

Endoscopy Lesion Detection

캡슐내시경 소장 병변 검출

TABLE OF CONTENTS

01

문제 정의

- 데이터 선정 이유
- 문제 정의

03

딥러닝 모델 적용

- 모델 소개
- 가설 설정
- 모델링

02

데이터 탐색 및 전처리

- 데이터 개요
- 데이터 시각화
- 데이터 전처리

04

가설 검정 및 한계점

- 가설 검정
- 한계점 및 추후 보완 방안

문제정의

데이터 선정 이유 / 문제 정의

데이터 선정 이유

(9)

의료 영상 분석에 많이 활용되는 객체 탐지 데이터 선정

문제 정의

- 캡슐 내시경의 활용도와 시장규모가 급속도로 성장
- 수 만장 영상 판독 시 오랜 시간 소요, 정확도 측면의 한계

02

데이터 탐색 및 전처리

데이터 개요 / 데이터 시각화 / 전처리

🖪 데이터 개요

H

- json 파일 형식
- Train 62622개
- Test 20874개

데이터 내용

├ file_name : 파일 이름

⊢ shape : 객체별 label 및 객체 위치 정보

├ label : 객체 이름

├ points : 객체의 4개 꼭지점(x, y) 좌표 정보

├ label : 객체 이름

├ points : 객체의 4개 꼭지점(x, y) 좌표 정보

데이터 포맷

LabelMe 포맷

Object Class

- Ulcer 궤양
- mass 종양
- Lymph 림프부종
- Bleeding 출혈

□ 데이터 시각화

□ 데이터 전처리

데이터 포맷 변환

LabelMe 데이터 포맷을 MS-COCO 형태로 변환

MS-COCO 데이터 포맷을 Ultralystic YOLO 포맷으로 변환

데이터 샘플링

Train 10000개 Val 2500개 Test 2500개

딥러닝 모델링

모델 소개 / 가설 설정 / 모델링

MMDetection

Figure 1: Framework of single-stage and two-stage detectors, illustrated with abstractions in MMDetection.

MMDetection은 Pytorch 기반의 Object Detection 오픈소스 라이브러리 전체 프레임워크를 모듈 단위로 분리해 관리할 수 있다는 것이 가장 큰 특징 BackBone이 Resnet50, Neck이 FPN, EPOCH 12 로 Pretrained 된 Faster RCNN 모델 사용

YOLO v5

YOLO는 2-Stage object detection 모델들의 느리다는 단점을 해결한 최초의 real-time object detector
YOLO v5는 2020년 6월에 출시했으며, Yolo v4 에 비해 낮은 용량과 빠른 속도

00000

()

 Joseph Redmon, Ali Farhadi, YOLOv3: An Incremental Improvement, 2018

4		 +	+	+	+	+	-+
	category count				category +	count	
Ì	0 [01_ulcer] 6259						

MMDetection 보다 YOLO v5 의 mAP 가 더 높을 것이다. 1)

클래스 불균형으로 01 Ulcer 범주가 다른 범주들보다 정확도가 더 높을 것이다. 2)

☐ 모델 Training / Inference

IMG 256 EPOCH 2 BATCH 12

MMDetection

IMG 128 EPOCH 30 **BATCH 100**

YOLO v5

□ 모델 Evaluation

I A	A	N A						
	V	IVI	U	е.	гe	cti	lO	n
					-			

YOLO v5

mAP

IoU=0.50:0.95 mAP 0.271 IoU=0.50 mAP 0.562

0000

IoU=0.50:0.95 mAP 0.231 IoU=0.50 mAP 0.542

범주별 Accuracy

	Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95:
	all	2500	3215	0.611	0.542	0.549	0.231
_	01_ulcer	2500	1573	0.679	0.561	0.57	0.199
	02 mass	2500	373	0.681	0.7	0.719	0.408
	04_lymph	2500	492	0.507	0.49	0.478	0.17
05	_bleeding	2500	777	0.576	0.417	0.427	0.147

가설검정 및한계점

가설 검정 / 한계점 및 추후 보완 방안

□ 가설 검정

 (\mathbf{p})

MMDetection 보다 YOLO v5 의 mAP 가 더 높을 것이다.
MMDetection 의 mAP 가 더 높았다.

클래스 불균형으로 01 Ulcer 범주가 다른 범주들보다 정확도가 다 높을 것이다.

02 MASS 범주가 다른 범주들보다 정확도가 더 높았다.

성능 향상

하이퍼 파라미터를 조정하여 mAP 성능 개선

다양한 모델

다양한 Object Detection 모델 적용

모델 성능 비교

이미지 크기와 하이퍼파라미터 등 동일한 조건 하에서 모델 성능 비교

THANK YOU

•

AI 09 이지은

00000