# **Exploratory data analysis**

### Name: Ting Lin

First of all, I would like to perform head() and tail() to have a quick look of the data set.

```
library(here)
library(tidyverse)
source("R/FinalMergedData.R")
head(allfinal,n=10)
```

|    | country_name                                                    | ISO   | re       | gion   | year  | gdp1000    | OECD  | 0ECD2023  | popdens  |
|----|-----------------------------------------------------------------|-------|----------|--------|-------|------------|-------|-----------|----------|
| 1  | Afghanistan                                                     | AFG   | Southern | Āsia   | 2000  | NA         | 0     | 0         | 14.13654 |
| 2  | Afghanistan                                                     | AFG   | Southern | Asia   | 2001  | NA         | 0     | 0         | 14.23156 |
| 3  | Afghanistan                                                     | AFG   | Southern | Asia   | 2002  | 0.1835328  | 0     | 0         | 14.32270 |
| 4  | Afghanistan                                                     | AFG   | Southern | Asia   | 2003  | 0.2004626  | 0     | 0         | 14.40691 |
| 5  | Afghanistan                                                     | AFG   | Southern | Asia   | 2004  | 0.2216576  | 0     | 0         | 15.21947 |
| 6  | Afghanistan                                                     | AFG   | Southern | Asia   | 2005  | 0.2550551  | 0     | 0         | 15.33619 |
| 7  | Afghanistan                                                     | AFG   | Southern | Asia   | 2006  | 0.2740005  | 0     | 0         | 15.43982 |
| 8  | Afghanistan                                                     | AFG   | Southern | Asia   | 2007  | 0.3750781  | 0     | 0         | 15.65217 |
| 9  | Afghanistan                                                     | AFG   | Southern | Asia   | 2008  | 0.3878492  | 0     | 0         | 15.74447 |
| 10 | Afghanistan                                                     | AFG   | Southern | Asia   | 2009  | 0.4438452  | 0     | 0         | 15.83043 |
|    | urban ag                                                        | gedep | male_edu | l      | temp  | rainfall10 | 00 to | otaldeath | armconf1 |
| 1  | 16.25324 108.                                                   | 3466  | 2.762086 | 12.6   | 69959 | 0.27637    | 04    | 5065      | 1        |
| 2  | 16.25661 108.                                                   | 9899  | 2.856936 | 12.8   | 35570 | 0.27930    | 79    | 5394      | 1        |
| 3  | 16.42654 109.                                                   | 3472  | 2.954241 | 12.    | 71081 | 0.38057    | 10    | 5553      | 1        |
| 4  | 16.60701 109.                                                   | 4475  | 3.054121 | 12.    | 16592 | 0.42889    | 39    | 1157      | 1        |
| 5  | 16.71367 109.                                                   | 2868  | 3.156706 | 13.0   | 04643 | 0.37543    | 36    | 944       | 1        |
| 6  | 16.85096 107.                                                   | 9646  | 3.262133 | 12.5   | 23141 | 0.44156    | 80    | 817       | 1        |
| 7  | 16.98105 106.                                                   | 3262  | 3.370551 | 12.9   | 96153 | 0.44370    | 97    | 1711      | 1        |
| 8  | 17.12259 108.                                                   | 3381  | 3.482112 | 2 12.4 | 47451 | 0.40925    | 55    | 4982      | 1        |
| 9  | 17.26919 109.                                                   | 2404  | 3.596977 | 12.6   | 63527 | 0.39012    | 04    | 7020      | 1        |
| 10 | 17.43508 106.                                                   | 8458  | 3.715306 | 12.6   | 61764 | 0.48087    | 27    | 5660      | 1        |
|    | MaternalMortalityRate InfantMortalityRate NeonatalMortalityRate |       |          |        |       |            |       |           |          |

```
1
                     1450
                                          90.5
                                                                  60.9
2
                                                                  59.7
                     1390
                                          87.9
3
                     1300
                                          85.3
                                                                  58.5
4
                     1240
                                          82.7
                                                                  57.2
5
                                          80.0
                     1180
                                                                  55.9
6
                     1140
                                          77.3
                                                                  54.6
7
                                          74.6
                                                                  53.2
                     1120
                                          71.9
                                                                  51.7
8
                     1090
9
                     1030
                                          69.2
                                                                  50.3
10
                      993
                                          66.7
                                                                  48.9
   Under5MortalityRate drought earthquake
                  129.2
                              1
1
                                          0
2
                  125.2
                              0
                                          1
3
                  121.1
                               0
                                          1
4
                  116.9
                                          1
                               0
5
                  112.6
                               0
                                          1
6
                  108.4
                               0
                                          1
7
                  104.1
                               1
                                          1
8
                   99.9
                               0
                                          0
9
                   95.7
                               1
                                          0
10
                   91.7
                               0
                                          1
```

