Tabelle von Ableitungs- und Stammfunktionen

Tabelle einfacher Ableitungs- und Stammfunktionen (Grundintegrale)

Diese Tabelle ist zweispaltig aufgebaut. In der linken Spalte steht eine Funktion, in der rechten Spalte ihre Stammfunktion. (Umgekehrt ist die Funktion in der linken Spalte immer auch die Ableitung ihrer Stammfunktion.)

Hinweis: Wenn F(x) eine Stammfunktion von f(x) ist, dann werden durch F(x) + C mit einer beliebigen reellen Konstanten alle Stammfunktionen von f(x) beschrieben. Zum Beispiel ist auch $F(x) = \frac{1}{2}x^2 + 5$ eine Stammfunktion von f(x) = x. Die additive Konstante C wird aus Gründen der Übersichtlichkeit nicht aufgeführt. Weiterhin gilt: Falls F(x) eine Stammfunktion von f(x) ist, so ist aufgrund der Linearität des Integrals $a \cdot F(x)$ eine Stammfunktion von $a \cdot f(x)$.

Potenz- und Wurzelfunktionen

Funktion $f(x)$	Stammfunktion $F(x)$
0	0
$k\;(k\in\mathbb{R})$	kx
x^n	$\begin{cases} \frac{1}{n+1}x^{n+1} & \text{wenn } n \neq -1\\ \ln x & \text{wenn } n = -1 \end{cases}$
$f'(x) \cdot f^n(x)$	$\frac{1}{n+1}f^{n+1}(x)$
nx^{n-1}	x^n
x	$\frac{1}{2}x^2$
2x	x^2
x^2	$\frac{1}{3}x^3$
\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}}$
$\sqrt[n]{x}$	$\frac{n}{n+1}(\sqrt[n]{x})^{n+1}$

$3x^2$	x^3
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
$\frac{1}{n(\sqrt[n]{x})^{n-1}}$	$\sqrt[n]{x}$
2	1
$-{x^3}$	$\overline{x^2}$
1	1
$-{x^2}$	\overline{x}

Exponential- und Logarithmusfunktionen

Funktion $f(x)$	Stammfunktion $F(x)$
e^x	e^x
e^{kx}	$\frac{1}{k}e^{kx}$
$a^x \ln a \ (a > 0)$	a^x
a^x	$\frac{a^x}{\ln a}$
$x^x(1+\ln(x))$	$x^x (x > 0)$
$e^{x\ln x }(\ln x +1)$	$ x ^x = e^{x\ln x }$ $(x \neq 0)$
$\frac{1}{x}$	$\ln x $
$\ln x$	$x \ln x - x$
$u'(x) \ln u(x)$	$u(x)\ln u(x) - u(x)$
$\frac{1}{x}\ln^n x \ (n \neq -1)$	$\frac{1}{n+1}\ln^{n+1}x$
	$\frac{1}{2n}\ln^2 x^n = \frac{n}{2}\ln^2 x$
$\frac{1}{x}\frac{1}{\ln a}$	$\log_a x$

$\frac{1}{x \ln x}$	$\ln \ln x (x > 0, x \neq 1)$
$\log_a x$	$\frac{1}{\ln a}(x\ln x - x)$
$\sqrt{a^2-x^2}$	$\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arcsin\left(\frac{x}{a}\right)$
$\sqrt{a^2 + x^2}$	$\frac{x}{2}\sqrt{a^2+x^2} + \frac{a^2}{2}\ln\left(x + \sqrt{a^2+x^2}\right)$

Trigonometrische und Hyperbelfunktionen

Funktion f(x)	Stammfunktion $F(x)$	
$\sin x$	$-\cos x$	
$\cos x$	$\sin x$	
$\sin^2 x$	$\frac{1}{2}(x - \sin x \cdot \cos x)$	
$\cos^2 x$	$\frac{1}{2}(x+\sin x\cdot\cos x)$	
an x sin/cos	$-\ln \cos x $ 1/tan($x) => \ln (\sin(x))$
$\cot x$ cos/sin	$\ln \sin x $	
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\tan x$	
$\frac{-1}{\sin^2 x} = -(1 + \cot^2 x)$	$\cot x$	
$\arcsin x$	$x \arcsin x + \sqrt{1 - x^2}$	
$\arccos x$	$x \arccos x - \sqrt{1 - x^2}$	
$\arctan x$	$x\arctan x - \frac{1}{2}\ln\left(1 + x^2\right)$	
$ \frac{1}{\sqrt{1-x^2}} $ -1	$\arcsin x$	
$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x$	
$\frac{1}{x^2+1}$	$\arctan x$	

