# МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция №1

Числовые множества (часть 1)



$$2+2+7=$$









#### 9-11 класс

Мне теперь что, буквы складывать?

 $\sin a + \sin B = 2\sin \frac{a+b}{2} \times \cos \frac{a-b}{2}$ 

#### ПНСТИТУТ

$$tga+tgB = \frac{\sin(a+B)}{\cos a \times \cos B}, aB \neq \frac{\pi}{2} \pi n, n \in \mathbb{Z}$$



О,цифра!



Большинство математических утверждений формулируются в следующем виде:

ЕСЛИ A, ТО B

(«из A следует B»).

Здесь A и B — некоторые высказывания.

Высказывание A называется достаточным условием (для B),

Высказывание B называется необходимым условием (для A).

Например, A — «Углы вертикальны», B — «Углы равны». Тогда Е С ЛИ углы вертикальны, ТО углы равны



Очевидно, что если справедливо утверждение

ЕСЛИ A, ТО B,

то **вовсе не обязательно** справедливо

ЕСЛИ B, ТО A.

Но иногда это возможно.

В этом случае A и B называются необходимыми и достаточными условиями друг для друга.

В этом случае утверждение обычно формулируется следующим образом:

A ТОГДА И ТОЛЬКО ТОГДА, КОГДА B



**Множество** – совокупность некоторых объектов, понимаемых как единое целое. Данные объекты называются **элементами множества**.

**Отображение** — некоторый закон или правило, которое каждому элементу одного множества ставит в соответствие некоторый элемент другого множества.

Если данные множества являются числовыми, то вместо слово отображение используют слово функция.



**Математический анализ** — один из основных разделов математики, изучающий переменные величины.

Более точно:

**Математический анализ** — это основных разделов математики, в котором изучаются свойства функций.

Поэтому прежде чем перейти к изучению функций, необходимо изучить числовые множества и зафиксировать их свойства.



### НАТУРАЛЬНЫЕ ЧИСЛА

**Определение 1.1.1.** Множество X называется индуктивным, если вместе с каждым элементом  $x \in X$  ему принадлежит также элемент (x+1).

**Определение 1.1.2.** Множеством натуральных чисел называется наименьшее индуктивное множество, содержащее единицу. Множество натуральных чисел обозначают символом  $\mathbb{N}$ .

Из определения следует, что  $1 \in \mathbb{N}$ , следовательно,  $1+1=2 \in \mathbb{N}$ , далее,  $2+1=3 \in \mathbb{N}$ ,...



### НАТУРАЛЬНЫЕ ЧИСЛА

**Лемма 1.1.1. (Метод математической индукции)**. Пусть A(n) — некоторое утверждение. Тогда A(n) — верно для каждого  $n \in \mathbb{N}$  тогда и только тогда, когда одновременно выполнены два условия:

- 1)A(1) верно;
- 2) для каждого  $k \in \mathbb{N}$ , если из того, что утверждение A(k) верно, верно и утверждение A(k+1).

**Доказательство.** Необходимость. Если A(n) —верно для каждого  $n \in \mathbb{N}$ , то выполнение условий 1) и 2) является очевидным.

Достаточность. Пусть  $X = \{n \in \mathbb{N} : A(n) - \text{верно}\}$ , тогда  $X \subseteq \mathbb{N}$ . Тогда из 1) и 2) следует, что X — индуктивное множество. Поскольку множество натуральных чисел есть наименьшее индуктивное множество, то  $X \supseteq \mathbb{N}$ . Лемма доказана.



### НАТУРАЛЬНЫЕ ЧИСЛА

**Пример.** Применяя метод математической индукции, доказать, что для каждого  $n \in \mathbb{N}$  справедливо равенство

$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$



# ЦЕЛЫЕ ЧИСЛА

### Определение 1.1.3. Множество

$$\mathbb{Z} = \mathbb{N} \cup \{-1, -2, \dots\} \cup \{0\}$$

называется множеством целых чисел.



**Определение 1.1.5.** Рациональным числом называется число представимое в виде отношения двух чисел  $q = \frac{m}{n}$ ,  $m \in \mathbb{Z}$ ,  $n \in \mathbb{N}$ . Множество рациональных чисел обозначают символом  $\mathbb{Q}$ .