# tail(allfinal, n=10)

| country_name       | ISO               | region         | year  | gdp1000     | OECD O  | ECD2023   | popdens  |
|--------------------|-------------------|----------------|-------|-------------|---------|-----------|----------|
| 3711 Zimbabwe      | ZWE Sub-Saharan   | Africa         | 2010  | 0.9378403   | 0       | 0         | 25.51039 |
| 3712 Zimbabwe      | ZWE Sub-Saharan   | Africa         | 2011  | 1.0826158   | 0       | 0         | 25.53206 |
| 3713 Zimbabwe      | ZWE Sub-Saharan   | Africa         | 2012  | 1.2901940   | 0       | 0         | 25.55349 |
| 3714 Zimbabwe      | ZWE Sub-Saharan   | Africa         | 2013  | 1.4083678   | 0       | 0         | 25.53286 |
| 3715 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2014  | 1.4070343   | 0       | 0         | 26.52884 |
| 3716 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2015  | 1.4103292   | 0       | 0         | 26.54454 |
| 3717 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2016  | 1.4217878   | 0       | 0         | 26.53811 |
| 3718 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2017  | 1.1921070   | 0       | 0         | 26.49281 |
| 3719 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2018  | 2.2691770   | 0       | 0         | 26.47943 |
| 3720 Zimbabwe      | ZWE Sub-Saharan   | ${\tt Africa}$ | 2019  | 1.4218686   | 0       | 0         | 26.46341 |
| urban a            | gedep male_edu    | temp           | rainf | fall1000 to | otaldea | ath armco | onf1     |
| 3711 23.28851 85.  | 56457 8.250225 23 | 1.53473        | 0.    | .7290925    |         | 0         | 0        |
| 3712 23.43075 86.4 | 40049 8.358820 20 | 0.87452        | 0.    | .8582386    |         | 0         | 0        |
| 3713 23.70160 86.  | 71712 8.466529 20 | 0.98071        | 0.    | . 6259767   |         | 1         | 0        |
| 3714 24.04603 86.4 | 44543 8.573429 20 | 0.77221        | 0.    | .6717220    |         | 1         | 0        |
| 3715 24.40427 85.8 | 87550 8.679591 20 | 0.87651        | 0.    | . 6777257   |         | 0         | 0        |
| 3716 24.75233 85.0 | 08337 8.785078 23 | 1.45470        | 0.    | .4490721    |         | 0         | 0        |

| 0747 | 05 00040 04 44000 0 | 000047          | 04 00000    | 0 1000010          | •               | _ |
|------|---------------------|-----------------|-------------|--------------------|-----------------|---|
|      | 25.02842 84.11222 8 |                 |             |                    | 0               | 0 |
|      | 25.29333 83.10129 8 |                 |             |                    | 0               | 0 |
| 3719 | 25.53759 82.12335 9 | 0.098048        | 20.86041    | 0.9535655          | 0               | 0 |
| 3720 | 25.70572 81.20786 9 | 201384          | 20.86120    | 0.9538138          | 4               | 0 |
|      | MaternalMortalityRa | te Infar        | ntMortality | Rate NeonatalMorta | ${	t lityRate}$ |   |
| 3711 | 5                   | 598             |             | 52.1               | 30.8            |   |
| 3712 | 5                   | 557             |             | 50.8               | 30.1            |   |
| 3713 | 5                   | 528             |             | 46.5               | 29.4            |   |
| 3714 | 5                   | 509             |             | 44.8               | 28.7            |   |
| 3715 | 4                   | 194             |             | 42.9               | 28.2            |   |
| 3716 | 4                   | £80             |             | 42.1               | 27.8            |   |
| 3717 | 4                   | <del>1</del> 68 |             | 40.8               | 27.4            |   |
| 3718 | 4                   | £58             |             | 39.9               | 27.0            |   |
| 3719 |                     | NA              |             | 38.8               | 26.6            |   |
| 3720 |                     | NA              |             | 38.1               | 26.2            |   |
|      | Under5MortalityRate | drought         | earthquak   | ce                 |                 |   |
| 3711 | 86.4                | <u> </u>        | L           | 0                  |                 |   |
| 3712 | 80.8                | 3 (             | )           | 0                  |                 |   |
| 3713 | 72.2                | 2 (             | )           | 0                  |                 |   |
| 3714 | 66.3                | 3 1             | L           | 0                  |                 |   |
| 3715 | 62.7                | '               | )           | 0                  |                 |   |
| 3716 | 61.3                | 3 (             | )           | 0                  |                 |   |
| 3717 | 58.7                | '               | )           | 0                  |                 |   |
| 3718 | 57.0                | ) 1             | L           | 0                  |                 |   |
| 3719 | 54.8                | 3 (             | )           | 0                  |                 |   |
| 3720 | 54.2                | 2 (             | )           | 0                  |                 |   |
|      |                     |                 |             |                    |                 |   |

