```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
from scipy import stats
from math import ceil

%matplotlib inline
```

# 1. Load data

```
df = pd.read_csv('../train.csv', index_col=0)
df.head()
```

|    | MSSubClass | MSZoning | LotFrontage | LotArea | Street | Alley | 1   |
|----|------------|----------|-------------|---------|--------|-------|-----|
| Id |            |          |             |         |        |       |     |
| 1  | 60         | RL       | 65.0        | 8450    | Pave   | NaN   | I   |
| 2  | 20         | RL       | 80.0        | 9600    | Pave   | NaN   | I   |
| 3  | 60         | RL       | 68.0        | 11250   | Pave   | NaN   | - 1 |
| 4  | 70         | RL       | 60.0        | 9550    | Pave   | NaN   | I   |
| 5  | 60         | RL       | 84.0        | 14260   | Pave   | NaN   | I   |

5 rows × 80 columns

[53] df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):
MSSubClass 1460 non-null int64
                 1460 non-null object
1201 non-null float64
MSZoning
LotFrontage
LotArea
                  1460 non-null int64
                1460 non-null object
91 non-null object
1460 non-null object
1460 non-null object
1460 non-null object
Street
Alley
LotShape
LandContour
Utilities
LotConfig
                 1460 non-null object
                   1460 non-null object
LandSlope
Neighborhood
                 1460 non-null object
Condition1
                   1460 non-null object
```

```
Condition2
                1460 non-null object
BldgType
                1460 non-null object
HouseStyle
                1460 non-null object
OverallQual
              1460 non-null int64
OverallCond
                1460 non-null int64
YearBuilt
              1460 non-null int64
YearRemodAdd 1460 non-null int64
RoofStyle
              1460 non-null object
RoofMatl
              1460 non-null object
Exterior1st
                1460 non-null object
                1460 non-null object
Exterior2nd
                1452 non-null object
MasVnrType
                1452 non-null float64
MasVnrArea
ExterQual
               1460 non-null object
ExterCond
                1460 non-null object
              1460 non-null object
Foundation
```

# 2. Clean Data

#### 2.1 Columns with NaN Values

```
cols_with_na = df.isnull().sum()
cols_with_na = cols_with_na[cols_with_na>0]
print(cols_with_na.sort_values(ascending=False))
```

| PoolQC       | 1453 |  |  |  |
|--------------|------|--|--|--|
| MiscFeature  | 1406 |  |  |  |
| Alley        | 1369 |  |  |  |
| Fence        | 1179 |  |  |  |
| FireplaceQu  | 690  |  |  |  |
| LotFrontage  | 259  |  |  |  |
| GarageYrBlt  | 81   |  |  |  |
| GarageType   | 81   |  |  |  |
| GarageFinish | 81   |  |  |  |
| GarageQual   | 81   |  |  |  |
| GarageCond   | 81   |  |  |  |
| BsmtFinType2 | 38   |  |  |  |
| BsmtExposure | 38   |  |  |  |
| BsmtFinType1 | 37   |  |  |  |
| BsmtCond     | 37   |  |  |  |
| BsmtQual     | 37   |  |  |  |
| MasVnrArea   | 8    |  |  |  |
| MasVnrType   | 8    |  |  |  |
| Electrical   |      |  |  |  |
| dtype: int64 |      |  |  |  |

# 2.2 Meaningful NaN Values

