IMPI ÉMENTATIONS TEMPS RÉFL D'UN RÉCEPTEUR OUASI-CYCLIC SHORT PACKET (OCSP)

Camille MONIÈRE

Lab-STICC, CNRS UMR 6285, Université de Bretagne Sud, 56100 Lorient, France, Email: camille.moniere@univ-ubs.fr

IMS, CNRS UMR 5218, Université de Bordeaux, 33400 Talence, France, Email : camille.moniere@ims-bordeaux.fr

04/01/2023

IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Introduction

Avant-propos

Ces travaux de thèse ont été financé par l'Agence Nationale de la Recherche (ANR) française, et s'inscrivent ainsi dans le projet Quasi-Cyclic Short Packet (QCSP), identifiant ANR-19-CF25-0013-01.

Cette thèse s'est déroulée sous la direction d'Emmanuel BOUTILLON¹, et l'encadrement de Bertrand LE GAL 2

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Introduction

^{2.} MCF. IMS. CNRS UMR 5218, Université de Bordeaux, 33400 Talence, France, Email : bertrand.legal@ims-bordeaux.fr

^{1.} Pr. Lab-STICC, CNRS UMR 6285, Université de Bretagne Sud, 56100 Lorient, France, Email : emmanel.boutillon@univ-ubs.fr

Système de communication QCSP

algorithmique

Implémentation

xpériences

Conclusion

Contributions

Références

1. Introduction

2. Système de communication QCSP

3. Étude algorithmique

4. Implémentations

5. Expériences grandeur-natures

6. Conclusion

Sommaire

1. Introduction

Contexte
Le projet Quasi-Cyclic Short Packet (QCSP)

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction Contexte

Le projet Quasi-Cycli Short Packet (QCSP)

Système de communication QCSP

Étude algorithmigu

Implémentation:

vnáriances

andeur-natu

Conclusion

Contributio

Développement des réseaux IoT

Coucou

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction
Contexte
Le projet Quasi-Cycli

Système de

Étude

algorithmique

Implémentation

xpériences randeur-natures

onclusion

Contributio

Problème des préambules

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction
Contexte
Le projet Quasi-Cyclic
Short Packet (OCSP)

Système de communication QCSP

Étude algorithmigue

mplémentations

xpériences

Conclusion

ontribution

Références

TODO, 1 ou 2 slides

Le projet Quasi-Cyclic Short Packet (QCSP)

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C MONIÈRE

Avant-propos

Introduction

Le projet Quasi-Cyclic Short Packet (OCSP)

Principes de QCSP

TODO, le spatial, le ccsk et le nbldpc

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction
Contexte
Le projet Quasi-Cyclic
Short Packet (OCSP)

Système de communication OCSP

Étude Algorithmique

mplémentations

vnáriances

anueur-na

Conclusion

ontribution

Cyclic Code Shift Keying (CCSK)

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction
Contexte
Le projet Quasi-Cyclic
Short Packet (OCSP)

Système de communication OCSP

tude Ilaorithmiaue

nplémentations

npiementations

andeur-natu

Conclusion

Contribution

Références

TODO, animation comment on module et comment on démodule

Low Density Parity Check (LDPC)

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction
Contexte
Le projet Quasi-Cyclic
Short Packet (QCSP)

Système de communication

Étude algorithmique

nplémentations

périences

onclusion

`antribution

Páfárancas

TODO, TRES SUCCINCT, vitye fait trois VN et un CN, pour completion

Sommaire

2. Système de communication QCSP

Modèle

Émission

Détection

Synchronisation

Décodage

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Introduction

Système de communication QCSP

Émission Détection

Synchronisation

Décodage

Étude

lmplémentations

Expériences grandeur-natures

Conclusion

Contributi

Modèle

TODO, image de la chaine, et le canal théorique

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Modèle

Émission

TODO, les trois étape, et un filtre

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Émission

Détection : Principe

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

Système de communicatior QCSP

Modele

Émission

Detection

nchronisation

tude Igorithmiq

gorithmiqu

nplémenta

opériences Fandeur-natures

Conclusion

Contributions

Páfárances

Détection: animation CCSK demod

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introductio

Système de communication QCSP

Émission

Émission

Detection

nchronisation

Décodage

Étude algorithm

lgorithmiq

nplémenta

xpériences randeur-natures

Conclusion

Contributions

Páfárances

Détection: Problèmes Temps Fréquence

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommane

Introduction

Système de communication QCSP

Émission

Détection

ynchronisation

codage

Étude algorithmi

lgorithmiq

nplémenta

xpériences randeur-natures

Conclusion

Contributions

Dáfárancac

Détection : La grille temps fréquences

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

Système de communication QCSP

Émission

Emission Détection

Constraniantian

nchronisation

Décodage

Étude algorithmic

gorithmiqu

mplémenta

xpériences randeur-natures

Conclusion

Contributions

Dáfárancac

Synchronisation

TODO — En fonction du temps, détails ou pas

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Synchronisation

Décodage

TODO — Merci CCSK et hop

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Introduction

communication QCSP

Émission

Détection Synchronisatio

Synchronisation Décodage

Étude

algorithmiqu

mplémenta

xpériences randeur-natures

Conclusion

Contributions

Páfárancas

C. MONIÈRE

Avant-propos

Étude algorithmique

3. Étude algorithmique

Sensibilité à un facteur d'échelle Corrélation glissante dans le temps (*Time sliding*)

Sensibilité à un facteur d'échelle

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sensibilité à un facteur d'échelle

Corrélation glissante dans le temps (*Time sliding*)

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Corrélation glissante dans le temps (Time sliding)

