

Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark

Fangjun Li¹, David C. Hogg¹, Anthony G. Cohn^{1,2}

¹University of Leeds, UK ²Alan Turing Institute, UK

Introduction

Al has made remarkable progress across various domains, with large language models (LLMs) like ChatGPT gaining substantial attention for their human-like text-generation capabilities. However, spatial reasoning remains a significant challenge, with ChatGPT's performance on spatial benchmarks like StepGame being unsatisfactory. Our analysis of GPT's spatial reasoning on a rectified StepGame benchmark identifies its proficiency in mapping text to spatial relations, yet it struggles with complex reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. To address the limitations of GPT models in spatial reasoning, we deploy Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) prompting strategies, offering insights into GPT's "cognitive process", and achieving notable improvements in accuracy.

The StepGame Benchmark

Task: multi-hop spatial reasoning in texts

Solution to StepGame

Sentence-to-Relation Mapping + ASP Reasoner

The ASP module calculates the location of o_i to o_j by adding the offsets $v(o_i, o_j)$.

LLM + ASP

The relation extraction performance of GPT models.

Results of LLMs for relation extraction + ASP Reasoner

	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
Map+ASP	100	100	100	100	100	100	100	100	100	100
Curie+ASP	46	43	42	59	67	67	57	56	58	61
Davinci+ASP	100	100	99	100	100	99	100	100	100	100
SOTA	92.6	89.9	89.1	93.8	92.9	91.6	91.2	90.4	89.0	88.3

Evaluation of GPT-3.5 Turbo on StepGame

Methods

Our CoT approach decomposes each step of thought c_i to incorporate a coherent and detailed reasoning process.

At reasoning step i, $c_i = [c_i^{link}, c_i^{map}, c_i^{calcu}]$

• c_i^{link} : guide LLMs to examine all relations in story $(R = [r^1, ..., r^j, ..., r^k])$ and select candidate r^j for each i

• c_i^{map} : map r^j to simple relation description o_i is to the v of o_{i+1}

• c_i^{calcu} : calculate the coordinate of o_{i+1} with r^j , $o_{i+1} = o_i + v(r^j) = (x_{o_i}, y_{o_i}) + (x_v, y_v) = (x_{o_{i+1}}, y_{o_{i+1}})$

Require: LLM, input x

- $1: S_0 \leftarrow Init(x)$
- $2: i \leftarrow 1$
- 3: while no $s_f \in S_{i-1}$ has arrived at o_t do
- 4: $S'_i \leftarrow \{s \cdot c | c \in G(s, j) \land ChainExtn(c) \land s \in S_{i-1}\}$
- 5: if $S'_i = \emptyset$ then return failure
- 6: $S_i \leftarrow select(b, \{\langle s, y \rangle | s \in S_i' \land y = \sum_{i=1}^n \sigma(V(s))\})$
- 7: i = i + 1
- 8: end while
- 9: return $Link(s_f)$

Results - Accuracy

		k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
	base	62	43	30	35	29	25	29	31	16	20
	CoT	/	34	40	36	28	28	26	31	25	24
Turbo	ToT	/	/	35	35	25	45	15	40	40	35
	base	77	42	21	26	25	30	23	23	22	22
	CoT	/	48	53	46	46	48	40	45	41	32
Davinci	ToT	/	/	65	50	45	60	50	50	55	50
	base	100	70	55	45	40	25	40	35	35	25
GPT-4	CoT	/	80	75	95	85	85	90	80	60	65
GPT-4	ToT	/	/	85	85	90	90	85	90	100	95

Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark

Link X and F

Fangjun Li¹, David C. Hogg¹, Anthony G. Cohn^{1,2}
¹University of Leeds, UK
²Alan Turing Institute, UK

Introduction

Al has made remarkable progress across various domains, with large language models (LLMs) like ChatGPT gaining substantial attention for their human-like text-generation capabilities. However, spatial reasoning remains a significant challenge, with ChatGPT's performance on spatial benchmarks like StepGame being unsatisfactory. Our analysis of GPT's spatial reasoning on the rectified StepGame benchmark identifies its proficiency in mapping text to spatial relations, yet it struggles with complex reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. To address the limitations of GPT models in spatial reasoning, we deploy Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) prompting strategies, offering insights into GPT's "cognitive process", and achieving notable improvements in accuracy.

The StepGame Benchmark

Task: multi-hop spatial reasoning in texts

Solution to StepGame

Sentence-to-Relation Mapping + ASP Reasoner

The ASP module calculates the location of o_i to o_j by adding the offsets $v(o_i, o_i)$.

LLM + ASP

The relation extraction performance of GPT models.

