Felipe Bravo-Marquez

December 6, 2023

Introduction

- Since the inception of Large Language Models, various patterns of use and evaluation of this technology have emerged.
- In this talk, we will try to organize these patterns and give a general overview of them.

Source:

Introduction 0000

Large Language Model: An autoregressive language model trained with a Transformer neural network on a large corpus (hundreds of bullions of tokens) and a large parameter space (billions) to predict the next word.

- It is usually later aligned to work as a user assistant using techniques such as Reinforcement Learning From Human Feedback [Ouvang et al., 2022] or supervised fine-tuning.
- Some are private (access via API or web browser): Google Bard, ChatGPT, etc.
- Others are open (model's weights can be downloaded): Llama, LLama2, Falcon, etc.

Zero-shot, One-shot, and Few-shot Learning

The most remarkable feature of these models is their few-shot, one-shot, zero-shot learning capabilities (also known as "in-context-learning").

The three settings we explore for in-context learning Zero-shot			Traditional fine-tuning (not used for GPT-3) Fine-tuning	
One-shot			peppermint => menthe poivrée	
	Translate English to French: sea otter => loutre de mer cheese =>	← task description ← example ← prompt	gradient update	
ew	shot		gradient update	
	Translate English to French:	task description	cheese =>	
	sea otter => loutre de mer	examples		
	peppermint -> menthe poivrée			
	plush girafe -> girafe peluche			
	cheese ->	prompt		

This means that they can learn new tasks without large amounts of human-annotated data.

Talk Overview

- Despite the recency of this technology, its adoption has been tremendous in many areas.
- Below, we propose a simple categorization of the ways in which LLMs are used and evaluated.
- These patterns will serve as the narrative backbone of this presentation.

Usage Patterns

Introduction

- General-domain Assistant
- 2. Domain-specific Assistant
 - 2.1 Retrieval-augmented generation
 - 2.2 Fine-Tuning
- 3. LLM-based Applications
 - 3.1 API calls
 - 3.2 Autonomous Agents

Evaluation Patterns

- MTBench
- LLM Arena

- In this pattern a user interacts with the LLM proving prompts as input and receiving a text as answer.
- The knowledge the LLM has access is limited to the corpus on which it was trained and the context given in the prompt.

Tasks

LLMs can solve many tasks with this pattern:

- Textual: Language understanding and common sense (e.g., rewriting, summarizing, translating, answering questions)
- Arithmetic: Mathematical reasoning (it can fail in many cases though)
- Visual: Multimodal reasoning involving pictures (GPT-4, Llava)
- Symbolic: Structured input such as programming languages

Source:

https://twitter.com/IntuitMachine/status/1727079666001870877.

Prompt Engineering: Guiding the Language Model

Prompt engineering, often referred to as "Prompting," is the discipline or "art" of crafting effective prompts to guide the Language Model (LM) towards generating accurate responses. Some common prompting guidelines:

- Clarity and Conciseness: Clearly articulate the prompt to minimize ambiguity and ensure the LM understands the task at hand.
- Use of Specific Examples: Provide concrete examples within the prompt to offer the LM context.
- Role-based Prompts: incorporating roles into the prompts (e.g., a tour guide, a teacher, a doctor, a sales person).
- **Desired Output Specification**: Clearly define the desired format of the output (e.g. JSON, HTML, csv. markdown, latex).

Chain-of-thought Prompting

- Chain-of-thought prompting is a simple mechanism for eliciting multi-step reasoning behavior in large language models.
- This method involves augmenting each exemplar in a few-shot prompt with a connected sequence of thoughts, creating a structured chain of logical steps. [Wei et al., 2022]

Chain-of-thought prompting

Standard Prompting

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The answer is 27.

Model Input

- Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
- A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
- Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

Usage Pattern 2: Domain-specific Assistant

- Idea: Incorporate domain-specific knowledge not covered in training (e.g., recent news, private documents).
- This is very common for companies developing chatbots with private documents or for creating more domain-specific chatbots.
- There are two main patterns to achieve this:
 - 1. Retrieval-Augmented Generation (Vector Databases)
 - 2. Fine-Tuning

Usage Pattern 2.1: Retrieval-Augmented Generation

Idea: Incorporate domain-specific knowledge into the query using information retrieval and document embeddings (i.e., densely encoded vectors that capture the semantic information of the document). [Lewis et al., 2021].

