

CHARACTERS OF INTEGRABLE HIGHEST WEIGHT MODULES OVER A QUANTUM GROUP

TOSHIYUKI TANISAKI

ABSTRACT. We show that the Weyl-Kac type character formula holds for the integrable highest weight modules over the quantized enveloping algebra of any symmetrizable Kac-Moody Lie algebra, when the parameter q is not a root of unity.

1. INTRODUCTION

It is well-known that the character of an integrable highest weight module over a symmetrizable Kac-Moody algebra \mathfrak{g} is given by the Weyl-Kac character formula (see Kac [6]). In this paper we consider the corresponding problem for a quantized enveloping algebra (see Kashiwara [7]).

For a field K and $z \in K^\times$ which is not a root of 1, we denote by $U_{K,z}(\mathfrak{g})$ the quantized enveloping algebra of \mathfrak{g} over K at $q = z$, namely the specialization of Lusztig's $\mathbb{Z}[q, q^{-1}]$ -form via $q \mapsto z$. It is already known that the Weyl-Kac type character formula holds for $U_{K,z}(\mathfrak{g})$ in some cases. When K is of characteristic 0 and z is transcendental, this is due to Lusztig [10]. When \mathfrak{g} is finite-dimensional, this is shown in Andersen, Polo and Wen [1]. When \mathfrak{g} is affine, this is known in certain specific cases (see Chari and Jing [2], Tsuchioka [15]).

We first point out that the problem is closely related to the non-degeneracy of the Drinfeld pairing for $U_{K,z}(\mathfrak{g})$. In fact, assume we could show that the Drinfeld pairing for $U_{K,z}(\mathfrak{g})$ is non-degenerate. Then we can define the quantum Casimir operator. It allows us to apply Kac's argument for Lie algebras in [6] to $U_{K,z}(\mathfrak{g})$, and we obtain the Weyl-Kac type character formula for integrable highest weight modules over $U_{K,z}(\mathfrak{g})$. In particular, we can deduce the Weyl-Kac type character formula in the affine case from the case-by-case calculation of the Drinfeld pairing due to Damiani [3], [4].

The aim of this paper is to give a simple unified proof of the non-degeneracy of the Drinfeld pairing and the Weyl-Kac type character formula for $U_{K,z}(\mathfrak{g})$, where \mathfrak{g} is a symmetrizable Kac-Moody algebra, K is a field not necessarily of characteristic zero, and $z \in K^\times$ is not a root of 1. Our argument is as follows. We consider the (possibly)

2010 *Mathematics Subject Classification.* 20G05, 17B37.

The author was partially supported by Grants-in-Aid for Scientific Research (C) 15K04790 from Japan Society for the Promotion of Science.

modified algebra $\overline{U}_{K,z}(\mathfrak{g})$, which is the quotient of $U_{K,z}(\mathfrak{g})$ by the ideal generated by the radical of the Drinfeld pairing. Then the Drinfeld pairing for $U_{K,z}(\mathfrak{g})$ induces a non-degenerate pairing for $\overline{U}_{K,z}(\mathfrak{g})$, by which we can define the quantum Casimir operator for $\overline{U}_{K,z}(\mathfrak{g})$. It allows us to apply Kac's argument for Lie algebras to $\overline{U}_{K,z}(\mathfrak{g})$, and we obtain the Weyl-Kac type character formula for $\overline{U}_{K,z}(\mathfrak{g})$ with modified denominator. In the special case where the highest weight is zero, this gives a formula for the modified denominator. Comparing this with the ordinary denominator formula for Lie algebras, we conclude that the modified denominator coincides with the original denominator for the Lie algebra \mathfrak{g} . It implies that the Drinfeld pairing for $U_{K,z}(\mathfrak{g})$ was already non-degenerate. This is the outline of our argument. In applying Kac's argument to the modified algebra, we need to show that the modified denominator is skew invariant with respect to a twisted action of the Weyl group. This is accomplished using certain standard properties of the Drinfeld pairing.

The first draft of this paper contained only results when K is of characteristic zero. Then Masaki Kashiwara pointed out to me that the arguments work for positive characteristic case as well. I would like to thank Masaki Kashiwara for this crucial remark.

2. QUANTIZED ENVELOPING ALGEBRAS

Let \mathfrak{h} be a finite-dimensional vector space over \mathbb{Q} , and let $\{h_i\}_{i \in I}$ and $\{\alpha_i\}_{i \in I}$ be linearly independent subsets of \mathfrak{h} and \mathfrak{h}^* , respectively such that $(\langle \alpha_j, h_i \rangle)_{i,j \in I}$ is a symmetrizable generalized Cartan matrix. We denote by W the associated Weyl group. It is a subgroup of $GL(\mathfrak{h})$ generated by the involutions s_i ($i \in I$) defined by $s_i(h) = h - \langle \alpha_i, h \rangle h_i$ for $h \in \mathfrak{h}$. The contragredient action of W on \mathfrak{h}^* is given by $s_i(\lambda) = \lambda - \langle \lambda, h_i \rangle \alpha_i$ for $i \in I$, $\lambda \in \mathfrak{h}^*$. Set

$$E = \sum_{i \in I} \mathbb{Q}\alpha_i, \quad Q = \sum_{i \in I} \mathbb{Z}\alpha_i, \quad Q^+ = \sum_{i \in I} \mathbb{Z}_{\geq 0}\alpha_i.$$

We can take a symmetric W -invariant bilinear form $(\ , \) : E \times E \rightarrow \mathbb{Q}$ such that

$$(2.1) \quad \frac{(\alpha_i, \alpha_i)}{2} \in \mathbb{Z}_{>0} \quad (i \in I).$$

For $\lambda \in E$ and $i \in I$ we obtain from $(\lambda, \alpha_i) = (s_i\lambda, s_i\alpha_i)$ that

$$(2.2) \quad \langle \lambda, h_i \rangle = \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)}.$$

In particular we have

$$(\alpha_i, \alpha_j) = \langle \alpha_j, h_i \rangle \frac{(\alpha_i, \alpha_i)}{2} \in \mathbb{Z},$$

and hence $(Q, Q) \subset \mathbb{Z}$. For $i \in I$ set $t_i = \frac{(\alpha_i, \alpha_i)}{2} h_i$, and for $\gamma = \sum_i n_i \alpha_i \in Q$ set $t_\gamma = \sum_i n_i t_i$. By (2.2) we have $(\lambda, \gamma) = \langle \lambda, t_\gamma \rangle$ for $\lambda \in E$, $\gamma \in Q$. We fix a \mathbb{Z} -form $\mathfrak{h}_{\mathbb{Z}}$ of \mathfrak{h} such that

$$(2.3) \quad \langle \alpha_i, \mathfrak{h}_{\mathbb{Z}} \rangle \subset \mathbb{Z}, \quad t_i \in \mathfrak{h}_{\mathbb{Z}} \quad (i \in I).$$

We set

$$P = \{\lambda \in \mathfrak{h}^* \mid \langle \lambda, \mathfrak{h}_{\mathbb{Z}} \rangle \subset \mathbb{Z}\}, \quad P^+ = \{\lambda \in P \mid \langle \lambda, h_i \rangle \in \mathbb{Z}_{\geq 0}\}.$$

We fix $\rho \in \mathfrak{h}^*$ such that $\langle \rho, h_i \rangle = 1$ for any $i \in I$, and define a twisted action of W on \mathfrak{h}^* by

$$w \circ \lambda = w(\lambda + \rho) - \rho \quad (w \in W, \lambda \in \mathfrak{h}^*).$$

This action does not depend on the choice of ρ , and we have $w \circ P = P$ for any $w \in W$.

Denote by \mathcal{E} the set of formal sums $\sum_{\lambda \in P} c_\lambda e(\lambda)$ ($c_\lambda \in \mathbb{Z}$) such that there exist finitely many $\lambda_1, \dots, \lambda_r \in P$ such that

$$\{\lambda \in P \mid c_\lambda \neq 0\} \subset \bigcup_{k=1}^r (\lambda_k - Q^+).$$

Note that \mathcal{E} is naturally a commutative ring by the multiplication $e(\lambda)e(\mu) = e(\lambda + \mu)$.

