04/03

Convexidade

A referência para essa parte é "Convex Analysis" do T. Rockafellar.

Variedade afim

No que se segue, V, será sempre um espaço vetorial real de dimensão finita.

Definição 1 Se x e y são vetores distintos de V, a reta que passa por x e y é $L = \{rx + (1 - r)y : r \in \mathbb{R}\}.$

Definição 2 O conjunto $M \subset V$ é variedade afim se $(1-r)x + ry \in M$ sempre que $x, y \in M, r \in \mathbb{R}$.

Em outras palavras M é variedade afim se contém toda reta que passa por cada par de pontos distintos de M.

Lema 1 Se M é afim então se $x_i \in M, 1 \le i \le n$ e $\sum_{i=1}^n \lambda_i = 1$ então $\sum_{i=1}^n \lambda_i x_i \in M$.

Demonstração: Para n=2 a conclusão vale pela definição de variedade afim. Suponhamos agora que $\sum_{i=1}^{n+1} \lambda_i = 1$ e $x_i \in M, i \leq n+1$. Sem perda de generalidade, $\lambda_{n+1} \neq 1$. Então $\sum_{i=1}^{n} \lambda_i = 1 - \lambda_{n+1} \neq 0$ e $\frac{1}{\sum_{i=1}^{n} \lambda_i} \sum_{i=1}^{n} \lambda_i x_i = \sum_{i=1}^{n} \frac{\lambda_i}{\sum_{i=1}^{n} \lambda_i} x_i \in M$ pela hipótese de indução. Então

$$\sum_{i=1}^{n+1} \lambda_i x_i = (1 - \lambda_{n+1}) \sum_{i=1}^n \frac{\lambda_i}{\sum_{i=1}^n \lambda_i} x_i + \lambda_{n+1} x_{n+1} \in M.$$

Comentário 1 O conjunto vazio e o espaço vetorial V são variedades afins. Se $M = \{m\}$ então M é afim.

Exemplo 1 Todo subespaço vetorial de V é uma variedade afim de V.

Teorema 1 Toda variedade afim é a translação de um subespaço vetorial.

Demonstração: Seja F subespaço vetorial de V. Então a+F é variedade afim: se $x,y\in a+F$ e r é real, temos $(1-r)\,x+ry=(1-r)\,(a+f)+r\,(a+g)=a+(1-r)\,f+rg\in a+F$. Recíprocamente, suponhamos M variedade afim de V. Seja $a\in M$ e definamos F=M-a. Vamos verificar que F é um subespaço vetorial. Sejam $x,y\in F$.

Então $\lambda x + a = \lambda (x + a) + (1 - \lambda) a \in M$ implica $\lambda x \in F$ para todo real λ . Agora $\frac{1}{2}(x + a) + \frac{1}{2}(y + a) = \frac{x + y}{2} + a \in M$ e então $\frac{x + y}{2} \in F$ e então $x + y = 2\frac{x + y}{2} \in F$. Portanto F é subespaço vetorial.

Comentário 2 O espaço vetorial associado à variedade afim M é M-M.

Para verificar isso note que a+F=M. Então F=F-F=(a+F)-(a+F)=M-M.

Comentário 3 A intersercção de variedades afins é uma variedade afim. Assim para $S \subset V$ exist aff S a menor variedade afim que contém S.

Lema 2 aff
$$S = \{\sum_{i=1}^{m} \lambda_i x_i : m \ge 1, \sum_{i=1}^{m} \lambda_i = 1, x_i \in S\}.$$

Demonstração: Seja $M = \{\sum_{i=1}^m \lambda_i x_i : m \ge 1, \sum_{i=1}^m \lambda_i = 1, x_i \in S\}$. Então $M \supset S$. Sejam $x, y \in M$, r real. Então

$$rx + (1 - r)y = r\left(\sum_{i=1}^{m} \lambda_i x_i\right) + (1 - r)\left(\sum_{k=1}^{p} \mu_k x_k'\right), \sum_{i=1}^{m} \lambda_i = 1 = \sum_{k=1}^{p} \mu_k, x_i, x_i' \in S.$$

Logo $rx + (1 - r)y = \sum_i r\lambda_i x_i + \sum_k (1 - r)\mu_k x_k' \in M$ pois a soma dos coeficientes é 1. Com isso obtemos $M \supset \text{aff } S$. Por outro lado aff $S \supset M$ terminando a demonstração.

Definição 3 A dimensão de uma variedade afim M é a dimensão do subespaço vetorial associado, L(M) = M - M.

Definição 4 Os vetores b_0, \ldots, b_m são afim independentes se $b_1 - b_0, \ldots, b_m - b_0$ são linearmente independentes.

Nesse caso con $\{b_0, \ldots, b_m\}$ é, por definição, um simplexo de dimensão m. E cada b_i é vértice do simplexo. O ponto $\frac{1}{m+1}(b_0+b_1+\ldots+b_m)$ é o baricentro do simplexo.

Definição 5 Um hiperplano no \mathbb{R}^n é uma variedade afim de dimensão n-1.

Teorema 2 Para β real e $b \in \mathbb{R}^n \setminus \{0\}$, $H = \{x \in \mathbb{R}^n : \langle x, b \rangle = \beta\}$ \acute{e} um hiperplano. Além disso todo hiperplano do \mathbb{R}^n possui uma tal representação com b, β únicos a menos de um múltiplo em comum.

Demonstração: Seja H um hiperplano no \mathbb{R}^n . Seja F = H - H o subespaço vetorial associado. Se $\{b_1, \ldots, b_{n-1}\}$ é uma base ortogonal de F e completando temos $\{b_1, \ldots, b_n\}$ base ortogonal do \mathbb{R}^n . É claro que $F = \{x : \langle x, b_n \rangle = 0\}$. Agora se H = a + F e $\beta = \langle a, b_n \rangle$ temos se $b := b_n$

$$H = \{x \in \mathbb{R}^n : \langle x, b \rangle = \beta\}. \tag{*}$$

Recíprocamente se H está definido por (*), $b \neq 0$ seja $a \in \mathbb{R}^n$ tal que $\langle a, b \rangle = \beta$. Então se $\langle x, b \rangle = \beta = \langle a, b \rangle$ temos $x - a \perp b$. O subespaço $F = b^{\perp}$ tem dimensão n-1. Suponhamos $H = \{x : \langle x, b' \rangle = \beta'\}$ outra representação do hiperplano H. Mas então com F é ortogonal à b' temos $b' \in [b]$ ou seja $b' = \mu b$, $\mu \neq 0$. E $\langle x, b' \rangle = \mu \langle x, b \rangle = \mu \beta = \beta'$.

Comentário 4 b é uma normal ao hiperplano H.

Teorema 3 Seja B matriz $m \times n$ e $b \in \mathbb{R}^m$. Então $M = \{x \in \mathbb{R}^n : Bx = b\}$ é variedade afim. Além disso toda variedade afim é dessa forma.

Demonstração: Sejam $x, y \in M$, r real. B(rx + (1 - r)y) = rBx + (1 - r)By = rb + (1 - r)b = b. Por outro lado se M é afim própria seja L = M - M. Seja $\{b_1, \ldots, b_m\}$ base de L^{\perp} . Então

$$L = (L^{\perp})^{\perp} = \{x : x \perp b_i, i \leq m\} = \{x : \langle x, b_i \rangle = 0, i \leq m\} = \{x : Bx = 0\}.$$

Sendo B matriz $m \times n$ com linhas b_1, \ldots, b_m . Se $M = L + a = \{x : B(x - a) = 0\} = \{x : Bx = b\}$ sendo b = Ba.

Corolário 1 Toda variedade afim de V é a intersecção de uma família finita de hiperplanos.

Definição 6 O conjunto $C \subset V$ é convexo se para todos c', c'' em C e 0 < r < 1, $rc' + (1 - r)c'' \in C$.

Todo subespaço vetorial é convexo e toda variedade afim é convexa. Se $f \in V^* \setminus \{0\}$ então

$$\begin{aligned} &\{x \in V: f\left(x\right) = \gamma\} \text{, hiperplano} \\ &\{x \in V: f\left(x\right) < \gamma\} \text{, semi-espaço aberto} \\ &\{x \in V: f\left(x\right) > \gamma\} \text{, semi-espaço aberto} \\ &\{x \in V: f\left(x\right) \leq \gamma\} \text{ semi-espaço fechado} \\ &\{x \in V: f\left(x\right) \geq \gamma\} \text{, semi-espaço fechado} \end{aligned}$$

são convexos.

Comentário 5 Note que as noções acima de aberto, fechado se referem ao aspecto geométrico e ao topológico pois f é um funcional linear contínuo.

Lema 3 A intersecção de convexos é um convexo.

Demonstração: Seja $C = \bigcap_{i \in I} C_i$, cada C_i convexo de V. Se $x, y \in C$ e $r \in (0, 1)$, de $x, y \in C_i$ vem $rx + (1 - r)y \in C_i$ para todo i e logo $rx + (1 - r)y \in C$.

Comentário 6 O conjunto de soluções de um sistema de igualdades/desigualdades lineares é um conjunto convexo.

Definição 7 Um convexo poliédrico é a intersecção finita de semi-espaços fechados do espaço V.

Definição 8 Um politopo é a envoltória convexa de um conjunto finito de pontos.

Definição 9 A dimensão de um conjunto convexo C é a dimensão da variedade afim gerada por C.

Se x_1, \ldots, x_p são vetores e $r_i \geq 0, \sum_{i=1}^p r_i = 1$ então $\sum_{i=1}^p r_i x_i$ é uma combinação convexa de x_1, \ldots, x_p . Os conjuntos convexos, por definição, são fechados por combinações convexas de dois elementos (p = 2).

Lema 4 Suponha C convexo e $x_1, \ldots, x_p \in C$. Então a combinação convexa $\sum_{i=1}^p r_i x_i \in C$.

Demonstração: Seja C convexo. Para p=2 o resultado acima vale por definição. Se valer para $p\geq 2$. Suponhamos $x_1,\ldots,x_p,x_{p+1}\in C$ e $r_i\geq 0,\sum_{i=1}^{p+1}r_i=1$. Seja $x=\sum_{i=1}^{p+1}r_ix_i$ uma combinação convexa com p+1 termos. Note que pela hipótese de indução, $y=\frac{1}{\sum_{i=1}^p r_i}\sum_{i=1}^p r_ix_i\in C$. Mas então

$$x = \left(\sum_{i=1}^{p} r_i\right) y + \left(1 - \sum_{i=1}^{p} r_i\right) x_{p+1} = \sum_{i=1}^{p+1} r_i x_i \in C.$$

Portanto o resultado vale para p+1 terminando a indução e a demonstração.

Definição 10 Se $S \subset V$, a envoltória convexa de S, con S, é a intersecção dos subconjuntos convexos de V que contém S.

