PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-338808

(43) Date of publication of application: 07.12.2001

(51)Int.CI.

H01F 1/153 C22C 45/02 H03F 1/32 H03F 3/217 H03H 7/075

(21)Application number: 2001-

(

(71)Applicant : ALPS ELECTRIC CO LTD

07954

(22)Date of filing:

19.03.2001

(72)Inventor: NAITO YUTAKA

MIZUSHIMA TAKAO YOSHIDA SHOJI

(30)Priority

Priority number : 2000079056

Priority date : 21.03.2000

Priority country: JP

(54) FILTER AND AMPLIFIER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a filter having small loss and the small distortion of a wave form and an amplifier with the filter. SOLUTION: The filter 6 has a capacitor 7 and an inductor 1 composed of a coil wound on a magnetic core, and the filter 6 in which a dust core, in which the powder of a metallic glass alloy consisting of a texture, in which the temperature interval ΔTx of a supercooled liquid shown in the formula of $\Delta Tx=Tx-Tg$ (where Tx represents a crystallization starting temperature and Tg a glass transition temperature) is 20K or higher and amorphous phase is used as main phase, and an insulating material are mixed and molded, is used as the magnetic core is adopted.

LEGAL STATUS

[Date of request for examination]

28.04.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-338808 (P2001-338808A)

(43)公開日 平成13年12月7日(2001.12.7)

(51) Int.Cl.7	識別記号	FΙ	テーマコート*(参考)
H01F 1/153		C 2 2 C 45/02	A
C 2 2 C 45/02		H03F 1/32	
H 0 3 F 1/32		3/217	
3/217		H03H 7/075	A
HO3H 7/075		H01F 1/14	C
		審查請求 未請求	請求項の数21 OL (全 27 頁)
(21)出顯番号	特顧2001-79544(P2001-79544)	(71)出顧人 0000100	98
		アルプ	ス電気株式会社
(22)出顧日	平成13年3月19日(2001.3.19)	東京都	大田区曾谷大塚町1番7号
• •		(72)発明者 内藤	#
(31)優先権主張番号	特顧2000-79056 (P2000-79056)	東京都	大田区雪谷大塚町1番7号 アルブ
(32)優先日	平成12年3月21日(2000.3.21)	ス電気	朱式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 水嶋	· 逢夫
		東京都	大田区雪谷大塚町1番7号 アルブ
			朱式会社内
		(72)発明者 吉田	
			- 大田区曾谷大塚町1番7号 アルブ
			朱式会社内
		(74)代理人 1000649	
	,		志賀 正武 (外6名)
		1 744	

(54) 【発明の名称】 フィルタ及び増幅装置

(57) 【要約】

【課題】 損失が小さく、波形の歪みが小さなフィルタおよびこのフィルタを備えた増幅装置を提供する。

【解決手段】 コンデンサ7と、磁心に巻回されたコイルからなるインダクタ1を具備してなり、磁心は、ΔT x=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが20K以上であって非晶質相を主相とする組織からなる金属ガラス合金の粉末と、絶縁材とが混合され、成形されてなる圧粉磁心であることを特徴とするフィルタ6を採用する。

【特許請求の範囲】

【請求項1】 コンデンサと、磁心に巻回されたコイルからなるインダクタとを具備してなるフィルタであり、前記磁心は、ΔTx=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが2OK以上であって非晶質相を主相とする組織からなる金属ガラス合金の粉末と、絶縁材とが混合され、成形されてなる圧粉磁心であることを特徴とするフィルタ。

【請求項2】 200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における前記磁心の振幅透磁率の変化率が±10%以内であり、かつ前記磁心の100kHzにおける透磁率が50以上200以下であることを特徴とする請求項1に記載のフィルタ。

【請求項3】 前記フィルタがローパスフィルタであることを特徴とする請求項1または請求項2に記載のフィルタ。

【請求項4】 前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。

A 1: 1~10原子%

Ga: 0.5~4原子%

P:15原子%以下

C: 7原子%以下

B: 2~10原子%

Si:15原子%以下

Fe: 残部

【請求項5】 前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。ただし、元素しはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、元素MはV、Cr、Mo、Wのうちの一種以上の元素であり、元素EはPd、Pt、Auのうちの一種以上の元素である。

A I: 1~10原子%

Ga: 0.5~4原子%

P: 15原子%以下

C: 7原子%以下

B: 2~10原子%

Si:15原子%以下

元素L: 0~4原子%

元秦M: 0~8原子%

元素 E: 0~8原子%

Fe: 残部

【請求項6】 前配金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項1ないし請求項3のいずれかに配載のフィルタ。

 $(F e_{1-a1}T_{a1})_{100-x1-v1-z1-w1}Ga_{x1}(P_{1-b1}S_{ib1})$ $v_1C_{z1}B_{w1}$ ただしTはCo、Niのいずれか一方または両方であり、組成比を示すa1、b1、x1、v1、z1、w1は、O \leq a1 \leq O. 15、O< b1 \leq O. 8、x1 \leq 2 O原子%、v1 \leq 2 2原子%、O原子% \leq z1 \leq 1 O原子%、1原子% \leq w1 \leq 2 O原子%である。

【請求項7】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。

(Fe1-a1 Ta1) 100-x1-v1-z1-w1 Gax1 (P1-b1 Sib1) v1 Cz1 Bw1 Ld1 Me1 Ef1

ただし T は C o 、 N i のいずれか一方または両方であり、 L は T i 、 Z r 、 H f 、 N b 、 T a の うちの一種以上の元素であり、 M は V 、 C r 、 M o 、 W の うちの一種以上の元素であり、 E は P d 、 P t 、 A u の うちの一種以上の元素であり、 組成比を示す a 1 、 b 1 、 d 1 、 e 1 、 f 1、 x 1、 v 1、 z 1、 w 1 は、 O \leq a 1 \leq 0 . 15、 0 < b 1 \leq 0 . 8、 O 原子% \leq d 1 \leq 4 原子%、 O 原子% \leq e 1 \leq 8 原子%、 O 原子% \leq f 1 \leq 8 原子%、 x 1 \leq 2 O 原子% \leq v 1 \leq 2 0 原子% \leq z 1 \leq 1 O 原子% \leq x 1 原子% \leq w 1 \leq 2 0 原子% である。

【請求項8】 前配金属ガラス合金の組成が、下配の組成式で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。

 $(F e_{1-a2}T_{a2}) 100-x2-v2-z2-w2A | x2 (P_{1-b2}S i_{b2}) v_2C_{z2}B_{w2}$

【請求項9】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。

 $(F e_{1-a2}T_{a2})_{100-x2-v2-z2-w2}A I_{x2}(P_{1-b2}S i_b)_{v2}$ $C_{z2}B_{w2}L_{d2}M_{e2}E_{f2}$

ただしてはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr、Mo、Wのうちの一種以上の元素であり、EはPd、Pt、Auのうちの一種以上の元素であり、組成比を示すa2、b2、d2、e2、f2、x2、v2、z2、w2は、 $O \le a2 \le O$. 15、 $O < b2 \le O$. 8、O原子% $\le d2 \le 4$ 原子%、O原子% $\le e$ $2 \le 8$ 原子%、O原子% $\le f2 \le 8$ 原子%、O原子% $< x2 \le 2$ O原子%、O原子% $< v2 \le 2$ O原子%、O原子%

【請求項10】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項1ないし請求項3のいずれかに記載のフィルタ。

 $(Fe_{1-a3-b3}Co_{a3}Ni_{b3})$ 100-x3-y3Mx3By3

12

但し、組成比を示す a 3、b 3、x 3、y 3は、O ≦ a 3≦ O. 29、O ≦ b 3≦ O. 43、5 原子%≦x3≦ 2 O 原子 %、1 O 原子%≦y3≦ 2 2 原子%であり、MはZ r、N b、T a、H f、Mo、T i、V、C r、Wのうちの1 種又は2種以上からなる元素である。

【請求項11】 パルス電流を出力する増幅器と、該増幅器の出力側に接続されて前記パルス電流を平滑化するフィルタとからなり、

前記フィルタは、コンデンサと、磁心に巻回されたコイルからなるインダクタとを具備してなり、

前記磁心は、ΔTx=Tx-Tg(ただしTxは結晶化開始 温度、Tgはガラス遷移温度を示す。)の式で表される 過冷却液体の温度間隔ΔTxが2OK以上であって非晶 質相を主相とする組織からなる金属ガラス合金の粉末 と、絶縁材とが混合され、成形されてなる圧粉磁心であ ることを特徴とする増幅装置。

【請求項12】 200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における前記磁心の振幅透磁率の変化率が±10%以内であり、かつ前記磁心の100kHzにおける透磁率が50以上200以下であることを特徴とする請求項11に記載の増幅装置。

【請求項13】 前記フィルタがローパスフィルタであることを特徴とする請求項11または請求項12に記載の増幅装置。

【請求項14】 前記増幅器がパルス幅変調増幅器であることを特徴とする請求項11ないし請求項13にいずれかに記載の増幅装置。

【請求項15】 前記金属ガラス合金の組成が、下記の 組成で表されることを特徴とする請求項11ないし請求 項14のいずれかに記載の増幅装置。

A I: 1~10原子%

Ga: 0.5~4原子%

P:15原子%以下

C: 7原子%以下

B: 2~10原子%

Si:15原子%以下

Fe: 残部

【請求項16】 前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする請求項11ないし請求項14のいずれかに記載の増幅装置。ただし、元素しはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、元素MはV、Cr、Mo、Wのうちの一種以上の元素であり、元素EはPd、Pt、Auのうちの一種以上の元素である。

AI: 1~10原子%

Ga: 0.5~4原子%

P: 15原子%以下C: 7原子%以下

B: 2~10原子%

Si:15原子%以下

元素L: 0~4原子% 元素M: 0~8原子%

元素 E: 0~8原子%

Fe: 残部

【請求項17】 前記金属ガラス合金の組成が、下記の 組成式で表されることを特徴とする請求項11ないし請 求項14のいずれかに配載の増幅装置。

(F = 1-a1 Ta1) 100-x1-v1-z1-w1 G = x1 (P1-b1 S i b1)v1 Cz1 Bw1

ただしTはCo、Niのいずれか一方または両方であり、組成比を示すa1、b1、x1、v1、z1、w1は、O \leq a1 \leq O. 15、O < b1 \leq O. 8、x1 \leq 2 O 原子%、v1 \leq 2 2 原子%、O原子% \leq z1 \leq 1 O 原子%、1 原子% \leq w1 \leq 2 O 原子%である。

【請求項18】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項11ないし請求項14のいずれかに記載の増幅装置。

 $(F e_{1-a_1}T_{a_1})_{100-x_1-v_1-z_1-w_1}Ga_{x_1}(P_{1-b_1}S_{ib_1})$ $v_1C_{z_1}Bw_1L_{d_1}Me_1E_{f_1}$

【請求項19】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項11ないし請求項14のいずれかに記載の増幅装置。

 $(Fe_{1-a2}T_{a2})_{100-x2-v2-z2-w2}AI_{x2}(P_{1-b2}Si_b)_{v2}C_{z2}B_{w2}$

ただしてはCo、NiOいずれか一方または両方であり、組成比を示すa2、b2、x2、v2、z2、w2は、O $\leq a2 \leq O$. 15、 $O < b2 \leq O$. 8、O原子% $< x2 \leq 2$ O原子%、O原子% $< v2 \leq 2$ O原子%、O原子% $< v2 \leq 1$ O原子% $< v2 \leq 1$ O0原子% $< v2 \leq 1$ 0原子% $< v2 \leq 1$ 0度入 $< v2 \leq 1$ 0度入 < v2

【請求項20】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項11ないし請求項14のいずれかに記載の増幅装置。

(Fe1-a2Ta2)100-x2-v2-z2-w2AIx2(P1-b2Sib)v2 Cz2Bw2Ld2Me2Ef2

ただしてはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr、Mo、Wのうちの一種以上の元素であり、EはPd、Pt、Auのうちの一種以上の元素であり、組成比を示すa2、b2、d2、e2、

4 th 14 cm

f2、x2、v2、z2、w2は、O≦a2≦O. 15、O
b2≦O. 8、O原子%≦d2≦4原子%、O原子%≦e 2≦8原子%、O原子%≦f2≦8原子%、O原子%<x 2≦2O原子%、O原子%<v2≦22原子%、O原子%< <z2≦12原子%、O原子%<w2≦16原子%である。

【請求項21】 前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする請求項11ないし請求項14のいずれかに記載の増幅装置。

(Fe1-a3-b3Coa3Nib3) 100-x3-y3Mx3By3 但し、組成比を示すa3、b3、x3、y3は、0≦a3≦ 0.29、0≦b3≦0.43、5原子%≦x3≦20原子 %、10原子%≦y3≦22原子%であり、MはZr、N b、Ta、Hf、Mo、Ti、V、Cr、Wのうちの1 種又は2種以上からなる元素である。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フィルタ及びこのフィルタを備えた増幅装置に関するものであり、特に、 損失が小さく、出力波形の歪みが小さなフィルタに関するものである。

[0002]

【従来の技術】従来から、パルス変調増幅器からのパルス波形出力を平滑化する手段としてローパスフィルタが用いられている。このローパスフィルタに要求される特性としては、低損失であることと、平滑化後の波形の歪みが小さいことである。このローパスフィルタは通常、コンデンサと、磁心付きコイルからなるインダクタを構成する磁心の特性によるところが大きい。そこで従来から上記のローパスフィルタには、ギャップ付アモルファス磁心、ギャップ付フェライト磁心、あるいはギャップ無しカーボニル鉄圧粉磁心等が用いられてきた。

[0003]

【発明が解決しようとする課題】しかし、ギャップ付アモルファス磁心やギャップ付フェライト磁心をフィルタに用いた場合は、ギャップからの漏れ磁界が周辺の他の素子あるいは回路に悪影響を及ぼすおそれがあり、このフィルタを含む回路全体の安定性が低下するとともに雑音が発生するという課題があった。また、ギャップ付アモルファス磁心やフェライト磁心は、振幅透磁率が磁界変化に対して一定でなく、振幅透磁率の変化率が大きいため、磁界変化が大きなパルス電流を平滑化すると波形の歪みが大きくなってしまうという課題もあった。

