Characterizations of Harmonic Functions Vanishing at Infinity on the Punctured Domain

Ikhan Choi

September 25, 2021.

Theorem. Let $d \geq 3$. A distribution $u \in \mathcal{D}'(\mathbb{R}^d)$ is a harmonic function on $\mathbb{R}^d \setminus \{0\}$ and vanishes at infinity if and only if there is a distribution $\rho \in \mathcal{D}'(\mathbb{R}^d)$ such that $u = \Phi * \rho$ and $\text{supp}(\rho) \subset \{0\}$, where Φ denotes the fundamental solution of Laplace's equation.

Proof. (\Rightarrow) Define a distribution ρ by

$$\langle \rho, \varphi \rangle := -\langle u, \Delta \varphi \rangle$$

for $\varphi \in C_c^{\infty}(\mathbb{R}^d)$. In other words, $\rho = -\Delta u$ in distributional sense. Then, ρ has the support contained in $\{0\}$ because if $\varphi \in C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$ then

$$\langle \rho, \varphi \rangle = -\langle u, \Delta \varphi \rangle = -\int u(x) \Delta \varphi(x) dx = -\int \Delta u(x) \varphi(x) dx = 0.$$

Therefore, we only need to verify $u = \Phi * \rho$ to complete the proof.

Let $\varphi \in C_c^{\infty}(\mathbb{R}^d)$. Be cautious that the argument

$$\langle \Phi * \rho, \varphi \rangle = \langle \rho, \Phi * \varphi \rangle = -\langle u, \Delta(\Phi * \varphi) \rangle = \langle u, \varphi \rangle$$

fails to provide a proof because the function $\Phi*\rho$ is not compactly supported so that we cannot deduce $\langle \rho, \Phi*\varphi \rangle = -\langle u, \Delta(\Phi*\varphi) \rangle$, and here we use the condition that u vanishes at infinity to justify the equality. Define a cutoff function $\chi \in C_c^{\infty}(\mathbb{R}^d)$ such that

$$\chi(x) = \begin{cases} 1 & \text{if } |x| \le \frac{5}{4} \\ 0 & \text{if } |x| > \frac{7}{4} \end{cases}.$$

If we denote $\chi_r(x) := \chi(\frac{x}{r})$, then we have

$$\langle \rho, (\Phi \chi_r) * \varphi \rangle = - \langle u, \Delta ((\Phi \chi_r) * \varphi) \rangle$$

by the definition of ρ . We have the limit of the left-hand side

$$\lim_{r \to \infty} \langle \rho, (\Phi \chi_r) * \varphi \rangle = \langle \rho, \Phi * \varphi \rangle$$

because

$$supp((\Phi(1-\chi_r)*\varphi) \subset supp(\Phi(1-\chi_r)) + supp(\varphi)$$

$$\subset \mathbb{R}^d \setminus B(0,2R) + \overline{B}(0,R) = \mathbb{R}^d \setminus B(0,R)$$

for all r > 2R so that the supports of $\Phi(1 - \chi_r) * \varphi$ and ρ are disjoint, where we define $R := \sup_{x \in \text{supp}(\varphi)} |x|$. However, the right-hand limit

$$-\lim_{r\to\infty}\langle u,\Delta((\Phi\chi_r)*\varphi)\rangle = -\langle u,\Delta(\Phi*\varphi)\rangle$$

is not a trivial result.

Assuming $\chi(x) = \chi(-x)$ without loss of generality, we have

$$\langle u, \Delta(\Phi(1-\chi_r)*\varphi)\rangle = \langle u*\Delta(\Phi(1-\chi_r)), \varphi\rangle.$$

Because

$$\Delta_{y}\left[\Phi(x-y)\left(1-\chi(\frac{x-y}{r})\right)\right]=0$$

for |y| < R and $x \in \text{supp}(\varphi)$ if r > 2R, we can write

$$\langle u * \Delta(\Phi(1-\chi_r)), \varphi \rangle = \int \varphi(x) \int u(y) \Delta_y \Big[\Phi(x-y) \Big(1 - \chi(\frac{x-y}{r}) \Big) \Big] dy dx.$$

