XARXES (GEINF) CURS 2015/16 Segon examen parcial teoria i problemes (20 de gener de 2016)

Nom:	
DNI:	
La duració de l'examen és de 2 ho	res.
No es poden utilitzar apunts.	

Test (5 punts)

Una resposta correcta suma 0.500 punts, una incorrecta resta 0.125 punts, i una no contestada suma zero. Fes servir la taula que tens a sota (les respostes que no estiguin a la taula no es comptaran).

Respostes				
1)	а	b	С	d
2)	а	b	С	d
3)	а	b	С	d
4)	а	b	С	d
5)	а	b	С	d
6)	а	b	С	d
7)	а	b	С	d
8)	а	b	С	d
9)	а	b	С	d
10)	а	b	С	d

- 1) Quant a l'aplicació DNS, quina és FALSA?
 - a. Totes les adreces IP d'Internet tenen associat un nom DNS.
 - b. Quan es demana la pàgina *web* http://www.udg.edu, el primer que fa el navegador és preguntar al servidor DNS local de l'organització quina és l'adreça IP del nom DNS www.udg.edu.
 - c. Els noms DNS estan organitzats de manera jeràrquica (arbre) i la informació (nom DNS, adreça IP) es troba dividida en "branques" (de l'arbre), cadascuna mantinguda en un servidor DNS.
 - d. Les estacions pregunten al servidor DNS local de l'organització (la seva adreça IP forma part de la configuració de xarxa de les estacions, el protocol és UDP i el número de port és 53) i aquest pregunta als servidors DNS d'Internet.
- 2) Quant a les xarxes de commutació de circuits (XCC), quina és FALSA?
 - a. A través d'una XCC no es poden transportar fluxos de paquets.
 - b. En una XCC amb FDM (*Frequency Division Multiplexing*), l'amplada de banda de cada enllaç està dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
 - c. En una XCC amb TDM (*Time Division Multiplexing*) digital síncrona, a cada enllaç hi viatja un senyal digital amb una seqüència de símbols digitals dividida en "trossos", i per transportar un flux se li assigna un d'aquests trossos a cada enllaç del camí.
 - d. Les "velles" xarxes de telefonia fixa i les "noves" xarxes òptiques WDM (*Wavelength Division Multiplexing*) són XCC.
- 3) Un router R té dues interfícies de xarxa i la següent taula d'encaminament IP. Quina és CERTA?

destí	següent	interfície
100.100.100.0/24	directe	R ₁ (100.100.100.1)
100.100.101.0/24	directe	R ₂ (100.100.101.1)
resta	100.100.101.2	R ₂ (100.100.101.1)

- a. Un paquet amb adreça origen 100.100.101.25 i adreça destí 100.100.100.30 serà reenviat pel router a través de la interfície R_2 cap a 100.100.100.30.
- b. Un paquet amb adreça origen 100.100.100.7 i adreça destí 100.100.101.15 serà reenviat pel router a través de la interfície R_1 cap a 100.100.101.15.
- c. Un paquet amb adreça origen 100.100.100.3 i adreça destí 200.200.200.7 serà reenviat pel *router* a través de la interfície R₂ cap a 100.100.101.2.
- d. Un paquet amb adreça origen 84.35.10.49 i adreça destí 100.100.100.7 serà reenviat pel *router* a través de la interfície R₂ cap a 100.100.101.2.

- 4) Quant a un switch (commutador) Ethernet, quina és FALSA?
 - a. Reenvia un paquet només a la interfície que porta a l'estació destí (excepte si l'adreça destí no és a la taula, és de multicast o *broadcast*, que ho reenvia a totes les interfícies menys l'entrant).
 - b. Té una adreça MAC.
 - c. La seva taula no s'ha de configurar ja que l'aprèn ell mateix a partir dels paquets entrants.
 - d. Una xarxa *Ethernet* formada per un *switch*, amb només una estació a cada interfície, units en mode *full-duplex*, no és una xarxa de difusió sinó de commutació.
- 5) Quant a la xarxa Ethernet i Wi-Fi de la figura, quina és FALSA?
 - a. Estacions de cel·les diferents es poden comunicar com si estiguessin dins la mateixa cel·la gràcies a la unió dels dos APs (*Access Points*) a través del *switch Ethernet*.
 - b. Una estació forma part de la xarxa Wi-Fi un cop s'ha "associat" a un dels APs (via un intercanvi de missatges).
 - c. Cada AP té una adreça MAC (o BSSID) diferent però els dos tenen el mateix identificador de xarxa Wi-Fi (o SSID).
 - d. Una estació pot estar associada alhora als dos APs.

