A Comparative Analysis of Algorithms for Identifying Cancer Driver Pathways

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea in Informatica

Candidato: Alessio Bandiera

Relatore: Ivano Salvo

Anno Accademico: 2023/2024

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Ogni anno i decessi per il cancro sono nell'ordine dei milioni.

Il cancro è un gruppo di malattie caratterizzate dalla crescita incontrollata delle cellule.

Esistono oltre 100 tipi di cancro, e.g. carcinomi, sarcomi e leucemie.

Ogni anno i decessi per il cancro sono nell'ordine dei milioni.

È importante trovare trattamenti efficaci contro questa malattia.

Cure attuali

Le cure ed i trattamenti per il cancro attualmente disponibili sono:

- chirurgia
- radioterapia
- chemioterapia
- terapia ormonale

Cure attuali

Le cure ed i trattamenti per il cancro attualmente disponibili sono:

- chirurgia
- radioterapia
- chemioterapia
- terapia ormonale

Problema. Tutti i trattamenti attuali sono limitati, e possono portare a molteplici effetti collaterali.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

La terapia a bersaglio offre maggiore selettività e può aiutare a ridurre gli effetti collaterali.

Terapia a bersaglio

La **terapia a bersaglio** è un trattamento per il cancro che si concentra sulle proteine responsabili della crescita del tumore.

$$\bigvee$$

La terapia a bersaglio offre maggiore selettività e può aiutare a ridurre gli effetti collaterali.

Cosa bersagliare?

Il ruolo delle mutazioni nel cancro

Il cancro evolve attraverso un processo *multistep* in cui le cellule acquisiscono gradualmente caratteristiche maligne tramite **mutazioni**.

Il ruolo delle mutazioni nel cancro

Il cancro evolve attraverso un processo *multistep* in cui le cellule acquisiscono gradualmente caratteristiche maligne tramite **mutazioni**.

Lo sviluppo del cancro è un **processo di mutazione** e selezione di cellule con capacità sempre maggiori di proliferare.

Il ruolo delle mutazioni nel cancro

Il cancro evolve attraverso un processo *multistep* in cui le cellule acquisiscono gradualmente caratteristiche maligne tramite **mutazioni**.

Lo sviluppo del cancro è un **processo di mutazione** e selezione di cellule con capacità sempre maggiori di proliferare.

Le **mutazioni** ricoprono un ruolo fondamentale per lo sviluppo e la progressione del cancro.

Definizione. (Mutazione *passenger*) Una mutazione *passenger* è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione *passenger*) Una mutazione *passenger* è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Definizione. (Mutazione passenger) Una mutazione passenger è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Colpendo le mutazioni *driver* con terapie a bersaglio è possibile ridurre lo sviluppo del cancro.

Definizione. (Mutazione *passenger*) Una mutazione *passenger* è una mutazione che non conferisce vantaggio diretto al cancro.

Definizione. (Mutazione driver) Una mutazione driver è una mutazione che contribuisce direttamente alla crescita tumorale.

Colpendo le mutazioni *driver* con terapie a bersaglio è possibile ridurre lo sviluppo del cancro.

Classificare le mutazioni tra driver e passenger è essenziale.

Pathway cellulari

Definizione. (Pathway) Un pathway cellulare è una catena di processi biochimici che avvengono all'interno di una cellula.

Siamo interessati ai geni che compongono i pathway.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Più mutazioni *driver* in geni diversi possono portare a simili effetti *downstream*, dunque il vantaggio selettivo è distribuito tra le frequenze delle varie alterazioni.

Cercare i pathway driver

I pathway sono importanti poiché nel loro contesto è possibile valutare la ricorrenza delle singole mutazioni.

Più mutazioni *driver* in geni diversi possono portare a simili effetti *downstream*, dunque il vantaggio selettivo è distribuito tra le frequenze delle varie alterazioni.

Mutazioni diverse possono influenzare lo stesso pathway in vari campioni.

Problemi nel cercare i pathway

Problema. Cercare pathway *driver* è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10²⁶ insiemi possibili di 7 geni.

 10^{26}

Problemi nel cercare i pathway

Problema. Cercare pathway driver è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10^{26} insiemi possibili di 7 geni.

Non è possibile controllare ogni pathway.

 10^{26}

Problemi nel cercare i pathway

Problema. Cercare pathway driver è complesso, per via dell'enorme numero di pathway possibili da verificare, e.g. ci sono più di 10^{26} insiemi possibili di 7 geni.

Non è possibile controllare ogni pathway.

Fortunatamente, statisticamente si sono osservate proprietà che permettono di ridurre il numero di pathway da controllare.

 10^{26}

Copertura

Pathway importanti per il cancro dovrebbero essere alterati in un numero significativo di pazienti.

Copertura

Pathway importanti per il cancro dovrebbero essere alterati in un numero significativo di pazienti.

La maggior parte dei pazienti dovrebbe presentare mutazioni in geni di pathway importanti per il cancro.

Copertura

Pathway importanti per il cancro dovrebbero essere alterati in un numero significativo di pazienti.

La maggior parte dei pazienti dovrebbe presentare mutazioni in geni di pathway importanti per il cancro.

Assunzione. (Copertura) I geni driver di pathway driver sono mutati nella maggior parte dei pazienti.

Mutua esclusività

Empiricamente, si osserva che ogni paziente ha poche mutazioni driver, le quali però colpiscono molteplici pathway.

Mutua esclusività

Empiricamente, si osserva che ogni paziente ha poche mutazioni driver, le quali però colpiscono molteplici pathway.

Ogni pathway avrà approssimativamente 1 mutazione driver.

Mutua esclusività

Empiricamente, si osserva che ogni paziente ha poche mutazioni driver, le quali però colpiscono molteplici pathway.

Ogni pathway avrà approssimativamente 1 mutazione driver.

Assunzione. (Mutua esclusività) I geni driver all'interno dello stesso pathway sono approssimativamente mutuamente esclusivi.

Pathway *driver*

Assunzione. (Copertura) I geni driver di pathway driver sono mutati nella maggior parte dei pazienti.

Assunzione. (Mutua esclusività) I geni driver all'interno dello stesso pathway sono approssimativamente mutuamente esclusivi.

Pathway *driver*

Assunzione. (Copertura) I geni driver di pathway driver sono mutati nella maggior parte dei pazienti.

Assunzione. (Mutua esclusività) I geni driver all'interno dello stesso pathway sono approssimativamente mutuamente esclusivi.

Definizione. (Pathway *driver*) Un pathway *driver* è un pathway costituito da geni mutati in numerosi pazienti, e le cui mutazioni sono approssimativamente mutualmente eslcusive all'interno del pathway.

Matrice di Mutazione

Definizione. (Matrice di mutazione) Una matrice di mutazione è una matrice binaria che descrive le mutazioni dei pazienti.

	g_1	g_2	g_3	g_4	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$a_{i,j} = 1 \iff i \text{ ha il gene } j \text{ mutato}$$

Copertura di un gene

Definizione. (Copertura di un gene) La copertura di un gene g è l'insieme dei pazienti che hanno g mutato.

_	g_1	g_2	g_3	g_4	g_5
$\overline{p_1}$	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\Gamma(g) := \{i \mid a_{i,j} = 1\}$$

Copertura di un gene

Definizione. (Copertura di un gene) La copertura di un gene g è l'insieme dei pazienti che hanno g mutato.

_	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	$\mid 1 \mid$	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\Gamma(g) := \{i \mid a_{i,j} = 1\}$$

Copertura di un insieme di geni

Definizione. (Copertura di un insieme di geni) La copertura di un insieme di geni M è l'unione delle coperture dei geni di M.

	g_1	g_2	g_3	g_4	g_5	
p_1	0	1	0	0	1	
p_2	1	0	1	0	0	
p_3	0	1	1	0	0	
p_4	0	0	0	1	1	
$\Gamma(M) := \bigcup_{g \in M} \Gamma(g)$						

Copertura di un insieme di geni

Definizione. (Copertura di un insieme di geni) La copertura di un insieme di geni M è l'unione delle coperture dei geni di M.