#### Справедливы основные свойства.

I. Любые два рациональных числа p и q связаны одним и только одним из трех знаков >, < или =, причем если a>b, то b<a.

Правило сравнения формулируется следующим образом:

- два неотрицательных рациональных числа  $p=rac{k}{s}$  и  $q=rac{m}{n},\ k,m\in\mathbb{Z}$ ,  $s,n\in\mathbb{N}$ , связаны тем же знаком, что и два целых числа kn и ms;
- два неположительных рациональных числа p и q связаны тем же знаком, что и два неотрицательных числа |q| и |p|;
- если p неотрицательное, а  $\,q$  отрицательное рациональное число, то p>q .



### Справедливы основные свойства.

II. Существует правило, по которому любым двум рациональным числам p и q ставится в соответствие определенное рациональное число r, называемое их суммой и обозначаемое символом r=p+q.

Правило образования суммы рациональных чисел  $p=\frac{k}{s}$  и  $q=\frac{m}{n}$ ,  $k,m\in\mathbb{Z}$ ,  $s,n\in\mathbb{N}$ , определяется формулой  $\frac{k}{s}+\frac{m}{n}=\frac{kn+ms}{sn}$ . операция нахождения суммы называется операцией сложения.



III. Существует правило, по которому любым двум рациональным числам p и q ставится в соответствие определенное рациональное число r, называемое их произведением и обозначаемое символом r=pq.

Правило образования произведения рациональных чисел  $p=\frac{k}{s}$  и  $q=\frac{m}{n}$ ,  $k,m\in\mathbb{Z}$ ,  $s,n\in\mathbb{N}$ , определяется формулой  $\frac{k}{s}\cdot\frac{m}{n}=\frac{km}{sn}$ . операция нахождения произведения называется операцией умножения.



#### А. Свойства правила сравнения

 $1^0$  Из соотношений p>q и q>r вытекает соотношение p>r (свойство транзитивности знака >); из соотношений p=q и q=r вытекает, что p=r (свойство транзитивности знака =).

#### Б. Свойства правила сложения

 $2^{0} p + q = q + p$  (свойство коммутативности сложения);

 $3^{0}\;(p+q)+r=p+(q+r)$  (свойство ассоциативности сложения);

 $4^0$  существует рациональное число 0 такое, что p+0=p для любого числа  $p\in\mathbb{Q}$  (существование нуля);

 $5^0$ Для каждого числа  $p \in \mathbb{Q}$  существует противоположное ему число (-p) такое, что p + (-p) = 0 (существование противоположного элемента).

#### В. Свойства правила умножения

 $6^0 pq = qp$  (свойство коммутативности умножения);

 $7^{0}\;(pq)r=p(qr)\;$  (свойство ассоциативности умножения);

 $8^0$  существует рациональное число 1 такое, что  $p\cdot 1=p$  для любого числа  $p\in \mathbb{Q}$  (существование единицы);

 $9^0$  для каждого числа  $p \in \mathbb{Q}$ , отличного от нуля, существует обратное ему число  $p^{-1}$  такое, что  $pp^{-1}=1$  (существование обратного элемента).



### Б, В. Свойства связи правил сложения и умножения

 $10^0 \ (p+q)r = pr + qr$  (свойство дистрибутивности умножения относительно сложения);

### А, Б, В. Свойства связи правила сравнения с правилами сложения и умножения

 $11^0$  из соотношения p>q вытекает, что p+r>q+r;

 $12^0$  из соотношения p>q и r>0 вытекает, что pr>qr.

Особое внимание обратим на последнее свойство:

 $13^0\,$  каково бы ни было рациональное число p, можно число  $1\,$  повторить слагаемым столько раз, что полученная сумма превзойдет p.



**Определение 1.2.1.** Числа, которые не являются рациональными, называют иррациональными.

Поставим себе задачей расширить область рациональных чисел, присоединив к ним иррациональные числа.

Вместе с тем покажем, что в расширенной области останутся справедливыми все известные свойства рациональных чисел, относящиеся к арифметическим действиям над ними и к сочетанию их с помощью знаков равенства и неравенства.



