(2)
$$P \rightarrow (2 \rightarrow r) \equiv P \rightarrow (\sim 2 \vee r)$$

 $\equiv \sim P \vee (\sim 2 \vee r)$
 $\equiv (\sim P \vee \sim 2) \vee r$
 $\equiv \sim (P \wedge 2) \vee r$
 $\equiv (P \wedge 3) \rightarrow r$

50, U/n.) U/N/ /n

3. Let aEX.

ne BO (UA).

4) NEB 1 (FIET, READ)

€7 For , (268 1 26Ad) + generalized distributive laws

€ Joep, REBNAO

€ XE U(BNAd)

4. Let $x \in f^{-1}(f(x))$ then $f(x) \in f(x) \cap B$. Since $f(x) \in B$, $x \in f^{-1}(B)$.

Let $z \in f^{-1}CB$).

Then $f(z) \in B$.

And since $z \in X$, $f(z) \in f(x)$.

Thus, $f(z) \in g(f(x))$.

so, $z \in f^{-1}(g(f(x)))$.

- 5. (1) If p is false and 7 is false, p=9 is true (counter example)
 .'. false.
 - (2) The Pf) Let 71,72EX

Suppose that $f(n_1) = f(n_2)$ Then $g(f(n_1)) = g(f(n_2))$ $(g, f)(n_1) = g(f(n_2))$

Since gof is 1-1, $\chi_1 = \chi_2$.

Since
$$a = a + 0$$
, $b = b + 0$, $((a,b), (a,b)) = (\pi, \pi) \in \mathbb{R}$

Let
$$xRy$$
 with $x=(a,b)$, $y=(c,b)$.
Then, $C=a+x$, $d=b+y$ for some $x,y\in \mathbb{Z}$.
So, $a=c-x$, $b=d-y$.
Thus, (ce,d) , (a,b)) = $(y,x)\in R$.

3) transitive

So,
$$e=a+\pi_1+\pi_2$$
, $f=b+y_1+y_2$
Thus, $((a,b),(e,+\pi))=(\pi,z)\in R$.