14	1.74	1.09	0.79
16	0.0533	-0.0133	6.532	-0.05	1.64	1.03	0.75
17	0.0566	-0.0100	6.691	0.11	1.48	0.93	0.67
18	0.0600	-0.0066	6.659	0.08	1.51	0.95	0.69
19	0.0633	-0.0033	6.611	0.03	1.56	0.98	0.71
20	0.0666	0.0000	6.580	0.00	1.59	1.00	0.72
21	0.0700	0.0034	6.596	0.02	1.58	0.99	0.72
22	0.0733	0.0067	6.643	0.06	1.53	0.96	0.70
23	0.0766	0.0100	6.659	0.08	1.51	0.95	0.69
24	0.0800	0.0134	6.659	0.08	1.51	0.95	0.69
25	0.0833	0.0167	6.659	0.08	1.51	0.95	0.69
26	0.0866	0.0200	6.659	0.08	1.51	0.95	0.69
27	0.0900	0.0234	6.675	0.09	1.50	0.94	0.68
28	0.0933	0.0267	6.691	0.11	1.48	0.93	0.67
29	0.0966	0.0300	6.707	0.13	1.47	0.92	0.67
30	0.1000	0.0334	6.707	0.13	1.47	0.92	0.67

				\mathbf{H}			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0367	6.707	0.13	1.47	0.92	0.67
32	0.1066	0.0400	6.707	0.13	1.47	0.92	0.67
33	0.1100	0.0434	6.723	0.14	1.45	0.91	0.66
. 34	0.1133	0.0467	6.739	0.16	1.43	0.90	0.65
35	0.1166	0.0500	6.755	0.17	1.42	0.89	0.64
36	0.1200	0.0534	6.755	0.17	1.42	0.89	0.64
37	0.1233	0.0567	6.755	0.17	1.42	0.89	0.64
38	0.1266	0.0600	6.755	0.17	1.42	0.89	0.64
39	0.1300	0.0634	6.771	0.19	1.40	0.88	0.64
40	0.1333	0.0667	6.771	0.19	1.40	0.88	0.64
41	0.1366	0.0700	6.787	0.21	1.39	0.87	0.63
42	0.1400	0.0734	6.787	0.21	1.39	0.87	0.63
43	0.1433	0.0767	6.787	0.21	1.39	0.87	0.63
44	0.1466	0.0800	6.803	0.22	1.37	0.86	0.62
45	0.1500	0.0834	6.803	0.22	1.37	0.86	0.62
46	0.1533	0.0867	6.818	0.24	1.35	0.85	0.62
47	0.1566	0.0900	6.818	0.24	1.35	0.85	0.62
48	0.1600	0.0934	6.818	0.24	1.35	0.85	0.62
49	0.1633	0.0967	6.834	0.25	1.34	0.84	0.61
50	0.1666	0.1000	6.834	0.25	1.34	0.84	0.61
51	0.1700	0.1034	6.834	0.25	1.34	0.84	0.61
52	0.1733	0.1067	6.850	0.27	1.32	0.83	0.60
53	0.1766	0.1100	6.850	0.27	1.32	0.83	0.60
54	0.1800	0.1134	6.866	0.29	1.31	0.82	0.59
55	0.1833	0.1167	6.866	0.29	1.31	0.82	0.59
56	0.1866	0.1200	6.866	0.29	1.31	0.82	0.59
57	0.1900	0.1234	6.866	0.29	1.31	0.82	0.59
58	0.1933	0.1267	6.882	0.30	1.29	0.81	0.59
59	0.1966	0.1300	6.882	0.30	1.29	0.81	0.59
60	0.2000	0.1334	6.882	0.30	1.29	0.81	0.59
61	0.2033	0.1367	6.882	0.30	1.29	0.81	0.59

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	(
62	0.2066	0.1400	6.898	0.32	1.27	0.80	0.58
63	0.2100	0.1434	6.898	0.32	1.27	0.80	0.58
64	0.2133	0.1467	6.914	0.33	1.26	0.79	0.57
65	0.2166	0.1500	6.914	0.33	1.26	0.79	0.57
66	0.2200	0.1534	6.914	0.33	1.26	0.79	0.57
67	0.2233	0.1567	6.914	0.33	1.26	0.79	0.57
68	0.2266	0.1600	6.930	0.35	1.24	0.78	0.56
69	0.2300	0.1634	6.930	0.35	1.24	0.78	0.56
70	0.2333	0.1667	6.930	0.35	1.24	0.78	0.56
71	0.2366	0.1700	6.930	0.35	1.24	0.78	0.56
72	0.2400	0.1734	6.946	0.37	1.23	0.77	0.56
73	0.2433	0.1767	6.946	0.37	1.23	0.77	0.56
74	0.2466	0.1800	6.946	0.37	1.23	0.77	0.56
75	0.2500	0.1834	6.946	0.37	1.23	0.77	0.56
76	0.2533	0.1867	6.962	0.38	1.21	0.76	0.55
77	0.2566	0.1900	6.962	0.38	1.21	0.76	0.55
78	0.2600	0.1934	6.962	0.38	1.21	0.76	0.55
79	0.2633	0.1967	6.962	0.38	1.21	0.76	0.55
80	0.2666	0.2000	6.978	0.40	1.19	0.75	0.54
81	0.2700	0.2034	6.978	0.40	1.19	0.75	0.54
82	0.2733	0.2067	6.978	0.40	1.19	0.75	0.54
83	0.2766	0.2100	6.978	0.40	1.19	0.75	0.54
84	0.2800	0.2134	6.994	0.41	1.18	0.74	0.54
85	0.2833	0.2167	6.994	0.41	1.18	0.74	0.54
86	0.2866	0.2200	6.994	0.41	1.18	0.74	0.54
87	0.2900	0.2234	6.994	0.41	1.18	0.74	0.54
88	0.2933	0.2267	6.994	0.41	1.18	0.74	0.54
89	0.2966	0.2300	7.009	0.43	1.16	0.73	0.53
90	0.3000	0.2334	7.009	0.43	1.16	0.73	0.53
91	0.3033	0.2367	7.009	0.43	1.16	0.73	0.53
92	0.3066	0.2400	7.009	0.43	1.16	0.73	0.53

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
93	0.3100	0.2434	7.025	0.45	1.15	0.72	0.52
94	0.3133	0.2467	7.025	0.45	1.15	0.72	0.52
95	0.3166	0.2500	7.025	0.45	1.15	0.72	0.52
96	0.3200	0.2534	7.025	0.45	1.15	0.72	0.52
97	0.3233	0.2567	7.025	0.45	1.15	0.72	0.52
98	0.3266	0.2600	7.025	0.45	1.15	0.72	0.52
99	0.3300	0.2634	7.025	0.45	1.15	0.72	0.52
100	0.3333	0.2667	7.025	0.45	1.15	0.72	0.52
101	0.3500	0.2834	7.009	0.43	1.16	0.73	0.53
102	0.3667	0.3001	7.009	0.43	1.16	0.73	0.53
103	0.3833	0.3167	7.025	0.45	1.15	0.72	0.52
104	0.4000	0.3334	7.041	0.46	1.13	0.71	0.51
105	0.4167	0.3501	7.073	0.49	1.10	0.69	0.50
106	0.4333	0.3667	7.089	0.51	1.08	0.68	0.49
107	0.4500	0.3834	7.121	0.54	1.05	0.66	0.48
108	0.4667	0.4001	7.137	0.56	1.04	0.65	0.47
109	0.4833	0.4167	7.169	0.59	1.00	0.63	0.46
110	0.5000	0.4334	7.185	0.60	0.99	0.62	0.45
111	0.5167	0.4501	7.201	0.62	0.97	0.61	0.44
112	0.5333	0.4667	7.216	0.64	0.96	0.60	0.43
113	0.5500	0.4834	7.232	0.65	0.94	0.59	0.43
114	0.5667	0.5001	7.248	0.67	0.92	0.58	0.42
115	0.5833	0.5167	7.264	0.68	0.91	0.57	0.41
116	0.6000	0.5334	7.280	0.70	0.89	0.56	0.41
117	0.6167	0.5501	7.296	0.72	0.88	0.55	0.40
118	0.6333	0.5667	7.312	0.73	0.86	0.54	0.39
119	0.6500	0.5834	7.328	0.75	0.84	0.53	0.38
120	0.6667	0.6001	7.344	0.76	0.83	0.52	0.38
121	0.6833	0.6167	7.344	0.76	0.83	0.52	0.38
122	0.7000	0.6334	7.360	0.78	0.81	0.51	0.37
123	0.7167	0.6501	7.376	0.80	0.80	0.50	0.36

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
124	0.7333	0.6667	7.392	0.81	0.78	0.49	0.35
125	0.7500	0.6834	7.392	0.81	0.78	0.49	0.35
126	0.7667	0.7001	7.407	0.83	0.77	0.48	0.35
127	0.7833	0.7167	7.423	0.84	0.75	0.47	0.34
128	0.8000	0.7334	7.423	0.84	0.75	0.47	0.34
129	0.8167	0.7501	7.439	0.86	0.73	0.46	0.33
130	0.8333	0.7667	7.439	0.86	0.73	0.46	0.33
131	0.8500	0.7834	7.455	0.88	0.72	0.45	0.33
132	0.8667	0.8001	7.471	0.89	0.70	0.44	0.32
133	0.8833	0.8167	7.471	0.89	0.70	0.44	0.32
134	0.9000	0.8334	7.487	0.91	0.69	0.43	0.31
135	0.9167	0.8501	7.487	0.91	0.69	0.43	0.31
136	0.9333	0.8667	7.503	0.92	0.67	0.42	0.30
137	0.9500	0.8834	7.503	0.92	0.67	0.42	0.30
138	0.9667	0.9001	7.519	0.94	0.65	0.41	0.30
139	0.9833	0.9167	7.519	0.94	0.65	0.41	0.30
140	1.0000	0.9334	7.535	0.96	0.64	0.40	0.29
141	1.2000	1.1334	7.630	1.05	0.54	0.34	0.25
142	1.4000	1.3334	7.694	1.11	0.48	0.30	0.22
143	1.6000	1.5334	7.758	1.18	0.41	0.26	0.19
144	1.8000	1.7334	7.806	1.23	0.37	0.23	0.17
145	2.0000	1.9334	7.837	1.26	0.34	0.21	0.15
146	2.2000	2.1334	7.869	1.29	0.30	0.19	0.14
147	2.4000	2.3334	7.901	1.32	0.27	0.17	0.12
148	2.6000	2.5334	7.933	1.35	0.24	0.15	0.11
149	2.8000	2.7334	7.965	1.39	0.21	0.13	0.09
150	3.0000	2.9334	7.981	1.40	0.19	0.12	0.09
151	3.2000	3.1334	7.997	1.42	0.18	0.11	0.08
152	3.4000	3.3334	8.013	1.43	0.16	0.10	0.07
153	3.6000	3.5334	8.028	1.45	0.14	0.09	0.07
154	3.8000	3.7334	8.044	1.46	0.13	0.08	0.06

