Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Technik & Architektur

Willkommen zur Vorlesung

Angewandte FEM in der Statik

- Genereller Ablauf (Vorlesung, Übungen, Pause)
- Unterlagen (Skript, Präsentationen, Aufgaben)
- Ablage auf Ilias
- Infrastruktur
- ANSYS Student

Testatbedingungen

 Mind. 4 Übungsprotokolle von den 8 Übungsaufgaben aus dem Selbststudium angefertigt und auf Ilias abgelegt.

Übungsprotokolle

Bitte geben Sie hier Ihre Übungsprotokolle ab.

Diese gilt es jeweils bis zum angegebenen Termin abzugeben,

und

Angewandte FEM in der Statik	Übungsprotokol
Ubungsprotokoll	Name:
Übungsaufgabe:	Datum:
A. Idealisierung (Vereinfachungen, Dimensionalität,	Randbedingungen, Lasten, etc.)
B. Modellgenerierung und Analyse (Geometrie, Ele	mentwahl, Vernetzung, Verfahren, etc.)
C. Ergebnisse (max. Deformationen, max. Spannung	gen, Reaktionskräfte, etc.)
D. Validierung (Plausibilität, Verifikation, etc.)	
D. Validierung (Frausibilität, Vernikation, etc.)	
E. Schlussfolgerungen (Erkennthisse, Leamings, et	c.)
F. Offene Punkte? Was blieb unklar?	
Hochschule Luzern – Technik & Architektur	R. Baumanr

Testatbedingungen

Bearbeitung eines kleinen FEM-Projektes und anschliessenden Test bestanden.

Ausgabe Arbeit: 24.11.2016

Test: 15.12.2016

Autor(en)	Titel	Verlag	Jahr
Argyris, J., Mlejnek, H. P.	Die Methode der Finiten Elemente	Vieweg	1976
Bathe, K.J.	Finite Elemente Methoden	Springer	2002
Fröhlich, P.	FEM-Leitfaden - Einführung und praktischer Einsatz	Springer	1995
Gebhardt, Ch.	ANSYS DesignSpace – FEM-Simulation für Konstrukteure	Hanser	2009
Gebhardt, Ch.	Praxisbuch FEM mit Ansys Workbench	Hanser	2011
Klein, B.	FEM – Grundlagen und Anwendungen der Finite-Element- Methode (kann von <u>www.springerlink.com</u> mit HSLU-Account heruntergeladen werden)	Vieweg	2003
Müller, G., Groth C.	FEM für Praktiker – Band 1: Grundlagen	Expert	2002
Müller, G., Groth C.,	FEM für Praktiker – Band 2: Strukturdynamik	Expert	2002
Müller, G., Groth C.	FEM für Praktiker – Band 3: Temperaturfelder	Expert	2001
Steinbuch, R.	Simulation im konstruktiven Maschinenbau	Carl-Hanser	2004
Zienkiewicz, O. C.	The Finite Element Method	McGraw-Hill	2000
Nasdala, L.	FEM-Formelsammlung Statik und Dynamik (kann von www.springerlink.com mit HSLU-Account heruntergeladen werden)	Vieweg	2010

- Allgemeine Einführung
- Konzept der FEM
- Ablauf von Analysen und Grundregeln
- Modellbildung und Idealisierung
- Handhabung des Ansys-Programms
- Lineare und nichtlineare Strukturanalysen
- viele, viele Übungen

SW	Inhalt
1	Einführung in die FEM
2	Konzept der FEM
3	Idealisierung und Linienmodelle
4	Ebener Spannungszustand (ESZ)
5	Vernetzung und Parametrierung
6	Ebener Verzerrungszustand (EVZ)
7	Axialsymmetrie
8	Volumenmodellierung und CAD-Import
9	Schalenmodellierung
10	Kontaktmodellierung
11	Submodelling-Technik
12	Materialnichtlinearität
13	Eigenwerbeulen
14	Geometrische Nichtlinearität

Modul-Lernziele

- Sie haben einen Überblick über die FEM und kennen die Möglichkeiten sowie die Risiken.
- Sie kennen die Grundlagen der Modellbildung mit FEM und können FE-Analysen planen und strukturieren.
- Sie können Strukturkomponenten praxis- und beanspruchungsgerecht idealisieren und strukturmechanische FE-Analysen mit einem kommerziellen FE-Programm durchführen.
- Sie verstehen es, die Resultate zu beurteilen und auf Richtigkeit zu überprüfen.
- Sie sind aufgrund des erworbenen Grundwissens in der Lage Ihren Kenntnisstand selbständig für komplexere und umfassendere Problemstellungen aus der Statik zu erweitern.

