ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ И СЛУЧАЙНЫХ ПРОЦЕССОВ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА)

специалиста

БОЛЬШИЕ УКЛОНЕНИЯ МАКСИМАЛЬНОГО ВЕТВЯЩЕГОСЯ ПРОЦЕССА В СЛУЧАЕ УМЕРЕННЫХ ПРАВЫХ ХВОСТОВ

Выполнила студентка
603 группы
Егорова Ирина Алексеевна
(подпись студента)
Научный руководитель:
с.н.с., к.фм.н.
Шкляев Александр Викторович
(подпись научного руководителя)

Содержание

1	Введение		2
2	Предварительные сведения		3
	2.1 Метод обратной функции		3
	2.2 Максимальный ветвящийся процесс		3
	2.3 Сопряженное распределение		3
	2.4 Интегро-локальная теорема для рекуррентных последо)-	
	вательностей		4
3	Основной результат		5
4	Доказательство		5
	4.1 Предварительные оценки		5
	4.2 Рекуррентное представление		6
	4.3 Поиск параметров асимптотики		8
5	Проверка условий		9
	5.1 Проверка условия b1		9
	5.2 Проверка условия b2		9
	5.3 Проверка условия b3		
	$5.3.1$ Проверка условия b3 для $B_n^{'}$		
	$5.3.2$ Проверка условия b3 для C_n^n		
	5.4 Проверка условия b4		11
	5.5 Проверка условия b5		
	5.6 Проверка условия b6		11

1 Введение

Введем максимальный ветвящийся процесс. Положим $Z_0 = 1$, ..., $Z_{n+1} = \max(X_{n,1},...,X_{n,Z_n})$, где $X_{i,j}$ — независимые одинаково распределенные (н.о.р.) случайные величины (с.в.) с некоторой функцией распределения (ф.р.) F(x). Данная модель была рассмотрена Ламперти [1], которым было показано, что

- если $\liminf x(1 F(x)) \ge \exp(-\gamma)$, при $x \to \infty$, то число частиц в максимальном ветвящемся процессе почти наверное стремится к бесконечности;
- если $\limsup x(1 F(x)) < \exp(-\gamma)$, при $x \to \infty$, то число частиц в рассматриваемом процессе почти наверное вырождается в ноль.

Здесь γ — константа Эйлера-Маскерони ($\gamma \approx 0.58$).

Максимальные ветвящиеся процессы рассматривались рядом авторов (см, например, [2], [3]). Нам понадобится результат ([2]), из которого мы получаем, что существует такое вероятностное пространство, на котором максимальный ветвящийся процесс с ф.р. F(x) можно задать соотношением:

$$Z_{n+1} = F^{-1}(U_n^{1/Z_n}),$$

где U_n — н.о.р. стандартные равномерные с.в.

В работе рассматривается частный случай ф.р. F(x):

$$F(x) = 1 - \frac{c_f + r(x)}{x},\tag{1}$$

где c_f — некоторая положительная константа, $c_f > 1$, r(x) — функция, для которой выполнено условие: $r(x) \cdot x^{\alpha} \to 0, x \to \infty$, при некотором $\alpha \in [0, 1]$.

В работе показано, что соотношение (1) позволяет представить рассматриваемый процесс в виде рекуррентной случайной последовательности, теория больших уклонений для которой исследовалась рядом авторов ([4], [5]).

В данной работе получена асимптотика вероятностей для максимального ветвящегося процесса с заданной ф.р. (1), в общем случае исследование такой вероятности, по-видимому, представляется невозможным. Показано, что

$$\mathbf{P}(\ln Z_{n+1} \in [x, x + \Delta_n)) \sim D\left(\frac{x}{n}\right) \frac{\Delta_n \exp\left((1 - \psi^{-1}(\ln c_f - x/n))(x - n \ln c_f)\right)}{\sqrt{2\pi n \psi'(\psi^{-1}(\ln c_f - x/n))}(\Gamma(\psi^{-1}(\ln c_f - x/n)))^n},$$

при $n \to \infty$ и всех Δ_n , стремящихся к 0 достаточно медленно, где $D(\cdot)$ некоторая положительная и непрерывная на $[\theta_1, \theta_2]$ функция, θ_1, θ_2 — некоторые константы, $\psi(h) = (\ln \Gamma(h))'$. При этом эквивалентность равномерна по $x/n \in [\theta_1, \theta_2] \subset (\ln c_f + \gamma, +\infty)$.

Замечание 1. Говорят, что утверждение выполнено при Δ_n , стремящихся κ 0 достаточно медленно, если существует некоторая последовательность $\widetilde{\Delta_n} \to 0$, такая что при всех $\Delta_n > \widetilde{\Delta_n}$, $\Delta_n \to 0$ выполнено наше утверждение.

2 Предварительные сведения

Рассмотрим максимальный ветвящийся процесс, определенный выше. Нам потребуются следующие утверждения.

