Poncelet Polygons

Joshua Gramm

Department of Mathematics
Dr. Taylor Poe

08 Dec 2022

Theorem (Poncelet's Theorem)

Let C be an ellipse in \mathbb{D} . If there is a polygon \mathfrak{P}_0 inscribed in \mathbb{T} that circumscribes C, then for any complex point $z \in \mathbb{T}$, there exists a polygon \mathfrak{P} inscribed in \mathbb{T} and circumscribed about C such that z is a vertex of \mathfrak{P} . Thus there is an infinite family of \mathfrak{P} that circumscribes C. The ellipse is called a Poncelet- \mathfrak{n} ellipse.

Theorem (Poncelet's Theorem)

Let C be an ellipse in $\mathbb D$. If there is a polygon $\mathcal P_0$ inscribed in $\mathbb T$ that circumscribes C, then for any complex point $z \in \mathbb T$, there exists a polygon $\mathcal P$ inscribed in $\mathbb T$ and circumscribed about C such that z is a vertex of $\mathcal P$. Thus there is an infinite family of $\mathcal P$ that circumscribes C. The ellipse is called a Poncelet-n ellipse.

Definition (Orthogonal Polynomial on the Unit Circle)

Definition (Orthogonal Polynomial on the Unit Circle)

•
$$\Phi_n(z; f_1, f_2, ..., f_n) = \prod_{j=1}^n z - f_j, f_j \in \mathbb{D}$$

Definition (Orthogonal Polynomial on the Unit Circle)

•
$$\Phi_n(z; f_1, f_2, ..., f_n) = \prod_{j=1}^n z - f_j, f_j \in \mathbb{D}$$

$$\Phi_n(z) = \sum_{j=0}^n c_j z^j, c_n = 1$$

Definition (Orthogonal Polynomial on the Unit Circle)

$$\Phi_n(z; f_1, f_2, ..., f_n) = \prod_{j=1}^n z - f_j, f_j \in \mathbb{D} \quad \Phi_n^*(z; f_1, f_2, ..., f_n) = \prod_{j=1}^n 1 - z \overline{f_j}$$

$$\Phi_n(z) = \sum_{j=0}^n c_j z^j, c_n = 1 \quad \Phi_n^*(z) = \sum_{j=0}^n \overline{c_j} z^{n-j} = z^n \overline{\Phi_n(1/\overline{z})}$$

Szegő Recursion

$$\Phi_{n+1}(z) = z\Phi_n(z) - \overline{\alpha_n}\Phi_n^*(z)$$

$$\Phi_{n+1}^*(z) = \Phi_n^*(z) - \alpha_n z \Phi_n(z)$$

Szegő Recursion

$$\Phi_{n+1}(z) = z\Phi_n(z) - \overline{\alpha_n}\Phi_n^*(z)$$

$$\Phi_{n+1}^*(z) = \Phi_n^*(z) - \alpha_n z \Phi_n(z)$$

• $\Phi_{n+1}(0) = -\overline{\alpha_n}$ called the Verblunsky coefficients, $|\alpha_n| < 1$.

Definition (Paraorthogonal Polynomial on the Unit Circle)

An OPUC with zeros on \mathbb{T} .

$$\Phi_{n+1}(z) = z\Phi_n(z) + e^{i\theta}\Phi_n^*(z)$$

Definition (Paraorthogonal Polynomial on the Unit Circle)

An OPUC with zeros on \mathbb{T} .

$$\Phi_{n+1}(z) = z\Phi_n(z) + e^{i\theta}\Phi_n^*(z)$$

Definition (Paraorthogonal Polynomial on the Unit Circle)

An OPUC with zeros on \mathbb{T} .

$$\Phi_{n+1}(z) = z\Phi_n(z) + e^{i\theta}\Phi_n^*(z)$$

Definition (Paraorthogonal Polynomial on the Unit Circle)

An OPUC with zeros on T.

$$\Phi_{n+1}(z) = z\Phi_n(z) + e^{i\theta}\Phi_n^*(z)$$

$$\Theta_j = \begin{pmatrix} \overline{\alpha}_j & \rho_j \\ \rho_j & -\alpha_j \end{pmatrix}, \rho_j = \sqrt{1 - |\alpha_j|^2}$$

$$\Theta_j = \begin{pmatrix} \overline{\alpha}_j & \rho_j \\ \rho_j & -\alpha_j \end{pmatrix}, \rho_j = \sqrt{1 - |\alpha_j|^2}$$

