

Grelha de respostas certas

Versão A

ſ	Grupo	1	2			3			4		5	
			a)	b)	c)	(a)	b)	c)	d)	a)	b)	
		С	С	Α	A	С	Α	С	В	В	A	A

Versão B

Grupo	1	2			3				4		5
		a)	b)	c)	a)	b)	c)	d)	a)	b)	
	В	В	С	В	В	D	A	С	С	D	C

Resolução abreviada do 3° Teste

Versão A

(3.0)	1.	O tempo de reparação (em minutos) de uma máquina é uma variável aleatória X com distribuição Normal.
		Procedeu-se à recolha dos tempos de reparação de 16 máquinas escolhidas ao acaso, tendo-se obtido um desvio
		padrão amostral de 2.4 minutos. Chegou-se a conclusão que o tempo médio de reparação de cada máquina
		se situa entre um mínimo de 5.23 e um máximo de 8.77 minutos. Qual o nível de confiança a atribuir a esta
		afirmação?

 $\begin{bmatrix} A \\ 0.9968 \end{bmatrix}$

B 0.975

0.99

 $D_{\rm n.o.}$

População; X-tempo reparação/máquina (em miniutos) $X \sim N(\mu,?)$

Informação amostral: n = 16, s = 2.4

I.
$$T = \sqrt{16} \frac{\overline{X} - \mu}{S} \sim t_{16-1} \equiv t_{15}$$

II. Para um coeficiente de confiança $(1-\alpha)$, com $a \in \mathbb{R}^+$, $P(-a \le T \le a) = 1-\alpha \Leftrightarrow a = t_{15:\alpha/2}$

$$\text{III. } -t_{15:\alpha/2} \leq 4 \frac{\overline{X} - \mu}{S} \leq t_{15:\alpha/2} \Leftrightarrow \overline{X} - t_{15:\alpha/2} \frac{S}{4} \leq \mu \leq \overline{X} + t_{15:\alpha/2} \frac{S}{4}$$

IV.
$$IC_{100(1-\alpha)\%} \equiv \left[\overline{X} - t_{15:\alpha/2} \frac{S}{4}, \overline{X} + t_{15:\alpha/2} \frac{S}{4}\right]$$

A amplitude deste intervalo é $A_{100(1-\alpha)\%}\equiv 2\,t_{15:\alpha/2}\frac{S}{4}$

Para a estimativa apresentada:

$$A_{100(1-\alpha)\%} = 8.77 - 5.23 = 3.54 \Rightarrow 3.54 = 2 t_{15:\alpha/2} \frac{s}{4} \Rightarrow t_{15:\alpha/2} = \frac{2}{2.4} 3.54 = 2.95 \Rightarrow \alpha/2 = 0.005$$
$$\Rightarrow (1-\alpha) = 0.99$$

2. Admite-se que o peso (em Kg), de um saco de fertilizante produzido por uma determinada empresa é uma v.a. X com distribuição Normal de valor médio desconhecido. O responsável pelo controlo de qualidade afirma que o desvio padrão do peso dos sacos deverá ter um valor máximo de 3 kg. Foi recolhida uma amostra casual

dos pesos de 25 sacos de adubos para a qual se obteve: $\sum_{i=1}^{25} x_i = 1255$ e $\sum_{i=1}^{25} (x_i - \overline{x})^2 = 245.76$.

(2.4)	(a)	A estimativa por intervalo de confiança a 90% para o desvio padrão do peso dos sacos de fertilizantes é
		(valores arredondados com 3 casas decimais):

Informação amostral: n = 25, $\overline{x} = 50.2$, $s^2 = 10.24$

•
$$W = \frac{(25-1) S^2}{\sigma^2} \sim \chi^2_{25-1} \equiv \chi^2_{24}$$

• $P(a \le W \le b) = 0.9$, com $P(W < a) = 0.05$ e $P(W > b) = 0.05$

•
$$P(a \le W \le b) = 0.9$$
, com $P(W \le a) = 0.05$ e $P(W > b) = 0.05$

$$a = \chi^2_{24:0.95} = 13.8$$
 $b = \chi^2_{24:0.05} = 36.4$

•
$$13.8 \le \frac{24 S^2}{\sigma^2} \le 36.4 \quad \Leftrightarrow \quad \frac{24 S^2}{36.4} \le \sigma^2 \le \frac{24 S^2}{13.8}$$

