MATH 110 Notes

Jad Damaj

Spring 2022

Contents

1	1/19/2022	1/19/2022													
	1.1 Overview														
	1.2 Ch1 - Vecto	or Spaces .													
	1.3 1.A: \mathbb{R}^n and	$\mathrm{d}\;\mathbb{C}^n$													
2	1/24/2022														
	2.1 1.A: \mathbb{R}^n and	$d \mathbb{C}^n \dots$													
	2.2 1B - Vector	Spaces													
3	1/26/2022														
	3.1 1.C - Subsp	paces													
	3.2 Direct Sum	S													
	3.3 Chapter 2:	Finite Dime	ensional	Vecto	or Sp	oace	\mathbf{s} .								
	3.4 2.A: Span a	and Linear In	ndepend	lence											
4	1/31/2022														
	4.1 Chapter 2:	Finite Dime	ensional	Vecto	or Sp	oace	\mathbf{s} .								
	4.2 2.A: Span a	and Linear I	ndepend	lence											

1 1/19/2022

1.1 Overview

Linear Algebra is about:

- Vector spaces (also called linear spaces)
- Linear maps
- Extra structures on spaces/maps (inner products, etc.)

Motivation:

- Physics we live in a 3D space
- Geometry even for a curved object, locally it looks like a vector space (tangent space)
- Representation Theory and Group Theory the set of all matrices has a rich structure and interesting subsets (subgroups)
- Solving Differential Equations natural tool and solution spaces
- Normal Operators guaranteed good bases
- Statistics square matrices, ...
- Applied Math designing of algorithms, ...

1.2 Ch1 - Vector Spaces

 \mathbb{R} - set of reals, \mathbb{R}^2 - plane, \mathbb{R}^3 - 3D space

Key feature: Have addition and scalar multiplication by $\mathbb R$

Generalizations: Vector spaces over \mathbb{R} (or a general \mathbb{F})

1.3 1.A: \mathbb{R}^n and \mathbb{C}^n

```
Definition 1.1 (\mathbb{C}). Introduced i such that i^2 + 1 = 0 \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}
```

Addition: (a + bi) + (c + di) = (a + c) + (b + d)i

Multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i

eg: $(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i)^2 = 0 + i \cdot i = i$ $\mathbb{R} \subset \mathbb{C}$: view x as x + 0i

Theorem 1.2 (Properties of \mathbb{C}).

Commutativity: $\alpha + \beta = \beta + \alpha$, $\alpha\beta = \beta\alpha \quad \forall \alpha, \beta \in \mathbb{C}$

Associativity: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$, $(\alpha\beta)\gamma = \alpha(\beta\gamma) \quad \forall \alpha, \beta, \gamma \in \mathbb{C}$

Additive Identity: $\alpha + 0 = \alpha \quad \forall \alpha \in \mathbb{C}$

Additive Inverse: $\forall \alpha \in \mathbb{C}, \exists ! \beta \in \mathbb{C} \text{ such that } \alpha + \beta = 0$

Multiplicative Identity: $\alpha \cdot 1 = \alpha \quad \forall \alpha \in \mathbb{C}$

Multiplicative Inverse: $\forall \alpha \neq 0 \in \mathbb{C} \exists ! \beta \in \mathbb{C}$ such that $\alpha\beta = 1$ Distributive Properties: $\lambda(\alpha + \beta) = \lambda\alpha + \lambda + \beta \quad \forall \lambda, \alpha, \beta \in \mathbb{C}$

$2 \quad 1/24/2022$

2.1 1.A: \mathbb{R}^n and \mathbb{C}^n

Example 2.1. Show existence and uniqueness of the multiplicative inverse of $\forall a \neq 0$

Idea: Assume $\alpha = a + bi$ want $(a + bi)(?+?i) = 1 \rightarrow ?+?i = \frac{1}{a+bi}$ " =" $\frac{a-bi}{(a+bi)(a-bi)} = \frac{1-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$

Proof. Assume $\alpha=a+bi,\ a,b\in\mathbb{R}$, not both zero. We see that $\beta=\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i$ satisfies $(a+bi)(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i)=\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}=1$. Similarly, $(\frac{a}{a^2+b^2}-\frac{b}{a^2+b^2}i)(a+bi)=1$. \rightarrow existence

Moreover, if there exists $\tilde{\beta}$ such that $\alpha \tilde{\beta} = 1$, then $\beta = \beta \alpha \tilde{\beta} = \tilde{\beta}$. \rightarrow uniqueness

Definition 2.2.