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9334	8.060	1.48	0.11	0.07	0.05
156	4.2000	4.1334	8.076	1.50	0.10	0.06	0.04
157	4.4000	4.3334	8.076	1.50	0.10	0.06	0.04
158	4.6000	4.5334	8.092	1.51	0.08	0.05	0.04
159	4.8000	4.7334	8.108	1.53	0.06	0.04	0.03
160	5.0000	4.9334	8.108	1.53	0.06	0.04	0.03
161	5.2000	5.1334	8.108	1.53	0.06	0.04	0.03
162	5.4000	5.3334	8.124	1.54	0.05	0.03	0.02
163	5.6000	5.5334	8.124	1.54	0.05	0.03	0.02
164	5.8000	5.7334	8.124	1.54	0.05	0.03	0.02
165	6.0000	5.9334	8.140	1.56	0.03	0.02	0.01
166	6.2000	6.1334	8.140	1.56	0.03	0.02	0.01
167	6.4000	6.3334	8.140	1.56	0.03	0.02	0.01
168	6.6000	6.5334	8.140	1.56	0.03	0.02	0.01
169	6.8000	6.7334	8.140	1.56	0.03	0.02	0.01 •
170	7.0000	6.9334	8.156	1.58	0.02	0.01	0.01
171	7.2000	7.1334	8.156	1.58	0.02	0.01	0.01
172	7.4000	7.3334	8.156	1.58	0.02	0.01	0.01
173	7.6000	7.5334	8.156	1.58	0.02	0.01	0.01
174	7.8000	7.7334	8.156	1.58	0.02	0.01	0.01
175	8.0000	7.9334	8.156	1.58	0.02	0.01	0.01
176	8.2000	8.1334	8.172	1.59	-0.00	-0.00	-0.00
177	8.4000	8.3334	8.172	1.59	-0.00	-0.00	-0.00
178	8.6000	8.5334	8.172	1.59	-0.00	-0.00	-0.00
179	8.8000	8.7334	8.172	1.59	-0.00	-0.00	-0.00
180	9.0000	8.9334	8.172	1.59	-0.00	-0.00	-0.00
181	9.2000	9.1334	8.172	1.59	-0.00	-0.00	-0.00
182	9.4000	9.3334	8.172	1.59	-0.00	-0.00	-0.00
183	9.6000	9.5334	8.172	1.59	-0.00	-0.00	-0.00
184	9.8000	9.7334	8.172	1.59	-0.00	-0.00	-0.00
185	10.0000	9.9334	8.172	1.59	-0.00	-0.00	-0.00

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
AQTESOLV RESULTS Version 1.10	
09/08/93	13:59:42
======================================	======================================
Data set	
Knowns and Constants: No. of data points	
ANALYTICAL METHOD	
Bouwer-Rice (Unconfined Aquifer Slug Test)	

<<<<<<<<<<<<<<<<>>>>>

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 9.9383E-004 +/- 1.7123E-005 y0 = 1.6339E+000 +/- 8.3480E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weigh
0.0034	1.78	1.6283	0.15166	1
0.0067	1.74	1.6229	0.11708	1
0.01	1.74	1.6175	0.12247	1
0.0134	1.74	1.612	0.12801	1
0.0167	1.72	1.6066	0.11337	1
0.02	1.7	1.6013	0.098709	1
0.0233	1.69	1.596	0.094032	1
0.0267	1.69	1.5905	0.099498	1
0.03	1.67	1.5852	0.084785	1
0.0333	1.66	1.5799	0.080054	1
0.0367	1.64	1.5745	0.065465	1
0.04	1.64	1.5693	0.070699	1
0.0433	1.62	1.5641	0.055916	1
0.0467	1.61	1.5587	0.051273]
0.05	1.61	1.5535	0.056454	1
0.0533	1.59	1.5484	0.041618	1
0.0567	1.59	1.5431	0.046921	1
0.06	1.58	1.5379	0.042051	1
0.0633	1.56	1.5328	0.027163	
0.0667	1.56	1.5276	0.032412	
0.07	1.54	1.5225	0.01749	1
0.0733	1.54	1.5174	0.022551	
0.0767	1.53	1.5123	0.017748	
0.08	1.53	1.5072	0.022775	1
0.0833	1.51	1.5022	0.0077856	
0.0867	1.51	1.4971	0.01293	3
0.09	1.5	1.4921	0.0079068	1
0.0933	1.5	1.4871	0.012867	1
0.0967	1.48	1.482	-0.0020402	
0.1	1.48	1.4771	0.0028863	1
0.1033	1.46	1.4722	-0.012204	
0.1067	1.46	1.4672	-0.0071616	
0.11	1.46	1.4623	-0.0022845	
0.1133	1.45	1.4574	-0.0074237	
0.1167	1.45	1.4524	-0.0024324	
0.12	1.43	1.4476	-0.017604	1
0.1233	1.43	1.4428	-0.012792	
0.1267	1.42	1.4379	-0.017851	

0.13	1.42	1.4331	-0.013071	1
0.1333	1.42	1.4283	-0.0083076	1
0.1367	1.4	1.4234	-0.023416	1
0.14	1.4	1.4187	-0.018684	1
0.1433	1.39	1.414	-0.023968	1
0.1467	1.39	1.4091	-0.019126	1
0.15	1.39	1.4044	-0.014442	1
0.1533	1.37	1.3998	-0.029773	1
0.1567	1.37	1.395	-0.024979	1
0.16	1.37	1.3903	-0.020342	1
0.1633	1.35	1.3857	-0.03572	1
0.1667	1.35	1.381	-0.030975	1
0.17	1.35	1.3764	-0.026384	1
0.1733	1.34	1.3718	-0.031809	1
0.1767	1.34	1.3671	-0.027111	1
0.18	1.34	1.3626	-0.022566	1
0.1833	1.32	1.358	-0.038037	1
0.1867	1.32	1.3534	-0.033386	1
0.19	1.32	1.3489	-0.028887	1
0.1933	1.31	1.3444	-0.034403	1
0.1967	1.31	1.3398	-0.029799	1
0.2	1.31	1.3353	-0.025345	1
0.2033	1.29	1.3309	-0.040906	1
0.2067	1.29	1.3263	-0.036348	1
0.21	1.29	1.3219	-0.031939	1
0.2133	1.27	1.3175	-0.047545	1
0.2167	1.27	1.313	-0.043033	1
0.22	1.27	1.3087	-0.038668	1
0.2233	1.27	1.3043	-0.034318	1
0.2267	1.26	1.2999	-0.039851	1
0.23	1.26	1.2955	-0.03553	1
0.2333	1.26	1.2912	-0.031223	1
0.2367	1.26	1.2868	-0.026801	1
0.24	1.24	1.2825	-0.042524	1
0.2433	1.24	1.2783	-0.03826	1
0.2467	1.24	1.2739	-0.033883	1
0.25	1.23	1.2696	-0.039648	1
0.2533	1.23	1.2654	-0.035428	1
0.2567	1.23	1.2611	-0.031094	1
0.26	1.21	1.2569	-0.046902	1
0.2633	1.21	1.2527	-0.042724	1
0.2667	1.21	1.2484	-0.038433	1
0.27	1.21	1.2443	-0.034283	1
0.2733	1.19	1.2401	-0.050147	1
0.2767	1.19	1.2359	-0.0459	1
0.28	1.19	1.2318 1.2277	-0.041792	1
0.2833 0.2867	1.19		-0.037697	1
	1.18	1.2235	-0.043492	1
0.29	1.18	1.2194	-0.039425	1
0.2933 0.2967	1.18	1.2154	-0.035372	1
	1.16	1.2112	-0.051209	1
0.3	1.16	1.2072	-0.047183	1
0.3033 0.3067	1.16 1.16	1.2032 1.199	-0.04317 -0.03905	1
0.3007	1.10	1.199	-0.03903	1

.

0.21	1 16	1.1951	-0.035064	1
0.31	1.16			1
0.3133	1.15	1.1911	-0.041091	
0.3167	1.15	1.187	-0.037012	1
0.32	1.15	1.1831	-0.033066	1
0.3367	1.11	1.1633	-0.053298	1
0.3534	1.1	1.1439	-0.043861	1
0.37	1.08	1.1249	-0.044861	1
0.3867	1.07	1.1061	-0.036066	1
0.4034	1.05	1.0876	-0.037584	1
0.42	1.04	1.0695	-0.02952	1
0.4367	1.02	1.0516	-0.031649	1
0.4534	1	1.0341	-0.034077	1
0.47	0.99	1.0169	-0.026901	1
0.4867	0.97	0.99991	-0.029909	1
0.5034	0.96	0.9832	-0.023202	1
0.52000.5197	0.94	0.96716	-0.027163	1
0.5367	0.92	0.95072	-0.030715	1
0.5534	0.91	0.93483	-0.024829	1
0.57	0.91	0.9193	-0.009302	1
0.5867	0.89	0.90394	-0.013941	1
0.6034	0.88	0.88884	-0.0088371	1
0.62	0.86	0.87407	-0.014074	1
0.6367	0.86	0.85947	0.00053141	1
0.6534	0.84	0.83547	-0.0051076	1
0.67	0.83	0.83107	-0.0010704	1
0.6867	0.83	0.81718	-0.0010704	1
	0.81	0.80353	0.0064705	1
0.7034			0.0004703	
0.72	0.8	0.79018		1
0.7367	0.78	0.77698	0.0030204	1
0.7534	0.78	0.764	0.016003	1
0.77	0.76	0.75131	0.008693	1
0.7867	0.75	0.73875	0.011247	1
0.8034	0.75	0.72641	0.023591	1
0.82	0.73	0.71434	0.015656	1
0.8367	0.72	0.70241	0.017592	1
0.8534	0.72	0.69067	0.029329	1
0.87	0.7	0.6792	0.020801	1
0.8867	0.7	0.66785	0.03215	1
0.9034	0.68	0.65669	0.023309	1
0.92	0.68	0.64578	0.034217	1
0.9367	0.67	0.63499	0.035007	1
0.9534	0.65	0.62438	0.025617	1
0.97	0.65	0.61401	0.035988	1
0.9867	0.65	0.60375	0.046248	I
1.1867	0.54	0.49342	0.046579	· 1
1.3867	0.48	0.40325	0.076747	1
1.5867	0.43	0.32956	0.10044	1
1.7867	0.38	0.26934	0.11066	1
1.9867	0.33	0.22012	0.10988	1
2.1867	0.3	0.17989	0.12011	1
2.3867	0.27	0.14702	0.12298	1
2.5867	0.24	0.12015	0.11985	1
2.7867	0.22	0.098196	0.1218	1
2.9867	0.19	0.080251	0.10975	1
2.700/	0.19	0.000231	0.10713	1

1	0.10441	0.065586	0.17	3.1867
1	0.1064	0.053601	0.16	3.3867
1	0.11619	0.043806	0.16	3.5867
1	0.1042	0.0358	0.14	3.7867
1	0.10074	0.029258	0.13	3.9867
1	0.086088	0.023912	0.11	4.1867
1	0.070458	0.019542	0.09	4.3867
1	0.074029	0.015971	0.09	4.5867
1	0.066948	0.013052	0.08	4.7867
1	0.069333	0.010667	0.08	4.9867
1	0.071282	0.0087177	0.08	5.1867
1	0.052875	0.0071246	0.06	5.3867
1	0.054177	0.0058227	0.06	5.5867
1	0.055241	0.0047586	0.06	5.7867
1	0.046111	0.003889	0.05	5.9867
1	0.046822	0.0031783	0.05	6.1867
1	0.047402	0.0025975	0.05	6.3867
1	0.047877	0.0021228	0.05	6.5867
1	0.048265	0.0017349	0.05	6.7867
1	0.048582	0.0014179	0.05	6.9867
1	0.048841	0.0011588	0.05	7.1867
1	0.049053	0.00094701	0.05	7.3867
1	0.049226	0.00077395	0.05	7.5867
1	0.029367	0.00063252	0.03	7.7867
1	0.029483	0.00051693	0.03	7.9867
1	0.019578	0.00042247	0.02	8.1867
1	0.019655	0.00034526	0.02	8.3867
1	0.019718	0.00028217	0.02	8.5867
1	0.019769	0.00023061	0.02	8.7867
1	0.019812	0.00018846	0.02	8.9867
1	0.019846	0.00015402	0.02	9.1867

