NVMe and NVMeof

Ren Qiaowei, Intel

Latency

NVMe Host Software

Host Side Transport Abstraction

Fibre Channel
InfiniBand
RoCE
IWARP
IWARP
Next Gen Fabrics

Controller Side Transport Abstraction

NVMe SSDs

NVMeoF in SPDK

SPDK ARCHITECTURE

Backup

SPDK NVMe Performance

System Configuration: 2x Intel® Xeon® E5-2695v4 (HT off), Intel® Speed Step enabled, Intel® Turbo Boost Technology disabled, 8x 8GB DDR4 2133 MT/s, 1 DIMM per channel, CentOS* Linux* 7.2, Linux kernel 4.7.0-rc1, 1x Intel® P3700 NVMe SSD (800GB), 4x per CPU socket, FW 8DV10102, I/O workload 4KB random read, Queue Depth: 1 per SSD, Performance measured by Intel using SPDK overhead tool, Linux kernel data using Linux AIO

SPDK NVMe Performance

System Configuration: 2x Intel® Xeon® E5-2695v4 (HT off), Intel® Speed Step enabled, Intel® Turbo Boost Technology disabled, 8x 8GB DDR4 2133 MT/s, 1 DIMM per channel, CentOS* Linux* 7.2, Linux kernel 4.10.0, 8x Intel® P3700 NVMe SSD (800GB), 4x per CPU socket, FW 8DV101H0, I/O workload 4KB random read, Queue Depth: 128 per SSD, Performance measured by Intel using SPDK perf tool, Linux kernel data using Linux AIO

Intel RSD

Interoperable

Choose the best now without vendor lock-in

OEMs* with solutions based on Intel RSD