2	
$\frac{\frac{x^2}{x^2+1}}{1}$	$x - \arctan x$
$\frac{1}{(x^2+1)^2}$	$\frac{1}{2} \left(\frac{x}{x^2 + 1} + \arctan x \right)$
$\sinh x$	$\cosh x$
$\cosh x$	$\sinh x$
$\tanh x$	$\ln \cosh x$
$\coth x$	$\ln \sinh x $
$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	$\tanh x$
$\frac{-1}{\sinh^2 x} = 1 - \coth^2 x$	$\coth x$
$\operatorname{arsinh} x$	$x \operatorname{arsinh} x - \sqrt{x^2 + 1}$
$\operatorname{arcosh} x$	$x \operatorname{arcosh} x - \sqrt{x^2 - 1}$
$\operatorname{artanh} x$	$x \operatorname{artanh} x + \frac{1}{2} \ln \left(1 - x^2 \right)$
arcoth x	$x \operatorname{arcoth} x + \frac{1}{2} \ln \left(x^2 - 1 \right)$
$\frac{1}{\sqrt{x^2+1}}$	arsinh x
$\frac{\sqrt{x^2 + 1}}{\frac{1}{\sqrt{x^2 - 1}}}, \ x > 1$	$\operatorname{arcosh} x$
$\frac{1}{1-x^2}$, $ x < 1$	artanh x
$\frac{1}{1-x^2}$, $ x > 1$	$\operatorname{arcoth} x$
$\sin^2 kx$	$\frac{x}{2} - \frac{\sin(2kx)}{4k}$
$\cos^2 kx$	$\frac{x}{2} + \frac{\sin(2kx)}{4k}$

Sonstige

Funktion $f(x)$	Stammfunktion $F(x)$
e^{-x^2}	$\frac{\sqrt{\pi}}{2}$ Erf x
e^{-ax^2+bx+c}	$\frac{\sqrt{\pi}}{2\sqrt{a}} e^{\frac{b^2}{4a} + c} \operatorname{Erf} \left(\sqrt{a} \ x - \frac{b}{2\sqrt{a}} \right)$
$\frac{u'(x)}{u(x)}$	$\ln u(x) $
$u'(x) \cdot u(x)$	$\frac{1}{2}(u(x))^2$

Rekursionsformeln für weitere Stammfunktionen

$$\int \frac{1}{(x^2+1)^n} dx = \frac{1}{2n-2} \cdot \frac{x}{(x^2+1)^{n-1}} + \frac{2n-3}{2n-2} \cdot \int \frac{1}{(x^2+1)^{n-1}} dx, \quad n \ge 2$$

$$\int \sin^n(x) dx = \frac{n-1}{n} \int \sin^{n-2}(x) dx - \frac{1}{n} \cos(x) \sin^{n-1}(x), \quad n \ge 2$$

$$\int \cos^n(x) dx = \frac{n-1}{n} \int \cos^{n-2}(x) dx + \frac{1}{n} \sin(x) \cos^{n-1}(x), \quad n \ge 2$$

Formelsammlung Mathematik: Unbestimmte Integrale

Integrationsregeln

$$\int (f+g) = \int f + \int g$$

$$\int uv' = uv - \int u'v$$

$$\int u^n = \frac{u^{n+1}}{n+1} \qquad n \neq -1$$

$$\int u' \cdot u = \frac{u^2}{2}$$

$$\int \frac{u'}{u} = \ln|u|$$

Unbestimmte Integrale

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + c, \qquad c \in \mathbb{R}, x \neq 0$$
$$\int e^x \mathrm{d}x = e^x + c, \qquad c \in \mathbb{R}$$

Trigonometrische Integrale

$$\int \sin = -\cos$$

$$\int \cos = \sin$$