## Note: derivation of 3-31

Email: jiaqi wang@sjtu.edu.cn

## A. Substitue pressure modes for transverse velocity modes

1. mass equation

$$\frac{dU_{\alpha}^{a}}{ds} - \Psi_{\{\alpha\}\beta}[r]U_{\beta}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1-\kappa\cos(\phi))]P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1-\kappa\cos(\phi))]\underline{\underline{V}_{\beta}^{a}} - \Psi_{(\alpha)\beta}[(1-\kappa\cos(\phi))]\underline{\underline{W}_{\beta}^{a}} \\ = \Psi_{\alpha\beta\gamma}[r(1-\kappa\cos(\phi))]\sum_{b=-\infty}^{+\infty} (-ib\kappa P_{\beta}^{a-b}P_{\gamma}^{b} - ib\kappa U_{\beta}^{a-b}U_{\gamma}^{b} - ib\kappa \underline{\underline{V}_{\beta}^{a-b}V_{\gamma}^{b}} - ib\kappa \underline{\underline{W}_{\beta}^{a-b}W_{\gamma}^{b}} - ia\kappa \underline{\underline{B}}P_{\beta}^{a-b}P_{\gamma}^{b})$$

$$(1)$$

Transform:

$$\frac{dU_{\alpha}^{a}}{ds} := \underline{I}u_{\alpha}^{la}\frac{dU_{\alpha}^{a}}{ds} := \underline{I}u_{\alpha}^{la}\frac{dU_{\alpha}^{la}}{ds} := \underline{I}u_{\alpha}^{la}\frac{dU_{\alpha}^{la}$$

$$\begin{split} \frac{d}{ds}P_{\alpha}^{a} - ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]U_{\beta}^{a} - \int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta P_{\beta}^{a} - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a} \\ = \sum_{b=-\infty}^{+\infty}\underline{term\mathcal{D}1}:\Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]\underline{V_{\beta}^{a-b}}U_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]\underline{W_{\beta}^{a-b}}U_{\gamma}^{a} \\ + \underline{term(D1+\mathcal{P}1)}:i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}U_{\gamma}^{b} \\ + \underline{term\mathcal{D}1}: -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r])U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}U_{\gamma}^{b} + \frac{dU_{\gamma}^{b}}{ds}U_{\beta}^{a-b}) \\ + \underline{term\mathcal{X}1}:\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}\underline{V_{\gamma}^{b}} - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}\underline{W_{\gamma}^{b}} \\ & (3) \end{split}$$

Transform:

$$\frac{d}{ds}P_{\alpha}^{a} := \underline{\underline{I}}p'_{\alpha}^{a}$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]U_{\beta}^{a} := \underline{-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa cos(\phi))]}u_{\beta}^{a}$$

$$-\int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta P_{\beta}^{a} - \Psi_{\{\alpha\}\beta}[r]P_{\beta}^{a} := \underline{-\int_{0}^{2\pi}hh'[\psi_{\beta}\psi_{\alpha}]_{r=h}d\theta}p_{\beta}^{a} - \underline{\Psi_{\{\alpha\}\beta}[r]}p_{\beta}^{a} = -\underline{\Psi_{\{\alpha\}\beta}[r]}p_{\beta}^{a}$$

$$\Psi_{\{\alpha\}\beta\gamma}[r]\sum_{b=-\infty}^{+\infty}U_{\beta}^{a-b}U_{\gamma}^{a} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underbrace{\Psi_{\{\alpha\}\beta\gamma}[r]}\Psi_{\{\alpha\}\beta\gamma}[r]u_{\beta}^{a-b}u_{\gamma}^{b}$$

$$\Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}\underbrace{\underline{V_{\beta}^{a-b}}U_{\gamma}^{a}} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underbrace{\Phi_{[\alpha]\delta\epsilon}[r(1-\kappa rcos\phi)]}\underbrace{V_{\delta\beta}^{a-b}I_{\epsilon\gamma}^{b}p_{\beta}^{a-b}u_{\gamma}^{b}}$$

$$\Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}\underbrace{\underline{W_{\beta}^{a-b}}U_{\gamma}^{a}} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underbrace{\Psi_{(\alpha)\delta\epsilon}[(1-\kappa rcos\phi)]}\underbrace{\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]}p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-ia\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]\sum_{b=-\infty}^{+\infty}P_{\beta}^{a-b}U_{\gamma}^{b} := ia\kappa\sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underbrace{\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]}p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r])\sum_{b=-\infty}^{+\infty}U_{\beta}^{a-b}U_{\gamma}^{b} := \sum_{b=-\infty}^{+\infty}\sum_{\beta=0}^{+\infty}\sum_{\gamma=0}^{+\infty}\underbrace{\Phi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]}p_{\beta}^{a-b}u_{\gamma}^{b}$$

$$-\Psi_{\alpha\beta\gamma}[r]\sum_{b=-\infty}^{+\infty}(\underbrace{dU_{\beta}^{a-b}}U_{\gamma}^{b} + \underbrace{dU_{\gamma}^{b}}ds}U_{\beta}^{a-b}) := \sum_{b=-\infty}^{+\infty}(\Psi_{\alpha\beta\gamma}[r][G,I] + \Psi_{\alpha\beta\gamma}[r][I,G])u_{\beta}^{a-b}u_{\gamma}^{b}$$

$$\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}\underbrace{V_{\gamma}^{b}} - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}\underbrace{W_{\gamma}^{b}} := \sum_{b=-\infty}^{+\infty}\Psi_{\alpha\beta\gamma}[rcos\phi][I,V] - \kappa\Psi_{\alpha\beta\gamma}[rsin\phi][I,W]u_{\gamma}^{b}$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]V_{\beta}^{a}$$

