SEQUENCE LISTING

<110> Chen, Yih-Tai Cao, Longguang

<120> A synthetic DNA encoding an orange seapen-derived green fluorescent protein with codon preference of mammalian expression systems and biosensors

<130> 41856-5

<160> 27

<170> PatentIn version 3.1

<210> 1

<211> 1482

<212> DNA

<213> Ptilosarcus gurneyi

9 120 180 240 300 360 420 480 ggcaagggca acgtgctgtt cggcaaccag ctgatgcaga tccgggtgac caagggcggc cetetgecet tegeettega categtgage ategeettee agtaeggeaa eeggaeette accaagtate ecgaegaeat egeegaetae ttegtgeaga getteeetge eggettette tacgagcgga acctgcggtt cgaggacggc gccatcgtgg acatccggag cgacatcagc ctggaggacg acaagttcca ctacaaggtg gagtaccgcg gcaacggctt ccctagcaac ggccctgtga tgcagaaggc catcctgggc atggagccca gcttcgaggt ggtgtacatg aagcttgcca ccatggtgaa ccggaacgtg ctgaagaaca ccggcctgaa ggagatcatg agegecaagg ecagegtgga gggeategtg aacaaecaeg tgtteageat ggagggette <400>

148		gc	taaagcggcc	cgagtgggtg	gcagcctgca	aagcctctgg
144	caccatcggc	cccagctgac	accgccatcg	gcagcacgag	gcttcgtgga	gaggagggca
138	gaactacgtg	ggctggagaa	atccaccacc	gtacctattc	agttccctga	ggcgtgaagg
132	gagcaagggc	ccttctaccg	cacatgaaga	ctacagctgc	gcggcaacta	aagctggaga
126	cctggtgtac	gcgaggtgga	gtgctggtgg	gaacagcggc	tggtgtacat	agcttcgagg
120	catggagccc	ccatcctggg	atgcagaagg	cggccctgtg	tccctagcaa	ggcaacggct
114	ggagtaccgc	actacaaggt	gacaagttcc	cctggaggac	gcgacatcag	gacatccgga
108	cgccatcgtg	tcgaggacgg	aacctgcggt	ctacgagcgg	ccggcttctt	agcttccctg
102	cttcgtgcag	tcgccgacta	cccgacgaca	caccaagtat	accggacctt	cagtacggca
96	catcgccttc	acatcgtgag	ttagaattag	ccctctgccc	ccaagggcgg	atccgggtga
906	gctgatgcag	teggcaacca	aacgtgctgt	cggcaagggc	tggagggctt	gtgttcagca
84(gaacaaccac	agggcatcgt	gccagcgtgg	gagcgccaag	aggagatcat	accggcctga
78(gctgaagaac	accggaacgt	accatggtga	caagcttgcc	aaagcggccg	gagtgggtgt
72(cagcctgcac	agcctctggg	accatcggca	ccagctgacc	ccgccatcgc	cagcacgaga
99	cttcgtggag	aggagggcag	aactacgtgg	gctggagaag	tccaccaccg	tacctattca
909	gttccctgag	gcgtgaagga	agcaagggcg	cttctaccgg	acatgaagac	tacagctgcc
54(cggcaactac	agctggagag	ctggtgtaca	cgaggtggac	tgctggtggg	aacagcggcg

A STATE OF S A. Graph part. H H H H H H H H

<210><211></4><211><212>

239

PRT

Ptilosarcus gurneyi <213>

<400>

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1

Ser Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val 20 30 Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50 60 Gln

Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 70 80 Val Ser

Phe Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe 85

Ile Arg Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp 100

Glu Tyr Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val 115 Ser Asp

Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala 130 135 Arg

Tyr Met Asn Ser Gly Val 155 Leu Gly Met Glu Pro Ser Phe Glu Val Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 170

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

 ${
m Tyr}$ Ile His His Arg Leu Glu Lys Thr 200 205 Glu Tyr His Phe Pro (Glu Phe

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 Val

Leu Thr Thr Ile Gly Lys Pro Leu Gly Ser Leu His Glu Trp Val 225

<210> 3 <211> 224

<212> PRT <213> Ptilosarcus gurneyi

<400>

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 $$\rm 15$

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 25 30

Met Glu Gly Phe Gly Lys Gly As
n Val Leu Phe Gly As
n Gln Leu Met 35 \$45\$

Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp 50 60

Pro 80 Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr 65 Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe 85 Asp Asp