- For $\alpha \in \mathbb{C}$, let $-\alpha \in \mathbb{C}$ define the unique element such that $\alpha + (-\alpha) = 0$
- For $\alpha \in \mathbb{C}$, let $1/\alpha \in \mathbb{C}$ define the unique element such that $\alpha(1/\alpha) = 1$
- Subtraction: $\alpha \beta = \alpha + (-\beta)$
- Division: $\beta/\alpha = \beta \cdot (1/\alpha), \ \alpha \neq 0$

 \mathbb{F} : field(In the book, \mathbb{R} or \mathbb{C})

• In general, generalization of \mathbb{R} or \mathbb{C}

Definition 2.3. A set $\mathbb{F}(\text{with addition "+" and multiplication "<math>\times$ ") is a field if

- (i) $\exists 0, 1 \in \mathbb{F}, 0 \neq 1$
- (ii) $+: \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a + b$
- (iii) $\times : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$ by $(a, b) \mapsto a \cdot b$

Satisfying:

- (a) Commutativity: a + b = b + a, ab = ba
- (b) Associativity: a + (b+c) = (a+b) + c, a(bc) = (ab)c
- (c) Inverses: $\forall a, \exists -a \text{ such that } a + (-a) = 0$ $\forall a, \exists 1/a \text{ such that } a \cdot (1/a) = 1$
- (d) Distributive: c(a+b) = ca + cb

Example 2.4.

- 1. \mathbb{R} . \mathbb{C}
- 2. $\{0,1\}$ +, $\times \mod 2$
- 3. $\mathbb{F}_p = \{0, \dots, p-1\} + \times \text{mod } p, p \text{ prime } p$
- 4. Q: rationals
- 5. $\{a+b\sqrt{2}: a,b,\in\mathbb{Q}\}$
- 6. $\{P(x)/Q(x): P, Q \text{ are polynomials over } \mathbb{F}, Q \neq 0\}$

We will define \cdot for \mathbb{F} . Elements of \mathbb{F} are known as scalars (as opposed to vectors)

Definition 2.5. An n-tuple of elements of \mathbb{F} is (x_1,\ldots,x_n) where each $x_i\in\mathbb{F}$

Definition 2.6. $\mathbb{F}^n = \{ \text{all } n \text{-tuples of elements in } \mathbb{F} \}$

Definition 2.7.

- Addition "+": $\mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}^n$ by $((x_1, \dots, x_n), (y_1, \dots, y_n)) \mapsto (x_1 + y_1, \dots, x_n + y_n)$
- Scalar Multiplication ":": $\mathbb{F} \times \mathbb{F}^n$ by $(\lambda, (x_1, \dots, x_n)) \mapsto (\lambda x_1, \dots, \lambda x_n)$

Theorem 2.8 (Properties of \mathbb{F}^n).

• Addition is commutative: $v_1 + v_2 = v_2 + v_1 \quad \forall v_1, v_2 \in \mathbb{F}^n$

Proof. Assume
$$v_1 = (x_1, \dots, x_n), v_2 = (y_1, \dots, y_n)$$
 then $v_1 + v_2 = (x_1 + y_1, \dots, x_n + y_n) = (y_1 + x_1, \dots, y_n + x_n) = v_2 + v_1$

- Existence of $0 \in \mathbb{F}^n$: Denote $0 = (0, \dots, 0)$. Then $v + 0 = v \ \forall v \in \mathbb{F}^n$
- Additive Inverse: $\forall v \in \mathbb{F}^n, \ \exists ! (-v) \in \mathbb{F}^n \text{ such that } v + (-v) = 0$

Geometric Meaning for $\mathbb{F} = \mathbb{R}$

Descartes Coordinate System:

Geometric Meaning of Multiplication on \mathbb{C}

2.2 1B - Vector Spaces

Definition 2.9. Fix a field \mathbb{F} . A vector space over \mathbb{F} is a set V with addition "+" and scalar multiplication "·" denoted as $+: V \times V \to V$ by $(v_1, v_2) \mapsto v_1 + v_2$, $\cdot: \mathbb{F} \times V \to V$ by $(\lambda, v) \mapsto \lambda v$ Satisfies:

- (1) $u + v = v + u, \forall u, v \in V$
- (2) $(u+v) + w = u + (v+w), a(bv) = (ab)v \ \forall u, v \in \mathbb{V}, a, b \in \mathbb{F}$
- (3) $\exists 0 \in \mathbb{V} \text{ such that } v + 0 = v, \forall v \in V$
- (4) $\forall v \in V, \exists w \in V \text{ such that } v + w = 0.$ (we will show w is unique and denote it as -v)
- (5) $1 \cdot v = v, \forall v \in V$
- (6) a(u+v) = au + av, (a+b)v = av + bv, $\forall a, b \in \mathbb{F}$, $u, v \in V$

Definition 2.10. Elements in a vector space V are called points or vectors

Definition 2.11. A vector space over $\mathbb{F}(/\mathbb{F})$ is also called an \mathbb{F} -vector space

Example 2.12.

- (1) $\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n$ are all vector spaces
- (2) \mathbb{C} is a vector space over \mathbb{R}

- (3) Let S be a set. Define F^s = the set of all functions from S to \mathbb{F} . \mathbb{F}^S is a vector space $/\mathbb{F}$ under the operations (f+g)(s) = f(s) + g(s), $(\lambda f)(s) = \lambda \cdot f(s)$. Each element has additive inverse (-f)(s) = -f(s) $\mathbb{F}^{\infty} = \mathbb{F}^{\{1,2,3,\ldots\}}$, consists of (a_1,a_2,a_3,\ldots) $\forall a_n \in \mathbb{F}$
- (4) the set of all sequences of real numbers that converge to 0
- (5) the set of all polynomials over \mathbb{F} , with deg $\leq n$ in k variables is a vector space $/\mathbb{F}$

Theorem 2.13. A vector space V has a unique additive identity

Proof. Assume 0 and 0' are both additive inverses. Then 0 = 0 + 0' = 0'

Theorem 2.14. $\forall v \in V$ has a unique additive inverse.

Proof. If w_1, w_2 are both additive inverses of v, then $w_1 = w_1 + (v + w_2) = (w_1 + v) + w_2 = w_2$

Definition 2.15. Let w - v = w + (-v)

Notation 2.16. V will be used to denote a vector space over \mathbb{F}

Theorem 2.17. $0 \cdot v = 0, \forall v \in V$

Proof. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$ so by the existence of additive inverses $0 = 0 \cdot v$

Theorem 2.18. $a \cdot 0 = 0, \forall a \in \mathbb{F}$

Proof.
$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$
 so $0 = a \cdot 0$

Theorem 2.19. $(-1) \cdot v = -v, \forall v \in V$

Proof. 0 = 0v = (1+(-1))v = 1v+(-1)v = v+(-1)v so by def (-1)v = -v

3 1/26/2022

3.1 1.C - Subspaces

Definition 3.1. Assuming V is a vector space $/\mathbb{F}$. $U \subset V$ is called a subspace of V if U is also a vector space $/\mathbb{F}$ under + and \cdot in V.

Example 3.2. $\{(x_1, x_2, 0) : x_1, x_2, \in \mathbb{F}\}\$ is a subspace of \mathbb{F}^3

Proposition 3.3. U is a subspace iff

- (i) $0 \in V$
- (ii) $u_1, u_2 \in U \to u_1 + u_2 \in U$
- (iii) $a \in \mathbb{F}, u \in U \to a \cdot u \in U$

 $Proof. \rightarrow$) Suppose conditions hold. Then properties of +, \cdot follow from V, U has identity by (i) and additive inverses by (iii). Finally, +, \cdot well defined by (ii), (iii) so U is a subspace.

 \leftarrow) Suppose U is a subspace. Then U is nonempty so $0 \cdot u = 0 \in U$ so (i) holds. Also, +, \cdot well defined so (ii), (iii) hold.