2.1 Метод обратной функции

Лемма 1. $F^{-1}(R)$ имеет ф.р. F(x), где $R \sim R[0,1]$.

Доказательство. Пусть $G(x)- \varphi$.р. $F^{-1}(R)$, тогда $G(x)={\bf P}(F^{-1}(R)\leqslant x)={\bf P}(R\leqslant F(x))$. Так как $R\sim R[0,1]$, то

$$G(x) = \begin{cases} 0, & F(x) < 0 \\ 1, & F(x) > 1 \\ F(x), & F(x) \in [0, 1] \end{cases}$$

поскольку $F(x) \in [0,1]$. Значит $F(x) - \varphi$.р. случайной величины $F^{-1}(R)$.

2.2 Максимальный ветвящийся процесс

Лемма 2. $P(Z_{n+1} \le x | Z_n = i) = F(x)^i$, где $F - \phi.p. X_i$.

Доказательство.

$$\mathbf{P}(Z_{n+1} \le x | Z_n = i) = \mathbf{P}(\max(X_{n,1}, ..., X_{n,Z_n}) \le x | Z_n = i) = \prod_{k=1}^{i} \mathbf{P}(X_{n,k} \le x | Z_n = i) = F(x)^{i}.$$

Лемма 3. $(Z_n, Z_{n+1}) \stackrel{d}{=} (Z_n, F^{-1}(U_n^{1/Z_n}))$, где $F - \mathfrak{g}.\mathfrak{p}. X_i, U_n - \mathfrak{n}.\mathfrak{o}.\mathfrak{p}. R[0,1]$.

Доказательство. Требуемое соотношение вытекает из лемм 1 и 2.

2.3 Сопряженное распределение

Пусть $\xi = (\xi_1, \dots, \xi_i, \dots)$ — последовательность н.о.р. невырожденных случайных величин с конечным $\mu = \mathbf{E}\xi$ на вероятностном пространстве $(\Omega, \mathcal{F}, \mathbf{P})$, удовлетворяющих условию $R(h) = \mathbf{E} \exp(h\xi) < \infty, \ h \in (0, h+)$. Положим при $h \in (0, h+)$: $m(h) = (\ln R(h))', \ \sigma^2(h) = m'(h) > 0, \ m^+ = \lim_{h \to h^+} m(h)$.

Функция m(h) непрерывна и монотонно возрастает при $h \in [0, h^+)$ и $m(0) = \mu$. Следовательно, для любого $\theta \in [\mu, m^+)$ найдется такое $h_{\theta} \in [0, h^+)$, что $m(h_{\theta}) = \theta$.

Сопряженное распределение $P^{(h)}$, $h \in (0, h+)$ задается ф.р.

$$F^{(h)}(x) = R^{-1}(h) \int_{-\infty}^{x} e^{hy} dF(y).$$

Введем функцию уклонений $\Lambda(\theta) = \theta h_{\theta} - \ln R(h_{\theta})$.

2.4 Интегро-локальная теорема для рекуррентных последовательностей

Рассмотрим последовательность $Z_{n+1} = P_m(Z_n)$, где P_m — параметрическая функция вида

$$P_{m,n}(x_n) = A_{n,m}x_n + A_{n,m-1}x_n^{(m-1)/m} + \dots + A_{n,1}x_n^{1/m} + A_{n,0},$$

где m>0 и $\{(A_{i,1},...,A_{i,m}), i \geq 0\}$ — набор случайных векторов. Положим $\xi_n = \ln A_{n-1,m}, \ R(h) = \mathbf{E} e^{\xi h}$ и $\mu = \mathbf{E} \xi$, где ξ — величина с тем же распределением, что и ξ_1 . Будем предполагать, что величины ξ_i независимы и одинаково распределены. Случайное блуждание $S_n = \sum_{i=1}^n \xi_i$ назовем сопровождающим для последовательности Z_n .

Мы будем рассматривать условия при которых предельное поведение Z_{n+1} определяется старшими коэффициентами $A_{n,m}$ и не будет существенно зависеть от $A_{i,j}$, где j < m. В связи с этим введем случайные величины $A_{i,j}'$, для которых п.н. выполнено условие $|A_{i,j}| \leq A_{i,j}'$ при $i \geq 0, j < m$.

Пусть $\max(0, \mu) < \theta_1 < \theta_2$. Введем следующие условия:

 b_1 . $A_{i,m}$ — неотрицательная случайная величина, где $i \ge 0$;

 b_2 . Величины $\xi_i, i \geq 0$ являются нерешетчатыми и удовлетворяют условию Крамера: $R(h) = \mathbf{E}e^{\xi_1 h} < \infty, h \in [0, h^+);$

 b_3 . При i > 0 имеет место оценка:

$$\mathbf{E}|A'_{n,m-i}|^h \le C \frac{R^{in/m}(h)}{(in/m)^{j(h)}},$$

где С — некоторая неотрицательная константа, $j(h)=(1+\epsilon)h,\ \epsilon>0,$ $h\in[0,h^+);$

 b_4 . величина Z_0 такова, что $\mathbf{E}|Z_0|^h < \infty, h \in [0, h^+);$

 b_5 . при любом n величины $\{A_{i,1}^{'},...,A_{i,m-1}^{'},A_{i,m},i\geq n\}$ не зависят от $\{A_{i,0}^{'},A_{i,1}^{'},...,A_{i,m-1}^{'},A_{i,m},i< n\};$

 b_6 . предел Z^* величин $Z_n \exp(-S_n)$ по мере $P^{(h)}$ не сосредоточен на $(-\infty,0]$.

