# Report on Fourier-Mukai

Note Title 4/8/2010

## Ref:

- 1. S. Mukai. Duality Between D(X) And D( $\hat{X}$ ) With It's Application To Picard Sheaves
- 2. D. Huybrechts. Fourier-Mukai Transforms in Algebraic Geometry.
- 3. D. Mumford. Abelian Varieties

#### §1. Generalities

Let X.Y be smooth projective varieties and denote:

Def. Let  $P \in D^b(X \times Y)$ . The induced Fourier-Mukai transform is the functor  $J_{X \to Y, p} \colon D^b(X) \longrightarrow D^b(Y)$   $E \longmapsto R\pi_{Y *}(P \stackrel{\&}{\otimes} \pi_{X}^{*}E)$ 

### Examples:

(1). If 
$$f: X \longrightarrow Y$$
 is a morphism, and consider  $P = O_{\mathcal{I}_{\mathcal{I}}} \in D^b(X \times Y)$ . Then  $J_{X \to Y, P}(E) = R\pi_{Y \times}(O_{\mathcal{I}_{\mathcal{I}}} \stackrel{!}{\otimes} \pi_{X}^{*}E)$ 

$$= R\pi_{Y \times}(Ri_{X} O_{X} \stackrel{!}{\otimes} \pi_{X}^{*}E) \qquad i: X \stackrel{\text{def}}{=} \Gamma_{\mathcal{I}_{\mathcal{I}}} \subseteq X \times Y$$

$$= R\pi_{Y \times}(Ri_{X} (O_{X} \stackrel{!}{\otimes} Li^{*} \circ \pi_{X}^{*}E)) \qquad (\text{projection formula})$$

$$= Rf_{X}(E) \qquad (\pi_{Y} \circ i = f, \pi_{X} \circ i = id_{X})$$

$$J_{Y \to X, P}(F) = R\pi_{X \times}(O_{\mathcal{I}_{\mathcal{I}}} \stackrel{!}{\otimes} \pi_{Y}^{*}F)$$

$$= R\pi_{X \times}(Ri_{X} O_{X} \stackrel{!}{\otimes} \pi_{Y}^{*}F)$$

$$= R\pi_{X \times}(Ri_{X} (O_{X} \stackrel{!}{\otimes} Li^{*}(\pi_{Y}^{*}F))$$

$$= Lf^{*}F.$$

- (2). Any line bundle L on X defines  $E \longrightarrow E \otimes L$  an automorphism of  $D^b(X)$ . The corresponds to  $J_{X \to X,P}$ , where  $P = \Delta_* L \in Gh(X \times X)$ .
- (3). The shift functor  $T: D^b(X) \to D^b(X)$  is given by the FM kernel  $O_{A}$ [1].
- (4). If  $P \in Gh(X \times Y)$  is flat over X,  $x \in X$  a closed point:  $J_{X \to Y} \cdot P(x_1 \times Y) \cong P(x_2 \times Y) \in Gh(Y)$ .

Composition of FMT's.

Let X, Y. Z be smooth projective varieties.  $P \in D^b(X \times Y)$ ,  $Q \in D^b(Y \times Z)$ Then  $R \in D^b(X \times Z)$  is defined to be

$$\hat{R} = \pi_{XZ*} (\pi_{XY}^* \hat{P} \otimes \pi_{YZ}^* \mathcal{Q})$$

Prop 1. (Mukai). The composition

is isomorphic to the FMT  $J_R$ .

Pf:



We have:

$$J_{X \to Z} \cdot R(E) = P_{Z*} (R \otimes P_{*}^{*}E)$$

$$= P_{Z*} (\pi_{XZ*} (\pi_{XY}^{*}P \otimes \pi_{Z}^{*}Q) \otimes P_{*}^{*}E)$$

$$= P_{Z*} (\pi_{XZ*} (\pi_{XY}^{*}P \otimes \pi_{Z}^{*}Q \otimes \pi_{Z}^{*}E)) \text{ (projection formula)}$$

$$= \pi_{Z*} (\pi_{XY}^{*}P \otimes \pi_{X}^{*} \circ r_{Z}^{*}E) \otimes \pi_{Z}^{*}Q)$$

$$= \pi_{Z*} (\pi_{XY}^{*}(P \otimes r_{Z}^{*}E) \otimes \pi_{Z}^{*}Q)$$

$$= q_{Z*} \pi_{YZ*} ((\pi_{XY}^{*}(P \otimes r_{Z}^{*}E) \otimes \pi_{Z}^{*}Q)$$

$$= q_{Z*} ((\pi_{YZ*} (\pi_{XY}^{*}(P \otimes r_{Z}^{*}E)) \otimes Q) \text{ (projection formula)}$$

$$= q_{Z*} (q_{Y}^{*} (r_{Y*}(P \otimes r_{Z}^{*}E)) \otimes Q) \text{ (flat base change)}$$

$$= J_{Y \to Z} \cdot Q \circ J_{X \to Y} \cdot P(E).$$

## §2. Application I: Abelian Varieties

Let X be an abelian variety of dim g ,  $\hat{X}$  its dual .

P: the normalized Poincaré bundle on XxX, normalized meaning that Plxxô & Ploxx are trivial.

 $J \triangleq J \hat{x} \rightarrow x, \rho, \quad \hat{J} = J \times \rightarrow \hat{x}, \rho.$ 

Thm 1. (Mukai) There are isomorphism of functors:  $RJ \cdot R\hat{J} \cong (-1x)^* \text{ [-g]}$   $R\hat{J} \cdot RJ \cong (-1x)^* \text{ [-g]}$ 

In other words. RJ gives an equivalence of  $D^b(x)$  and  $D^b(\hat{x})$ , whose quasi-inverse is given by (-12)\* RĴ[q].

Pf: It suffices to show the first isomorphism, since  $\hat{\hat{x}} \cong x$ . By Prop 1.

where  $H = R \pi_{12} * (R \pi_{13}^* P) \otimes R \pi_{23}^* P) \in D^b(X \times X)$ , and  $\pi_{12} : X \times X \times \hat{X} \longrightarrow X \times X$ . We are reduced to calculating H.

Thm. of cube 
$$\Longrightarrow P_{13}^*P \otimes P_{23}^*P \cong (m \times 1)^*P$$
. Thus  $X \times X \times \hat{X} \xrightarrow{\pi_{12}} X \times X \times X \times \hat{X} \xrightarrow{\pi_{12}} X \times \hat{X} \times \hat{X} \times \hat{X} \xrightarrow{\pi_{12}} X \times \hat{X} \times \hat{X} \xrightarrow{\pi_{12}} X \times \hat{X} \times \hat{X} \xrightarrow{\pi_{12}} X \times \hat{X} \times \hat{X} \times \hat{X} \xrightarrow{\pi_{12}} \hat{X} \times \hat{X}$ 

To this point, we quote the following theorem, whose proof is given below:

Thm. 2. (Mumford).  $R\pi_{x*}P \cong k(0)[-q]$ .

It follows from the diagram:

$$\begin{array}{ccc}
\Gamma_i & \stackrel{i}{\longleftrightarrow} X \times X \\
\downarrow P & & \downarrow m \\
0 & \stackrel{j}{\longleftrightarrow} X
\end{array}$$

 $H = m^*(R\pi \times P) = m^*(k(0) E-g]) = O_{F} E-g]$ . The thm. follows from our example (i).  Proof of Mumford's theorem.

Lemma 1. If  $\angle \in Pic^{\circ}(X)$  and  $\angle$  is nontrivial, then  $H^{R}(X, \mathcal{L}) = 0, \forall R \in \mathbb{Z}$ 

Pf: Let  $L \in Pic^{\circ}(X)$ , and  $L \not\equiv Ox$ ,  $S \in H^{\circ}(X, L) \Rightarrow$  $0 \times \xrightarrow{s} 1$ 

 $C_i(L) = 0 \implies \text{div}(s) = \phi \implies O_X \xrightarrow{\cong} L$ , contradiction.

