M

Analyse Asymptotique

1-Relations de comparaison : cas des fonctions

Soient 2 fonctions $f, g: I \to \Re$ et un point $a \in \overline{I}$. Nous supposerons ici que f et g sont deux fonctions qui ne s'annulent pas sur un voisinage de a privé de a.

Il s'agit ici de comparer les 2 fonctions au voisinage de a.

Pour cela, formons leur rapport $\frac{f(x)}{g(x)}$ et regardons ce qui se passe lorsque $x \to a$.

3 cas intéressants se présentent alors :

- □ Cas 1 : $\frac{f(x)}{g(x)}$ est borné au voisinage de a On dira que f est dominé par g : f = O(g)
- □ Cas 2 : $\frac{f(x)}{g(x)}$ tend vers 0 lorsque x tend vers a On dira que f est négligeable devant g : f = o(g)
- □ Cas 3 : $\frac{f(x)}{g(x)}$ tend vers 1 lorsque x tend vers a On dira que f et g sont équivalentes : $f \sim g$

1.1 La relation : "Est un grand O de ..."

Soit $a \in I$ et f et g deux fonctions définies sur l'intervalle $I \subset R$ ne s'annulant pas sur un voisinage de a privé de a.

Définition 1 : "Est un grand O de ..."

On dira que la fonction f est un grand O de la fonction g au voisinage du point a ssi

$$\frac{f(x)}{g(x)}$$
 est bornée au voisinage de a privé de a.

Notation : f(x) = O(g(x)) au voisinage de x_0 .

Par abus de langage, on notera O(g) toute fonction étant un grand O de g au voisinage de a.

Lorsque f(x) = O(g(x)), on pourra dans un calcul remplacer f(x) par O(g(x)) mais pas O(g(x)) par f(x).

Remarque:

- 1. Lorsque f = O(g), on dit aussi que f est dominée par g. Mais cette terminologie prête à confusion...
- 2. La notation f = O(g) ne veut rien dire si l'on ne précise pas au voisinage de quel point on se trouve.
- 3. Ecrire f = O(1) au voisinage de a signifie que f est bornée au voisinage de a.

Exemple:

Si
$$f(x) = 3x^5 - x^4 + 2x$$
 alors:
- $f = O(x)$ au voisinage de 0.
- $f = O(x^5)$ au voisinage de $+\infty$.

1.2 "Est négligeable devant ..."

Soit $a \in I$ et f et g deux fonctions définies sur l'intervalle $I \subset R$ ne s'annulant pas sur un voisinage de a privé de a.

Définition 2 : La relation : "Est négligeable devant ..."

On dira que la fonction f est négligeable devant la fonction g au voisinage du point a ssi

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Notation : f(x) = o(g(x)) ou parfois f(x) << g(x)

Par abus de langage, on notera o(g) toute fonction négligeable devant g au voisinage de a.

Lorsque f(x) = o(g(x)), on pourra dans un calcul remplacer f(x) par o(g(x)) mais pas o(g(x)) par f(x).

M

Remarque:

- 1. La notation f(x) = o(g(x)) ne veut rien dire si l'on ne précise pas au voisinage de quel point on se trouve.
- 2. f(x) = o(g(x)) signifie en gros que f(x) est beaucoup plus petit en valeur absolue que g(x) au voisinage de a.
 - 3. Écrire f(x) = o(1) au voisinage de a signifie que $\lim_{x \to a} f(x) = 0$.

Exemple 1:

Soit $(p, q) \in N^2$. On a : $x^p = o(x^q)$ au voisinage de $0 \Leftarrow p > q$.

Exemple 2:

Si
$$f(x) = 3x^5 - x^4 + 2x$$
 alors:
 $f = o(x)$ au voisinage de 0.
 $f = o(x^6)$ au voisinage de $+\infty$.

Proposition 1 : Lien entre les relations de comparaison

Si au voisinage d'un point a on a

$$f(x) = o(g(x))$$
 alors $f(x) = O(g(x))$.

Théorème 2 : Comparaison des fonctions usuelles

Soient α , β , $\gamma > 0$ trois réels.

- 1. Comparaison In et puissance :
 - en + ∞ : $(lnx)^y = o(x^\alpha)$
 - en 0+ : $|lnx|^y = o(\frac{1}{x^\alpha})$
- 2. Comparaison puissance et exponentielle :
 - en + ∞ : x^{α} = o($e^{\beta x}$)
 - en + ∞ : x^{α} = o(a^{x}), lorsque a > 1
 - en $-\infty$: $e^{\beta x}$ = o($\frac{1}{x^{\alpha}}$), lorsque $\alpha \in \mathbb{N}$

Par transitivité, on en déduit que : en $+\infty$: $ln\beta x = o(e^{\alpha x})$.

