PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of: Ramji Srinivasan, et al.

Atty. Docket

5242.00120

No.:

Confirmation No.

7275

Application No.:

10/661,768

Group Art Unit:

1731

Filed:

September 15, 2003

Examiner:

Tatyana Zalukaeva

For:

FORMALDEHYDE FREE INSULATION BINDER

DECLARATION UNDER 37 C.F.R. §1.131

U.S. Patent and Trademark Office Customer Service Window 401 Dulany Street Alexandria, VA 22314

Dear Sir:

We, Ramji Srinivasan, Cornel Hagiopol and Natasha R. Bailey, do hereby aver and state as follows:

- 1.) THAT we are named as co-inventors of the subject U.S. patent application;
- 2.) THAT all of the events and all of the related testing identified in this declaration occurred prior to August 16, 2002.
- 3.) THAT after we had earlier conceived of the invention, and as a consequence of the events and related testing identified in this declaration, we reduced our invention, as it is described and claimed in the above-captioned patent application, to practice in this country before August 16, 2002.
- 4.) THAT all of the Attachments referred to hereinafter are copies of original laboratory notebook records which have been retained as a regular part of and in the ordinary course of Georgia-Pacific Resins, Inc.'s, (hereinafter GPRI's) business. It is the

practice of GPRI to require its employees who are involved in conducting the kind of activities referred to hereinafter to maintain and retain laboratory notebooks as a record of such activities.

- 5.) THAT as evidenced by the laboratory notebook records of Attachment A, a water soluble copolymer of maleic anhydride (MA) and hydroxyethyl acrylate (HEA) was prepared by free radical polymerization in the presence of allyloxypropane diol (APD) as a chain transfer agent. As shown in Attachment A, 2.753 moles of maleic anhydride were added into a reaction vessel containing water. The reaction vessel was equipped with a charging funnel. The contents of the reactor were heated to 72 °C and held at that temperature for 30 minutes while a solution of 2.066 moles of hydroxyethyl acrylate in water was prepared. 45 parts (0.3404 moles) of the chain transfer agent allyloxypropane diol and 2.5 parts of the free radical catalyst azodiisobutyronitrile (AIBN) then were added to the reactor. Over a period of about 90 minutes, the hydroxyethyl acrylate solution was added into the reactor to conduct the polymerization. Once the HEA was added, the reaction was allowed to remain at the elevated temperature for an additional 30 minutes before cooling was conducted. The relative mole ratio MA:HEA was 1.33:1.0 to provide a mole ratio of –COOH:-OH of about 2.7:1.0. The resin product had a solids content of about 32 wt. %.
- 6.) THAT as evidenced by the laboratory notebook records of Attachment B, another water soluble copolymer of maleic anhydride (MA) and hydroxyethyl acrylate (HEA) was prepared by free radical polymerization in the presence of allyloxypropane diol (APD) as the chain transfer agent and AIBN as the free radical polymerization catalyst. The process of preparing the copolymer was similar to that described above in paragraph 4.).

Atty. Docket 00524200120

Ramji Srinivasan et al. U.S. Appl. Serial No. 10/661,768

- THAT, as evidenced by the laboratory notebook records of Attachment C. 7.) (notebook record 236G45 and notebook record 236G46) two additional water soluble copolymers of maleic anhydride (MA) and hydroxyethyl acrylate (HEA) were prepared by free radical polymerization, this time in the presence of mercapto ethanol (also known as thio glycol) as the chain transfer agent. In addition, a small amount of a cationic monomer, [2-(methacrloyloxy)ethyl] trimethylammonium chloride (MTA) was added to yield a terpolymer. The free radical processes of preparing the two terpolymers were similar to that described above in paragraph 4.) as described for the preparation of the MA-HEA copolymer, with the MTA being added to the reactor along with the HEA. A different amount of the chain transfer agent was used in each synthesis. For both syntheses, the relative mole ratio of the three monomers was about MA:HEA:MTA of 0.97:1.0:0.16 to provide a mole ratio of -COOH:-OH of about 1.9:1.0. In the first synthesis (first page of exhibit), we measured the solids content of the resin product to be about 29.6 wt. \%. In the second synthesis, we measured the solids content of the resin product to be about 29.5 wt. %.
- 8.) THAT Attachment D is a laboratory notebook record (notebook page 228G50) of the free radical polymerization of maleic anhydride (MA) and hydroxyethyl acrylate (HEA) in the presence of sodium-1-allyloxy-2-hydroxypropyl sulfonate (COPS) as the chain transfer agent. As shown in Attachment D, 0.52 mole of maleic anhydride was added into a reaction vessel containing water. The contents of the reactor were heated to 72 °C and held at that temperature for 20 minutes. About 20 parts (0.05 mole) of the chain transfer agent, COPS then was added. 0.7 parts of the free radical catalyst azodiisobutyronitrile (AIBN) was added and then over a one

ij

hour period, 0.78 mole of hydroxyethyl acrylate was added into the reactor. Once the addition of the HEA was complete, the reaction was allowed to remain at the elevated temperature for an additional 30 minutes. Cold water was added to stop the reaction yielding a resin product with a solids content of about 15 wt, %. The relative mole ratio of MA:HEA was 0.67:1.0 to provide a mole ratio of –COOH:-OH of about 1.3:1.0.