Comentário 7 Temos

$$con S = \left\{ \sum_{i=1}^{p} r_i s_i : p \ge 1, r_i \ge 0, s_i \in S, \sum_{i=1}^{p} r_i = 1 \right\}.$$

Exemplo 2 Suponhamos $S := \{b_1, \ldots, b_p\} \subset V$. Então

$$\operatorname{con} S = \left\{ \sum_{i=1}^{p} \lambda_i b_i : \lambda_i \ge 0, \sum_{i=1}^{p} \lambda_i = 1 \right\}.$$

Com efeito as combinações com mais de p elementos facilmente se reduz a uma combinação com p elementos: basta somar os coeficientes de cada b_i repetido.

Teorema 4 (Carathéodory) Seja $S \subset \mathbb{R}^n$. Então

$$con S = \left\{ \sum_{i=1}^{n+1} r_i s_i : s_i \in S, r_i \ge 0, \sum_i r_i = 1 \right\}.$$

Demonstração: Seja $x = \sum_{i=1}^{m} r_i s_i$ sendo m > n+1, uma combinação convexa, $s_i \in S$. Temos $s_2 - s_1, \dots, s_m - s_1$ linearmente dependentes pois m-1 > n. Então

$$\lambda_1 (s_1 - s_m) + \ldots + \lambda_{m-1} (s_{m-1} - s_m) = 0, \exists i \le m - 1, \lambda_i \ne 0.$$

Seja $\lambda_m = -\sum_{j=1}^{m-1} \lambda_j$. Então $\lambda_1 s_1 + \ldots + \lambda_{m-1} s_{m-1} + \lambda_m s_m = 0$ e $\sum_{i=1}^m \lambda_m = 0$. Note que pelo menos algum $\lambda_i > 0$. Seja $t \ge 0$ e note que

$$x = \sum_{i=1}^{m} r_i s_i - t \sum_{i=1}^{m} \lambda_i s_i = \sum_{i=1}^{m} (r_i - t \lambda_i) s_i.$$

Agora t deve ser tal que $r_i - t\lambda_i \ge 0$ para todo i. Seja $t = \min\left\{\frac{r_i}{\lambda_i}: \lambda_i > 0\right\}$. Temos que $\sum_{i=1}^m (r_i - t\lambda_i) = \sum_i r_i - t\sum_i \lambda_i = 1$. Finalmente para i tal que $t = \frac{r_i}{\lambda_i}$ temos $r_i - t\lambda_i = 0$.

Logo escrevemos x como uma combinação linear de no máximo m-1 termos. Esse processo pode ser repetido até m alcançar n+1 e termina aí.

Corolário 2 Se $K \subset V$ for compacto $e \dim V < \infty$ então con K é compacto.

Demonstração: Seja $n=\dim V$. Seja $\Delta=\left\{\lambda\in[0,1]^{n+1}:\sum_{i=1}^{n+1}\lambda_i=1\right\}$. A função $f:\Delta\times K^{n+1}\to V$,

$$(\lambda_1,\ldots,\lambda_{n+1},k_1,\ldots,k_{n+1}) \to \sum_{i=1}^{n+1} \lambda_i k_i$$

é contínua. Portanto tem imagem compacta. Pelo teorema de Carathéodory $f(\Delta \times K^{n+1}) = \cos K$. Logo $\cos K$ é compacto.

06/03

Teorema 5 O fecho de um conjunto convexo é convexo.

Demonstração: Seja $S \subset V$ convexo no espaço normado V. Sejam $x, y \in \overline{S}$ e 0 < r < 1. Existem seqüências $x_n \in S$, $y_n \in S$ e $\lim_n x_n = x$, $\lim_n y_n = y$. Então $rx_n + (1-r)y_n \in S$ e converge para rx + (1-r)y. Portanto $rx + (1-r)y \in \overline{S}$.

Teorema 6 A soma vetorial de convexos é convexa.

Demonstração: Se C_1 e C_2 são convexos, $C_1 + C_2$ é convexo pois $x = c_1 + c_2$ e $y = c'_1 + c'_2$ então

$$rx + (1 - r)y = rc_1 + (1 - r)c'_1 + rc_2 + (1 - r)c'_2 \in C_1 + C_2.$$

Lema 5 Se C for convexo e $r_1, r_2 \ge 0$ então $(r_1 + r_2) C = r_1 C + r_2 C$.

Demonstração: É imediato que $(r_1 + r_2) C \subset r_1 C + r_2 C$. Seja agora $y = r_1 c_1 + r_2 c_2$, $c_1, c_2 \in C$, Então $\frac{y}{r_1 + r_2} = \frac{r_1}{r_1 + r_2} c_1 + \frac{r_2}{r_1 + r_2} c_2 \in C$. Logo $y \in (r_1 + r_2) C$.

Definição 11 Para C convexo,

- i) $L = \bigcup_{n=1}^{\infty} n(C-C) = \bigcup_{r>0} r(C-C)$ é um espaço vetorial.
- ii) aff $C = x_0 + L$ para $x^0 \in C$.

Demonstração: (i) Seja z = r(c - c'), r > 0, c, c' em C. Para n > r,

$$\frac{r}{n}\left(c-c'\right) = \left(\frac{r}{n}c + \left(1-\frac{r}{n}\right)c\right) - \left(\frac{r}{n}c' + \left(1-\frac{r}{n}\right)c\right) \in C - C \implies z \in n\left(C-C\right).$$

Portanto $\bigcup_{r\geq 0} r\left(C-C\right) = \bigcup_{n=1}^{\infty} n\left(C-C\right)$. Seja $x\in L$. Então $-x\in L$ pela simetria de C-C. Portanto para verificarmos que L é fechado por produto por escalar λ podemos supor $\lambda>0$. Mas então $\lambda x\in \bigcup_{r\geq 0} \lambda r\left(C-C\right)=\bigcup_{r\geq 0} r\left(C-C\right)=L$. Sejam $x,y\in L$ e r real. Temos $x=n\left(c-c'\right),y=m\left(c''-c'''\right)$ sendo $c,c',c'',c'''\in C$. Então

$$x + y = nc + mc'' - (nc' + mc''') = (n + m)(c'''' - c''''') \in L.$$

(ii) Se $c \in C$ temos $c = x^0 + (c - x^0) \in x^0 + L$. Portanto $C \subset x^0 + L$ e então aff $C \subset x^0 + L$. Seja $H + x^0 =$ aff C. Agora se $c, c' \in C$, $c - c' \in H$ e logo $L \subset H$. Portanto L = H.

Interior relativo de um convexo¹

Um intervalo na reta tem interior não-vazio mas no plano o interior é vazio. Uma propriedade importante dos convexos de dimensão finita, é que sempre tem interior relativo não-vazio. Seja $B = \{x \in \mathbb{R}^n : |x| < 1\}$.

Definição 12 O interior relativo do convexo C, denotado ri C, é o interior de C como subespaço topológico de aff C: $z \in \text{ri } C$ se existir r > 0 tal que $(z + rB) \cap$ aff $C \subset C$.

¹Ou tudo que você sempre quis saber sobre o interior relativo e não teve coragem de perguntar.

Definição 13 A fronteira relativa de $C \notin \overline{C} \setminus ri C$.

Exemplo 3 Seja $S = \{(x, y) \ge 0 : x + y \le 1\}$. Então se $L = [0, 1] \times \{0\}$ temos ri $L = \{(x, 0) : 0 < x < 1\}$. E L(S) = "o plano" e ri $S = \{(x, y) >> 0, x + y < 1\}$.

Lema 6 Seja $\{v_1, \ldots, v_n\}$ base de V. Então $T: V \to \mathbb{R}^n$ tal que

$$T(z) = (\lambda_1, \dots, \lambda_n), z = \lambda_1 v_1 + \dots + \lambda_n v_n$$

é contínua e tem inversa contínua.

Demonstração: Seja $\phi(\lambda) = \sum_{i=1}^{n} \lambda_i v_i$. Note que $\phi(\lambda) = 0 \iff \lambda = 0$. É imediato que $\phi = T^{-1}$ e é contínua. Seja

$$\delta = \min \left\{ \left| \sum_{i=1}^{n} \lambda_i v_i \right| : |\lambda|_1 = 1 \right\}, |\lambda|_1 := \sum_{i=1}^{n} |\lambda_i|.$$

Pela compacidade de $\{\lambda \in \mathbb{R}^n : \sum_i |\lambda_i| = 1\}$ o mínimo existe e $\delta > 0$. Portanto se $\lambda \neq 0, \left|\frac{\lambda}{|\lambda|_1}\right|_1 = 1$ e

$$\left|\phi\left(\frac{\lambda}{|\lambda|_1}\right)\right| \ge \delta \implies |\phi(\lambda)| \ge \delta |\lambda|_1.$$

Seja $z \in V$ e $\lambda = T(z)$. Então $|z| = |\phi(\lambda)| \ge \delta |\lambda|_1 = \delta |T(z)|$. Demonstrando a continuidade de T.

Teorema 7 Seja $S = \operatorname{con} \{b_0, b_1, \dots, b_n\}$ um simplexo de dimensão n. Então $\operatorname{ri} S \neq \emptyset$.

Demonstração: Seja $L = L(S) = [b_1 - b_0, \dots, b_n - b_0]$. Definamos $v_i = b_i - b_0$ e $b^* = \frac{1}{n+1} \sum_{i=0}^n b_i$ o baricentro do simplexo. Para $z = \sum_{i=1}^n \lambda_i v_i$,

$$b^* + z = \frac{1}{n+1} \sum_{i=0}^n b_i + \sum_{i=1}^n \lambda_i (b_i - b_0) = \left(\frac{1}{n+1} - \sum_{i=1}^n \lambda_i\right) b_0 + \sum_{i=1}^n \left(\frac{1}{n+1} + \lambda_i\right) b_i.$$

se

$$\frac{1}{n+1} + \lambda_i \ge 0, 1 \le i \le n;$$

$$\frac{1}{n+1} - \sum_{i=1}^{n} \lambda_i \ge 0,$$
(*)

temos $b^* + z \in S$ pois $\frac{n}{n+1} + \sum_{i=1}^n \lambda_i + \frac{1}{n+1} - \sum_{i=1}^n \lambda_i = 1$. O conjunto

$$\Delta = \left\{ \lambda \in \mathbb{R}_{++}^n : \frac{1}{n+1} - \sum_{i=1}^n \lambda_i > 0 \right\}$$

é aberto e então $b^* \in \operatorname{ri} S$ pois $T^{-1}(\Delta)$ é aberto tal que $(b^* + T^{-1}(\Delta)) \cap \operatorname{aff} S \subset S$.

Teorema 8 Seja $C \subset \mathbb{R}^n$ convexo não-vazio. Então ri $C \neq \emptyset$.

