Reference:

PHYSICAL REVIEW B 90, 155451 (2014)

Atomic corrugation and electron localization due to Moir e patterns in twisted bilayer graphenes Kazuyuki Uchida, Shinnosuke Furuya, Jun-Ichi Iwata, and Atsushi Oshiyama

Unitcell plot

2D Honeycomb Lattice

Supercell plot

2D Honeycomb Lattice with Two Supercells

2D Honeycomb Lattice with Two Supercells

Bottom layer

Top layer

moire supercell

moire supercell lattice vector derivation

Primitive lattice vectors of the honeycomb lattice:

$$ec{b}_1=\left(rac{\sqrt{3}}{2},\;-rac{1}{2}
ight) \ ec{b}_2=\left(rac{\sqrt{3}}{2},\;rac{1}{2}
ight)$$

Here, \vec{b}_1 and \vec{b}_2 are the primitive lattice vectors in Cartesian coordinates, describing the repeating structure of the 2D honeycomb lattice.

Lattice matrix constructed from the primitive vectors:

$$B = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Matrix B uses \vec{b}_1 and \vec{b}_2 as its columns. This matrix is useful for transforming between lattice and Cartesian coordinates.

General formula for the inverse of a 2×2 matrix:

$$B^{-1} = rac{1}{\det(B)}igg(egin{array}{cc} b_{22} & -b_{12} \ -b_{21} & b_{11} \ \end{array}igg)$$

 B^{-1} is the inverse of matrix B, written in terms of the matrix elements b_{ij} . This formula applies to any 2×2 matrix.

Explicit calculation of ${\cal B}^{-1}$ for the honeycomb lattice:

$$B^{-1} = \frac{2}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -1 \\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix}$$

By substituting the specific entries of B and its determinant, we get this explicit inverse for the honeycomb lattice.

Definition of the Gram matrix (metric tensor):

$$G = B^T B = \left(egin{array}{cc} rac{\sqrt{3}}{2} & -rac{1}{2} \ rac{\sqrt{3}}{2} & rac{1}{2} \ \end{array}
ight) \, \left(egin{array}{cc} rac{\sqrt{3}}{2} & rac{\sqrt{3}}{2} \ -rac{1}{2} & rac{1}{2} \ \end{array}
ight) = \left(egin{array}{cc} 1 & rac{1}{2} \ rac{1}{2} & 1 \ \end{array}
ight)$$

The Gram matrix G encodes the inner products of the lattice vectors, capturing geometric properties such as lengths and angles in the lattice.

Supercell basis vector 1:

$$ec{b}_1'=(N,M)$$

Here, \vec{b}_1' defines the first supercell lattice vector as an integer linear combination of the original basis vectors.

Supercell basis vector 2 via 60° rotation:

$${ec b}_2^\prime = R_{
m basis}(60^\circ) \ {ec b}_1^\prime$$

The second supercell vector \vec{b}_2' is obtained by rotating \vec{b}_1' by 60° in the basis coordinate system.

60° rotation matrix in Cartesian coordinates:

$$R_{
m cart}(60^\circ) = \left(egin{array}{cc} rac{1}{2} & -rac{\sqrt{3}}{2} \ rac{\sqrt{3}}{2} & rac{1}{2} \end{array}
ight)$$

This matrix rotates a vector by 60° counterclockwise in Cartesian space.

60° rotation matrix in lattice basis:

$$R_{
m basis} = B^{-1} R_{
m cart} B$$

To rotate in lattice coordinates, sandwich the Cartesian rotation matrix between B^{-1} and B.

Explicit calculation of $R_{\rm basis}$:

$$R_{\text{basis}} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -1\\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}\\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -1\\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0\\ \frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 1 \end{pmatrix}$$

Step-by-step calculation of the rotation matrix in the lattice basis, starting from its definition in terms of B, B^{-1} , and $R_{\rm cart}(60^{\circ})$.

Final 60° rotation matrix in basis coordinates:

$$R_{
m basis} = \left(egin{matrix} 0 & -1 \ 1 & 1 \end{matrix}
ight)$$

The final form of the rotation matrix in the lattice basis.

Formula for the second supercell basis vector after rotation:

$$\Rightarrow \ \vec{b}_2' = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} N \\ M \end{pmatrix} = \begin{pmatrix} -M \\ N+M \end{pmatrix}$$

Applying the rotation to \vec{b}_1' gives the explicit expression for the second supercell basis vector, \vec{b}_2' .

Supercell basis vector 1:

$$ec{b}_1'=(N,M)$$

Here, \vec{b}_1' defines the first supercell lattice vector as an integer linear combination of the original basis vectors.

Supercell basis vector 2 via 60° rotation:

$${ec b}_2^\prime = R_{
m basis}(60^\circ) \ {ec b}_1^\prime$$

The second supercell vector \vec{b}_2' is obtained by rotating \vec{b}_1' by 60° in the basis coordinate system.