Отметим, что из выполнения условий $b_1 - b_5$ вытекает существование указанного предела Z^* в условии b_6 .

Теорема 1. [5] Для последовательности, заданной соотношением

$$Z_{n+1} = P_{m,n}(Z_n),$$

удовлетворяющей условиям $b_1 - b_6$, выполнено соотношение

$$\mathbf{P}(\ln Z_{n+1} \in [x, x + \Delta_n)) \sim \frac{D(x/n) \Delta_n}{\sqrt{2\pi n} \sigma(h_{x/n})} \exp(-\Lambda(x/n) n)$$

при $n \to \infty$ и всех Δ_n , стремящихся к θ достаточно медленно, где $D(\cdot)$ — некоторая положительная и непрерывная на $[\theta_1, \theta_2]$ функция. При этом эквивалентность равномерна по $x/n \in [\theta_1, \theta_2]$.

3 Основной результат

Теорема 2. Для максимального ветвящегося процесса c ф.р. вида $F(x) = 1 - (c_f + r(x))/x$, где $c_f > 1$, $r(x) \cdot x^{\alpha} \to 0, x \to \infty$, при некотором $\alpha \in [0, 1]$, верна следующая асимптотика при $h \in [0, 1)$:

$$\mathbf{P}(\ln Z_{n+1} \in [x, x + \Delta_n)) \sim D\left(\frac{x}{n}\right) \frac{\Delta_n \exp\left((1 - \psi^{-1}(\ln c_f - x/n))(x - n \ln c_f)\right)}{\sqrt{2\pi n \psi'(\psi^{-1}(\ln c_f - x/n))}(\Gamma(\psi^{-1}(\ln c_f - x/n)))^n},$$

при $n \to \infty$ и всех Δ_n , стремящихся к θ достаточно медленно, где $D(\cdot)$ — некоторая положительная и непрерывная на $[\theta_1, \theta_2]$ функция, θ_1, θ_2 - некоторые константы, $\psi(h) = (\ln \Gamma(h))'$. При этом эквивалентность равномерна по $x/n \in [\theta_1, \theta_2] \subset (\ln c_f + \gamma, +\infty)$.

4 Доказательство

4.1 Предварительные оценки

Рассмотрим максимальный ветвящийся процесс с ф.р. $F(x) = 1 - (c_f + r(x))/x$, где $c_f > 1$. Наложим на функцию r(x) условие: $r(x) \cdot x^{\alpha} \to 0, x \to \infty$, при

некотором $\alpha \in [0,1]$. Получим выражение для обратной функции такого вида:

$$y = F(x) = 1 - \frac{(c_f + r(x))}{x},$$
$$x = F^{-1}(y) = \frac{c_f + r(x)}{1 - y} = \frac{c_f + r(F^{-1}(y))}{1 - y}.$$

Введем функцию $g(u) = r(F^{-1}(e^{-u}))$. Поскольку $r(x) \sim c_r/x^{\alpha}, \alpha \in [0,1], x \to \infty$:

$$g(u) = r(F^{-1}(e^{-u})) \sim \frac{c_r}{(F^{-1}(e^{-u}))^{\alpha}} = \frac{c_r}{\left(\frac{c_f + r(F^{-1}(e^{-u}))}{1 - e^{-u}}\right)^{\alpha}}, u \to 0 - .$$

Имеем $u \to 0-, e^{-u} \to 1, F(e^{-u}) \to \infty$, следовательно $r(F(e^{-u})) \to 0$ и

$$g(u) \sim \frac{c_r}{\left(\frac{c_f}{1 - e^{-u}}\right)^{\alpha}} \to c_g u^{\alpha}, u \to 0-,$$

где c_g — некоторая константа.

Поскольку $\alpha \in [0,1]$ для некоторого m: $|g(u)| < c_g u^{1/m}$.

