EE6310: Image and Video Processing Spring 2023

Binary Image Processing

Illusions

Definition

- Recall: A digital image is an array of sampled and quantized values
- For gray scale images, scale defined by $K=2^B$ levels and B bits
- For binary images, K = 2, B = 1

Binary Images Interpretation

- Common binary image meanings:
 - Intensity differentiator: low vs high
 - Presence or absence of object
 - Presence or absence of a property
- Why work with binary images?
 - Contain useful information: shape, structure, form
 - Compression (depending on application)

Generation

- Several ways to create binary images:
 - Specialised inputs: stylus (light pen), tablet etc.
 - Gray level thresholding:
 - Simple thresholding: pick a threshold T and make a binary decision
 - For an image I(i,j) with K levels, pick $0 \le T \le (K-1)$

$$J(i,j) = \begin{cases} 1, & \text{if } I(i,j) \ge T, \\ 0, & \text{otherwise} \end{cases}$$

Threshold Selection

- Why is threshold selection important?
 - Quality of binary image directly depends on it
 - Different thresholds may lead to different insights
 - It may not always be able to produce useful binary images for any threshold
- Questions:
 - Is thresholding useful/possible?
 - How do we pick a good threshold T?

Gray Level Image Histogram

- Histogram ${\cal H}_I$ of an image I is the graph of the gray-level frequency like a probability mass function
- A one dimensional function defined on the gray scale i.e., $0 \le k \le (K-1)$
- $H_I(k) = n$ means that the intensity k occurs n times in the image
- Histograms reveal a lot about images

Binary ImagesHistogram Types

- Modal: histograms with distinct peaks or modes
- Bimodal: two peaks or modes
 - Images with two distinct gray levels that are well separated
 - Choosing T between modes may give good results
 - Exact location of *T* is hard to guess
- Multimodal: multiple peaks or modes
 - Images with multiple distinct gray levels
 - Varying T produces different results
- Flat: uniform or flat intensity distribution
 - Images with greater complexity, non-uniform background etc.
 - Choosing a threshold is hard

Binary Images Otsu's Algorithm

- One way to binarise images
- Pick a threshold such that:
 - Intra-class variance is minimised
 - · Or equivalently, inter-class variance is maximised
 - Implemented in an iterative fashion over $0 \le k \le (K-1)$ gray levels
- Very popular and most standard image processing libraries implement it
- Deep learning variants have been proposed as well!

Binary ImagesConnected Components

- We have a binary image, now what? Let's process it!
- How? The Connected Components Algorithm or "blob colouring" or "region labelling"
- Why?
 - Thresholding leads to imperfect binary images
 - Extraneous blobs or holes due to noise or low-interest regions
- Blob colouring is a method for labelling/ colouring/indexing objects

Connected Components Algorithm (4 connectivity)

- For a binary image I, define a region colour array R, where R(i,j) is the region number of pixel I(i,j)
- Set R=0 (all zeros) and region number counter k=1
- Assumption: border pixels are background and have the same value
- While scanning the image from the top left to the bottom right, do the following:

If
$$I(i,j)=0$$
 and $I(i,j-1)=1$ and $I(i-1,j)=1$, then set $R(i,j)=k$ and $k=k+1$

• If
$$I(i,j)=0$$
 and $I(i,j-1)=1$ and $I(i-1,j)=0$, then set $R(i,j)=R(i-1,j)$

• If
$$I(i,j) = 0$$
 and $I(i,j-1) = 0$ and $I(i-1,j) = 1$, then set $R(i,j) = R(i,j-1)$

If
$$I(i,j) = 0$$
 and $I(i,j-1) = 0$ and $I(i-1,j) = 0$, then set $R(i,j) = \min(R(i,j-1),R(i-1,j))$; if $R(i,j-1) \neq R(i-1,j)$ link the regions

Blob Colouring Example

Blob colouring result

Blob counting result

Binary ImagesMinor Blob Removal

- Let m be the label of the largest blob
- While scanning the image from the top left to the bottom right: if I(i,j) = 0 and $R(i,j) \neq m$, set I(i,j) = 1

Binary ImagesMinor Blob Removal

- To clean up:
 - Complement

Count blobs

Minor blob removal

Complement

Binary ImagesConnected Components

