FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Lösungsvorschlag zum Aufgabenblatt 1

Aufgabe 1 (*). Sei $d: X \times X \to \mathbb{R}$ eine Funktion, welche

- (i) d(x,y) = 0 genau dann, wenn x = y,
- (ii) d(x,y) = d(y,x) für alle $x, y \in X$,
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ für alle $x,y,z \in X$

erfüllt. Zeigen Sie, dass d eine Metrik auf X definiert.

L"osung. Wir müssen zeigen, dass dausschließlich nicht–negative Werte annimmt. Das folgt jedoch unmittelbar aus

$$0 \stackrel{\text{(i)}}{=} d(x,x) \stackrel{\text{(iii)}}{\leq} d(x,y) + d(y,x) \stackrel{\text{(ii)}}{=} 2d(x,y).$$

///

Aufgabe 2 $(\star\star)$. Welche der nachfolgenden metrischen Räume X sind vollständig? Bitte geben Sie eine kurze Begründung.

- a) X = [0, 1] mit der Standardmetrik in \mathbb{R} .
- b) $X = \mathbb{Q}$ mit der Standardmetrik in \mathbb{R} .
- c) Die Teilmenge

$$\{(0,0)\} \cup \{(x,\sin(1/x))|x>0\} \subset \mathbb{R}^2$$

mit der Standardmetrik in \mathbb{R}^2 .

d) $X = \mathbb{R}$ mit der Metrik $d(x, y) = |\arctan x - \arctan y|$ (zeigen Sie, dass in der Tat eine solche vorliegt).

Lösung. a): Abgeschlossene Teilmengen $A \subset X$ vollständiger metrischer Räume sind vollständig. Das kann man sich kurz wie folgt überlegen: Sei $(a_n)_{n\in\mathbb{N}}\subset A$ eine Cauchy Folge. Diese hat dank der Vollständigkeit von X einen Grenzwert a. Der Grenzwert einer konvergenten Folge in einer abgeschlossenen Mengen liegt gemäß Zentralübungsaufgabe 2 auf Blatt 3 stets in dieser. Das zeigt die Vollständigkeit. Auf die Aufgabe angewandt betrachten wir also das Intervall [0,1] als abgeschlossene Teilmenge von \mathbb{R} .

- b): $\mathbb{Q} \subset \mathbb{R}$ ist natürlich nicht vollständig wie man aus der Analysis 1 weiß. Konkret kann man beispielsweise die Folge $a_n = (1+1/n)^n$ wählen, welche bekanntermaßen gegen die irrationale Zahl e konvergiert.
- c): Auch diese Menge ist nicht vollständig. Um dies einzusehen, betrachten wir die Folge

$$a_n = \begin{pmatrix} \left(\frac{\pi}{2} + 2\pi n\right)^{-1} \\ \sin\left(\frac{\pi}{2} + 2\pi n\right) . \end{pmatrix}$$

Man prüft leicht nach, dass $\lim_{n\to\infty}a_n=(0,1)$ gilt, was jedoch kein Element der Menge ist. Die Folge $(a_n)_{n\to\mathbb{N}}$ ist selbstverständlich eine Cauchy Folge, da sie konvergiert. Es ist trotzdem keine schlechte Übung dies explizit nachzuweisen. Als Tipp möchten wir Ihnen dazu die Verwendung der 1-Norm $||x||_1=|x_1|+|x_2|$ für $x=(x_1,x_2)$ empfehlen. Dieses Vorgehen ist legitim, da auf endlich-dimensionalen Räumen alle Normen äquivalent sind.

d): Zunächst überzeugen wir uns davon, dass die d eine Metrik ist. Ist d(x, y) = 0, so folgt aus der Injektivität der Arkustangens x = y. Die Symmetrie folgt aus

$$d(x, y) = |\arctan x - \arctan y| = |\arctan y - \arctan x| = d(y, x).$$

Die Dreiecksungleichung beweist man mit der Dreiecksungleichung des Betrags:

$$\begin{aligned} d(x,z) &= |\arctan x - \arctan z| \\ &= |\arctan x - \arctan y + \arctan y - \arctan z| \\ &\leq |\arctan x - \arctan y| + |\arctan y - \arctan z| \\ &= d(x,y) + d(y,z). \end{aligned}$$

