Geometria simplética

Índice

1	Aula 1 1.1 Origem da geometria simplética	4
	 1.2 Formalismo hamiltoniano (simplificado) 1.3 Evolução temporal (equações de Hamilton) 1.4 Álgebra linear simplética 	4 5 7
2	Aula 22.1 Subespaços de evs2.2 Equivalência entre ev's simpléticos	8 8 10
3	Aula 3	12
4	Aula 4	12
5		12 12
6	6.1 Colchete de Poisson	15 15 17
7	7.1Subvariedades7.2Pausa para distribuições7.3Voltando	20 20 21 21 22
8	8.1 Alguns exemplos de subvariedades lagrangianas	22 23 23
9	 9.1 Aplica ção ao teorema de Darboux 9.2 Teorema de Darboux generalizado (Weinstein) 9.2.1 Sobre o Lema de Poincaré relativo 9.2.2 Vizinhança tubular 	26 28 29 30 30
10	10.1 Darboux generalizado versão 2.0	30 32 33

11	Aula 11	35
	11.1 Aplicação (de Weinstein): pontos fixos de simplectomorifsmos	35
	11.2 Outra classe de exemplos de variedades simpléticas: órbitas coadjuntas .	36
	11.2.1 Revisão de grupos e álgebras de Lie	36
	11.2.2 Sobre SU(2)	38
10	Aula 12	38
12	12.1 Álgebras de Lie	38
	12.1 Algebras de Lie	39
	12.3 Exponencial	41
	12.4 Propriedades fundamentais	41
	12.5 Teoremas fundamentais de Lie (da álgebra para o grupo)	42
	12.6 Teoremas tandamentais de Bie (da digesta para o grapo)	12
13	Aula 13	43
	13.1 Ações	43
	13.2 Descrição infinitesimal de G-ações	4 5
	13.3 No caso de representações	46
	13.4 Geradores infinitesimais das ações adjunta e coadjunta	46
	13.4.1 Dualização	47
14	Aula 14	48
	14.1 Ações infinitesimais (g-ações)	49
	14.2 Mais sobre ações	50
	14.3 De volta à geometria simplética	52
	•	
15	Aula 15	54
	15.1 Exemplos concretos (da ação coadjunta)	54
	15.2 Ponto de vista "Poisson"	57
	15.2.1 Descrição tensorial (do colchete de Poisson)	58
	15.2.2 Distribuição característica	58
	15.2.3 Uma clase especial de variedades de Poisson	58
16	Aula 16: ações Hamiltonianas e aplicação momento	59
	16.1 Caso mais simples	59
	16.2 Caso geral	59
	16.3 Princípio de Noether	61
	16.4 Exemplos de ações Hamiltonianas	61
	16.5 De forma mais geral	62
	16.6 Aplicações momento: quando existem e o que fazer com elas	63
	16.7 Quocientes de ações por grupos de Lie	64
	16.7.1 Criterio para ações regulares	64
17	Aula 17: redução simplética (quociente simplético)	65
1/	17.1 Uma proposição parecida ão exerício 5 da lista 3	65
	17.2 G conexo	65
	17.3 G qualquer	65
	17.4 Redução simplética	66

	17.5 Alguns comentários sobre o teorema	68 68
18	Aula 18 18.1 Outros exemplos 18.1.1 Reduções de fibrados cotantentes 18.1.2 Um espaço de moduli 18.1.3 Um exemplo de mecânica 18.1.4 Um exemplinho de mecânica com geometria riemanniana	69 70 70 71 71 73
19	Aula 19: comentários de possíveis projetos19.1 Super exemplo (de ação hamiltoniana e redução simplética)19.2 Aplicação de redução: cortes simpléticos19.3 Dois resultados de ações hamiltonianas por toros19.4 Variedade simpléticas tóricas	74 74 76 77 77
20	Aula 20: Exitência e unicidade de aplicações momento 20.1 A primeira obstrução : um diagraminha commutativo	78 78 79 80 81 82
21	Aula 2121.1 Hiperfície de contato	82 82 84
22	Aula 2222.1 Exemplo de hiperfície que não é de contato22.2 Simplectização	85 85 86 87 87
23	Aula 23: dinâmica Hamiltoniana	88
24	Aula 2424.1 Prova do teorema de Reoccrência de Poincaré	90 90 92 93
25	Aula 25	94
26	Aula 26	96
27	Aula 27	96

1 Aula 1

Além do material do curso, uso bastante Lee, Intro. to Smooth Manifolds, e Tong, Lectures on Classical Mechanics.

1.1 Origem da geometria simplética

- Formulação da geométrica da mecânica (séc XIX).
- Versão moderna, 1960-70.
- Diferentes descripções da mecânica clásica:
 - Newtoniano: F = ma, ecuação diferencial ordinária de segunda ordem.
 - Lagrangiano: princípio gravitacional (Eq. E-L). Following Tong, these equations are:
 - Hamiltoniano.

1.2 Formalismo hamiltoniano (simplificado)

This happened in the 1880's (according to Tong).

- Espaço de base $\mathbb{R}^2 = \{(p, q)\}$ (conjunto de estados)
- Função Hamiltoniana $H \in C^{\infty}(\mathbb{R}^{2m})$.
- Campo Hamiltoniano: $X_H \in \mathfrak{X}(\mathbb{R}^{2n})$.

$$X_H = \begin{pmatrix} \frac{\partial H}{\partial p_i} \\ -\frac{\partial H}{\partial q_i} \end{pmatrix} = \begin{pmatrix} 0 & | \text{Id}_n \\ -| \text{Id}_n & 0 \end{pmatrix}$$

Which coincides with Lee's formula

$$\begin{split} \dot{x}^i(t) &= \frac{\partial H}{\partial y^i}(x(t),y(t)),\\ \dot{y}^i(t) &= -\frac{\partial H}{\partial x^i}(x(t),y(t)) \end{split}$$

where Lee defined the *Hamiltonian vector field* as the *analogue of the gradient with respect to the symplectic form*, that is, satisfying $\omega(X_H,Y)=dH(Y)$ for any vector field Y.

Also look at Tong's formulation:

$$\begin{split} \dot{p}_i &= -\frac{\partial H}{\partial q_i} \\ \dot{q}_i &= \frac{\partial H}{\partial p_i} \\ -\frac{\partial L}{\partial t} &= \frac{\partial H}{\partial t} \end{split}$$

where L is the Lagrangian and the Hamiltonian function H is obtained as the Legendre transform of the Langrangian. Tong shows how the Hamiltonian formalism allows to replace the $n\ 2^{nd}$ order differential equations by $2n\ 1^{st}$ order differential equations for q_i and p_i .

In practice, for solving problems, this isn't particularly helful. But, as we shall see, conceptually it's very useful!

At least for me, it looks like a first insight on why symplectic geometry lives on even-dimensional spaces.

1.3 Evolução temporal (equações de Hamilton)

Curvas integrais

$$c(t) = (q_i(t), p_i(t))$$

de X_H, ie.

$$c'(t) = X_H(c(t)) \iff \begin{cases} \dot{q}_\mathfrak{i} &= \frac{\partial H}{\partial p_\mathfrak{i}} \\ \dot{p}_\mathfrak{i} &= \frac{\partial H}{\partial a_\mathfrak{i}} \end{cases}$$

que são as Equações de Hamilton (de novo).

Exemplo Partícula de massa \mathfrak{m} em $\mathbb{R}^3 = \{q_1, q_2, q_3\}$ sujeita a campo de força conservativa

$$F = -\nabla V, \quad V \in C^{\infty}(\mathbb{R}^3)$$
$$q(t) = (q_1, q_2, q_3)$$

Equação de Newton:

$$m\ddot{q} = \partial V(q) \iff m\ddot{q}_{\mathfrak{i}} = \frac{\partial V}{\partial q_{\mathfrak{i}}}(q), \qquad \mathfrak{i} = 1,2,3.$$

Ponto de vista Hamiltoniano:

- Espaçode fase $\mathbb{R}^5 = \{(q_i, p_i)\}.$
- Hamiltoniano: $H(p,q) = \frac{1}{2m} \sum_{i} p_i^2 + V(q)$
- Equações de Hamilton

$$\begin{cases} \dot{q}_i = p_i/m \iff p_i = m\dot{q}_i \\ \dot{p}_i = -\frac{\partial V}{\partial q_i} \end{cases}$$

$$H \in C^{\infty}(\mathbb{R}^{2n}) \longrightarrow \nabla H \xrightarrow{-J_0 \nabla H} X_H$$

where $J_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. So it looks like another way of obtaining (defining?) the Hamiltonian vector field is to take the gradient of H and then applying J_0 . So it would be nice to see eventually that this is the same as Lee's definition of "symplectic gradient" so to say.

Compondo ∇H e X_H : taxa de variação de H ao longo dos fluxos. Mas: o que é a composição de dois campos vetoriais? Tal vez é a derivada exterior de H, dH em lugar do gradiente de H.

• Fluxo gradiente

$$\begin{split} c'(t) &= \nabla H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle = \| \nabla H(c(t)) \|^2 \end{split}$$

∇H aponta na direção que H variação.

• Fluxo hamiltoniano

$$\begin{split} c'(t) &= X_H(c(t)) \\ \frac{d}{dt} H(c(t)) &= \langle \nabla H(c(t)), c'(t) \rangle \\ &= \langle \nabla H(c(t)), -J_0 \nabla H(c(t)) \rangle \\ &= 0 \end{split}$$

?, $H \in C^{\infty}(\mathbb{R}^{2n})$, $H \rightsquigarrow dH \in \Omega^{1}(\mathbb{R}^{2n})$.

• *Gradiente*. $\nabla H(x) \in T_x \mathbb{R}^{2n} = \mathbb{R}^{2n}$ é único.

$$g_0(\nabla H(x), \cdot) = \langle \nabla H(x), \cdot \rangle = dH(x)$$

onde g_0 é a métrica Euclidiana. De outra forma,

$$g_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$
$$u \mapsto g_0(u, \cdot)$$

assim,

$$\nabla H(x) \stackrel{\sim}{\to} dH(x).$$

Analogamente, $X_H(x) \in \mathbb{R}^{2n}$ é único tal que?

$$\Omega_0(X_H(x), \cdot) = dH(x), \qquad \Omega_0(u, v) = -dJ_0V,$$

ou:

$$\Omega_0^{\flat}: \mathbb{R}^{2n} \xrightarrow{\sim} (\mathbb{R}^{2n})^*$$

$$X_{\mathsf{H}}(x) \longleftrightarrow d\mathsf{H}(x)$$

$$\omega_0 = \sum_{i=1}^n dq_i \wedge dp_i \in \Omega_2(\mathbb{R}^{2n}),$$

 X_H é único tal que $i_{X_H}\omega_0=dH$. So this was Lee's definition $\ddot{\smile}$.

Definição (temporária) Uma *variedade simplética* é (M, ω) , $\omega \in \Omega^2(M)$ localmente isomorfa a $(\mathbb{R}^{2n}, \sum_i dq_i \wedge dp_i)$.

[Dessenho mostrando que o pullback da carta coordenada leva ω em $\sum_i dq_i \wedge dp_i$.

Teorema (de Darboux, em Lee) Let (M, ω) be a 2n-dimensional symplectic manifold. For any $p \in M$ there are smooth coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ centered at p in which ω has the coordinate representation $\omega = \sum_{i=1}^n dx^i \wedge dy^i$.

And Lee does a proof using the theory of time-dependant flows.

1.4 Álgebra linear simplética

V espaço vetorial real, $\Omega: V \times V \to \mathbb{R}$ forma bilinea ansimétrica, i.e. $\Omega \in \Lambda^2 V^*$.

Definição Ω é não degenerada se
$$\Omega(\mathfrak{u}, \mathfrak{v}) = 0 \forall \mathfrak{v} \iff \mathfrak{u} = 0.$$

Following Lee, this can also be stated as: for each nonzero $v \in V$ there exists $w \in V$ such that $\omega(v,w) \neq 0$; and it is equivalent to the linear map $v \mapsto \omega(v,\cdot) \in V^*$ being invertible, and also that in terms of some (hence every) basis, the matrix (ω_{ij}) representing ω is nonsingular.

Ou seja, se

$$\ker \Omega := \{ u \in V | \Omega(u, v) = 0 \ \forall v \}$$

então Ω é não degenerada se e somente se $\ker(\Omega) = \{0\}.$

 $\Omega \in \Lambda^2 V^*$ é não degenerada é chamada simplética. (V,Ω) é um *espaço vectorial simplético*.

Observação

1. $\{e_1,...,e_n\}$ base de V, Ω é representado por uma matriz antisimétrica

$$A = (A_{ij}),$$
 $A_{ij} = \Omega(e_i, e_j),$ $\Omega(u, v) = u^t A, v.$

2. Ω é não degenerada se e somente se $det(A) \neq 0$.

Note que

$$\det A = \det A^{t} = \det(-A) = (-1)^{\dim V} \det(A)$$

implica que
$$\det A \neq 0 \implies m = \dim V = 2n$$

3. $\Omega \in \Lambda^2 V^*$. Defina

$$\Omega^{\flat}:V\longrightarrow V^{*}$$

$$\mathfrak{u}\longmapsto\Omega(\mathfrak{u},\cdot)$$

note que $\ker \Omega = \ker(\Omega^{\flat})$, assim Ω é não degenerada se e somente se Ω^{\flat} é isomorfismo.

2 Aula 2

2.1 Subespaços de evs

Sejam (V, Ω) evs e $V \subseteq V$ subespaço.

Definição Seja (V,Ω) um espaço vetorial simplético. Dado um subespaço $W\subseteq V$, definimos seu *ortogonal simplético* como

$$W^{\Omega} := \{ v \in V | \Omega(v, w) = 0 \ \forall w \in W \}$$

Note que se

$$\begin{split} \Omega^{\flat}: V &\longrightarrow V^* \\ v &\longmapsto i_{\nu} \Omega = \Omega(\nu, \cdot) \end{split}$$

temos que

$$\ker \Omega := \ker \Omega^{\flat} = W^{\Omega}.$$

Considere a restrição de Ω à W:

$$i: W \hookrightarrow V$$
, $i^*\Omega = \Omega|_W \in \Lambda^2 W^*$,

então

$$\text{ker}(\Omega|_W) = W \cap W^\Omega$$

Casos de interesse:

- *Isotrópico*: $W \subseteq W^{\Omega}$ ($\iff \Omega|_{W} \equiv 0$).
- Coisotrópico: $W^{\Omega} \subseteq W$.
- Lagrangiano: $W = W^{\Omega}$.
- *Simplético*: $W \cap W^{\Omega} = \{0\}$ ($\Omega|_W$ é não degenerado (=simplético)).

Lemma $\dim W + \dim W^{\Omega} = \dim V$.

Demostração.

$$\Omega^1: V \xrightarrow{\sim} V^*$$
$$\mathfrak{u} \longmapsto \Omega(\mathfrak{u},\cdot)$$

Note que $W^{\Omega} \mapsto \mathsf{Ann}(W)$, assim

 $\dim W + \dim \operatorname{Ann}(W)' = \dim V$

Observação

- $W \subseteq V$ subespaço simplético se e somente se $V = W \oplus W^{\Omega}$.
- W isotrópico \implies dim $W \leqslant \frac{\dim V}{2}$.
- W coisotrópico \implies dim $W \geqslant \frac{\dim V}{2}$.
- W Lagrangiano se dim $W = \frac{\dim V}{2}$.

De fato, W é Lagrangiano se e somente se W é isotrópico e dim $W = \frac{\dim V}{2}$.

Exercício

- $(W^{\Omega})^{\Omega} = \Omega$ (W isotrópico se e somente se W^{Ω}).
- $(W_1 \cap W_2)^{\Omega} = W_1^{\Omega} + W_2^{\Omega}$.

Exemplo

- Subespaços de dimensão 1 são isotrópicos (subespaços de codimensão 1 são coisotrópicos).
- $V = V \oplus W^*$, onde V tem a forma Ω_{can} ? e W e W^* são Lagrangianos.
- \mathbb{R}^{2n} , $\{e_1, \dots, e_n, f_1, \dots, f_n\}$ base simplética, então $span\{e_i, f_i\}$ é simplético, e $span\{e_1, \dots, e_k\}$ é isotrópico (se k = n é Lagrangiano).
- (V_1,Ω_1) e (V_2,Ω_2) evs's, $T:V_1\to V_2$ isometría linear, $graf(T):=\{(\mathfrak{u},T\mathfrak{u}):\mathfrak{u}\in V_1\}\subseteq V_1\times V_2$. T é simplectomorfismo se e somente se graf(T) é um subespaço Lagrangiano em $V_1\times V_2$.
- dim graf(T) = dim $V_1 = \frac{1}{2} \dim(V_1 \times V_2)$.
- $\bullet \ \Omega_{V_1 \times \bar{V_2}}\big((u,\mathsf{T} u),(\nu,\mathsf{T} \nu)\big) = \Omega\big(u,\nu\big) \underbrace{\Omega_2\big(\mathsf{T} u,\mathsf{T} \nu\big)}_{=\mathsf{T}^*\Omega_2(u,\nu)} (=0 \iff \Omega_1 = \mathsf{T}^*\Omega_2).$

Teorema (Existência das bases simpléticas) Para cualquer (V, Ω) evs existe uma base simplética.

Demostração. Seja $e_1 \in V \setminus \{0\}$. Como Ω é não degenerada, existe $f_1 \in V$ tal que $\Omega(e_1, f_1) = 1$. Considere $W_1 = \text{span}\{e_1, f_1\}$. Então $\Omega|_{W_1}$ é não degenerado (ie. W_1 é simplético), o que acontece se e somente se $V = W_1 \oplus W_1^{\Omega}$. Assim, existem $e_2 \neq 0$ in W_1^{Ω} e $f_2 \in W_1^{\Omega}$ tal que $\Omega(e_2, f_2) = 1$, etc... $(V = W_1 \oplus W_2 \oplus \ldots \oplus W_n)$. O conjunto $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ é uma base simplética.

Exercício V ev de dimensão 2n e $\Omega \in \Lambda^2 V^*$ é não degenerada se e somente se $\Omega^n = \Omega \wedge \ldots \wedge \Omega \in \Lambda^{2n} V^* \neq 0$.

2.2 Equivalência entre ev's simpléticos

 (V,Ω) e (V',Ω') são *equivalentes* se existe um *simplectomorfismo* linear $\phi:V\stackrel{\sim}{\to}V'$ (isometría linear) tal que

$$\phi^*\Omega'=\Omega\in\Lambda^2V^*$$

onde

$$\varphi^*\Omega'(\mathfrak{u},\mathfrak{v}) = \Omega'(\varphi(\mathfrak{u}),\varphi(\mathfrak{v}).$$

Dado (V, Ω) evs, definimos

$$Sp(V) := \{T \in GL(V) | T^*\Omega = \Omega \}$$

Exemplo

1. $V = \mathbb{R}^{2n}$, $\Omega_0(\mathfrak{u}, \mathfrak{v}) = -\mathfrak{u}^T J_0 \mathfrak{v}$ onde $J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, com base canônica $\{e_1, \dots, e_n, f_1, \dots, f_n\}$. Temos

$$\begin{cases} \Omega_0(e_i, e_j) = 0\\ \Omega_0(e_i, f_j) = \delta_{ij}\\ \Omega_0(f_i, f_j) = 0 \end{cases}$$
 (1)

Definição Uma base de (V, Ω) satisfazendo eq. (1) é chamada *base simplética*.

Following Lee, Example. 22.2, the condition may be that $\Omega = \sum_{i=1}^n \alpha^i \wedge \beta^i$ where α^i and β^i are just the dual basis covectors of the base $\{A_1,\ldots,A_n,B_1,\ldots,B_n\}$ of V.

Observação Escolher/Achar uma base simplética é equivalente à escolher/achar um simplectomorfismo

$$(V,\Omega) \stackrel{\sim}{\rightarrow} (\mathbb{R}^{2n},\Omega_0)$$

2. *W* espaço vetorial sobre \mathbb{R} , sejam $V = W \oplus W^*$, $w, w \in W$ e $\alpha, \alpha \in W^*$

$$\Omega_?((w,\alpha),(w',\alpha')) := \alpha'(w) - \alpha(w')$$

é não degenerada e anti-simétrica. Assim,

$$(W \oplus W^*, \Omega_?)$$

é um espaço vetorial simplético.

Observação Se $\{e_1, ..., e_n\}$ é uma base simplética de W e $\{f_1, ..., f_n\}$ é a base dual de W^* , então

$$(W \oplus W^*, \Omega_? \cong (\mathbb{R}^{2n}, \Omega_0).$$

Note que ainda que dado

$$A: W \xrightarrow{\sim} W$$

automorfismo?,

$$\mathsf{T}_\mathsf{A} := \begin{pmatrix} \mathsf{A} & \mathsf{0} \\ \mathsf{0} & (\mathsf{A}^*)^{-1} \end{pmatrix} : \mathsf{W} \oplus \mathsf{W}^* \to \mathsf{W} \oplus \mathsf{W}^*$$

é simplectomorfismo, $(T_A = A \oplus (A^{\boldsymbol *})^{-1}$).

Moral: $GL(W) \hookrightarrow Sp(W \oplus W^*)$

$$EV \xrightarrow{\text{funtor}} EVS$$

$$A \circlearrowleft W \longmapsto W \oplus W^* \circlearrowleft \mathsf{T}_A$$

3. V ev sobre $\mathbb{C},$ $dim_{\mathbb{C}}=n,$ com produto interno hermitiano

$$h: V \times V \rightarrow \mathbb{C}$$

i.e. satisfazendo

- (a) $h(u, \lambda v) = \lambda h(u, v) \ \forall \lambda \in \mathbb{C}$,
- (b) $h(u,v) = \overline{h(v,w)}$,
- (c) $h(u, u) > 0 \ \forall u \neq 0$,

pode ser escrito como

$$h(u,v) = g(u,v) + i\Omega(u,v)$$

Agora considere V como espaço vetorial sobre \mathbb{R} (de dimensão 2n).

Exercício

- g é produto interno positivo definido.
- Ω é antisimétrica, não degenerada (simplética).
- Ache uma base de V (dica: extensão de base ortonormal de h...)
- $U(n) \subset SP(V, \Omega)$.
- 4. Produto direto: (V_1, Ω_1) , (V_2, Ω_2) espaços vetoriais.

Tem a forma simplética é o pullback:

$$\Omega := \pi_1^* \Omega_1 + \pi_2^* \Omega_2$$

ou seja,

$$\Omega((u_1, u_2), (v_1, v_2)) := \Omega_1(u_1, v_1) + \Omega_2(u_2, v_2),$$

que é não degenerado e antsimétrico também.

Notação: se (V, Ω) é um espaço vetorial simplético, denotamos por $(V, -\Omega) := \bar{V}$, que também é um evs.

3 Aula 3

Se V é ume spaço vetorial real, uma *estrutura complexa* em V é um endomorfismo linear $J:V\to V$ tal que $J^2=-id$.

Seja (V, Ω) um espaço vetorial simplético. Uma estrutura complexa em V é *compatível* com Ω se para todo $u, v \in V$,

$$g(u, v) := \Omega(u, Jv)$$

é um produto interno. (Acho que) isso implica que

$$\Omega(J\mathfrak{u},J\mathfrak{v})=\Omega(\mathfrak{u},\mathfrak{v}), \qquad e \qquad \Omega(\mathfrak{u},J\mathfrak{u})>0 \; \forall \mathfrak{u}\neq 0$$

4 Aula 4

5 Aula 5

Lembranza da última aula:

- 1. Definição de variedade simplética.
- 2. Pelo menos dois exemplos.
- 3. Forma de volume/orientabilidade.
- 4. Campos simpléticos/campos hamiltonianos.
- 5. Obstrução cohomológica de para estrutura simplética.

Hoje: Fibrados cotangentes.

5.1 Forma tautológica no fibrado cotangente

Seja Q uma variedade e M := T*Q o fibrado cotangente.

Lembrando Se Q é uma variedade, $x \in Q$. O *espaço tangente* em x são derivações ou clases de equivalencia de curvas... base local do espa ço tangente ∂_{x_i} ... base dual disso é base do espaço cotangente nesse ponto... o fibrado cotangente $\bigsqcup_{x \in Q} \mathsf{T}_x^* Q$ é variedade suave.

O fibrado cotangente possui uma 1-forma tautológica definida assim:

Definição $\alpha \in \Omega^1(M)$, onde $M := T^*Q$, dada por

$$\alpha_{\mathfrak{p}}(X) = \mathfrak{p}(\pi_{*}(X))$$

ou seja, como X é tangente ao fibrado cotangente, ele está anclado a algum covetor, assim a gente pode evaluar ele no covector. Também pode ser pensado como o pullback de um covector em Q baixo a projeção cotangente usual.

Definição (Monitoria)

$$T^*M = \{(p, \xi) | \xi : T_pM \to \mathbb{R} \text{ linear} \}$$

$$\downarrow^{\pi}$$

$$M$$

A *forma tautologica* é λ dada por

$$\lambda_{(p,\xi)}(v) \in \mathbb{R}, \qquad v \in T_{(p,\xi)(T^*M)}$$

é igual a

$$\xi(d\pi_{(q,\xi)(v)})$$

usando o mapa

$$T_{(p,\xi)}(T^*M) \stackrel{d\pi_{(p,\xi)}}{\longrightarrow} T_pM$$

Em coordenadas locais $(x_1,...,x_n,y_1,...,y_n)$ do espaço cotangente, temos que

$$\lambda = \sum_{i=1}^{n} A_i dx_i + \sum_{i=1}^{n} B_i dy_i$$

Avaliando λ nos vectores canónicos $\frac{\partial}{\partial x_j}\Big|_{(\mathfrak{p},\xi)}$ e $\frac{\partial}{\partial y_j}$ notamos que $A_i=\xi\left(\frac{\partial}{\partial x_j}\right)$ pois a diferencial de π faz as B_j ser zero.

Exercício

1. A 1-forma tautológica $\alpha \in \Omega^1(T^*Q)$ é a única 1-forma satisfazendo

$$\forall \mu \in \Omega^1(O), \quad \mu^*\alpha = \mu$$

onde pensamos a μ do lado izquerdo como um mapa $\mu: Q \to T^*Q$, ie. uma seç ão do fibrado cotangente, e do lado direito simplesmente como uma 1-corma em Q.

Definição $M = T^*Q$, $\alpha \in \Omega^1(M)$ então a *forma simplética canónica* de T^*Q é

$$\omega_{can} = -d\alpha$$

Observação

• $d\omega_{can} = -d^2\alpha = 0$.

• Formalmente $\omega = \sum_{i=1}^n dx_i \wedge d\xi_i$

Assim, temos uma variedade simplética canónica associada a toda variedade, (T^*Q, ω_{can}) .

Observação

• Dado $B \in \Omega^2(Q)$ com dB = 0, a forma

$$\omega_{\rm B}\omega_{\rm can}+\pi^*{\rm B}$$

é simplética e o termo π^*B se chama de *magnético*.

• Se Q é Riemanniana com métrica g temos o mapa induzido

$$g^{\sharp}: TQ \longrightarrow T^*Q$$

$$u \longmapsto g(u,\cdot)$$

Assim, o pullback the ω_{can} é uma forma simplética em TQ.

Al ém disso, a métrica nos fornece de uma função Hamiltoniana dada por $H \in C^{\infty}(TQ)$, $H(\nu) = \frac{1}{2}g(\nu,\nu) = \frac{1}{2}\|\nu\|^2$.

Veremos que o fluxo Hamiltoniano de H em (TQ, ω) é fluxo geodésico em Q.

Tem dois generalizações naturais:

- $\bar{H}(v) = \frac{1}{2}g(u,v) + V(x)$ com V ∈ $C^{\infty}(Q)$, mecânica clásica.
- $H(v) = \frac{1}{2}g(v,v)$ com respeito a ω_B .

Pergunta (Projeto?) Existência de órbitas periódicas em níveis de energia?

Definição O *levantamiento cotangente* de um difeomorfismo (na mesma direção do difeomorfismo) é $\varphi: Q_1 \xrightarrow{\sim} Q_2$ é $\hat{\varphi} = ((T\varphi)^*)^{-1}$.

Pergunta Preserva a forma canónica?

