- Preview
- 3.1General Introduction and Classification
- 3.2 The Fourier Transform and Properties
- 3.3 Other Separable Image Transforms
- 3.4 Hotelling Transform

Preview

General steps of operation in frequency domain

Preview

Lowpass filter
And highpass filter

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

Preview

Directly display DFT coefficients

Preview

Display DFT coefficients after log operate

Preview Rotational properties of DFT

Preview

Examples of DFT

Preview Blurred image and its DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

Preview Blurred image and its DFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

Preview Blurred image and its DFT

Preview

Examples of DCT

Original Image

3.1.1 introduction

- Image transforms are the bases of image processing and analysis
- This chapter deals with two-dimensional transforms and their properties
- Image transforms are used in image enhancement, restoration, reconstruction, encoding and description

3.1.1 introduction

Definition 1: if X is an N-by-1 vector and T is an N-by-N matrix then:

3.1.1 introduction

Definition2: inversion
$$X = T^{-1}Y$$

If rank(T) = N then it is a *linear* transform

If
$$T^{-1} = T^{*t}$$
 then it is a *Unitary* transform $TT^{*t} = TT^{-1} = I$

If
$$T^{-1} = T^t$$
 then it is a *orthogonal* transform $TT^t = TT^{-1} = I$

3.1.1 introduction

Example: 1-D Discrete Fourier Transform (DFT)

$$F(u) = \sum_{x=0}^{N-1} f(x)e^{-j\frac{2\pi}{N}ux} \qquad F = Tf$$

$$f(x) = \frac{1}{N} \sum_{u=0}^{N-1} F(u)e^{j\frac{2\pi}{N}ux} \qquad f = T^{-1}F$$

$$T^{-1} = T^{*t}$$

It is a *Unitary* transform

3.1.1 introduction

Definition3: 2-D transformation

$$y_{m,n} = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} x_{i,j} \Phi(i, j, m, n)$$

 $\Phi(i, j, m, n)$ Can be thought of as a MN-by-MN block matrix have M rows of M blocks, each of which is an N-by-N matrix

3.1.1 introduction

Definition 4: if $\Phi(i, j, m, n)$ can be separated into the product of rowwise and columnwise component function, that is

$$\Phi(i, j, m, n) = T_r(i, m)T_c(j, n)$$

then the transformation is called *separable*

$$y_{m,n} = \sum_{i=0}^{M-1} \left[\sum_{j=0}^{N-1} x_{i,j} T_c(j,n) \right] T_r(i,m)$$

3.1.1 introduction

Definition5: if two component are identical:

$$\Phi(i, j, m, n) = T(i, m)T(j, n)$$

then the transformation is called *symmetric*

$$y_{m,n} = \sum_{i=0}^{M-1} \left[\sum_{j=0}^{N-1} x_{i,j} T(j,n) \right] T(i,m)$$

or

$$Y = TXT$$

3.1.1 introduction

Example: 2-D Discrete Fourier Transform (DFT)

Separable and Symmetric Unitary transform

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[\frac{-j2\pi ux}{N}\right]_{y=0}^{N-1} f(x,y) \exp\left[\frac{-j2\pi vy}{N}\right]$$

$$W_{M} = \exp(j2\pi/M)$$

$$W_{N} = \exp(j2\pi/N)$$

then

3.1.2 classification

3.2.1 introduction

Optical Prism

3.2.1 introduction

3.2.2 definitions: 1-D CFT

The One-Dimensional Continuous Fourier Transform and its Inverse

$$F(u) = \int_{-\infty}^{+\infty} f(x)e^{-j2\pi ux}dx$$
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{j2\pi xu}du$$

$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{j2\pi xu} du$$

3.2.2 definitions: 1-D DFT

The One-Dimensional Discrete Fourier Transform and its Inverse

$$F(u) = \sum_{x=0}^{N-1} f(x)e^{-j\frac{2\pi}{N}ux} \qquad u = 0, 1, \dots N-1$$

$$f(x) = \frac{1}{N} \sum_{n=0}^{N-1} F(u) e^{j\frac{2\pi}{N}ux} \qquad x = 0, 1, \dots N-1$$

3.2.2 definitions: 1-D DFT

Other expressions:

$$F(u) = R(u) + jI(u)$$

or

$$F(u) = |F(u)| \exp[j\phi(u)]$$

Euler's formula:

$$\exp[-j2\pi ux] = \cos 2\pi ux - j\sin 2\pi ux$$

3.2.2 definitions:spectrum, Phase angle Power spectrum

Magnitude or spectrum

$$|F(u)| = [R^{2}(u) + I^{2}(u)]^{1/2}$$

Phase angle or phase spectrum $\phi(u) = \arctan[I(u)/R(u)]$

Power spectrum (Spectral density)

$$P(u) = |F(u)|^2 = R^2(u) + I^2(u)$$

3.2.2 definitions:1-D DFT example

If a signal is expressed as $f(x) = \{2,3,4,4\}$, its DFT are:

$$F(0) = \sum_{x=0}^{3} f(x) \exp(0) = f(0) + f(1) + f(2) + f(3) = 13$$

$$F(1) = \sum_{x=0}^{3} f(x) \exp(-j2\pi x/4) = 2e^{0} + 3e^{-j\pi/2} + 4e^{-j\pi} + 4e^{-j3\pi/2} = -2 + j$$

$$F(2) = \sum_{x=0}^{3} f(x) \exp(-j4\pi x/4) = 2e^{0} + 3e^{-j\pi} + 4e^{-2j\pi} + 4e^{-j3\pi} = -1$$

$$F(3) = \sum_{x=0}^{3} f(x) \exp(-j6\pi x/4) = 2e^{0} + 3e^{-j3\pi/2} + 4e^{-j3\pi} + 4e^{-j9\pi/2} = -2 - j$$

