

Relacion2.2.pdf

Pucherillos

Lógica y Métodos Discretos

1º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Inteligencia Artificial & Data Management

MADRID

academia DOS MOTIVOS

Lósica y Métodos Discretos

Pablo Vesa Romero Grupo 1A

Relación 2.2.

Ejercicio 2.15: Sean $f_i: \mathbb{R}^3 \longrightarrow \mathbb{R}$ las funciones bodecinas de tres variables Con := 63; 82,103,104,116,126,143,172,188,217 , 231.

Halla: sus formas canónicas disjuntivas y conjuntivas, sus implicantes primos mediante Quine, consensos, FCC y Karnaugh, sus formas Canónicas disjuntivas reducidas, sus formas no simplificables mediante

Karnaugh y Petrick. .

2.15.1 -1:63 63 = 00111111

010

0 1 1 1

163 = m2 + m3 + m4 + m5 + m6 + m7 f63= x*y =*+ x*y = + x y* =* + xy*= + xy =*+ xy = f63 = Mo M1 163= (x+y+z).(x+y+2))

Implicantes primos:

Yx+ 5 2* 1/x+ 5 19 Vx* 4 2 1× y* 1x y+2

-(3(x1)17) = x19 Quine: x,y

Consensos: foz= y+x Forma canónica conjuntiva: x+y

Karnaugh: ou ii

f63 (x,y) = x+5

* Formas no simplificables:

Petrick:

-		m ₁	m3	my	ms	M6	m7
A	×			× '	~	×	×
В	ט	×	×			×	×

163 = B. A(A+B) = A+B=) 163(x17,12)=x+7

Karnaugh

XY	00	01	41,	10,
o		1	T	1
1		1	1	2
	10	3 (×1	7/3) ± ×+7

2.15.182 → 1= 82	- Forma canónica disyuntiva:
82=01010010	for (x,y, 2) = m, + m, + m6 = x + y + 2 + x + y 2 + x y 2 +
	- Forma canónica conjuntiva:
	fsz(K, 5,2) = Mo·Hz. My·Ms. Mz=
Implicante	→= (x+y+z)(x+y+z). (x++y+z) (x++y+z*) (x++y++z*)

Implicantes primos:

* Método de la forma canónica conjustiva (FCC):

Por consensos:

Karnaugh:

- Forma canónica disjuntiva reducida: $\int_{82} (\times, 1/2, 2) = \times^{+} y^{+} + \times^{+} y^{2} + \times y^{2} + \times y^{2} = \times^{+}$

- Formas no simplificables:

Karnaugh:

Petrick:

		MI	M3	Mel
A	×yzk			×
В	x* Z	×	×	

$$2.15.3 \rightarrow i = 103$$

$$403 = 0110 0111$$

- Implicantes primos:

Quine:

xtyta	y* 2	₹.
xyzv	7 2	
× y z	×₹	*
~ A 5.	* 7	-
×4s		

Karnaugh:

- FCD reducidas xy+ y= + + + +

FCC:

$$f_{103}(x,y,z) = (x+y+z)(x+y*+z*)(x*+y+z) = \longrightarrow$$

$$\longrightarrow = (x+xy*+xz*+xy+yz*+xz+y*z) \cdot (x^y+y+z) = \longrightarrow$$

$$\longrightarrow = xy+xz+x^yz*+yz+x^yz*+y^zz+x^yz*+y^zz=\longrightarrow$$

$$\longrightarrow = xy+xz+x^yz*+y^zz+x^yz*+x^yz*+y^zz=\longrightarrow$$

$$\longrightarrow = xy+xz+x^yz*+y^zz+x^yz*=f_{10s}(x,y,z)$$

Consensos:

simplificables:

karnaugh

Petrick:

		Ma V	Mz	Ms	MGI	My
A	XZ			×		×
В	×y				×	×
C	4 2×		×		×	
0	y×Z	×		×	×	×

C.O. (W+O) - (W+B) - CO (W+B) - WCO+BCD

BCD= xy + yz* + y* Z

Esto no son apuntes pero tiene un 10 **asegurado** (y lo vas a disfrutar igual).