Denote by Δ^+ the set of positive roots for the Kac-Moody Lie algebra \mathfrak{g} associated to the generalized Cartan matrix $(\langle \alpha_j, h_i \rangle)_{i,j \in I}$. For $\alpha \in \Delta^+$ let m_α be the dimension of the root space of \mathfrak{g} with weight α . We define an invertible element D of \mathcal{E} by

$$D = \prod_{\alpha \in \Delta^+} (1 - e(-\alpha))^{m_\alpha}.$$

For $n \in \mathbb{Z}_{\geq 0}$ set

$$[n]_x = \frac{x^n - x^{-n}}{x - x^{-1}} \in \mathbb{Z}[x, x^{-1}], \quad [n]!_x = [n]_x[n-1]_x \cdots [1]_x \in \mathbb{Z}[x, x^{-1}].$$

We denote by $\mathbb{F} = \mathbb{Q}(q)$ the field of rational functions in the variable q with coefficients in \mathbb{Q} .

The quantized enveloping algebra U associated to \mathfrak{h} , $\{h_i\}_{i \in I}$, $\{\alpha_i\}_{i \in I}$, $\mathfrak{h}_{\mathbb{Z}}$, $(\ , \)$ is the associative algebra over \mathbb{F} generated by the elements k_h ,

e_i, f_i ($h \in \mathfrak{h}_{\mathbb{Z}}, i \in I$) satisfying the relations

$$(2.4) \quad k_0 = 1, \quad k_h k_{h'} = k_{h+h'} \quad (h, h' \in \mathfrak{h}_{\mathbb{Z}}),$$

$$(2.5) \quad k_h e_i k_{-h} = q_i^{\langle \alpha_i, h \rangle} e_i \quad (h \in \mathfrak{h}_{\mathbb{Z}}, i \in I),$$

$$(2.6) \quad k_h f_i k_{-h} = q_i^{-\langle \alpha_i, h \rangle} f_i \quad (h \in \mathfrak{h}_{\mathbb{Z}}, i \in I),$$

$$(2.7) \quad e_i f_j - f_j e_i = \delta_{ij} \frac{k_i - k_i^{-1}}{q_i - q_i^{-1}} \quad (i, j \in I),$$

$$(2.8) \quad \sum_{r+s=1-\langle \alpha_j, h_i \rangle} (-1)^r e_i^{(r)} e_j e_i^{(s)} = 0 \quad (i, j \in I, i \neq j),$$

$$(2.9) \quad \sum_{r+s=1-\langle \alpha_j, h_i \rangle} (-1)^r f_i^{(r)} f_j f_i^{(s)} = 0 \quad (i, j \in I, i \neq j),$$

where $k_i = k_{t_i}$, $q_i = q^{(\alpha_i, \alpha_i)/2}$ for $i \in I$, and $e_i^{(r)} = \frac{1}{[r]!_{q_i}} e_i^r$, $f_i^{(r)} = \frac{1}{[r]!_{q_i}} f_i^r$ for $i \in I$, $r \in \mathbb{Z}_{\geq 0}$. For $\gamma \in Q$ we set $k_{\gamma} = k_{t_{\gamma}}$.

We have a Hopf algebra structure of U given by

$$(2.10) \quad \Delta(k_h) = k_h \otimes k_h,$$

$$\Delta(e_i) = e_i \otimes 1 + k_i \otimes e_i, \quad \Delta(f_i) = f_i \otimes k_i^{-1} + 1 \otimes f_i$$

$$(2.11) \quad \varepsilon(k_h) = 1, \quad \varepsilon(e_i) = \varepsilon(f_i) = 0,$$

$$(2.12) \quad S(k_h) = k_h^{-1}, \quad S(e_i) = -k_i^{-1} e_i, \quad S(f_i) = -f_i k_i$$

for $h \in \mathfrak{h}_{\mathbb{Z}}, i \in I$. We will sometimes use Sweedler's notation for the coproduct;

$$\Delta(u) = \sum_{(u)} u_{(0)} \otimes u_{(1)} \quad (u \in U),$$

and the iterated coproduct;

$$\Delta_m(u) = \sum_{(u)_m} u_{(0)} \otimes \cdots \otimes u_{(m)} \quad (u \in U).$$

We define \mathbb{F} -subalgebras $U^0, U^+, U^-, U^{\geq 0}, U^{\leq 0}$ of U by

$$U^0 = \langle k_h \mid h \in \mathfrak{h}_{\mathbb{Z}} \rangle, \quad U^+ = \langle e_i \mid i \in I \rangle, \quad U^- = \langle f_i \mid i \in I \rangle,$$

$$U^{\geq 0} = \langle k_h, e_i \mid h \in \mathfrak{h}_{\mathbb{Z}}, i \in I \rangle, \quad U^{\leq 0} = \langle k_h, f_i \mid h \in \mathfrak{h}_{\mathbb{Z}}, i \in I \rangle.$$

For $\gamma \in Q$ set

$$U_{\gamma} = \{u \in U \mid k_h u k_h^{-1} = q^{\langle \gamma, h \rangle} u \mid h \in \mathfrak{h}_{\mathbb{Z}}\}, \quad U_{\gamma}^{\pm} = U_{\gamma} \cap U^{\pm}.$$

Then we have

$$U^0 = \bigoplus_{h \in \mathfrak{h}_{\mathbb{Z}}} \mathbb{F} k_h, \quad U^{\pm} = \bigoplus_{\gamma \in Q^+} U_{\pm \gamma}^{\pm}.$$

It is known that the multiplication of U induces isomorphisms

$$U \cong U^+ \otimes U^0 \otimes U^- \cong U^- \otimes U^0 \otimes U^+,$$

$$U^{\geq 0} \cong U^+ \otimes U^0 \cong U^0 \otimes U^+, \quad U^{\leq 0} \cong U^- \otimes U^0 \cong U^0 \otimes U^-$$

of vector spaces. It is also known that

$$(2.13) \quad \sum_{\gamma \in Q^+} \dim U_{-\gamma}^- e(-\gamma) = D^{-1}.$$

For a U -module V and $\lambda \in P$ we set

$$V_\lambda = \{v \in V \mid k_h v = q^{\langle \lambda, h \rangle} v \ (h \in \mathfrak{h}_{\mathbb{Z}})\}.$$

We say that a U -module V is integrable if $V = \bigoplus_{\lambda \in P} V_\lambda$ and for any $v \in V$ and $i \in I$ there exists some $N > 0$ such that $e_i^{(n)} v = f_i^{(n)} v = 0$ for $n \geq N$.

For $i \in I$ and an integrable U -module V define an operator $T_i : V \rightarrow V$ by

$$T_i v = \sum_{-a+b-c=\langle \lambda, h_i \rangle} (-1)^b q_i^{-ac+b} e_i^{(a)} f_i^{(b)} e_i^{(c)} v \quad (v \in V_\lambda).$$

It is invertible, and satisfies $T_i V_\lambda = V_{s_i \lambda}$ for $\lambda \in P$. There exists a unique algebra automorphism $T_i : U \rightarrow U$ such that for any integrable U -module V we have $T_i u v = T_i(u) T_i v$ ($u \in U, v \in V$). Then we have $T_i(U_\gamma) = U_{s_i \gamma}$ for $\gamma \in Q$. The action of T_i on U is given by

$$\begin{aligned} T_i(k_h) &= k_{s_i h}, \quad T_i(e_i) = -f_i k_i, \quad T_i(f_i) = -k_i^{-1} e_i \quad (h \in \mathfrak{h}_{\mathbb{Z}}), \\ T_i(e_j) &= \sum_{r+s=-\langle \alpha_j, h_i \rangle} (-1)^r q_i^{-r} e_i^{(s)} e_j e_i^{(r)} \quad (j \in I, i \neq j), \\ T_i(f_j) &= \sum_{r+s=-\langle \alpha_j, h_i \rangle} (-1)^r q_i^r f_i^{(r)} f_j f_i^{(s)} \quad (j \in I, i \neq j) \end{aligned}$$

(see [11, Section 37.1]).

