MODELAGEM E INFERÊNCIA ESTATÍSTICA

Métodos de regressão gerais e Modelo Logístico

O QUE VOU ESTUDAR HOJE?

Modelos não lineares

- Erro multiplicative e aditivo

Métodos de regressão gerais

- Reamostragem

Modelo Logístico

- Exemplo

MODELOS NÃO LINEARES PROBABILÍSTICOS

Função	Modelo probabilístico	Transformação para linearizar	Forma linear	
Exponencial $y=lpha \mathrm{e}^{eta x}$	$\mathbf{y} = \mathbf{\alpha} \mathbf{e}^{\mathbf{\beta} \mathbf{x}} \mathbf{\mathcal{E}}$	y' = ln(y)	$y' = ln(\alpha) + \beta x + log(\mathcal{E})$	
Potência $\mathbf{y} = \mathbf{\alpha} \mathbf{x}^{\mathbf{eta}}$	$y=\alpha x^{\beta}\mathcal{E}$	$\mathbf{y}' = \mathbf{log}(\mathbf{y}) \mathbf{e} \mathbf{x}' = \mathbf{log}(\mathbf{x})$	$y' = \log(\alpha) + \beta x' + \log(\mathcal{E})$	
Logarítmica $y = \alpha + \beta log(x)$	$y = \alpha + \beta \log(x) + \mathcal{E}$	x' = log(x)	$y = \alpha + \beta x' + \mathcal{E}$	
Recíproca $y = \alpha + \beta \frac{1}{x}$	$y = \alpha + \beta \frac{1}{x} + \mathcal{E}$	$x' = \frac{1}{x}$	$y = \alpha + \beta x' + \mathcal{E}$	

 ${\cal E}$ multiplicativo

 ${\cal E}$ aditivo

MÉTODOS DE REGRESSÃO GERAIS

Reamostragem

Fonte: (DEVORE, 2018, p. 520-521)

- Jackknife.
- Bootstrap (paramétrico e não paramétrico).

Resposta dicotômica *p* com valores possíveis 1 e 0 correspondendo ao sucesso e à falha.

$$\frac{p(x)}{1 - p(x)} = e^{\beta_0 + \beta_1 x}$$

Fonte: (DEVORE, 2018, p. 522)

$$\frac{p(x)}{1-p(x)} = e^{\beta_0 + \beta_1 x}$$

Razão de chances

p→ probabilidade de sucesso,
 p(x) → para enfatizar a
 dependência dessa probabilidade ao valor x.

p(x) entre 0 e 1 mas $\beta_0 + \beta_1 x$ não necessariamente

Logaritmo da razão de chances é uma reta

(função linear do preditor)

Exemplo 1

O termo cifose refere-se a uma grave curvatura protuberante da coluna vertebral que necessita de cirurgia corretiva. Um estudo realizado para determinar os fatores de risco da cifose relatou as idades a seguir (meses) para 40 indivíduos no momento da cirurgia; os primeiros 18 indivíduos tiveram cifose e os 22 restantes, não.

Cifose	12	15	42	52	59	73	82	91	96
	105	114	120	121	128	130	139	139	157
Sem	1	1	2	8	11	18	22	31	37
Cifose	61	72	81	97	112	118	127	131	140
	151	159	177						

Exemplo 1

Use o resultado da regressão logística do Python, abaixo, para determinar se a idade parece ter um impacto significativo sobre a existência da cifose.

```
Optimization terminated successfully.
         Current function value: 0.681303
         Iterations 4
                           Logit Regression Results
Dep. Variable:
                                        No. Observations:
                                        Df Residuals:
Model:
                                Logit
                                                                            38
Method:
                                        Df Model:
                                  MLE
Date:
                     Tue, 08 Mar 2022
                                        Pseudo R-squ.:
                                                                      0.009934
Time:
                                        Log-Likelihood:
                             20:20:37
                                                                       -27.252
                                        LL-Null:
converged:
                                 True
                                                                       -27.526
                                        LLR p-value:
Covariance Type:
                            nonrobust
                                                                        0.4596
                         std err
                                                 P> Z
                 coef
                                                            [0.025
                                                                        0.975]
              -0.5727
                           0.602
                                     -0.951
                                                 0.342
                                                            -1.753
                                                                         0.608
const
                                                                         0.016
               0.0043
                                      0.734
```

Antes de resolver o exercício

Definir os dados:

Com cifose = 1

Sem cifose = 0

Antes de resolver o exercício

Determinar se a idade parece ter um impacto significativo sobre a existência da cifose.

