Sammanfattning av SF1674 Flervariabelanalys

Yashar Honarmandi

29 januari 2018

Sammanfattning

Denna sammanfattningen innehåller centrala definitioner och satser i SF1672 Flervariabelanalys.

Innehåll

1	Vektoralgebra			
	1.1	Satser	1	
2	Mängdlära 1			
	2.1	Definitioner	1	
	2.2	Satser	2	
3	Funktioner 2			
	3.1	Definitioner	2	
	3.2	Satser	3	
4	Derivata 4			
	4.1	Definitioner	4	
	4.2	Satser	5	
5	Kurvor 10			
	5.1	Definitioner	10	
	5.2	Satser	10	
6	6 Kvadratiska ytor			

1 Vektoralgebra

1.1 Satser

Cauchy-Schwarz' olikhet Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|.$$

Bevis

Triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|.$$

Bevis

Omvända triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$||\mathbf{x}| - |\mathbf{y}|| \le |\mathbf{x} + \mathbf{y}|.$$

Bevis

Vektorer och förhållande mellan komponenter Låt $\mathbf{x} \in \mathbb{R}^n$ med komponenter x_1, \dots, x_n . Då gäller att

$$|x_i| \le |\mathbf{x}| \le \sum_{i=1}^n |x_i|, \ i = 1, \dots, n.$$

Bevis

2 Mängdlära

2.1 Definitioner

Öppna klot Ett öppet klot i \mathbb{R}^n centrerad i **a** med radius r är

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r\}.$$

Omgivningar till punkter $U \subset \mathbb{R}^n$ är en omgivning till $\mathbf{a} \in \mathbb{R}^n$ om U innehåller något öppet klot med centrum \mathbf{a} .

Inre punkter Låt $M \subset \mathbb{R}^n$. a är en inre punkt till M om det finns ett öppet klot kring a i M.

Yttre punkter Låt $M \subset \mathbb{R}^n$. **a** är en yttre punkt till M om det finns ett öppet klot kring **a** i M:s komplement, definierad som $\mathbb{R}^n \setminus M$.

Randpunkter Låt $M \subset \mathbb{R}^n$. **a** är en randpunkt till M om varje öppet klot kring **a** innehåller punkter i M och M:s komplement.

Rand Mängden av alla randpunkter till en mängd M är randen till M. Denna betecknas ∂M .

Öppna och slutna mängder En mängd är öppen om ∂M är i M:s komplement och sluten om ∂M är i M.

Begränsade mängder En mängd M är begränsad om $\exists c > 0$ så att $|\mathbf{x}| < c \forall \mathbf{x} \in M$.

Kompakta mängder En mängd är kompakt om den är sluten och begränsad.

Bågvis sammanhängande mängder D är en bågvis sammanhängande mängd om varje par punkter $\mathbf{a}, \mathbf{b} \in D$ finns en kurva $\mathbf{x}(t), t \in [\alpha, \beta]$ så att $\mathbf{x}(t) \in D$ för alla t och $\mathbf{x}(\alpha) = \mathbf{a}$ och $\mathbf{x}(\beta) = \mathbf{b}$.

2.2 Satser

3 Funktioner

3.1 Definitioner

Grafen av en funktion Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^2$. Grafen av f är

$$\{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$$

Kurvor i \mathbb{R}^p En kurva i \mathbb{R}^p är en funktion $t \to \mathbf{x}(t) = (x_1(t), \dots, x_n(t))$.

Lokala gränsvärden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och **a** vara en inre punkt eller randpunkt till D. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{a}| < \delta, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Gränsvärden mot o
ändligheten Låt $f:D\to\mathbb{R}^p$ med $D\subset\mathbb{R}^n$.
 $\lim_{|\mathbf{x}|\to\infty}f(\mathbf{x})=\mathbf{b}$ om det för varje $\varepsilon>0$ finns ett $\omega>0$ så att

$$|\mathbf{x}| > \omega, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är kontinuerlig i $\mathbf{a} \in D$ om $\lim_{\mathbf{x} \to \mathbf{a}} \text{ existerar och } \lim_{\mathbf{x} \to \mathbf{a}} = f(\mathbf{a})$.

