SPAGAttE:

Graph Embeddings from Ratings Criteria Documents

William Watson, Lawrence Yong Ratings Data Science S&P Global Ratings

Problem Statement

- S&P Global, as the leading issuer of credit ratings, maintains an analytical framework for prescribing said ratings
- This is akin to an academic citation graph, similar to Cora, Citeseer, or Pubmed
- It is **critical** to keep the citation graph up-to-date
- Hence, we present **SPAGAttE**, a system to build document embeddings from the citation graph
 - And use these embeddings to reconstruct the citations for a queried criteria document

Data: The S&P Criteria Methodology Corpus

- Nodes: 2,247 Criteria Documents
- Links: 13,959 Directed Citations
 - No self-references allowed, but cycles may be present
 - 22.9% of nodes do not have direct citations, but may be cited
- Vocabulary: 10,428 Lemmatized Nouns
 - Reduced to the 300 most frequent lemmatized nouns
 - Converted to normalized TF-IDF vectors

Methodology: Model Components Graph Attention Networks

- Based on the Transformer Encoder
- The mask is the adjacency matrix
- Each layer attends to an increasing neighborhood
 - First Hop: direct citations
 - Second Hop: direct citations and their direct citations
- Employ dropout on the adjacency matrix to simulate an incomplete citation graph

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. [Veličković et al., 2017] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2017.

Methodology: Model Components Learned Residual

- The original Transformer equally weights the current node embedding with the attended neighborhood
- Add a learned residual component to control the influence of the graph structure on the node embedding

$$z_a = \sigma \left(v_a^T \tanh \left(W_a o_t + U_a n_t + b_a \right) \right)$$
$$r_t = z_a \odot o_t + (1 - z_a) \odot n_t$$

[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate, 2014.

Methodology: Model Components Bilinear Scoring and Logistic Loss

- Allows for non-symmetric predictions
- Creates a pairwise citation prediction matrix

$$f(e_i, e_j) = e_i^T W_b e_j$$

- Trained using logistic loss
 - Negative Sampling

[Yang et al., 2014] Bishan Yang, Wentau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases, 2014. [Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality, 2013.

Training: Node Splitting

• **Train**: 1,472 Nodes (65.5%)

• **Validation**: 260 Nodes (11.6%)

• No Direct Citations: 515 Nodes (22.9%)

 Note: faithful to the transductive experimental setup for graph networks, we allow access to all node features

[Yang et al., 2016] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph embeddings, 2016.

Training: Experimental Setup

- Validation node rows are voided during training
- We do not update our parameters on the validation predictions
 - Only on the training nodes
- Adam Optimizer
 - Learning Rate is 0.001
 - Number of Updates: 1,920
 - Saved the model with the best MAR at k=20
 - Number Parameters: 90,434

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Evaluation Metrics

- Similarity:
 - Mean Squared Error: How close are my citations?
 - Cosine Similarity: How well oriented are my citations?
- Recovery:
 - Mean Average Recall at k
 - Proportion of relevant documents retrieved within the top k documents
 - Mean Average Precision at k
 - Proportion of retrieved documents that are relevant in the top k
- These metrics quantify how well our embeddings can be used for citation ranking, and how dense the embedding space is

Ablations Studies: Model Flows

Input	1st Embedding	2 nd Embedding	3 rd Embedding	4 th Embedding	Scoring
TF-IDF					
TF-IDF	Bilinear				
TF-IDF	Linear	Graph Transformer	Graph Transformer		
TF-IDF	Linear	GT w/ Learned Residual	GT w/ Learned Residual		
TF-IDF	Linear	GT w/ Learned Residual	GT w/ Learned Residual	Bilinear	
TF-IDF	Linear	GT w/ Learned Residual	GT w/ Learned Residual	Bilinear	Logit Scoring

Ablation Studies: Results

• Our validation results show that our modeling choices in conjunction with the training objective represent a good proxy for citation recommendation

	Similarity		Recovery	
Model (Embedding Size)	MSE	Cosine	MAP@k	MAR@k
TF-IDF (300)	22.4	0.18	0.100	0.335
Pairwise Bilinear (300) Graph Transformer (64) + Learned Residual (64)	4.4 5.0 3.6	0.17 0.26 0.38	0.078 0.131 0.152	0.300 0.378 0.463
Linear Embedding (64) Graph Embedding (64) Bilinear Embedding (64)	6.2 7.0 3.7	0.44 0.59 0.72	0.125 0.156 0.164	0.392 0.487 0.508
Logit Scoring (1)	-	-	0.259	0.690

Visual: t-SNE Embeddings

TF-IDF Embeddings

Linear Embeddings

[Maaten and Hinton, 2008] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

Visual: t-SNE Embeddings

Graph Layer Embeddings

Bilinear Embeddings

[Maaten and Hinton, 2008] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.

System Components

Frontend:

- Angular interface
- Autocomplete Search Bar
- Ranked-ordered list of relevant citations

Backend:

- RESTful Service
- Accepts a Criteria ID request
- Performs lookup with our learned model
- Returns relevant metadata to frontend

System Components: User Interface Demo

Conclusion & Future Work

- **SPAGAttE** is a tool to model our criteria citation graph and perform link prediction with the explicit task of *recommending* citations
- Good case study for applying graph neural networks
- We hope to expand SPAGAttE's utility to:
 - Business Relationships
 - Supply Chain Networks

Project Links

- Github Source Code:
 - https://github.com/nextBillyonair/SPAGAttE
- Demo Video:
 - <u>https://vimeo.com/394545958</u>
 - Password: 55water

References

- [Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate, 2014.
- [Clevert et al., 2015] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus), 2015.
- [Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
- [Maaten and Hinton, 2008] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.
- [Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representations of words and phrases and their compositionality, 2013.
- [Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.
- [Veličković et al., 2017] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks, 2017.
- [Yang et al., 2014] Bishan Yang, Wentau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and relations for learning and inference in knowledge bases, 2014.
- [Yang et al., 2016] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph embeddings, 2016.

Thank You!