Sommaire

4. Implémentations L'émetteur Le détecteur IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Introductio

Système de communication QCSP

Étude algorithmique

Implémentations

L'émetteur

Le détecteu

Expériences grandeur-natures

onclusion

Afárancac

L'émetteur

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

L'émetteur

Le détecteur

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Étude du parallélisme

TODO

Implémentations temps réel d'un récepteur QCSP

C. MONIÈRE

Avant-propos

Jonnanc

Introduction

Système de communication QCSP

Étude algorithmique

Implémentations

émetteur

Le detecteur Étude du paralléli Les corrélations

Expériences grandeur-natures

onclusion

Contributions

Sommaire

5. Expériences grandeur-natures En ville En mer

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Expériences grandeur-natures

En ville

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

En ville

En mer

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Sommaire

6. Conclusion
Synthèse
Perspectives futures

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Introductio

Système de communication QCSP

Étude algorithmigu

Implémentations

Expériences

randeur-nati

Conclusion

Synthèse Perspectives futu

Contributions

- / 6 /

recrement.

Conclusion

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Synthèse

Conclusion

TODO

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Système de

QCSP

algorithmique

Implémentations

xpériences

andeur-nat

onclusion

Contributions

Páfárancas

Contributions en conférences internationales

- CAMILLE MONIÈRE, BERTRAND LE GAL et al. (juin 2022a). « Efficient Software and Hardware Implementations of a QCSP Communication System ». In proceedings of: Design and Architecture for Signal and Image Processing, (DASIP'2022). T. 13425. Cham: Springer International Publishing, p. 29-41. ISBN: 978-3-031-12747-2 978-3-031-12748-9. DOI: 10.1007/978-3-031-12748-9.3.
- CAMILLE MONIÈRE, KASSEM SAIED et al. (oct. 2021). « Time Sliding Window for the Detection of CCSK Frames ». In proceedings of: IEEE
 Workshop on Signal Processing Systems (SIPS'2021). Combria, Portugal: IEEE, p. 99-104. DOI:
 10.1109/S19552927.2021. 00026.

Contribution en conférences nationales

 CAMILLE MONIÈRE, BERTRAND LE GAL et al. (juill. 2022b). « Implémentations Logicielles et Matérielles Efficientes d'une Chaîne de Communications QCSP ». In proceedings of: Conférence Francophone d'informatique En Parallélisme, Architecture et Système, (comPAS 2022). Amiens, France. URL: https://hal.archives-ouvertes.fr/hal-03699091.

Références I

- SCHMIDL, T.M. et D.C. Cox (Dec/1997). « Robust Frequency and Timing Synchronization for OFDM ». In: IEEE Transactions on Communications 45.12, p. 1613-1621. ISSN: 00906778. DOI: 10.1109/26.658240.
- ETTUS RESEARCH (s. d.), USRP Hardware Driver and USRP Manual: Table Of Contents, URL: https://files.ettus.com/manual/,
- HackRF One Great Scott Gadgets (s. d.), URL: https://greatscottgadgets.com/hackrf/one/.
- IEEE Standard for Low-Rate Wireless Networks (s. d.), Rapp. tech. IEEE, DOI: 10.1109/IEEESTD.2020.9144691.
- IEEE Standard for Low-Rate Wireless Networks-Amendment 2 (s. d.). IEEE Standard for Low-Rate Wireless Networks-Amendment 2: Low Power Wide Area Network (LPWAN) Extension to the Low-Energy Critical Infrastructure Monitoring (LECIM) Physical Layer (PHY). Rapp. tech. IEEE. pol: 10.1109/IEEESTD.2020.9206104.
- JIM SKEA (UNITED KINGDOM), PRIVADARSHI R SHUKLA (INDIA), ANDY REISINGER (NEW ZEALAND), RAPHAEL, SLADE (UNITED KINGDOM), MINAL PATHAK (INDIA), ALAA AL KHOURDAJIE (UNITED KINGDOM/SYRIA), RENÉE et al. (S. d.). Climate Change 2022. Rapp. tech. 6th. Intergovernemantal Panel on Climate Change. URL: https://doi.org/10.1006/j.prop.11.26fe/3/report.1fg/6/2/report.1fg/6/
 - MAIDEN, R., C. LANZANI et al. (s. d.). Build More Cost-Effective and More Efficient 5G Radios with Intel Agilex FPGAs (WP-01312-1.0). Manual. INTEL, Intel Programmable Solution Group.
- OpenStreetMap (s. d.), URL: https://www.openstreetmap.org/copyright.
- Quasi Cyclic Small Packet Oct 2019 Oct 2023 (s. d.), URL: https://gcsp.univ-ubs.fr/.
- BEN TEMIM, Mohamed Amine, Guillaume FERRÉ et al. (fév. 2022). «A New LoRa-like Transceiver Suited for LEO Satellite Communications ». In: Sensors 22.5, p. 1830. ISSN: 1424-8220. DOI: 10.3398/<22851838
- CHAUWAT, Rémi, Axel GARCIA-PENA et al. (2022). «Efficient LDPC-coded CCSK Links for Robust High Data Rates GNSS ». In: IEEE Transactions on Aerospace and Electronic Systems, p. 1-13. ISSN: 1557-9603. poi: 18.1189/TAES. 2822. 3198819
- Hoypis, Jakob, Sebastian CAMMERER et al. (2022). «Sionna: An Open-Source Library for Next-Generation Physical Layer Research ». In: DOI: 10.48550/ARXIV. 2203.11854.
- INTEL® (juin 2022). Architecture Instruction Set Extensions Programming Reference. URL: https://cdrdv2.intel.com/v1/dl/getContent/671368?explicitVersion=true.
- «ISM Radio Band» (oct. 2022). In: Wikipedia, URL: https://en.wikipedia.org/w/index.php?title=ISM radio band&oldid=1116815889.
- «NMEA 0183»(oct, 2022), In: Wikipedia, URL: https://en.wikipedia.org/w/index.php?title=NMEA 0183&oldid=1116811683.
- RADY, Mina, Jonathan Muñoz et al. (oct. 2022). « A Historical Twist on Long-Range Wireless: Building a 103 Km Multi-Hop Network Replicating Claude Chappe's Telegraph ». In: Sensors 22.19, p. 7586. ISSN: 1424-8220. DOI: 10.3390/s22197586.
- SAIED, Kassem (mars 2022), « Quasi-Cyclic Short Packet (OCSP) Transmission for IoT », Theses, Université Bretagne Sud, URL: https://hal.archives-ouvertes.fr/tel-03628626.
- SAIED, Kassem, Ali Chamas Al GHOUWAYEL et al. (sept. 2022). « Short Frame Transmission at Very Low SNR by Associating CCSK Modulation With NB-Code ». In: IEEE Transactions on Wireless
 Communications 21.9. p. 7194-7206. ISSN: 1536-1276. 1558-2248. poi: 10.1109/TWC. 2022. 3156628.
- VOLPIN, LÉA, LE GAL, BERTRAND et al. (oct. 2022). « Efficient LoRa-like Transmitter Stacks for SDR Applications ». In proceedings of : Proceedings of the IEEE International Conference on Circuits and Systems (ICECS). Glasgow, UK, P-P.
- CASSAGNE, Adrien, Mathieu LÉONARDON et al. (août 2021). « A Flexible and Portable Real-time DVB-S2 Transceiver Using Multicore and SIMD CPUs ». In proceedings of: 2021 11th International Symposium on Topics in Coding (ISTC), p. 1-5. DOI: 10.1109/ISTC49272.2021.9594063.
- SAIED, Kassem, Ali GHOUWAYEL et al. (oct. 2021). «Time-Synchronization of CCSK Short Frames ». In proceedings of: 17th International Conference on Wireless and Mobile Computing, Networking and
 Communications (WiMob'2021). , Bologna, Italy. um.: https://hal.archives-ouvertes.fr/hal-03404770.
- XILINX (2021). Vitis High-Level Synthesis User Guide UG1399 (V2021.1).
- DELOMIER, Yann, Bertrand LE GAL et al. (fév. 2020a). « Model-Based Design of Flexible and Efficient LDPC Decoders on FPGA Devices ». In: journal of Signal Processing Systems. DOI: 10.1007/s11265-020-01519-0.