- a. Són estratègies per decidir com repartir entre les estacions la línia de transmissió única en una xarxa de difusió.
- b. La detecció de col·lisions en una xarxa *Ethernet* (de difusió) es basa en "escoltar mentre es transmet".
- c. La detecció de col·lisions en una xarxa Wi-Fi es basa en "esperar una confirmació".
- d. No hi ha tècniques d'accés múltiple sense col·lisions.
- 7) Quant a les xarxes de commutació de paquets amb la tècnica de datagrama, quina és FALSA?
 - a. Per descobrir l'enllaç de sortida on reenviar, el node llegeix l'adreça de destí del paquet i consulta la taula d'encaminament.
 - b. La capa IP d'Internet i l'*Ethernet* commutada en són exemples.
 - c. Paquets consecutius d'un mateix flux poden seguir camins diferents si l'encaminament canvia.
 - d. Els nodes mantenen una taula de circuits o connexions establertes.
- 8) Quant al protocol TCP, quina és FALSA?
 - a. En una connexió TCP no hi poden haver dos fluxos d'informació, un en cada sentit, sinó que només hi pot haver un únic flux d'informació en un sentit.
 - b. Els números de seqüència no són "per paquet" sinó "per byte" del flux d'informació.
 - c. Fa control de flux de finestra lliscant amb una longitud indicada pel receptor i que pot variar.
 - d. Fa ARQ continu, a vegades de Repetició Selectiva, a vegades Go-Back-N (però amb variants).
- 9) Una xarxa IP té assignat el prefix 84.88.54.0/24. Quina és FALSA?
 - a. La màscara de xarxa és 255.255.255.0.
 - b. Aquesta xarxa es pot dividir en dues subxarxes amb prefixos 84.88.54.0/25 i 84.88.54.1/25.
 - c. El nombre d'adreces d'aquest prefix és 256.
 - d. L'adreça 84.88.54.128 forma part d'aquesta xarxa.
- 10) Quant als routers que fan NAT (Network Address Translation), quina és FALSA?
 - a. El *router* NAT té una interfície a la xarxa interna i una altra a Internet, però des del punt de vista d'Internet és vist com una estació, no com un *router*.
 - b. El *router* NAT manté una taula que relaciona adreces de *sockets* seus (@IP externa, TCP o UDP, número de port) amb adreces de *sockets* de les estacions internes.
 - c. La xarxa interna fa servir un rang d'adreces privat (p.e., 192.168.0.0/16).
 - d. No és possible tenir servidors a les estacions de la xarxa interna, només clients.

Exercici (5 punts)

La xarxa d'una organització (veieu la figura) és *Ethernet* i Wi-Fi alhora, i està construïda amb el commutador S, el repetidor H, i el Punt d'Accés (alhora pont *Ethernet*/Wi-Fi) AP. Les adreces MAC de totes les interfícies es troben a la taula de la dreta.

interfície	@MAC
R ₁ 00-	13-D4-55-DF-E4
E1 00-	13-A9-3E-78-D1
E2 00-	11-D8-62-E5-7E
E3 00-	0A-41-19-79-00
E4 00-	00-3B-C5-54-04
E5 00-	34-D6-11-AB-6D
AP ₁ 00	-AA-C3-78-4E-02

La xarxa de l'organització està unida a la resta d'Internet a través del *router* R. La seva interfície R₂ és ADSL, té l'adreça IP 35.10.2.135, la màscara 255.255.255.192 i un únic "següent" *router* d'adreça IP 35.10.2.129. L'organització disposa del prefix de xarxa IP 130.206.129.0/24.

