Relação de Ordem QXD0008 – Matemática Discreta

Prof. Lucas Ismaily ismaily@ufc.br

Universidade Federal do Ceará

 2° semestre/2022

Tópicos desta aula

Nesta apresentação:

- Relação de Ordem Parcial
- Ordem Total
- Diagrama de Hasse
- Elementos Extremos de um Conjunto Parcialmente Ordenado

Referências para esta aula

• Seção 9.6 do livro:

Discrete Mathematics and Its Applications.

Author: Kenneth H. Rosen. Seventh Edition. (English version)

• **Seção 8.6** do livro: <u>Matemática Discreta e suas Aplicações.</u>

Autor: Kenneth H. Rosen. Sexta Edição.

Introdução

Definição: Uma relação R em um conjunto S é dita relação de ordem parcial se e somente se R é reflexiva, anti-simétrica e transitiva.

Definição: Um conjunto S juntamente com uma relação de ordem parcial R é chamado conjunto parcialmente ordenado (CPO) e é denotado por (S,R).

Exemplo 1:

Seja R a endorrelação "menor que ou igual" no conjunto dos números reais, definida como $R = \{(a, b): a \le b\}$. Prove que R é uma ordem parcial.

Exemplo 1:

Seja R a endorrelação "menor que ou igual" no conjunto dos números reais, definida como $R = \{(a, b) : a \le b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{R} , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Exemplo 1:

Seja R a endorrelação "menor que ou igual" no conjunto dos números reais, definida como $R = \{(a, b): a \le b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{R} , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Reflexiva: R é reflexiva sobre \mathbb{R} pois para todo $x \in \mathbb{R}$, temos que $x \le x$. Logo, para todo $x \in \mathbb{R}$, temos $x \in \mathbb{R}$.

Exemplo 1:

Seja R a endorrelação "menor que ou igual" no conjunto dos números reais, definida como $R = \{(a, b): a \le b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{R} , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Reflexiva: R é reflexiva sobre \mathbb{R} pois para todo $x \in \mathbb{R}$, temos que $x \le x$. Logo, para todo $x \in \mathbb{R}$, temos $x \in \mathbb{R}$.

Anti-simétrica: Sejam $x, y \in \mathbb{R}$.

Suponha que $x \le y$ e $y \le x$.

Como $x \le y$ e $y \le x$, obtemos que x = y.

Portanto, xRy e yRx implica x = y.

Logo, R é anti-simétrica.

Exemplo 1:

Seja R a endorrelação "menor que ou igual" no conjunto dos números reais, definida como $R = \{(a, b) : a \le b\}$. Prove que R é uma ordem parcial.

Continuação da Solução:

Transitiva: Sejam $x, y, z \in \mathbb{R}$.

Suponha que $x \le y$ e $y \le z$.

Como $x \le y$ e $y \le z$, obtemos que x = z.

Portanto, xRy e yRz implica xRz.

Logo, R é transitiva.

• Como a relação R é uma ordem parcial no conjunto dos reais, temos que (\mathbb{R}, R) é um conjunto parcialmente ordenado.

Exemplo 2:

Seja R a relação "divide" no conjunto dos inteiros positivos, \mathbb{Z}^+ , definida como $R = \{(a,b) \colon a \mid b\}$. Prove que R é uma ordem parcial.

Exemplo 2:

Seja R a relação "divide" no conjunto dos inteiros positivos, \mathbb{Z}^+ , definida como $R = \{(a,b) \colon a \mid b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{Z}^+ , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Exemplo 2:

Seja R a relação "divide" no conjunto dos inteiros positivos, \mathbb{Z}^+ , definida como $R = \{(a,b) \colon a \mid b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{Z}^+ , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Reflexiva: Para todo $x \in \mathbb{Z}^+$, temos que $x \mid x$, pois $x = 1 \cdot x$. Portanto, R é reflexiva.

Exemplo 2:

Seja R a relação "divide" no conjunto dos inteiros positivos, \mathbb{Z}^+ , definida como $R = \{(a,b) \colon a \mid b\}$. Prove que R é uma ordem parcial.

Solução: A fim de provar que R é uma ordem parcial no conjunto \mathbb{Z}^+ , vamos provar que ela é reflexiva, anti-simétrica e transitiva.

Reflexiva: Para todo $x \in \mathbb{Z}^+$, temos que $x \mid x$, pois $x = 1 \cdot x$. Portanto, R é reflexiva.

