<pre>In [1]:</pre> In [2]: In [3]:	<pre>import numpy as np</pre>
<pre>In [4]: Out[4]:</pre>	"dataset" Degrancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 0 6 148 72 35 0 33.6 0.627 50 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1
<pre>In [5]: Out[5]: In [6]:</pre>	<pre>Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',</pre>
In [8]:	Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 BMI float64 DiabetesPedigreeFunction float64 Age int64 Outcome int64 dtype: object
<pre>In [9]: Out[9]:</pre>	Glucose 0 BloodPressure 0 SkinThickness 0
<pre>In [10]: Out[10]:</pre>	Insulin
In [11]: Out[11]:	
In [12]:	dataset.hist(bins=50, figsize = (20,15)); # method to draw an histogram of all features in the dataset Mode
In [13]:	plt.figure(figaire= (10, 8)) sns.hestmap(dataset.corr(), linecolor='white', linewidths=2); # seaborn function to draw a heatmap base d on fouture Pregnancies Glucose BloodPressure SkinThickness Insulin Outcome O
In [14]: Out[14]:	A pairs plot allows us to see both distribution of single variables and relationships between two variables. sns.pairsplot(dataset, blue=!Outcome!) # sesborn function to dislay all features in pairplot. aeaborn.axis.grid.PairGrid at Oxlae 229a9668> ***The control of the
In [16]: In [17]:	and_pairplot(dataset[['Insulin','BKI','Outcome']], huse*Outcome') cally selected features <pre></pre>
Out[19]: In [20]:	<pre>classifier = KNeighborsClassifier(n_neighbors=5) # Fit data classifier.fit(features_train, labels_train) KNeighborsClassifier() #prediction pred = classifier.predict(features_test) accuracy = accuracy_score(labels_test, pred) # accuracy print('Accuracy: {:.2f}'.format(accuracy)) precision = precision_score(labels_test, pred) # precision print ('Precision: {:.2f}'.format(precision)) recall = recall_score(labels_test, pred) # recall print ('Recall: {:.2f}'.format(recall)) auroc = roc_auc_score(labels_test, pred) # area under curve print ('AUROC score: {:.2f}'.format(auroc)) Accuracy: 0.72</pre>
In [22]:	Precision: 0.58 Recall: 0.54 AUROC score: 0.67 fpr, tpr, thresholds = roc_curve(labels_test, pred) f Defining a function to plot the AUROC-curve def plot_roc_curve(fpr, tpr): plt.plot(fpr, tpr, color='orange', label='ROC') plt.plot(f0, 1), (0, 1), color='darkblue', linestyle='') plt.ylabel('Talse Positive Rate', fontsize=15, fontweight='bold') plt.ylabel('True Positive Rate', fontsize=15, fontweight='bold') plt.legend() plt.show() f Calling the function to finally plot the curve plot_roc_curve(fpr, tpr) Receiver Operating Characteristic (ROC) Curve 10 Receiver Operating Characteristic (ROC) Curve False Positive Rate
In [23]:	Elegant way of performing kNN algorithm using a function to collect all necessary functions. function to perform kNN algorithm - Input: 1 k value def performing kNN(k value): \$ for one k value """function to perform kNN algorithm for one input k value at a time Arg k value: k value to be used for the algorithm Returns: Different performance metrics with the AVC plot "print("Performing K nearest neighbor algorithm for k value: ()".format(k_value)) classifier = RNeighborsClussifier(n meighbors=k_value) classifier, fit(features train, labels_crain) prod classifier.predict(features test) accuracy = accuracy score(labels test, pred) precision = precision score(labels test, pred) precision = precision score(labels, test, pred) print("accuracy:", accuracy,