Motivation

Hochschule Luzern
Technik & Architektur

- Einfache Berechnungsmethoden lassen sich in den Taschenbüchern der Ingenieurwissenschaften nachschlagen.
- Eine Anwendung dieser wenig zeitaufwendigen Methoden eignet sich deshalb vor allem zur Grobdimensionierung.
- ♣ Von besonderem praktischen Wert ist, dass diese einfachen Methoden oft auf geschlossen lösbaren analytischen Gleichungen beruhen.

Motivation

Hochschule Luzern
Technik & Architektur

Deformationen? Spannungen?

. . .

Komplizierte Berechnungsmethoden, die einen größeren Zeitaufwand benötigen führen dagegen im allgemeinen auf numerische Lösungen.

- ♣ FDM: Finite Differenzen Methoden auf der Grundlage von Differenzenverfahren
- **FVM:** Finite Volumen Methoden auf der Grundlage von Bilanzgleichungen für strömungstechnische Aufgaben
- Finite Elemente Methoden für nahezu alle Ingenieuraufgaben
- **BEM:** Boundary Elemente Methoden teilweise alternativ zu FEM-Programmen
- MKS: Mehrkörper-Simulationsprogramme für Bewegungs- und Schwingungsaufgaben

Was ist FEM?

Hochschule Luzern
Technik & Architektur

Lernstopp

FEM – Finite Element Methode

Math.: ein numerisches Verfahren zur Lösung von partiellen Differentialgleichungen, wie z.B.

$$\frac{\partial^2 u_x}{\partial x^2} + \frac{1+\nu}{2} \frac{\partial^2 u_y}{\partial x \partial y} + \frac{1-\nu}{2} \frac{\partial^2 u_x}{\partial y^2} = 0$$
$$\frac{\partial^2 u_y}{\partial y^2} + \frac{1+\nu}{2} \frac{\partial^2 u_x}{\partial y \partial x} + \frac{1-\nu}{2} \frac{\partial^2 u_y}{\partial x^2} = 0$$

die in ein algebraisches Gleichungssystem überführt werden:

$$[K]\{u\} = \{F\}$$
Matrix \longrightarrow Vektorer

FEM – Finite Element Methode

Allg.: Der Grundgedanke besteht darin, das Tragwerk (oder Gebiet) in viele endliche (finite) Elemente aufzuteilen, die an den Elementrändern verknüpft sind. Für die gesuchte Funktion (z.B. Verschiebungen, Temperatur, etc.) werden Ansätze gewählt, die nur in den einzelnen Elementen definiert sind und deren unbekannten Faktoren die Verschiebungen bzw. Temperatur an den Elementknoten darstellen.

Baustein => Finite Element

Struktur => Analyse

Historische Entwicklung

Die Kuppel der Dresdner Frauenkirche vor ihrer Zeratörung (links) und im FEM-Modell

FEM1

FEM2

lineare Elastostatiknichtlineare Elastostatik	 Hooke'sches Materialverhalten (σ = E · ε) nichtlineares Materialverhalten (Plastizität) geometrisch nichtlineare Probleme (Instabilitätsprobleme, grosse Verschiebungen bei kleinen Dehnungen)
lineare Elastodynamik	 impulsartige grosse Verformungen (Crash) Umformprozesse (IHU) Eigenschwingungen
nichtlineare Elastodynamik	 freie und erzwungene Schwingungen zufallserregte Schwingungen zeit- und verschiebungsabhängige Kräfte Stabilität, Kreiselbewegung Explosion
ElastohydrodynamikErmüdungsfestigkeitstatische und dynamische Aeroelastizität	Schmierfilme Lebensdauer, Risswachstum elast. Strukturverhalten unter Anströmung
lineare und nichtlineare Thermoelastizität Wärmeübertragungs- probleme	mechanische Beanspruchung unter hohen Temperaturen stationäre und instationäre Wärmeleitung Sickerströmung, Geschwindigkeits- Druck- und
 Flüssigkeitsströmungen Elektrotechnik Akustik Giesstechnologie Multiphysik 	Temperaturfelder flüssiger Medien - elektromagnetische Felder - Schalldruckverteilung, Druckstösse - Spritz- und Druckgiessen, Schwerkraftgiessen - gekoppelte Strömung, Temperatur mit Elastik

