Section 0, p8 12, 16, 17, 23, 25, 29, 31, 33

12 Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6\}$. For each relation between A and B given as a subset of $A \times B$, decide whether it is a function mapping A into B. If it is a function, decide whether it is one to one and whether it is onto B.

a.	$\{(1,4),(2,4),(3,6)\}$
	answer
b.	$\{(1,4),(2,6),(3,4)\}$
	answer
c.	$\{(1,6),(1,2),(1,4)\}$
	answer
d.	$\{(2,2),(1,6),(3,4)\}$
	answer
e.	$\{(1,6),(2,6),(4,6)\}$
	answer
f.	$\{(1,2),(2,6),(2,4)\}$
	answer
16 L	ist the elements of the power set of the given set and give the cardinality of the power set.
a.	\emptyset
	answer
b.	$\{a\}$
	answer
c.	$\{a,b\}$
	answer
d.	$\{a,b,c\}$
	answer

answer

	Let A be a finite set, and let $ A = s$. Based on the preceding exercise, make a conjecture about the of $ \mathcal{P}(A) $. Then try to prove your conjecture.
In Exercises 23 through 27, find the number of different partitions of a set having the given number of elements.	
23.	1 element
	answer
25.	3 elements
	answer
Descr	xercises 29 through 34, determine whether the given relation is an equivalence relation on the set. ribe the partition arising from each equivalence relation. $n\mathcal{R}m$ in \mathbb{Z} if $nm > 0$
	answer
31.	$x\mathcal{R}y$ in \mathbb{R} if $ x = y $
	answer
33.	$n\mathcal{R}m$ in \mathbb{Z}^+ if n and m have the same number of digits in the usual base ten notation