Retrieval-Augmented Generation Process

- Encode all domain-specific documents using document embeddings and store them in a vector database.
 - OpenAl provides a vectorizer called (text2vec-openai), but there are many open source alternatives.
 - There are also many vector databases available, a popular one is weaviate.
- Encode the prompt with the same vectorizer used to encode documents.
- 3. Use prompt embedding and the vector database to retrieve relevant documents based on similarity.
- 4. Create a refined prompt that includes a domain-specific role, the user prompt, and the retrieved documents as contexts.
- 5. Send the refined prompt to the LLM and return the response to the user.

Usage Pattern 2.2: Fine-Tuning

Idea: Incorporate domain-specific knowledge by fine-tuning a pre-trained LLM with the next-token prediction task over a domain-specific corpus and interact with the resulting HM.

This can be computationally expensive unless some tricks are used.

Instruction Fine-tuning

- A more efficient way to fine-tune Large Language Models is Instruction Fine-Tuning [Chung et al., 2022].
- Idea: instead of fine-tuning the LLM with raw text with next token prediction, train it with pairs of prompts and user-aligned answers.
- Collect examples of (instruction, output) pairs across many tasks and finetune an LM.
- Evaluate on unseen tasks.

Datasets for Instruction Fine-Tuning

- Alpaca Data: 52k English instruction examples generated using OpenAl's text-davinci-003 with self-instruct.
- Evol-Instruct (Xu et al., April 2023): A rewritten set of 250k English instruction-response pairs based on the Alpaca data
- Vicuna ShareGPT: 70k English conversations shared by users and scraped from
- Baize data (Xu et al., April 2023)
- databricks-dolly-15k (Conover et al., April 2023)
- OpenAssistant Conversations (Köpf et al., April 2023)
- LIMA data (Zhou et al., May 2023).

source:

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-2

Considerations for Instruction Tuning

- Data Source: How was the data obtained? Most datasets have been generated using ChatGPT. They may thus inherit biases of the source model or may be noisy.
- Data Quality: Was any filtering done to improve the quality of the generated data? In most cases, filtering is based on simple heuristics or a pre-trained model, which can result in noisy data.
- Domain and Language Coverage: Most datasets focus on general QA-style in English, but methods can be adapted for other domains or languages.
- Number of Dialog Turns: Single-turn datasets include a prompt and response.
 Consider multi-turn data for training a more conversational model.
- License Terms: Data from OpenAl models follows OpenAl terms, restricting use for competing models. Seek datasets with more permissive licenses to avoid legal complications.

source:

https://nlpnewsletter.substack.com/p/instruction-tuning-vol-2

Parameter Efficient Fine Tuning (PEFT)

- Traditional model fine-tuning (i.e., adjusting all Transformer weights via backpropagation) is time and resource-intensive.
- Parameter Efficient Fine Tuning (PEFT) are a series of techniques to mitigate this problem.
- The most popular ones are LoRA (Low Rank Adaptation) [Hu et al., 2021] and QLoRA [Dettmers et al., 2023].
- These approaches achieve significant reduction in the number of trainable parameters allowing to perform fine-tuning with affordable hardware.

- LoRa is based on the idea of adapters.
- Instead of fine-tuning the whole network, we freeze it during the fine-tuning process and add a few parameters that are trained to adapt the original model to the new data.

- Let $W_0 \in \mathbb{R}^{d \times k}$ be the weight matrix of the pre-trained network.
- LoRA uses two adjustable low-rank decomposition matrices of predefined rank r, $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$.
- The resulting fine-tuned network W_L is obtained as follows:

$$W_L = W_0 + \Delta W = W_0 + BA, \quad B \in \mathbb{R}^{d \times r}, \quad A \in \mathbb{R}^{r \times d}$$
 (1)

- During training, W_0 remains frozen, and only B and A receive gradient updates.
- The lower the value of *r*, the fewer parameters will be trained during fine-tuning (there is a trade-off between performance and computation costs).

QLoRA

- QLoRA is an even more memory efficient version of LoRA where the pretrained model is loaded to GPU memory as quantized 4-bit weights.
- QLoRA dequantizes weights from the storage data type to the computation data type to perform the forward and backward passes.
- It only computes weight gradients for the LoRA parameters which use 16-bit bfloat.
- QLORA reduces the average memory requirements of finetuning a 65B parameter model from > 780GB of GPU memory to < 48GB.

