Single Period Inventory Models: Allowing for Stockouts

Assumptions: EOQ with Planned Backorders

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

EOQ with Planned Backorders

What will happen to Q^* and T^* if we allow for planned backorders at some cost (c_s) ?

EOQ with Planned Back Orders

Notation

```
D = Average Demand (units/time)
c = Variable (Purchase) Cost ($/unit)
c<sub>t</sub> = Fixed Ordering Cost ($/order)
h = Carrying or Holding Charge ($/inventory $/time)
c_e = c*h = Excess Holding Cost ($/unit/time)
c_s = Shortage Cost (\$/unit/time)
Q = Replenishment Order Quantity (units/order)
T = Order Cycle Time (time/order)
N = 1/T = Orders per Time (order/time)
```

TRC(Q) = Total Relevant Cost (\$/time)
TC(Q) = Total Cost (\$/time)

EOQ with Planned Backorders

From similar triangles:

$$\frac{Q}{T} = \frac{\left(Q - b\right)}{T_1} = \frac{b}{T_2}$$

$$\frac{T_1}{T} = \frac{Q - b}{Q} \qquad \frac{T_2}{T} = \frac{b}{Q}$$

$$TRC(Q,b) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{1}{2}\right) \left(\frac{T_1}{T}\right) (Q-b) + c_s \left(\frac{1}{2}\right) \left(\frac{T_2}{T}\right) (b)$$

$$TRC(Q,b) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{1}{2}\right) \left(\frac{(Q-b)}{Q}\right) (Q-b) + c_s \left(\frac{1}{2}\right) \left(\frac{b}{Q}\right) (b)$$

$$TRC(Q,b) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{\left(Q - b\right)^2}{2Q}\right) + c_s \left(\frac{b^2}{2Q}\right)$$

CTL.SC1x - Supply Chain and Logistics Fundamentals

Lesson:

Planned Backorders - Solution

EOQ with Planned Backorders

$$TRC(Q,b) = c_t \left(\frac{D}{Q}\right) + c_e \left(\frac{\left(Q - b\right)^2}{2Q}\right) + c_s \left(\frac{b^2}{2Q}\right)$$

$$Q_{PBO}^* = \sqrt{\frac{2c_t D}{c_e}} \sqrt{\frac{\left(c_s + c_e\right)}{c_s}} = Q^* \sqrt{\frac{\left(c_s + c_e\right)}{c_s}}$$

$$b^* = \frac{c_e Q_{PBO}^*}{\left(c_s + c_e\right)} = \left(1 - \frac{c_s}{\left(c_s + c_e\right)}\right) Q_{PBO}^*$$

Inventory Policy

Order Q^*_{PBO} when $IOH = -b^*$ Order Q^*_{PBO} every T^*_{PBO} time periods

Critical Ratio

$$CR = \frac{c_s}{\left(c_s + c_e\right)}$$

CTL.SC1x - Supply Chain and Logistics Fundamentals

EOQ with Planned Backorders

Probabilistic Demand: Single Period Models

Assumptions: Single Period Models

- Demand
 - Constant vs Variable
 - Known vs Random
 - Continuous vs Discrete
- Lead Time
 - Instantaneous
 - Constant vs Variable
 - Deterministic vs Stochastic
 - Internally Replenished
- Dependence of Items
 - Independent
 - Correlated
 - Indentured
- Review Time
 - Continuous vs Periodic
- Number of Locations
 - One vs Multi vs Multi-Echelon
- Capacity / Resources
 - Unlimited
 - Limited / Constrained

- Discounts
 - None
 - All Units vs Incremental vs One Time
- Excess Demand
 - None
 - All orders are backordered
 - Lost orders
 - Substitution
- Perishability
 - None
 - Uniform with time
 - Non-linear with time
- Planning Horizon
 - Single Period
 - Finite Period
 - Infinite
- Number of Items
 - One vs Many
- Form of Product
 - Single Stage
 - Multi-Stage

Example: NFL Replica Jerseys

Situation:

- In 2002 Reebok had sole rights to sell replica NFL football jerseys
- Jerseys have unique names & numbers
- Peak sales last about 8 weeks
- Lead time from contract manufacturer is 12-16 weeks

 Reebok had to commit to an order in advance while the actual demand was uncertain

Question:

How many Jerseys of each player should they order?

Case adapted from Parsons, J. (2004) "Using A Newsvendor Model for Demand Planning of NFL Replica Jerseys," MIT Supply Chain Management Program Thesis.

