Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer¹, **Antonio Casares**², Mickael Randour³, Pierre Vandenhove^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

²LaBRI, Université de Bordeaux, France

³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

July 11, 2022 - GT VERIF '22

Games and Positionality

Arena: oriented graph $\mathcal{G} = (V = (V_{\mathrm{Eve}} \uplus V_{\mathrm{Adam}}), \mathcal{E}, v_0)$ with edges labeled by colors in a set \mathcal{C} and an initial vertex.

Players move a token in turns producing an infinite word $w \in C^{\omega}$.

Players move a token in turns producing an infinite word $w \in C^{\omega}$.

Output =

Players move a token in turns producing an infinite word $w \in C^{\omega}$.

Output = a

Players move a token in turns producing an infinite word $w \in C^{\omega}$.

Output = ab

Players move a token in turns producing an infinite word $w \in C^{\omega}$.

 $\mathrm{Output} = \mathit{abb} \ldots$

Objective: Set $\mathbb{W} \subseteq C^{\omega}$ of winning sequences.

Eve wins a play if $w \in \mathbb{W}$.

Adam wins a play if $w \notin \mathbb{W}$.

 \mathbb{W} -game = Arena + Objective \mathbb{W}

Strategies

Strategy (for Eve)

Function $\sigma: E^* \times V_{\mathrm{Eve}} \to E$ prescribing how Eve should move depending on the past of the play.

Strategies

Strategy (for Eve)

Function $\sigma: E^* \times V_{\mathrm{Eve}} \to E$ prescribing how Eve should move depending on the past of the play.

Winner

We say that Eve wins a \mathbb{W} -game \mathcal{G} if she has a strategy σ such that all paths from v_0 consistent with that strategy belong to \mathbb{W} .

Positional Strategies

Positional strategy

Function

$$\sigma: V_{\text{Eve}} \to E$$
,

(Eve's choices depend exclusively on the current position).

Positionality

Positional objective

An objective $\mathbb{W}\subseteq C^\omega$ is half-positional for every \mathbb{W} -game \mathcal{G} Eve has a positional strategy σ such that

Eve wins $\mathcal{G} \implies$ Eve wins \mathcal{G} using σ .

¹In this talk positional = half-positional.

Positionality

Positional objective

An objective $\mathbb{W}\subseteq C^\omega$ is half-positional for every \mathbb{W} -game \mathcal{G} Eve has a positional strategy σ such that

Eve wins $\mathcal{G} \implies$ Eve wins \mathcal{G} using σ .

Bi-positional objective

An objective $\mathbb{W}\subseteq C^\omega$ is *bi-positional* if both \mathbb{W} and $C^\omega\setminus\mathbb{W}$ are half-positional.

¹In this talk positional = half-positional.

 $ightharpoonup \mathbb{W} = C^*(ab)^{\omega}$ is not positional.

$$ightharpoonup \mathbb{W} = C^* a^4 C^{\omega}$$

?

$$ightharpoonup \mathbb{W} = C^* a^4 C^{\omega}$$

Not positional

$$\blacktriangleright \mathbb{W} = \mathrm{Inf}(a) = (Ca)^{\omega}.$$

Positional (Emerson, Jutla 1991)

$$\blacktriangleright \ \mathbb{W} = C^*a^2C^\omega \cup \mathrm{Inf}(a).$$

?

$$\blacktriangleright \mathbb{W} = C^*a^2C^\omega \cup \mathrm{Inf}(a).$$

You will know at the end of the talk!

Bi-positionality is quite well understood:

Some known results about bi-positionality

- Characterization of bi-positionality over finite arenas [Gimbert, Zielonka '05].
- Characterization of bi-positionality over all arenas [Colcombet, Niwiński '06].

Bi-positionality is quite well understood:

Some known results about bi-positionality

- ► Characterization of bi-positionality over finite arenas [Gimbert, Zielonka '05].
- Characterization of bi-positionality over all arenas [Colcombet, Niwiński '06].

But for applications in synthesis, half-positionality is more relevant!

Some known results about half-positionality

- Some sufficient conditions for half-positionality [Kopczyński '08, BFMM '10].
- ► Charact. of half-positional objectives over all arenas using universal graphs [Ohlmann '21].

Some known results about half-positionality

- Some sufficient conditions for half-positionality [Kopczyński '08, BFMM '10].
- ► Characterization of half-positional objectives over all arenas using universal graphs [Ohlmann '21].

→Structural characterization:

 \mathbb{W} positional $\,\Leftrightarrow\,$ There exists a suitable structure for any cardinal.

Not effective.

Contribution

Open question

Effective characterization of positionality for ω -regular objectives.

In this work:

Main result

Effective characterization of positionality for languages recognized by **deterministic Büchi automata**.

Deterministic Büchi Automata

Büchi automata

In this talk, all automata will be deterministic.

