# Минцифры Сибирский Государственный Университет Телекоммуникаций и Информатики СибГУТИ

Кафедра прикладной математики и кибернетики

Расчетно-графическая работа Собачьи бега UK Вариант 11

> Выполнил: студент 2 курса группы ИП-016 Николаев Владислав Владимирович Преподаватель: Милешко Антон Владимирович

### 1. Исследование предметной области и создание ER диаграммы.



Сущность «Dog» представляет собой конкретную собаку, принимающую участие в собачьих бегах (UK), имеет следующие поля: имя, количество забегов, количество побед, процент побед от количества всех забегов, наибольшая серия побед, наибольшая серия поражений, текущая серия поражений и дата последнего забега. Собака тренируется под руководством одного или нескольких тренеров, а также имеет за своими плечами статистику по одному или нескольким забегам.

Сущность «Trainer» характеризует тренера, который тренирует одну или нескольких собак, закреплён за одной трассой и руководил одним или несколькими забегами, в которых участвовали собаки под его руководством. Имеет поля: имя, количество забегов, число фаворитов, процент количества фаворитов к количеству забегов, количество победителей, процент количества победителей к количеству забегов, число победивших фаворитов, процент побед фаворитов, профит от ставки.

Сущность «Dog Race» представляет собой информацию о конкретном забеге конкретной собаки, содержит поля: дистанция забега, лига, позиция на финише, время забега, рейтинг, дата забега, номер клетки и т.д. Забегом руководил один конкретный тренер, забег исполнила одна конкретная собака, забег проведён на одной конкретной трассе.

Сущность «Track» представляет собой трек, на котором проводят забеги. Содержит поля: имя и количество победителей. Трек используется многими тренерами, на нём проведено множество забегов, к нему принадлежит множество клеток.

Сущность «Тгар» представляет собой клетку, которая используется на конкретном треке. Содержит поля: номер клетки, количество забегов из клетки, количество побед из этой клетки и процент побед

# 2. Перевод ER диаграммы в реляционную модель, создание и заполнение БД.

При переводе ER диаграммы в реляционную модель используются следующие принципы: каждый простой тип сущности (не является подтипом и не имеет подтипов) превращается в таблицу, где имя таблицы является именем сущности, столбцами таблицы становятся атрибуты диаграммы , строками таблицы являются экземпляры типа сущности. Также назначаются первичный ключ, являющийся уникальным идентификатором (его значение разное у каждой записи) и внешний ключ, использующийся для связи таблиц друг с другом (хранит значения первичных ключей из других таблиц). Все таблицы находятся в третьей нормальной форме.

Таблица "Dog":

| ID                       | INTEGER Первичный ключ |
|--------------------------|------------------------|
| Name                     | STRING Первичный ключ  |
| Runs                     | INTEGER                |
| Wins                     | INTEGER                |
| Strike Rate              | DOUBLE                 |
| Longest Winning Sequence | INTEGER                |
| Longest Losing Sequence  | INTEGER                |
| Current Losing Sequence  | INTEGER                |
| Last Run                 | STRING                 |

Первичными ключами для данной таблицы являются поля ID и Name – уникальный идентификатор и имя собаки, являющейся участником забегов, внешние ключи отсутствуют.

Таблица "Dog Race":

| ID             | INTEGER | Первичный ключ |              |
|----------------|---------|----------------|--------------|
| Date           | STRING  | Первичный ключ |              |
| Track Name     | STRING  |                | Внешний ключ |
| Dog Name       | STRING  | Первичный ключ | Внешний ключ |
| Grade          | STRING  |                |              |
| Distance       | STRING  |                |              |
| SP             | STRING  |                |              |
| Finish         | STRING  |                |              |
| Sectional      | DOUBLE  |                |              |
| Time           | DOUBLE  |                |              |
| Going          | STRING  |                |              |
| Calc. Time     | DOUBLE  |                |              |
| Chester Rating | STRING  |                |              |
| Trainer Name   | STRING  |                | Внешний ключ |

Первичными ключами для данной таблицы являются поля ID, Date и Dog Name – уникальный идентификатор, дата проведения забега (собака не может участвовать в нескольких забегах в один день) и имя собаки, внешние ключи: название трека для проведения соревнований, имя собаки и имя тренера — для связи с другими таблицами.

#### Таблица "Track":

| Name          | STRING Первичный ключ |
|---------------|-----------------------|
| Total Winners | INTEGER               |

Первичными ключами для данной таблицы является поле Name – название трека, которое является уникальным для каждого трека, внешние ключи отсутствуют.

