TO PASS 75% or higher

Graded quiz on Sets, Number Line, Inequalities,

Simplification,	and Sigma Notation	-
LATEST SUBMISSION GRADE		

92	92.3%			
1.	Let $B=\{3,5,10,11,14\}.$ Is the following statement true or false: $3\not\in B$	1/1 point		
	✓ Correct The symbol $\not\in$ stands for "is not an element of." Since 3 is in an element of the set B , the given statement is not true.			
2.	Let $A=\{1,3,5\}$ and $B=\{3,5,10,11,14\}$. Which of the following sets is equal to the union $A\cup B$? $\bigcirc \ \{1,10,18\}$	1/1 point		
	 ₹1, 10, 18} ₹3, 5, 10, 11, 14} ₹1, 3, 5, 10, 11, 14} ₹1, 3, 5, 3, 5, 10, 11, 14} 			
	Correct The union of two sets consists precisely of the elements that are in at least one of the two sets. That is precisely what is listed here.			
3.	How many real numbers are there between the integers 1 and 4? $ \bigcirc \ \text{None} \\ \bigcirc \ 4 \\ \bigcirc \ 2 \\ \ \text{Infinitely many} $	1/1 point		
	Correct There are in fact infinitely many real numbers between any pair of distinct integers, or indeed any pair of distinct real numbers!			

- $\bigcirc \ x=2$ and y=1
- $\bigcirc \ x=10$ and y=10
- \bigcirc x = -1 and y = 0
- $\bigcirc \ \ x=5$ and y=3.3

✓ Correct

Recall that the statement $x \geq y$ means that x is either equal to y or x is to the right of y on the real number line. Since -1 is actually to the left of 0, these cannot be values for x and y.

5. Suppose that z and w are two positive numbers with z < w. Which of the following inequalities is false?

0 / 1 point

- $\bigcirc -z > -w$
- w-7 > z-7
- \bigcirc -5z < -5w
- $\bigcirc z + 3 < w + 3$

Incorrect

The given inequality z < w is another way of writing w > z. Then we subtract the same number from both sides to obtain this answer.

6. Find the set of all x which solve the inequality $-2x + 5 \le 7$

1 / 1 point

- $\bigcirc x \ge -6$
- $\bigcirc x \leq -1$
- \bigcirc $x \ge -1$
- $\bigcirc x = -1$

Correct

Subtracting 5 from both sides of the given inequality gives $-2x \le 2$. Then we divide both sides by -2, remembering to flip the inequality sign, and we obtain this answer

7.	Which of the following real numbers is not in the closed interval $\left[2,3\right]$
	1
	O 2.1
	O 2
	\bigcirc 3
	$ \begin{tabular}{c} \checkmark \textbf{ Correct} \\ \textbf{Recall that the closed interval } [2,3] \textbf{ consists of all real numbers } x \textbf{ which satisfy} \\ 2 \leq x \leq 3. \textbf{ Since } 2 \leq 1 \textbf{ is false, } 1 \not\in [2,3] \\ \end{tabular} $
8.	Which of the following intervals represents the set of all solutions to:
	$-5 \leq x+2 < 10$?
	\bigcirc [-7,8]
	◎ [−7,8)
	\bigcirc [-5, 10)
	\bigcirc (7,8)
	✓ correct Subtracting 2 from all sides of the inequalities gives $-7 \le x < 8$, and the set of all real numbers x which make that true is exactly the half-open interval $[-7,8)$.
9.	Which of the numbers below is equal to the following summation: $\Sigma_{k=2}^5 2k$?
	O 14
	\bigcirc 4
	O 10
	② 28

We compute $\Sigma_{k=2}^5 2k = 4+6+8+10=28$.

Suppose we already know that $\Sigma_{k=1}^{20} k=210$. Which of the numbers below is equal $\Sigma_{k=1}^{20} 2k$?	to 1/1 point
\bigcirc 2	
O 210	
420	
O 40	
\checkmark correct By applying one of our Sigma notation simplification rules, we can rewrite the summation in question as $2\left(\Sigma_{k=1}^{20}k\right)=2\times210=420.$	
^{11.} Which of the numbers below is equal to the summation $\Sigma_{i=2}^{10}7$?	1/1 point
O 70	
63	
\bigcirc 7	
O 48	
\checkmark correct $ \label{eq:correct} $ According to one of our Sigma notation simplification rules, this summation is jule equal to 9 copies of the number 7 all added together, and so we get $9\cdot 7=63.$	
12. Which of the following numbers is the variance of the set $Z=\{-2,4,7\}$?	1/1 point
\bigcirc $\sqrt{14}$	
O 42	
○ 69	
• 14	
✓ Correct To get the variance of a set of numbers, you need to perform four steps:	
First compute the mean (which is 3)	
Then calculate all the squared differences between the numbers in the set and the mean (here you get $25,1,16$)	this

Then add all these up (here you get 42)

Then divide by the number of elements in the set (which is 3).

Therefore, the variance of ${\cal Z}$

$$= \frac{1}{3} \left[(-2 - 3)^2 + (4 - 3)^2 + (7 - 3)^2 \right]$$

$$= \frac{1}{3} [25 + 1 + 16] = \frac{42}{3} = 14$$

13. Which of the following sets does *not* have zero variance? (hint: don't do any calculation here, just think!)

 $\bigcirc \{5,5,5,5,5,5,5,5,5,5,5,5,5,5\}$

- $\bigcirc \ \{0,0,0,0,0,0,0\}$
- \bigcirc {1,1,1,1}
- \bigcirc $\{2, 5, 9, 13\}$

✓ Correct

Intuitively, the numbers in this set are spread out.

1 / 1 point