

Prediksi Nasabah Produk Deposito Berjangka

Kampanye Pemasaran Bank

Mengoptimalkan pemasaran menggunakan **Machine Learning**

Outline

Machine Learning dalam memprediksi nasabah yang potensial untuk membuka deposito berjangka

- 01 Permasalahan Bisnis
- 02 Pemahaman Data
- 03 Model Machine Learning
- 04 Evaluasi Model

05 Kesimpulan

06 Rekomendasi

1. Permasalahan Bisnis

Latar Belakang

Bank tetap harus bersaing untuk menarik nasabah baru dan mempertahankan nasabah yang sudah ada.

Pemasaran yang efektif sangat dibutuhkan, tidak semua nasabah tertarik membuka deposito dan tidak semua hasil dari kampanye pemasaran pasti akan mendapatkan nasabah.

1. Permasalahan Bisnis

Memprediksi calon nasabah akan membuka deposito atau tidak setelah dilakukan kampanye pemasaran

deposito

Pernyataan Masalah Pendekatan Analitik Tujuan Tidak semua nasabah tertarik untuk • Pengumpulan dan Pembersihan Identifikasi nasabah yang memiliki kemungkinan tinggi (potensial) membuka deposito baru, dan tidak Data Menyusun strategi pemasaran yang semua respons terhadap kampanye Feature Engineering pemasaran berujung pada pembukaan efektif (meningkatkan konversi dari Pemodelan calon nasabah menjadi deposan) Evaluasi dan Tuning produk Meningkatkan pendapatan bank Deployment melalui peningkatan jumlah

Evaluasi Metrik

False Positives (FP): Jumlah nasabah yang tidak membuka deposito, tetapi diprediksi akan membuka deposito.

False Negatives (FN): Jumlah nasabah yang membuka deposito, tetapi diprediksi tidak akan membuka deposito.

1. Permasalahan Bisnis

- Peningkatan biaya pemasaran berbanding lurus dengan yang dihasilkan.
- Berfokus pada meminimalisir potensi pendapatan yang hilang akibat False Negative.
- Recall menjadi metrik yang paling sesuai, mempertimbangkan keuntungan bisnis (semakin banyak nasabah yang membuka deposito akan semakin profit.

machine learning yang lebih baik

daripada data yang kurang

berkualitas.

	EDA	Customer Profile (age, job, balance, housing, loan)
		Marketing Data (contact, month, campaign, pdays, poutcome, deposit)
	Hubungan Antar	Adakah multikolinearitas?
	Variable	Apakah Data Seimbang?
	Pra- Pemrosesan Data	Pembersihan Data, Transformasi Data, Penanganan Ouliers
		Encoding, Duplikasi, Fitur (X) dan target (y), Pemisahan Data (train, test dan valdation set)

Fitur pada Data

Terdapat **7813** baris data, dengan **10** kolom, dan **1** kolom untuk target

Terdapat kolom-kolom berisi **Profil Nasabah** dan kolom-kolom berisi **Data Pemasaran**.

Profil Nasabah

Fitur	Deskripsi	Tipe Data	Jumlah Nilai Unik
age	Usia nasabah	numerik	75
job	Jenis Pekerjaan Nasabah	kategori	11
balance	saldo rekening nasabah	numerik	3153
housing	apakah nasabah memiliki rumah	kategori	2
loan	apakah nasabah memiliki pinjaman	kategori	2

Data Pemasaran

Fitur	Deskripsi	Tipe Data	Jumlah Nilai Unik
contact	Jenis saluran komunikasi yang digunakan	kategori	3
month	bulan terakhir nasabah dihubungi	kategori	422
campaign	berapa kali nasbah ditawarkan	numerik	32
pdays	jumlah hari sejak nasabah terakhir dihubungi	numerik	422
poutcome	hasil dari kampanye pemasaran sebelumnya	kategori	4

Target

Fitur	Deskripsi	Tipe Data	Jumlah Nilai Unik
deposit	apakah nasabah membuka deposito	kategori	2

Adakah Multikolinearitas pada Data?

	Variable	VIF
1	const	14.864787
2	age	1.011552
3	balance	1.018034
4	campiagn	1.025711
5	pdays	1.033152
6	deposit_numeric	1.050617

VIF < 5 untuk semua variabel menunjukkan bahwa tidak ada masalah serius dengan multikolinearitas

Apakah Data Seimbang?