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 9.9383E-004y0 = 1.6339E+000

TYPE CURVE DATA

K = 5.38739E-004y0 = 9.95513E-001 Time Drawdown Time Drawdown Drawdown

0.000E+000 9.955E-001 1.000E+001 4.194E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
0	0.0000	-0.0133	10.226	-0.21	2.04	1.11	0.93
1	0.0033	-0.0100	10.146	-0.13	1.96	1.07	0.89
2	0.0067	-0.0066	9.891	0.13	1.70	0.93	0.77
3	0.0100	-0.0033	9.939	0.08	1.75	0.96	0.80
4	0.0133	0.0000	10.019	0.00	1.83	1.00	0.83
5	0.0167	0.0034	9.971	0.05	1.78	0.97	0.81
6	0.0200	0.0067	9.923	0.10	1.74	0.95	0.79
7	0.0233	0.0100	9.923	0.10	1.74	0.95	0.79
8	0.0267	0.0134	9.923	0.10	1.74	0.95	0.79
9	0.0300	0.0167	9.907	0.11	1.72	0.94	0.78
10	0.0333	0.0200	9.891	0.13	1.70	0.93	0.77
11	0.0366	0.0233	9.875	0.14	1.69	0.92	0.77
12	0.0400	0.0267	9.875	0.14	1.69	0.92	0.77
13	0.0433	0.0300	9.859	0.16	1.67	0.91	0.76
14	0.0466	0.0333	9.843	0.18	1.66	0.90	0.75
15	0.0500	0.0367	9.828	0.19	1.64	0.90	0.75
16	0.0533	0.0400	9.828	0.19	1.64	0.90	0.75
17	0.0566	0.0433	9.812	0.21	1.62	0.89	0.74
18	0.0600	0.0467	9.796	0.22	1.61	0.88	0.73
19	0.0633	0.0500	9.796	0.22	1.61	0.88	0.73
20	0.0666	0.0533	9.780	0.24	1.59	0.87	0.72
21	0.0700	0.0567	9.780	0.24	1.59	0.87	0.72
22	0.0733	0.0600	9.764	0.26	1.58	0.86	0.72
23	0.0766	0.0633	9.748	0.27	1.56	0.85	0.71
24	0.0800	0.0667	9.748	0.27	1.56	0.85	0.71
25	0.0833	0.0700	9.732	0.29	1.54	0.84	0.70
26	0.0866	0.0733	9.732	0.29	1.54	0.84	0.70
27	0.0900	0.0767	9.716	0.30	1.53	0.83	0.69
28	0.0933	0.0800	9.716	0.30	1.53	0.83	0.69
29	0.0966	0.0833	9.700	0.32	1.51	0.83	0.69
30	0.1000	0.0867	9.700	0.32	1.51	0.83	0.69

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
31	0.1033	0.0900	9.684	0.34	1.50	0.82	0.68
32	0.1066	0.0933	9.684	0.34	1.50	0.82	0.68
33	0.1100	0.0967	9.668	0.35	1.48	0.81	0.67
34	0.1133	0.1000	9.668	0.35	1.48	0.81	0.67
35	0.1166	0.1033	9.652	0.37	1.46	0.80	0.67
36	0.1200	0.1067	9.652	0.37	1.46	0.80	0.67
37	0.1233	0.1100	9.652	0.37	1.46	0.80	0.67
38	0.1266	0.1133	9.636	0.38	1.45	0.79	0.66
39	0.1300	0.1167	9.636	0.38	1.45	0.79	0.66
40	0.1333	0.1200	9.621	0.40	1.43	0.78	0.65
41	0.1366	0.1233	9.621	0.40	1.43	0.78	0.65
42	0.1400	0.1267	9.605	0.41	1.42	0.77	0.64
43	0.1433	0.1300	9.605	0.41	1.42	0.77	0.64
44	0.1466	0.1333	9.605	0.41	1.42	0.77	0.64
45	0.1500	0.1367	9.589	0.43	1.40	0.77	0.64
46	0.1533	0.1400	9.589	0.43	1.40	0.77	0.64
47	0.1566	0.1433	9.573	0.45	1.39	0.76	0.63
48	0.1600	0.1467	9.573	0.45	1.39	0.76	0.63
49	0.1633	0.1500	9.573	0.45	1.39	0.76	0.63
50	0.1666	0.1533	9.557	0.46	1.37	0.75	0.62
51	0.1700	0.1567	9.557	0.46	1.37	0.75	0.62
52	0.1733	0.1600	9.557	0.46	1.37	0.75	0.62
53	0.1766	0.1633	9.541	0.48	1.35	0.74	0.62
54	0.1800	0.1667	9.541	0.48	1.35	0.74	0.62
55	0.1833	0.1700	9.541	0.48	1.35	0.74	0.62
56	0.1866	0.1733	9.525	0.49	1.34	0.73	0.61
57	0.1900	0.1767	9.525	0.49	1.34	0.73	0.61
58	0.1933	0.1800	9.525	0.49	1.34	0.73	0.61
59	0.1966	0.1833	9.509	0.51	1.32	0.72	0.60
60	0.2000	0.1867	9.509	0.51	1.32	0.72	0.60
61	0.2033	0.1900	9.509	0.51	1.32	0.72	0.60

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.1933	9.493	0.53	1.31	0.71	0.59
63	0.2100	0.1967	9.493	0.53	1.31	0.71	0.59
64	0.2133	0.2000	9.493	0.53	1.31	0.71	0.59
.65	0.2166	0.2033	9.477	0.54	1.29	0.70	0.59
66	0.2200	0.2067	9.477	0.54	1.29	0.70	0.59
67	0.2233	0.2100	9.477	0.54	1.29	0.70	0.59
68	0.2266	0.2133	9.461	0.56	1.27	0.70	0.58
69	0.2300	0.2167	9.461	0.56	1.27	0.70	0.58
70	0.2333	0.2200	9.461	0.56	1.27	0.70	0.58
71	0.2366	0.2233	9.461	0.56	1.27	0.70	0.58
72	0.2400	0.2267	9.445	0.57	1.26	0.69	0.57
73	0.2433	0.2300	9.445	0.57	1.26	0.69	0.57
74	0.2466	0.2333	9.445	0.57	1.26	0.69	0.57
75	0.2500	0.2367	9.445	0.57	1.26	0.69	0.57
76	0.2533	0.2400	9.430	0.59	1.24	0.68	0.56
77	0.2566	0.2433	9.430	0.59	1.24	0.68	0.56
78	0.2600	0.2467	9.430	0.59	1.24	0.68	0.56
79	0.2633	0.2500	9.414	0.61	1.23	0.67	0.56
80	0.2666	0.2533	9.414	0.61	1.23	0.67	0.56
81	0.2700	0.2567	9.414	0.61	1.23	0.67	0.56
82	0.2733	0.2600	9.398	0.62	1.21	0.66	0.55
83	0.2766	0.2633	9.398	0.62	1.21	0.66	0.55
84	0.2800	0.2667	9.398	0.62	1.21	0.66	0.55
85	0.2833	0.2700	9.398	0.62	1.21	0.66	0.55
86	0.2866	0.2733	9.382	0.64	1.19	0.65	0.54
87	0.2900	0.2767	9.382	0.64	1.19	0.65	0.54
88	0.2933	0.2800	9.382	0.64	1.19	0.65	0.54
89	0.2966	0.2833	9.382	0.64	1.19	0.65	0.54
90	0.3000	0.2867	9.366	0.65	1.18	0.64	0.54
91	0.3033	0.2900	9.366	0.65	1.18	0.64	0.54
92	0.3066	0.2933	9.366	0.65	1.18	0.64	0.54

			H			,
TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
0.3100	0.2967	9.350	0.67	1.16	0.63	0.53
0.3133	0.3000	9.350	0.67	1.16	0.63	0.53
0.3166	0.3033	9.350	0.67	1.16	0.63	0.53
0.3200	0.3067	9.350	0.67	1.16	0.63	0.53
0.3233	0.3100	9.350	0.67	1.16	0.63	0.53
0.3266	0.3133	9.334	0.69	1.15	0.63	0.52
0.3300	0.3167	9.334	0.69	1.15	0.63	0.52
0.3333	0.3200	9.334	0.69	1.15	0.63	0.52
0.3500	0.3367	9.302	0.72	1.11	0.61	0.51
0.3667	0.3534	9.286	0.73	1.10	0.60	0.50
0.3833	0.3700	9.270	0.75	1.08	0.59	0.49
0.4000	0.3867	9.254	0.77	1.07	0.58	0.48
0.4167	0.4034	9.238	0.78	1.05	0.57	0.48
0.4333	0.4200	9.223	0.80	1.04	0.57	0.47
0.4500	0.4367	9.207	0.81	1.02	0.56	0.46
0.4667	0.4534	9.191	0.83	1.00	0.55	0.46
0.4833	0.4700	9.175	0.84	0.99	0.54	0.45
0.5000	0.4867	9.159	0.86	0.97		0.44
						0.43
						0.43
0.5500	0.5367					0.42
0.5667						0.41
0.5833	0.5700					0.41
0.6000	0.5867					0.41
0.6167	0.6034					0.40
						0.39
						0.39
						0.38
0.6833	0.6700					0.38
0.7000	0.6867	9.000	1.02	0.81	0.44	0.37
0.7167	0.7034	9.000	1.02	0.81	0.44	0.37
	0.3100 0.3133 0.3166 0.3200 0.3233 0.3266 0.3300 0.3333 0.3500 0.3667 0.3833 0.4000 0.4167 0.4333 0.4500 0.4667 0.4833 0.5000 0.5167 0.5333 0.5500 0.5667 0.5833 0.6000 0.6167 0.6333 0.6500 0.6667 0.6833 0.7000	(MINUTES) TRANS. 0.3100 0.2967 0.3133 0.3000 0.3166 0.3033 0.3200 0.3067 0.3233 0.3100 0.3266 0.3133 0.3300 0.3167 0.3500 0.3367 0.3667 0.3534 0.3833 0.3700 0.4000 0.3867 0.4167 0.4034 0.4333 0.4200 0.4500 0.4367 0.4667 0.4534 0.4833 0.4700 0.5000 0.4867 0.5167 0.5034 0.5333 0.5200 0.5500 0.5367 0.5667 0.5534 0.6333 0.6200 0.6500 0.6367 0.6667 0.6534 0.6833 0.6700 0.7000 0.6867	(MINUTES) TRANS. READING 0.3100 0.2967 9.350 0.3133 0.3000 9.350 0.3166 0.3033 9.350 0.3200 0.3067 9.350 0.3233 0.3100 9.350 0.3266 0.3133 9.334 0.3300 0.3167 9.334 0.3500 0.3367 9.302 0.3667 0.3534 9.286 0.3833 0.3700 9.270 0.4000 0.3867 9.254 0.4167 0.4034 9.238 0.4333 0.4200 9.223 0.4500 0.4367 9.207 0.4667 0.4534 9.191 0.4833 0.4700 9.175 0.5000 0.4867 9.159 0.5167 0.5034 9.143 0.5333 0.5200 9.127 0.5500 0.5867 9.095 0.6000 0.5867 9.079 0.6167 0.6034	TIME (MINUTES) T(0) XD READING A/B DATUM TRANS. 0.3100 0.2967 9.350 0.67 0.3133 0.3000 9.350 0.67 0.3166 0.3033 9.350 0.67 0.3200 0.3067 9.350 0.67 0.3233 0.3100 9.350 0.67 0.3266 0.3133 9.334 0.69 0.3300 0.3167 9.334 0.69 0.3500 0.3367 9.302 0.72 0.3667 0.3534 9.286 0.73 0.3833 0.3700 9.270 0.75 0.4000 0.3867 9.254 0.77 0.4167 0.4034 9.238 0.78 0.4333 0.4200 9.223 0.80 0.4500 0.4367 9.207 0.81 0.4667 0.4534 9.191 0.83 0.4833 0.4700 9.175 0.84 0.5000 0.4867 9.159 0.86 <	TIME (MINUTES) T(0) XD READING A/B DATUM TRANS. H TRANS. 0.3100 0.2967 9.350 0.67 1.16 0.3133 0.3000 9.350 0.67 1.16 0.3166 0.3033 9.350 0.67 1.16 0.3200 0.3067 9.350 0.67 1.16 0.3233 0.3100 9.350 0.67 1.16 0.3266 0.3133 9.334 0.69 1.15 0.3300 0.3167 9.334 0.69 1.15 0.3333 0.3200 9.334 0.69 1.15 0.3300 0.3167 9.334 0.69 1.15 0.3500 0.3367 9.302 0.72 1.11 0.3667 0.3534 9.286 0.73 1.10 0.3833 0.3700 9.270 0.75 1.08 0.4000 0.3867 9.254 0.77 1.07 0.4167 0.4034 9.238 0.78 1.05 <tr< td=""><td>TIME (MINUTES) T(0) XD READING A/B DATUM TRANS. H TRANS. H/H(0) 0.3100 0.2967 9.350 0.67 1.16 0.63 0.3133 0.3000 9.350 0.67 1.16 0.63 0.3166 0.3033 9.350 0.67 1.16 0.63 0.3200 0.3067 9.350 0.67 1.16 0.63 0.3233 0.3100 9.350 0.67 1.16 0.63 0.3266 0.3133 9.334 0.69 1.15 0.63 0.3300 0.3167 9.334 0.69 1.15 0.63 0.3500 0.3367 9.302 0.72 1.11 0.61 0.3667 0.3534 9.286 0.73 1.10 0.60 0.3833 0.3700 9.270 0.75 1.08 0.59 0.4000 0.3867 9.254 0.77 1.07 0.58 0.4167 0.4034 9.238 0.78 1.02 0.56</td></tr<>	TIME (MINUTES) T(0) XD READING A/B DATUM TRANS. H TRANS. H/H(0) 0.3100 0.2967 9.350 0.67 1.16 0.63 0.3133 0.3000 9.350 0.67 1.16 0.63 0.3166 0.3033 9.350 0.67 1.16 0.63 0.3200 0.3067 9.350 0.67 1.16 0.63 0.3233 0.3100 9.350 0.67 1.16 0.63 0.3266 0.3133 9.334 0.69 1.15 0.63 0.3300 0.3167 9.334 0.69 1.15 0.63 0.3500 0.3367 9.302 0.72 1.11 0.61 0.3667 0.3534 9.286 0.73 1.10 0.60 0.3833 0.3700 9.270 0.75 1.08 0.59 0.4000 0.3867 9.254 0.77 1.07 0.58 0.4167 0.4034 9.238 0.78 1.02 0.56