Demonstração: Seja $S = \operatorname{con} \{b_0, b_1, \dots, b_m\}$ um simplexo de C com a dimensão m maior possível. Pelo teorema anterior ri $S \neq \emptyset$. Se $C \setminus \operatorname{aff} S$ for não vazio então existe $b_{m+1} \in C$ com $b_{m+1} - b_0 \notin L(S)$. Contradição com a escolha de m. Logo aff $C \subset \operatorname{aff} S$ e então vale a igualdade. Mas então ri $C \neq \emptyset$ pois $S \subset C$ e aff $S = \operatorname{aff} C$.

Teorema 9 Seja C convexo no \mathbb{R}^n . Se $x \in \text{ri } C$ e $y \in \overline{C}$ então se $0 \le r < 1$, $(1-r)x + ry \in \text{ri } C \subset C$.

Demonstração: Vou fazer somente o caso $L(C) = \mathbb{R}^n$. Nesse caso temos $x \in \text{int } C$. Seja $\delta > 0$ tal que $x + \delta B \subset C$. Seja 0 < r < 1. Para $\epsilon > 0$,

$$(1-r) x + ry + \epsilon B \subset (1-r) x + r (C + \epsilon B) =$$

$$(1-r) [x + \epsilon (1+r) (1-r)^{-1} B] + rC \subset (1-r) C + rC = C$$

se $\epsilon > 0$ for tal que $\epsilon (1+r) (1-r)^{-1} < \delta$.

Corolário 3 ri C é convexo.

Corolário 4 1. O fecho de ri $C \in \overline{C}$.

2. O interior relativo de \overline{C} é ri C.

Demonstração: (1) É imediato do teorema 9. (2) Seja $z \in \operatorname{ri} \overline{C}$. E $x \in \operatorname{ri} C$. Para $\mu > 1$, suficientemente próximo de 1, $y = (1 - \mu) x + \mu z = z - (\mu - 1) (x - z)$ ainda pertence a ri $\overline{C} \subset \overline{C}$. Então se $\lambda = \mu^{-1}$,

$$z = \frac{1}{\mu}y - \left(\frac{1}{\mu} - 1\right)x = \lambda y + (1 - \lambda)x \in \operatorname{ri} C,$$

pelo teorema 9.

Corolário 5 Sejam C_1 e C_2 convexos do \mathbb{R}^n . Então

$$\overline{C_1} = \overline{C_2} \iff \operatorname{ri} C_1 = \operatorname{ri} C_2.$$

Equivalentemente, ri $C_1 \subset C_2 \subset \overline{C_1}$.

Demonstração: Suponhamos $\overline{C_1} = \overline{C_2}$. Pelo corolário anterior, ri $C_1 = \operatorname{ri} \overline{C_1} = \operatorname{ri} \overline{C_2} = \operatorname{ri} C_2$.

Corolário 6 Se C é convexo, todo aberto que intersecta \overline{C} intersecta ri C.

Demonstração: Fixe $x^0 \in \text{ri } C$. Seja U aberto tal que $U \cap \overline{C} \neq \emptyset$. Existe então $c \in U \cap C$. Então para $r \in (0,1)$ suficientemente próximo de 1, $(1-r)x^0 + rc \in U$. Mas $(1-r)x^0 + rc \in \text{ri } C$ terminando a demonstração.

Corolário 7 Suponhamos que C_1 não-vazio é um subconjunto convexo da fronteira relativa de C_2 . Ou seja $C_1 \subset \overline{C_2} \setminus \operatorname{ri} C_2$. Então $\dim C_1 < \dim C_2$.

Demonstração: Se dim $C_1 = \dim C_2$ então de aff $C_1 \subset \operatorname{aff} C_2$ vem aff $C_1 = \operatorname{aff} C_2$. Então se $x \in C_1$ é tal que $(x + U) \cap \operatorname{aff} C_1 \subset C_1$ vem

$$(x+U) \cap \operatorname{aff} C_2 \subset \overline{C_2} \implies x \in \operatorname{ri} C_2$$

em contradição com a hipótese.

Comentário 8 O próximo teorema simplifica a verificação de que um ponto está no interior relativo.

Teorema 10 Seja C convexo. Então $z \in \text{ri } C$ se e somente se para todo $x \in C$ existe $\mu > 1$ tal que $(1 - \mu) x + \mu z \in C$.

Demonstração: Caso $z \in \text{ri } C$. Seja $\epsilon > 0$ tal que $(z + \epsilon B) \cap \text{aff } C \subset C$. Então $z - t (x - z) \in C$ se $0 < t < \frac{\epsilon}{|x - z|}$. Logo se $\mu = 1 + t$ temos $y := \mu z + (1 - \mu) x = z - t (x - z) \in C$. Recíproca: Seja x no interior relativo de C e $\mu > 1$ tal que $y = (1 - \mu) x + \mu z \in C$. Então definindo $\lambda = \frac{1}{\mu} \in (0, 1), z = (1 - \lambda) x + \lambda y$. Logo pelo teorema $y \in C$.

Corolário 8 Para C convexo. Então $z \in \text{int } C$ se e somente se para todo vetor y existe $\epsilon > 0$, $z + \epsilon y \in C$.

Demonstração: Pelo teorema anterior obtemos que $z \in \text{ri } C$. Mas pela hipótese, $L(C) \supset \{e_1, e_2, \dots, e_n\}$ e logo aff $C = \mathbb{R}^n$.

08/03

Teorema 11 Seja C_i convexo, $i \in I$. Suponhamos que $\cap_{i \in I}$ ri $C_i \neq \emptyset$. Então:

- 1. O fecho de $\cap_{i \in I} C_i$ é igual a $\cap_{i \in I} \overline{C_i}$;
- 2. Se I for finito, o interior relativo de $\cap_i C_{i \in I}$ é $\cap_{i \in i}$ ri C_i .

Demonstração: Fixemos $a \in \bigcap_{i \in I} \operatorname{ri} C_i$. Se $y \in \bigcap_{i \in I} \overline{C_i}$, $(1-r)a + ry \in \operatorname{ri} C_i$ para todo i se $r \in (0,1)$. E se r tende a 1 o limite é y. Portanto

$$\bigcap_{i \in I} \overline{C_i} \subset \overline{\bigcap_{i \in i} \operatorname{ri} C_i} \subset \overline{\bigcap_{i \in i} C_i} \subset \bigcap_{i \in I} \overline{C_i}.$$

Então vale (1). E $\cap_{i \in I}$ ri C_i e $\cap_{i \in I} C_i$ tem o mesmo fecho. Eles tem então o mesmo interior relativo:

$$\operatorname{ri} \cap_{i \in i} C_i \subset \cap_{i \in I} \operatorname{ri} C_i$$
.

Seja $z \in \cap_{i \in I}$ ri C_i . Cada segmento de reta em $\cap_{i \in I} C_i$ com um extremo z pode ser prolongado. A intersecção finita desses prolongamentos ainda é um prolongamento. Portanto $z \in \text{ri} \cap_{i \in i} C_i$.

Corolário 9 Seja C convexo e M variedade afim tal que $M \cap ri \ C \neq \emptyset$. Então

$$ri(M \cap C) = M \cap ri C,$$

$$\overline{M \cap C} = M \cap \overline{C}.$$

Demonstração: ri(M) = M e M é fechada.

Corolário 10 Seja C_1 convexo. E $C_2 \subset \overline{C_1}$ convexo que não está contido na fronteira relativa de C_1 . Então $ri(C_2) \subset ri(C_1)$.

Demonstração: Se $\operatorname{ri}(C_2) \cap \operatorname{ri}(C_1) = \emptyset$, $\operatorname{ri}(C_2) \subset \overline{C_1} \setminus \operatorname{ri}(C_1)$. E C_2 estaria contido na fronteira relativa. Então $\operatorname{ri}(C_2) \cap \operatorname{ri}(C_1) \neq \emptyset$,

$$\operatorname{ri}(C_2) \cap \operatorname{ri}(C_1) = \operatorname{ri}(C_2) \cap \operatorname{ri}(\overline{C_1}) = \operatorname{ri}(C_2 \cap \overline{C_1}) = \operatorname{ri}(C_2)$$

 $\Longrightarrow \operatorname{ri}(C_2) \subset \operatorname{ri}(C_1).$

Proposição 1 $ri(C_1 + C_2) = ri(C_1) + ri(C_2)$.

Demonstração: Seja $a_i \in ri(C_i)$, i = 1, 2. Para $z = c_1 + c_2 \in C_1 + C_2$, seja $\mu_i > 1$ tal que $(1 - \mu_i) c_i + \mu_i a_i \in C_i$, i = 1, 2. Seja $\mu = \min \{\mu_1, \mu_2\}$. Então

$$(1 - \mu) c_i + \mu a_i \in C_i, i = 1, 2 \implies (1 - \mu) z + \mu (a_1 + a_2) \in C_1 + C_2$$

 $\implies a_1 + a_2 \in ri(C_1 + C_2).$

Ou seja vale ⊃. Para a inclusão reversa,

$$\overline{\operatorname{ri}(C_1) + \operatorname{ri}(C_2)} \supset \overline{\operatorname{ri}(C_1)} + \overline{\operatorname{ri}(C_2)} = \overline{C_1} + \overline{C_2} \supset C_1 + C_2 \supset \operatorname{ri}(C_1) + \operatorname{ri}(C_2)$$

e então $C_1 + C_2$ e $\mathrm{ri}(C_1) + \mathrm{ri}(C_2)$ tem o mesmo fecho e portanto o mesmo interior relativo. Logo $\mathrm{ri}(C_1 + C_2) = \mathrm{ri}(\mathrm{ri}(C_1) + \mathrm{ri}(C_2)) \subset \mathrm{ri}(C_1) + \mathrm{ri}(C_2)$.

Separação de convexos

Definição 14 Sejam C_1 e C_2 convexos não-vazios.

- a) O hiperplano H separa C_1 e C_2 se C_1 está num semi-espaço fechado de H e C_2 no outro.
- **b)** H separa propriamente se $(C_1 \cup C_2) \setminus H \neq \emptyset$.
- c) Separa C_1 e C_2 fortemente se existe $\epsilon > 0$ tal que $C_1 + \epsilon B$ está num semi-espaço aberto de H e $C_2 + \epsilon B$ está contido no outro.
- d) A separação é estrita se C_1e C_2 estão em semi-espaços abertos distintos.

Em termos analíticos, existe um funcional linear não—nulo $f(z) = \langle z, b \rangle$ e um escalar β tais que

$$C_1 \subset \{x : f(x) \leq \beta\},\$$

 $C_2 \subset \{x : f(x) \geq \beta\}.$

Note que trocando f por -f trocamos o lado de separação.

Teorema 12 Sejam C_1 e C_2 não-vazios do \mathbb{R}^n .

