

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat
Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 13: Converter's Objectives and Control Implications using MATLAB Models

Concepts Covered

- Understanding behavior of a practical source while driving a SMPC
- Scalable MATLAB model development with a practical source
- Understanding converter objectives and control implications
- Power-stage design guidelines and few power designer tools
- MATLAB case studies to understand control requirements

Understanding a Voltage Source

■ Ideal voltage source

- Voltage remains constant
 - Irrespective of current magnitude ➤ Relates to DC output impedance
 - Irrespective of current profile ➤ Relates to AC output impedance

 $Ideal\ voltage\ source:\ Zero\ output\ impedance,\ infinite\ bandwidth!!$

- This captures load regulation aspects.
- But, it does not capture transient effects.
- This model still assumes infinite bandwidth!!!

AC Small-Signal Modeling Output Impedance of Voltage Source

- For AC model, consider perturbations and replace DC quantities by zero
 - → ideal voltage source: short circuited
 - → ideal current source: open circuited

AC Small-Signal Modeling Output Impedance of Voltage Source

$$\omega_n = \sqrt{rac{R_d}{r_s}} imes rac{1}{\sqrt{L_s C_s}}, \quad Q_s = rac{Z_{cs}}{\left(R_d + r_s
ight)}, \quad Z_{cs} = \sqrt{rac{L_s}{C_s}}$$

Practical Voltage Source Parameters for Simulation

MATLAB Simulation Case Study - Practical Voltage Source

- Consider a pulsating load current profile
- Apply periodic load step-up and step-down

Practical Source Driving a Buck Converter

Practical Voltage Source Driving Practical Synchronous Buck Converter

Practical voltage source

Practical Synchronous Buck Converter

$$q = 1$$
 $q = 0$

Input voltage v_{in} – source dependent

$$R \not \geqslant \stackrel{\text{\tiny v}}{v_o} \quad i_{in} = q \times (i_L) + (1-q) \times 0 = q \times i_L$$

Input current i_{in} - dependent on i_L and q

Synchronous Buck Converter Parameters for Simulation

```
% output inductance
L=0.5e-6;
C=200e-6:
               % output capacitance
                                                           Input voltage
                                                                                 Input current
               % switching time period
T=2e-6:
r L=5e-3;
              % inductor DCR
                                                            ▶ Gate signal
                                                                               Inductor current
               % High-side MOSFET on resistance
r 1=5e-3;
              % Low-side MOSFET on resistance
r 2=5e-3;
r d=r 2;
              % diode on resistance
                                                           → DCM enable
                                                                             Capacitor voltage
v_d=0.55;
              % diode voltage drop
r C=3e-3;
               % capacitor ESR
Vin=12:
               % nominal input voltage
                                                           ■ Load current
                                                                               Output voltage
               % reference output voltage
Vref=1:
               % maximum load current
                                                                      Buckconverter
Io_{max} = 20;
```

parameters for the buck com.

Simulation Case Study – Understanding Performance Requirements

More Simulation Case Studies – Live Demonstration

- Buck converter operation using ideal and practical voltage sources
- Understanding conducted EMI effects
- Understanding transient response supply, load, duty steps
- Understanding start-up behavior
- Understanding short circuit and open circuit behavior
- Understanding control requirements

Understanding Dynamic Requirements

Conceptual understanding of load disturbance

- Conducted EMI compliance requirements and specifications
- Power-up sequencing soft start, sequencing multiple converters
- Interrupt redundancy, hot swapping for fail-safe operations

- Thermal protection and heat distribution
- Packaging and cooling (active/passive) techniques

Important Steady-State Requirements

- Range of input voltage worst-case current ripple, losses, device ratings
- Nominal output voltage tolerable range, voltage regulation/ripple aspects
- Maximum load current phase count, current ratings, losses, load step
- Modulation technique frequency range, design rules, filter design

Power Stage Design Summary

- Range of input voltage worst-case current ripple, losses, device ratings
- Nominal output voltage tolerable range, voltage regulation/ripple aspects
- *Maximum load current* current ratings, phase count, losses, load step
- Modulation technique frequency range, design rules, filter design

Few Commercial Power Stage Design Tools

- Texas Instruments Webench <u>link here</u>
- \blacksquare STMicroelectronics eDesignSuite <u>link here</u>
- Infineon Designer powered by TINA Cloud <u>link here</u>
- On Semiconductor WebDesigner+Power <u>link here</u>

