Linear Algebra

[KOMS119602] - 2022/2023

7.1 - Vectors in \mathbb{R}^n

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 7-11 February 2022

Learning objectives

After this lecture, you should be able to:

- 1. explain the definition of vectors in general;
- 2. explain the definition of vectors in Linear Algebra;
- 3. explain some operations on vectors, such as:
 - vector addition and scalar multiplication;
 - linear combination;

Part 1: **Vectors** (in general)

What is a vector?

Three ways of defining vectors:

- 1. Physics perspective
- 2. Mathematics perspective
- 3. CS perspective

What is a vector (in physics)?

Vectors are arrows pointing in space. They are quantities that possess both *magnitude* and *direction*; e.g. force, velocity.

Usually, denoted by a letter typed in bold, or with an arrow above it; e.g. \vec{a} . It is often drawn as an arrow having appropriate length and direction .

What defined a vector (in physics)?

- Length (magnitude)
- Direction

Two vectors are the same if they

have the same length and direction

Example of vector in Physics

The velocity of a car is 60km/h, and it goes to 30° in the north-east direction.

Vectors in 3D-space (in physics)

What is a vector (in CS)?

Example

A teacher needs to check their students health, by measuring their weight and height. How should the data be represented?

 $\begin{bmatrix} 40kg \\ 150cm \end{bmatrix}$ This is a 2D vector

40kg 150cm This is a 3D vector 14vears

In CS, a vector can be considered as a list (tuples) of numbers

What is a vector (in Mathematics)?

The mathematical concept of vectors are combination of the two:

- Vectors can be viewed geometrically or algebraically;
- We can perform operations such as addition, multiplication, substraction, etc.

Back to high school: simple operations in vectors you might have learned in physics

- 1. Vectors addition
- 2. Scalar multiplication

Vectors addition $(\mathbf{u} + \mathbf{v})$

- Geometrically, the *resultant* $\mathbf{u} + \mathbf{v}$ is obtained by the parallelogram law
- If **u** has endpoints (a, b, c) and **v** has endpoints (a', b', c'), then **u** + **v** has endpoints (a + a', b + b', c + c')

Scalar multiplication $(k\mathbf{u})$

- Let $k \in \mathbb{R}$, then $k\mathbf{u}$ is the vector having magnitude k times the magnitude of u, and same direction when k > 0 or the opposite direction when k < 0.
- If u has endpoints (a, b, c), then the endpoints of ku are (ka, kb, kc).

Part 2: **Vectors in Linear Algebra**

Vectors in Linear Algebra

Geometrically:

- Vectors are arrows originated at the origin O
- Notations: $\mathbf{u}, \mathbf{v}, \mathbf{w}, \dots$ or $\vec{u}, \vec{v}, \vec{w}, \dots$

Vectors in Linear Algebra

In 2D

Vectors are arrows originated at the origin *O*.

It is not the same as a point.

Vector \vec{u} is equivalent to \overrightarrow{OP}

The number a and b in $\begin{bmatrix} a \\ b \end{bmatrix}$ indicate how far the vector \vec{u} moves along the x-axis and the y-axis resp.

The positive (resp. negative) sign of a or b indicates that it moves toward the right or up (resp. left or down).

In 3D, it is similar, but we consider three axes (x, y, and z).

What is a vector space?

- An ordered *n*-tuple is a sequence of *real numbers*: (a_1, a_2, \ldots, a_n) (or, can be seen as a vector).
- An *n*-space is a set of all *n*-tuples of real numbers. Usually denoted as \mathbb{R}^n . For n=1, $\mathbb{R}^1 \equiv \mathbb{R}$.
 - This space is where vectors are defined
- The space is also called Euclidean space.

