Algoritmos genéticos

Departamento de Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Problema de optimización:

minimizar/maximizar
$$f({m x})$$
 sujeto a $g_i({m x}) \geq 0, \quad i=1,\ldots,m$ $h_i({m x})=0, \quad j=1,\ldots,n$

- $\mathbf{x} = (x_1, \dots, x_k)$: variables de decisión.
- f: función objetivo.
- g_i, h_i : restricciones.

Problema de optimización combinatoria: $x_1, ..., x_k \in \mathbb{Z}$.

Solución globalmente óptima:

$$\begin{cases}
f(\mathbf{x}^*) \le f(\mathbf{x}) & \text{(minimización)} \\
f(\mathbf{x}^*) \ge f(\mathbf{x}) & \text{(maximización)}
\end{cases}$$
para todo \mathbf{x}

Solución localmente óptima:

$$f(x') \le f(x)$$
 (minimización) $\}$ para todo x $f(x') \ge f(x)$ (maximización) $\}$ «cercano» a x'

Problema de las 8-reinas: colocar 8 reinas en un tablero de ajedrez de tal manera que ningún par de reinas se amenacen entre sí.

Dos reinas se amenazan si se encuentran en la misma fila, columna o diagonal.

Variables de decisión: x_i es la columna donde se encuentra la reina de la fila i.

Problema de optimización:

minimizar número de amenazas

Problema del coloreado del mapa de Andalucía: colorear cada provincia andaluza con el color amarillo, verde, azul o rojo de tal manera que no hava ningún par de provincias adyacentes del mismo color.

Variables de decisión: x_i es el color de la provincia i.

Problema de optimización:

pares de provincias del mismo color minimizar

Problema del viajante por Andalucía: encontrar la ruta más corta que visite exactamente una vez cada capital de provincia andaluza, volviendo siempre a la ciudad de partida.

Variables de decisión: x_i es la i-ésima ciudad visitada.

Problema de optimización:

minimizar longitud de la ruta sujeto a
$$x_i \neq x_j, \quad 1 \leq i < j \leq 8$$

Resolución de problemas de optimización:

- $f: \mathbb{R}^k \to \mathbb{R}$ doblemente diferenciable y no hay restricciones:
 - · Método analítico.
- Programación lineal (función objetivo y restricciones son lineales):
 - · Método del símplex.
 - · Método de los puntos interiores.
- · Programación lineal entera:
 - · Método de los planos de corte.
- · Otro tipo de problemas:
 - · Heurísticas específicas.

No hay métodos exactos generales que sean eficientes.

Algoritmos genéticos:

- · Inspirados en la evolución de los seres vivos:
 - · Individuos «codificados» por cromosomas.
 - · Supervivencia de los mejor adaptados.
- · Búsqueda en el espacio de soluciones candidatas.
- · Mejora iterativa de soluciones previas.
- · Solución aproximadamente óptima.

Representación de un problema:

Representación de un problema:

- · Población:
 - · Conjunto de individuos.
 - · Tamaño: fijo en general.
- · Individuo:
 - · Secuencia (genotipo) de símbolos (genes).
 - · Longitud: fija en general.
 - · Representa una solución candidata (fenotipo).
- · Operadores de variación: modifican individuos
 - · Cruzamiento: dos hijos a partir de dos padres.
 - · Mutación: individuo nuevo a partir de existente.
- Función de aptitud (fitness function):
 - · Mide la «calidad» de un genotipo.
 - En general, función objetivo sobre fenotipo representado.

Ingredientes de un algoritmo genético:

- · Inicialización de una población.
- · Selección de un subconjunto de individuos.
- · Cruzamiento de un subconjunto de individuos.
- · Mutación de un subconjunto de individuos.
- · Reemplazo de una población por otra.

Distintos algoritmos genéticos según:

- · Cómo se lleva a cabo cada ingrediente.
- · Cómo se combinan los ingredientes entre sí.

Generación: cada nueva población construida por el algoritmo.

Algoritmo genético simple:

Algoritmo genético simple:

- 1 Inicializar y evaluar una población de tamaño tam_pob
- 2 Repetir
- 3 **Seleccionar** con reemplazamiento *tam_pob* individuos de *población*
- 4 **Emparejar** los individuos seleccionados
- 5 Con probabilidad *prob_c*, **cruzar** cada pareja
- 6 Con probabilidad *prob_m*, **mutar** cada hijo
- 7 **Reemplazar** *población* con los *tam_pob* individuos obtenidos
- 8 **Evaluar** la nueva población
- 9 **Hasta que** se alcance la generación *máx_gen*

Representaciones estándar: genotipo binario

- · Los genes son el 0 y el 1.
- Genotipo natural para variables de decisión binarias.
- - - También usado para codificar números en binario.