Ile Arg Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115

Ile	
Ala	
Lys	
Gln	
Val Met	140
Val	
Pro	
\mathtt{Gly}	
Asn	
Ser	135
Pro	
Phe	
${\tt Gly}$	
Asn	
G1y	130
Arg	

Leu Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 170

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Val Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

<210> 4 <211> 219 <212> PRT <213> Ptilosarcus gurneyi

<400>

Gly Leu Lys Glu Ile Met Ser Ala Lys Ala Ser Val Glu Gly Ile Val 1 15

The state of the s

Leu	
Val	
Asn	30
\mathtt{Gly}	
Lys	
Gly Lys	
Phe	
G1y	25
Glu	
Met	
Ser	
Phe	
Val	20
His	
Asn	
Asn	

Len	
Pro	
$_{ m G1y}$	
\mathtt{Gly}	45
Lys	
${ m Thr}$	
Val	
Arg	
Ile	40
Gln	
Met	
Leu]	
Gln	
Asn (35
Gly 1	. ,
Phe (
щ	

145

:2 |x=4 [:] | | | | |

160

150

Leu Glu Ser Gly Asn Tyr Tyr Ser Cys His Met Lys Thr Phe 165

Tyr Arg 175

Ser Lys Gly Gly Val Lys Glu Phe Pro Glu Tyr His Phe Ile 180 180

His

Glu Glu Gly Ser Phe Val Glu Gln His 200

Arg Leu Glu Lys Thr Tyr Val 195

205

Glu Thr Ala Ile Ala Gln Leu Thr Thr Ile Gly $210\,$

238 PRT

<210><211><211><211><212><213>

<400>

Ŋ

Ptilosarcus gurneyi

Met Val Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1

Ser

Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser Met

25

30

Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln

ω Page

Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Val 50 60

Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp 70 80 Ile Ala Phe Gln Ser 65

TyrTyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe 85 95 Asp Ile Ala Asp

Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp Ile Arg Ser 100

Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr Arg 115 Asp Ile

Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile Leu 130

Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val Leu 145

Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr Tyr 165

Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys Glu 180 185 Ser

Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr Val 195

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln Leu 210

Thr Thr Ile Gly Lys Pro Leu Gly Ser Leu His Glu Trp Val 225 235

PRT 237 <212><213> <211> <210>

Ptilosarcus gurneyi

<400>

Ala Met Val Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met Ser 1

Met Glu Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 20 30

Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln Ile 35

Ser	
Val	
I le	
Z Z Z Z Z	
he	20
Hall	v
he 7	
ro Lo	
Leu Pro Phe Ala Phe Asp 11.	
Pro L	55
Δi L	2
Gly	
\mathtt{Gly}	
Lys	
. Thr	
Val	20
Arg	

Asp	80
Asp	
Pro	
Tyr	
Lys	
\mathtt{Thr}	75
Phe	
\mathtt{Thr}	
Arg	
Asn	
Gly A	70
${ m Tyr}$	
Gln	
Phe	
Ala	
Ile	65

Glu Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr Val 195 200 Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln Leu Thr 210

Thr Ile Gly Lys Pro Leu Gly Ser Leu His Glu Trp Val 225 235

<210> 7 <211> 236 <212> PRT <213> Ptilosarcus gurneyi

<400> 7

Met Val Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met Ser Ala Lys 1 1 Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser Met Glu Gly $20\ \ 25\ \ 30$

Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln Ile Arg 35 45

Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Val Ser Ile 50 60 Val

Ile Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp Asp 70 Ala 65

Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe Tyr Glu Arg 85 95 Ala Asp

Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp Ile Arg Ser Asp Ile 100

Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr Arg Gly Asn 115

Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile Leu Gly Met 130

 $\texttt{Gly}\\160$ Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val Leu Val 145

Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr Tyr Ser Cys 170

His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys Glu Phe Pro 180 180

Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr Val Glu Glu 195

Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln Leu Thr Thr 210

Ile Gly Lys Pro Leu Gly Ser Leu His Glu Trp Val 225 235

<210> 8 <211> 235 <212> PRT <213> Ptilosarcus gurneyi

<400> 8

Ala Met Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met Ser Ala Lys 1

Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser Met Glu Gly Phe 25 30

Ile Arg Val Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln 35 45

Ala Ser Ile Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Val 50 60

Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp Asp Ile 65

Tyr Glu Arg Asn	95
Phe Phe	
G1y	90
Pro Ala	
Phe	
Gln Ser	ጥ
Val	œ
r Phe	
Asp Tyr	

Ser	
Ile	
Asp	110
Ser	
Arg	
Ile	
Asp	
Val	105
Ile	
Ala	
\mathtt{Gly}	
Asp	
Glu	100
Phe	
Arg	
Leu	

Gly Lys Pro Leu Gly Ser Leu His Glu Trp Val 225 235

<210><211>

PRT

Ptilosarcus gurneyi <212><213>

σ <400> Met Val Lys Asn Thr Gly Leu Lys Glu Ile Met Ser Ala Lys Ala Ser 1

G1yVal Glu Gly Ile Val Asn Asn His Val Phe Ser Met Glu Gly Phe 20 30

 Thr Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln Ile Arg Val 35 40

Phe Ile Ala Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Val Ser 50 60 Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp Asp Ile Ala Asp 65 75 80

Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe Tyr Glu Arg Asn Leu

Len Ile Ser Arg Phe Glu Asp Gly Ala Ile Val Asp Ile Arg Ser Asp 100

Phe Gly Asn Gly 125 Lys Val Glu Tyr Arg 120 Lys Phe His Tyr Asp 115 Glu Asp

Ile Leu Gly Met Glu Pro 140 Gln Lys Ala Ser Asn Gly Pro Val Met 130 Pro

Tyr Met Asn Ser Gly Val Leu Val Gly Glu Val 150 Ser Phe Glu Val Val 145

Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr Tyr Ser Cys His Met 165 175

Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys Glu Phe Pro Glu Tyr 180 189

Ser Ile His His Arg Leu Glu Lys Thr Tyr Val Glu Gly 195 His Phe

Val Glu Gln His Glu Thr Ala Ile Ala Gln Leu Thr Thr Ile Gly 210 Phe

Lys Pro Leu Gly Ser Leu His Glu Trp Val 5225

<210><211><211><211><212><213>

233 PRT

Ptilosarcus gurneyi

<400>

Val Met Val Asn Thr Gly Leu Lys Glu Ile Met Ser Ala Lys Ala Ser 1 Glu Gly Ile Val Asn Asn His Val Phe Ser Met Glu Gly Phe Gly Lys 30 25 20

Gly Asn Val Leu Phe Gly Asn Gln Leu Met Gln Ile Arg Val Thr Lys 35 45

Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile Val Ser Ile Ala Phe Gln 50 60

TYF80 Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp Asp Ile Ala Asp 65 Phe Pro Ala Gly Phe Phe Tyr Glu Arg Asn Leu Arg 85 95 Phe Val Gln Ser

Glu	Pro	Ser	Asp 160	$ ext{Lys}$	His	Phe	Lys	
Leu	Phe	Pro	Val	Met 175	Tyr	Ser	$\mathtt{Gl} \mathtt{y}$	
Ser 110	$\mathtt{Gl}\mathtt{y}$	Glu	Glu	His	Glu 190	$\mathtt{Gl} Y$	Ile	
	Asn 125	Met	$\mathtt{Gl}\mathtt{y}$	C_{Y} s	Pro	Glu 205	Thr	
Asp	$\mathtt{Gl}\gamma$	G1Y 140	Val	Ser	Phe	Glu	\mathtt{Thr}	
Arg Ser Asp 11e	Arg	Leu	Leu 155	$\mathrm{T} \mathrm{Y} \mathrm{r}$	Glu	Val	Leu	
Arg	Tyr	Ile	Val	Tyr 170	$ ext{L} ext{ys}$	${\rm Ty} r$	Gln	
105 105	Glu	Ala	\mathtt{Gl}_{Y}	Asn	Val 185	Thr	Ala	Val
Asp	Val	$ ext{L} ext{ys}$	Ser	\mathtt{Gl}_{Y}	Gly	Lys 200	Ile	Trp
Val	Lys	Gln 135	Asn	Ser	\mathtt{Gl}_{Y}	Glu	Ala 215	Glu
Ile	${\tt Tyr}$	Met	Met 150	Glu	$ ext{L} ext{ys}$	Leu	Thr	His 230
Ala	His	Val	${ m Tyr}$	Leu 165	Ser	Arg	Glu	Leu
$^{\rm G1Y}_{\rm 100}$	Phe	Pro	Val	$ extsf{L} extsf{y} extsf{s}$	Arg 180	His	His	Ser
Asp	L_{YS}	$\mathtt{G1} \gamma$	Val	${ m Tyr}$	${ m Tyr}$	His 195	Gln	$\mathtt{G1}\mathrm{y}$
Glu	Asp	Asn 130	Glu	Val	Phe	Ile	Glu 210	Leu
Phe	Asp	Ser	Phe 145	Leu	\mathtt{Thr}	Phe	Val	Pro 225

