Cours: GIF-21947 Électronique pour ingénieur informaticien

Professeur: Maxime Dubois

Examen final

Question #1 (20 points)

Soit le circuit suivant :

où $V_{entrée1}$ et $V_{entrée2}$ sont des signaux analogiques variant entre 5 V et 10 V. V_{CC} = 12 V, R_1 = 1 k Ω et toutes les diodes sont du type 1N4148.

- a) Si $V_{entr\acute{e}e1} \le V_{entr\acute{e}e2}$, V_{sortie} sera-t-il égal à $V_{entr\acute{e}e1}$ ou à $V_{entr\acute{e}e2}$?
- b) Déterminer la valeur minimale de R₂ pour que puisse fonctionner ce circuit de comparaison pour la plage d'entrée spécifiée (5 V à 10 V).
- c) Si l'on pose $R_2 = 2$ k Ω , quel sera l'écart maximal entre le signal d'entrée et le voltage de sortie, sachant que la diode 1N4148 possède la caractéristique V_{AK} (I_{AK}) suivante :

Question #2 (20 points)

Soit le circuit suivant. L'encadré en noir est un circuit intégré composé de 6 transistors. À ce circuit intégré est connecté une DEL rouge (D1) et une résistance $R1 = 50 \Omega$, tel qu'illustré ici.

- a) V_{en1} et V_{en2} sont deux signaux binaires 0/5V. Indiquer quelle fonction logique effectue le circuit intégré. Dessiner le symbole fonctionnel de cette fonction logique.
- b) Déterminer le courant circulant dans D_1 , sachant que les transistors de sortie ont les caractéristiques I_D (V_{DS}) suivantes.

Question #3(15 points)

Soit le circuit suivant :

- a) Indiquer quelle est la fonction électronique qu'effectue ce quadripôle.
- b) Si $L_1 = 100$ mH et $C = 2200 \mu F$, déterminer la fréquence de résonance (en Hz) de ce quadripôle.

Question #4 (20 points)

Soit le circuit suivant, où un comparateur à sortie collecteur ouvert est utilisé (LM393).

Les valeurs utilisées sont R_1 = 10 k Ω , R_2 = 20 k Ω , R_3 = 33 k Ω , R_4 = 1 k Ω .

- a) En augmentant $V_{entr\acute{e}}$ graduellement de 0 à 12 V. Quelle sera la valeur de V_{sortie} pour $V_{entr\acute{e}}$ = 5 V, 6 V, 7 V, 8 V.
- b) En réduisant $V_{entrée}$ graduellement de 12 V à 0 V. Quelle sera la valeur de V_{sortie} pour $V_{entrée}$ = 8 V, 7 V, 6 V, 5V.

Question #5 (25 points)

Soit le convertisseur Analogique/Numérique simple pente suivant, utilisant un compteur 4 bits (74LS393) et un décodeur d'affichage 7 segments 74LS47. Déterminer la fréquence d'horloge du signal 0/5V HORLOGE permettant d'afficher un « 9 » sur le MAN71 lorsque V ENTRÉE = 9 V.

