Seminar 1

1. Find the lower bound and the upper bound, then sup, inf, max, min for each of the following:

(a) $(-1,1) \cup (2,\infty)$.

(c) $(-5,5) \cap \mathbb{Z}$.

(b) $(-3,2) \cup \{3\}.$

(d) Ø.

2. Find the sup, inf, max, min for each of the following sets:

(a) $\{x \in \mathbb{Q} \mid x^2 < 2\}.$

(c) $\{\frac{n}{n+1} \mid n \in \mathbb{N}\}.$

(b) $\{x^2 - 4x + 3 \mid x \in \mathbb{R}\}.$

(d) $\{2^{-k} + 3^{-m} \mid k, m \in \mathbb{N}\}.$

- 3. \bigstar Let $A = (0,1) \cap \mathbb{Q}$. Show that $\inf A = 0$, $\sup A = 1$, $\inf A = \emptyset$ and $\operatorname{cl} A = [0,1]$.
- 4. Suppose that S is nonempty and bounded above. Show that the set $-S := \{-x \mid x \in S\}$ is bounded below and $\inf(-S) = -\sup(S)$.
- 5. \bigstar Let $a, b \in \mathbb{R}$ with a > 0. If S is nonempty and bounded above, prove that

$$\sup_{x \in S} (ax + b) = a \sup_{x \in S} +b.$$

6. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be two functions defined on a nonempty set D. Prove that

$$\inf_{x \in D} \left(f(x) + g(x) \right) \ge \inf_{x \in D} f(x) + \inf_{x \in D} g(x) \quad \text{and} \quad \sup_{x \in D} \left(f(x) + g(x) \right) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x).$$

Give examples where the above inequalities are strict.

7. Which of the following sets are neighborhoods of 0?

$$[-1,1] \cup \{2\}; \quad (-1,1) \cap \mathbb{Q}; \quad \bigcap_{n=1}^{\infty} [-\frac{1}{n}, \frac{1}{n}].$$

8. * Let α be an irrational number and consider the set $S_{\alpha} := \{\{n\alpha\} \mid n \in \mathbb{N}\}$, where $\{\cdot\}$ denotes the fractional part. Show that the set S_{α} is dense in [0,1], meaning that its closure is [0,1]. Then show that the set $\{\{n\alpha\} + m \mid n,m \in \mathbb{Z}\}$ is dense in \mathbb{R} .

Homework questions are marked with \star . Bonus questions are marked with *. Solutions should be handed in at the beginning of next week's lecture.