Accuracy results of LLMs for relation extraction + ASP Reasoner

k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
100	100	100	100	100	100	100	100	100	100
46	43	42	59	67	67	57	56	58	61
100	100	99	100	100	99	100	100	100	100
92.6	89.9	89.1	93.8	92.9	91.6	91.2	90.4	89.0	88.3
	100 46 100	100 100 46 43 100 100	100 100 100 46 43 42 100 100 99	100 100 100 100 46 43 42 59 100 100 99 100	100 100 100 100 100 46 43 42 59 67 100 100 99 100 100	100 100 100 100 100 100 46 43 42 59 67 67 100 100 99 100 100 99	100 100 100 100 100 100 100 100 46 43 42 59 67 67 57 100 100 99 100 100 99 100	100 100 100 100 100 100 100 100 100 46 43 42 59 67 67 57 56 100 100 99 100 100 99 100 100	46 43 42 59 67 67 57 56 58

Evaluation of GPT Models on Rectified StepGame

Methods

Our CoT approach decomposes each step of thought c_i to incorporate a coherent and detailed reasoning process.

At reasoning step i, $c_i = [c_i^{link}, c_i^{map}, c_i^{calcu}]$

• c_i^{link} : guide LLMs to examine all relations in story $(R = [r^1, ..., r^j, ..., r^k])$ and select candidate r^j for each i;

• c_i^{map} : map r^j to simple relation description " o_i is to the v of o_{i+1} ";

• c_i^{calcu} : calculate the coordinate of o_{i+1} with r^j , $o_{i+1} = o_i + v(r^j) = (x_{o_i}, y_{o_i}) + (x_v, y_v) = (x_{o_{i+1}}, y_{o_{i+1}})$

Our ToT approach is designed to enhance the reasoning chain building process, allowing LLMs to consider different pathways.

Require: LLM, input x

- 1: $S_0 \leftarrow Init(x)$
- $2: i \leftarrow 1$
- 3: while no $s_f \in S_{i-1}$ has arrived at o_t do
- 4: $S_i' \leftarrow \{s \cdot c | c \in G(s,j) \land ChainExtn(c) \land s \in S_{i-1}\}$
- 5: if $S_i' = \emptyset$ then return failure
- 6: $S_i \leftarrow select(b, \{\langle s, y \rangle | s \in S_i' \land y = \Sigma_1^n \sigma(V(s))\})$
- 7: i = i + 1
- 8: end while
- 9: return $Link(s_f)$

Results

Accuracy comparison of GPT models

		k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
	base	62	43	30	35	29	25	29	31	16	20
	CoT	/	34	40	36	28	28	26	31	25	24
Turbo	ToT_CoT	/	/	35	35	25	45	15	40	40	35
	base	77	42	21	26	25	30	23	23	22	22
	CoT	/	48	53	46	46	48	40	45	41	32
Davinci	ToT_CoT	/	/	65	50	45	60	50	50	55	50
	base	100	70	55	45	40	25	40	35	35	25
	CoT	/	80	75	95	85	85	90	80	60	65
GPT-4	CoT ToT_CoT	/	/	85	85	90	90	85	90	100	95

Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark

Fangjun Li¹, David C. Hogg¹, Anthony G. Cohn^{1,2}

¹University of Leeds, UK ²Alan Turing Institute, UK

Introduction

Al has made remarkable progress across various domains, with large language models (LLMs) like ChatGPT gaining substantial attention for their human-like text-generation capabilities. However, spatial reasoning remains a significant challenge, with ChatGPT's performance on spatial benchmarks like StepGame being unsatisfactory. Our analysis of GPT's spatial reasoning on the rectified StepGame benchmark identifies its proficiency in mapping text to spatial relations, yet it struggles with complex reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. To address the limitations of GPT models in spatial reasoning, we deploy Chain-of-Thought (CoT) and Tree-of-Thoughts (ToT) prompting strategies, offering insights into GPT's "cognitive process", and achieving notable improvements in accuracy.

The StepGame Benchmark

Task: multi-hop spatial reasoning in texts

Solution to StepGame

Sentence-to-Relation Mapping + ASP Reasoner

The ASP module calculates the location of o_i to o_j by adding the offsets $v(o_i, o_j)$.

LLM + ASP

The relation extraction performance of GPT models.

Results of LLMs for relation extraction + ASP Reasoner

_		k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
	Map+ASP	100	100	100	100	100	100	100	100	100	100
_	Curie+ASP	46	43	42	59	67	67	57	56	58	61
	Davinci+ASP	100	100	99	100	100	99	100	100	100	100
	SOTA	92.6	89.9	89.1	93.8	92.9	91.6	91.2	90.4	89.0	88.3

Evaluation of GPT Models on Rectified StepGame

Methods

Our CoT approach decomposes each step of thought c_i to incorporate a coherent and detailed reasoning process.

