DC1

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07C 237/42, 237/44, A61K 31/165, 31/33, C07D 295/18, 295/20, 211/58, 211/46, 213/80, 209/48, C07C 271/16	A1	(11) International Publication Number: WO 96/41795 (43) International Publication Date: 27 December 1996 (27.12.96)
(21) International Application Number: PCT/JP (22) International Filing Date: 6 June 1996 (c	Factory, 1-6, Kashima 2-chome, Yodogawa-ku, Osaka-shi,	
(30) Priority Data: 9511694.3 9 June 1995 (09.06.95)	G	(81) Designated States: AU, CA, CN, HU, IL, JP, KR, MX, NZ SG, US, Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI FR, GB, GR, IE, T, T, LU, MC, NL, PT, SE).
(71) Applicant (for all designated States except US): FUJISAWA PHARMACEUTICAL CO., LTD. [JP/JP]; 4-7, Doshomachi 3-chome, Chuo-ku, Osaka-shi, Osaka 541 (JP).		

(72) Inventors: and

(75) Inventors/Applicants (for US only): SETOI, Hinyuki [PIPP]: 13-1, Namiki 4-thome, Tsaukub-shi, Inaraki 305 (IP). OHKAWA, Takehiko [IPIPP]: 944-2, Mukoshige, Ishigemachi, Yuki-gun, Danaki 30-27 (IP). ZENKOH, Tasuya [IPIPP]: 6-3-3-A101. Keyukidai, Moriyamachi, Kitasouma-gun, Danaki 30-20 (IP). SAWADA, Hitoshi [IPIPP]: 2-25-10, Matsushiro, Tsukuba-shi, Buraki 305 (IP). SATO. Kentaro [IPIPP]: 2-25-10, Matsushiro, Tsukuba-shi, Danaki 305 (IP). TANAKA, Hirokaza [IPIPP]: 3-10-21, Hanayashiki Souen, Takazuka-shi, Hyoco 665 (IP).

Published
With international search report.

(54) Title: BENZAMIDE DERIVATIVES AND THEIR USE AS VASOPRESSIN ANTAGONISTS

(57) Abstract

This invention relates to new benzamide derivatives having a vasopressis antagonistic activity, etc., and represented by general formula (0, wherin R¹ is it any optionally substituted with lower alkoxy, etc., R² is lower alky, etc., R² is it worked, etc., R² is it where the contractive alkoy, etc., R³ is hydrogen, etc., R⁴ is NH, etc., E is (a), etc., X is -CH-CH, -CH-N-, or S, and Y is CH or N, and pharmaceutically acceptable salts thereof, to processes for preparation thereof and to a pharmaceutical composition comprising the same.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	
AT	Austria	GE	Georgia		Malawi
AU	Australia	GN	Guinea	MX	Mexico
BB	Barbados	GR	Greece	NE	Niger
BE	Belgium	HII	Hungary	NL	Netherlands
BF	Burkina Faso	IE	Ireland	NO	Norway
BG	Bulgaria	IT		NZ	New Zealand
BJ	Benin	ji.	Italy	PL.	Poland
BR	Brazil		Japan	PT	Portugal
BY	Belarus	KE KG	Kenya	RO	Romania
CA	Canada		Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SG	Singapore
CI	Côte d'Ivoire	KZ	Kazakhstan	SI	Slovenia
CM	Cameroon	LI	Liechtenstein	SK	Slovakia
CN		LK	Sri Lanka	SN	Senegal .
CS	China	LR	Liberia	SZ	Swaziland
	Czechoslovakia	LT	Lithuania	TD	
cz	Czech Republic	LU	Luxemboure	TG	Chad
DE	Germany	LV	Latvia		Togo
DK	Denmark	MC	Monaco	TJ	Tajikistan
EE	Estonia	MD	Republic of Moldova	TT	Trinidad and Tobago
ES	Spain	MG	Madagascar	UA	Ukraine
FI	Finland	MI.	Mali	UG	Uganda
FR	France	MN		US	United States of Americ
GA	Gabon	MR	Mongolia	UZ	Uzbekistan
		MK	Mauritania	VN	Viet Nam

WO 96/41795 PCT/JP96/01533

- 1 -

DESCRIPTION

BENZAMIDE DERIVATIVES AND THEIR USE AS VASOPRESSIN ANTAGONISTS

5 TECHNICAL FIELD

This invention relates to new benzamide derivatives and pharmaceutically acceptable salts thereof which are useful as a medicament.

10 BACKGROUND ART

Some benzamide derivatives have been known as vasopressin antagonist, for example, in PCT International Publication Nos. WO 91/05549 and WO 95/29152, and EP Application Publication No. 0620216.

15

35

DISCLOSURE OF INVENTION

This invention relates to new benzamide derivatives and pharmaceutically acceptable salts thereof.

More particularly, it relates to new benzamide 20 derivatives and pharmaceutically acceptable salts thereof which possess activities as vasopressin antagonistic activity, vasodilating activity, hypotensive activity, activity for inhibiting saccharide release in liver, activity for inhibiting growth of mesangium cells, water digretic 25 activity, platelet agglutination inhibitory activity, oxytocin antagonistic activity and the like, to a pharmaceutical composition comprising the same and to a method for the treatment and/or prevention of hypertension. heart failure, renal insufficiency, edema, ascites, 30 vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease (e.g. cerebral edema, cerebral infarction, etc.), Meniere's syndrome (e.g. Meniere's disease, etc.), motion sickness and the like in human beings or animals.

10

15

One object of this invention is to provide new and useful benzamide derivatives which possess aforesaid activities.

Another object of this invention is to provide processes for the preparation of said benzamide derivatives and salts thereof.

A further object of this invention is to provide a pharmaceutical composition comprising, as an active ingredient, said benzamide derivatives and pharmaceutically acceptable salts thereof.

Still further object of this invention is to provide a therapeutical method for the treatment and/or prevention of aforesaid diseases in human beings or animals, using said benzamide derivatives and pharmaceutically acceptable salts thereof.

The object benzamide derivatives of this invention are new and can be represented by the following general formula $({\tt I})$:

20

25

wherein

 \mathbb{R}^1 is aryl, cyclo(lower)alkyl or a heterocyclic group, each of which may be substituted with substituent(s) selected from the group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; 5 acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfonyl; acyloxy; lower alkylamino(lower)alkylcarbamoyloxy; aryl; cyano; a heterocyclic group; lower alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl; 10 lower alkynyl optionally substituted with amino, acvlamino or substituted acvlamino; lower alkyl optionally substituted with halogen. amino, lower alkylamino, acylamino, substituted 1.5 acylamino, hydroxy, acyloxy, acyl(lower)alkanoyloxy, acyl, substituted acyl, acyl(lower)alkoxyimino, aryl or acyl-substituted arvl; lower alkylthic optionally substituted with acyl or substituted acvl: 20 alkoxy optionally substituted with aryl, substituted aryl, hydroxy, acyloxy, amino, lower alkylamino, protected amino, a heterocyclic group, acylsubstituted pyridyl, substituted acyl-substituted pyridyl, halogen, acyl(lower)alkylamino, N-protected-25 acyl(lower)alkylamino, N-acyl(lower)alkyl-N-lower alkylamino, acyl, substituted acyl, acylamino, substituted acvlamino, lower alkvlhydrazinocarbonylamino, hydroxyimino, acvl(lower)alkoxvimino, substituted 30 acyl(lower)alkoxyimino, acyl(lower)alkoxy, quanidino or N-protected guanidino; and lower alkenyloxy optionally substituted with acvl or substituted acvl;

R² is hydrogen; lower alkyl optionally substituted with hydroxy, aryl or acyl; or cyclo(lower)alkyl;

R³ is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; lower alkyl optionally substituted with hydroxy or lower alkoxy; lower alkoxy optionally substituted with aryl, amino, protected amino, acyl, 5 hydroxy, cyano or lower alkylthio; nitro; amino; acvl; substituted acyl; or cyclo(lower)alkyloxy; R^4 is hydroxy; halogen; nitro; amino; protected amino; lower alkylamino; acyloxy; amino(lower)alkylamino; N-protected amino(lower)alkylamino; 10 lower alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group or guanidino; lower alkylthio optionally substituted 15 with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy, arylsulfonyloxy, ar(lower)alkoxy or substituted ar(lower)alkoxy; lower alkyl substituted with acyl, 20 substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy or arylsulfonyloxy; lower alkenyl optionally substituted with acyl; lower alkynyl optionally 25 substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; amino(lower)alkylsulfonyl; N-protected amino(lower)alkylsulfonyl; lower alkylaminosulfonyl; a heterocyclicsulfonyl; amino(lower)alkylsulfinyl; 30 N-protected amino(lower)alkylsulfinyl; piperidyloxy; or N-protected piperidyloxy; ${ t R}^5$ is hydrogen, lower alkyl, lower alkoxy or halogen; A is a single bond, O or NH;

35 E is lower alkylene, lower alkenylene, -U-, -U-, or

a group of the formula :

in which G is lower alkylene and J is O or -N-

(wherein R^6 is hydrogen or N-protective group); X is -CH=CH-, -CH=N- or S; and Y is CH or N;

10 and pharmaceutically acceptable salts thereof.

The object compound (I) for its salt can be prepared by the processes as illustrated in the following reaction schemes.

Process 1

...

NH₂

(II)

or its salt

HOE_a

(III)

or its reactive derivative at the carboxy group or the sulfo group, or a salt thereof

30

15

20

(IV) or its saslt

(V)
or its reactive derivative
at the carboxy group
or a salt thereof

25

30

10

15

20

- 7 -

Process 3

10

5

Process 4

20

25

Process 5

10

15

20

_ 0 ...

Process 6

Process 7

25

Process 8

- 9 -

Process 9

10

5

Process 10

15

25

20

Process 11

15

25

Process 12

Process 13

Process 14

- 11 -

Process 15

10

15 Process 16

25

20

Process 17

30 Fig. R2 R4 debenzylation R3 X A-E-Y GIIV)
or its salt (IX)

Process 19

15

20

25

Process 20

10

Process 21

15 Process 22

20
$$\begin{array}{c}
R^{1} \\
R^{3} \\
X
\end{array}$$

$$\begin{array}{c}
R^{5} \\
R^{5}
\end{array}$$

$$\begin{array}{c}
R^{1} \\
R^{2} \\
R^{3} \\
X
\end{array}$$

$$\begin{array}{c}
R^{5} \\
R^{5}
\end{array}$$
or its salt
$$\begin{array}{c}
(I-6) \\
\text{or its salt}
\end{array}$$

25

Process 23

30
$$\mathbb{R}^{\frac{1}{2}}$$
 $\mathbb{R}^{\frac{2}{2}}$ $\mathbb{R}^{\frac{1}{2}}$ $\mathbb{R}^{\frac{2}{2}}$ $\mathbb{R}^{\frac{1}{2}}$ $\mathbb{R}^{\frac{2}{2}}$ \mathbb

5

Process 25

15

10

25

20

Process 26

- 15 -

Process 27

$$R^{1}$$
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

10

5

Process 28

25

Process 29

Process 31

15

10

25

20

Process 32

30

Process 34

15

20

10

$$R_{2}^{1}$$
 R^{2} R^{5} R^{5}

25

Process 35

15 Process 37

25

20

10

Process 38

15 wherein

30

35

 R^1 , R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above,

Rad is aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with esterified carboxy; lower alkenyl substituted with esterified carboxy or esterified carboxy-substituted aryl;
lower alkyl substituted with esterified carboxy, esterified carboxy(lower)alkanoyloxy or esterified

carboxy(lower)alkoxyimino; lower alkylthio substituted with esterified carboxy; alkoxy substituted with esterified carboxy-substituted aryl, esterified carboxy-substituted pyridyl, esterified carboxy(lower)alkylamino, N-protected-esterified carboxy(lower)alkylamino, N-esterified

carboxy(lower)alkyl-N-lower alkylamino, esterified
carboxy or esterified carboxy(lower)alkoxyimino; or
lower alkenyloxy substituted with esterified carboxy;

10

15

20

25

30

- 35

- RD is aryl, haloaryl, cyclo(lower)alkyl or
 a heterocyclic group, each of which is substituted
 with carboxy; lower alkenyl substituted with carboxy
 or carboxy-substituted aryl;
 lower alkyl substituted with carboxy, carboxy(lower)alkanoyloxy or carboxy(lower)alkoxyimino;
 lower alkylthio substituted with carboxy;
 alkoxy substituted with carboxy-substituted aryl,
 carboxy-substituted pyridyl, carboxy(lower)alkylamino, N-protected-carboxy(lower)alkylamino,
 N-carboxy(lower)alkyl-N-lower alkylamino, carboxy or
 carboxy(lower)alkoxyimino; or lower alkenyloxy
 substituted with carboxy:
- R_A⁴ is lower alkoxy substituted with esterified carboxy; lower alkylthio substituted with esterified carboxy; lower alkyl substituted with esterified carboxy; or lower alkenyl substituted with esterified carboxy;
 - R⁴_b is lower alkoxy substituted with carboxy; lower alkylthio substituted with carboxy; lower alkyl substituted with carboxy; or lower alkenyl substituted with carboxy;
 - R⁴_C is protected amino; N-protected piperidyloxy; N-protected amino(lower)alkylamino; lower alkoxy substituted with protected amino; lower alkylthio substituted with protected amino; lower alkyl substituted with protected amino; lower alkynyl substituted with protected amino; or N-protected amino(lower)alkylsulfonyl;
- R⁴_d is amino; piperidyloxy; amino(lower)alkylamino; lower alkoxy substituted with amino; lower alkylthio substituted with amino; lower alkyl substituted with amino; lower alkynyl substituted with amino; or amino(lower)alkylsulfonyl;
 - R_{C}^1 is aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with substituted

25

30

35

or unsubstituted N-containing heterocycliccarbonyl; carbamoyl; substituted or unsubstituted lower alkylcarbamoyl; lower alkenyl substituted with substituted or unsubstituted N-containing 5 heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl or N-containing heterocycliccarbonyl-substituted aryl; lower alkyl substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, 10 carbamoyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl (lower) alkanoyloxy, carbamoyl(lower)alkanoyloxy, substituted or unsubstituted lower alkylcarbamoyl(lower)alkanoyloxy, 15 substituted or unsubstituted N-containing heterocycliccarbonyl (lower) alkoxyimino, carbamoyl-(lower)alkoxyimino or substituted or unsubstituted lower alkylcarbamoyl(lower)alkoxyimino; lower alkylthio substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoyl; alkoxy substituted with substituted or unsubstituted N-containing heterocycliccarbonylsubstituted aryl, carbamoyl-substituted aryl, substituted or unsubstituted lower alkylcarbamoylsubstituted aryl, substituted or unsubstituted N-containing heterocycliccarbonyl-substituted pyridyl, carbamoyl-substituted pyridyl, substituted or unsubstituted lower alkylcarbamoyl-substituted pyridyl, substituted or unsubstituted N-containing heterocycliccarbonyl(lower)alkylamino, carbamoyl(lower)alkylamino, substituted or unsubstituted lower alkylcarbamoyl(lower)alkylamino, N-protected-(substituted or unsubstituted N-containing heterocyclic) carbonyl (lower) alkylamino,

10

15

20

N-protected-carbamoyl(lower)alkylamino, N-protected substituted or unsubstituted lower alkylcarbamoyl-(lower)alkylamino, N-(substituted or unsubstituted N-containing heterocyclic) carbonyl (lower) alkyl-Nlower alkylamino, N-carbamoyl(lower)alkyl-N-lower alkylamino, substituted or unsubstituted N-lower alkylcarbamoyl-N-lower alkylamino, substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, aminocarbamoyl, pyridylcarbamoyl, N-(lower alkyl)piperazinylcarbonyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl (lower) alkoxyimino, carbamoyl(lower)alkoxyimino or substituted or unsubstituted lower alkylcarbamoyl(lower)alkoxyimino; or lower alkenyloxy substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoy1; R4 is lower alkoxy, lower alkylthio, lower alkyl or lower alkenyl, each of which is substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, or substituted or unsubstituted lower alkylcarbamoyl;

 $R_{\it F}^4$ is methoxy substituted with aryl or substituted aryl; 25 or lower alkylthio which is substituted with methoxy substituted with aryl or substituted aryl;

is hydroxy; or lower alkylthio substituted with hydroxy; is hydroxy;

is lower alkyl substituted with hydroxy, aryl, 30 substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyl;

Z¹ is hydroxy; or acid residue;

35 R_h^4 is lower alkoxy substituted with hydroxy, aryl, WO 96/41795 PCT/JP96/01533

- 23 -

substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyloxy;

- R⁴_{da} is lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino;
 - R⁴₁ is lower alkoxy substituted with acylamino or substituted acylamino; lower alkylthio substituted with acylamino or substituted acylamino; or lower alkyl substituted with acylamino or substituted acylamino;
 - R⁴_{db} is amino; lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino;
- 15 R_J⁴ is lower alkoxy substituted with lower alkylamino; lower alkylthio substituted with lower alkylamino; lower alkyl substituted with lower alkylamino; lower alkylamino; or N-protected amino(lower)alkylamino;
- 20 R_k⁴ is acyloxy;

5

10

30

- Z² is acid residue;
- Eb is lower alkylene;
- \mathbf{R}_{l}^{4} is lower alkylthio substituted with amino or protected amino;
- 25 $R_{\rm m}^4$ is lower alkylsulfinyl substituted with amino or protected amino, or lower alkylsulfonyl substituted with amino or protected amino;
 - Ec is lower alkenylene;
 - $R_{\mathbf{d}}^1$ is aryl which is substituted with methoxy substituted with aryl or substituted aryl;
 - R_e^1 is aryl which is substituted with hydroxy;
 - Z³ is hydroxy; or acid residue;
 - R⁸ is lower alkyl optionally substituted with acyl, acylamino, protected amino, aryl, substituted aryl, acyl-substituted pyridyl or N-protected quanidino;

- $R_{\mathbf{f}}^{1}$ is aryl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, aryl, substituted aryl, acylaubstituted pyridyl or N-protected guanidino;
- ${\tt R}_a^3$ is methoxy substituted with aryl; acyloxy; or substituted acyloxy;
 - Z⁴ is acid residue;
 - $\ensuremath{\mathrm{R}}^9$ is lower alkyl optionally substituted with esterified carboxy;
- 10 R_D^3 is lower alkoxy optionally substituted with esterified carboxy;
 - $R_{\underline{c}}^{3}$ is lower alkoxy substituted with esterified carboxy;
 - R_{d}^3 is lower alkoxy substituted with carboxy;
 - R_n is halogen;
- 15 R_O⁴ is lower alkynyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy;
 - $R_{\mathbf{p}}^{4}$ is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with hydroxy;
- 20 Z⁵ is halogen;
 - R¹⁰ is lower alkylsulfonyl or arylsulfonyl;
 - $R_{\mathbf{q}}^{\mathbf{4}}$ is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with lower alkylsulfonyloxy or arylsulfonyloxy;
- 25 R_{r}^{4} is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with phthalimido;
 - R_{S}^{4} is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy,
- 30 E_d is a single bond or lower alkylene;
 - Z⁶ is acid residue;
 - R_a^2 is lower alkyl optionally substituted with aryl or acyl;
- $R_{f g}^1$ is aryl which is substituted with lower alkoxy substituted with amino;

	Rh is aryl which is substituted with lower alkoxy
	substituted with acylamino or substituted acylamino;
	$\mathtt{R}^{\mathtt{l}}_{\mathtt{l}}$ is aryl which is substituted with lower alkoxy
	substituted with oxopiperidylcarbonyl;
5	$R_{\overline{J}}^{1}$ is aryl which is substituted with lower alkoxy
	substituted with hydroxypiperidylcarbonyl;
	$R_{f K}^1$ is aryl which is substituted with lower alkoxy
	substituted with formyl or oxopiperidylcarbonyl;
	$R^{ extsf{1}}_{\ell}$ is aryl which is substituted with lower alkoxy
10	substituted with aminopiperidylcarbonyl or N-lower
	alkylpiperazinyl;
	${ t R}_{ m m}^1$ is aryl which is substituted with lower alkoxy
	substituted with carboxy;
	$R_{ m n}^1$ is aryl which is substituted with lower alkoxy
15	substituted with lower alkylamino(lower)-
	alkoxycarbonyl;
	$R_{f O}^{1}$ is aryl which is substituted with lower alkoxy
	substituted with esterified carboxy;
	$R_{ t p}^1$ is aryl which is substituted with lower alkoxy
20	substituted with hydroxy;
	$\mathtt{R}^1_{ extsf{q}}$ is aryl which is substituted with lower alkoxy
	substituted with formyl;
	$\mathtt{R}^1_\mathtt{r}$ is aryl which is substituted with lower alkoxy
	substituted with cyano-substituted aryl;
25	$R_{f S}^1$ is aryl which is substituted with lower alkoxy
	substituted with tetrazolyl-substituted aryl;
	Rt is lower alkoxy substituted with amino;
	R4 is lower alkoxy substituted with guanidino;
	Rt is aryl which is substituted with lower alkoxy
30	substituted with protected amino, N-protected
	amino(lower)alkanoylamino, N-protected
	piperazinylcarbonyl or N-protected guanidino;
	R_{ii}^{l} is aryl which is substituted with lower alkoxy
	substituted with amino, amino(lower)alkanoylamino,
35	piperazinylcarbonyl or guanidino;

WO 96/41795

10

15

20

25

30

35

- 26 -

RΨ	is aryl which is substituted with lower alkoxy
	substituted with phenoxycarbonylamino;
R _W	is aryl which is substituted with lower alkoxy
	substituted with N-lower
	alkylpiperazinylcarbonylamino,
	dimethylaminopiperidylcarbonylamino, carbamoylamino
	or dimethylcarbamovlamino. and

 R_{e}^{3} is lower alkoxy which is substituted with carbamoyl optionally substituted with lower alkyl.

In the above and subsequent description of the present specification, suitable examples of the various definitions to be included within the scope of the invention are explained in detail in the following.

The term "lower" is intended to mean a group having 1 to 6 carbon atom(s), unless otherwise provided.

The "higher" is intended to mean 7 to 20 carbon atoms, unless otherwise provided.

The lower moiety in the terms "cyclo(lower)alkyl" and "cyclo(lower)alkyloxy" is intended to mean a group having 3 to 6 carbon atoms.

The lower moiety in the terms "lower alkenyl", "lower alkenyloxy" and "lower alkynyl" is intended to mean a group having 2 to 6 carbon atoms.

The term "alkoxy" may included lower alkoxy and higher alkoxy.

Suitable "lower alkoxy" and lower alkoxy moiety in the terms "acyl (lower) alkoxy", "acyl (lower) alkoxyimino", "esterified carboxy(lower) alkoxyimino", "carboxy(lower) alkoxyimino", "N-containing heterocycliccarbonyl (lower) alkoxyimino", "carbamoyl (lower) alkoxyimino", "lower alkylcarbamoyl-(lower) alkoxyimino", "lower alkylcarbamoyl-(lower) alkoxyimino", "lower alkoxycarbonyl" and "ar (lower) alkoxy" may be straight or branched C1-C6

20

alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, methylpropoxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexvloxy or the like.

Suitable "higher alkoxy" may be straight or branched

C7-C20 alkoxy such as heptyloxy, octyloxy, nonyloxy,
decyloxy, undecyloxy, dodecyloxy, tridecyloxy,
tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy,
octadecyloxy, nonadecyloxy, eicosyloxy, methylheptyloxy,
methyloctyloxy, methylnonyloxy, methyldecyloxy,
ethylheptyloxy, ethyloctyloxy, ethylnonyloxy, ethyldecyloxy
or the like, in which preferable one is heptyloxy.

Suitable "lower alkyl" and lower alkyl moiety in the terms "acyl(lower)alkylsulfinyl", "acyl(lower)alkylsulfinyl", "acyl(lower)alkylsulfinyl", "lower alkylamino(lower)alkylcarbamoyloxy", "acyl(lower)alkylamino", "N-protected-acyl(lower)alkylamino", "N-acyl(lower)alkyl-N-lower alkylamino", "lower alkylhydrazinocarbonylamino", "esterified

carboxy(lower)alkylamino", "N-protected-esterified
carboxy(lower)alkylamino", "N-esterified
carboxy(lower)alkyl-N-lower alkylamino",

"carboxy(lower)alkylamino", "N-protected-carboxy(lower)alkylamino", "N-carboxy(lower)alkyl-N-lower alkylamino", "lower alkylcarbamoyl", "lower alkylcarbamoyl(lower)alkanoyloxy", "lower

alkylcarbamoyl(lower)alkoxyimino", "lower alkylthio",
 "N-protected-(substituted or unsubstituted N-containing
heterocyclic)carbonyl(lower)alkylamino", "N-protectedcarbamoyl(lower)alkylamino", "N-protected-substituted or
unsubstituted lower alkylcarbamoyl(lower)alkylamino",

"N-(substituted or unsubstituted N-containing
heterocyclic)carbonyl(lower)alkyl-N-lower alkylamino",
"N-carbamoyl(lower)alkyl-N-lower alkylamino", "N-lower
alkylcarbamoyl-N-lower alkylamino", "lower alkylcarbamoyl(lower)alkoxyimino", "l-hydroxy(lower)alkyl", "l-(lower
alkyl)amino(lower)alkyl", "mono(lower)alkylamino",

10

15

20

25

30

35

- 28 -

"acyl(lower)alkyl", "di(lower)alkylamino", "lower alkylsulfinyl", "lower alkylsulfonyl", "lower alkylamino", "amino(lower)alkylamino", "N-protected amino(lower)alkylamino", "lower alkylsulfonyloxy", "amino(lower)alkylsulfonyl", "N-protected amino(lower)alkylsulfonyl", "lower alkylaminosulfonyl", "amino(lower)alkylsulfonyl", "lower alkylaminosulfonyl", "amino(lower)alkylsulfinyl" and "N-protected amino(lower)alkylsulfinyl" may be straight or branched C1-C6 alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, ethylpropyl, hexyl or the like.

Suitable "cyclo(lower)alkyl" and cyclo(lower)alkyl moiety in the term "cyclo(lower)alkyloxy" may be $cyclo(C_3-C_6)alkyl$ such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in which preferable one is cyclopentyl or cyclohexyl.

Suitable "lower alkenyl" and lower alkenyl moiety in the term "lower alkenyloxy" may be straight and branched C2-C6 alkenyl such as ethenyl, propenyl, pentenyl, isopropenyl, butenyl, hexenyl or the like, in which preferable one is ethenyl, propenyl, pentenyl or hexenyl. Suitable "lower alkynyl" may be straight and branched C2-C6 alkynyl such as ethynyl, propargyl, butynyl or the like, in which preferable one is butynyl.

Suitable "aryl" and aryl moiety in the terms "haloaryl", "arylsulfonyl", "acyl-substituted aryl", "ar(lower)alkoxy", "substituted ar(lower)alkoxy" and "arylsulfonyloxy" may be phenyl, naphthyl, phenyl substituted with lower alkyl [e.g. tolyl, xylyl, mesityl, cumenyl, di(tert-butyl)phenyl, etc.] and the like, in which preferable one is phenyl, tolyl or xylyl.

Suitable "substituted aryl" may be aryl substituted with suitable substituent(s) such as acyl, substituted acyl, N-protected piperazinylsulfonyl, piperazinylsulfonyl, N-lower alkylpiperazinylsulfonyl,

WO 96/41795 PCT/JP96/01533

5

10

15

20

25

30

35

- 29 -

hydroxy(lower)alkyl, a heterocyclic(lower)alkyl, halogen, nitro, amino, lower alkylamino, a heterocyclic group [e.g. thiazolyl, oxazolyl, tetrazolyl, oxazolinyl, pyridyl, pyrimidinyl, pyrrolyl optionally substituted with lower alkyl and cyano, etc.], cyano, lower alkoxy or the like, in which preferable one for the substituent of alkoxy for R1 is arvl substituted with N-methylpiperazinvlsulfonvl, N-t-butoxycarbonylpiperazinylsulfonyl, piperazinylsulfonyl, carboxy, esterified carboxy, N-lower alkylpiperazinylcarbonyl, lower alkanovl, hydroxy(lower)alkyl, N-lower alkylpiperazinyl(lower)alkyl, thiazolyl, oxazolyl, tetrazolyl, oxazolinyl, pyridyl, pyrimidinyl, pyrrolyl substituted with lower alkyl and cyano, cyano, lower alkoxy, lower alkylaminopiperidylcarbonyl, and preferable one for R4 is arvl substituted with halogen, nitro, amino, lower alkylamino or lower alkoxy.

Suitable "halogen" and halo moiety in the term
"haloaryl" may be fluorine, chlorine, bromine and iodine,
in which preferable one is chlorine or bromine.

Suitable "lower alkylamino" and lower alkylamino moiety in the terms "lower alkylamino(lower)alkylcarbamoyloxy", "acyl(lower)alkylamino", "esterified carboxy(lower)alkylamino", "carboxy(lower)alkylamino", "N-containing heterocycliccarbonyl(lower)alkylamino", "carbamoyl(lower)alkylamino", "lower alkylcarbamoyl(lower)alkylamino" "amino(lower)alkylamino", "N-protected amino(lower)alkylamino", "lower alkylaminosulfonyl" and "lower alkylaminopiperidylcarbonyl" may be mono or di(lower alkyl) amino such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, tert-butylamino, isobutylamino, pentylamino, hexylamino, dimethylamino, dipropylamino, dibutylamino, dimethylamino, diisopropylamino, dipentylamino, dibexylamino,
N-methylethylamino or the like, in which preferable one is

methylamino, dimethylamino or diethylamino.

Suitable "1-hydroxy(lower)alkyl" may be 1-hydroxy-(C1-C6)alkyl such as hydroxymethyl, 1-hydroxyethyl, 1-hydroxypropyl, 1-hydroxybutyl, 1-hydroxy-3-methylpropyl or the like, in which preferable one is hydroxymethyl or 1-hydroxyethyl.

Suitable "1-(lower alkyl)amino(lower)alkyl" may be 1-mono or $di(C_1-C_6)$ alkyl)amino(C_1-C_6)alkyl such as methylaminomethyl, dimethylaminomethyl,

10 1-methylaminoethyl, 1-dimethylaminoethyl, ethylaminomethyl, 1-ethylaminoethyl or the like, in which preferable one is methylaminomethyl, dimethylaminomethyl, 1-methylaminoethyl or 1-dimethylaminoethyl.

Suitable "heterocyclic group" may be one containing
at least one hetero atom selected from nitrogen, sulfur
and oxygen atom, and may include saturated or unsaturated,
monocyclic or polycyclic heterocyclic group, and
preferable heterocyclic group may be N-containing
heterocyclic group such as unsaturated 3 to 6-membered
heteromonocyclic group containing 1 to 4 pitrogen atoms

heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl [e.g. 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, etc.], tetrazolyl [e.g. 1H-tetrazolyl, 2H-1,2,3-triazolyl, etc.]

25 2H-tetrazolyl, etc.], etc.; saturated 3 to 7-membered heteromonocyclic group containing 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, homopiperazinyl, etc.]; unsaturated condensed heterocyclic group containing 1 to 5

nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, imidazopyridyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g. tetrazolo[1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group

35 containing an oxygen atom, for example, pyranyl, furyl,

the like.

35

etc.; saturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, 1H-tetrahydropyranyl, tetrahydrofuranyl, etc.; unsaturated, 3 to 6-membered heteromonocyclic group 5 containing 1 to 2 sulfur atoms, for example, thienyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g. 10 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.], oxazolinyl [e.g. 2-oxazolinyl, etc.], etc.; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinvl, etc.]; 15 unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzofurazanyl, benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, 20 for example, thiazolyl, thiadiazolyl [e.g., 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.], etc.; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms 25 [e.g., thiazolidinyl, etc.]; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.]; unsaturated condensed heterocyclic group containing 1 to 2 30 oxygen atoms [e.g. benzofuranyl, benzodioxolyl, etc.] and

> Said "heterocyclic group" may be substituted with lower alkyl as exemplified above or oxo, in which preferable one is N-methylpiperazinyl, tetrazolyl, morpholinyl, pyrrolidinyl, N-methylpiperidyl,

35

N-methylhomopiperazinyl, 1H-tetrahydropyranyl, thienyl, pyridyl, piperidyl or oxopiperidyl.

Suitable acyl and acyl moiety in the terms

"acyl(lower)alkylsulfinyl", "acyl(lower)alkylsulfonyl",

5 "acyloxy", "acylamino", "acyl(lower)alkanoyloxy",

"acyl(lower)alkoxyimino", "acyl(lower)alkylamino", "Nprotected-acyl(lower)alkylamino", "N-acyl(lower)alkyl-Nlower alkylamino" and "acyl(lower)alkoxy" may be carboxy,
esterified carboxy, carbamoyl, lower alkylcarbamoyl, lower

10 alkanoyl, aroyl, a heterocycliccarbonyl and the like.

The esterified carboxy may be substituted or
unsubstituted lower alkoxycarbonyl for methoxycarbonyl

The esterified carboxy may be substituted or unsubstituted lower alkoxycarbonyl [e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, tert-butoxycarbonyl, hexyloxycarbonyl,

2-iodoethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, dimethylaminopropoxycarbonyl, dimethylaminoethoxycarbonyl, etc.], substituted or unsubstituted aryloxycarbonyl [e.g. phenoxycarbonyl, 4-nitrophenoxycarbonyl, 2-naphthyloxycarbonyl, etc.], substituted or unsubstituted

ar(lower)alkoxycarbonyl [e.g. benzyloxycarbonyl,
phenethyloxycarbonyl, benzhydryloxycarbonyl,
4-nitrobenzyloxycarbonyl, 3-methoxy-4-nitrobenzyloxycarbonyl, etc.], N-containing heterocyclicoxycarbonyl
[e.g. N-methylpiperidyloxycarbonyl, etc.] and the like, in
which preferable one is lower alkoxycarbonyl.

which preferable one is lower alkoxycarbonyl, N-methylpiperidyloxycarbonyl, dimethylaminopropoxycarbonyl or dimethylaminoethoxycarbonyl.

The lower alkylcarbamoyl may be mono or di(lower alkyl)carbamoyl such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, N-methyl-N-ethylcarbamovl or the like.

The lower alkanoyl may be substituted or unsubstituted C_1 - C_6 alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, trifluoroacetyl or the like, in which

10

15

20

25

- 33 -

preferable one is formyl, acetyl or butyryl.

The aroyl may be benzoyl, naphthoyl, toluoyl, di(tert-butyl)benzoyl and the like, in which preferable one is benzovl.

The heterocyclic moiety in the terms "a heterocyclic-carbonyl", "heterocyclicoxycarbonylamino" and "heterocyclicsulfonyl" may be one mentioned above as a heterocyclic group.

Preferred "a heterocycliccarbonyl" may be N-containing heterocycliccarbonyl.

The "N-containing heterocycliccarbonyl" may be one containing at least one nitrogen atom in heterocyclic group mentioned above, in which preferable one is N-(lower alkyl)piperazinylcarbonyl (e.g. N-methyl-piperazinylcarbonyl, etc.), N-(lower alkyl)-homopiperazinylcarbonyl (e.g. N-methylhomopiperazinylcarbonyl, etc.), piperazinylcarbonyl, pyrrodinylcarbonyl, piperidylcarbonyl, morpholinocarbonyl, lower alkylpiperidylcarbonyl (e.g. methylpiperidylcarbonyl,

etc.) or oxopiperidylcarbonyl.

Suitable "substituted acyl" may be carbamoyl substituted with amino, a heterocyclic group [e.g. N-(lower alkyl)piperazinyl, pyridyl, etc.], lower alkylsulfonyl or arylsulfonyl, substituted lower alkylcarbamoyl [e.g. N-lower alkylamino-N-lower alkylcarbamoyl, pyridyl(lower)alkylcarbamoyl,

morpholino(lower)alkylcarbamoyl, bis(hydroxy(lower)alkyl)carbamoyl, hydroxy(lower)alkylcarbamoyl,

carbamoyl(lower)alkylcarbamoyl, lower
alkylamino(lower)alkylcarbamoyl, N-lower alkyl-N-lower
alkylcarbamoyl, etc.], substituted
N-containing heterocycliccarbonyl [e.g. trifluoroacetyl-piperazinylcarbonyl, pyridylpiperazinylcarbonyl,
hydroxypiperidylcarbonyl, dimethylaminopiperidylcarbonyl,

10

25

30

diethylaminopiperidylcarbonyl,
carbamoylpyrrolidinylcarbonyl,
dimethylaminopiperazinylcarbonyl, hydroxyethoxyethylpiperazinylcarbonyl, pyrrolidinylcarbonylmethylpiperazinylcarbonyl, etc.], N-protected-N-containing
heterocycliccarbonyl [e.g. N-t-butoxycarbonylpiperidylcarbonyl, N-t-butoxycarbonylpiperazinylcarbonyl, etc.],
N-protected amino(lower)alkanoyl, amino(lower)alkanoyl,
benzyloxybenzoyl, and the like

"N-Protective group" in "protected amino" may be common N-protective group such as substituted or unsubstituted lower alkanoyl [e.g. formyl, acetyl, propionyl, trifluoroacetyl, etc.], phthaloyl, lower alkoxycarbonyl [e.g. tert-butoxycarbonyl, tert-amyloxycarbonyl, etc.], substituted or unsubstituted

amyloxycarbonyl, etc.], substituted or unsubstituted aralkyloxycarbonyl [e.g. benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, etc.],
9-fluorenylmethoxycarbonyl, substituted or unsubstituted

arenesulfonyl [e.g. benzenesulfonyl, tosyl, etc.],

20 nitrophenylsulfenyl, aralkyl [e.g. trityl, benzyl, etc.] or the like, in which preferable one is phthaloyl, tertbutoxycarbonyl or 9-fluorenylmethoxycarbonyl.

"N-protective group" in "N-protected guanidino" may be common N-protective group such as lower alkoxycarbonyl [e.g. tert-butoxycarbonyl, etc.] or the like.

Suitable "acid residue" may be halogen [e.g. fluoro, chloro, bromo, iodo], arenesulfonyloxy [e.g. benzenesulfonyloxy, tosyloxy, etc.], alkanesulfonyloxy [e.g. mesyloxy, ethanesulfonyloxy, etc.], and the like, in which preferable one is halogen

Suitable "lower alkylsulfonyl" and lower alkylsulfonyl moiety in the term "lower alkylsulfonyloxy" may be (C_1-C_6) alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl or the like, in which

35 preferable one is methylsulfonyl.

- 35 -

Suitable "lower alkylene" may be straight or branched C_1-C_6 alkylene such as methylene, ethylene, propylene or the like, in which preferable one is methylene or ethylene.

Suitable "lower alkenylene" may be straight or branched C_2 - C_6 alkenylene such as ethenylene, propenylene or the like, in which preferable one is ethenylene.

The substituent(s) on aryl for \mathbb{R}^1 may be plural and in such case the substituents may be the same or different.

Preferred "aryl" for \mathbb{R}^1 may be phenyl or phenyl substituted with lower alkyl.

Preferred "cyclo(lower)alkyl" for \mathbb{R}^1 may be cyclopentyl.

5

10

15

20

25

30

35

Preferred "a heterocyclic group" for \mathbb{R}^1 may be pyridyl or thienyl.

Preferred compound (I) is one having aryl (more preferably phenyl or phenyl substituted with lower alkyl) which may be substituted with lower alkoxy optionally substituted with acylamino or acyl for \mathbb{R}^1 , lower alkyl for \mathbb{R}^2 , hydrogen, lower alkyl or lower alkoxy for \mathbb{R}^3 , hydroxy, or lower alkoxy, lower alkylthio or lower alkyl, each of which may be substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group for \mathbb{R}^4 , hydrogen, lower alkyl, lower alkoxy or halogen for \mathbb{R}^5 , NH for A, \mathbb{R}^6 for \mathbb{R}^6 , \mathbb{R}^6 .

More preferred compound (I) is one having phenyl or tolyl, each of which is substituted with lower alkoxy substituted with N-(lower alkyl)piperazinylcarbonyl for \mathbb{R}^1 , lower alkyl for \mathbb{R}^2 , hydrogen, lower alkyl or lower alkoxy for \mathbb{R}^3 , lower alkoxy substituted with amino for \mathbb{R}^4 , hydrogen for \mathbb{R}^5 , NH for A, \mathbb{R}^4 for E, -CH=CH- for X and CH for Y.

Most preferred compound (I) is one having tolyl

- 36 -

which is substituted with lower alkoxy substituted with N-(lower alkyl)piperazinylcarbonyl for \mathbb{R}^1 , lower alkyl for \mathbb{R}^2 , lower alkoxy for \mathbb{R}^3 , lower alkoxy substituted with amino for \mathbb{R}^4 , hydrogen for \mathbb{R}^5 , NH for A, \mathbb{R}^6 for E, -CH=CH- for X and CH for Y.

Suitable pharmaceutically acceptable salts of the object compound (I) are conventional non-toxic salts and include an acid addition salt such as an inorganic acid addition salt [e.g. hydrochloride, hydrobromide, sulfate, phosphate, etc.], an organic acid addition salt [e.g. formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.], a metal salt such as an alkali metal salt [e.g. sodium salt, potassium salt, etc.] and an alkaline earth metal salt [e.g. calcium salt, magnesium salt, etc.] and

The processes for preparing the object compound (I) are explained in detail in the following.

Process 1

5

10

15

20

25

30

35

The object compound (Ia) or its salt can be prepared by reacting a compound (II) or its salt with a compound (III) or its reactive derivative at the carboxy group or the sulfo group, or a salt thereof.

Suitable salts of the compounds (Ia) and (II) may be the same as those exemplified for the compound (I).

Suitable salts of the compound (III) and its reactive derivative at the carboxy group or the sulfo group may be base salts as exemplified for the compound (I).

Suitable reactive derivative at the carboxy group or the sulfo group of the compound (III) may include an acid halide, an acid anhydride containing intramolecular, intermolecular and a mixed ones, an activated amide, an activated ester, and the like. Suitable examples of the 5

10

15

20

25

30

35

reactive derivatives may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid [e.g. dialkylphosphoric acid, phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.], dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, sulfonic acid [e.g. methanesulfonic acid, etc.], aliphatic carboxylic acid [e.g. acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.] or aromatic carboxylic acid [e.g. benzoic acid, etc.]; a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole or tetrazole; or an activated ester [e.g. cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [(CH $_3$) $_2$ \mathring{N} =CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, mesylphenyl ester, phenylazophenyl ester, phenyl thioester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyranyl ester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.] or an ester with an N-hydroxy compound [e.g. N, N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-1H-benzotriazole, etc.], and the like. These reactive derivatives can optionally be selected from them according to the kind of the compound (III) to be used.

The reaction is usually carried out in a conventional solvent such as water, alcohol [e.g. methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence

- 38 -

the reaction. These conventional solvents may also be used in a mixture with water.

In this reaction, when the compound (III) is used in a free acid form or its salt form, the reaction is 5 preferably carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide; N,N'-diethylcarbodiimide, N,N'-diisopropylcarbodiimide; 10 N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide; N, N'-carbonylbis-(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; diphenylketene-N-cyclohexylimine; ethoxyacetylene; 1-alkoxy-1-chloroethylene; trialkyl phosphite; ethyl 15 polyphosphate; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; diphenylphosphoryl azide; diphenyl chlorophosphate; diphenylphosphinic chloride; thionyl chloride; oxalyl chloride; lower alkyl haloformate [e.g. ethyl 20 chloroformate, isopropyl chloroformate, etc.]; triphenylphosphine; 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intramolecular salt; 1-(p-chlorobenzenesulfonyloxy)-6chloro-1H-benzotriazole; so-called Vilsmeier reagent 25 prepared by the reaction of N,N-dimethylformamide with thionyl chloride, phosgene, trichloromethyl chloroformate,

The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

30

. 5

20

25

30

Process 2

The object compound (I) or its salt can be prepared by reacting a compound (IV) or its salt with a compound (V) or its reactive derivative at the carboxy group or a salt thereof.

Suitable salts of the compounds (IV) and (V) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the

same manner as <u>Process 1</u>, and therefore the reaction mode
and reaction condition (e.g. solvent, reaction
temperature, etc.) of this reaction are to be referred to
those as explained in <u>Process 1</u>.

15 Process 3

The object compound (Ic) or its salt can be prepared by subjecting a compound (Ib) or its salt to deesterification reaction.

Suitable salt of the compound (Ic) may be the same as those exemplified for the compound (I).

Suitable salt of the compound (Ib) may be an acid addition salt as exemplified for the compound (I).

The reaction is carried out in accordance with a conventional method such as hydrolysis, reduction or the like.

The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid. Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. lithium, sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or bicarbonate thereof, trialkylamine [e.g. trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]-non-5-ene, 1,4-diazabicyclo[2.2.2]octane,

35 1,8-diazabicyclo[5.4.0]undec-7-ene, or the like. Suitable

5

10

15

20

25

30

35

- 40 -

acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, etc.] and Lewis acid [e.g. boron tribromide, etc.].

The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], xylene, diethylene glycol monomethyl ethyl, methylene chloride, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

The reduction can be applied preferably for elimination of the ester moiety such as 4-nitrobenzyl, 2-iodoethyl, 2,2,2-trichloroethyl, or the like. The reduction method applicable for the elimination reaction may include chemical reduction and catalitic reduction.

Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.].

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalyst [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalyst [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalyst [e.g.

reduced cobalt, Raney cobalt, etc.], iron catalyst [e.g. reduced iron, Raney iron, etc.], copper catalyst [e.g. reduced copper, Raney copper, Ullman copper, etc.] or the like.

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, an alcohol [e.g. methanol, ethanol, propanol, etc.], N,N-dimethylformamide, or a mixture thereof. Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvent such as diethyl ether, dioxane, tetrahydrofuran, etc., or a mixture thereof.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

In this reaction, in case that the compound (Ib)

20 having lower alkyl substituted with esterified carboxy for R² and/or acyloxy, lower alkoxy substituted with esterified carboxy, lower alkylthio substituted with esterified carboxy, or lower alkyl substituted with esterified carboxy for R⁴ is used as a starting compound, the compound (Ic) having lower alkyl substituted with carboxy for R² and/or hydroxy, lower alkoxy substituted with carboxy, lower alkylthio substituted with carboxy, or lower alkyl substituted with carboxy for R³ may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 4

5

10

15

35

The object compound (Ie) or its salt can be prepared by subjecting a compound (Id) or its salt to deesterification reaction

10

15

20

25

30

35

Suitable salt of the compound (Id) may be an acid addition salt as exemplified for the compound (I).

Suitable salt of the compound (Ie) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as hydrolysis in <u>Process 3</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in hydrolysis in <u>Process 3</u>.

In this reaction, in case that the compound (Id) having aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with esterified carboxy; lower alkenyl substituted with esterified carboxy; lower alkyl substituted with esterified carboxy, esterified carboxy(lower)alkanoyloxy or esterified

carboxy(lower)alkoxyimino; lower alkylthio substituted with esterified carboxy; alkoxy substituted with esterified carboxy-substituted aryl, esterified carboxy-substituted pyridyl, esterified carboxy(lower)alkylamino, N-protected-esterified carboxy(lower)alkylamino,

N-esterified carboxy(lower)alkyl-N-lower alkylamino, esterified carboxy or esterified carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with esterified carboxy for R¹ and/or lower alkyl

substituted with esterified carboxy for R² is used as a starting compound, the compound (Ie) having aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with carboxy; lower alkenyl substituted with carboxy; lower alkyl substituted with carboxy, carboxy(lower)alkanovloxy or

carboxy, carboxy(lower)alkanoyloxy or carboxy(lower)alkoxyimino; lower alkylthio substituted with carboxy; alkoxy substituted with carboxy-substituted aryl, carboxy-substituted pyridyl, carboxy(lower)-alkylamino, N-protected-carboxy(lower)alkylamino, N-carboxy(lower)alkyl-N-lower alkylamino, carboxy or

5

10

15

20

30

35

carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with carboxy for ${\ensuremath{\mathsf{R}}}^1$ and/or lower alkyl substituted with carboxy for \mathbb{R}^2 may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 5

The object compound (Ig) or its salt can be prepared by subjecting a compound (If) or its salt to elimination reaction of the N-protective group.

Suitable salts of the compounds (If) and (Ig) may be acid addition salts as exemplified for the compound (I).

This reaction is carried out in accordance with a conventional method such as hydrolysis, reduction or the like.

The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid.

Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or bicarbonate thereof, hydrazine, alkylamine [e.g. methylamine, trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]non-5-ene,

25 1,4-diazabicyclo[2.2.2]octane,

1,8-diazabicyclo[5.4.0]undec-7-ene, or the like.

Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, hydrogen fluoride, etc.] and an acid addition salt compound [e.g. pyridine hydrochloride, etc.1.

The elimination using trihaloacetic acid [e.g. trichloroacetic acid, trifluoroacetic acid, etc.] or the

5

10

15

20

25

30

35

- 44 -

like is preferably carried out in the presence of cation trapping agents [e.g. anisole, phenol, etc.].

The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], methylene chloride, chloroform, tetrachloromethane, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent. The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

The reduction method applicable for the elimination reaction may include chemical reduction and catalytic reduction.

Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.].

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalysts [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalysts [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalysts [e.g. reduced cobalt, Raney cobalt, etc.], iron catalysts [e.g. reduced iron, Raney iron, etc.], copper catalysts [e.g. reduced copper, Raney copper, Ullman copper, etc.] and the like.

In case that the N-protective group is benzyl, the reduction is preferably carried out in the presence of a

- 45 -

combination of palladium catalysts [e.g. palladium black, palladium on carbon, etc.] and formic acid or its salt [e.g. ammonium formate. etc.].

The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, methanol, ethanol, propanol, N,N-dimethylformamide, or a mixture thereof. Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvent such as diethyl ether, dioxane, tetrahydrofuran, etc. or a mixture thereof.

The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to heating.

In this reaction, in case that the compound (If) having aryl which is substituted with alkoxy substituted with protected amino, N-protected

amino(lower)alkanoylamino, N-protected piperazinylcarbonyl or N-protected guanidino for R¹ is used as a starting compound, the compound (Ig) having aryl which is substituted with alkoxy substituted with amino, amino(lower)alkanoylamino, piperazinylcarbonyl or guanidino for R¹ may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 6

5

10

15

30

35

The object compound (Ih) or its salt can be prepared by reacting a compound (Ic) or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt.

Suitable salt of amine may be an acid addition salt as exemplified for the compound (I).

- 46 -

Suitable salts of the compounds (Ih) and (Ic) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

Suitable "amine" may be ammonia, substituted or unsubstituted lower alkylamine, substituted or unsubstituted N-containing heterocyclic compound, a heterocyclic group substituted with amino and the like.

5

10

15

35

The substituted or unsubstituted lower alkylamine may be mono or di(lower)alkylamine (e.g. methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, di-isopropylamine, dipentylamine, dihexylamine, etc.), pyridyl(lower)alkylamine, (e.g. pyridylmethylamine, etc.), lower alkylamino(lower)alkylamine (e.g. N-dimethylaminoethylamine, N-dimethylaminopropylamine, N-diethylaminoethyl-N-methylamine, etc.), morpholino(lower)alkylamine (e.g. morpholinoethylamine, etc.) or the like.

20 The substituted or unsubstituted N-containing heterocyclic compound may be a heterocyclic group substituted with amino (e.g. aminopyridine, N-methyl-N'aminopiperazine, etc.), saturated 5 or 6-membered N-, or N- and S-, or N- and O-containing heterocyclic compound 25 such as pyrrolidine, imidazolidine, piperidine, piperidone, piperazine, lower alkylaminopiperidine (e.g. dimethylaminopiperidine, etc.), N-(lower)alkylhomopiperazine (e.g. N-methylhomopiperazine, etc.), N-(lower)alkylpiperazine (e.g. N-methylpiperazine, 30 N-ethylpiperazine, etc.), morpholine, thiomorpholine, N-pyridylpiperazine, N-hydroxy(lower)alkoxy(lower)alkylpiperazine (e.g. N-hydroxyethoxyethylpiperazine, etc.), N-pyrrolidinylcarbonyl(lower)alkylpiperazine (e.g. N-pyrrodidinylcarbonylmethylpiperazine, etc.), or the like, in which preferable one is N-methylpiperazine.

- 47 -

This reaction can be carried out in substantially the same manner as <u>Process 1</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 1</u>.

Process 7

10

15

20

25

30

35

The object compound (Ii) or its salt can be prepared by reacting a compound (Ie) or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt.

Suitable salt of amine may be an acid addition salt as exemplified for the compound (I).

Suitable salts of the compounds (II) and (Ie) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manners as <u>Processes 1 and 6</u>, and therefore the reaction mode and reaction condition (e.g. amine, solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Processes 1 and 6</u>.

Process 8

The object compound (Ik) or its salt can be prepared by subjecting a compound (Ij) or its salt to debenzylation reaction.

Suitable salts of the compounds (Ij) and (Ik) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as hydrolysis using an acid or catalytic reduction in <u>Process 5</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in hydrolysis using an acid or catalylic reduction in <u>Process 5</u>.

- 48 -

In this catalytic reduction, in case that the compound (Ij) having nitro for \mathbb{R}^3 is used as a starting compound, the compound (Ik) having amino for \mathbb{R}^3 may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 9

5

10

15

20

25

30

35

The object compound (It) or its salt can be prepared by reacting a compound (Ika) or its salt with a compound (VI) or its salt.

Suitable salts of the compounds (Ika), (It) and (VI) may be the same as those exemplified for the compound (I).

When the compound (VI) having halogen for Z¹ is used in this reaction, the reaction is preferably carried out in the presence of a base such as an alkali metal (e.g. sodium, potassium, etc.), an alkaline earth metal (e.g. magnesium, calcium, etc.), the hydride or hydroxide or carbonate or bicarbonate thereof.

When the compound (VI) having hydroxy for \mathbf{Z}^1 is used in this reaction, the reaction is preferably carried out in the presence of diethyl azodicarboxylate and triphenylphosphine.

The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, dioxane, alcohol (e.g. methanol, ethanol, etc.), acetonitrile, tetrahydrofuran, acetic acid, N,N-dimethylformamide, or a mixture thereof.

The reaction temperature is not critical and the reaction can be carried out under cooling to heating.

Process 10

The object compound (Im) or its salt can be prepared by reacting a compound (Iga) or its salt with an acylating agent.

Suitable salts of the compounds (Iga) and (Im) may be

- 49 -

the same as those exemplified for the compound (I).

The acylating agent may include an organic acid represented by the formula: R^{11} -OH, in which R^{11} is acyl or substituted acyl as illustrated above, or its reactive derivative.

The suitable reactive derivative of organic acid may be a conventional one such as an acid halide [e.g. acid chloride, acid bromide, etc.], an acid azide, an acid anhydride containing intramolecular and intermolecular ones, an activated amide, an activated ester or the like.

When free acid is used as an acylating agent, the acylation reaction may preferably be conducted in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide or the like.

The reaction is usually carried out in a conventional solvent such as water, pyridine, acetone, dioxane, chloroform, methylene chloride, acetonitrile, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction, or a mixture thereof.

The reaction is also preferably carried out in the presence of a conventional base such as triethylamine, pvridine, sodium hydroxide or the like.

The reaction temperature is not critical, and the reaction can be carried out under cooling to heating.

Process 11

5

10

15

20

25

30

The object compound (In) or its salt can be prepared by reacting a compound (Igb) or its salt with lower alkanal or N-protected amino(lower)alkanal in the presence of a reducing agent.

Suitable salts of the compounds (Igb) and (In) may be the same as those exemplified for the compound (I).

35 Suitable lower alkanal may be C₁-C₆ alkanal such as

- 50 -

formaldehyde, ethanal, propanal or the like, in which preferable one is formaldehyde.

Suitable N-protected amino(lower)alkanal may be N-protected amino(C_1 - C_6)alkanal such as phthalimidopropanal or the like.

Suitable reducing agent may be diborane, borane-organic amine complex [e.g. borane-pyridine complex, etc.], alkali metal cyanoborohydride [e.g. sodium cyanoborohydride, lithium cyanoborohydride, etc.], sodium borohydride and the like.

The reaction is preferably carried out in the presence of molecular sieves.

The reaction is usually carried out in a conventional solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], dioxane, tetrahydrofuran, a mixture thereof or any other organic solvent which does not adversely influence the reaction.

The reaction may also be carried out in an acidic condition [e.g. presence of acetic acid, sulfuric acid, etc.] and the reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 12

5

10

15

20

2.5

30

35

The object compound (Ip) or its salt can be prepared by subjecting a compound (Io) or its salt to reduction.

Suitable salts of the compounds (Io) and (Ip) may be the same as those exemplified for the compound (I).

The reduction may include chemical reduction and catalytic reduction, which are carried out in a conventional manner.

Suitable reducing agents to be used in chemical reduction are a metal [e.g. thin, zinc, iron, nickel, etc.], a combination of such metal and/or metallic compound [e.g. nickel chloride, chromium chloride,

5

10

15

20

25

30

35

- 51 -

chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.], a combination of such metal and/or metallic compound and base [e.g. ammonia, ammonium chloride, sodium hydroxide, etc.], a metal hydride compound such as aluminum hydride compound [e.g. lithium aluminum hydride, sodium aluminum hydride, aluminum hydride, lithium trimethoxyaluminum hydride, lithium trit-t-butoxyaluminum hydride, etc.], borohydride compound [e.g. sodium borohydride, lithium borohydride, sodium cyanoborohydride, tetramethylammonium borohydride, borane, diborane, etc.], a phosphorus compound [e.g. phosphorus tribromide, triphenylphosphine, triethylphosphine, etc.] and the like.

Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalyst [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalyst [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalyst [e.g. reduced cobalt, Raney cobalt, etc.], iron catalyst [e.g. reduced iron, Raney iron, etc.], copper catalyst [e.g. reduced copper, Raney copper, Ullman copper, etc.], or the like.

The reduction is usually carried out in a solvent. A suitable solvent to be used may be water, and alcohol [e.g. methanol, ethanol, propanol, etc.], acetonitrile or any other conventional organic solvent such as diethyl ether, dioxane, tetrahydrofuran, etc. or a mixture thereof.

The reaction temperature is not critical, and the

- 52 -

reaction is preferably carried out under cooling to heating.

Process 13

5

10

1.5

20

25

30

The object compound (Ir) or its salt can be prepared by subjecting a compound (Iq) or its salt to deacylation reaction.

Suitable salts of the compounds (Iq) and (Ir) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as <u>Process 3</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 3</u>.

Process 14

The object compound (Is) or its salt can be prepared by reacting a compound (VII) or its salt with a compound (VIII) or its salt.

Suitable salts of the compounds (Is), (VII) and (VIII) may be the same as those exemplified for the COMPOUND (I).

This reaction can be carried out in substantially the same manner as <u>Process 9</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 9</u>.

Process 15

The object compound (Iu) or its salt can be prepared by reacting a compound (It) or its salt with an oxidizing agent.

Suitable salts of the compounds (It) or (Iu) may be the same as those exemplified for the compound (I).

35 The suitable oxidizing agent may be hydrogen

peroxide, Jones reagent, peracid [e.g. peracetic acid, perbenzoic acid, m-chloroperbenzoic acid, etc.], chromic acid, potassium permanganate, alkali metal periodate [e.g. sodium periodate, etc.] and the like.

This reaction is usually carried out in a solvent which does not adversely influence the reaction such as acetic acid, dichloromethane, acetone, ethyl acetate, chloroform, water, an alcohol [e.g. methanol, ethanol, etc.], a mixture thereof or the like.

The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 16

5

10

15

20

The object compound (Iw) or its salt can be prepared by subjecting a compound (Iv) or its salt to catalytic reduction.

Suitable salts of the compounds (Iv) and (Iw) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as catalytic reduction in <u>Process 5</u>, and threfore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in catalytic reduction in <u>Process 5</u>.

Process 17

The object compound (Iy) or its salt can be prepared

(to be continued to the next page)

25

- 54 -

by subjecting a compound (Ix) or its salt to debenzylation reaction.

Suitable salts of the compounds (Ix) and (Iy) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as <u>Process 8</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 8</u>.

10

5

25

35

Process 18

The object compound (Iz) or its salt can be prepared by reacting a compound (Iy) or its salt with a compound (IX) or its salt.

Suitable salts of the compounds (Iy), (Iz) and (IX) may be the same as those exemplified for the compound (I). This reaction can be carried out in substantially the

This reaction can be carried out in substantially the same manner as <u>Process 9</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to

temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 9</u>.

Process 19

The object compound (I-2) or its salt can be prepared by subjecting a compound (I-1) or its salt to elimination reaction of the hydroxy protective group.

Suitable salts of the compounds (I-1) and (I-2) may be the same as those exemplified for the compound (I).

Suitable hydroxy protective group may be benzyloxy, 30 acyloxy, substituted acyloxy or the like.

This reaction can be carried out in substantially the same manner as <u>Processes 8 and 13</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Processes 8 and 13</u>.

- 55 -

Process 20

5

10

15

20

30

3.5

The object compound (I-3) or its salt can be prepared by reacting a compound (I-2) or its salt with a compound (X) or its salt.

Suitable salts of the compounds (I-2), (I-3) and (X)may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as Process 9, and therefore the reaction mode and reaction condition (e.g. solvent, reaction

temperature, etc.) of this reaction are to be referred to those as explained in Process 9.

Process 21

The object compound (I-4) or its salt can be prepared by subjecting a compound (I-3a) or its salt to deesterification reaction.

Suitable salts of the compounds (I-3a) and (I-4) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as Process 3, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 3.

25 Process 22

The object compound (I-6) or its salt can be prepared by reacting a compound (I-5) or its salt with an alkyne compound in the presence of a palladium compound and a copper compound.

Suitable salts of the compounds (I-5) and (I-6) may be the same as those exemplified for the compound (I).

Suitable alkyne compound may be lower alkyne optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyl, arylsulfonyl or the like, in which preferable one is 3-butyn-1-ol.

- 56 -

Suitable palladium compound may be bis(triphenylphosphine)palladium(II) chloride, or the like.

Suitable copper compound may be copper(I) iodide, or the like.

The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as tetrahydrofuran, dioxane, ethylamine, or a mixture thereof.

The reaction temperature is not critical and the reaction is usually carried out under warming or heating.

Process 23

5

10

20

25

30

The object compound (I-8a) or its salt can be prepared by reacting a compound (I-7) or its salt with a compound (XI).

Suitable salts of the compounds (I-7) and (I-8a) may be the same as those exemplified for the compound (I).

The reaction is preferably carried out in the presence of a base such as trialkylamine (e.g. trimethylamine, triethylamine, etc.) or the like.

The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as tetrahydrofuran, methylene chloride or the like.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process 24

The object compound (I-9) or its salt can be prepared by reacting a compound (I-8) or its salt with alkali metal phthalimide.

Suitable salts of the compounds (I-8) and (I-9) may be the same as those exemplified for the compound (I).

The reaction is carried out in a conventional solvent

by which does not adversely influence the reaction such as

- 57 -

dimethyl sulfoxide, N,N-dimethylformamide, or the like.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

5 Process 25

10

15

25

30

The object compound (I-10) or its salt can be prepared by reacting a compound (I-6) or its salt with a reducing agent.

Suitable salts of the compounds (I-6) and (I-10) may be the same as those exemplified for the compound (I).

Suitable reducing agent may be a combination of nickel chloride and sodium borohydride, and the like.

The reaction is carried out in a conventional solvent which does not adversely influence the reaction such as an alcohol (e.g. methanol, ethanol, etc.), tetrahydrofuran, or a mixture thereof.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

20 Process 26

The object compound (I-11) or its salt can be prepared by reacting a compound (II) or its salt with a compound (XII) or its salt.

Suitable salts of the compounds (I-11), (II) and (XII) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as <u>Process 11</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 11</u>.

Process 27

The object compound (I-13) or its salt can be prepared by reacting a compound (I-12) or its salt with a

WO 96/41795

5

10

15

20

25

30

35

compound (XIII) in the presence of a base.

Suitable salts of the compounds (I-12) and (I-13) may be the same as those exemplified for the compound (I).

Suitable base may be an alkali metal (e.g. sodium, potassium, etc.), an alkali metal hydride (e.g. sodium hydride), and the like.

The reaction is carried out in a solvent such as N,N-dimethylformamide, tetrahydrofuran, dioxane, a mixture thereof or any other solvent which does not adversely influence the reaction.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

Process 28

The object compound (I-15) or its salt can be prepared by reacting a compound (I-14) or its salt with an acylating agent.

Suitable salts of the compounds (I-14) and (I-15) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as <u>Process 10</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 10</u>.

Process 29

The object compound (I-17) or its salt can be prepared by reacting a compound (I-16a) or its salt with a reducing agent.

Suitable salts of the compounds (I-16a) and (I-17) may be the same as those exemplified for the compound (I). Suitable reducing agent may be alkali metal borohydride (e.g. sodium borohydride, etc.), and the like.

The reaction is carried out in a solvent such as an alcohol (e.g. methanol, ethanol, etc.), tetrahydrofuran,

10

15

25

30

35

or the like.

The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

5 Process 30

The object compound (I-18) or its salt can be prepared by reacting a compound (I-16) or its salt with an amine compound or its salt in the presence of a reducing agent.

Suitable salts of the compounds (I-16) and (I-18) may be the same as those exemplified for the compound (I).

Suitable amine compound may be ammonia, N-lower alkylpiperazine, and the like.

Suitable salt of amine compound may be an acid addition salt (e.g. acetate, hydrochloride, etc.), and the like.

