

November 1988 Revised February 2005

74AC74 • 74ACT74 Dual D-Type Positive Edge-Triggered Flip-Flop

General Description

The AC/ACT74 is a dual D-type flip-flop with Asynchronous Clear and Set inputs and complementary $(Q,\,\overline{Q})$ outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs:

LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

Features

- I_{CC} reduced by 50%
- Output source/sink 24 mA
- ACT74 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC74SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC74SC_NL (Note 1)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC74SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC74MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC74MTCX_NL (Note 2)	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC74PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT74SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT74SC_NL (Note 1)	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT74SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT74SJX_NL (Note 2)	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT74MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT74PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JECED J-STD-020B.

Note 1: "_NL" indicates lead-free product (per JEDEC J-STD-020B).

Note 2: "_NL" indicates lead-free product (per JEDEC J-STD-020B). Device is available in Tape and Reel only.

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₁ , D ₂	Data Inputs
CP ₁ , CP ₂	Clock Pulse Inputs
\overline{C}_{D1} , \overline{C}_{D2}	Direct Clear Inputs
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs
$Q_1, \overline{Q}_1, Q_2, \overline{Q}_2$	Outputs

Logic Symbols

Truth Table

(Each Half)

	Inpu	Out	puts		
S _D	\overline{c}_{D}	СР	D	Q	Ισ
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	Н	Н
Н	Н	~	Н	Н	L
Н	Н	~	L	L	Н
Н	Н	L	Х	Q_0	\overline{Q}_0

- H = HIGH Voltage Level
- L = LOW Voltage Level X = Immaterial

Absolute Maximum Ratings(Note 3)

 $V_1 = -0.5V$ -20 mA $V_1 = V_{CC} + 0.5V$ +20 mA

DC Input Voltage (V_I) -0.5V to $V_{CC} + 0.5V$

DC Output Diode Current (I_{OK})

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

Operating Temperature (T_A) —40°C Minimum Input Edge Rate ($\Delta V/\Delta t$)

AC Devices

 V_{IN} from 30% to 70% of V_{CC}

 $V_{CC} @ 3.3V, 4.5V, 5.5V$ 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

ACT Devices

V_{IN} from 0.8V to 2.0V

 $V_{CC} @ 4.5V, 5.5V$ 125 mV/n

Note 3: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$		$T_A = -40$ °C to +85 °C	Units	Conditions
Syllibol	Farameter	(V)	Тур	Gı	aranteed Limits	Ullits	Conditions
V _{IH}	Minimum HIGH	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V
	Level Input	4.5	2.25	3.15	3.15	V	or V _{CC} - 0.1V
	Voltage	5.5	2.75	3.85	3.85		
V _{IL}	Maximum LOW	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V
	Level Input	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V
	Voltage	5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH	3.0	2.99	2.9	2.9		
	Level Output	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$
	Voltage	5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ m}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ m (Note 4)}$
V _{OL}	Maximum LOW	3.0	0.002	0.1	0.1		
	Level Output	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$
	Voltage	5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL}$ or V_{IH}
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 4)
I _{IN} (Note 6)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Maximum
I _{OHD}	Output Current (Note 5)	5.5			-75	mA	V _{OHD} = 3.85V Minimum
I _{CC} (Note 6)	Maximum Quiescent Supply Current	5.5		2.0	20.0	μА	V _{IN} = V _{CC} or GND

Note 4: All outputs loaded; thresholds on input associated with output under test.

Note 5: Maximum test duration 2.0 ms, one output loaded at a time.

Note 6: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

DC Electrical Characteristics for ACT $\textbf{T}_{\boldsymbol{A}} = +25^{\circ}\textbf{C}$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ ν_{cc} Symbol Units Conditions Parameter Guaranteed Limits (V) Тур V_{IH} Minimum HIGH Level 4.5 1.5 $V_{OUT} = 0.1V$ 5.5 1.5 2.0 2.0 or V_{CC} – 0.1V Maximum LOW Level V_{IL} 4.5 1.5 0.8 0.8 $V_{OUT} = 0.1V$ ٧ Output Voltage 5.5 8.0 0.8 or V_{CC} – 0.1V 1.5 I_{OUT} = -50 μA Minimum HIGH Level 4.5 4.49 4.4 V_{OH} 4.4 5.49 5.4 5.4 Output Voltage 5.5 $V_{IN} = V_{IL}$ or V_{IH} ٧ 4.5 3.86 3.76 $I_{OH} = -24 \ mA$ $I_{OH} = -24 \text{ mA (Note 7)}$ 5.5 4.86 4.76 Maximum LOW Level 4.5 0.1 0.1 $I_{OUT} = 50 \ \mu A$ V_{OL} Output Voltage 0.1 $V_{IN} = V_{IL} \text{ or } V_{IH}$ 4.5 0.36 0.44 $I_{OL} = 24 \text{ mA}$ I_{OL} = 24 mA (Note 7) 5.5 0.36 0.44 $V_I = V_{CC}$, GND Maximum Input I_{IN} 5.5 ±1.0 μΑ Leakage Current I_{CCT} Maximum $V_I = V_{CC} - 2.1V$ 5.5 0.6 1.5 mΑ I_{CC}/Input V_{OLD} = 1.65V Maximum Minimum Dynamic 5.5 75 mΑ I_{OLD} V_{OHD} = 3.85V Minimum Output Current (Note 8) 5.5 -75 mΑ I_{OHD} Maximum Quiescent I_{CC} $V_{IN} = V_{CC}$ 2.0 20.0 or GND Supply Current

Note 7: All outputs loaded; thresholds on input associated with output under test.

