Sequences and Limits

Xetera Mnemonics grostaco@gmail.com

April 26, 2022

- The sequence (x_n) is defined by the following formulas for the nth term. Write the first five terms in each case
- 1.1 $x_n := 1 + (-1)^n$

$$x_1 = 0$$

$$x_2 = 1$$

$$x_3 = 0$$

$$x_4 = 1$$

$$x_5 = 0$$

1.2 $x_n := \frac{(-1)^n}{n}$

$$x_1 = -1$$

$$r_2 = \frac{1}{2}$$

$$x_3 = \frac{-1}{2}$$

$$x_2 = \frac{1}{2}$$

$$x_3 = \frac{-1}{3}$$

$$x_4 = \frac{-1}{4}$$

$$x_5 = \frac{1}{5}$$

1.3
$$x_n := \frac{1}{n(n+1)}$$

$$x_1 = \frac{1}{2}$$

$$x_2 = \frac{1}{6}$$

$$x_3 = \frac{1}{12}$$

$$x_4 = \frac{1}{20}$$

$$x_5 = \frac{1}{30}$$

1.4
$$x_n := \frac{1}{n^2+2}$$

$$x_{1} = \frac{1}{3}$$

$$x_{2} = \frac{1}{6}$$

$$x_{3} = \frac{1}{11}$$

$$x_{4} = \frac{1}{18}$$

$$x_{5} = \frac{1}{27}$$

2 The first few terms of a sequence (x_n) are given below. Assuming that the "natural pattern" indicated by these term persists, give a formula for the nth term x_n

$$x_n = 3 + 2n$$

2.2
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{8}$, $-\frac{1}{16}$, ...,

$$x_n = -(-\frac{1}{2})^n$$

2.3
$$\frac{1}{2}$$
, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ...,

$$x_n = \frac{n}{n+1}$$

2.4 1, 4, 9, 16, ...,

$$x_n = n^2$$

- 3 List the first five terms of the following inductively defined sequences
- **3.1** $x_1 := 1, x_{n+1} := 3x_n + 1$

$$x_2 = 4$$

$$x_3 = 13$$

$$x_4 = 40$$

$$x_5 = 121$$

$$x_6 = 364$$

4 For any $b \in \mathbb{R}$, prove that $\lim_{n \to \infty} \left(\frac{b}{n} \right) = 0$

If $\epsilon > 0$ is given, then $\frac{1}{\epsilon} > 0$. By the Archimedean property, there exists a natural number $K = K(\epsilon)$ such that $\frac{b}{K} < \epsilon$. Then, if $n \geq K$, we have that $\frac{b}{n} \leq \frac{b}{K} < \epsilon$. Consequently, if $n \geq K$, then

$$\left|\frac{b}{n} - 0\right| = \frac{b}{n} < \epsilon$$

$$\therefore \lim (\frac{b}{n}) = 0$$

- 5 Use the definition of the limit of a sequence to establish the following limits
- **5.1** $\lim(\frac{n}{n^2+1})=0$

Let $\epsilon > 0$ be given. Let us first note that $n \in \mathbb{N}$ and

$$\frac{n}{n^2+1} < \frac{n}{n^2} = \frac{1}{n}$$

From the Archimedean Property there exists $K \in \mathbb{N}$ such that, $\frac{1}{K} < \epsilon$. If $n \ge K$, then $\frac{1}{n} \le \frac{1}{K} < \epsilon$, therefore

$$\left| \frac{n}{n^2 + 1} - 0 \right| = \frac{n}{n^2 + 1} < \frac{n}{n^2} = \frac{1}{n} < \epsilon$$

$$\therefore \lim \left(\frac{n}{n^2+1}\right) = 0$$

5.2
$$\lim(\frac{2n}{n+1}) = 2$$

Let $\epsilon > 0$ be given, we want to obtain the inequality

$$\left| \frac{2n}{n+1} - 2 \right| < \epsilon$$

when $n \geq K$ for some $K \in \mathbb{N}$. We can simplify the expression on the left:

$$\left| \frac{2n}{n+1} - 2 \right| = \left| \frac{2n - 2n - 2}{n+1} \right|$$
$$= \left| \frac{-2}{n+1} \right|$$
$$= \frac{2}{n+1} < \frac{2}{n} < \epsilon$$

From section 4, it is clear that since $\forall b \in R \Rightarrow \lim(\frac{b}{n}) = 0$, then $|\frac{2}{n} - 0| = \frac{2}{n} < \epsilon$

$$\therefore \lim(\tfrac{2n}{n^2+1}) = 2$$

5.3 $\lim(\frac{3n+1}{2n+5}) = \frac{3}{2}$

Let $\epsilon > 0$ be given, we want to obtain the inequality

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| < \epsilon$$

when $n \geq K$ for some $K \in \mathbb{N}$. We can simplify the expression on the left:

$$\left| \frac{3n+1}{2n+5} - \frac{3}{2} \right| = \left| \frac{6n+2-6n-15}{4n+5} \right|$$

$$= \left| \frac{-13}{4n+5} \right|$$

$$= \frac{13}{4n+5} < \frac{13}{n} = \frac{13}{n} < \epsilon$$

From section 4, it is clear that since $\forall b \in R \Rightarrow \lim(\frac{b}{n}) = 0$, then $|\frac{13}{n} - 0| = \frac{13}{n} < \epsilon$ $\therefore \lim(\frac{3n+1}{2n+5}) = \frac{3}{2}$

