Lab 4

Crafting a Compiler

4.9 (First and Follow Set)

Compute First and Follow sets for the nonterminals of the following grammar.

	Nullable	first	follow	а	b	С	d	е
s	no	a,b,c,d	E, \$	1	2	2	2	~
В	no	b,c,d	e,b	~	3	4	4	~
С	no	c,d	е	~	~	5	6	~

5.10 (dangling else parse trees)

Show the two distinct parse trees that can be constructed for

Input: if expr then if expr then other else other

Using grammar given in Figure 5.17. For each parse tree, explain the correspondence of then and else.

Figure 5.17: Grammar for if-then-else.

First Parse Tree: if expr then (if expr then other) else other

Second Parse Tree: if expr then (if expr then other else other)

Because the language is ambiguous there are multiple ways as to which this can be parsed. The first section has the if-else as the first condition that is read and the single if condition inside the first statement of the if-else. The second version can have a plain if statement be the first thing read with the if-else statement inside of it.

Dragon 4.4.3 (First and Follow set)

Compute FIRST and FOLLOW for the grammar of Exercise 4.2.1.

Exercise 4.2.1: Consider the context-free grammar:

$$S \rightarrow SS + |SS * |a$$

	Nullable	first	follow
s	no	а	a,+,*,\$