Der metrische Raum (X,d) ist **nicht** vollständig. Um dies zu beweisen betrachten wir die Folge $a_n=n$ und zeigen, dass sie die Cauchy Eigenschaft besitzt. Sei dazu ein $\varepsilon>0$ vorgelegt und sei $N\in\mathbb{N}$ mit $N\geq \tan(\pi/2-\varepsilon)$. Dann gilt für $m,n\geq N$

$$d(x_m, x_n) = |\arctan m - \arctan n| \le \left| \frac{\pi}{2} - \arctan N \right| \le \varepsilon,$$

da der Arkustangens monoton wachsend ist und $0 \le \arctan x \le \pi/2$ für alle $x \in [0, \infty)$. Folglich ist $(a_n)_{n \in \mathbb{N}}$ eine Cauchy Folge, welche aber in \mathbb{R} nicht konvergiert. Um dies einzusehen, nehmen wir an, dass $a_n \to a \in \mathbb{R}$. Es gibt ein $N \in \mathbb{N}$ und ein $\varepsilon > 0$, sodass $\arctan n \ge \arctan n + \varepsilon$ für alle $n \ge N$. Damit folgt $d(a_n, a) = |\arctan n - \arctan a| \ge \varepsilon$. Dies widerspricht der behaupteten Konvergenz.

Aufgabe 3 (*). Sei (M,d) ein metrischer Raum und $X,Y\subset M$ nicht-leer. Zeigen Sie, dass

$$X, Y$$
 offen \iff $X \times Y$ offen.

Lösung. "\imp": Es sei $(x,y) \in X \times Y$. Dann gibt es ein $\varepsilon_x > 0$, sodass $B_{\varepsilon_x}(x) \subset X$ sowie ein $\varepsilon_y > 0$, sodass $B_{\varepsilon_y}(y) \subset Y$ um y. Sei nun $\varepsilon = \min\{\varepsilon_x, \varepsilon_y\}$, dann gilt $B_{\varepsilon}(x,y) \subset X \times Y$.

"\(\iff \)": Sei $(x,y) \in X \times Y$ und $\varepsilon > 0$, sodass $B_{\varepsilon}(x,y) \subset X \times Y$ und damit gilt $B_{\varepsilon}(x) \subset X$ und $B_{\varepsilon}(y) \subset Y$.

Aufgabe 4 $(\star\star)$. Zeigen Sie, dass eine Cauchy Folge $(a_n)_{n\in\mathbb{N}}$ im metrischen Raum (X,d) genau dann konvergiert, wenn sie eine konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ besitzt.

Lösung. Der Beweis läuft analog zur Analysis 1.

" \Longrightarrow ": Sei $(a_{n_k})_{k\in\mathbb{N}}$ die konvergente Teilfolge mit Grenzwert a. Wähle nun ein $\varepsilon>0$. Gemäß Cauchy Eigenschaft gibt es ein $N\in\mathbb{N}$, sodass $d(a_n,a_m)\leq \varepsilon/2$ für alle $m,n\geq N$. Ferner impliziert die Konvergenz der Teilfolge, dass es ein $K\in\mathbb{N}$ gibt, sodass $d(a_{n_k}-a)\leq \varepsilon/2$ für alle $k\geq K$. Damit gilt nun für alle $n\geq N$ und $k\geq \max\{N,K\}$, dass

$$d(a_n,a) \le d(a_n,a_{n_k}) + d(a_{n_k},a) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

wobei wir $n_k \ge k \ge N$ benutzt haben.

"⇐": trivial. //,

Aufgabe 5 (***). Untersuchen Sie, ob die folgenden Funktionen $f_{1,2}: \mathbb{R}^2 \to \mathbb{R}$ stetig im Nullpunkt fortgesetzt werden können und geben sie gegebenenfalls diese Fortsetzung an:

a
$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, b) $f_2(x,y) = \frac{2x^2y^2}{x^2 + y^2}$.