- ullet Automaton ${\cal B}$
- $C = \{a, b\}$ input alphabet
- Input = $w \in C^{\omega}$
- → → = Büchi transition

- → We accept a run if it visits infinitely often a Büchi transition.
- \rightarrow $\mathcal{L}(\mathcal{B}) = \{ w \in C^{\omega} : \mathcal{B} \text{ has an accepting run over } w \}.$

Condition over transitions

<u>Remark</u>: Acceptance condition is defined over *transitions* of the automata.

Recognizability by Büchi automata

DBA-recognizability

We say that an objective $\mathbb{W}\subseteq C^\omega$ is **DBA-recognizable** if there is a deterministic Büchi automaton $\mathcal B$ such that

$$\mathbb{W} = \mathcal{L}(\mathcal{B}).$$

Remark: the class of DBA-recognizable objectives is a proper subclass of ω -regular objectives.

 ω -regular = Recognizable by ND-Büchi = Recognizable by det. parity.

We fix an objective $\mathbb{W} \subseteq C^{\omega}$.

For a finite word $u \in C^*$ we write

$$u^{-1}\mathbb{W}=\{w\in C^\omega: uw\in\mathbb{W}\}.$$

We fix an objective $\mathbb{W} \subseteq C^{\omega}$.

For a finite word $u \in C^*$ we write

$$u^{-1}\mathbb{W}=\{w\in C^{\omega}: uw\in\mathbb{W}\}.$$

For
$$u, v \in C^*$$
:

$$u \prec v$$
 if $u^{-1} \mathbb{W} \subsetneq v^{-1} \mathbb{W}$ (Preorder).

 $u \sim v$ if $u^{-1} \mathbb{W} = v^{-1} \mathbb{W}$ (Equivalence relation).

We fix an objective $\mathbb{W} \subseteq C^{\omega}$.

For a finite word $u \in C^*$ we write

$$u^{-1}\mathbb{W}=\{w\in C^\omega: uw\in\mathbb{W}\}.$$

For $u, v \in C^*$:

$$u \prec v$$
 if $u^{-1} \mathbb{W} \subsetneq v^{-1} \mathbb{W}$ (Preorder).

$$u \sim v$$
 if $u^{-1} \mathbb{W} = v^{-1} \mathbb{W}$ (Equivalence relation).

 \rightarrow Analogous relations between the states of a DBA \mathcal{B} .

On finite words:

One state per equivalence class.

On finite words:

One state per equivalence class.

On infinite words:

This is not always possible!

$$\mathcal{L}(\mathcal{B}) = (C^*aa)^{\omega}$$

Only one equivalence class.

Myhill-Nerode-like objectives

Myhill-Nerode-like objective

If an objective \mathbb{W} can be recognized by a DBA with one state per equivalence class we say that it is **Myhill-Nerode-like**.

Remember: Transition based acceptance!

$$ightharpoonup \mathbb{W} = (ab)^{\omega}$$

- $aa \prec \varepsilon$
- aa ≺ a
- ε and \emph{a} are incomparable.

Three sufficient and necessary

conditions for half-positionality

Condition 1: \prec is a total order

Condition 1

Prefix preorder \prec is total.

Condition 1: \prec is a total order

Lemma (Necessity of Condition 1)

If \prec is not total, \mathbb{W} is not positional.

Condition 1: \prec is a total order

Lemma (Necessity of Condition 1)

If \prec is not total, \mathbb{W} is not positional.

<u>Proof</u>: If \prec is not total, there are $u_1, u_2 \in C^*$ and $w_1, w_2 \in C^{\omega}$ such that:

$$u_1w_1 \in \mathbb{W}, \quad u_2w_1 \notin \mathbb{W},$$

$$u_2w_2\in \mathbb{W},\quad u_1w_2\notin \mathbb{W}.$$

Condition 2: Progress-consistency

Condition 2

We say that \mathbb{W} is *progress-consistent* if for all $u, v \in C^*$:

$$u \prec uv \implies uv^{\omega} \in \mathbb{W}.$$

Then, v^{ω} is accepted if read from q_i .

Condition 2: Progress-consistency

Lemma (Necessity of Condition 2)

If \mathbb{W} is not progress-consistent, it is is not positional.

Condition 2: Progress-consistency

Lemma (Necessity of Condition 2)

If \mathbb{W} is not progress-consistent, it is is not positional.

<u>Proof</u>: Let u, v such that $u \prec uv$ and $uv^{\omega} \notin \mathbb{W}$. There is $w \in C^{\omega}$ s.t. $uw \notin \mathbb{W}$ but $uvw \in \mathbb{W}$.

Condition 3: Recognizability by the prefix-classifier

Condition 3

Objective $\ensuremath{\mathbb{W}}$ is Myhill-Nerode-like (one state per equivalence class).