Anti-simétrica: Sejam $x, y \in \mathbb{Z}^+$.

Suponha que $x \mid y$ e que $y \mid x$.

Então, existem $k, p \in \mathbb{Z}^+$ tais que y = kx e x = py. (\star)

Isso implica que x = py = p(kx) = (pk)x.

Disso, concluímos que pk = 1.

O único valor possível para p e k é p = k = 1.

Substituindo esses valores de p e k em (\star) , obtemos x = y.

Portanto, R é anti-simétrica.

Exemplo 2:

Seja R a relação "divide" no conjunto dos inteiros positivos, \mathbb{Z}^+ , definida como $R = \{(a,b) \colon a \mid b\}$. Prove que R é uma ordem parcial.

Continuação da Solução:

Transitiva: Sejam $x, y, z \in \mathbb{Z}$.

Suponha que $x \mid y$ e que $y \mid z$.

Então, existem inteiros k e p tais que y = xk e z = yp.

Substituindo o valor de y na segunda igualdade, obtemos que z = (xk)p = x(kp), onde kp é um inteiro.

Logo, pela def. de divisibilidade, $x \mid z$.

Portanto, R é transitiva.

• Como a relação R é uma ordem parcial no conjunto dos inteiros positivos, temos que (\mathbb{Z}^+, R) é um conjunto parcialmente ordenado.

Definição: Seja S um conjunto. O conjunto das partes de S, denotado por $\mathcal{P}(S)$, é o conjunto de todos os subconjuntos de S.

Exemplo: O conjunto das partes do conjunto $S = \{1, 2, 3\}$ é o conjunto $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Definição: Seja S um conjunto. O conjunto das partes de S, denotado por $\mathcal{P}(S)$, é o conjunto de todos os subconjuntos de S.

Exemplo: O conjunto das partes do conjunto $S = \{1, 2, 3\}$ é o conjunto $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Exemplo 3:

Mostre que a relação de inclusão \subseteq é uma relação de ordem parcial no conjunto das partes de um conjunto S.

Definição: Seja S um conjunto. O conjunto das partes de S, denotado por $\mathcal{P}(S)$, é o conjunto de todos os subconjuntos de S.

Exemplo: O conjunto das partes do conjunto $S = \{1, 2, 3\}$ é o conjunto $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Exemplo 3:

Mostre que a relação de inclusão \subseteq é uma relação de ordem parcial no conjunto das partes de um conjunto S.

Solução:

Seja S um conjunto. Vamos mostrar que a relação \subseteq no conjunto $\mathcal{P}(S)$ é reflexiva, anti-simétrica e transitiva.

Reflexiva: Seja A um elemento pertencente ao conjunto $\mathcal{P}(S)$. Como $A \subseteq A$ para todo conjunto A em $\mathcal{P}(S)$, concluímos que \subseteq é reflexiva.

Exemplo 3:

Mostre que a relação de inclusão \subseteq é uma relação de ordem parcial no conjunto das partes de um conjunto S.

Continuação da Solução:

Anti-simétrica: Sejam $A, B \in \mathcal{P}(S)$. Suponha que $A \subseteq B$ e que $B \subseteq A$. Isso implica que A = B. Portanto, \subseteq é anti-simétrica.

Exemplo 3:

Mostre que a relação de inclusão \subseteq é uma relação de ordem parcial no conjunto das partes de um conjunto S.

Continuação da Solução:

Anti-simétrica: Sejam $A, B \in \mathcal{P}(S)$. Suponha que $A \subseteq B$ e que $B \subseteq A$. Isso implica que A = B. Portanto, \subseteq é anti-simétrica.

Transitiva: Sejam $A, B, C \in \mathcal{P}(S)$. Suponha que $A \subseteq B$ e que $B \subseteq C$. Isso implica que $A \subseteq C$. Portanto, \subseteq é transitiva.

Exemplo 3:

Mostre que a relação de inclusão \subseteq é uma relação de ordem parcial no conjunto das partes de um conjunto S.

Continuação da Solução:

Anti-simétrica: Sejam $A, B \in \mathcal{P}(S)$. Suponha que $A \subseteq B$ e que $B \subseteq A$. Isso implica que A = B. Portanto, \subseteq é anti-simétrica.

Transitiva: Sejam $A, B, C \in \mathcal{P}(S)$. Suponha que $A \subseteq B$ e que $B \subseteq C$. Isso implica que $A \subseteq C$. Portanto, \subseteq é transitiva.

