Automatiser l'écriture inclusive

Alice Hammel et Marjolaine Ray

Université de Paris - M1 Linguistique Informatique

24/06/2021

Outline

Partie théorique

Description de la tâche Approche

Expériences et résultats

Création du corpus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

Partie théorique

Description de la tâche Approche

Expériences et résultats

Création du corpus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

Description de la tâche

- L'écriture inclusive
 - Le problème du masculin neutre Les garçons et les filles sont studieux.
 - Usage actuel: une représentation inclusive dans les communications d'organisations
 - Les garçons et les filles sont studieux · ses.
 - Le cas des épicènes : artiste, personne, PDG
 - La création de mots qui contiennent plusieurs exposants. Les déterminants : le / la, les noms : déput é e, écri vain · vaine
 - 3. Références génériques ou spécifiques à des groupes mixtes.
- L'objectif de la tâche et son intérêt
 - Automatiser la transformation de textes "traditionnels" en textes avec écriture inclusive

Approche

- 1. Création d'un corpus annoté "désinclusifié" à partir de textes écrit en écriture inclusive
- 2. Apprentissage SVM et forêt aléatoire
- 3. Evaluation \rightarrow 95% d'accuracy
- 4. Création d'un outil de conversion de phrases

Partie théorique

Description de la tâche

Approche

Expériences et résultats

Création du corpus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

Création du corpus

- 1. Récupération des textes
- 2. Détection des formes en écriture inclusive
 - Tokenization
 - Expressions régulières
 - Elimination mots-composés
 - Relecture et correction
- 3. "Désinclusification" de ces formes
 - Relecture et correction
- 4. Extraction des features

Extrait du corpus

```
# sent_id = 248
# text_no_ei = Combien de fois montre-t-on 1 ' ertzaina qui charge contre des manifestants ?
                                                                                             xpostag feats head
                                                                                                                     deprel deps misc
 0
          Combien
                       combien
                                                                                   ADV__PronType=Int
                                                                                                                     advmod
              de
                                                                                                                       case
             fois
                          fois
                                  NOUN
                                                                       NOUN__Gender=Fem|Number=Sing
                                                                                                                     nummod
      montre-t-on montre-t-on
                                  NOUN
                                                                                                NOUN
                                 PROPN
                                                                                               PROPN
                                                                                                                       ROOT
         ertzaina
                      ertzaina
                                 PROPN
                                                                                               PROPN
                                                                                                                  flat:name
                                                                                 PRON__PronType=Rel
                                                                                                                      nsubi
              qui
                           qui
 8
           charge
                       charger
                                        VERB__Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin
                                                                                                                  acl:relcl
 9
           contre
                        contre
                                   ADP
                                                                                                                       case
 10
                                   DET
                                                         DET__Definite=Ind|Number=Plur|PronType=Art
                                                                                                                        det
 11 manifestants
                                  NOUN
                                                                      NOUN__Gender=Masc|Number=Plur
                  manifestant
                                                                                                                    obl:arg
                                                                                                                                    ei=manifestant-e-s
                                 PUNCT
                                                                                               PUNCT
                                                                                                                      punct
```

Création et vectorisation des exemples

14 197 de classe positive, 4 134 506 tokens de classe négative

Création et vectorisation des exemples

14 197 de classe positive, 4 134 506 tokens de classe négative

Enfin , certains passagers peuvent intervenir ou être révoltés .

```
1  , PUNCT
2  certains DET__Gender=Masc - Number=Plur
3  passagers NOUN__Gender=Masc - Number=Plur
4  peuvent
VERB__Mood=Ind - Number=Plur - Person=3 - Tense=Pres - VerbForm=Fin
5  intervenir VERB__VerbForm=Inf
```

token	pos	context tokens	context pos
-------	-----	----------------	-------------

Baseline

Modèle (très) naïf qui classe dans la classe positive tous les noms, pronoms, adjectifs et participes passés.

Evaluation baseline sur corpus de test

ACCURACY	65.5%
RECALL	88.1%
PRECISION	19.5%
F1 SCORE	0.32

	pred 0	pred 1
gold 0	17916	10436
gold 1	341	2541

Modèle 1 : Forêt aléatoire

Ensemble d'arbres de décisions entraînés sur des sous-ensembles des données et des features.

Pourquoi?

- 1. Efficacité pour données avec beaucoup de dimensions et une frontière de décision complexe
- 2. Rapidité de l'apprentissage
- 3. Interprétabilité
- 4. Facilité de paramétrage
- 5. Capacité de généralisation

Modèle 1 : Forêt aléatoire – Choix des hyperparamètres et évaluation

Choix des hyperparamètres $n_{estimators}$ et max_{depth} par recherche de grille avec validation croisée.

n_estimators:150 max_depth:30

	Baseline	Random Forest
Accuracy	65.4%	88.7%
Recall	88.1%	83.5%
Precision	19.5%	44.2%
F1	0.32	0.57

	pred 0	pred 1
gold 0	25312 (17916)	3040 (10436)
gold 1	473 (341)	2409 (2541)

Modèle 2 : Forêt aléatoire – Importance des features

Modèle 2 : Support Vector Machine

Caractérise les exemples d'entraînements pour maximiser la taille de l'espace entre les deux catégories. Il est couplé à un coeur Radial Basis Function

- Modèle linéaire, soft-margin avec un noyau non-linéaire car il y a peu de chance d'y avoir une frontière de décision linéaire dans notre cas.
- Problèmes de convergence du modèle et implication pour la recherche croisée (GridSearch)

Pourquoi?

Modèle 2 : Support Vector Machine

Défauts et avantages

- ► Apprentissage lent
- Peu interprétable par rapport à RandomForest
- Des résultats excellents

Bilan des modèles

	Baseline	SVM	Random Forest
Accuracy	65.4%	95.6%	88.7%
Rappel	88.1%	70.8%	83.5%
Précision	19.5%	79.6%	44.2%
F1	0.32	0.74	0.57

Partie théorique

Description de la tâche

Expériences et résultats

Création du corpus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

Organisation du code - Création du corpus

Organisation du code - Modèles

Partie théorique

Description de la tâche

Expériences et résultats

Création du corpus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

Partie théorique

Description de la tâche

- , .

Création du cornus

Baseline

Modèle 1 : Forêt aléatoire

Modèle 2 : Support Vector Machine

Organisation du code

Démonstration

- 1. Amélioration du corpus : diversifier, améliorer tokenisation, annotation plus exhaustive
- 2. Classifier des syntagmes plutôt que des tokens
- 3. Meilleur choix des features, plongements lexicaux, suffixes, infos sur le paradigme du lexème...
- 4. Implémenter un système de règles pour la transformation
- Incorporer plus d'information sur le texte : plus grande fenêtre, RNN ?

Merci!