1.	Doneu una gram`atica no amb'igua per a generar expressions amb operadors binaris de suma,resta, producte, divisi'o, i tamb'e admetent parentitzaci'o expl'icita, de manera que l'arbre sint`actic generat es correspongui a la preced'encia habitual que donem als operadors.

2.	Sup'on que una gram'atica cumple que en cada parte derecha hay como mucho una variable,y que los lenguajes generados desde dos partes derechas cualesquiera de una misma variable s'on disjuntos. Demuestra que, bajo estas condiciones, la gram'atica no es ambigua.

3. Justifica la ambigu etat o no ambigu etat de les segu ents CFG's:

(a)
$$S \rightarrow (S)S$$
 Lemma: Si $S \stackrel{\#}{=} W$, llavors tot prefix W de W

compleix
$$|\omega'|_{()} > |\omega'|_{)}$$

$$\frac{D_{bm}}{S \stackrel{K}{\Rightarrow} w}$$
 ind. solare K

$$S \Rightarrow W$$
 Invol. solution in

Indució en
$$|w|$$
: Base \Rightarrow $|w| = 0$: $w = \lambda$

$$|W|>0$$
 \Rightarrow $W=(x)y$ on $S \stackrel{*}{\Rightarrow} x$ i $S \stackrel{*}{\Rightarrow} y$

WHI WHI

The un sol to un sol

whigher

where

(b)
$$S \rightarrow S(S)S$$

$$S \rightarrow aSb|B$$

$$B \rightarrow bAa|bCb|\lambda$$

$$A \rightarrow aAbA|bAaA|\lambda$$

$$C \rightarrow Aaa|aAa|aaA$$

$$S \rightarrow aU_1|aS|bZ_1|bS$$

$$Z_1 \rightarrow aU_2|bF$$

$$U_1 \rightarrow bU_2$$

$$U_2 \rightarrow bF|b$$

$$F \rightarrow aF|bF|a|b$$

(e)

$$S \rightarrow AaBA|ABaA|ACA|AbabA$$

$$B \rightarrow bb$$

$$C \rightarrow bB$$

$$A \rightarrow aA|bA|\lambda$$

$$S \rightarrow aU_1|aS|bZ_1|bS$$

$$Z_1 \rightarrow aU_2|bZ_2$$

$$U_1 \rightarrow bU_2U_2 \rightarrow bF$$

$$Z_2 \rightarrow aF|bF$$

$$F \rightarrow aF|bF|\lambda$$

 $S \rightarrow Z_{1}a|Z_{2}b$ $Z_{1} \rightarrow Z_{1}a|U_{1}b$ $Z_{2} \rightarrow U_{2}a|Z_{3}b$ $Z_{3} \rightarrow Fa|U_{2}$ $U_{1} \rightarrow U_{2}|Fba$ $U_{2} \rightarrow Fb$ $F \rightarrow Fa|Fb|\lambda$

5->

4. Muestra que la gram'atica uni'on $G_1 \cup G_2$ de dos gram'aticas no ambiguas G_1, G_2 s'1 podr'1a ser ambigua.

AMBIGUA

5. Muestra que la gram´atica concatenaci´on $G_1 \cdot G_2$ de dos gram´aticas no ambiguas G_1, G_2 s´ı podr´ıa ser ambigua.

$$G_1: A \rightarrow A$$

$$G_1 \cdot G_2 \cdot S \rightarrow AB$$

$$A \rightarrow A \setminus A$$

$$B \rightarrow A \setminus A$$

aabaa:

$$G = \langle V, \Sigma, P, S \rangle$$

$$V = \{S, A, B\}$$
 $P = \{S \rightarrow A|B|A, A \rightarrow aSa, B \rightarrow b\}$

$$S \rightarrow SS \mid \lambda$$

 $S \rightarrow Sa \mid \lambda$

$$G^* = \langle V, \Sigma, P', S' \rangle$$

$$V = \{S', S, A, B\}$$
 $P = \{S' \rightarrow SS' | A\}$
 $E = \{a, b\}$ $S \rightarrow A|B|A,$
 $A \rightarrow aSa,$
 $B \rightarrow b\}$

$$A \rightarrow asa,$$
 $B \rightarrow b$

aabaad aabaa

7. Muestra que la gram'atica imagen $\sigma(G)$ de una gram'atica no ambigua G por un morfismo σ s'1 podr'1a ser ambigua.

8. Muestra que la gram´atica reverso G^R una gram´atica no ambigua G tampoco es ambigua.

9.	Escribe el DFA m'ınimo para $\{w \in \{a,b\}^* \mid w _a \in 2^*\}$, y haz la intersecci'on expl'ıcita de ese DFA con la CFG $S \to aSa \mid bSb \mid a \mid b \mid \lambda$.

10. Escribe el DFA m'ınimo para $\{wa \mid w \in \{a,b\}^*\}$, y haz la intersecci'on expl'ıcita de ese DFA con la CFG S -
aSbS bSaS λ .

11. Escribe el DFA m'ınimo para {a	$aw \mid w \in \{a,b\}^*\}$, y haz la intersecci´on	n expl´ıcita de ese DFA con la CFG S	\rightarrow
$aSbS \mid bSaS \mid \lambda$.			

