Logique

Récursion primitive

Thomas Pietrzak Licence Informatique

Récursion primitive

Petit langage de programmation.

Tous les programmes terminent.

Numéral

Un **numéral** représente un nombre entier défini par

0 est un numéral

Si x est un numéral, Succ(x) est un numéral.

Exemple: Succ(Succ(0)) est le numéral qui représente l'entier 2

Notation: $Succ^n(0) = Succ(Succ(...(0)))$ avec n Succ

Fonctions primitives récursives

Soient h et g deux fonctions primitives récursives, x un numéral et \vec{y} un vecteur de numéraux.

f définie comme suit est une fonction primitive récursive :

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(Succ(x), \vec{y}) = h(x, f(x, \vec{y}), \vec{y})$$

Addition

```
add(0, y) = y
add(Succ(x), y) = Succ(add(x,y))
```

```
 add(Succ(Succ(0)), Succ(0)) = Succ(add(Succ(0), Succ(0)))   = Succ(Succ(add(0, Succ(0))))   = Succ(Succ(Succ(0)))
```

Syntaxe

Termes

Définition

L'ensemble $\mathcal P$ des termes primitifs récursifs est le plus petit ensemble contenant :

Constante: 0

Variables: a, b, ...

Sit, bet $s \in \mathcal{P}$

Successeur: S(†)

Récurrence : Rec(t, b, (x, y)s)

où x est le prédécesseur de t et y le résultat de l'appel récursif

b est le cas de base et s le cas de récurrence

Notation

 $S^{n}(0) = S(S(...(0)))$ avec n S

Addition

```
add(0, p) = p
add(Succ(x), p) = S(add(x,p))
```

Terme

Rec(n, p, (x,y) S(y))

Variables libres

$$VI(0) = \emptyset$$

$$\forall I(x) = \{x\}$$

$$\vee I(S(\dagger)) = \vee I(\dagger)$$

$$vI(Rec(t, b, (x,y)s)) = vI(t) \cup vI(b) \cup (vI(s) - \{x, y\})$$

Un terme est **clos** s'il n'a pas de variable libre.

VI(Rec(n, p, (x,y) S(y))) =

 $vl(Rec(n, p, (x,y) S(y))) = vl(n) \cup vl(p) \cup (vl(S(y)) - \{x, y\})$

$$vI(Rec(n, p, (x,y) S(y))) = vI(n) \cup vI(p) \cup (vI(S(y)) - \{x, y\})$$

$$= \{n\} \cup \{p\} \cup (\{y\} - \{x, y\})$$

```
 vI(Rec(n, p, (x,y) S(y))) = vI(n) \cup vI(p) \cup (vI(S(y)) - \{x, y\})   = \{n\} \cup \{p\} \cup (\{y\} - \{x, y\}) \}   = \{n, p\} \cup \emptyset   = \{n, p\}
```

Substitution

$$0[x \leftarrow 0] = 0$$

$$y[x \leftarrow U] = U \text{ si } x = y$$

y sinon

$$S(t)[x \leftarrow \cup] = S(t[x \leftarrow \cup])$$

Rec(t, b, (x',y')s)[x \leftarrow u] = Rec(t[x \leftarrow u], b[x \leftarrow u], (x', y')s[x \leftarrow u])

ni x' ni y' ne doivent être libres dans u

Rec(n, p, (x,y) S(y))[p $\leftarrow S(x)$]

 $Rec(n, p, (x,y) S(y))[p \leftarrow S(x)]$

 $= \operatorname{Rec}(\mathsf{n},\,\mathsf{p},\,(\mathsf{x}',\mathsf{y}')\,\mathsf{S}(\mathsf{y}'))[\mathsf{p} \leftarrow \mathsf{S}(\mathsf{x})]$

 $Rec(n, p, (x,y) S(y))[p \leftarrow S(x)]$

= Rec(n, p, $(x',y') S(y'))[p \leftarrow S(x)]$

= Rec(n[p \leftarrow S(x)], p[p \leftarrow S(x)], (x',y') S(y')[p \leftarrow S(x)])

```
Rec(n, p, (x,y) S(y))[p \leftarrow S(x)]
= Rec(n, p, (x',y') S(y'))[p \leftarrow S(x)]
= Rec(n[p \leftarrow S(x)], p[p \leftarrow S(x)], (x',y') S(y')[p \leftarrow S(x)])
= Rec(n, S(x), (x',y') S(y'[p \leftarrow S(x)]))
```

```
Rec(n, p, (x,y) S(y))[p \leftarrow S(x)]
= Rec(n, p, (x',y') S(y'))[p \leftarrow S(x)]
= Rec(n[p \leftarrow S(x)], p[p \leftarrow S(x)], (x',y') S(y')[p \leftarrow S(x)])
= Rec(n, S(x), (x',y') S(y'[p \leftarrow S(x)]))
= Rec(n, S(x), (x',y') S(y'))
```

