Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)»

Отчёт по лабораторной работы 4.4.2 ИЗУЧЕНИЕ ФАЗОВОЙ РЕШЕТКИ (ЭШЕЛЕТ)

Выполнил студент:

Сериков Алексей Романович

группа: Б03-103

Аннотация

Цель работы:

Знакомство с работой гониометра и определение спектральных характеристик фазовой решётки (эшелета).

В работе используются:

Ртутная лампа, гониометр, амплитудная и фазовая дифракционные решётки, плоскопараллельная стеклянная пластинка, призменный уголковый отражатель, щель с микрометрическим винтом.

Теория:

Дифракционная решётка представляет собой стеклянную или металлическую пластину, на которую через строго одинаковые интервалы нанесены параллельные штрихи. Основные параметры дифракционной решётки — период d (постоянная решётки), число штрихов N. Условие дифракции Фраунгофера — решётка освещается плоской волной, а плоскость наблюдения практически находится в бесконечности.

Рис. 1: Распределение интенсивности света при дифракции Фраунгофера на решётке

Согласно принципу Гюйгенса-Френеля распределение интенсивности в дифракционной картине определяется суперпозицией волн; амплитуды всех интерферирующих волн при φ практически одинаковы; фазы составляют арифметическую прогрессию:

$$d\sin\varphi_m = m\lambda,\tag{1}$$

где $m \in \mathbb{Z}$ — порядок спектра.

Интенсивность I света, распространяющегося под углом φ к нормали:

$$I = I_1(\varphi) \frac{\sin^2(N(dk\sin\varphi)/2)}{\sin^2((dk\sin\varphi)2)},\tag{2}$$

где $k=\frac{2\pi}{\lambda}$ — волновое число.

Дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$$
 (3)

Согласно критерию разрешения Релея, линии становятся неразличимыми, когда расстояние между ними меньше, чем расстояние от максимума одной линии до её первого минимума:

$$\frac{Nkd}{2}(\sin(\varphi + \Delta\varphi) - \sin\varphi) = \pi,\tag{4}$$

где $\Delta \varphi$ — угловая полуширина главного максимума, $\Delta \varphi = \frac{\lambda}{Nd\cos\varphi}$ Разрешающая способность спектрального прибора R вычисляется по формуле:

$$R = \frac{\lambda}{\Delta \lambda} = m \cdot N \tag{5}$$

Рис. 2: К определению разрешающей способности дифракционной решётки

Дисперсионная область G — предельная ширина спектрального интервала $d\lambda$, при которой спектры соседних порядков перекрываются только своими границами:

$$G = d\lambda = \frac{\lambda}{m}. (6)$$

Экспериментальная установка:

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Рис. 3: Схема экспериментальной установки (вид сверху)

ри работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдается главные максимум для различных длин волн. Эшелет — отражательная решётка с треугольным профилем штриха, в которой угол Ω между рабочей гранью и плоскостью решётки не превышает 20° Рабочий порядок $m \leq 10$, число штрихов n = 1200 /.

Угол, под которым наблюдается максимум интенсивности функции $I_1(\varphi)$, соответствует зеркальному отражению падающего луча от грани и называется углом блеска φ .

$$\varphi = \psi + 2\Omega,\tag{7}$$

где ψ — угол, под которым падает плоская монохроматическая волна λ .

Разность хода Δ кратна λ :

$$\Delta = d(\sin \varphi_m - \sin \varphi) = m\lambda. \tag{8}$$

Изменяя угол падения, можно добиться того, чтобы угол блеска совпал с углом дифракции спектра одного из порядков; в этом порядке спектр будет наиболее ярким. Этот порядок принять называть рабочим.

