Теоритично контролно №1 1, I, Информатика

Иво Стратев

13 ноември 2019 г.

1 Комплексни числа (\mathbb{C})

$$z = -5 - 4i$$

1.1 Re z

$$Re z = -5$$

1.2 Im z

$$Im z = -4$$

1.3
$$|z|$$

$$|z| = \sqrt{(Re\,z)^2 + (Im\,z)^2} = \sqrt{25 + 16} = \sqrt{41}$$

1.4 $\operatorname{tg} Arg z$

$$\operatorname{tg} \operatorname{Arg} z = \frac{\operatorname{Im} z}{\operatorname{Re} z} = \frac{-4}{-5} = \frac{4}{5}$$

1.5 $\sin Arg z$

$$\sin Arg \, z = \frac{Im \, z}{|z|} = \frac{-4}{\sqrt{41}} \frac{\sqrt{41}}{\sqrt{41}} = \frac{-4\sqrt{41}}{41}$$

1.6 $\cos Arg z$

$$\cos Arg \, z = \frac{Re \, z}{|z|} = \frac{-5}{\sqrt{41}} \frac{\sqrt{41}}{\sqrt{41}} = \frac{-5\sqrt{41}}{41}$$

2
$$z = \frac{5-3i}{4+i}$$
 $Re z + Im z$

$$z = \frac{5 - 3i}{4 + i}$$

$$z = \frac{5-3i}{4+i} \frac{4-i}{4-i}$$

$$z = \frac{(5-3i)(4-i)}{4^2+1^2}$$

$$z = \frac{20 - 5i - 12i - 3}{17}$$

$$z = \frac{17 - 17i}{17}$$

$$z = 1 - i$$

$$Re z + Im z = 1 + (-1) = 1 - 1 = 0$$

3 Формули на Моавър

3.1 z^n $z^n = |z|^n (\cos(nArg z) + i\sin(nArg z))$

3.2
$$\sqrt[n]{z}$$

 $\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos\frac{Arg\,z + 2k\pi}{n} + i\sin\frac{Arg\,z + 2k\pi}{n}\right) \quad k = 0, 1, \dots, n-1$

4 Системи линейни уравнения

4.1 съвместима

Една система от линейни уравнения се нарича съвместима, когато има поне едно решение.

4.2 несъвместима

Една система от линейни уравнения се нарича несъвместима, когато няма решение.

4.3 определена

Една система от линейни уравнения се нарича определена, когато е съвместима и има точно едно решение.

4.4 неопределена

Една система от линейни уравнения се нарича неопределена, когато е съвместима и има повече от едно решение.

5 Релации и изображения

5.1 Релации

$$R \subseteq A \times A;$$

5.1.1 симетрична релация

$$(\forall x \in A) \ (\forall y \in A) \ [\ (x, y) \in R \implies (y, x) \in R \]$$

5.1.2 транзитивна релация

$$(\forall x \in A) \ (\forall y \in A) \ (\forall z \in A) \ [\ (x, y), \ (y, z) \in R \implies (x, z) \in R \]$$

5.1.3 рефлексивна релация

$$(\forall x \in A) [(x, x) \in R]$$

5.2 Изображения

$$f: X \to Y$$

5.2.1 инективно изображение

$$(\forall x_1 \in X) \ (\forall x_2 \in X) \ [x_1 \neq x_2 \implies f(x_1) \neq f(x_2)]$$

5.2.2 сюрективно изображение

$$(\forall y \in Y) \ (\exists x \in X) \ [y = f(x)]$$

5.2.3 биекция

Биекция наричаме изображение, което е едновременно инкеция и сюрекция. Тоест $f:X \to Y$

$$(\forall x_1 \in X) \ (\forall x_2 \in X) \ [\ x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \]$$
$$(\forall y \in Y) \ (\exists x \in X) \ [\ y = f(x) \]$$

