图形点阵液晶显示模块使用手册

FM12864F-6

深圳市勤正达电子有限公司版权所有

公司地址:深圳市宝安区龙华民治樟坑工业园 E 栋五楼

公司网址: www.szqzd.com

公司电话: 0755-81798090 81798083

公司传真: 0755-81798636

目 录

(一)	概述 • • • • • • • • • • • • • • • • 第 2 页
()	外形尺寸 ••••• 第 2 页
(三)	模块的外部接口 •••••••• 第3页
(四)	T6963C 液晶显示控制器功能说明及指令表 •••• 第 3, 4 页
(五)	电气参数 ・・・・・・・・・・・・ 第 5 [~] 6 页
(六)	指令功能描述 •••••• 第 6 [~] 13 页
(七)	应用挙例 ・・・・・・・・・・・・・ 第 10 [~] 18 页

一•概述

FM12864F-6 是一款图形点阵液晶显示器,它由控制器 T6963C、行驱动器/列驱动器及 128×64 全图形点阵液晶显示器组成.可完成常用字符及图形显示,也可以显示 8×4个(16×16 点阵)汉字.

主要技术参数和性能:

- 1. 电源: VDD: +5V, 模块内可自带-10V 负压, 用于 LCD 的驱动;
- 2. 信息显示资源:128(横向)×64(纵向)点;
- 3. 内含 T6963C 液晶显示控制器, 其接口可直接与 MCS-51 系列和 Z80 系列单片机接口;
- 4. 全屏幕每一点都可受控点亮或熄灭:
- 5. 带 32K 显示缓冲数据存储器,同时可储存八屏多图形显示信息;
- 6. 驱动方式:1/64DUTY, 1/9 BIAS;
- 7. 工作温度: -20℃ ∽ +70℃, 存储温度: -30℃ ∽ +80℃;
- 8. 模块可带 LED 或 EL 背光: 背光电流≤200 mA
- 9. 视角:6 0'CLOCK;

二•外形尺寸图

1. 外形尺寸如图 1

2. 外形尺寸一览

FM12864F

表 1

类 别	尺寸	单位
模块体积	78.0×70.0×14.5	mm
视域	62.0×44.0	mm
行列点阵数	128×64	点
点大小	0.39×0.55	mm
点间距	0.44×0.60	mm

三•模块的外部接

模块外部接口信号如下表 2 所示:

表 2

1 4			
接脚	符号	电平	功能描述
1	FG	OV	铁框地
2	Vss	OV	信号地
3	VDD	5. 0V	逻辑和 LCD 正驱动电源
4	Vo	-10V <vo<vdd< td=""><td>对比度调节输入(内部负压时空接)</td></vo<vdd<>	对比度调节输入(内部负压时空接)
5	/WR	L	写信号
6	/RD	L	读信号
7	/CE	L	片选信号
8	C/D	H/L	指令 / 数据选择 (H: 指令 L:数据)
9	/RESET	L	复位(模块内已带上电复位电路,加电后可自动复位)
10	DB0	H/L	数据总线 0 (三态数据总线)
11	DB1	H/L	数据总线 1
12	DB2	H/L	数据总线 2
13	DB3	H/L	数据总线 3
14	DB4	H/L	数据总线 4
15	DB5	H/L	数据总线 5
16	DB6	H/L	数据总线 6
17	DB7	H/L	数据总线 7
18	FS	H/L	字体选择(H:6X8 点;L:8X8 点,图形方式时建议接低)
19	LED+	_	LED 背光电源输入 (+5V)或 EL 背光电源输入 (AC80V)
20	LED-	_	LED 背光电源输入负极

四 • T6963C 液晶显示控制器功能说明及指令表

T6963C 是日本东芝公司专门为中等规模 LCD 模块设计的一款控制器,它通过外部 MCU 方便地实现对 LCD 驱动器和显示缓存的管理。其特点为 8 位 80 或 Z80 系列总线,内部有 128 个常用字符表,可管理外部扩展显示缓存 64KB(本模块为 32KB),并具有丰富的指令供 MCU 实现对 LCD 显示屏幕的操作与编辑。

