16. Еліпс. Парабола. Гіпербола

16.1. Геометричний зміст алгебричних рівнянь у ПДСК на площині

В аналітичній геометрії передусім вивчають лінії, які у ПДСК мають алгебричні рівняння, приміром:

$$ax + by + c = 0;$$
 (16.1)

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0. {(16.2)}$$

Рівняння (16.1) є рівнянням 1-го порядку (коефіцієнти його можуть бути довільні, але хоча б один з коефіцієнтів a, b не дорівнює нулю); рівняння (16.2) ϵ рівнянням 2-го порядку (хоча б один з коефіцієнтів a,b чи cмає бути ненульовим.

Алгебричні рівняння можуть визначати: реальні криві, сукупності кривих, точки (вироджені криві) або порожню множину («уявні» криві).

Твердження 16.1. Лінія, що має алгебричне рівняння n-го степеня у ПДСК, у будь-якій іншій ПДСК має також алгебричне рівняння n-го степеня.

Із цього твердження випливає, що алгебричний характер рівняння і його порядок є властивостями, притаманними самій лінії, тобто вони не зв'язані з вибором системи координат (інваріантні щодо системи).

Означення 16.1. Лінією 2-го порядку на площині називають множину точок площини, прямокутні координати (x;y) яких справджують алгебричне рівняння 2-го порядку:

$$\boxed{a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_{13}x+2a_{23}y+a_{33}=0,}$$
 де a_{11},a_{12},a_{22} — не рівні разом нулю.

До кривих 2-го порядку належать: еліпс, парабола та гіпербола. Окремими випадком еліпса ϵ коло.

16.2. Еліпс

Еліпсом називають криву на площині, яка в деякій ПДСК має рівняння

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \ge b > 0.$$
 (16.3)

Це рівняння називають *канонічним рівнянням* еліпса, а систему — *ка*нонічною системою еліпса.

Якщо a=b, рівняння еліпса переходить у рівняння кола з центром у точці O радіусом a.

Еліпс можна задати параметричними рівняннями:

$$\begin{cases} x = a\cos t, \\ y = b\sin t, \end{cases} t \in [0, 2\pi).$$
 (16.4)

3 рівнянь еліпса випливає, що:

- 1) еліпс міститься у прямокутнику $\{(x,y): \big|x\big| \le a, \big|y\big| \le b\}$ (рис. 16.1);
- 2) осі Ox і Oy є осями симетрії еліпса, а точка O його центром симетрії, тобто якщо точка $M_0(x_0;y_0)$ належить еліпсу, то й точки $(-x_0;y_0)$, $(-x_0;-y_0)$ та $(x_0;-y_0)$ також йому належать;
- 3) еліпс перетинає осі координат у точках $A_1(-a;0), A_2(a;0),$ $B_1(0;-b),\ B_2(0;b);$

Еліпс із рівнянням (16.3) можна одержати стисканням кола $x^2+y^2=a^2$ вздовж осі Oy з коефіцієнтом $\frac{b}{a}$ (рис. 16.2).

Рис. 16.1

Рис. 16.2

Із п. 2) випливає, що еліпс із точністю до знаків (тобто орієнтації осей) визначає свої канонічні координати, з якими, за умови, що b < a зв'язані такі характеристики (рис. 16.3):

число a — велика піввісь;

число b — мала піввісь;

число
$$c = \sqrt{a^2 - b^2}$$
;

число $2c = \left| F_1 F_2 \right|$ — фокусна віддаль;

число
$$\varepsilon=rac{c}{a}=\sqrt{1-\left(rac{b}{a}
ight)^2}$$
 — ексцентри-

cumem
$$(0 \le \varepsilon < 1)$$
;

число
$$p=rac{b^2}{a}$$
 — фокальний параметр;

вісь абсцис — велика (фокальна) вісь;

вісь ординат — мала вісь;

точка O(0;0) — *центр*;

точки $(\pm a;0),(0;\pm b)$ — вершини;

точки $(\pm c;0)$ — фокуси;

прямі
$$x=\pm \frac{a}{\varepsilon}, \varepsilon \neq 0$$
 — директриси.