Antes de resolver o exercício

Usar a biblioteca statmodel

- 1 import numpy as np
 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import statsmodels.api as sm
- 5 from statsmodels.formula.api import ols
- 6 import seaborn as sns
- 7 from statsmodels.graphics.gofplots import ProbPlot
- 8 plt.style.use('seaborn')
- 9 plt.rc('axes', titlesize=10)

Obter os parâmetros da regressão

```
1 #adicionar uma constante preditora
2 x = sm.add_constant(x)
3 # Construir o modelo e ajustar os dados
4 model = sm.Logit(y, x).fit()
```

5 print(model.summary())

Resultados

	coef	std err	Z	P> z	[0.025	0.975]	
const	-0.5727	0.602	-0.951	0.342	-1.753	0.608	
x	0.0043	0.006	0.734	0.463	-0.007	0.016	

Resolução

Interpretação

$$\frac{p(x)}{1 - p(x)} = e^{\beta_0 + \beta_1 x}$$

$$\frac{p(x)}{1 - p(x)} = e^{-0.5757 + 0.0043x}$$

```
Optimization terminated successfully.
         Current function value: 0.681303
         Iterations 4
                            Logit Regression Results
Dep. Variable:
                                         No. Observations:
Model:
                                 Logit
                                         Df Residuals:
                                         Df Model:
Method:
                                   MLE
Date:
                     Tue, 08 Mar 2022
                                         Pseudo R-squ.:
                                                                        0.009934
Time:
                                         Log-Likelihood:
                              20:20:37
                                                                         -27.252
                                         LL-Null:
converged:
                                                                          -27.526
                                  True
                                         LLR p-value:
Covariance Type:
                             nonrobust
                                                                          0.4596
                          scd err
                                                  P> | Z |
                                                              0.025
                 coef
                                                                          0.975]
              -0.5727
                            0.602
                                                  0.342
                                                                           0.608
const
                                      -0.951
                                                              -1.753
               0.0043
                            0.006
                                       0.734
                                                              -0.007
                                                                            0.016
```

Resolução

Determinar se a idade parece ter um impacto significativo sobre a existência da cifose

	coef	std err	Z	P> z	[0.025	0.975]
const	-0.5727	0.602	-0.951	0.342	-1.753	0.608
x	0.0043	0.006	0.734	0.463	-0.007	0.016

$$\frac{p(x)}{1 - p(x)} = e^{-0.5757 + 0.0043x}$$

Realizar um teste de hipótese para verificar a relação entre as variáveis

Resolução

<u>Lembrete</u>: Procedimento do teste de hipótese para utilidade do modelo

- 1. Obter a reta de regressão $y = \beta_0 + \beta_1 x$
- 2. Definir o valor de n (número de amostras).
- 3. Definir o valor de k (número de variáveis).
- 4. Calcular os graus de liberdade gl = n-k.
- 5. $H_0: \beta_1 = 0$ frente a $H_a: \beta_1 \neq 0$

$$\frac{p(x)}{1 - p(x)} = e^{-0.5757 + 0.0043x}$$

$$n = 40$$

$$k = 2$$

$$gl = 38$$

$$H_0: \beta_1 = 0 \rightarrow \text{neste modelo } \beta_1 = 0,0043$$

frente a $H_a: \beta_1 \neq 0$

Resolução
$$\frac{p(x)}{1-p(x)} = e^{-0.5757 + 0.0043x}$$

Lembrete: Procedimento do teste de hipótese para β₁

- Definir a hipótese nula H_0 : $\beta_{10} = 0$ frente a H_a : $\beta_{10} \neq 0$.
- Definir o intervalo de confiança α se conhecido.
- Definir o intervalo crítico (t_{crit}) na tabela t-student para um determinado α e gl.
- Definir a estatística de teste $t = \frac{\hat{\beta}_1 \beta_{10}}{\hat{\beta}_1 \beta_{10}}$.

Como
$$H_0$$
: $\beta_{10} = 0 \rightarrow t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$.

- Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{10} \ne 0$.
- Caso contrario comparar se p-valor $< \alpha$.

```
\alpha = 0.05 \ e \ gl = 38
  t_{crit} = t_{(0,025,38)}
```

```
1 #usar a tabela tstudent
 2 from scipy.stats import t
 3 alpha = 0.05 # nível de signif.= 5%
 4 df = len(x) - 2 # graus de liberdade
 5 #
 6 \text{ v} = \text{t.ppf}(1 - \text{alpha/2}, \text{df})
 7 tcrit=v
 8 print(f'tcrit=: {v}')
tcrit=: 2.024394164575136
```

Resolução

<u>Lembrete</u>: Procedimento do teste de hipótese para β₁

- 1. Definir a hipótese nula H_0 : $\beta_{10} = 0$ frente a H_a : $\beta_{10} \neq 0$.
- 2. Definir o intervalo de confiança α se conhecido.
- 3. Definir o intervalo crítico (t_{crit}) na tabela t-student para um determinado α e gl.
- 4. Definir a estatística de teste $t = \frac{\hat{\beta}_1 \beta_{10}}{s_{\hat{\beta}_1}}$.