Representaciones estándar: genotipo binario

- · Los genes son el 0 y el 1.
- Genotipo natural para variables de decisión binarias.
- · También usado para codificar números en binario.

Ejemplo: problema de las 8 reinas

Representaciones estándar: genotipo binario

- · Los genes son el 0 y el 1.
- · Genotipo natural para variables de decisión binarias.
- · También usado para codificar números en binario.

Ejemplo: problema de las 8 reinas

				ı			ı			ı			l			l			l			l		
Г	1	0	0	1	1	0	0	0	1	1	1	1	1	1	0	0	0	0	0	1	0	0	0	1

- x₁: 5 (4 en binario + 1).
- x_2 : 7 (6 en binario + 1).
- x₃: 2 (1 en binario + 1).
- x₄: 8 (7 en binario + 1).

- x₅: 7 (6 en binario + 1).
- x₆: 1 (0 en binario + 1).
- x₇: 3 (2 en binario + 1).
- x₈: 2 (1 en binario + 1).

Representaciones estándar: genotipo entero

Útil para variables de decisión categóricas.

- · Los genes son números enteros.
- · Genotipo natural para variables de decisión enteras.

Representaciones estándar: genotipo entero

- · Los genes son números enteros.
- · Genotipo natural para variables de decisión enteras.
- · Útil para variables de decisión categóricas.

Ejemplo: problema del coloreado de mapas

Representaciones estándar: genotipo entero

- · Los genes son números enteros.
- · Genotipo natural para variables de decisión enteras.
- · Útil para variables de decisión categóricas.

Ejemplo: problema del coloreado de mapas

1: amarillo 2: verde 3: azul 4: rojo

- $x_{Almeria}$: verde
- $x_{\text{Cádiz}}$: azul
- · x_{Córdoba}: rojo
- $x_{Granada}$: azul

- x_{Huelva} : rojo
- $x_{\text{la\'en}}$: rojo
- x_{Málaga}: amarillo
- $x_{Sevilla}$: amarillo

Representaciones estándar: permutaciones

· Genotipo natural si todas las variables de decisión

deben ser distintas entre sí.

· Genotipo natural si todas las variables de decisión

deben ser distintas entre sí

Representaciones estándar: permutaciones

Ejemplo: problema del viajante por Andalucía

Ca Hu Co Ja Al Se Gr Ma

Representaciones estándar: permutaciones

 Genotipo natural si todas las variables de decisión deben ser distintas entre sí.

Ejemplo: problema del viajante por Andalucía

- 1								
	C_{2}	шп	$C \cap$	l۱	Λ١	CA	Cr	Ma
	Ca	пи	CU	Ja	Αl	26	UI	IVIA
				-	-			

- x_1 : Cádiz
- x_2 : Huelva
- x_3 : Córdoba
- x_4 : Jaén

- x_5 : Almería
- x_6 : Sevilla
- x_7 : Granada
- x₈: Málaga

- · Se parte de dos genotipos de longitud l.
- · Se elige aleatoriamente un punto intermedio.
- Se intercambian los genes de ambos genotipos a partir de ese punto.

- · Se parte de dos genotipos de longitud *l*.
- · Se elige aleatoriamente un punto intermedio.
- Se intercambian los genes de ambos genotipos a partir de ese punto.

- · Se parte de dos genotipos de longitud *l*.
- · Se elige aleatoriamente un punto intermedio.
- Se intercambian los genes de ambos genotipos a partir de ese punto.

- · Se parte de dos genotipos de longitud *l*.
- · Se elige aleatoriamente un punto intermedio.
- Se intercambian los genes de ambos genotipos a partir de ese punto.

- · Se parte de dos genotipos de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.

- · Se parte de dos genotipos de longitud *l*.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.

- · Se parte de dos genotipos de longitud *l*.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.

- · Se parte de dos genotipos de longitud *l*.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.

Operadores de cruzamiento: recombinación uniforme

- · Se parte de dos genotipos de longitud l.
- · Cada par de genes se intercambia aleatoriamente.
- La probabilidad de intercambio es la misma para cada par.

