Lecture 16

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

October 18, 2021

Linear Transformation

Matrix of rotation

Let $P = \begin{bmatrix} x \\ y \end{bmatrix}$ and $Q = \begin{bmatrix} X \\ Y \end{bmatrix}$ be the point obtained from P by rotation (anticlockwise direction) of an angle θ about origin. Then show that $\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \end{bmatrix}$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}.$$

Let the line through O and P makes an angle ϕ with x-axis (as shown in figure). Now set OP = OQ = r. Then $X = r\cos(\theta + \phi)$ and $Y = r\sin(\theta + \phi)$. Using the fact that $x = r\cos\phi$, $y = r\sin\phi$ and

formulas for
$$\cos(\theta + \phi)$$
, $\sin(\theta + \phi)$, the result follows. Thus $\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

Linear transformation
Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
. Then A reflects vectors along the *x*-axis. For

example
$$\mathbf{A} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

Let
$$\mathbf{B} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 an angle θ .

Let $\mathbf{B} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Then **B** rotates a vector counterclockwise by

Let $\mathbf{A} = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$. Then **A** compresses or expand a vector in *x*-direction by a factor *k*. vectors along the *x*-axis

Note that under these transformations, lines get mapped to lines. More generally linear combinations get mapped to linear combinations, that is, $\mathbf{A}(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) = c_1\mathbf{A}\mathbf{x}_1 + c_2\mathbf{A}\mathbf{x}_2$.

Definition

Let V and W be two vector spaces over \mathbb{F} . Then a function $T: V \to W$ is called a *linear transformation* if it satisfy the following conditions:

$$T(c_1v + c_2w) = c_1T(v) + c_2T(w)$$
 for all $v, w \in V$ and $c_1, c_2 \in \mathbb{F}$.

If W = V, then we say that T is a *linear operator* on V

Example

Let
$$T:\mathbb{R}^2\to\mathbb{R}^2$$
 be $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)=\begin{bmatrix}x+y\\x-y\end{bmatrix}$. Then T is a linear transformation.

Examples

Which of the following are linear transformations?

- 1. Let **A** be an $m \times n$ matrix. Define $f : \mathbb{R}^n \to \mathbb{R}^m$ by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}.$
- 2. Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3) = (x_1, x_2, 0)$.
 - 3. Let $h : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as $g(x_1, x_2, x_3) = (x_1, x_2, 4)$.
- Let $h: \mathbb{R}^2 \to \mathbb{R}^4$ be defined as $h(x_1, x_2) = (x_1, 0, x_2, x_1^2)$.
 - 5. Let $T : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ given by $T(x_1, x_2, x_3, ...) = (x_1 + x_2, x_2 + x_3, ...)$.
 - 6. Let $D: \mathcal{P}_2 \to \mathcal{P}_1$ be defined as $D(a_0 + a_1x + a_2x^2) = a_1 + 2a_2x$.

When want to prove this is not LT give counter example

Just check whether linear combination concept is followed or not...

Remark

Translation transformation is not a linear transformation.

Theorem

Let V and W be vector spaces, and let $T: V \to W$ be a linear transformation. Then $T(\mathbf{0}) = \mathbf{0}$.

Proof. Since $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0})$ and T is a linear transformation, we know that $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0})$. Adding inverse $-T(\mathbf{0})$ on both sides gives $T(\mathbf{0}) = \mathbf{0}$.

Exercise

Show that a linear transformation $T:V\to W$ maps a subspace of V to a subspace of W. Proof this by taking Linear combination - As LT will always obey it..then images of V...that are in W...will do same

Definition

Let $T:V \to W$ be a linear transformation between vector spaces V and W. Then $\ker(T) = \mathcal{N}(T) = \{\mathbf{v}: T(\mathbf{v}) = \mathbf{0}\}$ is called null space (kernel) of T and $\mathcal{R}(T) = \{T(\mathbf{v}): \mathbf{v} \in V\}$ is called the range space of T. Note that $\mathcal{N}(T)$ and $\mathcal{R}(T)$ be subspaces of V and W, respectively.

Let V be a vector space with basis $B = \{v_1, \dots, v_n\}$ and W be another vector space. Then to define a linear transformation from V to W it is enough define on B.

Theorem

Let V and W be vector spaces over \mathbb{F} , and $\{v_1, \dots, v_n\}$ be a basis for V. Let $T: V \to W$ be a linear transformation. Then for any vector

$$v \in V$$
, there exist $c_1, \ldots, c_n \in \mathbb{F}$ such that $v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$

 $T(v) = c_1 T(v_1) + \cdots + c_n T(v_n)$. Note that in the above set up $\mathcal{R}(T) = \mathrm{span}\{T(v_1), \ldots, T(v_n)\}$.

Examples

Find the range space and null space of the following linear transformations.

1. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} a\\b\\c\\d \end{bmatrix}\right) = \left(\begin{bmatrix} a+b\\b-c\\a+d \end{bmatrix}\right).$$
 Nullspace of T = vector like (k (-1, 1, 1, 1))) Check....

- 2. Let **A** be an $m \times n$ matrix. Define $f : \mathbb{R}^n \to \mathbb{R}^m$ by $f(x) = \mathbf{A}x$.
- 3. Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ defined as $g(x_1, x_2, x_3) = (x_1, x_2, 0)$.
- Let $D: \mathbb{R}_2[x] \to \mathbb{R}_1[x]$ be defined as $D(a_0 + a_1x + a_2x^2) = a_1 + 2a_2x$.

Theorem (Rank-Nullity Theorem)

Let V and W be finite dimensional vector spaces. If $T:V\to W$ is a linear transformation, then $\dim V=\dim (\mathcal{R}(T))+\dim (\mathcal{N}(T))$.

Exercise

Define a linear transformation $T: \mathbb{R}_4[x] \to \mathbb{R}_2[x]$ given by T(p(x)) = p''(x). Verify rank nullity theorem.