Linear Temporal Logic (2)

Lecture #14 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 3, 2008

Overview Lecture #14

- ⇒ Repetition: LTL syntax and semantics
 - Expansion laws
 - Positive normal form

Linear temporal logic

BNF grammar for LTL formulas over propositions AP with $a \in AP$:

$$\varphi ::= \mathsf{true} \; \left| \; a \; \right| \; \varphi_1 \wedge \varphi_2 \; \left| \; \neg \varphi \; \right| \; \bigcirc \varphi \; \left| \; \varphi_1 \, \mathsf{U} \, \varphi_2 \right|$$

auxiliary temporal operators: $\Diamond \phi \equiv \text{true U } \phi \text{ and } \Box \phi \equiv \neg \Diamond \neg \phi$

LTL semantics

The LT-property induced by LTL formula φ over AP is:

$$\mathit{Words}(\varphi) = \left\{\sigma \in \left(2^\mathit{AP}\right)^\omega \mid \sigma \models \varphi\right\}, \text{ where } \models \text{ is the smallest relation satisfying: }$$

$$\sigma \models \mathsf{true}$$

$$\sigma \models a \quad \text{iff} \quad a \in A_0 \quad (\text{i.e., } A_0 \models a)$$

$$\sigma \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \sigma \models \varphi_1 \text{ and } \sigma \models \varphi_2$$

$$\sigma \models \neg \varphi \quad \text{iff} \quad \sigma \not\models \varphi$$

$$\sigma \models \bigcirc \varphi \quad \text{iff} \quad \sigma[1..] = A_1 A_2 A_3 \ldots \models \varphi$$

$$\sigma \models \varphi_1 \cup \varphi_2 \text{ iff } \exists j \geqslant 0. \ \sigma[j..] \models \varphi_2 \text{ and } \sigma[i..] \models \varphi_1, \ 0 \leqslant i < j$$

for $\sigma=A_0A_1A_2\dots$ we have $\sigma[i..]=A_iA_{i+1}A_{i+2}\dots$ is the suffix of σ from index i on

Semantics of □, ⋄, □⋄ and ⋄□

$$\sigma \models \Diamond \varphi \quad \text{iff} \quad \exists j \geqslant 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \varphi \quad \text{iff} \quad \forall j \geqslant 0. \ \sigma[j..] \models \varphi$$

$$\sigma \models \Box \Diamond \varphi \quad \text{iff} \quad \forall j \geqslant 0. \ \exists i \geqslant j. \ \sigma[i \ldots] \models \varphi$$

$$\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \exists j \geqslant 0. \ \forall i \geqslant j. \ \sigma[i \ldots] \models \varphi$$

LTL semantics

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

• For infinite path fragment π of TS:

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$

• For state $s \in S$:

$$s \models \varphi$$
 iff $(\forall \pi \in Paths(s), \pi \models \varphi)$

• TS satisfies φ , denoted $TS \models \varphi$, if $Traces(TS) \subseteq Words(\varphi)$

Overview Lecture #14

- Repetition: LTL syntax and semantics
- \Rightarrow Expansion laws
 - Positive normal form

Equivalence

LTL formulas ϕ, ψ are *equivalent*, denoted $\phi \equiv \psi$, if:

 $\mathit{Words}(\phi) = \mathit{Words}(\psi)$

Expansion laws

Expansion:
$$\phi \cup \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi \cup \psi))$$

 $\Diamond \phi \equiv \phi \vee \bigcirc \Diamond \phi$
 $\Box \phi \equiv \phi \wedge \bigcirc \Box \phi$

proof on the black board

Expansion for until

 $P = Words(\varphi \cup \psi)$ satisfies:

$$P = Words(\psi) \cup \{A_0 A_1 A_2 \ldots \in Words(\varphi) \mid A_1 A_2 \ldots \in P\}$$

and is the *smallest* LT-property such that:

$$Words(\psi) \cup \{A_0 A_1 A_2 \ldots \in Words(\varphi) \mid A_1 A_2 \ldots \in P\} \subseteq P \quad (*)$$

smallest LT-property satisfying condition (*) means that:

 $P = \mathit{Words}(\varphi \cup \psi)$ satisfies (*) and $\mathit{Words}(\varphi \cup \psi) \subseteq P$ for each P satisfying (*)

Proof

Weak until

- The weak-until (or: unless) operator: $\varphi \mathsf{W} \psi \stackrel{\mathsf{def}}{=} (\varphi \mathsf{U} \psi) \vee \Box \varphi$
 - as opposed to until, φ W ψ does not require a ψ -state to be reached
- Until U and weak until W are dual:

$$\neg(\varphi \cup \psi) \equiv (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \neg \psi)$$
$$\neg(\varphi \vee \psi) \equiv (\varphi \wedge \neg \psi) \cup (\neg \varphi \wedge \neg \psi)$$

- Until and weak until are equally expressive:
 - $\Box \psi \equiv \psi \, W$ false and $\varphi \, U \, \psi \equiv (\varphi \, W \, \psi) \wedge \neg \Box \neg \psi$
- Until and weak until satisfy the same expansion law
 - but until is the smallest, and weak until the largest solution!