Separação própria Existe um hiperplano separando-os propriamente se existir vetor b tal que

$$\inf \{ \langle x, b \rangle : x \in C_1 \} \ge \sup \{ \langle x, b \rangle : x \in C_2 \};$$

$$\sup \{ \langle x, b \rangle : x \in C_1 \} > \inf \{ \langle x, b \rangle : x \in C_2 \}.$$

Separação forte

$$\inf \{\langle x, b \rangle : x \in C_1\} > \sup \{\langle x, b \rangle : x \in C_2\}.$$

Demonstração: Para a separação própria: Seja β entre sup $\{\langle x,b\rangle:x\in C_2\}$ e inf $\{\langle x,b\rangle:x\in C_1\}$. Então β é finito, $b\neq 0$ e $H=\{x:\langle x,b\rangle=\beta\}$ é o hiperplano que separa propriamente. Para a separação forte sejam β e $\delta>0$ tais que

$$\inf \{ \langle x, b \rangle : x \in C_1 \} - \delta > \beta > \delta + \sup \{ \langle x, b \rangle : x \in C_2 \}.$$

Seja $0 < \epsilon < \frac{\delta}{|b|}$. Para $x \in C_1 + \epsilon B$ e $y \in B$ temos

$$\langle x, b \rangle = \langle c_1 + \epsilon y, b \rangle \ge \inf \{ \langle x, b \rangle : x \in C_1 \} - \epsilon |b| > \inf \{ \langle x, b \rangle : x \in C_1 \} - \delta > \beta.$$

Analogamente,

$$\beta > \delta + \sup \{\langle x, b \rangle : x \in C_2\} \ge \langle x, C_2 + \epsilon B \rangle.$$

Lema 7 Seja $H = \{x : \langle x, b \rangle = \beta\}$ um hiperplano. E C convexo tal que

$$C \cap \{x : \langle x, b \rangle < \beta\} \neq \emptyset \ e$$

 $C \cap \{x : \langle x, b \rangle > \beta\} \neq \emptyset.$

Então $C \cap H \neq \emptyset$.

Demonstração: Sejam $x, y \in C$ tais que $\langle x, b \rangle < \beta < \langle y, b \rangle$. Então para $t = \frac{\beta - \langle x, b \rangle}{\langle y - x, b \rangle} \in (0, 1), \ \langle (1 - t) \, x + t y, b \rangle = \beta$.

Teorema 13 Seja $C \subset \mathbb{R}^n$ convexo não-vazio e relativamente aberto: $C = \operatorname{ri} C$. Seja $M \subset \mathbb{R}^n$ variedade afim disjunta de C. Existe então um hiperplano $H \supset M$ e tal que C está contido num dos semi-espaços abertos de H.

Demonstração: Se M for um hiperplano então pelo lema anterior, C está contido num dos semi-espaços abertos de M. Se M não for hiperplano. Vamos obter uma variedade afim M' com dimensão maior do que a de M e ainda disjunta de C. Por meio de uma translação (de M e C) podemos supor $0 \in M$. Então $C - M \supset C$ e $0 \notin C - M$. Temos dim $M^{\perp} \geq 2$ pois M não é hiperplano. Seja P subespaço vetorial de M^{\perp} , dim P = 2. Seja $C' = P \cap (C - M)$. Se $C' \neq \emptyset$, C' é aberto em P pois de ri (C - M) = ri C - ri M = C - M vem $P \cap \text{ri } (C - M) \neq \emptyset$ e pelo cor. 9,

$$ri C' = P \cap ri (C - M) = P \cap (C - M) = C'.$$

E temos $0 \notin C'$. Queremos encontrar um subespaço uni-dimensional $L \subset P$, $L \cap C' = \emptyset$. Nesse caso M' = M + L é um subespaço com dimensão maior do que a de M e que não intersecta C. Se C' for vazio ou um ponto existe reta L que não intersecta C'. Se aff C' for uma reta que não passa pela origem escolhemos L paralela a aff C' passando pela origem. Se aff C' for uma reta passando pela origem, tomamos L perpendicular a ela e passando pela origem. Se dim aff C' = 2. Então C' é aberto topológico. Seja $K = \bigcup_{r>0} rC'$ o cone gerado por C'. Temos K aberto convexo. E $0 \notin K$. A intersecção de K com $S^1 = \{x \in P : |x| = 1\}$ é um "intervalo" de comprimento menor do que π (identificando P com \mathbb{R}^2) pois caso contrário conteria um par de antípodas e então a origem. Agora é só passar um reta pela origem que não passe por $S^1 \cap K$.

Teorema 14 Sejam C_1 e C_2 convexos. Existe um hiperplano que separa C_1 e C_2 própriamente se e somente se os interiores relativos de C_1 e C_2 são disjuntos.

Demonstração: $C = C_1 - C_2$ é convexo, Pela proposição 1, ri $C = \text{ri } C_1 - \text{ri } C_2$ e então $0 \notin \text{ri } C$. Existe um hiperplano contendo $M = \{0\}$ tal que ri C está contido

num dos seus semi—espaços abertos. Logo C está contido num semi—espaço fechado. Resumindo: existe $b \in \mathbb{R}^n \setminus \{0\}$, tal que

$$0 \le \inf_{x \in C} \langle x, b \rangle = \inf_{x_1 \in C_1} \langle x_1, b \rangle - \sup_{x_2 \in C_2} \langle x_2, b \rangle$$
$$0 < \sup_{x \in C} \langle x, b \rangle = \sup_{x_1 \in C_1} \langle x_1, b \rangle - \inf_{x_2 \in C_2} \langle x_2, b \rangle.$$

Então o teorema 12 implica a separação própria. Por outro lado essas condições implicam $0 \notin \operatorname{ri} C$ pois $D = \{x : \langle x, b \rangle \geq 0\} \supset C$ e ri $D = \{x : \langle x, b \rangle > 0\}$ intersecta C e portanto (cor. 10) ri $C \subset \operatorname{ri} D$.

Teorema 15 Sejam C_1 e C_2 convexos não-vazios. Para existir um hiperplano separando-os fortemente, é necessário e suficiente que

$$d(C_1, C_2) := \inf \{ |x_1 - x_2| : x_1 \in C_1, x_2 \in C_2 \} > 0.$$

Em outras palavras, $0 \notin \overline{C_1 - C_2}$.

Demonstração: Se um hiperplano separa fortemente C_1 e C_2 existe $\epsilon > 0$ tal que $(C_1 + \epsilon B) \cap (C_2 + \epsilon B) = \emptyset$. Mas então $d(C_1, C_2) \geq \epsilon$. Em particular $0 \notin \overline{C_1 - C_2}$. Suponhamos agora $0 \notin \overline{C_1 - C_2}$. Então $\epsilon B \cap (C_1 - C_2) = \emptyset$ para algum $\epsilon > 0$. Nesse caso $C_1 + \frac{\epsilon}{2}B$ e $C_2 + \frac{\epsilon}{2}B$ podem ser propriamente separados. E C_1 e C_2 são fortemente separados.

Lema 8 Seja X fechado e K compacto em \mathbb{R}^n . Então X - K é fechado.

Demonstração: Seja $z_n = x_n - k_n \to z$. Passando para uma subseqüência se necessário podemos supor $k_n \to k \in K$. Mas então $x_n = z_n + k_n \to z + k \in X$. Logo $z \in X - K$.

Corolário 11 Sejam C_1, C_2 convexos não-vazios, disjuntos e fechados, um deles limitado. Então existe um hiperplano separando-os fortemente.

Demonstração: Com efeito, pelo lema anterior, $0 \notin \overline{C_1 - C_2} = C_1 - C_2$.

Corolário 12 Se C_1, C_2 convexos, não-vazios com fechos disjuntos. Se um deles for limitado, existe um hiperplano que os separa fortemente.

11/03

Teorema 16 Um conjunto convexo fechado é a intersercção dos semi-espaços fechados que o contém.

Demonstração: Seja C convexo fechado. Sem perda de generalidade, C é nãovazio e $\neq \mathbb{R}^n$. Para $x \in \mathbb{R}^n \setminus C$ temos $C \cap \{x\} = \emptyset$. Portanto existe um hiperplano H_x que contém C no semi-espaço fechado à esquerda, H_x^- e $x \notin H_x$. A intersecção desses semi-espaços, $\bigcap_{x \in C^c} H_x^- = C$.

Definição 15 Um hiperplano H é um hiperplano suporte do convexo C se $H \cap C \neq \emptyset$ e C está contido num dos semi-espaços fechados de H. O hiperplano é não-trivial se $C \setminus H$ for não-vazio.

Teorema 17 Seja C convexo e $D \neq \emptyset$ convexo contido em C. Existe um hiperplano não trivial suportando C e que contém D se e somente se $D \cap ri C = \emptyset$.

Demonstração: Um hiperplano não-trivial que contém $D \subset C$ e suporta C é um hiperplano que separa D e C própriamente. Pelo teorema 14 existe o hiperplano se e somente se ri C disjunto de ri D. Mas isso é equivalente a D ser disjunto de ri C (cor. 10)

Notação 1 Para $x = (x_1, ..., x_n)$ escrevemos x < 0 se $x_i \le 0$ para todo i e $x \ne 0$. E x << 0 se $x_i < 0$ para todo $i \le n$.

Comentário 9 Na linguagem matricial (usada nos exemplos abaixo), $x \in \mathbb{R}^m$ é um vetor coluna, $m \times 1$. O produto interno de x, b vetores $m \times 1$ é $x^t b$.

Exemplo 4 (Gordan) Seja A matriz $m \times n$. Então somente uma das alternativas a seguir é verdadeira:

- i) Existe $x \in \mathbb{R}^n$ tal que Ax << 0;
- ii) Existe $b \in \mathbb{R}^m_+$ e $b \neq 0$ tal que $A^tb = 0$.

Suponhamos (i) e (ii) válidas. Então $x^tA^tb=0 \implies (Ax)^tb=0$ uma impossibilidade pois Ax << 0. Sejam $C_1=\{Ax:x\in\mathbb{R}^n\}\subset\mathbb{R}^m$ e $C_2=\{y\in\mathbb{R}^m:y<<0\}$. Se (i) for falso, $C_1\cap C_2=\emptyset$. Então existe um hiperplano que separa propriamente: $H=\{x\in\mathbb{R}^m:x^tb=\beta\}$ e $C_1\subset\{x:x^tb\geq\beta\}$ e $C_2\subset\{x:x^tb\leq\beta\}$. Então $0\in C_1$ implica $\beta\leq 0$. E $\left(-\frac{1}{n},\ldots,-\frac{1}{n}\right)\in C_2$ implica $0\leq\beta$ e então $\beta=0$. E necessariamente $b\geq 0$. Finalmente sendo C_1 um subespaço vetorial, $y^tb=0$ se $y\in C_1$ e logo vale $(Ax)^tb=0$ para todo $x\Longrightarrow A^tb=0$.

