برقی ادوار

خالد خان يوسفز کی کامسيٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالوجی، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

مير د	مبلی تماب کادیباچیہ مربعی تمام کا میان میں	V
1	در جه اول ساده تغرقی مساوات 1.1 منونه کشی $y'=f(x,y)$ معرونه کشی $y'=f(x,y)$ معرونه کشی کاچیو میشریانی مطلب-میدان کی سمت اور ترکیب پولر	1 2 13
2	سواليون مواليون	15

میری پہلی کتاب کادیباجیہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلی تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلیٰ تعلیم کا نظام انگریزی زبان میں رائج ہے۔ دنیا میں تحقیق کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لاتعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کر سکتے ہیں۔

جمارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ حاصل کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہتے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بول یہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے کہ اسکول کی سطح پر نصاب میں استعال ستعال کئے جائیں۔ جہاں ایسے الفاظ موجود نہ سے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں لکھی اس کتاب اور انگریزی میں اسی مضمون پر لکھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیئر نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں الیکٹریکل انجنیئر نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی ڈلی ہیں البتہ اسے درست بنانے میں بہت لوگوں کا ہاتھ ہے۔ میں ان سب کا شکر یہ ادا کرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور کمل ہونے یر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیشن کمیشن کا شکریہ ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر کی

28 اكتوبر 2011

باب 1

در جهاول ساده تفرقی مساوات

عموماً طبعی تعلقات کو تفرقی مساوات کی صورت میں لکھا جا سکتا ہے۔اسی طرح عموماً انجنیئر نگ مسائل تفرقی مساوات کی صورت میں پیش آتے ہیں۔اسی لئے اس کتاب کی ابتدا تفرقی مساوات اور ان کے حل سے کی جاتی ہے۔

سادہ تفرق مساوات اسے مراد ایس تفرق مساوات ہے جس میں ایک عدد آزاد متغیرہ پایا جاتا ہو۔اس کے برعکس جزوی تفرق مساوات کا حل نسبتاً مشکل خابت ہوتا ہے۔ جزوی تفرق مساوات کا حل نسبتاً مشکل خابت ہوتا ہے۔

کسی بھی حقیقی صورت حال یا مشاہدے کی نقشہ کشی کرتے ہوئے اس کا ریاضی نمونہ 3 حاصل کیا جا سکتا ہے۔ سائنس کے مختلف میدان مثلاً انجنیئر نگ، طبیعیات، علم کیمیا، حیاتیات، کمپیوٹر وغیرہ میں در پیش مسائل کی صحیح تفرتی مساوات کا حصول اور ان کے حل پر تفصیلاً غور کیا جائے گا۔

باب-20 میں سادہ تفرقی مساوات کا حل بذریعہ کمپیوٹر پیش کیا جائے گا۔ یہ باب بقایا کتاب سے مکمل طور پر علیحدہ رکھا گیا ہے۔ یوں کتاب کے پہلے دو باب کے بعد باب-20 پڑھا جا سکتا ہے۔

پہلے باب کا آغاز درجہ اول کے سادہ تفرقی مساوات کے حصول، مساوات کے حل اور حل کی تشریح سے کیا جاتا ہے۔ایس ہے۔پہلے درجے کی سادہ تفرقی مساوات میں صرف ایک عدد نا معلوم تفاعل کا ایک درجی تفرق پایا جاتا ہے۔ایس

ordinary differential equation¹ partial differential equation²

mathematical model³

مساوات میں ایک سے زیادہ در ہے کا تفرق نہیں پایا جاتا۔ نا معلوم تفاعل کو y(x) یا y(x) سے ظاہر کیا جائے گا جہال غیر تابع متغیرہ t وقت کو ظاہر کرتی ہے۔ باب کے اختتام میں تفرقی مساوات کے حل کی وجودیت t اور یکتائی t پکتائی t پر غور کیا جائے گا۔

تفرقی مساوات سبھنے کی خاطر ضروری ہے کہ انہیں کاغذ اور قلم سے حل کیا جائے البتہ کمپیوٹر کی مدد سے آپ حاصل جواب کی در شکی دیکھنا چاہیں تو اس میں کوئی حرج نہیں ہے۔