60° rotation matrix in Cartesian coordinates:

$$R_{
m cart}(60^\circ) = \left(egin{array}{cc} rac{1}{2} & -rac{\sqrt{3}}{2} \ rac{\sqrt{3}}{2} & rac{1}{2} \end{array}
ight)$$

This matrix rotates a vector by 60° counterclockwise in Cartesian space.

60° rotation matrix in lattice basis:

$$R_{
m basis} = B^{-1} R_{
m cart} B$$

To rotate in lattice coordinates, sandwich the Cartesian rotation matrix between B^{-1} and B.

Explicit calculation of $R_{\rm basis}$:

$$R_{\text{basis}} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -1\\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2}\\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2}\\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & -1\\ \frac{1}{\sqrt{3}} & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0\\ \frac{1}{2} & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1\\ 1 & 1 \end{pmatrix}$$

Step-by-step calculation of the rotation matrix in the lattice basis, starting from its definition in terms of B, B^{-1} , and $R_{\rm cart}(60^{\circ})$.

Final 60° rotation matrix in basis coordinates:

$$R_{
m basis} = \left(egin{matrix} 0 & -1 \ 1 & 1 \end{matrix}
ight)$$

The final form of the rotation matrix in the lattice basis.

Formula for the second supercell basis vector after rotation:

$$\Rightarrow \; ec{b}_2' = egin{pmatrix} 0 & -1 \ 1 & 1 \end{pmatrix} egin{pmatrix} N \ M \end{pmatrix} = egin{pmatrix} -M \ N+M \end{pmatrix}$$

Applying the rotation to \vec{b}_1' gives the explicit expression for the second supercell basis vector, \vec{b}_2' .

Supercell basis vector 1:

$$ec{b}_1'=(M,N)$$

Here, \vec{b}_1' defines the first supercell lattice vector as an integer linear combination of the original basis vectors.

Formula for the second supercell basis vector after rotation:

$$\Rightarrow \; ec{b}_2' = egin{pmatrix} 0 & -1 \ 1 & 1 \end{pmatrix} egin{pmatrix} M \ N \end{pmatrix} = egin{pmatrix} -N \ N+M \end{pmatrix}$$

Applying the rotation to $ec{b}_1'$ gives the explicit expression for the second supercell basis vector, $ec{b}_2'$.

moire supercell twist angle derivation (homobilayer)

For homobilayer, θ is determined by the angle between (N,M) and (M,N):

$$ec{u} = \left(egin{array}{c} N \ M \end{array}
ight), \quad ec{v} = \left(egin{array}{c} M \ N \end{array}
ight)$$

The cosine of the angle between \vec{u} and \vec{v} :

$$\cos heta = rac{ec{u} \cdot ec{v}}{|ec{u}| |ec{v}|}$$

This is the standard definition of the angle between two vectors.

Generalized inner product using the lattice Gram matrix:

$$egin{align} ec{u}\cdotec{v} &= ec{u}^{\,T}Gec{v} = (N \quad M) egin{pmatrix} 1 & rac{1}{2} \ rac{1}{2} & 1 \end{pmatrix} egin{pmatrix} M \ N \end{pmatrix} \ &= (N \quad M) egin{pmatrix} rac{1}{2}N+M \ N+rac{1}{2}M \end{pmatrix} \ &= rac{1}{2}(N^2+4NM+M^2) \end{split}$$

The Gram matrix G encodes the geometric information of the lattice. (This term is needed for non-orthogonal basis)

The squared norm of either vector:

$$egin{aligned} \left|ec{u}
ight|^2 &= \left|ec{v}
ight|^2 = ec{u} \cdot ec{u} = ec{u}^T G ec{u} = (N,M) egin{pmatrix} 1 & rac{1}{2} \ rac{1}{2} & 1 \end{pmatrix} egin{pmatrix} N \ M \end{pmatrix} \end{aligned}$$
 $= (N,M) egin{pmatrix} N + rac{1}{2}M \ rac{1}{2}N + M \end{pmatrix} = N^2 + NM + M^2$

Final formula for the twist angle cosine:

$$\Rightarrow \cos heta = rac{N^2 + 4NM + M^2}{2(N^2 + NM + M^2)}$$

This formula gives the cosine of the angle between the first supercell basis vectors \vec{b}_1' of the top and bottom layers, which also corresponds to the twist angle of the homobilayer moiré superlattice.

moire supercell lattice constant & number of atoms

$$|ec{u}|^2 = |ec{v}|^2 = N^2 + NM + M^2$$

$$L_{
m cell} = a \sqrt{N^2 + NM + M^2}$$

Therefore, this supercell has N^2+NM+M^2 unit cells.

Therefore, it has $3(N^2+NM+M^2)$ atoms per layer.