• Como a relação \subseteq é uma ordem parcial no conjunto das partes de um conjunto S, temos que $(\mathcal{P}(S), \subseteq)$ é um conjunto parcialmente ordenado.

Noção de ordem

Relações de ordem parcial são usadas para estabelecer uma ordem entre os elementos de um conjunto.

Noção de ordem

Relações de ordem parcial são usadas para estabelecer uma ordem entre os elementos de um conjunto.

• Por exemplo, no conjunto parcialmente ordenado (\mathbb{Z}, \leq) , temos que:

$$\cdots \leq -4 \leq -3 \leq -2 \leq -1 \leq 0 \leq 1 \leq 2 \leq 3 \leq 4 \leq \cdots$$

Além disso, no CPO (\mathbb{Z}, \leq) temos a seguinte propriedade: para quaisquer dois elementos $x, y \in \mathbb{Z}$, temos que $x \leq y$ ou $y \leq x$.

Noção de ordem

Relações de ordem parcial são usadas para estabelecer uma ordem entre os elementos de um conjunto.

• Por exemplo, no conjunto parcialmente ordenado (\mathbb{Z}, \leq) , temos que:

$$\cdots \leq -4 \leq -3 \leq -2 \leq -1 \leq 0 \leq 1 \leq 2 \leq 3 \leq 4 \leq \cdots$$

Além disso, no CPO (\mathbb{Z}, \leq) temos a seguinte propriedade: para quaisquer dois elementos $x, y \in \mathbb{Z}$, temos que $x \leq y$ ou $y \leq x$.

Definição: Sejam a e b elementos de um CPO (S,R). Dizemos que a e b são comparáveis se e somente se aRb ou bRa.

Quando a e b são elementos de (S,R) tais que nem aRb nem bRa, a e b são ditos incomparáveis.

• **Obs.:** Quaisquer dois elementos do CPO (\mathbb{Z}, \leq) são comparáveis.

Definição: Seja (S, R) um CPO tal que quaisquer dois elementos de S são comparáveis. S é dito um conjunto totalmente ordenado e a relação R é chamada uma ordem total.

- No exemplo anterior, vimos que o CPO (\mathbb{Z}, \leq) é totalmente ordenado porque $a \leq b$ ou $b \leq a$ sempre que a e b são inteiros.
- Outros exemplos de CPOs totalmente ordenados:
 - \circ (\mathbb{Z}, \geq)
 - \circ (\mathbb{R}, \leq)
 - \circ (\mathbb{R}, \geq)
 - \circ (A, R), tal que $A = \{3, 9, 27, 81\}$ e $R = \{(a, b) \in A \times A : a \mid b\}$.

Exemplo:

Seja $A = \{x : x \text{ \'e uma potência de 3 e } x > 0\}$ e seja R uma relação em A definida como $R = \{(a,b) \in A \times A : a \mid b\}$. Mostre que o CPO (A,R) \'e totalmente ordenado.

Exemplo:

Seja $A = \{x : x \text{ \'e uma potência de 3 e } x > 0\}$ e seja R uma relação em A definida como $R = \{(a, b) \in A \times A : a \mid b\}$. Mostre que o CPO (A, R) \'e totalmente ordenado.

Solução:

Para mostrar que o CPO (A,R) é totalmente ordenado, devemos mostrar que quaisquer dois elementos a e b de A são comparáveis, ou seja, que $a \mid b$ ou $b \mid a$.

Exemplo:

Seja $A = \{x : x \text{ \'e uma potência de 3 e } x > 0\}$ e seja R uma relação em A definida como $R = \{(a, b) \in A \times A : a \mid b\}$.

Mostre que o CPO (A, R) é totalmente ordenado.

Solução:

Para mostrar que o CPO (A,R) é totalmente ordenado, devemos mostrar que quaisquer dois elementos a e b de A são comparáveis, ou seja, que $a \mid b$ ou $b \mid a$.

Sejam $a, b \in A$. Por definição, $a \in b$ são potências de 3 e a, b > 0.

Ou seja, $a = 3^i$ e $b = 3^j$, para $i, j \in \mathbb{Z}^+$.

Suponha, sem perda de generalidade, que i < j.

Então, $3^i < 3^j$ e, portanto, a < b. Logo, $\frac{b}{a} = \frac{3^j}{3^j} = 3^{j-i}$, onde 3^{j-i} é um inteiro positivo. Portanto, $b = a \cdot 3^{j-i}$.