**Определение 1.2.2.** Два отрезка называются соизмеримыми, если отношение их длин выражается рациональным числом. В противном случае они называются несоизмеримыми (например, длина диагонали квадрата со стороной равной единице).

**Определение 1.2.3.** Числовой осью будем называть прямую, на которой выбраны определенная точка O, которую называют началом отсчета, масштабный отрезок OM (длину его считаем равной единице) и положительное направление (обычно от O к M).



Возникает вопрос: возможно ли поставить в соответствие каждой точке K на числовой оси некоторое число, которое бы выражало длину отрезка OK?

Это число будем считать положительным, если точки K и M лежат по одну сторону от начала отсчета, и отрицательным — если по разные стороны от точки O.



Можно точно сказать, что каждому рациональному числу на числовой прямой соответствует определенная точка.

На примере несоизмеримости длины диагонали квадрата (со стороной равной единице) с его стороной понятно, что не всем точкам числовой оси соответствуют рациональные числа.

Далее постараемся с помощью масштабного отрезка *ОМ* измерить любой отрезок числовой оси, и для этого нам нужно расширить область рациональных чисел такими числами, которые бы соответствовали всем без исключения точкам числовой оси.



**Определение 1.2.4.** Символ  $a = a_0, a_1 a_2, ..., a_n, ..., где <math>a_0 \in \mathbb{Z}$ ,  $a_1 a_2, ..., a_n, ... \in \{0, ..., 9\}$ , называется бесконечной десятичной дробью.

Бесконечная десятичная дробь называется *периодической* тогда и только тогда, когда начиная с некоторого номера n группа цифр  $a_n, \dots, a_{n+i}$  ( $i \in \mathbb{N}$ ) или одна цифра повторяется. Эта группа цифр называется *периодом* дроби.

Например,  $2,78134134134 \dots = 2,78(134)$  или 0,99999999 = 0, (9)

Дробь вида  $a_0, a_1 a_2 \dots a_{n-1}(9)$  называется бесконечной десятичной дробью с девяткой в периоде.



Пусть K — любая точка числовой оси, лежащая, как и точка M, правее начала координат. Выясним, сколько раз масштабный отрезок OM помещается в отрезок OK. Возможны два варианта:

- 1) OM укладывается в OK целое число  $a_0$  раз без остатка. В этом случае число  $a_0$  представляет собой точный результат измерения отрезка OK.
- $2)\,OM$  укладывается в OK целое число  $a_0$  раз с некоторым *остатком* NK, меньшим OM. В этом случае целое число  $a_0$  представляет собой приближенный результат измерения по недостатку с точностью до 1.



Выясним теперь, сколько раз  $\frac{1}{10}$  часть отрезка OM укладывается в остатке NK. И опять возможны два варианта:

- 1)  $\frac{1}{10}$  часть отрезка OM укладывается в NK целое число  $a_1$  раз без остатка. В этом случае число  $a_0$ ,  $a_1$  также представляет собой точный результат измерения отрезка OK.
- 2)  $\frac{1}{10}$  часть отрезка OM укладывается NK целое число  $a_1$  раз с некоторым остатком PK, меньшим  $\frac{1}{10}$  части отрезка OM. В этом случае рациональное число  $a_0, a_1$  представляет собой результат измерения по недостатку с точностью до  $\frac{1}{10}$ .

и так далее...



Продолжая неограниченно этот процесс, мы получим бесконечный набор рациональных чисел

$$a_0; \quad a_0, a_1; \quad a_0, a_1a_2; \dots; \quad a_0, a_1a_2 \dots a_n \dots,$$
 (1.2.1)

каждое из которых представляет собой результат измерения отрезка OK по недостатку с соответствующей степенью точности.

Любое из этих рациональных чисел можно представить посредством обрывания на соответствующем знаке бесконечной десятичной дроби

$$a_0, a_1 a_2 \dots a_n.$$
 (1.2.2)

Итак, мы видим, что процесс измерения произвольного отрезка OK числовой оси с помощью масштабного отрезка OM приводит нас к рассмотрению чисел, представимых в виде бесконечных десятичных дробей.