#### Таблица "Trainer":

| ID                       | INTEGER Первичный ключ |
|--------------------------|------------------------|
| Name                     | STRING Первичный ключ  |
| Track Name               | STRING Внешний ключ    |
| Runners                  | INTEGER                |
| No. Favs                 | INTEGER                |
| % Starting Fav           | DOUBLE                 |
| Winners                  | INTEGER                |
| Winners %                | DOUBLE                 |
| No. Win Favs             | INTEGER                |
| Fav Win %                | DOUBLE                 |
| Profit/Loss to BJ1 stake | DOUBLE                 |
| Average SP               | STRING                 |

Первичными ключами для данной таблицы являются поля ID и Name – уникальный идентификатор и имя тренера, внешние ключи: название трека для проведения соревнований.

#### Таблица "Тгар":

| Track Name | STRING  | Первичный ключ Внешний ключ |
|------------|---------|-----------------------------|
| Number     | INTEGER | Первичный ключ              |
| Runs       | INTEGER |                             |
| Wins       | INTEGER |                             |
| Win %      | STRING  |                             |

Первичными ключами для данной таблицы являются поля название трека, к которому относится клетка, и номер клетки (по правилам спорта количество клеток равно шести), внешним ключом является название трека.

# 3. Проработка визуального интерфейса приложения

#### Главное окно:

| Dog Racing            |                     |    |      |      |      |      |          |     |          | - 🗆 X       |
|-----------------------|---------------------|----|------|------|------|------|----------|-----|----------|-------------|
| Save About Exit       |                     |    |      | AC.  | 3    | 0.00 |          |     |          |             |
| Dog                   | ×                   | ID | Name | Runs | Wins | LWS  | LLS      | CLS | Last Run | Delete line |
| Dog Race              | ×                   |    |      |      |      |      |          |     |          | ×           |
| Track                 | $\times$            |    |      |      |      |      |          |     |          | ×           |
| Trainer               | $\times$            |    |      |      |      |      |          |     |          | ×           |
| Trap                  | $\times$            |    |      |      |      |      |          |     |          | ×           |
| First request result  | ×                   |    |      |      |      |      |          |     |          | ×           |
| Second request result | ×                   |    |      |      |      |      |          |     |          | ×           |
| Third request result  | ×                   |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      |      |          |     |          | ×           |
|                       |                     |    |      |      |      | Addı | new line |     |          |             |
|                       | Open request window |    |      |      |      |      |          |     |          |             |

Главное окно программы содержит кнопки: "Save" для сохранения базы данных, "About" с информацией об авторе и «Exit", позволяющая выйти из программы. Слева находится список всех таблиц БД, включая уже новые сформированные пользователем запросы, имеется возможность удалить вкладки с результатами запросов (кнопка-крестик справа, активная), удалить вкладки с исходными таблицами БД нельзя (кнопка-крестик справа, неактивная). Справа выводится содержимое выбранного элемента: таблицы / запроса. Последний столбец представляет собой кнопки-крестики, позволяющие при нажатии удалить конкретную строку из базы данных. Внизу таблицы расположена кнопка "Add new line" для добавления новой строки в таблицу. Внизу окна расположена кнопка "Open request window", позволяющая перейти к окну менеджера запросов.

#### Менеджер запросов:

| <ul> <li>Request Manager</li> </ul> | $-\square X$       |
|-------------------------------------|--------------------|
| <u>Req 1</u>                        | Req 1              |
| Req 2                               |                    |
| Req 3                               | Select Group       |
| Req 4                               | Dog Where          |
| Req 5                               | ID ID =            |
| Req 6                               | Name Wins =        |
| Req 7                               | Runs               |
| Req 8                               | Wins               |
|                                     | LWS                |
|                                     | LLS                |
|                                     | CLS                |
|                                     | Last Run           |
|                                     | Dog Race 🗸         |
|                                     | Track              |
|                                     | Req 2              |
|                                     | Req 3 And Or       |
|                                     | Run request        |
|                                     | Delete request     |
|                                     | Create new request |

Окно менеджера запросов состоит из следующих частей: слева — список запросов, при нажатии на запрос, он будет открываться в правой части окна, внизу — кнопка добавления нового запроса, справа — окно просмотра текущего выбранного запроса. В окне просмотра запроса имеются следующие элементы: поле для ввода названия запроса, кнопки для выбора запроса — выборка (соединение реализовано посредством выборки с помощью выбора нескольких полей), группирование, подзапросы реализованы посредством ранее созданных запросов, ниже находится список всех доступных таблиц с заданными полями (через выпадающее меню), которые также можно выбирать с помощью соответствующих кнопок, ниже имеется кнопки для запуска и удаления текущего запроса. Справа находится «Where", в который помещаются выбранные поля, которым можно указывать нужные значения для выборки, можно выбрать опции: «And" или «Or"

## 4. Создание диаграммы классов приложения



Диаграмма классов составлена на основе данных, полученных при проектировании и создании ER-модели, а также при проектировании базы данных. Классы имеют соответствующие поля с заданными названиями и типами данных, связи между классами — агрегация, то есть один класс содержит в себе другой в качестве составной части, при этом допускается их обособленное существование.