4 Brass H. Cl. 20

<210><211><211><211><212><213>

232

PRT

Ptilosarcus gurneyi

<400>

Glu Met Val Thr Gly Leu Lys Glu Ile Met Ser Ala Lys Ala Ser Val 1

Asn Asn His Val Phe Ser Met Glu Gly Phe Gly Lys Gly 20 Gly Ile Val

Asn Val Leu Phe Gly Asn Gln Leu Met Gln Ile Arg Val Thr Lys Gly 35 45

Gly Pro Leu Pro Phe Ala Phe Asp Ile Val Ser Ile Ala Phe Gln Tyr 50

Phe 80 Gly Asn Arg Thr Phe Thr Lys Tyr Pro Asp Asp Ile Ala Asp Tyr 65

Phe Val Gln Ser Phe Pro Ala Gly Phe Phe Tyr Glu Arg Asn Leu Arg 85 95

Ile Val Asp Ile Arg Ser Asp Ile Ser Leu Glu Asp 105 Glu Asp Gly Ala 100

Я	
Ser	
Pro	
Phe	
$_{ m Gly}$	125
Asn	
${\tt Gly}$	
Arg	
Tyr	
ъ.	
	120
	120
Val Glu	120
Glu	120
Lys Val Glu	120
Tyr Lys Val Glu	115 120
Phe His Tyr Lys Val Glu	
His Tyr Lys Val Glu	

Phe	
Ser	
Pro	
${\tt Glu}$	
Met	140
Gly Met	
Len	
Ile	
Ala	
Lys	135
Gln	
Met	
Val	
Pro	
G1y	130
Asn	

<210> 12 <211> 231

<212> PRT
<213> Ptilosarcus gurneyi

<400> 12

Met Val Gly Leu Lys Glu Ile Met Ser Ala Lys Ala Ser Val Glu Gly 1 5 15

Ile Val Asn Asn His Val Phe Ser Met Glu Gly Phe Gly Lys Gly Asn 20 25

Val Leu Phe Gly Asn Gln Leu Met Gln Ile Arg Val Thr Lys Gly Gly 35

G1yIle Val Ser Ile Ala Phe Gln Tyr Pro Leu Pro Phe Ala Phe Asp 50 55 ValAsn Arg Thr Phe Thr Lys Tyr Pro Asp Asp Ile Ala Asp Tyr Phe 65

Phe Pro Ala Gly Phe Phe Tyr Glu Arg Asn Leu Arg Phe Glu 90 Gln Ser

Asp Gly Ala Ile Val Asp Ile Arg Ser Asp Ile Ser Leu Glu Asp Asp 100 100

Lys Phe His Tyr Lys Val Glu Tyr Arg Gly Asn Gly Phe Pro Ser Asn 115

Harman County Street, and the street, the .[] 4 222 [2] |c=b # 1 # m

Glu Phe Pro Ser Glu 140 Ile Leu Gly Met Gly Pro Val Met Gln Lys Ala 130

Gly Glu Val Asp Leu Val 155 Gly Val Leu Val Val Val Tyr Met Asn Ser 145

Tyr Lys Leu Glu Ser Gly Asn Tyr Tyr Ser Cys His Met Lys Thr Phe 165 175

Phe Ile Tyr Arg Ser Lys Gly Gly Val Lys Glu Phe Pro Glu Tyr His 180 180

Tyr Val Glu Glu Gly Ser Phe Val Glu 200 Arg Leu Glu Lys Thr 195 His His

Gln His Glu Thr Ala Ile Ala Gln Leu Thr Thr Ile Gly Lys Pro Leu 210

Gly Ser Leu His Glu Trp Val 225

<210><211><211></211></212></213>

224 PRT

Ptilosarcus gurneyi

13

<400>

Lys Glu Ile Met	15
Gly Leu Lys	
Thr	10
Asn	
Leu Lys	
Leu	
Val	
Asn	വ
Arg	
Asn	
Val	
Met Val	H

