Step current responce of the HH Model

Eleftherios Ioannidis elefthei@mit.edu

James Hobin hobinjk@mit.edu

MIT FECS

December 2, 2014

HH Model Step Current Responce

Figure: Step Current Stimulation Phase diagram

Applications: Refractory Period

Figure: Reducing the Refractory Period can lead to faster reflexes.

Figure: Response in the Ringing, Single AP and AP Train regions

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

Figure : HH Models step current response starting at 0 $\mu A/cm^2$

DFT insufficient

PIC HERE .png PIC HERE .pdf PIC HERE .jpg PIC HERE .mps PIC HERE .jpeg PIC HERE .jbig2 PIC HERE .jb2 PIC HERE .PNG PIC HERE .PDF PIC HERE .JPG PIC HERE .JPEG PIC HERE .JBIG2 PIC HERE .JB2 PIC HERE .eps

Figure : Discrete Fourier Transform insufficient due to variable time intervals.

Least-squares spectral analysis

Figure : The LombScargle Periodogram works better with variable intervals.

Train frequency over increasing input step

Issues with precision approximation

Figure: Incorrect behavior due to low precision

References

- Weiss, T. F. (1995). Cellular Biophysics. Volume 1: Transport, MIT Press.
- Weiss, T. F. (1995). Cellular Biophysics. Volume 2: Electrical Properties, MIT Press.
- 3 Blaustein, M.P., Kao, J.P.Y., Matteson, D.R. (2012). Cellular Physiology and Neurophysiology, 2nd edition, Elsevier-Mosby.
- Gerstner, Wulfram, and Werner M. Kistler. Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.
- 5 Press, William H., and George B. Rybicki. "Fast algorithm for spectral analysis of unevenly sampled data." The Astrophysical Journal 338 (1989): 277-280.

