HW4 보고서

컴퓨터공학부 2013-11413 우주

1. 실행 방법

Python 2.7 버전을 사용하였고 virtualenv로 격리하여 필요 패키지를 설치하였다. Python 2.7은 Ubuntu 16.04 에 기본 설치되어 있다. 실행은 아래 순서대로 진행하면 된다. 터미널에서 커맨드라인으로 실행해야 하는 부분은 앞에 \$ 를 써 놓았다.

- a. (pip가 설치되어 있지 않은 경우) \$ sudo apt-get install python-pip
- b. (virtualenv가 설치되어 있지 않은 경우) \$ pip install virtualenv
- c. 제출한 숙제 디렉토리로 이동. requirements.txt 가 존재하는 폴더.
- d. (최초 실행시에만) \$ virtualenv .venv
- e. \$ source .venv/bin/activate
- f. (최초 실행시에만) \$ pip install -r requirements.txt
- g. \$ python HW4/HW4.py

2. 조작법

a. 키보드 Up arrow : Zoom out. b. 키보드 Down arrow : Zoom in.

c. 마우스 클릭 후 드래그 : Trackball rotation

3. 구현 내용 및 설명

a. Shading opaque and translucent surfaces

- OK

- 이전 과제에서 만든 컵과 컵받침을 불투명하게 색을 입혔다. 이 때 광원이 들어가면서 glColor 를 더 이상 사용하지 않고 각 스플라인을 돌아가면서 다른 material을 입혔다. 각각은 bronze, chrome, copper, gold, silver, green plastic, red rubber, emerald 중 하나이다. 각 material 별 설정값은 밑에 b 섹션에 명시해두었다. 이전 HW3 에서는 스플라인들로 면을 만들면서 점 4개의 GL_QUADS 로 하였는데, 광원을 넣으면서 면마다의 법선 벡터를 계산할 필요가 생겼다. 그래서 점 4개의 사각형 면을 2개의 삼각형 면으로 나누어서 그리는 방식으로 수정하였다. 그 다음 각 삼각형의 한 점과 그 점을 기준으로 시계방향으로 돌면서 있는 두 점 간의 벡터 외적을 통해 각 면의 법선 벡터를 구했고 해당 법선은 glNormal 로 명시해 주었다. 이렇게 glNormal 로 법선을 설정해 주어야 들어오는 빛에 대하여 제대로 반사 할 수 있다. 반투명한 면은 정육면체로 만들었고 불투명한 물체와 겹쳐 있다. 불투명한 물체는 material 을 제대로 보기 힘들기 때문에 glColor 로 색과 투명도만 입혔다. 이를 위해서 GL_COLOR_MATERIAL 옵션을 enable 했다.

b. Material

- OK

- 앞서 서술했듯이 bronze, chrome, copper, gold, silver, green plastic, red rubber, emerald 의 총 8가지 material 을 구현했다. 각 material 에 대한 설정값은 http://devernay.free.fr/cours/opengl/materials.html 이 페이지에서 가지고 왔고 그 설정값은 아래와 같다. 앞서 얘기했듯이 HW3 에서 만든 컵에도 material 을 입혔고 각 material 별로 불투명한 정육면체들을 만들어서 컵을 둘러싸게 배치했다.

	Ambient			Diffuse			Specular			Shininess
	r	g	b	r	g	b	r	g	b	
bronze	0.2125	0.1275	0.054	0.714	0.4284	0.1814 4	0.3935 48	0.2719 06	0.1667 21	0.2
chrome	0.25	0.25	0.25	0.4	0.4	0.4	0.7745 97	0.7745 97	0.7745 97	0.6
copper	0.1912 5	0.0735	0.0225	0.7038	0.2704 8	0.0828	0.2567 77	0.1376 22	0.0860 14	0.1
gold	0.2472 5	0.1995	0.0745	0.7516 4	0.6064 8	0.2264 8	0.6282 81	0.5558 02	0.3660 65	0.4
silver	0.1922 5	0.1922 5	0.1922 5	0.5075 4	0.5075 4	0.5075 4	0.5082 73	0.5082 73	0.5082 73	0.4
green plastic	0.0	0.0	0.0	0.1	0.35	0.1	0.45	0.55	0.45	0.25
red rubber	0.05	0.0	0.0	0.5	0.4	0.4	0.7	0.04	0.04	0.078125
emerald	0.0215	0.1745	0.0215	0.0756 8	0.6142 4	0.0756 8	0.633	0.7278 11	0.633	0.6

c. Depth ordering

- OK
- Depth ordering 위해서 먼저 불투명한 물체들을 다 그려주었다. 그 다음 반투명한 물체를 그려줬는데, 이 때 반투명한 물체의 각 면의 법선 벡터를 가지고 그리는 순서를 결정하였다. 각 면의 법선 벡터와 현재 카메라가 놓여진 위치 벡터 사이의 각도를 구하고 해당 각도를 기준으로 내림차순으로 그려주었다. 간단한 정육면체를 그려주는 것이기 때문에 해당 방법으로 가능하였다. BSP 는 구현하지 않았다.

d. Viewing and Lighting

- OK
- 광원은 2개 설치하였다. 첫 번째 광원은 z축 위에 위치해 있으며 specular 는 흰 색, ambient 와 diffuse 는 짙은 회색과 연한 회색이다. 두 번째 빛은 spotlight 로 대각선 상에서 원점을 향해 비추고 있다. 해당 빛은 흰 색으로 설정하였다. 이전 과제에서 구현한 트랙볼도 추가해 두어서 화면을 회전하면서 확인할 수 있게 하였다.

```
glEnable(GL_LIGHT0)
glLightfv(GL_LIGHT0, GL_AMBIENT, [0.1, 0.1, 0.1, 1.0])
glLightfv(GL_LIGHT0, GL_DIFFUSE, [0.5, 0.5, 0.5, 1.0])
glLightfv(GL_LIGHT0, GL_SPECULAR, [1.0, 1.0, 1.0, 1.0])
glLightfv(GL_LIGHT0, GL_POSITION, [0.0, 0.0, 30.0, 0.0])

glEnable(GL_LIGHT1)
glLight(GL_LIGHT1, GL_AMBIENT, [0.0, 0.0, 0.0, 1.0])
glLight(GL_LIGHT1, GL_DIFFUSE, [1.0, 1.0, 1.0, 1.0])
glLight(GL_LIGHT1, GL_SPECULAR, [1.0, 1.0, 1.0, 1.0])
glLight(GL_LIGHT1, GL_SPOSITION, [30.0, 30.0, 30.0, 1.0])
glLight(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0)
glLight(GL_LIGHT1, GL_SPOT_DIRECTION, [0.0, 0.0, 0.0, 1.0])
glLight(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0)
```