第三章 微分中值定理与导数的应用

	一、	选择题	(每题3分,	共 18 分
--	----	-----	--------	--------

) .		取得极值的	$f(x)$ 在点 x_0)=0是	设 $f'(x_0)$	1
--	-----	--	-------	-----------------	------	-------------	---

A. 充分条件

B. 必要条件

C. 充分不必要条件

D. 即非充分又非必要条件

2、设
$$\lim_{x\to 1} \frac{f(x)-f(1)}{(x-1)^2} = 2$$
,则在 $x=1$ 处().

A. f(x) 的导数不存在 B. f(x) 的导数存在,且 $f'(1) \neq 0$

C. f(x) 取得极大值 D. f(x) 取得极小值

3、设 $f'(x_0)=f''(x_0)=0$, $f'''(x_0)>0$,则().

A. $f'(x_0)$ 是 f'(x) 的极大值 B. $f(x_0)$ 是 f(x) 的极大值

C. $f(x_0)$ 是 f(x) 的极小值 D. $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点

4、方程 $2^{x} - x^{2} = 1$ 的实根个数是 ().

A. 1

B. 2 C. 3

D. 4

5、 $x \rightarrow 0$ 时, $\ln(1+x)-x$ 是关于x的() 阶无穷小.

A. 1 B. 2 C. 3

D. 4

6、下列极限求解正确的是().

A.
$$\lim_{x \to \infty} \frac{x + \sin x}{x} \stackrel{\text{iff}}{=} \lim_{x \to \infty} \frac{1 + \cos x}{1} = 2$$

B.
$$\lim_{x\to 0} \frac{\tan x - x}{x^2 \sin x} = \lim_{x\to 0} \frac{\tan x - x}{x^3} = \lim_{x\to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x\to 0} \frac{\tan^2 x}{3x^2} = \lim_{x\to 0} \frac{x^2}{3x^2} = \frac{1}{3}$$

$$C. \quad \lim_{x \to \infty} \frac{e^x}{x} \stackrel{\text{in}}{=} \lim_{x \to \infty} \frac{e^x}{1} = \infty$$

D.
$$\lim_{x\to 0} \frac{\tan x - x}{\sin^3 x} = \lim_{x\to 0} \frac{x - x}{x^3} = 0$$

二、填空题(每题3分,共12分)

6、曲线弧 $y = \ln(x+1)$ 在点 (x, y) 处的曲率半径 R=

7、极限
$$\lim_{x\to\infty} \left[x-x^2\ln(1+\frac{1}{x})\right] =$$
______.

- 8、曲线 $y = e^{\arctan x}$ 的拐点 ______.
- 9、 $a = _____$ 时方程 $(x-a)^{\frac{2}{3}} = 2 + a$ 有唯一解.

三、解答题(10题6分;11-13题,每题10分,共36分)

- 10、求函数 $f(x) = \ln(2+x)$ 的带有佩亚诺余项的 n 阶麦克劳林公式.
- 11、求下列函数的极限

(1)
$$\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$$
, (2) $\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^3 \ln(1+x)}$.

- **12**、求函数 $y = (x-1)\sqrt[3]{x^2}$ 的单调区间与极值,并求此函数图像对应的凹凸区间以及曲线的拐点.
 - 13、求曲线 $y = \frac{1}{2}x^6(x > 0)$ 上哪一点处的法线在 Y 轴上的截距最小.

四、证明题(14-15题,每题8分;16-17题,每题9分,共34分)

- 14、设x > 0,证明 $(e + x)^e < e^{e + x}$.
- 15、证明恒等式 $\arcsin(2x-1)-2\arctan\sqrt{\frac{x}{1-x}} = -\frac{\pi}{2}$, 0 < x < 1.
- **16**、设函数 f(x) 在闭区间[0,1]上连续,在开区间(0,1)内可导,且 f(1)=0,

证明: 存在 $\xi \in (0,1)$, 使得 $f(\xi) + (1-e^{-\xi})f'(\xi) = 0$.

17、设函数 f(x) 在区间(a,b)内具有二阶导数,且 $f''(x) \le 0$,证明:对于(a,b)内的任意 x_1 、 x_2 及 $0 \le \lambda \le 1$,有

$$f\left[(1-\lambda)x_1+\lambda x_2\right] \ge (1-\lambda)f(x_1)+\lambda f(x_2).$$