

# :



FIG. 1B PART ONE: TRIGGER REACTION



| ACCTGGCCT                                                                        | 07                            |                                              |                             |                                                                        |                                                          |                                                                                        |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|-----------------------------|------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAJORITY ATGXXGGCGATGCTTCCCCTCTTTGAGCCCCAAAGGCCGGGTCCTCCTGGTGGACGGGCACCACCTGGCCT |                               | DNAPTAQ                                      | • • • • • • • • • • • • • • | CGCCAAGAGCCTCCTCAAGGCCCTGAAGGAGGACGGGGGCXXGCCGGTGXTCGTGGTCTTTGACGCCAAG | TCAAGGCCCTGAAGGAGGACGGGGACXXGCCGGTGXTCGTGGTCTTTGACGCCAAG | CGCCAAGAGCCTCCTCAAGGCCCCTGAAGGAGGACGGGGACXXGCCGGTGXTCGTGGTCTTTTGACGCCAAG AAATAACTAACCT | TCAAGGCCCTGAAGGAGGACGGGGACXXGCCGGTGXTCGTGGTCTTTGACGCCAAG | CGCCAAGAGCCTCCTCAAGGCCCTGAAGGAGGACGGGGACXXGCCGGTGXTCGTGGTCTTTTGACGCCCAAG  A A A A C CT AA C CT G CT G C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C |
| AAGGCCGGGTCCTCC1                                                                 |                               | ACCOCACC     C     C   C   C   C   C   C   C |                             | GACGGGGACXXGCCGC                                                       | GACGGGGACXXGCCGC                                         | GACGGGACXXGCCGC                                                                        | GACGGGGACXXGCCGG                                         | GACGGGACXXGCCGCTGTT CCTACAAGGCGGGCCC GGTAAC. GGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCCTCTTTGAGCCCA                                                                  |                               |                                              |                             | AAGGCCCTGAAGGAG                                                        | AAGGCCCTGAAGGAG                                          | AAGGCCCTGAAGGAG                                                                        | AAGGCCCTGAAGGAGC ACGAGGCCTACGAGG                         | AAGGCCCTGAAGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TGXXGGCGATGCTTC                                                                  | AGGG.                         |                                              |                             | GCCAAGAGCCTCCTC                                                        | GCCAAGAGCCTCCTC                                          | GCCAAGAGCCTCCTCA CCCCCTCCTTCCGCC                                                       | GCCAAGAGCCTCCTCA CCCCCTCCTTCCGCC                         | GCCAAGAGCCTCCTCA CCCCCTCCTTCCGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAJORITY A                                                                       | DNAPTAQ<br>DNAPTFL<br>QNAPTTH | DNAPTAQ . DNAPTFL . DNAPTFL .                |                             | MAJORITY C                                                             |                                                          | <b>≻</b> , <b>≻</b>                                                                    | > _, _ > _,                                              | > _, _ >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### FIG.2A

| MAJORITY                      | MAJORITY CGAGGCGGACGACGTXCTGGCCACCCTGGCCAAGAAGGCGGAAAAGGAGGGGGTACGAGGTGCGCATCCTC |
|-------------------------------|----------------------------------------------------------------------------------|
| DNAPTFL<br>DNAPTFL<br>DNAPTTH | T                                                                                |
| MAJORITY                      | MAJORITY ACCGCCGACCGCGACCTCTACCAGCTCCTTTCCGACCGCATCGCCGTCCTCCACCCCGAGGGGTACCTCA  |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                                  |
| MAJORITY                      | TCACCCCGGCGTGGCTTTGGGAGAAGTACGGCCTGAGGCCGGAGCAGTGGGTGG                           |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                                  |
| MAJORITY                      | GGGGGACCCCTCCGACAACCTCCCCGGGGTCAAGGGCATCGGGGAGAAGACCGCCCXGAAGCTCCTCXAG           |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | CGAGTGGGAGTGG627<br>GTAGGAGAGGAGGC.624<br>GTA                                    |
| MAJORITY                      | GAGTGGGGGGGCCTGGAAAACCTCCTCAAGAACCTGGACCGGGTGAAGCCCGGC・・・CXTCCGGGAGAAGA          |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                                  |

### FIG. 2B

|                                                                       | 764<br>761<br>770 |               | 834<br>831<br>840 |                                                                                  | 904<br>901<br>910 |                                                                                  | 974<br>971<br>980                     |                                                                                 | 1044<br>1041<br>1050 |
|-----------------------------------------------------------------------|-------------------|---------------|-------------------|----------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|----------------------|
| MAJORITY FCCAGGCCCACATGGAXGACCTGTGGGAGCTXTCCCAGGTGCGCACCGACCTGCCCTGGA | DNAPTAQ T         | GGTGGACTTCGCC | DNAPTAQ           | MAJORITY GGCAGCCTCCTCCACGAGTTCGGCCTCCTGGAGGGCCCCCAAGGCCCTGGAGGGCCCCCCTGGCCCCCCGC | DNAPTAQ T         | MAJORITY CGGAAGGGGCCTTCGTGGCCTTTGTCCTTTCCCGCCCCGAGCCCATGTGGGGCCGAGCTTCTGGCCCTGGC | DNAPTAQ GTC.TTC.TTC.TTC.TTC.TTC.TTC.T | MAJORITY CGCCGCCAGGGAGGGCCGGGTCCACCGGGCACCAGACCCCTTTAXGGGCCTXAGGGACCTXAAGGAGGTG | DNAPTAQ              |

