	CIS522 Advance	ed Algorithm Design and Complexit	.ty	
	me:	Learning Activity	Last 3-Digit ID:	$\perp \perp \perp$
Dynamic Programming Practice				
Suppose you are managing the construction of billboards on the Stephen Daedalus Memorial Highway, a heavily traveled stretch of road that runs west-east for M miles. The possible sites for billboards are given by numbers $x1$, $x2$, , xn , each in the interval $[0, M]$ (specifying their position along the highway, measured in miles from its western end). If you place a billboard at location xi , you receive a revenue of xi 0. Regulations imposed by the county's Highway Department require that no two of the billboards be within less than or equal to 5 miles of each other. You'd like to place billboards at a subset of the sites so as to maximize your total revenue, subject to this restriction.				
Example. Suppose $M = 20$, $n = 4$, $\{x1, x2, x3, x4\} = \{6, 7, 12, 14\}$, and $\{r1, r2, r3, r4\} = \{5, 6, 5, 1\}$. Then the optimal solution would be to place billboards at $x1$ and $x3$, for a total revenue of 10 .				
a)	Model this problem by defining input a algorithm that takes an instance of this p obtained from any valid subset of sites. The	problem as input and returns the	maximum total revenue tha	-
Input:				
Output:				
Steps:				
b) Analyze the time complexity of your algorithm: determine the closet bound of the running time function using Big-O notations: and explain why.				
 c) Implement the above algorithm. Create two different problem instances with problem size n=10 and 20 respectively. Submit the following material in hard copy: a. Source code b. For 1st problem instance (n=10): input (M, n, {x1, x2,xn}, {r1, r2,rn}), solution and the memorization matrix of sub-problem solutions c. For 2nd problem instance (n=10): input (M, n, {x1, x2,xn}, {r1, r2,rn}) and solution Upload your source code in MyCourse. 				
Gra	ercise Type: Preparation ade Type: Just for fun omission time:	In Class Boolean Graded By:	Practice Numeric Grade:	P25