Bayesian Machine Learning

A PyMCentric Introduction

Quan Nguyen

Modeling success rate

Question: What is the success rate of a binary event?

$$\theta = ?$$

Making inference: the prior distribution

$$\theta \in [0,1]$$

Making inference: the prior distribution

$$\theta \in [0,1]$$

Making inference: the likelihood

$$\mathcal{D} = \{1, 0, 1, \dots, 1\}: k \text{ ones and } n - k \text{ zeros}$$

$$p(\text{first one} \mid \theta) = \theta$$

 $p(\text{first zero} \mid \theta) = 1 - \theta$

Making inference: the likelihood

$$\mathcal{D} = \{1, 0, 1, \dots, 1\}: k \text{ ones and } n - k \text{ zeros}$$

$$p(\text{first one} \mid \theta) = \theta$$

 $p(\text{first zero} \mid \theta) = 1 - \theta$

. . .

$$p(\mathcal{D} \mid \theta) = \theta^k (1 - \theta)^{n-k}$$

Making inference: Bayes' theorem

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{\int p(\mathcal{D} \mid \theta)p(\theta)d\theta}$$

Making inference: Bayes' theorem

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{\int p(\mathcal{D} \mid \theta)p(\theta)d\theta}$$

Most of the time, the denominator cannot be computed exactly, but approximated using samples.

Making inference: the posterior distribution

Modeling a latent function

Gaussian Processes (GPs): normal distribution prior for every function value.

Modeling a latent function

Gaussian Processes (GPs): normal distribution prior for every function value.

- Mean function $\mu(x)$: central tendency of our function belief
- Covariance function K(x, x'): controls the smoothness of function belief

Modeling a latent function

Gaussian Processes (GPs): normal distribution prior for every function value.

- Mean function $\mu(x)$: central tendency of our function belief
- Covariance function K(x, x'): controls the smoothness of function belief
- Can be updated using Bayes' theorem

$$\mu_{\mathcal{D}}(x) = \mu(x) + K(x, \mathbf{x})(\mathbf{\Sigma} + \mathbf{N})^{-1}(\mathbf{y} - \boldsymbol{\mu})$$
$$K_{\mathcal{D}}(x, x') = K(x, x') - K(x, \mathbf{x})(\mathbf{\Sigma} + \mathbf{N})^{-1}K(\mathbf{x}, x')$$

GP inferences: the prior

GP inferences: the prior

Figure 1: GP prior

GP inferences: the posterior

Figure 2: Observations from the latent function

GP inferences: the posterior

Figure 2: Observations from the latent function

Figure 3: GP posterior conditioned on observations

GP hyper-parameters

Figure 4: Effect of hyper-parameters on the posterior GP

GPs in PyMC3

GPs in $\overline{\text{PyMC3}}$

Figure 5: GP posterior via MAP

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon$$

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon$$

Optimal \mathbf{w} via least squares:

$$\mathbf{w}^* = \arg\min \sum (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$\overline{y} = \mathbf{w}^{*T} \mathbf{x}$$

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon$$

Optimal w via least squares:

$$\mathbf{w}^* = \arg\min \sum (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$\overline{y} = \mathbf{w}^{*T} \mathbf{x}$$

Bayesian linear regression:

$$p(\mathbf{w} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$p(\varepsilon \mid \sigma) = \mathcal{N}(\varepsilon; 0, \sigma)$$

$$y = \mathbf{w}^T \mathbf{x} + \varepsilon$$

Optimal \mathbf{w} via least squares:

$$\mathbf{w}^* = \arg\min \sum (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
$$\overline{y} = \mathbf{w}^{*T} \mathbf{x}$$

Bayesian linear regression:

$$p(\mathbf{w} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{w}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$p(\varepsilon \mid \sigma) = \mathcal{N}(\varepsilon; 0, \sigma)$$

 $p(y \mid \mathbf{x}, \mathcal{D})$ can be computed.

Linear regression: an example

Figure 1: Least-squares solution

 ${\bf Figure \ 2:} \ {\bf Bayesian \ solution}$

Linear regression: an example

Figure 1: Least-squares solution

Figure 2: Bayesian solution

Bayesian neural networks: Thomas Wiecki - Probablistic Programming Data Science with PyMC3

Bayesian decision theory

Two main components:

- Bayesian beliefs about unknown quantities
- Utility function

Bayesian decision theory

Two main components:

- Bayesian beliefs about unknown quantities
- Utility function

$$u(\text{decision}, \text{outcome}) = v \in \mathbb{R},$$

$$d^* = \arg \max \mathbb{E}_{\text{outcome}}[u(\text{decision})]$$

Bayesian-optimal The Price is Right

Setup:

- Compete against an opponent to guess product price p as $g \in \mathbb{R}$.
- Opponent's guess: \overline{p} .
- If a guess is above p then the player gets nothing.
- If a guess is not above p, then the player with the closer guess wins the product.
- Our belief about $p: \mathcal{N}(p; \mu, \sigma^2)$.
- What is the optimal decision d^* ?

