

### **Presentation Outline**

- Project Overview and Scope (pgs 3-5)
- Work Breakdown Structure (pgs 6-7)
- High Level/Detailed Schedules (pgs 8-9)
- Risk Management (pgs 10-12)
- Cost Breakdown Structure (pgs 13-14)
- Critical Path Analysis (pg 15)
- Recovery of Schedule (pgs 16-17)
- Concluding Remarks (pg 18)





### The Problem

#### **Problem**

The number of vehicles is continually increasing, leading to parking-related issues. Specifically, Parking Lot 12 at UMass faces significant parking problems. People are unable to park their vehicles properly within the available space, mainly due to poor infrastructure.

#### **Our Solution**

We aim to use advanced technology to develop an automated parking system. This will include proper leveling through paving and surfacing, along with designing an efficient parking layout. Our focus will also be on managing traffic flow, implementing access controls, and making the space environmentally friendly by adding landscaping, greenery, sufficient lighting, and EV charging stations to encourage the use of electric vehicles and support environmental sustainability.



## **Project Scope**

The primary objective of the Lot 12 Parking Redesign Project is to transform the existing dirt parking lot into a more structured, organised and efficient space for UMass students and faculty.

#### Main improvements include-

- Paved surface with marked parking spots
- Clear traffic lanes
- OR code scanner at entrance
- Better organised space to prevent messy parking



The goal is to help students and faculty to park more easily and fit more cars properly in the messy parking. To mitigate issues related to over - parking and triple parking in traffic management, ensuring that parking space is utilized to its maximum capacity.



### **Project Overview**

June 2nd, 2025 - August 12th, 2025 (51 working days)

### **Deliverables / Key Milestone Dates:**

- 1. Concrete Surfacing June 19
- 2. Painted Parking Spaces July 01
- 3. Signage + Traffic Barriers July 10
- 4. Access Gate Operation July 23
- 5. Greenery July 30
- 6. Lighting Fixtures August 06
- 7. EV Charging Stations August 12

### **Top Project Risks:**

- 1. Concrete Curing Issues
- 2. Gate Control Failure

**Total Budget:** ~\$2.5m (including contingencies)

|        | June 2025 |         |           |          |        |          |  |  |  |  |  |  |
|--------|-----------|---------|-----------|----------|--------|----------|--|--|--|--|--|--|
|        |           | -       |           |          |        |          |  |  |  |  |  |  |
| Sunday | Monday    | Tuesday | Wednesday | Thursday | Friday | Saturday |  |  |  |  |  |  |
| 1      | 2         | 3       | 4         | 5        | 6      | 7        |  |  |  |  |  |  |
| 8      | 9         | 10      | 11        | 12       | 13     | 14       |  |  |  |  |  |  |
| 15     | 16        | 17      | 18        | 19       | 20     | 21       |  |  |  |  |  |  |
| 22     | 23        | 24      | 25        | 26       | 27     | 28       |  |  |  |  |  |  |
| 29     | 30        |         |           |          |        |          |  |  |  |  |  |  |
|        |           |         |           |          |        |          |  |  |  |  |  |  |
|        |           | Jı      | uly 202   | 25       |        |          |  |  |  |  |  |  |
| Sunday | Monday    | Tuesday | Wednesday | Thursday | Friday | Saturday |  |  |  |  |  |  |
|        |           |         | 2         | 3        | 4      | 5        |  |  |  |  |  |  |
| 6      | 7         | 8       | 9         | 10       | 11     | 12       |  |  |  |  |  |  |
| 13     | 14        | 15      | 16        | 17       | 18     | 19       |  |  |  |  |  |  |
| 20     | 21        | 22      | 23        | 24       | 25     | 26       |  |  |  |  |  |  |
| 27     | 28        | 29      | 30        | 31       |        |          |  |  |  |  |  |  |
|        |           |         |           |          |        |          |  |  |  |  |  |  |

