МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ РАДІОЕЛЕКТРОНІКИ

КАФЕДРА СИСТЕМОТЕХНІКИ

МЕТОДИЧНІ ВКАЗІВКИ

до практичного заняття з дисципліни

«ТЕОРІЯ ЙМОВІРНОСТЕЙ, ЙМОВІРНІСНІ ПРОЦЕСИ І МАТЕМАТИЧНА СТАТИСТИКА"

за темою

"Теореми додавання та множення ймовірностей. Формула повної ймовірності. Формула Байеса"

для студентів денної та заочної форм навчання спеціальності 122 «Комп'ютерні науки»

Методичні вказівки до практичного заняття з дисципліни «Теорія ймовірностей, ймовірнісні процеси і математична статистика» за темою "Теореми додавання та множення ймовірностей. Формула повної ймовірності. Формула Байеса" для студентів денної та заочної форм навчання спеціальності 122 «Комп'ютерні науки»/Упоряд.: І.В. Гребеннік, Г.Є. Безугла, Т.Є. Романова, С.Б. Шеховцов.— Харків: ХНУРЕ, 2023—35с.

Упорядники: І.В. Гребеннік

Г.Є. Безугла Т.Є. Романова С.Б. Шеховцов

Зміст

ймовірності. Формула Байеса	Тема 2. Теореми додавання та множення ймовірностей. Формула	повної
2.2. Умовна ймовірність події 2.3. Теорема множення ймовірностей 2.4. Теорема множення ймовірностей незалежних подій 2.5. Ймовірність появи хоча б однієї події 2.6. Теорема додавання ймовірностей сумісних подій 2.7. Формула повної ймовірності 2.8. Формула Байеса Питання для самоперевірки Література	ймовірності. Формула Байеса	4
2.3. Теорема множення ймовірностей	2.1. Теорема додавання ймовірностей несумісних подій	4
2.3. Теорема множення ймовірностей	2.2. Умовна ймовірність події	5
2.5. Ймовірність появи хоча б однієї події	-	
2.5. Ймовірність появи хоча б однієї події	2.4. Теорема множення ймовірностей незалежних подій	7
2.6. Теорема додавання ймовірностей сумісних подій 2.7. Формула повної ймовірності 2.8. Формула Байеса Питання для самоперевірки Література	., *	
2.7. Формула повної ймовірності 2.8. Формула Байеса Питання для самоперевірки Література		
2.8. Формула Байеса	* *	
Питання для самоперевірки		
Література		
<u> </u>		
Варіанти індивідуальних розрахункових завдань	Варіанти індивідуальних розрахункових завдань	

"Теорія ймовірностей, ймовірнісні процеси і математична статистика"

Тема 2. Теореми додавання та множення ймовірностей. Формула повної ймовірності. Формула Байеса

Ціль заняття: обчислення ймовірностей подій з використанням теорем додавання та множення ймовірностей.

Рекомендована література: [1-7].

Завдання практичного заняття

- 1. Вивчити дії над подіями, методи розв'язання задач із застосуванням теорем додавання та множення ймовірностей, формули повної ймовірності, формули Байеса.
 - 2. Розв'язати задачі практичного заняття.
- 3. Оформити звіт по практичному заняттю (титульний лист, основні визначення, формули, теореми, розв'язання задач заданого варіанта)

2.1. Теорема додавання ймовірностей несумісних подій

Теорема. Ймовірність появи однієї із двох несумісних подій дорівнює сумі ймовірностей цих подій:

$$P(A+B) = P(A) + P(B)$$
.

Доведення. Нехай n — загальне число елементарних результатів випробування; m — число елементарних результатів, що сприяють події A; k — події B. Тоді P(A) = m/n, P(B) = k/n.

Оскільки події A і B несумісні, те їхній сумі сприяють (m+k) елементарних подій. Отже

$$P(A+B) = (m+k)/n = m/n + k/n = P(A) + P(B).$$

Теорема додавання справедлива для будь-якого кінцевого числа попарно несумісних подій, тобто

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n).$$

Наслідок 1. Сума ймовірностей подій, що утворюють повну групу, дорівнює одиниці.

Нехай події A_1 , A_2 ,..., A_n утворять повну групу подій. У силу того, що в результаті випробування обов'язково відбудеться хоча б одна з подій A, подія $A_1+A_2+...+A_n$ є достовірною, а її ймовірність дорівнює 1. З іншої сторони, події A попарно несумісні. Отже

$$P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n) = 1.$$

Наслідок 2. Сума ймовірностей протилежних подій дорівнює одиниці

$$P(A) + P(\overline{A}) = 1$$
.

Оскільки протилежні події утворять повну групу, то дане твердження безпосередньо витікає з наслідку 1.

Приклад. У кошику 30 куль однакового розміру: 10 білих, 4 жовтих і 16 синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.

Pозв'язання. Розглянемо події A, B, C — витяг білої, жовтої та синьої кулі, відповідно.

Подію \overline{C} – витяг не синьої кулі можна представити у вигляді суми подій $\overline{C} = A + B$. Оскільки події A, B – несумісні, то ймовірність витягу не синьої кулі знайдемо по теоремі додавання ймовірностей несумісних подій:

$$P(\overline{C}) = P(A+B) = P(A) + P(B) = \frac{10}{30} + \frac{4}{30} = \frac{14}{30} = \frac{7}{15} = 0,467.$$

2.2. Умовна ймовірність події

Якщо ймовірність подій визначається при здійсненні деякої сукупності умов, при яких ця подія може відбутися без яких-небудь додаткових обмежень, то таку ймовірність називають *безумовною*. Якщо ж накладають ще додаткові обмеження, то ймовірність події називають *умовною*.

Ймовірність події B, знайдена в припущенні, що подія A уже відбулася, називається умовною ймовірністю події B щодо події A і позначається через $P_A(B)$ або $P(B \mid A)$.

Приклад. У кошику 30 куль однакового розміру: 10 білих, 4 жовтих і 16 синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута також біла куля.

Pозв'язання. Розглянемо події: A — витяг першої білої кулі, B — витяг другої білої кулі. Оскільки витягнута куля в кошик не повертається, то з 29 куль, що залишилися, буде 9 білих, тобто після появи події A ймовірність появи другою білої кулі визначається як умовна ймовірність події B щодо події A, тобто:

$$P_A(B) = \frac{9}{29} = 0.31.$$

Знайдемо формулу для обчислення умовної ймовірності $P_A(B)$.

Нехай із загального числа n рівноможливих і несумісних елементарних подій випробування події A сприяють m випадків, події B-k випадків, а спільній появі подій A і B, тобто події AB-l випадків $l \le m, l \le k$ (рис. 2.1).