Out[24]: In [25]:	Performing K nearest neighbor algorithm for k value: 5 accuracy: 0.71875 precision: 0.576271186440678 recall: 0.5396825396825397 auroc: 0.6729420450350682 Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve Page
	<pre>def performing kNN list(k value list): # for a list of k values</pre>
	Ferforming K nearest neighbor algorithm for k value :3 accuracy: 0.71875 precision: 0.576271186440678 recell: 0.5396825396825397 auroc: 0.6729420450350682 Receiver Operating Characteristic (ROC) Curve Page 10
	Performing K nearest neighbor algorithm for k value:9 Receiver Operating Characteristic (ROC) Curve Receiver Operating Characteristic (ROC) Curve False Positive Rate Performing K nearest neighbor algorithm for k value:9 Receiver Operating Characteristic (ROC) Curve Performing K nearest neighbor algorithm for k value:15 accuracy: 0.765625 precision: 0.666666666666666666666666666666666666
	Receiver Operating Characteristic (ROC) Curve Particular Particul
In [27]: Out[27]:	performance_metric_dict {3: [0.6770833333333334,
	0.7041343669250646], 15: [0.765625, 0.666666666666666, 0.5714285714285714, 0.7159468438538206], 40: [0.71875, 0.6451612903225806, 0.317460317440, 0.61609449981543]) # plotting different performance metrics in a line plot def plotting_performance_metrics(): plt.figure(figsize= (10, 8)) plt.plot(list(performance_metric_dict.keys()),[i[0] for i in performance_metric_dict.values()],"bo- ",color='blue',\
2]:	Different k values in the algorithm On observing this line plot, the accuracy, precision, recall, AUC was high in k value = 15. Therefore, the best k is 15.
In [30]: In [31]:	Feature Importance using kNN classifier results = permutation_importance(classifier, features_train, labels_train, scoring='accuracy',random_st ate=15) # get importance importance = results.importances_mean # summarize feature importance feature importance dict={} print("Diffent features with their importances:") print() for i in range(len(importance)): print(features_train.columns[i],":",importance[i]) feature_importance_dict[features_train.columns[i]]=importance[i] # plot feature importance plt.bar(features_train.columns, importance) plt.xticks(rotation=90) plt.xlabel("Different Features in the dataset", fontsize=15) plt.ylabel("Feature Importance Measures", fontsize=15) plt.show() #https://machinelearningmastery.com/calculate-feature-importance-with-python/ #https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html Diffent features with their importances: Pregnancies: 0.0052083333333333333333333333333333333333
	Glucose: 0.155555555555555556 Bloodfressure: 0.01145833333333337 Insulin: 0.05833333333333339 BMI: 0.0048611111111161 DiabetesPedigreeFunction: 0.0003472222222222221 Age: 0.02083333333333333415 Different Features in the dataset
<pre>In [32]: Out[32]: In [33]:</pre>	print("The names of the features with decreasing strength of feature importance are as follows:") [k for k, v in sorted(feature_importance_dict.items(), key=lambda item: item[1], reverse=True)] The names of the features with decreasing strength of feature importance are as follows: ['Glucose', 'Insulin', 'Age', 'BloodPressure', 'SkinThickness', 'Pregnancies', 'BMI', 'DiabetesPedigreeFunction'] Scaling Standardization First, Standardization step was performed.

