Analisadores Ascendentes

São analisadores sintáticos que montam a árvore de análise sintática das folhas até a raiz, usando a derivação mais à direita de forma reversa, ou seja, as produções da gramática serão mostradas em ordem inversa.

Este modelo de analisador, também chamado de redutivo, essencialmente é guiado por uma tabela de decisão e baseado em uma pilha de análise, que armazena o estado corrente e os símbolos terminais e não terminais, tendo no topo o não terminal da última regra. Quando toda a cadeia tiver sido lida, no topo deverá estar <u>S</u> permitindo o reconhecimento da sentença.

Exemplo de gramática para gerar listas

$$S \rightarrow [L] \mid a$$

 $L \rightarrow L; S \mid S$

Cadeia: [a;a]

$$S \Rightarrow [L] \Rightarrow [L;S] \Rightarrow [L;a] \Rightarrow [S;a] \Rightarrow [a;a]$$

fases	Pilha	Entrada	Ação		
1	\$	[a;a]	empilha [
2	\$[a;a]\$	empilha a		
3	\$[a	;a]\$	reduz S → a		
4	\$[S	;a]\$	reduz L → S		
5	\$[L	;a]\$	Empilha ;		
6	\$[L;	a]\$	Empilha a		
7	\$[L;a]\$	Reduz S → a		
8	\$[L;S]\$	Reduz L → L;S		
9	\$[L]\$	Empilha]		
10	\$[L]	\$	Reduz S → [L]		
11	\$S	\$	Aceita		

Ou seja, através de movimentos de empilhamento e de redução o processo termina quando toda a cadeia foi lida e não terminal inicial está no topo.

Redução

O processo de redução é feito por meio dos "Handles" que são basicamente as regras cujo lado direito aparecem em ordem reversa na pilha . A substituição do lado direito lado esquerdo da regra é chamado de redução.

Analisadores LR(k)

São analisadores ascendentes baseados na derivação mais à direita lendo a cadeia da esquerda para a direita (Left to right usando a Rightmost derivation). São Tabulares e usam a pilha para armazenar os símbolos da cadeia e da gramática, como também para armazenar os estados.

Analisador inicia o processamento na configuração

$$<$$
\$ E₀; a₀ a₁ ... a_i ... a_n\$>

Em um momento do processo tem – se \leq \$ $E_0 X_1 E_1 ... X_m E_m$; $a_i a_{i+1} ... a_n$ \$>

Tabela de decisão é definida:

Terminais	Não Terminais		
<u>Ação</u>	<u>Transição</u>		
empilha	próximo estado		
reduz			
aceita			
erro			

Movimentos do analisador

SE TAB $[E_m; a_i]$ = aceita ENTÃO aceita

SE TAB $[E_m;a_i]$ = **erro** ENTÃO erro

SE TAB $[E_m;a_i]$ = **empilha** X ENTÃO

Configuração = $\langle E_0 X_1 \dots E_m a_i X; a_{i+1} \dots a_n \rangle$

SE TAB[E_m,a_i] = **reduz** n ENTÃO (onde <u>n</u> = numero da regra Y $\rightarrow \beta$, $|\beta| = r$)

Desempilha **2r** símbolos, procura $TAB[E_{m-r}, Y] = E_v$

Configuração = $\{E_0X_1...E_{m-r} \ Y \ E_v; \ a_i \ a_{i+1} ... \ a_n > 1\}$

Gramática

- 1. $S \rightarrow a$
- 2. $S \rightarrow [L]$
- 3. $L \rightarrow L;S$
- 4. $L \rightarrow S$

	ação			Transição			
	а	[]		\$	S	L
0	E2	E3				1	
1					AC		
2			R1	R1	R1		
3	E2	E3				5	4
4			E6	E7			
5			R4	R4			
6			R2	R2	R2		
7	E2	E3				8	
8			R3	R3			

Pilha	Cadeia	Ação		
\$0	[a;a]\$	Empilha [
\$0[3	a;a]\$	Empilha a		
\$0[3a2	;a]\$	Reduz S → a		
\$0[3S5	;a]\$	Reduz L → S		
\$0[3L4	;a]\$	Empilha ;		
\$0[3L4;7	a]\$	Empilha a		
\$0[3L4;7 a2]\$	Reduz S → a		
\$0[3L4;7 S8]\$	Reduz L → L;S		
\$0[3L4]\$	Empilha]		
\$0[3L4]6	\$	Reduz S → [L]		
\$0S1	\$	Aceita		

$$S \Rightarrow 5 [L] \Rightarrow 4 [L;S] \Rightarrow 3 [L;a] \Rightarrow 2 [S;a] \Rightarrow 1 [a;a]$$

