DeiT

Data-Efficient Image Transformers

Segmentation – 16기 분석 이지혀

01. Introduction

- 02. Prerequisites
- Vision Transformer
- Knowledge Distillation
- 03. Architecture
- Bag of Tricks
- Knowledge Distillation

04. Experiments

- Transformer Models
- Distillation
- Efficiency vs Accuracy
- Transfer Learning

Introduction

- High Performing Vision Transformers on image understanding tasks using large infrastructure -> LIMITS
- Convolution-Free Transformers
- Teacher-Student Strategies
- Token-Based Distillation

Transformer vs CNN

- CNN : 이미지 전체의 정보를 취합하기 위해 몇 개의 layer 통과
- Transformer : 하나의 layer만으로 전체 이미지 정보 취합 가능

PART 2 Prerequisites

Vision Transformer

- Training Dataset : JFT-300M

- Pre-Train : Low Resolution

- Fine-Turning : High Resolution

- Position Embedding : Bicubic Interpolation

	Ours (ViT-H/14)	Ours (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.36	87.61 ± 0.03	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.77	90.24 ± 0.03	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.63 ± 0.03	_
VTAB (19 tasks)	77.16 ± 0.29	75.91 ± 0.18	76.29 ± 1.70	_
TPUv3-days	2.5k	0.68k	9.9k	12.3k

Vision Transformer(VIT)

- Patch Embedding
- Resolution : (H, W) -> (P, P)
- 2D Interpolation of pre-trained Position Embedding

Multi-Head Self Attention Layers

- Fixing the Positional Encoding across Resolutions

Knowledge Distillation

- A student model learns from a larger teacher model

The Loss Function

Total Loss =
$$(1-\alpha)L_{CE}(\sigma(Z_s), \hat{y}) + 2\alpha T^2 L_{CE}(\sigma(\frac{Z_s}{T}), \sigma(\frac{Z_s}{T}))$$

Student Loss

$$(1-\alpha)L_{CE}(\sigma(Z_s), \hat{y})$$

Distillation Loss

$$2\sigma T L_{CE}(\sigma(\frac{Z_s}{T}), \sigma(\frac{Z_s}{T}))$$

 L_{CE} (): Cross entropy loss

 σ (): *Softmax*

 Z_s : Output logits of Student network

 Z_t : Output logits of Teacher network

y : *Ground truth(one-hot)*

α: Balancing parameter

T: Temperature hyperparameter

Bag of Tricks

- Using the Architecture of VIT (VIT-B = DeiT-B)
- Training Method same as VIT
- Added Hyper Parameter Tuning

Hyper Parameter Tuning

Ablation on↓	Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 224 ² of	fine-tuned 384 ² chan-tuned 384 ² h
none: DeiT-B	adamw	adamw	1	X	/	1	1	1	1	Х	X	31.8 ±0.	83.1 ± .1
optimizer	SGD adamw	adamw SGD	1	X	1	1	1	1	1	X	X	74.5 81.8	77.3 83.1
data augmentation	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	×	X X X X	У Х У	√ √ X X	1111	1 1 1 1	1 1 1 1	X X X X	X X X X	79.6 81.2 78.7 80.0 75.8	80.4 81.9 79.8 80.6 76.7
	adamw adamw adamw	adamw adamw adamw	/	X	1	1	×	×	√ √ X	X X	X	4.3* 3.4*	0.1 0.1 77.4

Methods	ViT-B [15]	DeiT-B
Epochs	300	300
Batch size Optimizer	4096 AdamW	1024 AdamW
learning rate	0.003	$0.0005 imes rac{\text{batchsize}}{512}$
Learning rate decay Weight decay Warmup epochs	cosine 0.3 3.4	0.05 5
Label smoothing ε Dropout Stoch. Depth Repeated Aug Gradient Clip.	x 0.1 x x ✓	0.1 X 0.1 ✓
Rand Augment Mixup prob. Cutmix prob. Erasing prob.	х х х	9/0.5 0.8 1.0 0.25

Knowledge Distillation

- Adding Distillation Token
- Joint Classifiers
- Better with ConvNet as Teacher Network

Tokenized Distillation

- Simply Include a New Distillation Token
- Interacts with the Class, Path Tokens
- Network's objective is to reproduce the Hard Label Predicted by the Teacher Network

Soft Distillation vs Hard Distillation

GT: Cat / Prediction: ???

Hard Distillation

 $\mathcal{L}_{\text{global}}^{\text{hardDistill}} = \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y) + \frac{1}{2} \mathcal{L}_{\text{CE}}(\psi(Z_s), y_t).$

- Soft Distillation

$$\mathcal{L}_{global} = (1 - \lambda)\mathcal{L}_{CE}(\psi(Z_s), y) + \lambda \tau^2 KL(\psi(Z_s/\tau), \psi(Z_t/\tau)).$$

PART 4-1 Distillation

- Teacher Model : RegNetY-16GF
- Inductive Bias

Teacher Models	acc.	Student: D pretrain	DeiT-B % ↑384
DeiT-B	81.8	81.9	83.1
RegNetY-4GF RegNetY-8GF	80.0 81.7	82.7 82.7	83.6 83.8
RegNetY-12GF	82.4	83.1	84.1
RegNetY-16GF	82.9	83.1	84.2

