

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AP2 1° semestre de 2018 GABARITO

1 - Primeira questão (2,0 pontos)

Verifique quais das funções abaixo são distribuições de probabilidade. Caso alguma não seja devido à constante de normalização, apresente a função normalizada.

Resolução

Os itens abaixo devem verificar se a função proposta é não negativa no intervalo de definição [a, b] e que se integral desta função dentro do intervalo de definição seja 1.

a)
$$f(x)=x^2-x$$
; $x \in [0,2]$

Resolução:

Observe que a função toma valores negativos dentro do intervalo para valores de x menores que 1, por exemplo, em x = 1/2, f(1/2) = -1/4. Portanto, ela não pode ser distribuição de probabilidade

b)
$$f(x)=x^2-x$$
; $x \in [1, \frac{3}{2}]$

Resolução:

Observe que a função é não negativa dentro do intervalo e, portanto, cumpre a primeira exigência. Vejamos a segunda exigência, a de normalização

$$\int_{1}^{3/2} (x^2 - x) dx = \int_{1}^{3/2} x^2 dx - \int_{1}^{3/2} x dx = \frac{x^3}{3} \Big|_{1}^{3/2} - \frac{x^2}{2} \Big|_{1}^{3/2} = \frac{(3/2)^3 - 1^3}{3} - \frac{(3/2)^2 - 1^2}{2} = \frac{19}{24} - \frac{5}{8} = \frac{1}{6} .$$

Usando este valor para a normalização teremos

$$f(x)=6(x^2-x); x \in [1,2]$$
.

c)
$$f(x)=x^2-x$$
; $x \in [-2,0]$

Resolução:

É fácil verificar que esta função é não negativa dentro do intervalo, de fato ela só é negativa no intervalo (0, 1). Integremos,

$$\int_{-2}^{0} \left(x^{2} - x \right) dx = \int_{-2}^{0} x^{2} dx - \int_{-2}^{0} x \, dx = \frac{x^{3}}{3} \Big|_{-2}^{0} - \frac{x^{2}}{2} \Big|_{-2}^{0} = \frac{-(-2)^{3}}{3} - \frac{-(-2)^{2}}{2} = \frac{8}{3} + \frac{4}{2} = \frac{14}{3} \quad ,$$

portanto a função normalizada será

$$f(x) = \frac{3}{14}(x^2 - x); x \in [-2, 0]$$
.

d)
$$f(x) = sen(2x); x \in [\frac{\pi}{2}, \pi]$$

Resolução:

Com um breve exame da função fica fácil perceber que ela toma valores negativos para todo x no intervalo $(\pi/2,\pi)$. Assim, não é uma distribuição de probabilidade.

2 – Segunda questão (2,0 pontos)

Na figura abaixo está esquematizada uma proposta de distribuição de probabilidade que é linear no intervalo [0, 1/2] e se anula fora deste intervalo

a) Calcule o coeficiente angular da reta de tal forma que esta proposta seja realmente uma distribuição de probabilidade (0,5 pontos)

Resolução:

Dado que a equação da reta é dada por y = a x + b e sabendo que a função passa pelo ponto (0, 0), já sabemos que b = 0. Resta determinar a, o coeficiente angular. Integremos

$$\int_{0}^{1/2} f(x) dx = \int_{0}^{1/2} a x dx = a \int_{0}^{1/2} x dx = a \frac{x^{2}}{2} \Big|_{0}^{1/2} = a \frac{(1/2)^{2}}{2} = \frac{a}{8}$$

para que seja distribuição de probabilidade, basta que o coeficiente angular seja igual a 8. Assim, a distribuição será

$$f(x) = 8x; [0;1/2]$$
.

b) Ache a média desta distribuição

Resolução:

$$\mu = \int_{0}^{1/2} x f(x) dx = \int_{0}^{1/2} 8x^{2} dx = 8 \int_{0}^{1/2} x^{2} dx = 8 \frac{x^{3}}{3} \Big|_{0}^{1/2} = \frac{8}{3} (1/2)^{3} = \frac{8}{3} \times \frac{1}{8} = \frac{1}{3}.$$

c) Calcule a variância da distribuição

Resolução:

Pela definição de variância

$$\sigma^2 = \int_a^b x^2 f(x) dx - \mu^2 ,$$

só necessitamos calcular a integral abaixo:

$$\int_{0}^{1/2} x^{2} f(x) dx = \int_{0}^{1/2} 8 x^{3} dx = 8 \int_{0}^{1/2} x^{3} dx = 8 \frac{x^{4}}{4} \Big|_{0}^{1/2} = 2(1/2)^{4} = 2 \times \frac{1}{16} = \frac{1}{8} .$$

Com isto calculado obtemos

$$\sigma^2 = \frac{1}{8} - \left(\frac{1}{3}\right)^2 = \frac{1}{8} - \frac{1}{9} = \frac{1}{72} \approx 0,01389 .$$

d) Calcule a moda da distribuição

Resolução:

Como a moda são os pontos nos quais a probabilidade é máxima. Pelo gráfico vemos que a distribuição é monomodal e esta tem valor 1/2.

