윤영 : 11 함수(2)

2016년 12월 7일

차 례

차	1	1
1	합성함수	2
2	역함수	8
3	보충 · 심화 문제	16

1 합성함수

세 집합 X, Y, Z에 대하여 두 함수

$$f: X \to Y$$
$$g: Y \to Z$$

가 주어졌을 때, 집합 X의 각 원소 x들은 f에 의해 Y의 원소인 f(x)로 대응되고, f(x)는 다시 g에 의해 Z의 원소인 g(f(x))로 대응될 수 있다.

정의 1) 합성함수

이렇게 집합 X의 각각의 원소 x를 집합 Z의 원소 g(f(x))로 대응시켜 X를 정의역, Z를 공역으로 하는 새로운 함수를 정의할 수 있다. 이 함수를 f와 g의 합성함수라고 하고, 이것을 기호로

$$g \circ f : X \to Z$$

로 나타낸다. 이때,

$$(g \circ f)(x) = g(f(x))$$

이다.

예시 2)

(1) $X=\{1,2,3\},\,Y=\{a,b,c,d\},\,Z=\{2,4,6\}$ 일 때, 두 함수 $f:X\to Y,$ $g:Y\to Z$ 를

$$f(1) = a g(a) = 6$$

$$f(2) = c g(b) = 4$$

$$f(3) = c g(c) = 2$$

$$g(d) = 2$$

로 정의하자. 이를 그림으로 나타내면

이므로

$$(g \circ f)(1) = g(f(1)) = g(a) = 6$$

$$(g \circ f)(2) = g(f(2)) = g(c) = 2$$

$$(g \circ f)(3) = g(f(2)) = g(c) = 2$$

이다.

$$(2)$$
 두 함수 $f(x) = x^2$, $g(x) = 2x$ 에 대하여 $g(2) = 2 \cdot 2 = 4$ 이므로

$$(f \circ g)(2) = f(g(2)) = f(4) = 4^2 = 16$$

이다.

문제 3)

두 함수 f(x) = x - 1과 g(x) = -3x + 8에 대하여 다음 함숫값을 구하여라.

 $(1) \ (f \circ g)(2)$

 $(2) (g \circ f)(-3)$

 $(3) (f \circ f)(1)$

 $(4) \ (g \circ g)(0)$

예시 4)

두 함수 f(x) = x + 3과 g(x) = -2x - 4에 대하여 다음을 구하여라.

(1)
$$f \circ g$$

(2)
$$g \circ f$$

(1)
$$(f \circ g)(x) = f(g(x))$$

= $f(-2x - 4)$
= $(-2x - 4) + 3$
= $-2x - 1$

(2)
$$(g \circ f)(x) = g(f(x))$$

= $g(x+3)$
= $-2(x+3) - 4$
= $-2x - 10$

답: (1) $(f \circ g)(x) = -2x - 1$, (2) $(g \circ f)(x) = -2x - 10$

정리 5)

예시 4에서 알 수 있듯이 일반적으로 두 함수 f, g에 대하여

$$f \circ g \neq g \circ f$$

이다. 즉, 함수의 합성에 대하여 교환법칙이 성립하지 않는다.

문제 6)

두 함수 f(x) = x - 2, $g(x) = x^2 - 4$ 에 대하여 다음을 구하여라.

(1)
$$f \circ g$$

(2)
$$g \circ f$$

문제 7)

두 함수 f(x)=2x+1과 g(x)=3x+a에 대하여 $f\circ g=g\circ f$ 가 되도록 실수 a의 값을 정하여라.

예시 8)

세 함수 f(x)=4x, g(x)=3x-1, h(x)=2x에 대하여 다음을 구하여라.

(1)
$$h \circ (g \circ f)$$

$$(2) (h \circ g) \circ f$$

(1) 두 함수 f, g의 합성함수 g ∘ f 는 (g ∘ f)(x) = g(f(x)) = g(4x) = 3 · 4x - 1 = 12x - 1 이므로

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(12x - 1) = 24x - 2$$

(2) 두 함수 g, h의 합성함수 $h \circ g$ 는

$$(h \circ g)(x) = h(g(x)) = h(3x - 1) = 2(3x - 1) = 6x - 2$$
이므로

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = (h \circ g)(4x) = 24x - 2$$

답: (1) $(h \circ (g \circ f))(x) = 24x - 2$, (2) $((h \circ g) \circ f)(x) = 24x - 2$

저	긘	9`

예시 8에서 알 수 있듯이 일반적으로 세 함수 f,g,f에 대하여

$$h \circ (g \circ f) = (h \circ g) \circ f$$

이다. 즉, 함수의 합성에 대하여 결합법칙이 성립한다.

