

Fachhochschule Köln Cologne University of Applied Sciences

Campus Gummersbach Fakultät für Informatik und Ingenieurwissenschaften

Verbundstudiengang Wirtschaftsinformatik

Masterthesis

Konzepte der Nebenläufigkeit unter Android

Prüfer: Prof. Dr. Erich Ehses Zeitprüfer: Prof. Dr. Frank Victor vorgelegt am: 12. November 2015 von cand.: Stephan Wagner

aus: Overath

Telefon-Nr.: +49-176-80007570

Matrikel-Nr.: 1106011828

E-Mail-Adresse: stephan.wagner.mi738@gmail.com

Zusammenfassung

Diese Thesis behandelt das Thema "Konzepte der Nebenläufigkeit unter Android". Darin wird zunächst als Einführung in die Thematik, die Nebenläufigkeit allgemein mit ihren unterschiedlichen Ausprägungen (Prozess-/Threadebene) erläutert und die Risiken die mit Nebenläufigkeit einhergeht skizziert. Dabei ist ein besonders wichtiger Punkt der Botschaftenaustausch, der mittels unterschiedlicher Techniken realisierbar ist. Auch hier birgt jede Technologie ihre individuellen Vor- und Nachteile. Die Nebenläufigkeit unter Android unterliegt einigen Besonderheiten, die sich teilweise aus den Restriktionen des Betriebssystems ergeben, aber auch aus den Anforderungen für die Android Applikationsentwicklung, die der StyleGuide vorgibt. So ist die grundsätzliche Anforderung, dass Applikationen ansprechbar bleiben. Eine Applikation, insbesondere eine Gui Applikation sollte somit beim Start von Operationen weder blockieren oder nicht mehr auf Benutzereingaben reagieren. Technisch bedeutet dies, dass zeitaufwändige Operationen nie auf dem Main Thread der Applikation stattfinden dürfen. Stattdessen müssen derartige Operationen in Hintergrundthreads ausgelagert werden. Im Kapitel 2 werden hierzu drei unterschiedliche Konzepte an Hand konkreten Beispielimplementierungen vorgestellt und in der jeweiligen Funktionsweise analysiert.

- Java Concurrency nach Java SE
- Android Concurrency aus dem Android SDK
- RXJava Framework

Die aus der technischen Analyse gewonnenen Erkenntnisse werden in Kapitel 3 genutzt um Chancen und Risiken der einzelnen Konzepte zu diskutieren. Um die Ergebnisse aus dem Diskurs für zukünftige Entscheidungsfindungen zu Rate ziehen zu können fließen die aus der Detailanalyse gewonnenen Ergebnisse in eine Szenarien basierte Analyse ein, um daraus Anhaltspunkte für den sinnvollen Einsatz der Konzepte abzuleiten.

Inhaltsverzeichnis

Ab	bbildungsverzeichnis			
1.	Einleitung			
	1.1.	Motivation		
	1.2.	Zielsetzung und Vorgehen		
	1.3.	Begriffsdefinition und Grundlagen der Nebenläufigkeit		
	1.4. Prozesse und Threads			
		1.4.1. Prozess		
		1.4.2. Thread		
	1.5.	Botschaftenaustausch und Kommunikation		
		1.5.1. Geteilte Datei/ Speicher		
		1.5.2. MessageQueues		
	1.6.	Risiken von Nebenläufigkeit		
		1.6.1. Philosophenproblem		
		1.6.2. Race Conditions		
		1.6.3. Speicherleck		
		1.6.4. Reihenfolgeproblem		
	1.7.	Parallelverarbeitung und Besonderheiten unter Android		
		1.7.1. Prozesse und Threads unter Android		
		1.7.2. Besonderheiten im Android Umfeld bezüglich der		
		Thread Managements		
	1.8.	Anforderungen an Applikationen		
	1.9.	Fokus und Eingrenzung		
<u>.</u>	Asynchrone Parallelverarbeitung unter Android			
	2.1.	Bolckierung der Ein-/Ausgabe durch zeitintensive Verar-		
		beitung		
	2.2.	Parallelverarbeitung mit der Java Standard Edition (Java		
		Concurrency)		
		2.2.1. Handler-Looper Mechanismus zur Inter-Thread-		
		Kommunikation		
		2.2.2. Verwendung des Handler Looper Mechnismus .		

		2.2.3.	Probleme bei der Nutzung des Handler Looper Me-				
			chanismus	33			
		2.2.4.	Vorsicht im Umgang mit Java Futures	36			
	2.3.	Paralle	elverarbeitung mit AndroidAsyncTask (Anroid Con-				
		curren	ıcy)	36			
		2.3.1.	Ausführungsmodell von Android AsyncTask in Be-				
			zug auf Multi Threading	40			
		2.3.2.	Serielle Ausführung in Android AsyncTask	44			
	2.4.	Paralle	elverarbeitung mit RXJava	49			
		2.4.1.	Imperative und Deklarative Programmierung	49			
		2.4.2.	Reaktive Programmierung & Reactive Manifesto .	50			
		2.4.3.	RX JAVA Entstehung	51			
		2.4.4.	RXJava Funktionsweise	52			
		2.4.5.	RXJava in Android	58			
	2.5.	Zusam	nmenfassung	64			
_				66			
3.							
	3.1.	Chanc	en und Risiken des Java Concurrency Konzepts	66			
	3.2.	Andro	oid Concurrency	67			
	3.3.	RXConcurrency		68			
	3.4.	. Szenariobasierte Analyse					
	3.5.	Fazit		76			
	3.6.	Ausbli	ick	77			
Lit	eratı	urverze	ichnis	78			
Ar	nhang	g		85			
Α.	A. Erklärung						

Abbildungsverzeichnis

1.	MessageQueue	11
2.	Philosophenproblem [MIDDENDORF, STEFAN [ET AL.] (3.	
	Auflage 2002)]	13
3.	Geteilter Speicher bei der Inter-Thread Kommunikation .	14
4.	ANR Dialog unter Android	18
5.	Komponentenmodell für Android Applikationen	19
6.	Lebenszyklus einer Activity [GOOGLE INC (2010)]	22
7.	Mockup zur Testapplikation: Blockierende Ein-/Ausgabe	26
8.	Handler Looper Mechanismus für Android Applikationen	
	[Yehuda, A. (2015)]	30
9.	Speicherleck durch non-static Handler Implementierung	
	sowie falsche Referenzierung von Objekten der äußeren	
	Klasse in der innerer Klasse	34
10.	Sequenzdiagramm zum internen Ablauf in Android Async-	
	Task mit Zuordnung zum jeweiligen Thread	41
11.	Aktivitätsdiagramm zum SerialExecutor in Android Async-	
	Task	47
12.	(Netflix)RX kompatible Programmiersprachen	51
13.	Komplexe Verarbeitungskette mit mehreren Observern .	58
14.	Vergleichsmatrix zur szenarienbasierten Analyse	71

1. Einleitung

1.1. Motivation

Mobile Endgeräte begleiten immer mehr Menschen in ihrem Alltag. Damit einher geht die intensive Nutzung von sog. Apps., womit Applikationen auf den mobilen Endgeräten bezeichnet werden. Mit der zunehmenden Leistungsfähigkeit der Geräte werden auch immer komplexere Applikationen realisierbar. Wurde zu den Anfängen der Applikationsentwicklung für mobile Endgeräte lediglich einfache Funktionalität in Applikationen integriert, werden heute mit unter teilweise sehr rechenintensive und komplexe Funktionalitäten entwickelt. Eine optimale Konzeption der Aufgabenverarbeitung innerhalb der Applikation kann dabei einen entscheidenden Faktor für die Performance und damit auch die Akzeptanz beim Nutzer darstellen. Damit gewinnt die Nebenläufigkeit auch in der Applikationsentwicklung für mobile Endgeräte an Wichtigkeit. Nebenläufigkeit oder auch Parallelverarbeitung bezeichnet in der Informatik die Eigenschaft eines Programms oder eines Systems verschiedene Aufgaben zeitgleich, also parallel zu bearbeiten. Die jeweilige Verarbeitung kann dabei in sich abgeschlossen sein, d.h. die zu verarbeitenden Aufgaben sind voneinander unabhängig, oder die Verarbeitung hängt von den Ergebnissen aus anderen Aufgaben ab. Je nach Art und Weise der Parallelverarbeitung sind verschiedene Problematiken und Risiken zu beachten. Für Nebenläufigkeit unter dem Android Betriebssystem sind zusätzliche Besonderheiten zu beachten. Dieses Betriebssystem ist auf mobile Endgeräte zugeschnitten und hat diesbezüglich spezielle Anforderungen an Applikationen die darauf laufen sollen. Die Firma Google als Hersteller vom Betriebssystem Android legt hierbei großen Wert auf die Einhaltung eines StyleGuides der die Benutzbarkeit applikationsübergreifend in einem einheitlichen Standard definiert. Darin wird die grundlegende Anforderung nach der kontinuierlichen Ansprechbarkeit von Applikationen gefordert. Die Frage ist wie kann den Anforderungen an Android Applikationen mittels unterschiedlicher Konzepte der Nebenläufigkeit begegnet werden, sodass das von Google geforderte Ziel der Ansprechbarkeit erreicht werden kann. Welche Problemstellungen, Restriktionen oder Risiken gehen mit der Verwendung bestimmter Konzepte einher und wie praktikabel sind diese für den konkreten Praxiseinsatz?

1.2. Zielsetzung und Vorgehen

In dieser Arbeit soll untersucht werden, wie konkurrierende Parallelverarbeitung in mobilen Anwendungen realisiert werden kann. Dabei besteht das Ziel, die Entwicklung von Nebenläufigkeit durch Verwendung unterschiedlicher Techniken zu vereinfachen und ggf. auf einem höheren Abstraktionsniveau ab zu bilden. Zunächst gilt es in einer kurzen Einführung in die Thematik, die grundsätzlichen Definitionen kurz zu erläutern und auf Besonderheiten der Parallelverarbeitung unter Android einzugehen. Weiter wird ein Überblick über eine Auswahl von unterschiedlichen Konzepten der Nebenläufigkeit unter Android erarbeitet. Diese werden mittels einfacher Beispiele vorgestellt und analysiert. Den Abschluss bildet ein kritischer Diskurs, um in Abhängigkeit vom Einsatzkontext eine Differenzierte Sicht auf die Anwendung der einzelnen Konzepte zu erhalten. Die Ergebnisse des Diskurses werden in einer szenarienbasierten Analyse aufgegriffen um diese greifbarer zu machen.

1.3. Begriffsdefinition und Grundlagen der Nebenläufigkeit

Um sich den Konzepten der Nebenläufigkeit anzunähern, werden zunächst einige Begriffsdefinitionen benötigt. Die Nebenläufigkeit meint dabei konkret die parallele Verarbeitung von Aufgaben. Hierzu wird eine Aufgabe in Unteraufgaben aufgeteilt, um diese weitestgehend von einander unabhängig abzuarbeiten. Die Definition wie diese Verarbeitung ablaufen soll, ist in einem Programm hinterlegt. Die Ausführung von Programmen wird von Prozessen und Threads geregelt. Diese werden im folgenden Abschnitt definiert und ein tieferes Verständnis von der Parallelverarbeitung auf Betriebssystemebene erarbeitet.

1.4. Prozesse und Threads

Die genauen Eigenschaften von Prozessen und Threads sind abhängig vom Betriebssystem auf dem sie laufen. Da in dieser Arbeit der Fokus auf Nebenläufigkeit unter Android liegt, beziehen sich die folgenden Erläuterungen zu Prozessen und Threads auf das allgemeine Unix/Linux Betriebssystem auf dem Android basiert.

1.4.1. **Prozess**

Wird eine Anwendung gestartet, so erzeugt das Betriebssystem zunächst einen Prozess, der den Adressraum für sämtliche Programmdaten und Komponenten reserviert. Für Prozesse kann folgende Definition getroffen werden. Sie gilt betriebssystemübergreifend:

Ein Prozess stellt ein Programm in Ausführung dar und ist für die Kontrolle(Sicherung) der damit verbundenen Betriebsmittel verantwortlich.

Die Prozesse sind (in der Regel) an einen Benutzer gebunden, welcher wiederum über bestimme Rechte u.a. im Dateisystem verfügt. Dabei sind für Linux Betriebssysteme folgende Prinzipien zu beachten:

- Hierarschische Prinzip
- Sandbox Prinzip

Das hierarchische Prinzip schreibt die Abhängigkeit von Prozessen gegenüber ihren Erzeugern vor. Mit Ausnahme des Root Prozesses des Betriebssystems, werden alle Anwendungen durch einen Vater Prozess erzeugt. Die damit verbundene Vater-Kind Abhängigkeit bildet eine Baumstruktur, in der jeder Prozess seinen erzeugenden Prozess kennt. Ein Prozess kann nur aus anderen Prozessen heraus erzeugt werden. Stirbt ein Prozess, so werden die Kind Prozesse in der Regel vom Root Prozess des Betriebsystems adoptiert.

Das Sandbox Prinzip ist ein Sicherheitskonzept aus dem Kern eines Linux/Unix Betriebssystems. Darin wird sichergestellt, dass jede Anwendung nur die eigenen Daten sehen darf. So wird bei der Installation

für jede Anwendung ein eigener Betriebssystem- User erzeugt, der über spezielle Rechte zu Prozessen und Dateien verfügt. Damit wird zum Ausführungszeitpunkt verhindert, dass Programmdaten für andere Programme sichtbar werden. Die Sicht jedes Prozesses einer Anwendung ist begrenzt auf die Ressourcen die dem jeweiligen Betriebssystem User zugeordnet sind.

1.4.2. Thread

Die Begriffe Prozesse und Threads dürfen nicht synonym verwendet werden. So kann ein Thread wie folgend Definiert werden:

Ein Thread stellt einen Ausführungsfaden eines Programmes dar.

Dieser besteht aus aus einem aktuellen Befehlszeiger, einem eigenen Stack und dem Inhalt der Prozessorregister. Zum Start einer Anwendung wird der sog. Main Thread erzeugt. Aus diesem lassen sich beliebig weitere Threads erzeugen. Dabei besteht keine hierarchische Bindung wie bei der Vater-Sohn Prozesshierarchie. Innerhalb eines Prozesses erzeugte Threads erhalten Zugriff auf den hier reservierten Speicher des Prozesses. Alle in einem Prozess erzeugte Threads sind von diesem abhängig. Wird demnach ein Prozess terminiert, so werden auch alle darin erzeugte Threads terminiert.

1.5. Botschaftenaustausch und Kommunikation

Der Botschaftenaustausch zwischen Prozessen unterscheidet sich vom Botschaftenaustausch zwischen Threads. Während bei der Inter Prozess Kommunikation maßgeblich das Betriebssystem am Austausch von Nachrichten zwischen Prozessen beteiligt ist, können bei der Inter Thread Kommunikation unterschiedliche Techniken unabhängig vom Betriebssystem angewandt werden. Für die Kommunikation zwischen Threads eignen sich z.B. Dateien aber auch sogenannte MessageQueues mit denen

Produzenten und Konsumenten Konstrukte erzeugt werden können. Die Inter Thread Kommunikation bleibt begrenzt auf die Threads innerhalb einer Anwendung. Die Inter Prozess Kommunikation dagegen, definiert die Kommunikation über Programm- und Systemgrenzen hinaus. Innerhalb eines Betriebssystems wird in der Regel der Speicherbereich jedes Prozesses in sich gekapselt und vor anderen Prozessen verborgen (s.o. Sandbox-Prinzip). Daher werden Mechanismen seitens des Betriebssystems benötigt (Botschaftenaustausch über Socket, etc..) um die Kommunikation zu gewährleisten. Diese Mechanismen sind aufwendig und eignen sich dadurch weniger für eine effiziente Parallelverarbeitung. Daher konzentriert sich diese Arbeit auf die Kommunikation auf Thread Ebene, und die Inter-Prozess Kommunikation wird nicht weiter thematisiert. Die folgenden Abschnitte geben einen Einblick auf gängige Techniken zur Realisierung von Inter- Thread Kommunikation.

1.5.1. Geteilte Datei/ Speicher

Einer der einfachsten technischen Mittel für den Daten-/Botschaftenaustauch ist die Nutzung einer gemeinsamen Datei im Dateisystem des
Betriebssystems. Dadurch, dass das Betriebssystem den exklusiven Zugriff
auf Dateien gewährleisten kann, ist es möglich ohne großen Aufwand eine
synchronisierte Kommunikation zu realisieren. Etwas komplexer ist es für
die Kommunikation einen Speicherbereich zu allokieren und die Referenz
darauf den jeweiligen Kommunikationspartern für den Datenaustausch
zur Verfügung zu stellen. In diesem Fall muss der exklusive Ausschluss
selbst realisiert werden, falls er gewünscht ist. Hierzu dienen einfache
Primitive aus dem java.lang.concurrency Packet.

