## **UNIVERSITE CADI AYYAD** FACULTE DE MEDECINE ET DE PHARMACIE **MARRAKECH**



## CONCOURS D'ACCES A LA FACULTE DE MEDECINE DE MARRAKECH 03 aout 2011

Epreuve de Mathématiques : 30 minutes

### **Question 21: Q21**

Le domaine de définition de la fonction  $f(x) = \sqrt{\ln(x^2 + 3x - 4)}$  est :

A) ]-\infty, 
$$\frac{-3-\sqrt{29}}{2}$$
]

B) 
$$\frac{-3-\sqrt{29}}{2}$$
,  $\frac{-3+\sqrt{29}}{2}$ 

C) ]-
$$\infty$$
,  $\frac{-3-\sqrt{29}}{2}$ ] U [ $\frac{-3+\sqrt{29}}{2}$ ,+ $\infty$  [

D) ]-
$$\infty$$
,  $\frac{-3-\sqrt{29}}{2}$ [ U] $\frac{-3+\sqrt{29}}{2}$ ,+ $\infty$ [

E) 
$$]\frac{-3+\sqrt{29}}{2},+\infty[$$

## Question 22: Q22

La valeur de  $\lim_{n\to+\infty} \frac{n-\sqrt{n^2+1}}{n+\sqrt{n^2-1}}$  est

- A) 1 B) 0
- C) -∞
- D) +∞
- E) n'existe pas

#### Question 23: Q23

On considère la fonction g définie par :  $g(x) = \frac{\tan x - \sin x}{x^3}$  pour  $x \neq 0$  et  $g(0) = \mu$ .

La valeur de  $\mu$  pour que g soit continue en 0 est :

- A) 0

- B)  $-\frac{1}{2}$  C)  $\frac{1}{4}$  D)  $\frac{1}{2}$  E)  $-\frac{1}{4}$

## Question 24: Q24

Soit z=x+iy un nombre complexe. Le nombre z²+2z-3 est réel si et seulement si

- A) x=1 et y=0 B) x=1 ou y=-1 C) x=-1 et y=0 D) y=0 ou x=-1 E) y=0 et x=1

## Question 25: Q25

Soit  $(u_n)_{n\geq 0}$  une suite arithmétique. On sait que la somme  $u_3+u_4+...+u_{10}=672$  et que  $u_7$ =81. Alors  $u_3$ =

A) 103

B) 213

C) 123

D) 105

E) 107

## Question 26: Q26

La somme  $S = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - ... + \frac{1}{512}$  est égal à

B)  $\frac{171}{512}$  C)  $\frac{571}{723}$  D)  $\frac{571}{732}$ 

## Question 27: Q27

La valeur de l'intégrale  $\int_{-1}^{+1} \frac{1}{x^2-4} dx$  est :

A)  $\frac{\sqrt{5}}{2}$  B)  $\frac{\ln 5}{2}$  C)  $\frac{\ln 3}{2}$  D)  $-\frac{\ln 3}{2}$  E)  $-\frac{\sqrt{5}}{2}$ 

## Question 28: Q28

La primitive de la fonction  $f(x) = \frac{\ln x}{x^3}$  qui vaut 0 au point 1 est :

A)  $\frac{\ln x}{x^2} - \frac{1}{3x^2} + \frac{1}{3}$  B)  $\frac{\ln x}{2x^2} - \frac{1}{4x^2} + \frac{1}{4}$  C)  $\frac{\ln x}{4x^2} + \frac{1}{2x^2} - \frac{1}{2}$  D)  $-\frac{\ln x}{2x^2} - \frac{1}{4x^2} + \frac{1}{4}$  E)  $-\frac{\ln x}{2x^2} + \frac{1}{4x^2} - \frac{1}{4}$ 

#### Question 29: Q29

La courbe représentative de la fonction  $f(x) = \cos(e^x)$  admet une tangente au point d'abscisse 0 dont l'équation est :

B)  $y = -\sin 1$  C)  $y = -(\sin 1)x + \cos 1$  D)  $y = -(\cos 1)x + \sin 1$  E) y = 1

## Question 30: Q30

Un argument du nombre complexe  $\mathbf{z} = \frac{\sqrt{3} + \mathbf{i}}{\sqrt{2} - \mathbf{i}\sqrt{2}}$  est :

A)  $-\frac{5\pi}{12}$ 

B)  $\frac{7\pi}{12}$  C)  $\frac{5\pi}{12}$  D)  $-\frac{7\pi}{12}$ 

## CONCOURS D'ACCES A LA FACULTE DE MEDECINE DE MARRAKECH Epreuve de Physique : Durée 30 mn

QUESTIONS 01 A 10 : COCHER UNE SEULE REPONSE JUSTE PARMI LES CINQ PROPOSITIONS

Question 1- Q1 : L'iode 131 est un isotope radioactif  $\beta$  de constante de désintégration  $\lambda = 9.92 \ 10^{-7} \ s^{-1}$  . Sa demi-vie est :

- A- 280 h
- B- 280 jours
- C- 8.08 jours
- D- 8.08 h
- E- Aucune proposition n'est juste

**Question 2- Q2**: L'uranium  $^{238}_{92}U$  est un émetteur  $\alpha$ . Le noyau fils obtenu est :

- A-  $\frac{231}{91}Pa$
- $B = {}^{234}Th$
- $C_{-}^{232}Th$
- D-  $^{242}_{94}Pu$
- E- Aucune proposition n'est juste

Question 3- Q3 : La masse initiale  $m_0$  d'une matière radioactive de période T est réduite à  $\frac{m_0}{8}$  pour une durée de :

- A- T
- B- 2T
- C- 3T
- D- 0.5T
- E- Aucune proposition n'est juste

Question 4- Q4: La capacité équivalente de l'association série de deux capacités C<sub>1</sub> et C<sub>2</sub> est:

- A-  $C_1 + C_2$
- B- C<sub>1</sub> x C<sub>2</sub>
- $C = \frac{C1 + C2}{C1 \times C2}$
- D C1 x C2
- D-  $\frac{1}{C1+C2}$
- E- Aucune proposition n'est juste

