- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

1 Curs 5. Tipuri de date. descriptive

```
In [17]:
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd

    print(f'NumPy version: {np.__version__}
    print(f'pandas version: {pd.__version__}

    executed in 5.42s, finished 19:45:20 2021-03-21
```

NumPy version: 1.19.2 pandas version: 1.2.3

1.1 Tipuri de date

- Un set de date este o colectie de obiecte-data
- Sinonime pentru obiecte-data: înregistrare, pu confuzie), observatie, entitate.
- · Obiectele sunt descrise prin atribute
- · Sinonime pentru atribut: variabila, caracteris

Definitie: Atribut: proprietate sau caracteristica a ι

- Exemple: culoarea ochilor, temperatura.
- · Trebuie facuta diferenta între proprietatile atrik
 - acelasi atribut poate avea valori diferite: î
 - diferite atribute pot fi masurate cu acelasi reprezentate prin numere întregi; în timp o

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

▼ 1.1.1 Tipuri de atribute

Exista diferite tipuri de atribute:

- · Categoriale (calitative)
 - nominale: valori diferite care permit recui
 - ordinale: valorile permit ordonarea obiec operatii permise: =, ≠, <, >; functii aplical
- Numerice (cantitative)
 - interval: se poate face diferenta între vale
 Fahrenheit; pe lânga operatiile de mai sus
 - multiplicabile: permit împartiri si înmultir mai sus si inmultirea, impartirea; functii a;

1.1.2 Transformari la nivel de atribut

Exista niste transformari care se pot efectua sau n

- pentru atribute nominale: orice asociere unu-la datelor;
- pentru atribute ordinale: orice modificare de va monoton crescatoare; {bun, mai bun, cel mai l
- pentru atribute interval: transformari de forma
- pentru atribute multiplicabile: val_veche/val_

1.1.3 Descrierea atributelor prin nun

- · Atribute discrete:
 - o multime cel mult numarabila de valori;
 - exemple: coduri postale, cuvinte într-un d
 - se reprezinta cel mai frecvent ca numere
 - caz special atribute binare: {prezent, a
- Atribute continue:
 - valorile sunt exprimate prin numere reale
 - exemple: temperatura, masa
 - dpdv practic reprezentarea se face cu o p
 - reprezentare actuala: valori în virgula mol
- · Valori asimetrice:
 - doar prezenta unei trasaturi (i.e. valoare r
 - exemple: vectorul care reprezinta daca ni
 - daca se iau in considerare doi astfel de ve simultan

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - _____
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setul 1.1.4.3 Setul
 - ▼ 1.2 Calitatea dat
 - 1.2.1 Problems
 - 1.2.2 Calitatea
 - 1.2.2 Cantatea
 - 1.2.3 Calitatea1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

1.1.4 Tipuri de seturi de date

- Seturi de date de tip: înregistrare, de tip graf s
- · Caracteteristici generale:
 - dimensionalitatea = numarul de atribute multe dimensiuni se pot aplica tehnici de
 - caracterul rarefiat al datelor = procentu poate reduce drastic necesarul de memor
 - rezolutia = scara la care se face raportar
 zile pot arata iminenta unei furtuni, dar la

1.1.4.1 Seturi de date de tip înregistrare

- · cel mai des furnizate si frecvent utilizate in apl
- · nu exista legatura intre inregistrari distincte
- stocare: fisiere text (e.g. CSV), Excel, baze d€

Cazuri remarcabile de seturi de date inregistrare:

- Tranzactii, date specifice cosurilor de cumpara
 - exemplu: intr-un magazin, setul de produ:
 - se analizeaza asocierea intre produsele il
 - posibilitate de reprezentare: indicator boo
 - variatie: cate exemplare din produs au fos

- Matrice de date:
 - pentru cazul in care datele au acelasi set
 - fiecare data in parte poate fi considerata
 - fiecare atribut considerat este o dimensiu
 - este tipul de date standard pentru analiza
 - nota: intre conceptul de dimensiune asa c

Projec

10.23

12.65

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

* Matrice de date rarefiate: * caz special a trasaturilor * exemplu: tranzactii din cosur dintr-un anumit lexic; pentru un document sau nu = matricea document-termen * in (https://docs.scipy.org/doc/scipy/reference

