

TEST REPORT FCC ID:2AM2U-NEROX

Product Name: Wireless Bluetooth earphone

Trademark: SUPRA cables

Model Number:

SPT-BT-SE005

Prepared For: Sound By Sweden

Address: Nygränd 5, 11130 Stockholm, Sweden Manufacturer: Dongguan Wehoo Industrial Co., LTD

Address: No.15 Xinxing North Road, Hengtang, Tangxia, Dongguan,

Guangdong, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

BCTC Building & 1-2F, East of B Building, Pengzhou

Address: Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong

Street, Bao'an District, Shenzhen, China

Sample Received Date: May 29, 2018

Sample tested Date: May 31, 2018 to Jun. 06, 2018

Issue Date: Jun. 06, 2018

Report No.: BCTC-FY180502858E

Test Standards FCC Part15.247 ANSI C63.10-2013

Test Results PASS

Remark: This is Bluetooth Classic radio test report.

Prepared by(Engineer): Lake Xie

Reviewer(Supervisor): Rita Xiao

Approved(Manager): Carson Zhang

Pita RIGERTOVED
CONSON MESTING CO.

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY180502858E

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. The Shenzhen BCTC Testing Co., Ltd. designation number: CN1212.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 2 of 68

TABLE OF CONTENT

l est l	Report Declaration	Page
1.	VERSION	5
2.	TEST SUMMARY	
3.	MEASUREMENT UNCERTAINTY	7
4.	PRODUCT INFORMATION AND TEST SETUP	8
4.1	Product Information	8
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	
5.	TEST FACILITY AND TEST INSTRUMENT USED	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	CONDUCTED EMISSIONS	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	Test Result	
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	Test Result	
8.	CONDUCTED EMISSION	
8.1 8.2	Block Diagram Of Test Setup	
8.3	Limit	
6.3 8.4	Test procedure	
9.	20 DB BANDWIDTH	
9.1	Block Diagram Of Test Setup	
9.2	Limit	
9.3	Test procedure	
9.4	Test Result	
10.	MAXIMUM PEAK OUTPUT POWER	
10.1		
10.2		
10.3		
10.4		
11.	HOPPING CHANNEL SEPARATION	
11.1		
11.2		

Shenzhen BCTC Testing Co., Lt	td Report No:	BCTC-FY180502858E

11.3	Test procedure	. 49
	Test Result	
	NUMBER OF HOPPING FREQUENCY	
	Block Diagram Of Test Setup	
	Limit	
	Test procedure	
	Test Result	
	DWELL TIME	
	Block Diagram Of Test Setup	
	Limit	
	Test procedure	
	Test Result	
14.	ANTENNA REQUIREMENT	. 65
	EUT PHOTOGRAPHS	
	EUT TEST SETUP PHOTOGRAPHS	

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
BCTC-FY180502858E	Jun. 06, 2018	Original	Valid

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 5 of 68

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
		15.205(a)	
1	Radiated Spurious Emissions	15.209	PASS
		15.247(d)	
2	Conducted Spurious emissions	15.247(d)	PASS
3	Pand adaa	15.247(d)	DACC
3	Band edge	15.205(a)	PASS
4	Conducted Emission	15.207	PASS
5	20dB Bandwidth	15.247(a)	PASS
6	Maximum Peak Output Power	15.247(b)	PASS
7	Frequency Separation	15.247(a)	PASS
8	Number of Hopping Frequency	15.247(a)	PASS
9	Dwell time	15.247(a)	PASS
10	Antenna Requirement	15.203	PASS

Note: N/A is an abbreviation for Not Applicable and means this test intem is not applicable for this device according to the technology characteristic of device.