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
124	0.7333	0.7200	8.984	1.04	0.80	0.43	0.36
125	0.7500	0.7367	8.968	1.05	0.78	0.43	0.35
126	0.7667	0.7534	8.968	1.05	0.78	0.43	0.35
127	0.7833	0.7700	8.952	1.07	0.76	0.42	0.35
128	0.8000	0.7867	8.936	1.08	0.75	0.41	0.34
129	0.8167	0.8034	8.936	1.08	0.75	0.41	0.34
130	0.8333	0.8200	8.920	1.10	0.73	0.40	0.33
131	0.8500	0.8367	8.904	1.12	0.72	0.39	0.33
132	0.8667	0.8534	8.904	1.12	0.72	0.39	0.33
133	0.8833	0.8700	8.888	1.13	0.70	0.38	0.32
134	0.9000	0.8867	8.888	1.13	0.70	0.38	0.32
135	0.9167	0.9034	8.872	1.15	0.68	0.37	0.31
136	0.9333	0.9200	8.872	1.15	0.68	0.37	0.31
137	0.9500	0.9367	8.856	1.16	0.67	0.36	0.30
138	0.9667	0.9534	8.840	1.18	0.65	0.36	0.30
139	0.9833	0.9700	8.840	1.18	0.65	0.36	0.30
140	1.0000	0.9867	8.840	1.18	0.65	0.36	0.30
141	1.2000	1.1867	8.729	1.29	0.54	0.30	0.25
142	1.4000	1.3867	8.665	1.35	0.48	0.26	0.22
143	1.6000	1.5867	8.618	1.40	0.43	0.23	0.20
144	1.8000	1.7867	8.570	1.45	0.38	0.21	0.17
145	2.0000	1.9867	8.522	1.50	0.33	0.18	0.15
146	2.2000	2.1867	8.490	1.53	0.30	0.16	0.14
147	2.4000	2.3867	8.458	1.56	0.27	0.15	0.12
148	2.6000	2.5867	8.426	1.59	0.24	0.13	0.11
149	2.8000	2.7867	8.411	1.61	0.22	0.12	0.10
150	3.0000	2.9867	8.379	1.64	0.19	0.10	0.09
151	3.2000	3.1867	8.363	1.66	0.17	0.10	0.08
152	3.4000	3.3867	8.347	1.67	0.16	0.09	0.07
153	3.6000	3.5867	8.347	1.67	0.16	0.09	0.07
154	3.8000	3.7867	8.331	1.69	0.14	0.08	0.06

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
155	4.0000	3.9867	8.315	1.70	0.13	0.07	0.06
156	4.2000	4.1867	8.299	1.72	0.11	0.06	0.05
157	4.4000	4.3867	8.283	1.74	0.09	0.05	0.04
158	4.6000	4.5867	8.283	1.74	0.09	0.05	0.04
159	4.8000	4.7867	8.267	1.75	0.08	0.04	0.04
160	5.0000	4.9867	8.267	1.75	0.08	0.04	0.04
161	5.2000	5.1867	8.267	1.75	0.08	0.04	0.04
162	5.4000	5.3867	8.251	1.77	0.06	0.03	0.03
163	5.6000	5.5867	8.251	1.77	0.06	0.03	0.03
164	5.8000	5.7867	8.251	1.77	0.06	0.03	0.03
165	6.0000	5.9867	8.235	1.78	0.05	0.03	0.02
166	6.2000	6.1867	8.235	1.78	0.05	0.03	0.02
167	6.4000	6.3867	8.235	1.78	0.05	0.03	0.02
168	6.6000	6.5867	8.235	1.78	0.05	0.03	0.02
169	6.8000	6.7867	8.235	1.78	0.05	0.03	0.02
170	7.0000	6.9867	8.235	1.78	0.05	0.03	0.02
171	7.2000	7.1867	8.235	1.78	0.05	0.03	0.02
172	7.4000	7.3867	8.235	1.78	0.05	0.03	0.02
173	7.6000	7.5867	8.235	1.78	0.05	0.03	0.02
174	7.8000	7.7867	8.220	1.80	0.03	0.02	0.01
175	8.0000	7.9867	8.220	1.80	0.03	0.02	0.01
176	8.2000	8.1867	8.204	1.81	0.02	0.01	0.01
177	8.4000	8.3867	8.204	1.81	0.02	0.01	0.01
178	8.6000	8.5867	8.204	1.81	0.02	0.01	0.01
179	8.8000	8.7867	8.204	1.81	0.02	0.01	0.01
180	9.0000	8.9867	8.204	1.81	0.02	0.01	0.01
181	9.2000	9.1867	8.204	1.81	0.02	0.01	0.01
182	9.4000	9.3867	8.188	1.83	0.00	0.00	0.00
183	9.6000	9.5867	8.188	1.83	0.00	0.00	0.00
184	9.8000	9.7867	8.188	1.83	0.00	0.00	0.00
185	10.0000	9.9867	8.188	1.83	0.00	0.00	0.00

<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>	
AQTESOLV RESULTS Version 1.10	
09/08/93	15:29:59
TEST DESCRIPTION	=
Data set	

Knowns and Constants:

No. of data points		
Radius of well casing 0.083	333	
Radius of well 0.3438	3	
Aquifer saturated thickness 13.5		
Well screen length10		
Static height of water in well 16.1	3	
Log(Re/Rw)	1	
A, B, C 0.000	0.000,	1.940

ANALYTICAL METHOD

Bouwer-Rice (Unconfined Aquifer Slug Test)

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 6.8041E-004 +/- 8.1872E-006 y0 = 1.1927E+000 +/- 3.5066E-003

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.26	1.19	0.07	1
0.0067	1.24	1.1872	0.052792	1
0.01	1.23	1.1845	0.045495	1
0.0133	1.23	1.1818	0.048192	1
0.0167	1.23	1.179	0.050965	1
0.02	1.23	1.1764	0.053649	1
0.0233	1.21	1.1737	0.036328	1
0.0267	1.21	1.1709	0.039081	1
0.03	1.21	1.1683	0.041747	1
0.0333	1.19	1.1656	0.024408	1
0.0367	1.19	1.1629	0.027142	1
0.04	1.19	1.1602	0.02979	1
0.0433	1.18	1.1576	. 0.022432	1
0.0467	1.18	1.1549	0.025147	1
0.05	1.18	1.1522	0.027777	1
0.0533	1.18	1.1496	0.030401	1
0.0567	1.16	1.1469	0.013097	1
0.06	1.16	1.1443	0.015709	1
0.0633	1.16	1.1417	0.018315	1
0.0667	1.15	1.139	0.010993	1
0.07	1.15	1.1364	0.013586	1
0.0733	1.15	1.1338	0.016174	1
0.0767	1.15	1.1312	0.018834	1
0.08	1.13	1.1286	0.0014097	1
0.0833	1.13	1.126	0.0039795	1
0.0867	1.13	1.1234	0.0066211	1
0.09	1.13	1.1208	0.0091791	1
0.0933	1.13	1.1183	0.011731	1
0.0967	1.12	1.1156	0.0043546	1
0.1	1.12	1.1131	0.006895	1
0.1033	1.12	1.1106	0.0094296	1
0.1067	1.12	1.108	0.012035	1
0.11	1.1	1.1054	-0.0054422	1
0.1133	1.1	1.1029	-0.0029251	1
0.1167	1.1	1.1003	-0.00033769	1
0.12	1.1	1.0978	0.0021678	1
0.1233	1.1	1.0953	0.0046676	1
0.1267	1.08	1.0928	-0.012763	1

