Week 4 flow

 Supervised learning and unsupervised learning crash course 1

Supervised and unsupervised learning crash course I

IOAI Training and Selection Programme 2025 Apr 12, 2025 Sat

Recap

Classification vs regression

Regression = predict real-valued numbers

Diabetes dataset from scikit-learn

	age	sex	bmi	рр	ST	SZ	S3	S4	S5	sb	target
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019908	-0.017646	151.0
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068330	-0.092204	75.0
2	0.085299	0.050680	0.044451	-0.005671	-0.045599	-0.034194	-0.032356	-0.002592	0.002864	-0.025930	141.0
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022692	-0.009362	206.0
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031991	-0.046641	135.0

Iris dataset from scikit-learn

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
95	5.7	3.0	4.2	1.2	1
96	5.7	2.9	4.2	1.3	1
97	6.2	2.9	4.3	1.3	1

Classification = predict discrete classes

Regression and classification are supervised learning tasks

Supervised = guided by labels

Group these datapoints

Group these datapoints (cont)

Linear Regression

- MSE loss
- Use from sklearn.linear_model

Linear Regression with extra sauce

- L1 regularization = MSE loss + $\lambda \sum |a_i|$
- L2 regularization = MSE loss + $\lambda \sum a^2$
- Tons of variation in sklearn, go explore bah

Logistic regression

Logistic function

- Linear model
- Uses logistic loss (binary xent)
- Now a classifier!
- Use from sklearn.linear_model

Support Vector Machines

- Aims to find max margin by minimizing hinge loss
- Non-parametric by nature
- Commonly used for classification but works on regression
- Can model non-linear behaviour through kernel methods

Support Vector Machines (cont)

- Common kernels: radial basis function kernel, polynomial kernel
- Effectively has built-in feature engineering
- Was very powerful back in the day for embedding input features into a higher dimension
- Use from sklearn.svm

Decision Trees

- Literally a bunch of "ifelse"
- Decision trees have low bias, which is a useful property when ensembling
- Don't use this on its own!

Bias vs variance tradeoff

- High bias = model underfit
- High variance = model overfit, too sensitive to small changes to values in the dataset
- Decision trees have low bias (are weak learners) and have high variance

Random Forest

- Ensemble trees trained on different samples of data (bootstrap sampling)
- Trees only consider random subsets of features
- Majority vote for classification
- Average predictions for regression
- Non-parametric
- Use from sklearn.ensemble

Gradient Boosted Decision Trees

Imagine if your models keep making mistakes like underpredict. Can I just make another model that predicts the mistake, so that I can add a correction factor?

- .. yes
- Use from lightgbm or xgboost

Difference between metrics and loss functions

Meaningful to ...

Purpose

To be an interpretable measure of model performance

Most important

Magnitude

Loss functions

Metrics

To train networks

Common metrics for regression

relatively high.

R², coefficient of determination*

In statistics, the **coefficient of determination**, denoted R^2 or r^2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

 $*R^2$ tends to have slightly conflicting explanations online, because of how the term R^2 is used across different fields.

See https://towardsdatascience.com/explaining-negative-r-squared-17894ca26321

Common metrics for classification

Context: Sorting e gold coins ns from gold paper

Accuracy How many e gold coins are predicted as gold coins

How many chocolate coins ns are predicted as

chocolate coins

Precision How many of the gold coins ms I picked,

actually are e gold coins ns?

Recall How many of the actual e gold coins is did I manage

to get?

F1-score $F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$

Different contexts require different metrics!

Common metrics for classification (cont)

Confusion matrix

		Predicted condition		
	Total population $= P + N$	Predicted Positive (PP)	Predicted Negative (PN)	
Actual condition	Positive (P) [a]	True positive (TP), hit ^[b]	False negative (FN), miss, underestimation	
	Negative (N) [d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection ^[e]	

Area Under Receiver Operating Characteristic Curve

Regression and classification are two sides of the same coin

- Hope you realize there isn't a super clear line between regression vs classification
- There isn't a dichotomy where everything is either regression or classification
- I skipped a lot of material, go read the book: https://github.com/harvard-ml-courses/cs181-textbook/blob/master/Textbook.pdf