Package 'RMCDA'

November 9, 2024

Title Multi-Criteria Decision Analysis in R
Version 0.0.0.9000
Author Annice Najafi
Maintainer [Annice Najafi] <annicenajafi27@gmail.com></annicenajafi27@gmail.com>
Description This package provides different methods of multi-criteria decision analysis.
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports dplyr, stats, igraph, fmsb, lpSolve
R topics documented:
apply.AHP
apply.ANP
apply.BWM 3 apply.CRITIC 4
apply.FAHP
apply.PROMOTHEE
apply.SBWM
apply.SMCDM
apply.TOPSIS
apply.VIKOR
find.entropy
find.weight
plot.AHP.decision.tree
plot.spider
read.csv.AHP.matrices
read.csv.SBWM.matrices
read.csv.SMCDM.matrices
Index 12

2 apply.ANP

apply.AHP

Apply AHP on the matrices

Description

Apply AHP on the matrices

Usage

```
apply.AHP(A, comparing.competitors)
```

Arguments

A the matrix containing information related to pairwise comparisons of criteria comparing.competitors

the list of matrices related to pairwise comparisons of competitors for each criteria

Value

a list containing I. The weight of each criteria II. The criteria alternative unweighted matrix III. The weighted scores matrix IV. Competitor final scores

Examples

```
data <- read.csv(system.file("extdata", "AHP_input_file.csv", package = "RMCDA"), header=FALSE)
mat.lst <- read.csv.AHP.matrices(data)
mat.lst[[1]]->A
mat.lst[[2]]->comparing.competitors
results<- apply.AHP(A, comparing.competitors)</pre>
```

apply.ANP

Apply Analytical Network Process (ANP) on data

Description

Apply Analytical Network Process (ANP) on data

Usage

```
apply.ANP(A, comparing.competitors, power)
```

Arguments

A the matrix containing information related to pairwise comparisons of criteria comparing.competitors

the list of matrices related to pairwise comparisons of competitors for each cri-

00114

power the power value of the supermatrix

apply.BWM

Value

the limiting super matrix

Examples

```
data <- read.csv(system.file("extdata", "AHP_input_file.csv", package = "RMCDA"), header=FALSE)
mat.lst <- read.csv.AHP.matrices(data)
mat.lst[[1]]->A
mat.lst[[2]]->comparing.competitors
apply.ANP(A, comparing.competitors, 2)
```

apply.BWM

Function for applying the Best-Worst Method

Description

Function for applying the Best-Worst Method

Usage

```
apply.BWM(
   criteria.lst,
   worst.criteria,
   best.criteria,
   best.criteria.preference,
   worst.criteria.preference)
```

Arguments

Value

the result of BWM

4 apply.FAHP

apply.CRITIC

Apply CRITIC on comparison matrix

Description

Apply CRITIC on comparison matrix

Usage

```
apply.CRITIC(A)
```

Arguments

Α

the matrix A with row names corresponding to alternatives and column names corresponding to criteria

Value

the weight percentages related to matrix A obtained through the CRITIC method

Examples

```
A <- matrix(c(250, 200, 300, 275, 225, 16, 16, 32, 32, 16, 12, 8, 16, 8, 16, 5, 3, 4, 4, 2), nrow=5, ncol=4) colnames(A)<-c("Price", "Storage space", "Camera", "Looks") rownames(A)<-paste0("Mobile ", seq(1, 5, 1)) A[,"Price"] <- -A[,"Price"] apply.CRITIC(A)
```

apply.FAHP

Apply fuzzy AHP on criteria comparison matrix

Description

Apply fuzzy AHP on criteria comparison matrix

Usage

```
apply.FAHP(A)
```

Arguments

Α

the comparison matrix

Value

the fuzzy weights for each criteria

apply.PROMOTHEE 5

Examples

```
# example code
data <- read.csv(system.file("extdata", "AHP_input_file.csv", package = "RMCDA"), header=FALSE)
mat.lst <- read.csv.AHP.matrices(data)
mat.lst[[1]]->A
result <- apply.FAHP(A)</pre>
```

apply.PROMOTHEE

Function for applying PROMOTHEE I or II

Description

Function for applying PROMOTHEE I or II

Usage

```
apply.PROMOTHEE(A, weights, type = "II")
```

Arguments

Α

the comparison matrix with the row names indicating the alternatives and col-

names indicating the criteria.

weights

the weights of criteria.

