CORRIGÉ DU DS 2 CCP 2008 - FILIÈRE MP - MATH 2

I. EXEMPLES

1. (a) Le polynôme caractéristique de $M(\alpha)$ est

$$\chi_{M(\alpha)}(X) = X^3 - (5 - \alpha)X^2 + (8 - 3\alpha)X - (4 - 2\alpha)$$

= $(X - 1)(X - 2)(X - (2 - \alpha)).$

Les racines de $\chi_{M(\alpha)}$ sont bien les éléments diagonaux de $M(\alpha)$.

Pour tout α , la matrice $M(\alpha)$ est une matrice à diagonale propre.

(b) Si $\alpha \neq 0$ et $\alpha \neq 1$ alors les valeurs propres de $M(\alpha)$ sont deux à deux distinctes, $M(\alpha)$ est diagonalisable. Si $\alpha = 0$ les valeurs propres sont 1 de multiplicité 1 et 2 de multiplicité 2.

$$\operatorname{rg}(M(0) - 2I_3) = \operatorname{rg}\begin{pmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} = 1$$
, la dimension de E_2 est donc 2 et $M(0)$ est diagonalisable.

Si $\alpha=1$ les valeurs propres sont 1 de multiplicité 2 et 2 de multiplicité 1.

$$\operatorname{rg}(M(1) - I_3) = \operatorname{rg}\begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} = 2$$
, la dimension de E_1 est donc 1 et $M(0)$ n'est pas diagonalisable.

 $M(\alpha)$ est diagonalisable si et seulement si $\alpha \neq 1$.

2. $\chi_A(X) = X^3 + X = X(X^2 + 1)$.

 χ_A n'est pas scindé sur $\mathbb R$ donc la matrice A n'est pas à diagonale propre.

3. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

$$\chi_A(X) = X^2 - (a+d)X + (ad - bc).$$

Soit
$$Q(X) = (X - a)(X - d) = X^2 - (a + d)X + ad$$
.

la matrice A est à diagonale propre si et seulement si $\chi_A = Q$, c'est à dire si et seulement si bc = 0.

 \mathcal{E}_2 est donc l'ensemble des matrices triangulaires.

II. TEST DANS LE CAS n=3

4. Pour une matrice à diagonale propre, le déterminant est égal au produit des éléments diagonaux.

Une matrice à diagonale propre est inversible si et seulement si ses éléments diagonaux sont tous non nuls

Il suffit de prendre une matrice triangulaire, non diagonale et inversible:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

5. Soit $A = (a_{ij})$ une matrice de $\mathcal{M}_3(\mathbb{R})$. A est une matrice à diagonale propre si et seulement si son polynône caractéristique est égal à $(X - a_{11})(X - a_{22})(X - a_{33})$

En développant ces deux polynômes et en identifiant leurs coefficients on trouve que

$$A$$
 est une matrice à diagonale propre si et seulement si
$$\det A = \prod_{i=1}^3 a_{ii} \text{ et } a_{12}a_{21} + a_{13}a_{31} + a_{23}a_{32} = 0$$

6. (a) import numpy as np

'''fonction booleenne qui recoit en argment une matrice carree de dimension 3 sous forme de liste de listes, et qui teste si c'est une matrice a diagonale propre.'''

Attention a la comparaison de deux resultats numeriques ! return(abs(np.linalg.det(M) - M[0][0] * M[1][1] * M[2][2]) < 1e-12 and \ M[0][1] * M[1][0] + M[0][2] * M[2][0] + M[2][1] * M[1][2] == 0)

III. EXEMPLES DE MATRICES PAR BLOCS

7. Soit
$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
. On note r et s les dimensions des matrices A et C .

Alors
$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & C \end{pmatrix} \cdot \begin{pmatrix} A & B \\ 0 & I_s \end{pmatrix}$$
.

En développant r fois par rapport à la première colonne, on montre que

$$\det \left(\begin{array}{cc} I_r & 0 \\ 0 & C \end{array} \right) = \det C$$

En développant s fois par rapport à la dernière ligne, on montre que

$$\det \left(\begin{array}{cc} A & B \\ 0 & I_s \end{array} \right) = \det A.$$

On a donc bien $\det M = \det A \det C$.

8. (a) Si $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ est une matrice par blocs de $\mathcal{M}_n(\mathbb{R})$, et si les matrices A et C sont des matrices carrées d'ordre r et s à diagonale propre, alors M est une matrice à diagonale propre.

En effet, d'après la question précédente,

$$\chi_M(X) = \det \left(\begin{array}{cc} XI_r - A & -B \\ 0 & XI_s - C \end{array} \right) = \det(XI_r - A) \det(XI_s - C) = \chi_A(X)\chi_C(X)$$

Les matrices A et C étant à diagonale propre, les valeurs propres de M sont ses éléments diagonaux.

