

Pruebas de acceso a enseñanzas universitarias oficiales de grado **Castilla y León**

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 3

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cinco ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de **calculadoras no programables** (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- a) Discutir según los valores del parámetro m el sistema de ecuaciones lineales

$$\begin{cases} x + y - z = 1 \\ 2x + y + mz = 4 \end{cases}$$
 (1 punto)

b) Resolverlo para m = 1.

(1 punto)

- **E2.-** a) Consideremos los vectores $\vec{u} = (1,1,a)$ y $\vec{v} = (1,-1,a)$. Calcular a para que sean perpendiculares. (0,5 puntos)
 - b) Calcular un vector unitario perpendicular a los vectores $\vec{p}=(1,2,3)$ y $\vec{q}=(1,-2,-3)$. (1,5 puntos)
- E3.- Dada la función $f(x) = \begin{cases} -x^2 2x, & \text{si } x < 0 \\ x^2 4x, & \text{si } x \ge 0 \end{cases}$
 - a) Probar que posee un máximo relativo en -1 y un mínimo relativo en 2. (1,4 puntos)
 - **b)** Probar que no posee extremo relativo en 0.

(0,6 puntos)

- E4.- a) Calcular $\lim_{x \to 0} \frac{\sin x}{e^x \cos x}$ (1 punto)
 - b) Calcular a, siendo a > 1, para que el área de la región del plano comprendida entre las gráficas de las funciones f(x) = x, g(x) = ax y x = 1 sea 1. (1 punto)
- E5- La temperatura del cuerpo humano sigue una distribución normal de media 37°C y desviación típica 0,5°C.
 - a) Calcular la probabilidad de que la temperatura de una persona esté comprendida entre 36°C y 38°C (1 punto)
 - **b)** Calcular la probabilidad de que la temperatura de una persona sea menor que 36,5°C. **(1 punto)**

OPCIÓN B

E1.- Dadas las matrices $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$, $M = \begin{pmatrix} x & 0 \\ y & 1 \\ x - y & 1 \end{pmatrix}$ y $N = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$, calcular los valores de x e y, para que el producto AM sea igual a la inversa de la matriz N. (2 puntos)

E2.- Hallar a y b para que los vectores (a, -1, 2) y (1, b, -2) sean perpendiculares y las dos primeras coordenadas de su producto vectorial sean iguales. (2 puntos)

E3.- a) Enunciar el teorema de Rolle.

(1 punto)

- b) Indicar un punto en el que la función $f(x) = 2x \sin x$ tome el valor 0, y demostrar (o bien usando el teorema del apartado previo o bien con algún otro razonamiento) que esta función sólo se anula en ese punto. (1 punto)
- E4.- Determínense los valores de a y de b para los cuales la función definida por:

$$f(x) = \begin{cases} a + \cos x, & \text{si } x \le 0 \\ x^2 - 2bx + 1, & \text{si } x > 0 \end{cases},$$

es continua y verifica que $\int_0^1 f(x)dx = \frac{1}{3}$.

(2 puntos)

E5.- En una empresa de alquiler de vehículos con conductor:

- Trabajan 50 conductores de menos de 45 años, de los cuales 15 hablan inglés.
- Trabajan 30 conductores de entre 45 y 55 años, de los cuales 6 hablan inglés.
- Trabajan 20 conductores de más de 55 años, de los cuales 3 hablan inglés.

Considerando los sucesos: A = "tener menos de 45 años", B = "tener entre 45 y 55 años", C = "tener más de 55 años" e I = "hablar inglés":

a) Calcular P(I/A), P(I/B) y P(I/C).

(0,9 puntos)

b) Si se elige al azar un conductor, y éste habla inglés, ¿cuál es la probabilidad de que tenga menos de 45 años? (1,1 puntos)

Distribución Normal
$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999