Рис.2.1

Після того, як подія A відбулася, число всіх рівноможливих і несумісних елементарних результатів випробування скоротилося з n до m, а число випадків, що сприяють події B з k до l. Тому умовна ймовірність дорівнює

$$P_A(B) = \frac{l}{m} = \frac{l/n}{m/n} = \frac{P(AB)}{P(A)}.$$

Аналогічно

$$P_B(A) = \frac{P(AB)}{P(B)}.$$

2.3. Теорема множення ймовірностей

Теорема. Ймовірність спільного настання двох подій дорівнює добутку ймовірності однієї з них на умовну ймовірність іншої, обчислену в припущенні, що перша подія вже відбулася, тобто

$$P(AB) = P(A) \cdot P_A(B)$$
 and $P(AB) = P(B) \cdot P_B(A)$.

Доведення. Нехай n- загальне число елементарних результатів випробування, з яких m сприяють події A. У свою чергу із цих m результатів k сприяють події B. Іншими словами: $P(A) = \frac{m}{n}, \ P_A(B) = \frac{k}{m}$. Спільній появі подій A і B, сприяють k результатів з n, тобто $P(AB) = \frac{k}{n}$.

Але
$$P(AB) = \frac{k}{n} = \frac{m}{n} \cdot \frac{k}{m} = P(A)P_A(B)$$
, що й було потрібно довести.

Для обчислення спільного настання більш ніж двох подій використовують аналогічну формулу.

Приклад. У кошику 30 куль однакового розміру: 10 білих, 4 жовтих і 16 синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що буде витягнуто дві білі кулі.

Pозв'язання. Розглянемо події: A — витяг першої білої кулі, B — витяг другої білої кулі. Очевидно, що $P(A) = \frac{10}{30}$. Оскільки після настання події A загальне число куль у кошику та число білих серед них зменшилося на одну кулю в порівнянні з початковим набором куль, то $P_A(B) = \frac{9}{29}$.

Ймовірність витягу двох білих куль знайдемо по теоремі множення ймовірностей:

$$P(AB) = P(A) \cdot P_A(B) = \frac{10}{30} \cdot \frac{9}{29} = \frac{3}{29} = 0,103.$$

2.4. Теорема множення ймовірностей незалежних подій

Дві події називаються *незалежними*, якщо ймовірність однієї з них не змінюється при настанні іншої, тобто якщо

$$P(A) = P_B(A)$$
 to $P(B) = P_A(B)$.

У противному випадку події називаються залежними.

Кілька подій називаються *попарно незалежними*, якщо незалежні між собою будьякі два з них.

Кілька подій називаються *незалежними в сукупності*, якщо ймовірність кожної з них не змінюється при настанні інших подій, однієї або декількох у будь-якій комбінації й у будь-якому числі.

Незалежність подій у сукупності ϵ більш сильною вимогою, чим їх попарна незалежність.

Теорема. Ймовірність добутку двох незалежних подій дорівнює добутку ймовірностей цих подій, тобто

$$P(AB) = P(A) \cdot P(B)$$
.

Доведення. Оскільки події незалежні, то $P(A) = P_B(A)$ і $P(B) = P_A(B)$.

Тоді

$$P(AB) = P(A) \cdot P_A(B) = P(A) \cdot P(B)$$

або

$$P(AB) = P(B) \cdot P_B(A) = P(B) \cdot P(A) = P(A) \cdot P(B) \ .$$

Якщо події $A_1,A_2,...,A_n$ незалежні в сукупності, то ймовірність спільної появи їхній дорівнює добутку ймовірностей цих подій:

$$P(A_1A_2...A_n) = P(A_1) P(A_2)...P(A_n).$$

Приклад. Два студента розв'язують задачу по теорії ймовірностей. Ймовірність розв'язання задачі першим студентом дорівнює 0.8, а другим студентом -0.7. Знайти ймовірність того, що задачу розв'яжуть обидва студента.

Pозв'язання. Розглянемо події A — задачу розв'язав перший студент, B — задачу розв'язав другий студент. За умовою відомі ймовірності цих подій: P(A) = 0, 8, P(B) = 0, 7. Оскільки події A та B незалежні, то ймовірність того, що задачу розв'яжуть обидва студента, знайдемо як ймовірність добутку цих подій. По теоремі

множення ймовірностей:

$$P(AB) = P(A) \cdot P(B) = 0, 8 \cdot 0, 7 = 0, 56$$
.

Приклад. У першому кошику 30 куль однакового розміру: 10 білих, 4 жовтих і 16 синіх. У другому кошику 20 куль однакового розміру: 7 білих, 5 жовтих і 8 синіх. 3 кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Розв'язання. Розглянемо події: A — витяг білої кулі з першого кошику, B — витяг білої кулі з другого кошику. Очевидно, що $P(A) = \frac{10}{30}$, $P(B) = \frac{7}{20}$.

Оскільки події A та B незалежні, то ймовірність витягу двох білих куль знайдемо по теоремі множення ймовірностей незалежних подій:

$$P(AB) = P(A) \cdot P(B) = \frac{10}{30} \cdot \frac{7}{20} = \frac{7}{60} = 0,1167.$$

2.5. Ймовірність появи хоча б однієї події

Іноді може цікавити ймовірність появи в результаті випробувань хоча б однієї з незалежних у сукупності подій, причому вважається, що ймовірності появи кожної з подій відомі. Наприклад, якщо в результаті випробування можуть з'явитися три події, то поява хоча б однієї з цих подій означає настання або однієї, або двох, або трьох подій у різних сполученнях.

Ймовірність події A — появи **хоча б** однієї з незалежних у сукупності подій $A_1,A_2,...,A_n$, дорівнює різниці між одиницею та добутком ймовірностей протилежних подій $\overline{A}_1,\overline{A}_2,...,\overline{A}_n$:

$$P(A_1 + A_2 + ... + A_n) = 1 - P(\overline{A}_1) \cdot P(\overline{A}_2) \cdot ... \cdot P(\overline{A}_n).$$

Приклад. Три студента незалежно розв'язують задачу по теорії ймовірностей. Ймовірність розв'язання задачі першим студентом дорівнює 0,8; другим студентом — 0,7; третім студентом — 0,9. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Розв'язання. Розглянемо події: A - задачу розв'язав хоча б один студент, \overline{A} - усі студенти задачу не розв'язали, A_1 - задачу розв'язав перший студент, A_2 - задачу розв'язав другий студент, A_3 - задачу розв'язав третій студент.