Воспользуемся леммой 3:

$$Z_{n+1} = F^{-1}(U_n^{1/Z_n}) = \frac{c_f + r(F^{-1}(U_n^{1/Z_n}))}{1 - U_n^{1/Z_n}}.$$

Поскольку $g(u) = r(F^{-1}(e^{-u})) = r(F^{-1}(U_n^{1/Z_n}))$, то $u = -\ln U_n^{1/Z_n}$.

$$Z_{n+1} = \frac{c_f + g(-\ln U_n^{1/Z_n})}{1 - U_n^{1/Z_n}}.$$

4.2 Рекуррентное представление

Представим ветвящийся процесс в виде $Z_{n+1} = A_n Z_n + B_n Z_n^{(m-1)/m} + C_n$, где

$$A_n = \frac{c_f}{-\ln U_n}, \quad U_n \sim R[0, 1].$$

Тогда для оставшейся части имеем:

$$Z_{n+1} - A_n Z_n = \frac{c_f (\ln U_n + Z_n - Z_n \exp(\ln U_n / Z_n)) + g(-\ln U_n / Z_n) \ln U_n}{(1 - \exp(\ln U_n / Z_n)) \ln U_n}.$$

Отметим, что при $Z_n = 0$ эта разность равна 0 и можно положить $B_n = C_n = 0$. Рассмотрим случай $Z_n \ge 1$, преобразуем получившееся выражение. По теореме Лагранжа существует такая точка $d \in (a,b)$, что

$$f'(d) = \frac{f(b) - f(a)}{b - a}, f(a) = f(b) + (a - b) \cdot f'(d).$$

Тогда при $a = \ln U_n/Z_n, \ b = 0$:

$$f\left(\frac{\ln U_n}{Z_n}\right) = f(0) + \left(\frac{\ln U_n}{Z_n}\right) \cdot f'(d).$$

Для функции $f(x) = \exp(x)$ получаем

$$\exp\left(\frac{\ln U_n}{Z_n}\right) = 1 + \frac{\ln U_n}{Z_n} \cdot \exp(d), \ d \in \left(\frac{\ln U_n}{Z_n}, 0\right).$$

Тогда имеем:

$$B_n Z_n^{(m-1)/m} + C_n = \frac{c_f g(-\ln U_n/Z_n) Z_n}{\exp(d) \ln U_n} + \frac{c_f(\exp(d) - 1) Z_n}{\exp(d) \ln U_n} =: T_1 + T_2.$$

Для оценки T_1 пользуемся тем, что $|g(u)| < c_q u^{1/m}$:

$$T_{1} = \frac{c_{f}g(-\ln U_{n}/Z_{n})Z_{n}}{\exp(d)\ln U_{n}} < \frac{c_{f}c_{g}(-\ln U_{n}/Z_{n})^{1/m}Z_{n}}{\exp(d)(-\ln U_{n})} = \frac{c_{f}c_{g}}{\exp d} \left(\frac{Z_{n}}{-\ln U_{n}}\right)^{(m-1)/m} < \frac{c_{f}c_{g}}{U_{n}} \left(\frac{Z_{n}}{-\ln U_{n}}\right)^{(m-1)/m}.$$

В последнем неравенстве воспользовались оценкой $\exp(-d) < 1/U_n$, поскольку $d \in (\ln U_n/Z_n, 0)$ и $Z_n \geq 1$. Получили необходимую степень у Z_n , слагаемое T_1 соответствует B_n .

Для оценки T_2 еще раз применим теорему Лагранжа:

$$\exp(-d) - 1 = -d \exp(-\xi) \leqslant -d \exp(-d),$$

при $\xi \in [0, -d], d \in (\ln U_n/Z_n, 0)$. Следовательно,

$$T_{2} = \frac{c_{f}(\exp(-d) - 1)}{-\ln U_{n}/Z_{n}} \leqslant \frac{c_{f} \exp(-\ln U_{n}/Z_{n})(-\ln U_{n}/Z_{n})}{-\ln U_{n}/Z_{n}} = c_{f} \exp(-\ln U_{n}/Z_{n}) \leqslant \frac{c_{f}}{U_{n}}.$$

В последнем неравенстве пользуемся тем, что $Z_n \geq 1$. Получаем соответствие T_2 свободному члену C_n .

В итоге получаем рекуррентное представление:

$$Z_{n+1} = A_n Z_n + B_n Z_n^{(m-1)/m} + C_n,$$

$$A_n = \frac{c_f}{-\ln U_n},$$

$$|B_n| < |B'_n| = \frac{c_b}{U_n \cdot (-\ln U_n)^{(m-1)/m}}, c_b = c_f c_g,$$

$$|C_n| < |C'_n| = \frac{c_f}{U_n}.$$

4.3 Поиск параметров асимптотики

При выполнении необходимых ограничений на последовательность (A_n, B_n, C_n) можем применить теорему 1. Проверка условий будет произведена в следующем разделе, в данном разделе найдем соответствующие параметры асимптотики. Посчитаем функцию R(h) для нашего случая:

$$R(h) = \mathbf{E} \exp(h\xi_1) = \mathbf{E} \exp\left(h \ln\left(-\frac{c_f}{\ln U_0}\right)\right) = \mathbf{E} \left(-\frac{c_f}{\ln U_0}\right)^h = \int_0^1 \left(-\frac{c_f}{\ln x}\right)^h dx =$$

$$= c_f^h \cdot \int_0^1 \left(-\frac{1}{\ln x}\right)^h dx = c_f^h \int_0^\infty u^{-h} \cdot \exp(-u) du = c_f^h \cdot \Gamma(1-h), h \in [0,1).$$

