Definition 1.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm P called a problem poser. We write $P(\pi)$ to denote the algorithm P with the randomness π . The algorithm P outputs circuits Γ_V , Γ_H and a puzzle $x \in \{0,1\}^*$. The circuit Γ_V takes as input $q \in Q$, an answer $y \in \{0,1\}^*$, and outputs 1 if y is a correct solution of x for q and 0 otherwise. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

A problem solver S is a probabilistic algorithm that takes as input a puzzle x, and has oracle access to Γ_V and Γ_H . The randomness used by S is denoted by ρ . The execution of S with the input x and the randomness ρ is denoted by $S(x,\rho)$. The queries of S to Γ_V are called verification queries, and to Γ_H hint queries. The solver S can ask at most h hint queries, v verification queries, and successfully solves the puzzle if and only if it makes a verification query (q,y) such that $\Gamma_V(q,y)=1$, when it has not previously asked for a hint query on q.

Definition 1.2 (k-wise direct-product of DWVPs.) Let $g: \{0,1\}^k \to \{0,1\}$ be a monotone function and $P^{(1)}$ a problem poser as in Definition 1.1. The k-wise direct product of $P^{(1)}$ is a DWVP defined by a probabilistic algorithm $P^{(g)}$. Let $\pi^{(k)} := (\pi_1, \ldots, \pi_k)$ be the randomness used by $P^{(g)}$, and $P^{(g)}(\pi^{(k)})$ denote the execution of $P^{(g)}$ with the randomness $\pi^{(k)}$. The poser $P^{(g)}$ outputs: a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k)),$$

a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)),$$

and a puzzle $x^{(k)} := (x_1, \dots, x_k)$, where the i-th instance $(x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)$.

We consider the following random experiment in which a DWVP, defined by P, is solved by a random circuit C.

```
Experiment Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)

Oracle: A problem poser P, a solver circuit C^{(\cdot,\cdot)}.

Input: Bitstrings \pi, \rho.

Output: A bit b \in \{0,1\}.

(x,\Gamma_V,\Gamma_H) := P(\pi)

Run C^{\Gamma_V,\Gamma_H}(x,\rho)

Let Q_{Solved} := \{q: C^{\Gamma_V,\Gamma_H} \text{ asked a verification query } (q,y) \text{ and } \Gamma_V(q,y) = 1\}

Let Q_{Hint} := \{q: C^{\Gamma_V,\Gamma_H} \text{ asked a hint query on q}\}

If \exists q \in Q_{Solved} : q \notin Q_{Hint} then return 1

else return 0
```

The success probability of C in solving DWVP posed by P is

$$\Pr_{\pi,\rho}[Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)=1]. \tag{0.0.1}$$

TODO: Do we have to fix P here? **TODO:** Do the circuit bound is well defined? **TODO:** What happens when $8(h+v)\left(\Pr_{\mu\leftarrow\mu^k_{\delta}}[g(\mu)=1]+\varepsilon\right)\geq 1$ then the formula does not work

TODO: Define $\mu_{\delta}^{(k)}$

Theorem 1.3 Security amplification for a dynamic weakly verifiable puzzle.

Let $P^{(1)}$ be a fixed problem poser as in Definition 1.1. There exists a probabilistic algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input a solver circuit C for the k-wise direct product of $P^{(1)}$, a monotone function $g: \{0,1\}^k \to \{0,1\}$, parameters ε, δ, n , the number of verification queries v, and hint queries h asked by C, and outputs a circuit D such that the following holds: If C is such that

$$\Pr_{\pi^{(k)},\rho}[Success^{P^{(g)},C}(\pi^{(k)},\rho)=1] \ge 8(h+v) \left(\Pr_{\mu \leftarrow \mu_{\delta}^{k}}[g(\mu)=1] + \varepsilon\right)$$

then D satisfies almost surely

$$\Pr_{\pi,\rho}[A^{P^{(1)},D}(\pi,\rho)=1] \ge (\delta + \frac{\varepsilon}{6k}).$$

Additionally, D and Gen require only oracle access to g and C. Furthermore, D asks at most h hint queries, v verification queries and $Size(D) \leq Size(C) \cdot \Theta(\frac{6k}{\varepsilon})$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

The Theorem 1.3 implies that if there is no good solver for $P^{(1)}$, then a good solver for $P^{(k)}$ does not exist.

