

Figure 49.2: The ellipsoid $J(x,y) = \frac{3}{2}x^2 + 2xy + 3y^2 - 2x + 8y$.

Figure 49.3: The level curves of $J(x,y) = \frac{3}{2}x^2 + 2xy + 3y^2 - 2x + 8y$ and the associated gradient vector field $\nabla J(x,y) = (3x + 2y - 2, 2x + 6y + 8)$.

parameter, we pick a starting point, say $u_k = (-2, -2)$, and calculate the search direction $w_k = \nabla J(-2, -2) = (-12, -8)$. Note that

$$\nabla J(x,y) = (3x + 2y - 2, 2x + 6y + 8) = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 2 \\ -8 \end{pmatrix}$$

is perpendicular to the appropriate elliptical level curve; see Figure 49.3. We next perform the line search along the line given by the equation -8x + 12y = -8 and determine ρ_k . See Figures 49.4 and 49.5.