Proposição Sim. $\hat{\phi}: T^*Q_1 \to T^*Q_2$ satisfaz $\hat{\phi}^*\alpha_2 = \alpha_1$ onde α_i é a forma tautológica, para i=1,2. Isso implica que $\hat{\phi}^*\omega_2 = \omega_1$.

Isso implica que temos um funtor $Q \leadsto T^*Q$ que se chama de *funtor cotagente* e permite levar problemas de geometria diferencial para a geometria simpl ética.

Demostração.

$$\begin{array}{ccc} T^*Q_1 & \stackrel{\phi}{\longrightarrow} & T^*Q_2 \\ \downarrow^{\pi_1} & & \downarrow^{\pi_2} \\ Q_1 & \stackrel{\phi}{\longrightarrow} & Q_2 \end{array}$$

A clave dessa prova é que o diagrama commuta, assim pode se-trocar um termo $\pi_2 \circ \hat{\phi}$ por $\phi \circ \pi_1$.

O funtor que produzimos $Dif(Q) \hookrightarrow Simp(T^*Q \text{ não e fiel (surjetivo), ie. existem simplectomorfismos no fibrado cotangente que não vem de difeomorfismos na variedade.$

Observação Dada uma 1-forma $A \in \Omega^1$. Pode se-produzir um mapa no cotangente simplesmente trasladando por A:

$$T_A: T^*Q \longrightarrow T^*Q$$

 $(x, \xi) \longmapsto (x, \xi + A_x)$

que não pode ser um levantamento porque se projecta na identidade!

Exercício T_A é um simplectomofrismo \iff dA = 0.

Mas, como sabemos quais simplectomorfismos no cotangente são sim levantamentos de difeomorfismos na variedade?

Exercício Seja $F: T^*Q \to T^*Q$ um simplectomorfismo. Quando $F = \hat{\phi}$ é levantamento de algum $\phi: Q \xrightarrow{\sim} Q$. Pois, isso acontece \iff F preserva a forma tautológica, ie. $F^*\alpha = \alpha$.

Observação Levantamento cotangente de campos de vetores. Começa com um campo $X \in \mathfrak{X}(Q)$, integra para obter um fluxo ϕ_t , que é uma família de difeomorfismos na variedada, você sabe levantar isso com o funtor obtendo outro fluxo (porque levantamento de fluxo é fluxo) $\hat{\phi}_t$, e diferenciando obtém $\hat{X} \in \mathfrak{X}(T^*Q)$.

Observação Para cualquer fibrado vetorial $E \to M$, podemos ver a seções $\Gamma(E)$ como um subconjunto das fun ções suaves na variedade $C^{\infty}(E)$ —são as funções lineares nas fibras. Aí tem um modo natural de definir para cualquer campo vetorial $X \in \Gamma(TQ) \subseteq C^{\infty}(T^*Q)$ uma função, $H_X(p) = p(X_{\pi(p)} = \alpha(\hat{X})$.

Proposição $\hat{X} = \text{campo Hamiltoniano de } H_X.$

6 Aula 6

Hoje: Colchete de Poisson, Darboux.

6.1 Colchete de Poisson

M variedade, $\omega \in \Omega^2(M)$ não degenerada (quase-simplética). Podemos fazer

$$w^{\flat}: TM \longrightarrow T^*M$$

 $x \longmapsto i_X \omega$

So that

$$f\in C^\infty(M) \leftrightsquigarrow X_f\in \mathfrak{X}(M)$$

e

$$i_{X_f}\omega = df$$
.

Definição $f, g \in C^{\infty}(M)$.

$$\{\cdot,\cdot\}: C^{\infty}(M) \times C^{\infty}(M) \longrightarrow C^{\infty}(M)$$
$$\{f,g\} = \omega(X_g,X_f) = dg(X_f) = \mathcal{L}_{X_f}g = -\mathcal{L}_{X_g}f$$

Proposição (Exercício) $d\omega = 0 \iff \{\cdot, \cdot\}$ satisfaz identidade de Jacobi. $\implies (M, \omega)$ simplética, $\{\cdot, \cdot\}$ é colchete de Lie em $C^{\infty}(M)$ e isso se chama de um *colchete de Poisson em* (M, ω) .

Exercício $\{f, gh\} = \{f, g\}h + \{f, h\}g.$

Exemplo \mathbb{R}^{2n} .

Definição $f, g \in C^{\infty}(M)$ estão em *involução* se $\{f, g\} = 0$. ie. X_g é tangente aos níveis f = const (e vice versa).

Observação Nesse caso, a derivada de g ao longo das curvas integrais de X_f é zero.

Motivação (M, ω) simplética, $H \in C^{\infty}(M)$ queremos integrar X_H (ie. resolver $c'(t) = X_H(c(t))$). Suponha que existe $f \in C^{\infty}(M)$ com $\{f, H\} = 0$, chamada *integral primeira*. ie. f é constante ao longo do fluxo Hamiltoniano.

No século XIX, quando Poisson vivia, a ideia era que se temos um número sufieiente de integrais primeiras "independentes", podemos "integrar" X_H. (Aqui "integrar" significa dar uma solução a equação diferencial do fluxo Hamiltoniano).

Em 1810, Poisson deu a fórmula

$$\{f,g\} = \sum_{i,j} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i}.$$

Teorema (Poisson) $\{f, H\} = 0 = \{g, H\} \implies \{\{f, g\}, H\} = 0.$

Teorema (Jacobi)

$$\{H, \{f, g\}\} + \{g, \{H, f\}\} + \{f, \{g, H\}\} = 0$$

1880 Lie usou essa identidade no seu trabalho de transformações (álgebras de Lie).

Versão moderna (sec. XX) de integrabilidade Veremos adiante...

Teorema (Arnold-Liouville) (M, ω) de dimensão 2n e seu Hamiltoniano $H = f_1$ que é a primeira de uma sequencia de $n = \dim M/2$ funções independentes (as derivadas são linearmente independentes) $f_2, \ldots, f_n \in C^\infty(M)$ tais que $\{f_i, f_j\} = 0$ e que (f_1, \ldots, f_n) : $M \to \mathbb{R}^n$ é uma submersão. Então

$$N = \{(f_1, \dots, f_n) = cte\} \cong \mathbb{T}^n$$

se compacto e conexo. Além disso, a dinâmica de X_H em \mathbb{T}^n é quase periódica (=é um fluxo linear no toro, que pode ser racional ou irracional).

Observação (Projeto?) Qué acontece com essa dinâmica no toro se perturbamos o sistema? O problema de dois corpos é completamente integravel. Por exemplo, a dinâmica da Terra e o Sol pode se-resolver, mas o problema adicionando a Lua é o problema de 3 corpos, que ninguém sabe cómo resolver. Aqui a Lua é uma perturbação.

Teorema KAM, quanto mais irracional é o fluxo, mais robusto é o toro, mais inestável.

Em fim, tudo isso para motivar os colchetes de Poisson.

6.2 Teorema de Darboux

 (M, ω) variedade simplética com o colchete $\{\cdot, \cdot\}$.

Observação

1. ω está completamente determinada por $\{\cdot,\cdot\}$, ie. se duas estruturas simpléticas dão lugar ao mesmo colchete de Poisson, elas são iguais.Por que?

$$\omega^{\sharp}: T^*M \longrightarrow TM$$

está dada em cada ponto por

$$(\omega^{\sharp})_{ij} = \{x_i, x_i\}$$

por definição.

(My interpretation) Especificamente, considere coordenadas de Darboux $(x^1,...,x^n,y^1,...,y^n)$ en M. Em [?], eq. 22.9 vemos que para qualquer função $f \in C^{\infty}(M)$, o seu campo Hamiltoniano está dado por

$$X_{f} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial y^{i}} \frac{\partial}{\partial x^{i}} - \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial y^{i}} \right)$$

assim,

$$X_{x^i} = -\frac{\partial}{\partial y^i}, \qquad X_{y^i} = \frac{\partial}{\partial x^i}.$$

Isso é uma base do espaço tangente. De fato, para qualquer base $v_1, ..., v_n$ de um espaço vetorial com base dual $v_1^*, ..., v_n^*$, se $w = \sum_i w^i v_i$, é super básico que

$$\omega(v_i, w) = \omega\left(v_i, \sum_j w^j v_j\right) = \sum_j \omega(v_i, v_j) w^j = \sum_j \omega(v_i, v_j) v_j^*(w)$$

ie.

$$i_{\nu_i}\omega=\omega(\nu_i,\cdot)=\sum_j\omega(\nu_i,\nu_j)\nu_j^*$$

Daí, em coordenadas,

$$\omega^{\flat}(\nu_{i}) = \begin{pmatrix} \omega(\nu_{i}, \nu_{1}) \\ \vdots \\ \omega(\nu_{i}, \nu_{n} \end{pmatrix}$$

ou seja

$$\omega^{\flat} = \begin{pmatrix} \omega(\nu_1, \nu_1) & \cdots & \omega(\nu_n, \nu_1) \\ \vdots & & \vdots \\ \omega(\nu_1, \nu_n) & \cdots & \omega(\nu_n, \nu_n) \end{pmatrix}$$

Agora note que os vetores Hamiltonianos associados as coordenadas de Darboux $(x^1, ..., x^n, y^1, ..., y^n)$ satisfazem as relações do seguinte item nesta observação (pode comprovar isso usando a fórmula do colchete de Poisson em coordenadas de Darboux). Daí, nessa base de vetores Hamiltonianos,

$$\omega^{\flat} = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

Mas que não é que a gente tava buscando ω^{\sharp} ? Pois é, essa matriz elevada ao quadrado é — id, daí a sua inversa é só botar um signo menos...

2. A estrutura simplética canónica $\omega_0 = \sum_i dp_i \wedge dp_i$ em \mathbb{R}^{2n} está determinada (é a única tal que) por

$$\{q_i, q_i\} = 0 = \{p_i, p_i\}, \qquad \{p_i, q_i\} = \delta_{ij}.$$

É como se tivesse uma base simplética boa em todos os pontos...

Teorema (Darboux) (M, ω) simplética, ent...åo ao redor de todo ponto $x \in M$ existem coordenadas locais $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ tais que $\omega = \sum_{i=1}^n dq_i \wedge dp_i$, ou, equivalentemente vale

$$\{q_i, q_j\} = 0 = \{p_i, p_j\}, \qquad \{p_i, q_j\} = \delta_{ij}.$$

Tem um lema que va a provar essencialmente tudo.

Lemma (Primeiro paso da indução) Ao redor de qualquer ponto $x \in M$ existem coordenadas $(q, p, y_1, ..., y_{2n-2}$ tais que

$$1 = \{p, q\}, \quad \{p, y_j\} = 0 = \{q, y_j\}, \quad \{y_i, y_j\} = \varphi_{ij}(y).$$

Ou seja, a matriz da forma é

$$\begin{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & & A(y) & & \\ 0 & & & & \end{pmatrix}$$

ou seja, temos uma expresão

$$\omega = dq \wedge dp + \omega_N$$

onde ω_N é dada por A(y) e é simplética.

Demostração do Lema**Paso 1** Seja p uma função tal que $X_p(x) \neq 0$. Pelo teorema de fluxo tabular (retificação) existe uma função q tal que $X_p = \frac{\partial}{\partial q}$, de modo que $\{p,q\} = dq(X_p) = 1$ e $dp(X_q) = -1$.

Paso 2 Enão X_p e X_q são linearmente independentes, pois $1 = \{p, q\} = \omega(X_p, X_q) \neq 0$, o que aconteceria por antisimetria se são linearmente dependentes. Além disso, comutam, pois

$$\left[X_p,X_q\right] \overset{\text{aula pasada?}}{=} X_{\{p,q\}=1} = 0.$$

Agora usamos a generalização do teorema do fluxo tabular: se X_1,\ldots,X_k são campos linearmente independentes e que comutam, então existem coordenadas (x_1,\ldots,x_n) dais que $X_i=\frac{\partial}{\partial x_i}$. (Teo. função inversa.) Assim, existem coordenadas locais y_1,\ldots,y_{2n} tais que

$$X_q = \frac{\partial}{\partial y_{2n-1}}, \qquad X_p = \frac{\partial}{\partial y_{2n}}.$$

Logo

$$dy_j(X_q) = 0 = dy_j(X_p)$$

para
$$j = 1, ..., 2n - 2$$
.

Paso 3 As diferenciais

$$dq, dp, dy_1, ..., dy_{2n-2}$$

são linearmente independentes, pois se

$$\alpha dq + bdp + \sum_{i} c_{ij} y_i = 0$$

pois as y_i já são LI, e avaliando em X_i obtemos a=0, e no X_q que b=0.

Temos um sistema de coordenadas $(q, p, y_1, ..., y_{2n-2})$ ao redor de x tal que as condições do teorema salvo a última se cumplem. Agora veamos que $\{y_i, y_j\}$ não depende de p, q.

Paso 4 Só lembrar que

$$X_{q} = -\frac{\partial}{\partial p}, \qquad X_{q} = \frac{\partial}{\partial q}$$

assim

$$\frac{\partial}{\partial p}\{y_i,y_j\} = -\{q,\{y_i,y_j\}\} = 0$$

onde a segunda igualdade é jacobi. Fim.

Demostração do Teo. Darboux. Segue do lema por indução

Definição Uma estrutura de Poisson em uma variedade M é

$$\{\cdot,\cdot\}:C^{\infty}(M)\times C^{\infty}(M)\longrightarrow C^{\infty}(M)$$

 \mathbb{R} -bilinear, antisimétrica, Jacobi e Leibniz, ie. $\{f, gh\} = \{f, g\}h + \{f, h\}g$.

Exemplo

• (M, ω) simpl ética com $\{f, g\} = \omega(X_g, X_f)$.

7 Aula 7

Na aula passada vimos:

- Colchetes de Poisson.
- Teorema de Darboux. Prova: demostrar que tem relações que caractetizam a forma de maneira única.
- É possível descrever estruturas cimpléticas en termos de colchete de Poisson.: Variedades de Poisson. Issto é axiomatizar as propriedades básicas do colchete de Poisson. Esses objetos podem ser entendidos como foleações simpléticas.

7.1 Subvariedades

Seja (M, ω) simplética e $N \stackrel{i}{\hookrightarrow} (M, \omega)$. Então temos

$$\omega_N=i^*\omega\in\Omega^2(N)$$

que é fechada porque o pullback comuta com derivada exterior.

$$\begin{aligned} \text{ker}(\omega_N) &= \{X \in TN : \omega(X,Y) = 0 \ \forall Y \in TN \} \\ &= TN \cap TN^\omega \subseteq TN \end{aligned}$$

7.2 Pausa para distribuições

P variedade.

Definição Uma distribuição (generalizada) em P é

$$P\ni x\longmapsto D_x\subseteq T_xP \text{ subespaço}$$

e o posto da distribuição em $x := \dim D_x$.

A distribuição é *suave* se para todo $x_0 \in P$, $\forall v \in D_{x_0}$ existe um campo vetorial $X \in \mathfrak{X}(P)$ que extende a v e está contido na distribiução no sentido de que $X_x \subseteq D_x \forall x$ e $X_{x_0} = v$.

Exemplo Núncleo de 2-formas é um exemplo de distribuição, mas não é suave em geral.

Definição Uma distribuição suave $D \subseteq TP$ é dita *integravel* se $\forall x \in P$ existe uma subvariedade $S \ni x$, $TS = D|_S$

No caso de uma dsitribuição (suave) integrável, por todo ponto passa uma subvariedade integral conexa maximal chamadas *folhas*.

Observação

 Distribuição suave, de posto constante é a mesma coisa que um subfibrado vetorial D ⊆ TP. Nesse caso,

Teorema (Frobenius) D é integrável se e somente se é *involutivo*, ou seja

$$[\Gamma(D), \Gamma(D)] \subseteq \Gamma(D)$$
.

Demostração. Note que ⇒ é trivial porque se tem uma variedade que realiza a distribuição, o colchete de Lie sempre vai ser outro campo vetorial tangente. □

- Suponha que $D=\text{ker}(\omega)$ com $\omega\in\Omega^2(P)$ é suave \iff D tem posto constante. Aquí \iff é fácil.
- Se $d\omega = 0 \implies D = \ker \omega$ é involutivo.

Conclusão Se ω é uma 2-forma fechada e D = ker ω tem posto constante, da lugar a uma folheação (regular=folhas de mesma dimensão) em P.

7.3 Voltando

Definição N é dita

- *isotrópica* quando $T_x N \subseteq T_X N^\omega \iff \omega_N = 0 \iff \ker \omega_N = TN$.
- *coisotrópica* quando $T_x N^{\omega} \subseteq T_x N$.
- *lagrangiana* quando $T_x N = T_x N^{\omega} \iff i^* \omega = \omega_N = 0$ e dim $N = \dim M/2$.
- *simplética* $T_x N \cap (T_x N)^{\omega} = \{0\} \ \forall x \in \mathbb{N} \iff \omega_N \text{ é simplética.}$

• posto constante $T_xN \cap T_xN^\omega \subseteq T_xN \ \forall N$ tem posto constante.

Exemplo

- curvas são isotrópicas.
- hipersuperficies são coisotrópicas.
- Veremos vários exeplos de subespaços lagrangianos.

7.3.1 Sobre subvariedades coisotrópicas

Isto também vale para subvariedades de posto constante.

Vamos ver uma versão geométrica de um exerício da lista 1, onde pegabamos o quociente de um espaço vetorial por el núcleo de uma forma para obter um espaço vetorial simplético.

Exercício Suponha que as folhas da folheação são fibras de uma sobmersão

$$\begin{array}{c} N & \longleftarrow & (M,\omega) \\ \downarrow q \\ \downarrow & \\ B = N/\sim \end{array}$$

então existe uma forma simplética $\bar{w} \in \Omega^2(B)$ tal que $q^*\bar{w} = w_N$.

Exemplo O fluxo hamiltoniano do oscilador harmónico $H(p,q) = \frac{1}{2} \sum_i q_i^2 + p_i^2$ com c = 1/2 da $\mathbb{C}P^{n-1}$

Exercício $\psi: M \to \mathbb{R}^k, \psi = (\psi_1, \dots, \psi_k)$. $N = \psi^{-1}(c)$ para c valor regular.

- N coisotrópico $\iff \{\psi_i, \psi_j\}|_N = 0.$
- N simplético $\iff (\{\psi_i, \psi_j\}|_N)_{ij}$ é invertível.

8 Aula 8

Lembre:

Subvariedades lagrangianas, (co-)isotrópicas, simpléticas. Aprofundamos
nas coisotrópicas (posto constante), como as hipersuprficies ou conjuntos de nível,
que tem uma folheação, e com condições de regularidade pode passar para o
espaço quociente, que é simplético, como CPⁿ.

8.1 Alguns exemplos de subvariedades lagrangianas

Exemplo Dois variedades simpléticas e um difeomorfismo entre elas. Então φ é simplectomorfismo se e só se seu gráfico é lagrangiano. Talvez isso pode ser ussado para pensar em simplectomorfismos em um objeto cuantico.

Observação Considere

$$\epsilon: M_1 \longrightarrow M_1 \times M_2$$

 $x \longmapsto (x, \varphi x)$

então o grafo de φ é lagrangiano $\iff \omega_1 - \varphi^* \omega_2$.

Exemplo (no fibrado cotangente)

- A seção zero $Q \hookrightarrow T^*Q$ é nos mostra que Q é uma subvariedade lagrangiana.
- A fibra (cotangente) de um ponto também é uma subvariedade lagrangiana de T*Q.
- Logo, o espaço de fibras?
- Pegue uma subvariedade da base $S \subset Q$. Considera o *fibrado conormal* N*S, ν_S^* . É o dual do fibrado tangente. É o anulador de TS, $\{(x, \xi) \in T^*Q : x \in S, \xi|_{TxS} = 0\}$. Note que é um subfibrado do fibrado cotangente.

Os dois exemplos anteriores são S = Q e $S = \{x\}$ da seguinte prop:

Proposição $N*S \hookrightarrow T*Q$ é (um subfibrado) uma subvariedade lagrangiana.

Demostração. Usando coordenadas adaptadas e a forma tautológica do T*Q, damos coordenadas N*Q da forma $(x_1, \ldots, x_k, \xi_{k+1}, \ldots, \xi_n)$ e assim o pullback da forma tautológica é zero porque ele evalua os covectores ξ_{grande} em vectores $x_{pequeno}$.

Exemplo Uma forma μ vista como seção do fibrado cotangente pode ser pensada como um mergulho de Q em T*Q.

Proposição Essa subvariedade é lagrangiana \iff d $\mu = 0$.

8.2 Método de Moser

Upshot Moser's trick is a thing that gives you a diffeomorphism that pulls back ω_2 to ω_1 .

Dadas dois formas simpléticas numa variedade, como podemos achar um simplectomorfismo entre elas? A ideia do método é assim:

Step 1 Interpolar as dois formas mediante uma familia contínua ω_t de formas simpléticas.

- **Step 2** Buscar uma (isotopía) família de difeomorfismos φ_t com $\varphi_0 = id$ e tal que $\varphi_t^* \omega_t = \omega_0$. Com isso a gente procura levar o problema para uma EDO.
- **Step 3** Os fluxos são isotopías com uma relação de comutatividade. Eles correspondem com campos vetoriais. As isotopías em geral estão em correspondência com *campos de vetores não autónomos*.

Definição Uma família suave de difeomorfismos $\{\phi_t\}$ com $\phi_0 = id$ é chamada *isotopía*. Suave significa que $(t, x) \mapsto \phi_t$ é suave.

Exemplo Fluxos (complets) são isotopías tq $\phi_s \circ \phi_t = \phi_{s+t}$.

Definição Um *campo de vetor* t*-dependente* ou *não autónomo* é família suave de campos $X_t \in \mathfrak{X}(M)$. De novo, suave é que $(t,x) \mapsto X_t(x)$ é suave.

isotopía ↔ campos t-dependentes

A diferenciação sempre é simples né? Fixa um ponto e varia o tempo, obtém uma curva.

$$\varphi_t\mapsto X_t(\phi_t(x)=\frac{d}{d\tau}|_{t=\tau}\phi_\tau(x).$$

A recíproca é mais difícil. A ideia e extender a variedade á $M \times \mathbb{R}$, e considerar $\overline{X}(x,t) = (X_t(x), \frac{d}{dt})$. Esse depende do tempo, assim podemos achar um fluxo φ_t de \overline{X}_t . Aqui se deve extender o fluxo usando bump functions, assim a gente tem que φ_t está definido para toda t.

Note que $\varphi_t(x,s)=(G_t,t+s)$ para alguma função G na variedade. Podemos achar uma inversa dela assim:

$$(x, s) = \phi_{-t}(\phi_t(x, s)) = G_{-t}(G_t(x, s), t + s), s)$$

ie. a inversa de

$$x \mapsto G_t(x, s)$$

é

$$y\mapsto G_{-t}(y,s+t)$$

Logo,

$$\phi_t(x) = G_t(x, 0)$$

é uma isotopía e como a derivada do fluxo

$$\frac{d}{dt}\varphi_t(x,0) = \overline{X}(G_t(x,0),t) \implies \frac{d}{dt}G_t(x,0) = X_t(x,0)).$$

E é isso. Temos a correspondencia.

Voltando ao método de Moser, para achar $\phi^* \omega_1 = \omega_0$, pegamos uma isotopía que puxa ω_t em ω_0 , e queremos diferenciar a isotopía. No caso de um fluxo, trata-se da derivada de Lie por definição.

Lemma $\{\phi_t\}$ isotopía em M, $\{X_t\}$ campo autónomo. Sejam $\eta \in \Omega^k(M)$, $\beta_t \in \Omega^k(M)$. Então vale:

$$\frac{d}{dt}(\phi_t^*\varepsilon)=\phi_t^*(\pounds_{X_t}\eta$$

onde estamos pegando a derivada num tempo t fixo. Daí veremos que pela regra da cadeia segue que

$$\frac{d}{dt}(\phi_t^*\beta_t) = \phi^*(\mathcal{L}_{X_t}\beta_t + \frac{d}{dt}\beta_t$$

Demostração. a. Considere os seguintes operadores em Ω^{\bullet} :

$$Q_1(\eta) = \frac{d}{dt} \phi_t^* \eta, \qquad Q_2(\eta) = \phi_t^* \mathcal{L}_{X_t} \eta$$

Daí note que esses operadores comutam com a derivada exterior, são Leibniz respeito ao producto cunha e coincidem em funções . Daí segue que $Q_1 = Q_2$.

b. A regra da cadeia diz que para uma função F(a, b),

$$\frac{d}{dt}F(t,t) = \frac{\partial}{\partial a}F(t,t) + \frac{\partial}{\partial b}F(t,t)$$

e olha para $\phi_{\alpha}^*\beta_b$ como a F. Sustiuindo e usando a., o resultado segue.

Uma aplicação disso é

Teorema (de estabilidade de Moser) M compacta, $\{\omega_t\}$ formas simpléticas, $t \in [0,1]$. Se as formas são todas cohomologas então elas são simplectomorfas, i.e. $[\omega_t] = [\omega_0] \implies \exists \varphi_t \ tq \ \varphi_t^* \omega_t = \omega_0$. Ou, de outra forma, se existe uma família suave de formas β_t tais que

$$\omega_{\rm t} = \omega_0 + {\rm d}\beta_{\rm t}$$

então existe uma isotopía $\{\phi_t\}$ tal que $\phi_t^* \omega_t = \omega_0$.

Demostração. Note que não é imediato que as clases de cohomologia nos dem uma familía suave, mas é equivalente sim (usando decomposição de Hodge? Tem algo mais simples?). O método é achar um campo de vetores autónomo resolvendo

$$i_{X_t}\omega_t=-\frac{d}{dt}\beta_t$$

pois dela segue que

$$\pounds_{X_t} \omega_t = -d \left(\frac{d}{dt} \beta_t \right)$$

E daí a segunda afirmação do lema.

9 Aula 9

Lembre: Método de Moser.

A prova foi:

Demostração. Calcule

$$\frac{d}{dt}\phi_t^*\omega_t = 0$$

isso implica que

$$\pounds_{X_t}\omega_t = -d\left(\frac{d}{dt}\beta_t\right)$$

e isso que

$$i_{X_t}\omega_t=-\frac{d}{dt}\beta_t$$

Com isso conseguimos associar uma isotopía a um campo t-dependente (integração).

9.1 Aplica ção ao teorema de Darboux

Lemma X_t campo de vetores t-dependente, $t \in \mathbb{R}$. Suponha que

$$X_t|_{x_0} = 0 \quad \forall t.$$

Então existe uma vizinhança $U \ni x_0$ e uma familia $\phi_t: U \to M$ de

- (Inclusão) $\phi_0 = id$.
- $\frac{d}{dt}\phi_t(x) = X_t(\phi_t(x))$
- $\bullet \ \phi_t(x_0) = x_0$
- $\bullet \ \phi_t: U \stackrel{\text{difeo}}{\longrightarrow} \phi_t(U).$

Demostração. Variação do caso M compacto

$$\bar{X}(x,t) := \left(X_t(x), \frac{d}{dt} \right) \quad \text{em } M \times \mathbb{R}$$

$$\bar{X}(x_0,t) = \left(0, \frac{d}{dt}\right)$$

assim existe uma curva integral $\gamma(t)=(x_0,t)$ de \bar{X} por $(x_0,0)$ está definida para toda $t\in\mathbb{R}.$

Por EDO, existe uma vizinhança W de $(x_0, 0)$ em $M \times \mathbb{R}$ onde o fluxo de \bar{X} existe $\forall t \in [0, 1]$.

Tome
$$U = \bigcap_{w\{M \times \{0\}\}}$$
.

Valem a fórmula para $\frac{d}{dt}(\phi_t^*\omega_t)...$

Teorema (Darboux) (M, ω) simplética, dim M = 2n. Para todo $x \in M$ existe uma vizinhança $U \ni x$, aberto $0 \in V \subseteq \mathbb{R}^{2n}$ e um difeomorfismo

$$\varphi: V \subseteq \mathbb{R}^{2n} \longrightarrow U \subseteq M$$
$$0 \longmapsto x$$

tal que

$$\varphi^*\omega = \sum_i dq_i \wedge dp_i.$$

[Desenho de carta coordenada]

Demostração. Podemos assumir que M é bola aberta de \mathbb{R}^{2n} com estrutura sumplética ω aribtrária.