This reaction can be carried out in substantially the same manner as <u>Process 11</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to

20 temperature, etc.) of this reaction are to be referred t those as explained in <u>Process 11</u>.

Process 31

The object compound (I-20) or its salt can be prepared by reacting a compound (I-19) or its reactive derivative at the carboxy group or a salt thereof with lower alkylamino(lower)alkanol.

Suitable salts of the compounds (I-20) and (I-19) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

Suitable lower alkylamino(lower)alkanol may be dimethylaminoethanol, and the like.

This reaction can be carried out in substantially the same manner as <u>Process 1</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction

- 60 -

temperature, etc.) of this reaction are to be referred to those as explained in $\underline{\text{Process 1}}$.

Process 32

5

10

15

20

25

30

35

The object compound (I-22) or its salt can be prepared by reacting a compound (I-21) or its salt with a reducing agent.

Suitable salts of the compounds (I-21) and (I-22) may be the same as those exemplified for the compound (I).

Suitable reducing agent may be diborane, lithium aluminum hydride and the like.

The reaction is usually carried out in a solvent which does not adversely influence the reaction such as diethyl ether, tetrahydrofuran or the like.

The reaction temperature is not critical and the reaction can be carried out under cooling to heating.

Process 33

The object compound (I-23) or its salt can be prepared by subjecting a compound (I-22) or its salt to exidation reaction.

Suitable salts of the compounds (I-22) and (I-23) may be the same as those exemplified for the compound (I).

Suitable oxidizing agent used in this reaction may be manganese dioxide, dimethyl sulfoxide, a mixture of dimethyl sulfoxide and oxalyl chloride and the like.

The reaction is usually carried out in a conventional solvent such as pentane, hexane, benzene, diethyl ether, dimethoxyethane, acetone, chloroform, dichloromethane or any other solvent which does not adversely influence the reaction.

Additionally in case that the above-mentioned oxidizing agent is liquid, it can be used as a solvent.

In this reaction, in case that dimethyl sulfoxide or a mixture of dimethyl sulfoxide and oxalyl chloride is

used as an oxidizing agent, the reaction is preferably carried out in the presence of alkali metal iodide (e.g. sodium iodide, etc.) and alkali metal carbonate (e.g. sodium carbonate) or tri(lower)alkylamine (e.g. triethylamine, etc.).

The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

Process 34

5

10

15

20

25

30

The object compound (I-25) or its salt can be prepared by reacting a compound (I-24) or its salt with an azide compound.

Suitable salts of the compounds (I-24) and (I-25) may be the same as those exemplified for the compound (I).

Suitable azide compound may be sodium azide, trimethyltin azide and the like.

The reaction is usually carried out in a solvent which does not adversely influence the reaction such as dioxane, an aromatic hydrocarbon (e.g. benzene, toluene, xylene) or the like.

The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process 35

The object compound (I-27) or its salt can be prepared by reacting a compound (I-26) or its salt with an isourea compound.

Suitable salts of the compounds (I-26) and (I-27) may be the same as those exemplified for the compound (I).

Suitable isourea compound may be O-alkylisourea (e.g. O-methylisourea, etc.) and the like.

The reaction is usually carried out in a solvent which does not adversely influence the reaction such as an alcohol (e.g. methanol, ethanol, etc.) or the like.

35 The reaction temperature is not critical and the

- 62 -

reaction is usually carried out under warming to heating.

Process 36

The object compound (I-29) or its salt can be prepared by subjecting a compound (I-28) or its salt to elimination reaction of the N-protective group.

Suitable salts of the compounds (I-28) and (I-29) may be the same as those exemplified for the compound (I).

This reaction can be carried out in substantially the same manner as <u>Process 5</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 5</u>.

15 Process 37

10

20

30

35

The object compound (I-31) or its salt can be prepared by reacting a compound (I-30) or its salt with N-lower alkylpiperazine, dimethylaminopiperidine, ammonia or N,N-dimethylformamide.

Suitable salts of the compounds (I-30) and (I-31) may be the same as those exemplified for the compound (I).

The reaction is usually carried out in a solvent which does not adversely influence the reaction such as N,N-dimethylformamide, dioxane or the like.

25 The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process 38

The object compound (I-3a) or its salt can be prepared by reacting a compound (I-4) or its reactive derivative at the carboxy group or a salt thereof with a hydroxy compound or a diazo compound.

Suitable salts of the compounds (I-3a) and (I-4) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

- 63 -

Suitable reactive derivative at the carboxy group (I-4) may be acid halide (e.g. acid chloride, acid bromide, etc.) and the like.

Suitable hydroxy compound may be an alcohol (e.g. methanol, ethanol, etc.), phenol, naphthol and the like.

Suitable diazo compound may be methyldiazomethane, trimethylsilyldiazomethane and the like.

The reaction is usually carried out in a conventional solvent such as diethyl ether, tetrahydrofuran, dioxane, methylene chloride, or any other organic solvent which does not adversely influence the reaction.

Additionally, in case that the above-mentioned hydroxy compound is in liquid, it can also be used as a solvent.

The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process 39

5

10

20

25

30

35

The object compound (I-32) or its salt can be prepared by reacting a compound (I-4) or its reactive derivative at the carboxy group or a salt thereof with an amine.

Suitable salts of the compounds (I-32) and (I-4) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

Suitable amine may be ammonia, lower alkylamine (e.g. methylamine, dimethylamine, etc.) and the like.

This reaction can be carried out in substantially the same manner as <u>Process 6</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 6</u>.

The compounds obtained by the above processes can be isolated and purified by a conventional method such as

pulverization, recrystallization, column chromatography, reprecipitation, or the like.

It is to be noted that the compound (I) and the other compounds may include one or more stereoisomer(s) such as optical isomer(s) or geometrical isomer(s) due to asymmetric carbon atom(s) and double bond(s), and all of such isomers and mixture thereof are included within the scope of this invention.

Additionally, it is to be noted that any hydrate of the compound (I) is also included within the scope of this invention.

The object compound (I) and pharmaceutically acceptable salts thereof possess activities as vasopressin antagonistic activity, vasodilating activity, hypotensive activity, activity for inhibiting saccharide release in liver, activity for inhibiting growth of mesangium cells, water diuretic activity, platelet agglutination inhibitory activity, oxytocin antagonistic activity and the like, and are useful for the treatment and/or prevention of hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease (e.g. cerebral edema, cerebral infarction, etc.), Meniere's syndrome (e.g. Meniere's disease, et.), motion sickness and the like in human beings and animals.

In order to illustrate the usefulness of the object compound (I), the pharmacological data of the compound (I) are shown in the following

Test 1

5

15

20

25

(i) Test Method :

Blood was obtained by venipuncture from normal subjects. Platelet-rich plasma (PRP) was prepared by centrifugation of whole blood at 200 xg for 10 minutes. PRP was centrifuged at 45,000 xg for 30 minutes. The remaining pellet was resuspended in 10 volume of ice cold 100 mM Tris-HCl (pH 7.4) buffer (containing 5 mM MgCl₂, 0.1% bovine serum albumin and 1 mM EGTA), and centrifuged at 45,000 xg for 30 minutes again. The final pellet was resuspended in 100 mM Tris-HCl buffer. The resulting membrane preparation was used immediately for the binding assay.

Competition assays were conducted at equilibrium (15 minutes at 30°C) by using 1.5 nM 3 H-vasopressin (40-87 Ci/mmol; New England Nuclear) in 100 mM Tris-HCl (pH 7.4) buffer. Nonspecific binding was determined by using 1 μ M vasopressin. After incubation, reaction was terminated by adding 5 ml of ice-cold 100 mM Tris-HCl (pH 7.4) buffer, and then filtered rapidly through Whatman glass filter (GF/C). The filter was washed twice with the same buffer. The glass filter was mixed with liquid scintilation cocktail, and radioactivity was counted in a liquid scintilation counter. Competition activity of the test compound was represented by ICsn values.

(ii) Test Result :

Test Compound (Example No.)	IC ₅₀ (nM)
5-2)	51
16	14
17-20)	31

5

10

15

20

25

- 66 -

Test 2

5

10

15

Vasopressin 2 (V2) receptor binding

(i) Test Method :

For binding assays, the receptor cDNA was permanently expressed in Chinese hamster ovary (CHO) cells. CHO cells were transfected with a vector directing expression of the cDNA for the human V2 receptor and the clonal cell lines expressing human V2 receptor was established essentially as described previously (Nakajima, Y., et. al. J. Biol. Chem., 1992, 267, 2437).

DNA-transfected cells were harvested and homogenized in ice cold 250 mM sucrose buffer containing 25 mM Tris-HCl (pH 7.4), 10 mM MgCl $_2$, 1 mM EDTA and 5 μ g/ml p-amidinophenylmethylsulfonyl fluoride (A-PMSF). The homogenate was centrifuged at 500 xg for 10 minutes. The supernatant was centrifuged at 100,000 xg for 1 hour. The final pellet was suspended in 25 mM Tris-HCl (pH 7.4)

20 buffer (containing 10 mM MgCl₂, 1 mM EDTA and 5 μg/ml A-PMSF), and stored in small aliquots at -80°C.

Competition assays were conducted at equilibrium (2 hours at 22°C) by using 0.5 nM 3 H-vasopressin (40-87 Ci/mmol, New England Nuclear) in 100 mM Tris-HCl (pH 7.4)

buffer (containing 5 mM MgCl₂, 5 μg/ml A-PMSF, 4 μg/ml leupeptin, 40 μg/ml bacitracin, 20 μg/ml chymostatin and 0.1% bovine serum albumin). Nonspecific binding was determined by using 1 μM vasopressin. After incubation, reaction mixture was rapidly filtered through Whatman glass filter (GF/C). The filter was washed twice with the

glass filter (GF/C). The filter was washed twice with the same buffer. The radioactivity was counted in a liquid scintilation counter. Competition activity of the test compound was represented by IC₅₀ values.

- 67 -

(ii) Test Result :

Test Compound (Example No.)	IC ₅₀ (nM)
5-2)	1300
16	.1400
17-20)	1300

For therapeutic purpose, the compound (I) of the present invention can be used in a form of pharmaceutical preparation containing one of said compounds, as an active ingredient, in admixture with a pharmaceutically acceptable carrier such as an organic or inorganic solid, 15 semi-solid or liquid excipient suitable for oral, parenteral or external (topical) administration. The pharmaceutical preparations may be capsules, tablets, dragees, granules, suppositories, solution, lotion, suspension, emulsion, ointment, gel, or the like. If 20 desires, there may be included in these preparations, auxiliary substances, stabilizing agents, wetting or emulsifying agents, buffers and other commonly used additives.

While the dosage of the compound (I) will vary depending upon the age and condition of the patient, an average single dose of about 0.1 mg, 1 mg, 10 mg, 50 mg, 100 mg, 250 mg, 500 mg and 1000 mg of the compound (I) may be effective for treating the above-mentioned diseases. In general, amounts between 0.1 mg/body and about 1,000 mg/body may be administered per day.

The following Preparations and Examples are given for the purpose of illustrating this invention.

25

30

5

10

Preparation 1

To a solution of [N-methyl-N-(4-nitrobenzoyl]-2-hydroxyaniline (1.2 g) in N,N-dimethylformamide (30 ml) was added potassium carbonate (1.22 g), ethyl 6-bromohexanoate (1.03 g) and sodium iodide (catalytic amount) at 60°C. The reaction mixture was stirred at same temperature for 8 hours. The reaction mixture was cooled in an ice bath and quenched with 1N hydrochloric acid (10 ml) and water (30 ml). The mixture was extracted with ethyl acetate. The organic phase was washed with water and brine. The organic solution was dried over magnesium sulfate. The solvent was removed by evaporation to give 2-(5-ethoxycarbonylpent-1-yloxy)-[N-methyl-N-(4-nitrobenzoyl)]aniline (1.7 g).

15 NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.45-1.58 (2H, m), 1.67-1.76 (2H, m), 1.79-1.88 (2H, m), 2.34 (2H, t, J=7.5Hz), 3.38 (3H, s), 3.84-4.00 (2H, m), 4.13 (2H, t), 6.72-6.82 (2H, m), 7.01 (1H, d, J=7Hz), 7.17 (1H, t, J=7Hz), 7.45 (2H, d, J=8.5Hz), 7.98 (2H, d, J=8.5Hz)

Preparation 2

25

30

35

A solution of 3-methoxy-4-nitro-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (7.6 g) in ethanol (76 ml) was treated with lN sodium hydroxide solution (33 ml) at ambient temperature and the mixture was stirred at the same temperature for 6 hours. The reaction was quenched by the dropwise addition of lN hydrochloric acid (35 ml). The mixture was concentrated and the residue was dissolved in a mixture of ethyl acetate and lN hydrochloric acid. The extracted organic layer was washed with brine and dried over magnesium sulfate. The suspension was filtered and the solvent was removed by evaporation to give 3-methoxy-4-nitro-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]-N-

methylbenzamide (7.1 g) as an oil.

NMR (CDCl₃, δ): 1.48-1.63 (2H, m), 1.66-1.91 (4H, m), 2.28 (3H, s), 2.41 (2H, t, J=7Hz), 3.34 (3H, s), 3.78 (3H, s), 3.81-3.98 (2H, m), 6.58-6.67 (2H, m), 6.89 (1H, d, J=8Hz), 6.94 (1H, d, J=8Hz), 7.09 (1H, s), 7.61 (1H, d, J=8Hz)

Preparation 3

5

3-Methoxy-4-nitro-N-[2-(5-carboxypent-1-yloxy)-4methylphenyl]-N-methylbenzamide (5.2 g), 10 1-methylpiperazine (1.45 g) and 1-hydroxybenzotriazole (1.96 g) were dissolved in N,N-dimethylformamide (50 ml) and the solution was cooled in an ice bath. To the mixture was added N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.78 g) and the solution was 15 stirred at the same temperature for 30 minutes. The reaction mixture was allowed to warm to ambient temperature and stirring was continued for additional 20 hours. The reaction mixture was diluted with ethyl 20 acetate and the solution was washed successively with saturated sodium hydrogen carbonate and brine, and dried over sodium sulfate. The sodium sulfate was removed and the solvent was removed by evaporation to give oil. The crude material was subjected to a silica gel column 25 chromatography (SiO2; 120 g, 2% methanol in chloroform) to give 3-methoxy-4-nitro-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (€.2 g).

NMR (CDCl₃, δ): 1.43-1.60 (2H, m), 1.60-1.92 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.25-2.47 (6H, m), 3.34 (3H, s), 3.44-3.54 (2H, m), 3.58-3.70 (2H, m), 3.78 (3H, s), 3.82-4.03 (2H, m), 6.56-6.66 (2H, m), 6.86 (1H, d, J=8Hz), 6.94 (1H, d, J=8Hz), 7.07 (1H, s), 7.61 (1H, d, J=8Hz)

5

10

Preparation 4

A mixture of 3-methoxy-4-nitro-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (6.2 g) and iron powder (3.43 g) in a mixture of ethanol (65 ml) and ethyl acetate (6 ml) was refluxed for 2 hours. After being cooled to ambient temperature, the solution was filtered through a bed of Celite and the filtrate was evaporated in vacuo. The residue was diluted with ethyl acetate and the solution was washed with saturated sodium hydrogen carbonate and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (4.7 g)

15 NMR (CDCl₃, δ): 1.43-1.58 (2H, m), 1.61-1.91 (4H, m), 2.26 (3H, s), 2.30 (3H, s), 2.23-2.44 (6H, m), 3.29 (3H, s), 3.41-3.53 (2H, m), 3.61 (3H, s), 3.57-3.68 (2H, m), 3.75-4.03 (4H, m), 6.36-6.46 (1H, m), 6.53-6.67 (2H, m), 6.76-6.89 (3H, m)

Preparation 5

The following compounds were obtained according to a similar manner to that of Preparation 4.

25

30

4-Amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenylbenzamide
 NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.41-1.54 (2H, m), 1.62-1.73 (2H, m), 1.75-1.84 (2H, m), 2.32 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.84 (2H, br), 3.90 (2H, br), 4.13 (2H, t), 6.38 (2H, d, J=8.5Hz), 6.79 (2H, d, J=8.5Hz), 6.99 (2H, s), 7.09-7.18 (3H, m)

35 2) 4-Amino-3-methoxy-N-methyl-N-[2-[5-(4-

10

20

25

dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide

NMR (CDCl₃, δ): 1.29-1.95 (10H, m), 2.23-2.43 (12H,
m), 2.57 (1H, m), 3.01 (1H, m), 3.31 (3H, s),
3.62 (3H, s), 3.73-4.03 (5H, m), 4.63 (1H, m),
6.42 (1H, d, J=9Hz), 6.54-6.67 (2H, m), 6.776.89 (3H, m)

- 3) 4-Amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide
 MASS (m/z): 399 (M+1)
- 4) 4-Amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

 15 NMR (CDCl₃, δ): 2.27 (3H, s), 2.32 (3H, s), 2.35-2.55 (4H, m), 3.31 (3H, s), 3.38-3.54 (2H, m), 3.66-3.87 (4H, m), 4.90-5.10 (2H, m), 6.38 (2H, d, J=8Hz), 6.62-6.69 (2H, m), 6.94 (1H, d, J=7Hz), 7.13 (2H, d, J=8Hz), 7.31-7.43 (4H, m)

5) 2-(4-Methoxycarbonyl)phenylmethoxy-4-methylamine
 NMR (CDCl₃, δ): 2.24 (3H, s), 3.90 (3H, s), 5.11 (3H, s), 6.60-6.68 (3H, m), 7.50 (2H, d, J=8Hz),
 8.05 (2H, d, J=8Hz)

6) 4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenzamide

NMR (CDCl₃, δ): 2.28 (3H, s), 2.33 (3H, s), 2.3730 2.53 (4H, m), 3.36 (3H, s), 3.41-3.54 (2H, m),
3.57 (3H, s), 3.65-3.90 (4H, m), 4.90 (1H, d,
J=14Hz), 5.06 (1H, d, J=14Hz), 6.38 (1H, d,
J=7Hz), 6.62-6.70 (2H, m), 6.78 (1H, d, J=7Hz),
6.84 (1H, s), 6.98 (1H, d, J=7Hz), 7.33 (2H, d,
35 J=8Hz), 7.41 (2H, d, J=8Hz)

10

- 7) Methyl 4-[(E and Z)-2-(2-aminophenyl)ethen-1-yl]benzoate
 NMR (CDCl₃, δ): 3.72 (2H, br), 3.86 (3Hx2/3, s), 3.90 (3Hx1/3, s), 6.57-7.43 (7H, m), 7.55 (1H, d, J=7Hz), 7.86 (1H, d, J=7Hz), 8.01 (7H, d)
- 6) 4-Amino-3-methoxy-N-[(E and Z)-2-(4-methoxycarbonyl-phenyl)ethen-1-yl]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 3.39 (3Hx2/3, s), 3.40 (3Hx1/3, s),
 3.50 (3Hx2/3, s), 3.51 (3Hx1/3, s), 3.61-3.96
 (2H, m), 3.84 (3Hx2/3, s), 3.41 (3Hx1/3, s),
 6.30-8.05 (13H, m)
- 9) 4-Amino-3-methoxy-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 2.21 (3H, s), 3.34 (3H, s), 3.50
 (3H, s), 3.83 (2H, s), 3.90 (3H, s), 4.79-5.14
 (2H, m), 6.37 (1H, d, J=7Hz), 6.60 (1H, s), 6.70
 (1H, d, J=7Hz), 6.77 (1H, d, J=7Hz), 6.81 (1H, s), 6.99 (1H, d, J=7Hz), 7.34 (2H, d, J=8Hz),
 8.01 (2H, d, J=8Hz)
 - 10) 2-[3-(Ethoxycarbonylmethyl)oxyprop-1-yl]oxyaniline
 NMR (CDCl₃, δ): 1.27 (3H, t, J=7.5Hz), 2.08-2.28
 (2H, m), 3.72 (2H, t, J=7.5Hz), 3.79 (2H, s),
 4.09 (2H, s), 4.14 (2H, t, J=7.5Hz), 4.21 (2H, q, J=7.5Hz), 6.65-6.82 (4H, m)

- 12) 2-{(E)-5-Ethoxycarbonyl-4-penten-1-yl}oxy-4-methylaniline
 - NMR (CDCl₃, δ): 1.29 (3H, t, J=7.5Hz), 1.90-2.05 (2H, m), 2.23 (3H, s), 2.35-2.50 (2H, m), 3.65 (2H, br), 4.00 (2H, t, J=7.5Hz), 4.18 (2H, q, J=7.5Hz), 5.98 (1H, d, J=15Hz), 6.53-6.67 (2H, m), 6.81 (1H, s), 7.00 (1H, dt, J=15, 7.5Hz)
- 13) 4-Amino-3-methoxy-N-[2-[(E)-5-ethoxycarbonyl-4penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 1.27 (3H, t, J=7.5Hz), 1.84-1.98
 (2H, m), 2.36 (3H, s), 2.31-2.41 (2H, m), 3.29
 (3H, s), 3.62 (3H, s), 3.75-3.96 (4H, m), 4.18
 (2H, q, J=7.5Hz), 5.84 (1H, d, J=15Hz), 6.40
 (1H, d, J=7Hz), 6.58-6.63 (2H, m), 6.78-7.01
 (4H, m)
- 14) 2-(5-Ethoxycarbonylpent-1-yloxy)-4-methylaniline

 NMR (CDCl₃, δ): 1.26 (3H, t, J=7Hz), 1.45-1.60 (2H,

 m), 1.63-1.89 (4H, m), 2.25 (3H, s), 2.33 (2H,

 t, J=7Hz), 3.98 (2H, t, J=7Hz), 4.13 (2H, q,

 J=7Hz), 6.54-6.68 (3H, m)
- 15) 3-Methoxy-4-amino-N-(2-benzyloxy-4-methylphenyl)-N25 methylbenzamide

 NMR (CDCl₃, δ): 2.28 (3H, s), 3.32 (3H, s), 3.49

 (3H, s), 3.83 (2H, br), 4.80-5.11 (2H, br), 6.34

 (1H, d, J=8Hz), 6.62-6.84 (5H, m), 6.92 (1H, d,

 J=8Hz), 7.25-7.39 (4H, m)
 - 16) 4-Amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.48-1.59 (2H, m), 1.63-1.88 (4H, m), 2.00 (3H, s), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 3.29 (3H, s), 3.43-3.48 (2H,

- 74 -

m), 3.62 (4H, br), 3.90 (2H, br), 6.32 (1H, d, J=7Hz), 6.56-6.61 (2H, m), 6.83 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.17 (1H. s)

5 17) 4-Amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylpiperazinde

NMR (CDCl₃, δ): 1.62 (6H, br), 2.28 (3H, s), 2.31 (3H, s), 2.38-2.49 (6H, m), 3.28 (3H, s), 3.52 (2H, br), 3.67 (2H, br), 3.78 (2H, br), 3.91 (2H, br), 6.32-6.38 (1H, m), 6.57-6.67 (3H, m), 7.00-7.03 (2H, m)

Preparation 6

- The following compounds were obtained by reacting the compounds, which were prepared according to a similar manner to that of Preparation 4, with hydrogen chloride.
- 1) Benzyl 4-amino-3-benzyloxybenzoate hydrochloride
 20 NMR (DMSO-d₆, δ): 5.18 (2H, s), 5.25 (2H, s), 5.98 (2H, br), 6.78 (1H, d, J=7Hz), 7.29-7.52 (12H, m)

Preparation 7

35

The following compounds were obtained according to a similar manner to that of Preparation 1.

2-(3-Hydroxyprop-1-y1) oxynitrobenzene
 NMR (CDC1₃, δ): 2.07-2.14 (2H, m), 2.22 (1H, t, J=7.5Hz), 3.90 (2H, dd, J=7.5, 7.5Hz), 4.29 (2H, t, J=7Hz), 7.01 (1H, t, J=7Hz), 7.12 (1H, t,

- 75 -

J=7Hz), 7.54 (1H, t, J=7Hz), 7.89 (1H, d, J=7Hz)

- 2) 3-(3-Ethoxycarbonylprop-1-yl)oxy-4-nitrotoluene NMR (CDCl3, \delta): 1.24 (3H, t, J=7.5Hz), 2.09-2.19 (2H, m), 2.56 (2H, t, J=7.5Hz), 4.08-4.20 (4H, m), 6.81 (1H, d, J=7Hz), 6.97 (1H, s), 7.77 (7H, d)
- 3) Benzyl 2-(3-phthalimidopropoxy)benzoate

 10 NMR (CDCl₃, δ): 2.08-2.23 (2H, m), 3.85 (2H, t, J=7Hz), 4.07 (2H, t, J=7Hz), 5.32 (2H, s), 6.86-7.02 (2H, m), 7.20-7.50 (6H, m), 7.61-7.74 (2H, m), 7.75-7.90 (3H, m)
- 15 4) 2-(5-Ethoxycarbonylpent-1-yloxy)-4-methylnitrobenzene
 NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.46-1.63 (2H,
 m), 1.63-1.78 (2H, m), 1.79-1.94 (2H, m), 2.34
 (2H, t, J=7Hz), 2.40 (3H, s), 4.00-4.19 (4H, m),
 6.80 (1H, d, J=9Hz), 6.84 (1H, s), 7.76 (1H, d,
 J=9Hz)
 - 5) 2-Benzyloxy-N-tert-butoxycarbonylaniline NMR (CDCl₃, δ): 1.49 (9H, s), 5.10 (2H, s), 6.88-6.98 (3H, m), 7.09 (1H, s), 7.32-7.43 (5H, m), 8.10 (1H, br)
 - 6) Methyl 4-{N-{2-{(3-tert-butoxycarbonylaminoprop-1-yl)oxy}phenyl}-tert-butoxycarbonylamino]methyl-3-methoxybenzoate
- 30 NMR (CDC1₃, δ): 1.33 and 1.42 (total 18H, s),
 1.92-2.00 (2H, m), 3.26-3.32 (2H, m), 3.70 and
 3.77 (total 3H, s), 3.90 (3H, s), 4.03 (2H, br),
 4.72 (2H, br), 6.72-6.97 (3H, m), 7.10-7.23 (2H, m), 7.40-7.53 (2H, m), 7.62 (1H, br)

25

- 7) 1-Benzyloxy-2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzene

 NMR (CDCl₃, δ): 1.40 and 1.47 (9H, s), 1.98-2.06

 (2H, m), 3.23-3.47 (2H, m), 4.10 (2H, t, J=6Hz),

 5.16 (2H, s), 5.42 (1H, br), 6.82-6.90 (4H, m),

 7.28-7.47 (5H. m)
- 8) Methyl 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxymethyl-3-methoxybenzoate
- 10 NMR (CDCl₃, δ): 1.38 (9H, s), 2.02 (2H, br), 3.38 (2H, br), 3.90-3.92 (6H, m), 4.10-4.16 (2H, m), 5.23 (1H, s), 5.25 (1H, s), 5.44 (1H, br), 6.83-6.92 (4H, m), 7.53-7.57 (2H, m), 7.65-7.69 (1H, m)
- 9) Benzyl 3-benzyloxy-4-nitrobenzoate NMR (CDCl₃, δ) : 5.28 (2H, s), 5.89 (2H, s), 7.30-

7.48 (9H, m), 7.70-7.73 (1H, m), 7.81-7.85 (2H, m)

- 10) Benzyl 3-benzyloxy-4-[2-[(3-tert-butoxycarbonylamino-prop-1-yl)oxy]benzoyl]aminobenzoate

 NMR (CDCl₃, δ): 1.38 (9H, s), 1.60-1.70 (2H, m),
 2.95-3.02 (2H. m), 3.80 (2H, + π=6H=), 4.42
- 2.95-3.02 (2H, m), 3.80 (2H, t, J=6Hz), 4.42 (1H, br), 5.22 (2H, s), 5.38 (2H, s), 6.93 (1H, d, J=8Hz), 7.10 (1H, t, J=7Hz), 7.32-7.50 (12H, m), 7.71-7.72 (1H, m), 7.80-7.83 (1H, m), 8.23-8.28 (1H, m), 8.78 (1H, d, J=7Hz)
- 30 11) Methyl 2-[2-[(3-tert-butoxycarbonylaminoprop-1yl)oxy]benzoyl]amino-5-thiophenecarboxylate

This compound was used for further reaction without purification.

WO 96/41795 PCT/JP96/01533

- 77 -

Preparation 8

The following compounds were obtained according to a similar manner to that of Preparation 2.

- 5 1) 4-[N-Methyl-2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxybenzoic acid

 NMR (CDCl₃, δ): 1.45 (9H, s), 1.97-2.06 (2H, m),

 3.33-3.42 (5H, m), 3.87 (3H, s), 3.98-4.07 (2H,

 m), 5.27-5.35 (1H, br), 6.67-6.76 (2H, m), 7.03
 10 7.19 (3H, m), 7.44-7.50 (2H, m)

 ESI-MASS (m/z): 459 (M+H)
 - 4-Nitro-N-[2-(4-carboxyphenyl)methoxy-4methyl]phenyl-N-methylbenzamide
- 15 NMR (CDCl₃, δ): 2.27 (3H, s), 3.40 (3H, s), 4.97 (1H, d, J=14Hz), 5.10 (1H, d, J=14Hz), 6.65 (1H, s), 6.68 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.33-7.49 (4H, m), 7.97 (2H, d, J=8Hz), 8.10 (2H, d, J=8Hz)

20

30

3) 3-Methoxy-4-nitro-N-[2-(4-carboxy)phenylmethoxy-4-methyl]phenyl-N-methylbenzamide

NMR (CDC1₃, δ): 2.30 (3H, s), 3.42 (3H, s), 3.61 (3H, s), 4.92 (1H, d, J=14Hz), 5.11 (1H, d, J=14Hz), 6.65 (1H, s), 6.73 (1H, d, J=7Hz), 6.86 (1H, d, J=7Hz), 7.02-7.08 (2H, m), 7.48 (2H, d, J=8Hz), 7.54 (1H, d, J=7Hz), 8.16 (2H, d, J=8Hz)

 2-(4-Carboxyphenylmethyl)oxy-4-methyl-N,Ndimethylaniline

NMR (CDCl₃, δ): 2.31 (3H, s), 2.89 (6H, s), 5.08 (2H, s), 6.76-7.82 (2H, m), 7.03 (1H, d, J=7Hz), 7.40 (2H, d, J=8Hz), 7.77 (2H, d, J=8Hz)

35 5) 2-[3-(4-Methoxyphenyl)methoxypropyl-1-yl]thiobenzoic

20

25

30

acid

NMR (CDC1₃, δ): 1.95-2.06 (2H, m), 3.03 (2H, t, J=7.5Hz), 3.59 (2H, t, J=7.5Hz), 3.77 (3H, s), 4.46 (2H, s), 6.89 (2H, d, J=8Hz), 7.19 (1H, t, J=7Hz), 7.16 (2H, d, J=8Hz), 7.36 (1H, d, J=7Hz), 7.45 (1H, t, J=7Hz), 8.10 (1H, d, J=7Hz)

- 6) 4-Amino-3-methoxy-N-[2-(4-carboxy)phenylmethoxy-4-methyl)phenyl-N-methylbenzamide
- 10 NMR (DMSO-d₆, δ): 2.21 (3H, s), 3.15 (3H, s), 3.41 (3H, s), 4.95-5.23 (2H, m), 6.33 (1H, d, J=7Hz), 6.63-6.72 (3H, m), 6.87 (1H, s), 7.04 (1H, d, J=7Hz), 7.44 (2H, d, J=8Hz), 7.95 (2H, d, J=8Hz)
- 15 7) 4-Amino-3-methoxy-N-[2-[3-(carboxymethyl)oxyprop-1-yl]oxyphenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 2.00-2.12 (2H, m), 3.32 (3H, s),

3.60 (3H, s), 3.63-3.74 (2H, m), 3.89-4.14 (2H, m), 4.05 (2H, s), 4.50 (2H, br), 6.40 (1H, d, J=7Hz), 6.80-6.95 (4H, m), 6.95 (1H, d, J=7Hz),

- 8) 4-Amino-3-methoxy-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.87-1.99 (2H, m), 2.28 (3H, s),
 2.34-2.45 (2H, m), 3.31 (3H, s), 3.61 (3H, s),
 3.71-4.00 (2H, m), 5.87 (1H, d, J=15Hz), 6.41 (1H, d, J=7Hz), 6.57-6.68 (2H, m), 6.80-7.12 (4H, m)
- 9) 3-(5-Carboxypent-1-yloxy)-4-(tert-butoxycarbonylamino)toluene

 NMR (CDCl₃, δ): 1.45-1.63 (11H, m), 1.64-1.95 (4H, m), 2.28 (3H, s), 2.42 (2H, t, J=7Hz), 3.99 (2H, t, J=7Hz), 6.65 (1H, s), 6.72 (1H, d, J=8Hz),

- 79 -

6.98 (1H, s), 7.87 (1H, m)

- 10) 4-[(2-Benzyloxy)benzoyl]amino-3-chlorobenzoic acid
 NMR (CDCl₃, δ): 5.49 (2H, s), 7.18 (1H, t, J=6Hz),
 7.32-7.42 (4H, m), 7.50-7.62 (3H, m), 7.89-7.93
 (2H, m), 8.10 (1H, d, J=7Hz), 8.58-8.62 (1H, m)
- 11) 4-[2-(Benzyloxy)benzoyl]amino-2-nitrobenzoic acid
 NMR (DMSO-d₆, δ): 5.22 (2H, s), 7.10 (1H, t,

 J=7Hz), 7.28-7.38 (4H, m), 7.50-7.58 (3H, m),

 7.65-7.69 (1H, m), 7.86 (2H, s), 8.16 (1H, s)
 - 12) 2-[2-(Benzyloxy)benzoyl]amino-5-pyridinecarboxylic acid
- 15 NMR (DMSO-d₆, δ): 5.18 (1H, s), 5.32 (2H, s), 6.98-7.20 (2H, m), 7.29-7.67 (6H, m), 7.84-7.88 (1H, m), 8.28-8.37 (2H, m), 8.80 (1H, s)
- 13) 4-[N-[2-[(3-tert-Butoxycarbonylaminoprop-120 y1)oxy]phenyl]-tert-butoxycarbonylamino]methyl-3methoxybenzoic acid

- NMR (CDCl₃, δ): 1.35 and 1.43 (total 18H, s), 1.92-2.00 (2H, m), 3.28 and 3.32 (total 2H, m), 3.20 and 3.28 (total 3H, s), 4.02 (2H, br), 4.77 (2H, br), 6.77-7.99 (3H, m), 7.10-7.20 (2H, m), 7.44-7.56 (2H, m), 7.69 (1H, br)
- 14) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxymethyl-3-methoxybenzoic acid
- 30 NMR (CDCl₃, δ): 1.37 (9H, s), 2.05 (2H, br), 3.40 (2H, br), 3.93 (3H, s), 4.10-4.17 (2H, m), 5.27 (2H, s), 5.50 (1H, br), 6.87-6.93 (4H, m), 7.59 (2H, s), 7.72-7.77 (1H, m)
- 35 15) 3-Benzyloxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-

10

. 15

yl)oxy]benzoyl]aminobenzoic acid

NMR (DMSO-d₆, δ): 1.30 (9H, s), 1.62-1.72 (2H, m), 2.88-2.92 (2H, m), 3.95 (2H, t, J=6Hz), 5.37 (2H, s), 6.80 (1H, br), 7.13 (1H, t, J=7Hz), 7.21 (1H, d, J=7Hz), 7.30-7.67 (9H, m), 8.08 (1H, d, J=7Hz), 8.60 (1H, d, J=7Hz)

16) 2-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-5-thiophenecarboxylic acid
NMR (DMSO-d₆, δ): 1.32 (9H, s), 1.82-1.90 (2H, m),
3.08-3.14 (2H, m), 4.10 (2H, t, J=6Hz), 6.81
(1H, d, J=5Hz), 6.93-7.00 (1H, m), 7.07 (1H, t,
J=7Hz), 7.19 (1H, d, J=7Hz), 7.50-7.58 (2H, m),

7.67 (1H, d, J=7Hz)

Preparation 9

The following compounds were obtained according to a similar manner to that of Preparation 3.

- 20 1) 3-Methoxy-4-nitro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₂, δ): 1.30-1.96 (10H, m), 2.28 (9H, s),
 2.30-2.41 (3H, m), 2.58 (1H, m), 3.02 (1H, m),
 3.33 (3H, s), 3.77 (3H, s), 3.82-4.00 (3H, m),
 4.63 (1H, m), 6.56-6.66 (2H, m), 6.84 (1H, d,
 J=9Hz), 6.93 (1H, d, J=9Hz), 7.06 (1H, s), 7.61
- 2) 4-Nitro-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl) carbonyl]phenylmethoxy]phenylbenzamide

 NMR (CDC1₃, δ): 2.26 (3H, s), 2.32 (3H, s), 2.362.57 (4H, m), 3.37 (3H, s), 3.42-3.59 (2H, m),
 3.71-3.89 (2H, m), 4.94 (1H, d, J=14Hz), 5.07

 (1H, d, J=14Hz), 6.60-6.69 (2H, m), 6.94 (1H, d,

J=7Hz), 7.36-7.50 (5H, m), 7.95 (2H, d, J=8Hz)

- 3) 4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)Carbonyl]phenylmethoxy]-phenylbenzamide
- NMR (CDCl₃, δ): 2.28 (3H, s), 2.33 (3H, s), 2.372.53 (4H, m), 3.36 (3H, s), 3.41-3.54 (2H, m),
 3.57 (3H, s), 3.65-3.90 (4H, m), 4.90 (1H, d,
 J=14Hz), 5.06 (1H, d, J=14Hz), 6.38 (1H, d,
 J=7Hz), 6.62-6.70 (2H, m), 6.78 (1H, d, J=7Hz),
 6.84 (1H, s), 6.98 (1H, d, J=7Hz), 7.33 (2H, d,
 J=8Hz), 7.41 (2H, d, J=8Hz)
- 4) 4-Amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl) carbonyl]phenylmethoxy-4-methyl]phenyl-Nmethylbenzamide

NMR (CDCl₃, δ): 1.14-1.58 (2H, m), 1.75-2.00 (2H, m), 2.26 (3H, s), 2.30 (3H, s), 2.40 (1H, m), 2.73-3.10 (4H, m), 3.36 (3H, s), 3.57 (3H, s), 3.87 (3H, s), 4.83-5.12 (2H, m), 6.39 (1H, d, J=7Hz), 6.61-6.71 (2H, m), 6.28 (1H, d, J=7Hz), 6.33 (1H, s), 6.97 (1H, d, J=7Hz), 7.33 (2H, d, J=8Hz), 7.40 (2H, d, J=9Hz)

- 25 5) 4-Amino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yl]oxylphenylbenzamide

 NMR (CDCl₃, δ): 1.98-2.13 (2H, m), 2.27 (3H, s),
 2.29-2.38 (4H, m), 3.30 (3H, s), 3.36-3.47 (2H,
 m), 3.52-3.74 (4H, m), 3.60 (3H, s), 3.94-4.17 (2H, m), 4.11 (2H, s), 6.42 (1H, d, J=7Hz),
 6.78-6.92 (4H, m), 7.00 (1H, d, J=7Hz), 7.14
- 35 6) 4-Amino-3-methoxy-N-[2-[(E)-5-(4-

(1H, t, J=7Hz)

dimethylaminopiperidin-1-y1)carbonyl-4-penten-1yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDC1 $_3$, δ) : 1.30-1.47 (2H, m), 1.80-1.98 (2H, m), 2.21 (3H, s), 2.26 (6H, s), 2.26-2.43 (2H, m), 2.45-3.67 (6H, m), 3.30 (3H, s), 3.61 (3H, s), 3.85 (2H, br), 3.85-4.04 (2H, m), 4.62 (1H, m), 6.29 (1H, d, J=15Hz), 6.41 (1H, d, J=7Hz), 6.57-6.63 (2H, m), 6.77-6.90 (4H, m)

7) 3-[5-(4-Dimethylaminopiperidin-1-yl)carbonylpent-1-10 yloxy]-4-(tert-butoxycarbonylamino)toluene NMR (CDCl₃, δ) : 1.27-2.00 (19H, m), 2.21-2.44 (12H, m), 2.58 (1H, m), 3.01 (1H, m), 3.89 (1H, m), 4.00 (2H, t, J=7Hz), 4.64 (1H, m), 6.64 (1H, s), 15 6.72 (1H, d, J=8Hz), 6.94 (1H, s), 7.89 (1H, m)

Preparation 10

5

The following compounds were obtained according to a similar manner to that of Example 1.

- 1) Methyl 4-(2-benzyloxybenzoyl)amino-3-methoxybenzoate NMR (CDCl₃, δ) : 3.50 (3H, s), 3.90 (3H, s), 5.36 (2H, s), 7.08 (1H, d, J=9Hz), 7.15 (1H, t, J=9Hz), 7.33-7.49 (8H, m), 7.73 (1H, dd, J=1, 25 8Hz), 8.30 (1H, d, J=8Hz), 8.72 (1H, d, J=8Hz) ESI-MASS (m/z) : 392 (M+H)
- 2) Methyl 4-(2-acetoxybenzoyl)amino-3-methoxybenzoate NMR (CDC1 $_3$, δ) : 2.38 (3H, s), 3.92 (3H, s), 3.99 30 (3H, s), 7.19 (1H, d, J=8Hz), 7.38 (1H, t, J=8Hz), 7.55 (1H, t, J=8Hz), 7.60 (1H, s), 7.75 (1H, dd, J=2, 9Hz), 7.99 (1H, dd, J=1, 9Hz), 8.66 (1H, d, J=8Hz), 9.03-9.07 (1H, br s) ESI-MASS (m/z) : 344 (M+H) 35

WO 96/41795 PCT/JP96/01533

5

- 83 -

3) 3-Methoxy-4-nitro-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl]phenylbenzamide

NMR (DMSO-d₆, δ): 2.31 (3H, s), 3.84 (3H, s), 3.98

(3H, s), 5.27 (2H, s), 6.81 (1H, d, J=7Hz), 7.00

(1H, s), 7.49 (1H, d, J=7Hz), 7.62 (2H, d, J=8Hz), 7.79 (1H, s), 7.92 (2H, d, J=8Hz), 8.00

(1H, d, J=7Hz), 9.85 (1H, s)

- 4) 4-Nitro-3-methoxy-N-[(E and Z)-2-(4
 methoxycarbonylphenyl)ethen-1-yl]phenylbenzamide

 NMR (CDCl₃, δ): 3.87 (3Hx2/3, s), 3.91 (3Hx1/3, s),

 3.95 (3Hx2/3, s), 4.00 (3Hx1/3, s), 6.71-8.20

 (13H, m)
- 15 5) 3-Methoxy-4-nitro-N-[2-[3-(ethoxycarbonylmethyl)oxyprop-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 1.22 (3H, t, J=7.5Hz), 2.10-2.23
 (2H, m), 3.78 (2H, t, J=7.5Hz), 4.01 (2H, s),
 4.06 (3H, s), 4.14 (2H, q, J=7.5Hz), 4.26 (2H,
 t, J=7.5Hz), 6.91-7.06 (3H, m), 7.42 (1H, d,
 J=7Hz), 7.74 (1H, s), 7.93 (1H, d, J=7Hz), 8.49
 (1H, d, J=7Hz), 7.78 (1H, s)
- 6) 3-Methoxy-4-nitro-N-[2-[(E)-5-ethoxycarbonyl-425 penten-1-yl]oxy-4-methyl]phenylbenzamide

 NMR (CDCl₃, δ): 1.27 (3H, t, J=7.5Hz), 1.93-2.08

 (2H, m), 2.27-2.50 (2H, m), 2.32 (3H, s), 4.02

 (3H, s), 4.01-4.11 (2H, m), 4.18 (2H, q,

 J=7.5Hz), 5.88 (1H, d, J=15Hz), 6.72 (1H, s),

 6.83 (1H, t, J=7Hz), 6.99 (1H, dt, J=15, 7.5Hz),

 7.35 (1H, d, J=7Hz), 7.81 (1H, s), 7.92 (1H, d,

 J=7Hz), 8.28 (1H, d, J=7Hz), 8.45 (1H, s)
- 7) 4-Benzyloxy-3-methoxy-N-methyl-N-[2-[5-(4-35 dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-

30

- 84 -

methylphenyl]benzamide

NMR (DMSO-d₆, δ) : 1.35-1.49 (2H, m), 1.49-1.63 (2H, m), 1.64-1.79 (2H, m), 2.23 (3H, s), 2.37 (2H, t, J=7Hz), 2.72 (3H, m), 2.78-3.11 (2H, m), 3.16 (3H, s), 3.28-3.60 (5H, m), 3.71-4.13 (5H, m), 4.43 (1H, m), 4.99 (2H, s), 6.63 (1H, d, J=8Hz), 6.80 (2H, d, J=2Hz), 6.86 (2H, s), 6.98 (1H, d, J=8Hz), 7.26-7.44 (5H, m)

10 8) 3-Methoxy-4-nitro-N-(2-benzyloxy-4-methylphenyl)benzamide

NMR (CDCl $_3$, δ) : 2.38 (3H, s), 3.90 (3H, s), 5.12 (2H, s), 6.88 (1H, s), 7.30 (1H, s), 7.51 (4H, s), 7.59 (1H, s), 7.82 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 8.53 (1H, br)

- 9) 3-Methyl-4-nitro-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDC1 $_3$, δ) : 1.48-1.60 (2H, m), 1.69-1.77 (2H, 20 m), 1.79-1.90 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.33-2.42 (6H, m), 2.47 (3H, s), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.58-3.63 (2H, m), 3.82-3.95 (2H, m), 6.55-6.59 (2H, m), 6.83 (1H, d, J=7Hz), 7.14 (1H, d, J=7Hz), 7.37 (1H, s), 7.70 25 (1H, d, J=7Hz)
 - 10) Ethyl 4-[(2-benzyloxy)benzoyl]amino-3-chlorobenzoate NMR (CDC1 $_3$, δ) : 1.38 (3H, t, J=7Hz), 4.34 (2H, q, J=7Hz), 5.38 (1H, s), 5.39 (1H, s), 7.03-7.16 (2H, m), 7.33-7.50 (6H, m), 7.92-7.99 (2H, m), 8.24-8.32 (1H, m), 8.73-8.29 (1H, m)
- 3-Hydroxy-4-nitro-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-35 methylphenyl]benzamide

WO 96/41795

5

- NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.68-1.80 (2H, m), 1.82-1.91 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.37-2.42 (6H, m), 3.32 (3H, s), 3.48-3.50 (2H, m), 3.62-3.68 (2H, m), 3.90-3.97 (2H, m), 6.57-6.58 (2H, m), 6.80-6.87 (2H, m), 7.08-7.10 (1H, m), 7.95 (1H, d, J=7Hz)
- 12) Ethyl 4-[2-(benzyloxy)benzoyl]amino-2-nitrobenzoate
 NMR (CDCl₃, δ): 1.32 (3H, t, J=7Hz), 4.32 (2H, q,

 J=7Hz), 5.22-5.30 (2H, m), 7.12-7.27 (2H, m),

 7.37-7.69 (9H, m), 8.20-8.34 (1H, m)
 - 13) Methyl 2-[2-(benzyloxy)benzoyl]amino-5pyridinecarboxylate
- 15 NMR (CDCl₃, δ): 3.92 (3H, s), 5.12 (1H, s), 5.36 (2H, s), 6.90-7.01 (1H, m), 7.10-7.18 (2H, m), 7.32-7.55 (5H, m),8.27-8.34 (2H, m), 8.46 (1H, d, J=6Hz), 8.87-8.88 (1H, m)
- 20 14) Benzyl 4-(2-acetoxybenzoyl)amino-3-benzyloxybenzoate

 NMR (CDCl₃, δ): 2.05 (3H, s), 5.20 (2H, s), 5.87

 (2H, s), 7.13 (1H, d, J=8Hz), 7.32-7.47 (10H,

 m), 7.50-7.57 (1H, m), 7.73 (1H, s), 7.80 (1H,

 d, J=8Hz), 7.96 (1H, d, J=8Hz), 8.68 (1H, d,

 25 J=7Hz), 9.13 (1H, s)
 - 15) Methyl 2-(2-acetoxybenzoyl)amino-5thiophenecarboxylate
- NMR (CDC1₃, δ): 2.39 (3H, s), 3.88 (3H, s), 6.69 (1H, d, J=5Hz), 7.19-7.21 (1H, m), 7.35-7.30 (1H, m), 7.52-7.59 (1H, m), 7.63-7.66 (1H, m), 7.92-7.95 (1H, m), 9.18 (1H, s)

Preparation 11

35 The following compound was obtained by reacting the

compound, which was prepared according to a similar manner to that of Example 1, with hydrogen chloride.

4-Benzyloxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

NMR (DMSO-d₆, δ): 1.35-1.49 (2H, m), 1.49-1.63 (2H, m), 1.64-1.79 (2H, m), 2.23 (3H, s), 2.37 (2H, t, J=7Hz), 2.72 (3H, m), 2.78-3.11 (2H, m), 3.16 10 (3H, s), 3.28-3.60 (5H, m), 3.71-4.13 (5H, m), 4.43 (1H, m), 4.99 (2H, s), 6.63 (1H, d, J=8Hz), 6.80 (2H, d, J=2Hz), 6.86 (2H, s), 6.98 (1H, d, J=8Hz), 7.26-7.44 (5H, m)

15 Preparation 12

The following compound was obtained according to a similar manner to that of Example 4.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-20 yl)oxy]benzoyl]amino-3-methoxybenzoic acid NMR (DMSO-d₆, δ): 1.35 (9H, s), 2.04 (2H, quintet, J=7Hz), 3.13 (2H, q, J=7Hz), 3.98 (3H, s), 4.29 (2H, t, J=7Hz), 6.95-7.00 (1H, m), 7.16 (1H, t, J=8Hz), 7.28 (1H, d, J=8Hz), 7.57-7.65 (3H, m), 25 8.11 (1H, dd, J=1, 8Hz), 8.63 (1H, d, J=8Hz) ESI-MASS (m/z) : 445 (M+H)

Preparation 13

The following compounds were obtained according to a 30 similar manner to that of Example 10.

- 1) 4-Hydroxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- 35 NMR (CDC1₃, δ) : 1.44-1.59 (2H, m), 1.62-1.92 (4H,

m), 2.22-2.45 (12H, m), 3.31 (3H, s), 3.42-3.53 (2H, m), 3.58-3.74 (5H, m), 3.77-4.02 (2H, m), 6.53-6.70 (3H, m), 6.80-6.96 (3H, m)

5 2) Methyl 4-(N-methyl-2-hydroxybenzoylamino)-3methoxybenzoate

NMR (CDCl₃, δ): 3.37 (3H, s), 3.69 (3H, s), 3.91 (3H, s), 6.38 (1H, t, J=8Hz), 6.72 (1H, d, J=8Hz), 6.91 (1H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.21 (1H, d, J=9Hz), 7.49 (1H, d, J=1Hz), 7.62 (1H, dd, J=1, 9Hz)

ESI-MASS (m/z) : 316 (M+H)

3) 4-Hydroxy-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.25-2.00 (10H, m), 2.06-2.40 (6H, m), 2.52 (1H, m), 2.73 (6H, br s), 3.02 (1H, m), 3.30 (3H, s), 3.67 (3H, s), 3.76-4.07 (3H, m), 4.82 (1H, m), 6.56-6.72 (3H, m), 6.78-6.96 (3H, m)

4) Methyl 4-[N-(2-hydroxyphenyl)-tert-

butoxycarbonylamino]methyl-3-methoxybenzoate

NMR (CDCl₃, δ): 1.38 (9H, s), 3.82 and 3.83 (total 3H, s), 3.90 and 3.91 (total 3H, s), 4.88 (2H, s), 6.80-6.87 (1H, m), 6.95 (1H, br), 7.03-7.12 (2H, m), 7.25-7.30 (2H, m), 7.48-7.50 (1H, m), 7.58-7.60 (1H, m)

30

20

5) 2-(3-tert-Butoxycarbonylaminoprop-1-yl) oxyphenol NMR (CDCl₃, δ): 1.45 (9H, s), 1.95-2.07 (2H, m), 3.25-3.45 (2H, m), 4.10 (2H, t, J=6Hz), 4.68 (1H, br), 6.22 (1H, br), 6.78-6.97 (4H, m)

20

25

30

- 88 -

Preparation 14

The following compounds were obtained according to a similar manner to that of Example 12.

- 5 1) Methyl 4-[N-methyl-2-[(3-tert-butoxycarbonylamino-prop-1-yl)oxy]benzoyl]amino-3-methoxybenzoate

 NMR (CDCl₃, δ): 1.43 (9H, s), 1.95-2.05 (2H, m),

 3.30-3.40 (5H, m), 3.83 (3H, s), 3.85 (3H, s),

 3.96-4.04 (2H, m), 5.23-5.32 (1H, br), 6.65-6.73

 (2H, m), 7.00-7.16 (3H, m), 7.38-7.45 (2H, m)

 ESI-MASS (m/z): 473 (M+H)
 - 2) Methyl 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl) oxy]benzoyl]amino-3-methoxybenzoate

 NMR (CDCl₃, δ): 1.40 (9H, s), 2.13-2.21 (2H, m),

 3.33 (2H, q, J=7Hz), 3.92 (3H, s), 4.00 (3H, s),

 4.29 (2H, t, J=7Hz), 4.72-4.78 (1H, br), 7.03

 (1H, d, J=8Hz), 7.23 (1H, t, J=8Hz), 7.49 (1H, t, J=8Hz), 7.60 (1H, s), 7.75 (1H, d, J=8Hz),

 8.27 (1H, d, J=8Hz), 8.77 (1H, d, J=8Hz)

 ESI-MASS (m/z): 459 (M+H)
 - 3) 4-Nitro-N-[2-(4-methoxycarbonylphenyl)methoxy-4methyl]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 2.27 (3H, s), 3.40 (3H, s), 3.94
 (3H, s), 4.95 (1H, d, J=14Hz), 5.09 (1H, d,
 J=14Hz), 6.62 (1H, s), 6.69 (1H, d, J=7Hz), 6.97
 (1H, d, J=7Hz), 7.31-7.49 (4H, m), 7.95 (2H, d,

Preparation 15

The following compound was obtained according to a similar manner to that of Example 16.

35 4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-

J=8Hz), 8.10 (2H, d, J=8Hz)

 $\label{lem:methylpiperazin-1-yl)} {\tt carbonylpent-1-yloxy]phenyl] benzamide \\ {\tt dihydrochloride}$

NMR (DMSO-d₆, δ): 1.33-1.64 (4H, m), 1.64-1.81 (2H, m), 2.20 (3H, s), 2.29-2.43 (2H, m), 2.73 (3H, s), 2.79-3.10 (4H, m), 3.14 (3H, s), 3.22-3.56 (4H, m), 3.62 (3H, s), 3.72-4.18 (3H, m), 4.42 (1H, m), 6.62 (1H, d, J=8Hz), 6.74-6.92 (3H, m), 6.92-7.10 (2H, m)

10 Preparation 16

5

The following compounds were obtained according to a similar manner to that of Example 43.

- 1) Methyl 4-(2-hydroxybenzoyl) amino-3-methoxybenzoate

 NMR (CDCl₃, δ): 3.93 (3H, s), 4.03 (3H, s), 6.96

 (1H, t, J=8Hz), 7.04 (1H, d, J=8Hz), 7.47 (1H,
 t, J=8Hz), 7.54 (1H, dd, J=1, 8Hz), 7.62 (1H,
 s), 7.76 (1H, d, J=8Hz), 8.51 (1H, d, J=8Hz),
 8.85-9.89 (1H, br s)
- 20 ESI-MASS (m/z) : 302 (M+H)
- 2) Benzyl 3-benzyloxy-4-(2-hydroxybenzoyl)aminobenzoate
 NMR (CDCl₃, δ): 5.23 (2H, s), 5.38 (2H, s), 6.82
 (1H, t, J=7Hz), 7.01 (1H, d, J=7Hz), 7.30-7.49
 25 (12H, m), 7.70-7.73 (1H, m), 7.80-7.83 (1H, m),
 7.52 (1H, d, J=7Hz), 8.95 (1H, s)
 - Methyl 2-(2-hydroxybenzoyl)amino-5thiophenecarboxylate
- 30 NMR (DMSO-d₆, δ): 3.79 (3H, s), 6.95-7.03 (3H, m), 7.42-7.48 (1H, m), 7.62-7.64 (1H, m), 7.88 (1H, d, J=7Hz)

Preparation 17

35 The following compound was obtained according to a

- 90 -

similar manner to that of Example 30.

3-Methoxy-4-nitro-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenzamide

NMR (CDC1₃, δ): 2.29 (3H, s), 2.35 (3H, s), 2.38-2.54 (4H, m), 3.39 (3H, s), 3.43-3.53 (2H, m), 3.66 (3H, s), 3.71-3.88 (2H, m), 4.92 (1H, d, J=14Hz), 5.07 (1H, d, J=14Hz), 6.65-6.72 (2H, m), 6.87 (1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.03 (1H, s), 7.37 (2H, d, J=8Hz), 7.45 (2H, d, J=8Hz), 7.56 (1H, d, J=7Hz)

Preparation 18

5

10

30

35

15 To a mixture of 2-(4-methoxycarbonylphenyl)methoxy-4methylaniline (420 mg) and 37% formaldehyde solution (69.7 mg) in a mixture of methanol (10 ml) and acetic acid (0.1 ml) was added sodium cyanoborohydride (146 mg) and the mixture was stirred at ambient temperature for 3 hours. 20 The solution was diluted with ethyl acetate (30 ml) and washed successively with saturated aqueous sodium hydrogen carbonate, water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo. The residue was purified by silica 25 gel column (chloroform) to give 2-(4- ${\tt methoxycarbonylphenyl)} \, {\tt methoxy-4-methyl-N-methylaniline}$ (356 mg).

NMR (CDC1₃, δ): 2.22 (3H, s), 2.80 (3H, s), 3.91 (3H, s), 5.11 (2H, s), 6.53 (1H, d, J=7Hz), 6.63 (1H, s), 6.72 (1H, d, J=7Hz), 7.49 (2H, d, J=8Hz), 8.04 (2H, d, J=8Hz)

Preparation 19

A solution of 2-benzyloxy-N-tertbutoxycarbonylaniline (1 g) in N,N-dimethylformamide (40 WO 96/41795 PCT/JP96/01533

- 91 -

ml) was treated with sodium hydride (147 mg, 60% w/w in mineral oil) at 0°C. The reaction mixture was stirred at 0°C for 30 minutes and then at ambient temperature for 1 hour. Methyl 4-bromomethyl-3-methoxybenzoate (909 mg) was added, and the nixture was stirred at ambient temperature for 30 minutes. The reaction was quenched with water and the mixture diluted with ethyl acetate. The organic phase was washed with 0.5N hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and brine. The solution was concentrated in vacuo and the residue was purified by silica gel column chromatography (hexane:ethyl acetate = 9:1) to give methyl 4-[N-[2-(benzyloxy)phenyl-tert-butoxycarbonylamino]methyl-3-methoxybenzoate (1.38 g).

NMR (CDCl₂, δ): 1.32 and 1.40 (total 9H s). 3.65

NMR (CDCl₃, δ): 1.32 and 1.40 (total 9H, s), 3.65 and 3.71 (total 3H, s), 3.90 (3H, s), 4.77 (2H, s), 5.07 (2H, s), 6.78-7.00 (3H, m), 7.09-7.20 (1H, m), 7.27-7.55 (8H, m)

Preparation 20

5

10

15

- The following compounds were obtained according to a similar manner to that of Preparation 19.
- 1) 4-Nitro-3-methoxy-N-[(E and Z)-2-(4-methoxycarbonyl-phenyl)ethen-1-yl]phenyl-N-methylbenzamide

 25 NMR (CDCl₃, δ): 3.40 (3Hx2/3, s), 3.49 (3Hx1/3, s), 3.54 (3Hx1/3, s), 3.60 (3Hx2/3, s), 3.86 (3Hx2/3, s), 3.95 (3Hx1/3, s), 6.41-8.07 (7H, m)
- 2) 3-Methoxy-4-nitro-N-[2-[3-(ethoxycarbonylmethyl)oxyprop-1-yl]oxy]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.27 (3H, t, J=7.5Hz), 2.04-2.17
 (2H, m), 3.37 (3H, s), 3.71 (2H, t, J=7.5Hz),
 3.76 (3H, s), 4.06 (3H, s), 4.20 (2H, q,
 J=7.5Hz), 6.78-7.01 (4H, m), 7.04 (1H, s), 7.19
 (1H, t, J=7Hz), 7.60 (1H, d, J=7Hz)

- 92 -

3) 3-Methoxy-4-nitro-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide

NMR (CDCl₃, δ): 2.28 (3H, s), 3.39 (3H, s), 3.58 (3H, s), 4.85 (1H, d, J=12Hz), 5.07 (1H, d, J=12Hz), 6.68 (2H, s), 6.83 (1H, d, J=9Hz), 6.96 (1H, d, J=9Hz), 7.00 (1H, s), 7.30-7.44 (5H, m), 7.52 (1H, d, J=9Hz)

Preparation 21

To an ice bath cooled solution of methyl 2-(3hydroxyprop-1-yl)thiobenzoate (3.7 g) in N,Ndimethylformamide (30 ml) was added sodium hydride (60% in

oil, 719 mg) and the solution was stirred at the same temperature for 30 minutes. 4-Methoxybenzyl chloride

- 15 (2.56 g) was added to the solution and the mixture was stirred at ambient temperature for 5 hours. The mixture was diluted with ethyl acetate (100 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was
- evaporated in vacuo to give a crude oil. The crude product was purified by silica gel column chromatography (hexane:ethyl acetate = 10:1) to give methyl 2-(3-(4-methoxyphenyl)methoxyprop-1-yl)thiobenzoate (2.13 g).

NMR (CDCl₃, δ): 1.94-2.07 (2H, m), 3.03 (2H, t, J=7.5Hz), 3.58 (2H, t, J=7.5Hz), 3.80 (3H, s), 3.90 (3H, s), 4.39 (2H, q, J=7.5Hz), 4.45 (2H, s), 6.87 (2H, d, J=8Hz), 7.13 (1H, t, J=7Hz), 7.21-7.46 (4H, m), 7.96 (1H, d, J=7Hz)

30 Preparation 22

The following compound was obtained according to a similar manner to that of Preparation 21.

2-[3-(Ethoxycarbonylmethyl)oxyprop-1-35 yl]oxynitrobenzene WO 96/41795 PCT/JP96/01533

- 93 -

NMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 2.08-2.20 (2H, m), 3.73 (2H, t, J=7.5Hz), 4.06 (2H, s), 4.13-4.32 (4H, m), 7.01 (1H, m), 7.10 (1H, d, J=7Hz), 7.50 (1H, t, J=7Hz), 7.82 (1H, d, J=7Hz)

5

10

15

Preparation 23

To an ice bath cooled solution of 3-methoxy-4-nitro-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl]-phenylbenzamide (7.67 g) in N,N-dimethylformamide (50 ml) was added sodium hydride (60% in oil, 817 mg) and the solution was stirred at the same temperature for 30 minutes. Iodomethane (1.27 ml) was added to the solution and the mixture was stirred at ambient temperature for 2 hours. The mixture was diluted with ethyl acetate (100 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The oil was solidified with diethyl ether to give 3-methoxy-4-nitro-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl)phenyl-N-methylbenzamide (6.65 g).

25

35

20

NMR (CDCl₃, δ): 2.28 (3H, s), 3.40 (3H, s), 3.60 (3H, s), 3.94 (3H, s), 4.91 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.64 (1H, s), 6.71 (1H, d, J=7Hz), 6.84 (1H, d, J=7Hz), 7.00-7.04 (2H, m), 7.42 (2H, d, J=8Hz), 7.52 (1H, d, J=7Hz), 8.08 (2H, d, J=9Hz)

Preparation 24

The following compound was obtained according to a similar manner to that of Preparation 23.

3-Methoxy-4-nitro-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.28 (3H, t, J=7.5Hz), 1.90-2.00

(2H, m), 2.00 (3H, s), 2.34-2.45 (2H, m), 3.35

WO 96/41795 PCT/JP96/01533

- 94 -

(3H, s), 3.77 (3H, s), 3.84-3.97 (2H, m), 4.19 (2H, q, J=7.5Hz), 5.88 (1H, d, J=15Hz), 6.58-€.64 (2H, m), 6.84-7.02 (3H, m), 7.07 (1H, s), 7.60 (1H, d, J=7Hz)

5

Preparation 25

The following compound was obtained according to a similar manner to that of Example 45.

10 2-[5-(4-Dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]-4-methylaniline

NMR (CDCl $_3$, δ): 1.18-2.00 (10H, m), 2.14-2.69 (13H, m), 2.99 (1H, m), 3.44-4.07 (5H, m), 4.64 (1H, m), 6.45-6.70 (3H, m)

15

Preparation 26

The following compound was obtained according to a similar manner to that of Example 38.

20

30

2-Hydroxy-N-tert-butoxycarbonylaniline

NMR (CDC1₃, δ): 1.55 (9H, s), 6.63 (1H, s), 6.82-6.89 (1H, m), 6.97-6.99 (1H, m), 7.02-7.08 (2H, m), 8.13 (1H, br)

25 Preparation 27

The following compound was obtained according to a similar manner to that of Example 87.