Exemplo 5 (lema de Farkas) Seja A matriz $m \times n$ e b vetor $m \times 1$. Somente uma das alternativas a seguir é verdadeira:

- 1. Existe $x \ n \times 1$, $x \ge 0$, tal que Ax = b;
- 2. Existe μ vetor $m \times 1$, $\mu^t A \ge 0$ e $\mu^t b < 0$.

Comentário 10 Trocando o sinal de μ (2) equivale a (2)' $\mu^t A \leq 0$ e $\mu^t b > 0$.

Demonstração: Primeiramente notemos que (1) e (2) não são válidas simultaneamente. Se

$$Ax = b, x \ge 0,$$

$$\mu^t A \ge 0, \mu^t b < 0.$$

Então $\mu^t Ax \geq 0$ pois $x \geq 0$. Logo $\mu^t b \geq 0$ em contradição com $\mu^t b < 0$. Seja $v_j = (a_{1j}, a_{2j}, \dots, a_{mj})^t$ a j-ésima coluna da matriz A. Então Ax = b se e somente se

$$b \in \text{cone} \{v_1, v_2, \dots, v_n\} = \left\{ \sum_{i=1}^n \lambda_i v_i : \lambda_i \ge 0, 1 \le i \le n \right\}.$$

Suponhamos então que (1) não vale. Então $b \notin K := \text{cone } \{v_1, v_2, \dots, v_n\}$. Existe então μ , $m \times 1$ tal que

$$\mu^t b < 0 < \mu^t v_i, 1 < i < n.$$

E portanto vale (2).

Comentário 11 A separação estrita acima depende de K ser fechado. Os lemas a seguir visam demonstrar isso.

Lema 9 Se v_1, v_2, \ldots, v_n for l.i. então K é fechado.

Demonstração: Seja $x^t = \sum_{i=1}^n \lambda_i^t v_i, \lambda_i^t \geq 0$, com limite x. Se $\lambda^t = (\lambda_i^t)_{i=1}^n$ possui subseqüência convergente, $\lambda^{k(t)}$, então $x = \sum_{i=1}^n \lim_t \lambda_i^{k(t)} v_i = \sum_{i=1}^n \lambda_i v_i \in K$ pois $\lambda_i = \lim_k \lambda_i^{k(t)} \geq 0$. Se (λ^t) não possui subseqüência convergente², $|\lambda^t| \to \infty$ e então, passando a uma subseqüência se necessário, $\frac{\lambda^t}{|\lambda^t|_S} \to \mu \geq 0, |\mu| = 1$. Mas então

$$\sum_{i} \mu_i v_i = \lim_{t} \frac{x^t}{|\lambda^t|} = 0.$$

Contradição com a independência linear.

²usando a norma da soma

Lema 10 Para todo $x \in K$ existe $S \subset \{1, ..., n\}$ tal que $\{v_i : i \in S\}$ é l.i. e $x \in \text{cone } \{v_i : i \in S\}$.

Demonstração: Para $x \in K$, seja a representação $x = \sum_{i=1}^{n} \lambda_i v_i$, $\lambda_i \geq 0$ e tal que $S = \{i : \lambda_i > 0\}$ seja tal que #S é o menor possível. Se $\{v_i : i \in S\}$ não for l.i existe θ_i , $i \in S$ nem todos nulos tal que $\sum_{i \in S} \theta_i v_i = 0$. Sem perda de generalidade pelo menos um $\theta_j > 0$. Seja $t = \min \left\{\frac{\lambda_i}{\theta_i} : \theta_i > 0\right\}$. Então $\lambda_i - t\theta_i \geq 0$ para todo i e

$$x = \sum_{i \in S} (\lambda_i - t\theta_i) v_i$$

é uma representação com menos de #S elementos positivos. Contradição.

Teorema 18 Seja $K = \text{cone } \{v_1, v_2, \dots, v_n\}$. Então K é fechado.

Demonstração: Seja $\mathfrak{S} = \{S \subset \{1, \dots, n\} : \{v_i : i \in S\} \text{ é l.i.}\}$. Note que $K = \bigcup_{S \in \mathfrak{S}} \text{cone } \{v_i : i \in S\}$ e cada cone $\{v_i : i \in S\}$ é fechado.

Funções convexas

No estudo das funções convexas é conveniente permitir que as funções assumam valores em $[-\infty, \infty]$. O símbolo \dotplus é ocasionalmente necessário:

$$x \dotplus y = x + y \text{ se } \{x, y\} \neq \{-\infty, \infty\}$$

 $-\infty \dotplus \infty = \infty \dotplus -\infty = \infty.$

Definição 16 Seja $C \subset \mathbb{R}^n$ convexo. $f: C \to \mathbb{R}$ é convexa se $f(rc + (1-r)c') \le rf(c) + (1-r)f(c'), \forall c, c' \in C$.

Comentário 12 A definição é a usual mas na análise convexa a próxima definição é vantajosa pois deixa C implicíto.

Definição 17 $f: \mathbb{R}^n \to [-\infty, \infty]$ é convexa se para todo $x, y \in \mathbb{R}^n$ e 0 < r < 1,

$$f(rx + (1-r)y) \le rf(x) + (1-r)f(y)$$
. (*)

Definição 18 *O domínio efetivo de f*, dom $f = \{x : f(x) < \infty\}$.

Definição 19 O epígrafo de f é o conjunto epi $f = \{(x, r) \in \mathbb{R}^n \times \mathbb{R} : f(x) \leq r\}.$

Definição 20 f é própria se não assume o valor $-\infty$ e dom f é não-vazio.

Comentário 13 Se $f: C \to \mathbb{R}$ é convexa pela definição 16 então definindo para $x \in \mathbb{R}^n \setminus C$, $f(x) = \infty$ temos que f é convexa pela definição (*).

Lema 11 f é convexa se e somente se epi f for convexo.

Demonstração: Suponhamos f convexa. E (x,r), $(x',r') \in \text{epi } f \in 0 < \lambda < 1$. Então como f(x), $f(y) < \infty$,

$$f(\lambda x + (1 - \lambda) x') \le \lambda f(x) + (1 - \lambda) f(y) \le \lambda r + (1 - \lambda) r'$$

$$\implies \lambda(x, r) + (1 - \lambda) (x', r') \in \text{epi } f.$$

Suponhamos agora que o epígrafo de f é convexo. A desigualdade (*) vale sempre que $f(x) = \infty$ ou $f(y) = \infty$. Suponhamos agora que $f(x) < \infty$ e $f(y) < \infty$. Então se r > f(x) e s > f(y) temos $(x, r), (y, s) \in \text{epi } f$ e então

$$(\lambda x + (1 - \lambda) y, \lambda r + (1 - \lambda) s) \in \text{epi } f.$$

Logo

$$f(\lambda x + (1 - \lambda)y) < \lambda r + (1 - \lambda)s$$
.

Fazendo $r \downarrow f(x)$ e $s \downarrow f(y)$ vem $f(rx + (1 - r)y) \leq rf(x) \dotplus (1 - r)f(y)$.

Teorema 19 (des. Jensen) Seja f convexa própria. Então

$$f\left(\sum_{j=1}^{m} \lambda_{j} x_{j}\right) \leq \sum_{j=1}^{m} \lambda_{j} f\left(x_{j}\right),$$
$$\lambda_{j} \geq 0, \sum_{j=1}^{m} \lambda_{j} = 1.$$

Comentário 14 Podemos dizer que essa é a des. de Jensen no caso discreto.

Exemplo 6 (desigualdade aritmético-geométrica) $Se x_i > 0 para i \leq n então$

$$\sqrt[n]{x_1 x_2 \dots x_n} \le \frac{x_1 + x_2 + \dots + x_n}{n}.$$

A função $f(x) = -\log x$ é convexa pois $f''(x) = \frac{1}{x^2} > 0$. Pela designaldade de Jensen, $f\left(\frac{\sum_{i=1}^n x_i}{n}\right) \leq \sum_{i=1}^n \frac{f(x_i)}{n}$ ou

$$-\log \frac{\sum_{i=1}^{n} x_i}{n} \le \sum_{i=1}^{n} \frac{-\log(x_i)}{n} = -\log \sqrt[n]{x_1 x_2 \dots x_n}.$$

13/03

Teorema 20 Seja $f:[a,b] \to \mathbb{R}$ diferenciável. Então f é convexa se e somente f'(x) for crescente em [a,b].

Demonstração: Sejam x, y tais que $a \le x < y \le b$. E definamos g(t) = f((1-t)x+ty) - (1-t)f(x) - tf(y). Note que g(0) = 0 = g(1). Então f é convexa se e somente se $g(t) \le 0$. Suponhamos que $f(\cdot)$ seja convexa. Então $g(t) \le 0$ sempre e portanto $g'(0) \le 0$ e $g'(1) \ge 0$. Então de g'(t) = f'((1-t)x+ty)(y-x)+f(x)-f(y) vem

$$g'(0) = f'(x)(y - x) + f(x) - f(y) \le 0 \le f'(y)(y - x) + f(x) - f(y)$$

ou seja

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

demonstrando que f' é crescente. Para a recíproca, suponhamos agora que f' seja crescente. Queremos demonstrar que $g(t) \leq 0, t \in [0,1]$. Pelo teorema do valor médio, seja $\xi \in (0,1)$ tal que $g'(\xi) = g(1) - g(0)$. Ou

$$f'((1-\xi)x + \xi y) = \frac{f(y) - f(x)}{y - x}.$$

Para $0 \le t < \xi$,

$$g'(t) = (y - x) \left[f'((1 - t)x + ty) - \frac{f(y) - f(x)}{y - x} \right] = (y - x) \left[f'((1 - t)x + ty) - f'((1 - \xi)x + \xi y) \right] \le 0.$$

Portanto g é decrescente até ξ . E depois é crescente terminando em g(1) = 0. Demonstrando que $f(\cdot)$ é convexa.

Corolário 13 Se f for duas vezes diferenciável, f é convexa se e somente se $f''(x) \ge 0$.

Exemplo 7 (função indicadora) Para $C \subset \mathbb{R}^n$ a função indicadora de C é $\delta(\cdot|C)$,

$$\delta(x|C) = \begin{cases} 0 & se \quad x \in C \\ \infty & se \quad x \notin C. \end{cases}$$

O epígrafo da indicadora é $C \times [0, \infty)$. Portanto C é convexo se e somente se a função indicadora for convexa.

Definição 21 A função suporte do conjunto convexo C é

$$\delta^* (x|C) = \sup \{ \langle x, y \rangle : y \in C \}.$$

Definição 22 O gabarito $\gamma(\cdot|C)$ para C não-vazio:

$$\gamma(x|C) = \inf \left\{ r \ge 0 : x \in rC \right\}.$$

Definição 23 A função distância: $d(x, C) = \inf\{|x - y| : y \in C\}$.