Para usar o método de Moser, definamos

$$\omega_1 = \omega$$

$$\omega_0 = \sum_i dq_i \wedge dp_i$$

Podemos assumir que na origem

$$|\omega_1|_{x=0} = |\omega_0|_{x=0}$$
 $|\omega_0|_{x=0}$ $|\omega_0|_{x=0}$

simplesmente porque qualquer dois formas simpléticas são equivalentes num espaço vetorial simpletico usando uma mudança de coordenadas.

• Podemos assumir pelo Lema de Poincaré que

$$\omega_1 - \omega_0 = d\beta$$
, $\beta|_0 = 0$

supondo pela mesma razão que antes que $\beta|_0 = 0$.

•
$$\omega_t = (1-t)\omega_0 + t\omega_1 \iff \omega_t = \omega_0 + td\beta$$

Precisamos checar que ω_t são não degeneradas numa vizinhança de 0.

Note que em x=0, $\omega_t|_{x=0}=\omega_0|_{x=0}=\omega_1|_{x=0}$, assim $\omega_t|_{x=0}$ é não degenerada para toda t, mas precisamos de uma vizinhança, não só um ponto.

Lemma Se tem uma família $\omega_t|_{x_0}$ é simplética $\forall t, t \in [0,1]$, então existe uma vizinhança de x_0 onde ω_t é não degenerada $\forall t \in [0,1]$.

Demostração. Considere

$$(x, s) \rightarrow det(\omega_s(x)) = determinante da matriz que representa a forma$$

essa função é não zero em zero, assim para cada t existe uma vizinhança onde ela não é zero. Logo, pela compacidade de [0,1], \exists uma vizinhança $B \ni x_0$ onde $det(\omega_s(x))$ não se anula $\forall s \in [0,1]$.

Então já temos essa vizinhança que precisavamos.

Defina X_t como a solução da equação de Moser:

$$i_{X_t}\omega_t = -\beta.$$

Como
$$\beta|_0 = 0 \implies X_t|_{x=0} = 0 \implies \exists \phi_t, t \in [0,1].$$

Pelo lema 1, existe uma vizinhança $V \ni 0$ e

$$\phi_t:V\longrightarrow B$$

$$\phi_t^* \omega_t = \omega_0$$

tome t = 1, $0 \in U = \phi_1(V)$.

Com esse mesmo método a gente consegue provar uma generalização do teorema de Darboux.

9.2 Teorema de Darboux generalizado (Weinstein)

Teorema $Q \stackrel{i}{\hookrightarrow} M$ subvariedade (mergulhada) e ω_0, ω_1 em M simpléticas. Suponha que

$$\omega_0|_{x} = \omega_1|_{x} \quad \forall x \in Q$$

então existem vizinhanças U_0 e U_1 de Q em M e um difeomorfismo

$$\varphi: U_0 \stackrel{\sim}{\longrightarrow} U_1$$

tal que

$$\varphi^* \omega_1 = \omega_0$$

e que $\varphi(x) = x \ \forall x \in Q$

Observação O teorema de Darboux é quando Q é um ponto só!

Observação A condição $\omega_0|_x=\omega_1|_x$ significa que ω_0 e ω_1 coincidem em todo o espaço tangente a M nos pontos de Q, não é que o pullback em Q coincide. Tem mais vetores no espaço tangente a M.

Vamos precisar de um Lema de Poincaré relativo.

Lemma $Q \hookrightarrow M$ subvariedade. Seja $\eta \in \Omega^k(M)$, $d\eta = 0$, $i^*\eta = 0$. Então existe uma vizinhança U de Q em M, $\beta \in \Omega^k(U)$ tal que

$$\eta = d\beta$$
$$\beta|_{x} = 0, \quad \forall x \in Q$$

$$(\beta|_{\mathsf{T}_x\mathsf{M}}=0\ \forall x\in\mathsf{Q}).$$

A ideia aqui é simplesmente que podemos achar uma vizinhança de Q que se contrae a Q (retrato por deformação?)

Demostração. Em fim, pelo lema, para $\eta = \omega_1 - \omega_0$, $i^* \eta = 0$. Compare com a demostração anterior, β se anulava no 0, agora η se anula em toda Q (é uma versão paramétrica disso).

 $Q \hookrightarrow M$ tem vizinhança U onde $\exists \beta \in \Omega^1(U)$,

$$\omega_1 - \omega_0 = d\beta$$
, $\beta|_x = 0$

- Seja $\omega_t = (1-t)\omega_0 + t\omega_1 = \omega_0 + td\beta$.
- $\forall t \in [0,1], x \in Q, \omega_t|_x = \omega_0|_x = \omega_1|_x$.

Pelo lema 2, x tem vizinhança em M onde ω_t é simplética $\forall t \in [0,1]$.

Tomando a união das vizinhanças, temos vizinhança de Q onde ω_t simplético $\forall t \in [0, 1]$.

Método

- Define X_t por $i_{X_t} \omega = -\beta$. Isso implica que $\frac{d}{dt} \varphi_t^* \omega_t = 0$.
- Como $\beta|_x = 0$, então $\forall x \in Q$, $X_t|_x = 0 \ \forall x \in Q$.
- Pelo lema 1, $\exists U_0$ onde ϕ_t está definido $\forall t \in [0,1]$.
- E mais $X_t|_Q = 0 \implies \varphi_t|_Q = id_Q$.
- Tome $\phi = \phi_1$ e $U_1 = \phi_1(U_0)$.

9.2.1 Sobre o Lema de Poincaré relativo

O principal ingrediente é teorema da vizinhança tubular.

Lembre:

Teorema (Vizinhança tubular) $Q \hookrightarrow M$ subvariedade mergulhada. Existe uma vizinhança $Q \subseteq U \subseteq M$ para qual existe $\pi : U \to Q$ tal que

$$\pi \circ i = id_Q$$
 $i \circ \pi \simeq id_H$, (homotopía suave)

Daí, o lema de Poincaré segue a existencia de um operador de homotopía.

Em geral, quando temos uma homotopía

$$F: M \times [0,1] \longrightarrow N$$
$$F_0: M \to N$$
$$F_1: M \to N$$

exsite um operador

$$H:\Omega^k(M)\to\Omega^{k-1}(M)$$

tal que

$$F_1^*\eta - F_0^*\eta = d(H\eta) - Hd\eta$$

Note que no caso de formas fechadas, o termo da direita se anula e a gente prova a invariança homotópica da cohomologia. No nosso caso, o operador de homotopía nos da $\eta = dH\eta j$ á que $d\eta$ se anula em Q.

9.2.2 Vizinhança tubular

Teorema Existe uma vizinhança U_0 de Q em NQ e uma vizinhança U_1 de Q em M tais que

- a. $U_0 \cap (NQ)_x$ é convexo $\forall x \in Q$.
- b. Existe um difeomorfismo $\phi: U_0 \xrightarrow{\sim} U_1$ tal que $\phi(x) = x$, e $d\phi|_x: T_x(NQ) \xrightarrow{id} TM|_x$

Demostração. Idea: aplicação exponencial.

9.3 Monitoria 2

Proposição $\phi: M^{2n} \to \mathbb{R}^k$ suave, $c \in \mathbb{R}^k$ valor regular.

$$N := \phi^{-1}(c)$$
 coisotrópica $\iff \{\phi_i, \phi_i\}|_{N} = 0$

10 Aula 10

Lembre

- Darboux generalizado: duas formas numa subvariedade que coinciden nos pontos da subvariedade, existem vizinhanças da subvariedade simplectomorfas.
- A prova disso: usa método de Moser. Para usar o método de Moser:

Lemma (Poincaré relativo) $Q \xrightarrow{i} M$. $\eta \in \Omega^k(M)$ fechada e tal que $i*\eta = 0$. Então existe vizinhança $U \supset Q$ e $\beta \in \Omega^{k-1}(U)$ tal que $\eta = d\beta$ e $\beta|_Q = 0$.

(O lema de Poincaré usual é quando Q é um ponto)

Demostração do lema de Poincaré. Aí tem que mergulhar Q no fibrado tangente NQ que é um fibrado que não precisa de métrica para ser definido. Porém, na prova a gente intruduiz uma métrica em Q e identifica NQ com $\mathsf{T}^\perp\mathsf{Q}$. Daí usando a aplicação exponencial conseguimos ver que Q é um retrato por deformação de uma vizinhança dele no M—a exponencial é a ponte de NQ [a Q.

Isso da uma homotopía

$$\begin{split} F_t : U_0 &\longrightarrow U_0 \\ (x, \nu) &\longmapsto (x, t\nu) \\ F_0 &= i \circ \pi \\ F_1 &= \text{id}_{U_0} \end{split}$$

Daí é só pegar o operador de homotopía

$$\mathcal{H}:\Omega^k(U_0)\to\Omega^{k-1}(U_0)$$

que é tal que

$$F_1^*\eta=F_0^*\eta=\mathcal{H}(d\eta)+d(\mathcal{H}\eta)$$

Afirmação O operador de homotopía é

$$H(\eta) = \int_0^1 I_t^* i_{\frac{\partial}{\partial t}}(F^* \eta) dt$$

onde

$$\begin{aligned} F: [0,1] \times U_0 &\longrightarrow U_0 \\ (t,y) &\longmapsto F_t(y) \end{aligned}$$

e

$$I_t: U_0 \longrightarrow [0,1] \times U_0$$
$$y \longmapsto (t,y)$$

de forma que

$$F_{\mathsf{t}} = F \circ I_{\mathsf{t}}$$

Notação Seja

$$\tau_t : \mathbb{R} \times U_0 \longrightarrow \mathbb{R} \times U -$$
$$(x, y) \longmapsto (s + t, y)$$

de forma que

$$I_t = \tau_t \circ I_0, \quad F_t = F \circ I_t = F \circ \tau_t \circ I_0$$

e a conta que a gente faiz é

$$\begin{split} \frac{d}{dt}F_t^*\eta &= I_0^*\frac{d}{dt}\tau_t^*(F^*\eta) \\ &= I_0^*\tau_t^*\big(\mathcal{L}_{\frac{\partial}{\partial t}}F_\eta^* \\ &\stackrel{Cartan}{=} I_0^*\tau_t^*\left(di_{\frac{\partial}{\partial t}}F_\eta^* + i_{\frac{\partial}{\partial t}}d(F^*\eta\right) \\ &= d\left(I_t^*i_{\frac{\partial}{\partial t}}F_\eta^* + I_t^ki_{\frac{\partial}{\partial t}}F^*(d\eta)\right) \end{split}$$

e aí integramos para obter

$$F_1^* \eta - F_0^* \eta = d(H\eta) + H(d\eta)$$

Se $d\eta=0,$ $i^*\eta=0,$ \Longrightarrow $\eta=d(H\eta).$ Defina $\beta=H\eta.$ Como $F_t(x,0)=(x,0)$ $\forall x\in Q$, assim

$$\frac{\partial}{\partial t} F_t(x,0) = 0 \implies i_{\frac{\partial}{\partial t}} dF_t|_{x \in Q} = 0$$

e por fim

$$\beta|_{x}=0.$$

10.1 Darboux generalizado versão 2.0

No teorema anterior pode imaginar que cada vizinhança de Q é uma variedade diferente. Mas então a condição de que as duas formas sejam iguais acima de Q já não faz sentido. Precisamos de um isomorfismo simplético entre esses espaços tangentes.

Teorema (Teorema de Darboux generalizado Versão 2.0)

$$(M_0, \omega_0)$$
 (M_1, ω_1)
 i_0
 O

Suponha que temos um isomorfismo de fibrados simplécticos

tal que $\phi|_{TQ}: TQ \to TQ$ é id_{TQ} .

Então φ estende à derivada de um simplectomorfismo

i.e.,

$$d\phi|_{O} = \phi : TM_0|_{O} \rightarrow TM_1|_{O}$$

Em palavras: a derivada do simplectomofismo (entre as vizinhanças de M_1 e M_2) que obtemos é estendida pelo isomorfismo simplético dos fibrados tangentes dado.

Demostração. Podemos reduzir ao caso anterior! Basta achar um difeomorfismo $\psi: U_0 \to U_1$ tal que $\psi|_Q = id_Q$ e que $d\psi|_Q = \varphi$. Nesse caso, ω_0 e $\psi^*\omega_1$ são dois formas em U_0 que coincidem sobre $TM_1|_Q$. Vamo lá

Tome dois complementos

$$\begin{split} & E_0, \quad TM_0|_Q = TQ \oplus E_0 \\ & E_1, \quad TM_1|_Q = T_Q \oplus E_1 \end{split}$$

Então como φ preserva T_Q , ele também preserva os complementos, é só algebra linear. Isto é, φ se restringe a um isomorfismo

$$\bar{\Phi}: E_0 \to E_1$$

Note que

$$\bar{\Phi}|_{O}: \mathsf{TE}_{0} \cong \mathsf{TQ} \oplus \mathsf{E}_{0} \to \mathsf{TE}_{1} \cong \mathsf{TQ} \oplus \mathsf{E}_{1}$$

Aqui estamos pegando a derivada do isomorfismo nos fibrados. O importante e que como ele é linear, sua derivada é ele mesmo (só que aí aparecem muitas identificações):

$$d\bar{\varphi}|_{O} = id \oplus \bar{\varphi} = \varphi$$

Agora pegamos vizinhanças tubulares de Q, $V_0 \subset E_0$ e $V_1 \subset E_1$ e usando a exponancial como antes podemos contraer

e todo comuta:

$$\psi = \varphi_1 \circ \bar{\varphi} \circ \varphi^{-1} : U_0 \stackrel{\cong}{\longrightarrow} U_1$$

e por fim

$$d\psi|_O=\text{id}\circ d\bar{\varphi}\,\text{id}=\varphi$$

Agora um caso particular:

onde Q está dentro do fibrado cotangente como a seção zero.

10.2 Teorema das vizinhanças Lagrangianas de Weinstein

Teorema (das vizinhanças Lagrangianas de Weinstein) (As subvariedades Lagrangianas estão definidas "intrinsecamente", pois existe uma vizinhança delas que é simplectomorfa a ela como subvariedade no cotangente dela)

Existem vizinhanças $U_0 \supseteq \mathcal{L}$ em $T^*\mathcal{L}$ e $U_1 \supseteq \mathcal{L}$ em M e um simplectomorfismo

$$\varphi: U_0 \to U_1$$

Demostração. Só precisamos de um φ como no Darboux 2, i.e.,

$$\phi: TM|_{\mathcal{L}} \longrightarrow T(T^*\mathcal{L})|_{\mathcal{L}}$$

tal que

$$\phi|_{T\mathcal{L}}: T\mathcal{L} \to T\mathcal{L} = id_{T\mathcal{L}}$$

Lemma Suponha que $\mathcal{L} \hookrightarrow (M, \omega)$ é Lagrangiana. Considere $TM|_{\mathcal{L}}$ um fibrado vectorial simplético. Então

- 1. Existe um subfibrado lagrangiano $E \subseteq TM|_{\mathcal{L}}$ tal que $TM|_{\mathcal{L}} = T\mathcal{L} \oplus E$.
- 2. Existe um isomorfismo

$$\mathsf{TM}|_{\mathcal{L}} \xrightarrow{\cong} \mathsf{T}\mathcal{L} \oplus (\mathsf{T}\mathcal{L})^*$$

onde no espaço $T\mathcal{L} \oplus (T\mathcal{L})^*$ a forma simplética é,

$$\nu((X,\alpha),(Y,\beta))=\beta(X)-\alpha(Y),$$

lembrando um exercício da lista 1 (de álebra linear) que diz que um subespaço Lagrangiano nos da uma descomposição em soma direta usando o seu dual.

Demostração do Lema.

Step 1 Todo espaço simplético induiz uma estrutura complexa compatível. Se L é lagrangiano, JL também e o espaço vetorial (acho que isso coincide com o complemento ortogonal na métrica compatível). Isso vale para fibrados vetorias.

Step 2 Note que

$$E \longrightarrow (T\mathcal{L})^*$$
$$u \longmapsto \omega(\cdot, u)$$

é um isomorfismo. Isso é super elementar de algebra linear.

Tome

$$(TM|_{\mathcal{L}}, \omega) \longrightarrow (T\mathcal{L} \oplus T\mathcal{L}^*, \nu)$$
$$(x, u) \longmapsto (X, \omega(\cdot, u)$$

que é que acontece? Então,

$$\begin{split} \nu(T(X,u),T(Y,\nu) &= \nu((X,\omega(\cdot,u)),(Y,\omega(\cdot,\nu)) \\ &= \omega(X,u) - \omega(Y,u) \\ &= \omega((X,u),(Y,u)) \end{split}$$

Daí, o teorema queda provado simplesmente aplicando o lema em $TM|_{\mathcal{L}}$ e em $T(T^*\mathcal{L})|_{\mathcal{L}}$ para construir o isomorfismo de fibrados que buscavamos:

11 Aula 11

11.1 Aplicação (de Weinstein): pontos fixos de simplectomorifsmos

Generaliza o estudo (Poincaré-Birkoff) clássico de pontos fixos de aplicações que preservan área:

Teorema (Último teorema de Poincaré) Um automorfismo de um anelo que preserva oriantação, área e rota a fronteira do anelo em direções opostas tem um ponto fixo.

Isso apareceo quando Poincaré estudava fluxos em \mathbb{R}^3 .

Consideremos (M, ω) simpléctica e $M \xrightarrow{f} M$ simplectomorfismo. Nos interessa o caso em que f é um fluxo hamiltoniano no tempo 1, ie. $f = \phi_{X_{H_a}}^{t=1}$. Sabemos que

$$\Gamma_f = \{(x, f(x)) : x \in M\} \subseteq M \times \bar{M}$$

é uma subvariedade lagrangiana, e também $\Delta = \Gamma_{\mathsf{id}_{\mathsf{M}}} = \{(x,x) : x \in \mathsf{M}\} \subseteq \mathsf{M} \times \bar{\mathsf{M}} \; \mathsf{De} \;$ forma que os pontos fixos de f são os pontos de interseção entre $\Gamma_{\mathsf{f}} \; \mathsf{e} \; \Delta$.

Proposição Seja M compacta, $H^1_{dR}(M) = 0$. Se f é C^1 -*próximo* (convergencia uniforme, Fréchet differentiable?) da id_M, então f tem pelomenos 2 pontos fixos.

Demostração. Note que $\Delta \cong M$ pelo teorema da vizinhança lagrangiana, como Δ é lagrangiana existe uma vizinhança $U \supseteq \Delta$ simplectomorfa a uma vizinhança U' de $M \hookrightarrow (T^*M, \omega_{can})$.

- Se $f \in Simp$ está "perto" da id_{M_f} então $\Gamma_f \subseteq U$.
- f é C^1 -próximo da i d_M , então Γ_f corresponde a 1-forma μ em T^*M (a uma subvariedade N_μ de T^*M ?). (É uma gráfica de M no fibrado cotangente!)
- Γ_f lagrangiana $\implies d\mu = 0$ (Lista 2)
- $H^1(M) = 0 \implies \mu = dh$
- M compacta \implies h tem pelo menos 2 pontos críticos.

Observação (Monitoria) Se pedimos só C^0 -próximo, é possível que a seção μ não esteja bem definida porque um ponto de M pode não estar associado a um covector ancorado em outro ponto, ou algum outro problema assim. A condição C^1 controla isso.

Observação

• Não podemos abrir mão de $H^1(M) = 0$. Eg. rotação no toro.

35

• Podemos substituir H¹(M) = 0 por f ser simplectomorfismo Hamiltoniano (ver McDuff-Salomon).

Pergunta Remover C¹-proximidade da identidade? (Pelo menos no caso f hamiltoniano.

Conjectura (Arnold) M simplética compacta, f simplectomorfismo Hamiltoniano. O número de pontos fixos de f e maior o igual que o número mínimo de pontos críticos que uma função em M deve ter:

pontos fixos de
$$f \ge Crit(M)$$

 $\ge LS$ category (Lusternik Schninelmann

Isso está relacionado com o fato de tirar a hipótese de que a função esté próxima da identidade.

Conjectura (Outra versão) Para pontos fixos não degenerados (são os pontos onde N_{μ} e M se intersectan transversalmente em T^*M).

pontos críticos ≥ # mínimo de pontos críticos que funções de Morse devem ter.

$$\underbrace{\geqslant}_{\text{desig. Morse}} \sum_{k} \text{Betti}_{k}$$

Projetos

- Conjetura de Arnold (Eliashbag (superfícies de Riemann), Hofer-Achander)
- Homologia de Floer (é uma versão de Homologia de Morse em dimensão infinita)

Professor Leonardo vai falar com mais detalhe desses temas.

11.2 Outra classe de exemplos de variedades simpléticas: órbitas coadjuntas

São exeplos de redução simplética. Isso está relacionado com teoría de Lie. $G \sim (M, \omega)$ simetrías hamiltonianas. Daí vamos produzir uma nova variedade simplética.

11.2.1 Revisão de grupos e álgebras de Lie

Cada grupo de Lie age na sua álgebra de Lie de maneira canónica. Daí podemos pegar a álgebra dual. O fato importante é que as órbitas lá tem uma estrutura simplética.

Definição Um *grupo de Lie* é uma variedade C^{∞} G munida de estrutura de grupo tal que o produto e a inversão são funções suaves. Os *morfismos* são homomorfismos de grupos C^{∞} . *Subgrupos de Lie* são subvariedades imersas que são subgrupos.

Exemplo

- $GL(n, \mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : \det A \neq 0\}$
- V espaço vetorial, (V, +) é grupo de Lie abeliano.
- S^1 , $S^1 \times S^1 \times ... \times S^1$ são grupos de Lie abelianos.
- Grupos finitos/enumeráveis: \mathbb{Z} , \mathbb{Z}_m , ...

•

Exercício G grupo de Lie conexo, então o seu recobrimento universal Ĝ é grupo de Lie.

- Subgrupos de $GL(n, \mathbb{R})$:
 - Ortogonal $O(n) = \{A \in GL(n, \mathbb{R}) : AA^T = id\}.$

Mais generalmente, $(V, \langle \cdot, \cdot \rangle$ espaço vetorial de produto interno, $O(V) = \{T : V \to V | \langle T\nu, T\nu \rangle = \langle u, \nu \rangle \}.$

Considerando

$$\psi: \mathsf{GL}(\mathfrak{n},\mathbb{R}) \longrightarrow \mathsf{Sim}(\mathfrak{n})$$

$$A \longmapsto AA^T$$

temos que id é um valor regular, e assim $O(n)=\psi^{-1}(id)$ é uma subvariedade (compacta é não conexa por det $A=\pm 1$

- SL(n) = {A ∈ $GL(n, \mathbb{R})$: det A = 1}, conexo não compacto.
- $SO(n) = O(n) \cap SL(n)$ compacto conexo
- $\ \mathsf{Sp}(2\mathfrak{n}) = \{A \in \mathsf{GL}(2,\mathbb{R}) : A^\mathsf{T} J_0 A = J_0\} \ \mathsf{com} \ J_0 = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}. \ \textit{Grupo simplético}.$
- $\ GL(n,\mathbb{C}) = \{A \in M_{n \times n}(\mathbb{C}) : invertive is \} \overset{aberto}{\subseteq} M_n(\mathbb{C}) = \mathbb{C}^{n^2}.$
- U(n) = {A \in GL(n, $\mathbb C$) : AA* = id}, issto é A* = $\overline A^T$, temos | det A| = 1 e o mapa

 $det: U(n) \rightarrow S^1$

e de fato $U(1) \cong S^1$.

- $SU(n) = \{A \in U(n) : det A = 1\}$ grupo unitário especial

Observação

•

Teorema (de Cartan) (F. Warner) Subgrupo fechado de grupo de Lie é subgrupo de Lie! (mergulhado)

• Nem todo grupo de Lie é grupo de Lie de matrices. O espaço recobridor de $SL(2,\mathbb{R})$, por exemplo.

11.2.2 Sobre SU(2)

Sabemos que podemos escrever

$$\mathbb{R}^4 = \mathbb{H} = \{a + ib + jc + kd : i^2 = j^2 = k^2 = -1\}$$

e como

$$S^3 \hookrightarrow \mathbb{H}$$

S³ herda uma estrutura de grupo de Lie, e de fato

$$S^3 \stackrel{\cong}{\longrightarrow} SU(2) = \left\{ \left(\frac{\alpha}{-\beta} \frac{\beta}{\alpha} : \alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1 \right\} \right\}$$

Daí,

$$\begin{array}{ccc} S^3 & \stackrel{\cong}{\longrightarrow} & SU(2) \\ & & \downarrow_{2:1} \downarrow & & \downarrow_{2:1} \\ \mathbb{R}P^3 & \stackrel{\cong}{\longrightarrow} & SO(3) \end{array}$$

Em geral recobrimentos duplos de SO(n) são grupos Spin(n). Para $n \ge 2$ são recobrimentos universais. São grupos de simetrías de particulas que se chaman fermiones. A ideia é que a gente precisa dois voltas para virar a flecha que tá parada na particula.

Por último vamos ver por qué e que $\mathbb{R}P^3\cong SO(3)$. Do mesmo jeito que $\mathbb{R}P^2$ é o hemisferio norte da esfera com os pontos no bordo identificados, $\mathbb{R}P^3$ é uma bola fechada em \mathbb{R}^3 com pontos antipodais no bordo identificados. Podemos pensar que os pontos de $\mathbb{R}P^3$ são rotações de ángulo $\pi\sqrt{x^2+y^2+z^2}$.

12 Aula 12

12.1 Álgebras de Lie

Definição Uma álgebra de Lie \acute{e} um espaço vetorial (sobre \mathbb{R}) munido de uma forma bilinear

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathfrak{g}$$

tal que

- $[\mathfrak{u},\mathfrak{v}] = -[\mathfrak{v},\mathfrak{u}].$
- Jacobi.

Um *morfismo de Álgebras de Lie* é um mapa linear $T: \mathfrak{g} \to \mathfrak{g}$ tal que [Tu, Tv] = T[u, v]. Uma *subálgebra de lie* é $\mathfrak{h} \subset \mathfrak{g}$ subespaço tal que $[\mathfrak{h}, \mathfrak{h}] \subseteq \mathfrak{h}$, ie. $[\mathfrak{g}, \mathfrak{h}] \subseteq \mathfrak{h}$ ideal.

Exemplo

• $M_n(\mathbb{R})$ matrizes de $n \times n$ com [A, B] = AB - BA. Se denota $\mathfrak{gl}(n)$.

- V espaço vetorial com $[\cdot, \cdot] \equiv_0$ (abelianos).
- $\mathfrak{o}(\mathfrak{n}) = \{A \in M_{\mathfrak{n}}(\mathbb{R}) : A = -A^T\}.$
- $\mathfrak{sl}(n) = \{A \in M_n(\mathbb{R}) : \text{tr } A = 0\}.$
- Em dimensão ∞ , $(\mathfrak{X}(M),[\cdot,\cdot])$ campos vetoriais, e também $(\mathcal{C}^{\infty}(M),\{\cdot,\cdot\})$ simplética.

12.2 Relação entre grupos de Lie e álgebras de Lie

ção

Grupos de lie
$$\xrightarrow{\text{diferenciação}}$$
 Álgebras de Lie

Definição Dado um grupo de Lie G e um elemento $g \in G$, a *multiplicação à esquerda* é

$$L_g: G \longrightarrow G$$

$$a \longmapsto ga$$

que é um difeomorfismo. Também está a *multiplicação à direita* R_g . Temos que $(L_g)^{-1} = L_{g^{-1}}$.

Definição Um campo de vetores $X \in \mathfrak{X}(G)$ é *invariante à esquerda* se

$$(L_g)_*X = X$$
 para toda $g \in G$

ou

$$(dL_g)|_h(X_h) = X_{gh} \qquad \forall g, h$$

Observação

- O conjunto de campos invariantes à esquerda $\mathfrak{X}^L(G) \subseteq \mathfrak{X}(G)$ é uma subálgebra de Lie (o colchete de Lie é fechado aqui).
- $X \in \mathfrak{X}^L(G)$ é completamente determinado por X_e onde $e \in G$ é a unidade.
- Temos um isomorfismo de espaços vetoriais

$$\mathfrak{X}^{L}(G) \stackrel{\cong}{\longrightarrow} T_{e}G$$
$$X \longmapsto X_{e}$$

e para voltar só pegamos um vetor em T_eG e espalhamos por todos lados:

$$T_e G \longrightarrow \mathfrak{X}^L(G)$$
$$u \longmapsto u^L$$

Talvez aqui devemos provar que ese espalhamento produz um campo suave.

