Linguaggi Acontestuali ad estensione dei regolari

Dato l'alfabeto Σ , definizione come *classe dei linguaggi acontestuali* Σ il seguente insieme:

$$\mathsf{CFL} = \{ L \subseteq \Sigma^* \mid \exists CFG \ G \ t. \ c \ L = L(G) \}$$

Conversione da DFA a CFG

Date due classi dei linguaggi REG e CFL, si ha che:

 $\mathsf{REG}\subseteq\mathsf{CFL}$

Dimostrazione:

- Dato $L \in \mathsf{REG}$, sia $D = (Q, \Sigma, \delta, q_0, F)$ il DFA tale che L = L(D).
- Consideriamo quindi la **CFG** $G = (V, \Sigma, R, S)$ tale che:
 - Esiste una funzione biettiva: $\varphi:Q o V:q_i\mapsto V_i$
 - S = $\varphi(q_0) = V_0 \mathsf{k}$
 - Dati $q_i,q_j\in Q$ e $a\in \Sigma$, si ha che: $\delta(q_i,a)=q_j\implies \varphi(q_i)\to a\varphi(q_j)\implies V_i\to aVj$
 - $-q_f \in F \implies arphi(q_f)
 ightarrow arepsilon \implies V_f
 ightarrow arepsilon$
 - A questo punto, per costruzione stessa di G si ha che: $w \in L(D) \iff w \in L(G)$ implicando dunque che $L(D) \in \mathsf{CFL}$ e di conseguenza che: $\mathsf{REG} \subseteq \mathsf{CFL}$

Esempio

Consideriamo il seguente DFA

- Una CFG G = (V, Σ, R, S) equivalente è costituita da:
 - $V = V_1, V_2, V_3, V_4$
 - $S = V_1 R$ definito come:
 - $V_1
 ightarrow 0 V_1 \mid 1 V_2$
 - $V_2
 ightarrow 0 V_2 \mid 1 V_3$
 - $V_3
 ightarrow 0 V_3 \mid 1 V_4$
 - $V_4
 ightarrow 0 V_4 \mid 1 V_4 \mid arepsilon$

Infatti, sia il **DFA** sia la **CFG** descrivono il seguente linguaggio: $L = \{w \in \Sigma^* | |w|_1 \geq 3\}$

Linguaggi acontestuali estensione dei linguaggi regolari

Teorema

Date le due classi dei linguaggi **REG** e **CFL**, si ha che: REG ⊊ CFL

Forma normale di Chomsky

Chomsky's Normal Form (CNF)

Una $CFG\ G = (V, \Sigma, R, S)$ viene detta in **Chomsky's Normal Form (CNF)** se tutte le regole in R assumono una delle seguenti tre forme:

$$A o BC \ A o a \ S o arepsilon$$

 $\text{dove } A \in V, a \in \varSigma \text{ e } B, C \in V - S.$