Introduction to Linear Algebra

If you can not render Mathematical formula, please read this Introduction_to_Linear_Algebra.pdf

目录

- 向量
- 矩阵

Vectors

Basic

- 向量常被写作 \overrightarrow{a} 或者 a
- 也可以表示为由起始点指向结束点 $\overrightarrow{AB} = B A$
- 同时具有方向和大小 (方向和长度)
- 没有起始位置,表示两个点的相对关系
- 向量的长度表示为 $\|\overrightarrow{a}\|$

单位向量 (Unit vector)

- 长度为1, $\|\overrightarrow{a}\| = 1$
- 求某个向量 \overrightarrow{a} 的单位向量: $\hat{a} = \overrightarrow{a}/\|\overrightarrow{a}\|$
- 我们一般默认单位向量表示方向,这一点被计算机图形学广泛使用

向量求和

• 几何表示: 如图, 根据平行四边形法则或三角形法则求和

• 代数表示: 坐标值直接相加即可 (参照下面的坐标系表示向量)

• $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$, 相减时可以转换为做加法

向量的坐标系表示

- 向量可以用坐标系 (常用正交坐标系) 表示
- 表示时默认向量的起始位置在原点

图形学中默认向量为列向量: ${f A}=egin{pmatrix} x \ y \end{pmatrix}$

转置,行列互换: $\mathbf{A}^{\mathrm{T}}=\left(x,y
ight)$

равинеров разинеров рази

向量的乘法

点乘

$$\overrightarrow{a} \cdot \overrightarrow{b} = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \cos \theta$$

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}$$

对于单位向量来说: $\cos heta = \hat{a} \cdot \hat{b}$

性质

・
$$_{\circ }$$
 \overrightarrow{Q} \overrightarrow{b} \overrightarrow{b} \overrightarrow{b} \overrightarrow{b} \overrightarrow{a}

・结合律:
$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$$
・分配率: $(k\overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (k\overrightarrow{b}) = k(\overrightarrow{a} \cdot \overrightarrow{b})$

・分配率:
$$(k\overrightarrow{a})\cdot\overrightarrow{b}=\overrightarrow{a}\cdot(k\overrightarrow{b})=k(\overrightarrow{a}\cdot\overrightarrow{b})$$

坐标表示

・2维:
$$\overrightarrow{a}\cdot\overrightarrow{b}=egin{pmatrix}x_a\\y_a\end{pmatrix}\cdot egin{pmatrix}x_b\\y_b\end{pmatrix}=x_ax_b+y_ay_b$$
・3维: $\overrightarrow{a}\cdot\overrightarrow{b}=egin{pmatrix}x_a\\y_a\\z_a\end{pmatrix}\cdot egin{pmatrix}x_b\\y_b\\z_b\end{pmatrix}=x_ax_b+y_ay_b+z_az_b$

• 获取两个向量之间的夹角

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}$$

• 获取一个向量在另一个向量上的投影

定义 $\overrightarrow{b}_{\perp}$ 是 \overrightarrow{b} 在 \overrightarrow{a} 上的投影 显然, $\overrightarrow{b}_{\perp}$ 属于 \overrightarrow{a} (或者说是属于 \widehat{a}), $\overrightarrow{b}_{\perp}=k\widehat{a}$ $k=\|\overrightarrow{b}_{\perp}\|=\|\overrightarrow{b}\|$

• 将向量按某个方向垂直和水平的分解

将 \overrightarrow{b} 投影到 \overrightarrow{a} 方向上,得到水平的分解量: $\overrightarrow{b}_{\perp}$ 设垂直分量为 \overrightarrow{b}_n ,显然 $\overrightarrow{b}=\overrightarrow{b}_{\perp}+\overrightarrow{b}_n$ 移项得到垂直分量: $\overrightarrow{b}-\overrightarrow{b}_{\perp}$