Lernstopp

- Verkürzung der Entwicklungszeiten
- Reduktion von Herstellkosten und Einsparung von Ressourcen
- Innovation und Kreativität
- Erzielung höherer Qualität
- Erfüllung zunehmend strengerer Normen

TRADITIONELL Mehrere Redesignschleifen-Detailkonstruktion **Entwurf** Prototyp Versuch Mehrere Redesignschleifen Marktforschung Spezifikation Produkt Konzeption Kostenkalkulation **SIMULATION** Entwurf, Prototyp Versuch Detailkonstruktion Zeiteinsparung **Simulation**

Stand-alone-Systeme

Beispiele

Unigraphics, Catia, ProEngineer, Autocad, etc.

Direkt: Parasolid, UG, etc.

Indirekt: IGES, STEP, DXF, etc.

Ansys GUI, Patran, Medina, FEMAP, etc.

Ansys, Nastran, Marc, Abaqus, LS-Dyna, etc.

Ansys GUI, Patran, Medina, FEMAP, LS-Post, etc.

^{*} CAE - Computer Aided Engineering

Integrierte Systeme, z.B. NX

Ideal für konstruktionsbegleitende

Berechnungen unter einfachen Bedingungen
(z.B. linear)

Vorteile:

- Zugriff auf Parametrik
- Keine Schnittstellenverluste
- Eine Oberfläche

Nachteile:

- Komplexe Rand- und Anfangsbed. häufig nicht möglich
- selten komplexe
 Materialmodelle
- Gefahr: Black Box-Anwendungen

Benutzer

Idealisierung

- CAD-Modell abstrahieren (Geometrie vereinfachen)
- Theorie auswählen (linear, zeitabhängig, Belastung, Randbedingungen)

Preprocessing

- Elementgeometrie festlegen:
 - Querschnittsdaten
 - Trägheitsmomente
 - Knotenpunktexzentrizitäten
- Materialeigenschaften eingeben:
 - Dichte
 - E-Modul
 - Querkontraktionszahl
- Vernetzen:
 - geeignete Elemente wählen
 - Geometrie definieren
 - Netzkontrollparameter festlegen
 - Netz generieren
- Netz kontrollieren:
 - Seitenverhältnis der Elemente
 - Flächennormale der Schalenelemente
 - Koordinatensystem der Balkenelemente
 - doppelte Knoten löschen
- · Randbedingungen festlegen:
 - Symmetriebedingungen definieren
 - äussere Lasten aufbringen

Programm

Analyse

- Elementsteifigkeiten erstellen
- · Struktursteifigkeit aufbauen
- Lastvektor(en) erstellen
- Gleichungssystern aufstellen und
- Randbedingungen einbauen
- Gleichungssystern auflösen nach den unbekannten Verschiebungen
- Elementverschlebungen bestimmen
- Dehnungen in Elementen
- Spannungen in Elementen

Benutzer

Postprocessing

- Auswertung der Ergebnisse:
 - farbschattierte Bilder
 - Höhenlinienplots
 - Momentenverläufe
 - Diagramme
 - Tabellen
- Resultate verifizieren

......

- Resultate validieren
- Dokumentieren
- Nachgelagerte T\u00e4tigkeiten z.B. Fatigue-Analysen

Unterlagen zu Ansys auf Ilias

Selbststudium

Im Skript aus Kapitel 1 bis 3 die wesentlichen Punkte der Einführung nachlesen.

- Lesen Sie im Artikel aus dem Spektrum der Wissenschaften den Abschnitt "Finite Elemente: die Idee".
- Verschaffen Sie sich einen Überblick zu ANSYS mit Hilfe der bereitgestellten Unterlagen.