

++++

"Virtual" Lab or "Virtual Lab": How Students Engage with Laboratory Simluations

Prof Euan Lindsay
CSU Engineering

The Purpose of Laboratory Classes

Some analysis in the literature

- Feisel & Rosa 2005
- Scanlon et al 2002
- Antsaklis et al 1999

Many good reasons

• Why do *you* have laboratory classes?

There are some downsides:

Expensive to run

Difficult to schedule

Safety issues

Space requirements – need a laboratory

Require physical attendance

Alternative Modes for Laboratories

Remote Access

- Hardware can be anywhere
- Safety issues are reduced
- Don't need room around the equipment
- Asynchronous access

Simulation Access

No hardware at all

Proximal labs

Remote Labs

Virtual Labs

Two Necessary Ingredients:

Separation

- Physical separation in remote labs
- Psychological separation in virtual labs

Technology-Mediated Interface

Usually some kind of computer GUI

Equivalency?

Literature from elsewhere suggests perhaps no

Distance Education literature says separation causes changes

Technology in Education literature says interfaces cause changes

Establishment Reality vs

Maintenance Reality

Look around and choose two people

One you already know well

One you've never met before today

Look around and choose two people

One you've never met before today

Write down the first question you would ask upon starting a conversation with them at lunchtime

Different Reality Needs

The Three Stages of Use

Initial Use

The first meeting

Regular Use

Ongoing operation

Expert Use

Everyday specialist

Different goals at each stage

Initial Use

Establishes Credibility

Is it real?

Can I transfer the learning?

What does this button do?

Regular Use

Establishes Transfer

Exploring the concepts

How do I get the outcomes I want

Adding extra depth

The full cockpit simulator

Expert Use

Establishes Specialisation Possibly at the expense of Transfer

Improving efficiency

Shortcuts / hyperkeys

Changing timescales

Faster, slower, backwards

Too Much Fidelity?

Why is Fidelity Good?

Credibility

Transfer

Engagement

Credibility

What are students' options if the data doesn't match their expectations?

- Question the data
 - Check for experimental error
- Question the model
 - Change their understanding of the phenomema (ie learn something)
- 3. Question the credibility of the simulation
 - "This simulation is wrong"

Transfer

Can they use what they have learned?

Easier to use skills it if they learn them where they need them

Fidelity important for transfer

 But you can't transfer it if you don't learn it in the first place

Engagement

Want the students to feel connected with the simulation

Competing with their Xbox

But they engage differently: The flying pot plant

One Specific Study (Lindsay & Good 2005)

Does the substitution of technologymediated access for direct, unmediated access lead to differences in the learning outcomes?

How do different access modes affect learning outcomes?

The Laboratory Class

Calibration of a Piezoelectric Accelerometer Use of multiple control signals for calibration Identifying (and explaining) non-idealities

The Class (cont'd)

3rd year Data Acquisition subject
Students' 3rd semester of control studies
Cohorts of 120 and 146 split into three groups – Proximal, Remote and Simulation access modes

The Computer Interface

Frequency response measurementies Sturt 50 Hz Sine wave

0-200 Hz Chirp

0-500 Hz Chirp

White Noise

The Findings

Not equivalent at all

Differences in perceptions of objectives

No differences in perceptions of outcomes

Differences in performance on criteria

Differences in Learning

Criterion

Criterion Four: Deviation from the 'ideal' $H(\omega)$ vs ω straight line response.

The actual response of the system will deviate from the 'ideal' straight line response assumed in the laboratory handout.

- The student identifies that the response deviates from the 'ideal' straight line.
- II) The student observes that the gradient of the line changes with frequency.
- III) The student observes that response contains oscillation around the ideal straight line response.
- IV) The student observes that the response does not have a zero magnitude at $\omega = 0$
- V) The student provides explanations to explain this deviation.
- VI) The student identifies that this deviation compromises the calibration of the accelerometer as a sensor.

Criteria -> Outcomes

Outcome E: Exception Handling

Outcome F: Processing of Data

Outcome G: Limitations of Accuracy

Perceptions of Objectives

Category	Higher Mode	Lower Mode	P Value
Hardware	Proximal (20%)	Simulation (6%)	< .05
Hardware	Remote (20%)	Simulation (6%)	< .05
Practical Link to Theory	Proximal (13%)	Remote (4%)	< .05
Practical Link to Theory	Simulation (25%)	Remote (4%)	< .01
Miscellaneous	Proximal (15%)	Simulation (3%)	< .05

Perceptions of Outcomes

Mostly the same No significant differences

Obiectives vs Outcomes

What is happening?

Interaction between separation and interface Richer interface potentially reduces the distance

Significant differences between remote and simulation outcomes

- Despite the same interface
- Students' attitudes and beliefs must have an impact

Simulation mode

Distance is set solely by the separation

 The hardware isn't real, so the way in which they interact doesn't matter

Separation promotes abstraction

 Lose sight of the context that is being simulated, and the real hardware that is being modelled

Promotes understanding of theory

So What Does It All Mean?

Different access modes lead to significantly different learning outcomes, and to different perceptions of their learning outcomes

Even through the same interface

Remote mode distance is dependent upon interface

Simulation mode distance is due to perceptions of artificiality

A Different Kind of Different

The different access modes are significantly different learning experiences, and the students construct significantly different outcomes – outcomes that will be the prior knowledge for their future learning.

The modes are not simply interchangeable

Not Equivalent

++++

"Virtual" Lab or "Virtual Lab": How Students Engage with Laboratory Simluations

Prof Euan Lindsay
CSU Engineering