UECM3463 Practice

PRACTICE

UNIVERSITI TUNKU ABDUL RAHMAN

- Q1. You are given the following:
 - Losses follow a Weibull distribution with parameters $\theta = 22$ and $\tau = 2$.
 - The insurance coverage has an ordinary deductible of 13.

If the insurer makes a payment, what is the probability that an insurer's payment is less than or equal to 33.

Q2. The losses experienced by an insurance company have the following probability distribution:

Loss size	Probability
0	0.60
130	0.25
230	0.10
1,260	0.05

Calculate the $CTE_{0.74}$ (or $TVaR_{0.74}$).

- Q3. For an insurance coverage, lossess (before application of any deductible) follow a Pareto distribution with parameters $\alpha=4$ and $\theta=10000$. The coverage is subject to a deductible of 1000.0. Calculate the deductible needed to double the loss elimination ratio.
- Q4. The number of claims in a period has a Binomial distribution with parameters m=8 and q=0.21. The amount of each claim X follows P(X=x)=0.25, x=1,2,3,4. The number of claims and claim amounts are independent. S is the aggregate claim amount in the period. Calculate $F_S(4)$.
- Q5. Claim sizes follow an exponential distribution with $\theta = 14.00$. Claim counts are independent of claim sizes, and have the following distribution:

n	0	1	2	3	
P_n	0.40	0.36	0.21	0.03	

Calculate $F_S(6)$.

- Q6. For a certain insurance, individual losses in 2020 were Pareto distributed with parameters $\alpha = 5$ and $\theta = 1200$. A deductible of 120.0 is applied to each loss. In 2021, individual losses have increased 7%. A deductible of 120.0 is still applied to each loss. Determine the standard deviation of amount paid per loss.
- Q7. For a discrete probability distribution, you are given the recursion relation

$$p_k = (3.48/k + 0.87)p_{(k-1)}, k = 1, 2, \dots$$

UECM3463 Practice

Determine p_3 .

Q8. N^M is a discrete random variable with probability function which is a member of the (a, b, 1) class of distributions. You are given

$$P(z) = 0.32 + 0.68 \left[\frac{e^{2.10(z-1)]} - e^{-2.10}}{1 - e^{-2.10}} \right]$$

Calculate the variance of the distribution.

- Q9. The number of losses follows a Binomial distribution with m=45 and q=0.24. Loss sizes follow an inverse exponential distribution with $\theta=150$. Let N be the number of losses for amount less than 300. Determine the standard deviation of N.
- Q10. A random sample of 8 claims x_1, \ldots, x_8 is taken from the probability density function

$$f(x_i) = \frac{\alpha \theta^{\alpha}}{(x_i)^{\alpha+1}}, \alpha, \theta > 0, x_i > \theta.$$

In ascending order the observations are: 1,330, 1,374,1,402, 1,425, 1,500, 1,532, 1,592, 2,034

Suppose the parameters are $\alpha = 3$ and $\theta = 1330$. Commonly used critical values for this test are

α			0.025	0.01
Critical Value	$\frac{1.22}{\sqrt{n}}$	$\frac{1.36}{\sqrt{n}}$	$\frac{1.48}{\sqrt{n}}$	$\frac{1.63}{\sqrt{n}}$

Determine the result of the test at 0.1 significant level.

- Q11. You are given the following:
 - 121 observed losses have been recorded an are grouped as follows:

Interval	Number of Losses
[0,1)	18
[1,5)	40
[5,10)	21
[10,15)	22
$[15, \infty)$	20

• The random variable X underlying the observed losses, is believed to follow the exponential disribution with mean 5.

Determine the value of Pearson's goodness-of-fit statistic.

Q12. You are given a sample of 10 observations from the following distribution:

$$f(X) = \frac{1}{2\theta^3} x^2 e^{-x/\theta}, x > 0$$

UECM3463 Practice

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
137.04	172.84	45.58	101.64	86.24	96.67	183.52	82.26	176.85	341.03

Determine the value of the Akaike Information Criterion (AIC).

A random sample of 10 claims x_1, \ldots, x_{10} is taken from the probability density function

$$f(x_i) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x_i^{\alpha - 1} e^{-\frac{x_i}{\theta}}, x_i > 0.$$

In ascending order the observations are: 91.87, 147.5, 153.31, 168.4, 175.52, 225.24, 274.12, 279.52, 288.5, 493.43

Suppose the parameters are $\alpha = 4$ and $\theta = 50$. Commonly used critical values for this test are

α	0.10	0.05	0.025	0.01
Critical Value	$\frac{1.22}{\sqrt{n}}$	$\frac{1.36}{\sqrt{n}}$	$\frac{1.48}{\sqrt{n}}$	$\frac{1.63}{\sqrt{n}}$

Determine the result of the test at 0.1 significant level.

Q14. You are given a sample of 5 observations from $Pareto(\alpha, \theta =$ 1830) distribution:

2, 191.62

2,799.33 1,831.07 2,064.33 1,930.42.

Determine the value of the Bayesian Information Criterion (BIC).

Q15. Suppose that X_1, \ldots, X_n denotes a random sample from the probability density function given by

$$f(x|\theta_1, \theta_2) = \begin{cases} \left(\frac{1}{\theta_1}\right) e^{-(x-\theta_2)/\theta_1}, & x > \theta_2\\ 0, & \text{otherwise.} \end{cases}$$

The following random sample of 8 has been observed:

124. 48, 63, 19, 32, 27, 36, 54

<u>UECM3463 Practice</u>

Determine the likelihood test statistic for testing H_0 : $\theta_1 = 82.8$ versus H_1 : $\theta_1 > 82.8$ with θ_2 unknown.