Todas essas funções são convexas: Para a função suporte seja $x,y\in C$ e $r\in (0,1).$ Então

$$\langle rx + (1-r)y, c \rangle = r \langle x, c \rangle + (1-r) \langle y, c \rangle \le r\delta^*(x) | C) + (1-r) \delta^*(y|C)$$

$$\implies \delta^*(rx + (1-r)y|C) \le r\delta^*(x) | C) + (1-r) \delta^*(y|C).$$

Para o gabarito: Sem perda de generalidade suponhamos $\gamma\left(x|C\right), \gamma\left(y|C\right) < \infty$. Dado $\epsilon > 0$, existe $r < \gamma\left(x|C\right) + \epsilon$ tal que $x \in rC$ e exists $s < \gamma\left(y|C\right) + \epsilon$ tal que $y \in sC$. Então para $t \in (0,1), tx + (1-t)y \in trC + (1-t)sC = (tr + (1-t)s)C$ e $\gamma\left(tx + (1-t)y\right) \le tr + (1-t)s < t\gamma\left(x|C\right) + (1-t)\gamma\left(y|c\right) + \epsilon$. Distância: sejam $c, c' \in C$.

$$d(tx + (1-t)y, C) \le ||tx + (1-t)y - tc + (1-t)c'|| \le t ||x - c|| + (1-t)||y - c'||$$

$$\implies d(tx + (1-t)y, C) \le td(x, C) + (1-t)d(y, C).$$

Teorema 21 Seja f convexa $e \alpha \in [-\infty, \infty]$. Então são convexos:

$$\{x: f(x) < \alpha\} \ e \ \{x: f(x) \le \alpha\}.$$

Demonstração: Se $f(x) \le \alpha$ e $f(y) \le \alpha$ então $f(rx + (1-r)y) \le rf(x) + (1-r)f(y) \le r\alpha + (1-r)\alpha = \alpha$. Analogamente para a desigualdade estrita.

Teorema 22 Seja $f : \mathbb{R}^n \to (-\infty, \infty]$ convexa $e \phi : (-\infty, \infty] \to (-\infty, \infty]$ convexa $e n\tilde{a}o$ -decrescente. Ent $\tilde{a}o \phi \circ f$ \acute{e} convexa.

Demonstração: De $f(rx + (1 - r)y) \le rf(x) + (1 - r)f(y)$ obtemos aplicando ϕ :

$$\phi\left(f\left(rx+\left(1-r\right)y\right)\right) \leq \phi\left(rf\left(x\right)+\left(1-r\right)f\left(y\right)\right) \leq r\phi\left(f\left(x\right)\right)+\left(1-r\right)\phi\left(f\left(y\right)\right).$$

Exemplo 8 1. Se f convexa própria, então $e^{f(x)}$ é convexa própria.

2. Se f for convexa não-negativa e p > 1, $(f(x))^p$ é convexa.

Proposição 2 A soma de duas convexas próprias é convexa. A soma é própria se uma das funções for finita sempre.

A demonstração é imediata.

Proposição 3 Seja $F \subset \mathbb{R}^{n+1}$ convexo não-vazio. A seguinte função é convexa:

$$f(x) = \inf \{ \mu : (x, \mu) \in F \}.$$

Demonstração: Note que inf $\emptyset = \infty$. Então se $rf(x) + (1-r)f(y) < \infty$ existe $(x,\mu) \in F$ e $(y,\nu) \in F$. Portanto $(rx + (1-r)y, r\mu + (1-r)\nu) \in F$ e logo $f(rx + (1-r)y) \le r\mu + (1-r)\nu$.

Proposição 4 (convolução) Sejam f_1, \ldots, f_m convexas próprias. E seja

$$f(x) = \inf \{ f_1(x_1) + \ldots + f_m(x_m) : x_1 + \ldots + x_m = x \}.$$

Então f é convexa.

Demonstração: Seja $F_i = \text{epi } f_i$, $1 \leq i \leq m$ e $F = F_1 + F_2 + \ldots + F_m$ é convexo de \mathbb{R}^{n+1} . Então $(x, \mu) \in F$ se existirem $(x_i, \mu_i) \in F_i$, $\mu = \sum_i \mu_i$, $x = \sum_i x_i$, $f_i(x_i) \leq \mu_i$. Portanto f é convexa.

Teorema 23 O supremo de uma família de funções convexas é uma função convexa.

Demonstração: Seja $f(x) = \sup_{i \in I} f_i(x)$. Então $f_i(rx + (1 - r)y) \le rf_i(x) + (1 - r)f_i(y) \le rf(x) + (1 - r)f(y)$. Outra demonstração: epi $f = \bigcap_{i \in I}$ epi f_i .

Continuidade

Definição 24 Uma função entre espaços métricos, $f: X \to Y$ é Lipschitz se existir k>0 tal que

$$d(f(x), f(y)) \le kd(x, y), x, y \in X.$$

Comentário 15 Se quisermos especificar a constante dizemos que f é k-lipschitz.

Definição 25 1. Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é lipschitz numa vizinhança de $x \in \mathbb{R}^n$ se exister $\epsilon > 0$ e K > 0 tais que

$$|f(y) - f(z)| \le K |y - z|, y, z \in B(x, \epsilon).$$

2. E f é localmente lipschitz no aberto U se para todo $x \in U$, f é lipschitz numa vizinhança de x contida em U.

Comentário 16 Note que essa condição implica a continuidade de f em U.

Teorema 24 Seja f convexa própria. Seja $U = \operatorname{int}(\operatorname{dom} f)$. Suponha que existe bola aberta, $x_0 + \epsilon B \subset U$ e $M < \infty$ tais que $f(x) \leq M$ para todo $x \in x_0 + \epsilon B$. Então f é localmente lipschitz em U.

Demonstração: Sem perda de generalidade³, $x_0 = 0$. Assim $f(u) \leq M$ se $|u| < \epsilon$. Seja $x \in U$. Vou demonstrar que f é limitada numa vizinhança de x. Seja $\rho > 1$ tal que $y := \rho x \in U$.

Seja $\lambda = \frac{1}{\rho}$. Então V a seguir é uma vizinhança de x:

$$V = \{v : v = (1 - \lambda) x' + \lambda y, |x'| < \epsilon\} = x + (1 - \lambda) \epsilon B.$$

Por convexidade, $f(v) \leq (1 - \lambda) f(x') + \lambda f(y) \leq M + \lambda f(y)$. Então f é limitada superiormente numa vizinhança de x. Se $z \in V$ existe $z' \in V$, $x = \frac{z+z'}{2}$. Então

$$f(x) \le \frac{f(z) + f(z')}{2} \implies f(z) \ge 2f(x) - f(z') \ge 2f(x) - M - \lambda f(y).$$

Assim f é limitada numa vizinhança de x. Seja N uma cota superior para |f| em $x+2\delta B, \delta>0$. Para $x_1\neq x_2$ em $x+\delta B$, seja $x_3=x_2+\frac{\delta}{\alpha}\left(x_2-x_1\right)$ sendo $\alpha=|x_2-x_1|$. Note que $x_3\in x+2\delta B$. Resolvendo para x_2 :

$$x_{2} = \frac{\delta}{\alpha + \delta} x_{1} + \frac{\alpha}{\alpha + \delta} x_{3} \implies f(x_{2}) \leq \frac{\delta}{\alpha + \delta} f(x_{1}) + \frac{\alpha}{\alpha + \delta} f(x_{3})$$

$$\implies f(x_{2}) - f(x_{1}) \leq \frac{\alpha}{\alpha + \delta} [f(x_{3}) - f(x_{1})] \leq \frac{\alpha}{\delta} 2N = \frac{2N}{\delta} |x_{2} - x_{1}|.$$

Trocando x_2 com x_1 obtemos $|f(x_2) - f(x_1)| \le \frac{2N}{\delta} |x_2 - x_1|$.

Comentário 17 A demonstração acima vale-sem modificações- para $f: B \to [-\infty, \infty]$, B normado, f convexa própria..

Comentário 18 Para $f: \mathbb{R}^n \to (-\infty, \infty]$ própria podemos supor f finita num aberto e ainda obter a continuidade no interior de dom f.

³Basta considerar $g(x) = f(x_0 + x)$.

18/03

Derivada direcional

Seja $f: \mathbb{R}^n \to \mathbb{R}$ convexa, $h \in \mathbb{R}^n$. Seja $g(\lambda) = \frac{f(x+\lambda h)-f(x)}{\lambda}, \lambda > 0$. Suponhamos $\lambda > \mu > 0$. Seja $r = \mu/\lambda$. Então

$$f(x + \mu h) = f(x + r\lambda h) = f(r(x + \lambda h) + (1 - r)x) \le rf(x + \lambda h) + (1 - r)f(x)$$

$$\implies f(x + \mu h) - f(x) \le r(f(x + \lambda h) - f(x))$$

$$\implies g(\mu) \le g(\lambda).$$

Então $f'(x,h) = \lim_{\lambda \downarrow 0} g(\lambda) = \inf_{\lambda > 0} g(\lambda)$ existe. Note que f'(x,0) = 0. E f'(x,rh) = rf'(x,h) se r > 0.

Lema 12 $-f'(x, -h) \le f'(x, h)$.

Demonstração: Note que $\frac{f(x+rh)+f(x-rh)}{2} \geq f(x)$ e então

$$\frac{f(x+rh)-f(x)}{r} \ge -\frac{f(x-rh)-f(x)}{r} \implies f'(x,h) \ge -f'(x,-h).$$

Definição 26 Um funcional $f: V \to \mathbb{R}$ é sub-aditivo se $f(x+y) \le f(x) + f(y)$.

Subgradiente

Seja f convexa. O vector x^* é um subgradiente de f em x se para todo $z \in \mathbb{R}^n$,

$$f(z) - f(x) > < x^*, z - x > .$$

O conjunto dos subgradientes em x é denotado $\partial f(x)$. É imediato da definição que $\partial f(x)$ é convexo e fechado.

Exemplo 9 (subgradiente da indicadora) Seja C convexo não-vazio. Então $x^* \in \partial \delta(x|C)$ se e somente se

$$\begin{split} \delta\left(z|C\right) & \geq \delta\left(x|C\right) + < x^*, z - x >, \forall z \\ & \Longrightarrow x \in C \ e \ 0 \geq < x^*, z - x >, z \in C. \end{split}$$

Comentário 19 x^* nesse caso é normal a C em x. (Não entraremos nesse assunto.)

Teorema 25 Seja f convexa própria. Então $\partial f(x) \neq \emptyset$ para todo $x \in \operatorname{int} (\operatorname{dom} f)$.

