Junos inline-monitoring (IMON)

David Roy – Orange AS 3215 Feb. 2021

Who am I?

- Senior Network Support Engineer at Orange (AS 3215 French Domestic and Mobile Backbone)
- Work with big routers: especially Juniper & Nokia SROS devices
- Passionate by networking (design/testing/troubleshooting) and for some time now by development (Python & I'm currently learning Go)
- Wrote several Juniper Day One Books and The MX Series 2nd Edition Book
- JNCIEx3
- Twitter: @door7302
- ... and Sponge Bob fan ③

What?

What is Inline Monitoring aka. IMON?

What is Inline Monitoring aka. IMON?

Yet Another Next Generation sampling solution?

No. It's not really the sampling YANG © but ...

This feature tries to leverage the best things of other "sampling" technologies to build a flexible and scalable monitoring solution

Offload complex post processing tasks on collector side

Current features list

- □ Supported on all MX (including MX10k) Platforms / Linecards (ZT ASIC supported since 20.4) and vMX
- Packet sampling: capture packets from the Ethernet Header: 64B up to 126B (configurable)
- Add metadata: Input / Output Interface Index / Direction / Original packet size.
- ☐ Use IPFIX "container" + leverages IPFIX templating (easy to add metadata in the future)
- No latency No flow aggregation/buffering
- No MPC/PFE adherence (unlike classical IPFIX)
- Several instances (up to 16)
- Several collectors per instance (up to 4 per instance)
- Per collector sampling rate
- Flexible: applied through Firewall Filter
- Currently supported for inet and inet6 families
- Applicable on Ingress and/or Egress directions
- Configurable DSCP/Forwarding Class/Routing Instance for inline monitoring packets
- Can be combined in parallel with other sampling solutions such as classical IPFIX flow aggregation.

Let's compare the several sampling technologies available on Junos

Sampling solutions on Junos

	Classical Mirroring	sFLOW	IPFIX	INLINE MONITORING (IMON)
Min/Max sampling rate	1:1 to 1:65535	1:1 to 1:65535	1:1 to 1:16M	1:1 to 1:16M
Filtering Level	Firewall Filter granularity	Per Logical Interface	Firewall Filter granularity	Firewall Filter granularity
Latency	usec	msec	sec to minutes (due to flow aggregation)	usec
Implementation	Inline ASIC (PFE)	CPU of LineCard (LC)	Inline ASIC (PFE)	Inline ASIC (PFE)
Limitation	N/A (Inline)	1:9K max per LC	12M Flows per PFE – Export Rate 400K flows/sec per PFE	N/A (Inline)
Metadata	NO	YES	YES (many)	YES
Report Payload	YES	YES First 128B	NO	YES (64B up to 126B)
Transport	Several (Local, GRE, L2VPN)	sFLOW (RFC 3176)	IPFIX (RFC 7011;7702)	IPFIX (via dataLinkFrameSection RFC 7133)
Min Release	Available for a long time ©	Available for a long time ©	Available for a long time ©	19.4 + 20.4(for ZT based Linecard)

Heat Superior Why?

Which use cases for Inline Monitoring?

- Use Case 1: Traffic monitoring/accounting on edge devices
 - > Use your own template on collector side to parse "packet's headers" and some parts of the payload and retrieve only your relevant fields.
- Use Case 2: Security
 - Very fast DDoS / malicious Traffic detection: no flow aggregation!
 - Identify complex attacks based on signature in the payload
- Use Case 3: TE return channel
 - Fast telemetry channel to monitor traffic re-routing: "close loop traffic engineering"
- Use Case 4: Payload analysis
 - > 126Bytes allow you to parse first bytes of the payload (DPI lite): Help to detect if traffic is encrypted? Detect exotic/proprietary tunnels? Dump specific packets for post analysis (i.e. DNS)? ...
- Use Case 5: Layer 2 Accounting
 - Per MAC accounting, may be useful for IXP
- Use Case 6: All stuff around troubleshooting
 - Scalable/Fast/easy to configure packet mirroring solution: "Just add an troubleshooting instance/collector on demand"

What else?

