

LEARNING PROGRESS REVIEW

Week 11

Entropy Team

DAFTAR ISI

1.

Advanced Data Preprocessing

Imbalanced dataset & text data

2.

Classification (Part I)

KNN, decision tree, ensemble method

3.

Classification (Part II)

SVM for binary & multiclass classification

ADVANCED DATA PREPROCESSING

Imbalanced dataset & text data

Imbalanced Dataset

Imbalanced dataset yaitu suatu kondisi di mana distribusi kelasnya tidak seimbang

Resampling

- Resampling merupakan salah satu metode yang dapat digunakan untuk mengatasi imbalanced dataset
- Secara umum, resampling dibagi menjadi 2 jenis, yaitu
 - Undersampling
 - Oversampling

Random Undersampling

Menyeimbangkan distribusi kelas dengan **menghapus** sebagian dari **kelas mayoritas** secara acak

Random Oversampling

Menyeimbangkan distribusi kelas dengan **menduplikasi** sebagian dari **kelas minoritas** secara acak

SMOTE

- Synthetic Minority Oversampling Technique (SMOTE)
- Secara garis besar, SMOTE membuat sampel sintetis yang berada di antara sampel kelas minoritas yang dipilih secara acak

Contoh Hasil SMOTE

ADASYN

- Adaptive Synthetic (ADASYN)
- Secara garis besar, ADASYN membuat sampel sintetis yang berada di antara sampel kelas minoritas yang dipilih berdasarkan bobot
- ADASYN berfokus pada daerah yang sulit diklasifikasikan, yaitu daerah di mana sampel dari kelas minoritas dan mayoritas saling berdekatan

Contoh Hasil ADASYN

Data Teks

▲ airline_sentiment =	▲ airline	₽	▲ text
negative 63% neutral 21% Other (2363) 16%	United US Airways Other (7905)	26% 20% 54%	14427 unique values
neutral	Virgin America		@VirginAmerica What @dhepburn said.
positive	Virgin America		@VirginAmerica plus you've added commercials to the experience tacky.
neutral	Virgin America		@VirginAmerica I didn't today Must mean I need to take another trip!
negative	Virgin America		@VirginAmerica it's really aggressive to blast obnoxious "entertainment" in your guests' faces &

- Selain data numerik, dataset juga dapat berisikan data teks
- Text classification berfungsi untuk mengelompokkan data teks ke dalam kelompok tertentu
- Contoh pemanfaatannya yaitu untuk sentiment analysis, topic labeling, spam detection, dll

Pengolahan Data Teks

Secara umum, tahapan dalam pengolahan teks yaitu:

- Tokenization, pemecahan teks menjadi potongan kecil (kata-kata)
- Text preprocessing
 - Penghapusan kata "tidak penting" (stop words)
 - Pengubahan kata ke bentuk dasar (stemming dan lemmatization)
- Feature extractions, pengubahan data teks menjadi numerik
 - Bag of words
 - TF-IDF
 - Word embedding
- Pembuatan model
- Evaluasi model

CLASSIFICATION (PART I)

KNN, decision tree, ensemble method

K-Nearest Neighbors (KNN)

- Digunakan untuk klasifikasi suatu sampel berdasarkan sejumlah (k) tetangga terdekatnya
- Jika k=1, maka kelas dari sampel baru ditentukan oleh kelas dari 1 tetangga terdekatnya

KNN – Penentuan Kelas

Finding Neighbors & Voting for Labels

Penentuan kelas dari sampel baru:

- Kelas mayoritas dari tetangga terdekat
- Memberi bobot pada tiap tetangga berdasarkan jarak

KNN – Beberapa Tips

- Gunakan nilai k yang ganjil
- Jangan gunakan nilai k yang terlalu kecil atau terlalu besar
- Lakukan feature scaling agar rentangnya sama
- Buat beberapa model dengan variasi nilai k kemudian bandingkan performanya

Decision Tree

- Decision tree merupakan algoritma yang melakukan partisi secara rekursif dari feature space
- Struktur decision tree mirip seperti pohon yang terbalik
 - Root, bagian paling atas yang menjadi titik awal proses prediksi
 - Leaf, bagian paling bawah yang menjadi hasil prediksi
 - Node, bagian tengah yang menjadi penentu partisi