Além disso, esse mapa induz uma estrutura de álgebra de Lie em T_eG . Essa é a *álgebra de Lie* de G, denotada por LieG.

Extra: $(\mathfrak{X}(M), -[\cdot, \cdot])$ é a álgebra de Lie de Diff(M).

Importante: Essa associação é funtorial:

Proposição Se $\phi: G_1 \to G_2$ é um morfismo de grupos de Lie, ele induiz uma aplicação entre as algebras de Lie dado por

$$Lie(\phi) := d_e \phi : T_e G_1 \longrightarrow T_e G_2$$

que é um morfismo de álgebras de Lie.

Demostração. Muito fácil.

Esse é chamado de *funtor de Lie*. É um funtor de diferenciação nesse sentido. Como ir na outra direção?

Observação

 V espaço vetorial, G → GL(V) morfismo de grupos de Lie se chama de representação de G em V.

• $\mathfrak{g} \longrightarrow \mathfrak{gl}(V)$ morfismo de álgebras de Lie se chama de *representação* de \mathfrak{g} em V.

Exemplo

- $\mathfrak{gl}(\mathfrak{n},\mathbb{R}) = \text{Lie}(\text{GL}(\mathfrak{n},\mathbb{R})).$
- $(V, [\cdot, \cdot] = 0) = Lie(V, +).$
- Pode ter grupos de Lie diferentes com a mesma álgebra de Lie, por exemplo $(\mathbb{R},+)$ e S^1 tem álgebra de Lie $(\mathbb{R},[\cdot,\cdot])$. Outro exemplo é $\mathfrak{o}(\mathfrak{n})=\mathsf{Lie}(\mathsf{O}(\mathfrak{n}),$ e como esse grupo de Lie tem dois componentes conexas (det 1 e det -1), e a álgebra de Lie está determinada só pela componente da identidade, temos que $\mathfrak{o}(\mathfrak{n})=\mathfrak{so}(\mathfrak{n})=\mathsf{Lie}(\mathsf{SO}(\mathfrak{n}))$.
- $\mathfrak{so}(3) \cong \mathbb{R}^3$ com

$$\begin{pmatrix} 0 & a & -b \\ -a & 0 & c \\ b - c & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

- Recobrimentos 2:1.
- Na lista 1 vimos que $\mathfrak{sp}(2n) = \{A \in M_n(\mathbb{R}) : A^T J_0 + J_0 A = 0\} = \text{Lie}(Sp(2n))$
- Lie(GL(n, \mathbb{C})) = $M_n(\mathbb{C})$.
- Lie(SL(n, \mathbb{C})) = $\mathfrak{sl}(n$, \mathbb{C}) = { $A \in M_n(\mathbb{C}) : \text{tr } A = 0$ }.
- Lie(U(n)) = $un(n) = \{A \in M_n(\mathbb{C}) : A = -A^*\}.$
- Lie(SU(n)) = $\mathfrak{su}(n) = \{A \in M_n(\mathbb{C}) : tr A = 0, A = -A^*\}$

Exercício

• $u \in \mathfrak{g}$, $u^L \in \mathfrak{X}^L(G)$ é completo. Aqui é elongar cualquer curva integral usando a traslação a esquerda.

Seja $\gamma_e : \mathbb{R} \to G$ curva integral de \mathfrak{u}^L com $\gamma_\mathfrak{u}(0) = e$.

- $\gamma_u(t+s) = \gamma_u(t)\gamma_u(s)$ (γ_u é um homomorfismo de grupos)
- $\gamma_{tu}(1) = \gamma_{u}(t)$ (homogenidade)

12.3 Exponencial

Definição

$$exp: \mathfrak{g} \longrightarrow G$$

$$\mathfrak{u} \longmapsto \gamma_{\mathfrak{U}}(1)$$

Observação

$$\begin{split} \exp((t+s)u) &= \exp(tu) \exp(su) \\ \exp(-tu) &= \exp(tu)^{-1} \end{split}$$

Observação

• Fluxo de u^L é R_{exp(tu)} :

$$\begin{split} \frac{d}{dt}R_{\text{exp(tu)}}(g) &= \frac{d}{dt}\Big|_{t=0}(g\exp(tu)) \\ &= \frac{d}{dt}\Big|_{t=0}L_g\exp(tu) \\ &= \frac{d}{dt}\Big|_{t=0}L_g(u) \\ &= u^L\Big|_{\alpha} \end{split}$$

• Fluxo de u^R é $L_{exp(tu)}$.

12.4 Propriedades fundamentais

- 1. $exp : \mathfrak{g} \to G$ é um difeomorfismo entre vizinhanças de $0 \in \mathfrak{g}$ e de $e \in G$. $(d_0 exp = id)$
- 2. $\varphi:G\to H$ morfismo de grupos de Lie, $\Phi=\text{Lie}(\varphi):\mathfrak{g}\to \mathfrak{h}.$ O diagrama comuta:

$$\begin{array}{ccc}
G & \stackrel{\Phi}{\longrightarrow} & H \\
\exp_{G} & & \uparrow^{\exp_{H}} \\
\mathfrak{g} & \stackrel{\Phi}{\longrightarrow} & \mathfrak{h}
\end{array}$$

$$\begin{split} \text{Exemplo} \quad \text{Para } G &= \text{GL}(n) \ e \ \mathfrak{g} = M_n(\mathbb{R}), \\ & \text{exp} : M_n(\mathbb{R}) \longrightarrow \text{GL}(n) \\ & A \longmapsto e^A \end{split}$$
 Note que
$$\begin{aligned} \text{det} : \text{GL}(n) \to \mathbb{R}^* \\ & \text{GL}(n) \xrightarrow{\text{det}} \mathbb{R}^* \\ & \text{exp} \\ & M_n(\mathbb{R}) \xrightarrow{\text{tr}} \end{aligned}$$

Lembre que $det(e^A) = e^{tr A}$.

Observação Numa variedade Riemanniana com uma métrica invariante, a definição da exponencial usando geodésicas coincide com essa daqui.

12.5 Teoremas fundamentais de Lie (da álgebra para o grupo)

Teorema (Teoremas fundamentais de Lie)

Lie I $\mathfrak{g}=\mathsf{Lie}(\mathsf{G})$, existe um único grupo de Lie $\tilde{\mathsf{G}}$ simplesmente conexo tal que $\mathfrak{g}=\mathsf{Lie}(\tilde{\mathsf{G}})$. A ideia e simplificar a topologia do grupo preservando a sua álgebra. Aqui se usa o recobrimento universal da componente conexa da identidade.

Lie II $\varphi : \mathfrak{g} = \mathsf{Lie}(\mathsf{G}) \to \mathfrak{h} = \mathsf{Lie}(\mathsf{H})$. Se G é simplesmente conexo, existe um morfismo $\varphi : \mathsf{G} \to \mathsf{H}$ tal que $\varphi = \mathsf{Lie}(\varphi)$.

Exemplo O fluxo irracional é um morfismo de grupos de Lie que não se factora (só se factora se a órbita fecha)

Lie III Toda álgebra de Lie de dimensão finita é álgebra de Lie de um grupo de Lie.

Teorema (Ado) Cualquer álgebra de Lie pode ser vista de maneira fiel dentro de $\mathfrak{gl}(n)$, ie. $\mathfrak{g} \hookrightarrow \mathfrak{gl}(n)$. (isso no acontece para grupos de Lie e $\mathsf{GL}(n)$.)

Daí pode usar o teorema de Frobenius para mostrar que toda subálgebra de Lie da um subgrupo de Lie: espalha a subálgebra (subespaço do tangente em e) usando multiplicação a esquerda, que é Frobenius integrável porque é álgebra de Lie, assim ele vem de uma distribuição, pega a órbita que pasa por e, essa daí é um subgrupo.

Observação Em dimensão infinita tem obstruções.

Em resumo:

$$\{\text{Grupos de Lie simp. conexo}\} \stackrel{\text{Lie}}{---} \{\text{\'Algebras de Lie}\}$$

é uma equivalencia de categorías.

13 Aula 13

13.1 Ações

Definição Uma ação (à esquerda) de G em M é aplicação suave

$$\psi: G \times M \longrightarrow M$$
$$(g, x) \longmapsto gx = \psi(g, x) = \psi_{g}(x)$$

tal que

$$\psi_{e}(x) = x, \qquad \forall x \in M$$

$$\psi_{gh} = \psi_{g} \cdot \psi_{h}$$

que é equivalente a que

$$\forall g \in G, \quad \psi_g \in \text{Diff}(M), \quad G \mapsto \text{Diff}(M)$$

é homeomorfismo de grupos.

Notação $G \stackrel{\psi}{\curvearrowright} M$

 $\label{eq:observação} \textbf{Observação} \quad \text{Análogo para ações à direita com } \psi_{gh} = \psi_h \cdot \psi_g.$

Terminologia M + ação por G se llama G*-variedade*.

Definição Um morfismo de G-variedades é

$$\begin{array}{ccc} M_1 \stackrel{\varphi}{\longrightarrow} M_2 \\ \downarrow g & & \downarrow g \\ M_1 \stackrel{\varphi}{\longrightarrow} M_2 \end{array}$$

ie.,

$$\varphi(g \cdot x) = g\varphi(x)$$

ie., G-equivariante.

Exemplo

1. M = V espaço vetorial. Ações por transformações lineares=representações .

$$G \xrightarrow{\psi} GL(V) \subset Diff(V)$$

tem representação dual G∧V* dada por

$$G \xrightarrow{\psi^*} GL(V^*)$$

dada por

$$\left\langle (\psi^*)_g(\xi),\nu\right\rangle = \left\langle \xi,\psi_{q^{-1}(\nu)}\right\rangle,\quad \xi\in V^*,\nu\in V$$

- 2. $GL(n) \curvearrowright \mathbb{R}^n$ restringe $O(n) \curvearrowright S^{n-1}$.
- 3. $G = \mathbb{R} \cap M$, \mathbb{R} -ação \longleftrightarrow fluxo (completo) pois $\psi_{t+s} = \psi_t \cdot \psi_s$. Além disso, $\mathbb{R}^n \cap M \longleftrightarrow n$ -fluxos que comutam, pois

$$\psi_{(t_1,\ldots,t_n)}=\psi^1_{t_1}\circ\ldots\circ\psi^n_{t_n}$$

- 4. G age em si mesmo de várias formas:
 - $\psi_g = L_g$, $L_g(\mathfrak{a}) = g\mathfrak{a}$, ação por multiplicação à esquerda.
 - $\psi_g = R_g$ à direita. (Note que $\psi_g = R_{g^{-1}}$ é ação à esquerda.)
 - $\psi_g = I_g = L_g \circ R_{g^{-1}}$, $I_g(\mathfrak{a}) = g\mathfrak{a}\mathfrak{q}^{-1}$, ação por cnjugação (ação por automorphismos de G).
 - Ação ou representação adjunta. G age em $\mathfrak{g} = Lie(G)$

$$\begin{aligned} \text{Ad}: \mathsf{G} &\longrightarrow \text{GL}(\mathfrak{g}) \subseteq \text{Diff}(\mathfrak{g}) \\ \mathfrak{g} &\longmapsto d_{\mathfrak{e}} \mathrm{I}_{\mathfrak{q}}: \mathfrak{g} \to \mathfrak{g} \end{aligned}$$

• Representação dual. G ∩ g*. Usando wiki,

$$\begin{aligned} & \text{Ad}^*: G \longrightarrow \text{GL}(\mathfrak{g}^*) \\ & \left(\text{Ad}_g^* \, \mu \right) \! x = \mu \Big(\text{Ad}_{g^{-1}} \, x \Big) \end{aligned}$$

Em aula,

$$\begin{split} \mathsf{Ad}^* : \mathsf{G} &\longrightarrow \mathsf{GL}(\mathfrak{g}^*) \\ g &\longmapsto \begin{array}{c} \psi_g : \mathfrak{g}^* &\longrightarrow \mathfrak{g}^* \\ \langle \psi_g(\mu), \nu \rangle &= \left\langle \mu, \mathsf{Ad}_{g^{-1}}(\nu) \right\rangle \end{split}$$

$$(\mathsf{Ad}^{\boldsymbol{*}})_g = (\mathsf{Ad}_{g^{-1}})^{\boldsymbol{*}}.$$

5. Levantamiento tangente cotangente. $G \stackrel{\psi}{\sim} M$.

• G → TM

$$g \mapsto \begin{array}{c} d\psi_g : TM \stackrel{\cong}{\longrightarrow} TM \\ \downarrow & \downarrow \\ M \stackrel{\psi_g}{\longrightarrow} M \end{array}$$

• G ∩ T*M

$$g \longrightarrow \begin{pmatrix} (d\psi_g)^{-1} \end{pmatrix}^* : T^*M \xrightarrow{\cong} T^*M \\ \downarrow \qquad \qquad \downarrow \\ M \xrightarrow{\psi_g} M$$

13.2 Descrição infinitesimal de G-ações

Upshot Tem uma ação $G \curvearrowright M$. Pegue um vetor X na álgebra de Lie. exp(tX) da uma curva em G. Essa curva em G da uma curva em M quando começamos em qualquer ponto $p \in M$. Isso é um fluxo global porque exp((t+s)X) = exp(tX) exp(sX). Esse fluxo global da um campo vetorial.

$$\mathfrak{g} \to \mathfrak{X}(M)$$

Lembre \mathbb{R} ação \longleftrightarrow fluxos $\psi_t \leadsto$ campos de vetores $X(x) = \frac{d}{dt}\Big|_{t=0} \psi_t(x)$

Generalização para G-ações G grupo de Lie, $\mathfrak{g} = \text{Lie}(G)$, $G \overset{\psi}{\curvearrowright} M$.

Note cada $u \in \mathfrak{g}$ determina uma \mathbb{R} -ação = fluxo em M.

O que aqui acontece é que cada vetor no tangente à identidade de G genera um fluxo na variedade M quando G age em M.

$$\mathbb{R} \xrightarrow{\gamma_u} G \xrightarrow{\psi} \mathsf{Diff}(M)$$

$$t \longmapsto \psi_{\text{exp}(t\mathfrak{u})}$$

Definição O *gerador infinitesimal* de ψ correspondendo a $u \in \mathfrak{g}$ é o campo

$$u_{\mathsf{M}}(x) := \left. \frac{d}{dt} \right|_{t=0} \! \psi_{\mathsf{exp}(\mathsf{tu})}(x)$$

Em conclusão, uma G-ação da lugar a um mapa

$$\mathfrak{g} \longrightarrow \mathfrak{X}(M)$$

$$u \longmapsto u_M$$

Heurísticamente (só que Diff(M) não tem dimensão finita), tendo um mapa

$$G \rightarrow Diff(M)$$

derivando obtemos

$$\mathfrak{g} \to \mathfrak{X}(M)$$
.

Exemplo

 $1. \ \ G \overset{\psi}{\curvearrowright} G. \ \psi_g = L_g \leadsto \underset{u \ \longmapsto \ u^R}{\mathfrak{g} \longrightarrow \mathfrak{X}(G)} \ \text{Aqui temos que fazer uma conta:}$

$$\begin{split} u_G(\alpha) &= \frac{d}{dt} \Big|_{t=0} L_{\text{exp}(tu)(\alpha)} \\ &= \frac{d}{dt} \Big|_{t=0} R_{\alpha}(\text{exp}(tu)) \\ &= d_{\varepsilon} R_{\alpha}(u) \\ &= u^R(\alpha) \end{split}$$

Análogamente, outros generadores infinitesimais são

2.

$$\psi_g = R_g \implies u_G = u^L$$

$$\psi_g = R_{g^{-1}} \implies u_G = -u^L$$

3.

$$\psi_g = I_g = L_g \circ R_{g^{-1}} \implies \begin{matrix} \mathfrak{g} \longrightarrow \mathfrak{X}(G) \\ u \longmapsto u^R - u^L \end{matrix}$$

13.3 No caso de representações

$$G \xrightarrow{\psi} GL(V) \subset Diff(M)$$

diferenciando, $\mathfrak{g} \longrightarrow \mathfrak{gl}(V) \subset \mathfrak{X}(V)$

A partir de uma transformação linear podemos gerar um campo vetorial:

$${A : V \rightarrow Vlinear} = \mathfrak{gl}(V) \hookrightarrow \mathfrak{X}(V)$$

pega um vetor ν . Em ν , o vetor do campo vetorial é $A\nu$. $X_A(\nu)=A\nu\in T_{\nu}V=V$

13.4 Geradores infinitesimais das ações adjunta e coadjunta

Lembre que essas ações correspondem a $G \curvearrowright \mathfrak{g}$ e $G \curvearrowright \mathfrak{g}^*$. Daí,

• $G \stackrel{Ad}{\curvearrowright} \mathfrak{g} com$

$$\begin{aligned} \mathsf{Ad} : \mathsf{G} &\longrightarrow \mathsf{GL}(\mathfrak{g}) \\ \mathsf{g} &\longmapsto (\mathsf{Ad}_{\mathsf{q}} : \mathfrak{g} \to \mathfrak{g}) \end{aligned}$$

"diferenciando" (ver [?]lee, thm 20.27) obtemos

$$ad: \mathfrak{g} \longrightarrow \mathfrak{gl}(\mathfrak{g})$$
$$u(?) \longmapsto (ad_{\mathfrak{u}}: \mathfrak{g} \rightarrow \mathfrak{g})$$

Lemma

$$\begin{split} u_{\mathfrak{g}} &= \text{ad}_{\mathfrak{u}}\mathfrak{g} \longrightarrow \mathfrak{g} \\ u &\longmapsto u_{\mathfrak{g}} = \left[u_{r} \cdot \right] \end{split}$$

Demostração. É so por definição e a regra da cadeia:

$$\begin{split} u_{\mathfrak{g}}(\nu) &= \frac{d}{dt} \Big|_{t=0} \, \mathsf{Ad}_{\mathsf{exp}(\mathsf{tu})}(\nu) \\ &= \frac{d}{dt} \Big|_{t=0} d_{\varepsilon} (\mathsf{R}_{\mathsf{exp}(-\mathsf{tu})} \circ \mathsf{L}_{\mathsf{exp}(\mathsf{tu})})(\nu) \\ &= \frac{d}{dt} \Big|_{t=0} d\mathsf{R}_{\mathsf{exp}(-\mathsf{tu})}(\nu^{\mathsf{L}}(\mathsf{exp}(\mathsf{tu})) \\ &= [\mathfrak{u}^{\mathsf{L}}, \nu^{\mathsf{L}}]|_{\varepsilon} \\ &= [\mathfrak{u}, \nu] \end{split}$$

13.4.1 Dualização

Agora considere $G^{Ad}_{\curvearrowright} \mathfrak{g}^*$,

$$\left\langle \mathfrak{u}_{\mathfrak{g}}^{*},\nu\right\rangle =-\mu\left(\left[\mathfrak{u},\nu\right] \right)$$

 $com \; \mu \in \mathfrak{g}^*\text{, } u_{\mathfrak{g}^*} \in \mathfrak{g}^* = T_{\mu}\mathfrak{g}^*.$

Pergunta $\mathfrak{g} \to \mathfrak{X}(M)$

Proposição

- 1. M_1 , M_2 G-variedades, $\phi: M_1 \to M_2$ G-equivatiante, então $\mathfrak{u}_{M_1} \overset{\phi}{\sim} \mathfrak{u}_{M_2}$, ie; $d\phi(\mathfrak{u}_{M_1}(x) = \mathfrak{u}_{M_2}(\phi(x))$.
- 2. M é G-variedad, então $\mathfrak{g} \to \mathfrak{X}(M)$ é (anti!) homomorfismo de álgebra de Lie.
- 3. M é G-variedade, $(\psi_g)_*(\mathfrak{u}_M) = (\mathsf{Ad}_g(\mathfrak{u})).$

Demostração.

1.

$$\begin{split} \phi((\text{exp}(tu) \cdot x) &= \text{exp}(tu), \qquad \phi(x) \\ \left. \frac{d}{dt} \right|_{t=0} \implies d\phi(u_{M_1}(x)) &= u_{M_1}(\phi(x)) \end{split}$$

2. Note: resultado vale para

$$\phi_g = R_{g^{-1}} \leadsto \frac{\mathfrak{g} \longrightarrow \mathfrak{X}(G)}{u \longmapsto -u^L}$$

Seja $G \curvearrowright \overline{M} = G \times M$ uma ação,

$$g(\alpha, z) = (R_{\alpha}^{-1}(\alpha), \qquad u_{\overline{M}} = (-u^{L}, 0)$$

Note: $[v_{\overline{M}}, u_{\overline{M}} = -([u, v]_{\overline{M}})$. Considere

$$F: G \curvearrowright \overline{M} = G \times M \longrightarrow M \curvearrowright G$$
$$(a, x) \longmapsto \overline{a}^{1}x$$

é G-equivariante Daí,

$$u_{\overline{M}}\widetilde{F}u_{M} \implies F_{*}([u_{\overline{M}}, v_{\overline{M}}]) = [u_{M}, v_{M}]$$
$$F_{*}([u, v]_{\overline{M}} = [u, v]$$

3. A fórmula que eu quero vale em \overline{M} , F é G-equivariante, \implies vale em M.

Próxima aula Estamos usando um funtor

$$\{G\text{-variedades}\} \longrightarrow \{\mathfrak{g}\text{-variedades}\}$$

e queremos estudar em que casos podemos voltar.

14 Aula 14

 G^{ψ}_{\sim} . Um elemento da algebra de Lie, pega o vetor na identidade, vai para o grupo, daí gera um fluxo na variedade, diferencia o fluxo e já tem um campo vetorial.

Propriedades

- Anti-homomorpfismo de álgebras de Lie.
- Se φ é uma aplicação equivariante (preserva ação), os campos vetoriais são relacionados.

14.1 Ações infinitesimais (g-ações)

 \mathfrak{g} álgebra de Lie (dim $< \infty$).

Definição Uma ação (à esquerda) de g em M é anti-homomorfismo de álgebras de Lie

$$\mathfrak{g} \longrightarrow \mathfrak{X}(M)$$
 $\mathfrak{u} \longmapsto \mathfrak{u}_M$

Notação $\mathfrak{g} \curvearrowright M$, $M \notin \mathfrak{g}$ -variedade.

Para essas variedades exista uma noção de morfismo: suponha que $\mathfrak{g} \curvearrowright M \stackrel{\varphi}{\longrightarrow} M \curvearrowright \mathfrak{g}$, então φ é \mathfrak{g} -equivariante se

$$u_{M_1} \overset{\varphi}{\sim} u_{M_2} \qquad \forall u \in \mathfrak{g}.$$

Em resumo

Nem sempre pode voltar. Precisa que o campo vetorial seja **completo**, ie. precisamos de uma \mathbb{R} -ação infinitesimal $\mathbb{R} \to \mathfrak{X}(M)$. Isso da uma R-ação que é um fluxo. Mas, nem tudo campo vetorial é completo.

Teorema (Lie-Richard Palais) Seja uma ação

$$\mathfrak{g} \longrightarrow \mathfrak{X}(M)$$
 $\mathfrak{u} \longmapsto \mathfrak{u}_M$

seja G um grupo de Lie simplesmente conexo tal que $\mathfrak{g}=\mathsf{Lie}(G)$. Então \mathfrak{g} -ação se integra a uma ação \iff cada \mathfrak{u}_M é completo $\forall \mathfrak{u} \in \mathfrak{g}$.

Observação Tem a ver com pensar em uma S^1 ação em lugar de uma \mathbb{R} -ação. Por isso pedimos simplesmente conexo.

Sobre sinais/convenção

$$\begin{array}{c} G \stackrel{\varphi}{\longrightarrow} \text{Diff}(M) \\ \psi_g \psi_h = \varphi_{gh} \end{array} \qquad g \longrightarrow \mathfrak{X}(M)$$

Mas esse daí e um antihomomorfismo de álgebra de Lie.

Também temos outros anti-homomorfismos de grupos (é muito importante que aparece uma sinal):

$$Diff(M) \cong Aut(C^{\infty}(M))$$

$$\phi: M \to M \leadsto \phi^* : C^{\infty}(M) \to C^{\infty}(M)$$

$$\phi \circ \psi \leadsto \phi^* \circ \phi^*$$

$$\mathsf{Lie}(\mathsf{Diff}(\mathsf{M})) \cong \mathfrak{X}(\mathsf{M}) \xrightarrow{\cong} \mathsf{Lie}(\mathsf{Aut}(\mathcal{C}^\infty(\mathsf{M}))) \cong \mathsf{Der}(\mathcal{C}^\infty(\mathsf{M}))$$

Porque de fato a gente já tinha definido o colchete de Lie como uma derivação. Aí o que acontece é que quando voltamos para o lado esquerdo temos que botar uma sinal.

14.2 Mais sobre ações

Suponha $G \stackrel{\psi}{\sim} M$ e seja $x \in M$.

Definição *Órbita de* x:
$$\Theta_x = \{\psi_g(x) = gx : g \in G\} \subseteq M$$
.

A ação da lugar a uma relação de equivalência em $M: x \sim y \iff \exists g \in G \text{ tal que } y = g \cdot x$. Nesse caso as órbitas são as classes de equivalência (partição de M).

Observação Se $M = \mathcal{O}_x$, a ação é dita *transitiva* e M é *espaço* G-homogéneo.

Exemplo

- $GG^{L,R}$, L_g e R_g são transitivas.
- $G \stackrel{I}{\curvearrowright} G$, $I_g(a) = gag^{-1}$ não é transitiva ({e} é órbita).
- $SO(3) \curvearrowright \mathbb{R}^3$ cujas órbitas são esferas e a origem.

Definição Grupo de isotropía ou estabilizador: $G_x = \{g \in G : \psi_g = x\} \subseteq G$.

Observação
$$x \sim y \implies G_x \cong G_y$$
.

Exemplo $SO(3) \cap \mathbb{R}^3$. Para x = 0, $G_x = SO(3)$, mais para $x \neq 0$ temos $G_x \cong S^1$, as rotações com eixo a linha da origem a x.

Agora pegue uma ação infinitesimal $g \sim M$, ie. um mapa

$$\mathfrak{g} \longrightarrow \mathfrak{X}(M)$$
 $\mathfrak{u} \longmapsto \mathfrak{u}_M$

Definição

1. *Distribuição orbital*: D ⊆ TM dado por

$$x \longmapsto T_x M \supseteq D_x = \{u_M(x) : u \in \mathfrak{g}\}\$$

2. *Álebra de isotropía*: $g_x \subseteq g$ dada por

$$\mathfrak{g}_{x} = \{\mathfrak{u} \in \mathfrak{g} : \mathfrak{u}_{M}(x) = 0\}$$

Será que tudo encaixa? O estabilizador é um grupo de Lie cuja álgebra de Lie a álgebra de isotropía... a distribuição orbital é o fibrado tangente das órbitas?

Proposição (órbitas, isotropias, ... (Warner))

- $G_x \subseteq G$ é um subgrupo de Lie e Lie $(G_x) = \mathfrak{g}_x$.
- O conjunto das classes laterias G/G_x é uma variedade C^∞ tal que $G\to G/G_x$ é submersão.
- Temos uma aplicação natural

$$G \longrightarrow \mathcal{O}_{x}$$
$$g \longmapsto g \cdot x$$

E de fato

$$G \xrightarrow{sobre} \mathfrak{O}_{x}$$

$$g \xrightarrow{bijeç\~{ao}} g \cdot x$$

$$G/G_{x}$$

Assim, \mathfrak{O}_x tem estrutura C^∞ tal que $\mathfrak{O}_x \stackrel{\text{dif}}{\cong} G/G_x$.

E mais. $\mathcal{O}_x \hookrightarrow M$ é uma imersão.

Observação Se M é G-variedade homogênea, então $M \cong G/G_x$ para qualquer $x \in M$.