Methyl 2-nitro-5-thiophenecarboxylate

NMR (CDC1₃, δ): 3.95 (3H, s), 7.70 (1H, d, J=5H₂), 7.86-7.88 (1H, m)

Preparation 28

To a suspension of phosphonium bromide (1.9 g) in 35 tetrahydrofuran (35 ml) at 0°C was added 1.0M lithium

10

1.5

bis(trimethylsilyl)amide in tetrahydrofuran (7.88 ml) over 5 minutes period. After 40 minutes, the cooling bath was removed and the red suspension was stirred for 15 minutes at ambient temperature. The suspension was recooled to -78°C, and a solution of 2-[3-(phthalimido)prop-1-yl]oxybenzaldehyde (1.16 g) in 10 ml of tetrahydrofuran (plus a 5 ml rinse) was added via cannula. The red reaction mixture was stirred at 0°C to ambient temperature. After 20 hours, the solution was quenched by 0.5N hydrochloric acid at 0°C. The resulting mixture was concentrated and extracted with chloroform. The organic extract was washed with brine and dried over magnesium sulfate, filtered, and concentrated to give 4-[2-[2-[3-(phthalimido)prop-1-yl]oxy]phenyl]vinyl-3-methoxybenzoic acid (2.4 g).

NMR (DMSO-d₆, δ) : 1.99-2.22 (2H, m), 3.72-3.94 (5H, m), 3.98-4.17 (2H, m), 6.38-7.88 (11H, m)

Preparation 29

20 To a suspension of sodium hydride (60% oil suspension, 88.3 mg) in N,N-dimethylformamide (6 ml) was added a solution of methyl 4-(2-benzyloxybenzoyl)amino-3methoxybenzoate (600 mg) in N.N-dimethylformamide (4 ml) and the mixture was stirred at 0°C for 1 hour. Methyl 25 iodide (0.14 ml) was added dropwise to the above solution and the mixture was stirred at 0°C for 30 minutes. The reaction temperature was raised to ambient temperature over 30 minutes and the reaction was guenched with 1N hydrochloric acid, and then the resulting solution was 30 extracted with ethyl acetate. Drying, filtering and removal of solvents afforded a crude product. The crude product was purified by column chromatography (eluent; hexane:ethyl acetate = 3:1) to give methyl 4-(N-methyl-2benzyloxybenzoylamino)-3-methoxybenzoate (650 mg). 35 NMR (CDCl₃, δ): 3.35 (3H, s), 3.72 (3H, s), 3.87

(3H, s), 4.93-5.00 (2H, m), 6.65 (1H, d, J=8Hz), 6.76 (1H, t, J=8Hz), 7.00-7.12 (2H, m), 7.18-7.23 (1H, m), 7.30-7.43 (6H, m), 8.02 (1H, s) ESI-MASS (m/z) : 406 (MH)

5

10

15

20

Preparation 30

To a solution of (S)-1,3-butanediol (1.0 g) and triethylamine (1.12 g) in dichloromethane (30 ml) was added portionwise p-toluenesulfonyl chloride (2.12 g) at 0°C, and then the mixture was stirred at ambient temperature for 3 hours and stand overnight. The resulting solution was diluted with dichloromethane (30 ml) and the organic layer was washed successively with 1N hydrochloric acid, saturated sodium bicarbonate aqueous solution and brine. Drying, filtering and removal of solvents afforded (S)-3-hydroxybutyl p-toluenesulfonate (2.26 g).

NMR (CDCl₃, δ): 1.20 (3H, d, J=8Hz), 1.63-1.77 (1H, m), 1.78-1.93 (1H, m), 2.47 (3H, s), 3.89-4.00 (1H, m), 4.08-4.16 (1H, m), 4.20-4.29 (1H, m), 7.37 (2H, d, J=9Hz), 7.80 (2H, d, J=9Hz)

Preparation 31

A mixture of (S)-3-hydroxybutyl p-toluenesulfonate

(2.25 g) and phthalimide potassium salt (3.41 g) in N,Ndimethylformamide (40 ml) was stirred at 60°C for 3.5
hours. The resulting mixture was diluted with water (50
ml) and the aqueous layer was extracted with ethyl
acetate. Drying, filtering and removal of solvents

afforded a crude product. The crude product was
chromatographed on silica gel (eluent; hexane-ethyl
acetate = 2:1) to give (S)-4-(phthalimido-1-yl)-2-butanol
(910 mg).

NMR (CDCl₃, δ): 1.22 (3H, d, J=7Hz), 1.64-1.88 (2H, m), 2.73 (1H, d, J=4Hz), 3.68-3.78 (1H, m),

WO 96/41795

5

10

15

20

25

35

- 97 -

3.82-3.89 (2H, m), 7.70-7.77 (2H, m), 7.83-7.89 (2H, m)

Preparation 32

To an ice-bath cooled solution of 4-methoxycarbonyl-phenylmethyl-tri-phenylphosphonium bromide (9.75 g) in N,N-dimethylacetamide (50 ml) was added potassium tert-butoxide (2.23 g). After being stirred in an ice-bath for 30 minutes, 2-nitrobenzaldehyde (3.0 g) was added to the solution and the mixture was stirred at the same temperature for 1 hour. The mixture was diluted with ethyl acetate and the solution was washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The crude oil was subjected to silica gel column (10% ethyl acetate in n-hexane). Trans isomer was eluted first (1.4 g) and next cis and trans mixture (3.7 g).

Methyl 4-[(E)-2-(2-nitrophenyl)ethen-1-yl]benzoate
NMR (CDCl₃, δ): 3.92 (3H, s), 7.10 (1H, d, J=15Hz),
7.41-7.50 (2H, m), 7.55-7.79 (4H, m), 8.00 (1H,
d, J=7Hz), 8.07 (2H, d, J=8Hz)

Methyl 4-[E and Z)-2-(2-nitrophenyl)ethen-1yl]benzoate NMR (CDCl₃, δ): 3.83 (3Hx2/3 (Z), s), 3.91 (3Hx1/3 (E), s), 6.79 (1Hx2/3, d, J=12Hz), 6.98-8.14 (9H+1/3H, m)

30 Preparation 33

To a solution of 3-(3-ethoxycarbonylprop-1-y1)oxy-4-nitrotoluene (2.67 g) in dichlormethane (30 ml) was added diisobutylaluminum hydride (1.5 M solution in toluene, 7 ml) at -78°C and the solution was stirred at the same temperature for 2 hours. The reaction was quenched with

WO 96/41795 PCT/JP96/01533

- 98 -

addition of small amount of water and a mixture of chloroform (30 ml) and 1N hydrochloric acid (20 ml) was added. The organic phase was separated and washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. A mixture of the crude aldehyde and carbethoxymethylene triphenylphosphorane (3.49 g) in tetrahydrofuran (20 ml) was stirred at ambient temperature overnight and the solvent was evaporated in vacuo. The residue was subjected to silica gel column and the column was eluted with 10% ethyl acetate in n-hexane to give 3-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-nitrotoluene (2.29 g).

NMR (CDC1₃, δ): 1.27 (2H, t, J=7.5Hz), 1.93-2.04 (2H, m), 2.37 (3H, s), 2.40-2.50 (2H, m), 4.09 (2H, t, J=7.5Hz), 4.18 (2H, q, J=7.5Hz), 5.89 (1H, d, J=15Hz), 6.80 (1H, d, J=7Hz), 6.82 (1H, s), 7.00 (1H, dt, J=15, 7.5Hz), 7.78 (1H, d, J=7Hz)

20

15

5

10

Preparation 34

A 300 ml of hydrogenation bottle was flushed with nitrogen, and 10% palladium on carbon (1.5 g) was added into the bottle. A solution of benzyl 2-(3-25 phthalimidopropyloxy)benzoate (1.50 g) in methanol (50 ml) and 1,4-dioxane (50 ml) was added to the bottle, along with one drop of acetic acid. The mixture was shaken in a Parr apparatus at 3 atm of hydrogen at 35°C for 8 hours. The catalyst was removed by filtration through a bed of 30 Celite, and washed with 1,4-dioxane (20 ml \times 2). The combined solution was concentrated with a rotary evaporator to give crude solid. The crude solid in methanol (57 ml) and 1,4-dioxane (10 ml) was heated and the product was recrystallized on cooling. The crystal 35 was collected by filtration, washed with cold methanol (5

WO 96/41795 PCT/JP96/01533

- 99 -

ml) and ari-dried to give 2-(3-phthalimidopropyloxy)-benzoic acid (4.18 σ).

mp : 155-157°C

NMR (DMSO-d₆, δ): 1.98-2.14 (2H, m), 3.79 (2H, t, J=7Hz), 4.08 (2H, t, J=7Hz), 6.99 (1H, dd, J=8, 8Hz), 7.08 (1H, d, J=8Hz), 7.47 (1H, m), 7.62 (1H, d, J=8Hz), 7.77-7.92 (4H, m)

Preparation 35

5

10

15

20

25

A mixture of 4-amino-3-methoxy-N-[2-(4-carboxyphenylmethyl) oxy-4-methylphenyl]-N-methylbenzamide (500 mg), ethanolamine (109 mg), triphenylphosphine (936 mg) and carbon tetrachloride (0.57 ml) in a mixture of pyridine and acetonitrile (1:1, 15 ml) was stirred at ambient temperature for 18 hours. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO₂ 0-10% methanol in chloroform) to give 4-amino-3-methoxy-N-[2-[4-[N-(2-hydroxyethyl)-carbamoyl]phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (392 mg).

NMR (CDC1₃, δ): 2.27 (3H, s), 3.33 (3H, s), 3.48 (3H, s), 3.60 (2H, q, J=5Hz), 3.78-3.84 (2H, m), 4.97 (2H, br), 6.35 (1H, d, J=8Hz), 6.61 (1H, s), 6.68-6.79 (3H, m), 7.04 (1H, d, J=8Hz), 7.11 (1H, br), 7.26 (2H, d, J=8Hz), 7.76 (2H, d, J=8Hz)

Preparation 36

To an ice-cooled 4-amino-3-methoxy-N-[2-[4-[N-(2-1)]] hydroxyethyl)carbamoyl]phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (387 mg) was added dropwise thionyl chloride (129 mg), and the mixture was stirred at ambient temperature for 1 hour. The resulting mixture was added aqueous sodium hydrogen carbonate solution (15 ml). The solution was extracted with ethyl acetate (10 ml x 3).

The organic layer was washed with brine and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 4-amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (315 mg).

MMR (CDCl₃, δ): 2.26 (3H, s), 3.35 (3H, s), 3.52 (3H, s), 4.08 (2H, t, J=10Hz), 4.25 (2H, t, J=10Hz), 4.94 (1H, br), 5.07 (1H, br), 6.40 (1H, d, J=8Hz), 6.40-6.88 (4H, m), 7.00 (1H, d, J=8Hz), 7.36 (2H, d, J=8Hz), 7.96 (2H, d, J=8Hz)

Preparation 37

5

10

15

20

To a solution of 3-bromopropylamine hydrobromide (5.0 g) and diisopropylethylamine (5.90 g) in dichloromethane (80 ml) was added portionwise 9-fluorenylmethoxycarbonyl chloride (5.91 g) and the mixture was stirred at ambient temperature for 3 hours and stand overnight. The resulting mixture was diluted with dichloromethane (50 ml) and the organic layer was washed successively with 1N hydrochloric acid and brine. Drying, filtering and removal of solvents afforded a crude product. The crude product was triturated with diethyl ether-hexane (1:5) to give 3-(9-fluorenylmethoxycarbonylamino)propyl bromide (7.82 g).

25 NMR (CDCl₃, δ): 2.02-2.12 (2H, m), 3.30-3.45 (4H, m), 4.21 (1H, t, J=8Hz), 4.44 (2H, d, J=8Hz), 4.82-4.90 (1H, br), 7.32 (2H, t, J=8Hz), 7.40 (2H, t, J=8Hz), 7.58 (2H, d, J=8Hz), 7.78 (2H, d, J=8Hz), 7.78 (2H, d, J=8Hz)

ESI-MASS (m/z) : 360 (M+H)

Preparation 38

To a solution of thiosalicylic acid (500 mg) in ethanol (15 ml) and 2N sodium hydroxide aqueous solution (3.2 ml) was added 3-(9-fluorenylmethoxycarbonylamino)-

propyl bromide at ambient temperature and the suspension was stirred for 2 hours. The resulting clear solution was diluted with water (20 ml) and acidified with 1N hydrochloric acid (6.5 ml). White crystals were collected by filtration and the solid was washed with ethanol-water (1:3, 15 ml) and then with n-hexane - diethyl ether (2:1, 15 ml) to give 2-[3-(9-fluorenylmethoxycarbonylamino)-propylthiolbenzoic acid (1.07 g).

NMR (DMSO-d₆, δ): 1.69-1.79 (2H, m), 2.90 (2H, t, J=8Hz), 3.08-3.18 (2H, m), 4.21 (1H, t, J=6Hz), 4.32 (2H, d, J=6Hz), 7.20 (1H, t, J=8Hz), 7.28-7.45 (6H, m), 7.50 (1H, t, J=8Hz), 7.68 (2H, d, J=8Hz), 7.85-7.91 (3H, m)

ESI-MASS (m/z) : 434 (M+H)

Example 1

5

10

15

To a mixture of 2-benzyloxybenzoic acid (1.17 g) and oxalyl chloride (0.536 ml) in dichloromethane (30 ml) was added 2 drops of N,N-dimethylformamide and the mixture was stirred at ambient temperature for 1 hour. After removing 20 a solvent by evaporation, a solution of residual acid chloride in dichloromethane (5 ml) was added to a mixture of 4-amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1yloxy)phenyl]benzamide (1.97 g) and triethylamine (1.07 ml) in dichloromethane (5 ml) and the resulting solution 25 was stirred at ambient temperature for 3 hours. The reaction mixture was washed successively with 1N hydrochloric acid, water (20 ml) and brine (20 ml), and dried over magnesium sulfate. The solvent was evaporated to give an oil and the crude product was purified by 30 silica gel column (chloroform) to give 4-(2benzyloxybenzoyl) amino-N-methyl-N-[2-(5ethoxycarbonylpent-1-yloxy)phenyl]benzamide (2.89 g) as a colorless oil.

35 NMR (CDCl₃, δ) : 1.23 (3H, t, J=7.5Hz), 1.41-1.54

10

15

25

- 102 -

(2H, m), 1.63-1.75 (2H, m), 1.75-1.85 (2H, m), 2.32 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.80-3.95 (2H, br), 4.12 (2H, q, J=7.5Hz), 5.18 (2H, s), 6.82-6.90 (2H, m), 6.92-7.00 (3H, m), 7.07-7.19 (5H, m), 7.38-7.52 (6H, m), 8.27 (1H, d, J=7Hz)

Example 2

The following compounds were obtained according to a similar manner to that of Example 1.

- 4-(2-Benzyloxybenzoyl) amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl) carbonylaminoprop-1-yloxy]phenyl)benzamide
 - NMR (CDCl₃, δ): 2.00 (2H, m), 2.26 (3H, s), 2.32-2.39 (4H, m), 3.32 (3H, s), 3.34-3.41 (6H, m), 3.81-4.02 (2H, m), 5.20 (2H, s), 6.78-7.26 (9H, m), 7.38-7.53 (7H, m), 8.27 (1H, d, J=7Hz)
- 2) 3-Methoxy-4-(2-nitrobenzoyl)amino-N-methyl-N-[4-20 methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ): 1.43-1.60 (2H, m), 1.61-1.90 (4H, m), 2.30 (6H, s), 2.31-2.44 (6H, m), 3.33 (3H, s), 3.44-3.53 (2H, m), 3.57-3.67 (2H, m), 3.71 (3H, s), 3.81-4.03 (2H, m), 6.56-6.69 (2H, m), 6.82-6.99 (2H, m), 7.03 (1H, s), 7.57-7.66 (2H, m), 7.67-7.76 (1H, m), 8.02-8.13 (2H, m), 8.21 (1H, d, J=8Hz)
- 30 3) 4-(2-Methoxybenzoyl) amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.43-1.59 (2H, m), 1.63-1.90 (4H, m), 2.26 (3H, s), 2.34 (2H, t, J=7Hz), 3.32 (3H, s), 3.79-3.99 (2H, m), 4.02

 35 (3H, s), 4.11 (2H, q, J=7Hz), 6.53-6.66 (2H, m),

6.87 (1H, d, J=8Hz), 7.01 (1H, d, J=8Hz), 7.12 (1H, dd, J=8, 8Hz), 7.29-7.40 (2H, m), 7.42-7.56 (3H, m), 8.18-8.28 (1H, m), 9.81 (1H, br s)

- 5 4) 4-(2-Benzyloxybenzoyl) amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.42-1.58 (2H, m), 1.62-1.90 (4H, m), 2.32 (2H, t, J=7Hz), 3.28 (3H, s), 3.33 (3H, s), 3.78-4.03 (2H, m), 4.12 (2H, q, J=7Hz), 5.30 (2H, s), 6.72-7.22 (8H, m), 7.28-7.55 (6H, m), 8.20-8.29 (1H, m), 8.38 (1H, d, J=8Hz)
- 5) 4-[2-(Acetyloxy)benzoyl]amino-3-methoxy-N-methyl-N[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, ō): 1.32-2.01 (10H, m), 2.21-2.46 (15H,
 m), 1.57 (1H, m), 3.02 (1H, m), 3.32 (3H, s),
 3.79 (3H, s), 3.83-4.03 (3H, m), 4.69 (1H, m),

 6.54-6.67 (2H, m), 6.80-8.33 (8H, m)
 - 6) 4-[2-(Acetyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide
- 25 NMR (CDC1₃, δ): 1.26 (3H, t, J=7Hz), 1.44-1.91 (6H, m), 2.21-2.41 (8H, m), 3.32 (3H, s), 3.80 (3H, s), 3.82-4.03 (2H, m), 6.54-6.67 (2H, m), 6.80-6.95 (2H, m), 7.07 (1H, s), 7.15 (1H, d, J=8Hz), 7.35 (1H, m), 7.51 (1H, m), 7.94 (1H, m), 8.28 (1H, d, J=8Hz), 8.87 (1H, s)
 - 4-(2-Benzyloxybenzoyl) amino-2-chloro-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy) phenyl] benzamide
 NMR (CDCl₃, δ): 1.26 (3H, t, J=7Hz), 1.47-1.98 (6H, m), 2.36 (2H, t, J=7Hz), 3.34 (3H, s), 3.96 (2H,

t, J=7Hz), 4.14 (2H, q, J=7Hz), 5.17 (2H, s), 6.64-6.82 (3H, m), 6.96 (1H, d, J=8Hz), 7.02-7.21 (5H, m), 7.41-7.62 (6H, m), 8.25 (1H, m)

- 5 8) 4-(2-Acetoxybenzoy1)amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide
 - NMR (CDCl₃, δ): 2.21 (3H, s), 2.31 (3H, s), 3.38 (3H, s), 3.73 (3H, s), 6.87 (1H, d, J=8Hz), 7.00 (1H, s), 7.03-7.24 (5H, m), 7.29-7.43 (1H, m), 7.51 (1H, dd, J=8, 8Hz), 7.92 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.87 (1H, br s)
 - 9) 4-(3-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-
- yl) carbonylpent-1-yloxylphenyl) benzamide
 - NMR (CDCl₃, δ): 1.32-1.42 (2H, m), 1.50-1.58 (2H, m), 1.67-1.90 (6H, m), 2.28 (3H, s), 2.29 (6H, s), 2.37 (2H, t, J=8Hz), 2.52-2.62 (1H, m), 2.98-3.07 (1H, m), 3.34 (3H, s), 3.78 (3H, s),
- 20 3.65-3.98 (3H, m), 4.59-4.67 (1H, m), 5.12 (2H, s), 6.58 (1H, d, J=8Hz), 6.63 (1H, d, J=8Hz), 6.84 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.02 (1H, s), 7.12-7.17 (1H, m), 7.33-7.50 (8H, m), 8.28 (1H, d, J=8Hz), 8.48 (1H, s)
- 25 ESI-MASS (m/z) : 721 (M+H)
 - 10) 4-(2-Benzyloxybenzoyl) amino-N-[2-(5-ethoxycarbonyl-pent-1-yl) oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 1.43-1.56
- 30 (2H, m), 1.65-1.84 (4H, m), 2.25 (3H, s), 2.32 (2H, t, J=7.5Hz), 3.29 (3H, s), 3.77-3.93 (2H, m), 4.12 (2H, q, J=7.5Hz), 5.19 (2H, s), 6.51 (2H, m), 6.81 (1H, d, J=7Hz), 6.98 (2H, d,
- J=8Hz), 7.07-7.19 (4H, m), 7.39-7.53 (6H, m), 8.27 (1H, d, J=7Hz)

- 11) 4-(2-Iodobenzoyl)amino-N-[2-(4-methoxyphenyl)methoxy]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 3.35 (3H, s), 3.82 (3H, s), 4.905.05 (2H, m), 6.83 (1H, t, J=7Hz), 6.89-6.96

 (3H, m), 7.04 (1H, d, J=7Hz), 7.10-7.19 (2H, m),
 7.22-7.32 (4H, m), 7.37-7.48 (3H, m), 7.53 (1H,
 s), 7.88 (1H, d, J=7Hz)
- 12) 3-Methoxy-4-[2-(4-methoxyphenylmethyl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

 NMR (CDCl₃, δ): 2.27 (3H, s), 2.31 (3H, s), 2.352.52 (2H, m), 3.24 (3H, s), 3.37 (3H, s), 3.403.53 (2H, m), 3.62-3.81 (2H, m), 3.39 (3H, s),

 4.89 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 5.21 (2H, s), 6.61-6.70 (2H, m), 6.80-7.18 (7H, m),
 7.30-7.45 (7H, m), 8.22 (1H, d, J=7Hz), 8.31 (1H, d, J=7Hz)
- 20 13) 4-[2-(E)-(2-Ethoxycarbonylethen-1-yl)benzoyl]amino-3methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDC1₃, δ) : 1.30 (3H, t, J=7.5Hz), 1.49-1.60 (2H, m), 1.67-1.77 (2H, m), 1.79-1.90 (2H, m), 25 2.29 (6H, sx2), 2.33-2.43 (6H, m), 3.33 (3H, s), 3.45-3.53 (2H, m), 3.60-3.67 (2H, m), 3.71 (3H, s), 3.85-4.01 (2H, m), 4.23 (2H, q, J=7.5Hz), 6.40 (1H, d, J=15Hz), 6.58-6.67 (2H, m), 6.86 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 7.02 (1H, 30 s), 7.40-7.52 (2H, m), 7.58 (1H, d, J=7Hz), 7.68 (1H, d, J=7Hz), 8.02-8.15 (2H, m), 8.27 (1H, d, J=7Hz)
- 14) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-35 ethoxycarbonylpent-1-yl)oxy-4-methyl]phenylbenzamide

20

- NMR (CDC1₃, δ): 1.20 (3H, t, J=7.5Hz), 1.45-1.58 (2H, m), 1.66-1.77 (2H, m), 1.80-1.95 (2H, m), 2.25 (3H, s), 2.29-2.34 (2H, m), 2.31 (3H, s), 2.80 (6H, s), 4.00-4.16 (4H, m), 5.20 (2H, s), 6.68-6.89 (5H, m), 7.58 (2H, d, J=8Hz), 7.88 (2H, d, J=8Hz), 8.37 (1H, d, J=7Hz), 8.50 (1H, s)
- 15) 4-(2-Benzyloxy) benzoylamino-3-methoxy-N-[(E and Z)-210 (4-methoxycarbonylphenyl) ethen-1-yl]phenyl-Nmethylbenzamide

 NMR (CDC1₃, δ): 3.06 (3Hx2/3, s), 3.10 (3Hx1/3, s),
 3.40 (3Hx2/3, s), 3.43 (3Hx1/3, s), 3.46
 (3Hx2/3, s), 3.91 (3Hx1/3, s), 5.20 (2Hx2/3, s),
 15 5.27 (2Hx1/3, s), 6.38-8.37 (22H, m)
 - 16) 3-Methoxy-4-[2-[3-(4-methoxyphenyl)methoxyprop-1yl]thiobenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide
- NMR (CDCl₃, δ): 1.44-1.58 (2H, m), 1.61-1.73 (2H, m), 1.68-1.92 (4H, m), 2.25 (3H, s), 2.27 (3H, s), 2.30-2.41 (6H, m), 2.99 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.43-3.52 (4H, m), 3.57-3.66 (2H, m), 3.70 (3H, s), 3.78 (3H, s), 3.82-3.90 (2H, m), 4.38 (2H, s), 6.53-6.65 (2H, m), 6.79-6.93 (3H, m), 7.02 (1H, s), 7.17-7.29 (4H, m), 7.33-7.45 (2H, m), 7.65 (1H, d, J=7Hz), 8.29 (1H, d, J=7Hz), 8.80 (1H, s)
 - 17) 4-(2,4-Dimethoxybenzoyl)amino-3-methoxy-N-methyl-N[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent1-yl]oxylphenylbenzamide
 NMR (CDCl₃, δ): 1.43-1.57 (2H, m), 1.64-1.72 (2H, m), 1.72-1.91 (2H, m), 2.24 (3H, s), 2.27 (3H,

```
s), 2.30-2.40 (6H, m), 3.31 (3H, s), 3.42-3.50 (2H, m), 3.59-3.65 (2H, m), 3.77 (3H, s), 3.80 (3H, s), 3.80-4.02 (2H, m), 3.96 (3H, s), 6.52-6.63 (2H, m), 6.81-7.04 (5H, m), 7.79 (1H, m), 8.38 (1H, d, J=7Hz)
```

- 18) 4-[2-(Acetoxy) benzoyl] amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide
- 10 NMR (CDCl₃, δ): 1.47-1.61 (2H, m), 1.64-1.93 (4H, m), 2.22-2.46 (15H, m), 3.33 (3H, s), 3.44-3.53 (2H, m), 3.58-3.68 (2H, m), 3.79 (3H, s), 3.82-4.04 (2H, m), 6.54-6.68 (2H, m), 6.80-6.95 (2H, m), 7.04 (1H, s), 7.14 (1H, d, J=8Hz), 7.35 (1H, m), 7.51 (1H, m), 7.92 (1H, m), 8.29 (1H, br d, J=8Hz), 8.86 (1H, s)
- 19) 4-(2-Benzyloxy-4-methylbenzoyl)amino-3-methoxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent20 1-yl]oxy-4-methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.48-1.61 (2H, m), 1.69-1.91 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.44 (6H, m), 2.38 (3H, s), 3.20 (3H, s), 3.32 (3H, s), 3.50 (2H, t, J=5Hz), 3.64 (2H, t, J=4Hz), 3.85-4.06 (2H, m), 4.89 (2H, s), 6.60-6.68 (2H, m), 6.82-6.95 (4H, m), 7.18 (1H, dd, J=2, 7Hz), 7.27-7.40 (5H, m), 7.98 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
- 30 20) 4-(2-Benzyloxy-4-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.47-1.86 (6H, m), 2.28 (3H, s),
 2.30 (3H, s), 2.36 (3H, s), 2.32-2.48 (6H, m),
 3.30 (3H, s), 3.45-3.51 (2H, m), 3.60-3.66 (2H,

- 108 -

m), 3.63 (3H, s), 3.79-4.00 (2H, m), 5.24 (2H, d, J=9Hz), 6.56-6.68 (2H, m), 6.80-6.93 (5H, m), 7.31-7.58 (5H, m), 8.11 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

5

- 21) 4-(2-Benzyloxy-5-methylbenzoyl)amino-3-methoxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-v1]oxy-4-methylphenyl]benzamide
 - NMR (CDCl $_3$, δ): 1.47-1.99 (8H, m), 2.28 (3H, s), 2.31 (3H, s), 2.31-2.45 (6H, m), 3.25 (3H, s), 3.29 (2H, s), 3.48 (3H, s), 3.48-3.53 (2H, m), 3.60-3.64 (2H, m), 3.82-4.01 (2H, m), 5.27 (2H, s), 6.54-6.63 (2H, m), 6.81-6.95 (4H, m), 7.19-7.47 (7H, m), 8.02 (1H, s), 8.36 (1H, d, J=8Hz)

15

10

22) 4-(2-Benzyloxy-4-chlorobenzoyl)amino-3-methoxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-vl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.46-1.86 (6H, m), 2.15-2.31 (2H, 20 m), 2.29 (6H, s), 2.30-2.58 (4H, m), 3.28 (3H, s), 3.49 (2H, t, J=5Hz), 3.60 (3H, s), 3.61 (2H, t, J=5Hz), 3.85-4.00 (2H, m), 5.15 (2H, s), 6.54-6.67 (2H, m), 6.83-7.16 (4H, m), 7.34-7.49 (7H, m), 8.01 (1H, d, J=8Hz), 8.19 (1H, d,J=8Hz)

- 23) 4-(2-Benzyloxy-4-methoxybenzoyl)amino-3-methoxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yl]oxy-4-methylphenyl]benzamide
- 30 NMR (CDCl $_3$, δ) : 1.44-1.59 (2H, m), 1.63-1.84 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.25-2.40 (6H, m), 3.28 (3H, s), 3.30 (3H, s), 3.48 (2H, t, J=4Hz), 3.62 (2H, t, J=4Hz), 3.89-4.01 (2H, m), 5.26 (2H, s), 6.52-6.67 (4H, m), 6.81-6.92 (4H, 35 m), 7.35-7.48 (5H, m), 8.21 (1H, d, J=9Hz), 8.38

(1H, d, J=8Hz)

- 24) 4-(2-Acetoxybenzoyl)amino-3-methoxy-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide
- 5 NMR (CDCl₃, δ): 2.29 (3H, s), 3.39 (3H, s), 3.60 (3H, s), 4.88 (1H, d, J=12Hz), 5.02 (1H, d, J=12Hz), 6.68-6.73 (2H, m), 6.82 (1H, d, J=8Hz), 7.02 (1H, s), 7.11-7.20 (2H, m), 7.31-7.42 (5H, m), 7.46-7.53 (1H, m), 7.93 (1H, d, J=8Hz), 8.27 (1H, d, J=8Hz), 8.86 (1H, br)
 - 25) 4-(2-Acetoxybenzoyl)amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide
- 15 NMR (CDCl₃, δ): 2.27 (3H, s), 2.31 (3H, s), 3.39 (3H, s), 3.63 (3H, s), 4.07 (2H, t, J=10Hz), 4.42 (2H, t, J=10Hz), 4.91 (1H, d, J=12Hz), 5.11 (1H, d, J=12Hz), 6.61 (1H, br), 6.77 (1H, d, J=8Hz), 6.82-7.15 (5H, m), 7.24-7.50 (4H, m), 7.90 (2H, d, J=8Hz), 8.20 (1H, d, J=8Hz)
 - 26) 4-[2-[3-(9-Fluorenylmethyl) oxycarbonylaminoprop-1-yl]thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 - NMR (CDCl₃, δ): 1.32-1.92 (12H, m), 2.29 (9H, s), 2.39 (2H, t, J=5Hz), 2.60 (1H, t, J=10Hz), 2.90-3.12 (3H, m), 3.29 (2H, q, J=5Hz), 3.33 (3H, s), 3.75 (3H, s), 3.82-4.00 (4H, m), 4.38 (2H, t, J=4Hz), 6.55-6.67 (3H, m), 6.83 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.02 (1H, s), 7.25-7.46 (6H, m), 7.59 (2H, d, J=7Hz), 7.63 (1H, d, J=8Hz), 7.77 (2H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.70 (1H, s)

30

10

15

20

25

30

- 27) 4-[2-(Acetyloxy)benzoyl]amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide
 - NMR (CDCl₃, δ): 1.53 (2H, br), 1.63-1.89 (4H, m), 2.22 (3H, s), 2.30 (3H, s), 2.36 (3H, s), 2.22-2.50 (10H, m), 3.32-3.38 (3H, m), 3.52-3.57 (2H, m), 3.67 (2H, br), 3.95 (2H, br), 6.61 (2H, s), 6.83-6.93 (2H, m), 7.02-7.20 (2H, m), 7.32-7.58 (2H, m), 7.68 (1H, d, J=7Hz), 7.85 (1H, br)
- 28) 4-[(2-Benzyloxy)benzoyl]amino-3-[(2-benzyloxy)-benzoyl]oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.44-1.53 (2H, m), 1.60-1.87 (4H, m), 2.28 (3H, s), 2.29 (3H, s), 2.32-2.38 (7H, m), 3.33 (3H, s), 3.43 (2H, br), 3.60 (2H, br), 3.90 (2H, br), 4.79 (2H, s), 4.93 (2H, s), 6.11-6.20 (3H, m), 6.82-7.43 (18H, m), 7.83-7.88 (1H, m), 8.12-8.15 (1H, m), 8.37-8.42 (1H, m)
- 29) 4-[4-(Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.30-1.45 (1H, m), 1.47-1.58 (2H,
 m), 1.60-1.75 (4H, m), 1.78-1.91 (2H, m), 2.27
 (9H, s), 2.30-2.40 (3H, m), 2.50-2.63 (1H, m),
 2.95-3.07 (1H, m), 3.30 (3H, s), 3.77 (3H, s),
 3.82-3.98 (4H, m), 4.56-4.67 (1H, m), 5.11 (2H,
 s), 6.56-6.62 (2H, m), 6.80-6.93 (2H, m), 7.00-

7.05 (3H, m), 7.34-7.45 (4H, m), 7.78-7.82 (2H,

30) 4-[4-(Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]4-methylphenyl]benzamide

m), 8.22-8.30 (1H, m), 8.46 (1H, s)

NMR (CDC1₃, δ): 1.48-1.59 (2H, m), 1.69-1.90 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.35-2.42 (6H, m), 3.31 (3H, s), 3.48-3.50 (2H, m), 3.62-3.66 (2H, m), 3.78 (3H, s), 3.82-4.00 (2H, m), 5.13 (2H, s), 6.57-6.60 (2H, m), 6.81-6.92 (2H, m), 7.00-7.02 (3H, m), 7.30-7.43 (5H, m), 7.78-7.82 (2H, m), 8.27 (1H, d, J=7Hz), 8.43 (1H, s)

31) 4-[2-(Benzyloxy)benzoyl]amino-2-nitro-N-methyl-N-[2-10 [5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.30-1.44 (2H, m), 1.50-1.94 (8H, m), 2.20 (3H, s), 2.27 (6H, s), 2.30-2.43 (3H, m), 2.52-2.63 (1H, m), 2.97-3.10 (1H, m), 3.32 (3H, s), 3.85-3.97 (4H, m), 4.57-4.68 (1H, m), 5.20 (2H, s), 6.41-6.48 (2H, m), 6.52 (1H, s), 6.90-6.93 (1H, m), 7.11-7.20 (3H, m), 7.32 (1H, s), 7.48-7.59 (6H, m), 7.69-7.73 (1H, m), 8.29 (1H, d, J=7Hz)

20

25

30

15

5

32) 2-[2-(Benzyloxy)benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide

NMR (CDC1₃, δ): 1.30-1.44 (2H, m), 1.44-1.60 (2H, m), 1.60-1.95 (6H, m), 2.20 and 2.28 (total 9H, s), 2.29-2.41 (3H, m), 2.47-2.64 (1H, m), 2.93-3.09 (1H, m), 3.32 (3H, s), 3.79-3.98 (4H, m), 4.57-4.69 (1H, m), 4.97-5.17 (1H, m), 5.32 (1H, s), 6.39-6.50 (1H, m), 6.60-6.78 (2H, m), 6.90 (1H, m), 7.00-7.12 (2H, m), 7.27-7.50 (7H, m), 7.56-8.25 (2H, m)

Example 3

To a mixture of 2-benzyloxybenzoic acid (1.55 g) and 35 oxalyl chloride (1.18 ml) in dichloromethane (30 ml) was

WO 96/41795 PCT/JP96/01533

- 112 -

added 1 drop of N,N-dimethylformamide and the mixture was stirred at ambient temperature for 1 hour. After removing a solvent by evaporation, a solution of residual acid chloride in dichloromethane (30 ml) was added to a mixture of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (3.28 g) and pyridine (1.1 ml) in dichloromethane (50 ml) and the mixture was stirred at ambient temperature for 2.5 hours. The mixture was washed with saturated sodium hydrogen carbonate solution and brine, and dried over sodium sulfate. The solvent was removed by evaporation and purified by silica gel column chromatography (SiO2; 85 g, 2% methanol in dichloromethane) to give 4-(2benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-ylcarbonyl)pent-1-yloxy]-4methylphenyl]benzamide (4.5 g).

NMR (CDCl₃, δ): 1.44-1.59 (2H, m), 1.62-1.90 (4H, m), 2.27 (3H, s), 2.28 (3H, s), 2.30-2.43 (6H, m), 3.30 (3H, s), 3.32 (3H, s), 3.43-3.53 (2H, m), 3.57-3.67 (2H, m), 3.78-4.03 (2H, m), 5.30 (2H, s), 6.52-6.66 (2H, m), 6.78-6.96 (3H, m), 7.04 (1H, d, J=9Hz), 7.10 (1H, dd, J=9, 9Hz), 7.30-7.49 (6H, m), 8.20-8.28 (1H, m), 8.37 (1H, d, J=9Hz)

25

30

35

20

5

10

15

Example 4

A solution of 4-(2-benzyloxybenzoyl) amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide (2.80 g) in a mixture of ethanol (50 ml) and lN sodium hydroxide solution (10 ml) was stirred at ambient temperature for 4 hours. After removing ethanol by evaporation, the aqueous solution was adjusted to pH 2 with lN hydrochloric acid and the mixture was extracted with chloroform (30 x 2). The organic phase was washed with water (40 ml) and brine (30 ml), and dried over magnesium sulfate. The solvent

was evaporated to give 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-(5-carboxylpent-1-yloxy)phenyl]benzamide (1.76 g) as a colorless oil.

NMR (CDCl₃, δ): 1.45-1.57 (2H, m), 1.66-1.83 (4H, m), 2.37 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.78-3.96 (2H, br), 5.17 (2H, s), 6.75-6.82 (2H, m), 6.93-7.02 (3H, m), 7.10-7.22 (5H, m), 7.36-7.51 (6H, m), 8.28 (1H, d, J=7Hz)

10 Example 5

The following compounds were obtained according to a similar manner to that of Example 4.

- 1) 4-[2-(Carboxymethoxy)benzoyl]amino-N-methyl-N-[2-[5-15 (4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- NMR (CDCl₃, δ): 1.63 (2H, m), 1.73 (2H, m), 1.85 (2H, m), 2.28 (3H, s), 2.35-2.41 (6H, m), 3.36 (3H, s), 3.47 (2H, m), 3.61 (2H, m), 3.91 (2H, m), 4.76 (2H, s), 6.72-6.82 (2H, m), 6.86-7.01 (2H, m), 7.07-7.18 (2H, m), 7.35 (2H, d, J=8.5Hz), 7.47 (1H, t, J=7Hz), 7.72 (2H, d, J=8.5Hz), 8.25 (1H, d, J=7Hz)
- 25 2) 4-(2-Aminobenzoyl)amino-N-methyl-N-[2-(5-carboxypent1-yloxy)-4-methylphenyl)benzamide

 NMR (CDCl₃, δ): 1.45-1.59 (2H, m), 1.64-1.85 (4H,

 m), 2.27 (3H, s); 2.38 (2H, t, J=7Hz), 3.32 (3H,

 s), 3.73-4.00 (2H, m), 6.56-6.76 (4H, m), 6.93

 (1H, d, J=9Hz), 7.18-7.48 (6H, m), 7.86 (1H, br

 s)
- 4-(2-Methoxybenzoyl)amino-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.46-1.62 (2H, m), 1.65-1.88 (4H,

- 114 -

m), 2.26 (3H, s), 2.39 (2H, t, J=7Hz), 3.33 (3H, s), 3.73-4.00 (2H, m), 4.01 (3H, s), 6.54-6.68 (2H, m), 6.91 (1H, br d, J=9Hz), 6.99 (1H, d, J=9Hz), 7.10 (1H, dd, J=9, 9Hz), 7.35 (2H, br d, J=9Hz), 7.41-7.57 (3H, m), 8.17-8.27 (1H, m), 9.84 (1H, br s)

- 4) 4-(2-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide 10 NMR (CDCl₃, δ): 1.43-1.60 (2H, m), 1.62-1.88 (4H, m), 2.38 (2H, t, J=7Hz), 3.28 (3H, s), 3.34 (3H, s), 3.76-4.02 (2H, m), 5.28 (2H, s), 6.74-6.85 (2H, m), 6.86-6.97 (2H, m), 6.97-7.20 (4H, m), 7.28-7.50 (6H, m), 8.16-8.27 (1H, m), 8.36 (1H, d, J=BHz)
- 5) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.31-1.96 (17H, m), 2.00-2.48 (6H, m), 3.14-3.39 (5H, m), 3.62-4.07 (5H, m), 4.10-4.30 (2H, m), 4.86 (1H, m), 6.52-6.72 (2H, m), 6.81-7.16 (5H, m), 7.37-7.53 (2H, m), 8.11-8.51 (2H, m)
- 6) 4-(2-Benzyloxybenzoyl)amino-2-chloro-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide NMR (CDCl₃, δ): 1.50-1.67 (2H, m), 1.68-1.98 (4H, m), 2.42 (2H, t, J=7Hz), 3.34 (3H, s), 3.99 (2H, t, J=7Hz), 5.16 (2H, s), 6.65-6.80 (3H, m), 6.98 (1H, d, J=8Hz), 7.02-7.22 (5H, m), 7.40-7.61 (6H, m), 8.24 (1H, m)
- 7) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]35 benzoyl]amino-3-methoxy-N-methyl-N-[4-(5-carboxypent-

20

30

35

```
1-yloxy) phenyl]benzamide
```

NMR (CDC1₃, δ): 1.40 (9H, s), 1.45-1.80 (8H, m), 2.18-2.27 (2H, m), 2.32-2.40 (2H, m), 3.25-3.35 (2H, m), 3.48 (3H, s), 3.80 (3H, s), 3.93 (2H, t, J=6Hz), 4.19-4.28 (2H, m), 4.73-4.83 (1H, br), 6.73-6.80 (3H, m), 6.93-7.12 (6H, m), 7.46 (1H, t, J=8Hz), 8.17-8.27 (1H, m)

ESI-MASS (m/z) : 686 (M+Na)

- 10 8) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5carboxypent-1-yl)oxy-4-methyl]phenyl-Nmethylbenzamide
- NMR (DMSO-d₆, δ) : 1.31-1.80 (6H, m), 1.95-2.07 (4H, m), 2.22 (3H, s), 2.86 (2H, t, J=7.5Hz), 3.16 15 (3H, s), 3.70 (1H, m), 3.93 (1H, m), 4.16 (2H, t, J=7.5Hz), 6.65 (1H, d, J=7Hz), 6.78 (1H, s), 7.00-7.10 (2H, m), 7.20 (1H, d, J=7Hz), 7.23 (2H, d, J=8Hz), 7.43-7.62 (4H, m)
- 9) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1yl]oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.36-1.50 (2H, m), 1.41 (9H, s), 1.50-1.62 (2H, m), 1.66-1.84 (2H, m), 2.05-2.19 25 (2H, m), 2.25 (3H, s), 2.36-2.44 (2H, m), 3.23-3.41 (2H, m), 3.31 (3H, s), 3.77-4.00 (2H, m), 4.16-4.29 (2H, m), 4.88 (1H, br), 6.53-6.67 (2H, m), 6.98 (2H, d, J=8Hz), 7.08 (1H, m), 7.30-7.53

(3H, m), 8.11 (1H, m)

10) 4-[(2-Benzyloxy)benzoyl]amino-N-[2-(3-carboxyprop-1yl)oxy]phenyl-N-methylbenzamide NMR (DMSO-d₆, δ): 1.90-2.01 (2H, m), 2.42 (2H, t, J=7.5Hz), 3.20 (3H, s), 3.85-4.02 (2H, m), 5.20 (2H, s), 6.85 (1H, t, J=7Hz), 6.98 (1H, d,

20

- 116 -

J=7Hz), 7.09 (1H, t, J=7Hz), 7.15-7.37 (6H, m), 7.49 (2H, d, J=8Hz), 7.62 (1H, d, J=7Hz)

- 11) 4-(2-Iodobenzoyl) amino-N-[2-(5-carboxypent-1yl) oxy]phenyl-N-methylbenzamide

 NMR (CDCl₃, \(\delta\)): 1.45-1.58 (2H, m), 2.65-2.75 (2H,
 m), 2.75-2.84 (2H, m), 2.35 (2H, t, J=7.5Hz),
 3.32 (3H, s), 3.82-3.98 (2H, m), 6.77-6.86 (2H,
 m), 7.04 (1H, d, J=7Hz), 7.09-7.21 (2H, m),
 7.28-7.48 (5H, m), 7.82-7.90 (2H, n)
 - 12) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-carboxypent-1-yl)oxy]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 1.38-1.52 (2H, m), 1.59-1.69 (2H, m), 1.72-1.85 (2H, m), 2.23 (3H, s), 2.25 (3H, s), 2.30 (2H, t, J=7.5Hz), 2.75 (6H, s), 3.33 (3H, s), 3.11-3.25 (2H, m), 3.88-4.00 (2H, m), 5.02 (2H, s), 6.56-6.67 (3H, m), 6.71 (1H, d, J=7Hz), 6.90-6.99 (2H, m), 7.24 (2H, d, J=8Hz), 7.38 (2H, d, J=8Hz)
 - 13) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4yl]oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4methyl]phenyl-N-methylbenzamide
- 14) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methylprop-1-yl)oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide

- NMR (CDC1₃, δ): 1.40 (9H, s), 1.42 (3H, d, J=7.5Hz), 1.43-1.96 (8H, m), 2.25 (3H, s), 2.33-2.42 (2H, m), 3.11-3.33 (2H, m), 3.33 (3H, s), 3.65-3.97 (5H, m), 4.70 (1H, m), 6.53-6.70 (2H, m), 6.79-7.13 (4H, m), 7.44 (1H, t, J=7Hz), 8.23 (1H, m), 8.39 (1H, m)
- 15) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoyl]amino-3-methoxy-N-[2-(3-carboxypyrid-6-y1)methoxy-4-methylphenyl]-N-methylbenzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 2.05-2.16 (2H, m),
 2.27 (3H, s), 3.28 (2H, br), 3.42 (3H, br), 3.58
 (3H, br), 3.86-4.00 (2H, m), 4.10-4.25 (2H, m),
 4.95 (1H, br), 5.16 (1H, br), 6.62 (3H, br),
 6.86-7.18 (4H, m), 7.41 (3H, br), 8.14 (1H, br),
 8.33 (1H, br), 9.17 (1H, br)
- 16) 4-[2-(E)-(2-Carboxyethen-1-yl)benzoylamino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl3, \(\delta\)): 1.50-2.00 (6H, m), 2.27-2.52 (10H, m), 2.60-2.81 (2H, m), 3.31 (3H, s), 3.43-3.66 (2H, m), 3.83-4.22 (7H, m), 5.60 (1H, m), 6.57 (1H, m), 6.65-6.76 (4H, m), 7.01-7.12 (2H, m), 7.21 (1H, d, J=7Hz), 7.42-7.60 (3H, m), 7.85 (1H, m)
- 17) 4-[2-(3-Carboxyprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)oarbonylpent-1-yl]oxylphenylbenzamide

 NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.64-1.75 (2H, m), 1.75-1.87 (2H, m), 2.20 (3H, s), 2.34 (3H, s), 2.35-2.50 (6H, m), 2.61-2.74 (2H, m), 3.30 (3H, s), 3.33-3.46 (2H, m), 3.49-3.69 (4H, m), 3.75 (3H, s), 3.90-4.02 (2H, m), 4.17-4.27 (2H, m), 3.75 (3H, s), 3.90-4.02 (2H, m), 4.17-4.27 (2H, m)

- 118 -

m), 6.56-6.72 (2H, m), 6.83-6.92 (2H, m), 6.93-7.00 (2H, m), 7.07 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)

5

18) 4-[2-(Carboxymethoxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDC1₃, δ): 1.51-1.92 (6H, m), 2.02 (3H, s), 2.30 (3H, s), 2.32 (2H, t, J=5Hz), 2.43-2.68 (4H, m), 3.33 (3H, s), 3.40-3.55 (4H, m), 3.72 (3H, s), 3.75-4.07 (2H, m), 4.73 (2H, s), 6.57-6.68 (2H, m), 6.81-7.10 (6H, m), 7.35-7.45 (1H, m), 8.18 (1H, d, J=7Hz), 8.32 (1H, d, J=8Hz)

15

10

Example 6

A mixture of 4-[2-[3-(phthalimido)prop-1-yl]oxy]benzoylamino-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]phenyl]benzamide (470 mg) and
hydrazine hydrate (158 mg) in ethanol (5 ml) was stirred
at ambient temperature for 6 hours and filtered through a
bed of Celite. The filtrate was evaporated and the
residue was subjected to silica gel column. The column
was eluted with a mixture of chloroform, methanol and
agueous ammonia (10:1:0.1). The object fractions were
evaporated to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (256 mg) as a
colorless amorphous.

30

35

NMR (CDC1₃, δ): 1.56 (2H, m), 1.74 (2H, m), 1.87 (2H, m), 2.09 (2H, m), 2.29 (3H, s), 2.34-2.43 (6H, m), 2.97 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.50 (2H, m), 3.65 (2H, n), 3.96 (2H, m), 4.30 (2H, t, J=7.5Hz), 6.73-6.83 (2H, m), 6.95-7.03 (2H, m), 7.77-7.16 (2H, m), 7.34 (2H, d,

WO 96/41795 PCT/JP96/01533

- 119 -

J=8.5Hz), 7.42-7.50 (3H, m), 8.22 (1H, d, J=7Hz)

Example 7

5

The following compounds were obtained according to a similar manner to that of Example 6.

- 1) 4-[2-(3-Aminoprop-1-yl)oxy]benzoylamino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1yloxy]phenyl]benzamide
- 10 NMR (CDCl₃, δ): 2.00 (2H, m), 2.10 (2H, m), 2.27 (3H, s), 2.34-2.39 (4H, m), 2.98 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.35-3.61 (6H, m), 3.98 (2H, m), 4.30 (2H, t, J=7.5Hz), 6.80-6.91 (2H, m), 7.02 (2H, d, J=7Hz), 7.07-7.21 (3H, m), 7.33-7.51 (5H, m), 8.22 (1H, d, J=7Hz)
 - 2) 4-[2-[(3-Aminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide
- 20 NMR (CDCl₃, δ): 1.53 (2H, m), 1.70 (2H, m),
 1.84 (2H, m), 2.07 (2H, m), 2.26 (3H, s), 2.28
 (3H, s), 2.31-2.40 (6H, m), 2.90 (2H, t,
 J=7.5Hz), 3.32 (3H, s), 3.49 (2H, m), 3.60 (2H,
 m), 3.89 (3H, s), 3.82-3.99 (2H, m), 4.28 (2H,
 t, J=7.5Hz), 6.54-6.64 (2H, m), 6.82-6.94 (2H,
 m), 7.00-7.11 (3H, m), 7.45 (1H, m), 8.20 (1H,
 m), 8.39 (1H, m)
- 3) (R)-4-[2-[(4-Aminobut-2-y1)oxy]benzoyl]amino-3methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin1-y1)carbonylpent-1-yloxy]phenyl]benzamide

 NMR (CDCl₃, δ): 1.42 and 1.45 (total 3H, s), 1.501.89 (8H, m), 2.02-2.12 (1H, m), 2.29 (3H, s),
 2.31 (3H, s), 2.33-2.42 (6H, m), 2.84-2.90 (2H, m),
 35 3.33 (3H, s), 3.46-3.52 (2H, m), 3.60-3.67 (2H,

30

35

- 120 -

m), 3.80 (3H, s), 3.87-4.00 (2H, m), 4.78-4.87 (1H, m), 6.58 (1H, d, J=7Hz), 6.65 (1H, s), 6.82-6.92 (2H, m), 7.03-7.10 (3H, m), 7.45 (1H, t, J=8Hz), 8.21 (1H, dd, J=1, 8Hz), 8.40 (1H, d, J=7Hz)

ESI-MASS (m/z) : 674 (M+H)

- (R)-4-[2-[(4-Aminobut-2-y1)oxy]benzoy1]amino-3-4) methoxy-N-methyl-N-[4-methyl-2-[5-(4-10 dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]phenyl]benzamide NMR (CDCl₃, δ) : 1.43 and 1.45 (total 3H, s), 1.46-1.91 (12H, m), 2.02-2.12 (1H, m), 2.29 (9H, s), 2.30-2.41 (4H, m), 2.52-2.63 (1H, m), 2.87 (2H, 15 t, J=8Hz), 2.97-3.07 (1H, m), 3.35 (3H, s), 3.80 (3H, s), 3.87-3.98 (4H, m), 4.59-4.68 (1H, m),
- 4.79-4.88 (1H, m), 6.59 (1H, d, J=8Hz), 6.64 (1H, s), 6.83-6.93 (2H, m), 7.05-7.10 (3H, m), 7.45 (1H, t, J=8Hz), 8.23 (1H, d, J=9Hz), 8.42 20 (1H, d, J=8Hz)

ESI-MASS (m/z) : 702 (M+H)

- 5) (S)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-25 dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]phenyl]benzamide
 - NMR (CDCl3, $\delta)$: 1.43 and 1.45 (total 3H, s), 1.46-1.92 (12H, m), 2.02-2.13 (1H, m), 2.28 (9H, s), 2.30-2.40 (4H, m), 2.52-2.63 (1H, m), 2.86 (2H, t, J=8Hz), 2.97-3.07 (1H, m), 3.35 (3H, s), 3.81 (3H, s), 3.87-3.98 (4H, m), 4.60-4.68 (1H, m), 4.79-4.89 (1H, m), 6.59 (1H, d, J=8Hz), 6.54 (1H, s), 6.83-6.93 (2H, m), 7.05-7.10 (3H, m), 7.46 (1H, t, J=8Hz), 8.23 (1H, d, J=9Hz), 8.43 (1H, d, J=8Hz)

WO 96/41795 PCT/JP96/01533

- 121 -

ESI-MASS (m/z) : 702 (M+H)

6) 4-[2-[4-Aminobut-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-

5 yl]oxy]phenylbenzamide

10

30

35

NMR (CDCl₃, δ): 1.47-1.74 (8H, m), 1.77-1.88 (2H, m), 1.95-2.06 (2H, m), 2.27 (3H, s), 2.31-2.40 (4H, m), 2.78 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.84-3.98 (2H, m), 4.20 (2H, t, J=7.5Hz), 6.72-6.80 (2H, m), 6.93-7.00 (2H, m), 7.04-7.14 (2H, m), 7.30 (2H, d, J=8Hz), 7.40-7.48 (3H, m), 8.19 (1H, d, J=7Hz)

15 7) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-N-[2-(5-ethoxycarbonylpent-1-yl) oxy-4-methyl] phenyl-N-methylbenzamide

NMR (CDC1₃, δ): 1.24 (3H, t, J=7.5Hz), 1.44-1.56 (2H, m), 1.63-1.87 (6H, m), 2.06-2.16 (2H, m), 2.28 (3H, s), 2.33 (2H, t, J=7.5Hz), 2.97 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.82-3.96 (2H, m), 4.11 (2H, q, J=7.5Hz), 4.30 (2H, t, J=7.5Hz), 6.54-6.60 (2H, m), 6.83 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.09 (1H, t, J=7Hz), 7.30 (2H, d, J=9Hz), 7.41-7.48 (3H, m), 8.20 (1H, d, J=7Hz)

8) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl) carbonylprop-1yl] oxy] phenylbenzamide

NMR (CDCl₃, δ): 2.03-2.17 (2H, m), 2.29 (3H, s), 2.33-2.42 (2H, m), 2.53 (2H, t, J=7.5Hz), 2.96 (2H, t, J=7.5Hz), 3.38 (3H, s), 3.46-3.53 (2H, m), 3.59-3.68 (2H, m), 3.92-4.08 (2H, m), 4.28 (2H, t, J=7.5Hz), 6.77-6.83 (2H, m), 6.98-7.18

- 122 -

(4H, m), 7.31 (2H, d, J=8Hz), 7.43-7.50 (3H, m), 8.20 (1H, d, J=7Hz)

- 9) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

 NMR (CDCl₃, δ): 2.02-2.14 (2H, m), 2.37 (3H, s),
 2.30 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t,
 J=7.5Hz), 3.35 (3H, s), 3.41-3.57 (2H, m), 3.673.66 (2H, m), 4.30 (2H, t, J=7.5Hz), 4.96 (1H,
 d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.63-6.71 (2H,
 m), 6.95-7.02 (2H, m), 7.11 (1H, t, J=7Hz), 7.31
 (2H, d, J=8Hz), 7.36-7.50 (7H, m), 6.22 (1H, d,
 J=7Hz)
 - 10) 4-[2-(4-Amino-1-butyn-1-yl)benzoyl]amino-N-methyl-N[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yl]oxy]phenylbenzamide
- NMR (CDC1₃, δ): 1.42-1.90 (10H, m), 2.28 (3H, s),
 2.32-2.41 (6H, m), 3.37 (3H, s), 3.46-3.51 (2H,
 m), 3.59-3.67 (2H, m), 3.82-4.02 (2H, m), 6.736.82 (2H, m), 7.00 (1H, d, J=7Hz), 7.08-7.20
 (2H, m), 7.35-7.64 (5H, m), 7.81-7.88 (2H, m)
- 25 11) 4-[2-(4-Aminobut-1-y1)benzoyl}amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy]phenylbenzamide

 MASS (m/z) : 614 (M+1)
- 30 12) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-y1)carbony1]phenylmethoxy]phenylbenzamide

 NMR (CDC1₃, δ): 2.01-2.11 (2H, m), 2.28 (3H, s),

 2.31 (3H, s), 2.33-2.51 (4H, m), 2.90 (2H, t,

 J=7.5Hz), 3.39 (3H, s), 3.40-3.52 (2H, m), 3.61-

3.86 (2H, m), 3.67 (3H, s), 4.79 (2H, t, J=7.5Hz), 4.90 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.61-6.70 (2H, m), 7.86 (1H, d, J=7Hz), 6.94-7.10 (4H, m), 7.31-7.46 (5H, m), 8.20 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz)

- 13) 3-Methoxy-4-[2-(3-aminoprop-1-y1)oxy]phenylmethyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)oxy]phenylbenzamide
- 10 NMR (CDCl₃, δ): 1.45-1.54 (2H, m), 1.62-1.71 (2H, m), 1.76-1.85 (2H, m), 1.87-2.00 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.31-2.40 (4H, m), 2.90 (2H, t, J=7.5Hz), 3.28 (3H, s), 3.45-3.50 (2H, m), 3.57-3.64 (2H, m), 3.61 (3H, s), 3.80-3.97 (2H, m), 4.07 (2H, t, J=7.5Hz), 4.27 (2H, s), 4.70 (1H, br), 6.37 (1H, d, J=7Hz), 6.59 (1H, d, J=7Hz), 6.62 (1H, s), 6.78 (1H, s), 6.82-6.90 (4H, m), 7.16-7.71 (2H, m)
- 20 14) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl) carbonyl] phenyleth-1-yl]phenylbenzamide

 NMR (CDCl₃, δ): 2.00-2.11 (2H, m), 2.29 (3H, s), 2.32-2.50 (4H, m), 2.61-2.93 (6H, m), 3.32 (3H, s), 3.55-3.89 (2H, m), 3.59-3.81 (2H, m), 3.71 (3H, s), 4.22-4.32 (2H, m), 6.83 (1H, d, J=7Hz), 6.94-7.33 (11H, m), 7.43 (1H, t, J=7Hz), 8.20
- 30 15) 4-[2-(3-Aminoprop-1-y1)thiobenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1y1)carbonylpent-1-y1]oxy]phenylbenzamide
 MASS (m/z): 676 (M+1)

(1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

35 16) 4-[2-(3-Aminoprop-1-yl)sulfonylbenzoyl]amino-3-

25

- 124 -

 $\label{lem:methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1) carbonylpent-1-y1] oxy] phenylbenzamide $$MASS $(m/z) : 724 $(M+1)$$$

- 5 17) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl]phenylmethoxy-4-methyl]phenyl-N-methylbenzamide

 MASS (m/z) : 708 (M+1)
- 10 18) 4-[2-(3-Aminoprop-1-y1) oxybenzoy1] amino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-y1) carbonylmethoxyprop-1-y1] oxy] phenylbenzamide

 NMR (CDCl₃, δ): 2.00-2.14 (4H, m), 2.23 (3H, s),
 2.29-2.38 (4H, m), 2.88 (2H, t, J=7.5Hz), 3.35

 (3H, s), 3.37-3.45 (2H, m), 3.54-3.61 (2H, m),
 3.66-3.76 (2H, m), 3.77 (3H, s), 3.94-4.17 (4H, m), 4.30 (2H, t, J=7.5Hz), 6.75-7.18 (8H, m),
 7.45 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 19) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
 MASS (m/z): 686 (M+1)
 - 20) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl) aminoprop-1yl]oxybenzoyl]amino-N-[2-(4-aminobut-1-yl)oxy-4methyl]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.41 (9H, s), 1.50-1.67 (2H, m),
 1.77-1.89 (2H, m), 2.06-2.21 (2H, m), 2.27 (3H,
 s), 2.80 (2H, t, J=7.5Hz), 3.23-3.36 (2H, m),
 3.36 (3H, s), 3.80 (3H, s), 3.84-4.03 (2H, m),
 4.26 (2H, t, J=7.5Hz), 6.57-6.68 (2H, m), 6.837.15 (5H, m), 7.45 (1H, t, J=7Hz), 8.21 (1H, d,
 35 J=7Hz), 8.40 (1H, d, J=7Hz)

10

21) 4-[2-(3-Amino-1-methylprop-1-y1)oxybenzoy1]amino-3-methoxy-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.41 (3H, d, J=7.5Hz), 1.70-1.83 (1H, m), 1.96-2.10 (1H, m), 2.26 (3H, s), 2.80-2.89 (2H, m), 3.37 (3H, s), 3.62 (3H, s), 4.82 (1H, m), 4.89 (1H, d, J=14Hz), 5.07 (1H, d, J=14Hz), 6.63-6.72 (2H, m), 7.86 (1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.02-7.11 (3H, m), 7.28-7.49 (6H, m), 8.22 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz)

- 22) 4-[2-(4-Aminobut-1-y1)oxybenzoy1]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy]phenylbenzamide

 NMR (CDCl3, \(\delta\) ; 1.46-2.03 (10H, m), 2.24 (3H, s),
 2.28 (3H, s), 2.31-2.40 (6H, m), 2.73 (2H, t,
 J=7.5Hz), 3.31 (3H, s), 3.44-3.50 (2H, m), 3.593.65 (2H, m), 3.77 (3H, s), 3.83-4.00 (2H, m),
 4.20 (2H, t, J=7.5Hz), 6.58 (1H, d, J=7Hz), 7.61 (1H, s), 6.85 (1H, d, J=7Hz), 6.90 (1H, d,
 J=7Hz), 6.87-7.10 (3H, m), 7.45 (1H, t, J=7Hz),
 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 25 23) 4-[2-(3-Aminoprop-1-y1)oxy-3-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide

 NMR (CDCl3, \(\delta\) : 1.49-1.91 (6H, m), 1.96-2.07 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.35 (3H, s), 30

 2.32-2.40 (6H, m), 2.95 (2H, t, J=5Hz), 3.32

 (3H, s), 3.46-3.53 (2H, m), 3.60-3.67 (2H, m), 3.81 (3H, s), 3.85-4.02 (4H, m), 6.56-6.66 (2H, m), 6.82-7.18 (4H, m), 7.33 (1H, d, J=8Hz), 7.80 (1H, d, J=7Hz), 8.36 (1H, d, J=7Hz)

- 24) 4-[2-(3-Aminoprop-1-yl)oxy-4-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.46-1.90 (6H, m), 2.13-2.25 (2H, m), 2.26 (3H, s), 2.28 (3H, s), 2.30-2.58 (6H, m), 2.37 (3H, s), 2.99 (2H, t, J=5Hz), 3.30 (3H, s), 3.49 (3H, s), 3.49 (2H, t, J=5Hz), 3.61 (2H, t, J=5Hz), 3.79 (3H, s), 3.83-3.92 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.65 (2H, m), 6.80-6.93 (4H, m), 7.00 (1H, s), 8.02 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
- 25) 4-[2-(3-Aminoprop-1-yl)oxy-5-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylpipenyl]benzamide

 NMR (CDCl₃, δ): 1.49-1.90 (6H, m), 1.98-2.20 (4H, m), 2.28 (3H, s), 2.29 (3H, s), 2.31 (3H, s), 2.31-2.42 (4H, m), 2.95 (2H, t, J=5Hz), 3.31 (3H, s), 3.50 (2H, t, J=4Hz), 3.62 (2H, t, J=4Hz), 3.79 (3H, s), 3.80-4.00 (2H, m), 4.25 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82-7.04 (4H, m), 7.24 (1H, d, J=8Hz), 7.95 (1H, s), 8.39 (1H, d, J=8Hz)
- 25 26) 4-[2-(3-Aminoprop-1-yl)oxy-4-chlorobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.62-1.90 (2H, m), 2.10 (2H, t, J=6Hz), 2.27 (3H, s), 2.29 (3H, s), 2.30-2.41 (4H, m), 2.93 (2H, t, J=5Hz), 3.31 (3H, s), 3.45-3.53 (2H, m), 3.58-3.66 (2H, m), 3.78 (3H, s), 3.82-4.01 (2H, m), 4.29 (2H, t, J=5Hz), 6.55-6.68 (2H, m), 6.80-6.91 (2H, m), 6.99-7.10 (4H, m), 8.13 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

10

1.5

20

25

30

27) 4-[2-(3-Aminoprop-1-yl) oxy-4-methoxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl] oxy-4-methylphenyl] benzamide

NMR (CDCl₃, δ) : 1.47-1.89 (6H, m), 2.04-2.15 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.93 (2H, t, J=5Hz), 3.31 (3H, s), 3.44-3.52 (2H, m), 3.57-3.65 (2H, m), 3.79 (3H, s), 3.83 (3H, s), 3.83-4.00 (2H, m), 4.26 (2H, t, J=5Hz), 7.50-7.68 (4H, m), 6.82-6.95 (2H, m), 7.03 (3H, s), 8.16 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 8

A mixture of 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide (1.76 g), Nethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (714 mg), N-methylpiperazine (311 mg) and 1-hydroxybenzotriazol (504 mg) in N.N-dimethylformamide (20 ml) was stirred at ambient temperature for 2 hours and the mixture was diluted with ethyl acetate (40 ml). The solution was washed successively with saturated aqueous sodium hydrogen carbonate solution (40 ml), water (40 ml) and brine (40 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide (1.98 g) as a colorless oil. NMR (CDC1₃, δ): 1.46-1.58 (2H, m), 1.64-1.88 (4H, m), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.32 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 3.81-4.00 (2H, br), 5.20 (2H, s), 6.73-6.82 (2H, m), 6.94-7.00 (3H, m), 7.08-7.20 (5H, m), 7.40-7.53 (6H, m),

Example 9

The following compound was obtained by using 4-[2-35 (carboxymethoxy)benzoyl]amino-N-methyl-N-[2-[5-(4-

8.28 (1H, d, J=7Hz)

- 128 -

methylpiperazin-1-yl)carbonylpent-1-yloxylphenyl]benzamide as a starting compound according to a similar manner to that of Example 8.