#3 How?

IPFIX Template configuration

IMON instance / collector configuration

```
{master}[edit services inline-monitoring]
lab@mydevice# show
instance {
                                                                                                     Instance Name (use later in FWF) up to 16 instances
    mvinstance 1 {
        template-name my inline template;
        maximum-clip-length 126;
                                                                                                     Clip Length from 64B to 126B
        collector {
                                                                                                      Up to 4 collectors per Instance
            collector1 { <
                source-address 81
                                                                                                     Template reference (previous slide)
                destination-address 1
                destination-port 6667;
                                                                                                      Sampling-rate per collector
                sampling-rate 1;
                                                                                                      More collector options:
            collector2 {
                                                                                                      {master}[edit services inline-monitoring]
                source-address 81
                                                                                                      lab@mvdevice# set instance mvinstance 1 collector collector1 ?
                destination-address 1
                                                                                                      Possible completions:
                destination-port 6667;
                                                                                                       <[Enter]>
                                                                                                                           Execute this command
                sampling-rate 1000;
                                                                                                      + apply-groups
                                                                                                                           Groups from which to inherit configuration data
                                                                                                      + apply-groups-except Don't inherit configuration data from these groups
                                                                                                       destination-address Destination address
                                                                                                       destination-port
                                                                                                                          Destination port value (1..65535)
                                                                                                       dscp
                                                                                                                           DSCP Value (0..63)
    myinstance 2 {
                                                                                                        forwarding-class
                                                                                                                           Forwarding class for exported frames
        template-name my inline template;
                                                                                                       routing-instance
                                                                                                                           Name of routing instance
        maximum-clip-length 64;
                                                                                                       sampling-rate
                                                                                                                           Sampling rate (1..16000000)
        collector {
                                                                                                        source-address
                                                                                                                           Source address
            collector3 {
                source-address 8
                destination-address 1
                destination-port 6667;
                sampling-rate 8000;
                                                                   Cli to check statistics for instances and collectors
                                                                   lab@mydevice> show services inline-monitoring statistics fpc-slot 9
                                                                     IMON Statistics
                                                                       FPC Slot: 9
                                                                       Packets: 246526799549, Bytes: 204462423462581
                                                                          Instance Name: myinstance
                                                                          Packets: 246526799549, Bytes: 204462423462581
                                                                              Collector Name: collector1
                                                                              Packets: 173225078057, Bytes: 143668615602612
                                                                              Collector Name: collector2
                                                                              Packets: 33464190, Bytes: 27909003873
```

Apply IMON

```
{master}[edit services inline-monitoring]
lab@mvdevice# show
instance -
    myinstance 1 {
        template-name my inline template;
        maximum-clip-length 126;
        collector |
            collector1 {
                source-address 8
                destination-address 1
                destination-port 6667;
                sampling-rate 1;
            collector2 {
                source-address 8
                destination-address 1
                destination-port 6667;
                sampling-rate 1000;
    mvinstance 2
        template-name my inline template;
        maximum-clip-length 64;
        collector
            collector3 {
                source-address 8
                destination-address 1
                destination-port 6667;
                sampling-rate 8000;
```

Define a FWF

```
filter IMONv4
    term DNS
        from
            protocol udp;
            port 53;
        then
            inline-monitoring-instance myinstance 1;
    term CHECK TLS
        from {
            protocol [ tcp udp ];
            port 443;
        then {
           inline-monitoring-instance myinstance 2;
            accept;
    term OTHER {
        then accept;
```


!!! BEWARE !!!

Don't sample IMON traffic (selfgenerated) to avoid Sampling Loop !!!

Tips: define a specific term to accept, only, the udp destination-port configured for IMON.

