

Lehrstuhl für Energiehandel und Finanzdienstleistungen

Prof. Dr. Rüdiger Kiesel Ya Wen

Quantitative Climate Finance

Übungsblatt 6

Aufgabe 1 (Brownsche Bewegung & Geometrische Brownsche Bewegung)

- (a) Wie ist die Brownsche Bewegung definiert?
- (b) Sei ab jetzt $(B_t)_{t\geq 0}$ eine Brownsche Bewegung. Geben Sie die Verteilung von B_t , $t\geq 0$, an und berechnen Sie ihre Varianz und ihren Erwartugnswert.
- (c) Bestimmen Sie für $0 \le s \le t$ die Kovarianz $Cov(B_s, B_t)$.
- (d) Wie ist eine Geometrische Brownsche Bewegung definiert?

Aufgabe 2 (Itô-Formel)

- (a) Was besagt das Itô-Lemma? Welche praktische Anwedung gibt es?
- (b) Leiten Sie mit Hilfe der Itô-Formel die stochastische Differentialgleichung von GBB her.

Aufgabe 3 (Martingal-Eigenschaft für BB bzw. GBB)

Wir nehmen an, dass der Preisprozess der ${\rm CO}_2$ -Zertifikate $(X_t)_{t\geq 0}$ ein stochastischer Prozess in stetiger Zeit sei. Lösen Sie die folgenden Probleme:

- (a) Wie ist ein Martingal in stetiger Zeit definiert?
- (b) Sei $(X_t)_{t\geq 0}$ eine Brownsche Bewegung $(B_t)_{t\geq 0}$, dann ist der Prozess ein Martingal.
- (c) Sei jetzt der Preisprozess $(X_t)_{t\geq 0}$ eine Geometrische-Brownsche Bewegung $(S_t)_{t\geq 0}$ mit Drift $\mu=0$. Zeigen Sie, dass der Prozess ein Martingal ist. Hierzu kann ohne Beweis verwendet werden, dass

$$\mathbb{E}[e^{\sigma B(t)}] = e^{\frac{\sigma^2 t}{2}}.$$

Aufgabe 4 (Eigenschaften des Spot-Preises im Gleichgewichtsmodell)

Wir betrachten das Gleichgewichtsmodell von Uhrig-Homburg (2008) aus der Vorlesung (Folie 80-83). Folgende Formeln sind bekannt:

$$0 = V_t + \frac{1}{2c}e^{rt}(V_x)^2 + \frac{1}{2}(G(t))^2V_{xx}$$
(1)

$$S(t, x_t) = -e^{rt}V_x \tag{2}$$

$$dx_t = -u_t dt + G(t) dW_t (3)$$

$$u_t = -\frac{1}{c}e^{rt}V_x\tag{4}$$

- (a) Bestimmen Sie die Ableitung von Gleichung (1) bezüglich x.
- (b) Berechnen Sie mit Hilfe der Itô-Formel den Erwartungswert $I\!\!E\,[dV_x]$. Verwenden Sie dabei auch das Ergebnis aus (a).
- (c) Zeigen Sie, dass der diskontierte Spot-Preis $\hat{S}(t,x_t)=e^{-rt}S(t,x_t)$ ein Martingal ist, indem Sie $d\hat{S}(t,x_t)$ und $I\!\!E\left[d\hat{S}(t,x_t)\right]$ berechnen.