Lösung. a) Es ist $f_1(x,0) = 1$ und $f_2(0,y) = -1$ für alle $x,y \neq 0$. Damit kann f nicht stetig in 0 sein.

b) Mit der beliebten Abschätzung $|x|, |y| \le |(x, y)|$ erhalten für $(x, y) \ne (0, 0)$

$$|f_2(x,y)| \le \frac{|(x,y)|^4}{2|(x,y)|^2} = \frac{1}{2}|(x,y)|$$

und damit $f_2(x_n, y_n) \to 0$ für alle Nullfolgen $(x_n, y_n)_{n \in \mathbb{N}}$. Die stetige Fortsetzung lautet

$$\tilde{f}_2(x,y) = \begin{cases} \frac{2x^2y^2}{x^2+y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

///

Aufgabe 6 (*). Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \exp\left(-\frac{y^3}{x^2}\right) & \text{für } x \neq 0, \\ 1 & \text{für } x = 0 \end{cases}$$

eingeschränkt auf eine beliebige Gerade durch den Nullpunkt stetig ist, jedoch die Funktion selbst unstetig ist.

Lösung. Geraden durch den Nullpunkt sind von der Form $\gamma: \mathbb{R} \to \mathbb{R}^2, \gamma(t) = (t, ct), c \in \mathbb{R}$. Damit folgt für $t \neq 0$

$$f(\gamma(t)) = \exp\left(-\frac{c^3t^3}{t^2}\right) = e^{-c^3t} \xrightarrow{t \to 0} 1$$

und damit die Stetigkeit von f eingeschränkt auf jede Ursprungsgerade.

Für den Unstetigkeitsbeweis betrachten wir die Kurve $\xi: \mathbb{R} \to \mathbb{R}^2$, $\xi(t) = (t^3, t^2)$, für welche wir für $t \neq 0$

$$f(\xi(t)) = \exp\left(-\frac{t^6}{t^6}\right) = e \xrightarrow{t \to 0} 1.$$

Dies genügt um die Unstetigkeit zu zeigen. Die genaue Argumentation geht wie folgt: Wäre f stetig, so gelte selbiges für $f \circ \xi$ als Komposition stetiger Funktionen. Da ξ stetig ist, muss f die Unstetigkeit verursachen.

Abbildung 1. Skizze der Kurve, welche die Unstetigkeit von f zeigt.

Aufgabe 7 (*). Berechnen Sie die Ableitungen der folgenden Funktionen:

- a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = y + 2x$
- b) $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, f(x,y) = (x^2 + y^2)^{-1/2}$ c) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy$ d) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^2 + 4y^2$

Lösung. (i):
$$\nabla f(x,y) = (2,1)$$

(ii): $\nabla f(x,y) = (x(x^2+y^2)^{-3/2}, y(x^2+y^2)^{-3/2})$

(iii):
$$\nabla f(x, y) = (y, x)$$

(iv):
$$\nabla f(x, y) = (2x, 8y)$$
 ///

Aufgabe 8 (*). Sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und $f(tx) = t^k f(x)$ für alle t > 0und $x \in \mathbb{R}^n$.

Zeigen Sie, dass $\langle \nabla f(x), x \rangle = kf(x)$ für alle $x \in \mathbb{R}^n$.

Lösung. Nach Kettenregel gilt

$$\frac{d}{dt}f(tx) = \nabla f(tx)x$$

sowie mit $f(tx) = t^k f(x)$

$$kt^{k-1}f(x)$$
.

Wertet man nun beide Gleichungen bei t = 1 aus, so folgt die Behauptung.

Aufgabe 9 $(\star\star)$.

a) Seien $g_j:\mathbb{R}\to\mathbb{R}^m,\,1\leq j\leq n$, Funktionen und definiere $f:\mathbb{R}^n\to\mathbb{R}^m$

$$f(x_1, \dots, x_n) = \sum_{j=1}^{n} g_j(x_j).$$

Zeigen Sie, dass f bei $x \in \mathbb{R}^n$ genau dann differenzierbar ist, wenn jedes g_j in x_j differenzierbar ist.

b) Bestimmen Sie die Punkte $(x,y) \in \mathbb{R}^2$, in denen die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = |x|^{3/2} + |y|^{1/2}$$

differenzierbar ist.

