College Algebra

Test 1 Form A

Spring 2015

Name:		
Date:		

READ THESE INSTRUCTIONS CAREFULLY!

- $\bullet\,$ Circle or underline your final written answer.
- Justify your reasoning and show your work.
- If you run out of space, make a note and continue your work on the back of a page.

Algebra Facts

Quadratic Formula

If a, b, and c are real numbers and $a \neq 0$, then the solutions of the equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Absolute Value

- If |E| = F, then either E = F or E = -F.
- If $|E| \le F$, then both $E \le F$ and $E \ge -F$.
- If $|E| \ge F$, then either $E \ge F$ or $E \le -F$.

Lines

The standard form equation of a line looks like

$$ax + by + c = 0,$$

where $a,\,b,\,$ and c are constants. The slope-intercept form is

$$y = mx + b$$
,

where m is the slope of the line and b the y-intercept. The point-slope form is

$$y - y_0 = m(x - x_0),$$

where m is the slope and (x_0, y_0) is any point on the line.

Parabolas

The parabola with horizontal directrix, vertex at (h, k), and signed focal length p is given by the equation

$$y = \frac{1}{4p}(x - h)^2 + k.$$

This parabola opens up if p > 0 and down if p < 0.

Ellipses

The ellipse with foci at $(\pm c, 0)$ and major axis 2a is given by the equation

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

where $b^2 = c^2 - a^2$.

Transformations

$$x \mapsto x - h$$
 Horizontal Shift $y \mapsto y - k$ Vertical Shift

$$x \mapsto \frac{1}{a}x$$
 Horizontal Stretch

$$y \mapsto \frac{1}{b}y$$
 Vertical Stretch

Solve the following equations.

1.
$$x^2 - 10x - 2 = 0$$

$$2. \ \frac{x}{x+2} + 3 = \frac{1}{x+2}$$

3.
$$|4x - 7| + 5 = -3$$

4.
$$x^2 - 6x + 5 = 0$$

5.
$$|-2x+3|+7=24$$

$$6. \ 3x^2 - 2x - 21 = 0$$

7.
$$x^3 + 2x^2 - 24x = 0$$

8.
$$|x^2 - 5x + 7| = 1$$

Solve the following inequalities and graph your solutions. Give your answers in interval notation.

$$9 \ |-5x-7|+13 \le 16$$

$$10 \ 2|5x-4|+7 \geq 23$$

Bonus. Solve. $2x^4 - 5x^2 - 25 = 0$