EMC Report

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

40101 01 K-2.	
RF frequency	1 x 10 ⁻⁷
RF power, conducted	1.38dB
Conducted spurious emission (30MHz-1GHz)	1.28dB
Conducted spurious emission (1GHz-18GHz)	1.576dB
Radiated Spurious emission (30MHz-1GHz)	4.3dB
Radiated Spurious emission (1GHz-18GHz)	4.5dB
Temperature	0.59°C
Humidity	5.3%

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 7 of 68

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):

SPT-BT-SE005

Model Description: Only for different model name.

Brand: SUPRA cables

Bluetooth Version: Bluetooth 4.2

Hardware Version: N/A

Software Version: N/A

Operation Frequency: Bluetooth: 2402-2480MHz

Max. RF output power: Bluetooth: 6.264dBm

Type of Modulation: Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Antenna installation: Bluetooth: Ceramic antenna

Antenna Gain: Bluetooth: 0dBi

Ratings: Battery DC 3.7V, 140mA

DC 5V charging from adapter

Adapter: N/A

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn

4.3 Support Equipment

No	. Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.	Adaptor	N/A	XHY050150 UCC	N/A	1.0	5V,1.0A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Transmitting duty cycle is 100%.

The software is installed in operation system, named "RFTestTool.apk", Version 1.0.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 9 of 68

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY180502858E

Test Mode	Test mode	Low channel	Middle channel	High channel		
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz		
2	Transmitting(Pi/4DQPSK)	2402MHz	2441MHz	2480MHz		
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz		
4	Link mode (conducted emission and Radiated emission)					

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 10 of 68

Report No.: BCTC-FY180502858E

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at BCTC Building & 1-2F, East of B Building, Pengzhou Industrial, Fuyuan 1st Road, Qiaotou Community, Fuyong Street, Bao'an District, Shenzhen, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Radia	Radiation Test					
Item	Equipment	Manufacturer	Type No.	Serial No.	Cal.Date	Cal.Due date
1	Spectrum Analyzer (9kHz-26.5GH z)	Agilent	E4407B	MY45108040	Aug. 27, 2017	Aug.26, 2018
2	Test Receiver (9kHz-7GHz)	R&S	ESPI	101318	Aug. 27, 2017	Aug.26, 2018
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB 9168	VULB91 68-438	Aug. 27, 2017	Aug.26, 2018
4	Horn Antenna (1GHz-18GHz)	SCHWARZB ECK	BBHA9120D	1201	Sep.03, 2017	Sep.02,2018
5	Horn Antenna (14GHz-40GH z)	SCHWARZB ECK	BBHA 9170	9170-181	Sep.03, 2017	Sep.02,2018
6	Amplifier (9KHz-6GHz)	SCHWARZB ECK	BBV9744	9744-0037	Aug. 27, 2017	Aug.26, 2018
7	Amplifier (1GHz-18GHz)	SCHWARZB ECK	BBV9718	9718-309	Aug. 27, 2017	Aug.26, 2018
8	Amplifier (18GHz-40GH z)	SCHWARZB ECK	BBV 9721	9721-205	Aug. 27, 2017	Aug.26, 2018
9	Loop Antenna (9KHz-30MHz)	SCHWARZB ECK	FMZB1519B	00014	Sep.03, 2017	Sep.02,2018
10	RF cables1 (9kHz-1GHz)	R&S	R203	R20X	Aug. 27, 2017	Aug.26, 2018
11	RF cables2 (1GHz-40GHz)	R&S	R204	R21X	Aug. 27, 2017	Aug.26, 2018
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Aug. 27, 2017	Aug.26, 2018
13	Power Metter	ANRITSU	ML2487A	6K00001568	Aug. 27, 2017	Aug.26, 2018
14	Power Sensor (AV)	ANRITSU	ML2491A	030989	Aug. 27, 2017	Aug.26, 2018
15	Signal Analyzer 9kHz-26.5GHz	Agilent	N9010A	MY48030494	Aug. 27, 2017	Aug.26, 2018
16	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Aug. 27, 2017	Aug.26, 2018
17	D.C. Power Supply	LongWei	PS-305D	010964729	Aug. 27, 2017	Aug.26, 2018

