Problem 4

Solution:

The core of efficient computation of the problem is to avoid calculating B^{-1} directly. Instead, we try to treat some parts including B^{-1} as a whole, and solve that part using LU factorization which genuinely saves steps.

First, we need to expand z:

$$z = B^{-1}(2A + I)(B^{-1} + A)b$$

$$= (2B^{-1}A + B^{-1})(B^{-1} + A)b$$

$$= 2B^{-1}B^{-1}Ab + B^{-1}B^{-1}b + 2B^{-1}A^{2}b + B^{-1}Ab$$

Now we assume $B^{-1}B^{-1}A = x$, $B^{-1}A = y$, $B^{-1}B^{-1}b = m$, then

$$A = B^{2}x$$

$$A = By$$

$$b = B^{2}m$$

Note that x, y are two $n \times n$ matrices, m is a $n \times 1$ vector. Thereafter we can solve for x, y, m by LU factorization.

- We need to calculate B^2 , which takes 2n-1 flops for each entry. And the result of B^2 is an $n \times n$ matrix which has n^2 entries. So in total, the calculation of B^2 takes $(2n-1) \cdot n^2 = 2n^3 n^2$ flops.
 - Also note that all $n \times n$ matrix multiplication takes $2n^3 n^2$ flops.
- To calculate x, apply LU factorization on B^2 ($n^3/3$ flops), then do forward and backward substitutions (n^3 flops). So in total, $\frac{4}{3}$ n^3 flops.
- Similarly for calculating y, also $\frac{4}{3} n^3$ flops.
- But for m, apply LU factorization on B^2 ($n^3/3$ flops), then do forward and backward substitutions ($n \cdot 1 \cdot n \cdot 1 = n^2$ flops). So this time in total $n^3/3 + n^2$ flops.
 - \circ Not sure whether we can save this calculation of B^2 , i.e. saving $n^3/3$ flops since we already have that previously.

So the original equation can be rewritten as:

$$z = 2xb + m + 2yAb + yb$$

Now we are able to know the flop counts of z:

- xb is a $n \times n$ matrix times $n \times 1$ vector, $(2n-1)n = 2n^2 n$ flops. Scalar takes extra n flops. So in total $2n^2 + \frac{4}{3}n^3$ flops for 2xb (including calculating x).
- m takes $\frac{n^3}{3} + n^2$ flops.
- Scalar 2 takes n flops, y times A takes $2n^3 n^2$ flops, times b takes another $2n^2 n$ flops. So in total $n + 2n^3 n^2 + 2n^2 n + \frac{4}{3}n^3 = \frac{10}{3}n^3 + n^2$ flops (including calculating y).
- yb takes another $2n^2 n$ flops.
- Each addition takes n flops. Three additions take 3n flops.

Hence, we have:

$$2n^{2} + \frac{4}{3}n^{3} + \frac{1}{3}n^{3} + n^{2} + \frac{10}{3}n^{3} + n^{2} + 2n^{2} - n + 3n = 5n^{3} + 6n^{2} + 2n$$

flops for calculating z.