Einführung in die Grundlagen der Numerik (WS 22/23)

Manuel Hinz

10. November 2022

Inhaltsverzeichnis

1	Ort	hogonalität	3
	1.1	Grundlegende Definitionen	3
	1.2	Bestapproximationseigenschaft	
	1.3		
2	Das	lineare Ausgleichsproblem	7
	2.1	Problemstellung und Normalengleichung	7
	2.2	Methode der Orthogonalisierung	
	2.3	Grundüberlegungen zu Orthogonalisierungsverfahren	
	2.4	QR-Zerlegung mittels Givens-Rotationen	
	2.5	QR-Zerlegung mittels Householder-Transformationen	
	2.6	Pseudoinverse	
3	Iter	ative Verfahren für große, dünn besetzte, Gleichungsysteme	18
	3.1	Motivation	18
	3.2	Grundidee von Projektionsmethoden	
	3.3	Verfahren des steilsten Abstiegs	
	3.4	Krylovräume	
	3.5	Arnoldi-Verfahren	
	3.6	Verfahren der vollständigen Orthogonalisierung	
	3.7	Das GMRES-Verfahren	
	3.8	Der symmetrische Lanczos-Prozess	
	J. O	Det by infine tribente transcribe 1 to 205 1	4C

Vorwort

Diese Mitschrift von der Vorlesung Einführung in die Grundlagen der Numerik (Dölz,WS 2022/2023) wird von mir neben der Vorlesung geschrieben und ist dementsprechend Fehleranfällig. Fehler gerne an mh@mssh.dev!

Kapitel 1

Orthogonalität

1.1 Grundlegende Definitionen

Definition 1.1. Sei X ein \mathbb{R} Vektorraum und $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ eine Abbildung. $\langle \cdot, \cdot \rangle$ heißt **Skalarprodukt** oder inneres Produkt, falls

$$\forall f \in X \setminus 0 : \langle f, f \rangle > 0$$
 (Positiviät)

$$\forall f, g \in X : \langle f, g \rangle = \langle g, f \rangle$$
 (Symmetrie)

$$\forall \alpha, \beta \in \mathbb{R}, f, g, h \in X : \langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$$
 (Linearität im ersten Argument)

Bemerkung 1.2. Symmetrie und Linearität im ersten Argument implizieren, dass $\langle \cdot, \cdot \rangle$ eine bilineare Abbildung ist.

Definition 1.3. Sei X ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Wir bezeichnen die zugehörige **Norm** (in Abhänigkeit von einem Vektor $f \in X$) mit

$$||f|| = \sqrt{\langle f, f \rangle}.$$

Lemma 1.4. Sei X ein \mathbb{R} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann gil die Cauchy-Schwarz-Ungleichung:

$$\forall f, g \in X : \langle f, g \rangle \le ||f|| \cdot ||g|| \tag{C.S.}$$

mit Gleichheit genau dann, wenn f und g linear abhängig sind.

Beweis. O.B.d.A. $f, g \neq 0$, da sonst offensichtlich Gleichheit gilt. Sei $\alpha \neq 0$, dann gilt mit $f, g \in X$ und $\alpha \in \mathbb{R}$:

$$0 \le \|f - \alpha g\|^2 = \langle f - \alpha g, f - \alpha g \rangle = \|f\|^2 - 2\alpha \langle f, g \rangle + \alpha^2 \|g\|^2$$

Wählen wir jetzt $\alpha = \frac{\langle f, g \rangle}{\|g\|^2}$ folgt:

$$0 \le ||f||^2 - \frac{2\langle f, g \rangle^2}{||g||^2} + \frac{\langle f, g \rangle^2}{||g||^2}$$
$$\implies \langle f, g \rangle^2 \le ||f||^2 \cdot ||g||^2.$$

Eingefügte Bemerkung. Rechnung zur Begründung von $\langle f - \alpha g, f - \alpha g \rangle = ||f||^2 - 2||\alpha \langle f, g \rangle + \alpha^2 ||g||^2$:

$$\begin{aligned} &\langle f - \alpha g, f - \alpha g \rangle \\ &= \langle f, f - \alpha g \rangle - \alpha \langle g, f - \alpha g \rangle \\ &= \langle f, f \rangle - \alpha \langle f, g \rangle - \alpha \langle g, f \rangle + \alpha^2 \langle g, g \rangle \\ &= \|f\|^2 - 2\|\alpha \langle f, g \rangle + \alpha^2 \|g\|^2 \end{aligned}$$

Beispiel 1.5. 1. $X = \mathbb{R}^n$ und $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$ (Euklidisches Skalarprodukt)

2. $X = \mathbb{R}^n$, $\langle x, y \rangle = x^{\perp}Ay$, wobei A positiv definit und symmetrisch ist

3. $I = [a, b], w : I \to \mathbb{R}$ beschränkt und strikt positiv:

$$X = \left\{ f: I \to \mathbb{R}: \int_a^b f(x)^2 w(t) dt < \infty \right\} = L^2(I, w)$$

mit

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)w(t)dt$$

Eingefügte Bemerkung. Die Definition von $L^2(I, w)$ ist hier nicht ganz richtig, man müsste natürlich noch Äquivalenzklassen, bzgl. Gleichheit bis auf Nullmengen, bilden. Dies wird hier, da Analysis 3 / Wtheo. nicht nicht vorrausgesetzt wird, ignoriert.

Definition 1.6. Sei X ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$. $f, g \in X$ heißen **orthogonal**, falls $\langle f, g \rangle = 0$.

Bemerkung 1.7. Im \mathbb{R}^n mit dem euklidischen Skalarprodukt stimmt Definition 1.6, wegen

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta), \theta = \angle(x, y),$$

mit unserem bisherigen Verständnis überein.

1.2 Bestapproximationseigenschaft

Definition 1.8. Sei V ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und U ein Unterraum.

$$U^{\perp} = \{ v \in V : \langle v, u \rangle = 0, \forall u \in U \}$$

 $hei\beta t \ das \ orthogonale \ Komplement \ von \ U.$

Satz 1.9. Unter den Annahmen von Definition 1.8 und der zusätzlichen Annahme, dass U endlich dimensional ist, gilt folgendes für $v \in V$:

$$||v-u|| = \min_{w \in U} ||v-w||$$

genau dann, wenn $v - u \in U^{\perp}$.

Beispiel 1.10. $V = \mathbb{R}^2$, $U = span\left\{\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$ mit euklidischem Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann ist $U^{\perp} = span\left\{\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right\}$.

Abbildung 1.1: U und U^{\perp}

Beweis von Satz 1.9. Sei $v \in V$ und seien $u, w \in U$. Dann gilt:

$$||v - w||^2 = \langle v - w, v - w \rangle = \langle (v - u) + (u - w), (v - u) + (u - w) \rangle$$
$$= ||v - u||^2 + 2\langle v - u, \underbrace{u - w}_{\in U} \rangle + ||u - w||^2 \ge ||v - u||^2$$

mit Gleichheit genau dann, wenn w - u = 0 (da dann der ||u - w|| Term verschwindet).

Bemerkung 1.11. Der Satz sagt, dass es zu jedem $v \in V$ ein eindeutiges, bestmögliches $u \in U$ gibt.

Definition 1.12. Die Lösung aus Satz 1.9 heißt orthogonale Projektion von v auf U. Die Abbildung

$$P: V \rightarrow U, v \mapsto P(v)$$
 mit $||v - Pv|| = \min_{w \in U} ||v - w||$

ist linear und wird orthogonale Projektion genannt.

Eingefügte Bemerkung (Beweis der Linearität). Für $v_1, v_2 \in V$ und $\alpha \in \mathbb{R}$ gilt:

$$v_1 - Pv_1 \in U^{\perp}$$
$$v_2 - Pv_2 \in U^{\perp}$$

Daher

$$\alpha(v_1 - Pv_1) + (v_2 - Pv_2) = (\alpha v_1 + v_2) - (\alpha Pv_1 + Pv_2) \in U^{\perp}.$$

Aber dann muss $\alpha Pv_1 + Pv_2$ schon, wegen der Eindeutigkeit, $P(\alpha v_1 + v_2)$ sein.

Bemerkung 1.13. Satz 1.9 gilt auch, wenn U durch $W = w_0 + U$ ersetzt wird. Die orthogonale Projektion ist analog definiert.

Frage: Die Orthogonale Projektion hat offenbar gute Eigenschaften. Aber: wie berechnen wir sie? Wie wählen $\overline{\text{wir }U?}$

- Berechnung ist leicht
- U wählen schwierig

1.3 Orthonormalbasen

Definition 1.14. Sei X ein \mathbb{R} -VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und $X_n \subset X$ ein endlich dimensionaler Teilraum mit Basis $\{\varphi_1, \ldots, \varphi_n\}$. Die Basis heißt **Orthogonalbasis**, falls

$$\forall i \neq j : \langle \varphi_i, \varphi_i \rangle = 0$$

gilt und Orthonormalbasis (ONB), falls zusätzlich $\|\varphi_i\| = 1$ gilt. Das impliziert:

$$\langle \varphi_i, \varphi_j \rangle = \delta_{i,j}.$$

Beispiel 1.15. 1. \mathbb{R}^n mit euklidischem Skalarprodukt und kanonischer Basis

2. $X = L^2(I, 1)$ mit entsprechendem Skalarprodukt und X_n der Raum der trigonometrischen Polynome bis Grad n. Dann ist folgendes eine ONB:

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin(x)}{\sqrt{\pi}}, \frac{\cos(x)}{\sqrt{\pi}}, \dots, \frac{\sin(nx)}{\sqrt{\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}\right\}$$

Eingefügte Bemerkung. Trigonometrische Polynome sind Funktionen der Form

$$f(t) = \sum_{k=1}^{n} a_k \cos(kx) + b_k \sin(kx).$$

Die größte Faktor vor dem x ist der Grad eine trigonometrischen Polynoms.

