

RD-A140 321

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON AXISYMMETRIC
FOREBODIES AT MACH 3 A. (U) ROYAL AIRCRAFT
ESTABLISHMENT FARNBOROUGH (ENGLAND) L C WARD NOV 83

1/1

UNCLASSIFIED

RAE-TM-AERO-1985 DRIC-BR-98954

F/G 20/4

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

BR90954.

TECH. MEMO
AERO 1985

TECH. MEMO
AERO 1985

(3)

AD A 140321

ROYAL AIRCRAFT ESTABLISHMENT

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON AXISYMMETRIC FOREBODIES
AT MACH 3 AND ANGLES OF ATTACK UP TO 17.5 DEGREES

by

L. C. Ward

November 1983

Copy available to DTIC does not
permit fully legible reproduction

DTIC
ELECTED
APR 23 1984
S E D
A ↑ E

DTIC FILE COPY

Procurement Executive, Ministry of Defence
Farnborough, Hants

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

ROYAL AIRCRAFT ESTABLISHMENT

Technical Memorandum Aero 1985

Received for printing 17 November 1983

EXPERIMENTAL PRESSURE DISTRIBUTIONS ON AXISYMMETRIC FOREBODIES

AT MACH 3 AND ANGLES OF ATTACK UP TO 17.5 DEGREES

by

L. C. Ward

SUMMARY

Tabulations of experimental surface pressure distributions on both blunt and sharp axisymmetric forebodies are presented for a freestream Mach number of 3.0 and body angles of attack up to 17.5 degrees. The experimental details are described, but no analysis of the resultant data has been undertaken.

Copyright

©

Controller HMSO London
1983

LIST OF CONTENTS

	<u>Page</u>
1 INTRODUCTION	3
2 WIND TUNNEL, MODELS AND INSTRUMENTATION	3
3 PRESENTATION OF THE RESULTS	4
Tables 1 to 17	6
List of symbols	22
References	23
Illustrations	Figures 1&2
Report documentation page	inside back cover

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or
	Special
A-1	23 CP

1 INTRODUCTION

Data are readily available relating to the surface pressure distributions and pressure drags of a variety of axisymmetric forebody profiles at both transonic and supersonic Mach numbers at zero angle of attack¹⁻⁶. This is not the case for non-zero angles of attack. Consequently it has been decided to publish surface pressure distributions obtained at a freestream Mach number of 3 for sixteen axisymmetric forebody profiles at angles of attack up to 17.5 degrees. A detailed analysis of the data for zero angle of attack extracted from the tests reported here has already been published⁷.

The forebody shapes investigated were spherically-blunted single and double cones, spherically-blunted tangent ogives, truncated cones and three-quarter power-law profiles. A description of the wind tunnel tests and tabulations of the measured pressure distributions are presented in this Memorandum. No analysis of the results has been undertaken.

2 WIND TUNNEL, MODELS AND INSTRUMENTATION

The models were tested during the period 1969 to 1971 in a 15 inch × 10 inch (0.38 metre × 0.25 metre) blowdown wind tunnel, the freestream Mach number at the model location being 3.00. The stagnation pressure was kept constant at $552 \times 10^3 \text{ N/m}^2$, giving a freestream Reynolds number per mm of 4.18×10^4 for all the models. No boundary layer transition fixing devices were used on any of the models.

The general arrangement of a model, adaptor and sting as mounted in the wind tunnel is shown in Fig 1, together with a cross-section through one model tube, the adaptor, and part of the sting. Seven tubes were accommodated within the sting, evenly spaced in roll, and with 'O' ring seals located at their ends at the sting-adaptor joint face.

By slackening the adaptor fixing screw, the adaptor and model could be rotated in steps of 51.43 degrees (one-seventh of a circle).

For each of the sixteen forebody profiles, two models were manufactured with differently positioned pressure tappings. The assigned model numbers and non-dimensional parameters of the forebody profiles are given in Table 1, the notation being defined in Fig 2 for the different types of forebody profile. As there are two definitions of the bluntness ratio in frequent use (*i.e.* $2r/D$ and d/D - see Fig 2), both ratios are tabulated. Drawings showing the actual model dimensions in millimeters are given with each table of results.

The pressure measuring holes were of diameter 0.5 mm, and were arranged in a spiral pattern around each model to minimise downstream interference effects between adjacent holes. All the tappings were inspected prior to the tunnel tests to ensure there were no burrs either inside the holes, or on the body surface around the holes.

The surface pressures were measured using a pressure transducer mounted in a pressure-stepping switch situated outside the wind tunnel. Pressure settling dwell times on the ports were determined from a number of initial 'shakedown' wind tunnel runs. Each port of the switch was 'O' ring sealed, with the transducer connected to vacuum between ports for the purpose of eliminating hysteresis effects. Known reference pressures were applied to the initial three ports of the switch, thus allowing the transducer to be

calibrated for each scan of the model pressures. The wind tunnel stagnation pressure was recorded for each pressure switch reading using a separate transducer mounted in a module complete with its own pressure calibration system.

The recording equipment consisted of a data-logger which switched the various transducer readings sequentially through an amplifier and analogue-to-digital converter. The resulting digital data were stored on paper tape ready for computer reduction to yield values of (p/p_0) .

The transducer excitation voltages and amplifier gain were set such that the overall pressure range of each transducer gave outputs in the order of 10000 counts. The observed repeatability of the readings derived from the reference pressures was approximately ± 2 counts. Applying this change to both transducers, the variation in (p/p_0) should be within ± 0.0001 to ± 0.0011 for the lowest to highest recorded values of p respectively.

The error in the setting of the model angle of attack (α) is not known, but is probably better than ± 0.1 degree. The location of the pressure holes in roll (ϕ) is probably within ± 0.5 degree.

3 PRESENTATION OF THE RESULTS

The surface pressures (p) have been divided by the freestream stagnation pressure (p_0), and are presented in Tables 2 to 17. Each table provides the complete results for one forebody profile (*i.e* contains results from two nominally identical models as described in section 2), together with the forebody geometry and pressure hole locations. The forebody pressure drag coefficient at zero angle of attack ($C_{Dp}(\alpha=0^\circ)$) was obtained from integrations of the zero angle of attack pressure distribution as described in Ref 7. Model angles of attack (α) were varied from 0 to 17.5 degrees in 2.5 degree steps.

The models form two different groups: those with pressure tappings spaced 51.43 degrees apart in roll (model numbers 4 to 23), and those with pressure tappings spaced 45 degrees apart in roll (model numbers 24 to 35). For the first group, the model roll increment equals the spacing between the pressure tappings, and so there are only seven different values for the effective hole roll angle (ϕ) relative to the pitch plane, irrespective of the number of pressure tappings. Results for these models are shown in Tables 2 to 11. The differences in ϕ shown for models 4, 10 and 12 (in Tables 2, 5 and 6 respectively) are the result of mistakes made during model manufacture. Manufacturing errors were also responsible for the incorrect machining of models 10 and 11 (Table 5), the dimensions of neither model being quite as intended.

For the second group of models, the model roll increment does not equal the spacing between the pressure tappings, and so the number of values for the effective roll angle (ϕ) relative to the pitch plane of each forebody profile becomes 98 (two models, each with seven tappings and seven roll angles). Results for these models are shown in Tables 12 to 15, together with the variation in ϕ . Tables 16 and 17 give only zero angle of attack data since models 32 to 35 were not tested at any other angle of attack.

With the exception of models 32 to 35 (Tables 16 and 17), the zero angle of attack results are the average values of data taken at the seven model roll angles.

Table I

SUMMARY OF BODY GEOMETRICAL PARAMETERS AND LIST OF TABLE NUMBERS

MODEL No.	f	$2\pi/D$	d/D	θ_1°	θ_2°	R/D	TABLE No.	FORE BODY SHAPE
6 and 7	0.163	0.133	0.390	70			3	Spherically-Brunited Cone
8 and 9	0.441	0.198	0.280	4.5			4	" " "
12 and 13	0.382	0.396	0.560	4.5			6	" " "
16 and 17	3.125	0.198	0.200	7.5			8	" " "
20 and 21	2.466	0.397	0.400	7.5			10	" " "
4 and 5	0.182	0	0	70			2	SHARP CONE
10 and 11	0.400		0.200	4.5			5	TRUNCATED CONE
14 and 15	0.300		0.400	4.5			7	" " "
18 and 19	3.038		0.200	7.5			9	" " "
22 and 23	2.279		0.400	7.5			11	" " "
24 and 25	3	0.098	0.100	10.35	6.94		12	Spherically-Brunited Double Cone
26 and 27	2	0.121	0.125	14.36	11.01		13	" " "
28 and 29	3						14	3/4 POWER LAW
30 and 31	2						15	" " "
32 and 33*	2	0.279	0.300			5.214	16	Spherically-Brunited TANGENT Ogive
34 and 35*	2	0.584	0.600			7.625	17	" " "

* Results At ZERO ANGLE OF ATTACK ONLY

Table 2
 (p/p_0) FOR MODELS 4 AND 5

SHARP CONE - CYLINDER

f	0.182
$2\pi b$	0
a/D	0
θ^*	70
θ^*	70
R/D	0.0253

$$C_D p_{(\alpha=0^*)} = 1.4880$$

Model No.	4	5	4	5	4	5	4	5	4	5	4	5	4	5	
X	123.83	122.90	121.98	121.05	120.13	119.20	118.28	117.35	116.43	115.50	110.61	89.18	63.78	38.38	
Y	0	2.54	5.08	7.62	10.16	12.70	15.24	17.78	20.32	22.86	25.40	25.40	25.40	25.40	
$\alpha = 0^*$	0.3292	0.3262	0.3231	0.3199	0.3129	0.3070	0.3025	0.2928	0.2819	0.2591	0.0061	0.0200	0.0254	0.0261	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
$\alpha = 2.5^*$ $\theta =$	12.9°	0.3255	0.3214	0.3149	0.3094	0.3040	0.3033	0.2986	0.2751	0.2543	0.0048	0.0157	0.0229	0.0254	
MODEL No. 4 *	38.6°	0.3248	0.3211	0.3193	0.3129	0.3095	0.2992	0.2946	0.2852	0.2533	0.2348	0.0050	0.0161	0.0227	0.0253
$\theta = 0^*, 51^*$	64.3°	0.3244	0.3244	0.3160	0.3130	0.3059	0.3044	0.2955	0.2888	0.2589	0.0054	0.0193	0.0241	0.0242	
51, 103, 103;	90.0°	0.3253	0.3212	0.3240	0.3158	0.3135	0.3003	0.3022	0.2880	0.2820	0.2537	0.0074	0.0205	0.0260	0.0253
154, 154	115.7°	0.3265	0.3268	0.3228	0.3224	0.3129	0.3111	0.3013	0.2912	0.2815	0.2652	0.0072	0.0225	0.0271	0.0271
(See Text)	141.4°	0.3253	0.3240	0.3244	0.3203	0.3191	0.3101	0.3108	0.2954	0.2878	0.2626	0.0068	0.0231	0.0277	0.0273
167.1°	0.3284	0.3280	0.3239	0.3243	0.3173	0.3140	0.3105	0.3002	0.2859	0.2662	0.0077	0.0242	0.0274	0.0273	
$\alpha = 5^*$ $\theta =$	12.9°	0.3202	0.3143	0.3097	0.3056	0.3002	0.2957	0.2880	0.2816	0.2641	0.2488	0.0039	0.0122	0.0202	0.0238
*	38.6°	0.3194	0.3135	0.3141	0.3057	0.3032	0.2944	0.2929	0.2839	0.2754	0.2447	0.0045	0.0129	0.0203	0.0239
64.3°	0.3204	0.3161	0.3125	0.3091	0.3029	0.3000	0.2915	0.2816	0.2713	0.2557	0.0056	0.0189	0.0226	0.0230	
90.0°	0.3209	0.3173	0.3173	0.3131	0.3116	0.2982	0.3012	0.2944	0.2915	0.2825	0.0076	0.0201	0.0241	0.0239	
115.7°	0.3193	0.3262	0.3170	0.3179	0.3102	0.3103	0.3008	0.2953	0.2800	0.2640	0.0074	0.0259	0.0278	0.0274	
141.4°	0.3206	0.3222	0.3241	0.3189	0.3193	0.3114	0.3149	0.2950	0.2920	0.2657	0.0065	0.0246	0.0302	0.0289	
167.1°	0.3203	0.3264	0.3238	0.3233	0.3188	0.3186	0.3081	0.3044	0.2921	0.2714	0.0088	0.0236	0.0301	0.0292	
$\alpha = 7.5^*$ $\theta =$	12.9°	0.3162	0.3103	0.3056	0.3006	0.2945	0.2885	0.2819	0.2753	0.2612	0.2433	0.0034	0.0098	0.0181	0.0223
*	38.6°	0.3158	0.3094	0.3101	0.3010	0.2953	0.2882	0.2774	0.2744	0.2495	0.2411	0.0039	0.0101	0.0191	0.0224
64.3°	0.3158	0.3121	0.3083	0.3043	0.2981	0.2974	0.2830	0.2812	0.2649	0.2530	0.0048	0.0179	0.0212	0.0213	
90.0°	0.3164	0.3127	0.3140	0.3082	0.3094	0.2959	0.2991	0.2826	0.2799	0.2512	0.0073	0.0197	0.0263	0.0224	
115.7°	0.3145	0.3292	0.3144	0.3165	0.3079	0.3104	0.2985	0.2994	0.2790	0.2471	0.0076	0.0296	0.0283	0.0280	
141.4°	0.3139	0.3199	0.3227	0.3179	0.3194	0.3117	0.3128	0.3008	0.2966	0.2684	0.0026	0.0306	0.0327	0.0220	
167.1°	0.3144	0.3238	0.3244	0.3207	0.3213	0.3120	0.3093	0.2963	0.2775	0.0099	0.0350	0.0332	0.0318		
$\alpha = 10^*$ $\theta =$	12.9°	0.3127	0.3039	0.2933	0.2830	0.2819	0.2747	0.2677	0.2545	0.2375	0.2031	0.0077	0.0154	0.0202	
*	38.6°	0.3114	0.3036	0.3041	0.2941	0.2927	0.2814	0.2822	0.2670	0.2431	0.2352	0.0035	0.0078	0.0176	0.0201
64.3°	0.3111	0.3084	0.3032	0.3079	0.2920	0.2934	0.2809	0.2805	0.2605	0.2505	0.0040	0.0175	0.0191	0.0193	
90.0°	0.3112	0.3079	0.3120	0.3036	0.3067	0.2925	0.2966	0.2802	0.2755	0.2489	0.0038	0.0195	0.0262	0.0205	
115.7°	0.3096	0.3183	0.3107	0.3142	0.3058	0.3083	0.2968	0.2993	0.2779	0.2495	0.0078	0.0333	0.0284	0.0285	
141.4°	0.3136	0.3175	0.3219	0.3159	0.3192	0.3108	0.3148	0.3003	0.3005	0.2688	0.0109	0.0351	0.0353	0.0303	
167.1°	0.3120	0.3232	0.3220	0.3242	0.3211	0.3218	0.3154	0.3128	0.3012	0.2850	0.0113	0.0411	0.0370	0.0351	
$\alpha = 12.5^*$ $\theta =$	12.9°	0.3000	0.2956	0.2852	0.2785	0.2744	0.2632	0.2611	0.2478	0.2313	0.0029	0.0063	0.0124	0.0176	
*	38.6°	0.2986	0.2949	0.2936	0.2854	0.2845	0.2729	0.2744	0.2593	0.2553	0.2298	0.0031	0.0061	0.0162	0.0171
64.3°	0.2983	0.2999	0.2950	0.2972	0.2841	0.2887	0.2740	0.2741	0.2545	0.2456	0.2035	0.0168	0.0174	0.0172	
90.0°	0.2986	0.3009	0.3081	0.2981	0.3024	0.2876	0.2947	0.2755	0.2763	0.2448	0.0079	0.0198	0.0259	0.0187	
115.7°	0.2974	0.3166	0.3077	0.3144	0.3041	0.3061	0.2953	0.2938	0.2763	0.2644	0.0081	0.0365	0.0286	0.0294	
141.4°	0.3021	0.3159	0.3243	0.3152	0.3185	0.3091	0.3152	0.2992	0.3017	0.2644	0.0124	0.0395	0.0391	0.0320	
167.1°	0.3026	0.3249	0.3234	0.3243	0.3194	0.3229	0.3169	0.3151	0.3045	0.2878	0.0129	0.0475	0.0408	0.0391	
$\alpha = 15^*$ $\theta =$	12.9°	0.2879	0.2858	0.2808	0.2767	0.2698	0.2661	0.2594	0.2530	0.2413	0.2260	0.0029	0.0055	0.0105	0.0144
*	38.6°	0.2849	0.2847	0.2857	0.2753	0.2749	0.2639	0.2644	0.2518	0.2478	0.2242	0.0029	0.0052	0.0148	0.0140
64.3°	0.2878	0.2896	0.2829	0.2844	0.2741	0.2813	0.2651	0.2695	0.2472	0.2411	0.2032	0.0170	0.0157	0.0155	
90.0°	0.2847	0.2908	0.3010	0.2894	0.2958	0.2933	0.2919	0.2866	0.2751	0.2388	0.0081	0.0198	0.0255	0.0171	
115.7°	0.2844	0.3026	0.3010	0.3119	0.3003	0.3071	0.2938	0.2983	0.2778	0.2480	0.0085	0.0204	0.0288	0.0309	
141.4°	0.2876	0.3095	0.3214	0.3153	0.3205	0.3029	0.3151	0.3000	0.3052	0.2884	0.0142	0.0438	0.0426	0.0340	
167.1°	0.2857	0.3192	0.3223	0.3175	0.3227	0.3169	0.3158	0.3051	0.2918	0.0148	0.0541	0.0453	0.0444		
$\alpha = 17.5^*$ $\theta =$	12.9°	0.2726	0.2762	0.2692	0.2655	0.2585	0.2561	0.2499	0.2441	0.2340	0.2202	0.0027	0.0048	0.0081	0.0116
*	38.6°	0.2713	0.2713	0.2728	0.2642	0.2647	0.2542	0.2549	0.2431	0.2330	0.2139	0.0027	0.0045	0.0132	0.0109
64.3°	0.2720	0.2762	0.2746	0.2737	0.2630	0.2744	0.2549	0.2619	0.2389	0.2333	0.0031	0.0177	0.0138	0.0136	
90.0°	0.2748	0.2752	0.2907	0.2750	0.2880	0.2708	0.2656	0.2607	0.2698	0.2320	0.0030	0.0206	0.2253	0.0157	
115.7°	0.2743	0.3006	0.2909	0.3070	0.2924	0.3049	0.2877	0.2938	0.2712	0.2712	0.0082	0.0440	0.2292	0.0329	
141.4°	0.2716	0.3018	0.3163	0.3109	0.3203	0.3095	0.3174	0.3015	0.3188	0.2229	0.0168	0.0478	0.1468	0.0349	
167.1°	0.2735	0.3153	0.3175	0.3249	0.3180	0.3267	0.3207	0.3190	0.3072	0.2957	0.0183	0.0618	0.2511	0.0505	

Table 3

 (p/p_0) FOR MODELS 6 AND 7

SPHERICALLY-BLUNTED CONE-CYLINDER

f	0.163
$2\gamma/D$	0.133
d/D	0.390
α	70
θ	Diagonal
R/D	Diagonal

$$C_D p(\alpha=0^\circ) = 1.4760$$

Model No.	6	7	6	7	6	7	6	7	6	7	6	7	6	7
X	123.78	123.49	122.94	122.02	121.09	120.17	119.24	118.32	117.39	116.47	111.57	110.15	64.75	39.35
Y	1.00	2.54	5.08	7.62	10.16	12.70	15.24	17.78	20.32	22.86	25.40	25.40	25.40	25.40