- 9.) THAT the water soluble resin prepared in Attachment D was used thereafter as a binder to prepare handsheets from glass fibers and the tensile (strength) properties of the handsheets were measured. Hand sheets were prepared by sprinkling a binder composition comprising the soluble resin of Attachment D onto a glass mat previously formed by dewatering ½ inch PPG M-8035 chopped glass fibers dispersed in water, containing a polyacrylamide dispersing agent, through a screen. Excess binder was vacuumed off the glass fibers and then the binder-treated sheet was cured in an oven at 220° C for a set period of time of from 1 to 5 minutes to cure the binder and produce a small glass fiber mat for testing.
- 10.) THAT both dry tensile and hot/wet tensile strengths were measured for the handsheets (mats) prepared using the binder of paragraph 8.) and other binders that are reported below. Dry tensile strengths of handsheet (mat) samples (3 inches by 5 inches) were measured using a QC-1000 Materials Tester by the Thwing Albert Instrument Co. The hot/wet tensile properties of such mates were measured by soaking the so-prepared handsheets in 185° F (85° C) water for 10 minutes. Samples of the handsheets (3 inches by 5 inches) were then subjected to breaking using the QC-1000 Materials Tester by the Thwing Albert Instrument Co. while the handsheets were still hot and wet.
- 11.) THAT Attachment E (notebook records 228G51, 228G52 and 228G53) shows the calculations for preparing several binder formulations using various resin products for preparing handsheets (identified by the notebook record of their synthesis). Attachment E also

provides information about the handsheets and the results of the testing referred to in paragraphs 9.) and 10.). For purpose of the present invention, the binder labeled 5 (Binder 5) was prepared using the resin prepared in accordance with paragraph 8.) (Resin 228G50). 500 grams of a binder composition containing 5 wt. % resin solids were prepared by mixing 166.33 g of the 15.03 wt. % water soluble resin of Attachment D with 333.67 g of water. The calculation for preparing the 5% binder is shown (and highlighted in yellow) in the lower right corner of the first page of Attachment E. The second and third pages of Attachment E present the tensile test results for "Binder 5" (far right columns) The raw data for the dry tensile testing of 14 replicates is setoff with yellow highlighting on page 2 and the hot/wet tensile testing of 14 replicates is setoff with yellow highlighting on page 3 and respectively correspond to average tensile strengths of 26.1 pounds and 3.7 pounds. Based on these results we concluded that the resin had been successfully used and thus was useful as a binder for glass fibers.

12.) THAT as evidenced by the laboratory notebook records of Attachment F (notebook record 228G64), a water soluble copolymer of itaconic acid (IA) and hydroxyethyl acrylate (HEA) was prepared by free radical polymerization in the presence of allyloxypropane diol as the chain transfer agent. As shown in Attachment F, about 0.14 mole of allyloxypropane diol and about 0.59 mole of itaconic acid were added into a reaction vessel containing water. The contents of the reactor were heated to dissolve the itaconic acid and then to 72 °C and held at that temperature for about 20 minutes. 0.7 parts of the free radical catalyst azodiisobutyronitrile (AIBN) was added and over a one hour period, about 0.80 mole of hydroxyethyl acrylate was added into the reactor. Once the HEA was added, the reaction was allowed to remain at the elevated temperature for an additional four hours, at which point the temperature was raised to 76 °C and then an additional 0.21 part of AIBN was added. Thereafter, an aqueous solution of a resin having a solids content of about 21 wt. % was recovered. The

relative mole ratio of the two monomers was IA:HEA of 0.74:1.0 to provide a mole ratio of –COOH:-OH of about 1.5:1.0.

- THAT Attachment G (notebook records 228G65 and 228G66) documents the preparation of several binder formulations for preparing handsheets and the results of conducting the testing referred to in paragraphs 9.) and 10.) on the resulting handsheets. For purpose of the present invention, the binder labeled 5 ("Binder 5") was prepared using the resin prepared in accordance with paragraph 12.). 400 grams of binder containing 15 wt. % resin solids was prepared by mixing about 284.5 g of the about 21 wt. % water soluble resin of Attachment F with 115.5 g of water. The calculation for preparing the 15% binder is shown (and highlighted) on the right side of the first page of Attachment G. The second page of Attachment G presents the "dry" and "hot/wet" tensile test results for "Binder 5." The raw data for the dry tensile testing of 12 replicates and the hot/wet tensile testing of 12 replicates are both setoff with yellow highlighting and the data respectively correspond to average tensile strengths of 41.7 pounds and 33.3 pounds (shown below the horizontal line on Attachment G). Based on these results we concluded that the water soluble resin had been successfully used and thus was useful as a binder for glass fibers.
- 14.) THAT Attachment H are the laboratory notebook records (notebook pages 228G67 (two sides) and 228G68) of two separate free radical polymerizations of maleic anhydride (MA) and hydroxyethyl acrylate (HEA) in the presence of allyloxy (allyloxy) propane diol (APD) as the chain transfer agent. As shown on pages 1 and 2 of Attachment H, about 0.92 mole of maleic anhydride was added into a reaction vessel containing water. The contents of the reactor were heated to 70 °C and held at that temperature for 30 minutes. About 15 parts (about 0.11 mole) of the chain transfer agent (APD) then was added. One (1) part of the free radical catalyst azodiisobutyronitrile (AIBN) was added and then over a one hour period, about 0.69 mole of hydroxyethyl acrylate was added into the reactor and polymerization ensued. Once the