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 11 of 68

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY180502858E

Cond	Conduction Test						
Item	Equipment	Manufacturer	Type No.	Serial No.	Cal.Date	Cal.Due date	
1	Test Receiver	R&S	ESCI	1166.5950K0 3-101165-ha	Aug. 27, 2017	Aug.26, 2018	
2	LISN	SCHWARZB ECK	NSLK8127	8127739	Aug. 27, 2017	Aug.26, 2018	
3	LISN	R&S	NSLK8126	8126487	Aug. 27, 2017	Aug.26, 2018	
4	RF cables	R&S	R204	R20X	Sep.03, 2017	Sep.02,2018	
5	Attenuator	R&S	ESH3-Z2	143206	Sep.03, 2017	Sep.02,2018	

EMC Report Tel: 400-788-9558

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)		
FREQUENCT (MHZ)	Quas-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Notes:

6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

^{1. *}Decreasing linearly with logarithm of frequency.

^{2.} The lower limit shall apply at the transition frequencies.

6.4 Test Result

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
LIEST VOITAGE .	DC 5V from adapter AC 120V/60Hz	Test Mode :	Mode 4

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 '	*	0.2130	25.49	9.76	35.25	63.09	-27.84	QP	
2		0.2130	3.19	9.76	12.95	53.09	-40.14	AVG	
3		0.3930	19.89	9.71	29.60	58.00	-28.40	QP	
4		0.3930	2.99	9.71	12.70	48.00	-35.30	AVG	
5		0.6900	17.92	9.88	27.80	56.00	-28.20	QP	
6		0.6900	-1.05	9.88	8.83	46.00	-37.17	AVG	
7		1.5855	17.90	9.78	27.68	56.00	-28.32	QP	
8		1.5855	-4.27	9.78	5.51	46.00	-40.49	AVG	
9		4.0335	16.88	9.86	26.74	56.00	-29.26	QP	
10		4.0335	-3.94	9.86	5.92	46.00	-40.08	AVG	
11		16.0755	15.51	10.02	25.53	60.00	-34.47	QP	
12		16.0755	-1.23	10.02	8.79	50.00	-41.21	AVG	

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 14 of 68

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from adapter AC 120V/60Hz	Test Mode :	Mode 4

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1995	26.67	9.76	36.43	63.63	-27.20	QP	
2	0.1995	2.56	9.76	12.32	53.63	-41.31	AVG	
3	0.3840	22.82	9.71	32.53	58.19	-25.66	QP	
4	0.3840	-2.36	9.71	7.35	48.19	-40.84	AVG	
5 *	0.7935	20.54	9.83	30.37	56.00	-25.63	QP	
6	0.7935	-3.98	9.83	5.85	46.00	-40.15	AVG	
7	1.8780	14.18	9.79	23.97	56.00	-32.03	QP	
8	1.8780	-2.72	9.79	7.07	46.00	-38.93	AVG	
9	4.4790	15.32	9.88	25.20	56.00	-30.80	QP	
10	4.4790	-3.97	9.88	5.91	46.00	-40.09	AVG	
11	15.2520	10.99	10.00	20.99	60.00	-39.01	QP	
12	15.2520	-3.46	10.00	6.54	50.00	-43.46	AVG	

7. RADIATED EMISSIONS

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance	
(MHz)	uV/m	(m)	uV/m dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak,
1-250112	RBW 1 MHz / VBW 10Hz for Average

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 17 of 68

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

Above 1GHz test procedure as below:

- a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 18 of 68

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY180502858E

- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 19 of 68

7.4 Test Result

Below 30MHz

Temperature:	25℃	Relative Humidtity:	54%
Pressure:	1010 hPa	LIAST VALISAD .	DC 5V from adapter AC120V/60Hz
Test Mode:	Mode 4	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 20 of 68