Le théorème précédent dit en gros la chose suivante :

"Aux bornes de leur intervalle de définition, les exponentielles l'emportent sur les fonctions puissance et les fonctions puissance l'emporte sur le logarithme."

Proposition 3 : Opérations sur les relations de comparaisons

1)
$$f = o(g)$$
, $g = o(h) \Rightarrow f = o(h)$ cad (transitivité) idem avec O.

2)
$$f_1 = o(g)$$
, $f_2 = o(g) \Rightarrow f_1 + f_2 = o(g)$ cad $o(g) + o(g) = o(g)$ idem avec O

3) $f_1 = o(g_1)$, $f_2 = o(g_2) \Rightarrow f_1 f_2 = o(g_1 g_2)$ cad $o(g_1)o(g_2) = o(g_1 g_2)$ idem avec O .

4)
$$f = o(g) \Rightarrow h \ f = o(hg) \ cad \ ho(g) = o(hg) \ idem \ avec O$$
.

5)
$$f = o(\lambda g)$$
 ($\lambda \in \Re^*$) $\Rightarrow f = o(g)$ cad $o(\lambda g) = o(g)$ idem avec O.

1.3 La relation : "Est équivalent à ..."

Définition et premières propriétés

Soit $a \in \overline{I}$ et f et g deux fonctions définies sur l'intervalle $I \subset R$ ne s'annulant pas sur un voisinage de a privé de a.

Définition: "Est équivalent à ..."

On dira que f et g sont équivalentes au voisinage du point a ssi :

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

M

Notation : $f(x) \sim_a g(x)$ ou $f(x) \sim g(x)$ s'il n'y a pas d'ambiguïté.

Proposition 4 : Caractérisation de l'équivalence de deux fonctions

On a au voisinage d'un point a :

$$f(x) \sim g(x) \iff f(x) = g(x) + o(g(x))$$

Cela sera particulièrement utile lorsqu'on souhaitera remplacer une expression par un équivalent dans une égalité.

Remarque

- 1. Contrairement à l'intuition, il n'y a aucune implication entre $f(x) \sim g(x)$ et $f(x) g(x) \rightarrow_{x \to a} 0$. Ces deux propriétés définissent des notions de proximité différentes.
- 2. Ne JAMAIS écrire que f(x) ~ 0 puisque la fonction nulle ne vérifie pas les conditions d'application de la définition.

Proposition 5 : La relation \sim est une relation d'équivalence sur F(I, R)

Elle est en particulier symétrique, c'est `a dire : si f est équivalente à g, g est alors équivalente à f.

On dira donc que f et g sont équivalentes.

Rq: On ne doit jamais donner un équivalent sous la forme d'une somme!!

Proposition 6 : Lien entre les relations de comparaison

On se place au voisinage d'un point a.

1. Si
$$f(x) \sim g(x)$$
 alors $f(x) = O(g(x))$.

2. Si
$$f(x) \sim g(x)$$

$$f(x) = o(\alpha(x))$$
 alors $g(x) = o(\alpha(x))$.

3. Si
$$f(x) \sim g(x)$$

$$\alpha(x) = o(f(x))$$
 alors $\alpha(x) = o(g(x))$.

Théorème : Les équivalents de références

Les limites usuelles en 0, nous donnent les équivalents suivants au voisinage de 0 :

- sin x ~ x
- arcsin x ~ x
- sh x ~ x
- tan x ~ x
- arctan x ~ x
- th x ~ x
- 1 $\cos x \sim \frac{x^2}{2}$
- 1 ch x ~ $\frac{x^2}{2}$
- ln(1 + x) ~ x
- $[e^x 1] \sim x$
- $(1-x)^{\alpha}$ 1 ~ αx

Théorème : Les équivalents de références - Généralisation

Plus généralement, au voisinage de a lorsque $f(x) \rightarrow_{x \rightarrow a} 0$, on a :

- $sin f(x) \sim f(x)$
- $\arcsin f(x) \sim f(x)$
- $\operatorname{sh} f(x) \sim f(x)$
- $tan f(x) \sim f(x)$
- $arctan f(x) \sim f(x)$
- th $f(x) \sim f(x)$
- $\bullet \ 1 \cos f(x) \sim \frac{f(x)^2}{2}$
- 1 ch $f(x) \sim -\frac{f(x)^2}{2}$
- $\bullet \ln(1 + f(x)) \sim f(x)$
- $\bullet \left[e^{f(x)} 1 \right] \sim f(x)$
- $[(1 + f(x))^{\alpha} 1] \sim \alpha \cdot f(x)$