 $\bullet \ \mathcal{L} := \Theta_0 \bigoplus \Theta_2 \bigoplus \Theta_4 \bigoplus ..., \quad \mathcal{M} := 1 \bigoplus \Theta_1 \bigoplus \Theta_3 \bigoplus ...$

$$\Theta_j = \begin{pmatrix} \overline{\alpha}_j & \rho_j \\ \rho_j & -\alpha_j \end{pmatrix}, \rho_j = \sqrt{1 - |\alpha_j|^2}$$

 $\bullet \ \mathcal{L} := \Theta_0 \bigoplus \Theta_2 \bigoplus \Theta_4 \bigoplus ..., \quad \mathcal{M} := 1 \bigoplus \Theta_1 \bigoplus \Theta_3 \bigoplus ...$

$$\mathcal{L}_2 = \begin{pmatrix} \overline{\alpha}_0 & \rho_0 & 0 & 0 \\ \rho_0 & -\alpha_0 & 0 & 0 \\ 0 & 0 & \overline{\alpha}_2 & \rho_2 \\ 0 & 0 & \rho_2 & -\alpha_2 \end{pmatrix}$$

$$9 := \mathcal{L}M$$

$$\mathfrak{G} = \begin{pmatrix} \overline{\alpha_0} & \overline{\alpha_1} \rho_0 & \rho_1 \rho_0 & 0 & 0 & \dots \\ \rho_0 & -\overline{\alpha_1} \alpha_0 & -\rho_1 \alpha_0 & 0 & 0 & \dots \\ 0 & \overline{\alpha_2} \rho_1 & -\overline{\alpha_2} \alpha_1 & \overline{\alpha_3} \rho_2 & \rho_3 \rho_2 & \dots \\ 0 & \rho_2 \rho_1 & -\rho_2 \alpha_1 & -\overline{\alpha_3} \alpha_2 & -\rho_3 \alpha_2 & \dots \\ 0 & 0 & 0 & \overline{\alpha_4} \rho_3 & -\overline{\alpha_4} \alpha_3 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

For $\Phi_2(z)$, the 2x2 CMV matrix

$$\mathbf{A} = \begin{pmatrix} \overline{\alpha_0} & \overline{\alpha_1} \rho_0 \\ \rho_0 & -\overline{\alpha_1} \alpha_0 \end{pmatrix}, \rho_j = \sqrt{1 - |\alpha_j|^2}$$

For $\Phi_2(z)$, the 2x2 CMV matrix

$$A = \begin{pmatrix} \overline{\alpha_0} & \overline{\alpha_1} \rho_0 \\ \rho_0 & -\overline{\alpha_1} \alpha_0 \end{pmatrix}, \rho_j = \sqrt{1 - |\alpha_j|^2}$$

the eigenvalues $\lambda_1, \lambda_2 = f_1, f_2$.

$$\mathcal{L}_{0}\mathcal{M}_{1} = \begin{pmatrix} \overline{\alpha}_{0} & \rho_{0} & 0\\ \rho_{0} & -\alpha_{0} & 0\\ 0 & 0 & e^{i\theta} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \overline{\alpha}_{1} & \rho_{1}\\ 0 & \rho_{1} & -\alpha_{1} \end{pmatrix}$$

$$\mathcal{L}_{0}\mathcal{M}_{1} = \begin{pmatrix} \overline{\alpha}_{0} & \rho_{0} & 0\\ \rho_{0} & -\alpha_{0} & 0\\ 0 & 0 & e^{i\theta} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \overline{\alpha}_{1} & \rho_{1}\\ 0 & \rho_{1} & -\alpha_{1} \end{pmatrix}$$

$$\mathcal{G} = \begin{pmatrix} \overline{\alpha_{0}} & \overline{\alpha_{1}}\rho_{0} & \rho_{1}\rho_{0}\\ \rho_{0} & -\overline{\alpha_{1}}\alpha_{0} & -\rho_{1}\alpha_{0}\\ 0 & e^{i\theta}\rho_{1} & e^{i\theta}\alpha_{1} \end{pmatrix}$$

which has 3 eigenvalues that satisfy the POPUC $\Phi_3(z)$.

