Introduction et motivation

M. Kinnaert

Service d'Automatique et d'Analyse des Systèmes - ULB Bâtiment L, porte E, local L2.210

Année 2023-2024

Plan

- Organisation
- 2 Introduction et terminologie
- 3 Control Engineering: The Hidden Technology

Ouvrage de référence et "slides"

- Feedback Control of Dynamic Systems, G.F. Franklin, J.D.
 Powell, A. Emami-Naeini, 7^e édition, Pearson-Paperback, 2014 (10 exemplaires de la 6^e édition à la BST)
- Linear Systems, Thomas Kailath, Englewood Cliffs, N.J., 1980.
- Modern Control Engineering, Katsuhiko Ogata, 5^e édition, Pearson, 2010.
- fichier pdf des "slides" placé au moins une semaine avant le cours sur l'université virtuelle

Travaux pratiques et évaluation - MATH-H-304

- 8 séances de travaux pratiques de 4h (à réduire de 2h pour une des séances)
- Evaluation
 - TP 20 pourcents, examen écrit 30 pourcents, examen oral 50 pourcents
 - évaluation des TP : note de rapports + évaluation activité
 - une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 25 (date limite: 3/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin de la semaine 28 (date limite: 24/3 à minuit).
 - −2 sur la note finale pour MATH-H-304 pour chaque absence non justifiée aux TP
- En cas de problèmes d'horaire pour les TP, contacter Maxime Bussios (maxime.bussios@ulb.be)

Travaux pratiques et évaluation - ELEC-H-3002

- 3 séances d'exercices de 2h + PROH-H-3000
- Evaluation
 - examen oral 100 pourcents
 - une auto-évaluation formative par un test sur l'université virtuelle à réaliser avant la fin de la semaine 25 (date limite: 3/3 à minuit); une deuxième auto-évaluation sous la même forme avant la fin de la semaine 28 (date limite: 24/3 à minuit).

Régulation d'une habitation

Figure: Schéma de principe de la régulation d'une habitation

- Signal (ou grandeur) réglé(e) (controlled signal): grandeur que l'on souhaite régler afin qu'elle reste au voisinage d'une valeur fixée ou qu'elle suive un signal de consigne (ou de référence) spécifié
- Signal réglant ou grandeur de commande (control signal or manipulated variable) grandeur permettant d'agir sur le système afin que la grandeur réglée ait le comportement souhaité
- Système réglé ou procédé (controlled system or process): tout système dont on veut assurer la régulation
- Perturbation : grandeur ou signal qui tend à écarter la grandeur réglée de la consigne

Boucle de régulation

Figure: Schéma de principe d'une régulation

- Régulation par rétroaction (feedback control): méthode permettant de réduire l'écart entre la grandeur de consigne et la grandeur réglée en présence de perturbations, en ajustant la grandeur réglante sur la base de cet écart
- Système de régulation ou boucle fermée (closed loop): système dont l'entrée est le signal de référence et la sortie la grandeur réglée
- Régulation de maintien (regulation): grandeur réglée reste dans voisinage d'une référence constante malgré les perturbations (réjection de perturbations)
- Suivi de trajectoire (tracking) : grandeur réglée suit une consigne non constante

Pourquoi une boucle fermée - régulation de vitesse d'une voiture (1)

Figure: Schéma fonctionnel de la régulation de vitesse

Modèle de la voiture

$$y = 10(u - 0, 5w)$$

- y vitesse de la voiture (supposée mesurée parfaitement) [km/h]
- u angle du papillon des gaz [degré]
- w pente de la route [%]

Pourquoi une boucle fermée - régulation de vitesse d'une voiture (2)

Régulation en boucle ouverte

Choix du signal réglant

$$u = r/10$$

Vitesse résultante

$$y_{bo} = 10(\frac{r}{10} - 0, 5w)$$

= $r - 5w$

Erreur sur la sortie

$$e_{bo} = r - y_{bo}$$

$$= 5w (1)$$

Pas de compensation de la perturbation et forte sensibilité à une erreur de modélisation

Pourquoi une boucle fermée - régulation de vitesse d'une voiture (3)

Régulation en boucle fermée

Loi de réglage

$$u = 10(r - y)$$

Vitesse résultante

$$y_{bf} = 100r - 100y_{bf} - 5w$$

$$101y_{bf} = 100r - 5w$$

$$y_{bf} = \frac{100}{101}r - \frac{5}{101}w$$

Erreur sur la sortie

$$e_{bf} = \frac{r}{101} + \frac{5w}{101}$$

Erreur vis-à-vis de la perturbation diminuée d'un facteur 101; faible erreur vis-à-vis de la référence pour autant que le produit du gain du régulateur par le gain du système réglé soit grand; pas de connaissance précise du gain du système réglé requise.

