

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 831 123 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
25.03.1998 Bulletin 1998/13

(51) Int Cl. 6: C08L 21/00, C08K 3/36,
B60C 1/00
// (C08L21/00, 91:02)

(21) Application number: 97307317.4

(22) Date of filing: 19.09.1997

(84) Designated Contracting States:
AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priority: 24.09.1996 JP 252017/96

(71) Applicant: SUMITOMO RUBBER INDUSTRIES,
LTD.
Hyogo-ken (JP)

(72) Inventors:
• Wakabayashi, Noboru
Kobe-shi, Hyogo 651 22 (JP)
• Iizuka, Toru
Akashi-shi, Hyogo 674 (JP)

(74) Representative: Stewart, Charles Geoffrey
SP TYRES UK LIMITED
Technical Division
Fort Dunlop, Erdington,
Birmingham B24 9QT (GB)

(54) Racing tyre tread rubber composition

(57) The present invention provides a racing tyre tread rubber composition which is used for producing a racing tyre having excellent wet grippability and does not cause any excessive adhesion in tyre production process steps such as kneading and extruding steps.

The racing tyre tread rubber composition is a composition comprising: 100 parts by weight of a diene-based rubber, a filler, the entirety of which is in the range of 100 to 250 parts by weight containing 20 parts by weight or more of silica and 5 to 50 parts by weight of a factice.

EP 0 831 123 A1

Description**BACKGROUND OF THE INVENTION****5 A. TECHNICAL FIELD**

The present invention relates to a racing tire tread rubber composition.

10 B. BACKGROUND ART

As to a racing tire that might be run on a road wet with rain and so on, it is important to enhance the wet grippability of the tire. Generally proposed methods for enhancing the wet grippability comprise, for example, increasing the following factors: (1) the hysteresis loss; (2) the adhesive friction; and (3) the turning-up friction.

Thus, in recent years, a method for enhancing the wet grippability is studied in which the adhesive friction is increased by adding a large amount of fillers such as silica. However, a tire containing a large amount of silica has many problems in the production. It is the most serious problem that a phenomenon which is called excessive adhesion occurs. This phenomenon causes a problem in that when a rubber composition is kneaded or extruded, it strongly adheres to a kneading or extruding apparatus, so that the adhered rubber composition is very difficult to remove, or that the above-mentioned apparatus needs to be washed carefully every batch.

20 SUMMARY OF THE INVENTION**A. OBJECT OF THE INVENTION**

25 An object of the present invention is to provide a racing tire tread rubber composition which is used for producing a racing tire having excellent wet grippability and does not cause any excessive adhesion in tire production process steps such as kneading and extruding steps.

30 B. DISCLOSURE OF THE INVENTION

35 The present inventors studied diligently about the types or the amount of the combination of additives, which are combined into a racing tire tread rubber composition containing silica, in order to solve the above-mentioned problems. As a result, the inventors attained the present invention.

Thus, a racing tire tread rubber composition, according to the present invention, is a composition comprising: 100 parts by weight of a diene-based rubber; a filler, the entirety of which is in the range of 100 to 250 parts by weight containing 20 parts by weight or more of silica; and 5 to 50 parts by weight of a factice.

These and other objects and the advantages of the present invention will be more fully apparent from the following detailed disclosure.

40 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a micrograph as obtained by observing a section of a tread portion of a tire according to Example 1.

Fig. 2 is a magnified micrograph in the microscopical observation of Fig. 1.

45 DETAILED DESCRIPTION OF THE INVENTION

A racing tire tread rubber composition, according to the present invention, is a composition comprising: a diene-based rubber; a filler containing silica as the essential component; and a factice.