HEA was added, the reaction was allowed to remain at the elevated temperature for approximately an additional 1½ hours to yield a resin product having a solids content of about 28 wt. %. The relative mole ratio of the two monomers (MA:HEA) was 1.33:1.0 to provide a mole ratio of –COOH:-OH of about 2.7:1.0. In the second synthesis, recorded on page 3 of Attachment H, about 2.75 moles of maleic anhydride was added into a reaction vessel containing water. The contents of the reactor were heated to 72 °C and held at that temperature for 30 minutes. About 45 parts (about 0.34 mole) of the chain transfer agent allyloxy-1,2-propanediol (allyloxy propane diol or APD), then were added. 2.5 parts of the free radical catalyst azodiisobutyronitrile (AIBN) were added and then over a 1½ hour period, about 2.68 moles of hydroxyethyl acrylate were added into the reactor. Once the HEA was added, the reaction was allowed to remain at the elevated temperature for approximately an additional ½ hour to yield a water soluble resin having a solids content of about 32 wt. %. The relative mole ratio of the two monomers (MA:HEA) was 1.03:1.0 to provide a mole ratio of –COOH:-OH of about 2.1:1.0.

THAT Attachment I (notebook records 228G69 and 228G70) documents the preparation of several binder formulations for preparing handsheets and the results of conducting the testing referred to in paragraphs 9.) and 10.) on the handsheets. For purpose of the present invention, the binder labeled 3 ("Binder 3") was prepared using the first resin prepared in accordance with paragraph 14.); while the binder labeled 4 was prepared using the second resin prepared in accordance with paragraph 14.). 400 grams of binder containing 20 wt. % resin solids was prepared from both resins by mixing, in the first case, about 290 g of the about 28 wt. % resin of Attachment H with 110 g of water and in the second case by mixing about 256 g of resin with 144 g water. The calculations for preparing the 20% by weight solids binders are shown (and highlighted) on the first page of Attachment I. The second page of Attachment I

Atty. Docket 00524200120

Ramji Srinivasan et al. U.S. Appl. Serial No. 10/661,768

presents the "dry" and "hot/wet" tensile test results for "Binder 3" and "Binder 4," as well as for Binder 2, a phenolic control. The raw data for the dry and hot/wet tensile testing of 12 replicates are both setoff with yellow highlighting and the data respectively correspond, for Binder 3 to average tensile strengths of 36.9 pounds and 28.6 pounds and for Binder 4 to average dry and hot/wet tensile strengths of 39.7 pounds and 29.2 pounds. The PF resin binder control exhibited dry and hot/wet tensile strengths of about 38.4 and 31.5 pounds respectively. Based on these results, we concluded that the water soluble resins of Attachment H had been successfully used and thus were useful as binders for glass fibers.

16.) THAT the dates recorded on each of the documents in Attachments A-I have been removed.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: Deember 20,2005

Bv:

Ramii Sriniyasan

Date:

By:

Cornel Hagiopol

: 12/20/05

By:

Natasha R. Bailey

DEC 2 8 2005

Aleic Anhydride John NV Notes Charact water 9:47 Aleid Anhydride 313 3.066 Aleid Anhydride 313 3.066 Aleid Anhydride 313 3.066 Aleid Anhydride A	1470 0. 147					
Aleid Anhydride aleid Anhydride 313 a.066 AIBN AIBN Charged water Added MA + warned to 72C (introduced not) beld at 72C for 20min) prepared HEATHOD in Charged Ally loxy propare d.01 charged Ally loxy propare d.01 sampled for solids Added HEA + H2D Duer 90 min Added HEA + H2D Duer 90 min Sampled for solids allowed cook to other for 30 Sampled for solids	1400 1200 1200 2004 Anhydride 210 2006 Hyl Acylate 213 2066 2000 Charged water Added MA + warned to 72C (introduced nitrogen) held at 72C for 20min) prepared HEA+HoD infunce) Charged Allyloxypropare d.D. 2001 Sampled for solids added HEA + HoD Duer 90 min Added HEA + HoD Duer 90 min Sampled for solids; allowed cook to other for 20 mare min 30.36 Sampled for solids Charled allowed polymer to slowly cool	1831.	89		501105	
Aleid Anhydride 313 2.753 droxyethyl Acrylate 313 2.066 2.180 Charaed water Added MA + warmed to 72C (introduced not 141 held at 72C for 30min ; prepared HEATHy0 in 1514 Charged Allyloxypropare d.o.) O148 200 300 Added HEA + Hy0 Duer 90 min Added HEA + Hy0 Duer 90 min Added HEA + Hy0 Duer 90 min Sampled for solids Sampled for solids Sampled for solids	1400 Dispropandiol 45 0.3404 Anhydricte 313 a.066 Aly Acrylate 35 Charaed water Odded MA + warned to 72C (introduced nitrogen) held at 72C for 30min; prepared HEA+Hz0 infune) Charged Ally loxy propane d. D.I Sampled for solids added AIBN Added HEA + Hz0 Duer 90 min Sampled for solids Sampled for solids Sampled for solids	.19		boted allowed f	olymer to slowly	7 _coo1
Place Anhydride 270 2.753 Aroxyethyl Acrylate 2.33 2.066 2.80 2.38 Charaed water added MA + warmed to 72C (introduced not 141 held at 72C for 30 min) prepared HEAH Holing Charged Allyloxypropare d.D. 1.14 Charged Allyloxypropare d.D. 2.180 3.036 3.036 Sampled for solids Added HEA + Hop Duer 90 min	1400 Anhydride 270 Anhydride 313 2.753 Huyl Acrylate 313 2.066 Charged water Added MA + warned to 72C (introduced nitrogen) held at 72C for 30min; prepared HEARTHSD in fume) Charged Allyloxypropare diol Sampled for solids Added HEA + Had Duer 90 min Added HEA + Had Duer 90 min Sampled for solids; allowed cook to other for 30 more min	5031.	47	_Sampled_for_s	olids	
Neic Anhydride 270 2.753 Aroxyethyl Acrylate 313 2.066 2.80 2.8	Appropriate 270 2.753 Anhydriate 270 2.753 High Acrylate 2.5 Charged water 72C (introduced nitrogen) Added MA + warmed to 72C (introduced nitrogen) held at 72C for 30min , prepared HEA+HaD influme) Charged Allyloxypropare d.D.1 Sampled for solids added HEA + HaD Duer 90 min		36	Sampled for 50	lids; allowed coo	K to other for 30 moren
Aleic Ambydride Aroxyethyl Acrylate 2.753 Aroxyethyl Acrylate 2.5 18N Charged water added MA + warmed to 72C (introduced not 141 held at 72C for 30min) prepared HEARTHOD in Charged Allyloxypropare diol	Appropriate 270 2.753 High Acrylate 313 2.066 2.5 Charged water added MA + warmed to 72C (introduced nitrogen) held at 72C for 30 min; prepared HEAH HoD influme) charged Allyloxypropare d.o.) 20.01 Sampled for solids			Added HEA + Ho	10 Duer 90 mi	<u>~</u>
leic Arobydride leic Arobydride leic Arobydride 313 2.753 lroxyethyl Acrylate 2.5 Land L	1400 Anhydride 270 2.753 Anhydride 313 2.066 Hyl Acrylate 2.5 Charged water Added MA 4 warmed to 72C (introduced nitrogen) held at 72C for 30min; prepared HEARTHOD influme) Charged Ally loxy propare d.D.	l l		~ I I ATA. \		
leic Arobydride leic Arobydride leic Arobydride 313 2.753 lroxyethyl Acrylate 2.5 Land L	1400 Anhydride 270 2.753 Anhydride 313 2.066 Hyl Acrylate 2.5 Charged water Added MA 4 warmed to 72C (introduced nitrogen) held at 72C for 30min; prepared HEARTHOD influme) Charged Ally loxy propare d.D.	:48 20).01	sampled for 3	olids	
leic Anhydride 2.753 Aroxyethyl Acrylate 2.5 18N Charged water Added MA + warmed to 72C (introduced nimely) held at 72C for 30min, prepared HEARTHSD in	1480 Anhydride Anhydride 313 2.753 Anhyl Acrylate 313 2.5 Charged water added MA 4 warmed to 72C (introduced nitrogen) held at 72C for 30min; prepared HEA+1150 infume)			crarged Hily loxy	propore and	· · · · · · · · · · · · · · · · · · ·
leic Anhydride Aroxyethyl Acrylate 2.753 Aroxyethyl Acrylate 2.5 18N Charged water Added MA + warmed to 72C (introduced no	1400 Appropried 45 Appropried 270 Appropried 313 A. 066 A. 5 Charged water added MA 4 warned to 72C (introduced nitrogen))			Uponed All in	101W11111.J. Freek	- Source Bally Work
leic Anhydride 270 2.753 Aroxyethyl Acrylate 2.5 18N Notes Charaed water	1400 Appropried 45 0.3404 Appropried 270 2.753 Augustia 213 2.066 2000 2.5	L : ,		hold of MIC	for Donin i con	red HEATHAD is fine
leic Ambydride 270 2.753 Aroxyethyl Acrylate 2.5 IBN 0/0NV Notes	1400 Appropried 45 0.3404 Appropried 270 2.753 Augustia 213 2.066 2000 2.5			added MA + W	armed to 72C	(introduced nitrogen
leic Anbydride 270 2.753 Proxyethyl Acrylate 2.5 180 180 180 180 180 180	1400 Appropried 45 0.3404 Appropried 270 2.753 Augustia 213 2.066 2004 2004			Craidia make	11 700	Cintroduced a toma
leic Anbydride 270 2.753 Proxyethyl Acrylate 2.5 180 180 180 180 180 180	1400 Appropried 45 0.3404 Appropried 270 2.753 Augustia 213 2.066 2004 2004	38		Charged water	~~~	7
leic Anhydride 270 2.753 roxyethyl Acrylate 2.5	1400 145 0.3404 Anhydr: de 270 2.753 Hyl Acrylate 213 2.066			Charact unter	<u> </u>	0
leic Anbydride 270 2.753 Proxyethyl Acrylate 2.5	1400 145 0.3404 Anhydride 270 2.753 Hyl Acrylate 2.5	0/201	1		<u> </u>	
leic Anhydride 270 2.753 Proxyethyl Acrylate 313 2.066	1400 145 0.3404 Anhydride 270 2.753 Hyl Acrylate 313 2.066					
leic Anhydride 270 2.753 Proxyethyl Acrylate 313 2.066	1400 145 0.3404 Anhydride 270 2.753 Hyl Acrylate 313 2.066					
leic Anhydride 270 2.753 roxyethyl Acrylote 313 2.066	1400 145 0.3404 Anhydride 270 2.753 Hyl Acrylate 313 2.066	±0.2				
leic Anhydride 270 2.753 rosuethul Acrulate 313 2.066	1400 145 0.3404 Anhydride 270 2.753 Hul Acrilate 313 2.066		9	a .5		
leic Anhydride 270 2.753	1400 145 0.3404 Anhydride 270 2.753	roxuethy AC	rylate		a.06	
(DXQ-1,a) propulation	1480 D. 3404	leic Anhydria	ve			
1041 - 3 3 3 5 5 5 7 5 7	1400	Tord-ina high	NEC!UI		2.75	3
	1400		labor	45	0.340	9
		ater				
in Marchan	terral actions					
1 Market all	Les all Weight (grams) Moles	> Material		weight (grams	Moles	
	(1) pinhtiagnet Woles	AAL I		Winhtlan	Moles	

