Advances in Data Science & Architecture Assignment 3

Index

2

Goal:	3
Methodology	
wiethodology	
Regression	5
Classification:	14
Clustering:	
Web Application:	31

Goal:

To build out a web service for energy models for Finland. There will be one web service which will invoke the rest api of all the models. We have the following functions: -

- 1.Regression with 4 models (Linear regression, Neural Network, Random Forest and KNN) to predict the Normalized energy consumption.
- 2.Classification with 4 models (Logistic regression, Neural Network, Random Forest and KNN) to predict the Normalized energy consumption.
- 3. Clustering with 2 models (K means and Hierarchical) to predict the Building ID cluster.

We have trained the data without the year so the trained model can be used to for any year and can also be retrained for the future data. With our current capacity we will be taking the weather input and the building parameter input from the user.

For all the three we have a retraining model and a prediction model. The prediction model has been made into a web service.

Methodology

1) We have our data from Midterm

Variables	Class	Comment			
Time	integer				
TemperatureF	numeric				
Dew.PointF	numeric				
Humidity	integer	ata			
Sea.Level.PressureIn	numeric	Weather Data			
VisibilityMPH	numeric				
Wind.SpeedMPH	numeric	We			
Gust.SpeedMPH	numeric				
Events	integer				
WindDirDegrees	integer				
sta_code	integer	n g			
day	integer	Building Data			
month	integer	Br [

BuildingID	integer	
meternumb	integer	
type	integer	
Consumption	integer	
area_floor _m.sqr	integer	
DayofWeek	integer	
Weekday	integer	
Peakhour	integer	
mont	integer	
		Dependent Variable
Normalised	numeric	for regression
		Dependent Variable
BaseHourRate	integer	for classification

We have added this dataset to Azure ML

2) The next step is to make 4 predictive model

Regression

1. Linear Regression

2. Neural Network

3. Random Decision Forest

4. KNN

There is no module for KNN so we use the R script

Below mentioned: - # Map 1-based optional input ports to variables

dataset1 <- maml.mapInputPort(1) # class: data.frame

dataset2 <- maml.mapInputPort(2) # class: data.frame

library(kknn)

model <- train.kknn(Normalised ~ ., data = dataset1, kmax = 9)

prediction <- predict(model, dataset2)

model <- train.kknn(Normalised ~ ., data = dataset1, kmax = 9)

prediction<-as.data.frame(prediction)

madel<-as.data.frame(model)

maml.mapOutputPort("prediction")

>

Properties Project ▲ Filter Based Feature Selection Feature scoring method • Pearson Correlation Operate on feature columns only = ⊕ Target column Selected columns: Column names: Normalised Launch column selector Number of desired features 10 START TIME 11/29/2016 4:55:29 PM END TIME 11/29/2016 4:55:29 PM ELAPSED TIME 0:00:00.000 STATUS CODE Finished cache Web Service Parameters

Operate on feature columns only

Perform feature selection for each model to reduce the independent variable and to get high co efficient of Determination for regression and Area under the curve (AUC) for Classification.

Pearson Correlation has been chosen to eliminate collinearity.

The number of variables have been chosen by iteration (starting from 25 and reducing it to 10)

Our Model after selection is

	Normalised	sta_code	VisibilityMPH	Dew.PointF	TemperatureF	month	Events	Peakh	our	Weekday	Wind.SpeedMPH	meternumb-1	meternumb-2	meternumb-3	meternumb-4	meternumb-8
ē Ē	L	Ι.]	.alile			ılı	ı		ιĪ	ll.	. 1	Ι.	Ι.	Ι.	Ι.
	0	0	0.2	0.396226	0.366667	0.181818	0.857143	1		1	0.333333	1	0	0	0	0
	0.006911	0	0.2	0.867925	0.783333	0.454545	0.428571	0		1	0.101449	1	0	0	0	0
	0.000549	0	0.2	0.641509	0.55	0.909091	0.428571	1		1	0.133333	0	1	0	0	0
	0.112918	0	0.2	0.641509	0.6	0.272727	0.428571	1		1	0.234783	0	0	0	1	0
	0.01626	0	0.2	0.924528	0.866667	0.454545	0	0		1	0	1	0	0	0	0
	0.027451	0	0.2	0.849057	0.733333	0.454545	0.428571	0		1	0.066667	1	0	0	0	0
	0.016941	0	0.13871	0.528302	0.55	0.272727	0	0		1	0.066667	1	0	0	0	0
	0.00546	0	0.080645	0.849057	0.7	0.818182	0	1		1	0.168116	1	0	0	0	0
	0.00259	0	0.2	0.867925	0.766667	0.454545	0.428571	0		1	0.2	1	0	0	0	0
	0.005956	0	0.180645	0.528302	0.416667	0.090909	0.857143	0		0	0	1	0	0	0	0
	0	0	0.2	0.773585	0.716667	0.363636	0	1		1	0.066667	1	0	0	0	0
	0	0	0.2	0.566038	0.466667	1	0.428571	1		1	0	1	0	0	0	0
	0.007894	0	0.2	0.811321	0.716667	0.545455	0.428571	1		0	0.168116	1	0	0	0	0
	0.038462	0	0.2	0.622642	0.566667	0.909091	0.428571	1		1	0.168116	1	0	0	0	0
	0.005956	0	0.2	0.339623	0.4	0.181818	0.857143	1		0	0.133333	1	0	0	0	0
	0.333333	1	0.2	0.641509	0.55	0.272727	0.428571	0		1	0.2	1	0	0	0	0
	0.025562	0	0.2	0.90566	0.8	0.545455	0.428571	1		1	0.133333	1	0	0	0	0

