Correction du devoir surveillé 7.

Exercice 1

1°) a)

$$D(x) = \det(M - xI_3)$$

$$= \begin{vmatrix} 4 - x & -3 & 2 \\ 1 & -x & 1 \\ -1 & 1 & 1 - x \end{vmatrix}$$

$$= \begin{vmatrix} 1 - x & -3 & 2 \\ 1 - x & -x & 1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x) \begin{vmatrix} 1 & -3 & 2 \\ 1 & -x & 1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x) \begin{vmatrix} 1 & 0 & 2 \\ 1 & 2 - x & 1 \\ 0 & 2 - x & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) \begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) \begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) \begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) \begin{vmatrix} 1 & -1 \\ 1 & 1 - x \end{vmatrix}$$

$$= (1 - x)(2 - x) (1 \cdot (1 - x) - 1 \cdot (-1))$$

$$D(x) = (1 - x)(2 - x)^2$$

b) Soit $\lambda \in \mathbb{R}$.

$$\begin{split} \operatorname{Ker}(f-\lambda \operatorname{id}) &= \{0\} \Longleftrightarrow f - \lambda \operatorname{id} \text{ injective} \\ &\iff f - \lambda \operatorname{id} \text{ bijective} \quad \operatorname{car} f - \lambda \operatorname{id} \in \mathcal{L}(E) \text{ et } E \text{ est de dimension finie} \\ &\iff M - \lambda I_3 \text{ inversible} \\ &\iff D(\lambda) \neq 0 \end{split}$$

On en tire que $\operatorname{Ker}(f-\lambda\operatorname{id})\neq\{0\}\Longleftrightarrow D(\lambda)=0$ d'où

$$\operatorname{Ker}(f - \lambda \operatorname{id}) \neq \{0\} \iff \lambda = 1 \text{ ou } \lambda = 2$$

 2°) a) • Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x,y,z) \in \operatorname{Ker}(f-\operatorname{id}) \iff (M-I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 3 & -3 & 2 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} 3x - 3y + 2z & = & 0 \\ x - y + z & = & 0 \\ -x + y & = & 0 \end{cases}$$

$$-x + y & = & 0$$

$$x - y + z & = & 0$$

$$3x - 3y + 2z & = & 0$$

$$3x - 3y + 2z & = & 0$$

$$2x - y + z & = & 0$$

$$3x - 3y + 2z & = & 0$$

$$4x - y + z & = & 0$$

$$2z - z = & 0$$

$$2z = & 0$$

$$2z = & 0$$

$$2z = & 0$$

$$2z = & 0$$

Ainsi $Ker(f - id) = \{(y, y, 0) / y \in \mathbb{R}\} = Vect((1, 1, 0)).$

En posant $b_1 = (1, 1, 0)$, la famille (b_1) est génératrice de Ker(f - id), et elle est libre car formée d'un vecteur non nul.

 (b_1) est donc une base de Ker(f-id), qui est donc une droite vectorielle.

• Soit $(x, y, z) \in \mathbb{R}^3$.

$$(x,y,z) \in \operatorname{Ker}(f-2\operatorname{id}) \iff (M-2I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} 2 & -3 & 2 \\ 1 & -2 & 1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\iff \begin{cases} 2x - 3y + 2z &= 0 \\ x - 2y + z &= 0 \\ -x + y - z &= 0 \end{cases}$$

$$L_1 \leftrightarrow L_3 \iff \begin{cases} -x + y - z &= 0 \\ x - 2y + z &= 0 \\ 2x - 3y + 2z &= 0 \end{cases}$$

$$L_2 \leftarrow L_2 + L_1$$

$$L_3 \leftarrow L_3 + 2L_1 \iff \begin{cases} -x + y - z &= 0 \\ -y &= 0 \\ -y &= 0 \end{cases}$$

$$\iff \begin{cases} x &= -z \\ y &= 0 \end{cases}$$

Ainsi $\operatorname{Ker}(f - 2\operatorname{id}) = \{(-z, 0, z) \mid z \in \mathbb{R}\} = \operatorname{Vect}((-1, 0, 1)) = \operatorname{Vect}((1, 0, -1)).$ En posant $b_2 = (1, 0, -1)$, de même,

 (b_2) est une base de Ker(f-2id), qui est donc une droite vectorielle

b) $\dim(\operatorname{Ker}(f-\operatorname{id})) + \dim(\operatorname{Ker}(f-2\operatorname{id})) = 1 + 1 \neq 3 = \dim(\mathbb{R}^3).$

Donc $\operatorname{Ker}(f-\operatorname{id})$ et $\operatorname{Ker}(f-2\operatorname{id})$ ne sont pas supplémentaires dans \mathbb{R}^3 .