Satz 1.16. Sei $\{\varphi_1, \ldots, \varphi_n\}$ eine ONB von $X_n \subset X$. Dann gilt

1.
$$f = \sum_{i=1}^{n} \langle \varphi_i, f \rangle \varphi_i$$

2.
$$||f||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2$$

3. Die orthogonale Projektion f_n von $f \in X \setminus X_n$ ist gegeben durch

$$f_n = \sum_{i=1}^n \langle \varphi_i, f \rangle \varphi_i$$

4. im Fall von 3.:

$$||f_n||^2 = \sum_{i=1}^n \langle \varphi_i, f \rangle^2 \le ||f||$$

Beweis. 1.:

$$f \in X_n \implies \exists \alpha_i \in \mathbb{R} : f = \sum_{i=1}^n \alpha_i \varphi_i$$

$$\implies \langle \varphi_i, f \rangle = \langle \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{j=1}^n \alpha_j \langle \varphi_i, \varphi_j \rangle = \alpha_i$$

2.:

$$||f||^2 = \langle f, f \rangle$$

$$= \langle \sum_{i=1}^n \alpha_i \varphi_i, \sum_{j=1}^n \alpha_j \varphi_j \rangle = \sum_{i,j=1}^n \alpha_i \alpha_j \delta_{i,j} = \sum_{i=1}^n \alpha_i^2$$

3.:

$$f \in X \setminus X_n$$
:

$$\|f - \underbrace{\tilde{f}_n}_{\in X_n}\| = \langle f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i, f - \sum_{i=1}^n \tilde{\alpha}_i \varphi_i \rangle$$

$$= \|f\|^2 - 2 \sum_{i=1}^n \tilde{\alpha}_i \underbrace{\langle \varphi_i, f \rangle}_{=:\alpha_i} + \sum_{i,j=1}^n \alpha_i \alpha_j \langle \varphi_i, \varphi_j \rangle$$

$$= \|f\|^2 - \sum_{i=1}^n \tilde{\alpha}_i \alpha_i + \sum_{i=1}^n \tilde{\alpha}_i^2 \xrightarrow{\text{Quadratische Ergänzung}}_{=:\alpha_i} \|f\|^2 - \sum_{i=1}^n \alpha_i^2 + \sum_{i=1}^n \underbrace{(\alpha_i - \tilde{\alpha}_i)^2}_{>0}$$

$$(1.1)$$

Dies wird minimiert, wenn $\tilde{\alpha}_i = \alpha_i$ ist.

4.:

 $f \in X_n$ wurde in 2. gezeigt. Sonst:

$$f \notin x_n \implies \min \alpha_i = \tilde{\alpha}_i \text{ in } (1.1):$$

$$0 \le ||f - f_n||^2 = ||f||^2 - \sum_{i=1}^n \underbrace{\alpha_i^2}_{\langle \varphi_i, f \rangle^2}$$

Es folgt die Behauptung.

Vorteile von Orthogonalität:

- Bestapproximation
- Einfache Basisdarstellung

Ende von Vorlesung 01 am 11.10.2022

Kapitel 2

Das lineare Ausgleichsproblem

2.1 Problemstellung und Normalengleichung

Gegeben seien Punkte $(t_i, b_i) \in \mathbb{R}^2$ mit i = 1, ..., m. Wir nehmen an, dass es eine Gestzmäßigkeit im Sinne eines parameterabhängigen Modelles

$$b_i = b(t_i) = b(t_i; \underbrace{x_1, \dots, x_n}_{\text{Parameter}}),$$

wobei die Parameter x_1, \ldots, x_n unbekannt seien, gibt. In der Praxis sind die Messungen zusätzlich mit Fehlern behaftet und das Modell gilt nur approximativ. Zusätzlich gibt es oft mehr Messungen als Parameter, d.h. m > n. Frage: Gegeben die Messungen, können wir zugehörige Parameter bestimmen?

Annahme: b ist linear in den Parametern, d.h. es gibt Funktionen

$$a_i: \mathbb{R} \to \mathbb{R}$$

s.d.

$$b(t; x_1, \dots, x_n) = a_1(t)x_1 + \dots + a_n(t)x_n.$$

Idee: Formuliere ein lineares Gleichungssystem:

$$b_i \approx b(t_i; x_1, \dots, x_n) = a_1(t_i)x_1 + \dots + a_n(t_i)x_n, i = 1, \dots, m$$

kurz $Ax \approx b$ mit $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$.

Problem: Durch Modell- und Messfehler gilt das Gleichungssystem nur ungefähr, und wir mehr Gleichungen als Unbekannte ("das Gleichungssystem ist überbestimmt"). Wir können unser Gleichungssystem also im Allgemeinen nicht lösen.

Abbildung 2.1: Datenpunkte und approximierte Gerade

Beispiel 2.1.

<u>Idee:</u> Finde Parameter, sodass das Modell "bestmöglich" mit den Messpunkten übereinstimmt, d.h. finde $(x_1, \ldots, x_n)^t = x \in \mathbb{R}^n$ s.d.:

$$||Ax - b|| = \min_{y \in \mathbb{R}^n} ||Ay - b|| \tag{2.1}$$

Definition 2.2. Die Gleichung (2.1) heißt **lineares Ausgleichsproblem**. Der Term Ax - b heißt **Residuum**.

Bemerke:
$$V = \mathbb{R}^m, U = \text{Bild}(A) \subset V, \dim(\text{Bild}(A)) \underbrace{\leq n \leq m}_{\text{Grundannahme}}$$

Statte V mit euklidischem Skalar
produkt aus.

 $\stackrel{Satz1.9}{\Longrightarrow}$ Es gibt genau ein $Ax \in Bild(A)$ so, dass

$$||Ax - b|| = \min_{w \in U} ||w - b||$$

gilt.

Aber: Wie berechnen wir x?

Satz 2.3. Sei $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ge n$, $x \in \mathbb{R}^n$ ist genau dann eine Lösung von (2.1) bezüglich der euklidischen Norm, falls

$$A^t A x = A^t b. (2.2)$$

Insbesondere ist das lineare Ausgleichproblem genau dann lösbar, falls rang(A) = n.

Beweis.

$$||Ax - b|| = \min_{y \in \mathbb{R}^n} ||Ay - b||$$

$$\stackrel{\text{Satz (1.9)}}{\iff} Ax - b \in U^{\perp} = \text{Bild}(A)^{\perp}$$

$$\iff \forall y \in \mathbb{R}^n : \langle Ax - b, Ay \rangle = 0$$

$$\iff \forall y \in \mathbb{R}^n : \langle A^t Ax - A^t b, y \rangle = 0$$

$$\iff A^t Ax = A^t b$$

Die letzte Gleichung ist genau dann invertierbar, wenn A^tA vollen Rang hat, also wenn A vollen Rang (n) hat. \square

Bemerkung 2.4. Im beweis verwenden wir, dass Ax - b orthogonal zu U = Bild(A),

Abbildung 2.2: Hyperebene und Projektion

d.h. eine Normale zur Hyperebene Bild(A) im R^m , ist. Deshalb heißt (2.2) auch Normalengleichung.

Bemerkung 2.5. Für m = n und rang(A) = n ist die Lösung des linearen Ausgleichproblems exakt (im mathematischen Sinne).

Satz 2.6. Für $A \in \mathbb{R}^{m \times n}$ ist $A^t A$ symmetrisch und positiv semidefinit. Falls $m \ge n$ ist $A^t A$ genau dann positiv definit, wenn rang(A) = n.

Beweis. • Symmetrisch: klar

• positiv semidefinit:

$$\forall x \in \mathbb{R}^n : x^t(A^t A)x = (Ax^t)(Ax) = ||Ax||_2^2 \ge 0$$

• positiv definit: $\operatorname{rang}(A) = n \implies Ax = 0 \iff x = 0 \implies \|Ax\|_2 = 0 \iff x = 0 \implies \text{Behauptung}.$

Einfachste Möglichkeit zur Lösung von (2.2): Berechne A^tA , A^tb , löse LGS mittels Cholesky. Kosten sind ungefähr:

$$\frac{n^2m}{2} + m \cdot n + \frac{n^3}{6} + \frac{n^2}{2} + \frac{n^2}{2} \approx \frac{mn^2}{2}$$
 für $m \gg n$.

Eingefügte Bemerkung. Anmerkung vom Donzent: A^tA eig. immer schlecht zu berechnen.

Aber: Dieser Vorgang ist schlechter konditioniert als das lineare Ausgleichsproblem:

Eingeschobene Definition / Wiederholung

$$\operatorname{cond}(A) = ||A|| ||A^{-1}||$$
$$||A|| = \max_{||x||=1} ||Ax||$$

Falls $A \in \mathbb{R}^{n \times n}$ spd (symmetrisch, positiv definit) gilt $\operatorname{cond}_2((A^t A)) = \operatorname{cond}_2(A)^2$. Für $A \in \mathbb{R}^{m \times n}$ gelten ähnliche Überlegungen, siehe Deuflhard & Hohmann.