And the Coefficient of determination for

1. Linear regression

Metrics

Mean Absolute Error	0.021247
Root Mean Squared Error	0.040998
Relative Absolute Error	0.839013
Relative Squared Error	0.653143
Coefficient of Determination	0.346857

2. Neural Network

Metrics

Mean Absolute Error	0.020141
Root Mean Squared Error	0.039193
Relative Absolute Error	0.795328
Relative Squared Error	0.5969
Coefficient of	0.4031
Determination	0.4031

3. Random Forest

	Negative Log Likelihood	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as	1	I	1	I	1	1
	11204748.62927	0.021708	0.049093	0.857201	0.936506	0.063494

3) Next merge the 3 models into one predictive web service

you can retrain it with new data and we get a comparative result of accuracy for all three

	Algorithm	Mean Absolute Root Mean So Error Error		Relative Absolute Error	Relative Squared Error	Coefficient of Determination
view as	Ш	1.11		LII		
	Linear Regression	0.021247	0.040998	0.839013	0.653143	0.346857
	Neural Network Regression	0.020092	0.039206	0.793386	0.597293	0.402707
	Random Forest Regression	0.021708	0.049093	0.857201	0.936506	0.063494

The best regression model is Neural Network as you can see from the co-efficient of Determination.

4) The next step is to convert the models into trained modules to be used for prediction. We have modules for Linear regression, Random Forest and Neural network.

The Web Service Output will have the following output

Here the data set is the predicted Normalised (consumption in KWh/Sq mt)

Classification:

1. Logistic Regression:

1a. Feature selection: Perform feature selection for each model to reduce the independent variable and to get high Area under the curve (AUC) for Classification. *Pearson Correlation has been chosen to eliminate collinearity. The number of variables have been chosen by iteration (starting from 25 and reducing it to 10)*

Logistic Regression > Filter Based Feature Selection > Filtered dataset

621816	11										
	BaseHourRate	sta_code	Dew.PointF	TemperatureF	month	Peakhour	Events	VisibilityMPH	Weekday	type	Wind.SpeedMPH
view as	Tall 1		allh		luund	li.	ili	.1	1.	Γ / Γ	llu.
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459

1b. Evaluation Results: A model with an AUC above 70% is considered to be a good model.

Logistic Regression > Evaluate Model > Evaluation results

2.Decision forest:

2a. Feature Selection: Perform feature selection for each model to reduce the independent variable and to get high Area under the curve (AUC) for Classification. *Pearson Correlation has been chosen to eliminate collinearity. The number of variables have been chosen by iteration (starting from 25 and reducing it to 10)*

816	columns 11										
	BaseHourRate	sta_code	Dew.PointF	TemperatureF	month	Peakhour	Events	VisibilityMPH	Weekday	type	Wind.SpeedMPI
as I	L		بأاله		lumut	III	ila	.]	1.	Γ / Γ	l _{II} .
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459

Score Model

Evaluate Model

+ 1:1 ‡ •

2b. Evaluation Results: A model with an AUC above 70% is considered to be a good model.