The multiplication of U induces

$$(2.14) \quad U^+ \cong (U^+ \cap T_i(U^+)) \otimes \mathbb{F}[e_i] \cong \mathbb{F}[e_i] \otimes (U^+ \cap T_i^{-1}(U^+)),$$

$$(2.15) \quad U^- \cong (U^- \cap T_i(U^-)) \otimes \mathbb{F}[f_i] \cong \mathbb{F}[f_i] \otimes (U^- \cap T_i^{-1}(U^-))$$

(see [11, Lemma 38.1.2]). Moreover,

$$(2.16) \quad \Delta(U^+ \cap T_i(U^+)) \subset U^{\geq 0} \otimes (U^+ \cap T_i(U^+)),$$

$$(2.17) \quad \Delta(U^+ \cap T_i^{-1}(U^+)) \subset U^0(U^+ \cap T_i^{-1}(U^+)) \otimes U^+,$$

$$(2.18) \quad \Delta(U^- \cap T_i(U^-)) \subset (U^- \cap T_i(U^-)) \otimes U^{\leq 0},$$

$$(2.19) \quad \Delta(U^- \cap T_i^{-1}(U^-)) \subset U^- \otimes U^0(U^- \cap T_i^{-1}(U^-))$$

(see [14, Lemma 2.8]).

Set

$$\sharp U^0 = \bigoplus_{\gamma \in Q} \mathbb{F} k_\gamma \subset U^0, \quad \sharp U^{\geq 0} = \sharp U^0 U^+, \quad \sharp U^{\leq 0} = \sharp U^0 U^-.$$

They are Hopf subalgebras of U . The Drinfeld pairing is the bilinear form

$$\tau : \sharp U^{\geq 0} \times \sharp U^{\leq 0} \rightarrow \mathbb{F}$$

characterized by the following properties:

- $$\begin{aligned}
 (2.20) \quad & \tau(x, y_1 y_2) = (\tau \otimes \tau)(\Delta(x), y_1 \otimes y_2) \quad (x \in {}^\sharp U^{\geq 0}, y_1, y_2 \in {}^\sharp U^{\leq 0}), \\
 (2.21) \quad & \tau(x_1 x_2, y) = (\tau \otimes \tau)(x_2 \otimes x_1, \Delta(y)) \quad (x_1, x_2 \in {}^\sharp U^{\geq 0}, y \in {}^\sharp U^{\leq 0}), \\
 (2.22) \quad & \tau(k_\gamma, k_\delta) = q^{-(\gamma, \delta)} \quad (\gamma, \delta \in Q), \\
 (2.23) \quad & \tau(e_i, f_j) = -\delta_{ij}(q_i - q_i^{-1})^{-1} \quad (i, j \in I), \\
 (2.24) \quad & \tau(e_i, k_\gamma) = \tau(k_\gamma, f_i) = 0 \quad (i \in I, \gamma \in Q).
 \end{aligned}$$

It satisfies the following properties:

- $$\begin{aligned}
 (2.25) \quad & \tau(xk_\gamma, yk_\delta) = \tau(x, y)q^{-(\gamma, \delta)} \quad (x \in U^+, y \in U^-, \gamma, \delta \in Q), \\
 (2.26) \quad & \tau(U_\gamma^+, U_{-\delta}^-) = \{0\} \quad (\gamma, \delta \in Q^+, \gamma \neq \delta), \\
 (2.27) \quad & \tau|_{U_\gamma^+ \times U_{-\gamma}^-} \text{ is non-degenerate} \quad (\gamma \in Q^+), \\
 (2.28) \quad & \tau(Sx, Sy) = \tau(x, y) \quad (x \in {}^\sharp U^{\geq 0}, y \in {}^\sharp U^{\leq 0}).
 \end{aligned}$$

Moreover, for $x \in {}^\sharp U^{\geq 0}$, $y \in {}^\sharp U^{\leq 0}$ we have

$$(2.29) \quad xy = \sum_{(x)_2, (y)_2} \tau(x_{(0)}, y_{(0)}) \tau(x_{(2)}, Sy_{(2)}) y_{(1)} x_{(1)},$$

$$(2.30) \quad yx = \sum_{(x)_2, (y)_2} \tau(Sx_{(0)}, y_{(0)}) \tau(x_{(2)}, y_{(2)}) x_{(1)} y_{(1)}.$$

(see [12, Lemma 2.1.2]).

For $i \in I$ we define linear maps

$$r_{i,\pm} : U^\pm \rightarrow U^\pm, \quad r'_{i,\pm} : U^\pm \rightarrow U^\pm$$

by

$$\begin{aligned}
 \Delta(x) & \in r_{i,+}(x)k_i \otimes e_i + \sum_{\delta \in Q^+ \setminus \{\alpha_i\}} U^{\geq 0} \otimes U_\delta^+ \quad (x \in U^+), \\
 \Delta(x) & \in e_i k_{\gamma-\alpha_i} \otimes r'_{i,+}(x) + \sum_{\delta \in Q^+ \setminus \{\alpha_i\}} U_\delta^+ U^0 \otimes U^+ \quad (x \in U_\gamma^+), \\
 \Delta(y) & \in r_{i,-}(y) \otimes f_i k_{-\gamma+\alpha_i} + \sum_{\delta \in Q^+ \setminus \{\alpha_i\}} U^- \otimes U_{-\delta}^- U^0 \quad (y \in U_{-\gamma}^-), \\
 \Delta(y) & \in f_i \otimes r'_{i,-}(y) k_i^{-1} + \sum_{\delta \in Q^+ \setminus \{\alpha_i\}} U_{-\delta}^- \otimes U^{\leq 0} \quad (y \in U^-).
 \end{aligned}$$

We have

$$(2.31) \quad U^+ \cap T_i(U^+) = \{u \in U^+ \mid \tau(u, U^- f_i) = \{0\}\} \\ = \{u \in U^+ \mid r_{i,+}(u) = 0\},$$

$$(2.32) \quad U^+ \cap T_i^{-1}(U^+) = \{u \in U^+ \mid \tau(u, f_i U^-) = \{0\}\} \\ = \{u \in U^+ \mid r'_{i,+}(u) = 0\},$$

$$(2.33) \quad U^- \cap T_i(U^-) = \{u \in U^- \mid \tau(U^+ e_i, u) = \{0\}\} \\ = \{u \in U^- \mid r'_{i,-}(u) = 0\},$$

$$(2.34) \quad U^- \cap T_i^{-1}(U^-) = \{u \in U^- \mid \tau(e_i U^+, u) = \{0\}\} \\ = \{u \in U^- \mid r_{i,-}(u) = 0\}$$

(see [11, Proposition 38.1.6]).

By (2.16), (2.17), (2.18), (2.19), (2.31), (2.32), (2.33), (2.34) we easily obtain

$$(2.35) \quad \tau(xe_i^m, yf_i^n) = \delta_{mn} \tau(x, y) \frac{q_i^{n(n-1)/2}}{(q_i^{-1} - q_i)^n} [n]!_{q_i} \\ (x \in U^+ \cap T_i(U^+), y \in U^- \cap T_i(U^-)),$$

$$(2.36) \quad \tau(e_i^m x', f_i^n y') = \delta_{mn} \tau(x', y') \frac{q_i^{n(n-1)/2}}{(q_i^{-1} - q_i)^n} [n]!_{q_i} \\ (x' \in U^+ \cap T_i^{-1}(U^+), y' \in U^- \cap T_i^{-1}(U^-)).$$

We have also

$$(2.37) \quad \tau(x, y) = \tau(T_i^{-1}(x), T_i^{-1}(y)) \\ (x \in U^+ \cap T_i(U^+), y \in U^- \cap T_i(U^-))$$

(see [11, Proposition 38.2.1], [14, Theorem 5.1]).

3. SPECIALIZATION

Let R be a subring of $\mathbb{F} = \mathbb{Q}(q)$ containing $\mathbb{A} = \mathbb{Z}[q, q^{-1}]$. We denote by U_R the R -subalgebra of U generated by k_h , $e_i^{(n)}$, $f_i^{(n)}$ ($h \in \mathfrak{h}_{\mathbb{Z}}, i \in I, n \geq 0$). It is a Hopf algebra over R .

