Compiler – 3–2. Context Free Grammar –

JIEUNG KIM

jieungkim@yonsei.ac.kr

Where are we?

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Outlines

- Role of the syntax analysis (parser)
- Context free grammar
- Push down automata
- Top-down parsing
- Bottom-up parsing
- Simple LR
- More powerful LR parsers and other issues in parsers
- Syntactic error handler
- Parser generator

Formal languages

- An alphabet is a set Σ of symbols that act as letters.
- A language over Σ is a set of strings made from symbols in Σ .
- When scanning, our alphabet was ASCII or Unicode characters.
- We produced tokens.
- When parsing, our alphabet is the set of tokens produced by the scanner.

- The limits of regular languages
 - When scanning, we used regular expressions to define each token.
 - Unfortunately, regular expressions are (usually) too weak to define programming languages.
 - Cannot define a regular expression matching all expressions with properly balanced parentheses.
 - Cannot define a regular expression matching all functions with properly nested block structure.
 - We need a more powerful formalism.

- We have seen many languages that can <u>not</u> be regular
- Context Free Grammars (CFGs) can describe syntax in programming languages
- CFGs are basis of BCF (Backus Naur Form) syntax
- A strict superset of the the regular languages.
- CFGs are best explained by the example in the next slide.

Arithmetic expression

- Suppose we want to describe all legal arithmetic expressions using addition, subtraction, multiplication, and division.
- Here is one possible CFG:

```
E \rightarrow int
E \rightarrow E Op E
E \rightarrow (E)
Op \rightarrow +
Op \rightarrow -
Op \rightarrow *
Op \rightarrow /
```

```
E

⇒ E Op E

⇒ E Op (E)

⇒ E Op (E Op E)

⇒ E *(E Op E)

⇒ int*(E Op E)

⇒ int*(intOp E)

⇒ int*(intOp int)

⇒ int*(int + int)
```

```
E

⇒ E Op E

⇒ E Op int

⇒ intOp int

⇒ int /int
```


- Formally, a context-free grammar is a collection of four objects:
 - A set of nonterminal symbols (or variables),
 - A set of terminal symbols,
 - A set of production rules (→) saying how each nonterminal can be converted by a string of terminals and nonterminals, and
 - A start symbol (E in the example) that begins the derivation

```
E \rightarrow int

E \rightarrow E \cap D \cap E

E \rightarrow (E)

Op \rightarrow +

Op \rightarrow -

Op \rightarrow *

Op \rightarrow /
```

```
E \rightarrow int | E Op E | (E)
Op \rightarrow +|-|*|/
```


Context free grammar – for simpler form

```
E \rightarrow int
E \rightarrow E Op E
E \rightarrow (E)
Op \rightarrow +
Op \rightarrow -
Op \rightarrow *
Op \rightarrow /
```

$$E \rightarrow int | E Op E | (E)$$

$$Op \rightarrow +|-|*|/$$

- Context free grammar for simpler form
 - The syntax for regular expressions does not carry over to CFGs
 - Cannot use *, |, or parentheses.

$$S \rightarrow a*b$$

$$S \rightarrow Ab$$

$$S \rightarrow Ab$$

$$S \rightarrow Ab$$

$$A \rightarrow Aa \mid \epsilon$$

- Context free grammar
 - A grammar G = (V, T, S, P) is called Context Free (CFG) if all the production rules of the form:

 $A \rightarrow \alpha$

(where $A \subseteq V$, $\alpha \in \{V \cup T\}^*$)

- I.e., One variable in the left-hand side, no restrictions in the right-hand side
- Regular grammar is a subset of context free grammar

 $A \rightarrow Bx \mid x \text{ or } A \rightarrow xB \mid x$ (where A, B \in V, $x \in T^*$)

Examples

- $G_1 = (\{S\}, \{0, 1\}, S, P)$ where
 - P:S → 0S1
 - $S \rightarrow \epsilon$
- $G_2 = (\{S\}, \{0, 1\}, S, P)$ where
 - P:S → S10
 - $S \rightarrow \varepsilon$
- $G_3 = (\{S, A\}, \{0, 1\}, S, P)$ where
 - P:S → 0A1
 - 0A → 00A1
 - A → ε

