NCKU X IKM 個人進度報告

葉家任

01 推薦系統Survey

進度一覽

02 論文規劃

03 AI應用與工具

01 推薦系統Survey

1-1 SOTA 模型探討

推薦系統種類

GNN-Based vs VAE-Based (1)

Dataset Gowalla		alla	Yelp2018		Amazon-Book	
Method	recall	ndcg	recall	ndcg	recall	ndcg
NGCF	0.1570	0.1327	0.0579	0.0477	0.0344	0.0263
Mult-VAE	0.1641	0.1335	0.0584	0.0450	0.0407	0.0315
GRMF	0.1477	0.1205	0.0571	0.0462	0.0354	0.0270
GRMF-norm	0.1557	0.1261	0.0561	0.0454	0.0352	0.0269
LightGCN	0.1830	0.1554	0.0649	0.0530	0.0411	0.0315

No.2

No.1

Performance Comparison from LightGCN paper

https://arxiv.org/pdf/2002.02126.pdf

GNN-Based vs VAE-Based (2)

Algo	MAP	nDCG@k	Precision@k	Recall@k	
ALS	0.004732	0.044239	0.048462	0.017796	
BiVAE	0.146126	0.475077	0.411771	0.219145	No.
BPR	0.132478	0.441997	0.388229	0.212522	
FastAl	0.025503	0.147866	0.130329	0.053824	
LightGCN	0.088526	0.419846	0.379626	0.144336	No.2
NCF	0.107720	0.396118	0.347296	0.180775	
SAR	0.110591	0.382461	0.330753	0.176385	
SVD	0.012873	0.095930	0.091198	0.032783	

Performance Comparison from Microsoft Recommenders Repository

1-2 Sequence-Based 模型探討

lightGCN 與 VaeCF 等 CF-Based 的缺點

- 只考慮 user 與 item 之間的graph,透過找出 user 與item 的相似度來進行推薦。
- 但其並沒有專注於探討 user 購買 item 時,可能會存在的時間順序關係 -> 因此才出現 Sequence-Based 推薦系統。
- e.g. 在永豐或玉山信用卡預測的推薦上,發現只要對原始的用戶商品評分乘 以考量到時間關係的權重,就可以得到提升的準確率(永豐資料集上提升 15%)

Sequence-Based Metrics

- •把購買行為序列中的最後一個 item 當作 test set
- 把最後一個 item 前的 item 當作 validation set
- •使用 NDCG or Recall 作為衡量基準 (每次猜中為1,沒中為0)

SOTA

- Bert4Rec, CIKM'19
- ASRep, SIGIR'21: Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer

Bert4Rec

- 跟 NLP 基本無關
- 結構與訓練方式與BERT相同,訓練任務目標類似 Masked Language
 Model,但把 word 換成 item,讓模型去預測 [MASK] 可能是哪個 item
- Inference 階段,是從隨機或熱門的 item 中採樣用戶沒有買過的 item,用 Bert 去預測這些 items 中哪些商品最有可能出現在行為序列後。
- 在預測用戶下一個購買的商品上,擁有高於 GNN 或 VAE 等的準確率

02 目前論文研究方向

是否有方法將CF-Based 與 Sequence-Based 的優點整合?

2-1 實驗構想

2-2 Survey 目標

- ASRep: Augmenting Sequential Recommendation with Pseudo-Prior Items via Reversely Pre-training Transformer, SIGIR'21
- Sequential Recommendation with Graph Neural Networks, SIGIR'21
- Global-Local Item Embedding for Temporal Set Prediction, RecSys'21

Train

03 AI 應用與工具

PREDICT

http://140.116.245.105:58888/admin/dashboard

3-2應用工具

Pytorch Lightning 減少冗長程式碼 + 快速紀錄實驗數據

Ray 分散式訓練 + 自動參數最佳化

THANK YOU