3.2.2 definitions:1-D DFT example

And the Fourier spectra are:

$$|F(0)| = 13$$

$$|F(1)| = [(-2)^2 + 1^2]^{1/2} = \sqrt{5}$$

$$|F(1)| = [(-1)^2]^{1/2} = 1$$

$$|F(2)| = [(-1)^2]^{1/2} = 1$$

$$|F(3)| = [(-2)^2 + (-1)^2]^{1/2} = \sqrt{5}$$

$$\phi(0) = 0$$

$$\phi(1) = 0.85\pi$$

$$\phi(3) = \pi$$

3.2.2 definitions:1-D DFT example

Graphic illustration:

3.2.2 definitions:1-D DFT example

If a signal is expressed as $f(x) = \{3,2,3,1,4,5,0,2\}$, its DFT are:

$$F(0) = \sum_{x=0}^{7} f(x) \exp(0) = f(0) + f(1) + f(2) + f(3)$$
$$+ f(4) + f(5) + f(6) + f(7) = 20$$

$$F(1) = \sum_{x=0}^{7} f(x) \exp(-j2\pi x/8) = 3e^{0} + 2e^{-j\pi/4} + 3e^{-j\pi/2} + 1e^{-j3\pi/4} + 4e^{-j\pi}$$
$$+ 5e^{-j5\pi/4} + 0e^{-j3\pi/2} + 2e^{-j7\pi/4} = -2.4142 - j0.1716$$

$$F(2) = \sum_{x=0}^{7} f(x) \exp(-j4\pi x/8) = 3e^{0} + 2e^{-j\pi/2} + 3e^{-j\pi} + 1e^{-j3\pi/2} + 4e^{-j2\pi}$$

$$+5e_{
m Digital\ Image}^{-j5\pi/2}+0e_{
m Processing}^{-j3\pi}+2e^{-j7\pi/2}=4-j4$$
 Prof.zhengkai Liu Dr.Rong Zhang

$$F(3) = \sum_{x=0}^{7} f(x) \exp(-j6\pi x/8) = 3e^{0} + 2e^{-j3\pi/4} + 3e^{-j3\pi/2} + 1e^{-j9\pi/4} + 4e^{-j3\pi} + 5e^{-j15\pi/4} + 0e^{-j9\pi/2} + 2e^{-j21\pi/4} = 0.4142 + j5.8284$$

$$F(4) = \sum_{x=0}^{7} f(x) \exp(-j8\pi x/8) = 3e^{0} + 2e^{-j\pi} + 3e^{-j2\pi} + 1e^{-j3\pi} + 4e^{-j4\pi} + 5e^{-j5\pi} + 0e^{-j6\pi} + 2e^{-j7\pi} = 0$$

$$F(5) = \sum_{x=0}^{7} f(x) \exp(-j10\pi x/8) = 3e^{0} + 2e^{-j5\pi/4} + 3e^{-j5\pi/2} + 1e^{-j15\pi/4} + 4e^{-j5\pi} + 5e^{-j25\pi/4} + 0e^{-j15\pi/2} + 2e^{-j35\pi/4} = 0.4142 - j5.8284$$

$$F(6) = \sum_{x=0}^{7} f(x) \exp(-j12\pi x/8) = 3e^{0} + 2e^{-j3\pi/2} + 3e^{-j3\pi} + 1e^{-j9\pi/2} + 4e^{-j6\pi} + 5e^{-j15\pi/2} + 0e^{-j9\pi} + 2e^{-j21\pi/2} = 4 + j4$$

$$F(7) = \sum_{x=0}^{7} f(x) \exp(-j14\pi x/8) = 3e^{0} + 2e^{-j7\pi/4} + 3e^{-j7\pi/2} + 1e^{-j21\pi/4} + 4e^{-j7\pi} + 5e^{-j35\pi/4} + 0e^{-j9\pi/2} + 2e^{-j7\pi/4} + 3e^{-j7\pi/2} + 1e^{-j21\pi/4} + 4e^{-j7\pi} + 5e^{-j35\pi/4} + 0e^{-j9\pi/2} + 2e^{-j49\pi/4} = -2.4142 + j0\sqrt{17}$$