Operadores de cruzamiento: recombinación uniforme

- · Se parte de dos genotipos de longitud *l*.
- · Cada par de genes se intercambia aleatoriamente.
- La probabilidad de intercambio es la misma para cada par.

- 1 1 0 0 0 0 0 0 1 0 0
- 1 0 0 1 1 1 0 0 0 1 1 1

Operadores de cruzamiento: recombinación uniforme

- · Se parte de dos genotipos de longitud *l*.
- · Cada par de genes se intercambia aleatoriamente.
- La probabilidad de intercambio es la misma para cada par.

Operadores de cruzamiento: emparejado parcial

- · Se parte de dos *permutaciones* de longitud *l*.
- Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Para eliminar duplicados, se realiza el intercambio inverso fuera de esos puntos.

Operadores de cruzamiento: emparejado parcial

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Para eliminar duplicados, se realiza el intercambio inverso fuera de esos puntos.

```
1 2 5 6 4 3 8 7
```

1 4 2 3 6 5 7 8

Operadores de cruzamiento: emparejado parcial

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Para eliminar duplicados, se realiza el intercambio inverso fuera de esos puntos.

Operadores de cruzamiento: emparejado parcial

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Para eliminar duplicados, se realiza el intercambio inverso fuera de esos puntos.

Operadores de cruzamiento: emparejado parcial

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Para eliminar duplicados, se realiza el intercambio inverso fuera de esos puntos.

- · Se parte de dos *permutaciones* de longitud *l*.
- $\boldsymbol{\cdot}$ Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Se recolocan los genes a partir del segundo punto, en el mismo orden.

- · Se parte de dos permutaciones de longitud l.
- Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Se recolocan los genes a partir del segundo punto, en el mismo orden.

```
1 2 5 6 4 3 8 7
```

1 | 4 | 2 | 3 | 6 | 5 | 7 | 8

- · Se parte de dos *permutaciones* de longitud *l.*
- Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Se recolocan los genes a partir del segundo punto, en el mismo orden.

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Se recolocan los genes a partir del segundo punto, en el mismo orden.

- · Se parte de dos permutaciones de longitud l.
- · Se eligen aleatoriamente dos puntos intermedios.
- Se intercambian los genes de ambos genotipos entre esos puntos.
- Se recolocan los genes a partir del segundo punto, en el mismo orden.

Operadores de mutación: volteo de genes

- Utilizable con los genotipos binarios.
- Cambiar aleatoriamente cada gen por su complementario.
- La probabilidad de mutación es la misma para cada gen.

Operadores de mutación: volteo de genes

- · Utilizable con los genotipos binarios.
- Cambiar aleatoriamente cada gen por su complementario.
- La probabilidad de mutación es la misma para cada gen.

1 0 0 1 1 0 0 0 1 1

Operadores de mutación: volteo de genes

- Utilizable con los genotipos binarios.
- Cambiar aleatoriamente cada gen por su complementario.
- La probabilidad de mutación es la misma para cada gen.

Operadores de mutación: mutación uniforme

- · Utilizable con genotipos binarios y enteros.
- Cambiar aleatoriamente cada gen por un valor aleatorio en el intervalo especificado.
- La probabilidad de mutación es la misma para cada gen.
- · La probabilidad de elección de valores es uniforme.

Operadores de mutación: mutación uniforme

- · Utilizable con genotipos binarios y enteros.
- Cambiar aleatoriamente cada gen por un valor aleatorio en el intervalo especificado.
- La probabilidad de mutación es la misma para cada gen.
- · La probabilidad de elección de valores es uniforme.

2 3 4 3 4 4 1 1

Operadores de mutación: mutación uniforme

- · Utilizable con genotipos binarios y enteros.
- Cambiar aleatoriamente cada gen por un valor aleatorio en el intervalo especificado.
- La probabilidad de mutación es la misma para cada gen.
- · La probabilidad de elección de valores es uniforme.

- Mantiene las permutaciones.
- Intercambiar aleatoriamente cada gen por otro gen aleatorio.
- La probabilidad de intercambio es la misma para cada gen.
- El gen a intercambiar se elige con probabilidad uniforme.

- Mantiene las permutaciones.
- Intercambiar aleatoriamente cada gen por otro gen aleatorio.
- La probabilidad de intercambio es la misma para cada gen.
- El gen a intercambiar se elige con probabilidad uniforme.

1 4 2 3 6 5 7 8

- Mantiene las permutaciones.
- Intercambiar aleatoriamente cada gen por otro gen aleatorio.
- La probabilidad de intercambio es la misma para cada gen.
- El gen a intercambiar se elige con probabilidad uniforme.

