

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

Introduction to Data Mining

Lecture8 Expectation-Maximization (EM) Algorithm

Jun Huang

Anhui University of Technology

Spring 2018

huangjun_cs@163.com

Expectation-Maximization

Introduction to Data Mining Jun Huang

- EM Algorithm was named and explained by Arthur Dempster, Nan Laird and Donald Rubin in 1977
- It is pointed out in the paper that the method has been proposed many times in special circumstances
- EM is typically used to compute maximum likelihood estimates given incomplete data samples.

Arthur P. Dempster

Nan M. Laird Donald B. Rubin

Motivation: Finite Mixture Models

Introduction to Data Mining

Jun Huang

- Convex combination of multiple density functions
- Capable of approximating any arbitrary distribution
- In many applications, their parameters are determined by ML, typically using EM Algorithm
- Widely used in:
 - Data Mining
 - Pattern Recognition
 - Machine Learning
 - Statistical Analysis

Mixture of Gaussians

Introduction to Data Mining

Jun Huang

- Simple linear superposition of Gaussian components:
- Gaussian distribution suffer from significant limitations when it comes to modelling real data sets

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

$$\sum_{k=1}^{K} \pi_k = 1, \ 0 \le \pi_k \le 1$$

K-means Clustering

Introduction to Data Mining

Jun Huang

- ullet Data set $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$
 - ullet N observations of D-dimensional Euclidian variable ${f x}$
- ullet Goal: Partition ${\mathcal D}$ into K clusters
 - Minimize within-cluster distance
 - Maximize between-cluster distance

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

- \bullet μ_k : Center of the k-th cluster
 - ullet Mean of the points in the cluster k
- $r_{nk} \in \{0,1\}$: Binary Indicator Variable
 - If \mathbf{x}_n is assigned to cluster k: $r_{nk} = 1$
 - Else: $r_{nk} = 0$
- Find values for r_{nk} and μ_k minimizing J

K-means Clustering

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

- Select initial random points k for each cluster Iteratively do two successive optimizations until convergence:
- E- Find r_{nk} using μ_k :

$$r_{nk} = \begin{cases} 1, & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \mu_j\|^2 \\ 0, & \text{otherwise} \end{cases}$$

• M- Update μ_k using r_{nk} calculated in the step E:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

$$\frac{\partial J}{\partial \mu_k} = 2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \mu_k) = 0 \Rightarrow \mu_k = \frac{\sum_n r_{nk}\mathbf{x}_n}{\sum_n r_{nk}}$$

Defining the Model: Mixture

Introduction to Data Mining

Jun Huang

- Let's introduce z:
 - $z_k \in \{0,1\}$ and $\sum_k z_k = 1$
 - ullet one of K representation

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$
$$p(z_k = 1) = \pi_k$$

- Now define $p(\mathbf{x}, \mathbf{z})$:
 - $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z})$
- Reformulate the mixture distribution of x using z:

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

Defining the Model: Posterior

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization ullet Derive the posterior probability of ${f z}$, observing ${f x}$, in terms of the mixture distribution that we defined:

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x} | z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x} | z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_j, \Sigma_j)}$$
$$p(z_k = 1) = \pi_k$$

Joint Distribution – Marginal Distribution – Responsibility

Introduction to Data Mining

Jun Huang

Defining the Model: Log Likelihood

Introduction to Data Mining

Jun Huang

- Having a data set of observations $\{x_1, ..., x_N\}$
- Matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$
- i.i.d. data points x_n with corresponding latent points z_n .

$$p(\mathbf{X}|\pi, \mu, \Sigma) = \prod_{n=1}^{N} \left\{ \sum_{j=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mu_{k}, \Sigma_{k}) \right\}$$
$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\mu_{k}, \Sigma_{k}) \right\}$$

EM: Algorithm

Introduction to Data Mining

Jun Huang

- In the expectation step we use the current values for the parameters to valuate the posterior probabilities
- In the maximization step we use these posterior probabilities to re-estimate the model parameters, such as the means, covariance matrix and mixing coefficients.