Es demana el següent:

- a) Quantes xarxes IP hi ha? Qui en forma part?
- b) Escriviu el rang d'adreces IP de la xarxa de l'organització.
- c) Escolliu adreces IP per a totes les estacions i routers (feu servir la notació @IPE1, @IPR1, etc.).
- d) Escriviu les taules d'encaminament IP de l'estació E4 i del *router* R, segons el criteri del camí més curt mesurat en nombre de salts. Feu servir el format [destí, següent, interfície], i indiqueu tant el nom (és a dir, org, E1, R₁, etc.) com l'adreça corresponent.
- e) Suposeu que la taula del commutador S i la del Punt d'Accés AP (alhora pont) estan totalment completes, i escriviu el seu contingut. Feu servir el format [destí, interfície], i indiqueu tant el nom (és a dir, E1, R1, etc.) com l'adreça corresponent.
- f) Suposeu que la taula local ARP de l'estació E1 només conté l'entrada corresponent a E5, i escriviu el seu contingut. Feu servir el format [@IP, @MAC], i indiqueu tant el nom (és a dir, E1, R1, etc.) com l'adreça corresponent.
- g) Expliqueu com es transporta un paquet IP des de l'estació E1 fins a l'E5, és a dir, expliqueu com actuen les estacions i dispositius de xarxa implicats (repetidors, commutadors, Punts d'Accés i *routers*; consulta en taules; a quines estacions arriba un paquet, etc.) i dibuixeu els paquets que es generen tant IP com ARP (amb adreces, etc.; feu servir la notació @IPE1, @IPR₁, @MACE1, @MACR₁, @MACAP₁ o BSSID, etc.).

NOTA:

- Feu servir la següent notació: @IPorg per al prefix de la xarxa IP de l'organització, @IPE1 per a l'adreça IP de l'estació E1, @IPR₁ per a l'adreça IP de la interfície 1 del *router* R, @MACE1 per a l'adreça MAC de l'estació E1, @MACR₁ per a l'adreça MAC de la interfície 1 del *router* R, @MACAP₁ o BSSID (*Basic Service Set IDentification*) per a l'adreça MAC (de la interfície 1) del Punt d'Accés AP, etc.
- El format d'*Ethernet* Il és @MACdestí | @MACorigen | type | informació | crc |, on "type" indica el protocol usuari d'*Ethernet* i "informació" és el paquet d'aquest protocol usuari (p.e., IP, ARP o altres).
- El format de Wi-Fi és tipus | CapA/DesDe AP | @1 | @2 | @3 | informació | altres , on "tipus" indica

el significat del missatge (informació, ACK, RTS, CTS, beacon, autenticació, associació, etc.), "CapA/DesDe AP" indica si el paquet l'envia una estació cap a l'AP (CapA AP) o al revés (DesDe AP), @1 és l'adreça MAC de qui rep (l'estació o l'AP), @2 és l'adreça MAC de qui envia (l'estació o l'AP) i @3 és l'adreça MAC del tercer implicat (una estació), i "informació" sempre conté un paquet

- LLC, el format del qual tindrà, entre altres, un camp que indiqui el protocol usuari i un camp "informació" que contingui el paquet d'aquest protocol usuari (p.e., IP, ARP o altres).
- El format d'IP és altres | @IPorigen | @IPdestí | protocol | informació , on "protocol" indica el protocol usuari d'IP i "informació és el paquet d'aquest protocol usuari (p.e., TCP, UDP o altres).
- El format d'ARP és altres | operació | @MACorigen | @IPorigen | @MACdestí | @IPdestí , on "operació" pot indicar "petició" o "resposta".

Quines xarxes IP hi ha? (i)

Quins "elements" tenen capa IP? Estacions i routers, és a dir, les estacions Ex i el router R. A sota d'IP, tots tenen una capa de xarxa Ethernet o Wi-Fi o ADSL. Recordeu que cada capa de xarxa té les seves pròpies adreces de xarxa, p.e., a Ethernet i Wi-Fi, les adreces MAC (IEEE 802 EUI-48).