# **AUGUST 2025**

| SUN | MON | TUE | WED | THU | FRI | SAT |
|-----|-----|-----|-----|-----|-----|-----|
| 27  | 28  | 29  | 30  | 31  | 1   | 2   |
| 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|     |     |     |     |     |     |     |



### **Work Breakdown Structure**



### Work Breakdown Structure

- 1. Paving and Surfacing: This phase ensures the foundation of the parking lot is durable and long-lasting. Activities include site surveys, excavation, rebar installation, and concrete pouring, followed by proper curing for stability.
- 2. Parking Space Layout: Efficient space utilization is achieved by measuring and designing parking spots. Clear marking and painting of spaces ensure organized and accessible parking for all users.
- **3. Traffic Flow Management :** Analyzing traffic patterns helps design smooth entry and exit routes. Traffic control measures and proper signage enhance safety and prevent congestion.
- **4. Access Control:** Gate systems are installed with advanced access control technologies like QR codes. Site assessments, system integration to the database, and rigorous testing ensure seamless operation.
- **5.** Additional Enhancements: Landscaping and greenery create an aesthetic environment, while streetlights improve nighttime visibility. EV charging stations are added to support sustainable and modern needs.



### **Schedule to Implement**





## **Detailed Schedule**

| 14/5 |    |                                        |           |           | JUNE                |      |              |                                  |            | JU               | ILY         |         | AUGUST      |              |                 |                 |          |       |          |
|------|----|----------------------------------------|-----------|-----------|---------------------|------|--------------|----------------------------------|------------|------------------|-------------|---------|-------------|--------------|-----------------|-----------------|----------|-------|----------|
| WP   |    | Tasks                                  | Start     | End       | Person              | Days | Work<br>Days | 2 3 4 5 6 9 10 11<br>S S S S S S | 12 13 16 1 | 7 18 19 20 23 24 | 25 26 27 30 | 1 2 3 4 | 7 8 9 10 11 | 14   15 16 1 | 7 18 21 22 23 2 | 4 25 28 29 30 3 | 31 1 4 5 | 67891 | 10 11 12 |
|      | 1  | 1.1 Site Survey/Assessment             | 2/Jun/25  | 2/lun/25  | Civil Engineer      |      |              |                                  |            |                  |             |         |             |              |                 |                 | _        |       |          |
|      | 2  | 1.2 Excavation of Topsoil              | 3/Jun/25  |           | Civil Engineer      | 1    | 1            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 2  | 1.3 Formwork                           | 5/Jun/25  |           | Civil Engineer      | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 1    | 1  | 1.4 Rebar Installation                 | 9/Jun/25  |           | Civil Engineer      | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 5  | 1.5 Concrete Pouring                   | 11/Jun/25 |           | Civil Engineer      | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 6  | 1.6 Concrete Curing                    | 12/Jun/25 |           | Civil Engineer      | 1    | 1            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 7  | 2.1 Site Assessment/Measurements       | 20/Jun/25 | 23/Jun/25 |                     | 8    | 6            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 2    | 8  | 2.2 Design of Parking Spaces           | 24/Jun/25 | 27/Jun/25 |                     | 4    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| -    | 9  | 2.3 Painting of Spaces                 | 30/Jun/25 | 1/Jul/25  |                     | 4    | 4            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 10 | 3.1 Traffic Flow Analysis              | 2/Jul/25  |           | Traffic Engineer    | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 3    | 11 | 3.2 Signage and Markings               | 7/Jul/25  |           | Traffic Engineer    | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 8    | 12 | 3.3 Traffic Control Measures           | 9/Jul/25  | 10/Jul/25 | Traffic Engineer    | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 13 | 4.1 Site Assessment and Gate Location  | 11/Jul/25 | 11/Jul/25 | Software Engineer   | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 14 | 4.2 Gate Installation                  | 14/Jul/25 | 16/Jul/25 | Software Engineer   | 1    | 1            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 4    | 15 | 4.3 Access Control System Installation | 17/Jul/25 | 21/Jul/25 | Software Engineer   | 3    | 3            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 16 | 4.4 Integration and Testing            | 22/Jul/25 | 23/Jul/25 | Software Engineer   | 5    | 3            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 17 | 5.1 Landscaping and Greenery           | 24/Jul/25 | 30/Jul/25 | Electrical Engineer | 2    | 2            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
| 5    | 18 | 5.2 Lighting Installation              | 31/Jul/25 | 6/Aug/25  | Electrical Engineer | 7    | 5            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      | 19 | 5.3 EV Charging Stations               | 7/Aug/25  | 12/Aug/25 | Electrical Engineer | 7    | 5            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      |    | _                                      | •         |           |                     | 6    | 4            |                                  |            |                  |             |         |             |              |                 |                 |          |       |          |
|      |    |                                        |           |           |                     | 63   | 51           |                                  |            |                  |             |         |             |              |                 |                 | 8        |       |          |



