STAT253/317 Winter 2019 Lecture 22&23

Yibi Huang

Chapter 10 Brownian Motion

- Brownian Motion as a Limit of Random Walk
- Brownian Motion as a Gaussian Process
- 10.2 Hitting Time, Maximum Value, Reflection Principle

Generalized Random Walk

The symmetric simple random walk $\{Y_n, n \geq 1\}$ can be defined alternatively as a sum of i.i.d. random variables

$$Y_n = X_1 + X_2 + \cdots + X_n, \quad n \ge 1$$

where X_i 's are i.i.d. with distribution

$$X_i = \begin{cases} 1 & \text{w/ prob. } 0.5 \\ -1 & \text{w/ prob. } 0.5 \end{cases}$$

Generally, for any sequence of i.i.d random variables $X_1, X_2, ...$ from an arbitrary distribution with $\mathbb{E}[X_i] = 0$, $\operatorname{Var}(X_i) = \sigma^2$, the partial sum process

$$Y_n = X_1 + X_2 + \cdots + X_n, \quad n > 1$$

is also called a (generalized) random walk.

10.1 Brownian Motion as a Limit of Random Walk

The Browian motion is in fact a limit of rescaled generalized random walk.

Let X_1, X_2, \ldots be i.i.d. random variables, $\mathbb{E}[X_i] = 0$, $\mathrm{Var}(X_i) = \sigma^2$.

Define $X(t) = \Delta x(X_1 + ... + X_{\lfloor t/\Delta t \rfloor})$ into many tiny

where $\lfloor t/\Delta t \rfloor$ is the integer part of $t/\Delta t$ intervals of length (delta t) We'd like to find the limit of X(t) as Δt and Δx both $\to 0$.

$$\mathbb{E}[X(t)] = 0, \quad \mathrm{Var}(X(t)) = \sigma^2(\Delta x)^2 \left\lfloor \frac{t}{\Delta t} \right\rfloor,$$
 To have a non-trivial limit, Δt and Δx must maintain the

To have a non-trivial limit, Δt and Δx must maintain the relationship

$$\Delta t = c(\Delta x)^2$$
.

Lecture 22&23 - 3

as they approach 0. Let's take c=1. In this case, as $\Delta t \to 0$, $\Delta x \to 0$, and $\Delta t = (\Delta x)^2$, we have

$$\mathbb{E}[X(t)] = 0, \quad \mathrm{Var}(X(t)) o \sigma^2 t,$$

Observe

Moreover, since $\Delta x = \sqrt{\Delta t}$, by CLT

$$X(t) = \Delta x (X_1 + \ldots + X_{\lfloor rac{t}{\Delta t}
floor}) pprox \sqrt{t} \sigma rac{X_1 + \ldots + X_{\lfloor rac{t}{\Delta t}
floor}}{\sqrt{\lfloor t/\Delta t
floor} \sigma}
ightarrow extsf{N}(0, \sigma^2 t)$$

in distribution.

Observe that the discrete-time process

$$\{X(t), t = n\Delta t, n = 0, 1, 2...\}$$

has independent and stationary increments since

$$X(s)=\Delta x(X_1+\ldots+X_{\lfloor rac{s}{\Delta t}
floor}),$$
 and $X(t)-X(s)=\Delta x(X_{\lfloor rac{s}{\Delta t}
floor}+1+\ldots+X_{\lfloor rac{t}{\Delta t}
floor})$

are independent, and for $t=l\Delta t>s=m\Delta t$, the distribution of X(t)-X(s) depends on the number of terms $\lfloor\frac{t}{\Delta t}\rfloor-\lfloor\frac{s}{\Delta t}\rfloor=(l-m)=(t-s)/(\Delta t)$ in the sum, but not s.

Thus the limit of X(t) is a process with **independent** and stationary increments.

