SPEECH RECGNITION

BY - HIMANSHU BHATTI STREAM : CSE 7TH SEM ROLL NO. : 07210102711 AIACTR

SPEECH PRODUCTION PSYSIOLOGY (**)

Introduction

• What is speech recognition?

- Speech recognition technology has recently reached a higher level of performance and robustness, allowing it to communicate to another user by talking.
- Speech Recognization is process of decoding acoustic speech signal captured by microphone or telephone, to a set of words.
- And with the help of these it will recognize whole speech is recognized word by word.

Types of SR

: speaker independent and speaker dependent.

Speaker independent models recognize the speech patterns of a large group of people.

Speaker dependent models recognize speech patterns from only one person. Both models use mathematical and statistical formulas to yield the best work match for speech. A third variation of speaker models is now emerging, called **speaker adaptive**.

Speaker adaptive systems usually begin with a speaker independent model and adjust these models more closely to each individual during a brief training period.

Why do we need speech ()) recognition

- Most Natural Form Of Communication
- Differently abled people
- Illiterate
- Helplines
- Cars

How speech recognition works

How Speech Recognition Works

The software decides what it thinks the spoken word was and displays the

best match on the screen.

ASR System Overview

- Speech Segment Extraction
- Speech Processing and Modeling
- Pattern Recognition and Training

Recognition Flowchart presentation

Recognition Process Flow Summary

Step 1:User Input

The system catches user's voice in the form of analog acoustic signal.

Step 2:Digitization

Digitize the analog acoustic signal.

Step 3:Phonetic Breakdown

Breaking signals into phonemes.

Recognition Process Flow Summary

- Step 4:Statistical Modeling
 - Mapping phonemes to their phonetic representation using statistics model.
- Step 5:Matching
 - According to grammar, phonetic representation and Dictionary, the system returns an n-best list (I.e.:a word plus a confidence score)
 - > Grammar-the union words or phrases to constraint the range of input or output in the voice application.
 - Dictionary-the mapping table of phonetic representation and word(EX:thu,thee > the)

Approaches to ASR

Template based

Statistics based

🔁 Template-based approach 📢

- Store examples of units (words, phonemes), then find the example that most closely fits the input
- Extract features from speech signal, then it's "just" a complex similarity matching problem, using solutions developed for all sorts of applications
- OK for discrete utterances, and a single user

Template-based approach

- Hard to distinguish very similar templates
- And quickly degrades when input differs from templates
- Therefore needs techniques to mitigate this degradation:
 - More subtle matching techniques
 - Multiple templates which are aggregated
- Taken together, these suggested

-Statistics-based approach

- Collect a large corpus of transcribed speech recordings
- Train the computer to learn the correspondences ("machine learning")
- At run time, apply statistical processes to search through the space of all possible solutions, and pick the statistically most likely one

Statistics based approach

• Acoustic and Lexical Models

- Analyse training data in terms of relevant features
- Learn from large amount of data different possibilities
 - different phone sequences for a given word
 - different combinations of elements of the speech signal for a given phone/phoneme
- Combine these into a Hidden Markov Model expressing the probabilities

HIDDEN MARKOV MODEL (HMM)

- Real-world has structures and processes which have (or produce) observable outputs:
 - Usually sequential (process unfolds over time)
 - Cannot see the event producing the output
 Example: speech signals

HMM Overview

- Machine learning method
- Makes use of state machines
- Based on probabilistic model
- Can only observe output from states, not the states themselves
 - Example: speech recognition
 - Observe: acoustic signals
 - Hidden States: phonemes
 (distinctive sounds of a language)

HMM Components

- A set of states (x's)
- A set of possible output symbols (y's)
- A state transition matrix (a's): probability of making transition from one state to the next
- Output emission matrix (b's): probability of a emitting/observing a symbol at a particular state
- Initial probability vector:
 - o probability of starting at a particular state
 - o Not shown, sometimes assumed to be 1

HMMs for some words

- Advantages:
 - o Effective
 - O Can handle variations in record structure
 - √ Optional fields
 - √ Varying field ordering

What's hard about that?

- Digitization
 - Converting analogue signal into digital representation.
- Signal processing
 - Separating speech from background noise.
- Phonetics
 - Variability in human speech.
- Phonology
 - Recognizing individual sound distinctions (similar phonemes.)
- Lexicology and syntax
 - Disambiguating homophones.
 - Features of continuous speech.
- Syntax and pragmatics
 - Interpreting features.
 - Filtering of performance errors (disfluencies).

Challenges and Difficulties

of SR

Speech Recognition is still a very cumbersome problem. Following are the problem....

Speaker Variability

Two speakers or even the same speaker will pronounce the same word differently

Channel Variability

The quality and position of microphone and background environment will affect the output

Applications of Speech Recognition

Speech recognition applications include

- Voice dialling (e.g., "Call home"),
- Call routing (e.g., "I would like to make a collect call"),
- Simple data entry (e.g., entering a credit card number),
- Preparation of structured documents (e.g., A radiology report),
- Speech-to-text processing (e.g., word processors or emails),
 and
- In aircraft cockpits (usually termed Direct Voice Input).

- Medical Transcription
- Military
- Telephony and other domains
- Serving the disabled

Further Applications

- Home automation
- Automobile audio systems
- Telematics

Pros of Speech Recognition

- Faster than "hand-writing".
- Allows for better spelling, whether it be in text or documents.
- Helpful for people with a mental or physical disability.
- Hands-free capability.

- No program is 100% perfect
- Factors that affect the accuracy of speech recognition are: slang, homonyms, signalto-noise ratio, and overlapping speech
- Can be expensive depending on the program

- http://en.wikipedia.org/wiki/Speech_recognition
- https://www.scribd.com/doc/130376790/Speech-Recognition
- "Speaker Independent Connected Speech Recognition-Fifth Generation Computer Corporation". Fifthgen.com.
- http://books.google.co.in/books?hl=en&lr=&id=iDHgb oYRzmgC&oi=fnd&pg=PA1&dq=speech+recognition+p apers+publications&ots=jb6NESTrjF&sig=oMKROIXcc SgEyMGOZmi5lkToJvM#v=onepage&q=speech%20recognition%20papers%20publications&f=false
- http://www.speechrecognition.com
- https://www.google.co.in/?gfe_rd=cr&ei=GbHdU9f1Mt KAoAOW64GADg&gws_rd=ssl

THANK YOU.

