UNIVERSIDAD DE BUENOS AIRES FACULTAD DE INGENIERÍA

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

MEMORIA DEL TRABAJO FINAL

Título del trabajo

Autor: Nombre del Autor

Director: Nombre del Director

Jurados: Nombre del jurado 1 (pertenencia) Nombre del jurado 2 (pertenencia) Nombre del jurado 3 (pertenencia)

Resumen

Acá va el resumen del trabajo. Debe ser lo más breve posible. No más de dos o tres párrafos, de unas cuatro o cinco oraciones cada uno. Leyendo esto debe quedar muy claro en qué consiste el trabajo realizado, por qué el trabajo es importante, por qué el trabajo muestra que el estudiante aplicó correctamente lo aprendido en la Carrera y qué información va a encontrar el lector en esta Memoria.

No usar en este resumen ninguna referencia bibliográfica del tipo [1], ni tampoco notas a pie de página ni siglas que no estén aclaradas como parte de este texto, ni tipografía en negritas, subrayada o cursiva. Dicho de otra forma, el texto en este resumen debe ser escrito de forma tal que si se recorta el mismo y se lo pega en un archivo .txt entonces este conserve su formato y sea perfectamente entendible sin ningún agregado adicional, es decir, quede autocontenido.

Agradecimientos

Agradecimientos personales. [OPCIONAL]

No olvidarse de agradecer al tutor.

No vale poner anti-agradecimientos (este trabajo fue posible a pesar de...)

Índice general

Re	sum	en	III									
1.		oducción General	1									
	1.1.	Descripción técnica-conceptual del proyecto	1									
	1.2.		3									
	1.3.	Objetivos y alcance	3									
2.	Intr	oducción Específica	5									
	2.1.	Estilo y convenciones	5									
		2.1.1. Uso de mayúscula inicial para los título de secciones	5									
		2.1.2. Este es el título de una subsección	5									
		2.1.3. Figuras	6									
		2.1.4. Tablas	7									
		2.1.5. Ecuaciones	8									
3.	Dise	eño e Implementación	9									
	3.1.	Análisis del software	9									
4.	Ensayos y Resultados											
	4.1.	Pruebas funcionales del hardware	11									
5.	Conclusiones											
	5.1.	Conclusiones generales	13									
		Próximos nasos	13									

Índice de figuras

1.1.	Diagrama en bloques del sistema. Se diferencian por color los dis-	
	tintos sub-módulos funcionales y se indica mediante línea de pun-	
	tos los componentes incluidos en el alcance	2
2.1.	Ilustración del cuadrado azul que se eligió para el diseño del logo.	6
2.2.	Imagen tomada de la página oficial del procesador ¹	6
	El lector no sabe por qué de pronto aparece esta figura.	

Índice de Tablas

つ 1	caption corto																	
Z.I.	Caption Corto																	_/

Dedicado a... [OPCIONAL]

Introducción General

1.1. Descripción técnica-conceptual del proyecto

La acústica submarina estudia la propagación del sonido en el agua y la interacción de las ondas mecánicas que constituyen el sonido con el agua, los elementos dispersores presentes y con las interfaces aire-agua y agua-lecho marino. Debido a que sufre menor atenuación que otras formas de radiación, el sonido es ampliamente empleado por el hombre en su exploración de los océanos. Las frecuencias típicas utilizadas se encuentran en el rango comprendido entre $\sim \! 10\, \rm Hz$ y 1 MHz, dependiendo de la aplicación. Los sistemas que utilizan la propagación del sonido bajo el agua con diversos fines se conocen como sistemas SONAR (SOund Navigation And Ranging).

La propagación del sonido en el agua depende de diversos factores. La dirección de propagación está determinada principalmente por el gradiente vertical de velocidades del sonido, que a su vez depende fundamentalmente de la temperatura y la salinidad del agua. El perfil de velocidades del sonido puede causar zonas de baja intensidad del sonido, llamadas "zonas de sombra", y regiones de alta intensidad llamadas "cáusticas". Estas zonas pueden hallarse con el método de trazado de rayos [insertar referencia].

El sonido en el agua puede propagarse a grandes distancias, en el orden de miles de kilómetros, debido a la presencia de un canal especial que actúa como guía de onda para el sonido, conocido como SOFAR (SOund Fixing And Ranging) que se produce, bajo ciertas condiciones, a la profundidad donde el gradiente de velocidades del sonido alcanza un mínimo [insertar referencia].

Los distintos fenómenos que afectan al sonido submarino pueden ser conveniente y lógicamente agrupados en un pequeño número de parámetros conocidos como parámetros SONAR que se pueden relacionar entre sí mediante las ecuaciones SONAR. Estas ecuaciones exhiben las relaciones de trabajo que agrupan los efectos del medio de propagación, el blanco y el equipamiento utilizado y constituyen las herramientas básicas para los profesionales que trabajen en aplicaciones de acústica submarina.