Тогда имеем:

$$m(h) = (\ln (c_f^h \Gamma(1-h)))' = (h \ln c_f + \ln \Gamma(1-h))' = \ln c_f - \psi(1-h),$$

$$\psi(h) = (\ln \Gamma(h))',$$

$$\sigma^2(h) = (\ln R(h))'' = (h \ln c_f + \ln \Gamma(1-h))'' = \psi'(1-h),$$

$$\mu = \mathbf{E}\xi = \ln c_f + \exp(-\gamma),$$

где γ — константа Эйлера-Маскерони.

Нужно найти решение уравнения $x/n = m(h_{x/n})$:

$$x/n = m(h_{x/n}) = \ln c_f - \psi(1 - h_{x/n}),$$

 $h_{x/n} = 1 - \psi^{-1}(\ln c_f - x/n).$

Выразим функцию уклонений:

$$\Lambda(x/n) = x/n \cdot h_{x/n} - \ln R(h_{x/n}) = x/n \cdot h_{x/n} - \ln \left(c_f^{h_{x/n}} \Gamma(1 - h_{x/n}) \right) = h_{x/n}(x/n - \ln c_f) - \ln \Gamma(1 - h_{x/n}) = (1 - \psi^{-1}(\ln c_f - x/n))(x/n - \ln c_f) - \ln \Gamma(\psi^{-1}(\ln c_f - x/n)).$$

Подставляя полученные параметры асимтотики в теорему 1, получаем теорему 2.

5 Проверка условий

Проверим, выполняются ли условия b1)-b6) для максимального ветвящегося процесса Z_n с условиями из теоремы 2.

5.1 Проверка условия b1

Нужно проверить, что $A_{i,m}, i \geq 0$ — неотрицательная случайная величина. В нашем случае:

$$A_{i,m} = A_i = \frac{c_f}{-\ln U_i},$$

 $c_f > 1, -\ln U_i > 0$, поскольку $U_i \in [0, 1]$.

5.2 Проверка условия b2

Проверим выполнение условие Крамера $R(h) = \mathbf{E}e^{\xi h} < \infty, h \in [0, h^+)$:

$$R(h) = \mathbf{E} \exp(h\xi_1) = \mathbf{E} \exp\left(h \ln\left(-\frac{c_f}{\ln U_0}\right)\right) = \mathbf{E} \left(-\frac{c_f}{\ln U_0}\right)^h =$$

$$\int_0^1 \left(-\frac{c_f}{\ln x}\right)^h dx = c_f^h \int_0^\infty u^{-h} \cdot \exp(-u) du = c_f^h \cdot \Gamma(1-h) < \infty, \tag{2}$$

при $0 \le h < 1$.

5.3 Проверка условия b3

При i > 0 должна выполняться оценка:

$$\mathbf{E}|A'_{n,m-i}|^{h} \le C \frac{R^{in/m}(h)}{(in/m)^{j(h)}},\tag{3}$$

где С — некоторая неотрицательная константа, $j(h)=(1+\epsilon)h$, $\epsilon>0$, $h\in[0,h^+)$. В нашем представлении есть коэффициенты A_n,B_n,C_n , которые соотвествуют i=0,1,m. Проверим выполнение условия для мажорант B_n',C_n' .

${f 5.3.1}$ Проверка условия ${f b3}$ для $B_n^{'}$

Получаем, что нужно проверить выполнение неравенства:

$$\mathbf{E}|B_n'|^h < \frac{C(R(h))^{n/m}}{(n/m)^{j(h)}}.$$
(4)

Для коэфициента $B_n^{'}$ имеем :

$$\mathbf{E}|B'_{n}|^{h} = \mathbf{E}\left(\frac{c_{b}}{U_{n}\cdot(-\ln U_{n})^{(m-1)/m}}\right)^{h} = \int_{0}^{1}\left(\frac{c_{b}}{x(-\ln x)^{(m-1)/m}}\right)^{h}dx = c_{b}^{h}\int_{0}^{\infty}u^{-\left(\frac{m-1}{m}\right)h}\cdot\exp(-u(1-h))du = \frac{c_{b}^{h}}{(1-h)^{1-\left(\frac{m-1}{m}\right)h}}\int_{0}^{\infty}t^{-\left(\frac{m-1}{m}\right)h}\cdot\exp(-t)dt = \frac{c_{b}^{h}}{(1-h)^{1-\left(\frac{m-1}{m}\right)h}}\cdot\Gamma\left(1-\left(\frac{m-1}{m}\right)h\right).$$

В левой части неравенства (4) получили сходящийся интеграл. В правой части для функции R(h) получили выражение через гамма-функцию (2), можем оценить ее:

$$R(h) = c_f^h \cdot \Gamma(1 - h) > 1,$$

т.к. при $0 \le h < 1$ имеем $\Gamma(1-h) > 1$, и коэффициент $c_f > 1$.

