

S&T Efforts for Navy Corrosion Control

Edward Lemieux

Center for Corrosion Science & Engineering NRL Code 6130

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE NOV 2010 2. REPORT TYPE			3. DATES COVERED 00-00-2010 to 00-00-2010			
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
S&T Efforts for Na	5b. GRANT NUMBER					
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory, Center for Corrosion Science & Engineering, Code 6130, Washington, DC, 20375 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited						
13. SUPPLEMENTARY NO Presented during H Global Conference	EXPONAVAL 2010,	Nov 30-Dec 3, 2010	, Valparaiso, Chi	lle, Office of I	Naval Research	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	26	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

Maintenance Reduction Technologies (FY08-FY12)

- Advanced Topside Coatings
- ☐ High Temperature Non-Skid
- Rudder Coatings

- Corrosion Mitigation Technologies & Design Integration Future Naval Capability (FY12-16)
 - Sprayable Acoustic Damping System
 - □ Corrosion Resistant Surface Treatment
 - Design Modules for Corrosion Prevention

Current Navy Topside Coatings

MIL-PRF-24635E, FED-STD-595C No. 26270 Haze Gray

- Single component, silicone alkyd copolymer
 - Provide camouflage and maintain appearance of ship
 - Low solar absorbance to reduce energy consumption

Poor Color-Matching Out-Of-The-Can & Poor Stability

Advanced Topside Coatings: Phase I Lab Testing

Commercial Products

We 2000 HOURS WOM

BEST DOWN SELECTED FOR RETEST AND SHIP DEMO

NRL Polysiloxane

- 2Ksystem with commercially available materials
- Direct-to-metal (DTM) or over a primed surface
- Applied via spray, brush or roll

SHIP DEMO COMING AND REFORMULATION FOR COLOR MATCH & LSA

High Performance Topside Coatings

Developmental High Performance Topside Coatings

NRL Polysiloxane, Two component, depot level

- □ 2 component (2K) coating with stable LSA pigments
- ☐ Direct-to-metal (DTM) or over a primed surface
- □ Applied via spray, brush or roll (uses conventional spray equipment)
- □ Low VOCs (<95 g/L)

NRL Polysiloxane, Single component for Ships Force and maintenance painting (touch-up)

- ☐ Single component (1K) coating with stable LSA pigments
- ☐ Direct-to-metal (DTM) or over a primed surface
- □ Applied via spray, brush or roll (uses conventional spray equipment)

Advanced Topside Status

- 13 Products Tested AND 4 Products Identified as Improved Performance
- 3 Demonstrations Completed
- NRL Developed Systems are the front-runners
 - 1 Part and 2 Part High Solids Siloxane Formulations (TRL 5-6), FY11 Demonstration
 Planned
 - □ Solvent Free Polyaspartic System (TRL4)
- Topside Coating Maintenance is driven by corrosion AND aesthetics
 AND coating condition
 - □ Improved paints will have to be matched with improved maintenance practices
 - Improve assessment capability
 - □ Reduce unnecessary overcoating
- Need to demonstrate products and methodology on LARGE scale to realize improvements

Advanced Rudder Coatings

■ Problem:

Rudder coating system fails in less than 2 year time period, which results in corrosion of the structure. This is the highest priority problem with the DDG 51 Type Desk at NAVSEA.

Objectives & Approach:

- Enhance performance coatings to provide minimum of 2 to 5 years service life on rudders.
- Utilize computational model to predict forces & loadings on surfaces
- Use stresses and deflections to design and validate test apparatus to replicate field conditions for use as screening test

Rudder Coatings: CFD

Cavitation Coefficient with Velocity and Angle of Attack

1/3 Speed Velocity (No cavitation)

2/3 Speed Velocity (Small area of cavitation on leading edge)

Standard Speed Velocity (Cavitation for all angles)

Development of Cavitation Initiation Area

 α_r = rudder angle

Sheet Cavitation Regions Determined From CFD

DDG 83 USS Howard Port Rudder, Outboard Face Anti Fouling (AF) Coating Loss

(Total Surface Area 152 ft², Total AF lost: 86.9 ft², Total Percent Exposed: 57.0%)

DDG 83 USS Howard
Port Rudder, Inboard Face
Anti Fouling (AF) Coating Loss

(Total Surface Area 152 ft², Total AF lost: 78.8 ft², Total Percent Exposed: 51.8%)

Water Flow

- Based on port rudder computational model
- Combination of all load cases for 'life of ship'
- Fully wetted solution
- Conservative estimate of cavitation initiation
 - Computational analysis valid for cavitation initiation only

NSWC Demonstration—Versalink P1000

Composite section with Versathane film is placed over notched troweled adhesive on MIL-P-24441 surface

Vacuum Bag to Hold Section in Place for Cure

Final Installation

GREAT CONDITION!!!
VERSALINK COMPOSITE AFTER 1
YEAR ABOARD THE USN R/V ATHENA

ADVANCED RUDDER COATINGS: Road Forward

- NSWC Code 65 success with Versalink P1000 provides light at the end of the tunnel!
 - ☐ Pre-cast with adhesive to epoxy
 - Historically poor adhesion directly to epoxy
- NRL Modifications for Producibility
 - Modified pot life adequate for roll/brush/spray
 - Developed a tie coat to promote adhesion between the anti-corrosive epoxy coating layer and the cavitation resistant topcoat
 - Modified the Versalink to a sprayable topcoat, multipass single coat high build film (150 mils)
 - Utilize with anti-corrosive epoxy primer system resistant to cathodic disbondment.

