NOT IQ

Estimating an Alternative to IQ Tests with the BLS-ONET Framework

Atlas Research Team

2023-07-07

Contents

1	Intr	roduction	3
	1.1	Intelligence Quotient (IQ) \dots	3
	1.2	Motivation	3
2	An	Alternative to IQ Tests	3
	2.1	The NOT IQ Metric	3
		2.1.1 Proxies for IQ	3
		2.1.2 NOT IQ Formula	3
3	Res	sults	3
	3.1	Distribution of NOT IQ	3
	3.2	Model Precision	3
		3.2.1 Benchmarks	3
		3.2.2 Overall Precision	4
	3.3	Most and Least Intelligent Occupations	4
	3.4	Impact of NOT IQ on Wages	4
1	Cor	nclusion	1

1 Introduction

1.1 Intelligence Quotient (IQ)

[What IQ is]

[Why IQ is important]

1.2 Motivation

[Despite the importance of IQ, it is illegal in the US to select job applicants based on IQ scores]
[Therefore, an alternative NOT IQ metric, which yields similar results would be very much useful]

2 An Alternative to IQ Tests

2.1 The NOT IQ Metric

[introduction to NOT IQ]

2.1.1 Proxies for IQ

[Explain Factor Analysis of BLS-ONET data]

[Proxies for IQ = Discernment and Intelligence]

2.1.2 NOT IQ Formula

$$\tilde{g} = \overline{g} + \sigma_g \left(\frac{\psi_g - \overline{\Psi}_g}{\sigma_{\Psi_g}} \right)$$

[explain variables]

[Using Ψ_g = Discernment and Intelligence factors, with the usual mean IQ of 100 with standard deviation of 15]

$$\tilde{g} = 100 + 15 \times \left(\frac{\psi_g - 41.1}{14.8}\right)$$

3 Results

3.1 Distribution of NOT IQ

[The NOT IQ Bell Curve]

3.2 Model Precision

3.2.1 Benchmarks

[IQ of occupations]

3.2.2 Overall Precision

[Calculate weighted mean of error and percent error]
[Most and least precise estimations]
[Distribution of errors]

3.3 Most and Least Intelligent Occupations

[Ridge plot of most and least intelligent occupations]

3.4 Impact of NOT IQ on Wages

[regression model] [scatterplot]

4 Conclusion