Phylogenic Trees

This version 2017-01-03

Definitions

A set of genes $N \equiv \{n \in \{1, ..., G\}\}$ is a partial order according to its relations as parent and offsprings such that for any $n, m \in N$ for which a directed path exists, n < m iff n is a parent node and m an offspring.

Leaf Probabilities

Given $P = \{1, 2, ..., P\}$ functions, each node has 2^P different possible states. For any given node n, its state s_n is a vector of length P in $\{0, 1\}^P$, e.g. $s_n = \{0, 0, 0\}$.

In the experimental data, for each leaf l, we have the observed state defined by the vector $s_l \equiv \{s_{lp}\}_{p=1}^P$ with

$$z_{lp} = \begin{cases} 1 & \text{if the function } p \text{ is active} \\ 0 & \text{if the function } p \text{ is not active} \\ 9 & \text{if we don't have information} \end{cases}$$

This way, given that we observe $s \equiv \{s_p\}_{p=1}^P$, the probability that the true state is s' is:

$$\Psi_{ss'} = \begin{cases} \prod_{p} \{ \psi_{p}^{\mathbf{1}} \{ s'_{lp} = s_{lp} \} (1 - \psi_{p})^{\mathbf{1}} \{ s'_{lp} \neq s_{lp} \} \} & \text{if } s'_{lp} \neq 9 \\ & \text{otherwise} \end{cases}$$

Where $\psi \equiv \{\psi_p\}_{p=1}^P$ are misclassification probabilities.

Internal Nodes Probabilities

For any internal node n, the likelihood is defined in terms of gain and loss functions (also stored as a $N \times 2^P$ array). Furthermore, it is conditional on n's offsprings $o_n \subset \{m \in N : m < n\}$, which has cardinality $|o_n| = O_n$, and the true state s. Then, the probability that the internal node n has state s is

$$P_{n,s} = \prod_{o_n} \sum_{s^*} P_{o_n,s^*} \prod_{p} \left(\underbrace{\underbrace{\underbrace{\mu_0^{1\{s_p^*\}}_{0}}_{\text{Gain}} \underbrace{(1-\mu_0)^{1\{\neg s_p^*\}}_{\text{No gain}}}}^{1\{\neg s_p\}} \times \underbrace{\underbrace{\underbrace{\mu_1^{1\{\neg s_p^*\}}_{1}}_{\text{Loss}} \underbrace{(1-\mu_1)^{1\{s_p^*\}}_{\text{No Loss}}}^{1\{s_p\}}}^{1\{s_p\}} \right)$$

Where $P_{o_n,s^*} = \Psi_{s^*s'}$ if the offspring is a leaf. Computationally, observe that the larger parenthesis can be computed only once and then retrieved depending on the values of $\{s_p^*, s_p\}$. Let $M \equiv \{m_{s_p^*, s_p}\}$ to be an array of size 2×2 holding the Gain/Loss probabilities, then, the previous equation reduces to:

$$P_{n,s} = \prod_{o_n} \sum_{s^*} P_{o_n,s^*} \prod_{p} m_{s_p^*,s_p}$$

Finally, let $\pi \equiv \{\pi_s\}_{s=1}^{2^P}$ to be the root node state probabilities, then, the likelihood for n=0 can be computed as

$$L_0(\pi, \mu, \psi) = \sum_s \pi_s P_{0,s}$$