Intuitively, the algorithm Gen tries to find k-1 puzzles and a position for an input puzzle x, such that when C runs with the k-1 puzzles and x placed on this position, then x is often solved correctly. To find a good position for x and these k-1 puzzles Gen needs to run C several times. In these runs C asks a hint queries. Let us assume that after some trials and errors Gen finally finds a set of puzzles and a position for x such that x is often solved. However, it may still not constitute a valid solution, as an additional requirement is needed that this happens often for q on which a hint query was not asked before. To satisfy this requirement we split Q.

Let $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$, then a set $P_{hash} \subseteq Q$, defined with respect to hash, is a preimage of 0 for function hash. The set P_{hash} contains q on which C is not allowed to ask hint queries. Therefore, if C makes a verification query on $q \in P_{hash}$ we know that no hint query is ever asked on this q. In the experiment E a circuit C succeeds if and only if it ask a verification query on $q \in P_{hash}$ and no hint query is asked on $q \in P_{hash}$.

Experiment $E^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi_1,\ldots,\pi_k,r)$

Oracle: A problem poser $P^{(g)}$ for a k-wise direct product.

A solver circuit $C^{(\cdot,\cdot)}$ for a k-wise direct product.

A function $hash: Q \leftarrow \{0, \dots, 2(h+v)-1\}.$

Input: Random bitstrings: $(\pi_1, \ldots, \pi_k) \in \{0, 1\}^{kl}, r$.

 $\begin{aligned} &(x^k, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := P^{(g)}(\pi^k) \\ &\text{Run } C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}(x^{(k)}, r) \end{aligned}$

Let $(q_j, y_j^{(k)})$ be the first successful verification query if $C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}$ succeeds or an arbitrary verification query when it fails.

If
$$(\forall i < j : q_i \notin P_{hash})$$
 and $q_j \in P_{hash}$ and $\Gamma_V^{(g)}(q_j, y_j^{(k)}) = 1$ return 1 else return 0

For fixed hash and $P^{(1)}$ a canonical success of C is a situation when $E^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi_1,\ldots,\pi_k,r)=1$. We show that if C often solves successfully a k-wise direct product of DWVP in the random experiment A, then it also often succeeds canonically.

Lemma 1.4 Success probability in solving a k-wise direct product of DWVP with respect to a function hash.

For fixed $P^{(g)}$ let C succeed in solving a k-wise direct product of DWVP produced by $P^{(g)}$ with probability γ , asking at most h hint and v verification queries. There exists a probabilistic algorithm, with oracle access to C, that runs in time $O((h+v)^4/\gamma^4)$ and with high probability outputs a function hash $: Q \to \{0, \ldots, 2(h+v)-1\}$ such that the canonical success probability of C with respect to P_{hash} is at least $\frac{\gamma}{8(h+v)}$.

Proof. Let \mathcal{H} be a family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v)-1\}$. For all $i \neq j \in \{1, \dots, (h+v)\}$ and $k, l \in \{0, 1, \dots, 2(h+v)-1\}$ by pairwise independence property of \mathcal{H} , we have

$$\forall q_i, q_j \in Q : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k \mid hash(q_j) = l] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k] = \frac{1}{2(h+v)}. \quad (0.0.2)$$

Let $P^{(g)}, C, (\pi_1, \ldots, \pi_k)$ be fixed. We consider the experiment E and define a binary random variable X for the event that $hash(q_j) = 0$, and for every query q_i asked before $q_j : hash(q_i) \neq 0$. Conditioned on the event $hash(q_i) = 0$, we get

$$\begin{split} \Pr_{hash \leftarrow \mathcal{H}}[X=1] &= \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0 \land \forall i < j : hash(q_i) \neq 0] \\ &= \Pr_{hash \leftarrow \mathcal{H}}[\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0]. \end{split}$$

