TIME: 15:55 — 18:00, NOVEMBER 9TH, 2018 LECTURE ROOM 5306 CLOSED-BOOK

Write your answers by order in the independent answer sheet, which you have to hand back together with this exam sheet in the end. For any questions, you need to state the reason rigorously, except with particular indication.

"i.e." means "id est" or "in another word/that is". "s.t." means "such that". "a.e." means almost everywhere. By " $A \lesssim B$ ", we mean $A \leq CB$, for some C, which we do not care in the context. All functions are complex-valued, measurable, and are finite, a.e. in a measure space, except with particular indication. $\|\cdot\|_p := (\int_{\Omega} |\cdot|^p d\mu)^{1/p}$ denotes the standard scale in L^p $(p \neq 0)$ space, on a measurable subset Ω of \mathbb{R}^n . $f_j \xrightarrow{L^p} f$ means the strong convergence. For any nonzero exponent p, the exponent p' always denote the conjugate exponent, such that 1/p + 1/p' = 1.

PROBLEMS

Problem 1 (10'). (1) Let Ω be a set, $A \subset \mathcal{P}(\Omega)$ be a subalgebra, and $\Sigma = \sigma(A)$, the smallest sigmaalgebra, generated by A. If μ is a A-strong sigma-finite measure, and ν is another measure s.t. $\nu(A) = \mu(A), \forall A \in A, \text{ then prove that } \mu = \nu.$

- (2) State the definition of product measure and prove the Fubini theorem.
- (3) Is it necessary for the measures to be sigma-finite in (1) and (2)?

Problem 2 (12'). (1) Let $f_j \to f$, a.e. (pointwise a.e. convergent). If there exists a strong convergent dominating sequence F_j , s.t. $|f_j| \le F_j \xrightarrow{L^1} F \in L^1$, then prove that, $f, f_j \in L^1$, and

$$\int f = \lim_{j} \int f_{j} .$$

- (2) Is there any uniform bounded, integrable, pointwise a.e. convergent sequence, i.e. $f_j \to f$, a.e., with $\sup_j \|f_j\|_1 + \sup_{j,x} |f_j| < \infty$, which
 - (a) however does NOT satisfy the interchangement of integral and limit?
 - (b) satisfies the interchangement of integral and limit, but has NO dominating sequence?
 - (c) has a dominating sequence, but has NO (nonnegative, integrable) dominating function?

Problem 3 (14'). (1) Let $J: \mathbb{C} \to \mathbb{R}$, continuous, convex, and J(0) = 0. Prove that, for any small $\epsilon > 0$, there exists two nonnegative, continuous functions ϕ_{ϵ} and ψ_{ϵ} , s.t., for any $a, b \in \mathbb{C}$,

$$|J(a+b)-J(a)| \leq \epsilon \, \phi_{\epsilon}(a) + \psi_{\epsilon}(b)$$
.

Date: November 1, 2018 © By Lecturer: An ZHANG azhang@ustc.edu.cn

TIME: 15:55 — 18:00, NOVEMBER 9TH, 2018 LECTURE ROOM 5306 CLOSED-BOOK

(2) Let $f_j \to f$, a.e.. If $J(cf) \in L^1$ for any $c \in \mathbb{R}$, and there exists some $k \in \mathbb{N}$, $k \geq 2$, s.t., $\sup_j \|[J(k \cdot) - kJ(\cdot)] \circ (f_j - f)\|_1 < \infty$, then prove that

$$\int |J(f_j)-J(f)-J(f_j-f)|\to 0.$$

(3) Can we eliminate the uniform assumption in (2), or weaken it to $\sup_j \|J(f_j-f)\|_1 < \infty$?

(4) Let $\{f_j\} \subset L^p$, $p \in (0, \infty)$, $f_j \to f$, a.e., and $\{\|f_j\|_p\}$ converges, then does this imply $f_j \xrightarrow{L^p} f$?

Problem 4 (18'). (1) (a) State the definition of convergence by measure, denoted by $f_j \xrightarrow{\mu} f$, and (pointwise) almost uniform convergence, denoted by $f_j \rightrightarrows_{alm} f$.

(b) Prove the Egorov theorem. Is there any sequence, s.t. $f_j \to f$, a.e., and $f_j \xrightarrow{\mu} f$, but f_j is not almost uniformly convergent?

(c) Prove the Riesz subsquence lemma (i.e., if $f_j \stackrel{\mu}{\rightarrow} f$, then there exists a subsequence, still denoted by $\{f_j\}$, s.t., $f_j \rightarrow f$, a.e.). Is there any sequence, $f_j \stackrel{\mu}{\rightarrow} f$, but f_j is not pointwise convergent at any point?

(2) Let $1 . Prove that, if <math>f_j \rightharpoonup f$ (weak convergent in L^p), and $||f_j||_p \rightarrow ||f||_p$, then $f_j \xrightarrow{L^p} f$. Is there any weak convergent sequence, which

(a) is NOT strong convergent, and also is NOT pointwise convergent at any point?

