Time-Resolved EPR and Fourier Transform EPR Study of Triplet C_{60} . Determinations of T_1 and the ¹³C Hyperfine Coupling Constant

Daisy Zhang† and James R. Norris*,†,‡

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

Paul J. Krusic and Edel Wasserman

Central Research and Development, E.I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0328

C.-C. Chen and Charles M. Lieber

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Received: December 29, 1992; In Final Form: March 2, 1993

Continuous wave (CW) and time-resolved (TR) EPR spectra of triplet C_{60} with partial and full 13 C enrichment in methylcyclohexane solutions after UV irradiation were obtained. Line broadening from 13 C satellites was observed. The 13 C hyperfine coupling constant was determined to be 0.06 G. Fourier transform EPR (FT-EPR) experiments with a resolution of 20 ns were carried out, and T_1 was found to be 0.8 \pm 0.1 μ s by fitting the intensity of the free induction decay signal to the modified Bloch equations. The relaxation time from FT-EPR is in excellent agreement with estimations from the line width of CW-EPR. Because the 13 C hyperfine coupling constant is so small, no distinct satellite lines were observed with 13 C in natural abundance at 200 K.

In a previous paper, the continuous wave (CW) and timeresolved (TR) EPR spectra obtained by UV irradiation of methylcyclohexane solution of C_{60} were reported. A single sharp, approximately Lorentzian, absorption line with a peak-to-peak line width of 0.14 G was observed at room temperature. This EPR spectrum was assigned to the lowest triplet state of C₆₀ (3*C₆₀). The narrow line width was attributed to a very rapid interchange of the magnetic axes by pseudorotation, switching the degenerate Jahn-Teller states into each other. However, "an unresolved mystery" remained at that time since no 13C satellites were observed. Since the probability for a C₆₀ molecule to contain no ¹³C atoms is 51%, the possibility that ¹³C might be a very efficient quencher of 3*C₆₀, thus reducing the lifetime of 3*C₆₀ to less than 1 µs, existed. Therefore, TR-EPR spectra taken 1 μs after laser excitation of C₆₀ would not show any hyperfine structure. In this paper, the "mystery" is resolved by studying CW- and TR-EPR spectra of triplet C₆₀ with partial and full ¹³C enrichment. In addition, the hyperfine coupling constant for ¹³C was determined from these spectra.

The synthesis of $^{13}\text{C}_{60}$ and experimental procedures and conditions for both the CW- and the TR-EPR measurements were described in previous papers. As shown in Figure 1, both the partially (25%) and fully (99%+) ^{13}C -enriched C_{60} triplets produce a broadened absorption spectrum compared with that of the unenriched one, with a line width of 0.28 and 0.45 G, respectively, vs the natural abundance line width of 0.16 G at 200 K. Figure 2 shows the TR-EPR spectra of 25% ^{13}C -enriched ^{13}C at various times after the laser excitation. Weak satellites are present. The absorption intensity decreases as $^{3}\text{C}_{60}$ decays, giving an estimated lifetime of about 30 μ s. However, the line width and the shape of the absorption remain unchanged throughout the observation time. This is strong evidence against the previous suspicion that ^{13}C might be an efficient quencher of $^{3}\text{C}_{60}$. Also, flash photolysis experiments were repeated on the 25% ^{13}C -

enriched C_{60} sample, resulting in the same lifetime as reported previously for the unenriched sample. $^{1,3-7}$ The EPR spectrum of $^{3*}C_{60}$ with ^{13}C in natural abundance has an approximately Lorentzian line shape, while that of the 99% + ^{13}C -enriched $^{3*}C_{60}$ has an approximately Gaussian shape. For the 25% enriched $^{3*}C_{60}$, the line shape is neither Lorentzian nor Gaussian, but a combination of the two (Figure 3).

Debates on whether this photogenerated paramagnetic species is 3 * C_{60} or the C_{60} radical anion C_{60} (C_{60} *-), or "a loose ion pair within an aggregate which consists of C_{60} clusters, i.e. $[C_{60}^+,$ e-]",9 exist at the present time. Dinse et al.8 made the reasonable suggestion that the radical anion is responsible for the EPR spectra, partially because of the slow rise time of the signal intensity in the Fourier transform EPR (FT-EPR) experiments. Since the intersystem crossing process of C₆₀ is complete in several nanoseconds, 4.10-14 a long rise time of 1 μ s may disallow the assignment of the species to a triplet state. However, this argument needs to be not true. The dictum that the intensity of an EPR spectrum is proportional to the population difference of the two energy levels does not necessarily hold during the formation and decay of spin magnetization. For observations made at times as short as serveral nanoseconds, the signal intensity does not necessarily reflect the populations of the two spin states. Instead, the EPR intensity requires additional time to reach the maximum value. This "induction" period has a value close to that of T_1 and also depends on the lifetime of the paramagnetic species and spin polarization mechanism.

We repeated the FT-EPR experiments performed by Dinse and co-workers⁸ at 197 K, with a resolution of 20 ns, on both normal and the 25% 13 C-enriched C_{60} in methylcyclohexane solution. We also found that the signal intensity grows slowly and reaches a maximum at about 2 μ s after laser excitation (Figure 4). Both samples show exactly the same rise and decay pattern. Fessenden carried out a detailed study of the intensity time profiles of the TR-EPR spectroscopy with CIDEP phenomena in the 1970s. $^{15-18}$ Here, we briefly describe the theoretical approach extended to the $^{3*}C_{60}$ system.

[†] University of Chicago.

Argonne National Laboratory

Figure 1. Field-modulated CW-EPR signal of C_{60} in methylcyclohexane irradiated with a xenon lamp: (a) natural abundance (1.1%) 13 C, with $\Delta H_{\text{peak-to-peak}} = 0.14$ G; (b) 25% 13 C, with $\Delta H_{\text{peak-to-peak}} = 0.28$ G; (c) 99%+ 13 C, with $\Delta H_{\text{peak-to-peak}} = 0.45$ G.

Figure 2. Direct detection signal from TR-EPR of 25% 13 C-enriched 3 *C₆₀ in methylcyclohexane solution at 203 K: (a) 8 μ s, (b) 14 μ s, (c) 25 μ s after laser flash (308 nm).

The time evolution of the magnetic moment along the Z axis may be written as

$$\dot{M}_z + \frac{M_z}{T_1} + \frac{M_z}{T_c} = \frac{M_0}{T_1} e^{-t/T_c} [1 + kT_c M_0 (1 - e^{-t/T_c})]$$
 (1)

where M_z is the magnetic moment in the rotating frame, T_1 is the spin-lattice relaxation time, and M_0 is the equilibrium magnetization at infinite time if the triplet excited state did not decay. The term $M_0 e^{-t/T_c}$ represents the first-order decay of the triplet state to the singlet ground state via radiationless transition processes, where T_c is the lifetime of $^{3*}C_{60}$. At high concentration,

another term responsible for the second-order decay of M_0 should be included as the triplet—triplet annihilation process has been observed.^{3-5,11,14} The rate constant k for this process is dependent on the concentration of ground-state C_{60} , the temperature, and the laser power, and k is found to be around 2×10^9 dm³ mol⁻¹ s⁻¹ at room temperature with laser power at 1.5 mJ/pulse.¹⁴ Equation 1 includes both decay processes.¹⁹ At low concentration, when $kT_cM_0 \ll 1$, or at very short time, when $(1 - e^{-t/T_c}) \rightarrow 0$, this term can be approximated by M_0e^{-t/T_c} . This simplication was used in solving the differential equation, and the solution for M_z , which is proportional to the signal intensity, is

$$M_z(t)_i = C_1 \exp[-(1/T_1 + 1/T_c)_t] + C_2 P_i M_0 \times \exp(-t/T_c), \quad i = 1, 2$$
 (2)

where C_1 and C_2 are constants and P represents the degree of polarization, with a positive value for enhanced absorption and a negative one for emission. P_1 and P_2 are the polarization parameters for the two $\Delta m = 1$ transitions in the triplet state. The averaged EPR spectrum in liquid solution is the sum of the two transition intensities, namely, $M_z(t)_1 + M_z(t)_2$. The final form of $M_z(t)$ is described by eq 3

$$M_z(t) = Ae^{-t/T_c} + Be^{-(1/T_1 + 1/T_c)}$$
 (3)

 T_1 is found to be $0.8\pm0.1~\mu s$ by fitting the FT-EPR absorption data at different pulse delay time with eq 3 (Figure 4).²⁰ The temperature dependence of the rise time, which has been observed, is expected from eq 3, as both T_c and T_1 are temperature dependent. From the line width of the TR-EPR spectrum at room temperature and the expression for dipole-dipole-induced relaxation rates, 21 together with the experimental zero-field splitting parameters for $^{3*}C_{60}$, 11 T_2 is estimated to be $0.81~\mu s$. Therefore, T_1 is found to be equal to T_2 within experimental error from two different experiments. This equality was also reported by Dinse et al.⁸

The fact that $T_1=T_1$ indicates an extremely short rotational correlation time τ_c , which we estimated to be between 10^{-12} and 10^{-13} s.\(^1\) Such correlation times are considerably shorter than that observed for the classical rotation of ground-state C_{60} in solution ($\sim 10^{-11}$ s)\(^2\) and support the proposal that the averaging of the zero-field anisotropy of \(^3*C_{60}(D=0.0114\,cm^{-1})^{11} to produce a narrow absorption in methylcyclohexane solution of only 0.14 G at room temperature is due to a faster averaging process than classical rotation. This pseudorotation is the rapid switching of the magnetic axes (principal axes of the zero-field splitting tensor) within the molecule as a result of the rapid interconversion between degenerate Jahn–Teller distorted states caused by the degeneracy of the lowest electronic triplet state of C_{60} .\(^{23}\)

In order to quantitatively determine the hyperfine coupling constant between 13 C and the unpaired electrons in triplet C_{60} , a mathematical model described by eq 4

intensity =
$$\sum_{m=0}^{60} \sum_{n=0}^{m} P_{60}^{m} (1-x)^{60-m} x^{m} P_{m}^{n} Y_{10} / 2^{m}$$
 (4)

is used to simulate the absorption spectra obtained from the TR-EPR measurements. Here, x is the percentage of ¹³C in the C₆₀ sample, and

$$P_{60}^m = 60.59.58.../m!$$

where m is the number of 13 C atoms in one C₆₀ molecule. The EPR spectrum for C₆₀ molecules containing m 13 C atoms has m + 1 lines evenly separated by the hyperfine coupling constant. The intensities obey the binomial distribution of P_m^n

$$P_m^n = m \cdot (m-1) \cdot (m-2) \cdots / n!$$

where n has values between 0 and m and denotes the nth hyperfine component counting from the left. The parameter Y_{lo} is the

Figure 3. TR-EPR absorption spectra of (a) 1.1% 13 C, (b) 25% 13 C, and (c) 99%+ 13 C, and simulations with the hyperfine coupling constant equal to 0.06 G and a fwhm of 0.175 G.

expression for a Lorentzian line for the absorption intensity as a function of the magnetic field described by eq 5

$$Y_{10} = y_{m} / \{1 + \left[(H - (n - m/2)a_{c}) / \Delta H_{1/2} \right]^{2} \}$$
 (5)

where H is the magnetic field, a_c is the hyperfine coupling constant, and y_m denotes the maximum amplitude obtained at the center of the line when $H = (n-m/2)a_c$. The parameter y_m also serves as a proportionality constant while fitting the experimental spectrum. Finally, $\Delta H_{1/2}$ is the full line width between half-magnitude points (fwhm).

The model considers the absorption line shape as the overlap of the hyperfine multiplets expected for each isotopomer with intensities that are proportional to the abundance of each isotopomer. The following simplifications are employed: (1) The spin density is evenly distributed over the 60 carbons by virtue of rapid averaging on the EPR time scale. (2) Each $^{13}\mathrm{C}$ atom has the same hyperfine coupling constant regardless of its position in the molecule. (3) All stick spectra are convoluted with the same Lorentzian line width. (4) The probability of having a certain number of $^{13}\mathrm{C}$ nuclei in each isotopomer is based on simple combinatorial statistics. The simplest case is that of 99% $^{13}\mathrm{C}$ -enriched C_{60} , for which there is essentially only one isotopomer which gives rise to a multiplet of 61 lines of binomial relative intensities.

Figure 4. FT-EPR rising and decay of the intensity as a function of time. Solid line is a fit for the experimental data to the equation $y = Ae^{-t/T_c} + Be^{-(1/T_1+1/T_c)t}$, where A = 14.0, B = -11.0, $T_c = 21 \mu s$, and $T_1 = 0.83 \mu s$.

The pseudorotation proposal for the C_{60} excited triplet state makes the first two simplifications reasonable. The third assumption is well supported by the finding from FT-EPR that $^{3*}C_{60}$ enriched with 25% ^{13}C has the same T_1 as $^{3*}C_{60}$ with ^{13}C in natural abundance and the significant line shape change according to the percentage of ^{13}C in the sample.

Figure 4 shows that a single hyperfine coupling constant of 0.06 G and a single line width for each hyperfine component of 0.175 G adequately simulates the observed line shape for three different $^{13}\mathrm{C}$ enrichments. The coupling constant is smaller than the initial estimation of approximately 0.68 G based on the $^{13}\mathrm{C}$ hyperfine splitting in the methyl radical and the McConnell–Weissman relation. 1,24 This estimation neglects spin polarization effects. In $^{3*}\mathrm{C}_{60}$, every carbon atom is connected to three other carbon atoms. Due to negative spin densities induced by the three C–C σ bonds from the adjacent carbons, the splitting is better represented by the "modified" McConnell–Weissman relation

$$a_{c} = Q_{1}\rho_{1} + Q_{2}(\rho_{2} + \rho_{3} + \rho_{4})$$
 (6)

where a_c is the ¹³C hyperfine coupling constant; Q_1 and Q_2 are proportionality constants, with Q_1 positive and Q_2 negative; and ρ_1 , ρ_2 , ρ_3 , and ρ_4 are the spin densities on a particular carbon and the three attached carbons.²¹

Since very little study has been done on the 13 C coupling in C_{60} at the present time, no Q_1 and Q_2 values have been reported. A good estimation is also not easy, due to the global-like structure of the molecule. A crude estimation of Q_1 and Q_2 based on the ¹³C hyperfine coupling constants of methyl radical and the benzene anion molecules is $Q_1/Q_2 = -41/12.25$ Applying this relationship of Q_1 and Q_2 to eq 6, along with the relation $\rho_1 = \rho_2 = \rho_3 = \rho_4$, which equals 1/60 of the spin density of methyl radical, a_c is calculated from eq 6 to be 0.083 G. Also, the Q_1 and Q_2 determined from the modified McConnell-Weissman relation, using the experimental 13C coupling constants of the anthracene anion and cation and the spin densities determined by the Hückle theory,²⁶ are 45.4 and -16.6, respectively. Using these two values, a_c for $^{3*}C_{60}$ is calculated to be 0.073 G. Both estimations of a_c are very close to the experimental coupling constant of 0.06 G determined from our model.

Finally, it should be noted that the EPR behavior of electrochemically or chemically generated C_{60} radical anion is very different from the EPR behavior of triplet C_{60} reported here. The line width of C_{60} is ca. 6 G at low temperatures (120 K)²⁷⁻³⁰ and increases dramatically with temperature^{29,30} (60–80 G at

300 K, depending on the environment). In solution, the line width may be too broad to allow detection at the available concentrations. Although the assignment of the narrow line to the triplet state of C₆₀ is compatible with all our results, other possible assignments are not eliminated. However, the assignment is completely consistent with the recent results reported by Levanon and coworkers³¹ and by van Willigen and co-workers.³²

Acknowledgment. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract W-31-109-Eng-38. The work at The University of Chicago was supported by NSF Grant CHE-9021-487. DuPont Contribution No. 6472. We thank Dr. M. Bowman for help in the FT-EPR experiments, Jerry Hunt for mass spectroscopy assistance, and Steve Hill for technical support in the CW-EPR experiments.

This paper is dedicated to Professor Gerhard L. Closs, one of the finest chemists in this century. His scientific achievements were outstanding and numerous, including the establishment of chemically induced dynamic nuclear polarization, contributions to chemically induced electron polarization, and seminal studies of carbenes and other ground-state triplet species. His elegant experimental designs in studying electron-transfer reaction, together with John Miller, unambiguously demonstrated the existence of the Marcus inverted region proposed by Rudy Marcus, who received this year's Nobel Prize in chemistry. His sudden death is a great loss for chemistry. We would like to dedicate this paper to his memory, because the C₆₀ study was one of his many projects at the time of his death, and the "unresolved mystery" of the missing ¹³C hyperfine splittings remained at that time. This paper is a continuation of his study on the excited triplet state of C_{60} .

References and Notes

- Closs, G. L.; Gautam, P.; Zhang, D.; Krusic, P. J.; Hill, S. A.;
 Wasserman, E. J. Phys. Chem. 1992, 96, 5228-5231.
 Chen, C.-C.; Lieber, C. M. J. Am. Chem. Soc. 1992, 114, 3141-
- (3) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diederich, F. N.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem. 1991, 95,
- (4) Ebbesen, T. W.; Tanigaki, K.; Kuroshima, S. Chem. Phys. Lett. 1991, 181, 501-504.
- (5) Kajii, Y.; Nakagawa, T.; Suzuki, S.; Achiba, Y.; Obi, K.; Shibuya, K. Chem. Phys. Lett. 1991, 181, 100-104.
 - (6) Hung, R. R.; Grabowski, J. J. J. Phys. Chem. 1991, 95, 6073-6075.
- (7) Kroll, G. H.; Benning, P. J.; Chen, Y.; Ohno, T. R.; Weaver, J. H.; Chibante, L. P. F.; Smalley, R. E. Chem. Phys. Lett. 1991, 181, 112-116.
- (8) Rübsam, M.; Dinse, K.-P.; Plüschau, M.; Fink, J.; Krätschmer, W.; Fostiropoulos, K.; Taliani, C. J. Am. Chem. Soc. 1992, 114, 10059-10061.

- (9) Levanon, H.; Meiklyar, V.; Michaeli, A.; Michaeli, S.; Regev, A. J. Phys. Chem., 1992, 96, 6128-6131.
- (10) Kim, D.; Lee, M.; Suh, Y. D.; Kim, S. K. J. Am. Chem. Soc. 1991, 114, 4429-4430.
- (11) Wasielewski, M. R.; O'Neil, M. P.; Lykke, K. R.; Pellin, M. J.; Gruen, D. M. J. Am. Chem. Soc. 1991, 113, 2774-2776.
- (12) Sension, R. J.; Phillips, C. M.; Szarka, A. Z.; Romanow, W. J.; McGhie, A. R.; McCauley, Jr., J. P.; Smith, III, A. B.; Hochstrasser, R. M. J. Phys. Chem. 1991, 95, 6075.
- (13) Lee, M.; Song, O.; Seo, J.; Kim, D.; Suh, Y. D.; Jin, S. M.; Kim, S. K. Chem. Phys. Lett. 1992, 196, 325-329.
- (14) Palit, D. K.; Sapre, A. V.; Mittal, J. P.; Rao, C. N. R. Chem. Phys. Lett. 1992, 195, 1-6.
 - (15) Fessenden, R. W. J. Chem. Phys. 1973, 58, 2489.
 - (16) Verma, N. C.; Fessenden, R. W. J. Chem. Phys. 1973, 58, 2501.
 - (17) Fessenden, R. W.; Verma, N. C. J. Am. Chem. Soc. 1976, 98, 243.
 - (18) Verma, N. C.; Fessenden, R. W. J. Chem. Phys. 1976, 65, 2139.
- (19) The kinetic for M_0 which decays at both first and second order is \dot{M}_0 $+ \dot{M}_0/T_c + kM_0^2 = 0$, and the solution of the differential equation is $M_0e^{-t/T_c}/\{1$ $+ kT_cM_0(1 - e^{-t/T_c})$].
- (20) Using the same formalism to fit the data from the TR-EPR experiments, we obtained $T_1 = 8 \mu s$ (see ref 1). However, this value cannot be correct since the shortest time data were taken at 1 μ s, when the T_1 process was complete. Because of the low time resolution, the rise pattern was not observed in those experiments.
- (21) Carrington, A.; McLanchlan, A. D. Introduction to Magnetic Resonance; Harper & Row: New York, 1967; p 201
- (22) Johnson, R. D.; Bethune, D. S.; Yannoni, C. S. Acc. Chem. Res. 1992, 25, 169.
 - (23) Negri, F.; Orlandi, G.; Zerbetto, F. Chem. Phys. Lett. 1988, 144, 31.
- (24) For a methyl radical, the ¹³C hyperfine coupling constant is 41 G. So for spin density delocalized in the 60 carbons in C₆₀ molecule, a crude estimation would be 41/60 = 0.68 G.
- (25) For a methyl radical, the ¹³C hyperfine coupling constant, according to the McConnell-Weissman relation, $a_c' = Q_1 \rho_1' = 41$ G (see ref 19). For benzene anions, due to equal negative spin densities contributed from the adjacent two C-C σ bonds, the modified McConnell-Weissman relation is $a_c'' = Q_1\rho_1'' + Q_2(\rho_2'' + \rho_3'')$, and $a_c'' = 2.8$ G. Using the relation $\rho_1'' = \rho_2'' = \rho_3'' = 1 + 1/6\rho_1'$, $Q_1/Q_2 = -41/12$.
 - (26) Bolton, J. R.; Fraenkel, G. K. J. Chem. Phys. 1964, 40, 3307-3320.
- (27) Dubois, D.; Kadish, K. M.; Flanagan, S.; Haufler, R. E.; Chibante, L. P. F.; Wilson, L. J. J. Am. Chem. Soc. 1991, 113, 4364.
- (28) Krusic, P. J.; Wasserman, E.; Parkinson, B. A.; Malone, B.; Holler, Jr., E. R.; Keizer, P. N.; Morton, J. R.; Preston, K. F. J. Am. Chem. Soc. 1991, 113, 6274.
- (29) Kato, T.; Kodama, T.; Oyama, M.; Ohazaki, S.; Shida, T.; Nakagawa, T.; Matsui, Y.; Suzuki, S.; Shiromaru, H.; Yamauchi, K.; Achiba, Y. Chem. Phys. Lett. 1991, 186, 35.
- (30) Schell-Sorokin, A. J.; Mehran, F.; Eaton, G. R.; Eaton, S. S.; Viehbeck, A.; O'Toole, T. R.; Brown, C. A. Chem. Phys. Lett. 1991, 195, 225-232. Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112,
- (31) Regev, A.; Gamliel, D.; Meiklyar, V.; Michaeli, S.; Levanon, H. J. Phys. Chem., in press.
- (32) Steren, C. A.; Levstein, P. R.; van Willigen, H.; Linshitz, H.; Biczok, L. Chem. Phys. Lett., in press.