Now we use (0.0.2) twice and obtain

$$\Pr_{hash \leftarrow \mathcal{H}}[X = 1] = \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right)$$
$$= \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0] \right).$$

Finally, we use union bound and $j \leq (h + v)$ to get

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] \ge \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = 0] \right) \ge \frac{1}{4(h+v)}.$$

Let G_A (correspondingly G_E) denote the set of all (π_1, \ldots, π_k) for which C succeeds in the random experiment A(E). For fixed (π_1, \ldots, π_k) , if C succeeds canonically, then it also succeeds in the random experiment A. Hence, $G_E \subseteq G_A$ and we get

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ (\pi_1, \dots, \pi_k)}} \left[E^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi_1, \dots, \pi_k) = 1 \right] = \mathbb{E}_{(\pi_1, \dots, \pi_k) \in G_A} \left[\Pr_{\substack{hash \leftarrow \mathcal{H} \\ (\pi_1, \dots, \pi_k)}} \left[X = 1 \right] \right] \ge \frac{\gamma}{4(h+v)}. \quad (0.0.3)$$

Algorithm: FindHash

Oracle: A solver circuit $C^{(\cdot,\cdot)}$ for a k-wise direct product of DWVP.

Input: A set \mathcal{H} .

For
$$i=1$$
 to $32(h+v)^2/\gamma^2$

$$hash \stackrel{\$}{\leftarrow} \mathcal{H}$$

$$count := 0$$
For $j:=1$ to $32(h+v)^2/\gamma^2$

$$(\pi_1,\ldots,\pi_k) \stackrel{\$}{\leftarrow} \{0,1\}^{kl}$$
If $E^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi_1,\ldots,\pi_k) = 1$ then
$$count := count + 1$$
If $\frac{\gamma^2}{32(h+v)^2}count \geq \frac{\gamma}{6(h+v)}$
return $hash$

We show that **FindHash** chooses hash such that the canonical success probability of C with respect to P_{hash} is at least $\frac{\gamma}{4(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$ for which

$$\Pr_{(\pi_1, ..., \pi_k)} [E^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi_1, ..., \pi_k) = 1] \ge \frac{\gamma}{4(h+v)},$$

and \mathcal{H}_{Bad} be the family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{(\pi_1, \dots, \pi_k)} [E^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi_1, \dots, \pi_k) = 1] \le \frac{\gamma}{8(h+v)}.$$

Additionally, for a fixed hash, we define binary random variables $X_1, \ldots, X_i, \ldots, X_N$ such that

$$X_i = \begin{cases} 1 & \text{if in } i \text{th iteration variable } count \text{ is increased} \\ 0 & \text{otherwise} \end{cases}.$$

We first show that it is unlikely that **FindHash** returns $hash \in \mathcal{H}_{Bad}$. For $hash \in \mathcal{H}_{Bad}$ we have $\mathbb{E}_{(\pi_1,...,\pi_k)}[X_i] < \frac{\gamma}{8(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we get

$$\Pr_{(\pi_1,\dots,\pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \ge \frac{\gamma}{6(h+v)} \right] \le \Pr_{(\pi_1,\dots,\pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \ge (1+\frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h+v)}N/27}.$$

The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{(\pi_1,\dots,\pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \leq \frac{\gamma}{6(h+v)} \right] \leq \Pr_{(\pi_1,\dots,\pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \leq (1-\frac{1}{3}) \mathbb{E}[X_i] \right] \leq e^{-\frac{\gamma}{4(h+v)}N/27}.$$

Finally, we show that **FindHash** picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let Y_i be a binary random variable such that

$$Y_i = \begin{cases} 1 & \text{if in } i \text{th iteration } hash \in \mathcal{H}_{Good} \text{ is picked} \\ 0 & \text{otherwise} \end{cases}$$

