

SEQUENCE LISTING

```
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
       BIONOSTRA, S.L.
<120> CHIMERIC EMPTY CAPSIDS OF THE INFECTIOUS BURSAL DISEASE VIRUS (IBDV),
OBTAINMENT PROCESS AND APPLICATIONS
<130>
       7572-73329-01
<140>
      US 10/579,428
<141>
       2006-05-12
<150>
       ES P200400120
<151>
       2004-01-21
       14
<160>
<170> PatentIn version 3.1
<210>
<211>
       35
<212>
      DNA
<213>
      Artificial sequence
<220>
<223> Oligo I primer
<400>
gcgcagatct atgacaaacc tgtcagatca aaccc
                                                                        35
<210>
<211>
       34
<212>
      DNA
<213> Artificial sequence
<220>
<223> Oligo II primer
<400> 2
                                                                        34
gcgcaagctt aggcgagagt cagctgcctt atgc
<210>
<211>
      7595
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      Plasmid pFBD/pVP2-his-VP3
<220>
<221>
       promoter
<222>
       (157)..(285)
```

<222> (291)..(1289) <223> pVP2 ORF

Promoter ppolh

<223>

<220> <221>

Page 1

<220>

<221> promoter <222> (7443)..(7503) <223> Promoter p10 <400> 3 60 gggtgatcaa gtcttcgtcg agtgattgta aataaaatgt aatttacagt atagtatttt 120 aattaatata caaatgattt gataataatt cttatttaac tataatatat tgtgttgggt 180 tgaattaaag gtccgtatac tccggaatat taatagatca tggagataat taaaatgata 240 accatctcgc aaataaataa gtattttact gttttcgtaa cagttttgta ataaaaaaac ctataaatat tccggattat tcataccgtc ccaccatcgg gcgcggatct atg aca 296 Met Thr aac ctg tca gat caa acc cag cag att gtt ccg ttc ata cgg agc ctt 344 Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg Ser Leu ctg atg cca aca acc gga ccg gcg tcc att ccg gac gac acc ctg gag 392 Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr Leu Glu aag cac act ctc agg tca gag acc tcg acc tac aat ttg act gtg ggg Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr Val Gly 40 45 50440 gac aca ggg tca ggg cta att gtc ttt ttc cct gga ttc cct ggc tca 488 Asp Thr Gly Ser Gly Leu Ile Val Phe Phe Pro Gly Phe Pro Gly Ser att gtg ggt gct cac tac aca ctg cag ggc aat ggg aac tac aag ttc 536 Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr Lys Phe gat cag atg ctc ctg act gcc cag aac cta ccg gcc agt tac aac tac 584 Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Prō Āla Sēr Tyr Asn Tyr tgc agg cta gtg agt cgg agt ctc aca gtg agg tca agc aca ctt cct Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr Leu Pro 100 105 110 632 680 ggt ggc gtt tat gca cta aac ggc acc ata aac gcc gtg acc ttc caa ĢĪy GĪy Val Tyr Āla Leu Asn GĪy Thr Ile Asn Āla Vaī Thr Phe Gln 120 125 gga agc ctg agt gaa ctg aca gat gtt agc tac aat ggg ttg atg tct Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu Met Ser 728 135 776 gca aca gcc aac atc aac gac aaa att ggg aac gtc cta gta ggg gaa Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val Gly Glu ggg gtc acc gtc ctc agc tta ccc aca tca tat gat ctt ggg tat gtg Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly Tyr Val 824 165 agg ctt ggt gac ccc att ccc gca ata ggg ctt gac cca aaa atg gta 872 Page 2

642669 Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys Met Val gcc aca tgt gac agc agt gac agg ccc aga gtc tac acc ata act gca 920 Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile Thr Ala 200 968 gcc gat gat tac caa ttc tca tca cag tac caa cca ggt ggg gta aca Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly Val Thr 215 atc aca ctg ttc tca gcc aac att gat gcc atc aca agc ctc agc gtt 1016 Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu Ser Val 230 1064 ggg gga gag ctc gtg ttt cga aca agc gtc cac ggc ctt gta ctg ggc Gly Gly Glu Leu Val Phe Arg Thr Ser Val His Ğly Leu Val Leu Ğly 245 250 gcc acc atc tac ctc ata ggc ttt gat ggg aca acg gta atc acc agg 1112 Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile Thr Arg 260 265 270 gct gtg gcc gca aac aat ggg ctg acg acc ggc acc gac aac ctt atg 1160 Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn Leu Met 275 280 285 290 cca ttc aat ctt gtg att cca aca aac gag ata acc cag cca atc aca 1208 Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro Ile Thr 295 300 tcc atc aaa ctg gag ata gtg acc tcc aaa agt ggt ggt 1256 cag gca ggg Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gly Gln Ala Gly 315 320 gat cag atg tca tgg tcg gca aga ggg agc cta gcagtgacga tccatggtgg 1309 Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu caactatcca ggggccctcc gtcccgtcac gctagtggcc tacgaaagag tggcaacagg 1369 atccgtcgtt acggtcgctg gggtgagcaa cttcgagctg atcccaaatc ctgaactagc 1429 aaagaacctg gttacagaat acggccgatt tgacccagga gccatgaact acacaaaatt 1489 gatactgagt gagagggacc gtcttggcat caagaccgtc tggccaacaa gggagtacac 1549 tgactttcgt gaatacttca tggaggtggc cgacctcaac tctcccctga agattgcagg 1609 agcattcggc ttcaaagaca taatccgggc cataaggagg atagctgtgc cggtggtctc 1669 cacattgttc ccacctgccg ctcccctagc ccatgcaatt ggggaaggtg tagactacct 1729 gctgggcgat gaggcccagg ccgcttcagg aactgctcga gccgcgtcag gaaaagcaag 1789 agctgcctca ggccgcataa ggcagctgac tctcgcctaa gcttgtcgag aagtactaga 1849 ggatcataat cagccatacc acatttgtag aggttttact tgctttaaaa aacctcccac 1909 acctcccct gaacctgaaa cataaaatga atgcaattgt tgttqttaac ttqtttattq 1969 cagCttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt 2029