•
$$IC_{90\%}\left(\sigma^{2}\right) \equiv \left[\frac{24 S^{2}}{36.4}, \frac{24 S^{2}}{13.8}\right]$$

$$IC_{90\%}\left(\sigma\right) \equiv \left[\sqrt{\frac{24 S^{2}}{36.4}}, \sqrt{\frac{24 S^{2}}{13.8}}\right]$$

Estimativa por intervalo de 90% de confiança para σ

$$IC_{90\%}(\sigma) = \left[\sqrt{\frac{245.76}{36.4}}, \sqrt{\frac{245.76}{13.8}}\right] = [2.598393417, 4.22003503]$$

(b) Numa outra amostra de pesos de 100 sacos, recolhida ao acaso, registaram-se 20 sacos com um peso (2.4)superior a 51 kg. A estimativa por intervalo de confiança (o menos preciso) a 95% para a proporção de sacos com peso superior a 51 kg é (valores arredondados com 4 casas decimais):

p=P (saco com peso superior a 51 kg) Informação amostral: $n=100, \quad \hat{p}=\frac{20}{100}=0.2$

•
$$W = \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) = 0.95 \Rightarrow a \approx z_{0.025} = 1.96$$

•
$$-1.96 \le \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \le 1.96 \Leftrightarrow \hat{P} - 1.96\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{100}} \le \hat{P} + 1.96\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{100}}$$

•
$$IC_{95\%}(p) \equiv \left[\hat{P} - 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{100}}, \ \hat{P} + 1.96\sqrt{\frac{\hat{P}(1-\hat{P})}{100}} \right]$$

• Estimativa:
$$IC_{95\%}(p) = \left[0.2 - 1.96\sqrt{\frac{0.2(1 - 0.2)}{100}}, 0.2 + 1.96\sqrt{\frac{0.2(1 - 0.2)}{100}}\right] = [0.1216, 0.2784]$$

(1.0)(c) As hipóteses que permitem testar o não cumprimento da afirmação do responsável pelo controlo da qualidade são:

$$\boxed{\mathbf{A}} \ H_0: \sigma^2 \le 9 \quad vs \quad H_1: \sigma^2 > 9$$

B
$$H_0: \sigma^2 = 3^2 \ vs \ H_1: \sigma^2 \neq 3^2$$

$$C H_0: S^2 \leq 3^2 vs H_1: S^2 > 3^2$$

3. Uma fábrica que produz resmas de papel, adquiriu uma nova máquina cujo tempo de produção por resma (em minutos) é uma v.a. X com desvio padrão 0.35 minutos/resma. De forma a realizar o teste de hipóteses,

$$H_0: \mu \geq 2 \quad vs \quad H_1: \mu < 2$$

recolheu-se uma amostra casual de 64 resmas produzidas por esta esta nova máquina da qual se obteve uma média amostral de 1.8 minutos.