Example of Buck Converter Power Stage Design

- Input voltage range 8 to 15 V with 12 V nominal
- Nominal output voltage 1 V nominal with 2 % ripple limit
- Maximum load current 20 A nominal and nearly 100 mA lower limit
- Modulation technique single or combined multi-mode techniques

Buck Converter: Power Stage Inductor Design

$$v_{\text{in}} \stackrel{f}{\leftarrow} \begin{array}{c} S \\ \downarrow I \\ \downarrow$$

$$\Delta i_{\rm L} = \frac{V_{\rm O}}{Lf_{\rm sw}} \times (1 - D)$$

Current ripple is maximum at minimum $D \rightarrow \text{highest } v_{\text{in}}$

- Ripple inductor current (20% of maximum load current) = 4 A
- *Minimum duty ratio* (at maximum input voltage) = 1/15= 0.067
- Nominal switching frequency (under high load) = 500 kHz
- Minimum inductor value (at 1 V output) = 467 nH

Buck Converter: Power Stage Design

$$\Delta v_o = \left(\frac{(1-D)V_o}{8LCf_{sw}^2}\right) + \underbrace{r_c \Delta i_L}_{ESR\ effect}$$

Current ripple is maximum at minimum $D \rightarrow \text{highest } v_{\text{in}}$

- Ripple output voltage (2% of nominal output voltage) = 20 mV
- Worst-case ripple at maximum input voltage
- Minimum output capacitor (at $3 \text{ m}\Omega \text{ ESR}$) = 117 uF
- Inductor and capacitor: L = 0.5 uF, C=200 uF

Understanding Operating Requirements

■ Electromagnetic interference (EMI) – <u>reference link</u>

■ Power-up sequencing – <u>reference link</u>

■ Hot plugging – <u>reference link</u>

Fault Management and Protection

- Inductor (and switch) current limit
- Inrush/ start-up current limit
- Thermal protection
- Packaging and cooling requirements

> Disital twin

• Health monitoring

Overview of Feedback/Feedforward Control Methods

S. Kapat & P. Krein, "A Tutorial and Review Discussions ...", IEEE Open J. Power Electronics

Summary

- Impedance aspects of a practical voltage source discussed
- Scalable and plug-and-play MATLAB model development
- MATLAB case studies to demonstrate control requirements
- Power-stage design guidelines and few power designer tools

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 14: Feedforward Control in SMPC and MATLAB Simulation

Concepts Covered

- Sources of disturbances in SMPCs
- Disturbance rejection using feedforward action
- Supply disturbance rejection and MATLAB simulation
- Load disturbance rejection and MATLAB simulation
- Understanding need for feedback control

Sources of Disturbance in SMPC

Synchronous Buck Converter Parameters for Simulation

Synchronous Boost Converter Parameters for Simulation

```
L=2e-6;

C=100e-6;

T=2e-6;

r_L=0*10e-3;

r_d=0*10e-3;

v_d=0*0.7;

r_1=0*5e-3;

r_2=0*5e-3;

r_C=0*5e-3;

Vin=3.6;

Vref=5;
```


Effects of Supply and Load Disturbances – MATLAB Simulation

Input Voltage Disturbance Rejection in a Buck Converter

$$\frac{dT}{T} = \underbrace{v_{\text{con}}}_{V_U} \Rightarrow d = \underbrace{\left(\frac{1}{V_U}\right)} \times v_{\text{con}}$$

$$v_{\rm in} \rightarrow v_{\rm in} + \Delta v_{\rm in}$$

• Objective is to reject disturbance of v_{in} change

Input Voltage Disturbance Rejection (contd...)

$$v_o = dv_{\text{in}} = \underbrace{\left(\frac{1}{V_U}\right)} \times v_{\text{con}} \times v_{\text{in}}$$
(modulator gain)

• Objective is to make Δv_o even without changing $v_{\rm con}$

$$\begin{split} & \text{Let, } V_U = k_{\text{ff}} v_{\text{in}} \\ & v_o = \frac{1}{k_{\text{ff}} v_{\text{in}}} \times v_{\text{in}} \times v_{\text{con}} & \Rightarrow v_o = \frac{v_{\text{con}}}{k_{\text{ff}}} & \longrightarrow & \text{Insensitive to input voltage variation} \end{split}$$

Input Voltage Disturbance Rejection in a Boost Converter

Simple extension of the previous input voltage feedforward

$$d = \frac{V_{com}}{V_{m}}$$

• Objective: Supply disturbance rejection using $V_U = k_{ff} \times v_{in}$

Input Voltage Disturbance Rejection in a Boost Converter

Simple extension of the previous input voltage feedforward

Observation: Supply disturbance cannot be rejected!!