Expansion for weak until

 $P = Words(\varphi W \psi)$ satisfies:

$$P = Words(\psi) \cup \{A_0 A_1 A_2 \ldots \in Words(\varphi) \mid A_1 A_2 \ldots \in P\}$$

and is the *largest* LT-property such that:

$$Words(\psi) \cup \{A_0A_1A_2 \ldots \in Words(\varphi) \mid A_1A_2 \ldots \in P\} \supseteq P \quad (**)$$

largest LT-property satisfying condition (**) means that: $P \supseteq \textit{Words}(\varphi \ \ \ \ \psi)$ satisfies (**) and $\textit{Words}(\varphi \ \ \ \psi) \supseteq P$ for each P satisfying (**)

Overview Lecture #14

- Repetition: LTL syntax and semantics
- LTL equivalence
- Expansion laws
- ⇒ Positive normal form

(Weak-until) positive normal form

- Canonical form for LTL-formulas
 - negations only occur adjacent to atomic propositions
 - disjunctive and conjunctive normal form is a special case of PNF
 - for each LTL-operator, a dual operator is needed
 - $-\text{ e.g., } \neg(\varphi \cup \psi) \ \equiv \ \left((\varphi \wedge \neg \psi) \cup (\neg \varphi \wedge \neg \psi) \right) \ \vee \ \Box (\varphi \wedge \neg \psi)$
 - that is: $\neg(\varphi \cup \psi) \equiv (\varphi \wedge \neg \psi) \vee (\neg \varphi \wedge \neg \psi)$
- For $a \in AP$, the set of LTL formulas in PNF is given by:

$$\varphi \,::=\, \mathsf{true} \, \Big| \, \mathsf{false} \, \Big| \, a \, \Big| \, \neg a \, \Big| \, \varphi_1 \wedge \varphi_2 \, \Big| \, \varphi_1 \vee \varphi_2 \, \Big| \, \bigcirc \varphi \, \Big| \, \varphi_1 \, \mathsf{U} \, \varphi_2 \, \Big| \, \varphi_1 \, \mathsf{W} \, \varphi_2$$

− $\ \square$ and $\ \diamondsuit$ are also permitted: $\ \square\varphi\equiv\varphi$ W false and $\ \diamondsuit\varphi=$ true U $\ \varphi$

(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

but an exponential growth in size is possible

Example

Consider the LTL-formula $\neg \Box ((a \cup b) \lor \bigcirc c)$

This formula is not in PNF, but can be transformed into PNF as follows:

$$\neg \Box ((a \cup b) \lor \bigcirc c)$$

$$\equiv \Diamond \neg ((a \cup b) \lor \bigcirc c)$$

$$\equiv \Diamond (\neg (a \cup b) \land \neg \bigcirc c)$$

$$\equiv \Diamond ((a \land \neg b) \lor (\neg a \land \neg b) \land \bigcirc \neg c)$$

can the exponential growth in size be avoided?

The release operator

- The *release* operator: $\varphi R \psi \stackrel{\text{def}}{=} \neg (\neg \varphi U \neg \psi)$
 - ψ always holds, a requirement that is released as soon as φ holds
- Until U and release R are dual:

$$\varphi \cup \psi \equiv \neg (\neg \varphi \, \mathsf{R} \, \neg \psi)$$

$$\varphi \, \mathsf{R} \, \psi \equiv \neg (\neg \varphi \, \mathsf{U} \, \neg \psi)$$

Until and release are equally expressive:

- $\Box \psi \equiv \text{false R} \, \psi \text{ and } \varphi \, \mathsf{U} \, \psi \equiv \neg (\neg \varphi \, \mathsf{R} \, \neg \psi)$
- Release satisfies the expansion law: $\varphi R \psi \equiv \psi \land (\varphi \lor \bigcirc (\varphi R \psi))$

Semantics of release

Positive normal form (revisited)

For $a \in AP$, LTL formulas in PNF are given by:

$$\varphi \,::=\, \mathsf{true} \, \left| \, \mathsf{false} \, \right| \, a \, \left| \, \neg a \, \right| \, \varphi_1 \wedge \varphi_2 \, \left| \, \varphi_1 \vee \varphi_2 \, \right| \, \, \bigcirc \, \varphi \, \left| \, \varphi_1 \, \mathsf{U} \, \varphi_2 \, \right| \, \varphi_1 \, \, \mathsf{R} \, \, \varphi_2$$

PNF in linear size

For any LTL-formula φ there exists an equivalent LTL-formula ψ in PNF with $|\psi|=\mathcal{O}(|\varphi|)$

Transformations: