WHAT IS CLAIMED IS:

1	1. A transportation system comprising:
2	a fuel leak detector comprising,
3	a colorimetric chemical monitor configured to change color in
4	response to presence of a fuel, and
5	an optical reader configured to monitor a color of the chemical
5	monitor; and
7	an alarm system in electronic communication with the fuel leak detector and
8	configured to provide an alarm when a color of the chemical monitor changes by a
9	predetermined amount.
1	2. The system of claim 1 wherein the colorimetric chemical monitor
2	comprises a porous substrate impregnated with mercurous chloride/methylcellulose reagent.
-	
1	3. The system of claim 1 wherein a portion of the porous substrate is
2	impregnated with N-phenylanthranilic acid/titanium dioxide
l	4. The system of claim 3 wherein a second portion of the porous substrate
2	is impregnated with mercurous chloride/methylcellulose reagent.
l	5. The system of claim 2 wherein the porous substrate comprises paper.
l	6. The system of claim 1 wherein the optical reader comprises:
2	a light source configured to illuminate a surface of a porous substrate
3	impregnated with a reagent reactive with a hypergolic fuel component; and
1	an optical detector configured to receive light reflected by the surface of the
5	porous substrate, and in response output a voltage proportional to an intensity of the reflected
ó	light.
	7. The system of claim 6 wherein the light source comprises a light
)	emitting diode configured to emit light having a wavelength of about 455 nm.
-	omitting aloue comigated to omit light having a wavelength of about 455 lini.
l	8. The system of claim 6 wherein the optical reader further comprises a
2	comparator, the comparator comprising:
3	a first input node configured to electrically communicate with the optical
1	detector,

5	a second input node configured to electrically communicate with a reference
6	voltage, the reference voltage corresponding to a voltage output by the optical detector
7	receiving light reflected from the porous substrate in the absence of a hypergolic fuel
8	component, and
9	an output node configured to output a voltage proportional to a difference
10	between voltages at the first and second input nodes.
1	9. The system of claim 8 wherein the alarm is configured to be triggered
2	when the output voltage appearing on the output node of the comparator exceeds a threshold
3	value.
1	10. The system of claim 8 further comprising a beam splitter configured to
2	cause light from the source to illuminate separate portions of the porous substrate.
1	11. A method for detecting leakage of a hypergolic fuel system, the
2	method comprising:
3	providing a colorimetric chemical monitor;
4	providing an optical reader;
5	monitoring an intensity of reflected light from the colorimetric chemical
6	monitor with the optical reader; and
7	determining a fuel leak when the intensity of reflected light drops below a
8	predetermined threshold.
1	12. The method of claim 11 wherein providing a colorimetric chemical
2	monitor comprises impregnating a porous substrate with mercurous chloride/methylcellulose
3	reagent.
1	13. The method of claim 11 wherein providing a colorimetric chemical
2	monitor comprises impregnating a porous substrate with N-phenylanthranilic acid/titanium
3	dioxide reagent
1	14. The method of claim 11 wherein providing a colorimetric chemical
2	monitor comprises:
3	impregnating a first portion of a porous substrate with mercurous
4	chloride/methylcellulose reagent; and

3	impregnating a second portion of the porous substrate with in-
6	phenylanthranilic acid/titanium dioxide reagent.
	15 The weather the College 14 and environmentation and environment
1	15. The method of claim 14 wherein impregnating a porous substrate
2	comprises impregnating a porous substrate comprising paper.
1	16. The method of claim 11 wherein providing an optical reader
2	comprises:
3	providing a light source configured to illuminate a surface of a porous
4	substrate impregnated with a reagent reactive with a hypergolic fuel component; and
5	providing an optical detector configured to receive the light reflected by the
6	surface of the porous substrate and in response to output a voltage proportional to the
7	intensity of the reflected light.
,	intensity of the reflected right.
1	17. The method of claim 16 wherein providing a light source comprises
2	providing a light emitting diode configured to emit light having a wavelength of about 455
3	nm.
1	18. The method of claim 16 wherein determining a fuel leak when the
2	intensity of reflected light drops below a predetermined threshold comprises:
3	providing a reference voltage to a first input node of a comparator, the
4	reference voltage corresponding to a voltage resulting from the detector reflecting light in the
5	absence of the hypergolic fuel component;
6	providing the output voltage from the optical detector to a second input node
7	of a comparator; and
8	measuring a voltage produced at an output node of the comparator.
1	19. The method of claim 11 further comprising generating an alarm when
2	a fuel leak is determined.
1	20. A method of identifying a fuel leak comprising:
2	generating a voltage based upon comparison of a reference voltage with a
3	voltage generated by a detector receiving light reflected from the surface of a substrate
4	impregnated with a reagent reactive with a fuel component.