За умовою відомі ймовірності наступних подій: $P(A_1)=0,8, P(A_2)=0,7,$ $P(A_3)=0,9, P(\overline{A}_1)=0,2, P(\overline{A}_2)=0,3, P(\overline{A}_3)=0,1.$

Подію \overline{A} можна записати у вигляді комбінації подій: $\overline{A} = \overline{A}_1 \cdot \overline{A}_2 \cdot \overline{A}_3$. Тоді по теоремі множення ймовірностей незалежних подій знайдемо ймовірність події \overline{A} :

$$P(\overline{A}) = P(\overline{A}_1 \cdot \overline{A}_2 \cdot \overline{A}_3) = P(\overline{A}_1) \cdot P(\overline{A}_2) \cdot P(\overline{A}_3) = 0, 2 \cdot 0, 3 \cdot 0, 1 = 0,006.$$

$$P(A) = 1 - P(\overline{A}) = 1 - P(\overline{A}_1 \cdot \overline{A}_2 \cdot \overline{A}_3) = 1 - P(\overline{A}_1) \cdot P(\overline{A}_2) \cdot P(\overline{A}_3) = 1 - 0, 2 \cdot 0, 3 \cdot 0, 1 = 1 - 0, 006 = 0,994.$$

2.6. Теорема додавання ймовірностей сумісних подій

Визначимо ймовірність появи однієї із двох подій, коли ці дві події сумісні.

Теорема. Ймовірність суми двох сумісних подій дорівнює сумі ймовірностей цих подій без ймовірності їх спільної появи

$$P(A + B) = P(A) + P(B) - P(AB)$$
.

Доведення. Оскільки події A і B за умовою сумісні, то подія A+B появиться, якщо появиться одна з несумісних подій: $A\overline{B}$, $A\overline{B}$ або AB.

Представимо суму A+B у вигляді суми несумісних подій:

$$A + B = A\overline{B} + \overline{A}B + AB$$

Тоді по теоремі додавання шукана ймовірність дорівнює

$$P(A+B) = P(A\overline{B}) + P(\overline{A}B) + P(AB). \tag{2.1}$$

Подія A появиться, якщо появиться одна з двох несумісних подій $A\overline{B}$ або AB, тобто $A = A\overline{B} + AB$.

За теоремою додавання ймовірностей несумісних подій маємо

$$P(A) = P(A\overline{B}) + P(AB)$$
.

Звідси

$$P(\overline{AB}) = P(A) - P(AB). \tag{2.2}$$

Аналогічно маємо

$$P(B) = P(\overline{AB}) + P(AB)$$
.

Звідси

$$P(\overline{AB}) = P(B) - P(AB). \tag{2.3}$$

Підставив (2.2) та (2.3) в (2.1) отримаємо

$$P(A + B) = P(A) + P(B) - P(AB)$$
,

що й було потрібно довести.

Теорема може бути узагальнена для довільного кінцевого числа сумісних подій. Наприклад, ймовірність суми трьох сумісних подій дорівнює

$$P(A+B+C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$
.

Приклад. У першому кошику 30 куль однакового розміру: 10 білих, 4 жовтих і 16 синіх. У другому кошику 20 куль однакового розміру: 8 білих, 7 жовтих і 5 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться білою.

Pозв'язання. Нехай події A та B — витяг білої кулі з першого та другого кошиків, відповідно.

Оскільки події A та B – сумісні та незалежні, то

$$P(A+B) = P(A) + P(B) - P(A \cdot B) = P(A) + P(B) - P(A) \cdot P(B) = \frac{10}{30} + \frac{8}{20} - \frac{10}{30} \cdot \frac{8}{20} = 0,6$$

2.7. Формула повної ймовірності

Нехай подія A може відбутися за умови появи однієї з несумісних подій: $H_1, H_2, ..., H_n$, які утворюють повну групу.

Події H_i , i=1,2,...,n називаються гіпотезами.

Нехай відомі:

- 1) ймовірності гіпотез $P(H_1), P(H_2), ..., P(H_n)$, при цьому $\sum_{i=1}^n P(H_i) = 1$;
- 2) умовні ймовірності події A щодо кожної з гіпотез $P_{H_1}(A), P_{H_2}(A), ..., P_{H_n}(A)$.

Представимо подію А у вигляді комбінації події:

$$A = H_1 A + H_2 A + ... + H_n A.$$

Тоді ймовірність появи події A, що може наступити лише за умови настання однієї з несумісних подій $H_1, H_2, ..., H_n$, що утворюють повну групу, дорівнює сумі добутків ймовірностей кожної із цих подій на умовну ймовірність події A:

$$P(A) = P(H_1A + H_2A + ... + H_nA) = P(H_1A) + P(H_2A) + ... + P(H_nA) =$$

$$= P(H_1) \cdot P_{H_1}(A) + P(H_2) \cdot P_{H_2}(A) + ... + P(H_n) \cdot P_{H_n}(A).$$

Таким чином

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$$
.

Отримана формула називається формулою повної ймовірності.

Приклад. На потоці три групи студентів, у кожній з яких вчиться 20, 23 і 27 студентів відповідно. Відомо, що в першій групі 92% студентів успішно здають іспити, у другий — 89%, у третій — 95%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Pозв'язання. Позначимо події: A — навмання обраний із трьох груп студент успішно здасть іспит; гіпотези H_1, H_2, H_3 — обраний студент вчиться в першій, другій, третій групах відповідно.

За умовою задачі відомі:

1) ймовірності гіпотез

$$P(H_1) = \frac{20}{20 + 23 + 27} = \frac{20}{70} = 0,2857,$$

$$P(H_2) = \frac{23}{20 + 23 + 27} = \frac{23}{70} = 0,3286,$$

$$P(H_3) = \frac{27}{20 + 23 + 27} = \frac{27}{70} = 0,3857;$$

2) умовні ймовірності події A щодо кожної з гіпотез

$$P_{H_1}(A) = 0,92, P_{H_2}(A) = 0,89, P_{H_3}(A) = 0,95.$$

По формулі повної ймовірності

$$P(A) = P(H_1) \cdot P_{H_1}(A) + P(H_2) \cdot P_{H_2}(A) + P(H_3) \cdot P_{H_3}(A) =$$

= 0, 2857 · 0, 92 + 0, 3286 · 0, 89 + 0, 3857 · 0, 95 = 0, 9217.

2.8. Формула Байеса

Нехай подія A може відбутися за умови появи однієї з гіпотез $H_1, H_2, ..., H_n$, що утворюють повну групу. Нехай відомі ймовірності цих гіпотез — $P(H_1), P(H_2), ..., P(H_n)$, а також умовні ймовірності події A при здійсненні кожної із цих гіпотез. Допустимо, що в результаті зробленого досліду подія A наступила. Потрібно визначити, як змінилися ймовірності гіпотез $H_1, H_2, ..., H_n$ після появи події A.