We define subalgebras U_R^0 , U_R^+ , U_R^- , $U_R^{\geq 0}$, $U_R^{\leq 0}$ of U_R by

$$U_R^0 = U^0 \cap U_R, \quad U_R^{\pm} = U^{\pm} \cap U_R, \\ U_R^{\geq 0} = U^{\geq 0} \cap U_R, \quad U_R^{\leq 0} = U^{\leq 0} \cap U_R.$$

Setting $U_{R,\pm\gamma}^{\pm} = U_{\pm\gamma}^{\pm} \cap U_R$ for $\gamma \in Q^+$ we have

$$U_R^{\pm} = \bigoplus_{\gamma \in Q^+} U_{R,\pm\gamma}^{\pm}.$$

It is known that $U_{R,\pm\gamma}^\pm$ is a free R -module of rank $\dim U_{\pm\gamma}^\pm$ (see [11, Section 14.2]). Hence we have

$$(3.1) \quad \sum_{\gamma \in Q^+} \text{rank}_R(U_{R,-\gamma}^-) e(-\gamma) = D^{-1}$$

by (2.13).

The multiplication of U_R induces isomorphisms

$$\begin{aligned} U_R &\cong U_R^+ \otimes U_R^0 \otimes U_R^- \cong U_R^- \otimes U_R^0 \otimes U_R^+, \\ U_R^{\geq 0} &\cong U_R^+ \otimes U_R^0 \cong U_R^0 \otimes U_R^+, \quad U_R^{\leq 0} \cong U_R^- \otimes U_R^0 \cong U_R^0 \otimes U_R^- \end{aligned}$$

of R -modules.

For $i \in I$ the algebra automorphisms $T_i^{\pm 1} : U \rightarrow U$ preserve U_R .

LEMMA 3.1. *The multiplication of U_R induces isomorphisms*

$$(3.2) \quad U_R^+ \cong (U_R^+ \cap T_i(U_R^+)) \otimes_R \left(\bigoplus_{n=0}^{\infty} R e_i^{(n)} \right),$$

$$(3.3) \quad U_R^+ \cong \left(\bigoplus_{n=0}^{\infty} R e_i^{(n)} \right) \otimes_R (U_R^+ \cap T_i^{-1}(U_R^+)),$$

$$(3.4) \quad U_R^- \cong (U_R^- \cap T_i(U_R^-)) \otimes_R \left(\bigoplus_{n=0}^{\infty} R f_i^{(n)} \right),$$

$$(3.5) \quad U_R^- \cong \left(\bigoplus_{n=0}^{\infty} R f_i^{(n)} \right) \otimes_R (U_R^- \cap T_i^{-1}(U_R^-)).$$

PROOF. We only show (3.2). The injectivity of the canonical homomorphism

$$(U_R^+ \cap T_i(U_R^+)) \otimes_R \left(\bigoplus_{n=0}^{\infty} R e_i^{(n)} \right) \rightarrow U_R^+$$

is clear. To show the surjectivity it is sufficient to verify that its image is stable under the left multiplication by $e_j^{(n)}$ for any $j \in I$ and $n \geq 0$.

If $j \neq i$, this is clear since $e_j^{(n)} \in U_R^+ \cap T_i(U_R^+)$. Consider the case $j = i$. By (2.31) and the general formula

$$r_{i,+}(xx') = q_i^{\langle \gamma', \alpha_i^\vee \rangle} r_{i,+}(x)x' + xr_{i,+}(x') \quad (x \in U^+, x' \in U_{\gamma'}^+)$$

we easily obtain

$$x \in U_\gamma^+ \cap T_i(U^+) \implies e_i x - q_i^{\langle \gamma, \alpha_i^\vee \rangle} x e_i \in U_{\gamma+\alpha_i}^+ \cap T_i(U^+).$$

Now let $x \in U_{R,\gamma}^+ \cap T_i(U_R^+)$. Define $x_k \in U_{\gamma+k\alpha_i}^+ \cap T_i(U^+)$ inductively by $x_0 = x$, $x_{k+1} = \frac{1}{[k+1]_{q_i}} (e_i x_k - q_i^{\langle \gamma, \alpha_i^\vee \rangle + 2k} x_k e_i)$. Then we see by induction on n that

$$(3.6) \quad e_i^{(n)} x = \sum_{k=0}^n q_i^{(n-k)(\langle \gamma, \alpha_i^\vee \rangle + k)} x_k e_i^{(n-k)},$$

or equivalently,

$$(3.7) \quad x_n = e_i^{(n)}x - \sum_{k=0}^{n-1} q_i^{(n-k)(\langle \gamma, \alpha_i^\vee \rangle + k)} x_k e_i^{(n-k)}.$$

We obtain from (3.7) that $x_n \in U_R^+$ by induction on n . By $T_i(U_R) = U_R$ we have $x_n \in U_R^+ \cap T_i(U^+) = U_R^+ \cap T_i(U_R^+)$. It follows that $e_i^{(n)}(U_R^+ \cap T_i(U_R^+)) \subset \sum_{k=0}^n (U_R^+ \cap T_i(U_R^+)) e_i^{(k)}$ by (3.6). \square

We set

$$\sharp U_R^0 = \bigoplus_{\gamma \in Q} Rk_\gamma \subset U_R^0, \quad \sharp U_R^{\geq 0} = \sharp U_R^0 U_R^+, \quad \sharp U_R^{\leq 0} = \sharp U_R^0 U_R^-.$$

Define a subring $\tilde{\mathbb{A}}$ of \mathbb{F} by

$$(3.8) \quad \begin{aligned} \tilde{\mathbb{A}} &= \mathbb{Z}[q, q^{-1}, (q - q^{-1})^{-1}, [n]_q^{-1} \mid n > 0] \\ &= \mathbb{Z}[q, q^{-1}, (q^n - 1)^{-1} \mid n > 0]. \end{aligned}$$

Then the Drinfeld pairing induces a bilinear form

$$\tau_{\tilde{\mathbb{A}}} : \sharp U_{\tilde{\mathbb{A}}}^{\geq 0} \times \sharp U_{\tilde{\mathbb{A}}}^{\leq 0} \rightarrow \tilde{\mathbb{A}}.$$

For $\gamma \in Q^+$ we denote its restriction to $U_{\tilde{\mathbb{A}}, \gamma}^+ \times U_{\tilde{\mathbb{A}}, -\gamma}^-$ by

$$\tau_{\tilde{\mathbb{A}}, \gamma} : U_{\tilde{\mathbb{A}}, \gamma}^+ \times U_{\tilde{\mathbb{A}}, -\gamma}^- \rightarrow \tilde{\mathbb{A}}.$$

In the rest of this paper we fix a field K and $z \in K^\times$ which is not a root of 1, and consider the Hopf algebra

$$(3.9) \quad U_z = K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}},$$

where $\tilde{\mathbb{A}} \rightarrow K$ is given by $q \mapsto z$. We define subalgebras $U_z^0, U_z^+, U_z^-, U_z^{\geq 0}, U_z^{\leq 0}$ of U_z by

$$\begin{aligned} U_z^0 &= K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}}^0, & U_z^\pm &= K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}}^\pm, \\ U_z^{\geq 0} &= K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}}^{\geq 0}, & U_z^{\leq 0} &= K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}}^{\leq 0}. \end{aligned}$$

For $\gamma \in Q^+$ we set $U_{z, \pm \gamma}^\pm = K \otimes_{\tilde{\mathbb{A}}} U_{\tilde{\mathbb{A}}, \pm \gamma}^\pm$. Then we have

$$U_z^0 = \bigoplus_{h \in \mathfrak{h}_{\mathbb{Z}}} Kk_h, \quad U_z^\pm = \bigoplus_{\gamma \in Q^+} U_{z, \pm \gamma}^\pm.$$

By (3.1) we have

$$(3.10) \quad \sum_{\gamma \in Q^+} \dim U_{z, -\gamma}^- e(-\gamma) = D^{-1}.$$

Moreover, setting

$$U_{z, \gamma} = \{u \in U_z \mid k_h u k_h^{-1} = z^{\langle \gamma, h \rangle} u \quad (h \in \mathfrak{h}_{\mathbb{Z}})\} \quad (\gamma \in Q),$$

we have $U_{z,\pm\gamma}^\pm = U_z^\pm \cap U_{z,\gamma}$ since z is not a root of 1. The multiplication of U_z induces isomorphisms

$$(3.11) \quad U_z \cong U_z^+ \otimes U_z^0 \otimes U_z^- \cong U_z^- \otimes U_z^0 \otimes U_z^+,$$

$$(3.12) \quad U_z^{\geq 0} \cong U_z^+ \otimes U_z^0 \cong U_z^0 \otimes U_z^+, \quad U_z^{\leq 0} \cong U_z^- \otimes U_z^0 \cong U_z^0 \otimes U_z^-$$

of K -modules. Here, \otimes denotes \otimes_K .