tttcactgca	ttctagttgt	ggtttgtcca	aactcatcaa		catgtctgga	2089
tctgatcact	gcttgagcct	aggagatccg	aaccagataa	gtgaaatcta	gttccaaact	2149
attttgtcat	ttttaatttt	cgtattagct	tacgacgcta	cacccagttc	ccatctattt	2209
tgtcactctt	ccctaaataa	tccttaaaaa	ctccatttcc	acccctccca	gttcccaact	2269
attttgtccg	cccacagcgg	ggcatttttc	ttcctgttat	gtttttaatc	aaacatcctg	2329
ccaactccat	gtgacaaacc	gtcatcttcg	gctactttt	ctctgtcaca	gaatgaaaat	2389
ttttctgtca	tctcttcgtt	attaatgttt	gtaattgact	gaatatcaac	gcttatttgc	2449
agcctgaatg	gcgaatggga	cgcgccctgt	agcggcgcat	taagcgcggc	gggtgtggtg	2509
gttacgcgca	gcgtgaccgc	tacacttgcc	agcgccctag	cgcccgctcc	tttcgctttc	2569
ttcccttcct	ttctcgccac	gttcgccggc	tttccccgtc	aagctctaaa	tcgggggctc	2629
cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	ccaaaaaact	tgattagggt	2689
gatggttcac	gtagtgggcc	atcgccctga	tagacggttt	ttcgcccttt	gacgttggag	2749
tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	caacactcaa	ccctatctcg	2809
gtctattctt	ttgatttata	agggattttg	ccgatttcgg	cctattggtt	aaaaaatgag	2869
ctgatttaac	aaaaatttaa	cgcgaatttt	aacaaaatat	taacgtttac	aatttcaggt	2929
ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	aatacattca	2989
aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	ttgaaaaagg	3049
aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	ggcattttgc	3109
cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	agatcagttg	3169
ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	tgagagtttt	3229
cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	tggcgcggta	3289
ttatcccgta	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	ttctcagaat	3349
gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	gacagtaaga	3409
gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	acttctgaca	3469
acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	tcatgtaact	3529
cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	gcgtgacacc	3589
acgatgcctg	tagcaatggc	aacaacgttg	cgcaaactat	taactggcga	actacttact	3649
ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	aggaccactt	3709
ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	cggtgagcgt	3769
gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	tatcgtagtt	3829
atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	cgctgagata	3889
ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag Page		tatactttag	3949

attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	ttttgataat	4009
ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	ccccgtagaa	4069
aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	cttgcaaaca	4129
aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	aactctttt	4189
ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	agtgtagccg	4249
tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	tctgctaatc	4309
ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	ggactcaaga	4369
cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	cacacagccc	4429
agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagca	ttgagaaagc	4489
gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	ggtcggaaca	4549
ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	tcctgtcggg	4609
tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	gcggagccta	4669
tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	gccttttgct	4729
cacatgttct	ttcctgcgtt	atcccctgat	tctgtggata	accgtattac	cgcctttgag	4789
tgagctgata	ccgctcgccg	cagccgaacg	accgagcgca	gcgagtcagt	gagcgaggaa	4849
gcggaagagc	gcctgatgcg	gtattttctc	cttacgcatc	tgtgcggtat	ttcacaccgc	4909
agaccagccg	cgtaacctgg	caaaatcggt	tacggttgag	taataaatgg	atgccctgcg	4969
taagcgggtg	tgggcggaca	ataaagtctt	aaactgaaca	aaatagatct	aaactatgac	5029
aataaagtct	taaactagac	agaatagttg	taaactgaaa	tcagtccagt	tatgctgtga	5089
aaaagcatac	tggacttttg	ttatggctaa	agcaaactct	tcattttctg	aagtgcaaat	5149
tgcccgtcgt	attaaagagg	ggcgtggcca	agggcatggt	aaagactata	ttcgcggcgt	5209
tgtgacaatt	taccgaacaa	ctccgcggcc	gggaagccga	tctcggcttg	aacgaattgt	5269
taggtggcgg	tacttgggtc	gatatcaaag	tgcatcactt	cttcccgtat	gcccaacttt	5329
gtatagagag	ccactgcggg	atcgtcaccg	taatctgctt	gcacgtagat	cacataagca	5389
ccaagcgcgt	tggcctcatg	cttgaggaga	ttgatgagcg	cggtggcaat	gccctgcctc	5449
cggtgctcgc	cggagactgc	gagatcatag	atatagatct	cactacgcgg	ctgctcaaac	5509
ctgggcagaa	cgtaagccgc	gagagcgcca	acaaccgctt	cttggtcgaa	ggcagcaagc	5569
gcgatgaatg	tcttactacg	gagcaagttc	ccgaggtaat	cggagtccgg	ctgatgttgg	5629
gagtaggtgg	ctacgtctcc	gaactcacga	ccgaaaagat	caagagcagc	ccgcatggat	5689
ttgacttggt	cagggccgag	cctacatgtg	cgaatgatgc	ccatacttga	gccacctaac	5749
tttgttttag	ggcgactgcc	ctgctgcgta	acatcgttgc	tgctgcgtaa	catcgttgct	5809

gctccataac	atcaaacatc	gacccacggc	gtaacgcgct	tgctgcttgg	atgcccgagg	5869
catagactgt	acaaaaaaac	agtcataaca	agccatgaaa	accgccactg	cgccgttacc	5929
accgctgcgt	tcggtcaagg	ttctggacca	gttgcgtgag	cgcatacgct	acttgcatta	5989
cagtttacga	accgaacagg	cttatgtcaa	ctgggttcgt	gccttcatcc	gtttccacgg	6049
tgtgcgtcac	ccggcaacct	tgggcagcag	cgaagtcgag	gcatttctgt	cctggctggc	6109
gaacgagcgc	aaggtttcgg	tctccacgca	tcgtcaggca	ttggcggcct	tgctgttctt	6169
ctacggcaag	gtgctgtgca	cggatctgcc	ctggcttcag	gagatcggta	gacctcggcc	6229
gtcgcggcgc	ttgccggtgg	tgctgacccc	ggatgaagtg	gttcgcatcc	tcggttttct	6289
ggaaggcgag	catcgtttgt	tcgcccagga	ctctagctat	agttctagtg	gttggcctac	6349
gtacccgtag	tggctatggc	agggcttgcc	gccccgacgt	tggctgcgag	ccctgggcct	6409
tcacccgaac	ttgggggttg	gggtggggaa	aaggaagaaa	cgcgggcgta	ttggtcccaa	6469
tggggtctcg	gtggggtatc	gacagagtgc	cagccctggg	accgaacccc	gcgtttatga	6529
acaaacgacc	caacacccgt	gcgttttatt	ctgtctttt	attgccgtca	tagcgcgggt	6589
tccttccggt	attgtctcct	tccgtgtttc	agttagcctc	ccccatctcc	cggtaccgca	6649
tgcctcgaga	ctgcaggctc	tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	6709
aggcctttga	attccggatc	ctcactcaag	gtcctcatca	gagacggtcc	tgatccagcg	6769
gcccagccga	ccagggggtc	tctgtgttgg	agcattgggt	tttggcttgg	gctttggtag	6829
agcccgcctg	ggattgcgat	gcttcatctc	catcgcagtc	aagagcagat	ctttcatctg	6889
ttcttggttt	gggccacgtc	catggttgat	ttcatagact	ttggcaactt	cgtctatgaa	6949
agcttggggt	ggctctgcct	gtcctggagc	cccgtagatc	gacgtagctg	cccttaggat	7009
ttgttcttct	gatgccaacc	ggctcttctc	tgcatgcacg	tagtctagat	agtcctcgtt	7069
tgggtccggt	atttctcgtt	tgttctgcca	gtactttacc	tggcctgggc	ttggccctcg	7129
gtgcccattg	agtgctaccc	attctggtgt	tgcaaagtag	atgcccatgg	tctccatctt	7189
ctttgagatc	cgtgtgtctt	tttccctctg	tgcttcctct	ggtgtggggc	cccgagcctc	7249
cactccgtag	cctgctgtcc	cgtacttggc	cctttgcgac	ttgctgcctg	cttgtggtgc	7309
gtttgcaaga	aaatttcgca	tccgatgggc	gttcgggtcg	ctgagtgcga	agttggccat	7369
gtcagtcaca	atcccattct	cttccagcca	catgaacaca	ctgagtgcag	attggaatag	7429
tgggtccacg	ttggctgctg	cttccattgc	tctgacggca	ctctcgagtt	cgggggtctc	7489
tttgaactct	gatgcagcca	tggcgccctg	aaaatacagg	ttttcggtcg	ttgggatatc	7549
gtaatcgtga	tggtgatggt	gatggtagta	cgacatggtt	tcggac		7595