Pela definição de divisibilidade, temos que $a\mid b$, como queríamos demonstrar.

Relação de Ordem Total - Observações

- Nem todos os CPOs são totalmente ordenados.
 Dois elementos de um certo conjunto podem não ser comparáveis, dependendo da relação empregada.
- Por exemplo, considere o CPO $(\mathbb{Z}^+, |)$ onde | é a relação **divide**.
 - Note que 2 não é comparável com 3 nem 3 é comparável com 2 porque 2 ∤ 3 e 3 ∤ 2.
- Similarmente, o CPO $(\mathcal{P}(\mathbb{Z}),\subseteq)$ não é totalmente ordenado.
 - o o conjunto $\{1,2\}$ não é comparável com o conjunto $\{1,3\}$ e vice versa porque nenhum desses conjuntos está contido no outro.

- Tal como acontece com as relações e funções, existe uma representação gráfica conveniente para ordens parciais Diagramas de Hasse.
- Considere o grafo direcionado de uma ordem parcial uma vez que sabemos que estamos lidando com uma ordem parcial, sabemos implicitamente que a relação deve ser reflexiva e transitiva. Assim podemos simplificar o grafo da seguinte forma:

Construindo o diagrama de Hasse para $(\{1,2,3,4\},\leq)$

- Tal como acontece com as relações e funções, existe uma representação gráfica conveniente para ordens parciais Diagramas de Hasse.
- Considere o grafo direcionado de uma ordem parcial uma vez que sabemos que estamos lidando com uma ordem parcial, sabemos implicitamente que a relação deve ser reflexiva e transitiva. Assim podemos simplificar o grafo da seguinte forma:

Construindo o diagrama de Hasse para $(\{1,2,3,4\},\leq)$

o Remova todos os laços

- Tal como acontece com as relações e funções, existe uma representação gráfica conveniente para ordens parciais Diagramas de Hasse.
- Considere o grafo direcionado de uma ordem parcial uma vez que sabemos que estamos lidando com uma ordem parcial, sabemos implicitamente que a relação deve ser reflexiva e transitiva. Assim podemos simplificar o grafo da seguinte forma:

Construindo o diagrama de Hasse para $(\{1,2,3,4\},\leq)$

- Remova todos os laços
- Remova todas as arestas transitivas

- Tal como acontece com as relações e funções, existe uma representação gráfica conveniente para ordens parciais Diagramas de Hasse.
- Considere o grafo direcionado de uma ordem parcial uma vez que sabemos que estamos lidando com uma ordem parcial, sabemos implicitamente que a relação deve ser reflexiva e transitiva. Assim podemos simplificar o grafo da seguinte forma:

Construindo o diagrama de Hasse para $(\{1,2,3,4\},\leq)$

- Remova todos os laços
- Remova todas as arestas transitivas
- Torne o grafo não direcionado ou seja, podemos supor que as orientações estão para cima.

- Tal como acontece com as relações e funções, existe uma representação gráfica conveniente para ordens parciais Diagramas de Hasse.
- Considere o grafo direcionado de uma ordem parcial uma vez que sabemos que estamos lidando com uma ordem parcial, sabemos implicitamente que a relação deve ser reflexiva e transitiva. Assim podemos simplificar o grafo da seguinte forma:

Construindo o diagrama de Hasse para $(\{1,2,3,4\},<)$

- Remova todos os laços
- Remova todas as arestas transitivas
- Torne o grafo não direcionado ou seja, podemos supor que as orientações estão para cima.

Exemplo:

Desenhe o diagrama de Hasse para a relação de ordem parcial

$$R = \{(a, b): a \mid b\}$$

no conjunto $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ (divisores de 60).

Exemplo:

Desenhe o diagrama de Hasse para a relação de ordem parcial

$$R = \{(A, B) : A \subseteq B\}$$

no conjunto das partes $\mathcal{P}(S)$ tal que $S = \{a, b, c\}$.

Elementos Extremos

Maximal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.

Maximal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.

Exemplo 1:

Considere o CPO
$$(\mathcal{P}(S), \subseteq)$$
 com $S = \{a, b, c\}$.

• Quem é o elemento maximal?

Maximal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.

Exemplo 1:

Considere o CPO $(\mathcal{P}(S), \subseteq)$ com $S = \{a, b, c\}$.