<u>Question 5- Q5</u>: La période d'un pendule élastique constitué d'un ressort de raideur K et d'une masse m=2 Kg est  $T_0=1.5$  s. La constante de raideur k est donc égale à :

- A- 8.37 Nm<sup>-1</sup>
- B- 837 Nm<sup>-1</sup>
- C- 35 Nm<sup>-1</sup>
- D- 35 N
- E- Aucune proposition n'est juste

Question 6- Q6 : L'équation horaire d'un mouvement rectiligne uniformément varié est :

A- 
$$x = at + v_0$$

B- 
$$x = \frac{1}{2}at^2 + v_0t + x_0$$

$$C- x = ma$$

D- 
$$x = -at + v_0$$

E- Aucune proposition n'est juste

Question 7- Q7: On réalise un circuit RL en plaçant en série une bobine idéale d'inductance L, un conducteur ohmique de résistance  $R=30,0~\Omega$  et un générateur de tension continue V=12~V. L'intensité du courant i dans le circuit atteint 63 % de sa valeur finale au bout de 0.5~s. La valeur de l'inductance est :

- A- 0.4 H
- B- 60 H
- C- 15 H
- D- 6 H
- E- Aucune proposition n'est juste

Question 8- Q8: On considère un circuit RC constitué d'une résistance R et d'une capacité C=2.4  $\mu$ F, alimenté par une tension continue E=12 V. La courbe de charge de la capacité en fonction du temps est donnée par la figure ci-dessous. D'après cette courbe, la valeur de la résistance R est proche de :

- Α- 416 ΚΩ
- B- 41.6 ΚΩ
- C- 416 Ω
- D- 4.16 Ω
- Ε- 41.6 Ω



- **A-** λ<sub>0</sub>
- B-  $n\lambda_0$
- C-  $\lambda_0/n$
- D-  $n^2 \lambda_0$
- E- Aucune proposition n'est juste

Question 10- Q10 : Une onde périodique a une longueur d'onde  $\lambda$ = 2.3 mm et une fréquence de 1kHz. Sa vitesse de propagation est :

- A- 2.3 Km/h
- B- 8.28 Km/h
- C- 23 m/s
- D- 8.28 m/s
- E- Aucune proposition n'est juste

## UNIVERSITE CADI AYYAD FACULTE DE MEDECINE ET DE PHARMACIE MARRAKECH

# CONCOURS D'ACCES A LA FACULTE DE MEDECINE DE MARRAKECH 03 Aout 2011

Epreuve de Sciences Naturelles : Durée 30 mn

### QUESTIONS 31 A 40 : COCHER UNE SEULE REPONSE JUSTE PARMI LES CINQ PROPOSITIONS

# Question 31. Q31 : Durant un tour du cycle de Krebs, une molécule d'acétyl- Coenzyme A donne :

- A. 1 NADH,H+
- B. 2 NADH,H+
- C. 3 NADH,H+
- D. 4 NADH,H+
- E. 5 NADH,H+

## Question 32. Q32: A propos de la contraction musculaire:

- A. La fibre musculaire striée est une petite cellule mononuclée inadaptée à la fonction de contraction musculaire
- B. Les myofibrilles musculaires n'ont aucun rôle dans la transformation de l'énergie emmagasinée dans l'ATP en énergie mécanique
- C. La créatine phosphate est considérée comme une réserve d'énergie d'urgence permettant de régénérer l'ATP
- D. Le sarcomère n'est pas impliqué dans la contraction musculaire
- E. La glycolyse ne se fait pas dans le muscle squelettique

# Question 33. Q33 : A quelle phase de la mitose se localisent les paires de chromosomes au niveau de la plaque équatoriale ?

- A. Anaphase
- B. Interphase
- C. Métaphase
- D. Télophase
- E. Prophase

# Question 34. Q34 : si un zygote a quatre chromosomes, combien les cellules somatiques qui en résultent auront- elles de chromosomes ?

- A. 4 chromosomes
- B. 8 chromosomes
- C. 2 chromosomes
- D. 1 chromosome
- E. 16 chromosomes

## Question 35. Q35: A propos de l'acide désoxyribonucléique (ADN):

- A. La molécule d'acide désoxyribonucléique (ADN) a une structure monocaténaire
- B. La réplication de l'ADN s'effectue d'une manière dispersée
- C. La réplication de l'ADN s'effectue selon le modèle semi-conservatif
- D. La réplication de l'ADN se fait par polymérisation progressive des nucléotides respectant la complémentarité des bases azotées : adénine avec guanine et cytosine avec thymine
- E. La transcription de l'ADN en ARN messager a lieu dans le cytoplasme



Question 36. Q36 : si l'un des brins d'ADN contient la séquence 5'AGTCCG3', le brin complémentaire devrait contenir la séquence suivante :

- A. 5'GCCTGA3'
- B. 5'AGTCCG3'
- C. 5'TCAGGC3'
- D. 5'CTGAAT3'
- E. 5'CGGACT3'

Question 37. Q37: Combien ya t-il de codons dans le tableau du code génétique universel?:

- A. 20
- B. 51
- C. 54
- D. 61
- E. 64

Question 38. Q38 : Mendel avait réalisé les croisements de petits pois « fleur pourpre x fleur blanche ». Il avait obtenu dans la génération F2 le rapport dominant/récessif suivant :

- A. 1/3/1
- B. 3/1
- C. 1/1
- D. 9/7
- E. 9/3/3/1

Question 39. Q39: l'hypertrichose des oreilles est une maladie héréditaire liée au chromosome Y. Si une femme saine est mariée à un homme présentant l'hypertrichose des oreilles, quel serait le phénotype de leurs enfants?