$\alpha = 0^\circ$ 0.3250 0.3245 0.3187 0.3163 0.3100 0.3065 0.2955 0.2914 0.2782 0.2608 0.0062 0.0199 0.0252 0.0260

$\alpha = 2.5^\circ$	$\theta =$	12.9°	0.3199	0.3205	0.3153	0.3129	0.3051	0.3024	0.2915	0.2888	0.2717	0.2573	0.2042	0.0153	0.0221	0.0247
		38.6°	0.3203	0.3208	0.3149	0.3128	0.3037	0.3013	0.2920	0.2857	0.2720	0.2547	0.2060	0.0160	0.0234	0.0248
		64.3°	0.3257	0.3211	0.3156	0.3135	0.3049	0.3059	0.2934	0.2905	0.2765	0.2604	0.2057	0.0196	0.0229	0.0241
		90.0°	0.3224	0.3219	0.3157	0.3123	0.3073	0.3013	0.2943	0.2850	0.2741	0.2548	0.2030	0.0201	0.0263	0.0251
		115.7°	0.3231	0.3236	0.3174	0.3200	0.3141	0.3114	0.3013	0.2935	0.2734	0.2499	0.2035	0.0220	0.0267	0.0268
		141.4°	0.3259	0.3253	0.3237	0.3177	0.3144	0.3092	0.3028	0.2937	0.2830	0.2630	0.2077	0.0233	0.0233	0.0268
		167.1°	0.3265	0.3266	0.3202	0.3213	0.3164	0.3121	0.3040	0.2994	0.2855	0.2694	0.2061	0.0237	0.0270	0.0278
$\alpha = 5^\circ$	$\theta =$	12.9°	0.3179	0.3145	0.3111	0.3082	0.2990	0.2942	0.2854	0.2795	0.2657	0.2511	0.2044	0.0121	0.0198	0.0234
		38.6°	0.3190	0.3148	0.3118	0.3062	0.3001	0.2959	0.2834	0.2807	0.2664	0.2488	0.2052	0.0128	0.0215	0.0237
		64.3°	0.3194	0.3191	0.3127	0.3104	0.3023	0.2986	0.2904	0.2859	0.2733	0.2585	0.2058	0.0190	0.0216	0.0230
		90.0°	0.3210	0.3168	0.3133	0.3097	0.3051	0.2996	0.2931	0.2850	0.2729	0.2552	0.2070	0.0196	0.0245	0.0236
		115.7°	0.3211	0.3211	0.3163	0.3158	0.3133	0.3129	0.3030	0.2997	0.2858	0.2673	0.2035	0.0235	0.0250	0.0277
		141.4°	0.3237	0.3242	0.3212	0.3181	0.3158	0.3105	0.3049	0.2950	0.2875	0.2668	0.2082	0.0249	0.0299	0.0236
		167.1°	0.3251	0.3226	0.3207	0.3214	0.3200	0.3176	0.3081	0.3040	0.2901	0.2748	0.2082	0.0290	0.0307	0.0294
$\alpha = 7.5^\circ$	$\theta =$	12.9°	0.3147	0.3093	0.3038	0.3013	0.2926	0.2879	0.2788	0.2729	0.2596	0.2459	0.2043	0.0095	0.0177	0.0217
		38.6°	0.3160	0.3104	0.3077	0.3001	0.2948	0.2888	0.2817	0.2749	0.2612	0.2428	0.2044	0.0102	0.0195	0.0234
		64.3°	0.3168	0.3166	0.3091	0.3074	0.2963	0.2964	0.2839	0.2744	0.2628	0.2541	0.2058	0.0184	0.0204	0.0215
		90.0°	0.3201	0.3166	0.3103	0.3077	0.3035	0.2993	0.2921	0.2857	0.2717	0.2541	0.2070	0.0193	0.0264	0.0217
		115.7°	0.3186	0.3237	0.3154	0.3148	0.3113	0.3121	0.2990	0.2999	0.2808	0.2685	0.0079	0.0289	0.0285	
		141.4°	0.3218	0.3232	0.3198	0.3171	0.3169	0.3087	0.3055	0.3002	0.2901	0.2706	0.0092	0.0303	0.0255	
		167.1°	0.3241	0.3225	0.3210	0.3218	0.3202	0.3192	0.3113	0.3082	0.2949	0.2808	0.0035	0.0343	0.0335	0.0315
$\alpha = 10^\circ$	$\theta =$	12.9°	0.3092	0.3014	0.2951	0.2937	0.2846	0.2807	0.2747	0.2663	0.2524	0.2394	0.2031	0.0026	0.0147	0.0194
		38.6°	0.3097	0.3031	0.3003	0.2926	0.2867	0.2812	0.2745	0.2635	0.2546	0.2348	0.2034	0.0081	0.0176	0.0202
		64.3°	0.3121	0.3104	0.3022	0.3020	0.2921	0.2921	0.2807	0.2738	0.2639	0.2491	0.2050	0.0180	0.0191	0.0196
		90.0°	0.3159	0.3127	0.3096	0.3060	0.3011	0.2932	0.2894	0.2804	0.2718	0.2522	0.2030	0.0191	0.0245	0.0197
		115.7°	0.3176	0.3215	0.3133	0.3128	0.3096	0.3118	0.2971	0.2989	0.2895	0.2690	0.0081	0.0328	0.0287	0.0294
		141.4°	0.3179	0.3230	0.3200	0.3161	0.3158	0.3075	0.3101	0.3012	0.2941	0.2772	0.0103	0.0343	0.0355	0.0297
		167.1°	0.3225	0.3234	0.3219	0.3217	0.3196	0.3232	0.3145	0.3114	0.3000	0.2840	0.0108	0.0408	0.0370	0.0348
$\alpha = 12.5^\circ$	$\theta =$	12.9°	0.2990	0.2924	0.2847	0.2847	0.2772	0.2725	0.2437	0.2585	0.2458	0.2325	0.0029	0.0046	0.0119	0.0168
		38.6°	0.3002	0.2923	0.2912	0.2853	0.2786	0.2723	0.2671	0.2582	0.2482	0.2305	0.0031	0.0044	0.0159	0.0177
		64.3°	0.3034	0.3023	0.2940	0.2941	0.2851	0.2863	0.2744	0.2724	0.2434	0.2047	0.0180	0.0177	0.0178	
		90.0°	0.3081	0.3044	0.3036	0.2961	0.2964	0.2870	0.2810	0.2758	0.2672	0.2476	0.0020	0.0191	0.0241	0.0176
		115.7°	0.3095	0.3116	0.3085	0.3120	0.3084	0.3101	0.2963	0.2972	0.2780	0.2675	0.0031	0.0290	0.0306	
		141.4°	0.3121	0.3174	0.3209	0.3180	0.3167	0.3203	0.3104	0.3091	0.2951	0.2739	0.0113	0.0344	0.0358	0.0311
		167.1°	0.3163	0.3194	0.3243	0.3239	0.3204	0.3197	0.3163	0.3143	0.3134	0.2913	0.0125	0.0274	0.0407	0.0389
$\alpha = 15^\circ$	$\theta =$	12.9°	0.2895	0.2816	0.2775	0.2748	0.2681	0.2640	0.2554	0.2506	0.2396	0.2267	0.0028	0.0054	0.0057	0.0139
		38.6°	0.2913	0.2817	0.2904	0.2730	0.2686	0.2634	0.2581	0.2494	0.2417	0.2245	0.0029	0.0056	0.0143	0.0147
		64.3°	0.2937	0.2931	0.2851	0.2830	0.2774	0.2746	0.2659	0.2576	0.2383	0.2043	0.0179	0.0163	0.0161	
		90.0°	0.2991	0.2947	0.2948	0.2846	0.2886	0.2830	0.2794	0.2696	0.2439	0.2069	0.0196	0.0257	0.0160	
		115.7°	0.3020	0.3052	0.3021	0.3044	0.3103	0.2944	0.2973	0.2926	0.2691	0.2090	0.0149	0.0293	0.0222	
		141.4°	0.3044	0.3105	0.3185	0.3163	0.3190	0.3086	0.3099	0.3055	0.2962	0.2739	0.0126	0.0420	0.0421	0.0328
		167.1°	0.3088	0.3128	0.3213	0.3237	0.3223	0.3174	0.3163	0.3049	0.2957	0.0144	0.0535	0.0449	0.0440	
$\alpha = 17.5^\circ$	$\theta =$	12.9°	0.2774	0.2665	0.2633	0.2632	0.2570	0.2534	0.2461	0.2410	0.2322	0.2202	0.0023	0.0048	0.0058	0.0107
		38.6°	0.2772	0.2669	0.2676	0.2609	0.2530	0.2495	0.2408	0.2339	0.2191	0.2023	0.0023	0.0049	0.0128	0.0105
		64.3°	0.2827	0.2810	0.2731	0.2737	0.2666	0.2605	0.2571	0.2573	0.2435	0.2318	0.0041	0.0153	0.0146	0.0145
		90.0°	0.2870	0.2816	0.2831	0.2754	0.2797	0.2690	0.2582	0.2366	0.2030	0.2040	0.0021	0.0251	0.0144	
		115.7°	0.2924	0.2944	0.3014	0.2974	0.3076	0.2900	0.2967	0.2765	0.2705	0.0095	0.0401	0.0299	0.0346	
		141.4°	0.2941	0.3019	0.3140	0.3126	0.3180	0.3040	0.3128	0.3028	0.2999	0.2745	0.0134	0.0461	0.0464	0.0353
		167.1°	0.3005	0.3073	0.3176	0.3229	0.3236	0.3251	0.3209	0.3187	0.3102	0.2996	0.0177	0.0602	0.0504	0.0509

Table 4

 (p/p_0) FOR MODELS 8 AND 9

SPHERICALLY - BLUNTED CONE-CYLINDER

f	0.441
2.70	0.198
d/D	0.280
G	45
G'	45
R/D	0.25

$$C_{D_p(\alpha=0)} = 1.1520$$

Model No.	8	9	8	9	8	9	8	9	8	9	8	9	8	9
X	139.90	139.23	137.62	135.08	132.54	130.00	127.46	124.92	122.38	119.84	113.33	91.90	66.50	41.10
Y	0	2.54	5.08	7.62	10.16	12.70	15.24	17.78	20.32	22.86	25.40	25.40	25.40	25.40

 $\alpha = 0^\circ \quad 0.3307 \quad 0.2912 \quad 0.1943 \quad 0.2143 \quad 0.2170 \quad 0.2231 \quad 0.2226 \quad 0.2279 \quad 0.2208 \quad 0.2263 \quad 0.0180 \quad 0.0210 \quad 0.0241 \quad 0.0258$

$\alpha = 2.5^\circ \quad \beta =$	12.9°	0.3267	0.2812	0.1740	0.1939	0.2014	0.2035	0.2073	0.2105	0.2092	0.2136	0.0166	0.0287	0.0214	0.0248	
	38.6°	0.3314	0.2905	0.1792	0.2004	0.2048	0.2111	0.2110	0.2137	0.2086	0.2078	0.0163	0.0273	0.0224	0.0241	
	64.3°	0.3295	0.2875	0.1844	0.2030	0.2101	0.2133	0.2176	0.2190	0.2153	0.2163	0.0179	0.0200	0.0234	0.0238	
	90.0°	0.3288	0.2974	0.1997	0.2144	0.2161	0.2234	0.2251	0.2255	0.2194	0.2295	0.0177	0.0312	0.0251	0.0258	
	115.7°	0.3293	0.2063	0.2215	0.2233				0.2292	0.2350	0.2243	0.2304	0.0181	0.0221	0.0251	
	141.4°	0.3294	0.2053	0.2116	0.2279	0.2296	0.2359	0.2340	0.2411	0.2208	0.2435	0.0186	0.0233	0.0248	0.0273	
	167.1°	0.3296	0.3016	0.2120	0.2295	0.2346	0.2371	0.2405	0.2456	0.2361	0.2344	0.0188	0.0234	0.0248	0.0272	
$\alpha = 5^\circ \quad \beta =$	12.9°	0.3224	0.2490	0.1404	0.1801	0.1857	0.1935	0.1915	0.1947	0.1934	0.1894	0.0154	0.0154	0.0193	0.0238	
	38.6°	0.3259	0.2814	0.1634	0.1922	0.1938	0.1981	0.1993	0.2002	0.1977	0.2044	0.0160	0.0166	0.0203	0.0223	
	64.3°	0.3243	0.2785	0.1739	0.1914	0.2004	0.2120	0.2084	0.2156	0.2099	0.2213	0.0170	0.0184	0.0205	0.0219	
	90.0°	0.3244	0.2715	0.2020	0.2157	0.2165	0.2219	0.2253	0.2246	0.2199	0.2281	0.0176	0.0211	0.0251	0.0251	
	115.7°	0.3254		0.2143	0.2244	0.2290		0.2356	0.2423	0.2317	0.2413	0.0183	0.0255	0.0260		
	141.4°	0.3250	0.3051	0.2239	0.2457	0.2428	0.2495	0.2448	0.2500	0.2411	0.2482	0.0190	0.0264	0.0293	0.0285	
	167.1°	0.3257	0.3059	0.2359	0.2468	0.2501	0.2540	0.2538	0.2597	0.2481	0.2470	0.0193	0.0273	0.0302	0.0293	
$\alpha = 7.5^\circ \quad \beta =$	12.9°	0.3220	0.2430	0.1446	0.1653	0.1702	0.1738	0.1777	0.1828	0.1732	0.1752	0.0162	0.0285	0.0171	0.0223	
	38.6°	0.3213	0.2749	0.1577	0.1829	0.1799	0.1862	0.1874	0.1874	0.1874	0.1895	0.0149	0.0144	0.0178		
	64.3°	0.3216	0.2720	0.1728	0.1832	0.1921	0.2104	0.1950	0.2063	0.2104	0.2104	0.0153	0.0167	0.0188	0.0195	
	90.0°	0.3228	0.2924	0.2019	0.2213	0.2168	0.2190	0.2210	0.2210	0.2165	0.2233	0.0172	0.0276	0.0249	0.0230	
	115.7°	0.3237		0.2223	0.2313	0.2321		0.2314	0.2444	0.2207	0.2390	0.0181	0.0250	0.0266		
	141.4°	0.3240	0.3107	0.2449	0.2586	0.2543	0.2585	0.2543	0.2537	0.2443	0.2455	0.0197	0.0294	0.0324	0.0298	
	167.1°	0.3247	0.3104	0.2553	0.2415	0.2440	0.2678	0.2673	0.2513	0.2518	0.2025	0.0316	0.0334	0.0317		
$\alpha = 10^\circ \quad \beta =$	12.9°	0.3212	0.2359		0.1438	0.1520	0.1667	0.1623	0.1672	0.1624	0.1702	0.0129	0.0268	0.0151	0.0209	
	38.6°	0.3211	0.2435	0.1482	0.1699	0.1639	0.1741	0.1711	0.1741	0.1734	0.1748	0.0137	0.0137		0.0170	
	64.3°		0.2417	0.1642	0.1933	0.1922	0.1956	0.1943	0.1944	0.1853	0.1974	0.0145	0.0151	0.0171	0.0168	
	90.0°	0.3223	0.2997	0.2033	0.2262	0.2138	0.2144		0.2147	0.2116	0.2166	0.0168	0.0208	0.0245	0.0213	
	115.7°	0.3237		0.2227	0.2313	0.2321		0.2332	0.2420		0.2336	0.0181	0.0268	0.0271		
	141.4°	0.3233	0.3203	0.2434	0.2320	0.2431	0.2432	0.2404	0.2508	0.2447		0.0342	0.0357	0.0318		
	167.1°	0.3236	0.3219	0.2359	0.2371		0.2375	0.2682	0.2229	0.2615	0.2543	0.0228	0.0371	0.0373	0.0346	
$\alpha = 12.5^\circ \quad \beta =$	12.9°	0.3136	0.2332	0.1190	0.1330	0.1344	0.1510	0.1473	0.1525	0.1486	0.1439	0.0115	0.0102	0.0137	0.0197	
	38.6°	0.3130	0.2562	0.1355	0.1520	0.1490	0.1539	0.1523	0.1587	0.1579	0.1621	0.0125	0.0114	0.0138	0.0136	
	64.3°	0.3151	0.2501	0.1574	0.1676	0.1659	0.1846	0.1731	0.1802	0.1703	0.1839	0.0135	0.0141	0.0152	0.0139	
	90.0°	0.3150	0.2981	0.2121	0.2253	0.2023	0.2073	0.2070	0.2098	0.2058	0.2041	0.2069	0.0161	0.0208	0.0243	0.0198
	115.7°	0.3133		0.2336	0.2346	0.2348		0.2332	0.2420		0.2304	0.2395	0.0181	0.0296	0.0275	
	141.4°	0.3232	0.2803	0.2805	0.2709	0.2475	0.2440	0.2406	0.2538	0.2479	0.2334	0.0186	0.0393	0.0349		
	167.1°	0.3151	0.3230	0.2933	0.2867	0.2843	0.2887	0.2748	0.2378	0.2661	0.2570	0.0253	0.0431	0.0442	0.0384	
$\alpha = 15^\circ \quad \beta =$	12.9°	0.3091	0.2223	0.1061	0.1201	0.1224	0.1344	0.1343	0.1388	0.1348	0.1408	0.0106	0.0248	0.0132	0.0185	
	38.6°	0.3082	0.2426	0.1234	0.1457	0.1341	0.1427	0.1429	0.1444	0.1454	0.1477	0.0114	0.0101	0.0120	0.0105	
	64.3°	0.3123	0.2902	0.1513	0.1580	0.1586	0.1710	0.1585	0.1658	0.1561	0.1684	0.0124	0.0131	0.0133	0.0117	
	90.0°	0.3082	0.2334	0.2101	0.2221	0.2013	0.1999	0.2023	0.1983	0.1968	0.1988	0.0161	0.0209	0.0238	0.0184	
	115.7°	0.3093		0.2405	0.2344	0.2335		0.2263	0.2369	0.2192	0.2257	0.0181	0.0321	0.0279		
	141.4°	0.3091	0.3294	0.2895	0.2889	0.2747	0.2767	0.2689	0.2623	0.2565	0.2479	0.0255	0.0432	0.0430	0.0392	
	167.1°	0.3111	0.3232	0.2932	0.2949	0.2919	0.2810	0.2873	0.2879	0.2602	0.2779	0.0194	0.0451	0.0450	0.0430	
$\alpha = 17.5^\circ \quad \beta =$	12.9°	0.2867	0.2048	0.0938	0.1081	0.1099	0.1231	0.1201	0.1235	0.1207	0.1256	0.0094	0.0234	0.0126	0.0173	
	38.6°	0.2963	0.2254	0.1136	0.1352	0.1255	0.1265	0.1237	0.1302	0.1305	0.1305	0.0101	0.0092	0.0100	0.0077	
	64.3°	0.2997	0.2246	0.1433	0.1443	0.1453	0.1547	0.1422	0.1498	0.1423	0.1423	0.0113	0.0128	0.0112	0.0094	
	90.0°	0.2945	0.2833	0.2043	0.2155	0.1916	0.1916	0.1953	0.1876	0.1876	0.1812	0.0153	0.0204	0.0235	0.0175	
	115.7°	0.2948		0.2408	0.2305			0.2218	0.2329	0.2144	0.2218	0.0183	0.0343	0.0283		
	141.4°	0.2949	0.3255	0.2935	0.2954	0.2810	0.2733	0.2735	0.2654	0.2595	0.2481	0.0229	0.0489	0.0474	0.0411	
	167.1°	0.2969	0.3250	0.3143	0.3016	0.3016	0.3000	0.2934	0.2992	0.2722	0.2646	0.0319	0.0570	0.0571	0.0490	

