Análise Crítica das Transformações – Atividade 1

Aluno: Gleysson Bettin

Disciplina: Processamento Digital de Imagens

Introdução

Esta atividade teve como objetivo aplicar técnicas fundamentais de Processamento Digital de Imagens (PDI) em imagens reais obtidas do satélite NOAA GOES-East, canal GEOCOLOR, com foco na região sul da América do Sul. As imagens, capturadas em momentos distintos, foram utilizadas para analisar os efeitos visuais e computacionais de diferentes operações de PDI, explorando desde ajustes simples até operadores lógicos e aritméticos. O processamento foi implementado em Python utilizando as bibliotecas opency-python e numpy.

Resultados e Análise por Etapa

01_gray - Conversão para Tons de Cinza

01_gray1.png / 01_gray2.png / 01_gray3.png
 Remove informações de cor, preservando apenas a intensidade luminosa. Facilita a manipulação matemática das imagens e reduz distrações visuais, permitindo focar nas diferenças de luminosidade. Em particular, a terceira imagem realça variações sutis de intensidade.

02_norm - Normalização de Intensidade

• **02_norm1.png** / **02_norm2.png** / **02_norm3.png**Ajusta a escala de intensidade para explorar toda a faixa 0–255, realçando contrastes e uniformizando a visualização. Essa etapa evidencia diferenças sutis de brilho, mesmo em áreas com iluminação desigual, melhorando a percepção de padrões na superfície.

03_bright - Ajuste de Brilho

• 03_bright1.png / 03_bright2.png / 03_bright3.png Clareamento uniforme das imagens. Destaca regiões escuras, como áreas cobertas por nuvens densas, facilitando a visualização de detalhes antes pouco perceptíveis.

04_thresh - Limiarização

• 04_thresh1.png / 04_thresh2.png / 04_thresh3.png
Transforma a imagem em preto e branco com base em um limiar fixo. Separa
regiões claras e escuras, permitindo segmentação de áreas específicas e
destacando diferenças significativas entre regiões.

05_inv - Inversão (Negativo)

• 05_inv1.png / 05_inv2.png / 05_inv3.png Inverte os tons de cinza, evidenciando padrões ocultos e transições de intensidade. Facilita a comparação visual das áreas processadas, melhorando a identificação de mudanças e detalhes antes pouco perceptíveis.

06_and - Operação Lógica AND

06_and12.png / **06_and23.png** / **06_and13.png**Mantém apenas as áreas com intensidades semelhantes entre pares de imagens.
Útil para identificar regiões estáveis ou padrões repetidos ao longo do tempo.

07_or - Operação Lógica OR

• 07_or12.png / 07_or23.png / 07_or13.png Combina áreas claras de pares de imagens, ressaltando todas as regiões onde houve alguma atividade ou variação luminosa. Amplia a percepção de regiões iluminadas.

08_xor - Operação Lógica XOR

08_xor12.png / 08_xor23.png / 08_xor13.png
 Destaca diferenças entre pares de imagens, deixando em preto as áreas inalteradas. Indicado para análise de mudanças temporais e evolução de padrões atmosféricos.

.

09_sub - Subtração

09_sub12.png / 09_sub23.png / 09_sub13.png
 Evidencia alterações entre capturas, útil para detectar deslocamento de nuvens, variações climáticas ou mudanças mais significativas na superfície.

10_Stack Horizontal

10_stack_horizontal.png

Exibe as três imagens originais lado a lado. Essa visualização facilita a comparação direta das características de cada captura, permitindo perceber rapidamente mudanças de iluminação, padrões de nuvens e movimentação atmosférica. É especialmente útil para análises temporais ou para avaliar o efeito de transformações de PDI quando aplicadas às três imagens simultaneamente.

11_Stack Vertical

11_stack_vertical.png

Exibe as três imagens empilhadas verticalmente. Esse arranjo é vantajoso para seguir a evolução de padrões de cima para baixo, permitindo avaliar mudanças sequenciais e identificar deslocamentos ou alterações em regiões específicas de forma contínua. Também facilita a correlação visual entre diferentes camadas de processamento ou intervalos de tempo.

Conclusão

O processamento sequencial das imagens satelitais permitiu observar de forma clara as alterações atmosféricas e geográficas na região analisada. Cada técnica teve um papel específico: desde a simplificação de dados (conversão para tons de cinza) até o realce de mudanças (operadores lógicos e subtração).

A escolha e o ajuste dos parâmetros — especialmente na limiarização e no brilho — influenciam significativamente o resultado final. Combinadas, essas operações oferecem um ferramental poderoso para análise visual e monitoramento de fenômenos dinâmicos.