<212> PRT <213> Artificial sequence

.220

pVP2-his-VP3 protein <223> <400> Met Thr Asn Leu Ser Asp Gln Thr Gln Gln Ile Val Pro Phe Ile Arg
1 10 15 Ser Leu Leu Met Pro Thr Thr Gly Pro Ala Ser Ile Pro Asp Asp Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$ Leu Glu Lys His Thr Leu Arg Ser Glu Thr Ser Thr Tyr Asn Leu Thr 35 40 45 Val Gly Asp Thr Gly Ser Gly Leu Ile Val Phe Pro Gly Phe Pro 50 60 Gly Ser Ile Val Gly Ala His Tyr Thr Leu Gln Gly Asn Gly Asn Tyr 65 70 75 80 Lys Phe Asp Gln Met Leu Leu Thr Ala Gln Asn Leu Pro Ala Ser Tyr 85 90 95 Asn Tyr Cys Arg Leu Val Ser Arg Ser Leu Thr Val Arg Ser Ser Thr 100 105 110 Leu Pro Gly Gly Val Tyr Ala Leu Asn Gly Thr Ile Asn Ala Val Thr 115 120 125 Phe Gln Gly Ser Leu Ser Glu Leu Thr Asp Val Ser Tyr Asn Gly Leu 130 135 140 Met Ser Ala Thr Ala Asn Ile Asn Asp Lys Ile Gly Asn Val Leu Val 145 150 155 160 Gly Glu Gly Val Thr Val Leu Ser Leu Pro Thr Ser Tyr Asp Leu Gly 165 170 175 Tyr Val Arg Leu Gly Asp Pro Ile Pro Ala Ile Gly Leu Asp Pro Lys 180 185 190 Met Val Ala Thr Cys Asp Ser Ser Asp Arg Pro Arg Val Tyr Thr Ile 195 200 205 Thr Ala Ala Asp Asp Tyr Gln Phe Ser Ser Gln Tyr Gln Pro Gly Gly 210 220 Val Thr Ile Thr Leu Phe Ser Ala Asn Ile Asp Ala Ile Thr Ser Leu 225 230 235 240 Ser Val Gly Glu Leu Val Phe Arg Thr Ser Val His Gly Leu Val 245 250 255 Leu Gly Ala Thr Ile Tyr Leu Ile Gly Phe Asp Gly Thr Thr Val Ile 260 265 270 Thr Arg Ala Val Ala Ala Asn Asn Gly Leu Thr Thr Gly Thr Asp Asn 275 280 285

Leu Met Pro Phe Asn Leu Val Ile Pro Thr Asn Glu Ile Thr Gln Pro

Page 7

```
290
                         295
                                              300
Ile Thr Ser Ile Lys Leu Glu Ile Val Thr Ser Lys Ser Gly Gly Gln
Ala Gly Asp Gln Met Ser Trp Ser Ala Arg Gly Ser Leu
<210>
       35
<211>
<212> DNA
<213>
      Artificial sequence
<220>
<223> Oligo III primer
<400>
                                                                         35
gcgcagatct atgacaaacc tgtcagatca aaccc
<210>
       6
<211>
       34
<212>
      DNA
<213>
       Artificial sequence
<220>
<223>
      Oligo IV primer
<400>
                                                                         34
gcgcaagctt aggcgagagt cagctgcctt atgc
<210>
       9600
<211>
<212>
       DNA
<213>
       Artificial sequence
<220>
<223>
       Plasmid pESCURA/pVP2-VP3-GFP
<220>
<221>
       promoter
<222>
       (5649)..(5859)
<223>
       Promoter 1 (pVP2)
<220>
<221>
       promoter
<222>
       (7402)..(8080)
<223>
       Promoter 2 (VP3-GFP)
<220>
<221>
       CDS
<222>
       (8086)..(9597)
<223>
       VP3-GFP ORF
<400> 7
ggccgcacta gtatcgatgg attacaagga tgacgacgat aagatctgag ctcttaatta
                                                                        60
                                                                       120
acaattcttc gccagaggtt tggtcaagtc tccaatcaag gttgtcggct tgtctacctt
```

gccagaaatt tacgaaa	aga tggaaaaggg	tcaaatcqtt		ttgttgacac	180
ttctaaataa gcgaatt					240
aataagtgta tacaaat					300
gagtaactct ttcctgt	·				360
tcagctgcat taatgaa					420
ttccgcttcc tcgctca					480
agctcactca aaggcgg					540
catgtgagca aaaggcc					600
tttccatagg ctccgcc					660
gcgaaacccg acaggac					720
ctctcctgtt ccgaccc					780
cgtggcgctt tctcata					840
					900
caagetggge tgtgtge					960
ctatcgtctt gagtcca					1020
taacaggatt agcagag		•		•	
taactacggc tacacta					1080
cttcggaaaa agagttg	gta gctcttgatc	cggcaaacaa	accaccgctg	gtagcggtgg	1140
tttttttgtt tgcaagc	agc agattacgcg	cagaaaaaaa	ggatctcaag	aagatccttt	1200
gatcttttct acggggt	ctg acgctcagtg	gaacgaaaac	tcacgttaag	ggattttggt	1260
catgagatta tcaaaaa	gga tcttcaccta	gatcctttta	aattaaaaat	gaagttttaa	1320
atcaatctaa agtatat	atg agtaaacttg	gtctgacagt	taccaatgct	taatcagtga	1380
ggcacctatc tcagcga	tct gtctatttcg	ttcatccata	gttgcctgac	tccccgtcgt	1440
gtagataact acgatac	ggg agggcttacc	atctggcccc	agtgctgcaa	tgataccgcg	1500
agacccacgc tcaccgg	ctc cagatttatc	agcaataaac	cagccagccg	gaagggccga	1560
gcgcagaagt ggtcctg	caa ctttatccgc	ctccatccag	tctattaatt	gttgccggga	1620
agctagagta agtagtt	cgc cagttaatag	tttgcgcaac	gttgttgcca	ttgctacagg	1680
catcgtggtg tcacgct	cgt cgtttggtat	ggcttcattc	agctccggtt	cccaacgatc	1740
aaggcgagtt acatgat	ccc ccatgttgtg	caaaaaagcg	gttagctcct	tcggtcctcc	1800
gatcgttgtc agaagta	agt tggccgcagt	gttatcactc	atggttatgg	cagcactgca	1860
taattctctt actgtca	tgc catccgtaag	atgcttttct	gtgactggtg	agtactcaac	1920
caagtcattc tgagaat	agt gtatgcggcg	accgagttgc	tcttgcccgg	cgtcaatacg	1980
ggataatacc gcgccac					2040
	J : J :	Page		3	

