Matemática Discreta

Elementos de Teoria dos Grafos

Universidade de Aveiro 2016/2017

http://moodle.ua.pt

Matemática Discreta

Conceitos fundamentais de teoria dos grafos

Representação de grafos em computador

Grafos orientados e não orientados

Definição (de grafo não orientado)

Designa-se por grafo (não orientado) um terno $G = (V(G), E(G), \psi_G)$, onde V = V(G) é um conjunto não vazio, E = E(G) é um conjunto disjunto de V e ψ_G é uma função tal que para cada $e \in E$, $\psi_G(e)$ denota um par não ordenado de elementos (não necessariamente distintos) de V.

- V conjunto de vértices;
- E conjunto de arestas;
- \blacktriangleright ψ_G função de incidência.
- Se ψ_G determina, para cada $e \in E$, um par ordenado de elementos de V, o terno $\overrightarrow{G} = (V(\overrightarrow{G}), E(\overrightarrow{G}), \psi_{\overrightarrow{G}})$ designa-se por grafo orientado (ou digrafo) e o conjunto E designa-se por conjunto de arcos.

Relação de adjacência

- Dado um grafo G (digrafo G), por simplicidade de escrita, denotam-se as arestas (arcos) $e \in E(G)$ pelas respectivas imagens $\psi_G(e) = uv$, onde uv denota um par não ordenado (ordenado) de vértices. Neste caso u e v designam-se por vértices extremos da aresta (do arco).
- Se o grafo é orientado o vértice u designa-se por cauda e o vértice v por cabeça do arco e.
- Uma aresta diz-se incidente nos seus vértices extremos. Se uma aresta e é incidente nos vértices u e v, então u e v dizem-se adjacentes.
- Duas arestas incidentes num mesmo vértice dizem-se adjacentes.

Exemplos

•
$$V(G) = \{1, 2, 3, 4\}, E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$$

 $\psi_G(e_1) = 14, \psi_G(e_2) = 12, \psi_G(e_3) = 23, \psi_G(e_4) = 43,$
 $\psi_G(e_5) = 44, \psi_G(e_6) = 23.$
• $V(H) = \{a, b, c, d\}, E(H) = \{e_1, e_2, e_3, e_4, e_5\}, \psi_H(e_1) = ad,$

$$\psi_{H}(e_{2}) = ab, \ \psi_{H}(e_{3}) = bc, \ \psi_{H}(e_{4}) = cd, \ \psi_{H}(e_{5}) = ac.$$
• $V(\overrightarrow{J}) = \{1, 2, 3, 4\}, \ E(\overrightarrow{J}) = \{e_{1}, e_{2}, e_{3}, e_{4}\}, \ \psi_{\overrightarrow{J}}(e_{1}) = 41, \ \psi_{\overrightarrow{J}}(e_{2}) = 12, \ \psi_{\overrightarrow{J}}(e_{3}) = 32, \ \psi_{\overrightarrow{J}}(e_{4}) = 43.$

O conceito de vizinhança

- Designa-se por vizinhança de $v \in V(G)$, o conjunto de todos os vértices adjacentes a v.
- A vizinhança do vértice $v \in V(G)$ denota-se por $\mathcal{N}_G(v)$ ou, simplesmente, por $\mathcal{N}(v)$ quando não há dúvida relativamente ao grafo considerado.
- Uma aresta e com ambos os extremos no mesmo vértice u, ou seja, tal que $\psi_G(e) = uu$ diz-se um lacete.
- Duas arestas com os mesmos vértices extremos designam-se por arestas paralelas.

Observação: um grafo admite várias representações gráficas mas cada representação gráfica determina um único grafo.

Grafos e digrafos simples

Definição

Um grafo (digrafo) diz-se simples se não contém arestas (arcos) paralelas(os) nem lacetes.

Observação: Num grafo simples uma aresta é completamente determinada pelos seus vértices extremos e, nesse caso, um grafo G pode definir-se, unicamente, pelo par de conjuntos G = (V(G), E(G)).

- É comum designar um grafo (digrafo) com lacetes e/ou arestas paralelas por multigrafo (multidigrafo).
- De agora em diante, introduzimos os conceitos comuns a grafos e digrafos utilizando apenas o contexto dos grafos (chamando a atenção para os conceitos específicos).

