Numerical Analysis Homework #9

due 2020 JUN 09, 9:50 a.m.

1 Assignments

Caution:

- To get full credit, you must write down sufficient intermediate steps, only giving the final answer earns you no credit!
- Please make sure that your handwriting is recognizable, otherwise you only get partial credit for the recognizable part.
- I. Simpson's rule.
 - (a) Show that on [-1,1] Simpson's rule can be obtained as follows

$$\int_{-1}^{1} y(t)dt = \int_{-1}^{1} p_3(y; -1, 0, 0, 1; t)dt + E^{S}(y),$$

where $y \in C^4[-1,1]$ and $p_3(y;-1,0,0,1;t)$ is the interpolation polynomial of y with interpolation conditions $p_3(-1) = y(-1)$, $p_3(0) = y(0)$, $p_3'(0) = y'(0)$, and $p_3(1) = y(1)$.

- (b) Derive $E^S(y)$.
- (c) Using (a), (b) and a change of variable, derive the composite Simpson's rule and prove the theorem on its error estimation.
- II. Estimate the number of subintervals required to approximate $\int_0^1 e^{-x^2} \mathrm{d}x$ to 6 correct decimal places, i.e. the absolute error is no greater than 0.5×10^{-6} ,
 - (a) by the composite trapezoidal rule,
 - (b) by the composite Simpson's rule.
- III. Gauss-Laguerre quadrature formula.
 - (a) Construct a polynomial $\pi_2(t) = t^2 + at + b$ that is orthogonal to \mathbb{P}_1 with respect to the weight function $\rho(t) = e^{-t}$, i.e.

$$\forall p \in \mathbb{P}_1, \qquad \int_0^{+\infty} p(t)\pi_2(t)\rho(t)\mathrm{d}t = 0.$$

 $(hint: \int_0^{+\infty} t^m e^{-t} dt = m!)$

(b) (10 points) Derive the two-point Gauss-Laguerre quadrature formula

$$\int_0^{+\infty} f(t)e^{-t}dt = w_1 f(t_1) + w_2 f(t_2) + E_2(f)$$

and express $E_2(f)$ in terms of $f^{(4)}(\tau)$ for some $\tau > 0$.

(c) Apply the formula in (b) to approximate

$$I = \int_0^{+\infty} \frac{1}{1+t} e^{-t} dt.$$

Use the remainder to estimate the error and compare your estimate with the true error. With the true error, identify the unknown quantity τ contained in $E_2(f)$.

(hint: use the exact value $I = 0.596347361 \cdots$)

The above four problems weigh 15, 10, and 20 points, respectively.

2 C++ programming

Write a C++ function to perform discrete least square via QR factorization. Your algorithm should take as input the maximum degree of the fitting polynomial, three or more data pairs (x_i, y_i) , and output coefficients of the fitted polynomial.

Run your subroutine on the following data.

Train John Subroutine on the following data.							
X	0.0	0.5	1.0	1.5	2.0	2.5	3.0
У	2.9	2.7	4.8	5.3	7.1	2.5 7.6	7.7
X	3.5	4.0	4.5	5.0	5.5	6.0	6.5
У	7.6	9.4	9.0	9.6	10.0	6.0 10.2	9.7
X	7.0	7.5	8.0	8.5	9.0	9.5	10.0
у	8.3	8.4	9.0	8.3	6.6	9.5 6.7	4.1

In the notes, the condition number of a matrix A is defined as

$$\operatorname{cond}_{A}(\mathbf{x}) = ||A|| ||A^{-1}||.$$

Report the condition number based on the 2-norm of the matrix G in the normal-equation approach (reuse results of your previous homework!) and that of the matrix R_1 in the QR-factorization approach, verifying that the former is much larger than the latter.

This programming assignment weighs 10 points. Thus the total number of points is 55 for this homework.

3 Extra credits

Additional 10% credits will be given to you if you type-set your solutions in \LaTeX . You are welcome to use the \LaTeX template available on my webpage. You can also get partial extra credit for typesetting solutions of some problems.

Note: If you choose to typeset your solutions in LATEX, you still need to turn in a hard copy in class. In addition, please upload your latex source (.tex), supporting files, and C++ program in a single zip file (format: YourName_Homework9.zip) to the course email NumApproximation@163.com.