Table 5

(p/p_0) FOR MODELS 10 AND 11

TRUNCATED CONE-CYLINDER

Model No.	10	11	10	11	10	11	10	11	10	11	10	11	10	11	10	11
X	137-80	137-80	137-80	135-26	132-72	130-18	127-64	125-10	122-56	120-02	115-48	92-08	66-68	41-28		
Y	0	2-54	5-08	7-62	10-16	12-30	15-24	17-78	20-32	22-36	25-40	25-40	25-40	25-40	25-40	25-40
$\alpha = 0^\circ$	0-3322	0-3280	0-2646	0-1078	0-2134	0-2130	0-2248	0-2190	0-2240	0-2178	0-2026	0-2209	0-2142	0-2351		
	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
$\alpha = 2.5^\circ \beta =$	12.5°	0-3302	0-3229	0-2549	0-0916	0-1943	0-2003	0-2094	0-2022	0-2191	0-2019	0-0930	0-0173	0-0219	0-0252	
Model No 10 *	38.6°	0-3315	0-3247	0-2540	0-0984	0-1958	0-2075	0-2105	0-2040	0-2124	0-2058	0-0936	0-0185	0-0212	0-0236	
$\beta = 21.4^\circ, 30.0^\circ, 72.9^\circ, 81.4^\circ, 124.3^\circ, 132.9^\circ, 175.7^\circ$ (See Text)	44.5°	0-3314	0-3249	0-2593	0-1141	0-2044	0-2074	0-2188	0-2106	0-2167	0-2122	0-2022	0-0919	0-0235	0-0227	
	50.0°	0-3303	0-3267	0-2445	0-1194	0-2110	0-2135	0-2231	0-2197	0-2259	0-2180	0-2088	0-0919	0-0236	0-0231	
	56.7°	0-3280	0-3267	0-2490	0-1459	0-2225	0-2232	0-2316	0-2253	0-2358	0-2253	0-2113	0-0218	0-0241	0-0249	
	64.4°	0-3301	0-3315	0-2698	0-1437	0-2292	0-2292	0-2380	0-2321	0-2379	0-2292	0-2111	0-0244	0-0261	0-0246	
	71.7°	0-3297	0-3307	0-2697	0-1503	0-2336	0-2331	0-2421	0-2357	0-2408	0-2334	0-2214	0-0239	0-0272	0-0263	
$\alpha = 5^\circ \beta =$	12.5°	0-3250	0-3174	0-2451	0-0821	0-1394	0-1920	0-1938	0-1837	0-1926	0-1865	0-0174	0-0151	0-0195	0-0234	
	38.6°	0-3291	0-3172	0-2482	0-0859	0-1393	0-1920	0-1934	0-1934	0-1978	0-1966	0-0180	0-0168	0-0187	0-0215	
	44.5°	0-3250	0-3219	0-2534	0-0920	0-2011	0-1937	0-2128	0-2005	0-2130	0-2029	0-0194	0-0174	0-0221	0-0206	
	50.0°	0-3272	0-3243	0-2467	0-1394	0-2370	0-2186	0-2200	0-2203	0-2192	0-2020	0-0227	0-0225	0-0244		
	56.7°	0-3250	0-3243	0-2495	0-1141	0-2324	0-2231	0-2406	0-2239	0-2404	0-2236	0-0206	0-0229	0-0277	0-0246	
	64.4°	0-3233	0-3243	0-2452	0-1954	0-2405	0-2427	0-2445	0-2447	0-2441	0-2399	0-0203	0-0279	0-0281	0-0213	
	71.7°	0-3234	0-3252	0-2393	0-2001	0-2513	0-2441	0-2550	0-2471	0-2526	0-2428	0-0209	0-0274	0-0303	0-0281	
$\alpha = 7.5^\circ \beta =$	12.5°	0-3231	0-3163	0-2453	0-0726	0-1620	0-1623	0-1382	0-1620	0-1730	0-1717	0-0158	0-0141	0-0170	0-0219	
	38.6°	0-3272	0-3148	0-2447	0-0739	0-1614	0-1737	0-1818	0-1810	0-1844	0-1854	0-0164	0-0150	0-0161	0-0189	
	44.5°	0-3229	0-3210	0-2508	0-0913	0-1933	0-1842	0-2047	0-1857	0-2058	0-1916	0-0184	0-0156	0-0206	0-0178	
	50.0°	0-3258	0-3241	0-2402	0-1674	0-2049	0-2148	0-2135	0-2196	0-2139	0-2155	0-0190	0-0233	0-0214	0-0233	
	56.7°	0-3233	0-3225	0-2379	0-1880	0-2414	0-2273	0-2445	0-2238	0-2424	0-2237	0-0194	0-0238	0-0293	0-0240	
	64.4°	0-3240	0-3245	0-2593	0-2423	0-2540	0-2540	0-2520	0-2535	0-2479	0-2474	0-0198	0-0324	0-0301	0-0300	
	71.7°	0-3249	0-3230	0-2509	0-2445	0-2594	0-2414	0-2557	0-2400	0-2484	0-0206	0-0313	0-0338	0-0302		
$\alpha = 10^\circ \beta =$	12.5°	0-3248	0-3148	0-2341	0-0654	0-1450	0-1454	0-1532	0-1487	0-1469	0-1578	0-0144	0-0143	0-0147	0-0222	
	38.6°	0-3260	0-3156	0-2363	0-0713	0-1496	0-1614	0-1639	0-1679	0-1678	0-1705	0-0143	0-0133	0-0140	0-0158	
	44.5°	0-3252	0-3218	0-2485	0-0944	0-1899	0-1311	0-1937	0-1749	0-1948	0-1751	0-0166	0-0139	0-0194	0-0130	
	50.0°	0-3286	0-3239	0-2535	0-1854	0-2004	0-2130	0-2085	0-2172	0-2052	0-2112	0-0175	0-0242	0-0263	0-0220	
	56.7°	0-3261	0-3274	0-2327	0-2024	0-2488	0-2284	0-2473	0-2251	0-2445	0-2193	0-0190	0-0253	0-0309	0-0234	
	64.4°	0-3223	0-3281	0-1921	0-2155	0-2535	0-2200	0-2551	0-2240	0-2499	0-2484	0-0198	0-0374	0-0319	0-0324	
	71.7°	0-3241	0-3285	0-3042	0-2648	0-2802	0-2685	0-2752	0-2626	0-2645	0-2514	0-0213	0-0373	0-0355	0-0329	
$\alpha = 12.5^\circ \beta =$	12.5°	0-3194	0-3081	0-2273	0-0549	0-1278	0-1296	0-1426	0-1338	0-1492	0-1403	0-0129	0-0140	0-0133	0-0192	
	38.6°	0-3203	0-3103	0-2291	0-0631	0-1340	0-1428	0-1445	0-1527	0-1527	0-1563	0-0130	0-0122	0-0128	0-024	
	44.5°	0-3194	0-3141	0-2452	0-0868	0-1818	0-1588	0-1829	0-1611	0-1841	0-1618	0-0154	0-0126	0-0181	0-0211	
	50.0°	0-3223	0-3187	0-2514	0-2030	0-1951	0-2124	0-1957	0-2140	0-1944	0-2073	0-0161	0-0255	0-0191	0-0211	
	56.7°	0-3202	0-3224	0-2903	0-2165	0-2552	0-2260	0-2483	0-2229	0-2412	0-2161	0-0186	0-0230	0-0323	0-0223	
	64.4°	0-3229	0-3247	0-2981	0-2813	0-2640	0-2679	0-2534	0-2651	0-2514	0-2501	0-0194	0-0426	0-0338	0-0257	
	71.7°	0-3212	0-3265	0-3204	0-2829	0-2919	0-2735	0-2822	0-2428	0-2725	0-2537	0-0224	0-0437	0-0421	0-0365	
$\alpha = 15^\circ \beta =$	12.5°	0-3175	0-3041	0-2183	0-0473	0-1121	0-1196	0-1284	0-1207	0-1345	0-1244	0-0115	0-0138	0-0129	0-0192	
	38.6°	0-3184	0-3071	0-2228	0-0574	0-1214	0-1368	0-1322	0-1390	0-1344	0-1437	0-0118	0-0110	0-0121	0-0094	
	44.5°	0-3178	0-3053	0-2345	0-0828	0-1332	0-1443	0-1231	0-1475	0-1326	0-1475	0-0138	0-0115	0-0167	0-0094	
	50.0°	0-3194	0-3167	0-2445	0-2128	0-1888	0-2083	0-1862	0-2036	0-1840	0-1996	0-0146	0-0266	0-0178	0-0226	
	56.7°	0-3183	0-3199	0-2974	0-2248	0-2572	0-2215	0-2477	0-2169	0-2421	0-2094	0-0186	0-0280	0-0339	0-0224	
	64.4°	0-3193	0-3242	0-3040	0-2948	0-2680	0-2730	0-2585	0-2685	0-2533	0-2513	0-0192	0-0229	0-0361	0-0333	
	71.7°	0-3183	0-3247	0-3254	0-2911	0-3033	0-2815	0-2891	0-2272	0-2811	0-2574	0-0231	0-0487	0-0472	0-0299	
$\alpha = 17.5^\circ \beta =$	12.5°	0-3084	0-2952	0-2084	0-0419	0-0979	0-1049	0-1138	0-1073	0-1195	0-1106	0-0103	0-0230	0-0261	0-0192	
	38.6°	0-3095	0-2981	0-2121	0-0548	0-1103	0-1245	0-1164	0-1269	0-1197	0-291	0-0101	0-0098	0-0118	0-0068	
	44.5°	0-3092	0-3017	0-2279	0-0710	0-1661	0-1343	0-1597	0-1340	0-1592	0-1329	0-0123	0-0104	0-0150	0-0073	
	50.0°	0-3112	0-3083	0-2427	0-2135	0-1814	0-2003	0-1744	0-2005	0-1708	0-1905	0-0132	0-0281	0-0167	0-0222	
	56.7°	0-3106	0-3163	0-2958	0-2299	0-2562	0-2162	0-2420	0-2112	0-2474	0-2283	0-0186	0-0299	0-0362	0-0223	
	64.4°	0-3110	0-3185	0-3051	0-3039	0-2719	0-2711	0-2405	0-2233	0-2499	0-2557	0-0203	0-0255	0-0239	0-0141	
	71.7°	0-3121	0-3219	0-3232	0-3040	0-3107	0-2828	0-2935	0-2389	0-2836	0-2601	0-0269	0-0530	0-0532	0-0441	

Table 6

 (p/p_0) FOR MODELS 12 AND 13

SPHERICALLY-BLUNTED CONE-CYLINDER

f	0.382
$2\pi D$	0.396
d/D	0.560
θ	45
θ'	
R/D	

$$C_D(p_{\infty}=0) = 1.0920$$

Model No.	12	13	12	13	12	13	12	13	12	13	12	13		
X	16.89	134.65	135.94	134.67	132.72	130.19	127.64	125.10	122.56	120.02	112.30	92.08	66.68	41.28
Y	0.40	2.54	5.08	7.62	10.16	12.70	15.24	17.78	20.32	22.86	25.40	25.40	25.40	25.40

$$\alpha = 0^\circ \quad 0.3309 \quad 0.3215 \quad 0.2894 \quad 0.2355 \quad 0.1892 \quad 0.2077 \quad 0.2137 \quad 0.2186 \quad 0.2201 \quad 0.2192 \quad 0.2026 \quad 0.0199 \quad 0.0232 \quad 0.0250$$

	*	*	*	*	*	*	*	*	*	*	*	*			
$\alpha = 2.5^\circ$	$\theta = 12.5^\circ$	0.3242	0.3141	0.2796	0.2236	0.1700	0.1884	0.1971	0.2028	0.2080	0.2059	0.0187	0.0174	0.0214	0.0248
Model No 12	*#	0.3250	0.3143	0.2748	0.2235	0.1731	0.1945	0.1977	0.2046	0.2068	0.2076	0.0188	0.0181	0.0212	0.0234
$\theta = 15, 34^\circ$	64.3	0.3257	0.3179	0.2837	0.2290	0.1829	0.1983	0.1999	0.2137	0.2185	0.2148	0.0204	0.0187	0.0221	0.0226
$63^\circ, 85^\circ, 121^\circ$	90.0	0.3294	0.3209	0.2888	0.2353	0.1894	0.2039	0.2092	0.2168	0.2160	0.2168	0.0201	0.0205	0.0234	0.0248
$136, 172^\circ$	115.7	0.3297	0.3210	0.2929	0.2413	0.1991	0.2133	0.2243	0.2261	0.2295	0.2236	0.0211	0.0218	0.0230	
(See Table*)	141.4	0.3307	0.3248	0.2947	0.2457	0.2044	0.2220	0.2245	0.2273	0.2334	0.2302	0.0215	0.0226	0.0257	0.0263
	167.1	0.3242	0.3253	0.2874	0.2498	0.2093	0.2311	0.2336	0.2345	0.2351	0.2342	0.0217	0.0224	0.0260	0.0263
$\alpha = 5^\circ$	$\theta = 12.5^\circ$	0.3213	0.3075	0.2653	0.2145	0.1534	0.1713	0.1802	0.1802	0.1917	0.1852	0.0169	0.0156	0.0187	0.0229
Model No 12	*#	0.3208	0.3028	0.2689	0.2165	0.1586	0.1798	0.1802	0.1932	0.1885	0.1963	0.0170	0.0167	0.0189	0.0213
$\theta = 21^\circ, 31^\circ$	38.6	0.3212	0.3122	0.2728	0.2219	0.1790	0.1898	0.1993	0.2051	0.2128	0.2045	0.0196	0.0172	0.0203	0.0204
$72^\circ, 85^\circ, 124^\circ$	64.3	0.3212	0.3122	0.2728	0.2219	0.1790	0.1898	0.1993	0.2051	0.2128	0.2045	0.0196	0.0172	0.0203	0.0204
$134^\circ, 178^\circ$	90.0	0.3285	0.3182	0.2828	0.2353	0.1879	0.2102	0.2180	0.2152	0.2155	0.2155	0.0198	0.0206	0.0224	0.0239
(See Table*)	115.7	0.3243	0.3195	0.2926	0.2444	0.2057	0.2239	0.2347	0.2310	0.2424	0.2233	0.0221	0.0264	0.0248	
	141.4	0.3242	0.3250	0.2945	0.2295	0.2194	0.2395	0.2359	0.2412	0.2406	0.2335	0.0214	0.0237	0.0265	0.0279
	167.1	0.3236	0.3234	0.2915	0.2621	0.2300	0.2443	0.2505	0.2491	0.2484	0.2430	0.0224	0.0262	0.0236	0.0283
$\alpha = 7.5^\circ$	$\theta = 12.5^\circ$	0.3196	0.3047	0.2580	0.2039	0.1397	0.1525	0.1632	0.1614	0.1737	0.1726	0.0152	0.0144	0.0173	0.0209
Model No 12	*#	0.3205	0.3055	0.2539	0.2093	0.1449	0.1659	0.1637	0.1801	0.1361	0.1533	0.0152	0.0152	0.0165	0.0190
$\theta = 21^\circ, 31^\circ$	38.6	0.3205	0.3028	0.2689	0.2165	0.1586	0.1798	0.1802	0.1932	0.1885	0.1963	0.0170	0.0167	0.0189	0.0213
$72^\circ, 85^\circ, 124^\circ$	64.3	0.3212	0.3122	0.2728	0.2219	0.1790	0.1898	0.1993	0.2051	0.2128	0.2045	0.0196	0.0172	0.0203	0.0204
$134^\circ, 178^\circ$	90.0	0.3285	0.3182	0.2828	0.2353	0.1879	0.2102	0.2180	0.2152	0.2155	0.2155	0.0198	0.0206	0.0224	0.0239
(See Table*)	115.7	0.3243	0.3195	0.2926	0.2444	0.2057	0.2239	0.2347	0.2310	0.2424	0.2233	0.0221	0.0264	0.0248	
	141.4	0.3242	0.3250	0.2945	0.2295	0.2194	0.2395	0.2359	0.2412	0.2406	0.2335	0.0214	0.0237	0.0265	0.0279
	167.1	0.3236	0.3234	0.2915	0.2621	0.2300	0.2443	0.2505	0.2491	0.2484	0.2430	0.0224	0.0262	0.0236	0.0283
$\alpha = 10^\circ$	$\theta = 12.5^\circ$	0.3176	0.2942	0.2449	0.1904	0.1251	0.1341	0.1448	0.1429	0.1581	0.1550	0.0136	0.0157	0.0173	0.0209
Model No 12	*#	0.3182	0.3006	0.2494	0.1991	0.1323	0.1532	0.1492	0.1625	0.1590	0.1633	0.0140	0.0137	0.0144	0.0160
$\theta = 21^\circ, 31^\circ$	38.6	0.3182	0.3028	0.2689	0.2165	0.1586	0.1798	0.1802	0.1932	0.1885	0.1963	0.0170	0.0167	0.0189	0.0213
$72^\circ, 85^\circ, 124^\circ$	64.3	0.3196	0.3030	0.2660	0.2093	0.1676	0.1742	0.1911	0.1831	0.1959	0.1813	0.0168	0.0142	0.0182	0.0202
$134^\circ, 178^\circ$	90.0	0.3210	0.3129	0.2793	0.2387	0.1890	0.2120	0.1954	0.2134	0.1995	0.2045	0.0173	0.0213	0.0204	0.0216
(See Table*)	115.7	0.3211	0.3198	0.2984	0.2519	0.2304	0.2392	0.2445	0.2304	0.2385	0.2226	0.0232	0.0298	0.0241	
	141.4	0.3212	0.3251	0.3028	0.2705	0.2344	0.2527	0.2440	0.2503	0.2420	0.2416	0.0213	0.0295	0.0302	0.0297
	167.1	0.3224	0.3225	0.3092	0.2767	0.2510	0.2393	0.2624	0.2600	0.2460	0.2485	0.0235	0.0307	0.0330	0.0306
$\alpha = 12.5^\circ$	$\theta = 12.5^\circ$	0.3101	0.2829	0.2307	0.1731	0.1122	0.1182	0.1222	0.1281	0.1423	0.1396	0.0118	0.0129	0.0146	0.0192
Model No 12	*#	0.3100	0.2922	0.2349	0.1832	0.1216	0.1447	0.1354	0.1531	0.1437	0.1539	0.0122	0.0124	0.0130	0.0128
$\theta = 21^\circ, 31^\circ$	38.6	0.3100	0.3006	0.2494	0.1991	0.1323	0.1532	0.1492	0.1625	0.1590	0.1633	0.0140	0.0137	0.0144	0.0160
$72^\circ, 85^\circ, 124^\circ$	64.3	0.3117	0.2936	0.2586	0.2001	0.1616	0.1644	0.1624	0.1697	0.1532	0.1670	0.0154	0.0130	0.0169	0.0127
$134^\circ, 178^\circ$	90.0	0.3133	0.3087	0.2779	0.2387	0.1866	0.2030	0.1888	0.2047	0.1892	0.2000	0.0162	0.0219	0.0194	0.0201
(See Table*)	115.7	0.3151	0.3139	0.2999	0.2559	0.2392	0.2398	0.2446	0.2288	0.2371	0.2377	0.0230	0.0314	0.0238	
	141.4	0.3171	0.3238	0.3132	0.2936	0.2584	0.2690	0.2574	0.2618	0.2430	0.2458	0.0236	0.0340	0.0340	0.0343
	167.1	0.3176	0.3224	0.3046	0.2807	0.2817	0.2802	0.2744	0.2678	0.2571	0.2589	0.0242	0.0408	0.0372	
$\alpha = 15^\circ$	$\theta = 12.5^\circ$	0.3059	0.2715	0.2159	0.1613	0.1035	0.1200	0.1159	0.1277	0.1255	0.1012	0.0119	0.0136	0.0153	
Model No 12	*#	0.3059	0.2725	0.2268	0.1743	0.1103	0.1341	0.1394	0.1310	0.1395	0.1209	0.0107	0.0111	0.0120	0.0097
$\theta = 21^\circ, 31^\circ$	38.6	0.3059	0.2725	0.2268	0.1743	0.1103	0.1341	0.1394	0.1310	0.1395	0.1209	0.0107	0.0111	0.0120	0.0097
$72^\circ, 85^\circ, 124^\circ$	64.3	0.3084	0.2852	0.2474	0.1913	0.1563	0.1572	0.1727	0.1740	0.1708	0.1538	0.0140	0.0118	0.0156	0.0103
$134^\circ, 178^\circ$	90.0	0.3084	0.3042	0.2664	0.2352	0.1838	0.2050	0.1913	0.2052	0.1790	0.1928	0.0151	0.0226	0.0184	0.0198
(See Table*)	115.7	0.3110	0.3036	0.2991	0.2405	0.2439	0.2313	0.2483	0.2269	0.2344	0.2140	0.0239	0.0327	0.0240	
	141.4	0.3112	0.3225	0.3114	0.3024	0.2617	0.2358	0.2550	0.2651	0.2445	0.2420	0.0246	0.0439	0.0361	0.0381
	167.1	0.3111	0.3238	0.3256	0.3097	0.2904	0.2916	0.2873	0.2901	0.2729	0.2609	0.0325	0.0461	0.0414	
$\alpha = 17.5^\circ$	$\theta = 12.5^\circ$	0.2941	0.2594	0.1994	0.1445	0.0912	0.0943	0.1079	0.1018	0.1129	0.1121	0.0028	0.0109	0.0128	0.0181
Model No 12	*#	0.2941	0.2956	0.2677	0.2116	0.1616	0.0993	0.1244	0.1129	0.1255	0.1093	0.0096	0.0110	0.0073	
$\theta = 21^\circ, 31^\circ$	38.6	0.2941	0.2956	0.2677	0.2116	0.1616	0.0993	0.1244	0.1129	0.1255	0.1093	0.0096	0.0110	0.0073	
$72^\circ, 85^\circ, 124^\circ$	64.3	0.2977	0.2739	0.2349	0.1836	0.1505	0.1446	0.1620	0.1422	0.1587	0.1394	0.0128	0.0106	0.0143	0.0082
$134^\circ, 178^\circ$	90.0	0.2994	0.2937	0.2612	0.2287	0.1792	0.1997	0.203	0.196	0.1802	0.1844	0.0152	0.0234	0.0186	0.0192
(See Table*)															