Abre la Cuenta NoCuenta con el código WUOLAH10, haz tu primer pago y llévate 10 €.

Me interesa

104-0110 1000

Implicantes primos:

Quine:

Karnaugh.

2 00' 01 11 10

x* 4*2 x*y 2* -> y* y* 2+ x*y 2* + x y* 2* x Consenses:

for (x, y z) = x + y = + x + y = + x y = +

(10x(x1412)= xpg=2+xpyz+xg=2+

fron(61415): (x14+5).(x14+4).(x+4+4)(x+44+5)(x+4++++++)

->=(x+xy+1x2+xy+y2++x2+42)(x+1)+2+)(x+4)+2)(x+4)+2+) (x+4)+2+)

-= (x+52+3+2)(x+15+2+) (x+15+2) (x+15+2+)

->= (xy1x241x4y2+y241x4y42)(x+1y+++)(x+1y++2+) -----

->= (xyz, xy+x*yz+x*yz*+x*y*z)(x+y+z*) = -> -> = xy*t* + xy+z + x+y +*

fron (x14,2) = x y = + x y = + x y = + x y = = +

FCR: from (< , y , =) = x*y* = +x* y 2* + x y + 2*

Formas no simplificables:

Karnaugh:

XX	Co	01	44	40)	
0		(1)		1	
1	1		1		4

Joy (x,7,2) - x 4+2+x 42 + xy+2+

Petrick.

_		M.	M2	m ₄ (
A	425	X		
B	× 4 7 2*		X	
C	× y* 2*			
	0	-		×

from (x14,2)=A+B+C

flow (x,y,z) = xxy+z+xy+z*

2.15.5 i= 116

116=01110100

FCO: mi+ mi+ms+ms = xyz + xyz+xy = + file (21912)

FCC: fize(<, y, 2) = Ho. Hy. Ho. My = (x+y+2) (x+y+2) (x+y+2) (x+y+2)

Implicantes primos:

Karnaush:

W. Comments
01 11 10
1011 12
y
fire (x,7,2) = x y+x 2+y2
11.) - x g+x + Tyt

file ((14, 2) = x+ y 21 x+ y 2+ + x+ y 2+ xy+ 2 = x

FCC:

->= x+9+x+4+2+2+= x+9+x+4+2+2+2

Quine:

=> fing (x,y,z) = x* = + y* = +x*y

FCA = fire(x,4,2) = x4= x4= x4= x4= x4= = &(x4= xx4+x4=) + xx4=

Formas no simplificables:

Petrick:

		M.	Ma	M ₃	M ₅
Δ	×* 7	×		×	
В	A. 5	×			×
C	×+ 7		×	X	

Karnaugh:

ING BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandés con una garantía de hasta 100.000 euros por depositante. Consulta más información en ing.es

Que te den **10 € para gastar** es una fantasía. ING lo hace realidad.

Abre la **Cuenta NoCuenta** con el código **WUOLAH10**, haz tu primer pago y llévate 10 €.

Quiero el cash

Consulta condiciones aquí

FCC: fire (MyR) = Mo. Mz = (x+y+z). (x++y++z*)

Implicantes primos:

karnaugh:

1/3	001	_ 01 1	344		
0		1	1	10	
7	1	1		V	3
			Y	3	

126 (-, y, 2) = x + 2+ x + y + x + x + + y 2 + 1 y + 2

(onsensos: fix((x), z) = x*y* + x*y 2* + x*y 2 + xy* 2* + xy* 2 + xy* = -;

FCC:

->= xy*+xz*+x+y+8z*+x+z+y+z

Quine:

