CS2020 Data Structures and Algorithms

Network Flows

On Friday, I'm going to:

- ✓ 1. Bring my clicker to class.
 - 2. Leave my clicker at home.
 - 3. Oops, I already lost my clicker.
 - 4. What is a clicker?

Clickers

Friday

- Return clickers at the end of class!
- Don't forget!
- Missing / unreturned clickers cost \$105!!

Types of Graph Problems

- 1. Distances: How to get from here to there?
 - Single-source shortest paths
 - All-pairs shortest paths
- 2. Spanning trees: How do I design a network?
 - Minimum/maximum spanning tree
 - Steiner tree
 - Travelling salesman
- 3. Network flows: How is my network connected?

Roadmap

Network Flows

- a. Network flows defined
- b. Sample problems
- c. Ford-Fulkerson algorithm
- d. Max-Flow / Min-Cut Theorem

Network Flow Problems

Examples:

- Transportation problems
- Distributed network reliability
- Network attacks
- Project selection
- Matching and assignment problems
- Image segmentation
- Sport's teams prospects

Input:

- directed graph G = (V,E)
- edge capacities c(e)

Output: Flow

Assignment of flow f to each edge

Output: Flow

- Flow is not negative: for every edge e, $0 \le f(e)$
- Flow ≤ capacity: for every edge e, $f(e) \le c(e)$

Equilibrium constraint:

– For every node: flow-in = flow-out

Equilibrium constraint:

- For every node: flow-in = flow-out
- Except s and t

Output: st-flow

- Capacity constraint (never exceed capacity)
- Equilibrium constraint (flow-in = flow-out)

Uni-directional flow: st-flow

If f(u,v)>0 and f(v,u)>0, then they cancel out. Flows only go in one direction.

Value of a Flow

How much stuff gets from s to t?

Value of a Flow

How much stuff gets from s to t?

- How much leaves source?
- How much gets to target?

Value of a Flow

Definition:

For a flow f: value(f) =
$$\sum_{v:(s,v)\in E} f(s,v)$$

Max Flow

Goal:

Find an st-flow with maximum value.

Max Flow

Goal:

Find an st-flow with maximum value.

value = 28

Roadmap

Network Flows

- a. Network flows defined
- b. Sample problems
- c. Ford-Fulkerson algorithm
- d. Max-Flow / Min-Cut Theorem

Sample Problems

Classic Flow Problems

Moving traffic:

- source: entry point of high-traffic zone
- edges: roads with capacities in cars/hour
- target: exit point of high-traffic zone

What is the max cars/hour that can transit the zone?

Sample Problems

Can every home get power?

Distribution Impossible

- Blue = power.
- Green = house.

- Blue = power.
- Green = house.

- Blue = power.

- Blue = power.

Blue = power.

Sample Problems

Lots of kids:

Alice, Bob, Carol, David, Ernie, Fran, George, ...

Lots of presents:

Apple, Barnie, Candy, Doll, Elmo, Fire engine, Giraffe

Each present is acceptable to some kids:

Apple: Alice, Bob, Carol

Barnie: Carol, Ernie, George

Lots of kids:

Alice, Bob, Carol, David, Ernie, Fran, George, ...

Lots of presents:

Apple, Barnie, Candy, Doll, Elmo, Fire engine, Giraffe

Which present is given to which kid?

Maximize the number of kids that get a present.

Maximum Bipartite Matching

Define a flow network with unit cost edges.

Find a maximum st-flow.

Find a maximum st-flow.

value(flow) = # children given a present

Find a maximum st-flow.

value(flow) = # presents given

value(flow) = # children given a present

Bipartite Matching

General problem:

- Bipartite graph: (A, B, E)
 - Vertices A
 - Vertices B
 - Edges $E \subseteq A \times B$
- Matching:
 - Subset of edges E
 - Each vertex has at most one adjacent edge.
- Goal: maximize matching

perfect matching: every vertex is matched.

Sample Problems

Declassified US schematic of the railway network connecting Eastern Europe and the Soviet Union. Cut capacity = 163,000 tons.

From: Harris and Ross [1955], via

Schrijver "On the history of the transportation and maximum flow problems."

A <u>source</u> and a <u>target</u> are k-edge-connected if there are k <u>edge-disjoint</u> paths from the source to the target.

If (k-1) links fail, network is still connected.

How connected are the source and target?

- 1. 0
- 2. 1
- **√**3. 2
 - 4. 3
 - 5.4
 - 6. I'm lazy.

A <u>source</u> and a <u>target</u> are k-edge-connected if there are k edge-disjoint paths from the source to the target.

If 1 link fails, network is still connected.

How connected is the network?

