18.745 Introduction to Lie Algebras

September 9, 2010

Lecture 1 — Basic Definitions (I)

Prof. Victor Kac Scribe: Michael Crossley

Definition 1.1. An algebra A is a vector space V over a field \mathbb{F} , endowed with a binary operation which is bilinear:

$$a(\lambda b + \mu c) = \lambda ab + \mu ac$$

 $(\lambda b + \mu c)a = \lambda ba + \mu ca$

Example 1.1. The set of $n \times n$ matrices with the matrix multiplication, $\operatorname{Mat}_n(\mathbb{F})$ is an associative algebra: (ab)c = a(bc).

Example 1.2. Given a vector space V, the space of all endomorphisms of V, End V, with the composition of operators, is an associative algebra.

Definition 1.2. A subalgebra B of an algebra A is a subspace closed under multiplication: $\forall a, b \in B, ab \in B$.

Definition 1.3. A Lie algebra is an algebra with product [a, b] (usually called bracket), satisfying the following two axioms:

- 1. (skew-commutativity) [a, a] = 0
- 2. (Jacobi identity) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

Example 1.3.

- 1. Take a vector space \mathfrak{g} with bracket [a, b] = 0. This is called an abelian Lie algebra;
- 2. $\mathfrak{g} = \mathbb{R}^3$, $[a, b] = a \times b$ (cross product);
- 3. Let A be an associative algebra with product ab. Then the space A with the bracket [a, b] = ab ba is a Lie algebra, denoted by A_{-} .

Exercise 1.1. Show the Jacobi identity holds in Example 1.3.3 for the following cases.

- 1. 2-member identity: a(bc) = (ab)c
- 2. 3-member identity: a(bc) + b(ca) + c(ab) = 0 and (ab)c + (bc)a + (ca)b = 0
- 3. 4-member identity: a(bc) (ab)c b(ac) + (ba)c = 0
- 4. 6-member identity: [a, bc] + [b, ca] + [c, ab] = 0

Proof. Expanding the Jacobi identity,

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]]$$

$$= a(bc) - a(cb) - (bc)a + (cb)a + b(ca) - b(ac) - (ca)b + (ac)b + c(ab) - c(ba) - (ab)c + (ba)c$$

$$= [a(bc) - (ab)c] + [(cb)a - c(ba)]$$

$$+ [b(ca) - (bc)a] + [(ac)b - a(cb)]$$

$$+ [c(ab) - (ca)b] + [(ba)c - b(ac)]$$

$$= [a(bc) + b(ca) + c(ab)]$$

$$- [(ab)c + (bc)a + (ca)b]$$

$$- [a(cb) + c(ba) + b(ac)]$$

$$+ [(ac)b + (cb)a + (ba)c]$$

$$+ [(ac)b + (cb)a + (ba)c]$$

$$+ [b(ca) - (bc)a - c(ba) + (cb)a]$$

$$+ [c(ab) - (ca)b - a(cb) + (ac)b]$$

$$= [a(bc) - (bc)a + b(ca) - (ca)b + c(ab) - (ab)c]$$

$$- [a(cb) - (cb)a + b(ac) - (ac)b + c(ba) - (ba)c]$$

$$= 0 \text{ if one of the identities is satisfied.}$$

Example 1.4. A special case of example 1.3.3: $\mathfrak{gl}_V = (\operatorname{End} V)_{-}$, where V is a vector space, is a Lie algebra, called the general Lie algebra. In the case $V = \mathbb{F}^n$, we denote $\mathfrak{gl}_V = \mathfrak{gl}_n(\mathbb{F})$, the set of all $n \times n$ matrices with the bracket [a, b] = ab - ba.

Remark: Any subalgebra of a Lie algebra is a Lie algebra.

Example 1.5. The two most important classes of subalgebras of \mathfrak{gl}_V :

- 1. $sl_n(\mathbb{F}) = \{ a \in \mathfrak{gl}_n(\mathbb{F}) | \text{tr } (a) = 0 \};$
- 2. Let B be a bilinear form on a vector space V.

$$o_{V,B} = \{ a \in \mathfrak{gl}_V | B(a(u), v) = -B(u, a(v)) \forall u, v \in V \}.$$

Exercise 1.2. Show that $tr[a, b] = 0 \ \forall a, b \in \operatorname{Mat}_n(\mathbb{F})$. In particular, sl_n is a Lie algebra, called the special Lie algebra.

Proof.

$$tr [a, b] = \sum_{i} \sum_{j} (a_{ji}b_{ij} - b_{ji}a_{ij}) = 0$$

 sl_n is trivially a subspace by the linearity of the trace, and we have shown it to be closed under the bracket operation. Hence, sl_n is a subalgebra and is therefore a Lie algebra.

Exercise 1.3. Show that $o_{V,B}$ is a subalgebra of the Lie algebra \mathfrak{gl}_V

Proof. Consider $a, b \in o_{V,B}$. Then

$$B(ab(u), v) = -B(b(u), a(v)) = B(u, ba(v))$$

from the property of a and b. Similarly,

$$B(ba(u), v) = -B(a(u), b(v)) = B(u, ab(v)))$$

subtracting the second of these from the first,

$$B([a,b](u),v) = B(u,-[a,b](v)) = -B(u,[a,b](v))$$

by the bilinearity of B. Hence, $o_{V,B}$ is closed under the bracket. As $o_{V,B}$ is trivially a subspace of \mathfrak{gl}_V , it is also a subalgebra and therefore a Lie algebra.