Como
$$H_0$$
: $\beta_{10} = 0 \rightarrow t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$.

5. Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{10} \ne 0$. Ou comparar se p-valor $< \alpha$.

$$t_{crit} = t_{(0,025,38)} = 2,0244$$

$$t = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}} = 0,734$$

Se $|t| \ge t_{crit}$ rejeitar H_0 $0.734 \ge 2.0244$??

Não rejeitar H_0 : $\beta_{10} = 0$

Resolução

Outra opção: comparar se p-valor < α.

```
coef
                         std err
                                                              [0.025
                                                                          0.975]
                                                                          0.608
                                                  0.342
const
              -0.5727
                           0.602
                                      -0.951
                                                              -1.753
                                       0.734
                                                  0.463
                                                              ·0.007
               0.0043
                            0.006
                                                                           0.016
```

```
1 #z: estatística de teste
2 zt-model.tvalues
3 ztb1=zt[1]
4 ztb1

0.7344029072729139

1 #usar a tabela tstudent
2 from scipy.stats import t
3 #calculate p-value TWO TAILED
4 p_val= (1-t.cdf(x=abs(ztb1), df=len(x))) * 2
5 p_val

0.46698681622739535
```

Valor-p=0,463 e $\alpha = 0,05 \rightarrow 0,463 < 0,05$??

Não rejeitar H_0 : $\beta_{10} = 0$

Exemplo 2

O artigo Acceptable noise levels for construction site offices (Building Serv. Engr. Res. Tech., 2009: 87-94) analisou as respostas de uma amostra com 77 indivíduos, aos quais foi perguntado se um nível de ruído específico (dBA) em que já havia sido exposto era aceitável ou inaceitável. Eis os dados oferecidos pelos autores do artigo:

Exemplo 2

Interprete o resultado da regressão logística e esboce um gráfico da probabilidade de um nível de ruído aceitável como uma função do nível de ruído específico.

Optimization terminated successfully. Current function value: 0.353003 Iterations 7									
Logit Regression Results									
Dep. Variable: y No. Observations: 77									
Model:	Logit	Df Residuals:		75					
Method:	MLE	Df Model:		1					
Date: T	hu, 10 Mar 2022	Pseudo R-squ.:		0.4902					
Time:	22:17:49	Log-Likelihood:		-27.181					
converged:	True	LL-Null:		-53.314					
Covariance Type:	nonrobust	LLR p-value:		4.8 49e-13					
coef	std err	z P> z	[0.025	0.975]					
const 23.0140	5.041	4.565 0.000	13.133	32.895					
x -0.3562	0.078 -	4.543 0.000	-0.510	-0.203					

Antes de resolver o exercício

Definir os dados: Aceitável = 1 Não aceitável = 0

```
1 lstxr = (55.3,55.3,55.3,55.9,55.9,55.9,55.9,56.1,56.1,56.1,56.1,56.1,56.1,56.8,
        56.8,57.0,57.0,57.0,57.8,57.8,57.8,57.9,57.9,57.9,58.8,58.8,58.8,59.8,
        59.8,59.8,62.2,62.2,65.3,65.3,65.3,65.3,68.7,69.0,73.0,73.0,63.8,63.8,
        63.8,63.9,63.9,63.9,64.7,64.7,64.7,65.1,65.1,65.1,67.4,67.4,67.4,67.4,
        68.7,68.7,68.7,70.4,70.4,71.2,71.2,73.1,73.1,74.6,74.6,74.6,74.6,79.3,
        79.3,79.3,79.3,79.3,83.0,83.0,83.0)
8
        0,0,0,0,0,0,0)
10 # Construir o DataFrame e nomear as colunas
11 df1 = pd.DataFrame(list(zip(lstxr, lstyr)),
              columns =["x","y"])
12
13 x=df1['x']
14 y=df1['y']
15 df.head()
```

Antes de resolver o exercício

Observar o gráfico dos dados

Resolução

Interprete o resultado da regressão logística e esboce um gráfico da probabilidade de um nível de ruído aceitável como uma função do nível de ruído específico.