0.13	1.08	1.0903	-0.010275	1
0.1333	1.08	1.0878	-0.007792	1
0.1367	1.08	1.0852	-0.0052401	1
0.14	1.07	1.0828	-0.012769	1
0.1433	1.07	1.0803	-0.010303	1
0.1467	1.07	1.0778	-0.0077691	1
0.15	1.07	1.0753	-0.005315	1
0.1533	1.07	1.0729	-0.0028665	1
0.1567	1.05	1.0703	-0.02035	1
0.16	1.05	1.0679	-0.017912	1
0.1633	1.05	1.0655	-0.015481	1
0.1667	1.05	1.063	-0.012981	1
0.17	1.05	1.0606	-0.010561	1
0.1733	1.05	1.0581	-0.0081457	1
0.1767	1.04	1.0557	-0.015663	1
0.18	1.04	1.0533	-0.01326	1
0.1833	1.04	1.0509	-0.010861	1
0.1867	1.04	1.0484	-0.008396	1
0.1307	1.04	1.046	-0.0060088	1
0.1933	1.02	1.0436	-0.023627	1
0.1967	1.02	1.0412	-0.021179	1
0.1907	1.02	1.0388	-0.018808	1
0.2033	1.02	1.0364	-0.016443	1
0.2033	1.02	1.0304	-0.010443	1
0.2007	1.02	1.034	-0.014011	1
	1.02	1.0293	-0.011037	1
0.2133 0.2167	1.02	1.0293	-0.0093073	1
		1.0269	-0.0008928	1
0.22	1	1.0246	-0.024333	
0.2233	1 1	1.0222	-0.022222	1 1
0.2267		1.0198	-0.019824	1
0.23	1 1	1.0173	-0.017301	1
0.2333			-0.013184	1
0.2367	0.99	1.0128 1.0105	-0.022803	1
0.24	0.99		-0.020497	
0.2567	0.97 0.97	0.99891 0.98745	-0.028906	1
0.2734				_
0.29	0.96	0.97619	-0.01619	1
0.3067	0.94	0.96499	-0.024993	1
0.3234	0.92	0.95392	-0.033925	1
0.34	0.92	0.94305	-0.023048	1
0.3567	0.91	0.93223	-0.022232	1
0.3734	0.89	0.92154	-0.031539	1
0.39	0.89	0.91103	-0.021032	1
0.4067	0.88	0.90058	-0.020582	1
0.4234	0.86	0.89025	-0.030253	1
-0.4397	0.86	0.88028	-0.020285	1
0.4567	0.84	0.87001	-0.030007	1
0.4734	0.84	0.86003	-0.020028	1
0.49	0.83	0.85022	-0.020223	1
0.5067	0.81	0.84047	-0.030471	1
0.5234	0.81	0.83083	-0.02083	1
0.54	0.81	0.82136	-0.011358	1
0.5567	0.8	0.81194	-0.011937	1
0.5734	0.78	0.80262	-0.022624	1

0,4400

				_
0.59	0.78	0.79347	-0.013472	1
0.6067	0.76	0.78437	-0.024371	1
0.6234	0.76	0.77537	-0.015375	1
0.64	0.75	0.76653	-0.016534	1
0.6567	0.75	0.75774	-0.0077418	1
0.6734	0.73	0.74905	-0.01905	1
0.69	0.73	0.74051	-0.01051	1
0.7067	0.72	0.73202	-0.012016	1
0.7234	0.72	0.72362	-0.0036201	1
0.74	0.7	0.71537	-0.01537	1
0.7567	0.7	0.70716	-0.0071643	1
0.7734	0.7	0.69905	0.00094686	1
0.79	0.68	0.69108	-0.011083	1
0.8067	0.68	0.68316	-0.003156	1
0.8234	0.67	0.67532	-0.0053202	1
0.84	0.67	0.66762	0.0023796	1
0.8567	0.65	0.65996	-0.0099628	1
0.8734	0.65	0.65239	-0.002393	1
0.89	0.65	0.64495	0.0050454	1
0.9067	0.64	0.63756	0.0030434	1
1.1067	0.56	0.63736	0.002443	1
	0.36		0.0047133	
1.3067		0.48363		1
1.5067 1.7067	0.43	0.42122 0.36687	0.0087754	1
	0.4		0.03313	1
1.9067	0.35	0.31953	0.030471	1
2.1067	0.32	0.2783	0.041703	1
2.3067	0.29	0.24239	0.047614	1
2.5067	0.25	0.21111	0.038892	1
2.7067	0.22	0.18387	0.036133	1
2.9067	0.19	0.16014	0.029859	1
3.1067	0.17	0.13948	0.030524	1
3.3067	0.16	0.12148	0.038522	1
3.5067	0.14	0.1058	0.034197	1
3.7067	0.14	0.09215	0.04785	1
3.9067	0.13	0.080259	0.049741	1
4.1067	0.11	0.069902	0.040098	1
4.3067	0.1	0.060882	0.039118	1
4.5067	0.1	0.053026	0.046974	1
4.7067	0.08	0.046183	0.033817	1
4.9067	0.08	0.040224	0.039776	1
5.1067	0.08	0.035033	0.044967	1
5.3067	0.06	0.030513	0.029487	1
5.5067	0.06	0.026575	0.033425	1
5.7067	0.05	0.023146	0.026854	1
5.9067	0.05	0.020159	0.029841	1
6.1067	0.03	0.017558	0.012442	1
6.3067	0.03	0.015292	0.014708	1
6.5067	0.03	0.013319	0.016681	1
6.7067	0.03	0.0116	0.0184	1
6.9067	0.02	0.010103	0.0098966	1
7.1067	0.02	0.0087996	0.0112	1
7.3067	0.02	0.0076641	0.012336	1
7.5067	0.02	0.0066751	0.013325	1
7.7067	0.02	0.0058138	0.014186	1
				_

.

7.9067	0.02	0.0050636	0.014936	1
8.1067	0.02	0.0044102	0.01559	1
8.3067	0.02	0.0038411	0.016159	1
8.5067	0.02	0.0033454	0.016655	1
8.7067	0.02	0.0029137	0.017086	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.8041E-004y0 = 1.1927E+000

TYPE CURVE DATA

K = 5.81272E-004y0 = 1.02823E+000

Time Drawdown Time Drawdown Time Drawdown

-----0.000E+000 1.028E+000 7.000E+000 1.652E-002

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
0	0.0000	-0.0933	5.385	-1.02	2.28	1.81	1.04
1	0.0033	-0.0900	5.321	-1.08	2.34	1.86	1.06
2	0.0067	-0.0866	5.528	-0.88	2.13	1.70	0.97
3	0.0100	-0.0833	5.783	-0.62	1.88	1.49	0.85
4	0.0133	-0.0800	5.942	-0.46	1.72	1.37	0.78
5	0.0167	-0.0766	5.879	-0.53	1.78	1.42	0.81
6	0.0200	-0.0733	5.512	-0.89	2.15	1.71	0.98
7	0.0233	-0.0700	5.114	-1.29	2.55	2.03	1.16
8	0.0267	-0.0666	4.939	-1.47	2.72	2.16	1.24
9	0.0300	-0.0633	4.908	-1.50	2.75	2.19	1.25
10	0.0333	-0.0600	5.465	-0.94	2.20	1.75	1.00
11	0.0366	-0.0567	8.426	2.02	-0.76	-0.61	-0.35
12	0.0400	-0.0533	6.802	0.40	0.86	0.68	0.39
13	0.0433	-0.0500	6.515	0.11	1.15	0.91	0.52
14	0.0466	-0.0467	6.722	0.32	0.94	0.75	0.43
15	0.0500	-0.0433	5.656	-0.75	2.01	1.59	0.91
16	0.0533	-0.0400	6.006	-0.40	1.66	1.32	0.75
17	0.0566	-0.0367	6.038	-0.37	1.62	1.29	0.74
18	0.0600	-0.0333	6.372	-0.03	1.29	1.03	0.59
19	0.0633	-0.0300	6.547	0.14	1.12	0.89	0.51
20	0.0666	-0.0267	6.515	0.11	1.15	0.91	0.52
21	0.0700	-0.0233	6.388	-0.02	1.27	1.01	0.58
22	0.0733	-0.0200	6.293	-0.11	1.37	1.09	0.62
23	0.0766	-0.0167	6.309	-0.09	1.35	1.08	0.61
24	0.0800	-0.0133	6.356	-0.05	1.31	1.04	0.59
25	0.0833	-0.0100	6.420	0.02	1.24	0.99	0.56
26	0.0866	-0.0067	6.436	0.03	1.23	0.97	0.56
27	0.0900	-0.0033	6.420	0.02	1.24	0.99	0.56
28	0.0933	-0.0000	6.404	0.00	1.26	1.00	0.57
29	0.0966	0.0033	6.404	0.00	1.26	1.00	0.57

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
30	0.1000	0.0067	6.420	0.02	1.24	0.99	0.56
31	0.1033	0.0100	6.436	0.03	1.23	0.97	0.56
32	0.1066	0.0133	6.436	0.03	1.23	0.97	0.56
33	0.1100	0.0167	6.436	0.03	1.23	0.97	0.56
34	0.1133	0.0200	6.436	0.03	1.23	0.97	0.56
35	0.1166	0.0233	6.452	0.05	1.21	0.96	0.55
36	0.1200	0.0267	6.452	0.05	1.21	0.96	0.55
37	0.1233	0.0300	6.452	0.05	1.21	0.96	0.55
38	0.1266	0.0333	6.468	0.06	1.19	0.95	0.54
39	0.1300	0.0367	6.468	0.06	1.19	0.95	0.54
40	0.1333	0.0400	6.468	0.06	1.19	0.95	0.54
41	0.1366	0.0433	6.484	0.08	1.18	0.94	0.54
42	0.1400	0.0467	6.484	0.08	1.18	0.94	0.54
43	0.1433	0.0500	6.484	0.08	1.18	0.94	0.54
44	0.1466	0.0533	6.484	0.08	1.18	0.94	0.54 .
45	0.1500	0.0567	6.500	0.10	1.16	0.92	0.53
46	0.1533	0.0600	6.500	0.10	1.16	0.92	0.53
47	0.1566	0.0633	6.500	0.10	1.16	0.92	0.53
48	0.1600	0.0667	6.515	0.11	1.15	0.91	0.52
49	0.1633	0.0700	6.515	0.11	1.15	0.91	0.52
50	0.1666	0.0733	6.515	0.11	1.15	0.91	0.52
51	0.1700	0.0767	6.515	0.11	1.15	0.91	0.52
52	0.1733	0.0800	6.531	0.13	1.13	0.90	0.51
53	0.1766	0.0833	6.531	0.13	1.13	0.90	0.51
54	0.1800	0.0867	6.531	0.13	1.13	0.90	0.51
55	0.1833	0.0900	6.531	0.13	1.13	0.90	0.51
56	0.1866	0.0933	6.531	0.13	1.13	0.90	0.51
57	0.1900	0.0967	6.547	0.14	1.12	0.89	0.51
58	0.1933	0.1000	6.547	0.14	1.12	0.89	0.51
59	0.1966	0.1033	6.547	0.14	1.12	0.89	0.51
60	0.2000	0.1067	6.547	0.14	1.12	0.89	0.51

