쌍대이론

■ 표 6.7 원문제와 쌍다	#문제의 연관성	
	원변수	관련 쌍대변수
어떤 문제	(결정변수) x _j (여유변수) x _{n+i}	$z_j - c_j$ (잉여번수) $j = 1, 2,, n$ y_i (결정번수) $i = 1, 2,, m$
Wyndor 문제	결정변수: x ₁ x ₂ 여유변수: x ₃ x ₄ x ₅	z ₁ — c ₁ (잉여변수) z ₂ — c ₂ y ₁ (결정변수) y ₂ y ₃

라벨	원문제(혹은 쌍대문제)	쌍대문제(혹은 원문제)
	Maximize Z (or W)	Minimize W (or Z)
상식 이상 기괴	Constraint <i>i</i> :	
상식 이상 기괴	Variable x_j (or y_j): $x_j \ge 0$ \longleftarrow Unconstrained \longleftarrow $x_i' \le 0$ \longleftarrow	Constraint j:

민감도 분석

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	0	0	2	5	0	100
x_2	0	-1	1	3	1	0	20
x_5	0	16	0	-2	-4	1	10

$b_1=30$ 으로 바꾸어라

$$\bullet \ B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 90 \end{bmatrix} = \begin{bmatrix} 30 \\ -30 \end{bmatrix}$$

•
$$Z_{new} = [5, 0] \begin{bmatrix} 30 \\ -30 \end{bmatrix} = 150.$$

- (0) $Z + 2x_3 + 5x_4 = 150$
- $(1) \ -x_1 + x_2 + 3x_3 + x_4 = 30$
- (2) $16x_1 2x_3 4x_4 + x_5 = -30$
- 기저해: (0, 30, 0, 0, -30)
- $x_5 < 0$ (infeasible)
- Z-행의 비기저 변수 x_1,x_3,x_4 의 계수는 각각 0,2,5. bfs였다면 최적 조건을 만족

$b_2=70$ 으로 바꾸어라.

$$\cdot B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 70 \end{bmatrix} = \begin{bmatrix} 20 \\ -10 \end{bmatrix}$$

•
$$Z_{new} = [5, 0] \begin{bmatrix} 20 \\ -10 \end{bmatrix} = 100.$$

- (0) $Z + 2x_3 + 5x_4 = 100$
- (1) $-x_1 + x_2 + 3x_3 + x_4 = 20$
- (2) $16x_1 2x_3 4x_4 + x_5 = -10$
- 기저해: (0, 20, 0, 0, -10). infeasible
- rc: (0, 0, 2, 5, 0). bfs였다면 최적

$b_1 = 10, b_2 = 100$ 으로 바꾸어라.

$$\bullet \ B^{-1}b_{new} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 100 \end{bmatrix} = \begin{bmatrix} 10 \\ 60 \end{bmatrix}$$

•
$$Z_{new} = [5, 0] \begin{bmatrix} 10 \\ 60 \end{bmatrix} = 50.$$

- (0) $Z + 2x_3 + 5x_4 = 50$
- $(1) \ -x_1 + x_2 + 3x_3 + x_4 = 10$
- (2) $16x_1 2x_3 4x_4 + x_5 = 60$
- 기저해: (0, 10, 0, 0, 60). feasible
- rc: 0, 0, 2, 5, 0. 최적

 $c_3=80$ 으로 바꾸어라.

- $\bullet \ \, \text{origin:} \, z-c_3=2, z=15$
- $\bullet \text{ new: } z c_3 = 15 80 = -65$
- (0) $Z 65x_3 + 5x_4 = 100$
- $(1) \ -x_1 + x_2 + 3x_3 + x_4 = 20$
- (2) $16x_1 2x_3 4x_4 + x_5 = 10$
 - 기저해: (0, 20, 0, 0, 10). feasible
 - rc: (0, 0, 7, 5, 0). 최적

$$c_1=-2, a_{11}=0, a_{21}=5$$
으로 바꾸어라.

