Introduction to Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial intelligence (AI) algorithm that is most commonly used for analyzing visual imagery. It is inspired by the organization and functionality of the visual cortex in the human brain and is highly efficient for image recognition and classification tasks.

The Architecture of a CNN

Convolutional Layers and Their Purpose

2

Convolutional layers are responsible for extracting features from input images through the use of learnable filters that slide across the input and detect patterns and structures.

- Parameter Sharing
 By using shared weights,
 convolutional layers
 reduce the number of
 parameters, making it
 possible to apply the
 same feature detector
 across the entire input,
 improving efficiency.
- These layers help in creating a hierarchical representation of the input data, capturing high-level features by combining low-level features, enabling deeper insights into the data.

3

Convolution layer

1 _{×1}	1,0	1 _{×1}	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

Convolution for 1D array

Convolution for 3D array(RGB image)

Padding and stride

with padding = 1 and stride = 2

Padding and Stride

with padding = 1 and stride = 1

nn.Conv2d(in_channels=16, out_channels=33, kernerl=(3,3), stride=2, padding=1)

Shape:

- Input: $(N, C_{in}, H_{in}, W_{in})$
- ullet Output: $(N,C_{out},H_{out},W_{out})$ where

$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
floor$$

Filters/kernels in CNN

3x3

Size

The most common filter size used in CNNs is 3x3, which captures local dependencies within the input, aiding in feature extraction.

5x5

Diversity

Filters come in various sizes, such as 5x5, providing diversity in feature extraction, allowing for the detection of more complex patterns in the data.

7×7

Specialization

7x7 filters are used to capture larger patterns within the input, specializing in recognizing more global features and structures.

Feature map is the output of the convolution operation, and its dimension can be calculated with this operation

- An image matrix (volume) of dimension (h x w x d)
- A filter (fhx fwxd)
- Outputs a volume dimension (h f_h + 1) x (w f_w + 1) x 1

Applying convolution with different kernels

blur kernel

0,0625	0,125	0,0625
0,125	0,25	0,125
0,0625	0,125	0,0625

Outline kernel

Sharpen kernel

Pooling

Pooling layers reduce the spatial dimensions of the input, which helps in decreasing the computational load and maintaining the main features.

Max pooling

nn.MaxPool2d(2, stride=2)

- Input: (N,C_{in},H_{in},W_{in})
- ullet Output: $(N,C_{out},H_{out},W_{out})$ where

$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
floor$$

Average pooling

Pooling layer: Average pooling

Andrew Ng

nn.AvgPool2d(2, stride=2)

Shape:

- Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}) .
- ullet Output: (N,C,H_{out},W_{out}) or (C,H_{out},W_{out}) , where

$$H_{out} = \left \lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{kernel_size}[0]}{\mathrm{stride}[0]} + 1
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 imes ext{padding}[1] - ext{kernel_size}[1]}{ ext{stride}[1]} + 1
floor$$

Unpooling layer

Nearest neighbor

Input: 2 x 2 Output: 4 x 4

Figure 3. Illustration of Nearest-Neighbor, from [1, 7]

Bed of nails

Input: 2 x 2 Output: 4 x 4

Max unpooling

Max Pooling Max Unpooling Remember which element was max! Use positions from pooling layer Rest of the network Input: 2 x 2 Input: 4 x 4 Output: 2 x 2

nn.MaxUnpool2d(2, stride=2)

Shape:

- Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}) .
- ullet Output: (N,C,H_{out},W_{out}) or (C,H_{out},W_{out}) , where

$$H_{out} = (H_{in} - 1) \times \mathrm{stride}[0] - 2 \times \mathrm{padding}[0] + \mathrm{kernel_size}[0]$$

$$W_{out} = (W_{in} - 1) \times \operatorname{stride}[1] - 2 \times \operatorname{padding}[1] + \operatorname{kernel_size}[1]$$

Output: 4 x 4

Flatten

Hyperparameter/Layer type	What does it do?	
Input image(s)	Target images you'd like to discover patterns in	
Input layer	Takes in target images and preprocesses them for further layers	
Convolution layer	Extracts/learns the most important features from target imagaes	
Hidden activation	Adds non-linearity to learned features (non-straight lines)	
Pooling layer	Reduces the dimensionality of learned image features	
Fully connected layer	Further refines learned features from convolution layers	
Output layer	Takes learned features and outputs them in shape of target labels	
Output activation	Adds non-linearities to output layer	

Activation Functions Used in CNNs

Rectified Linear Unit (ReLU)

One of the most commonly used activation functions, ReLU effectively mitigates the vanishing gradient problem and speeds up training.

Sigmoid

Although less commonly used in CNNs, the sigmoid function is used in binary classification tasks as it squashes input to a range of 0 to 1.

Tanh

3

Tanh is another activation function that maps input to a range of -1 to 1, allowing for better training in deeper networks.

Example convolutional neural network

Example convolutional neural network

The features get more complex as we go deep in the network

Low level Features Mid level Features High level Features

Training a CNN

Data Preprocessing

Training data is preprocessed to standardize, normalize, and augment it to ensure the network trains on high-quality data.

Model Evaluation

Trained models need to be rigorously evaluated using metrics like accuracy, precision, recall, and F1 score to ensure their effectiveness.

Back-propagate

Feed Forward

Fully onnected

Output

ooling

Optimization Techniques

Various optimization techniques such as gradient descent, learning rate schedules, and momentum are applied to improve the training process.

3

Some CNN algorithms

Classification: VGG16

Object Detection:

Yolov3:

Segmentation

Unet