Apply it

```
ae100
        unit 0 {
             family inet
                 filter {
                     input IMONv4;
                     output IMONv4;
             family inet6 {
                 filter {
                     input IMONv6;
                     output IMONv6;
Or
    ae101
       unit 0 {
           family inet {
               filter {
                   input-list [ IMONV4 ANOTHER FILTER ];
                   output-list [ IMONV4 ANOTHER FILTER ];
Or
    {master}[edit forwarding-options family inet]
    lab@mydevice# show
    filter {
        input IMONv4;
```

Some info about metadata

```
FlowSet Id: Data Template (V10 [IPFIX]) (2)
FlowSet Length: 28

* Template (Id = 384, Count = 5)
    Template Id: 384
    Field Count: F

Field (1/5): INPUT_SNMP
    Field (2/5): OUTPUT_SNMP

> Field (3/3): DIRECTION

> Field (4/5): dataLinkFrameSize

> Field (5/5): dataLinkFrameSection
```

Type of Interface	IMON on Ingress	IMON on Egress	
Dhysical go * . vo * . ot *	INPUT_SNMP = Ifindex of ingress interface	INPUT_SNMP = Ifindex of ingress interface	
Physical ge-*; xe-*; et-*	OUTPUT_SNMP = 0	OUTPUT_SNMP = ifindex of egress interface	
Aggregated as*	INPUT_SNMP = Ifindex of ingress AE	INPUT_SNMP = Ifindex of ingress AE	
Aggregated ae*	OUTPUT_SNMP = 0	OUTPUT_SNMP = ifindex of egress Child Link	
	INPUT_SNMP = Ifindex of ingress IRB	INPUT_SNMP = Ifindex of ingress IRB	
IRB	OUTPUT_SNMP = 0	OUTPUT_SNMP = ifindex of egress Vlan-Bridge encapsulated interface.	

Rate of generated IMON Traffic

IMON traffic rate in Bps = (C-Rate / sampling-rate) x (74 + Clip-Size) x 8

C-Rate = Curent Frame Rate of your traffic in pps
 74 = 14B (Ethernet Header) + 20B (IP Header) + 8B (UDP Header) + 32B (IPFIX IMON Header)

Ex. I've got an ae interface with a pick rate at 14Mpps and I've configured an IMON instance with these parameters:

- Sampling-rate = 8000
- Clip-Size = 126B

Max. generated IMON Traffic:

IMON Traffic = $(14M/8000) \times (74+126) \times 8 = 2.8Mbps$

Export example

```
Version: 10
 Length: 158
> Timestamp: Jan 18, 2021 17:46:22.000000000 Paris, Madrid
 FlowSequence: 89875
 Observation Domain Id: 16842896
v Set 1 [id=384] (1 flows)
   FlowSet Id: (Data) (384)
   FlowSet Length: 142
   [Template Frame: 4678 (received after this frame)]

    Flow 1
     InputInt: 527
     OutputInt: 0
                               Metadata
                                                             You are there - IPv4
     Direction: Ingress (0)
      Data Link Frame Size: 651 Original packet size

    ∨ Data Link Frame Section: 4e9614752f1c00004de79d5108004500027d000000000004006... Ethernet frame

       String len short: 126
```

Any Tests?

Tests done in lab

- On MX2k MPC9e (EA ASIC) based MPC (EA is the PFE of MPC 7, 8, 9 or MX204 or LC2103 MX10003 or LC2101 on MX10K....)
- Load a 100G interface at 96% (with a mix packet sizes): ~14Mpps
- 2 collectors :
 - ☐ Collector 1: sampling rate at 1:8000 clip-length 126B
 - □ Collector 2: sampling rate at 1:1 clip-length 126B
- With classical IPFIX Flow aggregation configured in //
- Tested to monitor all traffic (one single term)
- Tested on Ingress / Egress direction (with and without filter chaining (input/output-list))
- Tested for inet and inet6 families
- Conclusion : Linerate, no traffic impact, no performance degradation, no CPU/Mem impact
- ☐ FYI: the collector 2 with rate 1:1 generated around 20Gbps