Proposition 9 : Calculs avec des équivalents

1. Si
$$f(x) \rightarrow_{x \rightarrow a} l$$
 et $l \neq 0$ alors $f \sim l$ en a.

2. Si
$$f_1 \rightarrow_a g_1$$
 et $f_2 \rightarrow_a g_2$ alors $f_1 f_2 \rightarrow_a g_1 g_2$ et $f_1/f_2 \rightarrow_a g_1/g_2$

3. Soit $\alpha \in \mathbb{R}$.

$$\operatorname{Si} f \rightarrow_{a} g$$

et fet g sont positives

alors $f^{\alpha} \rightarrow_{a} g^{\alpha}$ (α est ici indépendant de x!).

Théorème : Cas du logarithme et de l'exponentielle

1. • Si
$$f \to_a g$$

$$g(x) \to_{x \to a} l, l \in \Re^+ \setminus \{1\}$$

$$\Rightarrow$$
 Alors $ln f \rightarrow_a ln g$

• Si
$$f(x) \rightarrow_{x \rightarrow a} 1$$

$$\Rightarrow$$
 Alors $ln f(x) = ln(1 + (f(x) - 1)) \sim_a f(x) - 1$

2. • Si
$$f \to_a g$$

$$f(x) - g(x) \to_{x \to a} 0$$

 \Rightarrow Alors $e^f \sim_a e^g$ (Rarement utilisé en pratique).

1.4 Applications des équivalents

Proposition 11 : Un équivalent donne une idée de l'allure de la courbe au voisinage d'un point

Soient deux fonctions f, g : $I \to R$ et a = 0 ou $\pm \infty \in \overline{I}$. Si au voisinage du point a, f ~ g alors, Cf et Cg ont la même allure.

Proposition 12 : Un équivalent donne localement le signe de la fonction

Soient deux fonctions f, g : I \rightarrow R et un point a \in I. Si au voisinage du point a, f \sim g alors, il existe un voisinage V de a sur lequel f et g ont même signe.

Théorème Fondamental : Un équivalent donne la limite !

Soient deux fonctions f, g : $I \rightarrow R$ et un point a $\subseteq I$.

Si -
$$f \rightarrow_{a} g$$

- $g(x) \rightarrow_{x \rightarrow a} l$
 \Rightarrow Alors $f(x) \rightarrow_{x \rightarrow a} l$

1-Relations de comparaison : cas des Suites

L'objectif de cette partie est l'étude du comportement d'une suite en +∞ par comparaison à des suites plus simples.

2.1 La relation O : "est un grand O de ..." Définition :

Soient deux suites (U_n) et (α_n) telle que α_n ne s'annule pas à partir d'un certain rang. On dit que la suite (U_n) est un grand O de la suite (α_n) et l'on note $U_n = \mathrm{O}(\alpha_n)$

lorsque :
$$(\frac{U_n}{\alpha_n})$$
 est bornée.

Remarque:

 $U_n = O(\alpha_n)$ se lit de la façon suivante : U_n est un grand "O" de α_n .

2.2 La relation o : "est négligeable devant ..."

Définition:

Soient deux suites (U_n) et (α_n) telle que α_n ne s'annule pas à partir d'un certain rang. On dit que la suite (U_n) est négligeable devant la suite (α_n) et l'on note $U_n = \mathrm{o}(\alpha_n)$

lorsque :
$$\frac{U_n}{\alpha_n} \to 0$$

Remarque:

 $U_n = O(\alpha_n)$ se lit de la façon suivante : U_n est un petit "o" de α_n .

Remarque:

- 1. Écrire que : $U_n = O(1)$ est équivalent à dire que (U_n) converge vers 0.
- 2. Si $\alpha_n \to I \in \mathbb{R}$ alors toute suite négligeable devant (α_n) converge vers 0 : $o(\alpha_n) \to 0$.

Proposition 14: Calculs avec o.