### FIG. 2C

| MAJORITY                      | Y CGGGGXCTCCTCGCCAAGGACCTGGCCGTTTTGGCCCTGAGGGAGG               |                      |
|-------------------------------|----------------------------------------------------------------|----------------------|
| DNAPTAQ<br>DNAPTEE            |                                                                | 1114<br>1111<br>1120 |
| MAJORITN                      | MAJORITY ACCCCATGCTCCTCGCCTACCTCCTGGACCCCTCCAACACCCCCCGGGGGGGG |                      |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | TTTT                                                           | 1184<br>1181<br>1190 |
| MAJORITY                      | GGGGGAGT                                                       |                      |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | C                                                              | 1254<br>1260<br>1260 |
| MAJORITY                      | LOOOO                                                          |                      |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH |                                                                | 1324<br>1321<br>1330 |
| MAJORITY                      |                                                                |                      |
| DNAPTAQ<br>DNAPTFL<br>DNAPTTH | GG.CAGT.GAGT.GAGT.GAGA.CAGAG                                   | 1394<br>1391<br>1400 |

## A STAND STAN

| CAGCTGGAAAGGGTGCTCTTTGACGAGCTXGGGCTTCCCGCCATCGGCAAGACGGAGAAGACXGGCAAGC |                                                                         | GCTCCACCAGCGCCGCGGGGTGGAGGCCCTXCGXGAGGCCCCACCCCA | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCGGGAGCTCACCAAGCTCAAGAACACCTACATXGACCCCCTGCCXGXCCTCGTCCACCCCA |                   | CGCCTCCACACCCGCTTCAACCAGACGGCCACGGCCACGGGCAGGCTTAGTAGCTCCGACCCC |                                                                                                                                                                               |
|------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAJORITY CAG                                                           | DNAPTAQ<br>DNAPTFL<br>DNAPTTH                                           | MAJORITY GCT                                     | DNAPTAQ<br>DNAPTFL<br>DNAPTTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAJORITY CCG                                                   | DNAPTAQ DNAPTFL   | MAJORITY CGC                                                    | DNAPTAQ<br>DNAPTFLG<br>DNAPTTH                                                                                                                                                |
|                                                                        | MAJORITY CAGCTGGAAAGGGTGCTCTTTGACGAGCTXGGGCTTCCCGGCCATCGGCAAGACGGAGAGAC | / CAGCTGGAAAGGGTG                                | <ul><li>CAGCTGGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGTG</li><li>COURTGAAAGGGCCCG</li><li>COURTGAAAGGGCCCG</li><li>COURTGAAAGGGCCCG</li><li>COURTGAAAGGGCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCG</li><li>COURTGAAAGGGCCCCGCCCG</li><li>COURTGAAAGGGCCCCCGCCCCG</li><li>COURTGAAAAGGAAAGGCCCCCG</li><li>COURTGAAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGG</li></ul> | Y CAGCTGGAAAGGGTG                                              | Y CAGCTGGAAAGGGTG | Y CAGCTGGAAAGGGTG                                               | <ul> <li>Y CAGCTGGAAAGGGTG</li> <li>Y CAGCTGGAAAGGGTG</li> <li>Y GCTCCACCAGCGCCG</li> <li>Y CCGGGAGCTCACCAA</li> <li>Y CCGGGAGCTCACCCAA</li> <li>Y CGCCTCCACACCCGC</li> </ul> |

### FIG. 2E

|                                                                                | 1814<br>1811<br>1820                              |                                                                            | 1884<br>1881<br>1890          |                                                                                 | 1954<br>1951<br>1960          |                                                                          | 2024<br>2021<br>2030          |                | 2094<br>2091<br>2100             |
|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|-------------------------------|----------------|----------------------------------|
| MAJORITY AGAACATCCCCGTCCGCACCCCXCTGGGCCAGAGGATCCGCCGGGCCTTCGTGGCCGAGGAGGATGGGT | 6. T. 6 A. C. | Y GTTGGTGGCCCTGGACTATAGCCAGATAGAGCTCCGGGTCCTGGCCCCACCTCTCCGGGGGACGAGAACCTG | ACT.TCTTAGAG                  | MAJORITY ATCCGGGTCTTCCAGGAGGGGAGGGACATCCACACCCCAGACCGCCAGCTGGATGTTCGGCGTCCCCCGG | 6<br>AAAA                     | Y AGGCCGTGGACCCCCTGATGCGCCGGGCGGCCAAGACCATCAACTTCGGGGTCCTCTACGGCATGTCGGC | . A. 66 A                     | CCACCGCCTCTCCC | T CCATTTTTTAGGTTAGGTTAGGTATAGGTA |
| MAJORIT                                                                        | DNAPTAQ<br>DNAPTFL<br>DNAPTTH                     | MAJORITY                                                                   | DNAPTAQ<br>DNAPTFL<br>DNAPTTH | MAJORIT                                                                         | DNAPTAQ<br>DNAPTFL<br>DNAPTTH | MAJORITY                                                                 | DNAPTAQ<br>DNAPTFL<br>DNAPTTH | MAJORITY       | DNAPTAQ<br>DNAPTFL<br>DNAPTTH    |

