Bassant Ahmed Mohamed EDF Project Report

Submitted to:

EgFwd Advanced Embedded System Track

1.Tasks Periods

1.1 Button 1 Monitor Task

Period of Button_1_Monitor (Pin 20 in green) = <u>13.317 us</u>

1.2 Button_2_Monitor Task

Period of Button_2_Monitor (Pin 21 in Purple) = 13.5 us

1.3 Periodic_Transmitter

Period of Periodic_Transmitter (Pin 22 in Blue) = 17.92 us

1.4 UART_Reciever

Period of UART_Reciever (Pin 23 in Pink) = 20.65 us

1.5 Load_1_Simulation

Period of Load_1_Simulation (Pin 24 in purple) = 4.97 ms

1.6 Load 2 Simulation

Period of Load_2_Simulation (Pin 25 in Black) = 11.93 ms

2. Calculating The System Hyperperiod

Hyperperiod = LCM (Pi) = 100 ms

Where Pi is all tasks periodicity.

3. Calculating The CPU Load (U)

$$U = \frac{R}{C}$$
 OR $\frac{Total\ tasks'exeqution\ time}{hyperperiod}$

Total tasks exeqution time = (2 * 13.317 us) + (2 * 13.5us) + 17.92us + (5 * 20.65us) + (10 * 4.9ms) + 11.93ms = 61.1ms

$$U = \frac{61.1ms}{100ms} * 100 = 61.1\%$$

4. Checking System Shedulability

4.1 RM Utilization Bound

$$URM = n\left(2^{\frac{1}{n}} - 1\right)$$

Where n is the number of tasks.

$$URM = 6\left(2^{\frac{1}{6}} - 1\right) = 0.735$$

 $U < URM \rightarrow$ then system is schedulable.

4.2 Time Demand Analysis

Critical instant = hyperperiod = 100 ms

Calculate time demand for Button_1_Monitor task (P:50 ms , E:13.317us , D:50ms)

$$W(1) = 13.317 \text{ us } + 0 = 13.317 \text{ us}$$

W(10)= 13.317 us
$$+\left(\frac{10}{10}\right)*5ms = 5ms$$

W(20)=13.317
$$us + \left(\frac{20}{10}\right) * 5ms + \left(\frac{20}{20}\right) * 20.65 us = 10ms$$

W(30)=
$$13.317us + \left(\frac{30}{10}\right) * 5ms + \left(\frac{30}{20}\right) * 20.65 us = 15 ms$$

W(40)=
$$13.317us + \left(\frac{40}{10}\right) * 5ms + \left(\frac{40}{20}\right) * 20.65 us = 20ms$$

W(50)=
$$13.317us + \left(\frac{50}{10}\right) * 5ms + \left(\frac{50}{20}\right) * 20.65 us = 25 ms$$

W(50)< 50ms ---> Button_1_Monitor is schedulable

• Calculate time demand for Button_2_Monitor task (P:50 ms, E:13.5us, D:50ms)

$$W(1) = 13.5 \text{ us } + 0 = 13.5 \text{ us}$$

W(10)= 13.5 us +
$$\left(\frac{10}{10}\right) * 5ms = 5 ms$$

W(20)=13.5
$$us + \left(\frac{20}{10}\right) * 5ms + \left(\frac{20}{20}\right) * 20.65 us = 10 ms$$

W(30)= 13.5
$$us + \left(\frac{30}{10}\right) * 5ms + \left(\frac{30}{20}\right) * 20.65 us = 15 ms$$

W(40)=
$$13.5 us + \left(\frac{40}{10}\right) * 5ms + \left(\frac{40}{20}\right) * 20.65 us = 20ms$$

W(50)= 13.5
$$us + \left(\frac{50}{10}\right) * 5ms + \left(\frac{50}{20}\right) * 20.65 us = 25 ms$$

