CO140 - Logic

Introduction

A logic system consists of 3 things:

- 1. Syntax formal language used to express concepts
- 2. Semantics meaning for the syntax
- 3. Proof theory syntactic way of identifying valid statements of language

Considering the basic example in a program, we can then see the features;

```
if count > 0 and not found then
    decrement count;
    look for next entry;
end if
```

- 1. basic (atomic) statements (propositions) are either \top or \bot depending on circumstance;
 - i. count > 0
 - ii. found
- 2. **boolean operations**, such as and, or, not, etc. are used to build complex statements from atomic propositions
- 3. the final statement count > 0 and not found evalulates to either \top or \bot

Syntax

The formal language of logic consists of three ingredients;

- 1. Propositional atoms (propositional variables), evaluate to a truth value of either \top or \bot . These are represented with letters; $p, p', p_0, p_1, p_2, p_n, q, r, s, ...$
- 2. Boolean connectives;
 - and is written as $p \wedge q$

p and q both hold

• or is written as $p \vee q$

p or q holds (or both)

• not is written as $\neg p$

p does not hold

• if-then / implies is written as $p \to q$

if p holds, then so does q

• if-and-only-if is written as $p \leftrightarrow q$

p holds if and only if q holds

• truth, and falsity are written as \top , and \bot respectively.

logical constants

3. Punctuation. Similar to arithmetic, the lack of brackets can make an expression ambiguous. For example, $p_0 \lor p_1 \land p_2$ can be read as either $(p_0 \lor p_1) \land p_2$ or $p_0 \lor (p_1 \land p_2)$, which are different. The latter is the correct interpretation due to binding conventions.

We can order the boolean connectives by decreasing binding strength;

```
(strongest) \neg, \land, \lor, \rightarrow, \leftrightarrow (weakest)
```

While repeated disjunctions (\vee) , and conjunctions (\wedge) are fine, as $p \wedge q \wedge r$ is equivalent to $p \wedge (q \wedge r)$, and the same for \vee , due to associativity, the same isn't true for \rightarrow . Due to the ambiguity, brackets should always be used.

There are also exceptions to the rule, for example with $p \to r \land q \to r$ - this should be $p \to (r \land q) \to r$ according to our binding conventions, but brackets should be used to ensure the correct interpretation.

Formulas

Something is a **well-formed formula** only if it is built from the following rules (the brackets are required);

- 1. a propositional atom $(p, p', p_0, p_1, p_2, p_n, q, r, s, ...)$ is a propositional formula
- 2. \top , and \perp are both formulas
- 3. if A is a formula, then $(\neg A)$ is also a formula
- 4. if A, and B are both formulas, then $(A \wedge B), (A \vee B), (A \rightarrow B), (A \leftrightarrow B)$ are also formulas

We can also create a tree to parse a logical formula, for example; $(\neg p \to r) \land (q \to r)$

Note that this tree shows the principal connective in blue, and the propositional atoms in red. Note that \wedge is the principal connective in the top layer, and it therefore has the general form $A \wedge B$, and so on going down.

Definitions

- A formula is a **negated formula** when it is in the form $\neg A$, negated atoms are sometimes called **negated-atomic**.
- $A \land B$, and $A \lor B$ are **conjunctions**, and **disjunctions**. A, and B, are **conjuncts**, and **disjuncts**, respectively.
- $A \to B$ is an implication. A is the **antecedent**, and B is the **consequent**

Semantics

The connectives covered above have a rough English translation. However a natural language has ambiguity, and as engineers, we need precise meanings for formulas. This is the truth table for every connective that will be used in this course (?):

p	q	T	T	$p \wedge q$	$p \lor q$	$\neg p$	$p \rightarrow q$	$p \leftrightarrow q$	$p \uparrow q$
0	0	1	0	0	0	1	1	1	1
0	1	1	0	0	1	1	1	0	1
1	0	1	0	0	1	0	0	0	1
1	1	1	0	1	1	0	1	1 1	0

Note how we can also define new connectives (see how $A \uparrow B$ was defined in the last column); this is a NAND connective - equivalent to $\neg (A \land B)$.