EM for Gaussian Mixtures: Mean

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

• Set the derivative of the likelihood function with respect to μ_k vector to zero:

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k) \right\}$$

$$\gamma(z_k) \equiv p(z_k = 1 | \mathbf{x}) = \frac{\pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_j, \Sigma_j)}$$

$$- \sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)} \Sigma_k(\mathbf{x}_n - \mu_k) = 0$$

• By rearranging, we can obtain: $\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$, where $N_k = \sum_{n=1}^N \gamma(z_{nk})$

EM for Gaussian Mixtures: Covariance Matrix

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

• Set the derivative of the likelihood function with respect to Σ_k to zero:

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

 Note:Single Gaussian fitted to the data set, but each data point weighted by the corresponding posterior probability and denominated by the effective number of points associated with that component

EM for Gaussian Mixtures: Mixing Coefficient

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

- Set the derivative of likelihood function with respect to π_k :
 - Constraint: Mixing coefficients need to sum to one.
 - Use a Lagrange multiplier and maximize:

$$\ln p(\mathbf{X}|\pi, \mu, \Sigma) + \lambda (\sum_{k=1}^{K} \pi_k - 1)$$

• Take the derivative, multiply both sides by π and sum over k:

$$\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)} + \lambda = 0$$

• Then, we can obtain:

$$\pi_k = \frac{N_k}{N}$$

EM for Gaussian Mixtures

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

- ① Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k , and evaluate the initial value of the log likelihood
- 2 E-step: Evaluate the responsibilities using the current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

M-step: Re-estimate the parameters using the current responsibilities

$$\mu_k^{\mathsf{new}} = rac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{\mathsf{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T$$

$$\pi_k^{\mathsf{new}} = \frac{N_k}{N}$$

③ Evaluate the log likelihood $\ln p(\mathbf{X}|\mu, \Sigma, \pi)$, and check for convergence of either the parameters or the log likelihood

EM: A Broader View

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization Finding maximum likelihood solutions for models with latent variables:

$$\ln p(\mathbf{X}|\theta) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta) \right\}$$

- Complete data is in the form of X, Z
- Our observed data X is incomplete, we can not directly use maximum likelihood
- Because we can not use the complete-data likelihood, we instead use
 its expected value under the posterior distribution of the latent
 variable: E step

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathsf{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

• Then we maximize this expectation function: M step

$$\boldsymbol{\theta}^{\mathsf{old}} = \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathsf{old}})$$

The General EM Algorithm

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

- Choose an initial setting for the parameters θ^{old}
- **2** E-step Evaluate $p(\mathbf{Z}|\mathbf{X}, \theta^{\mathsf{old}})$
- **M**-step Evaluate θ^{new} given by

$$\theta^{\mathsf{new}} = \arg\max_{\theta} \mathcal{Q}(\theta, \theta^{\mathsf{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\sf old}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\sf old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

Oheck for convergence of either the log likelihood or the parameter values. If the convergence criterion is not satisfied, then let

$$\theta^{\mathsf{old}} \leftarrow \theta^{\mathsf{new}}$$

and return to step 2

Question 1

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

What is the difference between EM algorithm and ML (Maximum Likelihood) estimation?

- EM algorithm tries to find a ML estimation for the parameters of a model with latent variables.
- In each iteration of the algorithm, latent variables are calculated and being used to maximize the likelihood, they are like 'side effects' of the maximization process.
- EM is not guaranteed to converge to the global maximum, but it is guaranteed to converge to a maximum and improve the likelihood of the model at every step.

Question 2

Introduction to Data Mining

Jun Huang

- What is a mixture model and what is the benefit of using it? What is the mathematical expression for a Gaussian mixture?
 - Finite mixture models are convex combinations or weighted sums of multiple density functions.
 - With enough components, they are capable of approximating any arbitrary distribution.
 - PDF of a Gaussian mixture is in the form of

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

Question 3

Introduction to Data Mining

Jun Huang

EM:Expectation Maximization

• How can we make use of EM to solve a clustering problem?

- EM is used for maximizing the likelihood for models with incomplete/ latent variables.
- When we consider a clustering problem, we can model the problem by introducing cluster labels as latent variables:

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$