Ejercicio 2: Doble Grafo

Daniel Bustos

27/4/2024

Sea G=(E,V) un grafo con $|V|\geq 2$. Supongamos que todos los vértices tienen distinto grado:

$$\forall v \in V, w \in V, v \neq w \rightarrow d(v) \neq d(w)$$

Luego podemos ordenar los vértices según su grado de manera creciente. Sea n=|V|, esto queda:

$$d(v_1) < d(v_2) < d(v_3) < \ldots < d(v_n)$$

Dado que no hay aristas duplicadas, tenemos que el grado de $d(v_n)$ es como máximo n-1, luego:

$$d(v_1) < d(v_2) < d(v_3) < \ldots < d(v_n) \le n - 1$$

Observación: Si $d(v_n) < n-1$, debe haber al menos un repetido, ya que el grado es siempre mayor o igual a 0. Entonces vale que $d(v_n) = n-1$. Luego v_n es un vecino universal (está conectado con todos).

Dado que son todos de distintos grados, con el mayor n-1 y el menor 0, vale que $d_i = i-1$.

Por lo tanto, $d(v_1) = 0$ y es un vecino aislado (no tiene conexiones). Pero v_n era un vecino universal. Tenemos un nodo que esta conectado con todos y otro nodo que no esta conectado con ninguno. ¡Absurdo!

Por lo tanto, para todo grafo G, con mas de un vertice, existen dos vértices distintos con el mismo grado.