$$+ 5e^{-j35\pi/4} + 0e^{-j21\pi/2} + 2e^{-j49\pi/4} = -2.4142 + j0\sqrt{17}$$

$$+ 5e^{-j35\pi/4} + 0e^{-j21\pi/2} + 2e^{-j49\pi/4} = -2.4142 + j0\sqrt{17}$$

$$+ 5e^{-j35\pi/4} + 0e^{-j21\pi/2} + 2e^{-j49\pi/4} = -2.4142 + j0\sqrt{17}$$

3.2.2 definitions:1-D DFT example

And the Fourier spectra are:

$$|F(0)|= 20 \qquad \phi(0) = 0$$

$$|F(1)|= [(-2.4142)^2 + (-0.1716)^2]^{1/2} = 2.4203 \qquad \phi(1) = -0.9774\pi$$

$$|F(2)|= [4^2 + (-4)^2]^{1/2} = 5.6569 \qquad \phi(2) = -0.25\pi$$

$$|F(3)|= [0.4142^2 + 5.8284^2]^{1/2} = 5.8431 \qquad \phi(3) = 0.4774\pi$$

$$|F(4)|= 0 \qquad \phi(4) = \pi$$

$$|F(5)|= [0.4142^2 + (-5.8284)^2]^{1/2} = 5.8431 \qquad \phi(5) = -0.4774\pi$$

$$|F(6)|= [4^2 + 4^2]^{1/2} = 5.6569 \qquad \phi(6) = 0.25\pi$$

$$|F(7)|= [(-2.4142)^2 + 0.1716^2]^{1/2} = 2.4203$$

$$\underset{\text{Prof.zhengkai Liu Dr.Rong Zhang}}{\text{Prof.zhengkai Liu Dr.Rong Zhang}} \qquad \phi(7) = 0.9774\pi$$

3.2.2 definitions:1-D DFT example

Graphic illustration:

3.2.2 definitions:1-D DFT example

Graphic illustration:

3.2.2 definitions:1-D DFT example

line 128 of Lena

spectrum

phase spectrum

3.2.2 definitions: 2D-DFT

The Two-Dimensional Discrete Fourier Transform and its Inverse

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{v=0}^{N-1} f(x,y)e^{-j2\pi(ux/M+vy/N)}$$
 $u = 0,1,\dots M-1$ $v = 0,1,\dots N-1$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v)e^{j2\pi(ux/M+vy/N)} \qquad x = 0,1,\dots M-1$$
$$y = 0,1,\dots N-1$$

3.2.2 definitions: 2D-DFT

Magnitude or spectrum

$$|F(u,v)| = [R^2(u,v) + I^2(u,v)]^{1/2}$$

Phase angle or phase spectrum

$$\phi(u, v) = \arctan[I(u, v)/R(u, v)]$$

Power spectrum (Spectral density)

$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

3.2.2 definitions: Display

- •Usually the Fourier spectra are displayed as intensity function.
- many image spectra decrease rather rapidly as a function of increasing frequency
- •their high-frequency terms have a tendency to become obscured when displayed in image.

3.2.2 definitions: Display

• A useful processing technique which compensates for this difficulty consists of displaying the function

$$D_1(u, v) = \log(1 + |F(u, v)|)$$

Or

$$D_2(u,v) = \begin{cases} |F(u,v)| + 100\\ 255 & \text{if } |F(u,v)| + 100 > 255 \end{cases}$$

•instead of
$$|F(u,v)|$$

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3.2.2 definitions: 2D-DFT

3.2.2 definitions: 2D-DFT

Typical images and their spectra

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3.2.2 definitions: 2D-IDFT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3.2.2 definitions: 2D-IDFT

3.2.2 definitions: 2D-IDFT

3.2.3 Properties: separability

The DFT pair can be expressed in the separable forms:

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \exp\left[\frac{-j2\pi ux}{N}\right]_{y=0}^{N-1} f(x,y) \exp\left[\frac{-j2\pi vy}{N}\right]$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \exp\left[\frac{j2\pi ux}{N}\right] \sum_{v=0}^{N-1} F(u,v) \exp\left[\frac{j2\pi vy}{N}\right]$$

3.2.3 Properties: separability

The principal of the separability property is that f(x,y) or F(u,v) can be obtained in two steps by successive applications of the 1-D Fourier transform or its inverse

