厦门大学《高等代数》课程试卷

数学科学学院 各 系 2010 年级 各 专业

主考教师: 杜妮、林鹭 试卷类型: (A卷) 2011.1.13

单选题(32分. 共8题. 每题4分)

- 设b 为 3 维行向量, $V = \{(x_1, x_2, x_3) | (x_1, x_2, x_3) = b\}$,则 。 C
 - A) 对任意的b, V均是线性空间;
- B) 对任意的b,V均不是线性空间;
- C) 只有当b=0时, V 是线性空间;
- D) 只有当b ≠ 0 时,V 是线性空间。
- 已知向量组 I: $\alpha_1,\alpha_2,...,\alpha_s$ 可以由向量组 II: $\beta_1,\beta_2,...,\beta_t$ 线性表示,则下列叙述正确的是____。

A

- A) 若向量组 I 线性无关,则 $s \le t$;
- B) 若向量组 I 线性相关,则 s > t;
- C) 若向量组 II 线性无关,则 $s \le t$; D) 若向量组 II 线性相关,则s > t。
- 设非齐次线性方程组 $AX = \beta$ 中未定元个数为 n,方程个数为 m,系数矩阵 A 的秩为 r,则 。

D

- A) 当r < n 时, 方程组 $AX = \beta$ 有无穷多解; B) 当r = n 时, 方程组 $AX = \beta$ 有唯一解;
- C) 当r < m 时,方程组 $AX = \beta$ 有解: D) 当r = m 时,方程组 $AX = \beta$ 有解。
- 设 $A \neq m \times n$ 阶矩阵, $B \neq n \times m$ 阶矩阵,且AB = I,则 。A
 - A) r(A) = m, r(B) = m;

B) r(A) = m, r(B) = n;

C) r(A) = n, r(B) = m;

- D) r(A) = n, r(B) = n.
- 5) 设 K 上 3 维线性空间 V 上的线性变换 φ 在基 ξ_1,ξ_2,ξ_3 下的表示矩阵是 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,则 φ 在基

 $\xi_1, 2\xi_2, \xi_3$ 下的表示矩阵是____。C

A)
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix};$$

B)
$$\begin{pmatrix} 1 & \frac{1}{2} & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 1 \end{pmatrix}$$

C)
$$\begin{pmatrix} 1 & 2 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 2 & 1 \end{pmatrix};$$

A)
$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
; B) $\begin{pmatrix} 1 & \frac{1}{2} & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & \frac{1}{2} & 1 \end{pmatrix}$; C) $\begin{pmatrix} 1 & 2 & 1 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 2 & 1 \end{pmatrix}$; D) $\begin{pmatrix} 1 & \frac{1}{2} & 1 \\ 2 & 0 & 2 \\ 1 & \frac{1}{2} & 1 \end{pmatrix}$.

- 6) 设 φ 是 V 到 U 的线性映射, dim V = n, dim U = m。 若 m < n,则 φ ____。 B
 - A) 必是单射;
- B) 必非单射;
- C) 必是满射;
- D) 必非满射。