Sémantique

Environnement

Un **environnement** ρ associe une valeur entière aux variables.

$$\rho\{x \leftarrow n\}(y) = n \text{ si } x = y$$

$$\rho(y) \text{ sinon}$$

Interprétation

Soit t un terme et ρ un environnement, l'**interprétation** de t dans ρ , notée [t] $_{\rho}$ est :

$$[\![0]\!]_{\rho} = 0$$

$$[\![\mathbf{x}]\!]_{\rho} = \rho(\mathbf{x})$$

$$\llbracket \ \mathsf{S}(\mathsf{t'}) \ \rrbracket_{\rho} = \llbracket \ \mathsf{t'} \ \rrbracket_{\rho} + 1$$

 $[\![Rec(t',b,(x,y)s)]\!]_{\rho} = v_n \ o\grave{\upsilon} \ n = [\![t']\!]_{\rho} \ et \ v_i \ (0 \leq i \leq n) \ d\acute{e}finis \ r\acute{e}cursive ment \ par :$

$$v_0 = [\![b]\!]_{\rho}$$

$$v_{k+1} = [s]_{\rho'}$$
 avec $\rho' = \rho\{x \leftarrow k, y \leftarrow v_k\}$

$$\rho\{a \leftarrow 2, b \leftarrow 1\}$$

 $\llbracket \operatorname{Rec}(a, b, (x,y)S(y)) \rrbracket_{\rho} = v_n$

$$\rho\{a \leftarrow 2, b \leftarrow 1\}$$

$$[\![\operatorname{Rec}(a,b,(x,y)S(y))]\!]_{\rho} = v_n$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$\rho$$
{a \leftlefthapprox 2, b \leftlefthapprox 1}

$$[\operatorname{Rec}(a, b, (x,y)S(y))]_{\rho} = v_n$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$v_n = v_2 = [S(y)]_{\rho\{x \leftarrow 1, y \leftarrow v_1\}} = [y]_{\rho\{x \leftarrow 1, y \leftarrow v_1\}} + 1$$

$$\rho\{a \leftarrow 2, b \leftarrow 1\}$$

$$[\operatorname{Rec}(a, b, (x,y)S(y))]_{\rho} = v_n$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$v_n = v_2 = [S(y)]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} = [y]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} + 1$$

$$\mathbf{v}_1 = [\![\mathbf{S}(\mathbf{y})]\!]_{\rho\{\mathbf{X} \leftarrow \mathbf{0}, \, \mathbf{y} \leftarrow \mathbf{v}\mathbf{0}\}} = [\![\mathbf{y}]\!]_{\rho\{\mathbf{X} \leftarrow \mathbf{1}, \, \mathbf{y} \leftarrow \mathbf{v}\mathbf{0}\}} + 1$$

$$\rho\{a \leftarrow 2, b \leftarrow 1\}$$

$$\mathbb{I} \operatorname{Rec}(a, b, (x,y)S(y)) \mathbb{I}_{\rho} = v_n$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$v_n = v_2 = [S(y)]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} = [y]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} + 1$$

$$\mathsf{v}_1 = [\![\mathsf{S}(\mathsf{y})]\!]_{\rho\{\mathsf{x} \leftarrow \mathsf{0}, \, \mathsf{y} \leftarrow \mathsf{v}\mathsf{0}\}} = [\![\mathsf{y}]\!]_{\rho\{\mathsf{x} \leftarrow \mathsf{1}, \, \mathsf{y} \leftarrow \mathsf{v}\mathsf{0}\}} + 1$$

$$v_0 = [\![b]\!]_{\rho} = \rho(b) = 1$$

$$\rho\{a \leftarrow 2, b \leftarrow 1\}$$

$$\mathbb{I} \operatorname{Rec}(a, b, (x,y)S(y)) \mathbb{I}_{\rho} = v_n$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$v_n = v_2 = [S(y)]_{\rho\{x \leftarrow 1, y \leftarrow v_1\}} = [y]_{\rho\{x \leftarrow 1, y \leftarrow v_1\}} + 1$$

