1 Introducció

El conjunt dels nombres enters, que designem per \mathbb{Z} , sorgeix de la necessitat d'ampliar els naturals perquè les equacions x+m=n amb m>n tinguin solució, en particular x+m=0 (obtenció dels simètrics o oposats dels naturals). L'operació que es defineixi en aquest conjunt ha d'estendre la de \mathbb{N} de forma natural, i també ha de verificar-se $\mathbb{N} \subset \mathbb{Z}$ de forma canònica.

2 Construcció de \mathbb{Z}

Definim a $\mathbb{N} \times \mathbb{N}$ una relació \sim així: $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$. Aquesta relació és d'equivalència:

- Prop. reflexiva: $a + b = b + a \implies (a, b) \sim (a, b)$
- Prop. simètrica: $a+d=b+c \Leftrightarrow c+b=d+a$, per tant $(a,b)\sim(c,d)\Leftrightarrow(c,d)\sim(a,b)$
- Prop. transitiva: a+d=b+c, $c+f=d+e \Rightarrow a+d+c+f=b+c+d+e \Rightarrow a+f=b+e$, per tant $(a,b)\sim (c,d)$, $(c,d)\sim (e,f)$ $\Rightarrow (a,b)\sim (e,f)$

Llavors definim \mathbb{Z} com el conjunt quocient $\mathbb{Z} := (\mathbb{N} \times \mathbb{N}) / \sim$. Donat $[(a,b)] \in \mathbb{Z}$ podem triar un representant més senzill per la classe distingint tres casos:

- Si $a > b \Rightarrow a = b + m \Rightarrow (a,b) \sim (m,0) \Rightarrow [(a,b)] = [(m,0)]$. Escriurem [(m,0)] = +m o simplement m, i $\mathbb{Z}^+ = \{[(m,0)] \mid m \in \mathbb{N} \{0\}\}$ l'anomenarem el conjunt dels enters positius.
- Si $a < b \Rightarrow b = a + m \Rightarrow (a,b) \sim (0,m) \Rightarrow [(a,b)] = [(0,m)]$. Escriurem [(0,m)] = -m, i $\mathbb{Z}^- = \{[(0,m)] \mid m \in \mathbb{N} \{0\}\}$ l'anomenarem el conjunt dels *enters negatius*.
- Si $a = b \implies (a, b) \sim (0, 0) \implies [(a, b)] = [(0, 0)]$. Escriurem [(0, 0)] = 0.

Amb això tenim que $\mathbb{Z} = \mathbb{Z}^+ \cup \{0\} \cup \mathbb{Z}^-$, i tenim una funció injectiva trivial $f : \mathbb{N} \longrightarrow \mathbb{Z}$ posant f(0) = 0, f(m) = +m.

Definim la suma de dos elements de \mathbb{Z} com [(a,b)] + [(c,d)] = [(a+c,b+d)]. Es veu molt fàcilment que aquesta suma està ben definida, és a dir, que no depèn dels representats escollits de cada classe. Les seves propietats elementals són, com a \mathbb{N} , l'associativa,

commutativa, i existència i unicitat d'element neutre (el [(0,0)]). A aquestes propietats hi afegim l'existència i unicitat de l'oposat de tot element de \mathbb{Z} (l'oposat de [(a,b)] és el [(b,a)]). No les demostrem per trivials.

Definim el producte de dos elements de \mathbb{Z} com $[(a,b)] \cdot [(c,d)] = [(ac+bd,ad+bc)]$. Aquesta operació no depèn dels representants triats, i es veu fàcilment en dos passos: primer suposar que [(a,b)] = [(a',b')], [(c,d)] = [(c',d')] i provar que $[(a,b)] \cdot [(c,d)] = [(a',b')] \cdot [(c,d)]$. Després provar que $[(a',b')] \cdot [(c,d)] = [(a',b')] \cdot [(c',d')]$ i finalment aplicar la transitivitat per concloure que $[(a,b)] \cdot [(c,d)] = [(a',b')] \cdot [(c',d')]$. Les propietats elementals del producte són l'associativa, commutativa, existència i unicitat d'element neutre (el [(1,0)]) i distributiva respecte de la suma. N'obviem la prova.