3°) a) Soient y et z des réels, on pose $b_3 = (1, y, z)$.

$$f(b_3) = b_2 + 2b_3 \iff (f - 2\mathrm{id})(b_3) = b_2$$

$$\iff (M - 2I_3) \begin{pmatrix} 1 \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

$$\iff \begin{cases} 2 - 3y + 2z = 1 \\ 1 - 2y + z = 0 \\ -1 + y - z = -1 \end{cases}$$

$$\iff \begin{cases} -3y + 2z = -1 \\ -2y + z = -1 \\ y - z = 0 \end{cases}$$

$$\iff \begin{cases} -y = -1 \\ -y = -1 \\ y = z \end{cases}$$

$$\iff y = z = 1$$

Ainsi, avec $b_3 = (1, 1, 1)$, on a $f(b_3) = b_2 + 2b_3$.

b) Posons $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$, c'est la matrice de la famille \mathcal{B}' dans la base \mathcal{B} .

$$\det(P) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{=}{\underset{L_2 \leftarrow L_2 - L_1}{=}} \begin{vmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 1.(-1)^{1+1} \begin{vmatrix} -1 & 0 \\ -1 & 1 \end{vmatrix} = -1$$

(en développant par rapport à C_1).

En particulier $\det(P) \neq 0$, donc P est inversible, donc \mathcal{B}' est une base de \mathbb{R}^3 .

4°) a) On a $b_1 \in \text{Ker}(f - \text{id})$ donc $(f - \text{id})(b_1) = 0$ i.e. $f(b_1) = b_1$. De même $f(b_2) = 2b_2$, et $f(b_3) = b_2 + 2b_3$. On en déduit :

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

b) La formule de changement de base donne : $T = P^{-1}MP$. Donc, en multipliant à gauche par P et à droite par P^{-1} : $M = PTP^{-1}$.

c) La matrice de passage de
$$\mathcal{B}$$
 à \mathcal{B}' est $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$L_2 \leftarrow L_2 - L_1$$
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$L_3 \leftarrow L_3 - L_2$$
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

On en déduit :
$$P^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

- **5°)** a) On a $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On obtient $B^2 = 0$.
 - b) On a donc $A = 2I_2 + B$. Comme B et $2I_2$ commutent, on obtient avec la formule du binôme :

$$\forall n \ge 1, \quad A^n = (2I_2 + B)^n$$

$$= \sum_{k=0}^n \binom{n}{k} (2I_2)^{n-k} B^k$$

$$= \sum_{k=0}^n \binom{n}{k} 2^{n-k} I_2 B^k$$

$$= 2^n I_2 + n 2^{n-1} B \qquad \text{car } B^k = B^2 B^{k-2} = 0 \text{ pour } k \ge 2$$

$$= \binom{2^n \quad n 2^{n-1}}{0 \quad 2^n}$$

C'est encore vrai pour n=0 car $A^0=I_2$ et car $\begin{pmatrix} 2^0 & 0.2^{-1} \\ 0 & 2^0 \end{pmatrix}=I_2$.

Ainsi, pour tout
$$n \in \mathbb{N}$$
, $A^n = \begin{pmatrix} 2^n & n2^{n-1} \\ 0 & 2^n \end{pmatrix}$.

6°) a) Soit $R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $S = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ deux matrices de $\mathcal{M}_2(\mathbb{R})$. Alors $RS = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$ et :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & R \\ 0 & R \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & S \\ 0 & S \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e & f \\ 0 & g & h \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & ae + bg & af + bh \\ 0 & ce + dg & cf + dh \end{pmatrix}$$

$$Donc \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & R \\ 0 & R \end{array} \right) \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & S \\ 0 & S \end{array} \right) = \left(\begin{array}{c} 1 & 0 & 0 \\ 0 & RS \\ 0 & RS \end{array} \right)$$

b) Remarquons déjà que $T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & A \\ 0 & A \end{pmatrix}$.