【0004】また、ギャップ無しカーボニル鉄圧粉磁心は、振幅透磁率の磁界特性が一定であり、波形の歪みの問題は生じないが、一方でコアロスが大きいため、フィルタの発熱量が大きくなるという課題があった。

【0005】本発明は、上記の課題を解決するためにな

されたものであって、損失が小さくなって発熱量が低減 され、かつ波形の歪みが小さなフィルタおよびこのフィ ルタを備えた増幅装置を提供することを目的とする。

[0006]

【課題を解決するための手段】上記の目的を達成するために、本発明は以下の構成を採用した。本発明のフィルタは、コンデンサと、磁心に巻回されたコイルからなるインダクタを具備してなり、前記磁心は、 Δ T x = T x Δ T g (ただし T x は結晶化開始温度、 T g はガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔 Δ T x Δ Z O K 以上であって非晶質相を主相とする組織からなる金属ガラス合金の粉末と、絶縁材とが混合され、成形されてなる圧粉磁心であることを特徴とする。なお、上記金属ガラス合金は、比抵抗が 1.5 μ Ω · m 以上であることが好ましい。

【〇〇〇7】係るフィルタによれば、前記磁心が、過冷却液体の温度間隔 A T x を有する金属ガラス合金の粉末と絶縁材とが混合されて成形されてなるものであり、この金属ガラス合金は結晶化温度よりも十分低い温度の熱処理により磁心の内部応力を緩和あるいは除去できるので、コアロスが低く、振幅透磁率が磁界変化に対してほぼ一定である磁心を構成することが可能となり、フィルタの損失を小さくして発熱量を小さくし、かつ波形の歪みを小さくすることが可能になる。

【0008】また、比抵抗が1.5μΩ・m以上の上記組成の金属ガラス合金を用いているので、高周波における金属ガラス合金粒子内の渦電流損失が低減され、よりコアロスが低い磁心を構成することが可能になり、フィルタの損失を小さくすることができ、発熱量を小さくすることが可能になる。また、絶縁材によって磁心全体の比抵抗を高くすることができ、渦電流損失をより低減して磁心のコアロスをさらに低くすることが可能になるとともに、高周波数帯域での透磁率の低下を抑制することが可能になり、フィルタの高周波特性を向上させることが可能になる。

【0009】また、200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における前記磁心の振幅透磁率の変化率が±10%以内であり、かつ前記磁心の100kHzにおける透磁率が50以上200以下であることを特徴とする。振幅透磁率の磁界に対する変化率が上記の範囲であれば、フィルタの出力波形が歪むことがなく、このフィルタをパルス幅変調増幅器の平滑回路として好適に用いることができる。また、磁心の透磁率が上記の範囲であれば、コイルの巻回数を少なくしてインダクタを小型化でき、フィルタの小型化が可能になる。

【0010】また、前記フィルタは、ローパスフィルタであることが好ましい。即ち前記コンデンサと前記インダクタとがL形に接続されてなるものが好ましい。

【〇〇11】また本発明のフィルタは、先に記載のフィ

ルタであって、前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする。即ち、AIが1~10原子%であり、GaがO.5~4原子%であり、Pが15原子%以下であり、Cが7原子%以下であり、Bが2~10原子%であり、Siが15原子%以下であり、残部がFeであって、不可避的不純物を含む金属ガラス合金である。また、別の例として、AI:1~10原子%、Ga:O.5~4原子%、P:15原子%以下、C:7原子%以下、B:2~10原子%、Fe:残部からなり、不可避的不純物を含む金属ガラス合金を用いても良い。

【0012】また本発明のフィルタは、先に記載のフィ ルタであって、前記金属ガラス合金の組成が、下記の組 成で表されることを特徴とする。即ち、AIが1~10 原子%であり、GaがO.5~4原子%であり、Pが1 5原子%以下であり、Cが7原子%以下であり、Bが2 ~10原子%であり、Siが15原子%以下であり、T i、Zr、Hf、Nb、Taのうちの一種以上の元素が O~4原子%であり、V、Cr、Mo、Wのうちの一種 以上の元素O~8原子%であり、Pd、Pt、Auのう ちの一種以上の元素がO~8原子%であり、残部がFe であって、不可避的不純物を含んでも良い金属ガラス合 金である。また、別の例として、AIが1~10原子% であり、GaがO. 5~4原子%であり、Pが15原子 %以下であり、Cが7原子%以下であり、Bが2~10 原子%であり、Ti、Zr、Hf、Nb、Taのうちの 一種以上の元素が0~4原子%であり、V、Cr、M o、Wのうちの一種以上の元素O~8原子%であり、P d、Pt、Auのうちの一種以上の元素がO~8原子% であり、残部がFeであり、不可避的不純物を含んでも 良い金属ガラス合金を用いても良い。

【0013】上記のPの添加量は、5~12原子%の範囲がより好ましく、7~12原子%の範囲が特に好ましい。またCの添加量は、2~7原子%の範囲がより好ましく、5~7原子%の範囲が特に好ましい。そしてSiの添加量は、0.5~15原子%の範囲がより好ましく、0.5~4原子%の範囲が特に好ましい。

【 O O 1 4 】また、本発明のフィルタは、先に記載のフィルタであって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

(Fe_{1-a1}T_{a1}) 100-x1-v1-z1-w1Gax1 (P_{1-b1}S i b1) v1C₂1Bw1

ただしてはCo、NiOいずれか一方または両方であり、組成比を示すa1、b1、x1、v1、z1、w1は、O $\leq a1 \leq O$. 15、 $O < b1 \leq O$. 8、 $x1 \leq 20$ 原子% $v1 \leq 22$ 原子%、O 原子% $\leq z1 \leq 10$ 原子%、1 原子% $\leq w1 \leq 20$ 原子%である。

【0015】また、本発明のフィルタは、先に配載のフィルタであって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

 $(F e_{1-a1}T_{a1})_{100-x1-v1-z1-w1}Ga_{x1}(P_{1-b1}S i_{b1})$ v1Cz1Bw1Ld1Me1Ef1

ただしTはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr 、Mo、Wのうちの一種以上の元素であり、EはPd、Pt 、Auのうちの一種以上の元素であり、AはAu0 を Au0 を

【0016】また、金属ガラス合金の組成は、上記の組成式においてSi量を0とした下記の組成式で表されるものであっても良い。

(Fe1-a1 Ta1) 100-x1-v1-z1-w1 Gax1 Pv1 Cz1 Bw1 ただし Tt Co、Niのいずれか一方または両方であり、組成比を示すa1、x1、v1、z1、w1は、O \leq a1 \leq O。 15、x1 \leq 2 O原子%、v1 \leq 2 2原子%、O原子% \leq z1 \leq 1 O原子%、1原子% \leq w1 \leq 2 O原子%である。

【〇〇17】また、金属ガラス合金の組成は、上記の組成式においてSi量を〇とした下記の組成式で表されるものであっても良い。

 $(F e_{1-a_1} T_{a_1})_{100-x_1-v_1-z_1-w_1} G a_{x_1} P_{v_1} C_{z_1} B_{w_1} L_{d_1} M_{e_1} E_{f_1}$

ただし T は C o 、 N i のいずれか一方または両方であり、 L は T i 、 Z r 、 H f 、 N b 、 T a のうちの一種以上の元素であり、 Mは V 、 C r 、 M o 、 Wのうちの一種以上の元素であり、 E は P d 、 P t 、 A u のうちの一種以上の元素であり、 組成比を示す a 1 、 d1、 e1、 f 1、 x 1、 v 1、 z 1、 w 1 は、 $0 \le a 1 \le 0$. 15、 0原子% $\le d1 \le 4$ 原子%、 0原子% $\le e1 \le 8$ 原子%、 0原子% $\le f1 \le 8$ 原子%、 x $1 \le 2$ 0原子% 、 $v 1 \le 2$ 0原子% 、 0原子% $\le a 1 \le 1$ 0原子% 、 1原子% $\le a 1 \le 2$ 0原子% 、 10原子% である。

【 O O 1 8 】 また、本発明のフィルタは、先に記載のフィルタであって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

(F = 1-a2Ta2)100-x2-v2-z2-w2AIx2(P1-b2Sib)v2 $C_{z2}B_{w2}$

ただし T は C o 、 N i のいずれか一方または両方であり、組成比を示す a 2、 b 2、 x 2、 v 2、 z 2、 w 2 は、 O \leq a 2 \leq O . 15、 O < b 2 \leq O . 8、 O 原子% < x 2 \leq 2 O 原子%、 O 原子% < v 2 \leq 2 2 原子%、 O 原子% < z 2 \leq 1 2 原子%、 O 原子% < w 2 \leq 1 6 原子% である。

【 O O 1 9 】また、本発明のフィルタは、先に記載のフィルタであって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

 $(Fe_{1-a2}T_{a2})_{100-x2-v2-z2-w2}AI_{x2}(P_{1-b2}Si_b)_{v2}$

Cz2Bw2Ld2Me2Ef2

【 O O 2 O 】また、本発明のフィルタは、先に記徴のフィルタであって、前配金瓜ガラス合金の組成が、下配の組成式で表されることを特徴とする。

(Fe1-a3-b3Coa3Nib3) 100-x3-y3Mx3By3 但し、組成比を示すa3、b3、x3、y3は、O≦a3≦ O.29、O≦b3≦O.43、5原子%≦x3≦2O原子 %、1O原子%≦y3≦22原子%であり、MはZr、N b、Ta、Hf、Mo、Ti、V、Cr、Wのうちの1 種又は2種以上からなる元素である。

【 O O 2 1 】上記の各組成の金属ガラス合金からなる磁心は、いずれもコアロスが小さく、振幅透磁率が磁界変化に対してほぼ一定であるので、フィルタの損失を小さくして免熱性を少なくし、波形の歪みを小さくすることが可能になる。

【OO22】また、本発明の増幅装置は、パルス電流を出力する増幅器と、該増幅器の出力側に接続されて前記パルス電流を平滑化するフィルタとからなり、前記フィルタは、コンデンサと、磁心に巻回されたコイルからなるインダクタとを具備してなり、前記磁心は、 Δ Tx=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス過移温度を示す。)の式で衰される過冷却液体の温度間隔 Δ Txが2OK以上であって非晶質相を主相とする組織からなる金属ガラス合金の粉末と、絶縁材とが成形されてなる圧粉磁心であることを特徴とする。上記金属ガラス合金は比抵抗が $1.5\mu\Omega$ ・m以上のものが好ましい。

【0023】係る増幅装置によれば、前配磁心が、過冷却液体の温度間隔 ATxを有する金属ガラス合金の粉末と絶縁材とが混合されて成形されてなるもので、この金属ガラス合金は結晶化温度よりも十分低い温度の熱処理により圧粉磁心の内部応力を緩和あるいは除去できるので、コアロスが低く、振幅透磁率が磁界変化に対してほぼ一定である磁心を模成することが可能となり、フィルタの損失を小さくして発熱①を少なくし、かつ波形の歪みを小さくすることが可能になり、これにより発熱が少なく波形歪みの小さな増幅装置を構成することが可能になる。

【0024】また、比抵抗が1. 5 μΩ·m以上の上記

組成の金属ガラス合金を用いているので、高周波における金属ガラス合金粒子内の渦電流損失が低減され、よりコアロスが低い磁心を構成することが可能になる。また、絶縁材によって磁心全体の比抵抗を高くすることができ、渦電流損失を低減して磁心のコアロスをさらに低くすることが可能になるとともに、高周波数帯域での透磁率の低下を抑制することが可能になり、フィルタの損失をより小さくし、かつ波形の歪みをより小さくすることが可能になる。

【0025】また、200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における前配磁心の振幅透磁率の変化率が±10%以内であり、かつ前配磁心の100kHzにおける透磁率が50以上200以下であることを特徴とする。振幅透磁率の変化率が上配の範囲であれば、フィルタの出力波形が歪むことがなく、出力波形の歪みが小さな増幅装置を構成することができる。また、磁心の透磁率が上記の範囲であれば、コイルの巻回数を少なくしてインダクタの大きさを小さくすることができ、増幅装置を小型化することが可能になる。

【0026】また、前記フィルタは、ローパスフィルタであることが好ましい。即ち前記コンデンサと前記インダクタとがL形に接続されてなるものが好ましい。また、前記増幅器は、パルス幅変調増幅器であることが好ましい。

【0027】また本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする。即ち、AIが1~10原子%であり、Gaが0.5~4原子%であり、Pが15原子%以下であり、Cが7原子%以下であり、Bが2~10原子%であり、Siが15原子%以下であり、残部がFeであって、不可避的不純物を含む金属ガラス合金である。また、別の例として、AI:1~10原子%、Ga:0.5~4原子%、P:15原子%以下、C:7原子%以下、B:2~10原子%、Fe:残部からなり、不可避的不純物を含む金属ガラス合金を用いても良い。

【〇〇28】また本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下記の組成で表されることを特徴とする。即ち、AIが1~10原子%であり、Gaが〇. 5~4原子%であり、Pが15原子%以下であり、Cが7原子%以下であり、Bが2~10原子%であり、Siが15原子%以下であり、Ti、Zr、Hf、Nb、Taのうちの一種以上の元森が〇~4原子%であり、V、Cr、Mo、Wのうちの一種以上の元森の~8原子%であり、Pd、Pt、Auのうちの一種以上の元森が〇~8原子%であり、歿d、Pt、Auのうちの一種以上の元森が〇~8原子%であり、残部がFeであって、不可避的不純物を含んでも良い金属ガラス合金である。また、別の例として、AIが1~10原子%

であり、GaがO. 5~4原子%であり、Pが15原子%以下であり、Cが7原子%以下であり、Bが2~10原子%であり、Ti、Zr、Hf、Nb、Taのうちの一種以上の元素がO~4原子%であり、V、Cr、Mo、Wのうちの一種以上の元素O~8原子%であり、Pd、Pt、Auのうちの一種以上の元素がO~8原子%であり、残部がFeであり、不可避的不純物を含んでも良い金属ガラス合金を用いても良い。

