Gov 50: 18. The Bootstrap

Matthew Blackwell

Harvard University

Roadmap

- 1. Resampling from our sample
- 2. Confidence intervals
- 3. Calculating confidence intervals

1/ Resampling from our sample

Where are we?

Can we approximate the **sampling distribution** with our single sample?

American National Election Survey data

Name	Description
state	State of respondent
district	Congressional district of respondent
pid7	Party ID (1=Strong D, 7=Strong R)
pres_vote	Self reported vote in 2020
sci_therm	0-100 therm score for scientists
rural_therm	0-100 therm score for rurual Americans
favor_voter_id	1 if respondent thinks voter ID should be required
envir_doing_more	1 if respondent thinks gov't should be doing more about climate change

ANES data

library(gov50data) anes

```
## # A tibble: 5,162 x 8
##
     state district pid7 pres vote sci therm rural therm
##
   <chr>
               <dbl> <dbl> <chr>
                                         <dbl>
                                                     <dbl>
   1 ID
                   2
                         4 Other
                                            70
                                                        60
##
##
   2 VA
                         3 Biden
                                           100
                                                        75
##
   3 CO
                   4
                         4 Trump
                                            60
                                                        90
##
   4 TX
                   5
                         3 Biden
                                            85
                                                        85
##
   5 WI
                  6
                         6 Trump
                                            85
                                                        70
##
   6 CA
                 40
                         2 Biden
                                            50
                                                        50
                   5
                         2 Biden
##
   7 WI
                                           100
                                                        70
##
   8 OR
                   4
                         7 Trump
                                            70
                                                        50
                   5
##
    9 MA
                         3 Biden
                                            80
                                                        70
  10 NV
                         1 Biden
                                            85
                                                        40
  # i 5,152 more rows
## # i 2 more variables: favor voter id <dbl>,
      envir doing more <dbl>
## #
```

Sample statistic

What is the average thermemeter score for scientists?

```
anes |>
  summarize(mean(sci_therm))
```

```
## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6
```

Sample statistic

What is the average thermemeter score for scientists?

```
anes |>
  summarize(mean(sci_therm))
```

```
## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6
```

What is the sampling distribution of this average? We only have this 1 draw!

Notation review

Population: all US adults.

Population parameter: average feeling thermometer score for scientists

among all US adults.

Sample: (complicated) random sample of all US adults.

Sample statistic/point estimate: sample average of thermometer scores.

Notation review

Population: all US adults.

Population parameter: average feeling thermometer score for scientists among all US adults.

Sample: (complicated) random sample of all US adults.

Sample statistic/point estimate: sample average of thermometer scores.

Roughly how far our point estimate is likely to be from the truth?

The bootstrap

Mimic sampling from the population by **resampling** many times from the sample itself.

Bootstrap resampling done **with replacement** (same row can appear more than once)

One bootstrap resample

```
boot_1 <- anes |>
    slice_sample(prop = 1, replace = TRUE)
boot_1
```

```
## # A tibble: 5,162 x 8
##
     state district pid7 pres vote sci therm rural therm
## <chr> <dbl> <dbl> <chr>
                                      <dbl>
                                                   <dbl>
##
   1 MS
                  4
                        6 Biden
                                          85
                                                      50
##
   2 WI
                        2 Trump
                                          60
                                                      50
                 8
                        1 Biden
##
   3 OH
                                          85
                                                      85
##
   4 TX
                 12
                        5 Trump
                                          50
                                                     100
##
   5 TN
                5
                        3 Biden
                                         100
                                                     50
   6 IA
                        6 Trump
                                         60
##
                                                     100
   7 TI
                        7 Trump
                                          80
                                                      90
##
   8 KY
                 4
                        1 Biden
                                                      40
##
                                          60
                 13
##
   9 OH
                        6 Trump
                                          60
                                                      50
##
  10 NC
                        1 Biden
                                          85
                                                      70
  # i 5,152 more rows
## # i 2 more variables: favor voter id <dbl>,
## #
      envir doing more <dbl>
```

Sample mean in the bootstrap sample

```
boot_1 |>
  summarize(mean(sci_therm))
```

```
## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.5
```

Many bootstrap samples

```
library(infer)
bootstrap_dist <- anes |>
  rep_slice_sample(prop = 1, reps = 1000, replace = TRUE) |>
  group_by(replicate) |>
  summarize(sci_therm_mean = mean(sci_therm))
bootstrap_dist
```

Many bootstrap samples

```
## # A tibble: 1,000 x 2
      replicate sci_therm_mean
##
##
          <int>
                           <dbl>
                            80.1
##
    1
##
                            80.6
                            80.5
##
##
                            80.4
##
                            80.6
                            80.2
##
    6
##
                            80.2
##
    8
                            81.3
##
    9
                            80.9
## 10
              10
                            80.5
   # i 990 more rows
```

Visualizing the bootstrap distribution

```
bootstrap_dist |>
  ggplot(aes(x = sci_therm_mean)) + geom_histogram(binwidth = 0.1)
```


Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.

Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.

Both should have a **similar shape and spread** if sampling from the distribution ≈ bootstrap resampling.

Bootstrap distribution

Bootstrap distribution **approximates** the sampling distribution of the estimator.

