Languages and Computation (COMP 2049) Lab 04 Regular Grammars

- (1) Consider the floating-point numbers from Exercise (1) of the second lab session, except that we restrict the digits to the set {0, 1}. These binary floating-point numbers must be formed according to the following rules:
 - Each number may be signed or unsigned.
 - unsigned as in 1.01, signed as in +1.01 or -1.01;
 - The numerical part (also called the value field) must start with a non-empty sequence of digits.
 - For instance, in the number +110.011, the value field is 110.011, which starts with the sequence of digits 110.
 - The value field may optionally include a decimal point '.', in which case it must be followed by some other digits;
 - 1 and 1.01 are acceptable, but 1. is not acceptable.
 - There may be an optional exponent field, in which case, it must contain the letter 'e', followed by a signed or an unsigned integer.
 - For instance, 101e+11 or -1.11e101 are acceptable, but 1.01e and 1.01e- are not acceptable.

The following grammar, in which (number) is the start symbol, generates this language:

```
\langle \text{ number } \rangle \rightarrow \langle \text{ sign } \rangle \langle \text{ digits } \rangle \langle \text{ rest } \rangle
\langle \text{ sign } \rangle \rightarrow + | - | \lambda
\langle \text{ digits } \rangle \rightarrow \langle \text{ digit } \rangle \langle \text{ digits } \rangle | \langle \text{ digit } \rangle
\langle \text{ rest } \rangle \rightarrow \langle \text{ exponent } \rangle | . \langle \text{ frac } \rangle
\langle \text{ frac } \rangle \rightarrow \langle \text{ digits } \rangle \langle \text{ exponent } \rangle
\langle \text{ exponent } \rangle \rightarrow \lambda | e \langle \text{ sign } \rangle \langle \text{ digits } \rangle
\langle \text{ digit } \rangle \rightarrow 0 | 1
```

Design a non-deterministic finite automaton *M* that accepts the language of the above binary floating-point numbers. Use JFLAP to test your design.

Solution

The following is one possible solution:

(2) Consider the right-linear grammar G = (V, T, S, P), in which $V = \{S, D\}$, $T = \{a, b, c\}$, and the set P of productions is as follows:

$$S \to acD \mid bcD$$

$$D \to S \mid \lambda$$
(†)

(i) Write a regular expression r such that L(r) = L(G).

Solution

$$r = (ac + bc)(ac + bc)^*.$$

(ii) Draw the transition graph of a non-deterministic finite automaton (NFA) $M = (Q, T, \delta, q_0, F)$ such that L(M) = L(G). Use the construction of [LR23, Theorem 3.3], and make sure that there is only one final state f_0 , i. e., $F = \{f_0\}$, and $f_0 \neq q_0$.

Solution

- (iii) Draw the transition graph of the NFA $M^R = (Q, T, \delta^R, f_0, \{q_0\})$, obtained as follows:
 - The set of states Q and alphabet T are the same as the ones for M;
 - The final state q_0 of M^R is the initial state of M;
 - The initial state f_0 of M^R is the only final state of M;
 - The transitions of δ^R are the reverses of those in δ , i. e., whenever a transition labeled x goes from q_i to q_j in M, a transition labeled x goes from q_j to q_i in M^R (and vice versa).

Note that, by this construction, $L(M^R) = L(M)^R$.

Solution

(iv) Use the subset construction to obtain a deterministic finite automaton (DFA) M_1^R such that $L(M_1^R) = L(M^R)$. To make it easier to read the results, you do not need to draw the trap state.

Solution

(v) Write the details of a right-linear grammar G' = (V', T', S, P') such that $L(G') = L(M_1^R)$, by using the construction of [LR23, Theorem 3.4].

Solution

G' = (V', T', S, P'), in which:

- $V' = \{S, A, B\};$
- $T' = \{a, b, c\};$
- The production rules are as follows:

$$S \to cA$$

$$A \to aB \mid bB$$

$$B \to cA \mid \lambda$$

(vi) Now consider the grammar $\tilde{G} = (\tilde{V}, \tilde{T}, S, \tilde{P})$ which is obtained from G' as follows:

3

- $\tilde{V} = V'$;
- $\tilde{T} = T'$;
- The start variable S is the same as that of G';

• For each variable $U \in \tilde{V}$ and string $\alpha \in (\tilde{V} \cup \tilde{T})^*$, the production rule $U \to \alpha$ is in \tilde{P} if and only if $U \to \alpha^R$ is in P'. In simple terms, each production in \tilde{P} is obtained from reversing the right side of a production in P'.

Write down the production rules for \tilde{G} and notice that, \tilde{G} is a left-linear grammar which generates the same languages as the original right-linear grammar G in (\dagger) .

Solution

$$S \to Ac$$

$$A \to Ba \mid Bb$$

$$B \to Ac \mid \lambda$$

(3) Suggest a construction by which a left-linear grammar G can be obtained from an NFA M such that L(G) = L(M).

Solution

- 1. Convert the NFA M to another NFA M_1 which has only one final state.
- 2. Exchange the initial and final state and reverse direction of all edges in M_1 to obtain M'.
- 3. Convert the NFA M' to an equivalent DFA M''.
- 4. Follow the construction of [LR23, Theorem 3.4] to obtain a right-linear grammar G' such that $L(G') = L(M'') = L(M)^R$.
- 5. Reverse the right-side of all the productions to obtain the left-linear grammar G, which must satisfy $L(G) = L(G')^R = (L(M)^R)^R = L(M)$.

Note that, although the proof of [LR23, Theorem 3.4] is given for DFAs, the construction also works if we start with an NFA. So, step 3. is optional.

References

[LR23] Linz, P. and Rodger, S. H. An Introduction to Formal Languages and Automata. 7th ed. Jones & Bartlett Learning, 2023.