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

Système de communication QCSP

Étude algorithmiqu

Implémentation

Expériences

onclusion

Références

References

Références II

- DELOMER, Yann, Bertrand LE GAL et al. (mai 2020b). «Model-Based Design of Hardware SC Polar Decoders for FPGAs ». In: ACM Transactions on Reconfigurable Technology and Systems (TRETS) 13.2.
 URL: https://hal.archives-ouvertes.fr/hal-02512069.
- DENG, Callian, Xuming FANG et al. (2020). «IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities ». In: IEEE Communications Surveys & Tutorials 22.4, p. 2136-2166. ISSN: 1553-877X. DOI: 10.1109/CONST. 2020. 3012715.
- «ISO/IEC/IEEE International Standard Floating-point Arithmetic » (mai 2020). In: ISO/IEC 60559:2020(E) IEEE Std 754-2019, p. 1-86. DOI: 10.1109/IEEESTD.2020.9091348.
- LE GAL, Bertrand et Christophe Jeco (jan. 2020). « High-Throughput FFT-SPA Decoder Implementation for Non-Binary LDPC Codes on X86 Multicore Processors ». In: Journal of Signal Processing Systems 92.1. p. 37-53. ISSN: 1939-8018. 1939-8115. pol: 10.1007/s11265-019-01447-8.
- Ngo, Khac-Hoang, Alexis Decursinge et al. (juin 2020). «Cube-Spit: A Structured Grassmannian Constellation for Non-Coherent SIMO Communications ». In: arXiv:1905.08745 [cs, math]. uni: http://arxiv.org/abs/1905.08745.
- Open Service Signal B2B (juill, 2020). BeiDou Navigation Satellite System Signal In Space Interface Control Document. URL:
- http://www.beldou.gov.cn/xt/gfxz/282088/P02020888/3362089116442.pdf.