## Risk Identification / Mitigation of Cost, Performance

| Risk ID | Work<br>Package                | Risk                           | Cause                                          | Effect                               | Consequence | Likelihood |
|---------|--------------------------------|--------------------------------|------------------------------------------------|--------------------------------------|-------------|------------|
| 1       |                                | Inaccurate site data           | Incorrect measurements during survey           | Misaligned excavation and layout     | High        | Medium     |
| 2       | Paving and<br>Surfacing        | Delays in excavation           | Unexpected rocks or old infrastructure         | Increased project timeline           | Medium      | Medium     |
| 3       |                                | Poor soil compaction           | Inadequate grading or compaction               | Surface instability, risk of cracks  | High        | Medium     |
| 4       |                                | Rebar installation issues      | Material delays or incorrect placement         | Reduced structural strength          | High        | Low        |
| 5       |                                | Concrete curing issues         | Bad weather during curing                      | Weak concrete, affecting durability  | High        | High       |
| 6       | Parking                        | Measurement errors             | Miscalculations in space dimensions            | Reduced parking capacity             | Medium      | Medium     |
| 7       | Space                          | Poor layout design             | Ineffective design process                     | Traffic congestion                   | Medium      | Medium     |
| 8       | Layout                         | Paint drying delays            | Weather (rain or high humidity)                | Delay in finishing spaces            | Low         | High       |
| 9       |                                | Inaccurate traffic analysis    | Insufficient data on traffic patterns          | Congestion within parking area       | Medium      | Low        |
| 10      | Traffic Flow<br>Management     | Poor signage placement         | Lack of clear signage placement standards      | Driver confusion, unsafe conditions  | Medium      | Medium     |
| 11      |                                | Insufficient traffic control   | Not enough traffic barriers or signals         | Increased risk of accidents          | High        | Low        |
| 12      | Access                         | Gate placement issues          | Poor gate location selection                   | Traffic bottlenecks                  | Medium      | Medium     |
| 13      | Control                        | Gate malfunction               | Software or mechanical issues                  | Delays and potential security risks  | High        | Medium     |
| 15      | Additional<br>Enhancem<br>ents | Landscaping problems           | Wrong plant selection or poor soil quality     | Dead plants, reduced aesthetic value | Low         | Medium     |
| 16      |                                | Insufficient lighting coverage | Poor lighting design or placement              | Reduced visibility, lower security   | Medium      | Medium     |
| 17      |                                | EV charging station issues     | Electrical supply problems or equipment faults | Inconvenience for users              | Medium      | Low        |



## Risk Management

#### **Risk 5: Concrete curing issues**

#### **Root Cause**

Poor weather (rain, snow, low temps, high temps, wind) will not let concrete cure properly

If bad weather occurs during the curing period, then the concrete may not cure properly, leading to issues such as cracking, weakened strength, and a compromised surface finish which will delay the project by at least a week.

