

Projekt 1

Arbeiten mit OpenMP und FEM
Thore Mehr, Fabian Miltenberger, Sébastien Thill | 11.01.2017

LEHRSTUHL FÜR RECHNERARCHITEKTUR UND PARALLELVERARBEITUNG (ITEC)

Gliederung

- OpenMP und Tools (Aufgaben 1-2)
- 2 Parallelisierung (Aufgaben 3-4)
- 3 Partielle Differentialgleichungen (Aufgaben 5-6)

Aufgabe 1 – OpenMP

Test

Aufgabe 2 – Tools

- A
- B
- C

Aufgabe 3 a)

Speedup S(n) Der Geschwindigkeitszuwachs gegenüber einer sequentiellen Ausführung:

$$S(n) = \frac{T(1)}{T(n)}$$

Efficiency E(n)Beschleunigung pro Kern:

$$E(n) = \frac{S(n)}{n} = \frac{T(1)}{n \cdot T(n)}$$

Parallelisierung •000000000

Aufgabe 3 a)

Mehraufwand R(n)Durch Parallelisierung entstehender Aufwand:

$$R(n) = \frac{P(n)}{P(1)}$$

Parallelindex *I(n)* Operationen pro Zeiteinheit:

$$I(n) = \frac{P(n)}{T(n)}$$

Auslastung U(n)Mehraufwand pro Prozessor:

$$U(n) = \frac{I(n)}{n} = R(n) \cdot E(n) = \frac{P(n)}{n \cdot T(n)}$$

Aufgabe 3 b)

Fehlerquellen durch Parallelisierung:

- Race Condition
 Wettlaufsituationen, das Ergebnis h\u00e4ngt von konkreter
 Ausf\u00fchrungsreihenfolge ab
- Dead Lock
 Verklemmung dadurch, dass Prozesse auf Freigabe von Resourcen warten, die von anderen Prozessen gehalten werden, die ebenfalls warten
- Bibliotheken
- Messeffekte
- Cacheeffekte

Architektur	Anwenderfreundlichkeit	Energieeffizienz
GPU	Gut	Mittel
CPU	Gut	Gering
FPGA	Gering	Sehr gut
MIC	Gut	Gut

Aufgabe 4 – Gauß-Seidel-Verfahren

Löst Gleichungssysteme der Form

$$Au = h^2 f$$

nach $u \in \mathbb{R}$ mit $A \in \mathbb{R}^{n \times n}$, $h \in \mathbb{R}$, $f \in \mathbb{R}^n$

- Bei uns: A, h Abhängigkeit von Gitterkonstante h gegeben, f abhängig von Problem
- A beschreibt Abhängigkeit eines Gitterpunkts zu 4 Nachbarpunkten ⇒dünn besetzt
- Problemgröße ist $n = m \times m$, mit m Seitenlänge des Gitters
- Iterativ, $u_{x,y}^k = u_j^k$ is k-te Iterierte für Gitterpunkt x,y bzw. Eintrag j

Aufgabe 4 – Abhängigkeiten

OpenMP und Tools

Parallelisierung

Aufgabe 4 – Abhängigkeiten

Nach GSV:

$$u_j^{k+1} := \frac{1}{a_{j,j}} (h^2 f_j - \sum_{i=1}^{j-1} a_{j,1} u_i^{k+1} - \sum_{i=j+1}^{n} a_{j,i} u_i^k)$$

Zerfällt durch Struktur von A und Rand (mit d := m - 2) zu:

Pseudocode

```
double sum = h * h * f[j]; if (j % d > 0) sum += u[j - 1]; // Linker Nachbarknoten if (j % d < d - 1) sum += u[j + 1]; // Rechter Nachbarknoten if (j / d > 0) sum += u[j - d]; // Oberer Nachbarknoten if (j / d < d - 1) sum += u[j + d]; // Unterer Nachbarknoten u[j] = sum / 4;
```

