110A HW1

Warren Kim

Winter 2024

Question 1

Let a and b be integers, such that $b \neq 0$. Show that there exist unique $q, r \in \mathbb{Z}$ such that a = bq + r, where $0 \leq r < |b|$.

Response

Existence Define a set $S = \{a - bx : x \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$. There are two cases:

Case (i): If b > 0, we showed in class that there exist $q, r \in \mathbb{Z}$ such that a = bq + r where $0 \le r < b$.

Case (ii): If b < 0, consider b' = -b. Then, b' > 0. From Case (i), there exist $q', r \in \mathbb{Z}$ such that a = b'q' + r, where $0 \le r < b'$. Then, we have a = b'q' + r = -bq' + r = b(-q') + r. Letting q = -q', we get a = bq + r. So, there exist $q, r \in \mathbb{Z}$ such that a = bq + r where $0 \le r < b'$.

In either case, there exist $q, r \in \mathbb{Z}$ such that a = bq + r where $0 \le r < |b|$.

Uniqueness Suppose we have $q_1, r_1, q_2, r_2 \in \mathbb{Z}$ such that $a = bq_1 + r_1 = bq_2 + r_2$ where $0 \le r_1, r_2 < |b|$. Then, we have $bq_1 + r_1 = bq_2 + r_2$. Subtracting $(bq_2 + r_2)$ from both sides, we get

$$(bq_1 + r_1) - (bq_2 + r_2) = b(q_1 - q_2) + (r_1 - r_2) = 0$$

Subtracting $(r_1 - r_2)$ from both sides, we get

$$b(q_1 - q_2) = r_2 - r_1$$

Since $0 \le r_1, r_2 < |b|$, we have that $-|b| < r_2 - r_1 < |b|$. The possible values for $r_2 - r_1$ are $0b, b, 2b, \ldots$, but since $-|b| < r_2 - r_1 < |b|$, we have that $r_2 - r_1 = 0$. Then, $b(q_1 - q_2) = 0$ and since $b \ne 0$, $q_1 - q_2 = 0$. This implies $r_1 = r_2$ and $q_1 = q_2$. Therefore, $q_1, r_1 \in \mathbb{Z}$ are unique.

If b|a and $a \neq 0$, show that $|b| \leq |a|$. Hint: recall that |xy| = |x||y|.

Response

Proof: Suppose b|a and $a \neq 0$. Then, there exists some $c \in \mathbb{Z}$ such that a = bc. Since $a \neq 0$, b, c are necessarily nonzero. Applying the absolute value to the equation, we get |a| = |bc| = |b||c|. Then, since $b, c \neq 0$, we have that |b|, |c| > 0. Then, we have $|b| \leq |b||c| = |bc| = |a|$, so $|b| \leq |a|$. \square

Let $a, b, c \in \mathbb{Z}$ such that (a, b) = 1. Suppose a|c and b|c. Show that ab|c.

Response

Proof: Let $a, b, c \in \mathbb{Z}$ such that (a, b) = 1. Suppose a | c and b | c. Then there exist some $n, m \in \mathbb{Z}$ such that c = an and c = bm. Then we have the following:

$$1 = ax + by$$

$$c = (ax + by)c$$

$$= acx + bcy$$

$$= a(bm)x + b(an)y$$

$$= abmx + abny$$

$$c = ab(mx + ny)$$

Setting q = mx + ny, we get c = (ab)q, so ab|c.

Show the backwards direction of Theorem 1.5:

Let $p \in \mathbb{Z}$ such that $p \neq 0, \pm 1$. Show that the second statement implies the first.

- 1. p is prime
- 2. If p|bc where $b, c \in \mathbb{Z}$, then p|b or p|c.

[Hint: contrapositive/contradiction are valid ways to prove this.]

