

ИССЛЕДОВАНИЕ МУЛЬТИПЛЕКСОРОВ

Методические указания к выполнению лабораторных работ по курсу «Электроника и схемотехника»

Москва 2018

Лабораторная работа №4. «Исследование мультиплексоров»

Цель работы.

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Продолжительность работы – 4 часа.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Мультиплексор - комбинационное цифровое устройство, которое обеспечивает передачу на единственный выход F одного из нескольких входных сигналов Dj в соответствии с поступающим адресным кодом Ai. При наличии п адресных входов можно реализовать $M=2^n$ комбинаций адресных сигналов, каждая из которых обеспечивает выбор одного из M входов. Чаще всего используются мультиплексоры «из 4 в 1» (n=2, M=4), «из 8 в 1» (n=3,M=8), «из 16 в 1» (n=4, M=16). Работу мультиплексора можно задать таблицей истинности:

Bxe	Выход			
A_1	A_1 A_0			
0	0	D_0		
0	1	D_1		
1	0	D_2		
1	1	D_3		

Рис.1 Таблица истинности мультиплексора 4→1

Логическое выражение для выходной функции, заданной таблицей, можно записать в виде:

$$F = D_0 \overline{A_1} \overline{A_0} \lor D_1 \overline{A_1} A_0 \lor D_2 A_1 \overline{A_0} \lor D_3 A_1 A_0$$

Тогда структура мультиплексора «из 4 в 1» будет такой, как показано на рисунке ниже.

Рис.2 Структура и УГО мультиплексора «из 4 в 1»

Кроме адресных и информационных входов мультиплексор может иметь вход разрешения работы Е. Выход мультиплексора может быть организован по схеме с тремя состояниями, в этом случае вход разрешения управляет состоянием выходной цепи.

Для коммутации многоразрядных данных строятся мультиплексоры, представляющие собою совокупность одноразрядных схем. В этом случае мультиплексор характеризуется числом входных каналов n и их разрядностью m.

Рис.3 Структура и УГО многоразрядного мультиплексора

Так как мультиплексор может пропустить на выход сигнал с любого информационного входа, адрес которого установлен на соответствующих адресных входах, то *на основе мультиплексоров реализуют логические функции*, подавая на информационные входы логические 1 или 0 в соответствии с таблицей переключений, а на адресные входы — аргументы функции.

Наращивание размерности мультииллексоров осуществляется, как правило, с помощью пирамидальной структуры (возможно параллельное и последовательное наращивание размерности). При этом первый ярус схемы представляет собой столбец, содержащий столько мультиплексоров, сколько необходимо для получения нужного числа информационных входов. Все мультиплексоры столбца адресуются одними и теми же младшими разрядами адресного кода (если число информационных входов схемы равно 2^n , то общее число адресных разрядов равно n, младшее поле n адресного кода используется для адресации мультиплексоров первого яруса). Старшие разряды адресного кода, число которых равно n-n, используются во втором ярусе, мультиплексор которого обеспечивает поочередную работу мультиплексоров первого яруса на общий выходной канал.

УЧЕБНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Задание 1. Выполните синтез и исследуйте схему мультиплексора, по заданному варианту.

Составьте таблицу истинности мультиплексора (аналогичную таблице 1), в соответствии с заданным вариантом в таблице 2 и внесите ее в отчет.

A1 F $N_{\underline{0}}$ A00 0 1 D02 0 1 D1 3 1 0 D24 1 1 D3

Таблица 1

Получите уравнение логики для выхода мультиплексора (аналогичное примеру) и внесите его в отчет.

$F = D_0 \overline{A_1} \overline{A_0} \lor D_1 \overline{A_1} A_0 \lor D_2 A_1 \overline{A_0} \lor D_3 A_1 A_0$

Соберите, с помощью необходимых схем логики, на рабочем поле среды Multisim вариант схемы мультиплексора. В схему должны быть включены: необходимое количество интерактивных цифровых констант, пробников и схем логики. Скопируйте схему на страницу отчёта.