•
$$N_{.1}$$
: $B^{-1}A_{.1} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$

- (0) $Z + 2x_1 + 2x_3 + 5x_4 = 100$ (1) $x_2 + 3x_3 + x_4 = 20$
- (2) $5x_1 2x_3 4x_4 + x_5 = 10$
 - 기저해: (0, 20, 0, 0, 10). feasible
 - rc: (2, 0, 7, 5, 0). 최적

$c_2=6, a_{12}=2, a_{22}=5$ 으로 바꾸어라.

$$\bullet \ B = \begin{bmatrix} 2 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\cdot B^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix}$$

- $c_B = [6, 0]$
- $\cdot B^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 90 \end{bmatrix} = \begin{bmatrix} 10 \\ 40 \end{bmatrix}$
- $Z = [6,0] \begin{bmatrix} 10 \\ 40 \end{bmatrix} = 60.$

$$\bullet \ x_1 \text{ at rc: } c_B B^{-1} A_{.1} - c_1 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 12 \end{bmatrix} - (-5) = 2$$

•
$$N_{\cdot 1}$$
: $B^{-1}A_{\cdot 1} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 12 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{29}{2} \end{bmatrix}$

$$\bullet \ x_3 \text{ erc: } c_B B^{-1} A_{\cdot 3} - c_3 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} - 13 = -4$$

$$\bullet \ N_{\cdot 3} : B^{-1}A_{\cdot 3} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{5}{2} \end{bmatrix}$$

$$\bullet \ x_4 \ \text{rc:} \ c_B B^{-1} A_{\cdot 4} - c_4 = [6,0] \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0 = 3$$

•
$$N_{.4}$$
: $B^{-1}A_{.4} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{5}{2} \end{bmatrix}$

- (0) $Z+2x_1-4x_3+3x_4=60$ (1) $-\frac{1}{2}x_1+x_2+\frac{3}{2}x_3+\frac{1}{2}x_4=10$
- (2) $\frac{29}{2}x_1 + \frac{5}{2}x_3 \frac{5}{2}x_4 + x_5 = 40$
 - 기저해: (0, 10, 0, 0, 40). feasible
- rc: (2, 0, -4, 3, 0). 최적 아님.

 $c_6=10, a_{16}=5, a_{26}=3$ 을 도입하라

•
$$N_{.6}$$
: $B^{-1}A_{.6} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -7 \end{bmatrix}$

•
$$x_6$$
의 rc: $(5,0)$ $\begin{bmatrix} 3 \\ -7 \end{bmatrix}$ $-10=5$.

- $\hbox{(0)}\ Z+2x_3+5x_4+5x_6=100$
- $(1) \ -x_1 + x_2 + 3x_3 + x_4 + 3x_6 = 20$
- (2) $16x_1 2x_3 4x_4 + x_5 7x_6 = 10$
- 기저해: (0, 20, 0, 0, 10, 0). feasible
- rc: (0, 0, 2, 5, 0, 5). 최적.

새로운 제약식 $2x_1+3x_2+5x_3\leq 50$ 을 도입하라.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	0	2	5	0	0	100
x_2	0	-1	1	3	1	0	0	20
x_5	0	16	0	-2	-4	1	0	10
x_6	0	2	3	5	0	0	1	50

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	0	2	5	0	0	100
x_2	0	-1	1	3	1	0	0	20
x_5	0	16	0	-2	-4	1	0	10
x_6	0	5	0	-4	-3	0	1	-10

- (0) $Z + 2x_3 + 5x_4 = 100$
- $(1) -x_1 + x_2 + 3x_3 + x_4 = 20$
- (2) $16x_1 2x_3 4x_4 + x_5 = 10$
- (3) $5x_1 4x_3 3x_4 + x_6 = -10$
- 기저해: (0, 20, 0, 0, 10, -10). infeasible
- rc: (0, 0, 2, 5, 0). bfs면 최적.

제약식 2를 $10x_1 + 5x_2 + 10x_3 \le 100$ 으로 바꾸어라.

