Machine learning diagnostic

Debugging a learning algorithm

- Regularized linear regression
- Large errors in prediction
- Solutions
- 1. Get more training examples
- 2. Try smaller set of features
- 3. Try getting additional features
- 4. Try adding polynomial features
- 5. Try decreasing λ
- 6. Try increasing λ

$$J(\vec{\mathbf{w}},b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} w_{j}^{2}$$

Evaluating model

$$f_{\vec{w},b}(\vec{x}) = w_1 x + w_2 x^2 + \dots + w_n x^n + b$$

Issue: Model fits the training data well but will fail to generalize to new examples not in the training set

 x_1 = size in feet²

 x_2 = no. of bedrooms

 x_3 = no. of floors

 x_4 = age of home in years

Evaluating model (Training/Test set)

Dataset:

size	price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

$$(x^{(1)}, y^{(1)})$$

$$(x^{(2)}, y^{(2)})$$

$$(x^{(m_{train})}, y^{(m_{train})})$$

$$(x^{(m_{train})}, y^{(m_{train})})$$

$$(x^{(m_{train})}, y^{(m_{train})})$$

$$\vdots$$

$$(x^{(m_{test})}, y^{(m_{test})})$$

$$\vdots$$

$$(x^{(m_{test})}, y^{(m_{test})})$$

Train/test procedure for linear regression

$$J(\vec{w}, b) = \left[\frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (f_{\vec{w}, b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \right]$$

Compute test error:

$$J_{test}(\vec{\mathbf{w}}, b) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(f_{\vec{\mathbf{w}}, b} \left(\vec{\mathbf{x}}_{test}^{(i)} \right) - y_{test}^{(i)} \right)^2 \right]$$

Compute training error:

$$J_{train}(\vec{\mathbf{w}}, b) = \frac{1}{2m_{train}} \left[\sum_{i=1}^{m_{train}} \left(f_{\vec{\mathbf{w}}, b} \left(\vec{\mathbf{x}}_{train}^{(i)} \right) - y_{train}^{(i)} \right)^2 \right]$$

Train/test procedure for linear regression

Train/test procedure for logistic regression

$$J(\vec{\mathbf{w}},b) = -\frac{1}{m_{train}} \sum_{i=1}^{m_{train}} \left[y^{(i)} \log \left(f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) \right) \right] \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=1}^{n} w_j^2 \right) \\ + \frac{\lambda}{2m_{train}} \sum_{j=1}^{n} w_j^2 \left(\frac{1}{m_{train}} \sum_{j=$$

Compute test error:

$$J_{test}(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} \left[y_{test}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}_{test}^{(i)} \right) \right) + \left(1 - y_{test}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}_{test}^{(i)} \right) \right) \right]$$

$$\text{Compute train error:} \\ J_{train}(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m_{train}} \sum_{i=1}^{m_{train}} \left[y_{train}^{(i)} \log \left(f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}_{train}^{(i)} \right) \right) + \left(1 - y_{train}^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}_{train}^{(i)} \right) \right) \right]$$

Train/test procedure for logistic regression

fraction of the test set and the fraction of the train set that the algorithm has misclassified.

$$\hat{y} = \begin{cases} 1 \text{ if } f_{\vec{w},b}(\vec{x}^{(i)}) \ge 0.5\\ 0 \text{ if } f_{\vec{w},b}(\vec{x}^{(i)}) < 0.5 \end{cases}$$

count $\hat{y} \neq y$

 $J_{test}(\vec{w}, b)$ is the fraction of the test set that has been misclassified.

 $J_{train}(\vec{w}, b)$ is the fraction of the train set that has been misclassified.

Model selection

1. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + b$ 2. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + b$ 3. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + w_3x^3 + b$ \vdots 10. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + \dots + w_{10}x^{10} + b$

How well does the model perform? Report test set error $J_{test}(w^{<5>}, b^{<5>})$? The problem: $J_{test}(w^{<5>}, b^{<5>})$ is likely to be an optimistic estimate of generalization error (ie. $J_{test}(w^{<5>}, b^{<5>}) < \text{generalization error}$). Because an extra parameter d (degree of polynomial) was chosen using the test set. w, b are overly optimistic estimate of generalization error on training data.