Рис.4 Схема исследования мультиплексора 4х1

Таблица 2

Вариант	Синтезируемая схема
1, 6, 11, 16, 21, 26	MS 8x1(с входом E)
2, 7, 12, 17, 22, 27	MS 16x1
3, 8, 13, 18, 23, 28	MS 4x1 (с входом Е)
4, 9, 14, 19, 24, 29	MS 8x1
5, 10, 15, 20, 25, 30	MS 8x1(на основеМS 4x1 с входом E)

Проведите моделирование работы мультиплексора с помощью интерактивных цифровых констант, задавая значения на информационных, адресных входах и входе разрешения (при его наличии). Убедитесь в правильности его работы, в соответствии с таблицей истинности. Скопируйте в отчёт работу мультиплексора при одной из комбинаций входного, адресного сигналов и сигнала на входе разрешения (при его наличии), по таблице истинности. Объясните полученные результаты.

Задание 2. Воспроизведите на мультиплексоре логическую функцию, по заданному варианту.

Соберите на рабочем поле среды Multisim схему для воспроизведения логической функции на микросхеме 74LS153D, в соответствии с рис.5. В схему должны быть включены: генератор слов XWG1 (частота $fr = 500 \text{ к}\Gamma \text{ц}$); необходимое количество интерактивных цифровых констант; схем логики; логический анализатор XLA1 и мультиплексор 74LS153D, содержащий две схемы 4х1 (из 4 в 1). Скопируйте схему на страницу отчёта.

	_					\sim
 2	n	П	И	TT	2	- 4
а	١,	JI	VI.		а	_,

X2	X1	XO	F(1,11, 21 вар)	F(2, 12, 22 вар)	F(3, 13, 23 вар)	F(4, 14, 24 вар)	F(5, 15, 25 вар)	F(6, 16, 26 вар)	F(7, 17, 27 вар)	F(8, 18, 28 вар)	F(9, 19, 29 вар)	F(10, 20, 30 вар)
0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	1	1	0	1	1	0	0	1	0
0	1	0	1	1	0	1	1	0	0	1	0	0
0	1	1	0	1	1	1	1	0	0	1	1	0
1	0	0	1	0	1	1	0	1	1	0	0	1
1	0	1	1	0	1	0	1	1	0	0	1	1
1	1	0	1	1	0	1	0	1	1	1	0	1
1	1	1	0	0	0	0	0	0	1	0	0	0

Рис.5 Схема исследования воспроизведения логической функции на мультиплексоре

Для работы схемы генератор XWG1 нужно запрограммировать, т. е. ввести в ячейки памяти кодовые комбинации из единиц и нулей (значения аргументов логической функции), согласно рис.6 и пошаговый режим его работы.

При моделировании генератор последовательно и циклично выводит содержимое каждой ячейки памяти (от начальной до конечной) на выходы 0-2),

формируя на них код сигнала (последовательность аргументов логической функции). Перед моделированием выделите в окне генератора XWG1 ячейку с адресом 0 начала счёта и вывода сигналов. На информационные входы мультиплексора, с помощью интерактивных цифровых констант, нужно подать сигналы настройки, в соответствии с вариантом, табл.3.

Рис.6 Программирование генератора слов XWG1 для исследования реализации логической функции на мультиплексоре

Рис.7 Временные диаграммы работы реализации логической функции на мультиплексоре

Проведите моделирование реализации логической функции на мультиплексоре. Убедитесь в правильности реализации, в соответствии с вариантом(табл.3). Скопируйте в отчёт воспроизведение логической функции, при разных значениях переменных на адресных входах. Объясните полученные результаты.

Задание 3. Исследование *мультиплексора* **MS** 8x1 (из 8 в 1).

Соберите на рабочем поле среды Multisim схему для исследования мультиплексора 8x1 на микросхеме 74151N, в соответствии с рис.8. Составьте таблицу истинности работы мультиплексора и разместите ее в отчете. В схему должны быть включены: генератор слов XWG1 (частота $fr = 500 \text{ к}\Gamma\text{ц}$); необходимое количество интерактивных цифровых констант; логический анализатор XLA1 и мультиплексор 74151N. Скопируйте схему на страницу отчёта.

Рис.8 Схема исследования мультиплексора 8x1 на микросхеме 74151N

Для работы схемы генератор XWG1 нужно запрограммировать, т. е. ввести в ячейки памяти кодовые комбинации из единиц и нулей, согласно рис.9 и пошаговый режим его работы.

При моделировании генератор последовательно и циклично выводит содержимое каждой ячейки памяти (от начальной до конечной) на выходы 0-7), формируя на них код сигнала. Перед моделированием выделите в окне генератора XWG1 ячейку с адресом 0 начала счёта и вывода сигналов.