1. 指令表:

表 3

命令	命令码	参数 D1	参数 D2	功能
地址	00100001 (21H)	X 横向地址	Y垂直地址	光标地址设置
指针设置	00100010 (22H)	偏置地址	00Н	CGRAM 偏置地址设置
	00100100 (24H)	低8位地址	高8位地址	读写显缓地址设置
	01000000 (40H)	低8位地址	高8位地址	文本显示区首地址
显示	01000001 (41H)	每行字符数	00Н	文本显示区宽度
区域设置	01000010 (42H)	低8位地址	高8位地址	图形显示区首地址
	01000011 (43H)	每行字节数	00Н	图形显示区宽度
	10000000 (80H)	_	_	文本与图形逻辑"或"合成显示
显示	10000001 (81H)	_	_	文本与图形逻辑"异或"合成显示

	1			
方式设置	10000011 (83H)	_	-	文本与图形逻辑"与"合成显示
	10000100 (84H)	_	-	文本显示特征以双字节表示
	10010000 (90H)	_	_	关所有显示
显示	10010010 (92H)	_	_	光标显示但不闪
状态设置	10010011 (93H)	_	_	光标闪动显示
	10010100 (94H)	_	_	文本显示,图形关闭
	10011000 (98H)	_	_	文本关闭,图形显示
	10011100 (9CH)	_	_	文本和图形都显示
	10100000 (AOH)	_	_	1 行八点光标
	10100001 (A1H)	_	_	2 行八点光标
光标	10100010 (A2H)	_	_	3 行八点光标
大小设置	10100011 (A3H)	_	-	4 行八点光标
	10100100 (A4H)	_	_	5 行八点光标
	10100101 (A5H)	_	-	6 行八点光标
	10100110 (A6H)	_	-	7 行八点光标
	10100111 (A7H)	_	-	8 行八点光标
进入/退出	10110000 (B0H)	_	-	进入显示数据自动写方式
显示数据自	10110001 (B1H)	_	_	进入显示数据自动读方式
动读/写方	10110010 (B2H)	_	_	退出自动读/写方式
式设置	10110010 (B3H)	_	_	退出自动读/写方式
	11000000 (COH)	数据	_	写一字节数据,地址指针加一
进入显示数	11000001 (C1H)	_	_	读一字节数据,地址指针加一
据一次读/	11000010 (C2H)	数据	_	写一字节数据,地址指针减一
写方式设置	11000011 (C3H)	_	_	读一字节数据,地址指针减一
	11000100 (C4H)	数据	_	写一字节数据,地址指针不变
	11000101 (C5H)	_	_	读一字节数据,地址指针不变
屏读一字节	11100000 (E0H)	_	-	从当前地址指针(在图形区内)
				读一字节屏幕显示数据
屏读拷贝	11101000 (E8H)	_	_	从当前地址指针(在图形区内)
(一行)				读一行屏幕显示数据并写回
	11110XXX	_	_	位清零
	(F0-F7H)	_	_	
	11111XXX	_	_	位置位
	(F8-FFH)	_	_	
显示数据	1111X000	_	_	设位地址 Bit 0 (LSB)
位操作设置	1111X001	_	_	设位地址 Bit 1
	1111X010	_	_	设位地址 Bit 2
	1111X011	_	_	设位地址 Bit 3
	1111X100	_	_	设位地址 Bit 4
	1111X101	_	_	设位地址 Bit 5
	1111X110	_	_	设位地址 Bit 6
	1111X111	_	_	设位地址 Bit 7(MSB)

五. 电气参数 1. 最大参数

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply	VDD-VSS	-	-0.3	-	7	V
Voltage(logic)						•
Supply	VDD-VO	-	0	-	15	
Voltage(LCDDrive						V
)						
Input Voltage	VI	-	-0.3	-	VDD+0.3	V
Operating	Topr	-	0	-	+50	° C
Temperature						
Storage	Tstg	-	-20	-	+60	° C
Temperature						