Quantization

- Quantization: Process of discretizing input from high-bit representation to low-bit representation.
- To ensure that the entire range of the low-bit data type is used, the input data type is commonly rescaled into the target data type range through normalization by the absolute maximum of the input elements.
- Example: quantizing a 32-bit Floating Point (FP32) tensor into a Int8 tensor with range [—127, 127]:

$$\textit{X}_{\text{Int8}} = \text{round}_{\text{digits}(0)} \left(\frac{127}{\text{absmax}(\textit{X}_{\text{FP32}})} \cdot \textit{X}_{\text{FP32}} \right) = \text{round}_{\text{digits}(0)} \left(\textit{c}_{\text{FP32}} \cdot \textit{X}_{\text{FP32}} \right)$$

where c is the quantization constant or quantization scale.

Dequantization:

$$\mathsf{dequant}(\mathit{c}_{\mathsf{FP32}}, \mathit{X}_{\mathsf{Int8}}) = \frac{\mathit{X}_{\mathsf{Int8}}}{\mathit{c}_{\mathsf{FP32}}} = \mathit{X}_{\mathsf{FP32}}$$

Quantization

source: https://huggingface.co/blog/ hf-bitsandbytes-integration

QLoRA main Ideas

- 4-bit NormalFloat, an information theoretically optimal quantization data type for normally distributed data¹ that yields better empirical results than 4-bit Integers and 4-bit Floats.
- Double Quantization, a method that quantizes the quantization constants, saving an average of about 0.37 bits per parameter (approximately 3 GB for a 65B model).
- Paged Optimizers, using NVIDIA unified memory to avoid the gradient checkpointing memory spikes that occur when processing a mini-batch with a long sequence length.

 $^{^{1}}$ pretrained neural network weights usually have a zero-centered normal distribution with standard deviation σ

Usage Pattern 3: Applications

- LLMs are widely embedded in software through API calls.
- Example: search engines (you.com), Bing chat.
- For example, PDF summarization software. You write software that first converts the PDF to raw text and then sends it to an LLM for summarization.
- Or software for summarizing video conferences. First the audio is transcribed and then summarized with an LLM.
- From a software point of view, this isn't much different from any software that interacts with an external API.
- ChatGPT Plugins: https://gptstore.ai/

Usage Pattern 3: Applications

Usage Pattern 3.1: Autonomous Agents

- Autonomous agents lie at the heart of classical Al.
- Agents are programs that interact autonomously with an environment and perform actions to achieve specific goals.
- The REACT pattern [?] aims uses LLMs to generate both reasoning traces and task-specific actions in an interleaved manner for agents.
- Agents are a special kind of LLMs application in which the LLM serves as the reasoning and planning component of the software.

Agents

- General setup: Agent interacting with an environment.
- At time step t, agent receives observation $o_t \in O$ and takes action $a_t \in A$ following policy $\pi(a_t|c_t)$ where context $c_t = (o_1, a_1, \dots, o_{t-1}, a_{t-1}, o_t)$.
- Implicit mapping $c_t \mapsto a_t$ with extensive computation.
- Example: Agent in Figure 1(1c) unable to generate correct final action (Act 4).
- Example: Agent in Figure 1(2a) fails to comprehend context, producing hallucinating actions.

- Augment agent's action space: $\hat{A} = A \cup L$, where L is the language space.
- $\hat{a}_t \in L$ is a thought or reasoning trace, not affecting the environment.
- Thought aims to compose useful information by reasoning over the context c_t .
- Update context: $c_{t+1} = (c_t, \hat{a}_t)$ for future reasoning or acting.
- Decomposing task goals and creating action plans (2b, Act 1; 1d, Thought 1).
- Injecting commonsense knowledge relevant to task solving (2b, Act 1).
- Extracting important parts from observations (1d, Thought 2, 4).
- Tracking progress and transiting action plans (2b, Act 8).
- Handling exceptions and adjusting action plans (1d, Thought 3).

LLMBench and LLm Arena

- Standard NLP evaluation: human annotated gold-labels and metrics.
- LLMS are intrinsically multi-task and not easily evaluated with this approach.
- Machines evaluating machines??
- MT-bench (categories)
- HuggingFace Open LLM Leaderboard
- LLM Arena

Thanks for your Attention!

References I

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J. (2022). Scaling instruction-finetuned language models.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of quantized Ilms. arXiv preprint arXiv:2305.14314.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2021).

Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rocktäschel, T., Riedel, S., and Kiela, D. (2021). Retrieval-augmented generation for knowledge-intensive nlp tasks.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. (2022).

Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744.

References II

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., and Zhou, D. (2022).

Chain of thought prompting elicits reasoning in large language models. *arXiv preprint arXiv:2201.11903*.