Exemplo

• S^{n-1} . Qual é grupo de isotropia de e_n ?

$$\begin{pmatrix} & & & & 0 \\ & \mathsf{O}(\mathfrak{n}-1) & & 0 \\ & & & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

de fato,

$$S^{n-1} \cong \frac{O(n)}{O(n-1)} = \frac{SO(n)}{SO(n-1)}$$

já que os dois agem transitivamente na esfera—lembre que a variedade não é mais que o quociente do grupo-estabilizador quando tem uma ação homogênea.

$$\mathbb{R}P^{n-1} = \frac{\mathsf{SO}(n)}{\mathsf{O}(n-1)}$$

Pode fazer uma leve meditação ao respeito. Agora tem que fixar uma linha, não só um ponto. Tem que fixar mais pontos, tem menos transformações. Ele colocou uma matriz assim:

$$\begin{pmatrix} & & & & 0 \\ & \mathsf{O}(\mathsf{n}-1) & & 0 \\ & & & 0 \\ 0 & 0 & 0 & \pm 1 \end{pmatrix}$$

Porque pode refleitir no ponto antípoda e tudo bem.

$$\mathbb{C}P^{n_01} = \frac{\mathsf{SU}(\mathfrak{n})}{\mathsf{U}(\mathfrak{n}-1)}$$

Fato geral G grupo de Lie $H \subseteq G$ subgrupo fechado, então G/H é C^{∞} -variedade e $G \to G/H$ é submersão.

Lembre: uma ação livre, propria... tem o Slice theorem, onde tem que pegar uma vizinhança das órbitas.

Exemplo (Curiosidade) V espaço vetorial, $Fr_p(V) = \{(v_1, \dots, v_p) : l.i.\}$. Tem uma ação $GL(n) \curvearrowright Fr_p(V)$. Pode calcular o grupo de isotropía H, e daí dar uma estrutura diferenciável a $Fr_p(V)$. Essa variedade se chama *variedade de Stiefel*.

14.3 De volta à geometria simplética

Queremos finalmente estudar órbitas coadjuntas e quocientes simpléticos.

Pegue um grupo de Lie G e lembre a ação coadjunta G $\overset{\psi=\mathsf{Ad}^*}{\curvearrowleft}\mathfrak{g}^*$. É assim:

$$(\mathsf{Ad}^*)_g:\mathfrak{g}^*\longrightarrow\mathfrak{g}^*$$

$$\left\langle \mathsf{Ad}^*\right)_q(\xi),u\right\rangle=\left\langle \xi,\mathsf{Ad}_{q^{-1}}(u)\right\rangle$$

onde $u \in \mathfrak{g}$ e $\xi \in \mathfrak{g}^*$. De fato,

$$\label{eq:definition} \begin{split} \text{Ad}_g &= d_e I_g : \mathfrak{g} \longrightarrow \mathfrak{g} \\ I_g(\mathfrak{a}) &= g \mathfrak{a} g^{-1} \end{split}$$

Observação $I_g: G \to G$ é um homomorfismo de grupos, $\Longrightarrow \mathsf{Ad}_g: \mathfrak{g} \to \mathfrak{g}$ é homomorfismo de álgebra de Lie, ie. $\mathsf{Ad}_g[\mathfrak{u}, \nu] = [\mathsf{Ad}_g\,\mathfrak{u}, \mathsf{Ad}_g\,\nu].$

Também vimos que

$$: \mathfrak{g} \longrightarrow \mathfrak{X}(\mathfrak{g}^*)$$

$$\mathfrak{u} \longmapsto \mathfrak{u}_{\mathfrak{q}^*}$$

$$u_{\mathfrak{a}^*} = -\xi([u,\cdot])$$

onde $T_{\xi}\mathfrak{g}^*=\mathfrak{g}^*$

Agora. Pegue $\eta \in \mathfrak{g}^*$ fixo. então

$$\Theta = \Theta_{\eta} = \{ Ad^*(\eta) : g \in G \} \subseteq \mathfrak{g}^*$$

$$T_{\xi} \Theta = \{ u_{\alpha} * (\xi) : u \in \mathfrak{g} \}$$

Definição $\xi \in \Theta$, $\omega_{\xi} \in \Lambda^{2}(T_{\xi}^{*}\Theta)$,

$$\omega_{\xi}(u_{\mathfrak{q}*}(\xi), v_{\mathfrak{q}*}(\xi) := \langle \xi, [u, v] \rangle$$

Onde tem que mostrar que isso está bem definido. Para isso poderia usar que $\langle \xi, [\mathfrak{u}, \nu] \rangle = -\mathfrak{u}_{\mathfrak{a}*}(\xi)(x)\dots$

Teorema (KKS=Kirillov-Kostant-Sourian) $\omega \in \Omega^2(\Theta)$ é simplética.

Demostração. Seja $\xi \in \Theta$

Paso 1 ω_{ξ} está bem definido. $u, u' \in \mathfrak{g}$ tal que $u_{\mathfrak{g}^*} = u'_{\mathfrak{g}^*}(\xi)$, mais isso é equivalente a que $\xi([u',\cdot]) = \xi([u',\cdot])$.

Paso 2 ω_ξ não degenerada:

$$\begin{split} \omega_{\xi}(u_{\mathfrak{g}*}(\xi),\nu_{\mathfrak{g}*}(\xi) &= 0 \\ \Longrightarrow &= \xi([u,\nu]) = u_{\mathfrak{g}*}(\xi)(x) = 0 \\ \iff u_{\mathfrak{g}*}(\xi) &= 0. \end{split}$$

Paso 3 $\xi \longrightarrow \omega_{\xi}$ **é suave**. Para isso vamos mostrar que ω é G-invariante, ie. que $(Ad^*)_g \xi = g\xi$.

Exercício Numa variedade G-homogénea, uma forma G-invariante é suave.

$$\begin{split} (\mathfrak{g}^*\omega)_{\xi}(u_{\mathfrak{g}^*}(\xi,\nu_{\mathfrak{g}^*}(\xi)) &\stackrel{\text{def}}{=} \omega_{g\xi}(g_*(u_{\mathfrak{g}^*}(\xi),g_*(\nu_{\mathfrak{g}^*}(\xi))) \\ &= \omega_{g\xi}\left((\mathsf{Ad}_g(u))_{\mathfrak{g}^*}(\xi),(\mathsf{Ad}_g(\nu))_{\mathfrak{g}^*}(x)\right) \\ &\stackrel{\text{def}}{=} \omega\left\langle (\mathsf{Ad}^*)_g\xi,[\mathsf{Ad}_g(u),\mathsf{Ad}_g(\nu)]\right\rangle \\ &= \omega_{\xi}(u_{\mathfrak{g}^*}(\xi),\nu_{\mathfrak{g}^*}(\xi)) \\ \Longrightarrow q^*\omega = \omega \end{split}$$

Paso 4 ω é fechada. Vamos usar invariânça de novo. A invariância significa que

$$\begin{split} 0 &= \mathcal{L}_{u_{\mathfrak{g}*}} \omega = i_{u_{\mathfrak{g}*}} \, d\omega + di_{u_{\mathfrak{g}*}} \, \omega \\ \\ &\Longrightarrow i_{u_{\mathfrak{g}*}} \, d\omega = - d(i_{u_{\mathfrak{g}*}} \, \omega) \end{split}$$

Afirmação $i_{\mathfrak{u}_{\mathfrak{g}*}}\omega=\mathrm{du}$. Já como é o dual do dual, podemos ver a \mathfrak{u} como uma função $\mathfrak{u}\in\mathfrak{g}=C^\infty_{\mathrm{lin}}(\mathfrak{g}^*)\subseteq C^\infty(\mathfrak{g})$.

Como u é linear, $d|_{\xi}(\eta) = u(\eta)$. Daí,

$$d\mathfrak{u}|_{\xi}(v_{\mathfrak{a}*}(\xi) = \mathfrak{u}(v_{\mathfrak{a}*}(\xi)) = \langle \xi, [\mathfrak{u}, v] \rangle = \omega_{\xi}(\mathfrak{u}_{\mathfrak{a}*}(\xi), v_{\mathfrak{a}*}(\xi)).$$

15 Aula 15

Na aula pasada:

• Ação coadjunta de uma grupo de Lie na sua álgebra de Lie:

$$\label{eq:definition} \begin{split} G \overset{\text{Ad}^*}{\curvearrowright} \mathfrak{g}^* & \qquad & \text{Ad}_g = dI_g \text{,} \qquad & I_g(\alpha) = g\alpha g^{-1} \end{split}$$

• Numa órbita $\mathcal{O} \hookrightarrow \mathfrak{g}^*$,

$$\omega\left(\mathfrak{u}_{\mathfrak{q}*}(\xi), \mathfrak{v}_{\mathfrak{q}*}(\xi)\right) := \langle \xi, [\mathfrak{u}, \mathfrak{v}] \rangle$$

para $u, g \in \mathfrak{g}, \xi \in \mathfrak{O} \subseteq \mathfrak{g}^*$, é uma estrutura simplética em \mathfrak{O} .

Hoje: exemplos concretos

15.1 Exemplos concretos (da ação coadjunta)

Observação Suponha que $k = \langle \cdot, \cdot \rangle$ é uma forma bilinear simplética *não degenerada* e Ad-*invariante* em g, ie.

$$\langle \mathsf{Ad}_{\mathfrak{q}}(\mathfrak{u}), \mathsf{Ad}_{\mathfrak{q}}(\mathfrak{v}) \rangle$$

Então podemos identificar órbitas adjuntas e coadjuntas assim:

$$k^{\flat}: \mathsf{Ad} \curvearrowright \mathfrak{g} \xrightarrow{\cong} \mathfrak{g}^* \curvearrowright \mathsf{Ad}^*$$
$$u \longmapsto \langle u_{\iota} \cdot \rangle$$

já que é equivariante.

Exemplo concreto da órbita e ação coadjunta

$$SO(3) = \{A \in \mathcal{M}_{3\times3}(\mathbb{R}) : AA^{\mathbf{T}} = \mathsf{id}, \mathsf{det}\, A = 1\}$$

$$\mathfrak{so}(3) = \{A \in \mathcal{M}_{3\times3}(\mathbb{R}) : A = -A^{\mathbf{T}}\}$$

Lembre que a ação adjunta de SO(3) em $\mathfrak{so}(3)$ é por conjugação. Agora, podemos identificar

$$\mathfrak{so}(3) \longrightarrow \mathbb{R}^{3}$$

$$\begin{pmatrix}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{pmatrix}
\longmapsto
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = u$$

$$[\cdot, \cdot] \longmapsto (u, v) \mapsto u \times v$$

Aqui a ação é por multiplicação de matrizes! I.e., $SO(3) \curvearrowright \mathfrak{so}(3) \cong \mathbb{R}^3$ é dada por

$$\mathsf{Ad}_A(\nu) = A\nu, \qquad \nu \in \mathbb{R}^3$$
 $\mathsf{ad}_u(\nu) = u \times \nu$

e além disso, se o produto interno canónico de \mathbb{R}^3 é $\langle \cdot, \cdot \rangle$, temos que essa ação é $\mathsf{Ad}_{\mathfrak{so}(3)}$ -invariante. Isso nos permete

$$\mathfrak{so}(3) \longrightarrow \mathfrak{so}(3)$$

$$\downarrow \cong \qquad \qquad \downarrow$$

$$\mathbb{R}^3 \xrightarrow{\langle \cdot, \cdot \rangle} (\mathbb{R}^3)^*$$

Para entender as orbitas coadjuntas de SO(3) em $\mathfrak{so}(3)$ basta analizar o caso em \mathbb{R}^3 .

Órbitas (co-)adjuntas em \mathbb{R}^3 ($\cong \mathfrak{so}(3)$). De fato, isso vai ser um exercício. Vai concluir que a estrutura simplética nas órbitas dessa ação coincide com a estrutura simplética na esfera.

Exercício Mostre que a forma de área na esfera é um múltiplo constante da forma KKS. O múltiplo é 1/r onde r é o raio da esfera.

Outro exemplo concreto

$$G = U(n) = \{A \in GL(n, \mathbb{C}) : AA^* = id\}$$

$$\mathfrak{g} = \mathfrak{u}(n) = \{\mathfrak{u} \in \mathcal{M}_{n \times n}(\mathbb{C}) : \mathfrak{u} = -\mathfrak{u}^*\}$$

Aqui a ação adjunta $U(n) \curvearrowright \mathfrak{u}(n)$ é por conjugação. Agora vamos estudar a ação coadjunta.

Temos um prouto interno Ad-invariante em $\mathfrak{u}(\mathfrak{n})$:

$$(u, v) \longmapsto tr(u^k v) = -tr(uv).$$

Portanto temos uma identificação

$$U(\mathfrak{n}) {\curvearrowright} \, U(\mathfrak{n}) \xrightarrow{\cong} \mathfrak{u}(\mathfrak{n})^* {\backsim} \, U(\mathfrak{n}).$$

Ou seja, a forma de estudar isto é olhando para a ação de U(n).

Note ainda que $\mathfrak{u}(\mathfrak{n})=\mathfrak{i}\mathcal{H}$ onde $\mathcal{H}=\{\xi\in\mathcal{M}_{\mathfrak{n}}(\mathbb{C}):\xi=\xi^*\}$. Com isso,

$$U(\mathfrak{n}) \overset{\text{Ad*}}{\curvearrowleft} \mathfrak{u}(\mathfrak{n})^* \cong \mathfrak{u}(\mathfrak{n}) \cong \mathcal{H} \overset{\text{Ad*}}{\curvearrowleft} U(\mathfrak{n})$$

e então

$$Ad_{A}^{*}(\xi) = A\xi^{-1}A.$$

Portanto,

 $\xi, \xi' \in \mathcal{H}$ estão na mesma órbita coadjunta Θ

$$\overset{\text{teo. espectral}}{\Longleftrightarrow} \text{spec}(\xi) = \text{spec}(\xi')$$

Ado $\Lambda=(\lambda_1,\ldots,\lambda_n), \lambda_i\in\mathbb{R}, \lambda_1\leqslant\ldots\leqslant\lambda_n.$ Daí as órbitas são

$$\mathcal{O}_{\Lambda} = \{ \xi \in \mathcal{H} : \operatorname{spec}(\xi) = \Lambda \}$$

e se chaman de isoespetrais.

Qual é a topologia dessa órbita?

Alguns casos

• $\lambda_1 < \lambda_2 = \ldots = \lambda_n$ cada $\xi \in \mathcal{O}_\Lambda$ é determinada pelo autoespaço de λ_1 , ou seja, una linha em \mathbb{C}^n . Defina $\mu = \lambda_2 = \ldots = \lambda_n$. (Como o teorema espectral nos da uma descomposição ortogonal com os autoespaços de uma transformação hermitiana, a ação de uma transformação $\xi \in \mathcal{H}$ fica determinada por essa linha.) Daí,

$$\mathbb{O}_{\Lambda} \cong \mathbb{C}P^{n-1}$$

• $\lambda_1 = \ldots = \lambda_k < \lambda_{k+1} = \ldots = \lambda_n$. Obtemos

$$\mathcal{O}_{\Lambda} = Gr(k, n)$$

• $\lambda_1 < \lambda_2 < \ldots < \lambda_n$. Aqui $\xi \in \mathcal{O}_\Lambda$ está determinada pelos autoespaços $L_1 \sim \lambda_1, \ldots, L_n \sim \lambda_n$. Equivalentemente,

$$\begin{split} E_1 &= L_1 \\ E_2 &= L_1 \oplus L_2 \qquad \text{aqui só L_2 e nova info.} \\ \vdots \\ E_j &= L_1 \oplus \ldots \oplus L_j \\ \vdots \\ E_n &= \mathbb{C}^n \end{split}$$

Então temos

$$L_1 = E_1 \subseteq ... \subseteq E_n = \mathbb{C}^n$$

isso se chama de variedade bandeira (completa).

Projeto? Relação entre geometria simplética e álgebra linear. Tem um teorema básico sobre matrizes hermitianas:

Teorema (Schur-Horn) \mathcal{O}_{Λ} uma variedade isoespetral (todos os caras hermitianos cujo espetro e esse Λ), $\{\xi \in \mathcal{H} : \operatorname{Spec}(\xi) = \Lambda\}$. Considere o mapa diagonal

$$diag: \mathcal{O}_{\Lambda} \longrightarrow \mathbb{R}^n$$

(É só pegar a diagonal da matriz e colocá-la num vetor.) Então, a imagem de diag é um poítopo convexo com vertices dados pelas n! permutações de $\Lambda = (\lambda_1, \dots, \lambda_n)$.

Observação Esse teorema pode ser generalizado (Atiyah-?) trocando Θ_{Λ} por uma variedade simplética com a ação do toro maximal.

Horn's problem Descrever o espectro da soma de dois matrizes hermiticanas com espectros conhecidos. Tem um artigo expositório (survey) de A. Knutson, *AThe symplectic and algebraic geometry of Horn's problem*. Também tem um artigo de pesquisa famoso com Terry Tau, e outro dele com Terry Tau e Chris Woodsword (esses estão citados no survey).

15.2 Ponto de vista "Poisson"

Lembre:

Estrutura de Poisson

$$\{\cdot,\cdot\}:\mathcal{C}^{\infty}(\mathsf{M})\times\mathcal{C}^{\infty}(\mathsf{M})\longrightarrow\mathcal{C}^{\infty}(\mathsf{M})$$

forma \mathbb{R} -bilinear antisimétrica ($\{f,g\} = -\{g,f\}$) Jacobi e Leibniz ($\{f,gh\} = \{f,g\}h + \{f,h\}g$.

Exemplos

- $\{\cdot,\cdot\} = 0$.
- (M, ω) simplética, $\{f, g\} = \omega(X_g, X_f)$.
- (Exemplo nem simplético nem trivial.) $\mathbb{R}^3 = \{\xi = (x, y, z)\},\$

$$\{f,g\}(\xi) = \langle \xi, \nabla f(\xi) \times \nabla g(\xi) \rangle$$

onde ∇ denota gradiente.

Note que pela condição Leibniz do colchete de Poisson, $\{f,\cdot\}$ é uma derivação, que sabemos que é equivalente a dizer que é um campo vetorial. Assim, para toda função $f \in C^{\infty}(M)$ existe um campo vetorial Hamiltoniano. De fato, isso é consistente com o caso do colchete de Poisson associado a uma variedade simplética.

Pegue o Hamiltniano

$$H(x,y,z) = \frac{x^2}{2I_1} + \frac{y^2}{2I_2} + \frac{z^2}{2I_3}$$

Daí vêm as equações de Euler-?

15.2.1 Descrição tensorial (do colchete de Poisson)

Considere $\pi \in \Gamma(\Lambda^2(TM))$ e o colchete

$$\{f,g\} = \pi(df,dg).$$

Em coordenadas

$$\pi = \sum_{i < k} \pi_{ij}(x) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}$$

15.2.2 Distribuição característica

Os vectores são vectores hamiltonianos de alguma função:

$$R \subseteq TM$$
, $R_x = \{X_f(x) : f \in C^{\infty}(M)\}$

Teorema

- $R \subseteq TM$ é integrável.
- Cada folha tem estrutura simplética natural. Obtemos a *folheação simplética*. Ela determina, caracteriza, a estrutura de Poisson.

15.2.3 Uma clase especial de variedades de Poisson

Uma clase de estruturas de Poisson à que pertence o exemplo que nem é trivial nem é simplético.

M=Vespaço vetorial. $\mathcal{C}^\infty_{lin}(V)\subseteq\mathcal{C}^\infty(M).$ Note que $\{\cdot,\cdot\}$ é linear. Suponha que $\left\{\mathcal{C}^\infty_{lin}(V),\mathcal{C}^\infty_{lin}(V)\right\}\subseteq\mathcal{C}^\infty_{lin}(V).$ Note que $\mathcal{C}^\infty_{lin}(V)\cong V^*.$

Por outro lado, $(\mathfrak{g}, [\cdot, \cdot] \leadsto \{\cdot, \cdot\}$ é linear em \mathfrak{g}^* , e como $\mathfrak{g} = C^{\infty}_{\text{lin}}(\mathfrak{g}^*) \subseteq C^{\infty}(\mathfrak{g})$, existe um único $\{\cdot, \cdot\}$ tal que

$$\{\cdot,\cdot\}|_{\mathfrak{g}}=[\cdot,\cdot]$$

Agora vamos ver a fórmula para o colchete de Poisson associado a $[\cdot,\cdot]$:

$$\{f, g\}(\xi) = \langle \xi, [df(\xi), dg(\xi)] \rangle$$

para f, $g \in C^{\infty}(\mathfrak{g}^*)$.

Conclusão

estruturas de Poisson lineares em
$$V = \mathfrak{g}^*$$
 \longleftrightarrow álgebra de Lie em $V^* = \mathfrak{g}$

Pode ver que

de onde as órbitas coadjuntas correspondem às folhas. O importante aqui é saber que a folheação tem estrutura de Poisson.

16 Aula 16: ações Hamiltonianas e aplicação momento

Vimos

16.1 Caso mais simples

Quando $G = \mathbb{R}$. Seja (M, ω) simplética. Temos:

$$\mathbb{R}$$
-ação =fluxo $\psi \rightsquigarrow X \in \mathfrak{X}(M)$ campo de vetores

Definição

- Uma \mathbb{R} -ação é *simplética* se $\psi_t^* \iff \mathcal{L}_X \omega = 0$. (X é um campo simplético.)
- R-ação é *hamiltoniana* se X é hamiltoniano, i.e., existe uma função H tal que $X = X_H$

Agora vamos generalizar isso.

16.2 Caso geral

Definição

• Uma G-ação é simplética se $\psi_q^* \omega = \omega$ para toda $g \in G$, i.e.

• G-ação é *hamiltoniana* se existe uma *aplicação momento*.

Vamos supor a exitência de um mapa

Observação

- Se $\hat{\mu}$ existe, não é unicamente determinado.
- Sempre podemos supor que û é linear.

É equivalente dar $\hat{\mu}$ como função $\hat{\mu}: \mathfrak{g} \longrightarrow \mathcal{C}^{\infty}(M)$ ou como uma função

$$\mu: M \longrightarrow \mathfrak{g}^*$$

$$\hat{\mu}(u)(x) = \langle \mu(x), u \rangle$$

Note que as quantidades nessa igualdade são numeros reais. No lado esquerdo, temos a função $\hat{\mu}(u) \in \mathcal{C}^{\infty}(M)$ evaluada no ponto $x \in M$. No lado direito, temos o funcional $\mu(x) \in \mathfrak{g}^*$ evaluado no vetor $u \in \mathfrak{g}$.

Definição Seja $G \stackrel{\varphi}{\hookrightarrow} (M, \omega)$ uma ação simplética. Dizemos que é *fracamente hamiltoni*ana se existe $\mu : M \to \mathfrak{g}^*$ (equivalentemente, $\hat{\mu} : \mathfrak{g} \longrightarrow C^{\infty}(M)$ linear) tal que

$$i_{u_M} \omega = d \langle \mu, u \rangle \qquad (u_M = X_{\hat{\mu}(u)})$$
 (2)

e a ação é hamiltoniana se, além disso, vale

$$\mu$$
 é equivariante (3)

issto é, $\mu: G \curvearrowright M \longrightarrow \mathfrak{g}^* \stackrel{Ad^*}{\curvearrowleft} G$,

$$\mu \circ \psi_q = (\mathsf{Ad}^*)_q(\mu)$$

No casso abeliano, que é o caso dos fluxos, essa segunda condição de equivariança é trivialmente satisfeita.

Terminologia

- (M, ω, μ) é um G*-espaco hamiltoniano*.
- μ é aplicação momento.
- G abeliano: μ é G-equivariante $\iff \mu$ é G-invariante.

Exemplo No caso abeliano, isso vira simplesmente escolher uma função que seja a hamiltoniana do campo vetorial associado à \mathbb{R} -ação. Issto é, a apliação momento para uma \mathbb{R} -ação com campo gerador X é uma função $H \in \mathcal{C}^{\infty}(M)$ tal que $X = X_H$. Note que H é constante ão longo do fluxo de X_H .

(Agora?) veremos resultados de existência/obstrução para aplicações momento adiante. (Adiante.)

Observação Em termos do *comomento* $\hat{\mu}: \mathfrak{g} \longrightarrow \mathcal{C}^{\infty}(M)$, a equivariância de μ é equivalente a que

$$\iff \psi_g^*(\hat{\mu}(u)) = \hat{\mu}(\text{Ad}_{g^{-1}}(u) \qquad \forall u \in \mathfrak{g}$$

$$\iff \mathcal{L}_{\nu_M}(\hat{\mu}(u)) = \hat{m}\left([u,\nu]\right)$$

pegando $g = \exp(t\nu), \frac{d}{dt}\Big|_{t=0}$. Lembre que $\{\hat{\mathfrak{mu}}(\nu), \hat{\mu}(\nu)\} = \mathcal{L}_{\nu_M}(\hat{\mu}(\mathfrak{u}))$. i.e. G-equivariância implica que $\hat{\mu}$ é um *antihomomorfismo* de álgebras de Lie. A conversa é verdade supongo que G é conexo.

Observação A primeira condição da definição diz que podmoe achar a função que é o hamiltoniano do campo vetorial associado ão elemento em \mathfrak{g} . A segunda condição diz que esse mapa $\mathfrak{g} \longrightarrow \mathcal{C}^{\infty}(M)$ é um antihomomorfismo de álgebras de Lie (ver diagrama)

16.3 Princípio de Noether

 (M, ω, μ) G-espaço hamiltoniano, $H \in C^{\infty}(M)$ hamiltoniano. Então,

H é G-invariante \iff μ é preservada pelo fluxo hamiltoniano de H

Demostração.

$$\pounds_{X_H}\left\langle \mu,u\right\rangle = i_{X_H}d(\left\langle \mu,u\right\rangle) = i_{X_H}i_{u_M}\omega = -i_{u_M}\underbrace{i_{X_H}\omega}_{dH} = -\pounds_{u_M}H$$

(É um desses exemplos onde a definição faz o teorema trivial.)

16.4 Exemplos de ações Hamiltonianas

1. $M=\mathbb{R}^{2n}=T^*\mathbb{R}^n$. $\omega=\sum_i dq_i\wedge dp_i$. $G=\mathbb{R}^n$. $\mathbb{R}^n \cap \mathbb{R}^{2n}$ por traslação, ie. $g\cdot (p,q)=(q+g,p)$. Isso claramente é uma ação. Mas, como pode achar uma aplicação momento para ela?

Geradores infinitesimais. g = tu,

$$u_{\mathbf{M}}|_{(q,p)} = \sum_{\mathbf{i}} u_{\mathbf{i}} \frac{\partial}{\partial q_{\mathbf{i}}}$$

Queremos ver se esse campo é hamiltoniano. De fato,

$$i_{u_M} \omega = i_{u_M} \left(\sum_i dq_i \wedge dp_i \right) = \sum_i u_i dp_i = d(\langle p, u \rangle)$$

2. Aplicação momento.

$$\mu: \mathbb{R}^{2n} \longrightarrow \mathbb{R}^n$$
$$(q, p) \longmapsto p$$

Teorema (Noether) H invariante por traslação ← p é preservado pelo fluxo de H

Observação Lembre do ensino medio onde tinhamos energia cinética mas potencial, K+V. O teorema diz que um potencial invariante por traslação iff momento linear é preservado.

16.5 De forma mais geral

Quando temos (M,ω) e $\omega=-d\theta$ é exata. Com uma ação $G \curvearrowright^{\psi}(M,\omega)$, temos $\psi_g^*\theta=\theta$, então $\mathcal{L}_{u_M}\theta=0$. Nesse caso, a ação é hamiltoniana e a aplicação momento está dada por

$$\begin{array}{c} M \longrightarrow \mathfrak{g}^* \\ \langle \mu, \theta \rangle = i_{u_M} \theta \end{array}$$

Demostração.

•

$$i_{u_{M}}\omega\overset{?}{=}d\left\langle \mu,u\right\rangle =di_{u_{M}}\theta=\underbrace{\pounds_{u_{M}}}_{=0}\theta-i_{u_{M}}d\theta=i_{u_{M}}\omega$$

•

$$\begin{split} (\mathsf{Ad}^*)_g \mu &\stackrel{?}{=} \langle \mu \circ \psi_g, u \rangle = \psi_g^*(\langle \mu, u \rangle) = \psi_g^*(i_{\mathfrak{u}_M} \theta) = i_{(\psi_{g^{-1}})^*\mathfrak{u}_M}(\psi_g^* \theta) \\ &= i_{(\mathsf{Ad}_{g^{-1}}(\mathfrak{u}))_M} \theta = \left\langle \mu, \mathsf{Ad}_{g^{-1}}(\mathfrak{u}) \right\rangle = \left\langle (\mathsf{Ad}^*)_g \mu, u \right\rangle \end{split}$$

Exemplo (Levantamiento cotangente) $M = T^*Q$, $\omega_{can} = -d\alpha$.

$$G \overset{\psi}{\curvearrowright} Q \leadsto G \overset{\hat{\psi}}{\curvearrowright} T^* Q$$
$$\hat{\psi}_{q} = (d\hat{\psi}_{q^{-1}})^*$$

Y vimos que o levantamiento cotangente preserva a forma tautológica, i.e., $(\hat{\psi}_g)^*\alpha = \alpha$. Isso implica que temos uma ação hamiltoniana.

