Technology module

Electrical Shaft Position _____

Reference Manual

Contents

1 1.1	About this documentation
	Document history
1.2	Conventions used
1.3	Definition of the notes used
2	Safety instructions
3	Functional description of "Electrical Shaft Position"
3.1	Overview of the functions Important notes on how to operate the technology module
3.2	Important notes on how to operate the technology module
3.3	Function block L TT1P ElectricalShaftPos[Base/State/High]
	3.3.1 Inputs and outputs
	3.3.2 Inputs
	3.3.5 Outputs
	3.3.4 Parameters
3.4	State machine
3.5	Signal flow diagram 3.5.1 Structure of the signal flow
	3.5.1 Structure of the signal flow
	3.5.2 Structure of the access points
3.6	Manual Jog (Jogging)
3.7	HomingSynchronism (SyncPos)
3.8	Synchronism (SyncPos)
3.9	Position offset during synchronism
3.10	Synchronism with clutch-in/declutch mechanism
	3.10.1 Direct clutching-in/declutching
	3.10.2 Relative clutching-in/declutching
3.11	Position trimming
3.12	Position offset with profile generator
3.13	Extended clutch-in/declutch mechanism
	3.13.1 eSyncMode = Ramp Dist
	5.15.2 ESYNCMODE = RAMP TIME
	3.13.3 ESYNCMODE = RAMP VEIACC
3.14	CPU utilisation (example Controller 3231 C)
	Index
	Your opinion is important to us

1 About this documentation

This documentation ...

- contains detailed information on the functionalities of the "Electrical Shaft Position" technology module;
- is part of the "Controller-based Automation" manual collection. It consists of the following sets of documentation:

Documentation type	Subject
Product catalogue	Controller-based Automation (system overview, sample topologies) Lenze Controller (product information, technical data)
System manuals	Visualisation (system overview/sample topologies)
Communication manuals Online helps	Bus systems • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®
Reference manuals Online helps	Lenze Controllers: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500
Software manuals Online helps	Lenze Engineering Tools: • »PLC Designer« (programming) • »Engineer« (parameter setting, configuration, diagnostics) • »VisiWinNET® Smart« (visualisation) • »Backup & Restore« (data backup, recovery, update)

More technical documentation for Lenze components

Further information on Lenze products which can be used in conjunction with Controller-based Automation can be found in the following sets of documentation:

Pla	nning / configuration / technical data							
	Product catalogues							
Mo	Mounting and wiring							
	Mounting instructions							
	Hardware manuals • Inverter Drives/Servo Drives							
Par	rameter setting / configuration / commissioning							
	Online help/reference manuals							
	Online help/communication manuals • Bus systems • Communication modules							
Sar	Sample applications and templates							
	Online help / software and reference manuals • i700 application sample • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST technology modules							

- Printed documentation
- ☐ PDF file / online help in the Lenze engineering tool

Current documentation and software updates with regard to Lenze products can be found in the download area at:

www.lenze.com

Target group

This documentation is intended for all persons who plan, program and commission a Lenze automation system on the basis of the Lenze FAST Application Software.

1.1 Document history

1.1 Document history

Version	1		Description
3.3	05/2017	TD17	• Content structure has been changed. • General revisions New: ▶ Torque-controlled drive as master (□ 12) ▶ Use of setpoints or actual values (□ 12)
3.2	11/2016	TD29	 General revisions Parameters supplemented: <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (□ 19) New: <u>Extended clutch-in/declutch mechanism</u> (□ 40)
3.1	04/2016	TD17	General revisions
3.0	11/2015	TD17	 Corrections and additions New: Relative clutching-in/declutching (□ 34) Content structure has been changed.
2.1	05/2015	TD17	General revisions
2.0	01/2015	TD17	General editorial revision Modularisation of the contents for the »PLC Designer« online help
1.0	04/2014	TD00	First edition

1.2 Conventions used

1.2 Conventions used

This documentation uses the following conventions to distinguish between different types of information:

Type of information	Highlighting	Examples/notes							
Spelling of numbers									
Decimal separator	Point	The decimal point is always used. For example: 1234.56							
Text	Text Text								
Program name	» «	»PLC Designer«							
Variable names	italics	By setting <i>bEnable</i> to TRUE							
Function blocks	bold	The L_MC1P_AxisBasicControl function block							
Function libraries		The L_TT1P_TechnologyModules function library							
Source code	Font "Courier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>							
Icons									
Page reference	(🕮 6)	Reference to further information: Page number in PDF file.							

Variable names

The conventions used by Lenze for the variable names of Lenze system blocks, function blocks, and functions are based on the "Hungarian Notation". This notation makes it possible to identify the most important properties (e.g. the data type) of the corresponding variable by means of its name, e.g. xAxisEnabled.

1.3 Definition of the notes used

1.3 Definition of the notes used

The following signal words and symbols are used in this documentation to indicate dangers and important information:

Safety instructions

Layout of the safety instructions:

Pictograph and signal word!

(characterise the type and severity of danger)

Note

(describes the danger and gives information about how to prevent dangerous situations)

Pictograph	Signal word	Meaning
A	Danger!	Danger of personal injury through dangerous electrical voltage Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
\triangle	Danger!	Danger of personal injury through a general source of danger Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
STOP	Stop!	Danger of property damage Reference to a possible danger that may result in property damage if the corresponding measures are not taken.

Application notes

Pictograph	Signal word	Meaning
i	Note!	Important note to ensure trouble-free operation
	Tip!	Useful tip for easy handling
(Reference to another document

2 Safety instructions

2 Safety instructions

Please observe the safety instructions in this documentation when you want to commission an automation system or a plant with a Lenze Controller.

The device documentation contains safety instructions which must be observed!

Read the documentation supplied with the components of the automation system carefully before you start commissioning the Controller and the connected devices.

Danger!

High electrical voltage

Injury to persons caused by dangerous electrical voltage

Possible consequences

Death or severe injuries

Protective measures

Switch off the voltage supply before working on the components of the automation system.

After switching off the voltage supply, do not touch live device parts and power terminals immediately because capacitors may be charged.