1.1 نمونه کشی

شکل 1.1 کو دیکھیے۔ انجنیئر نگ مسلے کا حل تلاش کرنے میں پہلا قدم مسلے کو مساوات کی صورت میں بیان کرنا ہے۔ مسلے کو مختلف متغیرات اور تفاعل کے تعلقات کی صورت میں لکھا جاتا ہے۔ اس مساوات کو ریاضی نمونہ ⁶ کہا جاتا ہے۔ نمونہ جاتا ہے۔ ریاضی نمونے کا ریاضیاتی حل اور حل کی تشریح کے عمل کو نمونہ کشمی ⁷ کہا جاتا ہے۔ نمونہ کشی کی صلاحیت تجربے سے حاصل ہوتی ہے۔ کسی بھی نمونہ کی حل میں کمپیوٹر مدد کر سکتا ہے البتہ نمونہ کشی میں کمپیوٹر عموماً کوئی مدد فراہم نہیں کر پاتا۔

عموماً طبعی مقدار مثلاً اسراع اور رفتار در حقیقت میں تفرق کو ظاہر کرتے ہیں لہذا بیشتر ریاضی نمونے مختلف متغیرات اور تفاعل کے تفرق پر مشمل ہوتے ہیں جنہیں تفرق مساوات 8 کہا جاتا ہے۔ تفرقی مساوات کے حل سے مراد ایسا تفاعل ہے جو اس تفرقی مساوات پر پورا اترتا ہو۔ تفرقی مساوات کا حل جانتے ہوئے مساوات میں موجود متغیرات اور تفاعل ہے جو اس تفرقی مساوات پر غور سے پہلے چند بنیادی تصورات تفاعل کے ترسیم کھنچے جا سکتا ہے اور ان پر غور کیا جا سکتا ہے۔ تفرقی مساوات پر غور سے پہلے چند بنیادی تصورات تفکیل دیتے ہیں جو اس باب میں استعال کی جائیں گی۔

existence⁴

uniqueness⁵

 $mathematical model^6$

modeling⁷

differential equation⁸

1.1. نمونه کثی

سادہ تفوقی مساوات سے مراد ایک مساوات ہے جس میں نا معلوم تفاعل کی ایک درجی یا بلند درجی تفرق پائے جاتے ہوں۔نا معلوم تفاعل کو y(t) یا y(t) یا جائے گا جہاں غیر تابع متغیر t وقت کو ظاہر کرتی ہیں۔درج ہے۔اس مساوات میں نا معلوم تفاعل y اور غیر تابع متغیرہ x (یا t) کے تفاعل بھی پائے جا سکتے ہیں۔درج ذیل چند سادہ تفرقی مساوات ہیں

$$(1.1) y' = \sin x$$

$$(1.2) y' + \frac{6}{7}y = 4e^{-\frac{3}{2}x}$$

$$(1.3) y''' + 2y' - 11y'^2 = 0$$

جہال
$$y'' = \frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$$
 ، $y' = \frac{\mathrm{d} y}{\mathrm{d} x}$ جہال

دو یا دو سے زیادہ متغیرات کے تابع تفاعل کے تفرق پر مشتمل مساوات کو جزوی تفرقی مساوات کہتے ہیں۔ان کا حل سادہ تفرقی مساوات سے زیادہ مشکل ثابت ہوتا ہے۔ جزوی تفرقی مساوات پر بعد میں غور کیا جائے گا۔غیر تابع متغیرات یہ اور پر پر منحصر تابع تفاعل (u(x,y) کی جزوی تفرقی مساوات کی مثال درج ذیل ہے۔

(1.4)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = u$$

n درجی تفرقی مساوات سے مراد الی مساوات ہے جس میں نا معلوم نفاعل y کی بلند تر تفرق n درجے کی ہو۔ یوں مساوات 1.1 اول درجے کی مساوات y مساوات y مساوات y مساوات ہے۔ کی مساوات ہے۔