 $L\ddot{o}sung.$ a): Nehmen wir zunächst an, dass f differenzierbar ist. Damit existieren die partiellen Ableitungen

$$\frac{\partial f_i}{\partial x_j}(x_1, \dots, x_n) = \left(\frac{d}{dx_j}g_j(x_j)\right)_i, \qquad i = 1, \dots, m, \ j = 1, \dots, n.$$

Da demnach alle Komponenten von g_j differenzierbar sind, gilt selbiges für g_j selbst. Seien nun umgekehrt alle $g_j: \mathbb{R} \to \mathbb{R}^m, \ 1 \leq j \leq n$ differenzierbar. Wir definieren die Funktionen $\tilde{g}_j: \mathbb{R}^n \to \mathbb{R}^m, \ 1 \leq j \leq n$, durch

$$\tilde{g}_j(x_1,\ldots,x_n)=g_j(x_j).$$

Diese Funktionen \tilde{g}_j sind differenzierbar, da für $x \in \mathbb{R}^n$ und

$$J_{\tilde{g}_{j}}(x) = \begin{pmatrix} 0 & \cdots & 0 & \left(\frac{d}{dx_{j}}g(x_{j})\right)_{1} & 0 & \cdots & 0\\ 0 & \cdots & 0 & \left(\frac{d}{dx_{j}}g(x_{j})\right)_{2} & 0 & \cdots & 0\\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & 0 & \left(\frac{d}{dx_{j}}g(x_{j})\right)_{n} & 0 & \cdots & 0 \end{pmatrix}$$

gilt, dass

$$\lim_{y \to 0} \left(\tilde{g}_j(x+y) - \tilde{g}_j(x) - J_{\tilde{g}_j}(x)y \right) = \lim_{y \to 0} g_j(x_j + y_j) - g(x_j) - \frac{d}{dx_j} g(x_j) y_j = 0$$

Damit ist

$$f(x_1, \dots, x_n) = \sum_{j=1}^n \tilde{g}_j(x_1, \dots, x_n)$$

als Summe differenzierbarer Funktionen selbst differenzierbar.

b): Wir wenden Teil a) auf die gegebene Funktion an. Aus der Analysis 1 ist bekannt, dass die Funktion $\mathbb{R} \ni x \mapsto |x|^{1/2}$ bei 0 nicht reell differenzierbar ist, $\mathbb{R} \ni y \mapsto |y|^{3/2}$ jedoch sehr wohl (vgl. Abbildung 2). Es folgt mit dem vorhergegangen Aufgabenteil, dass f auf der offenen Menge

$$\mathbb{R} \setminus \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} \middle| y \in \mathbb{R} \right\}$$

differenzierbar ist.

ABBILDUNG 2. Plot der beiden Funktionen aus Aufgabe 9. Man erkennt bei der blauen Kurve deutlich den Knick bei 0.

///

Aufgabe 10 (*). Es sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

vorgelegt.

- a) Zeigen Sie, dass f partiell differenzierbar ist. Berechnen Sie die partiellen Ableitungen.
- b) Zeigen Sie, dass f in (0,0) nicht total differenzierbar ist.

Lösung. (i): Für $(x,y) \in \mathbb{R}^2 \setminus \{0\}$ erhalten wir

$$\frac{\partial f}{\partial x}(x,y) = -\frac{2x^2y}{(x^2+y^2)^2} + \frac{y}{x^2+y^2} = \frac{y(y^2-x^2)}{(x^2+y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{2xy^2}{(x^2+y^2)^2} + \frac{x}{x^2+y^2} = \frac{x(x^2-y^2)}{(x^2+y^2)^2}$$

Im Nullpunkt gilt

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h^2} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h^2} = 0$$

(ii): Es gilt $f(1/n, 1/n) = 1/2 \not\to 0$ für $n \to \infty$. Folglich ist f in 0 nicht stetig, also auch nicht total differenzierbar.

Es ist instruktiv sich Folgen zu überlegen, welche zeigen, dass die partiellen Ableitungen im Nullpunkt ebenfalls unstetig sind. \$///\$

Aufgabe 11 (**). Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2 + y^2}} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

auf ganz \mathbb{R}^2 differenzierbar ist und berechnen Sie die Ableitung.