Observe the corresponding information plates on the device.

Danger!

Injury to persons

Risk of injury is caused by ...

- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Possible consequences

Death or severe injuries

Protective measures

- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).
- During commissioning, maintain an adequate safety distance to the motor or the machine parts driven by the motor.

2 Safety instructions

._____

Stop!

Damage or destruction of machine parts

Damage or destruction of machine parts can be caused by ...

- Short circuit or static discharges (ESD);
- unpredictable motor movements (e.g. unintended direction of rotation, too high velocities or jerky movement);
- impermissible operating states during the parameterisation while there is an active online connection to the device.

Protective measures

- Always switch off the voltage supply before working on the components of the automation system.
- Do not touch electronic components and contacts unless ESD measures were taken beforehand.
- If required, provide systems with installed inverters with additional monitoring and protective devices according to the safety regulations valid in each case (e.g. law on technical equipment, regulations for the prevention of accidents).

3 Functional description of "Electrical Shaft Position"

[3-1] Typical mechanics of the technology module

- In the "Base" version, the synchronism and the setting of an offset are activated with a position jump.
- In the "State" version, clutching in without step changes is additionally possible. For this purpose, a position-dependent clutch is used. Furthermore, an offset between the master and slave axis can be set in a manner similar to manual jog. The offset that takes effect in an absolute manner is accepted immediately with a position jump.
- In addition to the State version, the "High" version provides jerk-free connection of the position offset using a profile generator and the function of a clutch-in and declutch mechanism.
- ▶ Overview of the functions (☐ 11)

3.1 Overview of the functions

3.1 Overview of the functions

In addition to the basic functions for operating the **L_MC1P_AxisBasicControl** function block, the **Stop function**, and the **Holding function**, the technology module offers the following functionalities that are assigned to the "Base", "State", and "High" versions:

Functionality	Versions				
	Base	State	High		
Manual jog (jogging) (□ 27)	•	•	•		
Homing (LL 28)	•	•	•		
Synchronism (SyncPos) (29)	•	•	•		
Position offset during synchronism (\$\square\$ 31)	•	•	•		
Synchronism with clutch-in/declutch mechanism (32)		•	•		
▶ <u>Direct clutching-in/declutching</u> (☐ 33)		•	•		
▶ Relative clutching-in/declutching (□ 34)			•		
Position trimming (36)		•	•		
Position offset with profile generator (37)			•		
Extended clutch-in/declutch mechanism (40)			•		

»PLC Designer« Online help

Here you will find detailed information on the **L_MC1P_AxisBasicControl** function block, the **stop function** and the **holding function**.

3.2 Important notes on how to operate the technology module

3.2 Important notes on how to operate the technology module

The "ElectricalShaft Position" technology module only supports axes with the same travel range setting: Either the master axis and the slave axis must be set as "Modulo" rotary axes or both must be set as "Limited" linear axes.

Go to the »PLC Designer« and set the "Modulo" or "Limited" machine measuring system for <u>each</u> axis under the **Settings** tab:

Setting of the operating mode

The operating mode for the slave axis has to be set to "cyclically synchronous position" (csp) because the axis is led via the master position value.

Torque-controlled drive as master

In its function as a master, the technology module can also have an axis which runs in the cyclic sync torque mode (cst).

The actual values are written to the setpoints.

Use of setpoints or actual values

The technology module uses the setpoint of the master axis.

The **L_MC1P_AverageFilterSetValue** filter function can be used to influence the setpoints, making it possible for the technology module to switch over to the actual values.

Important notes on how to operate the technology module 3.2

Controlled start of the axes

Motion commands that are set in the inhibited axis state (xAxisEnabled = FALSE) after enable (xRegulatorOn = TRUE) must be activated again by a FALSE \nearrow TRUE edge.

In this way it is prevented that the drive starts in an uncontrolled manner after controller enable.

Example Manual jog (jogging) (🕮 27):

- 1. In the inhibited axis state (xAxisEnabled = FALSE), xJoqPos is set to TRUE.
 - xRegulatorOn = FALSE (axis is inhibited.) ==> "READY" state (xAxisEnabled = FALSE)
 - xJogPos = TRUE (manual jog is to be executed.)
- 2. Enable axis.
 - xRegulatorOn = TRUE ==> "READY" state (xAxisEnabled = TRUE)
- 3. Execute manual jog.
 - xJoqPos = FALSE⊅TRUE ==> "JOGPOS" state

3.3 Function block L_TT1P_ElectricalShaftPos[Base/State/High]

3.3 Function block L_TT1P_ElectricalShaftPos[Base/State/High]

The figure shows the relation of the inputs and outputs to the "Base", "State" and "High" versions. The additional inputs and outputs of the "State" and "High" versions are shaded.

3.3.1 Inputs and outputs

Designator	Data type	Description Data type		Available in version		
			Base	State	High	
MasterAxis		Reference to the master axis (master axis)	•	•	•	
	AXIS_REF					
SlaveAxis		Reference to the slave axis	•	•	•	
	AXIS_REF					

