Modelling inter-subject functional variability

Elvis Dohmatoh

(PhD supervised by B. Thirion and G. Varoquaux)

Parietal Team, INRIA

September 26, 2017

Context

- A major goal of human neuroscience is to understand
 - the structure,
 - function, and
 - inter-subject variability of the human brain
- ■We will focus on inter-subject functional variability

Context

- A major goal of human neuroscience is to understand
 - the structure,
 - function, and
 - inter-subject variability of the human brain
- ■We will focus on inter-subject functional variability

Table of contents

- Introduction
- Mapping the brain with structured multi-variate models
- 3 Modelling inter-subject variability via dictionary-learning
- 4 Concluding remarks

Introduction

Modelling inter-subject variability via dictionary-learning Concluding remarks

Introduction

Brain function regions and networks

Part of the language network

(Picture is courtesy of Gael Varoquaux)

Mapping cognitive circuits in the brain

(Picture is courtesy of Yannick Schwarz)

- Forward inference [Friston '95'] detects voxels responding to a given experimental condition
- Reverse inference / brain-decoding [Dehaene 98; Cox 03] predicts the experimental condition from brain signals

Mapping cognitive circuits in the brain

(Picture is courtesy of Yannick Schwarz)

- Forward inference [Friston '95'] detects voxels responding to a given experimental condition
- Reverse inference / brain-decoding [Dehaene 98; Cox 03] predicts the experimental condition from brain signals
- ■We will focus on reverse-inference / brain-decoding

Mapping cognitive circuits in the brain

(Picture is courtesy of Yannick Schwarz)

- Forward inference [Friston '95'] detects voxels responding to a given experimental condition
- Reverse inference / brain-decoding [Dehaene 98; Cox 03] predicts the experimental condition from brain signals
- ■We will focus on reverse-inference / brain-decoding

A zoom on brain-decoding

A zoom on brain-decoding

- ■This is supervised machine-learning
- ■We don't just want good predictions, we want regions

Story vs Math language contrast of HCP dataset [van Essen '12]

Story vs Math language contrast of HCP dataset [van Essen '12]

- ■Inter-subject functional variability ≠ noise!
 - Usually (incorrectly) discarded in standard analysis
 - Is predictive of behavioral differences between individuals
- Cannot be corrected via spatial normalization, etc.
 - E.g spatial normalization cannot correct for differences in activation magnitude
- Driven by genetic and behavioral inter-individual differences
- Functional diseases can be seen as extremes of this variation

- ■Inter-subject functional variability ≠ noise!
 - Usually (incorrectly) discarded in standard analysis
 - Is predictive of behavioral differences between individuals
- Cannot be corrected via spatial normalization, etc.
 - E.g spatial normalization cannot correct for differences in activation magnitude
- Driven by genetic and behavioral inter-individual differences
- Functional diseases can be seen as extremes of this variation

Preliminaries Spatial priors for brain decoding Contributions

Mapping the brain with structured multi-variate models

What we mean by "structured"

Definition:

- Localized activation patterns sparsity
- Clusters of active voxels smoothness

What we mean by "structured"

Definition:

- Localized activation patterns sparsity
- Clusters of active voxels smoothness

- Such a model is much more interpretable (i.e small number of regions) than classical methods like SVM, Ridge regression, Lasso
- Performs model-estimation and feature-selection jointly
- Fights the curse-of-dimensionality, via dimensionality reduction.

- Samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ # samples $n \sim 10^3$
 - # features $p \sim 10^6$ voxels

- **■Samples** $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$
 - # samples $n \sim 10^3$
 - # features $p \sim 10^6$ voxels
- Model weights $\mathbf{w} \in \mathbb{R}^p$

- Samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$
 - # samples $n \sim 10^3$
 - # features $p \sim 10^6$ voxels
- Model weights $\mathbf{w} \in \mathbb{R}^p$
- f = "logit" in classification
 f = "id" in regression

Optimization problem:

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{data / loss torm}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

- Samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$
 - # samples $n \sim 10^3$
 - # features $p \sim 10^6$ voxels
- Model weights $\mathbf{w} \in \mathbb{R}^p$
- \mathbf{x}_i f = "logit" in classification f = "id" in regression

Optimization problem:

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{penalty}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

data / loss term

- Samples $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$
 - # samples $n \sim 10^3$
 - # features $p \sim 10^6$ voxels
- $\mathbf{x}_{i} \qquad \begin{array}{c} \blacksquare \mathsf{Model} \ \mathbf{weights} \ \mathbf{w} \in \mathbb{R}^{p} \\ \blacksquare f = " \mathsf{logit"} \ \mathsf{in} \ \mathbf{classification} \\ \blacksquare f = " \mathsf{id"} \ \mathsf{in} \ \mathbf{regression} \end{array}$

Optimization problem:

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(y_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{penalty}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

$$\bullet \ell(y_i, f(\mathbf{x}_i^\mathsf{T} \mathbf{w})) = \begin{cases} \frac{1}{2} (y_i - \langle \mathbf{w}, \mathbf{x}_i \rangle)^2, & \text{in regression,} \\ \log(1 + \exp(-y_i \langle \mathbf{w}, \mathbf{x}_i \rangle)), & \text{in classif. (OvR)} \end{cases}$$

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{data / loss term}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle)) + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}}_{\text{data / loss term}}$$

$$\mathcal{P}(\mathbf{w}) = \begin{cases} \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + \frac{1}{2} (1-\rho) \|(\nabla \mathbf{w})_j\|_2^2, & \mathbf{GraphNet}, \\ \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + (1-\rho) \|(\nabla \mathbf{w})_j\|_2, & \mathbf{isotropic TV-L1}, \\ \sum_{j \in \llbracket \rho \rrbracket} (\rho^2 |\mathbf{w}_j|^2 + (1-\rho)^2 \|(\nabla \mathbf{w})_j\|_2^2)^{1/2}, & \mathbf{Sparse Variation}, \\ \vdots & \end{cases}$$

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{data / loss term}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

$$\mathcal{P}(\mathbf{w}) = \begin{cases} \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + \frac{1}{2}(1-\rho) \|(\nabla \mathbf{w})_j\|_2^2, & \text{GraphNet}, \\ \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + (1-\rho) \|(\nabla \mathbf{w})_j\|_2, & \text{isotropic TV-L1}, \\ \sum_{j \in \llbracket \rho \rrbracket} (\rho^2 |\mathbf{w}_j|^2 + (1-\rho)^2 \|(\nabla \mathbf{w})_j\|_2^2)^{1/2}, & \text{Sparse Variation,} \\ \vdots & \end{cases}$$

■ Bayesian interpretation

$$\underbrace{P(\mathbf{w}|\mathbf{x}_i, y_i)}_{\text{postavior}} \propto \underbrace{P(y_i|\mathbf{x}_i, \mathbf{w})}_{\text{bright}} \underbrace{P(\mathbf{w})}_{\text{prior}} \propto \exp(-\ell(y_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))) \exp(-\alpha P(\mathbf{w}))$$

$$\min_{\mathbf{w} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(\mathbf{y}_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))}_{\text{data / loss term}} + \underbrace{\alpha \mathcal{P}(\mathbf{w})}_{\text{penalty}}$$

$$\mathcal{P}(\mathbf{w}) = \begin{cases} \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + \frac{1}{2}(1-\rho) \|(\nabla \mathbf{w})_j\|_2^2, & \text{GraphNet}, \\ \sum_{j \in \llbracket \rho \rrbracket} \rho |\mathbf{w}_j| + (1-\rho) \|(\nabla \mathbf{w})_j\|_2, & \text{isotropic TV-L1}, \\ \sum_{j \in \llbracket \rho \rrbracket} (\rho^2 |\mathbf{w}_j|^2 + (1-\rho)^2 \|(\nabla \mathbf{w})_j\|_2^2)^{1/2}, & \text{Sparse Variation,} \\ \vdots & \end{cases}$$