Неравенство (4) будет выполняться при всех натуральных n и достаточно больших C в силу расходимости последовательности в правой части неравенства в бесконечность.

5.3.2 Проверка условия b3 для $C_n^{'}$

Для C_n' имеем:

$$\mathbf{E}|C_n'|^h = \mathbf{E}\left(\frac{c_f}{U_n}\right)^h = \int_0^1 \left(\frac{c_f}{x}\right)^h dx = \frac{c_f^h}{1-h}.$$

Неравенство для C_n^h

$$\mathbf{E}|C_n'|^h < \frac{C(R(h))^n}{n^{j(h)}},$$

также будет выполняться при всех натуральных n и достаточно больших C в силу расходимости последовательности в правой части неравенства в бесконечность.

5.4 Проверка условия b4

В рассматриваемом ветвящемся процессе $Z_0=1$, поэтому имеем выполнение неравенства $\mathbf{E}|Z_0|^h<\infty, h\in[0,h^+).$

5.5 Проверка условия b5

Нужно проверить, что $\{A_i, B'_i, i \geq n\}$ не зависит от $\{A_{i-1}, B'_{i-1}, C'_{i-1}, i < n\}$:

$$A_n = \frac{c_f}{-\ln U_n},$$

$$B'_n = \frac{c_b}{U_n \cdot (\ln U_n)^{(m-1)/m}},$$

$$C'_n = \frac{c_f}{U_n}.$$

Поскольку в выражениях из случайных величин присутствует только U_n , являющиеся независимыми величинами, данное условие выполнено.

5.6 Проверка условия b6

Предел величин $Z_n \exp(-S_n)$ по мере $P^{(h)}$ неотрицателен, нужно показать, что он не равен 0. Для этого оценим величину снизу. Поскольку $\xi_n = \ln A_{n-1}$, то $A_{n-1} = \exp(\xi_n)$, тогда

$$Z_{n+1} = A_n Z_n + B_n Z_n^{(m-1)/m} + C_n = \exp(\xi_{n+1}) Z_n + B_n Z_n^{(m-1)/m} + C_n,$$

$$\frac{Z_{n+1}}{\exp(S_{n+1})} = \frac{Z_n}{\exp(S_n)} + \frac{B_n Z_n^{(m-1)/m}}{\exp(S_{n+1})} + \frac{C_n}{\exp(S_{n+1})} =$$

$$\frac{Z_n}{\exp(S_n)} + \frac{c_f g(-\ln U_n / Z_n) Z_n}{\exp(d) \ln U_n \exp(S_{n+1})} + \frac{c_f (\exp(d) - 1) Z_n}{\exp(d) \ln U_n \exp(S_{n+1})}.$$
 (5)

Заметим, что

$$C_n = \frac{c_f(\exp(d) - 1)Z_n}{\exp(d) \ln U_n} = \frac{c_f(\exp(-d) - 1)Z_n}{-\ln U_n} \ge 0,$$

поскольку $d \in (\ln U_n/Z_n, 0)$.

Далее оценим второе слагаемое выражения (5):

$$-\frac{c_f g(-\ln U_n/Z_n) Z_n}{\exp(d)(-\ln U_n) \exp(S_{n+1})} > -\frac{c_b (-\ln U_n/Z_n)^{1/m} Z_n}{\exp(d)(-\ln U_n) \exp(S_{n+1})},$$

поскольку $|g(u)| < c_g u^{1/m}, c_b = c_f c_g.$

Также воспользуемся тем, что $\exp \xi_{n+1} = A_n = c_f/(-\ln U_n)$ и $d \in (\ln U_n/Z_n,0)$:

$$\frac{c_f g(-\ln U_n/Z_n)Z_n}{\exp(d)\ln U_n \exp(S_{n+1})} > -\frac{c_b (-\ln U_n/Z_n)^{1/m} Z_n}{U_n^{1/Z_n} (-\ln U_n) \exp(S_{n+1})} = -\frac{c_g (-\ln U_n/Z_n)^{1/m} Z_n}{U_n^{1/Z_n} \exp(S_n)} \ge -\frac{c_g (-\ln U_n/Z_n)^{1/m} Z_n}{U_n \exp(S_n)}.$$

В последнем неравенстве используется $Z_n \ge 1$. Получаем оценку для выражения $Z_{n+1}/\exp{(S_{n+1})}$:

$$\frac{Z_{n+1}}{\exp(S_{n+1})} \ge \frac{Z_n}{\exp(S_n)} - \frac{c_b(-\ln U_n/Z_n)^{1/m} Z_n}{U_n \exp(S_n)} = \frac{Z_n}{\exp(S_n)} \left(1 - \frac{c_b(-\ln U_n/Z_n)^{1/m}}{U_n}\right).$$
(6)

