Билет 62

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	Билет 62: пример ряда, которыи сходится равномерно и аосолютно, но не сходится	
	равномерно абсолютно. Признак Динни	1

0.1. Билет 62: Пример ряда, который сходится равномерно и абсолютно, но не сходится равномерно абсолютно. Признак Динни

Пример.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$$
 на $(0,1)$.

Равномерная сходимость: по признаку Лейбница с $b_n(x) = \frac{x^n}{n}$ Абсолютная сходимость: $\sum_{n=1}^{\infty} \frac{x^n}{n} \leq \sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$

Но этот ряд не сходится равномерно абсолютно.

Возьмём $\varepsilon = \frac{1}{10}$

$$\forall n \quad \exists x \in (0,1) \quad \sum_{k=n}^{\infty} \frac{x^k}{k} \ge n(\frac{x^{2n}}{2n}) = \frac{x^{2n}}{2} > \frac{1}{10}$$

Утверждение 0.1.

K - компакт.

$$\begin{cases} u_n \in C(K) & u_n \ge 0 \\ S(x) = \sum_{n=1}^{\infty} u_n(x) & u_n \in C(K) \end{cases}$$

 $\implies \sum u_n$ - равномерно сходится.

Доказательство.

помним, все ряды - функциональные

 $r_n = \sum_{k=n+1}^{\infty} u_k = S - S_n$ - убывают по n при фиксированном x. $r_n \rightrightarrows 0$?

Докажем, что $\forall \varepsilon > 0 \quad \exists n : \forall x \in K \quad r_n < \varepsilon$

Пусть такого n не существует. Тогда $\forall n \quad \exists x_n \in K : r_n(x_n) \geq \varepsilon$

 x_n - последовательность K. Тогда у неё есть сходящаяся подпоследовательность $x_{n_k} \to x_0$ (т.к. K - компакт)

Рассмотрим r_m .

 $n_k \ge m \implies \varepsilon \le r_{n_k}(x_{n_k}) \le r_m(x_{n_k}) \to r_m(x_0) \ge \varepsilon$ - верно при всех m.

Значит, $\sum u_n$ - расходится, что неверно. Значит, наше предположение неверно, и $r_n \Rightarrow 0$.