图3.2.2 由2步1-D变换计算2-D变换

3.2.3 Properties: separability

For a N*N image, it can be separated into 2N 1D-DFT

3.2.3 Properties: periodicity and conjugate symmetry

The discrete Fourier transform and its inverse are *periodic* with Period *N*

$$F(u,v) = F(u+N,v) = F(u,v+N) = F(u+N,v+N)$$

The Fourier transform also exhibits conjugate symmetry since

$$F(u,v) = F^*(-u,-v)$$

Or more interestingly,

$$|F(u,v)| = |F(-u,-v)|$$

2D periodicity and conjugate symmetry

3.2.3 Properties: periodicity and conjugate symmetry

Digital Image Processing
Prof.zhengkai Liu Dr.Rong Zhang

3.2.3 Properties: translation

The translation properties of the Fourier transform pair are given by

$$f(x, y) \exp[j2\pi(u_0x + v_0y)/N] \Leftrightarrow F(u - u_0, v - v_0)$$

and

$$f(x-x_0, y-y_0) \Leftrightarrow F(u, v) \exp\left[-j2\pi(ux_0+vy_0)/N\right]$$

3.2.3 Properties: translation

A shift in f(x,y) does not affect the magnitude of its Fourier transform since

$$|F(u,v)\exp[-j2\pi(ux_0+vy_0)/N]| = |F(u,v)|$$

3.2.3 Properties: translation

Example: in the case $u_0 = v_0 = N/2$, it follows that

and

$$f(x, y)(-1)^{x+y} \Leftrightarrow F(u-N/2, v-N/2)$$

3.2.3 Properties: translation

Example of Two-Dimensional DFT shift

3.2.3 Properties: translation

Digital Image Processing
Prof.zhengkai Liu Dr.Rong Zhang

3.2.3 Properties: rotation

If we introduce the polar coordinates

$$x = r\cos(\theta)$$
 $y = r\sin(\theta)$ $u = \omega\cos(\phi)$ $v = \omega\sin(\phi)$

Then f(x,y) and F(u,v)become $f(r,\theta)$ and $F(\omega,\phi)$ respectively

$$f(r, \theta + \theta_0) \Leftrightarrow F(w, \phi + \theta_0)$$

3.2.3 Properties: rotation

3.2.3 Properties: Distributivity

It follows directly from the definition of the transform pair that,

$$F\{f_1(x,y) + f_2(x,y)\} = F\{f_1(x,y)\} + F\{f_2(x,y)\}$$

And, in general that,

$$F\{f_1(x,y)\cdot f_2(x,y)\}\neq F\{f_1(x,y)\}\cdot \{f_2(x,y)\}$$

3.2.3 Properties: scaling

It is also easy to show that for two scalar a and b

$$af(x, y) \Leftrightarrow aF(u, v)$$

and

$$f(ax,by) \Leftrightarrow \frac{1}{|ab|} F\left(\frac{u}{a},\frac{v}{b}\right)$$

3.2.3 Properties: average value

A widely-used definition of the average value of a 2D Discrete function is given by the expression

$$\tilde{f}(x,y) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

Substitution of u-v-0 in definition of 2D DFT yields

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \qquad \longrightarrow \qquad \tilde{f}(x,y) = \frac{1}{N} F(0,0)$$

3.2.3 Properties: convolution

The convolution of two functions f(x) and g(x), denoted by f(x)*g(x), is defined by the integral:

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(z)g(x-z)dz$$

Where z is a dummy variable of integration

3.2.3 Properties: convolution

Example 1: graphic illustration of convolution f(x)*g(x)

图3.2.3 1-D函数卷积示例

3.2.3 Properties: convolution

Example 2: graphic illustration of convolution f(x,y)*g(x,y)

3.2.3 Properties: convolution

Example 2: graphic illustration of convolution f(x,y)*g(x,y)

3.2.3 Properties: convolution

If f(x,y) has the Fourier transform F(u,v) and g(x,y) has the Fourier Transform G(u,v), then f(x,y)*g(x,y) has the Fourier transform F(u,v)G(u,v). This result, formally stated as:

$$f(x, y) * g(x, y) \Leftrightarrow F(u, v)G(u, v)$$

And the convolution in *frequency* domain reduces to multiplication In the *spatial*-domain

$$f(x, y)g(x, y) \Leftrightarrow F(u, v) * G(u, v)$$

3.2.3 Properties: convolution

Definition of 1D-discrete convolution

$$f_e(x) = \begin{cases} f(x) & 0 \le x \le A - 1 \\ 0 & A \le x \le M - 1 \end{cases}$$

$$g_e(x) = \begin{cases} g(x) & 0 \le x \le B - 1 \\ 0 & B \le x \le M - 1 \end{cases}$$

$$f_e(x) * g_e(x) = \frac{1}{M} \sum_{e=0}^{M-1} f_e(m) g_e(x-m)$$
 x=0,1,...,M-1

3.2.3 Properties: convolution

Definition of 2D-discrete convolution

$$f_e(x,y) = \begin{cases} f(x,y) & 0 \le x \le A-1 \text{ and } 0 \le y \le B-1 \\ 0 & A \le x \le M-1 \text{ or } B \le y \le N-1 \end{cases}$$

$$g_e(x,y) = \begin{cases} g(x,y) & 0 \le x \le C - 1 & \text{and} & 0 \le y \le D - 1 \\ 0 & C \le x \le M - 1 & \text{or} & D \le y \le N - 1 \end{cases}$$

$$f_e(x, y) * g_e(x, y) = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_e(m, n) g_e(x - m, y - n)$$
 $x = 0,1,..., M-1$ $y = 0,1,..., N-1$

Question:

What is the differences between the amplitude and phase of the two images?