Inputs 3.3.2

Designator Data typ	Descript	ion		ailable version	
			Base	State	High
xEnableInternalControl BOO	TRUE	In the visualisation, the internal control of the axis can be selected via the "Internal Control" axis.	•	•	•
xEnable		Execution of the function block		•	•
BOO	TRUE	The function block is executed.			
	FALSE	The function block is not executed.			
scCtrlABC scCtrl AE		ructure for the L_MC1P_AxisBasicControl function	•	•	•
_	• If the	IABC can be used in "Ready" state. Fre is a request, the state changes to "Service". Tate change from "Service" back to "Ready" takes place Fre are no more requests.			
xResetError BOO	TRUE	Reset axis error or software error.	•	•	•
xRegulatorOn BOO	TRUE	Activate controller enable of the axis (via the MC_Power function block).	•	•	•
xStop BOO	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrStopDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE). • The input is also active with "Internal Control".	•	•	•
xHalt BOO	TRUE	Cancel the active movement and brake the axis to a standstill with the deceleration defined via the IrHaltDec parameter. • The state changes to "Stop". • The technology module remains in the "Stop" state as long as xStop is set to TRUE (or xHalt = TRUE).	•	•	•
scPar L_TT1P_scPar_ElectricalSh tPos[Base/State/Hig	<u>f</u> technolo	ameter structure contains the parameters of the ogy module. The type depends on the version used (Base/State/High).	•	•	•
scAccessPoints L_TT1P_scAP_ElectricalSha Pos[Base/State/Hig	t The data	e of the access points a type depends on the version used (Base/State/High).	•	•	•
xJogPos BOC	TRUE	Traverse axis in positive direction (manual jog). If xJogNeg is also TRUE, the traversing direction selected first remains set.	•	•	•
xJogNeg BO0	TRUE	Traverse axis in negative direction (manual jog). If xJogPos is also TRUE, the traversing direction selected first remains set.	•	•	•
xHomeExecute		at is edge-controlled and evaluates the rising edge.	•	•	•
ВОС	FALSE T TRUE	Start homing. The function is aborted via the xStop input.			
xHomeAbsSwitch BOO	TRUE	Connection for reference switch: For homing modes with a reference switch, connect this input to the digital signal which maps the state of the reference switch.	•	•	•
xSyncPos	-	nisation of the slave axis to the master axis	•	•	•
BOO	TRUE	Base: Synchronisation without clutch function			
		State/High: Synchronisation with position clutch			

Designator	signator Description Data type		ion		ailable version	
				Base	State	High
IrSetOffsetSlave	LREAL	The posi	offset to master axis tion is approached in the "POS_IS_SYNCHRONISED" en the value changes units	•	•	•
		Base/ State	The offset is directly applied.			
		High	The offset is assigned via the profile generator.			
xTrimPos	BOOL	TRUE	Trim position in positive direction. If xTrimNeg is also TRUE, the traversing direction selected first remains set.		•	•
xTrimNeg	BOOL	TRUE	Trim position in negative direction. If xTrimPos is also TRUE, the traversing direction selected first remains set.		•	•
xSyncInstant	BOOL	TRUE	Synchronisation with relative position coupling (in connection with xSyncPos) • Master axis at standstill: The slave axis directly (abruptly) clutches in to its current position. • Master axis in motion: The slave axis immediately clutches in via the clutching distance in the IrSlaveSyncInDist parameter (by analogy with a velocity coupling).			•
xSyncOutInstant	BOOL	TRUE	Declutching with relative position coupling Master axis at standstill: The slave axis directly (abruptly) clutches in to its current position. Master axis in motion: The slave axis immediately declutches via the clutching distance in the IrSlaveSyncOutDist parameter (by analogy with a velocity coupling or MC_Halt).			•
xSyncPosRestore	BOOL	FALSE7 TRUE	A FALSEATRUE edge serves to compensate the position offset generated by a relative clutch-in by means of these parameters: • eOffsetSlaveDirection • eOffsetSlaveProfileType • IrOffsetSlaveVelPos • IrOffsetSlaveVelNeg • IrOffsetSlaveAccDec			•
		TRUE'N FALSE	A TRUENFALSE edge aborts the synchronisation process. A possibly remaining position offset is displayed at the IrOffsetSyncPos output.			

Outputs 3.3.3

Designator Data type	Descript	Description		Available in version		
			Base	State	High	
xInternalControlActive BOOL	TRUE	The internal control of the axis is activated via the visualisation. (xEnableInternalControl input = TRUE)	•	•	•	
eTMState L_TT1P_States	I	state of the technology module <u>machine</u> (<u> </u>	•	•	•	
scStatusABC scStatus_ABC	Structur function	e of the status data of the L_MC1P_AxisBasicControl block	•	•	•	
xError BOOL	TRUE	There is an error in the technology module.	•	•	•	
xWarning BOOL	TRUE	There is a warning in the technology module.	•	•	•	
eErrorID L_IE1P_Error		e error or warning message if xError = TRUE or ng = TRUE.	•	•	•	
		chnology modules" reference manual: u can find information on error or warning messages.				
scErrorInfo L_TT1P_scErrorInfo		ormation structure for a more detailed analysis of the use	•	•	•	
scSignalFlow L TT1P scSF ElectricalShaft Pos[Base/State/High]	The data	e of the signal flow a type depends on the version used (Base/State/High). flow diagram (24)	•	•	•	
xAxisEnabled BOOL	TRUE	The axis is enabled.	•	•	•	
xDone BOOL	TRUE	The request/action has been completed successfully.	•	•	•	
xBusy BOOL	TRUE	The request/action is currently being executed.	•	•	•	
xIsHomed BOOL	TRUE	The axis has been referenced (reference known).	•	•	•	
IrActVel LREAL	Current • Unit:	velocity units/s	•	•	•	
IrActPos LREAL	Current • Unit:	•	•	•	•	
IrOffset LREAL	Set posit master a • Unit:	cion offset from the IrSetOffsetSlave input between the axis and the slave axis units	•	•	•	
IrOffsetTrim LREAL		offset from the trimming function between the axis and the slave axis units		•	•	
IrOffsetTotal LREAL	axis con and offs	I position offset between the master axis and the slave tains the information of the master offset, slave offset et from the trimming function and the offset caused by clutch-in. units		•	•	
xSynchronised BOOL	TRUE	The axis is coupled with reference to the master axis.		•	•	

Designator	Data type	Description pe		Available in version		
				Base	State	High
xAccDecSync	BOOL	TRUE	The synchronisation function is active. The axis is synchronised or desynchronised (clutch opens or closes).		•	•
IrOffsetSyncPos	LREAL		Position offset caused by relative clutch-in. • Unit: units			•

Function block L_TT1P_ElectricalShaftPos[Base/State/High]

3.3.4 Parameters

L_TT1P_scPar_ElectricalShaftPos[Base/State/High]

The **L_TT1P_scPar_ElectricalShaftPos[Base/State/High]** structure contains the parameters of the technology module.