SLR (1) (Simple LR(1))

Construção da Tabela

Baseado nos itens LR (0), que indicam o percurso de reconhecimento.

$$A \rightarrow \bullet XYZ \Rightarrow X \bullet YZ \Rightarrow XY \bullet Z \Rightarrow XYZ \bullet$$

$$(\bullet)$$
 = cursor;

Função de Apoio para cálculo dos itens

- Closure (I) {ou Fecho (I)}: composto por todas as regras de I e: Se $A \rightarrow \bullet B\alpha \in I$ Então as regras $B \rightarrow \bullet \beta$ são acrescidas de Closure (I)
- GOTO (I,A): calcula o item destino a partir de I quando recebe A (A ∈ N∪Σ), usando a função Closure aplicada ao resultado de GOTO.

Gramática:

- 1. $S \rightarrow a$
- 2. $S \rightarrow [L]$
- 3. $L \rightarrow L;S$
- 4. $L \rightarrow S$

Exemplo:

$$I = \{L \rightarrow L; S\}$$

$$Closure (I) = \{ \bullet L \Rightarrow L \rightarrow \bullet L; S\}$$

$$= \{L \rightarrow \bullet L; S, L \rightarrow \bullet S, S \rightarrow \bullet a, S \rightarrow \bullet [L]\}$$

$$GOTO (I,[) = \{S \rightarrow [\bullet L], L \rightarrow \bullet L; S, L \rightarrow \bullet S, S \rightarrow \bullet a\}, S \rightarrow \bullet [L]\}$$

Algoritmo:

Construir o conjunto C composto por todos os itens marcados, $C = \{I_0, I_1, ..., I_n\}$. O estado inicial será 0. O item I_0 é obtido de Closure (incluir a regra $S' \rightarrow \bullet S$, para que se tenha um ponto de partida e de término sobre a raiz da gramática).

A partir de C faça:

```
Se I_i incluir S' \rightarrow S \cdot \text{então}
TAB [j, \$] = AC (aceita);
Se GOTO (I_i, a) = I_k, a \in \Sigma então
Ação TAB [j,a] = e k \text{ (empilha o estado } = k)
Se GOTO (I_i, A) = I_k, A \in N então
Transição TAB [i,A] = k (transição para o estado k)
Se \{S' \rightarrow S \bullet\} \in I_i então
TAB[j,\$] = ACEITA
Se A \rightarrow \alpha \cdot \in I_i então
\forall a \in FOLLOW(A) Faça:
TAB[j,a] = R n, n = número da regra A \rightarrow \alpha \cdot (\text{Redução pela regra A} \rightarrow \alpha)
I_0 = \{S' \rightarrow \bullet S\} = \{S' \rightarrow \bullet S, S \rightarrow \bullet a, S \rightarrow \bullet [L]\}
GOTO(I_0,S) = \{S' \rightarrow S \bullet\} = I_1;
GOTO(I_0, a) = \{S \rightarrow a \bullet\} = I_2;
GOTO(I_0, [) = \{S \rightarrow [ \bullet L], L \rightarrow \bullet L; S, L \rightarrow \bullet S, S \rightarrow \bullet a, S \rightarrow \bullet [L] \} = I_3
GOTO(I_3, a) = I_2,
GOTO (I_3 [) = I_3
GOTO (I_3,L) = \{S \rightarrow [L \bullet], L \rightarrow L \bullet ; S\} = I_4
GOTO(I_3, S) = \{L \rightarrow S \bullet\} = I_5
GOTO(I_4, ]) = {S \rightarrow [L] \cdot} = I_6
GOTO(I_4, :) = \{L \rightarrow L; \bullet S, S \rightarrow \bullet a, S \rightarrow \bullet [L]\} = I_7
GOTO (I_7, S) = \{L \rightarrow L; S \bullet\} = I_8
GOTO(I_7, a) = I_2,
GOTO (I_7, \lceil) = I_3
```

Cálculo do FOLLOW para a finalização das regras de redução:

	ação			Transição			
	а	[]		\$	S	L
0	E2	E3				1	
1					AC		
2			R1	R1	R1		
3	E2	E3				5	4
4			E6	E7			
5			R4	R4			
6			R2	R2	R2		
7	E2	E3				8	
8			R3	R3			

Exemplo:

Gramática

- 1. $E \rightarrow E \lor T$
- 2. $E \rightarrow T$
- 3. $T \rightarrow T \& F$
- 4. $T \rightarrow F$
- 5. $F \rightarrow (E)$
- 6. $F \rightarrow id$

Construa a tabela de análise a partir das regras acima.