II Examen Parcial

Tiempo: 2 horas

Total: 25 puntos

II Semestre 2012

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos necesarios o procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma ordenada, clara y utilice bolígrafo para resolver el examen. No son procedentes la apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono móvil.

- 1. Si $(A, +, \cdot)$ es un anillo y $x \in A$, se dice que x es *idempotente* si $x^2 = x$. Determine todos los elementos idempotentes de los anillos $(\mathbb{Z}_4, +, \cdot)$ y $(\mathbb{Z}_5, +, \cdot)$. (3 puntos)
- 2. Si se sabe que $(\mathcal{G}, *)$ es algún grupo cuyo elemento neutro es e y $a \in \mathcal{G}$, con a fijo, demuestre que $\mathcal{H} = \{x \in \mathcal{G} \ / \ x * a = a * x\}$ es subgrupo de \mathcal{G} . (5 puntos)
- 3. Sea $\mathcal{U} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \ / \ x, y \in \mathbb{R} \right\}$. Si se sabe que $(\mathcal{U}, +, \cdot)$ es un anillo, verifique que es conmutativo y con elemento unidad. ¿Posee divisores de cero? (4 puntos)
- 4. Si se sabe que \mathcal{V} es un espacio vectorial real, determine en cada uno de los casos si \mathcal{W} es subespacio vectorial de \mathcal{V} o no lo es. Justifique.

(a)
$$W = \{ p \in P_3(\mathbb{R}) / p(0) = p(1) \}, V = P_3(\mathbb{R}).$$
 (3 puntos)

(b)
$$\mathcal{W} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \ / \ a \ge 0, \ b = c, \ d = 0 \right\}, \ \mathcal{V} = \mathcal{M}_2(\mathbb{R}).$$
(3 puntos)

- 5. Determine si los vectores u = (2, -1, 0, -1), w = (1, 0, 1, -1) y z = (-1, 1, 1, 0) son linealmente dependientes o linealmente independientes. (3 puntos)
- 6. Considere el conjunto \mathcal{B} definido como $\mathcal{B} = \{1+x, 1-x, 1-x^2, x^3+x^2+x+1\}$. Determine si el polinomio $p(x) = x^3 + 2x^2 4x + 1$ se puede escribir como combinación lineal de los elementos de \mathcal{B} o no. (4 puntos)