Examples (CFGs for programming languages)

```
BLOCK
               STMT
               {STMTS }
STMTS
               STMT STMTS
STMT
            \rightarrow EXPR;
               if (EXPR) BLOCK
               while (EXPR) BLOCK
               doBLOCK while (EXPR);
               BLOCK
               identifier
EXPR
               constant EXPR
               +EXPR EXPR -
               EXPR EXPR *
               EXPR
```


Derivations

- Let G = (V, T, S, P) be a CFG where A \in V, α , $\beta \in \{V \cup T\}^*$
- Derivations (⇒)
 - Suppose A \rightarrow $\gamma \in P$. Then we can write $\alpha A\beta \Rightarrow \alpha \gamma \beta$, then, we say that $\alpha A\beta$ derives $\alpha \gamma \beta$
- We define \Rightarrow * to be *reflexive* and *transitive* closure of \Rightarrow as:
 - Basis: Let $\alpha \in \{ \lor \cup \top \}^*$. Then, $\alpha \Rightarrow^* \alpha$
 - Induction: If $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow^* \gamma$, then $\alpha \Rightarrow^* \gamma$

Sentential forms

- A grammar defines a language in a recursive way
- Sentential form (∈ {V∪T}*)
 - S is a sentential form
 - If $\alpha\beta\gamma$ is a sentential form and $\beta \rightarrow \delta$ is in P, then $\alpha\delta\gamma$ is also a sentential form
- Sentence ($\in T^*$)

- Context free languages
 - A language accepted by a grammar $G L(G) = \{ w \mid S \Rightarrow w \text{ and } w \in T^* \}$
 - if $w \in L(G)$, then there is a derivation step: $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w$ where each $w_i \in \{V \cup T\}^*$, $w \in T^*$
 - If G is a CFG, then we call L(G) Context Free Language (CFL)

Examples

- $L(G) = \{a^{2n}b^n \mid n \ge 0\}$
 - CFG G = $({S}, {a, b}, S, P)$
 - P:S → aaSb | ε
- $L(G) = \{a^m b^n \mid n \le m \le 2n\}$
 - CFG G = $({S}, {a, b}, S, P)$
 - P:S → aSb | aaSb |ε
- $L(G) = \{a^{m+n}b^mc^n \mid m \ge 0, n \ge 1\}$
 - CFG G = ({S, A}, {a, b, c}, S, P)
 - P:S → aSc | aAc A → aAb | ε

Examples

- $L(G) = \{ w \in \{a, b\} * | w = w^R, |w| \text{ is even} \}$
 - CFG G = $({S}, {a, b}, S, P)$
 - P:S → aSa | bSb | ε
- $L(G) = \{ w \in \{a, b\} * | w = w^R, |w| \text{ is odd} \}$
 - CFG G = $({S}, {a, b}, S, P)$
 - P:S → aSa | bSb | a | b
- $L(G) = \{a^m b^n c^n d^m \mid m, n \ge 1\}$
 - CFG G = ({S, A}, {a, b, c, d}, S, P)
 - P:S → aSd | aAd
 A → bAc | bc

- Examples (CFGs that generate regular languages)
 - L(G) = set of all regular expressions over {a, b}
 - CFG G = $({S}, {a, b, +, *, \cdot, (,)}, S, P)$
 - P:S \rightarrow S+S | S·S | S* | a | b | ε | ϕ
 - L(G) = (a + b)*ab(ab + b)*
 - CFG G = $({S}, {a, b}, S, P)$
 - P:S → AabB
 - A \rightarrow aA | bA | ϵ
 - B → Bab | Bb | ab | b