- deposit no 4081
- deposit yes 3732
- Rasio imbalance:1.0935155412647375

distribusi kelas dalam data **relatif seimbang**, dengan perbedaan jumlah sekitar 9%

Pembersihan Data

tidak terdapat missing values namun terdapat beberapa nilai '**unknown**' di beberapa kolom

value 'unknown'

	value 'unknown'	kolom job terdapat value 'unknown' sebanyak 54 baris
		digabungkan menjadi 1 kategori dg simple imputer dengan nilai most frequent
	value 'unknown'	kolom contact dengan nilai 'unknown' sebanyak 1639 (21%)
		akan diganti dengan others agar tidak miss-presepsi
	value 'unknown'	kolom poutcome dengan nilai unknown sebanyak 5819 (74%)
		disederhanakan menjadi kategori other (sudah ada sebelumnya)

Pembersihan Data

Outliers	Duplikat	Encoding & Scaling
 seluruh outliers dianggap sebagai natural outliers sehingga tetap dibiarkan: kolom age memiliki 121 outliers kolom balance memiliki 736 outliers kolom campaign memiliki 429 nilai outliers kolom pdays memiliki 1432 nilai outliers kolom pdays memiliki 1432 nilai outliers, dan 5809 berisi nilai negatif akan dilakukan imputasi menjadi 0 yang artinya belum di hubungi 	Data duplikat sebanyak 8 baris data dan dilakukan drop (penghapusan) untuk menghindari redundansi, agar model lebih memahami distribusi data yang sesungguhnya.	 One-hot encoding untuk seluruh kolom kategorikal (job, housing, loan, contact, month, poutcome) binary encoding untuk target (deposit) RobustScaler untuk seluruh numerikal (menghindari distorsi karena outliers)
		10

3. Model *Machine Learning*

- Pencocokan (benchmarking) model dengan
 Recall Score tertinggi pada data train maupun data test.
- Tidak *underfitting* atau pun *overfitting*
- Tune model untuk mendapat score yang lebih baik

3. Model *Machine Learning*

Mencari model dengan **Recall Score tertinggi.**

Validasi silang (*cross validation*)
untuk mendapatkan **nilai rata-rata**(*mean*) **terbaik** dan **kestabilan**model.

3. Model Machine Learning

Model Terbaik

LGBM Classifier

LGBM		
Train Set	No Tune	61.7%
	Tuned	62.2%
Test Set	No Tune	62.6%
	Tuned	63.0%

- 1. **LGBM paling stabil** dengan recall di kedua test set (sebelum dan setelah dilakukan *tuning*. Model Random Forest cukup kompetitif, namun sedikit di bawah pada test set. Performa Decision Tree masih lebih rendah dibandingkan 2 model lainnya.
- 2. LGBM menjadi model terbaik dengan recall score tertinggi 63% dan hyperparameter {'model__learning_rate': 0.2, 'model__max_depth': 5, 'model__min_child_samples': 40, 'model__n_estimators': 200, 'model__num_leaves': 31}.

4. Evaluasi Model

Learning Curve

- Tidak ada perbedaan yang jauh antara training dan validation recall score, model tidak overfitting.
- Model semakin baik dalam bekerja dengan data yang sebelumnya tidak terlihat (data validasi)
- Model sangat baik dalam hal generalization, penting karena di dunia nyata, data baru akan datang secara terus menerus.

4. Evaluasi Model

20 15 10 5

Feature Importance

1. Fitur paling penting:

- pdays / jumlah hari sejak nasabah terakhir dihubungi, berpengaruh pada model secara signifikan
- poutcome / keberhasilan sebelumnya memiliki pengaruh besar terhadap prediksi
- campaign / jumlah berapa kali ditawarkan juga berpengaruh

2. Fitur Kategorikal

 nasabah yang sudah memiliki rumah dan memiliki pinjaman serta dihubungi melalui telepon genggam cukup berpengaruh pada prediksi.

3. Fitur Numerikal

• fitur seperti age, campaign dan balance berkontribusi sedang namun tetap relevan untuk model.

4. Fitur dengan kontribusi rendah

 fitur month, job memiliki skor yang rendah, kemungkinan kurang relevan untuk memprediksi target.

