Problem 1

	Z	² P _{1/2} (eV)	² P _{3/2} (eV)	ΔE (eV)	ζ (eV)
ΗI	1	10.1988057	10.1988511	4.54E-05	4.53058E-05
He ⁺	2	40.813029	40.8137552	0.0007262	0.000724892
Li ⁺⁺	3	91.8393488	91.843026	0.0036772	0.003669766
Be ⁺⁺⁺	4	163.284606	163.296231	0.011625	0.011598274
B ⁺⁺⁺⁺	5	255.159221	255.187609	0.028388	0.028316098

Problem 2

	Z	singlet	triplet	ΔE (eV)
He	2	20.6157736	19.8196134	0.7961602
Li ⁺	3	60.92268	59.020812	1.901868
Be ⁺⁺	4	121.651	118.591	3.06
B ⁺⁺⁺	5	202.8034	198.5663	4.2371

 $\begin{array}{ccc} & R_{OH} \left(a_0 \right) & \theta \\ \text{Experimental} & 0.958 & 104.5 \\ \text{Gaussian} & 0.96666657 & 107.6799801 \end{array}$

The bond distance yields and error of 1%; the angle, 3%.

Oribital Energies for the gound state configuration:

Sym Species	No	Exp. Freq (A)	Gaussian (A)
a_1	1	3657	3812
a_1	2	1595	1799
b_1	3	3756	3945