Рис. 4: Распределение интенсивности в спектре эшелета

Чтобы устранить произвол в выборе угла падения, принято считать, что решётка должна работать в автоколлиматорном режиме. В этом случае условие $d(\sin varphi_m + \sin \varphi) = m\lambda$ принимает вид:

$$2d\sin\Omega = m_p \lambda_p. \tag{9}$$

Для оценки $\Delta \varphi_m$ воспользуемся методом векторных диаграмм:

Рис. 5: Векторные диаграммы

Направление на минимум, ближайший к максимуму любого порядка:

$$d(\sin(\varphi_m + \Delta\varphi) + \sin\psi) = m\lambda + \frac{\lambda}{N}$$
(10)

Для малой полуширины максимума получим:

$$\Delta \varphi = \frac{\lambda}{Nd\cos\phi_m} \tag{11}$$

Зависимость дисперсии D от параметров эшелета:

$$D = \frac{m}{d\cos\varphi_m} = \frac{m}{\sqrt{d^2 - (m\lambda - d\sin\psi)^2}}$$
 (12)

Ход работы и обработка результатов.

Для угла $\psi=45^o$ измерим угловые координаты спектральных линий ртути в рабочем порядке. Отметим главную координату каждой из описанных линий:

Ахроматический	45°01′00″	
Фиолетовый	287°00′09″	$4047\dot{A}$
Синий	288°20′09″	$4358\dot{A}$
Голубой	290°20′09″	$4916\dot{A}$
Зелёный	292°20′09″	$5461\dot{A}$
Желтый 2	293°30′09″	$5770\dot{A}$
Жёлтый 1	293°40′09″	$5791\dot{A}$
Красный 2	294°40′09″	$6234\dot{A}$
Красный 1	$294^{o}50'09''$	$6907\dot{A}$

Для оценки разрешающей способности измерим ширину одной из линий жёлтого дублета и рассчитаем аппаратную полуширину линии $\Delta \lambda$:

$$\Delta \lambda = 21; \quad R = \frac{\lambda}{\Delta \lambda} = \frac{5770}{21} = 274.6$$
 (13)

Для угла $\psi=30^o$ измерим координаты каждой из жёлтых линий во всех наблюдаемых порядках:

	1	272°00′07″
I	2	$272^{o}10'07''$
	1	$321^{o}10'09''$
II	2	$321^{o}10'09''$

Повторим измерения для $\psi = 45^{0}, 60^{o}$:

	1	314°00′09″
I	2	$313^{\circ}30'09''$
	1	$293^{o}40'09''$
II	2	$293^{\circ}30'09''$

Таблица 1: $\psi = 45^{o}$

	1	$268^{o}40'09''$
I	2	$268^{\circ}30'09''$
	1	289°50′09″
II	2	290°00′09″
	1	$309^{o}50'09''$
III	2	$310^{o}00'09''$

Таблица 2: $\psi = 60^{\circ}$

Построим график зависимости $\sin \varphi_m - \sin \psi = f(\lambda)$ и по углу наклона определим период эшелета:

Рис. 6: Зависимость $\sin \varphi_m$ от λ

Угол наклона графика $k=(100\pm13)\cdot10^3$ Период эшелета: $d=\frac{10^{-3}}{100}=(1\pm0.2)\cdot10^{-2}$ мм . Угол скоса по формуле (15) и $m_p=1,~\lambda=500$ нм, тогда

$$\sin \Omega = \frac{m_p \lambda}{2d} = 0.025 \pm 0.005$$

 $\Omega = 1.64^{\circ} \pm 0.02^{\circ}.$

Угловая дисперсия в рабочем порядке для жёлтого дублета в угловых секундах на \dot{A} :

	φ	$ \Delta \varphi $	$\Delta \lambda$, Å	$\left \frac{d\varphi}{d\lambda} \right $, (угл. с./Å)
3	0°	49 ± 1	21	2.5 ± 0.2
4	.5°	21 ± 10	21	1 ± 0.1
6	0°	21 ± 10	21	1 ± 0.1

Таблица 3: Угловая дисперсия при различных φ

Обсуждение результатов и выводы:

В данной лабораторной работе мы исследовали спектральные характеристики дифракционной решётки, научились работать с гониометром, экспериментально определили период решётки и разрешающую способность.