I. Puissances d'un nombre relatif.

1) Exposant entier positif.

Définition:

a désigne un nombre relatif et n un entier positif non nul.

 a^n désigne le produit de n facteurs égaux à $a:a^n=\underbrace{a\times a\times ...\times a}_{n\ facteurs}$

Le nombre n s'appelle un exposant.

Exemple:

 3^4 est le produit de 4 facteurs égaux à 3. Donc : $3^4 = 3 \times 3 \times 3 \times 3 = 81$

Calculer:

$$7^3 = 7 \times 7 \times 7 = 343$$
 $9^7 = 9 \times 9 = 4782969$ $(-3)^5 = (-3) \times (-3$

$$\left(\frac{2}{3}\right)^{4} = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{16}{81} \qquad \left(-\frac{5}{7}\right)^{5} = \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) \times \left(-\frac{5}{7}\right) = -\frac{3125}{16807} = -$$

Cas particulier: $a^1 = a$ exemple: $5^1 = 5$

Convention: pour $a \neq 0$, on convient que : $a^0 = 1$ exemple : $7^0 = 1$

Attention: Ne pas confondre!!!

$$(-5)^4 = (-5) \times (-5) \times (-5) \times (-5) = +625$$

$$-5^4 = -5 \times 5 \times 5 \times 5 = -625$$

Applications:

Quel est le signe des nombres suivants ?

 $(-7)^{2012}$: Produit de 2012 facteurs tous égaux à (-7). Or, 2012 est un nombre pair. Donc $(-7)^{2012}$ est positif.

 $(-11)^{93}$: Produit de 93 facteurs tous égaux à (-11). Or,93 est un nombre impair. Donc $(-11)^{93}$ est négatif.

 $-5^{110} = -5 \times 5 \times 5 \times \dots \times 5$ Il y a un seul signe moins donc le nombre -5^{110} est négatif.

2) Exposant entier négatif.

A l'aide de la calculatrice, calculer :

$$2^{-3} = 0,125$$
 et $\frac{1}{2^3} = \frac{1}{8} = 0,125$ On remarque que $2^{-3} = \frac{1}{2^3}$

$$5^{-2} = 0.04$$
 et $\frac{1}{5^2} = \frac{1}{25} = 0.04$ On remarque que $5^{-2} = \frac{1}{5^2}$

Définition:

a et b désignent deux nombres relatifs non nuls.

n désigne un entier non nul.

 a^{-n} désigne l'inverse de a^{n} :

$$a^{-n}=\frac{1}{a^n}$$

 $\left(\frac{a}{b}\right)^{-n}$ désigne l'inverse de $\left(\frac{a}{b}\right)^{n}$:

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$$

Exemple:

$$2^{-3}$$
 est l'inverse de 2^3 donc $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

Cas particulier:

Pour $a \neq 0$, a^{-1} est l'inverse de a.

Exemple:

$$5^{-1}$$
 est l'inverse de 5. Donc, $5^{-1} = \frac{1}{5}$

Calculer:

Donner les résultats sous forme de fractions irréductibles.

$$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$$

$$9^{-1} = \frac{1}{9^{1}} = \frac{1}{9}$$

$$7^{-5} = \frac{1}{7^5} = \frac{1}{16807}$$

$$4^{-2} = \frac{1}{4^2} = \frac{1}{16} \qquad 9^{-1} = \frac{1}{9^1} = \frac{1}{9} \qquad 7^{-5} = \frac{1}{7^5} = \frac{1}{16807} \qquad (-5)^{-4} = \frac{1}{(-5)^4} = \frac{1}{625}$$

$$\left(\frac{4}{5}\right)^{-3} = \left(\frac{5}{4}\right)^3 = \frac{5}{4} \times \frac{5}{4} \times \frac{5}{4} = \frac{125}{64}$$

$$\left(\frac{4}{5}\right)^{-3} = \left(\frac{5}{4}\right)^{3} = \frac{5}{4} \times \frac{5}{4} \times \frac{5}{4} = \frac{125}{64} \qquad \left(-\frac{2}{3}\right)^{-6} = \left(-\frac{3}{2}\right)^{6} = \left(-\frac{3}{2}\right) \times \left(-\frac{$$