اس باب میں پہلے درجے کی سادہ تفرقی مساوات پر غور کیا جائے گا۔الی مساوات میں اکائی درجہ تفرق سن کی علاوہ نا معلوم نقاعل ہی اور غیر تابع متغیرہ کا کوئی بھی نقاعل پایا جا سکتا ہے۔ایک درجے کی سادہ تفرقی مساوات کو

$$(1.5) F(y,y',x) = 0$$

یا

$$(1.6) y' = f(x,y)$$

کھا جا سکتا ہے۔ مساوات 1.5 خفی 9 صورت کہلاتی ہے جبکہ مساوات 1.6 صویع 10 صورت کہلاتی ہے۔ یوں خفی مساوات $y'=2\frac{y^3}{x^2}$ کی صرح صورت کے صورت $y'=2\frac{y^3}{x^2}$

implicit⁹ explicit¹⁰

حل كاتصور

ایک تفاعل

$$(1.7) y = h(x)$$

یہاں کھلے وقفے سے مراد ایسا وقفہ ہے جس کے آخری سر a اور b وقفے کا حصہ نہ ہوں۔کھلا وقفہ لا متناہی ہو سکتا ہے مثلاً میں $-\infty \leq x \leq \infty$ یا $a \leq x \leq \infty$ اور یا $a \leq x \leq \infty$ یعنی حقیقی محور۔

مثال 1.1: ثابت کریں کہ وقفہ $\infty \leq x \leq \infty$ پر تفاعل y = cx تفرقی مساوات y = y'x کا حل y = y'x کا حل جہاں z ایک اختیاری مستقل z ہے۔

حل: پورے وقفے پر بیا جاتا ہے۔ان طرح اس کا تفرق y'=c بھی پورے وقفے پر بیا جاتا ہے۔ان بنیادی شرائط پر پورا اتر نے کے بعد تفاعل اور تفاعل کے تفرق کو دیے گئے تفرقی مساوات میں پر کرتے ہیں۔

$$y = cx$$
$$(cx) = (c)x$$

مساوات کے دونوں اطراف برابر ہیں للذا y=cx ویے گئے تفرقی مساوات کا حل ہے۔

open interval¹¹

defined¹²

solution curve¹³

 $^{{\}rm arbitrary\ constant}^{14}$

1.1. نمونه کشي

شکل 1.2: مثال 1.2 کے خط۔

y=cost مثال 1.2: عل بذریعہ کمل: مساوات y'=cost عاصل بزریعہ کمل عاصل کیا جا سکتا ہے لینی y'=cost عاصل ہوتا ہے جو نسل حل t=c-t جس سے t=c-t عاصل ہوتا ہے جو نسل حل t=c-t جس سے t=c-t عاصل میں t=c-t بر کرتے t=c=t علی کی ہر انفرادی قیت تفرقی مساوات کا ایک منفر د حل دیتا ہے۔ یوں t=c=t عاصل عل ہوتا ہے۔ شکل 1.2 میں t=c=t عاصل عل جو نہیں۔

مثال 1.3: قوت نمائی تفاعل $y=ce^{kt}$ کے تفرق سے درج ذیل تفرق مساوات حاصل ہوتی ہے۔ $y'=rac{\mathrm{d}y}{\mathrm{d}t}=kce^{kt}=ky$

یوں $y = ce^{kt}$ تو تو تمائی y' = ky کی صورت میں $y = ce^{kt}$ توت نمائی اضافے کی نمونہ کثی کرتی ہے۔ جر سوموں کی تعداد اس کلیے کے تحت بڑھتی ہے۔ وسیع رقبے کے ملک میں کم انسانی solution family 15

y' = -0.15ر الف) قوت نمائی گھٹاو۔مساوات

(الف) قوت نما کی اضافہ۔مساوات y'=0.15y کا حل۔

شكل 1.3: قوت نمائى تفرقى مساوات كى نسل حل_

آبادی اس کلیے کے تحت بڑھتی ہے جہاں اس کو قانون مالتُھس 16 کہا 17 جاتا ہے۔ متعقل c کے مختلف مثبت قیمتوں اور k=0.15 کے خطوط کو شکل 1.3-الف میں دکھایا گیا ہے۔

منفی k کی صورت میں $y=ce^{kt}$ توت نمائی گھٹاہ مثلاً تابکاری تعلیل $v=ce^{kt}$ کو ظاہر کرتی ہے۔ متنقل k کتنف مثبت قیتوں اور $v=ce^{kt}$ کے خطوط کو شکل $v=ce^{kt}$ کے مسلے پر مزید غور کیا گیا ہے۔ $v=ce^{kt}$ کے مسلے پر مزید غور کیا گیا ہے۔

درج بالا مثالوں میں ہم نے دیکھا کہ درجہ اول سادہ تفرقی مساوات کے حل میں ایک عدد اختیاری مستقل c پایا جاتا ہے۔ تفرقی مساوات کا ایبا حل جس میں اختیاری مستقل c پایا جاتا ہو عمومی حلc کہلاتا ہے۔