Table 7

(p/p₀) FOR MODELS 14 AND 15TRUNCATED CONE-CYLINDER

f	0.300
C/D	0.400
S	45
G	
R/D	

$$C_{D(p_0)} = 1.0740$$

Model No.	14	15	14	15	14	15	14	15	14	15	14	15			
X	132.72	132.72	132.72	132.72	132.78	132.78	130.18	127.64	125.10	122.56	120.02	116.18			
Y	0	2.54	5.08	7.62	9.50	12.70	15.24	17.79	20.32	22.86	25.40	25.40			
$\alpha = 0^\circ$															
$\alpha = 2.5^\circ$ $\beta =$	12.5°	0.3229	0.3223	0.3189	0.3007	0.2463	0.2440	0.1874	0.1869	0.1918	0.1964	0.0172	0.0190	0.0196	0.0240
	38.6°	0.3302	0.3228	0.3207	0.3039	0.2623	0.1420	0.1876	0.1968	0.1984	0.2050	0.0187	0.0195	0.0206	0.0223
	64.5°	0.3212	0.3274	0.3178	0.3051	0.2437	0.1508	0.1931	0.1986	0.1962	0.2055	0.0189	0.0194	0.0205	0.0237
	90.0°	0.3283	0.3267	0.3252	0.3191	0.2322	0.1707	0.2044	0.2145	0.2126	0.2198	0.0209	0.0210	0.0210	0.0263
	115.7°	0.3268	0.3247	0.3227	0.3118	0.2159	0.1793	0.2113	0.2162	0.2192	0.2209	0.0194	0.0214	0.0235	0.0255
	141.4°	0.3111	0.3249	0.3242	0.3120	0.2249	0.1974	0.2200	0.2280	0.2252	0.2255	0.0208	0.0225	0.0240	0.0260
	167.1°	0.3294	0.3246	0.3262	0.3118	0.2378	0.2030	0.2233	0.2231	0.2279	0.2236	0.0211	0.0235	0.0261	0.0263
$\alpha = 5^\circ$ $\beta =$	12.5°	0.3209	0.3193	0.3149	0.2971	0.2403	0.0940	0.1721	0.1777	0.1730	0.1833	0.0167	0.0182	0.0178	0.0218
	38.6°	0.3324	0.3203	0.3180	0.2999	0.2594	0.1421	0.1731	0.1835	0.1870	0.1934	0.0174	0.0181	0.0188	0.0202
	64.5°	0.3288	0.3209	0.3147	0.3032	0.2611	0.1443	0.1820	0.1872	0.1919	0.1973	0.0178	0.0186	0.0192	0.0217
	90.0°	0.3288	0.3238	0.3175	0.3134	0.2430	0.1782	0.2079	0.2139	0.2187	0.2190	0.0203	0.0215	0.0234	0.0234
	115.7°	0.3215	0.3234	0.3204	0.3067	0.2328	0.1913	0.2114	0.2214	0.2216	0.2273	0.0195	0.0228	0.0219	0.0254
	141.4°	0.3227	0.3298	0.3262	0.3123	0.2224	0.2255	0.2321	0.2287	0.2336	0.2349	0.0216	0.0240	0.0250	0.0294
	167.1°	0.3259	0.3250	0.3231	0.3157	0.2134	0.2143	0.2304	0.2387	0.2413	0.2398	0.0220	0.0233	0.0232	0.0274
$\alpha = 7.5^\circ$ $\beta =$	12.5°	0.3241	0.3186	0.3150	0.2942	0.2554	0.0620	0.1372	0.1567	0.1571	0.1645	0.0152	0.0172	0.0169	0.0200
	38.6°	0.3213	0.3198	0.3147	0.2981	0.2514	0.1293	0.1600	0.1637	0.1536	0.1779	0.0162	0.0165	0.0175	0.0181
	64.5°	0.3244	0.3194	0.3143	0.3060	0.2510	0.1424	0.1709	0.1749	0.1779	0.1917	0.0151	0.0170	0.0173	0.0191
	90.0°	0.3224	0.3214	0.3157	0.3044	0.2671	0.1521	0.2122	0.2137	0.2129	0.2155	0.0188	0.0212	0.0219	0.0221
	115.7°	0.3212	0.3204	0.3185	0.3051	0.2241	0.1732	0.2191	0.2215	0.2216	0.2274	0.0193	0.0247	0.0257	0.0257
	141.4°	0.3211	0.3244	0.3238	0.3135	0.2288	0.2300	0.2301	0.2369	0.2413	0.2413	0.0220	0.0231	0.0231	0.0292
	167.1°	0.3220	0.3223	0.3228	0.3172	0.2301	0.2358	0.2358	0.2354	0.2374	0.2374	0.0224	0.0327	0.0327	0.0309
$\alpha = 10^\circ$ $\beta =$	12.5°	0.3291	0.3191	0.3077	0.2884	0.2459	0.0544	0.1116	0.1394	0.1443	0.1484	0.0136	0.0163	0.0172	0.0186
	38.6°	0.3241	0.3202	0.3161	0.2919	0.2540	0.1131	0.1481	0.1587	0.1586	0.1628	0.0144	0.0144	0.0158	0.0157
	64.5°	0.3251	0.3199	0.3139	0.2992	0.2544	0.1314	0.1420	0.1469	0.1469	0.1747	0.0146	0.0152	0.0157	0.0160
	90.0°	0.3239	0.3247	0.3178	0.3045	0.2305	0.2044	0.2140	0.2128	0.2113	0.2122	0.0155	0.0215	0.0231	0.0239
	115.7°	0.3240	0.3240	0.3214	0.3080	0.2759	0.2304	0.2200	0.2203	0.2186	0.2273	0.0204	0.0249	0.0249	0.0249
	141.4°	0.3229	0.3275	0.3226	0.3143	0.2939	0.2425	0.2434	0.2514	0.2545	0.2453	0.0224	0.0351	0.0351	0.0312
	167.1°	0.3247	0.3257	0.3229	0.3133	0.2964	0.2817	0.2452	0.2447	0.2581	0.2573	0.0222	0.0383	0.0368	0.0342
$\alpha = 12.5^\circ$ $\beta =$	12.5°	0.3218	0.3134	0.3024	0.2820	0.2449	0.0485	0.0921	0.1311	0.1338	0.1210	0.0148	0.0172	0.0184	0.0184
	38.6°	0.3194	0.3158	0.3081	0.2851	0.2497	0.1057	0.1353	0.1434	0.1461	0.1473	0.0133	0.0124	0.0138	0.0130
	64.5°	0.3209	0.3164	0.3081	0.2938	0.2470	0.1204	0.1539	0.1531	0.1623	0.1623	0.0155	0.0139	0.0140	0.0130
	90.0°	0.3203	0.3207	0.3168	0.3013	0.2456	0.2014	0.2135	0.2091	0.2010	0.2015	0.0175	0.0221	0.0233	0.0191
	115.7°	0.3212	0.3211	0.3206	0.3107	0.2233	0.2035	0.2233	0.2231	0.2193	0.2196	0.0176	0.0233	0.0233	0.0249
	141.4°	0.3208	0.3257	0.3256	0.3214	0.3023	0.2732	0.2718	0.2624	0.2592	0.2492	0.0228	0.0230	0.0231	0.0341
	167.1°	0.3208	0.3249	0.3274	0.3253	0.3074	0.2729	0.2734	0.2732	0.2570	0.2390	0.0144	0.0405	0.0377	0.0342
$\alpha = 15^\circ$ $\beta =$	12.5°	0.3162	0.3083	0.3008	0.2735	0.2347	0.0523	0.1047	0.1061	0.1110	0.1217	0.0110	0.0131	0.0169	0.0186
	38.6°	0.3163	0.3115	0.3024	0.2744	0.2441	0.0532	0.1314	0.1354	0.1353	0.1222	0.0107	0.0119	0.0105	0.0105
	64.5°	0.3159	0.3123	0.3031	0.2867	0.2416	0.1084	0.1447	0.1481	0.1433	0.1518	0.0121	0.0128	0.0123	0.0108
	90.0°	0.3158	0.3130	0.3144	0.2948	0.2671	0.2030	0.2113	0.2044	0.2054	0.2044	0.0168	0.0228	0.0253	0.0189
	115.7°	0.3142	0.3183	0.3159	0.3093	0.2309	0.2374	0.2244	0.2247	0.2173	0.2184	0.0173	0.0214	0.0267	0.0253
	141.4°	0.3145	0.3232	0.3200	0.3224	0.3108	0.2813	0.2772	0.2448	0.2632	0.2516	0.0228	0.0458	0.0433	0.0333
	167.1°	0.3167	0.3219	0.3262	0.3121	0.2158	0.2355	0.2817	0.2283	0.2683	0.2612	0.0230	0.0307	0.0446	0.0222
$\alpha = 17.5^\circ$ $\beta =$	12.5°	0.3127	0.3044	0.2991	0.2674	0.2299	0.0389	0.0923	0.1021	0.1092	0.1092	0.0119	0.0119	0.0185	0.0185
	38.6°	0.3123	0.3065	0.2957	0.2349	0.2350	0.0783	0.1173	0.1213	0.1268	0.1229	0.0111	0.0092	0.0101	0.0087
	64.5°	0.3125	0.3053	0.2995	0.2353	0.2359	0.1007	0.1410	0.1401	0.1328	0.1403	0.0114	0.0115	0.0106	0.0088
	90.0°	0.3153	0.3125	0.3140	0.2927	0.2677	0.2028	0.2120	0.1961	0.2059	0.1919	0.0170	0.0231	0.0255	0.0183
	115.7°	0.3127	0.3129	0.3112	0.3059	0.2477	0.2373	0.2225	0.2215	0.2311	0.2311	0.0234	0.0272	0.0262	0.0262
	141.4°	0.3124	0.3200	0.3221	0.3193	0.3192	0.2859	0.2741	0.2379	0.2573	0.2573	0.0223	0.0480	0.0446	0.0446
	167.1°	0.3124	0.3196	0.3219	0.3249	0.3215	0.2903	0.2941	0.2335	0.2449	0.2569	0.0201	0.0301	0.0491	0.0491

Table 8

 (p/p_0) FOR MODELS 16 AND 17

SPHERICALLY-BLUNTED CONE-CYLINDER

f	3.125
$2\pi b/D$	0.198
d/D	0.200
θ	7.5
α	
R/D	

$$C_{D_p(\alpha=0)} = 0.0600$$

Model No.	16	17	16	17	16	17	16	17	16	17	16
X	103.20	102.76	100.33	97.79	79.25	63.67	50.17	37.63	25.09	12.55	0
Y	0	1.65	3.30	4.95	6.60	8.13	9.91	11.56	13.21	14.86	16.51

$\alpha = 0^\circ$ 0.3277 0.2629 0.0384 0.0333 0.0339 0.0335 0.0341 0.0340 0.0344 0.0343 0.0344

$\alpha = 2.5^\circ$	$\beta = 12.5^\circ$	0.3236 0.2519 0.0348 0.0306 0.0313 0.0311 0.0311 0.0315 0.0316 0.0315 0.0275
	39.6	0.3241 0.2508 0.0346 0.0315 0.0314 0.0309 0.0315 0.0325 0.0323 0.0324 0.0288
	64.5	0.3245 0.2503 0.0342 0.0322 0.0324 0.0326 0.0332 0.0330 0.0324 0.0325 0.0284
	90.0	0.3241 0.2500 0.0338 0.0331 0.0332 0.0331 0.0337 0.0337 0.0343 0.0359 0.0365
	115.7	0.3242 0.2492 0.0412 0.0352 0.0355 0.0355 0.0357 0.0357 0.0352 0.0356 0.0342 0.0344
	141.4	0.3239 0.2482 0.0423 0.0353 0.0363 0.0369 0.0370 0.0373 0.0373 0.0373 0.0383 0.0383
	167.1	0.3242 0.2479 0.0437 0.0370 0.0375 0.0376 0.0374 0.0374 0.0381 0.0380 0.0315
$\alpha = 5^\circ$	$\beta = 12.5^\circ$	0.3228 0.2420 0.0296 0.0284 0.0288 0.0290 0.0285 0.0294 0.0292 0.0295 0.0259
	39.6	0.3222 0.2441 0.0312 0.0289 0.0287 0.0284 0.0289 0.0296 0.0299 0.0296 0.0263
	64.5	0.3239 0.2528 0.0344 0.0300 0.0304 0.0299 0.0311 0.0304 0.0307 0.0301 0.0261
	90.0	0.3233 0.2537 0.0349 0.0331 0.0319 0.0320 0.0324 0.0323 0.0328 0.0330 0.0290
	115.7	0.3241 0.2509 0.0434 0.0345 0.0344 0.0346 0.0347 0.0347 0.0342 0.0363 0.0374 0.0323
	141.4	0.3229 0.2459 0.0443 0.0383 0.0385 0.0401 0.0406 0.0398 0.0404 0.0402 0.0342
	167.1	0.3240 0.2464 0.0442 0.0380 0.0404 0.0493 0.0495 0.0447 0.0428 0.0491 0.0345
$\alpha = 7.5^\circ$	$\beta = 12.5^\circ$	0.3233 0.2232 0.0257 0.0212 0.0243 0.0234 0.0279 0.0277 0.0274 0.0274 0.0242
	39.6	0.3234 0.2238 0.0289 0.0262 0.0239 0.0258 0.0273 0.0269 0.0271 0.0272 0.0238
	64.5	0.3223 0.2435 0.0323 0.0235 0.0234 0.0248 0.0273 0.0268 0.0263 0.0268 0.0230
	90.0	0.3231 0.2533 0.0381 0.0321 0.0301 0.0298 0.0303 0.0302 0.0302 0.0302 0.0241
	115.7	0.3240 0.2457 0.0459 0.0389 0.0378 0.0374 0.0379 0.0371 0.0376 0.0380 0.0323
	141.4	0.3232 0.2484 0.0432 0.0432 0.0438 0.0444 0.0444 0.0444 0.0441 0.0441 0.0376
	167.1	0.3238 0.2392 0.0355 0.0368 0.0486 0.0484 0.0490 0.0474 0.0481 0.0481 0.0416
$\alpha = 10^\circ$	$\beta = 12.5^\circ$	0.3195 0.2134 0.0226 0.0216 0.0243 0.0241 0.0264 0.0259 0.0259 0.0257 0.0225
	39.6	0.3190 0.2234 0.0252 0.0235 0.0228 0.0234 0.0247 0.0242 0.0243 0.0244 0.0211
	64.5	0.3188 0.2407 0.0304 0.0288 0.0275 0.0222 0.0222 0.0222 0.0225 0.0224 0.0186
	90.0	0.3198 0.2553 0.0368 0.0304 0.0277 0.0270 0.0275 0.0230 0.0272 0.0268 0.0240
	115.7	0.3198 0.2480 0.0433 0.0402 0.0397 0.0359 0.0397 0.0384 0.0389 0.0394 0.0338
	141.4	0.3187 0.2498 0.0574 0.0462 0.0467 0.0465 0.0465 0.0473 0.0473 0.0473 0.0420
	167.1	0.3198 0.3000 0.0428 0.0534 0.0531 0.0557 0.0561 0.0544 0.0544 0.0552 0.0482
$\alpha = 12.5^\circ$	$\beta = 12.5^\circ$	0.3183 0.2210 0.0222 0.0224 0.0243 0.0247 0.0237 0.0246 0.0246 0.0240 0.0204
	39.6	0.3178 0.2136 0.0221 0.0220 0.0199 0.0209 0.0222 0.0220 0.0220 0.0215 0.0182
	64.5	0.3177 0.2235 0.0285 0.0218 0.0189 0.0174 0.0210 0.0168 0.0168 0.0165 0.0135
	90.0	0.3180 0.2463 0.0392 0.0291 0.0256 0.0230 0.0257 0.0250 0.0255 0.0248 0.0221
	115.7	0.3182 0.2425 0.0512 0.0411 0.0413 0.0413 0.0419 0.0414 0.0408 0.0413 0.0355
	141.4	0.3181 0.2493 0.0631 0.0573 0.0544 0.0535 0.0549 0.0534 0.0534 0.0532 0.0390
	167.1	0.3191 0.3093 0.0704 0.0614 0.0612 0.0630 0.0653 0.0620 0.0647 0.0633 0.0543
$\alpha = 15^\circ$	$\beta = 12.5^\circ$	0.3125 0.2045 0.0164 0.0161 0.0215 0.0193 0.0184 0.0174 0.0184 0.0184 0.0142
	39.6	0.3120 0.2192 0.0196 0.0187 0.0171 0.0131 0.0180 0.0135 0.0135 0.0130 0.0156
	64.5	0.3105 0.2269 0.0247 0.0191 0.0157 0.0144 0.0141 0.0134 0.0135 0.0134 0.0117
	90.0	0.3167 0.2453 0.0374 0.0295 0.0237 0.0234 0.0249 0.0231 0.0231 0.0230 0.0212
	115.7	0.3119 0.2510 0.0544 0.0471 0.0488 0.0436 0.0444 0.0431 0.0429 0.0431 0.0374
	141.4	0.3124 0.2494 0.0645 0.0570 0.0555 0.0554 0.0554 0.0551 0.0551 0.0551 0.0518
	167.1	0.3130 0.3152 0.0815 0.0702 0.0745 0.0723 0.0723 0.0723 0.0723 0.0723 0.0633
$\alpha = 17.5^\circ$	$\beta = 12.5^\circ$	0.3046 0.1723 0.0141 0.0171 0.0168 0.0153 0.0139 0.0129 0.0135 0.0128 0.0102
	39.6	0.3040 0.1824 0.0171 0.0198 0.0185 0.0184 0.0144 0.0143 0.0142 0.0144 0.0132
	64.5	0.3023 0.2132 0.0249 0.0159 0.0129 0.0125 0.0123 0.0121 0.0118 0.0121 0.0103
	90.0	0.3023 0.2374 0.0333 0.0269 0.0227 0.0232 0.0245 0.0235 0.0242 0.0236 0.0208
	115.7	0.3034 0.2811 0.0572 0.0425 0.0419 0.0419 0.0439 0.0439 0.0469 0.0469 0.0399
	141.4	0.3044 0.3002 0.0754 0.0650 0.0676 0.0642 0.0679 0.0651 0.0670 0.0666 0.0578
	167.1	0.3050 0.3203 0.0931 0.0812 0.0857 0.0830 0.0847 0.0800 0.0837 0.0823 0.0723