2.直流特性参数

Ta=25° C

Item	Symbol	Condition		St	andard Val	ue	Unit
				min	typ	max	
Supply voltage(Logic)	VDD-VSS	-		4.75	5	5.25	V
Supply current	IDD	_		-	100.0	150.0	mA
	IO	_		-	1.8	2.5	mA
led Backlight current	Iled	_		-	150	-	mA
Input high voltage	VIH	High	level	0.7VDD	-	VDD	V
Input low voltage	VIL	Low	level	0	-	0.3VDD	V
Supply voltage for LCD		Ta=0	° C	14.2	14.5	14.8	V
Drive (1/64 duty)	VDD-VO	Ta=2:	5° C	13.3	13.6	13.9	V
		Ta=50)° C	12.3	12.6	12.9	V
Contrast Ratio	CR			-	4	_	-
Viewing Angle	-	CR≥2	θ	-10	-	20	deg
			θ	60	-	120	deg
Response Time (rise)	Tr	Note 1	Ta=2	-	130	200	ms
			5°				
Response Time (delay)	Td	Note 2	Ta=2 5°	-	150	230	ms

3.MCU总线交流参数

Item	Symbol	Min	Max	Unit
C/D set up time	Tcds	100	ı	ns
C/D hold time	Tcdh	10	-	ns
CE,RD,WR pulse width	Tce,Trd,Twr	80	ı	ns
DATA set up time	Tds	80	-	ns
DATA hold time	Tdh	40	ı	ns
Access time	Tacc	-	150	ns
Output hold time	Toh	10	50	ns

六. 指令功能描述

7.1 状态判断

无论是向 T 6 9 6 3 C 读写数据还是写入命令,都必需判断忙状态。读忙状态满足以下条件:

/RD L
/WR H
/CE L
C/D H
D0 ~ D7 状态字

T6963C 状态字定义如下

MSB LSB

STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

STA0	指令读写状态	0:忙 1:闲
STA1	数据读写状态	0:忙 1:闲
STA2	数据自动读状态	0:忙 1:闲
STA3	数据自动写状态	0:忙 1:闲
STA4	未用	
STA5	控制器运行检测可能性	0:不能 1:可能
STA6	屏读 / 屏拷贝出错状态	0:对 1:错
STA7	闪烁状态检测	0:关 1:开

- 说明 1. STAO 和 STA1 在大多数命令和数据传送前必需在同一时刻判断, 否则可能会出错;
 - 2. 在数据自动读写时判断 STA2 和 STA3;
 - 3. 在屏读 / 屏拷贝时判断 STA6;
 - 4. STA5 和 STA7 为厂家测试时用.

7.2 带参数命令设置

带参数命令设置先送参数再送命令(注意最多只有两个参数)

7.31 命令介绍

1. 地址指针设置

命令码	HEX	功能	参数 D1	参数 D2	
00100001	21H	光标地址设置	X 横向地址	Y 横向地址	
00100010	22H	CGRAM 偏置地址设置	偏置地址	00Н	
00100100	24H	读写显缓地址设置	低8位地址	高 8 位地址	

(1) 光标地址设置

此命令用来改变光标的当前位置.

- X 横向地址 00H -- 4FH(低7位有效)
- Y 横向地址 00H -- 1FH(低 5 位有效)
- (2) CGRAM 偏置地址设置

CGRAM 偏置地址是用来确定 CGRAM 16 位地址的高 5 位, 此时 16 位地址定义如下: T6963C 的 16 位地址线如下:

MSB LSB

 Adl5
 Adl4
 Adl3
 Adl2
 Adl1
 Adl0
 Ad9
 Ad8
 Ad7
 Ad6
 Ad5
 Ad4
 Ad3
 Ad2
 Ad1
 Ad0

 高 5 位 (ad15 - ad11)
 为 CGRAM 偏置地址,次 8 位 (ad10 - ad3) 为字符代码,低 3 位 (ad2 - ad10)

 定义该字符的 8 行地址 0—7,用户可用此命令在 CGRAM 中来定义自己的特殊字符.

