Содержание

1 Множества 2

1 Множества

Построение множеств:

Определение. Множество - $\{x|A(x)\}$, где A(x) - некоторое свойство.

Определение. $A \subseteq B$, если все элементы A принадлежат множеству B

Определение. A = B, если множества A и B состоят из одинаковых элементов.

Определение. $P(A) = \{B | B \subseteq A\}$ - множество всех подмножеств.

Примеры. Парадокс Рассела: $R = \{x | x \notin x\}$ $R \in R$ и $R \notin R$.

Определение. $(a,b) := \{\{a\}, \{a,b\}\}$ - упорядоченная пара.

Определение. $A \times B := \{(a,b)| a \in A \land b \in B\}$ - декартого произведение множеств A и B.

Определение. $R \subseteq A \times A$ - бинарное отношение на множестве A.

Определение. 1. Рефлексивность: $\forall x \in A \ xRx$

- 2. Симметричность: $\forall x, y \in A \ (xRy \to yRx)$
- 3. Транзитивность: $\forall x, y, z \in A \ (xRy \land yRz \rightarrow xRz)$
- 4. Антисимметричность: $\forall x, y \in A \ (xRy \land yRx \rightarrow x = y)$

Определение. R - отношение частичного порядка, если оно рефлексивно, транзитивно и антисимметрично.

Определение. R - отношение эквивалентности, если оно рефлексивно, транзитивно и симметрично.

Определение. $R(x) := \{y | xRy\}$ - класс эквивалентности элемента x. $A/R := \{R(x) | x \in A\}$ - фактормножество.

Определение. Γ - разбиение множества A, если:

- 1. $\Gamma \subseteq P(A)$
- 2. $\forall B \in \Gamma \ B \neq \emptyset$
- 3. $\forall x \in A \exists ! B \in \Gamma : x \in B$

Теорема. A/R - разбиение. Если Γ - разбиение $A,\ mo\ \exists !\ R:\Gamma=A/R.$

Доказательство. 1. $A/R \subseteq P(A)$

- 2. $\forall B \in A/R \ B \neq \emptyset$, потому что $\forall x \in A \ xRx \Longrightarrow x \in R(x)$
- 3. $\forall x \in A \; \exists B \in A/R : x \in B$. Из-за транзитивности класс B единственный.

Определение. $f \subseteq A \times B$ - функция из множества A в множество в B, если $\forall x \in A \exists ! \ y \in B : (x,y) \in f$.

Если $\forall x, x' \in A \ (f(x) = f(x') \to x = x')$, то f - инъекция.

Если $\forall y \in B \; \exists \; x \in A : y = f(x)$, то f - сюръекция.

f - биекция $\iff f$ - инъекция и сюръекция.

Определение. Множества A и B равномощны, если существует биекция $f:A\longrightarrow B.$ Обозначение: $A\sim B.$

Утверждение. Ровномощность является отношением эквивалентности.

Доказательство. 1. $A \sim A$, так как f: f(x) = x - биекция

- 2. $A \sim B$, тогда \exists биекция $f: A \longrightarrow B \Longrightarrow f^{-1}$ биекция из B в A
- 3. Биекция из A в C композиция биекций

Определение. Множество A вложимо в B, если существует инъекция $f:A\longrightarrow B$.

Теорема. Данное отношение является отношением порядка.

Доказательство. 1. $A \leq A$ (так как существует биекция, то существует и инъекция)

- 2. $A \preceq B \land B \preceq C \to A \preceq C$, так как композиция инъекций является инъекцией
- 3. $A \preceq B \land B \preceq A \to A \sim B$ (Теорема Кантора Бернштейна)

Определим натуральные числа так:

$$0 = \emptyset$$

$$1 = \{0\}$$

:

 $n+1=n\cup\{n\}\ \omega=\{0,1,2,3,\ldots\}$ - множество натуральных чисел. Принцип индукции Пусть $X\subseteq\omega$, и пусть выполнены свойства:

- 1. $0 \in X$
- 2. $\forall n (n \in X \to (n+1) \in X)$

Тогда $X = \omega$.

Теорема. Всякое не пустое подмножество ω имеет наименьший элемент.

Доказательство. Пусть $\varnothing \neq A \subseteq \omega$ и в A нет наименьшего элемента, тогда

- 1. $0 \notin A$, иначе 0 наименьший элемент
- 2. $\{0,1,2,\ldots,n\}\cap A=\varnothing$, тогда $n+1\notin A$, иначе n+1 наименьший элемент

Следовательно, по принципу математической индукции $\{0,1,2,\dots,n\}\cap A=\varnothing$ $\forall n\Longrightarrow A=\varnothing$ - противоречие. \square

Определение. Множество называется конечным, если равномощно некоторому натуральному числу.

Лемма. Если $m \in n$, то $n \setminus \{m\} \sim (n-1)$

Доказательство. База индукции:

n = 0, доказывать нечего.