$$\mathbf{v}_1 = [\![S(y)]\!]_{\rho\{x \leftarrow 0, y \leftarrow v0\}} = [\![y]\!]_{\rho\{x \leftarrow 1, y \leftarrow v0\}} + 1$$

$$v_0 = [\![b]\!]_{\rho} = \rho(b) = 1$$

$$v_1 = [[y]]_{\rho\{x \leftarrow 1, y \leftarrow 1\}} + 1 = \rho(y) + 1 = 1 + 1 = 2$$

$$\rho$$
{a \leftarrow 2, b \leftarrow 1}

$$\mathbb{I} \operatorname{Rec}(a, b, (x,y)S(y)) \mathbb{I}_{\rho} = \mathbf{v}_{n}$$

$$n = [a]_{\rho} = \rho(a) = 2$$

$$v_n = v_2 = [S(y)]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} = [y]_{\rho\{x \leftarrow 1, y \leftarrow v1\}} + 1$$

$$\mathsf{v}_1 = [\![\mathsf{S}(\mathsf{y})]\!]_{\rho\{\mathsf{x} \leftarrow \mathsf{0}, \, \mathsf{y} \leftarrow \mathsf{v}\mathsf{0}\}} = [\![\mathsf{y}]\!]_{\rho\{\mathsf{x} \leftarrow \mathsf{1}, \, \mathsf{y} \leftarrow \mathsf{v}\mathsf{0}\}} + 1$$

$$v_0 = [\![b]\!]_{\rho} = \rho(b) = 1$$

$$v_1 = [[y]]_{\rho\{x \leftarrow 1, y \leftarrow 1\}} + 1 = \rho(y) + 1 = 1 + 1 = 2$$

$$v_n = v_2 = [[y]]_{\rho\{x \leftarrow 1, y \leftarrow 2\}} + 1 = \rho(y) + 1 = 2 + 1 = 3$$

Calcul

Réduction

$redex \rightarrow contractum$

Rec(0, b, $(x,y)s) \rightarrow b$

 $Rec(S(t), b, (x,y)s) \rightarrow s[x \leftarrow t, y \leftarrow Rec(t, b, (x,y)s)]$

Règles additionnelles

```
Si t \rightarrow u alors S(t) \rightarrow S(u)
```

Si $t \rightarrow u$ alors Rec(t, b, (x,y)s) \rightarrow Rec(u, b, (x,y)s)

Si b \rightarrow c alors Rec(t, b, (x,y)s) \rightarrow Rec(t, c, (x,y)s)

Si s \rightarrow u alors Rec(t, b, (x,y)s) \rightarrow Rec(t, b, (x,y)u)

add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

```
add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

\rightarrow S(y)[x \leftarrow S(0), y \leftarrow rec(S(0), S(0), (x,y)S(y))]
```

```
add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

\rightarrow S(y)[x \leftarrow S(0), y \leftarrow rec(S(0), S(0), (x,y)S(y))]

= S(rec(S(0), S(0), (x,y)S(y)))
```

Exemple

```
add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

\rightarrow S(y)[x \leftarrow S(0), y \leftarrow rec(S(0), S(0), (x,y)S(y))]

= S(rec(S(0), S(0), (x,y)S(y)))

\rightarrow S(S(y)[x \leftarrow 0, y \leftarrow rec(0, S(0), (x,y)S(y))])
```

Exemple

```
add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

\rightarrow S(y)[x \leftarrow S(0), y \leftarrow rec(S(0), S(0), (x,y)S(y))]

= S(rec(S(0), S(0), (x,y)S(y)))

\rightarrow S(S(y)[x \leftarrow 0, y \leftarrow rec(0, S(0), (x,y)S(y))])

= S(S(rec(0, S(0), (x,y)S(y))))
```

Exemple

```
add(n, p)[n \leftarrow S(S(0)), p \leftarrow S(0)] = rec(S(S(0)), S(0), (x,y)S(y))

\rightarrow S(y)[x \leftarrow S(0), y \leftarrow rec(S(0), S(0), (x,y)S(y))]

= S(rec(S(0), S(0), (x,y)S(y)))

\rightarrow S(S(y)[x \leftarrow 0, y \leftarrow rec(0, S(0), (x,y)S(y))])

= S(S(rec(0, S(0), (x,y)S(y))))

\rightarrow S(S(S(0)))
```

