Sumamry Summary

Ottavia M. Epifania

15/6/2021

Distribuzione normale

```
set.seed(666)
N <- 1000 # number of persons
b <- runif(100, -3,3)
a = c(runif(100, 0.4, 2))
true_theta = rnorm(N, mean=0, sd=1)
data <- sirt::sim.raschtype( true_theta, b=b,</pre>
                              fixed.a = a)
diff_true <- matrix(cbind(1:length(b),</pre>
                         b),
                    ncol = 2)
discr_true = array(c(rep(0, length(a)), a),
                   c(length(a),2,1),
          dimnames = list(paste0("I", 1:length(a)),
                           c("Cat0", "Cat1"),
                           "Dim01"))
hist(true_theta, main = "Theta normale")
```

Theta normale

Distribuzione Skewness

Theta sk

Distribuzione uniforme

Theta uniform

Stima del modello inziale

Modello iniziale con tutti gli item stimato come (questo è vero per tutte le distribuzioni):

Trovo i valori theta target

SUlla base dei theta osservati

Guided

Cluster

Smart

```
Theta teorico tra -3 e 3
data_info_smart <- data.frame(items = 1:(ncol(data)),</pre>
                                info = numeric((ncol(data))))
for (i in 1:nrow(data_info_smart)) {
  data_info_smart[i, "info"] <- mean(IRT.informationCurves(m2pl,</pre>
                                                              theta = seq(-3, 3,
                                                                           length = 1000),
                                                              iIndex = lab_item[i])$info_curves_item)
}
# ora scrivi il codice per la procedura iterativa dove dato un certo numero di
# item, trova il massimo e mano a mano toglie quel'item
filtro <- list()</pre>
data_temp <- list()</pre>
for (i in 1:length((num_item))) {
  filtro[[i]] <- data_info_smart[which(data_info_smart$info == max(data_info_smart$info)), ]</pre>
  for (j in 1:(num_item[i]-1)) {
    data_temp[[j]] <- data_info_smart[!data_info_smart$items %in% filtro[[i]]$items, ]</pre>
    filtro[[i]] <- rbind(filtro[[i]],</pre>
                     data_temp[[j]][which(data_temp[[j]]$info == max(data_temp[[j]]$info)), ])
  names(filtro)[[i]] <- paste("number", num_item[i], sep = "")</pre>
}
```

Calcolo informatività per ogni theta target

```
info_test <- NULL
temp <- list()
value <- list()
temp_data <- NULL
info_data <- NULL

for (j in 1:length(cut_value)) { # contiene i theta target</pre>
```

```
value[[j]] <- cut_value[[j]][1:nrow(cut_value[[j]]), ]</pre>
  for(i in 1:length(lab_item)) { # per ognuno dei 100 item viene calcolata l'info
    for(m in 1:nrow(value[[j]])) { # per ogni theta target
      temp_data <- data.frame(theta_target =</pre>
                                 IRT.informationCurves(m2pl,
                                                        theta = value[[i]][m,
                                                                                   "mean theta"],
                                                        iIndex =
                                                                       lab_item[i])$theta,
                               test_info =
                                 mean(IRT.informationCurves(m2pl,
                                                                  theta = value[[j]][m,
                                                                                      "mean_theta"],
                                                                  iIndex =
                                                                    lab_item[i])$test_info_curve),
                               item_info =
                                 mean(colSums(IRT.informationCurves(m2pl,
                                                                  theta = value[[j]][m,
                                                                                      "mean_theta"],
                                                                  iIndex =
                                                                    lab_item[i])$info_curves_item)),
                               item = lab_item[i],
                               num item = paste("number", nrow(value[[j]]), sep = ""))
info_data <- rbind(info_data, temp_data) # data frame dove per ogni theta target si ha
    }
                                                  # l'info di ogni item
 }
}
```

