PSCA Characterization using CNN

Security Characterization

- 1V Supply Single-ended SAR using switch capacitor scheme.
- Unsecure SAR 8-bit with split-cap DAC SAR
- Secure SAR Flash-SAR hybrid (2+6=8-bit)
- Data collection includes a long ramp with multiple conversions per LSB.
- The current trace on VREF should be saved from transient simulation.

Training accuracy

Test Accuracy

Dout_{attacker} - Dout_{true}

Bitwise RMSE contribution

Normalized RMSE

Bitwise Error rate and per-bit RMSE

RMSE Comparison

Heatmap

Secure ADC with security Module

Training accuracy

Test Accuracy

Dout_{attacker} - Dout_{true}

Bitwise RMSE contribution

Normalized bitwise RMSE

Bitwise Error rate and per-bit RMSE

RMSE Comparison

Heatmap

Secure vs Unsecure ADC Performance

Normalized Bit Error Rate

Bitwise RMSE Contribution

Normalized Bitwise RMSE contribution

Bitwise Predictability

Total RMSE Comparison

Heatmap Comparison

Comments

- The comparison demonstrates enhanced security through the use of a secure module.
- Flash-SAR bits are harder to predict via a CNN attack.
- The result is normalized to an 8-bit value to compare with ADCs that have different resolutions.

Comparison with other work

Publication	This	Work	TCAS-II '20 [35]		JSSC '21 [68]		HOST '24 [34]		CICC '22 [33]		VLSI '22 [32]		CICC '23 [31]	
Process (nm)	6	5ª	180		65		65ª		65		65		65	
Supply (V)	:	1	N/A ^b		1.2		1		1.2		1.2		1.2	
Resolution (bits)		8	10		12		8		8		12		12	
Topology	Single-	-Ended	Single	-Ended Differential		Differential		Differential		Differential		Differential		
Protected	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Power (µW)	308.4	536.2	63.5	65.0	83.2	158.5	145.0	150.7	43.4	50.2	539.8	539.8	722.0	698.0
Sample Rate (MS/s)	1.00	1.25	1.07	1.00	1.25	1.25	20.00	20.00	3.33	2.00	25.00	25.00	45.00	40.00
Area (mm²)	0.061	0.095	0.070	0.075	0.340	0.500	0.015	0.017	0.064	0.073	0.072	0.072	0.075	0.075
ENOB (bit)	5.57	6.87	8.80	8.70	11.20°	11.20°	7.86	7.80	7.20	7.70	10.90	10.90	10.90°	10.80°
FoM _W (fJ/cs.)	6492	3667	130.80	151.50	27.90	54.30	31.00	33.80	88.60	120.70	11.30	11.30	8.50	9.80
SFDR (dB)	17.30	17.20	64.50	64.30	86.00	89.60	N/A ^b	N/A ^b	53.70	54.60	86.60	86.60	80.50	80.20
Leakage RMSE	10.83/	67.03/			117.74/	384.04/	24.50/	103.00/	0.70/	58.00/	14.21/	1625.39/	52.76/	1985.25/
(LSBs)	256	256	_e	_e	4096	4096	256	256	256	256	4096	4096	4096	4096
Normalized RMSE	0.0415	0.2618	_e	_e	0.02870	0.0938	0.09500	0.4200	0.0027	0.2266	0.0035	0.3968	0.0129	0.4847
Random Bits (Mb/s)	NA	0	NA	1	NA	0	NA	200	NA	360	NA	275	NA	4080

^aSimulation only

^bValue not disclosed

^cCalculated from FoM_W, Power, and Sample Rate

 $^{^{}m d}$ Reported an unprotected leakage ENOB of 4.60 bits and a protected leakage ENOB of 0.8

^eRMSE not reported