Between 30MHz – 1GHz

Temperature:	25 ℃	Relative Humidtity:	54%
Pressure:	1010 hPa	LLAST MAITAGE .	DC 5V from adapter AC120V/60Hz
Test Mode:	Mode 4	Polarization :	Horizontal

Remark:

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

MHz dBuV dB dBuV/m dB/m dB Detector 1 * 73.1025 36.17 -18.22 17.95 40.00 -22.05 QP 2 151.5972 39.44 -18.98 20.46 43.50 -23.04 QP 3 219.0753 37.22 -16.17 21.05 46.00 -24.95 QP 4 318.8170 35.42 -13.62 21.80 46.00 -24.20 QP 5 400.4319 34.36 -11.99 22.37 46.00 -23.63 QP 6 896.9965 23.63 -2.42 21.21 46.00 -24.79 QP	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 151.5972 39.44 -18.98 20.46 43.50 -23.04 QP 3 219.0753 37.22 -16.17 21.05 46.00 -24.95 QP 4 318.8170 35.42 -13.62 21.80 46.00 -24.20 QP 5 400.4319 34.36 -11.99 22.37 46.00 -23.63 QP			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
3 219.0753 37.22 -16.17 21.05 46.00 -24.95 QP 4 318.8170 35.42 -13.62 21.80 46.00 -24.20 QP 5 400.4319 34.36 -11.99 22.37 46.00 -23.63 QP	1	*	73.1025	36.17	-18.22	17.95	40.00	-22.05	QP
4 318.8170 35.42 -13.62 21.80 46.00 -24.20 QP 5 400.4319 34.36 -11.99 22.37 46.00 -23.63 QP	2		151.5972	39.44	-18.98	20.46	43.50	-23.04	QP
5 400.4319 34.36 -11.99 22.37 46.00 -23.63 QP	3		219.0753	37.22	-16.17	21.05	46.00	-24.95	QP
	4	,	318.8170	35.42	-13.62	21.80	46.00	-24.20	QP
6 896.9965 23.63 -2.42 21.21 46.00 -24.79 QP	5		400.4319	34.36	-11.99	22.37	46.00	-23.63	QP
	6		896.9965	23.63	-2.42	21.21	46.00	-24.79	QP

Temperature:	25 ℃	Relative Humidtity:	54%
Pressure:	1010 hPa	LLAST VALTAAA .	DC 5V from adapter AC120V/60Hz
Test Mode:	Mode 4	Polarization :	Vertical

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	72.0843	52.32	-18.01	34.31	40.00	-5.69	QP
2		145.3506	52.31	-19.20	33.11	43.50	-10.39	QP
3		202.1005	43.22	-16.27	26.95	43.50	-16.55	QP
4		346.8092	33.38	-12.37	21.01	46.00	-24.99	QP
5		447.9822	32.14	-10.63	21.51	46.00	-24.49	QP
6		881.4067	22.96	-3.08	19.88	46.00	-26.12	QP

Between 1-25GHz

			l	Dotwoo		1			
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
GFSK Low Channel:2402MHz									
V	4804.00	67.63	39.55	7.85	25.66	61.59	74.00	-12.41	PK
V	4804.00	47.37	39.55	7.85	25.66	41.33	54.00	-12.67	AV
V	7206.00	68.98	38.33	7.52	24.55	62.72	74.00	-11.28	PK
V	7206.00	49.13	38.33	7.52	24.55	42.87	54.00	-11.13	AV
V	15450.00	48.01	35.23	6.75	26.59	46.12	74.00	-27.88	PK
Н	4804.00	66.15	39.55	7.85	25.66	60.11	74.00	-13.89	PK
Н	4804.00	49.30	39.55	7.85	25.66	43.26	54.00	-10.74	AV
Н	7206.00	70.53	38.33	7.52	23.55	63.27	74.00	-10.73	PK
Н	7206.00	46.34	38.33	7.52	23.22	38.75	54.00	-15.25	AV
Н	15450.00	45.48	35.45	6.75	27.88	44.66	74.00	-29.34	PK