Designator Data type	Description		Available in version		
		Base	State	High	
IrStopDec LREA	Deceleration for the stop function and when hardware/ software limit switches and the following error monitoring function are triggered • Unit: units/s ² • Initial value: 10000	•	•	•	
IrStopJerk LREA	Jerk for the stop function and for the triggering of the hardware limit switches, software limit positions, and the following error monitoring function • Unit: units/s ³ • Initial value: 100000	•	•	•	
IrHaltDec LREA	Deceleration for the holding function Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s ² • Initial value: 3600 • Only positive values are permissible.	•	•	•	
IrJerk LREA	Jerk for compensating an offset value, trimming, clutch, or holding function • Unit: units/s ³ • Initial value: 100000	•	•	•	
lrJogJerk LREA	Jerk for manual jog • Unit: units/s ³ • Initial value: 10000	•	•	•	
lrJogVel LREA	Maximum speed to be used for manual jog. • Unit: units/s • Initial value: 10	•	•	•	
IrJogAcc LREA	Acceleration for manual jog Specification of the maximum speed variation which is to be used for acceleration. • Unit: units/s ² • Initial value: 100		•	•	
IrJogDec LREA	Deceleration for manual jog Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s² • Initial value: 100		•	•	
IrHomePosition LREA	Home position for a reference run (homing) • Unit: units • Initial value: 0		•	•	
xUseHomeExtParameter BOO	Selection of the homing parameters to be used • Initial value: FALSE	•	•	•	
	FALSE The homing parameters defined in the axis data are used.				
	TRUE The scHomeExtParameter homing parameters from the application are used.				
scHomeExtParameter L_MC1P_HomeParamete	Homing parameters from the applicationOnly relevant if xUseHomeExtParameter = TRUE.	•	•	•	

Designator Data type	Description	Available in version		
		Base	State	High
scHomeExtTP MC_TRIGGER_REF	Transfer of an external touch probe event Only relevant for "External source" touch probe configuration. For describing the MC_TRIGGER_REF structure, see the MC_TouchProbe function block.	•	•	•
dwNumerator DWORD	This value is included in the resulting synchronous factor as numerator term. • Initial value: 1	•	•	•
dwDenominator DWORD	This value is included in the resulting synchronous factor as denominator term. • Initial value: 1	•	•	•
xLoadSyncPos BOOL	Automatic calculation and selection of the gearbox output position for direct clutch-in Initial value: FALSE Direct clutching-in/declutching (33)	•	•	•
	TRUE The output position of the gearbox is calculated considering the current slave position. After this process, a direct, jerk-free clutch-in is possible.			
IrTrimAcc LREAL	Acceleration for trimming Selection of the velocity change relative to the master to be used for accelerating. The acceleration acting on the drive is the sum of master and slave acceleration. • Unit: units/s² • Initial value: 100		•	•
IrTrimDec LREAL	Deceleration for trimming Selection of the velocity change relative to the master to be used for decelerating. The deceleration acting on the drive is the sum of master and slave deceleration. • Unit: units/s ² • Initial value: 100		•	•
IrTrimVel LREAL	Velocity for trimming Selection of the velocity used for trimming. • Unit: units/s • Initial value: 50		•	•
IrSlaveSyncInDist LREAL	Distance of the clutch-in movement from the slave axis (pathbased coupling mode). • Unit: units • Initial value: 90		•	•
IrSlaveSyncOutDist LREAL	Distance of the declutch movement from the slave axis (path-based coupling mode). • Unit: units • Initial value: 90		•	•
IrSlaveSyncOutPos LREAL	Declutch setpoint position of the slave axis At this position, the slave axis is stopped as soon as the declutch process has been carried out (path-based clutch mode). • Unit: units • Initial value: 0		•	•
eOffsetSlaveDirection L_TT1P_Direction				•
	0 Both: The axis may travel in positive and negative direction			
	Master direction: The slave axis may only travel in the same direction as the master axis.			

3

Designator Data type	Descripti	escription		vailable in version	
			Base	State	High
eOffsetSlaveProfileType L_TT1P_ProfileType		pe of the profile generator value: 2			•
	0	poly_4th_order (4th order polynomial)			
	1	poly_2nd_order (2nd order polynomial)			
	2	poly_5th_order (5th order polynomial)			
IrOffsetSlaveVelPos LREAL	The sum velocity a • Unit:	Maximum positive velocity to be used for the profile. The sum of this velocity and the velocity of the master is the velocity acting on the slave axis. Unit: units/s Initial value: 100			•
IrOffsetSlaveVelNeg LREAL	The sum velocity a • Unit:	,			•
IrOffsetSlaveAccDec LREAL	The sum accelerat Note: Wi selection decelerat	Initial value: 100 Maximum acceleration to be used for the profile. The sum of this acceleration and the one of the master is the acceleration acting on the slave axis. Note: With the "poly_4th" and "poly_5th" profile type election, the parameter profile value of the acceleration and eleceleration is exceeded. Unit: units/s² Initial value: 1000			•
xLoadOffsetSlave BOOL	IrSetOffs	the position offset to the master axis (via etSlave input) value: FALSE			•
	TRUE	The position offset is loaded cyclically.			
	FALSE	The position offset is run via the profile generator.			
eSyncDirection	Permitte	d clutch-in direction with regard to the master motion			•
L_TT1P_SyncDirection ElectricalShaftPos	-1	mcNegativeDirection (starting condition in negative direction of the master axis)			
		mcPositiveDirection (starting condition in positive direction of the master axis)			
	2	mcShortestWay (by the shortest way possible in both directions)			
	Initial va	lue := 0: mcCurrentDirection (in both directions)			
eSyncMode	Clutch-in	/declutch mode:			•
L_TT1P_ SyncMode ElectricalShaftPos	3	Ramp_Time (time-based clutching within a time slot)			
LicericalSitate 03	4	Ramp_VelAcc (clutching via a profile generator)			
	5	Ramp_Dist (path-based clutching via the distance of the slave axis)			
	Initial va	lue := 5 Ramp_Dist			
IrSyncInTime LREAL	Relevant for coupling mode: eSyncMode = 3 Ramp_TIme Period of time of the clutch-in process in seconds (time-based coupling mode). Initial value:= 5				•
lrSyncOutTime LREAL					•

