CS 480 Cheat Sheet

Perceptron

We assume $(x_1, y_1), ..., (x_n, y_n)$ belongs to some distribution. Choose predictive function h_n such that $\max Pr(h(x_i) = y_i)$

Dot Product: $\langle w, x \rangle = \sum w_i x_i$ **Padding:** $\langle w, x \rangle + b = \langle (w, b), (x, 1) \rangle$ Note: $z = (w, b), a_i = y_i(x_i, 1)$

Linear Seperable: if s > 0 and Az > s1

If data is not linearly seperable perceptron stalls. Margin is determined by closest point to the hyperplane.

Perceptron finds a solution, no guarantee its the best solution.

12 Norm: $||x||_2 = \sqrt{\sum_i x_i^2}$ Error Bound $\leq \frac{R^2 ||z||_2^2}{s^2}, R = \max ||a_i||_2$

Margin: $\gamma = \max_{||z||_2=1} \sin_i \langle a_i, z \rangle$

One-versus-all: $\hat{y} = \operatorname{argmax}_k w_k^T x + b_k$ One-versus-one: $\#\{k': x^T w_{k,k'} + b_{k,k'} > 0 | |x^T w_{k',k} + b_{k',k} < 0\}$

Example #1: classify $x = (1,2)^T$ given b = 1 and w = (2,-3):

(1,2,-3)(1,1,2)^T = -3 = - **Example #2:** given $\mathbf{w} = (\frac{2}{3}, \frac{1}{3})$ and $\mathbf{b} = 0$, whats the line: $\frac{2}{3}x + \frac{1}{3}y = 0 \rightarrow y = -2x$

Linear Regression

Gradient if
$$f(x): \mathbb{R}^d \to \mathbb{R}$$
, $\Delta f(v) = \left(\frac{\delta f}{\delta v_1}, ..., \frac{\delta f}{\delta v_d}\right): \mathbb{R}^d \to \mathbb{R}^d$

Gradient if
$$f(x): \mathbb{R}^d \to \mathbb{R}$$
, $\Delta f(v) = \left(\frac{\delta f}{\delta v_1}, ..., \frac{\delta f}{\delta v_d}\right): \mathbb{R}^d \to \mathbb{R}^d$
Hessian $\Delta^2 f(v) = \begin{bmatrix} 1 & ... & 3 \\ ... & b & ... \\ 2 & ... & 3 \end{bmatrix}$