INTG - Improper integrals with a parameter

September 20, 2023

What we learned last time ...

Theorem Dominated Convergence Theorem

Let f_n be piecewise continous functions on an interval I. Let

- $\lim f_n = f$ (pointwise) with f is piecewise continous
- ullet There exists ϕ an integrable function on I such that

$$\forall x \in I, |f_n(x)| \le \varphi(x)$$

Then $\int_I f_n(x) dx$ and $\int_I f(x) dx$ converge absolutely and

$$\lim \int_{I} f_{n}(x) dx = \int_{I} \lim f_{n}(x) dx = \int_{I} f(x) dx$$

There are many situations where we are intersted in integrating functions of two variables with respect to one of the variables

$$\int_{J} f(x,t) dt \quad \text{where} \quad f(x,t) : I \times J \to \mathbb{R}$$

There are many situations where we are intersted in integrating functions of two variables with respect to one of the variables

$$\int_{J} f(x,t)dt \quad \text{where} \quad f(x,t): I \times J \to \mathbb{R}$$

Example -

• Convolution product

$$f * g(x) = \int_{-\infty}^{+\infty} f(x-t)g(t)dt$$

There are many situations where we are intersted in integrating functions of two variables with respect to one of the varaibles

$$\int_{J} f(\mathbf{x}, t) dt \quad \text{where} \quad f(\mathbf{x}, t) : \mathbf{I} \times J \to \mathbb{R}$$

Example -

• Convolution product

$$f * g(x) = \int_{-\infty}^{+\infty} f(x-t)g(t)dt$$

Fourier transformation

$$\widehat{f}(\xi) = \int_{-\infty}^{+\infty} f(t) e^{-i\xi t} dt$$

Thus we are insterested in the function

 $F: I \to \mathbb{R}$ $x \mapsto \int_{J} f(x, t) dt$

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $\times \mapsto \int_{J} f(x, t) dt$

Question

But is F always a well defined function?

Conclusion

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_J f(x, t) dt$

Conclusion

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x, t) dt$

Conclusion

We need for each $x \in I$ the integral $\int_J f(x,t)dt$ to be converging

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_I f(x, t) dt$

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x, t) dt$

Properties we would like F to have -

• F to be continous

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x, t) dt$

Properties we would like F to have -

- F to be continous
- F to be C¹

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x, t) dt$

Properties we would like F to have -

- F to be continous
- *F* to be *C*¹
- F to be C^k

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x,t) dt$

Let's start with the continuity

Question

What conditions would be sufficient for F to be continuous?

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_I f(x, t) dt$

Let's start with the continuity

Conclusion

• The continouity of
$$x \mapsto f(x,t)$$
 is not sufficient

How it works ... : definition and continuity

Theorem

Let

$$f: I \times J \to \mathbb{R}$$
 $(x,t) \mapsto f(x,t)$
 $F: I \to \mathbb{R}$ $x \mapsto \int_{J} f(x,t) dt$

- $\forall x \in I$, $t \mapsto f(x,t)$ be **piecewise continuus** on J
- $\forall t \in J, x \mapsto f(x,t)$ be *continous* on I
- there exists a piecewise continuous function φ integrable on J such that

$$\forall (x,t) \in I \times J, \quad |f(x,t)| \leq \varphi(t).$$

Then the function *F* is **well** defined and **continuous**.

Example

Example

Let

$$F(x) = \int_0^{+\infty} \sin(xt) e^{-t^2} dt$$

Let we show that F is well defined and continuous on \mathbb{R} .

Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous and integrable on \mathbb{R} . We would like to define the *Fourier transform* of f as :

$$\widehat{f} = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Let we show that it is well definied and continuous on R.

Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous and integrable on \mathbb{R} . We would like to define the *Fourier transform* of f as :

$$\widehat{f} = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Let we show that it is well definied and continuous on R.

Let $g(x,t) = e^{-ixt} f(t)$ defined over $\mathbb{R} \times \mathbb{R}$.

Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous and integrable on \mathbb{R} . We would like to define the *Fourier transform* of f as :

$$\widehat{f} = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Let we show that it is well definied and continuous on R.

Let $g(x,t) = e^{-ixt} f(t)$ defined over $\mathbb{R} \times \mathbb{R}$.

1. $\forall x \in \mathbb{R}$ the function $t \mapsto e^{-ixt} f(t)$ is piecewise continuous over \mathbb{R} .

Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous and integrable on \mathbb{R} . We would like to define the *Fourier transform* of f as :

$$\widehat{f} = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Let we show that it is well definied and continuous on \mathbb{R} .

Let $g(x,t) = e^{-ixt} f(t)$ defined over $\mathbb{R} \times \mathbb{R}$.

- 1. $\forall x \in \mathbb{R}$ the function $t \mapsto e^{-ixt} f(t)$ is piecewise continuous over \mathbb{R} .
- 2. $\forall t \in \mathbb{R}$ the function $t \mapsto e^{-ixt} f(t)$ is continuous over \mathbb{R} .

Let $f: \mathbb{R} \to \mathbb{C}$ be piecewise continuous and integrable on \mathbb{R} . We would like to define the *Fourier transform* of f as :

$$\widehat{f} = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Let we show that it is well definied and continuous on \mathbb{R} .

Let $g(x,t) = e^{-ixt} f(t)$ defined over $\mathbb{R} \times \mathbb{R}$.

- 1. $\forall x \in \mathbb{R}$ the function $t \mapsto e^{-ixt} f(t)$ is piecewise continuous over \mathbb{R} .
- 2. $\forall t \in \mathbb{R}$ the function $t \mapsto e^{-ixt} f(t)$ is continuous over \mathbb{R} .
- 3. $\forall (x,t) \in \mathbb{R} \times \mathbb{R}$, |g(x,t)| = |f(t)| and f is integrable.

The continuity theorem thus implies that \widehat{f} is well defined and continuous.

Differentiation

Thus we are insterested in the function

$$F: I \to \mathbb{R}$$
 $x \mapsto \int_{J} f(x, t) dt$

Question -

What conditions would be sufficient for F to be C^{1} ?

How it works ...

Theorem (Leibniz)

$$f: I \times J \to \mathbb{R}$$
 $(x,t) \mapsto f(x,t)$
 $F: I \to \mathbb{R}$ $x \mapsto \int_{I} f(x,t) dt$

- $\forall x \in I$, $t \mapsto f(x,t)$ be piecewise continuous on J
- $\forall x \in I$, $\int_J f(x,t)$ converges
- $\forall t \in J, x \mapsto f(x,t) \text{ is } C^1 \text{ on } I$
- $\forall x \in I$, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ is piecewise continuous on J.
- there exists a piecewise continuous function φ integrable on J:

$$\forall (x,t) \in I \times J, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$$

Then the function F is C^1 on I and $F'(x) = \int_J \frac{\partial f}{\partial x}(x,t)dt$.

Laplace transform of a function

Example

Let f be continuous function on $[0, +\infty[$. We the **the Laplace transform** of f:

$$L(f)(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

Let $f(t) = \cos(\omega t)$ defined over $[0, +\infty[$

Let we show that L(f) is C^1 .

Generalization

Theorem (Here $n \in \mathbb{N} \cup \{+\infty\}$)

$$f: I \times J \to \mathbb{R}$$
 $(x,t) \mapsto f(x,t)$
 $F: I \to \mathbb{R}$ $x \mapsto \int_{I} f(x,t) dt$

- $\forall k \in [0, n]$, $\forall x \in I$, $t \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ be piecewise continuous on J
- $\forall k \in [0, n], \ \forall t \in J$, $x \mapsto \frac{\partial^k f}{\partial x^k}(x, t)$ be continous on I
- $\forall k \in [0, n]$, there exists a function φ_k integrable on J such that

$$\forall (x,t) \in I \times J, \quad \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leq \varphi_k(t).$$

Then the function F is C^k on I and $F^{(k)}(x) = \int_J \frac{\partial^k f}{\partial x^k}(x,t) dt$.

Laplace transform of a function

Example

Let f be continuous function on $[0, +\infty[$. We the **the Laplace transform** of f:

$$L(f)(x) = \int_0^{+\infty} e^{-xt} f(t) dt$$

Let $f(t) = \cos(\omega t)$ defined over $[0, +\infty[$

Let we show that L(f) is C^{∞} .

To be used in S5, S6 \dots : MASI, PBS1 , PBS2, ERO2 \dots

What we have learnd in this lecture course.

- Generalized integrals
- Dominated convergence theorem
- Integral with a parameter and properties of functions depending on the parameter.