Question: 1

Do the detail complexity analysis of the following codes in terms of n.

S.No	Code	Analysis
1	for(i = n; i > 0; i++) { for(j = 0; j <n;)++) cout<<i;="" td="" {="" }<=""><td>The outer loop runs infinite times. No time complexity</td></n;)++)>	The outer loop runs infinite times. No time complexity
2	for(i = n; i > 0; i++) { for(j = 0; j < n; j * 2) { cout << i; }	The outer looprons in finite times no time complexity
3	<pre>while(low <= high) { mid = (low + high) / 2; if (target < list[mid]) high = mid - 1; else if (target > list[mid]) low = mid + 1; else break; }</pre>	⇒ Binary searchin n=2 k ⇒ log2 n=1k O(log1)
4	<pre>int i, j, imin; for(i = 0; i<size-1; i++)<="" td=""><td>⇒ Both loops run 'n' times so, O(n²)</td></size-1;></pre>	⇒ Both loops run 'n' times so, O(n²)

```
in-1 times and inner
5
     int key, j;
     for(int i = 1; i<size; i++) (
            key = array[i];
                                             100p Por 'n' kmes: n(n-1)
             j = i_2
             while(j > 0 && array[j-1]>key) (
                    array[j] = array[j-1];
                                              so, O(n2)
             array[j] = key;
                                             100p1 = n-1 kmes
      for (int i=0; i<n; i++) ( → ∩-1
         for (int j=i; j<= i*i; j++) ( → n ≥
                                              LOUP2 = 12
             if (j%i == 0) (
                                              LOOP 3 - 0
                 for (int k=0; k<j; k++) → 1
                                              So, n \times n^3 \times (n-1) = n^4 - n^3
=> O(n^4)
                    { printf("""); }
                                             Loop1 = N-1

Loop2 = n^2 So, n^2(n-1) = n^2 n^2
7
      for (int i=0; i<n; i++) {
         for (int j=i; j<= i*i; j++)
          { print("*"); }
                                              =) O(n3)
      for ( int i=0; i<n; i++ ) (
8
          for ( int j=i; j=i*2;j*2) {
             for ( int k=1; k< j; k*2 ) {
                print("*");
      for ( int i=0; i<n; i++ ) (
9
         for (int j=i; j=i*2;j*2) {
            for ( int k=j; k< j; k*2 ) {
                print("*");
```

```
LOOP 1 = 1/2
     void function (int n)
10
                                             Loop2 = n/2
       int count = 0;
        for (int l = n/2; i < n; i++)
                                            Loop 3 = 10gr
           for (int j = 1; j+n/2 <= n; j = j++)
             for (int k = 1; k < = n; k = k*2)
                                            n/2 x n/2 x logn = n2 109n
                  count++;
11
     for I = 1 to n {
        // some operations of O(1)
        for j = 1 to 2*i {
           // some operations of O(1)
          k = i
          while (k>=0) (
              // some operations of O(1)
              k=k-1;
12
     for (int i=0; i<n; i++)
                                          Loop 1: n times
         for (int j=i; j< i; j+=i) {
                                          LOOP 2 : 0.
            print("*");
                                         >0(n)
                                          à 100p1 : n hous
13
     for ( int i=0; i<n; i++ )
         for ( int j=i; j< i*i; j++ ) {
                                          > 100p2 - n3 kmes
            for ( int k=j; k < j; k+=j ) {
               print("*");
                                          ⇒ 100p3: 1
                                            50, n(n3)(1) 30(n3)
14
     for ( int i=0; i<n; i*i )
                                          > The loop runs
        for (int j=i; j< n; j++) {
                                            infinite times
          print("*");
                                            No time complexity
     for ( int i=n; i>0; i-- )
15
                                          $ LOOP 1 = 17
         for (int j=n; j > i; j--) {
                                          1 LOOP = n
            print("*");
                                             nxn => 0(n2)
     }
```