5 4-[2-[(4-Methylpiperazin-1-yl)carbonylmethoxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

MASS: 699 (M+1)

10 Example 10

15

A solution of 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (1.90 g) in methanol (30 ml) was hydrogenated under atmospheric presser in the presence of palladium hydroxide (400 mg) for 6 hours and the catalyst was removed by filtration. The filtrate was evaporated to give 4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (1.60 q) as a colorless amorphous.

20 NMR (CDCl₃, δ): 1.51 (2H, m), 1.66 (2H, m), 1.79 (2H, m), 2.30 (2H, m), 2.63 (3H, s), 2.82-2.95 (4H, m), 3.33 (3H, s), 3.72 (2H, m), 3.86 (2H, m), 3.99 (2H, m), 6.78-6.93 (3H, m), 7.05 (2H, m), 7.17 (1H, t, J=7Hz), 7.27 (2H, d, J=8.5Hz), 7.40 (1H, t, J=7Hz), 7.53 (2H, d, J=8.5Hz), 7.91 (1H, m), 9.21 (1H, br)

Example 11

The following compounds were obtained according to a similar manner to that of Example 10.

- 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1-yloxy]phenyl]benzamide
- 35 NMR (CDCl₃, δ) : 2.00 (2H, m), 2.71 (3H, s), 2.90-

3.09 (4H, m), 3.33 (3H, s), 3.50-3.80 (6H, m), 3.97 (2H, m), 6.76-7.03 (5H, m), 7.11-7.22 (2H, m), 7.29-7.44 (3H, m), 7.45-7.54 (2H, m), 7.88 (1H, m)

5

10

- 2) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]-4methylphenyllbenzamide
- NMR (CDCl₃, δ): 1.46-1.62 (2H, m), 1.65-1.90 (4H, m), 2.29 (3H, s), 2.30-2.43 (2H, m), 2.82 (3H, s), 2.88-3.30 (4H, m), 3.31 (3H, s), 3.48 (3H, s), 3.79 (3H, s), 3.77-4.07 (6H, m), 6.58-6.69 (2H, m), 6.84-7.08 (5H, m), 7.43 (1H, dd, J=9, 9Hz), 7.52 (1H, d, J=9Hz), 8.20 (1H, d, J=9Hz),

15 8.82 (1H, br s)

- 3) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- 20 NMR (CDCl₃, δ): 1.47-1.63 (2H, m), 1.64-1.90 (4H, m), 2.38 (2H, t, J=7Hz), 2.78 (3H, s), 2.90-3.31 (4H, m), 3.33 (3H, s), 3.77 (3H, s), 3.80-4.07 (6H, m), 6.77-7.11 (7H, m), 7.12-7.23 (1H, m), 7.37-7.58 (2H, m), 8.21 (1H, d, J=9Hz), 8.79 25 (1H, s)

4) 2-Chloro-4-[2-(hydroxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenvllbenzamide

30 NMR (CDCl₃, δ): 1.38-1.98 (6H, m), 2.21-2.46 (2H, m), 2.73 (3H, br s), 2.92-3.25 (4H, m), 3.36 (3H, s), 3.70-4.20 (6H, m), 6.67-6.82 (2H, m), 6.82-7.08 (4H, m), 7.08-7.20 (2H, m), 7.21-7.50 (2H, m), 7.70 (1H, br s), 7.92 (1H, br d, J=8Hz), 9.48 (1H, s)

10

5) 4-(3-Hydroxybenzoy1) amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide
NMR (CDCl₃, \(\delta\)) : 1.34-1.58 (4H, m), 1.64-1.97 (6H)

NMR (CDCl₃, δ): 1.34-1.58 (4H, m), 1.64-1.97 (6H, m), 2.28 (3H, s), 2.32 (6H, s), 2.33-2.38 (3H, m), 2.51-2.61 (1H, m), 2.97-3.06 (1H, m), 3.34 (3H, s), 3.78-3.81 (3H, br s), 3.65-3.97 (3H, m), 4.60-4.69 (1H, m), 6.58-6.65 (2H, m), 6.84-7.06 (4H, m), 7.38-7.60 (3H, m), 8.17-8.23 (1H, m)

ESI-MASS (m/z) : 631 (M+H)

- 6) 4-(2-Hydroxybenzoyl) amino-N-[2-(5-ethoxycarbonylpent-1-yl)cxy-4-methyl]phenyl-N-methylbenzamide
- 15 NMR (CDCl₃, \(\delta\)): 1.23 (3H, t, J=7.5Hz), 1.41-1.53 (2H, m), 1.62-1.84 (4H, m), 2.27 (3H, s), 2.32 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.78-3.97 (2H, t), 4.13 (2H, q, J=7.5Hz), 6.56-6.61 (2H, m), 6.84-6.91 (2H, m), 7.02 (1H, d, J=7Hz), 7.28-7.45 (4H, m), 7.62 (1H, d, J=7Hz), 8.47 (1H, s)
 - 7) 4-(2-Hydroxybenzoy1) amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]-phenylbenzamide
- 25 NMR (CDCl₃, δ): 2.00 (2H, m), 2.71 (3H, s), 2.90-3.09 (4H, m), 3.33 (3H, s), 3.50-3.80 (6H, m), 3.97 (2H, m), 6.76-7.03 (5H, m), 7.11-7.22 (2H, m), 7.29-7.44 (3H, m), 7.45-7.54 (2H, m), 7.88 (1H, m)
 - 8) 4-(2-Hydroxy)benzoylaminc-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]phenyleth-1yl]phenylbenzamide MASS (m/z) : 607 (M+1)

```
9) 4-(2-Hydroxy-3-methylbenzoyl)amino-3-methoxy-N-
            methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-
            1-yl]oxy-4-methylphenyl]benzamide
            NMR (CDCl<sub>3</sub>, \delta): 1.50-1.90 (6H, m), 2.27 (6H, s),
 5
                 2.28 (3H, s), 2.33-2.40 (4H, m), 2.70-2.78 (2H,
                 m), 3.30 (3H, s), 3.80 (3H, s), 3.85-4.10 (6H,
                 m), 6.59-6.65 (2H, m), 6.77-6.97 (6H, m), 8.19
                 (1H, d, J=8Hz), 8.70 (1H, br s)
10
       10) 4-(2-Hydroxy-4-methylbenzoyl)amino-3-methoxy-N-
           methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-
           1-yl]oxy-4-methylphenyl]benzamide
           NMR (CDCl<sub>3</sub>, \delta): 1.49-1.91 (6H, m), 2.24 (3H, s),
                 2.29 (3H, s), 2.32 (3H, s), 2.30-2.42 (6H, m),
15
                 3.32 (3H, s), 3.49 (2H, t, J=5Hz), 3.63 (2H, t,
                 J=5Hz), 3.80 (3H, s), 3.88-4.01 (2H, m), 6.68-
                 6.65 (2H, m), 6.80 (1H, s), 6.84 (1H, d, J=8Hz),
                6.93 (1H, d, J=7Hz), 7.03 (1H, s), 7.37 (1H, d,
                J=7Hz), 8.19 (1H, d, J=8Hz), 8.71 (1H, br)
20
      11) 4-(2-Hydroxy-4-methylbenzoyl)amino-3-methoxy-N-
           methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-
           1-yl]oxy-4-methylphenyl]benzamide
           NMR (CDCl<sub>3</sub>, \delta): 1.50-1.91 (10H, m), 2.28 (3H, s),
25
                2.34 (3H, s), 2.35 (3H, s), 2.30-2.41 (6H, m),
                2.80 (2H, br), 3.31 (3H, s), 3.80 (3H, s), 3.81-
                4.09 (4H, m), 6.60-6.68 (2H, m), 6.84-7.02 (4H,
```

35

br)

12) 4-(2-Hydroxy-4-chlorobenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.46-1.89 (6H, m), 2.23-2.45 (6H, m), 2.27 (3H, s), 2.32 (3H, s), 3.30 (3H, s),

m), 7.20-7.30 (2H, m), 8.20 (1H, br), 8.37 (1H,

- 132 -

3.44-3.68 (4H, m), 3.80 (3H, s), 3.80-3.99 (2H, m), 6.53-6.65 (2H, m), 6.72-7.03 (5H, m), 7.41 (1H, d, J=8Hz), 8.12 (1H, d, J=8Hz), 8.74 (1H, br)

5

10

- 13) 4-(2-Hydroxy-4-methoxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-l-yl]oxy-4-methylphenyl]benzamide
 - NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.63-1.84 (4H, m), 2.28 (3H, s), 2.37 (2H, t, J=5Hz), 2.25-2.40 (6H, m), 2.79 (3H, s), 3.30 (3H, s), 3.79 (3H, s), 3.82 (3H, s), 3.90-4.01 (2H, m), 6.44-6.50 (2H, m), 6.60-6.66 (2H, m), 6.88-6.97 (3H, m), 7.41 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz), 8.40 (1H, br)
- 15
 - 14) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1yloxy)phenyl)benzamide
- 20 NMR (CDCl₃, δ): 1.22-1.45 (2H, m), 1.45-1.58 (2H, m), 1.62-1.78 (2H, m), 1.80-1.96 (4H, m), 2.30 (6H, s), 2.30-2.40 (3H, m), 2.50-2.62 (1H, m), 2.97-2.37 (1H, m), 3.37 (3H, s), 3.78 (3H, s), 3.82-4.02 (4H, m), 4.57-4.68 (1H, m), 6.77-7.02 (8H, m), 7.10-7.20 (1H, m), 7.37-7.45 (1H, m), 7.46-7.62 (1H, m), 8.20 (1H, br)
 - 15) 4-(2-Hydroxybenzoyl) amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl|benzamide
 - NMR (CDCl₃, δ): 1.30-2.08 (10H, m), 2.20-2.60 (13H, m), 2.89-3.05 (1H, m), 3.30 (3H, s), 3.82-4.02 (4H, m), 4.62-4.79 (1H, m), 6.62 (2H, s), 6.73-7.02 (4H, m), 7.28-7.57 (3H, m), 7.99 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 35

- 16) 3-Ethoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.40 (3H, t, J=6Hz), 1.47-1.57 (2H, m), 1.65-1.72 (2H, m), 1.78-1.88 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.31-2.42 (7H, m), 3.30 (3H, s), 3.48-3.50 (2H, m), 3.52-3.65 (2H, m), 3.82-4.02 (4H, m), 6.58-6.61 (2H, m), 6.82-6.94 (3H, m), 6.98-7.02 (2H, m), 7.40-7.47 (2H, m), 8.20 (1H, d, J=7Hz), 8.83 (1H, s)
 - 17) 3-Hydroxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide
- 15 NMR (CDCl₃, δ): 1.62 (2H, br), 1.75 (2H, br), 1.85 (2H, br), 2.27 (3H, s), 2.30 (3H, s), 2.42 (7H, br), 3.30 (3H, s), 3.53 (2H, br), 3.68 (3H, br), 3.90 (1H, br), 6.52 (1H, s), 6.63-6.73 (2H, m), 6.87 (1H, t, J=7Hz), 6.97 (1H, d, J=7Hz), 7.08 (1H, d, J=7Hz), 7.15 (1H, s), 7.38 (1H, t, J=7Hz), 7.58 (1H, d, J=7Hz), 7.98 (1H, br), 9.02 (1H, br)
- - 19) 4-(4-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.38-1.55 (4H, m), 1.62-1.72 (2H,

10

15

20

m), 1.72-1.83 (2H, m), 1.83-1.97 (2H, m), 2.27 (3H, s), 2.32-2.37 (8H, m), 2.43-2.60 (2H, m), 2.93-3.05 (1H, m), 3.31 (3H, s), 3.70 (3H, s), 3.78-3.95 (4H, m), 4.60-4.70 (1H, m), 6.57-6.60 (2H, m), 6.80-6.97 (5H, m), 7.67 (2H, d, J=7Hz), 8.22 (1H, d, J=7Hz), 8.40 (1H, s)

NMR (CDCl₃, δ): 1.47-1.58 (2H, m), 1.67-1.75 (2H, m), 1.75-1.87 (2H, m), 2.27 (3H, s), 2.32 (3H, s), 2.38-2.48 (7H, m), 3.35 (3H, s), 3.48-3.53 (2H, m), 3.60-3.70 (2H, m), 3.70 (3H, s), 3.80-3.90 (1H, m), 3.90-4.00 (1H, m), 3.58-3.60 (2H, m), 6.82-6.97 (5H, m), 7.68 (2H, d, J=7Hz), 8.24 (1H, d, J=7Hz), 8.40 (1H. s)

Example 12

A solution of 4-(2-hydroxybenzoyl) amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide (400 mg) in N,N-dimethylformamide (15 ml) was added potassium carbonate (99 mg) and N-(3-bromopropyl)phthalimide (192 mg) and the mixture was

25 stirred at 60°C for 4 hours. The mixture was poured into water (30 ml) and the aqueous solution was extracted with ethyl acetate (20 ml x 2). The organic phase was washed with water (20 ml) and brine (20 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-

30 [2-[3-(phthalimido)prop-1-yl]oxy]benzoylamino-N-methyl-N[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide (484 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.56 (2H, m), 1.63-1.76 (4H, m), 1.86 (2H, m), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.35 (3H, s), 3.50 (2H, m), 3.63 (2H, m), 3.83-

WO 96/41795 PCT/JP96/01533

- 135 -

3.97 (4H, m), 4.20 (2H, t, J=7.5Hz), 6.73-6.81 (2H, m), 6.92 (1H, d, J=7Hz), 7.00-7.14 (3H, m), 7.32 (2H, d, J=8.5Hz), 7.42 (1H, m), 7.50 (2H, d, J=8.5Hz), 7.65-7.74 (4H, m), 8.08 (1H, d, J=7Hz), 9.69 (1H, s)

Example 13

The following compounds were obtained according to a similar manner to that of Example 12.

10

15

5

- 4-[2-(Ethoxycarbonylmethoxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ): 1.31 (3H, t, J=7.5Hz), 1.62 (2H, m), 1.71 (2H, m), 1.83 (2H, m), 2.29 (3H, s), 2.33-2.41 (6H, m), 3.35 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 3.93 (2H, m), 4.33 (2H, g, J=7.5Hz), 4.76 (2H, s), 6.72-6.82 (2H, m), 6.87 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.07-7.18 (2H, m), 7.33 (2H, d, J=8.5Hz), 7.46 (1H, t, J=7Hz), 7.71 (2H, d, J=8.5Hz), 8.26 (1H, d, J=7Hz)

20

25

2) 4-[2-(3-Piperidinoprop-1-yloxy)benzoyl]amino-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

NMR (CDCl₃, δ): 1.45 (2H, m), 1.50-1.60 (4H, m), 1.71 (2H, m), 1.85 (2H, m), 2.14 (2H, m), 2.28 (3H, s), 2.30-2.41 (10H, m), 2.49 (2H, t, J=7.5Hz), 3.34 (3H, s), 3.49 (2H, m), 3.63 (2H, m), 3.94 (2H, m), 4.23 (2H, t, J=7.5Hz), 6.73-6.82 (2H, m), 6.96-7.02 (2H, m), 7.04-7.15 (2H,

30

m), 7.32 (2H, d, J=8.5Hz), 7.43-7.50 (3H, m), 8.22 (1H, d, J=7Hz)

- 3) 4-[2-[2-(Dimethylamino)eth-1-yloxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- 1-yloxyjphenyijbenzamide

 NMR (CDCl₃, δ): 1.56 (2H, m), 1.70 (2H, m), 1.85

 (2H, m), 2.23 (6H, s), 2.30 (3H, s), 2.33-2.41

 (6H, m), 2.78 (2H, t, J=7.5Hz), 3.35 (3H, s),

 3.50 (2H, m), 3.64 (2H, m), 3.93 (2H, m), 4.22

 (2H, t, J=7.5Hz), 6.74-6.81 (2H, m), 6.95-7.01

 (2H, m), 7.06-7.15 (2H, m), 7.30 (2H, d, \

 J=8.5Hz), 7.43 (1H, m), 7.56 (2H, d, J=8.5Hz),

 8.21 (1H, d, J=7Hz)
- 4) 4-[2-[3-(Phthalimido)prop-1-yl]oxy]benzoylamino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)-carbonylaminoprop-1-yloxy]phenyl]benzamide

 NMR (CDCl₃, δ): 2.01 (2H, m), 2.25 (3H, s),
 2.25-2.38 (6H, m), 3.33-3.45 (6H, m), 3.35 (3H, s), 3.87-4.00 (4H, m), 4.21 (2H, t, J=7.5H2),
- s), 3.87-4.00 (4H, m), 4.21 (2H, t, J=7.5Hz), 6.78-7.00 (3H, m), 7.06-7.20 (3H, m), 7.33-7.56 (4H, m), 7.65-7.75 (4H, m), 7.86 (1H, m), 8.10 (1H, d, J=7Hz), 9.73 (1H, br)
- 5) 4-[2-[3-(Phthalimido)prop-1-yl]benzoylamino]-3methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1ylcarbonyl)pent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl3, \(\delta\)): 1.46-1.62 (2H, m), 1.63-1.93 (4H,
 m), 2.10-2.46 (14H, m), 3.33 (3H, s), 3.40-3.53
 (2H, m), 3.57-3.68 (2H, m), 3.78 (3H, s), 3.794.04 (4H, m), 4.26 (2H, t, J=7H2), 6.54-6.68
 (2H, m), 6.74-7.11 (5H, m), 7.37-7.48 (1H, m),
 7.52-7.63 (3H, m), 7.66-7.77 (1H, m), 7.80-7.90
 (1H, m), 8.06-8.23 (2H, m)
- 6) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-y1]oxybenzoyl]35 amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-

yl)carbonylpent-1-yloxylphenyl]benzamide

NMR (CDCl₃, δ): 1.47-1.63 (2H, m), 1.63-1.93 (6H, m), 2.29 (3H, s), 2.29-2.44 (6H, m), 3.36 (3H, s), 3.44-3.53 (2H, m), 3.58-3.68 (2H, m), 3.76 (3H, s), 3.81-4.05 (4H, m), 4.27 (2H, t, J=7Hz), 6.74-6.91 (3H, m), 6.92-7.20 (5H, m), 7.38-7.48 (1H, m), 7.58 (3H, s), 7.68-7.77 (1H, m), 7.82-7.90 (1H, m), 8.09-8.16 (1H, m), 8.20 (1H, d, J=9Hz)

10

15

5

7) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
NMR (CDCl₃, δ): 1.32-2.00 (12H, m), 2.16-2.48 (12H,
m), 2.57 (1H, m), 3.02 (1H, m), 3.33 (3H, s),
3.78 (3H, s), 3.80-4.05 (5H, m), 4.27 (2H, t,
J=7H2), 4.64 (1H, m), 6.56-6.70 (2H, m), 6.787.12 (5H, m), 7.43 (1H, m), 7.59 (2H, s), 7.667.91 (2H, m), 8.05-8.24 (2H, m)

20

8) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide

NMR (CDCl₃, δ) : 1.26 (3H, t, J=7Hz), 1.34-1.92

(17H, m), 2.23-2.40 (5H, m), 3.20-3.40 (5H, m),

3.78 (3H, s), 3.82-4.01 (2H, m), 4.12 (2H, q,

J=7Hz), 4.25 (2H, t, J=7Hz), 4.78 (1H, m), 6.52-6.69 (2H, m), 6.79-7.15 (5H, m), 7.40-7.52 (2H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

30

35

25

9) 2-Chloro-4-[2-[3-(phthalimido)prop-1-y1]oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1y1)carbonylpent-1-yloxy]phenyl]benzamide
NMR (CDC1₃, δ): 1.51-1.67 (2H, m), 1.68-1.82 (2H,
m), 1.82-2.01 (2H, m), 2.22-2.48 (1HH, m), 3.38

10

15

20

35

(3H, s), 3.47-3.56 (2H, m), 3.58-3.69 (2H, m), 3.90 (2H, t, J=7Hz), 3.94-4.11 (2H, m), 4.21 (2H, t, J=7Hz), 6.69-6.82 (2H, m), 6.93 (1H, d, J=8Hz), 7.02-7.20 (4H, m), 7.30 (1H, m), 7.43 (1H, m), 7.68 (4H, s), 8.07 (1H, m), 9.62 (1H, s)

- 10) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoy1]amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide
 - NMR (CDCl₃, δ): 1.41 (9H, s), 2.02-2.18 (2H, m), 2.21 (3H, s), 3.21-3.34 (2H, m), 3.39 (3H, s), 3.75 (3H, s), 4.24 (2H, t, J=7Hz), 4.74 (1H, m), 6.83-7.22 (9H, m), 7.44 (1H, m), 8.20 (1H, m), 8.42 (1H, d, J=8Hz)
- 11) 4-[3-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-y1)carbonylpent-1yloxy]phenvl]benzamide
- NMR (CDC1₃, δ): 1.32-1.45 (2H, m), 1.43 (9H, s),
 1.49-1.58 (2H, m), 1.64-1.90 (6H, m), 1.97-2.03
 (2H, m), 2.29 (3H, s), 2.30 (6H, s), 2.33-2.39
 (3H, m), 2.51-2.61 (1H, m), 2.97-3.07 (1H, m),
 3.28-3.38 (2H, m), 3.33 (3H, s), 3.79 (3H, s),
- 3.86-3.97 (3H, m), 4.08 (2H, t, J=7Hz), 4.59-4.67 (1H, m), 4.70-4.78 (1H, m), 6.57-6.64 (2H, m), 6.84 (1H, d, J=8Hz), 6.93 (1H, d, J=8Hz), 7.02 (1H, s), 7.03-7.07 (1H, m), 7.33-7.40 (3H, m), 8.27 (1H, d, J=8Hz), 8.49 (1H, s) ESI-MASS (m/z): 788 (M+1)
 - 12) 4-[2-[4-(Phthalimido)but-1-yl]oxybenzoyl]amino-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent1-yl]oxy]phenylbenzamide

- 139 -

```
NMR (CDCl<sub>3</sub>, \delta) :1.48-1.60 (2H, m), 1.65-1.77 (4H, m), 1.80-2.06 (6H, m), 2.29 (3H, s), 2.33-2.41 (6H, m), 3.38 (3H, s), 3.45-3.51 (2H, m), 3.60-3.67 (2H, m), 3.76 (2H, t, J=7.5Hz), 3.88-4.00 (2H, m), 4.23 (2H, d, J=7.5Hz), 6.73-6.42 (2H, m), 6.99 (2H, d, J=8Hz), 7.08-7.17 (2H, m), 7.36 (2H, d, J=8Hz), 7.44-7.50 (3H, m), 7.68-7.77 (2H, m), 7.81-7.91 (2H, m), 8.22 (1H, d, J=7Hz)
```

10 13) 4-[2-[3-(Phthalimido)prop-1-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonyylpent-1-yl)oxy-4-methyl]phenyl]-Nmethylbenzamide

```
NMR (CDCl<sub>3</sub>, \delta): 1.24 (3H, t, J=7.5Hz), 1.45-1.57 (2H, m), 1.64-1.88 (4H, m), 2.25 (3H, s), 2.28-2.37 (4H, m), 3.31 (3H, s), 3.84-3.95 (4H, m), 4.10 (2H, q, J=7.5Hz), 4.20 (2H, t, J=7.5Hz), 6.52-6.62 (2H, m), 6.88 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 7.07 (1H, t, J=7Hz), 7.31 (2H, d, J=8Hz), 7.39-7.50 (3H, m), 7.62-7.64 (4H, m), 8.10 (1H, d, J=7Hz), 9.68 (1H, s)
```

- 14) 4-[2-[3-(Phthalimido)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]phenylbenzamide
- 25 MASS (m/z) : 718 (M+1)

5

15) 4-[2-[3-(Phthalimdo)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

NMR (CDCl₃, δ): 2.25 (3H, s), 2.25-2.31 (2H, m),

2.31 (3H, s), 2.36-2.51 (4H, m), 3.38 (3H, s), 3.63-3.85 (4H, m), 3.91 (2H, t, J=7.5Hz), 4.20 (2H, t, J=7.5Hz), 4.98 (1H, d, J=14Hz), 5.63 (1H, d, J=14Hz), 5.63-6.70 (2H, m), 6.90-7.00 (2H, m), 7.09 (1H, t, J=7Hz), 7.32 (2H, d,

- 140 -

J=8Hz), 7.40-7.77 (7H, m), 8.10 (1H, d, J=7Hz), 9.70 (1H, s)

- 16) 4-[2-(3-Hydroxyprop-1-yl)oxybenzoyl]amino-N-methyl-N[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 1.43-1.56 (2H, m), 1.60-1.86 (4H,
 m), 2.11-2.23 (2H, m), 2.14 (3H, s), 2.37-2.90
 (6H, m), 3.33 (3H, s), 3.40-3.47 (2H, m), 3.513.59 (2H, m), 3.86 (2H, t, J=7.5Hz), 3.86-4.00
 (2H, m), 4.32 (2H, t, J=7.5Hz), 6.78-6.85 (2H,
 m), 6.99-7.19 (4H, m), 7.31 (2H, d, J=8Hz),
- 7.41-7.53 (3H, m), 8.21 (1H, d, J=8Hz)

 15 17) 4-(2-/3-minerate 1 c)
- 15 17) 4-[2-(3-Aminoprop-1-yl) oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl]oxy]bhenylbenzamide

 NMR (CDCl₃, δ): 1.43-1.54 (2H, m), 1.60-1.70 (2H, m), 1.74-1.85 (2H, m), 2.10-2.21 (2H, m), 2.26 (6H, sx2), 2.30-2.41 (6H, m), 3.32 (3H, s), 3.40-3.48 (2H, m), 3.55-3.61 (2H, m), 3.77 (3H, s), 3.77-4.00 (4H, m), 4.31 (2H, t, J=7.5Hz), 6.57-6.63 (2H, m), 6.85-6.92 (2H, m), 7.00-7.11
- (3H, m), 7.44 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 18) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1yl)carbonyl]phenylmethoxy]phenylbenzamide
- 30 NMR (CDCl₃, δ): 2.19-2.32 (2H, m), 2.25 (3H, s),
 2.33 (3H, s), 2.36-2.52 (4H, m), 3.33-3.50 (2H,
 m), 3.39 (3H, s), 3.67 (3H, s), 3.71-3.91 (4H,
 m), 4.28 (2H, t, J=7.5Hz), 4.95 (1H, d, J=14Hz),
 5.09 (1H, d, J=14Hz), 6.62-6.72 (2H, m), 6.81
 (1H, d, J=7Hz), 6.93-7.08 (4H, m), 7.34-7.47

(4H, m), 7.59 (1H, m), 7.68-7.75 (2H, m), 7.82-7.88 (2H, m), 8.10-8.19 (2H, m)

- 19) 4-[2-(3-Ethoxycarbonylprop-1-yl)oxybenzoyl]amino-3methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin1-yl)carbonylpent-1-yl]oxylphenylbenzamide

 NMR (CDCl₃, δ): 1.22 (3H, t, J=7.5Hz), 1.45-1.57

 (2H, m), 1.63 (3H, s), 1.63-1.73 (2H, m), 1.761.88 (2H, m), 2.20-2.32 (2H, m), 2.24 (3H, s),
 2.27 (3H, s), 2.32-2.40 (6H, m), 2.50 (2H, t,
 J=7.5Hz), 3.31 (3H, s), 3.43-3.50 (2H, m), 3.583.67 (2H, m), 3.78 (3H, s), 3.83-4.00 (2H, m),
 4.12 (2H, q, J=7.5Hz), 4.22 (2H, t, J=7.5Hz),
 6.57 (1H, d, J=7.7Hz), 6.62 (2H, t), 2.50 (2.00)
- 6.57 (1H, d, J=7Hz), 6.62 (1H, s), 6.80-6.90
- 15 (2H, m), 6.97-7.11 (3H, m), 7.45 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 20) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-y1]oxy]phenylmethylamino-N-methyl-N-[4-methyl-2-[5-(420 methylpiperazin-1-y1)carbonylpent-1-y1]oxy]-

phenylbenzamide

- NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.62-1.72 (2H, m), 1.72-1.95 (4H, m), 2.18 (2H, t, J=7.5Hz), 2.25 (3H, s), 2.28 (3H, s), 2.28-2.43 (4H, m), 3.28 (3H, s), 3.43-3.50 (2H, m), 3.57-3.65 (2H, m), 3.58 (3H, s), 3.80-3.96 (2H, m), 4.02 (2H, t, J=7.5Hz), 4.24 (2H, s), 4.80 (1H, s), 6.27
- (lH, d, J=7Hz), 6.60 (lH, d, J=7Hz), 6.64 (lH, s), 6.80-6.95 (5H, m), 7.12-7.21 (2H, m), 7.64-30 7.88 (4H, m)
 - 21) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]phenyleth-1-yl]phenylbenzamide
 NMR (CDCl₃, δ): 2.20-2.50 (6H, m), 2.29 (3H, s),

- 142 -

2.61-2.94 (6H, m), 3.30 (3H, s), 3.37-3.68 (2H, m), 3.68 (3H, s), 3.68-3.92 (2H, m), 4.20-4.30 (2H, m), 6.80 (1H, d, J=7Hz), 6.90-6.98 (2H, m), 7.05 (1H, t, J=7Hz), 7.10-7.49 (9H, m), 7.53-7.89 (4H, m), 8.12 (1H, d, J=7Hz), 8.20 (1H, d, J=7Hz)

- 22) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]amino-N-[2-[4-(4-dimethylaminopiperidin-1yl)carbonyl]phenylmethoxy-4-methyl]phenyl-Nmethylbenzamide

 MASS (m/z) : 824 (M+1)
- 23) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1yl)carbonylmethoxyprop-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 2.04-2.17 (2H, m), 2.25 (3H, s),
 2.28-2.40 (6H, m), 3.33 (3H, s), 3.38-3.46 (2H,
 m), 3.54-3.62 (2H, m), 3.66-3.76 (2H, m), 3.74
 (3H, s), 3.80-3.90 (2H, m), 3.98-4.11 (4H, m),
 4.28 (2H, t, J=7.5Hz), 6.78-7.10 (7H, m), 7.14
 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 7.55 (2H,
 s), 7.68-7.75 (1H, m), 7.81-7.90 (1H, m), 8.13
 (1H, d, J=7Hz), 8.20 (1H, d, J=7Hz)
 - 24) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]amino-N-[2-[(E)-5-(4-dimethylaminopiperidin-1yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-Nmethylbenzamide
- 30 NMR (CDCl₃, δ): 1.27-1.47 (2H, m), 1.83-2.02 (2H, m), 2.10-2.48 (6H, m), 2.23 (3H, s), 2.26 (6H, s), 2.50-4.13 (8H, m), 3.32 (3H, s), 3.78 (3H, s), 4.26 (2H, t, J=7.5Hz), 4.62 (2H, m), 6.32 (1H, d, J=15Hz), 6.57-6.67 (2H, m), 6.80-7.16 (5H, m), 7.44 (1H, t, J=7Hz), 7.53-7.88 (5H, m),

10

15

35

7.57 (2H, s), 8.09-8.19 (2H, m)

- 25) 3-Methoxy-4-[2-(pyrid-3-yl)methoxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.63-1.72 (2H, m), 1.75-1.86 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 3.29 (3H, s), 3.31 (3H, s), 3.45-3.51 (2H, m), 3.58-3.65 (2H, m), 3.80-4.00 (2H, m), 5.30 (2H, s), 6.58 (1H, d, J=7Hz), 6.61 (1H, s), 6.83 (1H, d, J=7Hz), 6.86-6.92 (2H, m), 7.05 (1H, d, J=7Hz), 7.14 (1H, t, J=7Hz), 7.29 (1H, m), 7.46 (1H, t, J=7Hz), 7.79 (1H, d, J=7Hz), 8.62 (6H, d, J=7Hz), 8.37 (1H, d, J=7Hz), 8.62 (6H, d, J=7Hz), 8.73 (1H, s)
- 26) 3-Methoxy-4-[2-[4-(phthalimido)but-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide
- 20 NMR (CDCl₃, δ): 1.46-1.59 (2H, m), 1.65-1.74 (2H, m), 1.78-2.03 (6H, m), 2.26 (3H, s), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.31 (3H, s), 3.43-3.50 (2H, m), 3.60-3.65 (2H, m), 3.74 (2H, t, J=7.5Hz), 3.77 (3H, s), 3.82-4.01 (2H, m), 4.22 (2H, t, J=7.5Hz), 6.58 (1H, d, J=7Hz), 6.63 (1H, s), 6.85 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.02 (1H, s), 7.08 (1H, t, J=7Hz), 7.45 (1H, t, J=7Hz), 7.70-7.76 (2H, m), 7.80-7.87 (2H, m), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 27) 4-[2-(3-Dimethylaminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl] oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.50-1.91 (6H, m), 2.07-2.18 (2H,

- 144 -

m), 2.25 (6H, s), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.44 (2H, m), 2.48 (2H, t, J=5Hz), 3.32 (3H, s), 3.49 (2H, t, J=5Hz), 3.63 (2H, t, J=3Hz), 3.78 (3H, s), 3.81-3.92 (2H, m), 4.25 (2H, t, J=5Hz), 6.54-6.64 (2H, m), 6.80-6.91 (2H, m), 6.99-7.11 (4H, m), 7.40-7.48 (1H, m) 8.18 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)

- 28) 4-[2-(Ethoxycarbonylmethoxy)benzoyl]amino-3-methoxy-10 N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.23 (3H, t, J=5Hz), 1.50-1.91 (6H, m), 2.28 (3H, s), 2.31 (3H, s), 2.35-2.47 (6H, m), 3.33 (3H, s), 3.52 (2H, t, J=5Hz), 3.67 (2H, 15 t, J=5Hz), 3.76 (3H, s), 3.84-4.02 (2H, m), 4.24 (2H, q, J=5Hz), 4.85 (2H, s), 6.55-6.67 (2H, m), 6.81-7.19 (6H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=8Hz), 8.34 (1H, d, J=7Hz)
- 29) 4-[2-[3-(Phthalimido-1-yl)prop-1-yloxy]-3-20 methylbenzoy1]amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-y1)carbonylpent-1-y1oxy-4methylphenyl]benzamide
- NMR (CDC1₃, δ) : 1.50-1.92 (6H, m), 2.14-2.44 (8H, 25 m), 2.25 (3H, s), 2.28 (3H, s), 2.36 (3H, s), 3.33 (3H, s), 3.50 (2H, t, J=5Hz), 3.58 (2H, t, J=5Hz), 3.63 (2H, t, J=5Hz), 3.81 (3H, s), 3.81-4.03 (8H, m), 6.55-6.68 (2H, m), 6.82-7.38 (6H, m), 7.59-7.88 (5H, m), 8.32 (1H, d, J=8Hz) 30
 - 30) 4-[2-[3-(Phthalimido-1-y1)prop-1-y1]oxy-4methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4methylphenyl]benzamide
- 35 NMR (CDC1 $_3$, δ) : 1.50-1.91 (8H, m), 2.27 (3H, s),

10

15

20

35

2.30 (3H, s), 2.31-2.42 (6H, m), 2.38 (3H, s), 3.32 (3H, s), 3.50 (2H, t, J=5Hz), 3.63 (2H, t, J=5Hz), 3.78 (3H, s), 3.85-4.02 (6H, m), 4.28 (2H, t, J=5Hz), 6.58-6.67 (2H, m), 6.77 (1H, s), 6.80-6.92 (4H, m), 7.00 (1H, s), 7.58 (4H, s), 8.01 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz)

31) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-5methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4methylphenyl]benzamide

NMR (CDCl₃, \(\delta\)): 1.52-1.91 (10H, m), 2.25 (3H, s), 2.30 (3H, s), 2.31 (3H, s), 2.31-2.45 (2H, m), 3.31 (3H, s), 3.50 (2H, t, J=4Hz), 3.59 (2H, t, J=5Hz), 3.64 (2H, t, J=4Hz), 3.78 (3H, s), 3.85-4.02 (4H, m), 4.24 (2H, t, J=5Hz), 6.81-6.92 (3H, m), 7.00 (1H, s), 7.25 (1H, d, J=8Hz), 7.59 (3H, s), 7.71-7.79 (1H, m), 7.82-7.89 (1H, m), 7.92 (1H, s), 8.20 (1H, d, J=8Hz)

32) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-4chlorobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4methylphenyl]benzamide

25 NMR (CDCl₃, δ): 1.45-1.92 (6H, m), 2.25 (3H, s),
2.30 (3H, s), 2.29-2.44 (8H, m), 3.32 (3H, s),
3.46-3.54 (2H, m), 3.61-3.68 (2H, m), 3.78 (3H,
s), 3.80-4.01 (4H, m), 4.25 (2H, t, J=5Hz),
6.56-6.77 (2H, m), 6.79-7.04 (7H, m), 7.44 (2H,
s), 7.70-7.78 (1H, m), 7.81-7.88 (1H, m), 8.06 (1H, d, J=8Hz)

33) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-4methoxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-

10

methylphenyl]benzamide

NMR (CDC1₃, δ): 1.49-1.90 (6H, m), 2.15-2.24 (2H, m), 2.28 (3H, s), 2.32 (3H, s), 2.30-2.42 (6H, m), 3.33 (3H, s), 3.50 (2H, t, J=4Hz), 3.60 (2H, t, J=5Hz), 3.63 (2H, t, J=4Hz), 3.79 (3H, s), 3.85 (3H, s), 3.82-4.02 (6H, m), 4.24 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82 (1H, d, J=8Hz), 6.89 (1H, d, J=8Hz), 7.00 (1H, s), 7.57 (2H, s), 7.71-7.76 (2H, m), 7.82-7.88 (2H, m), 8.11 (1H, d, J=9Hz), 8.17 (1H, d, J=8Hz)

34) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1yl]oxybenzoyl]amino-3-methoxy-N-(2-benzyloxy-4methylphenyl)-N-methylbenzamide

15 NMR (CDC1₃, δ): 1.40 (9H, s), 2.10 (2H, t, J=5Hz), 2.29 (3H, s), 3.28 (2H, q, J=5Hz), 3.39 (3H, s), 3.62 (3H, s), 4.21 (2H, t, J=5Hz), 4.90 (1H, d, J=13Hz), 5.08 (1H, d, J=13Hz), 6.63-6.71 (3H, m), 6.87 (1H, d, J=7Hz), 6.96-7.11 (6H, m), 7.31-7.48 (6H, m), 8.21 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

35) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1y1]oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-oxazolin-2y1)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide
NMR (CDCl₃, δ): 1.40 (9H, s), 2.09-2.17 (2H, m),
2.28 (3H, s), 3.27 (1H, q, J=5Hz), 3.40 (3H, s),
3.65 (3H, s), 4.05 (2H, t, J=10Hz), 4.23 (2H, t,
J=5Hz), 4.40 (2H, t, J=10Hz), 4.88 (1H, d,
J=12Hz), 5.08 (1H, d, J=12Hz), 6.62 (1H, s),
6.68 (1H, d), 6.97-7.11 (6H, m), 7.32 (1H, d,
J=8Hz), 7.41 (1H, d, J=8Hz), 7.92 (2H, d,
J=8Hz), 8.21 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)

35 36) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-

10

15

30

35

amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
NMR (CDCl₃, δ) : 1.22-1.47 (2H, m), 1.47-1.80 (6H, m), 1.80-1.92 (4H, m), 2.29 (6H, s), 2.31-2.41

(CDCl₃, δ): 1.22-1.47 (2H, m), 1.47-1.80 (6H, m), 1.80-1.92 (4H, m), 2.29 (6H, s), 2.31-2.41 (3H, m), 2.50-2.63 (1H, m), 2.95-3.07 (1H, m), 3.36 (3H, s), 3.48 (1H, s), 3.49 (1H, s), 3.75 (3H, s), 3.82-4.03 (4H, m), 4.22-4.30 (2H, m), 4.60-4.70 (1H, m), 6.78-6.90 (3H, m), 6.92-7.20 (4H, m), 7.40-7.50 (1H, m), 7.55-7.63 (3H, m), 7.70-7.80 (1H, m), 7.82-7.90 (1H, m), 8.10-8.22 (2H, m)

- 37) 3-Methyl-4-[2-[[3-(phthalimido)prop-1-yl]oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide MASS (m/z): 774 (M+H)
- yl)oxy]benzoyl]amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.32-1.45 (2H, m), 1.41 (9H, s),
 1.48-1.59 (2H, m), 1.62-1.91 (8H, m), 2.08-2.18 (2H, m), 2.27 (6H, s), 2.28 (3H, s), 2.30-2.40 (3H, m), 2.52-2.61 (1H, m), 2.97-3.07 (1H, m),
 3.22-3.30 (2H, m), 3.30 (3H, s), 3.83-4.00 (3H, m), 4.30 (3H, th. Tellor) (4.50 (3H, control of the contro

38) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-

- m), 4.30 (2H, t, J=6Hz), 4.57-4.68 (1H, m), 6.60-6.63 (2H, m), 6.87-6.90 (1H, m), 7.02-7.15 (3H, m), 7.46-7.57 (2H, m), 8.20-8.22 (1H, m), 8.40 (1H, d, J=7Hz)
 - 39) 3-Ethoxy-4-[2-[[3-(phthalimido)prop-1-yl]oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 MASS (m/z) : 804 (M+H)

- 40) 3-(3-tert-Butoxycarbonylaminoprop-1-yl)oxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.40 and 1.43 (total 18H, s), 1.49-1.60 (2H, m), 1.62-1.98 (6H, m), 2.00-2.10 (2H, m), 2.27 (3H, s), 2.29 (3H, s), 2.31-2.41 (6H, m), 3.17-3.29 (4H, m), 3.30 (3H, s), 3.45-3.50 (2H, m), 3.59-3.69 (2H, m), 3.84-4.05 (4H, m), 4.22-4.30 (2H, m), 5.04 (2H, br), 6.55-6.63 (2H, m), 6.85 (1H, d, J=7Hz), 6.93 (1H, d, J=7Hz), 6.98-7.03 (2H, m), 7.09 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.14 (1H, d, J=7Hz), 8.36 (1H, d, J=7Hz)
- 41) 2-Amino-4-[2-[(3-tert-butoxycarbonylaminoprop-1-15 yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.25-1.39 (2H, m), 1.42 and 1.46 (total 9H, s), 1.48-1.60 (2H, m), 1.62-1.93 (8H, 20 m), 2.08-2.18 (2H, m), 2.27 and 2.28 (total 9H, s), 2.33-2.39 (3H, m), 2.50-2.60 (1H, m), 2.96-3.05 (1H, m), 3.29 (3H, s), 3.31-3.40 (2H, m), 3.85-3.98 (3H, m), 4.19 (2H, t, J=6Hz), 4.57-4.67 (1H, m), 6.57-6.59 (1H, m), 6.63 (2H, s), 25 6.78-6.89 (2H, m), 6.96 (1H, d, J=7Hz), 7.09 (1H, t, J=6Hz), 7.15 (1H, s), 7.40-7.46 (1H, m), 8.17 (lH, d, J=6Hz)
- 42) 2-[2-[(3-tert-Butoxycarbonylaminoprop-1-30 yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]-5-pyridinecarboxamide NMR (CDCl₃, δ): 1.30 (9H, s), 1.35-1.93 (12H, m), 2.10-2.22 (2H, m), 2.28 (9H, s), 2.30-2.40 (3H, m), 2.50-2.62 (1H, m), 2.95-3.08 (1H, m), 3.33

(3H, s), 3.38-3.49 (2H, m), 3.82-3.98 (4H, m), 4.29 (2H, t, J=6Hz), 4.57-4.67 (1H, m), 6.60-6.62 (2H, m), 6.90 (1H, d, J=6Hz), 6.99 (1H, d, J=7Hz), 7.09 (1H, t, J=7Hz), 7.44-7.55 (2H, m), 8.13-8.21 (2H, m), 8.39 (1H, s)

Example 14

To an ice bath cooled solution of 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-

10 methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (200 mg) in dichloromethane (10 ml) were added triethylamine (36.2 mg) and acetic anhydride (36.5 mg) and the mixture was stirred at ambient temperature for 4 hours. The reaction mixture was washed successively with 15 water (10 ml), saturated aqueous sodium hydrogen carbonate solution (10 ml) and brine (10 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-[2-[(3-acetylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-

4-(2-((3-acetylaminoprop-1-y1)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-20 yloxy]phenyl]benzamide (201 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.51 (2H, m), 1.62-1.86 (4H, m), 1.93 (3H, s), 2.11 (2H, m), 2.29 (3H, s), 2.30-2.40 (6H, m), 3.35 (3H, s), 3.40-3.50 (4H, m), 3.59 (2H, m), 3.92 (2H, m), 4.18 (2H, t, J=7.5Hz), 6.28 (1H, m), 6.75-6.83 (2H, m), 6.94-7.17 (4H, m), 7.33 (2H, m), 7.40 (2H, (2H, m), 7.40

7.17 (4H, m), 7.31 (2H, d, J=8.5Hz), 7.40-7.49 (3H, m), 8.08 (1H, d, J=7Hz), 9.18 (1H, s)

Example 15

25

30

35

To a mixture of 4-[2-[(3-aminoprop-1-y1)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide (220 mg) and 37% aqueous formaldehyde (290 mg) in a mixture of methanol (10 ml) and acetic acid (0.2 ml) was added sodium cyanoborohydride (44.8 mg) and the mixture was stirred at

ambient temperature for 4 hours. The reaction mixture was diluted with chloroform (20 ml) and the solution was washed successively with saturated aqueous sodium hydrogen carbonate solution (20 ml), water (10 ml) and brine (10 ml). The organic phase was dried over magnesium sulfate and the solvent was evaporated to give 4-[2-[(3-dimethylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]benzomle (215 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.55 (2H, m), 1.73 (2H, m), 1.84 (2H, m), 2.11 (2H, m), 2.20 (6H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 2.46 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 4.24 (2H, t, J=7.5Hz), 6.74-6.83 (2H, m), 6.97-7.03 (2H, m), 7.07-7.16 (2H, m), 7.32 (2H, d, J=8.5Hz), 7.42-7.50 (3H, m), 8.22 (2H, d, J=7Hz)

Example 16

5

10

15

To a solution of 4-[2-[(3-aminoprop-1-y1)oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide (250 mg) was added 4N hydrogen chloride in ethyl acetate (1 ml) and the solution was stirred at ambient temperature for 10 minutes. The white solid was filtered and dried under reduced pressure to give 4-[2-[(3-aminoprop-1-y1)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride (205 mg) as a white powder.

NMR (D₂O, δ): 1.40 (2H, m), 1.59 (2H, m), 1.70 (2H, m), 2.09 (2H, m), 2.42 (2H, t, J=7.5Hz), 2.92 (3H, s), 2.96-3.17 (6H, m), 3.24 (3H, s), 3.41-3.59 (2H, m), 3.69 (1H, m), 3.82 (1H, m), 4.04-4.20 (3H, m), 4.53 (1H, m), 6.72 (1H, d, J=7Hz), 6.81 (1H, t, J=7Hz), 6.93-7.60 (11H, m)

30

35

Example 17

The following compounds were obtained according to a similar manner to that of Example 16.

- 5 1) 4-[2-[(3-Acetylaminoprop-1-yl) oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

 NMR (D₂O, δ) : 1.38 (2H, m), 1.50-1.68 (4H, m), 1.48 (2H, m), 1.81 (3H, s), 2.42 (2H, m), 2.90 (3H, s), 2.97-3.15 (6H, m), 3.24 (3H, s), 3.40-3.61 (4H, m), 3.71-3.92 (2H, m), 4.14 (1H, m), 4.54 (1H, m), 6.62-6.77 (2H, m), 6.79-6.90 (2H, m), 7.00 (1H, m), 7.11 (1H, m), 7.19-7.33 (5H, m),
 - 2) 4-[2-[(3-Dimethylaminoprop-1-yl) oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-metylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

7.59 (1H, d, J=7Hz)

NMR (D₂O, δ): 1.51 (2H, m), 1.67 (2H, m), 1.81 (2H, m), 2.22 (2H, m), 2.53 (2H, t, J=7.5Hz), 2.65 (6H, s), 2.82 (3H, s), 3.00-3.17 (2H, m), 3.23 (2H, t, J=7.5Hz), 3.37 (3H, s), 3.89 (1H, m), 4.13 (1H, m), 4.07-4.20 (3H, m), 4.58 (1H, m), 6.92-7.00 (2H, m), 7.11-7.18 (2H, m), 7.26-7.48 (6H, m), 7.54-7.60 (2H, m)

- 3) 4-[2-[(4-Methylpiperazin-1-y1)carbonylmethoxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
 - NMR (D₂O, δ): 1.36 (2H, m), 1.53 (2H, m), 1.66 (2H, m), 2.98 (6H, s), 2.91-3.25 (10H, m), 3.30 (3H, s), 3.37-3.69 (4H, m), 3.77-3.96 (2H, m), 4.35-4.56 (2H, m), 4.82 (2H, s), 6.75 (1H, d, J=7Hz), 6.84 (1H, t, J=7Hz), 6.92 (1H, d, J=7Hz), 7.03-

7.15 (2H, m), 7.22 (1H, d, J=7Hz), 7.29 (2H, d, J=8.5Hz), 7.43-7.58 (3H, m), 7.80 (1H, d, J=7Hz)

- 4) 4-[2-(3-Piperidinoprop-1-yloxy)benzoyl]amino-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent1-yloxy]phenyl]benzamide dihydrochloride

 NMR (D₂O, δ) : 1.42-1.67 (10H, m), 1.78 (2H, m),
 2.20 (2H, m), 2.51 (2H, t, J=7.5Hz), 2.65 (2H,
 m), 2.94 (3H, s), 2.95-3.21 (6H, m), 3.32 (2H,
 m), 3.35 (3H, s), 3.57 (2H, m), 3.92-4.04 (2H,
 m), 4.16-4.25 (4H, m), 6.91-6.99 (2H, m), 7.087.17 (2H, m), 7.23-7.47 (6H, m), 7.52-7.60 (2H,
 m)
- 15 5) 4-[2-[2-(Dimethylamino)eth-1-yloxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

 NMR (D₂O, δ): 1.52 (2H, m), 1.68 (2H, m), 1.81 (2H, m), 2.52 (2H, t, J=7.5Hz), 2.82 (6H, s), 2.93

 (3H, s), 2.97-3.21 (4H, m), 3.37 (3H, s), 3.48-3.62 (2H, m), 3.87 (1H, m), 4.01 (1H, m), 4.24 (1H, m), 4.47 (2H, m), 4.57 (1H, m), 6.92-7.00 (2H, m), 7.13-7.48 (8H, m), 7.52-7.62 (2H, m)
- 25 6) 4-[2-(3-Aminoprop-1-yl) oxy]benzoylamino-N-methyl-N[2-[3-(4-methylpiperazin-1-yl) carbonylaminoprop-1yloxy]phenyl]benzamide dihydrochloride

 NMR (D₂O, δ): 2.01 (2H, m), 2.17 (2H, m), 2.91 (3H,
 s), 2.95-3.46 (8H, m), 3.40 (3H, s), 3.54 (2H,
 m), 4.02-4.16 (4H, m), 4.27 (2H, m), 6.93-7.00
 (2H, m), 7.12-7.21 (2H, m), 7.26-7.37 (2H, m),
 7.39-7.48 (4H, m), 7.54-7.64 (2H, m)
- 7) 4-[2-[(3-Aminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-35 N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-

10

15

20

25

30

35

yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (D_2O , δ): 1.43 (2H, m), 1.60 (2H, m), 1.72 (2H, m), 2.07 (2H, m), 2.18 (3H, s), 2.45 (2H, t, J=7.5Hz), 2.90 (3H, s), 2.92-3.13 (4H, m), 3.30 (3H, s), 3.41-3.63 (4H, m), 3.64 (3H, s), 3.82 (1H, m), 3.92 (1H, m), 4.04-4.61 (3H, m), 4.50 (1H, m), 6.66-6.74 (3H, m), 6.93-7.04 (3H, m), 7.10 (1H, d, J=7Hz), 7.41 (1H, t, J=7Hz), 7.73 (1H, d, J=7Hz), 7.95 (1H, d, J=7Hz) 8) 4-[2-(3-Aminoprop-1-yl)oxy-4-methylbenzoyl]amino-3methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1vlcarbonyl)pent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (CDC1₃, δ) : 1.48-1.96 (8H, m), 2.27 (3H, s), 2.32-2.42 (2H, m), 2.78 (3H, s), 3.11-3.22 (2H, m), 3.28 (3H, s), 3.79 (3H, s), 3.80-4.11 (2H, m), 4.22-4.32 (2H, m), 6.58-6.67 (2H, m), 6.79-6.96 (5H, m), 7.87 (1H, d, J=8Hz), 8.69-8.75 (1H, m), 9.41 (1H, br) 9) 4-[2-(3-Aminoprop-1-yl)oxy-3-methylbenzoyl]amino-3methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy-4-methylphenvl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.46-1.92 (6H, m), 2.15-2.57 (4H, m), 2.24 (3H, s), 2.30 (3H, s), 2.62-2.98 (6H, m), 2.80 (3H, s), 3.02-3.29 (4H, m), 3.28 (3H, s), 3.73-4.18 (5H, m), 4.46 (1H, br), 4.62 (1H, br), 6.56-6.68 (2H, m), 6.81-6.96 (3H, m), 7.10 (1H, dd, J=2, 8Hz), 7.30 (1H, d, J=8Hz), 7.66-7.77 (1H, m),

10) 4-[2-(3-Acetylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-

8.28-8.52 (4H, m), 9.65 (1H, br)

```
\begin{tabular}{ll} y1) carbonylpent-1-y1] oxy-4-methylphenyl] benzamide hydrochloride \\ \end{tabular}
```

- NMR (CDCl₃, δ): 1.48-1.92 (6H, m), 1.91 (3H, s), 1.96-2.25 (2H, m), 2.30 (3H, s), 2.30-2.39 (2H, m), 2.68 (6H, s), 3.32 (3H, s), 3.35-3.47 (2H, m), 3.76 (3H, s), 4.26 (2H, br), 4.75 (1H, br), 6.56-7.12 (6H, m), 7.47 (1H, br), 8.10 (1H, br), 8.39 (1H, br)
- 11) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(3-aminopropionyl)aminobut-1-yl]oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride NMR (CDCl₃, δ): 1.59-1.90 (4H, m), 2.04-2.15 (2H, m), 2.27 (3H, s), 2.30-2.44 (2H, m), 2.87-3.08 (4H, m), 3.21-3.38 (2H, m), 3.30 (3H, s), 3.75-3.94 (2H, m), 3.76 (3H, s), 4.21-4.33 (2H, m), 6.55-6.68 (2H, m), 6.86-7.10 (5H, m), 7.29-7.48 (2H, m), 8.17 (1H,
- br), 8.35 (1H, br)

 12) 4-[2-(3-Guanidinoprop-1-yl)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[2-[5-(4-dimethylaminopiperidin-1yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 dihydrochloride
- NMR (CDC1₃, δ): 1.49-1.93(6H, m), 2.05-2.41 (8H, m), 2.27 (3H, s), 2.75 (6H, s), 3.08 (2H, br), 3.29 (3H, s), 3.47 (2H, br), 3.67-4.10 (4H, m), 3.77 (3H, s), 4.27 (2H, br), 6.56-6.71 (2H, m), 6.81-7.09 (5H, m), 7.44 (1H, br), 7.98-8.19 (2H, m), 8.28-8.45 (1H, m)
- 30 13) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

 NMR (DMSO-d₆, δ): 1.35-1.66 (4H, m), 1.66-1.83 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.74 and 2.76 (total 3H, s), 2.80-3.10 (4H, m), 3.18 (3H,

s), 3.28-3.63 (2H, m), 3.68 (3H, s), 3.77-4.18 (3H, m), 4.34-4.52 (1H, m), 6.64 (1H, d, J=9Hz), 6.75-7.12 (6H, m), 7.40 (1H, m), 7.98 (1H, d, J=9Hz), 6.23 (1H, d, J=9Hz)

5

- 14) (S)-4-[2-[(3-Amino-1-methylprop-1-y1)oxy]benzoy1]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
- 10 NMR (DMSO-d₆, δ): 1.35 (3H, d, J=7Hz), 1.40-1.65 (4H, m), 1.66-1.82 (2H, m), 1.92-2.20 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.64 (3H, s), 2.78-3.43 (11H, m), 3.51-4.07 (7H, m), 4.93-5.09 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.89 (1H, d, J=8Hz), 6.98 (1H, s), 7.04 (1H, d, J=8Hz), 7.12 (1H, dd, J=6, 8Hz), 7.36 (1H, d, J=8Hz), 7.57 (1H, dd, J=8, 8Hz), 7.98-8.35 (4H, m)
- 15) 4-(2-Aminobenzenesulfonyl)amino-3-methoxy-N-methyl-N-[420 methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.36-1.45 (2H, m), 1.50-1.59 (2H,
 m), 1.65-1.73 (2H, m), 2.23 and 2.29 (total 3H, s),
 2.34-2.42 (4H, m), 2.77 (3H, d, J=1Hz), 2.92-3.00

 (2H, m), 3.11 and 3.13 (total 3H, s), 3.19 (1H, s),
 3.36-3.70 (10H, m), 4.03-4.11 (1H, m), 4.40-4.48
 (1H, m), 6.44-6.50 (1H, m), 6.60-6.88 (6H, m),
 6.94-7.10 (2H, m), 7.27-7.32 (1H, m)

ESI-MASS (m/z) : 638 (M+H)

30

35

16) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxyN-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
NMR (DMSO-d₆, δ) : 1.37 and 1.39 (total 3H, s), 1.401.78 (8H, m), 1.94-2.12 (3H, m), 2.23 (3H, s), 2.30-2.40

(4H, m), 2.87-2.96 (2H, m), 3.18 (3H, s), 3.32 (3H, s), 3.46-3.58 (2H, m), 3.77 (3H, s), 3.83-3.99 (3H, m), 4.94-5.02 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.88 (1H, d, J=8Hz), 6.98 (1H, s), 7.03 (1H, d, J=8Hz), 7.13 (1H, t, J=8Hz), 7.33 (1H, d, J=9Hz), 7.58 (1H, t, J=8Hz), 7.88-8.02 (2H, br), 8.04 (1H, d, J=9Hz), 8.27 (1H, d, J=8Hz)

- 10 17) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy- ${\tt N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-dimethylamin$ yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.36 and 1.38 (total 3H, s), 1.40-1.80 (12H, m), 1.88-2.13 (3H, m), 2.24 (3H, s), 15 2.35 (2H, t, J=8Hz), 2.51 (6H, s), 2.89-3.03 (4H, m), 3.19 (3H, s), 3.76 (3H, s), 3.83-4.00 (3H, m), 4.43-4.51 (1H, m), 4.96-5.03 (1H, m), 6.65 (1H, d, J=8Hz), 6.83 (1H, s), 6.87-6.92 (1H, m), 6.98 (1H, s), 7.03 (1H, d, J=8Hz), 7.14 (1H, t, J=8Hz), 7.34 20 (1H, d, J=8Hz), 7.58 (1H, t, J=8Hz), 8.04 (1H, d, J=8Hz), 8.24-8.30 (1H, m) ESI-MASS (m/z) : 702 (M+H)
- 18) (S)-4-[2-[(4-Aminobut-2-y1)oxy]benzoyl]amino-3-methoxyN-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1y1)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.35 and 1.38 (total 3H, s), 1.421.79 (12H, m), 1.88-2.14 (3H, m), 2.25 (3H, s),
 2.36 (2H, t, J=8Hz), 2.51 (6H, s), 2.89-3.02 (4H,
 m), 3.20 (3H, s), 3.76 (3H, s), 3.84-4.00 (3H, m),
 4.43-4.50 (1H, m), 4.97-5.03 (1H, m), 6.65 (1H, d,
 J=8Hz), 6.82 (1H, s), 6.88-6.92 (1H, m), 6.98 (1H,
 s), 7.02 (1H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.34
 (1H, d, J=6Hz), 7.58 (1H, t, J=8Hz), 8.03 (1H, d,
 J=8Hz), 8.24-8.30 (1H, m)

10

15

20

30

35

```
ESI-MASS (m/z) : 702 (M+H)
```

19) 4-[2-(4-Aminobut-1-y1) oxybenzoy1] amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1) carbonylpent-1-y1] oxy]phenylbenzamide dihydrochloride
NMR (D₂O, δ): 1.35-1.50 (2H, m) 1.56-1.64 (2H, m)

NMR (D₂O, δ): 1.35-1.50 (2H, m), 1.56-1.64 (2H, m), 1.66-1.63 (4H, m), 2.47 (2H, t, J=7.5Hz), 2.82-3.12 (5H, m), 2.92 (3H, s), 3.33 (3H, s), 3.43-3.61 (3H, m), 3.81 (1H, m), 3.95 (1H, m), 6.84 (1H, d, J=7Hz), 6.91 (1H, t, J=7Hz), 7.00-7.08 (3H, m), 7.19 (1H, t, J=7Hz), 7.26-7.37 (4H, m), 7.48 (1H, t, J=7Hz), 7.62 (1H, d, J=7Hz)

20) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide hydrochoiride
NMR (DMSO-d₆, δ): 1.16 (3H, t, J=7.5Hz), 1.38-1.49

(2H, m), 1.55-1.64 (2H, m), 1.67-1.77 (2H, m), 1.98-2.08 (2H, m), 2.21 (3H, s), 2.31 (2H, t, J=7.5Hz), 2.87-2.97 (2H, m), 3.16 (3H, s), 3.80-3.98 (2H, m), 4.03 (2H, q, J=7.5Hz), 4.19 (2H, t, J=7.5Hz), 6.62 (1H, d, J=7Hz), 6.80 (1H, s), 6.98-7.07 (2H, m), 7.15 (1H, d, J=7Hz), 7.22 (2H, d, J=8Hz), 7.43-7.57 (4H, m), 7.166-8.00 (3H, br)

c, J=8Hz), 7.43-7.57 (4H, m), 7.86-8.00 (3H,)

21) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy)phenylbenzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.38-1.49 (2H, m), 1.52-1.62 (2H, m), 1.68-1.78 (2H, m), 1.96-2.09 (2H, m), 2.21 (3H, s), 2.38 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.75 (3Hx1/2, s), 2.81-3.07 (4H, m), 3.15 (3H, s), 3.30-3.54 (4H, m), 3.61-4.21 (5H, m), 4.45 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.99-7.08 (2H, m), 7.15 (1H, d, J=7Hz), 7.22 (2H, d, J=9Hz), 7.45-

- 158 -

7.60 (4H, m), 8.04 (2H, br)

- 22) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]phenylbenzamide dihydrochloride
- NMR (DMSO-d₆, δ): 1.90-2.09 (4H, m), 2.48-2.59 (2H, m), 2.72 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.83-3.10 (4H, m), 3.20 (3H, s), 3.33-3.56 (3H, m), 3.88-4.09 (3H, m), 4.18 (2H, t, J=7.5Hz), 4.47 (1H, m), 4.80 (1H, m), 6.87 (1H, t, J=7Hz), 6.98 (1H, d, J=7Hz), 7.04 (1H, t, J=7Hz), 7.11-7.26 (5H, m), 7.44-7.59 (4H, m), 8.05 (2H, br)
- 23) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-N-methyl-N-[4
 methyl-2-(4-methylpiperazin-1-ylcarbonyl) phenylmethoxy]phenylbenzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.97-2.07 (2H, m), 2.26 (3H, s),

