

OPTIMIZATION USING GRADIENT DESCENT

Dr. Ram Prasad K VisionCog R&D

MACHINE LEARNING

Machine Learning:

An algorithmic way of making sense (learning) from data.

Applications:

- Spam filters (Classification)
- Predict height based on weight and age (*Regression*)
- Online recommendation systems (*Clustering*)
- Visualizing multidimensional data (*Dimensionality reduction*)

MACHINE LEARNING

Scikit Learn

- Machine Learning library in **Python**
- Simple and efficient tools for data analysis
- Built on NumPy, SciPy, and matplotlib
- API is remarkably well designed

MACHINE LEARNING

Dependent and Independent variable

Expression	Independent	Dependent
y = 3 + 2x	x	y
$y = x^2 - 2x$		y
$z = 5x^2 + 8y^3$	De y	z

Regression:

Modeling a relationship between *dependent* and *independent* variables for *prediction*.

Simple Linear Regression or Univariate Linear Regression

Only one independent variable

Multiple Linear Regression or Multivariate Linear Regression.

More than one independent variable


```
import numpy as np
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
from sklearn.model selection import train test split
X_train, X_test, y_train, y test train test split(
   X, y, test size = 0.20, random state = 42)
```


Mathematical model for Simple Linear Regress

The line models the relationship between cake independent and dependent variable.

Linear Regression

General/Multiple Linear Regression

Linear Regression
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$
 redicted value umber of features

 \hat{y} is the predicted value

n is the number of features

 x_i is the i^{th} feature value

 $heta_j$ is the j^{th} model parameter

is the intercept (also called **bias** term)

Linear Regression

Vectorized general form

$$\hat{\mathbf{y}} = h_{\theta}(\mathbf{x}) = \theta^T \cdot \mathbf{x}$$

heta is the models $\emph{parameter}$ vector

 θ_0 is the bias/intercept

 $\theta_1, \theta_2, \dots, \theta_n$ are **coefficients** or feature weights.

 ${\bf x}$ is the **feature** vector x_0 to x_n with x_0 always 1

 $\theta^T \cdot \mathbf{x}$ is the dot product of θ^T and \mathbf{x}

 $\hat{n}_{ heta}$ is the **hypothesis** function using model parameters heta

Linear Regression

$$\hat{\mathbf{y}} = h_{\theta}(\mathbf{x}) = \theta^T \cdot \mathbf{x}$$

$$MSE(\mathbf{X}, h_{\mathbf{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{\theta}^{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^{2}$$
 cost function

Normal Equation

To find the parameters, we have a closed-form solution:

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

$$\hat{\boldsymbol{\theta}} \text{ is the }$$

 $\hat{\theta}$ is the value of θ that minimizes the cost function (least squares)

y is the vector of target values

Mathematical model for Simple Linear Regress

The line models the relationship between cake independent and dependent variable.


```
import numpy as np
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
from sklearn.model selection import train test split
X_train, X_test, y_train, y test train test split(
   X, y, test size = 0.20, random state = 42)
```



```
X_train_b = np.concatenate([np.ones((80, 1)), X_train], axis=1)

from numpy.linalg import inv

THETA_NE = inv(X_train_b.T.dot(X_train_b)).dot(X_train_b.T).dot(y_train)

print(THETA_NE)

# [[4.14291332]
# [2.79932366]]
```

 $\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$


```
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(X train, y train)
print(model.intercept )
print(model.coef )
  [4.14291332]
 [[2.79932366]]
score = model.score(X test, y test)
print(score)
# 0.8072059636181392
```

print(THETA_NE)

[[4.14291332]

[2.79932366]]

Normal Equation - Analytical solution

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)})^{2}$$

This operation involves *matrix inversion* which is a costly operation.

Complexity of matrix inversion is $O(n^{2/3})$ to $O(n^3)$.

When number of feature increases (more than 1 lakh), this technique will become slow.

If the number of training instances does not fit in the memory, then also this is an issue.

Derivative

$$y = f(x)$$
 \leftarrow ----- functions of single variable

$$\frac{dy}{dx} \Rightarrow \implies \text{rate at which value of } y \text{ changes}$$
w.r.t change of variable x

$$f(x + \epsilon) \approx f(x) + \epsilon f(x)$$

Relationship capturing how small change in input influences the output

derivative of function marked at point

Gradients

Multivariable generalization of derivative

$$f(x_1,x_2,x_3)$$

$$abla f = \left[rac{\partial f(x_1,x_2,x_3)}{\partial x_1} \; , \; rac{\partial f(x_1,x_2,x_3)}{\partial x_2} \; , \; rac{\partial f(x_1,x_2,x_3)}{\partial x_3}
ight]$$

Jacobian

$$f:\mathbb{R}^n o\mathbb{R}^m$$

$$[x_1,x_2,\ldots,x_n] o [f_1,f_2,\ldots,f_m]$$

Hessian

$$f(x_1,x_2,x_3)$$

$$abla f = \left[rac{\partial f(x_1, x_2, x_3)}{\partial x_1} \; , \; rac{\partial f(x_1, x_2, x_3)}{\partial x_2} \; , \; rac{\partial f(x_1, x_2, x_3)}{\partial x_3}
ight]$$

$$f(x_1, x_2, x_3, ..., x_n)$$

Gradient descent

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

- Initialize the parameters *randomly*.
- Calculate the *error* using cost function
- Make small change to parameter (*learning rate*).
- Again calculate error.
- Repeat until error converges to a *minimum*.