5.4
$$\lim(\frac{n^2-1}{2n^2+3}) = \frac{1}{2}$$

Let $\epsilon > 0$ be given, we want to obtain the inequality

$$\left|\frac{n^2-1}{2n^2+3}-\frac{1}{2}\right|<\epsilon$$

when $n \geq K$ for some $K \in \mathbb{N}$. We can simplify the expression on the left:

$$\begin{split} \left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| &= \left| \frac{2n^2 - 2 - 2n^2 - 3}{4n^2 + 6} \right| \\ &= \left| \frac{-5}{4n^2 + 6} \right| \\ &= \frac{5}{4n^2 + 6} < \frac{5}{4n^2} = \frac{5}{n^2} \le \frac{5}{n} < \epsilon \end{split}$$

From section 4, it is clear that since $\forall b \in R \Rightarrow \lim(\frac{b}{n}) = 0$, then $|\frac{5}{n} - 0| = \frac{5}{n} < \epsilon$ $\therefore \lim(\frac{3n+1}{2n+5}) = \frac{3}{2}$

6 Show that

6.1 $\lim(\frac{1}{\sqrt{n+7}}) = 0$

We should first note that since $n \in \mathbb{N}$,

$$\frac{1}{\sqrt{n+7}} < \frac{1}{\sqrt{n}}$$

For a given $\epsilon > 0$, we obtain $1/\sqrt{n} < \epsilon$ iff $n > 1/\epsilon^2$. If we take $K > 1/\epsilon^2$ then it follows that for all $n \ge K$:

$$\left| \frac{1}{\sqrt{n}} - 0 \right| < \epsilon$$

6.2
$$\lim_{n \to 2} (\frac{2n}{n+2}) = 2$$

We should first note that since $n \in \mathbb{N}$,

$$\frac{2n}{\sqrt{n+2}}<\frac{2n}{n}=2$$

It is trivial to show that $|2-2| < \epsilon$ for all $\epsilon > 0$

6.3 $\lim(\frac{\sqrt{n}}{n+1}) = 0$

We should first note that since $n \in \mathbb{N}$,

$$\frac{\sqrt{n}}{n+1} < \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$$

It is sufficient from 6.1 to conclude that $\lim_{n \to \infty} (\frac{\sqrt{n}}{n+1}) = 0$

6.4
$$\lim(\frac{(-1)^n \cdot n}{n^2 + 1}) = 0$$

We should first note that since $n \in \mathbb{N}$,

$$\frac{(-1)^n \cdot n}{n^2 + 1} < \frac{n}{n^2 + 1} < \frac{n}{n^2} = \frac{1}{n}$$

The result follows from section 4

7 Let
$$x_n := 1/\ln(n+1)$$
 for $n \in \mathbb{N}$

7.1 Use the definition of limit to show that $\lim(x_n) = 0$

Since ln is a monotonically increasing function, we have that:

$$\frac{1}{\ln(n+1)} < \frac{1}{\ln(n)}$$

We can find the inequality

$$\epsilon > \frac{1}{\ln(n)}$$

$$\frac{1}{\epsilon} < \ln(n)$$

$$e^{1/\epsilon} < n$$

If we choose $K(\epsilon) = e^{1/\epsilon}$ and $n \ge K(\epsilon)$, it follows that

$$\left|\frac{1}{\ln(n+1)} - 0\right| < \left|\frac{1}{\ln(n)}\right| = \frac{1}{\ln(n)} < \epsilon$$

 $\therefore \lim(x_n) = 0$

7.2 Find a specific value of $K(\epsilon)$ as required in the definition of limit for each of (i) $\epsilon = 1/2$, and (ii) $\epsilon = 1/10$

Using $K(\epsilon)=e^{1/\epsilon}$, we have for (i) $K(1/2)=e^2$, and (ii) $K(1/10)=e^{10}$

8 Prove that $\lim(x_n) = 0$ iff $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n)

 (\Longrightarrow) If $\lim(x_n) = 0$, we have that given $\epsilon > 0$

$$|x_n - 0| < \epsilon$$

For all $n \geq K(\epsilon) \in \mathbb{N}$.

We will define |x| as $\max\{-x, x\}$, we will have that

$$||x_n| - 0| = \max\{\max\{x_n, -x_n\}, -\max\{x_n, -x_n\}\}\$$

= $\max\{x_n, -x_n\}$
= $|x_n - 0|$
< ϵ

 (\Leftarrow) If $\lim(|x_n|) = 0$, we have that given $\epsilon > 0$

$$||x_n| - 0| < \epsilon$$

For all $n \geq K(\epsilon) \in \mathbb{N}$.

We will define |x| as $\max\{-x, x\}$, we will have that

$$||x_n| - 0| = \max\{\max\{x_n, -x_n\}, -\max\{x_n, -x_n\}\}\$$

= $\max\{x_n, -x_n\}$
= $|x_n - 0|$
< ϵ

Thus concluding our proof. $x_n = (-1)^n$ is an example of a sequence with $\lim(|x_n|)$ converging but not $\lim(x_n)$

9 Show that if $x_n \ge 0$ for all $n \in \mathbb{N}$ and $\lim(x_n) = 0$, then $\lim(\sqrt{x_n}) = 0$

If $\lim(x_n) = 0$ then we have for all $\epsilon > 0$:

$$|x_n - 0| < \epsilon$$

which is equivalent to saying that $x_n < \epsilon$ as x_n is positive (or zero). It follows that $\sqrt{x_n} < x_n < \epsilon$, and subsequently $|\sqrt{x_n}| < |x_n| < \epsilon$.

10 Prove that $\lim(x_n) = x$ and if x > 0, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$

If $\lim(x_n) = x$ and if x > 0 then for all $\epsilon > 0$

$$|x_n - x| < \epsilon$$