LISTING OF CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Currently Amended) A method for preparing a compound of formula (6),

and salts, stereoisomeric forms, and racemic mixtures thereof, wherein characterized in that said method comprises the following steps:

(a) transforming starts from a compound of formula (2),

$$O$$
 $S-E$

$$(2)$$

wherein E is an electrophilic moiety;

transforming compound of formula (2) into a compound of formula (3),

wherein LG is a leaving group; and

(b) reacting compound of formula (3) with a compound of formula (5),

wherein

PG is a protecting group;

 $\mathbf{R_2}$ is hydrogen or $\mathbf{C_{1-6}}$ alkyl;

 $m {\bf R_3}$ is $m {C_{3-7}}$ cycloalkyl, aryl, $m {Het}^1$, $m {Het}^2$, or $m {C_{1-6}}$ alkyl optionally substituted with $m {C_{3-7}}$ cycloalkyl, aryl, $m {Het}^1$, or $m {Het}^2$; wherein each $m {C_{3-7}}$ cycloalkyl, aryl, $m {Het}^1$, and $m {Het}^2$ may be optionally substituted with one or more groups selected from oxo, $m {C_{1-6}}$ alkyloxy, $m {C_{1-6}}$ alkylsulfonyl, aminosulfonyl, amino, $m {C_{1-6}}$ alkylcarbonylamino, hydroxy $m {C_{1-6}}$ alkyl, cyano, $m {C_{1-6}}$ alkyloxycarbonyl, aminocarbonyl, halogen or trifluoromethyl, wherein each amino maybe mono- or disubstituted with $m {C_{1-6}}$ alkyl;

 $\mathbf{R_4}$ is selected from the group comprising hydrogen, $C_{1\text{-4}}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-4}}$ alkyl)aminocarbonyl, $C_{3\text{-7}}$ cycloalkyl, $C_{2\text{-6}}$ alkenyl, $C_{2\text{-6}}$ alkynyl, or $C_{1\text{-6}}$ alkyl optionally substituted with one or more substituents each independently selected from aryl, Het^1 , Het^2 , $C_{3\text{-7}}$ cycloalkyl, $C_{1\text{-4}}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-4}}$ alkyl)aminocarbonyl, aminosulfonyl, $C_{1\text{-4}}$ alkyl- $S(=O)_t$, hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are each independently selected from $C_{1\text{-4}}$ alkyl, aryl, aryl $C_{1\text{-4}}$ alkyl, $C_{3\text{-7}}$ cycloalkyl, $C_{3\text{-7}}$ cycloalkyl $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl; and

t is zero, one or two.

- 2. (Currently Amended) <u>The A method according to claim 1 for preparing a compound of formula (6), said method comprising characterized in that said method comprises the steps of:</u>
- (a) alkylating a compound of formula (1)

$$\bigcirc$$
 SH

resulting into a compound of formula (2);

$$S-E$$

wherein E is a C_{1-6} alkyl;

(b) reacting <u>said</u> compound of formula (2) with a sulfonation agent, resulting in a compound of formula (3);

wherein LG is a leaving group; and

(c) coupling compound of formula (3) with a compound of formula (5).

wherein PG is a protecting group; and wherein R_2 , R_3 , and R_4 are as claimed in claim 1.

3. (Currently Amended) The A method according to claim 1 any one of claims 1 to 2, characterized in that wherein said compound of formula (3) is a compound of formula (3").

4. (Currently Amended) A method according to <u>claim 1 any one of claims 1 to 3</u>, eharacterized in that wherein said compound of formula (5) is obtained by amination of an epoxide-containing compound of formula (4), and the amination reagent is H₂N-R₄, wherein R₄ is as claimed in any one of claims 1 to 3.

wherein R₄ is defined as in claim 1.

5. (Currently Amended) The A method according to claim 1 any one of claims 1 to 4, wherein said compound of formula (5) is compound of formula (5').

6. (Currently Amended) A compound having formula (6)

and salts, stereoisomeric forms, and racemic mixtures thereof, wherein characterized in that PG, R₂, R₃, R₄, and E are as defined in claim 1 any one of claims 1 to 5.

7. (Currently Amended) A compound according to claim 6, wherein characterized in that

R₂ is hydrogen;

R₃ is arylC₁₋₄alkyl, arylmethyl, or phenylmethyl; and

 $\mathbf{R_4}$ is unsubstituted C_{1-6} alkyl or C_{1-6} alkyl substituted with one or more substituents selected from aryl, Het^1 , Het^2 , C_{3-7} cycloalkyl and amino optionally monoor disubstituted where the substituents are selected from C_{1-4} alkyl, aryl, Het^1 and Het^2 .

8. (Currently Amended) A compound according to <u>claim 6</u>, <u>wherein any one of claims</u> 6 to 7, <u>characterized in that</u>

R₂ is hydrogen;

R₃ is phenylmethyl; and

 $\mathbf{R_4}$ is isobutyl.

9. (Currently Amended) A compound according to <u>claim 6</u>, wherein said <u>any one of claims 6 to 8</u>, characterized in that the compound has formula (6'').

10. (Currently Amended) A compound according to <u>claim 6 wherein any one of claims 6 to 9, characterized in that</u> the compound has formula (6''').

- 11. (Currently Amended) A compound according to <u>claim 6 wherein any one of claims 6 to 10, characterized in that said compound comprises is in the form of a salt selected from trifluoroacetate, fumarate, chloroacetate and methanesulfonate.</u>
- 12. (Currently Amended) The method of claim 1, A method for preparing a compound of formula (9), wherein said method comprises the methods according to any one of claims 1 to 5, characterised in that said method further comprisesing the steps of:
- (a) aminating a compound of formula (6)

and salts, stereoisomeric forms, and racemic mixtures thereof, wherein PG, R_2 , R_3 , R_4 , and E are as defined in claim 1, to obtain compound of formula (7), wherein

(7)

wherein wherein PG, R2, R3, R4, and E are as defined in claim 1; and

 \mathbf{R}_6 is hydrogen, hydroxy, $\mathbf{C}_{1\text{-}6}$ alkyl, $\mathbf{Het}^1\mathbf{C}_{1\text{-}6}$ alkyl, $\mathbf{Het}^2\mathbf{C}_{1\text{-}6}$ alkyl, amino $\mathbf{C}_{1\text{-}6}$ alkyl whereby the amino group may optionally be mono-or di-substituted with $\mathbf{C}_{1\text{-}4}$ alkyl;

 $\mathbf{R_8}$ is hydrogen, $\mathbf{C_{1-6}}$ alkyl, or $-\mathbf{A-R_7}$;

A is C_{1-6} alkanediyl, -C(=O)-, -C(=S)-, $-S(=O)_2$ -, C_{1-6} alkanediyl-C(=O)-, C_{1-6} alkanediyl-C(=S)- or C_{1-6} alkanediyl- $S(=O)_2$ -; whereby the point of attachment to the nitrogen atom is the C_{1-6} alkanediyl group in those moieties containing said group;

 \mathbf{R}_7 is $C_{1\text{-6}}$ alkyloxy, Het^1 , Het^1 oxy, Het^2 , Het^2 oxy, aryl, aryloxy, $C_{3\text{-7}}$ cycloalkyl, or optionally mono- or disubstituted amino; and in case - \mathbf{A} - is other than C_1 . 6alkanediyl then \mathbf{R}_7 may also be $C_{1\text{-6}}$ alkyl, $\operatorname{Het}^1C_{1\text{-4}}$ alkyl, Het^1 oxy $C_{1\text{-4}}$ alkyl, $\operatorname{Het}^2C_{1\text{-4}}$ alkyl, $\operatorname{Het}^2C_{1\text{-4}}$ alkyl, aryloxy $C_{1\text{-4}}$ alkyl or amino- C_1 . 6alkyl; whereby each of the amino groups in the definition of \mathbf{R}_7 may optionally be substituted with one or more substituents selected from $C_{1\text{-4}}$ alkyl, C_1 . 4alkylcarbonyl, $C_{1\text{-4}}$ alkyloxycarbonyl, aryl, arylcarbonyl, aryloxycarbonyl, Het^1 , Het^2 , aryl $C_{1\text{-4}}$ alkyl, Het^1 - $C_{1\text{-4}}$ alkyl or Het^2 C₁₋₄alkyl; and $\operatorname{A-R}_7$ may also be hydroxy $C_{1\text{-6}}$ alkyl; and R_6 and $\operatorname{A-R}_7$ taken together with the nitrogen atom to which they are attached may also form Het^1 or Het^2 ;

(b) deprotecting the compound of formula (7) to obtain compound of formula (8),

wherein R₂, R₃, R₄, R₆, and R₈ are as defined in step (a) and

(c) coupling a radical of formula \mathbf{R}_1 -L- to obtain compound of formula (9),

and N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

 $\mathbf{R_1}$ is selected from the group comprising hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, aryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl, Het 1 , Het 1 C $_{1\text{-}6}$ alkyl, Het 2 , Het 2 C $_{1\text{-}6}$ alkyl; and $\mathbf{R_1}$ may also be a radical of formula (10)

$$R_{11}a$$
 $R_{10}b$
 $R_{11}b$
 $R_{11}b$
 $R_{11}b$

 R_9 , R_{10a} and R_{10b} are, each independently, hydrogen, $C_{1\text{-4}}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-4}}$ alkyl)aminocarbonyl, $C_{3\text{-7}}$ cycloalkyl, $C_{2\text{-6}}$ alkenyl, $C_{2\text{-6}}$ alkynyl or $C_{1\text{-4}}$ alkyl optionally substituted with aryl, Het^1 , Het^2 , $C_{3\text{-7}}$ cycloalkyl, $C_{1\text{-4}}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-4}}$ alkyl)-aminocarbonyl, aminosulfonyl, $C_{1\text{-4}}$ alkylS(O)_t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted where the substituents are each independently selected from $C_{1\text{-4}}$ alkyl, aryl, aryl $C_{1\text{-4}}$ alkyl, $C_{3\text{-7}}$ cycloalkyl, $C_{3\text{-7}}$ cycloalkyl $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl, $C_{2\text{-7}}$ cycloalkyl, $C_{3\text{-7}}$ cycloalkyl $C_{1\text{-4}}$ alkyl, $C_{1\text{-4}}$ alkyl and

Het 2 C₁₋₄alkyl; whereby R₉, R_{10a} and the carbon atoms to which they are attached may also form a C₃₋₇cycloalkyl radical;

when L is -O-C₁₋₆alkanediyl-C(=O)- or -NR₁₂-C₁₋₆alkanediyl-C(=O)-, then \mathbf{R}_9 may also be oxo;

R_{11a} is selected from the group comprising hydrogen, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl, aryl, aminocarbonyl optionally mono- or disubstituted, aminoC₁₋₄alkylcarbonyloxy optionally mono- or disubstituted, C₁₋₄alkyloxycarbonyl, aryloxycarbonyl, Het²oxycarbonyl, aryloxycarbonylC₁₋₄alkyl, arylC₁₋₄alkyloxycarbonyl, C₁₋₄alkylcarbonyl, C₃₋₇cycloalkylcarbonyl, C₃₋₇cycloalkylcarbonyloxy, carboxylC₁₋₄alkylcarbonyloxy, C₁₋₄alkylcarbonyloxy, arylcarbonyloxy, aryloxycarbonyloxy, Het¹carbonyloxy, Het¹C₁₋₄alkyloxycarbonyl, Het²carbonyloxy, Het¹C₁₋₄alkyloxycarbonyl, Het²carbonyloxy,

Het $^2C_{1.4}$ alkylcarbonyloxy, Het $^2C_{1.4}$ alkyloxycarbonyloxy or $C_{1.4}$ alkyl optionally substituted with aryl, aryloxy, Het 2 or hydroxy; wherein the substituents on the amino groups are each independently selected from $C_{1.4}$ alkyl, aryl, aryl $C_{1.4}$ alkyl, $C_{3.7}$ cycloalkyl, $C_{3.7}$ cycloalkyl

C₁₋₄alkyl, Het¹, Het², Het¹C₁₋₄alkyl and Het²C₁₋₄alkyl;

 R_{11b} is selected from the group comprising hydrogen, C_{3-7} cycloalkyl, C_{2-6} alkenyl,

 C_{2-6} alkynyl, aryl, Het^1 , Het^2 or C_{1-4} alkyl optionally substituted with halogen, hydroxy, C_{1-4} alkylS(=O)_t, aryl, C_{3-7} cycloalkyl, Het^1 , Het^2 , amino optionally mono- or disubstituted where the substituents are each independently selected from C_{1-4} alkyl, aryl, aryl C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl C_{1-4} alkyl, Het^1 , Het^2 , Het^1 C₁₋₄alkyl and Het^2 C₁₋₄alkyl;

whereby $\mathbf{R_{11b}}$ may be linked to the remainder of the molecule via a sulfonyl group; and

L is selected from the group comprising -C(=O)-, -O-C(=O)-, -NR₁₂-C(=O)-, -O-C₁₋₆alkanediyl-C(=O)-, -NR₁₂-C₁₋₆alkanediyl-C(=O)-, -S(=O)₂-, -O-S(=O)₂-, -NR₁₂-S(=O)₂ whereby either the C(=O) group or the S(=O)₂ group is attached to the NR₂ moiety; whereby the C₁₋₆alkanediyl moiety is optionally substituted with a substituent selected from hydroxy, aryl, Het¹, and Het²;

 $\mathbf{R_{12}}$ is hydrogen, $\mathbf{C_{1-6}}$ alkyl, $\mathbf{C_{2-6}}$ alkenyl, aryl $\mathbf{C_{1-6}}$ alkyl, $\mathbf{C_{3-7}}$ cycloalkyl, $\mathbf{C_{3-7}}$ cycloalkyl $\mathbf{C_{1-6}}$ alkyl, aryl, Het¹, Het¹ $\mathbf{C_{1-6}}$ alkyl, Het², Het² $\mathbf{C_{1-6}}$ alkyl;

 \mathbf{R}_2 is hydrogen or \mathbf{C}_{1-6} alkyl;

 R_3 is C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , or C_{1-6} alkyl optionally substituted with C_{3-7} cycloalkyl, aryl, Het^1 , or Het^2 ; wherein each C_{3-7} cycloalkyl, aryl, Het^1 , and Het^2 may be optionally substituted with one or more groups selected from oxo, C_{1-6} alkyloxy, C_{1-6} alkyl,

 C_{1-6} alkylsulfonyl, aminosulfonyl, amino, C_{1-6} alkylcarbonylamino, hydroxy C_{1-6} alkyl, cyano, C_{1-6} alkyloxycarbonyl, aminocarbonyl, halogen or trifluoromethyl, wherein each amino maybe mono- or disubstitued with C_{1-6} alkyl;

 \mathbf{R}_4 is selected from the group comprising hydrogen, $C_{1\text{-}4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl, $C_{3\text{-}7}$ cycloalkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, or $C_{1\text{-}6}$ alkyl optionally substituted with one or more substituents each independently selected from aryl, Het^1 , Het^2 , $C_{3\text{-}7}$ cycloalkyl, $C_{1\text{-}4}$ alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di($C_{1\text{-}4}$ alkyl)aminocarbonyl, aminosulfonyl, $C_{1\text{-}4}$ alkyl- $S(=O)_{t_1}$ hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are each independently selected from $C_{1\text{-}4}$ alkyl,

aryl, aryl C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl C_{1-4} alkyl, Het¹, Het², Het¹ C_{1-4} alkyl and Het² C_{1-4} alkyl; and

t is zero, one or two; and R_6 , and R_8 are as defined in step (a) and

13. (Original) The method according to claim 12, wherein

 R_1 is a radical of formula (10)

$$R_{11}a$$
 $R_{10}a$
 $R_{10}b$
 $R_{11}b$
 $R_{10}b$
 $R_{10}b$
 $R_{10}b$

 R_9 , R_{10a} and R_{10b} are, each independently, hydrogen, C_{1-4} alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C_{1-4} alkyl)aminocarbonyl, C_{3-7} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{1-4} alkyl optionally substituted with aryl, Het^1 , Het^2 , C_{3-7} cycloalkyl, C_{1-4} alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C_{1-4} alkyl)aminocarbonyl, aminosulfonyl, C_{1-4} alkylS(O)t, hydroxy, cyano, halogen or amino optionally mono- or disubstituted where the substituents are each independently selected from C_{1-4} alkyl, aryl, aryl C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl;

whereby R_9 , R_{10a} and the carbon atoms to which they are attached may also form a C_{3-7} cycloalkyl radical;

 R_{11b} is hydrogen, C_{3-7} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, aryl, Het^1 , Het^2 or C_{1-4} alkyl optionally substituted with halogen, hydroxy, C_{1-4} alkyl $S(=O)_t$, aryl, C_{3-7} cycloalkyl, Het^1 , Het^2 , amino optionally mono- or disubstituted where the substituents are each independently selected from C_{1-4} alkyl, aryl, aryl C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, Het^1 , Het^2 , Het^1 C₁₋₄alkyl and Het^2 C₁₋₄alkyl;

whereby $\mathbf{R_{11b}}$ may be linked to the remainder of the molecule via a sulfonyl group;

t is zero, one or two;