If 1 link fails, network is still connected.

Which links to cut to disrupt the network?

Declassified US schematic of the railway network connecting Eastern Europe and the Soviet Union. Cut capacity = 163,000 tons.

From: Harris and Ross [1955], via

Schrijver "On the history of the transportation and maximum flow problems."

How connected are the source and target?

Solution postponed (follows immediately from max-flow / min-cut).

Roadmap

Network Flows

- a. Network flows defined
- b. Sample problems
- c. Ford-Fulkerson algorithm
- d. Max-Flow / Min-Cut Theorem

Max Flow

Goal:

Find an st-flow with maximum value.

Initially:

All flows are 0.

value = 0

Idea: find an augmenting path along which we can increase the flow.

value = 0

Augmenting path: directed path from $s \rightarrow t$

Can increase flow on all forward edges.

value = 0 + 10

Augmenting path: directed path from $s \rightarrow t$

Can increase flow on all forward edges.

value = 0 + 10 + 10

Augmenting path: directed path from $s \rightarrow t$

- Can increase flow on all forward edges.
- No more augmenting paths?

value = 0 + 10 + 10

Augmenting path: directed path from $s \rightarrow t$

Can increase flow on all forward edges.

Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Augmenting path: Undirected path from s → t

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

value = 28

No more augmenting paths.

Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Augmenting path: Undirected path from s → t

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Augmenting path: Undirected path from $s \rightarrow t$

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

value = 28

No more augmenting paths.

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Details:

- How to find an augmenting path? The bottleneck capacity?
- Does Ford-Fulkerson always terminate? How fast?
- If it terminates, does it always find a max-flow?

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Initial graph: flow = $0 \rightarrow \text{residual} = \text{capacity}$.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Step 1: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

After augmenting path of flow 10.

How best to find an augmenting path in the residual graph?

- 1. BFS
- 2. DFS
- 3. Bellman-Ford
- 4. Dijkstra's
- 5. Floyd-Warshall
- 6. I have no idea.

How best to find an augmenting path in the residual graph?

For now:

Any graph search will do (BFS, DFS, etc.)

Any path from s→t in the residual graph is an augmenting path.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Step 2: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

After step 2: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

After step 2: augmenting path of flow 10.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Add edges in both direction.

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15¹

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

5

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15

Forward flow = reverse residual flow.

Ford-Fulkerson Algorithm

Start with 0 flow.

Build residual graph:

- For every edge (u,v) add edge (u,v) with w(u,v) = capacity.
- For every edge (u,v) add edge (v,u) with w(v,u) = 0.

While there exists an augmenting path:

- Find an augmenting path via DFS in residual graph.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity:
 - For every edge (u,v) on the path, subtract the flow from w(u,v).
 - For every edge (u,v) on the path, add the flow to w(v,u).

Compute final flow by inverting residual flows.

How best to find the bottleneck capacity on the augmenting path?

- 1. TopoSort traversal
- ✓2. Ordered traversal
 - 3. DFS traversal
 - 4. Bellman-Ford
 - 5. Dijkstra's
 - 6. I have no idea.

Ford-Fulkerson Algorithm

Start with 0 flow.

Build residual graph:

- For every edge (u,v) add edge (u,v) with w(u,v) = capacity.
- For every edge (u,v) add edge (v,u) with w(v,u) = 0.

While there exists an augmenting path:

- Find an augmenting path via DFS in residual graph.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity:
 - For every edge (u,v) on the path, subtract the flow from w(u,v).
 - For every edge (u,v) on the path, add the flow to w(v,u).

Compute final flow by inverting residual flows.

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Details:

- ✓ How to find an augmenting path? The bottleneck capacity?
- Does Ford-Fulkerson always terminate? How fast?
- If it terminates, does it always find a max-flow?

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Termination: FF terminates if capacities are integers.

- Every iteration finds a new augmenting path.
- Each augmenting path has bottleneck capacity at least 1.
- So each iteration increases the flow of at least one edge by at least 1.
- Finite number of edges, finite max capacity per edge => termination.

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Termination: FF may NOT terminate if capacities are irrational.

- Runs forever.
- Never converges to maximum flow.

What is the cost of finding and applying an augmenting path?

- 1. O(1)
- 2. O(V)
- **✓**3. O(E)
 - 4. O(E log V)
 - 5. O(VE)
 - 6. I have no idea.

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- · Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

How many times do we find an augmenting path?

- Assume edge capacities are integers.
- Assume maximum flow = F.

In ever iteration:

- Each augmentation increases flow by at least 1.
- Each augmentation costs: O(E)

Maximum number of iterations: O(F)

Total: O(FE)

If the maximum capacity $F = 2^{64}$... Is it really that bad?