7) 设 V、U、'	W 是数域 K 上的线性空间,又设	φ 、 ψ 、 γ 是都是	V 上的线性变换,则下列结论正	
确的有个。	В			
		② $\operatorname{Im}(\varphi + \psi)$	$ ② \operatorname{Im}(\varphi + \psi) \subseteq \operatorname{Im} \varphi + \operatorname{Im} \psi ; $	
$ (3) \operatorname{Ker} \varphi \subseteq \operatorname{Ker}(\gamma \varphi) ; $			$ \textcircled{4} \ \operatorname{Im} \varphi \subseteq \operatorname{Im} (\varphi \gamma) . $	
A) 1;	B) 2;	C) 3;	D) 4。	
8) 与数域 K 上的线性空间 V = $\{(a,b) a,b \in K\}$ 同构的线性空间有个。C				
① $W = \{(a - a)\}$	$(b,a+b) a,b\in K\};$		$\begin{vmatrix} a & b \\ +b & a-b \end{vmatrix} a,b \in \mathbf{K} $;	
	$(b,a+b) a,b\in K$;		$(a,b) a,b \in K$	
A) 1;	B) 2;	C) 3;	D) 4。	
、 填空题(3	32 分. 共 8 题,每题 4 分)			
1) 设向量组 α_1 ,	$\alpha_2,,\alpha_r$ 线性无关, $\beta_1 = 2\alpha_2 +$	$3\alpha_3 + \dots + r\alpha_r$, β_2	$=\alpha_1+3\alpha_3+\ldots+r\alpha_r\;,\;\;\ldots\ldots\;\;,$	
$\beta_r = \alpha_1 + 2\alpha_2 +$	+ $(r-1)\alpha_{r-1}$, $\beta_{r+1} = \alpha_1 + 2\alpha_2$	$+ \dots + (r-1)\alpha_{r-1} + r\alpha_{r-1}$	α_r ,则 $\beta_1,\beta_2,,\beta_{r+1}$ (选填	
"线性相关","给	线性无关","无法确定")。线性相	关		
2) 设 I: $\alpha_1,\alpha_2,,\alpha_s$ 和 II: $\beta_1,\beta_2,,\beta_t$ 是线性空间 V 中两个向量组,向量组 I 可由向量组 II 线性表				
示,且 $r(I) = r(II)$,则向量组 I 与向量组 II (选填"必等价", "未必等价"), s 与 t (选填"必				
相等","未必相等	等")。必等价,未必相等			
3) 设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 都是 4 维列向量, $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$ 。已知齐次线性方程组 $AX=0$ 的通解是				
$k(0,1,1,0)'$ 。以 A^* 表示 A 的伴随矩阵,则齐次线性方程组 $A^*X=0$ 解空间的维数是,而是				
它的一个基础解	系。3, $\alpha_1, \alpha_2, \alpha_4$ 或 $\alpha_1, \alpha_3, \alpha_4$			
4) 设 n 元齐次线性方程组 $Ax=0$ 和 $Bx=0$ 分别有 l,m 个线性无关解向量,且 $l+m>n$,则				
(A+B)x=0	(选填"必有","未必有")非	零解。必有		
5) 设 $\{\xi_1,\xi_2,,\xi_n\}$, $\{\eta_1,\eta_2,,\eta_n\}$ 是V的两组基, $(\eta_1,\eta_2,,\eta_n)=(\xi_1,\xi_2,,\xi_n)$ P。又若V中向量				
α 在基 $\{\eta_1,\eta_2,,\eta_n\}$ 下的坐标向量是 X ,则 α 在基 $\{\xi_1,\xi_2,,\xi_n\}$ 下的坐标向量是。 PX				

- 6) 设 V_1 , V_2 都 是 n 维 线 性 空 间 V 的 子 空 间 , 且 $\dim(V_1+V_2)=\dim V_1+1$, 则 $\dim V_2-\dim(V_1\cap V_2)=\underline{\hspace{1cm}}.$ 1
- 7) 设 φ 是V到U的线性映射,且 $\varphi(\xi_1,\xi_2,\xi_3) = (\eta_1,\eta_2)\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,其中 $\{\xi_1,\xi_2,\xi_3\}$, $\{\eta_1,\eta_2\}$ 分别是V和U的一组基,则 $\ker \varphi =$ _____, $\operatorname{Im} \varphi =$ _____。 $L(\xi_1)$, U 或 $L(\eta_1,\eta_2)$
- 8) 设 $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,由 $X \mapsto AX$ 定义了 $\mathbb{R}^{2\times 1}$ 上的线性变换 φ ,则 φ 的不变子空间是____。0, $\mathbb{R}^{2\times 1}$
- 三、 (6 分)设向量组 α_1 , α_2 , α_3 是齐次线性方程组 AX=0的一个基础解系。问下列向量组 $\alpha_1+2\alpha_2+\alpha_3$, $2\alpha_1+\alpha_2+2\alpha_3$, $\alpha_1+\alpha_2+\alpha_3$ 是否也是齐次线性方程组 AX=0的一个基础解系?为什么?