6 Бинарни операции

$$*: M \times M \to M$$

6.1 асоциативност

$$(\forall a \in M) \ (\forall b \in M) \ (\forall c \in M) \ [\ (a * b) * c = a * (b * c) = a * b * c\]$$

6.2 комутативност

$$(\forall a \in M) \ (\forall b \in M) \ [\ a \, * \, b = b \, * \, a \]$$

6.3 неутрален елемент

$$(\exists\,\theta\in M)\;(\forall x\in M)\;[\;x\,\ast\,\theta=\theta\,\ast\,x=x\;]$$

7 Матрици

7.1 A^t

$$A = (a_{ij})_{m \times n} \in M_{m \times n}(F) \ (i = 1, 2, ..., m, j = 1, 2, ..., n)$$

$$B = (b_{ij})_{n \times m} = A^t \in M_{n \times m}(F) : b_{ij} = a_{ji} \ (i = 1, 2, ..., n, j = 1, 2, ..., m);$$

7.2 A + B

$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n} \in M_{m \times n}(F)$$

$$A + B = C = (c_{ij})_{m \times n} \in M_{m \times n}(F)$$

$$c_{ij} = a_{ij} + b_{ij} \ (i = 1, 2, ..., m, j = 1, 2, ..., n)$$

7.3 λA

$$\lambda \in F$$
, $A = (a_{ij})_{m \times n} \in M_{m \times n}(F)$

$$\lambda A = C = (c_{ij})_{m \times n} \in M_{m \times n}(F)$$

$$c_{ij} = \lambda a_{ij} \ (i = 1, 2, ..., m, j = 1, 2, ..., n)$$

8 Вектори в линейно пространство

Нека (F, +, .) е числово поле. Нека (V, +, .) е линейно пространство над (F, +, .).

8.1 нулевият вектор е единствен

Нека θ' и θ'' са нулеви вектори от V. Тогава:

$$\theta' + \theta'' = \theta''$$
 (защото θ' е нулев вектор)

$$\theta' + \theta'' = \theta'$$
 (защото θ'' е нулев вектор)

$$\implies \theta' = \theta''$$

8.2 противоположният вектор е единствен

Нека а е вектор от V и нека a' и a'' са негови противоположни вектори от V. Тогава:

$$a' + a + a'' = (a' + a) + a'' = \theta + a'' = a''$$
 (защото a' е противоположен вектор на а)

$$a' + a + a'' = a' + (a + a'') = a' + \theta = a'$$
 (защото a'' е противоположен вектор на а)

$$\implies a' = a''$$

8.3
$$0a = \theta$$

Нека $a \in V$. Тогава

$$a + -a = \theta \implies$$

$$1.a + -a = \theta \implies$$

$$(1+0).a + -a = \theta \implies$$

$$1.a + 0.a + -a = \theta \implies$$

$$a + 0.a + -a = \theta \implies$$

$$\theta + 0.a = \theta \implies$$

$$0.a = \theta$$

8.4
$$\lambda \theta = \theta$$

$$a \in V$$

$$a + 0a = 1a + 0a = (1+0)a = a$$

$$a + 0a = a \mid + (-a)$$

$$\theta + 0a = \theta$$

$$0a = \theta$$

Сега в равенството: $\lambda(\mu a) = (\lambda \mu)a$ избираме $\mu = 0$

и получаваме: $\lambda\theta=0a=\theta$

8.5
$$-1a = -a$$

$$a + (-1)a = 1.a + (-1)a = (1 + -1)a = 0a = \theta \implies -a = (-1)a$$

9 Линейно пространство, линейна комбинация и линейна зависимост/независимост

Нека (F, +, .) е числово поле. Нека (V, +, .) е линейно пространство над (F, +, .).

9.1 линейна комбинация

Нека $n \in \mathbb{N}$.

Нека $a_1, a_2, ..., a_n \in V$.

Нека $\lambda_1, \lambda_2, \ldots, \lambda_n \in F$.