	$\mid g_1 \mid$	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1
	$\Gamma(M)$:=	$\bigcup_{g \in M}$	$\Gamma(g)$	

Mutua esclusività

Definizione. (Mutua esclusività) M è mutuamente esclusivo se non ci sono pazienti con più di una mutazione di geni di M.

	g_1	g_2	g_3	$ g_4 $	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$\forall g, g' \in M \quad \Gamma(g) \cap \Gamma(g') = \varnothing$$

	i						
		g_1	g_2	g_3	g_4	g_5	
·	p_1	0	1	0	0	1	
	p_2	1	0	1	0	0	
	p_3	0	1	1	0	0	
	p_4	0	0	0	1	1	
ω ((M)		[]	$\Gamma(g)$	—]	$\Gamma(M)$)
		g	$\in M$				

		g_1	g_2	g_3	g_4	g_5
	p_1	0	1	0	0	1
	p_2	1	0	1	0	0
	p_3	0	1	1	0	0
	p_4	0	0	0	1	1
ω	(M)	:= 2		$\Gamma(g)$	-	$\Gamma(M)$
		g	$\in M$			

	g_1	g_2	g_3	g_4	g_5	
p_1	0	1	0	0	1	
$ p_2 $	1	0	1	0	0	
$ p_3 $	0	1	1	0	0	
$\overline{p_4}$	0	0	0	1	1	
$\omega(M)$:=	$\sum_{g \in M} $	$\Gamma(g)$		$\Gamma(M)$	

	g_1	g_2	g_3	g_4	g_5	
p_1	0	1	0	0	1	•
p_2	1	0	1	0	0	
p_3	0	1	1	0	0	
p_4	0	0	0	1	1	
$\omega(M)$:=	$\sum_{i \in M} i $	$\Gamma(g)$		$\Gamma(M)$	

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
$ p_2 $	1	0	1	0	0
$ p_3 $	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
$ p_1 $	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
$ p_3 $	0	1	1	0	0
p_4	0	0	0	1	1

$$W(M) := |\Gamma(M)| - \omega(M)$$

Maximum Weight Submatrix Problem (MWSP)

Definizione. (MWSP) Data una matrice di mutazione A di dimensioni $m \times n$, ed un intero k > 0, si trovi una sottomatrice $m \times k$ di A tale da massimizzare W(M).

	g_1	g_2	g_3	g_4	g_5
p_1	0	1	0	0	1
p_2	1	0	1	0	0
p_3	0	1	1	0	0
p_4	0	0	0	1	1

Maximum Weight Submatrix Problem (MWSP)

Definizione. (MWSP) Data una matrice di mutazione A di dimensioni $m \times n$, ed un intero k > 0, si trovi una sottomatrice $m \times k$ di A tale da massimizzare W(M).

Teorema. (MWSP) L'MWSP è NP-completo.

	a	b	c	d
$S_{(a,b)}$	1	1	0	0
$s_{(a,c)}$	1	0	1	0
$s_{(b,c)}$	0	1	1	0
$s_{(c,d)}$	0	0	1	1
$s_{(b,d)}$	0	1	0	1
$\mathbf{s}_{\mathbf{c}}^{(1)}$	1	0	0	0
$egin{array}{c} s_d^{(1)} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	0	0	0	1

Un ILP per l'MWSP

Definizione. (Indicatrice di M) $I_M(j)$ è la variabile indicatrice che descrive l'insieme di geni M.

$$I_M(j) = 1 \iff j \in M$$

Un ILP per l'MWSP

Definizione. (Indicatrice di M) $I_M(j)$ è la variabile indicatrice che descrive l'insieme di geni M.

$$I_M(j) = 1 \iff j \in M$$

Definizione. (Indicatrice di $\Gamma(M)$) $C_i(M)$ è la variabile indicatrice che descrive quali pazienti copre M.