1.5.2. MessageQueues

Die folgende Abbildung gibt einen schematischen Überblick über die Nutzung einer MessageQueue für die Kommunikation zwischen Objektinstanzen aus unterschiedlichen Threads. Beide Objekt Instanzen müssen eine Referenz auf das MessageQueue Objekt halten um Nachrichten (z.B. Message to Thread B) in diese Queue einzustellen oder herauszuholen. Das

Konzept des nachrichtengetriebenen Datenaustausches hat den Vorteil, dass jede Nachricht eine atomare (in sich geschlossene) Einheit darstellt. Dadurch lassen sich einzelne Arbeitsaufträge unterscheiden. Je nach Implementierung der MessageQueue sind auch keine weiteren Synchronisationen mehr nötig.

Abbildung 1.: MessageQueue

Die Kommunikation mittels einer MessageQueue kann in zwei Formen realisiert werden:

- Unidirektional
- Bidirektional

Bei der unidirektionalen Kommunikationsform darf ein Kommunikationspartner nur entweder Nachrichten aus der Queue entnehmen oder hinein geben. In unserem Beispiel dürfte demnach nur die Objekt Instanz des Thread A Nachrichten in die Queue geben und die Objekt Instanz des Thread B darf lediglich aus dieser lesen.

Bei der bidirektionalen Kommunikationsform dürfen beide Kommunikationspartner je Nachrichten in die MessageQueue einstellen wie auch herausnehmen.

Die letzten beiden Abschnitte haben einen Überblick über Technologieen gegeben, mit denen der Austausch von Informationen innerhalb einer nebenläufigen Verarbeitung über Thread Grenzen hinaus realisiert werden kann. Dabei stellen MessageQueues eine Abstraktionsebene zur Kommunikation über fest definierten Speicher dar. Die Entwicklung von Nebenläufigkeit kann jedoch auch zu schwerwiegenden Problemen führen.

1.6. Risiken von Nebenläufigkeit

Der Botschaftenaustausch zwischen Threads, sowie deren Synchronisation kann zu schwerwiegenden Problemen im Zuge der Prallelverarbeitung führen. Folgende Szenarien sind eher allgemein gehalten, jedoch gilt es, besonders in dem Kapitel 2 zu den konkreten Implementierungen von Nebenläufigkeit, diese Problematiken zu beachten. In Kapitel 3 werden die in Kapitel 2 zu diskutierenden Beispielimplementierungen u.a. an Hand der hier aufgeführten Risikoszenarien und dem damit verbundenen Fehlerpotential bewertet.

1.6.1. Philosophenproblem

Ein zentrales Problem der theoretischen Informatik ist das Philosophenproblem das erstmals beschrieben wurde durch Edsger W. Dijkstra. Darin wird ein Szenario berschrieben, in dem eine bestimmte Anzahl von Philosophen auf begrenzte Ressourcen zugreifen und bei gleichzeitigem Zugriff sich gegenseitig blockieren können.

Abbildung 2.: Philosophenproblem [MIDDENDORF, STEFAN [ET AL.] (3. Auflage 2002)]

Die Abbildung zeigt wie eine Gruppe von Philosophen an einem Runden Tisch sitzen, vor ihnen etwas zu Essen. Um zu essen, benötigen nach diesem theoretischen Aufbau die Philosophen die rechte und die linke Gabel neben dem jeweiligen Teller. Dabei versuchen die Philosophen zu nächst die Gabel zu ihrer Linken zu nehmen. Ist die Gabel frei, so behalten sie diese in der Hand bis auch die Gabel auf der rechten aufgenommen werden kann. Kann ein Philosoph eine Gabel zur Zeit nicht nehmen, da sie in Verwendung ist, verweilt er denkend bis die benötigte Gabel frei ist. Versuchen jedoch alle Philosophen gleichzeitig die Gabeln aufzunehmen, so besteht die Gefahr einer Verklemmung (engl. Deadlock). Der Ablauf stockt und die Philosophen verharren denkend bis sie verhungern. In Bezug auf die Kommunikation über geteilten Speicher oder Dateien kann dieses Problem auftreten wenn parallele Zugriffe auf exklusive Ressourcen nicht sauber synchronisiert werden.

1.6.2. Race Conditions

Ein weiteres Problem bei der Parallelverarbeitung tritt bei geteilten Speicher bzw. Daten auf. Folgende Abbildung illustriert das Szenario, dass drei Threads auf einen gemeinsamen Speicherbereich zugreifen. Die

Threads eins bis drei greifen konkurrierend lesend, wie schreibend auf den Speicherbereich zu und tauschen darüber Informationen untereinander aus. Der Zugriff erfolgt nach dem Prinzip "Wer zuerst kommt mahlt zuerst" (= Race Condition).

Abbildung 3.: Geteilter Speicher bei der Inter-Thread Kommunikation

Ist der Zugriff der Threads auf den Speicher nicht synchronisiert, so kommt es zu dem Shared Memory Effekt, (geteilter Speicher Effekt) nach dem eine Datenstruktur die, die Grundlage von Berechnungen darstellt, durch einen anderen Thread verändert wird, ohne dass die Änderung dem ersten Thread bekannt gemacht wird. Da solche Probleme von der jeweils in diesem Moment vorliegenden Prozessauslastung im System abhängen (tatsächlich gleichzeitig laufende Threads im Multi Core System), sind derartige Effekte schwer reproduzierbar und somit auch die Ursachen schwer zu finden.

1.6.3. Speicherleck

Speicherlecks (eng. Memory Leaks) entstehen häufig aus Programmierfehler heraus, in denen Speicher reserviert, aber dieser nicht mehr freigegeben wird. Geschieht dies ausreichend oft während einer Laufzeit innerhalb des Addressraums des Programmes, so gerät im schlimmsten Fall der seitens der Hardware begrenzte Speicher an seine Grenzen. Das Betriebssystem registriert dieses Verhalten und terminiert sofort die Ausführung des Programmes. Bei der Technik des geteilten Speichers, ist das Risiko eines Speicherlecks z.B. dann präsent, wenn sich der Entwickler um korrekte Dereferenzierung des Speichers und dessen Freigabe explizit kümmern muss. Wird Speicher n-Fach allokiert und nicht wieder freigegeben, so handelt es sich um ein ernstes Speicherleck. Auch bei der MessageQueue sind

Speicherlecks möglich, z.B. wenn kontinuierlich Botschaften in die Queue gepackt werden, diese aber nicht aus der Queue wieder herausgenommen werden.

1.6.4. Reihenfolgeproblem

Im Falle einer bidirektionalen Kommunikation mittels einer Message-Queue muss beachtet werden, dass es nicht vorhersehbar ist, in welcher Reihenfolge die Nachrichten in die MessageQueue gelegt werden, oder wann sich welcher Thread eine Message aus der Queue holt. Dies kann zu unerwarteten Verhalten führen. So kann ein Thread B ungewollt blockieren, wenn er für seine weitere Verarbeitung eine bestimmte Nachricht benötigt und diese jedoch sich in der Reihenfolge hinter einer Nachricht für den anderen Thread A befindet. So muss Thread B solange warten bis Thread A seine Nachricht aus der Queue nimmt.

Welche Konzepte es gibt, um sich den allgemeinen Problematiken und Risiken von Nebenläufigkeit speziell für Android Applikationen zu nähern ist zentraler Forschungsschwerpunkt dieser Arbeit. Diese Konzepte werden im Kapitel 2 im einzelnen vorgestellt.

1.7. Parallelverarbeitung und Besonderheiten unter Android

Im vorangegangenen Abschnitt wurde allgemein auf die Terminologie, die Eigenschaften, sowie die Kommunikation innerhalb von Nebenläufigkeit eingegangen. Hier gilt es nun einen Fokus auf Nebenläufigkeit im mobilen Umfeld zu setzen, insbesondere unter dem Betriebsystem Android. Weiter wird ein erster Einblick in das Komponentenmodell, sowie in den Lebenszyklus von Android Applikationen erarbeitet.

1.7.1. Prozesse und Threads unter Android

Prozess Charakteristika Das Android Betriebssystem basiert auf dem Linux/Unix System. Daher gelten die o.g. Eigenschaften zu Prozessen

unter dem Linux/Unix Betriebssystem auch für Android. Sie werden lediglich um folgende Charakteristika erweitert.

- Fordergrundprozess → Fordergrundprozesse sind verantwortlich für alle Komponenten einer Anwendung, die unmittelbar im Vordergrund, also für den Nutzer sichtbar sind.
- sichtbarer Prozess → Sichtbare Prozesse fassen alle Komponenten zusammen, die zwar nicht unmittelbar sichtbar sein müssen, jedoch Komponenten aus dem Vordergrund beeinflussen.
- 3. Service Prozess → Service Prozesse laufen losgelöst von anderen Prozessen. Einmal gestartet laufen diese selbstständig (z.B. das Abspielen von Musik). Sie lassen sich jedoch weiterhin von anderen Prozessen steuern.
- 4. Hindergrundprozess → Der Hintergrundprozess hält gestoppte Anwendungskomponenten. So werden darin Activity Instanzen abgelegt, für welche die onStop() Methode (siehe Activity Lifecyle) aufgerufen wurde. Dies hat die Funktion, die Anwendung möglichst schnell wieder zu reaktivieren, wenn der Nutzer dies wünscht. Der Hintergrundprozess darf nicht mit der im folgenden Kapitel thematisierten Hintergrundverarbeitung zusammen in einen Kontext gebracht werden.
- 5. leerer Prozess → Leere Prozesse werden bei ausreichend Hardware Ressourcen durch das Android Betriebssystem erzeugt und als Ressourcen für einen schnelleren Start von Applikationen gehalten. Wünscht ein Nutzer eine Anwendung zu starten, so existiert bereits hierfür ein Prozess mit entsprechender Laufzeitumgebung.

Rein aus der Sicht des Betriebsystems handelt es sich stets um den gleichen Prozess, jedoch kann er unterschiedliche Charakteristika innerhalb seines Lebenszyklus annehmen.

Sandbox Prinzip Eine weitere Besonderheit in Android erweitert das Sandbox Prinzip von Unix/Linux Systemen zur Kapselung von Prozessen und deren Ressourcen (siehe Abschnitt 1.2.1 "Prozesse und Threads"). Dabei erzeugt Android bereits zum Installationszeitpunkt pro Anwendung

einen speziellen User. Wird die Anwendung gestartet, so richtet das Betriebssystem einen in sich geschlossenen Speicherbereich ein und ordnet diesen dem jeweiligen Appliction-User zu. Somit wird der exklusive Zugriff auf den Speicherbereich allein durch diese Applikation realisiert.

UI-Thread als Main Thread Bei der Entwicklung von Android Applikationen steht die Benutzerschnittstelle im Vordergrund. So erscheint es konsequent, dass das User Interface durch den Main Thread verarbeitet wird (hier gilt also Main-Thread = UI-Thread). Dieses Ausführungsmodell steht z.B. dem von Java.Swing entgegen, in welchem die Benutzerinteraktion in einem sekundären Thread, ungleich dem Hauptthread gesteuert wird. Dies hat unweigerlich Einfluss auf die Konzeption von Applikationen unter Android, welche u.a. zeitintensive Operationen durchführen müssen. Denn in diesem Fall darf der UI Thread nicht blockieren und sich nach Ende der Verarbeitung erst wieder zurück melden. Die zeitintensive Operation muss in einen sekundär Thread ausgelagert werden, sodass der UI Thread weiter Benutzereingaben verarbeiten kann.

1.7.2. Besonderheiten im Android Umfeld bezüglich des Thread Managements

Das Android Betriebssystem formuliert einige spezielle Regeln für die Ausführung von Threads, die sich an einen hohen Anspruch seitens Google an der Benutzbarkeit der Applikationen orientieren. So ist der Thread für die Steuerung der Benutzeroberfläche (User Interface kurz UI) unter besonderer Beobachtung. Wird dieser Blockiert oder ist ausgelastet mit zeitintensiven Operationen, wird dieser vom Betriebssystem nach einer bestimmen Zeit angehalten. Je nach Konfiguration des Android Betriebssystems wird es dem Nutzer angeboten entweder weiter zu warten oder die Applikation zu terminieren.

1.7.2.1. **ANR** Dialog

Ein grundsätzlicher Anspruch, den Google an mobile Anwendungen unter seinem Android Betriebssystem stellt, ist die Benutzbarkeit durch den alltäglichen Anwender. Dieser muss über keine technischen Kenntnisse verfügen um die Applikation entsprechend einfach und intuitiv benutzen können. So ist es unerwünscht, dass eine Applikation nach dem Start irgend eines Vorganges blockiert, also auf Interaktion des Nutzers nicht reagiert. Google formuliert in seiner Andorid Developper Dokumentation daher die grundsätzliche Anforderung der kontinuierlichen Ansprechbarkeit von Appliationen bzw. der nie zu unterbrechenden Interaktionsfähigkeit zwischen Benutzer und Applikation. So ist es gemäß der Designvorgaben für Android Applikationen unerwünscht, das Applikationen blockieren. Um jedoch für den Fall einer blockierenden Anwendung gerüstet zu sein, bietet Android die Möglichkeit, mittels eines Applikation Not Responding Dialogs, kurz ANR Dialog die Verarbeitung innerhalb einer Anwendung abzubrechen oder weiter auf deren Ergebnis zu warten. Wird im Dialog auf "Warten"geklickt, gibt das Betriebssystem den UI Thread wieder zur Ausführung frei. Folgende Abblildung zeigt einen exemplarischen ANR Dialog:

Abbildung 4.: ANR Dialog unter Android

In diesem Beispiel greift Android in den Lebenszyklus der Aktivity ein, von der die zeitintensive Berechnung ausgeht und pausiert diese. Je nach Wunsch des Nutzers wird die Applikaiton dann in den Status "Pausiert"überführt, oder terminiert (siehe: onStoped() bzw. onDestroyed() im Lifecycle Diagramm) und vom Garbage Collector entsorgt (siehe hierzu Lebenszyklus einer Activity im nächsten Abschnitt). Die Zeit T innerhalb derer eine Applikation nicht auf Benutzereingaben reagiert und deren Ablauf der genannte Dialog erscheint ist für jedes Android Gerät konfigurierbar. Obwohl diese Eingreifmöglichkeit eine wichtige Funktion für die Kontrolle von Applikation durch den Nutzer darstellt, haben sich diverse Gerätehersteller mittlerweile entschieden die Zeit T sehr groß

zu wählen, oder sogar den ANR-Dialog generell zu deaktivieren. In den Android Versionen ab Honeycomb führt das Blockieren einer Applikation bereits zur sofortigen Terminierung durch das Betriebssystem. Doch unabhängig vom ANR-Dialog bleibt der direkte Zusammenhang zwischen der Ansprechbarkeit einer Applikation und der Benutzbarkeit der Anwendung und dem Nutzererlebnis. Blockiert über zu lange Zeit eine Anwendung, so steigt damit auch die Unzufriedenheit des Nutzers über die Anwendung, besonders da er häufig die technischen Zusammenhänge, welche eine zeitintensive Verarbeitung durch aus rechtfertigen können, nicht kennt und gemäß der angesprochenen Designvorgaben auch nicht kennen muss.

1.7.2.2. Komponentenmodell

Bisher wurde die technische Ausführung von Android Applikationen auf der Betriebssystemebene erläutert. Für die einzelnen Konzepte der Nebenläufigkeit unter Android gilt es nun jedoch näher auf die Konzeption von Applikationen mittels klar definierten Komponenten selbst ein zu gehen, bevor im Kapitel 2 die einzelnen Konzepte an konkreten Implementierungsbeispielen verdeutlicht werden. Die folgende Abbildung zeigt die Basiskomponenten aus denen Anwendungen unter dem Android Betriebssystem bestehen:

Broadcast	Content
Receiver	Provider
Activities	Services

Abbildung 5.: Komponentenmodell für Android Applikationen

- Broadcast Receiver erlauben die Registrierung von systemweiten oder applikationsinternen Events.
- Content Provider repräsentieren Daten als relationalen Datensatz und ermöglichen den Zugriff über Applikationsgrenzen hinaus auf diese Daten.

- Activities definieren das Verhalten von graphischen Benutzerschnittstellen
- Services können zeitintensive Hintergrundberechnungen abbilden.

Bei Services ist zu beachten, dass diese, wenn nicht anders definiert in dem Main Thread laufen, was jedoch für zeitintensive Verarbeitungen zu Problemen mit dem Benutzerinterface führen kann, wie in den folgenden Abschnitten näher beschrieben wird. Services dienen lediglich als mögliche Kapselung um Hintergrundverarbeitungen klarer vom Rest der Applikation zu trennen, sowie Verarbeitungen ohne aktives Benutzerinterface durchzuführen. Die Android Developper Dokumentation weist explizit darauf hin, keine zeitaufwändigen Verarbeitungen hier zu definieren wenn der Service im Main Thread läuft, da ansonsten die Gefahr besteht, dass der Main Thread und somit auch das Benutzerinterface blockiert. Dies gilt neben Services auch für die anderen Komponenten.