From equation (0.0.3) we know that $\Pr_{hash \leftarrow \mathcal{H}}[Y_i = 1] = \mathbb{E}[Y_i] \ge \frac{\gamma}{4(h+v)}$, almost surely. Thus, we get

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\sum_{i=1}^{K} Y_i = 0 \right] \le \left(1 - \frac{\gamma}{4(h+v)} \right)^K \le e^{-\frac{\gamma}{4(h+v)}K}.$$

The bound stated in the Lemma 1.4 is achieved for $\delta = \frac{1}{3}$ and $K = N = 32(h+v)^2/\gamma^2$.

Lemma 1.5 Security amplification of a dynamic weakly verifiable puzzle with respect to P_{hash} .

For fixed $P^{(1)}$ there exists an algorithm $Gen(C,g,\varepsilon,\delta,n,v,h,hash)$, which takes as input a solver circuit C, a monotone function g, a function $hash:Q\to\{0,\ldots,2(h+v)-1\}$, parameters ε,δ,n , number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds:

If C is such that

$$\Pr_{(\pi_1,\ldots,\pi_k)}[E^{P^{(g)},C,Hash}(\pi_1,\ldots,\pi_k)=1] \ge \Pr_{\mu \leftarrow \mu_\delta^k}[g(\mu)=1] + \varepsilon,$$

then D satisfies almost surely

$$\Pr_{\pi}[\Gamma_V^{(g)}(D^{P^{(1)},\widetilde{C},hash}(\pi)) = 1] \ge (\delta + \frac{\varepsilon}{6k}).$$

Furthermore, $Size(D) \leq Size(C) \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

We define a following solver circuit \widetilde{C} :

Circuit $\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash,C}(x_1,\ldots,x_k)$

Circuit \widetilde{C} has good canonical success probability.

Oracle: $\Gamma_V^{(g)}, \Gamma_H^{(k)}, hash, C$

Input: k-wise direct product of puzzles (x_1, \ldots, x_k)

Run $C^{(\cdot,\cdot)}(x_1,\ldots,x_k)$

If C asks a hint query q then

If $q \in P_{hash}$ then

 ${f return}\ ot$

else

return $\Gamma_H^{(k)}(q)$ to C

If C asks a verification query on (q, y_1, \ldots, y_k) then

If $q \in P_{hash}$ then

return (q, y_1, \ldots, y_k)

else

answer the verification query with 0

return \perp

Lemma 1.6 For fixed $P^{(g)}$, hash the following statement is true

$$\Pr_{(\pi_1, \dots, \pi_k)}[E^{P^{(g)}, C, hash}(\pi_1, \dots, \pi_k) = 1] \le \Pr_{(\pi_1, \dots, \pi_k)}[\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(g)}, hash}(\pi_1, \dots, \pi_k)) = 1].$$

Proof. We fix the a random bitstring (π_1, \ldots, π_k) , hash. If C succeeds canonically then

$$\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash}(\pi_1,\ldots,\pi_k))=1.$$