For a U_z -module V and $\lambda \in P$ we set

$$V_\lambda = \{v \in V \mid k_h v = z^{\langle \lambda, h \rangle} v \ (h \in \mathfrak{h}_\mathbb{Z})\}.$$

We say that a U_z -module V is integrable if $V = \bigoplus_{\lambda \in P} V_\lambda$ and for any $v \in V$ and $i \in I$ there exists some $N > 0$ such that $e_i^{(n)} v = f_i^{(n)} v = 0$ for $n \geq N$.

For $i \in I$ and an integrable U_z -module V define an operator $T_i : V \rightarrow V$ by

$$T_i v = \sum_{-a+b-c=\langle \lambda, h_i \rangle} (-1)^b z_i^{-ac+b} e_i^{(a)} f_i^{(b)} e_i^{(c)} v \quad (v \in V_\lambda),$$

where $z_i = z^{(\alpha_i, \alpha_i)/2}$. It is invertible, and satisfies $T_i V_\lambda = V_{s_i \lambda}$ for $\lambda \in P$. We denote by $T_i : U_z \rightarrow U_z$ the algebra automorphism of U_z induced from $T_i : U_{\tilde{\mathbb{A}}} \rightarrow U_{\tilde{\mathbb{A}}}$. Then we have $T_i(U_{z,\gamma}) = U_{z,s_i \gamma}$ for $\gamma \in Q$.

LEMMA 3.2. *The multiplication of U_z induces isomorphisms*

$$(3.13) \quad U_z^+ \cong (U_z^+ \cap T_i(U_z^+)) \otimes \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right),$$

$$(3.14) \quad U_z^+ \cong \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right) \otimes (U_z^+ \cap T_i^{-1}(U_z^+)),$$

$$(3.15) \quad U_z^- \cong (U_z^- \cap T_i(U_z^-)) \otimes \left(\bigoplus_{n=0}^{\infty} K f_i^{(n)} \right),$$

$$(3.16) \quad U_z^- \cong \left(\bigoplus_{n=0}^{\infty} K f_i^{(n)} \right) \otimes (U_z^- \cap T_i^{-1}(U_z^-)).$$

PROOF. We only show (3.13). By Lemma 3.1 we have

$$U_z^+ \cong \left(K \otimes_{\tilde{\mathbb{A}}} (U_{\tilde{\mathbb{A}}}^+ \cap T_i(U_{\tilde{\mathbb{A}}}^+)) \right) \otimes \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right).$$

By $U_{\tilde{\mathbb{A}}}^+ \cap T_i(U_{\tilde{\mathbb{A}}}^+) = U_{\tilde{\mathbb{A}}}^+ \cap T_i(U_z^+)$ the canonical map $K \otimes_{\tilde{\mathbb{A}}} (U_{\tilde{\mathbb{A}}}^+ \cap T_i(U_{\tilde{\mathbb{A}}}^+)) \rightarrow U_z^+ \cap T_i(U_z^+)$ is injective. Hence we have a sequence of

canonical maps

$$\begin{aligned} U_z^+ &\cong \left(K \otimes_{\tilde{\mathbb{A}}} (U_{\tilde{\mathbb{A}}}^+ \cap T_i(U_{\tilde{\mathbb{A}}}^+)) \right) \otimes \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right) \\ &\hookrightarrow (U_z^+ \cap T_i(U_z^+)) \otimes \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right) \rightarrow U_z^+. \end{aligned}$$

Therefore, it is sufficient to show that

$$(U_z^+ \cap T_i(U_z^+)) \otimes \left(\bigoplus_{n=0}^{\infty} K e_i^{(n)} \right) \rightarrow U_z$$

is injective. This follows by applying T_i to $U_z^+ \otimes U_z^{\leq 0} \cong U_z$. \square

We set

$$\sharp U_z^0 = K \otimes_{\tilde{\mathbb{A}}} \sharp U_{\tilde{\mathbb{A}}}^0, \quad \sharp U_z^{\geq 0} = K \otimes_{\tilde{\mathbb{A}}} \sharp U_{\tilde{\mathbb{A}}}^{\geq 0}, \quad \sharp U_z^{\leq 0} = K \otimes_{\tilde{\mathbb{A}}} \sharp U_{\tilde{\mathbb{A}}}^{\leq 0}.$$

They are Hopf subalgebras of U_z . The Drinfeld pairing induces a bilinear form

$$\tau_z : \sharp U_z^{\geq 0} \times \sharp U_z^{\leq 0} \rightarrow K.$$

For $\gamma \in Q^+$ we denote its restriction to $U_{z,\gamma}^+ \times U_{z,-\gamma}^-$ by

$$\tau_{z,\gamma} : U_{z,\gamma}^+ \times U_{z,-\gamma}^- \rightarrow K.$$

4. THE MODIFIED ALGEBRA

Set

$$\begin{aligned} J_z^+ &= \{x \in U_z^+ \mid \tau_z(x, U_z^-) = \{0\}\}, \\ J_z^- &= \{y \in U_z^- \mid \tau_z(U_z^+, y) = \{0\}\}. \end{aligned}$$

For $\gamma \in Q^+$ we set

$$J_{z,\pm\gamma}^{\pm} = J_z^{\pm} \cap U_{z,\pm\gamma}^{\pm}.$$

By (2.26) we have

$$(4.1) \quad J_z^{\pm} = \bigoplus_{\gamma \in Q^+ \setminus \{0\}} J_{z,\pm\gamma}^{\pm}.$$

Define a two-sided ideal J_z of U_z by

$$J_z = U_z J_z^+ U_z + U_z J_z^- U_z.$$

PROPOSITION 4.1. (i) *We have*

$$\Delta(J_z) \subset U_z \otimes J_z + J_z \otimes U_z, \quad \varepsilon(J_z) = \{0\}, \quad S(J_z) \subset J_z.$$

(ii) *Under the isomorphism $U_z \cong U_z^+ \otimes U_z^0 \otimes U_z^-$ (resp. $U_z \cong U_z^- \otimes U_z^0 \otimes U_z^+$) induced by the multiplication of U_z we have*

$$\begin{aligned} J_z &\cong J_z^+ \otimes U_z^0 \otimes U_z^- + U_z^+ \otimes U_z^0 \otimes J_z^-, \\ (\text{resp. } J_z &\cong J_z^- \otimes U_z^0 \otimes U_z^+ + U_z^- \otimes U_z^0 \otimes J_z^+). \end{aligned}$$

PROOF. (i) It is sufficient to show

$$(4.2) \quad \Delta(J_z^+) \subset J_z^{+\#} U_z^0 \otimes U_z^+ + \# U_z^{\geq 0} \otimes J_z^+,$$

$$(4.3) \quad \Delta(J_z^-) \subset J_z^- \otimes \# U_z^{\leq 0} + \# U_z^- \otimes J_z^- \# U_z^0,$$

$$(4.4) \quad \varepsilon(J_z^\pm) = \{0\},$$

$$(4.5) \quad S(J_z^\pm) \subset J_z^{\pm\#} U_z^0.$$

By (2.25) we have

$$J_z^{+\#} U_z^0 = \{x \in \# U_z^{\geq 0} \mid \tau_z(x, U_z^-) = \{0\}\}.$$

Hence in order to verify (4.2) it is sufficient to show

$$\tau_z(\Delta(J_z^+), U_z^- \otimes U_z^-) = \{0\}.$$

This follows from (2.20). The proof of (4.3) is similar. The assertions (4.4) and (4.5) follow from (4.1) and (2.28), respectively.