- Dans les égalités suivantes, le signe "=" signifie " ... est un ..." ou " ... peut s'écrire comme un ...".
- 1. Une combinaison linéaire de deux suites négligeables devant (α_n) est négligeable devant (α_n) :

$$\lambda.o(\alpha_n) + \mu.o(\alpha_n) = o(\alpha_n)$$

2. Une suite négligeable devant (α n) est dominée par (α_n) :

$$o(\alpha_n) = O(\alpha_n)$$
 mais $O(\alpha_n) \neq o(\alpha_n)$

3. Le produit d'une suite (β_n) par une suite négligeable devant (α_n) est négligeable devant $(\beta_n.\alpha_n)$:

$$\beta_n \cdot o(\alpha_n) = o(\beta_n \cdot \alpha_n)$$

4. La notation o est transitive : si
$$a_n = o(b_n)$$

$$b_n = o(c_n)$$

$$\Rightarrow \text{ alors } a_n = o(c_n).$$

Théorème : Comparaisons de référence

1. Si
$$0 < \alpha < \beta$$

alors

$$n^{\alpha} = o(n^{\beta})$$
 et $\frac{1}{n^{\beta}} = o(\frac{1}{n^{\alpha}})$

2. Si
$$0 < \alpha$$
 et $0 < \beta$

alors

$$(\ln n)^{\beta} = o(n^{\alpha})$$

3. Si
$$0 < \alpha$$
 et $0 < \beta$ alors

$$n^{\beta} = o(e^{\alpha n})$$

et par transitivité : $(\ln n)^{\beta} = o(e^{\alpha n})$

4. Si 1 < a et 0 < β alors
$$n^{\beta} = o(a^n)$$

5. Si 1 < a alors
$$a^n = o(n!)$$

6.
$$n! = o(n^n)$$

2.3 La relation ~ : "est équivalent à ..."

Définition: Suites équivalentes

Soient deux suites (U_n) et (α_n) telle que α_n ne s'annule pas à partir d'un certain rang. On dit que deux suites (U_n) et (α_n) sont équivalentes (Notation : $U_n - \alpha_n$)

$$lorsque: \frac{U_n}{\alpha_n} \to_{n \to +\infty} 1$$

Remarque: Nous avons l'équivalence : $U_n \sim \alpha_n \iff U_n - \alpha_n = o(\alpha_n)$

Proposition 16 : La relation "~" est une relation d'équivalence sur l'ensemble des suites.

Proposition 17:

1. Si
$$U_n \sim \alpha_n$$
 alors $U_n = O(\alpha_n)$ et $\alpha_n = O(U_n)$.

2. Si
$$U_n \sim V_n$$
 et $U_n = o(\alpha_n)$ alors $V_n = o(\alpha_n)$.

Théorème Fondamental: Un équivalent permet d'obtenir la limite d'une suite

Si
$$U_n \sim V_n$$

$$V_n \to l \ , l \in \overline{\Re}, \qquad \text{alors } U_n \to l.$$

Théorème : Un équivalent simple permet d'obtenir le signe d'une suite Si deux suites sont équivalentes : $U_n \sim V_n$ alors elles sont de même signe à partir d'un certain rang.

Théorème : Équivalents usuels

Soit (U_n) une suite telle que un $7 \rightarrow 0$.

Alors:

1.
$$\sin U_n \sim U_n$$

3. sh
$$U_n \sim U_n$$

5. arcsin
$$U_n \sim U_n$$

7.
$$[1 - \cos U_n] \sim U_n^2 / 2$$

2.
$$\tan U_n \sim U_n$$

4. th
$$U_n \sim U_n$$

6. arctan
$$U_n \sim U_n$$

8.
$$[1 - \text{ch } U_n] \sim -U_n^2 / 2$$

9.
$$\ln(1 + U_n) \sim U_n$$

10.
$$[e^{U_n} - 1] \sim U_n$$

11.
$$[(1 + U_n)^{\alpha} - 1] \sim \alpha . U_n$$
 lorsque $\alpha \in \Re^*$

Théorème 22 : Produit, quotient, puissance d'équivalents

Soient quatre suites (U_n) , (a_n) et (V_n) , (b_n) vérifiant $U_n \sim a_n$ et $V_n \sim b_n$

alors:

1.
$$U_n$$
. $V_n \sim a_n$. b_n

2.
$$\frac{U_n}{V_n} \sim \frac{a_n}{b_n}$$
 (si V_n et b_n ne s'annulent pas)

3. $U_n^{\alpha} \sim a_n^{\alpha} \quad \forall \alpha \in \mathbb{R}$ (uniquement pour des suites à termes positifs lorsque $\alpha \notin \mathbb{Z}$).

α est un réel qui ne doit pas dépendre de n.

Théorème: Logarithme et Exponentielle d'équivalents

Soient (U_n) , $(a_n) \in \mathbb{R}^N$, telles que : $U_n - a_n$:

- Si
$$U_n \to l \in \Re \setminus \{1\}$$
 alors $\ln U_n \sim \ln U_n$

- Si
$$U_n \rightarrow 1$$
 alors $\ln U_n = \ln(1 + (U_n - 1)) \sim U_n - 1$

- Si
$$U_n - a_n \rightarrow 0$$
 alors $e^{U_n} \sim e^{a_n}$