Likformig kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är likformigt kontinuerlig på D om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{y}| < \delta, \mathbf{x}, \mathbf{y} \in D \implies |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon.$$

Lokala extrempunkter Låt $f: D \to \mathbb{R}$ med $D \subset \mathbb{R}^n$. f har ett lokalt maximum i \mathbf{a} om $\exists \delta > 0$ så att $f(\mathbf{x}) \leq f(\mathbf{a})$ för alla $\mathbf{x} \in D$ så att $|\mathbf{x} - \mathbf{a}| < \delta$. Lokala minima definieras analogt. Om $f(\mathbf{x}) < f(\mathbf{a})$ har f ett strängt lokalt maximum i \mathbf{a} .

Kvadratiska former Låt A, B, C vara konstanter. En kvadratisk form från \mathbb{R}^2 är på formen

$$Q(h,k) = Ah^2 + 2Bhk + Ck^2.$$

För en mer allmän definition, se definitionen från sammanfattningen av SF1672.

Positivt och negativt definita kvadratiska former En kvadratisk form är

- positivt definit om Q(h,k) > 0 för $(h,k) \neq (0,0)$.
- positivt definit om $Q(h,k) \ge 0$ för $(h,k) \ne (0,0)$.
- negativt definit om Q(h,k) < 0 för $(h,k) \neq (0,0)$.
- negativt definit om $Q(h,k) \leq 0$ för $(h,k) \neq (0,0)$.
- \bullet indefinit om Q antar såväl positiva som negativa värden.

3.2 Satser

Gränsvärden av funktioner och deras komponenter Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ är ekvivalent med att $\lim_{\mathbf{x} \to \mathbf{a}} f_i(\mathbf{x}) = \mathbf{b}_i$, där subskriptet i indikerar den i-te komponenten av varje vektor.

Bevis Detta följer direkt av att

$$|f_i(\mathbf{x}) - \mathbf{b}_i| \le |f(\mathbf{x}) - \mathbf{b}| \le \sum_{i=1}^p |f_i(\mathbf{x}) - \mathbf{b}_i|.$$

Största och minsta värde för funktioner Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara kompakt. Då antar f ett största och ett minsta värde på D.

Bevis

Definitionsmängd och likformig kontinuitet Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$ och låt D vara kompakt. Då är f likformigt kontinuerlig på D.

Bevis

Satsen om mellanliggande värden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara bågvis sammanhängande. Om f antar värderna $f(\mathbf{a}), f(\mathbf{b})$ i D, antar f också alla värden mellan $f(\mathbf{a})$ och $f(\mathbf{b})$.

Bevis

4 Derivata

4.1 Definitioner

Partiella derivator Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är partiellt deriverbar med avseende på x_i i den inre punkten $\mathbf{a} \in D$ om gränsvärdet

$$\lim_{h\to 0} \frac{f(\mathbf{a} + h\mathbf{e}_i) - f(\mathbf{a})}{h}$$

existerar. Gränsvärdet kallas partiella derivatan av f med avseende på x_i i ${\bf a}$ och betecknas $\frac{\partial f}{\partial x_i}({\bf a})$.

Differentierbarhet Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$. f är differentierbar i **a** om $\exists A_1, \ldots, A_n$ och en $\rho(\mathbf{h})$ så att

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{i=1}^{n} A_i h_i + |\mathbf{h}| \rho(\mathbf{h})$$

och $\lim_{\mathbf{h}\to\mathbf{0}} \rho(\mathbf{h}) = 0$. f är differentierbar om detta är uppfylld för alla $\mathbf{a}\in D$.

 C^1 Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$. f är klass C^1 om f är partiellt deriverbar och alla de partiella derivatorna är kontinuerliga i D.