5. Keseimbangan antar fitur

fitur numerik yang sudah dilakukan standarisasi
 (RobustScaler) memungkinkan model fokus pada
 variabel yang benar-benar signfikan. Fitur kategorikal
 yang sudah di encode menunjukan perbedaan kelas
 yang penting.

4. Evaluasi Model Confusion Matrix

Setelah dilakukan tuning, jumlah False Negative berkurang. Ini penting karena perusahaan tidak menginginkan potensi yang seharusnya didapatkan (profit) dari nasabah yang membuka deposito. Juga kelas positive harus semakin meningkat agar membantu tim marketing menyusun strategi yang lebih tepat sasaran (efektif).

5. Kesimpulan

MODEL

- Metrik utama adalah *Recall*, fokus pada potensi profit (mendapatkan sebanyak mungkin nasabah yang menempatkan deposito)
- Parameter terbaik dari model **LGBM Classifier** (model learning rate: 0.2, max depth: 5, min child sample: 40, n_estimator: 200, num leaves 31).
- Model berhasil meminimalisir kesalahan prediksi terhadap nasabah yang diprediksi tidak deposit, padahal aktualnya deposit (*False Negative*).

5. Kesimpulan

Interpretasi Fitur

- pdays, nasabah yang belum pernah dihubungi / sudah lama tidak dihubungi lebih mungkin melakukan deposit, efektivitas targeting nasabah baru.
- **poutcome**, nasabah yang berhasil dalam campaign sebelumnya (*success*) lebih mungkin melakukan deposit lagi, pentingnya data historis.
- campaign, nasabah yang sering ditawarkan lebih memungkinkan untuk melakukan deposit
- contact, metode other (selain telepon dan selular) mengurangi kemungkinan deposit, pentingnya metode kontak yang efektif.
- **balance**, nasabah dengan saldo tinggi cenderung tidak melakukan deposit, mungkin karena dana yang ada digunakan dengan instrumen investasi lain.

5. Kesimpulan Perhitungan Biaya

Type I Error False Positive

Skala=

Total Data Confusion Matrix X Total Data Asli 1561 X 7813 ≈ **5.005**

[TN FN] = [3063 1016] [FP TP] = [1281 2452]

Type II Error False Negative

	Tanpa Model	Dengan Model	Penghematan
	seluruh nasabah (7,813)	prediksi positif (3,733)	4,080 nasabah
Biaya campaign @ Rp 132,000,-	Rp 1,031,316,000	Rp 492,756,000	Rp 538,560,000

	Tanpa Model	Dengan Model (tidak mencanangkan keuntungan)	Ril profit yang hilang
	Nasabah yang tidak deposit (4,081)	prediksi negatif (3,063)	False Negative (1,016)
Potensi kehilangan profit @ Rp 452,000,-	Rp 1,844,612,000	Rp 1,384,476,000	Rp 459,232,000

6. Rekomendasi Model

untuk mengembangkan Machine Learning agar lebih baik lagi

Pembaharuan

Lakukan pembaharuan / update karena suku bunga simpanan dan kurs selalu berubah-ubah seiring berkembangnya zaman

Eksplorasi algoritma

Mengambangkan model dengan menggunakan algoritma yang berbeda

Penambahan Fitur

Menambahkan fitur seperti segmentasi nasabah (misalnya segmentasi usia, status pernikahan, jenis kelamin, dan lain-lain)

Data Historis	Data hasil campaign sebelumnya
	Nasabah yang 'success' adalah kunci dalam memprediksi dan meningkatan respons positif.
Metode	Memilih metode kontak yang efektif sangat penting
Kontak	Menghindari metode kontak yang kurang efektif, dapat meningkatkan kemungkinan keberhasilan.
Profil	Memahami beban finansial nasabah
Keuangan Nasabah	Apabila nasabah memiliki pinjaman pribadi, serta saldo rekening dapat membantu dalam menargetkan nasabah yang lebih mungkin membuka deposito.
Usia	Usia tidak terlalu memiliki pengaruh
	Campaign dapat disesuaikan dengan preferensi keuangan dan perilaku nasabah dari pada usia

6. Rekomendasi Bank / Perusahaan

agar perusahaan dapat mengoptimalkan pencapaian profit

Terima kasih

capstone module 3 oleh Nuraini Septiana JCDS 2604