Applications:

Quel est le signe des nombres suivants ?

$$(-5)^{-2012} = \frac{1}{(-5)^{2012}}$$
 Il y a 2012 facteurs négatifs (au dénominateur). Or, 2012 est un nombre pair. Donc $(-5)^{-2012}$ est positif.

$$(-11)^{-93} = \frac{1}{(-11)^{93}}$$
Il y a 93 facteurs négatifs (au dénominateur). Or, 93 est un nombre impair. Donc $(-11)^{-93}$ est négatif.

$$-5^{-110} = \frac{1}{-5^{110}}$$
Il y a un seul signe moins donc le nombre -5^{-110} est négatif.

$$\left(\frac{7}{3}\right)^{-116} = \left(\frac{3}{7}\right)^{116}$$
 Produit de 116 facteurs tous égaux à $\frac{3}{7}$. Donc $\left(\frac{7}{3}\right)^{-116}$ est positif.

$$\left(-\frac{5}{9}\right)^{-116} = \left(-\frac{9}{5}\right)^{116}$$
 Produit de 116 facteurs tous égaux à $-\frac{9}{5}$. Or, 116 est un nombre pair. Donc $\left(-\frac{5}{9}\right)^{-116}$ est positif.

3) Priorités opératoires.

Attention, quand une expression comporte des puissances, on calcule en priorité :

- 1.Les calculs entre parenthèses.
- **2.**Les puissances.
- **3.**Les multiplications et les divisions.
- **4.**Les additions et les soustractions.

Exemples:

Calculer (écrire les étapes intermédiaires) :

$$A = 50 - 3 \times 4^2 = 50 - 3 \times 16 = 50 - 48 = 2B = 5 - 3^2 = 5 - 9 = -4$$

$$C = 5 \times (-3)^2 - (-3)^3 = 5 \times 9 - (-27) = 45 + 27 = 72$$

$$D = 2^{-2} + 3^{-2} = \frac{1}{2^2} + \frac{1}{3^2} = \frac{1}{4} + \frac{1}{9} = \frac{9}{36} + \frac{4}{36} = \frac{13}{36}$$

$$E = 4^{-2} - \left(\frac{2}{3}\right)^{-3} = \frac{1}{4^2} - \left(\frac{3}{2}\right)^3 = \frac{1}{16} - \frac{27}{8} = \frac{1}{16} - \frac{54}{16} = -\frac{53}{16}$$

$$F = -2 \times 3^{-2} - 3^2 \times 4^{-3} \times \frac{4}{3} = -2 \times \frac{1}{3^2} - 3^2 \times \frac{1}{4^3} \times \frac{4}{3} = -2 \times \frac{1}{9} - 3 \times 3 \times \frac{1}{4 \times 4 \times 4} \times \frac{4}{3} = \frac{-2}{9} - \frac{3}{16} = \frac{-32}{144} - \frac{27}{144} = -\frac{59}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}{144} = -\frac{1}{144} - \frac{1}{144} - \frac{1}$$

II- Puissances de 10.

1) Définitions.

n désigne un nombre **entier positif** non nul.

On note 10^n le produit de n facteurs tous égaux à 10.

$$10^{n} = \underbrace{10 \times ... \times 10}_{\text{n facteurs}} = 1\underbrace{0...0}_{\text{n zeros}}$$

Applications:

 $10^5 = 100 \ 000$

 $10^9 = 1\ 000\ 000\ 000$

 $10^1 = 10$

On note 10^{-n} l'inverse de 10^{n} .

$$10^{-n} = \frac{1}{10^n} = \underbrace{\frac{1}{10 \times ... \times 10}}_{\text{n facteurs}} = \underbrace{\frac{1}{10...0}}_{\text{n zeros}} = 0, \underbrace{0...01}_{\text{n décimales}}$$

Applications:

 $10^{-2} = 0.01$

 $10^{-5} = 0,000 \ 01$

 $10^{-9} = 0,000\ 000\ 001$

 $10^{-1} = 0.1$

Attention :Par convention $10^0 = 1$

2) Calculer avec des puissances.