Рис. 16.3

Фокус $F_2(c;0)$ і директрису $x=\frac{a}{\varepsilon}$ називають *правими*, а фокус

$$F_1(-c;0)$$
 та директрису $x=-rac{a}{arepsilon}$ — лівими.

Для будь-якого кола $b=a, c=0, \varepsilon=0, p=a$ фокуси збігаються з центром, директриси не означені.

Віддалі будь-якої точки M(x;y) еліпса від фокусів називають фокальними радіусами цієї точки:

$$\begin{aligned} \left| F_1 M \right| &= a + \varepsilon x = r_1; \\ \left| M F_2 \right| &= a - \varepsilon x = r_2. \end{aligned}$$

Зауваження 16.1. Еліпс є множиною точок, сума віддалей яких від фокусів стала і більша за віддаль між фокусами (рис. 16.3):

$$r_1 + r_2 = 2a > 2c.$$

Цю властивість еліпса називають фокальною.

16.3. Парабола

Параболою називають криву на площині, яка в деякій ПДСК має рівняння

$$y^2 = 2px, p > 0. (16.5)$$

Рівняння (16.5) називають *канонічним рівнянням* параболи, а ПДСК канонічною ПДСК параболи.

3 рівняння (16.5) параболи випливає, що:

- 1) парабола розташована у правій півплощині $x \ge 0$ (рис. 16.4);
- 2) вісь Ox вісь симетрії;
- 3) парабола перетинає вісь абсцис у точці O(0;0).

Із пп. 2) та 3) випливає, що з точністю до орієнтації осі ординат парабола визначає свої канонічні координати, з якими зв'язані такі характеристики (рис. 16.4):

число $p - \phi$ окальний параметр;

$$\frac{p}{r}$$
 число $\frac{p}{2}$ — фокусна віддаль; вісь абсцис — фокальна вісь; точка $A(0;0)$ — вершина;

точка
$$A(0;0)$$
 — вершина;

точка
$$\left(\frac{p}{2};0\right)$$
 — фокус;

пряма
$$x = -\frac{p}{2}$$
 — директриса.

Ексцентриситет параболи $\varepsilon = 1$. Фокальний радіус $r = x + \frac{p}{2}$.

Зауваження 16.2. Парабола ϵ множиною точок, які рівновіддалені від фокуса і директриси (рис. 16.4):

$$r = d$$
.

16.4. Гіпербола

Гіперболою називають криву на площині, яку в деякій ПДСК задає рівняння

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a, b > 0.$$
 (16.6)

Рівняння (16.6) називають *канонічним рівнянням* гіперболи, а цю ПДСК — *канонічною ПДСК* гіперболи.

З канонічного рівняння гіперболи випливає, що гіперболу можна задати параметричними рівняннями:

$$\begin{bmatrix}
x = \pm a \operatorname{ch} t, \\
y = b \operatorname{sh} t, t \in \mathbb{R}
\end{bmatrix}$$
afo
$$\begin{bmatrix}
x = \frac{a}{2} \left(t + \frac{1}{t}\right), \\
y = \frac{b}{2} \left(t - \frac{1}{t}\right), |t| \ge 1.
\end{bmatrix}$$

3 рівняння (16.6) також випливає:

- 1) для всіх точок гіперболи $|x| \ge a$, тобто гіпербола розташована за межами смуги $\{(x,y): |x| < a\}$ (рис. 16.5);
- 2) осі Ox та Oy є осями симетрії гіперболи, а точка O її центром симетрії;
- 3) гіпербола перетинає лише вісь абсцис у точках $A_1(-a;0), A_2(a;0);$

- 4) гіпербола має асимптоти $y = \pm \frac{b}{a}x$.
- Із п. 2) випливає, що гіпербола з точністю до знаків (тобто орієнтації осей) визначає свої канонічні координати, з якими зв'язані такі характеристики (рис. 16.6):

