

BANCO DE DADOS 2

INTRODUÇÃO

Professor: Nícollas Cretton

E-mail: nicollas.cretton@professor.faminas.edu.br

INTRODUÇÃO

NoSQL significa Not Only SQL (não apenas SQL).

- Nome dado a uma categoria de bancos de dados que não seguem o modelo relacional tradicional.
 - Não trabalham com de tabelas, linhas e colunas estruturadas.

►O termo surgiu realmente em 2009.

PRINCIPAIS CARACTERÍSTICAS DOS BANCOS NOSQL

> Flexibilidade

 Não exigem uma estrutura de esquema fixa. Isso significa que diferentes registros podem ter diferentes conjuntos de campos. Podem ser desnormalizados.

Escalabilidade horizontal

• São projetados para escalar adicionando mais máquinas ao invés de depender de uma única máquina poderosa. Os dados são particionados em várias máquinas.

PRINCIPAIS CARACTERÍSTICAS DOS BANCOS NOSQL

> Alta disponibilidade

• Os dados são replicados para garantir disponibilidade, mesmo que exista falha ou indisponibilidade de um servidor.

➢Open Source

A maioria dos bancos NoSQL são gratuitos.

Chave-Valor (Key-value)

Colunar (Column)

Grafos (Graph)

Documentos (Document)

- Chave-Valor (Key-value)
 - Os dados são armazenados em pares de chave-valor
 - Cada dado é identificado por uma chave única (string)
 - Funciona como uma hash table
 - Os valores guardados podem ser de vários tipos:
 - BLOB (Binary Large Object)
 - JSON
 - String
 - Int

Chave-Valor (Key-value)

Phone directory	
Key	Value
Paul	(091) 9786453778
Greg	(091) 9686154559
Marco	(091) 9868564334
	Key Paul Greg

Key	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
К3	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

Chave-Valor (Key-value)

- Colunar (Column)
 - Possui tabelas, linhas e colunas
 - As tabelas são na verdade uma família de colunas (column families)
 - As linhas continuam sendo os registros individuais
 - As colunas s\u00e3o armazenados separadamente, podendo estar em discos diferentes
 - Otimiza a leitura/consulta de dados em massa, principalmente em agregação

Colunar (Column)

Students			
ID	First name	Last name	
1	Luna	Lovegood	
2	Hermione	Granger	
3	Ron	Weasley	

Column oriented

Students		
ID	First name	Last name
1	Luna	Lovegood
2	Hermione	Granger
3	Ron	Weasley

Colunar (Column)

Google BigTable

- ► Grafos (Graph)
 - É composto por vértices e arestas
 - Vértices (nó) guardam dados
 - Arestas guardam o relacionamento entre estes vértices
 - O relacionamento é tratado como uma prioridade (junto com os dados)
 - Unidirecional: Maria segue João, mas João não necessariamente segue Maria (como no Twitter).
 - Bidirecional: Maria e João são amigos (como no Facebook).

➤ Grafos (Graph)

- Documentos (Document)
 - Armazena os dados em documentos
 - JSON, BSON ou XML
 - Cada documento é um registro autônomo
 - { "nome": "João", "idade": 25 }
 - { "nome": "Maria", "idade": 30, "telefone": "123-456-7890" }

Documentos (Document)

- Pode ser:
 - Pares chave-valor (Key-value pairs):
 - Pares chave com valores em array (Key-arrayed value pairs)
 - Pares chave-valor embutidos (Embedded key-value pairs)

Documentos (Document)

- Pode ser:
 - Pares chave-valor (Key-value pairs):
 - Estrutura básica
 - A chave é o nome de um campo e o valor pode ser qualquer tipo de dado
 - { "nome": "João", "idade": 25 }

- Pode ser:
 - Pares chave com valores em array (Key-arrayed value pairs)
 - Os valores associados a uma chave podem ser arrays
 - { "nome": "João", "telefones": ["123-456-7890", "987-654-3210"] }

- Documentos (Document)
 - Pode ser:
 - Pares chave-valor embutidos (Embedded key-value pairs)
 - Os documentos podem ter subdocumentos embutidos

```
"nome": "João",
"endereco": {
"rua": "Rua das Flores",
"cidade": "São Paulo"
}
```

▶ Documentos (Document)

MONGODB

- Nome vem da palavra "humongous"
 - Traduzindo grande pra C#
- Por ser **NoSQL**, não utiliza tabelas e esquemas rígidos como os bancos relacionais.
 - Os dados são armazenados em documentos
 - JSON: entrada e saída de dados
 - **BSON**: armazenamento interno
- Flexível. Não precisa declarar uma estrutura antes de armazenar os dados.
- Ótimo suporte para fazer consultas no banco.