Exercise 1.4. Let $V = \mathbb{F}^n$ and let B be the matrix of a bilinear form in the standard basis of \mathbb{F}^n . Show that

$$o_{\mathbb{F}^n,B} = \left\{ a \in \mathfrak{gl}_n(\mathbb{F}) | a^T B + B a = 0 \right\}$$

where a^T denotes the transpose of matrix a.

Proof. The condition for members of $o_{V,B}$,

$$B(a(u), v) + B(u, a(v)) = 0$$

reads, in terms of the standard basis, employing summation convention (a repeated index is summed over):

$$B(a_{ij}u_j\vec{e_i}, v_k\vec{e_k}) + B(u_j\vec{e_j}, a_{ik}v_k\vec{e_i}) = 0.$$

Hence, from the bilinearity of B.

$$a_{ij}B_{ik}u_jv_k + B_{ji}a_{ik}u_jv_k = 0.$$

This is true $\forall u_i, v_k$. Therefore,

$$(a^T)_{ji}B_{ik} + B_{ji}a_{ik} = 0.$$

Remark Special cases of $o_{\mathbb{F}^n,B}$ are the following:

- 1. $so_{n,B}(\mathbb{F})$ if B is a non-degenerate symmetric matrix; this is called the orthogonal Lie algebra.
- 2. $sp_{n,B}(\mathbb{F})$ if B is a non-degenerate skew-symmetric matrix; this is called the symplectic Lie algebra.

The three series of Lie algebras $sl_n(\mathbb{F})$, $so_{n,B}(\mathbb{F})$ and $sp_{n,B}(\mathbb{F})$ are the most important for this course's examples.

Convenient notation: If X,Y are subspaces of a Lie algebra \mathfrak{g} , then [X,Y] denotes the span of all vectors [x,y], where $x\in X,y\in Y$.

Definition 1.4. Let \mathfrak{g} be a Lie algebra. In the above notation, a subspace $\mathfrak{h} \subset \mathfrak{g}$ is a subalgebra if $[\mathfrak{h},\mathfrak{h}] \subset \mathfrak{h}$. A subspace \mathfrak{h} of \mathfrak{g} is called an ideal if $[\mathfrak{h},\mathfrak{g}] \subset \mathfrak{h}$.

Definition 1.5. A derived subalgebra of a Lie algebra \mathfrak{g} is $[\mathfrak{g},\mathfrak{g}]$.

Proposition 1.1. $[\mathfrak{g},\mathfrak{g}]$ is an ideal of a Lie algebra \mathfrak{g}

Proof. Let
$$a \in \mathfrak{g}, b \in [\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}$$
. Then $[a, b] \in [\mathfrak{g}, \mathfrak{g}]$.

We now classify Lie algebras in 1 and 2 dimensions.

Dim 1. $\mathfrak{g} = \mathbb{F}a$, [a, a] = 0 so the Abelian Lie algebra is the only one.

Dim 2. Consider $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{g}$. Let $\mathfrak{g} = \mathbb{F}x + \mathbb{F}y$, then $[\mathfrak{g},\mathfrak{g}] = \mathbb{F}[x,y]$. Therefore, dim $[\mathfrak{g},\mathfrak{g}] \leq 1$.

Case 1. $\dim[\mathfrak{g},\mathfrak{g}] = 0$, Abelian Lie algebra.

Case 2. $\dim[\mathfrak{g},\mathfrak{g}]=1$, $[\mathfrak{g},\mathfrak{g}]=\mathbb{F}b$, $b\neq 0$. Take $a\in\mathfrak{g}\setminus\mathbb{F}b$. Then $[a,b]\in[\mathfrak{g},\mathfrak{g}]$, hence $[a,b]=\lambda b$ and $\lambda\neq 0$, otherwise $[\mathfrak{g},\mathfrak{g}]=0$. So, replacing a by $\lambda^{-1}a$, we get [a,b]=b. Hence, we have found a basis of $g:g=\mathbb{F}a+\mathbb{F}b$ with bracket [a,b]=b. So this Lie algebra is isomorphic to the subalgebra $\left\{\left(\begin{array}{cc} \alpha & \beta \\ 0 & 0 \end{array}\right)\subset\mathfrak{gl}_2(\mathbb{F})\right\}$, since for $a=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$, $b=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$, we have [a,b]=b.

Exercise 1.5. Let $f: \operatorname{Mat}_n(\mathbb{F}) \to \mathbb{F}$ be a linear function such that f([a,b]) = 0. Show that $f(a) = \lambda \operatorname{tr}(a)$, for some λ independent of $a \in \operatorname{Mat}_n(\mathbb{F})$.

Proof. The condition f([a,b]) = 0 means

$$f(a_{ij}b_{jk}e_{ik} - b_{ij}a_{jk}e_{ik}) = 0.$$

By linearity of f,

$$(a_{ij}b_{jk} - b_{ij}a_{jk})f(e_{ik}) = 0 \ \forall a, b \in \operatorname{Mat}_n(\mathbb{F})$$

where summation convention has been used. Let $a=e_{mn}, b=e_{nn}$ for some $m\neq n$. Then $f(e_{mn})=0$. Hence

$$f([a,b]) = (a_{ij}b_{ji} - b_{ij}a_{ji})f(e_{ii}) = 0.$$

But $f(e_{ii}) = f(e_{jj}) \ \forall i, j \text{ as } f(e_{ii}) - f(e_{jj}) = f(e_{ij}e_{ji} - e_{ji}e_{ij}) = 0$. Hence $f(e_{ii}) = \lambda$ for some constant λ , and $f(a) = \operatorname{tr}(a)f(e_{ii}) = \lambda \operatorname{tr}(a)$