(بعض او قات c کمل طور اختیاری مستقل نہیں ہوتا بلکہ اس کی قیت کو کسی وقفے پر محدود کرنا لازم ہوتا ہے۔)

ہم یکتا 20 عمومی حل حاصل کرنے کی تراکیب سیکھیں گے۔

Malthus' law¹⁶

¹⁷ يه قانون انگلتاني ماهر معاشيات طامس روبرث مالتحس (1834-1766) كے نام ہے۔

radioactive decay 18

general solution 19

 $[\]mathrm{unique}^{20}$

1.1. نمونه کثی

جیومیٹریائی طور پر سادہ تفرقی مساوات کا عمومی حل لا متناہی حل کے خطوط پر مشتمل ہوتا ہے جہاں کی ہر انفرادی تیمت منفر د خط دیتی ہے۔ عمومی حل میں c=0 یا c=-3.501 تیمت منفر د خط دیتی ہے۔ عمومی حل میں کوئی اختیاری مستقل نہیں پایا جاتا۔

عام طور عمومی حل قابل حصول ہوتا ہے جس میں c کی مخصوص قیت پر کرتے ہوئے درکار جبری حل حاصل کیا جا سکتا ہے۔ بعض او قات تفر قی مساوات ایبا حل بھی رکھتا ہے جس کو عمومی حل سے حاصل نہیں کیا جا سکتا۔ایسے حل کو نادر²² حل کہتے ہیں۔صفحہ 12 پر سوال 1.16 میں نادر حل کی مثال دی گئی ہے۔

ابتدائي قيمت سوال

عام طور پر عمومی حل میں ابتدائی قیمتی x_0 x_0 اور y_0 پر کرنے سے جبری حل حاصل کیا جاتا ہے جہاں x_0 عام طور پر اس کا مطلب ہے کہ خط حل نقطہ (x_0,y_0) سے گررتا ہے۔سادہ تفرقی مساوات اور مساوات کے ابتدائی قیمتوں کو ابتدائی قیمت سوال x_0 کہا جاتا ہے۔ یوں صرح سادہ تفرقی مساوات کی صورت میں ابتدائی قیمت سوال درج ذیل کھا جائے گا۔

(1.8)
$$y' = f(x, y), y(x_0) = y_0$$

مثال 1.4: ابتدائی قیمت سوال: درج ذیل ابتدائی قیمت سوال کو حل کریں۔ $y'=5y, \qquad y(0)=3.2$

حل: تفرقی مساوات کو $y = ce^{5x}$ کھتے ہوئے دونوں اطراف کا کمل لینے سے $v = ce^{5x}$ عمومی حل حاصل ہوتا ہے جس میں v = 0 کھا جائے گا جس سے ہوتا ہے جس میں v = 0 کھا جائے گا جس سے v = 0 کھا جائے گا جس سے v = 0 ماتا ہے۔ یوں ابتدائی قیمت سوال کا جبری حل $v = 3.2e^{5x}$ ہے۔

particular solution²¹

singular solution²² initial values²³

initial value problem²⁴

نمونه کشی پر مزید بحث

نمونہ کئی کو مثال کی مدد سے بہتر سمجھا جا سکتا ہے للذا ایسا ہی کرتے ہیں۔ایسا کرتے ہوئے پہلی قدم پر مسئلے کو تفرقی مساوات کا جامہ پہنایا جائے گا۔دوسری قدم پر تفرقی مساوات کا عمومی حل حاصل کیا جائے گا۔ تیسرے قدم پر ابتدائی معلومات استعال کرتے ہوئے جبری حل حاصل کیا جائے گا۔ آخر میں چوتھا قدم حاصل جواب کی تشریح ہو گا۔

مثال 1.5: تابکار مادے کی موجودہ کمیت 2 mg ہے۔اس کی کمیت مستقبل میں دریافت کریں۔

طبعی معلومات: تجربے سے معلوم کیا گیا ہے کہ کسی بھی کمھے پر تابکاری تحلیل کی شرح اس کمھے پر موجود تابکار مادے کی کمیت کے راست تناسب ہے۔

