Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Вычисление выборочных характеристик

По дисциплине «Теория вероятностей и Математическая статистика»

Выполнил Студент гр. 3630201/80101		М.Д. Маляренко
Руководитель к.фм.н., доцент		А.Н. Баженов
	«	» 2020r.

Содержание

1	Постановка задачи	4
2	Теория 2.1 Вариационный ряд	5 5 5 6
3	Реализация	7
4	Результаты	8
3 a	аключение	10
Сг	писок литературы	11
П	риложение А. Репозиторий с исхолным колом	12

Список таблиц

1	Характеристики выборок нормального распределения	8
2	Характеристики выборок распределения Лапласа	8
3	Характеристики выборок распределения Коши	8
4	Характеристики выборок распределения Пуассона	9
5	Характеристики выборок равномерного распределения	9

1 Постановка задачи

Заданы 5 распределений случайных величин:

- 1. Нормальное распределение N(x, 0, 1)
- 2. Распределение Коши C(x, 0, 1)
- 3. Распределение Лапласа $L(x, 0, 1/\sqrt{2})$
- 4. Дискретное распределение Пуассона P(k, 10)
- 5. Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$

Для каждого распределения необходимо сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки рассчитать числовые характеристики:

- 1. Выборочное среднее \overline{x}
- 2. Выборочная медиана med x
- 3. Полусумма экстремальных выборочных элементов z_R
- 4. Полусумма квартилей z_Q
- 5. Усечённое среднее z_{tr}

Произвести генерацию каждой выборки и вычисление характеристик 1000 раз. Найти среднее характеристик E(z), вычислить дисперсию D(z).

2 Теория

2.1 Вариационный ряд

Вариационным рядом называется последовательность не обязательно уникальных элементов выборки, расположенных порядке неубывания. [1]

Запись элементов вариационного ряда:

$$x_{(i)}, i = 1, \dots, n$$

2.2 Выборочные числовые характеристики

В данной лабораторной работе рассматриваются следующие числовые выборочные характеристики для вариационного ряда $x_{(1)}, \ldots, x_{(n)}$. [1]

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{(i)} \tag{1}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)}, & n = 2l+1\\ \frac{x_{(l)} + x_{(l+1)}}{2}, & n = 2l \end{cases}$$
 (2)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{3}$$

• *Полусумма квартилей* Выборочная квартиль:

$$z_p = egin{cases} x_{([np]+1)}, & np$$
 - целое $x_{(np)}, & np$ - дробное

Полусумма квартилей:

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{4}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+i}^{n-r} x_{(i)}, \qquad r \approx \frac{n}{4}$$
 (5)

2.3 Средее характеристик, дисперсия

Среднее характеристик рассчитывается как простое среднее арифметическое.

$$E(z) = \overline{z} \tag{6}$$

Рассеяние или дисперсия рассчитывается как разность среднеквадратичного значения вариационного ряда и квадрата выборочного среднего:

$$D(z) = \overline{x^2} - \overline{x}^2 \tag{7}$$

3 Реализация

Расчёты были реализованы в среде аналитических вычислений Maxima. Выборки сгенерированы встроенными функциями среды Maxima. Код скрипта представлен в репозитории на GitHub.

4 Результаты

По результатам вычисления выборочных числовых характеристик были сформированы таблицы 1-5 по количеству заданных распределений. Погрешность среднего значения характеристики выборки рассчитывалась как $\Delta_z = \sqrt{D(z)}$.

Нормальное распределение								
		$\overline{x}(1)$	$med \ x \ (2)$	$z_R(3)$	$z_Q(4)$	z_{tr} (5)		
N = 10	$E(z)$ (6) $\pm \Delta_z$	0.0 ± 0.4	0.0 ± 0.7	0.0 ± 0.8	0.0 ± 0.8	0.0 ± 0.5		
N = 10	D(z) (7)	0.102	0.489	0.509	0.498	0.179		
N = 100	$E(z) \pm \Delta_z$	0.00 ± 0.09	0.0 ± 0.7	0.0 ± 0.8	0.0 ± 0.7	0.0 ± 0.2		
	D(z)	0.01	0.494	0.518	0.497	0.020		
N = 1000	$E(z) \pm \Delta_z$	0.00 ± 0.04	0.0 ± 0.7	0.0 ± 0.7	0.0 ± 0.7	0.0 ± 0.05		
IV = 1000	D(z)	0.001	0.528	0.501	0.520	0.002		