Using this observation, we conclude that

$$\begin{split} \Pr_{(\pi_1,\dots,\pi_k)}[E^{P^{(g)},C,hash}(\pi^{(k)}) &= 1] = \sum_{\pi^{(k)} \in \{0,1\}^{kl}} \Pr[E^{P^{(g)},C,hash}(\widetilde{\pi}^{(k)}) = 1 | \pi^{(k)} = \widetilde{\pi}^{(k)}] \Pr[\pi^{(k)} = \widetilde{\pi}^{(k)}] \\ &\leq \sum_{\pi^{(k)} \in \{0,1\}^{kl}} \Pr[\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash}(\widetilde{\pi}^{(k)})) = 1 \mid \pi^{(k)} = \widetilde{\pi}^{(k)}] \Pr[\pi^{(k)} = \widetilde{\pi}^{(k)}] \\ &= \Pr[E^{P^{(g)},\widetilde{C},hash}(\pi^{(k)}) = 1] \end{split}$$

```
Algorithm Gen(\widetilde{C}, g, \varepsilon, \delta, n)
Oracle: C, g
Input: \varepsilon, \delta, n
Output: A circuit D
If the number of puzzles to solve equals one then
         return \hat{C}
For i := 1 to \frac{6k}{\varepsilon} \log(n)
\pi^* \leftarrow \{0, 1\}^l
         \widetilde{S}_{\pi^*,0} := EvaluateSurplus(\pi^*,0)
         \widetilde{S}_{\pi^*,1} := EvaluateSurplus(\pi^*,1)
         If \widetilde{S}_{\pi^*,0} \ge (1 - \frac{3}{4k})\varepsilon or \widetilde{S}_{\pi^*,1} \ge (1 - \frac{3}{4k})\varepsilon
                  \widetilde{C}' := \widetilde{C} with the first input fixed on \pi^*
                  return Gen(\widetilde{C}', g, \varepsilon, \delta, n)
// all estimates are lower than (1 - \frac{3}{4k})\varepsilon
return D^{\widetilde{C}}
EvaluateSurplus(\pi^*, b)
         For i := 1 to N_k
                  (\pi_2,\ldots,\pi_k) \stackrel{\$}{\leftarrow} \{0,1\}^{(k-1)l}
                 (c_1, \dots, c_k) := EvalutePuzzles(\pi^*, \pi_2, \dots, \pi_k)
\widetilde{S}_{\pi^*, b}^i := g(b, c_2, \dots, c_k) - \Pr_{(u_2, \dots, u_k)}[g(b, u_2, \dots, u_k) = 1]
         return \frac{1}{N_k} \sum_{i=1}^{N_k} \widetilde{S}^i_{\pi^*,b}
\mathbf{EvalutePuzzles}(\pi^{(k)})
        (x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := P^{(g)}(\pi^{(k)})

For i := 1 to k
         (x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)(q, y^k) := \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}(x_1, x_2, \dots, x_k)
         For i := 1 to k
                  c_i := \Gamma_v^i(q, y_i)
         return (c_1,\ldots,c_k)
```

Circuit $D^{\widetilde{C},P^{(1)}}$

Oracle: A circuit \widetilde{C} with the first n puzzles fixed, $P^{(1)}$

```
Input: A puzzle x^*, a random bitstring r \in \{0,1\}^*

For i := 1 to \frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})
\pi^{(k)} \leftarrow \{0,1\}^{(k-n-1)l} //\text{read bits from } r
(c_1, \dots, c_{k-n-1}) := EvaluatePuzzles(\pi^{(k-n-1)})
If g(1, c_2, \dots, c_k) = 1 \land g(0, c_2, \dots, c_k) = 0
For i := 1 to k - n - 1
(x_i, \Gamma_V^i, \Gamma_H^i) := P^{(1)}(\pi_i)
(q, y_1, \dots, y_{k-n-1}) := \widetilde{C}(x^*, x_2, \dots, x_{k-n-1})
return y_1
```

For k=1 the function $g:\{0,1\}\to\{0,1\}$ is either an identity or a constant function. If g is identity then the success probability of \widetilde{C} is as least $\delta+\varepsilon$ and \widetilde{C} can be directly used to solve a puzzle. In case when g is a constant function the statement is vacuously true.