【0029】上記Pの添加量は、5~12原子%の範囲がより好ましく、7~12原子%の範囲が特に好ましい。またCの添加量は、2~7原子%の範囲がより好ましく、5~7原子%の範囲が特に好ましい。そしてSiの添加量は、0.5~15原子%の範囲がより好ましく、0.5~4原子%の範囲が特に好ましい。

【0030】また、本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

(F + 1-a1 Ta1) 100-x1-v1-z1-w1 Gax1 (P1-b1 Sib1) v1 Cz1 Bw1

ただしTはCo、Niのいずれか一方または両方であり、組成比を示すa1、b1、x1、v1、z1、w1は、O \leq a1 \leq O. 15、O \leq b1 \leq O. 8、x1 \leq 2 O原子%、v1 \leq 2 2原子%、O原子% \leq z1 \leq 1 O原子%、1原子% \leq w1 \leq 2 O原子%である。

【0031】また、本発明のフィルタは、先に記載のフィルタであって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

(Fe1-a1Ta1)100-x1-v1-z1-w1Gax1(P1-b1Sib1) v1Cz1Bw1Ld1Me1Ef1

ただしてはCo、Nioいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taoうちの一種以上の元素であり、MはV、Cr 、Mo 、Wのうちの一種以上の元素であり、EはPd、Pt 、Au のうちの一種以上の元素であり、Hはた示すAu の Au の

【0032】また、金属ガラス合金の組成は、上記の組成式においてSi量をOとした下記の組成式で表されるものであっても良い。

(Fe1-a1 Ta1) 100-x1-v1-z1-w1 Gax1Pv1Cz1Bw1 ただしてはCo、NiOnvずれか一方または両方であり、組成比を示すa1、x1、v1、z1、w1は、<math>O ≦a1≦O. 15、x1≦2O原子%、v1≦22原子%、O原子%≦z1≦1O原子%、1原子%≦w1≦2O原子%である。

【0033】また、金属ガラス合金の組成は、上記の組成式においてSi量を0とした下記の組成式で表される

ものであっても良い。

(F = 1-a1 Ta1) 100-x1-v1-z1-w1 G = x1 Pv1 Cz1 Bw1 Ld1Me1 Ef1

ただしてはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr 、Mo、Wのうちの一種以上の元素であり、EはPd、Pt 、Auのうちの一種以上の元素であり、H成比を示すA は A に

【 O O 3 4 】また、本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

 $(F e_{1-a2}T_{a2}) 100-x2-v2-z2-w2AIx2 (P_{1-b2}S i_{b2}) v_2C_{z2}B_{w2}$

ただしてはCo、Niのいずれか一方または両方であり、組成比を示す a 2、b 2、x 2、v 2、z 2、w 2は、O ≤ a 2 ≤ O. 15、O < b 2 ≤ O. 8、O原子% < x 2 ≤ 2 O原子%、O原子% < v 2 ≤ 2 2 原子%、O原子% < z 2 ≤ 1 2 原子%、O原子% < w 2 ≤ 1 6 原子%である。【OO35】また、本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下配の

 $(F e_{1-a2}T_{a2})_{100-x2-v2-z2-w2}A \mid x_2(P_{1-b2}S \mid b)_{v2}$ $C_{z2}B_{w2}L_{d2}M_{e2}E_{f2}$

組成式で表されることを特徴とする。

ただしてはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr、Mo、Wのうちの一種以上の元素であり、EはPd、Pt、Auのうちの一種以上の元素であり、組成比を示すa2、b2、d2、e2、f2、x2、v2、z2、w2は、O≦a2≦O. 15、O
b2≦O. 8、O原子%≦d2≦4原子%、O原子%≦e2≤8原子%、O原子%≦f2≦8原子%、O原子%≤を2≤20原子%、O原子%<v2≦22原子%、O原子%<<z2≦12原子%、O原子%<w2≦16原子%である。

【0036】また、本発明の増幅装置は、先に記載の増幅装置であって、前記金属ガラス合金の組成が、下記の組成式で表されることを特徴とする。

(Fe1-a3-b3Coa3Nib3) 100-x3-y3Mx3By3 但し、組成比を示すa3、b3、x3、y3は、0≤a3≤ 0.29、0≤b3≤0.43、5原子%≤x3≤20原子 %、10原子%≤y3≤22原子%であり、MはZr、N b、Ta、Hf、Mo、Ti、V、Cr、Wのうちの1 種又は2種以上からなる元素である。

【0037】上記の組成の金属ガラス合金からなる磁心。 は、いずれもコアロスが小さく、振幅透磁率が磁界変化 に対してほぼ一定であるので、増幅装置の損失を小さく して波形の歪みを小さくすることが可能になる。

[0038]

【発明の衷施の形態】以下、本発明の実施の形態を図面を参照して説明する。本発明に係るフィルタは、コンデンサと、磁心に巻回されたコイルからなるインダクタを具備してなるものであり、前配磁心は、ΔTx=Tx-Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが20K以上であって非晶質相を主相とする組織からなる金属ガラス合金の粉末と、絶縁材とが混合され、成形されてなる圧粉磁心である。

【0039】このフィルタは例えば、増幅器の出力側に取り付けられて、該増幅器からの出力電流を平滑化するために好適に用いられるものである。たとえば、上記のフィルタを備えた増幅装置の一例として、パルス電流を出力する増幅器と、該増幅器の出力側に接続されて前記パルス電流を平滑化する前記のフィルタとからなる増幅装置を挙げることができる。

【0040】図1に、本発明に係るフィルタに用いられるインダクタを示し、図2には、本発明に係るフィルタを備えた増幅装置の回路図を示す。図1に示すように、本発明に係るインダクタ1は、磁心2と、この磁心2に巻回されたコイル3からなる。また図2に示すように、本発明に係る増幅装置4は、パルス電流を出力する増幅器5と、該増幅器5の出力部5bに接続されて増幅器5からのパルス電流を平滑化する本発明に係るフィルタ6とからなる。このフィルタ6は、コンデンサ7と、図1に示すインダクタ1とからなる。

【0041】フィルタ6は、いわゆるローパスフィルタと呼ばれるもので、コンデンサ7とインダクタ1とがし形に接続されて構成されている。また増幅器5は、いわゆるパルス幅変調増幅器であることが好ましい。

【0042】この増幅装置4の動作は次の通りである。まず、増幅器5の入力部5 a に図3に示す電圧 V1の交流電流を入力する。増幅器5は、入力された交流電流の電圧の高い部分を幅広のパルス波に、交流電流の電圧の低い部分を幅狭のパルス波にそれぞれ変換するとともに、増幅作用により電圧を増圧して、図4に示すパルス電流を出力部5 b から出力する。フィルタ6は、このパルス電流を平滑化し、平滑化後の電流をフィルタ6の出力部6 a から出力する。出力された電流は、図5に示すように電圧が V2(V2>V1)に増幅された交流電流である。

【0043】このように本発明に係るフィルタ6にはパルス電流が入力される。このパルス電流はパルス幅及びで圧が周期的に変団するものであるため、インダクタ1には高周波電流が印加されることになる。従って、低損失で波形歪みの小さな増幅装置を得るには、インダクタ1の損失を小さくして波形歪みを小さくすることが必要

であり、そのためには、インダクタ1を模成する磁心2 のコアロスが小さいことと、磁心2の振幅透磁率が磁界 変化に対してほぼ一定であることが求められる。

【0044】本発明のフィルタを構成する磁心 2 は、低コアロスで高周波帯域における透磁率の低下が小さく、振幅透磁率が磁界変化に対してほぼ一定のもので、 Δ T x=Tx-Tg(ただし T x は結晶化開始温度、 T g はガラス週移温度を示す。)の式で表される過冷却液体の温度間隔 Δ T x が 2 O K 以上であって非晶質相を主相とする組織からなり、比抵抗が 1 . 5 μ Ω · c m以上である金属ガラス合金の粉末と、絶縁材とが混合され、成形されてなる圧粉磁心である。

【0045】この磁心2は図1に示したように円環状の磁心2を例示できるが、形状はこれに限られず、長円環状や楕円環状であっても良い。また平面視略E字状、平面視略コ字状、平面視略I字状等であっても良い。

【0046】本発明に係る磁心2は、金属ガラス合金の粉末が絶縁材によって結着されてなるもので、組織中に金属ガラス合金の粉末が存在したいわゆる圧粉磁心であり、金属ガラス合金の粉末が溶解して均一な組織を構成したものではない。また、金属ガラス合金の粉末は、粉末を構成する個々の粒子が絶縁材によって絶縁されていることが好ましい。このように、磁心2には金属ガラス合金の粉末と絶縁材とが混合されて存在するので、絶縁材によって磁心2自体の比抵抗が大きくなり、過電流損失が低減されてコアロスが低くなり、また高周波領域における透磁率の低下が小さくなり、更には振幅透磁率が磁界変化に対してほぼ一定になる。

【0047】また、金属ガラス合金の過冷却液体の温度間隔 Δ Txが20 K未満であると、金属ガラス合金の粉末と絶縁材とを混合して圧縮成形した後に行う熱処理時に、結晶化させずに十分に内部応力を緩和させることが困難になる。 Δ Txが20 K以上であると、熱処理温度を下げても十分に内部応力を緩和でき、また絶縁材の分解を防止し、絶縁材の分解による損失の増大を抑えることができる。

【0048】また、磁心2を構成する金属ガラス合金は、合金組成によっては60K以上の大きなΔTxが得られるので、熱処理によって内部応力の緩和を十分に行うことができ、磁心2の軟磁気特性をより向上できるとともに、熱処理温度をより低下させ、絶縁材の分解による損失の増大を効果的に抑えることができる。また、本発明に係る磁心2は、熱処理による内部応力の緩和によってコアロスをより小さくすることができ、発熱凸を低減できる。また、本発明の磁心2は、助作周波数変化に対する透磁率の変動が小さく、高い周波数帯域でも高い透磁率が得られるので、フィルタ6の周波数特性を向上させることができる。

【0049】また、この磁心2は、200A/mの磁界における振幅透磁率を基準としたときの2000A/m

の磁界における振幅透磁率の変化率が±10%以内であり、100kHzにおける透磁率が50以上200以下であることが好ましい。磁心2の振幅透磁率の変化率が上記の範囲であれば、フィルタ6の出力波形が歪むことがなく、出力波形の歪みが小さなフィルタ6を構成することができる。また、磁心2の透磁率が上記の範囲であれば、コイル3の巻回数を少なくしてインダクタ1の大きさを小さくすることができ、フィルタ6及び増幅装置4を小型化することが可能になる。例えば本発明のフィルタ6では、コイル3の巻数を30ターン程度にしても充分な特性が得られる。

【0050】また、磁心2を構成する絶縁材は、磁心2 の比抵抗を髙めるとともに、金凮ガラス合金の粉末を結 **潜して磁心2の形状を保持するもので、磁気特性に大き** な損失とならない材料からなることが好ましく、例え ば、エポキシ樹脂、シリーコン樹脂、シリコーンエラス トマー、フェノール樹脂、尿桑樹脂、メラミン樹脂、P VA(ポリビニルアルコール)等の液状または粉末状の 有機物や、水ガラス(Na2O-SiO2)、酸化物ガラ ス粉末 (Na2O-B2O3-SiO2、PbO-B2O3-Si O2、PbO-BaO-SiO2、Na2O-B2O3-Zn O、CaO-BaO-SiO2、Al2O3-B2O3-SiO 2. B2O3-SiO2)、ゾルゲル法により生成するガラ ス状物質(SiO2、Al2O3、ZrO2、TiO2等を 主成分とするもの)等を挙げることができる。また、絶 **級とともに潤滑材の役割を果たすステアリン酸塩(ステ** アリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸 パリウム、ステアリン酸マグネシウム、ステアリン酸ア ルミニウム等)を同時に用いることもできる。

【 O O S 1 】 金属ガラス合金の粉末は、比抵抗が 1.5 μΩ・m以上であって、過冷却液体の温度間隔 Δ T xが 2 O K以上である非晶質相を主相とするもので、金属ガラス合金の薄帯が粉砕されて得られたもの、金属ガラス合金の溶湯を回転する冷却ロールに露状に吹き付けて冷却して得られたもの、金属ガラス合金の溶湯を高圧ガスとともに逐状に吹き出して冷却して得られたもの、あるいは金属ガラス合金の溶湯を水中に露状に吹き出して冷却して得られたものなどであり、コアロスが低く、軟磁気特性に優れたものである。

【0052】またこの金属ガラス合金は、組成によっては Δ Txが40K以上、さらには50K以上、場合によっては60K以上という顕著な過冷却液体の温度間隔を有し、比抵抗が $1.5\mu\Omega$ ・m以上であり、室温で優れた飲磁気特性を有しており、これまでの知見に見られない全く新規なものである。

【0053】過冷却液体の温度間隔ΔTxは、溶過が液体構造を維持したまま原子振動のみが生じている状態であり、この過冷却液体の温度間隔ΔTxの存在が、金属ガラス合金において原子の移動の起こり難い、即ち結晶化しにくい性質を衰している。過冷却液体の温度間隔Δ

Txの大きな金属ガラス合金は溶湯を冷却する際に、原子の移助が起こり難いので、溶融状態の溶温が固化される際に経る過冷却液体状態が非常に広くなる。従って、冷却速度が比較的遅くても充分に非晶質相を形成することが可能であり、例えば、比較的冷却速度が高い単ロール法などの液体急冷法等により得られる金属ガラス合金の薄帯のほか、鋳造法等によって得られる金属ガラス合金のバルク体等を粉砕することによっても、非晶質相を主相とする金属ガラス合金の粉末が得られる。

【0054】「金属ガラス合金の組成の一例」磁心2に 好適に用いられる金属ガラス合金の一例として、Feを 主成分とし、他の金属と半金属とを含有したものを挙げ ることができる。このうち半金属元素としては、P、S i、C、B、Geのうちの少なくとも1種以上の元素が 用いられる。

