					(79)
Reg. No					

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Sixth Semester

18EIC306T - DISCRETE TIME SIGNAL PROCESSING

(For the candidates admitted during the academic year 2018-19 to 2021-22) OPEN BOOK EXAMINATION

Note:

i. Specific approved THREE text books (Printed or photocopy) recommended for the course.

ii	. Handwritten class notes (certified by the fac	culty handling the course / Head of the Departn	nent).		
Time	Max. Marks: 100				
0.		Marks BI		CO	
1 4.	(a) Determine the 8 point DFT using Decimation- in- Time (DIT) algorith (b) Compare DFT and FFT with an examp	of a sequence (n) = {1,1,1,1,1,1,1,1} hm. [14 Marks] ble [4 Marks]	18-	3	1
• • • • • • • • • • • • • • • • • • •	The DFT of the four point sequence $x(n) = (A) \{6,-2+2j-2,-2-2j\}$ (C) $\{6,-2+2j,-2,-2-2j\}$	{0,1,2,3} is (B) {6,-2-2j,2,-2+2j} (D) {6,-2-2j,-2,-2+2j}	1	1	1
iii.	The representation of discrete-t	ime convolution is denoted by	1	2	1
	(A) $x[n] + h[n]$ (C) $x[n] * h[n]$	(B) $x[n] - h[n]$ (D) $x[n] + h[n]$	12		
2 1	(a) Obtain the direct form I and direct form $1 + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.$	II realization for the system $y(n) = -0.1(n - 6x(n-2))$. [12 Makrs]	18	' 3 2	2
(ii	(b) Write the advantages and disadvantages	s of digital filters. [6 Marks]		3	
_ii.	The duration of the unit sample response of (A) Finite (C) Impulse	f a digital filter is (B) Infinite (D) Zero	1	1	2
iïi.	For an analog LTI system to be stable, the p (A) Right half of s-plane (C) On the imaginary axis	(B) Left half of s-plane (D) At origin	1	2	2
3 1.	(a) Determine the direct form realization of $4z^{-3} + 5z^{-4}$	of system function $H(z) = 1 + 2z^{-1} - 3z^{-2} -$	18	4	,3
9	Determine the cascade form realization $+z^{-1}-z^{-2}$)	of system function $H(z) = (1 + 2z^{-1} - z^{-2})(1$			
ii.	FIR stands for(A) Finite Impulse Response (C) Finite Impedance Response	(B) Infinite Input Response(D) Finite Impulse realization	1	1	3
jii.	FIR filter is also called (A) Recursive filter	(B) Lower resistance	1	1	3
4	(C) Higher resistance (a) Illustrate the architecture of TMS320C5 (b) List the six major features of digital sign		18	4	4 \
milit.	an analog signal (A) Signal distortion	rate conversion by converting the signal into (B) Quantization effects	1	1	4
	(C) Signal distortion & Quantization effects	(D) New sampling rate can be arbitrarily selected			

2.37	is the process of increa	sing the sampl	ling rate by a factor I	1	1	4	
$\overline{(A)}$) Multirate signal	-) Sampling rate conversion				
(C)) Decimation	(D) Interpolation				
5 /i.	Design the discrete-time mode model structure.	ls using the Al	R Model and MA model and illustrate th	1e	18	4	5
بننر	method is not used for i	mplementing a	n FIR system		1	1	5
D.	(A) Parallel form		(B) Direct form				
	(C) Cascade form		(D) Lattice structure				
C iii.	What is the node that replace th	e adders in the	signal flow graph?		1	1	5
	(A) Source node		(B) Sink node				
	(C) Branch node		(D) Summing node		14		
بند 6 .	Determine the circular convoluusing	tion of the 2 se	equences $x(n) = \{1,2,2,1\}$, $h(n) = \{1,2,3,1\}$	[}	-18	3	1
(1)	(a) concentric circle method(b) Matrix method	[14 Marks] [4 Marks]			4	3	1
ii	-If x(n) and X(k) are an N-point	DFT pair, then	X(k+N) is		1	1	1
b	(A) X(-k)	1 ,	(B) -X(k)				
	(C) X(k)		(D) X(k-1)				
C. iii:	If X(k) is the N-point DFT of a	sequence x(n)	, then the DFT of $x^*(n)$ is		1	1	1
	$(A) \overset{\circ}{X^*}(k)$	•	(B) X*(N-k)				
	(C) X(N-k)		(D) $X(N+k)$		134		
7	(a) Illustrate any one practical a	pplication of I	OSP in speech processing [14 Marks]		_18_	3	3
63	(b) Summarize the advantages				4	3	3
νiï.	is the Butter worth p	olynomial of o	rder 1		1	1	3
D .	(A) (s+1)		(B) (s-1)				
	(C) $(s+2)$		(D) (s-2)				
· idi.	The poles of Butter worth filter	lie on			1	1	3
	(A) Hyperbola	-	(B) Parabola				
	(C) Circle		(D) Ellipse				