- A. Tous les enfants des deux sexes auront l'hypertrichose des oreilles
- B. Tous les garçons auront l'hypertrichose des oreilles mais aucune des filles ne présentera les symptômes de cette maladie
- C. La moitié des garçons aura l'hypertrichose des oreilles mais aucune des filles ne présentera les symptômes de cette maladie
- D. Toutes les filles auront l'hypertrichose des oreilles mais aucun des garçons ne présentera les symptômes de cette maladie
- E. Aucun des enfants n'aura l'hypertrichose des oreilles

Question 40. Q40: Si le sang d'un individu contient les anticorps anti-A et anti-B, son groupe sanguin est:

- A. A
- B. B
- C. AB
- D. O
- E. Toutes les réponses sont fausses

### **UNIVERSITE CADI AYYAD FACULTE DE MEDECINE ET DE PHARMACIE MARRAKECH**

## CONCOURS D'ACCES A LA FACULTE DE MEDECINE DE MARRAKECH 03 aout 2011

Epreuve de Chimie: 30 minutes

#### Question 11. Q11

On mélange 20 ml d'une solution aqueuse de chlorure de Fer (FeCl<sub>3</sub>) de concentration 0,1 mol/l et 30 ml d'une solution aqueuse de chlorure de magnésium MgCl<sub>2</sub> de concentration 0,3 mol/l. Quelle est la concentration des ions Cl<sup>-</sup> dans le mélange ?

A: 0,22 mol/l; B: 0,011 mol/l, C: 0,48 mol/l; D: 2,4 mol/l; E: 2,2 mol/l

#### Question 12. Q12

Au cours d'une réaction d'oxydation, il y a :

A : Gain d'un ou de plusieurs électrons

B : Perte de plusieurs électrons

C : Perte d'un ou de plusieurs électrons

D : Echange de protons

E : Aucune réponse n'est juste

#### Question 13, Q13

Quelle est l'espèce majoritaire du couple acido-basique AH/A<sup>-</sup>, de pKa = 3,5 dans une solution de pH = 2.5?

A: L'acide AH,

B: La base A

C : Aucune espèce n'est majoritaire

D: Les ions [H<sub>3</sub>O<sup>+</sup>]

E : Aucune réponse n'est juste

#### Question 14, Q14

Un acide carboxylique, dont la masse molaire est égale à 74 g/mol, réagit avec le méthanol CH<sub>3</sub>OH en produisant de l'eau et un composé organique. Quelle la formule chimique de ce composé ?

A: CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub>

B: CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>

C: CH<sub>3</sub>COOCH<sub>3</sub>

D: CH<sub>3</sub>CH<sub>2</sub>COOH

E: CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub>

#### Question 15, Q15

On considère une solution aqueuse d'acide méthanoïque HCOOH (monoacide) de concentration  $c = 10^{-1}$  mol/l et de pH = 2,375. Calculer le pKa du couple HCOOH/HCOO.

A: 4,75 B: 10<sup>-2,375</sup>

C: 11,25

D: 3,75

E: 5,75

#### Question 16. Q16

Le sulfate de fer hydraté se caractérise par sa couleur verte et sa formule est : [FeSO<sub>4</sub>.nH<sub>2</sub>O]. Pour déterminer la valeur de n, on dissout m = 1,7 g de ce sulfate dans un volume V = 50 cm<sup>3</sup> d'eau. La concentration des ions Fe<sup>2+</sup> dans la solution obtenue est de : [Fe<sup>2+</sup>] = 0.2 mol/l. Déduire la valeur de n. M(Fe) = 56 g/mol; M(S) = 32 g/mol; M(H) = 1 g/mol; M(O) = 16 g/mol

A:n=1 B:n=1,5 C:n=3 D:n=0

E: n = 2

#### Question 17. Q17

Un litre d'une eau minérale contient 124 mg/l de calcium. Quelle est la quantité de calcium dans 100 ml de cette même eau minérale :

A: 12,4 mg/l B: 1240 mg/l C: 1,24 mg/l D: 62 mg/l E: 124 mg/l

#### Question 18, Q18

L'acétate d'éthyle  $C_4H_8O_2$  est un solvant utilisé en peinture. Sa réaction avec l'eau conduit lentement à l'acide acétique et à l'éthanol selon :

$$C_4H_8O_2 + H_2O \rightarrow CH_3COOH + CH_3CH_2OH$$

A l'instant  $t_0$  = 0 min.,on introduit une mole de  $C_4H_8O_2$  dans un litre d'eau. On constate qu'au bout de 30 minutes, 99% de l'acétate d'éthyle  $C_4H_8O_2$  reste en solution. Calculer la vitesse moyenne de disparition de l'acétate d'éthyle.

A: 3,333.10<sup>-4</sup> mol. Γ<sup>1</sup>.min<sup>-1</sup> B: 0,033 mol. Γ<sup>1</sup>.min<sup>-1</sup> C: 0,01 mol. Γ<sup>1</sup>.min<sup>-1</sup> D: 3,3 mol. Γ<sup>1</sup>.min<sup>-1</sup> E: 0,3.10<sup>-2</sup> mol. Γ<sup>1</sup>.min<sup>-1</sup>

#### Question 19. Q19

La réaction de 3g d'acide acétique CH<sub>3</sub>COOH (M = 60 g/mol) avec 2,3 g d'éthanol (M=46 g/mol) conduit à la formation de l'eau et de l'acétate d'éthyle (M = 88 g/mol). La constante K de cet équilibre est égale à 4. Quelle est la masse de l'ester produit (M = 88 g/mol) ?

A: 5,25 g B: 2,3 g C: 0,7 g D: 2,93 g E: 5,3 g

#### Question 20. Q20

On considère un acide carboxylique X de formule  $C_nH_{2n}O_2$ . Le pourcentage massique de l'hydrogène dans cet acide est de 8,1%. L'oxydation douce de l'acide X conduit à un aldéhyde Y. quelle est la formule chimique de cet aldéhyde ?