Example 3.4.

- (a) {0} is a subspace
- (b) $\{(x_1, x_2, x_3, x_3) \in \mathbb{F}^4 : x_3 = 5x_4 + b\}$ is a subspace iff b = 0
- (c) $C[0,1] = \{\text{continuous real valued functions on } [0,1]\}$ is a subspace of $\mathbb{R}^{[0,1]}$ (over \mathbb{R})
- (d) $C^{\infty}[0,1] = \{\text{smooth real-valued functions on } [0,1]\}$ is a subspace $\mathbb{R}^{[0,1]}$
- (e) The real sequences that converge to zero form a subspace of \mathbb{R}^{∞}
- (f) The only subspaces of \mathbb{F}^1 are $\{0\}$ and \mathbb{F} (over \mathbb{F})
- (g) If U is a subspace of V, W is a subspace of U, then W is a subspace of V
- (h) We will show the only subspace of \mathbb{R}^3 are $\{0\}$, lines through the origin, planes through the origin, and \mathbb{R}^3

Definition 3.5. For U_1, \ldots, U_n subspaces of V, define the sum

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m : u_1 \in U_1, \dots, u_m \in U_m\}$$

also denoted as $\sum_{j=1}^{m} U_j$.

Example 3.6. In \mathbb{F}^3 , what is $\{(x, x, 0)\} + \{(0, y, y)\}$?

Proof.
$$\{(x, y, z) : y = x + z\}$$

Theorem 3.7. For subspaces $U_1, \ldots, U_m \subset V$, $\sum_{j=1}^m$ is a subspace. Moreover, it is the smallest subspace containing U_1, \ldots, U_n in the sense that if W contains U_1, \ldots, U_n , then $W \supset U$.

Proof. Subspace: (i) $0 \in U_i$ for i = 1, ..., n so $0 = 0 + \cdots + 0 \in W$

(ii)/(iii): follow from closedness of each U_j

Containing U_1, \ldots, U_n : Consider the sum $0 + \cdots + 0 + u_j + 0 + \cdots + 0$ for $j = 1, \ldots, m$

Smallest Subspace: Suppose W contains U_1, \ldots, U_m then W contains u_1, \ldots, u_m $\forall u_j \in U_j$ so $u_1 + \cdots + u_m \in W$.

3.2 **Direct Sums**

Definition 3.8. If U_1, \ldots, U_m are subspaces of V then the sum $U_1 + \cdots + U_m$ is a direct sum if each element in $U_1 + \cdots + U_m$ can be written as $u_1 + \cdots + u_m$ in a unique way with $u_j \in U_j$. In this case, we also use $U_1 \oplus \cdots \oplus U_m$ to denote $U_1 + \cdots + U_m$.

Example 3.9.

- (1) If $U_1 = \{(x_1, x_2, 0)x_1, x_2 \in \mathbb{F}\}, U_2 = \{(0, 0, x_3)x_3 \in \mathbb{F}\}, \text{ then } \mathbb{F}^3 = U_1 \oplus U_1 \oplus U_2 \oplus U_$
- (2) Let $U = \{(x, x, ...) \in \mathbb{R}^{\infty}, V = \{(x_1, x_2, ...) \in \mathbb{R}^{\infty} : \sum |x_n| < \infty, \sum x_n = 1\}$ 0}. Then U + V is a direct sum. (ex): Prove $U + V \neq \mathbb{R}^{\infty}$

Theorem 3.10. $U_1 + \cdots + U_m$ is a direct sum iff $\exists!$ way to write 0 as a sum of $u_1 + \cdots + u_m$, $\forall u_j \in U_j$ (which is $0 = 0 + \cdots + 0$).

Proof. \rightarrow) by def

$$\leftarrow$$
) For $u \in U_1 + \cdots + U_m$, assume $u = u_1 + \cdots + u_m = \tilde{u_1} + \cdots + \tilde{u_n}$, $u_j, \tilde{u_j} \in U_j$. Then $(u_1 - \tilde{u_1}) + (u_2 - \tilde{u_2}) + \cdots + (u_m - \tilde{u_m}) = 0$. Hence $u_1 - \tilde{u_1} = u_2 - \tilde{u_2} = \cdots = 0$. Thus there is only one way to write u as $\sum_{i=1}^m, \forall u_i \in U_j$.