```
df.Alley = df.Alley.fillna(value = 'NoAlley')
df.BsmtCond = df.BsmtCond.fillna(value = 'NoBsmt')
df.BsmtQual = df.BsmtQual.fillna(value = 'NoBsmt')
df.BsmtExposure = df.BsmtExposure.fillna(value= 'NoBsmt')
df.BsmtFinType1 = df.BsmtFinType1.fillna(value= 'NoBsmt')
df.BsmtFinType2 = df.BsmtFinType2.fillna(value= 'NoBsmt')
df.LotFrontage = df.LotFrontage.fillna(value = 0)
df.FireplaceQu = df.FireplaceQu.fillna(value = 'Nofireplace')
df.GarageType = df.GarageType.fillna(value = 'NoGarage')
df.GarageCond = df.GarageCond.fillna(value = 'NoGarage')
df.GarageFinish = df.GarageFinish.fillna(value = 'NoGarage')
df.GarageYrBlt = df.GarageYrBlt.fillna(value = 0)
df.GarageQual = df.GarageQual.fillna(value = 'NoGarage')
df.PoolQC = df.PoolQC.fillna(value = 'NoPool')
df.Fence = df.Fence.fillna(value = 'NoFence')
df.MiscFeature = df.MiscFeature.fillna(value = 'NoMisc')
df.MasVnrType = df.MasVnrType.fillna(value = 'noMas')
df.MasVnrArea = df.MasVnrArea.fillna(value = 'noMas')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):
MSSubClass 1460 non-null category
               1460 non-null category
MSZoning
LotFrontage
                1460 non-null float64
                1460 non-null int64
LotArea
Street
                1460 non-null category
Alley
                1460 non-null category
LotShape
              1460 non-null category
LandContour
                1460 non-null category
Utilities
                1460 non-null category
LotConfig
                1460 non-null category
LandSlope
                1460 non-null category
Neighborhood
                1460 non-null category
Condition1
                1460 non-null category
Condition2
                1460 non-null category
BldgType
                1460 non-null category
                1460 non-null category
HouseStyle
OverallQual
                1460 non-null int64
OverallCond
                1460 non-null int64
YearBuilt
                1460 non-null int64
YearRemodAdd
                1460 non-null int64
RoofStyle
                1460 non-null category
RoofMatl
                1460 non-null category
Exterior1st
                1460 non-null category
Exterior2nd
                1460 non-null category
MasVnrType
                1460 non-null category
                1460 non-null category
MasVnrArea
ExterQual
                1460 non-null int64
ExterCond
                1460 non-null int64
Foundation
                1460 non-null category
```

## 2.3 Distribution of SalePrice

/Users/changyaohua/anaconda3/lib/python3.7/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] \* weights, axis=axis) / sumval



## 2.4 Log Transform SalePrice

```
#Log Transform SalePrice to improve normality
sp = df.SalePrice
df.SalePrice = np.log(sp)

plt.figure(figsize=(12,4))
plt.subplot(1,2,1)
_ = sns.distplot(sp.dropna() , fit=stats.norm);
plt.subplot(1,2,2)
_=stats.probplot(sp.dropna(), plot=plt)
```



# 3. Exploratory Data Analysis (EDA)

Different types of features will need to be treated differently when digging deeper in to the data. Here I identify three types of features:

- Numeric-discrete: Numeric features with less than 13 unique values, such as month of the year, or the numeric scales created above.
- Numeric-continuous: Numeric features with 13 or more unique values, such as areas, the year a property was built etc.
- Categorical: The remaining non-numeric features.

```
# extract names of numeric columns
dtypes = df.dtypes
cols_numeric = dtypes[dtypes != object].index.tolist()
# MSubClass should be treated as categorical
cols_numeric.remove('MSSubClass')
# choose any numeric column with less than 13 values to be
# "discrete". 13 chosen to include months of the year.
# other columns "continuous"
col_nunique = dict()
for col in cols_numeric:
    col_nunique[col] = df[col].nunique()
col_nunique = pd.Series(col_nunique)
cols_discrete = col_nunique[col_nunique<13].index.tolist()</pre>
cols_continuous = col_nunique[col_nunique>=13].index.tolist()
print(len(cols_numeric), 'numeric columns, of which',
      len(cols_continuous), 'are continuous and',
      len(cols_discrete), 'are discrete.')
```

35 numeric columns, of which 21 are continuous and 14 are discrete.

```
# extract names of categorical columns
cols_categ = dtypes[~dtypes.index.isin(cols_numeric)].index.tolist()

for col in cols_categ:
    df[col] = df[col].astype('category')

print(len(cols_categ),'categorical columns.')
```

45 categorical columns.

# 3.1 Distribution of SalePrice in Categorical Variables

```
# plot categorical variables
fcols = 3
frows = ceil(len(cols_categ)/fcols)
plt.figure(figsize=(15,4*frows))

for i,col in enumerate(cols_categ):
    plt.subplot(frows,fcols,i+1)
    _ = sns.violinplot(df[col],df['SalePrice'])
```



## [61] #Neighbourhood

```
plt.figure(figsize=(25,5))
sns.violinplot(x='Neighborhood',y='SalePrice',data=df)
plt.xticks(rotation=45);
```

#### #Exterior1st

```
plt.figure(figsize=(25,5))
sns.violinplot(x='Exterior1st',y='SalePrice',data=df)
plt.xticks(rotation=45);
```





