UNIDAD V INTEGRALES

- Tema 1: Integral indefinida
- Tema 2: Integración por tablas
- Tema 3: Métodos de integración
- Tema 4: Integrales definidas
- Tema 5: Aplicaciones de la integrales
- Tema 6: Integrales propias e impropias

FUNCIÓN PRIMITIVA DE UNA FUNCIÓN

La función primitiva de $f_{(x)}$ es otra función $F_{(x)}$ tal que:

$$F'_{(x)} = f_{(x)}$$

EJEMPLOS

- o Muestra que $F_{(x)} = x^4 + \frac{1}{3}x^3 7$ es una primitiva de $f_{(x)} = 4x^3 + x^2$
- o Muestra que $G_{(x)}=x^3-3$ y $H_{(x)}=x^3+2$ son primitivas de $f_{(x)}=3x^2$

Si $F_{(x)}$ es una función primitiva de $f_{(x)}$, cualquier otra función primitiva de $f_{(x)}$ es de la forma:

$$F_{(x)} + c$$
, con $c \in \mathbb{R}$

EJEMPLO

o Comprueba que cualquier función del tipo $F_{(x)} = x^3 + c$ con $c \in \mathbb{R}$ es una función primitiva de $f_{(x)} = 3x^2$

INTEGRAL INDEFINIDA

La integral de una función $f_{(x)}$ es el conjunto de todas sus primitivas, y se representa como $\int f_{(x)} dx$. Se lee "la integral de $f_{(x)}$ diferencial de x". Por lo tanto, si $F_{(x)}$ es una primitiva de $f_{(x)}$, entonces:

$$\int f_{(x)} dx = F_{(x)} + c$$

EJEMPLOS

Calcula las siguientes integrales:

- a) $\int 5x^4 dx$
- b) $\int sen x dx$

PROPIEDADES DE LA INTEGRAL

SUMA Y RESTA

$$\int [f_{(x)} \pm g_{(x)}] dx = \int f_{(x)} dx \pm \int g_{(x)} dx$$

PRODUCTO POR UN NÚMERO

$$\int [k \cdot f_{(x)}] dx = k \cdot \int f_{(x)} dx$$

INTEGRAL DE FUNCIÓN CONSTANTE

$$\int k \, dx = kx + c$$

INTEGRACIÓN POR TABLAS

Funciones simples	Funciones compuestas
$\int dx = x + C$	
$\int k dx = kx + C$	
$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad n \neq -1$	$\int u^n \cdot u' \cdot dx = \frac{u^{n+1}}{n+1} + C \qquad n \neq -1$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{u'}{u} dx = \ln u + C$
$\int e^x dx = e^x + C$	$\int e^u \cdot u dx = e^u + C$
$\int a^x dx = \frac{a^x}{\ln a} + C$	$\int a^u \cdot u' dx = \frac{a^u}{\ln a} + C$
$\int \cos x dx = \sin x + C$	$\int \cos u \cdot u' dx = \operatorname{sen} u + C$
$\int sen x dx = -cos x + C$	$\int sen u \cdot u' dx = -cos u + C$
$\int \frac{1}{\cos^2 x} dx = tg \ x + C$	$\int \frac{1}{\cos^2 u} \cdot u' dx = tg u + C$

INTEGRACIÓN POR TABLAS

$\int (1+tg^2x)dx = tgx + C$	$\int (1 + tg^2 \mathbf{u}) \cdot \mathbf{u}' dx = tg u + C$
$\int \frac{-1}{sen^2 x} dx = \cot g \ x + C$	$\int \frac{-1}{sen^2 u} \cdot u dx = \cot g u + C$
$\int \frac{1}{1+x^2} dx = arc tg x + C$	$\int \frac{1}{1+u^2} \cdot u' dx = arctg u + C$
$\int \frac{-1}{1+x^2} dx = \operatorname{arc} \cot g \ x + C$	$\int \frac{-1}{1+u^2} \cdot u' dx = \operatorname{arc} \operatorname{cotg} u + C$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$	$\int \frac{1}{\sqrt{1-u^2}} \cdot u' dx = arc sen u + C$
$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + C$	$\int \frac{-1}{\sqrt{1-u^2}} \cdot u' dx = \arccos u + C$

EJEMPLOS

Calcula las siguientes integrales:

a)
$$\int \sqrt{x} dx$$

b)
$$\int sen^2x \cdot \cos x \ dx$$

c)
$$\int x^2 \cdot e^{x^3} dx$$

$$d) \int 3^{-\frac{x}{4}} dx$$

$$e) \int \frac{\sqrt{3}}{\cos^2 \frac{x}{2}} \ dx$$

$$f) \int \frac{1}{1 + [\ln(x^2 + 1)]^2} \cdot \frac{6x}{x^2 + 1} \ dx$$

PRÁCTICA #1

Calcula las siguientes integrales:

a)
$$\int \frac{3}{3x+5} dx$$

b)
$$\int \left(2 - \frac{1}{x}\right) dx$$

c)
$$\int e^{2x} dx$$

d)
$$\int (1 + \tan^2(2 - x)) dx$$

e)
$$\int \frac{1}{(1+e^{-2x})e^x} dx$$