L is -C(=O)-, -O-C(=O)-, -NR₁₂-C(=O)-, -O-C₁₋₆alkanediyl-C(=O)-, -NR₁₂-C₁₋₆alkanediyl-C(=O)-, -S(=O)₂-, -O-S(=O)₂-, -NR₁₂-S(=O)₂ whereby either the C(=O) group or the S(=O)₂ group is attached to the NR₂ moiety; whereby the

 C_{1-6} alkanediyl moiety is optionally substituted with a substituent selected from hydroxy, aryl, Het^1 , and Het^2 ;

 \mathbf{R}_{12} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, aryl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl, Het 1 C₁₋₆alkyl, Het 2 C₁₋₆alkyl; and

 R_4 is hydrogen, C_{1-4} alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C_{1-4} alkyl)aminocarbonyl, C_{3-7} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or C_{1-6} alkyl optionally substituted with one or more substituents selected from aryl, Het^1 , Het^2 , C_{3-7} cycloalkyl, C_{1-4} alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(C_{1-4} alkyl)-aminocarbonyl, aminosulfonyl, C_{1-4} alkyl $S(=O)_t$, hydroxy, cyano, halogen and amino optionally mono- or disubstituted where the substituents are selected from C_{1-4} alkyl, aryl, aryl C_{1-4} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkyl.

14. (Currently Amended) The method according to <u>claim 12 any one of claims 12 to 13</u>, wherein one or more of the following restrictions apply:

R₁ is hydrogen, Het¹, Het², aryl, Het¹C₁₋₆alkyl, Het²C₁₋₆alkyl, arylC₁₋₆alkyl, more in particular, R₁ is a saturated or partially unsaturated monocyclic or bicyclic heterocycle having 5 to 8 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen or sulfur and which is optionally substituted, or phenyl optionally substituted with one or more substituents;

R₂ is hydrogen;

L is -C(=O)-, -O-C(=O)-, -O-C₁₋₆alkanediyl-C(=O)-, more in particular, L is -O-C(=O)- or -O-C₁₋₆alkanediyl-C(=O)-, whereby in each case the C(=O) group is attached to the NR₂ moiety;

R₃ is arylC₁₋₄alkyl, in particular, arylmethyl, more in particular phenylmethyl;

 \mathbf{R}_4 is optionally substituted $C_{1\text{-}6}$ alkyl, in particular unsubstituted $C_{1\text{-}6}$ alkyl or $C_{1\text{-}6}$ alkyl optionally substituted with one or more substituents selected from aryl, Het¹, Het², $C_{3\text{-}7}$ cycloalkyl and amino optionally mono- or disubstituted where the substituents are selected from $C_{1\text{-}4}$ alkyl, aryl, Het¹ and Het²;

 \mathbf{R}_{6} is hydrogen or methyl; and

 \mathbf{R}_8 is hydrogen or methyl.

15. (Currently Amended) The method according to claim 12 any one of claims 12 to 14, wherein

 $\mathbf{R_{1}\text{-}L}$ is Het¹-O-C(=O), Het²-C₁₋₆alkanediyl-O-C(=O), aryl-O-C₁₋₆alkanediyl-C(=O) or aryl—C(=O).

16. (Currently Amended) The method according to <u>claim 12any one of claims 12 to 15</u>, wherein

NR₆R₈ is amino, monomethylamino or dimethylamino.

17. (Currently Amended) The method according to <u>claim 12</u> to any one of claims 12 to 16, wherein

R₁ is a Het¹, or a Het¹C₁₋₆alkyl, and

L is -O-C(=O)-;

R₂ is hydrogen;

R₃ is phenylmethyl;

R₄ is isobutyl;

R₆ is hydrogen; and

R₈ is hydrogen or methyl.

18. (Currently Amended) The method according to <u>claim 12any one of claims 12 to 17</u>, wherein compound (9) has formula (9''').

- 19. (Currently Amended) The method according to <u>claim 12any one of claims 12 to 18</u>, <u>wherein the characterized in that compound of formula (9) is in the form of a salt selected from trifluoroacetate, fumarate, chloroacetate and methanesulfonate.</u>
- 20. (Cancelled).