Lösung. Für $(x,y) \neq (0,0)$ erhalten wir

$$\nabla f(x,y) = \begin{pmatrix} \frac{3x^2}{\sqrt{x^2 + y^2}} - \frac{x^4}{(x^2 + y^2)^{3/2}} \\ - \frac{x^3y}{(x^2 + y^2)^{3/2}} \end{pmatrix} = \frac{1}{(x^2 + y^2)^{3/2}} \begin{pmatrix} 2x^4 + 3x^2y^2 \\ -x^3y \end{pmatrix}.$$

Mit der mittlerweile bekannten Abschätzung $|x|, |y| \le |(x, y)|$ folgt

$$\left| \frac{3x^2}{\sqrt{x^2 + y^2}} \right| \le 3|x|$$

$$\left| -\frac{x^4}{(x^2 + y^2)^{3/2}} \right| \le |x|$$

$$\left| -\frac{x^3y}{(x^2 + y^2)^{3/2}} \right| \le |x|$$

und damit die Stetigkeit der partiellen Ableitungen auf ganz \mathbb{R}^2 . Folglich ist f total differenzierbar.

Aufgabe 12 $(\star\star)$. Sei $f:\mathbb{R}^2\to\mathbb{R}$ differenzierbar und definiere $g:\mathbb{R}\to\mathbb{R}$, g(x)=f(x,c-x), für $c\in\mathbb{R}$. Bestimmen Sie die Ableitung von g in Termen der partiellen Ableitungen von f.

Zeigen Sie, dass im Falle $\partial_x f(x,y) = \partial_y f(x,y)$ für alle $(x,y) \in \mathbb{R}^2$ eine Funktion $h : \mathbb{R} \to \mathbb{R}$ gibt, sodass

$$f(x,y) = h(x,y).$$

Lösung. Diese Aufgabe ist ähnlich zur Klausur, daher machen wir es ausführlich. Definiere $h: \mathbb{R} \to \mathbb{R}^2$,

$$h(x) = \begin{pmatrix} x \\ c - x \end{pmatrix}$$

und damit ist $g(x) = (f \circ h)(x)$. Mit der Kettenregel folgt

$$(1) \qquad \frac{d}{dx}g(x)=(\nabla f(h(x)))^T\begin{pmatrix}1\\-1\end{pmatrix}=\frac{\partial f}{\partial x}(x,c-x)-\frac{\partial f}{\partial y}(x,c-x).$$

Sei nun $(x,y) \in \mathbb{R}^2$ beliebig. Wir wählen nun c = x + y. Aus Gleichung (1) folgt nun, dass g'(x) = 0 und somit g(x) = const. Somit ist g(x) = g(x + y), also

$$f(x,y) = f(x+y,0) =: h(x+y).$$

///

Aufgabe 13 (*). Eine Funktion $f \in \mathcal{C}^2(U,\mathbb{R}), U \subset \mathbb{R}^n$ offen, heißt harmonisch, falls

$$\triangle f(x_1, \dots, x_n) = \sum_{i=1}^n \partial_i^2 f(x_1, \dots, x_n) = 0$$

für alle $(x_1,\ldots,x_n)\in U$.

Zeigen Sie, dass die nachfolgenden Funktionen harmonisch sind:

a)
$$f: \mathbb{R}^2 \setminus \{0\}$$
, $f(x,y) = \frac{1}{2} \ln(x^2 + y^2)$
b) $g: (0,\infty) \times \mathbb{R}$, $g(x,y) = \arctan(y/x)$.

$$g:(0,\infty)\times\mathbb{R},\ g(x,y)=\arctan(y/x).$$

Bestimmen Sie die Jacobi Matrix von $h:(0,\infty)\times\mathbb{R}\to\mathbb{R}^2$,

$$h(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}.$$

Lösung. Einfach nachrechnen. Zur Kontrolle: (i):

$$\frac{\partial f}{\partial x}(x,y) = \frac{x}{x^2 + y^2}, \qquad \frac{\partial^2 f}{\partial x^2}(x,y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{y}{x^2 + y^2}, \qquad \frac{\partial^2 f}{\partial y^2}(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

(ii):

$$\begin{split} \frac{\partial g}{\partial x}(x,y) &= -\frac{y}{x^2 + y^2}, \qquad \frac{\partial^2 g}{\partial x^2}(x,y) = \frac{2xy}{(x^2 + y^2)^2} \\ \frac{\partial g}{\partial y}(x,y) &= \frac{x}{x^2 + y^2}, \qquad \frac{\partial^2 g}{\partial y^2}(x,y) = \frac{-2xy}{(x^2 + y^2)^2} \end{split}$$

Damit ist

$$Dh(x,y) = \begin{pmatrix} \frac{x}{x^2 + y^2} & \frac{y}{x^2 + y^2} \\ -\frac{y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{pmatrix}.$$

Aufgabe 14 $(\star\star)$. Bestimmen Sie mit Beweis die Stellen, an denen $f:\mathbb{R}^2\to\mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^3 + 2y^4}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

total differenzierbar ist.

