Module # 1.5

INTRODUCTION Process Control: Major Steps

Lectures on

CHEMICAL PROCESS CONTROL
Theory and Practice

Formulating a Control Problem

- Concretize an abstract idea into quantifiable metrics
 - User comfort = 'Right' temperature and humidity
- Clearly articulate desired state of output PVs
 - What PVs to control
 - Setpoints and acceptable deviation around setpoints
- Properly account for control dofs
 - Gets complicated for chemical processes
- One MV controls one CV
 - Controlled PV may shift from one to another PV
- Clearly prioritize control objectives
 - # of constraints >> # of MVs
 - Fixes what PVs are controlled and what PVs float

Solving the Control Problem

- Control a PV using an MV with 'strong' and 'predictable' response
 - Close-by pairing
- Use output PV feedback for control
- Prefer simplest control system that achieves the objectives
 - Simple is robust
 - Complex is fragile
 - Multiple SISO controllers with enhancements
- Control using PV feedback is simple and effective
- Good economics = Proper choice of CVs and setpoints
 - Active constraints
 - Invariants

Centralized vs Decentralized Control

CENTRALIZED CONTROL

DECENTRALIZED CONTROL

ENHANCED DECENTRALIZED CONTROL

Decentralized + local enhancements (feedforward, model based etc)

Process Control Notes

Enhanced Decentralized Control

- Formulation of Prioritized Control Objectives
 - What PVs to control
 - Degree-of-tightness of control (loose vs tight)
 - Prioritization
- Enhanced Decentralized Control System Design
 - Control structure design (CV-MV pairing)
 - Targeted enhancements to decentralized control structure
 - Individual controller design (algorithm and parameter tuning)
- Process understanding is the key to good control