Designator Data type		Description		Available in version		
			Base	State	High	
IrSyncVel	LREAL	Maximum speed at which the clutch-in/declutch process in mode eSyncMode = 4 (ramp_VelAc) is to be carried out. • Unit: units/s • Initial value: 100			•	
IrSyncAcc	LREAL	Acceleration for the clutch-in/declutch process in mode eSyncMode = 4 (ramp_VelAc) Specification of the maximum speed variation which is to be used for acceleration. • Unit: units/s2 • Initial value: 1000			•	
IrSyncDec	LREAL	Deceleration for the clutch-in/declutch process in mode eSyncMode = 4 (ramp_VelAc) Specification of the maximum speed variation which is to be used for deceleration to standstill. • Unit: units/s2 • Initial value: 1000			•	
IrSyncJerk	LREAL	Jerk for the clutch-in/declutch process in mode eSyncMode = 4 (ramp_VelAc) • Unit: units/s3 • Initial value: 1000000			•	

3.4 State machine

3.4 State machine

[3-2] State machine of the technology module

(*1 In the "Ready" state, xRegulatorOn has to be set to TRUE.

(*2 In the "ERROR" state, xResetError has to be set to TRUE in order to acknowledge and reset the errors.

3.5 Signal flow diagram

3.5 Signal flow diagram

[3-3] Signal flow diagram

The illustration [3-3] shows the main signal flow of the implemented functions.

The signal flow of the additional functions such as "manual jog" is not displayed here.

3.5 Signal flow diagram

3.5.1 Structure of the signal flow

L_TT1P_scSF_ElectricalShaftPos[Base/State/High]

The contents of the L_TT1P_scSF_ElectricalShaftPos[Base/State/High] structure are read-only and offer a practical diagnostics option within the signal flow (Signal flow diagram (L) 24)).

Designator Data type	Description			vailable in version		
			Base	State	High	
IP01_IrSetOffsetSlave LREAI	The posi	offset to master axis tion is approached in the "POS_IS_SYNCHRONISED" nen the value changes units	•	•	•	
	Base/ State	The offset is directly applied.				
	High	The offset is assigned via the profile generator.				
MP01_IrSetMasterPos LREAI		tion of the master axis units	•	•	•	
MP02_IrSetSlavePos LREAI		tion of the slave axis units	•	•	•	
MP03_IrSetGearBoxPosOut LREAI	1	g position from the gearbox units	•	•	•	
MP04_IrSetClutchPos		position for <u>Direct clutching-in/declutching</u> (33) units	•	•	•	
OP01_IrOffset LREAI		cion offset from the IrSetOffsetSlave input between the axis and the slave axis units	•	•	•	
OP02_IrOffsetTrim LREAI	Position offset from the trimming function between the master axis and the slave axis • Unit: units			•	•	
OP03_IrOffsetTotal LREAI	axis	Total position offset between the master axis and the slave axis • Unit: units		•	•	

3.5 Signal flow diagram

3.5.2 Structure of the access points

L_TT1P_scAP_ElectricalShaftPos[Base/State/High]

The access points (AP) can be used to influence signals. In the initial state, the access points do not have any effect.

Each access point acts as an alternative branch and is activated via an OR operation or a switch.

Designator Data type	Description e		cription Availa vers			
			Base	State	High	
AP01_xLoadGearBoxPosOut	Enable o	f the AP01_IrLoadGearBoxPosOut access point	•	•	•	
BOOL	TRUE	The access point overwrites the values at the access point in the signal flow.				
AP01_IrLoadGearBoxPosOut LREAL		Loading of the resulting position from the gearbox • Unit: units				
AP02_xLoadTrimOffset	Enable o	f the AP02_lrLoadTrimOffset access point		•	•	
BOOL	TRUE	The access point overwrites the values at the access point in the signal flow.				
AP02_IrLoadTrimOffset LREAL		Loading of the resulting distance from the trimming function • Unit: units				
AP05_xLoadOffsetSync	Enable c	f the AP05_IrLoadOffsetSync access point			•	
BOOL	TRUE	The access point overwrites the values of the synchronisation offset.				
AP05_IrLoadOffsetSync LREAL	Loading the synchronisation offset					

3.6 Manual jog (jogging)

3.6 Manual jog (jogging)

Precondition

- The technology module is in the "Ready" state.
- The slave axis is enabled (xRegulatorOn = TRUE).

Execution

For manual jog of the axis, the manual jog speed IrJoqVel is used.

If the *xlogPos* input is TRUE, the axis is traversed in positive direction and if the *xlogNeg* input is TRUE, the axis is traversed in negative direction. The axis is executed for as long as the input remains set to TRUE.

The current travel command cannot be replaced by another jog command. Only if both inputs have been reset, the State machine (23) changes to the "Ready" state again.

Parameters to be set

The parameters for the manual jog are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/</u> High] (<u>L_19</u>) parameter structure.

The parameter values can be changed during operation. They are accepted when the xJogPos or xJogNeg input is set to TRUE again.

3.7 Homing

3.7 Homing

Precondition

- The technology module is in the "Ready" state.
- The slave axis is enabled (xRegulatorOn = TRUE).

Execution

Homing is started with a rising edge (FALSE TRUE) at the *xHomeExecute* input. The axis will be travelling until the home position is reached. After successful homing, the <u>State machine</u> (23) changes back again to the "Ready" state.

The homing process is <u>not</u> interrupted if the *xHomeExecute* input is set to FALSE too early. The function is aborted via the *xStop* input.

Parameters to be set

The parameters for homing are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>LL</u> 19) parameter structure.

```
xUseHomeExtParameter : BOOL := FALSE;
lrHomePosition : LREAL := 0.0;
scHomeExtParameter : L_MC1P_HomeParameter;
scHomeExtTP : MC_TRIGGER_REF;
```

3.8 Synchronism (SyncPos)

3.8 Synchronism (SyncPos)

Note!

Synchronism is activated with a position jump.