- Is CFG unique?
 - CFG $G_1 = (\{S, A, B\}, \{0, 1\}, S, P)$ where
 - P:S → 0B | 1A
 - A → 1AA | OS | O
 - B → 0BB | 1S | 1
 - CFG $G_2 = (\{S, A\}, \{a, b\}, S, P)$
 - P:S \rightarrow 0S1S | 1S0S | ϵ
 - CFG $G_3 = (\{S, A\}, \{a, b\}, S, P)$
 - P:S \rightarrow 0S1 | 1S0 | SS | ϵ
 - Then, $L(G_1) = L(G_2) = L(G_3) = \{w \in \{0, 1\} * \mid NUM_0(w) = NUM_1(w)\}$

Note: There exist many distinct CFG's for the same CFL

- Applications of CFGs
 - L_{bal}: a set of all valid strings of balanced parenthesis
 - $G = (\{S\}, \{(,)\}, S, P)$ where
 - P:S \rightarrow (S) | SS | ϵ
 - Examples of strings:
 - (()), ()(), (()()), ε are accepted, but ((),)(, are not
 - Begin({), End(}) in C program
 - Replace (by { and) by }

- Applications of CFGs
 - Lifelse: a set of all valid strings of if's and else's
 - $G = (\{S\}, \{i, e\}, S, P)$ where
 - P:S \rightarrow /S | /SeS | SS | ϵ
 - Examples of strings: ieie, ie are accepted, but ei, ieeii are not.
 - if can be unbalanced by any else

- · Testing a string with CFG
 - Given a CFL L and a string w, we want test if w ∈ L or not
 - Example:
 - $G = (\{S\}, \{0, 1\}, S, P)$ where
 - P:S \rightarrow 0S1 | 1S0 | SS | ϵ
 - Is $w = 0111100 \in L(G)$ or not?
 - There are two methods:
 - Derivations
 - Leftmost Derivations
 - Rightmost Derivations
 - Parsing Trees

- Leftmost and rightmost derivations
 - There are two kinds of derivations:
 - Leftmost derivation: Always replace the leftmost variable
 - Rightmost derivation: Always replace the rightmost variable
 - Consider

CFG G = ({E, T, F}, {*, +, (,), a}, E, P)
P: E
$$\rightarrow$$
 E + T | T
T \rightarrow T * F | F
F \rightarrow (E) | a

- And when w = a + a
 - Leftmost derivation: $E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+F \Rightarrow a+a$
 - Rightmost derivation: $E \Rightarrow E+T \Rightarrow E+F \Rightarrow E+a \Rightarrow T+a \Rightarrow F+a \Rightarrow a+a$

Parse trees

- Let G = (V, T, S, P) be a CFG. A tree is a parse tree if
 - Root is labeled by S
 - Each leaf node is labeled from T \cup { ϵ }
 - Each non-leaf node is labeled from V
 - If a node has a label $A \subseteq V$ and its children (from left to right) are labeled A_1 , A_2 , . . . , A_n , then $A \rightarrow A_1$, A_2 , . . . , $A_n \in P$
- Yield of a parse tree is a string of leaves from left to right.
 - Yield consists of only terminal symbols
 - A set of yields the language of the grammar

Parse trees

Parse trees

E

 \Rightarrow E Op E

Parse trees

- \Rightarrow E Op E
- \Rightarrow intOp E

Parse trees

- \Rightarrow E Op E
- ⇒ intOp E
- ⇒ int *E

Parse trees

- \Rightarrow E Op E
- ⇒ intOp E
- ⇒ int *E
- ⇒ int * (E)

Parse trees

- \Rightarrow E Op E
- ⇒ intOp E
- ⇒ int *E
- ⇒ int * (E)
- ⇒ int * (E Op E)

Parse trees

```
Ε
```

- \Rightarrow E Op E
- ⇒ intOp E
- ⇒ int *E
- ⇒ int * (E)
- \Rightarrow int * (E Op E)
- ⇒ int * (intOp E)
- ⇒ int * (int+E)
- \Rightarrow int * (int + int)