Random Forest > Evaluate Model > Evaluation results

3. Neural Networks:

3a. Feature Selection: Perform feature selection for each model to reduce the independent variable and to get high Area under the curve (AUC) for Classification. *Pearson Correlation has been chosen to eliminate collinearity. The number of variables have been chosen by iteration (starting from 25 and reducing it to 10)*

rows 621816	columns 11										
	BaseHourRate	sta_code	Dew.PointF	TemperatureF	month	Peakhour	Events	VisibilityMPH	Weekday	type	Wind.SpeedMPF
view as	L		allh		lumut	11	ila		1.	Γ / Γ	l _{II} .
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	1	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000335	0.000459
	0	0.000335	0.000744	0.000744	0.000335	0.000323	0.000371	0.00036	0.000335	0.000347	0.000459

Ankita Sriniketan Vignesh

3b. Evaluation Results: A model with an AUC above 70% is considered to be a good model.

Neural Network > Evaluate Model > Evaluation results

4. The next step is to convert the models into trained modules to be used for classification. We have modules for Linear regression, Random Forest and Neural network.

Clustering:

5. K means Clustering: Training Experiment

5a. Feature Selection: Perform feature selection for each model to reduce the independent variable and to get high Area under the curve (AUC) for Classification. *Pearson Correlation has been chosen to eliminate collinearity. The number of variables have been chosen by iteration (starting from 25 and reducing it to 10)*

Clustering > Filter Based Feature Selection > Filtered dataset

rows	columns
621816	10

	BuildingID	type	meternumb	month	Dew.PointF	TemperatureF	Events	Gust.SpeedMPH	sta_code	day
view as	L. L	Γ / Γ	<u></u>	lumat			rla	dl.	1 .	
	5311	2	1	1	35.6	35.6	4	27.6	1	1
	75701	1	1	1	35.6	35.6	4	27.6	1	1
	75700	1	1	1	35.6	35.6	4	27.6	1	1
	5313	2	1	1	35.6	35.6	4	27.6	1	1
	5314	2	1	1	35.6	35.6	4	27.6	1	1
	75712	1	1	1	35.6	35.6	4	27.6	1	1
	75713	1	1	1	35.6	35.6	4	27.6	1	1
	5316	2	1	1	35.6	35.6	4	27.6	1	1
	75689	1	1	1	35.6	35.6	4	27.6	1	1
	75703	1	1	1	35.6	35.6	4	27.6	1	1
	5317	2	1	1	35.6	35.6	4	27.6	1	1
	5318	2	1	1	35.6	35.6	4	27.6	1	1
	75702	1	1	1	35.6	35.6	4	27.6	1	1
	75719	1	1	1	35.6	35.6	4	27.6	1	1
	5323	2	1	1	35.6	35.6	4	27.6	1	1

5b. Evaluation Results: The buildings are assigned to their respective clusters based on the building data.

Clustering > Select Columns in Dataset > Results dataset					
rows 186545	columns 2				
	BuildingID	Assignments			
view as	L.L	III			
	5357	2			
	75709	1			
	75703	2			
	5314	2			
	28096	2			
	75715	1			
	75720	1			
	75719	2			
	75698	0			
	5329	2			
	5332	1			
	5322	1			
	5325	1			
	75698	2			
	75705	1			

5c. K means Clustering: Predictive Experiment

5d. We deploy the predictive experiment as a web service and enter inputs as part of the building data and the result is as shown below.

'Clustering [Predictive Exp.] - Final' test returned ["5313","2"]...
 Result: ("Results":("output1":("type":"table","value":("ColumnNames":("BuildingID","Assignments"),"ColumnTypes":("Int32","Nullable`1"),"Values":(["5313","2"])}}}

6. Hierarchical Clustering:

6a. Evaluation Results: The results produced by the Score Clusters by KNN lookup is as follows,

rows	columns
2484	6

	sta_code	BuildingID	meternumb	type	Normalised	Cluster Assignments
view as		Li		ıΤ		l
	1	5317	1	2	0.053275	3
	1	75690	1	1	1.885206	1
	1	5314	1	2	0.619608	3
	1	5313	1	2	0.995098	3
	1	5317	1	2	0.027413	3
	1	5314	1	2	0.719608	3
	1	5313	1	2	0.124118	3
	1	5304	1	2	0.027093	3
	1	5355	1	2	0.713545	3
	1	5314	1	2	0.643137	3
	1	75701	1	1	0.377546	1
	1	5317	1	2	0.013577	3
	1	5314	1	2	0.661111	3
	1	75705	1	1	0.100385	1

6b. We deploy the predictive experiment as a web service and enter inputs as part of the building data and the result is as shown below.

← 'Fit Hierarchical Clusters - test returned ["1","5313","1","1","0.063","3"]...

