

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 14

Характеристические функции

Характеристическая функция случайной величины ξ :

$$g_{\xi}(t) = Me^{it\xi} = M(\cos t\xi) + iM(\sin t\xi).$$

Если ξ — дискретная случайная величина и $p_k = P(\xi = x_k)$,

το
$$g_{\xi}(t) = \sum_{k} e^{itx_{k}} p_{k} = \sum_{k} \cos(tx_{k}) p_{k} + i \sum_{k} \sin(tx_{k}) p_{k}$$
.

Если ξ — непрерывная случайная величина с плотностью

$$f_{\xi}(x)$$
, to $g_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx$.

Свойства $g_{\xi}(t)$:

1)
$$|g_{\xi}(t)| \le 1$$
 при $t \in (-\infty, +\infty)$;

$$g_{\xi}(0)=1; \quad g_{\xi}(-t)=\overline{g_{\xi}(t)}$$

2)
$$\eta = k\xi + b \Rightarrow g_{\eta}(t) = e^{itb}g_{\xi}(kt)$$
;

3)
$$\xi_1$$
 и ξ_2 — независимы $\Longrightarrow g_{\xi_1 + \xi_2}(t) = g_{\xi_1}(t)g_{\xi_2}(t)$;

4)
$$M\xi = -ig_{\xi'}(0); \quad D\xi = (g_{\xi'}(0))^2 - g_{\xi''}(0);$$

$$f_{\xi}(x)$$
, to $f_{\xi}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} g_{\xi}(t) dt$.

Равномерное непрерывное распределение на (a,b)

ф — равномерно распределена на (a,b)

$$g_{\xi}(x) = \int_{a}^{b} \frac{1}{b-a} e^{itx} dx = \frac{e^{itb} - e^{ita}}{it(b-a)}.$$

Показательное распределение с параметром $\lambda > 0$

$$f_{\xi}(x) = \begin{cases} 0, x < 0 \\ \lambda \cdot e^{-\lambda x}, x \ge 0 \end{cases}$$

$$g_{\xi}(t) = \frac{\lambda}{-it + \lambda} = \frac{1}{1 - ibt} = (1 - ibt)^{-1}$$
 где $b = \frac{1}{\lambda} = M\xi$.

Нормальное распределение N (a , σ 2) :

рассмотрим
$$\xi^* = \frac{\xi - a}{\sigma}$$
, $\xi = \sigma \cdot \xi^* + a$,

 $\boldsymbol{\xi}^*$ имеет нормальное распределение N (0 ,1) ,

$$g_{\xi^*}(t) = e^{-\frac{t^2}{2}},$$

$$g_{\zeta}(t) = e^{ita} g_{\zeta^*}(\sigma \cdot t) = e^{iat - \frac{\sigma^2 t^2}{2}}$$

Гамма-распределение $\gamma(\alpha,\lambda)$:

$$f_{\xi}(x) = \begin{cases} 0, x \le 0 \\ \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x}, x > 0 \end{cases}$$

$$f_{\xi}(x)$$
 — оригинал,

$$f_{\xi}(x) \div \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha)}{(p+\lambda)^{\alpha}} = \left(\frac{\lambda}{p+\lambda}\right)^{\alpha} = \left(1+bp\right)^{-\alpha}, \quad b=\frac{1}{\lambda}.$$

Распределение
$$\chi^2(n) = \gamma(\frac{n}{2}, \frac{1}{2})$$
:

$$f_{\xi}(x) = \begin{cases} 0, x \le 0 \\ \frac{x^{\frac{n}{2} - 1}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} e^{-\frac{x}{2}}, x > 0 \end{cases}$$

$$g_{\xi}(t) = (1-2it)^{-n/2}$$