[35]:	std 3.387120 32.112952 19.114357 15.709344 111.294899 7.836445 0.322218 11.623884 min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.243250 24.000000 25.000000 0.378000 29.000000 0.378000 29.000000 0.378000 29.000000 0.378000 29.000000 0.378000 29.000000 0.378000 29.000000 0.00000 32.000000 36.500000 0.637000 40.250000 0.637000 40.250000 40.250000 0.00000 0.00000 67.100000 67.100000 2.288000 81.000000 pd. DataFrame (features_train_scaled, columns=features.columns) . describe() # features training dataset after scaling Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction count 5.760000e+02 5.760000e+02 5.760000e+
[36]:	std 1.000869e+00 -1.203150e+00 -1.055678 25% -8.510805e-01 -6.426060e-01 -3.832620e-01 -1.276115e+00 -7.226833e-01 -5.758921e-01 -7.084902e-01 -7.973638 50% -2.600951e-01 -1.127645e-01 1.892548e-01 -3.989371e-01 1.481195e-02 -2.899320e-01 -3.668412 75% 6.263829e-01 5.807046e-01 5.592570e-01 7.626602e-01 4.463999e-01 5.895511e-01 5.145694e-01 6.018349 max 3.876803e+00 2.442942e+00 2.758468e+00 2.546588e+00 5.392521e+00 4.497777e+00 5.642878e+00 4.110595
[36]:	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age count 192.000000 192.000000 192.000000 192.000000 192.000000 192.000000 mean -0.041554 0.034468 -0.044817 0.129193 -0.020203 0.055456 0.006660 -0.006727 std 0.981898 0.985397 1.052492 1.058181 1.138954 1.026549 1.112492 1.049702 min -1.146573 -1.858125 -3.629716 -1.276115 -0.722683 -4.072222 -1.221787 -1.055678 25% -0.851081 -0.775066 -0.304719 -1.276115 -0.722683 -0.649331 -0.706937 -0.797364 50% -0.260095 -0.112764 0.035635 0.189255 -0.659733 0.059514 -0.320994 -0.452946 75% 0.626383 0.705373 0.585438 0.826372 0.277782 0.634253 0.392652 0.666413 max 2.694832 2.380608
[37]: [38]:	<pre>Normalization from sklearn.preprocessing import MinMaxScaler x_mm = MinMaxScaler() features_train_minmaxscaled = x_mm.fit_transform(features_train) features_test_minmaxscaled = x_mm.transform(features_test) kNN algorithm for Transformed data The kNN algorithm was applied for these scaled/normalized data.</pre>
[39]:	<pre>def performing_kNN_list_scaling(k_value_list, feature_train_=features_train_scaled, feature_test_=feat s_test_scaled): # for a list of k values """function to perform kNN algorithm for a list of k as input values Arg- k_value_list: list with k values to be used for the algorithm Returns: Different performance metrics with the AUC plot """ performance_metric_dict={} # dict to hold the values of performance metrics for k_value in k_value_list: #print("Performing K nearest neighbor algorithm for k value :{}".format(k_value)) classifier = KNeighborsClassifier(n_neighbors=k_value) # algorithm initialization classifier.fit(feature_train_, labels_train) # model training pred = classifier.predict(feature_test_) # model testing accuracy = accuracy_score(labels_test, pred) # accuracy precision = precision_score(labels_test, pred) # precision recall = recall_score(labels_test, pred) # recall auroc = roc_auc_score(labels_test, pred) # auroc # dict filling step performance_metric_dict[k_value]=[accuracy,precision,recall,auroc] #key: k_value, value: its different performance metrics in a list format</pre>
[40]: [40]:	<pre>kNN for Standardized data standardized_knn=performing_kNN_list_scaling([3,5,7,9,15,20],features_train_scaled,features_test_scaled) standardized_knn {3: [0.75520833333333334, 0.63333333333333, 0.6031746031746031, 0.7163159837578443], 5: [0.765625, 0.6551724137931034, 0.6031746031746031, 0.7240679217423404], 7: [0.734375, 0.6153846153846154, 0.5079365079365079, 0.6764488741232927],</pre>