- Learns Better from Distillation Method of Convnet

	groundtruth	no distil	no distillation convnet DeiT		student (of the	e convnet) DeiTૠ
groundtruth convnet (RegNetY) DeiT	0.000 0.171 0.182	0.171 0.000 0.133	0.182 0.133 0.000	0.170 0.112 0.109	0.169 0.100 0.110	0.166 0.102 0.107
DeiT — class only DeiT — distil. only DeiT — class+distil.	0.170 0.169 0.166	0.100 0.102	0.109 0.110 0.107	0.000 0.050 0.033	0.050 0.000 0.019	0.033 0.019 0.000

- Distillation Comparison : Hard Distillation Is Better

	Supe	ervision	In	ImageNet top-1 (%)					
method \downarrow	label	teacher	Ti 224	S 224	B 224	B↑384			
DeiT– no distillation	/	Х	72.2	79.8	81.8	83.1			
DeiT- usual distillation	X	soft	72.2	79.8	81.8	83.2			
DeiT-hard distillation	×	hard	74.3	80.9	83.0	84.0			
DeiT [*] a: class embedding	/	hard	73.9	80.9	83.0	84.2			
DeiT: distil. embedding	✓	hard	74.6	81.1	83.1	84.4			
DeiT: class+distillation	/	hard	74.5	81.2	83.4	84.5			

PART 4-2 Efficiency vs Accuracy

Model	ViT model	embedding dimension	#heads	#layers	#params	training resolution	throughput (im/sec)
DeiT-Ti	N/A	192	3	12	5M	224	2536
DeiT-S	N/A	384	6	12	22M	224	940
DeiT-B	ViT-B	768	12	12	86M	224	292

Model	#Param	Image throughput	Imagel Top-1(
EfficientNet- B6	66M	96.9	84.0
ViT-B/16	86M	85.9	77.9
DeiT-B 384	86M	85.9	83.1
Deit-B_dist 384	87M	85.8	84.5

I C Y							
ı C y			image	throughput	ImNet	Real	V2
-	Network	#param.	size	(image/s)	top-1	top-1	top-1
		Со	nvnets				
	ResNet-18 [21]	12M	2242	4458.4	69.8	77.3	57.1
throughput	ResNet-50 [21]	25M	224^{2}	1226.1	76.2	82.5	63.3
(im/sec)	ResNet-101 [21]	45M	224^{2}	753.6	77.4	83.7	65.7
	ResNet-152 [21]	60M	224^{2}	526.4	78.3	84.1	67.0
2536	RegNetY-4GF [40]*	21M	2242	1156.7	80.0	86.4	69.4
940	RegNetY-8GF [40]*	39M	224^{2}	591.6	81.7	87.4	70.8
292	RegNetY-16GF [40]*	84M	224^{2}	334.7	82.9	88.1	72.4
	EfficientNet-B0 [48]	5M	2242	2694.3	77.1	83.5	64.3
	EfficientNet-B1 [48]	8M	240^{2}	1662.5	79.1	84.9	66.9
	EfficientNet-B2 [48]	9M	260^{2}	1255.7	80.1	85.9	68.8
	EfficientNet-B3 [48]	12M	300^{2}	732.1	81.6	86.8	70.6
	EfficientNet-B4 [48]	19M	380^{2}	349.4	82.9	88.0	72.3
Net	EfficientNet-B5 [48]	30M	456^{2}	169.1	83.6	88.3	73.6
enet	EfficientNet-B6 [48]	43M	528^{2}	96.9	84.0	88.8	73.9
(ACC)	EfficientNet-B7 [48]	66M	600^{2}	55.1	84.3	-	-
(ACC)	EfficientNet-B5 RA [12]	30M	$ 456^2 $	96.9	83.7	_	_
	EfficientNet-B7 RA [12]	66M	600^{2}	55.1	84.7	_	-
	KDforAA-B8	87M	$ 800^{2}$	25.2	85.8	- 1	_
		Tran	sformers				
	ViT-B/16 [15]	86M	384^{2}	85.9	77.9	83.6	_
	ViT-L/16 [15]	307M	384^{2}	27.3	76.5	82.2	-
	DeiT-Ti	5M	$ 224^2$	2536.5	72.2	80.1	60.4
	DeiT-S	22M	224^{2}	940.4	79.8	85.7	68.5
	DeiT-B	86M	224^{2}	292.3	81.8	86.7	71.5
	DeiT-B↑384	86M	$ 384^2$	85.9	83.1	87.7	72.4
D (A	DeiT-Ti ͡Ѫ	6M	$ 224^2$	2529.5	74.5	82.1	62.9
Data Augme	entation	22M	224^{2}	936.2	81.2	86.8	70.0
	DeiT-B∕2	87M	224^{2}	290.9	83.4	88.3	73.2
	DeiT-Ti≉ / 1000 epochs	6M	$ 224^2$	2529.5	76.6	83.9	65.4
	DeiT-S⋒ / 1000 epochs	22M	224^{2}	936.2	82.6	87.8	71.7
Knowledge	DeiT-B♠ / 1000 epochs	87M	224^{2}	290.9	84.2	88.7	73.9
_	DeiT-B ? ↑384	87M	3842	85.8	84.5	89.0	74.8
Distillation	DeiT-B ? ↑384 / 1000 epochs	87M	3842	85.8	85.2	89.3	75.2

감사합니다