Ordem e dimensão de um grafo

- Designa-se por grafo trivial um grafo simples com um único vértice, ou seja, tal que |V(G)| = 1 e |E(G)| = 0.
- Um grafo diz-se finito se V(G) e E(G) são ambos finitos. Caso contrário, diz-se infinito.

Definição (de ordem de um grafo)

Designa-se por ordem do grafo G e denota-se por $\nu(G)$ (ou ν se não houver dúvidas quanto ao grafo considerado), o número de vértices de G.

Definição (de dimensão de um grafo)

Designa-se por dimensão do grafo G e denota-se por $\varepsilon(G)$ (ou ε se não houver dúvidas quanto ao grafo considerado), o número de arestas de G.

Igualdade de grafos e grafos complementares

Definição

Dois grafos G e H dizem-se iguais, escrevendo-se G = H se

$$V(G) = V(H), E(G) = E(H), \psi_G = \psi_H.$$

Definição

Dado um grafo G simples, designa-se por grafo complementar de G e denota-se por G^c , um grafo simples cujo conjunto de vértices é V(G) e no qual dois vértices são adjacentes se e só se não são adjacentes em G.

Observação: $(G^c)^c = G$.

Grau de um vértice

Exemplo de grafos complementares:

Definição (de grau)

Dado um grafo G e um vértice $v \in V(G)$ designa-se por grau de v e denota-se por $d_G(v)$ (ou, simplesmente, d(v)) o número de arestas incidentes em v (onde os lacetes, caso existam, contam duas vezes).

Maior e menor grau

- O maior grau dos vértices do grafo G denota-se por $\Delta(G)$, ou seja, $\Delta(G) = \max_{v \in V(G)} \{d_G(v)\}.$
- O menor grau dos vértices de G denota-se por $\delta(G)$, ou seja, $\delta(G) = \min_{v \in V(G)} \{d_G(v)\}.$
- No caso de um digrafo, \overrightarrow{G} , podemos dividir o grau de um vértice $v \in V(\overrightarrow{G})$ em
 - ▶ semigrau de entrada $d_{\overrightarrow{G}}(v) = |\{xv \in E(\overrightarrow{G})\}|;$
 - ▶ semigrau de saída $d_{\overrightarrow{G}}^+(v) = |\{vx \in E(\overrightarrow{G})\}|$.
- Verifica-se a igualdade: $d_{\overrightarrow{G}}(v) = d_{\overrightarrow{G}}^-(v) + d_{\overrightarrow{G}}^+(v)$.

Exercício

Utilizando um grafo resolva o seguinte problema:

O Sr. e a Sra. Silva convidaram quatro casais para jantar em casa. Alguns são amigos do Sr. Silva e outros amigos da Sra. Silva. Em casa do casal Silva os convidados que já se conheciam cumprimentaram-se com um aperto de mão e os restantes apenas se saudaram.

Depois de todos terem chegado o Sr. Silva observou

se me excluir a mim todos deram um número diferente de apertos de mão.

Quantos apertos de mão deu o Sr. Silva?

Resolução do exercício

É claro que os membros de um mesmo casal não se cumprimentaram um ao outro, pelo que o número de cumprimentos variou entre 0 e 8.

Por outro lado, uma vez que, excluindo o Sr. Silva, todas as restantes 9 pessoas deram um número diferente de apertos de mão, podemos atribuir a cada uma delas exactamente um índice *j* entre 0 e 8 que corresponde ao número de apertos de mão que deu.

Ou seja, a pessoa n_j deu j apertos de mão.

Resolução do exercício (cont.)

- Uma vez que o número n₈ deu 8 apertos de mão, ele apertou a mão a toda a gente, com excepção dele próprio e da mulher. Logo, n₈ e n₀ são casados.
- Por sua vez, n₇ só não apertou a mão a ele próprio, a n₀ e n₁ (uma vez que este último só deu um aperto de mão e foi a n₈). Logo, n₇ e n₁ são casados.
- Por sua vez, n₆ só não deu apertos de mão a si próprio, a n₀, n₁ e n₂ (note-se que este último deu um aperto de mão a n₈ e n₇. Logo, n₂ e n₆ são casados.
- O n₅ apertou a mão de n₈, n₇, n₆, n₄ e ao Sr. Silva e, consequentemente, é casado com n₃. Assim, n₄ é a Sra Silva (que, naturalmente, não deu um aperto de mão ao Sr. Silva) e ficam determinados todos os apertos de mão.