Lösung. Wir berechnen zunächst die partiellen Ableitungen für $(x,y) \neq (0,0)$:

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x^2}{x^2 + y^2} - \frac{2x(x^3 + 2y^4)}{(x^2 + y^2)^2}$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{8y^3}{x^2 + y^2} - \frac{2y(x^3 + 2y^4)}{(x^2 + y^2)^2}$$

Aus deren Stetigkeit folgt die total Differenzierbarkeit abseits des Ursprungs. Im Ursprung haben wir

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^3}{h^3} = 1$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{2h^4}{h^3} = 0.$$

Betrachten wir nun die Richtungsableitung in Richtung $v = \frac{1}{\sqrt{2}}(1,1)$, so folgt

$$D_v f(0,0) = \lim_{h \to 0} \frac{f(h/\sqrt{2}, h/\sqrt{2}) - f(0,0)}{h} = \lim_{h \to 0} \frac{h^3/2^{3/2} + h^4/2}{h^2} = 0$$

im Widerspruch zu $\langle \nabla f(0,0), v \rangle = 1/\sqrt{2}$.

Aufgabe 15 (**). Für $n \in \mathbb{N}$ sei die Funktion $f : \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x) = \exp(|x|)x$$

gegeben. Begründen Sie kurz, dass f auf $\mathbb{R}^n \setminus \{0\}$ differenzierbar ist und bestimmen Sie die Jacobi–Matrix $J_f(x)$.

Lösung. Für $i \neq j$ gilt

$$\frac{\partial f_i}{x_j}(x) = \exp\left(\sqrt{x_1^2 + \dots + x_n^2}\right) \frac{x_i x_j}{\sqrt{x_1^2 + \dots + x_n^2}} = \frac{x_i x_j \exp(|x|)}{|x|}$$

und für i = j

$$\frac{\partial f_i}{x_i}(x) = \exp\left(\sqrt{x_1^2 + \dots + x_n^2}\right) \frac{x_i^2}{\sqrt{x_1^2 + \dots + x_n^2}} + \exp\left(\sqrt{x_1^2 + \dots + x_n^2}\right)$$
$$= \frac{\exp(|x|)x_i^2}{|x|} + \exp(|x|)$$

Da die partiellen Ableitungen von f auf $\mathbb{R}^n \setminus \{0\}$ stetig sind folgt, dass f dort total differenzierbar ist.

Für die Jacobi-Matrix ergibt sich

$$J_f(x) = \exp(|x|) \begin{pmatrix} \frac{x_1^2}{|x|} + 1 & \frac{x_1 x_2}{|x|} & \frac{x_1 x_3}{|x|} & \cdots & \frac{x_1 x_n}{|x|} \\ \frac{x_1 x_2}{|x|} & \frac{x_2^2}{|x|} + 1 & \frac{x_2 x_3}{|x|} & \cdots & \frac{x_2 x_n}{|x|} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{x_1 x_n}{|x|} & \frac{x_2 x_n}{|x|} & \frac{x_3 x_n}{|x|} & \cdots & \frac{x_n^2}{|x|} + 1 \end{pmatrix}.$$

///

Aufgabe 16 $(\star\star)$. Sei $f:\mathbb{R}^6\to\mathbb{R}^3$ definiert durch $f(x,y)=x\times y$ mit dem gewöhnlichen Kreuzprodukt.

Zeigen Sie, dass f differenzierbar ist und bestimmen Sie die Ableitung.