1.7.2.3. Lebenszyklus einer Android Anwendung (Activity)

Da sich diese Arbeit primär auf Applikationen mit Benutzerinterface konzentriert, macht es Sinn kurz auf den Lebenszyklus von Activities einzugehen der bereits in Kapitel "Besonderheiten im Android Umfeld bezüglich des Thread Managements"kurz aufgegriffen wurde. Applikationen unter dem Android Betriebssystem unterscheiden sich in einigen Details deutlich von normalen Java Applikationen. Im Hinblick auf die nebenläufige Verarbeitung ist es daher von Bedeutung einen genaueren Blick auf den Lebenszyklus von Android Applikationen zu werfen. Die folgende Abbildung gibt einen Überblick über die Stati einer gestarteten Activity. Eine Objekt Instanz vom Typ android.os. Activity ist dabei der Einstiegspunkt in eine GUI-Applikation und wird vom Betriebssystem beim Start der Anwendung aufgerufen. Die einzelnen Statusübergänge, die in der Abbildung durch die jeweiligen Rückrufmethoden (onCreate(), onStart, onResume())symbolisiert werden, sind für diese Arbeit weniger von Bedeutung. Interessanter sind die Abhängigkeiten zum Lebenszyklus des Prozesses, welcher für die Anwendung gestartet wurde, und damit die Frage nach der Lebensdauer von Threads. Die Abbildung zeigt deutlich zwei Szenarien in denen jeweils die Anwendung aus dem Sichtbarkeitsbereich des Nutzers entfernt wird (Übergang von onPaused() \rightarrow onStop()). In dem ersten Szenario bleibt der Prozess nach dem Aufruf der onStop() Rückrufmethode bestehen. Das Android Betriebssystem behält damit die Reservierung des Adressraums im Speicher für diesen Prozess und ermöglicht ein schnelles Wiederaufrufen der Applikation, wenn der Nutzer dies wünscht (siehe in Abbildung Übergang von onStop() \rightarrow onRestart()). Innerhalb des Prozesses definierte Nebenläufigkeit wird angehalten, d.h. die Ausführung aller Threads (auch des UI-Threads) wird unterbrochen. Die Threads selbst werden in den Status "Wartend"oder "Schlafend"überführt. Kehrt der Nutzer zu der Anwendung zurück, wird zunächst der UI-Thread wieder gestartet und in der Activity Instanz die Methode onResume() aufgerufen. Soll die nebenläufige Verarbeitung wieder gestartet werden, so empfiehlt es sich dies in der onResume() Methode zu implementieren.

Abbildung 6.: Lebenszyklus einer Activity [GOOGLE INC (2010)]

Im zweiten Szenario wird der Adressraum dieses Prozesses für andere Anwendungen benötigt (siehe Abbildung onStop() → onCreate()). Das Betriebssystem terminiert in Folge dessen den Prozess und damit auch alle darin laufenden Threads. Für die Nebenläufigkeit auf Thread Ebene würde dies bedeuten, dass alle Threads zusammen mit dem Prozess mit terminiert werden. Kommt die Anwendung durch den Aufruf des Nutzers wieder in den Vordergrund, so wird zunächst wieder ein Prozess mit entsprechendem Adressraum vom Betriebssystem eingerichtet, der UI Thread neu erzeugt und nun in dem UI Thread die Activity neu

instanziiert (dabei Aufruf onCreate()). Alle zuvor erzeugen sekundären Threads existieren nicht mehr. Die Verarbeitung im Hintergrund wurde unterbrochen und terminiert. Die Hintergrundverarbeitung lässt sich ggf. neu aus der onCreate Methode heraus neu starten.

1.8. Anforderungen an Applikationen

Abschließend zu dieser Einführung in die grundlegenden Konzepte zur Ausführung und den Bestandteilen von Android Applikationen, werden nun allgemeine Anforderungen an die Applikationen zusammengefasst, wie sie auch der Application Style Guide von Google vor gibt. Applikationen für das Android Betriebssystem verfügen zum großen Teil über eine graphische Benutzeroberfläche, die wenigsten sind reine Hintergrund Programme. Darum liegt auch der Fokus der Applikationen auf deren Benutzbarkeit. Entsprechend ergeben sich auch besondere Anforderungen für die Entwicklung von Nebenläufigkeit. In Android Applikationen wird die Interaktion mit dem Benutzer über den Hauptthread (= UI- Thread), abgehandelt. Sind nun innerhalb einer Applikation zeitintensive Berechnungen oder andere Vorgänge definiert, so ist darauf zu achten, dass dadurch nicht der UI-Thread blockiert wird. Dieser soll stets bereitgehalten werden um mit dem Benutzer zu interagieren. Eine nebenläufige Verarbeitung ist also so zu definieren, dass sekundäre Threads vom UI Thread aus initialisiert und gestartet werden können und im Weiteren völlig losgelöst vom UI Thread operieren. Kommt es zum Nachrichtenaustausch zwischen dem UI Thread und den sekundären Threads (Datenaustausch) darf dies für den UI Thread keine zeitaufwändige Operation darstellen, diese Nachrichten zu verarbeiten. Weiter benötigt der Nutzer auch im Einzelfall Rückmeldung über den Bearbeitungsstand aus den sekundären Threads, sowie auch im Fehlerfall entsprechende Meldungen.

1.9. Fokus und Eingrenzung

In dieser Arbeit soll sich primär darauf konzentriert werden, wie asynchrone Parallelverarbeitung realisiert werden kann und welche Gefahren

sich aus der Komplexität dieser Aufgabe ergeben können. Weiter ist die Fragestellung im Fokus, wie eine Fehlerbehandlung innerhalb asynchroner Parallelverarbeitung realisiert werden kann bzw. wie unterschiedliche Meldungen an den UI -Thread übertragen werden können. Um die Problemstellung der asynchronen Parallelverarbeitung für Andorid Plattformen greifbarer zu machen werden zwei Szenarien beschrieben in denen man bei der Implementierung die asynchronen Parallelverarbeitung sinnvoll demonstrieren kann:

Zugriff auf Web Ressourcen In Android Applikationen ist es häufig nötig auf Web Ressourcen zu zu greifen. Bis jedoch die gesamte Ressource geladen ist, kann es u.U. je nach Verfügbarkeit des Netzwerks zu längeren Wartezeiten kommen. Arbeitet die Applikation nun streng sequentiell, so würde sie blockieren, bis die Ressourcen geladen sind und sich dann damit zurückmelden.

Zeitintensive Berechnungen Neben dem Zugriff auf Netzwerkressourcen können auch einzelne Berechnungen oder Suchfunktionen längere Zeit in Anspruch nehmen. Ebenso ist hier auf eine asynchrone Parallelverarbeitung zu achten, denn genauso wie in o.g. Szenario kann hier die Anwendung bei sequentieller Abarbeitung blockieren (also keine Benutzereingaben verarbeiten) und in Folge dessen durch das Betriebssystem terminiert werden.

Die im Kapitel 2 aufgeführten Implementierungsbeispiele beziehen sich primär auf das zweite Szenario, um für Präsentationszwecke unabhängiger von Netzwerkeigenschaften zu sein.

Asynchrone Parallelverarbeitung unter Android

Für die Realisierung von asynchroner Parallelverarbeitung werden in diesem Kapitel drei Lösungsansätze entwickelt. Jeder dieser Ansätze versucht die asynchrone Verarbeitung im Hintergrund, losgelöst vom Hauptthread der Applikation zu realisieren. Als Beispiel für die im Hintergrund zu tätigende Verarbeitung steht eine rechenintensive und damit zeitaufwändige mathematische Operation. Ziel ist mit dieser Operation ausreichend Rechenauslastung zu erzeugen, sodass im Falle einer synchronen Abarbeitung die Applikation blockieren kann.

2.1. Bolckierung der Ein-/Ausgabe durch zeitintensive Verarbeitung

Dieser Abschnitt soll einen Einblick in das Verhalten von Applikationen unter dem Android Betriebssystem geben, wenn zeitintensive Berechnungen durchgeführt werden. Das Implementierungsbeispiel ist an das in Kapitel 1.9 beschriebene Szenario zu zeitintensiven lokalen Berechnungen angelehnt. Die folgende Abbildung zeigt zwei Fenster einer Android Applikation mit je einem Knopf zum Start einer bestimmten zeitintensiven mathematischen Berechnung, deren Ergebnisse auf im jeweiligen Fenster angezeigt wird.

Abbildung 7.: Mockup zur Testapplikation: Blockierende Ein-/Ausgabe

Die mathematische Operation ist so gestaltet, dass sie im Komplexitätsgrad variabel einstellbar ist und somit auch die Verarbeitungszeit verlängert werden kann. Dabei handelt es sich um die Berechnung einer Quersumme aus einer sehr großen Primzahl. Die Ermittlung der Primzahl verlängert sich in Abhängigkeit zu der im Die mathematische Operation ist so gestaltet, dass sie im Komplexitätsgrad variabel einstellbar ist und somit auch die Verarbeitungszeit verlängert werden kann. Dabei handelt es sich um die Berechnung einer Quersumme aus einer sehr großen Primzahl. Die Ermittlung der Primzahl verlängert sich in Abhängigkeit zu der im Vorhinein definierten Mindestgröße der Primzahl (hier 1500Byte BigInteger):

```
BigInteger veryBig = new BigInteger(1500, new Random());
BigInteger randomPrimeNumber = veryBig.nextProbablePrime();
int summe = 0;
while (0 != randomPrimeNumber.compareTo(BigInteger.ZERO))
{
   // addiere die letzte ziffer der uebergebenen zahl zur summe
   summe = summe + (randomPrimeNumber.mod(BigInteger.TEN)).intValue();
```

```
// entferne die letzte ziffer der uebergebenen zahl
randomPrimeNumber = randomPrimeNumber.divide(BigInteger.TEN);
}
targetString.append(summe);
```

Die Berechnung wird dabei angestoßen aus der Activity und allein innerhalb des UI Thread durchgeführt. In einem ersten Versuch wird die Komplexität nach und nach erhöht um zunehmend die Interaktion der Applikation mit dem Nutzer über die Benutzerschnittstelle zu blockieren. Nach einer bestimmten Blockierungszeit T ist zu beobachten, das der ANR Dialog des Betriebssystems erscheint und anbietet die Applikation zu beenden oder weiter zu warten. An dieser Stelle registriert das Betriebssystem, dass der UI-Thread als Haupt-Thread der Applikation für die Zeit T keine weitere Interaktion des Benutzers verarbeiten kann. Der Benutzer ist bis zu diesem Zeitpunkt nach Aktivierung der Berechnung nicht in der Lage die Applikation zu beenden oder zu wechseln. Daher schreitet nun das Betriebssystem ein, pausiert die Applikation und bietet dem Nutzer in einem ANR-Dialog an, die Applikation zu terminieren, oder weiter auf die Rückmeldung der Applikation zu warten.

2.2. Parallelverarbeitung mit der Java Standard Edition (Java Concurrency)

In diesem Abschnitt wird versucht die zeitintensive Berechnung aus dem letzten Abschnitt, mittels der allgemeinen Mechanismen der Java Standard Edition in eine parallele Verarbeitung auszulagern. Damit soll das Blockieren der Anwendung verhindert werden. Hierzu wird die Berechnung in eine Klasse ausgelagert, die das Interface java.lang.Runnable implementiert. Diese kann daraufhin einem neuen Thread zur Ausführung übergeben werden. Der folgende Auszug aus dem Quellcode zeigt dabei den Konstruktor, sowie die run()- Methode der Klasse.

```
public RandomPrimeNumGenerator(final View aView, final
Handler aCallbackHandler)
{
Log.d(TAG, "Call Constructor");
targetView = aView;
handler = aCallbackHandler;
@Override
public void run()
{
Log.d(TAG, "Call run");
String result = startCalculation();
Message message = new Message();
Bundle bundle = new Bundle();
bundle.putCharArray(String.valueOf(targetView.getId()),
result.toCharArray());
message.setData(bundle);
Log.d(TAG, "Call handler");
handler.sendMessage(message);
}
```

Das hier verwendete Handler Objekt wird dem Konstruktor aus der Activity übergeben. Wird die durch den Konstruktor RandomPrimeNumGenerator erzeugte Runnableinstanz nun einem Thread Konstruktor übergeben und auf dieser Threadinstanz die start()-Methode Aufgerufen, so startet die Java Virtuelle Maschiene einen neuen Thread, der die zeitintensive Berechnungen ausführt. Der folgende Codeabschnitt ist in der Activity defininiert. Es wird somit aus dem Main Thread heraus ein neuer Thread erzeugt.

```
private final Handler handler = new Handler();
public void initCalculation(View aView)
```

```
{
RandomPrimeNumGenerator runnable = new RandomPrimeNumGenerator(aView,
handler);

Thread newThread = new Thread(runnable);
newThread.start();
}
```

Die Händler Instanz, welche dem Konstruktor der Klasse RadomPrimeNumGenerator mitgegeben wurde, dient dabei der Kommunikation zwischen der Activity im UI-Thread und dem neuen Thread. So ist es möglich mittels einer Rückruf Methode, Informationen zurück an den UI-Thread zu spielen. Die Handler Implementierung stammt aus dem Packet android.os und ist demnach keine Funktionalität aus der Java Standard Edition. Es gibt alternativ auch andere Möglichkeiten mittels der Mechanismen aus der Java Standard Edition die Kommunikation zwischen den Threads zu realisieren. So kann eine eigene Nachrichteninfrastruktur geschaffen werden (vgl. Kapitel 1.x MessageQueue) oder es können auch Java Futures genutzt werden. Dennoch ist es für dieses Beispiel sinnvoll sich der Android-spezifischen Funktionalität zur Kommunikation über Thread Grenzen zu bedienen, denn diese wird bereits durch das Android Betriebssystem für jede Applikation bereitgestellt. Eine eigene Implementierung ist daher zwar jeder zeit möglich, stellt aber eine unnötige Redundanz dar. Diese Funktionalität wird im nächsten Abschnitt kurz erläutert um weiter auf deren korrekte Anwendung eingehen zu können.

2.2.1. Handler-Looper Mechanismus zur Inter-Thread-Kommunikation

Das Android SDK bietet für die Kommunikation zwischen Threads, die der selben Applikation angehören den Handler Looper Mechnismus an. Damit ist es möglich einen Thread an die applikationsinterne Nachrichteninfrastruktur einzuhängen und mit dem Haupt Thread, also hier dem UI Thread kommunizieren. Die Kommunikation ist dabei unidirektional.

Hier gelangen Nachrichten nur von den sekundären Threads über die Nachrichtenstruktur zum UI-Thread und nicht umgekehrt. Die Nachrichtenstruktur wird in Form einer Nachrichtenwarteschlange umgesetzt (einer Instanz vom Typ MessageQueue), die nach dem First-In-First-Out-Prinzip durch ein Objekt vom Typ android.os.Looper abgearbeitet wird. Für die Instantiierung des Handlers gilt, dass er stets nur aus dem Thread erzeugt werden darf, der auch über eine valide Looper Instanz und somit über eine MessageQueue Instanz verfügt. Dies ist standartgemäß immer der UI-Thread.

Abbildung 8.: Handler Looper Mechanismus für Android Applikationen [Yehuda, A. (2015)]

Die o.g. MessageQueue und die Looper-Instanz wird zum Initialisierungszeitpunkt der Applikation erzeugt. Sie bildet über die Kommunikation zwischen sekundären Threads und dem UI Thread hinaus, auch die Kommunikation zwischen den Basiskomponenten der Applikation ab (siehe Kapitel 1.3.3 Komponentenmodell). Darunter zählen u.a. Activities, Broadcast Receivers, etc.

