# Toio Wildfire Mapping

Oliver Fong

Red Atagi

Chi Wang



CMSC 20380's Project 2 | 02.20.2025

# **Motivation**



The recent wildfires in Los Angeles were our initial motivation for creating an interactive mapping system to keep track of national wildfires.

After looking at the available datasets, we were surprised to see the extent and daily prevalence of wildfires in the US alone.

We thought toiois would be a good way to capture the prevalence of wildfires occurring at any given moment in the nation while emphasizing their physicality.

#### **Datasets**

#### FEMA (US Fire Administration)

2008-2017 Fire Report on Fire Loss pg. 135



| \$80.0 | Fire dollar loss per capita            | Dollar                             |
|--------|----------------------------------------|------------------------------------|
| \$70.0 |                                        | Year                               |
| \$60.0 |                                        | 2008                               |
|        | Adjusted                               | 2009                               |
| \$50.0 |                                        | 2010                               |
| \$40.0 |                                        | 2011                               |
|        | Actual                                 | 2012                               |
| \$30.0 |                                        | 2013                               |
| \$20.0 | Fire dollar loss — Fire dollar los     | 2014                               |
|        | (actual) (adjusted)                    | 2015                               |
| \$10.0 | - Trend (actual) Trend (adjust         | ed) 2016                           |
| \$0.0  |                                        | 2017                               |
|        | 2009 2010 2011 2012 2013 2014 2015 201 | 6 2017 <b>10-year</b><br>trend (%) |

| Dollar loss per capita |        |                                |  |  |  |
|------------------------|--------|--------------------------------|--|--|--|
| Year                   | Actual | Adjusted<br>to 2017<br>dollars |  |  |  |
| 2008                   | \$50.9 | \$57.9                         |  |  |  |
| 2009                   | \$40.8 | \$46.7                         |  |  |  |
| 2010                   | \$37.5 | \$42.1                         |  |  |  |
| 2011                   | \$37.4 | \$40.8                         |  |  |  |
| 2012                   | \$39.6 | \$42.3                         |  |  |  |
| 2013                   | \$36.5 | \$38.4                         |  |  |  |
| 2014                   | \$36.4 | \$37.7                         |  |  |  |
| 2015                   | \$44.6 | \$46.1                         |  |  |  |
| 2016                   | \$42.1 | \$43.0                         |  |  |  |
| 2017                   | \$70.7 | \$70.7                         |  |  |  |
| 10-year                | 31.3%  | 11.9%                          |  |  |  |

Sources: NFPA, CPI and U.S. Census Bureau.

Note: The large increase in the dollar loss per capita trend is partially attributed to the increase in the 2017 dollar loss estimate which reflects the Northern California wildfires.

