

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Dr. Henri Mühle Sommersemester 2019

1. Übungsblatt zur Vorlesung "Coxeter-Catalan Kombinatorik"

Coxeter-Systeme

Sei (W, S) ein Coxeter-System.

- Ü2. Zeigen Sie, dass für ein Coxeter-System (W', S') mit $W \cong W'$ im allgemeinen nicht #S = #S' gilt.

Hinweis: Betrachten Sie die Diedergruppe der Ordnung 12.

- Ü3. Sei $\varepsilon(s) = -1$ für alle $s \in S$.
 - (a) Zeigen Sie, dass dadurch ein Gruppenhomomorphismus ε : $W \to \{-1,1\}$ definiert ist.
 - (b) Welche Elemente liegen im Kern von ε ?
 - (c) Beschreiben Sie den Kern von ε im Fall $W = A_n$ als konkrete Permutationsgruppe.
- Ü4. Die alternierende Untergruppe von W ist

$$\mathfrak{A}(W) \stackrel{\text{def}}{=} \{ w \in W \mid \ell_S(w) \equiv 0 \pmod{2} \}.$$

Seien $w_1 = (1\ 2)(3\ 4)$, $w_2 = (1\ 2)(4\ 5)$, $w_3 = (1\ 4)(2\ 3)$ Elemente von \mathfrak{S}_5 .

- (a) Berechnen Sie die Ordnungen der Produkte $w_i w_j$ für $i, j \in [3]$.
- (b) Zeigen Sie, dass es einen surjektiven Gruppenhomomorphismus $f: H_3 \to \mathfrak{A}(\mathfrak{S}_5)$ gibt.
- (c) Zeigen Sie, dass $\mathfrak{A}(H_5) \cong \mathfrak{A}(\mathfrak{S}_5)$ gilt.
- Ü5. Sei $w \in W$ mit $w = s_1 s_2 \cdots s_k$. Beweisen Sie die folgenden Aussagen.
 - (a) Sei Wenn $\ell_S(w) < k$, dann ist $w = s_1 s_2 \cdots \hat{s_i} \cdots \hat{s_j} \cdots s_k$ für $1 \le i < j \le k$.
 - (b) Sei $t_i = s_1 s_2 \cdots s_i \cdots s_2 s_1$. Wenn $t_i \neq t_j$ für alle $1 \leq i < j \leq k$, dann ist $\ell_S(w) = k$.
- Ü6. Seien $I, J \subseteq S$ derart, dass W_I , W_J endlich sind. Es bezeichnen $w_\circ(I)$ und $w_\circ(J)$ die längsten Elemente von W_I bzw. W_J . Zeigen Sie, dass genau dann $I \subseteq J$ gilt, wenn $w_\circ(I) \leq_S w_\circ(J)$ ist.