

MS-EVS: Multispectral event-based vision for deep learning based face detection

Saad Himmi*, Vincent Parret+, Ajad Chhatkuli*, Luc Van Gool*

* Computer Vision Laboratory, ETH Zürich, Switzerland

⁺ Stuttgart Laboratory 1, Sony Semiconductor Solutions Europe, Sony Europe B.V.

(c)

MS-EVS Dataset

What is an event-camera?

Event Camera (EVS)

Sparse (Low power)

Low (µs) latency

Better HDR (log)

Regular Camera (APS)

- Detailed scene
- ~10 ms latency
- Bad when movement
- Bad at low light

Motivation

Existing EVS are MONOCHROMATIC (Grayscale)

→ Any benefit from color or infrared?

No existing dataset to explore if MS-EVS is worth it

No contrast in GS ≠ No contrast in each band

Main contributions

APS+EVS dataset for Face Detection Use simulation to create large-scale data (Sets: 2 large RGB – 1 MS – 1 real events)

First "fair" APS vs EVS comparison Same model, Same data and simulated EVS N.B: results are checked for real events too.

Introduce Multispectral events (MS-EVS) Capture event-based data over multiple bands and explore benefits of MS-EVS over GS

Introducing MS-EVS Dataset

Large RGB datasets for pre-training

Contains both APS and simulated events for 3 bands

TOTAL: ~3.5k videos at 24 fps (APS) and their events

Reuse Open-Source Datasets (

First Multispectral EVS dataset

EVS BGR EVS BGR+IR

Real EVS = High HDR!

→ Data for Finetuning and Experiments

Method

Results

Single-band (1 color) comparison

Face Detection mAP after finetuning on N-SpectralFace

Channel	Blue	460nm	500nm	Green	570nm	610nm	Red	700nm	Gray	NIR
APS	0.672	0.670	0.666	0.667	0.673	0.670	0.663	0.672	0.668	0.582
EVS	0.589	0.590	0.593	0.579	0.577	0.576	0.589	0.559	0.592	0.521

- → APS > EVS (more FP in events)
- → All bands perform the same (except IR, worse)

Multispectral comparison + Real events

Now, the models are trained on multiple bands:

Channel	N-Spec	ctralFace	Rea	al-SpectralFace		
Chamer	APS	EVS	AP	S EVS		
Grayscale (GS)	0.668	0.592	0.4	13 0.578		
Infrared (IR)	0.582	0.521	0.5	48 0.535		
GS+IR	0.693	0.626	0.4	73 0.607		
Blue+Red (BR)	0.670	0.615	-	_		
BR+IR	0.679	0.639	-	Background colo		
Color (BGR)	0.665	0.628	-	is mAP relative t		
BGR+IR	0.684	0.647	-	best single band		
BR+GS	0.672	0.626	-	best single ballu		
BR+GS+IR	0.688	0.645	-	<0%		
Hyperspectral (8ch)	0.664	0.645	-	0 to 2%		
8ch+IR	0.681	0.656	-	2 to 5%		
8ch+GS (9ch)	0.677	0.645	-	> 5%		
9ch+IR	0.671	0.657	-	/ / / / / / / / / /		
	_	/5 - 6				

- → APS EVS gap reduces (MS-EVS have less FP)
- → IR improves mAP for both APS/EVS (1 to 3%)
- → MS-EVS benefits MORE from MS than APS

Lior Wolf, et al. « Face recognition in unconstrained videos with matched background similarity», CVPR 2011. Jiankang Deng, et al. « Retinaface: Single-stage denseface localisation in the wild», CoRR 2019. Yiming Lin, et al. « Mobiface: A novel dataset for mobile face tracking in the Wild», CoRR 2019. Gehrig, Daniel, et al. «Video to events: Recycling video datasets for event cameras», CVPR 2020.