Image Source: http://commons.wikimedia.org/wiki/File:Tom Brady %28cropped%29.jpg

Example: NFL Replica Jerseys

- Data:
 - Unit cost = c = 10.90\$/jersey
 - Unit selling price = p = 24 \$/jersey
 - Forecast demand = 32,000 jerseys (σ = 11,000)
 - History showed demand to be Normally distributed
 - Select Q^* that maximizes profit where X = actual demand:

Profit =
$$p(MIN[x,Q]) - cQ$$

- How do I determine the "best" policy?
 - 1. Data table
 - 2. Marginal analysis

Solving Single Period Model: Data Table

Sample spreadsheets in MS Excel and LibreOffice are available in this unit.

Data Table

Profit =
$$pMIN(x,Q) - cQ$$

		Α	В	С		D		E		F		G	
	1												
	2	Mean	32.000			Potential order si						s (Q)	
	3	StdDev	11.000										- \
	4			Price=	\$	24.00		Cost=	\$	10.90			
	5			Order		24		25		26		27	K
	6	CumProb	Demand	Prob									
	7	0.3%	2	0.3%	\$	(214)	\$	(225)	\$	(235)	\$	(246)	
	8	0.5%	4	0.2%	\$	(166)	\$	(177)	< \$	(187)	\$	(198)	
	9	0.9%	6	0.4%	\$	(118)	\$	(129)	\$	(139)	\$	(150)	
	10	1.5%	8	0.6%	\$	(70)	\$	(81)	\$	(91)	\$	(102)	
	11	2.3%	10	0.8%	\$	(22)	\$	(33)	\$	(43)	\$	(54)	
	12	3.5%	12	1.2%	\$	26	= 5	D\$4	ŀΜ	IN(\$B	8.E	\$5)-\$	SF\$4*E\$5
	13	5.1%	14	1.6%	\$	74	ş	04	Ş	23	7	42	
	14	7.3%	16	2.2%	\$	122	\$	112	\$	101	\$	90	
	15	10.2%	18	2.9%	\$	170	\$	160	\$	149	\$	138	
	16	13.8%	20	3.6%	\$	218	\$	208	\$	197	\$	186	
	17	18.2%	22	4.4%	\$	266	\$	256	\$	245	\$	234	
	18	23.4%	24	5.2%	\$	31	rol	oabili [.]	tv	of der	ทล	nd Pi	x1
	10	20 20/	20	F 00/	^	120			~ <i>y</i>				,1
					_	P	ote	ential	de	mano	l (x	()	
=NORMDIST(B10,\$B\$2,\$B\$3,1)													
=NORMI	18	23.4%	24	5.2%	-	31 P	rol	oabili	ty	of der	na	nd P[x]

