

Quantum Reinforcement Learning and Projective Simulation

Sofiène Jerbi, sofiene.jerbi@telecom-paristech.fr

Paris, France

Quantum Algorithms

Figure: Grover's search algorithm

- 1. Start at uniform distribution
- 2. Reflect over $|B\rangle$
- 3. Reflect over $|U\rangle$

Figure: Shor's factoring algorithm

Based on the Fast Quantum Fourier Transform (QFT)

Outline

Classical & Quantum Machine Learning

Projective Simulation & Quantum Walks

Contributions

Conclusions & Prospects

Classical & Quantum Machine Learning
Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Outline

Classical & Quantum Machine Learning

Projective Simulation & Quantum Walks

Contributions

Conclusions & Prospects

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Machine Learning

Supervised vs. Unsupervised Learning

Supervised Learning **Unsupervised Learning** \mathbf{x}_2 \mathbf{x}_2 \mathbf{x}_1 x_1

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning

Supervised Learning

Unsupervised Learning

Projective Simulation & Quantum Walks Contributions Conclusions & Prospects

Reinforcement Learning

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Existing Quantum Machine Learning

Method	Speedup	Amplitude amplification	HHL	Adiabatic	qRAM
Bayesian inference ^{106,107}	O(√N)	Yes	Yes	No	No
Online perceptron ¹⁰⁸	O(√N)	Yes	No	No	Optiona
Least-squares fitting ⁹	O(logN)*	Yes	Yes	No	Yes
Classical Boltzmann machine ²⁰	O(√N)	Yes/No	Optional/ No	No/Yes	Optiona
Quantum Boltzmann machine ^{22,61}	O(logN)*	Optional/No	No	No/Yes	No
Quantum PCA ¹¹	O(logN)*	No	Yes	No	Optiona
Quantum support vector machine ¹³	O(logN)*	No	Yes	No	Yes
Quantum reinforcement learning ³⁰	O(√N)	Yes	No	No	No

source: doi:10.1038/nature23474

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Where should be the quantum?

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Where should be the quantum?

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Where should be the quantum?

Quantum Reinforcement Learning and Projective Simulation

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Where should be the quantum?

Projective Simulation & Quantum Walks
Contributions
Conclusions & Prospects

Where should be the quantum?

Outline

Classical & Quantum Machine Learning

Projective Simulation & Quantum Walks

Contributions

Conclusions & Prospects

Projective Simulation

Figure: The Episodic Compositional Memory (ECM)

1-D Random Walk

Random Walk on an Undirected Graph

Random Walk on a Stochastic Graph

Random Walk on an Undirected Graph

Random Walk on a Stochastic Graph

 $v = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}, \sum_i p_i = 1$

k steps from v_0 : $P^k v_0$

Random Walk on an Undirected Graph

Random Walk on a Stochastic Graph

P symmetric Uniform distribution

> Random Walk on an Undirected Graph

Random Walk on a Stochastic Graph

P symmetric
Uniform distribution

Random Walk on an Undirected Graph

Random Walk on a Stochastic Graph

Random Walk algorithm

The parameters

- ightharpoonup Cumulated probability of marked elements ϵ
- ightharpoonup Spectral gap $\delta = 1 \max_{i \neq 0} |\lambda_i|$

The Algorithm

Start with some arbitrary distribution v.

Repeat until hitting a marked vertex (roughly $1/\epsilon$ times):

- \triangleright Run a random walk for roughly $1/\delta$ steps (updating v).
- Pick a random vertex y according to the distribution v.
- Check if y is marked.

Complexity (time and number of queries)

$$\mathbf{S} + \frac{1}{\epsilon}(\mathbf{C} + \frac{1}{\delta}\mathbf{U})$$

Quantum Walks

Szegedy Walk Operator

A unitary doesn't have enough degrees of freedom to hold every entry in the transition matrix P. We then need to define a unitary W(P) that acts no longer on vertices but on edges $|x\rangle_{\rm I} |y\rangle_{\rm II}$.

Figure: Szegedy Walk Operator Construction

Quantum Walks

The Algorithm

Start by setting up the uniform distribution over edges $|U\rangle$. Repeat roughly $1/\sqrt{\epsilon}$ times:

- Reflect over |B⟩ (edges with unmarked endpoints).
- ightharpoonup Reflect over $|U\rangle$.