Ser	
Phe	
Val	30
His	
Asn	
Asn	
Val	
Ile	25
\mathtt{Gly}	
Glu	
Val Glu	
Glu	
Val Glu	20
Ala Ser Val Glu	20
Lys Ala Ser Val Glu	20
Ala Ser Val Glu	20

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro
$$65 \ \ \, 75 \ \ \, 80$$

Arg Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile

Tyr Met Asn Ser Gly Val 155 Leu Gly Met Glu Pro Ser Phe Glu Val Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 165

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Ile His His Arg Leu Glu Lys Thr Tyr 200 Glu Phe Pro Glu Tyr His Phe 195 Val Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

PRT 225 <210><211><211><211><212><213>

Ptilosarcus gurneyi

<400>

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

IlePhe Asp Ala Gly Pro Leu Pro Phe 9 Gly (55 Ile Arg Val Thr Lys Gln

Pro 80 Thr Phe Thr Lys Tyr 75 Ile Ala Phe Gln Tyr Gly Asn Arg 70 Ser Val

Phe Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe 85 95

Ile Arg Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp 100

Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115 Ser Asp

IleGln Lys Ala Asn Gly Pro Val Met 140 Gly Asn Gly Phe Pro Ser 130 Arg

Val 160 Leu Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 170 175

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Val Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

Leu 225 <210> 15 <211> 226 <212> PRT <213> Ptilosarcus gurneyi

<400> 15

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser

Met	
Leu	
Gln	
GIY Asn (45
d	
u Phe	
" ¡Ā	
ı val	
Gly Ash	40
G1 _λ	
Lys	
\mathtt{Gly}	
Phe	
$_{ m G1y}$	35
Glu Gly	
Met	

Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp 50 60 Gln

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 65 75 80

Phe Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe 95

Ile Arg Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115

Arg Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile 130

Leu Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val 145

TyrLeu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn 170

The state of the s

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 189

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Val Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

Leu Thr 225 <210> 16 <211> 227 <212> PRT

<212> PRT <213> Ptilosarcus gurneyi

<400> 16

Met Val As
n Arg As
n Val Leu Lys As
n Thr Gly Leu Lys Glu Ile Met 1 $$\rm 10$$

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 20

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

A CONTROL OF THE PARTY OF THE P

Ile	
Asp	
Phe	
Ala	
Phe	09
Pro	
Leu	
Pro	
${\tt Gly}$	
\mathtt{Gly}	22
Lys	
\mathtt{Thr}	
Val	
Arg	
Ile	20
Gln	

Pro	80
Tyr	
Lys	
\mathtt{Thr}	
Phe	
Thr	75
Arg	
Asn	
\mathtt{Gly}	
Tyr	
Gln	70
Phe	
Ala	
Ile	
Ser	
Val	65

Hard Hard Court and Court And the state of iii |-=i

TyrGlu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr 195 200

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 Val

Leu Thr Thr 225

Ptilosarcus gurneyi 228 PRT <210><211><211><211><212><213>

17 <400> Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 30 20

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50

Pro 80
Tyr
Lys
Thr
Phe
Thr 75
Arg
Asn
\mathtt{Gly}
${ m Tyr}$
Gln 70
Phe
Ala
Ile
Ser
Val 65

Gly Phe Phe	
Ala	
Pro	
Phe	
Ser	90
Gln	
Val	
Phe	
\mathtt{Tyr}	
Asp	82
Ala	
Ile	
Asp	
Asp	

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 Val (

Leu Thr Thr Ile 225 <210> 18 <211> 229 <212> PRT <213> Ptilosarcus gui

<213> Ptilosarcus gurneyi

18

<400>

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 25

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro

65

Phe Phe 95 Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly 85 Ile Arg Gly Ala Ile Val Asp 110 Tyr Glu Arg Asn Leu Arg Phe Glu Asp 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115

Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile 130

Arg

Tyr Met Asn Ser Gly Val 155 Leu Gly Met Glu Pro Ser Phe Glu Val Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 165 175

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Val Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