Docume

Docume

Docume

1.1.4.2 Seturi de date de tip graf

- · reprezentare convenabila pentru cazurile:
 - graful reprezinta relatii între obiecte
 - obiectele însele sunt reprezentate ca graf

Caz 1: datele reprezinta relatii între obi

- obiectele sunt reprezentate ca noduri în graf
- relatiile dintre obiecte sunt reprezentate sub fc
- exemplu: pagini web care contin legaturi catre
- exemplu de algoritm ce foloseste structura de

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

Caz 2: obiectele-data sunt grafuri

- · obiectele pot contine subobiecte care sunt leg
- uneori nu doar legaturile sunt importante, ci si
- exemplu: formulele chimice benzen = C_6H_6
- utilitate: se poate detecta care substructura aç anumitor proprietati chimice.
- domeniu aparte: "mineritul" substructurilor

1.1.4.3 Seturi de tip secventa

- · atributele au relatii care implica ordonare în tir
- subtipuri: date secventiale, secventa, serii de

Caz: date secventiale

- · numite si date temporale
- fiecare înregistrare are un atribut suplimentar

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3./
 - 1.3.8 Exemplu

 ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

Caz: date secventa

- · setul de date entitati individuale, precum secv
- similare cu cele secventiale, dar fara timp incli
- pozitia din secventa este importanta
- · exemplu: informatia genetica este o secventa
- · aplicatie: predictia similaritatilor în structura si

Caz: serii de timp

- fiecare înregistrare e o serie de timp = o serie
- exemplu: seturi de date de tip financiar, reprez
- · exemplu: date meteo masurate lunar

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - 5
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı 1.4.4 Statistic

- Caz: Date spatiale
 - · cazul datelor care au atribute spatiale sau are
 - · exemplu: date climatice raportate pe regiuni
 - · exemplu: date adunate pentru scurgerea unui

- 1.2 Calitatea datelor
 - 1.2.1 Probleme legate de masurarea

- Contents 2 4
- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setul
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.5.1 Agregan
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

- Presupunerea ca datele pe baza carora se fac
- Prevenirea problemelor care duc la scaderea
- · Abordari:
 - detectarea si corectarea erorilor = curatar
 - construirea de algoritmi care sa tolereze ι
- surse de probleme în calitatea datelor:
 - procesele de masurare
 - aplicatiile folosite
- Zgomotul
 - componenta aleatoare care se adauga ur
 - Exemplu: distorsiunea vocii unei persoan
 - Daca eroarea apare mereu în acelasi loc:

```
▼ 1 Curs 5. Tipuri de▼ 1.1 Tipuri de date
```

1.1.1 Tipuri de

1.1.2 Transforr

1.1.3 Descriere

▼ 1.1.4 Tipuri de

1.1.4.1 Setur

1.1.4.2 Setu

1.1.4.3 Setu

▼ 1.2 Calitatea date

1.2.1 Probleme

1.2.2 Calitatea

1.2.3 Calitatea

1.2.4 Calitatea

1.2.5 Calitatea

1.2.6 Calitatea▼ 1.3 Preprocesare

1.3.1 Agregare

1.3.2 Esantion

1.3.3 Reducer

1.3.4 Selectare

1.3.5 Crearea

1.3.6 Discretiz

1.3.7 Transforr

1.3.8 Exemplu

1.5.0 Exemple

▼ 1.4 Statistici de s 1.4.1 Explorare

1.4.2 Setul de

▼ 1.4.3 Statistici

1.4.3.1 Frec

1.4.3.2 Perc

1.4.3.3 Medi

1.4.3.4 Măsı

1.4.4 Statistic

Da

1.2.2 Calitatea datelor: precizie, abat

- Precizie: apropierea valorilor rezultate prin ma
- Abatere (eng: bias): o variatie sistematica a r
- Exemplu: se masoara o cantitate de 1 gram. \
 0.001.
- · Precizia este considerata abaterea standard:

•
$$\sigma = \sqrt{E[(X - E(X))^2]}$$
 deci pentru dat

· Acuratetea: apropierea masuratorilor fata de

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz1.3.7 Transforr
 - 1.3./
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s

