Theoretische Physik II Elektrodynamik

Vorlesung von Prof. Dr. Michael Thoss im Wintersemester 2018

Andréz Gockel Patrick Munnich Daniil Aktanka

15.10.2018

Inhaltsverzeichnis

1	Gru	ndbegriffe	2		
	Elek	Elektrostatik			
	2.1	Einführung	4		
	2.2	Integralsätze	5		
	2.3	Maxwell-Gleichungen der Elektrostatik	7		
	2.4	$Incomplete/Unassigned \dots \dots$	8		

Kapitel 1

Grundbegriffe

Ladung

diskrete Ladungsverteilung
$$Q = \sum_{i=1}^n q_i$$
 kontinuierliche Ladungsverteilung
$$Q = \int_V \rho(\boldsymbol{r}) \; \mathrm{d}^3 r$$
 Punktladung
$$\rho(\boldsymbol{r}) = q \delta(\boldsymbol{r} - \boldsymbol{r}_0)$$

$$n \; \mathrm{Punktladungen} \quad \rho(\boldsymbol{r}') = \sum_{j=1}^n q_j \, \delta(\boldsymbol{r}' - \boldsymbol{r}_j)$$

Coulomb'sches Gesetz

zwei Punktladungen
$$m{F}_{12} = rac{1}{4\pi\varepsilon_0} \, q_1 q_2 \, rac{m{r}_1 - m{r}_2}{|m{r}_1 - m{r}_2|^3} = -m{F}_{21}$$
 n Punktladungen $m{F}_1 = rac{1}{4\pi\varepsilon_0} \, q_1 \sum_{j=2}^n q_j \, rac{m{r} - m{r}_j}{|m{r} - m{r}_j|^3}$
Beziehung zur E-Feld $m{F}(m{r}) = q \, m{E}(m{r})$
Beziehung zur Potential $m{F}(m{r}) = -m{\nabla} \, q \, \varphi(m{r})$

Elektrisches Feld

im bel. Raumpunkt
$$\boldsymbol{E}(\boldsymbol{r}) = \frac{q}{4\pi\varepsilon_0} \frac{\boldsymbol{r} - \boldsymbol{r}_0}{|\boldsymbol{r} - \boldsymbol{r}_0|^3}$$
diskrete Ladungsverteilung $\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=2}^n q_j \frac{\boldsymbol{r} - \boldsymbol{r}_j}{|\boldsymbol{r} - \boldsymbol{r}_j|^3}$
kontinuierliche Ladungsverteilung $\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon_0} \int \rho(\boldsymbol{r}') \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} \, \mathrm{d}^3r'$

$$\downarrow \frac{\boldsymbol{r} - \boldsymbol{r}'}{|\boldsymbol{r} - \boldsymbol{r}'|^3} = -\nabla_r \frac{1}{|\boldsymbol{r} - \boldsymbol{r}'|}$$
Beziehung zur Potential $\boldsymbol{E}(\boldsymbol{r}) = -\nabla \varphi(\boldsymbol{r})$

$$\Longrightarrow \boldsymbol{\nabla} \times q \boldsymbol{E} = 0 \qquad \text{d.h., die Coulomb-Kraft ist konservativ}$$

Skalare Elektrische Potential

im bel. Raumpunkt kontinuierlich
$$\varphi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r'$$

im bel. Raumpunkt diskret
$$\varphi(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{j=1}^n \frac{q_j}{|\mathbf{r} - \mathbf{r}_j|}$$

Spannung / Potentialdifferenz
$$U(m{r},\,m{r}_0)=arphi(m{r})-arphi(m{r}_0)=-\int_{m{r}_0}^{m{r}}m{E}(m{r}')\;\mathrm{d}m{r}'$$

Operator Nomenklatur

$$ext{div}\, oldsymbol{A} \,=\, oldsymbol{
abla} \cdot oldsymbol{A}$$
 grad $oldsymbol{A} \,=\, oldsymbol{
abla} A$ (eng. curl) rot $oldsymbol{A} \,=\, oldsymbol{
abla} imes oldsymbol{A}$

