МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

Индивидуальное домашнее задание по дисциплине «Математическое программирование»

Студент	AC-21-1		_ Станиславчук С. М.
		(подпись, дата)	
Руководите	ель		
Профессор			Качановский Ю. П.
		(подпись, дата)	

Задание

Написать программу, реализующую один из методов оптимизации.

Проверить работу программы тестами из лабораторных работ. Сравнить и проанализировать результаты. Программа должна позволять вводить тесты из файла и из формы ввода, а также сохранять отчет о результатах работы

Описание метода и алгоритма решения

Метод Ньютона (или метод Ньютона-Рафсона) — это численный метод для нахождения корней уравнения, а также для решения систем нелинейных уравнений (СНУ). В контексте систем нелинейных уравнений метод Ньютона применяется для поиска приближенного численного решения.

Описание метода:

Формулировка задачи:

Рассмотрим систему нелинейных уравнений:

$$F(x) = 0$$

где $F: R^n -> R^n$ — вектор-функция, $X \in R^n$ — вектор переменных.

Локальная аппроксимация:

Пусть $x^{(k)}$ - текущее приближение к решению. Метод Ньютона строит локальную аппроксимацию функции F(x) в окрестности точки $x^{(k)}$ с использованием линеаризации:

$$F(x) \approx F(x^{(k)}) + J F(x^{(k)}) * (x - x^{(k)})$$

где $J_F(x^{\wedge}(k))$ — якобиан функции F в точке $x^{\wedge}(k)$.

Итерационный процесс:

Итерационный процесс метода Ньютона определяется формулой:

$$x^{(k+1)} = x^{(k)} - [J_F(x^{(k)})]^{(-1)} * F(x^{(k)})$$

где $[J_F(x^{(k)})]^{-1}$ — обратная матрица якобиана $J_F(x^{(k)})$.

Якобиан функции J_F(х):

$$J_F(x) = [\partial F_i/\partial x_j],$$
 где $i, j = 1, 2, ..., n$.

Критерий останова:

Остановить итерационный процесс, если выполнен критерий сходимости, если норма изменения $|x^{(k+1)} - x^{(k)}|$ станет достаточно малой.

Обратная матрица $[J_F(x^{(k)})]^{-1}$:

Для численного решения системы линейных уравнений с обратной матрицей используются методы решения линейных систем.

Достоинства метода Ньютона:

Быстрая сходимость: Метод Ньютона обычно обладает высокой скоростью сходимости, особенно вблизи точки оптимума. Это позволяет быстро приближаться к решению.

Эффективность для сильно выпуклых задач: В случае, когда целевая функция сильно выпукла в окрестности точки минимума, метод Ньютона может проявить высокую эффективность.

Адаптивность: Метод Ньютона может быть адаптирован для решения систем нелинейных уравнений и оптимизационных задач.

Недостатки метода Ньютона:

Чувствительность к начальному приближению: Качество сходимости метода Ньютона может сильно зависеть от выбора начального приближения. Некорректный выбор может привести к расхождению.

Сложность обращения матрицы: В каждой итерации метода Ньютона требуется обращение матрицы якобиана. В случае больших размерностей и вычислительно сложных функций это может быть ресурсоемкой операцией.

Неустойчивость при невыпуклых задачах: В случае отсутствия выпуклости у задачи оптимизации, метод Ньютона может сходиться к локальному минимуму, а не глобальному.

Требование дифференцируемости: Метод Ньютона требует наличие производных функции, что может быть проблемой в задачах с функциями, не имеющими производных в каждой точке.

Высокая вычислительная сложность: В случае больших размерностей пространства переменных вычисление и хранение якобиана может быть вычислительно затратным.

Руководство оператора

1. Назначение программы

Программа представляет собой приложение, запускаемое на компьютере, нужна для вычисления минимума функции с помощью метода Ньютона. Позволяет вводить функцию с п числом переменных, систему нелинейных уравнений, состоящую из п формул, критерий останова, позволяет сохранять входные данные, загружать их, а также сохранять результат в файл.