Activités:

a. Après avoir décomposé le produit, écrire le résultat sous la forme d'une puissance de 10 :

и.	2. Après avoir décomposé le produit, écriré le résultat sous la forme d'une puissance de 10.						
	$A = 10^3 \times 10^2$	$B = 10^4 \times 10^5$	$C = 10^{-5} \times 10^{7}$	On peut conjecturer la propriété :			
	$\mathbf{A} = 1\ 000 \times 100$	$\mathbf{B} = 10 \ 000 \times \ 100 \ 000$	C = 0,00001×10 000 000	Etant donnés deux entiers relatifs n et p , on a :			
	$\mathbf{A} = 100 \ 000$	B = 1 000 000 000	C = 100	$10^n \times 10^p = 10^{n+p}$			
	$\mathbf{A} = 10^5$	$\mathbf{B} = 10^9$	$C = 10^2$				

b. Même consigne :

$A = \frac{10^7}{10^3}$	$B = \frac{10^8}{10^5}$	$C = \frac{10^{-5}}{10^2}$	On peut conjecturer le propriété : Etant donnés deux entiers relatifs n et p ,
$A = \frac{10000000}{1000}$	$\mathbf{B} = \frac{100000000}{100000}$	$C = \frac{0,00001}{100}$	on a :
$\mathbf{A} = 10 \ 000$	B = 1000	C = 0,000 000 1	$\frac{10^n}{10^p} = 10^{n-p}$
$\mathbf{A} = \mathbf{10^4}$	$\mathbf{B} = 10^3$	$C = 10^{-7}$	

c. Même consigne:

 $5^7 \times 4^7 = (5 \times 4)^7 = 20^7$

$A = \left(10^3\right)^2$	$B = \left(10^2\right)^4$	$C = \left(10^{-5}\right)^2$	<u>Propriété :</u>
$\mathbf{A} = (1000)^2$	$B = (100)^4$	$C = (0,00001)^2$	Etant donnés deux entiers relatifs n et p , on a :
$\mathbf{A} = 1\ 000 \times 1\ 000$	B=100×100×100×100	C = 0,00001×0,00001	
A = 1 000 000	B = 100 000 000	C = 0,000 000 000 1	$(10^n)^p = 10^{n \times p}$
$\mathbf{A} = \mathbf{10^6}$	$\mathbf{B} = 10^8$	$C = 10^{-10}$	

Applications: Ecrire les nombres sous la forme a^n :

$$10^{2} \times 10^{4} = \mathbf{10}^{2+4} = \mathbf{10}^{6} \qquad 10^{7} \times 10^{-11} = \mathbf{10}^{7+(-11)} = \mathbf{10}^{-4} \qquad 10^{-4} \times 10^{-7} = \mathbf{10}^{-4+(-7)} = \mathbf{10}^{-11}$$

$$\frac{10^{12}}{10^{8}} = \mathbf{10}^{12-8} = \mathbf{10}^{4} \qquad \frac{10^{8}}{10^{15}} = \mathbf{10}^{-7} \qquad \text{Attention !} \qquad \frac{10^{5}}{10^{-9}} = \mathbf{10}^{5-(-9)} = \mathbf{10}^{5+9} = \mathbf{10}^{14}$$

$$\frac{10}{10^{7}} = \frac{10^{1}}{10^{7}} = \mathbf{10}^{1-7} = \mathbf{10}^{-6} \qquad (10^{4})^{7} = \mathbf{10}^{4\times7} = \mathbf{10}^{28} \qquad (10^{-3})^{-9} = \mathbf{10}^{(-3)\times(-9)} = \mathbf{10}^{27}$$

$$(10^{6})^{-8} = \mathbf{10}^{6\times(-8)} = \mathbf{10}^{-48} \qquad \frac{1}{10^{-3}} = \frac{10^{0}}{10^{-3}} = \mathbf{10}^{0-(-3)} = \mathbf{10}^{3} \qquad \frac{1}{10^{5}} = \frac{10^{0}}{10^{5}} = \mathbf{10}^{0-5} = \mathbf{10}^{-5}$$

III- Ecriture scientifique d'un nombre décimal.