■Bayesian interpretation

$$\underbrace{P(\mathbf{w}|\mathbf{x}_i, y_i)}_{\text{posterior}} \propto \underbrace{P(y_i|\mathbf{x}_i, \mathbf{w})}_{\text{likelihood}} \underbrace{P(\mathbf{w})}_{\text{prior}} \propto \exp(-\ell(y_i, f(\langle \mathbf{w}, \mathbf{x}_i \rangle))) \exp(-\alpha P(\mathbf{w}))$$

References for the penalties

- Total-Variation (TV) [Michel '11]
- ■TV-L1 [Baldassare '12, Gramfort '13]
- GraphNet / S-Lasso [Hebiri '11, Grosenick '13]
- Sparse-Variation [Eickenberg '15]

Some notes

- ■TV is a very tight convex relaxation of Markovian prior
- GraphNet ("Dirichlet energy") is weaker, but easier to optimize (smooth convex optimization problem)

References for the penalties

- Total-Variation (TV) [Michel '11]
- ■TV-L1 [Baldassare '12, Gramfort '13]
- GraphNet / S-Lasso [Hebiri '11, Grosenick '13]
- Sparse-Variation [Eickenberg '15]

Some notes

- ■TV is a very tight convex relaxation of Markovian prior
- GraphNet ("Dirichlet energy") is weaker, but easier to optimize (smooth convex optimization problem)

Spatial penalties ⇒ more interpretable brain maps

lacktriangle Structured penalties \Longrightarrow more interpretable models

- ■Structured penalties ⇒ more interpretable models
- Corresponding optim. problem is much harder (than SVM, etc.)
 - high-dimensional non-smooth ill-conditioned problem

- ■Structured penalties ⇒ more interpretable models
- Corresponding optim. problem is much harder (than SVM, etc.)
 - high-dimensional non-smooth ill-conditioned problem
- Lack of fast solver can lead to wrong conclusions about model
- We need fast solvers!

- ■Structured penalties ⇒ more interpretable models
- Corresponding optim. problem is much harder (than SVM, etc.)
 - high-dimensional non-smooth ill-conditioned problem
- Lack of fast solver can lead to wrong conclusions about model
- ■We need fast solvers!

Our contributions

Faster, better, stronger!

We propose a combination of **algorithmic** and **implementation** improvements that make these models usable out-of-the-box

Looking for the ideal solver

[Dohmatob '14, '15 (PRNI); Varoquaux '15 (Gretsi)]

- Solver speed sensitive to hyper-parameter
- Retained strategy is nested FISTA [Beck '09] algorithm

More speed via univariate feature-screening

k = 10% k = 20% k = 50%

[Dohmatob '15 (PRNI)]

- $\mathbf{z}_{k} := k$ th percentile of the vector $|\mathbf{X}^{T}\mathbf{y}| := (|\mathbf{x}_{1}^{T}\mathbf{y}|, \dots, |\mathbf{x}_{p}^{T}\mathbf{y}|).$
- Discard jth voxel if $|\mathbf{x}_i^T \mathbf{y}| < t_k$

Mixed gambling

k = 100%

More speed via univariate feature-screening

[Dohmatob '15 (PRNI)]

- $\mathbf{z}_{k} := k$ th percentile of the vector $|\mathbf{X}^{T}\mathbf{y}| := (|\mathbf{x}_{1}^{T}\mathbf{y}|, \dots, |\mathbf{x}_{p}^{T}\mathbf{y}|).$
- Discard *j*th voxel if $|\mathbf{x}_{j}^{T}\mathbf{y}| < t_{k}$

More speed via univariate feature-screening

[Dohmatob '15 (PRNI)]

 $\mathbf{z}_{k} := k$ th percentile of the vector $|\mathbf{X}^{T}\mathbf{y}| := (|\mathbf{x}_{1}^{T}\mathbf{y}|, \dots, |\mathbf{x}_{p}^{T}\mathbf{y}|).$

k = 10% k = 20% k = 50% k = 100%

■ Discard *j*th voxel if $|\mathbf{x}_{j}^{T}\mathbf{y}| < t_{k}$

Age prediction from gray-matter maps

More speed via univariate feature-screening: results

■ Age prediction

р	100%	50%	20%	10%
MSE	8.37	9.10	9.23	9.19

[Dohmatob '15 (PRNI)]