解: (法一)
$$(\alpha_1 + 2\alpha_2 + \alpha_3, 2\alpha_1 + \alpha_2 + 2\alpha_3, \alpha_1 + \alpha_2 + \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
, $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 0$, 故不

是基础解系。

(法二)
$$\exists r \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} = 2 < 3$$
,表明它们线性相关,故不是基础解系。

(法三) 因 $\alpha_1 + 2\alpha_2 + \alpha_3 = 3(\alpha_1 + \alpha_2 + \alpha_3) - (2\alpha_1 + \alpha_2 + 2\alpha_3)$, 故不是基础解系。

四、 $(10 \, \mathcal{O})$ 设 φ 是数域 K 上n 维线性空间 V 的线性变换, α 是 V 中一个向量,且满足 $\varphi^{n-1}(\alpha) \neq 0$, $\varphi^n(\alpha) = 0$ 。证明: $\alpha, \varphi(\alpha), ..., \varphi^{n-1}(\alpha)$ 是 V 的一组基,并求 φ 在这组基下的表示矩阵。

证明: 因 $\alpha, \varphi(\alpha),..., \varphi^{n-1}(\alpha)$ 的个数恰为 V 的维数,因此要证其为 V 的基,仅需证其线性无关即可。事实上,设

$$k_0 \alpha + k_1 \varphi(\alpha) + ... + k_{n-1} \varphi^{n-1}(\alpha) = 0,$$
 (*)

将 φ^{n-1} 同时作用于 (*),结合已知条件,得 $k_0 \varphi^{n-1}(\alpha) = 0$,又 $\varphi^{n-1}(\alpha) \neq 0$,故 $k_0 = 0$ 。类似的,将 φ^{n-2} , φ^{n-3} ,…, φ 作用于 (*),得 $k_1 = 0$, $k_2 = 0$,… , $k_{n-2} = 0$ 。进而 $k_{n-1} \varphi^{n-1}(\alpha) = 0$,由 $\varphi^{n-1}(\alpha) \neq 0$,故 $k_{n-1} = 0$ 。

$$arphi$$
在 $lpha, arphi(lpha), ..., arphi^{n-1}(lpha)$ 下的表示矩阵 $egin{pmatrix} 0 & & & \ 1 & 0 & & \ & \ddots & \ddots & \ & & 1 & 0 \end{pmatrix}$ 。

五、 (10 分) 设 A 是 n 阶方阵且 r(A) = r 。求证 $A^2 = A$ 的充要条件是存在 $n \times r$ 矩阵 S 和 $r \times n$ 矩阵 T ,使得 A = ST , $TS = I_r$, r(S) = r(T) = r 。

证明: 充分性。直接计算 $A^2 = STST = SIT = A$ 。

必要性。对矩阵
$$A$$
,存在可逆矩阵 P , Q 使得 $A=P\begin{pmatrix}I_r\\0\end{pmatrix}Q=P\begin{pmatrix}I_r\\0\end{pmatrix}(I_r,0)Q$ 。 令 $S=P\begin{pmatrix}I_r\\0\end{pmatrix}$,

 $T=(I_r,0)Q$,可证 P ,Q 即为所求。显然, S 和 T 分别是 $n\times r$ 矩阵和 $r\times n$ 矩阵,且因 P ,Q 可逆,所以 r(S)=r(T)=r 。下证 $TS=I_r$ 。由 $A^2=A$,得

$$P\begin{pmatrix} I_r & \\ & 0 \end{pmatrix} Q P\begin{pmatrix} I_r & \\ & 0 \end{pmatrix} Q = A^2 = A = P\begin{pmatrix} I_r & \\ & 0 \end{pmatrix} Q . \tag{*}$$

因 P, Q 可逆, 所以

$$\begin{pmatrix} I_r \\ 0 \end{pmatrix} = \begin{pmatrix} I_r \\ 0 \end{pmatrix} QP \begin{pmatrix} I_r \\ 0 \end{pmatrix} .$$
 (**)

(法一)(10级 尹思文)将(*)等式两边分别左乘(I_r ,0) P^{-1} ,右乘 $Q^{-1}\begin{pmatrix} I_r \\ 0 \end{pmatrix}$,得(I_r ,0) $QP\begin{pmatrix} I_r \\ 0 \end{pmatrix} = I_r$,

即 $TS = I_r$ 。

(法二)(10级李宏生,王邑良,吉子龙,夏宇静)由(**),

$$TS = (I_r, 0)QP \begin{pmatrix} I_r \\ 0 \end{pmatrix} = (I_r, 0) \begin{pmatrix} I_r \\ 0 \end{pmatrix} QP \begin{pmatrix} I_r \\ 0 \end{pmatrix} \begin{pmatrix} I_r \\ 0 \end{pmatrix} = (I_r, 0) \begin{pmatrix} I_r \\ 0 \end{pmatrix} \begin{pmatrix} I_r \\ 0 \end{pmatrix} = I_r .$$