Altres propietats importants del producte són:

• Llei de simplificació: $m \cdot n = m \cdot p \Rightarrow n = p$ per a tot enter $m \neq 0$. En efecte, si m = [(a,b)], n = [(c,d)], p = [(e,f)],

$$m \cdot n = m \cdot p \Leftrightarrow [(ac + bd, ad + bc)] = [(ae + bf, af + be)] \Leftrightarrow$$

 $\Leftrightarrow ac + bd + af + be = ad + bc + ae + bf \Leftrightarrow$
 $\Leftrightarrow (a - b)(c + f) = (a - b)(d + e).$

Sabem que $a - b \neq 0$ en ser $m \neq 0$. Si a < b escrivim l'última expressió canviada de signe: (b - a)(c + f) = (b - a)(d + e), i en qualsevol cas podem aplicar la llei de simplificació a \mathbb{N} , obtenint c + f = d + e, que és n = p.

- Existència d'element absorbent: $m \cdot 0 = 0$ per a tot m. En efecte, $m \cdot 0 = m \cdot (0+0) = m \cdot 0 + m \cdot 0$. Sumant l'oposat de $m \cdot 0$ a tots dos membres obtenim allò que buscàvem.
- Absència de divisors de 0 no trivials: $\forall m, n \in \mathbb{Z}, m \cdot n = 0 \Leftrightarrow m = 0 \text{ o } n = 0$ (aquesta propietat també s'enuncia dient que \mathbb{Z} és un domini d'integritat). En efecte, si m = [(a,b)], n = [(c,d)],

$$m \cdot n = 0 \Leftrightarrow [(a,b)] \cdot [(c,d)] = [(0,0)] \Leftrightarrow [(ac+bd,ad+bc)] = [(0,0)] \Leftrightarrow ac+bd = ad+bc \Leftrightarrow (a-b)c = (a-b)d.$$

Si m=0 hem acabat. En cas contrari tindrem $a-b\neq 0$ i, com abans, apliquem la llei de simplificació de $\mathbb N$ canviant el signe si convé, obtenint c=d que és n=0.

• Regla dels signes:

$$(+m) \cdot (+n) = [(m,0)] \cdot [(n,0)] = [(mn,0)] = +(mn).$$

$$\circ$$
 $(+m) \cdot (-n) = [(m,0)] \cdot [(0,n)] = [(0,mn)] = -(mn).$

$$(-m) \cdot (+n) = [(0,m)] \cdot [(n,0)] = [(0,mn)] = -(mn).$$

$$(-m) \cdot (-n) = [(0,m)] \cdot [(0,n)] = [(mn,0)] = +(mn).$$

Amb totes les propietats vistes, $(\mathbb{Z}, +)$ és un grup abelià i (\mathbb{Z}, \cdot) és un semigrup abelià i unitari amb propietat distributiva, de manera que $(\mathbb{Z}, +, \cdot)$ té una estructura d'anell commutatiu i unitari.

3 Ideals a \mathbb{Z}

La teoria de la divisibilitat a \mathbb{Z} és consequència del següent important teorema:

Teorema de la divisió entera. Donats $a, b \in \mathbb{Z}$, $b \neq 0$, existeixen $q, r \in \mathbb{Z}$ únics tal que a = bq + r amb $0 \leq r < |b|$. q i r s'anomenen el quocient i la resta de la divisió entera de a per b.

DEMOSTRACIÓ. Suposem que b > 0 (el cas b < 0 es demostra anàlogament). Sigui $S = \{a - bn \mid n \in \mathbb{Z} \text{ i } a - bn \in \mathbb{N}\} \neq \emptyset$ doncs per $n = -a^2$, $a - bn = a(1 + ab) \geq 0$. Pel principi de bona ordenació de \mathbb{N} , $\exists r = \min(S) \Rightarrow r = a - bq$ per algun $q \in \mathbb{Z} \Rightarrow a = bq + r$ amb $r \geq 0$. A més r < b, en efecte, suposem $r \geq b \Rightarrow 0 \leq r - b = a - bq - b = a - b(q + 1)$. Per tant $r - b \in S$ amb r - b < r, en contradicció amb $r = \min(S)$.