Posons, pour tout
$$n \in \mathbb{N}$$
, $H_n : T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & A^n \\ 0 & \end{pmatrix}$.

• Pour
$$n = 0$$
, $A^0 = I_2$ donc $\begin{pmatrix} 1 & 0 & 0 \\ 0 & I_2 \\ 0 & 1 \end{pmatrix} = I_3 = T^0$: H_0 est vraie.

• Supposons H_n vraie pour un $n \in \mathbb{N}$ fixé.

$$T^{n+1} = T \times T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & A^n \\ 0 & A^n \end{pmatrix} \text{ par HR}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & AA^n \\ 0 & A^n \end{pmatrix} \text{ en utilisant la question précédente}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & A^{n+1} \\ 0 & A^{n+1} \end{pmatrix}, \text{ donc } H_{n+1} \text{ est vraie.}$$

- Conclusion : $\begin{bmatrix} \text{pour tout } n \in \mathbb{N}, T^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & n2^{n-1} \\ 0 & 0 & 2^n \end{pmatrix} \end{bmatrix}$. 7°) Posons, pour tout $n \in \mathbb{N}, H_n : M^n = PT^nP^{-1}$ H_0 est vraie car $M^0 = I_2$ et $PT^0P^{-1} = PI_2P^{-1} = PP^{-1} = I_2$.
- - Si, pour un $n \in \mathbb{N}$ fixé, H_n est vraie, alors :

$$M^{n+1} = MM^n = PTP^{-1}PT^nP^{-1} = PTI_2T^nP^{-1} = PTT^nP^{-1} = PT^{n+1}P^{-1}.$$

On a donc bien, pour tout $n \in \mathbb{N}$:

$$M^{n} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & n2^{n-1} \\ 0 & 0 & 2^{n} \end{pmatrix} P^{-1}$$

$$= \begin{pmatrix} 1 & 2^{n} & n2^{n-1} + 2^{n} \\ 1 & 0 & 2^{n} \\ 0 & -2^{n} & -n2^{n-1} + 2^{n} \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ 1 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -1 + 2^{n+1} + n2^{n-1} & 2 - 2^{n+1} - n2^{n-1} & n2^{n-1} + 2^{n} - 1 \\ 2^{n} - 1 & 2 - 2^{n} & 2^{n} - 1 \\ -n2^{n-1} & n2^{n-1} & 2^{n} - n2^{n-1} \end{pmatrix}$$

Exercice 2

- 1°) Un tirage est une 4-liste (x_1, x_2, x_3, x_4) de l'ensemble $\{1, \ldots, 6\}$, où x_1 est le résultat du dé rouge, x_2 le résultat du dé bleu, x_3 le résultat du dé vert, et x_4 le résultat du dé jaune. Donc, il y en a 6⁴
- 2°) On note A l'ensemble des tirages faisant apparaître au moins une fois le numéro 6. Alors A est l'ensemble des tirages ne faisant pas apparaître le numéro 6. En notant E l'ensemble de tous les tirages possibles, on a : $\operatorname{card}(A) = \operatorname{card}(E) - \operatorname{card}(A)$. Un tirage de \overline{A} est une 4-liste de $\{1,\ldots,5\}$. Ainsi, $\operatorname{card}(\overline{A})=5^4$. Finalement, $\operatorname{card}(A) = 6^4 - 5^4$
- 3°) Donnons une méthode permettant d'obtenir une et une seule fois chaque tirage avec deux faces identiques exactement:

- \star On choisit le numéro n_0 de la face qui sera obtenue pour deux dés : il y a 6 choix possibles.
- ★ On choisit les couleurs des dés qui donneront le numéro n_0 : cela revient à choisir une 2-combinaison de l'ensemble $\{rouge, bleu, vert, jaune\}$: $\binom{4}{2} = 6$ choix possibles.
- ★ On choisit les numéros qui seront portés par les deux autres dés, ils doivent être distincts et pris dans $\{1, \ldots, 6\} \setminus \{n_0\}$. Cela revient à choisir un 2-arrangement de cet ensemble à 5 éléments, il y a 5×4 choix possibles.

En tout, $6 \times {4 \choose 2} \times 5 \times 4$ tirages possibles.

 4°) On note B l'ensemble des tirages tels que la somme des quatre numéros est paire.