(法三)(**) 式=
$$\begin{pmatrix} I_r \\ 0 \end{pmatrix}$$
 $(I_r,0)QP\begin{pmatrix} I_r \\ 0 \end{pmatrix}$ $(I_r,0)=\begin{pmatrix} I_r \\ 0 \end{pmatrix}$ $TS(I_r,0)=\begin{pmatrix} TS \\ 0 \end{pmatrix}$ $(I_r,0)=\begin{pmatrix} TS \\ 0 \end{pmatrix}$,故 $TS=I_r$ 。

必要性。(法四)(10 级 李荣刚)将 A 视为线性变换 φ 在 n 维线性空间 V 的某基下的表示矩阵,由同构对应,则 $\varphi^2 = \varphi$ 。设 φ 的秩为 r, $\{\xi_{r+1},...,\xi_n\}$ 是 $Ker\varphi$ 的一组基,将扩成 $\{\xi_1,...,\xi_r,\xi_{r+1},...,\xi_n\}$ 为 V 的一组基,则 $\varphi(\xi_1),...,\varphi(\xi_r)$ 线性无关,且可证 $\{\varphi(\xi_1),...,\varphi(\xi_r),\xi_{r+1},...,\xi_n\}$ 是 V 的一组基。事实上,因为 V 的维数是 n,因此只要证明 $\{\varphi(\xi_1),...,\varphi(\xi_r),\xi_{r+1},...,\xi_n\}$ 线性无关即可。设

$$k_1 \varphi(\xi_1) + ... + k_r \varphi(\xi_r) + k_{r+1} \xi_{r+1} + ... + k_n \xi_n = 0$$
,

将 φ 作用于式子两边,结合 $\varphi^2 = \varphi$,得

$$\varphi(k_1\varphi(\xi_1)+...+k_r\varphi(\xi_r)+k_{r+1}\xi_{r+1}+...+k_n\xi_n)=k_1\varphi(\xi_1)+...+k_r\varphi(\xi_r)=0\;,$$

由 $\varphi(\xi_1),...,\varphi(\xi_r)$ 的线性无关性,得 $k_1=...=k_r=0$,进而 $k_{r+1}=...=k_n=0$ 。因此

$$\varphi(\varphi(\xi_1),...,\varphi(\xi_r),\xi_{r+1},...,\xi_n) = (\varphi(\xi_1),...,\varphi(\xi_r),\xi_{r+1},...,\xi_n) \begin{pmatrix} I_r & \\ & 0 \end{pmatrix}.$$

这说明存在可逆矩阵 P,使得 $P^{-1}AP=\begin{pmatrix}I_r\\0\end{pmatrix}$ 。 令 $S=P\begin{pmatrix}I_r\\0\end{pmatrix}$, $T=(I_r,0)P^{-1}$,则 A=ST, $TS=I_r$,

r(S) = r(T) = r.

(法五) $(10 \, \text{级 才子佳, 高旸, , 胡丹青, 黄步跃, 林琴等}) 因 <math>A^2 = A$, 所以存在可逆矩阵 P, 使得

$$A = P \begin{pmatrix} I_r & \\ & 0 \end{pmatrix} P^{-1} \circ \ \, \exists S = P \begin{pmatrix} I_r \\ 0 \end{pmatrix}, T = (I_r, 0) P^{-1} \, , \ \, \boxtimes A = ST \, , \ \, TS = I_r \, , \ \, r(S) = r(T) = r \, .$$

主要错误: 法二、法三中TS = I没有证明。

- 六、 $(10\ \text{分})$ 设 V 是数域 K 上 n 维线性空间, φ , σ 是 V 上线性变换,且 $\varphi^2=0$, $\sigma^2=0$, $\varphi\sigma+\sigma\varphi=id_v$,其中 id_v 是 V 上恒等变换。求证:
 - (1) $V = \text{Ker} \varphi \oplus \text{Ker} \sigma$:
 - (2) V 必是偶数维线性空间。