Response

Proof: To prove the reverse implication, suppose the contrapositive: "If p is not prime, then there exists some $b, c \in \mathbb{Z}$ such that p|bc but $p \nmid b$ and $p \nmid c$." Suppose $p \in \mathbb{Z}$ such that $p \neq 0, \pm 1$ is not prime; i.e. p is composite. Then, p can be written as its unique prime factorization $q_1q_2 \cdots q_n$ where $n \geq 2$ and each q_i is a prime. Choose $b = q_1$ and $c = q_2 \cdots q_n$. Then p|bc because bc = p and p|p, but $p \nmid b$ and $p \nmid c$ because |p| > |b| and |p| > |c| respectively.

If p is prime and $p|a_1 \cdots a_n$, show that there must be at least one a_i such that $p|a_i$.

Response

Proof: Suppose p is prime and $p|a_1 \cdots a_n$. To show that there must be at least one a_i such that $p|a_i$, we proceed by induction on n. If n=2, $p|a_1 \cdot a_2$, by Theorem 1.5, either $p|a_1$ or $p|a_2$. Assume the inductive hypothesis holds for all natural numbers up to n. At n=n+1, we have $p|a_1 \cdots a_n \cdot a_{n+1}$. By associativity of the integers, rewrite the statement as $p|(a_1 \cdots a_n) \cdot (a_{n+1})$. Then, either $p|(a_1 \cdots a_n)$ or $p|a_{n+1}$.

Suppose $a, b, c \in \mathbb{Z}$, such that (a, c) = (b, c) = 1. Show that (ab, c) = 1.

Response

Proof: Suppose $a, b, c \in \mathbb{Z}$, such that (a, c) = (b, c) = 1. Then, we can rewrite the gcd as ax + cy = 1 and bn + cm = 1 respectively. Then, we have

$$1 = ax + cy$$

$$= (ax + cy) \cdot 1$$

$$= (ax + cy)(bn + cm)$$

$$= abxn + acxm + bcny + ccym$$

$$1 = ab(xn) + c(axm + bny + cym)$$

Setting p = xn and q = axm + bny + cym, we get (ab)p + cq = 1. To show (ab, c) = 1, let d = (ab, c). Then, d|(ab) and d|c by definition, so d|(ab)p and d|cq for some $p, q \in \mathbb{Z}$. This implies that d|(abp + cq) for some $p, q \in \mathbb{Z}$. Setting p = xn and q = axm + bny + cym, we get that abp + cq = 1 from above, so we have d|(abp + cq) = 1, so $d|1 \implies d = 1$. Therefore, (ab, c) = 1. \square

Let p > 3 be prime. Prove that $p^2 + 2$ is not prime. [hint: If you divide p by 3, what are the possible remainders?]

Response

Proof: Let p > 3 be prime. If $p \equiv 0 \pmod{3}$, p would be divisible by 3 and therefore p would not be prime. There are two remaining cases:

- Case (i): If $p \equiv 1 \pmod{3}$, we can rewrite this as p = 3n + 1 for some $n \in \mathbb{N}$. Then, we can write $p^2 + 2 = (3n + 1)^2 + 2 = 9n^2 + 6n + 1 + 2 = 3(3n^2 + 2n + 1)$.
- Case (ii): If $p \equiv 2 \pmod{3}$, we can rewrite this as p = 3n + 2 for some $n \in \mathbb{N}$. Then, we can write $p^2 + 2 = (3n + 2)^2 + 2 = 9n^2 + 12n + 4 + 2 = 3(3n^2 + 4n + 2)$.

In either case, $p^2 + 2$ is divisible by 3 and therefore is not prime.

Let p be prime. Show that if $p|a^5$, then p|a.

Response

Proof: Let p be prime and suppose $p|a^5$. Rewrite a^5 as $a \cdot a \cdot a \cdot a \cdot a$. Then, $p|a^5$ is equivalent to writing $p|(a \cdot a \cdot a \cdot a \cdot a)$. By Corollary 1.2 (proven in **Question 5**), since p divides the product $a^5 = a \cdot a \cdot a \cdot a \cdot a$, p must divide a, so p|a.