DAILY ASSESSMENT FORMAT

Date:	2 JUNE 2020	Name:	HARSHITHA H
Course:	ELECTRICAL NETWORK THEORY	USN:	4AL18EC020
Topic:	1.Network Theorems		
	2.Resonance	Semester &	IV SEM & A SECTION
		Section:	
Github	harshithah		
Repository:			

Report -

ELECTRICAL NETWORK THEORY

TOPICS COVERED:

1. Network theorems:

- Theorems in Network Theory
- Linearity property
- Circuit linearity examples

Superposition theorem:

- Definition of Superposition theorem
- Steps to apply Superposition theorem
- Examples

Thevenins theorem:

- The need of Thevenin's theorem.
- The statement of Thevenin's theorem.
- The Thevenin's voltage.
- The Thevenin's resistance.
- The Thevenin's equivalent circuit.
- Example problem demonstrating the calculation of Thevenin's voltage and the Thevenin's resistance, along with the construction of Thevenin's equivalent circuit.

Nortons theorem:

- Norton's theorem statement.
- Norton's equivalent current.
- Norton's equivalent resistance.
- Norton's equivalent circuit.
- The difference between Thevenin's Theorem and Norton's Theorem.
- An example problem on Norton's theorem.

Reciprocity:

- The statement of Reciprocity Theorem.
- The conditions to use Reciprocity Theorem.
- Solved example on the use of Reciprocity Theorem.

Millmans theorem:

- The statement of Millman's theorem.
- The derivation of Millman's theorem.
- The dual of Millman's theorem.

Max Power theorem:

- Maximum Power Transfer Theorem
- Derivation of Maximum Power Transfer Theorem
- Examples

Compensation theorem:

- DC Circuit theorems
- State and deriving Compensation theorems

Tellegens theorem

2. Resonance and Bandwidth

Series RLC circuit:

- Resonance in the RLC circuit
- Quality factor
- Bandwidth of the series resonant circuit
- Derivation for the expression of resonant frequency
- Derivation of bandwidth of the series resonant circuit
- Expression of the Quality factor in terms of the circuit parameter.

Parallel RLC circuit:

- Resonance condition in Parallel RLC Circuit
- Derivation of resonant frequency for Parallel RLC Circuit
- Understanding the Resonant curve for Parallel RLC Circuit
- Quality Factor of parallel Resonant circuit
- Bandwidth of Parallel Resonant Circuit and its derivation
- Current Magnification in Parallel Resonant Circuit

Date:2 JUNE 2020	Name:HARSHITHA H	
Course: PYTHON	USN: 4AL18EC020	
Topic: Application 7: Scrape Real Estate	Semester & Section: IV SEM & A SECTION	
property data from the web		

Report -

PYTHON:

Application 7: Scrape Real Estate Property Data from the Web

- Scraped website data
- Request Headers
- Loading the webpage in python
- Extracting "div" Tags
- Extracting website and property details
- Extracting elements without unique identifiers
- Saving the extracted data using CSV files
- Crawling through webpages