On note P l'ensemble des tirages tels que tous les numéros sont pairs, I l'ensemble des tirages tels que tous les numéros sont impairs, et C l'ensemble des tirages tels que deux des numéros sont impairs et deux des numéros sont pairs. P, I et C sont deux à deux disjoints, et $B = P \cup I \cup C$.

Ainsi, card(B) = card(P) + card(I) + card(C).

- \star Pour réaliser un tirage de P, il suffit de choisir une 4-liste de $\{2,4,6\}$. Ainsi, $\operatorname{card}(P)=3^4$.
- ★ De même, pour réaliser un tirage de I, il suffit de choisir une 4-liste de $\{1,3,5\}$ donc $\operatorname{card}(I) = 3^4$.
- \star Donnons une méthode permettant d'obtenir une et une seule fois chaque tirage de C:
 - On choisit les couleurs des dés qui donneront des numéros pairs : cela revient à choisir une 2-combinaison de l'ensemble $\{rouge, bleu, vert, jaune\}$: $\binom{4}{2} = 6$ choix possibles.
 - On choisit les deux numéros pairs pour ces dés : cela revient à choisir une 2-liste de {2, 4, 6}, il y a 3² possibilités.
 - Pour chacun des deux dés restants, on choisit des numéros impairs; cela revient à choisir une 2-liste de $\{1,3,5\}$, il y a 3^2 possibilités.

Donc card $(C) = \binom{4}{2} \times 3^2 \times 3^2$.

Finalement, $card(B) = 2 \times 3^4 + {4 \choose 2} \times 3^2 \times 3^2$.

Exercice 3

Partie 1 : Généralités en dimension n

1°) $f^3 = \mathrm{id}_E \operatorname{donc} \det(f^3) = \det(\mathrm{id}_E)$. Ainsi, $(\det f)^3 = 1$. En particulier, $\det(f) \neq 0$. Ainsi, f est bijective.

Remarque : Il y avait d'autres méthodes (montrer l'injectivité à l'aide du noyau, utiliser que $f \circ f^2 = \mathrm{id}_E$ et que $f^2 \circ f = \mathrm{id}_E$, ...).

2°) On sait déjà que $\{0\} \subset G \cap H$ car G et H sont des sous-espaces vectoriels de E.

Soit alors $x \in G \cap H$. Montrons que x = 0.

 $x \in G$ donc $(f - id_E)(x) = 0$, i.e. f(x) = x.

De même, $x \in H$ donc $f^2(x) + f(x) + x = 0$.

Or, comme f(x) = x, on a $f^{2}(x) = f(f(x)) = f(x) = x$.

Donc l'égalité $f^2(x) + f(x) + x = 0$ se réécrit 3x = 0, d'où x = 0.

Ainsi, $G \cap H \subset \{0\}$.

Finalement, $G \cap H = \{0\}$.

3°) • *Méthode 1* :

Soit $y \in \text{Im}(h)$. Alors il existe un $x \in E$ tel que $y = (f^2 + f + \text{id}_E)(x) = f^2(x) + f(x) + x$. Montrons que $y \in G$, autrement dit que f(y) = y.

Comme f est linéaire, $f(y) = f(f^2(x) + f(x) + x) = f^3(x) + f^2(x) + f(x)$.

Or $f^3 = id_E$ donc $f(y) = x + f^2(x) + f(x)$ i.e. f(y) = y.

Donc $y \in G$.

Ainsi, $\overline{\mathrm{Im}(h) \subset G}$.

• $M\'{e}thode\ 2$:

 $g \circ h = (f - id_E) \circ (f^2 + f + id_E) = f^3 + f^2 + f - (f^2 + f + id_E) = f^3 - id_E$, done $g \circ h = 0$.

Ainsi, pour tout $x \in E$, g(h(x)) = 0 i.e. $h(x) \in \text{Ker}(g)$.

Ainsi, $\operatorname{Im}(h) \subset \operatorname{Ker}(g)$, ce qui s'écrit $\operatorname{Im}(h) \subset G$.

4°) $\operatorname{Im}(h) \subset G$ donc $\operatorname{dim}(\operatorname{Im} h) \leq \operatorname{dim}(G)$, donc $\operatorname{dim}(\operatorname{Im} h) + \operatorname{dim}(H) \leq \operatorname{dim}(G) + \operatorname{dim}(H)$. Or, par le théorème du rang : $\operatorname{dim}(E) = \operatorname{dim}(\operatorname{Im} h) + \operatorname{dim}(\operatorname{Ker}(h))$ i.e. $n = \operatorname{dim}(\operatorname{Im} h) + \operatorname{dim}(H)$.