```
df.BsmtCond = df.BsmtCond.map({'Ex':5 ,'Gd':4 , 'TA':3 ,'Fa':2 ,'Po':1 ,
df.BsmtQual = df.BsmtQual.map({'Ex':5 ,'Gd':4 , 'TA':3 ,'Fa':2 ,'Po':1 ,
df.BsmtExposure = df.BsmtExposure.map({'Gd':4, 'Av':3, 'Mn':2, 'No':1, 'No':1,
df.BsmtFinType1 = df.BsmtFinType1.map({'GLQ':6,'ALQ':5,'BLQ':4,'Rec':3,'L
df.BsmtFinType2 = df.BsmtFinType2.map({'GLQ':6,'ALQ':5,'BLQ':4,'Rec':3,'L
df.GarageType = df.GarageType.map({'2Types':4 , 'Attchd': 5, 'Basment':3
                                                                                                 'CarPort' :1, 'Detchd':2 , 'NoGara
df.GarageCond = df.GarageCond.map({'NoGarage':0, 'Po':1, 'Fa':2, 'TA':3,
df.GarageQual = df.GarageQual.map({'NoGarage':0, 'Po':1, 'Fa':2, 'TA':3,
df.GarageFinish = df.GarageFinish.map({'Fin':3, 'RFn':2, 'Unf':1, 'NoGarageFinish'.
df.PavedDrive = df.PavedDrive.map({'Y':2,'P':1, 'N':0 })
df.ExterCond = df.ExterCond.map({"Ex":4,'Gd':3,'TA':2,'Fa':1,'Po':0})
df.ExterQual = df.ExterQual.map({"Ex":4,'Gd':3,'TA':2,'Fa':1,'Po':0})
df.CentralAir = df.CentralAir.map({'Y':1, 'N':0})
df.HeatingQC = df.HeatingQC.map({"Ex":4,'Gd':3,'TA':2,'Fa':1,'Po':0})
df.FireplaceQu = df.FireplaceQu.map({"Ex":5,'Gd':4,'TA':3,'Fa':2,'Po':1,
df.KitchenQual = df.KitchenQual.map({"Ex":4,'Gd':3,'TA':2,'Fa':1,'Po':0})
df.PoolQC = df.PoolQC.map({"Ex":4,'Gd':3,'TA':2,'Fa':1,'NoPool':0})
```

#### 3.2 Distribution of SalePrice in Discrete Numeric Features

```
fcols = 3
frows = ceil(len(cols_discrete)/fcols)
plt.figure(figsize=(15,4*frows))

for i,col in enumerate(cols_discrete):
    plt.subplot(frows,fcols,i+1)
    sns.violinplot(df[col],df['SalePrice'])
```



## 3.3 Distribution of Continuous Variables and Effect on SalePrice

plt.xlabel(col)



## 3.4 Correlation Between Numeric Features

```
# correlation between numeric variables
df_corr = df[cols_numeric].corr(method='spearman').abs()

# order columns and rows by correlation with SalePrice
df_corr = df_corr.sort_values('SalePrice',axis=0,ascending=False).sort_va

ax=plt.figure(figsize=(20,16)).gca()
sns.heatmap(df_corr,ax=ax,square=True)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x1a24f63e48>



#### 67] df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):

MSSubClass 1460 non-null category MSZoning 1460 non-null category LotFrontage 1460 non-null float64 LotArea 1460 non-null int64 Street 1460 non-null category Alley 1460 non-null category LotShape 1460 non-null category LandContour 1460 non-null category Utilities 1460 non-null category LotConfig 1460 non-null category LandSlope 1460 non-null category Neighborhood 1460 non-null category Condition1 1460 non-null category Condition2 1460 non-null category BldgType 1460 non-null category HouseStyle 1460 non-null category OverallQual 1460 non-null int64 **OverallCond** 1460 non-null int64 YearBuilt 1460 non-null int64 YearRemodAdd 1460 non-null int64 RoofStyle 1460 non-null category RoofMatl 1460 non-null category Exterior1st 1460 non-null category Exterior2nd 1460 non-null category MasVnrType 1460 non-null category MasVnrArea 1460 non-null category **ExterQual** 1460 non-null int64 ExterCond 1460 non-null int64

```
# cols = ['LotArea', 'OverallQual', 'YearBuilt', 'YearRemodAdd', 'MasVnrA
cols = ['LotArea', 'OverallQual', 'YearBuilt', 'YearRemodAdd', 'BsmtFinSF

sns.pairplot(df[cols], size=2.5)
plt.tight_layout()
plt.show()
```

/Users/changyaohua/anaconda3/lib/python3.7/sitepackages/seaborn/axisgrid.py:2065: UserWarning: The `size` parameter has been renamed to `height`; pleaes update your code.



```
fig = plt.figure(figsize=(15,8))
cm = np.corrcoef(df[cols].values.T)
sns.set(font_scale=0.8)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot
plt.show()
```