2.2.2. Verwendung des Handler Looper Mechnismus

In unserem Beispiel wird ein Handler aus der Activity erzeugt, die in dem UI-Thread verarbeitet wird. Der Hander kann somit in seinem Konstruktor auf die Looper Instanz des UI Threads zugreifen und damit auch die Referenz der MessageQueue abrufen, in die er Nachrichten ablegen soll. In der run()-Methode der Klasse RandomPrimeNumGenerator wird das Ergebnis der Berechnung als gebundenes Schlüssel-Wert-Paar in einem Nachrichtenobjekt vom Typ anroid.os.Message abgelegt und der Handlerinstanz als zu versendende Nachricht übergeben.

```
@Override
public void run()
{
Log.d(TAG, "Call run");
String result = startCalculation();
Message message = new Message();
Bundle bundle = new Bundle();
bundle.putCharArray(String.valueOf(targetView.getId()),
result.toCharArray()); message.setData(bundle);
Log.d(TAG, "Call handler");
handler.sendMessage(message);
}
```

Die Handlerimplementierung in der Activity liefert die Rückruf Methode handleMessage(), die der Looper aufruft, wenn er die Nachricht unserer Handlerinstanz aus der Nachrichtenschlange nimmt.

```
private static Handler HANDLER = new Handler()
{
    @Override
    public void handleMessage(Message msg)
{
        updateView(msg);
    }
};
```

Im Falle von mehreren Handlerinstanzen, die Nachrichten in die MessageQueue ablegen, gibt es keine Kontrolle über die Reihenfolge. Die Nachrichten werden durch den Looper in der Regel (abhängig von der MessageQueue Implementierung) nach dem First-In-First-Out-Prinzip abgearbeitet, welches für komplexere Handler – Thread Konstrukte (also mehr als ein sekundärer Thread) zu beachten ist. Die Methode updateView(msg) der Activity wird im weiteren Programmverlauf nun asynchron aufgerufen und extrahiert die Nutzdaten aus der übermittelten Nachricht, um damit die jeweiligen Interaktionselemente der Benutzerschnittstelle zu aktualisieren.

```
public static void updateView(Message aMessage)
{
Log.d("RandomPrimeNumGenerator", "Callback handleMessage");
Bundle bundle = aMessage.getData();
if(bundle.containsKey(String.valueOf(R.id.startCalculation1)))
{
char[] firstResult = (char[])bundle.get(String.valueOf(R.id.startCalculati
Log.d("RandomPrimeNumGenerator", "Callback view string: "+
String.valueOf(firstResult));
firstCalculationOutput.setText(String.valueOf(firstResult));
firstCalculationOutput.invalidate();
}
if(bundle.containsKey(String.valueOf(R.id.startCalculation2)))
{
char[] secondResult = (char[])bundle.get(String.valueOf(R.id.startCalculat
Log.d("RandomPrimeNumGenerator", "Callback view string: "+
String.valueOf(secondResult));
secondCalculationOutput.setText(String.valueOf(secondResult));
secondCalculationOutput.invalidate();
}
```

2.2.3. Probleme bei der Nutzung des Handler Looper Mechanismus

Das den letzten Abschnitten vorgestellte Implementierungsbeispiel zur Java Concurrency zeigt, wie Parallelverarbeitung mit der Standard Thread Erzeugung aus der Java SE Paket realisiert werden kann. Jedoch besteht so wie der Handler Looper Mechnismus hier verwendet wird ein Risiko. Dadurch, dass der UI-Thread eine Handler Instanz erzeugt und diese dann im sekundären Thread genutzt wird, können Memory Leaks (Speicherlecks) entstehen die, die Stabilität des Systems gefährden können. Innerhalb von Applikationen unter Android werden in der Regel für bestimmte Ereignisse wie z.B. Konfigurationsänderungen (Drehen des Bildschirm = Veränderung des Darstellungsformates) die betreffenden Activities neu instantiiert und die alten Instanzen dem Garbage Collector übergeben. Die Folgende Graphik skizziert die Abhängigkeiten bei einem möglichen Implementierungsszenario:

Abbildung 9.: Speicherleck durch non-static Handler Implementierung sowie falsche Referenzierung von Objekten der äußeren Klasse in der innerer Klasse

In diesem Fall kann die alte Activity Instanz nicht entsorgt werden, da diese immer noch eine Referenz auf das aktuell in einem zweiten Thread genutzte Handler Objekt hält. Zusätzlich wird innerhalb der Handler Klasse auf ein Element der Activity zugegriffen(textView). Beide Referenzen hindern den Garbage Collector daran die Activity abzuräumen, solange die Verarbeitung im sekundär Thread noch läuft. Dauert die Hintergrundverarbeitung nun sehr lange, so ist es durch häufiges Drehen des Displays schnell möglich, weitere Activity Instanzen zu erzeugen und somit das System zu destabilisieren (der Hauptspeicher läuft voll). Dieser Effekt wird noch dadurch verstärkt, dass gerade die Activity alle GUI Elemente referenziert, also sehr speicherintensiv ist. Der Konstruktor der Klasse android.os. Handler versucht bereits zur Instanziierung den Entwickler vor diesem Risiko zu warnen:

```
public Handler() {
if (FIND POTENTIAL LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() ||
klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC)
== 0) {
Log.w(TAG, "The following Handler class should be static or
leaks might occur: "+ klass.getCanonicalName());
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException( "Can't create handler inside
thread that has not called Looper.prepare()");
mQueue = mLooper.mQueue;
mCallback = null;
}
```

Hier wird deutlich, dass explizit geprüft wird, ob das Handler Objekt als statisches Objekt aus einer inneren Klasse heraus deklariert wurde. Falls nicht wird schon hier eine Warnung ausgegeben, dass an dieser Stelle ein Speicherleck droht:

Log.w(TAG, "The following Handler class should be static or leaks might occur: "+ class.getCanonicalName());

Für die Handler Referenz würde somit schon die Definition als statische Instanz ausreichen. Werden jedoch dem Sekundär-Thread weitere Referenzen übergeben, so sind diese als java.lang.ref.WeakReferences zu kapseln. Diese zeigen dem Garbage Collector an, dass er bei der Evaluation z.B. einer Activity Instanz nicht die aktuelle Nutzung von WeakReferenzes untersuchen muss.

2.2.4. Vorsicht im Umgang mit Java Futures

Als Nachtrag zu dem Implementierungsbeispiel aus dem letzten Abschnitt, wird auf die berechtigte Fragestellung eingegangen, ob nicht auch Java Futures für den Informationsaustausch, bzw. die Ergebnisübergabe genutzt werden können anstatt sich dem Handler Looper Mechanismus zu bedienen. Java Futures bieten zwar grundsätzlich die Möglichkeit asynchrone Verarbeitung zu realisieren, jedoch eignen sie sich in diesem Anwendungszenario eher weniger für den Austausch von Nachrichten bzw. Rückgabe des Ergebnisses aus der Hintergrundberechnung. Denn wird für den Erhalt eines Ergebnisses vom UI Thread Future.get() aufgerufen so, wird der UI Thread durch die get()-Methode blockiert, solange das angeforderte Ergebnis noch nicht vorliegt. Dies ist gerade das Verhalten was verhindert werden muss. Alternativ kann ein Konstrukt entworfen werden, in der kontinuierlich oder in bestimmten Zeitabständen versucht wird das Ergebnis abzufragen, doch diese Lösung ist weder elegant noch performant. Entsprechend eignet sich die Java Standart Implementierung des Future eher weniger für die in dieser Arbeit fokussierten Problemstellung.

2.3. Parallelverarbeitung mit AndroidAsyncTask (Anroid Concurrency)

Im Vorangegangenen Abschnitt wurde gezeigt, das die Realisierung mittels Java Concurrency und dem Handler Looper Konstrukt durchaus einen gewissen Komplexitätsgrad und damit auch einige Gefahren für eine stabile Anwendung birgt. In diesem Abschnitt wird ein Konzept von Google vorgestellt, welches die Realisierung von nebenläufiger Verarbeitung deutlich vereinfachen soll. Der Schlüssel hierzu ist die abstrakte Klasse android.os. AsyncTask. Sie stellt eine Hilfsklasse zu dem oben beschriebenen Handler Looper Mechanismus dar und muss für die Verwendung abgeleitet werden. Dabei sind drei generische Primärparametertypen zu definieren, welche die Nutzdatentypen zur Initialisierung, Durchführung, und Ergebnisrückgabe der Hintergrundberechnung konkretisieren.

private class AsyncTaskImpl extends AsyncTask<Params, Progress,

Result>

Für Parametertypen gilt:

- Params → betrifft alle Parameter, die Nutzdaten für die Hintergrundverarbeitung enthalten. Sie werden zum Ausführungszeitpunkt mittels der Methode doInBackground(Params... params) übertragen.
- Progress → betrifft alle Parameter, die während der Ausführung mittels der Rückruf Methode onPublishProgress(Progress... progress) den Fortschritt, bzw. den Status der Hintergrundverarbeitung an den UI-Thread transportieren.
- Result → betrifft alle Parameter, die das Ergebnis aus der Hintergrundverarbeitung mittels der Rückruf Methode onPostExecute(Result ...result) an den UI-Thread übergeben.

Die Android Developper Dokumentation nennt weiter die vier wesentlichen Methoden zur Steuerung der Hintergrundverarbeitung:

- onPreExecute()
- doInBackground(Params...params)
- onProgessUpdate(Progress... progress)
- onPostExecute(Result... result)

Die Methoden teilen das Ausführungsmodell der Verarbeitung im AsynchTask in klar voneinander abgetrennte Abschnitte (siehe auch Sequenzdiagramm in Abbildung 10). Die Methodennamen geben einen ersten Hinweis auf die jeweiligen Aufrufzeitpunkte, die in der Klasse AsyncTask fest definiert sind. So wird die Methode

onPreExecute()

vor der Hintergrundverarbeitung bereits im Konstruktor der Klasse AsyncTask aufgerufen. Hier kann entsprechend alle Logik integriert werden, die noch vor der eigentlichen Hintergrundverarbeitung stattfinden soll. Der hier definierte Code wird noch auf dem UI-Thread ausgeführt.

Dies bietet sich an für Initialisierungen wie z.B. für eine Prozessanzeige. Die Methode

```
doInBackground()
```

ist als abstrakte Methode gekennzeichnet und muss bei der Vererbung von AsyncTask überschrieben werden. Sie kapselt die aufzurufende Logik um diese in einem separaten Thread aufrufen zu können. In unserem Beispiel wird hier die zeitintensive Berechnung definiert. Die doInBackground()-Methode ist eine Rückruf-Methode und wird indirekt angestoßen durch den Aufruf

```
asyncTaskInstance.execute(Params...params)
```

Die Klasse AndroidAsyncRandomPrimeGen überschreibt die doInBackground()-Methode und integriert hier die zeitintensive Verarbeitung:

```
@Override
protected AsyncTaskResult<String> doInBackground(Integer...
params)
{
    if(params == null || params.length != 1)
    {
        return new AsyncTaskResult<String>(new IllegalArgumentException("Not the rights params:"+ params));
    }
    triggerViewId = params[0].intValue();

StringBuilder targetString = new StringBuilder(10);
    for(int i = 0; i < 10; i++)
    {
        BigInteger veryBig = new BigInteger(1500, new Random());
        //Zeitintensive Berechnung
        //siehe Bsp BlockierendeEingabeAusgabe...
        return new AsyncTaskResult<String>(targetString.toString());
```

}

Die oben beschriebenen Übergabeparametertypen werden in diesem Codebeispiel zur Methode doInBackground() als Integer konkretisiert und spezifizieren in der Implementierung die ID der View, welche die Berechnung angestoßen hat. An Hand dessen wird später die Ziel-View ermittelt, die das Ergebnis darstellen soll. Das Ergebnis der Berechnung wird hier als konkreter AsyncTaskResult<String> Typ zurückgegeben, damit dieser String an die onPostExecute(Result ... result) Methode weitergegeben werden kann. Analog zur Hintergrundverarbeitung bietet Google mit der Methode onProgressUpdate() die Möglichkeit aus der laufenden Berechnung im sekundären Thread, Informationen oder Nachrichten wie z.B. Statusmeldungen an den UI Thread zu senden. Die Methode onPostExecute() wird nach Abschluss der Hintergrundoperationen dann wieder auf dem UI-Thread ausgeführt. Sie bietet sich an, um finale Aktualisierungen auf Basis der Ergebnisse aus der Hintergrundverarbeitung durchzuführen. In unserem Beispiel könnte das Ergebnis in die jeweiligen View Objekte der Activity übertragen werden:

```
@Override
protected void onPostExecute(AsyncTaskResult<String> result)
{
    ...
    //update user interface
String realResult = result.getResult();

if (triggerViewId == R.id.startCalculation1) {
    firstOutputView.setText(realResult);
    firstOutputView.invalidate();
}

if (triggerViewId == R.id.startCalculation2) {
    secondOutputView.setText(realResult);
    secondOutputView.invalidate();
}

Da einzig und allein von den vorgestellten Methoden, die
```

doInBackground() Methode in dem sekundären Thread ausgeführt wird, muss darauf geachtet werden, keine zeitintensive Logik in den anderen Methoden zu integrieren. Ansonsten besteht wieder die Gefahr der blockierenden Anwendung, analog zu der Beispielimplementierung in Kapitel 2.1. Weiter ist gemäß der Android Developer Dokumentation darauf zu achten, dass nur gering zeitaufwändige (wenige Sekunden) Operationen mittels des AsyncTask in eine Hintergrundverarbeitung ausgelagert werden sollten. Woran das liegt und welche Konsequenzen sich aus längeren Operationen ergeben wird hier nicht genannt. Die Android Developper Dokumentation gibt hierzu lediglich einen groben Überblick wie dieser Mechanismus optimal zu nutzen ist und für welche Problemstellungen sich die Verwendung der Klasse AsyncTask eignet. Es bleiben also weitere Fragen offen:

- Wie funktioniert nun der AsyncTask Mechanismus konkret?
- Gemäß der Dokumentation wird die Inter-Thread Kommunikation mittels des oben vorgestellten Handler-Looper Mechanismus (siehe auch Parallelverarbeitung mit Java SE) realisiert. Doch wie wird diese Kommunikation im Detail für die genannten Rückrufmethoden über Thread Grenzen hinaus umgesetzt? Wie wird zwischen Statusmeldungen und Ergebnismeldungen unterschieden?
- Wie und wann wird der Hintergrund Thread erstellt?
- Wie funktionieren die Executor Instanzen insbesondere der THREAD-POOL-EXECUTOR der in der Android Developper Dokumentation lediglich kurz genannt wird?

Diesen Fragen widmet sich der folgende Abschnitt in dem genauer auf die konkrete Implementierung der Klasse andorid.os. AsyncTask eingegangen wird.

2.3.1. Ausführungsmodell von Android AsyncTask in Bezug auf Multi Threading

Im letzten Abschnitt wurde auf die allgemeine Funktionsweise der Klasse android.os. AsyncTask eingegangen, ohne genauer zu hinterfragen wie

die einzelnen Mechanismen im Hintergrund funktionieren. Dabei blieben noch einige Fragen offen, deren Klärung nun ein genauerer Blick in die Implementierung der abstrakten Klasse AndroidAsyncTask erfordert. In einem ersten Schritt wird zunächst das Ausführungsmodell gemäß der im letzten Abschnitt vorgestellten Beispielimplementierung im Detail vorgestellt. Hierzu dient das folgende Sequenzdiagramm:

Abbildung 10.: Sequenzdiagramm zum internen Ablauf in Android Async-Task mit Zuordnung zum jeweiligen Thread

Das dargestellte Sequenzdiagramm gibt einen ersten Einblick in die interne Funktionsweise der Klasse AsyncTask. Es ordnet die einzelnen Vorgänge zur Initialisierung, Durchführung und Beendigung der Hintergrundberechung im Android AsycnTask dem jeweiligen Thread zu.

Es ist zu entnehmen, dass die Initialisierungen durch den Aufruf des Konstruktors angestoßen werden und im UI-Thead stattfinden. Zu diesen Initialisierungen gehören:

- Erzeugung der Standart Executor Instanz, die die Ausführung in Thread steuert
- Erzeugung einer Worker Instanz, welche die Hintergrundverarbeitung kapselt
- Erzeugung einer Queue Instanz welche die später zu verarbeitenden Aufgaben hintereinander anreiht
- Erzeugung eines Handlers der die asynchrone Kommunikation zwischen dem Hintergrund Thread und dem UI Thread gemäß des Handler Looper Mechanismus (siehe Abschnitt zu Handler Looper Mechanismus Kapitel 2.x) regelt.