ggggcgaaaa	ctctcaagga	tcttaccgct	gttgagatcc	agttcgatgt	aacccactcg	2100
tgcacccaac	tgatcttcag	catcttttac	tttcaccagc	gtttct gg gt	gagcaaaaac	2160
aggaaggcaa	aatgccgcaa	aaaagggaat	aagggcgaca	cggaaatgtt	gaatactcat	2220
actcttcctt	tttcaatatt	attgaagcat	ttatcagggt	tattgtctca	tgagcggata	2280
catatttgaa	tgtatttaga	aaaataaaca	aataggggtt	ccgcgcacat	ttccccgaaa	2340
ag tg ccacct	gaacgaagca	tctgtgcttc	attttgtaga	acaaaaatgc	aacgcgagag	2400
cgctaatttt	tcaaacaaag	aatctgagct	gcatttttac	agaacagaaa	tgcaacgcga	2460
aa g cgctatt	ttaccaacga	agaatctgtg	cttcattttt	gtaaaacaaa	aatgcaacgc	2520
gagagcgcta	atttttcaaa	caaagaatct	gagctgcatt	tttacagaac	agaaatgcaa	2580
cgcgagagcg	ctattttacc	aacaaagaat	ctatacttct	tttttgttct	acaaaaatgc	2640
atcccgagag	cgctattttt	ctaacaaagc	atcttagatt	acttttttc	tcctttgtgc	2700
gctctataat	gcagtctctt	gataactttt	tgcactgtag	gtccgttaag	gttagaagaa	2760
ggctactttg	gtgtctattt	tctcttccat	aaaaaaagcc	tgactccact	tcccgcgttt	2820
actgattact	agcgaagctg	cgggtgcatt	ttttcaagat	aaaggcatcc	ccgattatat	2880
tctataccga	tgtggattgc	gcatactttg	tgaacagaaa	gtgatagcgt	tgatgattct	2940
tcattggtca	gaaaattatg	aacggtttct	tctattttgt	ctctatatac	tacgtatagg	3000
aaatgtttac	attttcgtat	tgttttcgat	tcactctatg	aatagttctt	actacaattt	3060
ttttgtctaa	agagtaatac	tagagataaa	cataaaaaat	gtagaggtcg	agtttagatg	3120
caagttcaag	gagcgaaagg	tggatgggta	ggttatatag	ggatatagca	cagagatata	3180
tagcaaagag	atacttttga	gcaatgtttg	tggaagcggt	attcgcaata	ttttagtagc	3240
tcgttacagt	ccggtgcgtt	tttggttttt	tgaaagtgcg	tcttcagagc	gcttttggtt	3300
ttcaaaagcg	ctctgaagtt	cctatacttt	ctagagaata	ggaacttcgg	aataggaact	3360
tcaaagcgtt	tccgaaaacg	agcgcttccg	aaaatgcaac	gcgagctgcg	cacatacagc	3420
tcactgttca	cgtcgcacct	atatct g cgt	gttgcct g ta	tatatatata	catgagaaga	3480
acggcatagt	gc g tgtttat	gcttaaatgc	gtacttatat	gcgtctattt	atgtaggatg	3540
aaag g tagtc	tagtacctcc	tgtgatatta	tcccattcca	tgcggggtat	cgtatgcttc	3600
cttcagcact	accctttagc	tgttctatat	gctgccactc	ctcaattgga	ttagtctcat	3660
ccttcaatgc	tatcatttcc	tttgatattg	gatcatacta	agaaaccatt	attatcatga	3720
cattaaccta	taaaaatagg	cgtatcacga	ggccctttcg	tctcgcgcgt	ttcggtgatg	3780
acggtgaaaa	cctctgacac	atgcagctcc	cggagacggt	cacagcttgt	ctgtaagcgg	3840
atgccgggag	cagacaagcc	cgtcagggcg	cgtcagcggg	tgttggcggg	tgtcggggct	3900

3960 ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatacc acagcttttc 4020 aattcaattc atcattttt ttttattctt ttttttgatt tcggtttctt tgaaattttt 4080 ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga cttagattgg 4140 tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct acatataagg 4200 aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc atgcacgaaa 4260 4320 agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta ctggagttag 4380 ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc ttgactgatt 4440 tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac aatttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag tactctgcgg 4500 4560 gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct agaggccttt 4620 tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat actaagggta 4680 ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct caaagagaca 4740 tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg ggtttagatg 4800 acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc tctacaggat 4860 4920 ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct aaggtagagg 4980 gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc cagcaaaact 5040 aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga gcttcaattt aattatatca gttattaccc tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa 5100 taccgcatca ggaaattgta aacgttaata ttttgttaaa attcgcgtta aatttttgtt 5160 aaatcagctc attttttaac caataggccg aaatcggcaa aatcccttat aaatcaaaag 5220 aatagaccga gatagggttg agtgttgttc cagtttggaa caagagtcca ctattaaaga 5280 5340 acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcacta aatcggaacc 5400 ctaaagggag cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg 5460 aagggaagaa agcgaaagga gcgggcgcta gggcgctggc aagtgtagcg gtcacgctgc 5520 gcgtaaccac cacacccgcc gcgcttaatg cgccgctaca gggcgcgtcg cgccattcgc 5580 5640 cattcaggct gcgcaactgt tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc agctggatct tcgagcgtcc caaaaccttc tcaagcaagg ttttcagtat aatgttacat 5700 gcgtacacgc gtctgtacag aaaaaaaaga aaaatttgaa atataaataa cgttcttaat 5760 actaacataa ctataaaaaa ataaataggg acctagactt caggttgtct aactccttcc 5820 Page 11