 $\begin{array}{l} A: C_3H_6O_2 \\ B: C_2H_4O \\ C: CH_2O \\ D: C_3H_6O \\ E: C_3H_5O \end{array}$ 

جامعة القاضي عياض كلية الطب و الصيدلة

## مباراة الولوج لكلية الطب و الصيدلة مراكش 03 غثت 2011 مادة الرياضيات (المدة الزمنية 30 دقيقة)

سؤال 21 إلى 30: حدد الإجابة الصحيحة (إجابة واحدة فقط):

السوال 21: Q21

حيز تعريف الدالة المعرفة بما يلي  $f(x)=\sqrt{\ln(x^2+3x-4)}$  هو:

A) ]-
$$\infty$$
,  $\frac{-3-\sqrt{29}}{2}$ ]

B) 
$$\left[ \frac{-3-\sqrt{29}}{2}, \frac{-3+\sqrt{29}}{2} \right]$$

C) ]-
$$\infty$$
,  $\frac{-3-\sqrt{29}}{2}$ ] U [ $\frac{-3+\sqrt{29}}{2}$ , + $\infty$  [

D) ]-
$$\infty$$
,  $\frac{-3-\sqrt{29}}{2}$ [ U] $\frac{-3+\sqrt{29}}{2}$ ,+ $\infty$ [

E) 
$$\int \frac{-3+\sqrt{29}}{2} + \infty$$

السؤال <u>22</u>: Q22

$$:$$
فیمهٔ  $\lim_{n o +\infty}rac{n-\sqrt{n^2+1}}{n+\sqrt{n^2-1}}$  هي

$$D) +\infty$$

السوال 23: Q23

 $g(x) = \frac{\tan x - \sin x}{r^3}$  pour  $x \neq 0$  et  $g(0) = \mu$ : لتكن g الدالة المعرفة بما يلي

قيمة H لتكون g متواصلة في النقطة 0 هي:

B) 
$$-\frac{1}{2}$$

C) 
$$\frac{1}{4}$$

D) 
$$\frac{1}{2}$$

C) 
$$\frac{1}{4}$$
 D)  $\frac{1}{2}$  E)  $-\frac{1}{4}$ 

السؤال 24: Q24

: يكون العدد  $z^2+2z-3$  عددا حقيقيا إذا وفقط إذا كانت z=x+iy

A) 
$$x=1 \text{ et } y=0$$

C) 
$$x=-1$$
 et  $y=0$ 

A) 
$$x=1$$
 et  $y=0$  B)  $x=1$  ou  $y=-1$  C)  $x=-1$  et  $y=0$  D)  $y=0$  ou  $x=-1$ 

E) 
$$y=0$$
 et  $x=1$ 

السوال 25: Q25

: يساوي ي $u_3$  فإن  $u_7$  فإن  $u_7$  في يساوي ي $u_3+u_4+...+u_{10}$  و  $u_3+u_4+...+u_{10}$  في يساوي ي

السوال 26: Q26

: يساوي 
$$S = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots + \frac{1}{512}$$
 يساوي

A) 
$$\frac{172}{521}$$

B) 
$$\frac{171}{512}$$

C) 
$$\frac{571}{723}$$

D) 
$$\frac{571}{732}$$
 E)  $\frac{513}{824}$ 

E) 
$$\frac{513}{824}$$

السوال 27: Q27

$$: فيمة \int_{-1}^{+1} \frac{1}{x^2 - 4} dx$$
 فيمة

A) 
$$\frac{\sqrt{5}}{2}$$

B) 
$$\frac{\ln 5}{2}$$

C) 
$$\frac{\ln 3}{2}$$

C) 
$$\frac{\ln 3}{2}$$
 D)  $-\frac{\ln 3}{2}$  E)  $-\frac{\sqrt{5}}{2}$ 

E) 
$$-\frac{\sqrt{5}}{2}$$

السؤال <u>28</u>: Q28

الدالة الأصلية للدالة  $\frac{\ln x}{r^3} = f(x)$  والتي تأخذ القيمة صفر في نقطة 1 هي :

A) 
$$\frac{\ln x}{x^2} - \frac{1}{3x^2} + \frac{1}{3}$$

B) 
$$\frac{\ln x}{2x^2} - \frac{1}{4x^2} + \frac{1}{4}$$

C) 
$$\frac{\ln x}{4x^2} + \frac{1}{2x^2} - \frac{1}{2}$$

A) 
$$\frac{\ln x}{x^2} - \frac{1}{3x^2} + \frac{1}{3}$$
 B)  $\frac{\ln x}{2x^2} - \frac{1}{4x^2} + \frac{1}{4}$  C)  $\frac{\ln x}{4x^2} + \frac{1}{2x^2} - \frac{1}{2}$  D)  $-\frac{\ln x}{2x^2} - \frac{1}{4x^2} + \frac{1}{4}$  E)  $-\frac{\ln x}{2x^2} + \frac{1}{4x^2} - \frac{1}{4}$ 

$$E) - \frac{\ln x}{2x^2} + \frac{1}{4x^2} - \frac{1}{4}$$

السؤال 29: Q29

لتكن f الدالة المعرفة بما يلي :  $f(x) = \cos(e^x)$  و  $f(x) = \cos(e^x)$  الدالة المعرفة بما يلي : معادلة المستقيم المماس للمنحى С في النقطة 0 هي:

A) 
$$y = \cos 1$$

B) 
$$y = -\sin 1$$

C) 
$$y = -(\sin 1) x + \cos 1$$

A) 
$$y = \cos 1$$
 B)  $y = -\sin 1$  C)  $y = -(\sin 1)x + \cos 1$  D)  $y = -(\cos 1)x + \sin 1$ 

E) 
$$y = 1$$

السؤال <u>30</u>: Q30

العدد العقدي  $z = \frac{\sqrt{3+i}}{\sqrt{2-i\sqrt{2}}}$  يساوي :

A) 
$$-\frac{5\pi}{12}$$

B) 
$$\frac{7\pi}{12}$$

B) 
$$\frac{7\pi}{12}$$
 C)  $\frac{5\pi}{12}$ 

D) 
$$-\frac{7\pi}{12}$$
 E)  $\frac{3\pi}{4}$ 

E) 
$$\frac{3\pi}{4}$$

## مباراة ولوج كلية الطب بمراكش, سنة 2011

## مادة الفيزياء مدة الانجاز 30 دقيقة

سؤال 01 إلى 10: حدد الإجابة الصحيحة (إجابة واحدة فقط):

سؤال Q1: نويدة اليود 131, إشعاعية النشاط  $\beta$  ثابتة نشاطها الإشعاعي  $10^{-7}s^{-1}$  عمر نصف هذه النويدة  $t_{1/2}$  هو:

- A- 280 h
- یوم B- 280
- يوم 8.08 -C
- D- 8.08h
- كل الأجوبة أعلاه غير صحيحة -E

سؤال Q2: النشاط الإشعاعي للعنصر  $U^{238}_{92}$  من نوع lpha. رمز النواة المتولدة هو:

