f is continuous on set I when fis cts at every member of 1) exiua with polars domain, rational SUDEX: X2-y2 is cls 2001 its domain. This means that eluction? The continuous every where but (90) Ex: Sin (x2py2) is cas everywhere by but (0,0), at it is usu-domain point. f(x,y)= } > On the other hand > 070 H cts everywhere NB: usual rules for continuity apply (from lace I). Derivatives of Multivariable Idea. The decivative measures change in output grom wresponding small change in input. In some direction

Know + or- know + or- cimit	AL
	Degn: Let of be a function of n-variable and pick is, a unit rector in
	R". Let & E dom(f). The directional derivative of f at a in direction
	of \vec{u} is $\int_{\vec{u}} f(\vec{a}) = \lim_{h \to 0^+} \frac{f(\vec{a}' + h\vec{u}') - f(\vec{a}')}{h}$
1	
fells how much	Ex: Compute directional derivative of f(x,y)=xy at 9=<1,3>14
we want	the direction $\vec{q} = \frac{1}{2} \sqrt{2}, \sqrt{2}$
i'n this direction	Sol: Kar Dafai) = lim f(a+hi) -f(a) = lim f(1,3)+h (15,15)
	$\frac{+f(\langle 1,3\rangle)}{h \to 0^{+}} = \lim_{h \to 0^{+}} f(1+\frac{\sqrt{2}h}{2}+3+\frac{\sqrt{2}h}{2}h) + f(1,3) - \lim_{h \to 0^{+}} (H\frac{\sqrt{2}h}{2}) \cdot (3+\frac{\sqrt{2}h}{2}h) + 3$
	= $\lim_{h \to 0^+} 3 + \frac{2}{5}h^2 + \frac{3}{5}\frac{5h}{h} + \frac{16}{5}h + 3 = \lim_{h \to 0^+} \frac{1}{5}\frac{h(\frac{h}{2} + 2\sqrt{2})}{h} = \lim$
	$=\lim_{h\to 0^+}\frac{h}{2} + 2\sqrt{2} = 2\sqrt{2}$
B+ 12h	2+ 402 h = So+ h (\frac{1}{2} + 205)
	Exercise: Repeat the escercise with a=(x,y>.
	NB: The directional derivative is very general. We want something
	like the "rule" from Calculus I.
	Defi let f be a femetion of u-variables and let e'n be the "k-the standard basis vector in 18 ", i-lex(0,0,, 1 18)

$$= x + \frac{1}{2\sqrt{g}} + \cos(x - y)$$
Ex Compute partial derivatives of $f(x, y, z) e^{x^2 + y^2} \sin(x z) \cos(yz)$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[e^{x^2 + y^2} \sin(x z) \cdot \cos(yz) \right] = \cos(yz) \left(\frac{\partial}{\partial x} \left[e^{x^2 + y^2} \sin(x z) \right] = \cos(yz) \left(\frac{\partial}{\partial x} \left[e^{x^2 + y^2} \sin(xz) \right] + e^{x^2 + y^2} \frac{\partial}{\partial x} \left[\sin(xz) \right] = \cos(yz) \left(e^{x^2 - y^2} \cdot 2x \sin(xz) + e^{x^2 + y^2} z \cos(xz) \right] = \cos(yz) \left(e^{x^2 - y^2} \cdot 2x \sin(xz) + e^{x^2 + y^2} z \cos(xz) \right) = \cos(yz) e^{x^2 + y^2} \left(2x \sin(xz) \cdot \frac{1}{2} \cos(xz) \right)$$

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[e^{x^2 + y^2} \sin(xz) \cos(yz) \right] = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) + 2x \sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) + 2x \sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) + 2x \sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) e^{x^2 + y^2} \right) = -\sin(xz) \left(e^{x^2 + y^2} \cdot 2y \cos(yz) - 2\sin(yz) - 2\sin(yz) \right)$$

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[e^{x^2 + y^2} \sin(xz) \cos(yz) \right] =$$

$$e^{x^2 + y^2} \frac{\partial}{\partial z} \left[\sin(xz) + \cos(yz) + y \sin(xz) (\sin(yz)) \right] =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\sin(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) - y \cos(xz) \sin(xz) \sin(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) - y \cos(xz) \sin(xz) \sin(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) - y \cos(xz) \sin(xz) \sin(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\sin(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\sin(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\sin(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\sin(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz)) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) (\cos(yz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \sin(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(yz) + y \cos(xz) \cos(yz) \right) =$$

$$= e^{x^2 + y^2} \left(x \cos(xz) \cos(xz) + y \cos(xz) \cos(xz) \right)$$

Non)
$$\frac{\partial^{2}f}{(\partial x)^{2}} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \right] = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial y} - \cos(x - y) \right] = 0 + \sin(x - y) \frac{\partial}{\partial x} \left[\cos(y - y) \right] =$$

$$= \frac{\sin(x - y)}{(\partial y)^{2}} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} \right] = \frac{\partial}{\partial y} \left[\frac{(x + \frac{1}{2}y)^{-1/2}}{(x + \frac{1}{2}y)^{-1/2}} + \cos(x - y) \right] =$$

$$= \frac{1}{9} \frac{y^{-4/2}}{y^{-4/2}} + \sin(x - y)$$

$$= \frac{1}{9} \frac{\partial^{2}f}{\partial x^{2}} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} \right] + \frac{\partial}{\partial y} \left[\frac{\partial}$$

back to the mixed partials (somehow different!)
back to the nixed partials (somehow different!) 1) they were these equal in our example purb can be guarantee this
14 feelevre examples?
Recall some Calc I: Mean value theorem. ("nice average" value theorem)
(" vice average" value Human)
$(\mathcal{U}_{\mathcal{V}})$
Prop: (Mean Value Theorem): Let f(x) be a junction that
is differentiable on (9,6) and continuous on [9,6]. Then
$\exists c \in (a,b) \text{ s.t. } f'(c)(b-a) = f(b) - f(a)$ (There is $a < c < b$) $f'(c) = f(b) - f(a)$
(There is acccb) (P(G) - P(h)-P(a))
Nº notifical
6-9
Idea: Here is a point c in obsen(g) or (a, b) so that I slope
f(a)-f(b)
9 5
Next time: We use MVT to prove the pollowing: eggs
Prop (Clairant's thesem). Suppose & (x, y) has continuous
second order partial deritatives. Then the second order
on mar
partial electivative adish, including point (app)
Dy x (a,b) Dx by (a,b)
Oxog Marie