Parse trees

Is $w = a + a \in L(G)$? Yes, because we have a yield a + a

- Parse tree vs. derivations
 - If a string $w \in L(G)$ for some CFG G, then
 - there exists a parse tree for w
 - there exists a leftmost derivation for w
 - there exists a rightmost derivation for w
 - Let G = (V, T, S, P) be a CFG and $A \subseteq V$, then the followings are all equivalent
 - A *⇒ W
 - A *⇒ W
 - A *⇒ W
 - There is a parse tree of G with root A and yield w

- Parse tree vs. derivations
 - Parse trees are alternative representation to derivations
 - This gives us syntactic structure of w
 - Given string w, is a parse tree always unique? No!
 - There can be several parse trees for the same string
 - · Ideally, there should be only one parse tree (unambiguous structure) for each string

- Ambiguity in grammars
 - $G = (\{S\}, \{i, e, a\}, S, P)$ where $P : S \rightarrow iSeS \mid iS \mid a$
 - Is w = *iiaea* accepted? Yes, it has two leftmost derivations
 - $S \Rightarrow i Se S \Rightarrow ii Se S \Rightarrow iiae S \Rightarrow iiaea$
 - $S \Rightarrow iS \Rightarrow iiSeS \Rightarrow iiaeS \Rightarrow iiaea$
 - This also gives us two parse trees:

- Ambiguity in grammars
 - $G = (\{S\}, \{a, +, *, (,)\}, S, P) \text{ where } P : S \rightarrow S + S | S * S | (S) | a$
 - w = a+a*a has two leftmost derivations:
 - $S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+S*S \Rightarrow a+a*S \Rightarrow a+a*a$
 - $S \Rightarrow S*S \Rightarrow S+S*S \Rightarrow a+S*S \Rightarrow a+a*S \Rightarrow a+a*a$
 - This also gives us two parse trees:

(a + (a * a))

((a + a) * a)

- Ambiguity definition
 - A sentence (or string) w (\subseteq T*) is ambiguous if it has more than one parse tree
 - A CFG G is ambiguous if it has an ambiguous sentence
 - I.e., If there are more than 2 parse trees for the sentence, the G is ambiguous
 - A CFL L is ambiguous if it has an ambiguous CFG

- Deciding ambiguity
 - Given CFG G, we want know if G is ambiguous?
 - Guess first
 - If ambiguous, find any string w that has 2 parse trees
 - I.e., find at least one ambiguous sentence
 - If not, you must show that every string has only 1 parse tree
 - Show that all strings have unique parse trees
 - Given CFG G, can we decide whether G is ambiguous or not? NO!
 - Bad News: there is no algorithm to do it
 - Deciding ambiguity is undecidable (=Unsolvable)

- Example deciding ambiguity
 - G = ({S, A, B}, {a, b}, S, P) where
 P: S → A | B
 A → a
 B → a
 - G = ({S}, {a, b}, S, P) where P : S \rightarrow aSbS | bSaS | ϵ

- Deciding ambiguity
 - Typical ambiguous patterns (with A, B \in V, α , $\beta \in \{V \cup T\}^*$)
 - $A \rightarrow A\alpha A$
 - $A \rightarrow \alpha A \mid \beta A$
 - $A \rightarrow AA \mid \alpha$
 - A $\rightarrow \alpha A \mid \alpha A \beta A$
 - Example
 - G = ({S}, {a, b}, S, P) where P : S \rightarrow aSbS | bSaS | ϵ

Removing ambiguity

- Given ambiguous CFG G, can we remove ambiguity? No!
 - Bad News: There is no algorithm it
 - More Bad News: Some CFL's have only ambiguous grammars
 - Good News: We can do it by hand
- Again, removing ambiguity is undecidable (=Unsolvable)
- But, there is a hope
 - If a grammar can be made unambiguous at all, it is usually made unambiguous through layering.
 - · Have exactly one way to build each piece of the string.
 - Have exactly one way of combining those pieces back together.