Per veure la unicitat suposem que existeixen $q, r, q', r' \in \mathbb{Z}$ tals que a = bq + r = bq' + r' amb $0 \le r < b$, $0 \le r' < b$. Sense pèrdua de generalitat podem suposar $r' \le r$. Llavors tenim que b(q'-q) = r - r'. Com b > 0 i $r - r' \ge 0$ tenim $q' - q \ge 0$. Però r - r' < b i aleshores $b(q'-q) < b \Rightarrow q - q' = 0 \Rightarrow q = q', r = r'$.

Si la resta de la divisió entera de a per b és 0 diem que b divideix a o que és un divisor de a (i escrivim b|a), o bé que a és divisible per b, o un múltiple de b. Escrivim el conjunt de múltiples de b com (b) i és evident que aquest conjunt verifica: $\forall m, n \in (b), c \in \mathbb{Z} \Rightarrow m + n \in (b), mc \in (b)$.

Algunes propietats bàsiques que es dedueixen immediatament de la definició de divisibilitat són:

- Reflexivitat: $a|a \ \forall a \in \mathbb{Z}$, doncs $a = a \cdot 1$.
- $a|0 \ \forall a \in \mathbb{Z}$, doncs $0 = a \cdot 0$.
- Transitivitat: $a|b, b|c \Rightarrow a|c, \text{ doncs } ak = b, bl = c \Rightarrow akl = c \Rightarrow a|c.$

- $a|b, b|a \Rightarrow a = \pm b$, doncs $ak = b, bl = a \Rightarrow akl = a$. Si $a = 0 \Rightarrow b = 0$, i si $a \neq 0 \Rightarrow kl = 1 \Rightarrow k = l = 1$ ó k = l = -1.
- $a|b, a|c \Rightarrow a|b+c, \text{ doncs } b=ak, c=al \Rightarrow b+c=a(k+l).$
- $a|b \Rightarrow a|bc \ \forall c \in \mathbb{Z}$, doncs $b = ak \Rightarrow bc = a(kc)$.

Direm que un subconjunt no buit $I \subset \mathbb{Z}$ és un *ideal* si verifica: $\forall m, n \in I, c \in \mathbb{Z} \Rightarrow m+n \in I, mc \in I$. Per exemple, el conjunt de múltiples d'un nombre, (b), verifica la definició d'ideal.

Proposició. Tots els ideals $I \subset \mathbb{Z}$ són de la forma I = (b) per algun b.

Demostració. Si $I = \{0\}$ llavors I = (0). Si $I \neq \{0\}$ $\exists a \neq 0, \ a \in I$, i I conté elements positius (si a < 0 també conté $-a = a \cdot (-1)$). Sigui b el positiu més petit de I. Per definició d'ideal, $(b) \subset I$. Per veure la inclusió en l'altre sentit, sigui $a \in I$ i, pel teorema de la divisió entera, escrivim a = bq + r. Llavors $r = a + b(-q) \in I$ amb $0 \leq r < b$, i com b era el positiu més petit de I ha de ser r = 0 i per tant $a \in (b)$.

Amb tot això observem que podem expressar la divisibilitat en termes d'inclusions d'ideals: $b|a \iff (a) \subset (b)$.

4 Mínim comú múltiple i màxim comú divisor

Si considerem ara la unió $(a_1) \cup \cdots \cup (a_n)$, en general no és un ideal. Però construïm un subconjunt $I \subset \mathbb{Z}$ que contingui aquesta unió i verifiqui les condicions d'ideal. Sigui $I = \{a_1c_1 + \cdots + a_nc_n \mid c_1, \ldots, c_n \in \mathbb{Z}\}$, que és un ideal i per tant I = (d) per algun $d \in \mathbb{Z}$. Notarem $I = (a_1, \ldots, a_n) = (d)$. Com $a_i \in I = (d) \ \forall i = 1, \ldots, n$, tenim que d és divisor comú dels a_i . Si d' és un altre divisor comú dels a_i llavors $a_i \in (d')$ i per tant $\{a_1c_1 + \cdots + a_nc_n \mid c_i \in \mathbb{Z}\} \subset (d')$, és a dir, $(d) \subset (d')$, que vol dir d'|d. Direm que aquest d és el màxim comú divisor de a1, ..., an i escriurem d = mcd(a1, ..., an). Com abans, -d també és mcd de a1, ..., an, però per conveni triarem el valor positiu.