Aufgabe 4 – Abbruchkriterium

Annahme: Veränderung der Iterierten korreliert mit Abstand von Lösung \rightarrow Breche ab, sobald Änderung von u^k zu u^{k+1} gering, also:

$$\|u^{k+1} - u^k\|_{max} < \varepsilon_{Error}$$

Wir verwenden $\varepsilon_{Error} = 1 \times 10^{-6}$

Aufgabe 4 – Parallelisierung

Nacheinander, zuerst alle grauen Felder, dann die weißen:

$u_{1,1}^{k+1}$	$u_{2,1}^{k+1}$	u _{3,1}	$u_{4,1}^{k}$	$u_{5,1}^{k-1}$	$u_{6,1}^{k-1}$	$u_{7,1}^{k-2}$
$u_{1,2}^{k+1}$	$u_{2,2}^{k}$	$u_{3,2}^{k}$	$u_{4,2}^{k-1}$	$u_{5,2}^{k-1}$	$u_{6,2}^{k-2}$	$u_{7,2}^{k-2}$
u _{1,3}	$u_{2,3}^{k}$	$u_{3,3}^{k-1}$	$u_{4,3}^{k-1}$	$u_{5,3}^{k-2}$	$u_{6,3}^{k-2}$	$u_{7,3}^{k-3}$
u _{1,4}	$u_{2,4}^{k-1}$	$u_{3,4}^{k-1}$	$u_{4,4}^{k-2}$	$u_{5,4}^{k-2}$	$u_{6,4}^{k-3}$	$u_{7,4}^{k-3}$
$u_{1,5}^{k-1}$	$u_{2,5}^{k-1}$	$u_{3,5}^{k-2}$	$u_{4,5}^{k-2}$	$u_{5,5}^{k-3}$	$u_{6,5}^{k-3}$	$u_{7,5}^{k-4}$
$u_{1,6}^{k-1}$	$u_{2,6}^{k-2}$	u _{3,6} ^{k-2}	$u_{4,6}^{k-3}$	$u_{5,6}^{k-3}$	u _{6,6} ^{k-4}	$u_{7,6}^{k-4}$
$u_{1,7}^{k-2}$	$u_{2,7}^{k-2}$	$u_{3,7}^{k-3}$	$u_{4,7}^{k-3}$	$u_{5,7}^{k-4}$	$u_{6,7}^{k-4}$	$u_{7,7}^{k-5}$

Aufgabe 4 – Performance

Ermittelt auf dem i82sn07 Rechner mit 32 Kernen:

Problem	Seq.	2 Thr	eads	4 Thr	reads	 32 Threads	
n	Zeit	T(2)	S(2)	T(4)	S(4)	 T(32)	S(32)
225	0,005	0,007	0,357	0,008	0,625	 1,361	0,0389
961	0,053	0,056	0,473	0,049	1,08	 4,041	0,178
	:	:		:	:		
65.025	115	81	1,42	45,3	2,54	 25,33	4,54
261.121	1340	943	1,42	504	2,67	 177	7,57

Gegeben:

$$-\Delta u(x,y) = f(x,y), (x,y) \in \Omega = (0,1)^2, u(x,y) = 0, (x,y) \in \Gamma$$

Die Bedingungen:

- Ω beschränktes Gebiet
- Γ hinreichend glatt
- $f:\Omega\to\mathbb{R}$

Thore Mehr, Fabian Miltenberger, Sébastien Thill - Projekt 1

Gesucht ist f mit

$$u(x,y) = \sin(2M\pi x)\sin(2N\pi y)$$

Anwendung des *Laplace-Operators* Δ :

$$f(x,y) = -\Delta u(x,y)$$

$$= -\frac{\partial u}{\partial x^2} - \frac{\partial u}{\partial y^2}$$

$$= -\frac{\partial}{\partial x} (2M\pi \cos(2M\pi x)\sin(2N\pi y)) - \frac{\partial}{\partial y} (2N\pi \sin(2M\pi x)\cos(2N\pi y))$$