Wird nun die execute(Runnable r) Methode des AsyncTask aufgerufen besteht noch die Möglichkeit weitere Initialisierungen in der Rückrufmethode onPreExecute() zu definieren. Auch dieser Aufruf wird noch durch den UI Thread verarbeitet. Erst mit dem Aufruf sDefaultExecutor.execute(runnable); wird die Hintergrundberechnung eingeleitet. In dem jeweils erzeugten Thread wird weiter durch eine Worker Instanz die Rückrufmethode doInBackground() aufgerufen, in der die zeitintensive Verarbeitung implementiert ist. Sollen hieraus nun Statusmeldungen, Zwischenergebnisse oder sonstige Daten noch während der Berechnung im HintergrundThread an den UI Thread übermittelt werden, kommt der in Kapitel 2.2 vorgestellte Handler Looper Mechanismus zur Anwendung. Die Nutzdaten werden der Methode publishProgress(Params...params) übergeben. Diese werden weiter in eine Handler Message gepackt, welche über den Schlüssel

private static final int MESSAGE POST PROGRESS = 0x2;

verfügt. Damit ist es möglich in der Handler-Implementierung die Daten des Message Objektes exakt an die richtigen Rückrufmethoden weiter zu leiten. Die Message wird der MessageQueue übergeben und der Hintergrund Thread fährt mit seiner Verarbeitung fort. Gemäß den Erläuterungen zum Handler Looper Mechanismus ruft der Looper im

UI-Thread, wenn er das Message Objekt aus der Queue nimmt, die spezifische Handler Implementierung auf, extrahiert die Nutzdaten und sendet diese in Abhängigkeit zum Message Schlüssel an die jeweilige Rückrufmethode. Siehe hierzu die Handler Implementierung der Klasse AsyncTask:

```
private static class InternalHandler extends Handler {
@SuppressWarnings("unchecked", "RawUseOfParameterizedType")
@Override
public void handleMessage(Message msg) {
AsyncTaskResult result = (AsyncTaskResult) msg.obj;
switch (msg.what) {
case MESSAGE_POST_RESULT:
// There is only one result
result.mTask.finish(result.mData[0]);
break;
case MESSAGE POST PROGRESS:
result.mTask.onProgressUpdate(result.mData);
break;
}
}
}
```

Analog findet die Übergabe des Ergebnisses der Hintergrundberechnung aus dem sekundären Thread in den UI-Thread statt. Dabei wird mittels der Methode postResult(resultOfDoInBackground) die Nachricht erzeugt und versandt. Der Handler erkennt an Hand des Nachrichteschlüssels:

```
private static final int MESSAGE_POST_RESULT = 0x1;
die entsprechende Rückrufmethode für die Nachrichten Verarbeitung im
UI Thread:
```

```
onPostExecute(Result...result).
```

Final wird der Status im Hintergrund Thread auf den Status "Beendet"gesetzt und dieser terminiert. Die Handler Instanz, welche spezifisch

für diesen Thread erzeugt wurde, wird zusammen mit evtl. weiteren nun nicht mehr verwendeten Objekt Instanzen dem Garbage Collector übergeben.

2.3.2. Serielle Ausführung in Android AsyncTask

Wir haben bisher gesehen, wie das Ausführungsmodell der Klasse Android AsyncTask die Hintergrundverarbeitung in klar von einander getrennte Verarbeitungsschritte unterteilt und diese dem jeweiligen Thread zuordnet. Auch wurde deutlich, wie die Kommunikation Mittels des Handler Looper Mechnismus über Thread Grenzen hinaus realisiert ist. Es bleibt nun noch die Frage, wie die Berechnungen letzt endlich in einem neuen Thread ausgelagert werden. Damit verbunden ist die Frage nach der Funktionsweise der in der Android Developer Dokumentation grob skizzierten Executor Instanzen.

- DefaultExecutor → Serielle Ausführung
- ThreadPoolExecutor \rightarrow Parallele Ausführung

Gemäß der Dokumentation haben wir in dem Prototyp den DefaultExecutor verwendet und werden zunächst die Funktionsweise der seriellen Ausführung analysieren. Sieht man sich den initialen Aufruf der Hintergrundverarbeitung an, so stellt folgende Methode den Einstiegspunkt in die Verarbeitung durch AsyncTask dar:

```
public final AsyncTask<Params, Progress, Result> execute(Params...
params) {
  return executeOnExecutor(sDefaultExecutor, params);
}
```

Darin wird der Aufruf an eine spezifische executeOnExecutor() Methode weitergeleitet und die zu verwendende Executor Instanz spezifiziert:

```
private static volatile Executor sDefaultExecutor = SERIAL EXECUTOR;
```

Dabei handelt es sich nach Android Developer Dokumentation um

einen Executor, der die abzuarbeitenden Tasks seriell in einem sekundären Thread abarbeitet. Er stellt somit den Gegensatz zu der Executor Instanz THREAD-POOL-EXECUTOR dar, die es ermöglicht die Hintergrundverarbietung auf mehrere Threads zu verteilen. Jedoch wird von der Verwendung des THREAD-POOL-EXECUTOR in der Dokumentation abgeraten, da sich hier Probleme aus der nicht vorhersagbaren Reihenfolge der Abarbeitung und der Synchronisation von Ergebnissen ergeben können. Sieht man sich jedoch nun die Implementierung des empfohlenen SerialExecutors an, so erscheint es zunächst überraschend, dass sich dieser seinerseits des ThreadPoolExecutors bedient (siehe scheduleNext() Methode):

```
private static class SerialExecutor implements Executor {
final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
Runnable mActive;
public synchronized void execute(final Runnable r) {
mTasks.offer(new Runnable() {
public void run() {
try {
r.run();
} finally {
scheduleNext();
}
}
});
if (mActive == null) {
scheduleNext();
}
}
protected synchronized void scheduleNext() {
if ((mActive = mTasks.poll()) != null) {
THREAD POOL EXECUTOR.execute(mActive);
}
}
}
```

Das folgende Aktivitätsdiagramm visualisiert den oben definierten Programmablauf um diesen besser zu verstehen. Es zeigt wie der Serial-Executor zur Initialisierung eine Queue erzeugt, in der die einzelnen abzuarbeitenden Aufgaben temporär vor deren Verarbeitung abgelegt werden.

Abbildung 11.: Aktivitätsdiagramm zum SerialExecutor in Android AsyncTask

Wird die execute (Runnabel r) - Methode des SerialExecutors aufgerufen, so wird die darin mit übergebene Runnable Instanz in der Queue abgelegt. Die folgende Prüfung, ob bereits ein Runnable in Bearbeitung ist (z.B. durch aktuell laufende Verarbeitungen), stellt den Eintritts-

punkt in die serielle Verarbeitung dar. Denn nur wenn sich aktuell keine Runnable Instanz in Bearbeitung befindet, wird eine neue Verarbeitung angestoßen. Den Start der Verarbeitung eines Runnables definiert die Methode schaduleNext(). Darin wird ein Runnable aus der Queue genommen, und der Instanz vom Typ ThreadPoolExecutor zur Ausführung übergeben. Ist die Verarbeitung eines Runnables abgeschlossen, so wird rekursiv erneut die schaduleNext() - Methode aufgerufen und eine neue Verarbeitung gestartet. Dies wiederholt sich solange, wie zu verarbeitende Aufgaben, als Runnables aus der Queue genommen werden können. Dem ThreadPoolExecutor, welcher für die parallele Ausführung von Runnabels in unterschiedlichen Threads gedacht ist, wird somit immer nur pro Verarbeitungszyklus ein Runnable zur Verarbeitung übergeben. Ist die Queue leer terminiert die Verarbeitung. Der SerialExecutor ist somit nichts weiter als ein Portionierer, der lediglich einen Task zur selben Zeit für die Bearbeitung durch den ThreadPoolExecutor frei gibt.

Wird eine parallele Verarbeitung benötigt, kann direkt der ThreadPoolExecutor verwendet werden indem ihm n-Tasks zur Ausführung übergeben
werden. Dieser verteilt die Tasks auf die von ihm verwalteten Threads.
Die Reihenfolge der Abarbeitung ist jedoch damit nicht mehr kontrollierbar und genau vor diesem Szenario wird in der Andorid Developper
Dokumentation gewarnt. Weiter kann es zu fehlerhaften Verhalten bei
unkorrekt synchronisierten geteilten Zugriffen kommen.

Die Android Developper Dokumentation nennt weiter zum AsyncTask in der empfohlenen Konfiguration mit dem Standart (Serial) Executor den Hinweis, dass sich dieser Mechanismus lediglich für Hintergrundverarbeitungen anbietet, welche generell wenig Zeit in Anspruch nehmen. Dies ist dem Design des AsyncTask geschuldet, der in der o.g. Variante lediglich einen Thread erlaubt. Für die Verarbeitung von mehreren Aufgaben, die jede für sich wenig Zeit benötigt, würde bei einer hohen Anzahl von Aufgaben, die Verarbeitung in der Summe aller Aufgaben deutlich länger dauern, als bei der parallelen Verarbeitung. Google ist sich über diese Problematik durchaus bewusst und gibt eben genau für dieses Anwendungsszenario, die Möglichkeit des ThreadPoolExecutors mit. Dabei hat das Design des Andorid AsyncTask über die unterschiedlichen Android Versionen immer wieder Änderungen erfahren. So hat sich die erste Version des AsyncTask Mechanismus generell auf die serielle Verarbeitung in einem Hintergrund

Thread konzentriert. Mit der im September 2009 veröffentlichten Android Version 1.6 (Donut) änderte sich das Ausführungsmodell in Richtung einer parallelen Ausführung in einem ThreadPool, wie es der ThreadPoolExecutor ermöglicht. Ab der Android Version 3.0 (Honeycomb) hat Google sich für die sichere Variante entschieden und bietet wie oben vorgestellt im Standard die serielle Verarbeitung an, um die Schwierigkeiten und Risiken für die Applikationsentwicklung zu verringern. Damit ist diese Funktionalität auch für weniger erfahrene Entwickler leicht anwendbar.

2.4. Parallelverarbeitung mit RXJava

Die letzten Abschnitte haben gezeigt, wie mittels der Techniken aus unterschiedlichen Software Developper Kits Nebenläufigkeit in Android Applikationen realisiert werden kann. Dabei beschränken sich die Beispiele auf die imperative Programmierung. Mit dem Framework RXJava wird die Konzeption von Nebenläufigkeit nun aus deklarativer Sicht betrachtet. Wie sich dies auf unsere konkrete Problemstellung auswirkt wird im folgenden untersucht.

2.4.1. Imperative und Deklarative Programmierung

Imperative Programmierung bezeichnet ein Programmierparadigma, bei dem Applikationen aus einer Abfolge von Befehlen definiert werden. Diese verändern Werte in gespeicherten Variablen und erzeugen innerhalb einer Verarbeitung die Ergebnismenge in einer vom Entwickler vorgegebenen Reihenfolge. Dabei werden entsprechend der vom Programm zu erledigenden Aufgabe die einzelnen Verarbeitungsschritte vorgegeben. Die imperative Programmierung ist das klassische und am weitesten verbreitete Paradigma. Dem gegenüber steht die deklarative Programmierung.

Deklarative Programme stellen eher "abstrakte"Problembeschreibungen dar und enthalten weder Ausführungsanweisungen an einen Rechner, noch sind Variablen oder Speicherplatzbezeichner zu finden. Es kommt bei dieser Form der Programmierung also nicht auf den Ablauf oder das

Halten von Zuständen an, sondern eher auf die Problemspezifikation selbst. Damit einher geht ein im Vergleich zur imperativen Programmierung relativ hoher Abstraktionsgrad. Dies kann zum Vorteil werden, wenn daraus kürzere und prägnantere Programme entstehen. In Bezug auf die Konzeption von Nebenläufigkeit, wie sie in dieser Arbeit thematisiert ist, bietet die deklarative Programmierung die Eigenschaft der sog. impliziten Parallelität. Damit ist gemeint, dass die abstrakte Form der Programmierung es begünstigt, die Auswertung von unabhängigen Programmteilen parallel durchzuführen. Eine weitere Erleichterung bei der Konzeption von Nebenläufigkeit bietet die deklarative Programmierung dadurch, dass bereits innerhalb von Problemstellungen enthaltene Parallelität nicht künstlich in sequentielle Abläufe überführt werden muss.

2.4.2. Reaktive Programmierung & Reactive Manifesto

Reaktive Programmierung baut auf der deklarativen Programmierung auf und beschreibt zusätzlich, wie die Funktionsbausteine eventgetrieben im Programmverlauf angesteuert werden. Dieses Programmierparadigma erlebt aktuell eine große Aufmerksamkeit in der Welt der Softwareentwicklung, obwohl die ersten Ideen zum deklarativen Paradigma bereits ab 1930 mit dem Lamda Kalkül von Alonso Church formuliert wurden. Bruce Eckel und Jonas Boner propagieren mit ihrem Reactive Manivesto den deklarative-funktionale Programmierstiel u.a. zusammen mit dem Bestreben nach "Responsive Appliactions"also ansprechbaren Applikationen, insbesondere GUI Applikationen, welche bei keiner Aktion blockieren dürfen. [Neumann, Alexander (2013)] Dieses Manifest hebt die Bedeutung für aktuelle und zukünftige Applikationen hinsichtlich der Ansprechbarkeit seitens des Nutzerinterfaces hervor und soll Entwickler, sowie Softwarehersteller dazu aufrufen, das reaktive Paradigma zu evaluieren und im Idealfall gewinnbringend einzusetzen. [ECKEL, BRUCE UND Boner, Jonas (2014)]

2.4.3. RX JAVA Entstehung

RXJava ist eine Implementierung der Reactive Extensions (RX) für die Java Virtuelle Maschine. Reactive Extensions wurden von Erik Meijer erstmals für die .Net Plattform von Microsoft veröffentlicht mit dem Ziel, mittels funktional-reaktivier Programmierung die Verarbeitung von Event und Daten Strömen zu realisieren. In Meijers Konzept zu Reactive Extensions sind diese Ströme von Events oder Daten modelliert als sog. "observierbare Ströme" (eng. observable streams). Zu diesen Strömen kann man sich als sog. "Subscriber"registrieren, also ein Abonnement anlegen und je nach Bedarf unterschiedliche Operationen darauf ausführen. Die Ströme können dabei u.a. gefiltert, transformiert, und mit anderen Strömen zusammengelegt werden. Die Ractive Extensions waren bislang nur für die funktionale Programmierung verfügbar. Die Firma Netflix hat es sich somit zur Aufgabe gemacht für ihren gleichnamigen Streaming Dienst eine eigene reaktive Erweiterung zur Java Standart Edition in der Version 7 mit dem RXJava heraus zu bringen. Die Entwicklung dieser Erweiterung hat das Ziel ein Framework für nicht blockierende (responsive) Applikationen, insbesondere für Gui Applikationen zur Verfügung zu stellen, welches dem Anspruch des Reactive Manifesto gerecht wird. Die Motivation den Streamingdienst mit der Entwicklung der reaktiven Erweiterung voranzutreiben liegt darin, ein Framework für die Entwicklung von nicht blokierenden NETFLIX Applikationen durch Drittanbieter zur Verfügung zu stellen. Dadurch dass, der Erfolg des Streaming Dienstes u.a. von der Akzeptanz der Applikation auf dem jeweiligen Endgerät (Playstation, XBOX, Android, IOS, Amazon TV, SmartTV) abhängig ist, hat Netflix zwangsläufig Interesse daran, dass die Implementierungen, die ständige Ansprechbarkeit durch den Nutzer gewährleisten und nicht blockieren. Aus diesem Grund hat Netflix seine reaktive Erweiterung auch für unterschiedliche Programmiersprachen veröffentlicht:

Abbildung 12.: (Netflix)RX kompatible Programmiersprachen

Die Reaktive Erweiterung für die JAVA SE von Netflix bietet also eine Chance für genau die, in dieser Arbeit diskutierte Problemstellung der Nebenläufigkeit unter Android. Wie die Reaktive Erweiterung konkret funktioniert wird zunächst an einem einfachen Implementierungsbeispiel für die Java SE vorgestellt und weiter auf das in den letzten Abschnitten diskutierte Beispiel unter Android transferiert.

2.4.4. RXJava Funktionsweise

Reactive Java oder RXJava stellt eine konkrete Implementierung des Beobachter Entwurfmusters der Reactive Extension dar. Darin wird beschreiben wie ein Objekt (Observable) bestimmte Elemente (Items) emittiert. Dabei kann sich ein weiteres Objekt (Observer oder Subscriber) für den Empfang der Items registrieren, womit dieses ab dem Zeitpunkt der Registrierung alle emittierten Items empfängt. Erweitert wird dies durch die Eigenschaft, nach der ein Observable die Registrierung von mehreren Subscribern zulässt und seine Items an diese emittiert. Die Bindung (Subscription) zwischen Observable und Subscriber kann jeder Zeit vom Subscriber widerrufen werden. Obsevables können gegenüber anderen Observables als Subscriber auftreten und von diesen weitere Items beziehen. Diese Items können daraufhin beliebig weiterverarbeitet werden (z.B. filtern, transformieren, gruppieren) und final für die registrierten Subscriber emittiert werden.

