Introdução a Métodos Computacionais em Física Módulo 2

Leonardo Cabral

15 de agosto de 2019

Movimento em 3D: Lançamento de projéteis com rotação

Objetivo 1

Estender a aplicação dos métodos de integração estudados para movimento de corpos em 3D

Objetivo 2

Observar a trajetória de corpos sob ação tanto da força de arrasto como da força de Magnus.

Um corpo que gira e se move translacionalmente em relação a um fluido viscoso sofre a ação da força de Magnus.

Movimento em 3D: Lançamento de projéteis com rotação

Modelo simples para força de Magnus (Despreza efeitos importantes!)

$$\begin{split} v_{top} \sim v + \omega R, & v_{bottom} \sim v - \omega R \\ p + \frac{\rho}{2} v^2 = \text{constante}, & (\text{Eq. de Bernoulli}) \end{split}$$

Movimento em 3D: Lançamento de projéteis com rotação

Equação de movimento

$$\frac{d\mathbf{v}}{dt} = \frac{\mathbf{F}}{m} = \mathbf{g} - C_d |\mathbf{v}| \mathbf{v} + C_M \boldsymbol{\omega} \times \mathbf{v}, \quad (1)$$

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}.\tag{2}$$

Tipicamente:

Bola de beisebol: $C_D \approx 6 \times 10^{-3}$ e $C_M \approx 4 \times 10^{-4}$.

Atividade 2

Responda as perguntas abaixo e elabore um relatório (em pdf) sucinto descrevendo seus resultados (faça gráficos sempre que necessário para facilitar a descrição)

- 1. Elabore um programa para determinar a trajetória de uma esfera com velocidade angular de rotação $\omega = \hat{x}\,\omega_x + \hat{y}\,\omega_y + \hat{z}\,\omega_z$, lançada com velocidade inicial $\mathbf{v}_0 = \hat{x}\,v_{0x} + \hat{y}\,v_{0y} + \hat{z}\,v_{0z}$, cuja equação de movimento é descrita pelas Eqs. (1) e (2). Considere $\mathbf{g} = -\hat{y}\,g$.
- 2. Execute seu programa e faça gráficos das trajetórias encontradas para diferentes valores de ${\bf v}_0$ e ω . Para simplificar, considere ${\bf v}_0$ de módulo constante e no plano x-y, com diferentes ângulos de lançamento θ_0 , assim como ω para os seguintes casos:
 - 2.1 $\omega = 0$;
 - 2.2 $\omega||\mathbf{g};$
 - 2.3 $\omega || \mathbf{g};$
 - 2.4 ω perpendicular ao plano definido por \mathbf{g} e \mathbf{v}_0 ;

Utilize C_D e C_M apropriados para uma bola de beisebol, assim como ω da ordem de 10 rad/s.

cont.

3. Compare os resultados do item anterior com a trajetória parabólica na ausência de forças de arrasto e de Magnus. Quais são as diferenças entre as trajetórias obtidas? Estime as diferenças nas alturas máximas e alcance em relação ao da trajetória parabólica. Estas diferenças são acentuadas? Se sim, em que casos?

Se ainda houver tempo, tente responder as perguntas abaixo:

4* Modifique o seu programa para calcular a trajetória de uma partícula de carga q, massa m e velocidade inicial \mathbf{v}_0 em uma região do espaço com campo elétrico \mathbf{E} e magnético \mathbf{B} . Neste caso a partícula está sujeita à força de Lorentz

$$\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right).$$

5* Considere ${\bf E}$ e ${\bf B}$ uniformes. Execute o seu programa para diferentes valores de ${\bf v}_0$ e observe as trajetórias obtidas.

