Decision Making in 2-Arm Bandit Problems

Hannah Sonali Sneha Chun Yashodhan

The 2 -arm bandit problem

- > The problem
 - 2 independent machines
 - one agent
 - Decision which machine to choose
 - Exploration vs Exploitation trade-off
- > For every machine k
 - State S_t^k after t transitions
 - Reward Rate **R**^k

Heuristic Models

- \succ ϵ Greedy
 - ullet Exploration with probability ϵ
 - Exploitation with probability $1-\epsilon$
- \succ ϵ Decreasing
 - Decreasing value of ϵ
- Win-stay lose-shift
 - Stay after winning, shift after losing
 - lacksquare Both with probability γ

Full Latent State Model

- Latent state for each trial
- Flexible switching between exploration and exploitation
- Decisions based on 3 different situations
 - Same
 - Better-worse
 - Explore-exploit

Full Latent State Model

$$heta_{ij} = egin{cases} 1/2, & ext{if A is same} \ \gamma, & ext{if A is better} \ 1-\gamma, & ext{if A is worse} \ \gamma, & ext{if A is search and } z_i = 0 \ 1-\gamma, & ext{if A is search and } z_i = 1 \ \gamma, & ext{if A is stand and } z_i = 1 \ 1-\gamma, & ext{if A is stand and } z_i = 0 \end{cases}$$

$$d_{ij} = Bernoulli(\theta_{ij})$$

Full Latent State Model

S: number of successes

F: number of failures

 z_i : latent state variable

 d_{ij} : decision

 θ_{ij} : Bernoulli distribution

for the decision

au - switch model

- A simplification of the full latent state model
- \succ Latent state z_i changes from exploration to exploitation only once during the game, after au trials

Goals

- Generate optimal data
- Compare heuristic to optimal data
- Compare heuristic to human data
 - OMR dataset, 2011

Experimental Setup

- > 50 games
- > Each game has 8 trials
- ➤ 10 subjects
- Environment Settings
 - \circ Define α (prior successes), β (prior failures)
 - $\alpha > \beta$: Plentiful
 - $\alpha = \beta$: Neutral
 - $\alpha < \beta$: Scarce

Generating Optimal Data

- > Formulation of the problem
 - States : (s_1, s_2, f_1, f_2)
 - s_i = successes from arm i, f_i = failures from arm i
 - Environment settings : α , β
 - $V_t(s_1, s_2, f_1, f_2)$: Expected payoff after t trials
 - Recursive definition

$$egin{aligned} V_t(s_1, s_2, f_1, f_2) &= \max_{i \in \{1, 2\}} \left(rac{s_i + lpha}{s_i + f_i + lpha + eta} V_{t+1}(..., s_i + 1, ...)
ight. \ &+ rac{f_i + eta}{s_i + f_i + lpha + eta} V_{t+1}(..., f_i + 1, ...) + rac{s_i + lpha}{s_i + f_i + lpha + eta}
ight). \end{aligned}$$

Generating Optimal Decisions

- \succ Enumerate all $V_t(s_1, s_2, f_1, f_2)$ and corresponding decision matrix $D_t(s_1, s_2, f_1, f_2)$
- Make a forward pass
 - Start with state S (0,0,0,0) and randomly pick the first action k
 - Sample reward $r_k \sim Bernoulli(\mu_k)$
 - Set next state as $nextState = (..., s_k + r_k, ..., f_k + 1 r_k, ...)$
 - Thus, action at next trial t, action = $D_t(nextState)$
 - Repeat from Step 2 for all trials
- Output optimal decision sequence and corresponding reward sequence

Key Heuristic Parameters

Heuristic Method	Key Parameter	Meaning
€ - Greedy	ϵ	probability of exploration
€ - Decreasing	$oldsymbol{\epsilon}_{ ext{o}}$	probability of exploration in 0-th trial
WSLS	γ	probability of staying after winning and shifting after losing
Full Latent State	θ	Multifaceted
au-switch	au	trial # for switching from exploration to exploitation

Methods of Comparison

- > Forward method: simulate model
 - Grid search for parameter based on decision sequence match percentage
 - Fit parameters from human/optimal data
 - Generate possible sequence
 - Compare sequences to optimal model sequence
- > Fit models to optimal and human data
 - Define L-value

Methodology for Model Fitting

Define L-value as

$$L(Action, Reward|Data) = P(Action, Reward|Data)$$

$$= \prod_{t} P(f(\epsilon), f(\mu_k)|Data)$$

$$= \prod_{t} P(f(\epsilon)|Data)P(f(\mu_k)|Data)$$

$$= \prod_{t} \epsilon^x (1 - \epsilon)^{1-x} \mu_k^y (1 - \mu_k)^{1-y}$$

Decision Rule

$$stay_t = I(D_{model}^t == D_{data}^{t-1})$$

Model fitting to optimal data

- ightharpoonup Given: Parameters lpha and eta of the Beta distribution, optimal decisions d_{opt} , optimal rewards r_{opt} .
- > For each value *v* of heuristic model parameter
 - \circ For each decision sequence d_{model}
 - compute L-value
- \triangleright Select (v, d_{model}) which maximizes L-value
- ightharpoonup Compute percent match between d_{model} and d_{opt}

Model fitting to human data

- \rightarrow Given: Heuristic model parameters, optimal decisions d_{opt} , optimal rewards r_{opt}
- \succ For each pair (α', β')
 - \circ For each decision sequence d_{model}
 - Compute L-value
- \triangleright Select (v, d_{model}) which maximizes L-value
- ightharpoonup Compute percent match between d_{model} and d_{opt}

Results - Agreement with Optimal

Results - Agreement with Human Data

Discussion

Heuristic models and optimal models

Comparisons

> Limitations

Questions

