

Grzegorz Gawron, head of data science

SETUP [OPTIONAL]

- install anaconda
- > git clone https://github.com/gregaw/sales-forecasting-with-nn.git
 - > cd sales-forecasting-with-nn
 - > conda create -n mlengine python=2.7 anaconda
 - > source activate mlengine
 - > pip install -r requirements.txt
- [optional] setup google cloud account (trial available)
 - ml-engine
 - storage
 - gcloud shell

ABOUT ME

Grzegorz Gawron ggawron at virtuslab.com

- leading a large data engineering project for a global retailer
- Spark ML pipelines (forecasting, recommendation)
- large hadoop cluster(1000s cores + TBs RAM)
- spark, scala, python

AGENDA

- the problem, data
- the tools
 - jupyter notebook
 (of course!)
 - neural networksaka deep learning
 - keras, tensorflow
 - GCP ML-engine
- action

SALES FORECASTING, DATA

THE PROBLEM - FORECASTING SALES VALUE

THE DATA

https://www.kaggle.com/c/rossmann-store-sales

		Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	SchoolHoliday
	0	1	5	2015-07-31	5263	555	1	1	0	1
	1	2	5	2015-07-31	6064	625	1	1	0	1
TRAIN.CSV	2	3	5	2015-07-31	8314	821	1	1	0	1
	3	4	5	2015-07-31	13995	1498	1	1	0	1

C

	Store	StoreType	Assortment	CompetitionDistance	CompetitionOpenSinceMonth	CompetitionOpenSinceYe
0	1	С	а	1270.0	9.0	2008
1	2	а	а	570.0	11.0	2007
2	3	а	а	14130.0	12.0	200

620.0

9.0

2009

STORE.CSV

3

DATA SANITY CHECKING (PER STORE)

```
df_sales.Sales[:100].plot()
```



```
df sales.X.value counts()
```

```
135
     135
     135
     135
     134
     134
     134
Name: DayOfWeek, dtype: int64
     781
     161
Name: Open, dtype: int64
     582
     360
Name: Promo, dtype: int64
     915
      17
Name: StateHoliday, dtype: int64
     749
```

Name: SchoolHoliday, dtype: int64

df_sales[CONTS].boxplot()
df_sales[CONTS].hist()

NEURAL NETWORKS PRIMER

- black box
 - architecture
 - units
 - layers (LSTM, Dense)
 - optimisers
 - activations
 - .fit: (m,n) -> (1,)
 - .predict: (1,n) -> (1,)
- data processing
 - data@#\$%^&* -> (m,n)
- NN training strategy
 - bias/variance

BASIC NEURAL NETWORK ARCHITECTURE

AVOIDABLE BIAS/VARIANCE: YOUR GUIDE

loss

ANDREW NG'S BASIC RECIPE FOR ML TRAINING

avoidable bias

- bigger network
- more epochs
- better optimisation algos
- more features?
- (architecture search)

high variance

- more data
 - more diverse
 - data augmentation
- dropout, L2 regularisation
- (architecture search)

LEARNING PROCESS

LEARNING: MAE METRICS

KERAS, TENSORFLOW, THE CLOUD AND OTHERS

- keras
 - nn wrapper
- tensorflow ecosystem
 - tensorboard for training visualisation
 - gcp ml-engine for scalability

KERAS


```
forecast_model.fit(
    X, Y,
    epochs=num_epochs,
    callbacks=callbacks)
```


yhat = forecast_model.predict(X)

TENSORBOARD

TENSORBOARD - GUIDE YOUR TRAINING

ADDING YOUR OWN TENSORBOARD METRICS

```
class TensorBoardMetricsLogger:
   """Log your own metrics to be shown by TensorBoard"""
   def __init__(self, log_dir):
       self.log dir = log dir
        self.writer = tf.summary.FileWriter(self.log_dir)
   def append(self, metrics_dict, epoch):
        for (name, value) in metrics_dict.iteritems():
            summary = tf.Summary()
           summary_value = summary.value.add()
           summary_value.simple_value = value
           summary_value.tag = name
            self.writer.add_summary(summary, epoch)
       self.writer.flush()
   def close(self):
        self.writer.close()
```

GCP ML ENGINE FOR SCALABILITY

GCP SHELL

```
L-ENGINE SCALING TIERS
#BASIC 1
#STANDARD 1 10
#PREMIUM 1 75
#BASIC_GPU 3
gcloud ml-engine jobs submit training $JOB_NAME \
                                     -stream-logs \
                                     -runtime-version 1.2 \
                                     —job-dir $GCS_JOB_DIR \
                                     ---package-path trainer \
                                     --module-name trainer.task \
                                     --region us-central1 \
                                     --- scale-tier BASIC \
                                     -- train-files $GCS TRAIN FILE \
                                     —eval-files $GCS_EVAL_FILE \
                                     -num-epochs $NUM_EPOCHS \
                                     ---checkpoint-epochs $CHECKPOINT_EPOCHS \
                                     -eval-frequency $EVAL_FREQUENCY
```

ACTION

simple to more complex model

guided by avoidable bias and variance

TOOLING

CONDA ENV

> source activate mlengine

NOTEBOOKS

> jupyter notebook

TENSORBOARD (http://...:8080)

> python -m tensorflow.tensorboard --logdir=output --port=8080

INITIAL SETUP

```
def model fn():
   """Create a Keras Sequential model with layers."""
   model = models.Sequential()
   model.add(layers.Dense(4, input_shape=(FEATURE_SIZE,)))
   model.add(layers.Dense(1))
   compile_model(model)
   return model
def compile model(model):
   """Compiles the model - either created or loaded"""
   model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])
   return model
```

SIMPLE FIRST

MORE EPOCHS? 200

MORE UNITS? 8

MORE LAYERS? 2


```
model = models.Sequential()
model.add(layers.Dense(8, input_shape=(FEATURE_SIZE,)))
model.add(layers.Dense(8))
model.add(layers.Dense(1))
```

MORE DATA? 'OPEN'

MORE DATA? 'DAYOFWEEK'

mean_absolute_error

MORE DATA? 'PROMO'

mean_absolute_error

MORE DATA? 'SCHOOL HOLIDAY'

HOW ARE WE DOING SO FAR?

ACTIVATION? RELU

OPTIMISER? SGD

0.100 0.0800 0.0800 0.0400 0.0200 0.000 40.00 80.00 120.0 160.0 200.0

E3 **≡**

got worse!

HOW ARE WE DOING?

EXTENSIONS

- encode label features
- one-hot categorical features
- train/dev + test set
- learn across the stores (not just one)
- try different architectures (LSTMs?)

REFERENCES

```
https://www.kaggle.com/c/rossmann-store-sales
https://keras.io/
http://playground.tensorflow.org/
https://cloud.google.com/ml-engine/
https://github.com/GoogleCloudPlatform/cloudml-samples/tree/
master/census/keras
```

A conference devoted to making the most in a world that's

DATA DRIVEN

April 16-17, 2018 | Kraków, Poland

Get tickets