Задачі такого типу вирішуються за допомогою формули Байеса l :

$$P_A(H_i) = \frac{P(H_i) \cdot P_{H_i}(A)}{\sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)}, i=1,2,...,n.$$

Приклад. На потоці три групи студентів, у кожній з яких вчиться 20, 23 і 27 студентів відповідно. Відомо, що в першій групі 92% студентів успішно здають іспити, у другий — 89%, у третій — 95%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Pозв'язання. Позначимо події: A — навмання обраний із трьох груп студент

 $^{^{1}}$ Байес (Бейес) Томас (Bayes Thomas) (1702 – 1761)
– англійський священик, математик

успішно здасть іспит; гіпотези H_1, H_2, H_3 — обраний студент вчиться в першої, другий, третьої групах відповідно.

За умовою задачі відомі:

1) ймовірності гіпотез

$$P(H_1) = \frac{20}{20 + 23 + 27} = \frac{20}{70} = 0,2857,$$

$$P(H_2) = \frac{23}{20 + 23 + 27} = \frac{23}{70} = 0,3286,$$

$$P(H_3) = \frac{27}{20 + 23 + 27} = \frac{27}{70} = 0,3857;$$

2) умовні ймовірності події A щодо кожної з гіпотез

$$P_{H_1}(A) = 0,92, P_{H_2}(A) = 0,89, P_{H_3}(A) = 0,95.$$

Визначимо ймовірність події A по формулі повної ймовірності

$$P(A) = P(H_1) \cdot P_{H_1}(A) + P(H_2) \cdot P_{H_2}(A) + P(H_3) \cdot P_{H_3}(A) =$$

= 0, 2857 · 0, 92 + 0, 3286 · 0, 89 + 0, 3857 · 0, 95 = 0, 9217.

По формулі Байеса обчислимо умовні ймовірності гіпотез $H_1, H_2, ..., H_n$ щодо події A

$$P_A(H_1) = \frac{0,2857 \cdot 0,92}{0,9217} = 0,28518,$$

$$P_A(H_2) = \frac{0,3286 \cdot 0,89}{0,9217} = 0,31727,$$

$$P_A(H_3) = \frac{0,3857 \cdot 0,95}{0,9217} = 0,39755.$$

Таким чином, студент, який успішно здав іспит найімовірніше вчиться в третій групі.

Ймовірності гіпотез $P(H_i)$, i=1,2,...,n, обчислені до появи події A, називаються *апріорними* (лат. *а priorі* - буквально «від попереднього»; знання, отримане до випробування).

Умовні ймовірності гіпотез $P_A(H_i)$, $i=1,2,\ldots,n$, обчислені після появи події A, називаються *апостеріорними* (лат. *а posteriori* - буквально "від наступного"; знання, отримане після випробування).

Для апріорних та апостеріорних ймовірностей виконується умова:

$$\sum_{i=1}^{n} P(H_i) = \sum_{i=1}^{n} P_A(H_i) = 1.$$

Питання для самоперевірки

- 1. Дайте визначення суми подій. Що позначає A+B, якщо події A і B сумісні?
- 2. Дайте визначення добутку подій. Що означає $A \cdot B$, якщо події A і B сумісні?
- 3. Що називають різницею подій?
- 4. Сформулюйте теорему додавання ймовірності для несумісних подій.
- 5. Сформулюйте теорему додавання ймовірності для сумісних подій.
- 6. Які події називають незалежними? Дайте визначення незалежних у сукупності подій.
 - 7. Що називають умовною ймовірністю події?
 - 8. Сформулюйте теорему множення ймовірності для залежних подій.
 - 9. Сформулюйте теорему множення ймовірності для незалежних подій.
- 10. Чому дорівнює ймовірність появи в результаті випробувань хоча б одного з незалежних у сукупності випробувань?
 - 11. Які події при визначенні повної ймовірності вважаються гіпотезами?
 - 12. Запишіть формулу повної ймовірності.
 - 13. Якою властивістю повинні мати гіпотези у формулі повної ймовірності?
 - 14. Якій умові задовольняють ймовірності гіпотез у формулі повної ймовірності?
 - 15. Для обчислення ймовірностей яких подій застосовується формула Байеса?
- 16. У чому відмінність апріорної ймовірності гіпотези від апостеріорної ймовірності?
 - 17. Запишіть формулу Байеса.
 - 18. Чому дорівнюють суми апріорних та апостеріорних ймовірностей гіпотез?

Література

- 1. Тевяшев А. Д. Теорія ймовірностей і математична статистика : навч. посіб. / А. Д. Тевяшев, С. І. Козиренко, І. С. Агапова ; М-во освіти і науки України, Харків. нац. ун-т радіоелектроніки. Харків : Світ Книг, 2017. 248 с.
- 2. Тевяшев А.Д. Теорія ймовірностей і математична статистика: навч. посіб. Харків: XHУPE, 2002. 572 с.
- 3. Барковський В.В., Барковська Н.В., Лопатін О.К. Теорія ймовірностей та математична статистика. 5-те видання. К.: Центр учбової літ., 2010. 424 с.
- 4. Малярець Л. М. Математика для економістів. Теорія ймовірностей та математична статистика : навч. посіб. У 3-х ч. Ч. 3 / Л. М. Малярець, І. Л. Лебедєва, Л. Д. Широкорад. Харків : Вид. ХНЕУ, 2011. 568 с.
- 5. Валєєв К. Г. Збірник задач з теорії ймовірностей та математичної статистики / К. Г. Валєєв, І. А. Джалладова. Київ : КНЕУ, 2005. 340 с.
- 6. Бобик О. І., Берегова Г. І., Копитко Б І. Теорія ймовірностей та математична статистика. Київ: Професіонал, 2007. 560 с.
- 7. Зайцев Є. П. Теорія ймовірностей і математична статистика. Київ : Алерта, 2013. 440 с.

Варіанти індивідуальних розрахункових завдань

Варіант № 1

- **Задача 1.** У кошику **30** куль однакового розміру: **16** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **14** білих, **11** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **30** куль однакового розміру: **12** білих, **11** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 28 куль однакового розміру: 14 білих, 10 жовтих і 4 синіх. У другому кошику 27 куль однакового розміру: 14 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,56; другим студентом – 0,55; третім студентом – 0,58. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- **Задача 6.** Є два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **16** жовтих і **4** синіх. У другому кошику **35** куль однакового розміру: **15** білих, **14** жовтих і **6** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **24**, **17** і **18** студентів відповідно. Відомо, що в першій групі **60**% студентів успішно здають іспити, у другий -63%, у третій -69%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 22 і 30 студентів відповідно. Відомо, що в першій групі 61% студентів успішно здають іспити, у другий -63%, у третій -81%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **29** куль однакового розміру: **18** білих, **8** жовтих і **3** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **11** білих, **10** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **8** білих, **14** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- Задача 4. У першому кошику 27 куль однакового розміру: 13 білих, 10 жовтих і 4 синіх. У другому кошику 25 куль однакового розміру: 12 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,89**; другим студентом — **0,94**; третім студентом — **0,87**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику **27** куль однакового розміру: **14** білих, **10** жовтих і **3** синіх. У другому кошику **36** куль однакового розміру: **21** білих, **13** жовтих і **2** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **27** і **16** студентів відповідно. Відомо, що в першій групі **77**% студентів успішно здають іспити, у другий - **78**%, у третій - **66**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **29**, **30** і **18** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий - **86**%, у третій - **95**%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

Варіант № 3

Задача 1. У кошику **25** куль однакового розміру: **11** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.