The answer is:

Amplitude

Phase

The answer is:

Amplitude

Phase

3.3.1 Discrete Cosine Transform (DCT)

The 1-D DCT pair is given by the expression:

$$C(u) = a(u) \sum_{x=0}^{N-1} f(x) \cos \left[\frac{(2x+1)u\pi}{2N} \right] \qquad x=0,1,...N-1$$

$$f(x) = \sum_{u=0}^{N-1} a(u)C(u)\cos\left[\frac{(2x+1)u\pi}{2N}\right] \qquad u=0,1,...N-1$$

where

$$a(u) = \begin{cases} \sqrt{1/N} & \text{when } u = 0\\ \sqrt{2/N} & \text{when } u = 1, 2, \dots, N-1 \end{cases}$$

3.3.1 Discrete Cosine Transform (DCT)

Basis function matrix

$$U \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & \cdots & 1/\sqrt{2} \\ \cos \pi/2N & \cos 3\pi/2N & \cdots & \cos(2N-1)\pi/2N \\ \cos 2\pi/2N & \cos 6\pi/2N & \cdots & \cos 2(2N-1)\pi/2N \\ \cos 3\pi/2N & \cos 9\pi/2N & \cdots & \cos 3(2N-1)\pi/2N \\ \cos 4\pi/2N & \cos 12\pi/2N & \cdots & \cos 4(2N-1)\pi/2N \\ \vdots & \vdots & \ddots & \vdots \\ \cos(N-1)\pi/2N & \cos 3(N-1)\pi/2N & \cdots & \cos(2N-1)(N-1)\pi/2N \end{bmatrix}$$

3.3.1 Discrete Cosine Transform (DCT)

3.3.1 Discrete Cosine Transform (DCT)

3.3.1 Discrete Cosine Transform (DCT)

The 2-D DCT pair is given by the expression:

$$C(u,v) = a(u)a(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos\left[\frac{(2x+1)u\pi}{2N}\right] \cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$u,v=0,1,...N-1$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} a(u)a(v)C(u,v) \cos\left[\frac{(2x+1)u\pi}{2N}\right] \cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$x,y=0,1,...N-1$$

3.3.1 Discrete Cosine Transform (DCT)

The 2D-DCT basis images for N=4

3.3.1 Discrete Cosine Transform (DCT)

An example of 2D-DCT

Original Image

3.3.1 Discrete Cosine Transform (DCT)

Relationship between DFT and DCT

3.3.1 Discrete Cosine Transform (DCT)

Relationship between DFT and DCT

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3.3.2 Walsh transform

When $N=2^n$, the kernel function is:

$$g(x,u) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

the discrete Walsh transform of a function f(x), denote by W(u), is:

$$W(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

Where $b_k(z)$ is the kth bit in the binary representation of z.

Eg: n=3, z=6 (110 in binary), we have that

$$b_0(z)=0$$
, $b_1(z)=1$, and $b_2(z)=1$

3.3.2 Walsh transform: 1-D transform

The values of g(x,u) are list in below

3.3.2 Walsh transform: 1-D transform

Inverse kernel and transform:

$$h(x,u) = \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

$$f(x) = \sum_{u=0}^{N-1} W(u) \prod_{i=0}^{n-1} (-1)^{b_i(x)b_{n-1-i}(u)}$$

3.3.2 Walsh transform: 1-D matrix expression N=8

3.3.2 Walsh transform: 1-D transform

The values of g(x,u) are list in below for N=8

3.3.2 Walsh transform: 1-D ordered Walsh transform

The values of g(x,u) are list in below for N=8

3.3.2 Walsh transform: 2-D transform

The direct and inverse kernel functions are expressed as:

$$g(x, y, u, v) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{[b_i(x)b_{n-1-i}(u) + b_i(y)b_{n-1-i}(v)]}$$

$$h(x, y, u, v) = \frac{1}{N} \prod_{i=0}^{n-1} (-1)^{[b_i(x)b_{n-1-i}(u) + b_i(y)b_{n-1-i}(v)]}$$

And the direct and inverse transforms are:

$$W(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \prod_{i=0}^{n-1} (-1)^{[b_i(x)b_{n-1-i}(u)+b_i(y)b_{n-1-i}(v)]}$$
$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} W(u,v) \prod_{i=0}^{n-1} (-1)^{[b_i(x)b_{n-1-i}(u)+b_i(y)b_{n-1-i}(v)]}$$

3.3.2 Walsh transform: 2-D transform

The direct and inverse kernel functions are

Separable and Symmetric

$$g(x, y, u, v) = g_1(x, u)g_1(y, v) = h_1(x, u)h_1(y, v)$$

So it can be implemented in two steps

3.3.2 Walsh transform: 2-D transform

The Walsh transform basis images for N=4

3.3.3Hadamard transform: 1-D transform

When $N=2^n$, the kernel function is:

$$g(x,u) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)}$$

Where the summation in the exponent is performed in modulo 2

1-D Hadamard transform of a function f(x), denote by H(u), is:

$$H(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) (-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)}$$