 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

1.2.3 Calitatea datelor: anomalii

- · Anomaliile sunt obiecte cu caracteristici consic
- Anomaliile (outliers) nu sunt zgomote, ci obiec
- Utilitate: detectarea de nise pe piata, detectare

1.2.4 Calitatea datelor: valori lipsa

- Cazuri: una sau mai multe valori de atribute lir
- Motive pentru lipsa valorilor:
 - informatia nu este colectata oamenii n
 - atributele nu se pot aplica tot timpul tuturo
- · Operarea în aceste situatii:
 - eliminarea obiectelor-data sau a atributelo
 - estimarea valorilor lipsa
 - ignorarea valorilor lipsa în timpul analizei

1.2.5 Calitatea datelor: valori incons

- · Valori inconsistente:
 - Exemplu: oras si cod postal precizate, da
 - Exemplu: typos, marimi cu valori impropri
 - Operare: detectarea valorilor gresite si co
 - E necesara utilizarea surselor de date rec
- · Date duplicate:
 - Duplicarea poate sa fie exacta sau aproa
 - Exemplu: aceeasi persoana cu adrese de
 - Procesul de curatare = deduplicare

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.3.4 Masi

1.2.6 Calitatea datelor din perspectiv

- · Din perspectiva aplicatiilor, "datele au calitate
- Caracterul oportun al datelor daca datele s
- Relevanta in cazul in care se vrea crearea alta situatie este data de esantionarea neadec
- Cunostintele apriori despre date de exempl reducerea redundantei si a dimensionalitatii; c

1.3 Preprocesarea datelor

- Strategii si tehnici complexe, ce pot cere pâna
- · Doua variante:
 - 1. selectara obiectelor-data si a atributelor
 - 2. crearea/schimbarea de atribute
- Variante de preprocesare:
 - agregare
 - esantionare
 - reducerea dimensionalitatii
 - selectarea unui subset de atribute
 - crearea de atribute
 - discretizare si binarizare
 - transformarea variabilelor

▼ 1.3.1 Agregare

- Scop: combinarea a doua sau mai multe atribi
- Utilitate:
 - reducerea cantitatii de date
 - schimbarea scalei: orasele sunt agregate
 - date mai stabile: datele agregate au tendi

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.5 1 Toprocesur
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

1.3.2 Esantionare

- principala tehnica folosita pentru selectarea da
- · în statistica, a fost folosita atât pentru investig
- · este folosita pentru ca obtinerea întregului set
- în DM esantionarea este folosita pentru ca pro
- un esantion este reprezentativ daca are aprox
- utilizarea unui esantion reprezentativ e aproar
- · tipuri de esantionare:

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

- esantionare aleatoare uniforma: avem o r
- esantionare fara înlocuire: daca un obiect
- esantionare cu înlocuire: obiectele nu sur
- esantionarea stratificata: se divid datele îl cu proportia din multimea initiala.

Esantion de 8000 de pun-

- Determinarea marimii esantionului
 - problema: avem un set de date care cons
 - trebuie extras un esantion astfel încât din
 - "garantarea" se exprima probabilist: care anterior sa depaseasca un anumit prag?

1.3.3 Reducerea dimensionalitatii

- seturile de date pot avea un numar mare de a
- · valorile pentru densitate de probabilitate si dis

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea

 - 1.2.6 Calitatea
 - - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s

 - - 1.4.3.1 Frec
 - 1.4.3.3 Med

 - 1.4.3.4 Măsı

- - - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - - 1.2.5 Calitatea
 - ▼ 1.3 Preprocesare
 - - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici

 - 1.4.3.2 Perc

 - 1.4.4 Statistic

- solutie: reducerea dimensionalitatii fara a piere
- beneficii: algoritmii de DM lucreaza mai eficier
- Scop:
 - evitarea blestemului dimensionalitatii
 - reducerea timpului de rulare necesar algo
 - datele devin mai usor de vizualizat
 - poate ajuta la eliminarea trasaturilor irelev
- Tehnici folosite:
 - analiza componentelor principale (Princip
 - descompunerea valorilor principale (Singi
 - alte metode: supervizate si transformari n