- Solve on subset of features
- Reduced training time

More speed via univariate feature-screening: results

■ Visual object recognition

[Dohmatob '15 (PRNI)]

- Solve on subset of features
- Reduced training time

Early-stopping

- ■Stop optimization if accuracy on validation data stops improving [Dohmatob '15 (PRNI)]
- Early stopping

 Training error

 Training cycles
- ■old idea (e.g [Bottou '07])
- saves training time
- ■implicit regularization
- helps against overfitting
- ■it's a compromise
 - it doesn't destroy accuracy
 - but may lead to sub-optimal brain maps

Early-stopping

- Stop optimization if accuracy on validation data stops improving [Dohmatob '15 (PRNI)]
- Early stopping

 Training error

 Training cycles
- ■old idea (e.g [Bottou '07])
- saves training time
- ■implicit regularization
- helps against overfitting
- ■it's a compromise
 - it doesn't destroy accuracy
 - but may lead to sub-optimal brain maps

Early-stopping: results

[Dohmatob '15 (PRNI)]

- Solve on subset of features
- Yields up to x10 speedup!
- No significant loss in accuracy

Early-stopping: results

■ Visual object recognition

[Dohmatob '15 (PRNI)]

- Solve on subset of features
- Yields up to x10 speedup!
- No significant loss in accuracy

Section wrap-up

- Building on prior work, we have developed enhanced structured penalties for multi-variate brain-decoding
- Such penalties lead to more interpretable brain maps (a small number of smooth spatially localized regions)
- Focus on practical usability (fast model training)
- Our contributions are available as part of Nilearn toolkit.

eliminaries roducing the proposed mode gorithms sults

Modelling inter-subject variability via dictionary-learning

Learn latent model for inter-subject variability

■ Goal: Learn a latent model of inter-subject functional variability

■ Each cognitive map \mathbf{x}_i with p voxels gets encoded over a dictionary \mathbf{D} as k loading coefficients \mathbf{c}_i , with $k \ll p$

The challenge

[Dohmatob '16 (NIPS)]

- Sparsity: spatially localized atoms
- Smooth regions: each atom = interpretable blobs
- Scalable / online: model should trainable online

Introducing the proposed model [Dohmatob '16 (NIPS)]

$$\sup_{\mathbf{z} \in \mathbb{R}^{p \times k}} 1 = \sum_{t=1}^{n} \min_{\mathbf{c}_t \in \mathbb{R}^k} \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{c}_t\|_2^2 + \frac{1}{2}\alpha \|\mathbf{c}_t\|_2^2$$

subject to $\mathbf{d}^1, \dots, \mathbf{d}^k \in \mathcal{K}$ [Mairal '09']

 $\mathbb{R}^p \subseteq \mathbb{R}^p$ is an ℓ_1 ball

Introducing the proposed model [Dohmatob '16 (NIPS)]

$$\sup_{\mathbf{z} \in \mathbb{R}^{p \times k}} \left(\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \min_{\mathbf{c}_t \in \mathbb{R}^k} \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{c}_t\|_2^2 + \frac{1}{2} \alpha \|\mathbf{c}_t\|_2^2 \right) + \gamma \sum_{j=1}^{k} \Omega_{\mathsf{Lap}}(\mathbf{d}^j)$$

subject to $\mathbf{d}^1, \dots, \mathbf{d}^k \in \mathcal{K}$ [Mairal '09']

[Dohmatob '16']

 $K \subseteq \mathbb{R}^p$ is an ℓ_1 ball

Introducing the proposed model [Dohmatob '16 (NIPS)]

$$\sup_{\mathbf{z} \in \mathbb{R}^{p \times k}} \left(\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \min_{\mathbf{c}_{t} \in \mathbb{R}^{k}} \frac{1}{2} \|\mathbf{x}_{t} - \mathbf{D}\mathbf{c}_{t}\|_{2}^{2} + \frac{1}{2} \alpha \|\mathbf{c}_{t}\|_{2}^{2} \right) + \gamma \sum_{j=1}^{k} \Omega_{\mathsf{Lap}}(\mathbf{d}^{j})$$

subject to $\mathbf{d}^1, \dots, \mathbf{d}^k \in \mathcal{K}$ [Mairal '09']

[Dohmatob '16']

 \mathbb{R}^p is an ℓ_1 ball

Reminder on coordinate-descent (CD)

Optimize w.r.t a variable, and then w.r.t to another, and so on ...

Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

• Rank-1 updates: $\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{c}_t \mathbf{c}_t^T$, $\mathbf{B}_t := \mathbf{B}_{t-1} + \mathbf{x}_t \mathbf{c}_t^T$

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

- Rank-1 updates: $\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{c}_t \mathbf{c}_t^T$, $\mathbf{B}_t := \mathbf{B}_{t-1} + \mathbf{x}_t \mathbf{c}_t^T$
- BCD dictionary update of dictionary atoms
 - Precompute $R \leftarrow B DA$
 - Ofor j = 1, 2, ..., k

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

- Rank-1 updates: $\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{c}_t \mathbf{c}_t^T$, $\mathbf{B}_t := \mathbf{B}_{t-1} + \mathbf{x}_t \mathbf{c}_t^T$
- BCD dictionary update of dictionary atoms
 - Precompute $R \leftarrow B DA$
 - Ofor j = 1, 2, ..., k
 - Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} + \mathbf{d}^{j} \circ \mathbf{a}^{j}$
 - ■FISTA loop: $\mathbf{d}^j \leftarrow \operatorname{argmin}_{\mathbf{d} \in \mathcal{K}} F_{\gamma_t}(\mathbf{d}, a_{i,j}^{-1} \mathbf{r}^j)$
 - ■Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} \mathbf{d}^j \circ \mathbf{a}^j$

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

- Rank-1 updates: $\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{c}_t \mathbf{c}_t^T$, $\mathbf{B}_t := \mathbf{B}_{t-1} + \mathbf{x}_t \mathbf{c}_t^T$
- BCD dictionary update of dictionary atoms
 - Precompute $R \leftarrow B DA$
 - Ofor j = 1, 2, ..., k
 - Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} + \mathbf{d}^{j} \circ \mathbf{a}^{j}$
 - ■FISTA loop: $\mathbf{d}^j \leftarrow \operatorname{argmin}_{\mathbf{d} \in \mathcal{K}} F_{\gamma_t}(\mathbf{d}, a_{i,j}^{-1} \mathbf{r}^j)$
 - Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} \mathbf{d}^j \circ \mathbf{a}^j$

N.B.:
$$F_{\gamma_t}(\mathbf{d}, \mathbf{z}) := \frac{1}{2} \|\mathbf{d} - \mathbf{z}\|_2^2 + \frac{1}{2} \gamma_t \|\nabla \mathbf{d}\|_F^2$$
, $\gamma_t := \gamma(a_{j,j}/t)^{-1}$

- ullet Draw a sample 3D brain image (or mini-batch) $\mathbf{x}_t \in \mathbb{R}^p$
- Compute loadings (i.e representation w.r.t current dict. D)

$$\mathbf{c}_t \leftarrow \mathrm{argmin}_{\mathbf{u} \in \mathbb{R}^k} \, \frac{1}{2} \|\mathbf{x}_t - \mathbf{D}\mathbf{u}\|_2^2 + \frac{1}{2} \alpha \|\mathbf{u}\|_2^2.$$

- Rank-1 updates: $\mathbf{A}_t = \mathbf{A}_{t-1} + \mathbf{c}_t \mathbf{c}_t^T$, $\mathbf{B}_t := \mathbf{B}_{t-1} + \mathbf{x}_t \mathbf{c}_t^T$
- BCD dictionary update of dictionary atoms
 - Precompute $R \leftarrow B DA$
 - Ofor j = 1, 2, ..., k
 - Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} + \mathbf{d}^j \circ \mathbf{a}^j$
 - ■FISTA loop: $\mathbf{d}^j \leftarrow \operatorname{argmin}_{\mathbf{d} \in \mathcal{K}} F_{\gamma_t}(\mathbf{d}, a_{i,j}^{-1} \mathbf{r}^j)$
 - Rank-1 update: $\mathbf{R} \leftarrow \mathbf{R} \mathbf{d}^j \circ \mathbf{a}^j$