Fermeture

 $\dagger = V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow ... \longrightarrow V_{n-1} \longrightarrow V_n = U$

```
S'il existe t, u, v_1, ..., v_n tels que : v_1 = t, v_n = u pour tout i (1 \le i \le n) \ v_i \longrightarrow v_{i+1} alors t \longrightarrow^* u
```

Équivalence

```
S'il existe t, u, v_1, ..., v_n tels que : v_1 = t, v_n = u pour tout i (1 \le i \le n) \ v_i \longrightarrow v_{i+1} \ \text{OU} \ v_{i+1} \longrightarrow v_i \text{alors } t \simeq u t = v_1 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow \ldots \longleftarrow v_{n-1} \longleftarrow v_n = u
```

Normalisation

Forme Normale

t est en forme normale si $t \rightarrow^* U \Rightarrow t = U$

Intuitivement : t ne peut pas être réduit.

Normalisable

t est **normalisable** s'il existe un terme u en forme normale tel que $t \rightarrow^* u$

Théorème 1

Tous les termes clos sont soit sous la forme $S^n(0)$ soit contiennent un redex.

Par induction sur un terme clos t

$$0 = S^{0}(0)$$

Les variables ne sont pas en forme closes \Rightarrow contradiction.

HR : si t est est clos, soit $t = S^n(0)$, soit t admet un redex : $\exists u. t \rightarrow u$

Soit $S(t) = S^{n+1}(0)$, soit S(t) admet un redex $S(t) \rightarrow S(u)$.

Soit Rec($S^n(0)$, b, (x,y)s) $\rightarrow s[x \leftarrow S^{n-1}(0), y \leftarrow Rec(S^{n-1}(0), b, (x,y)s)]$, soit Rec(t, b, (x,y)s) admet un redex Rec(t, b, (x,y)s) \rightarrow Rec(u, b, (x,y)s)

Corollaire 1

Tous les termes clos en forme normale sont sous la forme Sⁿ(0).

Théorème 2

Théorème de normalisation

Tous les termes clos sont normalisables.

Par induction sur un terme clos t

0 est en forme normale.

Les variables ne sont pas closes \Rightarrow contradiction.

HR: sit est est clos alors $t \rightarrow S^{n}(0)$.

 $S(t) \rightarrow S^{n+1}(0)$ en forme normale.

 $Rec(t, b, (x,y)s) \rightarrow Rec(S^n(0), b, (x,y)s)$

Par récurrence sur n :

 $n = 0 : Rec(0, b, (x,y)s) \rightarrow b$, en forme normale par HR

n > 0: Rec(Sⁿ(0), b, (x,y)s) \rightarrow s[x \leftarrow Sⁿ⁻¹(0), y \leftarrow Rec(Sⁿ⁻¹(0), b, (x,y)s)]

 $Rec(S^{n-1}(0), b, (x,y)s) \rightarrow S^{k}(0) par HR$

 $\text{Rec}(S^n(0), b, (x,y)s) \rightarrow s[x \leftarrow S^{n-1}(0), y \leftarrow S^k(0)], \text{ en forme normale par HR}$

Correction

Lemme

Transmission de l'interprétation dans les substitutions

$$[\![\!]\!]_{\rho\{\mathsf{X}^{\longleftarrow}}]_{\rho}] = [\![\!]\!][\mathsf{X}^{\longleftarrow}\cup]]_{\rho}$$

$$\begin{split} &t = 0 \Rightarrow [\ 0\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = [\ 0\ [x \leftarrow \ \cup\]_{\rho} = [\ 0\]_{\rho} \\ &t = y \Rightarrow [\ y\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = \rho\{x \leftarrow [\ \cup\]_{\rho}\}(y) = [\ \cup\]_{\rho} \text{ si } x = y, \ \rho(y) \text{ sinon} = [\ y[x \leftarrow \ \cup\]_{\rho} \\ &t = S(t') \Rightarrow [\ S(t')\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = [\ t'\]_{\rho(x \leftarrow \ |\ \cup \]\rho} + 1 = [\ t'\ [x \leftarrow \ \cup\]_{\rho} + 1 \text{ (par HR)} = [\ S(t')\ [x \leftarrow \ \cup\]_{\rho} \\ &t = \text{Rec}(t', b, (x, y)s) \end{split}$$