On prend alors A = (1) (matrice à diagonale propre car triangulaire), B = (111) et $C = A_5$ (définie à la question 6, matrice à diagonale propre dont tous les termes sont non nuls)

On obtient
$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ 0 & -2 & 3 & 6 \end{pmatrix}$$

M est à diagonale propre et contient bien treize réels non nuls

(b) Soit $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ une matrice par blocs de $\mathcal{M}_4(\mathbb{R})$ où les matrices A, B et C sont des matrices de $\mathcal{M}_2(\mathbb{R})$ qui ne contiennent aucun terme nul.

De même qu'en a), $\chi_M(X) = \chi_A(X)\chi_C(X)$.

Posons
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $C = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

Si a ou d est valeur propre de A, alors P_A est scindé et tr A = a + d, les valeurs propres de A sont alors a et d, la matrice A est alors à diagonale propre et d'après la question 3. c'est une matrice triangulaire ce qui est impossible car la matrice A ne contient aucun terme nul.

Donc, les valeurs propres de A sont e et h et les valeurs propres de C sont a et d.

On en déduit
$$P_A(X) = (X - e)(X - h)$$
 et $P_C(X) = (X - a)(X - d)$.

En développant ces polynômes et en identifiant leurs coefficients, on obtient les relations:
$$\begin{cases} a+d=e+h \\ ad-bc=eh \\ eh-gf=ad \end{cases}$$

Il suffit de trouver des réels a, b, c, d, e, f, g et h tous non nuls vérifiant ces équations et de prendre une matrice B quelconque ne contenant aucun terme nul.

Par exemple:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}$

On obtient :
$$M = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -2 & -1 \end{pmatrix}$$
.

IV. QUELQUES PROPRIETES

9. On note $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$.

Les valeurs propres de A sont a_{11} , a_{22} ... a_{nn} .

Les valeurs propres de $aA + bI_n$ sont $a.a_{11} + b$, $a.a_{22} + b$... $a.a_{nn} + b$.

Ce sont les termes diagonaux de $aA + bI_n$,

 $aA + bI_n$ est donc une matrice à diagonale propre.

Les termes diagonaux et les valeurs propres d'une matrice et de sa transposée sont les mêmes, et ${}^t(aA+bI_n) = a^tA+bI_n$, a^tA+bI_n est donc une matrice à diagonale propre.

10. Soit $A \in \mathcal{E}_n$.

Pour $p \in \mathbb{N}^*$, on pose $U_p = A - \frac{1}{n}I_n$.

D'après la question précédente, U_p est une matrice à diagonale propre.

D'autre part, $\det U_p = P_A(\frac{1}{p})$ est nul si et seulement si $\frac{1}{p}$ est valeur propre de A. U_p est donc inversible sauf pour un nombre fini de valeurs de p.

Il existe donc un entier P_0 tel que la suite $(U_p)_{p\geq P_0}$ soit une suite d'éléments de G_n . Cette suite converge vers A.

Tout élément de \mathcal{E}_n est limite d'une suite d'éléments de G_n .

11. (a) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est une matrice réelle symétrique donc elle est diagonalisable et aussi trigonalisable, mais d'après la question 3., elle n'est pas à diagonale propre.

Une matrice trigonalisable n'est pas nécessairement à diagonale propre.

(b) Par définition, le polynôme caractéristique d'une matrice à diagonale propre est scindé, une telle matrice est donc trigonalisable.

Une matrice à diagonale propre est trigonalisable

(c) Soit $A \in \mathcal{M}_n(\mathbb{R})$

Si A est semblable à une matrice B à diagonale propre, alors $\chi_A = \chi_B$ et χ_B est scindé, donc χ_A est scindé.

Si χ_A est scindé, alors A est semblable à une matrice triangulaire supérieure, or toute matrice triangulaire est à diagonale propre donc A est semblable à une matrice à diagonale propre.

A est semblable à une matrice à diagonale propre si et seulement si χ_A est scindé.

12. Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$.

Comme toute matrice triangulaire est à diagonale propre, il suffit d'écrire A comme une somme de deux matrices triangulaires:

$$A = \begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & \cdots & \cdots & 0 \\ a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

Pour tout $n \geq 2$ il existe une matrice de $\mathcal{M}_n(\mathbb{R})$ qui n'est pas à diagonale propre, par exemple la matrice par blocs $M = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ avec $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Cette matrice s'écrit comme somme de deux matrices à diagonale propre, donc

 \mathcal{E}_n n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$.