En el transcurs d'aquesta definició hem demostrat una propietat important:

Identitat de Bézout. Si
$$d = \text{mcd}(a_1, \ldots, a_n)$$
 llavors existeixen $c_1, \ldots, c_n \in \mathbb{Z}$ tals que $d = a_1c_1 + \cdots + a_nc_n$.

El següent resultat ens proporciona un mètode pràctic per calcular el mcd de dos nombres:

Proposició. Si a = bq + r és la divisió entera de a per b, llavors mcd(a, b) = mcd(b, r).

DEMOSTRACIÓ. És conseqüència del fet que (a,b)=(b,r). En efecte, $ac_1+bc_2 \in (a,b)$ és $ac_1+bc_2=b(qc_1+c_2)+rc_1 \in (b,r)$ i, recíprocament, $bn_1+rn_2 \in (b,r)$ és $bn_1+rn_2=an_2+b(n_1-qn_2) \in (a,b)$.

L'algorisme d'Euclides consisteix a aplicar reiteradament aquesta proposició:

$$a = bq + r$$
 $(a, b) = (b, r)$ $r < |b|$
 $b = rq_1 + r1$ $(b, r) = (r, r_1)$ $r_1 < r$
 $r = r_1q_2 + r_2$ $(r, r_1) = (r_1, r_2)$ $r_2 < r_1$

Obtenim una successió decreixent de restes, per tant arribarà un moment que tindrem una resta igual a 0:

$$r_{k-2} = r_{k-1} q_k + r_k$$
 $(r_{k-2}, r_{k-1}) = (r_{k-1}, r_k)$ $r_k < r_{k-1}$
 $r_{k-1} = r_k q_{k+1} + 0$ $(r_{k-1}, r_k) = (r_k, 0) = (r_k)$.

Així doncs $(a, b) = (r_k)$, és a dir, $r_k = \text{mdc}(a, b)$. Si hem de calcular el mcd de més de dos nombres aplicarem $\text{mcd}(a_1, a_2, a_3) = \text{mcd}(\text{mcd}(a_1, a_2), a_3)$ i, en general, $\text{mcd}(a_1, \ldots, a_n) = \text{mcd}(\text{mcd}(a_1, \ldots, a_{n-1}), a_n)$.

Un cop desenvolupat l'algorisme d'Euclides, fent una substitució enrere podem obtenir la identitat de Bézout. En efecte, $d=r_k=r_{k-2}-r_{k-1}\,q_k$. Però r_{k-1} també es pot escriure com una suma de múltiples de r_{k-2} i r_{k-3} ; r_{k-2} és suma de múltiples de r_{k-3} i r_{k-4} , i així succesivament fins a obtenir la identitat de Bézout: d=ar+bs.

Direm que dos enters a, b són primers entre ells o coprimers si mcd(a, b) = 1.

Teorema d'Euclides. Si a|bc i mcd(a, b) = 1 llavors a|c.

Demostració. La identitat de Bézout ens permet escriure ar + bs = 1. Multiplicant per c tenim acr + bcs = c, i com a divideix els dos sumands, tenim que a|c.

El següent resultat ens permet trobar immediatament el mcm de dos nombres coneixent el mcd, i viceversa:

Proposició. Si m = mcm(a, b) i d = mcd(a, b) llavors md = |ab|.