Table 9

 (p/p_0) FOR MODELS 18 AND 19

TRUNCATED CONE-CYLINDER

f	3.038
$2\pi b$	
d/D	0.200
G'	7.5
G	
R/D	

$$C_D(p_{(d=0)}) = 0.0940$$

Model No.	18	19	18	19	18	19	18	19	18	19	18	19
X	100.33	100.33	100.26	97.79	73.25	63.67	50.17	37.63	25.09	12.55	0	
Y	0	1.65	3.31	4.95	6.60	8.13	9.91	11.56	13.21	14.86	16.51	

$$\alpha = 0^\circ \quad 0.3266 \quad 0.3219 \quad 0.0157 \quad 0.0340 \quad 0.0332 \quad 0.0336 \quad 0.0335 \quad 0.0342 \quad 0.0340 \quad 0.0290$$

$\alpha = 2.5^\circ$	$\beta =$	12.5°	0.3239	0.3169	0.0163	0.0320	0.0306	0.0305	0.0310	0.0310	0.0315	0.0314	0.0249
		38.6°	0.3248	0.3162	0.0161	0.0320	0.0306	0.0304	0.0315	0.0312	0.0323	0.0315	0.0280
		64.5°	0.3229	0.3181	0.0156	0.0320	0.0302	0.0321	0.0328	0.0318	0.0322	0.0319	0.0273
		90.0°	0.3238	0.3189	0.0150	0.0320	0.0324	0.0328	0.0329	0.0334	0.0343	0.0341	0.0294
		115.7°	0.3234	0.3195	0.0155	0.0325	0.0344	0.0344	0.0359	0.0344	0.0354	0.0349	0.0299
		141.4°	0.3241	0.3182	0.0151	0.0339	0.0359	0.0362	0.0348	0.0340	0.0371	0.0344	0.0302
		167.1°	0.3224	0.3222	0.0160	0.0371	0.0361	0.0366	0.0373	0.0342	0.0371	0.0371	0.0316
$\alpha = 5^\circ$	$\beta =$	12.5°	0.3231	0.3161	0.0165	0.0300	0.0283	0.0285	0.0289	0.0291	0.0293	0.0295	0.0254
		38.6°	0.3257	0.3153	0.0156	0.0304	0.0283	0.0282	0.0285	0.0282	0.0280	0.0259	0.0251
		64.5°	0.3236	0.3178	0.0146	0.0310	0.0302	0.0299	0.0304	0.0293	0.0291	0.0294	0.0249
		90.0°	0.3241	0.3178	0.0145	0.0342	0.0313	0.0314	0.0317	0.0321	0.0323	0.0325	0.0277
		115.7°	0.3245	0.3202	0.0152	0.0371	0.0354	0.0358	0.0362	0.0353	0.0351	0.0359	0.0306
		141.4°	0.3242	0.3204	0.0161	0.0351	0.0376	0.0395	0.0389	0.0394	0.0403	0.0394	0.0353
		167.1°	0.3240	0.3244	0.0162	0.0414	0.0408	0.0414	0.0419	0.0414	0.0426	0.0416	0.0353
$\alpha = 7.5^\circ$	$\beta =$	12.5°	0.3238	0.3135	0.0154	0.0279	0.0214	0.0267	0.0274	0.0272	0.0274	0.0276	0.0237
		38.6°	0.3242	0.3134	0.0144	0.0273	0.0244	0.0263	0.0273	0.0270	0.0270	0.0270	0.0251
		64.5°	0.3242	0.3164	0.0139	0.0291	0.0273	0.0265	0.0265	0.0259	0.0261	0.0260	0.0244
		90.0°	0.3237	0.3190	0.0133	0.0293	0.0298	0.0298	0.0295	0.0304	0.0296	0.0255	
		115.7°	0.3234	0.3216	0.0157	0.0359	0.0349	0.0353	0.0374	0.0344	0.0375	0.0368	0.0310
		141.4°	0.3244	0.3241	0.0184	0.0432	0.0422	0.0431	0.0438	0.0430	0.0443	0.0433	0.0342
		167.1°	0.3248	0.3274	0.0213	0.0468	0.0449	0.0477	0.0485	0.0474	0.0480	0.0474	0.0406
$\alpha = 10^\circ$	$\beta =$	12.5°	0.3213	0.3100	0.0128	0.0256	0.0253	0.0258	0.0259	0.0253	0.0253	0.0253	0.0219
		38.6°	0.3236	0.3109	0.0125	0.0244	0.0245	0.0245	0.0248	0.0248	0.0250	0.0241	0.0204
		64.5°	0.3224	0.3140	0.0113	0.0273	0.0232	0.0221	0.0215	0.0229	0.0212	0.0214	0.0171
		90.0°	0.3212	0.3171	0.0123	0.0317	0.0271	0.0264	0.0263	0.0263	0.0273	0.0263	0.0226
		115.7°	0.3207	0.3203	0.0167	0.0408	0.0385	0.0391	0.0394	0.0390	0.0393	0.0391	0.0320
		141.4°	0.3221	0.3230	0.0216	0.0473	0.0454	0.0452	0.0453	0.0453	0.0458	0.0451	0.0401
		167.1°	0.3222	0.3232	0.0226	0.0514	0.0515	0.0516	0.0515	0.0515	0.0518	0.0466	
$\alpha = 12.5^\circ$	$\beta =$	12.5°	0.3220	0.3094	0.0103	0.0231	0.0242	0.0230	0.0227	0.0227	0.0223	0.0223	0.0185
		38.6°	0.3236	0.3095	0.0102	0.0223	0.0215	0.0226	0.0221	0.0222	0.0226	0.0218	0.0187
		64.5°	0.3220	0.3144	0.0099	0.0243	0.0194	0.0174	0.0164	0.0154	0.0161	0.0155	0.0129
		90.0°	0.3222	0.3188	0.0119	0.0308	0.0259	0.0244	0.0244	0.0244	0.0247	0.0247	0.0209
		115.7°	0.3220	0.3229	0.0180	0.0424	0.0416	0.0419	0.0422	0.0410	0.0416	0.0352	0.0336
		141.4°	0.3224	0.3241	0.0214	0.0530	0.0531	0.0535	0.0549	0.0532	0.0544	0.0534	0.0448
		167.1°	0.3224	0.3321	0.0309	0.0616	0.0618	0.0646	0.0658	0.0677	0.0653	0.0626	0.0535
$\alpha = 15^\circ$	$\beta =$	12.5°	0.3224	0.3024	0.0098	0.0204	0.0233	0.0217	0.0203	0.0178	0.0152	0.0168	0.0125
		38.6°	0.3211	0.3046	0.0205	0.0183	0.0181	0.0162	0.0162	0.0159	0.0179	0.0172	0.0154
		64.5°	0.3198	0.3093	0.0091	0.0218	0.0163	0.0168	0.0162	0.0133	0.0139	0.0131	0.0111
		90.0°	0.3181	0.3152	0.0119	0.0285	0.0235	0.0233	0.0224	0.0239	0.0243	0.0241	0.0200
		115.7°	0.3189	0.3204	0.0209	0.0426	0.0444	0.0449	0.0453	0.0440	0.0442	0.0443	0.0354
		141.4°	0.3189	0.3246	0.0231	0.0554	0.0575	0.0591	0.0607	0.0594	0.0606	0.0593	0.0491
		167.1°	0.3182	0.3307	0.0240	0.0589	0.0593	0.0593	0.0735	0.0735	0.0732	0.0740	0.0606
$\alpha = 17.5^\circ$	$\beta =$	12.5°	0.3149	0.2931	0.0098	0.0132	0.0229	0.0170	0.0143	0.0119	0.0152	0.0127	0.0100
		38.6°	0.3158	0.2930	0.0099	0.0150	0.0140	0.0130	0.0150	0.0151	0.0155	0.0148	0.0130
		64.5°	0.3151	0.3043	0.0118	0.0192	0.0134	0.0129	0.0124	0.0121	0.0126	0.0117	0.0099
		90.0°	0.3141	0.3104	0.0118	0.0236	0.0222	0.0232	0.0229	0.0231	0.0243	0.0226	0.0196
		115.7°	0.3144	0.3144	0.0123	0.0477	0.0471	0.0471	0.0478	0.0474	0.0472	0.0453	0.0379
		141.4°	0.3149	0.3214	0.0204	0.0615	0.0618	0.0649	0.0629	0.0644	0.0673	0.0670	0.0546
		167.1°	0.3142	0.3281	0.0221	0.0633	0.0639	0.0649	0.0664	0.0673	0.0682	0.0680	0.0601

Table 10

(p/p₀) FOR MODELS 20 AND 21SPHERICALLY-BLUNTED CONE-CYLINDER

f	2.446
2/D	0.397
d/D	0.400
g	7.5
g ₁	
R/D	

$$C_{D_p(\alpha=0)} = 0.1600$$

Model No.	20	21	20	21	20	21	20	21	20	21	20
X	81.42	81.21	80.53	79.18	78.24	63.66	50.15	37.61	25.07	12.53	0
Y	0	1.65	3.30	4.95	6.60	9.13	9.91	11.56	13.21	14.86	16.51

$$\alpha = 0^\circ \quad 0.3267 \quad 0.3116 \quad 0.2541 \quad 0.1530 \quad 0.0348 \quad 0.0340 \quad 0.0385 \quad 0.0329 \quad 0.0334 \quad 0.0274$$

$\alpha = -2.5^\circ$	$\beta =$	12.5°	0.3234	0.3576	0.2446	0.1434	0.0303	0.0302	0.0298	0.0300	0.0300	0.0302	0.0258
		38.6°	0.3233	0.3582	0.2459	0.1438	0.0306	0.0302	0.0302	0.0301	0.0303	0.0315	0.0264
		64.3°	0.3248	0.3113	0.2483	0.1471	0.0327	0.0329	0.0317	0.0311	0.0312	0.0314	0.0262
		90.0°	0.3253	0.3121	0.2497	0.1528	0.0338	0.0339	0.0319	0.0331	0.0327	0.0342	0.0260
		115.7°	0.3242	0.3129	0.2500	0.1584	0.0346	0.0340	0.0342	0.0341	0.0344	0.0344	0.0262
		141.4°	0.3244	0.3146	0.2629	0.1613	0.0351	0.0357	0.0351	0.0361	0.0363	0.0252	
		167.1°	0.3252	0.3123	0.2439	0.1410	0.0388	0.0382	0.0356	0.0342	0.0348	0.0236	
$\alpha = -5^\circ$	$\beta =$	12.5°	0.3232	0.3052	0.2350	0.1312	0.0261	0.0275	0.0275	0.0274	0.0282	0.0282	0.0243
		38.6°	0.3243	0.3042	0.2385	0.1333	0.0278	0.0289	0.0289	0.0282	0.0292	0.0288	0.0245
		64.3°	0.3257	0.3063	0.2444	0.1420	0.0309	0.0312	0.0297	0.0288	0.0294	0.0294	0.0246
		90.0°	0.3233	0.3108	0.2542	0.1514	0.0334	0.0342	0.0311	0.0321	0.0330	0.0232	
		115.7°	0.3252	0.3142	0.2428	0.1442	0.0381	0.0357	0.0353	0.0358	0.0358	0.0239	
		141.4°	0.3253	0.3150	0.2303	0.1710	0.0414	0.0403	0.0381	0.0385	0.0389	0.0239	
		167.1°	0.3256	0.3172	0.2340	0.1350	0.0444	0.0432	0.0404	0.0408	0.0413	0.0334	
$\alpha = -7.5^\circ$	$\beta =$	12.5°	0.3232	0.2946	0.2217	0.1184	0.0226	0.0248	0.0235	0.0251	0.0253	0.0253	0.0232
		38.6°	0.3239	0.2950	0.2261	0.1223	0.0239	0.0254	0.0254	0.0251	0.0271	0.0270	0.0223
		64.3°	0.3258	0.3114	0.2388	0.1352	0.0292	0.0295	0.0274	0.0281	0.0284	0.0284	0.0218
		90.0°	0.3238	0.3088	0.2309	0.1423	0.0333	0.0323	0.0302	0.0309	0.0304	0.0303	0.0233
		115.7°	0.3253	0.3174	0.2448	0.1703	0.0412	0.0402	0.0383	0.0346	0.0367	0.0349	0.0309
		141.4°	0.3253	0.3229	0.2393	0.1817	0.0457	0.0444	0.0418	0.0424	0.0429	0.0424	0.0351
		167.1°	0.3257	0.3216	0.2656	0.1917	0.0503	0.0491	0.0461	0.0463	0.0464	0.0470	0.0336
$\alpha = -10^\circ$	$\beta =$	12.5°	0.3216	0.2934	0.2077	0.1061	0.0193	0.0223	0.0235	0.0241	0.0254	0.0255	0.0218
		38.6°	0.3206	0.2883	0.2123	0.1107	0.0210	0.0230	0.0223	0.0228	0.0234	0.0262	0.0199
		64.3°	0.3204	0.2919	0.2301	0.1293	0.0213	0.0234	0.0247	0.0239	0.0224	0.0216	0.0177
		90.0°	0.3210	0.3025	0.2444	0.1443	0.0325	0.0314	0.0293	0.0283	0.0272	0.0232	
		115.7°	0.3214	0.3136	0.2321	0.1757	0.0439	0.0425	0.0392	0.0385	0.0385	0.0385	
		141.4°	0.3212	0.3224	0.2414	0.1912	0.0510	0.0488	0.0463	0.0473	0.0481	0.0391	
		167.1°	0.3208	0.3283	0.2364	0.2049	0.0547	0.0558	0.0529	0.0534	0.0538	0.0533	0.0448
$\alpha = -12.5^\circ$	$\beta =$	12.5°	0.3144	0.2822	0.1941	0.0951	0.0165	0.0204	0.0217	0.0233	0.0243	0.0240	0.0205
		38.6°	0.3132	0.2754	0.2077	0.1013	0.0185	0.0229	0.0194	0.0198	0.0212	0.0223	0.0180
		64.3°	0.3126	0.2858	0.2213	0.1215	0.0238	0.0252	0.0216	0.0186	0.0174	0.0140	
		90.0°	0.3134	0.2912	0.2408	0.1443	0.0322	0.0310	0.0281	0.0252	0.0263	0.0248	0.0213
		115.7°	0.3135	0.3111	0.2222	0.1797	0.0444	0.0457	0.0441	0.0424	0.0412	0.0404	0.0333
		141.4°	0.3141	0.3201	0.2855	0.1926	0.0514	0.0538	0.0513	0.0522	0.0532	0.0532	0.0436
		167.1°	0.3136	0.3248	0.2042	0.2140	0.0428	0.0428	0.0412	0.0421	0.0424	0.0475	
$\alpha = -15^\circ$	$\beta =$	12.5°	0.3049	0.2413	0.1818	0.0852	0.0143	0.0189	0.0200	0.0222	0.0230	0.0222	0.0186
		38.6°	0.3018	0.2451	0.1882	0.0927	0.0165	0.0165	0.0162	0.0176	0.0181	0.0140	
		64.3°	0.2953	0.2917	0.2140	0.1149	0.0242	0.0231	0.0204	0.0214	0.0213	0.0166	
		90.0°	0.3031	0.2853	0.2367	0.1409	0.0319	0.0298	0.0268	0.0275	0.0280	0.0278	0.0202
		115.7°	0.3013	0.3044	0.2316	0.1839	0.0481	0.0432	0.0424	0.0432	0.0431	0.0352	
		141.4°	0.3045	0.3149	0.2304	0.2074	0.0613	0.0572	0.0575	0.0580	0.0588	0.0447	
		167.1°	0.3043	0.3237	0.3086	0.2223	0.0708	0.0695	0.0711	0.0714	0.0714	0.0584	
$\alpha = -17.5^\circ$	$\beta =$	12.5°	0.2959	0.2489	0.1159	0.0774	0.0120	0.0169	0.0189	0.0215	0.0199	0.0172	0.0147
		38.6°	0.2985	0.2529	0.1350	0.0833	0.0145	0.0163	0.0134	0.0128	0.0129	0.0116	
		64.3°	0.2973	0.2310	0.2045	0.1079	0.0226	0.0212	0.0163	0.0141	0.0128	0.0122	0.0100
		90.0°	0.2985	0.2811	0.2238	0.1347	0.0316	0.0291	0.0257	0.0244	0.0239	0.0230	0.0195
		115.7°	0.2979	0.3013	0.2003	0.1573	0.0321	0.0497	0.0444	0.0451	0.0461	0.0463	0.0379
		141.4°	0.2999	0.3130	0.2920	0.2133	0.0472	0.0440	0.0444	0.0451	0.0445	0.0445	0.0394
		167.1°	0.2994	0.3209	0.3135	0.2359	0.0621	0.0585	0.0580	0.0581	0.0581	0.0581	0.0667

Table II

(p/p_0) FOR MODELS 22 AND 23

TRUNCATED CONE-CYLINDER

f	2.279
2-0	
d/p	0.400
g	7.5
g	
R/D	

$$C_{\alpha} = 0.2780$$

Model No.	22	23	22	23	22	23	22	23	22	23	22	23
X	75.24	73.24	75.24	73.24	75.17	69.66	50.15	37.61	25.09	12.53	0	
Y	9	1.65	3.30	4.95	6.61	8.12	9.91	11.56	13.21	14.86	16.51	

