Mini Proyecto

En clase hemos estudiado distintos métodos numéricos (Euler, Euler Mejorado, Runge-Kutta, Adams-Bashforth-Moulton), este mini proyecto será la realización de algunas modificaciones a los programas vistos en clase, las instrucciones son las siguientes:

- 1. En la UVirtual podrán encontrar los programas de Euler, Euler mejorado y Runge-Kutta, todos estos programas están realizados en Wolfram, cada programa utiliza dos funciones distintas (una para la tabla y otra para graficar), realice una modificación de los programas para que en una sola función realice la tabla y la gráfica.
- 2. Realice un programa para el método de Adams-Bashforth-Moulton utilizando Runge-Kutta para encontrar los términos necesarios para el método.
- 3. Utilice los 4 métodos para resolver la ecuación diferencial que le corresponde (ver la siguiente tabla), para cada método utilice dos tamaños de paso distintos:

Alumno	Ecuación	Valor Inicial	Valor a Encontrar
Jubetza Aldana	$y' = \frac{y^2 - 1}{x^2 - 1}$	$y\left(2\right)=2$	y (3)
Luis Mejicano	$y' = \frac{y - xy}{x^2}$	$y\left(-1\right) = -1$	$y\left(0\right)$
Dennis Flores	$y' = \frac{e^x - y}{x}$	$y\left(1\right)=2$	$y\left(2\right)$
Josué Martinez	$y' = \frac{\ln(x) - y}{x + 1}$	$y\left(1\right) = 10$	$y\left(2\right)$
Oswaldo Orellana	$y' = \cos^2(x) - (\tan(x)) y$	$y\left(0\right) = -1$	y (1)
Jacobo Ponce	$y' = \frac{(x+y)^2}{1 - 2xy - x^2}$	$y\left(1\right) = 1$	$y\left(2\right)$
Pedro Piche	$y' = -\frac{e^x + y}{2 + x + ye^y}$	$y\left(0\right) = 1$	y (1)
Bryan Chian	$y' = \frac{4y + 2x - 5}{1 - 6y - 4x}$	$y\left(-1\right) = 2$	$y\left(0\right)$
Willi Cutzal	$y' = -\frac{x}{x^2y + 4y}$	$y\left(4\right) = 0$	$y\left(5\right)$
Marcela Rodriguez	$y' = \frac{x^2 + y^2 - 5}{y + xy}$	$y\left(0\right)=1$	$y\left(1\right)$

Alumno	Ecuación	Valor Inicial	Valor a Encontrar
Dulce Mayorga	$y' = \frac{x^2 + 2y^2}{xy}$	$y\left(-1\right) = 1$	$y\left(0\right)$
Luis Jiménez	$y' = \frac{y}{x(1 + \ln(y) - \ln(x))}$	$y\left(1\right) = e$	y (2)
Esdras de León	$y' = \frac{3y^4 + 2xy}{x^2}$	$y\left(1\right) = \frac{1}{2}$	$y\left(2\right)$
Daniel Enríquez	$y' = \cos\left(x + y\right)$	$y\left(0\right) = \frac{\pi}{4}$	y (1)

- 4. Resuelva de forma analítica su respectiva ecuación diferencial (deje constancia de todos sus procedimientos).
- 5. Compare la respuesta real con las respuestas de los métodos numéricos e indique cual sería el método numérico más preciso para su caso en específico.
- 6. El formato de entrega es a su elección.