Additional Proof Techniques and Applications CS 2LC3

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

Additional Proof Techniques

- When dealing with proofs of boolean expressions, our equational logic suffices.
- When dealing with other domains of interest (e.g. integers, sequences, or trees), where we use inductively defined objects, partial functions and the like, a few additional proof techniques become useful.
- In this section, we introduce these techniques.
- In doing so, we can begin looking at the relation between formal and informal proofs.

Assuming the Antecedent

- A common practice in mathematics is to prove an implication $P \implies Q$ by assuming the antecedent P and proving the consequent Q.
- By "assuming the antecedent" we mean thinking of it, momentarily, as an axiom and thus equivalent to true . In the proof of consequent Q, each variable in the new axiom P is treated as a constant

Theorem ((Extended) Deduction Theorem)

Suppose adding P_1, \ldots, P_n as axioms to propositional logic, with the variables of the P_i considered to be constants, allows Q to be proved. Then $P_1 \wedge \ldots \wedge P_n \implies Q$ is a theorem.

Proof By Case Analysis

- A proof of P (say) by case analysis proceeds as follows.
- Find cases (boolean expressions) Q and R (say) such that $Q \vee R$ holds.
- Then show that P holds in each case: $Q \Longrightarrow P$ and $R \Longrightarrow P$.
- One could have a 3-case analysis, or a 4-case analysis, and so on; the disjunction of all the cases must be true and each case must imply P.

```
Prove: S
By cases: P, Q, R

(proof of P \lor Q \lor R —omitted if obvious)

Case P: (proof of P \Rightarrow S)

Case Q: (proof of Q \Rightarrow S)

Case R: (proof of R \Rightarrow S)
```

Proof By Mutual Implication

- A proof by *mutual implication* of an equivalence $P \equiv Q$ is performed as follows:
- ullet To prove $P\equiv Q$, prove $P\implies Q$ and $Q\implies P$.
- Such a proof rests on theorem (3.80), which we repeat here:

$$(p \implies q) \land (q \implies p) \equiv (p \equiv q).$$

Proof By Contradiction

- The formal basis: Theorem (3.74), $p \implies false \equiv \neg p$.
- Hence by substitution p := ¬p, we have proof by contradiction, i.e.

$$\neg p \implies \textit{false} \equiv p.$$

 Proofs by contradiction cannot be used as basis for constructing algorithms. They usually state existence of some entity or property.

Proof by Contrapositive

- An implication $P \implies Q$ is sometimes proved as follows.
- First assume P; then prove Q by contradiction, i.e. assume $\neg Q$ and prove false.
- Such a proof is not as clear as we might hope, and there is a better way:
- **Proof method:** Prove $P \implies Q$ by proving its contrapositive $\neg Q \implies \neg P$. (see (3.61)).

Applications

- Statement in English: If Joe fails to submit a project in course CS414, then he fails the course. If Joe fails CS414, then he cannot graduate. Hence, if Joe graduates, he must have submitted a project.
- Formalisation:

s: Joe submits a project in CS414.

f: Joe fails CS414.

g: Joe graduates.

$$F0: \neg s \implies f, F1: f \implies \neg g, C: g \implies s.$$

We want $F0 \wedge F1 \implies C$., i.e.

$$(\neg s \implies f) \land (f \implies \neg g) \implies (g \implies s).$$

Proof:

$$(\neg s \Rightarrow f) \land (f \Rightarrow \neg g)$$

$$\Rightarrow \quad \langle \text{Transitivity of } \Rightarrow (3.82a) \rangle$$

$$\neg s \Rightarrow \neg g$$

$$= \quad \langle \text{Contrapositive } (3.61) \rangle$$

$$q \Rightarrow s$$

- Value v is in b[1..10] means that if v is in b[11..20] then it is not in b[11..20] .
- Formalization

$$x$$
: v is in $b[1..10]$
 y : v is in $b[11..20]$
Hence: $x \equiv y \implies \neg y$. WE simplify it:
 $x \equiv y \Rightarrow \neg y$
 $y \equiv \neg y \Rightarrow \neg y$
 $y \equiv \neg y \Rightarrow \neg y \Rightarrow \neg y$
 $y \equiv \neg y \Rightarrow \neg$

• Back to English: "v is in b[1..10] means that it is not in b[11..20]".

- Consider the following, which is a simplification of a situation in Shakespeare's Merchant of Venice.
- Portia has a gold casket and a silver casket and has placed a picture of herself in one of them.
- On the caskets, she has written the following inscriptions:
 Gold: The portrait is not in here.
 Silver: Exactly one of these inscriptions is true.
- Portia explains to her suitor that each inscription may be true
 or false, but that she has placed her portrait in one of the
 caskets in a manner that is consistent with this truth or falsity
 of the inscriptions.
- If he can choose the casket with her portrait, she will marry him.
- The problem for the suitor is to use the inscriptions (although they could be true or false) to determine which casket contains her portrait.

• Formalization. Variables:

gc: The portrait is in the gold casket.

sc: The portrait is in the silver casket.

g: The portrait is not in the gold casket.

(This the inscription on the gold casket.)

s: Exactly one of g and s is true.

(This the inscription on the silver casket.)

• Facts:

F0:
$$gc \equiv \neg sc$$

F1: $g \equiv \neg gc$
F2: $s \equiv (s \equiv \neg g)$

Solution:

$$s \equiv s \equiv \neg g$$

$$= \langle \text{Symmetry of} \equiv (3.2) -\text{so } \neg g \equiv s \equiv s \equiv \neg g \rangle$$

$$\neg g$$

$$= \langle F1; \text{ Double negation } (3.12) \rangle$$

$$gc$$