STOCK ANALYSIS USING PYTHON

```
In [1]:
        import pandas as pd
        import matplotlib.pyplot as plt
        tata_motors=pd.read_csv(r"C:\Users\pks91\OneDrive\Documents\Stock analysis pyt
        tata_steel=pd.read_csv(r"C:\Users\pks91\OneDrive\Documents\Stock analysis pyth
        tcs=pd.read csv(r"C:\Users\pks91\OneDrive\Documents\Stock analysis python\arch
        print(tcs.head())
        tcs.shape
                  Date Symbol Series
                                      Prev Close
                                                     0pen
                                                             High
                                                                       Low
                                                                              Last
                                                                                   \
                                                                    979.00
           2004-08-25
                          TCS
                                  ΕQ
                                           850.00
                                                   1198.7
                                                           1198.7
                                                                            985.00
           2004-08-26
                          TCS
                                  ΕQ
                                           987.95
                                                    992.0
                                                            997.0
                                                                   975.30
                                                                            976.85
           2004-08-27
                          TCS
                                  ΕQ
                                          979.00
                                                    982.4
                                                            982.4
                                                                   958.55
                                                                            961.20
        3
           2004-08-30
                          TCS
                                                    969.9
                                                            990.0
                                                                    965.00
                                                                            986.40
                                  ΕQ
                                           962.65
           2004-08-31
                          TCS
                                  ΕQ
                                          986.75
                                                    986.5
                                                            990.0 976.00
                                                                            987.80
                                                              Deliverable Volume
            Close
                       VWAP
                               Volume
                                            Turnover
                                                      Trades
           987.95
                    1008.32
                             17116372
                                       1.725876e+15
                                                                          5206360
                                                         NaN
        1
           979.00
                     985.65
                              5055400
                                       4.982865e+14
                                                         NaN
                                                                          1294899
        2
           962.65
                     969.94
                              3830750
                                       3.715586e+14
                                                         NaN
                                                                           976527
        3
           986.75
                     982.65
                              3058151
                                        3.005106e+14
                                                         NaN
                                                                           701664
           988.10
                     982.18
                              2649332
                                       2.602133e+14
                                                         NaN
                                                                           695234
           %Deliverble
        0
                 0.3042
        1
                 0.2561
        2
                 0.2549
        3
                 0.2294
        4
                 0.2624
```

Out[1]: (4139, 15)

In [2]: tcs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4139 entries, 0 to 4138
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Date	4139 non-null	object
1	Symbol	4139 non-null	object
2	Series	4139 non-null	object
3	Prev Close	4139 non-null	float64
4	0pen	4139 non-null	float64
5	High	4139 non-null	float64
6	Low	4139 non-null	float64
7	Last	4139 non-null	float64
8	Close	4139 non-null	float64
9	VWAP	4139 non-null	float64
10	Volume	4139 non-null	int64
11	Turnover	4139 non-null	float64
12	Trades	2456 non-null	float64
13	Deliverable Volume	4139 non-null	int64
14	%Deliverble	4139 non-null	float64
dtyn	$ac \cdot float64(10)$ int	64(2) object(3)	

0

dtypes: float64(10), int64(2), object(3)

memory usage: 485.2+ KB

In [3]: tcs.isna().sum()

Out[3]: Date 0 Symbol 0 Series 0 0 Prev Close 0 0pen 0 High 0 Low Last 0 Close 0 **VWAP** 0 0 Volume Turnover 0 Trades 1683 Deliverable Volume 0