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
61	0.2033	0.1100	6.563	0.16	1.10	0.87	0.50
62	0.2066	0.1133	6.563	0.16	1.10	0.87	0.50
63	0.2100	0.1167	6.563	0.16	1.10	0.87	0.50
64	0.2133	0.1200	6.563	0.16	1.10	0.87	0.50
65	0.2166	0.1233	6.563	0.16	1.10	0.87	0.50
66	0.2200	0.1267	6.579	0.17	1.08	0.86	0.49
67	0.2233	0.1300	6.579	0.17	1.08	0.86	0.49
68	0.2266	0.1333	6.579	0.17	1.08	0.86	0.49
69	0.2300	0.1367	6.579	0.17	1.08	0.86	0.49
70	0.2333	0.1400	6.595	0.19	1.07	0.85	0.49
71	0.2366	0.1433	6.595	0.19	1.07	0.85	0.49
72	0.2400	0.1467	6.595	0.19	1.07	0.85	0.49
73	0.2433	0.1500	6.595	0.19	1.07	0.85	0.49
74	0.2466	0.1533	6.595	0.19	1.07	0.85	0.49
75	0.2500	0.1567	6.611	0.21	1.05	0.84	0.48
76	0.2533	0.1600	6.611	0.21	1.05	0.84	0.48
77	0.2566	0.1633	6.611	0.21	1.05	0.84	0.48
78	0.2600	0.1667	6.611	0.21	1.05	0.84	0.48
79	0.2633	0.1700	6.611	0.21	1.05	0.84	0.48
80	0.2666	0.1733	6.611	0.21	1.05	0.84	0.48
81	0.2700	0.1767	6.627	0.22	1.04	0.82	0.47
82	0.2733	0.1800	6.627	0.22	1.04	0.82	0.47
83	0.2766	0.1833	6.627	0.22	1.04	0.82	0.47
84	0.2800	0.1867	6.627	0.22	1.04	0.82	0.47
85	0.2833	0.1900	6.627	0.22	1.04	0.82	0.47
86	0.2866	0.1933	6.643	0.24	1.02	0.81	0.46
87	0.2900	0.1967	6.643	0.24	1.02	0.81	0.46
88	0.2933	0.2000	6.643	0.24	1.02	0.81	0.46
89	0.2966	0.2033	6.643	0.24	1.02	0.81	0.46
90	0.3000	0.2067	6.643	0.24	1.02	0.81	0.46
91	0.3033	0.2100	6.643	0.24	1.02	0.81	0.46

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
92	0.3066	0.2133	6.643	0.24	1.02	0.81	0.46
93	0.3100	0.2167	6.643	0.24	1.02	0.81	0.46
94	0.3133	0.2200	6.659	0.25	1.00	0.80	0.46
95	0.3166	0.2233	6.659	0.25	1.00	0.80	0.46
96	0.3200	0.2267	6.659	0.25	1.00	0.80	0.46
97	0.3233	0.2300	6.659	0.25	1.00	0.80	0.46
98	0.3266	0.2333	6.659	0.25	1.00	0.80	0.46
99	0.3300	0.2367	6.675	0.27	0.99	0.78	0.45
100	0.3333	0.2400	6.675	0.27	0.99	0.78	0.45
101	0.3500	0.2567	6.691	0.29	0.97	0.77	0.44
102	0.3667	0.2734	6.691	0.29	0.97	0.77	0.44
103	0.3833	0.2900	6.707	0.30	0.96	0.76	0.43
104	0.4000	0.3067	6.722	0.32	0.94	0.75	0.43
105	0.4167	0.3234	6.738	0.33	0.92	0.73	0.42
106	0.4333	0.3400	6.738	0.33	0.92	0.73	0.42
107	0.4500	0.3567	6.754	0.35	0.91	0.72	0.41
108	0.4667	0.3734	6.770	0.37	0.89	0.71	0.41
109	0.4833	0.3900	6.770	0.37	0.89	0.71	0.41
110	0.5000	0.4067	6.786	0.38	0.88	0.70	0.40
111	0.5167	0.4234	6.802	0.40	0.86	0.68	0.39
112	0.5333	0.4400	6.802	0.40	0.86	0.68	0.39
113	0.5500	0.4567	6.818	0.41	0.84	0.67	0.38
114	0.5667	0.4734	6.818	0.41	0.84	0.67	0.38
115	0.5833	0.4900	6.834	0.43	0.83	0.66	0.38
116	0.6000	0.5067	6.850	0.45	0.81	0.65	0.37
117	0.6167	0.5234	6.850	0.45	0.81	0.65	0.37
118	0.6333	0.5400	6.850	0.45	0.81	0.65	0.37
119	0.6500	0.5567	6.866	0.46	0.80	0.63	0.36
120	0.6667	0.5734	6.882	0.48	0.78	0.62	0.35
121	0.6833	0.5900	6.882	0.48	0.78	0.62	0.35
122	0.7000	0.6067	6.898	0.49	0.76	0.61	0.35

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
123	0.7167	0.6234	6.898	0.49	0.76	0.61	0.35
124	0.7333	0.6400	6.914	0.51	0.75	0.59	0.34
125	0.7500	0.6567	6.914	0.51	0.75	0.59	0.34
.126	0.7667	0.6734	6.930	0.53	0.73	0.58	0.33
127	0.7833	0.6900	6.930	0.53	0.73	0.58	0.33
128	0.8000	0.7067	6.945	0.54	0.72	0.57	0.33
129	0.8167	0.7234	6.945	0.54	0.72	0.57	0.33
130	0.8333	0.7400	6.961	0.56	0.70	0.56	0.32
131	0.8500	0.7567	6.961	0.56	0.70	0.56	0.32
132	0.8667	0.7734	6.961	0.56	0.70	0.56	0.32
133	0.8833	0.7900	6.977	0.57	0.68	0.54	0.31
134	0.9000	0.8067	6.977	0.57	0.68	0.54	0.31
135	0.9167	0.8234	6.993	0.59	0.67	0.53	0.30
136	0.9333	0.8400	6.993	0.59	0.67	0.53	0.30
137	0.9500	0.8567	7.009	0.61	0.65	0.52	0.30
138	0.9667	0.8734	7.009	0.61	0.65	0.52	0.30
139	0.9833	0.8900	7.009	0.61	0.65	0.52	0.30
140	1.0000	0.9067	7.025	0.62	0.64	0.51	0.29
141	1.2000	1.1067	7.105	0.70	0.56	0.44	0.25
142	1.4000	1.3067	7.168	0.76	0.49	0.39	0.22
143	1.6000	1.5067	7.232	0.83	0.43	0.34	0.20
144	1.8000	1.7067	7.264	0.86	0.40	0.32	0.18
145	2.0000	1.9067	7.312	0.91	0.35	0.28	0.16
146	2.2000	2.1067	7.343	0.94	0.32	0.25	0.14
147	2.4000	2.3067	7.375	0.97	0.29	0.23	0.13
148	2.6000	2.5067	7.407	1.00	0.25	0.20	0.12
149	2.8000	2.7067	7.439	1.04	0.22	0.18	0.10
150	3.0000	2.9067	7.471	1.07	0.19	0.15	0.09
151	3.2000	3.1067	7.487	1.08	0.17	0.14	0.08
152	3.4000	3.3067	7.503	1.10	0.16	0.13	0.07
153	3.6000	3.5067	7.519	1.12	0.14	0.11	0.06

				H			,
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
154	3.8000	3.7067	7.519	1.12	0.14	0.11	0.06
155	4.0000	3.9067	7.534	1.13	0.13	0.10	0.06
156	4.2000	4.1067	7.550	1.15	0.11	0.09	0.05
157	4.4000	4.3067	7.566	1.16	0.10	0.08	0.04
158	4.6000	4.5067	7.566	1.16	0.10	0.08	0.04
159	4.8000	4.7067	7.582	1.18	0.08	0.06	0.04
160	5.0000	4.9067	7.582	1.18	0.08	0.06	0.04
161	5.2000	5.1067	7.582	1.18	0.08	0.06	0.04
162	5.4000	5.3067	7.598	1.19	0.06	0.05	0.03
163	5.6000	5.5067	7.598	1.19	0.06	0.05	0.03
164	5.8000	5.7067	7.614	1.21	0.05	0.04	0.02
165	6.0000	5.9067	7.614	1.21	0.05	0.04	0.02
166	6.2000	6.1067	7.630	1.23	0.03	0.03	0.01
167	6.4000	6.3067	7.630	1.23	0.03	0.03	0.01
168	6.6000	6.5067	7.630	1.23	0.03	0.03	0.01
169	6.8000	6.7067	7.630	1.23	0.03	0.03	0.01
170	7.0000	6.9067	7.646	1.24	0.02	0.01	0.01
171	7.2000	7.1067	7.646	1.24	0.02	0.01	0.01
172	7.4000	7.3067	7.646	1.24	0.02	0.01	0.01
173	7.6000	7.5067	7.646	1.24	0.02	0.01	0.01
174	7.8000	7.7067	7.646	1.24	0.02	0.01	0.01
175	8.0000	7.9067	7.646	1.24	0.02	0.01	0.01
176	8.2000	8.1067	7.646	1.24	0.02	0.01	0.01
177	8.4000	8.3067	7.646	1.24	0.02	0.01	0.01
178	8.6000	8.5067	7.646	1.24	0.02	0.01	0.01
179	8.8000	8.7067	7.646	1.24	0.02	0.01	0.01
180	9.0000	8.9067	7.662	1.26	0.00	0.00	0.00
181	9.2000	9.1067	7.662	1.26	0.00	0.00	0.00
182	9.4000	9.3067	7.662	1.26	0.00	0.00	0.00
183	9.6000	9.5067	7.662	1.26	0.00	0.00	0.00
184	9.8000	9.7067	7.662	1.26	0.00	0.00	0.00

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
185	10.0000	9.9067	7.662	1.26	0.00	0.00	0.00

AOTESOLV RESULTS Version 1.10 09/08/93 15:05:39 TEST DESCRIPTION Data set...... 15out Data set title..... SLUG OUT TEST MW-15 Company...... Halliburton NUS Project...... 1K94 Client..... Ellington Field (ANG) Location...... POL Storage Area Test date...... 09/03/93 Obs. well..... MW-15 Knowns and Constants: Radius of well casing...... 0.08333 Radius of well............ 0.3438 Aquifer saturated thickness....... 13.5 Well screen length...... 10 Static height of water in well..... 16.13 A, B, C...... 0.000, 0.000, 1.940 ______ ANALYTICAL METHOD

RESULTS FROM STATISTICAL CURVE MATCHING

STATISTICAL MATCH PARAMETER ESTIMATES

Estimate Std. Error K = 7.3324E-004 +/- 4.7520E-006y0 = 1.6989E+000 +/- 2.8226E-003

Bouwer-Rice (Unconfined Aquifer Slug Test)

ANALYSIS OF MODEL RESIDUALS

residual = calculated - observed weighted residual = residual * weight

Weighted Residual Statistics:

Model Residuals:

Time	Observed	Calculated	Residual	Weight
0.0033	1.74	1.6947	0.045292	1
0.0066	1.74	1.6906	0.04945	1
0.01	1.72	1.6863	0.033723	1
0.0133	1.72	1.6821	0.037861	1
0.0166	1.7	1.678	0.021988	1
0.02	1.7	1.6738	0.02623	1
0.0233	1.7	1.6697	0.030336	1
0.0266	1.69	1.6656	0.024433	1
0.0299	1.69	1.6615	0.02852	1
0.0333	1.69	1.6573	0.03272	1
0.0366	1.67	1.6532	0.016786	1
0.0399	1.67	1.6492	0.020842	1
0.0433	1.67	1.645	0.025011	1
0.0466	1.66	1.641	0.019047	1
0.0499	1.66	1.6369	0.023074	1
0.0533	1.64	1.6328	0.0072114	1
0.0566	1.64	1.6288	0.011218	1
0.0599	1.64	1.6248	0.015214	1
0.0633	1.64	1.6207	0.019321	1
0.0666	1.62	1.6167	0.0032977	1
0.0699	1.62	1.6127	0.0072645	1
0.0733	1.62	1.6087	0.011341	1
0.0766	1.61	1.6047	0.0052882	1
0.0799	1.61	1.6008	0.0092255	1
0.0833	1.61	1.5967	0.013272	1
0.0866	1.59	1.5928	-0.0028102	1
0.0899	1.59	1.5889	0.0010979	1
0.0933	1.59	1.5849	0.0051144	1
0.0966	1.59	1.581	0.0090031	1
0.0999	1.58	1.5771	0.0028822	1
0.1033	1.58	1.5731	0.0068689	1
0.1066	1.58	1.5693	0.010729	1
0.1099	1.58	1.5654	0.014579	1
0.1133	1.56	1.5615	-0.0014637	1
0.1166	1.56	1.5576	0.0023675	1
0.1199	1.56	1.5538	0.0061893	1
0.1233	1.54	1.5499	-0.0098829	1
0.1266	1.54	1.5461	-0.0060801	1