Задача 2. У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **28** куль однакового розміру: **7** білих, **15** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 4. У першому кошику 25 куль однакового розміру: 11 білих, 10 жовтих і 4 синіх. У другому кошику 33 кулі однакового розміру: 14 білих, 9 жовтих і 10 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,69; другим студентом – 0,82; третім студентом – 0,60. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 30 куль однакового розміру: 17 білих, 8 жовтих і 5 синіх. У другому кошику 34 куль однакового розміру: 20 білих, 11 жовтих і 3 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **15**, **19** і **15** студентів відповідно. Відомо, що в першій групі **68**% студентів успішно здають іспити, у другий -66%, у третій -90%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **15**, **27** і **20** студентів відповідно. Відомо, що в першій групі **62**% студентів успішно здають іспити, у другий -64%, у третій -60%. Навмання обраний із трьох груп студент

успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 4

- **Задача 1.** У кошику **26** куль однакового розміру: **14** білих, **8** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **14** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **25** куль однакового розміру: **4** білих, **14** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- Задача 4. У першому кошику 35 куль однакового розміру: 14 білих, 17 жовтих і 4 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,71; другим студентом – 0,60; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 30 куль однакового розміру: 16 білих, 10 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 12 білих, 16 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться білою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **25**, **21** і **24** студентів відповідно. Відомо, що в першій групі **58**% студентів успішно здають іспити, у другий **75**%, у третій **76**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 23, 28 і 24 студентів відповідно. Відомо, що в першій групі 58% студентів успішно здають іспити, у другий 93%, у третій 74%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **27** куль однакового розміру: **8** білих, **14** жовтих і **5** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не білої кулі.
- **Задача 2.** У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **18** білих, **8** жовтих і **2** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 4.** У першому кошику **26** куль однакового розміру: **14** білих, **8** жовтих і **4** синіх. У другому кошику **29** куль однакового розміру: **14** білих, **9** жовтих і **6** синіх. З

кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,94**; другим студентом — **0,85**; третім студентом — **0,82**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 26 куль однакового розміру: 10 білих, 12 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 16 білих, 14 жовтих і 4 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться 30, 15 і 29 студентів відповідно. Відомо, що в першій групі 81% студентів успішно здають іспити, у другий — 90%, у третій — 88%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **29**, **18** і **30** студентів відповідно. Відомо, що в першій групі **84**% студентів успішно здають іспити, у другий -79%, у третій -63%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

Варіант № 6

Задача 1. У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.

Задача 2. У кошику **29** куль однакового розміру: **15** білих, **11** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **26** куль однакового розміру: **10** білих, **13** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 10 жовтих і 7 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,70; другим студентом — 0,91; третім студентом — 0,74. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.

Задача 6. Є два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **16** жовтих і **4** синіх. У другому кошику **34** куль однакового розміру: **22** білих, **8** жовтих і **4** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **19** і **28** студентів відповідно. Відомо, що в першій групі **61**% студентів успішно здають іспити, у другий — **94**%, у третій — **55**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 26, 15 і 26 студентів відповідно. Відомо, що в першій групі 92% студентів успішно здають іспити, у другий — 60%, у третій — 62%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 7

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **15** жовтих і **2** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **5** білих, **15** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **10** білих, **12** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 24 кулі однакового розміру: 14 білих, 6 жовтих і 4 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,77; другим студентом – 0,70; третім студентом – 0,62. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- **Задача 6.** Є два кошики з кулями. У першому кошику **28** куль однакового розміру: **9** білих, **16** жовтих і **3** синіх. У другому кошику **37** куль однакового розміру: **24** білих, **8** жовтих і **5** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **16**, **29** і **26** студентів відповідно. Відомо, що в першій групі **66**% студентів успішно здають іспити, у другий **89**%, у третій **68**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 16 і 20 студентів відповідно. Відомо, що в першій групі 71% студентів успішно здають іспити, у другий -90%, у третій -56%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **13** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою синьої кулі, якщо першою була витягнута синя куля.

- **Задача 3.** У кошику **29** куль однакового розміру: **15** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 4.** У першому кошику **32** кулі однакового розміру: **14** білих, **10** жовтих і **8** синіх. У другому кошику **25** куль однакового розміру: **12** білих, **9** жовтих і **4** синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,73; другим студентом — 0,89; третім студентом — 0,69. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- **Задача 6.** € два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **15** жовтих і **5** синіх. У другому кошику **37** куль однакового розміру: **18** білих, **12** жовтих і **7** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **20**, **21** і **24** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий **57**%, у третій **91**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- **Задача 8.** На потоці три групи студентів, у кожній з яких вчиться **23**, **28** і **24** студентів відповідно. Відомо, що в першій групі **81**% студентів успішно здають іспити, у другий -70%, у третій -78%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

- **Задача 1.** У кошику **30** куль однакового розміру: **16** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **14** білих, **11** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **30** куль однакового розміру: **12** білих, **11** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 35 куль однакового розміру: 14 білих, 10 жовтих і 11 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,56; другим студентом – 0,55; третім студентом – 0,58. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 16 жовтих і 4 синіх. У другому кошику 35 куль однакового розміру: 15 білих, 14 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться 24, 17 і 18 студентів відповідно. Відомо, що в першій групі 60% студентів успішно здають іспити, у другий — 63%, у третій — 63%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 22 і 30 студентів відповідно. Відомо, що в першій групі 61% студентів успішно здають іспити, у другий -63%, у третій -81%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 10

- **Задача 1.** У кошику **29** куль однакового розміру: **18** білих, **8** жовтих і **3** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **11** білих, **10** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **8** білих, **14** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 13 жовтих і 4 синіх. У другому кошику 25 куль однакового розміру: 12 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,89; другим студентом — 0,94; третім студентом — 0,87. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- **Задача 6.** Є два кошики з кулями. У першому кошику **27** куль однакового розміру: **14** білих, **10** жовтих і **3** синіх. У другому кошику **36** куль однакового розміру: **21** білих, **13** жовтих і **2** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **30**, **27** і **16** студентів відповідно. Відомо, що в першій групі **77**% студентів успішно здають іспити, у другий **78**%, у третій **66**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 29, 30 і 18 студентів відповідно. Відомо, що в першій групі 67% студентів успішно здають іспити, у другий 86%, у третій 95%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 11

Задача 1. У кошику **25** куль однакового розміру: **11** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.