Value

the results of PROMOTHEE

Examples

```
A <- matrix(c(250, 200, 300, 275, 16, 16, 32, 32, 12, 8, 16, 8, 5, 3, 4, 2), nrow=4) rownames(A)<-c("Mobile 1", "Mobile 2", "Mobile 3", "Mobile 4") colnames(A)<-c("Price", "Memory", "Camera", "Looks") weights <- c(0.35, 0.25, 0.25, 0.15) apply.PROMOTHEE(A, weights)
```

apply.SBWM

Function for applying the Stratified Best-Worst Method (SBWM)

Description

Function for applying the Stratified Best-Worst Method (SBWM)

Usage

```
apply.SBWM(
  comparison.mat,
  others.to.worst,
  others.to.best,
  state.worst.lst,
  state.best.lst,
  likelihood.vector
)
```

6 apply.SMCDM

Arguments

comparison.mat the comparison matrix containing the alternatives as column names and the criteria as row names.

others.to.worst

the comparison of the criteria to the worst criteria for each state, column names should be states and the row names are criteria

others.to.best the comparison of the criteria to the best criteria for each state, column names should be states and the row names are criteria

state.worst.lst

the vector containing the name of the worst criteria in each state

state.best.lst the vector containing the name of the best criteria in each state
likelihood.vector

the vector containing the likelihood of being in each state.

Value

the result of SBWM

Examples

```
data <- read.csv(system.file("extdata", "stratified_BWM_case_study_I_example.csv", package = "RMCDA"), header
mat.lst <- read.csv.SBWM.matrices(data)
comparison.mat <- mat.lst[[1]]
others.to.worst <- mat.lst[[2]]
others.to.best <- mat.lst[[3]]
state.worst.lst <- mat.lst[[4]]
state.best.lst <- mat.lst[[5]]
likelihood.vector <- mat.lst[[6]]
apply.SBWM(comparison.mat, others.to.worst, others.to.best, state.worst.lst, state.best.lst, likelihood.vect</pre>
```

apply.SMCDM

Apply stratified multi-criteria decision making method

Description

Apply stratified multi-criteria decision making method

Usage

```
apply.SMCDM(comparison.mat, state.criteria.probs, likelihood.vector)
```

Arguments

comparison.mat the matrix containing alternatives as row names and criteria as column names and corresponding scores as cell values.

state.criteria.probs

the matrix containing the states as column names and criteria as row names and the corresponding scores as matrix values.

likelihood.vector

the vector containing the likelihood of being in each state.

apply.TOPSIS 7

Value

the SMCDM results

Examples

```
data <- read.csv(system.file("extdata", "SMCDM_input.csv", package = "RMCDA"), header=FALSE)
mat.lst <- read.csv.SMCDM.matrices(data)
comparison.mat <- mat.lst[[1]]
state.criteria.probs <- mat.lst[[2]]
likelihood.vector <- mat.lst[[3]]
apply.SMCDM(comparison.mat, state.criteria.probs, likelihood.vector)</pre>
```

apply.TOPSIS

Apply TOPSIS on matrix A with weight of criteria stored in vector w

Description

Apply TOPSIS on matrix A with weight of criteria stored in vector w

Usage

```
apply.TOPSIS(A, w)
```

Arguments

A the matrix A with row names corresponding to alternatives and column names

corresponding to criteria

w the weight vector corresponding to the weight of each criteria

Value

performance scores obtained through TOPSIS

```
A <- matrix(c(250, 200, 300, 275, 225, 16, 16, 32, 32, 16, 12, 8, 16, 8, 16, 5, 3, 4, 4, 2), nrow=5, ncol=4) colnames(A)<-c("Price", "Storage space", "Camera", "Looks") rownames(A)<-paste0("Mobile ", seq(1, 5, 1)) A[,"Price"] <- -A[,"Price"] apply.TOPSIS(A, c(1/4, 1/4, 1/4))
```

8 find.entropy

apply.	VIKOR
--------	-------

Function for applying VIKOR to data

Description

Function for applying VIKOR to data

Usage

```
apply.VIKOR(A, weights, nu = 0.5)
```

Arguments

A the comparison matrix weights the weights of criteria

nu weight of the maximum utility strategy - set by default to 0.5

find.entropy

Find entropy of each criteria

Description

Find entropy of each criteria

Usage

```
find.entropy(A)
```

Arguments

Α

the matrix A with row names corresponding to alternatives and column names corresponding to criteria