1 4 2 3 6 5 7 8

5 4 2 3 6 1 7 8

- · Mantiene las permutaciones.
- Intercambiar aleatoriamente cada gen por otro gen aleatorio.
- La probabilidad de intercambio es la misma para cada gen.
- El gen a intercambiar se elige con probabilidad uniforme.

1 | 4 | 2 | 3 | 6 | 5 | 7 | 8

5 4 8 3 6 1 7 2

Selección elitista:

- · Se seleccionan los mejores individuos.
- Con el algoritmo genético simple parte de la selección debería ser aleatoria.

Selección por ruleta aleatoria:

- · Se seleccionan aleatoriamente los individuos.
- La probabilidad de selección de un individuo es proporcional a su «calidad»:

$$p_i = \frac{f_i}{\sum_{j=1}^{tam_pob} f_j}$$

 Solo para problemas de maximización y funciones de aptitud no negativas.

$$g_1, f_1 = 5$$

$$g_2$$
, $f_2 = 7$

$$g_3, f_3 = 25$$

$$g_4$$
, $f_4 = 12$

$$g_5, f_5 = 2$$

$$g_6, f_6 = 30$$

$$g_1, f_1 = 5$$

$$g_2$$
, $f_2 = 7$

$$g_3, f_3 = 25$$

$$g_4, f_4 = 12$$

$$\blacksquare$$
 $g_5, f_5 = 2$

$$g_6$$
, $f_6 = 30$

Valor aleatorio: 32

seleccionado g_3

$$g_1, f_1 = 5$$

$$g_2$$
, $f_2 = 7$

$$g_3, f_3 = 25$$

$$g_4$$
, $f_4 = 12$

$$g_5, f_5 = 2$$

$$g_6$$
, $f_6 = 30$

Valor aleatorio: 32 Valor aleatorio: 47

seleccionado g_3 seleccionado g_4

$$g_1, f_1 = 5$$

$$g_2$$
, $f_2 = 7$

$$g_3, f_3 = 25$$

$$g_4, f_4 = 12$$

$$g_5, f_5 = 2$$

$$g_6, f_6 = 30$$

Valor aleatorio: 32 Valor aleatorio: 47 Valor aleatorio: 60

seleccionado g_3 seleccionado g_4 seleccionado g_6

Selección por torneo:

- Torneo: seleccionar individuo como el mejor de k individuos elegidos aleatoriamente con reemplazamiento.
- · Tantos torneos como individuos a seleccionar.
- k = 1: selección aleatoria.
- $k = tam_pob$: siempre se elige el mejor.
- · Valor habitual k = 2: torneo binario.

 $g_1, f_1 = 5$ $g_2, f_2 = 7$ $g_3, f_3 = 25$ $g_4, f_4 = 12$ $g_5, f_5 = 2$ $g_6, f_6 = 30$

 $g_1, f_1 = 5$ $g_2, f_2 = 7$ $g_3, f_3 = 25$ $g_4, f_4 = 12$ $g_5, f_5 = 2$ $g_6, f_6 = 30$

Torneo con k = 3

$$g_1, f_1 = 5$$

$$g_2, f_2 = 7$$

$$g_3, f_3 = 25$$

$$g_4, f_4 = 12$$

$$g_5, f_5 = 2$$

$$g_6$$
, $f_6 = 30$

Torneo con
$$k = 3$$

Elegidos aleatoriamente:
$$g_1$$
, g_4 y g_5

seleccionado g_4

$$g_1, f_1 = 5$$

$$g_2, f_2 = 7$$

$$g_3$$
, $f_3 = 25$

$$g_4, f_4 = 12$$

$$g_5, f_5 = 2$$

$$g_6$$
, $f_6 = 30$

Torneo con k = 3

Elegidos aleatoriamente:
$$g_1$$
, g_4 y g_5 Elegidos aleatoriamente: g_4 , g_5 y g_6

seleccionado g_4 seleccionado g_6

$$g_1, f_1 = 5$$

$$g_2, f_2 = 7$$

$$g_3, f_3 = 25$$

$$g_4$$
, $f_4 = 12$

$$g_5, f_5 = 2$$

$$g_6$$
, $f_6 = 30$

Torneo con k = 3

Elegidos aleatoriamente: g_1 , g_4 y g_5 Elegidos aleatoriamente: g_4 , g_5 y g_6 Elegidos aleatoriamente: g_1 , g_2 y g_2

seleccionado g_4 seleccionado g_6 seleccionado g_2

Estrategias de reemplazo:

Reemplazo aleatorio

Basada en la función de aptitud:

 Individuos peores tienen mayor probabilidad de ser reemplazados.