【0055】より具体的に例示すると、AI:1~10原子%、Ga:0.5~4原子%、P:15原子%以下、C:7原子%以下、B:2~10原子%、Si:15原子%以下、Fe:残部であって、不可避不純物が含有されていても良い金属ガラス合金が挙げられる。また、別の具体例として、AI:1~10原子%、Ga:0.5~4原子%、P:15原子%以下、C:7原子%以下、B:2~10原子%、Fe:残部であって、不可避不純物が含有されていても良い金属ガラス合金を挙げることができる。

【0056】更に別の例として、AIが1~10原子% であり、GaがO. 5~4原子%であり、Pが15原子 %以下であり、Cが7原子%以下であり、Bが2~10 原子%であり、Siが15原子%以下であり、Ti、Z r、Hf、Nb、Taのうちの一種以上の元素がO~4 原子%であり、V、Cr、Mo、Wのうちの一種以上の 元素O~8原子%であり、Pd、Pt、Auのうちの一 種以上の元素が0~8原子%であり、残部がFeであっ て、不可避的不純物を含んでも良い金属ガラス合金を挙 げることもできる。また、別の例として、AIが1~1 O原子%であり、GaがO. 5~4原子%であり、Pが 15原子%以下であり、Cが7原子%以下であり、Bが 2~10原子%であり、Ti、Zr、Hf、Nb、Ta のうちの一種以上の元素がO~4原子%であり、V、C r、Mo、Wのうちの一種以上の元素O~8原子%であ り、Pd、Pt、Auのうちの一種以上の元躱がO~8 原子%であり、残部がFeであり、不可避的不純物を含 んでも良い金凮ガラス合金を挙げることもできる。

【0057】SiとPの比率は原子比で、0くSi/(Si+P) \le 0.4を満たしており、好ましくは0.1くSi/(Si+P) \le 0.35であり、より好ましくは0.11くSi/(Si+P) \le 0.28である。また、他の金属とは、IIIB族及びIVB族の金属元 案のうちの少なくとも1 穏のものが好適に用いられる。例えば、AI、Ga、In及びSnのうちの少なくとも

1種以上の元素が用いられる。

【0059】Siの添加量が多すぎると過冷却液体領域 Δ Txが消滅するので、15原子%以下が好ましい。また、より大きな過冷却液体の温度間隔 Δ Txを得るには、Siの添加量が原子%で0.5%~15%の範囲であることが好ましく、0.5~4%の範囲であることが好ましい。なおSiの添加量を0原子%としてもよい。上記Pの添加量は、15原子%以下であることが好ましいが、5~12原子%の範囲であることが最も好ましい。特にSiのPに対する添加比率が0<Si/(Si+P) \leq 0.4を満たす場合は、Siの添加量が原子%で1.5~3.5%の範囲、Pの添加量が原子%で1.5~3.5%の範囲、Pの添加量が原子%で1.5~3.5%の範囲、Pの添加量が原子%で1.5~3.5%の範囲、Pの添加量が原子%で7~9%の範囲であることが好ましい。

【0060】またCの添加量は7原子%以下であることが好ましく、2~7原子%の範囲であることが最も好ましい。しく、5~7原子%の範囲であることが最も好ましい。【0061】Ti、Zr、Hf、Nb、Taのうちの一種以上の元素は、C、Pと化合物を形成して金属ガラス合金の融点を向上させる。これらの元素の添加量は0原子%以下の範囲が好ましく、0原子%以上2原子%以下の範囲がより好ましく、0原子%以上2原子%以下の範囲が更に好ましい。添加量が4原子%を越えると、Fe量が相対的に低下して軟磁気特性が低下するとともに、金属ガラス合金が脆くなるので好ましくない

【0062】V、Cr、Mo、Wのうちの一種以上の元素は、特に金属ガラス合金の耐腐食性を向上させる。これらの元素の中でも特にCrが好ましい。Crを組成比で8原子%程度添加すると、ハステロイ並の耐腐食性が得られる。これらの元素の添加量は0原子%以上8原子%以下の範囲が好ましく、0原子%以上4原子%以下の範囲がより好ましく、0原子%以上4原子%以下の範囲が更に好ましい。添加量が8原子%を越えると、Fe 量が相対的に低下して軟磁気特性が低下するので好ましが相対的に低下して軟磁気特性が低下するので好ままない。またPd、Pt、Auのうちの一種以上の元素は、極めて耐腐食性が高いと同時に他の合金構成元素に対して不活性であり、金属ガラス合金中で単相状態ですることにより金属ガラス合金の耐腐食性を向上といて不活性であり、金属ガラス合金の耐食性を向上で単れて不活性であり、金属ガラス合金の耐食性を向上で表により金属がラス合金の耐食性を向上の範囲が好ましく、0原子%以上6原子%以下の範囲が好ましく、0原子%以上6原子%以下の範囲が好ました。

より好ましく、0原子%以上4原子%以下の範囲が更に 好ましい。添加量が8原子%を越えると、Fe量が相対 的に低下して飽和磁束密度が低下するので好ましくな い。

【0063】また上記の組成に、 $Geが4原子%以下含有されていてもよく、<math>0\sim10原子%のN$ iと $0\sim30原子%のCoのうち少なくとも一方が含有されていてもよい。これらのいずれの場合の組成においても、本発明においては、過冷却液体の温度間隔<math>\Delta$ Txは、20K以上、組成によっては50K以上が得られる。

【0064】「金属ガラス合金の組成の他の例」次に、磁心2に用いられる金属ガラス合金の他の例として、上記のFeAIGaPCB(Si)系の金属ガラス合金からAIを除いたものであって、Feを主成分とし、Gaと、P、B、C、Siのうちの1種以上の元素Qとを含有したものを挙げることができる。なお元素QにはSiを加えなくても良い。

【0065】この金属ガラス合金は、例えば次の組成式で表すことができる。

 $(Fe_{1-a_1}T_{a_1})_{100-x_1-v_1-z_1-w_1}Ga_{x_1}(P_{1-b_1}Si_{b_1})_{v_1}C_{z_1}B_{w_1}$

ただしTはCo、Niのいずれか一方または両方であり、組成比を示すa1、b1、x1、v1、z1、w1は、O \leq a1 \leq O. 15、O < b1 \leq O. 8、x1 \leq 2 O 原子%、v1 \leq 2 2 原子%、O 原子% \leq z1 \leq 1 O 原子%、1 原子% \leq w1 \leq 2 O 原子%である。

【0066】また、上記組成比を示す a 1、b 1、x 1、v1、z1、w1は、 $0 \le a1 \le 0$. 15、0. $1 \le b1 \le 0$. 35、0. $5 原子% \le x1 \le 15 原子%、7 原子% \le v1 \le 20 原子%、0 原子% \le z1 \le 9$. 5 原子%、2原子% $\le w1 \le 14$ 原子%であることがより好ましく、 $0 \le a1 \le 0$. 1、0. $1 \le b1 \le 0$. 28、0. 5原子% $\le x1 \le 15$ 原子%、10 原子% $\le v1 \le 15$. 5 原子%、0. 5 原子% $\le z1 \le 6$ 原子%、4 原子% $\le w1 \le 1$ 1 原子%であることが更に好ましい。

【0067】また、この金属ガラス合金は例えば次の組成式で表すことができる。

 $(F = 1-a1 Ta1)_{100-x1-v1-z1-w1} G = x1 (P1-b1 S i b1)_{v1} C_{z1} B_{w1} L_{d1} Me1 Ef1$

ただし T は C o、 N i のいずれか一方または両方であり、 L は T i、 Z r、 H f、 N b、 T a のうちの一種以上の元素であり、 M は V 、 C r、 M o、 V の うちの一種以上の元素であり、 V とは V は V と V は V と V は V と V は V と V は V と V は V と V は V と V は V と V は V と V と V と V は V と V と V と V に V と V と V に V と V と V に V と V に V と V に V と V に V と V に V と V に V と V に V

【0068】また、上記組成比を示すa1、b1、d1、

e1、f1、x1、v1、z1、w1は、O≦a1≦O. 15、O. 1≦b1≦O. 35、O原子%≦d1≦3原子%、O原子%≦e1≦6原子%、O原子%≦f1≦6原子%、O原子%≦e1≦6原子%、O原子%≦x1≦15原子%、7原子%≦v1≦2O原子%、O原子%≦z1≦9. 5原子%、2原子%≦w1≦14原子%であることがより好ましく、O≦a1≦O. 1、O. 1≦b1≦O. 28、O原子%≦d1≦2原子%、O原子%≦e1≦4原子%、O原子%≦e1≦4原子%、O原子%≦e1≤4原子%、O原子%≤f1≤4原子%、O. 5原子%≦x1≦15原子%、10原子%≤v1≦15. 5原子%、O. 5原子%≤z1≦6原子%、4原子%≦w1≦11原子%であることが更に好ましい。

【0069】また、本発明の金属ガラス合金は、以下の組成式で表すこともできる。

(Fe1-a1 Ta1) 100-x1-v1-z1-w1 Gax1 Pv1 Cz1 Bw1 ただし T は Co、Niのいずれか一方または両方であり、組成比を示す a1、x1、v1、z1、w1は、 $0 \le a1 \le 0$. 15、 $x1 \le 2$ O原子%、 $v1 \le 2$ 2原子%、O原子% $z1 \le 1$ O原子%、1原子% $z1 \le 2$ 0原子%である。

【0070】組成比を示すa1、x1、v1、z1、w1は、0≦a1≦0.15、0.5原子%≦x1≦15原子%、7原子%≦v1≦20原子%、0原子%≦z1≦9.5原子%、2原子%≦w1≦14原子%であることがより好ましく、0≦a1≦0.1、0.5原子%≦x1≦15原子%、10原子%≦v1≦15.5原子%、0.5原子%≦z1≦6原子%、4原子%≦w1≦11原子%であることが更に好ましい。

【0071】更にまた、この金属ガラス合金は、以下の 組成式で表すこともできる。

(F e 1-a1 T a1) 100-x1-v1-z1-w1 G a x1 P v1 C z1 B w1 L d1 Me1 E f1

ただしTはCo、Niのいずれか一方または両方であり、LはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、MはV、Cr 、Mo、Wのうちの一種以上の元素であり、EはPd、Pt 、Auのうちの一種以上の元素であり、組成比を示すa1、d1、e1、f1、x1、v1、z1、w1 は、O $\leq a1$ ≤ 0 . 15、O 原子% $\leq d1$ ≤ 4 原子% 、O 原子% $\leq e1$ ≤ 8 原子% 、O 原子% $\leq f1$ ≤ 8 原子% 、x1 ≤ 20 原子% 、v1 ≤ 22 原子% 、O 原子% $\leq z1$ ≤ 10 原子% 、o 原子% $\leq w1$ ≤ 20 原子% である。

【0072】組成比を示すa1、d1、e1、f1、x1、v1、z1、w1は、 $0 \le a1 \le 0$. 15、 $0 原子% \le d1$ ≤ 3 原子%、0 原子% $\le e1 \le 6$ 原子%、0 原子% $\le f1$ ≤ 6 原子%、0. 5 原子% $\le x1 \le 15$ 原子%、7 原子% $\le v1 \le 20$ 原子%、0 原子% $\le z1 \le 9$. 5 原子%、2 原子% $\le w1 \le 14$ 原子%であることがより好ましく、 $0 \le a1 \le 0$. 1、0 原子% $\le d1 \le 2$ 原子%、0 原子% $\le e1 \le 4$ 原子%、0.

5原子%≦ x 1≦ 1 5原子%、10原子%≦ v 1≦ 1 5. 5原子%、0.5原子%≦ z 1≦6原子%、4原子%≦ w1≦ 1 1原子%であることが更に好ましい。

【0073】この金属ガラス合金は、FeとGaとP、C、B、Siとを含有したもので、上記のFeAIGaPCB(Si)系の金属ガラス合金からAIを除去し、Fe量を増量させることなくこのAIの代わりにGaを増量させたものであり、非晶質相が形成されやすく、大きな過冷却液体の温度間隔ΔTxを示す。

【0074】Gaは、この金属ガラス合金に必須の元素であり、特にGaの組成比×1を20原子%以下とすることにより、金属ガラス合金の過冷却液体の温度間隔 ΔTxを20K以上にすることができる。またGaは、Feとの間での混合エンタルピーが負であり、Feよりも原子半径が大きく、更にFeよりも原子半径が小さいP、B、Siとともに用いることにより、結晶化し難く、非晶質構造の熱的に安定化した状態となる。更にGaは金属ガラス合金のキュリー温度を高め、各種磁気特性の熱安定性を向上させることができる。Gaの組成比×1は、20原子%以下であることが好ましく、0.5原子%以上15原子%以下であることがより好ましい。組成比×1が20原子%を越えると、Fe量が相対的に低下して飽和磁化が低下し、また過冷却液体の温度間隔 ΔTxが消失するので好ましくない。

【0075】Feは磁性を担う元素であって、Gaと同様にこの金属ガラス合金に必須の元素である。また、Feの一部をCo、Niのいずれか一方または両方の元素Tで置換しても良い。

【 O O 7 6】 P、 C、 B、 Si は非晶質形成能を有する元素であり、 Feと Gaにこれらの元素を添加して多元系とすることにより、 Feと Gaのみの 2 元系の場合と異なり安定して非晶質相が形成される。合金中におけるP、 C、 B、 Siの合計の組成比は 5 0 原子%以下であることが好ましく、 7 原子%以上 3 5 原子%以下であることがより好ましい。これらの元素の合計の組成比が 5 0 原子%を越えると、 Fe量が相対的に低下して飽和磁化が低下するので好ましくない。

【〇〇77】このなかでもPは特に非晶質形成能が高いので、このPを必ず含み、それ以外のB、C、Siのうちのいずれか1種以上を含むようにすると、組織の全体が非晶質相になるとともに過冷却液体の温度間隔 ΔTxが発現しやすくなる。またPとSiを同時に添加すると、過冷却液体の温度間隔 ΔTxをより向上させて非晶質単相となるバルクの大きさを増大できる。