GREAT CONDITION!!!
VERSALINK COMPOSITE AFTER 1
YEAR ABOARD THE USN R/V HELENA

PLANNING FOR 2-3 DEMONSTRATIONS IN FY11:

- 1. Pre-cast Sheet with Adhesive & Vacuum Sealed Cure
- 2. Brushed/Rolled Versalink over MIL-P-24441
- 3. Spray Applied over MIL-P-24441

High Performance Non Skid

The Problem

Current nonskid products do not meet mission durability

 Current nonskid products <u>can not</u> support continuous JSF and/or MV-22 operations

Non Skid Testing & Selection

Extreme Durability, **High Durability Long Service Life**

- ✓ Novolac Epoxy
- ✓ AST 660
- Hybrid Thermal Spray (Al-Ti HVOF, Zn Arc Wire, Fe Carbide Arc Wire)
- ✓ Aluminum Ceramic Thermal Spray
- NRL HD1 Organo-siloxane
- ✓ Cementitious polymers

High Temperature Resistance, (MV-22 Specific)

- Midwest Thermal 3-coat Thermal Spray
- **Novolac Epoxy**
- **Thermion Aluminum Ceramic Thermal Spray** (TH604)

Extreme Temperature Resistance, (F35B Specific)

7 Products Tested

✓ Thermion – Aluminum Ceramic Thermal Spray (TH604)

H-108

NRL HD1 (Rolled)

NRL HD1 (Sprayed)

Thermion

00

Extreme Durability and High Temp (MV-22) Nonskid Coatings

Polysiloxane Nonskid and Primer Applied by Napless Roller

Silicone/Epoxy Hybrid Coating Applied by Napless Roller

Extreme Durability Nonskid Coatings

Skid Pro

Cementitious polymer w/aggregate Applied By Spray Equipment

NRL Siloxane (Bottom)

Polysiloxane Base Resin Applied By Napless Roller

Extreme Temperature (JSF) Nonskid

Cored Aluminum Wire With Ceramic Powder Applied By Twin Wire Arc Spray

USS Whidbey Island Boat Deck and MOGAS – 2009

First application of thermal spray to high wear area of deck

USS Ponce CIWS Foundation and 03 Aux Conn

NRL Silxoane Rev 1

Conventional Nonskid, chalking after 5 months

CIWS Foundation – Initial Installation

03 Aux Conn – 5 Month Follow-Up

2

Corrosion Resistant Surface Treatment Process

- Original grain structures retained with significant interstitial carbon
- ■No precipitates or carbides carbon is interstitial with significant lattice expansion indicating residual compressive surface stress
- Interstitially carburized layer is referred to as "S-phase"

309SS mag. 100x

XRD on 316SS

Activation via HCI thins oxide layer and allows carbon diffusion to substrate

CO/CO₂
carbon

Stainless Steel

or Ni-Cr-Mo Alloy

Air-formed oxide layer blocks carbon diffusion at low temperature Inhibits carburization

Corrosion Resistant Surface Treatment

- A cavitation and corrosion resistant treatment process based on interstitial surface alloying technologies for application to waterjet impellers and fasteners
 - Increased resistance to corrosion by 4x
 - Improved cavitation resistance by 3X
 - Increased resistance to corrosion fatigue by 10x
 - Increased resistance to galling 10x
 - Increased resistance to wear by 3x
 - Increase in service life by 3X

Deliverable will be CID (Commercial Item Description) for corrosion and cavitation resistant components

Hardness and Wear: 13-8 SS

Fins on untreated 316SS impeller worn away in 4 months. Fins on Treated 316SS impeller maintained dimensions.

Unclassified 22

Corrosion Resistant Surface Treatment Summary

- CRST offers an <u>existing industrial process</u> with applicability to a wide range of conventional materials.
- Other solutions require new or advanced materials or whole sale redesign of the system, both of which are costly and significantly acquisition.
- CRST is the only technology which has shown a substantial improvement in cavitation/erosion resistance for the existing design and alloys.

Provides:

- Significant reduction in maintenance
 - Decrease lifecycle cost
- Increased reliability and asset availability
- Decrease fuel consumption.

Design Modules for Corrosion Prevention

Moving Corrosion Expertise Earlier into the Acquisition Cycle

- Navy-wide corrosion issues share a common problem
 - Insufficient consideration for corrosion prevention in the acquisition cycle prior to Milestone B and C
- No technical solutions presently exist to address this challenge
- This EC product will move corrosion prevention inputs forward in the design process, increasing the efficiency and effectiveness of the corrosion review process for new components and systems
- The developed product will provide a future transition path for current S&T in corrosion mechanistic studies and related computational modeling being developed by ONR Code 333

Unclassified 24

Design Modules for Corrosion Prevention

Interaction with DMCP Module:

System/Component Drawing

- Geometry
- Materials & Coatings
- Component Connectivity

Component Usage

- Environment
- Function
- Maintainability

Corrosion Analysis Results

- Corrosion Risks
- Life Prediction
- Design Revisions

Assimilate results into overall corrosion risk score

Acknowledgements

- NRL gratefully acknowledges Dr. Airan Perez, the ONR program manager for these efforts and the Office of Naval Research for sponsoring these programs.
- NRL would also like to recognize the continued partnership with NSWCCD which has substantially contributed to these programs.