(3) 读写显缓地址设置

读写显缓地址设置用来定义当前读写操作地址..

7.32 显示区域设置

该命令用来定义显示区域的大小

命令码 HEX	功能	参数 D1	参数 D2
---------	----	-------	-------

01000000	40H	文本显示区首地址	低8位地址	高8位地址
01000001	41H	文本显示区宽度	每行字符数	00H
01000010	42H	图形显示区首地址	低8位地址	高8位地址
01000011	43H	图形显示区宽度	每行字节数	00H

(1) 文本显示区首地址及宽度设置

该首地址为屏幕的左上角的第一个字符在显示缓存中的地址,注意该地址是一个以8X8点阵单位的地址,宽度为每行的字符数.

例如:

文本显示区首地址: 0000H

文本显示区宽度: 001EH (每字符行显示 30 个 8X8 的字符)

显示与地址的对应关系:

屏左上角

// 1/11/11/11					
0000Н	0001H		001CH	001DH	第一字符
					行
001EH	001FH		003AH	003BH	第二字符
					行
:	:	:	:	:	:
:	;	:	:	:	:

屏右下

角

(2) 图形显示区首地址及宽度设置

该首地址为屏幕的左上角的第一个横向字节在显示缓存中的地址, 宽度为每行的字节数.

例如:

图形显示区首地址: 0000H

D2

D3

D1

图形显示区宽度: 001EH(每点阵行显示 30 个字节的图形信息)

显示与地址的对应关系:

屏左上角

0000H	0001H		001CH	001DH	第一点阵行
001EH	001FH		003AH	003BH	第二点阵行
:	:	:	:	:	:
:	:	:	:	:	:

屏右下角

7.33 显示方式设置

该命令设置图形与文本以何种逻辑关系叠加显示和文本属性显示,逻辑关系有"或","与"和"异或"三种,显示效果如下图示,内部字符表代码范围为00H-7FH.

当设为文本属性显示后,图形显示区将转换成文本属性区,文本属性代码由一字节的低4位组成:

X: 无关

D0

	D3	D1	D0	显示效果
0	0	0	0	正向显示
0	1	0	1	反白显示
0	0	1	1	禁止正向显示
0	1	0	0	禁止反白显示
1	0	0	0	正向闪烁显示
1	1	0	1	反白闪烁显示
1	0	1	1	禁止正向闪烁显示
1	1	0	0	禁止反白闪烁显示

7.34 数据自动读写

命令码	HEX	功能	参数
10110000	ВОН	进入数据自动写	ı
10110001	B1H	进入数据自动读	
10110010(1)	В2Н/В3Н	退出自动读写	_

该命令将进入或退出数据自动读写操作,在数据自动读写操作中,MCU 可连续将显示数据写入显 缓中或读出,在每次读或写操作后,显示地址自动加一,注意这时忙状态要判断 STA2 和 STA3,在数据 自动读写操作未退出前写入其他命令是无效的.

7.35 数据读写一次

命令码	HEX	功能	参数
11000000	СОН	写入一个数据显示地址加一	要写入的数据 Data
11000001	C1H	读出一个数据显示地址加一	_
11000010	С2Н	写入一个数据显示地址减一	要写入的数据 Data
11000011	СЗН	读出一个数据显示地址减一	_
11000100	C4H	写入一个数据显示地址不变	要写入的数据 Data
11000101	С5Н	读出一个数据显示地址不变	_

该命令是一次数据读写操作,在每次读写数据操作后,显示地址都要按指令码设置修正

7.36 屏读一字节

命令码	HEX	功能	参数
11100000	ЕОН	从屏幕上读出一字节	_

该命令是一次屏幕数据读操作, 屏幕数据可能是文本与图形按所设逻辑合成显示内容, 在读数 之前除判断 STA1 和 STA2 之外, 还需判断 STA6 后才可读到正确的数据.

7.37 屏读一行

命令码	HEX	功能	参数
11101000	E8H	从屏幕上读出一行显示数据并写回	-

该命令是一行屏幕数据读并写回操作, 屏幕数据可能是文本与图形合成显示内容, 判断该命令 是否完成除判 STA1 和 STA2 之外, 还需判断 STA6 后才可写入别的命令.

