Exercice 1

Une suite étant donnée, calculer le terme demandé.

- **1.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = 3n + 2$. Calculer u_{14} .
- **2.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = -3n^2 2n 5$. Calculer u_5 .
- **3.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = \frac{-n+2}{4n+2}$. Calculer u_6 .
- **4.** Soit (u_n) une suite définie pour tout entier $n \in \mathbb{N}$ par $u_n = n^2 + 5n 6$. Calculer u_4 .

Exercice 2

Une suite étant donnée, calculer le terme demandé.

- **1.** Soit (u_n) une suite définie par $u_0=3$ et pour tout entier $n\in\mathbb{N}$ par $u_{n+1}=-2u_n-5$. Calculer u_3 .
- **2.** Soit (u_n) une suite définie par $u_0 = -7$ et pour tout entier $n \in \mathbb{N}$ par $u_{n+1} = u_n + 7$. Calculer u_6 .
- **3.** Soit (u_n) une suite définie par $u_0=3$ et pour tout entier $n\in\mathbb{N}$ par $u_{n+1}=5-u_n^2$. Calculer u_3 .
- **4.** Soit (u_n) une suite définie par $u_0=7$ et pour tout entier $n\in\mathbb{N}$ par $u_{n+1}=u_n\times(-4)$. Calculer u_3 .

Exercice 3

Résoudre dans R les équations et inéquations suivantes.

- 1. (-5-4x)(4x-1) > 0
- **2.** $x^2 + 4x + 7 \ge 0$
- 3. $-2x^2 + 20x \le 49$
- 4. $5x^2 = 5x$

Exercice 4

Trouver l'expression de chacune des fonctions suivantes.

1. Quelle est l'expression de la fonction polynomiale f du second degré dont la parabole a pour sommet le point de coordonnées (3;9) et passe par le point de coordonnées (-4;-89)?

2. Quelle est l'expression de la fonction polynomiale g du second degré dont la parabole a pour sommet le point de coordonnées (1;11) et passe par le point de coordonnées (-1;7)?

Rentrée 2023

3. Quelle est l'expression de la fonction polynomiale k du second degré qui passe par les points de coordonnées (-1;2), (0;8) et (1;8)?

4. Quelle est l'expression de la fonction polynomiale i du second degré qui s'annule en x = -1 et en x = 4 et dont la parabole passe par le point de coordonnées (3; -16)?

5. Quelle est l'expression de la fonction polynomiale j du second degré qui s'annule en x = -4 et en x = 2 et dont la parabole passe par le point de coordonnées (3; 14)?

Exercice 5

Déterminer, suivant la valeur du paramètre m, le **nombre de solutions** de l'équation du second degré.

1. 2
$$m \ x - x^2 - 2 \ m - x - 1 = 0$$

2. 2
$$m x + x^2 + m - 3 x - 2 = 0$$

Rentrée 2023

Exercice 6

1. Dans le plan rapporté à un repère, on considère la parabole (P) d'équation $y = -2x^2 - 4x + 30$.

a. Déterminer la forme canonique de $f(x) = -2x^2 - 4x + 30$.

b. En déduire les coordonnées du sommet de la parabole et les variations de la fonction f associée au polynôme (P).

2. La parabole d'équation $y = 10x^2 - 18x - 4$ coupe-t-elle l'axe des abscisses? Si oui, déterminer les coordonnées de ce(s) point(s).

Exercice 7

Pour chacune des fonctions suivantes, dire sur quel ensemble elle est dérivable, puis déterminer l'expression de sa fonction dérivée.