Demonstração: Seja $x \in \text{int } (\text{dom } f)$. Seja $f(x) < \mu < \infty$. Pela continuidade de f existe $W \ni x$ tal que $f(W) \subset \left(-\infty, \frac{\mu + f(x)}{2}\right)$. Então $W \times \left(\frac{\mu + f(x)}{2}, \infty\right) \subset \text{epi } f$ e portanto $(x, \mu) \in \text{int } (\text{epi } f)$.

E $(x, f(x)) \notin \text{int (epi } f)$. Existe então um hiperplano não-trivial, suporte de epi f e contém (x, f(x)). Seja $(b, \lambda) \in (\mathbb{R}^n \times \mathbb{R}) \setminus \{0\}$ tal que

$$\langle b, x \rangle + \lambda f(x) \le \langle b, y \rangle + \lambda \mu,$$

 $y \in \mathbb{R}^n, \mu > f(y).$

Se $\lambda = 0$ temos $\langle b, x \rangle \leq \langle b, y \rangle$ para todo $y \in \operatorname{int}(\operatorname{dom} f)$ e portanto b = 0 contradição com $(b, \lambda) \neq 0$. Logo $\lambda \neq 0$. Fazendo $\mu \to \infty$ podemos concluir que $\lambda > 0$. Sem perda de generalidade $\lambda = 1$:

$$\langle b, x \rangle + f(x) \le \langle b, y \rangle + \mu, f(y) < \mu$$

 $\implies \langle b, x - y \rangle \le f(y) - f(x).$

Seja $x^* = -b$. Assim $x^* \in \partial f(x)$.

Comentário 20 *O resultado vale mais geralmente se* $x \in ri(dom f)$.

Proposição 5 O subgradiente é monótono.

Demonstração: Sejam $x, y \in \text{ri dom } f \in x^* \in \partial f(x), y^* \in \partial f(y)$. Então

$$f(y) - f(x) \ge \langle x^*, y - x \rangle$$

 $f(x) - f(y) \ge \langle y^*, x - y \rangle$.

Somando, $0 \ge \langle x^* - y^*, y - x \rangle$.

$$< y^* - x^*, y - x >> 0.$$

Teorema 26 Sejam f_1, \ldots, f_m convexas próprias. Então para $f = \sum_{i=1}^m f_i$,

$$\partial f(x) \supseteq \partial f_1(x) + \ldots + \partial f_m(x)$$
.

Além disso se $\bigcap_{i=1}^m \operatorname{ridom} f_i \neq \emptyset$,

$$\partial f(x) = \partial f_1(x) + \ldots + \partial f_m(x)$$
.

Se $x_{j}^{*} \in \partial f_{j}(x), 1 \leq j \leq m$ então

$$\langle x_j^*, y - x \rangle \le f_j(y) - f_j(x), j \le m$$

$$\implies \left\langle \sum_{j=1}^m x_j^*, y - x \right\rangle \le \left(\sum_{j=1}^m f_j \right)(y) - \left(\sum_{j=1}^m f_j \right)(x).$$

A demonstração da igualdade será omitida por falta de tempo. A demonstração da próxima proposição é imediata.

Proposição 6 $0 \in \partial f(x) \iff x \text{ \'e ponto de mínimo de } f \text{ convexa pr\'opria.}$

Proposição 7 x é ponto de mínimo de f se e somente se $f'(x,h) \ge 0$ para todo h.

Multiplicadores de Kuhn Tucker

Definição 27 ((função afim)) Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é afim se for da forma

$$f(x) = \langle x, v \rangle + \beta, v \in \mathbb{R}^n, \beta \text{ real.}$$

Teorema 27 Seja C convexo. Sejam f_1, \ldots, f_m convexas próprias com dom $f_i \supset$ ri C, $1 \leq i \leq m$. Então somente uma das alternativas a seguir é válida:

- a) Existe $x \in C$, $(f_1(x), ..., f_m(x)) << 0$;
- **b)** Existe $\lambda = (\lambda_1, \dots, \lambda_m) \geq 0, \ \lambda \neq 0,$

$$\sum_{i=1}^{m} \lambda_i f_i(x) \ge 0, \forall x \in C.$$

Demonstração: Seja $g(x) = (f_1(x), \ldots, f_m(x))$. É imediato que se $f_i(x) < 0$ então $\lambda_i f_i(x) \leq 0$ e pelo menos para um $i \leq m$, é < 0. Logo (b) não vale. Suponhamos que (a) seja falso. Devemos demonstrar que vale (b). Seja

$$C_1 = \{z \in \mathbb{R}^m : \exists x \in C, g(x) << z\} = g(C) + \mathbb{R}^m_{++}.$$

Então $C_1 \cap (-\mathbb{R}^m_+) = \emptyset$. Podemos então, pelo teorema 14, separar C_1 e $-\mathbb{R}^m_+$ propriamente. Existe $\lambda = (\lambda_1, \dots, \lambda_m) \neq 0$, e α real,

$$\alpha \leq \lambda \cdot z = \lambda_1 z_1 + \ldots + \lambda_m z_m, z \in C_1;$$

 $\alpha \geq \lambda \cdot z, z \in -\mathbb{R}_+^m.$

Logo $\alpha \geq 0$ e $\lambda \geq 0$. Portanto $0 \leq \lambda \cdot z, z \in C_1$. Então para $x \in D = C \cap \bigcap_{i=1}^m \mathrm{dom}\, f_i \supset \mathrm{ri}\, C,$

$$0 \le \lambda_1 \left(f_1(x) + \epsilon \right) + \ldots + \lambda_m \left(f_m(x) + \epsilon \right),$$

$$\epsilon \downarrow 0 \implies 0 \le \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x), x \in D.$$

Então a desigualdade vale para $x \in \overline{D}$ (ver cor. 15 abaixo) e então vale para $x \in C$ pois $C \subset \overline{\text{ri } C} \subset \overline{D}$.

Exemplo 10 A hipótese dom $f_i \supset ri C$ é necessária. Por exemplo seja

$$f_1(x) = \begin{cases} -\sqrt{x} & se \quad x \ge 0\\ \infty & se \quad x < 0. \end{cases}$$

 $E f_2(x) = x \ para \ x \in C := \mathbb{R}$. $Ent\tilde{ao}(a) \ acima \ n\tilde{ao} \ vale$. $Mas \ \lambda_1 f_1(x) + \lambda_2 f_2(x) \ge 0$ implica para x > 0,

$$-\lambda_1\sqrt{x} + \lambda_2x \ge 0 \implies -\lambda_1 + \lambda_2\sqrt{x} \ge 0 \implies -\lambda_1 \ge 0 \implies \lambda_1 = 0 \implies \lambda_2 = 0.$$

Lema 13 Seja f convexa e $x \in \text{dom } f$ tal que $f(x) < \alpha$. Então existe $x' \in \text{ri dom } f$ tal que $f(x') < \alpha$.

Demonstração: Seja $x^0 \in \text{ri dom } f$. Então $f((1-r)x^0 + rx) \leq (1-r)f(x^0) + rf(x) < \alpha$ se r < 1 estiver suficientemente próximo de 1. Então $x' = (1-r)x^0 + rx \in \text{ri dom } f$ pelo teorema 9.

Corolário 14 Seja f convexa. Seja C convexo tal que ri $C \subset \text{dom } f$. Se $f(x) < \alpha$ para $x \in \overline{C}$ existe $x' \in \text{ri } C$ tal que $f(x') < \alpha$.

Demonstração: Seja $x^0 \in \text{ri } C$. Então $f((1-r)x^0+rx) \leq (1-r)f(x^0)+rf(x) < \alpha$ se r estiver próximo de 1. Então $x'=(1-r)x^0+rx \in \text{ri } C$ e $f(x')<\alpha$.

Corolário 15 Seja f convexa e $C \subset \text{dom } f$ convexo. Se $f(x) \geq \alpha$ para todo $x \in C$ então $f(x) \geq \alpha$ para $x \in \overline{C}$.

20/03

Programa convexo

Um programa convexo⁴, (P), é definido pela m+2 upla (C, f_0, \ldots, f_m) sendo

- 1. C convexo não-vazio;
- 2. f_j convexa própria, dom $f_j \supset C$, $0 \le j \le m$.

E queremos minimizar $f_0(x), x \in C$ com as restrições:

$$f_j(x) \le 0, 1 \le j \le m. \tag{*}$$

Em geral supomos:

⁴No livro do Rockafellar a definição é mais geral permitindo restrições de igualdade com funções afim.

- (a) dom $f_0 = C$,
- (b) $\operatorname{ridom} f_j \supset \operatorname{ri} C$.

Definição 28 O vetor $x \in \mathbb{R}^n$ é factível se $x \in C$ e $f_j(x) \leq 0, 1 \leq j \leq m$.

Seja $C_0 = C \cap C_1 \cap \ldots \cap C_m$ sendo $C_j = [f_j \leq 0], j = 1, \ldots, m$. A função objetivo é $f(x) = f_0(x) + \delta(x|C_0)$. O ínfimo de f é o valor ótimo do problema (P). E os pontos nos quais o ínfimo é alcançado são soluções ótimas de (P).

Definição 29 Um multiplicador de Kuhn-Tucker (KT) do problema (P) é um vetor $\lambda = (\lambda_1, \dots, \lambda_m) \geq 0$ e tal que

$$\inf \left\{ f\left(x\right) + \lambda_{1} f_{1}\left(x\right) + \ldots + \lambda_{m} f_{m}\left(x\right) : x \in \mathbb{R}^{n} \right\}$$

é finito e igual ao valor ótimo de (P).

Teorema 28 Seja (P) um programa convexo. E λ multiplicador de KT de (P). Seja $h = f_0 + \lambda_1 f_1 + \ldots + \lambda_m f_m$ e $D = \{x : h(x) = \inf h(\mathbb{R}^n)\}$. Seja $I = \{j \le m : \lambda_j = 0\}$, $J = \{j \le m : \lambda_j > 0\}$. Seja D_0 os pontos $\bar{x} \in D$ tais que

$$f_i(\bar{x}) = 0, i \in J$$

$$f_i(\bar{x}) \le 0, i \in I.$$

Então D_0 é o conjunto das soluções ótimas de (P).

Demonstração: Por hipótese, inf $h(\mathbb{R}^n) = \inf f(\mathbb{R}^n)$ é finito. Se $x \in C_0$, $\lambda_i f_i(x) \leq 0, 1 \leq i \leq m$. E portanto

$$f_0(x) + \lambda_1 f_1(x) + \ldots + \lambda_m f_m(x) \le f_0(x) = f(x)$$
.

