Computer Vision I:

Jingya Wang

Email: wangjingya@shanghaitech.edu.cn

Linear filtering

Types of Images

Source: Ulas Bagci

Binary image representation

Source: Ulas Bagci

Grayscale image representation

Color Image - one channel

Source: Ulas Bagci

Color image representation

Source: Ulas Bagci

Motivation: Image denoising • How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

1	1	1	1	
	1	1	1	
9	1	1	1	

"box filter"

Source: D. Lowe

Defining convolution

• Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f*g)(x,y) = \sum_{i=-k}^k \sum_{j=-k}^k f(x-i,y-j) \cdot g(i,j)$$

Convention: kernel is "flipped"

About the kernel

- 1. The kernel size should be odd, then it has a kernel center and a kernel radius
- 2. The sum of all the elements in the kernel should be 1, otherwise,
- >1, the image becomes brighter
- <1, the image becomes darker

• 3. After convolution, some values may be greater than 255 or less than 0, let the values be min(value, 255) or max(value, 0)

Key properties

- Linearity: filter $(f_1 + f_2)$ = filter (f_1) + filter (f_2)
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Source: S. Lazebnik

Dealing with edges

- What about missing pixel values?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):

```
– clip filter (black): imfilter(f, g, 0)
```

– wrap around: imfilter(f, g, 'circular')

– copy edge: imfilter(f, g, 'replicate')

reflect across edge: imfilter(f, g, 'symmetric')

Original

0	0	0
0	1	0
0	0	0

?

Original

160

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

Original

0	0	0
0	0	1
0	0	0

Shifted *left*By 1 pixel

Original

1	1	1	1
<u>-</u>	1	1	1
9	1	1	1

?

Original

Blur (with a box filter)

0	0	0	1	1	1	1
0	2	0	<u>-</u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

?

Original

Sharpening filter

 Accentuates differences with local average

Sharpening

before after

Sharpening

What does blurring take away?

Let's add it back:

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Source: S. Lazebnik

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Source: C. Rasmussen

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$\sigma = 2 \text{ with } 30 \times 30 \text{ kernel}$$

$$\sigma = 5 \text{ with } 30 \times 30 \text{ kernel}$$

 \bullet Standard deviation σ : determines extent of smoothing

Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Source: S. Lazebnik

Gaussian vs. box filtering

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small-σ kernel, repeat, and get same result as larger-σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	1
2	4	2	=	2				
1	2	1		1				

Perform convolution along rows:

Followed by convolution along the remaining column:

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

Original

Impulse noise

Salt and pepper noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

What's wrong with the results?

Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

filters have width 5: **INPUT** MEDIAN MEAN

Source: K. Grauman

Median filter

• MATLAB: medfilt2(image, [h w])

Source: M. Hebert

Gaussian vs. median filtering

Review: Image filtering

- Convolution
- Image smoothing
- Gaussian filter
- Nonlinear filtering

Application: Hybrid Images

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Changing expression

Sad ----- Surprised

Application: Hybrid Images

Gaussian Filter

Laplacian Filter

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006 •Thank you!