Inductively, suppose we have shown that  $H^{k}(X,L) = 0$ ,  $\forall k < n$ . Then

$$\underset{id}{\underbrace{\times}} X \xrightarrow{(1.0)} X \times X \xrightarrow{m} X$$

H<sup>n</sup>(X,L)  $\stackrel{\text{(1.0)*}}{\longleftarrow}$  H<sup>n</sup>(X×X, m\*L)  $\stackrel{\text{m*}}{\longleftarrow}$  H<sup>n</sup>(X,L)  $\stackrel{\text{SII}}{\bigcirc}$  (See-Saw) H<sup>n</sup>(X×X,  $\pi_1*L \otimes \pi_2*L$ )  $\stackrel{\text{SII}}{\bigcirc}$  (Kunneth)  $\bigoplus_{R=0}^{n}$  H<sup>R</sup>(X,L)  $\otimes$  H<sup>n-k</sup>(X,L) II  $(H^{\circ}(X,L)=0$  and induction hypothesis)

$$\Rightarrow$$
  $H^{n}(X, L) = 0.$ 

Lemma 2.  $R_{\pi *}(P) \in D^{co,g_1}(X)$  has cohomology supported at o. Pf: That  $R_{\pi \times *}(P) \in D^{\varpi,g^{3}}(X)$ , follows, from  $\times \times \hat{X} \xrightarrow{\pi_{X}} \times$ 

being smooth of relative dimension g.

Next.  $\forall x \in X$  a closed point.

$$\begin{array}{ccc}
 & \times & \times & \xrightarrow{j} & \times & \times \\
 & \downarrow & & \downarrow & & \downarrow \\
 & \times & & \downarrow & & \times \\
 & \times & & \downarrow & & \times
\end{array}$$

The def. of Poincaré line bundle says that  $(P|_{xx}) \cong P_x \in Pic^{\circ}(\hat{X})$  is non-trivial iff x=0  $\Rightarrow$  if  $x\neq 0$  $Li^*R\pi_{x*}(\hat{P}) = R\Gamma(Lj^*\hat{P}) = R\Gamma(P_x) = 0$ 

By semi-continuity,  $R\pi_{x*}(\beta) \in D_{Gh}^*(X)$  has cohomology only supported at o. The lemma follows.

Lemma 3.

$$\begin{array}{ccc}
\circ \times \hat{X} & \xrightarrow{j} X \times \hat{X} \\
\downarrow & & \downarrow \pi_{X} \\
\circ & \xrightarrow{i} & X
\end{array}$$

Then

$$Li^* R \pi_{x*}(P) = R\Gamma(Lj^*P)$$

$$= R\Gamma(O\hat{x})$$

$$\cong \bigoplus H^i(\hat{X}, O\hat{x}) [-i]$$

Moreover,  $H^{n}(\hat{X}, \mathcal{O}_{\hat{X}}) \cong H^{n}(\hat{X}, \omega_{\hat{X}})^{*} \cong \mathbb{R}$ .

Since  $R\pi_{x*}(P)$  is supported only at o, to see what it is, it suffices to make the flat base change:

Spec 
$$O_{x,o} \times \hat{X} \xrightarrow{j} X \times \hat{X}$$

$$\downarrow P \qquad \qquad \downarrow \pi_{x}$$

$$Spec O_{x,o} \xrightarrow{i} X$$

$$\Rightarrow i^* R \pi_{x*} \hat{P} = R P_{*}(j^* \hat{P})$$

$$\cong K^{\circ} : (K^{\circ} \to K' \to \cdots \to K^{3})$$

where  $K^{\bullet}$  is a complex of free  $0\hat{x}.o$ -modules. By lemma 1,  $K^{\bullet}$  has cohomology Artinian 0x.o-modules supported at o.

Lemma 4. (Mumford) Let O be a regular local ring of dimension g, Let  $K^{\circ}: o \to K^{\circ} \to K' \to \cdots \to K^{g} \to o$  a complex of free modules over O. If  $H^{i}(K^{\circ})$  are Artinian modules,

we have  $H^i(K^*) = 0$ ,  $0 \le i < g$ .