1.8)	(a)	Para um nível de 1% de	significância, a reg	ião de rejeição é:							
		$lacksquare$]2.33, $+\infty$ [$]-\infty,-2.58[$	$]-\infty,-2.33[$	$]]-\infty, -2.58[\cup]2$	$.58, +\infty$ [E n.o.					
		• Para $n \ge 30$, $W =$ • $R_{0.01} \approx]-\infty, -z_{0.05}$	0.00	0,1)							
1.8)	(b)	O valor observado da es	tatística de teste é:	(arredondado com	3 casas decimais)						
		▲ -4.571	B -13.061	C 4.571	$\boxed{\mathtt{D}} -2.704$	E n.o.					
		$w_{obs} = \sqrt{64} \frac{1.8 - 2}{0.35} = -4$	4.571428571								
1.8)	(c)	Para outra amostra de dimensão 100, a estatística de teste apresentou um valor observado de -2.64 . C $p-value$ associado ao teste destas hipóteses, tem valor: (arredondado com 4 casas decimais)									
		A 0.9959	B 0.4980	C 0.0041	D 0.0082	E n.o.					
		$R_{p-value} =]-\infty, -2.64[$									
		$p-value = P(W \le -2.64) \approx P(Z \le -2.64) = 1 - P(Z \le 2.64) = 1 - 0.9959 = 0.0041$									
	(1)										
1.4)	(d)	Se para uma outra amo de significância:	stra se tiver $p - va$	lue = 0.06, rejeitar	nos a hipótese nula	, para valores do níve					
		$oxed{A} lpha <$	0.06 B $\alpha >$	0.06 [C] 0.01	< lpha < 0.1	n.o.					
		Rejeitamos a hipótese H_0 se, $p-value < \alpha$. Assim, $\alpha > 0.06$									
	1 Sois	X a variável aleatória o	nue representa a di	ıantidada da um d	omposto químico i	nor embalagem de 7					
		litros. Admita que X ten				501 embaragem de 7					
			$H_0: \mu =$	$75 vs H_1: \mu = 7$	74						
	selec	ionou-se uma amostra ca	sual de 9 embalage	ns, rejeitando-se a l	nipótese nula se \overline{X}	< 73.8.					
1.2)	(a)	O nível de significância	associado ao teste,	é: (valor arredonda	ido a 4 casas decim	ais)					
		A 0.0718	B 0.0359	C 0.3821	D 0.1911	E n.o.					
		$\alpha = P\left(\overline{X} < 73.8 \mu = 75\right)$	$5) = P\left(\sqrt{9}\frac{\overline{X} - 75}{2}\right)$	$<\sqrt{9}\frac{73.8-75}{2}$	$= P\left(Z < -1.8\right)$						
		$= 1 - P(Z \le 1.8) = 1 -$	0.9641 = 0.0359								
1.2)	(b)	A probabilidade do erro	de tipo II (2ª espé	cie) é: (valor arred	ondado a 4 casas de	ecimais)					
		A 0.6179	B 0.1841	C 0.5398	D 0.5596	E n.o.					
	D (cr	$\text{ro tipo II}) = P\left(\overline{X} \ge 73.\right)$	$8 \mu - 74\rangle = D \left(\frac{1}{2} \right)$	$\sqrt{5} \frac{\overline{X} - 74}{5} > \sqrt{5} 73.8$	$\left(-74\right) - D(7 \sim$	_0 3)					
			$O(\mu - 14) = F(V)$	$\frac{1}{2} \leq \sqrt{9}$	2^{-1}	0.0)					
	=P	$(Z \le 0.3) = 0.6179$									

5. Considere o parâmetro $\tau \in [0,1[$ associado à distribuição de uma população X que admite valores reais positivos. Para uma amostra aleatória de dimensão $n \geq 30$, e para efeitos de estimação por intervalo de confiança deste parâmetro, tenha em conta a seguinte variável pivot e a sua distribuição aproximada:

$$W = \sqrt{2n} \left(3\tau \, \overline{X} - 2 \right) \stackrel{a}{\sim} N \left(0, 1 \right)$$

O intervalo com confiança aproximadamente 98% para o parâmetro τ é:

$$\boxed{ \texttt{A} \left[\frac{1}{3\,\overline{X}} \left(2 - \frac{2.33}{\sqrt{2n}} \right), \frac{1}{3\,\overline{X}} \left(2 + \frac{2.33}{\sqrt{2n}} \right) \right] } \qquad \boxed{ \texttt{B} \left[-\frac{2.05}{3\sqrt{2n}\,\overline{X}}, \frac{2.05}{3\sqrt{2n}\,\overline{X}} \right] }$$