50 [Diene-based rubber]:

The diene-based rubber as used in the present invention is at least one type selected from the group consisting of natural rubber and diene-based synthetic rubbers. Although not especially limited, examples of the diene-based synthetic rubbers include styrene-butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), isoprene-isobutylene rubber (IIR), and butyl halide rubber (X-IIR). These diene-based rubbers may be used alone respectively or, if need arises, in combinations of two or more thereof. Among the diene-based rubbers, styrene-butadiene rubber (SBR) is preferable for increasing the hysteresis loss.

[Filler]:

5 The filler as used in the present invention is combined to provide sufficient hardness to a racing tire as produced by shaping the rubber composition. The filler is not especially limited providing that it contains silica as the essential component. The inclusion of silica improves the adhesive friction and thereby enhances the wet grippability.

Examples of fillers other than silica include: inorganic fillers such as carbon black, clay, talc, calcium carbonate, basic magnesium carbonate, alumina, mica, graphite, and glass powder; and organic fillers such as high styrene resin, coumarone-indene resin, phenol resin, modified melamine resin, and petroleum resin. At least one of these fillers can be used jointly with silica.

10 The ratio of the combination of the filler (containing silica) in the racing tire tread rubber composition is in the range of 100 to 250 parts by weight, preferably, 120 to 200 parts by weight, more preferably, 140 to 180 parts by weight, per 100 parts by weight of the diene-based rubber. Where the amount of the combination of the filler is larger than 250 parts by weight, a large load or the excessive adhesion might occur in tire production process steps such as kneading and extruding steps. Where the amount of the combination of the filler is smaller than 100 parts by weight, there is a possibility that the hysteresis loss might not be large, that sufficient friction might not be obtained, and that the wet 15 grippability might therefore be deteriorated.

20 The ratio of the combination of silica, which is the essential component of the filler, is 20 parts by weight or more per 100 parts by weight of the diene-based rubber. Where the ratio of the combination of silica is less than 20 parts by weight, there is a possibility that sufficient adhesive friction might not be obtained, and that the wet grippability might therefore be deteriorated.

25 The ratio of the combination of silica is preferably not less than 50 % by weight, more preferably, not less than 70 % by weight, of the entirety of the filler. Where the ratio of the combination of silica is less than 50 % by weight, there is a possibility that sufficient adhesive friction might not be obtained, and that the wet grippability might therefore be deteriorated. In addition, where the ratio of the combination of silica is increased, it is preferable to also increase the ratio of the combination of the below-mentioned factice in order to avoid the excessive adhesion.

[Factice]:

30 The factice is combined to solve the problem of the excessive adhesion as caused by combining silica. The factice is a component as commonly called "SABU" in Japanese and is a cured oil of 1.03 to 1.05 in specific density and is a brittle solid with elasticity like rubber. The factice, for example, can be obtained by reacting an animal or vegetable oil and fat of 70 or more in iodine value with sulfur or a sulfur-containing compound such as sulfur chloride under heating.

35 Examples of the factice include: white factice which is white or light yellow and has a sulfur content of 6 to 8%; brown factice which is a black brown elastomer as obtained by adding sulfur to an oxidized vegetable oil and heating to high temperature and has a sulfur content of 15 to 20%; transparent amber-colored factice as produced by action of only sulfur chloride; and special factices as obtained from different animal or vegetable oils and fats of starting materials. Among these factices, brown factice is preferable, because the brown factice has a great effect to prevent the excessive adhesion. The factices may be used alone respectively or, if need arises, in combinations of two or more thereof.

40 The ratio of the combination of the factice in the racing tire tread rubber composition is in the range of 5 to 50 parts by weight, preferably, 10 to 40 parts by weight, more preferably, 20 to 30 parts by weight, per 100 parts by weight of the diene-based rubber. Where the ratio of the combination of the factice is larger than 50 parts by weight, the resultant rubber might be too soft, and the abrasion resistance might therefore be low. In addition, where the amount of the combination of the factice is smaller than 5 parts by weight, the excessive adhesion occurs in tire production process steps such as rubber-kneading and extruding steps.