- Removing ambiguity
 - $G = (\{S\}, \{a, +, *, (,)\}, S, P)$ where $P : S \rightarrow S + S | S * S | (S) | a$
 - This is ambiguous because it has two parse trees: w = a + a * a

- Removing ambiguity
 - Grammar: $G = (\{S\}, \{a, +, *, (,)\}, S, P)$ where $P : S \rightarrow S + S \mid S * S \mid (S) \mid a$
 - Two problems
 - No operator precedence
 - For w = a + a * a, we can accept both (a + (a * a)) and ((a + a) * a) without considering precedence
 - Solution: set priority with *>+
 - Grouping is available for operators with the same precedence
 - We can accept both (S + S) + S and S + (S + S)
 - We need to select one of them to remove ambiguity
 - In general, we select left → right rule (exception: exponential operator)

- Example removing ambiguity
 - $G = (\{S\}, \{a, +, *, (,)\}, S, P) \text{ where } P : S \rightarrow S + S | S * S | (S) | a$
 - Solution: We introduce **new** variables: {T, F}
 - G' = ({S, T, F}, {a, +, *, (,)}, S, P) where P: S → S + T | T

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (S) \mid a$$

Examples

- CFG G = ({S}, {0, 1}, S, P) where P : S \rightarrow 0S1 | 00S1 | ϵ
 - Equivalent unambiguous CFG G':

```
P:S \rightarrow 0S1 | T \rightarrow 00T1 | \epsilon
```

- CFG G = ({S}, {0, 1}, S, P) where P : S \rightarrow 0S1 | 01S | ϵ
 - Equivalent unambiguous CFG G':

P:S
$$\rightarrow$$
T | ϵ T \rightarrow 0T1 | 01T | 01

- Inherent ambiguity
 - A CFL L is inherently ambiguous if all grammars for L are ambiguous
 - $L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$ is inherently ambiguous
 - Is L CFL? Yes, because of the following reasons
 - $L = L_1 \cup L_2 = \{a^ib^ic^j\} \cup \{a^ib^jc^j\}$
 - $G_1: S_1 \rightarrow S_1c \mid A$ $G_2: S_2 \rightarrow aS_2 \mid B$
 - A → aAb | ε
- $B \rightarrow bBc \mid \varepsilon$
- Now, L is accepted by combining G_1 and G_2 , and adding $G: S \rightarrow S_1 \mid S_2$
- G is ambiguous since $w = a^i b^i c^i$ ($\in L$) has two leftmost derivations
- Example: w = aabbcc
 - $S \Rightarrow S_1 \Rightarrow S_1c \Rightarrow S_1cc \Rightarrow Acc \Rightarrow aAbcc \Rightarrow aaAbbcc \Rightarrow aabbcc$
 - $S \Rightarrow S_2 \Rightarrow aS_2 \Rightarrow aaS_2 \Rightarrow aaB \Rightarrow aabBc \Rightarrow aabbBcc \Rightarrow aabbcc$

- The goal of parsing
 - Goal of syntax analysis: Recover the structure described by a series of tokens.
 - If language is described as a CFG, goal is to recover a parse tree for the the input string.
 - Usually, we do some simplifications on the tree; more on that later.
 - We'll discuss how to do this next week.

- Parsing
 - The test if w ∈ L or not given a CFL L and a string w
 - Example
 - G = ({S}, {0, 1}, S, P) where P : S \rightarrow 0S1 | 1S0 | SS | ϵ
 - Is $w = 0111100 \in L(G)$ or not?
 - There are two methods:
 - Parsing Trees
 - Derivations
 - Leftmost Derivations
 - Rightmost Derivations

Parsing

- If a string $w \in L(G)$ for CFG G, then
 - there exists a parse tree for w
 - there exists a leftmost derivation for w
 - there exists a rightmost derivation for w
- If a string w ∉ L(G) for CFG G, then
 - there does not exist a parse tree for w
 - there does not exist a **leftmost derivation** for w
 - there does not exist a rightmost derivation for w

- Exhaustiveness and non-termination
 - CFG G = ($\{S\}$, $\{a, b\}$, S, P) where P : S \rightarrow SS | aSb | bSa | ϵ

rule 1:

rule 2:

Question: Is w = aabb ∈ L(G)?