Beispiel 2.7. Sei
$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$
 mit $\epsilon > \underbrace{eps}_{Maschienengenauigkeit}$, $\epsilon^2 < eps$.

$$\implies A^t A = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{bmatrix} \stackrel{im\ Computer}{=} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

 $\implies A^t A \text{ ist im Computer singulär, obwohl A vollen Rang hat!}$

Idee / Wunsch: Gebe einen Algorithmus an, der das lineare Ausgleichsproblem löst und nur auf A arbeitet.

2.2 Methode der Orthogonalisierung

Definition 2.8. Eine Matrix $Q \in \mathbb{R}^{n \times n}$ heißt **orthogonal**, wenn $Q^tQ = I$, d.h. falls die Spalten von Q eine ONB bzgl. des euklidischen Skalarprodukts bilden. Schreibe $Q \in O(n)$.

Notation: $\langle \cdot, \cdot \rangle_2, \| \cdot \|_2$ für das euklidische Skalarprodukt / die euklidische Norm.

Lemma 2.9. Für alle $Q \in O(n)$ gilt

- 1. $||Qx||_2 = ||x||_2$ (Invarianz der Norm bzgl. orthogonaler Projektionen)
- 2. $cond_2(Q) = 1$

Beweis. 1.:
$$||Qx||_2^2 = \langle Qx, Qx \rangle_2 = \langle Q^tQx, x \rangle_2 = \langle x, x \rangle_2 = ||x||_2^2$$

2.: $||Q||_2 = \max_{||x||_2 = 1} ||Qx|| = 1$ und auch $||Q^-1||_2 = 1 \implies$ Behauptung.

Satz 2.10. $A \in \mathbb{R}^{m \times n}, m \geq n, rang(A) = n$. Dann hat A eine QR-Zerlegung:

$$A = Q \begin{pmatrix} R \\ 0 \end{pmatrix}$$

wobei $Q \in O(m), R \in \mathbb{R}^{n \times n}$ eine obere Dreiecksmatrix ist.

Beweis. Schreibe das Gram-Schmidt-Orthogonalisierungsverfahren in Matrixform:

$$Q = \underbrace{\begin{bmatrix} A_n & \dots & A_2 & A_1 \end{bmatrix}}_{A_n & \dots & A_2 & A_1} \underbrace{\begin{bmatrix} 1 & \dots & \dots & \frac{-\langle A_n, A_1 \rangle_2}{\|A_1\|_2^2} \\ & \ddots & \dots & & \vdots \\ & & 1 & \frac{-\langle A_3, A_2 \rangle_2}{\|A_2\|_2^2} & \frac{-\langle A_3, A_1 \rangle_2}{\|A_1\|_2^2} \\ & & & 1 & \frac{-\langle A_2, A_1 \rangle_2}{\|A_1\|_2^2} \end{bmatrix}}_{R'} \underbrace{\begin{bmatrix} \frac{1}{\|B_1\|_2} & 0 \\ & \ddots & \\ 0 & & \frac{1}{\|B_n\|_2} \end{bmatrix}}_{R''}$$

- $\implies Q \in R^{m \times n}, R'R''$ ist obere Dreiecksmatrix mit nicht-null Diagonaleinträgen
- \implies invertierbar: $R = (R'R'')^{-1}$
- $\implies QR = A$, wenn wir Q zu einer ONB von R^m erweitern.

-Ende von Vorlesung 02 am 13.10.2022-

Satz 2.11. Sei $A \in \mathbb{R}^{m \times n}, m \geq n, rang(A) = n, b \in \mathbb{R}^n$. Sei A = QR eine QR-Zerlegung von A und

$$\underbrace{Q^t A}_{=R} = Q^t b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \in \mathbb{R}^n \\ \in \mathbb{R}^{m-n} .$$

Dann ist $x = R_1^- 1b_1$ die Lösung des linearen Ausgleichsproblems, wobei $R_1 \in \mathbb{R}^{n \times n}$ der obere Teil von R ist. Beweis.

$$||Ax - b||_{2}^{2} \stackrel{\text{Lemma 2.9}}{=} ||Q^{t}(Ax - b)||_{2}^{2}$$

$$= \left\| \begin{array}{c} R_{1}x - b \\ b_{2} \end{array} \right\|_{2}^{2} = ||R_{1}x - b_{1}||_{2}^{2} + ||b_{2}||_{2}^{2}$$

$$\geq ||b_{2}||_{2}^{2}$$

 $n = \operatorname{rang}(A) = \operatorname{rang}(R) = \operatorname{rang}(R_1) \implies R_1 \text{ invertierbar } \implies \operatorname{Behauptung}$

Problem:

Abbildung 2.3: Problemstellung

 $w_2 = v_2 - \frac{\langle v_2, v_1 \rangle_2}{\langle v_1, v_1 \rangle_2} v_1$ ist problematisch, falls $v_1 \approx v_2$ (Auslöschung). Beim Gram-Schmidt-Verfahren können Rundungsfehler auftreten. Es ist instabil.

Ziel: Stabiler Algorithmus um QR-Zerlegungen zu berechnen.

2.3 Grundüberlegungen zu Orthogonalisierungsverfahren

Problemstellung: Gegeben $v_1 = \alpha e_1 \in \mathbb{R}^2, v_2 \in \mathbb{R}^2$ transformiere v_2 auf $\tilde{w_2} = \beta e_2$, gebe β an. Gram-Schmidt: $\beta = ||w||_2$

Abbildung 2.4: Gram-Schmidt

Drehungen: $\tilde{w}_2 = Qv_2$

$$Q = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{bmatrix}$$
$$\beta = \|v_2\|_2$$

Abbildung 2.5: Drehungsansatz

Spiegelungen: $\tilde{w}_2 = Qv_2, \ Q = I - 2\frac{vv^t}{v^tv} \text{ und } \beta = \|v_2\|_2$

Abbildung 2.6: Spiegelungsansatz

<u>Idee:</u> Benutze orthogonale Transformationen Q_1, \ldots, Q_n um $A \in \mathbb{R}^{m \times n}$, rang(A) = n, sukzessive zu reduzieren.

$$A \leadsto Q_1 A \leadsto Q_2 Q_1 A \leadsto \cdots \leadsto \begin{bmatrix} & R_1 & \\ 0 & \\ & 0 & \end{bmatrix}$$

Weil $\operatorname{cond}_2(Q) = 1$ ist die Vorgehensweise stabil, bzw. gut konditioniert. **Aber:** Wie wählen wir Q_1, \ldots, Q_n ?

2.4 QR-Zerlegung mittels Givens-Rotationen

Definition 2.12. Eine Matrix der Form

, wobei die s,c Einträge in der k,lten Zeile / Spalte sind, heißen Givens-Rotationen.

<u>Bemerke:</u> Für $c = \cos(\theta), s = \sin(\theta)$ ist $\delta_{k,l}$ eine Drehung um θ in in der Koordinaten (k,l). $\delta_{k,l}$ ist Orthogonal.

Frage: Wie wählen wir c, s?

 $\overline{\text{Gegeben}} \ x \in \mathbb{R}^n$, elemeniere lte Koordinate zu 0.

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} x_k \\ x_l \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}$$

Abbildung 2.7: Trigonometriesetting

$$r^2 = x_k^2 + x_l^2 \implies \pm \sqrt{x_k^2 + x_l^2}$$

Aber: Diese Berechnungsweise ist nicht unbedingt stabil $(x_k \gg x_l)$ Stabile Variante:

Falls
$$|x_l| > |x_k| \implies \tau = \frac{x_k}{x_l}, s = \frac{1}{\sqrt{1+\tau^2}}, c = s\tau$$

Sonst: $\tau = \frac{x_l}{x_k}, c = \frac{1}{\sqrt{1+\tau^2}}, s = c\tau$ (2.3)

Beispielprozess:

Algorithm 2.13

Input: $A \in \mathbb{R}^{m \times n}, m \geq n$

Output: R von der QR-Zerlegung (A wird zerstört "in place")

for
$$j = 1, \ldots, n$$
 do

for
$$i = m, m - 1, \dots, j + 1$$
 do

Berechne c, s wie in (2.3)

$$A[i-1:i,j:n] = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}^t A[i-1:i,j:n]$$

end for

end for

 $\underline{m \approx n}$:

c,s: In jedem Eintrag einmal Wurzeln ziehen: $\Longrightarrow \frac{n^2}{2}$ Quadratwurzeln und $\frac{4n^3}{3}$ Multiplikationen $m \gg n$: $m \cdot n$ Quadratwurzeln und $2m \cdot n^2$ Multiplikationen

Bemerkung 2.14. Der Algorithmus 2.4 berechnet nur R von der QR-Zerlegung. Zur Berechnung von Q müssten zusätliche Operationen investiert werden um die Givens-Rotation auf I anzuwenden. Für das lineare Ausgleichsproblem benötigen wir Q^tb , weshalb wir den Algorithmus auf $[A \mid b]$ anwenden können (da $R = Q^tA$).

Bemerkung 2.15. Für m = n ist die QR-Zerlegung eine (teure) ALternative zur LR-Zerlegung.

2.5 QR-Zerlegung mittels Householder-Transformationen

Definition 2.16. Für $v \in \mathbb{R}^n, v \neq 0$, heißt

$$Q = I - 2 \underbrace{\frac{e^{\mathbb{R}^{n \times n}}}{vv^t}}_{\in \mathbb{R}}$$

Householder-Transformation / Reflexion / Spiegelung.

Wichtig!

