28/08/2025 - Matematicas discretas (Vde@)

1. Repaso

a. Operadores logicos /

Operador	Símbolo	Nombre	Descripción
Negación	$\neg p$	No (NOT)	Niega el valor de verdad de una proposición. Si p
			es verdadera, ¬p es falsa.
Conjunción	$p \wedge q$	Y (AND)	Es verdadera solo si ambas proposiciones lo son.
			$p \wedge q$ es verdadera solo si $p \vee q$ lo son.
Disyunción	$p \lor q$	O (OR)	Es verdadera si al menos una de las proposiciones
			lo es.
Disyunción exclusiva	$p \oplus q$	O exclusiva (XOR)	Es verdadera si una, y solo una, de las
			proposiciones es verdadera.
Condicional	$p \rightarrow q$	Si entonces (Implica)	Solo es falsa cuando p es verdadera y q es falsa.
Bicondicional	$p \leftrightarrow q$	si y solo si (Equivale)	Es verdadera cuando ambas proposiciones tienen
			el mismo valor de verdad.

b. Tablas de verdad v

Negación	Conjunción	Disyunción inclusiva		
$\begin{array}{c c} p & \neg p \\ \hline F & V \\ \hline V & F \\ \end{array}$	$\begin{array}{c cccc} p & q & p \wedge q \\ \hline F & F & F \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \lor q \\ \hline F & F & F \\ \hline F & V & V \\ \hline V & F & V \\ \hline V & V & V \\ \end{array}$		
Disyunción exclusiva	Condicional	Bicondicional		
$\begin{array}{c cccc} p & q & p \oplus q \\ \hline F & F & F \\ \hline F & V & V \\ \hline V & F & V \\ \hline V & V & F \\ \end{array}$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$		

c. Clasificación de las expresiones condicionales

Nombre	Símbolo	Lectura	Significado lógico
Condicional 🕬	$p \rightarrow q$	Si p entonces q	Es falsa solo si p es verdadera y q es falsa. \checkmark
Reciproco	$q \rightarrow p$.	Si q entonces p	Invierte antecedente y consecuente.
Contrarrecíproco	$\neg q \rightarrow \neg p$	Si no q entonces no p	Lógicamente equivalente a la condicional
-			original.
-Contrario	$\neg p \rightarrow \neg q$	Si no p entonces no q	Negación de ambas partes de la condicional. 🗸

d. Expresiones logicas (Reglas de prioridad y asociatividad

Prioridad	Símbolo	Asociatividad	Ejemplo con paréntesis
1 (más alta)	_	No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2	٨	Izquierda ($I \rightarrow D$)	$p \land q \land r \mapsto ((p \land q) \land r)$
3	V	Izquierda ($I \rightarrow D$)	$p \vee q \vee r \mapsto ((p \vee q) \vee r)$
4	Φ	Izquierda ($I \rightarrow D$)	$p \oplus q \oplus r \mapsto \big((p \oplus q) \oplus r\big)$
5	→	Derecha $(I \leftarrow D)$	$p \rightarrow q \rightarrow r \mapsto (p \rightarrow (q \rightarrow r))$
6 (más baja)	↔	Derecha ($I \leftarrow D$)	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (q \leftrightarrow r))$

Taren: Se tiene la signiente proposition «Si gano la loteria, sere Fehz»

Se pide: 1. Determine las proposiciones simples y la expresión logica asociada 2. Obtaga el recipioso, el contrarecipioso y el contrario.

-> Solución:

Bonus O. 1: Use David Villadiego.

"Si gano la lotería, seré feliz"

Preposiciones:

G = gano la lotería

F = seré feliz

Expresión lógica: '

G→F

Caso	Forma Lógica	Lenguaje Natural
Original	G→F	Si gano la lotería, seré feliz
Reciproco	F→G	Si soy feliz, ganaré la lotería
Inverso	¬G→¬F	Si no gano la lotería, no seré feliz
Contrarrecíproco	¬F→¬G	Si no soy feliz, no ganaré la lotería