Basada en la edad:

 Individuos de generaciones más antiguas tienen mayor probabilidad de ser reemplazados.

Estrategias de parada:

Basadas en el valor de la función de aptitud:

- · Mejor individuo con aptitud cercana a la óptima.
- Varianza de las aptitudes de todos los individuos cercana a 0.
- Razón entre la aptitud del mejor individuo y la del peor cercana a 1.
- Se entiende cercanía el traspasar un umbral prefijado.

Estrategias de parada:

Basadas en el cambio de la función de aptitud:

- · Cambio pequeño en la aptitud del mejor individuo.
- Cambio pequeño en la aptitud promedio de todos los individuos.
- El cambio se mide de una generación a la siguiente.

Estrategias de parada:

Basadas en el tiempo:

- · Tras alcanzar una cierta generación prefijada.
- Tras calcular la aptitud de un cierto número prefijado de individuos (útil si función de aptitud costosa de calcular).

Escapar de óptimos locales: equilibrio entre diversificación e intensificación.

Diversificación:

- Individuos «esencialmente distintos» en la población.
- · Exploración de todo el espacio de búsqueda.
- · Operadores de cruzamiento y mutación.

Intensificación:

- · Individuos cada vez mejores.
- · Exploración dirigida hacia un óptimo cercano.
- · Estrategias de selección y reemplazo.

Transferencia de aptitud: transformación de la

función de aptitud.

Transferencia de aptitud: transformación de la función de aptitud.

Transferencia de aptitud: transformación de la función de aptitud.

Ejemplo:

- · Minimización incompatible con ruleta aleatoria.
- Transformación a problema de maximización: función de aptitud -f.
- Garantía de valores no negativos: función de aptitud c-f, con c una constante.
 - · Si c demasiado pequeña, puede ser c f < 0.
 - Si c demasiado grande, domina a f y selección aleatoria.
 - Mejor valor $c = m\acute{a}x(f)$ (quizás difícil de calcular).

Transferencia de aptitud: transformación de la función de aptitud.

Ejemplo:

- Soluciones no factibles: no satisfacen las restricciones del problema.
- Operadores de variación pueden dar lugar a genotipos con fenotipos no factibles.
- Función de aptitud: objetivo más penalización que depende de cuánto se violen las restricciones:

$$f(x) + \alpha \times \text{penalización}(x)$$
 (minimización)
 $f(x) - \alpha \times \text{penalización}(x)$ (maximización)

· Pena de muerte: rechazar soluciones no factibles.

- En lugar de penalizar: generar genotipos con fenotipos siempre factibles.
- Puede requerir representaciones y operadores de variación específicos.

Ejemplo: problema del viajante por Andalucía.

- · Representación: permutaciones.
- Operadores de variación: específicos para permutaciones.
- Existen operadores de variación específicos para el problema.

Ejemplo de mutación específica: 2-opt

- · Seleccionar aleatoriamente dos ciudades de la ruta.

- · Invertir la ruta entre ellas.

Ejemplo de mutación específica: 2-opt

- · Seleccionar aleatoriamente dos ciudades de la ruta.
- · Invertir la ruta entre ellas.

Ejemplo de mutación específica: 2-opt

- · Seleccionar aleatoriamente dos ciudades de la ruta.
- · Invertir la ruta entre ellas.

Optimización multiobjetivo:

minimizar/maximizar
$$\left(f_1({m x}),\ldots,f_l({m x})\right)$$
 sujeto a $g_i({m x})\geq 0, \quad i=1,\ldots,m$ $h_i({m x})=0, \quad j=1,\ldots,n$

Optimización multiobjetivo:

minimizar/maximizar
$$\left(f_1({m x}),\ldots,f_l({m x})\right)$$
 sujeto a $g_i({m x})\geq 0, \quad i=1,\ldots,m$ $h_j({m x})=0, \quad j=1,\ldots,n$

Transformación a optimización uniobjetivo:

minimizar/maximizar
$$\sum_{r=1}^{l} w_r f_r(\mathbf{x})$$
 sujeto a $g_i(\mathbf{x}) \geq 0, \quad i=1,\ldots,m$ $h_j(\mathbf{x}) = 0, \quad j=1,\ldots,n$