| T 2161<br>.CA. 2170<br>3GAGGCGGCGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                                          | 2374<br>2371<br>2380<br>7CCCCTGGCCGT | CAG 2441<br>C 2450                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|--------------------------------------|-----------------------------------|
| DNAPTÂQ DNAPTÊ D | DNAPTAQCTAAG.GCCC.                  |                                          | DNAPTAQAGGCGTT.GGCGCGGGGGGGG         | . A A                             |
| DNAPTAU<br>DNAPTEL<br>DNAPTTH<br>MAJORITY CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DNAPTAQ .<br>DNAPTFL .<br>DNAPTTH . | DNAPTAQ . DNAPTFL . DNAPTTH . MAJORITY T | DNAPTAQ . DNAPTFL . DNAPTTH          | DNAPTAQ<br>DNAPTFL .<br>DNAPTTH . |

FIG. 20

|                                                    | 2499    | 2496               |  |
|----------------------------------------------------|---------|--------------------|--|
| GCCCCTGGAGGTGGGGGATGGGGGAGGACTGGCTCTCCGCCAAGGAGTAG | A9      |                    |  |
| MAJORITY                                           | DNAPTAQ | DNAPTFL<br>DNAPTTH |  |

|                                                                                 | 69         | 139<br>138<br>140 |                                                                                 | 209<br>208<br>210                                                              |                                                                                 | 278<br>277<br>280                                                                       |                                                                                 | 348<br>347<br>350                              |
|---------------------------------------------------------------------------------|------------|-------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|
| MAJORITY MXAMLPLFEPKGRVLLVDGHHLAYRTFFALKGLTTSRGEPVQAVYGFAKSLLKALKEDG·DAVXVVFDAK | TAD PRO RG | TAG PRO6G         | MAJORITY TADRDLYQLLSDRIAVLHPEGYLITPAWLWEKYGLRPEQWVDYRALXGDPSDNLPGVKGIGEKTAXKLLX | TAG PRO      K        K      K        K      K        K      K        K      K | MAJORITY EWGSLENLLKNLDRVKP·XXREKIXAHMEDLXLSXXLSXVRTDLPLEVDFAXRREPDREGLRAFLERLEF | TAG PROALAIL.D.K.WD.AKKRRTFL PROFQH.Q.SL.LQ.G.A.A.RK.Q.HGR.T.NLTTH PROENVK.L.R.LE.RL.QG | MAJORITY GSLLHEFGLLEXPKALEEAPWPPPEGAFVGFVLSRPEPMWAELLALAAARXGRVHRAXDPLXGLRDLKEV | TAG PROSSL.SFG.WE.LQRG. ATH PROA.A.RG.WE.LQRG. |

### FIG. 3E

## ITHELET GOTTE

# MAJORITY SFPKVRAWIEKTLEEGRRRGYVETLFGRRRYVPDLNARVKSVREAAERMAFNMPVQGTAADLMKLAMVKL TAQ PRO TFL PRO TTH PRO



# Genes for Wild-Type and Pol(-)DNAPTfl







FIG. 6



FIG. 7





FIG. 8



FIG. 9A

FIG. 9B





FIG. 10B



FIG. 11A

FIG. 11B





**FIG. 13A** 







RBS: Ribosome binding site ptac: Synthetic tac promoter lac IQ: Lac repressor gene

lacZ: Beta-galactosidase alpha fragment rrnBt: E. coli rrnB transcription terminator



RBS: Ribosome binding site P<sub>\$010</sub>: Bacteriophage T7 \$10 promoter T\$. T7 \$ Terminator

FIG. 15



FIG. 16D



**FIG. 16E** 





FIG. 17





FIG. 18



FIG. 19A



## ACTUAL CONTRACTOR

| Ban   <br>  Sst  <br>  Asp 718<br>  Ava  <br>  Kpn  <br>  Xma  <br>  Sma | AATACGACTCACTATAGGGCGAATTCGAGCTCGGTACCCGGGGATCCTC  TTATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGCCCCTAGGAG  TATGCTGAGTGATATCCCGCTTAAGCTCGAGCCATGGCCCCTAGGAG  TATGCTAGGTGATATCCTCGAGCTCGAGCCTAGGAG  TATGCTAGGTGATATCCTCGAGCTCGAGCCTAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG                                              | ATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAATTGTTA  TATCGAACCGCATTAGTACCAGTATCGACAAAGGACACACTTTAACAAT  TATCGAACCGCATTAGTACCAGTATCGACAAAGGACACACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | CGCCAGGGTTTTCCCAGTCACGTCTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGCCGAATTCGAGCTCGGTACCCGGGATCCTC GCGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCGCCGTCAGTTAACATTATGCTGAGTGATATCCCGCTTAAGGTCGAGCCATGGGCCCTAGGAG  CGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTGCGCCCTAACATTATGCTGAGTATCCCGCTTAAGGTCAGGCCCATGGGCCCTAGGAG  -47 Forward | Sal I BspM / BspM / Acc I   Sph I   Hind III   Hind III |