Worst-case performance:

Step 1: augment with flow 1.

Residual graph:

Worst-case performance:

Step 2: augment with flow 1.

Residual graph:

Worst-case performance:

Step 3: augment with flow 1.

Worst-case performance:

Step 4: augment with flow 1.

Worst-case performance:

- Step 20000: augment with flow 1.

Worst-case performance:

- Problem: bad choice of augmenting paths!
- We only needed 2 steps!

Worst-case performance:

- Problem: bad choice of augmenting paths!
- We only needed 2 steps!

Worst-case performance:

- Problem: bad choice of augmenting paths!
- We only needed 2 steps!

How to choose augmenting paths?

– DFS : O(F⋅E)

- Breadth-First Search
 - Shortest augmenting path
 - Edmonds-Karp

- Fattest-Path Search
 - Fattest augmenting path
 - Maximize bottleneck edge

How to choose augmenting paths?

– DFS : O(F⋅E)

- Breadth-First Search : O(VE²)
 - Shortest augmenting path (minimum # of hops)
 - Edmonds-Karp

- Fattest-Path Search
 - Fattest augmenting path
 - Maximize bottleneck edge

How to choose augmenting paths?

- DFS : O(F⋅E)
- Breadth-First Search : O(V·E²)
- Dinitz : $O(V^2E)$
 - Use BFS to find all shortest paths from (S→T)
 - Use DFS on shortest-path-tree to find as many augmenting paths as possible.

Fattest-Path Search

Fattest Path Heuristic

How to choose augmenting paths?

Choose an augmenting path with maximum

bottleneck capacity.

Fattest Path Heuristic

How to choose augmenting paths?

Choose an augmenting path with maximum bottleneck capacity.

Fattest Path Heuristic

How to choose augmenting paths?

Choose an augmenting path with maximum bottleneck capacity.

Performance of Ford-Fulkerson

How to choose augmenting paths?

- DFS : O(F⋅E)
- Breadth-First Search : O(VE²)
 - Shortest augmenting path
 - Edmonds-Karp
- Dinitz : $O(V^2E)$
- Fattest-Path Search : O(E²·log(V)·log(F))
 - Fattest augmenting path
 - Maximize bottleneck edge

A brief history of max flow...

year	method	performance	discovered
1951	simplex	O(E ³ F)	Dantzig
1955	augmenting path	O(EF)	Ford-Fulkerson
1970	shortest augmenting path	O(VE ²)	Dinitz, Edmonds-Karp
1972	fattest augmenting path	O(E ² log V log (F))	Dinitz, Edmonds-Karp
1986	push-relabel	O(V ² E), O(V ³), O(VE log(V	())
1994		O(VE log _{E/VlogV} V)	King-Rao-Tarjan
2006	O(min{V ^{2/3} ,E ¹	$1/2$ }E log ((V ² /E + 2)log F)	Goldberg-Rao
2012	Combo	O(VE)	Orlin, KRT

Roadmap

Network Flows

- a. Network flows defined
- b. Sample problems
- c. Ford-Fulkerson algorithm
- d. Max-Flow / Min-Cut Theorem

Definition:

An <u>st-cut</u> partitions the vertices of a graph into two disjoint sets S and T where $s \in S$ and $t \in T$.

Definition:

An <u>st-cut</u> partitions the vertices of a graph into two disjoint sets S and T where $s \in S$ and $t \in T$.

Definition:

The <u>capacity</u> of an st-cut is the sum of the capacities of the edges that cross the cut from S to T.

Capacity = 48

What is the capacity of this st-cut?

- 1. 30
- 2. 33
- 3. 35
- 4. 39
- **√**5. 45

Definition:

The <u>net flow</u> Φ across an st-cut is the sum of the <u>flows</u> on edges from $S \rightarrow T$ minus the flows from $T \rightarrow S$.

Proposition:

Let f be a flow, and let (S,T) be an st-cut.

Proposition:

Let f be a flow, and let (S,T) be an st-cut.

Proposition:

Let f be a flow, and let (S,T) be an st-cut.

Proposition:

Let f be a flow, and let (S,T) be an st-cut.

Proposition:

Let f be a flow, and let (S,T) be an st-cut.

Proof: (by induction)

Start with $S = \{s\}, T = V \setminus S$.

Define Φ = flow across cut.

Inductive step:

Take one node X that is reachable from S and add it to S.

- Add new outgoing edges that cross new cut.
- Subtract new incoming edges that cross new cut.
- Subtract/add edges from X to S.