Nicht vv^t berechnen, das ist sehr uneffizient!

Für
$$a,v\in\mathbb{R}^n,v\neq 0$$
 ist $Qa=\left(I-2\frac{vv^t}{v^tv}\right)a=a-2\frac{\langle v,a\rangle_2}{\langle v,v\rangle_2}v$

Abbildung 2.8: Householder-Transformationssetting

Qa ist a an l gespiegelt.

Lemma 2.17. Für eine Householder-Transformation $Q \in \mathbb{R}^{n \times n}$ gilt:

- 1. Q ist symmetrisch
- 2. Q ist orthogonal
- 3. Q ist involutionisch (eine Involution), d.h. $Q^2 = I$

Beweis. Nachrechnen.

Frage: Gegeben $a \in \mathbb{R}^n$, wie müssen wir v wählen, so dass $Qa = \alpha e_1$ für $\alpha \in \mathbb{R}$? Beobachte:

1.
$$|\alpha| = ||\alpha e_1||_2 = ||Qa||_2 = ||a||_2$$

2.
$$a - 2 \frac{\langle v, a, \rangle}{\langle v, v \rangle} v = Qa$$

$$\implies v \in \operatorname{span}(\alpha e_1 - a) \implies \alpha = \pm \|a\|_2$$
Vermeide Auslöschung $\implies \alpha = -\operatorname{sign}(a_1) \cdot \|a\|_2$

Effiziente Berechnung: Beobachte:

$$\begin{aligned} \|v\|_2^2 &= \langle v, v \rangle_2 = \langle a - \alpha e_1, a - \alpha e_1 \rangle_2 \\ &= \|a\|_2^2 - 2\alpha a_1 + \alpha^2 \\ &= -2\alpha (a_1 - \alpha) \\ \implies Qa &= a - 2\frac{\langle v, a \rangle_2}{\|v\|_2^2} = a + \frac{\langle v, a \rangle_2}{\alpha (a_1 - \alpha)} v \end{aligned}$$

-Ende von Vorlesung 03 am 18.10.2022-

Lemma 2.18. Sie $\alpha \in \mathbb{R}^n$, $a \neq 0$, $a \notin span\{e_1\}$. Sei

$$v = a - \alpha e_1, \alpha = -sign(a_1) \cdot ||a||_2 \tag{2.4}$$

Dann ist

$$\left(I - 2\frac{vv^t}{v^tv}\right)a = a + \frac{v^ta}{\alpha(a_1 - \alpha)}v = \alpha e_1.$$
(2.5)

Beweis. Siehe oben.

Algorithm 2.19

Input: $A \in \mathbb{R}^{m \times n}, m \ge n$ "Mehr Zeilen als Spalten"

Output: $A \in \mathbb{R}^{m \times n}$, obere rechte Dreiecksmatrix R, Rest Householder-Transformationen

For $j=1,\ldots,n$ do ${}$ be Iterieren über die Spalten Berechne v,α wie in (2.4), mit $a=A[j:m,j]\in\mathbb{R}^{m-j+1}$ $v=\frac{1}{v_1}v$ be Erster Eintrag wird nicht gespeichert, daher normalisieren wir Berechne $A[j:m,j:n]=\left(I-2\frac{vv^t}{v^tv}\right)A[j:m,j:n]$ wie in (2.5) if j< m then A[j+1:m,j]=v[2:m-j+1] be Index startet von 1

end if

Bemerkung 2.20. Die Skalierung $v = \frac{1}{v_1}v$ stellt sicher, dass die der erste Eintrag von v nicht gespeichert werden muss.

<u>Aufwand:</u> $m \sim n \rightsquigarrow \frac{2}{3}n^3$ Multiplikationen

 $m \gg n \rightsquigarrow 2n^2 m$ Multiplikationen

Schneller als Givensrotationen, stabiler als Normalengleichungen

2.6 Pseudoinverse

Ausgangspunkt: Wir wollen ein stabiles numerisches Verfahren, dass

$$Ax = b, A \in \mathbb{R}^{m \times n}, m \ge n, \operatorname{rang}(A) = n, b \in \mathbb{R}^n$$

"lösen" kann, d.h. es gilt

$$||Ax - b||_2 = \min_{y \in \mathbb{R}^n} ||Ay - b||_2$$

Mathematisch können wir die Abbildung $b \mapsto x$, wegen der Normalengleichung (2.2), schreiben als

$$x = \underbrace{(A^t A)^{-1} A^t}_{:=A^{\dagger}} b = A^{\dagger} b$$

 $A^{\dagger} \in \mathbb{R}^{n \times m}$. Wegen $A^{\dagger}A = I$ heißt A^{\dagger} auch **Pseudoinverse**.

Frage: Können wir den Begriff der Inversen noch weiter verallgemeinern? Auf beliebige Matrizen? Satz 1.9: $A \in \mathbb{R}^{m \times n}, U = \text{Bild}(A)$

$$\implies \|Ax - b\|_2 = \min_{y \in \mathbb{R}^n} \|Ay - b\|_2 \overset{\text{Satz } 1.9}{\Longleftrightarrow} Ax - b \in \text{Bild}(A)^{\perp}$$

$$\iff Ax - Pb - \underbrace{(b - Pb)}_{\in U^{\perp}: \text{ Satz } 1.9} \in \text{Bild}(A)^{\perp}, Pb \text{ ist die orthogonale Projektion von } b \text{ auf } U$$

$$\iff \underbrace{Ax}_{\in U} - \underbrace{Pb}_{\in U} \in \text{Bild}(A)^{\perp}$$

$$\iff Ax = Pb$$

Falls rang(A) < n (z.B., falls m < n) ist Ax = Pb nicht eindeutig lösbar (aber es existiert immer eine Lösung). Für $\tilde{x} \in \mathbb{R}^n$ mit $A\tilde{x} = Pb, x' \in \ker(A)$ ist $A(\tilde{x} + x') = Pb$.

$$\begin{split} L(b) &= \left\{ x \in \mathbb{R}^n : \left\| Ax - b \right\|_2 = \min_{y \in \mathbb{R}^n} \left\| Ay - b \right\|_2 \right\} \\ &= \left\{ x \in \mathbb{R}^n : Ax = Pb \right\} \\ &= \tilde{x} + \ker(A) \end{split}$$

Sind gewisse Lösungen sinnvoller als andere?

Wähle: $x \in \tilde{x} + \ker(A)$ mit minimaler Norm als "eindeutige" Lösung von Ax = b.

$$\overset{\text{Bem. 1.13}}{\Longrightarrow} \|x - 0\|_2 = \min_{y \in \tilde{x} + \ker(A)} \|y - 0\|_2 \iff x \in (\tilde{x} + \ker(A))^{\perp}$$
$$\iff x \in \ker(A)^{\perp}$$

Anmerkung

Hier ist nicht ganz klar, was mit $(\tilde{x} + \ker(A))^{\perp}$ gemeint ist, da dies z.B. für $\ker(A) = \operatorname{span}\{(0,1)^t\}$ und $\tilde{x} = (1,0)^t$ nur $\{0\}$ ist, was natürlich nicht der Intuition entspricht!

Statt der ursprünglichen Definition müssen wir hier wieder zurück schieben $(-\tilde{x} \text{ rechnen})$, was kein Problem ist, da wir o.B.d.A $\tilde{x} \perp \ker(A)$ vorraussetzen dürfen, bevor wir das Skalarprodukt berechnen!

Zum Beispiel ist also $v=(1,0)^t$ im obigen Beipspiel doch im orthogonalen Komplement, da $\langle v, \tilde{x}+u-\tilde{x}\rangle_2=0$ für $u\in\ker(A)$

Abbildung 2.9: Setting

Bemerkung 2.21. Diese Wahl von x für $b \mapsto x$ ist linear: Für $b_1, b_2 \in \mathbb{R}^m$ ist:

$$Ax_1 = b_1 \quad x_1 \in ker(A)^{\perp}$$

$$Ax_2 = b_2 \quad x_2 \in ker(A)^{\perp}$$

$$\implies P(x_1 + x_2) = P(x_1) + P(x_2) = Ax_1 + Ax_2 = A(x_1 + x_2), x_1 + x_2 \in ker(A)^{\perp}$$

Definition 2.22. Sei $A \in \mathbb{R}^{m \times n}$. Die Abbildungsmatrix $A^{\dagger} \in \mathbb{R}^{n \times m}$ von $b \mapsto x$ heißt **Pseudoinverse** oder **Moore-Pensore-Inverse** von A. D.h. gegeben $b \in \mathbb{R}^n$, dann ist $x = A^{\dagger}b$ die eindeutige Lösung von

$$\min_{y \in \ker(A)^{\perp}} \|Ay - b\|_2 = \|Ax - b\|_2.$$

Satz 2.23. $A \in \mathbb{R}^{m \times n}$. Dann ist $A^{\dagger} \in \mathbb{R}^{m \times n}$ eindeutig über die Moore-Penrose-Axiome definiert:

- 1. $(A^{\dagger}A)^t = AA^{\dagger}$
- 2. $(AA^{\dagger})^t = A^{\dagger}A$
- 3. $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- 4. $AA^{\dagger}A = A$

Beweis. Siehe Literatur oder später

Frage: Wie berechnen wir $x = A^{\dagger}b$?