Penentuan Node

- Setiap node merupakan atribut yang digunakan untuk proses partisi
- Pemilihan atribut berdasarkan nilai impurity, yaitu kemampuan untuk mendapatkan kelas yang homogen
- Perhitungan nilai impurity tersebut dapat menggunakan gini index atau entropy

Pros – Cons dari Decision Tree

Kelebihan

- Mudah dipahami
- Algoritma ringan dan cepat
- Kekurangan
 - Sensitif terhadap noise
 - Sangat rentan terhadap overfitting
- **Pruning** dilakukan untuk memangkas struktur *tree* agar model dapat menghasilkan prediksi yang lebih *general* (tidak *overfitting*)
 - **Pre-pruning** : mengatur *rules* yang menentukan **kapan** *tree* **berhenti** tumbuh
 - **Post-pruning** : membuat *tree* secara utuh, kemudian menentukan **bagian** mana yang **dihapus**

Ensemble Method

- Ensemble method menggunakan beberapa model untuk membuat prediksi
- Tujuannya yaitu untuk mendapatkan akurasi yang lebih baik dibandingkan hanya menggunakan 1 model

Bagging

Parallel

- Bagging (bootstrap aggregating)
 akan melakukan sampling dengan metode bootstrapping
- Setiap sampel akan digunakan untuk model yang berbeda
- Hasil prediksi dari setiap model akan dikumpulkan (aggregating) kemudian:
 - Dipilih suara mayoritas (klasifikasi)
 - Dipilih nilai rata-rata (regresi)

Boosting

Sequential

- Membuat prediksi dengan menggunakan sampel yang telah diberi bobot
- Sampel yang sulit untuk diprediksi akan memiliki bobot yang besar, sehingga kemungkinan muncul di iterasi berikutnya juga besar
- Tujuannya yaitu agar model dapat lebih mempelajari sampel tersebut

CLASSIFICATION (PART II)

SVM for binary & multiclass classification

Support Vector Machine

- Support vector machine (SVM)
 menggunakan hyperplane untuk
 memisahkan 2 kelas
- SVM digunakan untuk menentukan hyperplane dengan margin antara support vector yang paling besar

Hyperplane

- Hyperplane yaitu "bidang" yang digunakan untuk memisahkan 2 kelas
- Dimensi bidang tersebut tergantung dari dimensi data (jumlah fitur yang digunakan)
- Misal, sebuah garis (bidang 1 dimensi) dapat digunakan untuk memisahkan data 2 dimensi (memiliki 2 fitur)

Kernel Trick

Input Space

Feature Space

- Kernel trick dapat digunakan jika data sulit dipisahkan secara linier
- Secara umum, kernel trick akan mengubah dimensi fitur ke dimensi yang lebih tinggi

Binary ke Multiclass Classification

Binary classification

Multi-class classification

- Binary classifier dapat digunakan untuk kasus multiclass classification
- Caranya yaitu dengan membuat beberapa binary classifier dengan metode:
 - One vs Rest (OvR)
 - One vs One (OvO)
- Jika menggunakan SVM, berarti kita akan membuat beberapa bidang (hyperplane) pembatas

One vs Rest (OvR)

- Setiap classifier digunakan untuk klasifikasi 1 kelas terhadap seluruh kelas lainnya
- Setiap classifier akan menghasilkan nilai probabilitas suatu sampel untuk masuk ke dalam kelas tertentu
- Hasil prediksi ditentukan oleh classifier yang menghasilkan probabilitas tertinggi untuk sampel tersebut

One vs One (OvO)

- Setiap classifier digunakan untuk klasifikasi 1 kelas terhadap 1 kelas lainnya secara bergantian
- Setiap classifier akan menghasilkan prediksi kelas dari suatu sampel
- Hasil prediksi akhir ditentukan oleh voting, yaitu kelas yang paling banyak muncul dari hasil prediksi seluruh classifier

THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**