$\alpha = 0^\circ$	$\beta = 0-37.71$	$\beta = 33.50$	$\beta = 33.06$	$\beta = 30.00$	$\beta = 0-01.21$	$\beta = -0.34.51$	$\beta = -0.03.40$	$\beta = -0.03.23$	$\beta = -0.03.06$	$\beta = -0.03.25$	$\beta = -0.02.93$
$\alpha = 2.5^\circ$	$\beta = 12.5^\circ$	0.3242	0.3241	0.3194	0.3036	0.0131	0.0322	0.0510	0.0357	0.0239	0.0236
	34.5°	0.3242	0.3242	0.3222	0.3043	0.0130	0.0323	0.0517	0.0358	0.0238	0.0235
	64.5°	0.3239	0.3236	0.3212	0.3042	0.0128	0.0387	0.0523	0.0361	0.0309	0.0234
	90.0°	0.3242	0.3243	0.3196	0.3115	0.0126	0.0355	0.0532	0.0355	0.0324	0.0233
	115.5°	0.3249	0.3252	0.3219	0.3079	0.0124	0.0393	0.0341	0.0335	0.0234	0.0234
	141.4°	0.3245	0.3247	0.3230	0.3102	0.0135	0.0403	0.0385	0.0344	0.0332	0.0231
	167.1°	0.3231	0.3240	0.3219	0.3079	0.0134	0.0409	0.0362	0.0355	0.0235	0.0232
$\alpha = 5^\circ$	$\beta = 12.5^\circ$	0.3235	0.3236	0.3199	0.3031	0.0125	0.0319	0.0371	0.0358	0.0238	0.0234
	34.5°	0.3232	0.3244	0.3192	0.3031	0.0126	0.0333	0.0359	0.0238	0.0239	0.0234
	64.5°	0.3232	0.3242	0.3210	0.3050	0.0120	0.0340	0.0374	0.0329	0.0237	0.0234
	90.0°	0.3244	0.3273	0.3244	0.3102	0.0113	0.0386	0.0326	0.0317	0.0315	0.0232
	115.5°	0.3238	0.3259	0.3226	0.3100	0.0117	0.0413	0.0352	0.0349	0.0351	0.0232
	141.4°	0.3233	0.3244	0.3245	0.3151	0.0128	0.0394	0.0389	0.0348	0.0342	0.0233
	167.1°	0.3232	0.3242	0.3239	0.3140	0.0132	0.0442	0.0401	0.0401	0.0403	0.0355
$\alpha = 7.5^\circ$	$\beta = 12.5^\circ$	0.3231	0.3229	0.3153	0.2981	0.0118	0.0277	0.0351	0.0312	0.0244	0.0223
	34.5°	0.3232	0.3242	0.3163	0.2980	0.0115	0.0281	0.0234	0.0361	0.0239	0.0234
	64.5°	0.3230	0.3249	0.3211	0.3044	0.0108	0.0330	0.0280	0.0233	0.0261	0.0237
	90.0°	0.3232	0.3248	0.3163	0.3082	0.0104	0.0355	0.0324	0.0205	0.0239	0.0235
	115.5°	0.3231	0.3249	0.3253	0.3111	0.0116	0.0459	0.0370	0.0364	0.0364	0.0352
	141.4°	0.3236	0.3273	0.3235	0.3163	0.0134	0.0457	0.0401	0.0418	0.0432	0.0344
	167.1°	0.3238	0.3256	0.3286	0.3153	0.0131	0.0523	0.0463	0.0485	0.0440	0.0403
$\alpha = 10^\circ$	$\beta = 12.5^\circ$	0.3245	0.3246	0.3102	0.2913	0.0101	0.0163	0.0251	0.0387	0.0251	0.0218
	34.5°	0.3258	0.3248	0.3095	0.2952	0.0103	0.0277	0.0245	0.0241	0.0241	0.0218
	64.5°	0.3238	0.3229	0.3182	0.3042	0.0088	0.0338	0.0282	0.0245	0.0224	0.0186
	90.0°	0.3234	0.3213	0.3152	0.3044	0.0093	0.0383	0.0281	0.0291	0.0278	0.0233
	115.5°	0.3245	0.3292	0.3249	0.3144	0.0124	0.0443	0.0339	0.0385	0.0384	0.0323
	141.4°	0.3226	0.3248	0.3262	0.3139	0.0162	0.0531	0.0475	0.0446	0.0445	0.0240
	167.1°	0.3242	0.3241	0.3295	0.3224	0.0162	0.0512	0.0534	0.0532	0.0534	0.0337
$\alpha = 12.5^\circ$	$\beta = 12.5^\circ$	0.3249	0.3248	0.3102	0.2913	0.0101	0.0163	0.0251	0.0387	0.0251	0.0218
	34.5°	0.3258	0.3248	0.3095	0.2952	0.0103	0.0277	0.0245	0.0241	0.0241	0.0218
	64.5°	0.3238	0.3229	0.3182	0.3042	0.0088	0.0338	0.0282	0.0245	0.0224	0.0186
	90.0°	0.3234	0.3213	0.3152	0.3044	0.0093	0.0383	0.0281	0.0291	0.0278	0.0233
	115.5°	0.3245	0.3292	0.3249	0.3144	0.0124	0.0443	0.0339	0.0385	0.0384	0.0323
	141.4°	0.3226	0.3248	0.3262	0.3139	0.0162	0.0531	0.0475	0.0446	0.0445	0.0240
	167.1°	0.3242	0.3241	0.3295	0.3224	0.0162	0.0512	0.0534	0.0532	0.0534	0.0337
$\alpha = 15^\circ$	$\beta = 12.5^\circ$	0.3249	0.3243	0.3034	0.2879	0.0088	0.0118	0.0233	0.0368	0.0239	0.0209
	34.5°	0.3223	0.3144	0.3037	0.2827	0.0083	0.0216	0.0212	0.0216	0.0224	0.0182
	64.5°	0.3234	0.3139	0.3133	0.2976	0.0078	0.0295	0.0234	0.0250	0.0191	0.0172
	90.0°	0.3233	0.3182	0.3210	0.3013	0.0081	0.0369	0.0350	0.0279	0.0247	0.0211
	115.5°	0.3244	0.3249	0.3251	0.3144	0.0142	0.0449	0.0242	0.0450	0.0245	0.0211
	141.4°	0.3185	0.3272	0.3256	0.3188	0.0154	0.0579	0.0230	0.0524	0.0516	0.0351
	167.1°	0.3200	0.3233	0.3304	0.3253	0.0216	0.0459	0.0420	0.0417	0.0430	0.0233
$\alpha = 17.5^\circ$	$\beta = 12.5^\circ$	0.3154	0.3082	0.2984	0.2897	0.0038	0.0034	0.0229	0.0224	0.0215	0.0168
	34.5°	0.3180	0.3102	0.2981	0.2816	0.0034	0.0208	0.0180	0.0151	0.0191	0.0144
	64.5°	0.3154	0.3124	0.3042	0.2924	0.0034	0.0229	0.0212	0.0198	0.0164	0.0143
	90.0°	0.3182	0.3139	0.3074	0.2978	0.0036	0.0354	0.0293	0.0244	0.0252	0.0211
	115.5°	0.3164	0.3206	0.3220	0.3131	0.0158	0.0511	0.0449	0.0432	0.0437	0.0229
	141.4°	0.3145	0.3198	0.3224	0.3198	0.0131	0.0244	0.0556	0.0593	0.0462	0.0231
	167.1°	0.3161	0.3210	0.3281	0.3272	0.0204	0.0539	0.0474	0.0456	0.0473	0.0230
$\alpha = 19.5^\circ$	$\beta = 12.5^\circ$	0.3154	0.3084	0.2924	0.2794	0.0038	0.0034	0.0229	0.0224	0.0215	0.0122
	34.5°	0.3172	0.3045	0.2930	0.2758	0.0034	0.0184	0.0143	0.0152	0.0132	0.0121
	64.5°	0.3149	0.3119	0.3029	0.2867	0.0053	0.0215	0.0189	0.0152	0.0134	0.0104
	90.0°	0.3114	0.3092	0.3031	0.2934	0.0051	0.0351	0.0286	0.0254	0.0223	0.0209
	115.5°	0.3114	0.3162	0.3178	0.3059	0.0134	0.0550	0.0481	0.0456	0.0475	0.0220
	141.4°	0.3102	0.3155	0.3124	0.3162	0.0223	0.0522	0.0477	0.0475	0.0491	0.0211
	167.1°	0.3129	0.3132	0.3235	0.3242	0.0233	0.0522	0.0477	0.0475	0.0491	0.0211

Table 12

 (p/p_0) FOR MODELS 24 AND 25

SPHERICALLY-BLUNTED DOUBLE CONE

f	3
$2/f$	0.098
d/D	0.100
θ°	10.35
θ_b°	6.94
R/D	

$$C_{p_0} = 0.0614$$

Model No.	25	24	25	24	25	24	25	24	25	24	25	24	25	24	25	24
X	118.57	118.32	112.54	101.89	79.99	74.51	66.30	63.56	60.83	57.53	49.31	32.87	20.55	8.22		
Y	1.90	2.00	3.00	5.00	9.00	10.00	11.50	12.00	12.50	13.00	14.00	16.00	17.50	19.00		

$$\alpha = 0^\circ \quad 0.0552 \quad 0.0422 \quad 0.0393 \quad 0.0401 \quad 0.0415 \quad 0.0414 \quad 0.0419 \quad 0.0418 \quad 0.0408 \quad 0.0333 \quad 0.0334 \quad 0.0333 \quad 0.0339 \quad 0.0340$$

θ	2.7°	2.7°	23.0°	23.0°	10.1°	9.1°	9.1°	14.6°	22.0°	10.2°	3.7°	15.5°	23.0°	22.0°	
$\alpha =$	2.5°	0.0483	0.0361	0.0352	0.0347	0.0352	0.0349	0.0359	0.0358	0.0302	0.0301	0.0302	0.0301	0.0301	
5°	0.0433	0.0326	0.0320	0.0329	0.0341	0.0339	0.0345	0.0340	0.0342	0.0282	0.0281	0.0275	0.0276	0.0282	
7.5°	0.0387	0.0282	0.0279	0.0297	0.0318	0.0310	0.0313	0.0309	0.0309	0.0259	0.0256	0.0254	0.0252	0.0252	
10°	0.0335	0.0261	0.0265	0.0270	0.0296	0.0281	0.0286	0.0283	0.0280	0.0243	0.0242	0.0237	0.0231	0.0242	
12.5°	0.0286	0.0203	0.0242	0.0240	0.0270	0.0265	0.0265	0.0263	0.0259	0.0228	0.0228	0.0218	0.0210	0.0219	
15°	0.0244	0.0175	0.0225	0.0203	0.0245	0.0232	0.0242	0.0234	0.0239	0.0197	0.0193	0.0197	0.0167	0.0173	
17.5°	0.0212	0.0153	0.0201	0.0157	0.0216	0.0159	0.0222	0.0177	0.0190	0.0176	0.0174	0.0147	0.0119	0.0173	
θ	4.5°	4.5°	28.4°	28.4°	41.3°	42.3°	42.3°	34.8°	29.4°	41.2°	47.7°	35.9°	28.4°	29.5°	
$\alpha =$	2.5°	0.0502	0.0388	0.0350	0.0343	0.0381	0.0368	0.0382	0.0382	0.0312	0.0314	0.0315		0.0307	0.0313
5°	0.0465	0.0342	0.0329	0.0328	0.0354	0.0344	0.0350	0.0349	0.0340	0.0282	0.0281	0.0289	0.0282	0.0287	
7.5°	0.0433	0.0320	0.0298	0.0298	0.0315	0.0304	0.0313	0.0304	0.0304	0.0258	0.0253	0.0251	0.0257	0.0261	
10°	0.0389	0.0289	0.0271	0.0267	0.0235	0.0244	0.0236	0.0235	0.0236	0.0222	0.0219	0.0224	0.0237	0.0230	
12.5°	0.0340	0.0231	0.0241	0.0234	0.0225	0.0228	0.0227	0.0239	0.0239	0.0185	0.0176	0.0197	0.0215	0.0216	
15°	0.0327	0.0224	0.0223	0.0223	0.0172	0.0134	0.0135	0.0205	0.0216	0.0141	0.0124	0.0164	0.0169	0.0174	
17.5°	0.0292	0.0224	0.0202	0.0168	0.0152	0.0156	0.0147	0.0164	0.0164	0.0123	0.0117	0.0125	0.0126	0.0135	
θ	5.4°	5.4°	24.4°	24.4°	41.4°	42.3°	42.3°	34.8°	29.4°	41.2°	47.7°	35.9°	28.4°	29.5°	
$\alpha =$	2.5°	0.0505	0.0372	0.0344	0.0381	0.0394	0.0394	0.0395	0.0403	0.0406	0.0313	0.0312	0.0297	0.0319	0.0333
5°	0.0470	0.0353	0.0345	0.0357	0.0379	0.0362	0.0371	0.0390	0.0291	0.0290	0.0294	0.0297	0.0309		
7.5°	0.0434	0.0325	0.0300	0.0324	0.0324	0.0321	0.0334	0.0345	0.0259	0.0254	0.0264	0.0263	0.0272		
10°	0.0393	0.0299	0.0322	0.0290	0.0280	0.0275	0.0272	0.0268	0.0305	0.0218	0.0218	0.0210	0.0227	0.0232	
12.5°	0.0323	0.0291	0.0288	0.0223	0.0224	0.0213	0.0233	0.0227	0.0174	0.0162	0.0167	0.0195	0.0195		
15°	0.0313	0.0250	0.0259	0.0225	0.0185	0.0185	0.0132	0.0198	0.0227	0.0140	0.0119	0.0145	0.0136	0.0136	
17.5°	0.0292	0.0229	0.0261	0.0204	0.0155	0.0162	0.0149	0.0174	0.0209	0.0119	0.0102	0.0130	0.0163	0.0163	
θ	6.0°	6.0°	29.9°	29.9°	92.7°	93.4°	93.4°	86.2°	82.9°	92.7°	99.2°	87.3°	79.9°	80.9°	
$\alpha =$	2.5°	0.0518	0.0452	0.0399	0.0391	0.0411	0.0408	0.0402	0.0431	0.0419	0.0344	0.0341	0.0328	0.0336	0.0337
5°	0.0470	0.0353	0.0345	0.0357	0.0379	0.0362	0.0371	0.0390	0.0291	0.0290	0.0294	0.0297	0.0309		
7.5°	0.0434	0.0325	0.0300	0.0324	0.0324	0.0321	0.0334	0.0345	0.0259	0.0254	0.0264	0.0263	0.0272		
10°	0.0393	0.0299	0.0322	0.0290	0.0280	0.0275	0.0272	0.0268	0.0305	0.0218	0.0218	0.0210	0.0227	0.0232	
12.5°	0.0323	0.0291	0.0288	0.0223	0.0224	0.0213	0.0233	0.0227	0.0174	0.0162	0.0167	0.0195	0.0195		
15°	0.0313	0.0250	0.0259	0.0225	0.0185	0.0185	0.0132	0.0198	0.0227	0.0140	0.0119	0.0145	0.0136	0.0136	
17.5°	0.0292	0.0229	0.0261	0.0202	0.0157	0.0157	0.0149	0.0174	0.0209	0.0119	0.0102	0.0130	0.0163	0.0163	
θ	6.6°	6.6°	29.9°	29.9°	92.7°	93.4°	93.4°	86.2°	82.9°	92.7°	99.2°	87.3°	79.9°	80.9°	
$\alpha =$	2.5°	0.0478	0.0415	0.0379	0.0408	0.0418	0.0414	0.0414	0.0418	0.0331	0.0331	0.0314			
5°	0.0438	0.0359	0.0351	0.0355	0.0391	0.0358	0.0347	0.0358	0.0358	0.0282	0.0281	0.0289	0.0288	0.0291	
7.5°	0.0405	0.0325	0.0300	0.0324	0.0324	0.0321	0.0334	0.0345	0.0259	0.0254	0.0264	0.0263	0.0272		
10°	0.0364	0.0261	0.0271	0.0261	0.0261	0.0256	0.0261	0.0261	0.0305	0.0218	0.0218	0.0210	0.0227	0.0232	
12.5°	0.0313	0.0281	0.0278	0.0223	0.0223	0.0213	0.0233	0.0227	0.0174	0.0162	0.0167	0.0195	0.0195		
15°	0.0303	0.0250	0.0259	0.0225	0.0185	0.0185	0.0132	0.0198	0.0227	0.0140	0.0119	0.0145	0.0136	0.0136	
17.5°	0.0282	0.0229	0.0261	0.0202	0.0157	0.0157	0.0149	0.0174	0.0209	0.0119	0.0102	0.0130	0.0163	0.0163	
θ	7.2°	7.2°	24.4°	24.4°	14.2°	14.5°	14.5°	13.7°	13.2°	14.1°	15.6°	13.8°	13.1°	13.2°	
$\alpha =$	2.5°	0.0510	0.0428	0.0417	0.0425	0.0433	0.0444	0.0443	0.0439	0.0349	0.0349	0.0342	0.0342	0.0342	
5°	0.0473	0.0353	0.0344	0.0417	0.0418	0.0453	0.0461	0.0463	0.0463	0.0352	0.0352	0.0349			
7.5°	0.0434	0.0325	0.0300	0.0324	0.0324	0.0321	0.0334	0.0345	0.0259	0.0254	0.0264	0.0263	0.0272		
10°	0.0393	0.0299	0.0322	0.0290	0.0280	0.0275	0.0272	0.0268	0.0305	0.0218	0.0218	0.0210	0.0227	0.0232	
12.5°	0.0323	0.0291	0.0288	0.0223	0.0223	0.0213	0.0233	0.0227	0.0174	0.0162	0.0167	0.0195	0.0195		
15°	0.0313	0.0250	0.0259	0.0225	0.0185	0.0185	0.0132	0.0198	0.0227	0.0140	0.0119	0.0145	0.0136	0.0136	
17.5°	0.0292	0.0229	0.0261	0.0202	0.0157	0.0157	0.0149	0.0174	0.0209	0.0119	0.0102	0.0130	0.0163	0.0163	
θ	7.8°	7.8°	24.4°	24.4°	14.2°	14.5°	14.5°	13.9°	13.4°	14.1°	15.8°	13.8°	13.1°	13.2°	
$\alpha =$	2.5°	0.0511	0.0437	0.0442	0.0451	0.0455	0.0453	0.0453	0.0457	0.0352	0.0352	0.0349			
5°	0.0476	0.0353	0.0444	0.0476	0.0501	0.0500	0.0475	0.0494	0.0492	0.0358	0.0355	0.0344	0.0343	0.0346	
7.5°	0.0435	0.0320	0.0442	0.0442	0.0453	0.0453	0.0456	0.0456	0.0456	0.0352	0.0352	0.0349			
10°	0.0394	0.0299	0.0442	0.0442	0.0463	0.0463	0.0466	0.0466	0.0466	0.0353	0.0353	0.0400	0.0411	0.0414	
12.5°	0.0324	0.0291	0.0442	0.0442	0.0463	0.0463	0.0467	0.0467	0.0467	0.0353	0.0353	0.0420	0.0431	0.0434	
15°	0.0314	0.0250	0.0442	0.0442	0.0463	0.0463	0.0466	0.0466	0.0466	0.0352	0.0352	0.0448	0.0458	0.0460	
17.5°	0.0293	0.0229	0.0442	0.0442	0.0463	0.0463	0.0467	0.0467	0.0467	0.0352	0.0352	0.0483	0.0491	0.0491	
θ	8.4°	8.4°	24.4°	24.4°	14.2°	14.5°	14.5°	13.9°	13.4°	14.1°	15.8°	13.8°	13.1°	13.2°	
$\alpha =$	2.5°														