Применяя n раз оценку (6), имеем:

$$\frac{Z_{n+1}}{\exp(S_{n+1})} \ge \frac{Z_1}{\exp(S_1)} \prod_{k=1}^n \left(1 - \frac{c_b(-\ln U_k/Z_k)^{1/m}}{U_k} \right). \tag{7}$$

Используя (7), покажем, что

$$\mathbf{P}^{(h)}\left(\frac{Z_{n+1}}{\exp\left(S_{n+1}\right)} > 1, \forall n\right) > 0.$$

Для этого необходимо оценить снизу произведение

$$\prod_{k=1}^{n} \left(1 - \frac{c_b(-\ln U_k/Z_k)^{1/m}}{U_k} \right).$$

Логарифмированием перейдем к ряду P_n , нужно показать, что он сходится:

$$P_n = \ln \left(\prod_{k=1}^n \left(1 - \frac{c_b (-\ln U_k / Z_k)^{1/m}}{U_k} \right) \right) = \sum_{k=1}^n \ln \left(1 - \frac{c_b (-\ln U_k / Z_k)^{1/m}}{U_k} \right).$$

Введем ряд Q_n :

$$Q_n = \sum_{k=1}^n \ln \left(1 - \frac{c_b(\ln(c_u k^2))^{1/m}(c_u k^2)}{\exp(\frac{\mu k}{2} - d)} \right).$$

Лемма 4. $Paccмampuваемый ряд <math>Q_n$ cxodumcs.

Доказательство. Заметим, что начиная с некоторого номера k > N, будет выполнено $\ln(c_u k^2) < k$, $\exp(\mu k/2 - d) > k^{4m}$, поэтому имеем:

$$Q_n > \sum_{k=1}^n \ln \left(1 - \frac{\widetilde{c}}{k^{2-(1/m)}} \right).$$

Поскольку m>1, выражение $\widetilde{c}/k^{2-(1/m)}$ стремится к нулю при $k\to\infty$, тогда

$$\ln\left(1 - \frac{\widetilde{c}}{k^{2-(1/m)}}\right) \sim -\frac{\widetilde{c}}{k^{2-(1/m)}}.$$

Ряд $\sum_{k=1}^{n} (-\widetilde{c}/k^{2-(1/m)})$ сходится, поэтому ряд Q_n тоже сходится.

Поскольку ряд Q_n сходится, можем оценить его снизу $Q_n > q$, где q — некоторая константа, q < 0.

Рассмотрим пересечение следующих событий:

$$\left\{\frac{Z_1}{\exp(S_1)} > 1/b\right\}, \left\{\forall k : S_k > \frac{\mu k}{2} - d\right\}, \left\{\forall k : U_k > \frac{1}{c_u k^2}\right\}, \tag{8}$$

где $b=\exp{(q)},\ \mu=m(0)=\ln{c_f}-\psi(1)=\ln{c_f}+\gamma>0,\ \psi(h)=(\ln{\Gamma(h)})',\ \gamma-$ константа Эйлера-Маскерони, c_u и d— некоторые положительные константы. Лемма 5.

$$\mathbf{P}^{(h)}\left(\frac{Z_{1}}{\exp{(S_{1})}} > \frac{1}{b}; \forall k : S_{k} > \frac{\mu k}{2} - d; \forall k : U_{k} > \frac{1}{c_{u}k^{2}}\right) = \mathbf{P}^{(h)}\left(\frac{Z_{1}}{\exp{(S_{1})}} > \frac{1}{b}; \forall k : S_{k} > \frac{\mu k}{2} - d; \forall k : U_{k} > \frac{1}{c_{u}k^{2}}; \forall k : \frac{Z_{k}}{\exp{(S_{k})}} > 1\right)$$

Доказательство. Покажем по индукции что при пересечении событий (8) при всех k>0 выполнено соотношение:

$$\frac{Z_k}{\exp\left(S_k\right)} > 1.$$

База индукции: при k=1 имеем $Z_1/\exp{(S_1)} > 1/b$, где $b=\exp{(q)} < 1$, поскольку q<0. Значит 1/b>1, и утверждение выполнено.

Далее предположим, что утверждение верно для k=n, докажем, что тогда будет верно для k=n+1.