Execution

In order to synchronise the slave axis and master axis, synchronism factors are used to calculate a setpoint position based on the master axis. Synchronism is started by setting the xSyncPos input to TRUE. As a result, the calculated setpoint position is abruptly connected to the axis. A jerk-free connection is only possible at standstill after prior positioning. The gearbox factor is preset to 1:1.

Parameters to be set

The parameters for the gearbox factor are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>LL_19</u>) parameter structure.

```
dwNumerator : DWORD := 1;
dwDenominator : DWORD := 1;
```

3

Examples

If, for instance, the gearbox factor is set to 2:1 (dwNumerator = 2, dwDenominator = 1), the following synchronism response can be observed:

Synchronism behaviour at gearbox factor 2:1

3.9 Position offset during synchronism

3.9 Position offset during synchronism

Note!

A position offset is set with a position jump.

Precondition

Setting a position offset is only possible in the "POS_IS_SYCHRONISED" state.

Execution

A variable position offset between master and slave is defined with the *IrSetOffsetSlave* input. In the "POS_IS_SYNCHRONISED" state and with a changed value, the offset is abruptly connected to the setpoint position of the axis.

Example

[3-5] Position offset IrSetOffsetSlave = 100

3.10 Synchronism with clutch-in/declutch mechanism

3.10 Synchronism with clutch-in/declutch mechanism

Execution

Synchronism of the slave axis and master axis is extended by a clutch function. The clutch function synchronises the position of the slave axis with the master position of the master axis, positioning taking place without step changes.

Clutch-in starts at any position when xSyncPos = TRUE.

When declutching with xSyncPos = FALSE, the drive is braked to a standstill at the IrSlaveSyncOutPos position and changed to the "Ready" state.

The IrSlaveSyncInDist parameters (for clutch-in) and IrSlaveSyncOutDist (for declutch) describe the path via which the clutch process shall take place. For the initial values of the parameters, the clutch process has to be completed after 90 units.

In order that the clutching process is started, the position of the master axis has to be located upstream by at least double the clutch-in distance of the position of the slave axis. Otherwise, the master axis would travel another complete cycle until the clutch-in process is started.

Note!

In case of "Limited" axis setting:

- The slave axis is clutched in when the master axis has reached the *IrSlaveSyncInDist* distance before the slave axis.
- In order that the slave axis is declutched at the *IrSlaveSyncOutPos* declutch position, the *IrSlaveSyncOutDist* distance must be defined in advance.

Parameters to be set

The parameters for the clutch function are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>L_19</u>) parameter structure.

```
lrSlaveSyncOutPos : LREAL := 0.0;
lrSlaveSyncInDist : LREAL := 90.0;
lrSlaveSyncOutDist : LREAL := 90.0;
```

3.10

Example

[3-6] Clutching-in/declutching with IrSlaveSyncOutPos = 100

The [3-6] figure shows the clutch-in process on position 100.0 which is completed within 90 units. After declutching, it ends again on position 100.0 after 90 units.

3.10.1 Direct clutching-in/declutching

The clutch function also provides for a direct clutching-in/declutching. For this purpose, set the parameters *IrSlaveSyncInDist* and *IrSlaveSyncOutDist* to the value '0.0'. Clutching-in is then executed directly and abruptly.

In order to prevent a jump of the position at the clutch output and thus at the slave axis, the following options are available:

• Positioning of the slave axis to the input position of the clutch (MP04:IrSetClutchPos) before clutching-in hard.

This version offers a position synchronism without position offset between the master axis and the slave axis.

More information on MP04:IrSetClutchPos can be found here:
L TT1P scPar ElectricalShaftPos[Base/State/High] (19)

 Automatic calculation and definition of the gearbox position for direct clutch-in with xLoadSyncPos parameter = TRUE.

This version offers a position synchronism with position offset between the master axis and the slave axis. The resulting position offset can be eliminated afterwards by applying an offset.

Synchronism with clutch-in/declutch mechanism

3.10.2 Relative clutching-in/declutching

3.10

This function can only be used in the High version of the technology module!

These functions are selected via inputs and not via selecting a coupling mode. The selection of the general coupling mode is not affected by this function.

When the xSyncInstant input = TRUE, the synchronisation is carried out with relative position coupling.

- If the master axis is at standstill, the slave axis directly (abruptly) clutches in to its current position.
- When the master axis is in motion, the slave axis immediately clutches in via the clutching distance in the *IrSlaveSyncInDist* parameter (by analogy with a velocity coupling).
- For declutching, the xSyncInstant input has no function.

When the xSyncOutInstant input = TRUE, it is declutched with relative position coupling.

- If the master axis is at standstill, the slave axis directly (abruptly) declutches from its current position.
- When the master axis is in motion, the slave axis immediately declutches via the clutching distance in the *IrSlaveSyncOutDist* parameter (by analogy with a velocity coupling or MC_Halt).
- For declutching, the xSyncOutInstant input has no function.

A position offset caused by relative clutching-in is displayed at the IrOffsetSyncPos output (in units).

Coupling behaviour if the inputs are stimulated at different times

Clutching-in via the xSyncInstant input:

Combinations of the inputs	Coupling behaviour	
xSyncPos	xSyncInstant	
FALSE7TRUE	FALSE	Coupling behaviour as before
FALSE	FALSE 7 TRUE	No response
TRUE	FALSE 7 TRUE	No response
FALSE 7 TRUE	FALSE 7 TRUE	Relative clutching-in
FALSE7TRUE	TRUE	Relative clutching-in

Declutching via the xSyncOutInstant input:

Combinations of the inputs		Coupling behaviour
xSyncPos	xSyncOutInstant	
TRUE⊿FALSE	FALSE	Coupling behaviour as before
TRUE⊿FALSE	FALSE/TRUE	Relative declutching
TRUE	FALSE/TRUE	Relative declutching

3.10 Synchronism with clutch-in/declutch mechanism

Parameters to be set

The parameters for the clutch function are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>L_19</u>) parameter structure.

```
lrSlaveSyncInDist : LREAL := 90.0;
lrSlaveSyncOutDist : LREAL := 90.0;
eOffsetSlaveDirection : L_TT1P_Direction := 1;
eOffsetSlaveProfileType : L_TT1P_ProfileType := 2;
lrOffsetSlaveVelPos : LREAL := 100;
lrOffsetSlaveVelNeg : LREAL := 100;
lrOffsetSlaveAccDec : LREAL := 1000;
```

3.11 Position trimming

3.11 Position trimming

Precondition

The position trimming is only possible in the "POS_IS_SYCHRONISED" state.