W(50)< 50ms ---> Button 2 Monitor is schedulable

Calculate time demand for Periodic_Transmitter task (P:100 ms , E:17.92us , D:100ms)

$$W(1) = 17.92 \text{ us } + 0 = 17.92 \text{ us}$$

W(10)= 17.92 us
$$+\left(\frac{10}{10}\right)*5ms = 5 ms$$

W(20)=17.92
$$us + \left(\frac{20}{10}\right) * 5ms + \left(\frac{20}{20}\right) * 20.65 us + \left(\frac{20}{50}\right) * 13.317 us + \left(\frac{20}{50}\right) * 13.51 us + \left(\frac{20}{50}\right) * 13.02 ms = 12 ms$$

$$13.5us + \left(\frac{20}{100}\right) * 11.93ms = 12 ms$$

W(30)= 17.92
$$us + \left(\frac{30}{10}\right) * 5ms + \left(\frac{30}{20}\right) * 20.65 us + \left(\frac{30}{50}\right) * 13.317 us + \left(\frac{30}{50}\right) *$$

$$13.5us + \left(\frac{30}{100}\right) * 11.93ms = 18.6 ms$$

W(40)= 17.92
$$us + \left(\frac{40}{10}\right) * 5ms + \left(\frac{40}{20}\right) * 20.65 us + \left(\frac{40}{50}\right) * 13.317 us + \left(\frac{40}{50}\right) *$$

$$13.5us + \left(\frac{40}{100}\right) * 11.93ms = 24.8 ms$$

W(50)= 17.92
$$us + \left(\frac{50}{10}\right) * 5ms + \left(\frac{50}{20}\right) * 20.65 us + \left(\frac{50}{50}\right) * 13.317 us + \left(\frac{50}{50}\right) *$$

$$13.5us + \left(\frac{50}{100}\right) * 11.93ms = 31 ms$$

W(60) = 17.92 us
$$+ \left(\frac{60}{10}\right) * 5ms + \left(\frac{60}{20}\right) * 20.65 us + \left(\frac{60}{50}\right) * 13.317us + \left(\frac{60}{50}\right) * 13.5us + \left(\frac{60}{100}\right) * 11.93ms = 37 ms$$

W(70)= 17.92 us
$$+\left(\frac{70}{10}\right) * 5ms + \left(\frac{70}{20}\right) * 20.65 us + \left(\frac{70}{50}\right) * 13.317us + \left(\frac{70}{50}\right) * 13.5us + \left(\frac{70}{100}\right) * 11.93ms = 43 ms$$

W(80)=17.92
$$us + \left(\frac{80}{10}\right) * 5ms + \left(\frac{80}{20}\right) * 20.65 us + \left(\frac{80}{50}\right) * 13.317 us + \left(\frac{80}{50}\right) * 13.5 us + \left(\frac{80}{100}\right) * 11.93 ms = 49.5 ms$$

W(90)= 17.92
$$us + \left(\frac{90}{10}\right) * 5ms + \left(\frac{90}{20}\right) * 20.65 us + \left(\frac{90}{50}\right) * 13.317 us + \left(\frac{90}{50}\right) * 13.5 us + \left(\frac{90}{100}\right) * 11.93 ms = 55.8 ms$$

W(100)= 17.92
$$us + \left(\frac{100}{10}\right) * 5ms + \left(\frac{100}{20}\right) * 20.65 us + \left(\frac{100}{50}\right) * 13.317 us + \left(\frac{100}{50}\right) * 13.5 us + \left(\frac{100}{100}\right) * 11.93 ms = 62 ms$$

W(100)< 100ms ---> Periodic_Transmitter is schedulable

• Calculate time demand for UART_Reciever task (P:20 ms, E:20.65us, D:20ms)

$$W(1) = 20.65 \text{ us } + 0 = 20.65 \text{ us}$$

W(10)= 20.65 us
$$+\left(\frac{10}{10}\right) * 5ms = 5 ms$$

W(20)= 20.65 us
$$+\left(\frac{20}{10}\right)*5ms = 10 ms$$

W(20)< 20ms ---> UART_Reciever is schedulable

• Calculate time demand for Load_1_Simulation task (P:10 ms, E:5 ms, D:10ms)

$$W(1) = 5 \text{ ms} + 0 = 5 \text{ ms}$$

$$W(10) = 5 \text{ ms} + 0 = 5 \text{ ms}$$

W(20)< 10ms ---> Load_1_Simulation is schedulable

Calculate time demand for Load 2 Simulation task (P:100 ms, E:12 ms, D:100ms)