| 14 | A        | В         | C         | D      | E     | F        | G        | Ħ         | 1         | J       | K         | L      |     |
|----|----------|-----------|-----------|--------|-------|----------|----------|-----------|-----------|---------|-----------|--------|-----|
| 1  | latitude | longitude | brightnes | SP .11 | track | acq_date | acq_time | satellite | co. fiden | version | bright_t3 | frp    | day |
| 2  | -10.76   | -44.34    | 305,9     | 1.03   | 1.02  | *****    | 30       | T         | 8.        | 6.1NRT  | 294.04    | 6.4    | N   |
| 3  | -25.02   | -42.67    | 32 . 93   | 1.16   | 1.07  | *****    | 26       | T         | 100       | 6. NRT  | 297.96    | 20.55  | N   |
| 4  | -11.25   | -49       | 313.1     | 2      | 1.38  | *****    | 30       | T         | 86        | 6.1NF T | 290.88    | 28.86  | N   |
| 5  | -24.75   | -42.5     | 311.57    | 1.13   |       | *****    | 26       |           |           | 6.1NRT  | 298.66    | 8.83   |     |
| 6  | -11.25   | -42.02    | 305.62    | 2.01   | 1.38  | ******   | 30       | T         | 65        | 6.1NRT  | 290.88    | 14.33  | N   |
| 7  | -22.91   | 3.73      | 312.83    | 1.25   | 1,11  |          | 26       |           |           | 6.1NRT  | 300.48    | 11,48  |     |
| 8  | -11.26   | -49.01    | 304.73    | 2      |       |          | 30       |           |           | 6.1NRT  | 291.23    | 12.79  |     |
| 9  | -22.9    | -43.73    | 311.05    | 1.25   |       |          | 26       |           |           | 6.1NRT  | 299.8     | 9.69   |     |
| 10 | -11.5    | -49.01    | 312.1     | 2      |       | ******   | 30       |           |           | 6.1NRT  | 290.23    | 26.51  |     |
| 11 | -1.61    | -45.11    | 360,89    | 1.09   | 1.04  | *****    | 30       |           |           | 6.1NRT  | 291.79    | 100.51 |     |
| 12 | -12.08   | -39.83    | 315.52    | 1.02   | 1.01  |          | 26       |           |           | 6.1NRT  | 299.69    | 10.62  |     |
| 13 | 21.09    | -43.14    | 307.36    | 1.12   | 1.05  |          | 26       |           |           | 6.1NRT  | 293.17    | 8.54   |     |
| 14 | -10.61   | -45.12    | 354.26    | 1.09   | 1.04  | ******   | 30       |           |           | 6.1NRT  | 290.82    | 8 47   |     |
| 15 | -8.129   | -43.14    | 313.02    | 1.01   |       | *****    | 30       |           |           | 6.1NRT  | 292.93    |        | N   |
| 16 | -21.42   | -48.54    | 311.76    | 2.58   | 1.54  | *****    | 26       |           |           | 6.1NRT  | 293.03    |        | N   |
| 17 | -21.42   | -48.57    | 307.67    | 2.50   | 1.55  |          | 26       |           |           | 6.1NRT  | 292.59    |        | N   |
| 18 | -6.695   | -42.13    | 306.1     | 1.12   | 1.05  | ******   | 32       |           |           | 6.1NRT  | 293.35    | 6.69   |     |
| 19 | -21.38   | -48.57    | 328.23    | 2.6    | 1.55  | ******   | 26       |           |           | 6.1NRT  | 293.05    | 98.75  |     |
| 1  | -21.41   | -48.55    | 309.88    | 2.58   | 1.54  | ******   | 26       |           |           | 6.1NRT  | 292.85    | 28.85  |     |
| T- |          |           |           | 2.50   | 1.55  |          | 26       |           |           |         | 292.92    | 62.07  |     |
| 1  | -21.39   | -48.58    | 319.81    |        |       |          |          |           |           | 6.1NRT  |           |        |     |
| 2  | -21.37   | -48.53    | 304.07    | 2.57   | 1.54  | ******   | 26       |           |           | 6.1NRT  | 292.83    | 16.63  |     |
| 23 | -21.37   | -48.56    | 302.88    | 2.58   | 1.54  | ******   | 26       |           |           | 6.1NRT  | 292.51    | 13.93  |     |
| 24 | -21.37   | -48.58    | 311.47    | 2.6    | 1.55  |          | 26       |           |           | 6.1NRT  | 292.77    | 35.65  |     |
| 25 | -20.24   | -40.24    | 325.21    | 1.02   |       |          | 26       |           |           | 6.1NRT  | 299.33    | 19.84  |     |
| 26 | -20.21   | -40.73    | 303.98    | 1.01   |       | *****    | 26       |           |           | 6.1NRT  | 292.88    | 5.21   |     |
| 27 | -20.55   | -43.77    | 303.78    | 1.18   |       | *****    | 26       |           |           | 6.1NRT  | 293.74    | 6.61   |     |
| 28 | -20.19   | -41.24    | 310.15    | 1      |       |          | 26       |           |           | 6.1NRT  | 293.43    | 9.19   |     |
| 29 | -19.82   | -43.13    | 305.22    | 1.09   | 1.04  |          | 26       |           |           | 6.1NRT  | 294.07    | 6.23   |     |
| 0  | -19.17   | -40.13    | 308.02    | 1.04   | 1.02  |          | 26       |           |           | 6.1NRT  | 294.76    | 7.38   |     |
| 1  | -16.9    | -43.66    | 305.41    | 1.08   | 1.04  |          | 28       |           |           | 6.1NRT  | 290.73    | 6.47   |     |
| -  | -15.6    | -41.8     | 308.85    | 1      |       |          | 28       |           |           | 6.1NRT  | 291.71    | 8.09   |     |
| 3  | -14.7    | -49.87    | 301.96    | 2.64   | 1.56  |          | 28       |           |           | 6.1NRT  | 291.08    | 15.17  |     |
| 34 | -12.85   | -43.82    | 305.39    | 1.03   | 1.01  | *****    | 28       |           | 64        | 6.1NRT  | 294.53    | 5.69   |     |
| 35 | -12.85   | -43.83    | 306.74    | 1.03   |       | *****    | 28       |           |           | 6.1NRT  | 294.28    | 6.66   |     |
| 36 | -12.04   | -41.39    | 305.13    | 1.07   | 1.03  | ######   | 28       |           | 63        | 6.1NRT  | 290.09    |        | N   |
| 37 | -11.6    | -44.85    | 314.33    | 1.09   | 1.04  | ######   | 28       |           | 89        | 6.1NRT  | 293.85    | 13, 8  |     |
| 38 | -1.396   | 29.217    | 302.49    | 2.54   | 1.53  | ######   |          | A         |           | 6.1NRT  | 271.94    | 26 24  |     |
| 39 | 4.815    | 33.305    | 303.7     | 2.2    | 1.44  | *****    | 2        | A         | 57        | 6.1NRT  | 292.12    | 1.67   | N   |
| 40 | 407      | 29.195    | 374.46    | 2.55   | 1.54  | *****    | 5        | A         | 100       | 6.1NRT  | 277.94    | 22.15  | N   |
| 41 | - 41     | 29.216    | 394.12    | 2.54   | 1.53  | *****    | 5        | A         | 100       | 6.1NRT  | 283.86    | 861.87 | N   |
| 42 | 11.601   | 41.578    | 303.34    | 1.18   | 1.08  | *****    | 2        | A         | 55        | 6.1NRT  | 291.82    | 6.93   | N   |
| 43 | -1.42    | 29.192    | 310.62    | 2.55   | 1.54  | ######   | 5        | A         | 55        | 6.1NRT  | 273.1     | 46.4   | N   |
| 44 | 12.634   | 30.236    | 304.86    | 3.57   | 1.77  | *****    | 2        | Α         | 39        | 6.1NRT  | 289 8     | 41.83  | N   |
| 45 | -1.426   | 9.181     | 306.06    | 2.55   | 1.54  | *****    | 5        | A         | 58        | 6.1NRT  | 271.89    | 37.48  | N   |
| 46 | 12.618   | 30.334    | 309.81    | 3.57   | 1.77  | *****    |          | A         |           | 6.1NRT  | 89.72     | 63.92  |     |
| 47 | -9.142   | 35.13     | 304.41    | 1.01   |       | *****    |          | A         |           | 6.1NRT  | 286.41    | 8.68   |     |
| 48 | 12.603   | 30.232    | 310.32    | 3.57   | 1.77  | *****    |          | A         |           | 6.1NF   | 289.97    | 65.65  |     |
| 49 | 11.84    | 32.327    | 365.58    | 2.37   |       | *****    |          | A         |           | 6 ART   | 287.74    | 20.82  |     |
| 50 | 11.844   | 32.32     | 307.      | 2.37   | 1.49  | ******   |          | A         |           | 6.1NRT  | 287.16    | 24.62  |     |
| 51 | 11.831   | 32.318    | 311,77    | 2.37   |       | ******   |          | A         |           | 6.1NRT  | 286.28    | 35.01  |     |
| 52 | 11.1     | 36.365    | 308.83    | 1.10   |       | *****    |          | A         |           | 6.1NRT  | 287.54    | 12.18  |     |