Пусть верно для n, докажем для n+1. Возьмём $m \in (n+1) = n \cup \{n\}$. Если m = n, то $(n+1) \setminus \{m\} = n$. Если $m \in n$, то применяем предположение индукции, что $n \setminus \{m\} \sim (n-1)$, то есть существует биекция между $n \setminus \{m\}$ и (n-1). Отобразим $n \to (n-1)$, тем самым продлив биекцию до $(n+1) \setminus \{m\} \to n$. \square

Теорема. (Принцип Дирихле) $\forall m, n \in \omega (m \sim n \rightarrow m = n)$.

Доказательство. $\Phi(n) := \forall m \{ m \sim n \to m = n \} \}$. База индукции: $n = 0 \Longrightarrow m \sim \varnothing \Longrightarrow m = \varnothing$. Пусть верно $\Phi(n)$, докажем $\Phi(n+1)$. Предположим $(n+1) \sim m$, тогда существует биекция $f : n \cup \{n\} \to m$. Пусть k = f(n), тогда $g : n \to m \setminus \{k\}$ - биекция $\Longrightarrow n \sim m \setminus \{k\}$. По лемме $m \setminus \{k\} \sim (m-1)$ \Longrightarrow по транзитивности $n \sim m-1$. По предположению индукции $n = m-1 \Longrightarrow n+1 = m$.

Определение. Для конечного множества x полагаем, что |x|=n, если $x\sim n$.

Определение. Для $m, n \in \omega$ $m < n := m \in n, m \leqslant n := m < n \lor m = n.$

Свойства. 1. $m < n \land n < k \rightarrow m < k (mранзитивность)$

2.
$$m \leq n \rightarrow m \subseteq n$$

3. $n \not< n(uppe \phi лексивность)$

4. $n < m \leftrightarrow n + 1 \leqslant m \ (\partial uckpemhocmb \ вверх)$

5.
$$n < m \lor m < n \lor m = n$$

Лемма. Если A конечно, то $A \cup \{x\}$ конечно.

Доказательство. Если $x\in A$, то $A\cup\{x\}=A$ конечно. Пусть $x\notin A,\ A\sim n,$ тогда $A\cup\{x\}\sim n+1$

Лемма. Если A конечно, то $\forall n \in \omega \ A \cup n$ конечно.

Доказательство. База индукции: $n=0,\ A\cup\varnothing=A$ конечно. Пусть $A\cup n$ конечно. Запишем $A\cup (n+1)=A\cup (n\cup\{n\})=(A\cup n)\cup\{n\}$ - конечное множество по предположению индукции и по предыдущей лемме, последний переход по транзитивности.

Лемма. Если множества A и B конечны и $A \cap B = \varnothing$, то $A \cup B$ конечно.

Доказательство. Так как B конечно, то $B \sim n \in \omega$, то есть существует биекция $f: B \to n \Longrightarrow$ существует биекция $g: A \cup B \to A \cup n$, тождественная на A и совпадает с f на B. По транзитивности и предыдущй лемме имеем, что $A \cup B$ конечно.

Теорема. Если множества A и B конечны, то $A \cup B$ конечно.

Доказательство. $A \cup B = (A \setminus B) \cup B$. Докажем, что $A \setminus B$ - конечное множество. $A \setminus B \subseteq A$ и докажем, что любое подмножество C конечного множества конечно. База индукции: |A| = 0, тогда |C| = 0. Пусть верно для |A| = n. Рассмотрим |A| = n + 1, если C = A, то C конечно. Пусть $C \subset A$, тогда $\exists a \in A$ и $a \notin C \Longrightarrow |A \setminus \{a\}| = n \Longrightarrow C \subseteq A \setminus \{a\} \Longrightarrow$ по предположению индукции C конечно. Значит, $A \setminus B$ конечно. По последней лемме $A \cup B$ конечно.

Теорема. Если множества A и B конечны, то $A \times B$ конечно.

Доказательство. База индукции: |B|=0, тогда

Определение. $m+n:=|A\cup B|$, где |A|=m, |B|=n, $A\cap B=\varnothing.$ $m\cdot n:=|A\times B|,$ где |A|=m, |B|=n. $B^A:=\{f|f$ - функция из A в B}. Лемма. $\forall n\in\omega$ $B^{n+1}\sim B^n\times B.$

Доказательство. Пусть $f: n \to B, b \in B$, тогда построим функцию $g: (n+1) \to B$, которая совпадает с f на множестве n и переводит n+1 в b. Она задаёт биекцию между $B^n \times B \to B^{n+1}$.

Лемма. Если множество B конечно, то $\forall n \in \omega$ B^n конечно.

Доказательство. По последней теореме и предыдущей лемме по индукции получаем данное утверждение.

Лемма. Если $A \sim C$, то $B^A \sim B^C$.