- **Задача 2.** У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **7** білих, **15** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 35 куль однакового розміру: 14 білих, 10 жовтих і 11 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,69; другим студентом — 0,82; третім студентом — 0,60. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- Задача 6. Є два кошики з кулями. У першому кошику 30 куль однакового розміру: 17 білих, 8 жовтих і 5 синіх. У другому кошику 34 куль однакового розміру: 20 білих, 11 жовтих і 3 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- Задача 7. На потоці три групи студентів, у кожній з яких вчиться 15, 19 і 15 студентів відповідно. Відомо, що в першій групі 68% студентів успішно здають іспити, у другий 66%, у третій 90%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 15, 27 і 20 студентів відповідно. Відомо, що в першій групі 62% студентів успішно здають іспити, у другий 64%, у третій 60%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **26** куль однакового розміру: **14** білих, **8** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **14** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **25** куль однакового розміру: **4** білих, **14** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- Задача 4. У першому кошику 32 кулі однакового розміру: 14 білих, 10 жовтих і 8 синіх. У другому кошику 25 куль однакового розміру: 12 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,71; другим студентом – 0,60; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.

Задача 6. Є два кошики з кулями. У першому кошику 30 куль однакового розміру: 16 білих, 10 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 12 білих, 16 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться білою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **25**, **21** і **24** студентів відповідно. Відомо, що в першій групі **58**% студентів успішно здають іспити, у другий - **75**%, у третій - **76**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **23**, **28** і **24** студентів відповідно. Відомо, що в першій групі **58**% студентів успішно здають іспити, у другий -93%, у третій -74%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

Варіант № 13

Задача 1. У кошику **27** куль однакового розміру: **8** білих, **14** жовтих і **5** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не білої кулі.

Задача 2. У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.

Задача 3. У кошику **28** куль однакового розміру: **18** білих, **8** жовтих і **2** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 4. У першому кошику 24 кулі однакового розміру: 14 білих, 6 жовтих і 4 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,94**; другим студентом — **0,85**; третім студентом — **0,82**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 26 куль однакового розміру: 10 білих, 12 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 16 білих, 14 жовтих і 4 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **15** і **29** студентів відповідно. Відомо, що в першій групі **81**% студентів успішно здають іспити, у другий - **90**%, у третій - **88**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **29**, **18** і **30** студентів відповідно. Відомо, що в першій групі **84**% студентів успішно здають іспити, у другий -79%, у третій -63%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **15** білих, **11** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **26** куль однакового розміру: **10** білих, **13** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 10 жовтих і 7 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,70; другим студентом — 0,91; третім студентом — 0,74. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- **Задача 6.** € два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **16** жовтих і **4** синіх. У другому кошику **34** куль однакового розміру: **22** білих, **8** жовтих і **4** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **30**, **19** і **28** студентів відповідно. Відомо, що в першій групі **61**% студентів успішно здають іспити, у другий **94**%, у третій **55**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 26, 15 і 26 студентів відповідно. Відомо, що в першій групі 92% студентів успішно здають іспити, у другий 60%, у третій 62%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **15** жовтих і **2** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **5** білих, **15** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **10** білих, **12** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 26 куль однакового розміру: 14 білих, 8 жовтих і 4 синіх. У другому кошику 29 куль однакового розміру: 14 білих, 9 жовтих і 6 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,77**; другим студентом —

0,70; третім студентом — 0,62. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 9 білих, 16 жовтих і 3 синіх. У другому кошику 37 куль однакового розміру: 24 білих, 8 жовтих і 5 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **16**, **29** і **26** студентів відповідно. Відомо, що в першій групі **66**% студентів успішно здають іспити, у другий - **89**%, у третій - **68**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 16 і 20 студентів відповідно. Відомо, що в першій групі 71% студентів успішно здають іспити, у другий -90%, у третій -56%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 16

Задача 1. У кошику **28** куль однакового розміру: **11** білих, **13** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.

Задача 2. У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою синьої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **29** куль однакового розміру: **15** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

Задача 4. У першому кошику 25 куль однакового розміру: 11 білих, 10 жовтих і 4 синіх. У другому кошику 33 кулі однакового розміру: 14 білих, 9 жовтих і 10 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,73; другим студентом – 0,89; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 15 жовтих і 5 синіх. У другому кошику 37 куль однакового розміру: 18 білих, 12 жовтих і 7 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **20**, **21** і **24** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий - **57**%, у третій - **91**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 23, 28 і 24 студентів відповідно. Відомо, що в першій групі 81% студентів успішно здають іспити, у другий — 70%, у третій — 78%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **30** куль однакового розміру: **16** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **14** білих, **11** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **30** куль однакового розміру: **12** білих, **11** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 27 куль однакового розміру: 13 білих, 10 жовтих і 4 синіх. У другому кошику 25 куль однакового розміру: 12 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,56; другим студентом — 0,55; третім студентом — 0,58. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 16 жовтих і 4 синіх. У другому кошику 35 куль однакового розміру: 15 білих, 14 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **24**, **17** і **18** студентів відповідно. Відомо, що в першій групі **60**% студентів успішно здають іспити, у другий -63%, у третій -63%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 22 і 30 студентів відповідно. Відомо, що в першій групі 61% студентів успішно здають іспити, у другий -63%, у третій -81%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **29** куль однакового розміру: **18** білих, **8** жовтих і **3** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **11** білих, **10** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **8** білих, **14** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- Задача 4. У першому кошику 28 куль однакового розміру: 14 білих, 10 жовтих і 4 синіх. У другому кошику 27 куль однакового розміру: 14 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,89**; другим студентом — **0,94**; третім студентом — **0,87**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику **27** куль однакового розміру: **14** білих, **10** жовтих і **3** синіх. У другому кошику **36** куль однакового розміру: **21** білих, **13** жовтих і **2** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **27** і **16** студентів відповідно. Відомо, що в першій групі **77**% студентів успішно здають іспити, у другий - **78**%, у третій - **66**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **29**, **30** і **18** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий - **86**%, у третій - **95**%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

Варіант № 19

Задача 1. У кошику **25** куль однакового розміру: **11** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.

Задача 2. У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **28** куль однакового розміру: **7** білих, **15** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 10 жовтих і 7 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,69; другим студентом – 0,82; третім студентом – 0,60. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.