1.
$$f: x \mapsto x^9 + \frac{1}{x}$$

2.
$$g: x \mapsto -3$$

3.
$$h: x \longmapsto x^4$$

4.
$$i: x \mapsto -5 \ x^2 + x + 3$$

5.
$$j: x \mapsto 2 \ x + 3$$

6.
$$k: x \longmapsto \sqrt{x}$$

Exercice 1

- **1.** Dans l'expression de u_n on remplace n par 14, on obtient : $u_{14} = 3 \times 14 + 2 = 44$.
- **2.** Dans l'expression de u_n on remplace n par 5, on obtient : $u_5 = -3 \times 5^2 2 \times 5 5 = -90$.
- **3.** Dans l'expression de u_n on remplace n par 6, on obtient : $u_6 = \frac{-1 \times 6 + 2}{4 \times 6 + 2} = \frac{-4}{26} = -\frac{2}{13}$.
- **4.** Dans l'expression de u_n on remplace n par 4, on obtient : $u_4 = 4^2 + 5 \times 4 6 = 30$.

Exercice 2

1. On calcule successivent les termes jusqu'à obtenir u_3 :

$$u_1 = -2 \times u_0 - 5 = -2 \times 3 - 5 = -11$$

$$u_2 = -2 \times u_1 - 5 = -2 \times (-11) - 5 = 17$$

$$u_3 = -2 \times u_2 - 5 = -2 \times 17 - 5 = -39$$

2. On calcule successivent les termes jusqu'à obtenir u_6 :

$$u_1 = u_0 + 7 = -7 + 7 = 0$$

$$u_2 = u_1 + 7 = 0 + 7 = 7$$

$$u_3 = u_2 + 7 = 7 + 7 = 14$$

$$u_4 = u_3 + 7 = 14 + 7 = 21$$

$$u_5 = \frac{u_4}{1} + 7 = \frac{21}{1} + 7 = \frac{28}{1}$$

$$u_6 = u_5 + 7 = 28 + 7 = 35$$

3. On calcule successivent les termes jusqu'à obtenir u_3 :

$$u_1 = 5 - (u_0)^2 = 5 - 3^2 = -4$$

$$u_2 = 5 - (u_1)^2 = 5 - (-4)^2 = -11$$

$$u_3 = 5 - (u_2)^2 = 5 - (-11)^2 = -116$$

4. On calcule successivent les termes jusqu'à obtenir u_3 :

$$u_1 = u_0 \times (-4) = 7 \times (-4) = -28$$

$$u_2 = u_1 \times (-4) = -28 \times (-4) = 112$$

$$u_3 = u_2 \times (-4) = 112 \times (-4) = -448$$

Exercice 3

1. On cherche l'ensemble des x tels que : (-5-4x)(4x-1) > 0.

$$-5 - 4x = 0 \iff x = \frac{-5}{4}$$
 et $4x - 1 = 0 \iff x = \frac{1}{4}$

On en déduit le signe du polynôme dans un tableau de signes :

x	$-\infty$		$\frac{-5}{4}$		$\frac{1}{4}$		+∞
-5 - 4x		+	0	_		_	
4x - 1		_		_	0	+	
(-5 - 4x)(4x - 1)		_	0	+	0	_	

Finalement $S = \left[\frac{-5}{4}; \frac{1}{4} \right]$.

2. On cherche l'ensemble des x tels que : $x^2 + 4x + 7 \ge 0$.

Calculons le discriminant de ce polynôme du second degré : $\Delta = 4^2 - 4 \times 1 \times 7 = -12$.

Le discriminant est strictement négatif, donc le polynôme est toujours du signe de a donc ici toujours positif.

Finalement $S = \mathbb{R}$.

Le discriminant est strictement positif, donc le polynôme a deux racines.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-20 - \sqrt{8}}{2 \times (-2)} \approx 5,707$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-20 + \sqrt{8}}{2 \times (-2)} \approx 4,293$$

On sait que le polynôme est du signe de a à l'extérieur de ses racines donc $S=\begin{bmatrix} -\infty; \frac{-20+\sqrt{8}}{-4} \end{bmatrix} \cup \begin{bmatrix} \frac{-20-\sqrt{8}}{-4}; +\infty \end{bmatrix}$.