THE STATE OF THE PROPERTY OF T

To repeat 02664 (Natisty) but incoming the 286, 2.0668 6-3403 4536.8 3.00 42.0 \$ 840-W 1500.00 270.00 Scaling by 3 2366,67. 48.00 1. to . 116.17 MADERIOL. GPO. P157

Walis adupted / the Charged Along Harged HER 0302 Campbell NV: 24.26 % unphalast HES aren charpet Hers charp alashi 39.44.7. 11. He chaped Nr. 29.48 . / N 716. 731. 7: 22'C 7:20'C F. 33.C. 7.24 7.26 11.01 11.50 10.05 اه ,۲ر 1: 51 4, 45 5 3 10.13 10.50 10.31)

redacted redacted (& My My My

- 52 pp.

GP RESINS EHCI

و پخ

Dry Time: 01 SPAPLE 199

Max Temp: 10 Initial: 1.

Mde with Hydroxyethyl acrylate

(2(Methacrolooxy)ethyljuimethytammoniumChloride

0.70 1.00 556.62

Mercapto Ethanol

Charge Maleic anhydride Warm to 72-73C

In the meanwhile Weigh out HEAMTA in a addition funnel. Add 1.0 g of MERCAPTOETHANOL to it and mix Check Stolds (~15%)

Add AIBN

immediately Start adding Hydroxyethyl acrylate slowly in drops. (atleast 60 minutes) Majoxály femperature at 72-73 C Add Mercaptoethanol 1.0 g to the reaction mixture

pick solids every 30 minutes until no increase in solid is seen.

Cein wath a downat award

redacted

redacted

Witnessed & Understood by me,

Book No. 236 46 末4/ F& 5% TITLE An of HA HER with calture moments.

methoayeth

40.W

adel

to the physic

chap

Caterin

there's 1

ammoi en deboni Me

The with b

a repeat of 328672 (Nationes Note broke)

To make a co-polyuse thing Mo / 400 / 1170

BOOK NO. 136 465

TITLE TO make a Cation of will gill

From Page No.

Prepartion of cationic version of MA/HEA copolymer Copolymerization of maleic anhydride with Hydroxyethyl acrylate. Using THIO GLYCOL, as chain transfer agent

0.1793 73.15 2.00 20.77 60.00 60.00 1.00 557.62 Hydroxyethyl acrylate Mercapto Ethanol Mercapto Ethanol Maleic Anhydride Raw Material

(2(Methacrolooxy)ethyl)trimethylammoniumChloride

Charge water

Charge Maleic anhydride Warm to 72-73C

Hold for 30 minutes at this temperature in the weigh out HEAMTA in a addition funnel. Add 2.0 g of MERCAPTOETHANOL to it and mix Check Sioids (~15%) Add AIBN

7.00

م ا بر

14.20 do

Add Marcaptoethanol 2.0 g to the reaction mixture immediately Start adding Hydroxyethyl acrylate slowly in drops. (affeast 60 minutes) Maintain temperature at 72-73 C

Check solids every 30 minutes until no increase in solid is seen Target solids ~25% 3 σ^{-1}

HEO/MIR / Merconto chand adad. Hen olarly / Nr Started The mail " " day" man m ABA. Carpeter A18N added water ather 24.54 28.41 6. 11. 3 XXX \ **X** <u>۲</u> 40,0 301. 72.6 32.6