Таблица 1: Характеристики выборок нормального распределения

Распределение Лапласа								
\overline{x} $med \ x$ z_R z_Q z_{tr}								
N = 10	$E(z) \pm \Delta_z$	0.0 ± 0.3	0.0 ± 0.5	0.0 ± 0.4	0.0 ± 0.4	0.0 ± 0.1		
IV = 10	D(z)	0.093	0.512	0.428	0.479	0.116		
N = 100	$E(z) \pm \Delta_z$	0.0 ± 0.1	0.0 ± 0.8	0.0 ± 0.8	0.0 ± 0.8	0.0 ± 0.2		
	D(z)	0.01	0.494	0.518	0.497	0.020		
N = 1000	$E(z) \pm \Delta_z$	0.00 ± 0.04	0.0 ± 0.7	0.0 ± 0.8	0.0 ± 0.7	0.00 ± 0.05		
	D(z)	0.001	0.492	0.521	0.485	0.002		

Таблица 2: Характеристики выборок распределения Лапласа

Распределение Коши									
	$\overline{x} \mod x \qquad z_R \qquad z_Q \qquad z_{tr}$								
N = 10	$E(z) \pm \Delta_z$	0 ± 16	0 ± 48	0 ± 33	0 ± 14	0 ± 23			
N = 10	D(z)	260	2342	1063	194	558			
N = 100	$E(z) \pm \Delta_z$	0 ± 12	-1 ± 22	1 ± 12	-2 ± 105	1 ± 23			
N = 100	D(z)	142	499	137	11084	492			
N = 1000	$E(z) \pm \Delta_z$	0 ± 16	0 ± 34	0 ± 21	2 ± 64	0 ± 26			
1v = 1000	D(z)	259	1170	461	4212	694			

Таблица 3: Характеристики выборок распределения Коши

Распределение Пуассона								
		\overline{x}	med x	z_R	z_Q	z_{tr}		
N = 10	$E(z) \pm \Delta_z$	10 ± 1	10 ± 2	10 ± 2	10 ± 2	10 ± 1		
IV = 10	D(z)	1.1	4.8	5.1	4.7	1.6		
N = 100	$E(z) \pm \Delta_z$	10.0 ± 0.3	9.9 ± 2.3	10.0 ± 2.4	10.0 ± 2.2	10.0 ± 0.5		
	D(z)	0.092	5.151	4.989	4.910	0.199		
N = 1000	$E(z) \pm \Delta_z$	10.00 ± 0.09	9.8 ± 2.3	10.0 ± 2.2	10.0 ± 2.2	10.00 ± 0.15		
	D(z)	0.0098	5.1100	4.8222	4.7592	0.0211		

Таблица 4: Характеристики выборок распределения Пуассона

Равномерное распределение								
	$\overline{x} \hspace{0.5cm} med \hspace{0.1cm} x \hspace{0.5cm} z_R \hspace{0.5cm} z_Q \hspace{0.5cm} z_{tr}$							
N = 10	$E(z) \pm \Delta_z$	0.0 ± 0.3	0.0 ± 0.7	0.0 ± 0.8	0.0 ± 0.8	0.0 ± 0.4		
IV = 10	D(z)	0.091	0.477	0.509	0.506	0.150		
N = 100	$E(z) \pm \Delta_z$	0.0 ± 0.1	0.0 ± 0.8	0.0 ± 0.8	0.0 ± 0.7	0.0 ± 0.2		
	D(z)	0.103	0.727	0.713	0.701	0.146		
N = 1000	$E(z) \pm \Delta_z$	0.00 ± 0.04	0.0 ± 0.7	0.0 ± 0.7	0.0 ± 0.7	0.00 ± 0.05		
	D(z)	0.001	0.500	0.496	0.489	0.002		

Таблица 5: Характеристики выборок равномерного распределения

Заключение

В результате лабораторной работы были сгенерированы выборки размером 10, 100, 1000 элементов по заданным распределений и оценены их числовые характеристики. Работа велась в среде аналитических вычислений Maxima.

Из всех рассмотренных распределений самую большую дисперсию (на 3-4 порядка относительно других) имеет распределение Коши в связи с мощными выбросами.

Можно сделать вывод, что для данных распределений, чем больше мощность выборки, тем ближе значение медианы к своему теоретическому значению и значение выборочного среднего ближе к теоретическому матожиданию.

Список литературы

[1] Теоретическое приложение к лабораторным работам №1-4 по дисциплине «Математическая статистика». – СПб.: СПбПУ, 2020. – 12 с

Приложение А. Репозиторий с исходным кодом

Исходный код скрипта для среды аналитических вычислений Maxima находится в репозитории GitHub-URL https://github.com/malyarenko-md/TeorVer