 2.75 (3Hx1/2, s), 2.77 (3Hx1/2, s), 2.82-2.95 (2H,
- m), 3.02-3.14 (2H, m), 3.21 (3H, s), 3.30-3.49 (4H, m), 3.97-4.21 (4H, m), 5.09 (1H, d, J=14Hz), 5.20 (1H, d, J=14Hz), 6.70 (1H, d, J=7Hz), 6.93 (1H, s), 7.02-7.25 (5H, m), 7.43-7.57 (8H, m), 7.92-8.04 (3H, br)
- 25 24) 4-[2-(3-Hydroxyprop-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide hydrochloride
- NMR (DMSO-d₆, δ): 1.39-1.50 (2H, m), 1.52-1.62 (2H, m), 1.69-1.79 (2H, m), 1.84-1.93 (2H, m), 2.40 (2H, t, J=7.5Hz), 2.70 (3Hx1/2, s), 2.72 (3Hx1/2, s), 2.82-3.07 (4H, m), 3.19 (3H, s), 3.28-3.60 (4H, m), 3.80-3.98 (2H, m), 4.10 (1H, m), 4.17 (2H, t, J=7.5Hz), 4.45 (1H, m), 6.85 (1H, t, J=7Hz), 6.98 (1H, d, J=7Hz), 7.03 (1H, t, J=7Hz), 7.13-7.24 (5H,
- 35 m), 7.43-7.54 (3H, m), 7.62 (1H, d, J=7Hz)

15

20

25

30

25) 4-[2-(4-Hydroxy-1-butyn-1-y1)benzoyl]amino-N-methyl-N[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy]phenylbenzamide hydrochloride

NMR (DMSO-d₆, δ): 1.42-1.52 (2H, m), 1.54-1.64 (2H, m), 1.70-1.82 (2H, m), 2.37-2.47 (6H, m), 2.49 (3H, s), 2.51 (3H, s), 2.84-3.05 (2H, m), 3.32-3.46 (4H, m), 3.84-3.98 (2H, m), 4.08 (1H, m), 4.47 (1H, m), 6.84 (1H, t, J=7Hz), 6.97 (1H, d, J=7Hz), 7.13-7.25 (4H, m), 7.41-7.53 (6H, m)

10

26) 4-[2-(4-Aminobut-1-y1)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy]-phenylbenzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.39-1.62 (8H, m), 1.67-1.80 (2H, m), 2.39 (3H, t, J=7.5Hz), 2.50 (3H, s), 2.63-2.73 (4H, m), 2.81-3.08 (2H, m), 3.18 (3H, s), 3.31-3.42 (4H, m), 3.85-4.00 (2H, m), 4.04 (1H, m), 4.43 (1H, m), 6.84 (1H, t, J=7Hz), 6.99 (1H, d, J=7Hz), 7.11-7.42 (6H, m), 7.50-7.56 (2H, m), 7.75-7.91 (2H, m)

27) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide hydrochloride NMR (DMSO-d₆, δ): 1.40-1.51 (2H, m), 1.53-1.62 (2H, m), 1.69-1.80 (2H, m), 1.98 (3H, s), 1.98-2.03 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.83-3.05 (2H, m), 3.31-3.50 (3H, m), 3.56 (2H, t, J=7.5Hz), 3.72 (3H, s), 3.81-4.11 (5H, m), 4.32 (2H, t, J=7.5Hz), 4.43 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.87-6.95 (2H, m), 7.05 (1H, d, J=7Hz), 7.11 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.54 (1H, t, J=7Hz),

8.03 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)

10

- 28) 3-Methoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenylmethoxylphenylbenzamide hydrochloride
 NMR (DMSO-d₆, δ): 2.23 (3H, s), 2.75 (3Hx1/2, s),
 - NMR (DMSO-d₆, δ): 2.23 (3H, s), 2.75 (3Hx1/2, s), 2.77 (3Hx1/2, s), 2.97-3.15 (2H, m), 3.21 (3H, s), 3.24-3.80 (6H, m), 5.06 (1H, d, J=14Hz), 5.19 (1H, d, J=14Hz), 6.70 (1H, d, J=7Hz), 6.90-7.01 (3H, m), 7.10 (1H, d, J=7Hz), 7.22 (2H, d, J=6Hz), 7.41 (1H, d, J=7Hz), 7.44-7.55 (7H, m), 7.87 (1H, d, J=7Hz)
- 29) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[4-(4-methylpiperazin-1yl)carbonyl]phenylmethoxy]phenylbenzamide
 dihydrochloride
- 15 NMR (DMSO-d_g, δ): 2.06-2.19 (2H, m), 2.23 (3H, s),
 2.75 (3H, s), 2.87-2.98 (2H, m), 3.02-3.15 (2H, m),
 3.23 (3H, s), 3.32-3.49 (2H, m), 3.65 (3H, s),
 3.71-3.96 (4H, m), 4.29-4.40 (2H, m), 5.04 (1H, d,
 J=14Hz), 5.20 (1H, d, J=14Hz), 6.76 (1H, d, J=7Hz),
 6.88 (1H, d, J=7Hz), 6.90-6.98 (2H, m), 7.09-7.19 (2H, m), 7.28 (1H, d, J=7Hz), 7.50-7.62 (2H, m),
 7.98-8.15 (4H, m), 8.23 (1H, d, J=7Hz)
- 30) 3-Methoxy-4-[2-(3-aminoprop-1-y1) cxy]phenylmethyl)25 amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1y1) carbonylpent-1-y1] oxy]phenylbenzamide
 trihydrochloride

NMR (DMSO-d₆, δ): 1.35-1.47 (2H, m), 1.49-1.59 (2H, m), 1.64-1.74 (2H, m), 2.00-2.10 (2H, m), 2.22 (3H, s), 2.30-2.38 (2H, m), 2.69 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.82-3.03 (6H, m), 3.09 (3H, s), 3.29-3.41 (2H, m), 3.53 (3H, s), 3.83-4.12 (6H, m), 4.22 (2H, s), 4.70 (1H, br), 6.21 (1H, d, J=7Hz), 6.58-6.66 (2H, m), 6.71-6.99 (5H, m), 7.09 (1H, d, J=7Hz), 7.20 (1H, t, J=7Hz), 8.02 (2H, br d)

- 31) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride
- NMR (DMSO-d₆, δ): 1.37-1.47 (2H, m), 1.50-1.61 (2H, m), 1.67-1.80 (2H, m), 2.20 (3H, s), 2.29 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.80-3.58 (4H, m), 3.03 (6H, s), 3.17 (3H, s), 3.72-4.48 (6H, m), 5.21 (2H, s), 6.62 (1H, d, J=7Hz), 6.78 (1H, s), 6.91 (1H, d, J=7Hz), 7.02 (1H, d, J=7Hz), 7.11 (1H, d, J=7Hz), 7.26 (2H, d, J=8Hz), 7.37 (2H, d, J=6Hz), 7.70 (1H, d, J=7Hz)
 - 32) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenyleth-1-yl]phenylbenzamide dihydrochloride

 NMR (DMSO-d₆, δ): 2.06-2.19 (2H, m), 2.55-3.12 (10H, m), 2.71 (3Hx1/2, s), 3.18 (3H, s), 3.23-3.48 (2H, m), 3.66 (3H, s), 3.66-3.81 (2H, m), 4.30-4.40 (2H, m), 6.86-6.90 (2H, m), 7.11 (1H, t, J=7Hz), 7.20-7.42 (9H, m), 7.59 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.08 (2H, br), 8.27 (1H, d, J=7Hz)
- 33) 4-[2-(3-Aminoprop-1-yl)thiobenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.40-1.51 (3H, m), 1.52-1.63 (2H,
 m), 1.70-1.88 (4H m), 2.23 (3H, s), 2.40 (3H, t,
 J=7.5Hz), 2.71 (3Hxl/2, s), 2.72 (3Hxl/2, s), 2.8030 2.91 (2H, m), 2.94-3.06 (2H, m), 3.17 (3H, s),
 3.32-3.67 (8H, m), 3.60 (3H, s), 3.81-4.10 (3H, m),
 4.41 (1H, m), 6.65 (1H, d, J=7Hz), 6.82 (1H, s),
 6.86-6.92 (2H, m), 7.02 (1H, d, J=7Hz), 7.27 (1H,
 t, J=7Hz), 7.41-7.52 (3H, m), 7.71 (1H, d, J=7Hz),
 35 9.37 (1H, s)

- 34) 4-[2-(3-Aminoprop-1-y1) oxybenzoyl] amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-y1) carbonyl] phenylmethoxy-4-methyl] phenyl-N-methylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.57-1.73 (2H, m), 2.00-2.20 (4H,
 m), 2.23 (3H, s), 2.70 (3H, s), 2.71 (3H, s), 2.873.05 (3H, m), 3.24 (3H, s), 3.33-3.50 (1H, m), 3.66
 (3H, s), 3.71-4.05 (4H, m), 4.37 (2H, t, J=7.5Hz),
 5.02 (1H, d, J=14Hz), 5.20 (1H, d, J=14Hz), 6.73
 (1H, d, J=7Hz), 6.86 (1H, d, J=7Hz), 6.96 (2H, s),
 7.10-7.19 (2H, m), 7.29 (1H, d, J=7Hz), 7.43-7.52
 (4H, m), 7.58 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz),
 8.03 (1H, d, J=7Hz)
- 35) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl) carbonyl-methoxyprop-1-yl] oxylphenylbenzamide dihydrochloride NMR (DMSO-d₆, &): 1.94-2.04 (2H, m), 2.10-2.20 (2H, m), 2.71 (3Hx1/2, s), 2.23 (3Hx1/2, s), 2.84-3.10 (6H, m), 3.21 (3H, s), 3.31-3.50 (2H, m), 3.57-3.81 (4H, m), 3.74 (3H, s), 3.90-4.01 (2H, m), 4.20 (2Hx1/2, s), 4.22 (2Hx1/2, d), 4.35 (2H, t, J=7.5Hz), 6.82-6.97 (3H, m), 7.01 (1H, d, J=7Hz), 7.10-7.28 (4H, m), 7.58 (1H, t, J=7Hz), 8.03 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz)
 - 36) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-y1)carbonyl-4-penten-1-y1]oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride
- 30 NMR (DMSO-d₆, δ): 1.36-1.63 (2H, m), 1.84-1.92 (2H, m), 1.97-2.08 (2H, m), 2.10-2.22 (2H, m), 2.22 (3H, s), 2.29-2.43 (2H, m), 2.63 (3H, s), 2.65 (3H, s), 2.70-2.86 (2H, m), 2.88-3.00 (2H, m), 3.14 (3Hx1/2, s), 3.17 (3Hx1/2, s), 3.28-3.42 (2H, m), 3.71 (3H, s), 3.84-4.06 (2H, m), 4.37 (2H, t, J=7.5Hz), 4.51

(1H, m), 6.52 (1H, d, J=15Hz), 6.60 (1H, m), 6.73-7.07 (5H, m), 7.13 (1H, t, J=7Hz), 7.27 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)

5

37) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperidin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide hydrochloride NMR (CDCl₃, δ): 0.88 (3H, d, J=7.5Hz), 0.90-1.10 (2H, m), 1.34-1.61 (6H, m), 1.70-1.80 (2H, m), 2.10-2.20 (2H, m), 2.23 (3H, s), 2.30 (2H, t, J=7.5Hz), 2.45 (1H, m), 2.85-3.00 (3H, m), 3.18 (3H, s), 3.74 (3H, s), 3.75-4.02 (4H, m), 4.38 (2H, t, J=7.5Hz), 4.78 (1H, m), 6.65 (1H, d, J=7Hz), 6.82 (1H, s), 6.88 (1H, d, J=7Hz), 6.98 (1H, s), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.59 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.22 (1H,

15

20

10

d, J=7Hz) 38) 4-(2,4-Dimethoxybenzoyl) amino-3-methoxy-N-methyl-N-[4methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-

yl]oxy]phenylbenzamide hydrochloride 25

NMR (DMSO-d₆, δ): 1.40-1.51 (2H, m), 1.51-1.64 (2H, m), 1.69-1.82 (2H, m), 2.22 (3H, s), 2.38 (2H, t, J=7.5Hz), 2.73 (3H, s), 2.81-3.09 (4H, m), 3.19 (3H, s), 3.25-3.50 (2H, m), 3.76 (6H, sx2), 3.77-4.15 (3H, m), 4.00 (3H, s), 4.44 (1H, m), 6.64 (1H, d, J=7Hz), 6.81 (1H, s), 6.88-6.95 (2H, m), 7.03 (1H, d, J=7Hz), 7.12-7.23 (2H, m), 7.57 (1H, m),

30

4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(3-aminoprop-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride

8.29 (1H, d, J=7Hz)

35

NMR (DMSO-d₆, δ): 2.00-2.11 (2H, m), 2.13-2.20 (2H,

10

15

25

30

- 164 -

m), 2.25 (3H, s), 2.87-3.00 (4H, m), 3.19 (3H, s), 3.77 (3H, s), 3.89-4.10 (2H, m), 4.36 (2H, t, J=7.5Hz), 6.69 (1H, d, J=7Hz), 6.82 (1H, s), 6.89 (1H, d, J=7Hz), 7.04 (1H, s), 7.05 (1H, d, J=7Hz), 7.15 (1H, d, J=7Hz), 7.38 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)

- 40) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride
 - NMR (DMSO-d₆, δ): 1.66-1.85 (4H, m), 2.10-2.20 (2H, m), 2.22 (3H, s), 2.80-3.01 (4H, m), 3.18 (3H, s), 3.75 (3H, s), 3.81-4.03 (2H, m), 4.36 (2H, t, J=7.5Hz), 6.64 (1H, d, J=7Hz), 6.34 (1H, s), 6.90 (1H, d, J=7Hz), 6.96 (1H, s), 7.01 (1H, d, J=7Hz), 7.14 (1H, t, J=7Hz), 7.27 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.25 (7H, d, J=7Hz)
- 41) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-20 (4-acetylaminobut-1-yl)oxy-4-methyl]phenyl-Nmethylbenzamide hydrochloride

NMR (DMSO-d₆, δ): 1.49-1.59 (2H, m), 1.67-1.77 (2H, m), 1.80 (3H, s), 2.06-2.20 (2H, m), 2.21 (3H, s), 2.86-3.00 (2H, m), 3.03-3.13 (2H, m), 3.18 (3H, s), 3.74 (3H, s), 3.80-4.02 (2H, m), 4.35 (2H, t, J=7.5Hz), 6.64 (1H, d, J=7Hz), 7.82 (1H, s), 7.88 (1H, d, J=7Hz), 7.96 (1H, s), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.23 (1H, d, J=7Hz)

- 42) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-[2-(4-aminoacetylaminobut-1-y1)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride
- NMR (DMSO-d₆, δ): 1.53-1.64 (2H, m), 1.70-1.81 (2H, m), 2.09-2.21 (2H, m), 2.22 (3H, s), 2.86-2.98 (2H,

m), 3.11-3.23 (2H, m), 3.17 (3H, s), 3.47-3.56 (2H, m), 3.65-4.00 (2H, m), 3.76 (3H, s), 4.38 (2H, t, J=7.5Hz), 6.65 (1H, d, J=7Hz), 6.82 (1H, s), 6.89 (1H, d, J=7Hz), 6.95 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.25 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz) 8.22 (1H, d, J=7Hz)

3-Methoxy-4-[2-(piperidin-4-vl)oxvbenzovl]amino-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-10 yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.38-1.49 (2H, m), 1.49-1.61 (2H, m), 1.66-1.76 (2H, m), 1.85-1.97 (2H, m), 2.20 (3H, s), 2.67 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.80-3.13 (6H, m), 3.13 (3H, s), 3.22-15 3.51 (6H, m), 3.60-4.13 (3H, m), 3.74 (3H, s), 4.43 (1H, m), 4.91 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.89 (1H d, J=7Hz), 6.96 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.35 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 7.81 (1H, d, J=7Hz), 20

8.27 (1H, d, J=7Hz)

44) 4-[2-(3-Amino-1-methylprop-1-yl)oxybenzoyl]amino-3methoxy-N-methy1-N-[4-methy1-2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride 25 NMR (DMSO-d₆, δ): 1.35 (3H, d, J=7.5Hz), 1.40-1.63 (4H, m), 1.67-1.80 (2H, m), 1.90-2.18 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.80-3.09 (4H, m), 3.18 (3H, s), 3.30-3.52 (4H, m), 3.77 (3H, s), 3.83-4.18 (3H, m), 30 4.42 (1H, m), 5.01 (1H, m), 6.64 (1H, d, J=7Hz), 6.81 (1H, s), 6.89 (iH, d, J=7Hz), 6.96 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, \bar{s} =7Hz), 7.34 (1H, d, J=7Hz), 7.58 (1H, t, J=7Hz), 8.03 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)

- 45) 3-Methoxy-4-[2-(pyrid-3-y1)methoxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1) carbonylpent-1-y1]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ): 1.36-1.49 (2H, m), 1.49-1.60 (2H, m), 1.66-1.79 (2H, m), 2.20 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.68 (3Hx1/2, s), 2.70 (3Hx1/2, s), 2.80-3.10 (4H, m), 3.16 (3H, s), 3.35 (3H, s), 3.35-3.60 (2H, m), 3.79-4.11 (3H, m), 4.41 (1H, m), 5.58 (2H, s), 6.64 (1H, d, J=7Hz), 6.80-6.90 (3H, m), 7.02 (1H, d, J=7Hz), 7.16 (1H, t, J=7Hz), 7.33 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.93-8.00 (2H, m), 8.19 (1H, d, J=7Hz), 8.55 (1H, d, J=7Hz), 8.88 (1H, d, J=6Hz), 9.04 (1H, s)
- 15 46) 4-[2-(4-Aminobut-1-yl)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.40-1.50 (2H, m), 1.50-1.61 (2H, m), 1.66-1.79 (4H, m), 1.86-1.95 (2H, m), 2.21 (3H, 20 s), 2.39 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.75 (3Hx1/2, s), 2.79-3.10 (4H, m), 3.19 (3H, s), 3.31-3.52 (4H, m), 3.74 (3H, s), 3.82-4.12 (3H, m), 4.30 (2H, t, J=7.5Hz), 4.43 (1H, m), 6.65 (1H, d, J=7Hz), 7.81 (1H, s), 6.89 (1H, d, J=7Hz), 6.97 25 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.30 (1H, d, J=7Hz), 7.58 (1H, d, J=7Hz), 8.04 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)
- 47) 4-(2-Hydroxy-5-methylbenzoyl) amino-3-methoxy-N-methyl-N30 [2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl] oxy-4methylphenyl]benzamide hydrochloride.

 NMR (DMSO-d₆, δ): 1.53-1.96 (6H, m), 2.29 (3H, s),
 2.31 (3H, s), 2.33-2.40 (2H, m), 2.79 (3H, s), 3.30
 (3H, s), 3.79 (3H, s), 3.80-4.03 (2H, m), 6.63 (2H,
 br), 6.88-6.98 (4H, m), 7.25 (1H, d, J=8Hz), 8.19

WO 96/41795

5

10

15

20

25

30

35

- 167 -

(1H, d, J=8Hz), 8.71 (1H, br)

48) 4-(2-Hydroxy-4-methoxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride

NMR (CDCl₃, δ): 1.48-1.92 (6H, m), 2.28 (3H, s), 2.32-2.45 (2H, m), 2.64-3.05 (4H, m), 2.79 (3H, s), 3.29 (3H, s), 3.29-3.51 (4H, m), 3.76 (3H, s), 3.80 (3H, s), 3.81-4.05 (4H, m), 6.43-6.50 (2H, m), 6.61 (1H, br), 6.85-6.96 (3H, m), 7.36-7.43 (1H, m), 8.12-6.16 (1H, m), 8.58 (1H, br)

Example 18

The following compounds were obtained by separating the compounds, which were prepared according to a similar manner to Example 4, by using silica gel column chromatography.

- 1) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-[(E)-2-(4-carboxyphenyl)ethen-1-yl]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ) : 3.08 (3H, s), 3.41 (3H, s), 5.19 (2H, s), 6.47 (1H, d, J=14Hz), 6.58 (1H, d, J=14Hz), 6.73 (2H, d, J=6Hz), 6.84 (1H, d, J=7Hz), 6.90-7.10 (5H, m), 7.20-7.40 (8H, m), 7.71 (2H, d, J=8Hz), 8.26 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
- 2) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-[(Z)-2-(4carboxyphenyl)ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 3.09 (3H, s), 3.48 (3H, s), 5.25 (2H, s), 6.72-7.42 (15H, m), 7.51-7.64 (3H, m), 8.10 (2H, d, J=8Hz), 8.22 (1H, d, J=7Hz), 8.33 (1H, d, J=7Hz)

Example 19

The following compound was obtained according to a similar manner to that of Example 4 by using 4-[2- $\,$

 $\label{lem:continuous} $$ (acetoxy) $$ phenyolden - 1-yloxy) $$ phenyolden as a starting compound.$

5 4-[2-(Hydroxy)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-(5-carboxypent-1-yloxy)phenyl]benzamide

NMR (CDC1₃, δ): 1.46-1.61 (2H, m), 1.63-1.90 (4H, m), 2.28 (3H, s), 2.39 (2H, t, J=7Hz), 3.33 (3H, s), 3.73-4.00 (5H, m), 6.61 (2H, br s), 6.82-7.11 (5H, m), 7.35-7.53 (2H, m), 8.16 (1H, d, J=8Hz), 8.75 (1H, br s)

Example 20

10

The following compounds were obtained according to a 15 similar manner to that of Example 8.

- 1) 4-[2-(4-Methoxybenzyl)oxybenzoyl]amino-N-methyl-N-[4methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide
- 20 NMR (CDCl₃, δ): 2.27 (3H, s), 2.31 (3H, s), 2.35-2.53 (4H, m), 3.32 (3H, s), 3.39-3.54 (2H, m), 3.67-3.85 (3H, m), 3.82 (3H, s), 4.95 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 5.12 (2H, s), 6.59-6.67 (2H, m), 6.86-7.02 (5H, m), 7.07-7.21 (4H, m), 7.33-7.52 (7H, m), 8.28 (1H, d, J=7Hz)
 - 2) 4-(2-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- 30 NMR (CDCl₃, δ): 1.46-1.60 (2H, m), 1.63-1.92 (4H, m), 2.30 (3H, s), 2.31-2.46 (6H, m), 3.28 (3H, s), 3.35 (3H, s), 3.44-3.54 (2H, m), 3.58-3.69 (2H, m), 3.80-4.04 (2H, m), 5.30 (2H, s), 6.73-7.22 (8H, m), 7.30-7.49 (6H, m), 8.19-8.28 (1H, m), 8.38 (1H, d, 35 J=9Hz)

10

15

20

2.5

30

```
3) 4-[2-(Benzyloxy)benzoyl]amino-2-chloro-N-methyl-N-[2-[5-
     (4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-
     benzamide
     NMR (CDCl<sub>3</sub>, \delta): 1.48-1.65 (2H, m), 1.65-1.97 (4H, m),
          2.30 (3H, s), 2.32-2.48 (6H, m), 3.34 (3H, s),
          3.43-3.56 (2H, m), 3.58-3.70 (2H, m), 3.97 (2H, t,
          J=7Hz), 5.16 (2H, s), 6.63-6.81 (3H, m), 6.96 (1H,
          d, J=8Hz), 7.02-7.20 (5H, m), 7.40-7.59 (6H, m),
          8.24 (1H, m)
4) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-
    amino-3-methoxy-N-methyl-N-[4-[5-(4-methylpiperazin-1-
    yl)carbonylpent-1-yloxy]phenyl]benzamide
    NMR (CDCl<sub>3</sub>, \delta): 1.42 (9H, s), 1.45-1.82 (8H, m),
         2.10-2.19 (2H, m), 2.30 (3H, s), 2.31-2.41 (6H, m),
         3.27-3.35 (2H, m), 3.43-3.50 (5H, m), 3.60-3.67
         (2H, m), 3.82 (3H, s), 3.90 (1H, t, J=7Hz), 4.27
         (1H, t, J=7Hz), 4.75-4.82 (1H, br), 6.76 (2H, d,
         J=8Hz), 6.82 (1H, d, J=8Hz), 6.95-7.04 (3H, m),
         7.07-7.13 (1H, m), 7.47 (1H, t, J=8Hz), 8.22 (1H,
         dd, J=1, 8Hz), 8.42 (1H, d, J=8Hz)
    ESI-MASS (m/z) : 746 (M+H)
5) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]-
    amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-
    yl)carbonylpent-1-yl]oxy]phenylbenzamide
    NMR (CDCl<sub>3</sub>, δ) : 1.40 (9H, s), 1.45-1.60 (2H, m),
         1.65-1.74 (2H, m), 1.78-1.89 (2H, m), 2.04-2.15
         (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.32-2.42 (6H,
         m), 3.27-3.39 (2H, m), 3.33 (3H, s), 3.44-3.50 (2H,
         m), 3.58-3.64 (2H, m), 3.82-4.00 (2H, m), 4.19 (2H,
         t, J=7.5Hz), 4.86 (1H, br), 6.55-6.62 (2H, m), 6.86
         (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.08 (1H, t,
         J=7Hz), 7.31 (2H, d, J=8Hz), 7.40-7.53 (3H, m),
         8.13 (1H, d, J=7Hz), 9.88 (1H, s)
```

20

- 170 -

- 6) 4-(2-Iodobenzoyl)amino-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ) : 1.43-1.54 (2H, m), 1.61-1.70 (2H, m),

 1.74-1.86 (2H, m), 2.28 (3H, s), 2.28-2.41 (6H, m),

 3.34 (3H, s), 3.44-3.50 (2H, m), 3.52-3.59 (2H, m),

 3.73-3.99 (2H, m), 6.77-6.84 (2H, m), 7.03 (1H, d,

 J=7Hz), 7.10-7.19 (2H, m), 7.29-7.50 (5H, m), 7.80

 (1H, s), 7.89 (1H, d, J=7Hz)
- 10 7) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxylphenylbenzamide

 NMR (CDCl₃, δ): 1.47-1.58 (2H, m), 1.64-1.75 (2H, m),
 1.77-1.88 (2H, m), 2.22 (3H, s), 2.25 (3H, s), 2.28

 (3H, s), 2.31-2.41 (6H, m), 2.72 (6H, s), 3.32 (3H, s), 3.43-3.51 (2H, m), 3.58-3.67 (2H, m), 3.79-3.97

 (2H, m), 5.02 (2H, s), 6.49-6.61 (3H, m), 6.71 (1H, d, J=7Hz), 7.80-7.85 (2H, m), 7.19 (2H, d, J=6Hz),

7.28 (2H, d, J=8Hz)

- 8) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-methyl-N-[(E)-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylethen-1yl]phenylbenzamide
- NMR (CDCl₃, δ): 2.11-2.40 (4H, m), 2.17 (3H, s), 3.11 (3H, s), 3.18-3.38 (2H, m), 3.44 (3H, s), 3.49-3.68 (2H, m), 5.27 (2H, s), 6.41 (1H, d, J=14Hz), 6.56 (1H, d, J=14Hz), 6.70 (2H, d, J=8Hz), 6.88-7.48 (16H, m), 8.26 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
- 30 9) 3-Methoxy-4-[2-[3-(tert-butoxycarbonylamino)prop-1-y1]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperidin-1-y1)carbonylpent-1-y1]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 0.93 (3H, d, J=7.5Hz), 0.98-1.14 (2H, m), 1.40 (9H, s), 1.42-1.87 (8H, m), 2.07-2.17 (2H, m), 2.25 (3H, s), 2.32 (2H, t, J=7.5Hz), 2.50 (1H,

10

15

- 171 -

```
m), 2.97 (1H, m), 3.21-3.32 (2H, m), 3.32 (1H, s),
3.79 (1H, s), 3.79-4.00 (4H, m), 4.24 (2H, t,
J=7.5Hz), 4.55 (1H, m), 4.84 (1H, m), 6.59 (1H, d,
J=7Hz), 6.63 (1H, s), 6.85 (1H, d, J=7Hz), 6.92
(1H, d, J=7Hz), 6.95-7.13 (3H, m), 7.45 (1H, t,
J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
```

10) 3-Methoxy-4-[2-[3-(tert-butoxycarbonylamino)prop-1yl]oxybenzoyl]amino-N-[2-[5-[(2S)-carbamoylpyrrolidin-1yl]carbonylpent-1-yl]oxy-4-methyl]phenyl-Nmethylbenzamide

```
NMR (CDCl<sub>3</sub>, δ) : 1.28-2.20 (12H, m), 1.39 (9H, s),
     2.27 (3H, s), 3.19-3.25 (2H, m), 3.21 (3H, s),
    3.25-3.61 (2H, m), 3.78 (3H, s), 3.81-4.03 (2H, m),
    4.16-4.29 (2H, m), 4.57 (1H, m), 6.55-6.68 (2H, m),
    6.80-7.13 (5H, m), 7.44 (1H, t, J=7Hz), 8.20 (1H,
    d, J=7Hz), 8.40 (1H, d, J=7Hz)
```

- 11) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4-yl]-20 oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ): 1.41-1.59 (2H, m), 1.46 (9H, s), 1.69-1.94 (6H, m), 2.00-2.13 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.33-2.41 (8H, m), 2.96-3.17 (2H, m), 25 3.31 (3H, s), 3.45-3.51 (2H, m), 3.59-3.67 (2H, m), 3.74 (3H, s), 3.80-4.01 (2H, m), 4.68 (1H, m), 6.58-6.63 (2H, m), 6.85 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 6.99-7.11 (2H, m), 7.35-7.61 (2H, m), 8.19 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz) : 30
 - 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-12) methylprop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yl]oxy]phenylbenzamide
 - 35 NMR (CDCl₃, δ) : 1.30 (9H, s), 1.31 (3H, d, J=7.5Hz),

15

25

30

35

- 172 -

1.45-2.10 (8H, m), 2.27 (3H, s), 2.29 (3H, s), 2.32-2.43 (6H, m), 3.20-3.30 (2H, m), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.60-3.66 (2H, m), 3.79 (3H, s), 3.82-4.00 (2H, m), 4.72 (1H, m), 6.60 (1H, d, J=7Hz), 6.64 (1H, s), 6.81-6.93 (2H, m), 7.00-7.11 (3H, m), 7.43 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)

- 13) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoy1]amino-3-methoxy-N-methyl-N-[2-(5-aminocarbonylpent-1y1)oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.42 (9H, s), 1.50-1.92 (6H, m),
 - 2.12-2.26 (2H, m), 2.29 (2H, t, J=5Hz), 2.30 (3H, s), 3.30 (2H, q, J=5Hz), 3.35 (3H, s), 3.77 (3H, s), 3.80-4.02 (2H, m), 4.25 (2H, t, J=5Hz), 6.61-6.70 (2H, m), 6.93-7.15 (6H, m), 7.41-7.51 (1H, m), 8.20 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 14) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]20 amino-3-methoxy-N-methyl-N-[2-[5-[4-(tert-butoxycarbonyl)piperazin-1-yl]carbonylpent-1-yl]oxy-4methylphenyl]benzamide
 - NMR (CDC1₃, δ): 1.40 (9H, s), 1.49 (9H, s), 1.50-1.90 (6H, m), 2.12-2.23 (2H, m), 2.30 (3H, s), 2.39 (2H, t, J=5Hz), 3.30 (2H, q, J=5Hz), 3.33 (3H, s), 3.35-3.42 (4H, m), 3.44 (4H, s), 3.55-3.62 (2H, m), 3.80 (3H, s), 3.85-4.06 (2H, m), 4.24 (2H, t, J=5Hz), 4.93 (1H, br), 6.57-6.66 (2H, m), 6.85-7.13 (6H, m), 7.44-7.52 (1H, m), 8.20 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz)
 - 15) 4-[2-[3-(tert-Butoxycarbony1)aminoprop-1-y1]oxybenzoy1]amino-3-methoxy-N-methyl-N-[2-[5-morpholin-4y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.41 (9H, s), 1.50-1.88 (6H, m),

20

35

2.10-2.21 (2H, m), 2.30 (3H, s), 2.36 (2H, t, J=5Hz), 3.30 (2H, q, J=5Hz), 3.34 (3H, s), 3.47 (2H, t, J=4Hz), 3.58-3.70 (6H, m), 3.79 (3H, s), 3.84-4.03 (2H, m), 4.25 (2H, t, J=5Hz), 4.89 (1H, br), 6.56-6.68 (2H, m), 6.84-7.16 (6H, m), 7.41-7.51 (2H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

- 16) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-y1]oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomopiperazin1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.97 (8H, m),
 2.09-2.21 (2H, m), 2.29 (3H, s), 2.32 (2H, t,
 J=5Hz), 2.33 (3H, s), 2.52-2.66 (4H, m), 3.30 (2H,
 q, J=5Hz), 3.33 (3H, s), 3.50-3.69 (4H, m), 3.79
 (3H, s), 3.84-4.03 (2H, m), 4.24 (2H, t, J=5Hz),
 4.94 (1H, br), 6.56-6.67 (2H, m), 6.82-7.12 (6H,
 m), 7.40-7.49 (1H, m), 8.20 (1H, d, J=7Hz), 8.41
 (1H, d, J=8Hz)
- 17) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoeth-1-yl) aminocarbonylpent-1-yl)oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.42-1.59 (4H, m),
 1.67-1.90 (4H, m), 1.97-2.32 (4H, n), 2.28 (3H, s),
 2.34 (6H, s), 2.56 (2H, br), 3.25-3.42 (4H, m),
 3.32 (2H, s), 3.50 (1H, s), 3.78-4.01 (2H, m), 3.80
 (3H, s), 4.25 (2H, t, J=6Hz), 4.91 (1H, br), 6.52-6.76 (3H, m), 6.87-7.13 (7H, m), 7.45 (1H, m), 8.19
 30 (1H, d, J=8Hz), 8.41 (1H, br)
 - 18) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-y1) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-y1)-N-methylcarbamoylpent-1-y1] oxy-4methylphenyl]benzamide

35

- 174 -

NMR (CDCl₃, δ): 1.41 (9H, s), 1.50-1.96 (6H, m),
2.11-2.25 (2H, m), 2.27 (3H, s), 2.30-2.43 (2H, m),
2.50 (6H, s), 2.91 and 3.02 (total 3H, s, rotamer),
3.08 and 3.32 (total 2H, q, rotamer, J=5Hz), 3.33
(3H, s), 3.43 (2H, t, J=5Hz), 3.79 (3H, s), 3.83-4.02 (2H, m), 4.25 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82-7.13 (6H, m), 7.42-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

- 10 19) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[bis(2-hydroxyeth-1-yl) amino]carbonylpent-1-yl] oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.55-1.89 (6H, m),
 2.11-2.20 (2H, m), 2.28 (3H, s), 2.40-2.56 (2H, m),
 3.29 (2H, t, J=5Hz), 3.40-3.57 (4H, m), 3.68-4.02
 (6H, E), 4.26 (2H, t, J=5Hz), 6.60-6.68 (2H, m),
 6.90-7.15 (6H, m), 7.42-7.51 (1H, m), 8.19 (1H, d,
 J=8Hz), 8.40 (1H, d, J=8Hz)
- 20 20) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2,2-dimethylhydrazino)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (DMSO-d₆, δ): 1.40 (9H, s), 1.45-1.90 (6H, m),
 2.08-2.20 (2H, m), 2.28 (3H, s), 2.30-2.45 (2H, m),
 2.51 (3H, s), 2.60 (3H, s), 3.29 (2H, t, J=5Hz),
 3.33 (3H, s), 3.75 (3H, s), 3.79-4.02 (2H, m), 4.25
 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.80-7.14 (5H, m), 7.41-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.408.48 (1H, br)

WO 96/41795 PCT/JP96/01533

5

10

15

20

25

30

- 175 -

J=5Hz), 3.30 (2H, t, J=5Hz), 3.33 (3H, s), 3.80 (3H, s), 3.84-3.99 (2H, m), 4.05 (2H, br), 4.25 (2H, t, J=5Hz), 4.84 (1H, br), 6.58-6.67 (2H, m), 6.72-7.12 (6H, m), 7.42-7.50 (1H, m), 8.18-8.23 (1H, m), 8.41 (1H, d, J=8Hz)

22) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylethylamino)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.86 (6H, m),
2.12-2.25 (4H, m), 2.30 (3H, s), 2.41 (2H, t,
J=5Hz), 3.30 (1H, q, J=5Hz), 3.37 (3H, s), 3.49

(1H, q, J=5Hz), 3.79 (3H, s), 3.82-4.03 (2H, m),
4.27 (2H, t, J=5Hz), 6.45-6.67 (4H, m), 6.88-7.15

(6H, m), 7.43-7.51 (1H, m), 8.20 (1H, d, J=8Hz),
8.41 (1H, d, J=8Hz)

23) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-diethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, 5): 1.12 (6H, t, J=5Hz), 1.41 (9H, s), 1.42-1.92 (6H, m), 2.10-2.18 (2H, m), 2.27 (3H, s), 2.27-2.69 (9H, m), 3.26 (2H, t, J=5Hz), 3.31 (3H, s), 3.77 (3H, s), 3.87-4.02 (4H, m), 4.23 (2H, t, J=5Hz), 6.54-6.67 (2H, m), 6.72-7.15 (6H, m), 7.42-7.51 (1H, m), 8.19 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)

4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[3-(4-methylpiperazin-1yl)carbonylpyrid-6-yl]methoxy-4-methylphenyl]-Nmethylbenzamide
NMR (CDCl₃, δ): 1.39 (9H, s), 2.06-2.18 (2H, m), 2.28

35 (3H, s), 2.31 (3H, s), 2.35-2.51 (4H, m), 3.27 (2H,

- 176 -

q, J=5Hz), 3.38-3.49 (2H, m), 3.41 (1H, s), 3.63 (3H, s), 3.68-3.76 (2H, m), 4.21 (2H, t, J=5Hz), 4.97 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.58 (1H, s), 6.72 (1H, d, J=8Hz), 6.91-7.11 (7H, m), 7.20-7.25 (1H, m), 7.43 (1H, dd, J=2, 8Hz), 7.68 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz), 8.60 (1H, s)

- 25) 4-[2-(Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-10 [5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide NMR (CDC1 $_3$, δ) : 1.30-1.42 (2H, m), 1.48-1.58 (2H, m), 1.63-1.93 (6H, m), 2.29 (6H, s), 2.30-2.40 (3H, m), 2.50-2.60 (1H, m), 2.95-3.06 (1H, m), 3.29 (3H, s), 15 3.38 (3H, s), 3.80-4.00 (4H, m), 4.57-4.70 (1H, m), 5.30 (2H, s), 6.74-7.20 (9H, m), 7.32-7.45 (5H, m), 8.20-8.37 (1H, m), 8.37-8.42 (1H, m)
- 26) 4-[(2-Benzyloxy)benzoyl]amino-N-methyl-N-[2-[3-(4-20 methylpiperazin-1-y1)carbonylprop-1-y1]oxy]phenybenzamide NMR (CDCl₃, δ) : 2.05-2.16 (2H, m), 2.28 (3H, s), 2.32-2.40 (4H, m), 2.50 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.43-3.50 (2H, m), 3.59-3.65 (2H, m), 3.88-4.05 25 (2H, m), 5.19 (2H, s), 6.77-6.84 (2H, m), 6.95-7.02 (3H, m), 7.09-7.20 (5H, m), 7.39-7.52 (6H, m), 8.27

Example 21

30

The following compounds were obtained according to similar manners to those of Examples 8 and 16.

4-(6-Hydroxy-2-pyridylcarbonyl)amino-N-methyl-N-[4methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-35 yloxy]phenyl]benzamide dihydrochloride

(1H, d, J=7Hz)

WO 96/41795 PCT/JP96/01533

- 177 -

```
NMR (CDCl<sub>3</sub>, \delta): 1.47-1.58 (2H, m), 1.64-1.73 (2H, m), 1.78-1.87 (2H, m), 2.27 (3H, s), 2.29 (3H, s), 2.28-2.41 (8H, m), 3.33 (3H, s), 3.45-3.51 (2H, m), 3.59-3.68 (6H, m), 3.86-3.94 (1H, br), 6.55-6.61 (2H, m), 6.86 (1H, d, J=8Hz), 7.30-7.38 (4H, m), 7.47-7.54 (2H, m), 8.06-8.10 (1H, m) ESI-MASS (m/z): 574 (M+H)
```

2) 4-[2-(Methoxy)benzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

NMR (DMSO-d₆, δ): 1.36-1.66 (4H, m), 1.66-1.83 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=7Hz), 2.74 (3H, s), 2.80-3.10 (3H, m), 3.17 (3H, s), 3.23-3.53 (3H, m), 3.86 (3H, s), 3.79-3.99 (2H, m), 4.00-4.17 (1H, m), 4.37-4.52 (1H, m), 6.64 (1H, d, J=9Hz), 6.79 (1H, s), 6.98-7.09 (2H, m), 7.11-7.28 (3H, m), 7.43-7.64 (4H, m)

20 Example 22

5

10

15

25

30

3.5

To a solution of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide (327 mg) and pyridine (80.3 mg) in dichloromethane (6 ml) was added dropwise 2-nitrobenzenesulfonyl chloride (150 mg) at ambient temperature and the mixture was stirred at ambient temperature for 5 hours. The resulting mixture was diluted with dichloromethane (10 ml) and the organic layer was washed successively with saturated sodium bicarbonate aqueous solution and brine. Drying, filtering and removal of solvents afforded a crude product. The crude product was chromatographed on silica gel (eluent; 2-4% methanol in chloroform) to give 4-(2-nitrobenzenesulfonyl)-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (460 mg).

NMR (CDCl₃, δ): 1.47-1.82 (6H, m), 2.28 (3H, s), 2.31

WO 96/41795 PCT/JP96/01533

- 178 -

(3H, s), 2.35-2.42 (6H, m), 3.30 (3H, s), 3.46-3.53 (5H, m), 3.60-3.68 (4H, m), 6.56-6.96 (6H, m), 7.53-7.88 (4H, m)

5 Example 23

10

15

20

A solution of 4-[2-[3-(phthalimido)prop-1yl]oxy]phenyl]vinyl-3-methoxybenzoic acid (370 mg) in tetrahydrofuran (20 ml) was treated at ambient temperature with triethylamine (246 mg), N-methyl-4-methyl-2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]aniline (297 mg), and diphenyl phosphorochloridate (326 mg). The reaction mixture was stirred at 80°C for 18 hours. After concentration, the residue was dissolved in chloroform and washed with brine and dried over magnesium sulfate. The crude product was purified by silica gel column chromatography (SiO_{2} 30 g, 3% methanol in chloroform) to give 4-[2-[2-[(3-(phthalimido)prop-1-yl)oxy]phenyl]vinyl]-3- ${\tt methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-4-meth$ yl)carbonylpent-1-yloxy]phenyl]benzamide (550 mg). NMR (CDCl₃, δ) : 1.47-1.95 (8H, m), 2.18-2.44 (12H,

m), 3.31 and 3.34 (total 3H, s), 3.42-3.52 (2H, m), 3.57-3.72 (5H, m), 3.82-4.16 (6H, m), 6.30-7.80 (16H, m)

25 Example 24

The following compounds were obtained according to a similar manner to that of Example 23.

4-[N-Methyl-2-[(3-tert-butoxycarbonylaminoprop-1-yl)-30 oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy)phenyl]benzamide NMR (CDC1₃, δ): 1.40-1.75 (8H, m), 1.44 (9H, s), 1.89-1.97 (2H, m), 2.29 (6H, s), 2.32-2.42 (6H, m), 35

3.24 (6H, s), 3.26-3.34 (2H, m), 3.44-3.67 (6H, m),

- 179 -

```
3.77 - 3.88 \ (3H, m), \ 6.48 - 6.82 \ (9H, m), \ 6.90 - 6.96 (1H, m), \ 7.06 - 7.13 \ (1H, m) ESI-MASS (m/z) : 774 (M+H)
```

- 2) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-benzyloxyphenyl)benzamide

 NMR (CDCl₃, δ): 1.42 (9H, s), 2.09-2.20 (2H, m),
 3.28-3.37 (2H, m), 3.48 (3H, s), 3.81 (3H, s),
 4.22-4.33 (2H, m), 4.70-4.78 (1H, br), 5.00 (2H,
 s), 6.82-6.88 (3H, m), 6.97-7.13 (6H, m), 7.31-7.48 (6H, m), 8.23 (1H, d, J=8Hz), 8.44 (1H, d, J=8Hz)

 ESI-MASS (m/z): 640 (M+H)

ESI-MASS (m/z) : 616 (M+H)

5

10

35

- 4) 4-[(2-Benzyloxy)benzoyl]amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.30-1.45 (2H, m), 1.45-1.57 (2H, m), 1.62-1.93 (6H, m), 2.22-2.40 (12H, m), 2.50-2.63 (1H, m), 2.95-3.08 (1H, m), 3.31 (3H, s), 3.80-4.00
 - (1H, m), 2.95-3.08 (1H, m), 3.31 (3H, s), 3.80-4.00 (4H, m), 4.58-4.70 (1H, m), 5.37 (2H, s), 6.56-6.62 (2H, m), 6.83-6.88 (1H, m), 7.02-7.13 (3H, m), 7.36-7.47 (7H, m), 8.27 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
 - 5) 4-[N-[2-[(3-tert-Butoxycarbonylaminoprop-1-

10

15

20

- 180 -

```
yl)oxy]phenyl]-tert-butoxycarbonylamino]methyl-3-
methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-
yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl<sub>3</sub>, δ): 1.30 and 1.33 (total 9H, s), 1.43
(9H, s), 1.49-1.60 (2H, m), 1.62-1.98 (6H, m), 2.28
(3H, s), 2.30 (3H, s), 2.32-2.42 (6H, m), 3.20-3.29
(2H, m), 3.32 (3H, s), 3.39 (1H, s), 3.46-3.55 (4H, m), 3.62 (2H, br), 3.82 (1H, br), 3.88-4.03 (3H, m), 6.50-6.60 (2H, m), 6.65-7.00 (6H, m), 7.06-7.22
(2H, m)
```

- 6) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1) oxy]phenoxy]methyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1y1) carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.37 (9H, s), 1.47-1.57 (2H, m),
 1.66-1.73 (2H, m), 1.73-1.88 (2H, m), 1.93-2.02
 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H,
 m), 3.32 (3H, m), 3.25-3.38 (2H, m), 3.47-3.50 (2H,
 m), 3.62-3.67 (2H, m), 3.70 (3H, s), 3.80-3.88 (1H,
 m), 3.90-3.98 (2H, m), 4.07-4.17 (2H, m), 5.10 (2H,
 s), 5.50 (1H, br), 6.53-6.60 (2H, m), 6.70-6.90
 (7H, m), 7.15-7.20 (1H. m)
- 7) 3-Benzyloxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl) oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]-benzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.85 (10H, m),
 2.28 (3H, s), 2.29 (3H, s), 2.32-2.39 (6H, m),
 2.90-2.98 (2H, m), 3.30 (3H, s), 3.47-3.49 (2H, m),
 3.60-3.63 (2H, m), 3.77-3.98 (4H, m), 4.97 (2H, s),
 6.56-6.60 (2H, m), 6.80 (1H, d, J=7Hz), 6.89-6.97 (2H, m), 7.04-7.12 (2H, m), 7.33-7.45 (6H, m), 8.19 (1H, d, J=6Hz), 8.41 (1H, d, J=7Hz)

- 181 -

Example 25

5

10

15

20

25

30

35

A solution of (S)-4-[2-[1-methyl-3-(phthalimido)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (1.1 g) in methanol (30 ml) was stirred and treated with 40% methylamine in methanol (10 ml). The reaction mixture was refluxed for 30 minutes. Then the solvent was concentrated and purified by silica gel column chromatography (SiO₂ 40 g, chloroform/methanol/ammonia = 90/10/0.5) to give (S)-4-[2-[(3-amino-1-methylprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylbent-1-yloxy]bhenzyl]benzamide.

NMR (CDCl₃, δ): 1.42 (3H, d, J=7Hz), 1.46-1.92 (9H, m), 1.98-2.16 (1H, m), 2.20-2.45 (12H, m), 2.86 (2H, t, J=7Hz), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.67 (2H, m), 3.79 (3H, s), 3.82-4.03 (2H, m), 4.73-4.90 (1H, m), 6.51-6.68 (2H, m), 6.79-6.95 (2H, m), 6.98-7.12 (3H, m), 7.37-7.49 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 26

A solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-

- 182 -

1-yloxy)-4-methylphenyl]benzamide (3.5 g) in ethyl acetate(30 ml) was treated at ambient temperature with triethylamine (575 mg), N-methylpiperazine (569 mg), and diphenylphosphoryl $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) ^{2}$ azide (1.56 g). The reaction mixture was stirred at the same temperature for 17 hours. The reaction mixture was washed with brine and dried over magnesium sulfate. The crude product was purified by silica gel column chromatography (\sin_2 100 g, 3% methanol in chloroform) to give 4-[2-[(3tert-butoxycarbonylaminoprop-1-y1)oxy]benzoy1]amino-3- ${\tt methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-4-meth$ yl)carbonylpent-1-yloxy]phenyl]benzamide (2.93 g). NMR (CDCl₃, δ) : 1.40 (9H, s), 1.42-1.60 (2H, m), 1.62-1.90 (4H, m), 2.06-2.20 (2H, m), 2.22-2.42 (12H, m), 3.21-3.36 (5H, m), 3.42-3.51 (2H, m), 3.56-3.67 (2H, m), 3.77 (3H, s), 3.81-4.02 (2H, m), 4.23 (2H, t, J=7Hz), 4.86 (1H, m), 6.51-6.67 (2H, m), 6.79-6.93 (2H, m), 6.94-7.13 (3H, m), 7.44 (1H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

20 Example 27

5

10

15

The following compound was obtained according to a similar manner to that of Example 26.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)oxy]penz-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.95 (8H, m),
2.06-2.42 (16H, m), 2.56 (1H, m), 3.00 (1H, m),
3.22-3.38 (5H, m), 3.79 (3H, s), 3.83-4.03 (3H, m),
4.25 (2H, t, J=7Hz), 4.61 (1H, m), 4.87 (1H, m),
6.52-6.68 (2H, m), 6.79-6.95 (2H, m), 6.96-7.17
(3H, m), 7.46 (1H, m), 8.21 (1H, d, J=8Hz), 8.41
(1H, d, J=8Hz)

- 183 -

To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1yl)oxy-4-methylphenyl]benzamide (300 mg) and Nmethylmorpholine (45 mg), in N,N-dimethylformamide (5 ml) was added isobutyl chloroformate (61 mg) at -15° C and the solution was stirred at the same temperature for 5 minutes. N,N,N'-Trimethylethylenediamine (54 mg) was added to the solution and the mixture was stirred at -15°C for 30 minutes, and then at ambient temperature for 1 hour. The mixture was diluted with ethyl acetate (20 ml) and the solution was washed successively with aqueous sodium hydrogen carbonate solution, water (15 ml \times 3) and brine. The solution was dried over potassium carbonate and the solvent was removed under reduced pressure. The residue was purified on silica gel column chromatography (SiO2 40 g, 1-5% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[(2- ${\tt dimethylaminoeth-1-yl)-N-methylaminocarbonyl]} {\tt pent-1-yl] {\tt oxy-4-limit} {\tt oxy-4-lim$ methylphenyl]benzamide (312 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.44-2.21 (8H, m), 2.25 (3H, s), 2.27 (6H, s), 2.29-2.50 (4H, m), 2.91 (1H, s), 3.00 (2H, s), 3.26-3.51 (4H, m), 3.31 (3H, s), 3.77 (3H, s), 3.81-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 4.88 (1H, br), 6.52-6.68 (2H, m), 6.79-7.11 (5H, m), 7.43 (1H, m), 8.20 (1H, d, J=9Hz), 8.40 (1H, d, J=9Hz)

Example 29

5

10

15

20

25

30

35

The following compounds were obtained according to a similar manner to that of Example 28.

1) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(3-dimethylaminoprop-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide
NMR (CDCl₃, δ) : 1.40 (9H, s), 1.42-1.57 (2H, m),

10

15

- 184 -

1.61-1.85 (6H, m), 2.04-2.35 (8H, m), 2.25 (3H, s), 2.29 (9H, s), 2.46 (2H, t, J=6Hz), 3.20-3.38 (4H, m), 3.30 (3H, s), 3.76 (3H, s), 3.80-4.00 (2H, m), 4.24 (2H, t, J=5Hz), 4.90 (1H, br), 6.61-6.72 (2H, m), 6.84-7.12 (6H, m), 7.43 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

- 2) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.50-1.92 (8H, m), 2.15
 (2H, t, J=6Hz), 2.29 (2H, t, J=5Hz), 2.38-2.51 (6H,
 m), 3.30 (2H, t, J=5Hz), 3.32 (3H, s), 3.70-4.05
 (6H, m), 3.80 (3H, s), 4.25 (2H, t, J=5Hz), 4.85
 (1H, br), 6.55-6.67 (2H, m), 6.83-7.15 (6H, m),
 7.40-7.51 (1H, m), 8.20 (1H, d, J=8Hz), 8.40 (1H,
 br)
- 3) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methyl-N-[2-[5-(4-pyridylaminocarbony1)pent-1-y1]oxy-4-methylpheny1]benzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.50-1.61 (2H, m),
 1.75-1.93 (4H, m), 2.09-2.20 (2H, m), 2.30 (3H, s),
 2.42 (2H, br), 3.30 (1H, q, J=5Hz), 3.36 (3H, s),
 3.70 (3H, s), 3.72-4.00 (2H, m), 4.25 (2H, t,
 J=5Hz), 4.90 (1H, br), 6.60 (1H, br), 6.72 (1H, d,
 J=8Hz), 6.99-7.12 (6H, m), 7.43-7.51 (1H, m), 7.63
 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz), 8.42 (1H, d,
 J=7Hz), 8.46 (1H, br), 9.22 (1H, br)

Example 30

To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-y1)oxy-4-methylphenyl]benzamide (250 mg) and N
methylmorpholine (37 mg) in dichloromethane (5 ml) was added

- 185 -

pivaloyl chloride (45 mg) at -15°C. After being stirred at the same temperature for 5 minutes, to the mixture was added l-amino-4-methylpiperazine (47 mg) and the mixture was stirred at -15°C for 1 hour and then stirred at ambient temperature for additional 2 hours. The resulting mixture was poured into saturated aqueous sodium hydrogen carbonate solution (20 ml) and the solution was extracted with chloroform (15 ml x 3). The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO₂ 30 g, 1-15% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide (208 mg).

NMR (CDC1₃, δ): 1.40 (9H, s), 1.45-1.90 (6H, m), 2.10-2.19 (2H, m), 2.24 (3H, s), 2.25 (3H, s), 2.51 (2H, t, J=5Hz), 2.54-2.91 (8H, m), 3.30 (2H, t, J=5Hz), 3.34 (3H, s), 3.75 (3H, s), 3.80-4.03 (2H, m), 4.24 (2H, t, J=5Hz), 4.78-4.97 (1H, br), 6.53-6.67 (2H, m), 6.73-7.14 (6H, m), 7.40-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.45 (1H, d, J=8Hz)

Example 31

5

10

1.5

20

25

30

35

÷

- The following compounds were obtained according to a similar manner to that of Example 9.
 - 1) 4-[2-(E)-[2-(4-Methylpiperazin-1-y1) carbonylethen-1y1]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1) carbonylpent-1-y1]oxy]phenylbenzamide
 - NMR (CDCl₃, δ): 1.48-1.59 (2H, m), 1.67-1.76 (2H, m), 1.79-1.87 (2H, m), 2.21 (3H, s), 2.26 (3H, s), 2.31 (3H, s), 2.31-2.44 (10H, m), 3.17-3.25 (2H, m), 3.34 (3H, s), 3.47-3.52 (2H, m), 3.56-3.67 (3H, m),

- 186 -

3.62 (3H, s), 3.82-3.99 (3H, m), 5.71 (1H, m), 6.60-6.67 (2H, m), 6.86 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 6.98-7.03 (2H, m), 7.14 (1H, d, J=7Hz), 7.43-7.62 (4H, m), 7.85 (1H, d, J=7Hz)

2) 4-[2-[(4-Methylpiperazin-1-y1)carbonylmethoxy]benzoyl]amino-3-methoxy-N-[2-[5-(4-methylpiperazin-1y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.30-1.90 (6H, m), 2.14 (3H, s), 2.26
(3H, s), 2.35-2.46 (3H, m), 3.34 (3H, s), 3.46-3.55

(4H, m), 3.59-3.68 (4H, m), 3.72 (3H, s), 3.80-4.01 (2H, m), 4.90 (2H, s), 6.58-6.68 (2H, m), 6.82-7.06 (4H, m), 7.13-7.20 (2H, m), 7.46-7.51 (1H, m), 8.19 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

15 Example 32

5

10

20

25

30

A solution of 4-(2-iodobenzoyl)amino-N-[2-(4-methoxyphenyl)methoxy]phenyl-N-methylbenzamide (2.30 g) in a mixture of dichloromethane (30 ml) and trifluoroacetic acid (15 ml) was stirred at ambient temperature for 2 hours and the solvent was evaporated in vacuo. The residual oil was dissolved in chloroform (50 ml) and the solution was washed successively with water (50 ml), aqueous sodium hydrogen carbonate (50 ml) and brine (25 ml). The solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give 4-(2-iodobenzoyl)amino-N-(2-hydroxy)phenyl-N-methylbenzamide (1.20 q).

NMR (DMSO-d₆, δ): 3.20 (3H, s), 6.69 (1H, t, J=7Hz), 6.82 (1H, d, J=7Hz), 6.98-7.05 (3H, m), 7.40-7.54 (4H, m), 7.90 (1H, d, J=7Hz), 9.84 (1H, s)

Example 33

The following compounds were obtained according to a similar manner to that of Example 32.

- 187 -

1) 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenzamide

```
NMR (CDCl<sub>3</sub>, δ): 2.28 (3H, s), 2.32 (3H, s), 2.35-2.51 (4H, m), 3.36 (3H, s), 3.59-3.89 (2H, m), 5.02 (2H, s), 6.63-6.72 (2H, m), 6.88 (1H, t, J=7Hz), 7.00 (2H, d, J=8Hz), 7.20-7.46 (9H, m), 7.70 (1H, d, J=7Hz), 8.68 (1H, s)
```

10 2) 3-Methoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[4methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

```
NMR (CDCl<sub>3</sub>, \delta): 2.23 (3H, s), 2.30 (3H, s), 2.33-2.51 (4H, m), 3.37 (3H, s), 3.41-3.56 (2H, m), 3.68 (3H, s), 3.72-3.87 (2H, m), 4.91 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.63-6.71 (2H, m), 6.35-6.93 (2H, m), 7.00 (2H, d, J=8Hz), 7.33-7.50 (7H, m), 8.14 (1H, d, J=7Hz), 8.72 (1H, s)
```

20 3) 4[2-(3-Hydroxyprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-(4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide

```
NMR (CDC1<sub>3</sub>, \delta): 1.44-1.58 (2H, m), 1.61-1.73 (2H, m), 1.77-1.89 (2H, m), 2.28 (3H, s), 2.31-2.40 (6H, m), 3.02 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.42-3.50 (2H, m), 3.56-3.65 (2H, m), 3.67-3.78 (7H, m), 3.81-4.01 (2H, m), 6.58-6.67 (2H, m), 6.81-6.95 (2H, m), 7.03 (1H, s), 7.25 (1H, m), 7.36-7.50 (2H, m), 7.64 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz), 8.77 (1H, s)
```

Example 34

5

15

25

30

35

The following compound was obtained by using 2-nitro-4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-dimethylamino-piperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide as a starting compound according to a similar manner to that

- 188 -

of Example 10.

2-Amino-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide

NMR (CDCl $_3$, δ) : 1.21-2.02 (10H, m), 2.28-2.44 (12H, m), 2.48-2.69 (1H, m), 2.93-3.08 (1H, m), 3.30 (3H, s), 3.80-4.06 (4H, m), 4.68 (1H, br), 4.73 (2H, s), 5.32 (1H, s), 6.53-6.62 (3H, m), 6.78-6.96 (5H, m), 7.33-7.44 (1H, m), 7.78-7.88 (1H, m)

Example 35

5

10

15

20

25

30

35

A mixture of 4-(2-hydroxybenzoyl)amino-3-methoxy-N-(2benzyloxy-4-methyl)phenyl-N-methylbenzamide (550 mg), 1-(tert-butoxycarbonyl)-4-hydroxypiperidine (223 mg), diethyl azodicarboxylate (193 mg) and triphenylphosphine (291 mg) in tetrahydrofuran (15 ml) was stirred at ambient temperature for 8 hours and the mixture was diluted with ethyl acetate (25 ml). The solution was washed with water and brine, and organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was purified by silica gel column (30% ethyl acetate in n-hexane) to give 3methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl)phenyl-Nmethylbenzamide (562 mg).

NMR (CDCl₃, δ): 1.44 (9H, s), 1.72-1.90 (2H, m), 1.95-2.12 (2H, m), 2.27 (3H, s), 2.95-3.16 (4H, m), 3.37 (3H, s), 3.60 (3H, s), 3.73-4.00 (2H, m), 4.64 (1H, m), 4.88 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.65-6.71 (2H, m), 6.86 (1H, d, J=7Hz), 6.95-7.03 (3H, m), 7.09 (1H, t, J=7Hz), 7.25-7.50 (6H, m), 8.18 (1H, d, J=7Hz), 8.35 (1H, d, J=7Hz)

Example 36

The following compounds were obtained according to a similar manner to that of Example 35.

```
    (S)-4-[2-[1-Methyl-3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
    NMR (CDCl<sub>3</sub>, δ) : 1.43 (3H, d, J=7Hz), 1.47-1.92 (7H, m), 1.98-2.13 (1H, m), 2.20-2.47 (12H, m), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.67 (2H, m), 3.73-4.05 (7H, m), 4.77 (1H, m), 6.51-6.69 (2H, m), 6.78-7.12 (5H, m), 7.42 (1H, m), 7.57 (4H, s), 8.08-8.24 (2H, m)
```

15

5

2) (R)-4-[2-[[4-(Phthalimido-1-yl)but-2-yl]oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

NMR (CDCl₃, δ) : 1.44 and 1.47 (total 3H, s), 1.521.92 (8H, m), 2.02-2.12 (1H, m), 2.28 (3H, s), 2.30
(3H, s), 2.33-2.42 (6H, m), 3.35 (3H, s), 3.47-3.53
(2H, m), 3.60-3.67 (2H, m), 3.80 (3H, s), 3.85-4.00
(2H, br), 3.88 (2H, t, J=8Hz), 4.74-4.82 (1H, br),
6.57-6.69 (2H, m), 6.81-6.95 (2H, m), 6.98-7.09
(3H, m), 7.43 (1H, t, J=8Hz), 7.53-7.60 (4H, br),
8.14 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz)

20

25

3) (R)-4-[2-[[4-(Phthalimido-1-yl)but-2-yl]oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
NMR (CDCl₂, δ): 1.42 and 1.45 (total 3H, s), 1.50-

ESI-MASS (m/z) : 804 (M+H)

30

1.90 (12H, m), 2.02-2.10 (1H, m), 2.28 (9H, s), 2.32-2.41 (4H, m), 2.52-2.62 (1H, m), 2.97-3.06 (1H, m), 3.35 (3H, s), 3.80 (3H, s), 3.87 (2H, t, J=8Hz), 3.90-3.97 (2H, m), 4.58-4.68 (1H, m), 4.72-4.81 (1H, m), 6.57-6.67 (2H, m), 6.81-6.93 (2H, m), 6.98-7.08 (3H, m), 7.43 (1H, t, J=8Hz), 7.53-7.59 (4H, br s), 8.13 (1H, d, J=8Hz), 8.20 (1H, d,

35

10

15

25

35

J=8Hz)

- 4) (S)-4-[2-[[4-(Phthalimido-1-y1)but-2-y1]oxy]benzoy1]-amino-3-methoxy-N-methy1-N-[4-methy1-2-[5-(4-dimethy1-aminopiperidin-1-y1)carbonylpent-1-yloxy]pheny1]-benzamide
 - NMR (CDCl₃, δ): 1.42 and 1.44 (total 3H, s), 1.501.91 (12H, m), 2.02-2.10 (1H, m), 2.29 (9H, s),
 2.32-2.41 (4H, m), 2.52-2.62 (1H, m), 2.95-3.05
 (1H, m), 3.36 (3H, s), 3.80 (3H, s), 3.86 (2H, t,
 J=8Hz), 3.90-3.97 (2H, m), 4.58-4.66 (1H, m), 4.724.80 (1H, m), 6.57-6.67 (2H, m), 6.81-6.92 (2H, m),
 6.98-7.08 (3H, m), 7.44 (1H, t, J=8Hz), 7.53-7.60
 (4H, br s), 8.13 (1H, d, J=8Hz), 8.21 (1H, d,
 J=8Hz)

ESI-MASS (m/z) : 832 (M+1)

- 5) 3-Methoxy-4-[2-[3-(phthalimido)-1-methylprop-1-yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide
 - NMR (CDCl₃, δ): 1.41 (3H, d, J=7.5Hz), 1.9 ϵ -2.12 (2H, m), 2.24 (3H, s), 2.27-2.42 (2H, m), 3.39 (3H, s), 3.60-3.69 (2H, m), 3.86 (2H, t, J=7.5Hz), 4.77 (1H, m), 4.94 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.66- ϵ .82 (3H, m), 6.95-7.08 (4H, m), 7.20-7.71 (10H, m), 8.10-8.21 (2H, m)

Example 37

- The following compounds were obtained according to a similar manner to that of Example 14.
 - 1) 4-[2-(3-Acetylaminoprop-1-yl)oxybenzoyl]amino-3-methoxyN-(2-acetoxy-4-methylphenyl)-N-methylbenzamide
 NMR (CDCl₃, δ): 1.86 (3H, s), 2.10-2.19 (2H, m), 2.30
 (3H, s), 3.41 (2H, q, J=5Hz), 3.72 (3H, s), 4.21

- 191 -

(2H, t, J=5Hz), 5.94 (1H, br), 6.85 (1H, s), 6.90-7.11 (6H, m), 7.42-7.49 (1H, m), 8.10 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)

2) 4-[2-(3-Acetylaminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.48-1.64 (2H, m), 1.58-1.85 (4H, m),
1.88 (3H, s), 2.12 (2H, t, J=5Hz), 2.29 (6H, s),
2.34-2.42 (2H, m), 2.57 (2H, t, J=5Hz), 3.30 (2H,
q, J=5Hz), 3.32 (3H, s), 3.39 (2H, q, J=5Hz), 3.723.79 (2H, m), 3.76 (3H, s), 3.83-4.00 (2H, m), 4.20
(2H, t, J=5Hz), 6.33 (1H, br), 6.57-6.67 (2H, m),
6.83-7.10 (6H, m), 7.43 (1H, dd, J=2, 7Hz), 8.10
(1H, d, J=6Hz), 8.38 (1H, d, J=8Hz)

Example 38

5

10

15

20

25

30

35

To an ice bath cooled solution of 4-[2-(3-aminoprop-1-yl)oxybenzcyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide (650 mg) in dichloromethane (20 ml) were added triethylamine (137 mg) and di-tert-butyldicarbonate (296 mg) and the mixture was stirred at ambient temperature overnight. The solution was washed successively with water, 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[3-(tert-butoxycarbonyl)-aminoprop-1-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide (749 mg).

MMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 1.40 (9H, s), 1.44-1.56 (2H, m), 1.66-1.76 (2H, m), 1.76-1.87 (2H, m), 2.06-2.15 (2H, m), 2.28 (3H, s), 2.34 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.31-3.40 (2H, m), 3.85-3.97 (2H, m), 4.13 (2H, q, J=7.5Hz), 4.21 (2H, t, J=7.5Hz), 4.74 (1H, br), 6.54-6.62 (2H, m), 6.86

- 192 -

(1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.09 (1H, d, J=7Hz), 7.32 (2H, d, J=8Hz), 7.41-7.52 (3H, m), 8.11 (1H, d, J=7Hz), 9.87 (1H, s)

5 Example 39

The following compound was obtained according to a similar manner to that of Example 38.

3-Methoxy-4-[2-[3-(tert-butoycarbonyl)amino-1methylprop-1-yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide

NMR (CDC1₃, δ): 1.37 (9H, s), 1.41 (3H, d, J=7.5Hz), 1.84-2.11 (2H, m), 2.28 (3H, s), 3.20-3.31 (2H, m), 3.40 (3H, s), 3.64 (3H, s), 4.61 (1H, br), 4.72 (1H, m), 4.90 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.62-6.70 (2H, m), 6.84 (1H, d, J=7Hz), 6.93-7.12 (4H, m), 7.28-7.72 (6H, m), 8.22 (1H, d, J=7Hz), 8.38 (1H, d. J=7Hz)

20 Example 40

15

A solution of aqueous 4M sulfuric acid (0.5 ml) and 3-(phthalimid-1-yl)propanal (189 mg) in tetrahydrofuran (10 ml) was slowly added to a solution of 4-(2-aminobenzoylamino)-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-

- yl)carbonylpent-1-yloxyl-4-metnylphenylbenzamide (560 mg) in tetrahydrofuran (10 ml) followed by the portionwise addition of sodium borohydride (59.8 mg) at 0°C. The mixture was diluted with 1,4-dioxane (5 ml) and stirred for an additional 1.5 hours at ambient temperature. The mixture was quenched with water (0.5 ml) and concentrated. The residue was partitioned with ethyl acetate and saturated aqueous sodium hydrogen carbonate. The organic extract was washed with
- hydrogen carbonate. The organic extract was washed with brine and dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (SiO₂, 30 g, 3% methanol in chloroform) to give 3-methoxy-4-[2-[3-

 $\label{lem:condition} $$ (\phi) = 1-y1] = \min_{\theta \in \mathbb{R}} \frac{1-y}{2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy] phenyl} benzamide (200 mg).$

NMR (CDCl₃, δ): 1.44-1.62 (2H, m), 1.63-1.93 (4H, m), 1.97-2.12 (2H, m), 2.21-2.46 (12H, m), 3.17-3.38 (5H, m), 3.42-3.56 (2H, m), 3.57-3.69 (2H, m), 3.70-4.04 (7H, m), 6.51-6.73 (4H, m), 6.78-6.96 (2H, m), 7.00 (1H, s), 7.20-7.35 (1H, m), 7.40 (1H, d, J=6Hz), 7.53-7.67 (3H, m), 7.72-7.86 (2H, m), 8.13 (1H, d, J=8Hz), 8.34 (1H, s)

Example 41

5

10

15

20

25

30

A solution of 4-(2-nitrobenzoyl) amino-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (800 mg), 20% palladium hydroxide (200 mg) in ethanol (20 ml) was stirred under atmospheric pressure of hydrogen at ambient temperature. After 2 hours, the reaction mixture was filtered through a bed of Celite, and the solvent was removed by rotary evaporation and the crude product was purified by silica gel column chromatography (SiO $_2$ 30 g, ethyl acetate/hexane = 3/1) to give 4-(2-aminobenzoyl) amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-benzamide (700 mg).

NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.41-1.57 (2H, m), 1.63-1.87 (4H, m), 2.27 (3H, s), 2.33 (2H, t, J=7Hz), 3.32 (3H, s), 3.78-4.00 (2H, m), 4.12 (2H, c, J=7Hz), 5.38-5.56 (2H, m), 6.55-6.64 (2H, m), 6.64-6.76 (2H, m), 6.87 (1H, d, J=9Hz), 7.22 (1H, d, J=9Hz), 7.28-7.50 (5H, m), 7.79 (1H, br s)

Example 42

The following compound was obtained according to a similar manner to that of Preparation 4.

35 4-(2-Aminobenzenesulfonyl)amino-3-methoxy-N-methyl-N-[4-

- 194 -

methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide

NMR (CDC1 $_3$, δ) : 1.45-1.54 (2H, m), 1.65-1.82 (4H, m), 2.30 (3H, s), 2.33 (3H, s), 2.35-2.43 (6H, m), 3.29 (3H, s), 3.46-3.51 (5H, m), 3.60-3.65 (4H, m), 4.84-4.89 (2H, m), 6.56-6.89 (6H, m), 7.28-7.48 (4H, m)

ESI-MASS (m/z) : 638 (M+H)

10 Example 43

5

15

20

25

A solution of 4-[2-(acetyloxy)benzoyl]amino-3-methoxy-Nmethyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1yloxy]-4-methylphenyl]benzamide (400 mg) in methanol (10 ml) was treated with 1N sodium hydroxide solution (3 ml) at ambient temperature. After 6 hours, the reaction mixture was concentrated in vacuo and extracted with the mixture of dichloromethane and diluted hydrochloric acid. The organic phase was washed with brine and dried over sodium sulfate. The crude product was purified by silica gel column chromatography (SiO_2 30 g, 5% methanol in chloroform) to give 4-[2-(hydroxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide (290 mg).

NMR (CDC13, δ): 1.27-2.00 (10H, m), 2.21-2.46 (12H, m), 2.56 (1H, m), 3.00 (1H, m), 3.33 (3H, s), 3.80 (3H, s), 3.82-4.05 (4H, m), 4.63 (1H, m), 6.55-6.68 (2H, m), 6.82-7.09 (5H, m), 7.42 (1H, m), 7.55 (1H, m), 8.20 (1H, m) .

30 Example 44

The following compounds were obtained according to a similar manner to that of Example 43.

1) 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-(5-35 ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide

35

- NMR (CDCl₃, δ): 1.26 (3H, t, J=7Hz), 1.42-1.58 (2H, m), 1.61-1.90 (4H, m), 2.28 (3H, s), 2.33 (2H, t, J=7Hz), 3.32 (3H, s), 3.80 (3H, s), 3.81-4.02 (2H, m), 4.12 (2H, q, J=7Hz), 6.53-6.67 (2H, m), 6.80-6.98 (3H, m), 7.01 (1H, d, J=8Hz), 7.07 (1H, s), 7.42 (1H, dd, J=8, 8Hz), 7.49 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz), 8.72 (1H, s)
- 2) 4-(2-Hydrcxybenzoyl)amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide

 NMR (CDCl₃, δ): 2.21 (3H, s), 3.40 (3H, s), 3.78 (3H, s), 6.82-7.23 (9H, m), 7.37-7.53 (2H, m), 8.18 (1H, d, J-8Hz), 8.69 (1H, br s)
- 15 3) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

 NMR (CDCl3, &): 1.42-1.59 (2H, m), 1.60-1.89 (4H, m),
 2.20-2.46 (12H, m), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.69 (2H, m), 3.71-4.02 (6H, m), 6.51-6.68

 (2H, m), 6.79-7.08 (5H, m), 7.40 (1H, m), 7.51 (1H, d, J=6Hz), 8.18 (1H, dr s)
- 4) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide

 NMR (CDCl₃, \delta): 2.30 (3H, s), 3.38 (3H, s), 3.63 (3H, s), 4.89 (1H, d, J=13Hz), 5.08 (1H, d, J=13Hz), 6.62-6.68 (2H, m), 6.82-7.00 (6H, m), 7.28-7.42 (5H, m), 7.47 (1H, d, J=8Hz), 8.13 (1H, d, J=8Hz), 30

 8.79 (1H, s)
 - 5) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 2.28 (3H, s), 3.40 (3H, s), 3.67 (3H, s), 4.06 (2H, t, J=10Hz), 4.41 (2H, t, J=10Hz),

- 196 -

4.92 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.60 (1H, s), 6.71 (1H, d, J=8Hz), 6.87-7.08 (5H, m), 7.28 (1H, d, J=8Hz), 7.42 (1H, dd, J=2, 8Hz), 7.52 (1H, d, J=8Hz), 8.16 (1H, d, J=8Hz), 8.82 (1H, s)

5

6) 4-(2-Hydroxybenzoyl)amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.48 (2H, br), 1.60-1.81 (4H, m), 2.19 (3H, s), 2.28 (3H, s), 2.30-2.35 (3H, m), 2.38 (3H, s), 2.50 (4H, br), 3.30 (3H, s), 3.52 (2H, br), 3.69 (2H, br), 3.63 (1H, br), 3.92 (1H, br), 6.62 (2H, s), 6.89-6.93 (2H, m), 7.02-7.10 (2H, m), 7.35 (1H, s), 7.40-7.47 (1H, m), 7.63-7.70 (2H, m), 8.52 (1H, br)

15

35

10

Example 45

A solution of 4-[2-[3-(tert-butoxycarbonyl)aminoprop-1yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-20 methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (542 mg) in 90% trifluoroacetic acid (10 ml) was stirred at ambient temperature for 3 hours and the solvent was evaporated in vacuo. The residue was stirred with chloroform (20 ml) and saturated aqueous sodium hydrogen carbonate (10 25 ml) and the organic phase was separated. The solution was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-(3-aminoprop-1yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide 30 (465 mg).

NMR (CDC1₃, δ): 1.47-1.59 (2H, m), 1.67-2.00 (6H, m), 2.06-2.66 (2H, m), 2.35 (3H, s), 2.39 (3H, s), 2.32-2.41 (4H, m), 2.96 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.89-3.99 (2H, m), 4.29 (2H, d, J=7.5Hz), 6.54-6.62 (2H, m),

- 197 -

6.85 (1H, d, J=7Hz), 7.01 (1H, d, J=7Hz), 7.10 (1H, t, J=7Hz), 7.32 (2H, d, J=8Hz), 7.43-7.50 (3H, m), 8.20 (1H, d, J=7Hz)

5 Example 46

30

35

The following compounds were obtained according to a similar manner to that of Example 45.

- 1) 4-[2-[(3-Aminoprop-1-y1) oxy]benzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1y1) carbonylpent-1-yloxy]phenyl]benzamide

 NMR (CDCl₃, δ): 1.40-1.92 (6H, m), 1.98-2.12 (2H, m),
 2.19-2.44 (12H, m), 2.90 (2H, t, J=7Hz), 3.32 (3H,
 s), 3.40-3.53 (2H, m), 3.56-3.68 (2H, m), 3.78 (3H,
 5), 3.80-4.02 (2H, m), 4.28 (2H, t, J=7Hz), 6.516.67 (2H, m), 6.78-6.95 (2H, m), 6.97-7.16 (3H, m),
 7.44 (1H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d,
 J=8Hz)
- 20 2) 4-[2-[(3-Aminoprop-1-y1) oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-y1) carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.26-1.92 (12H, m), 1.98-2.12 (2H, m), 2.27 (9H, s), 2.29-2.42 (3H, m), 2.56 (1H, m), 2.89 (2H, t, J=7Hz), 3.00 (1H, m), 3.32 (3H, s), 3.78 (3H, s), 3.82-4.02 (3H, m), 4.27 (2H, t, J=7Hz), 4.61 (1H, m), 6.52-6.67 (2H, m), 6.79-6.96 (2H, m), 6.97-7.12 (3H, m), 7.43 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
 - 3) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperidin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 0.95 (3H, d, J=7.5Hz), 1.00-1.14 (2H,
 m), 1.46-1.90 (8H, m), 2.01-2.12 (2H, m), 2.26 (3H,

10

15

- 198 -

s), 2.34 (2H, t, J=7.5Hz), 2.52 (1H, m), 2.85-3.03 (3H, m), 3.31 (3H, s), 3.79 (3H, s), 3.79-4.00 (4H, m), 4.32 (2H, t, J=7.5Hz), 4.55 (1H, m), 6.58 (1H, d, J=7Hz), 6.62 (1H, s), 6.84 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.00-7.11 (3H, m), 7.42 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)

- 4) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-[2-[5-[(2S)-carbamoylpyrrolidin-1-yl]carbonylpent-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.48-2.20 (12H, m), 2.28 (3H, s), 2.32-2.40 (2H, m), 2.88-3.00 (2H, m), 3.31 (3H, s), 3.33-3.61 (2H, m), 3.80 (3H, s), 3.82-3.99 (2H, m), 4.29 (2H, t, J=7Hz), 4.54 (1H, m), 6.52-6.63 (2H, m), 6.81-7.10 (5H, m), 7.43 (1H, t, J=7Hz), 8.14(1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
- 5) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-[2- $(4-a \verb|minobut-1-yl|) oxy-4-methyl] phenyl-N-methylbenzamide$ 20 NMR (CDCl₃, δ) : 1.63-1.94 (4H, m), 1.99-2.18 (2H, m), 2.23 (3H, s), 2.62-3.07 (2H; m), 3.29 (3H, s), 3.29-3.51 (2H, m), 3.75-4.00 (2H, m), 3.76 (3H, s), 4.21 (2H, t, J=7.5Hz), 6.56-6.85 (4H, m), 7.28-7.62 (2H, m), 8.13 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz) 25
 - 6) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-[2-(4-acetylaminobut-1-y1)oxy-4-methyl]phenyl-Nmethylbenzamide
- NMR (CDC1 $_3$, δ) : 1.60-1.86 (4H, m), 2.00 (3H, s), 30 2.08-2.20 (2H, m), 2.27 (3H, s), 2.93-3.03 (2H, m), 3.30 (3H, s), 3.30-3.50 (2H, m), 3.77 (3H, s), 3.83-3.98 (2H, m), 4.26 (2H, t, J=7.5Hz), 6.53-6.65 (2H, m), 6.86-7.12 (5H, m), 7.42 (1H, t, J=7Hz), 8.12 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz) 35

10

15

20

25

30

35

7) 3-Methoxy-4-[2-(piperidin-4-yl)oxybenzoyl]amino-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide

NMR (DMSO-d₆, δ): 1.50-1.62 (2H, m), 1.94-2.05 (2H, m), 2.14 (3H, s), 2.57 (2H, t, J=7.5Hz), 2.91-3.00 (2H, m), 3.16 (3H, s), 3.75 (3H, s), 4.73 (1H, m), 6.48 (1H, d, J=7Hz), 6.64 (1H, s), 7.87 (1H, d, J=7Hz), 7.92 (1H, d, J=7Hz), 7.01 (1H, s), 7.09 (1H, t, J=7Hz), 7.32 (1H, d, J=7Hz), 7.52 (1H, t, J=7Hz), 8.02 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz)

8) 3-Methoxy-4-[2-(piperidin-4-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide
NMR (CDCl₃, δ): 1.46-1.88 (8H, m), 2.07-2.19 (2H, m),

2.26 (3H, s), 2.29 (3H, s), 2.32-2.41 (6H, m), 2.72 (2H, t, J=7.5Hz), 3.10-3.20 (2H, m), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.60-3.66 (2H, m), 3.80 (3H, s), 3.83-4.00 (2H, m), 4.57 (1H, m), 6.58 (1H, d, J=7Hz), 6.62 (1H, s), 6.82-6.91 (2H, m), 6.98-7.11 (3H, m), 7.43 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)

9) 4-[2-(3-Amino-1-methylprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl] oxy]phenylbenzamide

NMR (CDCl₃, δ): 1.42 (3H, d, J=7.5Hz), 1.46-1.89 (6H, m), 1.99-2.11 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.85 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.45-3.50 (2H, m), 3.59-3.66 (2H, m), 3.80 (3H, s), 3.84-4.01 (2H, m), 4.80 (1H, m), 6.59 (1H, d, J=7Hz), 6.63 (1H, s), 6.82-6.92 (2H, m), 7.01-7.10

(3H, m), 7.44 (1H, t, J=7Hz), 8.22 (1H, d, J=7Hz),

8.40 (1H, d, J=7Hz)

^{10) 4-[2-(3-}Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-

methyl-N-[2-(5-aminocarbonylpent-1-yl)oxy-4methylphenyl]benzamide

NMR (CDC13, δ) : 1.40-1.59 (2H, m), 1.61-1.90 (4H, m), 2.11-2.30 (4H, m), 2.35 (3H, s), 3.00 (2H, t, J=6Hz), 3.11 (2H, br), 3.29 (3H, s), 3.75 (3H, s), 3.76-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 6.00 (1H, br), 6.50 (1H, br), 6.55-6.71 (2H, m), 6.87-7.12 (5H, m), 7.42 (1H, dd, J=2, 7Hz), 8.10 (1H, d, J=9Hz), 8.36 (1H, d, J=8Hz)

10

5

- 11) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N- $\tt methyl-N-[2-[5-(morpholin-4-yl)\,carbonylpent-1-yl]\,oxy-4-yl)$ methylphenyl]benzamide
- NMR (CDCl₃, δ) : 1.48-1.90 (6H, m), 2.11 (2H, t, 15 J=5Hz), 2.26 (3H, s), 2.21-2.52 (6H, m), 2.79-2.90 (3H, m), 2.96 (2H, t, J=5Hz), 3.31 (3H, s), 3.40-3.49 (2H, m), 3.52-3.62 (2H, m), 3.80 (3H, s), 3.83-4.04 (2H, m), 4.29 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.81-7.12 (6H, m), 7.41-7.50 (1H, m), 8.17 20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

12) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N- ${\tt methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]}$ yl]oxy]-4-methylphenyl]benzamide

25 NMR (CDC13, δ) : 1.45-2.05 (8H, m), 2.11 (2H, t, J=5Hz), 2.28 (3H, s), 2.41-2.52 (2H, m), 2.96 (2H, t, J=5Hz), 3.31 (3H, s), 3.70-4.61 (8H, m), 6.52-7.55 (8H, m), 8.02-8.46 (3H, m)

30

- 13) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-(2methoxy-4-methylphenyl)-N-methylbenzamide NMR (DMSO-d₆, δ): 1.90-1.98 (2H, m), 2.25 (3H, s), 2.71 (2H, t, J=6Hz), 3.19 (3H, s), 3.73 (3H, s), 4.32 (2H, t, J=5Hz), 6.67 (1H, d, J=8Hz), 6.80-6.96
- 35 (2H, m), 7.26 (1H, d, J=8Hz), 7.55 (1H, dd, J=2,8Hz),

10

20

8.03 (1H, d, J=8Hz), 8.29 (1H, d, J=8Hz)

- 14) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-[2-[4-(thiazol-2-yl) phenylmethyl]oxy-4-methylphenyl]-Nmethylbenzamide
 - NMR (CDCl₃, δ): 2.02-2.10 (2H, m), 2.29 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.64 (3H, s), 4.25 (2H, t, J=5Hz), 4.90 (1H, d, J=11Hz), 5.09 (1H, d, J=11Hz), 6.62-6.71 (2H, m), 6.88 (1H, d, J=8Hz), 6.98-7.10 (5H, m), 7.24-7.48 (4H, m), 7.81 (1H, d, J=3Hz), 7.95 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)
- 15) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-[2-15 [4-(oxazo1-2-y1)phenylmethy1]oxy-4-methylpheny1]-Nmethylbenzamide
 - NMR (CDCl₃, δ): 2.00-2.11 (2H, m), 2.29 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.66 (3H, s), 4.91 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.64 (1H, s), 6.70 (1H, d, J=8Hz), 6.87 (1H, d, J=8Hz), 7.00-7.12 (4H, m), 7.21 (1H, s), 7.25-7.49 (4H, m), 7.65 (1H, s), 8.04 (1H, d, J=8Hz), 8.23 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)
- 25 16) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxymethylphenyl]-Nmethylbenzamide
- NMR (CDCl₃, δ): 2.02-2.11 (2H, m), 2.28 (3H, s), 2.90 (2H, t, J=5Hz), 3.39 (3H, s), 3.67 (3H, s), 4.05 (2H, t, J=9Hz), 4.29 (2H, t, J=5Hz), 4.41 (2H, t, J=5Hz), 4.89 (1H, d, J=12Hz), 5.09 (1H, d, J=12Hz), 6.63 (1H, s), 6.70 (1H, d, J=8Hz), 6.84 (1H, d, J=8Hz), 7.00-7.12 (4H, m), 7.37 (2H, d, J=8Hz), 7.41 (1H, d, J=8Hz), 7.93 (2H, d, J=5Hz), 8.20 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

10

25

35

- 17) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-[2-[4-(pyrimidin-2-yl) phenylmethyl]oxy-4-methylphenyl]-Nmethylbenzamide
 - NMR (CDC1₃, δ): 2.05-2.14 (2H, m), 2.27 (3H, s), 2.89 (2H, t, J=5Hz), 3.38 (3H, s), 3.64 (3H, s), 4.24 (2H, t, J=5Hz), 4.94 (1H, d, J=13Hz), 5.12 (1H, d, J=13Hz), 6.65-6.72 (2H, m), 6.85 (1H, d, J=8Hz), 6.97-7.18 (5H, m), 7.39-7.46 (3H, m), 8.13 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz), 8.41 (2H, d, J=8Hz), 6.24 (2H, d, J=3Hz)
- 18) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-[2-(4-cyanophenylmethyl) oxy-4-methylphenyl]-Nmethylbenzamide
- 15 NMR (CDCl₃, δ): 2.09-2.20 (2H, m), 2.28 (3H, s), 2.97 (2H, t, J=5Hz), 3.35 (3H, s), 3.65 (3H, s), 4.24 (2H, br), 4.88 (1H, d, J=12Hz), 5.06 (1H, d, J=12Hz), 6.57 (1H, s), 6.67-6.80 (2H, m), 6.95-7.08 (5H, m), 7.35-7.45 (3H, m), 7.62 (2H, d, J=8Hz), 8.11 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz)
 - 19) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1)amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoeth-1-y1)oxycarbonyl-pent-1-y1)oxy-4-methylphenyl]benzamide
 NMR (CDC13, 8): 1.47-1.60 (2H, m), 1.67-1.88 (4H, m),
- 2.05-2.14 (2H, m), 2.27 (9H, s), 2.38 (2H, t, J=6Hz), 2.58 (2H, t, J=5Hz), 2.92 (2H, t, J=5Hz), 3.33 (3H, s), 3.80 (3H, s), 3.86-4.00 (2H, m), 4.19 (2H, t, J=5Hz), 4.30 (2H, t, J=5Hz), 6.57-6.67 (2H, m), 6.87 (1H, dd, J=2, 8Hz), 7.00-7.11 (4H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=9Hz)
 - 20) 4-[2-(3-Aminoprop-1-yloxy)benzoyl]amino-3-methoxy-N-(2hydroxy-4-methylphenyl)-N-methylbenzamide

10

15

25

30

35

```
NMR (DMSO-d<sub>6</sub>, δ): 1.92-2.03 (2H, m), 2.16 (3H, s), 2.75 (2H, t, J=5Hz), 3.20 (3H, s), 3.75 (3H, s), 4.34 (2H, t, J=5Hz), 6.49 (1H, d, J=8Hz), 6.66 (1H, s), 6.87 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.12 (1H, dd, J=7, 8Hz), 7.29 (1H, d, J=8Hz), 7.58 (1H, dd, J=2, 8Hz), 8.05 (1H, d, J=8Hz), 8.27 (1H, d, J=8Hz)
```

- 21) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-[2-[4-(1,5-dimethyl-3-cyanopyrrol-2-y1)phenylmethyl]oxy-4methylphenyl]-N-methylbenzamide
 - NMR (CDCl₃, δ): 2.00-2.11 (2H, m), 2.14 (3H, s), 2.21 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.45 (3H, s), 3.62 (3H, s), 4.27 (2H, t, J=5Hz), 4.89 (1H, d, J=13Hz), 5.13 (1H, d, J=13Hz), 6.22 (1H, s), 6.68-6.75 (2H, m), 6.89 (1H, d, J=8Hz), 7.00-7.12 (5H, m), 7.38-7.47 (6H, m), 8.19 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
- 22) 4-[2-(3-Aminoprop-1-yloxy)benzoyl]amino-3-methoxy-N-[2-20 [4-(N,N-dimethylureido)but-1-yl]oxy-4-methylphenyl]-Nmethylbenzamide

```
NMR (CDC1<sub>3</sub>, \delta): 1.62-1.88 (4H, m), 1.90-2.15 (2H, m), 2.27 (3H, s), 2.86-2.94 (2H, m), 2.90 (6H, s), 3.22-3.35 (2H, m), 3.31 (3H, s), 3.77 (3H, s), 3.75-3.98 (2H, m), 4.27 (2H, t, J=5Hz), 6.57-6.70 (2H, m), 6.88-7.11 (6H, m), 7.42 (1H, dd, J=2, 8Hz), 8.19 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
```

- 23) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-[2-[3-(4-methylpiperazin-1-yl) carbonylpyrid-6-yl]methoxy-4methylphenyl]-N-methylbenzamide
 - NMR (CDC1₃, δ): 2.09-2.20 (2H, m), 2.28 (3H, s), 2.31 (3H, s), 2.34-2.52 (4H, m), 2.96 (2H, t, J=5Hz), 3.40 (3H, s), 3.42-3.50 (2H, m), 3.69 (3H, s), 3.70-3.84 (2H, m), 4.29 (2H, t, J=5Hz), 4.98 (1H,

20

25

- 204 -

d, J=13Hz), 5.18 (1H, d, J=13Hz), 6.62 (1H, s), 6.72 (1H, d, J=8Hz), 6.98-7.11 (5H, m), 7.26-7.34 (1H, m), 7.45 (1H, dd, J=2, 8Hz), 7.73 (1H, d, J=8Hz), 8.16 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz), 8.63 (1H, s)

- 24) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-[2-[4-(3-dimethylaminoprop-1-yloxycarbony1)aminobut-1y1]oxy-4-methylpheny1]-N-methylbenzamide
- 10 NMR (CDCl₃, δ): 1.62-1.87 (6H, m), 2.02-2.11 (2H, m), 2.27 (6H, s), 2.41 (2H, t, J=5Hz), 2.91 (2H, t, J=5Hz), 3.22 (2H, q, J=5Hz), 3.30 (3H, s), 3.78 (3H, s), 3.84-3.95 (2H, m), 4.08 (2H, t, J=5Hz), 4.27 (2H, t, J=5Hz), 6.60-6.66 (2H, m), 6.90 (1H, d, J=8Hz), 6.99-7.10 (3H, m), 7.44 (1H, dd, J=2, 8Hz), 8.18 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 25) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomopiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.50-2.18 (8H, m), 2.30 (3H, s), 2.32
 - (2H, t, J=5Hz), 2.33 (3H, s), 2.53-2.70 (4H, m), 2.93 (2H, t, J=5Hz), 3.35 (3H, s), 3.52-3.72 (4H, m), 3.80 (3H, s), 3.82-4.09 (2H, m), 4.31 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.82-7.18 (6H, m), 7.42-7.53 (1H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
- 26) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[2-[5-(2-dimethylaminoethyl)aminocarbonylpent1-y1]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.45-1.60 (2H, m), 1.66-2.15 (8H, m),
 2.22 (6H, s), 2.26 (3H, s), 2.41 (2H, t, J=5Hz),
 3.22-3.39 (2H, m), 3.31 (3H, s), 3.70-4.00 (2H, m),
 3.78 (3H, s), 4.28 (2H, t, J=5Hz), 6.37 (1H, br),

10

25

30

35

6.59 (2H, br), 6.81-7.13 (6H, m), 7.42 (1H, dd, J=2, 8Hz), 8.18 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

- 27) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methy1-N-[2-[5-[N-(2-dimethylaminoethy1)-N-methylamino-carbony1]pent-1-y1]oxy-4-methylpheny1]benzamide

 NMR (CDC13, \(\delta\)) : 1.40 (9H, s), 1.44-2.21 (8H, m), 2.25

 (3H, s), 2.27 (6H, s), 2.29-2.50 (4H, m), 2.91 (1H, s), 3.00 (2H, s), 3.26-3.51 (4H, m), 3.31 (3H, s), 3.77 (3H, br s), 3.81-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 4.88 (1H, br), 6.52-6.68 (2H, br), 6.79-7.11 (5H, m), 7.43-7.50 (1H, m), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
- 15 28) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)carbamoyl]pent-1-yl]oxy-4-methylpehenyl]benzamide

 NMR (CDCl₃, δ): 1.46-1.60 (2H, m), 1.63-1.99 (8H, m),
 2.03-2.14 (2H, m), 2.21 (2H, t, J=5Hz), 2.24 (6H,
 s), 2.29 (3H, s), 2.39 (2H, t, J=5Hz), 2.90 (2H, t, J=6Hz), 3.25-3.37 (2H, m), 3.32 (3H, s), 3.79 (3H, s), 3.81-4.01 (2H, m), 4.30 (2H, t, J=5Hz), 6.61 (2H, br), 6.85-7.14 (6H, m), 7.39-7.50 (1H, m),
 8.20 (1H, d, J=8Hz), 8.40 (1H, br)
 - 29) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methy1-N-[2-[5-[N-(3-dimethy1aminoprop-1-y1)-N-methy1carbamoy1]pent-1-y1]oxy-4-methy1pheny1]benzamide

 NMR (CDC13, 5): 1.52-1.94 (6H, m), 2.05-2.14 (2H, m),
 2.20 (3H, s), 2.21 (3H, s), 2.26 (3H, s), 2.20-2.45

 (6H, s), 2.90 (2H, t, J=5Hz), 2.91 and 2.99 (total

 3H, s, rotamer), 3.32 (3H, s), 3.40 (2H, t, J=5Hz),
 3.80 (3H, s), 4.31 (2H, t, J=5Hz), 6.55-6.67 (2H,
 m), 7.41-7.49 (2H, m), 8.21 (1H, d, J=8Hz), 8.42

 (1H, d, J=8Hz)

10

25

30

35

- 30) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide
 NMR (CDCl₂, δ): 1.43-1.95 (6H. m). 2.03-2.51 (8H. m).
 - NMR (CDCl₃, δ): 1.43-1.95 (6H, m), 2.03-2.51 (8H, m), 2.29 (3H, s), 2.94 (2H, t, J=5Hz), 2.98-3.22 (4H, m), 3.32 (3H, s), 3.46-3.58 (1H, m), 3.79 (3H, s), 3.60-4.26 (6H, m), 4.28 (2H, t, J=5Hz), 6.56-6.67 (2H, m), 6.81-7.13 (6H, m), 7.36 (1H, dd, J=8, 8Hz), 8.10-8.20 (1H, m), 8.33-8.49 (1H, m)
- 31) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.51-2.03 (6H, m), 2.09-2.19 (2H, m), 2.27 (3H, s), 2.29-2.42 (4H, m), 2.59-2.71 (2H, m), 2.94 (2H, t, J=5Hz), 2.96-3.11 (3H, m), 3.33 (3H, s), 3.78 (3H, s), 3.85-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 6.55-6.67 (2H, m), 6.81-7.12 (6H, m), 7.44 (1H, dd, J=8, 8Hz), 8.19 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 32) 4-[2-(3-Aminoprop-1-y1) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)-aminocarbonylpent-1-y1]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.46-1.89 (6H, m), 1.93-2.05 (4H, m),
 2.25 (6H, s), 2.49 (2H, t, J=5Hz), 2.52-2.62 (2H, m), 2.79-2.89 (2H, m), 2.92 (2H, t, J=5Hz), 3.31

 (3H, s), 3.79 (3H, s), 3.80-4.01 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.64 (2H, m), 6.80-7.12 (6H, m),
 7.41-7.50 (1H, m), 8.18 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 33) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[bis(2-hydroxyethy-1-yl)-aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide

20

25

30

35

- 207 -

NMR (CDCl₃, δ): 1.54-1.91 (6H, m), 2.11-2.20 (2H, m), 2.26 (3H, s), 2.38-2.59 (4H, m), 3.40-3.57 (4H, m), 3.61-3.97 (6H, m), 4.22 (2H, t, J=5Hz), 6.60-6.68 (2H, m), 6.88-7.16 (6H, m), 7.44-7.54 (1H, m), 8.12 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

34) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2,2-dimethylhydrazino)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

10 NMR (CDCl₃, δ): 1.47-1.91 (6H, m), 2.06-2.40 (4H, m), 2.28 (3H, s), 2.51 (3H, s), 2.57 (3H, s), 2.92 (2H, t, J=5Hz), 3.32 (3H, s), 3.78 (3H, s), 3.80-4.02 (2H, m), 4.28 (2H, t, J=5Hz), 6.55-6.68 (2H, m), 6.80-7.13 (5H, m), 7.46 (1H, dd, J=8Hz), 8.19 (1H, dd, J=8Hz), 8.38 (1H, br)

35) 4-[2-(3-Aminoprop-1-y1) oxybenzoy1] amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylmethylamino) carbonylpent-1-y1] oxy-4-methylphenyl] benzamide

NMR (CDCl₃, δ): 1.47-1.58 (2H, m), 1.68-1.85 (4H, m), 2.06-2.17 (2H, m), 2.27 (3H, s), 2.94 (2H, t, J=5Hz), 3.31 (3H, s), 3.80 (3H, s), 3.81-4.00 (2H, m), 3.89 (2H, d, J=5Hz), 4.28 (2H, t, J=5Hz), 5.78 (1H, br), 6.60-6.74 (3H, m), 6.90-7.13 (6H, m), 7.41-7.49 (1H, m), 8.17 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

 $\begin{array}{lll} 36) & 4-[2-(3-Aminoprop-1-yI)\ oxybenzoyl]\ amino-3-methoxy-N-methyl-N-[2-[5-(2-carbamoylethylamino)\ carbonylpent-1-yl]\ oxy-4-methylphenyl]\ benzamide \\ \end{array}$

NMR (CDCl₃, δ): 1.45-1.58 (2H, m), 1.62-1.84 (4H, m), 2.14 (2H, t, J=5Hz), 2.22 (2H, t, J=5Hz), 2.29 (3H, s), 2.40 (2H, t, J=5Hz), 2.98 (2H, br), 3.30 (3H, s), 3.40-3.55 (2H, m), 3.78 (3H, s), 3.80-4.01 (2H, m), 4.27 (2H, t, J=5Hz), 6.58-6.79 (4H, m), 6.88-

- 208 -

7.12 (6H, m), 7.41-7.49 (1H, m), 8.16 (1H, d, J=8Hz), 8.39 (1H, d, J=7Hz)

- 37) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-Nmethyl-N-[2-[5-(4-pyridylaminocarbonyl)pent-1-y1]oxy-4methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.52-1.89 (6H, m), 2.10-2.22 (2H, m),
 2.26 (3H, s), 2.45 (2H, br), 2.95 (2H, t, J=5Hz),
 3.32 (3H, s), 3.72 (3H, s), 3.82-4.00 (2H, m), 4.27

 (2H, t, J=5Hz), 6.57-6.72 (2H, m), 6.90-7.15 (6H,
 m), 7.46 (1H, dd, J=2, 8Hz), 7.56 (2H, br), 8.12
 (1H, d, J=8Hz), 8.35-8.50 (3H, m), 9.46 (1H, br)
- 38) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-Nmethyl-N-[2-[5-[4-(diethylaminopiperidin-1yl) carbonylpent-1-yl] oxy-4-methylphenyl] benzamide

 NMR (CDCl₃, δ): 1.05 (6H, t, J=5Hz), 1.35-1.95 (10H,
 m), 2.04-2.13 (2H, m), 2.28 (3H, s), 2.36 (2H, t,
 J=5Hz), 2.54 (4H, q, J=5Hz), 2.56-2.80 (2H, m),
 2.91 (2H, t, J=5Hz), 2.93-3.07 (2H, m), 3.33 (3H,
 s), 3.80 (3H, s), 3.82-4.03 (2H, m), 4.30 (2H, t,
 J=5Hz), 6.56-6.68 (2H, m), 6.81-7.12 (6H, m), 7.427.49 (1H, m), 8.22 (1H, d, J=7Hz), 8.41 (1H, d,
 J=8Hz)
 - 39) 4-[2-(3-Aminoprop-1-y1) oxybenzoy1] amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-y1) hex-1-y1] oxy-4-methylphenyl] benzamide
- NMR (CDCl₃, δ): 1.45-1.58 (2H, m), 1.62-1.84 (4H, m), 2.14 (2H, t, J=5Hz), 2.29 (3H, s), 2.40 (2H, t, J=5Hz), 2.98 (2H, br), 3.30 (3H, s), 3.40-3.55 (2H, m), 3.78 (3H, s), 3.80-4.01 (2H, m), 4.27 (2H, t, J=5Hz), 6.58-6.79 (4H, m), 7.41-7.49 (1H, m), 8.16 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

- 40) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-[2-[4-(2-pyridyl) phenylmethyl] oxy-4-methylphenyl]-Nmethylbenzamide
 - NMR (CDCl₃, δ): 1.97-2.08 (2H, m), 2.26 (3H, s), 2.85 (2H, t, J=5Hz), 3.40 (3H, s), 3.62 (3H, s), 4.26 (2H, t, J=5Hz), 4.96 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.54-6.62 (2H, m), 6.40 (1H, d, J=7Hz), 6.98-7.14 (5H, m), 7.39 (1H, d, J=8Hz), 7.39-7.49 (1H, m), 7.70 (2H, s), 7.98 (1H, d, J=8Hz), 8.22 (1H, d, J=8Hz), 8.39 (1H d, J=8Hz), 8.68 (1H, br)
- 41) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-y1)carbonylamino]but-1-y1]oxy-4-methylphenyl]-N-methylbenzamide
- 15 NMR (CDC1₃, δ): 1.62-1.88 (4H, m), 2.30-2.15 (2H, m), 2.28 (6H, s), 2.34-2.42 (4H, m), 2.93 (2H, t, J=5Hz), 3.25-3.48 (6H, m), 3.33 (3H, s), 3.79 (3H, s), 3.79-3.99 (2H, m), 4.30 (2H, t, J=5Hz), 6.58-6.70 (2H, m), 6.90-7.11 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 4-[2-(3-Aminoprop-1-y1) oxybenzoylamino]-3-methoxy-N-[2-[4-[(4-dimethylaminopiperidin-1-y1) carbonylamino] but-1y1] oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 1.44-1.98 (8H, m), 2.26 (3H, s), 2.49
 - (6H, s), 2.66-2.93 (3H, m), 3.05 (2H, t, J=5Hz), 3.25-3.32 (2H, m), 3.29 (3H, s), 3.79 (3H, s), 3.81-3.99 (2H, m), 4.15-4.29 (4H, m), 6.57-6.64 (2H, m), 6.91-7.12 (5H, m), 7.46 (1H, dd, J=2, 8Hz), 8.04 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz)

Example 47

5

10

25

30

35

The following compound was obtained by using 4-[2-(3-tert-butoxycarbonylaminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-[2-(3-tert-butoxycarbonylaminoprop-1-y1)oxy-4-

- 210 -

methyl]phenyl-N-methylbenzamide as a starting compound according to a similar manner to that of Example 45.

4-[2-(3-Aminoprop-1-y1) oxybenzoyl] amino-3-methoxy-N-[2-(3-aminoprop-1-y1) oxy-4-methyl] phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.87-1.98 (2H, m), 2.00-2.09 (2H, m), 2.25 (3H, s), 2.83-2.96 (4H, m), 3.30 (3H, s], 3.78 (3H, s), 3.87-4.10 (2H, m), 4.27 (2H, t, J=7.5Hz), 6.57-6.66 (2H, m), 6.90 (1H, m), 7.00-7.10 (3H, m), 7.42 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

Example 48

The following compounds were obtained according to a similar manner to that of Example 47.

- 1) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminoacetylaminobut-1-yl)oxy-4-methyl]phenyl-Nmethylbenzamide
- 20 MASS (m/z) : 592 (M+1)
 - 2) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[5-(piperazin-1-yl) carbonylpent-1-yl] oxy-4-methylphenyl] benzamide
- 25 NMR (CDCl₃, δ): 1.48-1.95 (6H, m), 2.07-2.20 (2H, m), 2.28 (3H, s), 2.32-2.63 (5H, m), 2.75-3.01 (3H, m), 3.21 (3H, s), 3.40-3.64 (4H, m), 3.78 (3H, s), 3.83-4.08 (2H, m), 4.27 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.82-7.17 (6H, m), 7.20-7.50 (1H, m), 8.29 (1H, d, J=7Hz), 8.39 (1H, d, J=8Hz)
 - 3) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-[2-[4-(3-aminopropionyl) aminobut-1-yl] oxy-4-methylphenyl] -N-methylbenzamide
- 35 NMR (CDCl₃, δ): 1.64-1.88 (4H, m), 2.06-2.19 (2H, m),

2.28 (3H, s), 2.32-2.46 (2H, m), 2.90-3.13 (4H, m), 3.23-3.44 (2H, m), 3.30 (3H, s), 3.77 (3H, s), 3.78-4.01 (2H, m), 4.27 (2H, br), 6.55-6.68 (2H, m), 6.88-7.11 (5H, m), 7.28-7.50 (2H, m), 8.20 (1H, d, J=8Hz) 8.31 (1H, d, J=8Hz)

- 4) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(piperidin-4-yl)carbonylaminobut-1-yl]oxy-4methylphenyl]-N-methylbenzamide
- 10 NMR (CDCl₃, δ): 1.60-1.91 (8H, m), 2.09-2.21 (2H, m), 2.28 (3H, s), 2.70 (1H, br), 2.97 (2H, t, J=5Hz), 3.11-3.40 (8H, m), 3.30 (3H, s), 3.72-3.96 (2H, m), 3.78 (3H, s), 4.28 (2H, t, J=5Hz), 6.57-6.65 (2H, m), 6.90-7.08 (4H, m), 7.23-7.28 (2H, m), 7.38-7.49 (2H, m), 8.13 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 5) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-guanidinobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide
- 20 NMR (CDC1₃, δ): 1.62-1.80 (4H, m), 2.05-2.14 (2H, m), 2.20 (3H, s), 2.55-2.70 (2H, m), 2.94 (2H, t, J=5Hz), 3.31 (3H, s), 3.62-3.73 (2H, m), 3.72 (3H, s), 4.22 (1H, d, J=5Hz), 6.48 (1H, d, J=8Hz), 6.61 (1H, s), 6.75 (1H, d, J=8Hz), 6.95-7.09 (5H, m), 7.43 (1H, dd, J=2, 8Hz), 8.03 (1H, d, J=8Hz), 8.32 (1H, d, J=8Hz)

Example 49

30

35

A solution of 4-hydroxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide (320 mg) in N,N-dimethylformamide (8 ml) was treated with sodium hydride (29.1 mg, 60% w/w in mineral oil) at 0°C. The reaction mixture was stirred at 0°C for 15 minutes and then at ambient temperature for 10 minutes. o-Nitrobenzyl bromide (143 mg) was added, and the reaction

- 212 -

mixture was stirred for 2.5 hours. The reaction was quenched with water and the mixture was diluted with ethyl acetate. The organic phase was washed with saturated aqueous sodium hydrogen carbonate, and brine. The organic solution was dried over magnesium sulfate, concentrated, and purified by silica gel column chromatography (SiO_2 15 g, 3% methanol in dichloromethane) to give 3-methoxy-4-(2-nitrobenzyloxy)-Nmethyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (210 mg).

NMR (CDC1₃, δ) : 1.43-1.59 (2H, m), 1.61-1.88 (4H, m), 2.21-2.44 (12H, m), 3.31 (3H, s), 3.42-3.52 (2H, m), 3.56-3.67 (2H, m), 3.71 (3H, s), 3.78-4.00 (2H, m), 5.46 (3H, s), 6.52-6.67 (3H, m), 6.77-6.91 (2H, m), 6.95 (1H, br s), 7.46 (1H, m), 7.64 (1H, m), 7.84 (1H, d, J=8Hz), 8.14 (1H, d, J=8Hz)

Example 50

5

10

15

35

To a solution of 4-[2-(3-aminopropylthio)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-1]20 carbonylpent-1-yloxy]phenyl]benzamide (160 mg) in methanol (5 ml) was added a suspension of sodium metaperiodate (50.6 mg) and 5 ml of water. The mixture was stirred for 20 hours at ice-bath temperature and diluted with chloroform. The lower chloroform layer was removed, and the water layer was 25 extracted with chloroform. The combined organic extracts were dried over anhydrous sodium sulfate. The solvent was removed at reduced pressure, and purified by preparative thin layer chromatography (methanol/dichloromethan/ammonia = 10/90/2) to give free amine (70 mg). To a solution of this 30 amine in ethanol (3 ml) was added 1N hydrochloric acid (0.2 ml) and stirred for 5 minutes. The solution was concentrated to give 4-[2-(3-aminopropylsulfinyl)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride.

NMR (DMSO-d₆, δ) : 1.38-1.67 (4H, m), 1.68-1.88 (2H,

- 213 -

m), 1.94-2.13 (2H, m), 2.22 (3H, s), 2.40 (2H, t, J=7Hz), 2.69-3.12 (9H, m), 3.12-3.58 (7H, m), 3.62 (3H, s), 3.80-4.17 (3H, m), 4.43 (1H, m), 6.64 (1H, d, J=8Hz), 6.83 (1H, s), 6.91 (2H, br s), 7.04 (1H, d, J=8Hz), 7.53 (1H, m), 7.68 (1H, dd, J=8, 8Hz), 7.85 (1H, dd, J=8, 8Hz), 7.90-8.19 (3H, s), 9.84 (1H, s)

Example 51

5

10

15

20

25

30

35

To a solution of 3-methoxy-4-[2-[3-(phthalimido)prop-1-yl]thiobenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (150 mg) in dichloromethane (10 ml) was added m-chloroperbenzcic acid (80.3 mg) and the mixture was stirred at ambient temperature for 2 hours. The solution was washed successively with saturated aqueous sodium hydrogen carbonate, water and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was purified by silica gel column (2% methanol in chloroform) to give 3-methoxy-4-[2-[3-(phthalimido)prop-1-yl]sulfonylbenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxylphenylbenzamide (150 mg).

MASS (m/z): 839 (M+1)

Example 52

A solution of 4-[2-[2-[(3-aminioprop-1-yl)oxy]phenyl]-vinyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (100 mg), 20% palladium hydroxide (30 mg) in methanol (5 ml) was stirred under atmospheric pressure of hydrogen at ambient temperature. After 12 hours, the reaction mixture was filtered through a bed of Celite, and the solvent was removed by rotary evaporation and the crude product was purified by NH-silica gel (chromatorex) column chromatography (SiO₂ 10 g,

- 214 -

1% methanol in chloroform) to give free amine. To the solution of amine (80 mg) in ethanol (3 ml) was added 1N hydrochloric acid (0.25 ml) and stirred for 5 minutes. The solution was evaporated to give 4-[2-[2-[(3-aminoprop-1-yl)oxy]phenyl]ethyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride (70 mg).

NMR (DMSO-d₆, δ): 1.36-1.65 (4H, m), 1.65-1.82 (2H, m), 1.97-2.13 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.58-3.11 (13H, m), 3.17 (3H, s), 3.26-3.68 (5H, m), 3.72-4.21 (5H, m), 4.42 (1H, m), 6.63 (1H, d, J=8Hz), 6.70-7.05 (8H, m), 7.13 (1H, dd, J=8, 8Hz), 8.00-8.24 (2H, m)

15 Example 53

5

10

20

25

The following compounds were obtained according to a similar manner to that of Example 10.

- 1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl)benzamide

 NMR (CDCl₃, δ): 1.43 (9H, s), 1.60-1.68 (2H, m),
 3.16-3.25 (2H, m), 3.49 (3H, s), 3.63 (3H, s),
 4.16-4.23 (2H, m), 4.73-4.80 (1H, br), 6.67-6.74
 (3H, m), 6.84-7.01 (5H, m), 7.07-7.14 (2H, m), 7.47
 (1H, t, J=8Hz), 8.16 (1H, d, J=8Hz), 8.52 (1H, d,
 J=8Hz)
 - ESI-MASS (m/z): 550 (M+H)
- 2) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4yl]oxybenzoyl]amino-N-(2-hydroxy-4-methyl)phenyl-Nmethylbenzamide

 NMR (CDCl₃, δ): 1.43 (9H, s), 1.68-2.10 (4H, m), 2.23
 (3H, s), 2.96-3.17 (2H, m), 3.36 (3H, s), 3.64-3.98
 (5H, m), 4.60 (1H, m), 6.36-7.03 (7H, m), 7.10 (1H,
 t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.19 (1H, d, J=7Hz)

3) 4-[2-(3-Amino-1-methylprop-1-y1) oxybenzoy1] amino-3-methoxy-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide NMR (DMSO-d₆, δ): 1.33 (3H, d, J=7.5Hz), 1.63-1.76 (1H, m), 1.87-1.98 (1H, m), 2.14 (3H, s), 2.65 (2H, t, J=7.5Hz), 3.18 (3H, s), 3.74 (3H, s), 4.96 (1H, m), 6.47 (1H, d, J=7Hz), 6.63 (1H, s), 6.86 (1H, d, J=7Hz), 7.91 (1H, d, J=7Hz), 7.01 (1H, s), 7.09 (1H, t, J=7Hz), 7.32 (1H, d, J=7Hz), 7.52 (1H, t, J=7Hz), 8.04 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)

10

15

5

4) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methylprop-1-yl]oxybenzoyl]amino-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.36 (3H, d, J=7.5Hz), 1.40 (9H, s), 1.80-2.10 (2H, m), 2.22(3H, s), 3.16-3.28 (2H, m), 3.35 (3H, s), 3.69 (3H, s), 4.64 (1H, m), 4.79 (1H, br), 6.52 (1H, m), 6.70-6.82 (2H, m), 6.91-7.11 (4H, m), 7.41 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 6.47 (1H, m)

20

5) 4-(2-Hydroxybenzoylamino-3-methoxy-N-(2-hydroxy-4-methylphenyl)-N-methylbenzamide
NMR (CDCl₃, δ): 2.26 (3H, s), 3.36 (3H, s), 6.56 (1H, m), 6.65-6.86 (4H, m), 6.96-7.08 (2H, m), 7.35-7.44

(2H, m), 8.20 (1H, br), 8.61 (1H, br)

25

6) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-(2-hydroxy-4-methylphenyl)-Nmethylbenzamide

30

NMR (CDC1₃, δ): 1.42 (9H, s), 1.68 (2H, br), 1.99 (2H, br), 2.22 (3H, s), 3.19 (2H, br), 3.39 (3H, s), 3.49 (2H, br), 5.03 (1H, br), 6.43-6.72 (6H, m), 7.08 (2H, br), 7.39 (1H, br), 8.21 (1H, d, J=8Hz), 8.45 (1H, br)

35

Example 54

The following compounds were obtained according to a similar manner to that of Example 12.

- 5 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-(5-ethoxycarbonylpent-1vloxy)phenyl]benzamide NMR (CDCl₃, δ): 1.21-1.29 (3H, m), 1.40 (9H, s), 1.42-1.90 (8H, m), 2.09-2.19 (2H, m), 3.27-3.34
- 10 (2H, m), 3.47 (3H, s), 3.82 (3H, s), 3.89 (2H, t, J=8Hz), 4.08-4.17 (2H, m), 4.26 (2H, t, J=8Hz), 4.70-4.77 (1H, br), 6.75 (2H, d, J=8Hz), 6.83 (1H, d, J=8Hz), 6.94-7.02 (3H, m), 7.07-7.13 (2H, m), 7.46 (1H, t, J=8Hz), 8.21 (1H, d, J=8Hz), 8.42 (1H, 15 d, J=8Hz)

ESI-MASS (m/z) : 692 (M+H)

- 2) 4-[2-Benzyloxy)benzoyl]amino-N-[2-(3-ethoxycarbonylprop-1-yl)oxy]phenyl-N-methylbenzamide
- 20 NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 2.03-2.17 (2H, m), 2.50 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.87-4.04 (2H, m), 4.16 (2H, q, J=7.5Hz), 5.19 (2H, s), 6.78 (2H, d, J=8Hz), 6.92-7.00 (3H, m), 7.07-7.21 (5H, m), 7.38-7.53 (6H, m), 8.26 (1H, d, J=7Hz) 25
- - 3) 4-(2-Iodobenzoyl)amino-N-(2-(5-ethoxycarbonylpent-1yl)oxy]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.24 (3H, t, J=7.5Hz), 1.42-1.55 (2H, m), 1.63-1.72 (2H, m), 1.76-1.88 (2H, m), 2.31 (2H, 30 t, J=7.5Hz), 3.31 (3H, s), 3.81-3.99 (2H, m), 4.11 (2H, q, J=7.5Hz), 6.76-6.83 (2H, m), 7.00 (1H, d, [J=7Hz], 8.08-7.17 (2H, m), 7.29-7.49 (5H, m), 7.66 (1H, s), 7.88 (1H, d, J=7Hz)
- 4) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-y1]-35

20

25

30

35

٠.

- 10 5) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl) aminoprop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(phthalimido)but-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ) : 1.40 (9H, s), 1.85-1.92 (2H, m),

 2.10-2.17 (2H, m), 2.27 (3H, s), 3.22-3.32 (2H,

 m), 3.28 (3H, s), 3.74-3.81 (2H, m), 3.81 (3H, s),

 3.92-4.15 (2H, m), 4.24 (2H, t, J=7.5Hz), 6.57-6.65 (2H, m), 6.83-6.90 (2H, m), 6.97-7.14 (3H, m), 7.24 (1H, t, J=7Hz), 7.69-7.77 (2H, m), 7.82-7.91 (2H, m), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide

 NMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 1.42-1.91 (6H, m), 1.45 (9H, s), 2.02 -2.12 (2H, m), 2.27 (3H, s), 2.27-2.88 (2H, m), 2.97-3.18 (2H, m), 3.32 (3H, s), 3.40 (2H, t, J=7Hz), 3.74 (3H, s), 3.89-4.00 (2H, m), 4.13 (2H, q, J=7.5Hz), 4.66 (1H, m), 6.59 (1H, d, J=7Hz), 6.61 (1H, s, J=7Hz), 6.80-6.92 (2H, m), 6.98-7.12 (3H, m), 7.43 (1H, t, J=7Hz), 8.19 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz), 8.19 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

6) 3-Methoxy-4-[2-[1-(tert-butoxycarboyl)piperidin-4-

7) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl) amino-1-methyl-prop-1-yl] oxybenzoyl] amino-N-[2-(5-ethoxycarbonylpent-1-yl) oxy-4-methyl] phenyl-N-methylbenzamide

35

- 218 -

- NMR (CDCl₃, δ): 1.24 (3H, t, J=7.5Hz), 1.38 (9H, s), 1.40 (2H, d, J=7.5Hz), 1.41-2.10 (8H, m), 2.26 (3H, s), 2.27-2.33 (2H, m), 3.23-3.30 (2H, m), 3.30 (3H, s), 3.79 (3H, s), 3.83-3.99 (2H, m), 4.12 (2H, q, J=7.5Hz), 4.62-4.77 (2H, m), 6.58-6.63 (2H, m), 6.82 (1H, t, J=7Hz), 7.01 (1H, d, J=7Hz), 7.05-7.12 (2H, m), 7.43 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)
- 10 8) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoy1]amino-3-methoxy-N-(2-methoxy-4-methylpheny1)-Nmethylbenzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 2.08-2.20 (2H, m), 2.29
 (3H, s), 3.28 (2H, q, J=5Hz), 3.31 (3H, s), 3.75 (3H,
 s), 3.80 (3H, s), 4.25 (2H, t, J=5Hz), 4.74 (1H, br),
 6.59-6.65 (2H, m), 6.89 (1H, d, J=8Hz), 7.00 (1H, d,
 J=8Hz), 7.06-7.13 (2H, m), 7.46 (1H, dd, J=2, 8Hz),
 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
- 20 9) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-pyridyl)phenylmethyl]oxy-4methylphenyl]-N-methylbenzamide
- NMR (CDCl₃, δ): 1.39 (9H, s), 2.09 (2H, t, J=5Hz),
 2.29 (3H, s), 3.27 (2H, q, J=5Hz), 3.40 (3H, s),
 3.61 (3H, s), 4.21 (2H, t, J=5Hz), 4.82 (1H, br),
 4.97 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.556.74 (2H, m), 6.89-7.12 (7H, m), 7.19-7.24 (1H, m),
 7.39 (1H, d, J=8Hz), 7.41-7.49 (1H, m), 7.70 (2H, s), 7.99 (1H, d, J=8Hz), 8.21 (1H, d, J=8Hz), 8.40
 30 (1H, d, J=8Hz), 8.67 (1H, d, J=5Hz)
 - 10) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(1,5-dimethyl-3-cyanopyrro1-2yl)phenylmethyl]oxy-4-methylphenyl)-N-methylbenzamide
 NMR (CDCl₃, δ) : 1.40 (9H, s), 2.03-2.15 (2H, m), 2.13

10

15

20

35

(3H, s), 2.30 (3H, s), 3.26 (2H, q, J=5Hz), 3.40 (3H, s), 3.46 (3H, s), 3.58 (3H, s), 4.19 (2H, t, J=5Hz), 4.86 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.65-6.73 (2H, m), 6.82 (1H, d, J=8Hz), 6.95-7.10 (4H, m), 7.34-7.44 (6H, m), 8.00 (1H, s), 8.19 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

- 11) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(thiazol-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 2.05-2.16 (2H, m), 3.27 (2H, q, J=5Hz), 3.40 (3H, s), 3.62 (3H, s), 4.20 (2H, t, J=5Hz), 4.76 (1H, br), 4.89 (1H, d, J=12Hz), 5.07 (1H, d, J=12Hz), 6.62-6.72 (2H, m), 6.89 (1H, d, J=8Hz), 6.96-7.11 (4H, m), 7.28 (1H, d, J=3Hz), 7.31 (2H, d, J=8Hz), 7.42 (1H, dd, J=2, 8Hz), 7.81 (1H, d, J=8Hz), 7.93 (2H, d, J=8Hz), 8.00 (1H, s), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
- 12) 4-[2-[3-(tert-Butoxycarbonylamio)prop-1yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(oxazol-2yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ): 1.40 (9H, s), 2.05-2.16 (2H, m), 2.29
 (3H, s), 3.27 (2H, q, J=5Hz), 3.40 (3H, s), 3.65
 (3H, s), 4.21 (2H, t, J=5Hz), 4.78 (1H, br), 4.90
 (1H, d, J=13Hz), 5.10 (1H, d, J=13Hz), 6.64 (1H,
 s), 6.70 (1H, d, J=8Hz), 6.85 (1H, d, J=8Hz), 6.987.17 (5H, m), 7.20 (1H, s), 7.30-7.49 (3H, m), 7.63
 (1H, s), 8.03 (1H, d, J=8Hz), 8.22 (1H, d, J=8Hz),
 8.40 (1H, d, J=8Hz)
 - 13) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(pyrimidin-2yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide

- 220 -

- NMR (CDCl₃, δ): 1.40 (9H, s), 2.05-2.16 (2H, m), 2.28 (3H, s), 3.28 (2H, q, J=5Hz), 3.40 (3H, s), 3.65 (3H, s), 4.22 (2H, t, J=5Hz), 4.78 (1H, br), 4.95 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.65-6.70 (2H, m), 6.88 (1H, d, J=8Hz), 6.96-7.19 (5H, m), 7.38-7.46 (3H, m), 8.21 (1H, d, J=8Hz), 8.35-8.44 (3H, m), 8.74 (1H, d, J=3Hz)
- 14) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-cyanophenylmethyl)oxy-4methylphenyl]-N-methylbenzamide

 NMR (CDCl₃, δ): 1.41 (9H, s), 2.08-2.20 (2H, m), 2.30
 (3H, s), 3.30 (2H, q, J=5Hz), 3.40 (3H, s), 3.68
 (3H, s), 4.26 (2H, t, J=5Hz), 4.89 (1H, d, J=13Hz),
 5.09 (1H, d, J=13Hz), 6.60 (1H, s), 6.73 (1H, d, J=8Hz), 6.98-7.12 (5H, m), 7.39-7.52 (3H, m), 7.68
 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.34 (1H, d, J=8Hz)
- 20 15) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-phthalimidobut-1yl]oxy-4-methylphenyl]-N-methylbenzamide

 NMR (CDCl₃, δ): 1.40 (9H, s), 1.72-1.95 (4H, m),
 2.08-2.19 (2H, m), 2.29 (3H, s), 3.31 (2H, q,
 J=5Hz), 3.33 (3H, s), 3.79 (2H, t, J=5Hz), 3.81
 (3H, s), 3.84-4.06 (2H, m), 4.25 (2H, t, J=5Hz),
 4.82 (1H, br), 6.57 (1H, d, J=8Hz), 6.62 (1H, s),
 6.81-6.89 (2H, m), 6.97 (1H, d, J=8Hz), 7.04-7.10
 (2H, m), 7.40-7.48 (1H, m), 7.68-7.74 (2H, m),
 7.81-7.89 (2H, m), 8.20 (1H, d, J=8Hz), 8.39 (1H,
 d, J=8Hz)
- 16) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoy1]amino-3-methoxy-N-[2-(3-methoxycarbonylpyrid-6y1)methoxy-4-methylpheny1]-N-methylbenzamide

- 221 -

NMR (CDCl₃, δ): 1.39 (9H, s), 2.07-2.16 (2H, m), 2.27 (3H, s), 3.29 (2H, q, J=5Hz), 3.42 (3H, s), 3.63 (3H, s), 3.89 (3H, s), 4.24 (2H, t, J=5Hz), 4.95 (1H, d, J=12Hz), 5.08 (1H, d, J=12Hz), 6.58 (1H, s), 6.73 (1H, d, J=8Hz), 6.89 (1H, d, J=8Hz), 6.98 (2H, d, J=8Hz), 7.05-7.12 (3H, m), 7.34 (1H, d, J=8Hz), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.28 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 9.14 (1H, s)

10

5

20

30

35

Example 55

The following compound was obtained according to a similar manner to that of Example 35.

15 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoylamino-3-methoxy-N-[2-[4-(tert-butoxycarbonylguanidino)but-1y1]oxy-4-methylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.43 (9H, s), 1.44 (9H, s), 1.52-1.60 (2H, m), 1.65-1.74 (2H, m), 1.92-2.07 (2H, m), 2.21 (3H, s), 3.10-3.25 (4H, m), 3.38 (3H, s), 3.50 (2H, br), 3.66 (3H, br), 3.78-4.05 (2H, m), 6.49 (2H, br), 6.63-6.82 (3H, m), 7.01-7.10 (2H, m), 7.38 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.44 (1H, br)

25 Example 56

The following compounds were obtained according to a similar manner to that of Example 10.

