

Cambridge International Examinations

Cambridge International AS & A Level	Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER

CHEMISTRY

9701/22

Paper 2 Structured Questions AS Core

May/June 2014

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials:

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 9 printed pages and 3 blank pages.

Answer **all** the questions in the spaces provided.

I	(a)	Exp	plain what is meant by the term <i>nucleon number</i> .	
	(b)		mine exists naturally as a mixture of two stable isotopes, ⁷⁹ Br and ⁸¹ Br, with relative isotopic sses of 78.92 and 80.92 respectively.	С
		(i)	Define the term relative isotopic mass.	
			[2	
		(ii)	Using the relative atomic mass of bromine, 79.90, calculate the relative isotopic abundances of ⁷⁹ Br and ⁸¹ Br.	
			[3	.]
	(c)		mine reacts with the element A to form a compound with empirical formula ABr_3 . The centage composition by mass of ABr_3 is A , 4.31; Br, 95.69.	€
			culate the relative atomic mass, A_r , of A . e your answer to three significant figures.	

(d)	The elements in Period 3 of the Periodic Table show different behaviours in their reactions with oxygen.					
	(i)	Describe what you would see when separate samples of magnesium and sulfur are reacted with oxygen.				
		Write an equation for each reaction.				
		magnesium				
		sulfur				
		[4]				
	(ii)	Write equations for the reactions of aluminium oxide, Al_2O_3 , with				
		sodium hydroxide,				
		hydrochloric acid.				
		[2]				
(e)	Pho	osphorus reacts with chlorine to form PCl_5 .				
	Sta	te the shape of and two different bond angles in a molecule of PCl_5 .				
		pe of PCl ₅				
	bon	d angles in PC $l_{\scriptscriptstyle 5}$ [2]				
		[Total: 17]				

2	A 6.30 g sample of hydrated 6	ethanedioic acid,	$H_2C_2O_4.xH_2O$,	was	dissolved	in	water	and	the
	solution made up to 250 cm ³ .								

A 25.0 cm³ sample of this solution was acidified and titrated with 0.100 mol dm⁻³ potassium manganate(VII) solution. 20.0 cm³ of this potassium manganate(VII) solution was required to react fully with the ethanedioate ions, $C_2O_4^{2-}$, present in the sample.

(a)	The MnO ₄	ions in the	potassium	manganate(VII	oxidise the	ethanedioate	ions

above.		-		

(i) Explain, in terms of electron transfer, the meaning of the term oxidise in the sentence

(ii) Complete and balance the ionic equation for the reaction between the manganate(VII) ions and the ethanedioate ions.

$$2MnO_4^{-}(aq) + 5C_2O_4^{2-}(aq) + \dots H^{+}(aq) \rightarrow \dots (aq) + 10CO_2(aq) + \dots H_2O(I)$$
[3]

......[1]

(b) (i) Calculate the number of moles of manganate(VII) used in the titration.

(ii) Use the equation in (a)(ii) and your answer to (b)(i) to calculate the number of moles of $C_2O_4^{2-}$ present in the 25.0 cm³ sample of solution used.

[1]

(iii) Calculate the number of moles of H₂C₂O₄.xH₂O in 6.30 g of the compound.

[1]

(iv) Calculate the relative formula mass of $H_2C_2O_4.xH_2O$.

[1]

(v) The relative formula mass of anhydrous ethanedioic acid, $H_2C_2O_4$, is 90.

Calculate the value of x in $H_2C_2O_4.xH_2O$.

[1]

[1]

[Total: 9]

- 3 The elements in Period 3 of the Periodic Table show variations in their behaviour across the period.
 - (a) The bar chart below shows the variation of melting points of the elements across Period 3.

In each of the following parts of this question you should clearly identify the interactions involved and, where appropriate, explain their relative magnitudes.

(i)	Explain the general increase in melting point from Na to Al.
	[3]
(ii)	Explain the variation of melting points from P to Ar.
(,	Explain the variation of monthly points from the first
	[3]
(iii)	Explain why Si has a much higher melting point than any of the other elements in the period.
	[4]

(b) The graph below shows the variation of the first ionisation energies across Period 3.

(i)	Explain why the first ionisation energy of Ar is greater than that of C1.	
		 [1]
(ii)	Explain why the first ionisation energy of $A\mathit{l}$ is less than that of Mg.	
		 [1]
(iii)	Explain why the first ionisation energy of S is less than that of P.	
		[1]

[Total: 10]

Crude	oil is processed to give a wide variety of hydrocarbons.
	we the names of one physical process and one chemical process carried out during the ocessing of crude oil.
ph	ysical process
che	emical process[2]
(b) Alk	canes and alkenes can both be obtained from crude oil.
(i)	
	[2]
(ii)	State the bond angles in a molecule of
	ethane,
	ethene.
	[1]
(iii)	State the shape of each molecule in terms of the arrangement of the atoms bonded to each carbon atom.
	ethane ethene [1]
(iv)	Explain why these molecules have different shapes in terms of the carbon-carbon bonds present.
	[1]
(c) (i)	Use a series of equations to describe the mechanism of the reaction of ethane with chlorine to form chloroethane. Name the steps in this reaction.
	[5]
/!!\	
(ii)	
	[1]
	[Total: 13]

5 A hydrod	carbon, P , with the form	mula C ₆ H ₁₂ readily decolor	urises bromine.
-------------------	----------------------------------	---	-----------------

On reaction with hot, concentrated, acidified potassium manganate (VII) solution a single organic product, \mathbf{Q} , is obtained.

Q gives an orange precipitate when reacted with 2,4-dinitrophenylhydrazine, 2,4-DNPH reagent, but has no reaction with Tollens' reagent.

(a)	(i)	Explain these observations.
		[4]
	(ii)	Draw the skeletal formula of P and give its name.
		name of P[2]
((iii)	Draw the skeletal formula of Q and give its name.
		name of Q [2]
		• •

(b) There are several structural isomers of **P** that also decolourise bromine, but only four of these structural isomers exhibit geometrical (cis-trans) isomerism.

Give the structures of any **three** structural isomers of **P** that exhibit geometrical (cis-trans) isomerism.

[3]

[Total: 11]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.