• پہلا قدم: مسئلے کو مساوات کی صورت ہیں لکھتے ہیں۔ کمیت کو y سے ظاہر کرتے ہیں۔ یوں کسی بھی لمجے پر تابکاری کی شرح سے مراد $\frac{\mathrm{d}y}{\mathrm{d}t} = y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ تابکاری کی شرح سے مراد $y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ ہوت کہ تابکاری کی شرح سے مراد $y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ ہوت کہ تابکاری کی شرح سے عراض معلومات کو درج ذیل تفرقی مساوات کی صورت میں لکھا جائے گا جہاں تناسی مستقل x مثبت قیمت ہے۔

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -ky$$

مثال 1.3 میں آپ نے دیکھا کہ تفرقی مساوات میں منفی کی علامت سے تفرقی مساوات کا قوت نمائی گھٹتا ہوا حل حاصل ہوتا ہے۔ چونکہ تابکاری سے تابکار مادے کی کمیت گھٹتی ہے المذا درج بالا مساوات میں منفی کی علامت استعال کی گئی ہے۔ تابکار اشیاء کے مستقل k کی قیستیں تجربے سے حاصل کئے جاتے ہیں مثلاً دیٹیم $k=1.4\times10^{-11}\,\mathrm{s}^{-1}$ کے جاتے ہیں مثلاً دیٹیم $k=1.4\times10^{-11}\,\mathrm{s}^{-1}$

ابتدائی کمیت y(0)=2 mg ہے۔ابتدائی وقت کو t=0 لیتے ہوئے ابتدائی معلومات y(0)=2 mg ابتدائی کمیت y(0)=2 mg ہوئے گی۔ (غیر تابع متغیر وقت t کی بجائے کچھ اور مثلاً x ہونے کی صورت میں بھی $y(x_0,y_0)$ یا $y(x_0)=y_0$ کو ابتدائی معلومات ہی کہا جاتا ہے۔اسی طرح تابع متغیرہ y کی قیمت $t\neq 0$ پر معلوم

 $radium^{25}$

1.1. نمونه کشي

ہو سکتی ہے مثلاً $y(x_n)=y_n$ اور الی صورت میں $y(x_n)=y_n$ ابتدائی معلومات کہلاتی ہے۔ یوں دیے مسلے سے درج ذیل ابتدائی قیمت سوال حاصل ہوتا ہے۔

(1.10)
$$y' = -ky, \qquad y(0) = 2 \,\mathrm{mg}$$

• دوسرا قدم: ابتدائی قیت سوال کا عمومی حل درج ذیل ہے جہاں c اختیاری مستقل جبکہ k کی قیت تابکار مادے پر منحصر ہے۔

$$(1.11) y = c^{-kt}$$

ابتدائی معلومات کے تحت t=0 پر $y=2\,\mathrm{mg}$ ہے جس کو درج بالا مساوات میں پر کرتے ہوئے c=2 حاصل ہوتا ہے۔

$$(1.12) y = 2e^{-kt} (k > 0)$$

جبری عل کو واپس تفرقی مساوات میں پر کرتے ہوئے ثابت کریں کہ حاصل حل درست ہے۔اسی طرح جبری عل سے ابتدائی معلومات حاصل کریں۔

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -kce^{-kt} = -ky$$
$$y(0) = 2e^{-0} = 2$$

• حاصل جبری حل کی تشریخ: مساوات 1.12 کو شکل 1.4 میں دکھایا گیا ہے جہاں k=2.5 لیا گیا ہے۔ کمحہ $y(\infty)=y(\infty)=0$ کی کمیت ویتا ہے۔ کمحہ لا متناہی پر تابکار مادے کی کمیت t=0 $2e^{-k\infty}=0$

سوالات 1.1 تا 1.8 کے جوابات بذریعہ تکمل حاصل کریں یا کسی تفاعل کی تفرق سے جواب حاصل کریں۔

 $y' + 3\sin 2\pi x = 0$:1.1 سوال

 $y = \frac{3}{2\pi}\cos 2\pi x + c \quad : \mathcal{S}$

k=2.5 جبان k=2.5 با گیاہے۔ $y=2e^{-kt}$ کیا گیاہے۔ k=2.5 جبان کا نوازد کا معنی تابکاری تحلیل

$$y' + xe^{-x^2} = 0$$
 :1.2 سوال

$$y = \frac{e^{-x^2}}{2} + c \quad : 2e$$

$$y' = 4e^{-x}\cos x \quad :1.3$$

$$y = 2e^{-x}(\cos x - \sin x) + c \quad : \mathfrak{S}$$

$$y' = y$$
 :1.4 سوال

$$y = ce^x$$
 : $general = ce^x$

$$y' = -y \quad :1.5$$

$$y = ce^{-x}$$
 جواب:

$$y' = 2.2y$$
 :1.6

$$y=ce^{2.2x} := ce^{2.2x}$$

$$y' = 1.5 \sinh 3.2x$$
 :1.7

$$y = \frac{15}{32} \cosh 3.2x + c$$
 بواب:

1.1. نمونه کثی

$$y'' = -y \quad :1.8$$

$$y = c_1 \cos x + c_2 \sin x \quad : \mathfrak{Z}$$

سوال 1.9 تا سوال 1.15 ابتدائی قیمت سوالات ہیں جن کے عمومی حل دیے گئے ہیں۔انہیں تفرقی مساوات میں پر کرتے ہوئے ثابت کریں کہ یہی عمومی جوابات ہیں۔عمومی جواب سے جبری جواب حاصل کریں۔جبری جواب کا خط کھینیں۔

$$y' + 2y = 0.8$$
, $y = ce^{-2x} + 0.4$, $y(0) = 1.2$:1.9

$$y = 0.8e^{-2x} + 0.4$$
 : $3e^{-2x} + 0.4$

$$y' + x + y = 0$$
, $y = ce^{-x} - x + 1$, $y(0) = \pi$:1.10

$$y = \pi e^{-x} - e^{-x} - x + 1$$
 جواب:

$$y' = 2x + e^x$$
, $y = e^x + x^2 + c$, $y(0) = 1$:1.11 $y' = 2x + e^x$

$$y=e^x+x^2$$
 :واب

$$y' + 4xy = 0$$
, $y = ce^{-2x^2}$, $y(0) = 2$:1.12

$$y = 2e^{-2x^2}$$
 : e^{-2x^2}

$$yy' = 2x$$
, $y^2 = 2x^2 + c$, $y(1) = 6$:1.13

$$y^2 = 2x^2 + 34$$
 :واب

$$y' = y + y^2$$
, $y = \frac{c}{e^{-x} - c}$, $y(0) = 0.1$:1.14 June

$$y = \frac{1}{e^{(-x+23.98)}-1}$$
 :براب

$$y' \tan x = y - 4$$
, $y = c \sin x + 4$, $y(\frac{\pi}{2}) = 0$:1.15

$$y = 4 - 4\sin x \quad : \xi$$

سوال 1.16: نادر حل: بعن او قات سادہ تفر قی مساوات کا ایسا حل بھی پایا جاتا ہے جس کو عمومی حل سے حاصل نہیں $y=cx-c^2$ کیا جا سکتا۔ ایسیے حل کو نادر حل $y^2-xy'+y=0$ جا جاتا ہے۔ مساوات $y=cx-c^2$ کا عمومی حل $y^2-xy'+y=0$ کیا جاتا ہے۔ مساوات $y=\frac{x^2}{4}$ ہوئے تفر قی مساوات میں پر کرتے ہوئے ثابت کریں کہ یہ تفر قی مساوات کے حل ہیں۔

سوال 1.17 تا سوال 1.21 نقشه کشی کے سوالات ہیں۔

سوال 1.17: تابکار مادے کی نصف زندگی $t_{\frac{1}{2}}$ سے مراد وہ دورانیہ ہے جس میں تابکار مادے کی کمیت نصف ہو جاتی ہے۔ مثال 1.5 میں ریڈیم $\frac{266}{88}$ کی نصف زندگی دریافت کریں۔

جواب: تابکاری تحلیل کی مساوات $y=y_0e^{-kt}$ میں لمحہ t=0 پر (ابتدائی) کمیت $y=y_0e^{-kt}$ مستقبل $y=\frac{y_0}{2}$ میں کمیت نصف رہ جائے یعنی جب $y=\frac{y_0}{2}$ میں کمیت نصف رہ جائے یعنی جب $y=\frac{y_0}{2}$ میں لمحہ $y=\frac{y_0}{2}$ کمی مساوات میں $y=\frac{y_0}{2}$ پر کرتے ہوئے $y=y_0e^{-kt}$ کمی جائے گا جس سے $y=\frac{y_0}{2}$ کمی مقدار $y=\frac{y_0}{2}$ میں نصف رہ جائے گا۔ $y=\frac{y_0}{2}$ میں نصف رہ جائے گا۔ $y=\frac{y_0}{2}$ میں نصف رہ جائے گا۔

