#### CS202: COMPUTER ORGANIZATION

# **Chapter 5**

**Large and Fast: Exploiting Memory Hierarchy** 

#### **Cache Hierarchies**

- Data and instructions are stored on DRAM chips
  - DRAM is a technology that has high bit density, but relatively poor latency
  - an access to data in memory can take as many as 300 cycles!
- Hence, some data is stored on the processor in a structure called the cache
  - caches employ SRAM technology, which is faster, but has lower bit density
- Internet browsers also cache web pages same concept

## **Memory Hierarchy**

As you go further, capacity and latency increase

Registers 1KB 1 cycle L1 data or instruction Cache 32KB 2 cycles

L2 cache 2MB 15 cycles Memory 1GB 300 cycles

Disk 80 GB 10M cycles

Larger, slower, cheaper, denser

## **Memory Structure**

- Address and data
  - Address is the index, are not stored in memory
    - Address can be in unit of byte or in unit of word
  - Only data is stored in memory

| address         | data   |        | address | data        |
|-----------------|--------|--------|---------|-------------|
| 000             | Byte 1 |        | 000     | Word1       |
| 001             | Byte 2 | —Word1 | 001     | Word2       |
| 010             | Byte 3 | VVOIGT | 010     | Word3       |
| 011             |        |        | 011     | Word4       |
| 100             |        |        | 100     |             |
| 101             |        |        | 101     |             |
| 110             |        |        | 110     |             |
| 111             |        |        | 111     |             |
| in unit of byte |        | _      | in un   | nit of word |

## **Memory hierarchy**

- Store everything on disk
- Copy recently accessed (and nearby) items from disk to smaller DRAM memory
  - Main memory
- Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory
  - Cache memory attached to CPU

## **Memory Hierarchy Levels**



- Block (also called line): unit of copying
  - May be multiple words
- The memory in upper level is originally empty
- If accessed data is absent
  - Miss: block copied from lower level
    - Time taken: miss penalty
    - Miss ratio: misses/accesses
- If accessed data is present in upper level
  - Hit: access satisfied by upper level
    - Hit ratio: hits/accesses = 1 miss ratio
  - Then accessed data supplied from upper level

## Locality

- Why do caches work?
  - Temporal locality: if you used some data recently, you will likely use it again
  - Spatial locality: if you used some data recently, you will likely access its neighbors
- No hierarchy:
  - average access time for data = 300 cycles
- 32KB 1-cycle L1 cache that has a hit rate of 95%:
  - ◆ average access time = 0.95 x 1 + 0.05 x (301) = 16 cycles

## **Memory Technology**

- Static RAM (SRAM)
  - ◆ 0.5ns 2.5ns, \$500 \$1000 per GB
- Dynamic RAM (DRAM)
  - ◆ 50ns 70ns, \$10 \$20 per GB
- Flash
  - ◆ 5us 50us, \$0.75-\$1 per GB
- Magnetic disk
  - ◆ 5ms 20ms, \$0.05 \$0.1 per GB
- Ideal memory
  - Access time of SRAM
  - Capacity and cost/GB of disk

## **SRAM Technology**

- Static RAM
  - Memory arrays with a single read/write port
- It's Volatile
  - The data will lost when SRAM is not powered

 $V_{\mathrm{DD}}$   $M_{5}$   $M_{2}$   $M_{4}$   $M_{6}$   $\overline{Q}$   $M_{1}$   $M_{3}$  BL

WL

- Compared with DRAM
  - Don't need to refresh, use 6-8 transistors to install a bit
- Used in CPU cache, integrated onto the processor chip

## **DRAM Technology**

- Data stored as a charge in a capacitor
  - Single transistor used to access the charge
  - Must periodically be refreshed
    - Read contents and write back
    - Performed on a DRAM "row"



## **Advanced DRAM Organization**

- Bits in a DRAM are organized as a rectangular array
  - DRAM accesses an entire row
  - Burst mode: supply successive words from a row with reduced latency
- Synchronous DRAM
  - A clock is added, the memory and processor are synchronized
  - Allows for consecutive accesses in bursts without needing to send each address
  - Improves bandwidth
- Double data rate (DDR) DRAM
  - Transfer on rising and falling clock edges
  - DDR4-3200 DRAM: 3200M times of transfer per second

