Teoría de la computación 2025-1 Lema de Arden

27 de enero de 2025

Expediente	Nombre
223210350	Amaya Soria Angel Alberto
219208106	Bórquez Guerrero Angel Fernando
223217959	Figueroa Torres Oiram Alberto

Pruebe el lema de Arden. Considere la ecuación entre lenguajes $X = XM \cup N$ con X desconocida. Se tiene lo siguiente:

- 1. X_0 es solución de la ecuación $X = XM \cup N$.
 - Reemplazamos en la ecuacuión:

$$NM^* = NM^*M \cup N$$

- Sacamos factor común N:

$$NM^* = N(M^*M \cup \{\varepsilon\})$$

- Utilizamos la propiedad $\Sigma^*\Sigma = \Sigma^+$:

$$NM^* = N(M^+ \cup \{\varepsilon\})$$

- Dado que $\Sigma^+ \cup \{\varepsilon\} = \Sigma^*$ reemplazamos:

$$NM^* = N(M^*)$$

- Eliminamos paréntesis:

$$NM^* = NM^*$$

- 2. Si L es otra solución $X=XM\cup N$ entonces $X_0\subset L$. Esto es, X_0 es la solución más pequeña de $X=XM\cup N$.
 - Suponemos que L es solución, por lo tanto:

$$L = LM \cup N$$

- Decimos que $\varepsilon \in M$ ya que L es solución.
- Existe una $w \in X_0$, y ya que $X_0 \subset L$, entonces $w \in L$.
- Si $w \in X_0$, entonces $w \in NM^n$ para algún n = 1, 2, 3, ...
- Definimos la función P(n) como $w \in NM^n$.
- Evaluamos para 0 como caso base y para n + 1:

$$P(0) = w \in NM^0 = w \in N\{\varepsilon\} = w \in N$$

$$P(n+1) = w \in NM^{n+1} = w \in NM^nM$$

- Desarrollamos w de tal forma que $w = xy | x \in NM^n$ y $y \in M$.
- Por suposición, $x \in L$.
- Tenemos que $w \in LM$, entonces $w \in LM \cup N$ y por lo tanto $w \in L$

- 3. Si $\varepsilon \in M$ entonces para cualuiqer lenguaje $S, X_S = (N \cup S)M^*$ es solución de $X = XM \cup N$. Sugerencia: note que si $\varepsilon \in M$ entonces $M^*M = M^*$,
 - Por demostrar que $(N \cup S)M^* = (N \cup S)M^*M \cup N$
 - Suponemos $\varepsilon \in M$
 - Sea $w \in (N \cup S)M^*$, como $\varepsilon \in M$ entonces $w \in (N \cup S)M^*M = (N \cup S)M^*$, luego $w \in (N \cup S)M^*M \cup N$.
 - Con esto $(N \cup S)M^* \subset (N \cup S)M^*M \cup N$
 - Sea $w \in (N \cup S)M^*M \cup N$
 - Si $w \in (N \cup S)M^*M$ se cumple que $w \in (N \cup S)M^*$ ya que $(N \cup S)M^*M = (N \cup S)M^*$
 - Si $w \in N$ entonces $w \in N\{\varepsilon\}$
 - $w \in NM^0$ entonces $w \in NM^*$ y $w \in NM^* \cup SM^*$ pero con $NM^* \cup SM^* = (N \cup S)M^* = X_S$,
 - Luego $w \in X_S$, con esto $(N \cup S)M^*M \cup N \subset (N \cup S)M^*$
- 4. Si $\varepsilon \notin M$ entonces X_0 es la única solución de $X = XM \cup N$. Sugerencia: sea L otra solución de $X = XM \cup N$, pruebe que para todo n > 0, $L LM^{n+1} \cup N \cup_{i=0}^{n} M^{i}$; pruebe que si $w \in L$ con |w| = n entonces w no puede estar en LM^{n+1} y por tanto tiene que estar en $N \cup_{i=0}^{n} M^{i} \subset X_{0}$.
 - Supongamos $\varepsilon \notin M$ y que L es otra solución, entonces L tiene la forma: $L = LM \cup N$, pero si reemplazamos L, $L = (LM \cup N)M \cup N = LM^2 \cup NM \cup N = LM^2 \cup N \cup_{i=0}^n M^i$
 - Proposición: L tiene la forma $L=LM^{n+1}\cup N\cup_{i=0}^n M^i, \forall n>0.$ $P(1): L=LM^2\cup N\cup NM=(LM\cup N)M\cup N=LM\cup N$
 - Supongamos que $L = LM^{N+1} \cup N \cup_{i=0}^{n} M^{i}$
 - Demostrar $L = LM^{n+2} \cup N \cup_{i=0}^{n} M^{i}$
 - $=LM^{n+2}\cup N\cup NM\cup ...\cup NM^{n+1}$
 - $= LM^{n+2} \cup NM \cup ... \cup NM^{n+1}$
 - $= (LM^{n+1} \cup N \cup \ldots \cup NM^n)M \cup N$
 - $= (LM^{n+1} \cup N \cup_{i=0}^{n} M^{i})M \cup N$

Y por suposición $LM \cup N$

- P(n): si $w \in L$ y |w| = n entonces $w \notin LM^{n+1}$ y $w \in N \cup_{i=0}^n M^i$
- P(0): $w = \varepsilon \in L \to |w| = 0$ ahora como $L = LM \cup N$, si $w \in LM$ y $\varepsilon \notin M$ entonces $\exists \alpha \in M \to |\alpha| \ge 1$, luego $|w| \ge 1$ lo cual contradice a que |w| = 0 entonces $w \in N = NM^0 \subset X_0$
- P(n > 0) sea $w \in L$ entonces |w| = n > 0, luego $w \in LM^{n+1} \cup N \cup_{i=0}^{n} M^{i}$, pero si $w \in LM^{n+1}$ entonces $|w| \ge n+1$ lo cual contradice |w| = n entonces necesariamente $w \in N \cup_{i=0}^{n} M^{i} \subset X + 0$
- Demostramos que si $\varepsilon \notin M$ entonces $\forall w \in L \to w \in X_0$, es decir, $L \subset X_0$, ademas por la suposición que L es solución distinta y por la demostración (2) tenemos que $X_0 \subset L$.
 - Concluyendo que $X_0 = L$, es decir X_0 es única.