En el campo de la acústica submarina resulta muy relevante el conocimiento del parámetro SONAR Nivel de Ruido en el mar (NL: *Noise Level*), que incluye el Ruido Ambiente propiamente dicho (NLa) y el Ruido Propio (NLp) asociado al sistema de medición. En el caso de escucha pasiva (estudios de impacto ambiental sobre mamíferos marinos a bajas frecuencias o detección subacuática efectuada desde vehículos submarinos), el NL está dominado por el NLa.

Conceptualmente, el Nivel de Ruido en el mar está asociado al ruido de "fondo" (background) remanente en ausencia de toda otra fuente identificable. Es el nivel de energía acústica mínimo que debe tener una señal para ser detectada.

Cabe destacar que el ruido subacuático puede clasificarse esencialmente en tres tipos:

- Ambiente: comúnmente denominado ruido de fondo, se mide omnidireccionalmente y es originado principalmente por ruido en la superficie marina (debido al viento, oleaje o lluvia), ruido de origen biológico (producido por peces, mamíferos e invertebrados), ruido sísmico o geoacústico natural, ruido de tráfico marítimo (originado por tráfico marítimo distante).
- Ruido Radiado: originado por una fuente específica tal como un buque en particular, plataformas de explotación de petróleo o gas, instalaciones de exploración y perforación, instalaciones de generación eléctrica, etc.
- Ruido Propio: generado por el propio sistema de electrónico de medición de ruido y por la plataforma donde se encuentre instalado.

El objetivo de este proyecto consiste en diseñar e implementar un sistema embebido para controlar una estación autónoma para la medición in-situ del ruido ambiente submarino para ser instalada en regiones de interés en el mar Argentino y con la capacidad de transmitir datos a una estación receptora en tierra. Este desarrollo permitirá disponer de series temporales de ruido ambiente submarino durante períodos lo suficientemente largos como para analizar los resultados mediante modelos teóricos y/o empíricos que contribuyan a incrementar el conocimiento de dicho parámetro, especialmente a nivel local.

Se presenta un diagrama en bloques del sistema en la figura 1.1.

FIGURA 1.1: Diagrama en bloques del sistema. Se diferencian por color los distintos sub-módulos funcionales y se indica mediante línea de puntos los componentes incluidos en el alcance.

1.2. Motivación 3

Para alcanzar el objetivo general se dispone de un paquete tecnológico compuesto principalmente por un equipo de trabajo multidisciplinario con conocimientos teóricos de los fenómenos físicos subyacentes a la propagación del sonido en el medio submarino, acceso a bibliografía especializada en acústica submarina y conocimientos de ingeniería en el campo de los sistemas embebidos.

1.2. Motivación

El conocimiento de valores de NL es fundamental en aplicaciones tales como oceanografía acústica, predicción SONAR, exploración geofísica, comunicación subacuática e ingeniería offshore, entre otras.

Por otra parte, existen muy pocas normas a nivel internacional para la estandarización de la medición in-situ del ruido ambiente subacuático. Si bien en acústica aérea sí existen estándares nacionales e internacionales muy aceptados, éstos no pueden extrapolarse fácilmente a la acústica subacuática dadas las diferentes características físicas del fluido en el cual se propaga el sonido, respectivamente.

Actualmente, en el ámbito de la comunidad científica internacional existe una creciente necesidad de medición y monitoreo del ruido subacuático. El interés está parcialmente motivado por un marco regulatorio internacional en lo concerniente al impacto ambiental del ruido subacuático de origen antrópico y principalmente para la evaluación de los efectos sobre la vida marina.

1.3. Objetivos y alcance

En particular, para el trabajo de maestría se realizará una primera iteración sobre el ciclo de diseño centrada en la programación del sistema embebido que constituye el núcleo del proyecto general. Se propone desarrollar un firmware multicore de control en una CIAA-NXP que utilice ambos procesadores del microcontrolador LPC4337 y sea capaz de cumplir las siguientes funciones:

- Adquirir datos ambientales de temperatura y velocidad de viento.
- Controlar el sistema mediante una interfaz serie
- Almacenar los datos

En la primera iteración, se contempla la posibilidad de simular algún elemento del sistema según sea necesario para avanzar rápidamente en el diseño del firmware de control y las funciones mencionadas. A los fines prácticos de cumplir los requerimientos de tiempo del trabajo final de maestría, quedarán excluídos del diseño:

- La transmisión de datos a una estación receptora.
- Consideraciones mecánicas del proyecto.
- La gestión de energía.
- La gestión y control del señalamiento reglamentario marítimo.
- La adquisición de señales acústicas.