[41]:	9: [0.734375, 0.611111111111111112, 0.5238095238095238, 0.6805094130675525], 15: [0.75, 0.6595744680851063, 0.49206349206349204, 0.684016242155777], 20: [0.76041666666666666, 0.7073170731707317, 0.4603174603174603, 0.6836471022517534]} kNN for Normalized data normalized_knn=performing_kNN_list_scaling([3,5,7,9,15,20], features_train_minmaxscaled, features_test_nmaxscaled] normalized_knn {3: [0.71875, 0.5849056603773585, 0.49206349204, 0.6607604282022886], 5: [0.71875, 0.5849056603773585, 0.49206349204, 0.6607604282022886], 7: [0.71875, 0.5849056603773585, 0.49206349204, 0.6607604282022886], 9: [0.7239583333333334, 0.5961538461538461, 0.49206349206349204, 0.6646363971945367], 15: [0.7604166666666666, 0.6808510638297872, 0.5079365079365079, 0.695828719084533], 20: [0.7395833333333334, 0.6585365853658537, 0.42857142857, 0.4287142857, 0.4287147, 0.4287142857, 0.4287142857, 0.4287142857, 0.4287142857, 0.4287142857, 0.4287142857, 0.428714287, 0.428714287, 0.428714287, 0.428714287, 0.428714287, 0.428714287, 0.428714287, 0.428714287,
	<pre>k_values= [i for i in normalized_knn.keys()] index=np.arange(len(k_values)) rects1 = plt.bar(index,list([i[0] for i in normalized_knn.values()]), color='b', align='edge', label='Normalization',width=-1*width) rects2 = plt.bar(index,[i[0] for i in standardized_knn.values()], color='g', align='edge', label='Standardization',width=width) plt.xlabel('k values in the kNN algorithm',fontsize=15) plt.ylabel('Accuracy measures',fontsize=15) plt.title('Accuracy comparision across the standardized and normalized data') plt.xticks(index,k_values) plt.legend() plt.show() #https://stackoverflow.com/questions/48962594/unable-to-plot-double-bar-bar-plot-using-pyplot-for-normalized data') Accuracy comparision across the standardized and normalized data Normalization</pre>
	0.7 - 0.6 - 0.5 - 0.5 - 0.3 - 0.2 - 0.1 - 0.0 - 0.3 - 5 - 7 - 9 - 15 - 20
[43]:	k values in the kNN algorithm On Observing, the barplot it can be concluded that the standardized data performed well and hence the standardized data will be for further analysis. Missing Value Imputation imputer = SimpleImputer (missing_values = 0, strategy = 'mean') # mean imputation imputer = imputer.fit (features) # features_mean = imputer.transform(features)
[45]: [46]:	<pre>imputer = SimpleImputer(missing_values = 0, strategy = 'median')</pre>
[48]:	<pre>k_value_list=[3,5,7,9,15,20] knn_mean=performing_kNN_list_imputation(k_value_list,features_mean) print(knn_mean) {3: [0.6979166666666666, 0.5409836065573771, 0.5238095238095238, 0.6533776301218162], 5: [0.713541666666666, 0.5714285714285714, 0.5079365079365079, 0.6609449981543005], 7: [0.708333333333334, 0.55932033898305, 0.5238095238095238, 0.6611295681063122], 9: [0.7135416666666666, 0.56666666666667, 0.596825396825397, 0.6690660760428202], 15: [0.723958333333334, 0.5892857142857143, 0.5238095238</pre>
[50]:	<pre>knn_median=performing_kNN_list_imputation(k_value_list,features_median) knn_features_most_frequent=performing_kNN_list_imputation(k_value_list,features_most_frequent) # plotting different performance metrics in a line plot def plotting imputation(x): """Function to plot differnt evaluation metrics for different imputed data Args x - value from [0,1,2,3] Return : line plot indicating all evaluation metrics""" measure=["accuracy", "precision", "recall", "auroc"] plt.figure(figsize= (10, 5)) plt.plot(list(knn_mean.keys()), [i[x] for i in knn_mean.values()], "bo-", color='blue', \</pre>
[52] :	<pre>plt.ylabel("Measures of {} \n across different k values".format(measure[x]), fontsize=15) plt.title("Comparison of {} across different k values {}".format(measure[x], list(knn_mean.keys()) fontsize=15)</pre> Plotting the accuracy plot plotting_imputation(0) Comparison of accuracy across different k values [3, 5, 7, 9, 15, 20]
	Near Imputation Mean Imputation Most Frequent Imputation Most Frequent Imputation Standardized kNN Normalized kNN Normalized kNN Different k values in the algorithm