- Quem é o elemento maximal?
 - \circ Resposta: $\{a, b, c\}$

Minimal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Minimal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 1:

Considere o CPO $(\mathcal{P}(S), \subseteq)$ com $S = \{a, b, c\}$.

• Quem é o elemento minimal?

Minimal

Definição: Considere o conjunto parcialmente ordenado (S, R).

• Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 1:

Considere o CPO $(\mathcal{P}(S), \subseteq)$ com $S = \{a, b, c\}$.

- Quem é o elemento minimal?
 - ∘ Resposta: ∅

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 2:

Considere o CPO (A, |) com $A = \{2, 4, 5, 10, 12, 20, 25\}.$

- Quem é o elemento minimal?
- Quem é o elemento maximal?

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $x \in S$ é um elemento maximal de S se e somente se não existe $c \in S$ tal que xRc e $x \neq c$.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 2:

Considere o CPO (A, |) com $A = \{2, 4, 5, 10, 12, 20, 25\}.$

- Quem é o elemento minimal?
 - Resposta: 2 e 5
- Quem é o elemento maximal?
 - o Resposta: 12, 20 e 25

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento x ∈ S é um elemento maximal de S se e somente se não existe c ∈ S tal que xRc e x ≠ c.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 3:

• Considere o CPO (\mathbb{R}, \leq) . Quem é o elemento minimal? E o maximal?

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento x ∈ S é um elemento maximal de S se e somente se não existe c ∈ S tal que xRc e x ≠ c.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 3:

- Considere o CPO (\mathbb{R}, \leq) . Quem é o elemento minimal? E o maximal?
 - o Não tem nenhum dos dois.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento x ∈ S é um elemento maximal de S se e somente se não existe c ∈ S tal que xRc e x ≠ c.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 3:

- Considere o CPO (\mathbb{R},\leq). Quem é o elemento minimal? E o maximal?
 - o Não tem nenhum dos dois.
- Considere o CPO (\mathbb{N}^+, \leq) . Quem é o elemento minimal? E o maximal?

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento x ∈ S é um elemento maximal de S se e somente se não existe c ∈ S tal que xRc e x ≠ c.
- Um elemento $x \in S$ é um elemento minimal de S se e somente se não existe $c \in S$ tal que cRx e $x \neq c$.

Exemplo 3:

- Considere o CPO (\mathbb{R}, \leq) . Quem é o elemento minimal? E o maximal?
 - o Não tem nenhum dos dois.
- Considere o CPO (\mathbb{N}^+, \leq). Quem é o elemento minimal? E o maximal?
 - Não tem maximal. O minimal é o 1.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $a \in S$ é um elemento máximo de S se e somente se bRa para todo $b \in S$.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $a \in S$ é um elemento máximo de S se e somente se bRa para todo $b \in S$.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Exemplo 1:

Considere o CPO $(\mathcal{P}(A), \subseteq)$ com $A = \{a, b, c\}$.

- Quem é o elemento mínimo?
- Quem é o elemento máximol?

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $a \in S$ é um elemento máximo de S se e somente se bRa para todo $b \in S$.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Exemplo 1:

Considere o CPO $(\mathcal{P}(A), \subseteq)$ com $A = \{a, b, c\}$.

- Quem é o elemento mínimo?
 - ∘ Resposta: ∅
- Quem é o elemento máximol?
 - \circ Resposta: $\{a, b, c\}$

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $a \in S$ é um elemento máximo de S se e somente se bRa para todo $b \in S$.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento $a \in S$ é um elemento máximo de S se e somente se bRa para todo $b \in S$.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Exemplo 2:

Considere o CPO (A, |) com $A = \{2, 4, 5, 10, 12, 20, 25\}.$

- Quem é o elemento mínimo?
- Quem é o elemento máximo?

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento a ∈ S é um elemento máximo de S se e somente se bRa para todo b ∈ S.
- Um elemento a ∈ S é um elemento mínimo de S se e somente se aRb para todo b ∈ S.

Exemplo 2:

Considere o CPO (A, |) com $A = \{2, 4, 5, 10, 12, 20, 25\}.$

- Quem é o elemento mínimo?
 - o Resposta: não tem
- Quem é o elemento máximo?
 - o Resposta: não tem.

Definição: Considere o conjunto parcialmente ordenado (S, R).

- Um elemento a ∈ S é um elemento máximo de S se e somente se bRa para todo b ∈ S.
- Um elemento $a \in S$ é um elemento mínimo de S se e somente se aRb para todo $b \in S$.

FIM