Ação momento

$$\mu: T^*Q \longrightarrow \mathfrak{g}^*$$
$$\langle \mu, u \rangle = i_{u_M} \alpha$$

Simplificação: $\langle \mu(\xi), \mathfrak{u} \rangle = \xi(\mathfrak{u}_Q).$

Lembre como estava definida a forma tautológica:

$$\xi \in \qquad T^*Q$$

$$\downarrow^{\pi}$$

$$x \in \qquad Q$$

onda simplesmente $\alpha_{\xi} = \pi^* \xi$.

Exemplo (Outros exemplos)

• $SO(3) \curvearrowright \mathbb{R}^3 \stackrel{levantamento}{\leadsto} SO(3) \curvearrowright \mathbb{R}^6 \cong T^*\mathbb{R}^3 \cong \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$. Com aplicação momento (dada pelo isomorfismo da álgebra $\mathfrak{so}(3)^* \cong \mathbb{R}^3$ que já vimos?)

$$\mu: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathfrak{so}(3)^* \cong \mathbb{R}^3$$
$$(q, p) \longmapsto q \times p$$

que se chama momento angular.

Produtos direitos, restrição a subgrupo (vai vir na lista).

Órbitas coadjuntas. $G \curvearrowright (\mathfrak{O}, \omega_{\mathsf{KKS}}) \stackrel{\mu=\mathfrak{i}}{\hookrightarrow} \mathfrak{g}^*$.

16.6 Aplicações momento: quando existem e o que fazer com elas

Nem sempre pode pegar um quociente simplético (a diferencia do mundo Riemanniano). No mundo simplético, temos que pegar conjuntos de nível da aplicação momento.

Teorema (Marsden-Weinstein, Megre) $G \curvearrowright (M, \omega)$, ação hamiltoniana, $\mu : M \to \mathfrak{g}^*$ aplicação momento. Suponha que $0 \in \mathfrak{g}^*$ é um valor regular. Então, pela equivariância de μ temos uma ação $G \curvearrowright \mu^{-1}(0)$:

$$\begin{split} x \in \mu^{-1}(0), & \mu(x) = 0 \\ \mu(\psi_g(x)) = \text{Ad}_g^*(\underbrace{\mu(x)}_{=0} = 0 \end{split}$$

(isso significa que tem uma ação de G em $\mu^{-1}(0)$.) Suponha além disso que a ação é boa, i.e. *regular* (definido na seguinte seção), que $\mu^{-1}(0)/G$ é suavem que a projeção é sumersão. Então, existe uma úmica forma ω_{red} simplética em M_0 tal que $i^*\omega = \pi_0^*\omega_{\text{red}}$.

Issto é, a forma simplética é o pullback de uma forma no quociente,

Observação Esse resultado tem muita história: primero o Meyer provou no Salvador, mas foi desapercebido. Daí esse mesmo ano Marsden-Weinsten provarom. Mas também parece que tudo esta relacionado com o Smale, que depois de mostrar a conjetura de Poincaré em dimensões altas estava tentando resolver o problema de treis corpos (talvez usando redução simplética).

16.7 Quocientes de ações por grupos de Lie

16.7.1 Criterio para ações regulares

G∩P, G grupo de Lie, P vareidade, G/P espaço de órbitas com topologua quociente.

Mas ese espaço pode ser ruim. Por exemplo, $G = \mathbb{R} \cap R$ com $(t,x) \mapsto e^t x$ gera um espaço de treis órbitas: R^- para x < 0, \mathbb{R}^+ para x > 0 e 0 para x = 0. Mas cualquer aberto contendo 0 é todo \mathbb{R} : esse espaço nem é Hausdorff.

Definição $G \cap P$ é *regular* se P/G é uma C^{∞} -variedade e p $\stackrel{\pi}{\longrightarrow}$ P/G é sumersão.

- Livre: $\forall p \in P, G_p = \{e\} (g \cdot p = p \implies g = e).$
- Própria: a função

$$G \times P \longrightarrow P \times P$$
$$(g, p) \longmapsto (g \cdot p, p)$$

é própria se a imagem inversa de compacto é compacto.

Exemplo G compacto ⇒ G-ação é própria.

Teorema (Palais) G ∩ P livre, própria, então é regular.

Idea da prova. Queremos construir uma estrutura suave em P/G. Pegue um ponto. É uma órbita. Pegue uma subvariedade complementar, transversal, à órbita: $T_xS \oplus T_x O = T_xP$.

Faça agir o grupo nesa variedade transversal localmente. O resultado de uma vizinhança da órbita. Essa vai ser a carta. Usar teorema da função inversa.

Também pode usar criterio de Godement (isso é mais geral). Uma variedade M, uma relação de equivalencia $R \subseteq M \times M$ (pode ser foleação, ...). Então o quociente é variedade suave se e só se a relação de equivalência é fechada e mergulhada e a projeção a um dos fatores é sumersão. Então aqui a gente só prova que o mapa da definição de mapa próprio é um mergulho fechado.

17 Aula 17: redução simplética (quociente simplético)

Lembre:

• *Ação hamiltoniana*: existe uma pliação momento $\mu: M \longrightarrow \mathfrak{g}^*$ satisfazendo duas propriedades: $i_{\mathfrak{u}_M} \omega = \partial \langle \mu, \mathfrak{u} \rangle$ e G-equivariância de μ , i.e. $\mu \cdot \psi_g = (\mathsf{Ad}^*)_g \mu$

Hoje: Redução simplética (quociente simplético)

17.1 Uma proposição parecida ão exerício 5 da lista 3

Precisaremos considerar a seguinte situação:

$$G \curvearrowright P$$

$$\downarrow$$

$$B = P/G$$

que é uma ação regular (livre, própria).

Pergunta Quando $\omega \in \Omega^2(P)$ é *básica*, ie. da forma $\pi^*\bar{\omega}$, $\bar{\omega} \in \Omega^2(B)$?

Definição ω da forma $\pi^*\omega$ é dita *básica* (com respeito à ação).

17.2 G conexo

Observação G conexo \implies órbitas conexas \implies π é sumersão com fibras conexas. Nesse caso, (lista 3)

$$\omega \text{ \'e b\'asica} \iff \begin{cases} \mathcal{L}_{u_M} \omega = 0, & \forall u \in \mathfrak{g} \\ \mathfrak{i}_{u_M} \omega = 0 \end{cases}$$

17.3 G qualquer

Primeiro lembre que

Proposição

1. ω é basica se e somente se ω é G-invariante (em caso de G ser conexo isso é equivalente a $\mathcal{L}_{u_M} \omega = 0$), e $i_{u_M} \omega = 0$, i.e. $\ker \pi_* \subseteq \ker \omega$.

E mais, se $\omega = \pi^* \bar{\omega}$, vale

- 2. $d\omega = 0 \iff d\bar{\omega} = 0$
- 3. $\bar{\omega}$ não degenerada $\iff \ker \pi_* = \ker \omega$.

Proposição

1. Só tem um jeito de definir ѿ:

$$\bar{\omega}_b(\bar{X},\bar{Y}) = \omega_p(X,Y)$$

onde $\pi_*(X) = \bar{X}$ e $\pi_*(Y) = \bar{Y}$ e $b = \pi(p)$. Daí só tem que verificar que $\bar{\omega}$ está bem definido:

• Não depende das escolhas de X e Y. Fixando p, temos que

$$X + \ker \pi_*$$
, $Y + \ker \pi_*$

• Não depende de p tal que $\pi(p) = b$. Aqui usamos que ω é G-invariante, essa é a única diferencia com o exercício 5 da lista 3. Temos

$$\pi(p) = \pi(p') \iff p = g \cdot p'$$

$$\omega_p(X, Y) = \omega_{p'}(X', Y')$$

$$X = d\psi_q(X'), \qquad Y = d\psi_q(Y)$$

assim, $\overline{\omega}$ está bem definido, é suave e $\pi^*\overline{\omega} = \omega$

- 2. Como na lista 3
- 3. Como na lista 3.

17.4 Redução simplética

Pegue $G \stackrel{\psi}{\sim} (M, \omega)$, a aplicação momento, $x \in \mathfrak{g}^*$, e algumas outras coisas mais que não consegui escrever (é o escenário para:)

Teorema (Marsden-Weinsten, Meyer) Por cada elemento no dual da algebra de Lie, temos uma variedade pegando imagem inversa do mapa momento e quocientando.

 $G \cap (M, \omega)$, $\mu : M \longrightarrow \mathfrak{g}^*$. Seja $\xi \in \mathfrak{g}^*$ valor regular de μ , ie. $\mu^{-1}(\xi) \twoheadrightarrow M_{\xi} = \mu^{-1}(\xi)/G_{\xi}$. Suponha $G_{\xi} \cap \mu^{-1}(\xi)$ é uma subvariedade regular.

Então existe uma única forma simplética ω_{red} em $M_{\xi} = \mu^{-1}(\xi/G_{\xi})$ tal que

$$\pi_{\xi}^*\omega_{red}=i_{\xi}^*\omega$$

ie,

$$\mu^{-1}(\xi) \xrightarrow{i_{\xi}} M^{\omega}$$

$$\downarrow^{\pi_{\xi}}$$

$$(M_{\xi}, \omega_{\text{red}})$$

Observação A diferencia com a outra vez que enunciamos o teorema é que quando pegamos um ponto arbitrário no g* temos que ter cuidado com qual é o grupo que é invariante na variedade para quocientar: pode não ser o G tudo.

Demostração. Só temos que checar que

$$i^*\xi(\omega) \in \Omega^2(\mu^{-1}(\xi))$$
 é básica para G_{ξ} -ação

ou seja, de acordo com a proposição, queremos ao fim de contas, que

- G_ξ-invariante. (Isso é muito simples.)
- $\ker(\pi_{\xi})_* = \ker(i_{\xi}^* \omega)$. Só falta ver isso. Note que

$$T_x(G_{\xi} \cdot x) = \ker(\pi_{\xi})_*|_{x}, \qquad \ker(i_{\xi}^*\omega)|_x = T_x(\mu^{-1}(\xi)) \cap T(\mu^{-1}(\xi))^{\omega}$$

Agora vamos trabalhar com isso na forma de um lema:

Lemma

- 1. $T_x(\mu^{-1}(\xi)) = T_x(G \cdot x)^{\omega}$.
- 2. $T_x(G_x\cdot x)=T_x(G\cdot x)\cap T_x(\mu^{-1}(\xi))$

Daí podemos pegar ω -complemento na igualadade 1., daí sustituimos na igualdade 2. e o teorema segue.

do Lema.

1. Isso é provar que $\ker d_x \mu = T_x (G \cdot x)^\omega$. Isso é verdade porque (propriedades do mapa momento)

$$\begin{split} x \in \text{ker}\, d_x \mu &\iff \left\langle d\mu(X), u \right\rangle = 0 \quad \forall u \\ &\iff i_X \underbrace{d\left\langle \mu, u \right\rangle}_{i_{\mathfrak{u}_M}\, \omega} = 0 \quad \forall u \\ &\iff X \in \mathsf{T}_x (G \cdot x)^\omega \end{split}$$

2. Por um lado,

$$T_x(G_{\xi} \cdot x) = \{u_M(x) | u \in \mathfrak{g}\} = \{u_M(x) | u \text{ satisfaz } u_{\mathfrak{g}*}(\xi) = 0\}$$

Por outro lado, (equivariância de μ)

$$T_x(G \cdot x) = \{u_M(x) | u \in \mathfrak{g}\}\$$

$$\ker d_* \mu = \mathsf{T}_{\mathsf{x}}(\mu^{-1}(\xi) = \{X | d\mu(X) = 0\}$$

Intersectando ambos obtemos

$$\{\mathbf{u}_{\mathbf{M}}(\mathbf{x})|\mathbf{d}\mathbf{\mu}(\mathbf{u}_{\mathbf{M}}(\mathbf{x})=0\}$$

e pela equivariância de μ , $d\mu(u_M(x) = 0 \iff u_{\mathfrak{g}^*}(\xi) = 0$.

17.5 Alguns comentários sobre o teorema

Para que serve? Por exemplo, para disminuir os graus de liberdade de um sistema Hamiltoniano em uma variedade. Também pode ser que o espaço de moduli seja esse quociente.

Em vários casos a redução é "singular" É quando a ação não é regular, não tem quociente suave. Aqui pode usar "espaços estatificados". Também pode usar um approach mas algébrico: redução "homológica". Isso último leva aos métodos BRST e BV.

Exercício $x \in M$, $g_x \subseteq g$, então vale

$$\mathsf{Ann}(\mathfrak{g}_{x})=\mathsf{img}\,d_{x}\mu$$

daí, ξ é um valor regular \implies $\mathfrak{g}_x = \{0\} \implies G_x$ é discreta \implies $G_\xi \cap \mu^{-1}(\xi)$ é localmente livre. Se G_ξ é compacto, M_ξ é um *orbifold simplético*.

Outro comentário ξ valor regular, $M_{\xi} = \mu^{-1}(\xi)/G_{\xi}$ onde G_{ξ} age livremente em $\mu^{-1}(\xi)$.

$$\begin{split} \dim M_{\xi} &= \dim \mu^{-1}(\xi) - \dim G_{\xi} \\ &= \dim M - \underbrace{\dim \mathfrak{g}^*}_{\dim G} - (\dim G - \dim \mathfrak{S}_{\xi}) \\ &= \dim M + \dim \mathfrak{S}_{\xi} - 2 \dim G \end{split}$$

Shift trick (Vai vir na lista) ... A redução simplética depende da escolha do ξ . Se pegamos ξ , ξ' na mesma órbita coadjunta, então $M_{\xi} \cong M_{\xi'}$. Tem mais: bota tudo em um espaço mais grande para mostrar que todo quociente é um quociente do zero naquele espaço maior... vai vir na lista

Hamiltoniano em M da hamiltoniano em M E Isso mem

17.6 Exemplos simples

Um exemplo muito simlpes

A reta agindo numa variedade simplética, que é o fluxo de algum campo X. A aplicação momento é o Hamiltoniano $H \in C^{\infty}(M)$, $X_H = X$, a aplicação momento é $H : M \longrightarrow \mathbb{R}$. Isso daqui é uma ação hamiltoniana no caso mais simples.

Agora pegue um valor regular de H, ξ . Se a ação $\mathbb{R} \curvearrowright H^{-1}(\xi)$ é boa, obtemos que $H^{-1}(\xi)/\mathbb{R}$ é uma variedade simplética com ω_{red} .

Exemplo Muito parecido: considere $R \longrightarrow \mathbb{S}^1 \cap \mathbb{C}^{n+1} = \mathbb{R}^{2n+2}$, a ação do círculo assim:

$$e^{i\theta}(z_0,\ldots,z_n)=(e^{i\theta}z_0,\ldots,e^{i\theta}z_n)$$

Agora, pelo teorema da aplicação momento (?), temos que

$$\mu:\mathbb{C}^{n+1}\longrightarrow\mathbb{R}$$

$$\mu(z)=-\frac{1}{2}\|z\|^2\underbrace{+1/2}_{\text{opcional}}$$

assim, $\mu^{-1}(0)/\mathbb{S}^1=\mathbb{C}P^n$, ω_{red} , i.e., pelo teorema de Marsden-Weinsten, o $\mathbb{C}P^n$ tem uma estrutura simplética.

Mesmo mas mais geral Agora pegue

$$e^{i\theta}(z_0,\ldots,z_n)=(e^{ik_0\theta}z_0,\ldots,e^{ik_n\theta}z_n)$$

Considere caso n = 1, temos

$$e^{i\theta}(z_0,z_1)=(e^{k\theta}z_0,e^{i\theta}z_1)$$

obtemos

$$\mu(z_0,z_1) = -\frac{1}{2} \left(k \|z_0\|^2 + \|z_1\|^2 \right)$$

Pegue $\xi < 0$ valor regular. Se k = 1 obtemos um quociente que é topologicamente uma esfera, mas tem uma singularidade: a *gota de lágrima*—uma esfera com um pontinho singular.

18 Aula 18

Lembre:

- Ação de um grupo de Lie numa variedade simplética, o mapa momento $\mu: M \longrightarrow \mathfrak{g}^*.$
- Redução simplética
- Exemplos

18.1 Outros exemplos

18.1.1 Reduções de fibrados cotantentes

Pegue uma variedade com uma ação de grupo de Lie, $Q \curvearrowright G$, a gente já viu (quando?) passa para o levantamento cotangente obtendo uma ação $G \curvearrowright T^*M$. Se a ação em Q é livre e própria, também a ação no cotangente.

O mapa momento em T*Q é

$$\mu: T^*Q \longrightarrow \mathfrak{g}^*$$

$$\xi_x \longmapsto \mu(\xi_x)$$

$$\langle \mu(\xi_x, u) := \xi(u_Q(x))$$

Então, quando reduzimos no $\xi = 0$ obtemos

$$(T^*Q)_{\xi=0} = T^*(Q/G)$$

Mas isso é mais interessante para $\xi \neq 0$. Considere a ação de um grupo de Lie G nele mesmo pela multiplicação a esquerda, $G \curvearrowright G$. Note que G/G = pt.

A aplicaco momento é

$$\mu: T^*G \longrightarrow \mathfrak{g}^*$$
$$\xi \longmapsto (d_e R_q)^*(\xi)$$

Nesse caso, todo ξ é valor regular e

$$\mu^{-1}(\xi) = \{(g, \xi^R|_g), \forall g \in G\}$$

Que é basicamente pegar uma forma e espalhar ξ por todos lados usando o grupo. Fazendo redução obtemos

$$\mu^{-1}(\xi)/G_{\xi} \cong G/G_{\xi} \cong \mathcal{O}_{\xi}$$

Exercício (Vai vir na lista) De fato, $\omega_{red} = \omega_{KKS}$. Mas ainda, toda órbita KKS pode ser vista desse jeito.

Observação Lembre que toda variedade de Poisson tem uma descomoposição em folhas simpléticas (isso é totalmente geral). No caso de \mathfrak{g}^* , essas folhas são as órbitas coadjuntas. Aqui temos que de fato $\mathfrak{g}^* = (T^*G)/G$ quando pegamos o quociente do grupo de Lie G levantado agindo em T^*G .

Isso é mas geral. Pode ter qualquer variedade simplética com uma ação Hamiltoniana boa. Pega quociente: M/G não tem por que ser simplético, mas ele tem uma estrutura de Poisson, e então uma descomposição em folhas que são simpléticas. O interessante é que essas folhas são da forma $\mu^{-1}(\xi)/G_{\xi}$, i.e. são órbitas coadjuntas.

18.1.2 Um espaço de moduli

Considere alguns caras positivos assim: $\lambda_1, \ldots, \lambda_n > 0$. Para $\lambda > 0$, defina \mathbb{S}^2_{λ} a esfera untária com forma simplética $\lambda \omega_{\text{area}}$. Considere a variedade M seguinte com a ação seguinte:

 $SO(3) \curvearrowright \underbrace{\mathbb{S}_{\lambda_1}^2 \ldots \times \mathbb{S}_{\lambda_n}^2}_{M}$

e a hamiltoniana (tu pode ver que isso é certo)

$$\begin{split} \mu: M &\longrightarrow \mathfrak{so}(3)^* = \mathbb{R}^3 \\ (x_1, \dots, x_n) &\longmapsto \lambda_1 x_1 + \dots + \lambda_n x_n \end{split}$$

e agora considere o espaço reduzido em $\xi = 0$,

$$m_{\lambda_1,...,\lambda_n} := \mu^{-1}(0)/\mathsf{SO}(3) = \{(x_1,\ldots,x_n) \in (\mathbb{S}^2)^n | \lambda_1 x_1 + \ldots + \lambda_n x_n = 0\} / \mathsf{SO}(3)$$

isso tá bom pelo teorema. Vai ser o *espaço de polígonos espaciais em* \mathbb{R}^3 .

Definição Um *polígono espacial em* \mathbb{R}^3 é uns pontos $(v_1, \ldots, v_n) \in \mathbb{R}^3$, lados (ℓ_1, \ldots, ℓ_n) que conectam vértices ciclicamente. Os ℓ s são as diferencias dos ℓ s. A condição do cara fechar é $\ell_1 + \ldots + \ell_n = 0$

Consideremos o espaço de polígonos a menos de movimentos rígidos (traslações, rotações) no \mathbb{R}^3 . Agora note

- Por traslação, podemos assumir que $v_1 = 0$.
- Polígonos com $v_1=0$ são representados pelos lados ℓ_1,\dots,ℓ_n a menos de rotação.
- Defina $\lambda_i = \|\ell_i\|$, $x_i = \ell_i/\lambda_i$.
- obtemos $m_{\lambda_1,\dots,\lambda_n}$. É simplético e suave a menos de polígonos degenerados. Topologia dele: Kavitch Millson. "Moment maps and GIT quotients": C. Roodwand. Até é Kähler. Relação com outros espaços moduli como espaço de conexões planas na esfera com furos. Tem ação tórica. São exemplos de variedades quiver (representações).

O punto de tudo isso é que esse espaço aparece como uma redução simplética relativamente simples.

18.1.3 Um exemplo de mecânica

Lembre que tudo isso vem do trabalho do Smale quando ele tava estudando mecânica celeste.

Considere o problema de dois corpos. O espaço de fase de dois partículas é

$$Q = \{(r_1, r_2), r_i = (q_i^1, q_i^2, q_i^3)\} = \mathbb{R}^6$$

Daí,

$$M = T^*Q = \mathbb{R}^{12} = \{(r_1, r_2, P_1, P_2)\}$$

vamos denotar a estrutura canónica assim: $\omega = \sum dr_i dP_i$.

Vamos botar uma ação:

$$\begin{split} G &= \mathbb{R}^3 {\curvearrowright} Q = \mathbb{R}^6 \\ (r_1, r_2) &\longmapsto (r_1 + g, r_2 + g), \qquad g \in G = \mathbb{R}^3 \end{split}$$

O levantamento cotangente da:

$$(r_1, r_2, P_1, P_2) \stackrel{g}{\mapsto} (r_1 + g, r_2 + g, P_1, P_2)$$

E a aplicação momento é

$$\mu: \mathbb{R}^{12} \longrightarrow \mathbb{R}^3$$

$$(r_1, r_2, P_1, P_2) \longmapsto P_1 + P_2$$

O que é μ^{-1}/G_{ξ} ?

Vamos fazer uma mudança de coordenadas em Q (um difeomorfismo):

$$\begin{array}{ccc} \mathbb{R}^6 & \xrightarrow{\cong} \mathbb{R}^6 \\ \\ (r_1, r_2) & \longmapsto (r_{\text{cm}}, r_{\text{rel}}) \end{array}$$

onde

$$r_{\text{cm}} = \frac{m_1 r_1 + m_2 r_2}{m_1 + m_2} \qquad \qquad r_{\text{rel}} = r_1 - r_2 \label{eq:rcm}$$

são o centro de masa e a posição relativa.

Você calcula que o levantamento cotange é

$$\begin{split} \mathbb{R}^{12} &\longrightarrow \mathbb{R}^{12} \\ (r_1, r_2, P_1, P_2) &\longmapsto \left(r_{\text{cm}} := r, r_{\text{rel}} := \bar{r}, P_1 + P_2 := P, \frac{1}{m_1 + m_2} (m_2 P_1 - m_1 P_2) := \bar{P} \right) \end{split}$$

e

$$\omega = dr \cdot dP + d\bar{r} \cdot d\bar{P}$$

Temos uma ação levantada certo, as coordenadas dela nas novas coordenadas é

$$(r, \bar{r}, p, \bar{p}) \stackrel{g}{\longmapsto} (r + g, \bar{r}, p, \bar{p})$$

A ideia é usar um sistema de coordenadas com o centro de masa na origem, e isso simplifica o negocio. Pode reduzir a dimensão para \mathbb{R}^6 .

Agora vamos botar um hamiltoniano para transportar tudo ao reduzido. Lembre a redução de hamiltoniano é quando temos uma função $H \in C^\infty(M)$ que é G-invariante, ie. constante ao longo das órbitas, assim está bem definido no quociente $\mu^{-1}(\xi)/G$. Pegue o Hamiltoniano

$$H(r_1, r_2, P_1, P_2) = \frac{1}{2} \left(\frac{|P_1|^2}{m_1} \frac{|P_2|^2}{m_2} \right) - \frac{Km_1 m_2}{|r_1 - r_2|}$$

é um hamiltoniano classico para o problema de dois corpos. Note que é \mathbb{R}^3 -invariante olhando a definição da ação que dimos acima. Como ele vira no quociente? Assim:

$$H_{\text{red}}(\bar{r},\bar{P}) = \frac{1}{2}\frac{|P|^2}{\bar{m}} - \frac{K(m_1+m_2)\bar{m}}{\bar{r}}$$

Alí o que a gente consigui foi levar um problema de dois corpos a um problema de um corpo. Mas ainda, nesse quociente tem uma SO(3)-ação, assim pode reduzir ainda mais, e resolver completamente o problema de dois corpos.

18.1.4 Um exemplinho de mecânica com geometria riemanniana

Porque achar geodésica é um problema de mecânica. G grupo de Lie, $\langle \cdot, \cdot \rangle$ uma métrica invariante à esquerda. $\langle \cdot, \cdot \rangle$ é determinada um produto interno $\langle \cdot, \cdot \rangle$ em \mathfrak{g} , que por sua vez é determinado por um operador simétrico autoadjunto I : $\mathfrak{g} \longrightarrow \mathfrak{g}^*$ de maneira que

$$\langle \mathfrak{u}, \mathfrak{v} \rangle_{\mathfrak{q}} = \langle I(\mathfrak{u}), I(\mathfrak{v}) \rangle$$

i.e. é o mesmo ter esse produto interno que ter a outra coisa.

Considere $G \curvearrowright G$, $G \curvearrowright T^*G$, $\mathcal{O}_{\xi} = \mu^{-1}(\xi)/G_{\xi}$ para $\xi \in \mathfrak{g}^*$.

O sistema hamiltoniano reduzido em \mathcal{O}_{ξ} é

$$\dot{\eta}(t) = -\operatorname{ad}^*_{I^{-1}(\eta(t))}(\eta(t))$$

que é a equação de Euler, uma versão reduzida das equações das geodésicas.

$$dH_{\text{red}}|_{\eta} = I^{-1}(\eta)$$

$$H_{\text{red}} = \frac{1}{2}(\eta(I^{-1}(\eta))$$

a parte da mecânica entra quando consideramos G = SO(3). Pense num corpo que tá voando por todos lados mas tem um ponto fixo num lugar. A solução desse corpo rígido é dada por geodésicas no SO(3).

O que acontece é que

$$I = \begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}, \qquad I_i > 0$$

é o *momento de métrica* cujos autovalores se chaman de *valores principais*?. Esse cara é o que vai determinar a métrica. No caso desse corpo rígido, temos a *equação de Eulor para o corpo rígido*:

$$\frac{d\eta_{\mathfrak{i}}}{dt}(t)=(I_{k}^{-1}-I_{\mathfrak{j}}^{-1})\eta_{\mathfrak{j}}\eta_{k}$$

$$\dot{\eta}(t) = \eta \times I^{-1}\eta$$

que são esferas. As soluções da equação de Euler é um negocio bem bonito: pega uma esfera, tem 6 pontos de equilíbrio que estão em pares, dois em cada autoespaço. Quatro estáveis, dos inestáveis. É como rodar um livro no eixo diagonal...

Observação Tem muitíssimas EDPs relacionadas a equações reduzidas de geodésicas quando G é de dimensão infinita. Por exemplo $G = \mathsf{Dif}_{\mathsf{Vol}}(M, \langle \cdot, \cdot \rangle)$. Por exemplo a de Burger aparece com $M = \mathbb{S}^1$.

19 Aula 19: comentários de possíveis projetos

Lembre:

- Ações hamiltonianas e redução.
- Aplicação momento, estrutura simplética nas órbitas da ação coadjunta.
- Diversos exemplos.