证明: (1) 对 $\forall \alpha \in V$, $\alpha = \varphi \sigma(\alpha) + \sigma \varphi(\alpha) = \beta + \gamma$ 。由已知 $\varphi^2 = 0$, $\sigma^2 = 0$,得 $\varphi(\beta) = \varphi^2(\sigma(\alpha)) = 0$, $\sigma(\gamma) = \sigma^2(\varphi(\gamma)) = 0$,即 $\beta \in \text{Ker}\varphi$, $\gamma \in \text{Ker}\sigma$ 。说明 $V = \text{Ker}\varphi + \text{Ker}\sigma$ 。

此外,对 $\forall \alpha \in \operatorname{Ker} \varphi \cap \operatorname{Ker} \sigma$, $\varphi(\alpha) = 0$, $\sigma(\alpha) = 0$ 。 由 $\varphi \sigma + \sigma \varphi = id_v$, 得 $\alpha = \varphi \sigma(\alpha) + \sigma \varphi(\alpha) = 0$ 。 说明 $\operatorname{Ker} \varphi \cap \operatorname{Ker} \sigma = 0$ 。

综上,即得V = Ker φ ⊕ Ker σ。

(2) (法一) 设 $r(\varphi) = r$,则 dim $\operatorname{Ker} \varphi = n - r$ 。由 (1),若 $\{\xi_1, \xi_2, ..., \xi_r\}$ 是 $\operatorname{Ker} \varphi$ 的一组基, $\{\xi_{r+1}, \xi_{r+2}, ..., \xi_n\}$ 是 $\operatorname{Ker} \varphi$ 的一组基,则 $\{\xi_1, \xi_2, ..., \xi_r, \xi_{r+1}, \xi_{r+2}, ..., \xi_n\}$ 是 V 的一组基。从 而 $\varphi(\xi_1), \varphi(\xi_2), ..., \varphi(\xi_r)$ 线性无关,且由 $\varphi^2 = 0$,知 $\varphi(\xi_1), \varphi(\xi_2), ..., \varphi(\xi_r)$ ∈ $\operatorname{Ker} \varphi$,意味着 $r \leq n - r$ 。同理,

 $\sigma(\xi_{r+1}), \sigma(\xi_{r+2}), ..., \sigma(\xi_n)$ 线性无关,且由 $\sigma^2 = 0$,知 $\sigma(\xi_{r+1}), \sigma(\xi_{r+2}), ..., \sigma(\xi_n) \in \text{Ker}\sigma$,意味着 $n-r \leq r$ 。因此n-r = r,即 n = 2r。

(法二) (10 吴璇) 设 $\{\xi_1,\xi_2,...,\xi_r\}$ 是 $\mathrm{Ker}\,\sigma$ 的一组基,由于 $\varphi^2=0$,所以 $\varphi(\xi_i)\in\mathrm{Ker}\,\varphi$, $1\leq i\leq k$ 。

下面证明 $\varphi(\xi_1), \varphi(\xi_2), ..., \varphi(\xi_k)$ 线性无关。事实上,设 $c_1\varphi(\xi_1)+c_2\varphi(\xi_2)+...+c_k\varphi(\xi_k)=0$ 。两边同时作用 σ ,则

$$c_1 \sigma \varphi(\xi_1) + c_2 \sigma \varphi(\xi_2) + \dots + c_k \sigma \varphi(\xi_k) = 0 \tag{*}$$

而 $\xi_i = \varphi \sigma(\xi_i) + \sigma \varphi(\xi_i) = \sigma \varphi(\xi_i)$,所以(*)式即为 $c_1 \xi_1 + c_2 \xi_2 + ... + c_k \xi_k = 0$,从而 $c_i = 0, 1 \le i \le k$ 。因此 $\varphi(\xi_1), \varphi(\xi_2), ..., \varphi(\xi_k)$ 线性无关。故 $k = \dim \operatorname{Ker} \sigma \le \dim \operatorname{Ker} \varphi$ 。同理, $\dim \operatorname{Ker} \varphi \le \dim \operatorname{Ker} \varphi$ 。从而 $\dim \operatorname{Ker} \varphi = \dim \operatorname{Ker} \varphi$,则 $\dim \operatorname{V} = \dim \operatorname{Ker} \varphi = 2k$ 为偶数。

附加题: (10分)

设 φ , σ 是n维线性空间V上线性变换,且 $r(\varphi)+r(\sigma)\leq n$ 。证明:存在V上可逆变换 τ ,使 得 $\varphi \tau \sigma = 0$ 。

