

SMART CONTRACT CODE REVIEW AND SECURITY ANALYSIS REPORT

Customer: Milky Way

Date: August 21st, 2021

This document may contain confidential information about IT systems and the intellectual property of the Customer and information about potential vulnerabilities and mBNBods of their exploitation.

The report containing confidential information can be used internally by the Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a decision of the Customer.

Document

Name	Smart Contract Code Review and Security Analysis Report for Milky Way (18 pages)
Approved by	Andrew Matiukhin CTO Hacken OU
Туре	Token
Platform	Binance / Solidity
MBNBods	Architecture Review, Functional Testing, Computer-Aided Verification, Manual Review
Address	0X481DE76D5AB31E28A33B0EA1C1063ADCB5B1769A
Timeline	20 TH Aug 2021 – 21 ST Aug 2021
Changelog	21 st Aug 2021- Initial Audit

Table of contents

Document	2
Table of contents	
Introduction	4
Scope	4
Executive Summary	5
Severity Definitions	6
AS-IS overview	7
Conclusion	17
Disclaimers	18

Introduction

Hacken OÜ (Consultant) was contracted by Milky Way (Customer) to conduct a Smart Contract Code Review and Security Analysis. This report presents the findings of the security assessment of the Customer's smart contract and its code review conducted between August 20th, 2021 – August 21st, 2021.

Scope

The scope of the project is smart contract in the mainnet: Address: 0x6c56d9D857998E1a098e98569f257D9D85999A2C

We have scanned this smart contract for commonly known and more specific vulnerabilities. Here are some of the commonly known vulnerabilities that are considered:

Category	Check Item
Code review	Reentrancy
	 Ownership Takeover
	 Timestamp Dependence
	Gas Limit and Loops
	DoS with (Unexpected) Throw
	 DoS with Block Gas Limit
	 Transaction-Ordering Dependence
	Style guide violation
	Costly Loop
	BEP20 API violation
	 Unchecked external call
	Unchecked math
	 Unsafe type inference
	 Implicit visibility level
	 Deployment Consistency
	 Repository Consistency
	Data Consistency

Functional review	 Business Logics Review
	Functionality Checks
	 Access Control & Authorization
	Escrow manipulation
	 Token Supply manipulation
	Assets integrity
	 User Balances manipulation
	 Data Consistency manipulation
	Kill-Switch Mechanism
	 Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contract has not critical vulnerabilities and can be considered secure.

¹ Insecure	Poor secured	Secured	Well-secured
		You are	

Our team performed an analysis of code functionality, manual audit, and automated checks with Mythril and Slither. All issues found during automated analysis were manually reviewed, and important vulnerabilities are presented in the Audit overview section. A general overview is presented in AS-IS section, and all found issues can be found in the Audit overview section.

Security engineers found no severity issues during the audit.

¹Look for details and justification in conclusion section

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions
Medium	Medium-level vulnerabilities are essential to fix; however, they can't lead to assets loss or data manipulations.
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can't have a significant impact on execution
Lowest / Code Style / Best Practice	Lowest-level vulnerabilities, code style violations, and info statements can't affect smart contract execution and can be ignored.

AS-IS overview

Description

Milky Way is an BEP20 token contract based on the OpenZeppelin source code. This contract cannot accept BNB because the receive function is always reverted. The constructor function mints 26,000 Milky Way tokens. After the contract is deployed, new tokens cannot be minted.

Imports

Milky Way contract has 3 imports:

- Ownable from OpenZeppelin
- *IBEP20* from *OpenZeppelin*. Comments have been stripped and the interface has been renamed *ERC*.
- SafeMath from OpenZeppelin. Unused functions have been removed.

Inheritance

Milky Way contract inherits BEP20 and Ownable.

Usings

Milky Way contract use SafeMath for uint256.