Table 13

(p/p₀) FOR MODELS 26 AND 27

SPHERICALLY-BLUNTED DOUBLE CONE

<i>f</i>	<i>c</i>
27/0	0.121
d/D	0.135
<i>g</i>	14.36
<i>g'</i>	11.01
R/D	

$$C_{D(p_0=0)} = 0.1232$$

Model No.	26	27	26	27	26	27	26	27	26	27	26	27	26	27
X	79.90	75.40	75.77	67.96	52.33	48.43	42.57	40.61	38.55	35.98	30.84	20.56	12.85	5.14
Y	1.00	2.25	3.00	5.00	9.00	10.00	11.50	12.00	12.50	13.00	14.00	16.00	17.50	19.00

$\alpha = 0^\circ$ 0.3014 0.0734 0.0503 0.0304 0.0324 0.0322 0.0330 0.0516 0.0486 0.0443 0.0431 0.0420 0.0429 0.0442

α	0	11.1°	9.2°	14.6°	23.0°	1.7°	3.7°	21.0°	15.6°	11.1°	16.6°	8.2°	2.7°	24.0°	23.0°
$\alpha =$	2.5°	0.2980 0.0655	0.0444	0.0445	0.0461	0.0470	0.0465	0.0433	0.0391	0.0371	0.0370	0.0375	0.0391		
	5°	0.2950 0.0574	0.0408	0.0409	0.0415	0.0417	0.0428	0.0417	0.0382	0.0349	0.0348	0.0335	0.0343	0.0354	
	7.5°	0.2841 0.0513	0.0353	0.0349	0.0347	0.0344	0.0352	0.0378	0.0359	0.0317	0.0314	0.0303	0.0302	0.0318	
	10°	0.2789 0.0455	0.0313	0.0337	0.0341	0.0344	0.0347	0.0320	0.0289	0.0287	0.0289	0.0275	0.0285		
	12.5°	0.2622 0.0404	0.0283	0.0289	0.0318	0.0308	0.0313	0.0295	0.0261	0.0261	0.0260	0.0250	0.0254		
	15°	0.2526 0.0352	0.0253	0.0271	0.0303	0.0299	0.0279	0.0293	0.0271	0.0236	0.0241	0.0242	0.0222		
	17.5°	0.2421 0.0311	0.0227	0.0238	0.0281	0.0281	0.0274	0.0253	0.0227	0.0215	0.0212	0.0224	0.0203	0.0205	
	2°	40.3°	42.3°	36.9°	28.6°	49.7°	47.7°	30.4°	35.9°	40.3°	34.9°	43.3°	48.7°	27.4°	28.4°
$\alpha =$	2.5°	0.2915 0.0690	0.0451	0.0453	0.0482	0.0478	0.0473	0.0430	0.0449	0.0402	0.0394	0.0389		0.0398	
	5°	0.2918 0.0632	0.0413	0.0410	0.0439	0.0433	0.0432	0.0425	0.0412	0.0344	0.0357	0.0357		0.0353	
	7.5°	0.2850 0.0561	0.0333	0.0334	0.0331	0.0331	0.0334	0.0336	0.0326	0.0316			0.0324		
	10°	0.2739 0.0515	0.0344	0.0344	0.0349	0.0344	0.0342	0.0331	0.0323	0.0287	0.0289	0.0284		0.0283	
	12.5°	0.2641 0.0449	0.0309	0.0302	0.0294	0.0290	0.0281	0.0273	0.0269	0.0223	0.0223	0.0225		0.0228	
	15°	0.2613 0.0431	0.0280	0.0284	0.0289	0.0281	0.0262	0.0230	0.0228	0.0212	0.0191	0.0188		0.0212	
	17.5°	0.2533 0.0389	0.0255	0.0246	0.0183	0.0174	0.0221	0.0163	0.0167	0.0169	0.0177	0.0179	0.0179		0.0213
	0	62.5°	60.6°	66.0°	74.4°	53.2°	55.1°	72.4°	67.0°	62.5°	68.0°	59.4°	54.2°	75.4°	74.4°
$\alpha =$	2.5°	0.0687 0.0477	0.0490	0.0485	0.0483		0.0506		0.0410	0.0408	0.0390	0.0412	0.0438		
	5°	0.0656 0.0456	0.0449	0.0444	0.0445		0.0474		0.0385	0.0383	0.0358	0.0394	0.0415		
	7.5°	0.0433 0.0444	0.0408	0.0411		0.0439		0.0343	0.0343	0.0320	0.0320	0.0326			
	10°	0.0333 0.0411	0.0349	0.0342	0.0343		0.0309		0.0331	0.0301	0.0280	0.0342	0.0353		
	12.5°	0.0253 0.0392	0.0394	0.0311	0.0311		0.0351		0.0296	0.0263	0.0233	0.0233	0.0319		
	15°	0.0250 0.0334	0.0352	0.0257	0.0259		0.0308		0.0263	0.0224	0.0193	0.0222	0.0291		
	17.5°	0.0446 0.0350	0.0348	0.0291	0.0292		0.0274		0.0239	0.0190	0.0148	0.0258	0.0231		
	0	31.7°	93.7°	88.3°	79.9°	101.1°	99.2°	81.9°	87.3°	91.7°	86.3°	94.7°	100.1°	38.9°	39.9°
$\alpha =$	2.5°	0.3010 0.0753	0.0502	0.0417	0.0530	0.0540	0.0513	0.0507	0.0505	0.0442	0.0420	0.0432	0.0423	0.0445	
	5°	0.3003 0.0760	0.0521	0.0474	0.0533	0.0541	0.0498	0.0499	0.0502	0.0436	0.0433	0.0444	0.0408	0.0473	
	7.5°	0.2933 0.0765	0.0485	0.0519	0.0530	0.0533	0.0483	0.0491	0.0489	0.0419	0.0427	0.0444	0.0444	0.0459	
	10°	0.2957 0.0749	0.0485	0.0515	0.0533	0.0533	0.0457	0.0450	0.0474	0.0403	0.0451	0.0455	0.0455	0.0471	
	12.5°	0.2923 0.0738	0.0485	0.0485	0.0481	0.0504	0.0533	0.0481	0.0454	0.0444	0.0436	0.0446	0.0446	0.0450	
	15°	0.2876 0.0758	0.0493	0.0493	0.0493	0.0529	0.0498	0.0459	0.0458	0.0370	0.0408	0.0450	0.0436	0.0434	
	17.5°	0.2842 0.0757	0.0498	0.0493	0.0557	0.0528	0.0386	0.0428	0.0449	0.0357	0.0404	0.0451	0.0446	0.0492	
	0	114.0°	112.0°	113.4°	123.9°	104.6°	106.6°	123.9°	118.4°	114.0°	119.4°	111.0°	105.6°	126.9°	125.9°
$\alpha =$	2.5°	0.3046 0.0749		0.0550	0.0535	0.0539	0.0598	0.0581	0.0520	0.0450	0.0432	0.0461	0.0430		
	5°	0.3057 0.0777		0.0552	0.0559	0.0578	0.0619	0.0592	0.0539	0.0500	0.0445	0.0443	0.0491	0.0516	
	7.5°	0.3067 0.0802		0.0613	0.0532	0.0571	0.0613	0.0626	0.0570	0.0529	0.0489	0.0467	0.0531	0.0561	
	10°	0.3056 0.0833		0.0693	0.0580	0.0584	0.0708	0.0641	0.0581	0.0570	0.0449	0.0449	0.0567	0.0607	
	12.5°	0.3038 0.0853		0.0744	0.0593	0.0601	0.0755	0.0634	0.0604	0.0591	0.0519	0.0456	0.0614	0.0653	
	15°	0.2959 0.0879		0.0749	0.0614	0.0615	0.0719	0.0619	0.0628	0.0625	0.0537	0.0462	0.0616	0.0639	
	17.5°	0.2955 0.0879		0.0860	0.0619	0.0613	0.0858	0.0744	0.0659	0.0655	0.0563	0.0480	0.0743	0.0738	
	0	143.2°	145.1°	139.7°	131.3°	152.6°	150.6°	133.3°	138.7°	143.2°	144.1°	151.6°	130.3°	131.3°	
$\alpha =$	2.5°	0.3033 0.0797	0.0553	0.0550	0.0553	0.0580	0.0540	0.0487	0.0473	0.0476	0.0443	0.0472			
	5°	0.3032 0.0863	0.0602	0.0588		0.0662	0.0630	0.0639	0.0597	0.0532	0.0525	0.0538	0.0499	0.0519	
	7.5°	0.3113 0.0934	0.0610	0.0613		0.0591	0.0685	0.0603	0.0635	0.0553	0.0528	0.0603	0.0539	0.0560	
	10°	0.3108 0.1009	0.0734	0.0640		0.0624	0.0734	0.0652	0.0748	0.0638	0.0611	0.0664	0.0583	0.0606	
	12.5°	0.3149 0.1020	0.0767	0.0623		0.0691	0.0739	0.0682	0.0751	0.0695	0.0714	0.0744	0.0630	0.0653	
	15°	0.3164 0.1156	0.0881	0.0822		0.1008	0.0785	0.0809	0.0842	0.0753	0.0783	0.0825	0.0690	0.0720	
	17.5°	0.3158 0.1248	0.0970	0.0892		0.1105	0.0919	0.0984	0.0936	0.0918	0.0964	0.0916	0.0744	0.0759	
	0	163.4°	168.9°	173.3°	156.0°	158.0°	135.3°	169.9°	165.4°	170.9°	162.4°	157.0°	138.3°	137.3°	
$\alpha =$	2.5°	0.3051 0.0802	0.0560	0.0578	0.0588	0.0572	0.0605	0.0585	0.0570	0.0545	0.0545	0.0545	0.0503		
	5°	0.3135 0.0881	0.0624	0.0644	0.0656	0.0630	0.0644	0.0631	0.0554	0.0515	0.0514	0.0523			
	7.5°	0.3135 0.0863	0.0706	0.0749	0.0753	0.0743	0.0789	0.0730	0.0714	0.0654	0.0606	0.0645	0.0652		
	10°	0.3156 0.1040	0.0798	0.0856	0.0844	0.0834	0.0855	0.0858	0.0794	0.0738	0.0649	0.0725	0.0737		
	12.5°	0.3199 0.1126	0.0926	0.0862	0.0844	0.0833	0.0908	0.0950	0.0950	0.0837	0.0759	0.0818	0.0824		
	15°	0.3229 0.1228	0.1021	0.1073	0.1044	0.1035	0.1123	0.1073	0.1074	0.0993	0.0993	0.1074	0.1037		
	17.5°	0.3234 0.1354	0.1140	0.1214	0.1153	0.1149	0.1248	0.1194	0.1112	0.1041	0.0961	0.1223	0.1044		

Table 14

 (p/p_0) FOR MODELS 28 AND 29

3/4 POWER LAW

f	3
2r/D	
d/D	
a'	
a	
R/D	

$C_{p_{\infty}} = 0.0612$

Model No.	29	28	29	28	29	28	29	28	29	28	29	28	29	28
X	117.79	114.43	110.44	101.10	78.62	72.38	62.62	59.27	53.88	52.43	45.42	30.88	19.57	7.93
Y	1.00	2.00	3.00	5.00	9.00	10.00	11.50	12.00	12.50	13.00	14.00	16.00	17.50	19.00

$\alpha = 0^\circ \quad 0.0658 \quad 0.0540 \quad 0.0508 \quad 0.0441 \quad 0.0403 \quad 0.0380 \quad 0.0366 \quad 0.0372 \quad 0.0368 \quad 0.0363 \quad 0.0359 \quad 0.0349 \quad 0.0359 \quad 0.0351$

θ	2.7°	9.1°	23.0°	16.6°	15.5°	15.5°	3.8°	10.2°	16.6°	3.8°	9.1°	22.0°	23.0°	23.0°
$\alpha = 2.5^\circ$	0.0581	0.0472		0.0393	0.0343	0.0340	0.0332	0.0332		0.0328	0.0329	0.0319		0.0314
5°	0.0534	0.0431		0.0353	0.0327	0.0318	0.0324	0.0312		0.0307	0.0302	0.0290		0.0287
7.5°	0.0477	0.0386		0.0314	0.0300	0.0299	0.0280	0.0284		0.0252	0.0250	0.0244		0.0226
10°	0.0432	0.0351		0.0280	0.0278	0.0266	0.0261	0.0263		0.0243	0.0240	0.0244		0.0244
12.5°	0.0389	0.0317		0.0252	0.0253	0.0247	0.0244	0.0242		0.0245	0.0243	0.0223		0.0221
15°	0.0352	0.0290		0.0229	0.0238	0.0231	0.0223	0.0217		0.0228	0.0225	0.0187		0.0167
17.5°	0.0317	0.0259		0.0183	0.0212	0.0195	0.0211	0.0184		0.0216	0.0205	0.0110		0.0118
θ	48.6°	42.3°	28.4°	34.8°	35.9°	35.9°	47.7°	41.3°	34.8°	47.7°	42.3°	29.5°	28.4°	28.4°
$\alpha = 2.5^\circ$	0.0601	0.0467		0.0399	0.0341	0.0348	0.0344	0.0349	0.0339	0.0333	0.0316		0.0313	
5°	0.0531	0.0417		0.0340	0.0329	0.0315	0.0311	0.0315	0.0306	0.0308	0.0302	0.0290		0.0288
7.5°	0.0515	0.0411		0.0320	0.0292	0.0281	0.0236	0.0281	0.0272	0.0273	0.0267	0.0263		0.0265
10°	0.0472	0.0369		0.0281	0.0255	0.0247	0.0239	0.0245	0.0241	0.0235	0.0231	0.0239		0.0243
12.5°	0.0422	0.0321		0.0241	0.0219	0.0210	0.0203	0.0207	0.0210	0.0210	0.0190	0.0216		0.0219
15°	0.0372	0.0277		0.0212	0.0180	0.0171	0.0141	0.0166	0.0176	0.0141	0.0151	0.0180		0.0225
17.5°	0.0324	0.0234		0.0182	0.0143	0.0136	0.0131	0.0138		0.0131	0.0140		0.0141	
θ	54.1°	60.5°	74.5°	67.0°	67.0°	55.2°	61.6°	68.0°	55.2°	60.5°	73.4°	74.5°	74.5°	74.5°
$\alpha = 2.5^\circ$	0.0403	0.0429	0.0444	0.0449		0.0348	0.0343	0.0357		0.0349	0.0345	0.0339	0.0344	0.0337
5°	0.0368	0.0344	0.0333	0.0362		0.0344	0.0313	0.0329		0.0318	0.0320	0.0318	0.0322	0.0316
7.5°	0.0328	0.0293	0.0347	0.0355		0.0311	0.0278	0.0291		0.0280	0.0280	0.0284	0.0293	0.0283
10°	0.0307	0.0343	0.0320	0.0323		0.0270	0.0237	0.0244		0.0237	0.0230	0.0245	0.0251	0.0244
12.5°	0.0294	0.0352	0.0352	0.0281		0.0223	0.0186	0.0191		0.0181	0.0201	0.0202	0.0215	0.0207
15°	0.0261	0.0313	0.0351	0.0244		0.0183	0.0128	0.0152		0.0132	0.0148	0.0177	0.0191	0.0186
17.5°	0.0236	0.0279	0.0328	0.0219		0.0158		0.0129		0.0109	0.0129	0.0161	0.0174	0.0172
θ	100.2°	93.8°	79.5°	86.3°	87.3°	93.1°	92.7°	86.3°	93.1°	93.8°	80.9°	79.8°	79.8°	79.8°
$\alpha = 2.5^\circ$	0.0420	0.0337	0.0440	0.0440	0.0395	0.0384	0.0359	0.0380	0.0346	0.0357	0.0338	0.0347	0.0350	
5°	0.0377	0.0253	0.0416	0.0424	0.0388	0.0382	0.0356	0.0345	0.0343	0.0367	0.0346	0.0319	0.0329	0.0327
7.5°	0.0305	0.0347	0.0444	0.0408	0.0344	0.0340	0.0347	0.0342	0.0319	0.0358	0.0331	0.0292	0.0306	0.0291
10°	0.0289	0.0349	0.0424	0.0385	0.0347	0.0337	0.0332	0.0293	0.0347	0.0314	0.0261	0.0224	0.0254	
12.5°	0.0273	0.0343	0.0399	0.0360	0.0326	0.0315	0.0331	0.0304	0.0271	0.0339	0.0302	0.0233	0.0243	0.0220
15°	0.0253	0.0359	0.0375	0.0338	0.0308	0.0299	0.0330	0.0295	0.0254	0.0339	0.0294	0.0217	0.0225	0.0199
17.5°	0.0228			0.0325	0.0297	0.0291	0.0334	0.0290	0.0243	0.0340	0.0295	0.0206		0.0186
θ	105.5°	112.0°	125.5°	119.5°	118.4°	118.4°	113.0°	119.5°	116.6°	112.0°	124.5°	125.5°	125.5°	125.5°
$\alpha = 2.5^\circ$	0.0444	0.0512	0.0539	0.0449		0.0394		0.0391	0.0359	0.0378		0.0380	0.0380	0.0370
5°	0.0484	0.0578	0.0573	0.0442		0.0442		0.0444	0.0416	0.0436		0.0394	0.0401	0.0388
7.5°	0.0478	0.0607	0.0620	0.0579		0.0440		0.0423	0.0445	0.0387		0.0416	0.0426	0.0411
10°	0.0429	0.0634	0.0623	0.0544		0.0459		0.0435	0.0454	0.0389		0.0437	0.0454	0.0439
12.5°	0.0469	0.0613	0.0727	0.0576		0.0457		0.0449	0.0480	0.0395		0.0465	0.0486	0.0473
15°	0.0496	0.0737	0.0649	0.0514		0.0514		0.0448	0.0507	0.0404		0.0501	0.0521	0.0511
17.5°	0.0517	0.0726	0.0630	0.0552		0.0550		0.0492	0.0538	0.0447		0.0541	0.0563	0.0559
θ	151.6°	145.2°	131.3°	137.7°	138.8°	150.5°	144.1°	137.7°	150.5°	145.2°	132.3°	131.3°	131.3°	131.3°
$\alpha = 2.5^\circ$	0.0559	0.0512	0.0483	0.0443	0.0420	0.0404	0.0411	0.0404	0.0399	0.0386	0.0389	0.0392	0.0379	
5°	0.0637	0.0555	0.0527	0.0482	0.0462	0.0432	0.0450	0.0444	0.0441	0.0454	0.0412	0.0449	0.0403	
7.5°	0.0742	0.0623	0.0574	0.0523	0.0510	0.0449	0.0498	0.0485	0.0493	0.0467	0.0446	0.0449	0.0432	
10°	0.0832	0.0682	0.0624	0.0555	0.0524	0.0514	0.0531	0.0531	0.0513	0.0485	0.0485	0.0485	0.0466	
12.5°	0.0928	0.0742	0.0685	0.0629	0.0615	0.0594	0.0591	0.0591	0.0582	0.0624	0.0573	0.0531	0.0526	0.0508
15°	0.1031	0.0804	0.0739	0.0688	0.0679	0.0645	0.0651	0.0640	0.0649	0.0641	0.0590	0.0551	0.0552	
17.5°	0.1141	0.0870	0.0804	0.0754	0.0746	0.0725	0.0745	0.0739	0.0739	0.0635	0.0622	0.0604		
θ	172.0°	163.4°	177.3°	170.9°	169.8°	158.0°	164.5°	170.9°	158.0°	163.4°	176.3°	177.3°	177.3°	177.3°
$\alpha = 2.5^\circ$	0.0610	0.0579	0.0497	0.0490	0.0421		0.0450	0.0403	0.0395		0.0386	0.0400	0.0397	
5°	0.0676	0.0639	0.0562	0.0515	0.0475		0.0459	0.0449	0.0440		0.0436	0.0450	0.0444	
7.5°	0.0776	0.0722	0.0638	0.0591	0.0551		0.0524	0.0513	0.0498		0.0499	0.0511	0.0508	
10°	0.0881	0.0829	0.0723	0.0658	0.0629		0.0595	0.0587	0.0588		0.0572	0.0584	0.0580	
12.5°	0.1012	0.0951	0.0812	0.0751	0.0719		0.0681	0.0671	0.0650		0.0656	0.0667	0.0669	
15°	0.1162	0.1030	0.0912	0.0864	0.0857		0.0731	0.0730	0.0733		0.0742	0.0751	0.0758	
17.5°	0.1290	0.1212	0.1037	0.0926		0.0777	0.0762	0.0830		0.0832	0.0861	0.0869		