Pf: [Mumford, §13. P118]

Nothing to prove for g=0

Choose  $x \in m$  belonging to a system of parameters so that O/xOis regular local of dim  $g^{-1}$ .  $\Rightarrow 0 \rightarrow K^{\bullet} \xrightarrow{x} K^{\bullet} \rightarrow \overline{K}^{\bullet} \rightarrow 0$ 

$$\Rightarrow \circ \to \mathsf{K}_{\bullet} \xrightarrow{\mathsf{X}} \mathsf{K}_{\bullet} \to \underline{\mathsf{K}}_{\bullet} \to \mathsf{O}$$

$$\Rightarrow \cdots \to H^{i-1}(\overline{K}^*) \to H^i(K^*) \xrightarrow{\alpha} H^i(K^*) \to H^i(\overline{K}^*) \to \cdots$$

$$\Rightarrow$$
  $H^{i}(K^{\circ}) \xrightarrow{\alpha} H^{i}(K^{\circ})$  is injective for  $0 \le i - i < g - i$ , by induction

$$\Rightarrow$$
 H<sup>i</sup>(K°) = 0 0 ≤ i < 9.

Pf of Thm 2.

By lemma 4, we know that

$$K_{\bullet} \cong H_{\theta}(K_{\bullet}) \text{ $\mathbb{E}$-$ $\theta$ $\mathbb{D}_{\rho}(\mathbb{Q})$}$$

To calculate  $H^{9}(K^{\bullet})$ , we use

$$H^{9}(K^{\bullet}) \otimes_{\mathcal{O}} k(0) \cong H^{9}(K^{\bullet} \otimes k(0))$$
 (Since  $R^{9^{\bullet}} \pi_{\bullet} P = 0$ )
$$\cong H^{9}(P|_{ox} \hat{x})$$

$$\cong H^{9}(\mathcal{O}\hat{x})$$

$$\cong k$$

 $\Rightarrow$   $0 \rightarrow K^{\circ} \rightarrow \cdots \rightarrow K^{\circ} \rightarrow k \rightarrow 0$  has cohomology Artinian and only supported at deg g. Thus  $K^{g}/Im K^{g-1} \longrightarrow k$  and when reduced mod mo, it's an isomorphism. By Nakayama's lemma.

$$K^{9}/ImK^{9-1} \cong k$$

and thus  $K^* \to k_{E-g_{1}}$  is an isomorphism in  $D^{b}(O)$ . The thm. follows 

Cor. 1. 
$$H^{i}(X \times \hat{X}, P) = \begin{cases} k, & i = g \\ 0, & \text{otherwise.} \end{cases}$$

Cor. 2.  $H'(X,O_x) \cong \Lambda'k$ Pf: Since any free resolution in Mod(O) of k are homotopic,  $K' \cong Koszul' \in D^b(O)$ 

where  $Koszul^* = \bigotimes_{i=1}^{9} (\bigcirc \xrightarrow{x_i} \bigcirc)$  ( $x_i \in m$ , i=1,...,g form a system of local coordinates). Thus by lemma 3:

> $R\Gamma(O\hat{x}) = (Koszul^*) \otimes R$  $\cong \bigotimes_{i=1}^{g} (k \xrightarrow{\circ} k)$

The result follows.

Easy consequences:

Def. We say that weak index thm. (WIT) holds for  $F \in Coh(X)$  if RiJ(F)=0 for all but one i. This i. denoted i.(F) is called the index of F and the coherent sheaf  $R^{i(F)}\hat{J}(F)$  on  $\hat{X}$  is denoted  $\hat{F}$  & called the Fourier transform of F.

We say that index thm (IT) holds for F if  $H^{i}(X, F \otimes L) = 0$ for all  $L \in Pic^{\circ}(X)$  and all but one i.

Rmk: Base change thm  $\Rightarrow$  (IT  $\Rightarrow$  WIT). The pf of thm says that Ox satisfies WIT but not IT.

