Занятие 22. Вычислимость-3: главные нумерации

- 1. Пусть U(x,y) универсальная вычислимая функция. Докажите, что V(x,y) = U(y,x) не является универсальной.
- **2.** Пусть U(p,x) главная универсальная вычислимая функция. Докажите, что неразрешимо множество тех программ, которые вычисляют функцию $x \mapsto x^2$. Более формально речь идёт о множестве

$$\{p \mid U(p,x) = x^2$$
 для всех $x\}.$

- **3.** Докажите, что существует n, такое что $U(n,x)=n^2$.
- **4.** Перечислимое множество $W\subseteq \mathbb{N}\times\mathbb{N}$ называется главным универсальным перечислимым множеством (для класса перечислимых подмножеств \mathbb{N}) если для любого перечислимого множества $V\subseteq \mathbb{N}\times\mathbb{N}$ существует всюду определенная вычислимая функция $s\colon\mathbb{N}\to\mathbb{N}$ такая, что

$$(n,x) \in V \Leftrightarrow (s(n),x) \in W.$$

Докажите, что главное универсальное перечислимое множество существует.

5. Используя теорему Успенского–Райса, докажите, что для любой главной универсальной функция U множество

$$\{n \mid U(n,x)$$
 не определена для любого $x\}$

программ, задающих нигде не определенную функцию, неперечислимо.

Указание: для любой универсальной функции перечислимо множество программ, которые останавливаются хотя бы на одном входе.

- 6. Постройте универсальную нумерацию, в которой нигде не определенная функция будет находиться
- а) только на нулевом месте;
- б) только на простых местах.

Будут ли эти нумерации главными?

- 7. (Программа, печатающая свой текст.) Пусть U(p,x) главная универсальная вычислимая функция.
- а) Докажите, что найдется такое n, что U(n,x) = n для всех x.
- **б**) Докажите, что таких n бесконечно много.
- в) Докажите, что множество

$${n \mid U(n,x) = n \text{ для всех } x}$$

неразрешимо. (Применима ли в данном случае теорема Успенского-Райса?)

- 8. (Автоматическая композиция программ.) Пусть V(p,x) универсальная вычислимая функция и существует такая всюду определённая функция C(p,q), которая по номерам p и q вычислимых функций выдаёт номер их композиции (то есть V(C(p,q),x) = V(p,V(q,x))). Докажите, что V главная.
- **9.** Пусть U(p,x) главная универсальная вычислимая функция. Докажите, что для любой всюду определённой функции h(n) найдется бесконечно много неподвижных точек, то есть таких чисел p, что U(p,x) = U(h(p),x).
- **10*.** (Теорема Роджерса: все главные функции изморфны.) Пусть $U_1(p,x),\ U_2(p,x)$ две главные универсальные вычислимые функции. Докажите, что существует такая вычислимая биекция $f\colon \mathbb{N}\to \mathbb{N}$, что $U_1(p,x)=U_2(f(p),x)$ и $U_1(f^{-1}(p),x)=U_2(p,x)$ для всех p и x.

Домашнее задание 22

Напоминаем, что ответы на вопросы должны быть обоснованы. Ссылка на утверждение, доказанное на лекции или в учебнике, считается обоснованием. Ссылка на утверждение задачи из классного листка обоснованием **не считается** — нужно воспроизвести рассуждение.

- 1. Пусть U(p,x) главная универсальная вычислимая функция. Докажите, что найдется бесконечно много таких p, что U(p,x)=2017 для какого-то x.
- **2.** Пусть U(p,x) главная универсальная вычислимая функция. Докажите, что найдётся такое n, что U(n,x)=nx для всех x.
- **3.** Пусть U(p,x) главная универсальная вычислимая функция, а V(n,x) вычислимая функция от двух аргументов. Докажите, что найдётся такое p, что U(p,x) = V(p,x) для всех x.
- **4.** Существует ли такая главная универсальная функция U(p,x), в которой множество программ I, вычисляющих определенные в 0 функции, совпадает с множеством чётных чисел?
- 5. Тот же вопрос про неглавную нумерацию.
- **6.** Пусть U(p,x) главная универсальная вычислимая функция. Обозначим через $K \subset \mathbb{N}^2$ множество таких пар (k,n), что функция $U_k(x) = U(k,x)$ является продолжением функции $U_n(x) = U(n,x)$ (т.е. U(k,x) = U(n,x) если U(n,x) определена). Докажите, что множество K неразрешимо.