Value

the entropy value corresponding to each criteria

```
A <- matrix(c(250, 200, 300, 275, 225, 16, 16, 32, 32, 16, 12, 8, 16, 8, 16, 5, 3, 4, 4, 2), nrow=5, ncol=4) colnames(A)<-c("Price", "Storage space", "Camera", "Looks") rownames(A)<-paste0("Mobile ", seq(1, 5, 1)) A[,"Price"] <- -A[,"Price"] find.entropy (A)
```

find.weight 9

find.weight

Finding the weights for each criteria given a pairwise comparison matrix A in the AHP method

Description

Finding the weights for each criteria given a pairwise comparison matrix A in the AHP method

Usage

```
find.weight(A)
```

Arguments

Α

the matrix containing information related to pairwise comparisons of criteria

Value

a list containing the value of CI/RI and a vector containing the weights of each criteria

```
plot.AHP.decision.tree
```

Plot decision tree

Description

Plot decision tree

Usage

```
## S3 method for class 'AHP.decision.tree'
plot(A, comparing.competitors)
```

Arguments

A the comparison matrix

comparing.competitors

the list of matrices related to pairwise comparisons of competitors for each criteria

Value

the decision tree plot

10 read.csv.AHP.matrices

plot.spider

Plot spider plot

Description

Plot spider plot

Usage

```
## S3 method for class 'spider'
plot(data, colors = palette("default"))
```

Arguments

data the result of MCDA scores colors the color scheme of choice

Value

the spider plot

 ${\it read.csv.AHP.matrices} \begin{tabular}{ll} \it Read.csv.file\ containing\ pairwise\ comparison\ matrices\ for\ applying\ AHP\ or\ ANP \\ \end{tabular}$

Description

Read csv file containing pairwise comparison matrices for applying AHP or ANP

Usage

```
read.csv.AHP.matrices(data)
```

Arguments

data

the matrix containing information related to pairwise comparisons of criteria

Value

a list containing a matrix A related to pairwise comparison of criteria and a list containing multiple matrices related to pairwise comparisons of different competitor products

```
data <- read.csv(system.file("extdata", "AHP_input_file.csv", package = "RMCDA"), header=FALSE)
mat.lst <- read.csv.AHP.matrices(data)</pre>
```

read.csv.SBWM.matrices 11

```
read.csv.SBWM.matrices
```

Read csv file containing input to the stratified BWM method

Description

Read csv file containing input to the stratified BWM method

Usage

```
read.csv.SBWM.matrices(data)
```

Arguments

data

input of the csv file

Value

the inputs to the SBWM method

Examples

```
data <- read.csv(system.file("extdata", "stratified_BWM_case_study_I_example.csv", package = "RMCDA"), header
mat.lst <- read.csv.SBWM.matrices(data)</pre>
```

```
read.csv.SMCDM.matrices
```

Read csv file containing pairwise comparison matrices for applying SMCDM

Description

Read csv file containing pairwise comparison matrices for applying SMCDM

Usage

```
read.csv.SMCDM.matrices(data)
```

Arguments

data

the matrix containing information related to pairwise comparisons of criteria

Value

a list containing a matrix A related to pairwise comparison of criteria and a list containing multiple matrices related to pairwise comparisons of different competitor products

```
data <- read.csv(system.file("extdata", "SMCDM_input.csv", package = "RMCDA"), header = FALSE)
mat.lst <- read.csv.SMCDM.matrices(data)</pre>
```

Index

```
apply.AHP, 2
apply.ANP, \frac{2}{}
apply.BWM, 3
apply.CRITIC, 4
apply.FAHP, 4
apply.PROMOTHEE, 5
apply.SBWM, 5
apply.SMCDM, 6
apply.TOPSIS, 7
{\tt apply.VIKOR}, \textcolor{red}{8}
find.entropy, 8
\quad \text{find.weight}, 9 \\
\verb|plot.AHP.decision.tree|, 9|
plot.spider, 10
read.csv.AHP.matrices, 10
read.csv.SBWM.matrices, 11
read.csv.SMCDM.matrices, 11
```