Quins "elements" no tenen capa IP? El switch Ethernet S, el hub Ethernet H i l'Access Point AP. A més un switch no té adreça MAC; en canvi un Access Point sí té adreça MAC (o BSSID). Dit això, si un switch o un Access Point fossin configurables remotament, llavors sí tindrien una @IP, capa IP, etc., i una @MAC.

Quines xarxes IP hi ha? (ii)

L'organització és una única xarxa IP, *Ethernet* i Wi-Fi alhora*, formada per E1, E2, E3, E4, E5 i R1

^{*} Recordeu que l'espai d'adreces Ethernet/Wi-Fi és un de sol (IEEE 802 EUI-48), i que es poden unir xarxes Ethernet amb xarxes Wi-Fi amb un pont (bridge)

Rang d'adreces IP de l'organització

• L'organització té el rang d'adreces donat pel prefix 130.206.129.0/24:

Assignació de les adreces IP

- Quant a l'assignació de les adreces a interfícies de *hosts* i *routers*, cal tenir en compte que a cada rang n'hi ha dues ja preassignades, la primera i l'última
 - la primera (prefix+0s) identifica la xarxa IP (130.206.129.0)
 - l'última (prefix +1s) indica broadcast a la xarxa IP (130.206.129.255)
 - la resta d'adreces es poden assignar a interfícies de hosts i routers com es vulgui
- P.e., una possible assignació
 - @IPE1 = 130.206.129.2, @IPE2 = 130.206.129.3, @IPE3 = 130.206.129.4, @IPE4 = 130.206.129.5, @IPE5 = 130.206.129.6, @IPR $_1$ = 130.206.129.1

 $(R_2 \text{ no forma part de cap d'aquestes xarxes; ens diuen que té @IPR<math>_2$ = 35.10.2.135)

Taules d'encaminament IP d'E4 i R

L'organització és una única xarxa IP, *Ethernet* i Wi-Fi alhora, formada per E1, E2, E3, E4, E5 i R1

Taules d'encaminament IP: E4

Eil El hub Ethernet H no en sap d'IP (no té capa IP, ni @IP, etc.), sinó només reenvia senyals a nivell físic (el senyal que entra per una interfície és reenviat les altres)

R
resta

resta

resta

E5
org

E1

Ei! El switch Ethernet S no en sap d'IP (no té capa IP, ni @IP, etc. ¹), sinó només sap Ethernet! Té una taula [destí, interfície] amb les 6 @MAC d'E1, E2, E3, E4, E5 i R₁!

Ei! El Punt d'Accés (i pont) Wi-Fi AP no en sap d'IP (no té capa IP, ni @IP, etc. ¹), sinó només sap Wi-Fi i *Ethernet*! Té una taula [destí, interfície] amb les 6 @MAC...

si el destí és algú de la meva xarxa, el lliurament és directe: següent = destí ("directe") Són E1, E2, E3, E4, E5 i R₁, i també la resta d'@IPs "lliures" del rang de 256 @s de l'org 2

si el destí és algú altre, el lliurament és indirecte via *router:* següent = *router_i* (la interfície del *router* a la meva xarxa)

	estació E4		
	destí	següent	interfície
256 destins	org (130.206.129.0/24)	directe	E4 (130.206.129.5)
2 ³² - 256	resta	R ₁ (130.206.129.1)	E4 (130.206.129.5)

¹ De fet, si el dispositiu *switch* o AP fos configurable remotament, llavors sí tindria una @IP, capa IP, etc., i també una @MAC... Es modelaria com una "nova" estació, p.e. "A6", unida al dispositiu...