Задача 6. Є два кошики з кулями. У першому кошику **30** куль однакового розміру: **17** білих, **8** жовтих і **5** синіх. У другому кошику **34** куль однакового розміру: **20** білих, **11** жовтих і **3** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **15**, **19** і **15** студентів відповідно. Відомо, що в першій групі **68**% студентів успішно здають іспити, у другий -66%, у третій -90%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **15**, **27** і **20** студентів відповідно. Відомо, що в першій групі **62**% студентів успішно здають іспити, у другий -64%, у третій -60%. Навмання обраний із трьох груп студент

успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 20

- **Задача 1.** У кошику **26** куль однакового розміру: **14** білих, **8** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **14** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **25** куль однакового розміру: **4** білих, **14** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 4.** У першому кошику **35** куль однакового розміру: **14** білих, **10** жовтих і **11** синіх. У другому кошику **28** куль однакового розміру: **14** білих, **9** жовтих і **5** синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,71; другим студентом – 0,60; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 30 куль однакового розміру: 16 білих, 10 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 12 білих, 16 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться білою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **25**, **21** і **24** студентів відповідно. Відомо, що в першій групі **58**% студентів успішно здають іспити, у другий -75%, у третій -76%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 23, 28 і 24 студентів відповідно. Відомо, що в першій групі 58% студентів успішно здають іспити, у другий 93%, у третій 74%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **27** куль однакового розміру: **8** білих, **14** жовтих і **5** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не білої кулі.
- **Задача 2.** У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **18** білих, **8** жовтих і **2** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 4.** У першому кошику **32** кулі однакового розміру: **14** білих, **10** жовтих і **8** синіх. У другому кошику **25** куль однакового розміру: **12** білих, **9** жовтих і **4** синіх. З

кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,94**; другим студентом — **0,85**; третім студентом — **0,82**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 26 куль однакового розміру: 10 білих, 12 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 16 білих, 14 жовтих і 4 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться 30, 15 і 29 студентів відповідно. Відомо, що в першій групі 81% студентів успішно здають іспити, у другий — 90%, у третій — 88%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **29**, **18** і **30** студентів відповідно. Відомо, що в першій групі **84**% студентів успішно здають іспити, у другий -79%, у третій -63%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

Варіант № 22

Задача 1. У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.

Задача 2. У кошику **29** куль однакового розміру: **15** білих, **11** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **26** куль однакового розміру: **10** білих, **13** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 4. У першому кошику 24 кулі однакового розміру: 14 білих, 6 жовтих і 4 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,70; другим студентом — 0,91; третім студентом — 0,74. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.

Задача 6. Є два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **16** жовтих і **4** синіх. У другому кошику **34** куль однакового розміру: **22** білих, **8** жовтих і **4** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **19** і **28** студентів відповідно. Відомо, що в першій групі **61**% студентів успішно здають іспити, у другий — **94**%, у третій — **55**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 26, 15 і 26 студентів відповідно. Відомо, що в першій групі 92% студентів успішно здають іспити, у другий — 60%, у третій — 62%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 23

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **15** жовтих і **2** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **5** білих, **15** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **10** білих, **12** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 10 жовтих і 7 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,77; другим студентом – 0,70; третім студентом – 0,62. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 9 білих, 16 жовтих і 3 синіх. У другому кошику 37 куль однакового розміру: 24 білих, 8 жовтих і 5 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **16**, **29** і **26** студентів відповідно. Відомо, що в першій групі **66**% студентів успішно здають іспити, у другий **89**%, у третій **68**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 16 і 20 студентів відповідно. Відомо, що в першій групі 71% студентів успішно здають іспити, у другий -90%, у третій -56%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **13** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою синьої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **29** куль однакового розміру: **15** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

- Задача 4. У першому кошику 26 куль однакового розміру: 14 білих, 8 жовтих і 4 синіх. У другому кошику 29 куль однакового розміру: 14 білих, 9 жовтих і 6 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,73; другим студентом — 0,89; третім студентом — 0,69. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 15 жовтих і 5 синіх. У другому кошику 37 куль однакового розміру: 18 білих, 12 жовтих і 7 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **20**, **21** і **24** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий **57**%, у третій **91**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- Задача 8. На потоці три групи студентів, у кожній з яких вчиться 23, 28 і 24 студентів відповідно. Відомо, що в першій групі 81% студентів успішно здають іспити, у другий 70%, у третій 78%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **30** куль однакового розміру: **16** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **14** білих, **11** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **30** куль однакового розміру: **12** білих, **11** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 35 куль однакового розміру: 14 білих, 17 жовтих і 4 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,56; другим студентом — 0,55; третім студентом — 0,58. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 16 жовтих і 4 синіх. У другому кошику 35 куль однакового розміру: 15 білих, 14 жовтих і 6 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- Задача 7. На потоці три групи студентів, у кожній з яких вчиться 24, 17 і 18 студентів відповідно. Відомо, що в першій групі 60% студентів успішно здають

іспити, у другий -63%, у третій -63%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 22 і 30 студентів відповідно. Відомо, що в першій групі 61% студентів успішно здають іспити, у другий — 63%, у третій — 81%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 26

- **Задача 1.** У кошику **29** куль однакового розміру: **18** білих, **8** жовтих і **3** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **11** білих, **10** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **8** білих, **14** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- Задача 4. У першому кошику 25 куль однакового розміру: 11 білих, 10 жовтих і 4 синіх. У другому кошику 33 кулі однакового розміру: 14 білих, 9 жовтих і 10 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,89; другим студентом – 0,94; третім студентом — 0,87. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 27 куль однакового розміру: 14 білих, 10 жовтих і 3 синіх. У другому кошику 36 куль однакового розміру: 21 білих, 13 жовтих і 2 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **30**, **27** і **16** студентів відповідно. Відомо, що в першій групі **77**% студентів успішно здають іспити, у другий **78**%, у третій **66**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- **Задача 8.** На потоці три групи студентів, у кожній з яких вчиться **29**, **30** і **18** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий **86**%, у третій **95**%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

- **Задача 1.** У кошику **25** куль однакового розміру: **11** білих, **10** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута синя куля.

- **Задача 3.** У кошику **28** куль однакового розміру: **7** білих, **15** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 4.** У першому кошику **35** куль однакового розміру: **14** білих, **10** жовтих і **11** синіх. У другому кошику **28** куль однакового розміру: **14** білих, **9** жовтих і **5** синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,69; другим студентом — 0,82; третім студентом — 0,60. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- **Задача 6.** € два кошики з кулями. У першому кошику **30** куль однакового розміру: **17** білих, **8** жовтих і **5** синіх. У другому кошику **34** куль однакового розміру: **20** білих, **11** жовтих і **3** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **15**, **19** і **15** студентів відповідно. Відомо, що в першій групі **68**% студентів успішно здають іспити, у другий -66%, у третій -90%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- **Задача 8.** На потоці три групи студентів, у кожній з яких вчиться **15**, **27** і **20** студентів відповідно. Відомо, що в першій групі **62**% студентів успішно здають іспити, у другий -64%, у третій -60%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

- **Задача 1.** У кошику **26** куль однакового розміру: **14** білих, **8** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **28** куль однакового розміру: **14** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою білої кулі, якщо першою була витягнута жовта куля.
- **Задача 3.** У кошику **25** куль однакового розміру: **4** білих, **14** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- Задача 4. У першому кошику 32 кулі однакового розміру: 14 білих, 10 жовтих і 8 синіх. У другому кошику 25 куль однакового розміру: 12 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,71; другим студентом – 0,60; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча б один студент.
- **Задача 6.** Є два кошики з кулями. У першому кошику **30** куль однакового розміру: **16** білих, **10** жовтих і **4** синіх. У другому кошику **34** куль однакового розміру: **12** білих,

16 жовтих і **6** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться білою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **25**, **21** і **24** студентів відповідно. Відомо, що в першій групі **58**% студентів успішно здають іспити, у другий - **75**%, у третій - **76**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 23, 28 і 24 студентів відповідно. Відомо, що в першій групі 58% студентів успішно здають іспити, у другий — 93%, у третій — 74%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 29

Задача 1. У кошику **27** куль однакового розміру: **8** білих, **14** жовтих і **5** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не білої кулі.