Let (q, y_1, \ldots, y_k) denote the output of \widetilde{C} and $c_i := \Gamma_V(q, y_i)$. We define a surplus:

$$S_{\pi^*,b} = \Pr_{\pi^{(k)}}[g(b, c_2, \dots, c_k) = 1] - \Pr_{\mu^{(k)}}[g(b, u_2, \dots, u_k) = 1]$$

$$(0.0.4)$$

The surplus $S_{\pi^*,b}$ tells us how good \widetilde{C} performs when the first puzzle is fixed, and instead c_1 the value b is used. The procedure **EvaluateSurplus** returns the estimate for $\widetilde{S}_{\pi^*,b}$. All puzzles used during obtaining the estimate are generated internally. Therefore, it is possible to provide answers for all hint and verification queries. The returned estimate $\widetilde{S}_{\pi^*,b}$ differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely. Therefore, if $\widetilde{S}_{\pi^*,b} \geq (1-\frac{3}{4k})\varepsilon$ then $S_{\pi^*,b} \geq (1-\frac{1}{k})\varepsilon$ almost surely, and we fix the first bit of $g'(b_2,\ldots,b_k) := g(b,b_2,\ldots,b_k)$, and the first puzzle of \widetilde{C} for the one generated from π^* which yields a new circuit \widetilde{C}' . The circuit \widetilde{C}' satisfies the conditions of Lemma 1.5 and we recurse using \widetilde{C}' and the monotone function g'.

If all estimates are less than $(1-\frac{3}{4k})\varepsilon$, then intuitively \widetilde{C} does not perform much better on the remaining k-1 puzzles than an algorithm that solves each puzzle independent with probability δ . However, from the assumption we know that on all k puzzles \widetilde{C} has higher success probability. Therefore, it is likely that the first puzzle is correctly solved with probability higher than δ . We now show that this intuition is indeed correct. For a fixed puzzle x^* using (0.0.4), we get

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(1, u_{2}, \dots, u_{k}) = 1] - \Pr_{u \leftarrow \mu_{\delta}^{k}}[g(0, u_{2}, \dots, u_{k}) = 1] =
\Pr_{\pi^{(k)}}[g(1, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{k}}[g(0, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.5)

From the monotonicity of g we know that for any set of tuples $(b_1, ..., b_k)$ and sets $G_0 = \{(b_1, b_2, ..., b_k) : g(0, b_2, ..., b_k) = 1\}$, $G_1 = \{(b_1, b_2, ..., b_k) : g(1, b_2, ..., b_k) = 1\}$ we have $G_0 \subseteq G_1$. Hence, we can write (0.0.5):

$$\Pr_{\mu_{\delta}^{k}}[g(1, \mu_{2}, \dots, \mu_{k}) = 1 \land g(0, \mu_{2}, \dots, \mu_{k}) = 0] =
\Pr_{\pi^{(k)}}[g(1, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.6)

Let $G_{\mu^{(k)}}$ denote the event $g(1, u_2, \dots, u_k) = 1 \land g(0, u_2, \dots, u_k) = 0$, and correspondingly $G_{\pi^{(k)}} := g(1, c_2, \dots, c_k) = 1 \land g(0, c_2, \dots, c_k) = 0$. Then multiplying and dividing $\Pr[\Gamma_V^{(g)}(D(x^*, \pi^{(k)})) = 0]$

 $1 \mid \pi_1 = \pi^*$] by (0.0.6) we get

$$\Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] = \frac{\Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]} - \frac{\Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}](S_{\pi^{*},1} - S_{\pi^{*},0})}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}$$
(0.0.7)

If output of $D(x^*,r) \neq \bot$ then we denote $c_i := \Gamma_V^i(q,y_i)$. We can write the first summand of (0.0.7) as

$$\Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] =
\Pr_{r}[D(x^{*},r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$
(0.0.8)

where we make use of the fact that the event G_{π} implies $D(x^*, r) \neq \bot$. We consider two cases. For $\Pr_{\pi^k}[g(1, c_2, \ldots, c_k) = 1 \land g(0, c_2, \ldots, c_k) = 0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)}}[c_1 = 1 \mid G_{\pi}, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}, \tag{0.0.9}$$

and when $\Pr_{\pi^k}[g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0] > \frac{\varepsilon}{6k}$ then circuit D outputs \bot only if it fails in all $\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0$ which happens with probability

$$\Pr_r[D(x^*, r) = \bot \mid \pi_1 = \pi^*] \le (1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon} \log(\frac{\varepsilon}{6k})} \le \frac{\varepsilon}{6k}.$$
 (0.0.10)