Then perform summary() to check some generic information about our data set.

## summary(allfinal)

| country_name                                                  | ISO                             | region            | year                           |  |  |
|---------------------------------------------------------------|---------------------------------|-------------------|--------------------------------|--|--|
| -                                                             | Length: 3720<br>Class: characte | _                 |                                |  |  |
|                                                               |                                 |                   | ·                              |  |  |
| Mode :cnaracter                                               | Mode :characte                  | r Mode :cnarac    |                                |  |  |
|                                                               |                                 |                   | Mean :2010                     |  |  |
|                                                               |                                 |                   | 3rd Qu.:2014                   |  |  |
|                                                               |                                 |                   | Max. :2019                     |  |  |
| gdp1000                                                       | OECD                            | 0ECD2023          | popdens                        |  |  |
| Min. : 0.1105                                                 | Min. :0.000                     | Min. :0.0000      | Min. : 0.00                    |  |  |
| 1st Qu.: 1.2383                                               | 1st Qu.:0.000                   | 1st Qu.:0.0000    | 1st Qu.:14.79                  |  |  |
| Median : 4.0719                                               | Median :0.000                   | Median :0.0000    | Median :27.52                  |  |  |
| Mean : 11.4917                                                | Mean :0.171                     | Mean :0.1882      | Mean :30.57                    |  |  |
| 3rd Qu.: 13.1531                                              | 3rd Qu.:0.000                   | 3rd Qu.:0.0000    | 3rd Qu.:40.72                  |  |  |
| Max. :123.6787                                                | Max. :1.000                     | Max. :1.0000      | Max. :99.86                    |  |  |
| NA's :62                                                      |                                 |                   | NA's :20                       |  |  |
| urban                                                         | agedep                          | male_edu          | temp                           |  |  |
| Min. : 0.1025                                                 | Min. : 16.17                    | Min. : 1.067      | Min. :-2.405                   |  |  |
| 1st Qu.:17.2872                                               | 1st Qu.: 47.94                  | 1st Qu.: 5.904    | 1st Qu.:12.928                 |  |  |
| Median :30.2535                                               | Median : 55.51                  | Median : 8.368    | Median :21.958                 |  |  |
| Mean :30.6948                                                 | Mean : 61.94                    | Mean : 8.258      | Mean :19.625                   |  |  |
| 3rd Qu.:41.6558                                               | 3rd Qu.: 77.11                  | 3rd Qu.:10.849    | 3rd Qu.:25.869                 |  |  |
| Max. :93.4135                                                 | Max. :111.48                    | Max. :14.441      | Max. :29.676                   |  |  |
| NA's :20                                                      |                                 | NA's :20          | NA's :20                       |  |  |
| rainfall1000                                                  | totaldeath                      | armconf1          | ${	t Maternal Mortality Rate}$ |  |  |
| Min. :0.01993                                                 | Min. : 0.0                      | Min. :0.0000      | Min. : 2.0                     |  |  |
| 1st Qu.:0.59146                                               | 1st Qu.: 0.0                    | 1st Qu.:0.0000    | 1st Qu.: 17.0                  |  |  |
| Median :1.01288                                               | Median: 0.0                     | Median :0.0000    | Median: 66.0                   |  |  |
| Mean :1.20216                                                 | Mean : 361.1                    | Mean :0.1892      | Mean : 210.6                   |  |  |
| 3rd Qu.:1.68706                                               | 3rd Qu.: 2.0                    | 3rd Qu.:0.0000    | 3rd Qu.: 299.8                 |  |  |
| Max. :4.71081                                                 | Max. :78644.0                   | Max. :1.0000      | Max. :2480.0                   |  |  |
| NA's :20                                                      |                                 |                   | NA's :426                      |  |  |
| InfantMortalityRate NeonatalMortalityRate Under5MortalityRate |                                 |                   |                                |  |  |
| Min. : 1.60                                                   | Min. : 0.80                     | $\mathtt{Min.}$ : | 2.00                           |  |  |
| 1st Qu.: 7.60                                                 | 1st Qu.: 4.90                   | 1st Qu.:          | 9.00                           |  |  |
| Median : 18.90                                                | Median :12.10                   | Median :          | 22.20                          |  |  |
| Mean : 28.90                                                  | Mean :16.18                     | Mean :            | 40.50                          |  |  |
| 3rd Qu.: 44.52                                                | 3rd Qu.:25.32                   | 3rd Qu.:          | 61.33                          |  |  |

```
:60.90
                                               :224.90
Max.
      :138.10
                   Max.
                                        Max.
NA's
      :20
                   NA's
                          :20
                                        NA's
                                               :20
  drought
                   earthquake
                        :0.00000
Min.
      :0.00000
                 Min.
1st Qu.:0.00000
                 1st Qu.:0.00000
Median :0.00000
                 Median: 0.00000
Mean :0.08737
                 Mean :0.08333
3rd Qu.:0.00000
                 3rd Qu.:0.00000
Max. :1.00000
                Max. :1.00000
```

```
# visualize Maternal Mortality Rate by year.
max_death_country <- allfinal$country_name[which.max(allfinal$totaldeath)]
print(max_death_country)</pre>
```