1.3.4 Selectarea subsetului de atribu

- motivatie: de multe ori, în seturile de date pot
- unele din aceste atribute pot fi eliminate prin "
- varianta ideala de lucru: se încearca toate cor force
- · variante:
 - 1. metode încorporate algoritmul de DM î
 - metode de filtrare atributele sunt selec
 - 3. metode bazate pe încercare se foloses
- Pentru selectarea subsetului de trasaturi e ne
 - o masura pentru evaluarea unui subset d
 - o metoda de cautare pentru generarea ur
 - un criteriu de oprire
 - o procedura de validare
- Alternativa pentru selectarea de atribute: ponc
 - atribute importante -> ponderi mari; atribu
 - ponderile se pot asocia pe baza cunostini

1.3.5 Crearea de trasaturi

- Scop: crearea de noi atribute pe baza celor ex
- Noile atribute pot releva mai eficient informatia
- Numarul atributelor noi obtinute poate fi mai m
- Metode:
 - Extragere de trasaturi
 - Transformarea datelor, utilizarea unui alt :
 - Construirea de trasaturi
- Exemplu: extragerea de trasaturi
 - crearea unui nou set de atribute pe baza
 - exemplu: fotografie -> detectarea muchiile
 - metodele sunt strâns legate de domeniu -

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı 1.4.4 Statistic

- Exemplu: transformarea datelor
 - trecerea de la coordonatele carteziene la

transformata Fourier

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 ▼ 1.2 Calitatea date
 - 1.2.1 Problems
 - _____
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Masi
 - 1.4.3.4 Măsı

- construirea de noi atribute
 - · uneori, atributele originare pot sa aib
 - o exemplu: pentru retele neurale intrare
 - o exemplu de trasatura derivata: densi-
 - o crearea de noi trasaturi necesita cun

Discretizare si binarizare

- st unii algoritmi cer ca datele sa fie în
- * algoritmii de determinare a asocierilor
- * apare nevoia de a transforma atribute (
- * Discutie pentru binarizare:
- * \$m\$ valori -> fiecare valoare initi transcrierea în baza 2
 - * daca atributele sunt ordinale, atur
 - * exemplu: {slab, mediu, bun} -> \$\{(
 - * \$\lceil \log_2 m \rceil\$ biti folos
 - * one hot encoding: pentru m clase se exemplu: {slab, mediu, bun} -> \$(x 1)
- * Discretizare a atributelor continue
 - * procesul de discretizare este deper
 - * pasi:
 - * se decide numarul de categorii
 - * se decide modul de asociere înt
 - * exemplu: se sorteaza datele, se

eticheta

- * Discretizare nesupervizata
 - * intervalele pot fi de latime egala
 - * prezinte frecvente egale
 - * metode de clustering, e.g. K-means
 - * inspectare vizuala a datelor

<img src="./images/discretizar

<img src="./images/discretizar </tr>

<img src="./images/discretizar

<img src="./images/discretizar

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.0.4 -
 - 1.3.5 Crearea1.3.6 Discretiz
 - 1.3.7 Transform
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

* Discretizare supervizata
 * utilizarea de informatie suplimenta
 * conceptual: discretizarea sa se fac
 * metode statistice: intervale mai mi
* Atribute categoriale cu prea multe atri
 * exemplu: o multitudine de departame
 * se pot unifica pe domenii: ingineri
 * altfel: gruparea poate fi facuta îr
clasificare

1.3.7 Transformarea de variabile

- transformare care se aplica la toate valorile ur
- exemplu: daca doar amplitudinea unei valori ε
- functii folosite: $\exp(x)$, $\log(x)$, \sqrt{x} , 1/x, func
- · functii complexe: normalizare
- pentru datele care prezinta domeniu mare de
 - exemplu: transferuri de date de 109, 108, 9, 8, 3, 1.
- aplicarea trebuie facuta în cunostinta de cauza