DEMOSTRACIÓ. Posem a = da', b = db' i volem veure que m = d|a'b'| és el mcm de a i b. Que és múltiple comú de a i b és evident. Sigui n un altre múltiple comú de a i b: n = ar = bs. Llavors $a'dr = b'ds \Rightarrow a'r = b's$ amb mcd(a', b') = 1. Pel teorema d'Euclides tenim que $a'|s \Rightarrow s = a't \Rightarrow n = b'ds = da'b't$ i per tant n és múltiple de da'b'. \square

5 Els nombres primers

Un nombre enter $p \in \mathbb{Z} - \{\pm 1\}$ es diu *primer* si els seus únics divisors són ± 1 i $\pm p$.

Proposició. Si p és primer i p|ab llavors p|a o p|b.

DEMOSTRACIÓ. Si $p \nmid a$ com els únics divisors positius de p són 1 i p, tenim que mcd(p, a) = 1. Llavors, pel teorema d'Euclides, p|b.

Proposició. El conjunt de nombres primers és infinit.

DEMOSTRACIÓ. Si tenim un conjunt finit de primers $S = \{p_1, \ldots, p_n\}$ podem trobar un nou primer $p \notin S$. En efecte, sigui $a = p_1 \cdots p_n + 1$ i sigui p el menor divisor positiu de a diferent de 1. Clarament p és primer i no és cap dels p_i , doncs si ho fos dividiria a $a - p_1 \cdots p_n = 1$, que no és possible en ser $p \neq 1$. Per tant $p \notin S$.

Teorema fonamental de l'aritmètica. Tot enter $a \neq 0$, $a \neq \pm 1$ s'escriu com a producte de nombres primers. Aquesta factorització és única llevat de l'ordre dels factors i el signe.

DEMOSTRACIÓ. Com ja hem vist, a sempre tindrà un divisor primer $p_1 \neq \pm 1$. Llavors $a=p_1a_1$ i $|a|>|a_1|$. De la mateixa manera, si $a_1 \neq \pm 1$ tindrà un divisor primer $p_2 \neq \pm 1$, i $a=p_1a_1=p_1p_2a_2$. Repetint el procés successivament obtenim $|a|>|a_1|>|a_2|>\cdots$, i arribarà un moment en què tindrem la factorització $a=p_1\cdots p_na_n$ amb $|a_n|=1$. Suposem ara que tenim dues factoritzacions $a=p_1\cdots p_n=q_1\cdots q_m$ amb $p_i,\ q_j$ primers. Si p,q són primers, o bé $\mathrm{mcd}(p,q)=1$ o bé $p=\pm q$. En l'expressió anterior, p_1 divideix $p_1\cdots p_n=q_1(q_2\cdots q_m)$, i pel teorema d'Euclides, o bé $p_1|q_2\cdots q_m$ quan $\mathrm{mcd}(p_1,q_1)=1$, o bé $p_1=\pm q_1$. En el primer cas tindrem $p_1|q_2(q_3\cdots q_m)$, i aplicant el mateix raonament tindrem que $p_1|q_3\cdots q_m$ o bé $p_1=\pm q_2$. Iterant el procés acabarem obtenint que p_1 és algun dels q_j llevat del signe, o bé arribarem a $p_1|q_{m-1}q_m$, d'on $p_1=\pm q_{m-1}$ o $p_1=\pm q_m$. Per tant p_1 coincideix, llevat del signe, amb un dels q_j , que podem suposar que és el q_1 canviant l'ordre. Llavors $p_2\cdots p_n=\pm q_2\cdots q_m$. El mateix raonament prova que p_2 és un dels q_j llevat del signe, i així successivament. Si n< m arribem a la situació $1=\pm q_{n+1}\cdots q_m$ que és impossible en ser tots els q_j diferents de ± 1 . Si n>m obtenim

 $\pm p_{m+1} \cdots p_n = 1$, també impossible. Per tant n = m i ambdúes factoritzacions coindideixen llevat dels signes dels factors i llur ordre.

Donat un nombre enter n existeix un mètode pràctic per trobar tots els primers inferiors a n, que rep el nom de garbell d'Eratostenes: s'escriu la successió de tots els naturals fins a n. Llavors es ratllen tots els múltiples de 2 començant en el seu quadrat $2^2 = 4$. A continuació el següent nombre sense ratllar és el 3, i ratllem tots els seus múltiples començant pel seu quadrat $3^2 = 9$. Iterem el procés fins arribar a un nombre el quadrat del qual superi n. Els nombres que han quedat sense ratllar són tots els primers inferiors a n.