- 222 -

t, J=8Hz), 8.12-8.22 (1H, br), 8.28 (1H, d, J=8Hz), 9.72-9.80 (1H, br) ESI-MASS (m/z) : 526 (M+H)

- 5 2) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]- ${\tt amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-methylp$ yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.42 (9H, s), 1.50-1.90 (8H, m), 2.20-2.22 (2H, m), 2.27 (3H, s), 2.32 (3H, s), 10 2.35-2.53 (6H, m), 3.29 (3H, s), 3.32-3.42 (2H, m), 3.50-3.66 (3H, m), 3.72 (2H, br), 3.89 (1H, br), 4.20 (2H, t, J=6Hz), 5.29 (1H, br), 6.54 (1H, s), 6.67 (1H, d, J=7Hz), 6.72 (1H, br), 6.96-7.10 (4H, m), 7.40-7.47 (1H, m), 8.10 (1H, br), 8.27 (1H, d, J=6Hz)
- 15

Example 57

To a solution of 4-[(2-benzyloxy)benzoyl]amino-3-[(2- $\verb|benzyloxy| benzoyl] oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-$ 20 yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (1.2 g) in ethanol (20 ml) was added 1N sodium hydroxide solution (10 ml) and the mixture was stirred at ambient temperature for 2hours. The mixture was concentrated in vacuo and the solution was adjusted to pH 7 with 1N hydrochloric acid. The 25 solution was extracted with ethyl acetate (20 \mbox{ml}) and the organic layer was washed with brine (20 ml). The organic layer was dried over magnesium sulfate and the solution was concentrated in vacuo to give 4-[(2-benzyloxy)benzoyl]amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-

30 yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (930 mg) NMR (CDC1₃, δ): 1.48-1.59 (2H, m), 1.70 (4H, br), 2.29-2.42 (13H, m), 3.29 (3H, s), 3.48 (2H, br), 3.53 (2H, br), 3.80 (1H, br), 3.90 (1H, br), 5.28 (2H, s), 6.53-6.65 (3H, m), 6.72 (1H, br), 6.90-35 7.12 (4H, m), 7.34-7.37 (3H, m), 7.40-7.49 (4H, m),

- 223 -

8.20-8.27 (1H, m)

Example 58

5

٠,

The following compounds were obtained according to a similar manner to that of Example 12.

- 1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-ethoxycarbonylmethoxy-N-methyl-Ncyclohexylbenzamide
- 10 NMR (CDCl₃, 8): 1.29 (3H, t, J=8Hz), 1.41 (9H, s), 1.45-1.85 (10H, m), 2.07-2.12 (2H, m), 2.86-3.06 (3H, br), 3.25-3.32 (2H, m), 4.22-4.33 (4H, m), 4.76 (2H, s), 4.98-5.07 (1H, br), 6.91 (1H, s), 7.01-7.15 (3H, m), 7.48 (1H, t, J=8Hz), 8.23 (1H, 15 d, J=8Hz), 8.69 (1H, d, J=8Hz)

ESI-MASS (m/z) : 634 (M+Na)

- 2) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-isopropoxy-N-methyl-N-[2-[5-(4-methylpiperazin-20 1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDC1₃, 8) : 1.19-1.28 (6H, m), 1.38 (9H, s), 1.46-1.58 (2H, m), 1.65-1.88 (6H, m), 1.99-2.10 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.32-2.42 (6H, m), 3.15-3.23 (2H, m), 3.31 (3H, s), 3.45-3.50 (2H, 25 m), 3.60-3.64 (2H, m), 3.84-3.97 (2H, m), 4.24-4.36 (3H, m), 6.56-6.65 (2H, m), 6.85 (1H, d, J=7Hz), 6.94-7.02 (3H, m), 7.10 (1H, t, J=6Hz), 7.47 (1H, t, J=7Hz), 8.15 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz)
- 30 3) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-3-propoxybenzamide NMR (CDC1₃, δ): 0.97 (3H, t, J=7Hz), 1.42 (9H, s), 1.47-1.58 (2H, m), 1.67-1.88 (8H, m), 1.98-2.10 35 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.31-2.41 (6H,

15

20

25

30

35

- 224 -

```
m), 3.16-3.26 (2H, m), 3.31 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.84-3.97 (4H, m), 4.26 (2H, t, J=7Hz), 6.58 (1H, d, J=7Hz), 6.64 (1H, s), 6.84 (1H, d, J=6Hz), 6.95 (1H, d, J=7Hz), 6.99-7.03 (2H, m), 7.09 (1H, t, J=7Hz), 7.45 (1H, t, J=7Hz), 8.16 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
```

4) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]benzoy1]amino-3-(3-ethoxycarbonylprop-1-y1)oxy-N-methyl-N-[2-[5(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4methylphenyl]benzamide
NMR (CDC1₃, δ): 1.11 and 1.23 (total 3H, t, J=6Hz),

NMR (CDC1₃, δ): 1.11 and 1.23 (total 3H, t, J=6Hz),
1.40 (9H, s), 1.48-1.60 (2H, m), 1.60-1.75 (4H, m),
1.75-1.88 (2H, m), 1.98-2.10 (4H, m), 2.26 (3H, s),
2.29 (3H, s), 2.32-2.42 (8H, m), 3.18-3.28 (2H, m),
3.30 (3H, s), 3.45-3.50 (2H, m), 3.62 (2H, br),
3.88-4.10 (5H, m), 4.27 (2H, t, J=6Hz), 6.57 (1H,
d, J=7Hz), 6.63 (1H, s), 6.82 (1H, d, J=7Hz), 6.876.92 (1H, m), 6.98-7.10 (3H, m), 7.42 (1H, t,
J=6Hz), 8.10-8.13 (1H, m), 8.37 (1H, d, J=7Hz)

5) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-y1)oxy]-benzoyl]amino-3-ethoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

MMR (CDCl₃, δ): 1.29 (3H, t, J=7Hz), 1.39 (9H, s),
1.46-1.90 (8H, m), 2.00-2.10 (2H, m), 2.28 (3H, s),
2.29 (3H, s), 2.30-2.42 (6H, m), 3.18-3.29 (2H, m),
3.30 (3H, s), 3.42-3.50 (2H, m), 3.58-3.65 (2H, m),
3.85-3.97 (2H, m), 4.18-4.29 (4H, m), 4.52 (2H, s),
6.52-6.13 (2H, m), 6.80 (1H, d, J=7Hz), 6.89-6.99
(3H, m), 7.38-7.48 (1H, m), 8.15 (1H, d, J=7Hz),
8.41 (1H, d, J=7Hz)

6) 4-[(2-Benzyloxy)benzoyl]amino-3-ethoxyl-N-methyl-N-[2-

[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide

NMR (CDCl₃, δ): 1.08 (3H, t, J=6Hz), 1.45-1.57 (2H,
m), 1.60-1.75 (2H, m), 1.77-1.87 (2H, m), 2.25 (3H,
s), 2.29 (3H, s), 2.31-2.39 (7H, m), 3.30 (3H, s),
3.46-3.49 (2H, m), 3.60-3.63 (2H, m), 3.70-3.80
(2H, m), 3.82-3.98 (2H, m), 5.34 (2H, s), 6.52-6.60
(2H, m), 6.80-7.10 (5H, m), 7.27-7.38 (6H, m),
8.20-8.22 (1H, m), 8.38-8.43 (1H, m)

10

30

35

5

Example 59

The following compounds were obtained according to a similar manner to that of Example 4.

- 25 2) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3carboxymethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 dihydrochloride
 - NMR (DMSO-d₆, δ): 1.38-1.49 (2H, m), 1.49-1.62 (2H, m), 1.67-1.78 (2H, m), 2.02-2.34 (13H, m), 2.78-2.89 (2H, m), 3.38-3.43 (4H, m), 3.58 (3H, s), 3.89-3.96 (2H, m), 4.00-4.18 (2H, m), 4.30 (2H, br), 6.62 (1H, d, J=6Hz), 6.72-6.87 (3H, m), 6.89-6.97 (1H, m), 7.11 (1H, t, J=7Hz), 7.19 (1H, d, J=7Hz), 7.54 (1H, t, J=6Hz), 7.94 (1H, d, J=6Hz),

WO 96/41795

5

25

30

35

- 226 -

8.22 (1H, d, J=7Hz)

3) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-carboxymethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide MASS (m/z) : 804 (M+H)

Example 60

10 To a mixture of 4-(2-iodobenzoyl)amino-N-methyl-N-[2-[5- $(4-{\tt methylpiperazin-1-yl}) \verb| carbonylpent-1-yl] \verb| oxy| phenylbenzamide$ $(1.12\ \mathrm{g})$ and 3-butyn-1-ol (153 mg) in a mixture of tetrahydrofuran (15 ml) and ethylamine (15 ml) were added bis(triphenylphosphine)palladium(II) chloride (23.5 mg) and 15 copper (I) iodide (3.19 mg) and the mixture was refluxed for 8 hours. The solution was diluted with chloroform (50 ml) and the solution was washed with water and brine. The solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The oil was purified by 20 silica gel column (2% methanol in chloroform) to give 4-[2-(4-hydroxy-1-butyn-1-y1)benzoyl]amino-N-methyl-N-[2-[5-(4- ${\tt methylpiperazin-l-yl)} \ {\tt carbonylpent-l-yl]} \ {\tt oxy)} \ {\tt phenylbenzamide}$

NMR (CDC1₃, δ): 1.44-1.57 (2H, m), 1.61-1.86 (4H, m), 2.27 (3H, s), 2.29-2.40 (6H, m), 2.70 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.44-3.49 (2H, m), 3.53-3.60 (2H, m), 3.74 (2H, t, J=7.5Hz), 3.79-3.99 (2H, m), 6.76-6.84 (2H, m), 7.06 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.34 (2H, d, J=8Hz), 7.40-7.47 (2H, m), 7.48-7.56 (3H, m), 7.99 (1H, m), 9.19 (1H, s)

Example 61

To an ice cooled solution of 4-[2-(4-hydroxy-1-butyn-1-y1)benzoy1]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1]carbonylpent-1-y1]oxy]phenylbenzamide (755 mg) in

10

15

20

30

35

dichloromethane (20 ml) were added triethylamine (150 mg) and methanesulfonyl chloride (156 mg), and the mixture was stirred in an ice bath for 2 hours. The solution was washed successively with water, 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-(4-methanesulfonyloxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (768 mg).

NMR (CDCl₃, δ): 1.49-1.60 (2H, m), 1.67-1.86 (2H, m), 1.87-1.90 (2H, m), 2.37 (2H, t, J=7.5Hz), 2.68 (3H, s), 2.86-3.06 (6H, m), 2.92 (3H, s), 3.31 (3H, s), 3.77-4.02 (6H, m), 4.32 (2H, t, J=7.5Hz), 6.77-6.87 (2H, m), 7.04 (1H, d, J=7Hz), 7.17 (1H, t, J=7Hz), 7.32 (2H, d, J=8Hz), 7.41-7.53 (5H, m), 7.90 (1H, m), 8.86 (1H. s)

..., ,..., .,

Example 62

The following compounds were obtained according to a similar manner to that of Example 61.

- 1) 4-[2-(4-Methanesulfonyloxybut-1-yl)benzoyl]amino-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yl]oxy]phenylbenzamide
- 25 MASS (m/z) : 693 (M+1)
 - 2) 4-[2-(3-Methanesulfonyloxyprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.48-1.60 (2H, m), 1.65-1.74 (2H, m),
 - NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.65-1.74 (2H, m), 1.75-1.86 (2H, m), 1.98-2.07 (2H, m), 2.26 (3H, s), 2.30-2.39 (2H, m), 2.70-2.78 (4H, m), 2.79-3.42 (2H, m), 2.90 (3H, s), 2.95-3.07 (2H, m), 3.26 (3H, s), 3.71 (3H, s), 3.80-4.01 (4H, m), 4.29 (2H, t, J=7.5Hz), 6.56-6.66 (2H, m), 6.82-7.00 (3H, m),

10

15

20

- 228 -

7.30 (1H, m), 7.39-7.47 (2H, m), 7.60 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz), 8.58 (1H, s)

Example 63

A mixture of 4-[2-(4-methanesulfonyloxy-1-butyn-1yl)benzoyl}amino-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide (800 mg) and potassium phthalimide (430 mg) in dimethyl sulfoxide (20 ml) was stirred at $60\,^{\circ}\text{C}$ for 5 hours, and the solution was diluted with ethyl acetate (60 ml). The solution was washed with water and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[4-(phthalimido)-1-butyn-1-yl]benzoyl]amino-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (620 mg).

NMR (CDC1₃, δ) : 1.50-1.61 (2H, m), 1.67-1.92 (6H, m), 2.30 (3H, s), 2.33-2.44 (6H, m), 3.38 (3H, s), 3.48-3.52 (2H, m), 3.60-3.67 (2H, m), 3.84-4.01 (4H, m), 6.78-6.85 (2H, m), 7.02 (1H, d, J=7Hz), 7.09-7.19 (2H, m), 7.30-7.70 (6H, m), 7.70-7.77 (2H, m), 7.81-7.90 (2H, m), 8.18 (1H, m)

Example 64

The following compounds were obtained according to a 25 similar manner to that of Example 63.

- 1) 4-[2-[4-(Phthalimido)but-1-y1]benzoy1]amino-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenyl-Nmethylbenzamide
- 30 MASS (m/z) : 693 (M+1)
 - 2) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]thiobenzoy1]-yl)carbonylpent-1-yl]oxy]phenylbenzamide
- 35 NMR (CDC1₃, δ): 1.47-1.59 (2H, m), 1.61-1.74 (2H, m),

- 229 -

1.78-1.87 (2H, m), 1.92-2.03 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.31-2.42 (6H, m), 2.94 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.45-3.53 (2H, m), 3.58-3.67 (2H, m), 3.69-3.81 (2H, m), 3.73 (3H, s), 3.84-4.00 (2H, m), 6.55-6.66 (2H, m), 6.80-6.92 (2H, m), 7.02 (1H, s), 7.27 (1H, m), 7.34-7.44 (2H, m), 7.60-7.90 (5H, m), 8.25 (1H, d, J=7Hz), 8.82 (1H, s)

10 Example 65

5

15

20

25

30

35

To an ice cooled mixture of 4-[2-(4-amino-1-butyn-1yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yl]oxy]phenylbenzamide (310 mg), nickel chloride hexahydrate (181 mg) in a mixture of tetrahydrofuran (5 ml) and methanol (5 ml) was added sodium borohydride (96.2 mg) in small portions and the mixture was stirred at the same temperature for 2 hours. The mixture was filtered through bed of Celite and the filtrate was evaporated in vacuo. The residue was dissolved in chloroform (20 ml) and washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a syrup. The residue was purified by silica gel column (chloroform:methanol:ammonia = 100:10:1) to give 4-[2-(4aminobut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (295 mg).

MASS (m/z) : 597 (M+1)

Example 66

The following compound was obtained according to a similar manner to that of Example 65.

 $\label{eq:condition} $4-[2-(4-hydroxybut-1-y1)benzoy1]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy]phenylbenzamide $$MASS (m/z) : 615 (M+1)$$

10

20

35

Example 67

A mixture of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl) carbonyl]phenylmethoxy]phenylbenzamide (200 mg) and salicyl aldehyde (48.6 mg) in
methanol (10 ml) was refluxed overnight in the presence of 3Å
molecular sieves (100 mg). The solution was filtered and the
filtrate was treated with sodium borohydride (15.1 mg) at 5°C
for 2 hours. The reaction mixture was diluted with
chloroform (20 ml) and the solution was washed with water and
brine. The organic solution was dried over magnesium sulfate
and the solvent was evaporated in vacuo to give a crude oil.
The product was purified by silica gel column (2% methanol in
chloroform) to give 3-methoxy-4-(2-hydroxyphenyl)methylaminoN-methyl-N-[4-rethyl-2-[4-(4-methylpiperazin-1-

15 yl)carbonyl]phenylmethoxy]phenylbenzamide (152 mg).

NMR (CDC1₃, \(\delta\)): 2.27 (3H, s), 2.32 (3H, s), 2.32-2.59 (4H, m), 3.34 (3H, s), 3.40-3.55 (2H, m), 3.52 (3H, s), 3.75-3.88 (2H, m), 4.25-4.34 (2H, m), 4.63 (1H, br), 4.42 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.43 (1H, d, J=7Hz), 6.62 (1H, s), 6.70 (1H, d, J=7Hz), 6.80-6.88 (4H, m), 7.00 (1H, d, J=7Hz), 7.09-7.18 (2H, m), 7.28 (2H, d, J=8Hz), 7.38 (2H, d, J=8Hz)

25 Example 68

The following compound was obtained according to a similar manner to that of Example 67.

3-Methoxy-4-(2-hydroxyphenyl)methylamino-N-methyl-N-{4-30 methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yl]oxy]phenylbenzamide

NMR (CDCl $_3$, δ): 1.41-1.52 (2H, m), 1.60-1.69 (2H, m), 1.70-1.80 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.30-2.43 (6H, m), 3.28 (3H, s), 3.34-3.48 (2H, m), 3.55 (3H, s), 3.65-4.00 (2H, m), 4.30 (2H, d,

- 231 -

J=7Hz), 4.62 (1H, br t, J=7Hz), 6.51 (1H, d, J=7Hz), 6.57-6.64 (2H, m), 6.76-6.95 (5H, m), 7.61-7.68 (2H, m)

5 Example 69

10

15

20

25

To an ice bath cooled solution of 4-(2-dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxylphenylbenzamide (860 mg) in N,N-dimethylformamide (15 ml) was added sodium hydride (60% in oil, 71 mg) and the solution was stirred at the same temperature for 30 minutes. Iodomethane (0.121 ml) was added to the solution and the mixture was stirred at ambient temperature for 3 hours. The mixture was diluted with ethyl acetate (50 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a crude oil. The crude product was purified by silica gel column chromatography (1% methanol in chloroform) to give 4-(2-dimethylamino-4-methyl)-phenoxymethyl-N-[2-(5-ethoxycarbonylpent-1-yl) oxy]phenyl-N-methylbenzamide (632 mg).

NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.42-1.55 (2H, m), 1.63-1.74 (2H, m), 1.76-1.87 (2H, m), 2.20 (3H, s), 2.23 (3H, s), 2.33 (2H, t, J=7.5Hz), 2.72 (6H, s), 3.30 (3H, s), 3.76-3.97 (2H, m), 4.12 (2H, q, J=7.5Hz), 5.02 (2H, s), 6.52-6.60 (3H, m), 6.70 (1H, d, J=7Hz), 6.80-6.88 (2H, m), 7.20 (2H, d, J=8Hz), 7.31 (2H, d, J=8Hz)

Example 70

The following compound was obtained by using 3-methoxy-4-[2-[3-(tert-butoxycarbonyl)] aminoprop-1-yl]oxybenzoyl]amino-N-[2-(4-aminobut-1-yl)] oxy-4-methyl]phenyl-N-methylbenzamide as a starting compound according to a similar manner to that of Example 14.

30

10

15

20

25

3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-(4-acetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.65-1.82 (4H, m), 1.76 (3H, s), 2.05 (3H, s), 2.07-2.21 (2H, m), 2.26 (3H, s), 3.22-3.38 (2H, m), 3.38 (3H, s), 3.77 (3H, s), 3.77-3.96 (2H, m), 4.24 (2H, t, J=7.5H2), 6.53-6.71 (2H, m), 6.93-7.14 (5H, m), 7.25 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.43 (7H, d, J=7Hz)

Example 71

To a mixture of 3-methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-(4-aminobut-1-yl)oxy-4methyl]phenyl-N-methylbenzamide (365 mg) and N-(tertbutoxycarbonyl)glycine (111 mg) in N,N-dimethylformamide (15 ml) were added N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (132 mg) and hydroxybenzotriazole (93.2 mg) and the mixture was stirred at ambient temperature overnight. The solution was diluted with ethyl acetate (30 ml) and the solution was washed successively with saturated aqueous sodium hydrogen carbonate, water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an amorphous. The crude product was purified by silica gel column chromatography (1% methanol in chloroform) to give 3-methoxy-4-[2-[3-tertbutoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-{2-4-(tertbutoxycarbonylamino)acetylaminobut-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide (320 mg).

NMR (CDCl₃, δ): 1.39 (9H, s), 1.42 (9H, s), 1.58-1.70 (2H, m), 1.70-1.80 (2H, m), 2.05-2.17 (2H, m), 2.27 (3H, s), 3.20-3.34 (4H, m), 3.30 (3H, s), 3.70-3.95 (4H, m), 3.74 (3H, s), 4.22 (2H, t, J=7.5Hz), 6.56-6.68 (2H, m), 6.88-7.11 (5H, m), 7.45 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)

30

Example 72

5

10

15

20

25

The following compounds were obtained according to a similar manner to that of Example 71.

- 1) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-[3-(tert-butoxycarbonyl)aminopropionylamino]but-1-yl]oxy-4-methylphenyl]-Nmethylbenzamide
 - NMR (CDCl₃, δ): 1.40 (9H, s), 1.41 (9H, s), 1.60-1.82 (4H, m), 2.10-2.19 (2H, m), 2.29 (3H, s), 2.48 (2H, br), 3.25-3.42 (6H, m), 3.32 (3H, s), 3.79 (3H, s), 3.80-3.97 (2H, m), 4.25 (2H, t, J=5Hz), 6.59 (1H, s), 6.67 (1H, d, J=8Hz), 6.94-7.11 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
 - 2) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoy1]amino-3-methoxy-N-[2-[4-([1-(tert-butoxycarbony1)piperidin-4-y1]carbonylamino]but-1-y1]oxy-4methylpheny1]-4-methylbenzamide
 - NMR (CDCl₃, δ): 1.40 (9H, s), 1.44 (9H, s), 1.60-1.81 (8H, m), 2.08-2.18 (2H, m), 2.29 (3H, s), 2.70 (1H, br), 3.30 (2H, q, J=5Hz), 3.32 (3H, s), 3.76 (3H, s), 3.76-4.15 (6H, m), 4.22 (2H, t, J=5Hz), 6.59 (1H, s), 6.65 (1H, d, J=8Hz), 6.94-7.10 (6H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

Example 73

To an ice-cooled mixture of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N[2-(4-aminobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide
(430 mg) and triethylamine (68 mg) in dichloromethane (10 ml)
was added phenyl chlorocarbonate (106 mg) dropwise and the

35 solution was stirred at the same temperature for 30 minutes.

- 234 -

The resulting mixture was diluted with dichloromethane (10 ml) and the solution was washed successively with 1Nhydrochloric acid saturated aqueous sodium hydrogen carbonate and brine. The solvent was dried over magnesium sulfate and removed under reduced pressure to give 4-[2-[3-(tert- $\verb|butoxycarbonylamino|| \verb|prop-1-yl|| oxybenzoyl|| \verb|amino-3-methoxy-N-||$ $\label{eq:condition} \begin{tabular}{ll} (2-(4-phenoxycarbonylaminobut-1-yl) oxy-4-methylphenyl]-N-\\ \end{tabular}$ methylbenzamide (471 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.60-1.90 (4H, m), 2.08-2.17 (2H, m), 2.29 (3H, s), 3.27 (2H, q, J=5Hz), 3.31 (2H, t, J=5Hz), 3.36 (3H, s), 3.78 (3H, s), 3.82-4.00 (2H, m), 4.21 (2H, t, J=5Hz), 4.73 (1H, br), 5.38 (1H, br), 6.61-6.68 (2H, m), 6.91-6.99 (4H, m), 7.06-7.20 (5H, m), 7.30-7.38 (2H, m), 7.42 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

Example 74

5

10

15

25

30

35

A mixture of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-20 yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4methylphenyl]-N-methylbenzamide (120 mg) and 3-(dimethylamino)prop-1-yl phenyl carbonate (127 mg) in N,Ndimethylformamide (5 ml) was stirred at $50\,^{\circ}\text{C}$ for 8 hours. The reaction mixture was diluted with ethyl acetate (15 ml) and the solution was washed successively with saturated aqueous sodium bicarbonate solution and brine. The solution was dried over potassium carbonate. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO $_2$ 20 g, 3-15% methanol in chloroform) to give 4-[2-[3-(tert-butoxycarbonylamino)prop-1-y1]oxybenzoyl]amino-3-methoxy-N-[2-(3-dimethylaminoprop-1-yl)oxycarbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide (64 mg). NMR (CDCl₃, δ): 1.40 (9H, s), 1.62-1.87 (6H, m),

2.05-2.18 (2H, m), 2.28 (3H, s), 2.30 (6H, s), 2.44 (2H, t, J=5Hz), 3.20-3.32 (4H, m), 3.32 (3H, s),

- 235 -

3.78 (3H, s), 3.80-4.00 (2H, m), 4.12 (2H, t, J=5Hz), 4.24 (2H, t, J=5Hz), 6.59-6.64 (2H, m), 6.88-7.12 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.21 (1H, d, J=8Hz), 8.40 (1H, br)

Example 75

5

10

15

20

25

30

35

To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]-benzamide (192 mg) in methanol (5 ml) was added sodium borohydride (19 mg) at ambient temperature and the mixture was stirred at the same temperate for 1 hour. The reaction was quenched with 0.5N hydrochloric acid (10 ml) and the mixture was extracted with chloroform (15 ml x 3). The organic layer was washed with aqueous sodium hydrogen carbonate and brine, and the solution was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-y1)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide (199 mg).

NMR (CDCl₃, δ): 1.39 (9H, s), 1.41-1.99 (10H, m),

NMR (CDCl₃, δ): 1.39 (9H, s), 1.41-1.99 (10H, m), 2.05-2.20 (2H, m), 2.27 (3H, s), 2.30-2.51 (2H, m), 3.01-3.22 (2H, m), 3.30 (3H, s), 3.65-4.14 (7H, m), 3.76 (3H, s), 4.22 (2H, t, J=5Hz), 6.52-6.67 (2H, m), 6.78-7.10 (5H, m), 7.38-7.47 (1H, m), 8.19 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

Example 76

To a mixture of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]-benzamide (250 mg), ammonium acetate (51 mg) and acetic acid (0.5 ml) in methanol (10 ml) was added sodium cyanoborohydride (21 mg) at 0°C and the mixture was stirred at ambient temperature for 12 hours. The mixture was poured

10

15

20

25

30

35

into ice-cooled 1N aqueous sodium hydroxide solution (15 ml) and the solution was extracted with chloroform (15 ml x 3). The organic layer was washed with brine and dried over potassium carbonate. The solvent was evaporated in vacuo and the residue was purified by silica gel column chromatography ($\sin O_2$ 40 g, 5-15% methanol in chloroform) to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (91 mg).

NMR (CDCl₃, \(\delta\)): 1.41 (9H, s), 1.45-2.01 (12H, m),
2.09-2.20 (2H, m), 2.28 (3H, s), 2.23-2.45 (4H, m),
2.56-2.71 (1H, br), 2.93-3.12 (2H, m), 3.25-3.36
(2H, m), 3.32 (3H, s), 3.79 (3H, s), 3.81-4.02 (2H,
m), 4.23 (2H, t, J=5Hz), 4.91-4.08 (1H, br), 6.566.68 (2H, m), 6.82-7.13 (5H, m), 7.45 (2H, d,
J=8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

Example 77

The following compound was obtained according to a similar manner to that of Example 76.

4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-yl)hex1-yl]oxy-4-methylphenyl]benzamide

NMR (CDC1₃, δ): 1.39 (9H, s), 1.45-1.84 (8H, m), 2.09-2.22 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.32-2.59 (8H, m), 3.32 (1H, q, J=5Hz), 3.34 (3H, s), 3.80 (3H, s), 3.82-4.01 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.65 (2H, m), 6.82-7.12 (6H, m), 7.43-7.50 (1H, m), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 78

To a mixture of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-carboxypent-1-

yl]oxy-4-methylphenyl]benzamide (250 mg), 2-dimethylamino-ethanol (99 mg) and 4-dimethylaminopyridine (36 mg) in dichloromethane (10 ml) was added N-ethyl-N'-(3-dimethylaminoprop-1-yl)carbodiimide hydrochloride (71 mg) at 0°C and stirred at the same temperature for 7 hours. The mixture was diluted with chloroform (20 ml) and the solution was washed with water (20 ml x 2) and brine. The solution was dried over magnesium sulfate and the solvent was removed under reduced pressure. This residue was purified by silica gel column chromatography (SiO₂ 30 g, 1-10% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethyl-aminoeth-1-yl)oxycarbonylpent-1-yl]oxy-4-methylpheyl]-benzamide (238 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.57 (2H, m), 1.65-1.90 (4H, m), 2.10-2.21 (2H, m), 2.28 (9H, s), 2.39 (2H, t, J=5Hz), 2.55 (2H, t, J=5Hz), 3.30 (2H, t, J=5Hz), 3.32 (3H, s), 3.79 (3H, s), 3.82-4.00 (2H, m), 4.18 (2H, t, J=5Hz), 4.24 (2H, t, J=5Hz), 4.75-4.86 (1H, br), 6.54-6.67 (2H, m), 6.81-7.11 (5H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=8Hz), 8.49 (1H, d, J=8Hz),

Example_79

5

10

15

20

25

30

35

To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methylphenyl]benzamide (400 mg) in tetrahydrofuran (5 ml) was added lithium aluminum hydride (12 mg) at -23°C and the mixture was stirred at 0°C for 3 hours. The reaction was quenched with slow addition of 0.5N hydrochloric acid (15 ml) and the solution was stirred at ambient temperature for 20 minutes. The solution was extracted with chloroform (15 ml x 3) and the organic layer was washed with aqueous saturated sodium bicarbonate solution and brine. The solution was dried over magnesium sulfate and

- 238 -

the solvent was removed under reduced pressure to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(6-hydroxyhex-1-yl)oxy-4-methylphenyl]benzamide (456 mm).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-2.20 (10H, m), 2.27 (3H, s), 3.30 (2H, q, J=5Hz), 3.32 (3H, s), 3.64 (2H, t, J=5Hz), 3.78 (3H, s), 3.81-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 6.57-6.63 (2H, m), 6.84-7.13 (6H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=7Hz) 8.41 (1H, d, J=7Hz)

Example 80

5

10

15

20

25

30

35

To a solution of oxalyl chloride (95 mg) in dichloromethane (10 ml) was added dimethyl sulfoxide (117 mg) dropwise at -78°C. The mixture was warmed to -15°C and a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(6-hydroxyhex-1vl)oxv-4-methylphenyl]benzamide (450 mg) in dichloromethane (10 ml) was added thereto. After being stirred at the same temperature for 10 minutes, to the reaction mixture was added triethylamine (343 mg) and stirred at the same temperature for 5 minutes. The resulting solution was warmed to ambient temperature and poured into water. The mixture was extracted with chloroform (15 ml \times 3) and the organic layer was washed with brine. The solution was dried over magnesium sulfate and the solvent was evaporated to give 4-[2-(3-tert- $\verb|butoxycarbonylaminoprop-1-yl|| oxybenzoyl| amino-3-methoxy-N$ methyl-N-[2-(5-formylpent-1-yl)oxy-4-methylphenyl]benzamide (546 mg)

NMR (CDCl₃, δ): 1.40 (9H, s), 1.50-1.91 (6H, m), 2.11-2.23 (2H, m), 2.27 (3H, s), 2.50 (2H, t, J=5Hz), 3.31 (1H, q, J=5Hz), 3.34 (3H, s), 3.79 (3H, s), 3.85-4.00 (2H, m), 4.27 (2H, t, J=5Hz), 6.60-6.68 (2H, m), 6.81-7.12 (6H, m), 7.42-7.51 (1H, m), 8.21 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz),

WO 96/41795

5

10

15

20

25

30

35

- 239 -

9.89 (1E, s)

Example 81

To a solution of 4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-cyanophenylmethyl)oxy-4-methylphenyl]-N-methylbenzamide (360 mg) in xylene (8 ml) was added trimethyltin azide (218 mg) and the solution was stirred at 120°C for 3 days. The solution was cooled to ambient temperature and 12N hydrochloric acid (10 ml) was added to the solution to decompose tin salt of the tetrazole compound and the excess reagent. Then the solution was adjusted to pH 7 with saturated aqueous sodium hydroxide at 0°C , and the solution was extracted with ethyl acetate (50 ml x 3). The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated to give a crude product. The crude product was purified by silica gel column chromatography (SiO2 30 g, 2-25% methanol in chloroform) to give 4-[2-(3-aminoprop-1-v1)oxybenzovl]amino-3-methoxy-N-[2-[4-(tetrazol-5-v1)phenvlmethyl]oxy-4methylphenyl]-N-methylbenzamide (227 mg).

NMR (CDCl₃, δ): 2.15 (3H, br s), 2.14-2.26 (2H, m), 3.17 (2H, q, J=5Hz), 3.40 (3H, s), 3.57 (3H, s), 4.20 (2H, t, J=5Hz), 4.95 (1H, d, J=12Hz), 5.22 (1H, d, J=12Hz), 6.55-6.64 (2H, m), 6.80 (1H, s), 6.92-7.08 (6H, m), 7.23 (1H, br), 7.43 (1H, dd, J=2, 8Hz), 7.76 (2H, d, J=8Hz), 8.20 (1H, d, J=8Hz)

Example 82

A mixture of 4-[2-(3-aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (275 mg) and O-methylisourea (44 mg) in ethanol (5 ml) was refluxed for 3 days. The solvent was evaporated in vacuo and the residue was purified on basic silica gel column chromatography (SiO₂ 17 g, 1-80% methanol in chloroform) to

- 240 -

give 4-[2-(3-guanidinoprop-1-y1) oxybenzoy1] amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-y1) carbonylpent-1-y1] oxy-4-methylphenyl]benzamide (53 mg).

NMR (CDCl₃, δ): 1.40-1.97 (6H, m), 2.06-2.20 (2H, m), 2.27 (6H, s), 2.28 (3H, s), 2.29-2.41 (4H, m), 2.50 (1H, br), 3.04 (2H, br), 3.30 (3H, s), 3.42 (2H, br), 3.76 (3H, s), 3.78 (2H, br), 3.82-4.01 (2H, m), 4.25 (2H, br), 6.55-6.68 (2H, m), 6.81-7.09 (5H, m), 7.28 (1H, s), 7.42 (1H, dd, J=2, 8Hz), 7.99 (1H, d, J=8Hz), 6.29 (1H, br)

Example 83

5

10

15

20

25

30

35

The following compound was obtained according to a similar manner to that of Example 6.

4-[2-[3-(tert-Butoxycarbonylamino)prop-1-y1]oxybenzoy1]amino-3-methoxy-N-[2-(4-aminobut-1-y1)oxy-4-methylpheny1]-Nmethylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.81-1.99 (4H, m), 2.05-2.14 (2H, m), 2.24 (3H, s), 3.08 (2H, br), 3.29 (2H, br), 3.30 (3H, s), 3.70 (3H, s), 3.76-3.96 (2H, m), 4.14 (2H, t, J=5Hz), 5.07 (1H, br), 6.54-6.61 (2H, m), 6.85-7.04 (4H, m), 7.25 (1H, s), 7.37 (1H, dd, J=2, 8Hz), 8.14 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 84

To a solution of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N-[2-[4-(phenoxycarbonyl-anino)but-1-y1]-4-methylphenyl]-N-methylbenzamide (200 mg) in N,N-dimethylformamide (5 ml) was added 1-methylpiperazine (88 µl) and the solution was stirred at 80°C for 7 hours. The solution was diluted with ethyl acetate (15 ml) and washed successively with water (20 ml x 4) and brine. The solvent was dried over magnesium sulfate and removed under reduced

pressure. The crude product was purified on silica gel column chromatography (SiO₂ 25 g, chloroform-methanol 2-10%) to give pure 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide (124 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.60-1.81 (4H, m), 2.13-2.22 (2H, m), 2.29 (6H, s), 2.39 (4H, br), 3.79 (3H, s), 3.25-3.51 (8H, m), 3.32 (3H, s), 3.75-3.99 (2H, m), 4.26 (2H, t, J=5Hz), 6.57-6.71 (2H, m), 6.92-7.18 (6H, m), 7.48 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 85

5

10

15

20

25

30

35

- The following compounds were obtained according to a similar manner to that of Example 84.
- 1) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-dimethylaminopiperidin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-Nmethylbenzamide

NMR (CDC1₃, \(\delta\)): 1.40 (9H, s), 1.65-1.90 (4H, m), 2.29 (3H, s), 2.30 (6H, s), 2.77 (1H, t, J=11Hz), 3.29 (2H, c, J=5Hz), 3.32 (3H, s), 3.78 (3H, s), 3.85-4.11 (6H, m), 4.25 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.92-7.13 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=6Hz)

2) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-ureidobut-1-yl)oxy-4methylphenyl]-N-methylbenzamide
NMR (CDCl₂, δ): 1.40 (9H, s), 1.45-1.80 (4H, m),

2.01-2.11 (2H, m), 2.27 (3H, s), 3.22-3.31 (2H, m), 3.30 (3H, s), 3.65-3.77 (2H, m), 3.71 (3H, s), 4.22 (2H, t, J=5Hz), 5.16 (2H, br), 6.48 (1H, s), 6.71

- 242 -

(1H, d, J=8Hz), 6.90-7.15 (5H, m), 7.41 (1H, dd, J=2, 8Hz), 8.11 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz)

Example 86

10

15

20

25

30

35

To a solution of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N-[2-[4-(phenoxycarbonyl-amino)but-1-yl)-4-methylphenyl]-N-methylbenzamide (150 mg) in N,N-dimethylformamide (5 ml) was added dimethylamine hydrochloride (40 mg) and the mixture was stirred at 80°C for 7 hours. The mixture was cooled to ambient temperature and diluted with ethyl acetate (15 ml). The solution was washed with water (15 ml x 5) and brine, and dried over magnesium sulfate. The solvent was removed in vacuo and the residue was purified on silica gel column chromatography (SiO₂ 20 g, chloroform-methanol 1-5%) to give 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N-[2-[4-(N,N-dimethylureido)but-1-yloxy]-4-methylphenyl]-N-methylbenzamide (115 mg).

NMR (CDC1₃, δ): 1.40 (9H, s), 1.60-1.87 (4H, m), 2.06-2.16 (2H, m), 2.28 (3H, s), 2.90 (6H, s), 3.30 (2H, q, J=5Hz), 3.34 (3H, s), 3.79 (3H, s), 3.85-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 6.57-6.64 (2H, m), 6.90-7.10 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=9Hz)

Example 87

To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl) oxy]benzoyl]amino-3-carboxymethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide (128 mg) in methanol (5 ml) was added dropwise trimethylsilyldiazomethane (5 ml, 2.0M n-hexane solution) and stirred at ambient temperature for 30 minutes. The solution was concentrated in vacuo and the residue was purified by preparative thin layer silica gel chromatography (chloroform:methanol:28% aqueous ammonia solution, 50:5:1) to

- 243 -

```
give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide (85 mg).
```

```
NMR (CDCl<sub>3</sub>, δ): 1.39 (9H, s), 1.45-1.37 (8H, m), 2.00-2.10 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.30-2.42 (6H, m), 3.18-3.27 (2H, m), 3.30 (3H, s), 3.45-3.51 (2H, m), 3.63 (2H, br), 3.79 (3H, s), 3.87-3.96 (2H, m), 4.22-4.29 (2H, m), 4.54 (2H, s), 6.53-6.13 (2H, m), 6.77-6.85 (1H, m), 6.89 (1H, br), 6.92-7.02 (2H, m), 7.02-7.10 (1H, m), 7.43-7.47 (1H, m), 8.14-8.19 (1H, m), 8.40-8.45 (1H, m)
```

Example 88

5

10

15

20

25

30

35

The following compound was obtained according to a similar manner to that of Example 8.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-dimethylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide

```
NMR (CDCl<sub>3</sub>, \delta): 1.39 (9H, s), 1.48-1.58 (2H, m), 1.63-1.88 (6H, m), 1.97-2.09 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.99 (3H, s), 3.02 (3H, s), 3.17-3.27 (2H, m), 3.32 (3H, s), 3.50 (2H, br), 3.63 (2H, br), 3.83-3.97 (2H, m), 4.22-4.29 (2H, m), 4.67 (2H, s), 6.53-6.63 (2H, m), 6.80-6.90 (2H, m), 6.96-7.09 (3H, m), 7.93 (1H, t, J=6Hz), 8.14 (1H, d, J=6Hz), 8.38 (1H, d, J=7Hz)
```

Example 89

To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-y1)oxy]benzoyl]amino-3-ethoxycarbonylmethoxy-N-methy1-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (102 mg) in 7.5N ammonia in methanol

- 244 -

(5 ml) was stirred at ambient temperature for 24 hours. The solution was concentrated in vacuo to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-aminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (92 mg).

NMR (CDC1₃, δ): 1.37 (9H, s), 1.48-1.60 (2H, m), 1.60-1.75 (4H, m), 1.75-1.88 (2H, m), 1.97-2.08 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.30-2.41 (6H, m), 3.17-3.27 (2H, m), 3.30 (3H, s), 3.47 (3H, s), 3.52-3.62 (2H, m), 3.90-3.97 (2H, m), 4.16-4.29 (4H, m), 5.85 (1H, br), 6.57 (1H, d, J=7Hz), 6.67 (1H, s), 6.75-6.90 (2H, m), 7.00 (1H, d, J=7Hz), 7.07-7.17 (2H, m), 8.00 (1H, s), 8.18-8.21 (1H, m), 8.25 (1H, d, J=7Hz)

15

10

5

Example 90

The following compound was obtained according to a similar manner to that of Example 89.

20

 $\label{lem:decomposition} 4-[2-[(3-\text{tert-Butoxycarbonylaminoprop-1-yl}) oxy]benzoyl]-amino-3-methylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]-benzamide$

25

NMR (CDCl₃, δ): 3.37 (9H, s), 1.45-1.77 (6H, m), 1.77-1.88 (2H, m), 1.96-2.08 (2H, m), 2.28 (3H, s), 2.29 (3H, s), 2.29-2.40 (6H, m), 2.82-2.83 (3H, s), 3.18-3.27 (2H, m), 3.30 (3H, s), 3.43-3.50 (3H, m), 3.57 (2H, br), 3.90-3.97 (2H, m), 4.18-4.30 (3H, m), 6.57 (1H, d, J=6Hz), 6.65 (1H, s), 6.76-6.83 (2H, m), 7.00 (1H, d, J=7Hz), 7.06-7.15 (2H, m), 7.45 (1H, t, J=7Hz), 8.16-8.22 (2H, m)

30

35

Example 91

The following compound was obtained according to similar manners to those of Examples 8 and 16.

10

15

20

25

30

35

4-(2-Aminobenzoyl)amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihvdrochloride

NMR (DMSO-d₆, δ): 1.35-1.66 (4H, m), 1.66-1.82 (2H, m), 2.22 (3H, s), 2.40 (2H, t, J=7Hz), 2.73 (3H, s), 2.77-3.11 (3H, m), 3.17 (3H, s), 3.28-3.56 (3H, m), 3.76-4.17 (3H, m), 4.35-4.52 (1H, m), 6.63 (1H, d, J=9Hz), 6.79 (1H, s), 6.91 (1H, dd, J=9, 9Hz), 6.98-7.11 (2H, m), 7.22 (2H, d, J=9Hz), 7.36 (1H, dd, J=9, 9Hz), 7.54 (2H, d, J=9Hz), 7.69 (1H, d, J=9Hz)

Example 92

The following compounds were obtained according to similar manners to those of Examples 6 and 16.

- 1) 4-[2-[(3-Aminoprop-1-yl)amino]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yloxy]phenyl]benzamide trihydrochloride NMR (DMSO-d₆, δ): 1.36-1.65 (4H, m), 1.66-1.92 (4H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.68-2.77 (3H, m), 2.77-3.12 (4H, m), 3.18 (3H, s), 3.22 (2H, t, J=7Hz), 3.28-3.56 (3H, m), 3.63 (3H, s), 3.75-4.32 (4H, m), 4.42 (1H, m), 6.58-6.69 (2H, m), 6.78 (1H, d, J=8Hz), 6.83 (1H, s), 6.86-6.96 (2H, m), 7.03 (1H, d, J=8Hz), 7.34 (1H, dd, J=8, 8Hz), 7.61 (1H, d, J=8Hz), 7.61 (1H, d, J=8Hz), 7.91-8.17 (3H, m), 9.23 (1H, s)
- 2) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1yloxy] phenyl] benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.34-1.66 (4H, m), 1.66-1.83 (2H,
 m), 2.04-2.24 (2H, m), 2.32-2.46 (2H, m), 2.74 (3H,
 s), 2.79-3.12 (4H, m), 3.22 (3H, s), 3.29-3.58 (3H,

- 246 -

m), 3.63-4.19 (7H, m), 4.28-4.52 (3H, m), 6.80-7.08 (4H, m), 7.08-7.36 (4H, m), 7.58 (1H, dd, J=9, 9Hz), 8.02 (1H, d, J=9Hz), 8.13 (2H, br s), 8.28 (1H, d, J=9Hz)

5

3) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) - carbonylpent-1-yloxy]-4-methylphenyl] benzamide dihydrochloride

10

NMR (DMSO-d₆, δ): 1.28-1.82 (8H, m), 1.90-2.51 (11H, m), 2.64 (6H, s), 2.74-3.06 (3H, m), 3.18 (3H, s), 3.22-4.08 (6H, m), 4.29-4.41 (2H, m), 4.51 (1H, m), 6.64 (1H, d, J=8Hz), 6.75-7.20 (5H, m), 7.27 (1H, d, J=8Hz), 7.58 (1H, m), 7.94-8.32 (5H, m)

15

4) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-2-chloro-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide dihydrochloride

20

NMR (DMSO-d₆, δ): 1.39-1.68 (4H, m), 1.69-1.90 (2H, m), 1.92-2.12 (2H, m), 2.31-2.50 (2H, m), 2.73 (3H, br s), 2.79-3.10 (4H, m), 3.17-3.61 (7H, m), 3.92-4.26 (5H, m), 4.42 (1H, m), 6.77 (1H, m), 6.92-7.23 (6H, m), 7.34-7.58 (3H, m), 7.81 (1H, s), 7.90-8.14 (3H, m)

25

5) 4-[2-(3-Aminoprop-1-y1)oxy-5-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide dihydrochloride

30

NMR (CDCl₃, δ): 1.50-1.93 (8H, m), 2.28 (3H, s), 2.28-2.36 (2H, m), 2.31 (3H, s), 2.79 (3H, s), 3.09-3.20 (2H, m), 3.29 (3H, s), 3.80 (3H, s), 3.85-4.04 (2H, m), 4.18-4.28 (2H, m), 6.57-6.66 (2H, m), 6.80-6.95 (4H, m), 7.20-7.25 (1H, m), 7.72 (1H, br), 8.51 (1H. br)

35

- 247 -

6) 4-[2-(3-Aminoprop-1-yl)oxy-4-chlorobenzoyl]amino-3methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1v1) carbonylpent-1-y1]oxv-4-methylphenyl]benzamide dihydrochloride 5 NMR (CDCl₂, δ) : 1.45-1.86 (8H, m), 2.23 (3H, s), 2.29-2.43 (2H, m), 2.78 (3H, s), 3.05-3.16 (2H, m), 3.23 (3H, s), 3.78 (3H, s), 3.82-4.03 (2H, m), 4.18-4.32 (2H, m), 6.54-6.64 (2H, m), 6.78-7.08 (4H, m), 7.94 (1H, d, J=8Hz), 8.58 (1H, br) 10 7) 4-[2-(3-Aminoprop-1-vl)oxv-4-methoxybenzovl]amino-3methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride 15 NMR (CDCl₂, δ): 1.40-1.89 (6H, m), 2.28 (3H, s), 2.30-2.61 (6H, m), 2.70-3.04 (4H, m), 3.08-3.25 (2H, m), 3.28 (3H, s), 3.80 (6H, s), 3.82-4.08 (2H, m), 4.26 (2H, br), 6.49-6.66 (4H, m), 6.78-7.00 (3H, m), 7.93-8.02 (1H, m), 8.30 (1H, br), 8.52 20 (2H, br)

8) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.42 (2H, br), 1.53 (2H, br), 1.74 (2H, br), 2.03 (2H, br), 2.13-2.20 (2H, m), 2.30-2.38 (2H, m), 2.66 (3H, s), 2.67 (3H, s), 2.94 (4H, br), 3.20 (3H, s), 3.28-3.40 (2H, m), 3.73 (3H, s), 3.82-4.08 (4H, m), 4.33-4.40 (2H, m), 4.47-4.57 (1H, m), 6.82-7.00 (4H, m), 7.10-7.29 (4H, m), 7.53-7.60 (1H, m), 8.00 (1H, d, J=7Hz), 8.22-8.30 (1H, m),

25

30

35

9) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-

- 248 -

- yloxy]-4-methylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.40-1.53 (2H, m), 1.53-1.65 (2H, m), 1.66-1.82 (2H, m), 2.01-2.13 (2H, m), 2.18 (3H, s), 2.23 (3H, s), 2.36-2.46 (2H, m), 2.73-2.74 (3H, s), 2.78-3.08 (6H, m), 3.18 (3H, s), 4.27 (2H, br), 4.40-4.50 (1H, m), 6.65 (1H, d, J=6Hz), 6.82 (1H, s), 6.98-7.13 (3H, m), 7.17-7.30 (2H, m), 7.45-7.57 (2H, m), 7.22 (1H, d, J=6Hz), 9.67 (1H, s)
- 10) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-ethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.23 (3H, t, J=6Hz), 1.38-1.50 (2H, m), 1.50-1.65 (2H, m), 1.65-1.82 (2H, m), 2.05-2.17 (2H, m), 2.21 (3H, s), 2.32-2.43 (2H, m), 2.70-2.73 (3H, m), 2.80-3.08 (7H, m), 3.18 (3H, s), 3.22-3.55 (6H, m), 3.92-4.15 (2H, m), 4.32-4.48 (4H, m), 6.63 (1H, d, J=7Hz), 6.83 (1H, s), 6.89-6.92 (2H, m), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=6Hz), 7.29 (1H, d, J=7Hz), 7.58 (1H, t, J=7Hz), 7.99 (1H, d, J=7Hz), 8.18-8.27 (1H, m)

Example 93

- The following compounds were obtained according to similar manners to those of Examples 1 and 16.
 - 4-[2-(Dimethylamino)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]phenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.36-1.65 (4H, m), 1.67-1.82 (2H,
- 30 NMR (DMSO-d₆, δ): 1.36-1.65 (4H, m), 1.67-1.82 (2H, m), 2.22 (3H, s), 2.38 (2H, t, J=7Hz), 2.64-3.14 (12H, m), 3.18 (3H, s), 3.28-3.42 (2H, m), 3.50 (1H, m), 3.73 (3H, s), 3.79-4.14 (3H, m), 4.42 (1H, m), 6.64 (1H, d, J=8Hz), 6.82 (1H, s), 6.83-6.97 (2H, m), 7.02 (1H, d, J=8Hz), 7.35 (1H, m), 7.52-

10

7.67 (2H, m), 8.07 (1H, d, J=8Hz), 8.14 (1H, m)

- 2) 4-[2-(Dimethylaminosulfonyl)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

 NMR (DMSO-d₆, δ): 1.38-1.64 (4H, m), 1.67-1.82 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.69 (6H, s), 2.74 (3H, s), 2.80-3.12 (4H, m), 3.18 (3H, s), 3.23-3.52 (2H, m), 3.59 (3H, s), 3.81-4.16 (3H, m), 4.44 (1H, m), 6.66 (1H, d, J=9Hz), 6.77-6.96 (3H, m), 7.02 (1H, d, J=9Hz), 7.51 (1H, m), 7.60-7.92 (4H, m)
- 3) 3-Methoxy-4-[2-(morpholinosulfonyl)benzoyl]amino-N
 methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

 NMR (DMSO-d₆, δ): 1.37-1.65 (4H, m), 1.66-1.83 (2H,
 m), 2.23 (3H, s), 2.32-2.44 (2H, m), 2.73 (3H, s),
 2.81-3.10 (6H, m), 3.18 (3H, s), 3.25-3.71 (11H,
 m), 3.80-4.20 (3H, m), 4.42 (1H, m), 6.66 (1H, d,
 J=8Hz), 6.76-6.96 (3H, m), 7.02 (1H, d, J=8Hz),
 7.53 (1H, d, J=8Hz), 7.62-7.93 (4H, m), 8.31 (1H,
 s)
- 25 4) 4-[2-(Isoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

 NMR (DMSO-d₆, δ) : 1.39 (6H, d, J=7Hz), 1.38-1.66 (4H, m), 1.67-1.83 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.76 (3H, s), 2.82-3.11 (4H, m), 3.18 (3H, s), 3.74 (3H, s), 3.79-4.18 (5H, m), 4.36-4.52 (1H, m), 4.98 (1H, m), 6.65 (1H, d, J=8Hz), 6.73-7.17 (5H, m), 7.30 (1H, d, J=8Hz), 7.54 (1H, dd, J=8, 8Hz), 8.04 (1H, d, J=8Hz), 8.31 (1H, d, J=8Hz)

Example 94

The following compound was obtained according to similar manners to those of Examples 16 and 30.

5 4-[2-[(3-Aminoprop-1-yl) oxy]phenyl]vinyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzemide dihydrochloride NMR (DMSO-d₆, δ): 1.33-1.64 (4H, m), 1.64-1.83 (2H, m), 1.95-2.17 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J-7Hz), 2.72 (3H, s), 2.76-3.10 (6H, m), 3.15 and 3.16 (total 3H, s), 3.28-3.60 (2H, m), 3.64 (3H, s), 3.80-4.20 (5H, m), 4.42 (1H, m), 6.44-7.60 (12H, m), 8.00-8.26 (2H, m)

15 Example 95

20

35

The following compounds were obtained according to similar manners to those of Examples 1 and 43.

- 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl-4-methyl]phenylmethoxy]phenyl-N-methylbenzamide MASS (m/z): 637 (M+1)
- 2) 4-(2-Hydroxy)benzoylamino-3-methoxy-N-methyl-N-[2-[3-[4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yl]cxy]phenylbenzamide

 NMR (CDCl₃, ō): 2.05-2.16 (2H, m), 2.28 (3H, s),
 2.33-2.40 (4H, m), 3.35 (3H, s), 3.40-3.45 (2H, m),
 3.57-3.63 (2H, m), 3.69 (2H, t, J-7.5Hz), 3.78 (3H, s),
 3.94-4.11 (2H, m), 4.12 (2H, s), 6.79-7.04 (7H, m), 7.18 (1H, t, J-7Hz), 7.42 (1H, t, J-7Hz), 7.50 (1H, d, J-7Hz), 8.20 (1H, d, J-7Hz), 8.81 (1H, s)
 - 3) 4-(2-Hydroxy)benzoyl-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-

WO 96/41795 PCT/JP96/01533

- 251 -

4-methyl]phenyl-N-methylbenzamide

NMR (CDCl₃, 5): 1.33-1.53 (2H, m), 1.84-2.05 (4H, m), 2.27 (3H, s), 2.33 (3H, s), 2.40 (3H, s), 2.30-4.13 (11H, m), 3.32 (3H, s), 4.67 (1H, m), 6.30 (1H, d, J=15Hz), 6.55-6.66 (2H, m), 6.78-7.56 (8H, m), 8.18 (1H, m)

Example 96

5

10

15

20

25

30

35

The following compound was obtained according to similar manners to those of Examples 4, 16 and 45.

4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-(3-carboxyprop-1-yl)oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihvdrochloride

NMR (DMSO-d₆, δ): 1.38-1.52 (2H, m), 1.52-1.65 (2H, m), 1.67-1.93 (4H, m), 2.05-2.16 (2H, m), 2.01 (3H, s), 2.29-2.43 (5H, m), 2.73 (3H, s), 3.22-3.56 (4H, m), 3.62-4.14 (5H, m), 4.30-4.47 (3H, m), 8.63 (1H, d, J-7Hz), 8.81 (1H, s), 8.88-8.92 (2H, m), 7.03 (1H, d, J-7Hz), 7.13 (1H, t, J-7Hz), 7.27 (1H, d, J-7Hz), 7.56 (1H, t, J=6Hz), 7.96 (1H, d, J=6Hz), 8.22 (1H, d, J=7Hz)

Example 97

The following compound was obtained according to similar manners to those of Preparation 4 and Example 16.

4-(2-Aminobenzyloxy)-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.35-1.64 (4H, m), 1.64-1.81 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=7Hz), 2.75 (3H, s), 2.80-3.09 (2H, m), 3.16 (3H, s), 3.27-3.50 (2H, m), 3.57 (3H, s), 3.73-4.15 (5H, m), 4.43 (1H, m),

10

15

20

- 252 -

5.08 (2H, s), 6.64 (1H, d, J=8Hz), 6.76-7.42 (9H, m)

Example 98

The following compound was obtained according to similar manners to those of Examples $14\ \mathrm{and}\ 16.$

4-[2-(3-Acetylaminoprop-1-yl) oxybenzoyl] amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl] benzamide hydrochloride

NMR (DMSO-d₆, δ): 1.36-1.50 (2H, m), 1.50-1.64 (2H, m), 1.67-1.84 (2H, m), 1.92-2.06 (2H, m), 2.22 (3H, s), 2.32-2.44 (2H, m), 2.50 (3H, s), 2.74 and 2.75 (total 3H, s), 2.81-3.08 (3H, m), 3.19 (3H, s), 3.30-3.54 (3H, m), 3.70 (3H, s), 3.79-4.16 (3H, m), 4.20-4.30 (2H, m), 6.64 (1H, d, J=8Hz), 6.81 (1H, s), 6.83-6.97 (2H, m), 7.03 (1H, d, J=8Hz), 7.12 (1H, dd, J=8, 8Hz), 7.25 (1H, d, J=8Hz), 7.51-7.61

Example 99

The following compound was obtained according to similar manners to those of Examples 15 and 26.

(1H, m), 7.92-8.08 (2H, m), 8.28 (1H, d, J=8Hz)

- 4-[2-(3-Dimethylaminoprop-1-yl) oxybenzoyl] amino-3methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1yl) carbonylpent-1-yl] oxy-4-methylphenyl] benzamide
 dihydrochloride
- NMR (CDCl₃, \delta): 1.46-1.87 (6H, m), 2.26 (3H, s), 2.37

 (2H, t, J=5Hz), 2.50 (2H, br), 2.76 (6H, s), 2.77

 (6H, s), 3.02-3.30 (3H, m), 3.29 (3H, s), 3.79 (3H, s), 3.80-4.04 (2H, m), 4.33 (2H, br), 6.54-6.62

 (2H, m), 6.72-7.13 (5H, m), 8.05 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 9.85 (1H, br)

WO 96/41795 PCT/JP96/01533

- 253 -

Example 100

The following compound was obtained according to similar manners to those of Examples 8 and 45.

5 4-[2-(3-Aminoprop-1-y1) oxybenzoyl] amino-3-methoxy-N-methyl-N-[2-(5-dimethylaminocarbonyl) pent-1-yloxy-4-methylphenyl] benzamide

NMR (CDC1₃, \(\delta\)): 1.51-2.19 (10H, m), 2.27 (3H, s),
2.35 (2H, t, J=6Hz), 2.92 (3H, s), 3.00 (3H, s),
3.32 (3H, s), 3.77 (3H, s), 3.80-4.08 (2H, m), 4.29
(2H, t, J=4Hz), 6.55-6.76 (2H, m), 6.83-7.20 (5H, m), 7.46 (1H, br), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

15 Example 101

10

20

25

30

35

٠,

The following compound was obtained according to similar manners to those of Examples 16 and 41.

4-(2-Aminobenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.38-1.66 (4H, m), 1.68-1.83 (2H, m), 2.24 (3H, s), 2.34-2.44 (2H, m), 2.76 (3H, s), 2.80-3.09 (3H, m), 3.19 (3H, s), 3.30-3.53 (3H, m), 3.64 (3H, s), 3.80-4.51 (4H, m), 6.60-6.76 (2H, m), 6.79-6.97 (4H, m), 7.05 (1H, d, J=9Hz), 7.26 (1H, dd, J=9, 9Hz), 7.58-7.72 (2H, m), 9.19 (1H, br s)

Example 102

To a solution of 4-[2-[(3-aminoprop-1-y1)oxy]benzoy1]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide (7.35 g) in ethanol (230 ml) was added 0.5M sulfuric acid in ethanol (22.3 ml) at 80°C. The mixture was stirred for 24 hours at ambient temperature. The precipitate was filtered through a

10

15

20

25

30

glass funnel followed by rinsing with ethanol. The resulting white, crystalline solid was dried over air for 7 days to give 4-[2-[(3-aminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide sulfate (5.2 g).

NMR (DMSO-d₆, δ): 1.35-1.63 (4H, m), 1.65-1.81 (2H, m), 2.04-2.40 (14H, m), 2.96 (2H, t, J=7Hz), 3.03-4.06 (12H, m), 4.35 (2H, t, J=7Hz), 6.64 (1H, d, J=8Hz), 6.83 (1H, s), 6.89 (1H, d, J=8Hz), 6.98 (1H, s), 7.02 (1H, d, J=8Hz), 7.13 (1H, dd, J=8, 8Hz), 7.26 (1H, d, J=8Hz), 7.59 (1H, dd, J=8, 8Hz), 8.01 (1H, d, J=8Hz), 8.23 (1H, d, J=8Hz)

Example 103

To a solution of $4-[2-[(3-\min prop-1-y1)oxy]benzoy1]-\min no-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide (10.7 g) in ethanol (155 ml) was added a solution of L-(+)tartaric acid (2.43 g) in ethanol (60 ml) at 80°C. The solution was stirred at ambient temperature for 1 hour. The solvent was removed at reduced pressure and resulting solid was dissolved in distilled water (1 t) and the solution was filtered through micro filter and the filtrate was lyophilized to give <math>4-[2-[(3-\min prop-1-y1)oxy]benzoy1]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]phenyl]benzamide tartrate (5.2 g).$

NMR (DMSO-d₆, δ): 1.34-1.62 (4H, m), 1.66-1.81 (2H, m), 2.03-2.38 (14H, m), 2.96 (2H, t, J=7Hz), 3.18 (3H, s), 3.37-3.48 (4H, m), 3.74 (3H, s), 3.80-4.04 (4H, m), 4.33 (2H, t, J=7Hz), 6.64 (1H, d, J=8Hz), 6.83 (1H, s), 6.89 (1H, d, J=8Hz), 6.97 (1H, s), 7.02 (1H, d, J=8Hz), 7.13 (1H, dd, J=8, 8Hz), 7.26 (1H, d, J=8Hz), 7.56 (1H, dd, J=8, 8Hz), 8.02 (1H, d, J=8Hz), 8.25 (1H, d, J=8Hz), 8.25 (1H, d, J=8Hz)

Example 104

5

10

. 30

35

The following compounds were obtained according to similar manners to those of Examples 16 and 45.