Next steps (scheduled in Q1/Q2 2021)

- Do the same tests for our legacy XL based Linecard (MPC6e)
- Do the same tests for our new ZT based Linecard (MPC10/11e)
- Apply IMON with a Forwarding Table Filter
- And Then ...
- Pilot phase in live network on some edge devices
- Work on collector side:
 - Stress test of pmacct/nfacctd (used during tests in lab) ???
 - □ Enhance goflow (https://github.com/cloudflare/goflow) to support dataLinkFrameSection with similar pmacet's primitive features (see next slide)??? Maybe when I will be better in Go © but I'm motivated!
 - ☐ Other opensource collectors ??? Advices are welcome!

Collector side

- I used "pmacct" in lab docker image No stress tests have been performed on the collector.
- "Nfacctd" plugin supports IPFIX and RFC 7133. It allows you to create your own parser for decoding what you want in "dataLinkFrameSection": "primitive" feature
- Start the collector like that:

docker run -p 6667:6667/udp -v /opt/pmacct/nfacctd.conf:/etc/pmacct/nfacctd.conf -v /opt/pmacct/primitive.lst:/var/tmp/primitive.lst -v /opt/pmacct/test.json:/var/log/test.json pmacct/nfacctd

Simple nfacctd.conf

```
debug: true
debug internal msg: false
nfacctd port: 6667
!plugin buffer size: 1310720
!plugin pipe size: 134217728
nfacctd disable checks: false
plugins: print
aggregate primitives: /var/tmp/primitive.lst
aggregate: mac dst, mac src, ip6 src, ip6 dst, nhead6, udp src, udp dst, tcp src, tcp dst
print refresh time: 30
print history: 60m
print output: json
print output file: /var/log/test.json
print output file append: true
print history roundoff: m
```

Simple primitive.lst for IPv6

name=mac dst packet ptr=packet len=6 semantics=mac name=mac src packet ptr=packet:+6 len=6 semantics=mac name=ip6 src packet ptr=13:0x86dd+8 len=16 semantics=ip name=ip6 dst packet ptr=13:0x86dd+24 len=16 semantics=ip name=nhead6 packet ptr=13:0x86dd+6 len=1 semantics=u int name=udp src packet ptr=14:17 len=2 semantics=u int name=udp dst packet ptr=14:17+2 len=2 semantics=u int name=tcp src packet ptr=14:6 len=2 semantics=u int name=tcp dst packet ptr=14:6+2 len=2 semantics=u int

More info:

https://github.com/pmacct/pmacct/blob/master/CONFIG-KEYS https://github.com/pmacct/pmacct/blob/master/examples/primitives.lst.example

Collector side

docker run -p 6667:6667/udp -v /opt/pmacct/nfacctd.conf:/etc/pmacct/nfacctd.conf -v
/opt/pmacct/primitive.lst:/var/tmp/primitive.lst -v /opt/pmacct/test.json:/var/log/test.json pmacct/nfacctd

test.json

```
"event_type": "purge".
"mac_dst": "4e:96:14:75:2f:1c",
"mac_src": "00:00:4d:e7:9d:52",
"ip6_src":"2
"ip6_dst":"2
"nhead6": "6".
"udp_src": "0",
"udp_dst":"0",
"tcp_src": "60",
"tcp_dst": "60".
"stamp_inserted": "2021-01-28 17:00:00",
"stamp_updated": "2021-01-28 17:43:54".
"packets":2,
"bytes":2725
"event_type": "purge",
"mac_dst": "4e:96:14:75:2f:1c",
"mac_src": "00:00:4d:e7:9d:52",
"ip6_src":"2
"ip6_dst":"2
"nhead6": "6",
"udp_src":"0".
"udp_dst":"0",
"tcp_src": "60".
"tcp_dst": "60",
"stamp_inserted": "2021-01-28 17:00:00",
"stamp_updated": "2021-01-28 17:43:54".
"packets":1,
"bytes":1168
```

Questions?

Thank you