45 If the ratio of the factice is large within the above-mentioned combination range, the wet grippability is preferably further improved. The reason for this is as follows: as to a rubber composition having a high ratio of a factice, a rubber as obtained by vulcanizing this composition has so high softness as to decrease the hysteresis loss, but a tire as formed from this rubber has a wide area contacting a road, so that the wet grippability is improved.

50 The factice as contained in a tread portion of a tire can easily be verified by observing a section of the tread portion with a microscope.

[Other components]

55 If need arises, the racing tire tread rubber composition may further comprise the following additives: softeners such as naphtene-based process oil and aromatic oil; low temperature plasticizers such as phthalic derivatives, adipic derivatives, azelaic derivatives, sebacic derivatives, and phosphoric derivatives; vulcanizers such as sulfur, insoluble sulfur, and sulfur compounds; co-vulcanizers (vulcanization activators) such as zinc oxide and stearic acid; vulcanization

accelerators such as thiazolebased compounds (e.g., mercaptobenzothiazole (MBT), benzothiazyl disulfide (MBTS), N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazylsulfenamide (CBS)) and guanidine-based compounds (e.g. diphenylguanidine (DPG)); organic fibers; foaming agents; antioxidants; and wax. The ratio of the combination of these additives in the tread rubber composition is not especially limited and can fitly be selected.

5 Conventional methods can be applied to a production process for the racing tire tread rubber composition. The composition, for example, can be obtained by kneading the above-mentioned components with kneading-machines such as kneaders and Banbury mixers under conventional conditions by conventional methods. In addition, the kneading temperature is preferably in the range of 120 to 180 °C.

A racing tire is obtained by shaping and vulcanizing the above-explained racing tire tread rubber composition.
10

(Effects and Advantages of the Invention):

The racing tire tread rubber composition of the present invention can provide a racing tire tread rubber composition which is used for producing a racing tire having excellent wet grippability and does not cause any excessive adhesion 15 in tire production process steps such as kneading and extruding steps.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

20 Hereinafter, the present invention is more specifically illustrated by the following examples of some preferred embodiments in comparison with comparative examples not according to the invention. However, the present invention is not limited to the below-mentioned examples.

EXAMPLES 1 TO 5 AND COMPARATIVE EXAMPLES 1 TO 5

25 Components of the combinations, as shown in Tables 1 and 2 below, were divided into the below-mentioned three batches, and each of these batches was mixed together by kneading it with a Banbury type mixer of 50 liters in capacity at a charging ratio of 70 % for 4 minutes, thus obtaining racing tire tread rubber compositions.

- | | | |
|----|---------------------|--|
| 30 | First stage batch: | the entirety of SBR, half of silica, half of carbon black, half of aromatic oil, the entirety of coupling agent, and the entirety of factice. |
| | Second stage batch: | the kneaded mixture resultant from the first stage batch, the other half of the silica, the other half of the carbon black, the other half of the aromatic oil, the entirety of stearic acid, and the entirety of zinc white (zinc oxide). |
| 35 | Third stage batch: | the kneaded mixture resultant from the second batch, the entirety of sulfur, and the entirety of vulcanization accelerators. |

Tires were made using the resultant tread rubber compositions while evaluating the excessive adhesion in the below-mentioned way.

40 Thin piece samples of 1.0 to 1.5 µm in thickness were cut off from tread portions of the resultant tires with a MICROTOME, and then swelled with an organic solvent (xylene), and then attached to glass plates, and then observed with a microscope. During this observation, micrographs of sections of the thin pieces were taken.

Fig. 1 is a micrograph of a magnification of 100, and Fig. 2 is a micrograph of a magnification of 200. Lumps with a diameter of about 0.1 mm as seen on respective central portions of the micrographs are brown factices.

45 The performance of the resultant tires was evaluated by the below-mentioned evaluation method. Results thereof are shown in Tables 1 and 2.