| Step | Mitigation Action                                                                                     | Date                                      | Likelihood,<br>Consequenc<br>e |
|------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| 1    | Ensure the weather for the upcoming week is relatively stable                                         | Day 5 (June<br>5th)                       | L5(High),<br>C4(High)          |
| 2    | Purchase additional materials to assist proper curing (tarps, sheets, heaters, moisture distribution) | Day 6 - Day 8<br>(June 6th-<br>June 8th ) | L4 (Med),<br>C4(High)          |
| 3    | Have a plan for unexpected weather changes and utilize resources available to ensure proper curing    | Day 8 - Day 9<br>( June<br>8th-June 9th)  | L3(Low), C4<br>(High)          |

|            | 5     |                   |                        |             |       |
|------------|-------|-------------------|------------------------|-------------|-------|
| ро         | 4     |                   |                        |             |       |
| liho       | 3     |                   |                        |             |       |
| Likelihood | 2     |                   |                        |             |       |
|            | 1     |                   |                        |             |       |
|            |       | 1 2<br><b>C</b> c | 2 3<br><b>onsequ</b> e | 4 5<br>ence |       |
|            |       |                   |                        |             |       |
|            |       | Pur               | chase of ma            | terials 🔻   |       |
|            |       |                   |                        |             |       |
|            |       |                   |                        |             |       |
|            |       |                   |                        |             |       |
|            |       | ι                 |                        |             |       |
|            |       |                   |                        |             |       |
|            |       |                   |                        |             |       |
|            |       |                   |                        |             |       |
|            | Day 5 | Day 6             | Day 7                  | Day 8       | Day 9 |
|            |       |                   |                        |             |       |



**Timeline** 

## Risk Management

#### Risk 13: Gate control failure

#### **Root Cause**

Software malfunctioning to not open parking gate to vehicles with a parking pass

If the access control gate software malfunctions to not let in vehicles with a parking pass, then vehicles will not be able to enter the lot as the gate remains down

| Step | Mitigation Action                                                                                                                       | Date                                      | Likelihood,<br>Consequen<br>ce |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| 1    | Collaborate with software engineers to create a program for the gate to open when a pass is scanned.                                    | Day 23 - Day 29 ( June 25th<br>-June 30th | L4(High),<br>C3(Med)           |
| 2    | Establish a backup protocol as a failsafe in case the main program malfunctions. (i.e a manually entered override code for passholders) | Day 27 - Day 29 (June 28<br>th-June 30th) | L3((Med),<br>C3(Med)           |
| 3    | Perform system integration and testing.                                                                                                 | Day 30 - Day 31<br>(July 2nd- July 3rd)   | L2(Med),<br>C3(Med)            |
| 4    | Perform regular system updates on software, and schedule maintenance checks regularly                                                   | Indefinitely                              | L1(Low),<br>C3(Med)            |







## **Risk Identification and Mitigation Plan**

| Risk Identification       | Mitigation Plan                                                                       |
|---------------------------|---------------------------------------------------------------------------------------|
| Inaccurate site data      | Use high-precision survey equipment and cross-verify with multiple sources            |
| Delays in excavation      | Perform soil tests and use suitable machinery for unexpected conditions               |
| Poor soil compaction      | Conduct compaction tests post-grading to ensure stability                             |
| Rebar installation issues | Schedule material delivery in advance and assign experienced labor                    |
| Concrete curing issues    | Schedule curing during stable<br>weather or use covers if<br>unexpected changes occur |
| Measurement errors        | Use design software and verify with multiple stakeholders                             |
| Poor layout design        | Optimize layout with simulation and user feedback                                     |
| Paint drying delays       | Use quick-dry paint and plan around stable weather                                    |

| Risk Identification            | Mitigation Plan                                                                                                                                                 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inaccurate traffic analysis    | Conduct traffic flow analysis during peak and non-peak times                                                                                                    |
| Poor signage placement         | Follow standard placement protocols and ensure clear markings                                                                                                   |
| Insufficient traffic control   | Add extra control devices like cones and barriers as needed                                                                                                     |
| Gate placement issues          | Optimize gate placement based on flow analysis                                                                                                                  |
| Gate malfunction               | Perform installation checks and schedule regular maintenance. Have backup protocols (like an override code for pass holders) and perform regular system updates |
| Landscaping problems           | Use native plants and improve soil quality if needed                                                                                                            |
| Insufficient lighting coverage | Install additional lighting as needed based on night inspections                                                                                                |
| EV charging station issues     | Test stations regularly and perform maintenance checks                                                                                                          |