При пересечении событий (8) и предположения индукции имеем:

$$Z_n > \exp\left(\frac{\mu n}{2} - d\right),$$

$$\frac{1}{U_n} < c_u n^2, -\ln U_n < \ln\left(c_u n^2\right).$$

Тогда сумму ряда P_n можно оценить снизу:

$$P_n > Q_n = \sum_{k=1}^n \ln \left(1 - \frac{c_b(\ln(c_u k^2))^{1/m}(c_u k^2)}{\exp(\frac{\mu k}{2} - d)} \right).$$

По предыдущей лемме получаем, что $P_n > q$, значит

$$\prod_{k=1}^{n} \left(1 - \frac{c_b(-\ln U_k/Z_k)^{1/m}}{U_k} \right) > \exp(q) = b.$$

Тогда, используя оценку (7), имеем:

$$\frac{Z_{n+1}}{\exp(S_{n+1})} \ge \frac{Z_1}{\exp(S_1)} \prod_{k=1}^n \left(1 - \frac{c_b(-\ln U_k/Z_k)^{1/m}}{U_k} \right) > \frac{1}{b} \cdot b = 1. \tag{9}$$

Получаем, что из событий (8) следует, что $Z_k > \exp(S_k)$ при всех k. Отсюда вытекает необходимое равенство вероятностей.

Исследуем вероятности событий, описанных в (8).

По усиленному закону больших чисел для величины S_n при достаточно большом d имеем:

$$\mathbf{P}^{(h)}\left(S_n > \frac{\mu n}{2} - d, \forall n\right) > \frac{1}{2}.\tag{10}$$

Лемма 6. Для последовательности величин U_n (равномерные с.в.) найдется такое c_u :

$$\mathbf{P}^{(h)}\left(U_n > \frac{1}{c_u n^2}, \forall n\right) > \frac{1}{2}.$$

Доказательство. Рассмотрим события $E_n = \{U_n \le a_n\}$, где последовательность a_n задается формулой $a_n = 1/(c_u n^2)$. Пусть E есть событие, состоящее в том, что наступит бесконечно много событий E_k , то есть:

$$E = \bigcap_{n \ge 1} \bigcup_{k \ge n} E_k.$$

Оценим сумму: $\sum_{k\geq 1} \mathbf{P}^{(h)}(E_k) = \sum_{k\geq 1} \mathbf{P}^{(h)}(U_k \leq a_k) = \sum_{k\geq 1} a_k < \infty$, поскольку ряд сходится.

По лемме Бореля-Кантелли, если $\sum_{k\geq 1} \mathbf{P}^{(h)}(E_k) < \infty$, то $\mathbf{P}^{(h)}(E) = 0$. Остается выбрать c_u достаточно большим, чтобы число рассматриваемых событий оказалось нулем с вероятностью больше 1/2.

Из леммы 6 и соотношения (10) получаем, что пересечение событий

$$\left\{ \forall k : S_k > \frac{\mu k}{2} - d \right\}, \left\{ \forall k : U_k > \frac{1}{c_u k^2} \right\}$$

имеет положительную вероятность.

Далее, используя лемму 5 и выражение (7), произведем следующие оценки:

$$\mathbf{P}^{(h)}\left(\forall k: \frac{Z_k}{\exp\left(S_k\right)} > 1\right) \geq$$

$$\mathbf{P}^{(h)}\left(\frac{Z_1}{\exp\left(S_1\right)} > \frac{1}{b}; \forall k: S_k > \frac{\mu k}{2} - d; \forall k: U_k > \frac{1}{c_u k^2}; \forall k: \frac{Z_k}{\exp\left(S_k\right)} > 1\right) =$$

$$\mathbf{P}^{(h)}\left(\frac{Z_1}{\exp\left(S_1\right)} > \frac{1}{b}; \forall k: S_k > \frac{\mu k}{2} - d; \forall k: U_k > \frac{1}{c_u k^2}\right) =$$

$$\mathbf{E}\left(\mathbf{P}^{(h)}\left(\frac{Z_1}{\exp\left(S_1\right)} > \frac{1}{b} \middle| U_1\right) \cdot \mathbf{I}_{\forall k: S_k > (\mu k/2) - d; \forall k: U_k > 1/(c_u k^2)}\right) > 0.$$

Величина под знаком математического ожидания п.н положительна, поскольку распределение Z_1 не ограничено. Интегрируя ее по событию положительной меры, получаем положительную константу.

Таким образом, получили оценку снизу на величину $Z_n \exp(-S_n)$, поэтому предел Z^* величин $Z_n \exp(-S_n)$ по мере $P^{(h)}$ больше нуля с положительной вероятностью.

Список литературы

- [1] Lamperti, "Maximal branching processes and 'long-range percolation'", Journal of Applied Probability, (1970), 89 98
- [2] А. В. Лебедев, "Максимальные ветвящиеся процесы с неотрицательными значениями", Теория вероятн. и ее примен., 50:3 (2005), 564–570; Theory Probab. Appl., 50:3 (2006), 482–488
- [3] А. В. Лебедев, "Двойной показательный закон для максимальных ветвящихся процессов", Дискрет. матем., 14:3 (2002), 143–148; Discrete Math. Appl., 12:4 (2002), 415–420
- [4] Шкляев А. В. Большие уклонения ветвящегося процесса в случайной среде. І, Дискретная математика (2019), Т. 31., №. 4., С. 102-115.
- [5] Трошина Д.И. Большие уклонения рекуррентных последовательностей, заданных уравнением полиномиального типа, дипломная работа (2021)