16	<pre>for (int i=0; i<n; (="")="" for="" i*2="" i*2;="" int="" j="0;" j++="" j<="" pre="" print("*");="" {="" }="" }<=""></n;></pre>	⇒ The loop runs infinite time ⇒ No time complexity
17	<pre>for (int i=0; i<n;)<="" i++="" td=""><td>Loop1: ntimes Loop2: n2 So, nxn2 O(n3)</td></n;></pre>	Loop1: ntimes Loop2: n2 So, nxn2 O(n3)
18	<pre>for (int i=0; i<n; (="")="" 2;="" for="" i++="" int="" j="i;" j++="" j;="" j<="" k="j;" k+="j" k<="" n="" pre="" print("*");="" {="" }="" }<=""></n;></pre>	Loop 1:n times Loop 2: ng times Loop 3: 1 So, nxn/2x1 => OCn2
19	<pre>for (int i=0; i<n*2; (="")="" for="" i++="" int="" j="i;" j++="" j<="" n*2;="" pre="" print("*");="" {="" }="" }<=""></n*2;></pre>	Loop1: n times Loop2: n times So, nxn => O(n2).
20	<pre>for (int i=0; i<n*2; (="")="" for="" i++="" int="" j="i;" j++="" j;="" j<="" k="j;" k+="j" k<="" n*2;="" pre="" print("*");="" {="" }="" }<=""></n*2;></pre>	Loop1: n times Loop2: n times Loop3: 1 times So, nxn v1 => O(n2)

21	<pre>for (int i=0; i<n; (="")="" for="" i*2="" i;="" int="" j="i/2;" j*2="" j;="" j<="" k="j;" k+="j" k<="" pre="" print("*");="" {="" }="" }<=""></n;></pre>	Loop runs in finite times so, notime complexity
22	<pre>void fun (int n, int k) { for (int i=1; i<=n; i++) { int p = pow (i, k); for (int j=1; j<=p; j++) { // Some O(1) operation } } </pre>	
23	for (int i = 1; i <= n; i++) { for (int j = 1; j < n; j += i) { // Some O(1) operations } }	Loop1: N Loop2: N So, n×n → O(n2)
24	for (int i = 1; i <= n; i++) { for (int j = 1; j < i*i; j++) { // Some O(1) operations } }	200p 1: n 200p 2: n2 50, nxn2 => O(n3)
25	for (int i = 1; i <= n; i++) { for (int j = 1; j < i*i; j*=2) { // Some O(1) operations } }	Loop 1: n

Question: 2

Solve the following recurrence relation using Iteration method.

a)
$$T(n) = 2 + T(n-1)$$
 for $n > 0$, $T(0) = 2$ for $n > 0$

$$T(n) = T(n-1) + \lambda$$
 $T(n) = T(n-2) + \lambda + \lambda$
 $T(n) = T(n-3) + \lambda + \lambda + \lambda$
 $T(n) = T(n-3) + \lambda + \lambda + \lambda$
 $T(n) = T(n-k) + \lambda + \lambda$

Base case:

 $n - k = 0$
 $n = k$
 $T(n) = T(0) + \lambda + \lambda$
 $= \lambda + \lambda + \lambda$

T(n-1)=(17-2)+2.

T(n-2) = T(n-3) +2

$$T(n) = 2T(n/2) + n$$

$$= 2\left[2T(n/2) + n/2\right] + n$$

$$= 2^{2}T(n/4) + n + n$$

$$= 2^{3}T(n/8) + n/4$$

$$= 2^{3}T(n/8) + n + n$$

$$= 2^{3}T(n/8) + n + n + n$$

$$= 2^{3}T(n/8) + n + n + n$$

$$= 2^{3}T(n/8) + n + n + n$$

$$= 2^{3}T(n/8) + 3n$$

$$\Rightarrow 2^{k}T(n/8) + kn$$

$$\Rightarrow 10g_{2}n = 16$$

> 0(nlog2n)