[53]:	Comparison of precision across different k values [3, 5, 7, 9, 15, 20] OTO Wean Imputation Mean Imputation Most Frequent Imputation Standardized kNN Normalized kNN Normalized knn Different k values in the algorithm
[54]:	plotting the recall plot plotting_imputation(2) Comparison of recall across different k values [3, 5, 7, 9, 15, 20] Mean imputation Median imputation Most Frequent Imputation Most Frequent Imputation Most Frequent Imputation Normalized kNN
[55]:	plotting the AUC plot plotting_imputation(3) Comparison of auroc across different k values [3, 5, 7, 9, 15, 20]
[56]:	On Observing all the evaluation metrics plots, the standardized kNN showed a better performance. Also, the imputation had no significate effect on the improvement of the performance metrics is the important message. The best k value is 5. Treating imbalanced data. The number of diabetic vs non- diabetic patients in the dataset. dataset ['Outcome'].value_counts() 500 500 500 500 500 500 500 5
[57]:	<pre>Name: Outcome, dtype: int64 # Upsample minority class df_majority = dataset[dataset.Outcome==0] df_minority = dataset[dataset.Outcome==1] df_minority_upsampled = resample(df_minority,</pre>
[57]: [58]:	<pre>df_upsampled.Outcome.value_counts() 1 500 0 500 Name: Outcome, dtype: int64 # Create features and labels features_up = df_upsampled.drop(['Outcome'], axis=1) # independent variable labels_up = df_upsampled['Outcome'] # dependent variable # kNN model clf_1 = KNeighborsClassifier().fit(features_up, labels_up) pred_y_1 = clf_1.predict(features_up) print(np.unique(pred_y_1)) print(accuracy_score(labels_up, pred_y_1))</pre>
[59]:	<pre>[0 1] 0.819 #Downsample majority class # Separate majority and minority classes df_majority = dataset[dataset.Outcome==0] df_minority = dataset[dataset.Outcome==1] # Downsample majority class df_majority_downsampled = resample(df_majority,</pre>
[59]: [60]:	<pre># Combine minority class with downsampled majority class df_downsampled = pd.concat([df_majority_downsampled, df_minority]) # Display new class counts df_downsampled.Outcome.value_counts() 1</pre>
	clf_2 = KNeighborsClassifier().fit(features_down, labels_down) pred_y_2 = clf_2.predict(features_down) print(np.unique(pred_y_2)) print(accuracy_score(labels_down, pred_y_2)) [0 1] 0.7854477611940298 The upsampling and downsampling had an accuracy of 0.82 and 0.79 respectively. Therefore, the upsampling suited this dataset ap
	<pre>from sklearn.svm import SVC clf_3 = SVC(kernel='linear', class_weight='balanced', # penalize probability=True) clf_3.fit(features, labels) pred_y_3 = clf_3.predict(features) print(np.unique(pred_y_3)) print(accuracy_score(labels, pred_y_3)) [0 1] 0.7682291666666666 prob_y_3 = clf_3.predict_proba(features) prob_y_3 = [p[1] for p in prob_y_3] print(roc_auc_score(labels, prob_y_3)) 0.8389701492537314 Testing SVM with different C value c_value_list=[0.1,0.01,0.001,1,2,5,10,100] # list of C values</pre>
	<pre>c_value_dict={}</pre>
	From the plot, the best C value could be considered as 10 Testing with different kernel functions
[65]:	<pre>kernel_list=["linear","rbf","poly","sigmoid"] kernel_dict={} for ker in kernel_list: clf = make_pipeline(StandardScaler(), SVC(kernel=ker)) clf.fit(features_train_scaled, labels_train) pred= clf.predict(features_test_scaled) kernel_dict[ker]=(accuracy_score(labels_test, pred)) print(kernel_dict) {'linear': 0.74479166666666666, 'rbf': 0.7447916666666666, 'poly': 0.7447916666666666, 'sigmoid': 0.78333333333333333333333333333333333333</pre>
	plt.bar(kernel_dict.keys(), kernel_dict.values()) plt.xlabel("Different Kernel Functions", fontsize=15) plt.ylabel("Accuracy measures", fontsize=15); 0.7 0.6 0.7 0.7 0.9 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1