$$&\Rightarrow [\ \text{Rec}(t', b, (x', y')s)\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = [\ t'\ [x \leftarrow \ \cup\]_{\rho} \text{ (HR)} \\ &y_0 = [\ b\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = [\ b[x \leftarrow \ \cup\]_{\rho} \text{ (HR)} \\ &y_{k+1} = [\ s\]_{\rho'(x \leftarrow \ |\ \cup \]\rho} \text{ avec } \rho' = \rho\{x \ ' \leftarrow k, y' \leftarrow y_k\} \\ &= [\ s[x \leftarrow \ \cup\]_{\rho'} \text{ avec } \rho' = \rho\{x \ ' \leftarrow k, y' \leftarrow y_k\} \text{ (HR)} \\ &\text{I Rec}(t', b, (x', y')s)\]_{\rho(x \leftarrow \ |\ \cup \]\rho} = [\ \text{Rec}(t'[x \leftarrow \ \cup\], b[x \leftarrow \ \cup\], (x', y')s[x \leftarrow \ \cup\])\]_{\rho} \\ &= [\ \text{Rec}(t', b, (x', y')s)\ [x \leftarrow \ \cup\]_{\rho} \end{aligned}$$

Proposition

La réduction conserve la sémantique

Si
$$t \rightarrow u$$
 alors $[t]_{\rho} = [u]_{\rho}$

```
t = 0 ou t = x → t se réduit à lui-même et la propriété est triviale.
t = S(t') \longrightarrow S(\upsilon') \rightarrow [S(t')]_{\rho} = [t']_{\rho} + 1 = [\upsilon']_{\rho} + 1 \text{ (par HR)} = [S(\upsilon')]_{\rho}
t = \text{Rec}(0, b, (x,y)s) \rightarrow b \rightarrow [\text{Rec}(0, b, (x,y)s)]_{\rho} = [b]_{\rho}
t = Rec(S(t'), b, (x,y)s) \rightarrow s[x \leftarrow t', y \leftarrow Rec(t', b, (x,y)s]
   = [S]_{0}\{x \leftarrow n-1, v \leftarrow vn-1\}
                                         = [\![ S]\!]_{\rho\{X \leftarrow [\![ t']\!] \rho, \, Y \leftarrow [\![ Rec(t', b, (x, y)s)]\!] \rho\}}
                                         = [s[x\leftarrow t', y\leftarrow Rec(t', b, (x,y)s]]_{\rho} (Lemme)
t = Rec(t', b, (x,y)s) \rightarrow Rec(u, b, (x,y)s)
   → \mathbb{I} \operatorname{Rec}(t', b, (x,y)s) \mathbb{I}_{\rho} = v_n  n = \mathbb{I} t' \mathbb{I}_{\rho} = \mathbb{I} \cup \mathbb{I}_{\rho} (HR), ...
                                   = [[Rec(U, b, (x,y)s)]_{\rho}]
t = Rec(t', b, (x,y)s) \rightarrow Rec(t', c, (x,y)s) Idem
t = Rec(t', b, (x,y)s) \rightarrow Rec(t', b, (x,y)u) Idem
```

Corollaire 2

La normalisation conserve la sémantique

Si
$$t \longrightarrow^* u$$
 alors $[\![t]\!]_{\rho} = [\![u]\!]_{\rho}$

Par récurrence sur la longueur de dérivation

$$t \longrightarrow^0 u$$
 alors $t = u$, et donc $[t]_\rho = [u]_\rho$

$$t \rightarrow^{k+1} u$$
, alors il existe t' tel que $t \rightarrow t' \rightarrow^k u$

Par le corollaire on a $[\![t]\!]_{\rho} = [\![t']\!]_{\rho}$

Par HR on a
$$[t']_{\rho} = [u]_{\rho}$$

Donc
$$[\![t]\!]_{\rho} = [\![t]\!]_{\rho}$$

Corollaire 3

Unicité de la forme normale

Pour tout terme clos t, si t \rightarrow * $S^{n}(0)$ et si t \rightarrow * $S^{p}(0)$, alors n = p

