Intro Geometry 2025

UNSW Competitive Programming and Mathematics Society

Questions

- 1. Convince yourself that all of the theorems are true in all different cases we didn't cover (or alternatively prove that they are true).
- 2. Let ABC be a triangle where D is the midpoint of segment BC. Show that $\angle BAC = 90^{\circ}$ if and only if $AD = \frac{1}{2}BC$.
- 3. (Radical Axis) Let two circles, ω_1 and ω_2 , intersects at A and B. Prove that AB is perpendicular to the line connecting the centre of the two circle.
- 4. (Miquel's Theorem): Let ABC be a triangle with points D, E, and F on sides BC, AC, and ABrespectively. Show that the circles (AEF), (BDF), and (CDE) all intersect at a point.
- 5. Let ω_a be a circle tangent to the line L at the point A, and ω_b be a second circle tangent to the same line L at the point B. Furthermore, C_a and C_b lie on the same side of L and are tangent to each other. They touch on the point P. Show that $\angle BPA = 90^{\circ}$.
- 6. Let Γ_1 and Γ_2 be two circles that intersect at points X and Y. A, B lie on Γ_1 and P, Q lie on Γ_2 such that AP and BQ intersect at X. Show that triangles YAB and YPQ are similar.
- 7. (Simson's Line): Let A, B, C, D be points on a circle. Let the feet of the perpendiculars from D to BC, AC, AB be X, Y, Z respectively. Prove that X, Y, Z are colinear.
- 8. Let ABC be a triangle with incentre I and A-excentre I_A . Prove that the points I, I_A , B, C lie on a circle with centre on (ABC).
- 9. (Miquel point): Let ABCD be a convex quadrilateral, with $AB \cap CD = E$, $AD \cap BC = F$. Prove
 - (a) The 4 circles (BCE), (ADE), (ABF), (CDF) all intersect at a point
 - (b) If ABCD is cyclic, then the intersection point lies on line EF.
- 10. (INAMO 2023) Let ABC be an acute triangle where BC is its longest side. Points D, E respectively lie on AC, AB such that BA = BD and CA = CE. The point A' is the reflection of A against line BC. Prove that the circumcircles of ABC and A'DE have the same radius.
- 11. (Anti-Steiner) Let triangle ABC have an orthocentre H, and ℓ be a line passing through H. Denote ℓ_A, ℓ_B, ℓ_C be the reflections of ℓ over BC, AC, and AB respectively. Prove that the 3 lines ℓ_A, ℓ_B, ℓ_C concur on (ABC).