Feature scaling

Normalization

$$X' = \frac{X - X_{\min}}{X_{\max} - X_{\min}}$$

Standardization

$$X' = \frac{X - \mu}{\sigma}$$

With feature scaling, optimization is faster

Slower optimization without feature scaling

Batch Gradient Descent

Uses the whole training set for parameter optimization.

Gradient descent usually faster than Normal Equation method for large number of features.

$$\frac{\partial}{\partial \theta_{j}} \text{MSE}(\boldsymbol{\theta}) = \frac{2}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)}) x_{i}^{(i)}$$

$$\nabla_{\boldsymbol{\theta}} \text{MSE}(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{0}} \text{MSE}(\boldsymbol{\theta})$$

$$\vdots$$

$$\frac{\partial}{\partial \theta_{n}} \text{MSE}(\boldsymbol{\theta}) = \frac{2}{m} \mathbf{x}^{T} \cdot (\mathbf{x} \cdot \boldsymbol{\theta} - y)$$

$$0.0$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$


```
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(42)

X = 2 * np.random.rand(100,1)

y = 4 + 3 * X + np.random.rand(100,1)

X_b = np.concatenate([np.ones((100,1)), X], axis = 1)
from numpy line of the late of the late
```


from numpy.linalg import inv
from numpy import dot, transpose

[2.98323418]])

array([[4.51359766](

THETA_NE = $dot(inv(dot(transpose(X_b), X_b)), dot(transpose(X_b), y))$

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$$


```
from numpy.linalg import inv
from numpy import dot, transpose

THETA_NE = dot(inv(dot(transpose(X_b), X_b)), dot(transpose(X_b), y))
```

```
array([[4.51359766],
[2.98323418]])
```

from sklearn.linear_model import LinearRegression

```
model = LinearRegression()
model.fit(X, y)
```

model.intercept model.coef_

```
(array([4 51359766]), array([[2.98323418]]))
```

Batch Gradient Descent

```
eta 0.1 # Learning rate
n_itr = 1000
m = 100 # Number of samples
```

```
# Random initialization of parameters
theta = np.random.rand(2,1)
```

$$\frac{2}{m} \mathbf{X}^T \cdot (\mathbf{X} \cdot \boldsymbol{\theta} - \boldsymbol{y})$$

```
for itr in range(n_itr):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - eta * gradients
```

theta

```
array([[4.51359766],
[2.98323418]])
```


Cost

Stochastic Gradient Descent

- Picks one instance at a time randomly.
- Faster and helps in situations with huge training sets (in billions).
- Randomness helps to escape from local minima.

- For some irregular cost function, it might keep jumping and never settle at minimum.
- Use simulated annealing to solve this issue.
 - Started with larger learning rate and then gradually decrease.

array([[4.51359766],

[2.98323418]]

Stochastic Gradient Descent

```
from sklearn.linear model import SGDRegressor
sqdRegressor = SGDRegressor(n iter=75, penalty=None, eta0=0.1
sqdRegressor.fit(X,y)
sgdRegressor.intercept , sgdRegressor.coef
                (array([4.50569579]), array([2.977436]))
 n = pochs = 75
 t0, t1 = 5, 50 # learnig schedule hyperparameters
 m = 100 # number of samples
 # For simulated annealing
 def learning schedule(t)
     return to/(t+t1)
 theta = np.random.rand(2,1)
```

```
for epoch in range(n epochs
    for i in range (m
        random index = np.random.randint(m)
        xi = X b[random index:random index+1]
        yi = y[random index:random index+1]
        gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
        eta = learning schedule(epoch*m + i)
        theta = theta - eta*gradients
print(theta)
                    SGD
                                          BGD
```

[[4.51266446]

[2.98215661]]

Mini-batch Gradient Descent

- In-between Batch (whole set) and Gradient descent (one sample).
- Works with small random set of training data called *mini-batches*.

Mini-batch Gradient Descent

```
n_iterations = 50
minibatch_size = 20

np.random.seed(42)
theta = np.random.randn(2,1)

t0, t1 = 200, 1000
def learning_schedule(t):
    return t0 / (t + t1)
```

SGD BGD

[[4.51266446] [2.98215661]] array([[4.51359766], [2.98323418]])

```
t = 0
for epoch in range(n iterations);
    shuffled indices = np.random.permutation(m)
   X b shuffled = X b[shuffled indices]
    y shuffled = y[shuffled indices]
    for win range(0, m, minibatch size):
        t += 1
        xi = X b shuffled[i:i+minibatch size]
        yi = y shuffled[i:i+minibatch size]
        gradients = 2/minibatch size * xi.T.dot(xi.dot(theta) - yi)
        eta = learning schedule(t)
                                                     M-BGD
        theta = theta - eta * gradients
                                                   [[4.52651397]
                                                    [2.99723869]]
print(theta)
```