0.1299	1.54	1.5423	-0.0022867	1
0.1333	1.54	1.5384	0.001612	1
0.1366	1.53	1.5346	-0.0046134	1
0.1399	1.53	1.5308	-0.00084807	1
0.1433	1.53	1.527	0.0030217	1
0.1466	1.51	1.5232	-0.013232	1
0.1499	1.51	1.5195	-0.0094943	
0.1533	1.51			1
0.1566		1.5157	-0.0056533	1
	1.51	1.5119	-0.0019345	1
0.1599	1.5	1.5082	-0.0082248	1
0.1633	1.5	1.5044	-0.0044122	1
0.1666	1.5	1.5007	-0.00072099	1
0.1699	1.5	1.497	0.0029612	1
0.1733	1.5	1.4933	0.0067455	1
0.1766	1.48	1.4896	-0.0095907	1
0.1799	1.48	1.4859	-0.0059358	1
0.1833	1.48	1.4822	-0.0021796	1
0.1866	1.46	1.4785	-0.018543	1
0.1899	1.46	1.4749	-0.014915	1
0.1933	1.46	1.4712	-0.011187	1
0.1966	1.46	1.4676	-0.0075771	
0.1999	1.46	1.464	-0.0073771	1
0.2033				1
	1.45	1.4603	-0.010276	1
0.2066	1.45	1.4567	-0.0066926	1
0.2099	1.45	1.4531	-0.0031185	1
0.2133	1.45	1.4494	0.00055479	1
0.2166	1.43	1.4459	-0.015889	1
0.2199	1.43	1.4423	-0.012341	1
0.2233	1.43	1.4387	-0.0086952	1
0.2266	1.42	1.4352	-0.015165	1
0.2299	1.42	1.4316	-0.011644	1
0.2333	1.42	1.428	-0.0080249	1
0.2366	1.42	1.4245	-0.0045211	1
0.2399	1.4	1.421	-0.021026	1
0.2433	1.4	1.4174	-0.021020	1
0.2466	1.4	1.414	-0.017434	
0.2499	1.4	1.414		1
			-0.010487	1
0.2533	1.4	1.4069	-0.0069212	1
0.2566	1.39	1.4035	-0.013469	1
0.2599	1.39	1.4	-0.010026	1
0.2633	1.39	1.3965	-0.0064866	1
0.2666	1.39	1.3931	-0.0030601	1
0.2699	1.39	1.3896	0.00035787	1
0.2733	1.37	1.3861	-0.016129	1
0.2766	1.37	1.3827	-0.012728	1
0.2799	1.37	1.3793	-0.0093357	1
0.2833	1.37	1.3758	-0.0058489	
0.2866				1
	1.35	1.3725	-0.022473	1
0.2899	1.35	1.3691	-0.019106	1
0.2933	1.35	1.3656	-0.015645	1
0.2966	1.35	1.3623	-0.012294	1
0.2999	1.35	1.359	-0.0089515	1
0.3033	1.35	1.3555	-0.0055162	1
0.3066	1.34	1.3522	-0.01219	1

	0.3099	1.34	1.3489	-0.0088726	1
	0.3133	1.34	1.3455	-0.0054629	1
	0.3166	1.34	1.3422	-0.0021616	1
JEI WHE	0.3199	1.32	1.3389	-0.018869	1
,	0.3233	1.32	1.3355	-0.015484	1
	0.3266	1.32	1.3322	-0.012207	1
	0.3433	1.31	1.3157	-0.0057479	1
	0.36	1.29	1.2995	-0.0094919	1
	0.3766	1.27	1.2835	-0.013532	1
	0.3933	1.26	1.2677	-0.0076742	1
	0.41	1.24	1.252	-0.012012	1
	0.4266	1.23	1.2366	-0.0066355	1
	0.4433	1.21	1.2214	-0.011357	1
	0.46	1.19	1.2063	-0.016267	1
	0.4766	1.18	1.1915	-0.011452	1
•	0.4933	1.16	1.1767	-0.016732	1
	0.51	1.15	1.1622	-0.012193	1
	0.5263	1.13	1.1482	-0.018176	1
	0.5433	1.13	1.1337	-0.0037375	1
	0.56	1.11	1.1197	-0.0097302	1
	0.5766	1.1	1.106	-0.0059782	1
	0.5933	1.08	1.0923	-0.012314	1
	0.61	1.07	1.0788	-0.0088184	1
	0.6266	1.05	1.0656	-0.015569	1
	0.6433	1.03	1.0524	-0.022404	1
	0.66	1.03	1.0394	-0.0094014	1
	0.6766	1.02	1.0266	-0.006636	1
	0.6933	1	1.014	-0.013952	1 1
	0.71	1	1.0014	-0.0014246 0.00087439	
	0.7266	0.99	0.98913 0.9769	-0.006905	1
	0.7433	0.97 0.96	0.9769	-0.006903	1 1
	0.76 0.7766	0.96	0.95299	-0.0048333 -0.012986	1
	0.7766	0.94	0.93299	-0.0012980	1
	0.7933	0.94	0.94121	-0.0012116	1
	0.81	0.92	0.92938	-0.009383	1
	0.8433	0.91	0.91617	0.0031776	1
	0.86	0.89	0.89562	-0.0056186	1
	0.8766	0.88	0.88462	-0.0036186	1
	0.8933	0.88	0.87369	0.0063104	1
	0.8933	0.86	0.8629	-0.0028952	1
	0.9266	0.84	0.8523	-0.012298	1
	0.9200	0.84	0.84177	-0.0017675	1
	0.9433	0.83	0.83137	-0.0017075	1
	0.9766	0.83	0.82116	0.008843	1
	0.9933	0.81	0.81101	-0.0010117	1
	1.1933	0.7	0.69882	0.0011774	1
	1.3933	0.61	0.60215	0.0078472	1
	1.5933	0.53	0.51886	0.011144	1
	1.7933	0.46	0.44708	0.012919	1
	1.9933	0.41	0.38524	0.024765	1
	2.1933	0.35	0.33194	0.018055	1
	2.3933	0.32	0.28603	0.033974	1
	2.5933	0.29	0.24646	0.04354	1

2.7933	0.25	0.21237	0.037634	1
2.9933	0.22	0.18299	0.037011	1
3.1933	0.19	0.15768	0.032324	1
3.3933	0.18	0.13586	0.044136	1
3.5933	0.16	0.11707	0.04293	1
3.7933	0.14	0.10088	0.039125	1
3.9933	0.13	0.086921	0.043079	1
4.1933	0.11	0.074897	0.035103	1
4.3933	0.11	0.064536	0.045464	1
4.5933	0.1	0.055609	0.044391	1
4.7933	0.08	0.047916	0.032084	1
4.9933	0.08	0.041288	0.038712	1
5.1933	0.08	0.035577	0.044423	1
5.3933	0.06	0.030655	0.029345	1
5.5933	0.06	0.026415	0.033585	1
5.7933	0.06	0.022761	0.037239	1
5.9933	0.05.0.06	0.019612	0.040388	1
6.1933	0.05	0.016899	0.033101	1
6.3933	0.05	0.014561	0.035439	1
6.5933	0.05	0.012547	0.037453	1
6.7933	0.05	0.010811	0.039189	1
6.9933	0.05	0.0093158	0.040684	1
7.1933	0.05 0.03	0.0080272	0.021973	1
7.3933	0.03	0.0069167	0.023083	1
7.5933	0.03	0.0059599	0.02404	1
7.7933	0.03	0.0051355	0.024865	1
7.9933	0.02	0.0044251	0.015575	1
8.1933	0.02	0.0038129	0.016187	1

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.3324E-004y0 = 1.6989E+000

TYPE CURVE DATA

K = 5.83503E-004y0 = 1.33197E+000

Time Drawdown Time Drawdown Time Drawdown

0.000E+000 1.332E+000 9.000E+000 6.441E-003

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
0	0.0000	-0.0067	9.620	0.02	1.74	0.99	0.79
1	0.0033	-0.0034	9.636	0.00	1.75	1.00	0.80
2	0.0067	0.0000	9.636	0.00	1.75	1.00	0.80
3	0.0100	0.0033	9.620	0.02	1.74	0.99	0.79
4	0.0133	0.0066	9.620	0.02	1.74	0.99	0.79
5	0.0167	0.0100	9.604	0.03	1.72	0.98	0.78
6	0.0200	0.0133	9.604	0.03	1.72	0.98	0.78
7	0.0233	0.0166	9.588	0.05	1.70	0.97	0.77
8	0.0267	0.0200	9.588	0.05	1.70	0.97	0.77
9	0.0300	0.0233	9.588	0.05	1.70	0.97	0.77
10	0.0333	0.0266	9.572	0.06	1.69	0.96	0.77
11	0.0366	0.0299	9.572	0.06	1.69	0.96	0.77
12	0.0400	0.0333	9.572	0.06	1.69	0.96	0.77
13	0.0433	0.0366	9.556	0.08	1.67	0.95	0.76
14	0.0466	0.0399	9.556	0.08	1.67	0.95	0.76
15	0.0500	0.0433	9.556	0.08	1.67	0.95	0.76
16	0.0533	0.0466	9.540	0.10	1.66	0.95	0.75
17	0.0566	0.0499	9.540	0.10	1.66	0.95	0.75
18	0.0600	0.0533	9.524	0.11	1.64	0.94	0.74
19	0:0633	0.0566	9.524	0.11	1.64	0.94	0.74
20	0.0666	0.0599	9.524	0.11	1.64	0.94	0.74
21	0.0700	0.0633	9.524	0.11	1.64	0.94	0.74
22	0.0733	0.0666	9.509	0.13	1.62	0.93	0.74
23	0.0766	0.0699	9.509	0.13	1.62	0.93	0.74
24	0.0800	0.0733	9.509	0.13	1.62	0.93	0.74
25	0.0833	0.0766	9.492	0.14	1.61	0.92	0.73
26	0.0866	0.0799	9.492	0.14	1.61	0.92	0.73
27	0.0900	0.0833	9.492	0.14	1.61	0.92	0.73
28	0.0933	0.0866	9.477	0.16	1.59	0.91	0.72
29	0.0966	0.0899	9.477	0.16	1.59	0.91	0.72
30	0.1000	0.0933	9.477	0.16	1.59	0.91	0.72