Input Voltage Disturbance Rejection in a Boost Converter

Alternative method using current control and power balance

• Limitation: Non-robust due to difficulty in measuring R!!

Load Disturbance in CMC

Load Current Feedforward in CMC

Repeat the earlier simulation using CMC using load feedforward

Limitations of Feedforward Control in SMPC

- Feedforward control offers excellent disturbance rejection
- Requires accurate parameter information non-robust
- Poor regulation performance with practical parasitic
- Unmodelled dynamics may be problematic
- Feedforward control alone is not suitable for SMPCs

Summary

- Sources of disturbances in SMPCs identified
- Effects of supply and load disturbance discussed
- Input voltage and load current feedforward demonstrated
- Feedforward control non-robust, feedback control seems essential
- Combined feedback and feedforward control to be discussed

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat
Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 15: Single and Multi Loop Feedback Control Methods

Concepts Covered

- Conventional negative feedback control
- Link with voltage feedback control in SMPC
- PWM voltage mode control single loop feedback control
- PWM current mode control two-loop feedback control
- Discussions on advantages and limitations

Overview of Feedback/Feedforward Control Methods

Objectives

- Well-damped and fast response
- Good disturbance rejection
- Tight voltage regulation
- Soft-start at power-up

S. Kapat & P. Krein, "A Tutorial and Review Discussions ...", IEEE Open J. Power Electronics

Single Loop Feedback Control – Sources of Disturbance

$Single\ Loop\ Feedback\ Control-Link\ with\ SMPC$

Voltage Mode Control (VMC) – A Start-up Case Study

- Consider a PID controller $G_C(s) = K_P + \frac{K_I}{s} + \frac{K_D s}{\tau_D s + 1}$
- Implement VMC in MATLAB and simulate a start-up case study

MATLAB Implementation of VMC

Simulating a Start-up Case Study under VMC

Vin=12; R=1; V_m=10; K_p=30; K_i=20000; K_d=0.04

PID Controller – Functionality

PID Gain	Percentage Overshoot	Settling Time	Steady-state Error
$\operatorname{Increasing} K_P$	Increases	Minimal impact	Decreases
$\operatorname{Increasing} K_I$	Increases	Increases	Zero steady- state error
$\operatorname{Increasing} K_D$	Decreases	Decreases	No impact

MATLAB with Soft-Start in VMC

Basic Two Loop Output Feedback

Two loop control

Master / slave control

 $Cascade\ control$

Two Loop Control in SMPC

- Outer loop → generally (output) voltage loop
- Inner loop:
 - o Inductor current
 - o Capacitor current
 - Derivative of output voltage
 - o Ripple output voltage

Current Mode Control

Capacitor current based Two Loop Control

Two loop Control using Voltage Derivative inner loop

→ Use same voltage controller parameters as capacitor current and compare responses

Simulating a Start-up Case Study under CMC

Simulating a Start-up with Current Limit under CMC

Strat-up Logic Comparison – VMC vs. CMC

Limitations of Single Loop VMC

Single Loop Control

- No control over current !!!
- Compensation sensitive to operating conditions
- (Fault protection and start-up logics separately needed
- Difficult to optimize transient and start-up performance

Advantages of Two-Loop CMC

- Possibility of reduced-order system dynamics using time-scale separation
- Simplified controller design with improved robustness
- Higher bandwidth can be achieved without compromising phase margin
- But, sensor requirement increases in current based implementation
- lacktriangle Existence of sub-harmonic instability over wide duty ratio range lacktriangle

Summary

- Fixed-frequency single loop control discussed
- Fixed-frequency two loop control methods discussed
- MATLAB based implementation demonstrated
- Advantages/limitations of feedback control methods discussed

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 16: Feedback Control of Cascaded SMPCs

Concepts Covered

- Cascaded converter intermediate bus architecture
- Concept of constant power load
- Instability and limit cycle oscillation
- Feedback control for active damping

Cascaded Converters and Applications

Examples

LED driving

$$\begin{array}{l} v_{_{\mathrm{in}}} = 12\,\mathrm{V} \\ \\ v_{_{\mathrm{bus}}} \in \left[30,48\right]\mathrm{V} \\ \\ v_{_{o}} = 12\,\mathrm{V} \end{array} \right) \begin{array}{l} \mathbf{Head} \\ \\ \mathbf{load} \\ \\ \mathbf{load} \end{array}$$

Data center

$$v_{
m in} = 48 \,
m V$$
 $v_{
m bus} \in [6,18] \,
m V$
 $v_{
m bus} = 1 \,
m V$
 $v_{
m o} = 1 \,
m V$

Cascaded Converters and Applications (contd...)