Cor. If WIT holds for F, then so does for  $\hat{F}$  and  $i(\hat{F}) = g - i(F)$ 

Cor. Assume that WIT holds for F&G. Then  $\text{Ext}_{o_{\mathbf{x}}}^{i_{\mathbf{x}}}(\mathbf{F},\mathbf{G}) \cong \text{Ext}_{o_{\mathbf{x}}}^{i_{\mathbf{x}}\mu}(\hat{\mathbf{F}},\hat{\mathbf{G}})$ 

 $\forall i$ , where  $\mu = i(F) - i(G)$  In particular

 $\text{Extox}(F,F) \cong \text{Extox}(\hat{F},\hat{F})$ .

Pf. Extox(F,G) = Hompox, (F, G[i])

= Homores (RJx-x(F), RJx-x(G)[i])

=  $Hom_{\Re}(\hat{F}[-i(F)], \hat{G}[-i(G)+i])$ =  $Ext_{\Re}^{i(F)-i(G)+i}(\hat{F}, \hat{G})$ .

Example: Let  $k(\hat{x})$  denote the skyscraper sheaf supported by  $\hat{x} \in \hat{X}$ . Since  $H^i(X, k(\hat{x}) \otimes L) = 0$ ,  $\forall i > 0$ . Le Pic°( $\hat{X}$ ). It holds for  $k(\hat{x})$ ,  $i(k(\hat{x})) = 0$  &  $k(\hat{x}) \cong P\hat{x} \implies \text{WIT holds for } P\hat{x}$ ,  $i(P\hat{x}) = g$  &  $\hat{P}\hat{x}$  =  $k(-\hat{x})$ . But IT doesn't hold for  $P\hat{x}$ .

Cor. Assume WIT holds for a coherent sheaf F on X. Then we have:

$$H^{i}(X, F \otimes P_{\hat{x}}) \cong \operatorname{Ext}_{Ox}^{g-i\ell F_{j+1}}(R(\hat{x}), \hat{F})$$

$$\operatorname{Ext}_{Ox}^{i}(R(x), F) \cong H^{i-i\ell F_{j}}(\hat{X}, \hat{F} \otimes P_{-x})$$

Pf: Pa locally free ⇒

$$H^{i}(X,F\otimes P_{\hat{x}}) \cong \operatorname{Ext}^{i}(P_{-\hat{x}},F)$$

$$\cong \operatorname{Ext}^{i+i(P_{-\hat{x}})-i(F)}(\widehat{P_{-\hat{x}}},\widehat{F})$$

$$\cong \operatorname{Ext}^{i+g-i(F)}(\operatorname{R(\hat{x})},\widehat{F})$$

Example: A vector bundle U on X is called unipotent if it has a filtration:

$$0=U_0\subseteq U_1\subseteq \cdots \subseteq U_{n-1}\subseteq U_n=U$$

s.t.  $U_i/U_{i-1} \cong O_X$ ,  $i=1, \cdots, n$ . Since  $R^iJ_{X\to \hat{X}}$  is exact in the middle, WIT holds for U, i(U)=g and the Sheaf  $\hat{U}$  is supported at  $\hat{O} \in \hat{X}$ . Hence:

 $\mathbb{R}^9 J_{x \to \hat{x}} : ((Unipotent vector bundles)) <math>\simeq ((Skyscraper sheaves at \hat{o}))$ 

#### $SL(2,\mathbb{Z})$ - action.

The following beautiful result is due to Mukai:

Thm 3 (Mukai) Let (X,L) be a principally polarized abelian variety, with the isomorphism:

$$\varphi_{L} \colon X \xrightarrow{\cong} \hat{X}$$

$$\not x \longmapsto T_{x}^{*} L \otimes L^{-1}.$$

Let  $J: D^b(X) \longrightarrow D^b(\hat{X}) \xrightarrow{\phi_*^*} D^b(X)$  be the composition. Then:

(ii). 
$$(L \otimes (J(-1))^3 = L-gJ$$

i.e. modulo dimension shifting, this defines an  $SL(2,\mathbb{Z})$ -action on  $\mathbb{D}^b(X)$ , by assigning:

$$\begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \longmapsto \otimes \bot$$