 C^k Låt $f: D \to \mathbb{R}$ med $D \subset \mathbb{R}^n$. f är klass C^k om f alla partiella derivator till och med ordning k existerar och är kontinuerliga i D.

Gradient Låt f vara reellvärd och differentierbar i \mathbf{x} . Gradienten definieras som

$$\vec{\nabla} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) \mathbf{e}_i.$$

Riktningsderivata Låt $|\mathbf{v}| = 1$. Derivatan av f i punkten \mathbf{a} i riktningen \mathbf{v} är

$$\vec{\nabla}_{\mathbf{u}} f = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}.$$

Stationära punkter a är en stationär punkt till f om $\nabla f(\mathbf{a}) = \mathbf{0}$.

Differentialer Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$ öppen och låt f vara differentierbar. Funktionen $\mathbf{h} \to \sum \frac{\partial f}{\partial x_i}(\mathbf{x})h_i$ kallas differentialen av f i \mathbf{x} och betecknas d $f(\mathbf{x})$. Vid att skriva differentialen som en matris

$$df(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}) \dots \frac{\partial f}{\partial x_n}(\mathbf{x}) \right]$$

kan differentialet skrivas som en matrismultiplikation enligt

$$df(\mathbf{x})(\mathbf{h}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}) \dots \frac{\partial f}{\partial x_n}(\mathbf{x}) \right] \mathbf{h}.$$

4.2 Satser

Differentierbarhet och kontinuitet Låt f vara differentierbar i \mathbf{a} . Då är f kontinuerlig i \mathbf{a} .

Bevis Definitionen implicerar $\lim_{\mathbf{h}\to \mathbf{0}} f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = 0.$

Differentierbarhet och partiell deriverbarhet Låt f vara differentierbar i **a**. Då är f partiellt deriverbar med avseende på alla variabler i **a** och $\frac{\partial f}{\partial x_i} = A_i$.

Bevis Med $\mathbf{h} = t\mathbf{e}_i$ ger definitionen av differentierbarhet

$$\frac{f(\mathbf{a} + t\mathbf{e}_i) - f(\mathbf{a})}{t} = A_i + \frac{|t|}{t}\rho(t\mathbf{e}_i).$$

Gränsvärdet när t går mot 0 ger på den ena sidan definitionen av den partiella derivatan och A_i på andra sidan.

Differentierbarhet av funktioner i C^1 Varje $f \in C^1$ är differentierbar.

Bevis Låt $\mathbf{a} \in D$. Enligt envariabelsanalysens medelvärdesats har vi

$$f(\mathbf{a} + h_1 \mathbf{e}_1) - f(\mathbf{a}) = \frac{\partial f}{\partial x_1} (\mathbf{a} + \theta_1 h_1 \mathbf{e}_1)$$

$$f(\mathbf{a} + h_1 \mathbf{e}_1 + h_2 \mathbf{e}_2) - f(\mathbf{a} + h_1 \mathbf{e}_1) = \frac{\partial f}{\partial x_2} (\mathbf{a} + h_1 \mathbf{e}_1 + \theta_2 h_2 \mathbf{e}_2)$$

$$\vdots$$

$$f(\mathbf{a} + \sum_{i=1}^{n} h_i \mathbf{e}_i) - f(\mathbf{a} + \sum_{i=1}^{n-1} h_i \mathbf{e}_i) = \frac{\partial f}{\partial x_n} (\mathbf{a} + \sum_{i=1}^{n-1} h_i \mathbf{e}_i + \theta_n h_n \mathbf{e}_n),$$

där alla $\theta_i \in [0, 1]$. Eftersom de partiella derivatorna är kontinuerliga kan vi skriva

$$\frac{\partial f}{\partial x_k}(\mathbf{a} + \sum_{i=1}^{k-1} h_i \mathbf{e}_i + \theta_k h_k \mathbf{e}_k) = \frac{\partial f}{\partial x_k}(\mathbf{a}) + \rho_k(\sum_{i=1}^n h_i \mathbf{e}_i) = \frac{\partial f}{\partial x_k}(\mathbf{a}) + \rho_k(\mathbf{h}),$$

