# 1. Problem Statement

#### Background

Growing concerns with environmental issues have led to the consideration of alternatives to urban mobility. Among available options, electric vehicles (EV) have been considered in advantage in terms of sustainability as well as emission of pollutants. This work using Gorubi optimizer and K-means to optimize the EV charging station allocation in New York City.

At present, there are three levels of chargers in the EV market. As is shown in figure 1, the charging time, construction and labor costs are different according to the chargers' level. Through investigating, there are 361 charging stations, each charging station averagely has 1-3 chargers of different levels, most of them has 2 chargers and the level 2 charger is the most general. In addition, New York City has 6551 registered EV on the road.



Figure 1 The Number of Chargers in Each Station

Table 1 charger levels and their corresponding construction investment

| Level   | Charging Time  | Construction Cost | Labor Cost        |
|---------|----------------|-------------------|-------------------|
| Level 1 | 8-12 hours     | \$300-600         | \$1,000 - \$1,700 |
| Level 2 | 4-6 hours      | \$500-700         | \$1,200 - \$2,000 |
| Level 3 | 30 min for 80% | \$2,300-6000      | \$2,300 - \$6,000 |

#### Data Resources and data pre-processing

The following datasets are collected form the Electric Vehicle Station Locator Website (<a href="https://www.nyserda.ny.gov/All-Programs/Programs/Drive-Clean-Rebate">https://www.nyserda.ny.gov/All-Programs/Programs/Drive-Clean-Rebate</a>). And NYC Open Data Website (<a href="https://data.cityofnewyork.us/widgets/i8iw-xf4u">https://data.cityofnewyork.us/widgets/i8iw-xf4u</a>)

## 1. EV Users shapefile

As you can see in Table 2, I only have the number of EVs on the road in each zip code area. To get the locations of the EV users, I created random points within each zip code boundary according to the third column in ArcGIS software.

Table 2 Registered EVs in New York City

| Utility                     | ZIP Code | EVs on the Road |
|-----------------------------|----------|-----------------|
| Consolidated Edison Company | 10001    | 41              |
| Consolidated Edison Company | 10002    | 32              |
| Consolidated Edison Company | 10003    | 69              |
| Consolidated Edison Company | 10004    | 70              |
| Consolidated Edison Company | 10005    | 14              |
| Consolidated Edison Company | 10006    | 9               |
| Consolidated Edison Company | 10007    | 153             |

After this step, I got a shapefile and the geometry information of the EV users' position. As is shown in Table 3.

Table 3 the geometry information of the EV users

| geometry                                          | ev_regis_1                        | CTY_FIPS | COUNTY | STATE | AREA         | POPULATION | PO_NAME | ZIPCODE | CID | T_FID |
|---------------------------------------------------|-----------------------------------|----------|--------|-------|--------------|------------|---------|---------|-----|-------|
| POINT<br>(1042878.753199248<br>184593.5188203277) | Consolidated<br>Edison<br>Company | 081      | Queens | NY    | 2.269930e+07 | 18681.0    | Jamaica | 11436   | 0   | 0     |
| POINT<br>(1039875.386117198<br>187297.2242258743) | Consolidated<br>Edison<br>Company | 081      | Queens | NY    | 2.269930e+07 | 18681.0    | Jamaica | 11436   | 0   | 1     |
| POINT<br>(1040235.167471389<br>187980.9175596923) | Consolidated<br>Edison<br>Company | 081      | Queens | NY    | 2.269930e+07 | 18681.0    | Jamaica | 11436   | 0   | 2     |

## 2. Zip Code Boundary of NYC shapefile

This is a shapefile dataset, I can draw the map of NYC zip code boundary using GeoPandas.

Table 4 Zip code boundary of NYC

|   | ZIPCODE | PO_NAME  | POPULATION | AREA         | STATE | COUNTY | CTY_FIPS | OID_ | Utility                           | EVs_on_the | zipcode_1 |
|---|---------|----------|------------|--------------|-------|--------|----------|------|-----------------------------------|------------|-----------|
| 0 | 11436   | Jamaica  | 18681.0    | 2.269930e+07 | NY    | Queens | 081      | 352  | Consolidated<br>Edison<br>Company | 3          | 11436     |
| 1 | 11213   | Brooklyn | 62426.0    | 2.963100e+07 | NY    | Kings  | 047      | 277  | Consolidated<br>Edison<br>Company | 8          | 11213     |
| 2 | 11212   | Brooklyn | 83866.0    | 4.197210e+07 | NY    | Kings  | 047      | 276  | Consolidated<br>Edison            | 10         | 11212     |