Both should have a **similar shape and spread** if sampling from the distribution ≈ bootstrap resampling.

Approximation gets better as sample gets bigger.

Comparing to the point estimate

Given the sampling, not surprising that bootstrap distribution is centered on the point estimate:

```
## # A tibble: 1 x 1
## `mean(sci_therm)`
## <dbl>
## 1 80.6
```

What is a confidence interval?

Point estimate: best single guess about the population parameter. Unlikely to be exactly correct.

Confidence interval: a range of plausible values of the population parameter.

Where is most of the bootstrap distribution?

```
bootstrap_dist |>
  ggplot(aes(x = sci_therm_mean)) +
  geom_histogram(aes(y= ..density..), binwidth = 0.1)
```


• Each sample gives a different CI or toss of the ring.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- Confidence level: percent of the time our CI will contain the population parameter.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- **Confidence level:** percent of the time our CI will contain the population parameter.
 - Number of ring tosses that will hit the target.

- Each sample gives a different CI or toss of the ring.
- Some samples the ring will contain the target (the CI will contain the truth) other times it won't.
 - We don't know if the CI for our sample contains the truth!
- **Confidence level:** percent of the time our CI will contain the population parameter.
 - Number of ring tosses that will hit the target.
 - We get to choose, but typical values are 90%, 95%, and 99%

The confidence level of a CI determine how often the CI will be wrong.

The **confidence level** of a CI determine how often the CI will be wrong.

A 95% confidence interval will:

• Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)

The **confidence level** of a CI determine how often the CI will be wrong.

A 95% confidence interval will:

- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

The **confidence level** of a CI determine how often the CI will be wrong.

A 95% confidence interval will:

- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

The **confidence level** of a CI determine how often the CI will be wrong.

A 95% confidence interval will:

- Tell you the truth in 95% of repeated samples (contain the population parameter 95% of the time)
- Lie to you in 5% of repeated sample (not contain the population parameter 5% of the time)

Can you tell if your particular confidence interval is telling the truth? No!

Percentile method

Percentile method: find the middle 95% of the bootstrap distribution.

We can do this by finding the points that the 2.5th percentile and the 97.5th percentile.

```
## 2.5% 97.5%
## 80.1 81.1
```

Visualizing the CI

Width of the interval

What happens if we want the CI to be right more often? Will the width of a 99% confidence interval be wider or narrower?

99% confidence interval

For 99% CI we need to find the middle 99% of the bootstrap distribution.

We can do this by finding the points that the 0.5th percentile and the 99.5th percentile.

```
## 0.5% 99.5%
## 80.0 81.3
```

Visualizing the CIs

3/ Calculating confidence intervals

infer package

Possible to use quantile to calculate CIs, but infer package is a more unified framework for CIs and hypothesis tests.

We'll use a dplyr-like approach of chained calls.

Step 1: define an outcome of interest

Start with defining the variable of interest:

anes |>

```
specify(response = sci_therm)
## Response: sci_therm (numeric)
  # A tibble: 5,162 x 1
    sci_therm
##
        <dh1>
##
##
  1
          70
## 2 100
## 3 60
## 4
       85
## 5 85
## 6
       50
  7 100
##
## 8
        70
## 9
        80
## 10
         85
  # i 5,152 more rows
```

Step 2: generate bootstraps

Next infer can generate bootstraps with the generate() function (similar to rep_slice_sample()):

```
anes |>
  specify(response = sci_therm) |>
  generate(reps = 1000, type = "bootstrap")
```

```
Response: sci therm (numeric)
   # A tibble: 5,162,000 x 2
   # Groups: replicate [1,000]
##
      replicate sci_therm
##
##
          <int>
                    <dbl>
##
                       100
   1
                        90
##
##
                       100
                       100
##
                        90
##
   5
##
    6
                       100
##
                        90
##
    8
                        85
##
                        50
## 10
                        50
## # i 5,161,990 more rows
```

Step 3: calculate sample statistics

Use calculate() to do the group_by(replicate) and summarize commands in one:

```
boot_dist_infer <- anes |>
  specify(response = sci_therm) |>
  generate(reps = 1000, type = "bootstrap") |>
  calculate(stat = "mean")
```

boot_dist_infer

```
## Response: sci_therm (numeric)
  # A tibble: 1,000 x 2
##
##
     replicate stat
##
         <int> <dbl>
##
   1
              1
                80.6
##
   2
             2 80.4
             3 80.8
##
   3
             4 81.0
##
   4
##
              5 80.6
##
   6
             6 80.8
##
                80.8
##
   8
             8 80.7
##
   9
                80.7
## 10
            10 80.7
  # i 990 more rows
```

Step 3(b): visualize the boostrap distribution

infer also has a shortcut for plotting called visualize():

visualize(boot_dist_infer)

Step 4: calculate CIs

Finally we can calculate the CI using the percentile method with get_confidence_interval():

```
perc_ci_95 <- boot_dist_infer |>
   get_confidence_interval(level = 0.95, type = "percentile")
perc_ci_95
```

```
## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 80.1 81.2
```

Step 4(b): visualize CIs

```
visualize(boot_dist_infer) +
   shade_confidence_interval(endpoints = perc_ci_95)
```