 $\operatorname{där} \lim_{\mathbf{h} \to \mathbf{0}} \rho(\mathbf{h}) = 0$. Då får man

$$f(\mathbf{a} + \mathbf{h}) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} (\mathbf{a}) + \rho_i(\mathbf{h}) \right) h_i.$$

Den sista delen av beviset använder

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\sum_{i=1}^n \rho_i(\mathbf{h}) h_i}{|\mathbf{h}|}.$$

Allmänna kedjeregeln Låt $f: \mathbb{R}^n \to \mathbb{R}^p$ och $g: \mathbb{R}^q \to \mathbb{R}^n$ och låt alla komponenter av f, g vara differentierbara. Då är alla komponenter av $f \circ g$ differentierbara. Med $u = f \circ g$ har vi

$$\frac{\partial u_i}{\partial t_k}(\mathbf{t}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(g(\mathbf{t})) \frac{\partial g}{\partial t_k}(\mathbf{t})$$

för varje komponent.

Specialfall: p=1 Låt f vara en differentierbar funktion av n variabler och $g: \mathbb{R} \to \mathbb{R}^n$, där alla g_i är partiellt deriverbara. Då är $f \circ g$ deriverbar och

$$\frac{\mathrm{d}f \circ g}{\mathrm{d}t}(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(g(t)) \frac{\mathrm{d}g_i}{\mathrm{d}t}(t).$$

Bevis

Konstantfunktioner och gradient Låt $D \subset \mathbb{R}^n$ vara öppen och bågvis sammanhängande och $f \in C^1(D, \mathbb{R}^n)$. Om $\vec{\nabla} f(\mathbf{x}) = 0$ för alla $\mathbf{x} \in D$, är f konstant i D.

Bevis Använd att

$$\frac{\mathrm{d}f}{\mathrm{d}t}(\mathbf{x}(t)) = \vec{\nabla}f(\mathbf{x}(t)) \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = 0.$$

Gradient och riktningsderivata Gradienten i riktning v ges av

$$\vec{\nabla}_{\mathbf{v}} f(\mathbf{a}) = \vec{\nabla} f(\mathbf{a}) \cdot \mathbf{v}.$$

Bevis Bilda $u(t) = f(\mathbf{a} + t\mathbf{v}) = u(\mathbf{g}(t))$, vilket ger $\vec{\nabla}_{\mathbf{v}} f(\mathbf{a}) = \frac{\mathrm{d}u}{\mathrm{d}t}(0)$. Enligt kedjeregeln blir detta

$$\sum_{i=1}^{n} \frac{\mathrm{d}f}{\mathrm{d}x_{i}}(0) \frac{\mathrm{d}g_{i}}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \frac{\mathrm{d}(\mathbf{a} + t\mathbf{v})}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \mathbf{v}.$$

Maximal riktningsderivata $\vec{\nabla} f(\mathbf{a})$ pekar i den riktning i vilken f växar snabbast i \mathbf{a} , och den maximala tillväxthastigheten är $|\vec{\nabla} f(\mathbf{a})|$.

Bevis Cauchy-Schwarz-olikheten ger

$$\vec{\boldsymbol{\nabla}}_{\mathbf{u}} f = \vec{\boldsymbol{\nabla}} f(\mathbf{a}) \cdot \mathbf{v} \leq \left| \vec{\boldsymbol{\nabla}} f(\mathbf{a}) \right| |\mathbf{v}|,$$

med likhet om och endast om ${\bf v}$ är parallell med gradienten.