▼ 1.3.8 Exemplu de transformare: stan

• în statistica: daca \overline{x} este media unui atribut si

atunci transformarea $x
ightarrow rac{x-\overline{x}}{s_x}$ creeaza o noi

- exemplu: persoane cu variabilele: venitul anua venituri ar domina distanta între doi oameni, d
- problema: abaterea patratica medie e influenta

unde μ e media sau mediana

Explorarea datelor: Statistic

1.4.1 Explorarea datelor

- Explorarea datelor reprezintă investigarea pre
- Pasul de explorare poate fi de folos în alegere
- Se poate folosi abilitatea naturală a oamenilor
- Domeniul a fost introdus de către statisticianu
- AED este domeniu opus lui "Confirmatory Dat

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Problem€
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.5.1 Agregar
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

Curs de AED: <u>aici (https://www.coursera.org/lescience&utm_source=gg&utm_medium=sem&ROW&adgroupid=116274867101&device=c&lyWJrboZGvrVzGL9QL0-8PazMsYrrQaAnG4E</u>

4

- * În AED, așa cum este definit de Tukey:
 - * Focus-ul este pe vizualizare
 - * Gruparea (clustering) și detectarea
 - * Acestea două sunt subdomenii aparte

Setul de date Iris

- * Constă în date măsurate pentru 150 de f exemplare pe specie)
- * Măsurătorile sunt pentru lungimea/lățin
- * A cincea coloană este specia florii a
- * Datele se pot descărca [de aici](http:/

In [35]:

iris_url = 'http://archive.ics.uci.edu/
iris_columns = ['sepal_length', 'sepal_
data = pd.read_csv(iris_url, header = N
data.columns = iris_columns
data.describe(include='all')

executed in 724ms, finished 20:37:59 2021-03-21

Out[35]:

	sepal_length	sepal_width	petal_length
count	150.000000	150.000000	150.000000
unique	NaN	NaN	NaN
top	NaN	NaN	NaN
freq	NaN	NaN	NaN
mean	5.843333	3.054000	3.758667
std	0.828066	0.433594	1.764420
min	4.300000	2.000000	1.000000
25%	5.100000	2.800000	1.600000
50%	5.800000	3.000000	4.350000
75%	6.400000	3.300000	5.100000
max	7.900000	4.400000	6.900000

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - ...
 - 1.3.2 Esantion 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transform
 - 1.3./
 - 1.3.8 Exemplu

 ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

iris setosa

Sursa: morioh.com

1.4.3 Statistici de sumarizare

- Statisticile de sumarizare sunt numere care so
- · Reprezintă manifestarea cea mai vizibilă a sta
- Exemple: frecvenţa, media, dispersia

1.4.3.1 Frecvenţa şi valoarea modală

Pentru un set de m date categoriale cu valorile $\{v\}$

iar frecventa absoluta este numaratorul fractiei de

```
▼ 1 Curs 5. Tipuri de
  ▼ 1.1 Tipuri de date
       1.1.1 Tipuri de
       1.1.2 Transforr
      1.1.3 Descriere
    ▼ 1.1.4 Tipuri de
         1.1.4.1 Setur
         1.1.4.2 Setu
         1.1.4.3 Setu
  ▼ 1.2 Calitatea date
       1.2.1 Probleme
       1.2.2 Calitatea
       1.2.3 Calitatea
       1.2.4 Calitatea
       1.2.5 Calitatea
      1.2.6 Calitatea
  ▼ 1.3 Preprocesare
       1.3.1 Agregare
       1.3.2 Esantion
       1.3.3 Reducer
       1.3.4 Selectare
       1.3.5 Crearea
       1.3.6 Discretiz
       1.3.7 Transforr
       1.3.8 Exemplu
  ▼ 1.4 Statistici de s
       1.4.1 Explorare
       1.4.2 Setul de
    ▼ 1.4.3 Statistici
         1.4.3.1 Frec
         1.4.3.2 Perc
```

```
In [31]:
             print(f'Frequency: {freq iris}')
             print(f'Relative Frequency: {rel freq i
          executed in 6ms, finished 20:29:02 2021-03-21
```

Frequency: Counter({'Iris-setosa': 50, '] Relative Frequency: {'Iris-setosa': 0.333 33}

```
* Valoarea modală (sau moda) este valoare
moda = \arg\max\limits {v i} frecventa(v
$$
```