MONGODB

► JSON (JavaScript Object Notation)

- É um formato de troca de dados leve e amplamente utilizado para armazenar e transferir informações entre sistemas.
- Ele é baseado em texto e segue uma estrutura simples e legível, com chaves e valores que podem ser de vários tipos.

► BSON (Binary JSON)

- Ele foi projetado para ser mais eficiente do que o JSON, suportando tipos de dados adicionais e melhor desempenho.
 - Date, Decimal 128, ObjectId, etc.
- Por ser binário, ocupa menos espaço e é mais rápido do que JSON.

DIFERENÇAS ENTRE O MONGODB E SGBDR

- SGBDR (Sistema Gerenciador de Banco de Dados Relacional)
 - RDBMS (Relational Database Management System)

RDBMS	MongoDB
É um banco de dados relacional.	É um banco de dados não relacional e orientado a documentos.
Não é adequado para armazenamento de dados hierárquicos	Adequado para armazenamento de dados .hierárquicos.
É escalável verticalmente (ou seja, aumentando a RAM). Possui um esquema predefinido. É bastante vulnerável a injeção de	É escalável horizontalmente (ou seja, podemos adicionar mais servidores). Possui um esquema dinâmico. Não é afetado por injeção de SQL.
SQL. Centraliza-se nas propriedades ACID (Atomicidade, Consistência, Isolamento e Durabilidade).	Centraliza-se no teorema CDP (Consistência, Disponibilidade e Tolerância a Partições).

DIFERENÇAS ENTRE O MONGODB E SGBDR

RDBMS	MongoDB
É baseado em linhas.	É baseado em documentos.
É mais lento em comparação com o MongoDB.	É quase 100 vezes mais rápido que o RDBMS.
Suporta joins complexos.	Não suporta joins complexos.
É baseado em colunas.	É baseado em campos.
Não oferece cliente JavaScript para consultas.	Oferece um cliente JavaScript para consultas.
Suporta apenas a linguagem de consulta SQL.	Suporta a linguagem de consulta JSON juntamente com SQL.

TERMINOLOGIAS

SQL	MongoDB
Tabela	Coleção
Linha	Documento
Coluna	Campo
É baseado em colunas	É baseado em campos
Joins	Documentos Embutidos, Vinculação (Linking)

CDP

- CDP Consistência, Disponibilidade e Tolerância à Partição
 - CAP Consistency, Availability, Partition tolerance
 - Teorema de Brewer, homenagem ao cientista da computação Eric Brewer
- É um sistema distribuído, podendo fornecer apenas duas das três características.
- Na presença de uma partição de rede, é necessário escolher entre consistência e disponibilidade.
 - Se priorizar consistência, algumas solicitações podem não ser atendidas, sacrificando a disponibilidade.
 - Se priorizar disponibilidade, os dados podem estar inconsistentes entre os nós.

Consistência (Consistency)

- Garante que todos os nós do sistema vejam os mesmos dados ao mesmo tempo. Ou seja, após uma gravação de dados, todos os nós devem retornar o mesmo valor para uma leitura.
 - Todos os clientes veem os mesmos dados ao mesmo tempo.
 - Toda leitura recebe a gravação mais recente ou um erro.

Disponibilidade (Availability)

- O sistema deve sempre responder a solicitações, mesmo que alguns nós falhem. Ou seja, o sistema continua acessível e operacional.
 - Qualquer cliente que faz uma solicitação de dados recebe uma resposta.
 - Toda solicitação recebe uma resposta (não um erro).

Tolerância à Partição (Partition tolerance)

- O sistema continua a funcionar mesmo se houver falha ou perda de comunicação entre partes da rede. Em outras palavras, o sistema é resiliente a partições de rede.
 - Uma interrupção de comunicação dentro de um sistema distribuído.
 - O sistema continua a operar, apesar de mensagens serem descartadas (ou atrasadas).

CDP

- ➤ O Mongo DB segue as características
 - Um banco de dados CP oferece
 consistência e tolerância à partição, à custa da disponibilidade.
 - Quando ocorre uma partição entre dois nós, o sistema precisa desligar o nó não consistente até que a partição seja resolvida.

BANCO DE DADOS 2

INTRODUÇÃO

Professor: Nícollas Cretton

E-mail: nicollas.cretton@professor.faminas.edu.br