# AUTOMATED TRAFFIC VIOLATION DETECTION SYSTEM

Team:Keras G Sai Sudarshan Rao 12240560 K R Eashwar Sai 12240730 Shivam 12241710

### **OBJECTIVE**

• To create an system capable of detecting traffic violations by identifying traffic light signals, extracting license plate information, and flagging offending vehicles using OCR (Optical Character Recognition) technology.

- Detect traffic light colors to determine signal status (Red, Yellow, Green).
- Identify vehicles crossing the white line during a red light.
- Extract license plates of violating vehicles using image preprocessing.
- Use OCR to read and store license plate details.
- Display fined license plate numbers on the video feed.

## IMPLEMENTATION DETAILS

#### Traffic Light Detection

- Function: detect\_traffic\_light\_color
- Process:
  - Extracts the Region of Interest (ROI) where the traffic light is located.
  - Converts the ROI to HSV color space for robust color detection.
  - Detects Red, Yellow, or Green light and overlays the corresponding signal status on the frame.

### Dataset

RoboFlow dataset is used for Traffic Light Detection.

- Contains 2397 images.
- Trained YOLOv8 model

Dataset Split



# Training the YOLOv8 Model

- Train the YOLOv8 model on the dataset with 80 epochs and an image size of 640.





# WHITE LINE DETECTION

- Function: LineDetector.detect\_white\_line
- Process:
- Defines the Region of Interest (ROI) for detecting vehicle crossings.
- Applies Gaussian blur and edge detection to isolate the white line.
- Uses the Hough Line Transform to detect the average position of the line.
- Highlights the line on the frame based on the traffic light signal color.

## LICENSE PLATE EXTRACTION

extract\_license\_plate

- Focuses on the area below the detected white line.
- Enhances the image using CLAHE and noise removal.
- Applies a Haar Cascade classifier to detect license plate regions.
- Crops and returns each detected license plate image.

# OPTICAL CHARACTER RECOGNITION (OCR)

- Applies binary thresholding for optimal OCR performance.
- Converts the license plate image to a format compatible with pytesseract.
- Extracts alphanumeric text from the image and matches it against predefined patterns for valid license plates.



### WORKFLOW

#### 1)Video Processing:

- Downloads a sample traffic video using Google Drive.
- Iteratively processes each frame in the video.

#### 2)Traffic Light and Line Detection:

- Detects the traffic light status using a pre-defined rectangular ROI.
- Detects white line crossings by vehicles.

#### 3)License Plate Processing:

- When the signal is red, extracts vehicle license plates crossing the white line.
- Uses OCR to read and store license numbers of offending vehicles.
- Highlights traffic lights, white lines, and license plate regions in the video feed.
- Displays all penalized license plates on the video feed in real time.

#### **OUTPUT VISUALIZATION**

#### 1)Video Feed:

- Traffic light detection with signal status (Stop, Caution, Go).
- White line detection.
- Highlighted license plates of violating vehicles.
- List of fined license plates dynamically updated on the frame.

#### 2)Console Output:

Prints all fined`license plate numbers for easy monitoring.

#### 3)License Plate Images:

• Displays each extracted license plate as a cropped grayscale image for verification.

#### **OUTPUT VISUALIZATION**



### APPLICATIONS

#### 1. Traffic Law Enforcement:

 Automates detection of red-light violations, reducing manual monitoring efforts.

#### 2. Smart City Solutions:

 Integrates with traffic management systems for real-time data sharing.

#### 3. Road Safety:

• Enhances compliance with traffic signals to reduce accidents and improve road safety.