General process: compute the utility of each action given the values of the unknown quantities and marginalize over those values according to our belief.

General process: compute the utility of each action given the values of the unknown quantities and marginalize over those values according to our belief.

Utility function

•
$$u(g \mid p) = 0 \text{ if } g > p$$

General process: compute the utility of each action given the values of the unknown quantities and marginalize over those values according to our belief.

Utility function

- u(g | p) = 0 if g > p
- $u(g \mid p) = 0$ if $g < \overline{p} <= p$

General process: compute the utility of each action given the values of the unknown quantities and marginalize over those values according to our belief.

Utility function

- u(g | p) = 0 if g > p
- $u(g \mid p) = 0$ if $g < \overline{p} <= p$
- $u(g \mid p) = 0$ if $\overline{p} < g <= p$

General process: compute the utility of each action given the values of the unknown quantities and marginalize over those values according to our belief.

Utility function

- u(g | p) = 0 if g > p
- $u(g \mid p) = 0$ if $g < \overline{p} <= p$
- $u(g \mid p) = 0$ if $\overline{p} < g <= p$

Expected utility of a decision g

$$\mathbb{E}\left[u(g)\right] = \int u(g \mid p)p(p)dp; \quad g^* = \arg\max_g \mathbb{E}\left[u(g)\right]$$

Visualizing the optimal decision

Example: $p \sim \mathcal{N}(100, 10^2); \ \overline{p} = 75.$

Figure 1: Expected utility as a function of our guess

The multi-armed bandit problem

Problem setup:

- k slot machines, each returns a coin with probability θ_i
- \bullet N pulls available
- Goal: maximize the expected number of coins (utility) received

The multi-armed bandit problem

Problem setup:

- k slot machines, each returns a coin with probability θ_i
- \bullet N pulls available
- Goal: maximize the expected number of coins (utility) received

Applications: designing clinical trials, personalized recommendations, etc.

The multi-armed bandit problem

Problem setup:

- k slot machines, each returns a coin with probability θ_i
- \bullet N pulls available
- Goal: maximize the expected number of coins (utility) received

Applications: designing clinical trials, personalized recommendations, etc.

Modeling the return rates: placing a prior on each θ_i and update accordingly.

The Bayesian optimal policy

 $i^* = \arg \max_i \mathbb{E} [\text{future reward} \mid \text{current outcome}]$

The Bayesian optimal policy

$$i^* = \arg \max_i \mathbb{E} [\text{future reward} \mid \text{current outcome}]$$

- \mathbb{E} [future reward | current outcome] is generally intractable.
- Need policies that approximates the optimal policy.
- Goal: have an $\mathcal{O}(\log t)$ upper-bound on the expected regret.

The Upper-Confidence Bound policy

At iteration t = 1, 2, ..., N, for each arm i with the corresponding posterior belief $p(\theta_i)$, compute with constant c:

$$q_i(t) = Q_i \left(1 - \frac{1}{t (\log N)^c}\right),$$

where Q_i is the corresponding quantile function of $p(\theta_i)$.

Decision: pick $i^* = \arg \max_i q_i(t)$.

The Upper-Confidence Bound policy

At iteration t = 1, 2, ..., N, for each arm i with the corresponding posterior belief $p(\theta_i)$, compute with constant c:

$$q_i(t) = Q_i \left(1 - \frac{1}{t (\log N)^c}\right),$$

where Q_i is the corresponding quantile function of $p(\theta_i)$.

Decision: pick $i^* = \arg \max_i q_i(t)$.

Justification: $q_i(t)$ is high if either (1) $\mathbb{E}[\theta_i]$ is high or (2) there is significant uncertainty in $p(\theta_i)$.

 \rightarrow Exploration vs. exploitation

The Thompson Sampling policy

At iteration $t=1,2,\ldots,N$, for each arm i with the corresponding posterior belief $p(\theta_i)$, draw a sample as an approximation of the true rate:

$$\overline{\theta_i} \sim p(\theta_i).$$

Decision: pick $i^* = \arg \max_i \overline{\theta_i}$.