$$\boxed{\mathbb{B}} \left[-\frac{2.05}{3\sqrt{2n}\,\overline{X}}, \frac{2.05}{3\sqrt{2n}\,\overline{X}} \right]$$

$$\boxed{\mathbb{C}} \left[-\frac{1}{\overline{X}} \left(\frac{2.33}{\sqrt{2n}} + 2 \right), \frac{1}{\overline{X}} \left(\frac{2.33}{\sqrt{2n}} + 2 \right) \right]$$

$$\boxed{\mathbb{C}\left[-\frac{1}{\overline{X}}\left(\frac{2.33}{\sqrt{2n}}+2\right),\frac{1}{\overline{X}}\left(\frac{2.33}{\sqrt{2n}}+2\right)\right]} \qquad \boxed{\mathbb{D}\left[\frac{1}{3\,\overline{X}}\left(2-\frac{2.05}{\sqrt{2n}}\right),\frac{1}{3\,\overline{X}}\left(2+\frac{2.05}{\sqrt{2n}}\right)\right]}$$

 $|E|_{\text{n.o.}}$

- $W = \sqrt{2n} (3\tau \overline{X} 2) \stackrel{a}{\sim} N(0, 1)$
- $P(-a \le W \le a) \approx P(-a \le Z \le a) = 0.98 \Rightarrow a \approx z_{0.01} = 2.33$

•
$$-2.33 \le \sqrt{2n} \left(3\tau \,\overline{X} - 2\right) \le 2.33 \Leftrightarrow -\frac{2.33}{\sqrt{2n}} \le 3\tau \,\overline{X} - 2 \le \frac{2.33}{\sqrt{2n}} \Leftrightarrow 2 - \frac{2.33}{\sqrt{2n}} \le 3\tau \,\overline{X} \le 2 + \frac{2.33}{\sqrt{2n}} \Leftrightarrow \frac{1}{3\overline{X}} \left(2 - \frac{2.33}{\sqrt{2n}}\right) \le \tau \le \frac{1}{3\overline{X}} \left(2 + \frac{2.33}{\sqrt{2n}}\right)$$

$$\bullet \ IC_{98\%}\left(\tau\right) = \left\lceil \frac{1}{3\overline{X}} \left(2 - \frac{2.33}{\sqrt{2n}}\right) \ , \ \frac{1}{3\overline{X}} \left(2 + \frac{2.33}{\sqrt{2n}}\right) \right\rceil$$

Versão B

1. O tempo de reparação (em minutos) de uma máquina é uma variável aleatória X com distribuição Normal. Procedeu-se à recolha dos tempos de reparação de 25 máquinas escolhidas ao acaso, tendo-se obtido um desvio padrão amostral de 2.5 minutos. Chegou-se a conclusão que o tempo médio de reparação de cada máquina se situa entre um mínimo de 8.97 e um máximo de 11.03 minutos. Qual o nível de confiança a atribuir a esta afirmação?

$$\bigcirc B 0.95$$

$$\bigcirc$$
 0.9606

$$D_{\rm n.o.}$$

 $X \sim N(\mu,?)$ População; X-tempo reparação/máquina (em miniutos)

Informação amostral: n=25, s=2.5

I.
$$T = \sqrt{25} \frac{\overline{X} - \mu}{S} \sim t_{25-1} \equiv t_{24}$$

II. Para um coeficiente de confiança $(1-\alpha)$, com $a \in \mathbb{R}^+$, $P(-a \le T \le a) = 1-\alpha \Leftrightarrow a = t_{24:\alpha/2}$

III.
$$-t_{24:\alpha/2} \le 5 \frac{\overline{X} - \mu}{S} \le t_{24:\alpha/2} \Leftrightarrow \overline{X} - t_{24:\alpha/2} \frac{S}{5} \le \mu \le \overline{X} + t_{24:\alpha/2} \frac{S}{4}$$

IV.
$$IC_{100(1-\alpha)\%} \equiv \left[\overline{X} - t_{24:\alpha/2} \frac{S}{4}, \overline{X} + t_{24:\alpha/2} \frac{S}{5} \right]$$