4. On cherche l'ensemble des x tels que : $5x^2 = 5x$.

$$5x^{2} = 5x \iff 5x^{2} - 5x = 0$$

$$\iff x(5x - 5) = 0$$

$$\iff x = 0 \quad \text{ou} \quad 5x - 5 = 0$$

Finalement $S = \{0; 1\}.$

Exercice 4

1. D'après les coordonnées (3;9) du sommet, f a pour forme canonique : $f(x) = a(x-3)^2 + 9$. De plus f(-4) = -89 donc $a(-4-3)^2 + 9 = -89$ soit 16a + 24a + 9a + 9 = -89.

On en déduit que $a = \frac{-89 - 9}{49} = -2$.

Développons la forme canonique : $f(x) = a(x-3)^2 + 9 = a(x^2-6x+9) + 9 = ax^2-6ax+9a+9$. En remplaçant a par sa valeur -2 dans l'expression canonique développée $ax^2-6ax+9a+9$ on obtient :

$$f(x) = -2x^2 + 12x - 9$$

2. D'après les coordonnées (1;11) du sommet, g a pour forme canonique : $g(x) = a(x-1)^2 + 11$. De plus g(-1) = 7 donc $a(-1-1)^2 + 11 = 7$ soit 1a + 2a + 1a + 11 = 7.

On en déduit que $a = \frac{7-11}{4} = -1$.

Développons la forme canonique : $g(x) = a(x-1)^2 + 11 = a(x^2-2x+1)+11 = ax^2-2ax+a+11$. En remplaçant a par sa valeur -1 dans l'expression canonique développée $ax^2-2ax+a+11$ on obtient :

$$g(x) = -x^2 + 2x + 10$$

3. Soit $k(x) = ax^2 + bx + c$, l'expression de la fonction cherchée, comme k(0) = 8 nous en déduisons que c = 8.

Donc $h(x) = ax^2 + bx + 8$.

En substituant dans cette expression les valeurs de l'énoncé, nous obtenons :

$$\begin{cases} 8 = a \times 1^2 + b \times 1 + 8 = a + b + 8 \end{cases}$$

$$\begin{cases} 2 = a \times (-1)^2 + b \times (-1) + 8 = a - b + 8 \end{cases}$$

Ce qui équivaut à

$$\int 8 - 8 = 0 = a + b$$

$$2 - 8 = -6 = a - b$$

En ajoutant et en soustrayant les équations membre à membre, on obtient :

Rentrée 2023

$$\begin{cases} -6 = 2a \\ 6 = 2b \end{cases}$$

La résolution de ce système donne a = -3 et b = 3.

D'où $h(x) = -3x^2 + 3x + 8$

4. Comme -1 et 4 sont les deux solutions de l'équation i(x) = 0, on peut factoriser i(x): i(x) = a(x+1)(x-4).

Comme i(3) = -16, on en déduit que -16 = a(3+1)(3-4) d'où $a = -16 \div (-4) = 4$.

On obtient ainsi i(x) = 4(x+1)(x-4) ou en développant $i(x) = 4x^2 - 12x - 16$

5. Comme -4 et 2 sont les deux solutions de l'équation $\dot{j}(x) = 0$, on peut factoriser $\dot{j}(x)$: $\dot{j}(x) = a(x+4)(x-2)$.

Comme $\dot{j}(3) = 14$, on en déduit que 14 = a(3+4)(3-2) d'où $a = 14 \div 7 = 2$.

On obtient ainsi $\dot{j}(x) = 2(x+4)(x-2)$ ou en développant $\dot{j}(x) = 2x^2 + 4x - 16$

Exercice 5

1. Écrivons l'équation sous la forme $ax^2 + bx + c = 0$:

$$-x^2 + (2 m - 1) x - 2 m - 1 = 0$$

On a donc a = -1, b = 2 m - 1 et c = -2 m - 1

Le discriminant vaut $\Delta = b^2 - 4 \times a \times c = (2 \ m-1)^2 + 4(-2 \ m-1)$

Ou encore, sous forme développée : $\Delta = 4 \ m^2 - 12 \ m - 3$

Cherchons les valeurs de m qui annulent cette expression du second degré :