【0078】PとSiを同時に添加する場合は、PとSiの合計量を示す組成比 v1を22原子%以下とすることが好ましく、7原子%以上20原子%以下とすることがより好ましく、10原子%以上15.5原子%以下とすることが最も好ましい。PとSiの合計量を示す組成比 v1が上記の範囲であれば、過冷却液体の温度間隔 Δ

Txを向上させることができる。

【OO80】PとSiの組成比を示すb1、v1を上記の 節囲とすれば、過冷却液体の温度間隔ΔTxを向上させ ることができる。

【0081】なおSiの組成比b1を0としてもよい。即ち、Fe及びGaと、P、B、Cからなる金属ガラス合金であってもよい。この場合のPの組成比 v1は、22原子%以下とすることが好ましく、7原子%以上20原子%以下とすることがより好ましく、10原子%以上15.5原子%以下とすることが最も好ましい。Pの組成比 v1が上記の範囲であれば、過冷却液体の温度間隔ΔTxを向上させ、非晶質単相となるバルクの大きさを増大させることができる。

【0082】またCの組成比z1は、0原子%以上10原子%以下であることが好ましく、0原子%以上9.5原子%以下であることがより好ましく、0.5原子%以上6原子%以下であることが最も好ましい。更にBの組成比w1は、1原子%以上20原子%以下であることが好ましく、2原子%以上14原子%以下であることがより好ましく、4原子%以上11原子%以下であることが最も好ましい。

【 O O B 3 】また、上記の金属ガラス合金の組成に元素 し、元素M及び元素Eを添加することにより、金属ガラス合金の表面に不動態被膜を形成させて、金属ガラス合金の耐腐食性を向上させても良い。元素しはTi、Zr、Hf、Nb、Taのうちの一種以上の元素であり、C、Pと化合物を形成して金属ガラス合金の融点を向上させる。元素しの組成比を示すd1はO原子%以上4原子%以下の範囲が好ましく、O原子%以上3原子%以下の範囲がより好ましく、O原子%以上2原子%以下の範囲がより好ましく、O原子%以上2原子%以下の範囲が更に好ましい。組成比d1が4原子%を越えると、Fe □が相対的に低下して軟磁気特性が低下するとともに、金属ガラス合金が脆くなるので好ましくない。

【〇〇84】元穀MはV、Cr、Mo、Wのうちの一種 以上の元穀であり、これらの元穀が特に金属ガラス合金 の耐腐食性を向上させる。元穀Mの中でも特にCrが好 ましい。Crを組成比で8原子%程度添加すると、ハス テロイ並の耐腐食性が得られる。元素Mの組成比を示す e1はO原子%以上8原子%以下の範囲が好ましく、O 原子%以上6原子%以下の範囲がより好ましく、0原子 %以上4原子%以下の節囲が更に好ましい。組成比e1 が8原子%を越えると、Fe且が相対的に低下して敷磁 気特性が低下するので好ましくない。また元素EはP d、Pt、Auのうちの一種以上の元素であり、この元 桑 E は極めて耐腐食性が高いと同時に他の合金模成元案 に対して不活性であり、金鳳ガラス合金中で単相状態で 存在することにより金属ガラス合金の耐腐食性を向上さ せる。元素Eの組成比を示す f 1はO原子%以上8原子 %以下の節囲が好ましく、0原子%以上6原子%以下の 節囲がより好ましく、O原子%以上4原子%以下の節囲 が更に好ましい。組成比 f 1が8原子%を越えると、F e且が相対的に低下して飽和磁束密度が低下するので好 ましくない。

【0085】また、上記の組成に、Geが4原子%以下合有されていてもよい。これらのいずれの場合の組成においても、この金属ガラス合金においては、35K以上、組成によっては50K以上の過冷却液体の温度間隔 ΔTxが得られる。また上記の組成で示される元素の他に不可避的不純物が含まれていても良い。

【0086】「金属ガラス合金の組成の別の例」次に、磁心2に用いられる金属ガラス合金の別の例として、上記のFeAIGaPCB(Si)系の金属ガラス合金からGaを除いたものであって、Feを主成分とし、AIと、前記元素Gとを含有したものを挙げることができる。なお元素GからSiを除いても良い。

【OO87】この金属ガラス合金は、例えば次の組成式 で表すことができる。

 $(F \oplus 1-a2Ta2) \ 100-x2-v2-z2-w2A \ I \ x2 \ (P1-b2S \ i \ b2) \ v2Cz2Bw2$

ただし T は C o 、 N i のいずれか一方または両方であり、組成比を示す a 2、b 2、x 2、v 2、z 2、w 2 は、O \le a $2 \le$ O . 15、O < b $2 \le$ O . 8、O 原子% < x $2 \le$ 2 O 原子%、O 原子% < v $2 \le$ 2 2 原子%、O 原子% < z $2 \le$ 1 2 原子%、O 原子% < w $2 \le$ 1 6 原子%である。 金 因 ガラス合金が上記の組成である場合には、2 O K以上の過冷却液体の温度間隔 \triangle T x を示す。

【OO88】また組成比を示す a2、b2、x2、v2、z2、w2が、 $O \le a2 \le O$. 15、O. $1 \le b2 \le O$. 35、 $O原子% < x2 \le 15原子%、8原子% \le v2 \le 18原子%、0. <math>5$ 原子% $\le z2 \le 7$. 4原子%、3原子% $\le w2 \le 14$ 原子%であることがより好ましい。金周ガラス合金が上記の組成である場合には、4 O K 以上の過冷却液体の温度間隔 $\Delta T x$ E T x E T x

【0089】また、組成比を示すa2、b2、x2、v2、 z2、w2が、0≦a2≦0.15、0.1≦b2≦0.2 8、0原子%<x2≦10原子%、11.3原子%≦v2 ≤14原子%、1.8原子%≤z2≦4.6原子%、 5. 3原子%≦w2≦8. 6原子%であることが最も好ましい。金属ガラス合金が上記の組成である場合には、60K以上の過冷却液体の温度間隔ΔTxを示す。

【 O O 9 O 】またこの金凮ガラス合金は、例えば次の組成式で表すこともできる。

(F = 1-a2Ta2)100-x2-v2-z2-w2AIx2(P1-b2Sib)v2 $C_{z2}B_{w2}L_{d2}M_{e2}E_{f2}$

ただし T は C o 、 N i のいずれか一方または両方であり、 L は T i 、 Z r 、 H f 、 N b 、 T a のうちの一種以上の元素であり、 M は V 、 C r 、 M o 、 W のうちの一種以上の元素であり、 E は P d 、 P t 、 A u のうちの一種以上の元素であり、 組成比を示す a 2 、 b 2 、 d 2 、 e 2 、 f 2 、 x 2 、 v 2 、 z 2 、 w 2 は 、 $0 \le a 2 \le 0$. 15 、 $0 < b 2 \le 0$. 8 、 0 原子% $\le d 2 \le 4$ 原子% 、 0 原子% $\le e 2 \le 8$ 原子% 、 0 原子% $\le f 2 \le 8$ 原子% 、 0 原子% $< x 2 \le 2$ 0 原子% 、 0 原子% $< v 2 \le 2$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \le 1$ 2 原子% 、 0 原子% $< x 2 \ge 1$ 2 原子% 、 0 原子% $< x 2 \ge 1$ 2 原子% 、 0 原子% $< x 2 \ge 1$ 2 原子% 、 0 原子% $< x 2 \ge 1$ 2 原子% 、 0 原子% $< x 2 \ge 1$ 2 原子% $< x 2 \ge 1$

【OO91】また組成比を示す a2、b2、d2、e2、f2、x2、v2、z2、w2が、 $O \le a2 \le O$. 15、O. $1 \le b2 \le O$. 35、 $O原子% \le d2 \le 3原子%$ 、 $O原子% \le e2 \le 6原子%$ 、 $O原子% \le f2 \le 6原子%$ 、 $O原子% < x2 \le 15原子%$ 、 $8原子% \le v2 \le 18原子%$ 、O. $5原子% \le z2 \le 7$. 4原子%、 $3原子% \le w2 \le 14原子%$ であることがより好ましい。 金属ガラス合金が上記の組成である場合には、 $4OK以上の過冷却液体の温度間隔 <math>\Delta Tx$ を示す。

【OO92】また、組成比を示す a2、b2、d2、e2、f2、x2、v2、z2、w2が、 $O \le a2 \le O$. 15、O. $1 \le b2 \le O$. 28、 $O原子% \le d2 \le 2$ 原子%、 $O原子% \le e2 \le 4$ 原子%、 $O原子% \le f2 \le 4$ 原子%、 $O原子% < x2 \le 1$ O原子%、11. 3原子% $\le v2 \le 1$ 4原子%、1. 8原子% $\le z2 \le 4$. 6原子%、5. 3原子% $\le w2 \le 8$. 6原子%であることが最も好ましい。金恩ガラス合金が上記の組成である場合には、6 O K以上の過冷却液体の温度間隔 Δ Tx $Extit{Tx}$ Tx

【0093】この金属ガラス合金は、FeとAIとP、C、B、Siとを含有したもので、上記のFeAIGaPCB(Si)系の金属ガラス合金からGaを除去し、Fe型を増型させることなくこのGaの代わりにAIを増型させたものであり、大きな過冷却液体の温度間隔 ΔTxを示し、更に極めて高い非晶質形成能を示す。上記の金属ガラス合金は非晶質形成能が高いことから、組織全体を完全な非晶質相とすることができ、透磁率及び飽和磁化が格段に向上し、優れた軟磁気特性を示す。また組織全体が完全な非晶質相であることから、適度な条件で熱処理した場合に結晶質相が析出させることなく内部応力を綴和でき、軟磁気特性をより向上させることができる。

【〇〇94】AIは、この金属ガラス合金に必須の元案 であり、特にAIの組成比×2を20原子%以下とする ことにより、合金の非晶質形成能を格段に向上させて組 織全体を完全な非晶質相とすることができ、また過冷却 液体の温度間隔 Δ Txを20 K以上にすることができ る。またAIは、Feとの間での混合エンタルピーが負 であり、Feよりも原子半径が大きく、更にFeよりも 原子半径が小さいP、B、Siとともに用いることによ り、結晶化し難く、非晶質構造が熱的に安定化した状態 となる。更にAIは金属ガラス合金のキュリー温度を髙 め、各種磁気特性の熱安定性を向上させることができ る。AIの組成比×2は、20原子%以下であることが 好ましく、0原子%を越えて15原子%以下であること がさらに好ましく、0原子%を越えて10原子%以下で あることが最も好ましい。組成比×2が20原子%を越 えると、Fe且が相対的に低下して飽和磁化が低下し、 また過冷却液体の温度間隔 A Txが消失するので好まし くない。

【0095】Feは磁性を担う元素であって、AIと同様にこの金属ガラス合金に必須の元素である。また、Feの一部をCo、Niのいずれか一方または両方の元素Tで置換しても良い。磁性を担う元素であるFeの組成比が向上すると、金属ガラス合金の飽和磁化を向上させることができる。

【0096】C、P、Si及びBは、先に説明したFeGaPCB(Si)からなる金属ガラス合金のC、P、Si及びBと同じ作用を示す。PとSiを同時に添加する場合は、PとSiの合計員を示す組成比 v2を0原子%を越えて22原子%以下とすることが好ましく、8原子%以上18原子%以下とすることがより好ましく、11.3原子%以上14原子%以下とすることが最も好ましい。PとSiの合計員を示す組成比 v2が上記の範囲であれば、過冷却液体の温度間隔 ΔTxを向上させることができる。

【0097】PとSiを同時に添加した場合のSiとPとの比を表す組成比 b 2は、組成比 v 2が 0 原子%を越えて22原子%以下のときに0 < b 2 \leq 0.8 とすることが好ましく、組成比 v 2が 8 原子%以上18原子%以下のときに0.1 \leq b 2 \leq 0.35 とすることが好ましく、組成比 v 2が 11.3原子%以上14原子%以下のときに0.1 \leq b 2 \leq 0.28 とすることが好ましい。組成比 b 2 \leq 0.28 とすることが好ましい。組成比 b 2 \leq 0.28 とすることが好ましい。過冷却液体領域 \leq 0.28 とすることが好ましい。過冷却液体領域 \leq 0.28 とすることが好ましい。過冷却液体領域 \leq 0.28 とすることが好ましい。目前の過期になり、過冷却液体領域 \leq 0.28 とすることが好ましい。日前の過度を示すと、好ましい場合に17.6原子%以下、より好ましい場合に1.13原子%以上6.3原子%以下、最も好ましい場合に1.13原子%以上3.92原子%以下となる。

ることができる。

【〇〇99】またCの組成比 z 2は、O原子%を越えて12原子%以下であることが好ましく、O. 5原子%以上7. 4原子%以下であることがより好ましく、1. 8原子%以上4. 6原子%以下であることが最も好ましい。更にBの組成比w2は、O原子%を越えて16原子%以下であることが好ましく、3原子%以上14原子%以下であることがより好ましく、5. 3原子%以上8. 6原子%以下であることが最も好ましい。

【 O 1 O O 】また、上記の金属ガラス合金の組成に元素 L、元素M及び元素 E を添加することにより、金属ガラス合金の表面に不動態被膜を形成させて、金属ガラス合金の耐腐食性を向上させても良い。元素 L d T i、 Z r、 H f、 N b、 T a のうちの一種以上の元素であり、 C、 P と化合物を形成して金属ガラス合金の融点を向上させる。元素 L の組成比を示す d 2は O 原子%以上 4 原子%以下の範囲が好ましく、 O 原子%以上 2 原子%以下の範囲がより好ましく、 O 原子%以上 2 原子%以下の範囲がより好ましく、 O 原子%以上 2 原子%以下の範囲が更に好ましい。組成比 d 2が 4 原子%を越えると、 F e 量が相対的に低下して軟磁気特性が低下するとともに、金属ガラス合金が脆くなるので好ましくない。

【0101】元素MはV、Cr、Mo、Wのうちの一種 以上の元素であり、これらの元素が特に金属ガラス合金 の耐腐食性を向上させる。元素Mの中でも特にCrが好 ましい。Crを組成比で8原子%程度添加すると、ハス テロイ並の耐腐食性が得られる。元素Mの組成比を示す e2はO原子%以上8原子%以下の範囲が好ましく、O 原子%以上6原子%以下の範囲がより好ましく、0原子 %以上4原子%以下の範囲が更に好ましい。組成比e2 が8原子%を越えると、Fe量が相対的に低下して軟磁 気特性が低下するので好ましくない。また元素EはP d、Pt、Auのうちの一種以上の元素であり、この元 素Eは極めて耐腐食性が高いと同時に他の合金構成元素 に対して不活性であり、金属ガラス合金中で単相状態で 存在することにより金属ガラス合金の耐腐食性を向上さ せる。元素Eの組成比を示す f 2はO原子%以上8原子 %以下の範囲が好ましく、0原子%以上6原子%以下の 範囲がより好ましく、0原子%以上4原子%以下の範囲 が更に好ましい。組成比 f 2が8原子%を越えると、F e量が相対的に低下して飽和磁束密度が低下するので好 ましくない。

【 0 1 0 2 】また、上記の組成に、G e が 4 原子%以下 含有されていてもよい。これらのいずれの場合の組成においても、本発明においては、3 5 K以上、組成によっては5 0 K以上の過冷却液体の温度間隔 Δ T x が得られる。また上記の組成で示される元素の他に不可避的不純物が含まれていても良い。

【0103】「金属ガラス合金の組成のその他の例」次に、磁心2に好適に用いられる金属ガラス合金のその他の例として、Fe、Co、Niのうちの1種又は2種以

上の元素を主成分とし、Zr、Nb、Ta、Hf、Mo、Ti、V、Cr、Wのうちの1種又は2種以上の元素MとBを含んでなるものを例示できる。

【O 1 O 4】この金属ガラス合金の組成式は次の通りである。

(Fe1-a3-b3Coa3Nib3) 100-x3-y3Mx3By3 なお、組成比を示すa3、b3、x3、y3は、 $0 \le a3 \le 0.29$ 、 $0 \le b3 \le 0.43$ 、 $5原子% \le x3 \le 20原子%$ 、 $10原子% \le y3 \le 22原子%$ である。また、前記の組成式において、2rを必ず含み、 ΔTx が25 K以上であることが好ましい。また、この金属ガラス合金の ΔTx が60 K以上であることがより好ましい。更に、組成比を示すa3、b3が、 $0.042 \le a3 \le 0.29$ 、 $0.042 \le b3 \le 0.43$ の関係にされてなることがより好ましい。

【0105】また、この金属ガラス合金は、下記の組成式で表されるものであっても良い。

(Fe₁-a3-b3Co_a3N i_b3) 100-x3-y3-z3Mx3By3T

なお、組成比を示すa3、b3、x3、y3、z3は、O \leq a3 \leq 0.29、O \leq b3 \leq 0.43、5原子% \leq x3 \leq 20原子%、10原子% \leq y3 \leq 22原子%、0原子% \leq z3 \leq 5原子%であり、TはRu、Rh、Pd、Os、Ir、Pt、AI、Si、Ge、C、Pのうちの1種又は2種以上の元素である。また、この金属ガラス合金の Δ Txが60K以上であることがより好ましい。更に、組成比を示すa3、b3が、O.O42 \leq a3 \leq 0.29、O.O42 \leq b3 \leq 0.43の関係にされてなることがより好ましい。

【0106】また、上記の各組成式における元素Mが (M'1-cM''c) で表され、M'がZrまたはHfのうち 01 種または2 種、M''がNb、Ta、Mo、Ti、V、Cr、V のうちの1 種または2 種以上からなる元素 であり、組成比c が $0 \le c \le 0$. 6 であってもよい。 更 に、前記組成において組成比c が0. $2 \le c \le 0$. 4 の範囲であってもよく、 $0 \le c \le 0$. 2 の範囲であってもよい。 更に前記の各組成式において、組成比a3、b3が、0. $042 \le a3 \le 0$. 25、 $0.042 \le b3 \le 0$. 1 であってもよい。

【0109】Bは、高い非晶質形成能があり、本発明ではBの組成比y3を10原子%以上22原子%以下の節囲としている。組成比y3が10原子%未満であると、ΔTxが消滅するために好ましくなく、22原子%を越えると非晶質相が形成できなくなるために好ましくない。より高い非晶質形成能と良好な磁気特性を得るためには、組成比y3を16原子%以上20原子%以下とすることがより好ましい。

【0110】この金属ガラス合金に更に、元素Tで示されるRu、Rh、Pd、Os、Ir、Pt、Al、Si、Ge、C、Pのうちの1種又は2種以上の元素を添加することもできる。本発明ではこれらの元素Tの組成比z3をO原子%以上5原子%以下の範囲とすることができる。これらの元素Tは主に耐食性を向上させる目的で添加するもので、この範囲を外れると軟磁気特性が低下する。また、この範囲を外れると非晶質形成能が劣化するために好ましくない。

【0111】また、上記の組成において原子日の50%以下をCで置換しても良い。上記のいずれの場合の組成においても本発明に係る金属ガラス合金では、20K以上、組成によっては60K以上の過冷却液体の温度間隔 ΔTxが得られる。

【0112】「磁心の製造方法」本発明に係る磁心2は、例えば次のようにして製造できる。この磁心2は、金属ガラス合金の粉末を製造する粉末製造工程と、この金属ガラス合金の粉末に絶縁材を加えて混合し、更に圧縮成形して磁心前駆体を形成する成形工程と、磁心前駆体を熱処理して内部応力を除去する熱処理工程を経て製造される。

【0113】粉体製造工程ではまず、上述のいずれかの 組成の金属ガラス合金の溶湯を回転する冷却ロールの冷 却面に噴出させて急冷するいわゆるロール急冷法によ り、金属ガラス合金苅帯を製造する。次に、得られた金 【0114】次に、粉砕体を分級して所定の平均粒径を有する粉末とする。粉砕により粉末を作成する場合は、粉末の平均粒径を 30μ m以上、より好ましくは 45μ m以上 300μ m以下とするのがよい。平均粒径が 30μ m未満であると、粉砕の際にロータミル等からのコンタミネーションが起こる可能性もあるので好ましくない。平均粒径が 300μ mを越えると、絶縁材を混合して圧縮成形した際に圧粉磁心の組織中に空隙が残存して、磁心のコアロスが大きくなるので好ましくない。分級には、ふるい、振動ふるい、音波ふるい、気流式分級機等を用いることができる。

【0115】また、上記組成の金属ガラス合金の溶湯を、冷却ロールに霧状に吹き付けることによっても金属ガラス合金の粉末を得ることができる。また、上記組成の金属ガラス合金の溶湯を高圧ガスとともに霧状に吹き出して冷却したり、あるいは上記組成の金属ガラス合金の溶湯を水中に霧状に吹き出して冷却することによっても粉末を得ることができる。特に、上記組成からなる金属ガラス合金の溶湯を、高圧の不活性ガスとともに不活性ガスで満たされたチャンパ内部に霧状に噴霧し、該不活性ガス雰囲気中で急冷して合金粉末を製造するガスアトマイズ法を用いることが好ましい。

【 O 1 1 6 】上記のように、合金溶湯を缀状に噴霧させて急冷した場合は、粒状あるいは略球状の粒子からなる金属ガラス合金金粉末を得ることができる。この球状の粒子からなる粉末を用いて圧粉磁心を形成した場合は、圧粉磁心の充填密度を高くすることができ、粉末間の絶縁を確保しやすくなるので、磁気特性が劣化せず、優れたコアロスを発現させるとともに高周波帯域での透磁率の低下を抑制できる。

【 O 1 1 7 】次に成形工程では、金属ガラス合金の粉末 に絶縁材を加えて混合し、この混合物を圧縮成形して磁 心前駆体を形成する。混合物中の絶縁材の混合率は、

0.2 重量%以上5 重量%以下であることが好ましい。 絶縁材が0.2 重量%未満では、金属ガラス合金の粉末 をこの絶縁材ととともに所定の形状に成形できなくなる ので好ましくない。また、絶縁材が5 重量%を越える と、磁心における金属ガラス合金の含有率が低下し、磁 心の軟磁気特性が低下するので好ましくない。また、圧 縮成形する前に混合物に含まれる溶剤、水分等を蒸発さ せ、金属ガラス合金粉末の表面に絶縁材層を形成させる ことが望ましい。

【0118】次にこの混合物を圧縮成形して磁心前駆体を製造する。まず、所定の金型に混合物を充填し、次に、金型に成形圧力を印加しつつ所定の成形温度まで加熱して混合物を圧縮成形する。この圧縮成形には、例えば金型を所定の成形圧力で加圧しつつ、パルス電流を印

加して加熱しつつ圧縮成形する放電プラズマ焼結処理を 行うことが好ましい。この放電プラズマ焼結処理は、通 電電流により混合物を所定の速度で案早く昇温すること ができ、圧縮成形の時間を短くすることができるので、 金Дガラス合金の非晶質相を維持したまま圧縮成形する のに適している。

【0119】本発明において、混合物を圧縮成形する際の成形温度は、絶縁材の種類と金属ガラス合金の組成によって異なるが、絶縁材として水ガラス、金属ガラス合金としてFe70Al5Ga2P9.65C5.75B4.6Si3な合金としてFe70Al5Ga2P9.65C5.75B4.6Si3な合組成のものを用いた場合には、絶縁材によって金屋が入る金を結着させるために373K以上とすることが必要であり、また絶縁材が溶融して金型からしみ出さないようにするには573K以下とすることが必要である。絶縁材がしみ出ると、磁心2中の絶縁材の含有量が低下して磁心2の比抵抗が低下し、高周波帯域における透磁率が低下してしまう。従って373K以上573K以下の温度随曲で混合物を圧縮成形すれば、絶縁材が適度に軟化するので、金属ガラス合金の粉末を結着させて混合物を所定の形状に成形することができる。

【0120】また混合物に印加する成形圧力(一軸圧力)については、圧力が低すぎると磁心2の密度を高くすることができず、緻密な磁心2を形成できなくなる。また、圧力が高すぎると絶縁材がしみ出し、磁心2中の絶縁材の含有量が低下して磁心2の比抵抗が低下し、高周波帯域における透磁率が低下してしまう。従って成形圧力は、絶縁材の種類と金属ガラス合金の組成によって及なるが、絶縁材として水ガラス、金属ガラス合金としてFe70Al5Ga2P9.65C5.75B4.6Si3なる組成のものを用いた場合には、600MPa以上1500MPa以下とするのが好ましく、600MPa以上900MPa以下とするのがより好ましい。このようにして円環状の磁心前駆体が得られる。

【0121】次に磁心前駆体を熱処理して内部応力を除去する熱処理工程を行う。磁心前駆体を所定の温度範囲で熱処理すると、粉末製造工程や成形工程にて生じた磁心前駆体自体の内部応力や、磁心前駆体に含まれる金属ガラス合金粉末の内部応力を除去することができ、コアロスが低く振幅透磁率の磁界変化がほぼ一定である磁心を製造することができる。熱処理温度は、金属ガラス合金としてFe70Al5Ga2P9.65C5.75B4.6Si3なる組成のものを用いた場合にはガラス週移温度をTgとしたときに、(Tg-170)K以上Tg以下の範囲が好ましく、(Tg-150)K以上(Tg-50)K以下の節囲がより好ましく、(Tg-120)K以上(Tg-60)K以下の範囲がさらに好ましい。

【0122】除処理温度が(Tg-170) K未満では、磁心前駆体の内部応力を十分に除去することができないので好ましくなく、Tgを越えると、金属ガラス合金が結晶化してしまうので好ましくない。

【0123】このようにして得られた磁心2は、金鳳ガラス合金を含むものであるから、室温で優れた軟磁性特性を有し、また熱処理によってより良好な軟磁気特性を示すものである。このため、優れたSoft magnetic特性(軟磁気特性)を有する材料として、この磁心2を本発明に係るフィルタ6に好適に用いることができ、従来材に比べてコアロスが小さく、振幅透磁率が磁界変化に対してほぼ一定である磁心を提供できる。

【O124】尚、上記説明では、金属ガラス合金の粉末と絶縁材を含む混合物を放電プラズマ焼結処理により圧縮成形する方法を説明したが、これに限らず、通常の粉末成形法、ホットプレス法、押し出し法などの方法により圧縮成形することによっても磁心2を得ることができる。更に、絶縁材の種類と添加量、成形圧力を選択することにより室温で成形することも可能になる。

【O 1 2 5】上記のフィルタ 6 は、上記組成の金属ガラス合金の粉末と絶縁材とからなる磁心 2 を備えており、絶縁材によって磁心 2 全体の比抵抗を高くすることができ、渦電流損失を低減して磁心 2 のコアロスを低くフィンタ 6 を構成することができる。また上記の磁心 2 は、おける透磁率の低下が小さいので、フィルタ 6 のの選ができる。また上記の磁心 2 はおける透磁率の低下ができる。また上記の磁心 2 はおける透磁率の低下ができる。また上記の磁心 2 は と抵抗が 1 5 μ Ω · m以上の上記組成の金属ガラス合金粉末からなるので、高周波における金属ガラス会 な 大抵抗が 1 5 μ Ω · m以上の上記組成の金属ガラス合物 大抵抗が 1 5 μ Ω · m以上の上記組成の金属ガラス会 な 大概式がらなるので、高周波における金属ガラス会 な 大内の渦電流損失が低減され、よりコアロスが低いさな フィルタ 6 を構成することができる。

【0126】また、上記の磁心2は、200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における振幅透磁率の変化率が±10%以内であるので、パルス状の交流電流を波形歪みを伴うことなく平滑化することができ、出力波形の歪みが小さなフィルタ6を構成することができる。また、上記の磁心2は、100kHzにおける透磁率が50以上200以下であるので、コイル3の巻回数を少なくしてインダクタ1を小型化でき、これによりフィルタ6若しくは増幅装置4を小型化することができる。