 Pionou, Vincent, Bertr Le Ga. et al. (nov. 2020). «Fair Comparison of Hardware and Software LDPC Decoder Implementations for SDR Space Links ». In proceedings of: 2020 27th IEEE International Conference on Electronics. Circuits and Systems (ICECS). p. 1-4. por: 18. 1189/ICECS49266. 2020. 9:294986.
- SAIED, Kassem, Ali Chamas Al GHOUWAYEL et al. (juin 2020), « Quasi Cyclic Short Packet for Asynchronous Preamble-Less Transmission in Very Low SNRs.», In : Preprint, pot : hal-02884668.
- SCHLÜTER, Martin, Melk DÖRPINGHAUS et al. (oct. 2020). « Bounds on Phase, Frequency, and Timing Synchronization in Fully Digital Receivers With 1-Bit Quantization and Oversampling ». In: IEEE
 Transactions on Communications 68: 10. p. 6499-6513. ISSN: 1558-0857. DOI: 10.1109/TCOMM. 2020. 3005738.
- SEVER, Murat et Bülent Tavru (oct. 2020). « Use of GNU Radio as a Validation and Visualization Tool in Communications Electronic Support Project ». In proceedings of: 2020 28th Signal Processing and Communications Applications Conference (SIU). p. 1-5, page 18, page 18, page 28, page 284.
- SHARMA, Shree Krishna et Xianbin Wang (2020). «Toward Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions ».
 In: IEEE Communications Surveys & Tutorials 22.1. p. 426-471, ISSN: 1553-877X, DOI: 10.1109/COMST. 2019. 2916177.
- TAPPAREL_Joachim, Orion AFISIADIS et al. (mai 2020). «An Open-Source LoRa Physical Layer Prototype on GNU Radio». In proceedings of: 2020 IEEE 21st International Workshop on Signal Processing
 Advances in Wireless Communications (SPAWC). p. 1-5. poi: 10.1109/SPAWC48557, 2020. 9154273.
- TBEU (avr. 2020), Theu/Matio, URL: https://github.com/tbeu/matio.
- WALK, Philipp, Peter Jung et al. (oct. 2020). «MOCZ for Blind Short-Packet Communication: Practical Aspects ». In: IEEE Transactions on Wireless Communications 19.10, p. 6675-6692. ISSN: 1536-1276. 1558-2248. DOI: 10.1109/TNC. 2020.3004588.
- B. LE GAL et C. JEGO (août 2019). «Low-Latency and High-Throughput Software Turbo-Decoders on Multi-Core Architectures ». In: Annals of Telecommunications, Springer 75, p. 27-42. uRL: https://doi.org/10.1007/s12243-019-00727-5%0A%0A.
- Cellular IoT Evolution & digitization | Whitepaper (jan. 2019). URL:
 - https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-iot-evolution-for-industry-digitalization.
- KHALIFEH, Ala', Khaled Aldahdouh ALDAHDOUH et al. (mars 2019). «A Survey of 5G Emerging Wireless Technologies Featuring LoRaWAN, Sigfox, NB-IoT and LTE-M ». In proceedings of: 2019
 International Conference on Wireless Communications Signal Processing and Networking (WISPNET), p. 561-566, DOI: 10.1189/WISPNET45539, 2019.9032817.
- Luvric, Alexandru, Adrian I. Petrantiu et al. (2019). «Long Range SigFox Communication Protocol Scalability Analysis Under Large-Scale, High-Density Conditions ». In: IEEE Access 7, p. 35816-35825.
 ISSN: 2169-3536. DOI: 10.1109/ACCESS.2019.2903157.
- LORENZO ORTEGA ESPLUGA (nov. 2019). « Signal Optimization for Galileo Evolution ». Thesis. Toulouse, INPT. url.: http://www.theses.fr/20191NPT0118.

IMPLÉMENTATIONS TEMPS RÉEL D'UN RÉCEPTEUR QCSP

C. MONIÈRE

Avant-propos

Sommaire

Introduction

Système de

Étude

anlámentation

xpériences

nelucion

nclusion

Contribution:

Références III

- MARCHAND, Cédric, Emmanuel Boutillon et al. (fév. 2019). « Hybrid Check Node Architectures for NB-LDPC Decoders ». In : IEEE Transactions on Circuits and Systems I: Regular Papers 66.2, p. 869-880, ISSN: 1558-0806, por: 10.1109/TCSI.2018.2866882.
- MARTINEZ, Boria, Ferran ADELANTADO et al. (juin 2019), «Exploring the Performance Boundaries of NB-IoT», In: IEEE Internet of Things Journal 6.3, p. 5702-5712, ISSN: 2327-4662, DOI: 10.1109/JIOT.2019.2904799.
- XILINX (2019), Vivado Desian Suite User Guide: High-Level Synthesis (UG902).