Note 8: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

	P	V _{CC}		T _A = +25°C		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_1 = 50 \text{ pF}$		
Symbol	Parameter	(V) (Note 9)	Min	C _L = 50 pF	Max	Min	Max	Units
		` ′			IVIAA		IVIAA	
f _{MAX}	Maximum Clock	3.3	100	125		95		MHz
	Frequency	5.0	140	160		125		
t _{PLH}	Propagation Delay	3.3	3.5	8.0	12.0	2.5	13.0	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	2.5	6.0	9.0	2.0	10.0	ns
t _{PHL}	Propagation Delay	3.3	4.0	10.5	12.0	3.5	13.5	
	\overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	3.0	8.0	9.5	2.5	10.5	ns
t _{PLH}	Propagation Delay	3.3	4.5	8.0	13.5	4.0	16.0	
	CP_n to Q_n or \overline{Q}_n	5.0	3.5	6.0	10.0	3.0	10.5	ns
t _{PHL}	Propagation Delay	3.3	3.5	8.0	14.0	3.5	14.5	
	CP_n to Q_n or \overline{Q}_n	5.0	2.5	6.0	10.0	2.5	10.5	ns

Note 9: Voltage Range 3.3 is 3.3V ± 0.3V Voltage Range 5.0 is 5.0V ± 0.5V

AC Operating Requirements for AC

		V _{CC}	T _A = -	+25°C	$T_A = -40$ °C to $+85$ °C	
Symbol	Parameter	(V)	$C_L = 50 \text{ pF}$		C _L = 50 pF	Units
		(Note 10)	Тур	Guara	inteed Minimum	
t _S	Set-up Time, HIGH or LOW	3.3	1.5	4.0	4.5	20
	D _n to CP _n	5.0	1.0	3.0	3.0	ns
t _H	Hold Time, HIGH or LOW	3.3	-2.0	0.5	0.5	20
	D _n to CP _n	5.0	-1.5	0.5	0.5	ns
t _W	CP_n or \overline{C}_Dn or \overline{S}_Dn	3.3	3.0	5.5	7.0	
	Pulse Width	5.0	2.5	4.5	5.0	ns
t _{rec}	Recovery Time	3.3	-2.5	0	0	20
	\overline{C}_{Dn} or \overline{S}_{Dn} to CP	5.0	-2.0	0	0	ns

Note 10: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$

AC Electrical Characteristics for ACT

		v _{cc}		$\textbf{T}_{\boldsymbol{A}} = +25^{\circ}\textbf{C}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Parameter	(V) C _L = 50 pF		$C_L = 50 \text{ pF}$		Units		
		(Note 11)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	145	210		125		MHz
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	3.0	5.5	9.5	2.5	10.5	ns
t _{PHL}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	3.0	6.0	10.0	3.0	11.5	ns
t _{PLH}	Propagation Delay CP_n to Q_n or \overline{Q}_n	5.0	4.0	7.5	11.0	4.0	13.0.	ns
t _{PHL}	Propagation Delay CP_n to Q_n or \overline{Q}_n	5.0	3.5	6.0	10.0	3.0	11.5	ns

Note 11: Voltage Range 5.0 is 5.0V ± 0.5V

AC Operating Requirements for ACT

Symbol	Parameter	V _{CC} (V)	$T_A = +25$ °C $C_L = 50 \text{ pF}$		$T_A = -40$ °C to $+85$ °C $C_L = 50$ pF	Units
		(Note 12)	Тур	Gua	aranteed Minimum	Ī
t _S	Set-up Time, HIGH or LOW D _n to CP _n	5.0	1.0	3.0	3.5	ns
t _H	Hold Time, HIGH or LOW D _n to CP _n	5.0	-0.5	1.0	1.0	ns
t _W	CP_n or \overline{C}_{Dn} or \overline{S}_{Dn} Pulse Width	5.0	3.0	5.0	6.0	ns
t _{rec}	Recovery Time C _{Dn} or S _{Dn} to CP	5.0	-2.5	0	0	ns

Note 12: Voltage Range 5.0 is 5.0V ± 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	35.0	pF	V _{CC} = 5.0V

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
 D. DIMENSIONING AND TOLERANCES PER ANSI Y14-5M, BY

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

 $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 $0.325 \begin{array}{l} +0.040 \\ -0.015 \\ \hline \left(8.255 \begin{array}{l} +1.016 \\ -0.381 \end{array}\right)$

N14A (REV.F)

www.fairchildsemi.com