число
$$a - \partial i \tilde{u} c h a n i в в i c ь;$$

число
$$b$$
 — уявна піввісь;

число
$$c = \sqrt{b^2 + a^2}$$
;

число
$$2c = \left|F_1F_2\right|$$
— фокусна віддаль;

число
$$\varepsilon=rac{c}{a}=\sqrt{1+\left(rac{b}{a}
ight)^2}$$
 — ексцентриси-

mem
$$(\varepsilon > 1)$$
;

число
$$p=rac{b^2}{a}$$
 — фокальний параметр; вісь абсцис — дійсна (фокальна) вісь;

Рис. 16.6

вісь ординат — уявна вісь;

точка O(0;0) — *центр*;

точки $(\pm a; 0)$ — вершини;

точки $(\pm c; 0)$ — фокуси;

прямі $x=\pm \frac{a}{\varepsilon}, \varepsilon \neq 0$ — директриси.

Лівий та правий *фокальні радіуси*:

$$r_{1} = \begin{cases} a + \varepsilon x, & x > a, \\ -a - \varepsilon x, & x < -a; \end{cases} r_{2} = \begin{cases} -a + \varepsilon x, & x > a, \\ a - \varepsilon x, & x < -a; \end{cases}$$
$$r_{1} - r_{2} = \begin{cases} 2a, & x > a, \\ -2a, & x < -a \end{cases} \Rightarrow |r_{1} - r_{2}| = 2a.$$

Зауваження 16.3. Гіпербола ϵ множиною точок, модуль різниці віддалей яких від фокусів ϵ сталою величиною, меншою за віддаль між фокусами (рис. 16.6).

$$||r_1 - r_2|| = 2a < 2c.$$

Цю властивість гіперболи називають фокальною.

16.5. Спільні властивості кривих 2-го порядку

Фокально-директоріальна властивість

Нехай точка M(x;y) належить лінії 2-го порядку.

1. Віддалі від точки M до лівої та правої директрис еліпса (див. рис. 16.3):

$$d_1 = \left| x + \frac{a}{\varepsilon} \right| = \frac{\left| \varepsilon x + a \right|}{\varepsilon} = \frac{r_1}{\varepsilon}; d_2 = \left| x - \frac{a}{\varepsilon} \right| = \frac{\left| \varepsilon x - a \right|}{\varepsilon} = \frac{r_2}{\varepsilon}.$$

Отже,

$$\boxed{\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon < 1.}$$

2. Віддаль точки M до директриси параболи (див. рис. 16.4)

$$d = x + \frac{p}{2} = r.$$

Отже,

$$\frac{r}{d} = \varepsilon = 1.$$

3. Для гіперболи правдиве співвідношення (рис. 16.6):

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon > 1.$$

Зауваження 16.4. Еліпс, парабола, гіпербола ϵ множинами точок, для яких відношення фокального радіуса r до віддалі точки до відповідної директриси d ϵ сталим і дорівню ϵ ексцентриситету ϵ .

Оптичні властивості кривих

Рис. 16.7

- **1.** Якщо помістити в один з фокусів еліпса точкове джерело світла, то всі промені після відбиття від еліпса зійдуться в іншому його фокусі (рис. 16.7).
- **2.** Якщо помістити у фокус параболи точкове джерело світла, то всі промені, відбиті від параболи, спрямуються паралельно фокальній осі параболи (рис. 16.8).

Ця властивість обґрунтовує форму параболічних антен, дзеркал для прожекторів тощо.

3. Якщо помістити в один з фокусів гіперболи точкове джерело світла, то кожний промінь після відбиття від гіперболи начебто виходить з іншого фокуса (рис. 16.9).

Рис. 16.9

Рівняння кривих 2-го порядку в полярних координатах

Рис. 16.8

Якщо полюс полярної системи координат вибрати для еліпса в лівому фокусі, параболи — у фокусі, гіперболи — у правому фокусі; полярною віссю вибрати фокальну вісь і спрямувати її зліва направо (рис. 16.10), то еліпс, парабола та права гілка гіперболи в полярних координатах мають рівняння