Table 15

(p/p₀) FOR MODELS 30 AND 313/4 POWER LAW

f	2
27/0	
d/D	
g	
a	
R/D	

$C_D = 0.1226$

MODEL NO.	30	31	30	31	30	31	30	31	30	31	30	31	30	31
X	78.57	75.66	73.62	67.40	52.41	48.25	41.75	39.52	37.25	34.96	30.28	20.59	13.05	5.29
Y	1.00	2.25	3.00	5.00	9.00	10.00	11.50	12.00	12.50	13.00	14.00	16.00	17.50	19.00

$\alpha = 0^\circ \quad 0.1172 \quad 0.0786 \quad 0.0777 \quad 0.0532 \quad 0.0510 \quad 0.0428 \quad 0.0477 \quad 0.0469 \quad 0.0462 \quad 0.0467 \quad 0.0454 \quad 0.0442 \quad 0.0434 \quad 0.0431$

$\alpha = 0^\circ$	15.5°	10.2°	10.2°	22.0°	2.7°	2.7°	16.6°	16.6°	15.5°	15.5°	3.8°	3.8°	23.0°	22.0°
$\alpha = 2.5^\circ$	0.1037	0.0687	0.0335	0.0224	0.0454	0.0412	0.0413	0.0412	0.0399	0.0415	0.0398	0.0393	0.0399	0.0391
$\alpha = 5^\circ$	0.0921	0.0621	0.0364	0.0245	0.0403	0.0393	0.0374	0.0357	0.0355	0.0372	0.0358	0.0351	0.0347	0.0344
$\alpha = 7.5^\circ$	0.0813	0.0518	0.0294	0.0208	0.0357	0.0350	0.0334	0.0332	0.0320	0.0332	0.0324	0.0315	0.0310	0.0310
$\alpha = 10^\circ$	0.0724	0.0410	0.0237	0.0230	0.0317	0.0301	0.0300	0.0299	0.0299	0.0299	0.0287	0.0278	0.0280	0.0280
$\alpha = 12.5^\circ$	0.0650	0.0343	0.0238	0.0233	0.0294	0.0281	0.0273	0.0262	0.0270	0.0267	0.0265	0.0249	0.0257	0.0257
$\alpha = 15^\circ$	0.0585	0.0282	0.0248	0.0232	0.0237	0.0263	0.0247	0.0249	0.0242	0.0243	0.0248	0.0247	0.0224	0.0229
$\alpha = 17.5^\circ$	0.0520	0.0240	0.0231	0.0254	0.0253	0.0245	0.0225	0.0229	0.0222	0.0226	0.0230	0.0231	0.0199	0.0235
$\alpha = 0^\circ$	35.9°	41.3°	41.3°	29.5°	45.6°	45.6°	34.6°	34.6°	35.9°	35.9°	47.7°	47.7°	28.4°	29.5°
$\alpha = 2.5^\circ$	0.1048	0.0720	0.0651	0.0530	0.0471	0.0460	0.0455	0.0421	0.0407	0.0421	0.0418	0.0416	0.0395	0.0379
$\alpha = 5^\circ$	0.0944	0.0656	0.0550	0.0480	0.0435	0.0422	0.0389	0.0380	0.0349	0.0383	0.0388	0.0383	0.0360	0.0344
$\alpha = 7.5^\circ$	0.0843	0.0558	0.0530	0.0462	0.0398	0.0378	0.0362	0.0339	0.0329	0.0342	0.0346	0.0342	0.0325	0.0309
$\alpha = 10^\circ$	0.0756	0.0533	0.0479	0.0352	0.0353	0.0334	0.0305	0.0301	0.0291	0.0303	0.0304	0.0301	0.0293	0.0278
$\alpha = 12.5^\circ$	0.0683	0.0432	0.0423	0.0367	0.0289	0.0261	0.0253	0.0244	0.0261	0.0257	0.0262	0.0247	0.0220	0.0235
$\alpha = 15^\circ$	0.0621	0.0362	0.0332	0.0292	0.0261	0.0263	0.0244	0.0217	0.0223	0.0215	0.0209	0.0235	0.0220	0.0220
$\alpha = 17.5^\circ$	0.0559	0.0331	0.0325	0.0211	0.0191	0.0180	0.0170	0.0155	0.0161	0.0154	0.0208	0.0198		
$\alpha = 0^\circ$	47.0°	61.6°	61.6°	53.4°	54.1°	54.1°	68.0°	68.0°	67.0°	67.0°	55.2°	55.2°	74.9°	73.4°
$\alpha = 2.5^\circ$	0.1127	0.0732	0.0670	0.0512	0.0459	0.0445	0.0429	0.0442	0.0421	0.0404	0.0418	0.0418	0.0427	
$\alpha = 5^\circ$	0.1046	0.0692	0.0628	0.0538	0.0439	0.0421	0.0407	0.0444	0.0395	0.0373	0.0395	0.0395	0.0408	
$\alpha = 7.5^\circ$	0.0943	0.0631	0.0554	0.0510	0.0399	0.0380	0.0384	0.0372	0.0384	0.0354	0.0336	0.0367	0.0381	
$\alpha = 10^\circ$	0.0864	0.0533	0.0478	0.0419	0.0353	0.0348	0.0354	0.0337	0.0348	0.0315	0.0294	0.0335	0.0340	
$\alpha = 12.5^\circ$	0.0782	0.0454	0.0448	0.0416	0.0283	0.0271	0.0283	0.0270	0.0262	0.0226	0.0226	0.0202	0.0237	0.0267
$\alpha = 15^\circ$	0.0720	0.0418	0.0449	0.0416	0.0283	0.0271	0.0283	0.0270	0.0262	0.0226	0.0226	0.0202	0.0244	
$\alpha = 17.5^\circ$	0.0730	0.0440	0.0405	0.0384	0.0208	0.0208	0.0254	0.0229	0.0243	0.0196	0.0160	0.0254	0.0244	
$\alpha = 0^\circ$	87.3°	92.7°	92.7°	80.9°	100.2°	100.2°	86.3°	86.3°	87.3°	87.3°	99.1°	99.1°	79.8°	50.9°
$\alpha = 2.5^\circ$	0.1170	0.0798	0.0717	0.0581	0.0525	0.0512	0.0474	0.0469	0.0445	0.0456	0.0455	0.0444	0.0424	
$\alpha = 5^\circ$	0.1066	0.0682	0.0628	0.0538	0.0439	0.0421	0.0407	0.0444	0.0395	0.0373	0.0395	0.0395	0.0408	
$\alpha = 7.5^\circ$	0.0964	0.0631	0.0554	0.0510	0.0399	0.0380	0.0384	0.0372	0.0384	0.0354	0.0336	0.0367	0.0381	
$\alpha = 10^\circ$	0.0894	0.0533	0.0478	0.0419	0.0353	0.0348	0.0354	0.0337	0.0348	0.0315	0.0294	0.0335	0.0340	
$\alpha = 12.5^\circ$	0.0828	0.0454	0.0448	0.0409	0.0303	0.0297	0.0313	0.0303	0.0299	0.0271	0.0271	0.0249	0.0297	
$\alpha = 15^\circ$	0.0772	0.0418	0.0449	0.0416	0.0283	0.0271	0.0283	0.0270	0.0262	0.0226	0.0226	0.0202	0.0237	
$\alpha = 17.5^\circ$	0.0730	0.0440	0.0405	0.0384	0.0208	0.0208	0.0254	0.0229	0.0243	0.0196	0.0160	0.0254	0.0244	
$\alpha = 0^\circ$	118.4°	113.0°	113.0°	124.8°	105.5°	105.5°	119.5°	119.5°	118.4°	118.4°	106.6°	106.6°	125.9°	124.8°
$\alpha = 2.5^\circ$	0.1232	0.0815	0.0750	0.0624	0.0529	0.0512	0.0492	0.0486	0.0474	0.0494	0.0456	0.0455	0.0443	
$\alpha = 5^\circ$	0.1177	0.0790	0.0715	0.0584	0.0512	0.0451	0.0453	0.0443	0.0448	0.0445	0.0474	0.0469	0.0408	
$\alpha = 7.5^\circ$	0.1167	0.0780	0.0701	0.0553	0.0541	0.0517	0.0437	0.0444	0.0426	0.0432	0.0455	0.0452	0.0393	0.0383
$\alpha = 10^\circ$	0.1143	0.0733	0.0678	0.0520	0.0550	0.0517	0.0415	0.0425	0.0408	0.0413	0.0413	0.0413	0.0354	
$\alpha = 12.5^\circ$	0.1109	0.0705	0.0678	0.0485	0.0553	0.0529	0.0393	0.0402	0.0391	0.0395	0.0443	0.0443	0.0332	0.0324
$\alpha = 15^\circ$	0.1095	0.0753	0.0662	0.0459	0.0516	0.0510	0.0374	0.0381	0.0375	0.0442	0.0441	0.0304	0.0300	
$\alpha = 17.5^\circ$	0.1061	0.0738	0.0647	0.0433	0.0517	0.0509	0.0353	0.0374	0.0364	0.0438	0.0446	0.0281		
$\alpha = 0^\circ$	118.4°	113.0°	113.0°	124.8°	105.5°	105.5°	119.5°	119.5°	118.4°	118.4°	106.6°	106.6°	125.9°	124.8°
$\alpha = 2.5^\circ$	0.1276	0.0866	0.0779	0.0646	0.0550	0.0519	0.0492	0.0499	0.0513	0.0494	0.0493	0.0492	0.0462	
$\alpha = 5^\circ$	0.1285	0.0935	0.0861	0.0701	0.0623	0.0612	0.0574	0.0559	0.0546	0.0561	0.0548	0.0539	0.0523	0.0500
$\alpha = 7.5^\circ$	0.1449	0.1013	0.0923	0.0849	0.0684	0.0613	0.0604	0.0600	0.0616	0.0608	0.0623	0.0547	0.0544	
$\alpha = 10^\circ$	0.1537	0.1101	0.1000	0.0725	0.0777	0.0751	0.0649	0.0659	0.0644	0.0677	0.0722	0.0649	0.0594	
$\alpha = 12.5^\circ$	0.1657	0.1203	0.1083	0.0853	0.0845	0.0831	0.0726	0.0723	0.0715	0.0729	0.0751	0.0729	0.0654	0.0644
$\alpha = 15^\circ$	0.1732	0.1304	0.1174	0.0915	0.0951	0.0915	0.0878	0.0877	0.0875	0.0879	0.0875	0.0856	0.0794	0.0693
$\alpha = 17.5^\circ$	0.1804	0.1400	0.1273	0.0929	0.1007	0.0985	0.0854	0.0854	0.0847	0.0876	0.0906	0.0899	0.0777	0.0759
$\alpha = 0^\circ$	169.5°	164.5°	164.5°	176.3°	157.0°	157.0°	170.9°	170.9°	169.5°	169.5°	158.0°	158.0°	177.3°	176.3°
$\alpha = 2.5^\circ$	0.1294	0.0874	0.0811	0.0645	0.0568	0.0559	0.0540	0.0536	0.0533	0.0529	0.0519	0.0492	0.0486	0.0494
$\alpha = 5^\circ$	0.1459	0.0951	0.0889	0.0732	0.0643	0.0624	0.0608	0.0593	0.0580	0.0591	0.0581	0.0573	0.0552	0.0540
$\alpha = 7.5^\circ$	0.1578	0.1057	0.0985	0.0840	0.0711	0.0702	0.0692	0.0680	0.0673	0.0680	0.0677	0.0678	0.0650	0.0658
$\alpha = 10^\circ$	0.1644	0.1149	0.1000	0.0744	0.0777	0.0723	0.0673	0.0673	0.0670	0.0752	0.0754	0.0754	0.0729	
$\alpha = 12.5^\circ$	0.1713	0.1203	0.1083	0.0866	0.0826	0.0824	0.0726	0.0723	0.0715	0.0729	0.0751	0.0729	0.0684	0.0681
$\alpha = 15^\circ$	0.1794	0.1422	0.1324	0.1121	0.0930	0.0926	0.0896	0.0894	0.0892	0.0910	0.0915	0.0915	0.0847	0.08

Table 16(p/p₀) FOR MODELS 32 AND 33 AT ZERO ANGLE OF ATTACK ALONESPHERICALLY-BLUNTED TANGENT OGIVE

f	2
2/r	0.279
d/D	0.300
θ	
δ	
R/D	5.214

$$C_{D, P(\alpha=0)} = 0.1625$$

MODEL NO.	33	32	33	32	33	32	33	32	33	32	33	32	33	32	33	32
X	79.54	79.15	77.26	66.79	63.75	58.95	57.16	55.43	53.53	49.66	40.60	32.14	20.28	10.18		
Y	2.21	2.96	4.95	8.96	9.94	11.45	11.93	12.44	12.92	13.93	15.95	17.47	18.95	19.73		

$$\alpha = 0^\circ \quad 0.2142 \quad 0.2131 \quad 0.1097 \quad 0.0614 \quad 0.0608 \quad 0.0522 \quad 0.0532 \quad 0.0548 \quad 0.0519 \quad 0.0472 \quad 0.0418 \quad 0.0364 \quad 0.0303 \quad 0.0259$$

Table 17.(p/p₀) FOR MODELS 34 AND 35 AT ZERO ANGLE OF ATTACK ALONESPHERICALLY-BLUNTED TANGENT OGIVE

f	2
2/r	0.594
d/D	0.600
θ	
δ	
R/D	7.625

$$C_{D, P(\alpha=0)} = 0.2920$$

MODEL NO.	35	34	35	34	35	34	35	34	35	34	35	34	35	34	35	34
X	79.75	79.60	79.90	76.03	74.70	71.48	69.46	67.24	65.06	60.25	49.2	38.94	24.69	2.33		
Y	2.28	2.96	5.08	8.96	9.97	11.43	11.94	12.40	12.93	13.95	15.97	17.44	18.95	3.62		

$$\alpha = 0^\circ \quad 0.2144 \quad 0.2155 \quad 0.2144 \quad 0.1558 \quad 0.1086 \quad 0.0534 \quad 0.0454 \quad 0.0448 \quad 0.0423 \quad 0.0357 \quad 0.0327 \quad 0.0274 \quad 0.0226$$

LIST OF SYMBOLS

$C_{D_p}(\alpha=0^\circ)$	forebody pressure drag coefficient at zero angle of attack. Pressure drag/ $(q\pi D^2/4)$
D	maximum body diameter
d	diameter of nose blunting (see Fig 2)
f	forebody fineness ratio L/D
L	overall forebody length
p	surface pressure
p_0	freestream stagnation pressure
q	dynamic pressure
R	radius of tangent ogive profile (see Fig 2)
r	body radius at junction between spherical nose blunting and forebody profile (see Fig 2)
X	axial distance along body centre line (positive upstream)
Y	radial distance of body surface from X axis
α	body angle of attack to freestream
θ_1 and θ_2	angles between conical sections and X axis (see Fig 2)
ϕ	effective pressure hole roll angle. Set in range of 0 to 90 degrees as model and pressure symmetry either side of pitch plane assumed. $\phi = 0$ is most leeward generator on model surface as α increases positively.

REFERENCES

<u>No.</u>	<u>Author</u>	<u>Title, etc</u>
1	-	Foredrag of spherically blunted cones in supersonic flow. Engineering Sciences Data Unit Item 68021 (1968)
2	-	Forebodies of fineness ratio 1.0, 1.5 and 2.0, having low values of wave drag coefficient at transonic speeds. Engineering Sciences Data Unit Item 79004 (1979)
3	-	Axial pressure coefficient distributions for forebodies of fineness ratio 1.0, 1.5 and 2.0 at zero incidence in transonic flow. Engineering Sciences Data Unit Item 80008 (1980)
4	-	Pressure drag of blunt forebodies at zero incidence for Mach numbers up to 4. Engineering Sciences Data Unit Item 80021 (1980)
5	-	The pressure distribution at zero incidence over selected families of blunt axisymmetric forebodies. Engineering Sciences Data Unit Item 82018 (1982)
6	-	Pressure drag of spherically-blunted conical forebodies at zero incidence for Mach numbers of 3 and above. Engineering Sciences Data Unit Item 82028 (1982)
7	L.C. Ward	Measurements of pressure distributions and pressure drags at zero incidence on both blunt and sharp axisymmetric forebodies at a Mach number of 3. ARC Reports and Memoranda No.3849 (1976)

General arrangement

Adaptor and 'O'ring sealing details

Proprietary trade name - formulation R 3603

Fig 1 General arrangement of model mounting on the wind-tunnel sting,
and details of 'O' ring adaptor

Fig 1

Fig 2

Fig 2 Geometrical nomenclature used for the forebodies.
Cylindrical afterbodies are not shown

REPORT DOCUMENTATION PAGE

Overall security classification of this page

UNLIMITED

As far as possible this page should contain only unclassified information. If it is necessary to enter classified information, the box above must be marked to indicate the classification, e.g. Restricted, Confidential or Secret.

1. DRIC Reference (to be added by DRIC)	2. Originator's Reference RAE TM Aero 1985	3. Agency Reference N/A	4. Report Security Classification/Marking UNLIMITED
5. DRIC Code for Originator 7673000W	6. Originator (Corporate Author) Name and Location Royal Aircraft Establishment, Farnborough, Hants, UK		
5a. Sponsoring Agency's Code N/A	6a. Sponsoring Agency (Contract Authority) Name and Location N/A		
7. Title Experimental pressure distributions on axisymmetric forebodies at Mach 3 and angles of attack up to 17.5 degrees			
7a. (For Translations) Title in Foreign Language			
7b. (For Conference Papers) Title, Place and Date of Conference			
8. Author 1. Surname, Initials Ward, L.C.	9a. Author 2	9b. Authors 3, 4	10. Date November 1983 Pages 25 Refs. 7
11. Contract Number N/A	12. Period N/A	13. Project	14. Other Reference Nos.
15. Distribution statement (a) Controlled by – Head of Aerodynamics Department, RAE (b) Special limitations (if any) –			
16. Descriptors (Keywords)		(Descriptors marked * are selected from TEST) Blunt bodies*. Bodies of revolution*. Pressure measurement*. Supersonic flow*.	
17. Abstract Tabulations of experimental surface pressure distributions on both blunt and sharp axisymmetric forebodies are presented for a freestream Mach number of 3.0 and body angles of attack up to 17.5 degrees. The experimental details are described, but no analysis of the resultant data has been undertaken.			

END

FILMED

6-84

DTIC