Précautions pour boucle fermée

Assurer la stabilité

- Limitation du gain de la boucle fermée pour conserver la "qualité" de la réponse et la stabilité de la boucle fermée
- Exemple: augmentation du gain d'un amplificateur connecté à un microphone
 bruit et parole déformée

Figure: Système hautparleur / microphone

Nature physique des éléments d'une boucle de régulation (1)

Régulation de distance

Placer le robot mobile à une distance d de l'obstacle, sachant qu'il part en face de l'obstacle à une distance $d_i > d$

Nature physique des éléments d'une boucle de régulation (2)

Mise en oeuvre de la boucle fermée

Figure: Eléments de la boucle fermée

Nature physique des éléments d'une boucle de régulation (3)

Mise en oeuvre d'un régulateur analogique

Schéma d'un régulateur à avance ou à retard de phase [Ogata, 2010]

Control Engineering: The Hidden Technology

Il s'agit du slogan du congrès mondial de l'IFAC en 2002 à Barcelone

Boucle de réglage omniprésentes

- dans le corps humain (régulation de la température par transpiration)
- dans les instruments électroménagers et de loisir (machine à laver, lecteur de CD, ...)
- dans l'industrie (régulations de température, pression, niveau, ...)
- dans les transports (auto-pilote d'avion, cruise control, ABS, ...)

Mécanisme de lecture-écriture sur un disque dur d'ordinateur

Principe de fonctionnement

- Disque (en aluminium ou céramique par ex.) recouvert d'une couche magnétique sur laquelle sont stockées les données
- Disque entraîné par un moteur tourne à haute vitesse
- Tête de lecture/écriture positionnée par un bras actionné par un moteur (régulation de position)

Figure: Photo d'un disque dur (http://fr.wikipedia.org/wiki/Disquedur)

Régulation d'un système de téléoperation pour la chirurgie mini-invasive (1)

Figure: Système robotique maître/esclave pour la chirurgie mini-invasive

Régulation d'un système de téléoperation pour la chirurgie mini-invasive (2)

- Principe
 - Robot esclave (dans le corps du patient) doit suivre la trajectoire imposée au robot maître par le chirurgien
 - Chirurgien imergé dans un environnement 3D grâce à caméra endoscopique
- 2 Avantages
 - Augmentation de la dextérité par rapport à l'approche manuelle
 - Elimination des tremblements
 - Démultiplication du mouvement et donc augmentation de la précision
- Inconvénients
 - Coût
 - Absence de retour d'effort

Régulation de vitesse d'une éolienne (1)

Figure: Principe de fonctionnement d'une éolienne

Régulation de vitesse d'une éolienne (2)

Principe

- Au-dessus de la vitesse nominale de la génératrice, action sur l'orientation des pales de manière à limiter la quantité d'énergie extraite du vent à ce qui est compatible pour l'éolienne considérée (régulation de vitesse)
- Perturbation vitesse du vent

Régulation de la concentration en oxygène dissous dans un procédé de traitement des eaux usées (1)

Figure: Principe de fonctionnement d'une centrale d'épuration - phase d'activation

Régulation de la concentration en oxygène dissous dans un procédé de traitement des eaux usées (2)

Figure: Photo du procédé

Régulation de la concentration en oxygène dissous dans un procédé de traitement des eaux usées (3)

- Oxygénation poussée par injection d'air accélère la consommation des matières organiques par les bactéries par rapport au processus d'autoépuration naturel dans les rivières
- Mesure de la concentration en oxygène dissous tout le long du procédé et régulation par action sur vannes d'injection d'air

Quand une boucle de régulation ne fonctionne pas bien (1)

Figure: Procédé chimique. Variables indiquées par un point noir sujettes à oscillations

¹AIChE Journal, 60(6), 2014, pp 2019-2034

Quand une boucle de régulation ne fonctionne pas bien (2)

Figure: Evolution temporelle et spectre des variables sujettes à oscillations

²AIChE Journal, 60(6), 2014, pp 2019-2034

Quand une boucle de régulation ne fonctionne pas bien (3)

- Propagation des oscillations dans l'ensemble du procédé à cause des interactions
- FC, TC, PC, LC: respectivement régulation de débit, de température, de pression et de niveau
- Oscillations dues à stiction dans la vanne de réglage de niveau de la boucle LC2.
- Usure prématurée des actionneurs, produit hors tolérance, surconsommation énergétique

Automatique et durabilité

- Exemples illustrent omniprésence des régulations, y compris dans les prodiction d'électricité à partir de sources d'énergie renouvelable (éolien, solaire,géothermie)
- Importance des régulations dans tous les procédés industriels, y compris les procédés d'épuration et de recyclage
- Nécessité de régulations convenablement ajustées pour éviter surconsommation énergétique, usure prématurée des actionneurs ou produits hors tolérance

Conclusions

- Omniprésence des régulations par rétroaction
- Automatique = discipline transverse
- Boucle fermée assure la réjection de perturbations non mesurées et le suivi de trajectoire, même si l'on possède un modèle imprécis du système réglé.
- Liens nombreux avec les autres cours

Objectif du cours

- Pouvoir concevoir, ajuster, valider et mettre en oeuvre un régulateur sur un procédé simple de manière systématique.
- Ceci implique notamment:
 - Comprendre le cahier des charges d'un probléme de régulation
 - Comprendre les différents compromis intervenant dans la conception d'un régulateur
 - Pouvoir analyser les propriétés d'une boucle fermée