Тогава $\sum_{i=1}^n \lambda_i a_i \in V$ е линейна комбинация на $a_1, a_2, \ldots, a_n \in V$ с коефициенти $\lambda_1, \lambda_2, \ldots, \lambda_n$.

9.2 линейно подпространство

Нека $\emptyset \neq W \subseteq V$.

W е подпространство на V, ако $(\forall w_1 \in W) \ (\forall w_2 \in W) \ [\ w_1 + w_2 \in W \]$

$$(\forall \lambda \in F) \ (\forall w \in W) \ [\ \lambda.w \in W \]$$

9.3 линейна обвивка

Нека $\emptyset \neq A \subseteq V$

Тогава $l(A) = \bigcap_{A \subset W < V} W$ е линейната обвивка на множеството A.

9.4 линейна зависимост

Нека $n \in \mathbb{N}$.

Нека $a_1, a_2, \ldots, a_n \in V$. Векторите a_1, a_2, \ldots, a_n са линейно зависими, ако

$$(\exists \lambda_1 \in F) \ (\exists \lambda_2 \in F) \ \dots \ (\exists \lambda_n \in F) \ \left[\sum_{i=1}^n \lambda_i a_i = \theta \ \land \ (\lambda_1, \lambda_2, \dots, \lambda_n) \neq (0, 0, \dots, 0) \right].$$

9.5 линейна независимост

Нека $n \in \mathbb{N}$.

Нека $a_1, a_2, \ldots, a_n \in V$. Векторите a_1, a_2, \ldots, a_n са линейно независими, ако

$$(\forall \lambda_1 \in F) \ (\forall \lambda_2 \in F) \ \dots \ (\forall \lambda_n \in F) \ \left[\sum_{i=1}^n \lambda_i a_i = \theta \implies (\lambda_1, \lambda_2, \dots, \lambda_n) = (0, 0, \dots, 0) \right].$$

10 Линейна зависимост/независимост

10.1 Ако един вектор е линейно независим, то той е ненулев вектор

Логически еквивалетно твърдение на "ако един вектор е линейно независим, то той е ненулев вектор" е "ако един вектор е линейно зависим, то той е нулев вектор"

За това ще докажем него, от което ще следва и исканото твърдение.

Нека $\lambda \in F$, $a \in V$ и $\lambda a = \theta$, $\lambda \neq 0$.

Тогава $\lambda a = \theta \mid \lambda^{-1}$

$$1.a = \theta$$

$$a = \theta$$

⇒ ако един вектор е линейно независим, то той е ненулев вектор

10.2 Ако един вектор е линейно зависим то, той е нулевият вектор

Нека $\lambda \in F$, $a \in V$ и $\lambda a = \theta$, $\lambda \neq 0$.

Тогава
$$\lambda a = \theta \mid \lambda^{-1}$$

$$1.a = \theta$$

$$a=\theta$$
.

10.3 Всяка подсистема на линейно независима система от вектори е също линейно независима

Нека $n, k \in \mathbb{N}$, са такива, че $k \leq n$.

Нека $A = \{a_1, a_2, \dots, a_n\}$ е линейно независими система от вектори.

Нека БОО $B = \{a_1, a_2, \ldots, a_k\}$ допускаме, че B е линейно зависима

$$\implies (\exists \lambda_1 \in F) \ (\exists \lambda_2 \in F) \ \dots \ (\exists \lambda_k \in F) \ [\ (\lambda_1, \dots, \lambda_k) \neq (0, \dots, 0) \ \land \ \sum_{i=1}^k \lambda_i a_i = \theta.$$

Нека тогава
$$\lambda_1 \in F, \dots, \lambda_k \in F$$
 и $(\lambda_1, \dots, \lambda_k) \neq (0, \dots, 0)$ $\wedge \sum_{i=1}^k \lambda_i a_i = \theta$. Тога-

ва
$$(\lambda_1,\ldots,\lambda_k,0,\ \ldots\ 0) \neq (0,\ldots,0,0,\ \ldots\ 0)$$
 и $\sum_{i=1}^k \lambda_i a_i + \sum_{j=k+1}^n 0 a_j = \theta$. Следователно

 a_1, a_2, \ldots, a_n са линейно зависими и значи A е линейно независима система от вектори. Но това е Абсурд, понеже A е линейно независима. Следователно B е линейно зависима.