%Deliverble
dtype: int64

```
In [4]: tata_steel.isna().sum()
Out[4]: Date
                                   0
        Symbol
                                   0
         Series
                                   0
         Prev Close
                                   0
        0pen
                                   0
                                   0
        High
        Low
                                   0
         Last
                                   0
        Close
                                   0
        VWAP
                                   0
        Volume
                                   0
                                   0
        Turnover
        Trades
                                2850
        Deliverable Volume
                                 514
        %Deliverble
                                 514
        dtype: int64
In [5]: tata_motors.isna().sum()
Out[5]: Date
                                   0
        Symbol
                                   0
        Series
                                   0
         Prev Close
                                   0
                                   0
        Open
                                   0
        High
        Low
                                   0
                                   0
        Last
        Close
                                   0
        VWAP
                                   0
                                   0
        Volume
                                   0
        Turnover
        Trades
                                2850
        Deliverable Volume
                                 514
        %Deliverble
                                 514
        dtype: int64
In [6]: tata_motors.duplicated().sum()
        tata_steel.duplicated().sum()
        tcs.duplicated().sum()
Out[6]: 0
```

In [7]: tcs.describe().round(2)

Out[7]:

	Prev Close	Open	High	Low	Last	Close	VWAP	Volume	Turnover	
count	4139.00	4139.00	4139.00	4139.00	4139.00	4139.00	4139.00	4139.00	4.139000e+03	
mean	1693.84	1695.59	1715.88	1673.59	1694.31	1694.37	1694.62	1676761.95	2.952102e+14	
std	722.88	722.98	728.45	717.78	723.18	723.06	723.14	1607879.26	3.849370e+14	
min	366.65	360.00	377.75	358.00	365.70	366.65	368.40	18345.00	1.370237e+12	
25%	1106.25	1105.53	1120.28	1088.58	1107.00	1106.50	1105.75	788477.50	1.050834e+14	
50%	1633.50	1625.00	1655.00	1610.00	1630.05	1636.35	1629.42	1227748.00	1.824973e+14	
75%	2326.12	2321.80	2345.00	2301.30	2325.00	2326.85	2319.90	2081119.50	3.455393e+14	
max	3603.70	3625.00	3674.80	3572.55	3610.75	3603.70	3633.11	44033577.00	1.268362e+16	
4									>	

In [8]: tata_motors.describe().round(2)

Out[8]:

	Prev Close	Open	High	Low	Last	Close	VWAP	Volume	Turnove
count	5306.00	5306.00	5306.00	5306.00	5306.00	5306.00	5306.00	5.306000e+03	5.306000e+0
mean	409.43	410.15	417.12	402.18	409.45	409.45	409.76	1.046560e+07	2.790772e+1
std	272.48	272.97	277.02	268.03	272.52	272.47	272.49	2.185034e+07	4.674351e+1،
min	58.80	58.00	60.70	57.55	58.75	58.80	59.24	1.235100e+04	1.069384e+1
25%	174.60	174.76	178.82	171.01	174.72	174.60	175.18	1.668994e+06	7.049025e+1
50%	377.25	378.90	384.75	372.60	377.52	377.25	378.46	4.141648e+06	1.967418e+1
75%	523.15	523.48	530.80	515.91	523.49	523.15	523.72	8.706037e+06	3.175959e+1
max	1365.15	1361.00	1382.00	1347.00	1362.00	1365.15	1362.15	3.905778e+08	9.365671e+1
4									>

```
In [9]: tata_steel.describe().round(2)
```

Out[9]:

```
Prev
                  Open
                           High
                                     Low
                                              Last
                                                     Close
                                                              VWAP
                                                                          Volume
                                                                                       Turnover
        Close
count 5306.00
                5306.00
                         5306.00
                                  5306.00
                                          5306.00
                                                    5306.00
                                                             5306.00
                                                                          5306.00 5.306000e+03
        403.39
mean
                 404.25
                          411.21
                                   396.51
                                            403.47
                                                     403.55
                                                              404.06
                                                                       6165253.31 2.664876e+14
  std
        187.15
                 187.56
                          190.79
                                   183.86
                                            187.27
                                                     187.31
                                                              187.44
                                                                       5329084.46 3.012861e+14
                  66.00
                                                      67.25
         67.25
                           69.70
                                    66.00
                                             67.30
                                                               67.97
                                                                         23291.00 2.159165e+11
 min
 25%
        275.77
                 275.60
                          284.41
                                   270.00
                                            275.81
                                                     275.94
                                                              276.94
                                                                       2801379.50
                                                                                   1.118719e+14
 50%
       402.85
                 403.00
                          409.38
                                   396.65
                                            402.70
                                                     402.90
                                                              403.43
                                                                       4800300.50
                                                                                   1.949303e+14
 75%
        523.99
                 525.00
                          534.72
                                   516.49
                                            523.95
                                                     524.08
                                                              525.23
                                                                       7833888.00
                                                                                   3.379640e+14
 max 1031.35 1024.00 1052.60 1011.10 1035.00 1034.00 1031.95
                                                                      64284599.00 4.881124e+15
```