Calcolo info massima di ogni item per uno specifico theta target

```
temp_data <- NULL
temp_maxrange <- NULL
temp <- NULL
max_temp <- NULL</pre>
for (i in 1:length(unique(info_data$num_item))){
  temp_data <- info_data[info_data$num_item %in% unique(info_data$num_item)[i], ]</pre>
  temp_maxrange <- aggregate(test_info ~ item + theta_target,</pre>
                              data = temp data, max)
 temp_maxrange$range_name <- unique(temp_data$num_item) # trova l'item maggiormente informativo
                                                     # per ogni theta target
 for (j in 1:length(unique(temp_maxrange$theta_target))) { # toglie l'item e il theta e ricomincia da
    temp <- temp_maxrange[which(temp_maxrange$test_info == max(temp_maxrange$test_info)), ]</pre>
    temp_maxrange <- temp_maxrange[which(temp_maxrange$item != temp$item &</pre>
                                             temp_maxrange$theta_target != temp$theta_target), ]
    max_temp <-rbind(max_temp, temp)</pre>
 }
```

Stimo in maniera ricorsiva il modello selezionando gli item trovati al punto precedente

Parametri degli item liberi

Parametri degli item vincolati

```
out_range_theta <- list()</pre>
 model_out_range_theta <- list()</pre>
 info_out_range_theta <- list()</pre>
 for (i in 1:length(unique(max_temp$range_name))) {
   out_range_theta[[i]] <- data[, c(max_temp[max_temp$range_name %in%unique(max_temp$range_name)[i],
                                               "item"])]
   model_out_range_theta[[i]] <- tam.mml(out_range_theta[[i]], # stimo il modello tenendo</pre>
                                               \# gli item fissi ma selezionando
                                           # solo i parametri degli item selezionati
                                               xsi.fixed =
                                             cbind(1:ncol(out_range_theta[[i]]),
                                                   diff_true[as.integer(gsub("I00|I0|I",
                                                              colnames(out_range_theta[[i]]))), 2]),
                                               B =
                                             array(c(rep(0, ncol(out_range_theta[[i]])),
                                                       discr_true[,2,][as.integer(gsub("I00|I0|I",
                                                                       colnames(out_range_theta[[i]])))]),
                                                    c(ncol(out_range_theta[[i]]),2,1),
                                                    dimnames = list(colnames(out_range_theta[[i]]),
                                                                      c("Cat0", "Cat1"),
                                                                      "Dim01")))
   info_out_range_theta[[i]] <- IRT.informationCurves(model_out_range_theta[[i]],</pre>
                                                         theta = seq(-3, 3, length = 1000))
   names(info_out_range_theta)[[i]] <- unique(max_temp$range_name)[i]</pre>
 }
```

Calcolo info nuovi modelli e reliability

(Stesso codice per i modelli stimati tenendo fissi i parametri degli item)

```
info_summary_range <- NULL</pre>
temp <- NULL
for(i in 1:length(info out range)) {
  temp <- data.frame(info_test = mean(info_out_range[[i]]$test_info_curve),</pre>
                      range_name = names(info_out_range)[[i]],
                      item = paste(colnames(out_range[[i]]), collapse = ","))
  info_summary_range <- rbind(info_summary_range,</pre>
                                temp)
}
info_summary_range$rel <- 1 - (1/sqrt(info_summary_range$info_test))^2</pre>
info_summary_range <- rbind(info_summary_range,</pre>
                               data.frame(info_test = sum(info_start),
                                          range_name = "all",
                                          item = "all",
                                          rel = 1 - (1/sqrt(info_start))^2))
info_summary_range$selection <- "guided"</pre>
```

TIF con tutti gli item

TIF-All item

Tif gruppi di item

Normale Parametri liberi

Normale Parametri liberi

Normale parametri fissi:

Normale Parametri fissi

Skewness parametri liberi

Sk Parametri liberi

Parametri fissi skenweness

Sk Parametri fissi

Uniforme parametri liberi

Uniforme Parametri liberi

Parametri fissi uniforme

Uniforme Parametri fissi

Informazione

Reliability

Bias assoluto

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ stimati sul modello con tutti gli item.

RMSEA

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ stimati sul modello con tutti gli item.

Bias assoluto valori osservati

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

RMSEA valori osservati

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

Bias assoluto per gruppi di theta

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

Bias per gruppi di theta

La differenza è calcolata tra i θ calcolati per ognuno dei diversi nuovi nuovi test e i θ "veri" (quelli simulati all'inizio, che quindi possono avere distribuzione normale, con skewness o uniforme).

A differenza del punto precedente, il bias non ha il valore assoluto. Essendo $\hat{\theta} - \theta$, valori positivi indicano sovrastima, valori negativi indicano sottostima.

RMSEA per gruppi di theta

