12 Two people push a vertical gate to open it. The forces exerted by the people on the gate are shown

One person is distance d_1 from the gate's hinge and pushes with horizontal force F_1 at angle θ_1 to the gate.

The other person is at distance d_2 from the hinge and pushes with horizontal force F_2 at an angle θ_2 to the gate.

What is the total moment about the hinge due to forces F_1 and F_2 ?

- **A** $(d_1 \times F_1 \cos \theta_1) + (d_2 \times F_2 \cos \theta_2)$
- **B** $(d_1 \times F_1 \sin \theta_1) + (d_2 \times F_2 \sin \theta_2)$
- **C** $(d_1 \times F_1 \cos \theta_1) (d_2 \times F_2 \cos \theta_2)$
- $\mathbf{D} \quad (\mathbf{d}_1 \times \mathbf{F}_1 \sin \theta_1) (\mathbf{d}_2 \times \mathbf{F}_2 \sin \theta_2)$
- **13** A ball is rolling down a slope at a constant speed. The three forces acting on the ball are its weight, the contact force normal to the slope and friction.

Which diagram could represent these three forces?

