CS2040S Data Structures and Algorithms

Welcome!

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Part 2

On the importance of being balanced

Part 2

On the importance of being balanced

- Height-balanced binary search trees
- AVL trees
- Rotations

Dictionary Interface

A collection of (key, value) pairs:

interface IDictionary void insert(Key k, Value v) insert (k,v) into table get value paired with k Value search (Key k) find next key > kKey successor(Key k) Kev predecessor (Kev k) find next key < kvoid delete(Key k) remove key k (and value) boolean contains (Key k) is there a value for k? int size() number of (k,v) pairs

Recap: Binary Search Trees

- Two children: v.left, v.right
- Key: v.key
- BST Property: all in left sub-tree < key < all in right sub-right

Binary Search Trees Heights

Height:

Number of edges on longest path from root to leaf.

Modifying Operations

- insert
- delete

Query Operations:

- search
- predecessor, successor
- findMax, findMin
- in-order-traversal

delete(v)

delete(v)

delete(50)

delete(50)

delete(29)

delete(29)

delete(29)

delete(65)

Case 3: 2 children

can als =

node with

predecissor

Claim: successor of deleted node has at most 1 child!

Proof:

- Deleted node has two children.
- Deleted node has a right child.
- successor() = right.findMin()
- min element has no left child.

delete(v)

Running time: O(height)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v
 - connect child(v) to parent(v)
- 3. 2 children
 - x = successor(v)
 - delete(x)
 - remove v
 - connect x to left(v), right(v), parent(v)

delete(v)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v

− delete(v) ←

- connect child(v) to parent(v)
- 3. 2 children
 - Swap v with x = successor(v)
- Will this cause more calls for the function delete()?
- (which is in the original position of the successor)

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

Operations take O(h) time

What is the largest possible height h?

- 1. $\theta(1)$
- 2. $\theta(\log n)$
- 3. $\theta(\operatorname{sqrt}(n))$
- 4. $\theta(n)$
- 5. $\theta(n^2)$

What is the largest possible height h?

- 1. $\theta(1)$
- 2. $\theta(\log n)$
- 3. $\theta(\operatorname{sqrt}(n))$
- **✓**4. θ(n)
 - 5. $\theta(n^2)$

Operations take O(h) time

 $h \leq n$

What is the smallest possible height h?

- 1. $\theta(1)$
- 2. $\theta(\log n)$
- 3. $\theta(\operatorname{sqrt}(n))$
- 4. $\theta(n)$
- 5. $\theta(n^2)$

What is the smallest possible height h?

- 1. $\theta(1)$
- ✓2. $\theta(\log n)$
 - 3. $\theta(\operatorname{sqrt}(n))$
 - 4. $\theta(n)$
 - 5. $\theta(n^2)$

Operations take O(h) time

Operations take O(h) time

$$n \le 1 + 2 + 4 + ... + 2^h$$

 $\le 2^0 + 2^1 + 2^2 + ... + 2^h < 2^{h+1}$

Operations take O(h) time

$$log(n) -1 \le h \le n$$

A BST is <u>balanced</u> if $h = O(\log n)$

On a balanced BST: all operations run in O(log n) time.

Perfectly balanced:

Almost perfectly balanced:

Every subtree has (almost) the same number of nodes.

Not perfectly balanced:

Left tree has 6, right tree has 1.

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

The Importance of Being Balanced

How to get a balanced tree:

- Define a good property of a tree.
- Show that if the good property holds, then the tree is balanced.
- After every insert/delete, make sure the good property still holds. If not, fix it.

Step 0: Augment

Step 1: Define Balance Condition

Step 2: Maintain Balance

Step 0: Augment

– In every node v, store height:

$$v.height = h(v)$$

Step 0: Augment

– In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
    if (x < key)
        left.insert(x)
    else right.insert(x)
    height = max(left.height, right.height) + 1</pre>
```


Step 0: Augment

– In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
  if (x < key)
       left.insert(x)
      else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```

Step 0: Augment

Step 1: Define Balance Condition

Step 2: Maintain Balance

Step 1: Define Invariant

Key definition

– A node v is <u>height-balanced</u> if:

 $|v.left.height - v.right.height| \le 1$

Step 1: Define Invariant

A node v is <u>height-balanced</u> if:

 $|v.left.height - v.right.height| \le 1$

A binary search tree is <u>height balanced</u> if <u>every</u>
 node in the tree is height-balanced.

Is this tree height-balanced?

- 1. Yes
- 2. No
- 3. I'm confused.

Is this tree height-balanced?

- ✓1. Yes
 - 2. No
 - 3. I'm confused.

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

- \Leftrightarrow h/2 < log(n)
- \Leftrightarrow 2h/2 < 2log(n)
- $\Leftrightarrow 2^{h/2} < n$

A height-balanced tree with height h has $\frac{\text{at least}}{\text{n}} = 2^{h/2}$ nodes

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Show:

$$n_h > 2^{h/2}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

 $\geq 4n_{h-4}$

$$\geq 8n_{h-6}$$

How many times?

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2^{1}n_{h-2}$$

 $\geq 2^{2}n_{h-4}$
 $\geq 2^{3}n_{h-6}$

$$\geq 2^2 n_{h-4}$$

$$\geq 2^3 n_{h-6}$$

$$\geq ... \geq 2^k n_0$$

What is

Base case:

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 2^{h/2} n_0$$

Base case:

$$n_0 = 1$$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

Show:

$$n > 2^{h/2}$$

Show (induction):

$$\begin{split} F_n &= n^{th} \text{ Fibonacci number} \\ n_h &= F_{h+2} - 1 \cong \phi^{h+1}/\sqrt{5} - 1 \text{ (rounded to nearest int)} \\ h &\cong log(n) \ / \ log(\phi) \qquad \phi \cong 1.618 \\ h &\cong 1.44 \text{ log(n)} \end{split}$$

Claim:

A height-balanced tree is balanced, i.e., has height h = O(log n).

Step 0: Augment

Step 1: Define Balance Condition

Step 2: Maintain Balance

It's good that we don't have to

Balance perfectly

Step 2: Show how to maintain height-balance

Before insertion, balanced insert(37)

No longer balanced after insertion!

Need to rebalance!

Which nodes need rebalancing? (click all that apply)

Which nodes need rebalancing? (click all that apply)

(41)

Trick to rebalance the tree

Tree rotation!

A < B < C < D < E

Rotations maintain ordering of keys.

⇒ Maintains BST property.

Wait....

What is a left rotation and what is a right rotation!?

The way to remember it

The root of the subtree moves right

The root of the subtree moves left

Rotations