• 判断向量相较于另一方向是向前还是向后

 \overrightarrow{b} 相对于 \overrightarrow{a} 是朝前的: $\overrightarrow{a} \cdot \overrightarrow{b} > 0$ \overrightarrow{c} 相对于 \overrightarrow{a} 是朝后的: $\overrightarrow{a} \cdot \overrightarrow{b} < 0$

叉乘

两个向量叉乘获得一个垂直于原向量的一个新向量

方向:右手螺旋定则:握手比大拇指的,四指按图中 \overrightarrow{a} 朝向 \overrightarrow{b} 的逆时针方向握,大拇指自然指向上,大拇指方向就是叉乘向量的方向

жи:
$$\|\overrightarrow{a} imes \overrightarrow{b}\| = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \sin heta$$

性质

$$\begin{array}{ccc}
\circ \overrightarrow{z} \times \overrightarrow{x} = + \overrightarrow{y} \\
\circ \overrightarrow{x} \times \overrightarrow{z} = - \overrightarrow{y}
\end{array}$$

・ 性质二:
$$\overrightarrow{a} imes \overrightarrow{a} = \overrightarrow{0}$$

・ 性质三:
$$\overrightarrow{a} imes (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} imes \overrightarrow{b} + \overrightarrow{a} imes \overrightarrow{c}$$

・性质四:
$$\overrightarrow{a} imes k \overrightarrow{b} = k (\overrightarrow{a} imes \overrightarrow{b})$$

坐标表示

$$\overrightarrow{a} imes \overrightarrow{b} = egin{pmatrix} y_a z_b - y_b z_a \ z_a x_b - x_a z_b \ x_a y_b - y_a x_b \end{pmatrix}$$

这里先列出矩阵表示:

$$\overrightarrow{a} imes\overrightarrow{b}=\mathbf{A}\overrightarrow{b}=egin{pmatrix}0&-z_a&y_a\z_a&0&-x_a\-y_a&x_a&0\end{pmatrix}egin{pmatrix}x_b\y_b\z_b\end{pmatrix}$$

图形学中的应用

• 判断向量在另一个向量的左边还是右边

 $\overrightarrow{a} \times \overrightarrow{b}$ 为正: \overrightarrow{b} 在 \overrightarrow{a} 的右侧 $\overrightarrow{a} \times \overrightarrow{b}$ 为负: \overrightarrow{b} 在 \overrightarrow{a} 的左侧

• 判断点P在三角形内还是外

- 。 计算 $(\overrightarrow{AP} \times \overrightarrow{AB})$ 、 $(\overrightarrow{BP} \times \overrightarrow{BC})$ 、 $(\overrightarrow{CP} \times \overrightarrow{CA})$ 得到的三个向量是否同向 ABC三个点必须按顺时针或者逆时针取边的向量
- 。 如果同向,则点P在三角形内,否则点P就在三角形外

Matrices

图形学中常用矩阵来表示变换信息

• 平移、旋转、缩放、切变等

Basic

- 矩阵是什么: m行n列的实数集,被称作 $m \times n$ 的矩阵
 - 。 一个3 × 2的矩阵:

$$\mathbf{M} = \begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix}$$

- 数的加法和乘法:
 - 。 矩阵**M**加上一个数k:

$$k+\mathbf{M}=egin{pmatrix} 1+k&3+k\ 5+k&2+k\ 0+k&4+k \end{pmatrix}$$

。 矩阵**M**乘上一个数k:

$$k\mathbf{M} = egin{pmatrix} 1k & 3k \ 5k & 2k \ 0 & 4k \end{pmatrix}$$

• 矩阵的加法:

矩阵只有行列相同时才能相加减, $m \times n$ 的矩阵相加:

$$\mathbf{M} + \mathbf{M} = 2M = egin{pmatrix} 1+1 & 3+3 \ 5+5 & 2+2 \ 0+0 & 4+4 \end{pmatrix} = egin{pmatrix} 2 & 6 \ 10 & 4 \ 0 & 8 \end{pmatrix}$$