$$\Rightarrow T(n_{4}) = 3T(n_{6}) + n_{4}$$

$$\Rightarrow T(n_{16}) = 3T(n_{6}) + n_{4}$$

$$\Rightarrow T(n_{16}) = 3T(n_{6}) + n_{4}$$

$$T(n) = 3T(n_{4}) + n_{4} + n_{4}$$

$$= 3^{2}T(n_{6}) + n_{6} + n_{6} + n_{6}$$

$$= 3^{2}T(n_{6}) + n_{7}$$

$$= 3^{2}T(n_{7}) + n_{7$$

$$T(n) = 3^{\log_4 n} + 4(n)$$
 $\Rightarrow 6(n)$

d) T(n) = 2T(n-1)+1

e)
$$T(n) = 4T(n/4) + 4$$
 $T(n) = 4(n/4) + 4$
 $T(n/4) = 4 + (n/6) + 4$
 $T(n/6) = 4 + (n/6) + 4$
 $T(n) = 4 + (1/6) + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 16 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 16 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4 + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4$
 $T(n) = 4 + (1/6) + 4 + 4$
 $T(n) = 4 + (1/6) + 4$
 $T(n)$

Question 4:

Solve the following recurrence relation using Master Theorem.

a)
$$T(n) = 9T(n/3) + n$$

b) $T(n) = 4T(n/4) + n/\log^2 n$

This cannot be somed by master theorem because we can see that log_n' is in denominator which means it is not a polynomial. and their

master Theorem can not be applied.

- 1 t(n) is not monotone
- 3 fm) is not polynoomial
- 3 b cannot be expressed as a constant

c)
$$T(n) = 4T(n/3) + n^3$$

$$f(n) = a(n \log_{6} 9)$$
 $h^{3} = 0(n \log_{3} 4)$
 $h^{3} = 0(n \log_{3} 4)$
 $h^{3} = 0(n \log_{3} 4)$
 $h^{3} = 0(n \log_{3} 4)$

Case(ii)
$$f(n) = O(n^{\log_{b} 9} \cdot \log^{k} n)$$

$$n^{3} = O(n^{\log_{3} 4} \cdot \log^{n} n)$$

$$n^{3} = O(n^{1-26} \cdot 1)$$

$$n^{3} = O(n^{1-26})$$

$$false$$

case (iii)
$$f(n) = \Omega(n \log_b q)$$

$$h^3 = \Omega(n \log_3 q)$$

$$h^3 = \Omega(n \log_3 q)$$
True

$$T(n) = O(f(n))$$
 $T(n) = O(n^3)$

Page 19 of 24

d) T(n) = 2T(n/2) + 1/n

This cannot be solved by master theorem be cause '1/n' is not a polynomial.

master Theorem can not be applied:

- @ T(n) is not monotone
- 3 f(n) is not polynomial
- 3 b cannot be expressed as a constant

e)
$$T(n) = 2T(n/2) + n \log n$$

$$a = 271$$
 $b = 271$
 $f(n) = n \log n$

$$\frac{case(i)}{f(n) = O(n \log b^a)}$$

$$n \log n = O(n \log a^2)$$

$$n \log n = O(n)$$

$$false$$

case (i)

$$T(n) = O\left(n\log_b^a - \log^{\kappa+1}n\right)$$

$$T(n) = O\left(n\log_b^2 n\right)$$

f)
$$T(n) = 64T(n/8) - n 2 \log n$$

$$a = 647/1$$
 $b = 87/1$
 $f(x) = h^{2} \log n$

(aseli)
$$f(n) = O(n^{10969})$$

 $n^{2} logn = O(n^{109864})$
 $n^{2} logn = O(n^{2})$
false

g) $T(n) = T(n/2) + n(2 - \cos n)$

This can not be solved by master theorem because fin) is not monotone function

Master theorem cannot be applied:

- 1 T(n) is not munotone
- 3 f(n) is not polynomial
- 3 b can not be expressed as constant

a € 0.5 € 1 (mastex theorem count he applied).

This cannot be solved by master theorem because 'In' is not polynomial.

master theorem cannot be applied:

- O T(n) is not monotone
 - @ f(n) is not polynomial
 - 3 b can not be expressed as a constant