- $^{231}_{91}Pa$ Α-
- B-  $^{234}_{90}Th$
- C-  $^{232}_{90}Th$
- D-  $^{242}_{94}Pu$
- كل الأجوبة أعلاه غير صحيحة -E

سوال Q3: كتلة بدنية  $m_0$  لمادة مشعة عمر نصفها T تتناقص إلى و في المدة الزمنية :

- A- T
- B- 2T
- C- 3T
- D- 0.5T
- كل الأجوبة أعلاه غير صحيحة -E

سوال Q4: سعة المكتف المكافئ لتجميع مكتفين سعتهما  $C_2$  و  $C_2$  مركبين على التوالي هي:

- A-  $C_1 + C_2$
- B- C<sub>1</sub> x C<sub>2</sub>
- $C- \frac{C1+C2}{}$
- $D- \frac{C1 \times C2}{C1 + C2}$
- كل الأجوبة أعلاه غير صحيحة -E

سؤال Q5: الدور الخاص لنواس مرن يتكون من نابض رأسي لفاته غير متصلة وكتلته مهملة ومن جسم صلب كتلته m=2 Kg هو د  $T_0=1.5$  s مىزبة هذا النابض  $T_0=1.5$  s

- A- 8.37 Nm<sup>-1</sup>
- B- 837 Nm<sup>-1</sup>
- C- 35 Nm<sup>-1</sup>
- D- 35 N
- كل الأجوبة أعلاه غير صحيحة -E

سؤال Q6: التعبير الحرفي للمعادلة الزمنية لأفصول حركة مستقيمية متغيرة بانتضام هو:

A- 
$$x = at + v_0$$

B- 
$$x = \frac{1}{2}at^2 + v_0t + x_0$$

$$C-x=ma$$

D- 
$$x = -at + v_{\circ}$$

سؤال Q7: نركب على التوالي مولدا قوته الكهرمحركة E=12 و مقاومته الداخلية مهملة, و وشيعة مقاومتها مهملة و موصلا اوميا مقاومته  $\Omega$  R=30  $\Omega$  . إذا علمنا أن شدة التيار المار في الدارة تصل 0.38 من قيمته القصوى بعد 0.58 فإن قيمة معامل التحريض الذاتي 0.58 للوشيعة هو:

- A- 0.4 H
- B- 60 H
- C- 15 H
- D- 6 H
- كل الأجوبة أعلاه غير صحيحة -E

 $C=2.4~\mu$ F بين قطبق توترا تابتا شدته E=12~V بين قطبي مجموعة مكونة من موصل أومي مقاومته E=12~V و مكثف سعته E=12~V مركبين على التوالي. الشكل أسفله يمثل منحى تغير التوتر  $U_c(t)$  بين مربطي المكتف بدلالة اللزمن. من خلال هذا المنحى نستنتج أن قيمة E=12~V هي:



- Α- 416 ΚΩ
- Β- 41.6 ΚΩ
- C- 416 Ω
- D- 4.16 Ω
- E- 41.6 Ω

سؤال Q9: موجة ضوئية طولها  $\lambda_0$  في الفراغ. في وسط شفاف معامل انكساره n يصبح طول هذه الموجة هو:

- $A-\lambda_0$
- B-  $n\lambda_0$
- $C \lambda_0/n$
- D-  $n^2\lambda_0$
- كل الأجوبة أعلاه غير صحيحة -E

سوال Q10: لتكن موجة دورية طولها  $\lambda = 2.3 \; \mathrm{mm}$  و ترددها Q10: لتكن موجة دورية طولها

- A- 2.3 Km/h
- B- 8.28 Km/h
- C-23 m/s
- D- 8.28 m/s
- كل الأجوبة أعلاه غير صحيحة -E

## مباراة الولوج لكلية الطب و الصيدلة مراكش 03 غشت 2011 مادة الكيمياء (المدة الزمنية 30 دقيقة)

السؤال 11 . Q11

لمط 20ml من محلول ماني لكلورور الحديد FeCl<sub>3</sub> تركيزه ا/0.1 mol ب 30 ml من محلول كلورور المغنيزيوم MgCl<sub>2</sub> تركيزه ا/0.3 mol بن على المخليط ؟

 $A: 0,\!22 \; mol/l \; ; \; B: 0,\!011 \; mol/l \; , \; C: 0,\!48 \; mol/l \; ; \; D: 2,\!4 \; mol/l \; ; \; E: 2,\!2 \; mol/l \; ; \; C: 0,\!48 \; mol/l \; ; \; D: 2,\!4 \; mol/l$ 

السوال Q12 . 12

خلال تفاعل التاكسد يحدث:

A. كسب إلكترون واحد أو أكثر

B. ضياع الكترونات

ضياع إلكترون واحد أو أكثر

D. تبادل البروتونات

E. لا توجد أي إجابة صحيحة

السؤال 13 . Q13

حدد النوع المهيمن من المزدوجة (AH/A) في محلول كيميائي له 2.5 = pH = علما أن الثابتة الحمضية للمزدوجة AH/A

تسا*وي* 3.5= pKa

A. الحمض AA

B. القاعدة - A

C. لا يوجد أي عنصر مهيمن

D. البروتونات +H2O

E. لا يمكن الإجابة على هذا السؤال

السوال 14 . Q14

حمض كربوكسيلي كتلته المولية تساوي  $74 \, \text{g/mol}$  يتفاعل مع الميثانول  $CH_3OH$  فينتج عن ذلك الماء ومركب عضوي ما هي صيغة هذا المركب؟

CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub> .A

CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub> .B

 $CH_3COOCH_3$ .C

CH<sub>3</sub>CH<sub>2</sub>COOH .D

CH<sub>3</sub>OCH<sub>2</sub>CH<sub>3</sub> .E

السوال 15 . Q15

نعتبر محلول ماني لحمض الميثانويك (حمض أحادي) تركيزه المولي C= 10-1mol/L ونو 2.375

احسب الثابتة pKa للمزدوجة · HCOOH/HCOO

```
4,75 .A
10<sup>-2.375</sup> .B
11,25 .C
3,75 .D
5,75 .E
```

