In this document, we compare LibMTL and the recent popular implementations (i.e., $CAGrad^1$ and $Nash-MTL^2$). There are something required special attention as follows.

- We comment out the code about reproducibility (https://github.com/median-research-group/LibMTL/blob/main/LibMTL/utils.py#L18-L20) for faster running speed;
- Each experiment is repeated over three random seeds and the average value is reported.

Table 1: Hyperparameters Configuration.

	Configuration						
common	GPU: NVIDIA GeForce RTX 3090 multi_input: False; aug: True train_bs: 2; test_bs: 2; epochs: 200 optim: Adam; lr: 0.0001; weight_decay: 0.0 scheduler: step; step_size: 100; gamma: 0.5						
MGDA	rep_grad: False; mgda_gn: none						
DWA	T: 2						
GradDrop	leak: 0.0						
CAGrad	calpha: 0.5; rescale: 1						
Nash-MTL	update_weights_every: 1 optim_niter: 20; max_norm: 1.0						

Table 2: Performance on the NYUv2 dataset with 3 tasks on SegNet+MTAN architecture.

		Segmen	ntation	Depth		Normal				
		T T14	D4 4	A TEL	DE I	Angle Distance		Within t°		
		mIoU↑ PAcc↑		AErr↓	RErr↓	Mean↓	MED↓	11.25 ↑	22.5↑	30↑
EW	[4,6]	39.29	65.33	0.5493	0.2263	28.15	23.96	22.09	47.50	61.08
	LibMTL	40.89	66.14	0.5524	0.2347	27.27	22.41	24.38	50.18	63.36
DWA [5]	[6]	39.11	65.31	0.5510	0.2285	27.61	23.18	24.17	50.18	62.39
	LibMTL	40.50	65.65	0.5358	0.2222	27.58	22.93	23.30	49.16	62.57
UW [2]	[6]	36.87	63.17	0.5446	0.2260	27.04	22.61	23.54	49.05	63.65
	LibMTL	39.34	64.88	0.5294	0.2242	26.47	21.30	25.86	52.40	65.47
MGDA [7]	[4,6]	30.47	59.90	0.6070	0.2555	24.88	19.45	29.18	56.88	69.36
	LibMTL	29.91	60.06	0.5901	0.2432	24.55	18.63	30.49	58.02	70.14
PCGrad [8]	[4,6]	38.06	64.64	0.5550	0.2325	27.41	22.80	23.86	49.83	63.14
	LibMTL	40.61	65.89	0.5416	0.2287	26.97	22.05	24.68	50.90	64.05
GradDrop [1]	[4,6]	39.39	65.12	0.5455	0.2279	27.48	22.96	23.38	49.44	62.87
	LibMTL	40.00	65.61	0.5886	0.2517	28.05	23.54	22.81	48.01	61.33
CAGrad [4]	[4,6]	39.79	65.49	0.5486	0.2250	26.31	21.58	25.61	52.36	65.58
	LibMTL	41.27	66.70	0.5409	0.2356	25.35	19.81	28.44	55.47	68.05
Nash-MTL [6]	[6]	40.13	65.93	0.5261	0.2171	25.26	20.08	28.40	55.47	68.15
	LibMTL	40.66	66.25	0.5339	0.2266	25.11	19.59	28.70	55.97	68.52
RLW [3]	[6]	37.17	63.77	0.5759	0.2410	28.27	24.18	22.26	47.05	60.62
	LibMTL	38.82	64.45	0.5718	0.2366	28.09	23.65	22.54	47.76	61.27

¹https://github.com/Cranial-XIX/CAGrad

²https://github.com/AvivNavon/nash-mtl

References

- [1] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign dropout. In *Neural Information Processing Systems*, 2020.
- [2] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2018.
- [3] Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random weighting: A litmus test for multi-task learning. *Transactions on Machine Learning Research*, 2022.
- [4] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-task learning. In *Neural Information Processing Systems*, 2021.
- [5] Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2019.
- [6] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and Ethan Fetaya. Multi-task learning as a bargaining game. In *International Conference on Machine Learning*, 2022.
- [7] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In *Neural Information Processing Systems*, 2018.
- [8] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery for multi-task learning. In *Neural Information Processing Systems*, 2020.