7.38 显示缓存数据位操作

命令码	HEX	功能	参数
11110000	F0H	清零第0位	_
11110001	F1H	清零第1位	_
11110010	F2H	清零第2位	_

11110011	F3H	清零第3位	_
11110100	F4H	清零第4位	-
11110101	F5H	清零第5位	-
11110110	F6H	清零第6位	-
11110111	F7H	清零第7位	-
11111000	F8H	置位第0位	_
11111001	F9H	置位第1位	_
11111010	FAH	置位第2位	_
11111011	FBH	置位第3位	_
11111100	FCH	置位第4位	_
11111101	FDH	置位第5位	_
11111110	FEH	置位第6位	_
11111111	FFH	置位第7位	_

该命令可对显示地址指针所指的显缓数据进行位操作,使用该命令使屏幕编在图形方式下达到一点的精度.

八•应用举例

FM12864F-6 与单片机 AT89C52 的硬件接口如图下图所示:

说明:

- 1. 虚框内为外供负电压调节对比度方法,若模块内已内带负电压,V0及 VOUT 空接, 复位使用模块内上电复位. 若用 LED 背光, LED+接背光电源+5V(200mA).
- 2. 片选信号/CE 接 CPU 的 P2. 7(A15), 则当 A15=0 时模块选定.
- 3. 命令/数据选择 C/D 接 CPU 的 P2. 0 (A8), 则当 A8=1 时为命令, A8=0 时为数据.
- 4. 由 2, 3 得到 LCD 模块典型命令口地址为 0100H, 典型数据口地址为 0000H.

附录: 使LCD显示一屏图形

- 1. 用户事先要做的是在 WINDOWS 的画笔中(点击左下角开始→程序→附件→画图)对 LCD 显示屏在电脑上进行预编辑, 完成后取名 DEMO. BMP 并保存。
- 2. 图形制作方法:
 - a. 进入 WINDOWS 画笔, 在"图象"→"属性"→"宽度=128, 高度=64, 象素, 黑白"→"确定".
 - b. 利用画笔工具对屏幕先在电脑上编辑, 完成后再"图象"→"翻转/旋转"→ "垂直翻转"→"确定".

- c. "图象" \rightarrow "反色", b, c 是为了使 BMP 数据存放格式与 LCD 所需一致,减轻 CPU 处理时间.
- d. 将所作背景取名为 DEMO. BMP 并保存.
- 3. CPU 内部 ROM 空间安排,将以下源文件 DEMO. ASM 编译生成 DEMO. HEX 文件. 在 CPU 烧录时先从 ROM 地址 0 调入 DEMO. HEX (格式为十六进制 HEX),再从 ROM 地址 0800H 处调入 DEMO. BMP (格式为二进制 BIN),将该合并成的文件烧录到 AT89C55 中即可。
- 4. 现让屏幕先显示 DEMO. BMP, 观察其效果。注意字体选择 FS(PIN18)一定要接低,否则 所显图形会错位。
- 5. 以下为用 MCS-51 绘编语言编写的 DEMO 源程序,该程序中的子程经过调试可直接引用。