Execution

Position trimming makes it possible to adjust the position of the slave axis with regard to the master axis by "inching" – as in the case of Manual jog (jogging) (27).

Position trimming is started by setting the input *xTrimPos* or *xTrimNeg* to TRUE. The "POS_IS_SYCHRONISED" state then changes to "TRIM_POS_PLUS" or "TRIM_POS_MINUS", depending on the direction, and only leaves it when the respective input *xTrimPos* or *xTrimNeg* is reset to FALSE.

Offsets adjusted by trimming can be detected via the *IrOffsetTrim* output. The value of *IrOffsetTrim* can only be reset to zero by switching of the technology module.

Parameters to be set

The parameters for position trimming are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>LL</u> 19) parameter structure.

```
lrJerk : LREAL := 100000;
lrTrimAcc : LREAL := 100;
lrTrimDec : LREAL := 100;
lrTrimVel : LREAL := 50;
```

The acceleration and velocity of the trimming superimpose the ones of the master axis. Hence, the results for the axis to be trimmed are as follows:

- Resulting velocity of: v_{AxisRes} = v_{MasterAxis} + IrTrimVel
- Resulting acceleration of: a_{AxisRes} = a_{MasterAxis} + IrTrimAcc

3 Functional description of "Electrical Shaft Position"

3.12 Position offset with profile generator

3.12 Position offset with profile generator

Precondition

Setting a position offset is only possible in the "POS_IS_SYCHRONISED" state.

Execution

The position offset is transferred to the axis via a profile generator <u>without</u> position jumps. The offset is selected using the *IrSetOffsetSlave* input.

The position offset can be travelled with 3 different rounding profiles using the profile generator. The profile generator is activated by setting the *xLoadOffsetSlave* parameter = FALSE. A profile can be specified via the *eOffsetSlaveProfileType* parameter.

The *eOffsetSlaveDirection* parameter serves to define whether the drive may rotate in the opposite direction of the master direction of rotation (0: Both) or not (1: Direction Master).

The basic conditions for calculating the profile are defined via the parameters *IrOffsetSlaveVelPos*, *IrOffsetSlaveVelNeg* and *IrOffsetSlaveAccDec*.

Parameters to be set

The parameters for the position offset with profile generator are located in the L TT1P scPar ElectricalShaftPos[Base/State/High] ((1) 19) parameter structure.

```
xLoadOffsetSlave : BOOL := FALSE;
eOffsetSlaveProfileType : L_TT1P_ProfileType := 0;
eOffsetSlaveDirection : L_TT1P_Direction := 0;
lrJerk : LREAL := 100000;
lrOffsetSlaveVelPos : LREAL := 100;
lrOffsetSlaveVelNeg : LREAL := 100;
lrOffsetSlaveAccDec : LREAL := 1000;
```

3 3.12

Examples

If, for instance, the master axis is operated in positive direction, *eOffsetSlaveDirection* = 1 (*DirectionMaster*) serves to prevent the slave axis from rotating in the negative direction. The [3-7] figure shows how the slave axis (blue) is waiting for the master axis in order to correct its position offset *IrSetOffsetSlave*.

[3-7] Direction of rotation only in master direction of rotation (eOffsetSlaveDirection = 1)

The [3-8] figure shows the behaviour when the slave axis is allowed to rotate in the positive and negative direction (eOffsetSlaveDirection = 0 (Both)).

[3-8] Direction of rotation in positive and negative direction (eOffsetSlaveDirection = 0)

3 Functional description of "Electrical Shaft Position"

3.12 Position offset with profile generator

In the figures [3-7] and [3-8], the rounding profile has been calculated with a 4th grade polynomial. This is the standard setting specified via the *eOffsetSlaveProfileType* parameter. There are 3 possible profiles for this parameter:

```
eOffsetSlaveProfileType : L_TT1P_ProfileType := 0;
// 0: poly_4th_order (4th order polynomial)
// 1: poly_2nd_order (2nd order polynomial)
// 2: poly_5th_order (5th order polynomial)
```

The IrSetOffsetSlave position offset changes every 3 seconds between 40 and 80 units.

3.13 Extended clutch-in/declutch mechanism

This function can only be used in the High version of the technology module!

The clutch-in and declutch mechanism of the State version has been extended by the scPar.eSyncMode mode.

3.13.1 eSyncMode = Ramp_Dist

The "Ramp_Dist" coupling mode is the clutch-in and declutch mechanism from the State version.

In this mode, the slave axis can clutch in or declutch over several cycles of the master axis.

The slave axis only clutches in or declutches to/from the master position if the master axis is moving.

The slave axis is positioned from its current position to the resulting target position in a path-based fashion via a polynomial of the fifth degree.

Clutching in

[3-9] Clutching in with eSyncMode = 5 Ramp_Dist

3.13

Declutching

[3-10] Declutching with eSyncMode = 5 Ramp_Dist

3.13.2 eSyncMode = Ramp_Time

3.13

The "Ramp_Time" coupling mode does not depend on the motion of the master axis. The slave axis is also synchronised with a standing master axis.

Clutching in

The slave axis clutches in to the master position from its current position via a polynomial of the fifth degree in a time-based fashion (parameter *IrSyncInTime*). The movement is executed within the slave cycle of the modulo axes.

[3-11] Clutching in with eSyncMode = 3 Ramp_Time

3.13

Declutching

Declutching is triggered with the xSyncPos input = FALSE. The time-controlled declutching is executed by the slave axis from the current position within a defined time (parameter IrSyncOutTime). The IrSlaveSyncOutPos parameter is used to define the stopping position of the slave axis.