On en déduit que $n \leq \dim(G) + \dim(H)$.

 5°) D'après la formule de Grassmann :

 $\dim(G+H) = \dim(G) + \dim(H) - \dim(G\cap H) = \dim(G) + \dim(H) \text{ puisque } G\cap H = \{0\}.$

D'après la question précédente, on a donc $\dim(G+H) \geq n$.

Or G + H est un sous-espace vectoriel de E donc $\dim(G + H) \leq n$.

Ainsi $\dim(G+H)=n=\dim(E),$ et comme G+H est un sous-espace vectoriel de E, E=G+H.

Comme $G \cap H = \{0\}$, on en déduit que : $E = G \oplus H$.

6°) Soit $x \in H$. Alors $f^{2}(x) + f(x) + x = 0$.

Montrons que $f(x) \in H$.

On a $(f^2 + f + id_E)(f(x)) = f^2(f(x)) + f(f(x)) + f(x) = f^3(x) + f^2(x) + f(x)$.

Mais $f^3 = \mathrm{id}_E$ donc $(f^2 + f + \mathrm{id}_E)(f(x)) = x + f^2(x) + f(x) = 0$ puisque $x \in H$.

Ainsi, $f(x) \in H$.

H est donc stable par f.

7°) On suppose que $f \neq \mathrm{id}_E$.

Raisonnons par l'absurde : supposons qu'il existe une base \mathcal{B} de E telle que $\max_{\mathcal{B}}(f)$ est une matrice diagonale D.

$$D \text{ est de la forme } D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ où } \lambda_1, \dots, \lambda_n \text{ sont des réels.}$$

Comme
$$f^3 = id_E$$
, on a $D^3 = I_n$, i.e. $\begin{pmatrix} \lambda_1^3 & 0 & \dots & 0 \\ 0 & \lambda_2^3 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n^3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$.

Autrement dit : $\forall i \in \{1, ..., n\}, \ \lambda_i^3 = 1 \text{ i.e. } \varphi(\lambda_i) = \varphi(1) \text{ avec } \varphi : x \mapsto x^3$

Comme φ est bijective de \mathbb{R} dans \mathbb{R} , elle est injective. Donc on $a : \forall i \in \{1, ..., n\}, \lambda_i = 1$.

Ainsi, $D = I_n$, ce qui signifie que $f = id_E$: contradiction.

On en déduit qu'î il n'existe pas de base de E dans laquelle la matrice de f soit diagonale.

Partie 2 : Étude en dimension 2

8°) On suppose que $\dim(G) = 2$.

On a donc : $G \subset E$ et $\dim(E) = \dim(G)$ donc G = E i.e. $\operatorname{Ker}(f - \operatorname{id}_E) = E$.

Ce qui signifie que pour tout $x \in E$, f(x) = x, donc que $f = id_E$

9°) a) D'après la question 5, $E=G\oplus H$ donc en réunissant une base de G et une base de H, on obtient une base de E.

 e_1 est un vecteur non nul de G donc il forme une famille libre de G. Comme dim(G) = 1, (e_1) est une base de G.

En réunissant (e_1) et une base de H, on doit obtenir une base de E qui est de dimension 2, donc elle sera de la forme (e_1, e_2) , avec (e_2) base de H donc $e_2 \in H$.

Ainsi, li existe bien un vecteur e_2 de H tel que $\mathcal{B} = (e_1, e_2)$ est une base de E.

b) D'après la question 6, H est stable par f. Puisque $e_2 \in H$, il vient $f(e_2) \in H$.

Or (e_2) est une base de H (en effet : $e_2 \neq 0$ sinon (e_1, e_2) ne serait pas une base de E, donc (e_2) est une famille libre de H, et H est de dimension $\dim(E) - \dim(G) = 1$).

Donc $\exists \alpha \in \mathbb{R}, f(e_2) = \alpha e_2$.

c) $e_2 \in H \text{ donc } f^2(e_2) + f(e_2) + e_2 = 0.$

On a $f(e_2) = \alpha e_2$.

