

Escola de Ciências

Departamento de Matemática

Teste 2 B :: 11 de janeiro de 2021

Nome (Personata de coerce cas Número ı

As respostas às questões deste grupo devem ser convenientemente justificadas.

Questão 1. [3 valores] Considere a função
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = \begin{cases} \frac{\ln(1-x)}{1-x} + 2, & \text{se } x \leq 0 \\ \cos(2x) + 1, & \text{se } x > 0 \end{cases}$

Determine o conjunto dos pontos onde f é derivável, indicando o valor da derivada nesses pontos.

f e'desiravel em]-00,0[e em]0,+00[pre see obtide pre

posição, quociente e some de funcion derivaveis.

$$f'(0^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\ln(\frac{1-x}{2})}{x - 0} + \frac{2-2}{x} = \lim_{x \to 0^{-}} \frac{\ln(\frac{1-x}{2})}{x - 0} = 0$$

$$f'(0^{+}) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(61(2x) + 1 - 2)}{x} - \frac{2}{0} \quad \text{(poe aplicación de Rogramination de l'Hôpitel a indetermination de l'Hôpitel a inde$$

$$e \times (0, f'(x) = \frac{-1}{1-x}(1-x) - Qn(1-x)(-1)}{(1-x)^2} = \frac{-1 + Qn(1-x)}{(1-x)^2}$$

Questão 2. [2 valores] Considere função $f(x) = x^2 + e^{x^2} - 1$.

- a) Verifique que f(0) = 0.
- b) Mostre que a função f não tem mais zeros.

- · se x<0, f'axo e f e'esteitamente decesseente em]-00,0[
- · se x>0, f'(x)>0 e f e'estritamente cercante em]0,+00[(Soppos)

$$\lim_{x\to 0} \frac{\cot x - \cot (x^2)}{x^2} = \lim_{x\to 0} \frac{-\tan x - 2x \sin (x^2)}{3x}$$

$$= \lim_{x\to 0} \frac{\cot x - 2x \sin (x^2) - 4x^2 \cot (x^2)}{3x} = -\frac{1}{2}, \text{ Endo opticalo}$$

$$\lim_{x\to 0} \frac{\cot x - 2x \sin (x^2)}{2x} = -\frac{1}{2}, \text{ Endo opticalo}$$

$$\lim_{x\to 0} \frac{\cot x - 2x \sin (x^2)}{2x} = -\frac{1}{2}, \text{ Endo opticalo}$$

$$\lim_{x\to 0} \frac{\cot x}{\sqrt{1-x^2}} = \frac{1}{2}, \text{ Endo opticalo}$$

$$\lim_{x\to 0} \frac{\cot x}{\sqrt{1-x^2}} = \frac{1}{2}, \text{ Endo opticalo}$$

$$\lim_{x\to 0} \frac{1}{\sqrt{1-x^2}} = \frac{1}{2}, \text{ Endo opticalo}$$

Questão 3. [2,5 valores] Calcule $\lim_{x\to 0} \frac{\cos x - \cos(x^2)}{x^2}$.

d) Sabendo que o valor da área da região sombreada na figura é $\frac{3\pi}{2}+1$, determine o valor de $\int_{-\pi}^{2}f(x)\,dx$.

(Caso necessite e não saiba calcular
$$f(-3)$$
, pode usar $f(-3) = \frac{1}{5}$.)

• $\pi < 0$ = $\pi \times 1 = 0$ ($\implies \pi = -2 \times 2 = 0$ | • $\pi = -2$

Ш

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira.

Não deve apresentar qualquer justificação. Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

Questão 1. Seja $f:[-1,1] \to \mathbb{R}$ uma função derivável tal que f(-1)=f(1)=-1 e $f(\frac{1}{2})=0$. Então:

- f' nunca se anula;
 - f' tem pelo menos um zero; f' tem um zero à esquerda de $\frac{1}{2}$ e outro à sua direita;

f não tem mínimo nem máximo;

f é crescente em]-1,0[e decrescente em]0,1[.

- Questão 2. Seja $f:[0,1] \to \mathbb{R}$ uma função derivável cuja derivada nunca se anula. Então:
- f é monótona: $f(x) \neq 0, \forall x \in [0, 1]$:
- Questão 3. Seja $f:[0,1] \to \mathbb{R}$ uma função contínua não negativa e seja F uma sua primitiva. Então:

∫ f' é derivável.

- - F é crescente:
 - F admite pelo menos um ponto de descontinuidade:
 - F verifica a designaldade $F(x) \ge f(x)$, para todo o $x \in [0,1]$.
- Questão 4. O integral $\int \frac{8}{x(x^2-4)} \frac{8}{8x} dx$ é igual a:
 - $\bigcirc \int \frac{8}{x} dx \int \frac{1}{x^2 4} dx;$ $\oint \int \frac{1}{x+2} dx + \int \frac{1}{x-2} dx - \int \frac{2}{x} dx;$ $\int \frac{1}{x+2} dx + \int \frac{1}{x-2} dx + \int \frac{1}{x} dx;$ nenhuma das anteriores.
- Questão 5. Seja $f:[0,2] \to \mathbb{R}$ tal que $f(x) = \begin{cases} 0, & x \in [0,2] \setminus \{1\} \\ 1, & x = 1 \end{cases}$. Então:
 - $\int_{0}^{2} f(x) dx < \int_{0}^{2} f(x) dx;$
 - $\int_{-\infty}^{\infty} f(x) dx > 0;$
 - existe uma partição P do intervalo [0,2] tal que S(f,P)=0;

 - qualquer que seja a partição P do intervalo [0,2], s(f,P)=0.