[3-12] Declutching with eSyncMode = 3 Ramp_Time

Parameters to be set

The parameters to be set are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>LL_19</u>) parameter structure.

```
eSyncMode : L_TT1P_SyncMode := L_TT1P_SyncMode.Ramp_time;
lrSlaveSyncOutPos
lrSyncInTime : LREAL := 5;
lrSyncOutTime : LREAL := 5;
lrSlaveSyncOutPos : LREAL := 0;
```

3.13.3 eSyncMode = Ramp_VelAcc

3.13

Note!

This clutch-in or declutch version does not depend on the master motion, which means it also synchronises the slave axis with a standing master axis.

Clutching in

The slave axis clutches in from its current position to the master position via the profile generator with the parameters *IrSyncVel*, *IrSyncAcc*, *IrSyncDec* and *IrSyncJerk*. The motion is executed within the slave cycle of the modulo axes. The resulting velocity of the slave axis in the clutch-in phase results from the sum of speed of the master axis and the *IrSyncVel* velocity. The acceleration of the slave axes in the clutch-in phase also results from the sum of acceleration of the master axis and the acceleration and deceleration of the coupling (*IrSyncAcc*, *IrSyncDec*).

[3-13] Clutching in with eSyncMode = 4 Ramp_Time

3.13

Declutching

Declutching is triggered via the xSyncPos input = FALSE. The profile-controlled declutching brakes the slave axis to a standstill from the current position with the parameters IrSyncVel, IrSyncAcc, IrSyncDec and IrSyncJerk. The IrSlaveSyncOutPos parameter is used to define the stopping position of the slave axis.

[3-14] Declutching with eSyncMode = 4 Ramp_Time

Parameters to be set

The parameters to be set are located in the <u>L_TT1P_scPar_ElectricalShaftPos[Base/State/High]</u> (<u>L_19</u>) parameter structure.

```
eSyncMode : L_TT1P_SyncMode := L_TT1P_SyncMode.Ramp_VelAcc;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 10000;
lrSyncJerk : LREAL := 100000;
```

3 Functional description of "Electrical Shaft Position"

3.14 CPU utilisation (example Controller 3231 C)

3.14 CPU utilisation (example Controller 3231 C)

The following table shows the CPU utilisation in microseconds using the example of the 3231 C controller (ATOM™ processor, 1.6 GHz).

Versions	Interconnection of the technology module	CPU utilisation	
		Average	Maximum peak
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	40 μs	83 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	55 μs	83 μs
High	xEnable := TRUE; xRegulatorOn := TRUE; xSyncPos := TRUE;	70 μs	92 μs

A		
A	M	
Access points <u>26</u>	Manual jog (jogging) <u>27</u>	
Application notes 7	N	
C	N	
	Notes on how to operate the technology module 12	
Clutch-in mechanism (synchronism) <u>32</u>	0	
Controlled start of the axes <u>13</u>		
Conventions used 6	Operating mode <u>12</u>	
CPU utilisation (example Controller 3231 C) 46	Outputs <u>17</u>	
D	P	
	Position offset during synchronism <u>31</u>	
Declutch mechanism (synchronism) 32 Direct clutching-in/declutching 33	Position offset with profile generator 37	
Document history 5	Position trimming 36	
Document history <u>3</u>	Profile generator <u>37</u>	
E	Tronic generator <u>57</u>	
Electrical Shaft Position (functional description) 10	R	
E-mail to Lenze 48	Relative clutching-in/declutching 34	
eSyncMode = Ramp_Dist 40	<u> </u>	
eSyncMode = Ramp_Time 42	S	
eSyncMode = Ramp_VelAcc 44	Safety instructions 7, 8	
Extended clutch-in mechanism 40	Signal flow diagram 24	
Extended clutch-in/declutch mechanism 40	Start of the axes 13	
Extended declutch mechanism 40	State machine 23	
	States <u>23</u>	
F	Structure of the access points	
Feedback to Lenze 48	L_TT1P_scAP_ElectricalShaftPosBase/State/High <u>26</u>	
Function block L_TT1P_ElectricalShaftPosBase/State/High 14	Structure of the L_TT1P_scSF_ElectricalShaftPosBase/State/	
Functional description of "Electrical Shaft Position" 10	High signal flow 25	
·	Synchronism (SyncPos) 29	
Н	Synchronism with clutch-in/declutch mechanism <u>32</u>	
Homing 28	SyncPos (synchronism) <u>29</u>	
	Т	
I		
Inputs <u>15</u>	Target group 4	
Inputs and outputs 14	Technology module functions (overview) <u>11</u> Torque-controlled drive as master <u>12</u>	
1	Trimming 36	
L	71111111111 <u>30</u>	
L_TT1P_ElectricalShaftPosBase 14	U	
L_TT1P_ElectricalShaftPosHigh 14	Use of setpoints or actual values 12	
L_TT1P_ElectricalShaftPosState 14	=	
L_TT1P_scAP_ElectricalShaftPosBase 26	V	
L_TT1P_scAP_ElectricalShaftPosHigh 26	Variable names <u>6</u>	
L_TT1P_scAP_ElectricalShaftPosState 26	-	
L_TT1P_scPar_ElectricalShaftPosBase 19		
L_TT1P_scPar_ElectricalShaftPosBase/State/High parameter structure 19		
L_TT1P_scPar_ElectricalShaftPosHigh 19		
L_TT1P_scPar_ElectricalShaftPosState 19		
L_TT1P_scSF_ElectricalShaftPosBase 25		
L_TT1P_scSF_ElectricalShaftPosHigh 25		
L_TT1P_scSF_ElectricalShaftPosState 25		
Layout of the safety instructions 7		

Your opinion is important to us

These instructions were created to the best of our knowledge and belief to give you the best possible support for handling our product.

Perhaps we have not succeeded in achieving this objective in every respect. If you have suggestions for improvement, please e-mail us to:

feedback-docu@lenze.com

Thank you very much for your support.

Your Lenze documentation team

Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen GERMANY HR Hannover B 205381

£ +49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

- © 008000 24 46877 (24 h helpline)
- 💾 +49 5154 82-1112
- @ service@lenze.com