3.3.3 Hadamard transform: 1-D inverse transform

Inverse kernel and transform:

$$h(x,u) = (-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)}$$

$$f(x) = \sum_{u=0}^{N-1} H(u)(-1)^{\sum_{i=0}^{N-1} b_i(x)b_i(u)}$$

3.3 Other Separable Transforms

3.3.3 hadamard transform: 1-D matrix expression
$$N=8$$

$$\begin{bmatrix}
h_0 \\ h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_3 \\ h_6 \\ h_7
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 & 1 & 1 & 1
\end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ h_7
\end{bmatrix} \begin{bmatrix}
w_0 \\ w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \\ w_7
\end{bmatrix} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & 1
\end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ y_7 \end{bmatrix}$$
Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

3.3.3 Hadamard transform: 1-D transform

The values of g(x,u) are list in below for N=8

3.3.3 Hadamard transform: 1-D transform

The 1-D Hadamard transform basis function for *N*=8

3.3.3 Hadamard transform: 1-D transform

Another way for generating kernel matrix

For the two-by-two case, the kernel matrix is

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

And for successively larger N, these can be generated from The block matrix from

$$H_{2N} = \begin{bmatrix} H_N & H_N \\ H_N & -H_N \end{bmatrix} = H_2 \otimes H_N$$

3.3.3 Hadamard transform: 1-D transform

Another way for generating kernel matrix

For examples

3.3.3 Hadamard transform: 1-D ordered Hadamard transform

The values of g(x,u) are list in below for N=8

3.3.3 Hadamard transform: 1-D ordered Hadamard transform

Then the ordered Hadamard transform pair is

$$H(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) (-1)^{\sum_{i=0}^{n-1} b_i(x) p_i(u)}$$

$$f(x) = \sum_{u=0}^{N-1} H(u)(-1)^{\sum_{i=0}^{n-1} b_i(x) p_i(u)}$$

3.3.3 Hadamard transform: 2-D transform

The kernel functions of 2-D Hadamard are:

$$h(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} [b_i(x)b_i(u) + b_i(y)b_i(v)]}$$

$$g(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} [b_i(x)b_i(u) + b_i(y)b_i(v)]}$$

Both the direct and inverse kernel function are *Separable* and *Symmetric*, because

$$g(x, y, u, v) = g_1(x, u)g_1(y, v) = h_1(x, u)h_1(y, v)$$

3.3.3 Hadamard transform: 2-D transform

And the 2-D Hadamard transform is defined as:

$$H(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) (-1)^{\sum_{i=0}^{n-1} [b_i(x)b_i(u) + b_i(y)b_i(v)]}$$

$$f(x,y) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{v=0}^{N-1} H(u,v) (-1)^{\sum_{i=0}^{N-1} [b_i(x)b_i(u) + b_i(y)b_i(v)]}$$

3.3.3 Hadamard transform: 2-D transform

The Hadamard transform basis images for N=4

3.3.3 Hadamard transform: 2-D ordered transform

The direct and inverse kernel functions of 2-D ordered Hadamard are same as:

lamard are same as:
$$g(x, y, u, v) = h(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} [b_i(x) p_i(u) + b_i(y) p_i(v)]}$$

And the 2-D ordered Hadamard transform is defined as:

$$H(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) (-1)^{\sum_{i=0}^{n-1} [b_i(x) p_i(u) + b_i(y) p_i(v)]}$$

$$f(x,y) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{v=0}^{N-1} H(u,v) (-1)^{\sum_{i=0}^{n-1} [b_i(x) p_i(u) + b_i(y) p_i(v)]}$$

3.3.3 Hadamard transform: 2-D ordered transform

Basis image of 2-D ordered Hadamard transform

3.3.4 Haar transform: definitions

1. Haar function

The Haar functions $h_k(z)$ are defined on the interval [0,1], and $k=0,1...N-1, N=2^n$. Let the Integer $0 \le k \le N-1$ be specified (uniquely) by two other integers, p and q, as

$$k = 2^p + q - 1$$

Where 2^p is the largest power of 2 such that $2^p \le k$ and q-1 is The remainder, except k=0.

For example,

$$k=0, p=0, q=0$$

$$k=1=2^{0}+1-1, \longrightarrow p=0, q=1$$

 $k=23=2^{4}+8-1, \longrightarrow p=4, q=8$
 $k=100=2^{6}+37-1, \longrightarrow p=6, q=37$

3.3.4 Haar transform: definitions

1. Haar function

The Haar functions are defined by

$$h_0(z) = h_{00}(z) = 1/\sqrt{N}$$
 $z \in [0,1]$

$$h_k(z) = h_{pq}(z) = \frac{1}{\sqrt{N}} \begin{cases} 2^{p/2} & \frac{q-1}{2^p} \le z < \frac{q-1/2}{2^p} \\ -2^{p/2} & \frac{q-1/2}{2^p} \le z < \frac{q}{2^p} \end{cases}$$
 others

3.3.4 Haar transform: definitions

2. Haar transform

$$H(u) = \sum_{x=0}^{N-1} f(x) h_u(\frac{x}{N})$$

$$H = \begin{bmatrix} h_0(0/N) & h_0(1/N) & \cdots & h_0(N-1/N) \\ h_1(0/N) & h_1(1/N) & \cdots & h_1(N-1/N) \\ \vdots & \vdots & \ddots & \vdots \\ h_{N-1}(0/N) & h_{N-1}(1/N) & \cdots & h_{N-1}(N-1/N) \end{bmatrix}$$