#### السوال 16. Q16

يتميز كبريتات الحديد المميه بلونه الأخضر وصيغته [FeSO<sub>4.</sub>nH<sub>2</sub>O]. لكي نحصل على العدد  $^{\rm m}$  ، نذيب كتلة  $^{\rm m}$   $^{\rm m}$  1.7g من هذا الكبريتات في حجم  $^{\rm m}$   $^{\rm m}$  0.2 mol/l. من الماء. إذا علمت أن التركيز المولي لأيونات الحديد يساوي  $^{\rm m}$  0.2 mol/l  $^{\rm m}$   $^{\rm m}$  0.2 mol/s  $^{\rm m}$   $^$ 

- n = 1.A
- n = 1.5 .B
  - n = 3.C
  - n = 0.D
- n = 2.E

#### السوال 17 . Q17

ماء معدني يحتوي على 124 mg/l من الكلسيوم. ما هي كمية الكلسيوم في 100 ml من نفس الماء المعدني؟

- 12,4 mg/l .A
- 1240 mg/l .B
- 1,24 mg/l .C
  - 62 mg/i .D
- 124 mg/l .E

#### السوال Q18. 18

اسيتات الإثيل  $C_4H_8O_2$  محلول يستعمل في الصباغة. عند تفاعله مع الماء، يتحول اسيتات الإثيل ببطء إلى حمض الإيثانويك والإيثانول حسب التفاعل:  $C_4H_8O_2 + H_2O o CH_3COOH + CH_3CH_2OH$ 

في اللحظة to=0 min ، نذيب مولة واحدة من أسيتات الإثيل في لتر من الماء ، فنلاحظ أن 99% من هذا الأسيتات متبقية بعد 30 دقيقة من التفاعل. احسب السرعة المتوسطة لاختفاء اسيتات الإثيل في هذه الفترة الزمنية.

- 3,333.10<sup>-4</sup> mol.l<sup>-1</sup>.min<sup>-1</sup> .A
  - 0,033 mol.l<sup>-1</sup>.min<sup>-1</sup> .B
  - 0,01 mol.l<sup>-1</sup>.min<sup>-1</sup>.C
  - 3,3 mol. [1.min-1.D
  - 0,3.10<sup>-2</sup> mol.l<sup>-1</sup>.min<sup>-1</sup>.E

#### السوال Q.19. 19

تفاعل 3g من حمض الإيثانويك (CH3COOH (M = 60 g/mol مع 2,3g من الإيثانول (M=46 g/mol) يعطي اسيتات الإثليل و الماء. ثابت التوازن لهذا التفاعل يساوي K = 4. ما هي كتلة الإستر الناتج (M=88 g/mol)؟

- 5,25 g .A
  - 2,3 g .B
  - 0,7 g.C
- 2,93 g .D
- 5,3 g .E

### السوال Q.20.20

نعتبر حمضا كربوكسيليا X صيغته العامة CnH2nO2. تمثل النسبة المنوية لكتلة الهيدروجين في جزيناته %8.1 ينتج الحمض X عند الأكسدة المعتدلة الألدهيد Y. استنتج صيغة هذا الألدهيد

- $C_3H_6O_2$ .A
- C<sub>2</sub>H<sub>4</sub>O .B
- CH<sub>2</sub>O .C
- C<sub>3</sub>H<sub>6</sub>O .D
- C<sub>3</sub>H<sub>5</sub>O .E



# تصحيح مباراة ولوج السنة الأولى لكلية الطب والصيدلة (مراكش)

## 2011/2010

## مادة الرياضيات

السؤال 21:

: هو 
$$f(x) = \sqrt{\ln(x^2 + 3x - 4)}$$
 هو الدالة المعرفة بما يلي

$$\begin{split} D_f &= \left\{ x \in \Box \ / \ x^2 + 3x - 4 \ge 0 \ et \ln \left( x^2 + 3x - 4 \right) \ge 0 \right\} \\ &= \left\{ x \in \Box \ / \ x^2 + 3x - 4 \ge 1 \right\} \\ &= \left\{ x \in \Box \ / \ x^2 + 3x - 5 \ge 0 \right\} \end{split}$$

$$\frac{-3+\sqrt{29}}{2}$$
 و  $\frac{-3-\sqrt{29}}{2}$  و  $\frac{-3+\sqrt{29}}{2}$  يثلاثية الحدود  $x^2+3x-5$  جذرين مختلفين هما:

. 
$$D_f=\left]-\infty;rac{-3-\sqrt{29}}{2}
ight]$$
 وبالتالي:  $\left[rac{-3+\sqrt{29}}{2};+\infty
ight[$ 

السؤال 22:

$$\lim_{n \to +\infty} \frac{n - \sqrt{n^2 + 1}}{n + \sqrt{n^2 - 1}} = \lim_{n \to +\infty} \frac{-1}{\left(n + \sqrt{n^2 - 1}\right)^2} = 0$$
 لدينا:

السؤال 23:

. 
$$\lim_{x\to 0} g(x) = g(0) = \mu$$
 نعلم أن:  $g$  متصلة في  $g$  إذا وفقط إذا كان:

لدينا:

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \times \frac{\frac{1}{\cos x} - 1}{x^2}$$

$$= \lim_{x \to 0} \frac{\sin x}{x} \times \frac{1 - \cos x}{x^2} \times \frac{1}{\cos x}$$

$$= \frac{1}{2}$$

$$\mu = \frac{1}{2}$$
 ومنه

السؤ ال 24:

$$z^2 + 2z - 3 = x^2 - y^2 + 2ixy + 2x + 2iy - 3$$
 لدينا  $z = x + iy$  لدينا  $z = x + iy$ 

ومنه:



$$z^{2} + 2z - 3 \in \Pi \iff \operatorname{Im}(z^{2} + 2z - 3) = 0$$
$$\Leftrightarrow 2y(x+1) = 0$$
$$\Leftrightarrow (x = -1ou \ y = 0)$$

السؤال 25:

.  $\left(\forall \left(n,p\right)\in\Box^{2}\right);\ u_{n}=u_{p}+\left(n-p\right)r$  : نذكر أن  $\left(u_{n}\right)$  ، نذكر أن المتتالية الحسابية الحسابية الحسابية الحسابية الحسابية الحسابية العسابية الحسابية الحسابية العسابية العسابية الحسابية الحسابية العسابية الحسابية الحسابية العسابية ال

$$u_3 + u_4 + \dots + u_{10} = \frac{(10 - 3 + 1)(u_3 + u_{10})}{2}$$
$$= 4(u_7 - 4r + u_7 + 3r)$$
$$= 4(162 - r)$$

$$4(162-r)=672$$
 ومنه:

$$u_3 = u_7 - 4r = 105$$
 إذن  $r = -6$  .