Translation

English to Logic

• but means and

"I will go out, but it is raining" (i will

(i will go out) ∧ (it is raining)

• unless generally means or

"I will go out unless it rains" (i will go out) \lor (it will rain) (note the will) \neg (it will rain) \rightarrow i will go out

There is also the strong form of \mathbf{unless} , but in we generally use the weak form in computing

(i will go out) $\leftrightarrow \neg$ (it will rain)

• or generally refers to exclusive or (strong reading) in English, but it can also refer to inclusive or (weak reading). However, we always take the weak reading in computing.

Modality

I don't know what this means, so I'm just ignoring it for now

Logic to English

While the others are slightly more straightforward, \rightarrow is a pain to translate.

For example, (i am the pope) \rightarrow (i am an atheist) evaluates to true, as falsity implies anything, however if we were to translate it into English, "If I am the Pope, then I am an atheist" is (most likely) untrue.

Another example is the following; $p \land q \to r$, and $(p \to r) \lor (q \to r)$ are logically equivalent, but can be translated into different meanings. For example, let p be "event A happens", let q be "event B happens", and q be "event C happens". The former can be translated to "If both A and B happens, then C happens", whereas the latter becomes "If A happens, then C happens, or if B happens, then C also happens".

Arguments

We use the double turnstile, \vDash (\vDash in LaTeX), to mean **therefore**. For example, the *Socrates* syllogism can be expressed as (socrates is a man), (men are mortal) \vDash (socrates is mortal) in logic, and in English as;

- Socrates is a man
- Men are mortal
- Therefore, Socrates is mortal

The definition of a valid argument is as follows;

Given valid formulas $A_1, A_2, ..., A_n, B$, and $A_1, ..., A_n$ therefore B, we can write it as $A_1, ..., A_n \models B$, iff B is true in every situation where $A_1, ..., A_n$ are all true.

Examples

• $A, A \rightarrow B \models B$ modus ponens

• $A \rightarrow B, \neg B \models \neg A$ modus tollens

• $A \to B, B \nvDash A$ A can be false, as falsity implies anything

Definitions

- A propositional formula is logically valid if it's true in all situations ($\models A$), if A is valid
- A propositional formula is satisfiable if it's true in at least one situation (hence valid → satisfiable)
- Two propositional formulas are logically **equivalent** if they are true in the same situations.

argument	validity	satisfiability	equivalence
$A \vDash B$	$A \to B$ valid	$A \wedge \neg B$ unsatisfiable	$(A \to B) \equiv \top$
$\top \vDash A$	A valid	$\neg A$ unsatisfiable	$A \equiv \top$
$A \nvDash \bot$	$\neg A$ not valid	A satisfiable	
$A \vDash B$, and $B \vDash A$		$A \leftrightarrow \neg B$ unsatisfiable	$A \equiv B$

(copied directly from Propositional Logic - Arguments and Validity.pdf)

Validity

The main ways used to check validity are as follows;

- \bullet Truth tables check all possible situations, and check the results of each formula are \top
- Direct argument
- ullet Equivalences using equivalences to reduce the initial formula to \top
- Various proof systems including Natural Deduction

In general, if we want to show that A is logically equivalent to B, we need to show $A \leftrightarrow B$ is valid.

Truth Tables

The use of truth tables to prove validity is fairly self-explanatory; as we're testing each situation, it's the easiest method (and it works for propositional logic since we have a finite number of configurations - doesn't work for first-order), however it's inelegant, and quite tedious depending on the number of propositional atoms.

For example, if we were to prove $(p \to q) \leftrightarrow (\neg p \lor q)$ is valid, we have to evaluate all of the subformulas.

p	q	$p \rightarrow q$	$\neg p$	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
0	0	1	1	1	1
0	1	1	1	1	1
1	0	0	0	0	1
1	1	1	0	1	1

(copied directly from Propositional Logic - CheckValidity.pdf)

As the propositional formula has 1 in all four possible configurations of p, and q, we can then say it is valid, and as such, $p \to q$ is logically equivalent to $\neg p \lor q$

Direct Argument

We can show the validity of $((p \to q) \to p) \to p$ (known as *Peirce's law*) with direct argument. We can take an argument by cases, either p is \top or p is \bot .