Доказательство. Пусть дана биекция $g:A\to C$. По функции $f:C\to B$ строим композицию $(f\cdot g):A\to B$. Это задаёт биекцию B^C на B^A .

Теорема. Если множества A и B конечны, то B^A конечно.

Доказательство. Из двух последних лемм получаем данное утверждение. \Box

Определение. $m^n := |B^A|$, где |B| = m, |A| = n.

Определение. Характеристической функцией для любого подмножества A множества X называется функция f такая, что $f(x) = \begin{cases} 1, \text{ если } x \in A \\ 0, \text{ если } x \notin A \end{cases} \ \forall x \in X$

Теорема. $2^A \sim P(A)$.

 \mathcal{A} оказательство. Между подмножествами множества A и их характеристическими функция существует биекция, а множество всех характеристических функций равно 2^A .

Теорема. Теорема Кнтора |A| < |P(A)|.

Доказательство. $A \leq P(A)$: инъекция $a \to \{a\}$. Предполодим, что $f: A \to P(A)$ - биекция, и рассмотрим $B = \{a | a \notin f(a)\}$.

Теорема. Даны множество $Y, y_0 \in Y$, функция $h: Y \to Y$. Тогда существует единственная функция $f: \omega \to Y$ такая, что

1. $f(0)y_0$

2. $\forall n \ f(n+1) = h(f(n))$

База индукции: $\{(0, y_0)\}$ единственная 0-функция.

Шаг индукции: если g - m-функция, то, добавив $\{(m+1,h(g(m)))\}$, получим m+1-функцию.

Объединив все m-функции, получим искомую ω -функцию f.

Определение. Множество A называется счётным, если $A \sim \omega$.

Теорема. 1. Если A конечно, B счётно, то $A \prec B$.

- 2. Если A счётно, $B\subseteq A$, то B конечно или счётно.
- 3. Если A счётно, B конечно или счётно, то $A \cup B$ счётно.
- 4. Если A счётно, B конечно или счётно, то $A \times B$ счётно.
- Доказательство. 1. По транзитивности $A \leq B$. Пусть $A \sim B$, тогда $\omega \sim n$ по транзитивности. Из того что $n+1 \subseteq \omega$ следует, что $n+1 \preceq n$, что противоречит принципу Дирихле.
 - 2. Пусть $A = \omega$, $B \subseteq A$ бесконечно. По рекурсии построим биекцию f: $\omega \to B$. Сначала построим функцию F такую, что $F(0) = \{min(B)\}$, $F(n+1) = F(n) \cup min(B \setminus F(n))$.
 - 3. Пусть A и B счётны и не пересекаются, тогда предъявим обход по элементам как было в курсе математического анализа в первом семестре.

4. $\omega \times \omega \sim \omega$: канторовская нумерация.

Определение. Множество бесконечно по Дедекинду (D-бесконечно), если оно равномощно какому-нибудь своему собственному подмножеству.

Теорема. 1. Конечное множество *D*-конечно.

- 2. Счётное множество D-бесконечно.
- 3. Если A счётно, $A \subseteq B$, то B D-бесконечно.
- 4. A D-бесконечно $\iff A$ содержит счётное подмножество.
- 5. Если A D-бесконечно, B конечно, то $A \cup B \sim A \setminus B \sim A$.

6. Если A D-бесконечно, B счётно, то $A \cup B \sim A$.

Доказательство. 1. По принципу Дирихле.

- 2. Пусть A счётно, тогда $\omega\subseteq A$ и $A\sim\omega\Longrightarrow$ по определению A D-бесконечно.
- 3. Построим отображение из B в A,
- 4. $\stackrel{}{\longleftarrow}$ По утверждению 3. $\stackrel{}{\Longrightarrow}$ Пусть $f:A\to B$ биекция, где $B\subset A$. Если $A\in A\setminus B$, то рассмотрим $\{f(a),f(f(a)),\ldots\}$. Таким образом получили искомое счётное множество.
- 5. Если $C \subseteq A$ счётное множество, $B \cap A = \emptyset$ и $B \sim n$, то строим биекцию из $A \cup B$ на A: сдвигаем все элементы C на n, а на освободившиеся места отображаем B. $A = (A \backslash B) \cup B$, тогда по утверждению $3 \ A \backslash B$ D-бесконечно, так как оно содержит счётное подмножество $C \backslash B$, а по уже доказанному в утверждении пункту получаем, что $A \sim A \backslash B$.
- 6. Если $C \subseteq A$ счётно, $B \cap A = \emptyset$ и $B \sim \omega$, то строим биекуию из $A \cup B$ на A: удваиваем номера всех элементов C, а на нечётные места отображаем B.

Теорема. Всякое бесконечное множество *D*-бесконечно.

Доказательство. Построим инъекцию между бесконечным множеством и ω , тогда по утверждению 4 данное множество D-бесконечно.

Определение. $c := 2^{\omega}$ - континуум.