سوال 1.18: ریڈیم ہم جا²²⁴Ra²⁷کی نصف زندگی تقریباً 3.6 دن ہے۔دو گرام (2 g) ریڈیم ہم جاکی کمیت ایک دن بعد کتنی رہ جائے گی۔دو گرام ریڈیم ہم جاکی کمیت ایک سال بعد کتنی رہ جائے گی۔

 $6 \times 10^{-31}\,\mathrm{g}$ ، $1.65\,\mathrm{g}$. وابات:

سوال 1.19: ایک جہاز کی رفتار مستقل اسراع a سے مسلسل بڑھ رہی ہے۔رفتار کی تبدیلی کی شرح $\frac{\mathrm{d}v}{\mathrm{d}t}$ کو اسراع کہتے ہیں۔ان معلومات سے تفرقی مساوات کھتے ہوئے گھہ t پر رفتار v کی مساوات حاصل کریں۔اگر t=0 t=0 بر ابتدائی رفتار t=0

v = u + at ، v = at + c جوابات:

سوال 1.20: رفتار سے مراد وقت کے ساتھ فاصلے کی تبدیلی کی شرح $\frac{\mathrm{d}x}{\mathrm{d}t}$ ہے۔ سوال 1.19 میں رفتار کی مساوات v=u+at پر t=0 ماوات حاصل ہوتی ہے۔ لمجہ t=0 برابر پر کرنے سے تفرقی مساوات حاصل ہوتی ہے۔ لمجہ t=0 برابر بکر کرنے سے تفرقی مساوات حاصل کر س۔ ابتدائی فاصلہ t=0 کی مساوات حاصل کر س۔

singular solution²⁶ isotope²⁷

 $x = ut + \frac{1}{2}at^2$ جوابات:

سوال 1.21: آواز سے کم رفتار پر پرواز کرنے والے جہاز کی کار گزاری ہوا کے دباو پر منحصر ہوتی ہے۔ان کی کار گزاری ا 10500 m تا 12000 m کی اونچائی پر بہترین حاصل ہوتی ہے۔آپ سے گزارش ہے کہ ہوا کہ دباو پر ہوا کا دباو دریافت کریں۔طبعی معلومات:اونچائی کے ساتھ دباو میں تبدیلی کی شرح اور ہوا کے دباو پر کی نصف کے راست تناسب ہوتی ہے۔تقریباً سے 5500 کی اونچائی پر ہوا کا دباو سمندر کی سطح پر ہوا کے دباو پر کی نصف ہوتا ہے۔

جواب: 0.27y₀ يعنى تقريباً ايك چوتھائى

کاجیومیٹریائی مطلب۔ میدان کی سمت اور ترکیب یولر۔ y'=f(x,y)

درچه اول ساده تفرقی مساوات

$$(1.13) y' = f(x,y)$$

سادہ معنی رکھتی ہے۔آپ جانتے ہیں کہ y' سے مراد y' کی ڈھلوان ہے۔یوں مساوات 1.13 کا وہ حل جو نقطہ (x_0,y_0) ہو گا کو درج بالا مساوات کے تحت اس نقطے پر (x_0,y_0) ہو گا کو درج بالا مساوات کے تحت اس نقطے پر (x_0,y_0) قیمت کے برابر ہو گا۔

$$y'(x_0) = f(x_0, y_0)$$

اس حقیقت کو استعال کرتے ہوئے ہم مساوات 1.13 کو حل کرنے کے توسیمی 28 یا اعدادی 29 طریقے دریافت کر سکتے ہیں۔ تفرقی مساوات کو حل کرنے کے ترسیمی اور اعدادی طریقے اس لئے بھی اہم ہیں کہ کئی تفرقی مساوات کا کوئی تحلیلی 30 حل نہیں پایا جاتا جبکہ ہر قسم کے تفرقی مساوات کا ترسیمی اور اعدادی حل حاصل کرنا ممکن ہے۔

graphical²⁸ numerical²⁹

numerical²⁹ analytic³⁰

میدان کی سمت: ترسیمی طریقه

جم xy سطح پر جلّه جلّه مساوات 1.13 سے حاصل ڈھلوان کی چھوٹی لمبائی کی سیدھی لکیریں تھینی سکتے ہیں۔ ہر نقطے پر ایک لکیر اس نقطے پر میدان کی سمت دیتی ہے۔اس میدانِ سمت³¹ یا میدانِ ڈھال³² میں تفرقی مساوات کا منحنی حل ³³ کینی جا سکتا ہے۔