Рис.9 Программирование генератора слов XWG1 для исследования мультиплексора 8x1 на микросхеме 74151N

Рис.10 Временные диаграммы работы мультиплексора 8x1 на на микросхеме 74151N, при комбинации сигналов на адресных входах 0-0-0

Проведите моделирование работы мультиплексора 8x1. Убедитесь в правильности его работы, в соответствии с таблицей истинности, поочередно изменяя сигналы на адресных входах с помощью интерактивных цифровых констант. Скопируйте в отчёт работу мультиплексора 8x1, при одной из комбинаций сигналов на адресных входах, по таблице истинности. Объясните полученные результаты.

Задание 4. Исследование многоразрядного мультиплексора.

Соберите на рабочем поле среды Multisim схему (рис. 11) для испытания двухканального восьмиразрядного *мультиплексора* MS 2x1 (из 2 в 1). В схему должны быть включены: необходимое количество интерактивных цифровых констант, пробников и мультиплексоры 74LS157D. Скопируйте схему на страницу отчёта. Составьте таблицу истинности работы мультиплексора и разместите ее в отчете.

Установите, с помощью интерактивных цифровых констант, на входах A и В значения, в соответствии с исходным вариантом, согласно таблицы №4.

Рис.11 Схема исследования восьмиразрядного мультиплексора 2x1 на микросхемах 74LS157D

Таблица 4

Вариант		Значения разрядов чисел А и В								
	DI00	DI10	DI20	DI30	DI40	DI50	DI60	DI70		
1, 6, 11, 16, 21, 26	0	1	1	0	0	0	1	1		
1, 0, 11, 10, 21, 20	DI01	DI11	DI21	DI31	DI41	DI51	DI61	DI71		
	1	1	0	1	0	1	0	0		
	DI00	DI10	DI20	DI30	DI40	DI50	DI60	DI70		
2, 7, 12, 17, 22, 27	1	0	0	1	1	1	0	0		
2, 7, 12, 17, 22, 27	DI01	DI11	DI21	DI31	DI41	DI51	DI61	DI71		
	0	0	1	0	1	0	1	1		
	DI00	DI10	DI20	DI30	DI40	DI50	DI60	DI70		
3, 8, 13, 18, 23, 28	1	1	0	0	1	1	0	0		
	DI01	DI11	DI21	DI31	DI41	DI51	DI61	DI71		
	1	1	1	0	1	1	1	0		
4, 9, 14, 19, 24, 29	DI00	DI10	DI20	DI30	DI40	DI50	DI60	DI70		
	0	0	1	1	0	0	1	1		
	DI01	DI11	DI21	DI31	DI41	DI51	DI61	DI71		

	0	0	0	1	0	0	0	1
5, 10, 15, 20, 25, 30	DI00	DI10	DI20	DI30	DI40	DI50	DI60	DI70
	1	0	1	0	1	0	1	0
	DI01	DI11	DI21	DI31	DI41	DI51	DI61	DI71
	1	1	0	0	0	0	1	1

Проведите моделирование работы восьмиразрядного мультиплексора 2x1. Убедитесь в правильности его работы, в соответствии с таблицей истинности, поочередно изменяя сигнал на адресном входе с помощью интерактивной цифровой константы. Скопируйте в отчёт работу мультиплексора 8x1, при каждом значении сигнала на адресном входе, по таблице истинности. Объясните полученные результаты.

СОДЕРЖАНИЕ ОТЧЁТА

- 1. Наименование и цель работы.
- 2. Перечень приборов, использованных в экспериментах, с их краткими характеристиками.
 - 3. Изображения электрических схем для испытания мультиплексоров.
- 4. Копии временных диаграмм и таблицы переключений, отображающие работу исследуемых мультиплексоров.
 - 5. Выводы по работе.

Контрольные вопросы по лабораторной работе 4

- 1. Что такое мультиплексор?
- 2. Какие логические функции выполняет мультиплексор?
- 3. Каково назначение и использование входа разрешения в мультиплексоре?
- 4. Как сделать многоканальный мультиплексор из набора одноканальных?
- 5. Какие способы наращивания мультиплексоров существуют?
- 6. Поясните методику синтеза формирователя ФАЛ на мультиплексоре?
- 7. Как преобразовать параллельный код в последовательный, используя мультиплексор?