

Launching into ML

Agenda

Python notebooks in the Cloud

Supervised Learning

Inclusive ML

Short History of ML

Increasingly, data analysis and ML are carried out in self-descriptive, shareable, executable notebooks

A typical notebook contains code, charts, and explanations.

Follow-along: The Easy Way to Make a Notebook

Follow-along: Connecting to Github

Click the git clone icon to clone a repository

Paste the following URL into the address box and click "Clone"

https://github.com
/GoogleCloudPlatfo
rm/training-data-a
nalyst.git

Double click the "training-dataanalyst" folder when it appears here.

Agenda

Python notebooks in the Cloud

Supervised Learning

Inclusive ML

Short History of ML

Unsupervised and supervised learning are the two types of ML algorithms

Example Model: Clustering

Is this employee on the "fast-track" or not?

In unsupervised learning, data is not labeled.

Income vs Job Tenure

Supervised learning implies the data is already labeled

Regression and classification are supervised ML model types

1	total_bill	tip	sex	smoker	day	time
2	16.99	1.01	Female	No	Sun	Dinner
3	10.34	1.66	Male	No	Sun	Dinner
1	21.01	3.5	Male	No	Sun	Dinner
5	23.68	3.31	Male	No	Sun	Dinner
5	24.59	3.61	Female	No	Sun	Dinner
7	25.29	4.71	Male	No	Sun	Dinner
3	8.77	2	Male	No	Sun	Dinner
)	26.88	3.12	Male	No	Sun	Dinner

Option 1
Regression Model
Predict the tip amount

Option 2
Classification Model
Predict the sex of the customer

The type of ML problem depends on whether or not you have labeled data and what you are interested in predicting

Quiz: Supervised learning

Imagine you are in banking and you are creating an ML model for detecting if transactions are fraudulent or not. Is this classification or regression and why?

- A. Regression, categorical label
- B. Regression, continuous label
- C. Classification, categorical label
- D. Classification, continuous label

Quiz: Supervised learning

Imagine you are in banking and you are creating an ML model for detecting if transactions are fraudulent or not. Is this classification or regression and why?

- A. Regression, categorical label
- B. Regression, continuous label
- C. Classification, categorical label
- D. Classification, continuous label

Use regression for predicting continuous label values

Use classification for predicting categorical label values

A data warehouse can be a source of structured data training examples for your ML model

Data on births is sourced from our BigQuery Data Warehouse using SQL.

Since baby weight is a continuous value, use regression to predict

Weight is stored as a floating point number, representing a continuous (real) value.

Regression DNN Model

Quiz: Regression/Classification

- A. Linear classification
- B. Both
- C. None of the above

Quiz: Regression/Classification

- A. Linear classification
- B. Both
- C. None of the above

Agenda

Python notebooks in the Cloud

Supervised Learning

Inclusive ML

Short History of ML

Human biases lead to biases in ML models

Unconscious biases exist in data

Unconscious bias from "the world" that we might reflect in ML when using existing data

Collecting data

Labeling data

Unconscious bias in our procedures that we might reflect in our ML

Examples of Human Biases in Data

Reporting bias Selection bias

Examples of Human Biases in Collection and Labeling

Confirmation bias

Automation bias

A typical ML pipeline with bias

Avoid creating or reinforcing unfair bias

ML models learn from existing data collected from the real world, and so an accurate model may learn or even amplify problematic pre-existing biases in the data based on race, gender, religion, or other characteristics.

ai.google/principles

A Checklist for Bias-Related Issues

Tools for Responsible Al

Agenda

Python notebooks in the Cloud

Supervised Learning

Inclusive ML

Short History of ML

Linear regression was invented when computations were done by hand, but it continues to work well for large datasets

Linear Regression

For predicting planets and pea growth

The perceptron was a computational model of a neuron

Linear Regression For predicting planets and pea growth 1940s Perceptron Precursor to neural networks

Perceptron motivation: Neurons

Neural networks combine layers of perceptrons, making them more powerful but also harder to train effectively

Neural networks: Multi-layer perceptron

Decision trees build piecewise linear decision boundaries, are easy to train, and are easy for humans to interpret

Decision trees and the Titanic

Support vector machines are nonlinear models that build maximum marginal boundaries in hyperspace

SVMs maximize the margin between two classes

Random forests, bagging, and boosting are very effective predictors built by combining lots of very simple predictors

Random forest: Strong learner from many weak learners

With the advantage of technical improvements, more data, and computational power, neural networks made a comeback

Inception/GoogLeNet Deep Neural Network

Neural networks are outperforming most other approaches in many domains

Large amounts of data

Available Computational Power

Available Infrastructure

Tasks and
Goals we care
about

Note that there are no models that are universally better, they're just different.

