Lecture 2: Class demo

Contents

- Imports
- Data and Exploratory Data Analysis (EDA)
- · Data splitting
- Summary

Imports

```
# import the libraries
import os
import sys
sys.path.append(os.path.join(os.path.abspath(".."), (".."), "code"))
from plotting_functions import *
from utils import *

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

%matplotlib inline

pd.set_option("display.max_colwidth", 200)
```

Data and Exploratory Data Analysis (EDA)

Let's bring back King County housing sale prediction data from the course introduction video. You can download the data from here.

housing_df = pd.read_csv('../../data/kc_house_data.csv')
housing_df

	id	date	price	bedrooms	bathrooms	sqft_l
0	7129300520	20141013T000000	221900.0	3	1.00	
1	6414100192	20141209T000000	538000.0	3	2.25	
2	5631500400	20150225T000000	180000.0	2	1.00	
3	2487200875	20141209T000000	604000.0	4	3.00	
4	1954400510	20150218T000000	510000.0	3	2.00	
•••						
21608	263000018	20140521T000000	360000.0	3	2.50	
21609	6600060120	20150223T000000	400000.0	4	2.50	
21610	1523300141	20140623T000000	402101.0	2	0.75	
21611	291310100	20150116T000000	400000.0	3	2.50	
21612	1523300157	20141015T000000	325000.0	2	0.75	

21613 rows × 21 columns

Is this a classification problem or a regression problem?

How many data points do we have? housing_df.shape

(21613, 21)

What are the columns in the dataset?
housing_df.columns

Let's explore the features. Let's try the [info()] method.

```
housing_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
    Column
                  Non-Null Count Dtype
    id
                  21613 non-null int64
 0
                  21613 non-null object
1
    date
2 price
                  21613 non-null float64
3
    bedrooms
                  21613 non-null int64
    bathrooms
                  21613 non-null float64
5
    sqft_living
                  21613 non-null int64
6 sqft lot
                  21613 non-null int64
                  21613 non-null float64
7
    floors
    waterfront
                 21613 non-null int64
                  21613 non-null int64
    view
10 condition
                 21613 non-null int64
 11 grade
                  21613 non-null int64
12 sqft above 21613 non-null int64
13 sqft_basement 21613 non-null int64
 14 yr built
               21613 non-null int64
 15 yr_renovated
                  21613 non-null int64
 16 zipcode 21613 non-null int64
17 lat
                  21613 non-null float64
 18 long
                  21613 non-null float64
 19 sqft_living15 21613 non-null int64
20 sqft lot15
                  21613 non-null int64
dtypes: float64(5), int64(15), object(1)
memory usage: 3.5+ MB
```

Let's try the describe() method

```
housing_df.describe()
```

	id	price	bedrooms	bathrooms	sqft_living
count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000
mean	4.580302e+09	5.400881e+05	3.370842	2.114757	2079.899736
std	2.876566e+09	3.671272e+05	0.930062	0.770163	918.440897
min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000
25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000

Should we include all columns?

```
housing_df['id'] # Should we include the id column?
```

```
0
         7129300520
1
         6414100192
2
         5631500400
         2487200875
         1954400510
21608
          263000018
21609
         6600060120
21610
         1523300141
21611
          291310100
         1523300157
21612
Name: id, Length: 21613, dtype: int64
```

```
housing_df['date'] # What about the date column?
```

```
20141013T000000
0
1
         20141209T000000
2
         20150225T000000
3
         20141209T000000
4
         20150218T000000
         20140521T000000
21608
21609
         20150223T000000
21610
         20140623T000000
21611
         20150116T000000
21612
         20141015T000000
Name: date, Length: 21613, dtype: object
```

```
housing_df['zipcode'] # What about the zipcode column?
```

```
0
         98178
1
         98125
2
         98028
3
         98136
         98074
21608
         98103
21609
         98146
21610
         98144
21611
         98027
21612
         98144
Name: zipcode, Length: 21613, dtype: int64
```

```
# What are the value counts of the `waterfront` feature?
housing_df['waterfront'].value_counts()
```

```
waterfront
0 21450
1 163
Name: count, dtype: int64
```

```
# What are the value_counts of `yr_renovated` feature?
housing_df['yr_renovated'].value_counts()
```

```
yr_renovated
        20699
2014
            91
2013
            37
2003
            36
2005
            35
1951
             1
1959
             1
1948
             1
1954
             1
1944
             1
Name: count, Length: 70, dtype: int64
```