• $p \leftrightarrow \top$ - we know this is true as $A \to B$ is \top whenever B is \top

- $p \leftrightarrow \bot$ we have $p \to q$ evaluating to \top , as $A \to B$ is \top whenever A is \bot . As such, this formula is evaluated to $(\top \to p) \to q$. However, we know that p is \bot , hence we have $\top \to \bot$, which we know evaluates to \bot by the truth table for \to . As such, we have $\bot \to p$, hence it follows that it is valid, seeing as $A \to B$ is \top whenever A is \bot .
- This is an argument by cases, known as law of excluded middle (you will use this often in Natural Deduction).

Equivalences

Refer to Logic cribsheet.pdf for a full list of equivalences

1. $A \wedge B \equiv B \wedge A$

commutativity of \wedge

2. $A \wedge A \equiv A$

idempotence of \wedge

3. $A \wedge \top \equiv A$

4. $\bot \land A, \neg A \land A \equiv \bot$

5. $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$

associativity of \wedge

6. $A \lor B \equiv B \land A$

commutativity of \vee

7. $A \lor A \equiv A$

idempotence of \vee

8. $\bot \lor A \equiv A$

9. $\top \vee A, \neg A \vee A \equiv \top$

10. $(A \lor B) \lor C \equiv A \lor (B \lor C)$

associativity of \vee

11. $\neg \top \equiv \bot$

12. $\neg \bot \equiv \top$

13. $\neg \neg A \equiv A$

14. $A \rightarrow A \equiv \top$

15. $\top \to A \equiv A$

16. $A \to \top \equiv \top$ 17. $\bot \to A \equiv \top$

18. $A \rightarrow \bot \equiv \neg A$

19. $A \to B \equiv \neg A \lor B$

20. $A \leftrightarrow B \equiv (A \to B) \land (B \to A) \equiv (A \land B) \lor (\neg A \land \neg B) \equiv \neg A \leftrightarrow \neg B$

21. $\neg(A \leftrightarrow B) \equiv \neg A \leftrightarrow B \equiv \dots$

the rest can be derived from the above

22. $\neg (A \land B) \equiv \neg A \lor \neg B$ 23. $\neg (A \lor B) \equiv \neg A \land \neg B$

de Morgan laws

de Morgan laws

24. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

25. $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

26. $A \lor (A \land B) \equiv A \lor (A \land B) \equiv A$

Normal forms

- A formula is in **disjunctive** NF (**DNF** \vee) if it's a disjunction of conjunctions of literals
- A formula is in **conjunctive** NF (**CNF** ∧) if it's a conjunction of disjunctions of literals (a conjunction of clauses)

Rewriting

1. Get rid of \rightarrow , and \leftrightarrow

Replace $A \to B$ with $\neg A \lor B$

Replace $A \leftrightarrow B$ with $(A \land B) \lor (\neg A \land \neg B)$

- 2. Use de Morgan laws to push negations down to the atoms
- 3. Delete double negations (replace $\neg \neg A$ with A)
- 4. Rearrange with distributivity equivalences to the desired form
- 5. Use the equivalences which reduce two atoms to one $(\bot \lor A \equiv A \text{ etc.})$ until no further progress can be made

Example

Write $p \wedge q \rightarrow \neg (p \leftrightarrow \neg r)$ in DNF

- $p \wedge q \rightarrow \neg (p \leftrightarrow \neg r)$
- $\neg (p \land q) \lor \neg (p \leftrightarrow \neg r)$

remove \rightarrow

• $\neg (p \land q) \lor \neg ((p \land \neg r) \lor (\neg p \land r))$

remove \leftrightarrow

• $\neg p \lor \neg q \lor \neg (p \land \neg r) \land \neg (\neg p \land r)$

de Morgan

• $\neg p \lor \neg q \lor (\neg p \lor r) \land (p \lor \neg r)$

de Morgan