STK-INF3000/4000 WEEK 11 ENSEMBLE METHODS

FIELD TRIP: REGRESSION ALGORITHMS FOR ANOMALY DETECTION IN TIME SERIES DATA

TIME SERIES DATA

- ullet Given $x_i=x(t_i), i=1,\ldots,n.$
 - Quantities measured at a given time.
 - E.g. number of users.
 - Bike trips taken.
- Want to predict an $x(t_i)$ in the future.
- ullet Assume that t_i are periodic and equidistant.

AUTO-REGRESSIVE MODELS

• Fit

$$\hat{x}(t)pprox\hat{f}\left(x(t)
ight)=\hat{f}\left(x(t-\Delta_1),\ldots,x(t-\Delta_p)
ight)$$

for chosen shifts Δ_k .

- Need to take into account periodicity in data.
 - \circ E.g. $\Delta_1=1~ ext{day}$, $\Delta_2=1~ ext{week}$.

DETECTING ANOMALIES

- ullet Predict values using \hat{f} , compare to actuals.
- ullet Let $\delta_i = \hat{f}\left(x(t_i)
 ight) x(t_i)$.
 - \circ For an unbiased model, should have $\mathrm{E}[\delta]=0$.
- ullet Let $\sigma = \sqrt{rac{1}{N_t} \sum_i (\delta_i \hat{\delta})^2}$.
- ullet Let $z_i=\delta_i/\sigma$.
- ullet Flag data points as anomalous if $z_i>z_{
 m max}$.

ENSEMBLE METHODS

GOALS

- Reduce over-fitting and increase accuracy by using multiple models.
 - Reduce variance.
 - Possibly increase bias.
- Most commonly used:
 - Boosting.
 - o Bagging.

BOOSTING

ADDITIVE MODELS

Instead of using one complex predictor, use many instances of a very basic one b (e.g. a tree with one split).

$$f(x) = \sum_{m=1}^M eta_m b(x; \gamma_m)$$

The parameters are given by

$$\min_{eta,\gamma} \sum_{i=1}^N L\left(y_i,\sum_{m=1}^M eta_m b(x;\gamma_m)
ight).$$

FORWARD STEPWISE ADDITIVE MODELING

- 1. Set $f_0 \equiv 0$.
- 2. For m = 1, ..., M
 - Set

$$(eta_m, \gamma_m) = rgmin_{eta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + eta b(x_i; \gamma)).$$

Set

$$f_m(x) = f_{m-1}(x) + eta_m b(x; \gamma_m).$$

3. Return f_m .

FSAM AND SQUARE ERROR LOSS

For square error loss, we fit in each step to the residuals of the previous step.

$$egin{aligned} L\left(y_{i}, f_{m-1}(x_{i}) + eta b(x_{i}; \gamma)
ight) &= \left[y_{i} - f_{m-1}(x_{i}) - eta b(x_{i}, \gamma)
ight]^{2} \ &= \left[r_{im} - eta b(x_{i}, \gamma)
ight]^{2} \end{aligned}$$

ADABOOST

Using

$$L(y, f(x)) = \exp(-yf(x))$$

for targets $y \in \{-1, 1\}$, gives raise to the AdaBoost algorithm.

ADABOOST

- 1. Initialize $w_i=1/N,\ i=1,\ldots,N$.
- 2. For m = 1, ..., M
 - \circ Fit classifier $b_m(x)$ to data with weights w_i .
 - Set

$$e_m = rac{\sum_i w_i I(y_i
eq b_m(x_i))}{\sum_i w_i}.$$

- \circ Set $lpha_m = \log((1-e_m)/e_m)$.
- \circ Set $w_i \leftarrow w_i \exp[lpha_m I(y_i
 eq b_m(x_i))]$.
- 3. Return $f(x) = \mathrm{sign} \Big[\sum_{m=1}^{M} lpha_m b_m(x) \Big]$.

This can be adapted to regression as well.

GENERATED DATA

- Taken from Elements of Statistical Learning.
- X_1, \ldots, X_{10} standard Gaussians.

•
$$Y = \begin{cases} 1 & \text{if } \sum_{j} X_{j}^{2} > 9.34 = \chi_{10}^{2}(0.5) \\ -1 & \text{else} \end{cases}$$

• 2k training cases, 10k test cases.

SINGLE TREE ON GENERATED DATA

ADABOOST ON GENERATED DATA

MORE ON LOSS FUNCTIONS

- Let's compare some loss functions for classification.
- We'll classify to sign(f).
- Misclassification: $I(\operatorname{sign}(f) \neq y)$.
- Exponential: $\exp(-yf)$.
- Binomial: $\log(1+\exp(-2fy))$.
- Squared error: $(y-f)^2$.

LOSS FUNCTIONS FOR CLASSIFICATION

COMMON LOSS FUNCTIONS FOR REGRESSION

- Squared error, $(f(x) y)^2$.
- Absolute error, |f(x)-y|.
- Huber loss,

$$L(f(x),y) = egin{cases} (y-f(x))^2 & ext{if } |y-f(x)| \leq \delta \ 2\delta |y-f(x)| - \delta^2 & ext{else}. \end{cases}$$

LOSS FUNCTIONS FOR REGRESSION

THE IDEAL LOSS FUNCTION

- Robust against outliers.
- Numerically easy.
- Not 'deteriorate'.

THE NEED FOR GRADIENTS.

AdaBoost works great, but we'd like to plug in arbitrary loss functions. This seems like a hard task looking at

$$\min_{eta,\gamma} \sum_{i=1}^N L\left(y_i,\sum_{m=1}^M eta_m b(x;\gamma_m)
ight).$$

GRADIENT BOOSTING.

Using a tree T as our basic model, we build up our model as

$$f_M(x) = \sum_{m=1}^M T(x;\gamma_m),$$

where $\gamma_m=\{R_j,c_j\}$ defines the *regions* R of the terminal nodes and c_j their predictions. We want to find

$$\hat{\gamma}_m = \operatornamewithlimits{agrmin}_{\gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + T(x; \gamma)).$$

MINIMIZATION

In each step, we want to minimize

$$L(f) = \sum_{i=1}^N L(y_i, f(x_i))$$

in order to find

$$\hat{\mathbf{f}} = \operatorname*{argmin}_{\mathbf{f}} L(f).$$

This can be thought of as point-wise optimization.

GRADIENT DESCENT

In order to optimize a multi-valued function, gradient descent constructs a stepwise solution

$$\mathbf{f}_{M}=\sum_{i=1}^{M}\mathbf{h}_{m},$$

with

$$egin{align} h_{im} &= -lpha_m g_{im} = -lpha_m \left. rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight|_{f(x_i) = f_{m-1}(x_i)}, \ lpha_m &= rgmin_lpha L(\mathbf{f}_{m-1} - lpha \mathbf{g}_m). \end{aligned}$$

$$f(x_1,x_2) = \sin(x_1^2\,x_2)\cos(2\,x_1\,x_2^2)$$

GRADIENT BOOSTED TREES.

Now use trees to fit at each step

$$\hat{\gamma}_m = rgmin_{\gamma} \sum_{i=1}^N (-g_{im} - T(x_i; \gamma))^2$$

and construct the final model

$$f_M(x) = \sum_{m=1}^M T(x; \hat{\gamma}_m).$$

REGULARIZATION

In addition to tuning M, one can introduce a parameter ν and set

$$f_m(x)=f_{m-1}(x)+
u\sum_{j=1}^J\gamma_{jm}I(x\in R_{jm})$$

.

The number ν is often called the *learning rate*.

QUESTIONS?