3.3.4 Haar transform: definitions

2. Haar transform matrix

For example: N=2

$$H_2 = \begin{bmatrix} h_0(0/2) & h_0(1/2) \\ h_1(0/2) & h_1(1/2) \end{bmatrix}$$

$$k=0$$
 $p=0, q=0$
 $k=1$ $p=0, q=1$

or example:
$$N=2$$

$$h_0(0/2) = h_{00}(0/2) = \frac{1}{\sqrt{2}}$$

$$H_2 = \begin{bmatrix} h_0(0/2) & h_0(1/2) \\ h_1(0/2) & h_1(1/2) \end{bmatrix} \longrightarrow h_0(1/2) = h_{00}(1/2) = \frac{1}{\sqrt{2}}$$

$$k=0 \quad p=0, \ q=0 \\ k=1 \quad p=0, \ q=1$$

$$h_1(0/2) = h_{01}(0/2) = \frac{1}{\sqrt{2}}$$

$$h_1(1/2) = h_{01}(1/2) = -\frac{1}{\sqrt{2}}$$

$$H_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

3.3.4 Haar transform: definitions

2. Haar transform matrix

For example: *N*=4

$$H_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{bmatrix}$$

3.3.4 Haar transform: definitions

2. Haar transform matrix

The 1-D Haar transform basis function for *N*=8

3.3.4 Haar transform: definitions

3. Haar transform

Direct transform:
$$G = HF$$

Inverse transform:

$$F = H^{-1}G$$

3.3.4 Haar transform: properties

3. Haar transform

The Haar transform basis images for N=4

3.3.4 Haar transform: mallat algorithms

3.3.4 Haar transform: mallat algorithms

3.3.5 Hotelling transform: definitions

KLT: Karhunen-Loeve Transfrom

PCA:Principal Components Analysis

The *kth* image in a image set can be expressed as a vector:

$$x_{k} = \begin{bmatrix} x_{k}^{0} & x_{k}^{1} & \cdots & x_{k}^{N-1} \end{bmatrix}^{T}$$
 $k=0,1, ...M-1$

The covariance matrix of the x vector is defined as

$$C_{x} = E\{(x - m_{x})(x - m_{x})^{T}\}$$

where

$$m_{x} = E\{x\}$$

is the mean vector, E is the expected value

3.3.5 Hotelling transform: definitions

They can be approximated from the samples by using the relations

$$m_{x} = \frac{1}{M} \sum_{k=0}^{M-1} x_{k}$$

and

$$C_{x} = \frac{1}{M} \sum_{k=0}^{M-1} (x_{i} - m_{x})(x_{i} - m_{x})^{T}$$
$$= \frac{1}{M} \sum_{k=0}^{M-1} x_{k} x_{k}^{T} - m_{x} m_{x}^{T}$$

3.3.5 Hotelling transform: definitions

let
$$|C_x - \lambda I| = 0$$
 Calculated N eigenvalues and arranged as $\lambda_0 \ge \lambda_1 \ge \cdots \ge \lambda_{N-1}$

let
$$[C_x - \lambda_i I]T_i = 0$$
 Calculated *N* eigenvectors T_i and arranged as

$$A = egin{bmatrix} T_0^T \ T_1^T \ dots \ T_{N-1}^T \end{bmatrix}$$

Hotelling transform $Y = A(X - m_x)$

$$Y = A(X - m_{_X})$$

Inverse Hotelling transform

$$X = A^T Y + m_{_X}$$

3.3.5 Hotelling transform: properties

Relationship between the eigenvaluse and eigenvectors:

$$\begin{bmatrix} C_{x} - \lambda_{i} I \end{bmatrix} T_{i} = 0 \implies C_{x} T_{i} = \lambda_{i} T_{i}$$

$$A = \begin{bmatrix} T_{0}^{T} \\ T_{1}^{T} \\ \vdots \\ T_{N-1}^{T} \end{bmatrix} \implies C_{x} A^{T} = A^{T} \wedge \begin{bmatrix} \lambda_{0} & 0 \\ & \lambda_{1} \\ & & \ddots \\ 0 & & \lambda_{N-1} \end{bmatrix}$$
where $\wedge = \begin{bmatrix} \lambda_{0} & 0 \\ & \lambda_{1} \\ & & \ddots \\ 0 & & \lambda_{N-1} \end{bmatrix}$

3.3.5 Hotelling transform: properties

mean vector of
$$\mathbf{y}$$
 $m_y = E\{y\} = E\{(Ax - Am_x)\} = AE\{x\} - Am_x$

$$m_y = 0$$

The covariance matrix of the Y vector is given by

$$C_{y} = E\{(Y - m_{y})(Y - m_{y})^{T}\}$$

$$= E\{(AX - Am_{x})(AX - Am_{x})^{T}\}$$

$$= E\{A(X - m_{x})(X - m_{x})^{T}A^{T}\}$$

$$= AE\{(X - m_{x})(X - m_{x})^{T}A^{T}\}$$

3.3.5 Hotelling transform: properties

$$AA^{T} = I \qquad \Longrightarrow \qquad \begin{bmatrix} C_{y} = AC_{x}A^{T} \\ = AA^{T} \land \\ = \land \end{bmatrix}$$