Hoje:

- Super exemplo.
- $G = \mathbb{T}^n$ toro.

19.1 Super exemplo (de ação hamiltoniana e redução simplética)

Advertencia: os objetos não tem sentido mas são expressoes de objetos geométricos.

Objetos. Σ variedade compacta conexa orientada, Gcompacto grupo de Lie, $\mathfrak g$ munida de um produto interno $\langle \cdot, \cdot \rangle$ Ad-invariante.

• $\mathcal{A} = \Omega^1(\Sigma, \mathfrak{g})$. Formas que tomam valores em \mathfrak{g} em lugar de em \mathbb{R} . Interpretação geométrica: espaço das conexões em

$$\begin{array}{c} \Sigma \times G \\ \downarrow \\ \Sigma \end{array}$$

Observação (Conexões)

$$G \curvearrowright P$$

$$\downarrow^{\pi}$$

$$B = P/G$$

com ação livre, própria. Temos o *fibrado vertical*, que ker π , o espaço tangente às fibras de π . Uma *conexão* é a escolha de um subfibrado H que complemente o fibrado vertical, dizemos que é *horizontal*, e que é G-invariante. Em soma, TP = $V \oplus H$ e $g_*H = H$.

A ideia é que o fibrado horizontal permite conectar fibras, transporte paralelo.

Comparando com a noção de conexão em geometria riemanniana, uma conexão em

no sentido riemanniano, é uma conexão no sentido daqui em

onde Fr(E) é o bundle de bases das fibras de E, que é um fibrado principal com a ação de GL(n).

A ideia será que os núcleos das formas em $\mathcal A$ são conexões. Em fim, é só para menter em mente que esse $\mathcal A$ define conexoes em $\Sigma \times G$.

• $\mathcal{G} = C^{\infty}(\Sigma, G)$. Interpretação geométrica: é um *grupo de calibre* quando temos

$$\begin{array}{ccc}
G \curvearrowright P & \longrightarrow & P \curvearrowleft G \\
\downarrow & & \downarrow \\
\Sigma & \xrightarrow{id} & \Sigma
\end{array}$$

- $G \cap \mathcal{A}$, $gA = \mathsf{Ad}_g(A) g^*\theta^R$. Interpretação geométrica: se chama de *ação de calibre*. São transformações muito naturais no mundo dos grupos de calibre.
- $\Omega^1(\Sigma, \mathfrak{g}) \to \Omega^2(\Sigma, \mathfrak{g})$. Dada por $A \mapsto dA + \frac{1}{2}[A, A]$. Aqui [A, A](X, Y) := [A(X), A(X)] [A(Y), A(X)]

Observação (Curvatura) A importança da conexão e conectar fibras. É um levantamento de campos vetorias na base. Como muda o colchete? Isso é o que mede a curvatura. Se a curvatura é zero, é plana, a distribuição no espaço total é integrável.

Portanto \mathcal{A} é uma variedade simplética com a forma, para $A \in A$ e $\mathfrak{u}, \mathfrak{v} \in T_A \mathcal{A} \cong \mathcal{A} = \Omega^1(\Sigma, \mathfrak{g})$

$$\omega_{A}(u,v) = \int_{\Sigma} \langle u,v \rangle$$

onde definimos $\langle u, v \rangle$ $(X, Y) = \langle u(X), v(Y) \rangle - \langle u(Y), v(X) \rangle$ ussando o produto interno que botamos em \mathfrak{g} .

Identificações.

- Lie(G) = $\Omega^0(\Sigma, \mathfrak{g})$.
- Lie(\mathcal{G})* = $\Omega^2(\Sigma, \mathfrak{g})$.

Teorema (Atiyah-Bott) $G \curvearrowright \mathcal{A}$ é hamiltoniana. A aplicação momento é

$$\operatorname{curv}: \mathcal{A} = \Omega^1(\Sigma, \mathfrak{g}) \longrightarrow \operatorname{Lie}(\mathcal{G})^* = \Omega^2(\Sigma, \mathfrak{g})$$

Fazendo redução, de acordo com o teorema de Marsden-Weinsten,

$$\operatorname{curv}^{-1}(0)/\mathcal{G}=M$$

é um espaço simplético, o espaço moduli de conexões planas.

Onde é que isso aparece?

• Por qué esse espaço tem dimensão finita? porque

$$m = \frac{\mathsf{Hom}(\pi_1(\Sigma),\mathsf{G})}{\mathsf{G}}$$

- *M* e o espaço de fase de *Chern-Simons* (física).
- Em topologia, esse espaço da invariantes de 3-variedades. Corta uma 3-variedade. A intersação é uma superficie. Calcula o seu \mathcal{M} . Olha para as conexoes que são restrição es de conexoes planas em \mathcal{M}^3 de um lado do plano com que cortou. Isso é uma subvariedade lagrangiana de \mathcal{M} . Otro lado. Interseção das lagrangianas é invariante simplético.
- $\bullet\,$ Se a variedade tem bordo, $\mathcal M$ é só de Poisson. Tem um negocio que não consegui entender.
- Também pode botar mas estrutura. Em alguns casos \mathcal{M} é Kähler.

19.2 Aplicação de redução: cortes simpléticos

Pegue uma variedade simplética conexa com uma ação hamiltoniana de S¹. S¹ \curvearrowright (M, ω) \xrightarrow{H} \mathbb{R} . Considere M $\times \overline{\mathbb{C}} \cong \mathbb{R}^2$. Alí também pode agir com S¹ onde S¹ é rotação em \mathbb{C} .Você vai ver na lista que em casos assim, a aplicação momento é H(x) $-\frac{1}{2}|z|^2$.

Agora pode olhar para

$$\mu^{-1}(\xi) = \underbrace{H^{-1}(\xi) \times \{0\}}_{\cong H^{-1}(\xi)} \sqcup \left(\bigsqcup_{r>0} H^{-1}(\xi+r) \times \left\{\frac{1}{2}|z|^2 = r\right\} \right)$$

 $\text{Esse segundo conjunto \'e tamb\'em} = \{(x,z)|H(x)>\xi, z=e^{\mathfrak{i}\theta}\sqrt{H(x)-\xi}\} \cong \{H>\xi\}\times S^1.$

Agora vamos supor que ξ é um valor regular de H, e $S^1 \cap H^{-1}(\xi)$ é livre, própria. Mesmo para μ . Se consigo fazer redução simplética para H e (M, ω) , vou conseguir também para $M \times \overline{\mathbb{C}}$. Vamos:

$$\mu^{-1}(\xi)/S^1 \cong H^{-1}(\xi)/S^1 \sqcup \left(\frac{\{H>\xi\}\times S^1}{S^1}\right) \cong M_\xi \sqcup \{H>\xi\}$$

Qué é que estou dizendo? A variedade simplética $\mu^{-1}(\xi)/S^1$ é uma união de dois coisas: níveis da aplicação momento, e, no bordo $\mu^{-1}(\xi)$ fazemos redução para ter também estrutura simplética. Também poderiamos olhar para niveis que estão abaixo de ξ . Uma variedade podemos chamar $M_{\geqslant \xi}$ e a outra $M_{\leqslant \xi}$. Então separamos M em duas variedades ao longo de $\mu^{-1}(\xi)$.

Colagem simplética (Symplectic glueing). O Eugene Lerman introduiz essa operação muito linda para desfazer o processo anterior (acho, não será que o Lerman introduiz o corte simplético mesmo?). Isso é chamado *blow-up simplético*, onde tiramos não um ponto senão uma bola e pegamos o fibrado de Hopf...

19.3 Dois resultados de ações hamiltonianas por toros

Lembre: tudo isso é o que a gente não vai falar.

Vamos falar rapidamente de convexidade. (M, ω) simplética, conexa e compacta. Ação hamiltoniana de algum toro $\mathbb{T}^n \curvearrowright (M, \omega) \mu : M \to \mathbb{R}^m$.

Teorema (Atiyah/Guilleimen-Steinberg) A imagem da aplicação momento é convexa.

De fato, a imagem da aplicação momento é o fecho convexo da imagem dos pontos fixos da ação. Esse é o *politopo momento*.

Exemplo (Que de fato motivou isso, Horn-Schur) Pegue $\lambda_1, \ldots, \lambda_n$ é olha as matrizes hermitianas que tem esse especto, $\Theta_{\lambda_1, \ldots, \lambda_n}$. Quer saber a diagonal, ela fica na envoltura conexa dos λ_i (acho).

19.4 Variedade simpléticas tóricas

Definição Variedade simplética tórica: M^{2n} variedades conexas compactas com ação hamiltoniana (efetiva=qualquer elemento do grupo move pelo menos um elemento) de \mathbb{T}^n

Exemplo

- $S^1 \cap S^2$ por rotações aplicação momento é função altura (polo norte, polo sur). O politopo momento é o intervalo [-1,1].
- $\mathbb{T}^2 \curvearrowright \mathbb{C}P^2$ dada por

$$(e^{i\theta_1}, e^{i\theta_2})([z_1:z_2:z_3]) = ([z_0, e^{i\theta_1}z_1, e^{i\theta_2}z_2])$$

a aplicação momento resulta ser

$$\mu([z_0, z_1, z_2]) = -\frac{1}{2} \left(\frac{|z_1|^2}{|z_0|^2 + |z_1|^2 + |z_2|^2}, \ldots \right)$$

e o politopo momento é um triangulsinho conectando (-1/2,0) e (0,-1/2).

Para variedades tóricas,

- É possível caracterizar os politopos que são imagem de aplicaçã oes momento, se chamam de *politopos de Delzant*.
- As variedades simpléticas tóricas estão classificadas opr politopos de Delzant

Teorema (Delzant)

 $\{\text{variedades simpléticas tóricas}\} \stackrel{1-1}{\longleftrightarrow} \{\text{politopos de Delzant}\}$

Observação Cortar variedades simpléticas como falamos antes corresponde com cortar o politopo!

Observação Olha para um livro de Guilleimin. A Anna pede para fazer muitos exercícios se quer entender bem. Também o Audin.

20 Aula 20: Exitência e unicidade de aplicações momento

Projeto final Para este domingo: tema e uma ou duas referencias. Aproximadamente um mes depois (22 novembro): primeiro rascunho. Última semana de novembro e primeira de dezembro: apresentações. Uns 40 minutos de apresentação. Não tem que apresentar tudo que está no trabalho escrito.

20.1 A primeira obstrução: um diagraminha commutativo

Lembre:

- $G \cap (M, \omega)$ ação simplética é *Hamiltoniana* se exite $\mu : M \to \mathfrak{g}^*$ ou, equivalentemente, $\hat{\mu} : \mathfrak{g} \to C^{\infty}(M)$ tal que
 - 1. (Diagraminha commutativo aqui embaixo)
 - 2. (Seguinte seção)

Queremos achar uma aplicação $\hat{\mu}: \mathfrak{g} \to \mathcal{C}^{\infty}(M)$ tal que

onde o mapa $C^{\infty}(M) \to \mathfrak{X}(M)$ é f $\mapsto X_{\mathfrak{q}}$.

Proposição Existe $c_1 \in [\mathfrak{g}, \mathfrak{g}]^0 \otimes H^1(M)$ tal que

 $\hat{\mu}: \mathfrak{g} \to \mathit{C}^{\infty}(M)$ satsifazendo o diagrama anterior $\iff c_1 = 0$

onde $[\mathfrak{g},\mathfrak{g}]^0 \subset \mathfrak{g}^*$ é o anulador do commutador de \mathfrak{g} .

Demostração. A existencia de $\hat{\mu}$ é equivalente a que a imagem do mapa em baixo seja de campos hamiltonianos: pegue uma base de \mathfrak{g} , chega a campos hamiltonianos e escolhe uma função para cada um deles. Alí já determinou um $\hat{\mu}$.

Considere

$$\mathfrak{g} \xrightarrow{\psi} \mathfrak{X}(M) \xrightarrow{\bar{\psi}} \mathfrak{X}_{\omega}(M)/\mathfrak{X}_{\text{Ham}}(M) \cong H^1_{\text{dR}}(M)$$

Note que $\bar{\psi}([\mathfrak{g},\mathfrak{g}]=0$ já que a gente viu no principio do curso que $\mathfrak{X}_{\omega}(M)$, $\mathfrak{X}_{\omega}(M)\subseteq\mathfrak{X}_{\mathsf{HAM}}(M)$. Daí a aplicação induzida é

$$\mathfrak{g}/[\mathfrak{g},\mathfrak{g}] \xrightarrow{c_1} H^1(M)$$

se e somente se

$$c_1 \in \left(\frac{\mathfrak{g}}{\lceil \mathfrak{g},\mathfrak{g} \rceil}\right)^* \otimes H^1(M)$$

já que em geral T : V → W linear se e somente se T ∈ V* \otimes W

Observação Uma ação simplética fracamenta hamiltoniana satisfaz isso (acho).

20.1.1 Interpreatação coholomogica

g álgebra de Lie,

$$C^{k} = \Lambda^{k} \mathfrak{g}^{*}, \qquad \delta : \Lambda^{k} \mathfrak{g}^{*} \to \Lambda^{k+1} \mathfrak{g}^{*}$$
$$\delta_{C}(u_{0}, u_{k}) = \sum_{i < j} (-1)^{i+j} \subset ([u_{i}, u_{j}], u_{1}, \dots, \hat{u}_{i}, \hat{u}_{j}, \dots, u_{k})$$

que é o operador de Chavalley-Eilenberg.

Observação $\Lambda^k \mathfrak{g}^* \cong \Omega^k(G)^G \subseteq \Omega^k(G)$ onde esse na esqueda são as formas G-invariantes. Quando G é compacto tem igualdade

Exercício $\delta^2=0 \iff$ identidade de jacobi em $[\cdot,\cdot]$. Desse jeito é equivalente dar um espaço vetorial que a forma colchete seja jacobi $(V,[\cdot,\cdot])$ ou pedir que $\Lambda^{\bullet}V^*$ tenha uma derivação δ tal que $\delta^2=0$

Observação $\delta: \mathfrak{g}^* \to \Lambda^2 \mathfrak{g}^*$ é dual (com signo –) de $[\cdot, \cdot]: \Lambda \to \mathfrak{g}$,

$$\delta c[u,v] = -c([u,v])$$

tem o colchete tem delta, tem delta tem colchete, é só isso.

Definição

$$H^2(\mathfrak{g}) = \frac{\ker \delta}{\text{img }\delta}$$

Observação

- Em grau zero δ é zero: δ : $\mathbb{R} \to \mathfrak{g}^*$, $\delta = 0$
- Em grau um, $\delta: \mathfrak{g}^* \to \Lambda^2 \mathfrak{g}^*$, $\delta c(\mathfrak{u}, \mathfrak{v}) = -c([\mathfrak{u}, \mathfrak{v}])$.

Assim,

$$\mathsf{H}^1(\mathfrak{g})=\text{ker}\,\delta=[\mathfrak{g},\mathfrak{g}]^0$$

Por tanto, o resultado da seção anterior pode ser escrito como

$$c_1 \in H^1(\mathfrak{g}) \otimes H^1(M)$$

20.2 A segunda obstrução: equivariância

A outra condição da aplicação momento é que

$$\hat{\mu}([u,v]) = -\{\hat{\mu}(u), \hat{\mu}(v)\}.$$

Vamos supor que conseguimos resolver a primeira obstrução. Vimos que não existe só uma função. Agora vamos ver cómo fazer uma escolha de $\hat{\mu}$ que permita satisfazer a segunda obstrução.

Fixe û satisfazendo a primeira obstrução. Considere a *falha*:

$$c_2^{\mu} = \hat{\mu}([\nu, \mu]) - \{\hat{\mu}(u), \hat{\mu}(\nu)\} \in \mathcal{C}^{\infty}(M)$$

for $u, v \in \mathfrak{g}$.

Observação

$$X_{c_2^{\mu}(u,\nu)} = \underbrace{\psi([\nu,u])}_{=[\psi(u),\psi(s)]} - \underbrace{X_{\{\hat{\mu}(u),\hat{\mu}(\nu)\}}}_{[X_{\hat{\mu}(u)},X_{\hat{\mu}(\nu)}]} = 0$$

asi que $c_2^{\mu}(u, v)$ é constante.

Se M é conexo, $c_2^{\mu}(\mathfrak{u},\nu)\in\mathbb{R}.$ temos um operador antisimétrico

$$c_2^{\mu}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$$

i.e., um elemento $c_2^\mu\in\Lambda^2\mathfrak{g}^*$, i.e. uma classe $\big[c_2^\mu\in H^2(\mathfrak{g}).$

Lema (Exercício) $\delta c_2^{\mu} = 0$. Segue da identidade de Jacobi

Lemma $[c_2^{\mu}]$ não depende de $\hat{\mu}$ (só depende da ação simplética).

Demostração. Suponha $\hat{\mu}_1$, $\hat{\mu}_2$ que resolvem a primeira obstrução. Bom isso implica que $X_{\hat{\mu}_1}(u) = X_{\hat{\mu}_2(u)} \implies \hat{\mu}_1(u) - \hat{\mu}_2(u) \in \mathbb{R}$ para toda $u \in \mathfrak{g}$. E isso implica que $b := \hat{\mu}_1 - \hat{\mu}_2 \in \mathfrak{g}^*$.

Então,

$$(c_2^{\mu_1}-c_2^{\mu_2}=\hat{\mu}_1([\nu,u])-\hat{\mu}_2([\nu,u])-\underbrace{\{\hat{\mu}_1(u),\hat{\mu}_1(\nu)\}+\{\hat{\mu}_2(u),\hat{\mu}_2(\nu)\}\}}_{=0}=\delta b(u,\nu)$$

Agora lembre que por definição de δ , $\delta b(u, v) = ([v, u])$. Isso implica que

$$\left[c_2^{\mu_1}\right] = \left[c_2^{\mu_2} = c_2 \in H^2(\mathfrak{g})\right]$$

Proposição Seja $G \cap (M, \omega)$ fracamente hamiltoniana (ou seja que a primeira obstrução ta resolvida) ($\iff c_1 - 0$). Então existe $\hat{\mu}$ satisfzendo as duas obstruções $\iff c_2 = 0$.

Ou seja, c₂ mede a segunda obstrução

Demostração. • Se $\hat{\mu}$ satisfaiz a segunda obstrução $\implies c_2^{\,\mu} = 0 \implies c_2 = 0$.

• Se $c_2 = 0$, então existe $\hat{\mu}$ com $c_2^{\mu} = \delta b$. Tome

$$\hat{\mu}' = \hat{\mu} - b$$
 satisfaz as duas obstruções

ou seja, se tem um cada que resolve a primeira obstrução e o c_2 é δb , então modifica a $\hat{\mu}$ tirando b e já com isso vai resolver também a segunda obstrução.

Consequencia M y G conexos. Toda ação simplética em (M, ω) satisfazendo

- $H^1(\mathfrak{g}) = 0$.
- $H^2(\mathfrak{g}) = 0$

é hamiltoniana com única aplicação momento (ainda falta falar de unicidade).

Observação \mathfrak{g} semisimple implica $H^1(\mathfrak{g}) = 0$ e $H^2(\mathfrak{g}) = 0$. Isso é um caso particular dos lemas de Whitehead.

Ou seja que tudo isso para ver quando existe a aplicação momento.

20.3 Faltou falar de unicidade

Suponha μ_1, μ_2 são aplicações momento. $b=\hat{\mu}_1-\hat{\mu}_2\in \mathfrak{g}^*$, M conexo. Então, pela equivarância, $b([\mathfrak{u},\nu])=0$, i.e. $b\in [\mathfrak{g},\mathfrak{g}]^0=H^2(\mathfrak{g})$.

Por outro lado, μ aplicação momento equivarânte e pegamos $b \in [\mathfrak{g},\mathfrak{g}]^0$, então $\hat{\mu} + b$ é uma nova aplicação momento equivariante. Portanto,

aplicações momento são únicas modulo $H^1(\mathfrak{g})$.

20.4 Comentarios finais

- G abeliano (e.g. G = Tⁿ. Lembre que no príncipio do curso a gente viu que rotar ão longo de um dos círculos do toro da um campo que é simplético mas não hamiltoniano. Essa ação não admite uma aplicação momento, i.e. H¹(T²) ≠ 0).
 - Ação simplética não precisa ser hamiltoniana.
 - Se aplicação momento existe, está definida a menos de \mathfrak{g}^* . (caso de um toro tem um \mathbb{R}^n de escolhas de aplicações momento; $H^1(\mathfrak{g})$ é \mathbb{R}^n acho).
- Existem condições em M garantindo que toda ação simplética é hamiltoniana. Por exemplo, se H¹(g) = 0 e além disso M conexa e compacta.

21 Aula 21

21.1 Hiperfície de contato

Definição Uma *variedade de contato* M^{2n-1} é uma variedad com uma *1-forma de contato* α , ou seja, $\alpha \wedge (d\alpha)^{n-1}$ é uma forma de volume (diferente de zero em todo ponto). Chamamos $\xi = \ker \alpha$ de *estrutura de contato*.

Note que $d\alpha|_{\xi_p}$ é não degenerada. $\alpha|_{\text{ker }d\alpha}$ é não nula pelo fato de que $\alpha \wedge (d\alpha)^{n-1}$. Aí podemos dividir essa distribuição de dimensão 1 no lado onde α é positiva e onde é negativa.

Definição O *campo de Reeb* de α é o campo vetorial R_{α} únicamente caracterizado pelas equações

$$i_{R_{\alpha}} d\alpha = 0, \qquad \alpha(R_{\alpha}) \equiv 1.$$

Observação Esee é um campo canônicamente associado à forma de contato. Não tem algo assim em variedades simpléticas.

Referência (Para quem quiser estudar mais sobre isso) Geiges, Introduction to Contact Topology

Agora pegue (M^{2n}, ω) simplética e $S \subset M$ hiperfície.

Definição S é uma *hiperfície de contato* se S admite uma forma de contato α tal que $d\alpha = \omega|_S = i^*\omega$.

Teorema Uma hiperfície de contato compacta S de M é de contato se e somente se existe um campo vetorial X definido em uma vizinhança U de S tal que

- 1. X é conformemente simplético, ou seja, $\mathcal{L}_X \omega = \omega$.
- 2. $X \pitchfork S$ (X é transversal a S)

Exercício Mostre que $\mathcal{L}_X \omega = \omega \iff \phi_t^* \omega = e^t \omega$.

Compare com o caso simplético: aí a gente tinha que $\mathcal{L}_X \omega = 0$, i.e. que o fluxo puxa ω em ω . Aqui estamos multiplicando por factor, e por isso dizemos que é conforme.

Prova do teorema. (\iff) Defina $\alpha = i_X \omega$. Vamos ver que α restringida a S é uma forma de contato. Pela fórmula de Cartan,

$$d\alpha = \mathcal{L}_X \omega = \omega$$

Como S possui dimensão ímpar $\exists T \in T_x S$ tal que $\omega_x(Y, \nu) = 0 \ \forall x \in S$ e $\forall \nu \in T_x S$. Como ω é não degenerada, $\alpha_x(Y) = \omega_x(x), Y \neq 0$.

Portanto,

$$D_s = \{ v \in T_x S; \omega_x(X(x), v) = 0 \}$$

define uma distribuição de hiperplanos em S complementar a Y. (Note que D_x é o ortogonal simplético do plano simplético span $\{X(x),Y\}$.)

Consequentemente $\alpha \wedge (d\alpha)^{n-1} \neq 0$ em todo ponto, i.e., forma de volume.

(⇒) Vamos contruir uma primitiva de α i.e. que dα seja ω. Vamos precisar do seguinte

Lemma Existe uma vizinhança U de S e uma 1-forma τ em U tal que τ é uma primitiva de ω , i.e. $d\tau = \omega$ e $i^*\tau = \alpha$

Prova do lema. Pelo teorema da vizinhança tubular, existe uma vizinhança U de S e um difeomorfismo

$$\psi: S \times (-1,1) \rightarrow U$$

tal que

$$\psi(x,0) = x$$
 para toda $x \in S$

. Compondo a inversa de ψ com a projeção no primeiro fator temos um mapa $r:U\to S$.

Seja
$$\mu=i^*\alpha.$$
 Temos que $i^*\mu=i^*r^*\alpha=\alpha$ pois $\underbrace{\pi_1\circ\psi^{-1}}_r\circ i=\text{Id}.$

Considere a 2-forma

$$\eta := \omega - d\mu$$

Repare que $d\eta = 0$ e $i*\eta = 0$, pois

$$i^*\eta = i^*\omega - di^*\mu = d\alpha - d\alpha = 0$$

η é uma 2-forma definida numa vizinhança U de S, ela é fechada, e restrita a S é zero. Então pode achar uma primitiva de η numa vizinhança de S que se anula quando restrita a S pelo lema de Poincaré generalizado.

Pelo lema de Poincaré generalizado, existe uma 1-forma ξ em U tal que

$$\eta = d\xi \qquad e \qquad i^*\xi = 0$$

Defina então

$$\tau := \mu + \xi$$
.

Como

$$d\tau = d(\mu + \xi) = d\mu\omega - d\mu = \omega$$

e

$$i^*\tau = i^*\mu = \alpha$$
,

concluimos a prova do lema.

Como terminhamos a demostração do teorema ussando o lema? Seja X o campo em U tal que $i_X \omega = \tau$. Vamos ver que esse X satisfaiz a duas propriedades.

Primeira propriedade e imediata:

$$\mathcal{L}_X \omega = d(i_X \omega) = d\tau = \omega.$$

Agora vejamos que X↑S. Seja Y o campo de Reeb em S i.e. dado pelas equações

$$\alpha(Y) \equiv 1$$
, $i_Y d\alpha = 0$

Note que

$$\omega(X,Y) = \alpha(Y) = 1$$

Mas se X fosse tangente a S em algum ponto $x \in S$, teríamos que

$$\omega(X(x), Y(x)) = d\alpha(X(x), Y(x)) = 0$$

A α restrita a S é ω. Isso é uma contradição.

21.2 Exemplos de hiperfícies de contato

Agora vamos ussar esse teorema para construir exemplos simples de variedades de contato.

1. O campo radial $X(x)=\frac{x}{2}$, onde $x=(q,\gamma)\in\mathbb{R}^2$ é claramente conformemente simplético com respeito à $\omega=\sum dq_i\wedge dp_i$ pois $i_X\omega=\frac{1}{2}\sum q_idp_i-p_idq_i$.

Portanto, qualquer hiperfície compacta star-shaped (i.e. hX) é tipo contato.

Em particular, as esferas vão ser de contato.

2. Depois de \mathbb{R}^{2n} , a seguinte variedade de contato mais natural é o fibrado contangente T^*Q com a forma simplética canónica. Seja X(q,p)=p o campo radial ão longo das fibras. Temos que

$$i_X\omega=\sum p_idq_i=-\alpha$$

one α é a forma tautológica. Em particular o fibrado unitário $S^*Q=\{(q,p)\in T^*Q:\|p\|=1\}$ com qualquer métrica Riemanniana em Q é uma hiperfície tipo contato.

Níveis de energia do fluxo geodésico são hipersuperfícies de contato. O mundo natural onde mora o fluxo geodésico é o fibrado unitário. Em Da Silva: o fluxo geodésico é um sistema Hamiltoniano.

22 Aula 22

Hoje vamos terminhar de falar de hiperfícies de contato. Interessantemente não é fácil construir exemplos de hiperfícies que não são de contato. Vamos dar um exemplo agora

22.1 Exemplo de hiperfície que não é de contato

Exemplo (De hiperfície em \mathbb{R}^{2n} que não é de contato) Pegue duas constantes positivas R > r > 0 e considere a hiper ífice S em \mathbb{R}^{2n} difeomorfa a S^{2n-1} que tangencia os bordos dos cilindros Z(R) e Z(r) onde

$$Z(r)=\{(p,q)\in\mathbb{R}^{2n}:q_1^2+p_1^2\leqslant r\}$$

i.e. pegue um disco de raio r no plano *simplético* (é importante que seja simplético) e varra ele por tudo o \mathbb{C}^{n-1} restante. E também tem o cilindro de raio R. Ahí pode botar uma esfera que contenha o círculo de raio R, e deformar ela de um jeito simpático para fazé-la ser tangente também ao cilindro pequeno que esta dentro do cilindro grande.

A esfera normal sim é de contato. Mas essa não.