Training/Cross validation/Test set

Dataset:

size	price	
2104	400	$(x^{(1)}, y^{(1)})$
1600	330	
2400	369	$\left(x^{(m_{train})},y^{(m_{train})}\right)$
1416	232	
3000	540	$\left(x_{cv}^{(1)},y_{cv}^{(1)}\right)$
1985	300	
1534	315	$\left(x_{cv}^{(m_{cv})},y_{cv}^{(m_{cv})}\right)$
1427	199	$\left(x_{test}^{(1)}, y_{test}^{(1)}\right)$
1380	212	(*test, ytest)
1494	243	$\left(x_{test}^{(m_{test})}, y_{test}^{(m_{test})}\right)$
		\"test 'Jtest)

Training/Cross validation/Test set

Training error:
$$J_{train}(\vec{\mathbf{w}},b) = \frac{1}{2m_{train}} \left[\sum_{i=1}^{m_{train}} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 \right]$$

Cross validation
$$J_{cv}(\vec{\mathbf{w}},b) = \frac{1}{2m_{cv}} \left[\sum_{i=1}^{m_{cv}} \left(f_{\vec{\mathbf{w}},b} \left(\vec{\mathbf{x}}_{cv}^{(i)} \right) - y_{cv}^{(i)} \right)^2 \right]$$
 (validation error, dev error)

Test error:
$$J_{test}(\vec{\mathbf{w}}, b) = \frac{1}{2m_{test}} \left[\sum_{i=1}^{m_{test}} \left(f_{\vec{\mathbf{w}}, b} \left(\vec{\mathbf{x}}_{test}^{(i)} \right) - y_{test}^{(i)} \right)^2 \right]$$

Model selection

- 1. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + b$ 2. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + b$ 3. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + w_3x^3 + b$ \vdots 10. $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x + w_2x^2 + \dots + w_{10}x^{10} + b$
- How well does the model perform? Report test set error $J_{test}(w^{<5>}, b^{<5>})$? The problem: $J_{test}(w^{<5>}, b^{<5>})$ is likely to be an optimistic estimate of generalization error (ie. $J_{test}(w^{<5>}, b^{<5>}) < generalization error$). Because an extra parameter d (degree of polynomial) was chosen using the test set.

w, b are overly optimistic estimate of generalization error on training data.

$$R^2 = 1 - rac{SS_{res}}{SS_{tot}}$$

Interpretation:

- $R^2=1$ \rightarrow Perfect fit (Model explains 100% of variance)
- $R^2=0$ \rightarrow Model explains no variance (Same as predicting the mean)
- ullet $R^2 < 0$ o Model performs worse than the mean prediction

R² score (R-squared)

where:

- $SS_{res} = \sum (y_{true} y_{pred})^2$ (Sum of Squared Residuals)
- ullet $SS_{tot} = \sum (y_{true} ar{y})^2$ (Total Sum of Squares)
- y_{true} = Actual values
- y_{pred} = Predicted values
- \bar{y} = Mean of actual values

- Metric that measures how well a regression model explains the variance in the target variable
- Coefficient of determination

Insurance Dataset

age	sex	bmi	children	smoker	region	charges
19	female	27.9	0	yes	southwest	16884.924
18	male	33.77	1	no	southeast	1725.5523
28	male	33	3	no	southeast	4449.462
33	male	22.705	0	no	northwest	21984.4706
32	male	28.88	0	no	northwest	3866.8552

Steps to Follow:

- 1. Load the dataset.
- 2. Perform exploratory data analysis (EDA).
- 3. Train a baseline **Linear Regression** model.
- 4. Apply **Ridge Regression** (L2) to see how it reduces overfitting.
- 5. Apply **Lasso Regression** (L1) to observe feature selection effects.
- 6. Compare model performance using R² score and Mean Squared Error (MSE).