ttttcggtta	gagcggatct	tagctagccg	cggtaccaag	c ttaggcgag	agtcagctgc	5880
cttatgcggc	ctgaggcagc	tcttgctttt	cctgacgcgg	ctcgagcagt	tcctgaagcg	5940
gcctgggcct	catcgcccag	caggtagtct	acaccttccc	caattgcatg	ggctagggga	6000
gcggcaggtg	ggaacaatgt	ggagaccacc	ggcacagcta	tcctccttat	ggcccggatt	6060
atgtctttga	agccgaatgc	tcctgcaatc	ttcaggggag	agttgaggtc	ggccacctcc	6120
atgaagtatt	cacgaaagtc	agtgtactcc	cttgttggcc	agacggtctt	gatgccaaga	6180
cggtccctct	cactcagtat	caattttgtg	tagttcatgg	ctcctgggtc	aaatcggccg	6240
tattctgtaa	ccaggttctt	tgctagttca	ggatttggga	tcagctcgaa	gttgctcacc	6300
ccagcgaccg	taacgacgga	tcctgttgcc	actctttcgt	aggccactag	cgtgacggga	6360
cggagggccc	ctggatagtt	gccaccatgg	atcgtcactg	ctaggctccc	tcttgccgac	6420
catgacatct	gatcccctgc	ctgaccacca	cttttggagg	tcactatctc	cagtttgatg	6480
gatgtgattg	gctgggttat	ctcgtttgtt	ggaatcacaa	gattgaatgg	cataaggttg	6540
tcggtgccgg	tcgtcagccc	attgtttgcg	gccacagccc	tggtgattac	cgttgtccca	6600
tcaaagccta	tgaggtagat	ggtggcgccc	agtacaaggc	cgtggacgct	tgttcgaaac	6660
acgagctctc	ccccaacgct	gaggcttgtg	atggcatcaa	tgttggctga	gaacagtgtg	6720
attgttaccc	cacctggttg	gtactgtgat	gagaattggt	aatcatcggc	tgcagttatg	6780
gtgtagactc	tgggcctgtc	actgctgtca	catgtggcta	ccatttttgg	gtcaagccct	6840
attgcgggaa	tggggtcacc	aagcctcaca	tacccaagat	catatgatgt	gggtaagctg	6900
aggacggtga	cccttcccc	tactaggacg	ttcccaattt	tgtcgttgat	gttggctgtt	6960
gcagacatca	acccattgta	gctaacatct	gtcagttcac	tcaggcttcc	ttggaaggtc	7020
acggcgttta	tggtgccgtt	tagtgcataa	acgccaccag	gaagtgtgct	tgacctcact	7080
gtgagactcc	gactcactag	cctgcagtag	ttgtaactgg	ccggtaggtt	ctgggcagtc	7140
aggagcatct	gatcgaactt	gtagttccca	ttgccctgca	gtgtgtagtg	agcacccaca	7200
attgagccag	ggaatccagg	gaaaaagaca	attagccctg	accctgtgtc	ccccacagtc	7260
aaattgtagg	tcgaggtctc	tgacctgaga	gtgtgcttct	ccagggtgtc	gtccggaatg	7320
gacgccggtc	cggttgttgg	catcagaagg	ctccgtatga	acggaacaat	ctgctgggtt	7380
tgatctgaca	ggtttgtcat	agatccgggg	ttttttctcc	ttgacgttaa	agtatagagg	7440
tatattaaca	attttttgtt	gatactttta	ttacatttga	ataagaagta	atacaaaccg	7500
aaaatgttga	aagtattagt	taaagtggtt	atgcagtttt	tgcatttata	tatctgttaa	7560
tagatcaaaa	atcatcgctt	cgctgattaa	ttaccccaga	aataaggcta	aaaaactaat	7620
cgcattatca	tcctatggtt	gttaatttga	ttcgttcatt	tgaaggtttg	tggggccagg	7680

ttactgccaa t	ttttcctct tcat		tagt attgtagaat	ctttattgtt 7740
cggagcagtg c	ggcgcgagg caca	tctgcg tttcagg	gaac gcgaccggtg	aagacgagga 7800
cgcacggagg a	gagtcttcc ttcg	gagggc tgtcaco	cgc tcggcggctt	ctaatccgta 7860
cttcaatata g	caatgagca gtta	agcgta ttactga	aaag ttccaaagag	aaggtttttt 7920
taggctaaga ta	aatggggct cttt	acattt ccacaad	ata taagtaagat	tagatatgga 7980
tatgtatatg ga	atatgtata tggt	ggtaat gccatgt	aat atgattatta	aacttctttg 8040
cgtccatcca a	aaaaaaagt aaga	attttt gaaaatt	ccga attcg atg g Met A 1	ct gca tca 8097 la Ala Ser
			gcc gtc aga gca Ala Val Arg Ala 15	
			tct gca ctc agt Ser Ala Leu Ser	
Met Trp Leu (gaa gag aat gg Glu Glu Asn Gl 40	g att gtg act y Ile Val Thr 45	gac atg gcc aac Asp Met Ala Asn 50	ttc gca 8241 Phe Ala
			aat ttt ctt gca Asn Phe Leu Ala 65	
cca caa gca g Pro Gln Ala (70	ggc agc aag to Gly Ser Lys Se 75	g caa agg gcc r Gln Arg Ala	aag tac ggg aca Lys Tyr Gly Thr 80	gca ggc 8337 Ala Gly
tac gga gtg g Tyr Gly Val o 85	gag gct cgg gg Glu Ala Arg Gl 90	c ccc aca cca y Pro Thr Pro	gag gaa gca cag Glu Glu Ala Gln 95	agg gaa 8385 Arg Glu 100
aaa gac aca (Lys Asp Thr A	cgg atc tca aa Arg Ile Ser Ly 105	g aag atg gag s Lys Met Glu 110	acc atg ggc atc Thr Met Gly Ile	tac ttt 8433 Tyr Phe 115
Ala Thr Pro (gaa tgg gta gc Glu Trp Val Al 120	a ctc aat ggg a Leu Asn Gly 125	cac cga ggg cca His Arg Gly Pro 130	agc cca 8481 Ser Pro
			gaa ata ccg gac Glu Ile Pro Asp 145	
gag gac tat o Glu Asp Tyr i 150	cta gac tac gt Leu Asp Tyr Va 15	l His Ala Glu	aag agc cgg ttg Lys Ser Arg Leu 160	gca tca 8577 Ala Ser
gaa gaa caa a Glu Glu Gln 1 165	atc cta agg gc Ile Leu Arg Al 170	a gct acg tcg a Ala Thr Ser	atc tac ggg gct Ile Tyr Gly Ala 175	cca gga 8625 Pro Gly 180
cag gca gag c Gln Ala Glu F	cca ccc caa gc Pro Pro Gln Al 185	a Phe Ile Asp 190	gaa gtt gcc aaa Glu Val Ala Lys age 13	gtc tat 8673 Val Tyr 195

gaa Glu	atc Ile	aac Asn	cat His 200	gga Gly	cgt Arg	ggc Gly	cca Pro	aac Asn 205	Gln	gaa Glu	cag Gln	atg Met	aaa Lys 210	gat Asp	ctg Leu	872	1
								cat His								8769	9
cca Pro	aag Lys 230	ccc Pro	aag Lys	cca Pro	aaa Lys	ccc Pro 235	aat Asn	gct Ala	cca Pro	aca Thr	cag Gln 240	aga Arg	ccc Pro	cct Pro	ggt Gly	8817	7
cgg Arg 245	ctg Leu	ggc Gly	cgc Arg	tgg Trp	atc Ile 250	agg Arg	acc Thr	gtc Val	tct Ser	gat Asp 255	gag Glu	gac Asp	ctt Leu	gag Glu	gga Gly 260	886	5
tcc Ser	atc Ile	gcc Ala	acc Thr	atg Met 265	gtg Val	agc Ser	aag Lys	ggc Gly	gag Glu 270	gag Glu	ctg Leu	ttc Phe	acc Thr	ggg Gly 275	gtg Val	891	3
gtg Val	ccc Pro	atc Ile	ctg Leu 280	gtc Val	gag Glu	ctg Leu	gac Asp	ggc Gly 285	gac Asp	gta Val	aac Asn	ggc Gly	cac His 290	aag Lys	ttc Phe	8961	1
agc Ser	gtg val	tcc Ser 295	ggc Gly	gag Glu	ggc Gly	gag Glu	ggc Gly 300	gat Asp	gcc Ala	acc Thr	tac Tyr	ggc Gly 305	aag Lys	ctg Leu	acc Thr	9009	Э
ctg Leu	aag Lys 310	ttc Phe	atc Ile	tgc Cys	acc Thr	acc Thr 315	ggc Gly	aag Lys	ctg Leu	ccc Pro	gtg Val 320	ccc Pro	tgg Trp	ccc Pro	acc Thr	9057	7
ctc Leu 325	gtg Val	acc Thr	acc Thr	ctg Leu	acc Thr 330	tac Tyr	ggc Gly	gtg Val	cag Gln	tgc Cys 335	ttc Phe	agc Ser	cgc Arg	tac Tyr	ccc Pro 340	910	5
								ttc Phe								915	3
								ttc Phe 365								9201	1
acc Thr	cgc Arg	gcc Ala 375	gag Glu	gtg Val	aag Lys	ttc Phe	gag Glu 380	ggc Gly	gac Asp	acc Thr	ctg Leu	gtg Val 385	aac Asn	cgc Arg	atc Ile	9249	Э
gag Glu	ctg Leu 390	aag Lys	ggc Gly	atc Ile	gac Asp	ttc Phe 395	aag Lys	gag Glu	gac Asp	ggc Gly	aac Asn 400	atc Ile	ctg Leu	ggg Gly	cac His	9297	7
aag Lys 405	ctg Leu	gag Glu	tac Tyr	aac Asn	tac Tyr 410	aac Asn	agc Ser	cac His	aac Asn	gtc Val 415	tat Tyr	atc Ile	atg Met	gcc Ala	gac Asp 420	934!	5
								aac Asn								9393	3
gag Glu	gac Asp	ggc Gly	agc Ser	gtg Val	cag Gln	ctc Leu	gcc Ala	gac Asp	His	tac Tyr age	Glñ	cag Gln	aac Asn	acc Thr	ccc Pro	9442	1