Seja N um campo normal a S que em $S \cap Z(R)$ aponta para fora e em $S \cap Z(r)$ aponta para dentro. (Qualquer campo normal a essa esfera tem essa propiedade, ou a inversa—dentro/fora, tanto faiz.) Parece que a esfera é deformada ainda mais, de tal jeito que ten regiões onde coincide com os cilindros—com os dois. Note que tal campo pode ser dado por

$$N(q_1,...,q_n,p_1,...,\mathbb{P}^n) = (q_1,0,...,p_2,0,...,), \quad \forall (q_1,p_1) \in Z(R)$$

pois é porque simplesmente é não fazer nada nas coordenadas de dimensão maior e, suponho, no círculo esse é o campo normal.

Note que J_0N é tangente a S (J_0 é a matriz simplética que usamos muito no principio do curso). Vamos a usar a convenção (acho que coincide com a usamos antes) de que métrica compatível é quando

$$g = \omega(\cdot, J_0 \cdot)$$

é um produto interno, i.e.

$$g(\cdot, J_0 \cdot) = -\omega(\cdot, \cdot).$$

Em fim, J_0N é tangente a S porque

$$\langle J_0 N, N \rangle = \omega(N, N) = 0$$

e como

$$\omega_0(N,J_0\nu)=-\omega_0(J_0N,\nu)=g(N,\nu)=0\;\forall\nu\in TS$$

i.e. J_0N gera ker $\omega|_S$.

O ponto é que o núcleo dessa forma é gerado por J_0N .

Então como J_0N ta no kernel, se tem uma forma de contato β , ela é não zero no kernel, assim βJ_0N e sempre positiva ou sempre negativa.

A gente argumentou que J_0N ta no kernel. Como é que $\beta(J_0N)$ é sempre positivo/negativo?

Suponha que S possui uma forma de contato β de forma que $\beta(J_0N(r)) > 0$ ou $\beta(J_0N(r)) < 0$ para toda $r \in S$. Suponha, sem perda de generalidade, que $\beta(J_0N) > 0$.

Ahora note que J_0 rota N no sentido antihorario, i.e. vai ser tangente ao círculo, e a curva integral (ele chama de órbita) vai ser o círculo. Mas como no círculo grande/pequeno, o campo normal muda de ir pra dentro e pra fora, aí o fluxo vai mudar de direção.

Pela construção, S possui duas órbitas periódicas γ_R e γ_r em $S \cap Z(R)$ e $S \cap Z(r)$ no plano (afim) (q_1, p_1) quando em direções opostas.

Seja $\alpha = \sum p_i dq_i$ de forma que $d\alpha = -\omega_0$. É fácil ver que

$$\int_{\gamma_r} \alpha = -\pi r^2 \qquad e \qquad \int_{\gamma_R} \alpha = \pi R^2$$

Aqui é Stokes acho, é a área dos círculos.

Por outro lado, como $S \cong S^{2n-1}$, $H^1(S) = 0$, então toda forma fechada é exata. A forma $\alpha + \beta$ é exata pois $d(\alpha + \beta) = -\omega_0 + \omega_0 = 0$. Daí, existe $f \in C^\infty(S)$ tal que $\alpha + \beta = df$. Consequentemente,

$$\int_{\gamma_{r}} \beta = -\int_{\gamma_{r}} \alpha > 0 \qquad e \qquad \int_{\gamma_{R}} \beta = -\int_{\gamma_{R}} \alpha < 0$$

mais esses campos são soluções de J_0N , e tamos supondo que $\beta(J_0N)>0$, que é absurdo. Portanto, β não existe e S não é de contato.

Mas qual é a contradição? A condição $\beta(J_0N)>0$ diz o que sobre essas integrais? Ah porque as integris são, por definição

$$0 < \int_{\gamma_{\mathrm{r}}} \beta = \int_0^{T_{\mathrm{r}}} \beta(\dot{\gamma}_{\mathrm{r}}) = \int_0^{T_{\mathrm{r}}} \beta(J_0 N)$$

onde T_r é o período de γ_r . A outra integral é análoga. Assim a gente vai ter que essas integrais são uma positiva e a outra negativa. Mas a gente viu que $\beta(J_0N)$ é sempre positiva ou negativa—as integrais deveriam ser do mesmo signo.

22.2 Simplectização

Seja (N, α) uma variedade de contato.

Definição A *simplectização* de (N, α) é a variedade de contato

$$(N \times \mathbb{R}, d(e^t \alpha))$$

onde t é a coordenada em R. Exerício simples: verifique que essa forma é simplética.

Teorema Toda hiperfícide contato e localmente a simplectização. Seja S hiperfície de contato compacta de (M, ω) . Então existe uma vizinhança U de S, $\varepsilon > 0$ e um simplectomorfismo

$$\psi: (\mathsf{U}, \omega) \longrightarrow (\mathsf{S} \times \Big(-\varepsilon, \varepsilon), \mathsf{d}(e^{\mathsf{t}}\alpha) \Big)$$

Demostração. Lista.

22.3 Sistemas Hamiltonianos

 (M, ω) . Pegue um campo simplético, i.e.

$$\mathcal{L}_X \omega = 0 \iff d(i_X \omega) = 0$$

A gente vai ter uma função $H:M\to\mathbb{R}$ e o campo hamiltoniano dela satisfazendo $i_{X_H}\omega=dH.$

Observação
$$\mathcal{L}_{X_H}H = dH(X_H) = \omega(X_H, X_H) =$$

Corolário (Teorema de Liouville) (Campo hamiltoniano preserva volume.)

$$\pounds_{X_H}\Lambda=0, \qquad \text{onde } \Lambda=\underbrace{\omega \wedge \ldots \wedge \omega}_n$$

Observação Teoría erdógica tem a ver com transformações que preservam medida (como os fluxoshamiltonianos acho).

Observação (Nem todo campo simplético é Hamiltoniano) Aquí a gente precisa de uma variedade não simplesmente conexa. Por exemplo o cilindro $S^1 \times \mathbb{R}$. Aqui $\omega = d\theta \wedge dh$. Pegue $X = \frac{\partial}{\partial h}$. Então $i_X \omega = d\theta$, i.e. é simplético. Mas não é Hamilatoniano.

22.4 Exemplos de campos hamiltonianos

- 1. **Função altura em** S^2 . Pegue H = h. Pegue um valor regular $k \in \mathbb{R}$. Então a diferencial de H, dH e surjetiva nos conjuntos de nível e por isso o campo hamiltoniano não se anula. Assim a gente tem um fluxo nos círculos da esfera paralelos ao plano xy, e nos polos tem singularidades.
- 2. Levantamentos de campos. Seja Q uma variedade diferenciável e $X \in \mathfrak{X}(Q)$. Seja ϕ_t o fluxo de X. Como ele é um difeomorfismo, a gente pode levantá-lo no cotangente como vimos na lista não sei o que. O levantamento preserva a 1-forma canónica. Então seja

$$\hat{\varphi}_{t}(x,p) = \left(\varphi_{t}(x), (d\varphi_{t}(x)^{*})^{-1}p\right)$$

o levantamento de ϕ_t para T*Q.

Defina $\hat{X}=\frac{d}{dt}\hat{\phi}t$. Sabemos que \hat{X} preserva a forma tautológica, i.e. $\mathcal{L}_{\hat{X}}\alpha=0$ onde α é a forma tautológoica. Segue daí que \hat{X} é o campo hamiltoniano de $H:=i_{\hat{X}}\alpha$. De fato:

$$0 = \mathcal{L}_{\hat{X}} \alpha = d(i_{\hat{X}} \alpha) + i_{\hat{X}} d\alpha \implies i_{\hat{X}} \omega = d(i_{\hat{X}} \alpha)$$

Começa com um campo que não tem nada, pode ser cualquer coisa random. Quando você levanta esse cara, ele vai preservar volume. É surpdendente.

3. Fibração de Hopf. Pegue

$$H: \mathbb{R}^{2n} \longrightarrow \mathbb{R}, \qquad H(x) = \frac{1}{2} \|x\|^2$$

Então qual o campo hamiltoniano

$$\begin{split} X_H(x) &= -J_0 \nabla H(x) = -J_0 x \\ \phi_t(x) &= e^{tJ_0} x = (\cos t) x - (\sin t) J_0 x \end{split}$$

4. ? Pegue (Q, g) Riemanniana. Pegue a energia cinética

$$\begin{aligned} H: T^*Q &\longrightarrow \mathbb{R} \\ (q,p) &\longmapsto \frac{1}{2} \|p\|^2 \end{aligned}$$

onde (?)

$$\|p\| = \text{sup}_{x \in B} \, \|p(x)\|$$

dada pela energia cinética

Exercício Mostr que o fluxo Hamiltoniano de H é o fluxo geodésico de Q via a identificação

$$: TA \xrightarrow{\cong} T^*Q$$

$$(q, v) \longmapsto (q, g(v, \cdot))$$

Hint: ver o livro da Anna. E um trabalhinho ver isso mas vale a pena.

23 Aula 23: dinâmica Hamiltoniana

 (M, ω) variedade simplética.

Definição Seja $S \subset M$ uma hiperfície. O *fibrado de linhas características* L_S ou *distribuição característica* de S é o subfibrado de TS dado por $ker(\omega|_S)$.

Observação Como M é simplética, S tem dimensão impar e por isso esse kernel tem dimensão (positiva).

Note que se $S = H^{-1}(k)$ para algum $H : M \to \mathbb{R}$ e k valor regular, então

$$X_H(x) \in L_S(x) \quad \forall x \in S$$

Proposição Seja S um nível de energia de H_1 e H_2 . Então os fluxos de H_1 e H_2 em S diferem apenas por uma reparametrização.

Definição Uma *característica fechada* em S é uma curva regular (derivada não se anula) $\gamma: S^1 \to S$ tal que

$$\dot{(t)} = L_S(\gamma(t)), \quad \forall t$$

Portanto a existência de órbitas periódicas é equivalente à existência de características fechadas.

Definição Sejam S e S' variedades diferenciáveis e $X \in \mathfrak{X}(S)$, $Y \in \mathfrak{X}(S')$. Dizemos que X e Y são topologicamente (resp. diferenciavelmente) equivalentes se existe um homeomorfismo (difeomorfismo) $h: S \to S'$ que leva curvas integrais de uma variedade em outra preservando o tempo? tal que dado $p \in S$ e $\epsilon > 0$ tais que para $0 < t < \delta$, $h_{\phi_t}(p) = \psi_{\bar{t}}(h(p))$ para algum $0 < \bar{t} < \epsilon$, onde ϕ_t e ψ_t são os fluxos de X e Y.

Quando $\bar{t}=t$ dizemos que são *conjugados*. No caso de difeomorfismos, a condição acima significa dh(X)=fY para alguma f, e são conjugados se f=1 (i.e. h-relacionados).

Upshot Tem um Hamiltoniano super bom que pode espalhar numa vizinhança da subvariedade.

Proposição Seja S uma hiperfície de contato de M. Existe Hamiltoniana H definida em uma vizinhança U de S tal que $S = H^{-1}(0)$ e $X_H|_{H^{-1}(0)}$ é diferenciablemente conjugado a $X_H|_{H^{-1}(k)}$ para todo k suficientmente pequeno.

Demostração. Vimos que existe uma vizinhança U de S, $\varepsilon > 0$ e um simplectomorfismo $f:(U,\omega) \to (S \times (-\varepsilon,\varepsilon),d(e^t\alpha))$ onde α é a forma de contato em S. Localmente, a forma de contato é simplectomorfa à sua simplectização, isso foi um exercício a aula,, passada?

Tome H tal que H \circ f⁻¹(x,t) = $-e^t$ – 1. Note que f_{*}X_H = X_{-e^t}. Isso é imediato pelo requerimento de que H \circ f⁻¹ = $-e^t$ – t, pois o pushforward é Hamiltoniano da composição.

Então agora note que $X_{-e^{\,\mathrm{t}}}=R_{\alpha}$ é o campo de Reeb. De fato:

$$\begin{split} i_{R_{\alpha}}(d(e^{t}\alpha) &= i_{R_{\alpha}}(e^{t}dt \wedge \alpha + e^{t}d\alpha) \\ &= -e^{t}dt \wedge \alpha (R\alpha)^{-1} \\ &= d(-e^{t}) \end{split}$$

Ahora fixe uma subvariedade S que seja o nível de energia de um Hamiltoniano i.e., $S=H^{-1}(k)$ para k valor regular. Defina ϕ_t o fluxo Hamiltoniano de H.

Proposição Então existe uma forma de volume Λ_S em S preservada por ϕ_t .

Observação Já sabemos que tem essa forma na variedade simplética: lista não sei o que. Mas não pode só restringir essa à S: porque isso vai dar uma (2n)-forma! A gente precisa de uma 2n-1 forma.

Demostração. Como dH(x) \neq 0 para todo x em uma vizinhança U de S, existe (2n - 1)-forma η em U tal que $\Lambda = dH \wedge \eta$. Seja $i: S \hookrightarrow M$ e a inclusão é

$$\Lambda_S := i^* \eta$$
.

Vamos ver que essa é boa. Claramente, Λ_S é uma forma de volume em S.

Afirmação Λ_S está únicamente caracterizada pela equação

$$\Lambda = dH \wedge \eta$$
,

ou seja , se ξ satisfaiz $\Lambda = dH \wedge \xi$, então

$$\Lambda_S = i^* \eta = i^* \xi$$
.

 $\label{eq:prova da afirmação.} Prova da afirmação. De fato, se dH \land (η-ξ) = 0 então η-ξ = dH \land k para alguma (2n-2)-forma κ em U. Como i*dH = 0, concluiriamos que i*η = i*ξ + i*(dH) <math>^{-0}$ \land κ = i*ξ. \square

Como $\phi_t^*\Lambda=\Lambda\,e\,\phi_t^*=dH$ temos $\phi_t^*\Lambda_S=\Lambda_S.$ De fato,

$$\Lambda = \phi_t^* dH = dH \wedge \phi_t^* \eta = dH \wedge \phi_t \eta$$

portanto, pela unicidade no claim,

$$i^*\phi_t^* = i^*\eta \implies$$

Definição Dizemos que $x \in S$ é *recorrente* para ϕ_t se existe uma sequência t_k tal que

$$\lim_{k\to\pm\infty}t_k=\pm\infty$$

(isso é só para realmente pensar no tempo infinito... sem isso a gente vai ficar parada eventualmente,, ou algo assim...) e tal que

$$\lim_{k\to\pm\infty}\phi_{t_k}(x)=x$$

que a órbita passa arbitrariamente perto do x.

Teorema (de Recorrência de Poincaré) Seja φ_t um fluxo que preserva volume em uma variedade comapcta S. Então quase todo ponto de S é recorrente para φ_t .

24 Aula 24

24.1 Prova do teorema de Reoccrência de Poincaré

Prova do teorema de recorrência. Usaremos a medida inducida pela forma de volume, i.e. $\mu(A) = \int_A \mu_S$.

Seja $\varphi = \varphi_1$. Vamos provar inicalmente que

$$\mu\left(A \cap \left(\bigcap_{\substack{k \geqslant 0 \ j \geqslant k \\ \vdots = B}} \varphi^{-j}(S)\right)\right) = \mu(A) \tag{4}$$

para todo borealiano A. Observe que $x \in B$ se para todo inteiro $k \ge 0$ existe $j \ge k$ tal que $x \in \phi^{-j}(A)$, ou seja, $\phi^j(x) \in A$.

ou seja, para tempos arbitrários o $\varphi(x)$ já tá em A.

Para provar eq. (4), defina

$$A_k = \bigcup_{j \geqslant k} \varphi^{-j}(A).$$

Note que

$$A_0 \supset A_1 \supset A_2 \supset \dots$$

Ademais, como $\phi(A_k) = \bigcup_{j \geqslant k} \phi^{k-j}(A)$, de modo que $\phi^k(A_k) = A_k$ para toda k. Além disso, $A_k \subset A_0$.

Isso significa, como a medida é finita, que $A_k = A_0$ em quase todo ponto.

Portanto, $\bigcap_{k\geqslant 0}A_k=A_0$ q.t.p. Como $A\subset A_0$, concluimos que

$$A \cap \left(\bigcap_{k>0} A_k\right) = A \cap A_0 = A$$
 q.t.p.

Isso implica eq. (4).

Agora, use o fato de que existe uma base enumerável de S. Portanto, para todo $n \in \mathbb{N}$ existe um conjunto enumerável de bolas abertas $B_j(\frac{1}{n})$ de raio $\frac{1}{n}$ cobrindo S. Pela primeira parte do argumento, existe um conjunto de medida nula $N_n \subset S$ tal que todo $x \in S \setminus N_n$ retorna infinitas vezes para a bola que o contém.

Tomando $N=\bigcup_n N_n$, temos que $\mu(N)=0$ e todo $x\in S\backslash N$ possui a propriedade de voltar infinitas vezes para a bola $B_j(\frac{1}{n})$, seja qual for o valor de n.

Isso prova o teorema para tempos futuros. Para temos passados e ó mesmo ussando ϕ^{-1} .

Esse teorema é muito forte: quase todo ponto é recorrente. Esse teorema é valido em espaços mais gerales que variedades. Na verdade, se definir recorrência só para tempos futuros, pode ussar um simlpes automorfismo que preserva medida num espaço com uma base enumerável.

24.2 A seguinte questão: órbitas periódicas

Pergunta Dado um nível de energia compaco S, existem órbitas periódicas no mesmo?

Este problema possui uma estrutura variacional. Suponha, por simplicidade, que $\omega = -d\alpha$. Dada uma Hamiltoniana $H: M \to \mathbb{R}$ e uma curva fechada $\gamma: [0,T] \to M$ defina sua *ação* como

$$A_{H}(\gamma) = \int_{\gamma} \alpha - H$$

e esse se chama funcional de ação.

Proposição (Princípio de Hamilton) Pontos críticos do funcional de ação (no espaço de curvas fechadas de período T fixado) estão em bijeção com as órbitas pers de H de príodo T. Mais precisamente, uma curva fechada $\gamma:[0,T]\to M$ é uma órbita de per X_H se e somente se dada uma variação suave $\Gamma:[-\varepsilon,\varepsilon]\times[0,T]\to M$ tal que $\Gamma_0=\gamma$, tem-se

$$\left.\frac{dA_0(\Gamma_s)}{ds}\right|_{s=0}=0$$

O Γ_s é uma curvinha pertinho de γ . A maneira de você pensar isso é que γ é um ponto no espaço $C^\infty(S^1,M)$ e Γ é uma curvinha que passa por γ em s=0. Deriva o funcional de ação em Γ_s e tem um ponto crítico em s=0, i.e. em γ .

Demostração. Seja X o campo vetorial ao longo de γ dado por $\frac{d}{ds}\Big|_{s=0}\Gamma_s$. Isso é como a derivada de curva no espaço de lazos, um campo vetorial que poemos no γ . Por Stokes

$$\underbrace{\int_{[0,\varepsilon]\times[0,1]} \Gamma^* \alpha}_{(*)} = \int_{\varepsilon\times[0,T]} \Gamma^* \alpha - \int_{0\times[0,T]} \Gamma^* \alpha$$
$$= \int_{\Gamma_{\varepsilon}} \alpha - \int_{\gamma} \alpha$$

porque é uma curva fechada no rectángulo, as bordas verticais se cancelam.

Dividindo ambos lados por ε e fazendo $\varepsilon \to 0$ temos que o lado direito converge para a derivada de $\int_{\gamma} \alpha$ na direção de X e o lado esquerdo tende a $\int_{\gamma} d\alpha(X,\dot{\gamma})$:

$$(*) = \int_0^{\varepsilon} \underbrace{\int_0^T \Gamma^* d\alpha_{(s,t)} \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) dt}_{:=f(s)} ds$$
$$= F(\varepsilon) - F(0), \qquad F := \int f ds$$

Mas,

$$\begin{split} \lim_{\epsilon \to 0} \frac{F(\epsilon) - F(0)}{\epsilon} &= F'(0) = f(0) \\ &= \int_0^T \Gamma^* d\alpha_{(0,t)} \left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) dt \\ &= \int_0^T d\alpha_{\Gamma(0,t)} \left(\frac{\partial}{\partial s} \Gamma, \frac{\partial}{\partial t} \Gamma\right) dt \\ &= \int_0^T d\alpha_{\gamma(t)} (X, \dot{\gamma}) dt \end{split}$$

OK. Agora vamos botar o funcional de ação:

$$\begin{split} \frac{dA_H(\Gamma_A)}{ds}\Big|_{s=0} &= \int_0^T -d\alpha(\dot{\gamma},X) - dH(\gamma)Xdt \\ &= \int_0^T \omega(\dot{\gamma},X)dt \\ &= \int_0^T \omega(\dot{\gamma}-X_H,X)dt \end{split}$$

que é zero see $\dot{\gamma} = X_H$.

Observação O argumento anterior se aplica para a prova o seguinte: se $\gamma:[0,T]\to M$ é uma curva não necessariamente fechada e $L_1,L_2\subset M$ são subvariedades tais que $\alpha|_{L_i}=0$ para i=1,2 e $\gamma(0)\in L_1,\gamma(1)\in L_2$. Entao γ é uma órbita de X_H sse é um ponto crítico de A_H para qualquer variação

$$\Gamma_0 = \gamma$$
, $\Gamma_s(0) \in L_1$ e $\Gamma_s(1) \in L_2$ $\forall s$

Exemplo $M = T^*Q$, $L_1 = T_x^*Q$, $L_2 = T_y^*Q$.

24.3 Extra: a note from Graham's talk just today's evening

In a chart, $U \subseteq \mathbb{R}^n$, $g_{ij}: U \to \operatorname{Sym}^+(\mathbb{R}^+)$, define the *action functional* as

$$A[\gamma] = \int_0^1 g_{ij}(\gamma(t)) \dot{\gamma}^i \dot{\gamma}^j dt$$

- (i) Cricital points of A are geodesics.
- (ii) This is a standard Lagrangian action (with V = 0).

$$\mathcal{L}: \mathsf{T}\mathsf{U} \stackrel{\mathsf{g}}{\longrightarrow} \mathsf{T}^*\mathsf{U}$$
$$(\mathsf{x}, \mathsf{v}) \longmapsto (\mathsf{x}, \mathsf{g}_{ij} \mathsf{v}^j)$$

So the moral is: Legendre transform is a musical isomorphism.

25 Aula 25

Pergunta Dado um nível de energia regular compacto S de uma Ham. H existem órbitas periódicas em S?

Resposta Em geral não: existem níveis de energia compactos sem órbitas periódicas.

Teorema (Rabinowitz, '78) Se $S \subset \mathbb{R}^{2n}$ é star-shaped (o campo radial é transversal a ele) então possui uma orbita periodica.

Conjetura (Weinstein ~'79) Toda hiperfície de contato S possui uma órbita periódica.

Respostas parciais

- $S \subset M^4$ (S dim 3) é veradde (Taubes).
- dim S > 3 resultados parciais positivos.

Observação É muito difícil demostrar se numa variedade de contato aribtrárie o fluxo de Reeb tem ou não tem uma órbita periodica.

Exemplos

1. (Dinâmica em elipsóides). Pega a Hamiltoniana

$$H \cdot \mathbb{C}^n \longrightarrow \mathbb{R}$$

$$(z_1,\ldots,z_n)\longmapsto \sum_{j=1}^n\frac{|z_j|^2}{r_j}$$

onde $0 < r_1 \le r_2 \le \ldots \le r_n$. Como H é homogênea (as variaveis "saem" do argumento da função elevadas ao grau de homogênidade) de grau 2, as dinâmicas em níveis de energia regulares de H são equivalentes (Exercício) geometricamente é claro: a função $\phi: \mathbb{C}^n \to \mathbb{C}^n: z \mapsto cz$ 'e conformemente simplética, ela manda o fibrado caracterísico L_S em L_{cS} (de um elipsoide pequeno a um elipsoide grande).

Portanto, basta considerar $S = H^{-1}(1)$. Como

$$X_{H}^{(z)} = J \nabla H(z) = J \left(\frac{2}{r_1} z_1, \ldots, \frac{2}{r_n} z_n \right),$$

o fluxo de XH é

$$\phi_t(z_1,\ldots,z_n) = \left(e^{t\frac{i}{\tau_1}}z_1,\ldots,e^{t\frac{i}{\tau_n}}z_n\right)$$

Consequentemente, temos ao menos n orbitas periodicas em S dadas por

$$\gamma_j(t) = (0,\ldots,0,z_j(t),0,\ldots,0)$$

onde $z_i(t) = e^{t\frac{i}{r_j}}z$. De fato, existem duas possíveis situações:

• r_1, \ldots, r_n são racionalmente independentes, ou seja,

$$\langle (r_1, \dots, r_n, \nu) \neq 0 \qquad \forall \nu \in \mathbb{Z}^n \setminus \{0\}$$

(geometricamente signfica que a linha determinada pelo vetor não toca a lattice \mathbb{Z}^n). Neste caso, não existem outras órbias periódicas.

• r_1, \ldots, r_n são racionalmente dependentes. Neste caso, existem infinitas órbitas periódicas.

Exercício Prove estas afirmações.

2. **(Fluxos geodésicos)**. (Q, g) variedade Riemanniana.

$$f: TQ \longrightarrow T^*Q$$
$$(x, v) \longmapsto (x, i_v g)$$

isomorfismo de fibrados. Então puxamos a forma simplética canônica, $\omega=f^*\omega_0$. Considre

$$H: TQ \longrightarrow \mathbb{R}$$

$$H(x,v) = \frac{1}{2}g(u,v)$$

O fluxo Hamiltoniano φ_t de H é o fluxo geodésico de (Q, g), ou seja,

$$\phi_t(x,\nu) = \left(\gamma_{(x,\nu)}(t), \dot{\gamma}_{(x,\nu)}(t)\right)$$

onde $\gamma_{(x,\nu)}$ é a única geodésica tal que $\gamma_{(x,\nu)}(0)=x$ é $\dot{\gamma}_{(x,\nu)}(0)=\nu$. Como H é homogênea (de grau 2) as dinâmicas em $H^{-1}(c)$, $c\neq 0$, são dif. equivalentes. Portanto basta considerar o caso $S=H^{-1}(1/2)=SQ$ (o fibrado esférico ou unitário). É um fato conhecido que se Q for compacta então existe uma geodésica fechada. O caso em que $\pi_1(Q)\neq 0$ é fácil de provar e devido a Cartan. O caso $\pi_1(Q)=0$ é devido a Lustenik-Fet.

What is going on? Nesses casos tem órbita períodica

(a) (Fluxo geodésico em S^n curvatura seccional $K \equiv 1$) Neste caso, as órbitas periódicas são todas fechadas (dadas pelos grandes círculos) e de mesmo período mínimo.

Comentario A redução seguinta nos diz que a Grassmaniana orientada $Gr^+(2, n+1)$ é uma variedade simplética:

- (b) (**Curvatura secional** $K \equiv 0$, todo). Neste caso, $ST^2 = \bigcup_{v \in S^1} v \times T^n$. Esses toros são invariantes pelo fluxo global, e em cada termo $v \times T^2$ temos um campo constante igual a v. É fácil ver que se $v = (v_1, \dots, v_n)$ é tal que v_1, \dots, v_n são racionalmente independentes então todas as órbitas em $v \times T^n$ são densas. Se v_1, \dots, v_n são racionalmente dependentes, todas as órbitas são fechadas (em $v \times T^n$). (Exercício).
- (c) (Caso hierbólico, i.e. K<-1 Neste caso, pode-se mostrar que existe uma decomposição

$$TS = span\{x\} \oplus E^s \oplus E^u$$

onde $\dot{X}=\dot{\phi}_t=X_H,$ tal que $d\phi_t(E^{s,u}=E^{s,u}$ e existem constantes

$$\|d\phi_t(X)\leqslant \alpha^t\|\nu\|, \qquad \forall \nu\in E^1, \qquad \forall t>0,$$

$$\|d\phi_t(\nu)\|\geqslant b^t\|\nu\|, \qquad \forall \nu\in E^u, \qquad \forall t>0.$$

Fluxos com esta propriedade se chaman *Anosov*.

Utilizando teoría hiperbólica de sistemas dinâmicos, pode se provar que o conjugado das órbitas periódicas de ϕ_t é denso e, ao mesmo tempo, existem órbitas periódicas.

- 26 Aula 26
- 27 Aula 27