Joshua Gramm

Triangle Script

- Built in Python3:
 - numpy
 - matplitlib
- Built ground up to replace previously created Mathmatica code.
- Uses inverse Szegő Recursion to find Verblunsky coefficients for the CMV matrix.

Blaschke Product

$$B_n(z) = \prod_{j=1}^n \frac{z - f_j}{1 - \overline{f_j}z}$$

Blaschke Product

$$B_n(z) = \prod_{j=1}^n \frac{z - f_j}{1 - \overline{f_j}z} = \frac{\Phi_n(z)}{\Phi_n^*(z)}$$

Blaschke Product

$$B_n(z) = \prod_{j=1}^n \frac{z - f_j}{1 - \overline{f_j}z} = \frac{\Phi_n(z)}{\Phi_n^*(z)}$$

$$B_{n+1}(z) = \frac{z\Phi_n(z)}{\Phi_n^*(z)}, f_{n+1} = 0$$

Blaschke Products

• z is the preimage of $e^{i\theta}$ under $B_{n+1}(z)$. The zeros of $B_{n+1}(z) - e^{i\theta} = 0$ are the zeros of the POPUC.

Blaschke Products

- z is the preimage of $e^{i\theta}$ under $B_{n+1}(z)$. The zeros of $B_{n+1}(z) e^{i\theta} = 0$ are the zeros of the POPUC. $B_n(z) = B_j(B_k(z)), n = j * k$
- if and only if there exists an ellipse for n, j, k, l, m.

Mirman's Iterations

• Given f_1, f_2

$$B_2(f_3; f_1, f_2) = f_1 f_2 = \frac{(f_3 - f_1)(f_3 - f_2)}{(1 - f_3 \overline{f_1})(1 - f_3 \overline{f_2})}.$$

• Then $\Phi_3(z) = (z - f_1)(z - f_2)(z - f_3)$ gives the foci for the desired OPUC.

Heptagon Case

$$f_{3}f_{6} = \frac{(f_{5} - f_{1})(f_{5} - f_{2})}{(1 - f_{5}\overline{f_{1}})(1 - f_{5}\overline{f_{2}})} \quad f_{5}f_{4} = \frac{(f_{6} - f_{1})(f_{6} - f_{2})}{(1 - f_{6}\overline{f_{1}})(1 - f_{6}\overline{f_{2}})}$$

$$f_{1}f_{5} = \frac{(f_{3} - f_{1})(f_{3} - f_{2})}{(1 - f_{3}\overline{f_{1}})(1 - f_{3}\overline{f_{2}})} \quad f_{6}f_{2} = \frac{(f_{4} - f_{1})(f_{4} - f_{2})}{(1 - f_{4}\overline{f_{1}})(1 - f_{4}\overline{f_{2}})}$$

Heptagon Case

$$f_3 f_6 = \frac{(f_5 - f_1)(f_5 - f_2)}{(1 - f_5 \overline{f_1})(1 - f_5 \overline{f_2})} \quad f_5 f_4 = \frac{(f_6 - f_1)(f_6 - f_2)}{(1 - f_6 \overline{f_1})(1 - f_6 \overline{f_2})}$$

$$f_1 f_5 = \frac{(f_3 - f_1)(f_3 - f_2)}{(1 - f_3 \overline{f_1})(1 - f_3 \overline{f_2})} \quad f_6 f_2 = \frac{(f_4 - f_1)(f_4 - f_2)}{(1 - f_4 \overline{f_1})(1 - f_4 \overline{f_2})}$$

These are necessary but not sufficient.

Heptagon Case

$$f_3 f_6 = \frac{(f_5 - f_1)(f_5 - f_2)}{(1 - f_5 \overline{f_1})(1 - f_5 \overline{f_2})} \quad f_5 f_4 = \frac{(f_6 - f_1)(f_6 - f_2)}{(1 - f_6 \overline{f_1})(1 - f_6 \overline{f_2})}$$

$$f_1 f_5 = \frac{(f_3 - f_1)(f_3 - f_2)}{(1 - f_3 \overline{f_1})(1 - f_3 \overline{f_2})} \quad f_6 f_2 = \frac{(f_4 - f_1)(f_4 - f_2)}{(1 - f_4 \overline{f_1})(1 - f_4 \overline{f_2})}$$

• These are necessary but not sufficient.

1545/4831*I + 2915/4831, f4: 3/10*I + 1/5, f5: 1/10*I + 1/2, f6: 0