Lecture 22&23 - 4

Definition of a Brownian Motion

Definition 1 A stochastic process $\{B(t), t \geq 0\}$ is said to be a Brownian Motion if

- (i) B(0) = 0;
- (ii) $\{B(t), t \ge 0\}$ has stationary and independent increments;
- (iii) for every t, s > 0, $B(t + s) B(s) \sim N(0, \sigma^2 t)$

A Brownian motion with $\sigma=1$ is called a *standard Brownian* motion process

In fact, we can show that, as a function of t, the path of B(t) is **continuous** w/ prob. 1.B(t)

Covariance Function of a Brownian Motion

since
$$Cov(X+Y, Z) = Cov(X,Z)+Cov(Y,Z)$$

For t > s

$$Cov[B(t), B(s)] = Cov[B(t) - B(s) + B(s), B(s)]$$

$$= Cov[B(t) - B(s), B(s)] + Cov[B(s), B(s)]$$

$$= 0 + Var[B(s)]$$
 (by indep. increment)
$$= \sigma^2 s$$

The function

$$C(s,t) = \operatorname{Cov}(B(t),B(s)) = \sigma^2 \min(s,t)$$

is called the covariance function of the Brownian motion process.

10.6 Gaussian Processes

Definition 10.2. A stochastic process $\{X(t), t \geq 0\}$ is called a *Gaussian process* if $X(t_1), \ldots, X(t_n)$ has a multivariate normal distribution for all t_1, \ldots, t_n .

Because a multivariate normal distribution is completely determined by the marginal mean values and the covariance values it follows that the properties of a Gaussian process is completely determined by its *mean function*

$$m(t) = \mathbb{E}[X(t)]$$

and covariance function

$$C(s,t) = \operatorname{Cov}(X(s),X(t)).$$

That is, two Gaussian processes are the same if

their mean functions and covariance functions are identical.

Brownian Motion as a Gaussian Process

Alternatively, a Brownian motion can be defined as a Gaussian process with mean function

ction
$$m(t) = \mathbb{E}[B(t)] = 0$$

and covariance function

$$C(s,t) = \operatorname{Cov}(B(s),B(t)) = \sigma^2 \min(s,t).$$

Properties of a Brownian Motion

Let $\{B(t), t \geq 0\}$ be a standard Brownian motion. One can prove each of the following processes below is also a standard Brownian motion by showing they are all Gaussian processes with the same mean function and covariance function as the standard Brownian motion.

(i)
$$\{-B(t), t \ge 0\}$$
 (ii) $\{B(t+s) - B(s), t \ge 0\}$ (iii) $\{aB(t/a^2), t \ge 0\}$ (iv) $\{tB(1/t), t \ge 0\}$

Properties of a Brownian Motion (Proofs)

We'll prove (iv) only. The proofs for the rest are similar. Clearly $\{tB(1/t), t \geq 0\}$ is a Gaussian process since it is a linear function of a Brownian motion process.

$$\mathbb{E}[tB(1/t)] = t\mathbb{E}[B(1/t)] = 0 \quad \text{since } B(1/t) \sim N(0, 1/t)$$

$$\operatorname{Cov}[tB(1/t), sB(1/s)] = ts\operatorname{Cov}[B(1/t), B(1/s)]$$

$$= ts\min\left(\frac{1}{t}, \frac{1}{s}\right) = \begin{cases} ts(1/t) = s & \text{if } t > s \\ ts(1/s) = t & \text{if } t \leq s \end{cases}$$

$$= \min(s, t)$$

As the Gaussian process $\{tB(1/t), t \ge 0\}$ has the same mean function and variance function as a standard Brownian motion, it is also a standard Brownian motion.

Conditional Distribution

Given B(t) = x, what is the conditional distribution of B(s)?

If t < s, since Brownian motion has independent increments, B(s) - B(t) is independent of B(t), and hence given B(t) = x, the condition distribution of B(s) - B(t) is the same as its unconditional distribution.

$$(B(s)|_{B(t)=x}) = B(t) + [B(s) - B(t)]$$

$$= x + \underbrace{B(s) - B(t)}_{\sim N(0, \sigma^2(s-t))}$$

$$\sim N(x, \sigma^2(s-t)).$$

What if s < t?

If we can find a scalar c such that Cov(B(s) - cB(t), B(t)) = 0, then

$$B(s) - cB(t)$$
 and $B(t)$ are independent.

