Функции многих переменных

Касательная плоскость и нормаль к поверхности

Если в области D задана непрерывная функция двух переменных

Z = f(x,y) и точка $M_0(x_{0,}y_0)$ є D,то уравнение касательной плоскости в точке $M(x_{0,}y_0)$ имеет вид:

Z-
$$f(x_0, y_0) = f'_x(x_0, y_0)(x - x_0) - f'_y(x_0, y_0) (y-y_0)$$
.

Уравнение нормали к поверхности в точке $M(x_0, y_0)$ имеет вид:

$$(x-x_0)/f'_x(x_0,y_0) = (y-y_0)/f'_y(x_0,y_0) = Z-f(x_0,y_0)/-1$$

Пример 1.

Составить уравнение касательной плоскости и нормали к поверхности эллиптического параболоида:

$$Z = x^2 - 2xy + y^2 - x + 2y$$
 в точке $M_0(1,1,1)$

Решение: находим выражения частных производных

$$Z'_{x} = 2x - 2y - 1$$
 $Z'_{y} = -2x + 2y + 2$.

Числовые значения производных в точке $\mathrm{M}_{0}\ (1,1,1)$ будут :

$$Z'_{x}(1,1,1) = -1; Z'_{y}(1,1,1) = 2.$$

Запишем уравнение касательной плоскости в точке $M_0(1,1,1)$:

Z-1=-1(x-1)+2(y-1), после преобразования уравнение плоскости примет вид: $\mathbf{x} - 2 \mathbf{y} + \mathbf{z} = \mathbf{0}$.

Уравнение нормали в точке $M_0(1,1,1)$ примет вид :

$$(x-1)/_{-1} = (y-1)/_{2} = (z-1)/_{-1}$$

Пример 2. Составить уравнение касательной плоскости и нормали к поверхности параболоида $Z=1+x^2+y^2$ в точке M_0 (1,1,3)

Решение: находим выражения частных производных

$$Z'_{x} = 2x; \quad Z'_{y} = 2y.$$

Числовые значения производных в точке M_0 (1,1,3) будут :

$$Z'_{x}(1,1,3) = 2; Z'_{y}(1,1,3) = 2.$$

Запишем уравнение касательной плоскости в точке $M_0(1,1,3)$:

Z-3=2(x-1)+2(y-1), после преобразования уравнение плоскости примет вид: 2x+2y-z-1=0.

Уравнение нормали в точке $M_0(1,1,3)$ примет вид :

$$(x-1)/2 = (y-1)/2 = (z-3)/2$$

Пример 3. Составить уравнение касательной плоскости к поверхности $Z=(x^2+y^2)$ в точке M_0 (1,0,0)

Решение: находим выражения частных производных

$$Z'_{x} = \frac{2x}{(x^2+y^2)}; \quad Z'_{y} = \frac{2y}{(x^2+y^2)}.$$

Числовые значения производных в точке ${\rm M}_0$ (1,0,0) будут :

$$Z'_{x}(1,0,0) = 2; Z'_{y}(1,0,0) = 0.$$

Запишем уравнение касательной плоскости в точке ${\rm M}_0(1,0,0)$:

Z-0 = 2(x-1)+0(y-0), после преобразования уравнение плоскости примет вид: 2x - z - 2 = 0.

Примеры для самостоятельной работы:

- 1. . Составить уравнение касательной плоскости и нормали к поверхности $Z=\sin x \cdot \cos y$ в точке M_0 $(\frac{\pi}{4},\frac{\pi}{4},\frac{1}{2})$
- 2. Составить уравнение касательной плоскости и нормали к поверхности сферы $x^2 + y^2 + z^2 = 3$ в точке $M_0(1, 1, 1)$.
- 3. Составить уравнение касательной плоскости и нормали к поверхности параболоида $z = \frac{x^2 + y^2}{4}$ точке $M_0(2,2,2)$.

Исследование функции двух переменных на экстремум

Если в области D задана непрерывная функция двух переменных

Z = f(x,y) и в точке $M_0(x_{0,}y_0)$ є D функция имеет локальный экстремум(максимум или минимум), то в этой точке либо обе ее частные производные равны нулю $f'_x(x_0,y_0) = 0$; $f'_y(x_0,y_0) = 0$ ($M_0(x_{0,}y_0)$ —стационарная точка), либо одна из них не существует($M_0(x_{0,}y_0)$ —критическая точка).

Необходимые условия существования экстремума

Пример.1 Найти координаты стационарных точек заданной функции

$$z = x^2 + 5y^2 - 4xy - 2y + 1$$

Вычислим частные производные заданной функции:

$$z'_x = 2x - 4y$$
, $z'_y = -4x + 10y - 2$.