Como consequência, o Sr. Silva apertou a mão a 4 convidados (n_0, n_7, n_6, e, n_5) .

Resultados básicos

Teorema

Para todo o grafo G, a soma dos graus dos vértices é igual ao dobro do número de arestas, ou seja,

$$\sum_{v \in V(G)} d_G(v) = 2 \mid E(G) \mid$$

Corolário

O número de vértices de grau ímpar é par.

No caso de grafos orientados vem:

$$\sum_{v \in V(G)} d_G^+(v) = \sum_{v \in V(G)} d_G^-(v) = \mid E(G) \mid$$

Matriz de adjacência

Definição (de matriz de adjacência)

Designa-se por matriz de adjacência e denota-se por $A_G = (a_{ij})$, a matriz quadrada de dimensão $\nu \times \nu$, tal que a_{ij} é igual ao número de arestas entre os vértices v_i e v_j (onde se incluem os lacetes cujo número de incidentes num dado vértice v_i é dado por a_{ii}). Sendo \overrightarrow{G} um grafo orientado, então a_{ij} é o número de arcos com cauda em v_i e cabeça em v_j .

• Esta representação utiliza v^2 células de memória.

Exemplo:

$$A_H = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right) \ A_{\overrightarrow{J}} = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array} \right).$$

Representação de grafos em computador

Matriz de incidência aresta-vértice

Definição (de matriz de incidência aresta-vértice)

Designa-se por matriz de incidência aresta-vértice ou simplesmente matriz de incidência e denota-se por $M_G = (m_{ij})$ a matriz de dimensão $\nu \times \varepsilon$ tal que

$$m_{ij} = \left\{ egin{array}{ll} 0 & ext{ se } e_j = v_p v_q ext{ com } i
otin \{p,q\} \ 1 & ext{ se } e_j = v_i v_k, ext{ com } k
eq i \ 2 & ext{ se } e_j = v_i v_i \end{array}
ight.$$

• No caso dos grafos orientados, \vec{G} sem lacetes as entradas da matriz de incidência $M_{\vec{G}} = (m_{ij})$ são dadas por

$$m_{ij} = \left\{ \begin{array}{ll} 0 & \text{ se } e_j = v_\rho v_q \text{ com } i \not \in \{p,q\} \\ -1 & \text{ se } e_j = v_k v_i, \text{ para algum v\'ertice } v_k \\ 1 & \text{ se } e_j = v_i v_k, \text{ para algum v\'ertice } v_k \end{array} \right.$$

Exemplo

• Esta representação utiliza $\nu \times \varepsilon$ células de memória.

$$M_{H} = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} M_{\overrightarrow{J}} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Lista de arestas e dois vectores

• A representação por lista de arestas consiste precisamente em armazenar numa lista todas as arestas do grafo. No caso do grafo H vem [ad, ab, bc, cd, ac]. Esta representação utiliza ε células de memória.

Observação. Perde-se informação sobre vértices isolados.

 Na representação com dois vectores, a lista de arestas é construída recorrendo a dois vectores:

$$F = (f_1, \ldots, f_{\varepsilon})$$
 e $T = (t_1, \ldots, t_{\varepsilon})$

tais que a aresta e_i , $i = 1, ..., \varepsilon$ tem como vértices extremos f_i e t_i . No caso de digrafos o arco e_i tem cauda f_i e cabeça t_i . Exemplo da representação com dois vectores: Considerando o digrafo \overrightarrow{J} , obtém-se F = (4, 1, 3, 4) e T = (1, 2, 2, 3).

Listas de sucessores ou listas de adjacência

• As listas de sucessores (ou listas de adjacência) utilizam ν listas (uma por cada vértice). A cada vértice ν faz-se corresponder a lista de todos os vértices que lhe são adjacentes (ou todos os vértices que são cabeça de um arco com cauda em ν se o grafo é orientado), com eventual repetição no caso de multigrafos.

```
Exemplo: no caso do grafo \overrightarrow{J} vem \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1,3 \end{pmatrix}
```

• Esta representação utiliza $\varepsilon + \nu$ células de memória.