Computer Programming 143 – Lecture 2 Introduction to module

Electrical and Electronic Engineering Department University of Stellenbosch

19 July 2016

Corné van Daalen Thinus Booysen Willie Smit Willem Jordaan

(E&E Eng. Dept. US)

CP143 Lecture 2

19 July 2016 1 / 18

Module Overview

-&F Eng. Dept. US)

CP143 Lecture 2

10 July 2016 2 / 19

Lecture Overview

- Introduction (1.1)
- 2 Computer Systems (1.2-1.3)
- 3 Programming Languages (1.4-1.9)
- 4 Why C?

1.1 Introduction

We will learn

- The C programming language
- Structured programming and proper programming techniques

This book also covers

• C++: Chapter 15 – 24 introduce the C++ programming language

This course is appropriate for

- Technically oriented people with little or no programming experience
- Experienced programmers who want a deep and rigorous treatment of the language

&E Eng. Dept. US) CP143 Lecture 2 19 July 2016 3 / 18 (E&E Eng. Dept. US) CP143 Lecture 2 19 July 2016

1.2 Computers: Hardware and Software

Computer

- Device capable of performing computations and making logical decisions
- Computers process data under the control of sets of instructions called computer programs

Hardware

- A computer consists of various devices
- Keyboard, screen, mouse, disks, memory, CD-ROM, and processing units

Software

Programs that run on a computer

CPU

Disk

controller

System bus

Display

controller

Keyboard

controller

1.2.2 Computer Organization II

Six logical units in every computer:

- Input unit (Keyboard, mouse)
 - Obtains user input information from input devices
- Output unit (Screen, printer)
 - Outputs user or processed information and results
- Arithmetic Logic Unit (ALU)
 - Performs arithmetic calculations and logic decisions
- Central processing unit (CPU)
 - Supervises and coordinates the other sections of the computer
- Memory unit (RAM)
 - Volatile, rapid access, low capacity, and expensive
 - Stores program and input information temporarily
- Secondary storage unit (Disks)
 - Cheap, long-term, high-capacity storage
 - Stores inactive programs and data

1.4 Machine Languages, Assembly Languages, and High-level Languages I

Three types of programming languages:

1.2.2 Computer Organization I

Memory

controller

- Machine languages
 - Strings of numbers giving machine specific instructions
 - Example:
 - +1300042774
 - +1400593419
 - +1200274027
- Assembly languages
 - English-like abbreviations representing elementary computer operations (translated via assemblers)
 - Example:

LOAD **BASEPAY** ADD **OVERPAY**

STORE GROSSPAY

1.4 Machine Languages, Assembly Languages, and High-level Languages II

Migh-level languages

- Codes similar to everyday English
- Use mathematical notations
- Translated via compilers
- Example:

grossPay = basePay + overTimePay

1.6 The C Standard Library

programs consist of pieces/modules called functions

- A programmer can create his own functions
 - Advantage: the programmer knows exactly how it works
 - Disadvantage: time consuming
- Programmers will often use the C library functions
 - Use these as building blocks
 - Advantages: saves time
 - Disadvantages: must know exactly how the library work
- Avoid re-inventing the wheel
 - If a pre-made function exists, generally best to use it rather than write your own
 - Library functions carefully written, efficient, and portable

1.5 History of C

- Evolved by Ritchie from two previous programming languages, BCPL and B
- Used to develop UNIX
- Used to write modern operating systems
- Hardware independent (portable)
- By late 1970's C had evolved to "Traditional C"

Standardization

- Many slight variations of C existed, and were incompatible
- Committee formed to create a "unambiguous, machine-independent" definition
- Standard created in 1989, updated in 1999

Fortran, COBOL, Pascal en Ada (Structured Programming)

In the 1960's most software development companies were experiencing major problems during development

- Projects were never completed on time
- Projects always went over budget
- Final products were never reliable
- Research lead to the development of structured programming

What is structured programming?

- It is a disciplined approach to programming where programs can be:
 - more reliable
 - more understandable
 - provable as correct
 - reused
- Pascal (1971) is a language that was developed directly from the research into structured programming

1.8 Key software trend: Object technology I

1.9 Typical C program development environment I

Writing Code as Objects

- started in the 1990's
- simplified the development of code "objects"
- closely resembles real world objects
- improved code re-usability
- eliminates the process of having to "start from scratch"
- produces code that is easier to understand and maintain

Typical C systems consists of many parts, they include:

- a program development environment
- the language
- the C Standard Library

C programs typically go through six phases to be executed:

- edit
- pre-process
- compile
- link
- load
- execute

(E&E Eng. Dept. US

CP143 Lecture 2

19 July 2016 13 / 18

(E&E Eng. Dept. U

CP143 Loctur

10 July 2016 14 / 19

1.9 Typical C program development environment II

Edit Pre-process and compile Load and execute Link Object file Source file .C Object file Source file Executable .exe Source file Object file .C Header file Library file

Why C?

Why do we use C in this module?

- Programming principles are easy to learn in C
- Provides a good base from which to learn higher level languages (C++/Java)
- Essential for embedded applications
- Many libraries for mathematical and scientific applications available

(E&E Eng. Dept. US) CP143 Lecture 2 19 July 2016 15 / 18 (E&E Eng. Dept. US) CP143 Lecture 2 19 July 2016 16

Today

Introduction to Computer Systems and Programming

- Introduction (1.1)
- Computer Systems (1.3-1.4)
- Programming Languages (1.5-1.10)
- Why C?

Next lecture

Introduction to C

First program

- Read Chapter 1
- ② Do Self-Review Exercises 1.1, 1.2
- **1.** Do Exercises 1.4, 1.5

(E&E Eng. Dept. U

CP143 Lecture 2

10 July 2016 17

(E&E Eng. Dept. II

CP143 Lecture

10 1010 2016 10 (10