

Vishay Siliconix

P-Channel 200 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the - 55 °C to 125 °C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model Si7119DN

Vishay Siliconix	

SPECIFICATIONS ($T_J = 25 ^{\circ}\text{C}$,	unless othe	rwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT			
Static								
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	2.74	-	V			
On-State Darin Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	12	-	Α			
Drain-Source On-State Resistance ^a	В	V _{GS} = - 10 V, I _D = - 1 A	0.85	0.86	Ω			
	R _{DS(on)}	V _{GS} = -6 V, I _D = -1 A	0.86	0.88				
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 1 A	2	4	S			
Diode Forward Voltage ^a	V _{SD}	I _S = - 1 A, V _{GS} = 0 V	- 0.78	- 0.80	V			
Dynamic ^b								
Input Capacitance	C _{iss}	V _{DS} = - 50 V, V _{GS} = 0 V, f = 1 MHz	756	666	pF			
Output Capacitance	C _{oss}		37	36				
Reverse Transfer Capacitance	C _{rss}		22	25				
Total Gate Charge	0	$V_{DS} = -100 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -1 \text{ A}$	14	16.2	nC			
	Q_g	V _{DS} = - 100 V, V _{GS} = - 6 V, I _D = - 1 A	10	10.6				
Gate-Source Charge	Q _{gs}		2.5	2.5				
Gate-Drain Charge	Q _{gd}		4.9	4.9				

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25~^{\circ}C$, unless otherwise noted)

Note

• Dots and squares represent measured data.