Produktformeln

f, g sind skalare Felder, F, G sind vektor Felder:

$$\nabla(fg) = f\nabla(g) + g\nabla(f)$$

$$\nabla \cdot (fG) = f\nabla \cdot (G) + G \cdot \nabla(f)$$

$$\nabla(F \times G) = G \cdot \nabla \times (F) - F \cdot \nabla \times (G)$$

$$\nabla \times (fG) = f\nabla \times (G) - G \times \nabla$$

Identitäten

$$\nabla \times (\nabla F) = \nabla(\nabla \cdot F) - \Delta F$$
$$\nabla \times (\nabla f) = 0$$
$$\nabla \cdot (\nabla \times F) = 0$$
$$\nabla \times (\mathbf{a} \times \nabla f) = \mathbf{a} \Delta f - \nabla(\mathbf{a} \cdot \nabla f)$$

Gradienten eines skalaren Feldes

$$\nabla g(\boldsymbol{r}) = \sum_{i} \boldsymbol{e}_{i} \frac{1}{\left|\frac{\partial \boldsymbol{r}}{\partial u_{i}}\right|} \frac{\partial}{\partial u_{i}} g(\boldsymbol{r})$$

Kugelkoordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \theta \cos \varphi \\ r \sin \theta \sin \varphi \\ r \cos \theta \end{pmatrix}, \qquad \int_{-\infty}^{+\infty} f(\mathbf{r}) \, d\mathbf{r} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} f(r, \theta, \varphi) r^{2} \sin \theta \, dr d\theta d\varphi$$

wobei:

$$r \in [0, \infty), \quad \Theta \in [0, \pi], \quad \varphi \in [0, 2\pi)$$

Kapitel 2

Elektrostatik

2.1 Einführung

Dirac'sche Delta-Funktion

Definition

$$\int_{V} \delta(\mathbf{r} - \mathbf{r}_{0}) d^{3}\mathbf{r} := \begin{cases} 1, & r_{0} \in V \\ 0, & \text{sonst} \end{cases}$$
$$\delta(\mathbf{r} - \mathbf{r}_{0}) = 0 \quad \forall \mathbf{r} \neq \mathbf{r}_{0}$$

Bemerkung: Die δ -Funktion ist keine Funktion im üblichen mathematischen Sinne. Man bezeichnet sie deshalb als **uneigentliche Funktion** oder als **Distribution**. Heuristisch:

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

Formeln

$$\int_{a}^{b} f(x) \, \delta(x - x_0) \, dx = \begin{cases} f(x_0) \,, & a < x_0 < b \\ \frac{1}{2} f(x_0) \,, & x_0 = a \lor b \\ 0 & \text{sonst} \end{cases}$$

$$\text{``} f(x) \, \delta'(x - x_0) = -f'(x) \, \delta(x - x_0) \,\text{``} \qquad \text{(heuristisch)}$$

$$\delta(x - x_0) = \frac{d}{dx} \Theta(x - x_0) \qquad \text{(Θ sei die Stufenfunktion)}$$

$$\delta(\mathbf{r} - \mathbf{r}') = -\frac{1}{4\pi} \mathbf{\Delta} \, \frac{1}{|\mathbf{r} - \mathbf{r}'|}$$

Mehrdimensionale Delta-Funktion

Kartesisch (x,y,z)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \delta(x-x_0)\,\delta(y-y_0)\,\delta(z-z_0)$$
Kugel (r, \theta, \varphi)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \frac{1}{r_0^2\sin\theta_0}\,\delta(r-r_0)\,\delta(\theta-\theta_0)\,\delta(\varphi-\varphi_0)$$
Zylinder (\rho, \phi, z)
$$\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \frac{1}{\rho_0}\,\delta(\rho-\rho_0)\,\delta(\varphi-\varphi_0)\,\delta(z-z_0)$$

2.2 Integralsätze

Einleitung: Fluss

Definition Sei $a(r) = (a_1(r), a_2(r), a_3(r))$ ein Vektorfeld, V ein Volumen und S(V) die Oberfläche. Dann heisst $\Phi_S(a)$ der Fluss (eng. flux) von a(r) durch die Fläche S wenn es gilt:

$$\Phi_S(m{a}) \, = \, \int_S \, m{a}(m{r}) \; \mathrm{d}m{f}$$

Geschlossene Fläche Das Oberflächenintegral über eine geschlossene Fläche wird durch ein spezielles Integralzeichen symbolisiert:

$$\Phi_S(\boldsymbol{a}) = \oint_S \boldsymbol{a}(\boldsymbol{r}) \, \mathrm{d} \boldsymbol{f}$$