Activité:

Donner l'écriture décimale des nombres suivants :

$$0,123\times10^2=12,3$$

$$1\ 230\times10^{-2} = 12,3$$

$$0,000\ 123\times10^5 = 12,3$$

$$1,23\times10^1 = 12,3$$

Un nombre a plusieurs écritures utilisant les puissances de 10, mais une seule est appelée <u>écriture</u> <u>scientifique</u>(ou notation scientifique), c'est-à-dire de la forme « $a \times 10^n$ » avec :

 $1 \le a < 10$ et <u>n</u> est un entier positif ou négatif.

La notation (ou écriture) scientifique du nombre 12,3 est 1,23×10¹.

Applications: Donner l'écriture scientifique des nombres suivants:

$$A = 120\ 000\ 000\ 000\ =1,2\times10^{11}$$

$$B = 0.000\ 000\ 000\ 002\ 01 = 2.01 \times 10^{-12}$$

$$C = 145\ 000\ 000 = 1.45 \times 10^8$$

$$D = 0.000002 = 2 \times 10^{-6}$$

$$E = 1 000 000 = 1 \times 10^6$$

$$F = 0.000\ 001\ 101 = 1.101 \times 10^{-6}$$

$$G = 450\ 000 \times 10^8 = 4.5 \times 10^5 \times 10^8 = 4.5 \times 10^{13}$$

$$H = 123\ 000\ 000\ 000\ 000\ 000 \times 10^{-18} = 1,23 \times 10^{17} \times 10^{-18} = 1,23 \times 10^{-1}$$

$$I = 0.000 \ 145 \times 10^{13} = 1.45 \times 10^{-4} \times 10^{13} = 1.45 \times 10^{9}$$

$$J = 0.000\ 000\ 203 \times 10^{-11} = 2.03 \times 10^{-7} \times 10^{-11} = 2.03 \times 10^{-18}$$

$$K = 12 \times 10^{-5} \times 9 \times 10^9 = 12 \times 9 \times 10^{-5} \times 10^9 = 108 \times 10^4 = 1.08 \times 10^2 \times 10^4 = 1.08 \times 10^6$$

$$L = 2 \times 10^{-3} + 5 \times 10^{-2} = 2 \times 0,001 + 5 \times 0,01 = 0,002 + 0,05 = 0,052 = 5,2 \times 10^{-2}$$

$$M = \frac{7 \times 10^{-12} \times 6 \times 10^{5}}{21 \times 10^{4}} = \frac{7 \times 6 \times 10^{-12} \times 10^{5}}{21 \times 10^{4}} = \frac{42 \times 10^{-7}}{21 \times 10^{4}} = 2 \times 10^{-11}$$

$$N = \frac{7 \times 10^{-12} \times 0.04 \times 10^{15}}{2 \times 10^{-4} \times 2.5 \times (10^5)^{-3}} = \frac{7 \times 0.04 \times 10^{-12} \times 10^{15}}{2 \times 2.5 \times 10^{-4} \times 10^{-15}} = \frac{0.28 \times 10^3}{5 \times 10^{-19}} = 0.056 \times 10^{3 - (-19)} = 0.056 \times 10^{22} = 5.6 \times 10^{-2} \times 10^{22} = 5.6 \times 10^{-2}$$

Donner l'écriture décimale du nombre :

$$A = 10^8 + 10^5 + 10^2 + 10^{-1} + 10^{-5}$$

$$A = 100\ 000\ 000 + 100\ 000 + 100\ + 0.1\ + 0.000\ 01$$

$$A = 100\ 100\ 100,100\ 01$$