Diagnostic Analysis of Heteroscedasticity, Autocorrelation and Multicollinearity in a Regression Model

Problem Define:

Fit a model of multiple regression analysis (choose variables from the world bank data) and check the problem of "Heteroscedasticity" with various tests and interpret the results.

Methodology:

Heteroscedasticity refers to a condition in a statistical model in which the variability of the residuals or errors is not constant across all levels of the independent variables.

Let, the dependent variable, Y = population growth (annual) and

The independent variables are respectively,

 X_1 = net migration

 X_2 = number of infant deaths

 X_3 = fertility rate

➤ Population growth refers to the rate at which the number of individuals in a population increase over a year.

Annual population growth rate =

 $\frac{\textit{population at the end of the year-population at the beginning at the year}}{\textit{population at the beginning at the year}} \times 100\%$

➤ Net migration refers to the difference between the number of people entering a geographic area and the number of people leaving the same area over a specific period.

Fertility rate refers to the average number of children that would be born to a woman over her lifetime.

TFR = $\sum_{1}^{n} ASFR \times 5$; where ASFR = age specific fertility rate

So, the model is, $Y_i = \beta_{0} + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \epsilon_i$

After fit the model we run some test to find the problem of heteroscedasticity. Such as,

- **♣** BPG test
- **♣** White test
- Park test

Then test the hypothesis as,

H₀: Absence of heteroscedasticity.

H₁: Presence of heteroscedasticity.

Result:

Studentized	Breusc	h-Pagan	test
-------------	--------	---------	------

data: model

BP = 5.6289

df = 3

p-value = 0.1311

Comment:

From the result table we can see that the result of p-value is 0.1311 which is greater than 0.05. So, we can conclude that there is no significant evidence of heteroscedasticity in our regression model.

Problem Define:

Fit a model of multiple regression analysis (choose variables from the world bank data) and

check the problem of "Autocorrelation" with various tests and interpret the results.

Methodology:

Autocorrelation refers to the correlation between values of the same variable at different points

in time or space.

Let, the dependent variable, Y = population growth (annual) and

The independent variables are respectively,

 $X_1 = net migration$

 X_2 = number of infant deaths

 X_3 = fertility rate

Population growth refers to the rate at which the number of individuals in a population

increase over a year.

Annual population growth rate =

population at the end of the year–population at the beginning at the year imes 100%

population at the beginning at the year

> Net migration refers to the difference between the number of people entering a

geographic area and the number of people leaving the same area over a specific period.

Fertility rate refers to the average number of children that would be born to a woman

over her lifetime.

TFR = $\sum_{1}^{n} ASFR \times 5$; where ASFR = age specific fertility rate

3

So, the model is, $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \epsilon_i$

After fit the model we run some test to find the problem of autocorrelation. Such as,

♣ Durbin Watson d-test

♣ Run test

Then test the hypothesis as,

H₀: Absence of autocorrelation.

H₁: Presence of autocorrelation.

Result:

Runs Test - Two sided

data: residual (e)

Standardized Runs Statistic = -5.2083

p-value = 1.906e-07

Comment:

From the calculation we find that the value of "Run statistic" is -502083 and p-value is 1.906e-07. Here the p-value is significantly less than 0.05. So, we can accept the null hypothesis and strongly conclude that there is significant autocorrelation in the data.

• • • • • • • • • • • •

Problem Define:

Fit a model of multiple regression analysis (choose variables from the world bank data) and check the problem of "Multicollinearity" with various tests and interpret the results.

Methodology:

Multicollinearity occurs when two or more independent variables in regression model are highly correlated with each other.

Let, the dependent variable, Y = population growth (annual) and

The independent variables are respectively,

 $X_1 = net migration$

 X_2 = number of infant deaths

 X_3 = fertility rate

> Population growth refers to the rate at which the number of individuals in a population increase over a year.

Annual population growth rate =

 $\frac{\textit{population at the end of the year-population at the beginning at the year}}{\textit{population at the beginning at the year}} \times 100\%$

- ➤ Net migration refers to the difference between the number of people entering a geographic area and the number of people leaving the same area over a specific period.
- Fertility rate refers to the average number of children that would be born to a woman over her lifetime.

TFR =
$$\sum_{1}^{n} ASFR \times 5$$
; where ASFR = age specific fertility rate

So, the model is, $Y_i = \beta_{0+} \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \epsilon_i$

After fit the model we run some test to find the problem of multicollinearity. Such as,

- \bot Examination of determinant of X^TX
- **Lesson** Examination of correlation matrix
- ♣ Variance inflation factors (VIF)
- **4** Tolerance
- ♣ Eigen value decomposition

Result:

VIF results		
x1		
	x2	x3
1.23333	11.00111	11.71567

Comment:

From the calculation we can see that $VIF(X_1) = 1.23333$, $VIF(X_2) = 11.00111$, and $VIF(X_3) = 11.71567$. For X_1 , this value is close to 1, indicating that X_1 has little to no multicollinearity with other independent variable. For both X_2 and X_3 the value is above 10 which indicate very high degree of multicollinearity.

.....