문제 10)

두 함수 f(x)=2x, g(x)=x-1, $h(x)=x^2$ 에 대하여 $h\circ (g\circ f)=(h\circ g)\circ f$ 임을 보여라.

문제 11)

함수 f(x) = x - 3에 대하여 $(f \circ f \circ f)(0) + (f \circ f)(18)$ 의 값을 구하여라.

정리 12)

함수 $f: X \to Y$ 와 항등함수 I를 생각하자. 즉

$$I(x) = x$$

이다. 이때 $f \circ I$ 와 $I \circ f$ 를 각각 계산해보면

$$(f \circ I)(x) = f(I(x)) = f(x)$$

$$(I \circ f)(x) = I(f(x)) = f(x)$$

이다. 따라서

$$f\circ I=I\circ f=f$$

이다.

 $f\circ I$ 에서의 I는 정의역과 공역이 X 인 항등함수인 I_X 이고, $I\circ f$ 에서의 I는 정의역과 공역이 Y 인 항등함수인 I_Y 이다. 그러므로 위의 식을 더 정확히 쓰면

$$f \circ I_X = I_Y \circ f = f$$

가 된다.

2 역함수

세 함수 f, g, h에서, 반대 방향의 대응이 집합 Y에서 집합 X 로의 함수가 되는지 알아보자.

- (1) 함수 f의 경우에는 Y의 원소 3에 대응하는 X의 원소가 두 개이므로, 함수 f의 반대방향의 대응은 함수가 아니다.
- (2) 함수 g의 경우에는 Y의 원소 3에 대응하는 X의 원소가 없으므로, 함수 g의 반대방향의 대응도 함수가 아니다.
- (3) 함수 h의 경우에는 Y의 각 원소에 X의 원소가 하나씩 대응하므로 함수 h의 반대방향의 대응은 함수이다.

이때, f는 일대일 함수가 아니고 따라서 일대일 대응도 아니다. g는 일대일 함수이지만 일대일 대응은 아니다. 반면 h는 일대일 대응이다.

정의 13) 역함수

함수 $f: X \to Y$ 가 일대일 대응일 때, 집합 Y의 각 원소 y에 y = f(x)를 만족시키는 집합 X의 원소 x를 대응시켜 Y를 정의역, X를 공역으로 하는 새로운 함수를 정의할 수 있다. 이 함수를 f의 역함수라고 하며, 이것을 기호로

$$f^{-1}:Y\to X$$

로 나타낸다. 또

$$x = f^{-1}(y)$$

라고 쓴다.

문제 14)

다음 함수 중 역함수가 존재하는 함수를 모두 말하여라.

문제 15)

함수 $f:X\to Y$ 의 역함수가 존재하도록 오른쪽 그림을 완성하고 다음을 구하여라.

- (1) $f(5) + f^{-1}(5)$
- $(2) f^{-1}(a) = 2$ 를 만족하는 상수 a의 값

정리 16) 역함수의 성질

함수 $f: X \rightarrow Y$ 가 일대일 대응일 때

- (1) 역함수 $f^{-1}: Y \to X$ 가 존재한다.
- $(2) \ y = f(x) \quad \Longleftrightarrow \quad x = f^{-1}(y)$
- (3) $(f^{-1})^{-1}(x) = f(x) \ (x \in X)$
- (4) $(f^{-1} \circ f)(x) = x \ (x \in X), \ (f \circ f^{-1})(y) = y \ (y \in Y)$

증명)

(1)은 당연하다. 함수 $f:X\to Y$ 의 역함수가 존재할 때 $x\in X$ 와 $y\in Y$ 에 대하여

$$y = f(x) \iff x = f^{-1}(y)$$

이다. 따라서 (2) 가 성립한다. $x=f^{-1}(y)$ 에 (2)를 한 번 더 쓰면 $y=(f^{-1})^{-1}(x)$ 인데, y=f(x)이므로

$$(f^{-1})^{-1}(x) = f(x)$$

이다. 따라서 (3)이 성립하며, (3)은

$$(f^{-1})^{-1} = f$$

로 쓸 수도 있다. 또

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$$
$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$$

이다. 따라서 (4)가 성립하며, (4)는

$$f^{-1} \circ f = I_X$$
$$f \circ f^{-1} = I_Y$$

로 쓸 수도 있다.

