

- **1.** A) Vectorial b) vectorial c) vectorial d) escalar
- **2.** a. $Dom(F) = \{(x, y) \in R^2/4 x^2 y^2 \ge 0\}$
 - b. $Dom(F) = \{(x, y) \in R^2/8 (2x + 3y) > 0\}$
 - c. $Dom(F) = R^2$
 - d. $Dom(F) = \{(x, y) \in R^2/x + 2y > 0, x^2 + y^2 36 \ge 0\}$
 - e. $Dom(F) = \{(x, y) \in \mathbb{R}^2 / 9 y^2 \ge 0, \ 2x + y \ne 0\}$
 - f. $Dom(F) = \{(x, y) \in \mathbb{R}^2 / 1 x^2 \neq 0, y^2 4 \neq 0\}$
- **3** a. No b. No c. Si
- **5.** a. $C_{-1} = \{(x, y) \in Dom(F)/x 3y = -1\}, C_0 = \{(x, y) \in Dom(F)/x 3y = 0\}, C_1 = \{(x, y) \in Dom(F)/x 3y = 1\}$
 - b. $C_{-1} = \left\{ (x, y) \in Dom(F) \middle/ \frac{2}{x y} = -1 \right\}, C_0 = \emptyset, C_{-1} = \left\{ (x, y) \in Dom(F) \middle/ \frac{2}{x y} = 1 \right\}$
 - c. $C_{-1} = \left\{ (x, y) \in Dom(F) / \frac{y}{x^2 1} = -1 \right\}, C_0 = \left\{ (x, y) \in Dom(F) / \frac{y}{x^2 1} = 0 \right\}$ $C_1 = \left\{ (x, y) \in Dom(F) / \frac{y}{x^2 1} = 1 \right\}$
 - $\mathsf{d.}\ C_{-1} = \emptyset,\ C_0 = \left\{ (x,y) \in Dom(F)/\sqrt{25-x^2-y^2} = 0 \right\},\ C_1 = \left\{ (x,y) \in Dom(F)/\sqrt{25-x^2-y^2} = 1 \right\}$
- **6.** $F: \mathbb{R}^2 \to \mathbb{R}/F(x, y) = y x^2 + 5$
- **7.** $C_1 = \left\{ (x,y) \in Dom(V) \middle/ \frac{4}{\sqrt{(x-2)^2 + (y+3)^2}} = 1 \right\}, C_4 = \left\{ (x,y) \in Dom(V) \middle/ \frac{4}{\sqrt{(x-2)^2 + (y+3)^2}} = 4 \right\}$

- **8.** $x = t, y = -t + 5, t \in R$
- 9.
 - a. $Dom(F) = \{(x, y) \in R^2/y x^2 > 0\}$
- b. $C_0 = \left\{ (x, y) \in Dom(F) / \frac{y x 2}{\sqrt{y x^2}} = 0 \right\}$

Respuestas al Trabajo Práctico 4

10.

a.
$$C_4 = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 4\}$$
 Esfera de radio 4 y centro (0,0,0)

b.
$$C_1 = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 1\}$$
 Plano

c.
$$C_0 = \{(x, y, z) \in \mathbb{R}^3 / z + x^2 + y^2 = 0\}$$
 Paraboloide circular

11. a.Dom(v) = R^2 $b.Dom(\bar{v}) =$ $\{(x,y) \in R^2/x \neq 0, y \neq 0\}$ c. Dom(v) =

12.

a. i.
$$z = x^2 + y^2$$
 (paraboloide circular)

ii.
$$z = x^2 + y^2$$
, $z \le 1$

b.
$$z = 1 - x - y$$
 (plano)

b.
$$z = 1 - x - y$$
 (plano)
c. $x^2 + y^2 + z^2 = 1$ (esfera de radio 1 y centro (0,0,0))

d. i.
$$x^2 + y^2 = 1$$
 (cilindro circular)

ii.
$$x^2 + y^2 = 1$$
, $0 \le y \le 1$, $-1 \le x \le 1$, $1 \le z \le 2$

e.
$$z = (x - 1)^2 + 2y^2$$
 (paraboloide elíptico)

f.
$$z^2 = x^2 + y^2$$
 (cono circular)

13.

a.
$$\bar{F}: R^2 \to R^3/\bar{F}(u, v) = (u; v; -2u + v + 3)$$

b.
$$\bar{F}: R^2 \to R^3/\bar{F}(u, v) = (u; v; u^2 + v^2)$$

c.
$$\bar{F}: R^2 \to R^3 / \bar{F}(u, v) = (u; v; \sqrt{u^2 + v^2})$$

d.
$$\bar{F}: R^2 \to R^3 / \bar{F}(u, v) = (3\cos(u); 3\sin(u); v)$$

e.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (2\cos(u)sen(v); 2sen(u)sen(v); 2\cos(v))$$

f.
$$\bar{F}: D \subseteq R^2 \to R^3 / \bar{F}(u, v) = (3\cos(u); 3\sin(u); v)$$

$$D = \left\{ (u, v) \in R^2 / 0 \le u \le \frac{\pi}{2}, v \ge 0 \right\}$$

g.
$$\bar{F}: D \subseteq R^2 \to R^3 / \bar{F}(u, v) = (u; v; 4 - u - v)$$

g.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (u; v; 4-u-v)$$

 $D = \{(u,v) \in R^2/u > 0, v > 0, u+v < 4, u^2+v^2 < 4\}$

h.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (2\cos(u); 2sen(u); v)$$

$$D = \left\{ (u, v) \in R^2 / 0 < u < \frac{\pi}{2}, v > 0, 2\cos(u) + 2\sin(u) + v < 4 \right\}$$

i.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (u;v;4-u^2-v^2)$$

 $D = \{(u,v) \in R^2/u^2 + v^2 < 4\}$

j.
$$\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = (v\cos(u); vsen(u); v^2)$$

$$D = \{(u,v) \in R^2/0 \le u \le 2\pi, 1 < v < 3\}$$
k. $\bar{F}: D \subseteq R^2 \to R^3/\bar{F}(u,v) = \left(\sqrt{2}\cos(u)sen(v); \sqrt{2}sen(u)sen(v); \sqrt{2}\cos(v)\right)$

$$D = \left\{(u,v) \in R^2/0 \le u \le 2\pi, 0 \le v \le \frac{\pi}{4}\right\}$$

14.

a.
$$\bar{F}: R^2 \to R^3/\bar{F}(u,v) = (u;v;u^2+v^2)$$
 una parametrización de la superficie S_1 $\bar{G}: R^2 \to R^3/\bar{F}(u,v) = (u;v;6-\sqrt{u^2+v^2})$ una parametrización de la superficie S_2

b.
$$C = \{(x, y, z)/x = 2\cos(t), y = 2sen(t), z = 4, t \in [0, 2\pi]\}$$

c.
$$(x,y,z)=(2,0,4)+k(0,2,0)$$
, $k \in \mathbb{R}$