10.4 Ако една система от вектори съдържа линейно зависима подсистема, то тази система също е линейно зависима

Нека $n, k \in \mathbb{N}$, са такива, че $k \leq n$.

Нека $A = \{a_1, a_2, \dots, a_n\}$ са система от вектори

Нека БОО $B = \{a_1, a_2, \ldots, a_k\}$ е линейно зависима подсистема от вектори

От В линейно зависима подсистема от вектори, следва

$$(\exists \lambda_1 \in F) \ (\exists \lambda_2 \in F) \ \dots \ (\exists \lambda_k \in F) \ [\ (\lambda_1, \dots, \lambda_k) \neq (0, \dots, 0) \ \land \ \sum_{i=1}^k \lambda_i a_i = \theta$$
 Нека тогава $\lambda_1 \in F, \dots, \lambda_k \in F$ и $(\lambda_1, \dots, \lambda_k) \neq (0, \dots, 0) \ \land \ \sum_{i=1}^k \lambda_i a_i = \theta$. Тогава $(\lambda_1, \dots, \lambda_k, 0, \dots 0) \neq (0, \dots, 0, 0, \dots 0)$ и $\sum_{i=1}^k \lambda_i a_i + \sum_{j=k+1}^n 0 a_j = \theta$. Следователно a_1, a_2, \dots, a_n са линейно зависими и значи A е линейно независима система от

 a_1, a_2, \ldots, a_n са линейно зависими и значи A е линейно независима система от вектори.

10.5 Ако една система от вектори съдържа два пропорционални вектора, то тя е линейно зависима

Нека $n \in \mathbb{N}$ и $A = \{a_1, a_2, \dots, a_n\}$ - система от вектори.

Нека БОО
$$a_2 = \lambda a_1 \implies \lambda a_1 - a_2 = \theta$$

$$\implies \lambda a_1 + (-1)a_2 + \sum_{i=3}^n 0a_i = \theta$$

⇒ А е линейно зависима система от вектори

10.6 Ако в една система от поне два вектора един от векторите е линейна комбинация на останалите, то системата е линейно зависима

Нека $n \in \mathbb{N}^+$,

$$A = \{a_1, a_2, \dots, a_n\}$$
 - система от вектори.

Нека БОО
$$a_1 = \sum_{i=2}^n \lambda_i a_i$$

$$\implies -a_1 + \sum_{i=2}^n \lambda_i a_i = \theta$$

$$\implies (-1)a_1 + \sum_{i=2}^n \lambda_i a_i = \theta$$

⇒ А е линейно зависима система от вектори

10.7 В една линейно зависима система от поне два вектора поне един вектор е линейна комбинация на останалите

Нека $n \in \mathbb{N}^+$,

 $A = \{a_1, \, a_2, \, \dots, \, a_n\}$ - линейно зависима система от поне два вектора. Тогава

$$(\exists \lambda_1 \in F) \ (\exists \lambda_2 \in F) \ \dots \ (\exists \lambda_n \in F) \ [\ (\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0) \ \land \ \sum_{i=1}^n \lambda_i a_i = \theta$$

Нека тогава $\lambda_1 \in F$, ..., $\lambda_n \in F$ и $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0) \land \sum_{i=1}^n \lambda_i a_i = \theta$.

Нека БОО $\lambda_1 \neq 0$. Тогава

$$\sum_{i=1}^{n} \lambda_i a_i = \theta \,|\, \lambda_1^{-1} \implies a_1 + \sum_{i=2}^{n} \frac{\lambda_i}{\lambda_1} a_i = \theta$$

$$\implies a_1 = \sum_{i=2}^n -\frac{\lambda_i}{\lambda_1} a_i$$

11 Базис и размерност

Нека (V, +, .) е линейно пространство над числовото поле (F, +, .).