Thus the conditional distribution of of B(s) - cB(t) given B(t) is the same as its unconditional distribution $N(0, \sigma^2(s - 2cs + c^2t))$. Given B(t) = x,

$$B(s) = c \underbrace{B(t)}_{\times} + \underbrace{B(s) - cB(t)}_{\sim N(0,\sigma^2(s-2cs+c^2t))} \sim N\left(cx, \sigma^2(s-2cs+c^2t)\right).$$

Because

$$\operatorname{Cov}(B(s) - cB(t), B(t)) = \operatorname{Cov}(B(s), B(t)) - \operatorname{Cov}(cB(t), B(t))$$
$$= \sigma^2 s - c\sigma^2 t = \sigma^2 (s - ct)$$

we know c = s/t. Thus the conditional distribution of B(s) given B(t) = x for s < t is

$$N\left(rac{sx}{t},\sigma^2rac{s(t-s)}{t}
ight)$$
 .
Lecture 22&23 - 11

Hitting Times (First Passage Times)

Let $T_a = \min\{t : B(t) = a\}$ be the first time the standard Brownian motion process hits a. For a > 0, consider

$$P(B(t) \ge a) = P(B(t) \ge a | T_a \le t) P(T_a \le t) + \underbrace{P(B(t) \ge a | T_a > t)}_{=0} P(T_a > t)$$

The 2nd term on the right is clearly 0, since by continuity, the process value cannot be > a without having yet hit a.

For the 1st term, note if $T_a \le t$, then the process hits a at some point in [0,t] and, by symmetry, it is just as likely to be above a or below a at time t. That is

$$P(B(t) \ge a | T_a \le t) = \frac{1}{2}$$

Thus $P(T_a \le t) = 2P(B(t) \ge a) = 2 - 2\Phi(a/\sqrt{t})$, where $\Phi(x)$ is the CDF of N(0,1).

HW: Show that $P(T_a < \infty) = 1$ and $\mathbb{E}[T_a] = \infty$ for a > 0. Lecture 22&23 - 12

Maximum

Another random variable of interest is

$$\max_{0 \le s \le t} B(s).$$

By continuity, we know

$$\max_{0 \le s \le t} B(s) \ge a \quad \Leftrightarrow \quad T_a \le t$$

Thus the distribution of for $\max_{0 \le s \le t} B(s)$ can be derived via T_a . For a > 0

$$P\left(\max_{0 \le s \le t} B(s) \ge a\right) = P(T_a \le t)$$

$$= 2P(B(t) \ge a) = P(|B(t)| \ge a)$$

$$= 2 - 2\Phi(a/\sqrt{t})$$

Note this means $\max_{0 \le s \le t} B(s)$ have the same distribution as |B(t)|.

Stopping Time & Strong Markov Property

For a continuous time stochastic process $\{X(t), t \geq 0\}$, a *stopping time T with respect to* $\{X(t), t \geq 0\}$ is a nonnegative random variable, such that the event $\{T \leq t\}$ depends only on $\{X(s), 0 \leq s \leq t\}$.

Example

The hitting time $T_a = \min\{t : B(t) = a\}$ is a stopping time since the event $\{T_a \le t\}$ is identical to the event $\{\max_{0 \le s \le t} B(s) \ge a\}$

Theorem (Strong Markov Property)

Let $\{B(t), t \ge 0\}$ be a standard Brownian Motion, and let T be a stopping time respective to $\{B(t), t \ge 0\}$. Then

- (a) Define Z(t) = B(t+T) B(T), $t \ge 0$. Then $\{Z(t), t \ge 0\}$ is also a standard Brownian Motion
- (b) For each t>0, $\{Z(s), 0\leq s\leq t\}$ is independent of $\{B(u), 0\leq u\leq T\}$

Reflection Principle

Let T_a be the first passage time to the value a of a standard Brownian Motion $\{B(t), t \geq 0\}$. Define a new process

$$\overline{B}(t) = egin{cases} B(t) & ext{for } t \leq T_a \ 2a - B(t) & ext{for } t > T_a \end{cases}$$

Then $\{\overline{B}(t), t \ge 0\}$ is also a standard Brownian Motion. *Reason:* For $t > T_a$, note

$$B(t) = a + B(t) - a = B(T_a) + B(t) - B(T_a).$$

- By Strong Markov Property,
- $B(s+T_a) B(T_a) = B(s+T_a) a$ is also a Brownian Motion, independent of $\{B(s), 0 \le s \le T_a\}$.
- Also note that if $\{B(t), t \ge 0\}$ is a standard Brownian motion, so is $\{-B(t), t \ge 0\}$. Hence $\{a B(s + T_a), s \ge 0\}$ is also a Brownian Motion.