Задача 2. У кошику **30** куль однакового розміру: **10** білих, **16** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута жовта куля.

Задача 3. У кошику **28** куль однакового розміру: **18** білих, **8** жовтих і **2** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 4. У першому кошику 24 кулі однакового розміру: 14 білих, 6 жовтих і 4 синіх. У другому кошику 28 куль однакового розміру: 14 білих, 9 жовтих і 5 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,94**; другим студентом — **0,85**; третім студентом — **0,82**. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. € два кошики з кулями. У першому кошику **26** куль однакового розміру: **10** білих, **12** жовтих і **4** синіх. У другому кошику **34** куль однакового розміру: **16** білих, **14** жовтих і **4** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **30**, **15** і **29** студентів відповідно. Відомо, що в першій групі **81**% студентів успішно здають іспити, у другий - **90**%, у третій - **88**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 29, 18 і 30 студентів відповідно. Відомо, що в першій групі 84% студентів успішно здають іспити, у другий — 79%, у третій — 63%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не жовтої кулі.
- **Задача 2.** У кошику **29** куль однакового розміру: **15** білих, **11** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **26** куль однакового розміру: **10** білих, **13** жовтих і **3** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві білі кулі.
- Задача 4. У першому кошику 31 куля однакового розміру: 14 білих, 10 жовтих і 7 синіх. У другому кошику 25 куль однакового розміру: 14 білих, 7 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,70; другим студентом — 0,91; третім студентом — 0,74. Знайти ймовірність того, що задачу розв'яже хоча бодин студент.
- Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 8 білих, 16 жовтих і 4 синіх. У другому кошику 34 куль однакового розміру: 22 білих, 8 жовтих і 4 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.
- **Задача 7.** На потоці три групи студентів, у кожній з яких вчиться **30**, **19** і **28** студентів відповідно. Відомо, що в першій групі **61**% студентів успішно здають іспити, у другий **94**%, у третій **55**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.
- **Задача 8.** На потоці три групи студентів, у кожній з яких вчиться **26**, **15** і **26** студентів відповідно. Відомо, що в першій групі **92**% студентів успішно здають іспити, у другий -60%, у третій -62%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.

- **Задача 1.** У кошику **28** куль однакового розміру: **11** білих, **15** жовтих і **2** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.
- **Задача 2.** У кошику **27** куль однакового розміру: **5** білих, **15** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою жовтої кулі, якщо першою була витягнута синя куля.
- **Задача 3.** У кошику **28** куль однакового розміру: **10** білих, **12** жовтих і **6** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві жовті кулі.
- Задача 4. У першому кошику 26 куль однакового розміру: 14 білих, 8 жовтих і 4 синіх. У другому кошику 29 куль однакового розміру: 14 білих, 9 жовтих і 6 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві сині кулі.
- **Задача 5.** Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює **0,77**; другим студентом —

0,70; третім студентом — 0,62. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику 28 куль однакового розміру: 9 білих, 16 жовтих і 3 синіх. У другому кошику 37 куль однакового розміру: 24 білих, 8 жовтих і 5 синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться синію.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **16**, **29** і **26** студентів відповідно. Відомо, що в першій групі **66**% студентів успішно здають іспити, у другий - **89**%, у третій - **68**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться 25, 16 і 20 студентів відповідно. Відомо, що в першій групі 71% студентів успішно здають іспити, у другий -90%, у третій -56%. Навмання обраний із трьох груп студент успішно здав іспит. У якій групі найімовірніше вчиться студент, який успішно здав іспит.

Варіант № 32

Задача 1. У кошику **28** куль однакового розміру: **11** білих, **13** жовтих і **4** синіх. Навмання витягується одна куля. Знайти ймовірність витягу не синьої кулі.

Задача 2. У кошику **28** куль однакового розміру: **13** білих, **8** жовтих і **7** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність появи другою синьої кулі, якщо першою була витягнута синя куля.

Задача 3. У кошику **29** куль однакового розміру: **15** білих, **10** жовтих і **4** синіх. Послідовно витягають по одній кулі, не повертаючи їх в кошик. Знайти ймовірність того, що будуть витягнуті дві сині кулі.

Задача 4. У першому кошику 28 куль однакового розміру: 14 білих, 10 жовтих і 4 синіх. У другому кошику 27 куль однакового розміру: 14 білих, 9 жовтих і 4 синіх. З кожного кошику навмання витягають по одній кулі. Знайти ймовірність того, що будуть витягнуті дві білі кулі.

Задача 5. Три студента незалежно вирішують задачу по теорії ймовірностей. Ймовірність розв'язку задачі першим студентом дорівнює 0,73; другим студентом – 0,89; третім студентом – 0,69. Знайти ймовірність того, що задачу розв'яже хоча б один студент.

Задача 6. Є два кошики з кулями. У першому кошику **28** куль однакового розміру: **8** білих, **15** жовтих і **5** синіх. У другому кошику **37** куль однакового розміру: **18** білих, **12** жовтих і **7** синіх. З кожного кошика навмання витягають по одній кулі. Знайти ймовірність того, що хоча б одна з витягнутих куль виявиться жовтою.

Задача 7. На потоці три групи студентів, у кожній з яких вчиться **20**, **21** і **24** студентів відповідно. Відомо, що в першій групі **67**% студентів успішно здають іспити, у другий - **57**%, у третій - **91**%. Знайти ймовірність того, що навмання обраний із трьох груп студент успішно здасть іспит.

Задача 8. На потоці три групи студентів, у кожній з яких вчиться **23**, **28** і **24** студентів відповідно. Відомо, що в першій групі **81**% студентів успішно здають іспити, у другий -70%, у третій -78%. Навмання обраний із трьох груп студент успішно **здав** іспит. У якій групі найімовірніше вчиться студент, який успішно **здав** іспит.