السؤال 26:

لدينا:

$$S = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots + \frac{1}{512}$$
$$= \frac{1 - \left(-\frac{1}{2}\right)^9}{1 - \left(-\frac{1}{2}\right)} \times \frac{1}{2}$$
$$= \frac{171}{512}$$

السؤال 27:

لدينا:

$$\int_{-1}^{1} \frac{1}{x^2 - 4} dx = \frac{1}{4} \int_{-1}^{1} \left( \frac{1}{x - 2} - \frac{1}{x + 2} \right) dx$$
$$= \frac{1}{4} \left[ \ln|x - 2| - \ln|x + 2| \right]_{-1}^{1}$$
$$= -\frac{\ln 3}{2}$$

السؤال 28:

$$u(0)=0$$
 الدالة  $u:x\mapsto -\frac{\ln x}{x^2}-\frac{1}{3x^2}+\frac{1}{3}$  الدالة ولدينا  $u(0)=0$  و لكل  $u(0)=0$ 

$$u'(x) = -\frac{2x - 4x \ln x}{4x^4} + \frac{1}{2x^3}$$
$$= \frac{2 \ln x - 1}{2x^3} + \frac{1}{2x^3}$$
$$= \frac{\ln x}{x^3}$$

وبالتالي الدالة الأصلية للدالة  $\frac{\ln x}{x}$  على  $\frac{1}{1}$  التي تأخذ القيمة 0 في النقطة 1 هي الدالة المعرفة على  $\frac{1}{1}$  بما يلي:

$$x \mapsto -\frac{\ln x}{x^2} - \frac{1}{3x^2} + \frac{1}{3}$$

السؤال 29 :

. y = f'(0)x + f(0) هي: (x + f(0)

$$\forall x \in \square ; f'(x) = -e^x \sin(e^x)$$
 دينا:

 $f(0) = \cos 1$  مع  $f'(0) = -\sin 1$ 

 $y = -(\sin 1)x + \cos 1$  هي: (C) هي النقطة ذات الأفصول هي وبالتالي معادلة المستقيم المماس للمنحنى

السؤال30:

الدينا 
$$z = \frac{\sqrt{3} + i}{\sqrt{2} - i\sqrt{2}}$$
 الإنن

$$\arg z = \arg\left(\sqrt{3} + i\right) - \arg\left(\sqrt{2} - i\sqrt{2}\right) [2\pi]$$
$$= \frac{\pi}{6} + \frac{\pi}{4} [2\pi]$$
$$= \frac{5\pi}{12} [2\pi]$$

## مادة الفيزياع

(1

يعبر عن عمر النصف لنويدة اليود 131 كالتالي

 $t_{1/2} = ---$ 

 $t_{1/2}$ = 8,08 h

: (2

لدينا نشاط إشعاعي من نوع lphaللعنصر  $lpha^{238}$  إذن معادلة التفتت تكتب على الشكل التالي:



بتطبيق قانون الإنحفاظ لصودي نجد:

$$238=x+4$$
 و  $92=y+2$ 

اذن العنصر X يكتب على الشكل التالي:

نتناقص إلى — في المدة الزمنية  $m_0$  لمادة مشعة عمر نصفها  $m_0$  تتناقص إلى  $m_0$ 





: (4

 $\mathbf{q}$  يجتاز المكثفين نفس الشدة  $\mathbf{i}$  اذن فهما يشحنان بنفس الشحنة

$$\begin{array}{c|c}
A & C_{1} & C_{2} & B \\
\hline
& U_{AD} & U_{DB} & U_{DB} \\
\hline
& U_{AB} & U_{AB}
\end{array}$$

$$\begin{array}{c|c}
C & B \\
\hline
& U_{AB} & U_{AB}
\end{array}$$

$$q=q_1=q_2\ q\ q_2$$
 اذن

حسب قانون اضافية التوترات:

$$U_{AB} = U_{AD} + U_{DB}$$

$$\frac{q}{C} = \frac{q_1}{C_1} + \frac{q_2}{C_2}$$

$$rac{1}{C} = \sum_{i=1}^{i=n} rac{1}{C_i}$$
 : تعميم  $rac{1}{C} = rac{1}{C_1} + rac{1}{C_2}$  : و بالتالي:

هذا التركيب يُضَعِّفُ السعة غير أنه يُمكن من تطبيق توتر عال قد لا يتحمله كل مكثف إذا استعمل لوحده

$$T_0=2\pi\sqrt{-}$$
 : ينجز الجسم حركة تنبذبية حرة وجيبية دور ها الخاص هو: (5



حيث: m كتلة الجسم

k صلابة النابض

$$T_0^2 = 4\pi^2$$
— إذن

 $k=4\pi^2$ 

 $k=4\pi^2$  تطبیق عدد*ي* 

وبالتالى صلابة النابض k= 35N/m:

: (6

ما أن الحركة مستقيمية متغيرة بانتظام فإن : a=cte

v=at+cte أن

 $-at^2 + v_0t + cte x(t) = 0$  آي

 $x(0)=x_0$  غند t=0

 $-at^2+v_0t+x_0x(t)=0$ : وبالتالى المعادلة الزمنية لهذه الحركة تكتب على الشكل التالى

:(7

نعلم أن  $\zeta=0.5$  في المدة اللازمة ليشحن المكثف ب63% من شحنته القصوى أي أن  $\zeta=0.5$  في هذه الحالة