예시 18)

오른쪽 그림의 함수 $f: X \to Y$ 에 대하여 다음을 구하여라.

$$(1) f^{-1}(b)$$

(1) $f^{-1}(b)$ 는 역함수 f^{-1} 에 의한 b의 함숫값이므로 b에서 반대 화살표 를 따라가서 얻을 수 있는 1이다. 즉 $f^{-1}(b) = 1$ 이다.

(다른방법) $f^{-1}(b) = k$ 라고 두면 정리 16의 (2)에 의해 f(k) = b이다. f(k)=b인 k는 1이므로 k=1이다. 즉 $f^{-1}(b)=1$ 이다.

(2) $(f \circ f^{-1})(a) = f(f^{-1}(a)) = f(2) = a \circ \mathcal{F}$.

(다른방법) $f \circ f^{-1} = I$ 이므로 $(f \circ f^{-1})(a) = I(a) = a$ 이다.

문제 20)

오른쪽 그림의 함수 $f: X \to Y$ 에 대하여 다음을 구하여라.

$$(2) (f^{-1})^{-1}(4)$$

 $(3) (f^{-1} \circ f)(3)$

 $(4) (f \circ f^{-1})(b)$

함수 y = f(x)에서 y = f(x)와 동치인 식은

$$x = f^{-1}(y)$$

이다. 여기에 x와 y를 서로 바꾸면

$$y = f^{-1}(x)$$

이다.

역함수를 구한다. \Rightarrow x와 y를 서로 바꾸어 y에 관해 정리한다.

예시 21)

함수 y = 4x + 3의 역함수를 구하여라.

x와 y를 바꾸면

$$x = 4y + 3$$

이 되고 이것을 다시 y에 대해 정리하면

$$y = \frac{1}{4}x - \frac{3}{4}$$

이다. 따라서 구하는 역함수는 $y=\frac{1}{4}x-\frac{3}{4}$ 이다.

문제 22)

다음 함수의 역함수를 구하여라.

(1)
$$y = -3x + 3$$

(2)
$$y = \frac{1}{4}x + 1$$

수학 1에서 대칭이동에 관해 배울 때, x와 y를 서로 바꾼 식의 그래프는 원래 식의 그래프와 직선 y=x에 대해 대칭이라고 했다.

예를 들어, 원

$$(x-2)^2 + y^2 = 1$$

에서 x와 y를 서로 바꾸면

$$x^2 + (y-2)^2 = 1$$

이 되는데 원래 식의 그래프와 바꾼 식의 그래프를 비교하면 두 원은 y=x에 대해 대칭이다.

함수 y=f(x)에서 x와 y를 서로 바꾸면 $y=f^{-1}(x)$ 가 되므로 다음이 성립한다.

정리 23)

함수 y=f(x)의 그래프와 그 역함수 $y=f^{-1}(x)$ 의 그래프는 직선 y=x에 대하여 대칭이다.

예시 24)

함수 y=2x+1의 역함수는 $y=\frac{1}{2}x-\frac{1}{2}$ 이므로 두 함수의 그래프를 그리면 아래 그림과 같다. 이 그림으로부터 함수 y=2x+1의 그래프와 $y=\frac{1}{2}x-\frac{1}{2}$ 의 그래프는 직선 y=x에 대하여 서로 대칭임을 알 수 있다.

문제 25)

다음 함수와 그 역함수의 그래프를 좌표평면 위에 그려라.

(1)
$$y = x + 1$$

(2)
$$y = 2x - 2$$

문제 26)

두 함수 f(x) = x + 3, g(x) = 3x - 4에 대하여 다음 물음에 답하여라.