- * Atenție la situația când o anume valoar
- * Pot exista seturi de date pentru care f
- * Pentru valori continue, conceptele de n

Percentile

- * Pentru cazul valorilor ordonate se pot * Pentru un atribut continuu sau ordinal sirul de valori ale lui \$x\$ astfel încât
- * Nu există o definiție standardizată per
- * Pentru cazul în care se calculează perc devin neesentiale
- * Tradiţional se consideră \$x_{0\%} = \mi
- * Mod de calcul pentru determinarea celei cea mai apropiată de \$\frac{m}{100} \cdot sortat
- * Functie utilizabila: [numpy.percentile] pandas [pandas.Dataframe.quantile](https:

In [34]:

```
help(np.percentile)
```

executed in 182ms, finished 20:36:59 2021-03-21

```
a = np.arange(4)
p = np.linspace(0, 100, 6001)
ax = plt.gca()
lines = [
    ('linear', None),
    ('higher', '--'),
    ('lower', '--'),
    ('nearest', '-.'),
    ('midpoint', '-.'),
for interpolation, style in lines
    ax.plot(
        p, np.percentile(a, p, ir
        label=interpolation, line
ax.set(
    title='Interpolation methods
    xlabel='Percentile',
    ylabel='List item returned',
    yticks=a)
```

1.4.3.3 Med

1.4.3.4 Măsı

1.4.4 Statistic

```
Contents 2 &
```

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - **▼** 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

```
In [53]:
            25th percentile sepal length = np.perc
            print(f'Cate valori sunt strict mai mic
            print(f'Cate valori sunt strict mai mic
            print(f'lista valorilor sortate: {list(
            # se poate intelege pentru aceste date
          executed in 9ms, finished 20:44:19 2021-03-21
```

Cate valori sunt strict mai mici decat a Cate valori sunt strict mai mici sau egal lista valorilor sortate: [4.3, 4.4, 4.4, 9, 4.9, 5.0, 5.0, 5.0, 5.0, 5.0, 5.6 5.7, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8, 5 6.2, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6.3, 6 6.7, 6.7, 6.7, 6.7, 6.7, 6.7, 6.8, 6.8, 6

```
In [54]:
             data['sepal_length'].quantile(q=0.25)
           executed in 15ms, finished 20:48:41 2021-03-21
```

Out[54]: 5.1

Media si mediana

```
* Pentru un set de valori ${x 1, x 2, . .
\operatorname{verline}\{x\} = E(x) = \operatorname{mean}(x) = \operatorname{frac}\{1\}\{
$$
* Mediana este a 50-a percentila. O varia
(reordonarea) x_{(1)}, x_{(2)}, \ldots
mediana(x) = \begin{cases}
x_{r+1} & \text{text}\{daca \} = 2r+1
\frac{x_{(r)} + x_{(r+1)}}{2} & \text{dac
\end{cases}
$$
O varianta mai rafinata (si care se poate
(complexitate liniara in loc de $0(n\log
```

Obtinere: [numpy.median](https://numpy.or (https://pandas.pydata.org/pandas-docs/st

```
In [57]:
             np.median(data.sepal length.values)
           executed in 13ms, finished 21:18:38 2021-03-21
```

Out[57]: 5.8

Diferente intre medie si mediana:

- · Media este valoare "de mijloc" doar dacă distr
- Dacă distribuţia este asimetrică, atunci mediai

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setul
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

- Media este influenţată de outliers, în timp ce n
- Medie retezată (eng: trimmed mean) se utilize din date; se calculează media pentru ceea ce
- media standard se obține din media retezată c

Exemple:

* Considerăm valorile {1, 2, 3, 4, 5, 90} considerabil diferită față de media setul * Media, medianele și valoarea de trimmec <img src="./images/stats_iris.png" alt="c" * Exercițiu: dacă valoarea medianei este

Măsurari ale împrăștierii datelor

```
* Sunt măsuri care cuantifică concentrare

* Diametrul domeniului de valori (eng: ra

$$

range(x) = \max(x) - \min(x) = x_{(m)} -

$$

* Range-ul este nerelevant, deoarece pute

outlier măresc artificial diametrul setul

* Varianța (dispersia; eng: variance) unu

$$

varianta(x) = s_x^2 = \frac{1}{m-1} \sum\

$$

* Utilizarea numitorului $m - 1$ în loc c

$i are ca scop corectarea abaterii din es

* Abaterea standard este $s_x = \sqrt{s_\}

* Python: [numpy.std](https://numpy.org/c
```