- BLOESSL, Bastian et Falko Dressler (oct. 2018). « mSvnc : Physical Layer Frame Synchronization without Preamble Symbols ». In : IEEE Transactions on Mobile Computing 17.10, p. 2321-2333, ISSN : 1536-1233, 1558-0660, 2161-9875, por: 10.1109/TMC.2018.2808968.
- BOCKELMANN, Carsten, Nuno K, Pratas et al. (2018). «Towards Massive Connectivity Support for Scalable mMTC Communications in 5G Networks ». In: IEEE Access 6. p. 28969-28992. ISSN: 2169-3536, poi: 10.1109/ACCESS.2018.2837382.
- CHOI. Chang-Sic, lin-Doo leong et al. (ian, 2018). «LoRa Based Renewable Energy Monitoring System with Open IoT Platform». In proceedings of: 2018 International Conference on Electronics. Information, and Communication (ICEIC), Honolulu, HI, USA: IEEE, p. 1-2, DOI: 10.23919/ELINFOCOM, 2018, 8330550.
- KASTNER Rvan, Janarhek Matar et al. (maj 2018). Parallel Programming for FPGAs, arXiv: 1805.03648 [csl.upr: http://arxiv.org/abs/1805.03648.
- KHAILANY, Brucek, Evgeni KHMER et al. (2018). «A Modular Digital VLSI Flow for High-Productivity SoC Design». In proceedings of: Proceedings of the 55th Annual Design Automation Conference. DAC '18, New York, NY, USA: Association for Computing Machinery, ISBN: 978-1-4503-5700-5, DOI: 10.1145/3195970.3199846.
- KOREN, Ana et Dina ŠIMUNIĆ (mai 2018), « Modelling an Energy-Efficient ZigBee (IEEE 802.15.4) Body Area Network in IoT-based Smart Homes », In proceedings of: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), p. 0356-0360, DOI: 10.23919/MIPRO, 2018.8400068.
- TRAN, Mai-Thanh (nov. 2018), «Towards Hardware Synthesis of a Flexible Radio from a High-Level Language », These de Doctorat, Rennes 1, URL; https://www.theses.fr/2018REN15072.
- WILSON, Richard (juin 2018). Intel FlexRAN Reference Designs Deployed in 5G Infrastructure.
- Advances in Mobile Cloud Computing and Big Data in the 5G Era (2017). Studies in Big Data. Springer International Publishing. ISBN: 978-3-319-45143-5. DOI: 10.1007/978-3-319-45145-9.
- AHMED ABDMOULEH (Sept. 2017), « Non-Binary LDPC Codes Associated to High Order Modulations », Theses, Université de Bretagne Sud, URL :
- AZARI, Amin, Petar Popovski et al. (déc. 2017), « Grant-Free Radio Access for Short-Packet Communications over 5G Networks », In proceedings of: GLOBECOM 2017 2017 IEEE Global Communications Conference, Singapore: IEEE, p. 1-7, ISBN: 978-1-5090-5019-2, DOI: 10.1109/GLOCOM.2017.8255054.
- Kong, Linghe, Muhammad Khurram Khan et al. (jan. 2017). « Millimeter-Wave Wireless Communications for IoT-Cloud Supported Autonomous Vehicles: Overview, Design, and Challenges ». In: IEEE Communications Magazine 55.1, p. 62-68, ISSN: 0163-6804, DOI: 10.1109/MCOM. 2017. 1600422CM.
- KREINAR, Edward (sept. 2017), « RFNoC Neural Network Library Using Vivado HLS », In: Proceedings of the GNU Radio Conference 2.1, p. 7-7, URL: https://pubs.gnuradio.org/index.php/grcon/article/view/27.
- RAHBARI, Hanif et Marwan Krunz (juin 2017). « Exploiting Frame Preamble Waveforms to Support New Physical-Layer Functions in OFDM-Based 802.11 Systems », In: IEEE Transactions on Wireless Communications 16.6, p. 3775-3786. ISSN: 1536-1276. DOI: 10.1109/TWC.2017.2688405.
- RANGANATHAN, Sudarsan Vasista Srinivasan et Ba-Zhong Shen (juin 2017). « Non-Binary Low Density Parity Check (NB-LDPC) Codes for Communication Systems ». US9692451B2. URL : https://patents.google.com/patent/US9692451B2/en.
- SHAFI, Mansoor, Andreas F, Molisch et al. (juin 2017), «5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice », In: IEEE Journal on Selected Areas in Communications 35.6, p. 1201-1221. ISSN: 1558-0008. DOI: 10.1109/JSAC.2017.2692307.
- SINHA. Rashmi Sharan, Yiqiao WFI et al. (mars 2017), « A Survey on LPWA Technology: LoRa and NB-IoT ». In: ICT Express 3.1, p. 14-21, ISSN: 24059595, pol: 10, 1016/j. icte. 2017, 03, 004.
- B, LE GAL et C, JEGO (mai 2016), « High-Throughput Multi-Core LDPC Decoders Based on X86 Processor », In : JEEF Transactions on Parallel and Distributed Systems (TPDS) 27.5, p. 1373-1386.

IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Sommaire

Introduction

- BRAUN, Martin, Jonathan PENDLUM et al. (sept. 2016), « RFNoC: RF Network-on-Chip ». In: Proceedings of the GNU Radio Conference 1.1, URL: https://pubs.gnuradio.org/index.php/grcon/article/view/3.
- Durisi, Giuseppe, Tobias Koch et al. (sept. 2016). « Toward Massive, Ultrareliable, and Low-Latency Wireless Communication With Short Packets ». In: Proceedings of the IEEE 104.9. p. 1711-1726. ISSN: 0018-9219, 1558-2256, poi: 10.1109/JPROC.2016.2537298.
- PALATTELLA, Maria Rita, Mischa Dohler et al. (mars 2016), «Internet of Things in the 5G Era: Enablers, Architecture, and Business Models ». In: IEEE Journal on Selected Areas in Communications 34.3. p. 510-527, ISSN: 1558-0008, por: 10.1109/JSAC.2016.2525418.
- SULEK, Wojcjech (nov. 2016). « Non-Binary LDPC Decoders Design for Maximizing Throughput of an FPGA Implementation ». In: Circuits, Systems, and Signal Processing 35.11, p. 4060-4080, ISSN: 1531-5878, por: 10.1007/s00034-015-0235-x.
- WYGLINSKI, Alexander M., Don P. Orofino et al. (jan. 2016), « Revolutionizing Software Defined Radio : Case Studies in Hardware, Software, and Education ». In : IEEE Communications Magazine 54.1. p. 68-75, ISSN: 1558-1896, por: 10.1109/MCOM, 2016, 7378428.
- B. Le GAL, C. Leroux et al. (ian. 2015). « Multi-Gb/s Software Decoding of Polar Codes ». In: IEEE Transactions on Signal Processing (TSP) 63.2, p. 349-359.
- CHECKO, Aleksandra, Henrik I. CHRISTIANSEN et al. (sept. 2015). «Cloud RAN for Mobile Networks—A Technology Overview». In: IEEE Communications Surveys & Tutorials 17.1. p. 405-426. ISSN: 1553-877X, por: 10.1109/COMST.2014.2355255.
- GOURSAUD, C. et J. M. GORCE (oct. 2015), « Dedicated Networks for IoT: PHY / MAC State of the Art and Challenges ». In: EAI Endorsed Transactions on Internet of Things 1.1, p. 150597. ISSN: 2414-1399 por: 10.4108/eai.26-10-2015.150597
- Wu, Gang, Su Hu et al. (juill. 2015). « Low Complexity Time-Frequency Synchronization for Transform Domain Communications Systems ». In proceedings of: 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), p. 1002-1006, pot: 10.1109/ChinaSIP.2015.7230555.
- ABASSI, Quissama (2014), « Ftude Des Décodeurs I DPC Non-Binaires ». Thèse de doct
- I, Chih-Lin, Jinri Huang et al. (2014). « Recent Progress on C-RAN Centralization and Cloudification ». In: IEEE Access 2, p. 1030-1039. ISSN: 2169-3536. DOI: 10.1109/ACCESS. 2014. 2351411.
- NIKAEIN, Navid, Raymond KNOPP et al. (2014). «OpenAirInterface: An Open LTE Network in a PC». In proceedings of: Proceedings of the 20th Annual International Conference on Mobile Computing
- ZHOU, Guyue, Ang LTU et al. (juin 2014), «An Embedded Solution to Visual Mapping for Consumer Drones ». In proceedings of: 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, p. 670-675, poi : 10 , 1109/CVPRW , 2014 , 102,
- ABASSI, Oussama, Laura Conde-Canencia et al. (avr. 2013). « Non-Binary Low-Density Parity-Check Coded Cyclic Code-Shift Keying », In proceedings of: 2013 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, p. 3890-3894, DOI: 10.1109/WCNC.2013.6555196.
- ARM (2013), NEON Programmer's Guide, 1.0. ARM, URL: https://documentation-service.arm.com/.
- CERQUEIRA, Felipe et Björn B. Brandenburg (2013), « A Comparison of Scheduling Latency in Linux, PREEMPT-RT, and LITMUS RT ». In proceedings of :
- LIVA. G., E. PAOLINI et al. (juin 2013). «Short Turbo Codes over High Order Fields.». In: IEEE Transactions on Communications 61.6. p. 2201-2211. ISSN: 0090-6778. DOI: 10 1109/TCOMM 2013 041113 120539
- POLYANSKIY, Yury (mars 2013), «Asynchronous Communication: Exact Synchronization, Universality, and Dispersion». In: IEEE Transactions on Information Theory 59.3. p. 1256-1270. ISSN: 0018-9448, 1557-9654, por: 10, 1109/TIT, 2012, 2230682,
- ZECENA, Ivan, Martin Burtscher et al. (déc. 2013), « Evaluating the Performance and Energy Efficiency of N-Body Codes on Multi-Core CPUs and GPUs ». In proceedings of ; 2013 IEEE 32nd International Performance Computing and Communications Conference (IPCCC), p. 1-8. DOI: 10.1109/PCCC.2013.6742789.
- Ktm. Sunghong, Kyunghwan Joo et al. (ian. 2012). « A Delay-Robust Random Access Preamble Detection Algorithm for LTE System ». In proceedings of: 2012 IFFE Radio and Wireless Symposium. Santa Clara, CA, USA; IEEE, p. 75-78, ISBN: 978-1-4577-1155-8 978-1-4577-1153-4 978-1-4577-1154-1, poi: 10.1109/RWS.2012.6175341,

