Exercício 4 – Monte Carlo - Integração

Cláudio Santos nº 42208 MIEF <u>claudiostb7@hotmail.com</u>

Sumário: Cálculo do valor de π . Cálculo da média sobre todas as configurações possíveis da distância média entre pontos aleatórios numa caixa.

Exercício 4.1

O objectivo é determinar o valor de π . Gera-se aleatoriamente \mathbf{N} pontos $(\mathbf{x}_i, \mathbf{y}_i)$ uniformemente distribibuídos num quadrado unitário. Calcula-se a distância à origem $r_i = \sqrt{x_i^2 + y_i^2}$ e sempre que $\mathbf{r}_i < 1$, ou seja, se os pontos estivererem dentro de um quarto de círculo, de raio unitário centrado na origem, contabiliza-se esse número de pontos \mathbf{N}_d . O valor de $\pi(\mathbf{N})$ é estimado calculando a fração \mathbf{N}_d/\mathbf{N} e multiplicando por quatro, para obter um círculo de raio unitário.

$$\pi(N) = 4 \times \frac{N_d}{N}$$

No código definiu-se as variaveís N (número de pontos gerados), x (coordenada cartesiana x), y (coordenada cartesiana y), r (distância à origem do ponto gerado) e **conta** (corresponde ao N_d). Para gerador aleatório de x e y foi usando a função drand48(), e para gerar os N pontos e verificar a condição do quarto de círculo, implementou-se um ciclo. Analisou-se o valor de $\pi(N)$ desde N=10 até $N=10^5$.

Figura 1: Simulação de Monte Carlo: Gráfico do valor de $\pi(N)$ em função do número de pontos gerados, N. Os valores flutuam em torno do valor teórico.

Por exemplo, para N=10⁴, o valor calculado é $\pi(N)$ =3,1404

Também se estudou desvio $\Delta(N)$ face ao valor teórico:

$$\Delta(N) = \pi - \pi(N)$$

Figura 2: Simulação de Monte Carlo: Gráfico do desvio $\Delta(N)$ face ao valor teórico em função do número de pontos gerados, N.

No mesmo exemplo de N= 10^4 , o desvio é $\Delta(N)$ =0,001 . Para N= 10^4 , o valor calculado de π é então $\pi_{calculado}$ =3,1404 \pm 0,0012 .

Exercício 4.2

O objectivo é determinar a média $<\mathbf{d}_{media}>$ sobre todas as configurações possíveis da distância média \mathbf{d}_{media} entre \mathbf{N} pontos distribuidos uniformemente numa caixa de tamanho \mathbf{L} . Essa distância média corresponde ao seguinte integral:

$$\langle d_{media} \rangle = \frac{1}{Z} \int d^3 r_1 d^3 r_2 ... d^3 r_N$$
 (1)
onde $Z = \int d_{media} d^3 r_1 d^3 r_2 ... d^3 r_N$

A distância média em cada configuração é obtida pela soma:

$$d_{media} = \frac{2}{N(N-1)} \sum_{i} \sum_{j>i} d_{ij} \quad (2)$$
 onde
$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2} \quad (3)$$

Vai-se se resolver o integral usando o método de Monte Carlo. Gerou-se uma configuração k e aleatoriamente a posição de N pontos. Calculou-se a distância média d^k_{media} entre os pontos gerados. Usando as equações (2) e (3). Repetiu-se o processo para M configurações diferentes e determina-se a média $< d_{media}>$:

$$\langle d_{media} \rangle \approx \frac{1}{M} \sum_{k=1}^{M} d_{media}^{k}$$
 (4)

No código definiu-se uma função caixa() que tem como argumentos o número de partículas N e o número de configurações K. Dentro desta função são definidos os arrays X[N], Y[N], Z[N] que correspondem às posições das N partículas. Considerou-se o tamanho L=1. Fez-se um duplo ciclo e, dentro do segundo ciclo, é gerado aleatoriamente a posição (x,y,z) de cada partícula com a função drand48(). Depois implementou-se a fórmula (3) verificando a condição entre índices dos ciclos. Após todos os \mathbf{d}_{ii} serem somados, aplica-se a equação (2) e obtem-se a distância média **dm[k]** sobre uma configuração k. O algoritmo repete-se até K configurações (variando a seed do gerador aleatório para cada configuração). No final, usase a expressão (4) para calcular **<dmedia>** sobre as **K=1,2,...,100** configurações. O número de partículas é fixo, N=100.

Figura 3: Gráfico da $< d_{media} >$ em função do número de configurações K.

Conclui-se que $<\mathbf{d}_{media}>$ praticamente não depende do número de configurações e tem o valor aproximado de 0,66 para qualquer configuração.

Numa segunda análise, desta vez fixou-se o número de configurações K=50 e variou-se o número de partículas **N=2,3,...,500**.

Figura 4: Gráfico da $< d_{media} >$ em função do número de partículas N (dimensão do integral).

Neste caso, $< d_{media} >$ converge para o valor aproximado de 0,65 ao fim de ~ 100 partículas.