

Allan Robson

Estruturas de Dados

ESTRUTURAS DE DADOS

Complexidade de Algoritmos

□ Introdução

- Análise de Algoritmos é uma área da Ciência da Computação que estuda os algoritmos.
- Busca responder a seguinte pergunta:

"Podemos fazer um algoritmo mais eficiente?"

□ Introdução

- Podemos resolver um problema de várias maneiras diferentes, isto é, podemos utilizar algoritmos diferentes para um mesmo problema;
- Algoritmos diferentes para resolver o mesmo problema não necessariamente fazem com a mesma eficiência;
- Para comparar a eficiência dos algoritmos foi criada uma medida chamada de Complexidade Computacional

□ Introdução

 A Complexidade Computacional indica o "custo" ao se aplicar um algoritmo;

$$custo = mem\'oria + tempo$$

- Memória: quando de espaço o algoritmo vai consumir;
- Tempo: duração de execução
- Para medir a complexidade computacional de um algoritmo devemos medir quantas instruções são realizadas para a execução da tarefa.

Contando Instruções

 Tomando como exemplo um algoritmo que procure o maior elemento de um vetor:

```
int Maior = A[0];
for (i = 0; i < n; i++) {
    if (A[i] >= Maior) {
        Maior = A[i];
    }
}
```

- Para contar instruções devemos contar quantas "instruções simples" são executadas:
- Instrução simples:
 - Atribuição de valor a uma variável;
 - Comparação entre dois valores
 - Operações aritméticas básicas (soma, subtração, multiplicação, divisão)

- Linha 1 (custo total 1):
 - 1 instrução;

- Linha 2 (custo total 2n + 2):
 - Na primeira execução (custo 2):
 - Inicialização da variável "i"
 - Comparação "i<n"
 - Durante a execução do laço (custo 2n):
 - Incremento "i++" (executado n vezes)
 - comparação "i < n" (executado n vezes)

- Linhas 3 (custo total n):
 - Comparação "A[i] >= M"

- Linhas 4 (custo total n):
 - Atribuição "M = A[i]"
 - No pior caso será realizada n atribuições

Contando Instruções

• O custo total do algoritmo é dado por:

$$f(n) = 1 + (2n + 2) + n + n$$
$$f(n) = 4n + 3$$

• Essa função dá uma ideia do custo de execução do algoritmo para um problema de tamanho n.

- Será se todos os termos da função f são necessários para termos uma noção do custo?
- De fato, nem todos os termos são necessários;
- Podemos descartar certos termos na função e manter apenas os que nos dizem o que acontece com a função quando o tamanho dos dados de entrada n cresce muito;

- A ideia do **comportamento assintótico** é analisar como o algoritmo se comporta quando $n o \infty$
- Podemos descartar todos os termos que crescem lentamente e manter apenas os que crescem mais rápido;

Notação big-O

- Para representar o comportamento assintótico de um algoritmo utilizaremos a notação big-O.
- A notação big-O representa o custo (seja de tempo ou de espaço) do algoritmo no **pior caso** possível para todas as entradas de tamanho n;
- Desse modo, podemos dizer que o comportamento do nosso algoritmo não pode nunca ultrapassar um certo limite.

- A função f(n) = 4n + 3 possui dois termos
 - O termo 3
 - O termo 4n
- O termo 3 é uma constante, então não se altera à medida que n aumenta;
- Assim, nossa função pode ser reduzida para:

$$-f(n)=4n$$

- A nossa nova função de custo f(n) = 4n possui apenas um único termo;
- O termo 4n pode ainda ser simplificado quando consideramos o comportamento assintótico da função;
- Constantes que multiplicam o termo n também podem ser descartadas;

- Ignorar essas constantes de multiplicação equivale a ignorar as particularidades de cada linguagem/compilador e analisar apenas a ideia do algoritmo;
- Assim, utilizando a notação big-O, nossa função de custo pode ser reduzida para:

$$f(n) = O(n)$$

- Na análise do comportamento assintótico apenas os termos de maior crescimento (maior expoente) são considerados.
- Todos os termos constantes e de menor crescimento são descartados;
- Exemplo:

Função Custo	Comportamento Assintótico
f(n) = 105	f(n) = O(1)
f(n) = 15n + 2	f(n) = O(n)
$f(n) = n^2 + 5n + 2$	$f(n) = O(n^2)$
$f(n) = 5n^3 + 200n^2 + 112$	$f(n) = O(n^3)$

Comportamento Assintótico

- De modo geral, podemos obter a função de custo de um programa simples apenas contando os comandos de laços aninhados;
- Algoritmos sem laço: número constante de instruções (exceto se houver recursão)

$$-f(n)=O(1)$$

• **Com um laço** indo de 1 a *n*:

$$-f(n) = O(n)$$

Dois comandos de laço aninhados:

$$-f(n) = O(n^2)$$

Comportamento Assintótico: Outras classes de problemas

- O(log(n))
 - Típica de algoritmos que resolvem um problema transformando-o em problemas menores;
 - Mais rápido que algoritmos O(n).
- $O(n \log(n))$
 - Esses algoritmos resolvem um problema transformando-o em problemas menores, que são resolvidos de forma independente e depois unidos.

Comportamento Assintótico: Outras classes de problemas

- $O(2^n)$ Ordem exponencial
 - Geralmente ocorre quando se usa uma solução de "força bruta";
 - Não são úteis do ponto de vista prático.
- O(n!) Ordem Fatorial
 - Geralmente ocorre quando se usa uma solução de "força bruta";
 - Não são úteis do ponto de vista prático;
 - Possui um comportamento muito pior que o exponencial.

- Comportamento Assintótico: Outras classes de problemas
 - Comparação no tempo de execução: Considerando um computador que seja capaz de executar um milhão de operações por segundo.

f(n)	n = 10	n=20	n=30	n = 50	n = 100
n	1.0E - 05 segundos	2.0E - 05 segundos	4.0E - 05 segundos	5.0E - 05 segundos	6,0 <i>E</i> — 05 segundos
nlog(n)	3.3E - 05 segundos	8,6E-05 segundos	2,1E-04 segundos	2,8E-04 segundos	3.5E - 04 segundos
n^2	1.0E - 04 segundos	4.0E - 04 segundos	1,6E - 03 segundos	2,5E - 03 segundos	3,6E - 03 segundos
n^3	1.0E - 03 segundos	8.0E - 03 segundos	6,4E-02 segundos	0,13 segundos	0,22 segundos
2^n	1,0 <i>E</i> — 02 segundos	1,0 segundos	2,8 dias	35,7 anos	365,6 séculos