(b) is NOT strong convergent, but is pointwise a.e. convergent, and $\lim_{j} \|f_{j}\|_{p}$ exists?

Problem 5 (12'). Let $p \in (0,1)$. Is L^p a normed linear space? Is it a complete linear space? Is there any logarithmic convexity for the scale $\|\cdot\|_p$?

Problem 6 (12'). (1) For $1 \le p \le 2$, prove that

$$||f+g||_p^{p'} + ||f-g||_p^{p'} \le 2(||f||_p^p + ||g||_p^p)^{p'/p}.$$

Using Hanner inequality directly, you might only get partial points.

(2) A normed linear space $(X, \|\cdot\|)$ is called uniformly convex if

$$\delta(\epsilon) := \inf\{1 - \|(x+y)/2\| : \|x\| = \|y\| = 1, \|x-y\| = \epsilon\} > 0.$$

Furthermore, it is called p-order uniformly convex, if $\delta(\epsilon) \gtrsim \epsilon^p$.

Prove that L^p $(1 is <math>(\max\{p, p'\})$ -order uniformly convex, using the inequality above.

(3) Show that, for some p at least, L^p is not $(2-\epsilon)$ -order uniformly convex, for any small $\epsilon>0$.

Problem 7 (12'). (1) State the projection theorem on a closed convex subset in L^p for any $p \in (1,\infty)$ (without proof). Is the projection unique?

(2) Using the projection theorem to prove the Ascoli theorem in real L^p : for any closed convex proper subset $K \subsetneq L^p$, and any $f \notin K$, there is a (real) bounded linear functional $L \in (L^p)^*$, strictly separating f and K, i.e., there exists a constant $\alpha \in \mathbb{R}$, s.t., $L(f) > \alpha > L(g)$, $\forall g \in K$.

Problem 8 (10'). Let $p \in [1, \infty)$. State and prove the theorem of identity approximation of L^p functions by smooth functions with compact support, using convolution (i.e., $\overline{C_c^{\infty}} = L^p$).

Step1. 外有限
1. (1) M= AE : M(A)=V(A)

· D C M (O-finite)

· M:单调类

Step2. 一般 , BE I , M(ANB)=V(ANB).

定义从。=ル/A, Vo=V/A,
11
M(A)()

M(AIL) 由文強の-finite, YBEE、从(B)=lim从(BNAi)=lim)(BNAi)=V(B).

(2) (\(\Omega:\mu_i, \G; \) ⇒ (\(\Omega:\mu_i, \G; \mu_i)\)

Ω, ×Ωz ⇒ {AXB: A ∈ I, B∈ Iz] +Act alg.

= o([AXB]).

M: M (AXB) = M(A) ×M2(B)

YACT, YyERZ, A, (y) = [x ER, : (x,y) EA]

Pmp! A, y) € [1, Yy ∈ N2.

2. $\int_{\Omega^2} \mu_1(A_1(y)) d\mu_2(y) = \int_{\Omega_1} \mu_2(A_2(x)) d\mu_1(x) \stackrel{\triangle}{=} \widetilde{\mu}(A)$

柔积测度结合/这模性证Fubini

(3) Fubini: \(\lambda(x,x)\rangle\), -↑ Lebesgne 视度, -↑ counting 测度.
\(\lambda(c.e.g. for A不可测: (IR, «), 其中偏序关系满足, \(\formall y\) elR, \(\formall x\) \(\fo

2.11)对于FFj-If-fjl PFotou. (Check 电为正,由Riess Lemma).

$$\int \underline{\lim} \left(f + |f_j| - |f_j| \right) \leq \underline{\lim} \int f + |f_j| - |f_j| = \lim_{l \to \infty} \int f + |f_j| - |f_j| = \lim_{l \to \infty} \int |f_j| + |f_j| + |f_j| = \lim_{l \to \infty} \int |f_j| + |f_j| + |f_j| + |f_j| = \lim_{l \to \infty} \int |f_j| + |f_j$$

(2)
$$f_{k} = \sin k \times \text{ on } [0,1]$$

 $f_{k} = \chi_{[k,k+1]} \longrightarrow (a).$
 $f_{k} = \frac{1}{k} \chi_{[0,k]}$
 $f_{k} = \frac{1}{k} \chi_{[0,k]}$
 $f_{k} = \chi_{[k,k+1]} - \chi_{[k-1,k]}$
 $f_{k} = \chi_$

(C)
$$f_j = \frac{1}{5} \chi_{\tau_j, j+1}$$
.
 $f_j = \frac{1}{5} \chi_{\tau_j, j+1}$.