3 – Terceira questão (2,0 pontos)

Calcule as probabilidades solicitadas:

a) $P(0.2 \le X \le 0.35)$ para a distribuição da segunda questão.

Resolução:

Integremos

$$P(0,2 < X < 0.35) = \int_{0.2}^{0.35} 8x \, dx = 8 \int_{0.2}^{0.35} x \, dx = 8 \frac{x^2}{2} |_{0.2}^{0.35} = 4[(0.35)^2 - (0.2)^2] = 4(0.1225 - 0.04) = 0.33 .$$

b) P(0,35 < X < 3,4) para média 3,6 e variância 3,42;

Resolução:

Usaremos

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

que no nosso caso será

$$P(0,35 < X < 3,4) = P\left(\frac{0,35 - 3,6}{\sqrt{3,42}} < Z < \frac{3,4 - 3,6}{\sqrt{3,42}}\right) \approx P\left(\frac{-3,25}{1,8493} < Z < \frac{-0,2}{1,8493}\right) \approx P(-1,7574 < Z < -0,1008)$$

ou

$$P(0,35 \le X \le 3,4) \approx P(Z \le 1,76) - P(Z \le 0,1) = 0,4608 - 0,0398 = 0,421$$
.

c) P(3,4 < X < 6,35) para a distribuição Uniforme no intervalo [3; 7];

Resolução:

Pela definição de probabilidade da distribuição Uniforme teremos

$$P(3,4 < X < 6,35) = \frac{1}{7-3} \int_{3.4}^{6,35} dx = \frac{1}{4} (6,35-3,4) = \frac{2,95}{4} = 0,7375$$
.

d) P(0,2 < X < 0,35) para a distribuição Exponencial com α = 0,27 .

Resolução:

Aqui usaremos

$$P(a < X < b) = \int_{a}^{b} \alpha e^{-\alpha x} dx = e^{-\alpha a} - e^{-\alpha b} .$$

No caso desta questão teremos

$$P(0,2 < X < 0.35) = e^{-0.27 \times 0.2} - e^{-0.27 \times 0.35} = e^{-0.054} - e^{-0.0945} \approx 0.0376$$
.

4 – Quarta questão (2,0 ponto)

Numa confecção foram examinadas todas as peças produzidas de um lote. Verificou-se que 15% da produção tem pequenos defeitos que invalidam a venda nas lojas oficiais e estas peças devem ser remetidas para a loja de saldos. Se estava perdendo muito tempo nesta verificação e tomou-se a decisão de trabalhar por amostragem aleatória de 40 peças tiradas da produção. Pergunta-se: Qual a probabilidade de que a amostra indique um número menor que os 15% verificados na contagem de todas as peças?

Resolução:

Usaremos o teorema central do limite supondo que a amostra é grande o suficiente para tal. Como as peças podem ter defeito ou não, usaremos a proporção amostral para calcular a variância. Assim temos o que se segue

$$N(\mu, \sigma^2) = N(0.15; 0.15 \times \frac{(1-0.15)}{40}) = N(0.15; 0.00318)$$

pois o que temos são as proporções e daí estimamos a variância também pela proporção. Calculemos a probabilidade solicitada, ou seja,

$$P(X<0,15)=P\left(Z<\frac{0-0,15}{\sqrt{0,00318}}\right)\approx P(Z<-2,64)=P(Z<2,64)=0,4959$$
.

5 – Quinta questão (2,0 pontos)

Um fabricante está sendo investigado por vender seus produtos abaixo do peso declarado. Foi sorteada uma amostra aleatória de 20 produtos a qual indicou o peso médio de 197,8g. A variância admitida é de $8,3\,\,\mathrm{g}^2$. Calcule o intervalo de confiança para a média com um coeficiente de confiança de $90\,\%$.

Resolução:

Usaremos a fórmula

$$IC(\mu,\gamma) = \left[\bar{X} - z_{\gamma/2} \frac{\sigma}{\sqrt{n}}; \bar{X} + z_{\gamma/2} \frac{\sigma}{\sqrt{n}} \right].$$

Para os dados fornecidos teremos

$$\frac{\sigma}{\sqrt{n}} = \sqrt{\frac{8,3}{20}} = \sqrt{0,415} \approx 0,6442; z_{\gamma/2} = z_{0,45} = 1,65$$

assim ficamos com

 $IC(\mu, y) = [197.8 - 1.65 \times 0.6442; 197.8 + 1.65 \times 0.6442] = [197.8 - 1.0629; 197.8 + 1.0629] \approx [196.74; 198.9]$.

Tabela da distribuição Normal N(0,1)

7	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
Z _c										
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0.5										
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
4.0										
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
_										
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.