رادينا : τ=L/R

اي أن L=R τ

تطبيق عددي L=30×0,5

قيمة معامل التحريض هي: H 15 H

8): بالاعتماد على المبيان (استعمال طريقة المماس) نجد

au= RC : ونعلم أنau = 1ms

R=<del>-</del> : إذن

تطبيق عددي R= \_\_\_\_\_

 $R = 416,6\Omega$ 

: (9



c=- : نعلم أن سرعة انتشار موجة في الفراغ هو

c: سرعة انتشار الضوء

V:سرعة انتشار الموجة

λ:طول الموجة

u = -ونعلم ان

 $\lambda_0 = c \; \mathrm{T} = -$  : و طول الموجة في الفراغ هو

 $\lambda=n$ وفي وسط شفاف معامل انكساره

 $\lambda = \frac{0}{1}$  إذن:  $\lambda = n_0/\lambda$  إذن:

: (10

v =- لدينا

 $v = \lambda f$ 

 $v=2,3.10^{-3} \times 10^{3}$ 

v = 2.3 m/s

v = 8,28 km/h

إذن سرعة الموجة هي 8,28 km/h

## مادة الكيمياء

: (11

 $S_1$ ) (FeCl<sub>3</sub>  $\longrightarrow$  Fe<sup>3+</sup> + 3Cl<sup>-</sup>لدينا في المحلول

n(FeCl<sub>3</sub>)=n<sub>1</sub>(Cl<sup>-</sup>)/3 إذن

 $n_1(Cl^-)=3C_1V_1$  ومنه

 $S_1$ ) (MgCl<sub>2</sub>  $\longrightarrow$  Mg<sup>2+</sup> + 2Cl<sup>-</sup>لدينا في المحلول

n(MgCl<sub>2</sub>)=n<sub>2</sub>(Cl<sup>-</sup>)/2 إذن

 $n_2(Cl^-)=2C_2V_2$  ومنه

 $V_T = V_1 + V_2 = 50$ ml في الخليط ذو الحجم

 $n_T(Cl^-) = n_1(Cl^-) + n_2(Cl^-) = 3C_1V_1 + 2C_2V_2$  كمية مادة ايونات الكلورور الموجودة في الخليط هي:

 $[Cl^{-}]=n_{T}(Cl^{-})/V_{T}=0.48 \text{ mol/l}$  : ونعلم ان

إذن =0.48 mol/l

12): خلال تفاعل التأكسد يحدث:

كسب إليكترون واحد أو أكثر

: (13

pH= pka - log——الدينا

pH< pka → log—>1

ونعلم أن ex دالة تزايدية

[AH]>[A]

إذن : [AH] هو المهيمن



A- يهيمن على pKa -1 < pH

اذا كان PH pKa +1> فان -A يهيمن على AH

: (14

المركب ناتج عن التفاعل عبارة عن إستر, معادلة التفاعل تكتب:

$$CH_3COOH + CH_3OH \longrightarrow CH_3CH_2COOCH_3 + H_2O$$

إذن صيغة الحمض الكربوكسيلي هي СН3СООН

: (15

$$[H_3O^+] = 10^{-pH}$$
نعلم أن :  $k_a = \frac{[H_3O]}{+}$  : نعلم

 $K_a = 10^{-4,75}$ 

 $pK_a = -log(K_a) = 4,75$  : إذن

: (16

$$FeSO_{4,}nH_2O$$
  $\longrightarrow$   $Fe^{2+} + SO_4^{2-} + nH_2O$  : معادلة التفاعل تكتب كمايلي

$$n(A)$$
= $n(Fe^{2+})$  : إذن من خلال المعادلة نجد 
$$= - C = - \frac{1}{2}$$
 
$$Vn(A)=[Fe^{2+}]$$
 يعني :  $[Fe^{2+}]= - \frac{1}{2}$ 

$$----=M(A)$$

[Fe<sup>2+</sup>]=

: (17

نفس تركيز الكالسيوم الموجود في لتر هو نفسه الموجود في 100ملم

اي كمية الكالسيوم في 100ml هي 1/ 124mg

: (18

v=3,333.10<sup>-4</sup> mol<sup>-1</sup>.1<sup>-1</sup>.min<sup>-1</sup>

: (19

# الجدول الوصفي:

| $CH_3COOH + CH_3CH_2OH \longrightarrow CH_3COOCH_2CH_3 + H_2O$ |        |        |       |     |
|----------------------------------------------------------------|--------|--------|-------|-----|
| Ac                                                             |        | Alc    | Est F | Eau |
| t=0                                                            | $n_0$  | $n_0$  | 0     | 0   |
| t≠0                                                            | 0,05-x | 0,05-x | X     | X   |

x: تقدم التفاعل

تكتب ثابتة التفاعل كالتالى:

K = ----



$$4 = \frac{\phantom{a}}{2}$$

$$2 = \frac{\phantom{a}}{2}$$

$$2 \times (0,05-x) = x$$

$$x = 0,033 \text{ mol}$$

$$n(Est) = x$$

$$m(Est) = M(est) \times x$$

$$m(Est) = 0.033 \times 88$$
 تطبیق عددي

اذن كمية مادة الأستر

:(20

انطلاقا من المعطيات لدينا المعادلة المنمدجة للاكسدة المعتدلة للحمض الكربوكسيلي:

$$\begin{array}{ccc} & & & & & & \\ C_nH_{2n}O_2 & & & & & \\ & & & & & \\ Acide & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$C + H + O = 100$$
 :CxHyOz لجزيئة بالنسبة

$$12x + y + 16z = M(CxHyOz)$$

$$rac{\text{M}(\text{CxHyOz})}{100} = rac{\text{xM}(\text{C})}{\text{M}(\text{CxHyOz})} = rac{\text{yM}(\text{H})}{\text{M}(\text{CxHyOz})} = rac{\text{zM}(\text{O})}{\text{M}(\text{CxHyOz})}$$

$$rac{M(C_nH_{2n}O_2)}{100}=rac{2nM(H)}{M(C_nH_{2n}O_2)}$$
 اما بالنسبة لذرة الهيدروجين  $rac{8,1}{100}=rac{2n}{12n+2n+32}$   $=rac{2n}{14n+32}$ 

$$x: C_3H_6O_2$$

n = 3

$$y: C_3H_6O$$
 ومنه نستنتج صيغ المركبات العضوية