A amplitude deste intervalo é $A_{100(1-\alpha)\%} \equiv 2 t_{24:\alpha/2} \frac{S}{5}$

Para a estimativa apresentada:

$$A_{100(1-\alpha)\%} = 11.03 - 8.97 = 2.06 \Rightarrow 2.06 = 2 t_{24:\alpha/2} \frac{s}{5} \Rightarrow t_{24:\alpha/2} = \frac{2.5}{2.5} 2.06 = 2.06 \Rightarrow \alpha/2 = 0.025$$

 $\Rightarrow (1-\alpha) = 1 - 2 \times 0.025 = 0.95$

2. Admite-se que o peso (em Kg), de um saco de fertilizante produzido por uma determinada empresa é uma v.a. X com distribuição Normal de valor médio desconhecido. O responsável pelo controlo de qualidade afirma que o desvio padrão do peso dos sacos deverá ter um valor máximo de 2 kg. Foi recolhida uma amostra casual

dos pesos de 25 sacos de adubos para a qual se obteve: $\sum_{i=1}^{25} x_i = 1255 \quad \text{e} \quad \sum_{i=1}^{25} \left(x_i - \overline{x}\right)^2 = 245.76.$

(2.4)	(a)	A estimativa por intervalo de confiança a 95% para o desvio padrão do peso dos sacos de fertilizantes é
		(valores arredondados com 3 casas decimais):

Informação amostral: n = 25, $\overline{x} = 50.2$, $s^2 = 10.24$

•
$$W = \frac{(25-1)S^2}{\sigma^2} \sim \chi^2_{25-1} \equiv \chi^2_{24}$$

•
$$W = \frac{(25-1)S^2}{\sigma^2} \sim \chi_{25-1}^2 \equiv \chi_{24}^2$$

• $P(a \le W \le b) = 0.95$, com $P(W < a) = 0.025$ e $P(W > b) = 0.025$

$$a = \chi^2_{24:0.975} = 12.4$$
 $b = \chi^2_{24:0.025} = 39.4$

•
$$12.4 \le \frac{24 S^2}{\sigma^2} \le 39.4 \quad \Leftrightarrow \quad \frac{24 S^2}{39.4} \le \sigma^2 \le \frac{24 S^2}{12.4}$$

•
$$IC_{95\%} \left(\sigma^2\right) \equiv \left[\frac{24 S^2}{39.4}, \frac{24 S^2}{12.4}\right]$$

$$IC_{95\%} \left(\sigma\right) \equiv \left[\sqrt{\frac{24 S^2}{39.4}}, \sqrt{\frac{24 S^2}{12.4}}\right]$$

Estimativa por intervalo de 95% de confiança para σ

$$IC_{95\%}\left(\sigma\right) = \left[\sqrt{\frac{245.76}{39.4}}\,\,,\,\,\sqrt{\frac{245.76}{12.4}}\,\right] = \left[2.497511452\,\,,\,\,4.451893399\right]$$

(b) Numa outra amostra de pesos de 100 sacos, recolhida ao acaso, registaram-se 20 sacos com um peso (2.4)superior a 51 kg. A estimativa por intervalo de confiança (o menos preciso) a 98% para a proporção de sacos com peso superior a 51 kg é (valores arredondados com 4 casas decimais):

p=P (saco com peso superior a 51 kg) Informação amostral: $n=100, \quad \hat{p}=\frac{20}{100}=0.2$

•
$$W = \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) = 0.98 \Rightarrow a \approx z_{0.01} = 2.33$$

•
$$-2.33 \le \sqrt{100} \frac{\hat{P} - p}{\sqrt{\hat{P}\left(1 - \hat{P}\right)}} \le 2.33 \Leftrightarrow \hat{P} - 2.33\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{100}} \le \hat{P} + 2.33\sqrt{\frac{\hat{P}\left(1 - \hat{P}\right)}{100}}$$