PORTD PORTC BMP_DEMO	EQU 0)100H ; 模块命令 800H ; 定义位图	居口地址(A15=0.A8=0) 令口地址(A15=0.A8=1) 图存放首地址
MAIN:	ORG LJMP ORG	0000H	
VICHV.	LCALL LCALL MOV	SP,#60H DEL_10MS LCD_INT DPTR,#BMP_DE SCREEN \$;模块初始化 EMO
;; ;	延时子和		
DEL_10MS: DL2: DL1:	MOV R6, MOV R7 NOP NOP NOP DJNZ R7 DJNZ R6 RET	7,#200 7,DL1	
, ;写两个参数 (参数 ;)
WD2:	PUSH E PUSH A MOV L LCALL V MOV A LCALL V POP A POP D	DPL DPH ACC A,DPL WD1 A,DPH WD1 CC PH	

```
写一个参数(参数在 A 中)
;-----
WD1:
            PUSH
                 DPL
            PUSH DPH
            PUSH ACC
PUSH ACC
            LCALL CH_STA1
            POP
                ACC
            MOV
                 DPTR,#PORTD
            MOVX
                 @DPTR,A
            POP
                 ACC
            POP
                 DPH
            POP
                 DPL
            RET
      自动方式下写一个显示数据(数据在 A 中)
AWD:
            PUSH
                DPL
            PUSH
               DPH
            PUSH
                ACC
            PUSH
                 ACC
            LCALL CH_STA3
            POP
                ACC
            MOV
                 DPTR,#PORTD
            MOVX
                @DPTR,A
            POP
                 ACC
                 DPH
            POP
            POP
                 DPL
            RET
     写一个命令 (命令字在 A 中)
   _____
WC:
                 DPL
            PUSH
            PUSH DPH
            PUSH
                 ACC
            PUSH
                 ACC
            LCALL CH_STA1
            POP
                 ACC
            MOV
                 DPTR,#PORTC
            MOVX
                 @DPTR,A
                 ACC
            POP
            POP
                 DPH
            POP
                 DPL
            RET
            判断状态 0,1
;------
CH_STA1:
            PUSH DPL
            PUSH DPH
            PUSH
                 ACC
            MOV
                 DPTR,#PORTC
CH_1:
            MOVX A,@DPTR
```

```
A,#03H
             ANL
             CJNE
                   A,#03H,CH_1
             POP
                   ACC
             POP
                   DPH
                   DPL
             POP
             RET
               判断状态3
CH_STA3:
             PUSH
                   DPL
             PUSH
                   DPH
             PUSH
                   ACC
             MOV
                    DPTR,#PORTC
CH 3:
             MOVX
                    A,@DPTR
             ANL
                   A,#08H
             CJNE
                   A,#08H,CH 3
             POP
                   ACC
             POP
                   DPH
             POP
                   DPL
             RET
               LCD 初始化
  .....
LCD_INT:
                         ;图形显示区首地址为 00H;
     MOV
           DPTR,#00H
     LCALL
           WD2
                         ; 写入两个参数;
           A,#42H
     MOV
                         ;写入设置图形显示区首地址命令42H:
     LCALL
           WC
           DPTR,#001EH
                         ;图形显示区宽度为30=128/4;
     MOV
     LCALL
           WD2
                         ;写入两个参数;
     MOV
            A,#43H
                         ;写入设置图形显示区宽度命令43H;
     LCALL
           WC
     MOV
            A,#80h
     LCALL
                         ;写入设置文本与图形逻辑"或"合成显示;
           WC
     MOV
            A,#98H
                          ; 写入设置显示方式仅为图形显示;
     LCALL
            WC
     RET
;显示一幅 128X64 的黑白位图,位图在 ROM 中存放首地址在 DPTR 中
SCREEN:
               PUSH
                     DPL
               PUSH
                     DPH
               MOV
                      DPTR,#00H ;设置显缓写地址
               LCALL
                      WD2
                MOV
                        A,#24H
                LCALL
                      WC
                      A,#0B0H ;设置进入显示数据自动写模式
                MOV
                LCALL
                      WC
                POP
                      DPH
                POP
                      DPL
                      R7,#64 ;共 64 行
                MOV
GRAPH:
                MOV
                      R6,#30 ;每行 30 个字节
```

GRAPH1:

MOV A,#3EH ;ROM 中显示数据存放地址偏移量

MOVC A,@A+DPTR ;从 ROM 中取显示数据

LCALL AWD ;自动写一个显示数据,显缓地址指针自动加一

INC DPTR ;调整 ROM 数据指针 DJNZ R6,GRAPH1 ;一行未写完继续写 INC DPTR ;调整 ROM 数据指针

INC DPTR

DJNZ R7,GRAPH ;64 行未写完继续写

LCALL CH_STA3 ;检测状态 3

MOV A,#0B2H

LCALL WC ;退出自动写模式

RET