

15. Clustering: Hierarchical Clustering Algorithms

Hierarchical Clustering vs k-Means Cluste

k-Means Clustering

- It partitions the data samples onto a number of clusters
- It requires one to specify the number of clusters, distance measure

Hierarchical Clustering

- It builds a binary tree of the dataset that successively merges similar groups of data samples
- It requires one to specify a distance measure only

Hierarchical Clustering: Paradigms

Agglomerative: Bottom-up

start at the bottom and at each level recursively merge a selected pair of clusters into a single cluster

Divisive: Top-down

start at the top and at each level recursively split one of the existing clusters at that level into two new clusters

Hierarchical Clustering Paradigms

Dendrogram

Hierarchical Clustering: Agglomerative

Step 1: Each element is a cluster

Note:

- Simple algorithm
- Early decision cannot be undone
- Slow as at each step we merge only one new element

Hierarchical Clustering: Agglomerative

Algorithm

Input

A set of data points

Output

A dendogram

Procedure

- Place each data point onto its own singleton group
- Repeat
 - Merge iteratively the two closest groups
- Until there is a single cluster

Similarity Measures

Single-linkage
$$d(C_1, C_2) = \min_{x \in C_2, x' \in C_2} d(x, x')$$

Complete-linkage
$$d(C_1, C_2) = \max_{x \in C_1, x' \in C_2} d(x, x')$$

Group average
$$d(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \cdot \sum_{x \in C_1} \sum_{x' \in C_2} d(x, x')$$

Hierarchical Clustering: Example

Hierarchical Agglomerative Clustering with Group Average

Distance Matrix

New Distance Matrix

	а	b	С	d	е
а	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
е	23	21	39	43	0

$$D((a,b),c) = \frac{1 \cdot D_{a,c} + 1 \cdot D_{b,c}}{1+1} = (21+30)/2 = 25.5$$

$$D((a,b),d) = \frac{1 \cdot D_{a,d} + 1 \cdot D_{b,d}}{1+1} = (31+34)/2 = 32.5$$

$$D((a,b),e) = \frac{1 \cdot D_{a,e} + 1 \cdot D_{b,e}}{1+1} = (23+21)/2 = 22$$

Hierarchical Clustering: Example

Hierarchical Agglomerative Clustering with Group Average

Distance Matrix

New Distance Matrix

	(a,b)	С	d	е
(a,b)	0	25.5	32.5	22
С	25.5	0	28	39
d	32.5	28	0	43
е	22	39	43	0

	((a,b),e)	С	þ
((a,b),e)	0	30	36
С	30	0	28
d	36	28	0

$$D(((a,b),e),c) = \frac{2 \cdot D_{(a,b),c} + 1 \cdot D_{e,c}}{2+1} = (2 \cdot 25.5 + 39)/3 = 30$$
$$D(((a,b),e),d) = \frac{2 \cdot D_{(a,b),d} + 1 \cdot D_{e,d}}{2+1} = (2 \cdot 32.5 + 43)/3 = 36$$

Hierarchical Clustering: Example

Hierarchical Agglomerative Clustering with Group Average

Distance Matrix

New Distance Matrix

(c,d)

	((a,b),e)	С	d
((a,b),e)	0	30	36
С	30	0	28
d	36	28	0

33

0

$$D(((a,b),e),(c,d)) = \frac{3 \cdot D_{((a,b),e),c} + 3 \cdot D_{((a,b),e),d}}{3+3} = (30+36)/2 = 33$$

Hierarchical Agglomerative Clustering with Group Average

