COMM101: Data Visualization with ggplot

Welcome to the grammar of graphics

MARINCS 100B | Intro to Marine Data Science | Winter 2025

Key concepts

Components: data, quometrics, mapping

Refine: scales and themes

Best practices: labeling. Visual interpretation. negative space

Data, mapping, and geometries

individual points:

quantitis

Data, mapping, and geometries

data: data frame itself

geometrics: visual form of data in the figure

mapping: connections between data columns and aspects of geometries

Scales and themes

species	body_mass_g	bill_length_mm
Adelie	3750	39.1
Gentoo	5400	49.9
Chinstrap	3500	46.5

Different:

added a mapping (color)

color scale

theme to position the legend

Scales and themes

scales: customize how mappings interact w/ geometries

themes: customere the overall visual appearance

Visualization best practices

Fix the Labeling

visual interpretation

Fix negative space

Recap

Figures always include:
data, geometries, mappings

Refine the visual appearance using scales and themes

Best practices: labeling and negative space

species	body_mass_g	bill_length_mm
Adelie	3750	39.1
Gentoo	5400	49.9
Chinstrap	3500	46.5

New vocabulary and lingering questions

New vocabulary mapping: the connection between data and geometries quometries: data in a visual form scales: customization of mappings in relation to a geometry

Lingering questions	

Exercises

Describe the grammar of graphics components (data, geometries, mapping, scales, theme) in the figure below.

mapping: axis labels and colored data thume: color of background, moved lyand scale: the organization of colors geometrics: each individual plotted point data: the table used to exact the plot

COMM101: Data Visualization with ggplot

Introducing ggplot

MARINCS 100B | Intro to Marine Data Science | Winter 2025

Key concepts

assing layers (e.g. geometries, scales etc.)

Choosing geometries to represent variables (and combinations)

Demo in R

library (qqplot2)		
library (polar penquins)		
# geometries		
# visualizing one continuous variable: histogram		
applot (penguins, ass (x= body_mass_g)) + geom_histogram ()		
# visualizing one continuous variable and catagorical value; boxplots		
99 plot (penquins, acs (x= body_mass_g, y= specses)) + geom_boxplot()		
* visualizing two continuous variables: Scatter plot		
applot (penguins, acs (x= body_mass_g, y= flipper_length_mm)) + geom_point()		
dibate (bendous) ats (x and mass 2, 12 tubber = length = mm)) - decom = between ()		
* Acsthetics		
applot (penguins, acs (x = body_mass_g, y= flipper_length_mm, color = species)) + geom_point()		

Recap

99 plot is R's implementation of the grammar of graphics

boild up plots by adding layers

how to choose geometries to best represent our variables

New vocabulary and lingering questions

New vocabulary

agplot: grammer of graphics

in relation to a table/plot

Lingering questions

Exercises

Here are three figures. Edit the code in comm101b.R so the outputs match the figures below.

COMM101: Data Visualization with ggplot

Customization with scales and themes

Key concepts

Visual presentation matters

scales customize the mapping between data and geometries

themes customize the overall appearance

Demo in R


```
library gaplet
library polarponquins
# scales customize the expression of mappings
# manually override default values
applot (penquins, as (x= body_mass_g, y= flipper_length_mm, color = species)) + geom_point ()
# use colorblind - friendly pallete instead
Okabe_ito 4 c ("# E69F00", " # 56B464", "#009E13", "#F0E442", "# 0072B2")
applot (penguins, acs (x= body_mass_q, y= flipper_length_mm, color = species)) + geom_point () +
  scale_color_manual (values = okabe_ito)
# can do the same with shapes
applot (penguins, acs (x= body_mass_q, y= flipper_length_mm, color = species, shape = species)) +
  geom_point () + scale_color_manual (values = okabe_ito)
99plot (penguins, acs (x = body_mass_9, y = flipper_length_mm, color = species, shape = species)) +
  geom_point () + scale_color_manual (values = okabe_ito) + scale_shape_manual (values = 15:19)
```

ntinued									
Built in and	custom ti	hemes							
lblot (bendain	i, acs (x=	body_ma	ss_9, y=	flipper_le	ingth_mm	, color = spe	cies, Shape	= species)) +	,
geom_point	() + scale_	color_ma	nual (valu	es = Okabi	e_ito) + :	scale - shape	_ manual (values = 15:1	9)
+ theme_b	• ()								
move legend	inside fq	or pane							
aplot (penquin	s, acs (x=	body_ma	ss_9, y=	flipper_le	ength_mw	n, color = spe	cies, shape	. = species)) +	•
geom_point	() + SCALE_	. COIOT. Ma	mual (valu	ks = okab	c_(+0) + ;	scale - snape	,_ manual ((values = 15:1	4)
+ theme_b	w () + H	neme (lege	nd. Dositi	on = "insi	ide", kacı	nd. position	inside = c lo	99.0.01).	
legend. justific	ation = c((1,0))							

Recap

visual presentation is important for interpretation

scales - relationship between mappings and geometries

themes Change the overall appearances

New vocabulary and lingering questions

New vocabulary theme: change how a graph looks as a whok rather than a single individual part

Lingering questions	

Exercises

comm101c.R contains the code to make the figure below. Edit the code to use scales and themes to improve the visual presentation.

