Implications of Fairness in Federated Learning in Healthcare

Machine Learning Systems

Navya Annapareddy and Jade Preston DS 7406 Dec 02, 2022

SCHOOL of DATA SCIENCE

Agenda

- Problem Description
- Potential Research Gap(s)
- Proposed Contribution
- •Literature Review
- Methodology: FAFL Survey
- Results
 - FAFL Taxonomy
 - Lifecycle View
 - Healthcare Implications

Problem Description

- Data sharing is often difficult or constrained by security and distribution limitations
 - Large sample sizes allow models to generalize for more variability
 - Data is often governed by data-use ordinances such as HIPAA and security restrictions

- Federated learning is a type of distributed learning framework
 - Allows data to be trained decentralized
 - Addresses data security, privacy, and vulnerability considerations
 - Challenges to federated learning include:
 - Node data may not be independent and identically distributed (iid)
 - High levels of communication
 - Heterogeneity in the individual nodes
 w.r.t bias and size of data samples

Identified Research Gap

- 1. Categorization of existing implementations by approach
 - a. Metric based, resource allocation based
- 2. Existing fairness surveys focus on tabular data
 - a. Lack of consideration for image and other high dimensional datasets
- 3. No comprehensive lifecycle view
 - a. Difficulty in aligning model processes across node and server
 - i. Across implementations of metrics/fairness approaches
- 4. Healthcare focus
 - No existing ties to implications to healthcare

Proposed Contributions

*New contribution

- 1. Comprehensive survey according to considerations by fairness approach
 - a. Identify existing text, image, and other high dimensional implementations
 - i. Differentiate fairness approach and update w.r.t taxonomy
 - ii. Differentiate unsupervised vs. supervised
 - iii. Create discrete model process representation (ie: pre-training vs. post)
- 2. Classify security and scaling considerations in context of FL lifecycle
 - a. Security of aggregation/model sending*
 - b. Robustness and non IID data*
 - c. Scalability (esp. adding peers)
- 3. Create focus on implications of FL fairness in healthcare domain

Related Work - Surveys on FAFL

- Shi et al. Categorized fairness notions and fairness approach taxonomy, assuming a single fairness implementation
 - Accuracy Parity
 - Good Intent Fairness
 - Selection Fairness
 - Contribution Fairness
 - Regret Distribution Fairness
 - Expectation Fairness
- Quy et al. examined bias and challenges to fairness in federated learning datasets in different domains, including healthcare

Fig. 1. The proposed taxonomy of FAFL approaches.

Methodology - Surveyed Implementations

Implementation Papers	
FedScale: Benchmarking Model and System Performance of Federated Learning at Scale	Resource Management and and Model Personalization for Federated Learning over Wireless Edge Networks
Federated Learning on Clinical Benchmark Data: Performance Assessment	Fairness and Accuracy in Horizontal Federated Learning
Fair Federated Learning via Bounded Group Loss	Fairness Aware Incentive Scheme for Federated Learning
Fairness in Federated Learning for Spatial-Temporal Applications	Fairness and Accuracy in Federated Learning
A Reputation Mechanism Is All You Need: Collaborative Fairness and Adversarial Robustness in Federated Learning	Federated Optimization In Heterogeneous Networks
Ditto: Fair and Robust Federated Learning Through Personalization	Fairness-aware Agnostic Federated Learning
Utility Fairness for the Differentially Private Federated Learning	An Efficiency-boosting Client Selection Scheme for Federated Learning with Fairness Guarantee

New Taxonomy Component

New Taxonomy Component

New Taxonomy Component

New Taxonomy Component

Results - Generalized FL Lifecycle View

Results - Implications to Healthcare

- FL in healthcare has unique security and privacy considerations at each step of life cycle
 - TEEs in healthcare
 - Network security/attack considerations
 - Medical devices, split learning, and IOT
- 2. **Differential privacy** is highly relevant
- 3. Medical imaging considerations
 - High dimensional
 - Alternative encryption methods
- 4. Data storage and retention
- 5. Data lifecycle management

Conclusion

- Fairness in federated learning is not zero-sum, we consider notions that existing taxonomies do not:
 - Implementations utilize multiple categories
 - High level implementation groups (ie: bilevel)
- FAFL and Healthcare require unique considerations and benefit from the FL lifecycle view of to understand execution environment security
- Healthcare also brings challenges to federated learning including high dimensionality, high communication overhead and complexity, and enforced security standards

Researchers Assess Federated Learning Models for COVID-19 Diagnostics

Researchers from the University of Minnesota are evaluating how federated learning models may be used for COVID-19 diagnosis through chest X-rays.

Questions?

References

- https://arxiv.org/pdf/2110.00530.pdf
- https://arxiv.org/pdf/2111.01872.pdf
- https://arxiv.org/pdf/2105.11367.pdf
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652692/
- https://arxiv.org/pdf/2203.10190
- https://arxiv.org/pdf/2012.10069
- https://arxiv.org/pdf/2011.10464
- http://proceedings.mlr.press/v139/li21h/li21h.pdf
- https://arxiv.org/pdf/2109.05267
- https://www.mdpi.com/2224-2708/10/1/17/pdf?version=1616039824

References

- https://arxiv.org/abs/1812.06127
- https://zhangjunbo.org/pdf/2022_InsSci_FedFa.pdf
- https://arxiv.org/pdf/2201.06598
- https://dl.acm.org/doi/pdf/10.1145/3375627.3375840?casa_token=eDBBCTTTc88AAA
 AA:RMn3_v5Yz0Dc4uroUezdB27QHx08ivy1vsGJ4fqU9ctFgc7w9m7GxcIFCUuwRip2
 NYgyqSZP1-sG
- https://arxiv.org/abs/2010.05057
- https://ieeexplore.ieee.org/document/9797864