At reasoning step i, $c_i = [c_i^{link}, c_i^{map}, c_i^{calcu}]$ • c_i^{link} : guide LLMs to examine all relations in story ($R = [r^1, ..., r^j, ..., r^k]$) and select candidate r^j for each i• c_i^{map} : map r^j to simple relation description o_i is to the v of o_{i+1} • c_i^{calcu} : calculate the coordinate of o_{i+1} with r^j , $o_{i+1} = o_i + v(r^j) = (x_{o_i}, y_{o_i}) + (x_v, y_v) = (x_{o_{i+1}}, y_{o_{i+1}})$

Our ToT approach is designed to enhance the reasoning chain building process, allowing LLMs to consider different pathways.

Require: LLM, input x

 $1: S_0 \leftarrow Init(x)$

 $2: i \leftarrow 1$

3: while no $s_f \in S_{i-1}$ has arrived at o_t do

4: $S'_i \leftarrow \{s \cdot c | c \in G(s, j) \land ChainExtn(c) \land s \in S_{i-1}\}$

5: if $S'_i = \emptyset$ then return failure

6: $S_i \leftarrow select(b, \{\langle s, y \rangle | s \in S_i' \land y = \sum_{i=1}^n \sigma(V(s))\})$

7: i = i + 1

8: end while

9: return $Link(s_f)$

Results

Accuracy comparison of GPT models

		k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
	base	62	43	30	35	29	25	29	31	16	20
1	CoT	/	34	40	36	28	28	26	31	25	24
Turbo	ToT	/	/	35	35	25	45	15	40	40	35
	base	77	42	21	26	25	30	23	23	22	22
Davinci	CoT	/	48	53	46	46	48	40	45	41	32
	ToT	/	/	65	50	45	60	50	50	55	50
	base	100	70	55	45	40	25	40	35	35	25
GPT-4	CoT	/	80	75	95	85	85	90	80	60	65
GPT-4	ToT	/	/	85	85	90	90	85	90	100	95

Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark

Fangjun Li¹, David C. Hogg¹, Anthony G. Cohn^{1,2}

¹University of Leeds, UK

²Alan Turing Institute, UK

Introduction

Al has made remarkable progress across various domains, with large language models like ChatGPT gaining substantial attention for their human-like text-generation capabilities. Despite these achievements, spatial reasoning remains a significant challenge for these models. Benchmarks like StepGame evaluate Al spatial reasoning, where ChatGPT has shown unsatisfactory performance. However, the presence of template errors in the benchmark has an impact on the evaluation results. Thus there is potential for ChatGPT to perform better if these template errors are addressed, leading to more accurate assessments of its spatial reasoning capabilities.

The StepGame Benchmark

Task: multi-hop spatial reasoning in texts

Template Errors in StepGame

Mapping	Original Incorrect Statement
	AA and BB are parallel, and AA on the right of BB.
DD wight AA	AA and BB are parallel, and AA is to the right of BB.
BB_right_AA	AA and BB are horizontal and AA is to the right of BB
	AA and BB are both there with the object AA is to the right of object BB.
	AA is placed at the bottom of BB.
BB_below_AA	AA is at the bottom of BB and is on the same vertical plane.
	AA presents below BB.
AA_lowerleft_BB	BB is there and AA is at the 10 position of a clock face.
AA_lowellelt_bb	BB is positioned below AA and to the left
DD uppomisht AA	Object A is above object BB and to the right of it, too.
BB_upperright_AA	AA is diagonally to the upper right of BB.
AA_lowerright_BB	AA is to the right and above BB at an angle of about 45 degrees.
DD ummorloft A A	BB is to the right and above AA at an angle of about 45 degrees.
BB_upperleft_AA	BB is diagonally left and above BB.

 k=1
 k=2
 k=3
 k=4
 k=5
 k=6
 k=7
 k=8
 k=9
 k=10

 Clean
 7.64
 15.03
 20.87
 26.39
 32.54
 37.66
 41.71
 47.20
 51.50
 54.29

 Noise
 20.43
 30.19
 34.59
 48.18
 57.13
 61.14
 63.60
 69.45
 72.84
 74.21

Solution to StepGame

Sentence-to-Relation Mapping + ASP Reasoner

Sentences		Template		ASP Facts
Y and I are parallel, and Y is on top of I.		Y_above_I	-	above("Y", "I").
F is on the left side of and below Q.		F_lowerleft_Q		down_left("F", "Q").
J is at O's 6 o'clock.		J_below_O		below("J", "O").
A is directly north east of B.		A_upperright_B		up_right("A", "B").
What is the relation of the agent B to the agent J?		query_B_J		query("B", "J").