•
$$B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\bullet B^{-1} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix}$$

•
$$c_B = [5, 0]$$

$$\cdot B^{-1}b = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 100 \end{bmatrix} = \begin{bmatrix} 20 \\ 0 \end{bmatrix}$$

•
$$Z = [5, 0] \begin{bmatrix} 20\\0 \end{bmatrix} = 100$$

$$\bullet \ x_1 \text{ Ye rc: } c_B B^{-1} A_{\cdot 1} - c_1 = [5,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 10 \end{bmatrix} - (-5) = 0$$

$$\bullet \ N_{\cdot 1} : B^{-1}A_{\cdot 1} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 10 \end{bmatrix} = \begin{bmatrix} -1 \\ 15 \end{bmatrix}$$

•
$$x_3$$
의 rc: $c_B B^{-1} A_{\cdot 3} - c_3 = [6,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} - 13 = 2$

•
$$N_{.3}$$
: $B^{-1}A_{.3} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$

$$\bullet \ x_4 \ \text{arc:} \ c_B B^{-1} A_{\cdot 4} - c_4 = [6,0] \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 0 = 5$$

•
$$N_{.4}$$
: $B^{-1}A_{.4} = \begin{bmatrix} 1 & 0 \\ -5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -5 \end{bmatrix}$

- $\hbox{(0)}\ Z+0x_1+2x_3+5x_4=100$
- (1) $x_2 x_1 + 3x_3 + x_4 = 20$ (2) $x_5 + 15x_1 - 5x_3 - 5x_4 = 0$
- 기저해: (0, 20, 0, 0, 0). feasible
- rc: (0, 0, 2, 5, 0). 최적.

dual simplex

$$\begin{array}{ll} \text{Minimize} & W = 40y_1 + 20y_2 + 90y_3 \\ \text{Subject to} & 3y_1 + y_2 + 5y_3 \geq 5 \\ & y_1 + y_2 + 3y_3 \geq 10 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

$$\begin{array}{ll} \text{Minimize} & W = 40y_1 + 20y_2 + 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 \leq -5 \\ & -y_1 - y_2 - 3y_3 \leq -10 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

$$\begin{array}{ll} \text{Maximize} & -W = -40y_1 - 20y_2 - 90y_3 \\ \text{Subject to} & -3y_1 - y_2 - 5y_3 + y_4 = -5 \\ & -y_1 - y_2 - 3y_3 + y_5 = -10 \\ & y_1, y_2, y_3, y_4, y_5 \geq 0 \end{array}$$

iteration 1

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	40	20	90	0	0	0
y_4	0	-3	-1	-5	1	0	-5
y_5	0	-1	-1	-3	0	1	-10

• bfs: (0, 0, 0, -5, -10)

iteration 2

	-W	y_1	y_2	y_3	y_4	y_5	RHS
	1	20	0	30	0	20	-200
y_4	0	-2	0	-2	1	-1	5
y_2	0	1	1	3	0	-1	10

bfs: (0, 10, 0, 5, 0)

upper bound

Maximize
$$Z-2x_1-3x_2=0$$
 Subject to
$$x_3=20-3x_1+9x_2$$

$$0\leq x_1\leq \frac{40}{3}, 0\leq x_2\leq \frac{40}{9}, x_3\geq 0$$

• x_2 enter

$$\begin{split} Z-2x_1-3x_2&=0\\ x_3&=20+9x_2 \quad ... \quad x_2 \leq \frac{40}{9} \\ x_2&=\frac{40}{9}-y_2\\ x_3&=60-3x_1-9y_2 \quad ... \quad x_1 \leq \frac{40}{3} \\ Z-2x_1+3y_2&=\frac{40}{2} \end{split}$$

• x_1 enter

$$x_1 = \frac{40}{3} - y_1$$

$$x_3 = 20 + 3y_1 - 9y_2$$

$$Z + 2y_1 + 3y_2 = 40$$

- bfs(x_1, x_2, x_3, y_1, y_2): $(\frac{40}{3}, \frac{40}{9}, 20, 0, 0)$
- obj: = 40