Theorem 3.11. For subspaces $U_1, U_2 \in V, U_1 + U_2$ is a direct sum iff $U_1 \cap U_2 =$ $\{0\}.$

Proof.
$$\rightarrow$$
) If $v \in U_1 \cap U_2$, $\underbrace{v}_{\in U_1} + \underbrace{(-v)}_{\in U_2} = 0$ so $v = (-v) = 0$

$$\{0\}.$$

$$Proof. \rightarrow) \text{ If } v \in U_1 \cap U_2, \underbrace{v}_{\in U_1} + \underbrace{(-v)}_{\in U_2} = 0 \text{ so } v = (-v) = 0$$

$$\leftarrow) \text{ Take } u \in U_1 + U_2 \text{ assume } u = u_1 + u_2 = \tilde{u_1} + \tilde{u_2}. \text{ Then } \underbrace{u_1 - \tilde{u_1}}_{\in U_1} = \underbrace{-(u_2 - \tilde{u_2})}_{\in U_2}$$
so by assumptions, $u_1 = \tilde{u_1}$ and $u_2 = \tilde{u_2}$.

so by assumptions, $u_1 = \tilde{u_1}$ and $u_2 = \tilde{u_2}$.

Example 3.12. For subspaces U_1, \ldots, U_m of V, TFAE:

- (i) $U_1 + \cdots + U_m$ is a direct sum
- (ii) $\forall j \ U_j \cap (\sum_{k \neq j} U_k) = \{0\}$
- (iii) $\forall j > 1, U_j \cap (U_1 + \dots + U_{j-1}) = \{0\}$
- (iv) If $u_1 + \cdots + u_m = 0$, $u_i \in U_i$ then $u_1 = u_2 = \cdots = u_m = 0$

Chapter 2: Finite Dimensional Vector Spaces 3.3

 \mathbb{F} : field, V: Vector space $/\mathbb{F}$

3.4 2.A: Span and Linear Independence

Motivation: In some $V(\text{such as }\mathbb{F}^n)$, we can find vectors $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$ such that every $v \in V$ can be written as $v = \sum_{j=1}^n a_j e_j$ and the choice of a_j is unique.

We will work with such vectors in a general setting.

$4 \quad 1/31/2022$

4.1 Chapter 2: Finite Dimensional Vector Spaces

- Main motivation: Find "coordinate systems" in a vector space
- Recall in \mathbb{F}^n , $(x_1, \dots, x_n) = x_1(1, 0, \dots, 0) + x_n(0, \dots, 0, 1) = x_1e_1 + \dots + x_ne_n$.

4.2 2.A: Span and Linear Independence

Definition 4.1. A linear combination of vectors $v_1, \ldots, v_m \in V$ is a vector of the form

$$v = \sum_{j=1}^{m} a_j v_j, \quad a_1, \dots, a_m \in \mathbb{F}.$$

Example 4.2. (1,2,-3) = (1,0,-1) + 2(0,1,-1)

Example 4.3. Is (1,2,3) a linear combination of (1,0,-1) and (0,1,1)? No, if $(1,2,-3) = a_1(1,0,-1) + a_2(0,1,1)$ then $a_1 = 1, a_2 = 2$ but $1(1,0,-1) + 2(0,1,1) = (1,2,1) \neq (1,2,-3)$.

Definition 4.4. The set

$$\{\sum_{j=1}^{m} a_j v_j, a_i \in \mathbb{F}, \, \forall 1 \le j \le m\}$$

is the span of v_1, \ldots, v_m , denoted by $\operatorname{span}(v_1, \ldots, v_m)$. Note $\operatorname{span}() = \{0\}$.

Example 4.5. $(1,2,-3) \in \text{span}((1,0,-1),(0,1,-1)).$

Theorem 4.6. span (v_1, \ldots, v_m) is the smallest subspace of V that contains v_1, \ldots, v_m .

Proof. Subspace: $0 = 0v_1 + \cdots, 0v_n \in \text{span}(v_1, \dots, v_m)$

Closed under addition: $(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m$.

