DESIGN

1. Authentication

- a) Overview:

- The system will verify the identity of each user attempting to access our system by implementing a login system. This will take the form of usernames and (salted and hashed) passwords stored on a local csv file.

- b) Intended implementation:

Complete

- c) Current implementation:

- Generating passwords:
 - The secrets module in python is used to generate a unique salt for each password, which is concatenated with the password to create a salted password
 - This salted password is then hashed using the SHA-256 hashing algorithm
- Storing passwords
 - Passwords are stored in their corresponding record within the userinfo.csv file, in the format username, userID, (salted and hashed) password, salt
- Authenticating passwords
 - When a user inputs a password, a salt is generated with the secrets module and concatenated with the user input to create a salted user input
 - The salted user input is then hashed using the SHA-256 hashing algorithm
 - The (salted and hashed) user input is compared with the (salted and hashed) stored password
 - If both values match, the user is authenticated and can access the system
- Password policies
 - When creating a password, user passwords are required to adhere to a set of length and complexity requirements (e.g. minimum length, number of special characters, numbers, capital letters, etc.)
- Verifying user email
 - When a user creates an account, they are prompted to enter their username
 - A 6-digit PIN is sent to their email and the user is prompted by the system to enter their PIN
 - If the entered PIN and the sent PIN match the email is verified and the user record is created
- Deleting records
 - Prompt user for password before deleting record by username
- Password recovery

- If a user forgets their password, they can enter a PIN automatically sent to their registered email to reset their password

2. Authorization

- a) Overview

- The system will determine and enforce the actions allowed for an authenticated user. It ensures users can only perform actions they're permitted to, such as viewing or uploading photos.

b) Intended implementation:

- File uploads:
 - We will check the file extension of each uploaded file and return an exception if the file is not a png or jpg
- Password recovery:
 - Users will be able to recover their passwords via a recovery email link

- c) Current implementation:

- Confidentiality tiers:
 - Tiers of confidentiality will be implemented to ensure that normal users do not have the same action privileges as administrators
 - Within each user record in userinfo.csv, a new column will be created titled "access level", defining the actions available to the user depending on their access level
 - The access level will be an integer representation of its sensitivity (e.g. 1: top secret, 2: confidential, etc.)
- File uploads:
 - Users can currently upload any file they wish to the network
 - For testing, we have only been sending jpg files

3. Audit

- a) Overview:

- The system will maintain detailed logs of system access and activities, such as login attempts, file uploads, and downloads.

- b) Intended implementation:

- Tracking user logins
 - Timestamps and user IDs will be recorded each time a user logs on/logs off the system (both successful and unsuccessful attempts)
- Tracking user actions on network
 - User activity will be tracked by labeling user actions with the following:
 - User ID
 - User action (e.g. send, receive, change password, etc.)

Action ID

- This will also assist in preventing replay attacks, in that an attacker cannot simply replay a message without the user seeing that the action ID is repeated/not in consecutive order with previous action IDs
- Storing audit information
 - Audit information will be encrypted and stored on a separate database
 - Encryption will be used to transfer and store audit data, as in 1b

- c) Current implementation:

- Tracking user logins
 - Timestamps and user IDs will be recorded each time a user logs on/logs off the system (both successful and unsuccessful attempts)
- Tracks when admin/superadmins create user/admins
- Only admin and superadmin can view the audit logs

4. Confidentiality

- a) Overview:

- The system will ensure that only the administrator and the user themselves should be able to access that user's login data and audit logs
- The system will ensure that the file's contents can only be read by the recipient.

- b) Intended implementation:

- Files stored on disk that have private information should be encrypted.

- c) Current implementation:

- Ensuring user privacy:
 - User cannot view, edit, delete, or replay messages sent across the network between other users (i.e. Mallory in A4)
- Every chunk of data is encrypted using TLS when being sent over the network.

5. Integrity

- a) Overview:

 The system will employ integrity checks to ensure that a file is not corrupted in transit or replaced with harmful content

- b) Current implementation

- TLS
 - Message Integrity Check: This method utilizes a MAC from the data and a secret key to confirm authenticity before transmission.
 - Encryption: Encrypts both the data and the MAC for secure transmission.
 - Verification at Receiver: Decrypts the data upon receipt and recalculates the MAC to ensure no changes occurred during transit.