Recordemos las reglas de precedencia y asociatividad

Prioridad	Símbolo	Asociatividad	Ejemplo con paréntesis
1 (más alta)	_	No aplica (unitario)	$\neg p \land q \mapsto ((\neg p) \land q)$
2	۸	Izquierda ($I \rightarrow D$)	$p \wedge q \wedge r \mapsto ((p \wedge q) \wedge r)$
3	V	Izquierda ($I \rightarrow D$)	$p \lor q \lor r \mapsto \big((p \lor q) \lor r \big)$
4	0	Izquierda ($I \rightarrow D$)	$p \oplus q \oplus r \mapsto \big((p \oplus q) \oplus r \big)$
5	→	Derecha $(I \leftarrow D)$	$p \rightarrow q \rightarrow r \mapsto (p \rightarrow (q \rightarrow r))$
6 (más baja)	↔	Derecha $(I \leftarrow D)$	$p \leftrightarrow q \leftrightarrow r \mapsto (p \leftrightarrow (q \leftrightarrow r))$

Ejempla: Table de verded para las operaciones logicas * $\neg P$: Negación (Operación unitaria) $\frac{P}{F} | \neg P \rangle$ $\frac{P}{V} | \neg P \rangle$ $N = A \quad (2^{A} = 2Filas)$ * Pra, Pra, Poa, Paa, Paa (operaciones binarius)

{P,a

n=2 (2= 4 Fikes) Combinaciones (columnos de los variables)

	, ,					
	ď	PAQ	PVQ	POQ	P- Q	P+>Q
· F	7	۲	۲	ルンン	7	>
F	V	F	V	\vee	~	₩
. 🕠	1	F	V	V	くかく	F
· ×	v	٧	✓	F	\checkmark	\checkmark

Las tablas de verdad facilitan la evaluación de expresiones Logicus Como evaluo cualquier expresión logoca usando tablas de verdad?

Trabajando con tablas de verdad

Para construir una tabla de verdad se siguen los siguientes pasos:

- Identificar las variables proposicionales.
- 2. Determinar el número de filas necesarias (para n variables 2^n columnas).
- 3. Construir las columnas de las variables (Falso = 0; Verdadero = 1). F = 0.5 V = 4
- 4. Agregar columnas auxiliares si es necesario. 🟏

Tip de legibilidad: Cuando la cantidad de columnas es muy grande es útil representar una expresión lógica (con letras minúsculas) con una letra mayúscula.

- Evaluar la expresión lógica paso a paso.
- Revisar y validar la tabla.

Exemplas: Evaluar la expresion DV 0-> -6

1. Variables: P, q, r

2. Numera de Filas: n=3 -> Filas = 2" = 23 = 8

									\
		,	p	q	$p \wedge q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
p	$\neg p$	_	F	F	F	F	F	V) v
F	V		F	V	F	V	V	V	F
V	F	ء ا	V	F	F	V	V	(F)	F
_			V	V	V	V	F	V	V

Ejemplo: PnQvnR)vs

1. Variables: P,Q,R,S

2. Filas: n=4 -> Pilas= 24=16

PNQVTRVS
P > 0
2 v 5
3

3	3. T	ه اطه			_	(5)	/>
			K	-	<u>(S)</u>		3
P	Ø	R	5	TR	QV7R	PM(QVTR)	Pr(QV-P)VS
Q	Ġ	D	° 6	\	A .	O	O
0	0	0	٦	4	A .	O	1
O	O	۸.	0	0	O	0	O
D	0	٦	۸ ا	0	ی	٥	^
O	٨	Ü	(4	,	O	Ō
O	٨	O	٦	۸	1	0	Л
D	A	٦	0	0	4	0	0
٥	~	٦	ړ.	Ō	٨	0	4
△	ن .	O	0	1		∧	Λ
A	৩	Ò	٠	-1	1	_1	-1
ノ	0	٨	0	0	O	0	Ö
4	0	٨	اد		Ü	Õ	1
4	J	0	٥	-1	A	~	-1
A	」』	0	J	1	4	٨	4
A	ゝ	٨	0	O	A	_^	1
	1 4	./	، ا	U	•	A	_

					A			
	八、	p	q	/ p ∧ q	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
p	$\neg p$	F	F	F	F	F	V	V
F	V	F	V	F	v	V	V	F
V	F	V	F	F	v	V	F	F
	V	V	V	V /	VI	F	V	V

P	(Q V	7 R)	v S
LP	^ ②)]
	3		*×S
_	— (山)		

Ejercicio 5: $\neg p \rightarrow (\neg r \lor q \land p) \leftrightarrow r \lor \neg q \rightarrow p$