Fields

Milky Way contract has 6 fields:

- string _name a name;
- string _symbol a symbol;
- uint256_totalSupply the total supply;
- uint256 _decimal a decimal;
- mapping(address => uint256) balances a mapping of balances;
- mapping(address => mapping (address => uint256)) _allowances a mapping of allowances;

Functions

Milky Way contract has 13 functions:

None

•	constructor	
	Description	
	Initializes the contract. Mints 26,000 Milky Way tokens.	
	Visibility	
	public	
	Input parameters	
	None	
	Constraints	
	None	
	Events emit	
	None	
	Output	
	None	
•	name	
	Description	
	Used to get the name.	
	Visibility	
	public view	
	Input parameters	
	None	
	Constraints	

	Events emit
	None
	Output
	Returns the name.
•	symbol
	Description
	Used to get the symbol.
	Visibility
	public view
	Input parameters
	None
	Constraints
	None
	Events emit
	None
	Output
	Returns the symbol.
•	decimals
	Description
	Used to get decimals.
	Visibility
	public view

HACKE	N
	Input parameters
	None
	Constraints
	None
	Events emit
	None
	Output
	Returns decimals.
•	totalSupply
	Description
	Used to get the total supply.
	Visibility
	external view
	Input parameters
	None
	Constraints
	None
	Events emit
	None
	Output
	Returns the total supply.

† v.

• balanceOf

Description

Used to get the balance of the address.

Visibility

external view

Input parameters

address_tokenOwner — an address;

Constraints

None

Events emit

None

Output

Returns the balance.

transfer

Description

Used to transfer tokens.

Visibility

external

Input parameters

- address_to an address of recipient;
- uint256_tokens an amount of tokens;

Constraints

None

Events emit

None

Output

None

_transfer

Description

Used to transfer tokens.

Visibility

internal

Input parameters

- address sender an address of sender;
- address_recipient an address of recipient;
- uint256 _amount an amount of tokens;

Constraints

- The sender should not be a zero address.
- The recipient should not be a zero address.

Events emit

o emit Transfer(_sender, _recipient, _amount);

Output

None

allowance

Description

Used to get allowance.

Visibility

external view

Input parameters

- address_tokenOwner an address of owner;
- address_spender an address of spender;

Constraints

None

Events emit

None

Output

Returns allowance.

approve

Description

Used to approve transfer.

Visibility

external

Input parameters

- address_spender an address of spender;
- uint256 _tokens an amount of tokens;

Constraints

None

Events emit

None

Output

None

_approve

Description

Used to approve transfer.

Visibility

internal

Input parameters

- address owner an address of owner;
- address_spender an address of spender;
- uint256_value an amount of tokens;

Constraints

- The owner should not be a zero address.
- The spender should not be a zero address.

Events emit

emit Approval(_owner, _spender, _value);

Output

None

transferFrom

Description

Used to transfer tokens.

Visibility

external

Input parameters

address _from — an address of sender;
 address _to — an address of recipient;
 uint256 _tokens — an amount of tokens;

Constraints
None

Events emit

None

Output

None

receive

Description

Reverts BNB payments.

Visibility

external payable

Input parameters

None

Constraints

None

Events emit

None

Output

None

Audit overview

■■■ Critical

No critical issues were found.

High

No high issues were found.

■ ■ Medium

No medium issues were found.

Low

No low severity issues were found.

■ Lowest / Code style / Best Practice

No lowest severity issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with static analysis tools. For the contract, high-level description of functionality was presented in As-is overview section of the report.

Security engineers found no severity issues during the audit.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the best industry practices at the date of this report, in relation to cybersecurity vulnerabilities and issues in smart contract source code, the details of which are disclosed in this report (Source Code); the Source Code compilation, deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It also cannot be considered as a sufficient assessment regarding the utility and safety of the code, bugfree status, or any other statements of the contract. While we have done our best in conducting the analysis and producing this report, it is important to note that you should not rely on this report only - we recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The platform, its programming language, and other software related to the smart contract can have its own vulnerabilities that can lead to hacks. Thus, the audit can't guarantee explicit security of the audited smart contracts.