Optimization terminated successfully. Current function value: 0.353003 Iterations 7 Logit Regression Results										
Dep. Variable: y No. Observations: 77										
Model:		1.00	-	esiduals:		75				
Method:			•	odel:		1				
Date:	1	րիս, 10 Mar 20		do R-squ.:		0.4902				
Time:		22:17:	49 Log-	Likelihood:		-27.181				
converged:		Tr	rue LL-N	ull:		-53.314				
Covariance Ty	ype:	nonrobu	ıst LLR	p-value:		4.849e-13				
	coef	std err	z	P> z	[0.025	0.975]				
const	23.0140 -0.3562	5.041 0.078	4.565 -4.543	0.000 0.000	13.133 -0.510	32.895 -0.203				

Resolução

$$\frac{p(x)}{1 - p(x)} = e^{\beta_0 + \beta_1 x}$$

$$\frac{p(x)}{1 - p(x)} = e^{23,0140 - 0,3562x}$$

```
Optimization terminated successfully.
         Current function value: 0.353003
         Iterations 7
                           Logit Regression Results
Dep. Variable:
                                        No. Observations:
                                Logit / Df Residuals:
Model:
Method:
                                        Df Model:
Date:
                     Thu, 10 Mar 2022 Pseudo R-squ.:
                                                                         0.4902
Time:
                             22:17:49 Log-Likelihood:
                                                                        -27.181
converged:
                                 True LL-Null:
                                                                        -53.314
                                        LLR p-value:
Covariance Type:
                            nonrobust
                                                                      4.849e-13
                         std err
                                                 P>|z|
                                                             0.025
                                                                         0.975]
                 coef
const
              23.0140
                           5.041
                                      4.565
                                                 0.000
                                                             13.133
                                                                         32.895
              -0.3562
                           0.078
                                      -4.543
                                                  0.000
                                                             -0.510
                                                                         -0.203
```

Resolução

Lembrete: Procedimento do teste de hipótese para β₁

- 1. Definir a hipótese nula $\overline{H_0}$: $\beta_{10} = 0$ frente a $\overline{H_a}$: $\beta_{10} \neq 0$.
- 2. Definir o intervalo de confiança α se conhecido.
- 3. Definir o intervalo crítico (t_{crit}) na tabela t-student para um determinado α e gl.
- 4. Definir a estatística de teste $t = \frac{\hat{\beta}_1 \beta_{10}}{s_{\hat{\beta}_1}}$.

Como
$$H_0$$
: $\beta_{10} = 0 \rightarrow t = \frac{\widehat{\beta}_1}{s_{\widehat{\beta}_1}}$.

5. Se $|t| \ge t_{crit}$ rejeitar H_0 em favor de H_a : $\beta_{10} \ne 0$. Ou comparar se p-valor < α .

Valor-p=0,000 e $\alpha=0,05$ \rightarrow 0,000 < 0,05 Rejeitar H_0 : $\beta_{10}=0$

Aceitar o modelo

$$\frac{p(x)}{1-p(x)}=e^{23,0140-0,3562x}$$

Resolução

Valores observados e valores calculados


```
1 x=df['x']
2 y=df['y']
3 plt.figure(figsize=(5, 5))
4 ax = plt.axes()
5 ax.scatter(x, y, color='b', alpha=0.20)
6 ax.scatter(x, yhat, color="black", s=4)
7 ax.set_xlabel('Noise')
8 ax.set_ylabel('Aceitável - Não aceitável')
```

Resolução

$$\frac{p(x)}{1-p(x)} = e^{23,0140-0,3562x}$$

Razão das chances

0.7003306991172532

$$\frac{\frac{p(x+1)}{1-p(x+1)}}{\frac{p(x)}{1-p(x)}} = \frac{e^{23,0140-0,3562(x+1)}}{e^{23,0140-0,3562x}} = e^{-0,3562} = 0.7$$

A interpretação é que, para cada incremento de ruído, estima-se que as chances de ter um ruído não aceitável (0) irão diminuir por um fator de 0,7 (30%).

Resolução

Para calcular manualmente os valores estimados

$$\hat{\pi} = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\hat{\pi} = \frac{e^{23,0140 - 0,3562x}}{1 + e^{23,0140 - 0,3562x}}$$

Valores observados e valores calculados

Comentários complementares

Verificar a acurácia do modelo

```
1 from sklearn.metrics import (confusion_matrix,accuracy_score)
2
3 # confusion matrix
4 cm = confusion_matrix(y, prediction)
5 print ("Confusion Matrix : \n", cm)
6
7 # accuracy score of the model
8 print('Test accuracy = ', accuracy_score(y, prediction))

Confusion Matrix :
[[31 6]
[ 8 32]]
Test accuracy = 0.81818181818182
```

MODELAGEM E INFERÊNCIA ESTATÍSTICA

Métodos de regressão gerais e Modelo Logístico