LATEX Mathematics Examples

Prof Tony Roberts

September 6, 2015

Contents

Dolimitors

_	Deminiters	
2	Spacing	2
3	Arrays	2
4	Equation arrays	3
5	Functions	4
6	Accents	4
7	Command definition	5
8	Theorems et al.	5

1 Delimiters

See how the delimiters are of reasonable size in these examples

$$(a+b)\left[1-\frac{b}{a+b}\right]=a\,,$$

$$\sqrt{|xy|} \le \left| \frac{x+y}{2} \right|,$$

even when there is no matching delimiter

$$\int_{a}^{b} u \frac{d^{2}v}{dx^{2}} dx = u \frac{dv}{dx} \Big|_{a}^{b} - \int_{a}^{b} \frac{du}{dx} \frac{dv}{dx} dx.$$

2 Spacing

Differentials often need a bit of help with their spacing as in

$$\iint xy^2 \, dx \, dy = \frac{1}{6}x^2y^3,$$

whereas vector problems often lead to statements such as

$$u = \frac{-y}{x^2 + y^2}$$
, $v = \frac{x}{x^2 + y^2}$, and $w = 0$.

3 Arrays

Arrays of mathematics are typeset using one of the matrix environments as in

$$\begin{bmatrix} 1 & x & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 + xy \\ y - 1 \end{bmatrix}.$$

Case statements use cases:

$$|x| = \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x < 0. \end{cases}$$

Many arrays have lots of dots all over the place as in

4 Equation arrays

In the flow of a fluid film we may report

$$u_{\alpha} = \epsilon^2 \kappa_{xxx} \left(y - \frac{1}{2} y^2 \right), \tag{1}$$

$$v = \epsilon^3 \kappa_{xxx} y \,, \tag{2}$$

$$p = \epsilon \kappa_{xx} \,. \tag{3}$$

Alternatively, the curl of a vector field (u, v, w) may be written with only one equation number:

$$\omega_{1} = \frac{\partial w}{\partial y} - \frac{\partial v}{\partial z},
\omega_{2} = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x},
\omega_{3} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}.$$
(4)

Whereas a derivation may look like

$$(p \land q) \lor (p \land \neg q) = p \land (q \lor \neg q)$$
 by distributive law $= p \land T$ by excluded middle $= p$ by identity

5 Functions

Observe that trigonometric and other elementary functions are typeset properly, even to the extent of providing a thin space if followed by a single letter argument:

$$\exp(i\theta) = \cos\theta + i\sin\theta$$
, $\sinh(\log x) = \frac{1}{2}\left(x - \frac{1}{x}\right)$.

With sub- and super-scripts placed properly on more complicated functions,

$$\lim_{q \to \infty} ||f(x)||_q = \max_x |f(x)|,$$

and large operators, such as integrals and

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 where $n! = \prod_{i=1}^n i$,
 $\overline{U_{\alpha}} = \bigcap_{\alpha} U_{\alpha}$.

In inline mathematics the scripts are correctly placed to the side in order to conserve vertical space, as in $1/(1-x) = \sum_{n=0}^{\infty} x^n$.

6 Accents

Mathematical accents are performed by a short command with one argument, such as

$$\tilde{f}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$

or

$$\dot{\vec{\omega}} = \vec{r} \times \vec{I}.$$

7 Command definition

The Airy function, Ai(x), may be incorrectly defined as this integral

$$Ai(x) = \int \exp(s^3 + isx) ds.$$

This vector identity serves nicely to illustrate two of the new commands:

$$\nabla \times \boldsymbol{q} = \boldsymbol{i} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) + \boldsymbol{j} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) + \boldsymbol{k} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right).$$

8 Theorems et al.

Definition 1 (right-angled triangles) A right-angled triangle is a triangle whose sides of length a, b and c, in some permutation of order, satisfies $a^2 + b^2 = c^2$.

Lemma 2 The triangle with sides of length 3, 4 and 5 is right-angled.

This lemma follows from the Definition 1 as $3^2 + 4^2 = 9 + 16 = 25 = 5^2$.

Theorem 3 (Pythagorean triplets) Triangles with sides of length $a = p^2 - q^2$, b = 2pq and $c = p^2 + q^2$ are right-angled triangles.

Prove this Theorem 3 by the algebra $a^2+b^2=(p^2-q^2)^2+(2pq)^2=p^4-2p^2q^2+q^4+4p^2q^2=p^4+2p^2q^2+q^4=(p^2+q^2)^2=c^2$.