440 445 450

atc ggc gac ggc ccc gtg ctg ctg ccc gac aac cac tac ctg agc acc 9489

Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr

cag tcc gcc ctg agc aaa gac ccc aac gag aag cgc gat cac atg gtc Afro Afro Afro Asp Afro Asp Afro Asp Glu Lys Arg Asp His Met Val

ctg ctg gag ttc gtg acc gcc gcc ggg atc act ctc ggc atg gac gag 9585

Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu 500

ctg tac aag taa agc 9600

ctg tac aag taa agc 9600

<210> 8

<211> 503 <212> PRT

<213> Artificial sequence

<220>

<223> pVP2-VP3-GFP protein

<400> 8
Met Ala Ala Ser Glu Phe Lys Glu Thr Pro Glu Leu Glu Ser Ala Val
1 5 10 15

Arg Ala Met Glu Ala Ala Ala Asn Val Asp Pro Leu Phe Gln Ser Ala 20 25 30

Leu Ser Val Phe Met Trp Leu Glu Glu Asn Gly Ile Val Thr Asp Met 35 40 45

Ala Asn Phe Ala Leu Ser Asp Pro Asn Ala His Arg Met Arg Asn Phe $50 \hspace{1.5cm} 55 \hspace{1.5cm} 60$

Leu Ala Asn Ala Pro Gln Ala Gly Ser Lys Ser Gln Arg Ala Lys Tyr 65 70 75 80

Gly Thr Ala Gly Tyr Gly Val Glu Ala Arg Gly Pro Thr Pro Glu Glu 85 90 95

Ala Gln Arg Glu Lys Asp Thr Arg Ile Ser Lys Lys Met Glu Thr Met 100 105 110

Gly Ile Tyr Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Gly His Arg 115 120 125

Gly Pro Ser Pro Gly Gln Val Lys Tyr Trp Gln Asn Lys Arg Glu Ile 130 135 140

Pro Asp Pro Asn Glu Asp Tyr Leu Asp Tyr Val His Ala Glu Lys Ser 145 150 155 160

Arg Leu Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile Tyr 165 170 175

Gly Ala Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val 180 185 190

Ala Lys Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln 200 Met Lys Asp Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro 210 215 220 Arg Arg Ala Leu Pro Lys Pro Lys Pro Lys Pro Asn Ala Pro Thr Gln 225 235 240 Arg Pro Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp Glu 245 250 255 Asp Leu Glu Gly Ser Ile Ala Thr Met Val Ser Lys Gly Glu Glu Leu 260 265 270 Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn 275 280 285 Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr 290 295 300 Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val 305 310 315 320 Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe 325 330 335 Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala 340 345 350 Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp 355 360 365 Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu 370 380 Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn 385 390 395 400 Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr 405 410 415 Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile 420 425 430 Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln
435 440 445 Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His 450 455 460 Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg 465 470 475 480 Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu 485 490 495 Gly Met Asp Glu Leu Tyr Lys 500

```
<211>
       33
<212>
      DNA
<213> Artificial sequence
<220>
<223> Oligo v primer
<400> 9
gcgcgaattc gatggcatca gagttcaaag aga
                                                                        33
<210>
      10
<211>
      32
<212> DNA
<213> Artificial sequence
<220>
<223> Oligo VI primer
<400> 10
                                                                        32
cgcggatccc tcaaggtcct catcagagac gg
<210>
<211>
       36
<212>
      DNA
<213> Artificial sequence
<220>
<223> Oligo CD8 A primer
<400> 11
aacgaggaca gttatgtccc aagcgcagaa caaata
                                                                        36
<210>
       12
<211>
       36
<212> DNA
<213> Artificial sequence
<220>
<223> Oligo CD8 B primer
<400> 12
tatttgttct gcgcttggga cataactgtc ctcgtt
                                                                        36
<210>
<211>
      5676
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      Plasmid pFB/his-CD8-VP3
<220>
<221>
      promoter
<222>
      (1)..(129)
<223> Polyhedrin promoter
<220>
<221>
      CDS
<222>
      (147)..(1043)
<223> His-CD8-VP3 ORF
```