$$+\int_{0}^{2\pi} [\psi_{\alpha}\psi_{\beta}r(1-\kappa rcos\phi)]_{0}^{h}d\theta P_{\beta}^{a} - \Psi_{[\alpha]\beta}[r(1-\kappa rcos\phi)]P_{\beta}^{a} - \Psi_{\alpha\beta}[1-2\kappa rcos\phi]P_{\beta}^{a}$$

$$= \underline{term\mathcal{D}2} : \Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}V_{\gamma}^{a} + \Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}V_{\gamma}^{a}$$

$$+\underline{term(D2+\mathcal{P}2)} : i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}V_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2} : -\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}U_{\gamma}^{b} - \Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}V_{\gamma}^{b} + \frac{dV_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2} : \Psi_{\alpha\beta\gamma}[1-\kappa rcos\phi]W_{\beta}^{a-b}W_{\gamma}^{b} - \kappa\Psi_{\alpha\beta\gamma}[rcos\phi]U_{\beta}^{a-b}U_{\gamma}^{b}$$

$$(5)$$

$$-ia\kappa\Psi_{\alpha\beta}[r(1-\kappa rcos\phi)]W_{\beta}^{a}$$

$$-\Psi_{(\alpha)\beta}[(1-\kappa rcos\phi)]P_{\beta}^{a}-\kappa\Psi_{\alpha\beta}[rsin\phi]P_{\beta}^{a}$$

$$=\underline{term\mathcal{D}2}:\Psi_{\{\alpha\}\beta\gamma}[r]U_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{[\alpha]\beta\gamma}[r(1-\kappa rcos\phi)]V_{\beta}^{a-b}W_{\gamma}^{a}+\Psi_{(\alpha)\beta\gamma}[(1-\kappa rcos\phi)]W_{\beta}^{a-b}W_{\gamma}^{a}$$

$$+\underline{term(D2+\mathcal{P}2)}:i(a)\kappa\Psi_{\alpha\beta\gamma}[r(1-\kappa rcos\phi)]P_{\beta}^{a-b}W_{\gamma}^{b}$$

$$+\underline{term\mathcal{D}2}:-\frac{\partial}{\partial s}(\Psi_{\alpha\beta\gamma}[r]U_{\beta}^{a-b}V_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[r](\frac{dU_{\beta}^{a-b}}{ds}W_{\gamma}^{b}+\frac{dW_{\gamma}^{b}}{ds}U_{\beta}^{a-b})$$

$$+\underline{term\mathcal{X}2}:\kappa\Psi_{\alpha\beta\gamma}[rsin\phi]U_{\beta}^{a-b}U_{\gamma}^{b}-\Psi_{\alpha\beta\gamma}[1-\kappa rcos\phi]W_{\beta}^{a-b}V_{\gamma}^{b}$$

$$(6$$

## I. Tensors in matlab for numerical simulation

## A. Tensor times vectors: $A \bar{\times}_n u$

Let  $\mathcal{A}$  be a tensor of size  $I_1 \times I_2 \times ... \times I_N$ , u be a vector of size  $I_n$ .

We have:

$$ttv(\mathcal{A}, \{u\}, [n]) = (\mathcal{A} \bar{\times}_n u)(i_1, ..., i_{n-1}, i_{n+1}, ..., i_N)$$

$$\sum_{i_n=1}^{I_n} \mathcal{A}(i_1, i_2, ..., i_N) u(i_n)$$
(7)

$$ttv(A_{m \times n}, \{u_{m \times 1}\}, [1]) = A_{m \times n} \bar{\times}_1 u_{m \times 1} = A_{m \times n}^T u_{m \times 1}$$

$$ttv(A_{m \times n}, \{v_{n \times 1}\}, [2]) = A_{m \times n} \bar{\times}_2 v_{n \times 1} = A_{m \times n} v_{n \times 1}$$
(8)

Property:

$$ttv(\mathcal{A}, \{u, v\}, [m, n]) = \mathcal{A} \bar{\times}_m u \bar{\times}_n v$$

$$= ttv(ttv(\mathcal{A}, \{u\}, [m]), \{v\}, [n-1]) = (\mathcal{A} \bar{\times}_m u) \bar{\times}_{n-1} v$$

$$= ttv(ttv(\mathcal{A}, \{v\}, [v]), \{u\}, [m]) = (\mathcal{A} \bar{\times}_n v) \bar{\times}_m u$$

$$(9)$$

Multiplication with a sequence of vectors

$$\beta = \mathcal{A} \bar{\times}_1 u^{(1)} \bar{\times}_2 u^{(2)} ... \bar{\times}_N u^{(N)} = \mathcal{A} \bar{\times} u$$
 (10) 
$$like: ttv(X, \{A, B, C, D\}) = ttv(X, \{A, B, C, D\}, [1234]) = ttv(X, \{D, C, B, A\}, [4321])$$

Multiplication with all but one of a sequence of vectors

$$b = \mathcal{A}\bar{\times}_{1}u^{(1)}\bar{\times}_{2}u^{(2)}...\bar{\times}_{n-1}u^{(2)}\bar{\times}_{n+1}u^{(2)}...\bar{\times}_{N}u^{(N)} = \mathcal{A}\bar{\times}_{-n}u$$
 
$$like: X = tenrand([5,3,4,2]);$$
 
$$A = rand(5,1); B = rand(3,1); C = rand(4,1); D = rand(2,1);$$
 
$$Y = ttv(X, \{A,B,D\}, -3) = ttv(X, \{A,B,C,D\}, -3)$$