- (1) 두 역함수 $f^{-1}(x)$, $g^{-1}(x)$ 를 구하여라.
- (2) 합성함수 $(g \circ f)(x)$ 와 그 역함수 $(g \circ f)^{-1}(x)$ 를 구하여라.
- (3) $(f^{-1} \circ g^{-1})(x)$ 를구하여라.

정리 27)

일대일 대응인 두 함수 f,g의 합성함수 $g\circ f$ 가 존재하면

$$(g \circ f)^{-1}(x) = f^{-1} \circ g^{-1}$$

이다.

3 보충 · 심화 문제

문제 28)

A 상점과 B 상점은 모든 제품을 다음과 같이 할인하여 판매하고 있다.

A 상점 : 정가의 5%를 할인한 후 5000 원을 추가로 할인. B 상점 : 정가에 5000 원을 할인한 후 5%를 추가로 할인.

정가가 동일한 상품을 구매하려고 할 때, 어느 상점에서 구매하는 것이 구매 자에게 유리한가?

문제 29)

두 집합 $X=\{x\,|\,0\leq x\leq 2\},\,Y=\{y\,|\,0\leq y\leq a\}$ 에 대하여 함수 $f:X\to Y,\,y=bx+1\;(b<0)$ 일 때, 역함수 $f^{-1}:Y\to X$ 가 존재하도록 두 실수 $a,\,b$ 의 값을 정하여라.

문제 30)

집합 $X = \{1, 2, 3, 4\}$ 에 대하여 함수 f 가 오른쪽 그림과 같을 때, 다음 값을 구하여라.

$$(1) (f \circ f)(2)$$

$$(2) (f \circ f \circ f)(3)$$

문제 31)

함수 f(x) = x - 1에 대하여

$$f_1(x) = f(x), \quad f_{n+1}(x) = (f \circ f_n)(x) \ (n \stackrel{\diamond}{\leftarrow}$$
자연수)

로 정의할 때, $f_{30}(2)$ 의 값을 구하여라.

문제 32)

실수 전체의 집합에서 정의된 두 함수 $f(x)=3x-4,\,g(x)=x+6$ 에 대하여 합성함수 $h(x)=(f\circ(g\circ f)^{-1}\circ f)(x)$ 일 때, $h(3)+h^{-1}(2)$ 의 값을 구하여라.

답

문제 3)

- (1) 1
- (2) 20
- (3) -1
- (4) -16

문제 6)

- (1) $(f \circ g)(x) = x^2 6$
- (2) $(g \circ f)(x) = x^2 4x$

문제 7)

2

문제 10)

(1) 두 함수 f, g의 합성함수 $g \circ f$ 는 $(g \circ f)(x) = g(f(x)) = g(2x) = 2x - 1$ 이므로

$$(h \circ (g \circ f))(x) = h((g \circ f)(x))$$
$$= h(2x - 1) = 4x^2 - 4x + 1$$

(2) 두 함수 g, h의 합성함수 $h \circ g$ 는 $(h \circ g)(x) = h(g(x)) = h(x-1) = (x-1)^2 = x^2 - 2x + 1$ 이므로

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x))$$
$$= (h \circ g)(2x) = 4x^2 - 4x + 1$$

따라서 $h \circ (g \circ f) = (h \circ g) \circ f$ 이다.

문제 11)

3

문제 14)

(1), (3)

문제 15)

(그림생략), (1) 7, (2) 9

문제 19)

- $(1) \ 3$
- (2) c
- $(3) \ 3$
- (4) b

문제 21)

- (1) $y = -\frac{1}{3}x + 1$
- (2) y = 4x 4

문제 24)

문제 25)

(1)
$$f^{-1}(x) = x - 3$$
, $g^{-1}(x) = \frac{1}{3}x + \frac{4}{3}$

(2)
$$(g \circ f)(x) = 3x + 5$$

 $(g \circ f)^{-1}(x) = \frac{1}{3}x - \frac{5}{3}$

(3)
$$(f^{-1} \circ g^{-1})(x) = \frac{1}{3}x - \frac{5}{3}$$

문제 27)

A상점이 더 유리하다.

문제 28)

$$a=1,\,b=-\tfrac{1}{2}$$

문제 29)

 $(1)\ 1,\ (2)\ 3$

문제 30)

-28

문제 31)

3