•
$$IC_{98\%}(p) \equiv \left[\hat{P} - 2.33 \sqrt{\frac{\hat{P}(1-\hat{P})}{100}}, \ \hat{P} + 2.33 \sqrt{\frac{\hat{P}(1-\hat{P})}{100}} \right]$$

• Estimativa:
$$IC_{98\%}\left(p\right) = \left[0.2 - 2.33\sqrt{\frac{0.2\left(1 - 0.2\right)}{100}}, \ 0.2 + 2.33\sqrt{\frac{0.2\left(1 - 0.2\right)}{100}}\right] = \left[0.1068, \ 0.2932\right]$$

(1.0)(c) As hipóteses que permitem testar o não cumprimento da afirmação do responsável pelo controlo da qualidade são:

$$\boxed{\mathbf{A}} \ H_0: \sigma \geq 2 \quad vs \quad H_1: \sigma < 2$$

$$\boxed{ \mathbb{C} } \quad H_0: S \leq 2 \quad vs \quad H_1: S > 2$$

3. Uma fábrica que produz resmas de papel, adquiriu uma nova máquina cujo tempo de produção por resma (em minutos) é uma v.a. X com desvio padrão 0.35 minutos/resma. De forma a realizar o teste de hipóteses,

$$H_0: \mu \ge 2 \quad vs \quad H_1: \mu < 2$$

recolheu-se uma amostra casual de 64 resmas produzidas por esta esta nova máquina da qual se obteve uma média amostral de 1.8 minutos.

(1.8)	(a)	Para um nível de 2% de				. 🗩				
		$oxed{A}$] $-\infty, -2.33[$ $oxed{B}$	$]-\infty,-2.05[$		$.33, +\infty$ $\boxed{\hspace{-2mm} D\hspace{-2mm}} \]2.0$	$5, +\infty$ [E n.o.				
		• Para $n \ge 30$, $W =$ • $R_{0.02} \approx]-\infty, -z_{0.02}$		0,1)						
(1.8)	(b)	O valor observado da est	tatística de teste é:	(arredondado com	3 casas decimais)					
		$\boxed{\mathtt{A}}$ -2.704	B 4.571	□ -13.061	D -4.571	E n.o.				
		$\overline{w_{obs} = \sqrt{64} \frac{1.8 - 2}{0.35} = -4}$	1.571428571							
(1.8)	(c)	Para outra amostra de dimensão 100, a estatística de teste apresentou um valor observado de -2.74 . O $p-value$ associado ao teste destas hipóteses, tem valor: (arredondado com 4 casas decimais)								
		A 0.0031	B 0.9969	C 0.0062	D 0.4985	E n.o.				
		$R_{p-value} =]-\infty, -2.74[$								
		$p-value = P(W \le -2.74) \approx P(Z \le -2.74) = 1 - P(Z \le 2.74) = 1 - 0.9969 = 0.0031$								
(1.4)	(d)	Se para uma outra amos	stra se tiver $n = va$	lue = 0.07 rejeitar	nos a hinótese nula	nara valores do nível				
(1.1)	(4)	de significância:	out and officer p	vae 0.01, lejelval	nos a impovose maia	para valores de inver				
		A 0.01	$\alpha > 0.07$	n.o.						
		Rejeitamos a hipótese H	s_0 se, $p-value < a$	α . Assim, $\alpha > 0.07$						
		X a variável aleatória q litros. Admita que X ten				oor embalagem de 75				
			- ,	75 vs $H_1: \mu = 7$						
	selec	ionou-se uma amostra cas	sual de 16 embalag	ens, rejeitando-se a	hipótese nula se \overline{X}	⁷ < 73.8.				
(1.2)	(a)	O nível de significância a	associado ao teste,	é: (valor arredonda	ido a 4 casas decim	ais)				
		A 0.2302	B 0.2104	C 0.1151	D 0.4207	E n.o.				
		$\alpha = P\left(\overline{X} < 73.8 \mu = 75\right)$	$) = P\left(\sqrt{16}\frac{\overline{X} - 7}{4}\right)$	$\frac{15}{6} < \sqrt{16} \frac{73.8 - 75}{4}$	= P(Z < -1.2)					
		$= 1 - P(Z \le 1.2) = 1 -$	0.8849 = 0.1151	,						
(1.2)	(b)	A probabilidade do erro	de tipo II (2ª espé	cie) é: (valor arredo	ondado a 4 casas de	ecimais):				
		A 0.5199	B 0.4801	© 0.3821	D 0.5793	E n.o.				
		$D = \frac{1}{V} \times $	DI. 74) D	$\frac{1}{16}\overline{X} - 74 $	3.8-74	0.2)				
		$\text{Tro tipo II}) = P\left(\overline{X} \ge 73.8\right)$	$S \mid \mu = \iota 4) = P \left(\checkmark \right)$	$10 \frac{10}{4} \ge \sqrt{10} - \frac{1}{4}$	$\frac{1}{4}$ $= P(Z \ge $	(-0.2)				
	=P	$(Z \le 0.2) = 0.5793$								