In [10]: tata_motors["Date"]=pd.to_datetime(tata_motors["Date"])
 tata_steel["Date"]=pd.to_datetime(tata_steel["Date"])
 tcs["Date"]=pd.to_datetime(tcs["Date"])

In [11]: tcs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4139 entries, 0 to 4138
Data columns (total 15 columns):

```
#
     Column
                          Non-Null Count
                                           Dtype
 0
                          4139 non-null
                                           datetime64[ns]
     Date
 1
     Symbol
                          4139 non-null
                                           object
 2
                          4139 non-null
                                           object
     Series
                                           float64
 3
     Prev Close
                          4139 non-null
 4
     0pen
                          4139 non-null
                                           float64
 5
     High
                          4139 non-null
                                           float64
 6
                          4139 non-null
                                           float64
     Low
 7
                                           float64
     Last
                          4139 non-null
 8
     Close
                          4139 non-null
                                           float64
 9
                                           float64
     VWAP
                          4139 non-null
 10
     Volume
                          4139 non-null
                                           int64
 11 Turnover
                          4139 non-null
                                           float64
                                           float64
 12
     Trades
                          2456 non-null
 13
     Deliverable Volume 4139 non-null
                                           int64
     %Deliverble
                          4139 non-null
                                           float64
dtypes: datetime64[ns](1), float64(10), int64(2), object(2)
memory usage: 485.2+ KB
```

In [12]: tata_motors=tata_motors.drop(['Trades','Deliverable Volume','%Deliverble'], ax
 tata_steel=tata_steel.drop(['Trades','Deliverable Volume','%Deliverble'], axis
 tcs=tcs.drop(['Trades','Deliverable Volume','%Deliverble'], axis=1)

```
In [13]: tata_motors.isna().sum()
Out[13]: Date
                        0
         Symbol
                        0
         Series
                        0
         Prev Close
                        0
         0pen
                        0
         High
                        0
         Low
                        0
         Last
                        0
                        0
         Close
         VWAP
                        0
         Volume
                        0
         Turnover
                        0
         dtype: int64
In [14]:
         tata_motors['Month']=tata_motors["Date"].dt.month
         tata_motors['Year']=tata_motors["Date"].dt.year
         tata_motors['Day']=tata_motors["Date"].dt.day
         tata_steel['Month']=tata_steel["Date"].dt.month
         tata_steel['Year']=tata_steel["Date"].dt.year
         tata_steel['Day']=tata_steel["Date"].dt.day
         tcs['Day']=tcs['Date'].dt.day
         tcs['Year']=tcs['Date'].dt.year
         tcs['Month']=tcs['Date'].dt.month
```

In [15]: | tcs.head()

Out[15]:

	Date	Symbol	Series	Prev Close	Open	High	Low	Last	Close	VWAP	Volume	
0	2004- 08-25	TCS	EQ	850.00	1198.7	1198.7	979.00	985.00	987.95	1008.32	17116372	1.72
1	2004- 08-26	TCS	EQ	987.95	992.0	997.0	975.30	976.85	979.00	985.65	5055400	4.98
2	2004- 08-27	TCS	EQ	979.00	982.4	982.4	958.55	961.20	962.65	969.94	3830750	3.7
3	2004- 08-30	TCS	EQ	962.65	969.9	990.0	965.00	986.40	986.75	982.65	3058151	3.00
4	2004- 08-31	TCS	EQ	986.75	986.5	990.0	976.00	987.80	988.10	982.18	2649332	2.60
4												•

```
In [16]: plt.figure(figsize=(20,7))
    plt.plot(tata_motors['Date'],tata_motors['Open'],color='blue',label='Tata Moto
    plt.plot(tata_steel['Date'],tata_steel['Open'],color='grey',label='Tata Steel'
    plt.plot(tcs['Date'],tcs['Open'],color='orange',label='TCS')
    plt.title("Relation between Tata Motors, Tata Steel and TCS Price")
    plt.xlabel("Year")
    plt.ylabel("Price")
    plt.legend(title="")
    plt.show()
```



```
In [17]: plt.figure(figsize=(20,7))
    plt.plot(tata_motors['Date'],tata_motors['Volume'],color='blue',label='Tata Mo
    plt.plot(tata_steel['Date'],tata_steel['Volume'],color='grey',label='Tata Stee
    plt.plot(tcs['Date'],tcs['Volume'],color='orange',label='TCS')
    plt.title("Relation between Tata Motors, Tata Steel and TCS Volume")
    plt.xlabel("Year")
    plt.ylabel("Volume")
    plt.legend(title="")
    plt.show()
```



```
In [18]: | sumTM=0 #total amount invested in Tata Motors
         s1=0 #number of shares owned by Tata Motors
         #calcuating total amount invested and number of shares owned in Tata Motors
         for i in range(len(tata_motors)):
             if tata motors.loc[i, 'Day']==30:
                 sumTM+=tata motors.loc[i,'Open']
                 s1+=1
         #displaying basic results
         print("Total Invested in Tata Motors = Rs", round(sumTM, 2))
         print("Shares Owned of Tata Motors =",s1)
         print("Average Investmentment of 1 share = Rs", round((sumTM/s1),2))
         tm end=298.2 #last open price of Tata Motors on 2021-04-30
         #obtained by looking at the data or can be seen after executing tata motors.ta
         #calculating investment results
         result1=round((tm_end*s1)-sumTM,2)
         roiTM=round((result1/sumTM)*100,2)
         #displaying investment results
         print("nInvestment Result:")
         if result1<0:</pre>
             print("Net Unrealised Loss = Rs",result1)
         else:
             print("Net Unrealised Profit = Rs", result1)
         print("Tata Motors ROI from 2000-1-3 to 2021-04-30 =",roiTM,"%")
         Total Invested in Tata Motors = Rs 65977.3
         Shares Owned of Tata Motors = 162
```

```
Shares Owned of Tata Motors = Rs 65977.3

Shares Owned of Tata Motors = 162

Average Investmentment of 1 share = Rs 407.27

nInvestment Result:

Net Unrealised Loss = Rs -17668.9

Tata Motors ROI from 2000-1-3 to 2021-04-30 = -26.78 %
```

```
In [19]: sumTS=0 #total amount invested in Tata Steel
         s2=0 #number of shares owned by Tata Steel
         #calcuating total amount invested and number of shares owned in Tata Steel
         for i in range(len(tata_steel)):
             if tata steel.loc[i, 'Day']==30:
                 sumTS+=tata steel.loc[i,'Open']
                 s2+=1
         #displaying basic results
         print("Total Invested in Tata Steel = Rs", round(sumTS, 2))
         print("Shares Own of Tata Steel =",s2)
         print("Average Investmentment of 1 share = Rs",round((sumTS/s2),2))
         ts_end=1024 #last open price of Tata Steel on 2021-04-30
         #obtained by looking at the data or can be seen after executed tata_steel.tail
         #calculating investment results
         result2=round((ts end*s2)-sumTS,2)
         roiTS=round((result2/sumTS)*100,2)
         #displaying investment results
         print("nInvestment Result:")
         if result2<0:</pre>
             print("Net Unrealised Loss = Rs",result2)
         else:
             print("Net Unrealised Profit = Rs", result2)
         print("Tata Steel ROI from 2000-1-3 to 2021-04-30 =",roiTS,"%")
```