1. Variables: p, g, r

3. Tabla

\	, ,	1/-	- /			(b) /	2 6	3/	(N = ¬P→ (E)	(E) = (3) → P	(6)
P	q	۲	٦ ٦	79	٦٢	910	-r V(91P)	V V 7 9	(grpvyr) ~qr	(r v 79) -> p	F
0	0-	0	\	` ۱۸	1	G	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	' ' ' ' ' ' '	0.0	0
O	0	,	✓	۸ ا	0	3		A	0	O	Ŋ
0	اد	0	_^	O	٨	Ò	Л	O	A	A	7
0	٨	ノ	1	0	D	0	Ö		D	0	Λ
Y	0	0	0	٦	1	0	۸.	Λ	1	Л	-1
٦	o	J	υ	1	Ø	٥	O	1	4	Λ	_/
Л	4	D	Ď	D	1	1	J.	0	1	_1	Λ
✓	1	a	0	ם	0	^	^	A	A	<i>y</i>	1

3. Clasificación de las proposiciones

Negación	Conjunción	Disyunción inclusiva		
p ¬p F V V F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Disyunción exclusiva	Condicional	Bicondicional		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$		

Ejemplos:

1. PVTP

i. vovicibles: p

ii. Filas: n=1

filas= 2"=21=2

iii. Tabla

Negación	Conjunción	Disyunción inclusiva		
p ¬p F V V F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Disyunción exclusiva	Condicional	Bicondicional		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & F & F \\ V & V & V \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

~	✓	
	¬p	PYTP
	,	
Ŋ	0	
	"	

> Prop es una tantología

2. p ~ ~ p

i. variables: p

ii. Filas: n=1 filas= 2"=21=2

iii. Tabla

Negación	Conjunción	Disyunción inclusiva		
p ¬p F V V F	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Disyunción exclusiva	Condicional	Bicondicional		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$		

prop es una contradicción

3. [(navp)→np]na

i. variables: p, q

ii. Filas: n= 2 filas=1"=2= 4

iii. Tabla

Negación	Conjunción	Disyunción inclusiva		
p ¬p F V V F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Disyunción exclusiva	Condicional	Bicondicional		
$\begin{array}{c ccccc} p & q & p \oplus q \\ F & F & F \\ F & V & V \\ V & F & V \\ V & V & F \\ \end{array}$	$ \begin{array}{c cccc} p & q & p \rightarrow q \\ \hline F & F & V \\ \hline F & V & V \\ \hline V & V & V \end{array} $	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ F & F & V \\ F & V & F \\ \hline V & F & F \\ V & V & V \\ \end{array}$		

[(¬ ,	1 /9) -	· 16_	P ~ 4
	<u>∞</u> →	79,	
	٤		19,
		3	

4. Equivalencia logica

Dos proposiciones compuestas p y q son lógicamente equivalentes, o simplemente equivalentes, si $p \leftrightarrow q$ es una tautología.

Notación: Una equivalencia se puede escribir como $p\leftrightarrow q$ o como $p\equiv q$

Ejemplo:

Demuestre que $\neg p \lor q$ y $p \to q$ son equivalentes. TP v q ←> P → q

I. variables: P, q

P = Q es una tantología? ii. Files: n=2 -> files= 22 = 4 aldoT. i.i.

Negación	Conjunción	Disyunción inclusiva		
p ¬p F V V F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Disyunción exclusiva	Condicional	Bicondicional		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} p & q & p \leftrightarrow q \\ \hline F & F & V \\ \hline F & V & F \\ \hline V & F & F \\ \hline V & V & V \\ \end{array}$		

Tprges equivalente a pag

 $\neg p \lor q \equiv p \rightarrow q$

Leyes de Margan

Demostración se hare por tabla de verdad → Ley ②: ¬ (pvg) = ¬p л¬q

p	q	$p \leftrightarrow q$
E	F	v
F	ν	F
V	F	F
V	V	v

p	q	$\neg p$	$\neg q$	$q \lor p$	$\neg(q \lor p)$	$\neg p \land \neg q$	$\neg(q \lor p \) \leftrightarrow \neg p \land \neg q$
0	0	1	1	0	1	1	1
0	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1
1	1	0	0	1	0	0	1
					*		

Dada la signiente table de verdad. L'unles expresiones son Logicamente equivalentes?

				Condicional	Reciproco	Contrarrecíproco	Inverso
p	q	$\neg p$	$\neg q$	p o q	$(q \rightarrow p)$	$\neg q ightarrow \neg p$	eg p o eg q
0	0	1	1	1	1	1	1
0	1	1	0	1	0	1	0
1	0	0	1	0	1	0	1
1	1	0	0	1	1	1	1