72.6

5 - 17 J. 10

11. 56.1

17. 10

.05 11

11.36

11.26

11.45

edacted Date Witnessed & Understood by me,

,				Projec	ct No		01	PE	•
TLECopolymerization	n of maleic	Anhydrida u	Hydryct	Boo	k No 228	650		E A	50
om Page No			The great gr				DEC 2	8 ZUU5	
Row Naterial V	weight	Moles				1 - 1	TE .	Z,	
worker	700			1 : :			TRAB	PALSON STATE	
Make c Anhydrida	60	0.5	a						
tydroxyethylocylate	11612	0.78	- Lanconson and		TTT			·/·····	
3075	20.05	0.05				1-1-1	1		
AIBN	0.7				TITT	1		7	
									-
							rene equini rene fi e a a se.	· · · · · · · · · · · · · · · · · · ·	
								ļ	
ine								. سيد و بساد ماز حسام و د ا	
:35 Charaed &	bunder tro	an Witmace	to get i	d of P	rec ladio	C15 6	(20 min		
:55 Charaed N	19 + was	med to 7	oc '						
17 hold for	20 min								
37 odded (COPS		.,						
45 Added	ALBA N	t Hydroxy	ether a	rylate	over 11	5/			
45 let stir	30 min			9			* ****		
	mp to	78C		•	Th	AKD	did no	at	14
	218 9 14				74 V.	20:20	wen to	lgotic hyp. 2. h	
		% 1	UV= 15.0	3°%	Yan (Tour	Mil	LH
	Conchine								
pof a container = 34.8	3 (Using Sipe	nzation of malei omes COPS as	c anhydride with Chain Transfer	Hydroxyeth; agent)	-		Polyester		codoc
	Raw Mater		eight Moles		wt of	Kettle t		127/#	redac
of Qortainer +	Water ∬ Maleic A∩h	vdride	400 50 0	.52	wtsf	cettle_	3	62.44	
Polyestr = 799 2		nyl acrylate		.78			764.	67	
7/.0170	COPS	106E		.05					
764.179	AIBN	700	0.7						
	Charge wa	ter							
		leic anhydride							
	Warm to 72 Hold for 20	2-73C minutes at this	temperature						
•	Add COPS		tomperature						
	Add AIBN	.				11h			:
	Maintain te	y Start adding H mperature at 72	lydroxyethyl acry - 73 C	/late slowly i	n drops. (atl	eas 60 mi	inut		
·			et stir for 30 mor	e minutes.			·	•	
nessed & Understood by			nvented by		 	Date			
10						1.			•
DE 26		redacted	Recorded by	10 .	/	rec	lacted		
			11 (Tanh	1/1×11		<u>-</u>	•		1

r to Page (45)	15% isreight o	f binders 2220	for amin	And the second section of the second
15%		15%		5º/5 Small CS
Sinder I smakes	Binder 2 snokes	Birder 35 molles	Binder 4	Boders
		(4 minutes)	011001	(2min)
8.50	1.63	11.60	7.59	8 63
8. 49	7.97	10.02	7.74	7.78
840	779	10.20	× 15	7.79
8.42	8.24	12.32	827	7.78
		sile Strenath	0.7	17.7.0
dry		Direc Strading		•
3 inder 1	Birde 12	Binder3	Binder4	2 . 5
60.3	33.2	66.9	12.8	Binders
57.3	32.6	53.9	9.5	29.5 19.2
63.6	38.3	94.5	12.7	25.6
40.7	21.1	88-1	16.6	19-1
45.1	23.3	95.9	10.8	24.9
37./	231	49.3	16.8	28.5
48.7	28.4	85. 1	15.2	39.1
37.5	34.5	61.7	17.8	29.9
40.8	20.8	57.8	13.1	89.5
20.2	26.4	61-6	18.4	29.9
57.1	26.a	55.Q		29.5
62-0	35.	72-9	16.0 12.6	12.4
57.7	22.8	61.6	16.7	19.2
52-0	40.6	53.3	11.6	30. Q
			11: ¥	J ₹ • &

To Page No.

Date redacted

Date

	Tensile	Strength (cont)	W#/HEV @ 51.	
vet	736430 NA		. Wal. " C36	228420 MA/NEA
nder 1	Birder 2 1	Birder 3	Birder 4	Binder 5
1.2	3.6	32.1	8.9	7.2
e-4	3-8	34.y	6.4	5.9.
٥-3	3.0	29.8	7.0	8.1
61	5.1	27.5	9.8	ž. a
3.6	4.7	23.9	9.6	5.0
1.4	4.2	37.7	4.9	4.2
2.6	6.1	268	12.4	<i>5.5</i>
2-1	3.0	37.5	7.4	1.1
7.9	3.4	42.3	6.3	1-3
6.9	3.6	49.7	6.2	17
.3	5.6	31.9	7.3	1.3
.9	6.2	40.7	7.7	2-1
1.4	6.2	40.9	6.8	j. /
·3	5.7	35.3	9.6	1.9

sed & Understood by me Pote Invented by redacted redacted

HEA Project No.

Manager a collection recover		•
Raw Makrial	Weight	Moles
water	940	•
Alloxy 1,2 propane dio!	15.9	0.13877
Alloxy 1,2 propane diol Itaconic Acid	58.3	0.5945
Hydroxyethy, Acrylote	928	0 1972
AIBN	0.7	

ITA		
TIN58 0 13 13 13 13 13 13 13 13 13 13 13 13 13	0/0 NV 14.80 18.25 17.27 18.56 18.12 20.13 20.13	Nots Charged water Charged Allyloxypropone diel Smixture clear Charged Itaconic Acid raised temp to 38C to dissolve Itaconic Acid Warned to 72C added ATBN + starked HEA over bomin HEA addition complete + sample taken
1: 10 1:30 1:54 2:00 2:16 2:35 3:00	33.32 33.32 33.32	raised temp to 760 added . 2149 AIBN

To Page No. .. Date History redacted redacted

redacted

Co-polymer of Itaconic acid Maleic anhydride and Alloxy propanediol

Raw Material

Weight

Moles

Water

400.0 -

Alloxy1,2 propane diol

15.9 0.13877

0.5945

0.7972

Itaconic acid

58.3

Hydroxyethyl acrylate

92.8

AIBN

0.7

7:15 Charge water

1'15 Charge Allyloxypropane diol

Stir for few minutes. Make sure the reaction mixture is clear.