12. Realizad la eliminaci'on de λ -producciones, producciones unarias, y s'imbolos no-u'tiles, de las gram'aticas siguientes:

(a)
$$S \rightarrow (S)S|\lambda$$

(b)
$$S \rightarrow SS|(S)|\lambda$$

$$S' \rightarrow S|\lambda$$

$$S \rightarrow (S)(S)|(S)/()()|()$$

(c)
$$S \rightarrow AA$$
$$A \rightarrow AA|\lambda$$
$$S \rightarrow S|\lambda$$

$$S \rightarrow A$$

$$A \rightarrow E$$

$$B \rightarrow c$$

$$S \rightarrow AB$$

$$A \rightarrow a | \lambda$$

$$B \rightarrow b|\lambda$$

(f)
$$S \rightarrow AB$$

$$A \rightarrow aAb|\lambda$$

$$B \rightarrow bBc|\lambda$$

$$S' \rightarrow S|\lambda$$

$$S \rightarrow AB|Ab|ab|bBc|bc$$

$$A \rightarrow aAb|ab$$

$$B \rightarrow bBc|bc$$

$$S \rightarrow AB|aAb|ab|bBc|bc$$

$$A \rightarrow aAb|ab$$

$$B \rightarrow bBc|bc$$

$$A \rightarrow bBc|bc$$

$$S' \rightarrow \lambda |AB| aAb|ab|bBc|bc$$
 $A \rightarrow aAb|ab$
 $B \rightarrow bBc|bc$

 $S \rightarrow BC|\lambda$

 $A \rightarrow aA|\lambda$

 $B \rightarrow bB$

 $C \rightarrow c$

(h)

 $S \rightarrow X|Y$

 $X \rightarrow Xc|A$

 $A \rightarrow aAb|\lambda$

 $Y \rightarrow aY | B$

 $B \rightarrow bBc|\lambda$

 $S \rightarrow A|B|C$

 $A \rightarrow SaSbS|\lambda$

 $B \rightarrow SbSaS|\lambda$

 $C \rightarrow Cc|\lambda$

13. Sea G una CFG y sea C su conjunto de variables no-accesibles. Sea las variables de C junto con las reglas donde aparecen. Demuestra de G^0 es, de hecho, el conjunto de todas las variables de G^0 .	

14. Sea <i>G</i> una CFG y sea <i>C</i> su conjunto de s'imbolos no-fruct'iferos. Sea <i>G</i> ⁰ la gram'atica obtenida al borrar de <i>G</i> los s'imbolos de <i>C</i> junto con las reglas donde aparecen. Demuestra que el conjunto de s'imbolos fruct'iferos de <i>G</i> ⁰ es, de hecho, el conjunto de todas las variables de <i>G</i> ⁰ .			

15.	15. Sea <i>G</i> una CFG y sea <i>C</i> su conjunto de s'imbolos no-accesibles. Supongamos que todos los s'imbolos os son fruct'iferos. Sea <i>G</i> ⁰ el resultado de borrar de <i>G</i> los s'imbolos de <i>C</i> junto con las reglas donde apare Demuestra que el conjunto de s'imbolos fruct'iferos de <i>G</i> ⁰ es, de hecho, el conjunto de todas las varia de <i>G</i> ⁰ .			

16. Da un ejemplo de gram´atica en la que, tras borrar un cierto s´ımbolo u´til, y todas las reglasen las que aparece, au´n as´ı el lenguaje generado se preserva.			

17. Cu'al es el coste temporal y espacial de eliminar las λ -producciones de una CFG.

18. Cu'al es el coste temporal y espacial de eliminar las producciones unarias de una CFG.			

19. Cu'al es el coste temporal y espacial de eliminar los s'imbolos no u'tiles de una CFG.		

20. Cu'al es el coste temporal y espacial de pasar una CFG a CNF?			

21.	Cu'al es el coste del algoritmo propuesto en el curso para decidir si una gram'atica genera unacier palabra, si se realiza una implementaci'on razonable del mismo? Cu'al es el coste si se supone G fija, y qua entrada s'olo contiene w ?	ta ue

22. Sea n el nu'mero de pasos de derivaci'on necesarios para generar una cierta palabra w con una cierta gram'atica G en forma normal de Chomsky. Podemos establecer alguna relaci'on entre n y $ w $?

- 23. Justifiqueu la veracitat o falsetat de les segu ents afirmacions per a CFGs G_1, G_2, G_3 .
 - (a) $(G^R)^R = G$.

(b) $(G_1 \cup G_2)_R = G_{R1} \cup G_{R2}$.

(c) $(G^R)^* = (G^*)^R$.

(d) $(G_1 \cup G_2)G = (G_1G) \cup (G_2G)$.

(e) $\sigma(G_1 \cup G_2) = \sigma(G_1) \cup \sigma(G_2)$.

(f) $G_1(G_2G_3) = (G_1G_2)G_3$.

(g) $(G_1G_2)_R = G_{R2} G_{R1}$.

24. Prop'on un algoritmo de coste razonable para saber si una CFG de entrada genera algunapalabra.

25.	Prop´on un algoritmo de coste razonable para saber si una CFG de entrada genera infinitaspalabras.

26. Prop´on un algoritmo de coste razonable para saber si una CFG de entrada genera algunapalabra de taman o par.

27.	Prop´on un algoritmo de coste razonable para saber si una CFG de entrada genera infinitaspalabras de taman˜o par.

28. Prop´on un algoritmo de coste razonable para saber, dada una CFG G de entrada y un natural n , cuantos ´arboles de derivaci´on distintos de palabras de taman˜o n genera G .

29. Sigui L un llenguatge incontextual infinit. Demostra que hi ha una CFG G tal que L(G) = L i totes les variables de G generen un llenguatge infinit.

$$L$$
 incontextual \Rightarrow $\exists CFG G \mid L(G) = L$ infinit

Dem que FCFG G L(G)=L | totes les variables de G generen un llenguatge infinit

$$\begin{array}{lll}
l_A &= \{a\} \\
l_B &= \{b^K \mid K \in \mathbb{N}\} = b^{\#} \end{array}$$

$$\begin{array}{lll}
\Delta b^* & \left[S \longrightarrow AB \\
B \longrightarrow bB \mid \lambda\right]$$

Variables preden generar