FCR: \(\frac{126}{26} \left(\times 14, 2 \right) = \times \frac{1}{2} + \times \frac{1}{2}

-> x* 2+ y2* + y* +

Formas no simplificables:

Karnaugh:

1/3	CO	01/	41	r 40,
0		1	D	11
1	(1	1)		1

fire (x,4,5) = x,7 + x5, + 2, 5

Petrick:

_		ma	M ₂	M ₃	My	Ms	Me
4	XxE	×		×			1
B	x* 5		×	×			
c	y 2*		×				×
0	× ₹*			1	\ ×		X
E	× 5*				×	×	
F	7.5	×	1			X	1

Price AF+ BC+ AB+ OF +EF+ CD

academia DOS MOTIVOS

2.15.7. (=143

143 = 1000 1111

FCO -> (111 (5.7,2) = Mo+ My+ M5+ M6+ M2 = x22+ x22+ x22+ x22+ x22+ x22+ x22

F(C -> fins (x,y,z) = M, H, H, = (x+y+z) (x+y+z) (x+y+z)

Implicantes primos:

Kamaugh:

		*			
ZX.	Go.		~		
1	- 00	0.7	41	101	
0	1		1	1	
1			1	1	175
		-			_
			¥ .	•	
D			,		

fina (+,7,2) = x + y+2+

Quine:

× 5+ 5+	J* 21	×
~x y* 2*	V× 5+	
* 4. 5	× 5,	
× 5 5*	√X ₹	
×yŧ	5	

-fays (x, y, 2) = x + y+2+

Formas no simplificables:

Karnaugh:

Consenses:

FCC:

FCR= x . y = z .

Petrick:

		Mo	m4	M5	Mc	M=	
A	×		×	\otimes	×	×	
Q	52*	(X)	×				
	f143	A - 6	3 -1.	f;v; (-	(۶,۲۰	- × + v	,* ? *

2.15.8. 1=172

172 = 10101100

FCD: fare (~17,2)= mo+m2+m4+m6= xy'e+xye+xye+xye+

FCC: ferz (x,y,z) = M1. M3. H6. M== (x+y+e+) (x+y++e+) (x+y+++) (xx+y+++)

Implicantes primos:

Karnaugh:

14			*		
3/2	001	01	11	101	
G	A	1		1	
1				1	7
f172 (×14.3	ر' ۔ (۔	y ****.		

Consensos:

fore (x,y, e) = x+y+e++x+y=+ +xy==+xy+ = --

->: x* で* · ダゼナ メッキ

FCC:

(172(6),1/2) = (61) +64) (6+24) (6+2+2) (6+2+2) (6+2) -

->= (x1 2+) (x++2++x) (x+12+) ----->

= (xy++x++x*+x*++y*+)(x*+y+++*) --->

= xy* + y* = + x x+

Quine:

145 (<1,15) = 25+1, 5+ + x 2,

FCQ: 142 (-,4,7) = x+2++ y++2+ + xy+

Formas no simplificables:

karnaugh:

1/2	00	01	_ 14	lol
0	(1	1)		1
1				1

fize (x/4/E) = x2x+xyt

Patrick:

^		mo	M,	1 100	ME
	× 5+	×	(x)	PAIN	ME
B	y* 2*	×	~		
E	x y*	-		X	
				×	R

fizz= (A+B). A. (B+C). C = A. C = x*2* + xy*

2.15.9. 1=188

188= 1011 0110

FCO: fise (<,y,2) = mot m2+m31 m6+m6 = x+y+2++x+y2+x+y2+xy+2+xy2+

FCC: firs (~, y, e) = M2 My My = (~+ y+2+)(x++y+2)(x++y++2+)

Implicantes primos:

Karnaugh:

Consensos:

FCC:

) = (xy + x2+ x*y + y+ y2+ x*z + y2*) (x*+ y*+2*) ->

- x 5x +

Quine:

fiss (x,7,2) = x+ + x+ + 7 + 7 2*+ x y =

FCR: fiss (<14,2) = 2*2*+x*y+y=++xy*2

Formas no simplificables:

Karnaugh:

×××	co	01	211	101
0	1	(1)	D	
1	. 6	1		1

fiss (x, 7, 2) = x+2++x+y+ y2*+xy*&

Polvich:

,		Ma	Mal	Ma	Met	M
A	X 4 54	X	×		-3	6
В	4 2.	15.	×			(×
C	xy		×	E		
D	× y*z				(X)	
\mathfrak{t}	es (×)	477)	A	8.0	. 0	

-> fare (x141x) = x = x + 15+1 x + 1+ x + x

Esto no son apuntes pero tiene un 10 **asegurado** (y lo vas a disfrutar igual).

Abre la Cuenta NoCuenta con el código WUOLAH10, haz tu primer pago y llévate 10 €.

Me interesa

217= 1101 1001

FCD: f217 (x,y,z)=mo+m1+m5+m4+m7 x472+x42+x42+x42

FCC: f217 (x,4,72) = M2. M5. M(= (x+y*+z) (x*+y+2) (x*+y+2)

Implicantes primos:

Karnaugh:

S232 (, y, =) = x*2+ x*y*+ y*2*+ y2

(222 (17,7,2) = X Y 2 + x y 2 + x y 2 + x y 2 + x y 2 ----

->= x*y* + 4*2* + x* 2 + y2

FCC:

f24(<15/2)=(x+y+2)(x+y+2)(x+y+2)

>= xyy++y+2+x+21y= anine:

1227 (x,7,2) = x+ y+ + y+ 2+ + x* 2 + y 2

FCA: (214/2) = > + y+ + y+ 2+ + x+2 + y2

Formas no simplificables:

karnaugh:

X					~	
5	7	00	01	11	10	1
	A	Y	1		1	. 18
	1/1	1.0		1]2
	-	4	4			
3/2	Co	0	1	11	10	
a	1				1	
1	(1	(N	1			7
			7			
-124-	(-1	1,2	=	127	424	+ xty+

1,47 (-,4,7) = ytz+ + x+72+ yz

Petrick:

	I Mo V	mal	M3	my	m+
A X'yt			×		X
B 4 2		X	×		
CXZ	×	CONTRACTOR OF THE PARTY OF THE		1	-
D 37	×		The same of the same	200	

->= (BC+C+80+CD)(A+B). D.A

->= A BD + BCD

ABD -> fz17 (4/4/2)= x*y* + y* 2* + > 2

Ejercicio 2.16. Sean fi B" -> 1 las funciones bocleanas de bles . con 1 = 13244, 43944 y 62640. Halla : sus formas y conjuntiva, sus implicantes primos, sus formas Canénicas disjuntivas reducidas y sus formas no simplificables.

2.16.1. i = 13244

13244 = 0011 0011 1011 1100

FCO: (12244 (4,7,2))=m2+m3+m6+m7+m8+m20+m2+m12+m12+m12

サンドウモゼン メットモレンタもも + ×ゥモナ +×ゥモド +×ゥモナ +×ゥモド +×ゥモナ

FCC: fazzny (x17,2,4) = Mo Ma. My. My. Mg. May. May. Mas

>= (x+y+z+t) (x+y+z+t) (x+y+z+t) (x+y+z+t) (x+y+z+t) (x+y+z+t) (x+y+z+t)

Implicantes primos:

x 4,5 th	. ـه مرسا
x Arsatx	x* y* z
	·52 t*
-xx 2,5 1	~x 2+++
Xx 15 fo	~x 2 ++
-x プマヤ	vx+z+
-x 45, +.	14xx +
extyz t	~×*7 2
+ 2,5 X.	~× 45
exyti	~× 424

f13244 (x,y, 2) = x+2 + y+2

FCR: x* 2 + y* 2

Formas no simplificables:

12,				
13	00	01	14	10
Oo		- Indian tiple on the state of	(1)	1)
01			1	
41	1	1		1
10	1)	1)		1
	,			

faszun (x,7,2,1) = x+2 + xyz+ + x2+1+ + y+z

FCO: farmy (v. rest) & morms imorms impring & mio + mix

when we have the second of the

FCC = france (ory, e. 1) . Mr. M. . M. . Ma . Mar Mar Mar Mar Mar . Mar

Implicantes primos:

	,	
x 2,5,5, f.	1.xst	x* (*
* x* y* e (*	. x**++ *	5+4+
- Kin sofe	- 7,5, f.	5.1.
~ × 4, 4. 6.	- *, 6 4,	
- x 4 1 to	-13 614	
. x 4, 5 t.	a sory to	
	-2 80%	
No. of Concession of Concessio	· ·	
· my t t	1 × 4 €	l

Ansang (-, y, z, t) = xet + yte, est

Formas no simplificables:

1	XY				×	
	1)	00	01	11	10	1
	00	A	1	1	D	
	01					
7	11		(4)			1
	10	1	1	-	11	
			-	Y		

(4)444 (x,4) 6, 4) = x,25 + 24, + S,1. : ECK

2.16.3. 1.62640

62640-1111 0100 1011 0000

>= xyet + xget + xget

FCC: foreno (x, y, z, t) = My Mo My My My Ms Ms Ms Ms Ms Ms

= (confeet) (confeet)

academia DOS MOTIVOS

Implicantes primos:

-x, 2, 5,	-x y 2"	x y
~x* + 2* +	~x* y* t*	4.4
-x+y+ = t+	-4+ 5+4"	
"x y zt	-x 4.f	ઈ₹
-x* 5 2 t	× t	
- x y 2" t	'Y* 4*	
1x 4= +	·x yate	
· x 4 2 t	.A.S.+	

for640 (x, y, z, t) = x + y+ y+ + + + + +

Formas no simplificables:

	×					
	5/3	00	υl	14	10	
	OC	1			1	
1	01	1	1			
	11	1			1	
	10	1	1		1	
		100		·	•	

foreno (x,y,z,t) = x*z*t + y* +* + y*t : FCR

Ejercicio 2.11: Halla las formas disjuntiva, anómica y reclucida de la función f dados por $f(x_1, x_2, x_3) = (x_3 \vee x_2) A \times_3$. Encuentre sus formas disjuntivas no simplificables.

f(x1,x2,x3)=x3x3+x2x3 → Forma no simplificable y FCR

Ejerade 2.18: Dada le funcion bodeana f: B" -> B definide por

f(x, y, z,t) = xyzt v xytzt v xyzt" v xyzt" v xyzt" v xyztt v xyztt

->= xx++ xx++ + xx+++ + xx++ = xx (++++) + x+ +(+++x) = xx+x+x+ = xx xx+x+x+

WUOLAH

2. La realizaremos por karnaugh, ya que no nos piden una manera específica de hacerlo.

Ejercicio 2.19. En cada caso, encuentra la expresión más sencilla que deteste, destre del conjunto (0,1,2,...,15) los números que cumplen:

1. son multiplos de 2. Sercan (0,2,4,6,8,10,12,24) = mot me+my+m6+ms+m10+m1+m1+m1+

2. sen múltiples de 3. Seria (0,3,6,9,12,15) = mot m3 + m6 + m9 + m2 + m45

1/2	00	01	11	10
oc	Ø)		0	
OL				0
11	(1)		@	
10		0		

3. son múltiples de 4.

Serian {0,4,8,12} = mo + my + my + myz

Ejercicio 2.20: Un examen de tipo test consta de 4 preguntas. Las respuestas correctas son: (SI, NO, SI, SI). Construye una expresión bodeana que analize cach examen y distinja los aprobados de los supensos (se considera aprobado si al menos tres respuestas son correctas).