Round 1

1.
$$S \Rightarrow SS$$

2. S \Rightarrow aSb

 $3. S \Rightarrow bSa$

4. S $\Rightarrow \varepsilon$

Round 2

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow bSaS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow asSbb$$

 $S \Rightarrow aSb \Rightarrow abSab$

$$S \Rightarrow aSb \Rightarrow ab$$

Round 3

- Exhaustiveness and non-termination
 - Case 1: w ∈ L(G): Always terminate
 - Case 2: w ∉ L(G):
 - It may not terminate for w ∉ L(G)
 - Example : Is w = abb ∉ L(G)?

- Exhaustiveness and non-termination why?
 - ϵ production: A $\rightarrow \epsilon$
 - It decrease the length of sentential forms
 - Example: $S \Rightarrow SS \Rightarrow S \Rightarrow S \Rightarrow S \dots$
 - Unit production: A → B
 - It may never increase the length of sentential forms. (S → A, A → B, B → C, . . .)
 - It may create a cycle; thus, loop forever!
 - Example: $S \rightarrow A$, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow S$
 - To always terminate parsing, length of sentential forms (during derivation) must be increased
 - → we call it "monotonic"

- Exhaustiveness and non-termination why?
 - Suppose CFG G = (V, T, S, P) does not have any of the follow two forms: A → ε or A →
 - Then, exhaustive search parsing always terminate successfully for any $w \in T^*$
 - It always tells us whether w ∈ L(G) or w ∉ L(G)
 - Length of each sentential form during derivation increases
 - Since length of sentential form cannot exceed |w|, derivation cannot involve more than 2|w| rounds

Example

CFG G = ({S}, {a, b}, S, P) where P: S
$$\rightarrow$$
 SS | aSb | bSa | ϵ

CFG G' = ({S', S}, {a, b}, S, P') where P': S' \rightarrow S | ϵ
S \rightarrow SS | aSb | bSa | ab | ba

- Note that L(G) = L(G')
- G' guarantees that parsing algorithm will always terminate successfully
- After |w| rounds, it tells us whether w ∈ L(G') or w ∉ L(G')

Simple grammar

- A CFG G = (V, T, S, P) is called a s (simple) grammar if
 - Every production is of the form: A \rightarrow ax where A \in V, a \in T, x \in V*
 - Any pair (A, a) occurs at most once in P
 - Example 1 : G is s-grammar → G : S → aS | bSS | c
 - Example 2 : G' is not s-grammar → G' : S → aS | bSS | aSS | c
- Properties of Simple grammar
 - s-grammar is very restrictive, but many syntax of programming languages can be described by s-grammars
 - If G is s-grammar, then any string w in L(G) can be parsed by linear time O(|w|)
 - Every regular grammar is s-grammar, but not every s-grammar is regular expression
 - Every s-grammar (and regular grammar also) is deterministic and unambiguous

- Simplification of CFG's
 - Why simplify CFG's?
 - CFG has no restriction on the right-hand side of production → We need to "clean up" it
 - We must guarantee parsing always terminate
 - We also want parsing can be done efficiently
 - How to simplify CFG's?
 - Remove useless symbols
 - Remove ε -productions
 - Remove unit productions

- Substitution rules
 - Let G = (V, T, S, P) be a CFG where A, $B \in V$, and suppose P has
 - A $\rightarrow \alpha_1 B \alpha_2$
 - B $\rightarrow \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$
 - We can construct CFG G' = (V, T, S, P') which satisfies L(G) = L(G') by performing the following two in G
 - Deleting A $\rightarrow \alpha_1 B \alpha_2$
 - Adding A $\rightarrow \alpha_1 \beta_1 \alpha_2 \mid \alpha_1 \beta_2 \alpha_2 \mid \dots \mid \alpha_1 \beta_n \alpha_2$

- Example substitution rules
 - Let G = ({A, B}, {a, b, c}, A, P) be a CFG
 P: A → a | aaA | abBc
 B → abbA | b
 - Then, we can construct CFG G' = (V, T, S, P')
 P': A → a | aaA | ababbAc | abbc
 B → abbA | b
 - We substitute B as follows:
 - Add A → ababbAc | abbc and delete A → abBC such that L(G) = L(G')

