

Python 数据科学 速查表

Python 基础

天善智能商业智能与大数据社区 www.hellobi.com

变量与数据类型

变量赋值

>>>	x=5		
>>>	X		
5			

变量计算

>>> x+2	מל
>>> x-2	减
3 >>> x*2	乘
10 >>> x**2	幂
25 >>> x%2	取余
1 >>> x/float(2)	除
2.5	Lay

类型与类型转换

str()	'5', '3.45', 'True'	转为字符串
int()	5, 3, 1	转为整数
float()	5.0, 1.0	转为浮点数
bool()	True, True, True	转为布尔值

调用帮助

>>> help(str)

字符串

```
>>> my string = 'thisStringIsAwesome'
>>> my string
'thisStringIsAwesome'
```

字符串运算

```
>>> my string * 2
 'thisStringIsAwesomethisStringIsAwesome'
>>> my string + 'Innit'
 'thisStringIsAwesomeInnit'
>>> 'm' in my string
```

列表

```
>>> a = 'is'
>>> b = 'nice'
>>> my list = ['my', 'list', a, b]
>>> my list2 = [[4,5,6,7], [3,4,5,6]]
```

选择列表元素

索引始于0

my list[list][itemOfList]

莽取보值的索引统计

参阅 Numpy 数组

子集

>>> my_list[1] >>> my_list[-3] 切片	选择索引1对应的值 选择倒数第3个索引对应的值
>>> my_list[1:3] >>> my_list[1:] >>> my_list[:3] >>> my_list[:]	选取索引1和2对应的值 选取索引0之后对应的值 选取索引3之前对应的值 复制列表
子集列表的列表 >>> my_list2[1][0]	mv_list[list][itemOfl ist]

>>> my list2[1][:2] (列表操作

```
>>> my list + my list
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']
>>> my list * 2
['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']
>>> my list2 > 4
```

列表方法

>> my liet indov(a)

>>>	my_fist.index(a)	孙 琳未但时然可见时
>>>	<pre>my_list.count(a)</pre>	某值出现的次数追加
>>>	<pre>my_list.append('!')</pre>	某值
>>>	<pre>my_list.remove('!')</pre>	移除某值
>>>	<pre>del(my_list[0:1])</pre>	删除某值
	<pre>my_list.reverse()</pre>	反转列表
>>>	<pre>my_list.extend('!')</pre>	添加某值
>>>	<pre>my_list.pop(-1)</pre>	移除某值
>>>	<pre>my_list.insert(0,'!')</pre>	插入某值
>>>	<pre>my_list.sort()</pre>	列表排序

字符串操作

索引始于0

```
>>> my string[3]
>>> my string[4:9]
```

字符串万法	
>>> my string.upper()	设为大写字符
>>> my string.lower()	设为小写字符
>>> my_string.count('w')	统计某字符出现的次数
>>> my_string.replace('e', 'i')	替换字符
>>> my_string.strip()	清除空格

Python库

导入库

- >>> import numpy
- >>> import numpy as np
- 导入指定功能
- >>> from math import pi

pandas 🖳 💥 🕍 数据分析

机器学习

NumPy * matplotlib 科学计算

二维视图

安装 Python

Python 首选开源数据科学平台

Anaconda 内置的免费IDE

创建包含代码、可视图 与文本的文档

Numpy 数组

```
>>>  my list = [1, 2, 3, 4]
>>> my array = np.array(my list)
>>> my 2darray = np.array([[1,2,3],[4,5,6]])
```

【选取 Numpy 数组的值

索引始于0

子集

```
>>> my array[1]
```

切片

```
>>> my array[0:2]
  array([1, 2])
```

二维 Numpy 数组的子集 >>> my 2darray[:,0]

array([1, 4])

选择索引1对应的值

选择索引0和1对应的值

my_2darray[rows, columns]

Numpy 数组运算

```
>>> my array > 3
 array([False, False, False, True], dtype=bool)
>>> my array * 2
  array([2, 4, 6, 8])
>>> my array + np.array([5, 6, 7, 8])
 array([6, 8, 10, 12])
```

Numpy 数组函数

>>> my_array.shape	获取数组形状
>>> np.append(other_array)	追加数据
>>> np.insert(my_array, 1, 5)	插入数据
>>> np.delete(my_array,[1])	删除数据
>>> np.mean(my_array)	平均值
>>> np.median(my_array)	中位数
>>> my_array.corrcoef()	相关系数
>>> np.std(my_array)	标准差

原文作者