N.B.:
$$F_{\gamma_t}(\mathbf{d}, \mathbf{z}) := \frac{1}{2} \|\mathbf{d} - \mathbf{z}\|_2^2 + \frac{1}{2} \gamma_t \|\nabla \mathbf{d}\|_F^2, \ \gamma_t := \gamma(a_{i,i}/t)^{-1}$$

Preliminaries Introducing the proposed model Algorithms Results

Experimental results on HCP fMRI data: qualitative

Our method produces localized and smooth decompositions

Our method produces localized and smooth decompositions

Our method produces localized and smooth decompositions

Learned latent dimensions capture inter-subject variability

■ Predicting behavior from **compressed representation** of Story vs Math contrast of language task maps [van Essen '12]

Learned latent dimensions capture inter-subject variability

■ Predicting behavior from **compressed representation** of Story vs Math contrast of language task maps [van Essen '12]

- Thick bars \implies scores on **test** set; faint bars \implies on **train**
- Proposed Smooth-SODL overfits the least (i.e generalizes best)

What's happening

- ■Unregularized models overfit
- Models thresholded post-training underfit

Spatial prior reduces sample-complexity

Nb. subjects	vanilla [Mairal '10]	Proposed model	gain factor
17	2%	31%	13.8
92	37%	50%	1.35
167	47%	54%	1.15
241	49%	55%	1.11

Learning-curve for "boost" in explained variance of our proposed Smooth-SODL model over the reference SODL model.

Concluding remarks

- The goal of this thesis was to develop models for **inter-subject** variability
- "Regions" emerged as the right scale at which to work
 - A more stable representation of activity patterns across subjects, etc.

- The goal of this thesis was to develop models for **inter-subject** variability
- "Regions" emerged as the right scale at which to work
 - A more stable representation of activity patterns across subjects, etc.
- We proposed enhanced models and algorithms for **structured penalized multi-variate models** for brain decoding

- The goal of this thesis was to develop models for **inter-subject** variability
- "Regions" emerged as the right scale at which to work
 - A more stable representation of activity patterns across subjects, etc.
- ■We proposed enhanced models and algorithms for structured penalized multi-variate models for brain decoding
- The notion of regions (via structured priors) was used to develop as the basis for a latent model of inter-subject variability

 [Dohmatob NIPS '16]

- The goal of this thesis was to develop models for **inter-subject** variability
- "Regions" emerged as the right scale at which to work
 - A more stable representation of activity patterns across subjects, etc.
- ■We proposed enhanced models and algorithms for structured penalized multi-variate models for brain decoding
- The notion of regions (via structured priors) was used to develop as the basis for a latent model of inter-subject variability [Dohmatob NIPS '16]

Can we predict task maps from resting-state data?

- lacktriangleX_s: resting-state functional connectivity graph for subject s
- \mathbf{Y}_s : task-specific activation maps for subject s

Proposal: Deep semi-supervised voxel encoding

- $\mathbf{Y} \in \mathbb{R}^{p \times C}$: subject-specific GLM maps of brain activity
- $\mathbf{X} \in \mathbb{R}^{p \times T}$: resting-state fMRI data

- Learned the a presentation of task activity in resting-state space!
- This is ongoing application of models developed in previous sections!

Preliminary results: predicted individual maps

2BK vs 0BK contrast of the Working Memory task [van Essen '12]

- ■magenta = population mean
- reference method [Tavor '16]
- proposed method
 - Prediction agrees with subject's topography more faithfully

Preliminary results: quantitative

Confusion matrix for predicted versus true activation maps

Wrap-up

Perspective: predicting task activation from resting-state data

Relevant contributions I