2021 Wharton Analytics Conference Supported by Wharton AI for Business, Analytics@Wharton

The Art & Science of A/B Testing

Alex P. Miller

Ph.D. Candidate, Information Systems Department of Operations, Information, & Decisions

Welcome & Introduction

Ph.D. Candidate Information Systems, OID Department

Starting June 2021: Asst. Professor of Quantitative Marketing, USC Marshall School of Business

- Research interests: A/B testing, personalization, e-commerce, algorithmic decision making
- Prior experience: digital marketing, data science/engineering, web analytics consulting

Overview:

1. Core concepts

2. A/B testing paradigms in business

3. Simulation exercise

4. Debrief

What will you get out of this workshop?

- A hands-on understanding of A/B testing:
 - What is it?
 - What types of business problems can it help you solve?
 - What does it look & feel like to use A/B testing for decision making?
- A high-level understanding of how to use A/B testing tools to solve the **right** problem
 - Key aspects of using statistics for business decision making
 - Without getting bogged down in math

Core Concepts in A/B Testing

Definition:

A/B testing is:

the practice of using of randomized experiments for making business decisions

Definition:

A/B testing is:

the practice of using of randomized experiments for making business decisions

A/B testing is not:

trying multiple strategies in an *ad* hoc manner and comparing results

People are asking...

Why should you care about A/B testing?

When used properly:

- Randomized experiments are the "gold standard" for measuring cause & effect
 - A/B testing can help you predict the future
- Can help you truly understand which components of your products/services drive value
- Can facilitate a culture of empirical measurement & organizational learning

"Experimentation is the least arrogant method of gaining knowledge."

Isaac Asimov

A/B testing is for everyone

• Tech companies (Microsoft, Google, Amazon, Facebook) are well-known for having intensely experimental organizations

A/B testing is for everyone

- Tech companies (Microsoft, Google, Amazon, Facebook) are well-known for having intensely experimental organizations
- New software companies have opened up rigorous experimentation to even very small companies (or small, non-technical teams at large companies)
 - Almost every web-analytics platform can be used for experimentation

Recommended Reading

For more details on developing an experimental culture in your organization:

Experimentation Works: The Surprising Power of Business Experiments

For more technical/implementation details about experimentation:

Trustworthy Online Controlled Experiments

A brief introduction to....

The Basics of Business Experiments

Why run experiments?

• Randomized experimentation is a technique of gathering data that is specifically designed as a means of "causal inference"

Why run experiments?

• Randomized experimentation is a technique of gathering data that is specifically designed as a means of "causal inference"

Causal inference:

The process of understanding and measuring cause & effect

Many (not all) business decisions are problems of causal inference

"Correlation is not causation"

Difference between correlation (or association) and causation:

- "We redesigned our homepage last week and customer conversions increased"
- "Customer conversions increased last week
 because of our new homepage design"

How to tell the difference?

Why is this problem hard?

It's hard to separate your actions from other factors that could affect customer behavior:

Why is this problem hard?

It's hard to separate your actions from other factors that could affect customer behavior:

How does randomization help?

How does randomization help?

Randomizing which homepage customers see allows you to isolate the effect of that variable; with enough data, other factors that affect behavior should be balanced

A/B testing is valuable in situations when:

You have multiple strategies/actions you can implement and:

- 1. [You are willing to admit that] You don't know which one is best
- 2. You can implement each strategy using randomization
- 3. You can measure the results of each strategy along dimensions that you care about

A/B testing is a particularly powerful tool in **digital business**, relative to traditional forms of commerce

- Cost of "innovation" relatively low
- Randomization is easy
- Measurement is easy

"Offline" A/B testing can also be valuable, but we will focus on digital experiments today

What should you test?