NASA-FIRMS (Fire Information for Resource Management System)

# The one we chose

MTBS (Monitoring Trends in Burn Severity) Map



### FEMA Example Data

\* 41.8°, Coordinates 87.6°

\*\* FRP

350

\* **0325** 



# Implementation



#### Features:





1111 modeling fire in

### Reflection: Pros



**Toio Responsiveness** 

- Toios were snappy
- Responded to function calls quickly
- Led to satisfying movement



#### **Shape Animation**

- draw() function's high frame rate led to fluid animation
- Integrated shape drawing easy to use
- Built in doesn't look too bad!



**Projector** 

- No nonsense
- Apart from physically setting up, minimal technical difficulty
- Worked how it should! Only takes one button for HDMI



**Public Fire Data** 

- Easy to work with
- Legible
- There was a lot of data
- Very informative!
- Clear importance

# Reflection: What went wrong?

Sickness! Two of three of our group members got sick which certainly hampered our ability to work together under this tight time frame.

Work in CSIL as a group is always tough due to busy schedules and location

Toios were sometimes difficult to work with - charging, mats, input sensitivity

Processing! Poor UI and legibility. Had some problems with Windows



### Future Implementation

Larger scale - worldwide depiction of total wildfires in real time, and accurate dot scaling to represent severity



More toio interactivity apart from just the timeline and the tapping

Wildfire simulation through Sims-like city: build it yourself and protect yourself from the fire

On a local scale - for a small area (like Chicago), and with local fire data, use toios as real fire trucks and deliver them to the fire



## Thanks!



# CMSC 20380 Fire Mapping

Oliver Chi Red