Example:

Vector in \mathbb{R}^2

Vector in \mathbb{R}^3

Example

- 1. $\vec{u} = (3,6) \rightarrow \text{vector in } \mathbb{R}^2$
- 2. $\vec{v} = (2, -4, 5) \rightarrow \text{vector in } \mathbb{R}^4$
- 3. $\vec{w} = (-4, 2, -3, 1) \rightarrow \text{vector in } \mathbb{R}^4$
- 4. $\vec{c} = (r, g, b) \rightarrow \text{vector in RGB-model}$

We will go back to the vector space \mathbb{R}^n .

For now, let us look at \mathbb{R}^2 and \mathbb{R}^3 .

Part : Vector operations in R_2 and R_3

Vectors addition (geometric representation)

Let us given the following vectors:

Which one defines $\vec{u} + \vec{v}$?

Vectors addition (geometric representation)

A vector defines a certain movement in space (how far, which direction).

- $\vec{u} = [a_1 \ a_2] \rightarrow$ moving a_1 steps in the x-axis direction, and a_2 steps in the y-axis direction.
- $\vec{v} = [b_1 \ b_2] \rightarrow$ moving b_1 steps in the x-axis direction, and b_2 steps in the y-axis direction.

So $\vec{u} + \vec{v}$ can be seen as moving along vector \vec{u} continued by moving along vector \vec{v} , i.e. moving $a_1 + b_1$ steps in the x-axis direction, and $a_2 + b_2$ steps in the y-axis direction.

$$\vec{u} + \vec{v} = [(a_1 + b_1) \ (a_2 + b_2)]$$

Scalar multiplication (geometric representation)

Multiplying a vector by a scalar can be seen as "scaling" a vector (stretching, and sometimes reversing the direction of a vector).

Example

Exercise

Part: Spatial Vectors

Vectors in \mathbb{R}^3

Vectors in \mathbb{R}^3 are called spatial vectors, appear in many applications, especially in physics.

Special notation:

- $\mathbf{i} = [1, 0, 0]$ denotes the unit vector in the *x*-direction
- $\mathbf{j} = [1, 0, 0]$ denotes the unit vector in the *y*-direction
- $\mathbf{k} = [1, 0, 0]$ denotes the unit vector in the z-direction

Any vector $\mathbf{u} = [a, b, c]$ in \mathbb{R}^3 can be expressed uniquely in the form:

$$\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

Vectors in \mathbb{R}^3

Important! i, j, and k are vectors, and they are unit vectors. Furthermore:

$$\mathbf{i} \cdot \mathbf{i} = 1, \ \mathbf{j} \cdot \mathbf{j} = 1, \ \mathbf{k} \cdot \mathbf{k} = 1$$
 and $\mathbf{i} \cdot \mathbf{j} = 0, \ \mathbf{i} \cdot \mathbf{k} = 0, \ \mathbf{j} \cdot \mathbf{k} = 0$

The right equality shows that i, j, and k are orthogonal one to each other.

All vector operations still hold:

For $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$, and $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$, then:

- $\mathbf{u} + \mathbf{v} = (u_1 + v_1)\mathbf{i} + (u_2 + v_2)\mathbf{j} + (u_3 + v_3)\mathbf{k}$
- $k\mathbf{u} = ku_1\mathbf{i} + ku_2\mathbf{j} + ku_3\mathbf{k}$ for any $k \in \mathbb{R}$
- $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$
- $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}$

Example

Let
$$\mathbf{u} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$$
 and $\mathbf{v} = 4\mathbf{i} - 8\mathbf{j} + 5\mathbf{k}$. Find $3\mathbf{u} - 2\mathbf{v}$.

$$3\mathbf{u} - 2\mathbf{v} = 3(3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}) - 2(4\mathbf{i} - 8\mathbf{j} + 5\mathbf{k})$$

= $(9\mathbf{i} + 15\mathbf{j} - 6\mathbf{k}) + (-8\mathbf{i} + 16\mathbf{j} - 10\mathbf{k})$
= $1\mathbf{i} + 31\mathbf{j} - 16\mathbf{k}$

to be continued...