Lösung. Wir schreiben $X=(x_1,x_2,x_3)$ und $y=(y_1,y_2,y_3)$. Berechnen wir zunächst $D_x f(x,y)$. Dazu bemerken wir, dass

$$f(x,y) = x \times y = \begin{pmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{pmatrix} x$$

und folglich

$$D_x f(x,y) = \begin{pmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{pmatrix}.$$

Für $D_y f(x, y)$ benutzen wir, dass $x \times y = -y \times x$ und damit $D_y f(x, y) = -D_x f(y, x)$. Insgesamt ergibt sich also die Jacobi Matrix

$$Df(x,y) = (D_x f(x,y) \quad D_y f(x,y)) = \begin{pmatrix} 0 & y_3 & -y_2 & 0 & -x_3 & x_2 \\ -y_3 & 0 & y_1 & x_3 & 0 & -x_1 \\ y_2 & -y_1 & 0 & -x_2 & x_1 & 0 \end{pmatrix}.$$

Wir zeigen abschließend, dass dies in der Tat die Ableitung von f ist. Dazu sei zunächst bemerkt, dass für $h=(h_1,\ldots,h_6)$ wir $h_x=(h_1,h_2,h_3)$ sowie $h_y=(h_4,h_5,h_6)$ einführen und mit der Linearität des Kreuzprodukts

$$f((x,y) + h) - f(x,y) = f(x + h_x, y + h_y) - f(x,y) = (x + h_x) \times (y + h_y) - x \times y$$

= $h_x \times y + x \times h_y + h_x \times h_y$

erhalten. Andererseits gilt

$$Df(x,y)h = \begin{pmatrix} y_3h_2 - y_2h_3 - x_3h_5 + x_2h_6 \\ -y_3h_1 + y_1h_3 + x_3h_4 - x_1h_6 \\ y_2h_1 - y_1h_2 - x_2h_4 + x_1h_5 \end{pmatrix} = h_x \times y + x \times h_y,$$

sodass $f((x,y)+h)-f(x,y)-Df(x,y)h=h_x\times h_y$. Benutzt man nun den aus der gymnasialen Oberstufe bekannten Zusammenhang zusammen mit der bekannten Abschätzung $|x|,|y| \leq |(x,y)|$, so erhält man

$$|x \times y| = |x||y|\sin(\angle(x,y)) \le |x||y| \le |(x,y)|^2$$

und folglich

$$\lim_{h \to 0} \frac{|f((x,y)+h) - f(x,y) - Df(x,y)h|}{|h|} = \lim_{h \to 0} \frac{|h_x \times h_y|}{|h|} \le \lim_{h \to 0} |h| = 0.$$

Aufgabe 17 (*). Gegeben seien die folgenden Funktionen $f : \mathbb{R}^2 \to \mathbb{R}$. Bestimmen Sie die Punkte an denen diese differenzierbar sind. Begründen Sie Ihre Antwort.

a)
$$f(x,y) = xy|x-y|$$

b)

$$f(x,y) = \begin{cases} xy \sin\left(\frac{1}{x}\right) & \text{für } x \neq 0\\ 0 & \text{für } x = 0 \end{cases}$$

Lösung. a): f ist auf $\mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 \mid x=y\}$ als Komposition differenzierbarer Funktionen differenzierbar. Beachten Sie, dass die reelle Betragsfunktion abseits der 0 differenzierbar ist. Für x=y zeigen wir exemplarisch, dass die partielle Ableitung nach x nicht existiert. Das genügt für die Behauptung. Wir rechnen für $x \neq 0$

$$\frac{\partial f}{\partial x}(x,x) = \lim_{h \to 0} \frac{f(x+h,x) - f(x,x)}{h} = \lim_{h \to 0} \frac{x^2|h|}{h} = x^2 \operatorname{sgn}(h).$$

Damit ist klar, dass für $h_n=1/n$ und $\tilde{h}_n=-1/n$ der Grenzwert nicht übereinstimmt. Für x=y=0 ist f differenzierbar, da mit $h=(h_1,h_2)$

$$\frac{|f(h) - f(0,0)|}{|h|} = \frac{|h_1||h_2||h_1 - h_2|}{|h|} \le |h||h_1 - h_2| \xrightarrow{h \to 0} 0.$$

Jedoch ist zu beachten, dass $\mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 \setminus \{0\} \mid x=y\}$ nicht offen ist.

b): Die Funktion f ist auf ganz \mathbb{R}^2 differenzierbar. Wieder erfordert nur der Nullpunkt eine gesonderte Betrachtung. Es gilt für $h = (h_1, h_2)$, dass

$$\frac{|f(h_1, h_2) - f(0, 0)|}{|h|} = \frac{|h_1||h_2||\sin(1/h_1)|}{|h|} \le |h| \xrightarrow{h \to 0} 0$$

und damit ist f im Ursprung differenzierbar mit

$$Df(0,0) = (0 \ 0)$$
.