LLM + ASP

LLM for relation extraction + ASP Reasoner

	left/	above	lower_left/	lower_right/
	right	/below	upper_right	upper_left
total	44	53	50	53
text-curie-001	11	41	30	37
text-davinci-003	0	0	0	2
gpt-3.5-turbo	2	2	3	1

Evaluation of GPT Models on Revised StepGame

Methods

Given a story about spatial relations Reasoning: among objects, answer the relation Suppose F is at (0,0). Link X and F using the between two queried objects. Possible relations in the story. relations are: overlap, above, below, **Start from F.** According to 6. F is above T at 10 o'clock. So T is to the lower-right of F. T= F+ left, right, upper-left, upper-right, loweroffset(lower-right) = (0,0)+(1,-1)=(1,-1). left, and lower-right. If a sentence in the |0|story is describing clock-wise Then search for T. According to 1. T is slightly off center to the top left and I is slightly off center to information, then 12 denotes above, 1 and 2 denote upper-right, 3 denotes the bottom right. So I is to the lower-right of T. I= T+ offset(lower-right) = (1,-1)+(1,-1)=(2,-2). right, 4 and 5 denote lower-right, 6 Then search for I. According to 4. N is lower right denotes below, 7 and 8 denote lowerleft, 9 denote left, 10 and 11 denote of I. So N is to the lower-right of I. N= I+ upper-left. If the sentence is describing offset(lower-right) = (2,-2)+(1,-1)=(3,-3). cardinal directions, then north denotes Then search for N. According to 9. N is sitting in above, east denotes right, south the right direction of J. So J is to the left of N. J= N+ offset(left) = (3,-3)+(-1,0)=(2,-3). denotes below, and west denotes left. In all the spatial relations, assume that Then search for J. According to 5. S is positioned all agents occupy a position on a grid above J and to the right. So S is to the upper-right point of equally spaced points in the of J. S = J + offset(upper-right) = (2,-3)+(1,1)=vertical and horizontal directions and (3,-2).that agents occupy the nearest grid Then search for S. According to 10. M is placed point consistent with the spatial relation. at the lower right of S. So M is to the lower-right of The offsets of 9 spacial relations: S. M = S + offset(lower-right) = (3,-2)+(1,-1)=(4,-3). offset(overlap) = (0,0); offset(top) = Then search for M. According to 2. M is at the (0,1); offset(down) = (0,-1); offset(left) = bottom of X. So X is above M. X= M+ (-1,0); offset(right) = (1,0); offset(above) = (4,-3)+(0,1)=(4,-2). Come to X, offset(top_left) = (-1,1); offset(top_right) = (1,1); offset(down_left) = (-1,1); ended. F(0,0), X(4,-2), so X is to the lower-right of Answer: lower-right offset(down right) = (1,1)

Algorithm 1: Our ToT Approach

Require: LLM, input x

- 1: $S_0 \leftarrow Init(x)$
- $2: i \leftarrow 1$
- 3: while no $s_f \in S_{i-1}$ has arrived at o_t do
- 4: $S_i' \leftarrow \{s \cdot c | c \in G(s,j) \land ChainExtn(c) \land s \in S_{i-1}\}$
- 5: if $S_i' = \emptyset$ then return failure
- 6: $S_i \leftarrow select(b, \{\langle s, y \rangle | s \in S_i' \land y = \Sigma_1^n \sigma(V(s))\})$
- 7: i = i + 1
- 8: end while
- 9: return $Link(s_f)$

Results

		k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
Map	Map+ASP		100	100	100	100	100	100	100	100	100
Curie	e+ASP	46	43	42	59	67	67	57	56	58	61
Davin	ci+ASP	100	100	99	100	100	99	100	100	100	100
SC	OTA	92.6	89.9	89.1	93.8	92.9	91.6	91.2	90.4	89.0	88.3
-	base	62	43	30	35	29	25	29	31	16	20
Turbo	CoT	/	34	40	36	28	28	26	31	25	24
	ToT_CoT	/	/	35	35	25	45	15	40	40	35
	base	77	42	21	26	25	30	23	23	22	22
Davinci	CoT	/	48	53	46	46	48	40	45	41	32
	ToT_CoT	/	/	65	50	45	60	50	50	55	50
	base	100	70	55	45	40	25	40	35	35	25
GPT-4	CoT	/	80	75	95	85	85	90	80	60	65
	ToT_CoT	/	/	85	85	90	90	85	90	100	95