Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 11

Преподаватель: Надежда Наумова

Выполнил: Силаев Захар **Группа:** P3210 <u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{5x}{x^4 + 11}$$

$$n = 11$$

$$x \in [-2; 0]$$

$$h = 0.2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
	-	-	-	-	-	-	-	-	-	-	
Yi	0,370	0,419	0,456	0,472	0,459	0,417	0,351	0,270	0,181	0,091	0,000

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = -11, sxx = 15.4, sy = -3.48, sxy = 4.384

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a - 11*b = -3.48 \\ -11*a + 15.4*b = 4.384 \end{cases} \begin{cases} -11*a + 11*b = -3.48 \\ 4.4*b = 0.904 \end{cases}$$

$$= \begin{cases} b = 0.2055 \\ a = 0.111 \end{cases}$$

$$\varphi(x) = -0.111 + 0.2055 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
yi	-0,370	-0,419	-0,456	-0,472	-0,459	-0,417	-0,351	-0,270	-0,181	-0,091	0,000
φ(xi)	-0,52	-0,48	-0,44	-0,4	-0,36	-0,32	-0,28	-0,23	-0,19	-0,15	-0,11
(φ (xi)-											
yi)^2	0,023	0,004	0,000	0,005	0,010	0,010	0,006	0,001	0,000	0,004	0,012

$$\sigma = \sqrt{\frac{\sum (\phi(xi) - yi)^2}{n}} = 0.083$$

Квадратичная аппроксимация:

$$y = \frac{5x}{x^4 + 11}$$
n = 11
$$x \in [-2; 0]$$
h = 0.2

i	1	2	3	4	5	6	7	8	9	10	11
Xi	-2	-1,8	-1,6	-1,4	-1,2	-1	-0,8	-0,6	-0,4	-0,2	0
yi	-		-								
	0,3	_	0,45								
	70	0,419	6	-0,472	-0,459	-0,417	-0,351	-0,270	-0,181	-0,091	0,000

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = -11$$
, $sxx = 15.4$, $sxxx = -24.2$, $sxxxx = 40.532$, $sy = -3.48$, $sxy = 4.384$, $sxxy = -6.36$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a - 11*b + 15.4*c = -3.48 \\ -11*a + 15.4*b - 24.2*c = 4.384 \\ 15.4*a - 24.2*b + 40.532*c = -6.36 \end{cases}$$

По методу Крамера:

$$\Delta = 66.405$$

$$\Delta_1 = 1.928, \Delta_2 = 44.62, \Delta_3 = 15.49$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{9043.80576}{4251.456} \approx 0.029 \\ b = \frac{\Delta_2}{\Delta} = \frac{4785.47696}{4251.456} \approx 0.672 \\ c = \frac{\Delta_3}{\Delta} = \frac{-1976.8496}{4251.456} \approx 0.233 \end{cases}$$

$$\varphi(\mathbf{x}) = 0.029 + 0.672x + 0.233x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233
φ(xi)	-0,383	-0,43	-0,45	-0,46	-0,44	-0,41	-0,359	-0,29	-0,2	-0,1	0,029

(φ (xi)- yi)^2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
	Σ	(φ (xi) – yi	$\frac{1}{1}$	1.6							

0.016 < 0.083, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

https://github.com/Chousik/lab_CM

Результаты выполнения программы при различных исходных данных:

3. Блок схемы

Полином 2-степени НАЧАЛО n = len(xs)j = 0..2 j > 2? coeffs = k = 0..2solve_linear_system(A, b) $f_p2(x) = coeffs[0] + coeffs[1]*x$ sum = 0k = k + 1+ coeffs[2]*x2 S, σ , R², y_pred = i = 1..n compute_metrics(xs, ys, f_p2) $sum += xs[i]^{(j+k)}$ A[j][k] = sumконец

Логарифмическая функция

Вывод

В ходе данной работы была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов был реализован Python скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций.

Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.