² Recordeu que les @IP "Iliures", cap altra xarxa IP les pot fer servir

Taules d'encaminament IP: R

A la resta d'Internet hi ha moltíssimes xarxes IP unides per routers... Entre elles hi ha la xarxa IP on està R_2 : en diem la xarxa Z

La xarxa Z és ADSL, la formen R_2 , potser altres estacions i la interfície d'un $\it router$ que p.e., en diem $R2_1$

router R		
destí	següent	interfície
org (130.206.129.0/24)	directe	R ₁ (130.206.129.1)
Z (35.10.2.128/26)	directe	R ₂ (35.10.2.135)
resta	R2 ₁ (35.10.2.129)	R ₂ (35.10.2.135)

Taules del switch S i l'AP (i bridge) AP...

... quan les taules de S i AP estan plenes

Les taules indiquen la "interfície" (port) on es troba una estació "destí", és a dir, la "interfície" a la qual cal reenviar un paquet dirigit a "destí"

taula del commutador S		
destí	interfície	
E1 (00-13-A9-3E-78-D1)	S ₁	
E2 (00-11-D8-62-E5-7E)	S ₁	
E3 (00-0A-41-19-79-00)	S ₂	
E4 (00-00-3B-C5-54-04)	S ₃	
E5 (00-34-D6-11-AB-6D)	S ₃	
R ₁ (00-13-D4-55-DF-E4)	S ₄	

taula del Punt d'Accés (i pont) AP		
destí	interfície	
E1 (00-13-A9-3E-78-D1)	AP ₂	
E2 (00-11-D8-62-E5-7E)	AP ₂	
E3 (00-0A-41-19-79-00)	AP ₂	
E4 (00-00-3B-C5-54-04)	AP ₁	
E5 (00-34-D6-11-AB-6D)	AP ₁	
R ₁ (00-13-D4-55-DF-E4)	AP ₂	

La taula local ARP d'E1...

... quan la taula només conté l'entrada corresponent a A5

	estació A1		
	@IP	@MAC	
E5	130.206.129.6	00-34-D6-11-AB-6D	

Transport paquet IP d'E1 a E5 (i)

^{*} Recordeu que l'espai d'adreces Ethernet/Wi-Fi és un de sol (IEEE 802 EUI-48), i que es poden unir xarxes Ethernet amb xarxes Wi-Fi amb un pont (bridge)

Transport paquet IP d'E1 a E5 (ii)

- La capa IP d'E1 rep l'encàrrec (de la capa superior) d'enviar una "informació" al destí amb @IPdestí = @IPE5 = 130.206.129.6:
 - la capa IP consulta la taula d'encaminament IP: per 130.206.129.6 la primera línia aplica (està dins la "meva" xarxa), i llavors següent = directe, és a dir, següent = destí (amb @IP=130.206.129.6), o sigui directament al destí E5
 - la capa IP encarregarà a la capa Ethernet que enviï una "informació" (el paquet IP) a l'"@MAC de destí" que correspongui a E5... Però quina és l'@MACE5? Es buscarà primer a la taula local ARP i si no hi és es farà servir ARP... En aquest cas SÍ hi és a la taula ARP:
 @IPE5 (130.206.129.6) ---- @MACE5 (00-34-D6-11-AB-6D)

la capa Ethernet rep l'encàrrec d'enviar "info"=paquetlP a "@MAC de destí"=@MACE5

el paquet arriba al hub (per la interfície 1), i el reenvia a les interfícies 2 i 3, cap a E2 i S; E2 el descarta; el switch S el rep (per la interfície 1), llegeix que l'@MACdestí = @MACE5, consulta la taula, i el reenvia només a la interfície 3, cap a AP

Transport paquet IP d'E1 a E5 (iii)

- el paquet arriba a l'Access Point+bridge AP; el pont d'AP llegeix que l'@MACdestí =
 @MACE5, consulta la seva taula, i el "reenvia" només a la interfície que porta a E5, és a dir a l'AP pròpiament dit (interfície AP₁)
- l'AP pròpiament dit (interfície AP₁), que coneix E4 i E5 (ja que aquestes estacions s'hi han associat), forma un paquet Wi-Fi amb origen E1 i destí E5 (on també s'hi escriu l'@ de l'AP₁, @MACAP₁ o BSSID) així:

 el paquet arriba a totes les estacions Wi-Fi, és a dir, E4 i E5, de les quals, només E5 el pren i E4 el descarta...