1. For the following 2-layer feedforward neural network, compute the outputs for the following sets of inputs: $(x_1=0, x_2=0)$, $(x_1=1, x_2=0)$, $(x_1=0, x_2=1)$, and $(x_1=1, x_2=1)$. The activation function is also given.

x_1	x_2	v_A	$\varphi(v_A)$	v_B	$\varphi(v_B)$	v_C	$\varphi(v_C)$
0	0	-1/2	0	1/2	1	1/2	1
1	0	1/2	1	3/2	1	-1/2	0
0	1	-3/2	0	-1/2	0	-1/2	0
1	1	-1/2	0	1/2	1	1/2	1

- 2. For each sentence below, determine whether it is valid, unsatisfiable, or neither. Briefly explain your answers. You can also use the equivalence rules or truth tables to prove your answers.
 - (a) $Smoke \Rightarrow Smoke$

valid: This is equivalent to ¬Smoke ∨ Smoke, which is always true.

(b) $Smoke \Rightarrow Fire$

neither valid nor unsatisfiable

(c) $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$

neither valid nor unsatisfiable

(true if *Smoke* is true and *Fire* is true; false if *Smoke* is false and *Fire* is true)

(d) *Smoke* ∨ *Fire* ∨ ¬*Fire*

valid

(e) $((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$

valid: Both sides of the biconditional are equivalent to ¬Smoke ∨ Heat ∨ Fire

(f) $Big \vee Dumb \vee (Big \Rightarrow Dumb)$

valid: This is equivalent to Big \vee Dumb $\vee \neg$ Big \vee Dumb

(g) $(Big \land Dumb) \lor \neg Dumb$

neither valid nor unsatisfiable

(true if *Dumb* is false; false if *Dumb* is true and *Big* is false)

- **3**. Consider the snapshot (shown to the right) of the **Minesweeper** game. Let A, B, C and D be four propositional symbols representing the existence of mines in their locations.
- (a) Try to write down propositional-logic sentences according to the game rule.
- (b) Convert the sentences to CNF.
- (c) Try to determine their truth values by repeatedly applying the resolution inference rule.

(b)

Original sentence in (a)	CNF clauses
A	A
D	D
$A \wedge D$	A, D
A∧B⇔¬D	$\neg A \lor \neg B \lor \neg D$, $A \lor D$, $B \lor D$
A∧D⇔¬B	$\neg A \lor \neg B \lor \neg D$, $A \lor B$, $B \lor D$
B∧D⇔¬A	$\neg A \lor \neg B \lor \neg D$, $A \lor B$, $A \lor D$
$A \land B \Leftrightarrow \neg C$	$\neg A \lor \neg B \lor \neg C$, $A \lor C$, $B \lor C$
A∧C⇔¬B	$\neg A \lor \neg B \lor \neg C$, $A \lor B$, $B \lor C$
B∧C⇔¬A	$\neg A \lor \neg B \lor \neg C$, $A \lor B$, $A \lor C$
C⇔¬B	$\neg B \lor \neg C$, $B \lor C$
В⇔¬С	$\neg B \lor \neg C$, $B \lor C$

(c) We have a total of 10 distinct CNF clauses

R1: A R2: D

R3: $\neg A \lor \neg B \lor \neg D$

R4: A∨B R5: A∨C

R6: A∨D

R7: $B\lor C$ R8: $B\lor D$ R9: $\neg A\lor \neg B\lor \neg C$ R10: $\neg B\lor \neg C$

Resolution:

 $(R1, R3) \longrightarrow \underline{\neg B} \lor \neg D \quad (R11)$

 $(R2, R11) \rightarrow -B \qquad (R12)$

 $(R12, R7) \rightarrow C \qquad (R13)$

According to the highlighted clauses (R1, R2, R12, R13), A, C, and D are true, and B is false.