Então $h(x) \leq f(x)$ para todo x com igualdade se e somente se x é factível e $\lambda_i f_i(x) = 0, i \leq m$. Assim se $i \in J, i \leq m$ temos $\lambda_i > 0$ o que implica $f_i(\bar{x}) = 0$. Então o mínimo de f está contido no mínimo de h e é D_0 .

Comentário 21 $D_0 \neq D$ é possível. Por exemplo se $C = \mathbb{R}^n$ e cada f_i afim. Nesse caso h é afim e tendo ínfimo finito é constante, $D = \mathbb{R}^n$. Mas $D_0 \subset C_0$.

Teorema 29 Seja (P) programa convexo. Suponhamos que o valor ótimo de (P) é finito e existe $x \in \text{ri } C$, factível, que satisfaz as restrições com desigualdade estrita para cada $i \leq m$. Então existe pelo menos um multiplicador de Kuhn-Tucker para (P).

Demonstração: Seja α o valor ótimo de (P). Existe uma solução, $x \in \text{ri } C$, de

$$f_i(x) < 0, 1 \le i \le m.$$

Pela definição de α , o sistema

$$f_0(x) - \alpha < 0, f_1(x) < 0, \dots, f_m(x) < 0$$
 (*)

não tem solução em C. As desigualdades (*) satisfazem as hipóteses do teorema 27. Existem então $\lambda_i \geq 0, 0 \leq i \leq m, (\lambda_0, \dots, \lambda_m) \neq 0$, tais que

$$\lambda_0 \left(f_0 \left(x \right) - \alpha \right) + \lambda_1 f_1 \left(x \right) + \ldots + \lambda_m f_m \left(x \right) \ge 0, x \in C.$$

Necessariamente, $\lambda_0 > 0$ (pois (*) e $(\lambda_0, \dots, \lambda_k) \neq 0$) e então sem perda de generalidade, $\lambda_0 = 1$. Portanto

$$h = f_0 + \lambda_1 f_1 + \ldots + \lambda_m f_m \ge \alpha.$$

Mas $h \leq f_0$ nos pontos factíveis, e portanto inf $h = \alpha$ e $\lambda_1, \ldots, \lambda_m$ são multiplicadores de KT.

Ponto de sela e Lagrangeano

O Lagrangiano do programa convexo (P) é a função $L: \mathbb{R}^m \times \mathbb{R}^n \to [-\infty, \infty],$

$$L\left(u^{*},x\right) = \begin{cases} f_{0}\left(x\right) + \sum_{i=1}^{m} v_{i}^{*} f_{i}\left(x\right) & \text{se} \quad u^{*} \in \mathbb{R}_{+}^{m}, x \in C \\ -\infty & \text{se} \quad u^{*} \notin \mathbb{R}_{+}^{m}, x \in C \\ \infty & \text{se} \quad x \notin C, \end{cases}$$

sendo $u^* = (v_i^*)_{i \leq m}$ multiplicador de KT. Temos L côncava em u^* e convexa em x. O par (\bar{u}^*, \bar{x}) é ponto de sela de L (com respeito a maximizar em u^* e minimizar em x) se

$$L(u^*, \bar{x}) \le L(\bar{u}^*, \bar{x}) \le L(\bar{u}^*, x), \forall u^*, \forall x.$$

Teorema 30 \bar{u}^* é vetor de KT para (P) e \bar{x} solução ótima para (P) se e somente se (\bar{u}^*, \bar{x}) for ponto de sela para o Lagrangiano. Além disso essa condição vale se e somente se \bar{x} e as componentes λ_i de \bar{u}^* satisfazem

a)
$$\lambda_i \geq 0, f_i(\bar{x}) \leq 0 \ e \ \lambda_i f_i(\bar{x}) = 0, 1 \leq i \leq m$$

b)
$$0 \in \partial f_0(\bar{x}) + \lambda_1 \partial f_1(\bar{x}) + \ldots + \lambda_m \partial f_m(\bar{x}).$$

Comentário 22 Se as funções f_i forem diferenciáveis em $\bar{x} \in \text{int } C$ então temos $0 = \nabla f_0(\bar{x}) + \lambda_1 \nabla f_1(\bar{x}) + \ldots + \lambda_m \nabla f_m(\bar{x}).$

Comentário 23 Note que em geral na teoria do consumidor podemos ter soluções na fronteira de C e então o subgradiente de (c) não precisa coincidir com o gradiente. Esta situação acontece no exemplo abaixo.

Exemplo 11 Seja u(x,y) = 2x + y definida para $(x,y) \ge 0$. Sejam p > 0, q > 0. O problema (do consumidor) é

$$\max u(x, y), (x, y) \ge 0,$$

$$px + qy \le 1.$$
(\$)

Para colocar o problema do consumidor no contexto do programa convexo devemos escolher C. Temos $f_0(x,y) = -2x - y + \delta((x,y)|C)$, $f_1(x,y) = px + qy - 1$, dom $f_1 = \mathbb{R}^2$. Se $C = \mathbb{R}^2$ temos ainda $f_2(x,y) = -x$ e $f_3(x,y) = -y$. Mas se $C = \mathbb{R}^2$ não precisamos de f_2 e f_3 . Note para uso posterior que $\partial f_2(x,y) = (-1,0)$ e $\partial f_3(x,y) = (0,-1)$.

1. Primeiro ataque: $C = \mathbb{R}^2$. Nesse caso temos três restrições de desigualdade e o problema é

$$\min -2x - y$$

$$-x \le 0$$

$$-y \le 0$$

$$px + qy - 1 \le 0.$$

O problema pode ser reescrito da forma usual:

$$\max 2x + y$$

$$x \ge 0$$

$$y \ge 0$$

$$px + qy - 1 \le 0.$$

Os multiplicadores de KT do problema $(\lambda_1, \lambda_2, \lambda_3) \geq 0$, são tais que se (\bar{x}, \bar{y}) é solução do problema ótimo,

$$\min -2x - y + \lambda_1 (-x) + \lambda_2 (-y) + \lambda_3 (px + qy - 1)$$

tem solução (\bar{x}, \bar{y}) tal que (a,b,c) acima:

$$f_i(\bar{x}, \bar{y}) \le 0 \ e \ \lambda_i f_i(\bar{x}, \bar{y}) = 0, i = 1, 2, 3$$
$$0 \in \partial f_0(\bar{x}, \bar{y}) + \lambda_1 \partial f_1(\bar{x}, \bar{y}) + \ldots + \lambda_3 \partial f_3(\bar{x}, \bar{y}).$$

Escrevendo como um problema de maximização:

$$\max 2x + y + \lambda_1 x + \lambda_2 y - \lambda_3 (px + qy - 1).$$

E

$$0 = (-2, -1) + \lambda_1 (-1, 0) + \lambda_2 (0, -1) + \lambda_3 (p, q) \implies$$

$$0 = -2 - \lambda_1 + \lambda_3 p$$

$$0 = -1 - \lambda_2 + \lambda_3 q.$$

 $E \lambda_1 \bar{x} = 0$, $\lambda_2 \bar{y} = 0$, $\lambda_3 (p\bar{x} + q\bar{y} - 1) = 0$. É imediato que $\lambda \neq 0$ pois senão o ínfimo de f_0 seria $-\infty$. É necessário considerar casos.

- (a) $\bar{x} > 0$, $\bar{y} > 0$. Então $\lambda_1 = 0 = \lambda_2$ e $\lambda_3 p = 2 = 2\lambda_3 q \implies p = 2q$ e $\lambda_3 = \frac{1}{q}$.
- (b) $\bar{x} > 0$ $e \ \bar{y} = 0$. Então $\lambda_1 = 0$. Logo $\lambda_3 = \frac{2}{p} \ e \ \lambda_2 = -1 + \frac{2q}{p} \ge 0 \implies 2q \ge p$.
- (c) $\bar{x}=0$ e $\bar{y}>0$. $Ent\tilde{ao}$ $\lambda_2=0$ e $\lambda_3=\frac{1}{q}$, $\lambda_1=-2+\frac{p}{q}\geq 0 \implies p\geq 2q$.
- 2. Segundo ataque: Seja $C = \mathbb{R}^2_+$. $f_0(x,y) = -2x y$. $E f_1(x,y) = px + qy 1$ se $(x,y) \ge 0$. Temos $f_1(0,0) = -1 < 0$. Existe então $\lambda > 0$ tal que

$$\min_{(x,y)>0} -2x - y + \lambda \left(px + qy - 1\right)$$

é o ótimo do programa convexo associado. Escrevendo em termos de maximização, se $(\bar{x}, \bar{y}) \geq 0$ é solução de (\$):

$$\max 2x + y - \lambda (px + qy - 1)$$
$$(x, y) \ge 0$$

e

$$\bar{x} \ge 0, \bar{y} \ge 0,$$

 $p\bar{x} + q\bar{y} - 1 = 0.$

Note que $2x + y - \lambda (px + qy - 1) = x (2 - \lambda p) + y (1 - \lambda q)$. Portanto para ter um ótimo é necessário que $2 \le \lambda p$ e $1 \le \lambda q$. Logo $\max \left\{\frac{2}{p}, \frac{1}{q}\right\} \le \lambda$. Mas se tivermos a desigualdade estrita, $\bar{x} = \bar{y} = 0$ que não é ótimo. Assim $\lambda = \max \left\{\frac{2}{p}, \frac{1}{q}\right\}$. Se $\frac{2}{p} > \frac{1}{q}$ então $\bar{y} = 0$ e $\bar{x} = \frac{1}{p}$. Caso $\frac{1}{q} > \frac{2}{p}$ vem $\bar{x} = 0$ e $\bar{y} = \frac{1}{q}$. Se $\frac{2}{p} = \frac{1}{q}$ qualquer combinação $(\bar{x}, \bar{y}) \ge 0$ com $p\bar{x} + q\bar{y} = 1$ é um ótimo.

Para escrever em termos de (c) acima devemos calcular o subgradiente de f_0 nos pontos (x, y) com xy = 0. (exerc.)

Para usar o item (c) acima precisamos de calcular o subgradiente de f_0 nos pontos (x,y) com xy=0. Por exemplo $z^* \in \partial f_0(0,\bar{y})$ se e somente se

$$-2x - y \ge -\bar{y} + z_1^* x + z_2^* (y - \bar{y}), (x, y) \ge 0 \iff z_2^* = -1 \ e \ z_1^* \le -2.$$

Então (c) diz caso $\bar{x} = 0$, $\bar{y} > 0$ (implica $\lambda_2 = 0$).

$$0 = (z_1^*, -1) + \lambda_1 (-1, 0) + \lambda_2 (0, -1) + \lambda_3 (p, q), z_1^* \le -2$$
$$-z_1^* + \lambda_1 = \lambda_3 p$$
$$1 = 1 + \lambda_2 = \lambda_3 q \implies \lambda_1 = z_1^* + \frac{p}{q} \implies p \ge 2q.$$

Fim!