- Useless symbols
 - Let G = (V, T, S, P) be a CFG. A symbol X is called **useful** if there is a derivation S $\Rightarrow *$ $\alpha X\beta \Rightarrow *$ w where w \in T*
 - A symbol X derives a terminal string if X ⇒* w for some w ∈ T*
 - A symbol X is *reachable* (from S) if S $\Rightarrow * \alpha X\beta$ for some α , $\beta \in \{V \cup T\}^*$
 - Symbols that are not useful are called useless when they are either of the following two:
 - X does <u>not derive</u> any terminal string w
 - X is <u>unreachable</u> from start symbol S

- Example useless symbols
 - CFG G = ({S, A, B, C}, {a, b, c}, S, P)
 P:S → aS | bB | bA | ε
 A → c
 B → bB
 C → b
 - Symbol B is reachable from S, but it does not derive any terminal string
 - Symbol C derives terminal string, but it is not reachable from S
 - Thus, {B, C} are useless symbols. We must remove them
 - After removing {B, C}, simplified G will be as follows:
 - P:S → aS | bA | ε A → c

- Proper grammar
 - For every CFG G, there exists a CFG G' with
 - L(G) = L(G')
 - No useless symbols
 - No ϵ -productions (= ϵ -free)
 - No unit productions (= cycle free)
 - We call G' proper grammar

- Algorithm to simplify CFG
 - Algorithm I: removing non-deriving symbols
 - Algorithm II: removing unreachable symbols
 - Algorithm III: removing ε-productions
 - Algorithm IV: removing unit productions

- Algorithm I: removing non-deriving symbols
 - Input : CFG G = (V, T, S, P)
 - Output : CFG G' = (V, T, S, P) with no non-deriving symbols
 - Method: Construct N₀, N₁, . . . as follows:
 - (1) $N_0 = \emptyset$; i = 1;
 - (2) $N_i = N_{i-1} \cup \{X \mid X \rightarrow \alpha \text{ and } \alpha \in \{N_{i-1} \cup T^*\}\}$
 - (3) If $N_i != N_{i-1}$ then $i \leftarrow i + 1$; go to (2) else $N_d = N_i$

• Example – algorithm I: removing non-deriving symbols

```
CFG G = ({S, A, B, C, D, E}, {a, b, c}, S, P)
P:S → AB | B | aE
A → AA | a
B → c
C → ε
D → bB | aC
E → bE
```

- $N_0 = \emptyset$
- $N_1 = N_0 \cup \{A, B, C\} = \{A, B, C\}$
- $N_2 = N_1 \cup \{D, S\} = \{A, B, C, D, S\}$
- $N_3 = N_2 \cup \emptyset = \{A, B, C, D, S\} = N_d$
- Thus, Since E ∉ N_d, E is useless

- Algorithm II: removing unreachable symbols
 - Input : CFG G = (V, T, S, P)
 - Output: CFG G' = (V', T', S, P') with only reachable symbols
 - Method: Construct N₀, N₁, . . . as follows:
 - (1) $N_0 = \{S\}; i = 1;$
 - (2) $N_i = N_{i-1} \cup \{X \mid A \rightarrow \alpha X \beta \text{ and } A \subseteq N_{i-1}\}$
 - (3) If $N_i != N_{i-1}$ then $i \leftarrow i+1$; go to (2) else $V' = N_i \cap V$;

$$\mathsf{T'} = \mathsf{N_i} \cap \mathsf{T} ;$$

P': productions containing only symbols in V'

• Example – algorithm II: removing unreachable symbols

```
CFG G = ({S, A, B, C, D}, {a, b, c}, S, P)
P:S → AB | B
A → AA | a
B → c
C → ε
D → bB | aC
```

- $N_0 = \{S\}$
- $N_1 = N_0 \cup \{A, B\} = \{S, A, B\}$
- $N_2 = N_1 \cup \{a, c\} = \{S, A, B, a, c\}$
- $N_3 = N_2 \cup \emptyset = \{S, A, B, a, c\}.$