TCCGCTCACAATTCCACACATACGA
AGGCGAGTGTTAAGGTGTGTTGTATGCT
--48 Reverse
--206



**FIG. 22A** 



- 206

**—** 85

85

FIG. 22B



FIG. 23

Σ

Σ

≥

Σ

COR BEAD
PILOT
CLEAVASE

M M

FIG. 24



FIG. 25B

FIG. 25A







FIG. 28A





FIG. 28B





FIG. 29



FIG. 30





FIG. 31

## 

|     | 5'                   | ູ້ນ        |
|-----|----------------------|------------|
| k   | GACGGGAAAGCCGGCGAACG | AGAAAGGAAG |
|     |                      |            |
| - C |                      |            |

GGAAGAAGCGAAAGG FLUOR.

PROBE

TARGET NUCLEIC ACID

## FIG. 32A

PROBE 3'5'

GAAAGCCGGCGAACGTGGCGAGAAAGGAAGGAAGAAAGCGAAAGG FLUOR. 

TARGET NUCLEIC ACID

## FIG. 32B

TARGET NUCLEIC ACID

FIG. 32C





10001000 COUNTY



FIG. 35





FIG. 36



FIG. 37



<sup>-</sup>1G. 38



FIG. 39



FIG. 40A



FIG. 40B





**=1G. 4**′



FIG. 42



FIG. 43





FIG. 44



FIG. 45



FIG. 46



FIG. 47



FIG. 48



FIG. 49



FIG. 50



FIG. 51



FIG. 52

FIG. 53B



FIG. 55



\_ NH3+ C10 NH3+ 99 ZI <u>"</u> 0 0 = P70 (C10 amino T's) 74 (C6 amino T's) FIG. 56

75





FIG. 59



FIG. 60A



FIG. 60B



FIG. 61



FIG. 62



FIG. 64

| 5' AGAAAGGAAGGAAGGAAAGCGAAAGG 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $A_{G_{\mathcal{A}_{\mathcal{A}_{G_{G_{\mathcal{A}}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| 5' GCCGGCGAACGTGGCGAGAAAGGAAAGGGAAAAGCGAAAGG 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| FIG. 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A |
| CAG AAGGAAGGGAAGAAAGCGAAAGG 3' 3' CGGCCGCTTGCACCGCTCTTTCCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $C_{A_{G_{A_{A_{G_{G_{A}}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| 5' GCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGG 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| FIG. 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В |
| CAGGGGAAGGGAAGGGAAAGG 3'7 3' CGGCCGCTTGCACCGCTCTTTCCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| CAGGGGGAACGTGGCGAGAAAGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGGAAAGGAAAGGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAGGAAAA |   |
| FiG. 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С |
| CAGGGGAAGAAAGCGAAAGG 3'73' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| $C_{A_{G_{G_{G_{T_{A}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| 5' GCCGGCGAACGTGGCGAGAAGGAAGGAAAGCGAAAGG 3' CGGCCGCTTGCACCGCTCTTTCCTTCCCTTCTTTCGCTTTCC 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ |

FIG. 65D

2CI

 $H_2N$ 

FED

ÒН

FIG. 66



FIG. 68



FIG. 69



### HOUSE COUNTY

| ^                      |                                                                         |                 |                                                           |           |                  | 100              | 1    |             |      |
|------------------------|-------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------|------------------|------------------|------|-------------|------|
|                        | 0,1                                                                     | 70              | 30                                                        | 2-        | 000              | 00               | 2-   |             |      |
| ب<br><del>اسم</del> ۱۰ | MGV0FGDFIPKNIISFED                                                      | NIISFEDLKGK     | LKGKKVAIDGMNALYQFLTSIRLRDGSPLRNRKGEITSAYNGVFY MJAFEN1.PRO | YQFLTSIRL | RDGSPLRNR        | KGEITSAYN        | SVFΥ | MJAFEN1.    | 2R0  |
| _                      | MGVPIGEIIPRKEIELE                                                       | KEIELENLYGK     | LYGKKIAIDALNAIYQFLSTIRQKDGTPLMDSKGRITSHLSGLFY             | YQFLSTIRC | <b>KDGTPLMDS</b> | KGRITSHLS(       |      | PFUFEN1.PRO | 2R0  |
| -                      | MGIQGLAKLIADVAPSAIRENDIKS                                               | RENDIKSYFGR     | YFGRKVAIDASMSIYQFLIAVRQ-GGDVLQNEEGETTSHLMGMFY             | YQFLIAVRO | )-GGDVL QNE      | <b>EGETTSHLM</b> |      | HUMFEN1.PRO | 2R0  |
| Ţ                      | MGIHGLAKLIADVAPSAIRENDIKS                                               | RENDIKSYFGR     | YFGRKVAIDASMSIYQFLIAVRQ-GGDVLQNEEGETTS-LMGMFY             | YQFLIAVRO | -GGDVL QNE       | EGETTS-LM(       |      | MUSFEN1.PRO | 2R0  |
| $\leftarrow$           | MGIKGLNAIISEHVPSAIRKSDIKS                                               | RKSDIKSFFGR     | FFGRKVAIDASMSLYQFLIAVRQQDGGQLTNEAGETTSHLMGMFY             | YQFLIAVRO | QDGGQL TNE       | <b>AGETTSHLM</b> |      | YST510.PR0  | 20   |
| -                      | MGVHSFWDIAGPTARPVRL                                                     | RPVRLESLEDK     | LEDKRMAVDASIWIYQFLKAVRDQEGNAVKNSHITGFFR YSTRAD2.PRO       | YQFLKAVRD | QEGNAVKN-        | SHIT(            | 3FFR | YSTRAD2.    | PR0  |
| -                      | MGVSGLWNILEPVKRPVKLET                                                   | RPVKLETLVNK     | LVNKRLAIDASIWIYQFLKAVRDKEGNQLKSSHVVGFFR SPORAD13.PR       | YQFLKAVRD | KEGNQLKS-        | SHVV(            | SFFR | SPORAD13    | . PR |
|                        | MGVOGLWKLLECSG                                                          | CŠGROVSPEALEGK  | LEGKILAVDISIWLNQALKGVRDRHGNSIENPHLLTLFH                   | NQALKGVRD | RHGNSIEN-        | PHLL             | L FH | HUMXPG. PRO | 2    |
| , <del>,</del>         | MGVOGLWKLLECSG                                                          | -CSGHRVSPEALEGK | LEGKVLAVDISIWLNQALKGVRDSHGNVIENAHLLTLFH                   | NOALKGVRE | SHGNVIEN-        | AHLL             | L FH | MUSXPG.PRO  | 2    |
|                        | MGVOGLWKLLECSG                                                          | -CSGRPINPGTLEGK | LEGKILAVDISIWLNQAVKGARDRQGNAIQNAHLLTLFH                   | NQAVKGARE | RQGNAIQN-        | AHL L            | LFH  | XENXPG. PRO | 20   |
| . —                    | MTINGIWEWANHVVRKVPNETMRDKTLSIDGHIWLYESLKGCEAHHQQTPNSYLVTFFT CELRAD2.PRO | RKVPNETMRDK     | TLSIDGHIWL                                                | YESLKGCE/ | \ННQQT           | PNSYLV           | FFT  | CELRAD2.    | PR0  |
|                        |                                                                         |                 |                                                           |           |                  |                  |      |             |      |

|    | 0~                            | 06            | 100                                           | 110              | 120                            | 130                | 140     |             |  |
|----|-------------------------------|---------------|-----------------------------------------------|------------------|--------------------------------|--------------------|---------|-------------|--|
| 64 | KTIHI I ENDITPIWVEDGEPPKLKEKT | VFDGEPPKLKEKT | -RKVRREMKEKAELKMKEAIKK                        | ELKMKEAIKK       | EDFEEAAKYAKRVSYLTP MJAFEN1.PRO | <b>AAKYAKR</b> VSY | 'LTP MJ | AFEN1.PRO   |  |
| 64 | RTINLMEAGIKPVYVFDGEPPEFKK     | VFDGEPPEFKKKE | (ELEKRREAREEAEEKWREALEK                       | EEKWRÉALEK       |                                | GEIEEARKYAQRATRVNE |         | PFUFEN1.PRO |  |
| 70 |                               | VFDGKPPOLKSGE | OLKSGELAKRSERRAEAEKOLOQAQAAGAEOEVEKFTKRLVKVTK | <b>EKOLOQAQA</b> | GAE0E\                         | /EKFTKRLVK         |         | HUMFEN1.PRO |  |
| 69 |                               | VFDGKPPOLKSGE | OLKSGELAKRSERRAEAEKOLOOAQEA-                  | EKQLQQAQEA       | GMEEE\                         | GMEEEVEKFTKRLVKVTK |         | MUSFEN1.PRO |  |
| 71 | RTLRM                         | VFDGKPPDLKSHE | LTKRSSRRVET                                   | EKKLAEA          | \TTELE                         | TTELEKMKQERRLVKVSK |         | YST510.PR0  |  |
| 61 | €                             | VFDGGVPVLKRET | TIRQRKERRQGK                                  | RESAKSTARK       | (LLALQLQNG)                    | SNDNKRDSDE         | SV MTV  | YSTRAD2.PR0 |  |
|    |                               |               |                                               |                  |                                |                    |         | 4 4 4 4 4 4 |  |