Page 17

<220><221><222><223>	CD: (2	22)	(2 :D8 C													
<400> atcat			aatt	aaaa	at ga	ataad	ccato	t tc	gcaaa	ataa	ataa	agtat	ttt 1	tact	gttttc	60
gtaac	agtt	t t	gtaa	itaaa	aa aa	acct	tataa	a ata	attc	gga	tta	ttcat	tac o	gtc	ccacca	120
tcggg	ıcgcg	g a	tcto	ggto	c ga	aaac									c cat s His	173
cac g His A 10	at ta sp T	ac yr	gat Asp	atc Ile	cca Pro 15	acg Thr	acc Thr	gaa Glu	aac Asn	ctg Leu 20	tat Tyr	ttt Phe	cag Gln	ggc Gly	gcg Ala 25	221
aac g Asn G	ag ga lu A	ac sp	agt Ser	tat Tyr 30	gtc Val	cca Pro	agc Ser	gca Ala	gaa Glu 35	caa Gln	ata Ile	gcc Ala	gcc Ala	atg Met 40	gct Ala	269
gca t Ala S	ca g er G	lu	ttc Phe 45	aaa Lys	gag Glu	acc Thr	ccc Pro	gaa Glu 50	ctc Leu	gag Glu	agt Ser	gcc Ala	gtc Val 55	aga Arg	gca Ala	317
atg g Met G	aa g lu A 60	la .	gca Ala	gcc Ala	aac Asn	gtg Val	gac Asp 65	cca Pro	cta Leu	ttc Phe	caa Gln	tct Ser 70	gca Ala	ctc Leu	agt Ser	365
gtg t Val P 7	tc a he Mo 5	tg et	tgg Trp	ctg Leu	gaa Glu	gag Glu 80	aat Asn	ggg Gly	att Ile	gtg Val	act Thr 85	gac Asp	atg Met	gcc Ala	aac Asn	413
ttc g Phe A 90	ca co la Lo	tc eu	agc Ser	gac Asp	ccg Pro 95	aac Asn	gcc Ala	cat His	cgg Arg	atg Met 100	cga Arg	aat Asn	ttt Phe	ctt Leu	gca Ala 105	461
aac g Asn A	ca co la Pi	ca ro	caa Gln	gca Ala 110	ggc Gly	agc Ser	aag Lys	tcg Ser	caa Gln 115	agg Arg	gcc Ala	aag Lys	tac Tyr	ggg Gly 120	aca Thr	509
gca g Ala G	gc ta ly Ty	yr 🔻	gga Gly 125	gtg Val	gag Glu	gct Ala	cgg Arg	ggc Gly 130	ccc Pro	aca Thr	cca Pro	gag Glu	gaa Glu 135	gca Ala	cag Gln	557
agg g Arg G	lu Ly	aa ys 40	gac Asp	aca Thr	cgg Arg	atc Ile	tca Ser 145	aag Lys	aag Lys	atg Met	gag Glu	acc Thr 150	atg Met	ggc Gly	atc Ile	605
tac t Tyr P	tt go he A 55	ca la	aca Thr	cca Pro	gaa Glu	tgg Trp 160	gta Val	gca Ala	ctc Leu	aat Asn	ggg Gly 165	cac His	cga Arg	ggg Gly	cca Pro	653
agc co Ser P 170	ca go ro G	gc Iy	cag Gln	gta Val	aag Lys 175	tac Tyr	tgg Trp	cag Gln	aac Asn	aaa Lys 180	cga Arg	gaa Glu	ata Ile	ccg Pro	gac Asp 185	701
cca a	ac ga sn G	ag (gac Asp	tat Tyr 190	cta Leu	gac Asp	tac Tyr	gtg Val	cat His 195	gca Ala	gag Glu	aag Lys	agc Ser	cgg Arg	ttg Leu	749

642669	
gca tca gaa gaa caa atc cta agg gca gct acg tcg atc tac ggg gct Ala Ser Glu Glu Gln Ile Leu Arg Ala Ala Thr Ser Ile Tyr Gly Ala 205 210 215	797
cca gga cag gca gag cca ccc caa gct ttc ata gac gaa gtt gcc aaa Pro Gly Gln Ala Glu Pro Pro Gln Ala Phe Ile Asp Glu Val Ala Lys 220 225 230	845
gtc tat gaa atc aac cat gga cgt ggc cca aac caa gaa cag atg aaa Val Tyr Glu Ile Asn His Gly Arg Gly Pro Asn Gln Glu Gln Met Lys 235 240 245	893
gat ctg ctc ttg act gcg atg gag atg aag cat cgc aat ccc agg cgg Asp Leu Leu Thr Ala Met Glu Met Lys His Arg Asn Pro Arg Arg 250 265	941
gct cta cca aag ccc aag cca aaa ccc aat gct cca aca cag aga ccc Ala Leu Pro Lys Pro Lys Pro Asn Ala Pro Thr Gln Arg Pro 270 275 280	989
cct ggt cgg ctg ggc cgc tgg atc agg acc gtc tct gat gag gac ctt Pro Gly Arg Leu Gly Arg Trp Ile Arg Thr Val Ser Asp Glu Asp Leu 285 290 295	1037
gag tga ggatccggaa ttcaaaggcc tacgtcgacg agctcactag tcgcggccgc Glu	1093
tttcgaatct agagcctgca gtctcgaggc atgcggtacc aagcttgtcg agaagtacta	1153
gaggatcata atcagccata ccacatttgt agaggtttta cttgctttaa aaaacctccc	1213
acacctcccc ctgaacctga aacataaaat gaatgcaatt gttgttgtta acttgtttat	1273
tgcagcttat aatggttaca aataaagcaa tagcatcaca aatttcacaa ataaagcatt	1333
tttttcactg cattctagtt gtggtttgtc caaactcatc aatgtatctt atcatgtctg	1393
gatctgatca ctagatctgc ctaggagatc cgaaccagat aagtgaaatc tagttccaaa	1453
ctattttgtc atttttaatt ttcgtattag cttacgacgc tacacccagt tcccatctat	1513
tttgtcactc ttccctaaat aatccttaaa aactccattt ccacccctcc cagttcccaa	1573
ctattttgtc cgcccacagc ggggcatttt tcttcctgtt atgttttaa tcaaacatcc	1633
tgccaactcc atgtgacaaa ccgtcatctt cggctacttt ttctctgtca cagaatgaaa	1693
atttttctgt catctcttcg ttattaatgt ttgtaattga ctgaatatca acgcttattt	1753
gcagcctgaa tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg	1813
tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt	1873
tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc	1933
tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg	1993
gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg	2053
agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct	2113