4. (1)
$$f_{j} \rightarrow f: \forall \xi > 0, \mu(ff_{j} - f| \ge \xi)) \rightarrow 0$$

 $f_{j} \stackrel{\text{d.e.}}{\rightarrow} f: \forall \xi > 0, \mu(ff_{j} - f| \ge \xi)) = 0$
 $f_{j} \Rightarrow_{\text{alm}} f: \forall \xi > 0, \mu(ff_{j} - f| \ge \xi)) = 0.$
(b) $f_{j} \Rightarrow_{\text{alm}} f: \forall \xi > 0, \mu(ff_{j} - f| \ge \xi)) = 0.$
(c) $f_{k_{i}} = \chi_{k_{i}} f_{k_{i}} f_{k_{i$

(2) Thm.
$$X := 300 \text{ Banach.}, f_j \longrightarrow f$$
, $\|f_j\| \rightarrow \|f\|$, $\|g\| f_j\| \|f\|$. $\|f\| \cdot \|f\| \cdot \|$

(b)
$$f_k = x [k, k+1]$$
.

c.e.g
$$p=1$$
 \overrightarrow{X} : $f_{k} = Gt sin_{k} x$. (?).

$$f_{j} \rightarrow f \Rightarrow f_{j} \stackrel{\text{a.e.}}{\Rightarrow} f : sin_{j} x$$

$$f_{j} \stackrel{\text{a.e.}}{\Rightarrow} f \Rightarrow f_{j} \longrightarrow f : \chi_{\text{to,j}}.$$

Thm. Un Eli(IRn), 1<pc>
We with suplly nlp<C

then UELP, Un ~ U. (Hint: \(\int_{A}(\lambda_{n}v - Uv) = \int_{A} \frac{1}{64} \lambda_{A} \frac{1

5. prop 1. 11fgll, > 11f11p 11911p, , p = (0,1). Pf: [IfIP = SifgIPIgI-P Hölder (Sifg1)P(Sig1P')1-P. # 2. ([1AP) + ([191P) = ([1f+g|P) +, f,g = 0. Pf: Sifty (P= Stff)-1 (1f1+191) Ettölder ((ffip) + (sigip)) (siftgip) P => 11-f+g1/p = 11-f1/p+11g1/p. d(f,g)=fif-g1P··正定, 亥换, 海 (atb) P ≤ aP+bP, p+(0,1), a,b≥0. $\left(\bigcirc \right) \mid \leq \left(\frac{a}{a+b} \right)^p + \left(\frac{b}{a+b} \right)^p.$ log-凸:是否有 o<p,q,r<1, 十=0+10, 11f11p=11f1p=11f11p=11f11p=11f11p=11f11p=11f11p=11f11p=11f11p=1 Pf: Sifir= Sifiro ifi rato, 12 Holder (Sifir) to (Sifir) 20 prop. [(IRM) (OCPEI) contains no convex open set other than \$\phi\$ and IRM. 吐: 设中もV CLP 开凸 不成のもV, ヨアンの, s.+. Br CV. ₩fell. , an=1,5+. hp-1/171P<r. (@p=1). 3 Ei, 12"= 17 Ei, st. SE. Hip=h SHIP $2g_{i} = n \times f_{i} + \int |g_{i}| f = \sum_{n=1}^{n} g_{i}, g_{i} \in Br. (O \int |g_{i}|^{p} = n^{p+f} |f|^{p} < r).$ #. Cor. Depct. f E(P)*, RIf=0. け: YE70, fl(-E, E) 計2 = f(-E, E1)=LP. サミカーの. #. prop. |A+B|P+ | A-B|1 > d(r) |A|P + p(r)+B|P, Hreto,1], 1= p=2. 草文(r)=(Hr)P-1+(Hr)P-1 p(r)=[(Hr)P-1 (H)P-1] +1-P. 积分级 11ftg|| B + 11f-g|| B = X(r) 11f1||B+B(n)||g||B (1) 不妨lighp 4||filp, r=("9")filp) P' 智证. (2) | <p < 2明, Nf11=11g11=1, Nf-g11p=2. $\|f^{+}g\|_{p'}^{p'} + \|\frac{f^{-}g}{2}\|_{p'}^{p'} \le \|f^{+}g\|_{p}^{p'} \le \|f^{-}g\|_{p}^{p'} \le \|f^{-}g\|_{p}^{p'$ Prop. L2: 11 \fra 112 + 11 \fra 12 = \fra 112 + 11 \fra 112)

7.(1)-致凸⇒投路唯一 i.e. 闭凸C,0¢C, 31%€C, 11%011 = inf || x11.

已有神, 产证唯一性.

∃ γο, γι ∈ C, ς+. ||γο||=||γι||= inf ||x|| = d>0.

⇒ ||Xo+X|| EC 矛盾.

(2) C.h.--f $L(g) \stackrel{\triangle}{=} Re \int g |f-h|^{p-2} (f-h)$ $L(g-h) \stackrel{\triangle}{=} 0.$ $L(f-h) = \int |f-h|^{p} > 0.$

8、略.