Soit t un terme clos

Si $t \to^* S^n(0)$, d'après le corollaire $2 [t]_\rho = [S^n(0)]_\rho$

Si $t \to^* S^p(0)$, d'après le corollaire $2 [t]_p = [S^p(0)]_p$

Donc $[t]_{\rho} = [S^{n}(0)]_{\rho} = [S^{p}(0)]_{\rho}$ et donc n = p

Théorème 3

Pour tout terme clos t, si t \rightarrow * Sⁿ(0), alors [t] \varnothing = n

Soit t un terme clos tel que $t \rightarrow^* S^n(0)$

D'après le corollaire 2, [†] \emptyset = [$S^n(0)$] \emptyset

On montre par récurrence que $[S^n(0)] \varnothing = n$:

$$n = 0 \rightarrow [0]_{\varnothing} = 0$$

$$n = S^{m}(0) \rightarrow [S^{m}(0)]_{\varnothing} = [S(S^{m-1}(0))]_{\varnothing}$$

$$= [S^{m-1}(0)]_{\varnothing} + 1$$

$$= m - 1 + 1 \text{ (par HR)}$$

$$= m$$

Théorème 4

Pour tout terme clos t, [t] = n

Soit t un terme clos

D'après le théorème 2, t est normalisable, donc il existe u en forme normale tel que t \rightarrow * u

D'après le corollaire 1, il existe un n tel que $u = S^n(0)$, donc $t \to^* S^n(0)$

D'après le théorème 3, [t]Ø = n

Limites

Fonction d'Ackermann

La fonction d'Ackermann n'est pas primitive récursive

Ack(0, p) = Succ(p)

Ack(Succ(n), 0) = Ack(n, Succ(0))

Ack(Succ(n), Succ(p)) = Ack(n, Ack(Succ(n), p)

Fonction d'Ackermann

Chaque niveau de la fonction d'Ackermann est primitif récursif

Ack(0, p) = Succ(p)

Ack(Succ(0), n) = Rec(n, Succ(Succ(0)), (x,y) Succ(y))

Ack(Succ(1), n) = Rec(n, Succ(Succ(Succ(0))), (x,y) Rec(y, Succ(Succ(0)), (x',y') Succ(y')))

Fonction d'Ackermann

A(n, n) n'est pas primitif récursif

Ack(0,0) = Succ(0)

Ack(Succ(n), Succ(n)) = Ack(n, Ack(Succ(n), n))

Intuitivement: on ne peut pas définir Ack(Succ(n), x) en fonction de Ack(Succ(n), y)

Algorithme du minimum

min(0, p) = 0

min(Succ(n), 0) = 0

min(Succ(n), Succ(p)) = Succ(min(n, p))

Intuitivement: on ne peut pas faire deux récurrences simultanées.

Système T Gödel

Fonctions primitives récursives

La définition est similaire aux fonctions primitives récursives

les éléments de \vec{y} peuvent être des fonctions

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(Succ(x), \vec{y}) = h(x, f(x, \vec{y}), \vec{y})$$

Termes

Constante: 0

Variables: a, b, ...

Sit, bets sont des termes:

Successeur: $S(\dagger)$

Fonctions : $\lambda x.t$

Récurrence : Rec(t, b, (x, y)s)

Typage

$$\frac{1}{\exists x : A} var \qquad \frac{t : N}{\exists x : A} N_{i0} \qquad \frac{t : N}{\exists x : A} N_{is}$$

$$\frac{x:A \vdash t:B}{\vdash \lambda x.t:A \to B} \to_i \qquad \frac{\vdash t:A \to B}{\vdash tu:B} \to_e$$

$$\frac{n:N \quad b:A \quad s:N \to A \to A}{\vdash rec(n,b,(x,y)s):A} N_{is}$$

Théorème

Théorème de normalisation

Tous les termes clos sont normalisables.

Par induction sur un terme clos t

0 est en forme normale.

Les variables ne sont pas closes \Rightarrow contradiction.

HR: sit est est clos alors $t \rightarrow S^{n}(0)$.

 $S(t) \rightarrow S^{n+1}(0)$ en forme normale.

 $Rec(t, b, (x,y)s) \rightarrow Rec(S^n(0), b, (x,y)s)$

Par récurrence sur n :

 $n = 0 : Rec(0, b, (x,y)s) \rightarrow b$, en forme normale par HR

n > 0: Rec(Sⁿ(0), b, (x,y)s) \rightarrow s[x \leftarrow Sⁿ⁻¹(0), y \leftarrow Rec(Sⁿ⁻¹(0), b, (x,y)s)]

 $Rec(S^{n-1}(0), b, (x,y)s) \rightarrow S^{k}(0) par HR$

 $\text{Rec}(S^n(0), b, (x,y)s) \rightarrow s[x \leftarrow S^{n-1}(0), y \leftarrow S^k(0)], \text{ en forme normale par HR}$