The Thompson Sampling policy

At iteration t = 1, 2, ..., N, for each arm i with the corresponding posterior belief $p(\theta_i)$, draw a sample as an approximation of the true rate:

$$\overline{\theta_i} \sim p(\theta_i).$$

Decision: pick $i^* = \arg \max_i \overline{\theta_i}$.

Justification: $\overline{\theta_i}$ is likely to be high if either (1) $\mathbb{E}[\theta_i]$ is high or (2) there is significant uncertainty in $p(\theta_i)$.

 \rightarrow Exploration vs. exploitation

The Thompson Sampling policy

At iteration t = 1, 2, ..., N, for each arm i with the corresponding posterior belief $p(\theta_i)$, draw a sample as an approximation of the true rate:

$$\overline{\theta_i} \sim p(\theta_i).$$

Decision: pick $i^* = \arg \max_i \overline{\theta_i}$.

Justification: $\overline{\theta_i}$ is likely to be high if either (1) $\mathbb{E}[\theta_i]$ is high or (2) there is significant uncertainty in $p(\theta_i)$.

 \rightarrow Exploration vs. exploitation

Thompson Sampling: Sid Ravinutala - Thompson Sampling and COVID testing

Bayesian optimization

Problem setup:

- Access to potentially noisy output of a black-box function $y = f(\cdot) + \varepsilon$ but not its gradients
- · Expensive queries
- Goal: sequentially query the function to find the function maximizer $x^* = \arg\max_{x \in \mathcal{X}} f(x)$

Bayesian optimization

Problem setup:

- Access to potentially noisy output of a black-box function $y = f(\cdot) + \varepsilon$ but not its gradients
- Expensive queries
- Goal: sequentially query the function to find the function maximizer $x^* = \arg\max_{x \in \mathcal{X}} f(x)$

Modeling the objective function: Gaussian processes.

Using the posterior belief

Posterior predictive distribution of value y at point x:

$$p(y \mid x, \mathcal{D}).$$

Using the posterior belief

Posterior predictive distribution of value y at point x:

$$p(y \mid x, \mathcal{D}).$$

Probability of Improvement:

$$\Pr\left[y > \overline{y} \mid x, \mathcal{D}\right] = \int_{\overline{y}}^{\infty} p(y \mid x, \mathcal{D}) dy.$$

Using the posterior belief

Posterior predictive distribution of value y at point x:

$$p(y \mid x, \mathcal{D}).$$

Probability of Improvement:

$$\Pr[y > \overline{y} \mid x, \mathcal{D}] = \int_{\overline{y}}^{\infty} p(y \mid x, \mathcal{D}) dy.$$

Expected Improvement:

$$\mathbb{E}\left[y - \overline{y} \mid y > \overline{y}, x, \mathcal{D}\right] = \int_{\overline{y}}^{\infty} (y - \overline{y}) p(y \mid x, \mathcal{D}) dy.$$

Distribution of the true maximizer

From the posterior predictive $p(y \mid x, \mathcal{D})$, the probability of a point x being the maximizer can be considered: $p(x^* \mid \mathcal{D})$.

Distribution of the true maximizer

From the posterior predictive $p(y \mid x, \mathcal{D})$, the probability of a point x being the maximizer can be considered: $p(x^* \mid \mathcal{D})$.

Entropy Search: choosing the point that approximately causes the largest decrease (in differential entropy) of $p(x^* \mid \mathcal{D})$.

Predictive Entropy Search: having the same evaluation objective but approximating entropy reduction differently.

Distribution of the true maximizer

From the posterior predictive $p(y \mid x, \mathcal{D})$, the probability of a point x being the maximizer can be considered: $p(x^* \mid \mathcal{D})$.

Entropy Search: choosing the point that approximately causes the largest decrease (in differential entropy) of $p(x^* \mid \mathcal{D})$.

Predictive Entropy Search: having the same evaluation objective but approximating entropy reduction differently.

PyMC-powered Bayesian optimization: pyGPGO.

Other Bayesian decision-making problems

Active learning: interactively asking for new data points to minimize cost and maximize predictive performance.¹

 $^{^1\}mathrm{Settles},$ Burr. Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, 2009.

 $^{^2\,\}mathrm{Garnett},$ Roman, et al. "Bayesian optimal active search and surveying." arXiv preprint arXiv:1206.6406 (2012).

Other Bayesian decision-making problems

Active learning: interactively asking for new data points to minimize cost and maximize predictive performance.¹

Active search: interactively asking for new data points to discover a rare class of data points while minimizing cost.²

 $^{^1}$ Settles, Burr. Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, 2009.

 $^{^2\}mathrm{Garnett},$ Roman, et al. "Bayesian optimal active search and surveying." arXiv preprint arXiv:1206.6406 (2012).