Switching

Lecture 7:

- switch architectures
- buffering
- queuing

What is it all about?

- How do we move traffic from one part of the network to another?
- Connect end-systems to switches, and switches to each other
- Data arriving to an input port of a switch have to be moved to one or more of the output ports

Types of switching elements

- Telephone switches
 - switch samples
- Datagram routers
 - switch datagrams
- ATM switches
 - switch ATM cells

Classification

- Packet vs. circuit switches
 - packets have headers and samples don't
- Connectionless vs. connection oriented
 - connection oriented switches need a call setup
 - setup is handled in control plane by switch controller
 - connectionless switches deal with self-contained datagrams

	Connectionless (router)	Connection-oriented (switching system)
Packet switch	Internet router	ATM switching system
Circuit switch		Telephone switching system

Other switching element functions

- Participate in routing algorithms
 - to build routing tables
- Resolve contention for output trunks
 - scheduling
- Admission control
 - to guarantee resources to certain streams

Requirements

- Capacity of switch is the maximum rate at which it can move information, assuming all data paths are simultaneously active
- Primary goal: maximize capacity
 - subject to cost and reliability constraints
- Secondary:
 - Circuit switch must reject call if can't find a path for samples from input to output
 - goal: minimize call blocking
 - Packet switch must reject a packet if it can't find a buffer to store it awaiting access to output trunk
 - goal: minimize packet loss
 - Don't reorder packets

A generic switch

- Input buffers
- Output buffers
- A line-card has both input and output buffers and transmission interfaces
- Switch fabric or Interconnect
- Some processor for control funcitons (routing etc)

First generation

- All buffers in one simple memory sysem
- CPU makes forwarding decision and copies packets / manipulates queues
- Most simple Ethernet switches and cheap packet routers (e..g home routers)
- Bottleneck can be CPU, hostadaptor or I/O bus
- First Cisco routers were built sing 200MHz SPARC boards

Second generation

- Input & output buffers on line cards
- Forwarding intelligence in line cards
- Simple bus interconnect
- CPU used to populate forwarding tables from routing protocol or connection set up
- FORE ATM switches used 2.4Gbps bus
- Bottleneck is bus

Third generation

- Simple bus does not scale well
- Need parallel paths
- Introduce interconnection networks

Crossbar

X-Y based crossbar

- Scalability: N²
- Speed: limited by Cap at input and output lines
- Control: N² bits

 Simplest possible space-division switch

Mux based crossbar

Scalability: N²

 Speed : limited by Cap only at input line

Control: N*Log₂N bits

Multistage networks

- Build large fabrics from smaller crossbars
- What might be some problems here? (more later...)
- Number of crosspoints?
- What is input and output capacity... depends on buffering strategy

Input buffering

- One queue per input
- Input and output capacity is same as transmission line rate
- Needs arbitration to decide who wins
- Problem: head of line blocking
 - with randomly distributed packets, utilization at most 58.6%
 - worse with hot spots

HoL - 58.6% utilization

Aggregate fabric capacity 2N

Output buffering

- One queue per output
 - No queues at input
- Input capacity is same as transmission line rate
- Output capacity is N times line rate
- Switch fabric output grows as N²
- Can achieve 100% throughput

100% throughput

Aggregate fabric capacity is N(N+1)

CIOQ

- CIOQ
 - Combined input and output queues
- Apply speed up S_i at input and S_o at output

Apply speed up S_i and S_o

Aggregate fabric $N(S_0 + S_i)$

VOQ

- VOQ
 - Virtual output queues
- All the magic and complexity is in the arbitration...

As output queued

Aggregate fabric 2N

Blocking

We have come across HoL

Where else?

- Internal blocking in complex switch fabrics
- Two packets need same internal link
- Dealing with Blocking:
 - Overprovisioning
 - internal links much faster than inputs
 - Buffers
 - at input or output
 - Backpressure
 - prevent packet from entering until path is available
 - Parallel switch fabrics
 - · increases effective switching capacity