CELRADZ.PR0 HUMXPG.PRO MUSXPG.PRO XENXPG. PRO RLCKLLFFRIRPIFVFDGEAPLLKRQTLAKRRQRTDKASNDARKTNEKLLRTFLKRQAIKAERIAATVT RLCKLLFFRIRPIFVFDGDAPLLKKQTLAKRRQRKDSASIDSRKTTEKLLKTFLKRQALKTDRIAASVT TEKLLKTFLKRQAIKTERIAATV1 RIQRLLELKIIPIVVFDNINASSSAHESKDQNEFVPRKRRSFGDSPFTNLV-RLCKLLFFRIRPIFVFDGDAPLLKKQTLVKRRQRKDLASSDSRKT 61 61 61 61 60

RICKLLFFGIKPVFVFDGGAPSLKRQTIQKRQARRLDREENATVTANKLLALQMRHQAMLLKRDADEVT

SPORAD13.PRO

|     | 150                                                                                | 160          | 17,0              | 180        | 190                                                   | 200        | 210  |                                                        |
|-----|------------------------------------------------------------------------------------|--------------|-------------------|------------|-------------------------------------------------------|------------|------|--------------------------------------------------------|
|     |                                                                                    |              |                   |            |                                                       | MITTLEM    | •    | MIACENII DDO                                           |
| 130 | 130 KMVENCKYLLSLMGIPYVEAPSEGEAQASYMAKKGDVWAVVSQDYDALLYGAPRVVRNLIIINEN 11JAFEN1.FRO | PYVEAPSEGEAC | <b>JASYMAKKU</b>  | VWAVVSQUYD | ALLYGAPRVVR                                           |            |      | FUNTENT. FRO                                           |
| 130 | MLIEDAKKLLELMGIPIVQAPSEGEAQAAYMAAKGSVYASASQDYDSLLFGAPRLVRNL111GKKKLPGK PFUFEN1.PRU | PIVQAPSEGEAC | <b>JAAYMAAKGS</b> | VYASASQDYD | SLLFGAPRLVR                                           | NLIIIGKKK  | LPGK | Prufeni. Pro                                           |
| 136 |                                                                                    | PYLDAPSEAEAS | SCAALVKAGK        | VYAAATEDMD | AALVKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ I          | HLTASEAKK  | LPIQ | HUMFEN1.PRO                                            |
| 134 |                                                                                    | PYLDAPSEAEAS | SCAALAKAGK        | VYAAATEDMD | CLTFGSPVLMR                                           | HLTASEAKK  | LPIQ | AALAKAGKVYAAATEDMDCLTFGSPVLMRHLTASEAKKLPIQ MUSFEN1.PRO |
| 134 |                                                                                    | PYITAPTEAEAC | CAELAKKGK         | VYAAASEDMD | AELAKKGKVYAAASEDMDTLCYRTPFLLRHLTFSEAKKEPIH YST510.PR0 | HLTFSEAKK  | EPIH | YST510.PR0                                             |
| 121 |                                                                                    | PYTTAPMEAEAC | CAELLOLNL         | VDGIITDDSD | VFLFGGTKIYK                                           | NMFHEKNY-  | VE   | AELLOLNLVDGIITDDSDVFLFGGTKIYKNMFHEKNYVE YSTRAD2.PRO    |
| 131 | VMIKECOFILRIFGI PYTVAPOEAEAOCSKLLELKLVDGIVTDDSDVFLFGGTRVYRNMFNQNKFVE SPORAD13.PRO  | PYTVAPOEAEAC | CSKLLELKL         | VDGIVTDDSD | VFLFGGTRVYR                                           | NMFNQNKF-  | VE   | SPORAD13.PRO                                           |
| 121 |                                                                                    | PYTOAPMEAEAC | CAILDLTDO         | TSGTITDDSD | AILDLTDOTSGTITDDSDIWLFGARHVYRNFFNKNKFVE               | NFFNKNKF-  | VE   | HUMXPG.PRO                                             |
| 121 |                                                                                    | DYTOAPMFAFA( | CAVLDLSDO         | TSGTITDDSD | AVI DI SDOTSGTITDDSDIWL FGARHVYKNFFNKNKFVE            | (NFFNKNKF- | VE   | MUSXPG.PRO                                             |
| 121 |                                                                                    | PYTVAPMEAEA( | CAILDLTDO         | TSGTITDDSD | AILDLTDOTSGTITDDSDIWLFGARHVYKNFFSQNKHVE               | (NFFSQNKH- | VE   | XENXPG.PRO                                             |
| 111 |                                                                                    | KVIIAPGDGEAC | CARLEQLGV         | TSGCITTDFD | ARLEQLGVTSGCITTDFDYFLFGGKNLYRFDFTAGT                  | PDFTAGT    | 1 .  | CELRAD2.PRO                                            |
|     |                                                                                    |              |                   |            |                                                       |            |      |                                                        |