11.1 Основна лема на алгебрата

Нека $n, k \in \mathbb{N}$.

Нека $a_1, a_2, \ldots, a_n \in V$.

Нека $b_1, b_2, \ldots, b_k \in l(a_1, a_2, \ldots, a_n)$. Ако k > n, то b_1, b_2, \ldots, b_k са линейно зависими вектори.

11.2 Базис

Нека $n \in \mathbb{N}$.

Нека $b_1, b_2, \ldots b_n \in V$. $b_1, b_2, \ldots b_n$ са базис на V, ако $b_1, b_2, \ldots b_n$ са линейно независими и $V = l(b_1, b_2, \ldots b_n)$.

11.3 Крайномерно линейно пространство

Нека $n \in \mathbb{N}^+$.

Нека $b_1, b_2, \ldots b_n \in V$. $b_1, b_2, \ldots b_n$ са базис на V, ако $b_1, b_2, \ldots b_n$ са линейно независими и $V = l(b_1, b_2, \ldots b_n)$.

11.4 Крайнопородено линейно пространство

V е крайнопородено линейно пространство, ако $(\exists n \in \mathbb{N}^+) \ (\exists b_1 \in V) \ \dots \ (\exists b_n \in V) \ [\ V = l(b_1, b_2, \dots b_n) \].$

11.5 Размерност на линейно пространство

Нека $n \in \mathbb{N} \cup \{\infty\}$. Нека $b_1, b_2, \dots b_n \in V$ - са базис на V. Тогава размерността на V е n, бележим с dimV.

С други думи казано размерността дефинираме като броя на векторите в кой да е базис на V

Ако едно крайномерно линейно пространство и едно негово линейно подпространство имат една и съща размерност, то те съвпадат!

11.6 Координати на вектор в даден базис

Нека n=dim V. Нека $b_1,\,b_2,\,\ldots b_n\in V$ - са базис на V.

Нека $v \in V$. Нека още $\lambda_1, \ldots, \lambda_n \in F$ са такива, че $v = \sum_{i=1}^n \lambda_i b_i$. Тогава $\lambda_1, \lambda_2, \ldots, \lambda_n$ са координатите на v в базиса b_1, b_2, \ldots, b_n .

12 Сума на подпространства, директна сума на подпространства и ранг на система вектори

12.1 Сума на подпространства и директна сума на подпространства

Нека (V, +, .) е линейно пространство над числовото поле (F, +, .). Нека V_1, V_2 са линейни подпространства на V. Тогава $V_1 + V_2 = \{v_1 + v_2 \mid v_1 \in V_1, \ v_2 \in V_2\}$.

12.1.1 Връзка между размерностите на сумата и сечението на две крайномерни линейни подпространства на дадено линейно пространство

 $\dim (V_1 + V_2) = \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2).$

12.1.2 НДУ едно линейно пространство да е директна сума на две свои подпространства

10

$$V = V_1 \oplus V_2 \iff V = V_1 + V_2, \ V_1 \cap V_2 = \{\theta\}.$$

12.2 Ранг на система вектори

12.2.1 Максимална линейно независима подсистема вектори на дадена система вектори

Нека (V, +, .) е линейно пространство над числовото поле (F, +, .). Нека $\emptyset \neq T \subseteq V$. Нека $\emptyset \neq S \subseteq T$. S е максимална линейно независима подсистема вектори на дадена система вектори, ако $(\forall v \in T \backslash S) \ [S \cup \{v\} -$ е лин. зависима система]

12.2.2 Ранг на система вектори

Нека (V, +, .) е линейно пространство над числовото поле (F, +, .). Нека $\emptyset \neq T \subseteq V$. Ранга на T бележим с r(T) и r(T) = dim(l(T)).