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
	GFSK Middle Channel:2441MHz									
V	4882.00	64.05	39.55	7.85	25.66	58.01	74.00	-15.99	PK	
V	4882.00	52.54	39.55	7.85	25.66	46.50	54.00	-7.50	AV	
V	7323.00	68.23	38.33	7.52	24.55	61.97	74.00	-12.03	PK	
V	7323.00	47.44	38.33	7.52	24.55	41.18	54.00	-12.82	AV	
V	15450.00	43.63	35.23	6.75	26.59	41.74	74.00	-32.26	PK	
Н	4882.00	70.57	39.55	7.85	25.66	64.53	74.00	-9.47	PK	
Н	4882.00	53.06	39.55	7.85	25.66	47.02	54.00	-6.98	AV	
Н	7323.00	66.76	38.33	7.52	23.55	59.50	74.00	-14.50	PK	
Н	7323.00	43.87	38.33	7.52	23.22	36.28	54.00	-17.72	AV	
Н	15450.00	45.08	35.45	6.75	27.88	44.26	74.00	-29.74	PK	

Polar (H/V)	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detecto
	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	r Type
GFSK High Channel:2480MHz									
V	4960.00	69.67	39.55	7.85	25.66	63.63	74.00	-10.37	PK
V	4960.00	47.54	39.55	7.85	25.66	41.50	54.00	-12.50	AV
V	7440.00	66.80	38.33	7.52	24.55	60.54	74.00	-13.46	PK
V	7440.00	48.73	38.33	7.52	24.55	42.47	54.00	-11.53	AV
V	15450.00	47.76	35.23	6.75	26.59	45.87	74.00	-28.13	PK
Н	4960.00	69.97	39.55	7.85	25.66	63.93	74.00	-10.07	PK
Н	4960.00	50.13	39.55	7.85	25.66	44.09	54.00	-9.91	AV
Н	7440.00	68.21	38.33	7.52	23.55	60.95	74.00	-13.05	PK
Н	7440.00	43.43	38.33	7.52	23.22	35.84	54.00	-18.16	AV
Н	15450.00	47.28	35.45	6.75	27.88	46.46	74.00	-27.54	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 23 of 68

Shenzhen BCTC Testing Co., Ltd. Report No.: BCTC-FY180502858E

has no need to be reported.

4. All the Modulation are test, the worst mode is GFSK, the data recording in the report.

Radiated Band edge Emission

Temperature:	25℃	Relative Humidtity:	54%
Pressure:	101kPa	Test Voltage:	DC 3.7V
Test Mode:	Mode 1	Polarization:	

Radiated Bandedge Emission

Modulation	Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission evel (dBuV/m)		nits IV/m)	Result		
			(ubuv)	(ub)	(ub)	(ub/III)	PK	PK	AV			
		Low Channel 2402MHz										
	Н	2390.00	57.00	38.06	7.42	20.15	46.51	74.00	54.00	PASS		
	Н	2400.00	58.61	38.06	7.42	20.15	48.12	74.00	54.00	PASS		
	V	2390.00	57.65	38.06	7.42	20.15	47.16	74.00	54.00	PASS		
GFSK	V	2400.00	60.07	38.06	7.42	20.15	49.58	74.00	54.00	PASS		
GFSK	High Channel 2480MHz											
	Н	2483.50	59.57	38.17	7.45	20.54	49.39	74.00	54.00	PASS		
	Н	2485.50	56.93	38.17	7.45	20.54	46.75	74.00	54.00	PASS		
	V	2483.50	60.64	38.20	7.45	20.54	50.43	74.00	54.00	PASS		
	V	2485.50	55.54	38.20	7.45	20.54	45.33	74.00	54.00	PASS		

Remark:

- 1.Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

All the modulation modes have been tested, and the worst result was report as below:

Note: (1) All other emissions more than 20dB below the limit.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 24 of 68