منحنی حل کو تھینچنے کی ترکیب کچھ یوں ہے۔ کسی بھی نقطے پر ڈھلوان کی سمت میں چھوٹی لکیر کھینیں۔اس لکیر کو آہستہ آہستہ یوں موڑیں کہ لکیر کے اختتامی نقطے پر لکیر کی ڈھلوان عین اس نقطے کی ڈھلوان برابر ہو۔اسی طرح آگے بڑھتے رہیں۔ڈھال میدان میں نقطے جتنے قریب قریب ہوں تفرقی مساوات کا منحنی حل اتنا درست ہو گا۔

شكل 1.5 ميں

(1.14) y' = x - y

کا ڈھال میدان د کھایا گیا ہے۔ساتھ ہی ساتھ چند منحیٰ حل بھی د کھائے گئے ہیں۔

آئیں اب اعدادی طریقہ سیکھیں۔سادہ ترین اعدادی طریقہ ترکیب یولو کہلاتا ہے۔پہلے اسی پر بحث کرتے ہیں۔

يولر كى اعدادى تركيب

ورجہ اول تفرقی مساوات y'=f(x,y) اور ابتدائی معلومات $y(x_0)=y_0$ کو استعمال کرتے ہوئے توکیب یولو $x_0=y_0$ ناصلہ نقطوں y'=f(x,y) واصلہ نقطوں y'=f(x,y) واصلہ نقطوں y'=f(x,y) ویا ہے درست قیمتیں دیتا ہے یونی

$$y_1 = y_0 + hf(x_0, y_0)$$

 $y_2 = y_1 + hf(x_1, y_1)$
 $y_3 = y_2 + hf(x_2, y_2)$

direction field³¹ slope field³² solution curve³³ Euler's method³⁴

شكل 1.5: در جه اول ساده تفرقی مساوات y'=x-y كاڈھال ميدان اور منحنی حلy'=x-y

یا

$$(1.15) y_n = y_{n-1} + hf(x_{n-1}, y_{n-1})$$

h کو قدم کہتے ہیں۔ شکل 1.6-الف میں y_1 کا حصول دکھایا گیا ہے جہاں ابتدائی نقطہ y_0 اور ترکیب یولر سے حاصل کردہ y_1 کو چھوٹے دائروں سے ظاہر کیا گیا ہے۔ شکل-ب میں y_1 کی قیمت کم کرنے کا اثر دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ چھوٹا قدم لینے سے اصل حل $y(x_1)$ اور یولر سے حاصل y_1 میں فرق (غلطی) کم ہو جاتا ہے۔یوں قدم کو چھوٹا سے چھوٹا کرتے ہوئے زیادہ سے زیادہ درست حل دریافت کیا جا سکتا ہے۔

 $y=y=ce^{-x}+x-1$ مساوات 1.14 کا عمومی حل $y=ce^{-x}+x-1$ ہم جلد حاصل کر پائیں گے۔اس وقت صرف اتنا ضروری ہے کہ آپ $e^{-x}+x-1$ ویق مساوات میں پر کرتے ہوئے ثابت کر سکیں کہ یہی درست حل ہے۔

جدول 1.1 میں قدم h=0.1 لیتے ہوئے نقطہ h=0.0 سے گزرتا ہوا مساوات 1.14 کا ترکیب یولر (مساوات 1.15) سے حل حاصل کیا گیا ہے۔ شکل 1.7 میں ترکیب یولر سے حاصل حل اور ریاضیاتی حل کا موازنہ کیا گیا ہے۔ (1.15)

شكل 1.6: تركيب يولر كاپېلا قدم۔

جدول 1.1: تر کیب پولر۔

غلط				
غلطي	y(x)	У	X	n
0	0	0	0	0
0.00484	0.00484	0.0	0.1	1
0.00873	0.01873	0.01	0.2	2
0.01182	0.04082	0.029	0.3	3
0.01422	0.07032	0.0561	0.4	4

شکل 1.7: ترکیب یولرہے حاصل حل کاریاضیاتی حل کے ساتھ موازنہ کیا گیا ہے۔