Inductive step:

Conservation of flow: (equilibrium constraint)

- Flow into X equals flow out of X.
- Flow that crossed (old S) \rightarrow X == X \rightarrow (old T)
- **P** remains unchanged

Proof: (by induction)

Start with $S = \{s\}$, $T = V \setminus S$.

Define Φ = flow across cut.

Move nodes one at a time from T to S.

At every step, Φ remains unchanged.

Proof: (by induction)

What is Φ ?

- Consider cut $S = V \setminus \{t\}$, $T = \{t\}$.
- All edges crossing cut go to t.
- Value of flow = flow across cut = Φ .

Proposition (Flow Value):

Let f be a flow, and let (S,T) be an st-cut.

Weak duality:

Let f be a flow, and let (S,T) be an st-cut. Then value(f) \leq capacity(S,T).

Weak duality:

```
Let f be a flow, and let (S,T) be an st-cut.
Then value(f) \leq capacity(S,T).
```

Proof:

value(f) = flow across cut (S,T) $\Phi \le \text{capacity}(S,T)$.

flow value proposition flow is bounded by the capacity

MaxFlow-MinCut Theorem:

Let f be a maximum flow.

Let (S,T) be an st-cut with minimum capacity.

Then value(f) = capacity(S,T).

Augmenting Path Theorem:

Flow f is a <u>maximum</u> flow if and only if there are no augmenting paths in the residual graph.

Proof:

The following three statements are equivalent for flow f:

- 1. There exists a cut whose capacity equals the value of f.
- 2. f is a maximum flow
- 3. There is no augmenting path with respect to f.

Declassified US schematic of the railway network connecting Eastern Europe and the Soviet Union. Cut capacity = 163,000 tons.

From: Harris and Ross [1955], via

Schrijver "On the history of the transportation and maximum flow problems."

Max-Flow / Min-Cut

For a graph G = (V,E), the maximum st-flow is *equal* to the value of the minimum st-cut.

Augmenting Path Theorem:

Flow f is a maximum flow if and only if there are no augmenting paths in the residual graph.

→ If Ford-Fulkerson terminates, then there is no augmenting path. Thus, the resulting flow is maximum.

Ford-Fulkerson

Augmenting path: Undirected path from s → t

- Can increase flow on all forward edges OR
- Can decrease flow on backward edges

Finding an Augmenting Path

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15 2

Forward flow = reverse residual flow.

Finding an Augmenting Path

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15

Forward flow = reverse residual flow.

How to find a min-cut:

- 1. Run Ford-Fulkerson until termination.
- 2. Let S be the set of nodes reachable from the source s:
 - Run DFS in the residual graph.
 - All the nodes reach are in S.
- 3. For every edge in S, enumerate outgoing edges:
 - If edge exits S, add to min-cut.
 - If both ends of edge are in S, then continue.

Finding an Augmenting Path

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15

Forward flow = reverse residual flow.

Finding an Augmenting Path

Residual Graph: amount that flow can be increased

residual(e) = capacity(e) - flow(e)15 2

Forward flow = reverse residual flow.

Finding a minimum cut:

Assume there is no augmenting path:

- Let S be the nodes reachable from the source in the residual graph.
- T = remaining nodes
- Edges from $(S \rightarrow T)$ are minimum cut.

Ford-Fulkerson

Ford-Fulkerson Algorithm

Start with 0 flow.

While there exists an augmenting path:

- Find an augmenting path.
- Compute bottleneck capacity.
- Increase flow on the path by the bottleneck capacity.

Summary:

- ✓ How to find an augmenting path? The bottleneck capacity?
- ✓ If it terminates, does it always find a max-flow?
- ✓ How fast is Ford-Fulkerson? Can we do better?

A brief history of max flow...

year	method	performance	discovered
1951	simplex	O(E ³ F)	Dantzig
1955	augmenting path	O(EF)	Ford-Fulkerson
1970	shortest augmenting path	O(VE ²)	Dinitz, Edmonds-Karp
1972	fattest augmenting path	O(E ² log V log (F))	Dinitz, Edmonds-Karp
1986	push-relabel	O(V ² E), O(V ³), O(VE log(V	())
1994		O(VE log _{E/VlogV} V)	King-Rao-Tarjan
2006	O(min{V ^{2/3} ,E ¹	$1/2$ }E log ((V ² /E + 2)log F)	Goldberg-Rao
2012	Combo	O(VE)	Orlin, KRT

Clickers

Friday

- Return clickers at the end of class!
- Don't forget!
- Missing / unreturned clickers cost \$105!!

Roadmap

Network Flows

- a. Network flows defined
- b. Sample problems
- c. Ford-Fulkerson algorithm
- d. Max-Flow / Min-Cut Theorem