(ii) It is sufficient to show

$$(4.6) \quad J_z^\pm U_z^\pm = U_z^\pm J_z^\pm = J_z^\pm,$$

$$(4.7) \quad J_z^+ U_z^{\leq 0} = U_z^{\leq 0} J_z^+, \quad J_z^- U_z^{\geq 0} = U_z^{\geq 0} J_z^-.$$

The assertion (4.6) follows from (2.20), (2.21), (2.25). By (4.1) we have $J_z^\pm U_z^0 = U_z^0 J_z^\pm$. Hence in order to show (4.7) it is sufficient to show $J_z^{+\#} U_z^{\leq 0} = \# U_z^{\leq 0} J_z^+$ and $J_z^{-\#} U_z^{\geq 0} = \# U_z^{\geq 0} J_z^-$. Let $x \in J_z^+$, $y \in \# U_z^{\leq 0}$. By (4.2) we have

$$\Delta_2(x)$$

$$\in \# U_z^{\geq 0} \otimes \# U_z^{\leq 0} \otimes J_z^+ + \# U_z^{\geq 0} \otimes J_z^{+\#} U_z^0 \otimes U_z^+ + J_z^{+\#} U_z^0 \otimes \# U_z^{\geq 0} \otimes U_z^+.$$

Hence we have $xy \in \# U_z^{\leq 0} J_z^+$ and $yx \in J_z^{+\#} U_z^{\leq 0}$ by (2.29), (2.30). It follows that $J_z^{+\#} U_z^{\leq 0} = \# U_z^{\leq 0} J_z^+$. The proof of $J_z^{-\#} U_z^{\geq 0} = \# U_z^{\geq 0} J_z^-$ is similar. \square

By (2.35), (2.36), (2.37) we see easily the following.

LEMMA 4.2. *For $i \in I$ we have*

$$J_z^- \cong (J_z^- \cap T_i(U_z^-)) \otimes \left(\bigoplus_{n=0}^{\infty} Kf_i^{(n)} \right),$$

$$J_z^- \cong \left(\bigoplus_{n=0}^{\infty} Kf_i^{(n)} \right) \otimes (J_z^- \cap T_i^{-1}(U_z^-)).$$

Moreover, we have

$$T_i^{-1}(J_z^- \cap T_i(U_z^-)) = J_z^- \cap T_i^{-1}(U_z^-).$$

We set

$$(4.8) \quad \overline{U}_z = U_z / J_z.$$

It is a Hopf algebra by Proposition 4.1. Denote by \overline{U}_z^0 , \overline{U}_z^\pm , $\overline{U}_z^{\geq 0}$, $\overline{U}_z^{\leq 0}$, $\sharp \overline{U}_z^0$, $\sharp \overline{U}_z^{\geq 0}$, $\sharp \overline{U}_z^{\leq 0}$, $\overline{U}_{z,\pm\gamma}^\pm$ ($\gamma \in Q^+$) the images of U_z^0 , U_z^\pm , $U_z^{\geq 0}$, $U_z^{\leq 0}$, $\sharp U_z^0$, $\sharp U_z^{\geq 0}$, $\sharp U_z^{\leq 0}$, $U_{z,\pm\gamma}^\pm$ under $U_z \rightarrow \overline{U}_z$ respectively. By the above argument we have

$$\begin{aligned}\overline{U}_z &\cong \overline{U}_z^+ \otimes \overline{U}_z^0 \otimes \overline{U}_z^- \cong \overline{U}_z^- \otimes \overline{U}_z^0 \otimes \overline{U}_z^+, \\ \overline{U}_z^{\geq 0} &\cong \overline{U}_z^+ \otimes \overline{U}_z^0 \cong \overline{U}_z^0 \otimes \overline{U}_z^+, \quad \overline{U}_z^{\leq 0} \cong \overline{U}_z^- \otimes \overline{U}_z^0 \cong \overline{U}_z^0 \otimes \overline{U}_z^-, \\ \sharp \overline{U}_z^{\geq 0} &\cong \overline{U}_z^+ \otimes \sharp \overline{U}_z^0 \cong \sharp \overline{U}_z^0 \otimes \overline{U}_z^+, \quad \sharp \overline{U}_z^{\leq 0} \cong \overline{U}_z^- \otimes \sharp \overline{U}_z^0 \cong \sharp \overline{U}_z^0 \otimes \overline{U}_z^-, \\ \overline{U}_z^0 &\cong U_z^0 = \bigoplus_{h \in \mathfrak{h}_{\mathbb{Z}}} Kk_h, \quad \sharp \overline{U}_z^0 \cong \sharp U_z^0 = \bigoplus_{\gamma \in Q} Kk_\gamma,\end{aligned}$$

and

$$(4.9) \quad \overline{U}_z^\pm = \bigoplus_{\gamma \in Q^+} \overline{U}_{z,\pm\gamma}^\pm, \quad \overline{U}_{z,\pm\gamma}^\pm \cong U_{z,\pm\gamma}^\pm / J_{z,\pm\gamma}^\pm.$$

By definition τ_z induces a bilinear form

$$\overline{\tau}_z : \sharp \overline{U}_z^{\geq 0} \times \sharp \overline{U}_z^{\leq 0} \rightarrow K$$

such that for any $\gamma \in Q^+$ its restriction

$$\overline{\tau}_{z,\gamma} : \overline{U}_{z,\gamma}^+ \times \overline{U}_{z,-\gamma}^- \rightarrow K$$

is non-degenerate.

For $\lambda \in P$ and a \overline{U}_z -module V we set

$$V_\lambda = \{v \in V \mid k_h v = z^{\langle \lambda, h \rangle} v \ (h \in \mathfrak{h}_{\mathbb{Z}})\}.$$

We define a category $\mathcal{O}(\overline{U}_z)$ as follows. Its objects are \overline{U}_z -modules V which satisfy

$$(4.10) \quad V = \bigoplus_{\lambda \in P} V_\lambda, \quad \dim V_\lambda < \infty \quad (\lambda \in P),$$

and such that there exist finitely many $\lambda_1, \dots, \lambda_r \in P$ such that

$$\{\lambda \in P \mid V_\lambda \neq \{0\}\} \subset \bigcup_{k=1}^r (\lambda_k - Q^+).$$

The morphisms are homomorphisms of \overline{U}_z -modules.

We say that a \overline{U}_z -module V is integrable if $V = \bigoplus_{\lambda \in P} V_\lambda$ and for any $v \in V$ there exists $N > 0$ such that for $i \in I$ and $n \geq N$ we have $e_i^{(n)} v = f_i^{(n)} v = 0$. We denote by $\mathcal{O}^{\text{int}}(\overline{U}_z)$ the full subcategory of $\mathcal{O}(\overline{U}_z)$ consisting of integrable \overline{U}_z -modules belonging to $\mathcal{O}(\overline{U}_z)$.

