RESEARCH INSTITUTE NATURE AND FOREST

Flanders State of the Art

INLA and inlabru with spatial patterns

Thierry Onkelinx

Overzicht

- 1 Checking spatial autocorrelation
 - Pearson residuals
 - Variogram
- 2 Prepare the model
 - Creating a mesh
 - Creating an SPDE model
- 3 Fitting the model
 - Only the data
 - Predictions

Flanders State of the Art

Checking spatial auto-correlation

Flanders State of the Art

Checking spatial auto-correlation

Pearson residuals

► components?

- components?
- **b** observed value (y_i) , fitted value (\hat{y}_i) , mean squared error (MSE)

- components?
- **b** observed value (y_i) , fitted value (\hat{y}_i) , mean squared error (MSE)
- ► formula

- components?
- **b** observed value (y_i) , fitted value (\hat{y}_i) , mean squared error (MSE)
- ► formula

$$pr_i = \frac{y_i - \hat{y}_i}{\sqrt{MSE}}$$

- components?
- **b** observed value (y_i) , fitted value (\hat{y}_i) , mean squared error (MSE)
- ► formula

$$pr_i = \frac{y_i - \hat{y}_i}{\sqrt{MSE}}$$

► MSE (variance) depends on distribution! Check it using inla.doc("name_of_your_distribution").

Example data: rainfall in Parana state, Brazil

Calculate Pearson residuals

- ► What is the mean for your model?
- What is the variance for your model? Hint: inla.doc("your distribution")
- Calculate the Pearson residuals for your model

Flanders State of the Art

Checking spatial auto-correlation

Variogram

Important characteristics

Important characteristics

Projected example data

Increased cutoff

Number of point pairs is important

Too small width leads to unstable variograms

Sensible small width yields the most informative variogram

- ▶ What is the minimum binwidth for your data?
- Calculate the variogram for your model
- What is the approximate range of of the variogram?
- What is the nugget, sill and partial sill?

Flanders State of the Art

Prepare the model

State of the Art

Prepare the model

Creating a mesh

Size of a mesh I

- equilateral triangles work best
- edge length should be around a third to a tenth of the range
- avoid narrow triangles
- avoid small edges
- add extra, larger triangles around the border
- simplify the border

Mesh only within the border

```
mesh <- inla.mesh.2d(boundary = border, max.edge = 0.15)
ggplot() + gg(mesh) + coord_fixed() + theme_map() +
    ggtitle(paste("Vertices: ", mesh$n))</pre>
```


Mesh going outside the border

```
mesh <- inla.mesh.2d(boundary = border, max.edge = c(0.15, 0.3))
ggplot() + gg(mesh) + coord_fixed() + theme_map() +
ggtitle(paste("Vertices: ", mesh$n))</pre>
```


Mesh for rainfall data

```
mesh <- inla.mesh.2d(boundary = boundary, max.edge = c(30e3, 100e3))
ggplot(dataset) + gg(mesh) + geom_sf() + ggtitle(paste("Vertices: ", mesh$n)) +
    coord_sf(datum = st_crs(5880))</pre>
```


Use cutoff to simplify mesh

Finer mesh for final model run

- ▶ What are the relevant max.edge and cutoff for a course mesh?
- ▶ What are the relevant max.edge and cutoff for a smooth mesh?
- Create a course and a smooth mesh for your data

State of the Art

Prepare the model

Creating an SPDE model

SPDE using penalised complexity priors

Stochastic Partial Differential Equations

```
▶ prior.range = c(r, alpha_r): P(\rho < r) < \alpha_r
```

```
▶ prior.sigma = c(s, alpha_s): P(\sigma > s) < \alpha_s
```


Challenge 4

- ▶ What are relevant priors for the range and sigma for your data
 - ► Hint: see challenge 2
- ► Make the SPDE models for your data