Die Funktionsweise von RXJava wird im Folgenden an Hand eines einfachen Beispiels demonstriert und erläutert. In dem Beispiel wird ein einfaches Concurrency Szenario modelliert. Danach werden zwei Threads parallel gestartet. Diese sollen eine zeitaufwändige Operation, je zehn mal durchführen (Suchen einer großen Primzahl, siehe Kapitel 2.1). Die jeweiligen Ausgaben der Threads stellen den Datenstrom dar, der mittels der Observables und der Subscriber von RXJava verarbeitet wird. Die Ergebnisse der Verarbeitung werden auf der Konsole ausgegeben und sollen den Programmablauf zur Laufzeit wiederspielen. Der folgende Auszug zeigt den Sourcecode einer ersten Testanwendung. Die Klasse ReactiveDemo definiert ein Observable in dem eine zeitaufwändige Primzahlenoperation definiert ist. Dieser Code sollte analog zu den Beispielimplementierungen der vorangegangenen Kapitel nicht im Main

Thread ablaufen, sondern in einem sekundären Hintergrundthread.

```
static Observable<String> myObservable = Observable.create(
new Observable.OnSubscribe<String>() {
    @Override
    public void call(Subscriber<? super String> sub) {
        for (int i = 0; i < 10; i++)
        {
            sub.onNext("ObserverThread: Hello, world!"+ i);
            BigInteger veryBig = new BigInteger(500, new Random());
            veryBig.nextProbablePrime();
        }
        sub.onCompleted();
    }
}</pre>
```

Das Observable stellt eine in sich geschlossene Verarbeitung einer Aufgabe dar. In diesem Fall werden dabei zehn Ergebnismengen durch folgenden Aufruf ermittelt:

```
sub.onNext(ergebniss vom typ t)
```

Alle Subscriber, die sich zu diesem Observable registriert haben erhalten dann mittels der Rückrufmethode das Ergebnis in der onNext()-Methode. Ist die Verarbeitung im Observable beendet und werden keine weiteren Items mehr emittiert, so ruft das Observable die Rückrufmethode onCompleted() der bei ihm registrierten Subscriber auf. Analog wird im Fehlerfall verfahren und der Fehler an die einzelnen Subscriber übermittelt. Unser Beispiel definiert zwei Subscriber die jeweils zu einer eigenen Instanz des Observable registriert werden.

```
static Subscriber<String> myFirstSubscriber = new Subscriber<String>()
{
```

@Override

```
public void onNext(String s) {
System.out.println("1rst Thread itemProcessing:");
System.out.println(s);
}
@Override
public void onCompleted() {
firstObservableHasFinished=true;
System.out.println("1rst item Completed");
}
@Override
public void onError(Throwable e) {
System.out.println("There was an error on first subscriber:"+
e);
}
};
static Subscriber<String> mySndSubscriber = new Subscriber<String>()
{
@Override
public void onNext(String s) {
System.out.println("2ndThread: itemProcessing:");
System.out.println(s);
}
@Override
public void onCompleted() {
secondObservableHasFinished = true;
System.out.println("2nd Thred: item Completed");
}
@Override
public void onError(Throwable e) {
}
};
```

Die Subscriber implementieren folgende Rückruf Methoden für den Aufruf durch Observables:

- onNext()
- onComplete()
- onError()

Dabei handelt es sich um vom Framework vorgegebene Standart Rückruf Methoden, die je nach Subscription von unterschiedlichen Observables angesprochen werden können. Die Subscription selbst enthält darüber hinaus noch zusätzliche Konfigurationen. So ist genau definiert, dass die Observierung durch die Subscriber selbst in dem MainThread laufen sollen (.observeOn(Schedulers.io())) und die Verarbeitung des Observables in einem sekundären Thread stattfindet (subscribeOn(Schedulers.newThread())). Das bedeutet, dass das Observabel auf zwei Threads dubliziert wird, für jeweils den Subscriber eins und Subscriber zwei. Dagegen laufen beide Subscriber Instanzen auf dem Main Thread.

```
Subscription subscriptionOne =
myFirstObservable.subscribeOn(Schedulers.newThread())
.observeOn(Schedulers.io()).subscribe(myFirstSubscriber);
Subscription subscriptionTwo =
mySecondObservable.subscribeOn(Schedulers.newThread())
.subscribe(mySecondSubscriber);
```

Bei dieser Beispiel Anwendung handelt es sich um eine einfache Java Applikation, die durch die main()- Methode gestartet und darin die angesprochene Verarbeitung innerhalb eines Observables in zwei sekundären Threads auslagert. Wird diese Applikation nun gestartet, so würde sie wieder terminieren, bevor die Verarbeitung in den sekundär Threads abgeschlossen ist. Dem entsprechend wird eine fortwährende Verarbeitung im Main Thread durch eine while- Schleife simuliert, deren Abbruchkriterium der Status Completed der Observables von beiden Sekundär Threads ist. Das Ergebnis ist Folgendes (siehe nächste Seite):

1rst Thread itemProcessing: ObserverThread: Hello, world!0

> 2ndThread: itemProcessing: ObserverThread: Hello, world!0

1rst Thread itemProcessing: ObserverThread: Hello, world!1 1rst Thread itemProcessing: ObserverThread: Hello, world!2

2ndThread: itemProcessing: ObserverThread: Hello, world!1

1rst Thread itemProcessing: ObserverThread: Hello, world!3 1rst Thread itemProcessing: ObserverThread: Hello, world!4

> 2ndThread: itemProcessing: ObserverThread: Hello, world!2

1rst Thread itemProcessing: ObserverThread: Hello, world!5

2ndThread: itemProcessing:
ObserverThread: Hello, world!3
2ndThread: itemProcessing:
ObserverThread: Hello, world!4
2ndThread: itemProcessing:
ObserverThread: Hello, world!5
2ndThread: itemProcessing:
ObserverThread: Hello, world!6

1rst Thread itemProcessing: ObserverThread: Hello, world!6

> 2ndThread: itemProcessing: ObserverThread: Hello, world!7

1rst Thread itemProcessing: ObserverThread: Hello, world!7

> 2ndThread: itemProcessing: ObserverThread: Hello, world!8

1rst Thread itemProcessing: ObserverThread: Hello, world!8

> 2ndThread: itemProcessing: ObserverThread: Hello, world!9 2nd Thred: item Completed

1rst Thread itemProcessing: ObserverThread: Hello, world!9 1rst item Completed Zusehen ist hier wie in unterschiedlichen Threads die Observables abwechselnd ihre Iterationen 0-9 durcharbeiten, die Ergebnismengen an den jeweiligen Subscriber im Main Thread schicken und dieser die Ausgaben auf der Konsole ausgibt. Die erste Beispielimplementierung zu RXJava zeigt wie asynchrone Verarbeitung in sekundäre Threads ausgelagert werden kann und dabei die Ergebnisübergabe mittels Rückrufmethoden realisiert ist. Diese sind fest vordefiniert im Main Thread und werden reaktiv erst dann angesteuert, wenn von dem registrierten Observable ein Ereignis vorliegt. Zu den Ereignissen gehören entsprechend der Rückrufmethoden:

- Es liegt eine neue Ergebnismenge vor → onNext()
- Es liegt ein Fehler bei der Verarbeitung innerhalb des Observables vor → onError()
- Die Verarbeitung im Observable ist abgeschlossen → onNext()

Die Dokumentation zu RXJava zeigt zu oben genanntem Beispiel, wie Observables miteinander verkettet werden können und somit unterschiedliche Verarbeitungsketten realisierbar sind: ObserverWorkerChain

Abbildung 13.: Komplexe Verarbeitungskette mit mehreren Observern

In o.g. Abbildung tritt ein Observable selbst als Subscriber auf und erwartet von dem Observable zu dem er sich registriert hat seine Eingangswerte die er seinerseits weiterverarbeitet. Die Ergebnismenge stellt dieses Observable dann wieder seinen Subscribern zur Verfügung usw. RXJava bietet an dieser Stelle noch praktische vordefinierte Observables die nach Bedarf genutzt werden können und den Sourcecode vereinfachen. In o.g. Graphik dienen die vordefinierten Observables dazu zunächst die Eingangsdaten zu gruppieren (siehe Observable A group()) und weiter die gruppierten Daten zu filtern (siehe Observable B1 und B2 filter()). Zu dem Empfang der Ergebnismengen der Verarbeitungsketten registrieren sich abschließend die Subscriber S1 und S2.

2.4.5. RXJava in Android

Der letzte Abschnitt hat gezeigt wie mittels RXJava im Vergleich zu den Mitteln aus der Java SE relativ leicht asynchrone Verarbeitung realisiert

werden kann. Doch nun gilt es dies auch für Android Applikationen zu realisieren. Für den Einsatz von RXJava gibt es eine sinnvolle Erweiterung, welche die Entwicklung erleichtert. RXAndroid ist ein Packet, welches einfach in die Android Applikation eingebunden werden kann. Das Packet erleichtert besonders mit vordefinierten Scheduler die Entwicklung. Soll die Verarbeitung des Observables oder des Subscribers auf dem Android Main Thread laufen, so bietet die RXAndroid Erweiterung den AndroidScheduler an. Für das in dieser Arbeit betrachtete Szenario zur Nebenläufigkeit (siehe Kapitel 1.5) würde es dementsprechend Sinn machen, die zeitintensive Verarbeitung im Observable als Sekundär Thread auszulagern (.subscribeOn(Schedulers.newThread())) und den Subscriber, der asynchron die Ergebnismenge des Observables erhält, im Main Thread der Android Anwendung laufen zu lassen (observeOn(AndroidSchedulers.mainThread())). Demnach wird für unsere Beispielimplementierung die Subscription wie folgt in der Activity der Applikation definiert:

```
private Subscription getSubscription(Subscriber<String>
aSubscriber) {
RandomPrimeNumGenerator randomPrimeNumGenerator =
new RandomPrimeNumGenerator();
return randomPrimeNumGenerator.getObservable().
observeOn(AndroidSchedulers.mainThread())
.subscribeOn(Schedulers.newThread())
.subscribe(aSubscriber);
}
```

Der o.g. Codeauszug zeigt eine Methode der Activity unserer Beispielimplementierung, die zu einem gegebenen Subscriberobjekt eine Subscribtion erstellt. Hierzu wird eine Instanz vom Typ RandomPrimeNumGenerator erzeugt die ein Observable zurückliefert und zu dem ein gegebener Subscriber registriert wird. Die im Szenario geforderte zeitintensive Verarbeitung ist durch das Observable gekapselt. Der folgende Quellcode zeigt hierzu einen Auszug aus der Klasse RandomPrimeNumGenerator, die dieses Observable implementiert:

```
public RandomPrimeNumGenerator()
primMessageObservable = Observable.create(
new Observable.OnSubscribe<String>() {
@Override
public void call(Subscriber<? super String> sub) {
for(int i=0; i<10; i++)
BigInteger veryBig = new BigInteger(500, new Random());
BigInteger randomPrimeNumber = veryBig.nextProbablePrime();
int summe = 0;
while (0 != randomPrimeNumber.compareTo(BigInteger.ZERO)) {
// addiere die letzte ziffer der uebergebenen zahl zur summe
summe = summe + (randomPrimeNumber.mod(BigInteger.TEN)).intValue();
// entferne die letzte ziffer der uebergebenen zahl
randomPrimeNumber = randomPrimeNumber.divide(BigInteger.TEN);
}
sub.onNext(Öbservable emits CrossSum for iteration: "+ i );
sub.onNext(String.valueOf(summe));
sub.onCompleted();
}
}
);
public Observable<String> getObservable(){
return primMessageObservable.filter(new Func1<String, Boolean>()
{
@Override
public Boolean call(String item) {
try {
Integer.valueOf(item);
} catch (NumberFormatException e) {
```

```
return false;
}
return true;
}}
);
}
Das Observable emittiert also hier pro Iteration zwei Items. Zum
Einen den String zur Identifikation der Iteration:
sub.onNext("Observable emits CrossSum for iteration: "+ i
);
zum Anderen die berechnete Primzahl selbst:
sub.onNext(sub.onNext(String.valueOf(summe));
Der o.g. Quellcodeauszug der Activity zeigt in seiner getObservable()
Methode, wie mittels eines Filter Observables nur das Ergebnis (hier der
Integerwert) zum Subscriber weitergeleitet wird. Entspechend registriert
sich der Subscriber beim Filter Observable. Die Activity definiert zwei
Subscriber, die unterschiedlich aus der Gui angestoßen werden können.
private Subscriber<String> getFirstSubscriber() {
return new Subscriber<String>() {
@Override
public void onNext(String s) {
//Actualize the view + setting value
String lastOutput = firstObserverOutput.getText().toString();
firstObserverOutput.setText(lastOutput + s);
firstObserverOutput.invalidate();
}
@Override
```

```
public void onCompleted() {
//show in view that observer is ready
@Override
public void onError(Throwable e) {
//show in view that observer ran in an error
};
}
private Subscriber<String> getSecondSubscriber() {
return new Subscriber<String>() {
@Override
public void onNext(String s) {
//Actualize the view + setting value
String lastOutput = secondObserverOutput.getText().toString();
secondObserverOutput.setText(lastOutput + s);
secondObserverOutput.invalidate();
}
@Override
public void onCompleted() {
//show in view that observer is ready
}
@Override
public void onError(Throwable e) {
//show in view that observer ran in an error
}
};
}
```

Je nach dem über welche ViewId die Initialisierung der Subscriber

gestartet wird, ist zu entschieden, welche Subscriber Implementierung zu verwenden ist um eine Subscribtion zu starten.

```
public void initSubscription(View aView) {
if (aView.getId() == R.id.startSubscription1) {
firstSubscriber = getFirstSubscriber();
subscription1 = getSubscription(firstSubscriber);
}
if (aView.getId() == R.id.startSubscription2) {
secondSubscriber = getSecondSubscriber();
subscription2 = getSubscription(secondSubscriber);
}
}
```

Die jeweilige Referenz einer Subscribtion wird in einer Klassenvariable der Activity gespeichert, um diese im Falle einer ungeplanten Terminierung der Activity-Instanz vorher noch zu beenden. Dies gilt z.B. für das Event "Configuration Change"nachdem standardgemäß die aktuelle Activity-Instanz zerstört und neu erstellt wird (siehe hierzu auch Kapitel 1.4 den Lebenszyklus einer Activity). Der folgende Codeauszug zeigt, wie der Aufruf unsubscribe() für die jeweilige Subscribtion genau das leistet. Der Empfang der Items wird abgebrochen noch bevor das Observable den Status "Completed"erreicht hat.

```
public void onDestroy() {
```

@Override

```
if (subscription1 != null) {
subscription1.unsubscribe();
}
if (subscription2 != null) {
subscription2.unsubscribe();
}
}
```

2.5. Zusammenfassung

In diesem Kapitel werden drei unterschiedliche Konzepte zur Realisierung von Nebenläufigkeit in Bezug auf das Android Betriebssytem vorgestellt. Um diese Konzepte vergleichbar zu machen ist ein Beispiel Szenario definiert, indem eine oder mehrere zeitaufwändige Operationen innerhalb einer Android Applikation gestartet werden. In einer ersten Beispiel Implementierung ohne jegliche Nebenläufigkeit haben wird deutlich, wie durch Starten einer zeitaufwändigen Operation die Anwendung nicht mehr auf Benutzereingaben reagiert. Je nach Wartedauer meldet sich dabei nach kurzer Zeit die Applikation mit dem Ergebnis der Operation zurück oder nach längerer Wartezeit erscheint der Application Not Responding Dialog. Dieser gibt dem Nutzer die Möglichkeit entweder weiter auf die Rückmeldung der Anwendung zu warten, oder die Anwendung abzubrechen. Um zu Untersuchen wie die jeweiligen Konzepte die Ansprechbarkeit der Anwendung gewährleisten und gleichzeig die zeitaufwändige Operation im Hintergrund durchführen, werden in den letzten Abschnitten entsprechende Beispielimplementierungen vorgestellt. In der ersten Implementierung wird mittels der Funktionalitäten aus der Java Standard Edition versucht, die zeitaufwändige Operation in eine Hintergrundverarbeitung (sekundär Thread) auszulagern. Um den Nachrichtenaustasch zwischen dem sekundär Thread und dem Main Thread (verantwortlich für Verarbeitung der Benutzerinteraktion) der Anwendung zu realisieren wird ein spezieller Mechnismus vorgestellt und angewandt. Dabei handelt es sich um den Handler Looper Mechanismus aus dem Android SDK. Dieser Mechanismus bietet sich dadurch an, dass er standardgemäß durch das Betriebssystem für jede Anwendung initialisiert wird, um den applikationsinternen Nachrichtenaustausch zwischen unterschiedlichen Komponenten der Anwendung zu realisieren. Im Kapitel 2.3 wird ein Konzept aus dem Android SDK selbst vorgestellt, mit dem nebenläufige Verarbeitung realisierbar ist. Mit der Android AsyncTask Funktionalität wird die Kapselung, Initialisierung und Auswertung (Erfolg oder Fehlerbehanldung) von nebenläufiger Verarbeitung in klar definierte abstrakte Methoden unterteilt. Die darin definierte Logik wird entsprechend durch den AsyncTask auf Sekundär- und Main-Thread verteilt. Der Nachrichtenaustauch zwischen den Threads ist

dabei auch hier durch den Handler Looper Mechanismus realisiert. Der Fokus dieses Konzeptes liegt auf der möglichst einfachen Realisierung von Hintergrundverarbeitung durch den Entwickler. Dabei wird jedoch in der Standartvariante lediglich ein Hintergrund Thread erzeugt. D.h. im Falle von mehreren zeitaufwändigen Operationen werden diese seriell in einem Hintergrund Thread abgearbeitet, was mit unter sehr zeitintensiv und unperformant im Hinblick auf weitere Parallelisierungen sein kann.