$$= 4M^2\pi^2 \sin(2M\pi x)\sin(2N\pi y) + 4N^2\pi^2 \sin(2M\pi x)\sin(2N\pi y)$$

$$= (M^2 + N^2)4\pi^2 \sin(2M\pi x)\sin(2N\pi y)$$

$$I = 3, h = \frac{1}{8}$$

Gliederung

OpenMP und Tools

Parallelisierung

Partielle Differentialgleichungen

$$I = 4, h = \frac{1}{16}$$

Gliederung

OpenMP und Tools

Parallelisierung

Partielle Differentialgleichungen

$$I = 5, h = \frac{1}{32}$$

Gliederung

OpenMP und Tools

Parallelisierung 0000000000 Partielle Differentialgleichungen

Fehler zu analytischen Lösung wird mit kleinerem h kleiner

 \Rightarrow Es handelt sich um eine *h-FEM-Methodik*, da die Polynomgrade nicht verändert wurden

Aufgabe 6 a)

Alphabetische Liste gängiger Krylow-Unterraum-Verfahren:

- Arnoldi-Verfahren, zur Eigenwertapproximation
- BiCG, das CG-Verfahren für nicht SPD-Matrizen
- BiCGSTAB, Stabilisierung von CGS
- BiCGSTAB(ell), Stabilisierung von CGS
- BiCGSTABTFQMR, der Ansatz hinter TFQMR angewandt auf BiCGSTAB
- BiOres, eine Variante des BiCG-Verfahrens
- BiOmin, eine Variante des BiCG-Verfahrens
- BiOdir, eine Variante des BiCG-Verfahrens
- CG, zur approximativen Lösung linearer Gleichungssysteme
- CGNE, CG-Verfahren auf den Normalgleichungen. Variante 1
- CGNR, CG-Verfahren auf den Normalgleichungen, Variante 2
- CGG-Verfahren, quadrierne BCG-Gekunsion

 Mit in apparation desprises techniquesses

 Mittel apparation desprises techniquesses
- ⇒ Es gibt sehr viele

Aufgabe 6 a)

Für uns relevant:

- CG-Verfahren
 Geeignet für große lineare, symmetrische, positiv definite und dünn besetzte LGS, spätestens n Schritten exakte Lösung
- GMRES
 Geeignet für große, dünn besetzte LGS, exakte Lösung erst nach endlich vielen Schritten
- Lanczos-Verfahren
 Konvergenz von Eigenwerten abhängig

Aufgabe 6 b)

Speedup und Effizienz von *CG-Verfahren* gegenüber *Gauß-Seidel-Verfahren* (Problem aus Aufgabe 5)

Problem	Seq.	2 Th	reads		16 T	hreads	32 TI	hreads
n	S(1)	S(2)	E(2)		S(16)	E(16)	S(32)	E(32)
225	1,74	1,81	0,906		2,44	0,153	2,93	0,0917
961	4,01	3,71	1,86		1,44	0,0898	3,46	0,109
:								
65.025	17,9	16,5	8,27		16,8	1,05	4,05	0,127
261.121	27,6	25,9	12,9		39,5	2,47	37,9	1,18

Vorkonditionierung zerstört dünne Struktur von A

→ Nur sinnvoll, wenn A nicht dünn besetzt wäre

HiFlow³ würde sich eignen:

Ausgereifte OpenMP Funktionalität \rightarrow verringerter Portierungsaufwand

Bibliothek	Unterschiede	Gemeinsamkeiten
HiFlow ³	Hohe Parallelität	
	Keine externen Bibliotheken nötig	
MFEM	Sehr hohe Parallelität (mehrere hun-	
	derttausend Kerne)	C++,
	Keine externen Bibliotheken nötig	Krylov-
Deal.II	Hohe Parallelität (16000 Kerne min-	Unterraumverfahren,
	destens),	Diskretisierung
	Keine externen Bibliotheken benötigt	wählbar
	(optional Libraries)	

Fazit

Mit OpenMP lässt es sich parallelisieren.