【0127】そして、上記の増幅装置4は、低損失で波 形歪みの小さな上記のフィルタ6を備えているので、増 幅装置4自体の発熱を小さくできるとともに、波形歪み が小さくできるため増幅率を更に増加しても歪みの小さ な良質な出力電流を供給することができる。

[0128]

【突施例】(突験例1:FeAlGaPCBSi系合金の物性)Fe、Al及びGaと、Fe-C合金、Fe-P合金、B及びSiを原料としてそれぞれ所定①秤①し、減圧Ar努囲気下においてこれらの原料を高周波瞬導加熱装置で溶解し、Fe70Al5Ga2P9.65C5.75B4.6

Si3なる組成のインゴットを作製した。このインゴットをるつぼ内に入れて溶解し、減圧Ar雰囲気下でるつぼのノズルから回転しているロールに溶湯を吹き出して急冷する単ロール法により、幅15mm、厚さ20μmの非晶質相組織の金属ガラス合金の薄帯を得た。これをローターミルを用いて大気中で粉砕し、45~300μmの範囲の粒径のものをふるいで分級し、これを金属ガラス合金の粉末とした。

【0129】図6には、Fe70Al5Ga2P9.65C5.75B4.6Si3なる組成の実施例1の金属ガラス合金の粉末のX線回折測定の結果を示す。図6から明らかなように、実施例1のX線回折パターンは、ブロードなパターンを示しており、非晶質相を主体とする組織を有していることがわかる。

【 0 1 3 0 】図 7 には、実施例 1 の金属ガラス合金の粉末のD S C 曲線(Differential scanning caloriemete r: 示差走査熱量測定による曲線(測定時の昇温速度: 4 0 K / 分))を示す。図 7 から、実施例 1 の金属ガラス合金の粉末については、T x = 8 0 5 K (5 3 2 ℃)、T g = 7 4 5 K (4 7 2 ℃)、Δ T x = 6 0 K が求められる。このように、F e 70 A 1 5 G a 2 P 9.65 C 5.75 B 4.6 S i 3 なる組成の金属ガラス合金粉末には結晶化温

度 T x 以下の広い温度領域で過冷却液体域が存在し、Δ T x = T x - T g で示される値が大きく、この系の組成の 合金が高いアモルファス形成能と高い熱的安定性を有す ることがわかる。

【0131】(実験例2:FeA!PCBSi系合金の物性)Fe及びA!と、Fe-C合金、Fe-P合金、B及びSiを原料としたこと以外は実験例1と同様にして、種々の組成の実施例2~実施例15の金属ガラス合金の薄帯を得た。

【 O 1 3 2 】 実施例 2 ~ 1 5 の金属ガラス合金の薄帯の組成を表 1 に示す。実施例 2 ~ 1 5 の組成は、Fe 70 A 1 7 (P0.76Si 0.24) v1 Cz1 Bw1 (但し、v1は 1 0.35~14.95原子%、z1は 1.15~8.05原子%、w1は 2.3~9.2原子%である)のものであった。また、実施例 2 ~ 1 5 の金属ガラス合金について、X線回折により結晶構造の解析を行った。結果を図8に示す。更に、実施例 5 及び実施例 1 5 の金属ガラス合金について、D S C 測定を行った。D S C 測定の際の昇温速度は 4 0 K / 分であった。結果を図9 及び表 2 に示す。

【0133】

	合金組成
	Fe70Al7 (P0.76 Si0.24)v1Cz1Bw1
実施例2	Fe70Al7 (P0.76 Si0.24)12.65 C5.75B4.6
実施例3	Fe70Al7 (P0.76 Si0.24)10.35 C8.05B4.6
実施例4	Fe70Al7 (Pa76 Sia24)10.35 C5.75B6.9
実施例5	Fe70Al7 (P0.76 Si0.24)12.65 C3.45B6.9
実施例6	Fe70Al7 (P0.76 Si0.24)14.95 C3.45B4.6
実施例7	Fe70Al7 (P0.76 Si0.24)14.95 C5.75B2.3
実施例8	Fe70Al7 (Pa76 Si0.24)12.65 C8.05B2.3
実施例9	Fe70Al7 (P0.76 Si0.24)10.350C3.45B9.2
実施例10	Fe70Al7 (Pa76 Sia.24)12.65 C1.15B9.2
実施例11	Fe70Al7 (Pa76 Sia24)14.95 C1.15B6.9
実施例12	Fe70Al7 (Pa76 Sia24)12.65 C4.6 B5.75
実施例13	Fe70Al7 (P0.76 Si0.24)11.5 C4.6 B6.9
実施例14	Fe70Al7 (P0.76 Si0.24)11.5 C3.45B8.05
実施例15	Fe70Al7 (P0.76 Sio.24)12.65 C2.3 B8.05

【0134】 【表2】

	Tg(K)	Tx(K)	Δ Tx(K)
実施例 5	758	821	63
実施例15	760	822	61

【0135】図8から明らかなように、実施例2~15のX線回折パターンはブロードなパターンを示しており、非晶質相を主体とする組織を有していることがわかる。

【0136】また、図9及び表2から明らかなように、

実施例 5のDS C 曲線には、758 Kにガラス遷移温度 T gが認められ、821 Kに結晶化開始温度 T xが観察され、 Δ T x = T x - T g で示される過冷却液体の温度間隔 Δ T x は 63 K であった。また、実施例 15 の金属ガラス合金のDS C 曲線には、760 Kにガラス遷移温度 T gが認められ、821 Kに結晶化開始温度 T xが観察され、過冷却液体の温度間隔 Δ T x は 61 K であった。

【O 1 3 7】以上のことから、実施例 $2 \sim 1$ 5 の金属がラス合金には、結晶化温度 T x以下の広い温度領域で過冷却液体域が存在し、 ΔT x = T x - T g τ で示される値が大きいことが分かる。従って F e 、G a 、F 、C 、B お

よびSiからなる合金であっても、20K以上の広い過冷却液体の温度間隔ATxを示すことがわかる。

【〇138】次に、実施例2~15の全ての金属ガラス合金薄帯についてDSC測定を行い、ガラス遷移温度Tg、結晶化開始温度Txをそれそれ測定するとともに、過冷却液体の温度間隔ΔTxを求めた。なお、DSC測定の際の昇温速度は40K/分であった。図10にガラス遷移温度Tgの組成依存性、図11に結晶化開始温度Txの組成依存性、図12に過冷却液体の温度間隔ΔTxの組成依存性をそれぞれ示す。

【0139】なお、図10~図12の三角組成図中のプロットの添え数字は、ガラス遷移温度 Tg、結晶化開始温度 Tx、過冷却液体の温度間隔 Δ Txの値をそれぞれ示す。また、図10~図12の三角組成図には等温線を記入しており、この等温線の近傍に付した数字はこれらの等温線の値を示す。

【0140】図10よりガラス遷移温度Tgは、B量の増加及びC量の減少伴って上昇しており、Tgの760 Kの等温線がBの組成比w1の4.1~8.05原子%の範囲、かつCの組成比z1の2.3~5.1原子%の範囲にある。また図11より結晶化開始温度Txは、Tgと同様にB量の増加及びC量の減少に伴って上昇し、Txの815Kの等温線がBの組成比w1の4~8.4原子

%の範囲、かつCの組成比z1の0. 3 \sim 5原子%の範囲にある。そして図1zに示すように、図1zに示すz0z0 (図1z1)に示すz1z2 (図1z1)に示すz2 (図1z1)に示すz3 (図1z2)に囲まれた範囲が、z4 (図1z4)に囲まれた範囲が、z5 (図1z4)に囲まれた範囲内で過冷却液体の温度間隔z6 (図1z4)によるでは、特にz6 (図1z6)になるにより、特にz7 (z6)になるにより、特にz7 (z7 (z8)になるによがわかる。

【0141】(実験例3:FeGaPCBSi系合金の物性)Fe及びGaと、Fe-C合金、Fe-P合金、B及びSiを原料としたこと以外は実験例1と同様にして、種々の組成の実施例16~実施例32の金属ガラス合金の薄帯を得た。

【0142】実施例16~実施例32の金属ガラス合金 薄帯の組成を表3に示す。また、実施例16~32について、X線回折法により結晶構造の解析を行った。結果 を図13及び図14に示す。更に、実施例29の金属ガラス合金について、DSC測定を行った。DSC測定の 昇温速度は40K/分とした。結果を図15及び表3に示す。

【0143】 【表3】

	合金組成	Tg(K)	Tx(K)	ΔTx(K)
実施例16	Fe70Ga7P8.89C5.57B5.09Si3.45	730	790	47
実施例17	Fe70Ga7P6.11C9.13B4.45Si3.31	731	769	38
実施例18	Fe70Ga7P7.94C5.57B6.41Si3.08	752	791	51
実施例19	Fe70Ga7P10.64C3.14 B5.09Si4.13	739	800	58
実施例20	Fe70Ga7P10.55C5.57B2.79Si4.09	732	769	39
実施例21	Fe70Ga7P8.46C9.08B1.64Si3.82	722	749	28
実施例22	Fe70Ga7P7.91C3.38B8.12Si3.59	750	804	54
実施例23	Fe70Ga7P8.89C0.97B9.69Si3.45	750	805	55
実施例24	Fe70Ga7P10.49C0.97B7.39Si4.15	. 752	801	49
実施例25	Fe70Ga7P122C0.97B5.09Si4.74	753	784	46
実施例26	Fe70Ga7P122C3.27B2.79Si4.74	750	798	48
実施例27	Fe70Ga7P8.89C2.12B8.54Si3.45	746	803	57
実施例28	Fe70Ga7P10.52C2.37B6.03Si4.08	749	802	53
実施例29	Fe70Ga7P11.61C3.27B6.24Si1.88	740	800	60
実施例30	Fe70Ga7P6.05C4.68B8.34Si3.93	752	798	46
実施例31	Fe70Ga7P5.36C3.53B10.64Si3.47	765	808	43.
実施例32	Fe70Ga7P5.65C1.23B12.46S13.66	767	808	41

【0144】図13及び図14から明らかなように、実施例16~32のX線回折パターンはいずれもブロードなパターンを示しており、非晶質相を主体とする組織を有していることがわかる。

【0145】また、図15及び表2から明らかなように、実施例29のDSC曲線には、740Kにガラス遷移温度Tgが認められ、800Kに結晶化開始温度Txが

【0146】以上のことから、実施例29の金属ガラス

合金は、AIが添加されていないにもかかわらず、結晶化温度Tx以下の広い温度領域で過冷却液体域が存在し、ΔTx=Tx-Tgで示される値が大きく、金属ガラスであることが分かる。また実施例29の金属ガラス合金のTg/Tmは実施例1の金属ガラス合金のTg/Tmの値は合金の非晶質形成能を示す指標であることから、実施例29の金属ガラス合金はAIが添加されていないにもかかわらず、実施例1の金属ガラス合金とほぼ同等の高い非晶質形成能を有していることが分かる。従ってFe、Ga、P、C、BおよびSiからなる合金であっても、非晶質形成能が高く、20K以上の広い過冷却液体の温度間隔ΔTxを示すことがわかる。

【0147】次に、得られた全ての金属ガラス合金について、DSC測定を行い、ガラス遷移温度Tg、結晶化開始温度Txを測定するとともに、過冷却液体の温度間隔 ΔTxを求めた。DSC測定の昇温速度は40K/分とした。図16にガラス遷移温度Tgの組成依存性、図17に結晶化開始温度Txの組成依存性、図18に過冷却液体の温度間隔 ΔTxの組成依存性をそれぞれ示す。また、表3に、各実施例の金属ガラス合金のガラス遷移温度Tg、結晶化開始温度Tx、過冷却液体の温度間隔 ΔTxを示す。

【0148】なお、図16~図18の三角組成図中のプロットの添え数字は、ガラス遷移温度Tg、結晶化開始温度Tx、過冷却液体の温度間隔ΔTxの値をそれぞれ示す。また、図16~図18の三角組成図には、等温線若しくは等値線を記入しており、これらの線の近傍に付した数字は等温線若しくは等高線の値を示す。

【0149】図16よりガラス遷移温度Tgは、Bの増加に伴って上昇しており、Tgの750Kの等温線がBの組成比w2の1.5~10.5原子%の範囲にある。また図17より結晶化開始温度Txは、Tgの場合と同様にBの増加に伴って上昇しており、Txの800Kの等

温線がBの組成比w2の4. $5\sim10$. 5原子%の範囲にある。そして図18に示すように、図16に示すTgの750Kの等温線と、図17に示すTxの800Kの等温線とに囲まれた範囲が、 ΔTx の50Kの等温線の範囲に相当し、この範囲内で過冷却液体の温度間隔 ΔTx が50Kを越えていることがわかる。

【0150】(実験例4:FeNiCoMB系合金の物性) Fe、Co、Ni、Hf 及びNbと、Bを原料としたこと以外は実験例1とほぼ同様にして、実施例33~実施例36の(Fe1-a3-b3Coa3Nib3)70Zr10B20なる組成の金属ガラス合金の薄帯を得た。また、上記と同様にしてFe56Co7Ni7Hf8Nb2B20なる組成の金属ガラス合金薄帯を得た。この薄帯をローターミルにより大気中で粉砕し、45~150 μ mの粒径のものを分級し、これを実施例37の金属ガラス合金粉末とした。

【0151】図19には、実施例37の金属ガラス合金 粉末のX線回折の結果を示す。図19から明らかなように、この金属ガラス合金粉末のX線回折パターンはブロードなパターンを示し、非晶質相を主体とする組織であることがわかる。また図20には、実施例37の金属ガラス合金粉末のDSC曲線(測定時の昇温速度:40K/分)を示す。図20から明らかなように、この組成の金属ガラス合金においては、Tx=868K、Tg=803K、ΔTx=65Kとなっている。

【O152】また図21には、実施例 $33\sim360$ (Fel-a3-b3Coa3Nib3)70Zr10B20なる組成の金属ガラス合金のTgに対するFeとCoとNiの組成依存性を示し、図22には同組成系における Δ Tx(=Tx-Tg)の値に対するFeとCoとNiの組成依存性を示す。また表4に、実施例 $33\sim360\Delta$ Txを示す。