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
31	0.1033	0.0966	9.477	0.16	1.59	0.91	0.72
32	0.1066	0.0999	9.461	0.17	1.58	0.90	0.72
33	0.1100	0.1033	9.461	0.17	1.58	0.90	0.72
34	0.1133	0.1066	9.461	0.17	1.58	0.90	0.72
35	0.1166	0.1099	9.461	0.17	1.58	0.90	0.72
36	0.1200	0.1133	9.445	0.19	1.56	0.89	0.71
37	0.1233	0.1166	9.445	0.19	1.56	0.89	0.71
38	0.1266	0.1199	9.445	0.19	1.56	0.89	0.71
39	0.1300	0.1233	9.429	0.21	1.54	0.88	0.70
40	0.1333	0.1266	9.429	0.21	1.54	0.88	0.70
41	0.1366	0.1299	9.429	0.21	1.54	0.88	0.70
42	0.1400	0.1333	9.429	0.21	1.54	0.88	0.70
43	0.1433	0.1366	9.413	0.22	1.53	0.87	0.69
44	0.1466	0.1399	9.413	0.22	1.53	0.87	0.69
45	0.1500	0.1433	9.413	0.22	1.53	0.87	0.69
46	0.1533	0.1466	9.397	0.24	1.51	0.86	0.69
47	0.1566	0.1499	9.397	0.24	1.51	0.86	0.69
48	0.1600	0.1533	9.397	0.24	1.51	0.86	0.69
49	0.1633	0.1566	9.397 .	0.24	1.51	0.86	0.69
50	0.1666	0.1599	9.381	0.25	1.50	0.85	0.68
51	0.1700	0.1633	9.381	0.25	1.50	0.85	0.68
52	0.1733	0.1666	9.381	0.25	1.50	0.85	0.68
53	0.1766	0.1699	9.381	0.25	1.50	0.85	0.68
54	0.1800	0.1733	9.381	0.25	1.50	0.85	0.68
55	0.1833	0.1766	9.365	0.27	1.48	0.85	0.67
56	0.1866	0.1799	9.365	0.27	1.48	0.85	0.67
57	0.1900	0.1833	9.365	0.27	1.48	0.85	0.67
58	0.1933	0.1866	9.349	0.29	1.46	0.84	0.67
59	0.1966	0.1899	9.349	0.29	1.46	0.84	0.67
60	0.2000	0.1933	9.349	0.29	1.46	0.84	0.67
61	0.2033	0.1966	9.349	0.29	1.46	0.84	0.67

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
62	0.2066	0.1999	9.349	0.29	1.46	0.84	0.67
63	0.2100	0.2033	9.333	0.30	1.45	0.83	0.66
64	0.2133	0.2066	9.333	0.30	1.45	0.83	0.66
65	0.2166	0.2099	9.333	0.30	1.45	0.83	0.66
66	0.2200	0.2133	9.333	0.30	1.45	0.83	0.66
67	0.2233	0.2166	9.317	0.32	1.43	0.82	0.65
68	0.2266	0.2199	9.317	0.32	1.43	0.82	0.65
69	0.2300	0.2233	9.317	0.32	1.43	0.82	0.65
70	0.2333	0.2266	9.302	0.33	1.42	0.81	0.64
71	0.2366	0.2299	9.302	0.33	1.42	0.81	0.64
72	0.2400	0.2333	9.302	0.33	1.42	0.81	0.64
73	0.2433	0.2366	9.302	0.33	1.42	0.81	0.64
74	0.2466	0.2399	9.286	0.35	1.40	0.80	0.64
75	0.2500	0.2433	9.286	0.35	1.40	0.80	0.64
76	0.2533	0.2466	9.286	0.35	1.40	0.80	0.64 •
77	0.2566	0.2499	9.286	0.35	1.40	0.80	0.64
78	0.2600	0.2533	9.286	0.35	1.40	0.80	0.64
79	0.2633	0.2566	9.270	0.37	1.39	0.79	0.63
80	0.2666	0.2599	9.270	0.37	1.39	0.79	0.63
81	0.2700	0.2633	9.270	0.37	1.39	0.79	0.63
82	0.2733	0.2666	9.270	0.37	1.39	0.79	0.63
83	0.2766	0.2699	9.270	0.37	1.39	0.79	0.63
84	0.2800	0.2733	9.254	0.38	1.37	0.78	0.62
85	0.2833	0.2766	9.254	0.38	1.37	0.78	0.62
86	0.2866	0.2799	9.254	0.38	1.37	0.78	0.62
87	0.2900	0.2833	9.254	0.38	1.37	0.78	0.62
88	0.2933	0.2866	9.238	0.40	1.35	0.77	0.62
89	0.2966	0.2899	9.238	0.40	1.35	0.77	0.62
90	0.3000	0.2933	9.238	0.40	1.35	0.77	0.62
91	0.3033	0.2966	9.238	0.40	1.35	0.77	0.62
92	0.3066	0.2999	9.238	0.40	1.35	0.77	0.62

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRANS.	READING	TRANS.	TRANS.	TRANS.	THEOR
•							
93	0.3100	0.3033	9.238	0.40	1.35	0.77	0.62
94	0.3133	0.3066	9.222	0.41	1.34	0.76	0.61
95	0.3166	0.3099	9.222	0.41	1.34	0.76	0.61
96	0.3200	0.3133	9.222	0.41	1.34	0.76	0.61
97	0.3233	0.3166	9.222	0.41	1.34	0.76	0.61
98	0.3266	0.3199	9.206	0.43	1.32	0.75	0.60
99	0.3300	0.3233	9.206	0.43	1.32	0.75	0.60
100	0.3333	0.3266	9.206	0.43	1.32	0.75	0.60
101	0.3500	0.3433	9.190	0.45	1.31	0.75	0.59
102	0.3667	0.3600	9.174	0.46	1.29	0.74	0.59
103	0.3833	0.3766	9.158	0.48	1.27	0.73	0.58
104	0.4000	0.3933	9.142	0.49	1.26	0.72	0.57
105	0.4167	0.4100	9.126	0.51	1.24	0.71	0.56
106	0.4333	0.4266	9.111	0.52	1.23	0.70	0.56
107	0.4500	0.4433	9.095	0.54	1.21	0.69	0.55
108	0.4667	0.4600	9.079	0.56	1.19	0.68	0.54
109	0.4833	0.4766	9.063	0.57	1.18	0.67	0.54
110	0.5000	0.4933	9.047	0.59	1.16	0.66	0.53
111	0.5167	0.5100	9.031	0.60	1.15	0.65	0.52
112	0.5333	0.5266	9.015	0.62	1.13	0.65	0.51
113	0.5500	0.5433	9.015	0.62	1.13	0.65	0.51
114	0.5667	0.5600	8.999	0.64	1.11	0.64	0.51
115	0.5833	0.5766	8.983	0.65	1.10	0.63	0.50
116	0.6000	0.5933	8.967	0.67	1.08	0.62	0.49
117	0.6167	0.6100	8.951	0.68	1.07	0.61	0.48
118	0.6333	0.6266	8.935	0.70	1.05	0.60	0.48
119	0.6500	0.6433	8.919	0.72	1.03	0.59	0.47
120	0.6667	0.6600	8.919	0.72	1.03	0.59	0.47
121	0.6833	0.6766	8.904	0.73	1.02	0.58	0.46
122	0.7000	0.6933	8.888	0.75	1.00	0.57	0.46
123	0.7167	0.7100	8.888	0.75	1.00	0.57	0.46

				Н			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
•	,						
124	0.7333	0.7266	8.872	0.76	0.99	0.56	0.45
125	0.7500	0.7433	8.856	0.78	0.97	0.55	0.44
126	0.7667	0.7600	8.840	0.80	0.96	0.55	0.43
127	0.7833	0.7766	8.824	0.81	0.94	0.54	0.43
128	0.8000	0.7933	8.824	0.81	0.94	0.54	0.43
129	0.8167	0.8100	8.808	0.83	0.92	0.53	0.42
130	0.8333	0.8266	8.792	0.84	0.91	0.52	0.41
131	0.8500	0.8433	8.792	0.84	0.91	0.52	0.41
132	0.8667	0.8600	8.776	0.86	0.89	0.51	0.41
133	0.8833	0.8766	8.760	0.88	0.88	0.50	0.40
134	0.9000	0.8933	8.760	0.88	0.88	0.50	0.40
135	0.9167	0.9100	8.744	0.89	0.86	0.49	0.39
136	0.9333	0.9266	8.728	0.91	0.84	0.48	0.38
137	0.9500	0.9433	8.728	0.91	0.84	0.48	0.38
138	0.9667	0.9600	8.712	0.92	0.83	0.47	0.38
139	0.9833	0.9766	8.712	0.92	0.83	0.47	0.38
140	1.0000	0.9933	8.697	0.94	0.81	0.46	0.37
141	1.2000	1.1933	8.585	1.05	0.70	0.40	0.32
142	1.4000	1.3933	8.490	1.15	0.61	0.35	0.28
143	1.6000	1.5933	8.410	1.23	0.53	0.30	0.24
144	1.8000	1.7933	8.346	1.29	0.46	0.26	0.21
145	2.0000	1.9933	8.299	1.34	0.41	0.24	0.19
146	2.2000	2.1933	8.235	1.40	0.35	0.20	0.16
147	2.4000	2.3933	8.203	1.43	0.32	0.18	0.14
148	2.6000	2.5933	8.171	1.47	0.29	0.16	0.13
149	2.8000	2.7933	8.139	1.50	0.25	0.15	0.12
150	3.0000	2.9933	8.108	1.53	0.22	0.13	0.10
151	3.2000	3.1933	8.076	1.56	0.19	0.11	0.09
152	3.4000	3.3933	8.060	1.58	0.18	0.10	0.08
153	3.6000	3.5933	8.044	1.59	0.16	0.09	0.07
154	3.8000	3.7933	8.028	1.61	0.14	0.08	0.07

				H			
SAMPLE	TIME	T(0)	XD	A/B DATUM	H	H/H(0)	H/H(0)
NUMBER	(MINUTES)	TRÀNS.	READING	TRANS.	TRANS.	TRANS.	THEOR
	,						
155	4.0000	3.9933	8.012	1.62	0.13	0.07	0.06
156	4.2000	4.1933	7.996	1.64	0.11	0.06	0.05
157	4.4000	4.3933	7.996	1.64	0.11	0.06	0.05
158	4.6000	4.5933	7.980	1.66	0.10	0.05	0.04
159	4.8000	4.7933	7.964	1.67	0.08	0.05	0.04
160	5.0000	4.9933	7.964	1.67	0.08	0.05	0.04
161	5.2000	5.1933	7.964	1.67	0.08	0.05	0.04
162	5.4000	5.3933	7.948	1.69	0.06	0.04	0.03
163	5.6000	5.5933	7.948	1.69	0.06	0.04	0.03
164	5.8000	5.7933	7.948	1.69	0.06	0.04	0.03
165	6.0000	5.9933	7.932	1.70	0.05	0.03	0.02
166	6.2000	6.1933	7.932	1.70	0.05	0.03	0.02
167	6.4000	6.3933	7.932	1.70	0.05	0.03	0.02
168	6.6000	6.5933	7.932	1.70	0.05	0.03	0.02
169	6.8000	6.7933	7.932	1.70	0.05	0.03	0.02
170	7.0000	6.9933	7.932	1.70	0.05	0.03	0.02
171	7.2000	7.1933	7.932	1.70	0.05	0.03	0.02
172	7.4000	7.3933	7.916	1.72	0.03	0.02	0.01
173	7.6000	7.5933	7.916	1.72	0.03	0.02	0.01
174	7.8000	7.7933	7.916	1.72	0.03	0.02	0.01
175	8.0000	7.9933	7.901	1.73	0.02	0.01	0.01
176	8.2000	8.1933	7.901	1.73	0.02	0.01	0.01
177	8.4000	8.3933	7.885	1.75	0.00	0.00	0.00
178	8.6000	8.5933	7.885	1.75	0.00	0.00	0.00
179	8.8000	8.7933	7.885	1.75	0.00	0.00	0.00
180	9.0000	8.9933	7.885	1.75	0.00	0.00	0.00
181	9.2000	9.1933	7.885	1.75	0.00	0.00	0.00
182	9.4000	9.3933	7.885	1.75	0.00	0.00	0.00
183	9.6000	9.5933	7.901	1.73	0.02	0.01	0.01
184	9.8000	9.7933	7.901	1.73	0.02	0.01	0.01
185	10.0000	9.9933	7.885	1.75	0.00	0.00	0.00