- 1) 4-{2-[(3-Aminoprop-1-y1)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide hydrochloride
 NMR (DMSO-d₆, δ): 2.06-2.32 (5H, m), 2.87-3.05 (2H, m), 3.26 (3H, s), 3.72 (3H, s), 4.35 (2H, t, J=7Hz), 6.84-6.98 (2H, m), 7.08-7.36 (6H, m), 7.58 (1H, dd, J=8, 8Hz), 7.89-8.16 (4H, m), 8.26 (1H, dd, J=8Hz)
- 2) 4-[3-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.38-1.78 (12H, m), 1.98-2.07 (4H, m), 2.24 (3H, s), 2.36 (2H, t, J=8Hz), 2.43-2.54 (1H, m), 2.67 (3H, s), 2.69 (3H, s), 2.92-3.01 (2H, m), 3.19 (3H, s), 3.64 (3H, s), 3.88-4.03 (1H, m), 4.13 (2H, t, J=6Hz), 4.48-4.57 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.88-6.93 (2H, m), 7.03 (1H, d, J=8Hz), 7.17 (1H, d, J=6Hz), 7.38-7.52 (3H, m), 7.62 (1H, d, J=6Hz), 7.92-8.01 (2H, br), 9.33 (1H, s)
- 25 ESI-MASS (m/z) : 688 (M+H)
 - 3) 4-[N-Methyl-2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.32-1.65 (8H, m), 2.27 (3H, s), 2.33-2.40 (2H, m), 2.77 (3H, s), 2.86-3.02 (5H, m), 3.12 (3H, s), 3.33-3.70 (13H, m), 4.00-4.10 (1H, m), 4.40-4.50 (1H, m), 6.58-6.78 (6H, m), 6.84-7.00 (3H, m), 7.20 (1H, t, J=8Hz), 7.89-7.97 (2H, br s) ESI-MASS (m/z): 674

25

- 4) 4-[2-[3-Aminoprop-1-y1) oxy]benzoyl] amino-3-methoxy-N-methyl-N-[4-[5-(4-methylpiperazin-1-y1) carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.37-1.73 (8H, m), 2.12-2.20 (2H, m), 2.37 (2H, t, J=8Hz), 2.72-2.79 (4H, m), 2.89-3.01 (4H, m), 3.29-3.40 (4H, m), 3.80 (3H, s), 3.89 (2H, t, J=8Hz), 3.98-4.04 (1H, m), 4.34-4.41 (3H, m), 6.80-6.86 (3H, m), 7.04-7.19 (4H, m), 7.29 (1H,
- t, J=8Hz),7.59 (1H, t, J=8Hz), 7.95-8.06 (4H, m),
 8.27 (1H, d, J=8Hz)
 ESI-MASS (m/z): 646 (M+H)
- 5) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomopiperazin-1-y1)carbonylpent15 1-y1]oxy-4-methylphenyl]benzamide dihydrochloride
 NMR (CDCl₃, δ): 1.47-1.89 (8H, m), 2.27 (3H, s),
 2.30-2.46 (4H, m), 2.77-2.96 (2H, m), 3.15-3.63
 (11H, m), 3.30 (3H, s), 3.76-4.04 (5H, m), 4.154.40 (2H, m), 6.60 (2H, br), 6.78-7.11 (5H, m),
 7.43 (1H, br), 7.98-8.05 (1H, m), 8.29-8.37 (1H, m), 8.52 (2H, br)
 - 6) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoethyl) aminocarbonyl]-pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.38-1.87 (6H, m), 2.06-2.45 (4H, m), 2.22 (3H, s), 2.25-2.44 (2H, m), 2.76 (3H, s), 2.80 (3H, s), 3.07-3.22 (2H, m), 3.24 (3H, s), 3.54 (2H, br), 3.77-3.95 (2H, m), 3.80 (3H, s), 4.24 (2H, br), 6.57-6.62 (2H, m), 6.80-7.08 (4H, m), 7.39-7.47 (1H, m), 7.97 (1H, d, J=8Hz), 8.20-8.38 (2H, m)
- 7) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-35 methyl-N-[2-[5-[N-(2-dimethylaminoethyl)-N-methylamino-

25

• 30

35

```
carbonyl]pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride

NMR (CDCl<sub>3</sub>, δ): 1.37-1.82 (6H, m), 2.22 (3H, s), 2.29-2.47 (4H, m), 2.85 (6H, s), 3.02 (3H, s),
```

CLOCI3: 0): 1.37-1.82 (bH, m), 2.22 (3H, s),
2.29-2.47 (4H, m), 2.85 (6H, s), 3.02 (3H, s),
3.08-3.33 (6H, m), 3.26 (3H, s), 3.58-3.95 (4H, m),
3.83 (3H, s), 4.28 (3H, br), 6.55-6.65 (2H, m),
6.82-7.06 (5H, m), 7.39-7.47 (1H, m), 8.03 (1H, d,
J=8Hz), 8.33 (1H, br)

- 10 8) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-y1)carbamoyl]-pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.37-1.99 (8H, m), 2.23 (3H, s), 2.25-2.44 (4H, m), 2.76 (6H, s), 3.05-3.41 (6H, m), 3.22 (3H, s), 3.78-3.94 (2H, m), 4.22 (2H, br), 6.56 (2H, br), 6.81-7.04 (5H, m), 7.39 (1H, br), 8.00 (1H, br), 8.29 (1H, br), 8.56 (3H, br)
- 9) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N20 methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)-Nmethylcarbamoyl]pent-1-yl]oxy-4-methylphenyl]benzamide
 dihydrochloride

```
NMR (CDCl<sub>3</sub>, \delta): 1.33-1.99 (8H, m), 2.26 (3H, s), 2.26-2.47 (4H, m), 2.78 (6H, s), 2.96 (3H, s), 3.05-3.39 (6H, m), 3.26 (3H, s), 3.79-3.99 (2H, m), 3.78 (3H, s), 4.30 (2H, br), 6.62 (2H, m), 6.83-7.08 (5H, m), 7.45 (1H, br), 8.01 (1H, br), 8.35 (1H, br), 8.64 (2H, br)
```

10) 4-[2-(3-Aminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-yl) carbonylpent-1-yl] oxy-4-methylphenyl]benzamide hydrochloride

NMR (CDCl₃, δ): 1.32-2.06 (10H, m), 2.23 (3H, s),

2.25-2.40 (4H, m), 2.99-3.07 (2H, m), 3.23 (3H, s),

3.43-4.00 (7H, m), 4.23 (2H, br), 6.52-6.63 (2H,

15

20

25

30

35

- 258 -

m), 6.81-7.12 (4H, m), 7.38-7.49 (1H, m), 7.97 (1H, br), 8.30 (1H, br)

- 11) 4-[2-(3-Aminoprop-1-y1)oxybenzoy1]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-y1)carbonylpent-1-y1]oxy-4-methylphenyl]benzamide dihydrochloride

 NMR (CDCl₃, δ): 1.40-1.85 (12H, m), 2.24 (3H, s),
 2.28-2.45 (2H), 2.87-3.11 (7H, m), 3.25 (3H, s),
 3.84-4.00 (2H, m), 3.79 (3H, s), 4.25 (2H, br),
 6.54-6.63 (2H, m), 6.95-7.09 (4H, m), 7.43 (1H, br), 8.04 (1H, br), 8.41 (1H, br)
 - 12) 4-[2-(3-Aminoprop-1-y1) oxybenzoyl) amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1) aminocarbonyl-pent-1-y1) oxy-4-methylphenyl] benzamide trihydrochloride NMR (CDCl₃, δ): 1.32-1.80 (6H, m), 2.04-2.15 (2H, m), 2.26 (3H, s), 2.90-3.36 (10H, m), 3.24 (3H, s), 3.76 (3H, s), 3.85-4.02 (2H, m), 4.26 (2H, br), 6.54-6.63 (2H, m), 6.75-7.09 (4H, m), 7.40-7.49 (1H, m), 8.00 (1H, d, J=8Hz), 8.39 (1H, br), 8.62 (1H, br)
 - 13) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[bis(2-hydroxyeth-1-y1)amino]carbonyl-pent-1-y1]oxy-4-methylphenyl]benzamide hydrochloride

 NMR (CDCl₃, δ): 1.50-1.88 (6H, m), 2.05-2.54 (4H, m),

 2.28 (3H, s), 3.03 (2H, br), 3.30 (3H, s), 3.41
 3.69 (8H, m), 3.78 (3H, s), 3.82-4.00 (2H, m), 4.23

 (2H, br), 6.59-6.69 (2H, m), 6.81-7.22 (4H, m),

 7.46 (1H, br), 8.09 (1H, br), 8.38 (1H, br)
 - 14) 4-[2-(3-Aminoprop-1-y1) oxybenzoyl] amino-3-methoxy-Nmethyl-N-[2-[5-(2,2-dimethylhydrazino) carbonylpent-1yl]oxy-4-methylphenyl]benzamide dihydrochloride
 NMR (CDCl₃, δ): 1.36-1.82 (6H, m), 2.22 (3H, s),

WO 96/41795 PCT/JP96/01533

- 259 -

```
2.26-2.39 (4H, m), 2.88-3.11 (2H, m), 3.11 (6H, s),
                       3.32 (3H, s), 3.70-3.94 (2H, m), 3.77 (3H, s), 4.21
                       (2H, br), 6.52-6.61 (2H, m), 6.80-7.14 (5H, m),
                      7.42 (1H, br), 7.97 (1H, br), 8.25 (3H, br)
     5 .
            15) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-
                 methyl-N-[2-[5-(carbamoylmethylamino)carbonylpent-1-
                 yl]oxy-4-methylphenyl]benzamide hydrochloride
                 NMR (CDCl<sub>3</sub>, δ) : 1.20-1.68 (6H, m), 2.08-2.41 (7H, m),
   10
                      2.97-3.35 (5H, m), 3.29-4.27 (9H), 6.38-7.04 (6H,
                      m), 7.90-8.29 (6H, m)
           16) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-
                methyl-N-[2-[5-(2-carbamoylethylamino)carbonylpent-1-
   15
                yl]oxy-4-methylphenyl]benzamide hydrochloride
                NMR (CDCl<sub>3</sub>, \delta): 1.36-1.81 (6H, m), 2.06-2.40 (6H, m),
                     2.23 (3H, s), 3.13 (2H, br), 3.22 (3H, s), 3.32
                     (2H, br), 3.55-3.93 (2H, m), 3.78 (3H, s), 4.22
                     (2H, br), 6.53-6.63 (2H, m), 6.81-7.04 (5H, m),
   20
                     7.39 (1H, br), 7.77 (1H, br), 7.99 (1H, br), 8.28-
                     8.47 (3H, m)
           17) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-
                methyl-N-[2-[5-(4-pyridvlaminocarbonyl)pent-1-y1]oxy-4-
   25
                methylphenyl]benzamide dihydrochloride
                NMR (CDCl<sub>3</sub>, δ): 1.25-1.83 (6H, m), 2.10-2.49 (4H, m),
                     2.22 (3H, s), 2.90-3.37 (2H, m), 3.23 (3H, s),
                     3.68-3.95 (2H, m), 3.76 (3H, s), 4.21 (2H, br),
                     6.51-6.63 (2H, m), 6.66-7.04 (6H, m), 7.88-8.51
. 30
                     (7H, m)
          18) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-
               methyl-N-[2-[5-[4-(diethylaminopiperidin-1-
               yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
  35
               dihydrochloride
```

- NMR (CDCl₃, δ): 1.38 (6H, t, J=8Hz), 1.45-1.90 (10H, m), 1.93-2.08 (2H, m), 2.28 (3H, s), 2.30-2.48 (2H, m), 2.92-3.23 (5H, m), 3.25-3.36 (4H, m), 3.29 (3H, s), 3.69 (3H, s), 3.75-4.08 (3H, m), 4.28 (2H, br), 6.54-6.65 (2H, m), 6.81-7.08 (5H, m), 7.45 (1H, br), 7.93 (1H, br), 8.36 (1H, br)
- 19) 4-[2-(3-Aminoprop-1-y1)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-y1)hex-1-y1]oxy-4-methylpipenzinde trihydrochloride

 NMR (CDCl₃, δ) : 1.36-1.94 (8H, m), 2.21 (3H, s),
 2.25-2.42 (2H, m), 2.90-3.39 (6H, m), 3.10 (3H, s),
 3.19 (3H, s), 3.58-4.04 (6H, m), 3.82 (3H, s), 4.18

 (1H, br), 6.46-6.63 (2H, m), 6.74-6.98 (4H, m),
 7.38 (1H, br), 7.97 (1H, br), 8.28 (1H, br), 8.45

 (2H, br)
- 20) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-pyridyl)phenylmethyl]oxy-4-methylphenyl]-Nmethylbenzamide dihydrochloride NMR (CDCl₃, δ): 2.29 (3H, s), 2.39 (2H, br), 3.17 (2H, br), 3.37 (3H, s), 3.44 (3H, br), 4.12-4.30 (2H, m), 4.73 (1H, br), 5.07 (1H, br), 6.61 (1H, br), 6.70-6.79 (2H, m), 6.94-7.03 (2H, m), 7.12 (1H, d, J=8Hz), 7.38-7.47 (3H, m), 7.89-8.23 (5H, m), 8.73 (3H, br), 8.90 (1H, br)
- 21) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-yl)carbonylamino]but-1-yl]oxy-30 4-methylphenyl]-N-methylbenzamide dihydrochloride NMR (CDCl₃, δ): 1.62-2.04 (4H, m), 2.23 (3H, s), 2.27-2.40 (2H, m), 2.74 (3H, s), 3.03-3.14 (2H, m), 3.22 (3H, s), 3.35-3.51 (4H, m), 3.78 (3H, s), 3.85-3.96 (2H, m), 4.26 (2H, br), 6.57-6.64 (2H, m), 6.67-7.09 (5H, m), 7.42 (1H, m), 7.96 (1H, d,

WO 96/41795 PCT/JP96/01533

5

10

15

20

25

· 30

3.5

- 261 -

J=8Hz), 8.30 (1H, d, J=8Hz), 8.60 (3H, br)

- 22) 4-[2-(3-Aminoprop-1-yl) oxybenzoylamino]-3-methoxy-N-[2-[4-[(4-dimethylaminopiperidin-1-yl) carbonylamino]but-1-yl] oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride NMR (CDCl₃, δ): 1.58-2.12 (10H, m), 2.27 (3H, s), 2.30-2.48 (2H, m), 2.57-2.81 (8H, m), 3.05-3.31 (7H, m), 3.27 (3H, s), 3.75-3.99 (5H, m), 4.27 (1H, br), 6.57-6.63 (2H, m), 6.85-7.09 (5H, m), 7.44 (2H, br), 7.96 (1H, br), 8.34 (1H, br), 8.75 (1H, br)
- 23) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-ureidobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide hydrochloride

NMR (CDCl₃, δ): 1.42-1.81 (4H, m), 2.00-2.15 (2H, m), 2.25 (3H, s), 2.88 (2H, t, J=5Hz), 2.92 (2H, br), 3.30 (3H, s), 3.63-3.80 (2H, m), 3.71 (3H, s), 4.21 (2H, t, J=5Hz), 6.51 (1H, s), 6.71 (1H, d, J=8Hz), 6.85-7.12 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.12 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

24) 4-[2-[3-Aminoprop-1-yl) oxy]benzoyl]amino-3-chloro-Nmethyl-N-[2-[5-(4-dimethylaminopiperidin-1yl) carbonylpent-1-yloxy]-4-methylphenyl]benzamide
dihydrochloride

NMR (DMSO-d₆, δ): 1.34-1.50 (2H, m), 1.50-1.62 (2H, m), 1.65-1.80 (2H, m), 1.98-2.17 (4H, m), 2.22 (3H, s), 2.30-2.40 (2H, m), 2.66 (3H, s), 2.67 (3H, s), 2.85-3.05 (3H, m), 3.17 (3H, s), 3.33 (1H, br), 3.80-4.07 (3H, m), 4.33-4.42 (2H, m), 4.47-4.57 (1H, m), 6.68 (1H, d, J=7Hz), 6.82 (1H, s), 7.08-7.23 (3H, m), 7.29 (1H, d, J=7Hz), 7.41 (1H, s), 7.68 (1H, t, J=6Hz), 7.92 (1H, d, J=7Hz), 8.09 (1H, d, J=7Hz)

10

15

20

25

30

- 25) 3-(3-Aminoprop-1-y1)oxy-4-[2-[3-aminoprop-1-y1)oxy]-benzoy1]amino-N-methy1-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylphenyl]benzamide trihydrochloride
 - NMR (DMSO-d₆, δ): 1.37-1.50 (2H, m), 1.50-1.62 (2H, m), 1.67-1.80 (2H, m), 1.97-2.19 (4H, m), 2.22 (3H, s), 2.30-2.41 (2H, m), 2.57 (1H, s), 2.92 (6H, br), 3.17 (3H, s), 3.68 (1H, br), 3.93 (2H, br), 4.10 (2H, br), 4.40 (2H, br), 6.66 (1H, d, J=6Hz), 6.78-6.87 (2H, m), 6.95-7.04 (2H, m), 7.12 (1H, t, J=6Hz), 7.29 (1H, d, J=7Hz), 7.57 (1H, t, J=6Hz), 7.93 (1H, d, J=6Hz), 8.14 (1H, d, J=7Hz)
- 26) 2-Amino-4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-Nmethyl-N-[2-[5-(4-dimethylaminopiperidin-1yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 trihydrochloride
- NMR (DMSO-d₆, δ): 1.41-1.51 (2H, m), 1.51-1.66 (1H, m), 1.74-1.84 (1H, m), 1.98-2.12 (4H, m), 2.30-2.40 (2H, m), 2.67 (3H, s), 2.68 (3H, s), 2.89-3.06 (4H, m), 3.16 (3H, s), 3.33 (2H, br), 3.96-4.10 (4H, m), 4.13-4.20 (2H, m), 4.47-4.58 (1H, m), 6.60 (1H, d, J=7Hz), 6.78 (2H, s), 6.85 (1H, s), 6.97-7.07 (2H, m), 7.13 (1H, d, J=7Hz), 7.27 (1H, s), 7.43-7.56 (2H, m)
 - 27) 2-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylamnopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide trihydrochloride
 - NMR (DMSO-d₆, δ): 1.32-1.80 (8H, m), 1.97-2.20 (4H, m), 2.22 (3H, s), 2.27-2.40 (3H, m), 2.65 (3H, s), 2.67 (3H, s), 2.92-3.10 (4H, m), 3.19 (3H, s), 3.33 (1H, br), 3.80-4.07 (3H, m), 4.22-4.29 (2H, m), 6.69 (1H, d, J=7Hz), 6.82 (1H, s), 7.07-7.14 (2H, m), 7.20 (1H, d, J=7Hz), 7.56 (1H, t, J=6Hz), 7.66

10

· 30

```
(1H, d, J=6Hz), 7.78 (1H, d, J=7Hz), 8.00-8.04 (1H, m), 8.23 (1H, s)
```

- 28) 4-[N-[2-[(3-Aminoprop-1-y1)oxy]phenyl]amino]methyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylpipenyl]benzamide trihydrochloride

 NMR (DMSO-d₆, δ): 1.35-1.49 (2H, m), 1.49-1.62 (2H, m), 1.62-1.79 (2H, m), 2.01-2.16 (2H, m), 2.23 (3H, s), 2.34-2.40 (2H, m), 2.71 and 2.72 (total 3H, s), 2.76-3.12 (8H, m), 3.17 (3H, s), 3.27-3.41 (2H, m), 3.41-3.54 (4H, m), 3.70-3.81 (1H, m), 3.89-3.98 (1H, m), 4.02-4.08 (3H, m), 4.25 (2H, s), 4.39-4.45
- (1H, m), 6.60-6.80 (6H, m), 6.93 (2H, s), 4.39-4.45 d, J=7Hz), 7.10(1H, d, J=7Hz)
 - 29) 4-[2-[(3-Aminoprop-1-yl)oxy]phenyl]oxymethyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1yloxy]-4-methylphenyl]benzamide dihydrochloride
- 20 NMR (DMSO-d₆, δ): 1.39-1.50 (2H, m), 1.50-1.63 (2H, m), 1.65-1.82 (2H, m), 1.97-2.10 (2H, m), 2.21 (3H, s), 2.35-2.41 (2H, m), 2.71 and 2.72 (total 3H, s), 2.78-3.10 (7H, m), 3.18 (3H, s), 3.29-3.41 (2H, m), 3.41-3.67 (4H, m), 3.82 (1H, br), 3.89-4.00 (1H, m), 4.00-4.12 (3H, m), 4.38-4.48 (1H, m), 4.57 and 4.93 (total 2H, s), 6.61 (1H, d, J=7Hz), 6.69-6.97
 - 30) 4-[2-[(3-Aminoprop-1-y1)oxy]benzoyl]amino-3-benzyloxy-Nmethyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1yloxy]-4-methylphenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.37-1.50 (2H, m), 1.50-1.63 (2H,
 m). 1.63-1.79 (2H, m). 1.70-1.91 (2H, m). 2.22 (3H)

(6H, m), 6.97-7.07 (2H, m), 7.20-7.25 (1H, m)

m), 1.63-1.79 (2H, m), 1.79-1.91 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=6Hz), 2.60-2.77 (5H, m), 2.79-3.10 (4H, m), 3.15 (3H, s), 3.30-3.67 (3H, m),

10

15

35

- 264 -

3.77-4.12 (5H, m), 4.37-4.49 (1H, m), 5.06 (2H, s), 6.62 (1H, d, J=6Hz), 6.82 (1H, s), 6.90 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.03 (1H, s), 7.12 (1H, t, J=7Hz), 7.22 (1H, d, J=7Hz), 7.30-7.46 (5H, m), 7.54 (1H, t, J=6Hz), 7.97 (1H, d, J=7Hz), 8.23 (1H, d, J=7Hz)

- 31) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride
 NMR (DMSO-d6, δ): 1.43 (2H, br), 1.49-1.62 (2H, m),
 1.63-1.82 (2H, m), 2.00-2.40 (16H, m), 2.90-2.97 (2H, m), 3.14 (3H, s), 3.30-3.50 (5H, m), 3.89 (2H, br), 4.20-4.38 (2H, m), 6.50-6.68 (2H, m), 6.80 (1H, s), 6.87-6.99 (2H, m), 7.12 (1H, t, J=6Hz),
 7.22 (1H, d, J=6Hz), 7.49-7.60 (1H, m), 7.97-8.18 (2H, m)
- 32) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-20 ethoxycarbonylmethoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.09 and 1.22 (total 3H, t, J=6Hz), 1.37-1.51 (2H, m), 1.51-1.66 (2H, m), 1.67-1.80 25 (2H, m), 2.05-2.18 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=6Hz), 2.73-2.74 (3H, m), 2.90-3.10 (5H, m), 3.17 (3H, s), 3.30-3.58 (2H, m), 3.80-4.00 (2H, m), 4.00-4.20 (3H, m), 4.32-4.50 (3H, m), 4.80 (2H, s), 6.62 (1H, d, J=6Hz), 6.82 (1H, s), 6.89-6.92 (2H, 30 m), 7.01 (1H, d, J=7Hz), 7.15 (1H, t, J=6Hz), 7.27 (1H, d, J=7Hz), 7.58 (1H, t, J=6Hz), 8.00 (1H, d, J=6Hz), 8.27 (1H, d, J=7Hz)
 - 33) 4-[2-[(3-Aminoprop-1-y1)oxy]benzoy1]amino-3methoxycarbonylmethoxy-N-methy1-N-[2-[5-(4-

WO 96/41795 PCT/JP96/01533

- 265 -

```
methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-
                 methylphenyl]benzamide dihydrochloride
                 NMR (DMSO-d<sub>6</sub>, δ) : 1.35-1.50 (2H, m), 1.50-1.63 (2H,
                      m), 1.63-1.90 (2H, m), 2.00-2.14 (2H, m), 2.21 (3H,
     5
                      s), 2.25-2.43 (2H, m), 2.71 (3H, s), 2.77-3.05 (5H,
                      m), 3.15 (3H, s), 3.18-3.57 (6H, m), 3.70 (3H, s),
                      3.73-4.12 (3H, m), 4.12-4.49 (3H, m), 4.80 (2H, s),
                      6.63 (1H, d, J=7Hz), 6.70-7.20 (5H, m), 7.27 (1H,
                      d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.93-8.10 (1H, m),
    10
                      8.23 (1H, d, J=6Hz)
           34) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-
                dimethylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-
                methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-
   15
                methylphenyl]benzamide dihydrochloride
                NMR (DMSO-d_6, \delta): 1.37-1.49 (2H, m), 1.50-1.62 (2H,
                     m), 1.63-1.79 (2H, m), 1.98-2.10 (2H, m), 2.21 (3H,
                     s), 2.32-2.43 (2H, m), 2.71 (3H, s), 2.86 (3H, s),
                     2.98 (3H, s), 2.82-3.05 (5H, m), 3.15 (3H, s), 3.90
   20
                     (2H, br), 4.02-4.12 (2H, m), 4.28-4.38 (2H, m),
                     4.38-4.48 (1H, m), 4.83 (2H, s), 6.62 (1H, d,
                     J=7Hz), 6.80 (1H, s), 6.82-6.92 (2H, m), 7.00 (1H,
                     d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.23 (1H, d,
                     J=7Hz), 7.55 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz)
   25
           35) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-
                methylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-
                methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-
               methylphenyl]benzamide dihydrochloride
· 30
               NMR (DMSO-d_6, \delta): 1.38-1.51 (1H, m), 1.51-1.65 (2H,
                    m), 1.68-1.80 (2H, m), 2.00-2.23 (2H, m), 2.22 (3H,
                    s), 2.34-2.40 (3H, m), 2.50 (3H, s), 2.58 (2H, br),
                    2.62 (3H, s), 2.63 (3H, s), 2.90 (4H, br), 3.15
                    (3H, s), 3.88-3.97 (2H, m), 4.26-4.33 (2H, m),
  35
                    4.37-4.54 (2H, m), 6.62 (1H, d, J=7Hz), 6.82 (2H,
```

- 266 -

s), 6.88 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.22 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.90 (1H, d, J=7Hz), 8.12-8.25 (2H, m)

- 5 36) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3aminocarbonylmethoxy-N-methyl-N-[2-[5-(4methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.38-1.52 (2H, m), 1.52-1.67 (2H, 10 m), 1.68-1.83 (2H, m), 2.00-2.15 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=6Hz), 2.62 and 2.63 (total 3H, s), 2.72 and 2.73 (total 3H, s), 2.80-3.10 (6H, m), 3.15 (3H, s), 3.87-3.98 (2H, m), 4.03-4.13 (1H, m), 6.27-6.37 (1H, m), 6.37-6.56 (2H, m), 6.62 (1H, d, 15 J=7Hz), 6.82 (2H, s), 6.90 (1H, d, J=7Hz), 6.98 (1H, d, J=6Hz), 7.12 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.57 (1H, t, J=6Hz), 7.92 (1H, d, J=7Hz), 8.13-8.30 (2H, m)
- 20 37) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4methylphenyl]-3-propoxybenzamide dihydrochloride NMR (DMSO-d₆, δ): 0.89 (3H, t, J=6Hz), 1.37-1.50 (2H, m), 1.50-1.68 (4H, m), 1.68-1.80 (2H, m), 2.02-2.18 25 (2H, m), 2.20 (3H, s), 2.38 (2H, t, J=6Hz), 2.47 (3H, s), 2.75-3.12 (5H, m), 3.17 (3H, s), 3.30-3.42 (2H, m), 3.42-3.56 (1H, m), 3.80-4.00 (4H, m), 4.00-4.13 (1H, m), 4.32-4.50 (4H, m), 6.61 (1H, d, J=7Hz), 6.82 (1H, s), 6.88 (1H, s), 6.94 (1H, d, 30 J=7Hz), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.29 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 7.97 (1H, d, J=7Hz), 8.22 (1H, d, J=7Hz)
 - 38) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-isopropoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-

10

15

20

30

35

yloxy]-4-methylphenyl]benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.10-1.27 (6H, m), 1.37-1.50 (2H, m), 1.50-1.64 (2H, m), 1.67-1.82 (2H, m), 2.03-2.07 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=6Hz), 2.72 and 2.73 (total 3H, s), 2.78-3.12 (6H, m), 3.17 (3H, s), 3.30-3.43 (2H, m), 3.43-3.60 (1H, m), 3.80-4.02 (2H, m), 4.02-4.13 (1H, m), 4.23-4.50 (4H, m), 6.64 (1H, d, J=7Hz), 6.81-6.90 (2H, m), 6.98 (1H, d, J=7Hz), 7.03 (1H, d, J=7Hz), 7.13 (1H, t, J=6Hz), 7.32 (1H, d, J=7Hz), 7.56 (1H, t, J=6Hz), 7.94 (1H, d, J=6Hz), 8.22 (1H, d, J=7Hz)

39) 2-[2-[(3-Aminoprop-1-y1)oxy]benzoy1]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-y1)carbonylpent-1-yloxy]-4-methylphenyl]-5-thiophenecarboxamide dihydrochloride NMR (DMSO-d₆, δ): 1.20-1.38 (2H, m), 1.38-1.52 (2H, m), 1.53-1.70 (2H, m), 1.98-2.10 (2H, m), 2.22-2.32 (2H, m), 2.33 (3H, s), 2.69-2.72 (3H, m), 2.76-3.07 (5H, m), 3.16 (3H, s), 3.27-3.54 (3H, m), 3.78-4.09 (3H, m), 4.10-4.20 (2H, m), 4.33-4.47 (2H, m), 6.15 (1H, br), 6.55 (1H, d, J=5Hz), 6.81 (1H, d, J=7Hz), 6.97 (1H, s), 7.07 (1H, t, J=6Hz), 7.13-7.20 (2H, m), 7.44-7.60 (2H, m)

25 Example 105

To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl)benzamide (50 mg) in chloroform (3.0 ml) was added a solution of 4N hydrogen chloride in ethyl acetate (1.0 ml) and the mixture was stirred at ambient temperature for 2 hours. The resulting mixture was evaporated in vacuo and the residue was solidified with diethyl ether. Diethyl ether was removed in vacuo to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl)-benzamide hydrochloride (40 mg).

- 268 -

NMR (DMSO-d₆, δ): 2.11-2.21 (2H, m), 2.96 (2H, q, J=8Hz), 3.30 (3H, s), 3.78 (3H, s), 4.37 (2H, t, J=8Hz), 6.66 (2H, d, J=8Hz), 6.88 (1H, d, J=8Hz), 6.97 (1H, s), 6.99 (2H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.27 (1H, d, J=8Hz), 7.55-7.62 (1H, m), 7.97-8.05 (3H, m), 8.28 (1H, d, J=8Hz), 9.54-9.59 (1H, br s)

ESI-MASS (m/z) : 450 (M+H)

10 Example 106

5

The following compound was obtained according to a similar manner to that of Example 105.

4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3carboxymethoxy-N-methyl-N-cyclohexylbenzamide hydrochloride
NMR (DMSO-d₆, δ): 1.02-1.10 (2H, m), 1.46-1.80 (8H,
m), 2.08-2.12 (2H, m), 2.80 (3H, s), 2.92-2.99 (2H,
m), 3.30-3.47 (2H, br), 4.39 (2H, t, J=7Hz), 4.96
(2H, s), 6.98-7.04 (2H, br s), 7.18 (1H, t, J=8Hz),
7.30 (1H, d, J=8Hz), 7.60 (1H, t, J=8Hz), 7.95-8.05
(3H, br), 8.07 (1H, d, J=8Hz), 8.51 (1H, d, J=8Hz)
ESI-MASS (m/z): 484 (M+H)

Example 107

- 25
 1) A solution of 4-[2-[3-(9-fluorenylmethyl)oxycarbonyl-amininoprop-1-yl]thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (110 mg) in a mixture of N,N-dimethylformamide and piperidine (4:1, 5 ml) was stirred at ambient temperature for 30 minutes and the resulting solution was diluted with ethyl acetate (20 ml). The solution was washed with water (10 ml x 3) and brine, and the solution was dried over potassium carbonate. The solvent was evaporated and the residue was purified on basic silica gel column
- 35 chromatography (SiO₂ 30 g, 1-15% methanol in chloroform) to

WO 96/41795 PCT/JP96/01533

- 269 -

give 4-[2-(3-aminoprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl]carbonylpent-1-yl]oxy-4-methylphenyl]benzamide.

NMR (CDCl₃, δ): 1.36-1.92 (12H, m), 2.29 (6H, s), 2.30 (3H, s), 2.36 (2H, t, J=5Hz), 2.59 (1H, t, J=1Hz), 2.77 (2H, t, J=5Hz), 2.99 (2H, t, J=5Hz), 3.32 (3H, s), 3.75 (3H, s), 3.85-4.03 (4H, m), 6.57-6.66 (2H, m), 6.84-6.90 (1H, d, J=8Hz), 7.02 (1H, s), 7.39-7.48 (3H, m), 7.65 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.80 (1H, s)

2) To a solution of the obtained compound in ethanol (5 ml) was added 1N hydrochloric acid (0.15 ml). The volatile solvent was removed by evaporation and the residue was lyophilized to give 4-[2-(3-aminoprop-1-y1)thiobenzoy1]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-y1]-carbonylpent-1-y1]oxy-4-methylpheny1]benzamide dihvdrochloride (45 mg).

NMR (CDCl₃, **δ**): 1.44-1.92 (6H, m), 2.02-2.16 (2H, m), 2.28 (3H, s), 2.30-2.41 (2H, m), 2.73 (6H, br), 2.99-3.14 (2H, m), 3.27-3.33 (1H, m), 3.31 (3H, s), 3.62-3.79 (4H, m), 3.71 (3H, s), 3.82-4.10 (2H, m), 6.55-6.67 (2H, m), 6.83-7.02 (5H, m), 7.35-7.52 (2H, m), 8.23 (1H, br), 8.54 (2H, br)

Example 108

5

10

15

20

25

30

The following compound was obtained according to a similar manner to that of Example 15.

4-2-(3-Dimethylaminoprop-1-yl)oxybenzoyl]amino-3methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.49-1.60 (2H, m), 1.66-1.95 (4H, m),
2.21 (6H, s), 2.27 (6H, s), 2.35-2.48 (4H, m), 2.58

35 (2H, t, J=11Hz), 3.32 (2H, t, J=11Hz), 3.33 (3H,

- 270 -

s), 3.80 (3H, s), 3.82-4.00 (2H, m), 4.25 (2H, t, J=5Hz), 4.64 (1H, br), 6.55-6.64 (2H, m), 6.85 (1H, d, J=8Hz), 7.00-7.11 (3H, m), 7.26 (1H, s), 7.40-7.48 (1H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

- 271 -

CLAIMS

1. A compound of the formula :

5

10

15

35

wherein

R¹ is aryl, cyclo(lower)alkyl or a heterocyclic group, each of which may be substituted with substituent(s) selected from the group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfonyl; 20 acyloxy; lower alkylamino(lower)alkylcarbamoyloxy; aryl; cyano; a heterocyclic group; lower alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl; lower alkynyl optionally substituted with amino, 25 acylamino or substituted acylamino; lower alkyl optionally substituted with halogen, amino, lower alkylamino, acylamino, substituted acylamino, hydroxy, acyloxy, acyl(lower)alkanoyloxy, acyl, substituted acyl, acyl(lower)alkoxyimino, aryl 30 or acyl-substituted aryl; lower alkylthio optionally substituted with acyl or substituted acvl; alkoxy optionally substituted with aryl, substituted

aryl, hydroxy, acyloxy, amino, lower alkylamino,

10

3.5

protected amino, a heterocyclic group, acylsubstituted pyridyl, substituted acyl-substituted
pyridyl, halogen, acyl(lower)alkylamino, N-protectedacyl(lower)alkylamino, N-acyl(lower)alkyl-N-lower
alkylamino, acyl, substituted acyl, acylamino,
substituted acylamino, lower
alkylhydrazinocarbonylamino, hydroxyimino,
acyl(lower)alkoxyimino, substituted
acyl(lower)alkoxyimino, acyl(lower)alkoxy, guanidino
or N-protected guanidino; and
lower alkenyloxy optionally substituted with acyl or
substituted acvl:

R² is hydrogen; lower alkyl optionally substituted with hydroxy, aryl or acyl; or cyclo(lower)alkyl;

15 R³ is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; lower alkyl optionally substituted with hydroxy or lower alkoxy; lower alkoxy optionally substituted with aryl, amino, protected amino, acyl, hydroxy, cyano or lower alkylthio; nitro; amino; acyl; substituted acyl; or cyclo(lower)alkyloxy;

R⁴ is hydroxy; halogen; nitro; amino; protected amino; lower alkylamino; acyloxy; amino(lower)alkylamino; N-protected amino(lower)alkylamino;

lower alkoxy optionally substituted with hydroxy,
aryl, substituted aryl, acyl, substituted acyl,
amino, lower alkylamino, acylamino, substituted
acylamino, protected amino, a heterocyclic group or
guanidino; lower alkylthio optionally substituted
with acyl, substituted acyl, amino, lower alkylamino,
acylamino, substituted acylamino, protected amino, a
heterocyclic group, hydroxy, lower alkylsulfonyloxy,
arylsulfonyloxy, ar(lower)alkoxy or substituted

arylsulfonyloxy, ar(lower)alkoxy or substituted ar(lower)alkoxy; lower alkyl substituted with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a

10

20

30

35

heterocyclic group, hydroxy, lower alkylsulfonyloxy or arylsulfonyloxy; lower alkenyl optionally substituted with acyl; lower alkynyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; amino(lower)alkylsulfonyl; N-protected amino(lower)alkylsulfonyl; lower alkylaminosulfonyl; a heterocyclicsulfonyl; amino(lower)alkylsulfinyl; N-protected amino(lower)alkylsulfinyl; piperidyloxy; or N-protected piperidyloxy;

R⁵ is hydrogen, lower alkyl, lower alkoxy or halogen;
A is a single bond, O or NH;
E is lower alkylene, lower alkenylene, _U-, _u-, or

a group of the formula :

-G-J-

in which G is lower alkylene and J is O or $\frac{R}{-N}$ (wherein R^6 is hydrogen or N-protective group);

X is -CH=CH-, -CH=N- or S; and Y is CH or N;

and pharmaceutically acceptable salts thereof.

- A compound according to claim 1, wherein
 R¹ is aryl which may be substituted with lower alkoxy
 optionally substituted with acylamino or acyl;
 R² is lower alkyl;
 - R³ is hydrogen, lower alkyl or lower alkoxy;
 - R⁴ is hydroxy, or lower alkoxy, lower alkylthio or lower alkyl, each of which may be substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group;
 - R⁵ is hydrogen, lower alkyl, lower alkoxy or halogen;

10

A is NH;

E is _H_.

X is -CH=CH-; and

Y is CH.

3. A compound according to claim 2, wherein ${\ensuremath{\mathsf{R}}}^1$ is phenyl or tolyl, each of which is substituted with lower alkoxy substituted with acyl;

R³ is lower alkoxy or lower alkyl; and

- R^4 is lower alkoxy, lower alkylthic or lower alkyl, each of which is substituted with amino or hydroxy.
- A compound according to claim 3, wherein 15 ${\ensuremath{\mathsf{R}}}^1$ is phenyl or tolyl, each of which is substituted with lower alkoxy substituted with N-(lower alkyl)piperazinylcarbonyl; R³ is lower alkoxy;

 ${ t R}^4$ is lower alkoxy substituted with amino; and R⁵ is hydrogen.

5. A process for preparing the formula :

25

20

30

35

wherein

 \mathbb{R}^1 is aryl, cyclo(lower)alkyl or a heterocyclic group, each of which may be substituted with substituent(s)

selected from the group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfonyl; acyloxy; lower alkylamino(lower)alkylcarbamoyloxy; aryl; cyano; a heterocyclic group; 5 lower alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl; lower alkynyl optionally substituted with amino, acylamino or substituted acylamino; lower alkyl optionally substituted with halogen, 10 amino, lower alkylamino, acylamino, substituted acylamino, hydroxy, acyloxy, acyl(lower)alkanoyloxy, acyl, substituted acyl, acyl(lower)alkoxyimino, aryl or acyl-substituted aryl; lower alkylthic optionally substituted with acyl or 15 substituted acyl; alkoxy optionally substituted with aryl, substituted aryl, hydroxy, acyloxy, amino, lower alkylamino, protected amino, a heterocyclic group, acylsubstituted pyridyl, substituted acyl-substituted 20 pyridyl, halogen, acyl(lower)alkylamino, N-protectedacyl(lower)alkylamino, N-acyl(lower)alkyl-N-lower alkylamino, acyl, substituted acyl, acylamino, substituted acylamino, lower alkylhydrazinocarbonylamino, hydroxyimino, 25 acyl(lower)alkoxyimino, substituted acyl(lower)alkoxyimino, acyl(lower)alkoxy, guanidino or N-protected quanidino; and lower alkenyloxy optionally substituted with acyl or substituted acvl; 30 R² is hydrogen; lower alkyl optionally substituted with hydroxy, aryl or acyl; or cyclo(lower)alkyl; R³ is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; lower alkyl optionally substituted with hydroxy or lower alkoxy; lower alkoxy optionally 35

substituted with aryl, amino, protected amino, acyl, hydroxy, cyano or lower alkylthio; nitro; amino; acyl; substituted acyl; or cyclo(lower)alkyloxy; R^4 is hydroxy; halogen; nitro; amino; protected amino; 5 lower alkylamino; acyloxy; amino(lower)alkylamino; N-protected amino(lower)alkylamino; lower alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, 10 protected amino, a heterocyclic group or guanidino; lower alkylthio optionally substituted with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy, 15 arylsulfonyloxy, ar(lower)alkoxy or substituted ar(lower)alkoxy; or lower alkyl substituted with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy 20 or arylsulfonyloxy; lower alkenyl optionally substituted with acyl; lower alkynyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; amino(lower)alkylsulfonvl; N-protected 25 amino(lower)alkylsulfonyl, lower alkylaminosulfonyl; a heterocyclicsulfonyl; amino(lower)alkylsulfinyl; N-protected amino(lower)alkylsulfinyl; piperidyloxy; or N-protected piperidyloxy; \mathbb{R}^5 is hydrogen, lower alkyl, lower alkoxy or halogen; 30 A is a single bond, O or NH; E is lower alkylene, lower alkenylene, _c_, _s_, or a group of the formula :

in which G is lower alkylene and J is O or $-\frac{R^6}{N^-}$ (wherein R^6 is hydrogen or N-protective group);

X is -CH=CH-, -CH=N- or S; and

Y is CH or N;

or pharmaceutically acceptable salts thereof, which comprises,

1) reacting a compound of the formula :

10

20

15

or its salt with a compound of the formula :

25

$$R^5$$

30

or its reactive derivative at the carboxy group or the sulfo group, or a salt thereof to provide a compound of the formula :

5

or its salt, in the above formulas, R^{1} , R^{2} , R^{3} , R^{4} , R^{5} , X and Y are each as defined above, and o o E_a is _U__, _S__, or

15

2) reacting a compound of the formula :

20

(IV)

or its salt with a compound of the formula :

25

30

or its reactive derivative at the carboxy group or a salt thereof to provide a compound of the formula :

or its salt, in the above formulas, $R^1,\ R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined$ above, or

3) subjecting a compound of the formula :

or its salt to deesterification reaction to provide a compound of the formula :

$$R_{DN}^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{4}

(Ic)

5

15

20

25

WO 96/41795 PCT/JP96/01533

- 280 -

or its salt, in the above formulas, ${
m R}^2$, ${
m R}^3$, ${
m R}^4$, ${
m R}^5$, A, E, X and Y are each as defined above, Ra is aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted 5 with esterified carboxy; lower alkenyl substituted with esterified carboxy or esterified carboxysubstituted aryl; lower alkyl substituted with esterified carboxy, esterified carboxy(lower)alkanoyloxy or esterified 10 carboxy(lower)alkoxyimino; lower alkylthic substituted with esterified carboxy; alkoxy substituted with esterified carboxysubstituted aryl, esterified carboxy-substituted pyridyl, esterified carboxy(lower)alkylamino, 15 N-protected-esterified carboxy(lower)alkylamino, N-esterified carboxy(lower)alkyl-N-lower alkylamino, esterified carboxy or esterified carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with esterified carboxy; and $R_{\tilde{D}}^{1}$ is aryl, haloaryl, cyclo(lower)alkyl or 20 a heterocyclic group, each of which is substituted with carboxy; lower alkenyl substituted with carboxy; lower alkyl substituted with carboxy or carboxysubstituted aryl, carboxy(lower)alkanoyloxy or carboxy(lower)alkoxyimino; 25 lower alkylthio substituted with carboxy; alkoxy substituted with carboxy-substituted aryl, carboxy-substituted pyridyl, carboxy(lower)alkylamino, N-protected-30 carboxy(lower)alkylamino, N-carboxy(lower)alkyl-Nlower alkylamino, carboxy or carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with carboxy; or 4) subjecting a compound of the formula : 35

$$R^{1}$$
 N
 R^{2}
 R^{5}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

5

or its salt to deesterification reaction to provide a compound of the formula :

15

20

25

30

- or its salt, in the above formulas, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 , A, E, X and Y are each as defined above,
- R⁴ is lower alkoxy substituted with esterified carboxy; lower alkylthio substituted with esterified carboxy; lower alkyl substituted with esterified carboxy; or lower alkenyl substituted with esterified carboxy; and
- R_D^4 is lower alkoxy substituted with carboxy; lower alkylthio substituted with carboxy; lower alkyl substituted with carboxy; or

10

15

- 282 -

lower alkenyl substituted with carboxy; or

5) subjecting a compound of the formula :

or its salt to elimination reaction of the N-protective group to provide a compound of the formula :

25

30

35

20

or its salt, in the above formulas, R¹, R², R³, R⁵, A, E, X and Y are each as defined above, R⁴ is protected amino; N-protected piperidyloxy; N-protected amino(lower)alkylamino; lower alkoxy substituted with protected amino; lower alkylthio substituted with protected amino; lower alkyl substituted with protected amino; lower alkynyl substituted with protected amino; or N-protected amino(lower)alkylsulfonyl; and

10

15

20

25

30

35

the formula :

 $R_{\rm d}^4$ is amino; piperidyloxy; amino(lower)alkylamino; lower alkoxy substituted with amino; lower alkylthio substituted with amino; lower alkyl substituted with amino; lower alkynyl substituted with amino; or amino(lower)alkylsulfonyl; or

6) reacting a compound of the formula :

$$R_{DN}^{1}$$
, R^{2}
 $A-E$
 Y
 R^{5}

(Ic)

or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt to provide a compound of

or its salt, in the above formulas, R_D^1 , R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, and

 R^{1}_{\sim} is aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with substituted or unsubstituted N-containing heterocycliccarbonyl; carbamoyl; substituted or unsubstituted lower alkylcarbamoyl; lower alkenyl 5 substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl or N-containing heterocycliccarbonyl-substituted aryl; lower alkyl substituted with substituted or 10 unsubstituted N-containing heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl(lower)alkanoyloxy, carbamoyl(lower)alkanoyloxy, substituted or 15 $unsubstituted\ lower\ alkylcarbamoyl(lower)alkanoyloxy,$ substituted or unsubstituted N-containing heterocycliccarbonyl (lower) alkoxyimino, carbamoyl(lower)alkoxyimino or substituted or unsubstituted lower alkylcarbamoyl(lower)alkoxyimino; 20 lower alkylthio substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoyl; alkoxy substituted with substituted or unsubstituted N-containing heterocycliccarbonyl-25 substituted aryl, carbamoyl-substituted aryl, substituted or unsubstituted lower alkylcarbamoylsubstituted aryl, substituted or unsubstituted Ncontaining heterocycliccarbonyl-substituted pyridyl, carbamoyl-substituted pyridyl, substituted or 30 unsubstituted lower alkylcarbamoyl-substituted pyridyl, substituted or unsubstituted N-containing heterocycliccarbonyl(lower)alkylamino, carbamoyl(lower)alkylamino, substituted or unsubstituted lower alkylcarbamoyl(lower)alkylamino, 35

N-protected-(substituted or unsubstituted N-containing heterocyclic) carbonyl (lower) alkylamino, N-protected-carbamoyl(lower)alkylamino, N-protectedsubstituted or unsubstituted lower alkylcarbamoyl-(lower)alkylamino, N-(substituted or unsubstituted N-containing heterocyclic)carbonyl(lower)alkyl-Nlower alkylamino, N-carbamoyl(lower)alkyl-N-lower alkylamino, substituted or unsubstituted N-lower alkylcarbamoyl-N-lower alkylamino, substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl (lower) alkoxyimino, carbamoyl(lower)alkoxyimino cr substituted or unsubstituted lower alkylcarbamoyl(lower)alkoxyimino; or lower alkenyloxy substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoyl; or

7) reacting a compound of the formula :

5

10

15

20

25

30

35

or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt to provide a compound of the formula: - 286 -

10

5

or its salt, in the above formulas, $R^1,\ R^2,\ R^3,\ R^4_0,\ R^5,\ A,\ E,\ X\ and\ Y\ are each as defined above, and$

15

R⁴ is lower alkoxy, lower alkylthio, lower alkyl, or lower alkenyl each of which is substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, or substituted or unsubstituted lower alkylcarbamoyl; or

20

8) subjecting a compound of the formula:

25

30

- 287 -

compound of the formula :

10

5

or its salt, in the above formulas, R^1 , R^2 , R^3 , R^5 , A, E, X and Y are each as defined above, R_f^4 is methoxy substituted with aryl or substituted aryl; or lower alkylthio which is substituted with methoxy substituted with aryl or substituted aryl;

20 ar

 R_g^4 is hydroxy; or lower alkylthio substituted with hydroxy; or

25

9) reacting a compound of the formula:

30

- 288 -

or its salt with a compound of the formula :

$$z^1 - R^7$$
 (VI)

or its salt to provide a compound of the formula :

15

20

25

30

10

5

or its salt, in the above formulas,

 ${\rm R}^1,~{\rm R}^2,~{\rm R}^3,~{\rm R}^5,~{\rm A},~{\rm E},~{\rm X}~{\rm and}~{\rm Y}~{\rm are}~{\rm each}~{\rm as}~{\rm defined}$ above,

R_{ga} is hydroxy;

R⁷ is lower alkyl optionally substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyl;

 $\mathbf{Z}^{\mathbf{1}}$ is hydroxy; or acid residue; and

R_h⁴ is lower alkoxy substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyloxy; or

10) reacting a compound of the formula :

$$R^{1}$$
 N R^{2} R^{5} R^{5} R^{4} R^{4} (Iga)

5

or its salt with an acylating agent to provide a compound of the formula :

20

15

$$R^{1}$$
 R^{2}
 R^{2}
 R^{5}
 R^{5}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

25

35

or its salt, in the above formulas,

 R^1 , R^2 , R^3 , R^5 , A, E, X and Y are each as defined above, $R^4_{\rm da}$ is lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino; and

 $\ensuremath{\mathbb{R}}_1^4$ is lower alkoxy substituted with acylamino or

- 290 -

substituted acylamino; lower alkylthio substituted with acylamino or substituted acylamino; or lower alkyl substituted with acylamino or substituted acylamino; or

5

11) reacting a compound of the formula :

10

15

20

or its salt with lower alkanal or N-protected amino(lower)alkanal in the presence of a reducing agent to provide a compound of the formula:

25

10

15

20

25

30

or its salt, in the above formulas,

- R^1 , R^2 , R^3 , R^5 , A, E, X and Y are each as defined above,
- R_{db}^{4} is amino; lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino; and
- R⁴_j is lower alkoxy substituted with lower alkylamino; lower alkylthio substituted with lower alkylamino; lower alkyl substituted with lower alkylamino; lower alkylamino; or N-protected amino(lower)alkylamino; or
- 12) subjecting a compound of the formula :

or its salt to reduction to provide a compound of the formula :

- 292 -

or its salt, in the above formulas, R^1 , R^2 , R^3 , R^5 , A, E, X and Y are each as defined above, or

5 13) subjecting a compound of the formula:

15

10

or its salt to deacylation reaction to provide a compound of the formula :

20

25

30

or its salt, in the above formulas; $R^1,\ R^2,\ R^3,\ R^5,\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined\ above,$ and $R^4_K\ is\ acyloxy,\ or$

35

14) reacting a compound of the formula :

5

or its salt with a compound of the formula :

15

$$z^2-E_B$$
 R^4
(VIII)

20

or its salt to provide a compound of the formula :

25

10

15

20

25

30

35

- 294 -

or its salt, in the above formulas, $R^1,\ R^2,\ R^3,\ R^4,\ R^5,\ X$ and Y are each as defined above, Z^2 is acid residue, and E_b is lower alkylene, or

15) reacting a compound of the formula :

or its salt with an oxidizing agent to provide a compound of the formula :

or its salt, in the above formulas, R^1 , R^2 , R^3 , R^5 , A, E, X and Y are each as defined above, R_q^4 is lower alkylthio substituted with amino or

10

15

20

25

30

35

- 295 -

protected amino; and

 $R_m^4 \ \ \text{is lower alkylsulfinyl substituted with amino or} \\ protected amino, or lower alkylsulfonyl substituted \\ with amino or protected amino; or \\$

16) subjecting a compound of the formula :

or its salt to catalytic reduction to provide a compound of the formula :

or its salt, in the above formulas,

 $\rm R^1,\ R^2,\ R^3,\ R^4,\ R^5,\ A,\ E_b,\ X$ and Y are each as defined above, and

 ${\bf E}_{\bf C}$ is lower alkenylene, or

- 296 -

17) subjecting a compound of the formula :

 $R^{\frac{1}{2}}$ N^{-R^2} R^5 R^5 R^4 (Ix)

15

10

5

or its salt to debenzylation reaction to provide a compound of the formula :

20

25

30

35

or its salt, in the above formulas, $R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X$ and Y are each as defined above, R_d^1 is aryl which is substituted with methoxy substituted

- 297 -

with aryl or substituted aryl, ${\rm R}_{\rm e}^1$ is aryl which is substituted with hydroxy, or

18) reacting a compound of the formula :

Ren R²

N - R²

N - R²

(Iy

15

10

5

or its salt with a compound of the formula :

20

$$2^3 - R^8 \tag{IX}$$

or its salt to provide a compound of the formula :

25

- 298 -

or its salt, in the above formulas,

 $\rm R_e^1,\ R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined$

 Z^3 is hydroxy, or acid residue,

 ${\tt R}^{8}$ is lower alkyl optionally substituted with acyl, acylamino, protected amino, aryl, substituted aryl, acyl-substituted pyridyl, or N-protected guanidino;

 $R_{\rm f}^{1}$ is aryl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, aryl, substituted aryl, acylsubstituted pyridyl or N-protected guanidino; or

19) subjecting a compound of the formula :

15

10

5

25

20

or its salt to elimination reaction of the hydroxy protective group to provide a compound of the formula :

30

20

25

30

35

or its salt, in the above formulas,

- \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 , \mathbb{R}^5 , A, E, X and Y are each as defined above, and
- R³ is methoxy substituted with aryl; acyloxy; or substituted acyloxy; or
- 20) reacting a compound of the formula :

or its salt with a compound of the formula :

 $z^4 - R^9 \tag{X}$

or its salt to provide a compound of the formula :

 R^{1} N R^{2} R^{5} R^{5} R^{5} R^{5}

or its salt, in the above formulas, $R^1,\ R^2,\ R^4,\ R^5,\ A,\ E,\ X$ and Y are each as defined above,

Z4 is acid residue,

- ${\ensuremath{\mathsf{R}}}^9$ is lower alkyl optionally substituted with esterified carboxy, and
- $R_{D}^{\mbox{\scriptsize 3}}$ is lower alkoxy optionally substituted with esterified carboxy, or
- 21) subjecting a compound of the formula:

10

5

15

or its salt to deesterification reaction to provide a compound of the formula :

25

20

$$R^{1}$$
 R^{2}
 A^{-}
 R^{5}
 R^{4}
 R^{4}
 R^{4}

- or its salt, in the above formulas, $R^1,\ R^2,\ R^4,\ R^5,\ A$, E, X, and Y are each as defined above,
- 35 R_{C}^{3} is lower alkoxy substituted with esterified carboxy, and

10

15

20

25

 R_d^3 is lower alkoxy substituted with carboxy, or

22) reacting a compound of the formula :

or its salt with an alkyne compound in the presence of a palladium compound, a copper compound to provide a compound of the formula:

or its salt, in the above formulas, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 , A, E, X and Y are each as defined above, \mathbb{R}^4_n is halogen, and \mathbb{R}^4_n is lower alkynyl optionally substituted with hydroxy,

R_O is lower alkynyl optionally substituted with hydroxy amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy, or

- 302 -

23) reacting a compound of the formula :

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5}
 R^{4}
 R^{6}
 R^{7}

10

5

or its salt with a compound of the formula :

to provide a compound of the formula :

20

25

30

or its salt, in the above formulas, ${\ensuremath{\text{R}}}^1,\ {\ensuremath{\text{R}}}^2,\ {\ensuremath{\text{R}}}^3,\ {\ensuremath{\text{R}}}^5,\ {\ensuremath{\text{A}},\ E,\ X}$ and Y are each as defined above, R_{D}^{4} is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with hydroxy, Z⁵ is halogen, R^{10} is lower alkylsulfonyl or arylsulfonyl, and

35

 $\mathtt{R}^4_{\mathbf{q}}$ is lower alkylthio, lower alkyl or lower alkynyl,

10

15

20

25

30

each of which is substituted with lower alkylsulfonyloxy or arylsulfonyloxy, or

24) reacting a compound of the formula :

$$R^{1}$$
 R^{2}
 A^{-E}
 R^{5}
 R^{4}
 R^{4}
(I-8)

or its salt with alkali metal phthalimide to provide a compound of the formula :

or its salt, in the above formulas,

 $R^{2},\ R^{2},\ R^{3},\ R_{qr}^{4},\ R^{5},\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined above, and$

 R_{r}^{4} is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with phthalimido, or

25) reacting a compound of the formula :

5

or its salt with a reducing agent to provide a compound of the formula :

15

$$R^{1}$$
 N
 R^{2}
 R^{5}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

20

25

- or its salt, in the above formulas, $\rm R^1,\ R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X$ and Y are each as defined above, and
- \mathtt{R}_S^4 is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy, or
- 26) reacting a compound of the formula :

$$R^1$$
 N^2 NH_2 (II)

5

or its salt with a compound of the formula :

15

20

or its salt to provide a compound of the formula :

25

$$R^{1}_{N}$$
 R^{2}
 R^{5}
 R^{5}
 R^{4} (I-11)

30

or its salt, in the above formulas,
$$R^1$$
, R^2 , R^3 , R^4 , R^5 , X and Y are each as defined

- 306 -

above, and

 $\mathbf{E}_{\mathbf{d}}$ is a single bond or lower alkylene, or

27) reacting a compound of the formula:

15

10

5

or its salt with a compound of the formula :

$$z^{6}-R_{a}^{2}$$
 (XIII)

20

in the presence of a base to provide a compound of the formula :

25

30

35

or its salt, in the above formulas, $R^1,\ R^3,\ R^4,\ R^5,\ G,\ X$ and Y are each as defined above, z^6 is acid residue, and

WO 96/41795 PCT/JP96/01533

- 307 -

 $\ensuremath{\text{R}}_a^2$ is lower alkyl optionally substituted with aryl or acyl, or

28) reacting a compound of the formula:

5

10

15

20

25

30

35

or its salt with an acylating agent to provide a compound of the formula :

or its salt, in the above formulas, R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, R_g^1 is aryl which is substituted with lower alkoxy substituted with amino, and

 ${\tt R}_{h}^{1}$ is aryl which is substituted with lower alkoxy substituted with acylamino or substituted

15

20

25

30

35

- 308 -

acylamino, or

29) reacting a compound of the formula :

or its salt with a reducing agent to provide a compound of the formula :

or its salt, in the above formulas, $R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined\ above,$ $R^1_1\ is\ aryl\ which\ is\ substituted\ with\ lower\ alkoxy$ substituted with oxopiperidylcarbonyl, and $R^1_1\ is\ aryl\ which\ is\ substituted\ with\ lower\ alkoxy$

10

15

20

25

- 309 -

substituted with hydroxypiperidylcarbonyl, or

30) reacting a compound of the formula :

or its salt with an amine compound or its salt in the presence of a reducing agent to provide a compound of the formula :

or its salt, in the above formulas,

 R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, R_K^1 is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl,

35

and

 \mathbb{R}^1_y is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl, or

31) reacting a compound of the formula :

10

5

15

20

or its reactive derivative at the carboxy group or a salt thereof with lower alkylamino(lower)alkanol to provide a compound of the formula :

25

30

or its salt, in the above formulas, R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, $\ensuremath{\mathbb{R}}_m^1$ is aryl which is substituted with lower alkoxy substituted with carboxy, and R_{h}^{1} is aryl which is substituted with lower alkoxy

35

substituted with lower

- 311 -

alkylamino(lower)alkoxycarbonyl, or

32) reacting a compound of the formula:

 or its salt with a reducing agent to provide a compound of the formula :

$$R_{PN}^{1}$$
 R^{2} R^{5} R^{5} R^{3} R^{4} R^{4} R^{4}

25

30

35

20

10

15

or its salt, in the above formulas, R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, R_0^1 is aryl which is substituted with lower alkoxy substituted with esterified carboxy, and R_D^1 is aryl which is substituted with lower alkoxy substituted with hydroxy, or

33) subjecting a compound of the formula:

or its salt to oxidation reaction to provide a compound of the formula :

- 25
- or its salt, in the above formulas, $R_{\rm p}^1,~R^2,~R^3,~R^4,~R^5,~A,~E,~X$ and Y are each as defined above, and
- $R_{\bf q}^{\bf 1}$ is aryl which is substituted with lower alkoxy substituted with formyl, or
- 30 $^{34})$ reacting a compound of the formula :

or its salt with an azide compound to provide a compound of the formula :

15

20

25

or its salt, in the above formulas, R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, R^1 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl, and R^1 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-substituted aryl, or

30

35) reacting a compound of the formula :

5

or its salt with an isourea compound to provide a compound of the formula :

15

$$R^{1}$$
 N R^{2} R^{5} R^{5} R^{4} R^{4} (I-27)

20

25

or its salt, in the above formulas, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^5 , \mathbb{A} , \mathbb{E} , \mathbb{R} and \mathbb{Y} are each as defined above, \mathbb{R}^4_t is lower alkoxy substituted with amino, and \mathbb{R}^4_u is lower alkoxy substituted with guanidino, or

- 30

36) subjecting a compound of the formula:

$$R_{t}^{1}$$
, R^{2}

5

or its salt to elimination reaction of the N-protective group to provide a compound of the formula :

15

20

25

30

or its salt, in the above formulas, $R^2,\ R^3,\ R^4,\ R^5,\ A,\ E,\ X\ and\ Y\ are\ each\ as\ defined\ above,$ $R^1_t\ is\ aryl\ which\ is\ substituted\ with\ lower\ alkoxy$ substituted with protected amino, N-protected amino(lower)alkanoylamino, N-protected piperazinylcarbonyl or N-protected guanidino; and $R^1_u\ is\ aryl\ which\ is\ substituted\ with\ lower\ alkoxy$ substituted with amino, amino(lower)alkanoylamino, piperazinylcarbonyl or guanidino; or

37) reacting a compound of the formula :

5

10

or its salt with N-lower alkylpiperazine, dimethylaminopiperidine, ammonia or N,N-dimethylformamide to provide a compound of the formula :

20

15

25

or its salt, in the above formulas, R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above, $R_{\rm u}^1$ is aryl which is substituted with lower alkoxy substituted with phenoxycarbonylamino, and $R_{\rm u}^1$ is aryl which is substituted with lower alkoxy substituted with N-lower alkylpiperazinylcarbonylamino, dimethylaminopiperidylcarbonylamino, carbamoylamino or dimethylcarbamoylamino, or

30

38) reacting a compound of the formula :

$$R^{1}$$
 R^{2} R^{5} R^{4} R^{4}

10

15

5

or its reactive derivative at the carboxy group or a salt thereof with a hydroxy compound or a diazo compound to provide a compound of the formula:

20 A-E

25

or its salt, in the above formulas, $R^1,\ R^2,\ R^3_G,\ R^3_d,\ R^4,\ R^5,\ A,\ E,\ X$ and Y are each as defined above, or

30 39) reacting a compound of the formula:

10

15

20

or its reactive derivative at the carboxy group or a salt thereof with an amine to provide a compound of the formula :

or its salt, in the above formulas, ${\bf R^1, \ R^2, \ R_d^3, \ R^4, \ R^5, \ A, \ E, \ X \ and \ Y \ are each as defined above, and }$

 R_{Θ}^{3} is lower alkoxy which is substituted with carbamoyl optionally substituted with lower alkyl.

- A pharmaceutical composition comprising a compound of claim 1, as an active ingredient, in association with a pharmaceutically acceptable, substantially nontoxic carrier or excipient.
- 35 7. A compound of claim 1 for use as a medicament.

- 8. A method of therapeutic treatment and/or prevention of hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease, Meniere's syndrome or motion sickness which comprises administering an effective amount of a compound of claim 1 to human beings or animals.
- 9. Use of a compound of claim 1 for the manufacture of a medicament for treating and/or preventing hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease, Meniere's syndrome or motion sickness in human beings or animals.

INTERNATIONAL SEARCH REPORT

Interns al Application No PCT/JP 96/01533

	•		1 01/01	30/01333
A. CLASSI IPC 6	FIGATION OF SUBJECT MATTER C07C237/42 C07C237/44 A61K31/3 C07D295/20 C07D211/58 C07D211, C07C271/16			07D295/18 07D209/48
According to	o International Patent Classification (IPC) or to both national classi	ification and IPC		
	SEARCHED			
IPC 6	ocumentation searched (classification system followed by classificat CO7C CO7D	tion symbols)		
Documentat	on searched other than munimum documentation to the extent that	such documents are in	cluded in the fi	ields searched
Electronic d	lata base constilled during the international search (name of data ba	se and, where practical	, search terms	used)
C, DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the r	relevant passages		Relevant to claim No.
х	BOLL. CHIM. FARM. (1983), 122(4) CODEN: BCFAAI;ISSN: 0006-6548, 1983, XP000661221 PLESCIA, S. ET AL: "A new pyrazolo[4,3-c][1,5]benzodiazocii derivative" see page 194; example 4E			1,2,5
A	EP.A.0 620 216 (FUJISAWA PHARMAC CO) 19 October 1994 cited in the application see claims	EUTICAL		1-9
Furt	ther documents are listed in the continuation of box C.	X Patent family	y members are	listed in annex.
**Special ealegories of cited documents: **A document defining the general state of the art which is not coundered to be of particular relevance to coundered to be of particular relevance to the problem of the international filing date or printing date and not in conflict with the application but the counter of the property of the state of the prompter of the property and the				
	actual completion of the international search 2 September 1996	Date of mailing o		onal search report
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2200 In Visionic III. Fact (-3.1-70) 340-3016.	Authorized office	T	

INTERNATIONAL SEARCH REPORT

International application No.

F=i/JP 96/01533

Box I		
	Observations where certain claims were found unsearchable (Continua	ution of item 1 of first sheet)
This int	ernational search report has not been established in respect of certain claims un	nder Article 17(2)(a) for the following reasons:
1	Claims Nos: because they relate to subject matter not required to be searched by this Auth Although claim 8 is directed to a method of tramethod practised on) the human/animal body, the and based on the alleged effects of the compounciation o	nority, namely. eathent of (diagnostic me search has been carried out and/composition.
3	Claims Non: because they are dependent claims and are not drafted in accordance with the	
	Observations where unity of invention is lacking (Continuation of item	
	ernational Searching Authority found multiple inventions in this international a	application, as follows:
i. 🗌	As all required additional search fees were timely paid by the applicant, this in searchable claims.	sternational search report covers all
2.	As all searchable claims could be searches without effort justifying an addition of any additional fee.	
	of any additional ree.	nal fee, this Authority did not invite payment
3.	As only some of the required additional search fees were timely paid by the ap coverts only those claims for which fees were paid, specifically claims Nos.:	
3.	At only some of the associated to	oplicant, this international search report

INTERNATIONAL SEARCH REPORT

antormation on patent family members			PCT/JP 96/01533		
Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
EP-A-0620216	19-10-94	CA-A- 2 CN-A- 1 HU-A- JP-A- 7 US-A- 5	932294 121112 098406 70197 002800 521170 402325	20-10-94 14-10-94 08-02-95 28-09-95 06-01-95 28-05-96 16-02-95	
		ZA-A- 9	402325	16-02-95	