Closed under multiplication: $\lambda(a_1v_1 + \cdots + a_mv_m) = (\lambda a_1)v_1 + \cdots + (\lambda a_m)v_m$. So it is a subspace.

Smallest: If $v_1, \ldots, v_m \in W$ for some subspace W, then $\forall a_1, \ldots, a_n \in \mathbb{F}$, $a_1v_1, \ldots, a_mv_m \in V$ so $a_1v_1 + \cdots + a_mv_m \in W$. Thus, $\operatorname{span}(v_1, \ldots, v_m) \subseteq W$.

Definition 4.7. If $V = \text{span}(v_1, \dots, v_m)$, then we say the list v_1, \dots, v_m spans V

Example 4.8. e_1, \ldots, e_n spans \mathbb{F}^n

Definition 4.9. V is called finite dimensional if some (finite) list of vectors spans V.

Example 4.10. \mathbb{F}^n is finite dimensional.

Definition 4.11. A finite expression

$$p(z) = a_0 + a_1 z^1 + \dots + a_m z^m, \quad a_0, \dots, a_m \in \mathbb{F}, a_m \neq 0,$$

also written as

$$\sum_{j=0}^{\infty} a_j x_j, a_{n+1} = a_{n+2} = \dots = 0,$$

is called a polynomial with coefficients in \mathbb{F} . (By definition p=0 is a polynomial.)

- Each polynomial over \mathbb{F} gives rise to a function from $\mathbb{F} \to \mathbb{F}$ defined by $p: \mathbb{F} \to \mathbb{F}$ by $z \mapsto p(z)$
- m is the degree of p if p has the form (*). The zero polynomial has degree $-\infty$ by definition.
- $\mathcal{P}(\mathbb{F}) = \{\text{all polynomials over } \mathbb{F}\}\$
- $\mathcal{P}_m(\mathbb{F}) = \{\text{all polynomials of deg } \leq m \text{ over } \mathbb{F}\}$

Example 4.12. $\mathcal{P}_m(\mathbb{F})$ and $\mathcal{P}(\mathbb{F})$ are vector spaces over \mathbb{F} (also subspaces of $\mathbb{F}^{\mathbb{F}}$ if viewed as functions.)

Example 4.13.

- (a) $\mathcal{P}_m(\mathbb{F})$ is finite dimensional
- (b) $\mathcal{P}(\mathbb{F})$ is infinte dimensional

Proof.

- (a) $1, z, \ldots, z^m$ spans $\mathcal{P}_m(\mathbb{F})$
- (b) For any $p_1, \ldots, p_m \in \mathcal{P}(\mathbb{F})$, assume N is larger than $\deg p_j$ for $1 \leq j \leq m$. Then every $\sum_{j=1}^m a_j p_j$ is not equal to z^N .

Definition 4.14. v_1, \ldots, v_m is called linearly independent if whenever $0 \sum_{j=1}^m a_j v_j$, $a_1, \ldots, a_m \in \mathbb{F}$, we must have $a_1 = \cdots = a_m = 0$. Otherwise, the list is linearly dependent. The empty list is linearly independent by definition.

Example 4.15.

- (a) v is linearly independent iff $v \neq 0$
- (b) e_1, \ldots, e_n is linearly independent in \mathbb{F}^n
- (c) v_1, v_2 is linearly independent iff neither vector is a scalar multiple of the other.
- (d) $1, z, ..., z^m$ is linearly independent in $\mathcal{P}_m(\mathbb{F})$.
- (e) (1,*,*),(0,1,*),(0,0,1) where each * is arbitrary is linearly independent in \mathbb{F}^3
- (f) $(1,1,\ldots,1),(a_1,a_2,\ldots,a_n),(a_1^2,a_2^2,\ldots a_n^2),\ldots,(a_1^{n-1},a_2^{n-1},\ldots,a_n^{n-1})$ is linearly dependent iff at least two of the a_j 's are the same.
- (g) Any subset of a linearly independent list is linearly independent.

Example 4.16.

- (a) If some vector in a list is a linear combination of the others, then the list is linearly dependent.
- (b) Every list containing 0 is linearly dependent.