## 3. Present Charging Stations shapefile

Table 5 NYC charging stations Map

| y | geometr                                        | Service_ab | number_of | Super_chag | F_of_level | Fof_Leve | Location                     | Longitude  | Latitude  | ZIP   | ity |
|---|------------------------------------------------|------------|-----------|------------|------------|----------|------------------------------|------------|-----------|-------|-----|
| 5 | POIN<br>(987049.688953701<br>211507.9295838565 | 16.0       | 1.0       | None       | 1.0        | 0.0      | (40.7472165,<br>-73.9898959) | -73.989896 | 40.747217 | 10001 | ork |
| В | POIN<br>(987044.330681863<br>212080.8412137982 | 32.0       | 2.0       | None       | 2.0        | 0.0      | (40.748789,<br>-73.989915)   | -73.989915 | 40.748789 | 10001 | ork |

## 2. Optimization Model

#### • Assumption:

- 1. Each station can only install one specific level of charger, and each charger can only serve one user only.
- 2. The user can only go to the assigned station.
- 3. Each station would install 2 chargers.

#### Python Packages

Gorubi

## • Optimizer:

Minimize  $C = \sum_{j} \sum_{m} F_{m} X_{jm} + \sum_{i} \sum_{j} Z_{ij} d_{ij}$  (minimize the total planning cost, including the initial construction investment of charging stations and the users' charging cost in the later use.) Constrain:

- a)  $\sum_{j} Z_{ij} = 1$ ,  $\forall i \in I$  (the user in demand point i can only go to one appointed charging station at one time)
- b)  $Z_{ij} \leq X_{jm}$  (prerequisite conditions to make a candidate point into function)
- c)  $\sum_i Z_{ij} \leq \sum_m A_m X_{jm}$ ,  $\forall j \in J$  (the charging demand quantity at one station must not exceed its maximum service ability.)
- d)  $\sum_{m} X_{jm} \le 1$ ,  $\forall j \in J$  (a candidate point must be constructed as only one of the levels.)
- e)  $\sum_{i} \sum_{m} X_{im} = P$  (the constraint of total amount of charging stations to be constructed)
- f)  $X_{jm} \in \{0,1\}, \forall j \in J, m \in M$ ;  $Z_{ij} \in \{0,1\}, \forall i \in I, j \in J$  (give the feasible zones for the decision-making variables.)

#### Where:

- 1) I&i: the set and index of demand point.
- 2) J&j: the set and index of charging stations.
- 3) m: the level of the station =  $\{1,2,3\}$ .
- 4) Fm: the initial install cost of a charger in level m.
- 5) Am: the serving ability of a station in level m at candidate point j= the number of serving EV daily.
- 6) dij: the distance from the demand point I to the candidate point j.
- 7) P: the quantity of station to be constructed.
- 8)  $Xjm = \{0,1\}$ : whether j is chosen as a level m station.
- 9)  $Zij = \{0,1\}$ : whether user at demand point i receives service at candidate point j.

Table 5. charger levels and their corresponding construction investment

| Level m | Am:Service ability /(vehicles/day) | Construction Cost (Fm) |
|---------|------------------------------------|------------------------|
| Level 1 | 8*2=16                             | \$300*2=600            |
| Level 2 | 16*2=32                            | \$500*2=1000           |
| Level 3 | 32*2=64                            | \$2,300*2=4600         |

## 3. Results



As is shown in above figure, the red points are the suggested 50 charging stations. Among them, 2 are chose to be constructed as level 2 stations, and 2 stations are level 3, the left will be level 1 charging stations. This output may have some unreasonable things, for example, in the yellow area, there are many EV users, but only one level 1 charging station. In addition, in the Green area, there are two charging station that are very close, but the density of users is lower than most position.

# 4. Limitation and Next Step

Because the limitation of my computer's memory, I have to narrow my dataset. I randomly choose a subset of the present users' position dataset, which may lead to the inaccuracy of my output. In addition, the level 2 charging stations is most universal in the real world, but in my model, level 1 charging station has a primacy. This is probably because in my model, I also optimized the construction cost other than the locations of charging stations, and level 1 charging station has the lowest cost.

Next step, I want to optimize my model based on the population density, zoning and the use of home charging. In this model, I did not take into account the use of household chargers, nor did I consider whether the construction position was allowed in the actual situation and whether it met the requirements for the construction of charging stations.