Gradient och nivåytor Låt $f: \mathbb{R}^n \to \mathbb{R}$ och $\vec{\nabla} f(\mathbf{a}) \neq \mathbf{0}$. Då är gradienten normal på nivåytan $f(\mathbf{x}) = f(\mathbf{a})$.

Bevis Låt $\mathbf{x}(t)$ vara en C^1 -kurva i nivåytan $f(\mathbf{x}) = f(\mathbf{a})$ så att $\mathbf{x}(0) = \mathbf{a}$. Detta ger

$$0 = \frac{\mathrm{d}f \circ \mathbf{x}}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(0).$$

Eftersom $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(0)$ är parallell med nivåytan är beviset klart.

Symmetri av derivator i C^2 För varje $f \in C^2$ gäller att

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Bevis Vi beviser endast för en tvåvariabelfunktion, då det allmänna fallet följer direkt från detta. Låt $q(h,k) = f(x+h,y+k) - f(x+h,y) - f(x,y+k) + f(x,y), \phi(t) = f(x+h,t) - f(x,t)$. Detta ger

$$\begin{split} q(h,k) &= \phi(y+k) - \phi(y) \\ &= k \frac{\mathrm{d}\phi}{\mathrm{d}t} (y+\theta k) \\ &= k (\frac{\partial f}{\partial y} (x+h,y+\theta k) - \frac{\partial f}{\partial y} (x,y+\theta k)) \\ &= k h \frac{\partial^2 f}{\partial x \partial y} (x+\eta h,y+\theta k), \end{split}$$

där vi har användt medelvärdesatsen två gånger. Då har vi

$$\lim_{(h,k)\to(0,0)} \frac{q(h,k)}{hk} = \frac{\partial^2 f}{\partial x \partial y}(x,y).$$

Beviset kan upprepas i motsatt ordning, och detta fullförar beviset.

Taylors formel Låt $D \subset \mathbb{R}^2$ vara öppen, $(a,b) \in D$ och f vara C^3 . Då gäller:

$$\begin{split} f(a+h,b+k) = & f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k \\ & + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2 \right) \\ & + \left(\sqrt{h^2 + k^2} \right)^3 B(h,k), \end{split}$$

där B(h, k) är begränsad i en omgivning av origo.

Bevis Låt F(t) = f(a + th, b + tk). Detta ger

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}t}(t) &= h \frac{\partial f}{\partial x}(a+th,b+tk) + k \frac{\partial f}{\partial y}(a+th,b+tk), \\ \frac{\mathrm{d}^2F}{\mathrm{d}t^2}(t) &= h \left(h \frac{\partial^2 f}{\partial x^2}(a+th,b+tk) + k \frac{\partial^2 f}{\partial x \partial y}(a,b) \right) + k \left(h \frac{\partial^2 f}{\partial y^2}(a+th,b+tk) + h \frac{\partial^2 f}{\partial x \partial y}(a,b) \right), \\ \frac{\mathrm{d}^3F}{\mathrm{d}t^3}(t) &= \frac{\partial^3 f}{\partial x^3}(a,b)h^3 + 3 \frac{\partial^2 f}{\partial x^2 \partial y}(a,b)h^2k + 3 \frac{\partial^2 f}{\partial x \partial y^2}(a,b)hk^2 + \frac{\partial^3 f}{\partial y^3}(a,b)k^3. \end{split}$$

F:s Taylorpolynom kring 0 är

$$F(t) = F(0) + \frac{\mathrm{d}F}{\mathrm{d}t}(0)t + \frac{1}{2!}\frac{\mathrm{d}^2F}{\mathrm{d}t^2}(0)t^2 + \frac{1}{3!}\frac{\mathrm{d}^2F}{\mathrm{d}t^2}(\theta)t^3.$$

