CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	203	All
Examination	Date	Pages
Final	December 2016	3
Instructors:	A. Atoyan, J. Brody, L. Dube, I. Gorelyshev,	Course Examiners
	F. Hosseini, H. Proppe, B. Rhodes	A. Atoyan and H. Proppe
Special	Only approved calculators are allowed.	
Instructions:	Show all your work for full marks.	

MARKS

- [10] 1. (a) Suppose $f(x) = \sqrt[3]{x-1}$ and $g(x) = 1 + (\frac{x}{1+x^3})^3$. Find $f \circ g$ and $g \circ f$ and their domains.
 - (b) Find the inverse of the function $f(x) = \sqrt{2^x 2}$. Determine the domain and range of f and f^{-1} .

[8] **2.** Evaluate the limits: a)
$$\lim_{x\to 5} \frac{\sqrt{2x-1}-3}{x^3-125}$$

b)
$$\lim_{x \to \infty} \frac{(x^3 + 1)(2x - 3)^2}{(x+1)^2(3x+2)^3}$$
.

Do not use L'Hôpital's rule.

- [11] **3.** (a) Consider the function $f(x) = \frac{|x^2 + 4x 5|}{x^2 25}$. Calculate both one-sided limits at the point(s) where the function is undefined.
 - (b) Find the value of a and b so that the function

$$f(x) = \begin{cases} 5 + x^2 & \text{if } x \le 0\\ ax + b & \text{if } 0 < x \le 1\\ \frac{25}{x} & \text{if } x > 1 \end{cases}$$

is continuous everywhere. Sketch the graph of this function.

[15] 4. Find the derivatives of the following functions (you do not need to simplify the answers)

(a)
$$f(x) = \frac{\sqrt{x} + 3\sqrt[3]{x^2} + x^5}{2x\sqrt[3]{x}}$$

- (b) $f(x) = (x^3 + ex \sin \pi)(\cos 2x)$
- (c) $f(x) = \ln^3(x^2 + \tan(3x))$
- (d) $f(x) = \frac{\arcsin^2 x}{\sqrt{1 x^2}}$
- (e) $f(x) = (3x^2 + 5)^{\arctan x}$
- [12] **5.** Given the function $f(x) = \sqrt{x^2 + 8}$
 - (a) Use appropriate differentiation rules to find the derivative f'(x).
 - (b) Use the definition of derivative to verify the answer in part a.
 - (c) Find the differential of the function.
 - (d) Use the differential above, or (equivalently) use the linear approximation at a=1 (with the appropriate choice of Δx) to find the approximate value of $\sqrt{8.49}$. Check the approximation with your calculator.
- [16] 6. (a) The equation of a curve is $y^4 \tan x = xy^3 + y 1$ and defines y implicitly as a function of x. Verify that the point (0,1) belongs to this curve and find an equation of the tangent line to the curve at this point.
 - (b) Let $f(x) = \frac{4 3x^7}{x^5}$. Find f'''(x).
 - (c) Use L'Hôpital's rule to evaluate $\lim_{x\to 0} \frac{e^x e^{-x} 2x}{x \sin x}$

- [12] 7. (a) A particle is moving along the plane curve $2x^2 + 5y^2 = 22$. At the moment when x = -1 the x-coordinate is increasing at the rate of 5 cm/sec. If the y-coordinate is positive at this moment, is it increasing or decreasing? How fast?
 - (b) A rectangle ABCD has sides parallel to the coordinate axes and point A is located at the origin. Point B is on the positive x-axis and point C is on the graph of the function $y = e^{-2x}$ and has positive x and y coordinates. Find the coordinates of the point C that maximizes the area of the rectangle.
- [16] **8.** Given the function $f(x) = \frac{2x}{x^2 9}$,
 - (a) Find the domain and check for symmetry. Find all asymptotes (if there are any).
 - (b) Calculate f'(x) and use it to determine interval(s) where the function is increasing, interval(s) where the function is decreasing, and local extrema (if there are any).
 - (c) Calculate f''(x) and use it to determine interval(s) where the function is concave upward, interval(s) where the function is concave downward, and points of inflection (if there are any).
 - (d) Sketch the graph of the function.

[5] Bonus Question

Given the equation $x^5 + 5x = 5$,

- (a) Use the Intermediate Value Theorem to show that there is a solution between 0 and 1.
- (b) Use the Mean Value Theorem to show that there cannot be more than one solution between 0 and 1.