After removing {C, D, b}, we will get:

P': S → AB | B A → AA | a B → c

- Background for removing ε-productions
 - A CFG G = (V, T, S, P) is called ε -free if
 - There is no any ε-production
 - There is no any **nullable** variables
 - Suppose $\varepsilon \in L(G)$;
 - Then, there is only one production S \rightarrow ϵ and S does not appear on right had side of any production

- Example background for removing ε-productions
 - CFG G₁ = ({S, A}, {0, 1}, S, P) where P: S → 0A1
 A → 00A1
 A → ε
 - CFG $G_2 = (\{S\}, \{0, 1\}, S, P)$ where $P : S \rightarrow \varepsilon$ $S \rightarrow 0S1$
 - CFG $G_3 = (\{S, A\}, \{0, 1\}, S, P)$ where $P: S \rightarrow \varepsilon \mid A$ $A \rightarrow 0A1 \mid 01$

- Algorithm III: removing ε-productions
 - Input: CFG G with no useless symbols
 - Output: CFG G' with ε-free
 - Method:
 - (1) Find all nullable variables: $N_{\epsilon} = \{A \mid A \Rightarrow \epsilon\}$
 - (2) If $A \to \alpha_0 X_1 \alpha_1 X_2 \dots X_k \alpha_k \in P$ and $X_1, X_2, \dots, X_k \in N_{\epsilon}$, then add $A \to \alpha_0 Y_1 \alpha_1 Y_2 \dots Y_k \alpha_k$ where $Y_i = X_i$ or $Y_i = \epsilon$, for $i = 1, 2, \dots k$, but remove $A \to \epsilon$
 - (3) If $S \in N_{\epsilon}$ then add $S' \rightarrow \epsilon \mid S$, when S' is a new start variable

• Example – Algorithm III: removing ε-productions

```
CFG G = (\{S, B, C, D\}, \{a, b, c, d\}, S, P)
    P:S → aBcD | C
    B \rightarrow b \mid \epsilon
    C \rightarrow c \mid \epsilon
    D → BC | BBC | d
(1) N_{\varepsilon} = \{B, C, D, S\}
(2) P' : S \rightarrow aBcD \mid acD \mid aBc \mid ac \mid C
    B \rightarrow b
    C \rightarrow c
    D \rightarrow BC \mid B \mid C \mid BBC \mid BB \mid d
(3) Since S \in N_{\epsilon}, we add
    S' \rightarrow S \mid \varepsilon \quad (S' : new start symbol)
```


- Background for removing unit productions
 - Any production rule of the form A \rightarrow + B where A, B \in V is called a **unit production**
 - A CFG G is called **cycle-free** if there is no derivation of the form A ⇒ A where A ∈ V
 - Example:

```
P:S \rightarrow S | A | \epsilon

A \rightarrow A | B | \epsilon

B \rightarrow B | C | \epsilon

C \rightarrow C | S | \epsilon

There is a cycle: S \Rightarrow A \Rightarrow B \Rightarrow C \Rightarrow S

Therefore, S \Rightarrow + S
```


- Algorithm IV: removing unit productions
 - Input: CFG G
 - Output: CFG G' with no unit productions
 - (1) For each $A \in N$, construct $N_A = \{B \mid A \Rightarrow B\}$ as follows:
 - a) $N_0 = \{A\}$; i = 1;
 - b) $N_i = N_{i-1} \cup \{C \mid B \rightarrow C \text{ and } B \in N_{i-1}\}$
 - c) if $N_i \neq N_{i-1}$ then $i \leftarrow i + 1$; go to b) else $N_A = N_i$;
 - (2) If B $\rightarrow \alpha$ is not a unit production, place A $\rightarrow \alpha$ for all A such that B \in N

• Example - Algorithm IV: removing unit productions

$$N_{T} = \{T, F\},\ N_{F} = \{F\}$$
(2) P': E \rightarrow E + T | T * F | (E) | a
T \rightarrow T * F | (E) | a
F \rightarrow (E) | a

Questions?