For each coset $C = \mu + Q \in P/Q$ we denote by $\mathcal{O}_C(\overline{U}_z)$ the full subcategory of $\mathcal{O}(\overline{U}_z)$ consisting of $V \in \mathcal{O}_C(\overline{U}_z)$ such that $V = \bigoplus_{\lambda \in C} V_\lambda$. We also set $\mathcal{O}_C^{\text{int}}(\overline{U}_z) = \mathcal{O}_C(\overline{U}_z) \cap \mathcal{O}^{\text{int}}(\overline{U}_z)$. Then we have

$$(4.11) \quad \mathcal{O}(\overline{U}_z) = \bigoplus_{C \in P/Q} \mathcal{O}_C(\overline{U}_z), \quad \mathcal{O}^{\text{int}}(\overline{U}_z) = \bigoplus_{C \in P/Q} \mathcal{O}_C^{\text{int}}(\overline{U}_z).$$

For $\lambda \in P$ we define $M_z(\lambda) \in \mathcal{O}_{\lambda+Q}(\overline{U}_z)$ by

$$M_z(\lambda) = \overline{U}_z / \left(\sum_{h \in \mathfrak{h}_{\mathbb{Z}}} \overline{U}_z(k_h - z^{\langle \lambda, h \rangle}) + \sum_{i \in I} \overline{U}_z e_i \right),$$

and for $\lambda \in P^+$ we define $V_z(\lambda) \in \mathcal{O}_{\lambda+Q}^{\text{int}}(\overline{U}_z)$ by

$$V_z(\lambda) = \overline{U}_z / \left(\sum_{h \in \mathfrak{h}_{\mathbb{Z}}} \overline{U}_z(k_h - z^{\langle \lambda, h \rangle}) + \sum_{i \in I} \overline{U}_z e_i + \sum_{i \in I} \overline{U}_z f_i^{(\langle \lambda, h_i \rangle + 1)} \right).$$

Let $\lambda \in P$. A \overline{U}_z -module V is called a highest weight module with highest weight λ if there exists $v \in V_{\lambda} \setminus \{0\}$ such that $V = \overline{U}_z v$ and $xv = \varepsilon(x)v$ ($x \in \overline{U}_z^+$). Then we have $V \in \mathcal{O}_{\lambda+Q}(\overline{U}_z)$. A \overline{U}_z -module is a highest weight module with highest weight λ if and only if it is a non-zero quotient of $M_z(\lambda)$. If there exists an integrable highest weight module with highest weight λ , then we have $\lambda \in P^+$. For $\lambda \in P^+$ a \overline{U}_z -module is an integrable highest weight module with highest weight λ if and only if it is a non-zero quotient of $V_z(\lambda)$.

For $V \in \mathcal{O}(\overline{U}_z)$ we define its formal character by

$$\text{ch}(V) = \sum_{\lambda \in P} \dim V_{\lambda} e(\lambda) \in \mathcal{E}.$$

We have

$$\text{ch}(M_z(\lambda)) = e(\lambda) \overline{D}^{-1} \quad (\lambda \in P),$$

where

$$\overline{D}^{-1} = \sum_{\gamma \in Q^+} \dim \overline{U}_{z,-\gamma}^- e(-\gamma) \quad (\lambda \in P).$$

For each coset $C = \mu + Q \in P/Q$ we fix a function $f_C : C \rightarrow \mathbb{Z}$ such that

$$f_C(\lambda) - f_C(\lambda - \alpha_i) = 2\langle \lambda, t_i \rangle \quad (\lambda \in C, i \in I).$$

REMARK 4.3. The function f_C is unique up to addition of a constant function. If we extend $(,) : E \times E \rightarrow \mathbb{Q}$ to a W -invariant symmetric bilinear form on \mathfrak{h}^* , then f_C is given by

$$f_C(\lambda) = (\lambda + \rho, \lambda + \rho) + a \quad (\lambda \in C)$$

for some $a \in \mathbb{Q}$.

For $\gamma \in Q^+$ let $\overline{C}_{\gamma} \in \overline{U}_{z,\gamma}^+ \otimes \overline{U}_{z,-\gamma}^-$ be the canonical element of the non-degenerate bilinear form $\overline{\tau}_{z,\gamma}$. Following Drinfeld we set

$$\Omega_{\gamma} = (m \circ (S \otimes 1) \circ P)(\overline{C}_{\gamma}) \in \overline{U}_{z,-\gamma}^- \overline{U}_z^0 \overline{U}_{z,\gamma}^+,$$

where $m : \overline{U}_z \otimes \overline{U}_z \rightarrow \overline{U}_z$ and $P : \overline{U}_z \otimes \overline{U}_z \rightarrow \overline{U}_z \otimes \overline{U}_z$ are given by $m(a, b) = ab$, $P(a \otimes b) = b \otimes a$ (see [12, Section 3.2], [11, Section 6.1]). Let $C \in P/Q$. For $V \in \mathcal{O}_C(\overline{U}_z)$ we define a linear map

$$(4.12) \quad \Omega : V \rightarrow V$$

by

$$\Omega(v) = z^{f_C(\lambda)} \sum_{\gamma \in Q^+} \Omega_\gamma v \quad (v \in V_\lambda).$$

This operator is called the quantum Casimir operator. As in [12, Section 3.2] we have the following.

PROPOSITION 4.4. *Let $C \in P/Q$. For $\lambda \in C$ the operator Ω acts on $M_z(\lambda)$ as $z^{f_C(\lambda)} \text{id}$.*

Since z is not a root of 1, we have

$$z^{f_C(\lambda)} = z^{f_C(\mu)} \implies f_C(\lambda) = f_C(\mu).$$

5. MAIN RESULTS

For $w \in W$ and $x = \sum_{\lambda \in P} c_\lambda e(\lambda) \in \mathcal{E}$ we set

$$wx = \sum_{\lambda \in P} c_\lambda e(w\lambda), \quad w \circ x = \sum_{\lambda \in P} c_\lambda e(w \circ \lambda).$$

The elements $wx, w \circ x$ may not belong to \mathcal{E} ; however, we will only consider the case where $wx, w \circ x \in \mathcal{E}$.

We denote by $\text{sgn} : W \rightarrow \{\pm 1\}$ the character given by $\text{sgn}(s_i) = -1$ for $i \in I$.

PROPOSITION 5.1. *For any $w \in W$ we have $w \circ \overline{D} = \text{sgn}(w)\overline{D}$.*

PROOF. We may assume that $w = s_i$ for $i \in I$. Define $D_i, \overline{D}_i \in \mathcal{E}$ by

$$D = (1 - e(-\alpha_i))D_i, \quad \overline{D} = (1 - e(-\alpha_i))\overline{D}_i.$$

Then we have $D_i = \prod_{\alpha \in \Delta^+ \setminus \{\alpha_i\}} (1 - e(-\alpha))^{m_\alpha}$. Moreover, by Lemma 3.2, Lemma 4.2 and (4.9) we have

$$\begin{aligned} D_i^{-1} &= \sum_{\gamma \in Q^+} \dim(U_{z,-\gamma}^- \cap T_i(U_z^-))e(-\gamma) \\ &= \sum_{\gamma \in Q^+} \dim(U_{z,-\gamma}^- \cap T_i^{-1}(U_z^-))e(-\gamma), \\ \overline{D}_i^{-1} &= D_i^{-1} - \sum_{\gamma \in Q^+} \dim(J_{z,-\gamma}^- \cap T_i(U_z^-))e(-\gamma) \\ &= D_i^{-1} - \sum_{\gamma \in Q^+} \dim(J_{z,-\gamma}^- \cap T_i^{-1}(U_z^-))e(-\gamma). \end{aligned}$$

By $s_i \circ \overline{D} = -(1 - e(-\alpha_i))s_i \overline{D}_i$ we have only to show $s_i \overline{D}_i = \overline{D}_i$. By Lemma 4.2 we have

$$\begin{aligned} & s_i \left(\sum_{\gamma \in Q^+} \dim(J_{z,-\gamma}^- \cap T_i(U_z^-))e(-\gamma) \right) \\ &= \sum_{\gamma \in Q^+} \dim(J_z^- \cap T_i(U_{z,-\gamma}^-))e(-\gamma) \\ &= \sum_{\gamma \in Q^+} \dim(J_{z,-\gamma}^- \cap T_i^{-1}(U_z^-))e(-\gamma), \end{aligned}$$

and hence the assertion follows from $s_i D_i = D_i$. \square

PROPOSITION 5.2. *Let $\lambda \in P^+$. Assume that V is an integrable highest weight \overline{U}_z -module with highest weight λ . Then we have*

$$\text{ch}(V) = \sum_{w \in W} \text{sgn}(w) \text{ch}(M_z(w \circ \lambda)).$$

PROOF. The proof below is the same as the one for Lie algebras in Kac [6, Theorem 10.4].