[0153]

【表4】

	合金組成	ΔΤχ
実施例33	Fe60C03Ni7Zr10B20	68K
実施例34	Fes6Co7Ni7ZF10B20	68K
実施例35	Fe49Co7Ni14Zr10B20	68K
実施例36	Fe35C014Ni21Zr10B20	68K

【0154】図22から明らかなように、(Fe 1-a3-b3Coa3Nib3)70Zr10B20なる組成の全ての範囲においてΔTxの値は25Kを超えている。また、図21からわかるようにTgの値に関し、Coを7原子%程度から50原子%程度の範囲で増加させることでTgが単調に増加することも明らかになった。一方、ΔTxに関し、図22に示すようにFeを多く含む組成系において大きな値になっていることがわかり、ΔTxを60K以上にするには、Co含有量を3原子%以上、20原

子%以下、Ni含有量を3原子%以上、30原子%以下にすることが好ましいことがわかる。また表4から明らかなように、実施例33~36の金属ガラス合金は、いずれもΔTxが68Kであり、60Kを越えていることが判る。

【 O 1 5 5 】なお、(F e 1-a3-b3 C o a3 N i b3)70 Z r 10 B 20 なる組成式において C o 含有量を 3 原子%以上にするには、(F e 1-a3-b3 C o a3 N i b3)を 7 O 原子%とするので、 C o の組成比 a 3が O. O 4 2 以上、 C o

含有量を20原子%以下にするには、Coの組成比a3が0.29以下となる。また、同様にNi含有量を3原子%以上にするにはNiの組成比b3が0.042以上、30原子%以下にするには、Niの組成比b3が0.43以下となる。

【〇156】このように、上記組成の金属ガラス合金は、非晶質相を主相とするとともに結晶化温度Tx以下の広い温度領域で過冷却液体域が存在し、ΔTx=Tx-Tgで示される値が大きく、この系の組成の合金が高いアモルファス形成能と高い熱的安定性を有することがわかる。

【 0 1 5 7 】以上、実験例 1 ~実験例 4 の結果より、本 発明に係る金属ガラス合金は、いずれも非晶質相を主相 とする組織からなり、2 0 K以上、組成によっては6 0 K以上の過冷却液体の温度間隔 Δ Txを有することが分 かる。

【 0 1 5 8 】 (実験例 5 : 金属ガラス合金の磁気特性) 実験例 1 とほぼ同様にして、種々の組成の金属ガラス合金薄帯を得た。次にこれらの薄帯を、ローターミルを用いて大気中で粉砕し、45~150μmの範囲の粒径のものをふるいで分級し、これらを実施例 3 8 ~ 4 1 の金属ガラス合金の粉末とした。

【0159】また、Fe及びAIと、Fe-C合金、Fe-P合金、B及びSiを原料としてそれぞれ所定量秤量し、減圧Ar雰囲気下においてこれらの原料を高周波誘導加熱装置で溶解し、種々の組成のインゴットを作製した。次に溶湯るつぼ及びチャンバを主体として構成される高圧ガス噴霧装置を用意し、前配のインゴットをで製る高圧ガス噴霧装置を用意し、前配のインゴットをで製るの高圧ガス噴霧装置を用意し、前配のインゴットをで製るの高圧ガス噴霧装置の溶湯るつぼ内に入れて溶解し、溶湯るつぼ先端の溶湯ノズルからチャンバに向けて、るつぼ内の合金溶湯を高圧アルゴンガスと共に噴射して霧状にし、チャンバ内でこの霧状の合金溶湯を急冷させることにより、粒径が1~150μmの範囲の金属ガラス合金粉末を得た。これを実施例42の金属ガラス合金の粉末とした。

【0160】実施例38~41の金属ガラス合金粉末9 7重量部に対し、絶縁材としてステアリン酸カルシウム 1重量部と水ガラス2重量部とを混合して混合物とした。この混合物を大気中200℃で1時間乾燥して解砕した。この混合物をWC製の金型に充填した後、放電プ ラズマ焼結装置を用い、 6.6×10^{-3} Paの減圧雰囲気中で、混合物を成形圧力Ps600MPaまたは1500MPaまで加圧するとともに、通電装置からパルス電流を通電して混合物を室温(298 K(25 $^{\circ}$ C))から373 K(100 $^{\circ}$ C)、473 K(200 $^{\circ}$ C)または573 K(300 $^{\circ}$ C)の成形温度 Tsまで加熱した。そして、混合物に前配の成形圧力Psを印加したままで前配の成形温度 Tsを約8分間保持することにより圧縮成形を行った。そして、昇温速度 5 K/分で673 Kまたは703 Kの熱処理温度まで加熱して60分間熱処理することにより、実施例38~41の磁心を製造した。これらの磁心の形状は外径12 mm、内径6 mm、厚さ2mmの円環状であった。

【0161】また、実施例42の金属ガラス合金粉末98里量部に2里量部のシリコーンエラストマーを混合して混合物とし、この混合物に対して、成形圧力Psを1500MPa、成形温度Tsを室温(298K(25℃))、昇温速度40K/分で(683K(410℃))まで加熱して60分間熱処理する条件としたこと以外は上記実施例38~41と同様にして、実施例42の磁心を製造した。この磁心の形状は外径12mm、内径6mm、厚さ2mmの円環状であった。

(W) は磁束密度 B m O . 1 T の条件で測定した。 【 O 1 6 3 】また、比較例 1 として、カーボニル鉄圧粉 磁心の振幅透磁率の変化率(Δ μ')とコアロスを測定

した。結果を図23~図26に併せて示す。

[0164]

【表5】

	AA###	成形温度	成形圧力
	合金組成	Ts(K)	Ps(MPa)
実施例38	Fe70Al5Ga2P9.65C5.75B4.6Si3	298	1500
実施例39	Fe70Al5Ga2P9.65C5.75B4.6Si3	373	1500
実施例40	FenoAlsGa2P9.65C5.75B4.6Si3	473	1500
実施例41	Fe77Al2.14Ga0.86P8.36C3B6Si2.64	573	600
実施例42	Fe77AliP923C22B7.7Si2.87	298	1500

	Tg(K)	Tx(K)	ΔΤχ(Κ)
実施例42	497	535	38

【0166】まず、表6に示すように、FeAIPCBSiからなる突施例42の合金は、Tgが497K、Txが535K、 Δ Txが38Kを示しており、金属ガラス合金であることがわかる。次に図23に示すように、突施例38~41の磁心はいずれも、2000A/mの磁界における変化率($\Delta\mu$ ')が一5%程度であり、これは±10%の範囲内であり、振幅透磁率が磁界変化に対してほぼ一定であることがわかる。また図24に示すように、実施例42の磁心は、2000A/mの磁界における変化率($\Delta\mu$ ')が一1%程度であり、磁界変化に対する振幅透磁率の変化が極めて安定であることがわかる。一方、比較例1の磁心は、2000A/mの磁界における変化率($\Delta\mu$ ')が+10%を越えており、振幅透磁率が磁界変化に対して大きく変化していることがわかる。

【0167】次に図25に示すように、突施例38~4 1の磁心は、周波数10kHzにおいて3~25kWm ⁻³程度の比較的小さなコアロスを示しており、特に突施 例38の磁心は、10kHzにおいて3kWm⁻³という 極めて低いコアロスを示している。また、周波数100 kHzでは、突施例38~41のいずれの磁心も500 ~800kWm⁻³程度のコアロス(W)を示している。 また図26に示すように、交施例42の磁心は、周波数 20kHzにおいて9kWm⁻³程度のコアロスを示して おり、周波数100kHzにおいて約300kWm⁻³程 度、200kHzにおいて約580kWm⁻³程度のコア ロス(W)を示している。一方、比較例1の磁心のコア ロス (W) は、周波数10kHzで250kWm⁻³、周 波数100kHzで2000kWm-3であり、突施例3 8~41もしくは突施例42と比較してコアロス(W) がかなり高くなっている。

【0168】従って、本発明に係る金属ガラス合金からなる磁心は、従来のカーボニル鉄圧粉磁心よりもコアロスが小さく、振幅透磁率が磁界変化に対して一定であることが分かる。従って本発明に係る磁心を、フィルタの磁心として用いた場合は、損失が小さく、発熱型が小さく、かつ平滑化後の波形の歪みが少ないフィルタを構成することができる。

[0169]

【発明の効果】以上、詳細に説明したように、本発明のフィルタは、コンデンサと、磁心に巻回されたコイルからなるインダクタを具備してなり、前配磁心が、過冷却液体の温度間隔ムTxを有する金属ガラス合金の粉末と絶縁材とが混合されて成形されてなるものであり、この金属ガラス合金は結晶化温度よりも十分低い温度の熱処理により磁心の内部応力を綴和あるいは除去できるの

で、コアロスが低く、振幅透磁率が磁界変化に対してほぼ一定である磁心を構成することができ、フィルタの損失を小さくして発熱を小さくし、かつ波形の歪みを小さくできる。

【0170】また、比抵抗が1.5μΩ・m以上の金属ガラス合金を用いているので、高周波における金属ガラス合金粒子内の渦電流損失が低減され、よりコアロスが低い磁心を構成することができ、フィルタの損失をより小さくできる。また、絶縁材によって磁心全体の比抵抗を高くすることができ、渦電流損失をより低減して磁心のコアロスをさらに低くすることが可能になるとともに、高周波数帯域での透磁率の低下を抑制することが可能になり、フィルタの高周波特性を向上できる。

【0171】また、200A/mの磁界における振幅透磁率を基準としたときの2000A/mの磁界における前配磁心の振幅透磁率の変化率が±10%以内であるので、フィルタの出力波形が歪むことがなく、このフィルタをパルス幅変調増幅器の平滑回路として好適に用いることができる。また、前配磁心の100kHzにおける透磁率が50以上200以下であるので、コイルの巻回数を少なくしてインダクタを小型化でき、フィルタを小型化できる。

【O 1 7 2】また、本発明に係るフィルタの磁心は、所定の組成の金周ガラス合金からなり、従来のカーボニル鉄圧粉磁心よりもコアロスが小さく、振幅透磁率が磁界変化に対して一定であるので、フィルタの損失をより小さくして発熱量を低減し、かつ平滑化後の波形の歪みをより小さくできる。

【0173】また、本発明の増幅装置は、パルス電流を出力する増幅器と、該増幅器の出力側に接続されて前記パルス電流を平滑化するフィルタとからなり、前記フィルタは、コンデンサと、前記の磁心に巻回されたコイルからなるインダクタとを具備してなるので、低損失で発熱が小さく、波形歪みの小さな増幅装置を構成することができる。

【図面の簡単な説明】

【図1】 本発明の突施形態であるフィルタに用いられるインダクタの一例を示す斜視図である。

【図2】 本発明の突施形態である増幅装置の回路図である。

【図3】 図2に示す増幅装置の入力電流の波形を示す 図である。

【図4】 図2に示す本発明の増幅装置に備えられたフィルタの入力電流の波形を示す図である。

【図5】 図2に示す増幅装置の出力電流の波形を示す 図である。

【図6】 Fe70A 15Ge2P9.65C5.75B4.6Si3なる組成の突施例1の金属ガラス合金の粉末のX線回折結果を示す図である。

線を示す図である。

【図8】 Fe70A I 7 (P0.76S i 0.24) v1 Cz1 Bw1 なる組成の実施例 2~15の金属ガラス合金薄帯のX線回折測定の結果を示す図である。

【図9】 実施例5及び実施例15の金属ガラス合金薄帯のDSC曲線を示す図である。

【図10】 実施例2~15の金属ガラス合金薄帯のガラス遷移温度Tgの組成依存性を示す図である。

【図11】 実施例2~15の金属ガラス合金薄帯の結晶化開始温度Txの組成依存性を示す図である。

【図12】 実施例2~15の金属ガラス合金薄帯の過冷却液体の温度間隔ΔTxの組成依存性を示す図である。

【図13】 実施例16~23の金属ガラス合金薄帯の X線回折測定の結果を示す図である。

【図14】 実施例24~32金属ガラス合金薄帯のX 線回折測定の結果を示す図である。

【図15】 実施例29の金属ガラス合金薄帯のDSC 曲線を示す図である。

【図16】 実施例16~32の金属ガラス合金薄帯のガラス遷移温度Tgの組成依存性を示す図である。

【図17】 実施例16~32の金属ガラス合金薄帯の結晶化開始温度Txの組成依存性を示す図である。

【図18】 実施例16~32の金属ガラス合金薄帯の 過冷却液体の温度間隔△Txの組成依存性を示す図であ る。

【図19】 Fe56Co7Ni7Hf8Nb2B20なる組成

の実施例37の金属ガラス合金粉末のX線回折測定の結果を示す図である。

【図20】 実施例37の金属ガラス合金粉末のDSC 曲線を示す図である。

【図21】 実施例33~36の金属ガラス合金薄帯のガラス遷移温度Tgの組成依存性を示す図である。

【図22】 実施例33~36の金属ガラス合金薄帯の 過冷却液体の温度間隔ΔTxの組成依存性を示す図であ る。

【図23】 実施例38~41及び比較例1の圧粉磁心の振幅透磁率の変化率(Δμ')の磁界依存性を示す図である。

【図24】 実施例42の圧粉磁心の振幅透磁率の変化率 (Δμ') の磁界依存性を示す図である。

【図25】 実施例38~41及び比較例1の圧粉磁心のコアロス(W)の周波数依存性を示す図である。

【図26】 実施例42及び比較例1の圧粉磁心のコアロス(W)の周波数依存性を示す図である。

【符号の説明】

- 1 インダクタ
- 2 磁心(圧粉磁心)
- 3 コイル
- 4 増幅装置
- 5 増幅器
- 6 フィルタ
- 7 コンデンサ

【図2】

V₁

[図3]

【図4】

9.2 11.5 13.8 16.5

(P+Si),v₂ (原子%)

[図18]

【図21】

【図22】

