Работа 2.1.6 Эффект Джоуля-Томсона

Гаврилин Илья Дмитриевич Б01-101

12 мая 2022 г.

1 Аннотация

В данной работе было изучено прохождение газа через пористую губку и наблюдение эффекта Джоуля-Томсона. Были получены значения коэффициентов Джоуля-Томсона ($\mu_{\text{д-т.}}$) для различных значений температур. Также были оценены коэффициенты а и b в формуле Ван-дер-Ваальса и $T_{\text{инв}}$ - температура смены знака эффекта Джоуля-Томсона. Оценены погрешности полученных величин.

2 Теоретические сведения

Теоретическая часть

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой. Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с

атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными се- чениями I и II трубки (до перегородки и после нее). Пусть, для опре- деленности, через трубку прошел 1 моль углекислого газа; μ — его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2$ V_2 . Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right)$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. Поэтому мы отложим на некоторое время обсуждение вопроса о правой части (2), а пока будем считать, что энтальпия газа не меняется.

Рассмотрим выражение:

$$\mu_{\text{A-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

то есть газ при расширении охлаждается ($\Delta t < 0$ так как всегда $\Delta P < 0$). В обратном случае (малые а):

$$\frac{\Delta T}{\Delta P} < 0,$$

то есть газ нагревается ($\Delta t < 0$ так как по-прежнему $\Delta P < 0$).

Как следует из формул, при температуре T_i коэффициент $\mu_{\text{д-т}}$ обращается в нуль. Используя связь между коэффици- ентами a и b и критической температурой, найдем:

$$T_{\text{\tiny MHB}} = \frac{27}{4} T_{\text{\tiny Kp}} \tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{д-т}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{д-т}} < 0$, газ нагревается).

3 Ход работы

Подготовим установку к работе, прогреем термостат, откроем кран с углекислотой и дождемся установления показаний на вольтметре.

Мы знаем, что чувствительность термопары зависит от температуры, в данной таблицы указаны интервалы в 10 градусов, поэтому позволю себе предположить, что зависимость от температуры можно аппроксимировать линейной функцией, построим такой график и определим функцию для расчета чувствительности при конкретной температуре.

Рис. 1: Зависимость чувствительности термопары от температуры

Зависимость действительно в наших пределах температуры может быть аппроксимирована прямой. Поэтому в дальнейшем будем рассматривать чувствительность термопары как функцию температуры.

Тогда проведем замеры для 4 значений температуры(B ходе опытов паразитное эдс было равно $U_0 = 0.002 \text{ мB}$):

$\mathrm{T}=293.2\;\mathrm{K}$								
ΔP , kgc/cm ²	4	3.5	3	2.5	2			
$U-U_0$, мВ	-0.163	-0.14	-0.117	-0.092	-0.072			
$\Delta T, K$	4.045	3.474	2.903	2.283	1.787			
$T=303.1~\mathrm{K}$								
ΔP , kgc/cm ²	4	3.5	3	2.5	2			
$U-U_0$, мВ	-0.145	-0.124	-0.100	-0.082	-0.059			
$\Delta T, K$	3.526	3.015	2.432	1.994	1.435			
T = 313.1 K								
ΔP , kgc/cm ²	4	3.5	3	2.5	2			
$U-U_0$, мВ	-0.120	-0.097	-0.070	-0.059	-0.042			
$\Delta T, K$	2.860	2.312	1.668	1.406	1.001			
$T=323~\mathrm{K}$								
ΔP , kgc/cm ²	4	3.5	3	2.5	2			
$U-U_0$, мВ	-0.106	-0.080	-0.061	-0.044	-0.032			
$\Delta T, K$	2.478	1.870	1.426	1.029	0.748			

Таблица 1: Зависимость разницы температур от избыточного давления

Погрешность определения температуры оценим как: $\sigma(U) = 0.001 \text{ мB}$; $\sigma(\Delta T) = 0.024 \ K$. Так как, рассчет температуры связан только с погрешностью определения напряжения вольтметром. Определить погрешность чувствительности термопары оценить не представляется возможным. Построим график зависимости $\Delta T(\Delta P)$. Перед подстановкой давления проведем его перевод из кгс/см² в атм.

Рис. 2: Зависимость разности температур от избыточного давления

Итого получили:

T, K	293.2	303.1	313.1	323
$\mu_{\text{д-т}}$	1.18 ± 0.02	1.08 ± 0.02	0.96 ± 0.08	0.89 ± 0.07

Таблица 2: Коэффициент Джоуля-Томсона для углекислого газа при различных температурах

Так как в соответствии формулы (3) коэффициент Джоуля-Томсона обратно пропорционален температуре, для нахождения коэффициентов a, b Ван-дер-Ваальса построим график $\mu_{\text{д-т.}}(T) =$ $\frac{K}{T} - B$, с помощью МНК определим K, B.

Рис. 3: Зависимость коэффициента Джоуля-Томсона от обратной температуры

Учтем, что коэффициенты K, B определены для давления в атмосферах, при расчете a, b, T_i переведем единицы измерения. Тогда определим коэффициенты а, b и температуру инверсии:

$$C_p = 41 \frac{\text{Дж}}{\text{моль} \cdot \text{K}}$$
 $a = \frac{KRC_p}{2} = 1.61 \pm 0.08 \frac{\text{H} \cdot \text{м}^4}{\text{моль}^2}$ $b = -BC_p = (8.4 \pm 0.4) \cdot 10^{-4} \frac{\text{м}^3}{\text{моль}}.$ $T_i = \frac{2a}{Rb} = 461 \pm 32K$ Табличное значение:

$$T_{i_{\text{табл}}} = 2027K$$

Выводы 4

- 1)В ходе работы получили значения a, b и T_i и их погрешности (смотри рассчеты выше). 2)Табличные значения коэф-тов Ван-дер-Ваальса: $a_{\text{табл}} = 0.36 \frac{\text{H·м}^4}{\text{моль}^2}; b_{\text{табл}} = 0.42 \cdot 10^{-4} \frac{\text{м}^3}{\text{моль}}$. Заметим что полученные нами значения не попадают в погрешность. Можно сделать вывод, что несовпадение вызвано методом замеров в котором сложно пренебречь трением молекул, скоростью молекул при выходе, нестационарностью термостата, малым числом замеров.
- 3) Также измеряемый нами диапазон много меньше $T_{i_{{\scriptscriptstyle \mathrm{Ta6}}\pi}}=2027K,$ поэтому замеры коэффициентов а, b могут быть не точными.