Many opportunities to clean the data but we'll stop here.

```
Let's create X and y.
```

```
X = housing_df.drop(columns=['id', 'date', 'zipcode', 'price'])
y = housing_df['price']
```

Baseline model

```
# Train a DummyRegressor model

from sklearn.dummy import DummyRegressor # Import DummyRegressor

# Create a class object for the sklearn model.
dummy = DummyRegressor()

# fit the dummy regressor
dummy.fit(X, y)

# score the model
dummy.score(X, y)
```

0.0

```
# predict on X using the model
dummy.predict(X)
```

```
array([540088.14176653, 540088.14176653, 540088.14176653, ..., 540088.14176653, 540088.14176653])
```

Decision tree model

```
# Train a decision tree model
from sklearn.tree import DecisionTreeRegressor # Import DecisionTreeRegressor
# Create a class object for the sklearn model.
dt = DecisionTreeRegressor(random_state=123)
# fit the decision tree regressor
dt.fit(X, y)
# score the model
dt.score(X, y)
```

```
0.9991338290544213
```

We are getting a perfect accuracy. Should we be happy with this model and deploy it? Why or why not?

What's the depth of this model?

```
dt.get_depth()
```

38

Data splitting

Let's split the data and

- Train on the train split
- Score on the test split

```
# Split the data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
```

```
# Instantiate a class object
dt = DecisionTreeRegressor(random_state=123)

# Train a decision tree on X_train, y_train
dt.fit(X_train, y_train)

# Score on the train set
dt.score(X_train, y_train)
```

```
0.9994394006711425
```

```
# Score on the test set
dt.score(X_test, y_test)
```

```
0.719915905190645
```

Activity: Discuss the following questions in your group

Why is there a large gap between train and test scores?

- What would be the effect of increasing or decreasing test_size ?
- Why are we setting the random_state? Is it a good idea to try a bunch of values for the random_state and pick the one which gives the best scores?
- Would it be possible to further improve the scores?

Let's try out different depths.

```
# max_depth= 1
dt = DecisionTreeRegressor(max_depth=1, random_state=123)
dt.fit(X_train, y_train)
```

```
▼ DecisionTreeRegressor

DecisionTreeRegressor(max_depth=1, random_state=123)
```

```
# Visualize your decision stump
from sklearn.tree import plot_tree
plot_tree(dt, feature_names = X.columns.tolist(), impurity=False, filled=True,
```


dt.score(X_train, y_train) # Score on the train set

0.3209427041566191

 $dt.score(X_test, y_test)$ # Score on the test set

0.31767136668453344

How do these scores compare to the previous scores?

Let's try depth 10.

dt = DecisionTreeRegressor(max_depth=10, random_state=123) # max_depth= 10
dt.fit(X_train, y_train)

DecisionTreeRegressor

DecisionTreeRegressor(max_depth=10, random_state=123)

```
dt.score(X_train, y_train) # Score on the train set
```

```
0.9108334653214172
```

```
dt.score(X_test, y_test) # Score on the test set
```

```
0.7728396574320712
```

Any improvements? Which depth should we pick?

Single validation set

We are using the test data again and again. How about creating a validation set to pick the right depth and assessing the final model on the test set?

```
# Create a validation set
X_tr, X_valid, y_tr, y_valid = train_test_split(X_train, y_train, test_size=0.
```

		•
	train_score	valid_score
1	0.319559	0.326616
3	0.603739	0.555180
5	0.754938	0.677567
7	0.833913	0.737285
9	0.890456	0.763480
11	0.931896	0.790521
13	0.963024	0.769030
15	0.981643	0.752728
17	0.991810	0.735637
19	0.996424	0.745925
21	0.998370	0.734048
23	0.999213	0.741060
25	0.999480	0.722873
27	0.999544	0.723951
29	0.999558	0.734986
31	0.999562	0.724068
33	0.999567	0.724410

results_single_valid_df[['train_score', 'valid_score']].plot(ylabel='r2 scores

What depth gives the "best" validation score?

Let's assess the best model on the test set.

```
best_depth = results_single_valid_df['valid_score'].idxmax()
best_depth

np.int64(11)
```

```
test_model = DecisionTreeRegressor(max_depth=best_depth, random_state=123)
test_model.fit(X_train, y_train)
test_model.score(X_test, y_test)
```

0.7784948928666875

- How do the test scores compare to the validation scores?
- Can we have a more robust estimate of the test score?