#### [1] "Syria"

```
min_death_country <- allfinal$country_name[which.min(allfinal$totaldeath)]
print(min_death_country)</pre>
```

#### [1] "Albania"

```
library(ggplot2)
library(patchwork)
Syria <- allfinal[allfinal$country_name == "Syria",]</pre>
combined_plot <- Syria %>%
  ggplot(mapping = aes(x = factor(year))) +
  geom_line(aes(y = MaternalMortalityRate, group = 1,
                color = "Maternal Mortality Rate"), na.rm = TRUE) +
  geom_point(aes(y = MaternalMortalityRate, fill = "Maternal Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
  geom_line(aes(y = InfantMortalityRate, group = 1,
                color = "Infant Mortality Rate"), na.rm = TRUE) +
  geom_point(aes(y = InfantMortalityRate, fill = "Infant Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
  geom_line(aes(y = NeonatalMortalityRate, group = 1,
                color = "Neonatal Mortality Rate"), na.rm = TRUE) +
  geom_point(aes(y = NeonatalMortalityRate, fill = "Neonatal Mortality Rate"),
```

```
na.rm = TRUE, shape = 21, size = 2) +
  geom_line(aes(y = Under5MortalityRate, group = 1,
                color = "Under5 Mortality Rate"), na.rm = TRUE) +
  geom point(aes(y = Under5MortalityRate, fill = "Under5 Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
  scale_x_discrete(breaks = unique(Syria$year), labels = sprintf("%02d", Syria$year %% 100))
  scale_color_manual(name = "Legend",
                     values = c("Maternal Mortality Rate" = "blue",
                                "Infant Mortality Rate" = "orange",
                                "Neonatal Mortality Rate" = "purple",
                                "Under5 Mortality Rate" = "green")) +
  scale_fill_manual(name = "Legend",
                    values = c("Maternal Mortality Rate" = "blue",
                               "Infant Mortality Rate" = "orange",
                               "Neonatal Mortality Rate" = "purple",
                               "Under5 Mortality Rate" = "green")) +
  labs(x = "Year (20xx)", y = "Mortality Rate", title = "Mortality Rates in Syria") +
  theme(panel.background = element_rect(fill = "lightgrey", color = "black"),
        legend.position = "bottom") + guides(color = guide_legend(nrow = 2, ncol = 2),
         fill = guide_legend(nrow = 2, ncol = 2))
combined_plotnew <- combined_plot +</pre>
  plot_annotation(
    caption = "Attention: we have 2 missing values for Maternal Mortality Rate
    in Year 2018 and 2019 "
  )
plot1 <- Syria %>%
  ggplot(mapping = aes(x = factor(year), y = log(totaldeath))) +
  geom_line(na.rm = TRUE, group = 1, color = "red") +
  geom_point(na.rm = TRUE, shape = 21, color = "red", fill = "pink", size = 2) +
  scale_x_discrete(breaks = unique(Syria$year),labels = sprintf("%02d", Syria$year %% 100))
  labs(x = "Year(20xx)", y = "Log-Transformation of Total Death",
       title = "Log-Transformation of Total Death in Syria") +
  theme(panel.background = element_rect(fill = "#BFD5E3", color = "#6D9EC1",
                                        linewidth = 2, linetype = "solid"),
        panel.grid.major = element_line(linewidth = 0.5, linetype = 'solid',
                                colour = "white"),
```