Das dritte Konzept zur Nebenläufigkeit unter Android versucht die Hintergrundverarbeitung mittels reaktiver Programmierung zu realisieren. Dabei fließen Eingenschaften der funktionalen Programmierung in die eher prozedurale Programmierung von Android Applikationen mittels Java ein. Das Framework RXJava abstrahiert dabei von der Thread -Erzeugung, sowie über die Inter- Thread Kommunikation mittels standartisierter Rückrufmethoden. Der funktionale Ansatz führt zu einer Datenstrom orientierten Verarbeitung, in der die einzelnen Verarbeitungsschritte insich geschlossene Funktionen darstellen. Innerhalb der Verarbeitungskette werden die Funktionen als Returnwert einer Operation übergeben, um sie in Abhängigkeit der eintreffenden Daten im jeweiligen Kontext auszuführen. Die Verarbeitungsketten werden mittels der Rückrufmethoden dann angesteuert, wenn ein Ergebnis aus der Hintergrundverarbeitung vorliegt. Dies können Zwischenergebnisse oder Status / bzw. Fehlermeldungen sein. Die Hintergrundverarbeitung in Sekundär- Threads wird mittels einfacher vordefinierter Scheduler definiert. Der Entwickler muss sich dabei weder um die korrekte Erzeugung noch um die Synchronisation beim Nachrichtenaustausch zwischen sekundär und Main Thread kümmern.

3. Konzepte der Nebenläufigkeit im kritischen Diskurs

In diesem Kapitel steht der kritische Vergleich der im letzten Kapitel vorgestellten Konzepte der Nebenläufigkeit unter Android im Vordergrund. Dabei werden Chancen und Risiken der einzelnen Konzepte beleuchtet mit dem Ziel, daraus eine Erkenntnis abzuleiten, für welche Implementierungszenarien sich ein Konzept womöglich mehr oder weniger eignen könnte.

3.1. Chancen und Risiken des Java Concurrency Konzepts

Das Implementierungsbeispiel hat gezeigt wie mittels der Werkzeuge aus der Java Standard Edition auf elementarer Ebene Nebenläufigkeit konzipiert werden kann. Erfahrene Entwickler, die sich mit Multi Threading auskennen, erhalten besonders mit dem neuen Concurrency Packet von Java 7 zahlreiche Möglichkeiten um Hintergrundverarbeitung exakt nach ihren Anforderungen erstellen zu können. Der Entwickler kann damit auf sehr feingranularer Ebene die Steuerung der Hintergrundverarbeitung anpassen. Die dafür verwendeten Werkezuge, werden unter dem allgemeinen Java Standart gepflegt, was für einen langfristigen Einsatz eine gewisse Sicherheit in Bezug auf die Zukunftsträchtigkeit der Werkzeuge mitsich bringt. Die Konzeption von allgemeiner Nebenläufigkeit mittels der Standartwerkzeuge findet breite Anwendung und ist daher in zahlreicher Fachliteratur erläutert. Die Standartwerke hierzu sind Java Concurrency und Java Concurrency in Practice. Zusätzlich sind ausreichend freie Tutorials im Internet verfügbar. Die Nebenläufigkeit mit Java SE Werkzeugen unter Android und die damit verbundenen Besonderheiten, sind dagegen deutlich schlechter dokumentiert. So ist es ratsam

sich das Wissen über die Lebenszyklen, den Botschaftenaustausch, etc. in Android spezifischen Literaturguellen an zu eignen. Ein großer Vorteil für die Applikationsentwicklung mit dieser Form der Nebenläufigkeit ist, dass keine weiteren Fremdbibliotheken benötigt werden. Dadurch, dass das aktuelle Android SDK auf der Java Standard Edition in der Version 7 aufsetzt, verfügt der Entwickler bereits über alle benötigten Werkzeuge und er muss keine zusätzlichen Fremdbibliotheken einbinden. Eine doch schon bei der Entwicklung des Prototypen zur Hintergrundverarbeitung aufgetretene Schwierigkeit ist die hohe Komplexität, die Fehleranfälligkeit und das Problem der schlechten Übersichtlichkeit im Code bei mehreren Hintergrundverarbeitungen. Dies birgt ein nicht zu unterschätzendes Fehlerpotential. In Kapitel 1.2.3 wird bereits auf die allgemeinen Risiken der Nebenläufigkeit eingegangen. Bei fehlerhafter Implementierung ist hier die Gefahr von Speicherlecks besonders präsent, denn um diese zu verhindern muss der Entwickler über entsprechendes Spezialwissen verfügen, insbesondere zu der korrekten Referenzierung/bzw. Dereferenzierung von Objekten innerhalb der Activity einer Anwendung (siehe Kapitel 2.2.3).

3.2. Android Concurrency

Um dem Problem der Nebenläufigkeit zu begegnen liefert Google in seinem Android SDK mit der Klasse android.os. AsyncTask eine auf Android spezialisierte Lösung. Diese charakterisiert sich im wesentlichen dadurch, dass sie von der Definition der Nebenläufigkeit auf Threadebene abstrahiert und dem Entwickler vordefinierte Methoden für die Hintergrundberechnung, die Fehlerbehandlung, sowie die Ergebnisübergabe anbietet. Android AsyncTak ist auf die Besonderheiten von Android wie z.B. den applikationsinternen Botschaftenaustausch zugeschnitten. Dabei wird ebenfalls der Handler Looper Mechanismus verwendet. Der höhere Grad der Abstraktion im Vergleich zum JavaConcurrency Konzept ermöglicht es dem Entwickler eine einfache Hintergrundberechnung zu definieren, ohne sich um Thread -Erzeugung, -Synchronisation, oder dem Botschaftenaustausch zu kümmern. Dabei rät die Android Developper Dokumentation diese Lösung explizit nur für kurze Hintergrundoperationen zu verwenden. Dadurch, dass Android AsyncTask lediglich einen

Hintergrundgrund Thread in der Standart Konfiguration verwendet, wird diese Lösung für mehrere aufwändige Operationen unperformant, da die Verarbeitung entsprechend serialisiert werden müssten. Alternativ wird hier auch das Multi Threading unterstützt. Die Dokumentation zu Android AsyncTask ist für die Standart Konfiguration (nur ein Hintergrund Thread wird gestarted) detailliert und mit übersichtlichen Beispielimplementierungen versehen und lässt damit einen schnellen Einstieg in diese Technologie zu. Ein Entwickler benötigt hierzu fast keine Kenntnisse über das Multi Threading in Java. Dagegen ist die Konfiguration für mehrere Hintergrund Threads nicht ausreichend dokumentiert. Es wird lediglich davor gewarnt, mehrere Hintergrund Threads zu verwenden, da es hierbei zu unerwarteten Seiteneffekten, sowie Reihenfolgeproblemen kommen kann. Entsprechend bleiben Fragen u.a. zu dem konkreten Ablauf der Hintergrundverarbeitung mit mehreren Threads unbeantwortet und müssen aus der Implementierung von AsyncTask und der verwendeten Scheduler hergeleitet werden (siehe hierzu Kapitel 2.x).

Ein weiterer Punkt ist die problematische Steuerung der Nebenläufigkeit nachdem diese initialisiert wurde. Zwar lässt sich jederzeit der Status der Verarbeitung an den Main Thread übertragen, jedoch lässt sich diese z.B. nicht aus dem Main Thread heraus beenden, da die Inter-Thread Kommunikation auf den unidirektionalen Nachrichtenweg beschränkt ist und weitere Steuerungsmechanismen nicht vorgesehen sind. Dies kann durchaus zu einem Problem werden, wenn die Applikation pausiert oder beendet wird. In diesem Fall kann es passieren, dass eine angestoßene Hintergrundverarbeitung weiterläuft und unnötig Ressourcen verbraucht. Abschließend ist zu nennen, dass Google diese Lösung mit dem Standard SDK bereitstellt und für die Konzeption von Nebenläufigkeit keine zusätzlichen Bibliotheken benötigt werden.

3.3. RXConcurrency

Die Beispielimplementierung aus Kapitel 2.xx hat gezeigt, wie bei der Nutzung von RXJava ein Paradigmenwechsel von der prozeduralen Programmierung hin zu einem eher funktionalen Programmierstiel vom Entwickler zu leisten ist. Dabei wird die Nebenläufigkeit auf einem hohen

Abstraktionsniveau definiert, wodurch die Entwicklung selbst einfacher und weniger Fehleranfällig wird. Dabei stellt u.U. der Wechsel hin zur funktionalen Programmierung für Entwickler die bislang primär prozedural entwickelten eine hohe Einstiegshürde dar. Die Dokumentation von RXJava liefert jedoch ausreichend Material um den Wechsel zur hier verwendeten reaktiv-funktionalen Programmierung zu leisten, sowie um damit stabile Hintergrundberechnungen zu konzipieren. Dabei unterstützt das Framework den Entwickler durch vorgegebene Methoden zur Ergebnisübergabe, sowie der Status- und Fehlermeldung an den Main Thread. Zusätzlich bietet RXJava eine Steuerungsmöglichkeit um eine laufende Hintergrundberechnung zu terminieren (siehe unSubscribe()-Mechanismus in Kapitel 2.xxx). Diese Steuerungsmöglichkeit ist einfach in eine Android Applikation zu integrieren und bietet sich in Bezug auf den Lebenszyklus der Applikation an, um Speicherlecks zu vermeiden. Die nebenläufige Verarbeitung kann mittels RXJava auf beliebig viele Threads verteilt werden. Einzige Vorraussetzung dafür ist, zu jedem Thread ein Observable zu definieren. Dabei ist der Quellcode durch den funktionalen Programmierstiel übersichtlich und auf das Wesentliche, nämlich die Verarbeitung, konzentriert.

Ein potentielles Risiko birgt die Tatsache, dass RXJava zwar durch ein namhaftes Unternehmen (Netflix) entwickelt und vorangetrieben wird, die Bibliothek als solche aber keinen Standard darstellt, oder in einer Standardbibliothek integriert ist. Dadurch besteht für eine langfristige Wartung von Applikation, die über Abhängigkeiten zu RXJava verfügen die Gefahr, dass RXJava eines Tages nicht mehr weiter gepflegt wird. Daraus können im schlimmsten Fall große Refaktorisierungsaufwände entstehen.

3.4. Szenariobasierte Analyse

Die in dieser Arbeit vorgestellten Konzepte der Nebenläufigkeit in Bezug auf Applikationen unter dem Android Betriebssystem beinhalten unterschiedliche Chancen und Risiken in Bezug auf den jeweiligen Praxiseinsatz. Dieser Abschnitt versucht die vorgestellten Konzepte mit unterschiedlichen Szenarien in Beziehung zu setzen, um daraus Aussagen

für konkrete Praxiseinsätze ableiten zu können.

Die folgende Graphik betrachtet die in dieser Arbeit diskutierten Konzepte der Nebenläufigkeit in Bezug auf unterschiedliche Szenarien. Dabei soll eine Auswahl von möglichst prägnanten Eigenschaften die Unterschiede in Abhängigkeit zum Einsatzkontext der Konzepte auf einen Blick deutlich machen. Hierzu wird die Ausprägung der jeweiligen Eigenschaft durch die Größe der Kreise symbolisiert. Es gilt demnach für die Eigenschaften:

"Höhe der Einstiegshürde in Bezug auf den Wissensaufbau" \to je größer der Kreis, desto höher ist die Einstiegshürde

"wie hilfreich ist die Dokumentation" \to je größer der Kreis, desto hilfreicher ist die Dokumentation

"wie hilfreich ist der Abstraktionsgrad" \to je größer der Kreis, desto hilfreicher ist der Abstraktionsgrad

"Gefahr von Fehlern bei der Implementierung" \to je größer der Kreis desto größer die Gefahr von Fehlern bei der Implementierung

Abbildung 14.: Vergleichsmatrix zur szenarienbasierten Analyse

Szenario A: Das erste Szenario beschreibt einen Fall indem eine einzelne zeitaufwändige Hintergrundoperationen durch einen erfahrenen Entwickler zu konzipieren ist. Für einen Entwickler mit einem gewissen Erfahrungsschatz im Bereich der Nebenläufigkeit fallen zwei hervorstechende Merkmale in Bezug auf Java Concurrency auf. Zum einen kommt der in diesem Fall niedrige Abstraktionsgrad dem erfahrenden Entwickler entgegen, um das Konzept der Nebenläufigkeit möglichst exakt an seine Anforderungen und Vorstellungen auszurichten. Zum andern bietet aber auch genau dieser Abstraktionsgrad ein relativ hohes Fehlerpotential. Das Konzept der Android Concurrency bietet dem erfahrenen Entwickler dagegen eher wenig individuelle Anpassungsmöglichkeiten jedoch ist es dafür auch deutlich weniger Fehleranfällig. Gegenüber der fehlenden individuellen Anpassungsmöglichkeiten steigt jedoch damit der Komfort bei der Entwicklung, denn durch den höheren Abstraktionsgrad wird der Code übersichtlicher und damit leichte wartbar. Das Konzept der RXJava Concurrency bietet den höchsten Abstraktionsgrad und damit den meisten Komfort bei Konzeption und Wartung von Nebenläufigkeit, bei gleichzeitiger geringer Fehleranfälligkeit. Für den erfahrenen Entwickler ist es damit eine Frage des Bedürfnisses nach maximaler Anpassbarkeit gegenüber maximalem Komfort.

Szenario B: Das nächste Szenario beschreibt die selben Anforderungen an Komplexität der Hintergrundberechnung, sowie deren Anzahl, wie Senario A. Der Unterschied liegt jedoch nun darin, dass ein eher ungeübter Entwickler die Konzeption von Nebenläufigkeit verantworten muss.
Nun gewinnt der Punkt der Einstiegshürden in die jeweiligen Konzepte an Bedeutung. Entsprechend stellt die Java Concurrency eine hohe
Einstiegshürde in Bezug auf den benötigten Wissensaufbau dar. Gleichermaßen ist durch die niedrige Abstraktionsebene in Zusammenhang mit
fehlendem Wissen im Bereich des Multithreading, das Fehlerpotential
in Relation zum Szenario A deutlich höher. Die Android Concurrency
verringert dagegen das Fehlerpotential bietet eine niedrige Einstiegshürde
durch den höheren Abstraktionsgrad, sowie eine für dieses Szenario sehr
passende und detaillierte Dokumentation. Je nach Erfahrung mit der funktionalen Programmierung kann in diesem Szenario das Fehlerpotential
durch die hohe Abstraktionsebene von RXJava weiter gesenkt werden.

Zusätzlich bietet RXJava einfache Mechanismen zur Steuerung der Hintergrundverarbeitung. Dieser Punkt wird in der Android Concurrency eher vernachlässigt. Für einen ungeübten Entwickler ist es u.U. ratsam genau zu verifizieren mit welchem Konzept zur Nebenläufigkeit unter Android er in absehbarer Zeit zu seinem gewünschten Ergebnis gelangt und welches Fehlerpotential damit einhergehen kann. Die Android Concurreny ist zwar genau darauf ausgelegt, eine einfache Hintergrundberechnung zu erzeugen, jedoch warnt die Dokumentation davor zu zeitaufwändige Berechnungen hiermit abzubilden, denn in diesem Fall besteht das Risiko von Memory Leaks, wenn die Hintergrundberechnung nicht zu bestimmten Zeitpunkten abgebrochen werden kann (siehe Kapitel 2.2.X).

Szenario C: In diesem Szenario steht wieder der erfahrene Entwickler im Fokus vergleichbar zum Szenario A. Nun jedoch sollen mehrere zeitintensive Hintergrundverarbeitungen parallel gestartet werden können. Dabei gibt es bei dem Java Concurrency keine nennenswerten Unterschiede in der Ausprägung der Merkmale zu Szenario A. Das liegt an dem niedrigen Abstraktionsniveau, welches dem Entwickler alle Möglichkeiten an die Hand gibt, eine individuelle Lösung gemäß der hier definierten Anforderungen zu erstellen. Lediglich das Fehlerpotential steigt bei diesem Szenario, da für mehrere parallele Hintergrundverarbeitungen evtl. die Thread Synchronisation und Steuerung zu Problemen führen könnte. Diese Fragestellungen fallen im Szenario A eher weniger ins Gewicht, da hier nur eine Hintergrundverarbeitung benötigt wird. Das Konzept der Android Concurrency weist deutlichere Unterschiede auf zum Szenario A auf. Dadurch dass zu diesem Konzept die Dokumentation von der Erstellung mehrerer paralleler Hintergrundverarbeitungen (in mehreren parallelen Threads) abgeraten wird und dies auch nicht weiter dokumentiert wird, steigt deutlich das Fehlerpotential. Auch eignet sich die Abstraktionsebene weniger für diese Form der Hintergrundverarbeitung, da der Entwickler nur geringen Einfluss auf die Thread-Synchronisation, sowie deren Steuerung hat. Das Konzept der RXJava Concurrency vereinfacht die hier geforderte Form der parallelen Hintergrundverarbeitung für den Entwickler. Dies geht jedoch zu Lasten der Anpassbarkeit, die hier nicht im Detail möglich ist, wie bei der Java Concurrency. Das Fehlerpotential ist dagegen vergleichsweise zu den anderen beiden Konzepten in

diesem Szenario gering. Die etwas im Internet verstreuten Dokumentationen bieten, wenn sie erst gefunden wurden, ausreichend Hinweise auf die korrekte Anwendung dieses Konzeptes bezüglich der hier forcierten Anforderungen.