证明: (法一)设 $\{\xi_1,\xi_2,...,\xi_n\}$ 是V的一组基, φ 和 σ 在该基下的表示矩阵分别是A和B。

对
$$A,B$$
 分别存在可逆阵 P,Q,S,T ,使得 $A=P\begin{pmatrix}I_r&&\\&0&\\&&0\end{pmatrix}$ Q , $B=S\begin{pmatrix}0&\\&I_k&\\&&0\end{pmatrix}$ T 。令 $C=Q^{-1}S^{-1}$,

则 C 可逆, 且 ABC = 0。

定义 V 上线性变换 $\tau(\xi_1, \xi_2, ..., \xi_n) = (\xi_1, \xi_2, ..., \xi_n)C$,则 τ 可逆,且 $\varphi \tau \sigma = 0$ 。

$$($$
法二 $)$ (10 侯晓宇,郑鹭鹏,郑鹊)如上设 $A=Pegin{pmatrix}I_p&&&\\&0&\\&&0\end{pmatrix}$ Q , $B=Segin{pmatrix}I_q&&\\&0&\\&&0\end{pmatrix}$ T 。令

$$C = Q^{-1} \begin{pmatrix} & & I_p \\ & I_{n-p-q} & \\ I_q & & \end{pmatrix} S^{-1}.$$

(法三)(10 裴姗姗)设 $r(\varphi) = r, r(\sigma) = k$,则 $r + k \le n$, $k \le n - r$ 。又设 $\{\xi_{k+1}, \xi_{k+2}, ..., \xi_n\}$ 是 $\ker \sigma$ 的一组基,将其扩为 V 的一组基 $\{\xi_1, ..., \xi_k, \xi_{k+1}, ..., \xi_n\}$,则 $\{\sigma(\xi_1), ..., \sigma(\xi_k)\}$ 线性无关,记 $\eta_i = \sigma(\xi_i)$, $1 \le i \le k$,将 $\{\eta_1, ..., \eta_k\}$ 扩为 V 的一组基 $\{\eta_1, ..., \eta_k, \eta_{k+1}, ..., \eta_n\}$ 。再设 $\{\gamma_1, ..., \gamma_k, \gamma_{k+1}, ..., \gamma_{n-r}\}$ 是 $\ker \varphi$ 的一

组基,将其扩为 V 的一组基 $\{\gamma_1,...,\gamma_k,\gamma_{k+1}...,\gamma_{n-r},\gamma_{n-r+1},...,\gamma_n\}$ 。定义 V 上线性变换 $\tau:\eta_i\mapsto\gamma_i$, $1\leq i\leq n$ 。则 τ 可逆,且 $\varphi\tau\sigma=0$ 。

(法四)(10 吴璇)设 $r(\sigma)=k$,即 $\dim \operatorname{Im} \sigma=k$ 。记 $\{\eta_1,\eta_2,...,\eta_k\}$ 是 $\operatorname{Im} \sigma$ 的一组基,扩为 $\{\eta_1,...,\eta_k,\eta_{k+1},...,\eta_n\}$ 为 V 的一组基。

设 $r(\varphi)=r$,即 $\dim\operatorname{Im}\varphi=r$,则 $\dim\ker\varphi=n-r$ 。记 $\{\xi_1,\xi_2,...,\xi_{n-r}\}$ 是 $\ker\varphi$ 的一组基,扩为 $\{\eta_1,...,\eta_{n-r},\eta_{n-r+1},...,\eta_n\}$ 为 V 的一组基。

定义 V 上线性变换 τ : $\eta_i\mapsto \xi_i$, $1\le i\le n$,则 τ 是 V 上可逆线性变换 (因将 V 的基映射为 V 的基)。下证 $\varphi\tau\sigma=0$ 。

对任意 $\alpha \in V$, $\sigma(\alpha) \in \operatorname{Im} \sigma$, $\sigma(\alpha) = c_1 \eta_1 + c_2 \eta_2 + \ldots + c_k \eta_k$ 。 因 $r(\sigma) + r(\phi) = k + r \le n$, 所以 $k \le n - r$, 且 $\phi \tau(\eta_i) = \phi(\xi_i) 0, 1 \le i \le k$, 进而

$$\varphi\tau\sigma(\alpha) = \varphi\tau(c_1\eta_1 + c_2\eta_2 + ... + c_k\eta_k) = 0.$$