Frühjahr 22 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

 $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ bezeichne die offene Einheitskreisscheibe.

- (a) Es sei $f: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ eine nicht-konstante holomorphe Funktion, die unendlich viele Nullstellen in der punktierten Kreisscheibe $\mathbb{D}\setminus\{0\}$ besitzt. Zeigen Sie, dass die Singularität von f in z=0 wesentlich ist.
- (b) Zeigen Sie, dass jede holomorphe Funktion $f: \mathbb{D} \to \mathbb{C}$ mit

$$f(z) \cdot ((f \circ f)(z) - 1) = 0$$
 für alle $z \in \mathbb{D}$

konstant ist.

Lösungsvorschlag:

- (a) Es gibt mindestens abzählbar viele Nullstellen, d. h. eine Folge $(z_n)_{n\in\mathbb{N}}\subset\mathbb{D}\backslash\{0\}$ von paarweise verschiedenen Nullstellen von f. Weil \mathbb{D} durch 1 beschränkt ist, die Folge demnach auch, muss es nach dem Satz von Bolzano-Weierstraß einen Häufungspunkt der Folge in \mathbb{C} geben. Wäre dieser nicht 0, so würde die Funktion f nach dem Identitätssatz bereits die Nullfunktion, also konstant sein, ein Widerspruch. Daher muss sich die Folge in der 0 häufen. Die Singularität kann nicht hebbar sein, weil dann wie zuvor f bereits konstant 0 sein muss, 0 ist aber auch kein Pol, weil wir eine Nullfolge $(z_{n_k})_{k\in\mathbb{N}}$ finden, für die $f(z_{n_k})=0$ ist, die Bildwerte also beschränkt bleiben. Der einzig verbleibende Fall ist, dass die Singularität von f bei 0 wesentlich ist.
- (b) Damit die Gleichung der Voraussetzung wohldefiniert ist, muss $f(\mathbb{D}) \subset \mathbb{D}$ gelten. Also ist $(f \circ f)(z) 1 = f(f(z)) 1 \neq 0$, weil $1 \notin \mathbb{D}$ ist, also $f(f(z)) \neq 1$ ist. Daher folgt aus der Gleichung bereits f(z) = 0 für alle $z \in \mathbb{D}$ und damit ist f konstant. Man kann auch noch etwas anders argumentieren: Damit obige Gleichung erfüllt ist, muss für alle $z \in \mathbb{D}$ eine der Gleichungen f(z) = 0 oder f(f(z)) = 1 erfüllt sein, d. h. es muss $f(z) \in \{0\} \cup f^{-1}(1)$ gelten. Weil f stetig ist, ist letztere Menge abgeschlossen. Wenn f nicht konstant ist, darf $f^{-1}(1)$ keinen Häufungspunkt in \mathbb{D} haben (Identitätssatz), außerdem muss das Bild $f(\mathbb{D})$ ein Gebiet sein. Es ist also $f(\mathbb{D}) \subset \{0\} \cup f^{-1}(1)$ und $f^{-1}(1) \subset \mathbb{D}$ hat innere Punkte und daher sehr wohl einen Häufungspunkt in \mathbb{D} . Widerspruch.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$