En utilisant la linéarité de $f: f^2(e_2) = f(f(e_2)) = f(\alpha e_2) = \alpha f(e_2) = \alpha^2 e_2$.

Ainsi, $\alpha^2 e_2 + \alpha e_2 + e_2 = 0$ i.e. $(\alpha^2 + \alpha + 1).e_2 = 0$.

Comme $e_2 \neq 0$, il vient : $\alpha^2 + \alpha + 1 = 0$.

C'est un trinôme du second degré de discriminant $\Delta = 1 - 4 = -3 < 0$. Le trinôme n'a donc pas de solutions réelles. On aboutit donc à une contradiction puisque $\alpha \in \mathbb{R}$.

Ainsi, il n'est pas possible que $\dim(G) = 1$.

10°) a) D'après la question 5, $E = G \oplus H$, donc $\dim(G) + \dim(H) = \dim(E) = 2$.

Or $\dim(G) = 0$ donc $\dim(H) = 2$.

Comme $H \subset E$ et $\dim(H) = \dim(E)$, on en déduit que H = E i.e. $\operatorname{Ker}(f^2 + f + \operatorname{id}_E) = E$.

Ainsi, $f^2 + f + \mathrm{id}_E = 0$.

b) Notons (*) l'égalité $\alpha x + \beta f(x) = 0$.

Appliquons-lui f: on en tire, par linéarité de f, $\alpha f(x) + \beta f^2(x) = f(0) = 0$.

Or $f^2 + f + id_E = 0$ donc $f^2(x) = -f(x) - x$.

Ainsi on obtient (**) : $\alpha f(x) - \beta f(x) - \beta x = 0$.

Reprenons (*) : $\alpha x = -\beta f(x)$; en multipliant l'égalité par β , on a

$$\alpha \beta x = -\beta^2 f(x).$$

On a aussi, avec (**), $\beta x = \alpha f(x) - \beta f(x)$; en multipliant l'égalité par α , on a

$$\alpha \beta x = \alpha^2 f(x) - \alpha \beta f(x).$$

On en tire que $-\beta^2 f(x) = \alpha^2 f(x) - \alpha \beta f(x)$ i.e. $(\alpha^2 - \alpha \beta + \beta^2) f(x) = 0$.

D'où f(x) = 0 ou $\alpha^2 + \beta^2 - \alpha\beta = 0$

c) Méthode 1

Soit $(\alpha, \beta) \in \mathbb{R}^2$. $\alpha^2 + \beta^2 - \alpha\beta = \alpha^2 - 2\frac{1}{2}\beta\alpha + \left(\frac{1}{2}\beta\right)^2 + \frac{3}{4}\beta^2 = \left(\alpha - \frac{1}{2}\beta\right)^2 + \frac{3}{4}\beta^2$.

Comme α et β sont des réels, $\left(\alpha - \frac{1}{2}\beta\right)^2$ et $\frac{3}{4}\beta^2$ sont des réels positifs.

Donc, si $\alpha^2 + \beta^2 - \alpha\beta = 0$, alors

$$\begin{cases} \left(\alpha - \frac{1}{2}\beta\right)^2 = 0 \\ \frac{3}{4}\beta^2 = 0 \end{cases} \quad \text{d'où } \begin{cases} \alpha^2 = 0 \\ \beta = 0 \end{cases} \quad \text{d'où } \boxed{\alpha = \beta = 0}$$

Méthode 2

Fixons $\beta \in \mathbb{R}$ et étudions $\alpha^2 - \alpha\beta + \beta^2$ comme un trinôme du second degré en α .

Le discriminant est $\Delta = (-\beta)^2 - 4\beta^2 = -3\beta^2$.

Si $\beta \neq 0$, alors $\Delta < 0$ et $\alpha \mapsto \alpha^2 - \alpha\beta + \beta^2$ ne s'annule pas sur \mathbb{R} .

Par conséquent, si on a deux réels α et β tels que $\alpha^2 - \alpha\beta + \beta^2 = 0$, nécessairement $\beta = 0$, ce qui donne $\alpha^2 = 0$ et donc $\alpha = 0$ également.

d) Soient $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\alpha e_1 + \beta f(e_1) = 0$.

D'après la question b, on en tire que $f(e_1) = 0$ ou que $\alpha^2 - \alpha\beta + \beta^2 = 0$.