Flanders State of the Art

Fitting the model

NATURE AND FOREST

Fitting the model

Only the data

The stack for the observed data

```
A1 <- inla.spde.make.A(mesh = mesh1, loc = st_coordinates(dataset))
stack1 <- inla.stack(
  tag = "estimation", ## tag
  data = list(Rain = dataset$Rain), ## response
  A = list(A1, 1), ## projector matrices (SPDE and fixed effects)
  effects = list(
    list(site = seq_len(spde1$n.spde)), ## random field index
    dataset %>%
    as.data.frame() %>%
    transmute(Intercept = 1, Xc, Yc) ## fixed effect covariates
)
)
```


INLA

inlabru

Comparison of fixed effect parameters

Comparing hyperparameters

Correlation structure

```
spde.posterior(bru_spde1, "site", what = "matern.covariance") -> covplot
spde.posterior(bru_spde1, "site", what = "matern.correlation") -> corplot
multiplot(plot(covplot), plot(corplot))
```


Calculate Pearson residuals

```
dataset %>%
  mutate(
    mu = model_spde1$summary.fitted.values$mean,
    sigma2 = mu ^ 2 / model_spde1$summary.hyperpar[1, "mean"],
    Pearson_iid = (Rain - mu) / sqrt(sigma2)
) -> dataset
```

Error: Column 'mu' must be length 528 (the number of rows) or one, not 1664

Using the stack index

```
si <- inla.stack.index(stack1, "estimation")$data
dataset %>%
  mutate(
    mu = model_spde1$summary.fitted.values$mean[si],
    sigma2 = mu ^ 2 / model_spde1$summary.hyperpar[1, "mean"],
    Pearson_spde = (Rain - mu) / sqrt(sigma2)
) -> dataset
```


Using inlabru

```
fit <- predict(bru_spde1, as_Spatial(dataset), ~exp(Intercept + Xc + Yc + site))
dataset %>%
    mutate(
         mu = fit$mean,
         sigma2 = mu ^ 2 / model_spde1$summary.hyperpar[1, "mean"],
         Pearson_spde = (Rain - mu) / sqrt(sigma2)
) -> dataset
```


Variogram

```
vg_fit <- variogram(Pearson_spde ~ 1, cressie = TRUE,</pre>
                       data = as_Spatial(dataset), width = 10e3)
     0.6 -
  variance
     0.4 -
     0.2 -
     0.0 -
                                          100
                                                                       200
                                              distance (km)
```

Interpolate GMRF

```
A1.grid <- inla.mesh.projector(mesh1, dims = c(41, 41))
inla.mesh.project(A1.grid, model_spde1$summary.random$site) %>%
    as.matrix() %>%
    as.data.frame() %>%
bind_cols(
    expand.grid(x = A1.grid$x, y = A1.grid$y)
) %>%
filter(!is.na(ID)) -> eta_spde
```


Plot GMRF

```
ggplot(dataset) + geom_tile(data = eta_spde, aes(x = x, y = y, fill = mean)) +
  geom_sf() + scale_fill_gradient2()
```


RESEARCH INSTITUTE NATURE AND FOREST

Fitting the model

Predictions

Prediction stack for SPDE grid + fixed effects

```
expand.grid(X = A1.grid$x, Y = A1.grid$y) %>%
  mutate(Intercept = 1, Xc = X / 1e5 - 53, Yc = Y / 1e5 - 71) -> grid_data
stack1_grid <- inla.stack(
  tag = "grid", ## tag
  data = list(Rain = NA), ## response
  A = list(A1.grid$proj$A, 1), ## projector matrices (SPDE and fixed effects)
  effects = list(
    list(site = seq_len(spde1$n.spde)), ## random field index
    grid_data ## covariates at grid locations
)</pre>
```


Refit the model with the combinated stack

Plot grid II

Using inlabru

pred_mesh <- predict(bru_spde1, pixels(mesh1), ~exp(Intercept + Xc + Yc + site))
ggplot() + gg(pred_mesh) + gg(boundary)</pre>

- ► Fit the model using the SPDE
- ▶ Plot a map of the GMRF
- ▶ Plot a map of the predictions and their credible interval

