AutoRec : AutoEncoders Meet Collaborative Filtering

ABSTRACT

오토인코더 프레임워크를 CF에 적용

INTRODUCTION

CF는 아이템에 대한 유저의 선호 정보를 찾는데 초점을 맞춘다.

이 논문은 오토인코더 패러다임에 기반을 둔 CF 모델 AutoRec을 제안

AutoRec은 표현력과 계산에서 기존의 CF모델 보다 이점을 가짐.

THE AUTOREC MODEL

점수 기반 CF에서 유저(m), 아이템(n)과 부분적으로 레이팅이 관측된 메트릭스를 가질 수 있다.

	u1	u2	u3	 u9	u10
i1	1		1	 1	
i2		0			
i3	2			 3	
i11					1
i12		2	3		

각 유저(아이템)의 표현은 벡터 해당 행,열의 벡터로 표현 가능 (이후로는 유저 관점만 언급, 아이템도 동일)

오토인코더

이 작업에서는 추천의 목적으로 오토인코더가 입력을 위 행렬의 일부분(유저 벡터)을 받아, 낮은 차원의 잠재 공간으로 투영시키고, 그 후 없었던 레이팅을 채워서 재구성하는 것에 초점을 맞춘다.

$$\min_{\theta} \sum_{\mathbf{r} \in \mathbf{S}} ||\mathbf{r} - h(\mathbf{r}; \theta)||_2^2, \tag{1}$$

오토 인코더 목적 함수

$$h(\mathbf{r};\theta) = f\left(\mathbf{W} \cdot g(\mathbf{V}\mathbf{r} + \boldsymbol{\mu}) + \mathbf{b}\right)$$

오토인코더 연산 과정

활성화 함수(f,g)와 파라미터(W,V,m,b)를 가짐.

차이점

$$\min_{\theta} \sum_{i=1}^{n} ||\mathbf{r}^{(i)} - h(\mathbf{r}^{(i)}; \theta))||_{\mathcal{O}}^{2} + \frac{\lambda}{2} \cdot (||\mathbf{W}||_{F}^{2} + ||\mathbf{V}||_{F}^{2}), \quad (2)$$

관측된 값에 대해서만 계산, 정규화 텀 추가된 목적함수

관측된 값에 대해서만 역전파 - 보통의 MF 방법론에 적용되어 있음

오버피팅을 막기위해 정규화 텀 사용

Figure 1: Item-based AutoRec model. We use plate notation to indicate that there are n copies of the neural network (one for each item), where \mathbf{W} and \mathbf{V} are tied across all copies.

음영있는 부분이 관측된 값, 실선 부분이 업데이트에 관여

비교

	AutoRec	RBM-CF
기반 모델	autoencoder	RBM(restricted Boltzmann machine)
학습 방법	RMSE 최소화 gradient 역전파 - 빠름	log likelihood 최대화 contrastive divergence 사용 - 느림
사용 평점	평점 종류에 관계 없음	이진 평점 (좋아요/싫어요)
파라미터 수	상대적으로 적음	상대적으로 많음
표현 학습	아이템, 유저의 별도 잠재 공간 사용비선형성 포함 가능	아이템 유저 잠재 공간 공유 비선형성 포함 불가

EXPERIMENTAL EVALUATION

아이템 / 유저 베이스 중에 뭐가 나은가?

	ML-1M	ML-10M
U-RBM	0.881	0.823
I-RBM	0.854	0.825
U-AutoRec	0.874	0.867
I-AutoRec	0.831	$\boldsymbol{0.782}$
	(a)	_

(a) Comparison of the RMSE of I/U-AutoRec and RBM models.

아이템 베이스가 좀 더 나은 것을 볼 수 있음 평균 레이팅 수가 유저 기준보다는 아이템 기준이 많기 때문일 수 있다.

AutoRec은 선형/비선형 활성 함수에 따라 어떤 성능을 보였는가(f,g)?

$f(\cdot)$	$g(\cdot)$	RMSE
Identity	Identity	0.872
Sigmoid	Identity	0.852
Identity	Sigmoid	0.831
Sigmoid	Sigmoid	0.836
	(b)	

(b) RMSE for I-AutoRec with choices of linear andnonlinear activation functions, Movielens 1M dataset.

복원 과정(g)에서 비선형 함수를 사용하는 것이 좋은 성능을 보였다.

시그모이드를 ReLU로 바꿔봤지만 성능이 더 안좋아졌다.

f:identity/g:sigmoid로 설정

AutoRec에서 hidden unit의 수에 따라 어떤 성능을 보였는가?

Figure 2: RMSE of I-AutoRec on Movielens 1M as the number of hidden units k varies.

유닛 수가 늘어날수록 성능 향상이 되긴 하지만, 그 폭이 줄어드는 것을 볼 수 있다. k=500으로 설정

AutoRec은 베이스라인에 비해 어떤 성능을 보이는가?

	ML-1M	ML-10M	Netflix
$\operatorname{BiasedMF}$	0.845	0.803	0.844
I-RBM	0.854	0.825	-
U-RBM	0.881	0.823	0.845
LLORMA	0.833	$\bf 0.782$	0.834
I-AutoRec	0.831	$\bf 0.782$	0.823

(c)

Comparison of I-AutoRec with baselines on MovieLensand Netflix datasets. We remark that I-RBM did notconverge after one week of training

베이스 라인보다 전반적으로 높은 성능을 보임.

LLORMA는 복잡한 구조를 갖고 있으나, 단일 모델 아키텍처로 비슷하거나 능가한 점이 흥미로운 부분

AutoRec의 층을 깊이 쌓는 것이 도움이 될까?

3층 (500, 250, 500) 로 설정하여 실험해보았을 때, RMSE가 0.831 → 0.827로 줄었다.