**Определение 1.2.5.** Числа, которые можно представить в виде бесконечных десятичных дробей, будем называть вещественными числами. Множество вещественных чисел (или их еще называют действительными числами) обозначается символом  $\mathbb{R}$ .



# СРАВНЕНИЕ ВЕЩЕСТВЕННЫХ ЧИСЕЛ

Пусть

$$a = \pm a_0, a_1 a_2 \dots a_n \dots$$
 (1.2.3)

$$b = \pm b_0, b_1 b_2 \dots b_n \dots, \tag{1.2.4}$$

где из двух знаков берется какой-то один.

Два вещественных числа (1.2.3) и (1.2.4) называются равными, если они имеют одинаковые знаки и выполняются равенства

$$a_0 = b_0, \qquad a_1 = b_1, \qquad a_2 = b_2, \dots$$



# СРАВНЕНИЕ ВЕЩЕСТВЕННЫХ ЧИСЕЛ

Пусть даны два неравных вещественных числа a и b. Определим в каком случае (a>b), а в каком – (a<b).

**Случай 1.**  $a,b \ge 0$ . Так как  $a \ne b$ , то нарушается хотя бы одно из равенств  $a_0 = b_0$ ,  $a_1 = b_1$ , ... Обозначим через k наименьший из номеров n, для которого нарушается равенство  $a_n = b_n$ . Тогда будем считать, что

a > b, если  $a_k > b_k$  и a < b, если  $a_k < b_k$ .

**Случай 2.** Если  $a \ge 0$ , b < 0, то, конечно, a > b.

**Случай 3.** a,b < 0. Будем называть модулем вещественного числа a неотрицательное вещественное число, которое обозначается символом |a| и равно бесконечной десятичной дроби, представляющей число a, взятой со знаком «+».

Если a,b<0, то будем считать, что a>b, если |a|<|b|, и a< b, если |a|>|b|.



# ПРИБЛИЖЕНИЕ ВЕЩЕСТВЕННОГО ЧИСЛА РАЦИОНАЛЬНЫМИ

**Лемма 1.2.1.** Для каждого вещественного числа а и для любого положительного рационального числа  $\varepsilon$  существуют таких два рациональных числа  $q_1$  и  $q_2$ , что  $q_1 \le a \le q_2$ , причем  $q_2 - q_1 < \varepsilon$ .

**Доказательство.** Пусть a — произвольное неотрицательное вещественное число и представимо в виде бесконечной десятичной дроби

$$a = a_0, a_1 a_2 \dots a_n \dots$$

Оборвем эту дробь на n-м знаке после запятой, получим рациональное число  $a_0, a_1 a_2 \dots a_n$ . Увеличим полученное число на  $\frac{1}{10^n}$ , получим другое рациональное число  $a_0, a_1 a_2 \dots a_n + \frac{1}{10^n}$ . По правилу сравнения установим, что для каждого номера n справедливы неравенства:

$$a_0, a_1 a_2 \dots a_n \le a \le a_0, a_1 a_2 \dots a_n + \frac{1}{10^n}.$$
 (1.2.5)

Неравенство (1.2.5) означает, что вещественное число a заключено между двумя рациональными числами, разница между которыми  $\frac{1}{10^n}$  для любого натурального n.

# ПРИБЛИЖЕНИЕ ВЕЩЕСТВЕННОГО ЧИСЛА РАЦИОНАЛЬНЫМИ

Покажем, что для любого наперед заданного положительно рационального числа  $\varepsilon$ , начиная с некоторого номера n, справедливо неравенство

$$\frac{1}{10^n} < \varepsilon$$
.

Действительно, насколько бы мало ни было положительное рациональное число  $\varepsilon$ , существует лишь конечное число натуральных чисел таких, что  $10^n \leq \frac{1}{\varepsilon}$  или  $\frac{1}{10^n} \geq \varepsilon$ . Получается, что для всех остальных номеров n (до бесконечности) справедливо обратное неравенство  $\frac{1}{10^n} < \varepsilon$ . Лемма доказана.



Единственное, что в жизни пригодилось из геометрии, это фраза: «Что и требовалось доказать».



