ÁLGEBRA LINEAL - Clase 24/07

Para hacer en clase

Ejercicio 1. (Parte del Ejercicio 10) Sea $V = \mathbb{R}^4$ con el producto interno canónico.

- i) Hallar una base ortonormal para el subespacio $S_1 = \langle (1, 1, 0, -1), (-1, 1, 1, 0), (2, -1, 1, 1) \rangle$.
- ii) Definir explícitamente la proyección ortogonal sobre dicho subespacio.
- iii) Hallar el punto de S_1 más cercano a (0, 1, 1, 0).

Ejercicio 2. (Ejercicio 14 (ii) y (iii)) Calcular la transformación lineal adjunta de cada una de las transformaciones lineales siguientes:

ii)
$$f: \mathbb{C}^3 \to \mathbb{C}^3$$
, $f(x_1, x_2, x_3) = (2.x_1 + (1-i).x_2, x_2 + (3+2i).x_3, x_1 + i.x_2 + x_3)$

iii)
$$B = \{(1, 2, -1), (1, 0, 0), (0, 1, 1)\}, \quad f : \mathbb{R}^3 \to \mathbb{R}^3 \text{ tal que } |f|_B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Ejercicio 3. (Ejercicio 17) Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por

$$f(x, y, z) = (-x - 3y - 2z, 4x + 6y + 2z, -3x - 3y).$$

Hallar un producto interno $\langle , \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ tal que f sea autoadjunta para \langle , \rangle .

Ejercicios de la guía relacionados: 10 a 18.