### plot1





#### combined\_plotnew

# Mortality Rates in Syria





Attention: we have 2 missing values for Maternal Mortality Rate in Year 2018 and 2019

```
Albania <- allfinal[allfinal$country_name == "Albania",]
combined_plot_Al <- Albania %>%
  ggplot(mapping = aes(x = factor(year))) +
  geom line(aes(y = MaternalMortalityRate, group = 1,
                color = "Maternal Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = MaternalMortalityRate, fill = "Maternal Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 geom_line(aes(y = InfantMortalityRate, group = 1,
                color = "Infant Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = InfantMortalityRate, fill = "Infant Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
  geom_line(aes(y = NeonatalMortalityRate, group = 1,
                color = "Neonatal Mortality Rate"), na.rm = TRUE) +
  geom_point(aes(y = NeonatalMortalityRate, fill = "Neonatal Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
  geom_line(aes(y = Under5MortalityRate, group = 1,
                color = "Under5 Mortality Rate"), na.rm = TRUE) +
  geom_point(aes(y = Under5MortalityRate, fill = "Under5 Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 scale_x_discrete(breaks = unique(Albania$year), labels = sprintf("%02d", Albania$year %% 1
 scale_color_manual(name = "Legend",
                     values = c("Maternal Mortality Rate" = "blue",
                                "Infant Mortality Rate" = "orange",
                                "Neonatal Mortality Rate" = "purple",
                                "Under5 Mortality Rate" = "green")) +
 scale_fill_manual(name = "Legend",
                    values = c("Maternal Mortality Rate" = "blue",
                               "Infant Mortality Rate" = "orange",
                               "Neonatal Mortality Rate" = "purple",
                               "Under5 Mortality Rate" = "green")) +
 labs(x = "Year (20xx)", y = "Mortality Rate", title = "Mortality Rates in Albania") +
  theme(panel.background = element_rect(fill = "lightgrey", color = "black"),
        legend.position = "bottom") + guides(color = guide_legend(nrow = 2, ncol = 2),
         fill = guide_legend(nrow = 2, ncol = 2))
```

```
combined_plotalnew <- combined_plot_Al +</pre>
  plot_annotation(
    caption = "Attention: we have 2 missing values for Maternal Mortality Rate
    in Year 2018 and 2019 "
plot3 <- Albania %>%
  ggplot(mapping = aes(x = factor(year), y = totaldeath)) +
  geom_line(na.rm = TRUE, group = 1, color = "red") +
  geom_point(na.rm = TRUE, shape = 21, color = "red", fill = "pink", size = 2) +
  scale_x_discrete(breaks = unique(Albania$year),labels = sprintf("%02d", Albania$year %% 10
  labs(x = "Year(20xx)", y = "Total Death",
       title = "Total Death in Albania") +
  theme(panel.background = element_rect(fill = "#BFD5E3", color = "#6D9EC1",
                                        linewidth = 2, linetype = "solid"),
        panel.grid.major = element line(linewidth = 0.5, linetype = 'solid',
                                colour = "white"),
        panel.grid.minor = element_line(linewidth = 0.25, linetype = 'solid',
                                colour = "white")) +
  geom_hline( yintercept = 25, linetype = "dashed", color = "red", linewidth = 1)
combined_plotalnew
```

#### Mortality Rates in Albania



Attention: we have 2 missing values for Maternal Mortality Rate in Year 2018 and 2019



Then I would like to randomly select another country to see if they have the similar patterns.

```
set.seed(123)
random_country <- sample(allfinal$country_name, 1)
random_country</pre>
```

#### [1] "Pakistan"

```
library(ggplot2)
library(patchwork)
Pakistan <- allfinal[allfinal$country_name == "Pakistan",]</pre>
```

