PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

JUNIO - 2004

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

- 1°) Sea la función $f(x) = 2e^{-2|x|}$.
- a) Estudiar su monotonía, extremos relativos y asíntotas.
- b) Calcular el área de la región plana comprendida entre la gráfica de la función y las rectas x=1 y x=-1.
- 2°) Sea la recta $r = \begin{cases} x + y + 1 = 0 \\ 2x z + 3 = 0 \end{cases}$.
- a) Expresar la recta r por unas ecuaciones paramétricas.
- b) Para cada punto P de r, determinar la ecuación de la recta que pasa por P y corta perpendicularmente al eje OZ.

CUESTIONES

1^a) De todas las primitivas de la función $f(x) = 2 tag \ x \cdot \sec^2 x$, hallar la que pasa por el punto $P(\frac{\pi}{4}, 1)$.

2^a) Demostrar que las gráficas de las funciones $f(x) = e^x$ y $g(x) = \frac{1}{x}$ se cortan en un punto x > 0.

 3^a) Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C_1 , C_2 y C_3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son $-C_2$, $C_2 + C_3$, $3C_1$. Calcular razonadamente el determinante de A^{-1} en caso de que exista esa matriz.

4^a) Determinar se el plano $\pi = 2x + 3y - 4 = 0$ corta o no al segmento de extremos A(2, 1, 3) y B(3, 2, 1).

PRUEBA B

PROBLEMAS

- 1°) Se considera el sistema: $\begin{cases} x + y + z = \lambda \\ x + y + \lambda z = 1. \\ x + \lambda y + z = 1 \end{cases}$
- a) Discutir el sistema, según los valores de λ .
- b) Resolver el sistema para $\lambda = -3$.
- c) Resolverlo para $\lambda = 1$.
- 2°) Sea $f(x) = x^3 + ax^2 + bx + c$. Determinar a, b y c de modo que f(x) tenga un extremo relativo en x = 0, la recta tangente a la gráfica de f(x) en x = 1 sea paralele a la recta r de ecuación r = y 4x = 0, y el área comprendida por la gráfica de f(x), el eje OX y las rectas x = 0, x = 1, sea igual a 1.

CUESTIONES

- 1^a) Calcular $\lim_{x \to 0} \left(\frac{1}{x} \frac{1}{sen \ x} \right)$.
- 2^a) Calcular $\int \frac{(x-1)^2}{\sqrt{x}} \cdot dx$.
- 3^a) Hallar la ecuación del plano π' que contiene a la recta $r \equiv x = y = z$ y es perpendicular al plano $\pi \equiv x + y z 1 = 0$.
- 4^a) Dada la matriz $B = \frac{1}{3} \cdot \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, hallar una matriz X tal que: $X \cdot B + B = B^{-1}$.
