Language & Logic 2017/18

Exercise Class 2 – Solutions Simple Proofs in Propositional Logic

- 1. We identify the following atomic propositions:
 - P = Phillip watches football
 - Q = Quinton watches football
 - R = Roger watches hockey

So the argument is:

$$P \wedge Q, Q \rightarrow R : R$$

A proof of validity is:

- 2. The argument is:

$$P,Q,R : P \wedge (Q \wedge R)$$

A proof of validity is:

- 1. Q Premise
 {1}

 2. R Premise
 {2}

 3. $Q \wedge R$ \wedge -Introduction_{1,2}
 {1,2}

 4. P Premise
 {4}

 5. $P \wedge (Q \wedge R)$ \wedge -Introduction_{4,3}
 {1,2,4}
- 3. The argument is:

$$P \wedge \neg Q, R \rightarrow Q, \neg R \rightarrow Z : Z$$

A proof of validity is:

1. $P \wedge \neg Q$ Premise {1} $2. \neg Q$ \land -Elimination₁ {1} 3. $R \rightarrow Q$ Premise {3} Modus Tollens_{3,2} $4. \neg R$ $\{1,3\}$ 5. $\neg R \rightarrow Z$ Premise **{5**} 6. ZModus Ponens_{5,4} $\{1,3,5\}$ Language & Logic 2017/18

4. The argument is:

$$R, (P \to Q) \land (Q \to P), Q \to Z, R \to P \; : \; Z$$

A proof of validity is:

1.	R	Premise	$\{1\}$
2.	$R \to P$	Premise	{2}
3.	P	$Modus Ponens_{1,2}$	$\{1,\!2\}$
4.	$(P \to Q) \land (Q \to P)$	Premise	$\{4\}$
5.	$P \to Q$	\wedge -Elimination ₄	$\{4\}$
6.	Q	Modus Ponens $_{5,3}$	$\{1,2,4\}$
7.	Q o Z	Premise	{8}
8.	Z	Modus Ponens _{7,6}	$\{1,2,4,8\}$

5. The argument is:

$$\neg P \rightarrow \neg Q, P \rightarrow Z, \neg \neg Q \; : \; Z$$

A proof of validity is:

1.	$\neg P \rightarrow \neg Q$	Premise	$\{1\}$
2.	$\neg \neg Q$	Premise	{2}
3.	$\neg \neg P$	$Modus Tollens_{1,2}$	$\{1,\!2\}$
4.	P	Double Negative Elimination ₃	$\{1,\!2\}$
5.	$P \to Z$	Premise	$\{5\}$
6.	Z	Modus Ponens _{5,4}	$\{1,2,5\}$