Дифференцируемый алгоритм поиска архитектуры модели с контролем её сложности

Константин Дмитриевич Яковлев

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 874

Эксперт: В.В. Стрижов

Консультант: О.С. Гребенькова, О.Ю. Бахтеев

Цель исследования

Цель

Предложить метод поиска архитектуры модели глубокого обучения с контролем сложности модели.

Проблема

Семейство моделей глубокого обучения имеет избытычное число параметров. Использование моделей, работающих с дискретной архитектурой, является вычислительно сложной задачей.

Метод решения

В основе метода лежит дифференцируемый алгоритм поиска архитектуры (DARTS). Гиперсеть выступает в качестве функции релаксации. Гиперсеть – это модель, генерирующая параметры другой модели.

DARTS с использованием линейной гиперсети

Смешанная операция:

$$\hat{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \alpha_o^{(i,j)} o(x)$$

Линейная гиперсеть задает параметры архитектуры:

$$\alpha = \lambda b_1 + b_2,$$

Основная литература

- Hanxiao Liu and Karen Simonyan and Yiming Yang. *DARTS:* Differentiable Architecture Search. CoRR, 2018.
- David Ha and Andrew M. Dai and Quoc V. Le. *HyperNetworks*. CoRR, 2016.
- Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search. CoRR, 2019.

Постановка задачи поиска архитектуры модели

- **Узлы**: $\{x^{(i)}\}_{i=1}^N$ узлы ориентированного ациклического графа.
- ▶ Значение в текущем узле:

$$x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)}) \quad o^{(i,j)} \in \mathcal{O}$$

Смешанная операция:

$$\hat{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \alpha_o^{(i,j)} o(x)$$

Вектор параметров архитектуры:

$$\alpha = [\alpha^{(i,j)}]$$

Линейная гиперсеть задает параметры архитектуры

Гиперсеть

$$G: \Lambda \times \mathbb{U} \to \mathbb{A}$$
.

 \mathbb{A} – пространство параметров архитектуры, \mathbb{U} – множество параметров гиперсети. Λ – множество параметров, контролирующие сложность модели.

Вектор параметров архитектуры определяется гиперсетью:

$$\alpha = \lambda b_1 + b_2, \quad [b_1, b_2]^{\top} \in \mathbb{U}, \quad \lambda \in \Lambda = \mathbb{R}, \quad \alpha \in \mathbb{A}.$$

Задача оптимизации:

$$egin{aligned} \min_{lpha} \mathcal{L}_{\mathsf{val}}(\mathsf{w}^*, lpha), \\ \mathrm{s.t.} \quad \mathsf{w}^* &= \arg\min_{\mathsf{w}} \mathcal{L}_{\mathsf{train}}(\mathsf{w}, lpha). \\ \mathcal{L}_{\mathsf{train}}(w, lpha), \ \mathcal{L}_{\mathsf{val}}(w, lpha) - \mathsf{кросс-энтропия}. \end{aligned}$$

Алгоритм DARTS

- 1: Для каждого узла создадим смешанную операцию $\hat{o}^{(i,j)}$, параметризованную $\alpha^{(i,j)}$
- 2: while алгоритм не сошелся do
- 3: обновить α : $\nabla_{\alpha} \mathcal{L}_{\text{val}}(\mathsf{w} \xi \nabla_{\mathsf{w}} \mathcal{L}_{\text{train}}(\mathsf{w}, \alpha), \alpha)$
- 4: обновить веса w: $\nabla_{\mathsf{w}} \mathcal{L}_{\mathsf{train}}(\mathsf{w}, \alpha)$
- 5: end while
- 6: получить окончательную архитектуру из полученного lpha

Получение дискретной архитектуры:

$$o^{(i,j)} = \arg \max_{o \in \mathcal{O}} \alpha_o^{(i,j)}.$$

Вычислительный эксперимент

Цель

Получение зависимости качества работы предложенного метода от параметра гиперсети $\lambda \in \{10^{-4},10^{-3},10^{-2},10^{-1}\}.$ Эксперимент проводится на выборке MNIST.

Критерии качества

$$Precision = \frac{TP}{TP + FP}.$$

В качестве $\mathcal{L}_{\mathsf{train}}(\mathsf{w}, \alpha), \; \mathcal{L}_{\mathsf{val}}(\mathsf{w}, \alpha)$ рассматривается кросс-энтропия.

Kaчество DARTS с использованием гиперсети

Зависимость качества модели от числа прошедших эпох для разных параметров λ гиперсети.

Для $\lambda=10^{-1}$ качество модели заметно хуже, чем для других значениях λ . Также для каждой эпохи и для каждого $\lambda\in\{10^{-4},10^{-3},10^{-2}\}$ качество модели практически не меняется.

Сравнение предложенного метода и DARTS с L_1 регуляризатором

Значения качества моделей на валидации.

Модель	Precision, %			
	эпоха 30	эпоха 50	эпоха 70	эпоха 100
Гиперсеть, $\lambda=10^{-1}$	96,3500	95,4800	94,1200	90,6333
Гиперсеть, $\lambda=10^{-2}$	95,8900	96,7167	91,0633	95,3133
Гиперсеть, $\lambda=10^{-3}$	95,9133	96,6200	90,6400	95,6400
Гиперсеть, $\lambda=10^{-4}$	95,9733	96,5367	90,4067	95,7533
DARTS+ L_1 , $\lambda = 10^{-1}$	86,6000	87,3967	89,3433	89,5067
DARTS+ L_1 , $\lambda = 10^{-2}$	84,1333	90,6333	91,9100	92,7333
DARTS+ L_1 , $\lambda = 10^{-3}$	97.6533	97.5800	98.0833	97,9467
DARTS+ L_1 , $\lambda = 10^{-4}$	98,5800	98,8867	98,9467	99,2400

Для модели DARTS с использованием гиперсети качество на валидации уменьшается с ростом номера эпохи.

Заключение

- Предложен метод, позволяющий контролировать сложность модели в процессе поиска архитектуры.
- Метод обладает тем свойством, что изменение сложности итоговой модели происходит заменой параметра λ гиперсети без дополнительного обучения.
- Также результаты показывают, что данный метод сопоставим по качеству на валидационной выборке с DARTS.