#### df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460
Data columns (total 80 columns):

MSSubClass 1460 non-null category 1460 non-null category MSZoning LotFrontage 1460 non-null float64 LotArea 1460 non-null int64 Street 1460 non-null category Alley 1460 non-null category LotShape 1460 non-null category LandContour 1460 non-null category Utilities 1460 non-null category LotConfig 1460 non-null category LandSlope 1460 non-null category Neighborhood 1460 non-null category Condition1 1460 non-null category Condition2 1460 non-null category BldgType 1460 non-null category HouseStyle 1460 non-null category 1460 non-null int64 OverallQual **OverallCond** 1460 non-null int64 YearBuilt 1460 non-null int64 YearRemodAdd 1460 non-null int64 RoofStyle 1460 non-null category

```
RoofMatl
                1460 non-null category
Exterior1st
                1460 non-null category
                1460 non-null category
Exterior2nd
MasVnrType
               1460 non-null category
MasVnrArea
                1460 non-null category
ExterOual
               1460 non-null int64
                1460 non-null int64
ExterCond
Foundation
                1460 non-null category
```

# 3.5 Identify and Remove Outliers

```
from sklearn.metrics import make_scorer
from sklearn.linear_model import Ridge
# metric for evaluation
def rmse(y_true, y_pred):
    diff = y_pred - y_true
    sum_sq = sum(diff**2)
    n = len(y_pred)
    return np.sqrt(sum_sq/n)
# scorer to be used in sklearn model fitting
rmse_scorer = make_scorer(rmse, greater_is_better=False)
# function to detect outliers based on the predictions of a model
def find_outliers(model, X, y, sigma=3):
    # predict y values using model
    try:
        y_pred = pd.Series(model.predict(X), index=y.index)
    # if predicting fails, try fitting the model first
    except:
        model.fit(X,y)
        y_pred = pd.Series(model.predict(X), index=y.index)
    # calculate residuals between the model prediction and true y values
    resid = y - y_pred
    mean_resid = resid.mean()
    std_resid = resid.std()
    # calculate z statistic, define outliers to be where |z|> sigma
    z = (resid - mean_resid)/std_resid
    outliers = z[abs(z)>sigma].index
    # print and plot the results
    print('R2=', model.score(X,y))
    print('rmse=',rmse(y, y_pred))
```

```
print('mean of residuals:',mean_resid)
         print('std of residuals:',std_resid)
         print('-----')
         print(len(outliers), 'outliers:')
         print(outliers.tolist())
         plt.figure(figsize=(15,5))
         ax_131 = plt.subplot(1,3,1)
         plt.plot(y,y_pred,'.')
         plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro')
         plt.legend(['Accepted','Outlier'])
         plt.xlabel('y')
         plt.ylabel('y_pred');
         ax_132=plt.subplot(1,3,2)
         plt.plot(y,y-y_pred,'.')
         plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro')
         plt.legend(['Accepted','Outlier'])
         plt.xlabel('y')
         plt.ylabel('y - y_pred');
         ax_133=plt.subplot(1,3,3)
         z.plot.hist(bins=50,ax=ax_133)
         z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133)
         plt.legend(['Accepted','Outlier'])
         plt.xlabel('z')
         plt.savefig('outliers.png')
         return outliers
[84] d_df = pd.get_dummies(df, drop_first= True)
     d_df.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 1460 entries, 1 to 1460
     Columns: 546 entries, LotFrontage to SaleCondition_Partial
     dtypes: float64(3), int64(50), uint8(493)
     memory usage: 1.3 MB
[85] y = d_df.SalePrice
     X = d_df.drop('SalePrice',axis=1)
     # find and remove outliers using a Ridge model
     outliers = find_outliers(Ridge(), X, y)
     # permanently remove these outliers from the data
     df_model = df.drop(outliers)
```

R2= 0.947325794892571 rmse= 0.09164624386294766

\_\_\_\_\_

mean of residuals: -7.884104328297002e-16 std of residuals: 0.09167764569489989

19 outliers:

[31, 89, 411, 463, 496, 524, 534, 633, 682, 689, 711, 875, 917, 969, 971, 1299, 1325, 1433, 1454]



[86] d\_df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1460 entries, 1 to 1460

Columns: 546 entries, LotFrontage to SaleCondition\_Partial

dtypes: float64(3), int64(50), uint8(493)

memory usage: 1.3 MB

d\_df.to\_csv('./clean\_data.csv')