Université Chouaib Doukkali

Année Universitaire 2023/24

Faculté des Sciences - EL JADIDA

Niveau : Algèbre 2 (MIP & IA)

Département de Mathématiques

Série 3

Exercice 1. Soit f une application de E dans F. Parmis les applications cidessous, trouver celles qui sont linéaires. Puis, pour ces dernières, déterminer le noyau et l'image et préciser si elles sont injectives, surjectives ou bijectives.

- (1) $E = F = \mathbb{R}, f(x) = \cos(x).$
- (2) Soit $(a,b) \in \mathbb{R}^2$ donné. $E = F = \mathbb{R}, f(x) = ax + b$.
- (3) $E = \mathbb{R}^2$, $F = \mathbb{R}^3$, f(x,y) = (x y, x + y, xy).
- (4) $E = \mathbb{R}^3$, $F = \mathbb{R}^2$, f(x, y, z) = (x y, x y + z).
- (5) $E = \mathbb{R}^2$, $F = \mathbb{R}^3$, f(x,y) = (2x, x + y, y).

Exercice 2. Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}^3$ définie par f(P) = (P(-1), P(0), P(1)). Montrer que f est un isomorphisme.

Exercice 3. Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}[X]$ définie par f(P) = (X+1)P' + P.

- 1. Montrer que f est linéaire.
- 2. Montrer que $\mathbb{R}_2[X]$ est stable par f.
- 3. Montrer que l'application g induite par f à $\mathbb{R}_2[X]$ est un automorphisme et calculer g^{-1} .

Exercice 4. Soit $f \in \mathcal{L}(E)$. Montrer que :

- 1. $\ker(f^n) \subseteq \ker(f^{n+1})$ et $\operatorname{Im}(f^{n+1}) \subseteq \operatorname{Im}(f^n) \ \forall n \in \mathbb{N}$.
- 2. $\ker(f) = \ker(f^2) \iff \ker(f) \cap \operatorname{Im}(f) = \{0_E\}$

Exercice 5.

1. Montrer qu'il existe une application linéaire unique f de \mathbb{R}^3 dans \mathbb{R}^2 telle que :

$$f(1,0,0) = (0,1), f(1,1,0) = (1,0), f(1,1,1) = (1,1).$$

2. Déterminer le noyau et l'image de f.

Exercice 6. Soit $f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}^3$ définie par f(P) = (P(0), P'(1), P''(2)).

- 1. Montrer que f est linéaire et déterminer $\ker(f)$.
- 2. En déduire que f est un isomorphisme et déterminer son isomorphisme réciproque.

Exercice 7. Soit $E = \mathbb{R}^n$ et $f \in \mathcal{L}(\mathbb{R}^n)$ telle que $f^2 - 3f + \mathrm{Id}_E = 0$.

- 1. Montrer que f est un automorphisme et déterminer son automorphisme réciproque en fonction de f et Id_E .
- 2. Existe-t-il $u \in E$ tel que f(u) = 2u?

Exercice 8. Soit $f \in \mathcal{L}(\mathbb{R}^n)$ telle que $f^2 = f$. Montrer que $E = \ker(f) \bigoplus \operatorname{Im}(f)$.

Exercice 9. On considère les fonctions réelles f et g définies par :

$$\forall x \in \mathbb{R}, \ f(x) = e^x, \ g(x) = e^{-x}.$$

Soit E le sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$ engendré par f et g.

$$E = \text{sev}\langle f, g \rangle.$$

- 1. Déterminer une base et la dimension de E.
- 2. Soit $\psi: E \longrightarrow \mathbb{R}^2$ l'application linéaire définie par $\psi(h)=(h(0),h(1)).$ Montrer que ψ est bijective.
- 3. Soit $\varphi: E \longrightarrow \mathcal{F}(\mathbb{R}, \mathbb{R})$ l'application linéaire définie par $\varphi(h) = h'$ la dérivée de h.
- a) Montrer que E est stable par φ .
- b) Soit $\phi: E \longrightarrow E$ l'application induite par φ à E. Calculer ϕ^2 . En déduire que ϕ est un automorphisme.