|     |             | 220                 | 230                                | 240        | 250.              | 260        | 270                                                                            | 280    |              |
|-----|-------------|---------------------|------------------------------------|------------|-------------------|------------|--------------------------------------------------------------------------------|--------|--------------|
| 195 |             | PELTELNEVI          | PELTELNEVIENIRISIONI               | IDIAIFMGT  | DYNPGGVK          | GIGFKRAY   | TDIAIFMGTDYNPGGVKGIGFKRAYELVRSGVAKDV MJAFEN1.PRO                               | -DV MJ | AFEN1.PRO    |
| 200 | NVYVF - TK  | >FITTIEEVL          | NVYVE-TKPFI TII EEVLKELKLTREKL     | IELAILVGT  | DYNPGGIK          | GIGLKKAL   | IELAILVGTDYNPGGIKGIGLKKALEIVRHSKDPLAKF PFUFEN1.PRO                             | AKF PF | UFEN1.PRO    |
| 206 | FFHI SRTI ( | DELGLNOEOF          | .VDLCILLGS                         | YCESIRGIG  | PKRAVDLIQK        | HKSIEEIV   | FFHI SRII OFI GLNOEOFVDLCILLGSDYCESIRGIGPKRAVDLIQKHKSIEEIVRRLDPNKY             |        | HUMFEN1.PRO  |
| 202 | FFHI SRVI ( | JEI GI NOE0F        | FEHI SRVI OFI GI NOFOFVDL CILL GSD | OYCESIRGIG | AKRAVDLIQK        | HKSIEEIV   | )YCESIRGIGAKRAVDLIQKHKSIEEIVRRLDPSKY                                           |        | MUSFEN1.PRO  |
| 204 | FINTELVI    | 3610171F0F          | EINTELVIRGIDITIEOFVDICIMI GCD      | OYCESIRGVG | PVTALKLIKT        | HGSIEKIV   | )YCESIRGVGPVTALKLIKTHGSIEKIVEFIESGESNNTKW                                      |        | YST510.PR0   |
| 198 |             | (1   GI DRKNM       | TFLAOLLGS                          | OYTNGLKGMG | <b>PVSSIEVIAE</b> | FGNLKNF    | FYDAFSTIKIIGIDRKNMTFLAOLLGSDYTNGLKGMGPVSSIEVIAEFGNLKNFKDWYNNGOFDKRK            |        | YSTRAD2.PR0  |
| 300 |             | S F F N V N O M D I | TKI AHLLGSI                        | OYTMGLSRVG | PVLALEILHE        | FPGDTGLFEF | I VI MODMKREENVNOMDI TKI AHLL GSDYTMGL SRVGPVLALEILHEFPGDTGLFEFKKWFQRLSTGHAS   |        | SPORAD13.PRO |
| 100 |             | VOI GI DRNKI        | TNI AYI I GSI                      | OYTEGIPTVG | CVTAMEILNE        | FPGHGLEPLL | VYOVVDEHNOLGI DRINK I INLAYLI GSDYTEGIPTVGCVTAMEILNEFPGHGLEPLLKFSEWWHEAQKNP    |        | HUMXPG.PRO   |
| 110 |             | SOI GI DRNKI        | TNIAVILGS                          | OYTEGIPTVG | CVTAMEILNE        | FPGRGLDPLL | VYOVVDEYSOLGI DRNKI INI AYI I GSDYTEGIPTVGCVTAMEILNEFPGRGLDPLLKFSEWWHEAQNNK    |        | MUSXPG.PRO   |
| 108 |             | NOT GLURSKI         | INI AVI I GSI                      | OYTEGIPTVG | YVSAMEILNE        | FPGOGLEPLV | VYOVANTHINDI GI DRSKI TINI AYI I GSDYTFGIPTVGYVSAMEILNEFPGOGLEPLVKFKEWWSEAQKDK | KDK XE | XENXPG.PRO   |
| 175 |             |                     |                                    | )          | SSTACL'HD         | IMHLSLGRMF | SSTACL'HDIMHLSLGRMFM                                                           | CE     | CELRAD2.PRO  |

