# Miscibilité partielle ou nulle à l'état liquide

C3 – Thermochimie – Chapitre 3

## I. Miscibilité nulle

# 1. Diagramme isobare

## 2. Analyse thermique



# II. Miscibilité partielle

## 1. Courbe de démixtion



# 2. Diagrammes isobare







# Miscibilité partielle ou nulle à l'état liquide

C3 – Thermochimie – Chapitre 3

#### III. La distillation

#### 1. Sans azéotrope

#### a. Distillation élémentaire



On fait chauffer le mélange liquide depuis M. En L, on créer une vapeur de composition  $y_1$  plus concentrée en composé 1. On condense cette vapeur séparément.

Le ballon s'est lui appauvri en composé 1.

#### 2. Avec azéotrope

- $z_{1 ini} > z_{A_z} \Rightarrow 1$  pur (ballon) et A<sub>z</sub> (vap)
- $z_{1 ini} < z_{A_z} \Rightarrow$  2 pur (ballon) et A<sub>z</sub> (vap)

## 4. Sous pression réduite

En faisant baisser la pression, on abaisse la température d'ébullition ce qui permet d'éviter de décomposer les molécules.

#### b. Distillation fractionnée



On applique plusieurs fois de suite la distillation simple dans une colonne à distiller.

Plus on monte dans la colonne, plus la température diminue, plus le liquide est concentré en composé 1.

# 3. Liquides non-miscibles (ex:hydrodistillation)

- $z_{1 ini} > z_H \Rightarrow 1$  pur (ballon) et H (vap)
- $z_{1 ini} < z_H \Rightarrow$  2 pur (ballon) et H (vap)

Quantités extraites :  $\frac{n_1^{l_1}}{n_2^{l_2}} =$