

1 ATRRYYLGAV ELSWDYMQSD LGELPVDARF PPRVPKSFPF NTSVVYKKTL
 51 FVEFTVHLFN IAKPRPPWMG LLGPTIQAEV YDTVVITLKN MASHPVSLHA
 101 VGVSYWKASE GAEYDDQTSQ REKEDDKVFP GGSHTYVWQV LKENGPMASD
 151 PLCLTYSYLS HVDLVKDLNS GLIGALLVCR EGSLAKEKTQ TLHKFILLFA
 201 VFDEGKSWHS ETKNSLMQDR DAASARAWPK MHTVNGYVNR SLPGLIGCHR
 251 KSVYWHVIGM GTTPEVHSIF LEIGHTFLVRN HRQASLEISP ITFLTAQTL
 301 MDLGQFLLFC HISSHQHDGM EAYVKVDSCP EEPQLRMKNN EEAEDYDDDL
 351 TDSEMDVVRF DDDNSPSFIQ IRSVAKKHPK TWVHYIAAEE EDWDYAPLVL
 401 APDDRSYKSQ YLNNGPQRIG RKYKKVRFMA YTDETFKTRE AIQHESGILG
 451 PLLYGEVGDT LLIIFKNQAS RPYNIYPHGI TDVRPLYSRR LPKGVKHLKD
 501 FPILPGEIFK YKWTVTVEDG PTKSDPRCLT RYYSSFVNME RDLASGLIGP
 551 LLICYKESVD QRGNQIMSDK RNVLIFSVFD ENRSWYLTEM IQRFLPNPAG
 601 VQLEDPEFQA SNIMHSINGY VFDSLQLSVC LHEVAYWYIL SIGAQTDFLS
 651 VFFSGYTFKH KMVYEDTLT FPFSGETVFM SMENPGLWIL GCHNSDFRNR
 701 GMTALLKVSS CDKNTGDYYE DSYEDISAYL LSKNNAIEPR SFSQNPPVLK
 751 RHQREITRTT LQSDQEEIDY DDTISVEMKK EDFDIYDEDE NQSPRSFQKK
 801 TRHYFIAAVE RLWDYGMSSS PHVLRNRAQS GSVPQFKKVV FQEFTDGSFT
 851 QPLYRGELNE HLGLLGPYIR AEVEDNIMVT FRNQASRPYS FYSSLISYEE
 901 DQRQGAEPRK NFVKPNETKT YFWKVQHHMA PTKDEFDCKA WAYFSDVDLE
 951 KDVHSGLIGP LLVCHTNLPAHGRQVTQ EFALFFTIFD ETKSWYFTEN
 1001 MERNCRAPCN IQMEDPTFKE NYRFHAINGY IMDTLPGLVM AQDQRIRWYL
 1051 LSMGSNENIH SIHFGHVFT VRKKEEYKMA LYNLYPGVFE TVEMLPSKAG
 1101 IWRVECLIGE HLHAGMSTLF LVYSNKCQTP LGMASGHIRD FQITASGQYG
 1151 QWAPKLARLH YSGSINAWST KEPFSWIKVD LLAPMIIHGI KTQGARQKFS
 1201 SLYISQFIIM YSLDGKWKQT YRGNSTGTLV VFFGNVDSSG IKHNIFNPP
 1251 IARYIRLHPT HYSIRSTLRM ELMGCDLNSC SMPLGMESKA ISDAQITASS
 1301 YFTNMFATWS PSKARLHLQG RSNAWRPQVN NPKEWLQVDF QKTMKVTGVT
 1351 TQGVKSLLTS MYVKEFLISS SQDGHQWTLF FQNGKVKVFQ GNQDSFTPVV
 1401 NSLDPPLLTR YLRIHPQSWV HQIALRMEVL GCEAQDLY

Fig. 1

GGCAATGGAG CGTGAAGAAG GGCCCCAGGG CTGACCCCGG CAAACGTGAC (50)
CCGGGGCTCC GGGGTGACCC AGGCAAGCGT GGCAAGGGG CCCGTGGGTG (100)
ACACAGGCAA CCCTGACAAA GGCCCCCAG GAAAGACCCC CGGGGGGCAT (150)
CGGGGGGGTG TTGGCGGGTC ATGGGGGGGG CGGGTCATGC CGCGCATTCC (200)
TGGAAAAAGT GGAGGGGGCG TGGCCTTCCC CCCGCGGCC CGTAGCCCCC (250)
CCGCAGAGAG CGGCGCAACG GCAGGGGAGC GGCGGGGGT CGGGGTCCGC (300)
GGGCTCCGGG GGCTGCGGGC GGTGGATGGC GGCTGGCGTT CGGGGGATCG (350)
GGGGGGGGTC GGGGGCGCT GCGCGGGCGC AGCCATGCGT GACCGTGATG (400)
AG (402)

Fig. 2

100 200 300 400 500 600 700 800 900 1000

Fig._3

Fig. 4A

Fig. 4B

Fig._5