Continuous Optimization: Assignment	ontinuous	us Optimization:	Assignment 4
-------------------------------------	-----------	------------------	--------------

Due on May 21, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

The objective function can be rewritten as:

$$f(x) = \langle x, Qx \rangle$$

where

$$Q = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

We can obtain τ_0 by exact line search i.e. solving the following equation:

$$\frac{\partial f(x_0 + \tau_0 k_0)}{\partial \tau_0} = 0$$

$$\langle d_0, \nabla f(x_0 + \tau_0 d_0) \rangle = 0$$

$$\langle d_0, Q(x_0 + \tau_0 d_0) \rangle = 0$$

$$\langle d_0, Qx_0 \rangle + \tau_0 \langle d_0, Qd_0 \rangle = 0$$

$$\tau_0 = \frac{-\langle d_0, Qx_0 \rangle}{\langle d_0, Qd_0 \rangle} = \frac{3}{4}$$

also

$$x_1 = x_0 + \tau_0 d_0 = \begin{pmatrix} -\frac{1}{4} \\ -1 \end{pmatrix}$$

Note $Q \in \mathbb{S}_{++}(2)$ which can be shown by calculating the eigenvalues of Q.

$$\det(Q - \lambda I) = 0$$

$$\det\begin{pmatrix} 4 - \lambda & -1 \\ -1 & 1 - \lambda \end{pmatrix} = 0$$

$$(4 - \lambda)(1 - \lambda) - 1 = 0$$

$$\lambda = \frac{5 \pm \sqrt{13}}{2} > 0$$

We can find an optimal solution by using the conjugate direction method given two Q-conjugate directions d_0 and d_1 i.e. $\langle d_0, Qd_1 \rangle = 0$. Let $d_1 = \begin{pmatrix} a \\ b \end{pmatrix}$ we have

$$(a \quad b) \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$
$$(a \quad b) \begin{pmatrix} 4 \\ -1 \end{pmatrix} = 0$$
$$4a = b$$

 d_1 has unit length i.e. $a^2 + b^2 = 1$. Therefore, $a = \frac{1}{\sqrt{17}}$ and $b = \frac{4}{\sqrt{17}}$. We have $d_1 = \begin{pmatrix} \frac{1}{\sqrt{17}} \\ \frac{4}{\sqrt{17}} \end{pmatrix}$.

Exercise 2

 (λ, v) is an eigen pair of $M^{-1}A$ i.e.

$$M^{-1}Av = \lambda v$$

$$MM^{-1}Av = \lambda Mv$$

$$IAv = \lambda Mv$$

$$Av = \lambda EE^{\top}v$$

$$E^{-1}Av = \lambda IE^{\top}v$$

$$E^{-1}Av = \lambda IE^{\top}v$$

$$E^{-1}Av = \lambda E^{\top}v$$

Let $\hat{v} = E^{\top}v$ which $v = E^{-\top}\hat{v}$. Substitute v in the above equation, we have

$$\begin{split} E^{-1}AE^{-\top}\hat{v} &= \lambda E^{\top}E^{-\top}\hat{v} \\ E^{-1}AE^{-\top}\hat{v} &= \lambda I\hat{v} \\ E^{-1}AE^{-\top}\hat{v} &= \lambda \hat{v} \end{split}$$

Therefore, (λ, \hat{v}) is an eigen pair of $E^{-1}AE^{-\top}$.

Exercise 3

Proof by Induction

Base Case: n = 1

$$d^{(0)} = -r^{(0)}$$
 thus span $(d^{(0)}) = \text{span}(r^{(0)})$

Induction Hypothesis:

Now suppose the statement is true for n = k i.e. $\operatorname{span}(d^{(0)}, \ldots, d^{(k-1)}) = \operatorname{span}(r^{(0)}, \ldots, r^{(k-1)})$

Inductive Step:

We want to show that the statement is true for n=k+1. We know that $d^{(k)}=-r^{(k)}+\frac{\langle r^{(k)},r^{(k)}\rangle}{\langle r^{(k-1)},r^{(k-1)}\rangle}d^{(k-1)}$ Take $v\in \mathrm{span}\,(d^{(0)},\ldots,d^{(k)})$ then we have $v=\sum_{i=0}^k c_id^{(i)}$ for some c_i .

$$v = \sum_{i=0}^{k} c_i d^{(i)}$$

$$= \sum_{i=0}^{k-1} c_i d^{(i)} + c_k d^{(k)}$$

$$= \sum_{i=0}^{k-1} c_i d^{(i)} + c_k \left(-r^{(k)} + \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k-1)}, r^{(k-1)} \rangle} d^{(k-1)} \right)$$

$$= \sum_{i=0}^{k-2} c_i d^{(i)} + \left(c_{k-1} + \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k-1)}, r^{(k-1)} \rangle} \right) d^{(k-1)} - c_k r^{(k)}$$

The first two term can be seen as a linear combination of $d^{(0)}, \ldots, d^{(k-1)}$ which is the same as a linear combination of $r^{(0)}, \ldots, r^{(k-1)}$ by the induction hypothesis. Together with the last term we have that v is a linear combination of $r^{(0)}, \ldots, r^{(k)}$.