

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA FACULTAD DE INGENIERÍA LABORATORIO DE HIDRÁULICA

FORMATO 10. FLUJO RAPIDAMENTE VARIADO

Grupo:	
Equipo #:	
Fecha:	
Maestro:	
Calificación:	

Integrantes	Matricula		

Croquis	del	salto	hidi	ráulico
---------	-----	-------	------	---------

Datos de la sección		Salto 1	Salto 2	Salto 3	Clasificación del salto		
Gasto volumétrico (Gv):	m³/s				Fr	Tipo de salto	
Tirante sección 1 (Y ₁) :	m				F = 1	No hay salto	
Tirante sección 2 (Y ₂) :	m				1 < F < 1.7	Ondulatorio	
Tirante sección normal (Y _n) :	m				1.7 < F < 2.5	Débil	
Área sección 1 (A $_1$):	m²				2.5 < F < 4.5	Oscilante	
Área sección 2 (A ₂) :	m²				4.5 < F < 9.0	Estable	
Área sección n (A "):	m²				F > 9.0	Fuerte	
Velocidad sección 1 ($oldsymbol{V_1}$):	m/s				Fór	mulas	
Velocidad sección 2 (V ₂) :	m/s				1	T/	
Velocidad sección n (V_n):	m/s				$Fr = rac{V}{\sqrt{grac{A}{T}}}$		
Longitud medida del salto (L):	m				1	$\int g \frac{A}{T}$	
Numero de Froude (Fr ₁):	-					V 1	
Clasificación del salto:	-					$D_{-} = D_{-})^{3}$	
Longitud cálculada del salto (L):	m				$hf = \frac{C}{2}$	$\frac{D_2 - D_1)^3}{4D_4D_2}$	
Energía sección 1 (E ₁) :	m					$4D_1D_2$	
Energía sección 2 (E ₂) :	m					2.	
Energía sección n (E _n):	m				$E_1 - (8F_1^2 + 1)$	$\frac{1)^{3/2} - 4F_1^2 + 1}{{}^2(2 + F_1^2)}$	
Tipo de salto hidráulico:	-				$E_2 = \frac{1}{8F_1^2}$	$(2(2+F_1^2))$	
Pérdida del salto hidráulico (hf):	m				_		
Eficiencia del Salto (Ef):	%						

Ecuaciones p	ara determinar la lon	gitud del sa	lto hidráulico 🛒	0.050 \	Talud	Α
SMETANA	$L = 6(D_2 - D_1)$	Wóyciki	$L = (D_2 - D_1) \left(8 - \frac{1}{2}\right)$	$\frac{0.05D_2}{D}$	0	5
			(D_1)	0.5	7.9
Safránez	$L = 5.9(D_1 F_1)$	Chertusov	$L = 10.3D_1(F_1 - 1)^{0.5}$.81 Sieñchi	1	10.6
	I 0.2D (II 1)			$L = A(D_2 - D_1)$	1.25	12.6
Einwachter	$L = 8.3D_1(F_1 - 1)$	USBR	$L = 6.9(D_2 - D_1)$	$L = A(D_2 - D_1)$	1.5	15