Komplexe Zahlen

Konstellation von \mathbb{C} :

$$R^2 = \{(a,b)|a,b \in \mathbb{R}\}$$

$$(0,1)^2 = -1$$

"imaginäre Einheit:"

$$(0,1) = i$$

Andere Notation:

$$(a,b) \in R^2 = (a,0) + (0,b) = (a,0) + (0,1) \cdot (b,0) = a + i \cdot b$$

 $\mathbb{C} = \{a + ib | a, b \in \mathbb{R}\}$

Addition:

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

Multiplikation:

$$(a+ib)\cdot(c+id) = ac + i^2bd + i(ad+bc) = ac - bd + i(ad+bc)$$

Begriffe:

$$Z = a + ib \in \mathbb{C}, a, b \in \mathbb{R}$$

$$a = Re(\mathbb{Z})$$

$$b = Im(\mathbb{Z})$$

wenn $a=0 \to Z$ rein imaginär

$$Z = a + ib \rightarrow \overline{Z} = a - ib$$

 \overline{Z} ist die zu Zkonjugierte komplexe Zahl

Nützliches:

$$Z \cdot \overline{Z} = (a+ib) \cdot (a-ib) = a^2 + b^2$$

$$|Z| = \sqrt[2]{a^2 + b^2}$$

$$\overline{Z+W} = \overline{Z} + \overline{W}$$

$$\overline{Z \cdot W} = \overline{Z} \cdot \overline{W}$$

$$Re(Z) = \frac{1}{2}(Z + \overline{Z})$$

$$Im(Z) = \frac{1}{2i}(Z - \overline{Z})$$

Dreiecksgleichung:

$$Z,W\in\mathbb{C}\Rightarrow |Z+W|\leq |Z|+|W|$$

 $\underline{\hbox{Invertieren: (komplexe Zahl aus Nenner raus bekommen)}}$

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{ac+bd+i(cb-ad)}{c^2+d^2}$$