Hypertension Risk Classification — Deep Neural Network Summary

৵ Objective

This project developed a deep feed-forward binary classifier in PyTorch to predict whether a patient developed hypertension within a 24-month observation window. The total dataset contained 60,000 simulated human patients that were matched with appropriate measures for individual and community confounding. The pretraining split used class-stratified sampling to assign 37,500 patients to the training dataset; 11,250 patients to the validation dataset; and 11,250 patients to the testing dataset. Each input vector is cross-sectional, with no temporal sequence.

Model Architecture

The model architecture is defined by a dynamic PyTorch class DynamicBinaryClassifier, which flexibly builds a stack of hidden layers using:

- He (Kaiming) initialization
- LeakyReLU activations
- Batch normalization
- Dropout regularization
- Output layer: raw logits (BCEWithLogitsLoss used)
- Early Stopping: patience 15 | MinDelta (val loss) 0.001 | Reset Weights

Architecture Calibration

We conducted a full grid search over combinations of:

- Hidden layers: 2, 3, 4
- Hidden units per layer: 64, 128, 256, 512, 1024
- Dropout rates: 0.2, 0.3
- Batch sizes: 128, 256, 512, 1024, 2048

Best performant model was determined according to:

 Best ROC AUC Model (defined by the mean ROC AUC value of the five epochs prior to early stop)

Optimal Architecture: 4 Dense Layers | 64 Units | Batch Size 265 | Dropout 0.30

Training Curves

Loss

Accuracy

Precision

ROC AUC

Network Test Evaluation — Best ROC AUC Model

Final performance of the optimized neural net model was evaluated on a held-out test dataset (n=11,250 observations). Below are the evaluation curves:

ROC AUC of Optimized Model

PR AUC of Optimized Model

in Neural Net vs. Logistic Regression

The final ROC AUC score for the neural network model was **0.6779**, compared to **0.6767** for logistic regression. Similarly, the PR AUC was **0.7543** for the neural net and **0.7524** for logistic regression.

ROC Curve Comparison

Optimized Neural Net

Logistic Regression

Precision-Recall Curve Comparison

Optimized Neural Net

Logistic Regression

Report Timestamp: 20250412_034446

Report generated automatically using PyTorch experiment logs.