<Evaluation method>:

1. Excessive adhesion in tire production process steps (evaluation of excessive adhesion):

50 The kart tires were produced by way of a kneading (rubber-kneading) step, in which the Banbury type mixer (50 liters, K50 made by Kobe Seikosho Co., Ltd., revolution number 50 rpm) and a sheeter roll (24 inches, revolution number 20 rpm, temperature conditioning 95 °C) were used, and an extruding step, in which an extruder (4.5 inches, cold feed type, revolution number 25 rpm, line speed 5 m/minute) was used. Hereinafter, the kneading and extruding steps were explained in detail.

Kneading (rubber-kneading) step:

5 The above-mentioned components, as divided into the three batches, were mixed together by kneading (3-stage kneading) them with the Banbury type mixer, and to what degree the rubber composition adhered to a rotor in discharging the rubber composition from the Banbury type mixer and to what degree a sheet product adhered to the sheeter roll in forming the discharged rubber composition into the sheet product with the roll were observed. A stock rubber as obtained by cooling the sheet product was processed in the following extruding step.

Extruding step:

10 An extruded tread, as obtained by directly charging (cold-feeding) the stock rubber into the extruder and then discharging the stock rubber from the extruder, was subjected to a cooling step and then wound on to a reel. The extruded tread, standing in a heated state before cooling, was conveyed with a plenty of roller conveyors on a way to the cooling step after discharged from the extruder. In the extruding step, to what degree the extruded tread standing in a heated state adhered to the roll was observed.

15 The adhesion was evaluated on the basis of the following evaluation standard both in the above-mentioned rubber-kneading and extruding steps.

[In the rubber-kneading step]:

- 20 : There is no adhesion to the rotor in the Banbury or to the sheeter roll, and standard working can be done.
: There is a little adhesion in the Banbury, but this adhesion is dissolved with time.
: There is adhesion, but working is possible by changing the revolution numbers of the rotor and the sheeter roll.
: There is strong adhesion to the rotor in the Banbury, and working for removing this adhesion, for example, with a hand-scratching stick is needed. In addition, there is strong adhesion to the sheeter roll, and working nearly becomes possible by use of a lubricant (mold release agent).
: There is great adhesion to the rotor in the Banbury and to the sheeter roll, so no tire cannot be produced.

[In the extruding step]:

- 30 : The adhesion to the roller is low, and standard working can be done.
: There is a little adhesion to the roller, but working is not disturbed.
: There is considerably strong adhesion, and an impression of the roller is left on the extruded tread.
: There is considerably strong adhesion, and an impression of the roller is left on the extruded tread, and the measurements of the extruded tread are greatly changed because the extruded tread is extended due to the roller in the course to the cooling step.
: The adhesion to the roller is too strong to do working.

In addition, in Comparative Example 3, the tire production process steps were bad, so no tire could not be produced.

2. Lap time of the circuit running (evaluation of wet gripability):

40 A racing car as equipped with the above-obtained kart tires (size: Front 10*4.50-5 KT6, Rear 11*6.50-5 KT6) was allowed to run 10 laps on a wet circuit with a lap length of about 700 m, and the average value of three fastest lap time data was calculated.

45 In addition, in Comparative Example 5, the tire became abraded greatly, so the abrasion resistance was bad.

Table 1

	(Parts by weight)	Example				
		1	2	3	4	5
50	SBR *1	137.5	137.5	137.5	137.5	137.5
	Carbon black*2	120	80	30	40	160
55	Silica*3	80	120	100	180	40
	Factice*4	20	20	20	50	20

Table 1 (continued)

	(Parts by weight)	Example				
		1	2	3	4	5
5	Aromatic oil*5	150	150	75	170	150
	Stearic acid*6	2	2	2	2	2
	Zinc white*7	3	3	3	3	3
	Coupling agent*8	8	12	10	18	4
	Sulfur*9	1.5	1.5	1.5	1.5	1.5
	Vulcanization accelerator CBS*10	2	2	2	2	2
10	Vulcanization accelerator DPG*11	2	2	2	2	2
	Tire production process steps	Rubber-kneading	△	○	○	△
		Extruding	△	△	○	△
	Lap time of circuit running		46°029	45°560	46°339	44°996
15			46°326			