7:30 Add Itaconic acid

After all Itaconic acid has dissolved. Check Solids.

Weigh out HEA into Addition funnel, Add 30 g of water to it and keep it ready

S: 25 Warm to 72 C

9:43 Add AIBN

Immediately Start adding Hydroxyethyl acrylate slowly in drops. (atleast 60 minutes)

redacted Maintain temperature at 72-73 C

After addition is complete let stir for 30 more minutes.

400-368.10 = 31.99 Har necded

Binder 1 ORXP

22866 QRXPQ 40.91% solid 400x.15=60g 60 - 146.66g solid needed .4091

400-146-66 = 253.34g Has needed

Binder 3 228 G 6 1 228 G 6 1 00 20.15% solid 400x.15=600

60 = 297.77g solid needed

400-297.77 = 102.23,9 Had needed

Binder 4 228662 2286620 19.80% solid 400x.15:60g 00 = 303.03g solid needed

400-303.03=96.979 HaD needed

Binder 5) 228664 228664220.87% solid 400 x.15=609 60 = 284.49gsolid .2087

400-284, 49g - 115.51g H

Binder 6 Interpolymen a Therpolymen a

The second state of the second second

sped & Understood by me,

Di Ri

redacted

Invented by

Modal Ba

To Page No....

Date

om Pago Ma	•				
Dry	notlwef				
Binder 1	-	Binder 2		Binder 3	
540	3.3	41.1	37.3	27.7	35.5
61-2	3./	36.7	29.4	shortering +1.0	34.4
37.9	4.2	27.4	17.4	29.4	37.6
73.9	4.3	38.2	27.0	17.9	33.0
62.3	4.2	31.9	23.1	47.7	37. <i>o</i>
50.3	2.7	23.6	251	28.9	21.3
34.8	1.8	19.4	21.7	33.6	28.3
77.6	4.5	16.3	141.6	25.2	35.9
79.8	3.6	41.6	32.9	17.8 / 2.8	27. \$
46-1	8.2	32.1	27.9	17.0	32.4
49.5	6.4	12.5	24.8	19.0	37.3
30.1	1.8	14.3	16.4	31.4	12.5 -doit strip
55.63	4.01	27.93	24.80	25.13	31.02

Birder	t	Binder 5		Binder 5	Interpolyne?
58-7	31.5	46.7	28.1	78.6	12,3
22.8	33.1	50.4	38.1	Y3. 2	8.1
56.6	49.0	<i>35.9</i>	35.7	46.9	10.1
40.7	28.7	47.5	28.5	49-0	3. 7
40,5	58.1	57.1	50.6	47.6	10.1.
60.7	40.7	26.4	32.8	47.1	8. 2
25.2	36.9	48.5	25.8	55.4	11.2
67-3	31.5	35.7	38.9	60.6	5.6
43.6	27.1	48.6	47.4	68.5	7.8
. 62.2	25. Ostalla	short 191	29.3	54.7	8.0
≥ 21-3	30.5	45.1	32.0	34.4	4.3
58.1	42.6	396	12. 3 about 2000	53.2	7.5
46-48	36.23	41.72	33.29	53.27	8.08

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	nagas sameri entre har matematikan kan matematikan nagas nagas nagas matematikan kan kan kan kan matematikan k Matematikan kan matematikan kan matematikan kan matematikan kan matematikan kan matematikan kan matematikan ma	To Page h
tnessed & Understood by me,	Date	Invented by	Date
Hi Li	redacted	Freeze de by Bes	redacted

SIPE	400
DEC 28	2005 p
A TO LO	augit (

participant in the second medical participants and a second of the second control of the	ot viele all viele determine the religious proposation to the all the least termine to be in the religious consideration and the religious termines and the religious termines are the religious termines and the religious termines are the	en de la companya de	ternit eletant um sain annants (n
Prom Page No			
Raw Material	Weight	moles	
water .	500	1	
Allowy propare diol Maleic Anhydride Hydroxyethyl Acrylate AIBN	15	0.1136	
Maleic Anhydride	90	0 .197 8	0.9178
Hydroxyethyi Acrylate	80	0.688	
HIBN	l .		