Diese Funktion ist ein Beispiel dafür, dass die Stetigkeit der partiellen Ableitungen hinreichend, jedoch **nicht notwendig**, für totale Differenzierbarkeit ist. Man überzeugt sich leicht, dass für $(x,y) \neq (0,0)$

$$\frac{\partial f}{\partial x}(x,y) = y \sin\left(\frac{1}{x}\right) - \frac{y \cos\left(\frac{1}{x}\right)}{x},$$

welche klarerweise im Ursprung unstetig ist.

Abseits des Nullpunkts ist die Funktion nicht total differenzierbar, da für fixiertes $y \neq 0$ die Funktion $x \mapsto xy\sin(1/x)$ nicht reell differnzierbar ist. Damit existiert die partielle Ableitung in x-Richtung nicht.

Wie unter a) ist die Menge $\{(x,y) \in \mathbb{R}^2 \mid x \neq 0\} \cup \{(0,0)\}$ nicht offen.

Aufgabe 18 (*). Wir betrachten die Funktion $f: A \to \mathbb{R}, A = \{(x,y) \in \mathbb{R}^2 | y \neq 0\},$

$$f(x,y) = \frac{e^x}{y}.$$

Bestimmen Sie für $k, \ell \in \mathbb{N}$ die partiellen Ableitungen $\partial_x^k \partial_y^\ell f(x,y)$ und geben Sie das Taylorpolynom zweiter Ordnung im Punkt $(a_1,a_2) \in A$ an. Hinweis: Multiplizieren Sie nicht aus.

Lösung. Man sieht leicht, dass

$$\partial_x^k\partial_y^\ell f(x,y) = \partial_x^k(e^x)\partial_y^\ell\left(\frac{1}{y}\right) = (-1)^\ell e^x\frac{\ell!}{y^{\ell+1}}.$$

Streng genommen sind die Ableitungsausagen mit vollständiger Induktion zu beweisen. Das ist aber trivial.

Für die Taylorentwicklung ergibt sich

$$T_{2}f((x,y);a) = f(a) + \langle \nabla f(a), ((x,y) - a) \rangle + \frac{1}{2}((x,y) - a)^{T}H_{f}(a)((x,y) - a)$$

$$= \frac{e^{a_{1}}}{a_{2}} + \left(\frac{e^{a_{1}}}{a_{2}} - \frac{e^{a_{1}}}{a_{2}^{2}}\right) \begin{pmatrix} x - a_{1} \\ y - a_{2} \end{pmatrix}$$

$$+ \frac{1}{2}(x - a_{1} \quad y - a_{2}) \begin{pmatrix} \frac{e^{a_{1}}}{a_{2}} & -\frac{e^{a_{1}}}{a_{2}^{2}} \\ -\frac{e^{a_{1}}}{a_{2}^{2}} & \frac{2e^{a_{1}}}{a_{2}^{2}} \end{pmatrix} \begin{pmatrix} x - a_{1} \\ y - a_{2} \end{pmatrix}.$$

///

Aufgabe 19 (*). Bestimmen Sie das Taylorpolynom zweiter Ordnung der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \cos(x+y)\cos(x-y)$$

im Entwicklungspunkt (0,0).

 $\mbox{\it L\"osung.}$ Es ist $\cos(x) = 1 - x^2/2 + \mathcal{O}(x^4)$ und damit

$$\cos(x+y)\cos(x-y) = \left(1 - \frac{(x+y)^2}{2} + \cdots\right) \left(1 - \frac{(x-y)^2}{2} + \cdots\right).$$

Ausmultiplizieren und vernachlässigen Terme von Ordnung 3 und höher liefert

$$T_2 f((x,y);(0,0)) = 1 - x^2 - y^2.$$

///