Measure the register I and check if the resulting vertex x is marked.

Complexity (time and number of queries)

$$\mathbf{S} + \frac{1}{\sqrt{\epsilon}}(\mathbf{C} + \frac{1}{\sqrt{\delta}}\mathbf{U})$$
 (2)

Quantum Walk Circuit

Figure: Szegedy Walk Operator

Figure: Kitaev's Phase Detection Algorithm & Approximate Reflection Operator

Outline

Classical & Quantum Machine Learning

Projective Simulation & Quantum Walks

Contributions

Conclusions & Prospects

Main papers

Trapped Ions Quantum Computer

Universal Set of Gates for Trapped-ions QC

Universal Set of Gates for Trapped-ions QC

Test-bed Application: Invasion Game

Test-bed Application: Invasion Game

```
3 percepts: \{\uparrow,\leftarrow,\rightarrow\}
3 actions: \{a_{\uparrow},a_{\leftarrow},a_{\rightarrow}\}
\Rightarrow 3 percept-specific 3 \times 3 transition matrices

A

a_{\uparrow}

a_{\uparrow}

a_{\uparrow}
```

Constructing our Reflecting Projective Simulation (RPS) model

Constructing our Reflecting Projective Simulation (RPS) model

Two sets of simulations

Rank-one RPS (ϵ dependency): Many simplifications

- ▶ All columns of P are identical
- ▶ P has only one eigenvalue $(+1) \Rightarrow \delta = 1$
- ▶ No need for controlled operations nor ancilla qubits
- ▶ Stationary distribution $\pi = (p_1, p_2, p_3)$ with $p_1 + p_2 = \epsilon$

Rank-two RPS (δ dependency): More complex

Transition matrix transformation:

$$P = \begin{pmatrix} p_1 + \lambda & p_1 & p_1 \\ p_2 - \lambda & p_2 & p_2 \\ p_3 & p_3 & p_3 \end{pmatrix}$$
(3)

 $\delta = 1 - \lambda$, $\pi = (\frac{p_1}{1-\lambda}, p_2 - p_1 \times \frac{\lambda}{1-\lambda}, p_3)$, $\epsilon = \frac{p_1}{1-\lambda} = 0.25$

Running the simulations

For each set of simulations:

- We set ϵ or δ arbitrarily close to 0 while cancelling the effect of the other.
- ▶ For each value of ϵ (δ), we run 1000 simulations.
- ▶ In each simulation we repeat the following procedure until a flagged action is hit:
 - ▶ Pick $m \in [0, 1/\sqrt{\epsilon}]$ ($[0, 1/\sqrt{\delta}]$) randomly and apply m steps of Random Walk
 - ► Measure register I and check if it is marked

Outline

Classical & Quantum Machine Learning

Projective Simulation & Quantum Walks

Contributions

Conclusions & Prospects

Conclusions

Setting the context of Quantum Reinforcement Learning

- Where should be the quantum? Different scenarios and applications
- Theory of Projective Simulation: quantum-enhancement of Classical RL, offers a quadratic speed-up in deliberation time

Robustness of speed-ups

- ► Analyzed the effects of noise error in specific implementation with trapped ions
- ► Speed-ups are robust to small error

Caveats

Error model still very simple

- Multi-qubit controlled operations
- ► Global dephasing

Open problem in Projective Simulation

- Quantum Walks do not allow to get a path between percept-clip and selected action-clip, which is important in the update procedure of the ECM
- ► Not a problem in our "two-layered" case, but still an open problem for bigger graphs

Prospects

Curse of dimensionality

- Representing directly state-action associations in the memory of an RL agent does not allow to generalize to unprecedented situations.
- Especially a problem when the dimension of the the state space gets big.

Deep Reinforcement Learning

Use Convolutional Neural Networks (CNNs) to model the state-action coinjoined probability distribution continuously allowing to interpolate learned associations to all possible input states.

Prospects

Embedding Boltzmann Machines in PS

- Boltzmann Machines are a different sort of Recurrent Neural Networks (RNNs) that model coinjoined distributions.
- Idea to show equivalence between two models to benefit from both quadratic speed-up and generalization property.

Want to read more about this project?

The full project report and the iPython code can be found on:

https://github.com/sjerbi/Quantum-Reinforcement-Learning