(2.0) 5. Considere o parâmetro $\tau \in]0,1[$ associado à distribuição de uma população X que admite valores reais positivos. Para uma amostra aleatória de dimensão $n \geq 30$, e para efeitos de estimação por intervalo de confiança deste parâmetro, tenha em conta a seguinte variável pivot e a sua distribuição aproximada:

$$W = \sqrt{2n} \left(3\tau \, \overline{X} - 2 \right) \stackrel{a}{\sim} N \left(0, 1 \right)$$

O intervalo com confiança aproximadamente 92% para o parâmetro τ é:

$$\boxed{\mathbb{A}} \left[-\frac{1}{\overline{X}} \left(\frac{1.75}{\sqrt{2n}} + 2 \right), \frac{1}{\overline{X}} \left(\frac{1.75}{\sqrt{2n}} + 2 \right) \right] \qquad \qquad \boxed{\mathbb{B}} \left[\frac{1}{3\,\overline{X}} \left(2 - \frac{1.41}{\sqrt{2n}} \right), \frac{1}{3\,\overline{X}} \left(2 + \frac{1.41}{\sqrt{2n}} \right) \right]$$

$$\boxed{ \square \left[\frac{1}{3\,\overline{X}} \left(2 - \frac{1.75}{\sqrt{2n}} \right), \frac{1}{3\,\overline{X}} \left(2 + \frac{1.75}{\sqrt{2n}} \right) \right] } \qquad \boxed{ \square } \left[-\frac{1.41}{3\sqrt{2n}\,\overline{X}}, \frac{1.41}{3\sqrt{2n}\,\overline{X}} \right]$$

•
$$W = \sqrt{2n} \left(3\tau \overline{X} - 2 \right) \stackrel{a}{\sim} N(0, 1)$$

•
$$P(-a \le W \le a) \approx P(-a \le Z \le a) = 0.92 \Rightarrow a \approx z_{0.04} = 1.75$$

•
$$-1.75 \le \sqrt{2n} \left(3\tau \, \overline{X} - 2 \right) \le 1.75 \Leftrightarrow -\frac{1.75}{\sqrt{2n}} \le 3\tau \overline{X} - 2 \le \frac{1.75}{\sqrt{2n}} \Leftrightarrow 2 - \frac{1.75}{\sqrt{2n}} \le 3\tau \overline{X} \le 2 + \frac{1.75}{\sqrt{2n}} \Leftrightarrow \frac{1}{3\overline{X}} \left(2 - \frac{1.75}{\sqrt{2n}} \right) \le \tau \le \frac{1}{3\overline{X}} \left(2 + \frac{1.75}{\sqrt{2n}} \right)$$

•
$$IC_{92\%}\left(\tau\right) = \left[\frac{1}{3\overline{X}}\left(2 - \frac{1.75}{\sqrt{2n}}\right), \frac{1}{3\overline{X}}\left(2 + \frac{1.75}{\sqrt{2n}}\right)\right]$$