## **Cost Breakdown Structure**

| Work Breakdown                         | Duration (Days) 🔽 | Cost of Labor (\$) | Cost of Materials (\$) | Cost of Equipment (\$) | Total Cost (\$) |
|----------------------------------------|-------------------|--------------------|------------------------|------------------------|-----------------|
| 1. Paving and Surfacing                |                   |                    | Olization at           |                        | 2,119,250.00    |
| 1.1 Site Survey/Assessment             | 1                 | 1,200              | 0                      | 150                    | 1,350.00        |
| 1.2 Excavation of Top Soil             | 2                 | 2,100              | 0                      | 2400                   | 4,500.00        |
| 1.3 Formwork                           | 2                 | 2,100              | 1500                   | 600                    | 4,200.00        |
| 1.4 Rebar Installation                 | 2                 | 2,400              | 2000                   | 200                    | 4,600.00        |
| 1.5 Concrete Pouring                   | 1                 | 3,000              | 2,100,000              | 800                    | 2,103,800.00    |
| 1.6 Concrete Curing                    | 7                 | 0                  | 800                    | 0                      | 800.00          |
| 2. Parking Space Layout                |                   |                    |                        |                        | 16,600.00       |
| 2.1 Site Measurement/Assessments       | 2                 | 0                  | 0                      | 0                      | 0               |
| 2.2 Design of Parking Spaces           | 3                 | 3000               | 0                      | 500                    | 3,500.00        |
| 2.3 Painting of Spaces                 | 2                 | 3300               | 9300                   | 500                    | 13,100.00       |
| 3. Traffic Flow Management             |                   |                    |                        |                        | 14,100.00       |
| 3.1 Traffic Flow Analysis              | 2                 | 2400               | 0                      | 500                    | 2,900.00        |
| 3.2 Signage and Markings               | 2                 | 2800               | 1700                   | 900                    | 5,400.00        |
| 3.3 Traffic Control Measures           | 2                 | 2800               | 1200                   | 1800                   | 5,800.00        |
| 4. Access Control                      |                   |                    |                        |                        | 46,800.00       |
| 4.1 Site Assessment and Gate Location  | 1                 | 0                  | 0                      | 0                      | 0               |
| 4.2 Gate Installation                  | 5                 | 7600               | 12000                  | 1000                   | 20,600.00       |
| 4.3 Access Control System Installation | 3                 | 9600               | 0                      | 10000                  | 19,600.00       |
| 4.4 Integration and Testing            | 3                 | 6600               | 0                      | 0                      | 6,600.00        |
| 5. Additional Enhancements             |                   |                    |                        |                        | 73,500.00       |
| 5.1 Landscape and Greenery             | 5                 | 7500               | 6500                   | 500                    | 14,500.00       |
| 5.2 Lighting Installation              | 5                 | 6000               | 18000                  | 3500                   | 27,500.00       |
| 5.3 EV Charging Stations               | 4                 | 6000               | 22000                  | 3500                   | 31,500.00       |
|                                        |                   |                    |                        | Total Cost:            | 2,270,250.00    |



## **Cost Breakdown Assumptions and Contingencies**

| Contingency Area            | Estimated Contingency (\$) |
|-----------------------------|----------------------------|
| Unexpected site conditions  | 120,000                    |
| Weather delays              | 45,000                     |
| Equipment breakdown         | 20,000                     |
| Software integration issues | 3,000                      |
| Electrical issues           | 15,000                     |