Mais d'après la question 1, f est bijective donc injective donc $Ker(f) = \{0\}$. Si on avait $f(e_1) = 0$, on aurait ainsi $e_1 = 0$, absurde car (e_1, e_2) est libre (c'est une base de E).

On a donc $\alpha^2 - \alpha\beta + \beta^2 = 0$, ce qui implique $\alpha = \beta = 0$ d'après la question précédente.

Ainsi, la famille \mathcal{C} est libre.

Comme elle a 2 éléments et que E est de dimension 2, $\overline{\mathcal{C}}$ est une base de E.

On a $f(e_1) = 0.e_1 + 1.f(e_1)$, et $f(f(e_1)) = f^2(e_1) = -e_1 - f(e_1)$ puisque $f^2 = -\operatorname{id}_E - f$.

Donc, la matrice de f dans la base \mathcal{C} est $M = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$.

- e) $f(e_1) \in E$ et (e_1, e_2) est une base de E donc <u>il existe des réels a et b tels que $f(e_1) = ae_1 + be_2$.</u> Supposons que b = 0. Alors $f(e_1) = ae_1$. Ainsi, $(e_1, f(e_1))$ est liée. Ceci est exclu puisque $(e_1, f(e_1))$ est une base de E. Donc, $b \neq 0$.
- f) Méthode 1

Comme $\mathcal{B} = (e_1, e_2)$ et $\mathcal{C} = (e_1, f(e_1))$, la matrice de passage de \mathcal{B} à \mathcal{C} est $P = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}$.

Calculons P^{-1} .

$$\begin{pmatrix}
1 & a \\
0 & b
\end{pmatrix}
\qquad \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}
\qquad L_2 \leftarrow \frac{L_2}{b} \qquad \begin{pmatrix}
1 & 0 \\
0 & \frac{1}{b}
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 \\
0 & \frac{1}{b}
\end{pmatrix}
\qquad L_1 \leftarrow L_1 - aL_2 \qquad \begin{pmatrix}
1 & -\frac{a}{b} \\
0 & \frac{1}{b}
\end{pmatrix}$$

Donc, $P^{-1} = \begin{pmatrix} 1 & -\frac{a}{b} \\ 0 & \frac{1}{b} \end{pmatrix}$.

Par une formule du changement de bases, $\max_{\mathcal{C}}(f) = P^{-1}\max_{\mathcal{B}}(f)P$, donc $\max_{\mathcal{B}}(f) = P\max_{\mathcal{C}}(f)P^{-1}$. Calculons :

$$\max_{\mathcal{B}}(f) = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} P^{-1}$$
$$= \begin{pmatrix} a & -1 - a \\ b & -b \end{pmatrix} \begin{pmatrix} 1 & -\frac{a}{b} \\ 0 & \frac{1}{b} \end{pmatrix}$$
$$= \begin{pmatrix} a & -\frac{a^2}{b} + \frac{-1-a}{b} \\ b & -a - 1 \end{pmatrix}$$

Ainsi, la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} a & \frac{-1-a-a^2}{b} \\ b & -a-1 \end{pmatrix}$.

Méthode 2

On sait déjà que $f(e_1) = a.e_1 + b.e_2$, ce qui justifie la première colonne de la matrice recherchée.

Déterminons maintenant $f(e_2)$ dans la base (e_1, e_2) : en appliquant f à l'égalité précédente, on obtient, par linéarité de f:

$$f^{2}(e_{1}) = af(e_{1}) + bf(e_{2})$$

$$-e_{1} - f(e_{1}) = af(e_{1}) + bf(e_{2}) \quad \text{(puisque } f^{2} = -\operatorname{id}_{E} - f)$$

$$bf(e_{2}) = -e_{1} - f(e_{1}) - af(e_{1})$$

$$bf(e_{2}) = -e_{1} - (1+a)(a.e_{1} + be_{2})$$

$$bf(e_{2}) = -(1+a+a^{2})e_{1} - (1+a)be_{2}$$

$$f(e_{2}) = -\frac{1+a+a^{2}}{b}e_{1} - (1+a)e_{2} \quad \text{puisque } b \neq 0$$

Ainsi, la matrice de f dans la base \mathcal{B} est $\begin{pmatrix} a & -\frac{1+a+a^2}{b} \\ b & -(1+a) \end{pmatrix}$.