	The linear, rbf, polynomial kernel observed to perform the similar way. Therefore, the default rbf is considered as best one. Best Kernel, Best C value clf = make_pipeline(StandardScaler(), SVC(kernel="rbf",C=10)) clf.fit(features_train_scaled, labels_train) pred= clf.predict(features_test_scaled) svm_svc_accuracy=(accuracy_score(labels_test, pred)) print(svm_svc_accuracy) 0.7447916666666666 The best model of SVM had an accuracy of 0.744. Logistic Regression # Importing logit regression from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() # intialization classifier.fit(features_train_scaled, labels_train) # fitting # Predicting with classifier pred = classifier.predict(features_test_scaled) # testing logistic_regression_accuracy = accuracy_score(labels_test, pred) # accuracy logistic regression accuracy
[70]:	<pre>0.7447916666666666 print(classifier.coef_) [[0.42621596 1.18812298 -0.30186175 -0.01760607 -0.22953301 0.65747189</pre>
	Feature contribution to diabetes Glucose - BMI - DiabetesPedigreeFunction - Pregnancies - SkinThickness -
[72]:	from the plot, the Glucose, BMI, Diabetes Pedigree Function seemed to be most prominent features contributing to the model prediction while Blood Pressure had less significance. Penalized Regression from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.model_selection import train_test_split, cross_val_score from statistics import mean
[74]:	<pre>f Create features and labels features = dataset.drop(['Outcome'], axis=1) # independent variable labels = dataset['Outcome'] # dependent variable x_sc= StandardScaler() features_train_scaled = x_sc.fit_transform(features_train) features_train_scaled = x_sc.transform(features_train) features_test_scaled = x_sc.transform(features_test) from sklearn.linear_model import LinearRegression # Sulding and fitting the Linear Regression model linearModel.fitt(features_train_scaled, labels_train) # Evaluating the Linear Regression model #pred = linearModel.predict(features_test_scaled) pred = linearModel.predict(features_test_scaled) pred = linearModel.predict(features_test_scaled) # accuracy = accuracy_score(labels_test, pred) # accuracy print(linearModel.score(features_test_scaled, labels_test)) 0.2172021374301295 cross_val_scores_ridge = [] # List to maintain the different values of alpha alpha = [] # Loop to compute the different values of cross-validation scores for i in range(1, 9): ridgeModel = Ridge(alpha = i * 0.25) ridgeModel.fit(features_train_scaled, labels_train) scores = cross_val_score = mean(scores)*100 cross_val_score = mean(scores)*100 cross_val_scores_ridge.append(avg_cross_val_score) alpha.append(i * 0.25)</pre>
[76]:	
[77]:	<pre># List to maintain the cross-validation scores cross_val_scores_lasso = [] # List to maintain the different values of Lambda Lambda = [] # Loop to compute the cross-validation scores for i in range(1, 9): lassoModel = Lasso(alpha = i * 0.25, tol = 0.0925) lassoModel.fit(features_train_scaled, labels_train) scores = cross_val_score(lassoModel, features, labels, cv = 10) avg_cross_val_score = mean(scores)*100 cross_val_scores_lasso.append(avg_cross_val_score) Lambda.append(i * 0.25) # Loop to print the different values of cross-validation scores for i in range(0, len(alpha)):</pre>
	<pre>print(str(alpha[i])+' : '+str(cross_val_scores_lasso[i]))</pre>
[78]:	0.25 : 22.776847941683723 0.5 : 20.66808286386468 0.75 : 17.936360286823668 1.0 : 17.76677244340195 1.25 : 17.549557943936307 1.5 : 17.275459597910366 1.75 : 16.94447740532412 2.0 : 16.55661136617757 # Building and fitting the Lasso Regression Model lassoModelChosen = Lasso(alpha = 2, tol = 0.0925) lassoModelChosen.fit(features_train_scaled, labels_train) # Evaluating the Lasso Regression model print(lassoModelChosen.score(features_test_scaled, labels_test))

