

Capstone Project -

Credit Card Default Prediction

Presented By:Aniket Satpute
Kaiwalya Zankar
(AlmaBetter Trainee)

Content

- Introduction
- Scope of project
- Problem Statement
- Data summery
- Process flow
- Library used
- Data Preprocessing
- EDA
- Statistical inference
- Feature Engineering
- Machine learning : Classification model
- Challenges
- Conclusion
- Q&A

Introduction

- Credit risk has traditionally been the greatest risk among all the risks that the banking and credit card industry are facing, and it is usually the one requiring the most capital.
- Despite machine learning and big data have been adopted by the banking industry, the
 current applications are mainly focused on credit score predicting. The disadvantage of heavily
 relying on credit score is banks would miss valuable customers who come from countries that
 are traditionally underbanked with no credit history or new immigrants who have repaying
 power but lack credit history.
- Due to the scope of the project and lack of computational resources, this analysis is not intended to be exhaustive, we only applied 3 classification machine learning models

Scope of the Project-

- The purpose of this project is to conduct quantitative analysis on credit card default risk by applying 3 classification machine learning models.
- Despite machine learning and big data have been adopted by the banking industry, the current applications are mainly focused on credit score predicting.
- Despite machine learning and big data have been adopted by the banking industry, the current applications are mainly focused on credit score predicting.
- Due to the scope of the project and lack of computational resources, this analysis is not intended to be exhaustive, we only applied 3 classification machine learning models

Problem Statement

This project is aimed at predicting the case of customers default payments in Taiwan. From the perspective of risk management, the result of predictive accuracy of the estimated probability of default will be more valuable than the binary result of classification - credible or not credible clients. We can use the K-S chart to evaluate which customers will default on their credit card payments

Data Summary

- This research employed a binary variable, default payment (Yes = 1, No = 0), as the response variable. This study reviewed the literature and used the following 23 variables as explanatory variables:
- X1: Amount of the given credit (NT dollar): it includes both the individual consumer credit and his/her family (supplementary) credit.
- X2: Gender (1 = male; 2 = female).
- X3: Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).
- \times X4: Marital status (1 = married; 2 = single; 3 = others).
- X5: Age (year).
- X6,X7,X8,X9,X10,X11: the repayment status in September, August,July.June,may,april2005 respectively. The measurement scale for the repayment status is: -
 - 1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.
- X12,X13,X14,X15,X16,X17: Amount of bill statement (NT dollar) in September, August, July, June, May, April 2005 respectively
- X18,X19,X20,X21,X22,X23: Amount of previous payment (NT dollar).amount paid in Septem ber, August, July, June, May, April ,205 respectively

Process Flow-

Libraries used-

- 1. numpy
- 2. Pandas
- 3. scipy
- 4. matplotlib.pyplot
- 5. seaborn
- 6. imblearn
- 7. Sklearn
- 8. statsmodel
- 9. Math
- 10. Xgboost
- 11. warnings

Data Preprocessing

Checking the null values for cleaning the Dataset for Al

further analysis.

id	0	bill_amt2	0
limit_bal	0	bill_amt3	0
sex	0	bill_amt4	0
education	0	bill_amt5	0
marriage	0	bill_amt6	0
age	0	pay_amt1	0
pay_1	0	pay_amt2	0
pay_2	0	pay_amt3	0
pay_3	0	pay_amt4	0
pay_4	0	pay_amt5	0
pay_5	0	pay_amt6	0
pay_6	0	default	0
bill_amt1	0		

We do not see any null values in the dataset.

ΑI

Checking the unique values for Analyzing the dataset for Further analysis.

yı arıaryər	<u> </u>		
id	30000	bill_amt2	22346
limit_bal	81	bill_amt3	22026
sex	2	bill_amt4	21548
education	7	bill_amt5	21010
marriage	4	bill_amt6	20604
age	56	pay_amt1	7943
pay_1	11	pay_amt2	7899
pay_2	11	pay_amt3	7518
pay_3	11	pay_amt4	6937
pay_4	11	pay_amt5	6897
pay_5	10	pay_amt6	6939
pay_6	10	Default	2
bill_amt1	22723		

Distribution of defaulters vs non-defaulters

Distribution of defaulters vs non-defaulters

Relationship between the variables and default

Is default proportion affected by gender?

Although there are more female credit card holders, the default proportion among men is higher. I will do a hypothesis test to see if the difference is statistically significant.

Is default proportion affected by education?

The default proportion decreases with higher education level.

Is default proportion affected by marital status?

Married people have higher default proportions than single folks. While there are intuitive arguments for and against it, closer inspection is needed. For example, is there a difference between married men and married women?

Is the proportion of defaults correlated with age?

The age group of 30s has the high number of counts of defaults.

Is the default proportion affected by credit limit?

It seems that people with higher credit limit have significantly lower default proportion.

Is the default proportion affected by history of past repayment status? Distribution of Default vs Non-default by Payment History

I notice that if the person has defaulted for 2 months or more in the past two months, there is a very high chances of them defaulting.

Correlation between the variables

High correlation among the payment history features and the bill amount features.

Plotting the bill amount density and their scatter plot

The distribution of the bill amounts are skewed.

Statistical Inference.

Does the gender affect the default rate? I have tried to answer this question with hypothesis test.

I have use the significance level of α = 0.05.

The bounds of the confidence interval are given by $\frac{\alpha}{2}$, $1 - \frac{\alpha}{2}$ = [0.025,0.975]

I state the null and alternate hypotheses:

$$H_0: p_m = p_w$$

$$H_a: p_m \neq p_w$$

As the p value is 0.05 the null hypothesis is rejected.

Feature Engineering

I have added some more features like as follows:

- avg_default
- avg_bill_amt
- avg_pay_amt
- pay_bill_rat
- bill_bal_rat
- pay_bal_rat
- overdraft

Machine learning: Classification models

Logistic Regression model

0

1

zero_bal1 education marriage_2

avg_bill_amt

sex

marriage_3

age_group

Random-Forest Classifier

pay_6

education marriage_2 sex

marriage_3

Gradient Boosting Classifier

ML Models and Metrics

	Model	Accuracy	Precision	recall	F1_score	AUC_ROC
0	Logistic Regression (original data)	0.778500	0.000000	0.000000	0.000000	0.641673
1	Logistic Regression (engineered data)	0.816667	0.687603	0.313489	0.430642	0.755872
2	Untuned Random Forest Model	0.833500	0.693396	0.443105	0.540690	0.795104
3	Tuned Random Forest Model	0.835167	0.696970	0.450641	0.547368	0.799170
4	Gradient Boosting Classifier	0.829667	0.709191	0.389601	0.502918	0.776989

Challenges

- For finding what should be the dependent variable
- From the given dataset Filtering discrete values.
- Features to be selected to get required output for ease the further analysis.

Conclusion

We used different type of classification algorithms to train our model like, logistic regression, Random Forest Classifier, Gradient Boosting Classifier also found the important features for training the model. Out of them random forest with tuned hyperparameters gave the best result.

Q & A