So
$$\{B(t), t > T_a\} = \{a + B(t) - a, t > T_a\}$$

 $\sim \{a + a - B(t), t > T_a\} = \{2a - B(t), t > T_a\}.$
Lecture 22&23 - 15

Brownian Motion Absorbed at a Value

Let $\{B(t)\}$ be a Brownian Motion.

For a > 0, a Brownian Motion absorbed at a value a is defined as

$$B_a(t) = egin{cases} B(t) & ext{if } \max_{0 \le s \le t} B(s) < a \ a & ext{if } \max_{0 \le s \le t} B(s) \ge a \end{cases}$$

What is the distribution of $B_a(t)$? For x < a,

$$P(B_a(t) \le x) = P\left(B(t) \le x, \max_{0 \le s \le t} B(s) < a\right)$$

$$= P(B(t) \le x) - P\left(B(t) \le x, \max_{0 \le s \le t} B(s) \ge a\right)$$

$$= P(B(t) \le x) - P(B(t) \le x, T_a \le t)$$

where the last equality comes from the fact

$$\left\{\max_{0\leq s\leq t}B(s)\geq a\right\}\Leftrightarrow \{T_a\leq t\}.$$

Brownian Motion Absorbed at a Value

By the Reflection principle,

$$P(B(t) \le x, T_a \le t)$$

$$= P(B(t) \ge 2a - x, T_a \le t) = P(B(t) \ge 2a - x)$$

since $x \le a$, $B(t) \ge 2a - x > a$ implies $T_a \le t$.

In summary, the CDF of $B_a(t)$ is

$$P(B_a(t) \le x) = P(B(t) \le x, \max_{0 \le s \le t} B(s) < a)$$

$$= P(B(t) \le x) - P(B(t) \ge 2a - x)$$

$$= \Phi\left(\frac{x}{\sqrt{t}}\right) - 1 + \Phi\left(\frac{2a - x}{\sqrt{t}}\right)$$

More on Reflection Principle

Let $\{B(t), t \ge 0\}$ be a standard Brownian motion. Let's try to find the joint distribution of

$$W(t) = \max_{0 \le s \le t} B(s)$$
 and $Y(t) = W(t) - B(t)$

First consider $P(W(t) \ge w, B(t) \le x)$. By Reflection Principle,

$$P(W(t) \ge w, B(t) \le x) = P(B(t) \ge 2w - x) = 1 - \Phi\left(\frac{2w - x}{\sqrt{t}}\right)$$

Thus the joint density of W(t) and B(t) is

$$f(w,x) = -\frac{d}{dw} \frac{d}{dx} \left[1 - \Phi\left(\frac{2w - x}{\sqrt{t}}\right) \right] = -\frac{d}{dw} \left[\frac{1}{\sqrt{t}} \phi\left(\frac{2w - x}{\sqrt{t}}\right) \right]$$
$$= \frac{2w - x}{t} \frac{2}{\sqrt{t}} \phi\left(\frac{2w - x}{\sqrt{t}}\right) \qquad \text{(since } \phi'(x) = -x\phi(x)\text{)}$$
$$= \sqrt{\frac{2}{\pi t^3}} (2w - x) \exp\left(-\frac{(2w - x)^2}{2t}\right), \ w \ge 0, \ x \le w$$

Lecture 22&23 - 18

Thus the joint density of W(t) and B(t) is

$$f(w,x) = \sqrt{\frac{2}{\pi t^3}} (2w - x) \exp\left(-\frac{(2w - x)^2}{2t}\right), \ w \ge 0, \ x \le w$$

By a change of variable of W(t), Y(t) = W(t) - B(t), we can find the desired joint density of W(t), and Y(t)

$$g(w,y) = f(w, w - y)$$

$$= \sqrt{\frac{2}{\pi t^3}} (w + y) \exp\left(-\frac{(w + y)^2}{2t}\right), \ w \ge 0, \ y \ge 0$$

Note that the density is symmetric in w and y. Thus Y(t) has the same marginal distribution as W(t), which is also same as |B(t)|.