REGULAR EXPRESSIONS AND CONVERSIONS

IF 2124 TEORI BAHASA FORMAL OTOMATA

Judhi S.

Regular expressions

A FA (NFA or DFA) is a "blueprint" for contructing a machine recognizing a regular language.

A regular expression is a "user-friendly," declarative way of describing a regular language.

Example: $01^* + 10^*$

Regular expressions are used in e.g.

- 1. UNIX grep command
- 2. UNIX Lex (Lexical analyzer generator) and Flex (Fast Lex) tools.

Operations on languages

Union:

$$L \cup M = \{w : w \in L \text{ or } w \in M\}$$

Concatenation:

$$L.M = \{w : w = xy, x \in L, y \in M\}$$

Powers:

$$L^0 = {\epsilon}, L^1 = L, L^{k+1} = L.L^k$$

Kleene Closure:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Question: What are \emptyset^0 , \emptyset^i , and \emptyset^*

Building regex's

Inductive definition of regex's:

Basis: ϵ is a regex and \emptyset is a regex.

$$L(\epsilon) = {\epsilon}$$
, and $L(\emptyset) = \emptyset$.

If $a \in \Sigma$, then a is a regex.

$$L(a) = \{a\}.$$

Induction:

If E is a regex's, then (E) is a regex.

$$L((E)) = L(E).$$

If E and F are regex's, then E + F is a regex.

$$L(E+F) = L(E) \cup L(F).$$

If E and F are regex's, then E.F is a regex.

$$L(E.F) = L(E).L(F).$$

If E is a regex's, then E^* is a regex.

$$L(E^{\star}) = (L(E))^{*}.$$

Example: Regex for

$$L = \{w \in \{0,1\}^*: \text{ 0 and 1 alternate in } w\}$$

$$(01)^* + (10)^* + 0(10)^* + 1(01)^*$$

or, equivalently,

$$(\epsilon+1)(01)^*(\epsilon+0)$$

Order of precedence for operators:

- 1. Star
- 2. Dot
- 3. Plus

Example: $01^* + 1$ is grouped $(0(1)^*) + 1$

Equivalence of FA's and regex's

We have already shown that DFA's, NFA's, and ϵ -NFA's all are equivalent.

To show FA's equivalent to regex's we need to establish that

- 1. For every DFA A we can find (construct, in this case) a regex R, s.t. L(R) = L(A).
- 2. For every regex R there is a ϵ -NFA A, s.t. L(A) = L(R).

Theorem 3.4: For every DFA $A = (Q, \Sigma, \delta, q_0, F)$ there is a regex R, s.t. L(R) = L(A).

Proof: Let the states of A be $\{1, 2, ..., n\}$, with 1 being the start state.

• Let $R_{ij}^{(k)}$ be a regex describing the set of labels of all paths in A from state i to state j going through intermediate states $\{1,\ldots,k\}$ only.

 $R_{ij}^{\left(k\right)}$ will be defined inductively. Note that

$$L\left(\bigoplus_{j\in F} R_{1j}^{(n)}\right) = L(A)$$

Basis: k = 0, i.e. no intermediate states.

• Case 1: $i \neq j$

$$R_{ij}^{(0)} = \bigoplus_{\{a \in \Sigma : \delta(i,a) = j\}} a$$

• Case 2: i = j

$$R_{ii}^{(0)} = \left(\bigoplus_{\{a \in \Sigma : \delta(i,a)=i\}} a\right) + \epsilon$$

Induction:

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

In
$$R_{ik}^{(k-1)}$$
 Zero or more strings in $R_{kk}^{(k-1)}$ In $R_{kj}^{(k-1)}$

Example: Let's find R for A, where $L(A) = \{x0y : x \in \{1\}^* \text{ and } y \in \{0,1\}^*\}$

$$\begin{array}{c|c} R_{11}^{(0)} & \epsilon + 1 \\ R_{12}^{(0)} & 0 \\ R_{21}^{(0)} & \emptyset \\ R_{22}^{(0)} & \epsilon + 0 + 1 \end{array}$$

We will need the following *simplification rules:*

$$\bullet \ (\epsilon + R)^* = R^*$$

$$\bullet R + RS^* = RS^*$$

•
$$\emptyset R = R\emptyset = \emptyset$$
 (Annihilation)