수송 문제

- 1. 공급량과 수요량이 일치하지 않는 경우: dummy 수요를 만들고, cost를 0으로 설정.
- 2. 최소, 최대 수요량이 있는 경우: 가상 근원지

		Acre Foot당 비용(단위 10달러)					
	Berdoo	Los Devils	San Go	Hollyglass	공급		
Colombo River Sacron River Calorie River	16 14 19	13 13 20	22 19 23	17 15 —	50 60 50		
최소요구량	30 50	70 70	0 30	10 3 60	(백만 acre feet의 단위)		
		150	***************************************				

■ 표 8.12 Metro Water District를 위한 매개변수표

				분배되는 단위	당 비용(천만 달러)				
				목적지						
			Berdoo (min.)	Berdoo (extra) 2	Los Devils	San Go 4	Hollyglass 5	공급		
근원지	Colombo River Sacron River Calorie River Dummy	1 2 3 4(D)	16 14 19 <i>M</i>	16 14 19 0	13 13 20 <i>M</i>	22 19 23 0	17 15 <i>M</i> 0	50 60 50 50		
수요			30	20	70	30	60			

초기 bfs를 만들기 위한 절차

amentonistancontonio		TO A PORTUGUIS AND A PORTUGIS AND		분배되는 단위	당 비용(천만 달러)				
				목적지						
			Berdoo (min.)	Berdoo (extra) 2	Los Devils 3	San Go 4	Hollyglass 5	공급		
근원지	Colombo River Sacron River Calorie River Dummy	1 2 3 4(D)	16 14 19 <i>M</i>	16 14 19 0	13 13 20 <i>M</i>	22 19 23 0	17 15 <i>M</i> 0	50 60 50 50		
수요			30	20	70	30	60			

Figure 1: 문제 예시

1. 북모서리법으로 기저변수를 선택

■ 표 8.16 Metro Water District를 위한 최소 필요가 없는 매개변수표

		1	2	3	4	5	공급	u_i
근원지	1	30—	16 →20	13	22	17	50	
	2	14	14 0 —	13 60	19	15	60	
	3	19	19	20 10	23 30	M 10	50	
	4(D)	М	0	М	0	0 50	50	
수요		30	20	70	30	60	Z = 2,470 -	+ 10 <i>M</i>
	v _j							

최적화 검사 절차

- 1. 가장 많은 할당이 일어난 행의 변수 하나를 0으로 설정
- 2. 기저인 x_{ij} 의 i,j에 대해 $c_{ij}=u_i+v_j$ 를 만족한다는 성질로 u_i 와 v_j 를 계산한다.
- 3. 비기저 변수들의 $c_{ij} u_i v_j$ 를 계산한다.
- 4. 모두 양수이면 최적.

반복

- 1. 진입기저변수를 결정하라: 가장 큰(절댓값으로) 음의 값 $C_{jj}-u_i-v_j$ 를 가지는 비기저변수 x_{ij} 를 선택하라.
- 2. 탈^학기저변수를 결정하라: 진입기저변수가 증가할 때 가능을 유지하기 위해 요구되는 연쇄반응을 식별하라. 기증셀들 중에서, 가장 작은 값을 가지는 기저변수를 선택하라.
- 3. 새 기저가능해를 결정하라: 탈락변수의 값을 각 수신셀의 할당에 더하라. 그 값을 각 기증 셀의 할당에서 빼어라.

다익스트라 최소비용 문제로 전환

도착점에서 출발점 arc를 생성한 후, $maxx_{fa}$, cost, outflow - inflow는 모두 0으로 설정.

7. 네트워크 심플렉스 해법

최대흐름문제 최소비용 문제로 전환

Figure 2: x_{AB} 가 상한값에 도달했다고 가정

Figure 3: x_{CE} 가 상한값에 도달해서 역방향됨

Figure 4: x_{BA} 가 진입하고, x_{AB} 가 퇴출