Consider the data center example

(intermediate bus architecture)

- Two cascaded buck converters
 - \circ Input side buck \rightarrow known as intermediate bus converter (IBC)
 - Output side buck → known as point of load (PoL) converter

Cascaded Converters and Applications (contd...)

- Use earlier simulation models of a conventional buck converter and
 - a synchronous buck converter
- Configure the above files to show a cascaded converter

High voltage, low current

Need to be efficient and reliable

Operates at a relatively lower switching frequency

Low voltage, high current

Need to be very fast to meet stringent performance requirement

Operates at a much higher switching frequency

Constant Power Load

Simulation Case Study

- **■** Case 1:
 - Use two separate converters (IBC and PoL converter)
 - Operate IBC in open loop at $f_{\rm sw_1} = 100\,{
 m kHz}$
 - \circ Operate PoL converter under CMC at $f_{
 m sw_2} = 500 \,
 m kHz$
- **Case 2:**
 - o Keep the same IBC configuration
 - $\circ~$ Replace PoL converter using a CPL where $~P_{_{o}}=v_{_{o}}i_{_{o}}$

Current Mode Control of IBC

Summary

- Cascaded dc-dc converters Plug and play MATLAB model
- Origin of constant power load
- Nature of damping and existence of limit cycle oscillations
- Active damping using current mode control

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 17: Combined feedback/feedforward control

Concepts Covered

- Input voltage feedforward in VMC
- Load current feedforward in CMC
- Droop control and applications

Input Voltage Feedforward in VMC

Input Voltage Feedforward in VMC

Simulate Line Transient Response with and without feedforward

Simulate DC-DC converter

- Without feedforward
- With feedforward

■ Show that CMC offers inherent input voltage feedforward

Under VMC

by virtue of using inductor current

Load Current Feedforward in CMC

Open outer-loop

Load Current Feedforward in CMC

Step 1

Droop Control and Applications

- Adaptive voltage positioning in VRM application
- Nearly resistive output impedance
- DC microgrid applications
- Energy optimization in IBA

Summary

- Combined feedback and feedforward control offers excellent disturbance rejection and fast transient performance
- Suitable circuits needed either to sense or estimate load current
- More design aspects to be discussed later

NPTEL ONLINE CERTIFICATION COURSES

CONTROL AND TUNING METHODS IN SMPCs

Dr. Santanu Kapat Electrical Engineering Department, IIT KHARAGPUR

Module 03: Fixed Frequency Control Methods

Lecture 18: State feedback control

Concepts Covered

- Implementation of state feedback PWM control
- Linking CMC and state feedback control
- Alternative form of state feedback
- Multivariable state feedback control in IBA
- Observer based state feedback control

Augmented State Feedback Control

Current Mode Control (CMC) Implementation

Analogy between state feedback control and CMC

State feedback control

$$egin{aligned} v_{
m con} &= k_v \left(v_{
m ref} - v_o
ight) + k_c \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m ref} - i_{
m L}
ight) \ &= k_v \left(i_{
m r$$

CMC

$$egin{align} v_{ ext{con}} &= i_{ ext{ref}} - i_{L} \ i_{ ext{ref}} &= k_{vp} \left(v_{ ext{ref}} - v_{o}
ight) + \left(k_{vi}
ight) \left(v_{ ext{ref}} - v_{o}
ight) dt \ \end{array}$$

$$k_{vp} = k_P$$

$$k_{vi} = k_I$$

S. Kapat & P. Krein, "A Tutorial and Review Discussions ...", IEEE Open J. Power Electronics

Multivariable State Feedback Control

Multivariable State Feedback Control

Two Single Degree of Freedom Control

Multivariable Control

Alternative Form of State Feedback Control

Observer Based State Feedback Control

Summary

- Introduction to state feedback control
- Linking state feedback control with CMC
- State feedback control in cascaded converters
- Multivariable state feedback control
- Alternative state feedback control structures