Vi evaluerar i 1:

$$F(1) = F(0) + \frac{\mathrm{d}F}{\mathrm{d}t}(0) + \frac{1}{2!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(0) + \frac{1}{3!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(\theta)$$

$$f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k$$

$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2 \right)$$

$$+ \frac{1}{3!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(\theta).$$

Vi analyserar sen den sista termen:

$$\frac{\frac{\mathrm{d}^3 F}{\mathrm{d} t^3}(t)}{\left(\sqrt{h^2+k^2}\right)^3} = \frac{1}{\left(\sqrt{h^2+k^2}\right)^3} \left(\frac{\partial^3 f}{\partial x^3}(a,b)h^3 + 3\frac{\partial^2 f}{\partial x^2 \partial y}(a,b)h^2k + 3\frac{\partial^2 f}{\partial x \partial y^2}(a,b)hk^2 + \frac{\partial^3 f}{\partial y^3}(a,b)k^3\right).$$

Vi ser att detta är konvergent eftersom vi t.ex. kan betrakta

$$\left| \frac{3\frac{\partial^2 f}{\partial x^2 \partial y}(a,b)h^2 k}{\left(\sqrt{h^2 + k^2}\right)^3} \right| \le C \frac{|h|^2}{h^2 + k^2} \frac{|k|}{\sqrt{h^2 + k^2}} \le C.$$

Derivatan är kontinuerlig, vilket enligt sats garanterar att den är begränsad. Därmed är den sista termen på rätt form, och beviset är klart.

Lokala extrempunkter och partiella derivator Om f har ett lokalt extremvärde i $\mathbf{a} \in D$ och f är partiellt deriverbar i \mathbf{a} är $\frac{\partial f}{\partial x_i}(\mathbf{a}) = 0, i = 1, \ldots, n$.

Bevis Följer av motsvarande sats i en variabel applicerad på $x_i \rightarrow f(a_1, \ldots, x_i, \ldots, a_n)$.

Kvadratiska former och extrempunkt Låt (a,b) vara en inre punkt till D och en stationär punkt till f. Om f:s Taylorpolynom kring (a,b) ges av f(a+h,b+k)=c+Q(h,k). Då gäller att:

- Om Q är positivt definit har f ett strängt lokalt minimum i (a, b).
- Om Q är negativt definit har f ett strängt lokalt maximum i (a, b).
- Om Q är indefinit har f en sadelpunkt (varken ett maximum eller ett minimum) i (a, b).

5 Kurvor

5.1 Definitioner

 C^1 -kurvor En kurva är klass C^1 om alla dess komponenter är C^1 .

Tangentvektor Låt $\mathbf{x}(t)$ vara en C^1 -kurva definierad på $[\alpha, \beta], \phi : [a, b] \to [\alpha, \beta]$ vara strängt växande och ϕ, ϕ^{-1} vara C^1 . Då definieras tangentvektorn till kurvan av

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \lim_{h \to 0} \frac{\mathbf{x}(t+h) - \mathbf{x}(t)}{h}.$$

Längd Långden av en kurva ges av

$$\int_{\alpha}^{\beta} \left| \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) \right| \mathrm{d}t.$$

5.2 Satser

6 Kvadratiska ytor

Detta är de flesta kvadratiska ytorna man kan träffa på i \mathbb{R}^3 , komplett med snygga illustrationer.

Ellipsioider En ellipsioid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Figur 1: Illustration av en ellipsioid.

Koner En kon beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}.$$

Figur 2: Illustration av en kon.

Cylindrar En cylinder beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Figur 3: Illustration av en cylinder.

Elliptiska paraboloider En elliptisk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}.$$

Figur 4: Illustration av en elliptisk paraboloid.

Hyperbolska paraboloider En hyperbolsk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}.$$

Figur 5: Illustration av en hyperbolsk paraboloid.

Enmantlade hyperboloider En enmantlad hyperboloid beskrivs av en ekvationpå formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Tvåmantlade hyperboloider En tvåmantlad hyperboloid beskrivs av en ekvation på formen

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Figur 6: Illustration av en enmantlad hyperboloid.

Figur 7: Illustration av en tvåmantlad hyperboloid.