Sei $A \in \mathbb{R}^{m \times n}$, rang $(A) = p \le \min(m, n)$. Bringe A mittels orthogonaler Transformationen (z.B. Householder) auf obere Dreiecksgestalt, d.h.:

$$Q^t A = \begin{bmatrix} R & S \\ * & 0 & 0 \end{bmatrix}$$
 (2.6)

wobei $S \in \mathbb{R}^{p \times (n-p)}$. Setze Analog $x = \begin{bmatrix} x_1 \in \mathbb{R}^p \\ x_2 \in R^{n-p} \end{bmatrix}$, $Q^t b = \begin{bmatrix} b_1 \in \mathbb{R}^p \\ b_2 \in \mathbb{R}^{m-p} \end{bmatrix}$

Lemma 2.24. Mit obigen Bezeichungen ist $x = A^{\dagger}b$ genau dann, wenn

$$x_1 = R^{-1}b_1 - R^{-1}Sx_2.$$

Beweis.

$$||Ax - b||_{2}^{2} = ||Q^{t}(Ax - b)||_{2}^{2}$$

$$= ||\begin{pmatrix} Rx_{1} + Sx_{2} - b \\ -b_{2} \end{pmatrix}||_{2}^{2}$$

$$= ||Rx_{1} + Sx_{2} - b_{1}||_{2}^{2} + ||b_{2}||_{2}^{2}$$

ist minimal, falls $Rx_1 = b_1 - Sx_2$.

Wir sehen $p = \text{rang}(A) = n \implies$ wie vorher, lineares Ausgleichsproblem! Sonst: $x_2 = ?$

Lemma 2.25. Sei $p < n, V = R^{-1}S \in \mathbb{R}^{n \times (n-p)}$ und $u = R^{-1}b_1 \in \mathbb{R}^p$. Dann ist

$$x = A^{\dagger}b$$

$$\iff (I + V^{t}V)x_{2} = V^{t}u$$

$$x_{1} = u - Vx_{2}$$

Beweis.

$$\begin{aligned} \|x\|_{2}^{2} &= \|x_{1}\|_{2}^{2} + \|x_{2}\|_{2}^{2} \\ &\stackrel{\text{Lemma 2.24}}{=} \|u - Vx_{2}\|_{2}^{2} + \|x_{2}\|_{2}^{2} \\ &= \|u\|_{2}^{2} - 2\langle u, Vx_{2}\rangle_{2} + \langle Vx_{2}, Vx_{2}\rangle_{2} + \langle x_{2}, x_{2}\rangle_{2} \\ &= \|u\|_{2}^{2} + \langle x_{2}, (I + V^{t}V)x_{2} - 2V^{t}u\rangle_{2} = \varphi(x_{2}) \end{aligned}$$

Minimiere $\varphi(x_2)$:

$$\varphi'(x_2) = -2V^t u + 2(I + V^t V)x_2$$
$$\varphi'(x_2) = 2(I + V^t V) \implies \text{spd}$$

 φ minimal $\iff \varphi'(x_2) = 0 \implies$ Behauptung.

Algorithm 2.26

Input: $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

Output: $x = A^{\dagger}b$

Berechne QR-Zerlegung (2.6) von A

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = Q^t b$$

 $\tilde{V} = R^{-1}S$ mittels Rückwertssubstitution

 $u = R^{-1}b_1$ mittels Rückwertssubstitution

Löse $(I + V^t V)x_2 = V^t u$ mittels Cholesky-Zerlegung

$$x_1 = u - Vx_2$$

 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

-Ende von Vorlesung 04 am 20.10.2022-

Kapitel 3

Iterative Verfahren für große, dünn besetzte, Gleichungsysteme

3.1 Motivation

Sei $\Omega \subset \mathbb{R}^d, d \in \mathbb{N}$. Betrachte die stationäre Wärmeleitungsgleichung, eine partielle Differenzialgleichung

$$\begin{cases}
-\Delta u(x) = f(x) & \in \Omega \\
u(x) = 0 & x \in \delta\Omega
\end{cases}$$
(3.1)

mit Wärmequelle $f \in C(\Omega)$ und dem Laplace-Operator:

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u(x)}{\partial x_i^2}.$$
 (3.2)

Die Lösung $u \in C^2(\Omega)$, falls existent, beschreit die Temperaturverteilung im Raum Ω .

Diese Gleichung ist i.A. nicht von Hand lösbar!

Idee: Berechne approximative Lösung im Computer.

Ansatz: Für $g \in C^2(\mathbb{R})$ ist

$$g''(x) = \lim_{h \searrow 0} \frac{g'(x+h) - g(x)}{h} \approx \frac{g'(x+h) - g(x)}{h}$$
$$\approx \frac{\frac{g(x+h) - g(x)}{h} - \frac{g(x) - g(x-h)}{h}}{h}$$
$$\approx \frac{g(x+h) - 2g(x) + g(x-h)}{h^2}$$

 \leadsto Ersetze $\frac{\partial^2 u}{\partial x_i^2}$ in (3.2)

 \rightarrow Überziehe Ω mit einem regelmäßigen Gitter mit Maschenweite $h = \frac{1}{n}, n \in \mathbb{N}$.

Abbildung 3.1: Gitter

Bezeichne die Gitterpunkte mit x_{ij} und $u_{ij} = u(x_{ij})$.

$$\stackrel{d=2}{\Longrightarrow} \frac{1}{h^2} \left(4u_{ij} - u_{i+1j} - u_{i-1j} - u_{ij+1} - u_{ij-1} \right) = f_{ij} : i, j \in 1, \dots, n-1$$

$$u_{ij} = 0, i \in \{0, n\} \text{ oder } j \in \{0, n\}$$

Wir erhalten ein lineares Gleichungssystem mit $N = (n-1)^2$ Unbekannten und O(1) Einträgen pro Zeile. $\implies A \in \mathbb{R}^{n \times n}$ hat O(N) Einträge. Wir haben das Lösen eines (linearen) partiellen Differentialgleichung durch das Lösen eines linearen Gleichungssystems ersetzt.

Beispiel 3.1. $\Omega = (0,1)^2, n = 4 \implies h = \frac{1}{4}$. Erhalte:

$$\begin{bmatrix} 4 & -1 & & -1 & & & & & \\ -1 & 4 & -1 & & & -1 & & & & \\ & -1 & 4 & -1 & & -1 & & & & \\ \hline -1 & & 4 & -1 & & -1 & & & & \\ & -1 & & -1 & 4 & -1 & & -1 & & \\ & & & -1 & & -1 & 4 & & -1 & \\ \hline & & & & -1 & & -1 & 4 & -1 \\ & & & & & -1 & & -1 & 4 & -1 \\ & & & & & -1 & & -1 & 4 & -1 \\ & & & & & -1 & & -1 & 4 & -1 \\ \end{bmatrix} \begin{bmatrix} u_{11} \\ u_{12} \\ u_{13} \\ u_{21} \\ u_{22} \\ u_{23} \\ u_{31} \\ u_{31} \\ u_{32} \\ u_{33} \\ u_{33} \\ u_{34} \\ u_{34} \\ u_{35} \\ u_{35} \\ u_{36} \\ u_{36} \\ u_{37} \\ u_{38} \\$$

<u>Aber:</u> Um die Lösung von (3.1) gut zu approximierenm ist oft $N \gg 1$ erforderlich. Für kleine bis mittlere N, d.h. in 2022 je nach Modell ~ 10 Millionen, sind graphenbasierte Löser eine Option. Was tun für große N?

Beobachtung: Matrix-Vektor-Multiplikation sind für dünn besetze Matrizen in O(N) berechenbar.

<u>Frage:</u> Wie bauen wir gute Löser für LGS (lineare Gleichungssysteme) nur unter Anwendung von

Matrix-Vektor-Multiplikationen?

<u>Idee:</u> Benutze Orthogonalität um eine Bestapproximationseigenschaft zu erhalten.

3.2 Grundidee von Projektionsmethoden

Sei $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ und K, L Unterräume vom \mathbb{R}^n .

<u>Idee:</u> Finde eine approximative Lösung \tilde{x} zu Ax = b mit

$$\tilde{x} \in K$$
 und $b - A\tilde{x} \perp_2 L$

Kanonische Wahl: L = AK.

Falls wir eine Startnährung x_0 zu x kennen, können wir \tilde{x} in $x_0 + K$ suchen:

Finde $\tilde{x} \in x_0 + K$ mit $b - A\tilde{x} \perp_2 L$

Beobachtung: $\tilde{x} \in x_0 + K \implies \exists d \in K : \tilde{x} = x_0 + d$

$$\implies \underbrace{b - A(x_0)}_r + d) \perp_2 L$$

$$\iff r_0 - Ad \perp_2 L$$

Eine approximative Lösung $\tilde{x} = x_0 + d$ muss also erfüllen:

$$\begin{cases} \tilde{x} = x_0 + d \\ \langle r_0 - Ad, w \rangle_2 = 0 \quad \forall w \in L \end{cases}$$
 (3.3)

<u>Idee:</u> Wähle x_0, K, L , berechne $d \in K$ durch Lösen eines Unterproblems. Setze $x_1 = x_0 + d$, wähle neue Unterräume, beginne von vorne.

Wie implementieren wir diese Idee im Computer?