Set $C = \lambda + Q \in P/Q$. Similarly to [6, Proposition 9.8] we have

$$(5.1) \quad \text{ch}(V) = \sum_{\mu \in \lambda - Q^+, f_C(\mu) = f_C(\lambda)} c_\mu \text{ch}(M_z(\mu)) \quad (c_\mu \in \mathbb{Z}, c_\lambda = 1).$$

Multiplying (5.1) by \overline{D} we obtain

$$\overline{D} \text{ch}(V) = \sum_{\mu \in \lambda - Q^+, f_C(\mu) = f_C(\lambda)} c_\mu e(\mu).$$

Using the action of T_i ($i \in I$) on V we see that $w \text{ch}(V) = \text{ch}(V)$ for $w \in W$, and hence $w \circ (\overline{D} \text{ch}(V)) = \text{sgn}(w) \overline{D} \text{ch}(V)$ for any $w \in W$. It follows that

$$(5.2) \quad c_\mu = \text{sgn}(w) c_{w \circ \mu} \quad (\mu \in \lambda - Q^+, w \in W).$$

Assume that $\mu \in \lambda - Q^+$ satisfies $c_\mu \neq 0$. By (5.2) $W \circ \mu \subset \lambda - Q^+$, and hence we can take $\mu' \in W \circ \mu$ such that $\text{ht}(\lambda - \mu')$ is minimal, where $\text{ht}(\sum_i m_i \alpha_i) = \sum_i m_i$. Then we have $\langle \mu', h_i \rangle \geq 0$ for any $i \in I$ by $s_i \circ \mu' = \mu' - (\langle \mu', h_i \rangle + 1)\alpha_i$ and (5.2). Namely, we have $\mu' \in P^+$. Then by [6, Lemma 10.3] we obtain $\mu' = \lambda$. \square

REMARK 5.3. I. Heckenberger pointed out to me that Proposition 5.2 also follows from the existence of the BGG resolution of integrable highest weight modules of quantized enveloping algebras given in [5]

Recall that any integrable highest weight module V with highest weight λ is a quotient of $V_z(\lambda)$. Proposition 5.2 tells us that its character $\text{ch}(V)$ only depends on λ . It follows that any integrable highest weight module with highest weight λ is isomorphic to $V_z(\lambda)$.

Consider the case $\lambda = 0$. Since $V_z(0)$ is the trivial one-dimensional module, we obtain the identity

$$1 = \left(\sum_{w \in W} \text{sgn}(w) e(w \circ 0) \right) \left(\sum_{\gamma \in Q^+} \dim \overline{U}_{z,-\gamma}^- e(-\gamma) \right)$$

in \mathcal{E} by Proposition 5.2. On the other hand by the corresponding result for the Kac-Moody Lie algebra we have

$$1 = \left(\sum_{w \in W} \text{sgn}(w) e(w \circ 0) \right) \left(\sum_{\gamma \in Q^+} \dim U_{z,-\gamma}^- e(-\gamma) \right).$$

It follows that $U_{z,-\gamma}^- \cong \overline{U}_{z,-\gamma}^-$ for any $\gamma \in Q^+$. By $\dim U_{z,-\gamma}^- = \dim U_{z,\gamma}^+$ and the non-degeneracy of $\overline{\tau}_{z,\gamma}$ we also have $U_{z,\gamma}^+ \cong \overline{U}_{z,\gamma}^+$ for any $\gamma \in Q^+$. We have obtained the following results.

THEOREM 5.4. *The Drinfeld pairing*

$$\tau_{z,\gamma} : U_{z,\gamma}^+ \times U_{z,-\gamma}^- \rightarrow K$$

is non-degenerate for any $\gamma \in Q^+$.

THEOREM 5.5. *Let $\lambda \in P^+$. Assume that V is an integrable highest weight U_z -module with highest weight λ . Then we have*

$$\text{ch}(V) = D^{-1} \sum_{w \in W} \text{sgn}(w) e(w \circ \lambda).$$

By Theorem 5.4 we can define the quantum Casimir operator Ω for U_z . As in [11, Section 6.2] we have the following.

THEOREM 5.6. *Any object of $\mathcal{O}^{\text{int}}(U_z)$ is a direct sum of $V_z(\lambda)$'s for $\lambda \in P^+$.*

By Theorem 5.4 we have the following.

THEOREM 5.7. *Let $\gamma \in Q^+$. Take bases $\{x_r\}$ and $\{y_s\}$ of $U_{\mathbb{A},\gamma}^+$ and $U_{\mathbb{A},-\gamma}^-$ respectively, and set $f_\gamma = \det(\tau_{\tilde{\mathbb{A}},\gamma}(x_r, y_s))_{r,s}$. Then we have $f_\gamma \in \tilde{\mathbb{A}}^\times$. Namely, we have*

$$f_\gamma = \pm q^a f_1^{\pm 1} \cdots f_N^{\pm 1},$$

where $a \in \mathbb{Z}$, and $f_1, \dots, f_N \in \mathbb{Z}[q]$ are cyclotomic polynomials.

PROOF. We can write $f_\gamma = mgh$, where $m \in \mathbb{Z}_{>0}$, $g \in \mathbb{Z}[q]$ is a primitive polynomial with $g(0) > 0$ whose irreducible factor is not cyclotomic, and $h \in \tilde{\mathbb{A}}^\times$. Note that for any field K and $z \in K^\times$ which is not a root of 1, the specialization of f_γ with respect to the ring homomorphism $\tilde{\mathbb{A}} \rightarrow K$ ($q \mapsto z$) is non-zero by Theorem 5.4. Hence we see easily that $m = 1$ and $g = 1$. \square

In the finite case Theorem 5.7 is well-known (see [8], [9], [11]). In the affine case this is a consequence of Damiani [3], [4], where $\det(\tau_{\tilde{A}, \gamma}(x_r, y_s))_{r,s}$ is determined explicitly by a case-by-case calculation.

REFERENCES

- [1] H. Andersen, P. Polo, K. Wen *Representations of quantum algebras*. Invent. Math. **104** (1991), 1–59.
- [2] V. Chari and N. Jing, *Realization of level one representations of $U_q(\widehat{\mathfrak{g}})$ at a root of unity*. Duke Math.J. **108** (2001), 183–197.
- [3] I. Damiani *The highest coefficient of $\det H_\eta$ and the center of the specialization at odd roots of unity for untwisted affine quantum algebras*. J. Algebra **186** (1996), no. 3, 736–780.
- [4] I. Damiani *The R-matrix for (twisted) affine quantum algebras*. Representations and quantizations (Shanghai, 1998), 89–144, China High. Educ. Press, Beijing, 2000.
- [5] I. Heckenberger, S. Kolb, *On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras*. Transform. Groups **12** (2007), no. 4, 647–655.
- [6] V. Kac, *Infinite dimensional Lie algebras. Third edition*. Cambridge University Press, Cambridge, 1990.
- [7] M. Kashiwara *On crystal bases*. Representations of groups (Banff, AB, 1994), 155–197, CMS Conf. Proc., **16**, Amer. Math. Soc., Providence, RI, 1995.
- [8] A. N. Kirillov, N. Reshetikhin, *q -Weyl group and a multiplicative formula for universal R-matrices*. Comm. Math. Phys. **134** (1990), no. 2, 421–431.
- [9] S. Z. Levendorskii, Ya. S. Soibelman, *Some applications of the quantum Weyl groups*. J. Geom. Phys. **7** (1990), no. 2, 241–254.
- [10] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras. Adv. in Math. **70** (1988), 237–249 .
- [11] G. Lusztig, *Introduction to quantum groups*. Progr. Math., **110**, Boston etc. Birkhäuser, 1993.
- [12] T. Tanisaki, *Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras*. Inter. J. Mod. Phys. **A7**, Suppl. 1B (1992), 941–961.
- [13] T. Tanisaki, *Modules over quantized coordinate algebras and PBW-bases*. to appear in J. Math. Soc. Japan, arXiv:1409.7973.
- [14] T. Tanisaki, *Invariance of the Drinfeld pairing of a quantum group*. to appear in Tokyo J. Math., arXiv:1503.04573.
- [15] S. Tsuchioka, *Graded Cartan determinants of the symmetric groups*. Trans. Amer. Math. Soc. **366** (2014), 2019–2040.

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, 3-3-138, SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558-8585 JAPAN
E-mail address: tanisaki@sci.osaka-cu.ac.jp