Références V

- LIVA, Gianluigi, Enrico PAOLINI et al. (sept. 2012). « Codes on High-Order Fields for the CCSDS next Generation Uplink ». In proceedings of: 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), p. 44-48, pot: 10.1109/ASMS-SPSC, 2012, 6333104.
- R., Anand, Gintu XAVIER et al. (août 2012). «GNU Radio Based Control System». In proceedings of: 2012 International Conference on Advances in Computing and Communications. p. 259-262. DOI: 10.1109/ICACC.2012.59.
- KHAIRUDIN, Norhazlin, N. Hassan et al. (avr. 2011). «Implementing Root Raised Cosine (RRC) Filter for WCDMA Using Xilinx ». In : p. 203-207, poi : 10, 1109 / ICEDSA . 2011. 5959095.
- Tan, Kun, He Liu et al. (2011), «Sora: High-Performance Software Radio Using General-Purpose Multi-Core Processors ». In: Communications of the ACM 54.1, p. 99-107.
- FINGEROFF, Michael (2010), High-Level Synthesis Blue Book, New Iersey: Xlibris Corporation, ISBN: 978-1-4500-9724-6 978-1-4500-9723-9.
- IMAD. Rodrique. Charly POULIAT et al. (déc. 2010). « Frame Synchronization Techniques for Non-Binary LDPC Codes over GF(q) ». In proceedings of : 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL. USA: IEEE, p. 1-6. ISBN: 978-1-4244-5636-9. poi: 10.1109/GLOCOM, 2010, 5683422.
- MORI, Ryuhei et Toshiyuki Tanaka (août 2010). « Non-Binary Polar Codes Using Reed-Solomon Codes and Algebraic Geometry Codes ». In proceedings of: 2010 IEEE Information Theory Workshop. Dublin, Ireland: IEEE, p. 1-5, ISBN: 978-1-4244-8262-7, por: 10.1109/CIG.2010.5592755.
- PRIETSCHINGER Stephan et David Decience (déc. 2010). « Getting Closer to MIMO Canacity with Non-Binary Codes and Spatial Multiplexing.». In proceedings of: 2010 IEEE Global Telecommunications. Conference GLOBECOM 2010. Miami, FL, USA: IEEE, p. 1-5. ISBN: 978-1-4244-5636-9. DOI: 10.1109/GLOCOM. 2010. 5684077.
- VOICH A Addrag David Declero et al. (mai 2010). «Low-Complexity Decoding for Non-Binary LDPC Codes in High Order Fields.». In: IEEE Transactions on Communications 58.5. p. 1365-1375. ISSN: 0090-6778, por: 10.1109/TCOMM. 2010. 05.070096.
- ZHENZHEN YE, CHUNITE DUAN et al. (juin 2010). «A Synchronization Design for UWB-Based Wireless Multimedia Systems ». In: IEEE Transactions on Broadcastina 56.2, p. 211-225. ISSN: 0018-9316. 1557-9611, DOI: 10.1109/TBC.2010.2042499.
- ARIKAN, Erdal (juill, 2009), « Channel Polarization; A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels », In: IEEE Transactions on Information Theory 55.7, p. 3051-3073. ISSN: 0018-9448, 1557-9654. DOI: 10.1109/TIT.2009.2021379.
- BEYME, S. et C. LEUNG (2009), « Efficient Computation of DFT of Zadoff-Chu Sequences », In : Electronics Letters 45.9, p. 461, ISSN : 00135194, DOI: 10.1049/e1.2009.3330.
- MARTIN, Grant et Gary Smith (juill, 2009), « High-Level Synthesis; Past, Present, and Future ». In: IEEE Design & Test of Computers 26.4, p. 18-25. ISSN: 1558-1918, pol: 10.1109/MDT, 2009, 83.
- ROBERT, Max et Bruce A. Fette (2009), «The Software-Defined Radio as a Platform for Cognitive Radio », In : Cognitive Radio Technology, Elsevier, p. 65-103, ISBN: 978-0-12-374535-4, pdi: 10.1016/8978-0-12-374535-4.00003-5
- ROUPHAEL, Tony I. (2009). « High-Level Requirements and Link Budget Analysis ». In: Signal Processing for Software-Defined Radio. Elsevier, p. 87-122, ISBN: 978-0-7506-8210-7. poi: 10 1016/R978-0-7506-8210-7 00004-7
- TRIFUNDVIC. Konrad, Dorit Nuzman et al. (sept. 2009). « Polyhedral-Model Guided Loop-Nest Auto-Vectorization ». In proceedings of: 2009 18th International Conference on Parallel Architectures and Compilation Techniques, p. 327-337, pol: 10.1109/PACT.2009.18.
- Coussy, Philippe et Adam Morawiec (2008), High-Level Synthesis: From Algorithm to Digital Circuit. 1. éd. Berlin: Springer Science + Business media B.V. ISBN: 978-1-4020-8588-8.
- DHURANDHER, Sanjay Kumar, Sudip Misra et al. (oct. 2008). « QDV : A Quality-of-Security-Based Distance Vector Routing Protocol for Wireless Sensor Networks Using Ant Colony Optimization ». In proceedings of: 2008 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, p. 598-602, pot: 10.1109/WiMob.2008, 61.
- FUITA, Takafumi, Daisei Uchida et al. (oct. 2008). « A Burst Modulation/Demodulation Method for Short-Packet Wireless Communication Systems », In proceedings of : 2008 14th Asia-Pacific
- GUPTA, Rajesh et Forrest Brewer (2008). « High-Level Synthesis : A Retrospective ». In : High-Level Synthesis. Dordrecht ; Springer Netherlands, p. 13-28. ISBN : 978-1-4020-8587-1 978-1-4020-8588-8. por: 10.1007/978-1-4020-8588-8 2.
- HILL, Mark D. et Michael R. Marty (iuill. 2008). « Amdahl's Law in the Multicore Era ». In: Computer 41.7, p. 33-38, ISSN: 1558-0814, DOI: 10.1109/MC.2008.209.

IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Sommaire

Introduction

Références VI

- IMAD, Rodrique et Sebastien Houcke (juill, 2008). « Blind Frame Synchronization and Phase Offset Estimation for Coded Systems ». In proceedings of: 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, p. 11-15, pol: 10.1109/SPAWC.2008.4641560.
- BARONTI, Paolo, Prashant Pillai et al. (mai 2007), «Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards ». In: Computer Communications 30.7. p. 1655-1695, ISSN: 01403664, DOI: 10.1016/j.comcom.2006.12.020.
- Prister, Henry D. et Igal Sason (juin 2007). « Accumulate-Repeat-Accumulate Codes : Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity ». In : IEEE Transactions on Information Theory 53.6, p. 2088-2115, ISSN: 1557-9654, DOI: 10.1109/TIT.2007.896873.
- BIERREGARD, Tobias et Shankar Manapeyan (juin 2006). «A Survey of Research and Practices of Network-on-chip ». In: ACM Computing Surveys 38.1, p. 1, ISSN: 0360-0300, 1557-7341, pp1: 10.1145/1132952.1132953.
- CASTIÑEIRA MOREIRA, Jorge et Patrick G. FARRELL (2006). Essentials of Error-Control Coding. West Sussex. England : John Wiley & Sons. ISBN: 978-0-470-03571-9.
- DHAR, Rahul, Gesly George et al. (sept. 2006), « Supporting Interrated MAC and PHY Software Development for the USRP SDR ». In proceedings of: 2006 1st IEEE Workshop on Networking Technologies for Software Defined Radio Networks, p. 68-77, pp; 10, 1109/SDR, 2006, 4286328.
- POULLIAT, Charly, Marc Fossorier et al. (juill, 2006). « Design of Non Binary LDPC Codes Using Their Binary Image: Algebraic Properties ». In proceedings of: 2006 IEEE International Symposium on Information Theory, Seattle, WA: IEEE, p. 93-97, ISBN: 978-1-4244-0505-3 978-1-4244-0504-6, poi: 10.1109/ISIT.2006.261681.
- CASSEAU Emmanuel Bertrand Le Gai et al. (2005) « C. BASED RAPID PROTOTYPING FOR DIGITAL SIGNAL PROCESSING». In proceedings of "FUSIPCO" Turkey: FUSIPCO" p. 1-4 URL: https://hal.archives-ouvertes.fr/hal-00080466.
- D, AKOPIAN (août 2005), « Fast FFT Based GPS Satellite Acquisition Methods », In : IEE Proceedings Radar, Sonar and Navigation 152.4, p. 277-286. ISSN: 1350-2395, DOI: 10.1049/jp-xsn: 20045096.
- FRIGO, M. et S.G. IOHNSON (fév. 2005), «The Design and Implementation of FFTW3 ». In: Proceedings of the IEEE 93.2, p. 216-231, ISSN: 1558-2256, DOI: 10.1109/JPROC.2004.840301.
- DILLARD, G.M., M, REUTER et al. ([uill, 2003), « Cyclic Code Shift Keying: A Low Probability of Intercept Communication Technique », In: IEEE Transactions on Aerospace and Electronic Systems 39.3. p. 786-798 ISSN: 0018-9251 por: 10. 1109/TAFS, 2003, 1238736.
- BLACKFORD, L. Susan, Antoine PETITET et al. (2002), «An Updated Set of Basic Linear Algebra Subprograms (BLAS)», In: ACM Transactions on Mathematical Software 28.2, p. 135-151.
- III, I. (juin 2000), « Software Radio Architecture Evolution: Foundations, Technology Tradeoffs, and Architecture Implications », In: IEICE Transactions on Communications E83B, p. 1165-1173,
- BOSSERT, Martin (1999), Channel Coding for Telecommunications, Chichester, England: New York: Wiley, ISBN: 978-0-471-98277-7.
- Davey, M.C. et D. MacKay (juin 1998), « Low-Density Parity Check Codes over GF(q) ». In : IEEE Communications Letters 2.6, p. 165-167, ISSN: 1089-7798, DOI: 10.1109/4234.681360.
- CHUGG, K.M. et A. POLYDOROS (Iuill, 1996), « MLSE for an Unknown Channel J. Optimality Considerations ». In: IEEE Transactions on Communications 44.7, p. 836-846, ISSN: 00906778, DOI: 10 1109/26 508303
- HOLZMANN, Gerard I et Biörn PEHRSON (1995), The Early History of Data Networks. IEEE Computer Society Press.
- MITOLA, I. (mai 1995), «The Software Radio Architecture », In: IEEE Communications Magazine 33.5, p. 26-38, ISSN: 1558-1896, DOI: 10.1109/35.393001
- Fitz. M.P. (fév. 1994). « Further Results in the Fast Estimation of a Single Frequency », In: IEEE Transactions on Communications 42.2/3/4. p. 862-864. ISSN: 0090-6778. DOI: 10 1109/TCOMM 1994 580190
- Berrou, C., A. GLAVIEUX et al. (1993), « Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-codes, 1 », In proceedings of: Proceedings of ICC '93 IEEE International Conference on Communications, T. 2. Geneva, Switzerland: IEEE, p. 1064-1070, ISBN: 978-0-7803-0950-0, DOI: 10.1109/ICC.1993.397441.
- MARTIN, E., O. SENTIEYS et al. (sept. 1993). « GAUT: An Architectural Synthesis Tool for Dedicated Signal Processors ». In proceedings of: Proceedings of EURO-DAC 93 and EURO-VHDL 93- European Design Automation Conference, p. 14-19. DOI: 10.1109/EURDAC.1993.410610.
- MICHELL Giovanni De (1993), « High-Level Synthesis of Digital Circuits ». In: Advances in Computers. T. 37. Flsevier, p. 207-283, ISBN: 978-0-12-012137-3, DOI: 10.1016/S0065-2458/08)60406-4
- Day, I.D. et H. ZIMMERMANN (déc. 1983), «The OSI Reference Model ». In: Proceedings of the IEEE 71.12, p. 1334-1340, ISSN: 1558-2256, DOI: 10.1109/PROC.1983.12775.

IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP

C MONIÈRE

Avant-propos

Sommaire

Introduction

Système de

Références VII

- IMPLÉMENTATIONS TEMPS RÉFI D'UN RÉCEPTEUR OCSP
 - C. MONIÈRE

Avant-propos

Sommaire

Introduction

Système de

- GODARD, D. (nov. 1980) « Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems ». In: IEEE Transactions on Communications 28.11. p. 1867-1875. ISSN: 0096-2244, por: 10.1109/TCOM.1980.1094608
- CHU, D. (juill. 1972). « Polyphase Codes with Good Periodic Correlation Properties (Corresp.).». In: IEEE Transactions on Information Theory 18.4, p. 531-532. ISSN: 1557-9654. DOI: 10.1109/TIT.1972.1054840.
- FLYNN, Michael I. (sept. 1972). «Some Computer Organizations and Their Effectiveness ». In: IEEE Transactions on Computers C-21.9, p. 948-960, ISSN: 0018-9340, pol: 10.1109/TC.1972.5009071.
- WALTHER, I. S. (1971). « A Unified Algorithm for Elementary Functions ». In proceedings of: Proceedings of the May 18-20, 1971, Spring Joint Computer Conference on AFJPS 71 (Spring), Atlantic City, New Jersey: ACM Press, p. 379, por: 10.1145/1478786.1478840.
- ABRAMSON, Norman (1970). «THE ALOHA SYSTEM: Another Alternative for Computer Communications ». In proceedings of: Proceedings of the November 17-19, 1970, Fall Joint Computer Conference on - AFIPS 70 (Fall). Houston, Texas: ACM Press, p. 281, pot: 10.1145/1478462.1478502.
- FLYNN, M.I. (1966). « Very High-Speed Computing Systems », In: Proceedings of the IEEE 54.12, p. 1901-1909, ISSN: 0018-9219, DOI: 10.1109/PROC.1966.5273.
- GALLAGER, R. (ian. 1962). «Low-Density Parity-Check Codes ». In: IEEE Transactions on Information Theory 8.1. p. 21-28. ISSN: 0018-9448. DOI: 10.1109/TIT.1962. 1057683.