Sei
$$K = \text{span}\{v_1, \dots, v_n\}, L = \{w_1, \dots, w_n\}$$

$$V = [v_1 | \dots | v_n] \text{ und } W = [w_1 | \dots | w_n]$$

(3.3) ist äquivalent zu

$$\begin{cases} \tilde{x} = x_0 + Vy & y \in \mathbb{R}^m \\ W_i^t A V y = W_i^t r_0 & i = 1, \dots n \iff \underbrace{W^t A}_{m \times m} V y = W^t r_0 \end{cases}$$
 (3.4)

$$\implies \tilde{x} = x_0 + V(W^t A V)^{-1} W^t r_0$$

Algorithm 3.2 Prototyp einer interativen Projektionsmethode

Input: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$, Fehlertoleranz α

Output: Nährung $x_{i+1} \approx x$

i=0

while Fehlertoleranz noch nicht erreicht do

Wähle K_i, L_i

Wähle Basen V, W von K_i, L_i

$$r_1 = Ax_i$$

$$y = (W^t A V)^{-1} W^t r_i$$

$$x_{i+1} = x_i + Vy_i$$

i = i + 1

end while

Aber: W^tAV ist nicht notwendigerweise invertierbar:

Beispiel 3.3.

$$A = \left[\begin{array}{c|c} 0 & I \\ \hline I & I \end{array} \right] \in \mathbb{R}^{2m \times 2m}$$

$$K = L = span\{e_1, \dots, e_m\} \implies V = W = \begin{bmatrix} I_m \\ 0 \end{bmatrix} \in K^{2m \times m}$$

 $\implies W^t AV = 0$ ist nicht invertierbar.

Lemma 3.4. Sei einer der folgenden Bedingungen erfüllt:

- 1. A ist spd, K = L
- 2. A invertierbar, L = AK

Dann ist W^tAV für alle Basen von K, L invertierbar.

Beweis. 1.: $L=K \implies W=V\delta$ mit $\delta \in R^{m \times m}$ invertierbar. $\implies B=W^tAV=\delta^tV^tAV$

$$0 < \underbrace{y^t A y}_{\text{end, invertigrbar}}, y = V x$$

2.: $L = AK \implies W = AV\delta, \delta \in \mathbb{R}^{m \times m}$ invertierbar

$$\implies B = W^t A V = \delta^t \underbrace{V^t A^t A V}_{\mathrm{spd}} \implies \text{ invertierbar } \implies \text{ Beh.}$$

-Ende von Vorlesung 05 am 25.10.2022-

3.3 Verfahren des steilsten Abstiegs

<u>Idee:</u> Wähle $K = L = \operatorname{span}\{r_i\} = \operatorname{span}\{b - Ax_i\}$

$$\implies x_{i+1} = x_i + \underbrace{\alpha_i r_i}_{d_i \in K}$$

$$\implies \alpha = \frac{r_i^t r_i}{r_i^t A r_i}$$

Algorithm 3.5 Verfahren des steilsten Abstiegs

Input: A, b, Startvektor x_0 , Fehlertoleranz

Output: Nährung $x_{i+1} \approx x$

 \mathbf{while} Fehlertoleranz noch nicht erreicht \mathbf{do}

$$r_i = b - Ax_i$$

$$\alpha_i = \frac{r_i^t r_i}{r_i^t A r_i}$$

$$x_{i+1} = x_i + \alpha_i r_i$$

end while

Bemerkung 3.6. Wegen (3.3) gilt:

$$0 = \langle r_i - Ad_i, r_i \rangle_2$$

$$= \langle b - Ax_i - Ad_i, r_i \rangle_2$$

$$= \langle b - Ax_{i+1}, r_i \rangle_2$$

$$= \langle Ax - Ax_{i+1}, r_i \rangle_2$$

$$= \langle x - x_{i+1}, r_i \rangle_A = (\star)$$

Mit

$$\langle \cdot, \cdot \rangle_A = \langle A \cdot, \cdot \rangle_2$$

Aus (⋆) folgt

$$0 = (\star) \iff x - x_{i+1} \perp_A r_i$$

$$\iff x - x_{i+1} \perp_A x_i + \operatorname{span}\{r_i\}$$

$$\overset{\operatorname{Satz } 1.9}{\iff} \|x - x_{i+1}\|_A = \min_{y \in x_i + \operatorname{span}\{r_i\}} \|x - y\|_A$$

$$\iff \frac{1}{2} \|x - x_{i+1}\|_A^2 = \min_{\alpha \in \mathbb{R}} = \frac{1}{2} \|x - x_i - \alpha r_i\|_A^2$$

 \triangleright Praxis $\epsilon = 10^{-8}$, $||r_i||_2 < \epsilon$

Betrachte $f(x_i) = \frac{1}{2} ||x - x_i||_A^2 = \frac{1}{2} \langle A(x - x_i), x - x_i \rangle_2$

$$f'(x_i) = -\underbrace{Ax}_{-k} + Ax_i = -r_i$$

D.h. am Punkt x_i gehen wir in Richtung des steilsten Abstiegs,

Satz 3.7. Sei $A \in \mathbb{R}^{n \times n}$ spd. Dann gilt für die Iterierung des Verfahrens des steilsten Abstiegsm dass:

$$||x - x_{i+1}||_A \le \frac{\lambda_{\max}(A) - \lambda_{\min}(A)}{\lambda_{\max}(A + \lambda_{\min}(A))} ||x - x_i||_A$$

$$\stackrel{\frac{1}{\lambda_{\min}}}{=} \frac{cond_2(A) - 1}{cond_2(A) + 1} ||x - x_i||_A$$

wobei $\lambda_{\max}, \lambda_{\min}$ die größten, kleinsten Eigenwerte sind.

Beweis. Übung

Bemerkung 3.8. Im Prinzip lassen sich mit Hilfe der Normalengleichung auch allgemeinere (invertierbare) Matrizen behandeln. Hierbei wird die Kondition verschlechtetertm d.h. die Konvergenz verschlechtert sich.

3.4 Krylovräume

Beobachte: Im Verfahren des steilsten Abstiegs gilt:

$$x_i = x_0 + \alpha_0 r_0 + \dots + \alpha_{i-1} r_{i-1} = x_0 + \alpha_0 r_0 + \dots + (\alpha_{i-2} I + \alpha_{i-1} (I - \alpha_{i-2})) r_{i-2}$$
$$= x_0 q_{i-1}(A) r_0, q_{i-1} \in \Pi_{i-1}$$

<u>Idee:</u> Finde eine bessere Approximation von x_i in $x_0 + K_{i-1}(A, r_0)$.

Definition 3.9. Sei $A \in \mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$, $n \ge 1$. Der Raum

$$K_m = span(v, Av, A^2v, \dots, A^{m-1}v)$$

heißt Kylovraum von A zu v.

Es gilt $K_m(A, v) \subseteq K_{m+1}(A, v)$

Lemma 3.10. Sei $\mathbb{R}^{n \times n}$, $v \in \mathbb{R}^n$. Dann gilt:

- 1. $\dim K_m(A, v) < \min\{m, n\}$
- 2. $\dim(K_m(A, v)) = \dim(K_{m+1}(A, v)) = m \implies \dim(K_{m+i}(A, v)) = m, i = 0, 1, \dots$
- 3. Für m wie im 2. gilt

$${Ax : x \in K_m(A, v)} \subseteq K_m(A, v)$$

D.h. $K_m(A, v)$ ist invariant unter A.

Beweis. Übung

Bemerkung 3.11. Betrachte Ax = b mit Startnährung x_0 , Residuum $r_0 = b - Ax_0$. Für $i = 0, \ldots$ Wähle

$$x_{i+1} \in x_0 + K_{i-1}(A, r_0)$$

$$\implies x_{i+1}x_0 = q_i(A)r_0$$

$$\implies r_{i+1} = b - Ax_{i+1} = \underbrace{b - Ax_0}_{r_0} - Aq_i(A)r_0$$

$$= q_{i+1}(A)r_0 \in K_{i+2}(A, r_0)$$

<u>Das bedeutet:</u> Sind K, L geeignete Krylovräume in einer Projektionsmethode, dann können wwir immer garantieren, dass das Ergebnis in einem Krylovraum ist.

<u>Aber:</u> Die Vektoren v, Av, \ldots, A^nv sind numerisch keine guten Basen der Krylovräume, da sie zunehmend in eine änhliche Richtung zeigen.

3.5 Arnoldi-Verfahren

Gesucht: Numerisch gutartige Basis von $K_m(A, v)$, welche einfach zu einer gutartigen Basis von $K_{m+1}(A, v)$ erweitert werden kann.

Idee: Arrangiere die Vektoren v, Av, \ldots in einer "wachsenden" Matrix

$$[v|Av|A^2v|\dots]$$

und wende auf jede Spalte ein Orthogonalisierungsverfahren (Gram-Schmidt, Householder, Givens) an.