				_												_
	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	P
1		22.000														-
2	Mean	32.000														-
3	StdDev	11.000		4		4										
4			Price=	\$ 24.00		-										
5			Order	24	25	26	27	28	29	30	31	32	33	34	35	36
6	CumProb		Prob													
7	0.3%	2	0.3%	\$ (214				, , ,	\$ (268)	\$ (279)	\$ (290)	\$ (301)	-	\$ (323)	\$ (334)	\$ (34
8	0.5%	4	0.2%	\$ (166		, ,,	\$ (198	, , , , , , , , , , , ,	\$ (220)	\$ (231)	\$ (242)	\$ (253)	\$ (264)	\$ (275)	, , , , , , , ,	\$ (29
9	0.9%	6	0.4%	\$ (118		, , , , , , , , , , , , , , , , , , , ,			\$ (172)	\$ (183)	\$ (194)	\$ (205)	\$ (216)	\$ (227)	\$ (238)	\$ (24
10	1.5%	8	0.6%	\$ (70	-		-	, , , ,	\$ (124)	\$ (135)	\$ (146)	\$ (157)	\$ (168)	\$ (179)		\$ (20
11	2.3%	10	0.8%	\$ (22	-			, , ,		\$ (87)	\$ (98)	\$ (109)				\$ (15
12	3.5%	12	1.2%	\$ 26	-	-	\$ (6		-	\$ (39)	\$ (50)	\$ (61)				\$ (10
13	5.1%	14	1.6%	\$ 74	*	\$ 53	\$ 42	-	\$ 20	\$ 9	\$ (2)	\$ (13)				\$ (5
14	7.3%	16	2.2%	\$ 122		\$ 101	\$ 90	*	\$ 68	\$ 57	\$ 46	\$ 35	\$ 24	\$ 13	\$ 3	\$ (
15	10.2%	18	2.9%	\$ 170	_	\$ 149	\$ 138	\$ 127	\$ 116	\$ 105	\$ 94	\$ 83	\$ 72	\$ 61	\$ 51	\$ 4
16	13.8%	20	3.6%	\$ 218		\$ 197	\$ 186	\$ 175	\$ 164	\$ 153	\$ 142	\$ 131	\$ 120	\$ 109	\$ 99	\$ 8
17	18.2%	22	4.4%	\$ 266		\$ 245	\$ 234	\$ 223	\$ 212	\$ 201	\$ 190	\$ 179	\$ 168	\$ 157	\$ 147	\$ 13
18	23.4%	24	5.2%	\$ 314	-	\$ 293	\$ 282	\$ 271	\$ 260	\$ 249	\$ 238	\$ 227	\$ 216	\$ 205	\$ 195	\$ 18
19	29.3%	26	5.9%	\$ 314	7	\$ 341	\$ 330	\$ 319	\$ 308	\$ 297	\$ 286	\$ 275	\$ 264	\$ 253	\$ 243	\$ 23
20	35.8%	28	6.5%	\$ 314	\$ 328	\$ 341	\$ 354	\$ 367	\$ 356	\$ 345	\$ 334	\$ 323	\$ 312	\$ 301	\$ 291	\$ 28
21	42.8%	30	7.0%	\$ 314	\$ 328	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 382	\$ 371	\$ 360	\$ 349	\$ 339	\$ 32
22	50.0%	32	7.2%	\$ 314	\$ 328	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 408	\$ 397	\$ 387	\$ 37
23	57.2%	34	7.2%	\$ 314	\$ 328	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 435	\$ 42
24	64.2%	36	7.0%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
25	70.7%	38	6.5%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
26	76.6%	40	5.9%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
27	81.8%	42	5.2%	\$ 314	_	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
28	86.2%	44	4.4%	\$ 314	\$ 328	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
29	89.8%	46	3.6%	\$ 314		\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
30	92.7%	48	2.9%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
31	94.9%	50	2.2%	\$ 314	-	\$ 341	\$	CIINAF			† ~ † ~		40 F	7. 🗆 4 0	`	\$ 47.
32	96.5%	52	1.6%	\$ 314	-	\$ 341		SUMF	KUU	UC I (:	\$C\$/	: \$ C\$4	48,L/	'.E48)	\$ 47.
33	97.7%	54	1.2%	\$ 314	-	\$ 341	\$ 334	3 307	2 300	y 333	Ş 400	9 413	9 432	9 445	y 455	\$ 47.
34	98.5%	56	0.8%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
35	99.1%	58	0.6%	\$ 314	-	\$ 341	\$ 354	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
36	99.5%	60	0.4%	\$ 314	\$ 328		_	\$ 367	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
37	99.7%	62	0.2%		_		_	-	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
38	99.8%	64	0.1%		_		_	_	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
39	99.9%	66	0.1%		_		_	_	\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	_	\$ 459	\$ 47.
40	99.9%	68	0.0%	\$ 314	_		\$ 354		\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
41	100.0%	70	0.0%				\$ 354		\$ 380	\$ 393	\$ 406	\$ 419	\$ 432	\$ 445	\$ 459	\$ 47.
42			99.97%	\$283.87	\$291.36	\$298.86	\$304.93	\$311.00	\$315.50	\$320.00	\$322.83	\$325.66	\$326.76	\$327.85	\$327.22	\$326.5

Expected Profits

Expected Profit

Solving Single Period Model: Marginal Analysis

Marginal Analysis

For single-period problems we have two costs:

 $c_e = Excess$ cost when D<Q (\$/unit) i.e. having too much product

 $c_s = Shortage cost when D>Q (\$/unit) i.e. having too little product$

Assuming a continuous distribution of demand, we get $c_e P[X \le Q] = expected excess cost of the Qth unit ordered <math>c_s (1-P[X \le Q]) = expected excess cost of the Qth unit ordered$

If E[Excess Cost] < E[Shortage Cost] then increase Q We are at Q* when E[Shortage Cost] = E[Excess Cost]

CTL.SC1x - Supply Chain and Logistics Fundamentals

Marginal Analysis

Marginal Shortage and Excess Costs

Marginal Analysis

$$c_e P[x \le Q] = c_s (1 - P[x \le Q])$$

$$c_e P[x \le Q] = c_s - c_s P[x \le Q]$$

$$c_e P[x \le Q] + c_s P[x \le Q] = c_s$$

$$P[x \le Q](c_e + c_s) = c_s$$

$$P[x \le Q] = \frac{c_s}{(c_e + c_s)}$$

The Critical Ratio

NFL Jersey Example - solved

Example: NFL Replica Jerseys

Data:

- Total cost = c = 10.90\$/jersey
- Selling price = p = 24 \$/jersey
- Forecast demand ~N(32000, 11000)

Solution:

- $c_s = p c = 24 10.90 = 13.10
- $c_e = c = 10.90
- CR = (13.10)/(10.9 + 13.10) = 0.546
- Select Q where $P[x \le Q] = 0.546$
 - Normal Table or use spreadsheet:

Case adapted from Parsons, J. (2004) "Using A Newsvendor Model for Demand Planning of NFL Replica Jerseys," MIT Supply Chain Management Program Thesis.

