Shortest Job First (SJF)

Nirmala Shinde Baloorkar Assistant Professor Department of Computer Engineering

Shortest Job First Pre-emptive

- While a process is running if a process with lower burst time arrives then it will pre-empt the currently running process.
- Whenever a new process arrives check whether its burst time is less than the remaining burst of currently running process.
- It is also called as Shortest Remaining Time First (SRTF) / Shortest Remaining Time Next (SRTN)

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

- Time $0 P_1$ gets the CPU Ready = $[(P_1, 7)]$
- Time $2 P_2$ arrives CPU has P_1 with time=5, Ready = $[(P_2,4)] P_2$ gets the CPU
- Time $4 P_3$ arrives CPU has P_2 with time = 2, Ready $= [(P_1, 5), (P_3, 1)] P_3$ gets the CPU

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

- Time $5 P_3$ completes and P_4 arrives Ready = $[(P_1, 5), (P_2, 2), (P_4, 4)] P_2$ gets the CPU
- Time $7 P_2$ completes Ready $= [(P_1,5),(P_4,4)] P_4$ gets the CPU
- Time $11 P_4$ completes, P_1 gets the CPU

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
P_{4}	5.0	4

Turnaround Time = Completion Time - Arrival Time

- Turnaround Time p1=16, p2=5,p3=1,p4=6
- Average Turnaround time = (16 + 5 + 1 + 6)/4 = 7ms

Process	Arrival Time	Burst Time
P_I	0.0	7
P_2	2.0	4
P_3	4.0	1
$P_{\it extit{4}}$	5.0	4

Waiting Time = Turnaround Time - Burst Time

- Turnaround Time p1=16, p2=5,p3=1,p4=6
- Waiting Time p1=9, p2=1, p3=0, p4=2
- Average waiting time time = (9 + 1 + 0 + 2)/4 = 3ms

Example 2 of Shortest-remaining-time-first

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	0	8
P_2	1	4
P_3	2	9
P_4	3	5

- Time $0 P_1$ gets the CPU Ready = $[(P_1,8)]$
- Time $1 P_2$ arrives CPU has P_1 with rem. time=7, Ready = $[(P_2,4)] P_2$ gets the CPU
- Time $2 P_3$ arrives CPU has P_2 with rem. time = 3, Ready = $[(P_1,7)(P_3,9)]$ P2 continues with the CPU
- Time 3- P4 arrives- CPU has P2 with rem. time=2, Ready = $[(P_1,7)(P_3,9)(P4,5)]$ P2 continues with the CPU
- After P2 finishes, then P4 executes, then P1, finally P3
- *Preemptive* SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

Example 3 SRTF

process	Burst time	Arrival time
P1	6	2
P2	2	5
Р3	8	1
P4	3	0
P5	4	4

SJF(P) is also commonly referred as Shortest Remaining Time First Algorithm (SRTF)

It suffers from Starvation

Question?

