Practical no: 8

Title: Write an application using Raspberry-Pi /Beagle board to control the operation of a hardware simulated traffic signal.

Name: Aditi Dinesh Mulay

Class: T.E. Computer

Subject: ES&IOT

Div: A

Roll no: 02

PRN No. 71918146B

Before powering up the Pi, attach the traffic lights so that the pins connect to the GPIO pins highlighted in red: $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

-0.000000000000000000000000000000000000	
	FSIOT Practical 8 Roll no: 02
orex substitute	Aim Write an application using Raspberry - Pi / Breagle board to control the operation of a hardware simulated traffic signal.
	Theory
0	Attaching the Fraffic Lights.
"O. 1	The low voltage Labs Traffic Lights connect to Pi using 4 pins. One of these needs to be ground, the other three being actual GPFO pins used to control each of individual LFDs.
0	Before providing up the Pi, attach the traffic lights so that the pins connect to the CIPIO pins highlighted in red:
	Programming the Traffic lights
	First you need to download my sample code, & to give Bython access to the GPIO pins on Pi: Enter following at command line:
	sudo apt-get install python-dev python-rpi.
1	tow it works.
	The code for this is very simple. It starts by apporting the Rpi GPIO library, pluls time which gives
	The which gives

us a timed wait function, signal that allows us to trap the signal sent when the user tries to quit the program and system so we can send an appropriate exit signal back to 0.3 before terminating. import RPI.GPIO as GPO Pomport time import signal import sys. Next we put GPIO library into "BCM" or "Broadcam" mode and sets pins 9,10,11. to be used as ofp: # setup GPIO. setmode (GPIO. BCM) GPIO. Setup (9, GPIO.OUT) GPIO. Setup (10, GPIO.OUT) GPJO. Setup (11, GPJO.OUT) The main part of prg. will run in an infinite loop until the user exists it by stopping Python with control It's a good idea to add a handler function that will run whenever this happens, so that we can turn off all the lights prior to existing:

	do demo
	# Turn off all lights when user ends demo
	(-OTO OUTDUL CITIES
	(A) ID, Output (10, Faise)
D112 10	GPIO. output (11, False)
	GPIO. cleanup()
	2
	signal signal (signal SIGHT, all lights OFF)
0	
N.P.	The main body of the code then consists of
-	i Ci il a land TOOT LUITO OI als
	1. II Le turns on the direct tight
	Har Outles though the rest of training
	astern by turning the appropriate LEDS on gott.
	When contri-c pressed an interrupt signal SIGHT
	is sent. This is handled by all the kights Off function
	that switches all the Lights off, tidies up the GPIO
	library state & exists cleanly back to the o.s.
0	THOTALY STATE & CALOUS CICARITY SACTIONS
	Conclusion -
	Correlation
	Thus, we have implemented the application for
	traffic signals using Raspberry Pi
	craffic orginals asing ixas poerry pr