Según un estudio preliminar, para el registro de señales acústicas resulta necesario una placa de adquisición A/D con características muy específicas en cuanto a frecuencia de muestreo, bits de resolución y figura de ruido, del tipo NI USB-6356 o equivalente. Este tipo de placas poseen *drivers* propietarios cerrados que, en principio, no fue posible utilizar con la CIAA-NXP. Por este motivo, la adquisición de señales acústicas también queda excluida del alcance en esta primera iteración.

Introducción Específica

La idea de esta sección es presentar el tema de modo que cualquier persona que no conoce el tema pueda entender de qué se trata y por qué es importante realizar este trabajo y cuál es su impacto.

2.1. Estilo y convenciones

2.1.1. Uso de mayúscula inicial para los título de secciones

Si en el texto se hace alusión a diferentes partes del trabajo referirse a ellas como capítulo, sección o subsección según corresponda. Por ejemplo: "En el capítulo 1 se explica tal cosa", o "En la sección 2.1 se presenta lo que sea", o "En la subsección 2.1.2 se discute otra cosa".

Entre párrafos sucesivos dejar un espacio, como el que se observa entre este párrafo y el anterior. Pero las oraciones de un mismo párrafo van en forma consecutiva, como se observa acá. Luego, cuando se quiere poner una lista tabulada se hace así:

- Este es el primer elemento de la lista.
- Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

Si se desea poner una lista numerada el formato es este:

- 1. Este es el primer elemento de la lista.
- 2. Este es el segundo elemento de la lista.

Notar el uso de las mayúsculas y el punto al final de cada elemento.

2.1.2. Este es el título de una subsección

Se recomienda no utilizar **texto en negritas** en ningún párrafo, ni tampoco texto <u>subrayado</u>. En cambio sí se sugiere utilizar *texto en cursiva* donde se considere apropiado.

Se sugiere que la escritura sea impersonal. Por ejemplo, no utilizar "el diseño del firmware lo hice de acuerdo con tal principio", sino "el firmware fue diseñado utilizando tal principio". En lo posible hablar en tiempo pasado, ya que la memoria describe un trabajo que ya fue realizado.

Se recomienda no utilizar una sección de glosario sino colocar la descripción de las abreviaturas como parte del mismo cuerpo del texto. Por ejemplo, RTOS (*Real Time Operating System*, Sistema Operativo de Tiempo Real) o en caso de considerarlo apropiado mediante notas a pie de página.

Si se desea indicar alguna página web utilizar el siguiente formato de referencias bibliográficas, dónde las referencias se detallan en la sección de bibliografía de la memoria,utilizado el formato establecido por IEEE en [IEEE:citation]. Por ejemplo, "el presente trabajo se basa en la plataforma EDU-CIAA-NXP, la cual se describe en detalle en [CIAA]".

2.1.3. Figuras

Al insertar figuras en la memoria se deben considerar determinadas pautas. Para empezar, usar siempre tipografía claramente legible. Luego, tener claro que es incorrecto escribir por ejemplo esto: "El diseño elegido es un cuadrado, como se ve en la siguiente figura:"

La forma correcta de utilizar una figura es la siguiente: "Se eligió utilizar un cuadrado azul para el logo, el cual se ilustra en la figura 2.1".

FIGURA 2.1: Ilustración del cuadrado azul que se eligió para el diseño del logo.

El texto de las figuras debe estar siempre en español, excepto que se decida reproducir una figura original tomada de alguna referencia. En ese caso la referencia de la cual se tomó la figura debe ser indicada en el epígrafe de la figura e incluida como una nota al pie, como se ilustra en la figura 2.2.

FIGURA 2.2: Imagen tomada de la página oficial del procesador¹.

¹https://goo.gl/images/i7C70w

La figura y el epígrafe deben conformar una unidad cuyo significado principal pueda ser comprendido por el lector sin necesidad de leer el cuerpo central de la memoria. Para eso es necesario que el epígrafe sea todo lo detallado que corresponda y si en la figura se utilizan abreviaturas entonces aclarar su significado en el epígrafe o en la misma figura.

FIGURA 2.3: El lector no sabe por qué de pronto aparece esta figura.

Nunca colocar una figura en el documento antes de hacer la primera referencia a ella, como se ilustra con la figura 2.3, porque sino el lector no comprenderá por qué de pronto aparece la figura en el documento, lo que distraerá su atención.