2. Условие выполнения программы

Любой архиватор: ZIP, WinRar

Системные требования:

64-разрядная операционная система

OC: Windows 7; Windows 10; Windows 11

Процессор: x86, x64

Оперативная память: 1GB ОЗУ

Место на диске: 500 мегабайт

3. Выполнение программы

- 1) Загрузить на компьютер архив Newton Lab.zip и распаковать его
- 2) Распакованная папка Newton_Lab содержит файл под названием
- 3) Запустить Newton_Lab.exe это главный исполняемый файл, который нужно запустить для дальнейшей работы

3) Запускается программа (первая часть операторского интерфейса программы)

- 1. Указанные начальные точки
- 2. СНУ
- 3. Критерии останова
- 4. Якобиан
- 5. Кнопки регулирования числа п функций, переменных
- 6. Кнопки сохранения состояния программы в файл, загрузка состояния программы из файла, копирование результата в буфер обмена, сохранение результата в отдельный файл

Вторая часть операторского интерфейса программы

- 7. Кнопка запуска
- 8. Результат и подробное описание каждой выполненной итерации

Поддержка основных операций: сложение (+), вычитание (-), умножение(*), деление (/), и возведение в степень $(^{\wedge})$.

Поддержка набора стандартных функций: sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg, sqrt.

Поддержка круглых скобок любой вложенности.

- 4) Оператор должен указать число точек и функций, с которыми будет работать (5)
- 5) Оператор должен ввести начальные точки (1)
- 6) Оператор должен ввести эпсилон (3) и число макс. итераций (3)
- 7) Оператор должен ввести значения всех функций
- 8) Оператор должен ввести частные производные каждой переменной для каждой функции
- 9) Оператор должен нажать кнопку найти минимум (->)
- 10) Оператор может сохранить результат в файл с помощью кнопки «SAVE FILE»
- 11) Оператор может загрузить данные из файла с помощью кнопки «LOAD»

12) После ввода данных оператор может сохранить их в файл для последующего использования с помощью кнопки «SAVE»

4. Сообщения оператору

1) Если ввести функцию неправильно оператор получит ошибку:

228: Wrong input values!

2) Если нажать кнопку копирования, когда отчет еще не сгенерировался, оператор получит ошибку:

3333: THERE NO TEXT TO COPY.

3) Когда оператор нажимает клавиши сохранения/загрузки данных, у него появляется специальное окно для выбора названия файла и пути сохранения/загрузки

Результаты выполнения программы

СНУ №1

$$f_1 = 5.5 * x * x + (y - 2) * (y - 2) - 196$$

 $f_2 = 5.5 * x * x + 2 * y - 0.5 * z$
 $f_3 = x + y + z - 5.5$
 $x = 3.0$
 $y = 3.0$
 $z = 4.5$
 $eps = 0.01$
 $max_iter = 10$
 $J_0 = 2*5.5*x$ $2*(y-2)$ 0
 $2*5.5*x$ 2 -0.5
 1 1

Метод	Результат
Мой метод Ньютона	Итераций: 9
	x = 2.29301458047169
	y = -10.9260026771854
	z = 14.1329880967138
	норма = 0.00824288306974665
Метод Ньютона из лабораторной	Итераций: 9
	x[0]=2.293015
	x[1]=-10.926003
	x[2]=14.132988
	норма = 0.000000

СНУ №2:

$$f_1 = x^2 + y^2 - 1$$

 $f_2 = x-y$

$$x = 0.5$$
$$y = 0.5$$

$$eps = 0.01$$

 $max_iter = 10$

$$J_0 = 2*x \quad 2*y$$
1 -1

Метод	Результат
Мой метод Ньютона	Итераций: 3 $x = 0.707107843137256$, $y = 0.707107843137256$
	у – 0.707107843137230 норма = 0.00173310485584827
Метод Ньютона из лабораторной	Итераций: 3 x= 0.708333 y= 0.708333
	норма = 0.000012

Вывод:

Обе программы, решающие СНУ методом Ньютона показали достойные результаты. В среднем мой метод выдает более точный результат за одинаковое количество итераций.