Standard Normal Table

	k	P[x≤k]	G(k)	k	P[x≤k]	G(k)
	0.00	0.5000	0.3989	0.50	0.6915	0.1978
	0.01	0.5040	0.3940	0.51	0.6950	0.1947
$P[x \le Q] = 0.546$	0.02	0.5080	0.3890	0.52	0.6985	0.1917
	0.03	0.5120	0.3841	0.53	0.7019	0.1887
Find k= 0.115	0.04	0.5160	0.3793	0.54	0.7054	0.1857
$Pospil k-(O, u)/\sigma$	0.05	0.5199	0.3744	0.55	0.7088	0.1828
Recall $k=(Q-\mu)/\sigma$	0.06	0.5239	0.3697	0.56	0.7123	0.1799
So, $Q = \mu + k\sigma$	0.07	0.5279	0.3649	0.57	0.7157	0.1771
= 32000 + (0.115)(11000)	0.08	0.5319	0.3602	0.58	0.7190	0.1742
	0.09	0.5359	0.3556	0.59	0.7224	0.1714
Q = 33,267 units	0.10	0.5398	0.3509	0.60	0.7257	0.1687
	0.11	0.5438	0.3464	0.61	0.7291	0.1659
	0.12	0.5478	0.3418	0.62	0.7324	0.1633
	0.13	0.5517	0.3373	0.63	0.7357	0.1606
	0.14	0.5557	0.3328	0.64	0.7389	0.1580
	0.15	0.5596	0.3284	0.65	0.7422	0.1554
	0.16	0.5636	0.3240	0.66	0.7454	0.1528

0.5675

0.5744

0.3197

0.2454

0.17

k

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

₄ 1.17

0.7486

0.7547

0.1503

0.4470

0.67

CTL.SC1x - Supply Chain and Logistics Fundamentals

Example: NFL Replica Jerseys

Data:

- Total cost = c = 10.90 \$/jersey
- Selling price = p = 24 \$/jersey
- Forecast demand ~N(32000, 11000)

Solution:

- $c_s = p c = 24 10.90 = 13.10
- $c_e = c = 10.90
- CR = (13.10)/(10.9 + 13.10) = 0.546
- Select Q where $P[x \le Q] = 0.546$
 - Normal Table or use spreadsheet:
 - =NORMINV(CR, Mean, StdDev)
 - =NORMINV(0.546, 32000, 11000)
- $Q^* = 33,267$ the profit maximizing quantity

But what if I can sell the left overs at a discount?

Case adapted from Parsons, J. (2004) "Using A Newsvendor Model for Demand Planning of NFL Replica Jerseys," MIT Supply Chain Management Program Thesis.

Image Source: http://commons.wikimedia.org/wiki/File:Tom_Brady_%28cropped%29.jpg

Considering Other Costs

Other costs:

- g = salvage value, \$/unit
- B = Penalty for not satisfying demand (beyond lost profit), \$/unit

The excess and shortage costs change:

```
c_s = p - c + B
c_e = c - g
```

• Critical Ratio =
$$c_s/(c_s+c_e)$$

= $(p-c+B)/(p-c+B+c-g)$
= $(p-c+B)/(p+B-g)$

Example: NFL Replica Jerseys

Data:

- Total cost = c = 10.90\$/jersey
- Selling price = p = 24 \$/jersey
- Forecast demand ~N(32000, 11000)
- Salvage value = g = 7 \$/jersey

Solution:

- $c_s = p c = 24 10.90 = 13.10
- $c_e = c g = 10.90 7.00 = 3.90
- CR = (13.10)/(3.9 + 13.10) = 0.771
- Select Q where $P[x \le Q] = 0.771$
 - Normal Table or use spreadsheet:
 - =NORMINV(CR, Mean, StdDev)=NORMINV(.771, 32000, 11000)
- $Q^* = 40,149$ the profit maximizing quantity

But, how do I determine the profitability?

Key Points from Lesson

Key Points

- Newsvendor problems are everywhere
 - Fashion items, perishable goods, fleet sizing, contracting, space missions, etc.
 - Whenever you have to make a firm bet in the face of uncertain demand in a single period
- Classic trade off between:
 - Having too much (excess cost c_e)
 - Having too little (shortage cost c_s)
- Critical Ratio captures this trade-off
 - $\cdot CR = C_s / (C_s + C_e)$
 - CR = Pct of demand distribution to cover $= P[x \le Q]$

CTL.SC1x -Supply Chain & Logistics Fundamentals

Questions, Comments, Suggestions? Use the Discussion!