Condition 3: Recognizability by the prefix-classifier

Condition 3

Objective $\ensuremath{\mathbb{W}}$ is Myhill-Nerode-like (one state per equivalence class).

Lemma (Necessity of Condition 3)

If \mathbb{W} is not Myhill-Nerode-like, it is not positional.

Condition 3: Recognizability by the prefix-classifier

Condition 3

Objective $\ensuremath{\mathbb{W}}$ is Myhill-Nerode-like (one state per equivalence class).

Lemma (Necessity of Condition 3)

If \mathbb{W} is not Myhill-Nerode-like, it is not positional.

Proof: Quite technical.

Necessity of the conditions

Conditions for half-positionality

 $\mathbb{W} \subseteq C^{\omega}$ a DBA-recognizable objective.

- ▶ Prefix preorder ≤ is total.
- Progress-consistency.
- ► Myhill-Nerode-like.

Proposition (Necessity of the conditions)

If a DBA-recognizable objective $\mathbb{W}\subseteq C^\omega$ is half-positional , then it verifies the three previous conditions.

Sufficiency of the conditions

Conditions for half-positionality

 $\mathbb{W} \subseteq C^{\omega}$ a DBA-recognizable objective.

- ▶ Prefix preorder ≤ is total.
- Progress-consistency.
- ► Myhill-Nerode-like.

They are also sufficient!

Sufficiency of the conditions

The main ingredient to prove the sufficiency of the conditions is:

Theorem (Ohlmann 2021)

An objective $\mathbb{W} \subseteq C^{\omega}$ is half-positional if and only if for every cardinal κ there exists a (\mathbb{W}, κ) -universal well-monotonic graph \mathcal{U} .

The existence of such graphs is a structural witness of positionality.

Sufficiency of the conditions

Proposition

If $\mathbb{W} \subseteq C^\omega$ is a DBA-recognizable objective verifying

- Prefix preorder ≤ is total,
- Progress-consistency,
- Being Myhill-Nerode-like,

then, there is a (\mathbb{W}, κ) -universal well-monotonic graph for every cardinal κ .

Main result

Conditions for half-positionality

 $\mathbb{W} \subseteq C^{\omega}$ a DBA-recognizable objective.

- ▶ Prefix preorder <u>≺</u> is total.
- Progress-consistency.
- ► Myhill-Nerode-like.

Theorem

A DBA-recognizable objective $\mathbb{W} \subseteq C^{\omega}$ is half-positional if and only if it verifies the three previous conditions.

Corollaries

Corollary (Complexity)

Given a Büchi automaton \mathcal{B} , we can determine in polynomial time whether $\mathcal{L}(\mathcal{B})$ is half-positional.

Corollary (1-to-2 players lift)

Let \mathbb{W} be a DBA-recognizable objective. If \mathbb{W} is positional **over finite one-player arenas**, then it is half-positional **over all arenas** (2 players and of any cardinality).

 $\blacktriangleright \ \mathbb{W} = C^*a^2C^\omega \cup \mathrm{Inf}(a).$

 $\blacktriangleright W = C^*a^2C^\omega \cup \operatorname{Inf}(a).$

One state per equivalence class (Myhill-Nerode-like).

 $\blacktriangleright W = C^*a^2C^\omega \cup \operatorname{Inf}(a).$

- One state per equivalence class (Myhill-Nerode-like).
- → is total.

 $\blacktriangleright W = C^*a^2C^\omega \cup \operatorname{Inf}(a).$

- ▶ One state per equivalence class (Myhill-Nerode-like).
- → is total.
- Progress consistent.

 $\blacktriangleright W = C^*a^2C^\omega \cup \operatorname{Inf}(a).$

- One state per equivalence class (Myhill-Nerode-like).
- → is total.
- Progress consistent.

Remark:
$$\mathbb{W} = \text{B\"{u}chi}(a) \cup C^*a^2C^{\omega}$$
 is not bi-positional:

$$C^{\omega} \setminus \mathbb{W} = (b^*ab)^*b^{\omega}$$
 (Not progress-consistent).

Characterization of positionality for $\omega\text{-regular languages}.$

Characterization of positionality for ω -regular languages.

Subquestions:

- Characterization of positionality for languages recognized by deterministic co-Büchi automata.
- lacktriangle Union prefix-independent positional ω -regular conditions is positional?
- ▶ For ω -regular conditions, positionality over finite arenas implies positionality over arbitrary arenas?
- ▶ 1-to-2 players lift for ω -regular conditions.

Characterization of positionality for ω -regular languages.

Subquestions:

- Characterization of positionality for languages recognized by deterministic co-Büchi automata.
- ▶ Union prefix-independent positional ω -regular conditions is positional?
- For ω -regular conditions, positionality over finite arenas implies positionality over arbitrary arenas?
- ▶ 1-to-2 players lift for ω -regular conditions.

Thank you!