Leu Thr Thr Ile Gly 225

<210> 19

<211> 230

<212> PRT

<213> Ptilosarcus gurneyi

<400> 19

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 30 20

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 65 75 80

a Gly Phe Phe 95
Val Gln Ser Phe Pro Ala G 90
Asp Asp Ile Ala Asp Tyr Phe 85

Arg	
Ile	
Asp	110
Val	
Ile	
Ala	
Gly Ala	
	105
Glu	
Phe	
Leu Arg	
Leu	
Asn	100
Arg	
Glu	
${ m Tyr}$	

Leu Thr Thr Ile Gly Lys 225

231 <210><211><211><211><212><213>

PRT

Ptilosarcus gurneyi

<400>

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1

Phe Ser Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val 25 30

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 40 Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 65 75 80

Phe Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe 85 95

l Ile Val Asp Ile Ard	
u Asp Gly Ala	105
Tyr Glu Arg Asn Leu Arg Phe Glu	100

${ m Tyr}$
Glu
Val
Lys
${\rm Ty} r$
His
Phe
Lys
Asp 120
Asp
Glu
Leu
Ser
11e 115
Asp
Ser

Leu Thr Thr Ile Gly Lys Pro 225

The Hard Hard of the Hard the state of the s

21 232 PRT <210> <211> <211> <212> <213>

Ptilosarcus gurneyi

21 <400> Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 25

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

IleGln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp 50 60

Val Ser Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 65 75 80

Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe 85

Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp Ile Arg 100

${\rm T} \gamma {\rm r}$
Glu
Val
Lys 1
$\mathrm{T} \gamma x$
His
Phe
Lys
Asp 120
Asp
Glu
Leu
Ser
11e
Asp
Ser

Ile	
Ala	
Gln Lys	
Gln	
Met	140
Val	
Pro	
Asn Gly	
Asn	
Ser	135
Pro	
Phe	
$_{ m G1y}$	
Asn	
31y	130
Arg (

<210> 22

<211> 233 <212> PRT <213> Ptilosarcus gurneyi

<400> 22

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 20 30

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Ile Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp 50 60

Pro 80 Thr Phe Thr Lys Tyr Ile Ala Phe Gln Tyr Gly Asn Arg Val Ser :

Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe 85 95 Asp Asp

Ile Arg Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr

125 120

Arg Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala 130 130

Leu Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 175

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 Val

Leu Thr Thr Ile Gly Lys Pro Leu Gly 225

<210><211><211><211><212><213>

23 234

PRT

Ptilosarcus gurneyi

<400> 23

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

Ser Phe Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val 20 30 Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met 35 45

Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp Ile 50

Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr Pro 70 80 Val Ser

Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe Phe 85 95

Ile Arg Gly Ala Ile Val Asp 110 Tyr Glu Arg Asn Leu Arg Phe Glu Asp 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115

IleArg Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Wet Gln Lys Ala 130 135 Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val 150 150 Leu Gly Met Glu Pro 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 165

LysCys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val 180 180 Tyr Ser

TyrIle His His Arg Leu Glu Lys Thr 200 Glu Phe Pro Glu Tyr His Phe 195

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 \$210Val

Leu Thr Thr Ile Gly Lys Pro Leu Gly Ser 225

<210>

235

PRT

Ptilosarcus gurneyi <211><211><212><213>

24 <400>

Met	
Ile	12
Glu	
Lys	
Leu	
Gly	
Lys Asn Thr Gly Leu I	T 0
Asn	
Lys	
Leu]	
Val	
Asn	ላ
Arg	
Asn	
Val	
Met	-

•	
Ser	
Phe	
Val	30
His	
Asn	
Asn	
Val	
Ile	25
\mathtt{Gly}	
Glu	
Val	
Ser	
Ala	20
Lys	
Ala	
Ser	

Marrie Charles Shows Shows Start Sta

Leu Gly Met Glu Pro Ser Phe Glu Val Val Tyr Met Asn Ser Gly Val 145

Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 175

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr Tyr 195

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

Val

Leu Thr Ihe Gly Lys Pro Leu Gly Ser Leu 225 235

236 PRT <210>

Ptilosarcus gurneyi <211><211><212><213>

25 <400> Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 15

n Asn His Val Phe Ser	30
Glu Gly Ile Val Asn	25
Ser Ala Lys Ala Ser Val	20

Met	
Leu	
Gln	
Asn	45
Gly	
Phe	
Leu	
Val	
Asn	40
$_{ m G1y}$	
Lys	
$_{ m G1y}$	
Phe	
G1y	35
${\tt Glu}$	
Met	