Le discriminant Δ' vaut : $\Delta' = 192$ (Remarquons que $\sqrt{\Delta'} = 8 \sqrt{3}$)

Celui-ci étant strictement positif, l'équation $\Delta = 0$ a 2 solutions :

$$m_1 = \frac{(12 - 8 \sqrt{3})}{8} \simeq -0.2321$$
 et $m_2 = \frac{(12 + 8 \sqrt{3})}{8} \simeq 3.232$

De plus le coefficient devant m^2 est positif, Δ est donc une parabole avec ses branches dirigées vers le haut.

 Δ est donc positif à l'extérieur des racines et négatif à l'intérieur.

Conclusion:

- Si $m = m_1$ ou m_2 , l'équation admet une unique solution,
- Si $m \in]m_1, m_2[$, l'équation n'a pas de solution réelle,
- Si $m \in]-\infty, m_1[\cup]m_2, +\infty[$, l'équation admet 2 solutions réelles
- **2.** Écrivons l'équation sous la forme $ax^2 + bx + c = 0$:

$$x^2 + (2 m - 3) x + m - 2 = 0$$

On a donc a = 1, b = 2 m - 3 et c = m - 2

Le discriminant vaut $\Delta = b^2 - 4 \times a \times c = (2 \ m - 3)^2 - 4 \ (m - 2)$

Ou encore, sous forme développée : $\Delta = 4 m^2 - 16 m + 17$

Cherchons les valeurs de m qui annulent cette expression du second degré :

Le discriminant Δ' vaut : $\Delta' = -16$

Celui-ci étant strictement négatif, l'équation n'a pas de solution et Δ ne change pas de signe.

Comme le coefficient devant m^2 est positif, $\Delta > 0$.

Conclusion: L'équation du départ admet toujours 2 solutions.

Exercice 6

1. a. On cherche la forme canonique de $-2x^2 - 4x + 30$ avec a = -2, b = -4 et c = 30.

On sait que $f(x)(x-\alpha)^2 + \beta$ avec $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$.

$$\alpha = \frac{-b}{2a} = \frac{4}{-4} = -1$$

$$\beta = f(\alpha) = f(-1) = -2 \times (-1)^2 - 4 \times (-1) + 30 = 32$$

On a donc
$$f(x) = -2(x+1)^2 + 32$$
.

b. Le sommet de cette parabole a donc pour coordonnées (-1; 32).

$$f(x) = -2(x+1)^2 + 32$$
 avec $a < 0$ d'où le tableau de variations :

x	$-\infty$	-1 +	-∞
$-2x^2 - 4x + 30$		32	

2. S'il existe un point d'intersection M(x; y) entre la parabole et l'axe des abscisses alors $y = 10x^2 - 18x - 4 = 0$.

On calcule le discriminant de ce trinôme : $\Delta = (-18)^2 - 4 \times 10 \times (-4)$.

$$\Delta = 484$$

 Δ est strictement positif donc cette équation admet deux solutions.

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{18 - \sqrt{484}}{2 \times 10} = -\frac{1}{5}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{18 + \sqrt{484}}{2 \times 10} = 2$$

La parabole coupe donc l'axe des abscisses en deux points de coordonnées $\left(\frac{-1}{5};0\right)$ et (2;0).

Exercice 7

1.
$$f$$
 est dérivable sur \mathbb{R}^* et $f': x \mapsto \frac{9x^{10}-1}{x^2}$

4.
$$i$$
 est dérivable sur \mathbb{R} et $i': x \longmapsto 1-10x$

2.
$$g$$
 est dérivable sur \mathbb{R} et $g': x \mapsto 0$

5.
$$j$$
 est dérivable sur \mathbb{R} et $j': x \mapsto 2$

3.
$$h$$
 est dérivable sur \mathbb{R} et $h': x \mapsto 4x^3$

6.
$$k$$
 est dérivable sur $]0, +\infty[$ et $k': x \mapsto \frac{1}{2}$