Problem B. Gregor and Cryptography

Time limit 1000 ms **Mem limit** 262144 kB

Gregor is learning about RSA cryptography, and although he doesn't understand how RSA works, he is now fascinated with prime numbers and factoring them.

Gregor's favorite **prime** number is P. Gregor wants to find two *bases* of P. Formally, Gregor is looking for two integers a and b which satisfy both of the following properties.

- ullet P mod a = P mod b, where x mod y denotes the remainder when x is divided by y, and
- $2 \le a < b \le P$.

Help Gregor find two bases of his favorite prime number!

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 1000$).

Each subsequent line contains the integer P ($5 \le P \le 10^9$), with P guaranteed to be prime.

Output

Your output should consist of t lines. Each line should consist of two integers a and b ($2 \le a < b \le P$). If there are multiple possible solutions, print any.

Sample 1

Input	Output
2	3 5
17	2 4
5	

Note

The first query is P=17. a=3 and b=5 are valid *bases* in this case, because $17 \mod 3 = 17 \mod 5 = 2$. There are other pairs which work as well.

In the second query, with P=5 , the only solution is a=2 and b=4.