Math 355 – PS#1 Solutions Summer 2, 2012

p.43 #3. Write out the Cayley tables for groups formed by the symmetries of a rectangle and for $(\mathbb{Z}_4, +)$. How many elements are in each group? Are the groups the same? Why or why not?

Solution. The symmetries of a rectangle with centroid at the origin and sides parallel to the coordinate axes are generated by reflections σ_x in the x-axis and σ_y in the y-axis. Their square is identity e and their product (in either order) is the rotation ρ of 180° about the origin. Furthermore, $\rho \circ \sigma_y = (\sigma_x \circ \sigma_y) \circ \sigma_y = \sigma_x \circ (\sigma_y \circ \sigma_y) = \sigma_x \circ e = \sigma_x$, and similarly, $\rho \circ \sigma_x = \sigma_y$. Thus the Cayley tables for the symmetries of a rectangle and $(\mathbb{Z}_4, +)$ are:

0	e	σ_x	σ_y	ρ
e	e	σ_x	σ_y	ρ
σ_x	σ_x	e	ρ	σ_y
σ_y	σ_y	ρ	e	σ_x
ρ	ρ	σ_y	σ_x	e

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

These groups are *not* the same. While each symmetry has square the identity e, the square of 1 and 3 is 2, which is not the identity 0.

p.43 # 7. Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab. Prove that (S, *) is an abelian group.

Proof. To prove closure we must show that if $a,b \in S$, then $a*b \in S$. We prove the contrapositive: if $a*b \notin S$, either $a \notin S$ or $b \notin S$. But if $a*b \notin S$, then a*b = a+b+ab = -1. Adding 1 to both sides and factoring gives 0 = 1 + (-1) = 1 + a + b + ab = (1+a)(1+b). Hence either $a = -1 \notin S$ or $b = -1 \notin S$. For commutativity, note that a*b = a+b+ab = b+a+ba = b*a. To check associativity, let $a,b,c \in S$ and note that (a*b)*c = (a*b)+c+(a*b)c = (a+b+ab)+c+(a+b+ab)c = a+(b+c+bc)+a(b+c+bc)=a+(b*c)+a(b*c)=a*(b*c). There is an identity element, namely 0, since commutativity and the definition of * give $0*a = a*0 = a+0+a\cdot0 = a$. For inverses, first note that if $a \in S$, then $\frac{-a}{a+1} \in S$ since $a \ne -1$. But $a*\begin{pmatrix} -a \\ a+1 \end{pmatrix} = a+\frac{-a}{a+1}+a\begin{pmatrix} -a \\ a+1 \end{pmatrix} = \frac{a(a+1)-a-a^2}{a+1}=0$, and by commutativity, $\begin{pmatrix} -a \\ a+1 \end{pmatrix} *a = a*\begin{pmatrix} -a \\ a+1 \end{pmatrix} = 0$. Therefore $a^{-1} = \frac{-a}{a+1}$.

p.43 # 25. Let U(n) be the group of units in \mathbb{Z}_n . If n > 2, prove that there is an element $k \in U(n)$ such that $k^2 = 1$ and $k \neq 1$.

Proof. Note that $(n-1)^2 - 1 = (n^2 - 2n + 1) - 1 = n(n-2) \equiv 0 \pmod{n}$. Set k = n-1; then $k^2 = 1$ and $k \geq 2$ since $n \geq 3$.

p.43 #29. Prove the right and left cancellation laws for a group G; i.e., if $a, b, c \in G$ then ba = ca implies b = c and ab = ac implies b = c.

Proof. If $a \in G$, then $a^{-1} \in G$ since G has inverses. Thus ba = ca implies $b = be = b \left(aa^{-1}\right) = \left(ba\right)a^{-1} = \left(ca\right)a^{-1} = ce = c$. Similarly, ab = ac implies $b = eb = \left(a^{-1}a\right)b = a^{-1}\left(ab\right) = a^{-1}\left(ac\right) = ec = c$.

p.43 #31. Show that is G is a finite group of even order, there is an element $a \in G$ such that $a \neq e$ and $a^2 = e$.

Proof. Let $G = \{a_1, a_2, \dots, a_{2n} = e\}$. Since inverses are unique, by Proposition 3.2, each $a_i \in G$ pairs off with its unique inverse a_j . Since $e^2 = e$, the element a_{2n} pairs off with itself. Thus some $a_i \in \{a_1, \dots, a_{2n-1}\}$ must also pair off with itself so that $a_i^2 = e$.