 C_y is a diagonal matrix with elements equal to the eigenvalues of C_y , that is

$$C_{y} = \begin{bmatrix} \lambda_{1} & & & 0 \\ & \lambda_{2} & & \\ & & \ddots & \\ 0 & & & \lambda_{N} \end{bmatrix}$$

That's means elements of *Y* are *uncorrelated*

3.3.5 Hotelling transform: inverse transform

Since Hotelling transform is orthogonal, so

$$A^{-1} = A^T$$
 and $X = A^T Y + m_X$

If we form A from K eigenvectors corresponding to the largest eigenvalues as A_K , the recovered vector will be

$$\hat{X} = A_K^T Y + m_x$$

It can be shown that the mean square error, e_{ms} , between X and \hat{X} is given by the expression

$$e_{ms} = \sum_{j=0}^{N-1} \lambda_j - \sum_{j=0}^{k-1} \lambda_j = \sum_{j=K}^{N-1} \lambda_j$$

3.3.5 Hotelling transform: example

Given the samples of 2-dimension vectors shown as below, calculate its Hotelling transform. N=2, M=27

3.3.5 Hotelling transform: example

Let

$$x^{k} = \begin{bmatrix} x_{0}^{k} & x_{1}^{k} \end{bmatrix}^{T}$$
 $k=0,1, ...26$

$$m_x = \frac{1}{27} \sum_{k=0}^{26} x_k = \begin{bmatrix} 4.444 & 4.2963 \end{bmatrix}$$

$$C_{x} = \frac{1}{27} \sum_{k=0}^{26} (x_{i} - m_{x})(x_{i} - m_{x})^{T}$$
$$= \begin{bmatrix} 3.4103 & 3.2479 \\ 3.2479 & 4.7550 \end{bmatrix}$$

3.3.5 Hotelling transform: example

let
$$|C_x - \lambda I| = 0$$
 $3.4103 - \lambda 3.2479$ $3.2479 = 0$ $\lambda_0 = 7.3993$ $\lambda_1 = 0.7659$

let
$$\begin{bmatrix} C_x - \lambda_i I \end{bmatrix} T_i = 0$$
 $T_0 = \begin{bmatrix} 0.6314 \\ 0.7755 \end{bmatrix}$ $T_1 = \begin{bmatrix} -0.7755 \\ 0.6314 \end{bmatrix}$

$$A = \begin{bmatrix} 0.6314 & 0.7755 \\ -0.7755 & 0.6314 \end{bmatrix}$$

$$y = A(x - m_x)$$

3.3.5 Hotelling transform: example

```
y = ( -4.7309  0.5899) ( -3.9555  1.2212) ( -4.0996  -0.1856) ( -3.3241  0.4458)

( -2.5486  1.0771) ( -3.4682  -0.9611) ( -2.6927  -0.3297) ( -1.9172  0.3017)

( -2.0613  -1.1052) ( -1.2859  -0.4738) ( -0.5104  0.1576) ( 0.2651  0.7890)

( 1.0406  1.4203) ( -0.6545  -1.2493) ( 0.1210  -0.6179) ( 0.8965  0.0135)

( 1.6719  0.6449) ( 2.4474  1.2762) ( 0.7524  -1.3934) ( 1.5279  -0.7620

( 2.3033  -0.1306) ( 3.0788  0.5008) ( 3.8543  1.1322) ( 2.1592  -1.5375)

( 2.9347  -0.9061) ( 3.7102  -0.2747) ( 4.4857  0.3567)
```

```
my = 1.0e-015 *
-0.6908 -0.1069
```

```
cy =
7.3993 0.0000
0.0000 0.7659
```


3.3.5 Hotelling transform: example

Sinusoidal transforms

- (a) Discrete Fourier Transform
- (b) Discrete Cosine Transform
- (c) Discrete Sine Transform
- (d) Hartly Transform

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\cos \theta$$

$$\sin \theta$$

$$\cos\theta + \sin\theta$$

Rectangular wave transforms

- (a) Hadamard Transform
- (b) Walsh Transform
- (c) Slant Transform
- (d) Haar Transform

Eigenvector-based transforms

Hotelling Transform (K-LT)

How to Use these Transforms?

• Future work

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

Digital Image Processing Prof.zhengkai Liu Dr.Rong Zhang

Homework

(1) 计算下图的 DFT, DCT, Hadamard 变换和Haar变换

- (2) Page 71(章毓晋) 3.21: 设有一组64*64的图像,它们的协方差 矩阵式单位矩阵.如果只使用一半的原始特征值计算重建图像, 那么原始图像和重建图像间的均方误差是多少?
 - (3) 编程实现lena.bmp的离散Fourier变换和离散余弦变换,并显示频谱图像。

The End