|           |     | PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                                                                                                                                     |     | PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                                                                                                                     |
|-----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1 1 | MJAFEN1<br>PFUFEN1<br>HUMFEN1<br>YST510.<br>YSTRAD2<br>SPORAD1<br>HUMXPG.<br>MUSXPG.<br>XENXPG.                                                                                            | 10  | MJAFEN1 PFUFEN1 HUMFEN1 YSTS10.F YSTRAD2 SPORAD13 HUMXPG.F XENXPG.F                                                                                                                      |
|           | 350 | ENDFNYD<br>EHDFSEE<br>EKQFSEE<br>EKQFSEE<br>DKKFSEE<br>QLGWPHE<br>TVGWSKQ<br>YFGWNRT<br>YFGWNRT<br>FASYVRE                                                                                 | 420 |                                                                                                                                                                                          |
|           | 340 | GILKFLVDENI<br>GILKFLCDEHI<br>ELIKFMCGEK<br>ELVKFMCGEK<br>ELSPLCDDK<br>ELROFLMATV<br>KIREFCORYF<br>QIREFCESRF<br>OPHVILDRFAS                                                               | 410 | AANF                                                                                                                                                                                     |
|           | 330 | SLSLKLPDKE<br>NLVWRDPDEE<br>ELKWSEPNEE<br>ELKWSEPNEE<br>RLKWSPPKEK<br>NLKWSPPKEK<br>SFLWGKPDLD<br>SFLWGKPDLD<br>SFLWGKPDLD                                                                 | 400 | KVT                                                                                                                                                                                      |
| 4.        | 320 | TDNYLDPESVLDPESVIDGNEI YMRPEVDHDTT YLHPAVDDSKQ YLKPVVDDSKG YLKPVVDDSKG                                                                                                                     | 390 |                                                                                                                                                                                          |
|           | 310 | TDTDLDLDLDLD                                                                                                                                                                               | 380 |                                                                                                                                                                                          |
|           | 300 | KEPKV LNPPV LEPEV LDPEV VNNEIILP VGK-IILPRKLQLTRKLQLTRKLQLT                                                                                                                                | 370 |                                                                                                                                                                                          |
| * * · · · | 290 | LKKEVEYYDEIKRIF<br>QKQSDVDLYAIKEFF<br>PVPENWLHKEAHQLF<br>PVPENWLHKEAQQLF<br>KIPEDWPYKQARMLF<br>QETENKFEKDLRKKL<br>KNDVNTPVKKRINKL<br>KIRPNPHDTKVKKKL<br>KVAENPYDTKVKKKL<br>KWAENPYDTKVKKKL | 360 | RVKKHVDKLYNLIA-<br>RVKNGLERLKKAI<br>RIRSGVKRLSKSRQG<br>RIRSGVKRLSKSRQG<br>RVKSGISRLKKGLKS<br>KSDEILIPLIRDVNK<br>KTDESLFPVLKQLDA<br>KTDESLFPVLKQLDA<br>KTDESLFPVLKQLNA<br>KTDEVLLPVLKQLNA |
| . 's •    | 1,5 | 251<br>265<br>265<br>272<br>268<br>268<br>268<br>194                                                                                                                                       |     | 300<br>314<br>320<br>318<br>323<br>335<br>336<br>336<br>257                                                                                                                              |

### FIG. 70C

|     | PRO<br>PRO<br>PRO<br>PRO<br>RO<br>PRO<br>PRO                                                             |     | PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>RRO<br>RRO<br>PRO                                                                 |
|-----|----------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------|
|     | MJAFEN1.<br>PFUFEN1.<br>HUMFEN1.<br>YST510.P<br>YSTRAD2.<br>SPORAD13<br>HUMXPG.P<br>MUSXPG.P<br>CELRAD2. | 10  | MJAFEN1.<br>PFUFEN1.<br>HUMFEN1.<br>YSTS10.P<br>YSTRAD2.<br>YSTRAD2.<br>SPORAD13<br>HUMXPG.P<br>MUSXPG.P<br>KENXPG.P |
| 490 | GSLS<br>GSLS<br>PK-T<br>PK-T<br>PK-T<br>DELOSRIL<br>HAESSSLM<br>DGEGSSVM                                 | 95  | KSGKQSTLKSGKQSTLKKKAKTGAAG-NKKLNKNKNK<br>KKKK<br>KRRKLRRARGKRRKLRRKLRRARGKRRKLRRARGK                                 |
| 480 | <br><br>                                                                                                 | 550 | SVFGK<br>SVKIF                                                                                                       |
| 470 |                                                                                                          | 540 |                                                                                                                      |
| 460 |                                                                                                          | 530 |                                                                                                                      |
| 450 |                                                                                                          | 520 |                                                                                                                      |
| 440 |                                                                                                          | 510 |                                                                                                                      |
| 30  |                                                                                                          | 500 | KGST<br>KGPA<br>RAQE<br>NSSDSDSDS<br>EPKTSASDS<br>SSKIGCSDV<br>SSKIGCSDV                                             |
| 4   | KRINEFF                                                                                                  |     | SAKRKEPEPKGS<br>SAKRKEPEPKGS<br>SAKRKEPEPKGS<br>KEQLAAAAKRA(<br>                                                     |
|     | 31,4<br>32,7<br>34,8<br>34,8<br>35,1<br>35,7<br>35,7<br>40,6<br>40,6<br>40,3<br>32,2                     |     | 314<br>327<br>352<br>352<br>354<br>429<br>476<br>469<br>469<br>387                                                   |

#### FIG. 70D

322 DAWFKZ 335 ESWFKR 375 KFKRGK 377 VTKGRR 390 ---RKM 483 SKRRKK 546 RKRKTZ 538 RKKKKT 523 TVKRK FIG. 70E

MJAFENI.PRO
PFUFENI.PRO
HUMFENI.PRO
WUSFENI.PRO
YST510.PRO
YSTRAD2.PRO
SPORAD13.PRO
HUMXPG.PRO
MUSXPG.PRO
CELRAD2.PRO



FIG. 71