

Art of Problem Solving 1999 USAMO

USAMO 1999

Day 1	April 27th
1	Some checkers placed on an $n \times n$ checkerboard satisfy the following conditions:
	(a) every square that does not contain a checker shares a side with one that does;
	(b) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side.
	Prove that at least $(n^2 - 2)/3$ checkers have been placed on the board.
2	Let $ABCD$ be a cyclic quadrilateral. Prove that
	$ AB - CD + AD - BC \ge 2 AC - BD .$
3	Let $p>2$ be a prime and let a,b,c,d be integers not divisible by p , such that $\left\{\frac{ra}{p}\right\}+\left\{\frac{rb}{p}\right\}+\left\{\frac{rc}{p}\right\}+\left\{\frac{rd}{p}\right\}=2$
	for any integer r not divisible by p . Prove that at least two of the numbers $a+b,\ a+c,\ a+d,\ b+c,\ b+d,\ c+d$ are divisible by p . (Note: $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x .)
Day 2	April 27th
4	Let $a_1, a_2, \ldots, a_n \ (n > 3)$ be real numbers such that
	$a_1 + a_2 + \dots + a_n \ge n$ and $a_1^2 + a_2^2 + \dots + a_n^2 \ge n^2$.
	Prove that $\max(a_1, a_2, \dots, a_n) \geq 2$.
5	The Y2K Game is played on a 1×2000 grid as follows. Two players in turn write either an S or an O in an empty square. The first player who produces three consecutive boxes that spell SOS wins. If all boxes are filled without producing SOS then the game is a draw. Prove that the second player has a winning strategy.

Art of Problem Solving 1999 USAMO

6

Let ABCD be an isosceles trapezoid with $AB \parallel CD$. The inscribed circle ω of triangle BCD meets CD at E. Let F be a point on the (internal) angle bisector of $\angle DAC$ such that $EF \perp CD$. Let the circumscribed circle of triangle ACF meet line CD at C and G. Prove that the triangle AFG is isosceles.

These problems are copyright © Mathematical Association of America (http://maa.org).