$$W(1) = 12 \text{ ms} + 0 = 12 \text{ ms}$$

W(10)= 12 ms +
$$\left(\frac{10}{10}\right) * 5ms = 17 ms$$

W(20)=12 ms +
$$\left(\frac{20}{10}\right)$$
 * 5ms + $\left(\frac{20}{20}\right)$ * 20.65 us + $\left(\frac{20}{50}\right)$ * 13.317us + $\left(\frac{20}{50}\right)$ * 13.5us + $\left(\frac{20}{100}\right)$ * 17.92 us = 22 ms

W(30)= 12 ms +
$$\left(\frac{30}{10}\right) * 5ms + \left(\frac{30}{20}\right) * 20.65 us + \left(\frac{30}{50}\right) * 13.317 us + \left(\frac{30}{50}\right) * 13.5 us + \left(\frac{30}{100}\right) * 17.92 us = 27 ms$$

$$\begin{aligned} & \text{W}(40) = 12 \text{ ms} + \left(\frac{40}{10}\right) * 5ms + \left(\frac{40}{20}\right) * 20.65 \ us + \left(\frac{40}{50}\right) * 13.317us + \left(\frac{40}{50}\right) * 13.5us + \left(\frac{40}{100}\right) * 17.92 \ us = 32 \ ms \end{aligned}$$

$$& \text{W}(50) = 12 \ \text{ms} + \left(\frac{50}{10}\right) * 5ms + \left(\frac{50}{20}\right) * 20.65 \ us + \left(\frac{50}{50}\right) * 13.317us + \left(\frac{50}{50}\right) * 13.5us + \left(\frac{50}{100}\right) * 17.92 \ us = 37 \ ms$$

$$& \text{W}(60) = 12 \ \text{ms} + \left(\frac{60}{10}\right) * 5ms + \left(\frac{60}{20}\right) * 20.65 \ us + \left(\frac{60}{50}\right) * 13.317us + \left(\frac{60}{50}\right) * 13.5us + \left(\frac{60}{100}\right) * 17.92 \ us = 42 \ ms$$

$$& \text{W}(70) = 12 \ \text{ms} + \left(\frac{70}{10}\right) * 5ms + \left(\frac{70}{20}\right) * 20.65 \ us + \left(\frac{70}{50}\right) * 13.317us + \left(\frac{70}{50}\right) * 13.5us + \left(\frac{70}{100}\right) * 17.92 \ us = 47 \ ms$$

$$& \text{W}(80) = 12 \ \text{ms} + \left(\frac{80}{10}\right) * 5ms + \left(\frac{80}{20}\right) * 20.65 \ us + \left(\frac{80}{50}\right) * 13.317us + \left(\frac{80}{50}\right) * 13.5us + \left(\frac{80}{100}\right) * 17.92 \ us = 52 \ ms$$

$$& \text{W}(90) = 12 \ \text{ms} + \left(\frac{90}{10}\right) * 5ms + \left(\frac{90}{20}\right) * 20.65 \ us + \left(\frac{90}{50}\right) * 13.317us + \left(\frac{90}{50}\right) * 13.5us + \left(\frac{90}{100}\right) * 17.92 \ us = 57 \ ms$$

$$& \text{W}(100) = 12 \ \text{ms} + \left(\frac{100}{10}\right) * 5ms + \left(\frac{100}{20}\right) * 20.65 \ us + \left(\frac{100}{50}\right) * 13.317us + \left(\frac{100}{50}\right) * 13.5us + \left(\frac{100}{100}\right) * 17.92 \ us = 62 \ ms$$

$$& \text{W}(100) < 100 \text{ms} \ --> \text{Load} \ 2 \ \text{Simulation is schedulable}$$

5. Using Offline Simulator (SimSo)

6. Notes

- Simulating on SimSo didn't run as expected in Periodic_Transmitter task, as in Keil
 the task start execution at the end of the other 5 tasks execution and before going
 again to the idle task.
- The system successfully ran as the implementation of the EDF schedular.