We conclude that in both cases:

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]
\geq \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}.$$
(0.0.11)

Therefore, we have

$$\begin{split} \Pr_{r}[D(x^*,r) \neq \bot \mid \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[c_1 = 1 \mid G_\pi, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[G_\pi \mid \pi_1 = \pi^*] \\ &= \Pr_{\pi^{(k)}}[c_1 = 1 \land g(1,c_2,\ldots,c_k) = 1 \land g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\ &= \Pr_{\pi^{(k)}}[g(c_1,c_2,\ldots,c_k) = 1 \land g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\ &= \Pr_{\pi^{(k)}}[g(c_1,c_2,\ldots,c_k) = 1 \mid \pi_1 = \pi^*] - \Pr_{\pi^{(k)}}[g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k}, \end{split}$$

and finally by (0.0.4)

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$

$$= \Pr_{\pi^{(k)}}[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0, \mu_{2}, \dots, \mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - S_{\pi^{*}, 0} - \frac{\varepsilon}{6k}.$$

$$(0.0.12)$$

Inserting this result into the equation (0.0.7) yields

$$\Pr_{r,\pi}[D(x,r) = 1] = \mathbb{E}_{\pi} \left[\Pr_{r}[D(x,r) = 1 \mid \pi_{1} = \pi^{*}] \right] \\
= \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \\
- \mathbb{E}_{\pi} \left[\frac{S_{\pi^{*},0} + \Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}](S_{\pi^{*},1} - S_{\pi^{*},0})}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \tag{0.0.13}$$

For the second summand we show that if we do not recurse, then almost surely majority of estimates is low. Let assume

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] < 1 - \frac{\varepsilon}{6k}, \tag{0.0.14}$$

then the algorithm recurses almost surely. Therefore, under the assumption that *Gen* does not recurse, we have almost surely

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] \ge 1 - \frac{\varepsilon}{6k}. \tag{0.0.15}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le \left(1 - \frac{1}{2k} \right) \varepsilon \right) \land \left(S_{\pi,1} \le \left(1 - \frac{1}{2k} \right) \varepsilon \right) \right\}$$
 (0.0.16)

and use \mathcal{W}^c to denote the complement of \mathcal{W} . We bound the second summand in (0.0.13)

$$\mathbb{E}_{\pi} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi_{1} = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
= \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
+ \mathbb{E}_{\pi \in \mathcal{W}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \qquad (0.0.17) \\
\leq \frac{\varepsilon}{6k} + \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] ((1 - \frac{1}{2k})\varepsilon - S_{\pi^*,0}) \right] \qquad (0.0.18) \\
\leq \frac{\varepsilon}{6k} + 1 - \frac{\varepsilon}{2k} = 1 - \frac{\varepsilon}{3k} \qquad (0.0.19)$$

Finally, we insert this result into equation (0.0.13) and make use of the fact

$$\Pr[g(u) = 1] = \Pr[(g(0, \mu_2, \dots, \mu_k) = 1) \lor (g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0 \land \mu_1 = 1)]$$

$$= \Pr[g(0, \mu_2, \dots, \mu_k) = 1] + \Pr[g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0] \Pr[\mu_1 = 1]$$

which yields

$$\Pr_{r,\pi}[D(x,r)=1] \ge \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c)=1 \mid \pi_1=\pi^*] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_2,\dots,\mu_k)=0] - (1-\frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]} \right]$$

Using the assumptions of Lemma 1.5, we get

$$\Pr_{r,\pi}[D(x,r) = 1] \ge \frac{\Pr_{\mu_{\delta}^{(k)}}[g(\mu) = 1] + \varepsilon + \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_2,\dots,\mu_k) = 0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]}$$

$$\ge \frac{\varepsilon + \delta \Pr_{\mu_{\delta}^{(k)}}[G_{\mu}] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]} \ge \delta + \frac{\varepsilon}{6k}$$