8. CONDUCTED EMISSION

8.1 Block Diagram Of Test Setup

8.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

Above 30MHz:

RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold

8.4 Test Result

30MHz – 25GHz GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

Report No.: BCTC-FY180502858E

8DPSK High Channel

GFSK Hopping Band edge-left side

9. 20 DB BANDWIDTH

9.1 Block Diagram Of Test Setup

9.2 Limit

N/A

9.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Modulation	Test Channel	Bandwidth(MHz)	
GFSK	Low	1.144	
GFSK	Middle	1.133	
GFSK	High	1.130	
Pi/4 DQPSK	Low	1.426	
Pi/4 DQPSK	Middle	1.425	
Pi/4 DQPSK	High	1.415	
8DPSK	Low	1.430	
8DPSK	Middle	1.435	
8DPSK	High	1.426	

Test plotsGFSK Low Channel

Pi/4 DQPSK Middle Channel

10. MAXIMUM PEAK OUTPUT POWER

10.1 Block Diagram Of Test Setup

10.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

10.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

EMC Report

Tel: 400-788-9558

Web: Http//www.bctc-lab.com.cn

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	5.123	21
GFSK	Middle	5.177	21
GFSK	High	4.857	21
Pi/4 DQPSK	Low	6.049	21
Pi/4 DQPSK	Middle	6.167	21
Pi/4 DQPSK	High	5.776	21
8DPSK	Low	6.104	21
8DPSK	Middle	6.264	21
8DPSK	High	5.979	21

Test plots GFSK Low Channel

Agilent

Ref 10 dBm Peak

Log 10 dB/

M1 S2 S3 FC AA

Center 2.402 GHz #Res BW 3 MHz

Span 10 MHz Sweep 4 ms (401 pts)

#VBW 3 MHz

More

1 of 2

11. HOPPING CHANNEL SEPARATION

11.1 Block Diagram Of Test Setup

11.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

11.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn

Page 49 of 68

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1.000	0.763	PASS
GFSK	Middle	1.000	0.755	PASS
GFSK	High	1.005	0.753	PASS
Pi/4 DQPSK	Low	1.000	0.951	PASS
Pi/4 DQPSK	Middle	1.000	0.950	PASS
Pi/4 DQPSK	High	1.000	0.943	PASS
8DPSK	Low	1.000	0.953	PASS
8DPSK	Middle	1.000	0.957	PASS
8DPSK	High	1.000	0.951	PASS

Test plots

Report No.: BCTC-FY180502858E

12. NUMBER OF HOPPING FREQUENCY

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

12.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

Test Plots: 79 Channels in total GFSK

13. DWELL TIME

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

13.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

DH5:1600/79/6*0.4*79*(MkrDelta)/1000 DH3:1600/79/4*0.4*79*(MkrDelta)/1000 DH1:1600/79/2*0.4*79*(MkrDelta)/1000 Remark: Mkr Delta is once pulse time.

Modulation	Channel Data	Packet	pulse time(ms)	Dwell Time(s)	Limits(s)
		DH1	0.420	0.134	0.4
GFSK	Middle	DH3	1.680	0.269	0.4
		DH5	2.910	0.310	0.4
Pi/4DQPSK	Middle	DH1	0.430	0.138	0.4
		DH3	1.680	0.269	0.4
		DH5	2.910	0.310	0.4
8DPSK	Middle	DH1	0.430	0.138	0.4
		DH3	1.680	0.269	0.4
		DH5	2.940	0.314	0.4

GFSK DH3 Middle Channel

Pi/4DQPSK DH1 Middle Channel

Report No.: BCTC-FY180502858E

14. ANTENNA REQUIREMENT

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT has a PCB antenna, meets the requirements of FCC 15.203.

EMC Report Tel: 400-788-9558 Web: Http://www.bctc-lab.com.cn Page 65 of 68

15. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

16. EUT TEST SETUP PHOTOGRAPHS

Conducted emissions

Spurious emissions

******** END OF REPORT ******