Algorithm 3.12 Arnoldi-Verfahren (Gram-Schmidt Variante)

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, m \in \mathbb{N}

Output: V_m = [v_1| \dots | v_m] ONB von K_m(A, v), v_{m+1} \in \mathbb{R}^n, H_{m+1,m} \in \mathbb{R}^{(m+1) \times m}

v_1 = \frac{v}{\|v\|_2}

for j = 1, m do

z = Av_j \Rightarrow for instance for the second of the s
```

-Ende von Vorlesung 06 am 27.10.2022-

Lemma 3.13. Falls das Arnoldi-Verfahren nicht vorzeitig abbricht, ist v_1, \ldots, v_m eine ONB von $K_m(A, r_0)$.

Beweis. Orthogonalität: Ok

Orthonormal: Ok

Basis von $K_m(A, r_0)$: j = 1 ok

 $j \implies j+1$

 $h_{j+1,j}v_j = w_j$ (folgt aus der letzten Zeile von Algorithmus 3.5).

$$w_{j} = \underbrace{Av_{j}}_{\in K_{j}(A,r_{0}) \implies v_{j} = q_{j-1}(A)v} - \underbrace{\sum_{i=1}^{2} h_{i,j}v_{i}}_{\tilde{q}_{j-1}(A)v, \tilde{q}_{j-1} \in \Pi_{j-1}} = (\star)$$

$$(\star) = Aq_{j-1}(A)v_{j} - \tilde{q}_{j-1}(A)v_{j} = \underbrace{q_{j}(A)v}_{\in K_{j+1}(A,r_{0})}$$

<u>Bemerke:</u> Diese Matrix $H_{h+1,j} \in \mathbb{R}^{(j+1)\times j}$ hat eine bestimmte Sturktur, die Hessenberg-Struktur genannt wird.

Vorteile dieser Struktur

Zum Beipspiel kann man eine QR-Zerlegung finden, in dem man Pro Spalte eome Givensrotation anwendet.

Lemma 3.14. Seien $V_m \in \mathbb{R}^{n \times n}$, $H_{m+1,m} \in \mathbb{R}^{(m+1) \times m}$, wie im Arnoldi-Verfahren erzeugt. Sei $H_{m,m} \in \mathbb{R}^{m \times m}$ wie $H_{m+1,m}$, aber ohne die letzte Zeile. Dann gilt:

$$\underbrace{A}_{\in\mathbb{R}^{n\times n}}\underbrace{V_m}_{\in\mathbb{R}^{n\times m}} = \underbrace{V_m}_{\in\mathbb{R}^{n\times m}}\underbrace{H_{m,m}}_{\in\mathbb{R}^{m\times m}} + \underbrace{w_m e_m^t}_{\in\mathbb{R}^{m\times m}} = \underbrace{V_{m+1}}_{\in\mathbb{R}^{n\times m+1}}\underbrace{H_{m+1,m}}_{\in\mathbb{R}^{m+1\times m}}$$
(3.5)

$$V_m^t A V_m = H_{m,m} (3.6)$$

Beweis. Gemäß Algorithmus haben wir

$$Av_j = z = \underbrace{w_j}_{h_{j+1,j}v_j} + \sum_{i=1}^j h_{ij}v_i = \sum_{i=1}^{j+1} h_{ij}v_i : j = 1, \dots, m$$

Daher gilt (3.5) (folgt aus Matrix Schreibweise). Für (3.6):

$$V_m^t A V_m = \underbrace{V_m^t V_m}_{=I} H_{m,m} + \underbrace{V_m^t w_m e_m^t}_{=0} = H_{m,m}$$

Lemma 3.15. Sei j der Iterationsindex, bei dem das Arnoldi-Verfahren das erste Mal abbricht. Dann gilt:

$$K_j(A, r_0) = \dots = K_m(A, r_0)$$

$$AV_m = V_m H_{m,m}$$

Beweis. Übung.

3.6 Verfahren der vollständigen Orthogonalisierung

<u>Ziel:</u> Kombinieren von unserem Wissen über Projektionsmethoden mit demjenigen Wissen über Krylovräume. <u>Zutaten:</u>

- Finde $\tilde{x} \in x_0 + K$ s.d. $bA\tilde{x} \perp L$
- \bullet Wähle K, L als Krylovräume in jeder Iteration
- ullet Wähle Basen V,W von K,L in jeder Iteration

$$(3.4) \implies \begin{cases} \tilde{x} = x_0 + Vy \\ W^t A V y = w^t r_0 \end{cases}$$

<u>Idee:</u> Setze $r_0 = b - Ax_0$, $K = L = K_m(A, r_0)$ im *m*-ter Iteration, V = W ONB von $K_m(A, r_0)$, berechnet mittels Arnoldi-Verfahren.

Zutaten: aktualisiert:

- $r_0 = b Ax_0$
- $\beta = ||r_0||_2, v_1 = \frac{r_0}{\beta}$

•

$$\begin{cases} x_m = x_0 + V_m y_m \\ \underbrace{V_m^t A V_m}_{\stackrel{3.6}{=} H_{m,m}} \underbrace{y_m}_{\beta v_1} = V_m^t r_0 \iff H_{m,m} y_m = \beta e_1 \end{cases}$$

Algorithm 3.16 Verfahren der vollständigen Orthogonalisierung

Input:
$$A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, x_0 \in \mathbb{R}^n, m \in \mathbb{N}$$

Output: $x_m \in x_0 + K_m(A, r_0), b - Ax_m \perp K_m(A, r_0), x_m \approx A^{-1}b$
 $r_0 = b - Ax_0, \beta = \|r_0\|_2, v_1 = \frac{r_0}{\beta}$
for $j = 1, m$ do

Bestimme $V_j, H_{j,j}$ mit Arnoldi-Verfahren (Stop beim Abbruch)
Löse $\underbrace{H_{j,j}}_{\in \mathbb{R}^{j \times j}} y_j = \beta e_1$
 $x_j = x_0 + V_j y_j$
Konvergenztest
end for

Was ist ein geeigneter Konvergenztest?

Lemma 3.17. Im Algorihtmus 3.6 gilt

$$r_m = b - Ax_m = -h_{m+1,m}(e_m^t y_m)V_{m+1}$$

d.h. es gilt auch

$$||r_m||_2 = |\underbrace{h_{m+1,m}}_{>0}(e_m^t y_m)| = h_{m+1,m} |e_m^t y_m|$$

Beweis.

$$b - Ax_m = b - A(x_0 + V_m y_m)$$
$$= r_0 - AV_m y_m = (\star)$$

$$(\star) = \underbrace{r_0}_{\beta v_1} - \underbrace{AV_m}_{\stackrel{3.5}{=} V_m H_{m,m} - w_m e_m^t} \\ = \beta v_1 - \underbrace{V_m \underbrace{H_{m,m} y_m}_{=\beta e_1} - \underbrace{w_m}_{=h_{m+1,m} V_{m+1}} (e_m^t y_m)}_{=\beta v_1} \\ = -h_{m+1,m} (e_m^t y_m) v_{m+1}$$

Bemerke:

• Hauptkosten (Alles mit Vektoren der Länge \underline{n})

- Matrix-Vektor-Multiplikation (1, Mal, sehr teuer)

- Skalarprodukte

- Vektor-Updates

⇒ Berechnen des Residuums wie in Lemma (3.17) lohnt sich.

• Speicherbedarf und Aufwand per Iteration werden in jeder Iteration teuer!

Umgehen von großen m

Wir können Neustarten, um m wieder auf 1 zu setzen und hohe Kosten von großen m zu verhindern.

-Ende von Vorlesung 07 am 03.11.2022-

3.7 Das GMRES-Verfahren

<u>Idee:</u> Lemma (3.17) gibt uns eine explizite Darstellung von $||r_j||_2$. Können wir die Idee dahinter benutzen, um $||r_j||_2$ in jeder Iteration zu minimieren?

$$r_{j} = b - A \underbrace{x_{j}}_{=x_{0} + V_{j}y_{j}}$$

$$= \underbrace{b - Ax_{0}}_{=r_{0} = \beta v_{1} = V_{m+1}\beta} \underbrace{e_{1}}_{\in \mathbb{R}^{m+1}} \underbrace{AV_{j}}_{3.5} y_{j}$$

$$= V_{j+1}(\beta e_{1} - H_{j+1,j}y_{j})$$

$$\implies ||r_j||_2 = ||V_{j+1}(\beta e_1 - H_{j+1,j}y_j)||_2$$

 $Da \|V_{j+1}z_{j+1}\|_2^2 = z_{j+1}^t z_{j+1} = \|z_{j+1}\|_2^2$

$$\implies \|r_j\|_2 = \left\| \underbrace{\beta e_1}_{\in \mathbb{R}^{j+1}} - \underbrace{H_{j+1,j}}_{\in \mathbb{R}^{j+1 \times j}} \underbrace{y_j}_{\in \mathbb{R}^j} \right\| \tag{3.7}$$

 $\implies \|r_j\|_2$ wird minimal, falls y_j als Lösung des linaren Ausgleichsproblems $H_{j+1,j}y_j=\beta e_1$ gewählt wird.

Algorithm 3.18 GMRES-Verfahren, Generalized Minimal Residual Method, Prototyp

Input: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, x_0 \in \mathbb{R}^n, m \in \mathbb{N}$

Output: $x_m \in x_0 + K_m(A, r_0), ||r_m||_2 = ||b - Ax_m||_2$ minimal

$$r_0 = b - Ax_0, \beta = ||r_0||_2, v_1 = \frac{r_0}{\beta}$$

for j = 1, m do

Bestimme $V_{j+1}, H_{j+1,j}$ mit Arnoldi-Verfahren (Stop beim Abbruch)

Löse $H_{j+1,j}y_j = \beta e_1$

 $x_j = x_0 + V_j y_j$

Konvergenztest

end for

Bemerkung 3.19. 1. Bis auf die Minimalitätseigenschaft von $||r_j||_2$ stimmen die Algotihmen 3.6 und 3.7 weitgehen überein. D.h. sie haben auch ähnliche Nachteile.

2. Algorithmus 3.7 kann auch als Projektionsmethode mit $K = K_m(A, r_0)$ und L = AK hergeleitet werden. (2 Zeiler, wenn man die richtige Formel sieht)

<u>Frage:</u> wie können wir den Algortihmus 3.7 praxistauglich machen. D.h.: Was ist ein geeigneter Konvergenztest und wie lösen wir das lineare Ausgleichsproblem?

Beobachte: ()3.7) sagt: $||r_j||_2$ ist genau der Fehler des linearen Ausgleichsproblems. Diesen Fehler können wir explizit berechnen!

Analog zum Beweis von Satz 2.11:

Sei
$$H_{j+1,j} = Q_j R_j = \underbrace{Q_j}_{\in \mathbb{R}^{j+1,j+1}} \begin{bmatrix} R_j \\ 0 \\ \in \mathbb{R} \end{bmatrix}$$
 eine QR-Zerlegung.

Sei

$$Q^t \beta e_1 = \begin{bmatrix} e^{\mathbb{R}^j} \\ b_1 \\ b_2 \\ e^{\mathbb{R}^j} \end{bmatrix}$$

$$\begin{aligned} \|r_{j}\|_{2}^{2} &\stackrel{(3.7)}{=} \|\beta e_{1} - H_{j+1,j}y_{j}\|_{2}^{2} = \|Q^{t}(\beta e_{1} - H_{j+1,j}y_{j})\|_{2}^{2} = (\star) \\ (\star) &= \left\| \begin{pmatrix} b_{1} - \tilde{R}_{j}y_{j} \\ b_{2} \end{pmatrix} \right\|_{2}^{2} \\ &= \underbrace{\left\| b_{1} - \tilde{R}_{j}y_{j} \right\|_{2}^{2}}_{=0 \text{ falls } H_{j+1,j} \text{ bzw. } \tilde{R}_{j} \text{ vollen Rang hat}} + \underbrace{\|b_{2}\|_{2}^{2}}_{=|b|^{2}} \\ &\implies \|r_{j}\|_{2} = |b_{2}| \end{aligned}$$

Wir berechnen b_2 als Nebenprodukt beim Lösen des linearen Ausgleichsrpoblems.

<u>Aber:</u> In jeder Iteration eine QR-Zerlegung zu berechnen ist teuer. Wie geht es besser? **Beobachte:**

- $H_{j+1,j}$ hat Hessenbergstruktur, d.h. $H_{j+1,j}$ hat Ist eine rechte obere Dreiecksmatrix, wo zusätzlich die utere Diagonale nicht notwendigerweise 0 ist. Dafür kann mit j Givensrotaionen eine QR-Zerlegung berechnet werden.
- Beim Iterationsschritt $j \implies j+1$ werden jediglich eine neue Spalte und eine neue Zeile an $H_{j+1,j}$ drangehängt um um $H_{j+2,j+1}$ zu erhalten. Die restlichen Einträge bleiben unverändert.

Sei $H_{j+1,j} = Q_j R_j$ eine QR-Zerlegung.

$$\begin{bmatrix} Q_j^t & 0 \\ 0 & 1 \end{bmatrix} H_{j+2,j+1} = \begin{bmatrix} Q_j^t & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} H_{j+1,j} & \star \\ 0 & \star \end{bmatrix} =$$

Die letzte Matrix kann mittels einer einzigen Givensrotation in obere Dreiecksgestalt gebracht werden.

⇒ Erweitere QR-Zerlegung iin jedem Schrit.

-Ende von Vorlesung 08 am 08.11.2022-

Algorithm 3.20 GMRES