## **Flash Storage**

- Nonvolatile semiconductor storage
  - ◆ 100× 1000× faster than disk
  - Smaller, lower power, more robust
  - But more \$/GB (between disk and DRAM)
- Flash bits wears out after 1000's of accesses
  - Not suitable for direct RAM or disk replacement
  - Wear leveling: remap data to less used blocks





# **Disk Storage**

Nonvolatile, rotating magnetic storage





#### **Disk Sectors and Access**

- Each sector records
  - Sector ID
  - Data (512 bytes, 4096 bytes proposed)
  - Error correcting code (ECC)
    - Used to hide defects and recording errors
- Access to a sector involves
  - Queuing delay if other accesses are pending
  - Seek: move the heads
  - Rotational latency
  - Data transfer
  - Controller overhead

## **Cache Memory**

- Cache memory
  - The level of the memory hierarchy closest to the CPU
- Given accesses  $X_1, ..., X_{n-1}, X_n$

| X <sub>4</sub>   |
|------------------|
| X <sub>1</sub>   |
| X <sub>n-2</sub> |
|                  |
| X <sub>n-1</sub> |
| X <sub>2</sub>   |
|                  |
| X <sub>3</sub>   |

| X <sub>4</sub>   |
|------------------|
| X <sub>1</sub>   |
| X <sub>n-2</sub> |
|                  |
| X <sub>n-1</sub> |
| X <sub>2</sub>   |
| $X_n$            |
| X <sub>3</sub>   |

Where do we look?

How do we know if

the data is present?

- a. Before the reference to  $X_n$  b. After the reference to  $X_n$

## **Direct Mapped Cache**

- Memory size: 32 words, cache size: 8 words
- The address is in unit of word
- Direct mapper cache:
  - Location determined by address
  - One data in memory is mapped to only one location in cache
  - Use low-order address bits or high-order bits?
  - The lower bits defines the address of the cache



## **Tags and Valid Bits**

- How do we know which particular block is stored in a cache location?
  - Store block address as well as the data
  - Actually, only need the high-order bits
  - Called the tag
- What if there is no data in a location?
  - Valid bit: 1 = present, 0 = not present
  - Initially 0

- 8-blocks, 1 word/block, direct mapped
- Initial state

| Index | V | Tag | Data |
|-------|---|-----|------|
| 000   | N |     |      |
| 001   | N |     |      |
| 010   | N |     |      |
| 011   | N |     |      |
| 100   | N |     |      |
| 101   | N |     |      |
| 110   | N |     |      |
| 111   | N |     |      |

| Word addr | Binary addr | Hit/miss | Cache block |
|-----------|-------------|----------|-------------|
| 22 10 110 |             | Miss     | 110         |

| Index | V | Tag | Data       |
|-------|---|-----|------------|
| 000   | N |     |            |
| 001   | N |     |            |
| 010   | N |     |            |
| 011   | N |     |            |
| 100   | N |     |            |
| 101   | N |     |            |
| 110   | Υ | 10  | Mem[10110] |
| 111   | N |     |            |

| Word addr | Binary addr | Hit/miss | Cache block |
|-----------|-------------|----------|-------------|
| 26 11 010 |             | Miss     | 010         |

| Index | V | Tag | Data       |
|-------|---|-----|------------|
| 000   | N |     |            |
| 001   | N |     |            |
| 010   | Υ | 11  | Mem[11010] |
| 011   | N |     |            |
| 100   | N |     |            |
| 101   | N |     |            |
| 110   | Υ | 10  | Mem[10110] |
| 111   | N |     |            |

| Word addr Binary addr |        | Hit/miss | Cache block |
|-----------------------|--------|----------|-------------|
| 22                    | 10 110 | Hit      | 110         |
| 26                    | 11 010 | Hit      | 010         |

| Index | V | Tag | Data       |
|-------|---|-----|------------|
| 000   | N |     |            |
| 001   | N |     |            |
| 010   | Υ | 11  | Mem[11010] |
| 011   | N |     |            |
| 100   | N |     |            |
| 101   | N |     |            |
| 110   | Υ | 10  | Mem[10110] |
| 111   | N |     |            |

| Word addr | Binary addr | Hit/miss | Cache block |
|-----------|-------------|----------|-------------|
| 16        | 10 000      | Miss     | 000         |
| 3         | 00 011      | Miss     | 011         |
| 16        | 10 000      | Hit      | 000         |