•
$$\emptyset + R = R + \emptyset = R$$
 (Identity)

$$\begin{array}{c|c} R_{11}^{(0)} & \epsilon + 1 \\ R_{12}^{(0)} & 0 \\ R_{21}^{(0)} & \emptyset \\ R_{22}^{(0)} & \epsilon + 0 + 1 \end{array}$$

$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$

	By direct substitution	Simplified
$R_{11}^{(1)}$	$\epsilon + 1 + (\epsilon + 1)(\epsilon + 1)^*(\epsilon + 1)$	1*
	$0+(\epsilon+1)(\epsilon+1)^*0$	1*0
	$\emptyset + \emptyset(\epsilon + 1)^*(\epsilon + 1)$	Ø
$R_{22}^{(1)}$	$\epsilon + 0 + 1 + \emptyset(\epsilon + 1)^*0$	$\epsilon + 0 + 1$

$$\begin{array}{c|c} & \text{Simplified} \\ \hline R_{11}^{(1)} & 1^* \\ R_{12}^{(1)} & 1^*0 \\ R_{21}^{(1)} & \emptyset \\ R_{22}^{(1)} & \epsilon + 0 + 1 \\ \hline \end{array}$$

$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

By direct substitution

$$\begin{array}{c|c} R_{11}^{(2)} & 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset \\ R_{12}^{(2)} & 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \\ R_{21}^{(2)} & \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset \\ R_{22}^{(2)} & \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \end{array}$$

$\begin{array}{c|c} & \text{By direct substitution} \\ \hline R_{11}^{(2)} & 1^* + 1^*0(\epsilon + 0 + 1)^*\emptyset \\ R_{12}^{(2)} & 1^*0 + 1^*0(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \\ R_{21}^{(2)} & \emptyset + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*\emptyset \\ R_{22}^{(2)} & \epsilon + 0 + 1 + (\epsilon + 0 + 1)(\epsilon + 0 + 1)^*(\epsilon + 0 + 1) \end{array}$

Simplified
$$\begin{array}{c|c} R_{11}^{(2)} & 1^* \\ R_{12}^{(2)} & 1^*0(0+1)^* \\ R_{21}^{(2)} & \emptyset \\ R_{22}^{(2)} & (0+1)^* \end{array}$$

The final regex for A is

$$R_{12}^{(2)} = 1^*0(0+1)^*$$

Observations

There are n^3 expressions $R_{ij}^{(k)}$

Each inductive step grows the expression 4-fold

 $R_{ij}^{(n)}$ could have size $\mathbf{4}^n$

For all $\{i,j\}\subseteq\{1,\ldots,n\}$, $R_{ij}^{(k)}$ uses $R_{kk}^{(k-1)}$ so we have to write n^2 times the regex $R_{kk}^{(k-1)}$

We need a more efficient approach: the state elimination technique

The state elimination technique

Let's label the edges with regex's instead of symbols

Now, let's eliminate state s.

For each accepting state q eliminate from the original automaton all states exept q_0 and q.

For each $q \in {\cal F}$ we'll be left with an ${\cal A}_q$ that looks like

that corresponds to the regex $E_q = (R + SU^*T)^*SU^*$

or with A_q looking like

corresponding to the regex $E_q = R^*$

• The final expression is

$$\bigoplus_{q \in F} E_q$$

Example: \mathcal{A} , where $L(\mathcal{A})=\{W:w=x1b,\text{ or }w=x1bc,\ x\in\{0,1\}^*,\{b,c\}\subseteq\{0,1\}\}$

We turn this into an automaton with regex labels

Let's eliminate state B

Then we eliminate state ${\it C}$ and obtain ${\it A}_{\it D}$

Start
$$A$$
 $1(0+1)(0+1)$

with regex (0+1)*1(0+1)(0+1)

From

we can eliminate D to obtain \mathcal{A}_C

with regex (0+1)*1(0+1)

• The final expression is the sum of the previous two regex's:

$$(0+1)^*1(0+1)(0+1) + (0+1)^*1(0+1)$$

From regex's to ϵ -NFA's

Theorem 3.7: For every regex R we can construct and ϵ -NFA A, s.t. L(A) = L(R).

Proof: By structural induction:

Basis: Automata for ϵ , \emptyset , and a.

Induction: Automata for R+S, RS, and R^{*}

Example: We convert (0+1)*1(0+1)

