

RELATIONEN

Fragen?

R S M X M

Gegeben sei die Menge $M=\{1,2,3\}$ und die Relation R auf M mit $R=\{(1,1),(2,2),(3,3)\}.$ Kreuze alle wahren Aussagen an!

R ist symmetrisch.	
lacksquare R ist asymmetrisch.	da symmetrisch
igzim R ist reflexiv.	
$ \stackrel{\textstyle \checkmark}{=} R$ ist transitiv.	

symmetrisch: $(a,b) \in R \Rightarrow (b,a) \in R \quad (\forall a,b \in M)$ $(1,1) \in R \land (1,1) \in R, \text{ also } \checkmark$ $(2,2) \in R \land (2,2) \in R$ $(3,3) \in R \land (3,3) \in R$ $(3,3) \in R \land (3,3) \in R$

reflexiv: $\forall a \in M : (a_{j}a_{j}) \in R$ $a = 1 : (1,1) \in R$ $a = 2 : (2,2) \in R$ $a = 3 : (3,3) \in R$

fransitiv. Fa,h,ceM: $(a,h) \in \mathbb{R}$ ∧ $(b,c) \in \mathbb{R}$ ⇒ $(a,c) \in \mathbb{R}$ where $(a,c) = (a,a) \in \mathbb{R}$ √)

soust falsoh, d.h. wegen ex falso quadrited of willt.

Quiz zu Relation.

Gegeben sei die Menge $M=\{1,2,3\}$ und die Relation R auf M mit $R = \{(1,2), (2,1), (2,3), (1,3)\}$. Kreuze alle wahren Aussagen an!

Lösung überprüfen

Well lopie 7 (P =) Q) (P ~ TQ

Lösung.

Lösung: $(a,b) \in R \Rightarrow (b,a) \notin R$ Notation: $\exists a,b \in N: (a,b) \in R \land (b,a) \in R.$ Notation: $\exists a,b \in N: (a,b) \in R \land (b,a) \in R.$ ∃ a=1,6=2: (1,2) ∈R ∧ (2,1) ∈R ×

autisyum: Ya, beM: (a,b) ER ~ (b,a) ER = a=b (1,2) eR ~ (2,1) ∈R ~ 1≠2 ×

fransitiv: Ya, b, ceM: (a, b) eR , (b, c) eR => (9, 5) eR. (1,2) et ~ (2,1) er ~ (1,1) & x

intell.: VaeM: (2,a) &R a=1 (1,0 dR /) = uneflexiv / == 3 (2,2) dR /)

Eigener Lösungsversuch.

Eigener Lösungsversuch.

	reflexiv?	irrefl.?	symm.?	asymm.?	antisymm.?	trans.?	Äqu. Rel.?	Ordnung?
<								
<u></u>								
=								
=								

Zusammenhang: Funktion und Relation

Von einer Funktion

$$f: A \to B$$

 $x \mapsto f(x)$

 $B = \begin{bmatrix} 3,4 \end{bmatrix} \xrightarrow{5(x)} (x, f(x))$ $A = \begin{bmatrix} 1/2 \end{bmatrix}$

bildet der Graph

$$R_f := \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

eine Relation, die sogenannte von f induzierte Relation. Beispiel:

Graph der Parabel als Relation. Geben Sie die von $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ induzierte Relation an und skizzieren Sie diese.

Lösung.

$$R_{t} = \left\{ (x, f(x)) \mid x \in \mathbb{R} \right\} \subseteq \mathbb{R} \times \mathbb{R}^{t}$$

$$\times \sim y \iff \underbrace{f(x)}_{x^2} = y$$

Dagegen kann man aus einer Relation i.A. keine Funktion konstruieren. Beispiel:

$$R = \{(-2,4), (0,5), (-2,6), (1,8)\} \subseteq \{-2,0,1\} \times \{4,5,6,8\}$$

$$\begin{array}{c} & & \\$$

Ein weiteres Beispiel wird in den Übungen besprochen.

1 Umbels relation von x 2 leine turbion

Anwendung: relationale Datenbanken. Eine Relation kann man als auch eine Tabelle interpretieren, also:

Relation = Tabelle (Neuge aller Datentupel/Zeilun in Tabelle)

	Beisi	oiel: Tabellen	product i	und manuf als Relationen			
	Boiol		`	P			
	id	name	price	id_manuf	<u>_id</u>	name	city
tupel -	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	iPhone PC	600.59 499.0	1) —	1	Apple	Cupertino
\bigcap	3	Server AIX	9999.00	2	$\frac{}{}$	IBM HP	NY Palo Alto
	4	Drucker	95.0] 3 ———		<u> </u>	•
Karksischers Rodukt	- M	x String X	Q	× N	17	1 x Bhin	g x String

Verschiedene Operationen (\rightarrow relationale Algebra und SQL) liefern daraus neue Tabellen, z.B. ein J0IN der beiden Tabellen liefert eine neue Tabelle/Relation:

 $\mathrm{SQL}: \mathtt{SELECT} * \mathtt{FROM} \ \mathtt{product} \ \mathtt{JOIN} \ \underline{\mathtt{manuf}} \ \mathtt{ON} \ \mathtt{product.id} \underline{\mathtt{manuf}} \underline{\mathtt{manuf}}. \mathtt{id}$

liefert das Ergebnis

product.id	name	price	id_manuf	manuf.id	name	city
1	iPhone	600.59	1	1	Apple	Cupertino
2	PC	499.0	2	2	IBM	NY
3	Server AIX	9999.00	2	2	IBM	NY
4	Drucker	95.0	3	3	HP	Palo Alto

also: Operationen auf Relationen/Tabellen liefern reue Relationen/Tabellen

```
Demo Datenbank-Skript. A livesgl. oracle. com
_____
-- DDL --
_____
CREATE TABLE manuf (
   id INTEGER NOT NULL,
   name varchar(45) DEFAULT NULL,
   city varchar(45) DEFAULT NULL,
   PRIMARY KEY (id)
 );
CREATE TABLE product (
  id INTEGER NOT NULL,
  name varchar(45) DEFAULT NULL,
  price float DEFAULT NULL,
  id_manuf INTEGER DEFAULT NULL,
  PRIMARY KEY (id),
  CONSTRAINT fk_manuf FOREIGN KEY (id_manuf) REFERENCES manuf (id)
);
-- DATA -- DML
INSERT INTO manuf (id,name,city) VALUES (1,'Apple','Cupertino');
INSERT INTO manuf (id,name,city) VALUES (2,'IBM','NY');
INSERT INTO manuf (id,name,city) VALUES (3,'HP','Palo Alto');
INSERT INTO product (id,name,price,id_manuf) VALUES (1,'iPhone',600,1);
INSERT INTO product (id,name,price,id_manuf) VALUES (2,'PC',500,2);
INSERT INTO product (id,name,price,id_manuf) VALUES (3,'Server',10000,2);
INSERT INTO product (id,name,price,id_manuf) VALUES (4,'Drucker',400,3);
COMMIT;
_____
-- SQL --
SELECT * FROM product; -- Eine ganze Tabelle lesen
SELECT * FROM product WHERE price < 5000; -- Einen Teil einer Tabelle lesen
SELECT city FROM manuf; -- Projektion auf eine Spalte
-- JOIN zweier Tabellen:
SELECT * FROM product
    LEFF JOIN manuf
    ON product.id_manuf = manuf.id;
-- LEFT JOIN zweier Tabellen:
```

SELECT * FROM product LEFT JOIN manuf

ON product.id_manuf = manuf.id;