| Index | V | Tag | Data       |
|-------|---|-----|------------|
| 000   | Y | 10  | Mem[10000] |
| 001   | N |     |            |
| 010   | Υ | 11  | Mem[11010] |
| 011   | Y | 00  | Mem[00011] |
| 100   | N |     |            |
| 101   | N |     |            |
| 110   | Υ | 10  | Mem[10110] |
| 111   | N |     |            |

| Word addr | Binary addr | Hit/miss | Cache block |
|-----------|-------------|----------|-------------|
| 18        | 10 010      | Miss     | 010         |

| Index | V | Tag | Data       |
|-------|---|-----|------------|
| 000   | Υ | 10  | Mem[10000] |
| 001   | N |     |            |
| 010   | Υ | 10  | Mem[10010] |
| 011   | Υ | 00  | Mem[00011] |
| 100   | N |     |            |
| 101   | N |     |            |
| 110   | Υ | 10  | Mem[10110] |
| 111   | N |     |            |

# Memory in unit of word



### **Address Subdivision**



## **Larger Block Size**

#### Assume:

- 32-bit address
- Direct mapped cache
- 2<sup>n</sup> number of blocks, so n bit for index
- Block size: 2<sup>m</sup> words, so m bit for the word within the block

#### Calculate:

- Size of tag field: 32-(n+m+2)
- Size of cache: 2<sup>n\*</sup>(block size + tag size +valid field size)
  2n\*(2m\*22 × (22 × 2) × 4)

$$=2^{n*}(2^{m*}32+(32-n-m-2)+1)$$

## **Example: Larger Block Size**

- 64 blocks, 16 bytes/block
  - To what block number does address 1200 map?
- Block address =  $\lfloor 1200/16 \rfloor = 75$
- Block number = 75 modulo 64 = 11



#### **Block Size Considerations**

- Larger blocks should reduce miss rate
  - Due to spatial locality
- But in a fixed-sized cache
  - Larger blocks ⇒ fewer of them
    - More competition ⇒ increased miss rate
  - ◆ Larger blocks ⇒ pollution
- Larger miss penalty
  - Can override benefit of reduced miss rate
  - Early restart and critical-word-first can help

### **Block Size Considerations**



#### **Cache Misses**

- On cache hit, CPU proceeds normally
- On cache miss
  - Stall the CPU pipeline
  - Fetch block from next level of hierarchy
  - Instruction cache miss
    - Restart instruction fetch
  - Data cache miss
    - Complete data access

## Write-Through

- On data-write hit, could just update the block in cache
  - But then cache and memory would be inconsistent
- Write through: also update memory
- But makes writes take longer
  - e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100 cycles
    - Effective CPI = 1 + 0.1×100 = 11
- Solution: write buffer
  - Holds data waiting to be written to memory
  - CPU continues immediately
    - Only stalls on write if write buffer is already full

#### **Write-Back**

- Alternative: On data-write hit, just update the block in cache
  - Keep track of whether each block is dirty
- When a dirty block is replaced
  - Write it back to memory
  - Can use a write buffer to allow replacing block to be read first

#### **Write Allocation**

- What should happen on a write miss?
- Alternatives for write-through
  - Allocate on miss: fetch the block
  - Write around: don't fetch the block
    - Since programs often write a whole block before reading it (e.g., initialization)
- For write-back
  - Usually fetch the block

## **Write Policies Summary**

- If that memory location is in the cache?
  - Send it to the cache
  - Should we also send it to memory right away?
     (write-through policy)
  - Wait until we kick the block out (write-back policy)
- If it is not in the cache?
  - Allocate the line (put it in the cache)?
     (write allocate policy)
  - Write it directly to memory without allocation?
     (no write allocate policy)

## **Example: Intrinsity FastMATH**

- Embedded MIPS processor
  - 12-stage pipeline
  - Instruction and data access on each cycle
- Split cache: separate I-cache and D-cache
  - ◆ Each 16KB: 256 blocks × 16 words/block
  - D-cache: write-through or write-back
- SPEC2000 miss rates
  - I-cache: 0.4%
  - D-cache: 11.4%
  - Weighted average: 3.2%

## **Example: Intrinsity FastMATH**



## Homework

Exercise 5.3