浙江理工大学 2021—2022 学年第一学期

《高等数学 A1》期中试卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名:		学号:					_班级:	:		任课教师:			
题号	_	二	111					四		五		V 43	复核
			1	2	3	4	5	1	2	1	2	总分	教师 签名
得分													
阅卷													
教师													
签名													
(本试卷共4页)													

- 一、选择题(本题共6小题,每小题4分,满分24分)
- 1.设数列 $\{a_n\}$ 单调减少, $\{b_n\}$ 单调增加,且 $\lim_{n\to\infty} (a_n b_n) = 0$,则()

A. $\{a_n\}$ 与 $\{b_n\}$ 均收敛,且 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$.

B. $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} b_n = \infty$.

 $C. \lim_{n \to \infty} a_n$ 存在, $\lim_{n \to \infty} b_n$ 不存在.

D. $\lim_{n\to\infty} a_n$ 不存在, $\lim_{n\to\infty} b_n$ 存在.

2.设当 $x \to 0$ 时, $(x - \sin x) \tan x$ 是比 $\ln(1 + x^n)$ 高阶的无穷小,而 $\ln(1 + x^n)$ 是比 x^2 高阶的无穷小,

则 n = ()

Δ 4

P 3

 C^{2}

D. 1

3.设 f(x) 在 x = 0 处连续,下列命题**错误**的是(

A.若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0) = 0.

B.若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 f(0)=0.

C.若 $\lim_{x\to 0} \frac{f(x)}{r}$ 存在,则 f'(0) 存在.

D.若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 f'(0) 存在.

4.设 f(x) 二阶连续可导, $\lim_{x\to 2} \frac{f'(x)}{(x-2)^3} = \frac{2}{3}$,下列说法**正确**的是()

- A. f(2) 是 f(x) 的极小值.
- B. f(2) 是 f(x) 的极大值.
- C.(2, f(2)) 是曲线 y = f(x) 的拐点.
- D. f(2) 不是函数 f(x) 的极值, (2, f(2)) 也不是曲线 y = f(x) 的拐点.

5.设曲线 L: $\begin{cases} x = t + \cos t \\ e^{y} + vt + \sin t = 1 \end{cases}$, 则曲线在 t = 0 处的切线方程为 ()

A.
$$x + y = 1$$

A.
$$x + y = 1$$
 B. $x + y = -1$ C. $x - y = 1$ D. $x - y = -1$

C.
$$x - y = 1$$

D.
$$x - y = -1$$

6.设 $f(x) = x \sin x + \cos x$,下列命题中正确的是()

A.
$$f(0)$$
, $f(\frac{\pi}{2})$ 均是极大值

B.
$$f(0)$$
, $f(\frac{\pi}{2})$ 均是极小值

$$C. f(0)$$
 是极大值, $f(\frac{\pi}{2})$ 是极小值

D.
$$f(0)$$
 是极小值, $f(\frac{\pi}{2})$ 是极大值

二、填空题(本题共6小题,每小题4分,满分24分)

1.极限
$$\lim_{x\to 0} (1-2x)^{\frac{3}{\sin x}} =$$
______.

2.函数
$$f(x) = \frac{\ln|x|}{x^2 - x}$$
 的第一类间断点是_______,它是______间断点.

3.已知
$$f(x)$$
 在 $x = 0$ 处可导,且 $f(0) = 0$,则 $\lim_{x \to 0} \frac{x^2 f(x) - 2 f(x^3)}{x^3} =$ _______.

4.设
$$y = (1+x^2)^{\sin x}$$
,则 $dy =$ _______.

5. 已知
$$y = x^3 + ax^2 + bx + 6$$
 在 $x = -2$ 处取 得极值,且与直线 $y = -3x + 3$ 相切于点(1,0),则

6.
$$\&y = x^2 \cos x$$
, $\&y = y^{(5)}(0) =$ ______

三、解答题(本题共5小题,每小题6分,满分30分)

1. 计算
$$\lim_{n\to\infty} \left(\frac{1}{n^2+n+1} + \frac{2}{n^2+n+2} + \dots + \frac{n}{n^2+n+n} \right)$$
.

2.计算
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\ln(1+x)-x^2}$$
.

3.设
$$f(x) = \begin{cases} \frac{\ln(1+bx)}{x}, & x \neq 0 \\ -1, & x = 0 \end{cases}$$
, 其中 b 为常数, $f(x)$ 在定义域上处处可导, 求 $f'(x)$.

4.已知函数
$$y = f(x) = x + e^x$$
, 其反函数为 $x = f^{-1}(y)$, 求 $\frac{d^2x}{dy^2}\Big|_{y=1}$.

5.计算由参数方程
$$\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$$
 所确定的函数 $y = y(x)$ 的二阶导数
$$\frac{d^2 y}{dx^2}.$$

四、综合题(本题共2小题,每小题7分,满分14分)

1. 已知函数 f(u) 可导,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定.设 $z=f(\ln y-\sin x), \,\, \bar{x}\frac{\mathrm{d}z}{\mathrm{d}x}\bigg|_{x\,=\,0}.$

2. 求函数 $y = \frac{4(x+1)}{x^2} - 2$ 的单调区间、极值、凹凸区间、拐点及渐近线.

五、证明题(本题共2小题,每小题4分,满分8分)

1.证明: 当 $0 < x < \frac{\pi}{2}$ 时, $e^{-x} + \sin x < 1 + \frac{x^2}{2}$.

2.设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=f(1)=0, $f\left(\frac{1}{2}\right)=1$. 证明:存在 $\xi \in (0,1)$ 使得 $f'(\xi)=1$.