20

Table 2

	(Parts by weight)	Comparative Example				
		1	2	3	4	5
25	SBR *1	137.5	137.5	137.5	137.5	137.5
	Carbon black*2	40	140	130	40	40
	Silica*3	40	10	130	180	180
	Factice*4	20	20	50	3	70
	Aromatic oil*5	15	100	210	170	170
	Stearic acid*6	2	2	2	2	2
30	Zinc white*7	3	3	3	3	3
	Coupling agent*8	4	1	13	18	18
	Sulfur*9	1.5	1.5	1.5	1.5	1.5
	Vulcanization accelerator CBS*10	2	2	2	2	2
35	Vulcanization accelerator DPG*11	2	2	2	2	2
	Tire production process steps	Rubber-kneading	◎	△	XX	X
						○

40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
76

Table 2 (continued)

(Parts by weight)		Comparative Example				
		1	2	3	4	5
5	Extruding	◎	Δ	-	X	○
Lap time of circuit running		48'029	47'123	-	46'006	44'322

<Results of evaluation>

10

In Examples 1 to 5, no excessive adhesion occurred in the rubber-kneading or extruding step in the tire production process, and even if any adhesion occurred, the degree thereof was small. In addition, the lap time of the circuit running on a wet road was also satisfactory. As to Example 4, however, the abrasion resistance was a little inferior. On the other hand, in Comparative Examples 1, 2, and 5, no excessive adhesion occurred in the rubber-kneading or extruding step in the tire production process, and even if any adhesion occurred, the degree thereof was small, while the lap time of the circuit running on a wet road was not satisfactory, or even if the lap time was good, the tire became abraded greatly. Particularly, as to Comparative Example 5, the abrasion performance was extremely bad. In addition, in Comparative Examples 3 and 4, excessive adhesion occurred in the tire production process. Particularly, in Comparative Example 3, because the excessive adhesion was extreme, no tire could not be produced.

15

Various details of the invention may be changed without departing from its spirit not its scope. Furthermore, the foregoing description of the preferred embodiments according to the present invention is provided for the purpose of illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.

20

Claims

25

1. A racing tire tread rubber composition, comprising: 100 parts by weight of a diene-based rubber; a filler, the entirety of which is in the range of 100 to 250 parts by weight containing 20 parts by weight or more of silica; and 5 to 50 parts by weight of a factice.
2. A racing tire tread rubber composition according to claim 1, wherein the silica comprises 50 % by weight or more of the entirety of the filler.

30

35

40

45

50

55

Fig. 1

Fig. 2

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 97 30 7317

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X	WO 95 34601 A (AKZO NOBEL NV : DATTA RABINDRA NATH (NL); HONDEVELD MARTINUS GERHARD) * page 10, line 17; claim 1 * * page 12, line 1 - line 3 *	1.2	C08L21/00 C08K3/36 B60C1/00 //(C08L21/00, 91:02)
A	PATENT ABSTRACTS OF JAPAN vol. 011, no. 184 (C-427). 12 June 1987 & JP 62 004732 A (YOKOHAMA RUBBER CO LTD:THE). 10 January 1987. * abstract *	1.2	
A	US 5 500 482 A (MURAKI TAKAO ET AL) * column 2, line 17 - line 20; claim 1 *	1.2	
A	EP 0 559 218 A (MITSUI PETROCHEMICAL IND) * page 15, lines 11-17, 35-40 and 47 *	1.2	

The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	16 December 1997	Van Humbeeck, F	
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application U : document cited for other reasons S : member of the same patent family, corresponding document	

EPO FORM 1593/92-92 (PC92/01)