	×	2	5	ŧ	t
0	O	O	O	0	0
1	O	C	0	1	0
2	O	O	1	0	0
3	0	0	1	1	1
4	C	1	0	O	0
5	0			1	0
6	0	1 1 0		0	0
7	0	1 1 1		1	0
8	2	0 0 0		0	0
5 6 7 8 9	2	0 0 1		1	1
10	2	0	1	0	1
11	1	0	1	1	1
12	2	1	O	O	G
12	1	1	O	0	0
14	1	1	1	O	C
15	1	1	1	1	1

f(x,y, 2, +) + m3+ m9+ m20+ m11+ m21

f(x,7,2,t)=xy++xy+2+y*2++x2+

Ejercicia 2.21: Un comité formado por tres personas toma decisiones mediante votación por mayoría. Cada miembro del comité puede votar SI" pulsando un botón Diseña una red logica mediante la cual se encienda una luz cuando y solo cuando haya una mayoría de votos SI".

				-
	×	5	7	t
0	0	0	O	0
1	0	0	4	G
2	O	1	0	O
3	O	1	2	1
4	1	0	G	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Esto no son apuntes pero tiene un 10 asegurado (y lo vas a disfrutar igual).

Abre la **Cuenta NoCuenta** con el código <u>WUOLAH10</u>, haz tu primer pago y llévate 10 €.

Este número es indicativo del riesgo del producto, siendo 1/6 indicativo de menor riesgo y 6/6 de mayor riesgo.

NG BANK NV se encuentra adherido al Sistema de Garantía de Depósitos Holandès con una garantía de hasta 100.000 euros por depositante. Consulta más información en lon es

Me interesa

Ejercicio 2.23: Calcula la forma normal canjuntiva y la ferma normal disyuntiva para la función bodeana f(x,y,z)=(x*y+z*)+xz*.

Ejercicic 2.24: Se clesea construir un circuito que tenza como entradas cuatro tíneas que suministran los disitos de un número binario n= (azazazao)z y tenza como salida una línea que tome el valar 1 cuando el número M sea múltiplo de 3 o de 4, y 0 en dro caso. Obten la función boolecuro f que rise el funcionamiento de diche circuito. A continuación optimiza la expresión def.

Los multiples de 3 0 4 son {0,3,4,6,8,9,42,15}

5 X				
+/	00	01	11	10
00	1	1	1	1
01				4
11	1		1	
10		(1)		

((x,y,=,t) = xyyet + xyz++ xyyt" + xqz++ z*t*

Consulta condiciones **aquí**

- 16-

Ejercicio 2.25: Sea f los función bodeana de cuatro bariables que toma el valor 1 erclusivamente para (0,0,0,0), (0,0,0,1), (0,1,0,0), (0,1,1,1), (1,0,1,1), (1,1,1,0) y (1,1,1,1). Aplica el método de Quine-Petrick pora obtener todas las formas irredundantes posibles de f.

f(x,y,z,t) = mo+m2+ m4+ m4+ m4+ m4+ m15

= xyzt+ xyxt+ xyxt+ xyzt +xyzt + xyzt + xyzt + xyzt+

x 4 4 2 1 14	
x, 2, 5, ++	x y+21
x+ 2+ 5+ 1	xxxx++
x 4 2 + +	yet
xty et	xzt
X W+ 2 +	X 1. 3

f(x,y,z,t) = xyt+ xz4+ y = + + x + + xy=

Petrick:

		Mo	M2	My	m,	Mi	M14	M	
Α	140	×	×						Total Control of the last
В	111	×		~		1			
C	5 et				~			×	-
D	× z t					~		×	
C	× yt						*	×	

Si nos fijamos, todos los implicantes son esenciales, por tanto, la torma no Simplificable es:

f(x,4,2,t)= x*yz+ xz*++ yz++ xz++ xyz