We compute

$$\begin{split} \Delta_y \Big[\Phi(x-y) \Big(1 - \chi(\frac{x-y}{r}) \Big) \Big] &= 2 \nabla \Phi(x-y) \cdot \frac{1}{r} \nabla \chi(\frac{x-y}{r}) - \Phi(x-y) \frac{1}{r^2} \Delta \chi(\frac{x-y}{r}) \\ &= -\frac{2}{\omega_d} \frac{x-y}{|x-y|^d} \cdot \frac{1}{r} \nabla \chi(\frac{x-y}{r}) - \frac{1}{(d-2)\omega_d} \frac{1}{|x-y|^{d-2}} \frac{1}{r^2} \Delta \chi(\frac{x-y}{r}). \end{split}$$

Then, since $\frac{5}{4}r \le |x-y| \le \frac{7}{4}r$ if $\nabla \chi(\frac{x-y}{r}) \ne 0$ and $\Delta \chi(\frac{x-y}{r}) \ne 0$, we obtain

$$\left| \Delta_{y} \left[\Phi(x - y) \left(1 - \chi \left(\frac{x - y}{r} \right) \right) \right] \right| \le C \frac{1}{r^{d}} \psi \left(\frac{x - y}{r} \right)$$

for some constant C > 0, where

$$\psi(y) := |\nabla \chi(y)| + |\Delta \chi(y)|.$$

For each $x \in \text{supp}(\varphi)$, since we have $\frac{5}{4}r \le |x-y| \le \frac{7}{4}r$ implies $r \le |y| \le 2r$ if r > 4R, it follows that

$$\left| \int u(y) \Delta_y \left[\Phi(x - y) \left(1 - \chi \left(\frac{x - y}{r} \right) \right) \right] dy \right| \le C \int \left| u(y) \frac{1}{r^d} \psi \left(\frac{x - y}{r} \right) \right| dy$$

$$\le C \max_{r \le |y| \le 2r} u(y)$$

converges to zero as $r \to \infty$. By the bounded convergence theorem, we can deduce

$$\lim_{r\to\infty}\int \varphi(x)\int u(y)\Delta_y\Big[\Phi(x-y)\Big(1-\chi(\frac{x-y}{r})\Big)\Big]dy\,dx=0,$$

so we are done.

$$(\Leftarrow)$$
 Let $\varphi \in C_c^{\infty}(\mathbb{R}^d \setminus \{0\})$. Since

$$\langle \Phi * \rho, \Delta \varphi \rangle = \langle \rho, \Phi * (\Delta \varphi) \rangle = \langle \rho, \varphi \rangle = 0,$$

the distribution $\Phi * \rho$ on $\mathbb{R}^d \setminus \{0\}$ is weakly harmonic, and by Weyl's lemma for distributions, it is a smooth harmonic function on $\mathbb{R}^d \setminus \{0\}$.

Since ρ is supported at zero, we have a positive integer k and constants a_{α} such that

$$|\langle \rho, \varphi \rangle| \le \sum_{|\alpha| \le k} |a_{\alpha} D^{\alpha} \varphi(0)|$$

for $\varphi \in C^{\infty}(\mathbb{R}^d)$. Then, for $x \in \mathbb{R}^d$ with |x| = r > 0, by taking $\chi \in C_c^{\infty}(\mathbb{R}^d)$ such that $\chi = 1$ on B(0, 2r), we have

$$|\Phi*\rho(x)| = |(\Phi\chi)*\rho(x)| = |\langle \rho(y), \Phi(x-y)\chi(x-y)\rangle_y| \le \sum_{|\alpha| \le k} |a_\alpha D^\alpha \Phi(x)| = O(r^{2-d})$$

as $r \to \infty$. Therefore, $\Phi * \rho$ vanishes at infinity.

Lemma. Let ρ be a distribution on \mathbb{R}^d such that $supp(\rho) \subset \{0\}$. Then, there is a constant coefficient partial differential operator P(D) such that $\rho = P(D)\delta$.

Corollary. Let $d \geq 3$. If a distribution $u \in \mathcal{D}'(\mathbb{R}^d)$ is a harmonic function on $\mathbb{R}^d \setminus \{0\}$ and vanishes at infinity, then there are an integer $k \geq 0$ and constants a_{α} such that

$$u(x) = \sum_{|\alpha| < k} a_{\alpha} D^{\alpha} \Phi(x)$$

for $x \neq 0$, where Φ denotes the fundamental solution of Laplace's equation.