	1	,		
line	Notes		Solid	%
10:45	Charged water			
10:48	Added MA & wor			
11:07	Iteld at 700 for	30 min		
11:37	PH= 1.00			
11:42	Charged APD #			
11:45	PH = 1.09 add	AIBN +		
11:48	added AIBN + added	HEA over the (maintained temp)	a (
12:48		·	26.77	
1:08			27.84	
1:28 1:48		2:08	28.04	
2.08			27.87	
2:28		GP RESINS	28.16 27.95	1
2.3 3	1	13:28	21.73	, a ::
		LHC	•	GP RESINS .
Part 1811	•	SAMPLE 97 redacted		redacted 13:
		Dry Time: 02:20		LHC
wt of sampl	e container = 13.31 cq	Max Temp: 105 C		SAMPLE 98
wt of sa	mple = 19.87g	Initial: 2.2451g		Dry Time: 02:32
**************************************	2			Max Temp: 105 C
RI= 1.		A. A. A. A.		Initial: 2.3023
Viscosity PH= →	y= 24	28.16% S		
pH=4	7 NB 1.63	rn'In'		A-20 4000 i 4
•				27.95%
				L 1 . L / · ·

redacted

26.77% S

				GP RESINS
redacted Copolymerization of M	d IA/HEA and AP	סי		redacted 12:10 LHC
Raw Material Water	Weight M	oles		SAMPLE 91
Alloxy propane diol	15	0.1136		Dry Time: 02:41
Maleic anhydride	90	0.1978		Max Temp: 105 C
Hydroxyethyl acrylate AIBN	80 1	0.688	•	Initial: 2.3608g

0:45 Charge water

Add Maleic anhydride

Warm to 70 C Hold fro 30 minutes, Check pH

Weigh out HEA into Addition funnel, Add 30 g of water to it and keep it ready

Charge APD Check pH

Add AIBN

Immediately Start adding Hydroxyethyl acrylate slowly in drops. (atleas 60 minutes)

Maintain temperature at 72-73 C,

After addition is complete Check solids every 20 minutes Until target solids is reached

GP RESINS redacted 13:08 GP RESINS redacted LHC 12:28 redacted LHC SAMPLE 96 SAMPLE 95 LHC SAMPLE 92 Dry Time: 02:08 Dry Time: 02:32 Max Temp: 105 C Dry Time: 02:20 Max Temp: 105 C Initial: 1.9670g Initial: 2.6204g Max Temp: 105 C Initial: 1.5351g

27.84% S

28.04%

redacted 7.87% S

redacted

Marah Xx

	From Page No		
	Raw Material	weight (grams)	Moles
	water	1400	
-	Allyloxy-1,2-propandial	45	0.3404
	Maleic Anhydride	270	2.753
-	Hydroxyethyi Acrylate	313	2.675
-	AIBN	a .5	
- 1	1		

Tine	90NV	Notes
9:38		Charged water
9:41		added MA + warmed to 72C (introduced nitrogen have
10:14		held at 72C for 30 min, prepared HEA+HaD in fume)
10:44		Charged Allyloxypropare diol
10:48	20.01	Sampled for solids
14: 03		added AIBN at least
11:10		Added HEA + Had Duer 90 min
1:30	30.36	Sampled for solids, allowed cook to other for somereminutes
1:50	31.47	Sampled for solids.
9:13		Control allowed polymer to slowly cool
3:18	31.89	Control allowed polymer to slowly cool sampled for solids
	ı	

RI= 1.3791 Viscosity: 75 PH= 2000 1.63

To Page No....

Witnessed & Understood by me,

Date redacted

Date

From Page No

Binder 3 FINEIRIE CAME.

Binder 1 = DRXP a) 40.91% solid 400g x.20= 80 So. = 195.55g solid .4091

400-195.55= 204.45q Had

Binder 2 = Phenolic Control 00 32.25% solid 400g x. 209 80g 80 = 248.06g solid .3225

400-248.06g=151.94g H20

#Binder 3 = 228667 00 27.63% solid 400g x.20% = 80 <u>SB</u> - 289.54g solid .2763

400-289.64 = 110. 46g HaD

Binder 4= 228668 00 31.20% 501 d 400g x 20% = 80 80 = 256.41 g soli d .3120

400-256.41g=143.59g Had

To Page No. _

Witnessed & Understood by me, Date Invented by redacted Recorded by Recorde

Book No. 228678

rom Page No			
Binder 1 all	XP HOT/WET	Birder 2	Phonolic Control
19.4	7.8	18.8	HOT/WET
47.8	3.5	Y4.5	41.8
56.7	6.2	45.5	39.5
43	9.5	54.7	31.3
18.9	7.3	<u> </u>	22.0
67.7	5.2	33.0	40.8
45.1	5.1	<u>41.6</u>	35 3
49.8	8. 4	33.9	19.5
22.8	9.2	145	29.1
47.7	4.3	52.9	35.1
68-6	4.2	V9.3	37.3
59.8	5.8	40.6	27.0 19.8
	-		
			Lessiff.
Binder 3 8	28667 2013	Binder 4	228668 smokes
16.0	HoT/wet	14.9	Hot/Wet
flo.1	38.9	57-2	38.0
10.4	26.9	<u> 40. 4</u>	40.7
59.5	29.3	49.6	19.2
14.6	30.6	17-7	21.6
37.7	22.6	¥3.6	34.6
<u>55.)</u>	23.3	59.7	57.1
52.4	26.0	57.9	31.1
<i>11</i>	29.7	15.1	23.2
2.3	40.6	Y1.	32.9
16.4	28.1	39.2	2 <i>5. 5</i>
41	22.6	<u>⊃ 7.</u> ∠	26.1
	24.7		31:4
			To Page N
	ood by me, Date	Invented by	Date
vitnessed & Underst			
Vitnessed & Underst	redacted	Reforded by A	redacted

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.