Result: "Results' ("output1"; "type": "table", "value"; "ColumnNames"; "sta_code", "BuildingID", "meternumb", "type", "Normalised", "Cluster Assignments", "ColumnTypes"; "Int32", "Int

Ankita Sriniketan Vignesh

Web Application:

Applications Used:

- Sublime Text 3 Text Editor (Mac)
- Postman Chrome Extension App (Mac)
- Terminal Command Prompt (Mac)

Languages:

- HTML
- JavaScript
- jQuery AJAX

Work Flow:

In ML Azure Studio,

Deploy Web Service in Azure ML Studio Get the API Key and URL link

We have created 3 Regression Models which are deployed as a single web service. The API key and URL generated are feed in to the jQuery – Ajax function in HTML Code to get back the JSON object from ML Studio.

Code Modules:

Points to Note:

- There are 4 HTML files (Prediction, Classification, K-means, Hierarchical Clustering).
- The functionality of all the 4 files remain the same.

CODE BREAKDOWN:

```
var textbox = document.getElementByClassName('a');
var singut = [];
for(var i=0;i+extbox.length;i+=){
    input.push(textbox[].value);
}
data.Inputs.inputl.Values = [input];
document.getElementById('output').innerHTML=JSON.stringify(data);

var settings = {
    "async": true,
    "crossDomain": true,
    "uru": "https://ussoutcentral.services.azureml.net/workspaces/a5d415105df14267a75151b4aca0b5df/services/e6b344524ad5483d86c752ff2d3f715b/
    execute7api-version=2.08details=true",
    "method": "POST",
    contentType: 'application/json',
    data: JSON.stringify(data),
    "headers": {
        "authorization': "Bearer Sid0040pgTujtCynAJMdFIsW0cnNyZCSqqsBE51n0Q+KBxeyh3HuWHW18/T/CSozbMgvxLvX6IHa4elrIztQw=",
        "content-type:: "application/json",
        "cache-control": "no-cache",
        "postman-token": "doc372f6-20fa-ad7f-fd03-a027a3948a4e"
    }
}

document.getElementById('progressBar').style.display="block";
    $.ajax(settings).done(function (response) {
        document.getElementById('progressBar').style.display="none";
        console.log(response);
        console.log(response);
```

In the above code,

■ var settings is the variable that is passed to the \$.ajax(settings).done(function(response){}

Setting async to false means that the statement you are calling should complete before the next statement in your function can be called. If you set async: true, then that statement will begin its execution and the next statement will be called regardless of whether the async statement has completed yet.

CrossDomain is set to true for server-side redirection to another domain.

URL: From ML Azure studio

Method: Post (Denotes that it's a Post API Request) which sends the content body (data) and content type: application / json.

Response variable gets back the JSON object after hitting the API.

The HTML body consists of all the Input we require from the user that should be passed on to the ML azure model to get back the result for Regression.

Error Handling is done on the text field to prevent the user from typing junk data and to instruct the user to input valid data to feed it into the model.

```
function isNumberKey(evt) {
    var charCode = (evt.which) ? evt.which : event.keyCode;
if (charCode == 46 && evt.srcElement.value.split('.').length>1) {
        return false;
    if (charCode != 46 && charCode > 31 && (charCode < 48 || charCode > 57))
        return false;
    return true;
}
function handleSta(input) {
    if (/\D/g.test(input.value)) input.value = input.value.replace(/\D/g,'')
    if (input.value < 1 || input.value > 2){
      alert("Input should be 1 or 2");
      input.value = "";
    }
  }
function handleEvents(input) {
  if (/\D/g.test(input.value)) input.value = input.value.replace(/\D/g,'')
    if (input.value < 1 || input.value > 8){
      alert("Input should be between 1-8");
      input.value = "";
    }
  }
function handleTime(input) {
  if (/\D/g.test(input.value)) input.value = input.value.replace(/\D/g,'')
    if (input.value < 0 || input.value > 23){
      alert("Input should be between 0-23");
      input.value = "";
    }
```