- This depends critically on your industry/context
- Many online resources and user experience guides exist
- Beware though: What works for one company may not work for yours
 - If you develop a culture of systematic experimentation, you will learn which components of your website/service matter most

1. Develop a set of "hypotheses" to test e.g., "variations", "treatments" "arms", "strategies"

- 1. Develop a set of "hypotheses" to test e.g., "variations", "treatments" "arms", "strategies"
- 2. Define your key evaluation criteria

- 1. Develop a set of "hypotheses" to test e.g., "variations", "treatments" "arms", "strategies"
- 2. Define your key evaluation criteria
- 3. Define your intended sample size & stopping criteria (will revisit)

- 1. Develop a set of "hypotheses" to test e.g., "variations", "treatments" "arms", "strategies"
- 2. Define your key evaluation criteria
- 3. Define your intended sample size & stopping criteria (will revisit)
- 4. Run your experiment: Randomly assign customers to treatment arms

- 1. Develop a set of "hypotheses" to test e.g., "variations", "treatments" "arms", "strategies"
- 2. Define your key evaluation criteria
- 3. Define your intended sample size & stopping criteria (will revisit)
- 4. Run your experiment: Randomly assign customers to treatment arms
- 5. Evaluate your results:- Implement the "winning" arm

Walkthrough: Optimize Nike product page

Suppose a UX designer has a new idea for how the product page should look:

WOMEN

BOYS

GIRLS

CUSTOMIZE

Q Search

Touch and hold to zoom

NIKE REACT HYPERDUNK 2017 FLYKNIT

BASKETBALL SHOE

\$160

College Navy/Hydrogen Blue/Deep Royal Blue

Style: 917726-400

Not sure which size is right? Find Your True Fit.

SIZE ~

Size Chart

ADD TO CART

K A X none solid rgb(0, 0,

1≡ normal

Орх

[] normal

BACKGROUND

A rgba(0, 0, 0, 0)

none

repeat

Hypotheses? <a>

Hypotheses? <a>

Evaluation criterion?

How long to run?

Hypotheses? **V**

Evaluation criterion? Conversion rate V

How long to run?

Hypotheses? **V**

Evaluation criterion? Conversion rate V

How long to run? 1 week 🔽

Testing software records
user actions
(e.g., purchase/no
purchase)

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α					
Size Chart ADD TO CART	В					

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912				
Size Chart ADD TO CART	В	4866				

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912	127			
Size Chart ADD TO CART	В	4866	78			

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912	127	2.59%		
Size Chart ADD TO CART	В	4866	78	1.60%		

Sample Dashboard (simulated data)

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912	127	2.59%		
Size Chart ADD TO CART	В	4866	78	1.60%	-0.98	

"Effect size"

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912	127	2.59%		
<u>Size Chart</u> add to Cart	В	4866	78	1.60%	-0.98	0.02*

	Variant	Sessions	Conversion	Conversion Rate	Lift over baseline	p-value
Size Chart ADD TO CART	Α	4912	127	2.59%		
Size Chart ADD TO CART	В	4866	78	1.60%	-0.98	0.02*

- This dashboard reports raw "p-values"
- It is common to report 1-p as "confidence" (e.g., p=0.02 implies "98% confidence")
- Practices are changing, but this is very common paradigm in statistical software

How does statistics help?

Statistics provides a principled way to quantify how certain you should be about your results given:

 the magnitude of effect you observed and your sample size

In general: More data → more confidence the effect you measured is real

Common statistics can be difficult to interpret

The question you want to answer:

• What is the probability that version A is better than version B?

Common statistics can be difficult to interpret

The question you want to answer:

• What is the probability that version A is better than version B?

The question most A/B testing tools answer (those based on p-values or "Frequentist" statistics):

 Assuming there were no difference between versions A & B, what is the chance I would have observed a result as (or more extreme) than the result I observed in this experiment?

p-values for humans (rules of thumb)

p-values for humans (rules of thumb)

- The most common rule of thumb is to say a p<0.05 is "statistically significant"
- There is nothing magic about p=0.05! (or "95% confidence")

p-values for humans (rules of thumb)

