

Aula 1

- Apresentação
- Organização da disciplina
 - Conteúdos
 - Bibliografia/apontamentos
 - Avaliação

Aula 2

- Classificação
- Arquitetura
- Equipamentos de rede
- Meios físicos de comunicação (cablagem)
- Software (serviços)

- Glossário REDES
 - LAN; PAN; WAN; WWAN; VLAN
 - IP; RING; MESH; BUS; STAR
 - MODEM; SWITCH; CLASSE A; ROUTER
 - COAXIAL; ÓTICO; INFRAVERMELHOS; STP
 - TCP/IP; OSI

O que é uma rede?

LAN (*Local Area Network*): rede em que todas as máquinas estão situadas dentro do mesmo espaço físico (ex: um edifício).

MAN (*Metropolitan Area Network*): rede que se encontra dispersa por um espaço geográfico mais vasto (ex: uma cidade).

WAN (*Wide Area Network*): rede que ultrapassa as fronteiras locais, metropolitanas e nacionais (ex: Internet).

O PC numa rede

Arquitetura Centralizada: primeiras redes compostas por terminais passivos ligados ao mesmo sistema que centralizava os dados e os programas.

Arquitetura Cliente/Servidor: redes onde o PC como cliente requisita os dados do servidor e processa-os localmente.

Transmissão *simplex*: modo de transmissão simples, realizada numa só direção (unidirecional).

Transmissão *half-duplex*: o tráfego é efetuado nos dois sentidos, porém a transmissão não é simultaneamente bidirecional, i.e., somente um dos lados pode transmitir, tendo o outro de esperar que a linha fique livre.

Transmissão *half-duplex*: o tráfego é efetuado nos dois sentidos, porém a transmissão não é simultaneamente bidirecional, i.e., somente um dos lados pode transmitir, tendo o outro de esperar que a linha fique livre.

Transmissão *full-duplex*: a comunicação é simultânea nos dois sentidos (ex: linha telefónica).

7	Aplicação	Suporte de aplicações
6	Apresentação	Representação de dados
5	Sessão	Regras de comunicação
4	Transporte	Controlo de transporte de dados
3	Rede	Gestão de endereçamento de dados
2	Ligação de dados	Controlo de transmissão
1	Física	Ligação física, cabos

Implementação do sistema aberto

- interoperabilidade (comunicação transparente), compatibilidade (execução em diferentes versões de um sistema)
- portabilidade (execução em diferentes arquiteturas)
- escalabilidade (capacidade de expansão) exigidas no sistema aberto (OSI)

<u>Define o que cada camada deve fazer</u>, isto é, indica os serviços que cada camada deve oferecer

Definição dos protocolos de camada: define os componentes que fazem parte do modelo (padrões de interoperabilidade e portabilidade), não só os relacionados à comunicação, mas também alguns não relacionados, como a estrutura de armazenamento de dados

<u>Seleção dos perfis funcionais</u>: realizada pelos órgãos de padronização de cada país que escolhem os padrões que lhes cabem, baseados em alguns critérios, por exemplo: condições tecnológicas, base instalada, visão futura

- Cada camada N utiliza exclusivamente os serviços da camada N-1, caso contrário as camadas deixam de fazer sentido.
- Cada camada N presta serviços à camada N+1, logo, qualquer camada N tem de saber invocar os serviços da camada N-1.

- Os serviços da camada N são disponibilizados à camada N+1 através de um ponto de acesso ao serviço (SAP – Service Access Point).
- Uma camada N oferece à camada N+1 um conjunto de serviços que contêm um "valor acrescentado" relativamente aos serviços disponibilizados pela camada N-1. Para o fazer, usa os serviços disponibilizados pela camada N-1.
- Entre duas camadas N de duas máquinas distintas, as trocas de dados obedecem a um protocolo específico dessa camada, que define as sequências de trocas de dados e o seu formato.

O MODELO TCP/IP

O protocolo TCP/IP é o protocolo mais usado actualmente nas redes locais. Devido à grande utilização deste protocolo na Internet, todos os fabricantes de sistemas operativos de redes o suportam.

Uma das grandes vantagens deste protocolo é a possibilidade dos dados poderem seguir caminhos distintos até o seu destinatário, independentemente do tamanho da rede.

O TCP/IP é um conjunto de protocolos, sendo os mais conhecidos o TCP - Transport Control Protocol e o IP - Internet Protocol.

O modelo TCP/IP

A arquitectura do TCP/IP é desenvolvida em quatro camadas: aplicação, transporte, Internet e interface de rede.

5-7	SMTP	DNS	NSP	HTTP	FTP	TELNET	
4	TCP		UDP			NVP	
3	ICMP		IP		ARP	RARP	
2	ETHERNET		ATM	TOKEN RING		OUTRAS	

Numa rede TCP/IP, cada dispositivo conectado à rede deve ter, pelo menos, um endereço IP, para identificar o dispositivo na rede a que pertence.

Ainda o modelo OSI...

modelação de sinais.

- 1. Endereços Físicos
- 2. Endereços lógicos
 - 1. MAC (*Media Acess Control*) placa de rede
 - 2. Configurado na placa de rede
- 1. 00-22-18-FB-7A-12 0022.18FB.7A12 00:22:18:FB:7A:12 (48 bits)
- 2. IPv4 192.168.10.1 2.83.6.2 10.10.10.1 (32 bits)
- 2. IPv6 1234:5678:90AB:CDEF:FEDC:BA09:8765:4321 (128 bits)

Com o objetivo de serem possíveis redes de diferentes dimensões, foram definidas cinco diferentes classes de endereços IP (Classes: A, B, C, D e E).

Com o objetivo de serem possíveis redes de diferentes dimensões, foram definidas cinco diferentes classes de endereços IP (Classes: A, B, C, D e E).

	Primeiro	Parte da rede (N) e		Pon		
Classe	Octeto	parte para hosts (H)	Máscara	Nº Redes	Endereços por rede	
А	1-127	N.H.H.H	255.0.0.0	126 (2 ⁷ -2)	16,777,214 (2 ²⁴ -2)	
В	128-191	N.N.H.H	255.255.0.0	16,382 (2 ¹⁴ -2)	65,534 (2 ¹⁶ -2)	
С	192-223	N.N.N.H	255.255.255.0	2,097,150 (2 ²¹ -2)	254 (2 ⁸ -2)	
D	224-239	Multicast	NA	NA	NA	
E	240-255	experimental	NA	NA	NA	

Exemplo de um endereço Classe A – 120.2.1.0 Exemplo de um endereço Classe B – 152.13.4.0 Exemplo de um endereço Classe C – 192.168.10.0

Endereços <u>Classe A permitem menos redes mas mais hosts por rede, enquanto por exemplo endereços classe C permitem mais redes mas menos endereços disponíveis por cada rede.</u>