I will repeat the same steps as Syria.

```
combined_plot_pa <- Pakistan %>%
 ggplot(mapping = aes(x = factor(year))) +
 geom_line(aes(y = MaternalMortalityRate, group = 1,
                color = "Maternal Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = MaternalMortalityRate, fill = "Maternal Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 geom_line(aes(y = InfantMortalityRate, group = 1,
               color = "Infant Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = InfantMortalityRate, fill = "Infant Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 geom_line(aes(y = NeonatalMortalityRate, group = 1,
                color = "Neonatal Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = NeonatalMortalityRate, fill = "Neonatal Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 geom_line(aes(y = Under5MortalityRate, group = 1,
                color = "Under5 Mortality Rate"), na.rm = TRUE) +
 geom_point(aes(y = Under5MortalityRate, fill = "Under5 Mortality Rate"),
             na.rm = TRUE, shape = 21, size = 2) +
 scale_x_discrete(breaks = unique(Pakistan$year), labels = sprintf("%02d", Pakistan$year %%
 scale_color_manual(name = "Legend",
                     values = c("Maternal Mortality Rate" = "blue",
                                "Infant Mortality Rate" = "orange",
                                "Neonatal Mortality Rate" = "purple",
```

```
"Under5 Mortality Rate" = "green")) +
  scale_fill_manual(name = "Legend",
                    values = c("Maternal Mortality Rate" = "blue",
                               "Infant Mortality Rate" = "orange",
                               "Neonatal Mortality Rate" = "purple",
                               "Under5 Mortality Rate" = "green")) +
  labs(x = "Year (20xx)", y = "Mortality Rate", title = "Mortality Rates in Pakistan") +
  theme(panel.background = element_rect(fill = "lightgrey", color = "black"),
        legend.position = "bottom") + guides(color = guide_legend(nrow = 2, ncol = 2),
         fill = guide_legend(nrow = 2, ncol = 2))
combined_plotnew_pa <- combined_plot_pa +</pre>
  plot_annotation(
    caption = "Attention: we have 2 missing values for Maternal Mortality Rate
    in Year 2018 and 2019 "
  )
plot1_pa <- Pakistan %>%
  ggplot(mapping = aes(x = factor(year), y = log(totaldeath))) +
  geom_line(na.rm = TRUE, group = 1, color = "red") +
  geom_point(na.rm = TRUE, shape = 21, color = "red", fill = "pink", size = 2) +
  scale_x_discrete(breaks = unique(Pakistan$year),labels = sprintf("%02d", Pakistan$year %%
  labs(x = "Year(20xx)", y = "Total Death",
       title = "Log-Transformation of Total Death in Pakistan") +
  theme(panel.background = element_rect(fill = "#BFD5E3", color = "#6D9EC1",
                                        linewidth = 2, linetype = "solid"),
        panel.grid.major = element_line(linewidth = 0.5, linetype = 'solid',
                                colour = "white"),
        panel.grid.minor = element_line(linewidth = 0.25, linetype = 'solid',
                                colour = "white")) +
  geom_hline( yintercept = log(25), linetype = "dashed", color = "red", linewidth = 1)
plot1_pa
```

# Log-Transformation of Total Death in Pakistan



### combined\_plotnew\_pa



Attention: we have 2 missing values for Maternal Mortality Rate in Year 2018 and 2019

#### Comments:

From the summery(), there are 426 missing values for Maternal Mortality Rate, 62 missing values for gpd100, 20 missing values for popdens, urban, male\_edu, temp, rainfall1000, Infant Mortality Rate, Neonatal Mortality Rate and Under5 Mortality Rate.

The Minimum value for total death is 20, and Maximum is 78644. The range is quite broad.

I aim to identify the country with the highest and lowest total deaths and visualize the data by year to observe trends for that specific country.

Syria has highest total death. From Syria's two plots, we observe that after 2011, the mortality rates for infants and children under 5 increased significantly, reaching a peak in 2014. During the same period, the total death toll in Syria also peaked. Investigating whether there is a significant relationship between these trends is the next question I intend to explore.

Albania has the lowest total deaths. From its two plots, we can see that there were no armed conflicts in any year, yet the mortality rate is still relatively high.

Randomly selected the country which is Pakistan, from its two plots, throughout all the years of armed conflict, the mortality rates, particularly the maternal mortality rate, remain consistently high. The patterns are quite different to Syria.

We need to conduct additional tests to determine the strength and significance of the correlation or association between the variables.