Basis Sets and Density Functionals

MERCURY Workshop 2025

Simplest wavefunction with anti-symmetry

Slater Determinant of single particle functions

$$\Psi_{e} = \Psi(r_1, r_2, \dots, r_n; R)$$

$$\Psi_{HF} = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_{1}(\mathbf{r_{1}}) & \psi_{2}(\mathbf{r_{1}}) & \cdots & \psi_{n}(\mathbf{r_{1}}) \\ \psi_{1}(\mathbf{r_{2}}) & \psi_{2}(\mathbf{r_{2}}) & \cdots & \psi_{n}(\mathbf{r_{2}}) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}(\mathbf{r_{n}}) & \psi_{2}(\mathbf{r_{n}}) & \cdots & \psi_{n}(\mathbf{r_{n}}) \end{vmatrix}$$

$$= |\psi_1 \psi_2 \dots \psi_n\rangle = |1,2 \dots n\rangle$$

Ground state has all electrons in lowest energy orbitals

Hartree-Fock:Single determinant wavefunction

In Practice...

• Represent 1 electron orbitals using a basis set

$$\psi_i = \sum_{\mu} c^i_{\mu} \, \chi_{\mu}$$

Basis functions are known, optimize coefficients only

Basis Sets

Basis Set

Set of known functions used to describe unknown functions (e.g. molecular orbitals)

- In principle any sufficiently large basis gives same results
- Requires infinite number of functions to get exact solution

Basis Functions

Slater type orbitals (STOs) $R(r) = Nr^{n-1}e^{-\zeta r}$ $\phi_{\zeta,n,l,m}^{STO}(r,\theta,\phi) = R(r)Y_{l,m}(\theta,\phi)$

Basis Functions

Gaussian type orbitals (GTOs)

$$R(r) = Nr^{n-1}e^{-\zeta r^2}$$

$$\phi_{\zeta,n,l,m}^{GTO}(r,\theta,\phi) = R(r)Y_{l,m}(\theta,\phi)$$

Basis Functions

Basis sets

- Minimal Basis: single basis function for each atomic orbital on each atom in the system
 - ⇒ STO-3G, STO-4G, etc.
 - ⇒ Give approximate but not very accurate results
- Double zeta: two basis functions for each atomic orbital on each atom in the system
- Triple zeta: 3 basis functions for each atomic orbital on each atom in the system
- Split-Valence: Treat valence electrons more accurately than core electrons
 - ⇒ 6-31G, cc-pVDZ, etc.

Basis sets

- Polarization Functions:
 - ⇒ Add extra angular momentum terms to better describe bonding

- Diffuse functions:
 - ⇒ Add extra "high principle quantum number" states to better describe anions and excited states

Self-Consistent Field (Hartree-Fock) Method

- Method used to find "best" unknown wavefunction in terms of known gaussian functions
- Computers can solve these types of problems very efficiently

Restricted and Unrestricted HF

Restricted and Unrestricted HF

Electron Correlation

HF theory treats electrons in average field of other electrons, electron correlation is missing $E_{corr} = E_{exact} - E_{HF}$

Average Field

Electron Correlation

Electron Correlation

- Increasing electron correlation
 - ⇒ Perturbation theory (dynamic correlation)
 - ⇒ Variational method with more than one determinant (static correlation)

Beyond Hartree-Fock

Density Functional Theory

Time-Independent Schrödinger Equation

Hamiltonian
$$\widehat{H}\Psi = E\Psi$$
 Wavefunction $\Psi_e = \Psi(r_1, r_2, ..., r_n; R)$

Benzene

 $N = 42 e^{-}$

Degrees of Freedom

3N = 126

Single-determinant Wavefunction

 $N! = 1.4 \times 10^{51} \text{ terms}$

Density Functional Theory

Time-Independent Schrödinger Equation

Hamiltonian
$$\widehat{H}\Psi=E\Psi$$
 Wavefunction $\Psi_e=\Psi(r_1,r_2,...,r_n;R)$

$$\rho(\mathbf{r}) = |\Psi^2| = n \int d\mathbf{r}_2 \dots \int d\mathbf{r}_n \, \Psi^*(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_n; \mathbf{R}) \, \Psi(\mathbf{r}, \mathbf{r}_2, \dots, \mathbf{r}_n; \mathbf{R})$$

Density Functional Theory

- Many dimensional wavefunction ⇒ 3D density
- In principle DFT is exact (Hohenberg-Kohn Theorems)

$$\widehat{H}_{e} = \widehat{T}_{e} + \widehat{V}_{Ne} + \widehat{V}_{ee}$$

$$E[\rho(\mathbf{r})] = (T_{\mathbf{e}} + E_{N\mathbf{e}} + E_{\mathbf{e}\mathbf{e}}) [\rho(\mathbf{r})]$$

In practice use Kohn-Sham Method

$$E_{KS}[\rho(\mathbf{r})] = (T_S + E_{Ne} + E_I + E_{XC}) [\rho(\mathbf{r})]$$

Assessment of Correlated Methods

Method	Av. Error (kcal/mol) vs FCI	Approx. Time Factor
HF	5-30	ON ²⁻³
DFT	2-10	ON ³
MP2	17.4	ON ⁴
MP3	14.4	
MP4	3.7	ON ⁵
MP5	3.2	
CISD	13.8	ON ⁶
CCSD	4.4	
CCSD(T)	0.7	O ² N ⁷
CCSDT	0.5	O ² N> ⁷
CCSDTQ	0.0	O ² N>> ⁷

Minimum requirements for Quantum Chemistry calculations

- 1. Starting structure
- 2. Type of calculation
 - ⇒ Energy
 - ⇒ Geometry optimization (molecular structure)
 - ⇒ Frequencies (confirm minimum, IR)
 - □ Transition states
 - ⇒ etc.
- Method
 - ⇒ HF, DFT, MP2, CCSD, etc.
- 4. Basis set
 - ⇒ 6-31G, cc-pVTZ, etc.

Cyanine dye exercise before tomorrow morning

1. Optimize geometry

- ⇒ Quick option HF/PM3
- → More accurate B3LYP/6-31G*

1,1'-diethyl-2,2'-cyanine iodide

2. Calculate excited states (single-point)

- ⇒ Quick option HF/3-21G
- → More accurate B3LYP/6-311+G**

Notes

- ⇒ Remove I-, run with +1 charge
- ⇒ Can use other levels of theory...expect ~1 hr for "more accurate" options
- ⇒ Run with 8 processor cores
- ⇒ Ok to run multiple jobs simultaneously if logged in
- ⇒ Follow jobs under "Dashboard"

Cyanine dye exercise before tomorrow morning

1,1'-diethyl-2,2'-cyanine iodide

1,1'-diethyl-2,2'-carbocyanine iodide

1,1'-diethyl-2,2'-dicarbocyanine iodide