Satz von Stokes

Bedeutung Ganz allgemein gesagt handelt es sich um einen sehr grundlegenden Satz über die Integration von Differentialformen. Es geht darum, n-dimensionale Volumenintegrale über das Innere in (n-1)-dimensionale Randintegrale über die Oberfläche des Volumenstücks umzuwandeln. Für uns sind die Spezialfälle am wichtigsten, bei denen der Gauß'sche Satz und der Kelvin-Stokes'sche Satz (Rotationssatz).

Formel

$$\int_F \boldsymbol{\nabla} \times \boldsymbol{a} \ \mathrm{d}\boldsymbol{f} = \int_{\partial F} \boldsymbol{a} \ \mathrm{d}\boldsymbol{r}$$

Gauß'sche Satz

(eng. Divergence Theorem)

Definition Der elektrische Nettofluss Φ durch eine hypothetische geschlossene Oberfläche S ist gleich $\frac{1}{\varepsilon_0}$ mal die elektrische Nettoladung Q innerhalb dieser geschlossenen Oberfläche.

Integrale Form

$$\Phi = \oint_{S} \boldsymbol{E} \, \mathrm{d}\boldsymbol{f} = \frac{Q}{\varepsilon_{0}}$$

Wobei Q die Gesamtladung innerhalb V ist.

Differentielle Form

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$

Wobei ρ die Gesamtladungsdichte (pro Einheit Volumen) ist.

Beziehung

$$\int_V \boldsymbol{\nabla} \cdot \boldsymbol{E} \, \mathrm{d}^3 r = \oint_S \boldsymbol{E} \, \mathrm{d} \boldsymbol{f}$$

Greensche Identitäten

$$\int_{V} \nabla g(\mathbf{r}) \cdot \nabla h(\mathbf{r}) + g(\mathbf{r}) \Delta h(\mathbf{r}) \, d^{3}r = \oint_{\partial V} g(\mathbf{r}) \nabla h(\mathbf{r}) \, d\mathbf{f}$$
$$\int_{V} g(\mathbf{r}) \Delta h(\mathbf{r}) g(\mathbf{r}) - h(\mathbf{r}) \Delta g(\mathbf{r}) \, d^{3}r = \oint_{\partial V} g(\mathbf{r}) \nabla h(\mathbf{r}) - h(\mathbf{r}) \nabla g(\mathbf{r}) \, d\mathbf{f}$$

2.3 Maxwell-Gleichungen der Elektrostatik

${\bf 2.4}\quad {\bf Incomplete/Unassigned}$

$$\begin{split} \boldsymbol{\nabla} \frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} &= -\boldsymbol{\nabla}' \frac{1}{|\boldsymbol{r}-\boldsymbol{r}'|} \\ \int_a^b u(x)v'(x)\mathrm{d}x &= [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)\mathrm{d}x \\ \text{Dirichlet Randwert problem} \qquad \Delta_r \mathcal{G}(\boldsymbol{r},\boldsymbol{r}') &= -\frac{1}{\varepsilon_0}\delta(\boldsymbol{r}-\boldsymbol{r}') \\ \mathcal{G}(\boldsymbol{r},\boldsymbol{r}') &= \frac{1}{q}\Phi(\boldsymbol{r}) \\ \text{Poisson-Gleichung} \qquad \Delta\Phi(\boldsymbol{r}) &= -\frac{1}{\varepsilon_0}\rho(\boldsymbol{r}) \\ H(x) &\coloneqq \int_{-\infty}^x \delta(s)\mathrm{d}s = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases} \end{split}$$

Literaturverzeichnis

[1] OnlineMathe das mathe-forum Elektrisches Potential einer homogen geladenen Kugel https://www.onlinemathe.de/forum/Potential-einer-homogen-geladenen-Kugel