For Date Field Validation (Instructing user to use the right format and the Year being 2013) ---OPTIONAL

```
// DATE VALIDATION in Date Text Field
     var date_{regex} = /^{0[1-9]|1[0-2]}/(0[1-9]|1\d|2\d|3[01])/(19|20)\d{2};
     var datestring = document.getElementsByName('Date')[0]
     if(!(date_regex.test(datestring.value)))
            console.log(datestring.value)
            alert("Date should be of format mm/dd/yyyy");
            datestring.value = "";
            return false;
    var parts = datestring.value.split("/");
     var day = parseInt(parts[1], 10);
     var month = parseInt(parts[0], 10);
     var year = parseInt(parts[2], 10);
     console.log(year);
     if(year != "2013"){
            alert("The year should be 2013");
            datestring.value = "";
             return false;
     }
 script
src="https://code.jquery.com/jquery-3.1.1.js"
integrity="sha256-16cdPddA6VdVInumRGo6IbivbERE8p7CQR3HzTBuELA="
crossorigin="anonymous"></script>
<script src="http://cdn.jsdelivr.net/jquery.validation/1.15.0/jquery.validate.min.js"></script>
<script src="http://cdn.jsdelivr.net/jquery.validation/1.15.0/additional-methods.min.js"></script>
<script src="http://cdn.jsdelivr.net/jquery.validation/1.15.0/additional-methods.min.js"></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></sc
<style>
.hidden1{
   display: none;
  input:invalid {
   border: 1px solid red;
 input:valid {
  border: 1px solid green;
/style>
<script type="text/javascript" >
 function predictionRegression()
        r data = {
"inputs": {
    "inputs": {
    "ColumnNames": ["TemperatureF", "Dew.PointF", "VisibilityMPH", "Wind.SpeedMPH", "Events", "sta_code", "Date", "meternumb-1", "meternumb-2", "
    meternumb-3", "meternumb-4", "meternumb-8", "Time"],
    "Values": [[]]
       },
"GlobalParameters": {}
```

PredictionRegression() – Function that contains the data that gets passed to the ML Azure Models.

OUTPUT SNIPPETS:

PREDICTION:

Assignment 3 - TEAM 8

Please select the model you want to run

Regression
Temperature (F): 35.6
Dew Point (F): 35.6
Visibility (MPH): 3.1
Wind Speed (MPH): 11.5
Events: 4
Sta code: 1
Date: 11/02/2013
Meternumb-1: •
Meternumb-2:
Meternumb-3:
Meternumb-4:
Meternumb-8:
Time: 1
Predict!

Linear Regression (KwH/sq.m): 0.0500957071781158

Neural Network: 0.0549196600914001

Random Forest: 0.0319630321360814

The code takes in the input and returns the three Regression models containing the dependent variable (Normalized Consumption/sq.m) for the input feed.

CLASSIFICATION:

Assignment 3 - TEAM 8

Loading...

 $\label{lem:power} $$ {"Inputs": {"ColumnNames": ["TemperatureF", "Dew.PointF", "VisibilityMPH", "Wind.SpeedMPH", "Events", "sta_code", "month", "type", "Weekday", "Peakhour"], "Values": [["11.5", "11.5", "2.2", "12.5", "1", "1", "1", "1", "1", "0"]]}}, "GlobalParameters": {}$

The Loading ... indicates that the HTML code is passing the parameters to the web URL to get the results back.

Clustering output:

Assignment 3 - TEAM 8

Please select the model you want to run

Classification
Temperature (F): 11.5
Dew Point (F): 11.5
Visibility (MPH): 2.2
Wind Speed (MPH): 12.5
Events: 1
Sta code: 1
Month: 1
Type: 1
Weekday: 1
Peakhour: 0
Classification!

Linear Regression: 0

Neural Network: 1

Random Forest: 0

As accuracy of none of the model is 100%, there will be few times when the output of all three will not be same. So, depending on AUC (area under the curve), Neural Network will be accurate most of the times.

K-Means Clustering OUTPUT:

Assignment 3 - TEAM 8

Please select the model you want to run

Kmeans
Temperature (F): 35.6
Dew Point (F): 35.6
GustSpeed (MPH): 27.6
Events: 4
Sta code: 1
Day: 1
Month: 1
BuildingID: 5311
MeterNumber: 1
Type: 2
K-meansCluster

K-meansCluster Assignment: 2

Depending on the input, it will assign the Buildings to the respective clusters based on the building data entered.

Hierarchical Cluster Output:

Assignment 3 - TEAM 8

Please select the model you want to run

Hierarchical Cluster	
Sta code: 1	
BuildingID: 5317	
MeterNumber: 1	
Type: 2	
Normalised(Base Hour Usa	age): 0.053275
H_Cluster!	

Cluster Assignment: 3

Team Contribution:

Ankita – Regression Models & Web service Deployment

Sriniketan – Classification & Clustering Models

Vignesh – Web application development