Total Contingency Cost: \$203,000

- Contingencies ~ 9% of overall project budget
- Overall project Budget + Contingencies = \$2,473,250

### Assumptions:

- 350,000 sq ft of area
- Cost of workers = \$350-\$400/day (3-10 workers)depending on complexity of task)
- 3. Skilled labor = \$800-\$1200/day
- 4. Equipment rental = \$200-1200/day
- 5. Concrete = \$6/sq foot
- 6. Paint = \$0.10/sq foot



## **Critical Path Analysis**

| Task<br>No. | Task Name                  | Sub-tasks  | Estimated time frame   | Working days |
|-------------|----------------------------|------------|------------------------|--------------|
| 1           | Paving and Surfacing       | 1.1 to 1.6 | 02/Jun/25 to 19/Jun/25 | 14           |
| 2           | Parking space layout       | 2.1 to 2.3 | 20/Jun/25 to 01/Jul/25 | 8            |
| 3           | Traffic flow management    | 3.1 to 3.3 | 02/Jul/25 to 10/Jul/25 | 6            |
| 4           | Access Control             | 4.1 to 4.4 | 11/Jul/25 to 23/Jul/25 | 9            |
| 5           | Additional<br>Enhancements | 5.1 to 5.3 | 24/Jul/25 to 12/Aug/25 | 14           |

| Sub-task | Sub-task Name                      |
|----------|------------------------------------|
| 1.1      | Site Survey/Assessment             |
| 1.2      | Excavation of Top Soil             |
| 1.3      | Formwork                           |
| 1.4      | Rebar Installation                 |
| 1.5      | Concrete Pouring                   |
| 1.6      | Concrete Curing                    |
| 2.1      | Site Assessments/Measurements      |
| 2.2      | Design of Parking Spaces           |
| 2.3      | Painting of Spaces                 |
| 3.1      | Traffic Flow Analysis              |
| 3.2      | Signage and Markings               |
| 3.3      | Traffic Control Measures           |
| 4.1      | Site Assessments and Gate Location |
| 4.2      | Gate Installation                  |
| 4.3      | Access Control system Installation |
| 4.4      | Integration and Testing            |
| 5.1      | Landscaping and Greenery           |
| 5.2      | Lighting Installation              |
| 5.3      | EV Charging Stations               |



### **Critical Path Analysis**



Critical Path: Start - Task 1 - Task 2 - Task 3 - Task 4 - Task 5 - End (51 days)



## **Recovery of Schedule**

- Task 5 Additional Enhancements (landscaping & greenery, EV charging stations) can be avoided if the project is behind schedule.
- "Task 4 to End" path can be implemented instead of "Task 4 Task 5" End path.
- Task 5 can be done in parallel with task 3.
- Specialised sub-contractors can be availed for high risk activities or activities where estimated time to completion is more.
- Implementation of additional shifts to complete the work.
- Personnel can be allocated to each successor activity once each predecessor sub-task is completed.



### **Recovery of Schedule Continues**

- A 5-10% buffer reserve can be allocated for each work package in case of any deviations from the actual scope or any unforeseen events.
- Buffer time to be accommodated in the project schedule for each milestone to be delivered. Weekly meetings to
  be held with the project stakeholders to discuss about the project progress and possible hurdles, to mitigate
  risks.
- High risk activities can be identified beforehand to completely eliminate or minimize the chances of occurrence, through proper communication between surveyor, QA/QC, engineers, procurement, technicians and other parties involved.



### **Conclusions**

- Duration of project: 51 working days
- Total estimated cost: \$2,473,250 provided that the project stays within the planned schedule and contingency budget.
- By having a properly designed and executed parking lot and through integrating technology, we will be able to provide a better solution to the existing parking lot 12 issues for the UMass community.
- Can be implemented to improve the efficiency of other parking spaces around the campus.
- Improves safety and promotes sustainable practices.