```
Input: A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, x_0 \in \mathbb{R}^n, m \in \mathbb{N}

Output: x_m \in x_0 + K_m(A, r_0), \|r_m\|_2 = \|b - Ax_m\|_2 minimal

r_0 = b - Ax_0, \beta = \|r_0\|_2, v_1 = \frac{r_0}{\beta}

\hat{b} = \beta e_1

for j = 1, m do

Bestimme V_{j+1}, H_{j+1,j} mit Arnoldi-Verfahren \Rightarrow Durch Anhängen von Spalten/ Zeilen, Stop beim Abbruch Wende G_{12}, G_{23}, \ldots, G_{j-1,j} auf die letzte Spalte von H_{j+1,j} an

Bestimme G_{j,j+1} so, dass H_{h+1,j} = G_{j,j+1}H_{j+1,j} = \begin{bmatrix} \tilde{R}_{j+1} \\ 0 \end{bmatrix}

\hat{b} = G_{j,j+1}\hat{b}

if \hat{b} klein then

Löse \tilde{R}_j y_j = [\hat{b}_i]_{i=1,\ldots,j}
Gebe x_j = x_0 + V_j y_j zurück

end if

end for

Berechne x_m wie oben, beginne von vorne mit x_0 = x_m
```

Bemerkung 3.21. 1. Außer, dass GMRES für invertierte Matrizen für m = n konvergiert, ist bis heute wenig über Konvergenzaussagen bekannt.

- Außer der Matrix-Vektor-Multiplikation im Arnoldi-Verfahren sind an der j-ten Iteration nur Vektor/ Matrizen der größe j, bzw. j × j beteiligt. Der Lösungsvektor wird erst nach erfülltem Konvergenzkriterium zusammengesetzt.
- 3. Für $m \ll n$ sprechen wir von einem **Restarted-GMRES**. Oft ist z.B. m = 20 ausreichend.
- 4. Das Verfahren der vollständigen Orthogonalisierung kann analog abgeändert werden.
- 5. Falls das Arnoldi-Verfahren abbricht, ist die Nährungslösung exakt ("Lucky Breakdown", Übung).
- 6. Das GMRES-Verfahren ist heutzutage (2022) eines der beliebtesten Verfahren zum Lösen LGS ohne weitere, besondere Eigenschaften.

3.8 Der symmetrische Lanczos-Prozess

Frage: Können wir ein besseres Verfahren herleiten, wenn wir zusäztliche Annahmen zu unserer Matrix treffen? z.B. Symmetrie oder spd?

Beobachte: Für A symmetrisch ist

$$H_{m,m} \stackrel{(3.6)}{=} V_m^t A V_m$$

symmetrisch und hat Hessenberg-Struktur

$$H_{m,m} = \begin{bmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \beta_{n-1} & \alpha_{n-1} & \beta_{n-1} \\ & & & & \beta_n & \alpha_n \end{bmatrix}$$

Die vom Arnoldi-Verfahren generierte Matrix $T_m = H_{m,m}$ ist tridiagonal und symmetrisch. <u>Idee:</u>

- Die null-Einträge $h_{ij} = \langle v_j, v_i \rangle, i = 1, \dots, j-2$ müssen gar nicht erst berechnet werden
- Wir können die Synmmetrie im Algorithmus explizit ausnutzen.

Algorithm 3.22 Lanczos-Verfahren

```
Input: A \in \mathbb{R}^{n \times n} symmetrisch, v \in \mathbb{R}^n, x_0 \in \mathbb{R}^n, m \in \mathbb{N}
Output: V_m = \begin{bmatrix} v_1 & \dots & v_m \end{bmatrix} von K_m(A, v), v_{m+1} \in \mathbb{R}^n, \beta \in \mathbb{R}, T_m \in \mathbb{R}^{m \times m}
   \beta_1 = 0, v_0 = 0
   for j = 1, m do
         h_{ij}=0, i=1,\ldots,j_2
         h_{j-1,j} = \beta_j 
 w_j = z - \sum_{i=1}^{j-1} h_{ij} v_i = A v_j - \beta_j v_{j-1} 
 \alpha_j = \langle w_j, v_j \rangle_2 = h_{jj}
                                                                                                                                         \triangleright In der Praxis hat w keinen Index
         w_j = w_j - \alpha_j v_j
                                                                                                                                                      \triangleright w = Av_i - \alpha_i v_i - \beta_i v_{i-1}
         \beta_{j+1} = \left\| w_j \right\|_2
         if \beta_{j+1} = 0 then
                                                                                                                                   ⊳ in der Praxis: testen ob Betrag klein
               Stop
         end if v_{j+1} = \frac{w_j}{\beta_{j+1}}
   end for
   Berechne x_m wie oben, beginne von vorne mit x_0 = x_m
```

Bemerkung 3.23. Das Lanczos-Verfahren implementiert die Berechnung der ONB als Drei-Term-Rekursion, die für höhere Iterationszahlen instabil werden kann.

<u>Idee:</u> Wende unser neues Verfahren auf die Methode der vollständigen Orthogonalisierung an.

Algorithm 3.24 Lanczos-Verfahren für lineare GLeichungssysteme

Input: $A \in \mathbb{R}^{n \times n}$ symmetrisch, $b \in \mathbb{R}^n, x_0 \in \mathbb{R}^n, m \in \mathbb{N}$ Output: $x_m \in x_0 + K_m(A, r_0), x_m \approx A^{-1}b$ $r_0 = b - Ax_0, \beta = \|r_0\|_2, v_1 = \frac{r_0}{\beta_1}$ for j = 1, m do

Bestimme V_j, T_j mittel Lanczos-Verfahren (Stop bei Abbruch)

Löse $T_j y_j = \beta e_1$ $x_0 = V_j y_j$ Konvergenztest

end for

Berechne x_m wie oben, beginne von vorne mit $x_0 = x_m$

Bemerkung 3.25. 1. Lemma 3.17, d.h.

$$||r_j||_2 = ||b - Ax_j||_2 = \beta_{j+1} |e_j^t y_j|$$

gilt weiterhin. Wir können den Konvergenztest also ohne Berechnung von x_j durchführen.

- 2. Da T_j tridiagonal ist, kann $T_j y_j = \beta e_1$ in O(j) gelöst werden.
- 3. Speicherbedarf und Rechenaufwand wachsen immer noch mit j.

Ende von Vorlesung 09 am 10.11.2022