矩阵乘法

矩阵需要前矩阵的列数等于后矩阵行数才能相乘: $(M \times \mathbf{N})(\mathbf{N} \times P) = (M \times P)$ 来看一下这个例子:

$$\begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3 \end{pmatrix} = \begin{pmatrix} 9 & 27 & 33 & 13 \\ 10 & 44 & 61 & 26 \\ 0 & 28 & 32 & 12 \end{pmatrix}$$

- $(3 \times 2)(2 \times 4) = (3 \times 4)$, 结果必然是3行4列
- 令 $\mathbf{Result}(i,j)$ 为结果矩阵 \mathbf{Result} 的第 i 行第 j 列的数,它的值为**前矩阵第** i **行的元素和后矩阵第** j **列的元素——对应相乘的和**

例如结果矩阵第 1 行第 2 列的数 $\mathbf{Result}(1,2) = 1 \times 6 + 3 \times 7 = 27$

性质

- 没有交换律,有一下两点说明:
 - 。 从乘法的约束来说: $(M \times \mathbf{N})(\mathbf{N} \times P) = (M \times P)$,如果 $M \neq P$,交换之后根本不能相乘
 - 。 从乘法的定义来说: $(M \times \mathbf{N})(\mathbf{N} \times M) = (M \times M)$, 交换之后的结果为 $(N \times N)$
 - 这里举一个 (3 × 3)(3 × 3) 的例子:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 & 6 \\ 4 & 5 & 6 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 24 & 30 & 36 \\ 24 & 30 & 36 \\ 24 & 30 & 36 \end{pmatrix} \neq$$

$$\begin{pmatrix} 4 & 5 & 6 \\ 4 & 5 & 6 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 15 & 30 & 45 \\ 15 & 30 & 45 \\ 15 & 30 & 45 \end{pmatrix}$$

- 这里的例子同时也可以说明 MVP 变换为什么不能随意的交换顺序
- 结合律

$$(\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

• 分配率

$$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

 $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$

矩阵和向量相乘

把向量看成 $m \times 1$ 的矩阵 (或 $1 \times m$ 的矩阵) 来做乘法:

• 左乘: 矩阵在向量的左侧, 即 $(n \times m)(m \times 1)$

• 右乘: 矩阵在向量的右侧, 即 $(1 \times m)(m \times n)$

图形学中,根据向量的结构定义 ($m \times 1$ 或 $1 \times m$) 采取左乘或者右乘进行计算 并且,我们希望做完乘法后,得到的结果仍然是一个维度不变的向量,因此矩阵往往是 $m \times m$ 的形式

举一个例子, 2维向量绕 y 轴旋转:

$$\left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight) \left(egin{array}{cc} x \ y \end{array}
ight) = \left(egin{array}{cc} -x \ y \end{array}
ight)$$

转置

将矩阵转置,就是将该矩阵的行列互换:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

比较特别的一点:

$$(AB)^T = B^T A^T$$

矩阵的逆

- 单位矩阵
 - 。 对角线上的元素为1,其余的元素为0的方阵 (行列数相同的矩阵)

$$oldsymbol{I}_{3 imes 3} = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}$$

- 逆矩阵
 - 。 矩阵 A 和它的逆矩阵 A^{-1} 相乘的结果为单位矩阵 I

$$AA^{-1} = A^{-1}A = I$$

 $(AB)^{-1} = B^{-1}A^{-1}$

向量乘法的矩阵表示

• 向量点乘

$$oldsymbol{eta} \cdot \overrightarrow{b} = \overrightarrow{a}^T \overrightarrow{b} = ig(x_a \quad y_a \quad z_aig) egin{pmatrix} x_b \ y_b \ z_b \end{pmatrix} = ig(x_a x_b + y_a y_b + z_a z_big)$$

• 向量叉乘

$$oldsymbol{\circ} oldsymbol{\overrightarrow{a}} imes oldsymbol{\overrightarrow{b}} = oldsymbol{A} * b = egin{pmatrix} 0 & -z_a & y_a \ z_a & 0 & -x_a \ -y_a & x_a & 0 \end{pmatrix} egin{pmatrix} x_b \ y_b \ z_b \end{pmatrix}$$