Tyr	
Asn	175
G1y	
Ser	
Glu	
ren e	
Lys	170
Tyr	
Val	
Leu	
Asp	
Val	165
Glu	
. Gly	
Val	
Leu Val	

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Ile His His Arg Leu Glu Lys Thr Tyr 200 Pro Glu Tyr His Phe 195 Glu Phe

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210 Val

Leu Thr Thr Ile Gly Lys Pro Leu Gly Ser Leu His 225

<210> 26 <211> 237 <212> PRT <213> Ptilosarcus gurn

<213> Ptilosarcus gurneyi

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe Ser 25

Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile Met 1 10 15

Met	
Leu	
Gln]	
Asn	45
Gly	1
Phe	
Val Leu	
Val	
Asn	40
Gly Asn	40
G1y	40
	40
G1y	40
Gly Lys Gly	35 40
Phe Gly Lys Gly	35 40
Gly Phe Gly Lys Gly	35 40

ψ	
Ile	
Asp	•
Phe	
Ala	
Phe	09
Pro	
Leu	
Pro	
$_{ m G1y}$	
Gly	52
Lys	
\mathtt{Thr}	
Val	
Arg	
Ile	20
Gln	

175 $\frac{1}{10}$, $\frac{1}{10}$ Do. H. H. H.

165

Tyr Ser Cys His Met Lys Thr Phe Tyr Arg Ser Lys Gly Gly Val Lys 180 180

Glu

 $\mathtt{T}\mathtt{yr}$

Phe Pro Glu Tyr His Phe Ile His His Arg Leu Glu Lys Thr 195 205

Val

Glu Glu Gly Ser Phe Val Glu Gln His Glu Thr Ala Ile Ala Gln 210

Leu Thr Ihr Ile Gly Lys Pro Leu Gly Ser Leu His Glu 225 235

238 PRT

Ptilosarcus gurneyi <210><211><211><211><212><213></

27 <400>> Met Val Asn Arg Asn Val Leu Lys Asn Thr Gly Leu Lys Glu Ile 1

10

Met

Ser

30

Ser Ala Lys Ala Ser Val Glu Gly Ile Val Asn Asn His Val Phe 25

Met Glu Gly Phe Gly Lys Gly Asn Val Leu Phe Gly Asn Gln Leu Met

50 Page

40	
35	

 $_{\rm Ile}$ Gln Ile Arg Val Thr Lys Gly Gly Pro Leu Pro Phe Ala Phe Asp 50 60

Pro 80 Ile Ala Phe Gln Tyr Gly Asn Arg Thr Phe Thr Lys Tyr 70 Ser Val 65

Phe Asp Asp Ile Ala Asp Tyr Phe Val Gln Ser Phe Pro Ala Gly Phe 85 Tyr Glu Arg Asn Leu Arg Phe Glu Asp Gly Ala Ile Val Asp Ile Arg 100

Ser Asp Ile Ser Leu Glu Asp Asp Lys Phe His Tyr Lys Val Glu Tyr 115

Gly Asn Gly Phe Pro Ser Asn Gly Pro Val Met Gln Lys Ala Ile 130 Arg

Tyr Met Asn Ser Gly Val 155 Phe Glu Val Val Leu Gly Met Glu Pro Ser 145 Leu Val Gly Glu Val Asp Leu Val Tyr Lys Leu Glu Ser Gly Asn Tyr 165

	Lys Gly Gly Val Lys	190
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ser	185
	Tyr Ser Cys His Met Lys	180

Tyr	
\mathtt{Thr}	
Lys	
Glu	205
Leu	
Arg	
His	
His	
Ile	200
Phe	
His	
Tyr	
$_{\rm G1u}$	
Pro	195
Phe	
Glu	

Gln	
Ala	
Ile	
Ala	
Thr	220
Glu	
His	
Gln	
Glu	
Val	215
Phe	
Ser	
G1y	
Glu	
. Glu	210
Val	

ľrp	
Glu ?	
His	
Len	235
Ser	
Gly	
Leu	
Pro	
Lys	230
Gly	
Ile	
\mathtt{Thr}	
\mathtt{Thr}	
Leu	225