El garbell d'Eratostenes és un mètode eficient per trobar nombres primers "petits", de fins a 5 o 6 xifres. Per comprovar la primalitat de nombres més grans (15 o més xifres) cal plantejar-se tests de primalitat més enginyosos que fan servir potents eines de la Teoria de Nombres. El nombre primer més gran conegut fins al moment té gairebé 13 milions de xifres i és $2^{43112609} - 1$. Va ser trobat el 23 d'agost de 2008 dins el projecte col·laboratiu d'Internet GIMPS (Great Internet Mersenne Prime Search), que es dedica a comprovar la primalitat dels nombres de Mersenne $M_p = 2^p - 1$ amb p primer, usant el test de primalitat de Lucas-Lehmer. Aquest test proporciona un algorisme de p passos que dóna una condició necessària i suficient per la primalitat de M_p .

6 Congruències

Sigui $m \in \mathbb{Z}$, $m \neq 0$. Direm que dos enters a i b són congruents $m \circ dul$ m, i ho escriurem $a \equiv b \pmod{m}$, si $a - b \in (m)$.

Proposició. $a \equiv b \pmod{m} \Leftrightarrow \text{les divisions enteres de } a \text{ i } b \text{ per } m \text{ tenen la mateixa resta.}$

DEMOSTRACIÓ. Sigui
$$a = mq_1 + r_1$$
, $b = mq_2 + r_2$, $\Rightarrow a - b = m(q_1 + q_2) + (r_1 - r_2)$ amb $|r_1 - r_2| < |m|$. Per tant $a - b \in (m)$ si i només si $r_1 = r_2$.

Clarament, la relació de congruència mòdul m és una relació d'equivalència, ja que és reflexiva $(a \equiv a \pmod{m})$ en ser $0 \in (m)$), simètrica $(a \equiv b \pmod{m}) \Leftrightarrow b \equiv a \pmod{m}$ i transitiva $(a \equiv b \pmod{m})$ i $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$, doncs a - b = km, $b - c = lm \Rightarrow a - c = (k + l)m$). Podem construir llavors el conjunt quocient $\mathbb{Z}/(m)$ que té m classes d'equivalència, anomenades classes de restes mòdul m:

```
 [0] = \{n \in \mathbb{Z} \mid n \text{ dóna resta } 0 \text{ al dividir-lo per } m\} = \{\dots, -2m, -m, 0, m, 2m, \dots\}   [1] = \{n \in \mathbb{Z} \mid n \text{ dóna resta } 1 \text{ al dividir-lo per } m\} = \{\dots, -m+1, 1, m+1, 2m+1, \dots\}   \dots
```

 $[m-1] = \{n \in \mathbb{Z} \mid n \text{ dóna resta } m-1 \text{ al dividir-lo per } m\} = \{\ldots, -1, m-1, 2m-1, \ldots\}$

Tenim una propietat elemental de les congruències però important: si $a \equiv a' \pmod m$ i $b \equiv b' \pmod m$ llavors $a + b \equiv a' + b' \pmod m$ i $ab \equiv a'b' \pmod m$. La prova és trivial a partir de la definició de congruència. Aquesta propietat ens garanteix que podem definir unes operacions suma i producte a $\mathbb{Z}/(m)$ que són consistents, és a dir, que no depenen dels representants escollits de cada classe. Així, si $[a], [b] \in \mathbb{Z}/(m)$ definim [a] + [b] = [a+b] i $[a] \cdot [b] = [ab]$. Aquestes operacions heteren les propietats de les equivalents a \mathbb{Z} i doten a $\mathbb{Z}/(m)$ d'estructura d'anell commutatiu i unitari.