$$C_i(M) = 1 \iff \exists g \in M \mid i \in \Gamma(g)$$

Un ILP per l'MWSP

maximize
$$\sum_{i=1}^{m} \left(2 \cdot C_i(M) - \sum_{j=1}^{n} I_M(j) \cdot a_{i,j} \right),$$

subject to
$$\sum_{j=1}^{n} I_M(j) = k$$
,

$$\sum_{i=1}^{n} I_M(j) \cdot a_{i,j} \ge C_i(M), \quad 1 \le i \le m.$$

Multiple Maximum Weight Submatrix Problem (MMWSP)

Definizione. (MMWSP) Data una matrice di mutazione A di dimensioni $m \times n$, ed un intero t > 0, si trovi la collezione $M = \{M_1, ..., M_t\}$ di sottomatrici colonna di A che massimizzi

$$W'(M) := \sum_{\rho=1}^{\iota} W(M_{\rho})$$

	g_1	g_2	g_3	$ g_4 $
$\overline{p_1}$	0	1	0	1
p_2	1	0	0	0
p_3	0	1	0	0
p_4	0	0	1	1

Approcci statistici

Problema. La metrica W(M) assume che i pathway driver abbiano i geni <u>esattamente</u> mutuamente esclusivi, ma la mutua esclusività esatta nei dati reali si verifica raramente

Approcci statistici

Problema. La metrica W(M) assume che i pathway driver abbiano i geni <u>esattamente</u> mutuamente esclusivi, ma la mutua esclusività esatta nei dati reali si verifica raramente.

Nonostante W(M) permetta di formulare facilmente problemi di ottimizzazione per trovare pathway driver, approcci statistici tendono a performare meglio su dati reali.

Ipotesi nulla

Definizione. (H_0) Dato un gruppo di geni M, un gene g di M è alterato indipendentemente dall'unione delle alterazioni dei geni in $M - \{g\}$.

Ipotesi nulla

Definizione. (H_0) Dato un gruppo di geni M, un gene g di M è alterato indipendentemente dall'unione delle alterazioni dei geni in $M - \{g\}$.

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$p_g := P(X = \Gamma(g) \cap \Gamma(M - \{g\}))$$

$$X \sim H(m, \Gamma(g), \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$p_g := P(X = \Gamma(g) \cap \Gamma(M - \{g\}))$$

$$\downarrow \downarrow$$

$$s_M := \max_{g \in M} p_g$$

Algoritmo genetico

L'algoritmo genetico utilizza la stessa funzione di fitness W(M).

	-		
g_1	0111001100		
g_2	1011011000		
g_3	0001110011		
g_4	0101010110		
• •			
g_n	0101010110		

Definizione. (Membro) Un membro della popolazione è una stringa binaria che rappresenta un insieme di geni M.

Definizione. (Crossover) Un figlio eredita dai genitori i bit in comune, mentre gli altri sono casuali.

Algoritmo di clustering

Definizione. (Grafo di geni) Un grafo di geni è un grafo completamente connesso in cui ogni arco ha assegnati due pesi.

Definizione. (Peso negativo) Il peso negativo di un arco (u,v) è il costo di posizionare u e v nello stesso cluster.

$$w_{uv}^- := w_{uv}^-(e)$$

Definizione. (Peso positivo) Il peso positivo di un arco (u,v) è il costo di posizionare u e v in cluster diversi.

$$w_{uv}^+ := w_1 w_{uv}^+(c) + w_2 w_{uv}^+(n) + w_3 w_{uv}^+(x)$$

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio, che potrebbero portare a terapie più personalizzate.

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio, che potrebbero portare a terapie più personalizzate.

Future ricerche potrebbero integrare tecnologie emergenti, come il single-cell sequencing.

Lavori futuri

L'identificazione dei pathway driver offre prospettive promettenti per migliorare l'efficacia delle terapie a bersaglio, che potrebbero portare a terapie più personalizzate.

Future ricerche potrebbero integrare tecnologie emergenti, come il single-cell sequencing.

Sono necessari algoritmi che permettano di tenere in considerazione l'eterogeneità tumorale ed i meccanismi di resistenza adattativa alle terapie a bersaglio.

Grazie per l'attenzione