cggtctattc	ttttgattta	taagggattt	tgccgatttc	ggcctattgg	ttaaaaaatg	2173
agctgattta	acaaaaattt	aacgcgaatt	ttaacaaaat	attaacgttt	acaatttcag	2233
gtggcacttt	tcggggaaat	gtgcgcggaa	cccctatttg	tttatttttc	taaatacatt	2293
caaatatgta	tccgctcatg	agacaataac	cctgataaat	gcttcaataa	tattgaaaaa	2353
ggaagagtat	gagtattcaa	catttccgtg	tcgcccttat	tccctttttt	gcggcatttt	2413
gccttcctgt	ttttgctcac	ccagaaacgc	tggtgaaagt	aaaagatgct	gaagatcagt	2473
tgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	cggtaagatc	cttgagagtt	2533
ttcgccccga	agaacgtttt	ccaatgatga	gcacttttaa	agttctgcta	tgtggcgcgg	2593
tattatcccg	tattgacgcc	gggcaagagc	aactcggtcg	ccgcatacac	tattctcaga	2653
atgacttggt	tgagtactca	ccagtcacag	aaaagcatct	tacggatgg c	atgacagtaa	2713
gagaattatg	cagtgctgcc	ataaccatga	gtgataacac	tgcggccaac	ttacttctga	2773
caacgatcgg	aggaccgaag	gagctaaccg	cttttttgca	caacatgggg	gatcatgtaa	2833
ctcgccttga	tcgttgggaa	ccggagctga	atgaagccat	accaaacgac	gagcgtgaca	2893
ccacgatgcc	tgtagcaatg	gcaacaacgt	tgcgcaaact	attaactggc	gaactactta	2953
ctctagcttc	ccggcaacaa	ttaatagact	ggatggaggc	ggataaagtt	gcaggaccac	3013
ttctgcgctc	ggcccttccg	gctggctggt	ttattgctga	taaatctgga	gccggtgagc	3073
gtgggtctcg	cggtatcatt	gcagcactgg	ggccagatgg	taagccctcc	cgtatcgtag	3133
ttatctacac	gacggggagt	caggcaacta	t gg atgaacg	aaatagacag	atcgctgaga	3193
taggtgcctc	actgattaag	cattggtaac	tgtcagacca	agtttactca	tatatacttt	3253
agattgattt	aaaacttcat	ttttaattta	aaaggatcta	ggtgaagatc	ctttttgata	3313
atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	ctgagcgtca	gaccccgtag	3373
aaaagatcaa	aggatcttct	tgagatcctt	tttttctgcg	cgtaatctgc	tgcttgcaaa	3433
caaaaaaacc	accgctacca	gcggtggttt	gtttgccgga	tcaagagcta	ccaactcttt	3493
ttccgaaggt	aactggcttc	agcagagcgc	agataccaaa	tactgtcctt	ctagtgtagc	3553
cgtagttagg	ccaccacttc	aagaactctg	tagcaccgcc	tacatacctc	gctctgctaa	3613
tcctgttacc	agtggctgct	gccagtggcg	ataagtcgtg	tcttaccggg	ttggactcaa	3673
gacgatagtt	accggataag	gcgcagcggt	cgggctgaac	ggggggttcg	tgcacacagc	3733
ccagcttgga	gcgaacgacc	tacaccgaac	tgagatacct	acagcgtgag	cattgagaaa	3793
gcgccacgct	tcccgaaggg	agaaaggcgg	acaggtatcc	ggtaagcggc	agggtcggaa	3853
caggagagcg	cacgagggag	cttccagggg	gaaacgcctg	gtatctttat	agtcctgtcg	3913
ggtttcgcca	cctctgactt	gagcgtcgat	ttttgtgatg	ctcgtcaggg	gggcggagcc	3973
tatggaaaaa	cgccagcaac	gcggcctttt	tacggttcct Page	ggccttttgc 20	tggccttttg	4033

```
4093
ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg
                                                                     4153
agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg
                                                                     4213
aagcggaaga gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc
gcagaccagc cgcgtaacct ggcaaaatcg gttacggttg agtaataaat ggatgccctg
                                                                     4273
                                                                     4333
cgtaagcggg tgtgggcgga caataaagtc ttaaactgaa caaaatagat ctaaactatg
                                                                     4393
acaataaagt cttaaactag acagaatagt tgtaaactga aatcagtcca gttatgctgt
gaaaaagcat actggacttt tgttatggct aaagcaaact cttcattttc tgaagtgcaa
                                                                     4453
                                                                     4513
attgcccgtc gtattaaaga ggggcgtggc caagggcatg gtaaagacta tattcgcggc
                                                                     4573
gttgtgacaa tttaccgaac aactccgcgg ccgggaagcc gatctcggct tgaacgaatt
                                                                     4633
gttaggtggc ggtacttggg tcgatatcaa agtgcatcac ttcttcccgt atgcccaact
                                                                     4693
ttgtatagag agccactgcg ggatcgtcac cgtaatctgc ttgcacgtag atcacataag
                                                                     4753
caccaagcgc gttggcctca tgcttgagga gattgatgag cgcggtggca atgccctgcc
                                                                     4813
tccggtgctc gccggagact gcgagatcat agatatagat ctcactacgc ggctgctcaa
acctgggcag aacgtaagcc gcgagagcgc caacaaccgc ttcttggtcg aaggcagcaa
                                                                     4873
                                                                     4933
gcgcgatgaa tgtcttacta cggagcaagt tcccgaggta atcggagtcc ggctgatgtt
                                                                     4993
gggagtaggt ggctacgtct ccgaactcac gaccgaaaag atcaagagca gcccgcatgg
atttgacttg gtcagggccg agcctacatg tgcgaatgat gcccatactt gagccaccta
                                                                     5053
                                                                     5113
actttgtttt agggcgactg ccctgctgcg taacatcgtt gctgctgcgt aacatcgttg
                                                                     5173
ctgctccata acatcaaaca tcgacccacg gcgtaacgcg cttgctgctt ggatgcccga
ggcatagact gtacaaaaaa acagtcataa caagccatga aaaccgccac tgcgccgtta
                                                                     5233
                                                                     5293
ccaccgctgc gttcggtcaa ggttctggac cagttgcgtg agcgcatacg ctacttgcat
                                                                     5353
tacagtttac gaaccgaaca ggcttatgtc aactgggttc gtgccttcat ccgtttccac
                                                                     5413
ggtgtgcgtc acccggcaac cttgggcagc agcgaagtcg aggcatttct gtcctggctg
gcgaacgagc gcaaggtttc ggtctccacg catcgtcagg cattggcggc cttgctgttc
                                                                     5473
ttctacggca aggtgctgtg cacggatctg ccctggcttc aggagatcgg aagacctcgg
                                                                     5533
                                                                     5593
ccgtcgcggc gcttgccggt ggtgctgacc ccggatgaag tggttcgcat cctcggtttt
ctggaaggcg agcatcgttt gttcgcccag gactctagct atagttctag tggttggcta
                                                                     5653
                                                                     5676
cgtatactcc ggaatattaa tag
```

<210> 14 <211> 298

<212> PRT

<213> Artificial sequence

<220> his-CD8-VP3 protein

<400>

14 Met Ser Tyr Tyr His His His His His Asp Tyr Asp Ile Pro Thr 1 5 10 15 Thr Glu Asn Leu Tyr Phe Gln Gly Ala Asn Glu Asp Ser Tyr Val Pro 20 25 30 Ser Ala Glu Gln Ile Ala Ala Met Ala Ala Ser Glu Phe Lys Glu Thr $35 \hspace{1cm} 40 \hspace{1cm} . \hspace{1cm} 45$ Pro Glu Leu Glu Ser Ala Val Arg Ala Met Glu Ala Ala Ala Asn Val 50 55 60 Asp Pro Leu Phe Gln Ser Ala Leu Ser Val Phe Met Trp Leu Glu Glu 65 70 75 80 Asn Gly Ile Val Thr Asp Met Ala Asn Phe Ala Leu Ser Asp Pro Asn 85 90 95 Ala His Arg Met Arg Asn Phe Leu Ala Asn Ala Pro Gln Ala Gly Ser 100 105 110 Lys Ser Gln Arg Ala Lys Tyr Gly Thr Ala Gly Tyr Gly Val Glu Ala 115 120 125 . Arg Gly Pro Thr Pro Glu Glu Ala Gln Arg Glu Lys Asp Thr Arg Ile 130 135 140 Ser Lys Lys Met Glu Thr Met Gly Ile Tyr Phe Ala Thr Pro Glu Trp 145 150 155 160 Val Ala Leu Asn Gly His Arg Gly Pro Ser Pro Gly Gln Val Lys Tyr 165 170 175 Trp Gln Asn Lys Arg Glu Ile Pro Asp Pro Asn Glu Asp Tyr Leu Asp 180 185 190 Tyr Val His Ala Glu Lys Ser Arg Leu Ala Ser Glu Glu Gln Ile Leu 195 200 205 Arg Ala Ala Thr Ser Ile Tyr Gly Ala Pro Gly Gln Ala Glu Pro Pro 210 215 220 Gln Ala Phe Ile Asp Glu Val Ala Lys Val Tyr Glu Ile Asn His Gly 225 230 235 240 Arg Gly Pro Asn Gln Gln Met Lys Asp Leu Leu Leu Thr Ala Met 245 250 255 Glu Met Lys His Arg Asn Pro Arg Arg Ala Leu Pro Lys Pro 260 265 270 Lys Pro Asn Ala Pro Thr Gln Arg Pro Pro Gly Arg Leu Gly Arg Trp 275 280 285 Ile Arg Thr Val Ser Asp Glu Asp Leu Glu 290 295