

Estimating seal pup abundance with LGCP

Work in progress (!)

Martin Jullum

Joint with Thordis Thorarinsdottir and Fabian Bachl

Trondheim, 10.11.16

Problem

- Ultimale goal: Monitor seal abundance in the North Atlantic
- Well established dynamic abundance model for seals
 - Key component is estimate + uncertainty of the number of seal pups
 - Typically based on oversimplified method
 - Do not trust the uncertainty
- Our task: Propose a method to quantify the total number of pups with uncertainty

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos (A) in 27 transects sparsely covering the seal domain
- 2 seal types: Harps and hooded

Data

- From an aerial photo survey conducted east of Greenland in 2012
- Number of pups in 2792 photos (A) in 27 transects sparsely covering the seal domain
- 2 seal types: Harps and hooded
- Additional info: Quantified satellite image to indicate ice thickness
- Seal domain Ω shown in pink

Main approach

- Model the spatial distribution of the pups with an Log-Gaussian Cox Process (LGCP)
 - Gaussian latent field Z
 - Point pattern $Y|Z \sim \text{PoissonProcess}(\lambda(s) = \exp(Z(s)))$
 - Given Z, counts N(B) in disjoint Borel sets B indep. and distributed as $Poisson(\lambda = \int_{B} exp(Z(s)) ds)$
- The Bayesian solution to our problem is the ***posterior predictive distribution*** of pup counts in the seal domain $p(N(\Omega)|Y)$
 - Easy to compute with samples from p(Z|Y)
- Wish to utilize INLA framework and the SPDE approach
 - $Z(s) = \alpha + \beta^t x_s + f(s)$, x_s satellite information, f(s) SPDE-based Matern GMRF
- Main challenges:
 - Observe only a small part of the seal area
 - Data are aggregated counts per photo
 - Several ways to fit approximated versions using INLA
 - Are the approximations sufficiently accurate?

LGCP approximation approaches

- Poisson regression formulation
- Direct likelihood approximation (Simpson et al. 2016, Biometrika)
 - LGCP Log-likelihood

$$|A| - \int_A \exp(Z(s)) ds + \sum_{i=1}^n Z(s_i),$$

We consider different variations of this approach

Voronoi tesselation

Delaunay triangulated mesh

Voronoi tesselation

Poisson regression formulation

- ► Per LGCP formulation: Given Z, the counts per photo N_i are indep Poisson with $\lambda_i = \int_{A_i} \exp(Z(s)) ds$
 - $\lambda_i \approx \lambda_i^* = |A_i| \exp(Z(s_i^*))$ for s_i^* the mid-point in photo A_i
- ▶ Construct mesh such that the extent of each photo A_i corresponds to the Voronoi tesselation of a mesh point
- Fit the counts per photo $(N_1, ..., N_{2792})$ as a Poisson regression with $|A_i|$ as offset, using INLAs SPDE approach

Direct likelihood approx.

► Recall
$$\log(p(y|Z)) = C - \int_A \exp(Z(s)) ds + \sum_{i=1}^n Z(s_i),$$

- Approx. integration: $\int_A \exp(Z(s))ds \approx \sum_{k=1}^K \alpha_k \exp(Z(\tilde{s}_k))$ where the \tilde{s}_k are deterministic integration points with weights α_k , and $\sum_k^K \alpha_k = |A|$
- When Z is SPDE-based with q mesh points: $Z(s) = \sum_{j=1}^{q} z_j \, \phi_j(s)$, for z_j indep. Gaussian and $\phi_j(s)$ piecewise linear basis functions
- ► Reformulation with pseudo-observation y_i^* and linear predictor η_i shows this can be written on Poisson form

$$p(y|Z) \approx \prod_{i}^{n+R} \eta_{i}^{y_{i}^{*}} \exp(-\alpha_{i}\eta_{i})$$

9

- Data usage. Either
 - All counts in photo located in photo center
 - Randomly distribute counts within each photo

- Data usage. Either
 - All counts in photo located in photo center
 - Randomly distribute counts within each photo
- Integration approach 1
 - \tilde{s}_k = Mesh points
 - α_k = Area of assoicated Voronoi tesselation

- Data usage. Either
 - All counts in photo located in photo center
 - Randomly distribute counts within each photo
- Integration approach 1
 - \tilde{s}_k = Mesh points
 - α_k = Area of assoicated Voronoi tesselation
- Integration approach 2
 - Create a refined mesh within each photo
 - \tilde{s}_k = Vertices in refined mesh
 - $\alpha_k = 1/3$ of area of connected triangles

- Data usage. Either
 - All counts in photo located in photo center
 - Randomly distribute counts within each photo
- Integration approach 1
 - \tilde{s}_k = Mesh points
 - α_k = Area of assoicated Voronoi tesselation
- Integration approach 2
 - Create a refined mesh within each photo
 - \tilde{s}_k = Vertices in refined mesh
 - $\alpha_k = 1/3$ of area of connected triangles
- ► Integration approach 3
 - Create a refined mesh within each photo
 - \tilde{s}_k = Vertices in refined mesh
 - α_k = Area of assoicated Voronoi tesselation (within photo)

Results

- The current simple model
 - Pup abundance estimate:10928, 95% CI = (8120,13844)

Results

- The current simple model
 - Pup abundance estimate:10928, 95% CI = (8120,13844)
- ► Latent field for our methods (only minor differences between approaches)

Results

- The current simple model
 - Pup abundance estimate:10928, 95% CI = (8120,13844)
- Poisson regression formulation
- Direct likelihood approx.

 \tilde{s}_k : Original mesh, α_k : Voronoi

seals

Posterior Predictive dist

 \tilde{s}_k : Refined mesh, α_k : 1/3 splitting

seals

Integration constant

- When $Z(s) = \sum_{j=1}^{q} z_j \, \phi_j(s)$, we can actually solve $\int_A \exp(Z(s)) ds$ analytically for every realization of Z!
- ▶ $\int_A \exp(Z(s))ds = \sum_l^L g(\mathbf{z}; \eta_{l1}, \eta_{l2}, \eta_{l3})$, for g a nonlinear function, $\mathbf{z} = (z_1, ..., z_q)$ and η_{lj} linear predictors dependent on mesh points and the observation region, $\mathbf{L} = O(q)$
- Basic simulation study
 - Fixed mesh and integration region
 - Sample different types of Z and check performance of different integration variants

Integration constant

- ► All methods overestimates $\int_A \exp(Z(s)) ds$
- \triangleright Performance varies with sd of Z, not mean

Relative error of normalization constant

Implication: Likelihood contribution will be too small where the variability of Z is large

Further work

Cross validation performance test on seal data

- Open methodological questions
 - Benefits of joint modeling of the seal types?
 - What are the implications of the error in the integration constant?
 - MCMC-run with exact integration constant?
 - Can a modified version of INLA run with the exact integration constant?
 - Requires 3 linear predictors, rather than 1

