SAT SOLVER

EFFICIENT WAY TO SOLVE NP-COMPLETE PROBLEM

- ANSHUL GUPTA (16305R001)
- KHURSHEED ALI (163059009)

Content

- Paper (CHAFF)
- DPLL Algorithm
- Implementation
- Reducing Sudoku to SAT

CHAFF: Engineering an Efficient SAT Solver

Chaff, gains performance through careful engineering of all aspects of the search –

- Efficient implementation of Boolean constraint propagation DPLL
- A low overhead decision strategy i.e. heuristic based search RAND, VSDIF
- RAND: Simplest possible strategy for decision assignment is RAND (Random). This is simpler to implement but it will rate of reducing the Formula into smaller formula is less
- Variable State Independent Decaying Sum (VSIDS) Decision Heuristic:
 - Decision assignment consists of the determination of which new variable and state should be selected each time.
 - Each variable in each polarity has a counter, initialized to 0
 - The (unassigned) variable and polarity with the highest counter is chosen at each decision.

Link: https://www.princeton.edu/~chaff/publication/DAC2001v56.pdf

Davis-Putnam-Logemann-Loveland Algorithm (DPLL)

DPLL (C) C:: Clauses in CNF Form

If C has no clause, then return True

If C has any empty clause, then return False

UC <- UnitClauses (C)

If UC has any literal with its negation, then return False

If there is any UC then, return DPLL (Simplify(C, literal of UC))

sym <- choose any literal from C

If DPLL (Simplify (C, (sym,True))) is true, then return true

Else return DPLL (Simplify (C, (sym, False)))

Simplify (C, (I, B))

C:: Clause, I:: literal & B:: True/False

Remove clauses from C where I is B Remove (not B) I from every clauses of C Return update C

Implementation – SAT SOLVER

• Input to our program is "CNF" (conjunction normal form) Boolean formula.

```
Eg: (a V b V -c) AND ( -b V d ) ---> (Haskell) [ [(P, "a") ,(P, "b"),(N, "c") ] , [ (N, "b") ,(P, "b")]]
```

P:: True value of variable N:: Negated value of variable

New Data Type

```
data Boolean = T | F | ND deriving (Show, Eq, Read)
```

ND:: Not Define. When sufficient variables are not set in Formula then "eval" will return ND

```
data Sign = P | N deriving (Show, Eq)
```

type Literal = (Sign, Symbol)

type State =Literal->Boolean

Here "State" will maintain values (P/F/ND) associated with each literal of clause.

Implementation - SAT

```
eval::Clauses->State->Boolean
eval clauses = \state. if (F `elem` result) then F else (if (ND `elem` result) then ND else T)
```

where result=[(subEval sc state) | sc<-clauses] (sc::sub clauses)

"eval" will check whether for a given state whether the Boolean formula give T/F/ND

Algo 1: bruteForceSolver'::Clauses->Symbols->State->SatResult

Algo 2: dpllSolver'::Clauses->State->SatResult

Reducing Sudoku to SAT

The notation we use to encode a cell and its value is a integer of 3 digits: XYZ

X is the row, Y is the Column and Z is the Value

A negative integer –XYZ represents that cell on row X and column Y cannot have a value Z

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	ന	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Sudoku Constraints

Sudoku Constraints

- 1. Cell Constraints
- 2. Row Constraints
- 3. Column Constraints
- 4. Box Constraints

Cell Constraints

- •A Cell can hold a single value from 1 to 9 at a time
- • $\Lambda x = [1-9] \Lambda y = [1-9] Vz = [1-9] XYZ$

•Eg.

111 112 113 114 ... 119

121 122 123 124 ... 129

•••••

991 992 993 994 ... 999

•This will create **81** nine-ary clauses

Row Constraints

- •A row can't have any duplicate values. Each cell within a row will have a distinct value between 1 and 9
- $\Lambda x = [1-9] \Lambda z = [1-9] \Lambda y = [1-8] \Lambda i = [(y + 1) 9] (-XYZ V XIZ)$
- •Eg. -235 V -265
- •This will create **2916** binary clauses (9 * 9 * 9C2)

Column Constraints

- •A row can't have any duplicate values. Each cell within a row will have a distinct value between 1 and 9
- $\Lambda_{y=[1-9]} \Lambda_{z=[1-9]} \Lambda_{x=[1-8]} \Lambda_{i=[(x+1)-9]} (-xyz V iyz)$
- •Eg. -235 V -435
- •This will create **2916** binary clauses (9 * 9 * 9C2)

Box Constraint

- $\Lambda_{z=[1-9]} \Lambda_{i=[0-2]} \Lambda_{j=[0-2]} \Lambda_{x=[1-3]} \Lambda_{y=[1-3]} \Lambda_{k=[(x+1)-3]} \Lambda_{l=[1-3]} (-(3i+x)(3j+y)z \ V \ -(3i+k)(3j+l)z)$
- •Eg. -111 -221 / -111 -321
- •This will create **2916** binary clauses

Extra Clauses

- •There is at most 1 number in each cell
- •Each number appears at least once in each row
- •Each number appears at least once in each column
- •Each number appears at least once in each box
- •These will create another **3078** clauses
- •So overall we have **11907** clauses out of which **11664** are binary clauses and **243** are nine-ary clauses