V. MATRICES SYMETRIQUES ET MATRICES ANTISYMETRIQUES

13.
$$\operatorname{tr}(^{t}AA) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$
.

14. (a) A est une matrice réelle et symétrique donc il existe une matrice orthogonale P et une matrice diagonale D telles que $A = PD^tP$.

$$\operatorname{tr}({}^{t}AA) = \operatorname{tr}(PD^{t}PPD^{t}P)$$

$$= \operatorname{tr}(PDD^{t}P) (\operatorname{car}^{t}PP = I_{n})$$

 $= \operatorname{tr}(D^2)$ (car $PD^{2t}P$ semblable à D^2 et deux matrices semblables ont la même trace.)

Or
$$\operatorname{tr}({}^{t}AA) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$
 et $\operatorname{tr}(D^{2}) = \sum_{i=1}^{n} \lambda_{i}^{2}$, donc

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2}.$$

(b) Si de plus A est une matrice à diagonale propre, alors les valeurs propres de A sont a_{11} , a_{22} ... a_{nn} .

Donc
$$\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 = \sum_{i=1}^n a_{ii}^2$$
 et $\sum_{i=1}^n \sum_{\substack{j=1\\j\neq i}}^n a_{ij}^2 = 0$, la matrice A est une matrice diagonale.

Réciproquement, toute matrice diagonale est à diagonale propre.

Les matrices symétriques réelles à diagonale propre sont donc les matrices diagonales.

15. (a) A est antisymétrique, donc tous ses éléments diagonaux sont nuls et comme elle est à diagonale propre, son polynôme caractéristique est scindé et toutes ses valeurs propres sont nulles. On a donc $\chi_A(X) = X^n$ et par le théorème de Cayley-Hamilton $A^n = 0$.

$$({}^{t}AA)^{n} = (-AA)^{n} = (-1)^{n}A^{2n} = 0. \text{ Donc } \boxed{({}^{t}AA)^{n} = 0.}$$

(b) t(tAA) = tAA.

 tAA est une matrice réelle symétrique donc elle est diagonalisable.

 $({}^{t}AA)^{n} = 0$ donc toutes les valeurs propres de ${}^{t}AA$ sont nulles.

On en déduit AA = 0.

(c) De ce qui précède, on déduit que $\operatorname{tr}({}^tAA)=0$ donc $\sum_{i=1}^n\sum_{j=1}^na_{ij}^2=0.$

A est donc la matrice nulle.

VI. DIMENSION MAXIMALE D'UN ESPACE VECTORIEL INCLUS DANS \mathcal{E}_n

16. dim
$$\mathcal{A}_n = \frac{n(n-1)}{2}$$
.

17. Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ tel que l'on ait $F \subset \mathcal{E}_n$.

De la question 15., on déduit $F \cap \mathcal{A}_n = \{0\}$.

Donc dim F + dim A_n = dim $(F + A_n) \le \dim \mathcal{M}_n(\mathbb{R}) = n^2$

On en déduit $\dim F \leq n^2 - \dim \mathcal{A}_n = n^2 - \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$

$$\dim F \le \frac{n(n+1)}{2}.$$

Le sous-espace des matrices triangulaires supérieures est de dimension $\frac{n(n+1)}{2}$ et il est inclus dans \mathcal{E}_n .

La dimension maximale d'un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$ est donc $\frac{n(n+1)}{2}$.

18. On prend pour F l'ensemble des matrices M de la forme $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ avec

 $A\in\mathcal{M}_1(\mathbb{R}),\,B\in\mathcal{M}_{1,n-1}(\mathbb{R})$ et $C\in\mathcal{M}_{n-1}(\mathbb{R})$ triangulaire inférieure.

$$M = \begin{pmatrix} m_{11} & m_{12} & \cdots & \cdots & m_{1n} \\ 0 & m_{22} & 0 & \cdots & 0 \\ \vdots & m_{32} & m_{33} & \ddots & \vdots \\ \vdots & \vdots & & \ddots & 0 \\ 0 & m_{n2} & \cdots & \cdots & m_{nn} \end{pmatrix}$$

L'ensemble de ces matrices est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension $\frac{n(n+1)}{2}$ qui n'est pas constitué uniquement de matrices triangulaires.

Les matrices A et C sont à diagonale propre et d'après ce que l'on a vu dans la question 8., on en déduit que M est à diagonale propre et que donc $F \subset \mathcal{E}_n$.

4

On a déterminé un sous-espace vectoriel F de $\mathcal{M}_n(\mathbb{R})$ vérifiant $F \subset \mathcal{E}_n$, de dimension maximale mais tel que F ne soit pas constitué uniquement de matrices triangulaires.