In [59]: np.std(data.petal_length), np.std(data.executed in 17ms, finished 21:40:36 2021-03-21

Out[59]: (1.7585291834055201, 0.8253012917851409)

- Deoarece media poate să fie distorsionată de
- Se preferă considerarea altor trei măsuri:
 - absolute average deviation, AAD:
 - median absolute deviation, MAD:
 - interquartile range:

Verificam ca prin standardizare de date,

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setu
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transform
 - 1.3./
 - 1.3.8 Exemplu

 ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Medi
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic

In [69]:

med_petal_length = np.mean(data.petal_l
centram datele: media Lor devine 0
centered_petal_length = data.petal_leng
assert 0 == np.mean(centered_petal_le
assert np.allclose(0, np.mean(centered_
std_petal_length = np.std(data.petal_le
std_centered_petal_length = np.std(cent
assert np.allclose(std_petal_length, st
standardized_petal_length = centered_pe
verificare: media 0...
assert np.allclose(0, np.mean(standardi
si standard deviation ~ 1

assert np.allclose(1, np.std(standardiz

executed in 52ms, finished 21:53:56 2021-03-21

1.4.4 Statistici de sumarizare a datel

- Date multivariate: date cu mai multe atribute
- Pentru atributul x_i calculăm media \overline{x}_i
- Media setului de obiecte este $\mathbf{x} = (\overline{x}_1, \dots, \overline{x}_n)$
- Analog se poate calcula dispersia, mediana et
- Matricea de covarianță: elementul s_{ij} este cov

unde x_{pq} este a p-a valoare a atributului x_q

- s_{ij} este măsură a gradului în care două atribu valorilor atributelor
- $s_{ij} = 0$ arata ca atributele s_i si s_j nu sunt linic
- · pentru a elimina dependenta de magnitudinea
- r_{ii} se mai numeste corelatia Pearson a atribu
- $r_{ij} = \pm 1$ indica faptul ca x_i e in relatie liniara

$$\operatorname{cu} \operatorname{sgn}(a) = \operatorname{sgn}(r_{ii})$$

1.0

Seturi de date (x, y) împreună cu coeficientul de co (sus) precum şi modul în care ele sunt legate liniar relații mai complexe între date (rândul de jos). Sur:

Legat de coeficientul de corelație, câteva observaț

- Corelaţia şi liniaritatea coeficientul Pearson date.
- Exemplu: 4 seturi de date cu două atribute; în fiecare caz (0.816); cu toate acestea, legătura

Date cu caracteristici numerice identice (medi

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea
 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.3.4 Masi

- ▼ 1 Curs 5. Tipuri de
 - ▼ 1.1 Tipuri de date
 - 1.1.1 Tipuri de
 - 1.1.2 Transforr
 - 1.1.3 Descriere
 - ▼ 1.1.4 Tipuri de
 - 1.1.4.1 Setur
 - 1.1.4.2 Setu
 - 1.1.4.3 Setul
 - ▼ 1.2 Calitatea date
 - 1.2.1 Probleme
 - 1.2.2 Calitatea

 - 1.2.3 Calitatea
 - 1.2.4 Calitatea
 - 1.2.5 Calitatea
 - 1.2.6 Calitatea
 - ▼ 1.3 Preprocesare
 - 1.3.1 Agregare
 - 1.3.2 Esantion
 - 1.3.3 Reducer
 - 1.3.4 Selectare
 - 1.3.5 Crearea
 - 1.3.6 Discretiz
 - 1.3.7 Transforr
 - 1.3.8 Exemplu
 - ▼ 1.4 Statistici de s
 - 1.4.1 Explorare
 - 1.4.2 Setul de
 - ▼ 1.4.3 Statistici
 - 1.4.3.1 Frec
 - 1.4.3.2 Perc
 - 1.4.3.3 Med
 - 1.4.3.4 Măsı
 - 1.4.4 Statistic