В точке локального экстремума либо обе ее частные производные равны нулю $f'_x(x_0, y_0) = 0$; $f'_y(x_0, y_0) = 0$ ($M_0(x_{0,y_0})$ —стационарная точка), либо одна из них не существует($M_0(x_{0,y_0})$ —критическая точка).

$$\begin{cases} z'_{x} = 0 \\ z'_{y} = 0 \end{cases} \begin{cases} 2x - 4y = 0 \\ -4x + 10y - 2 = 0 \end{cases} \begin{cases} x = 2y \\ -8y + 10y - 2 = 0 \end{cases} \begin{cases} x = 2 \end{cases}$$

Определили координаты одной стационарной точки $M_0(2,1)$.

Пример.2 Найти координаты стационарных точек заданной функции

$$z = -2x^2 + 16x - 3y^2 + 12y + 7$$

Вычислим частные производные заданной функции:

$$z'_{x}$$
= -4x+16, z'_{y} = -6y +12.

В точке локального экстремума либо обе ее частные производные равны нулю $f'_x(x_0, y_0) = 0$; $f'_y(x_0, y_0) = 0$ ($M_0(x_{0,y_0})$ —стационарная точка), либо одна из них не существует($M_0(x_{0,y_0})$ —критическая точка).

$$\begin{cases} z'_{x} = 0 \\ z'_{y} = 0 \end{cases} \begin{cases} -4x + 16 = 0 \\ -6y + 12 = 0 \end{cases} \begin{cases} x = 4 \\ y = 2 \end{cases}$$

Определили координаты одной стационарной точки $M_0(4,2)$.

Достаточные условия существования экстремума

Пусть в окрестности критической точки $M_0(x_{0,}y_0)$ функция f(x,y) имеет непрерывные частные производные до второго порядка включительно. Введем обозначения: $A = f''_{xx}(x_0, y_0)$, $B = f''_{xy}(x_0, y_0)$, $C = f''_{yy}(x_0, y_0)$.

Рассмотрим выражение: $D = AC - B^2$.

Если D>0, то в точке $M_0(x_{0,}y_0)$ функция f(x,y) имеет экстремум, если A<0, то максимум, если A>0, то минимум.

Если D < 0, то в точке $M_0(x_{0,}y_0)$ функция f(x,y) не имеет экстремума.

Если D = 0, требуются дополнительные исследования.

Пример.1

Найти экстремум функции $f(x, y) = x^2 + y^2 + xy - 3x - 6y$.

Решение: Найдем частные производные по x и y, чтобы вычислить координаты стационарной точки: $f'_x = 2x + y - 3$; $f'_y = 2y + x - 6$. Решим систему двух линейных уравнений: $\begin{cases} 2x + y - 3 = 0 \\ 2y + x - 6 = 0 \end{cases}$

Получим координаты стационарной точки $M_0(0,3)$. Найдем частные производные второго порядка функции f(x,y): $f''_{xx}=2$, $f''_{xy}=1$, $f''_{yy}=2$,

тогда в стационарной точке $M_0(0;3)$ параметры принимают значения: $A=2,\,B=1,\,C=2,\,D=3>0,\,$ следовательно в точке $M_0(0,3)$ имеется экстремум и это минимум, т.к. A=2>0. Вычислим минимальное значение функции: $f_0(0;3)=-9.$

Пример.2

Найти экстремум функции $f(x, y) = \frac{1}{2}xy + (47 - x - y)(\frac{x}{3} + \frac{y}{4})$.

Решение:

Найдем частные производные по x и y, чтобы вычислить координаты стационарной точки: $f'_x = {}^y/_2 - \left({}^x/_3 + {}^y/_4 \right) + {}^1/_3 (47 - x - y);$

$$f'_y = \frac{x}{2} - \left(\frac{x}{3} + \frac{y}{4}\right) + \frac{1}{4}(47 - x - y).$$

Решим систему двух линейных уравнений:

$$\begin{cases} x/_2 - \left(x/_3 + \frac{y}{4}\right) + \frac{1}{4}(47 - x - y) = 0\\ y/_2 - \left(x/_3 + \frac{y}{4}\right) + \frac{1}{3}(47 - x - y) = 0 \end{cases}$$

Для упрощения вычислений удобно привести оба уравнения к общему знаменателю — 12. Система примет вид:

$$\begin{cases} y + 8x = 188 \\ x + 6y = 141 \end{cases}$$

Получим координаты стационарной точки $M_0(21;20)$. Найдем частные производные второго порядка функции f(x,y): $f''_{xx} = -\frac{2}{3}$,

$$f''_{xy} = -\frac{1}{12}$$

$$f''_{yy} = -\frac{1}{2}$$
,

тогда в стационарной точке $M_0(21;20)$ параметры принимают значения: $A=-\frac{2}{3},\,B=-\frac{1}{12},\,C=-\frac{1}{2},\,D>0,$ следовательно в точке

 ${
m M}_0(21,20$) имеется экстремум и это максимум, т.к. ${
m A}=-\frac{2}{3}<0$.

Вычислим максимальное значение функции: $f_0(21; 20) = 282$.

Примеры для самостоятельной работы:

- **1.** Найти экстремум функции $f(x, y) = x^3 + y^3 15xy$
- **2.** Найти экстремум функции $f(x, y) = -x^2 + 5x y^2 2y + xy$.