Ara bé, $\mathbb{Z}/(m)$ té propietats que no tenia \mathbb{Z} : podem tenir divisors de zero i elements que tenen invers respecte del producte. Per exemple, a $\mathbb{Z}/(6)$, $[2] \cdot [3] = [0]$ i $[5] \cdot [5] = [1]$). També hi ha propietats de \mathbb{Z} que en general no són certes a $\mathbb{Z}/(m)$, con la llei de cancel·lació pel producte. Per exemple, a $\mathbb{Z}/(6)$, $[2] \cdot [3] = [4] \cdot [3]$ i en canvi $[2] \neq [4]$. Aquesta llei, però, funciona afegint-hi una condició:

Proposició. Siguin $a, b, c, m \in \mathbb{Z}$. $ac \equiv bc \pmod{m}$ i $mcd(c, m) = 1 \implies a \equiv b \pmod{m}$.

Demostració. $ac \equiv bc \pmod{m} \Rightarrow m|ac - bc = c(a - b)$. Com mcd(c, m) = 1, pel teorema d'Euclides $m|a - b \Rightarrow a \equiv b \pmod{m}$.

Treballant amb aritmètica modular obtenim de forma immediata els criteris de divisibilitat en base 10 més coneguts. En efecte, si escrivim un nombre $a = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \cdots + a_k \cdot 10^k$, tenim:

- $10 \equiv 0 \pmod{2} \Rightarrow 10^n \equiv 0 \pmod{2} \quad \forall n \in \mathbb{N}$. Així $a \equiv 0 \pmod{2} \Leftrightarrow a_0 \equiv 0 \pmod{2}$ (a és parell si i només si la xifra de les unitats ho és). El criteri mòdul 5 és idèntic en ser també $10 \equiv 0 \pmod{5}$.
- $10 \equiv 1 \pmod{3} \Rightarrow 10^n \equiv 1^n \equiv 1 \pmod{3} \ \forall n \in \mathbb{N}$. Així $a \equiv 0 \pmod{3} \Leftrightarrow a_0 + a_1 + \cdots + a_k \equiv 0 \pmod{3}$ (a és múltiple de 3 si i només si la suma de les seves xifres ho és). El criteri mòdul 9 és idèntic en ser també $10 \equiv 1 \pmod{9}$.
- $10 \equiv 2 \pmod{4} \Rightarrow 10^2 \equiv 2^2 \equiv 0 \pmod{4} \Rightarrow 10^n \equiv 0 \pmod{4} \quad \forall n \geq 2$. Així $a \equiv 0 \pmod{4} \Leftrightarrow a_0 + 2a_1 \equiv 0 \pmod{4} \quad (a \text{ és múltiple de 4 si i només si la xifra de les unitats més el doble de la de les desenes ho és).$
- $10 \equiv -1 \pmod{11} \Rightarrow 10^n \equiv (-1)^n \pmod{11} \ \forall n \in \mathbb{N}$. Així $a \equiv 0 \pmod{11} \Leftrightarrow a_0 a_1 + a_2 \dots + (-1)^k a_k \equiv 0 \pmod{11}$ ($a \notin \text{smultiple d'11 si i només si la suma de les xifres que ocupen un lloc senar menys la suma de les que ocupen un lloc parell també és múltiple d'11).$

Acabem el tema donant una caracterització dels elements inversibles de $\mathbb{Z}/(m)$:

Proposició. Si mcd(a, m) = 1 llavors [a] té un invers a $\mathbb{Z}/(m)$. Si mcd(a, m) = d > 1 llavors [a] és un divisor de 0 a $\mathbb{Z}/(m)$ i no pot tenir invers.

Demostració. Si $\operatorname{mcd}(a,m)=1$, per la identitat de Bézout $1=ar+ms\Rightarrow [1]=[ar]=[a][r]$, per tant [r] és l'invers de [a]. $\operatorname{mcd}(a,m)=d>1$ escrivim a=da', m=dm' (amb 0<|m'|<|m|) i llavors $am'=a'm\Rightarrow [a][m']=[0]$ amb $[m']\neq [0]$. I en aquesta situació [a] no pot tenir invers, ja que si existís un $[a]^{-1}$ tindríem $[a]^{-1}[a][m']=[a]^{-1}[0]\Rightarrow [m']=[0]$, en contra del què hem suposat.