The ventricular pressure-volume relation

Leif Rune Hellevik

Department of Structural Engineering Norwegian University of Science and Technology Trondheim, Norway

September 18, 2017

Outline

- Ventricular pressure-volume relation
- Elastance as concept for contractility
- Frank-Starling law
- The heart as a pump

The ventricular pressure-volume relation

- Isovolumic contraction
 - Occurs at end diastole
 - ⇒ Increase in pressure
 - ⇒ Aortic valve (AV) opens

- Isobaric contraction
 - ► In systole
 - Volume decreases
 - ▶ Pressure ≈ constant
 - Pressure < aortic pressure</p>
 - ⇒ AV closure
- Isovolumic relaxation
 - ⇒ Decrease in pressure
 - ⇒ Mitral valves opens
 - Diastole begins
 - Filling of LV starts
- Isobaric (almost) filling until end diastole

The Frank-Starling law

- Frank experiments
 - Isovolumic contractions
 - Variation in diastolic volume
 - Non-linear maximal pressure-volume relation
 - Frog hearts
- Starling experiments
 - Ejecting hearts
 - Constant load (aortic pressure) with Starling resistor
 - ► Increase in filling ⇒ increase in Stroke Volume (SV)

The varying elastance model

- Mark time points in PV-loops
- Isochrones: connect points at same times
- Elastance E(t)
 - Slope of the isochrones
 - Minimum at diastole
 - E_{max} at end systole

The varying elastance concept

- Muscle stiffness increase from diastole to systole
- The change in stiffness is assumed to be unaffected by changes in load
- Units mmHg/ml
- Equivalent to E modulus for a linear spring
- Normalized by E_{max} and time to peak

- Normalized curves are the same in mammals
- Useful for lumped models of the heart

Determination of E_{max}

- E_{max}: Maximal elastance
- Several PV-loops needed
- Quick measurements to avoid changes in contractility

- Diastolic filling (DF) is preferred
- Changes in DF obtained with balloon in vena cava
- Volume measurements by e.g. US, X-ray, MRI
- Pressure measurements are invasive
- Noninvasive estimates of aortic pressure?

Systolic and diastolic dysfunction

- Decreased cardiac output
- If not compensated by HR for DF

- Stiffer LV ⇒ higher filling pressure
- Decreased CO
- Increased pulmonary venous pressure
- Shortness of breath

Relevance of ESPVR, E_{max} , and E_{min}

- \triangleright ESPVR, E_{max} , and E_{min} important pump measures
- Often used in animal research
- Clinical still limited but increasing
- E(t) depend on size (heart and body)
- Normalized to compare mammals
- $ightharpoonup E_{\text{max}}/E_{\text{min}}$ better measure for contractility in disease?

Limitations of the varying elastance concept

- Only for the whole ventricle
- No distinction of agents which decrease ESPVR
 - Asynchronous contraction
 - Local ischemia
 - Local infarction
- The PV-relations are not straight lines
- ▶ ESPVR are curvilinear $\Rightarrow E_{\text{max}}$ is pressure-dependent
- Local approximations in working range
- ► The load-dependence of ESPVR are minor

The pump function graph

- Constant
 - Roller speed
 - Tube compression
- Change load of pump
- Pump function graph results

Pump graph during exercise

- Vascular resistance decreases during exercise
- ⇒ Decreased slope of pump function graph
 - Large changes in CO with small changes in pressure

Effect of filling

- With increased filling the graph moves outward
- This effect also follow from Frank-Starling

Pump function Summary

- ► Higher load ⇒ lower flow
- Contractility ⇒ graph rotates around Q_{max}
- ▶ Diastolic filling and HR ⇒ translate graph in ∥-manner
- Keep constant contractility, filling and HR for determination of pump function graph

Summary

- Ventricular pressure-volume relation
- Elastance as concept for contractility
- Frank-Starling law
- ▶ The heart as a pump