In einem Szenario, indem mehrfache parallele Hintergrundverarbeitungen zu starten und zu steuern sind, erweist sich das Konzept der Android Concurrency als am wenigsten geeignet. Die Beispielimplementierung in Kapitel 2.2 zusammen mit deren Analyse haben gezeigt, dass hier zwar Nebenläufigkeit auf einer höheren Abstraktionsebene definiert werden kann, jedoch eignet sich die Android Concurrency für dieses Szenario auf Grund des hohen Fehlerpotentials und der mangelnden Kontrollmöglichkeiten zu den Hintergrundverarbeitungen nicht für mehrfache parallele Hintergrundverarbeitungen. Die Java Concurrency eignet sich in diesem Szenario mit dem erfahrenen Entwickeler besonders durch den niedrigen Abstraktionsgrad. Denn dadurch ist es dem Entwickler möglich die Nebenläufigkeit auf exakt seine Vorstellungen, Anforderungen und Bedürfnisse zurecht zu schneiden. Dabei muss jedoch auch ein Bewusstsein vorausgesetzt werden, für die potentiell höhere Fehleranfälligkeit. Will der Entwickler die Gefahr von Fehlimplementierungen mindern und gleichzeitig einen gewissen Komfort bei der Konzeption von derartiger Nebenläufigkeit genießen empfiehlt sich das Konzept nach RXJava. Hier muss der Entwickler jedoch evtl. Einbußen bei der Anpassbarkeit der Lösung in kauf nehmen, da er schon in gewissem Maße durch das Framework einen festen Weg vorgeschrieben bekommt.

SzenarioD: Im letzten Szenario soll nun ein eher unerfahrener Entwickler (besonders in Bezug auf Nebenläufigkeit) in eine Applikation mehrere parallele Hintergrundverarbeitungen konzipieren und implementieren. Auch wenn die Java Concurrency elementare Werkzeuge bietet um Nebenläufigkeit exakt an Anforderungen zuzuschneiden, so können besonders unerfahrene Entwickler mit der großen Auswahl an unterschiedlichen Werkzeugen leicht überfordert werden. Somit führt der recht niedrige Abstraktionsgrad der Java Concurrency zu einer hohen Einstiegshürde in Bezug auf den hier zu leistenden Wissensaufbau. Gleichermaßen besteht auch ein relativ hohes Fehlerpotential besonders im Hinblick auf schwer zu reproduzierendes Verhalten von Nebenläufigkeit. Die Android

Concurrency, da jedoch spezifische Fachkenntnisse zur Nebenläufigkeit nötig sind um parallele Hintergrundverarbeitungen gemäß dieses Szenarios zu konzipieren und gleichzeitig für diesen Einsatzkontext die Dokumentation eher unzureichend ist, besteht auch hier eine erhöhte Einstiegshürde in diese Technologie. Das Konzept nach RXJava bietet im Vergleich zu den anderen Konzepten einen deutlich einfacheren Einstieg in die hier geforderte Form der Nebenläufigkeit. RXJava abstrahiert dabei von der Thread Erzeugung sowie Synchronisation und ermöglicht es gleichzeitig parallele Hintergrundverarbeitung übersichtlich zu strukturieren. Auch wenn in diesem Szenario eine eher komplexe Form der Nebenläufigkeit gefordert ist, so beleibt dabei selbst für einen eher ungeübten Entwickler ohne tiefgreifende Kenntnisse über das Multi Threading in Android das Risiko von fehlerhaften Implementierungen relativ gering.

Entscheidend bei diesem Szenario ist, dass ein mit Nebenläufigkeit eher unerfahrener Entwickler eine Android Applikation mit mehreren zeitintensiven, parallelen Hintergrundverarbeitungen zu erstellen hat. Dabei ist von dem Konzept der Android Concurrency abzuraten, denn im Unterschied zu Szenario C, in der ein erfahrener Entwickler evtl. die fehlende Dokumentation mit seinem Wissen ausgleichen kann, sieht sich der unerfahrene Entwickler einer großen Einstiegshürde in Bezug auf den Wissensaufbau konfrontiert. Die Android Developper Dokumentation nennt hier keine genauen Hinweise, wie das Konzept der AndoridConcurrency für mehrfache Hintergrundverarbeitungen anzuwenden ist. Im Gegenteil, sie rät sogar auf Grund der potentiell hohen Fehleranfälligkeit sogar davon ab. Die Java Concurrency bietet zwar ein vergleichbar hohes Fehlerpotential, hier auf Grund der zahlreichen Mechanismen die evtl. schnell falsch eingesetzt werden können, jedoch ist die Dokumentation hierzu weitaus hilfreicher als die der Android Concurrency. Deutlich einfacher hätte es der Entwickler jedoch womöglich mit dem Konzept nach dem RXJava Framework. Der Abstraktionsgrad unterstützt auch bei der Strukturierung und Steuerung mehrerer paralleler Hintergrundverarbeitungen, wobei das Fehlerpotential durch vorgegebene Implementierungswege und der Übersichtlichkeit im Quellcode deutlich geringer ausfallen dürfte, als bei den anderen beiden Konzepten.

3.5. Fazit

Die Analyse der Konzepte hat gezeigt, wie auf unterschiedlichen Wegen Nebenläufigkeit realisiert werden kann. Dabei unterscheiden sich die Konzepte teilweise erheblich in Ihren Merkmalen. So ist die Java Concurrency der klassische Weg um Nebenläufigkeit in Java zu realisieren. Die mitgelieferten Werkzeuge ermöglichen einen großen Gestaltungsspielraum bei der Konzeption von Nebenläufigkeit. Dies setzt jedoch auch gleichermaßen ein gewisses Expertenwissen voraus. Das Konzept der Android Concurrency eignet sich gegen über der Java Concurrency lediglich für bestimmte Formen von Nebenläufigkeit. Für diese Anwendungsfälle wird jedoch ein hoher Abstraktionsgrad geboten, der die Entwicklung der Nebenläufigkeit vereinfacht und übersichtlich macht. RXJava ist der Exot unter den hier analysierten Konzepten. Dabei kommt mit der reaktiv - funktionalen Programmierung ein alternatives Programmierparadigma zum Einsatz das nach dem Observer Pattern eine Datenstromorientierte Verarbeitungsdefinition ermöglicht. Die Abstraktion gewährleistet dazu für alle hier aufgezeigte Szenarien einen relativ hohen Komfort bei gleichzeitig geringem Fehlerpotential insbesondere gegenüber der JavaConcurrency. Leider handelt es sich bei RXJava um keine Standard Implementierung. Es sollte an dieser Stelle betont werden, dass keiner der Konzepte als in jeglicher Hinsicht überlegen angesehen werden kann. Es gibt durchaus Szenarien in denen sich einige Konzepte gut eigenen, während von anderen evtl. eher abzuraten ist. Zusätzlich ist es auch eine Frage der persönlichen Einstellung des Entwicklers, wenn er sich zu einem Programmierstiel entscheidet. Für die Wahl eines Konzeptes sollten aber in jedem Fall dessen Tauglichkeit in Bezug auf die benötigte Form der Nebenläufigkeit evaluiert werden. Die Erkenntnisse dieser Arbeit können für derartige Evaluationen die Basis bieten, sollten aber nicht die alleinige Entscheidungsgrundlage darstellen, da hier lediglich einfache Szenarien durch gespielt werden, welche in der Praxis noch deutlich mehr Komplexität und damit verbundene Anforderungen enthalten können.

3.6. Ausblick

In dieser Arbeit liegt der Fokus auf Nebenläufigkeit zum Erhalt der Ansprechbarkeit einer Applikation. In einem nächsten Schritt könnte untersucht werden, wie Nebenläufigkeit eingesetzt werden kann um einen maximalen Performance-Gewinn der vorhandenen Hardwareressourcen zu nutzen. Können hierzu auch die hier vorgestellten Konzepte herangezogen werden und wie ließe sich deren Implementierung evtl. auf ein höheres Abstraktionsniveau heben um diese zu vereinfachen? Damit einher geht auch die Klärung, wie konkret Threads innerhalb einer Android Anwendung auf native Threads des Betriebssystems abgebildet werden und welchen Regeln diese unterliegen. Eine weiter gefasste Forschungsfrage könnte die Nebenläufigkeit in anderen Betriebssystemen für mobile Endgeräte thematisieren. Wie ist es z.B. möglich unter Apples IOS Nebenläufigkeit zu realisieren und gibt es hier auch unterschiedliche Konzepte bzw. unterschiedliche Abstraktionsebenen.

Literaturverzeichnis

- Becker, Arno und Pant, Marcus (4.Auflage 2015): Android5. Buch, dpunkt Verlag GmbH, Heidelberg, ISBN: 978-3-86490-260-4
- Eckel, Bruce und Boner, Jonas (2014): The Reactive Manifesto. Webseite (URL: http://www.reactivemanifesto.org/) Zugriff am 12.11.2015
- Goetz, Brian [et al.] (2006): JAVA Cocurrency in Practice. Buch, Pearson Education Inc. London, ISBN: 0-321-34960-1
- Google Inc (2010): Android Api Dokumentation. Webseite (URL: http://developer.android.com/reference/android/app/Activity.html) Zugriff am 12.11.2015
- Lampe, Jürgen (2014):Ist deklarativ wirklich instruk-Website, Mediengeselltiv. Alkmene Verlagsund ⟨URL: schaft mbH, Frankfurt Main http:// am www.informatik-aktuell.de/entwicklung/methoden/ deklarative-programmierung-ist-deklarativ-wirklich-instruktiv. $|\text{html}\rangle$ – Zugriff am 12.11.2015
- Langer, Angelika und Kreft, Klaus (2013): Effective Java
 Java 8 Functional Programming in Java. Webseite &
 Jurnal: Java Magazin (URL: http://www.angelikalanger.
 com/Articles/EffectiveJava/70.Java8.FunctionalProg/70.
 Java8.FunctionalProg.html) Zugriff am 12.11.2015
- Loogen, Rita (2002): Praktische Informatik III (Skript): Deklarative Programmierung. PDF, Phillipps-Universität, Marburg
- Middendorf, Stefan [et al.] (3. Auflage 2002): JavaTM Programmierhandbuch und Referenz für die JavaTM-2-Plattform, Standard Edition. Website, dpunkt Verlag GmbH, Heidelberg (URL: https://www.dpunkt.de/java/Programmieren_mit_Java/Multithreading/11.html) Zugriff am 12.11.2015

- Neumann, Alexander (2013): Ein Manifest für Reactive Programming. Webseite (URL: http://www.heise.de/developer/meldung/Ein-Manifest-fuer-Reactive-Programming-1945096. html) Zugriff am 12.11.2015
- RXCommunity: ReactiveX. Webseite (URL: http://reactivex.io/intro.html) Zugriff am 12.11.2015
- Vogt, Carsten (2012): Nebenläufige Programmierung. Buch, Carl Hanser Verlag, München, ISBN: 978-3-446-42755-6
- Yehuda, A. (2015): Android Multithreading in a UI environment. Webseite (URL: http://www.aviyehuda.com/blog/2010/12/20/android-multithreading-in-a-ui-environment/) Zugriff am 12.11.2015

Anhang

Listing 1: Die Klasse Touch.java

```
package com.wagner.android.gesturelib.gestureutils;
import android.graphics.PointF;
import android.util.FloatMath;
import android.util.Log;
import android.view.MotionEvent;
import android.view.View;
import java.util.List;
/**
st This Class offers a generic Zoom and Drag
 * functionality that is controlled by using
 * Touch Gestures
  @author Stephan Wagner
   @version 1.1.1.5
            Time: 22:06
public class Touch implements View.OnTouchListener {
/**
* The List of views that will be scaled
* by using touch gestures.
private List<View> transformableViews;
/**
* The Tag for logging to this Listener.
private final String TAG = getClass().getName();
* The initial coordinates of the first touch.
*/
private PointF start;
/**
```

```
* The flag for defining the touch mode.
private int mode;
/**
   Touch mode as functionality selector.
private enum Mode{NONE, DRAG, ZOOM}
* The initial Distance for the
* calculation of zoom.
private float initDist;
* The initial Distance for the
* calculation of zoom.
*/
private float newDist;
* The current scale factor of the zoom.
private float scaleFactor;
/**
* The maximal scale factor;
private float maxScale;
/**
* The minimal scale factor;
private float minScale;
* The latency of the scale. Makes the zoom slower.
*/
private float latency;
/**
* The Constructor of the touchListener
* Implementation sets the initial not null parameters.
```

```
@param \ a \ Transformable \ View List \ The \ list \ of \ View
                                   Instances that should
                                   be transformed.
                                   the maximal scale factor.
   @param\ aMaxScaleFactor
   @param\ aMinScaleFactor
                                   the minimal scale factor.
   @param\ aLatency
                                   the latency for the
                                   transformation, that is
                                   used\ to\ make\ it\ slower.
public Touch(final List<View> aTransformableViewList,
              final float aMaxScaleFactor,
              final float aMinScaleFactor,
              final float aLatency) {
    transformable Views = aTransformable View List;
    start = new PointF();
    //Setting initial Values
    mode = Mode.NONE.ordinal();
    initDist = 1;
    newDist = 1;
    scaleFactor = 1;
    //setting scale
    maxScale = aMaxScaleFactor;
    minScale = aMinScaleFactor;
    //setting\ latency
    latency = aLatency;
}
/**
* The implementation of TouchListener Interface,
 *\ that\ realizes\ drag\ and\ zoom\ functionality\ controlled
 * by multi-touch-gestures
   @param touch View gives the base for the
                     registration of each touch.
   @param an Event holds the type and the
                   coordinates of each touch.
 * @return returns true if listener has consumed the event.
 */
@Override
public boolean onTouch (final View touch View,
```

```
final MotionEvent anEvent) {
switch (anEvent.getActionMasked()) {
//first finger down only
case MotionEvent.ACTION DOWN:
    //getting position
    start.set(anEvent.getX(), anEvent.getY());
    Log.d(TAG, "mode=DRAG");
    mode = Mode.DRAG.ordinal();
    break;
//first finger lifted
case MotionEvent.ACTION UP:
    break;
//second finger lifted
case MotionEvent.ACTION_POINTER_UP:
    //new initial Distance is the last calculated distance
    //e.g. for more than one following pinch open gestures
    //and the connected zoom in function.
    initDist = newDist;
    mode = Mode.NONE.ordinal();
    Log.d(TAG, "mode=NONE");
    break;
//second finger down
case MotionEvent.ACTION_POINTER_DOWN:
    initDist = spacing(anEvent);
    mode = Mode.ZOOM.ordinal();
    Log.d(TAG, "mode=ZOOM");
    break;
case MotionEvent.ACTION_MOVE:
    if (mode == Mode.DRAG.ordinal()) {
    //movement of first finger
    float newX = anEvent.getX();
    float newY = anEvent.getY();
    float distanceX = (start.x - newX) / latency;
    float distanceY = (start.y - newY) / latency;
```

```
for (final View draggableView : transformableViews) {
        draggableView.setTranslationX(
                 draggableView.getTranslationX() - distanceX);
        draggableView.setTranslationY(
                 draggableView.getTranslationY() - distanceY);
    }
    } else if (mode == Mode.ZOOM.ordinal()) { //pinch zooming
    float newDist = spacing(anEvent);
    if (newDist > initDist || newDist < initDist) {</pre>
        float factor = newDist / initDist;
        if (newDist > initDist && scaleFactor < maxScale)</pre>
        //pinch open \longrightarrow zoom in
             factor = factor / latency; //latency
             scaleFactor = scaleFactor + factor;
        }
        if (newDist < initDist &&</pre>
                 scaleFactor > minScale &&
                 factor < scaleFactor)</pre>
        //pinch close --> zoom out
             factor = factor / latency; //latency
             scaleFactor = scaleFactor - factor;
        }
        for (final View scalableView : transformableViews) {
             scalableView.setScaleX(scaleFactor);
            scalableView.setScaleY(scaleFactor);
        }
        }
    break;
}
return true;
```

```
* Calculates the distance between first
* two touch points on touch screen.

*
* @param anEvent that contains the coordinates
* of the touch points.

* @return the distance as float.

*/
private float spacing(final MotionEvent anEvent) {
    final float x = anEvent.getX(0) - anEvent.getX(1);
    final float y = anEvent.getY(0) - anEvent.getY(1);
    return FloatMath.sqrt(x * x + y * y);
}
```

A. Erklärung

Ich versichere, die von mir vorgelegte Arbeit selbständig verfasst zu haben. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit benutzt habe, sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. in wesentlichen Teilen noch keiner anderen Prüfungsbehörde vorgelegen.

Gummersbach, den 12. November 2015

(Unterschrift)