```
right-rotate(v)
                         // assume v has left != null
    w = v.left
    w.parent = v.parent
    v.parent = w
    v.left = w.right
                                           W
    w.right = v
             W
```


rotate-right requires a left child rotate-left requires a right child

After insert:

Use tree rotations to restore balance.

Height is out-of-balance by 1

A is **LEFT-heavy** if left sub-tree has larger height than right sub-tree.

A is **RIGHT-heavy** if right sub-tree has larger height than left sub-tree.

Use tree rotations to restore balance.

After insert, start at bottom, work your way up.

Assume **A** is the lowest node in the tree violating balance property.

Assume A is **LEFT-heavy**.

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 1: **B** is balanced :
$$h(L) = h(M)$$

$$h(R) = h(B) - 2$$

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 1: **B** is balanced :
$$h(L) = h(M)$$

 $h(R) = h(M) - 1$

right-rotate:

Case 1: **B** is balanced : h(L) = h(M)h(R) = h(M) - 1

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 2: **B** is left-heavy :
$$h(L) = h(M) + 1$$

 $h(R) = h(M)$

right-rotate:

Case 2: **B** is left-heavy: h(L) = h(M) + 1

 $h(\mathbf{R}) = h(\mathbf{M})$

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 3: **B** is right-heavy :
$$h(L) = h(M) - 1$$

 $h(R) = h(L)$

right-rotate:

Case 3: **B** is right-heavy: h(L) = h(M) - 1h(R) = h(L)

Are we done?

- 1. Yes.
- **✓**2. No.
 - 3. Maybe.

Let's do something first before we right-rotate(A)

right-rotate:

Case 3: **B** is right-heavy: h(L) = h(M) - 1h(R) = h(L)

Left-rotate B

After left-rotate B: A and C still out of balance.

After right-rotate A: all in balance.

Rotations

Summary:

If v is out of balance and left heavy:

- 1. v.left is balanced: right-rotate(v)
- 2. v.left is left-heavy: right-rotate(v)
- 3. v.left is right-heavy: left-rotate(v.left) right-rotate(v)

If v is out of balance and right heavy: Symmetric three cases....

How many rotations do you need after an insertion (in the worst case)?

- 1. 1
- 2. 2
- 3. 4
- 4. log(n)
- 5. 2log(n)
- 6. n

How many rotations do you need after an insertion (in the worst case)?

- 1. 1
- **√**2. 2
 - 3. 4
 - 4. log(n)
 - 5. 2log(n)
 - 6. n

Question:

Why isn't it 2log(n)?

Insert in AVL Tree

Summary:

- Insert key in BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance.

Note: only need to perform two rotations

- Why?
- In each case, reduce height of sub-tree by 1
- What about Case 1, above?

insert(23)

insert(23)

insert(55)

insert(55)

delete(v)

delete(v)

- 1. If v has two children, swap it with its successor.
- 2. Delete node v from binary tree (and reconnect children).
- 3. For every ancestor of the deleted node:
 - Check if it is height-balanced.
 - If not, perform a rotation.
 - Continue to the root.

Deletion may take up to O(log(n)) rotations.

Quick review: a rotation costs:

- **✓**1. O(1)
 - 2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. $O(2^n)$

Every insertion requires 1 or 2 rotations?

- 1. Yes
- **✓**2. No
 - 3. I don't know

Using rotations, you can create every possible "tree shape."

- ✓1. True
 - 2. False
 - 3. I don't know

AVL Trees

What if you do not remove deleted nodes?

Mark a node "deleted" and leave it in the tree.

Logical deletes:

- Performance degrades over time.
- Clean up later? (Amortized performance...)

AVL Trees

What if you do not want to store the height in every node?

Only store difference in height from parent.

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)

Balanced Search Trees

Red-Black trees

- More loosely balanced
- Rebalance using rotations on insert/delete
- O(1) rotations for all operations.
- Java TreeSet implementation
- Faster (than AVL) for insert/delete
- Slower (than AVL) for search

Balanced Search Trees

Skip Lists and Treaps

- Randomized data structures
- Random insertions => balanced tree
- Use randomness on insertion to maintain balance

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Puzzle Break

If you are given 8 balls, they all look identical and one of them is heavier. Can you tell me which one is different by using the scale balance only three times?

Puzzle Break

If you are given 8 balls, they all look identical and one of them is heavier. Can you tell me which one is different by using the scale balance only two times?

Puzzle Break

If you are given 12 balls, they all look identical and one of them has a different weight. Can you tell me which one is different by using the scale balance only three times?

What about text strings?

Implement a searchable dictionary!

What about text strings?

Cost of comparing two strings:

- Cost[A ?? B] = min(A.length, B.length)
- Compare strings letter by letter (?)

Cost of tree operation:

Searching a Trie

Searching a Trie

Trie Details

Trie Details

Trie Details

Trie Details Just use a special flag in each node to mean "end start of word." k

Trie

Cost to search for a string of length L?

Trie

Space for storing a try?

Trie

Space for storing a try?

Trie Tradeoffs

Time:

- Trie tends to be faster: O(L).
- Does not depend on size of total text.
- Does not depend on number of strings.

Even faster if string is not in trie!

Trie Tradeoffs

Time:

- Trie tends to be faster: O(L).
- Does not depend on size of total text.
- Does not depend on number of strings.

Space:

- Trie tends to use more space.
- BST and Trie use O(text size) space.
- But Trie has more nodes and more overhead.

Trie Space

Trie node:

- Has many children.
- For strings: fixed degree.
- Ascii character set: 256

TrieNode children[] = new TrieNode[256];

Trie Applications

String dictionaries

- Searching
- Sorting / enumerating strings

Partial string operations:

- Prefix queries: find all the strings that start with pi.
- Long prefix: what is the longest prefix of "pickling" in the trie?
- Wildcards: find a string of the form "pi??le" in the trie.

Balanced Search Trees

Summary:

- The Importance of Being Balanced
- Height Balanced Trees
- Rotations
- AVL trees
- Tries