2.1.4. Tablas

Para las tablas utilizar el mismo formato que para las figuras, sólo que el epígrafe se debe colocar arriba de la tabla, como se ilustra en la tabla 2.1. Observar que sólo algunas filas van con líneas visibles y notar el uso de las negritas para los encabezados. La referencia se logra utilizando el comando \ref{<label>} donde label debe estar definida dentro del entorno de la tabla.

```
\begin{table}[h]
\centering
\caption[caption corto]{caption largo más descriptivo}
\begin{tabular}{l c c}
\toprule
\textbf{Especie} & \textbf{Tamaño} & \textbf{Valor aprox.}\\
\midrule
Amphiprion Ocellaris & 10 cm & \$ 6.000 \\
Hepatus Blue Tang & 15 cm & \$ 7.000 \\
Zebrasoma Xanthurus & 12 cm & \$ 6.800 \\
\bottomrule
\hline
\end{tabular}
\label{tab:peces}
\end{table}
```

TABLA 2.1: caption largo más descriptivo

Especie	Tamaño	Valor aprox.
Amphiprion Ocellaris	10 cm	\$ 6.000
Hepatus Blue Tang	15 cm	\$ 7.000
Zebrasoma Xanthurus	12 cm	\$ 6.800

En cada capítulo se debe reiniciar el número de conteo de las figuras y las tablas, por ejemplo, Fig. 2.1 o Tabla 2.1, pero no se debe reiniciar el conteo en cada sección. Por suerte la plantilla se encarga de esto por nosotros.

2.1.5. Ecuaciones

Al insertar ecuaciones en la memoria estas se deben numerar de la siguiente forma:

$$ds^{2} = c^{2}dt^{2} \left(\frac{d\sigma^{2}}{1 - k\sigma^{2}} + \sigma^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2} \right] \right)$$
 (2.1)

Es importante tener presente que en el caso de las ecuaciones estas pueden ser referidas por su número, como por ejemplo "tal como describe la ecuación 2.1", pero también es correcto utilizar los dos puntos, como por ejemplo "la expresión matemática que describe este comportamiento es la siguiente:"

$$\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi = -i\hbar\frac{\partial\Psi}{\partial t}$$
(2.2)

Para las ecuaciones se debe utilizar un tamaño de letra equivalente al utilizado para el texto del trabajo, en tipografía cursiva y preferentemente del tipo Times New Roman o similar. El espaciado antes y después de cada ecuación es de aproximadamente el doble que entre párrafos consecutivos del cuerpo principal del texto. Por suerte la plantilla se encarga de esto por nosotros.

Para generar la ecuación 2.1 se utilizó el siguiente código:

```
\begin{equation}
\label{eq:metric}
ds^2 = c^2 dt^2 \left( \frac{d\sigma^2}{1-k\sigma^2} + \sigma^2\left[ d\theta^2 + \sin^2\theta d\phi^2 \right] \right)
\end{equation}
```

Y para la ecuación 2.2:

```
\begin{equation}
\label{eq:schrodinger}
\frac{\hbar^2}{2m}\nabla^2\Psi + V(\mathbf{r})\Psi =
-i\hbar \frac{\partial\Psi}{\partial t}
\end{equation}
```

Diseño e Implementación

3.1. Análisis del software

La idea de esta sección es resaltar los problemas encontrados, los criterios utilizados y la justificación de las decisiones que se hayan tomado.

Se puede agregar código o pseudocódigo dentro de un entorno lstlisting con el siguiente código:

```
\begin{lstlisting}[caption= "un epígrafe descriptivo"]
  las líneas de código irían aquí...
  \end{lstlisting}
  A modo de ejemplo:
1 #define MAX_SENSOR_NUMBER 3
2 #define MAX_ALARM_NUMBER 6
3 #define MAX_ACTUATOR_NUMBER 6
5 uint32_t sensorValue[MAX_SENSOR_NUMBER];
6 FunctionalState alarmControl[MAX_ALARM_NUMBER]; //ENABLE or DISABLE
10 void vControl() {
11
   initGlobalVariables();
12
13
   period = 500 ms;
   while (1) {
16
17
     ticks = xTaskGetTickCount();
18
19
     updateSensors();
20
21
     updateAlarms();
23
     controlActuators();
25
     vTaskDelayUntil(&ticks, period);
26
27
28 }
```

ALGORITMO 3.1: Pseudocódigo del lazo principal de control.

Ensayos y Resultados

4.1. Pruebas funcionales del hardware

La idea de esta sección es explicar cómo se hicieron los ensayos, qué resultados se obtuvieron y analizarlos.

Conclusiones

5.1. Conclusiones generales

La idea de esta sección es resaltar cuáles son los principales aportes del trabajo realizado y cómo se podría continuar. Debe ser especialmente breve y concisa. Es buena idea usar un listado para enumerar los logros obtenidos.

5.2. Próximos pasos

Acá se indica cómo se podría continuar el trabajo más adelante.