Comprendre son modèle de Machine Learning grâce à l'Explicabilité

Manon MARTIN

Crédit Agricole Titres

• Spécialiste des traitements financiers

- Gère les plateformes pour les caisses régionales
- ≈ 1000 employé.es sur 3 sites en France

Contexte

• IA Act

- Modèles à améliorer
 - Cas sur les transferts PEA

Explicabilité

Favorise la compréhension des prédictions des modèles

Favorise une adoption plus confiante et éthique de l'intelligence artificielle

Modèles interprétables

Modèles intrinsèquement compréhensibles

Régression linéaire

Arbre de décision

Performances moindres

Méthodes model-agnostic ou model-specific

Méthodes model-agnostic

Travaille sur les paires d'entrée/sortie

Méthodes model-specific

Travaille avec les paramètres internes du modèle

Méthodes globales ou locales

Méthodes globales

Vue d'ensemble du modèle

Méthodes locales

Cible une instance en particulier

Dataset pour le TP – German Credit Risk

- Age (numérique) : L'âge des individus en années
- Sexe (texte): Le sexe des individus
- Job (numérique) : Niveau de compétence et type de résidence des individus
- Housing (texte): Type de logement des individus
- Saving accounts (texte): Niveau des comptes d'épargne
- Checking account (numérique, en DM) : Montant des comptes courants, exprimé en Deutsche Mark (DM)
- Credit amount (numérique, en DM): Montant du crédit, exprimé en Deutsche Mark (
- Duration (numérique, en mois) : Durée du crédit en mois
- Purpose (texte) : Objet du crédit
- Risk (texte): cible (bad or good)

SHAP (Shapley Additive exPlanations)

Utilise les valeurs de Shapley

Calcule la contribution marginale de chaque caractéristique à chaque prédiction

First	Second	Third
\$10,000	\$7,500	\$5,000

Joueur 1

Joueur 2

C12 est la valeur de la coalition entre le joueur 1 et le joueur 2

First	Second	Third
\$10,000	\$7,500	\$5,000

Joueur 1

Joueur 2

Valeurs de coalition :

$$C_{12} = 10000$$

$$C_1 = 7500$$

$$C_2 = 5000$$

$$C^0 = 0$$

Contribution marginale du Joueur 1 :

$$C_{12} - C_2 = 5000$$

$$C_1 - C_0 = 7500$$

$$(5\,000 + 7\,500) / 2 = \$6\,250$$

Valeurs de coalition :

$$C_{12} = 10\ 000\ |\ C_1 = 7\ 500\ |\ C_2 = 5\ 000\ |\ C_0 = 0$$

Contribution marginale du Joueur 2 :

$$C_{12} - C_1 = 2500$$

$$C_2 - C_0 = 5000$$

$$(2500 + 5000) / 2 = $3750$$

Partie 1 du TP, onglets « Feature Importances » et « Individual Predictions »

Explications Contrefactuelles

• Scénarios modifiés de l'instance originale qui changent la prédiction

• Comprendre les seuils de décision du modèle

• Identifier les caractéristiques qui influencent les prédictions

Partie 1 du TP, onglet « What If... »

LIME (Local Intepretable Model-agnostic Explanations)

Génère des explications locales en perturbant le voisinage de la prédiction à expliquer

Ces exemples perturbés sont ensuite utilisés pour entraîner un modèle interprétable

LIME (Local Intepretable Model-agnostic Explanations)

LIME sur des images

- Segmentation de l'image en superpixels
- Création de plusieurs versions perturbées de l'image
- Entraînement d'un modèle simple sur les images perturbées
- Utilisation des caractéristiques de présence/absence de chaque superpixel
- Les poids du modèle simple indiquent l'importance de chaque superpixel pour la prédiction

Partie 2, 3 et 4 du TP

Merci pour votre participation!