Cross-validation

```
depths = np.arange(1, 35, 2)

cv_train_scores = []
cv_valid_scores = []
for depth in depths:
    # Create and fit a decision tree model for the given depth
    dt = DecisionTreeRegressor(max_depth = depth, random_state=123)

# Carry out cross-validation
    scores = cross_validate(dt, X_train, y_train, return_train_score=True)
    cv_train_scores.append(scores['train_score'].mean())
    cv_valid_scores.append(scores['test_score'].mean())
```

	train_score	valid_score
1	0.321050	0.322465
3	0.603243	0.559284
5	0.752169	0.688484
7	0.835876	0.758259
9	0.894960	0.768184
11	0.938201	0.772185
13	0.966812	0.760966
15	0.983340	0.754620
17	0.992220	0.730025
19	0.996487	0.722803
21	0.998440	0.726659
23	0.999178	0.730704
25	0.999438	0.711356
27	0.999518	0.721917
29	0.999539	0.729374
31	0.999545	0.740319
33	0.999546	0.706489

```
results_df[['train_score', 'valid_score']].plot();
plt.title('Housing price prediction depth vs. r2 score', fontsize=12) # Adjus
plt.xlabel('max_depth', fontsize=12) # Adjust x-axis label font size
plt.ylabel('r2 score', fontsize=12); # Adjust y-axis label font size
```


What's the "best" depth with cross-validation?

```
best_depth = results_df['valid_score'].idxmax()
best_depth

np.int64(11)
```

Discuss the following questions in your group

- 1. For which depth(s) we are underfitting? How about overfitting?
- 2. Above we are picking the depth which gives us the best cross-validation score. Is it always a good idea to pick such a depth? What if you have a much simpler model (smaller max_depth), which gives us almost the same CV scores?
- 3. If we care about the test scores in the end, why don't we use it in training?
- 4. Do you trust our hyperparameter optimization? In other words, do you believe that we have found the best possible depth?

Assessing on the test set

```
dt_final = DecisionTreeRegressor(max_depth=best_depth, random_state=123)
dt_final.fit(X_train, y_train)
dt_final.score(X_train, y_train)
```

0.9308647034083802

```
dt_final.score(X_test, y_test)
```

```
0.7784948928666875
```

How do these scores compare to the scores when we used a single validation set?

Learned model

```
#What's the depth of the model?
dt_final.get_depth()
```

11

```
# plot_tree(dt_final, feature_names = X_train.columns.tolist(), impurity=False
```

```
# Which features are the most important ones?
dt_final.feature_importances_
```

```
array([0.00080741, 0.00327551, 0.25123925, 0.01808825, 0.00079645, 0.03213916, 0.01190633, 0.00106308, 0.36400802, 0.02313684, 0.00295235, 0.01209545, 0.00064647, 0.17216105, 0.06835056, 0.02416048, 0.01317334])
```

Let's examine feature importances.

```
df = pd.DataFrame(
    data = {
        "features": dt_final.feature_names_in_,
        "feature_importances": dt_final.feature_importances_
    }
)
df.sort_values("feature_importances", ascending=False)
```

	features	feature_importances
8	grade	0.364008
2	sqft_living	0.251239
13	lat	0.172161
14	long	0.068351
5	waterfront	0.032139
15	sqft_living15	0.024160
9	sqft_above	0.023137
3	sqft_lot	0.018088
16	sqft_lot15	0.013173
11	yr_built	0.012095
6	view	0.011906
1	bathrooms	0.003276
10	sqft_basement	0.002952
7	condition	0.001063
0	bedrooms	0.000807
4	floors	0.000796
12	yr_renovated	0.000646

Summary

Concepts we revised in this demo

- Exploratory data analysis
- Baselines
- Data splitting: train, test, validation sets
- Cross validation
- Underfitting, overfitting, the fundamental tradeoff
- The golden rule of supervised ML

Typical steps to build a supervised machine learning model

- Ensure the data is appropriate for your task (e.g., labeled data, suitable features).
- Split the data into training and testing sets.
- Perform exploratory data analysis (EDA) on the training data to understand distributions, identify patterns, and detect potential issues.
- Preprocess and encode features (e.g., handle missing values, scale features, encode categorical variables)
 - coming up
- Build a baseline model to establish a performance benchmark.
- · Train multiple candidate models on the training data
 - coming up
- Select promising models and perform hyperparameter tuning using cross-validation.
 - coming up
- Evaluate the generalization performance of the best model on the test set.