Total Invested in Tata Steel = Rs 65825.9

Shares Own of Tata Steel = 162

Average Investmentment of 1 share = Rs 406.33

nInvestment Result:

Net Unrealised Profit = Rs 100062.1

Tata Steel ROI from 2000-1-3 to 2021-04-30 = 152.01 %

```
In [20]: sumTCS=0 #total amount invested in TCS
         s3=0 #number shares owned of TCS
         #calcuating total amount invested and number of shares owned in TCS
         for i in range(len(tcs)):
             if tcs.loc[i, 'Day']==30:
                 sumTCS+=tcs.loc[i,'Open']
                 s3+=1
         #displaying basic results
         print("Total Invested in TCS = Rs", round(sumTCS, 2))
         print("Shares Owned of TCS =",s3)
         print("Average Investmentment of 1 share = Rs", round((sumTCS/s3),2))
         tcs end=3099 #last open price of TCS on 2021-04-30
         #obtained by looking at the data or can be seen after executed tcs.tail()
         #calculating investment results
         result3=round((tcs_end*s3)=sumTCS,2)
         roiTCS=round((result3/sumTCS)*100,2)
         #displaying investment results
         print("nInvestment Result:")
         if result3<0:</pre>
             print("Net Unrealised Loss = Rs", result3)
         else:
             print("Net Unrealised Proift = Rs", result3)
```

print("Tata Steel ROI from 2004-08-25 to 2021-04-30 =",roiTCS,"%")

Total Invested in TCS = Rs 220762.0 Shares Owned of TCS = 128 Average Investmentment of 1 share = Rs 1724.7 nInvestment Result: Net Unrealised Proift = Rs 175910.0 Tata Steel ROI from 2004-08-25 to 2021-04-30 = 79.68 %

```
In [21]: plt.figure(figsize=(5,7))
    stock=['Tata Motors','Tata Steel','TCS']
    ROI=[roiTM,roiTS,roiTCS]
    col=['Blue','Grey','Orange']
    plt.bar(stock,ROI,color=col)
    plt.title("ROI")
    plt.xlabel("Stocks")
    plt.ylabel("Percentage")
```

Out[21]: Text(0, 0.5, 'Percentage')


```
In [22]: plt.figure(figsize=(5,7))
    stock=['Tata Motors','Tata Steel','TCS']
    amt=[result1,result2,result3]
    col=['Blue','Grey','Orange']
    plt.bar(stock,amt,color=col)
    plt.title("Profit/Loss")
    plt.xlabel("Stocks")
    plt.ylabel("Amount")
```

Out[22]: Text(0, 0.5, 'Amount')


```
In [23]: plt.figure(figsize=(5,7))
    stock=['Tata Motors','Tata Steel','TCS']
    shares=[s1,s2,s3]
    col=['Blue','Grey','Orange']
    plt.bar(stock,shares,color=col)
    plt.title("stock owned")
    plt.xlabel("Stocks")
    plt.ylabel("shares")
```

Out[23]: Text(0, 0.5, 'shares')


```
In [24]: plt.figure(figsize=(5,7))
    stock=['Tata Motors','Tata Steel','TCS']
    shares=[s1,s2,s3]
    col=['Blue','Grey','Orange']
    plt.pie(shares,labels=stock,autopct="%1.2f%%",colors=col)
    plt.legend(title="",loc="upper left")
    plt.title("Portfolio Allocation")
```

Out[24]: Text(0.5, 1.0, 'Portfolio Allocation')

Portfolio Allocation


```
In [ ]:
```