Q1. Searching with Heuristics

	sider the A* searching process on the connected undirected graph, for each connection edge is always positive . We define $h^*(X)$ as t	
nsw	wer Questions (a). Questions (b) and (c) are optional.	
(a)	earch using heuristic h' and finally find a solution. Let h' by h' is h' and h' and h' is h' and h' and h' is h' and h' and h' are h' are h' and h' are h' are h' are h' are h' are h' and h' are h' and h' are h' and h' are h' ar	
	(i) Choose one best answer for each condition below.	
	1. If $h'(X) = \frac{1}{2}h(X)$ for all Node X, then	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	2	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	3. If $h'(X) = h(X) + h^*(X)$ for all Node X, then	
	4. If we define the set $K(X)$ for a node X as all its neighb always holds	or nodes Y satisfying $h^*(X) > h^*(Y)$, and the following
	$h'(X) \le \begin{cases} \min_{Y \in K(X)} h'(Y) \\ h(X) \end{cases}$	$-h(Y) + h(X)$ if $K(X) \neq \emptyset$ if $K(X) = \emptyset$
	then,	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	5. If K is the same as above, we have	
	$h'(X) = \begin{cases} \min_{Y \in K(X)} h(Y) \\ h(X) \end{cases}$	$+ cost(X, Y)$ if $K(X) \neq \emptyset$ if $K(X) = \emptyset$
	where $cost(X, Y)$ is the cost of the edge connecting X	and Y ,
	then, 6. If $h'(X) = \min_{Y \in K(X) + \{X\}} h(Y)$ (K is the same as about	$\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	(ii) In which of the conditions above, h' is still admissible and we say h_1 dominates h_2 when $h_1(X) \ge h_2(X)$ holds for all	or sure to dominate n ? Check all that apply. Remember X . \square 1 \square 2 \square 3 \square 4 \square 5 \square 6
(b)	[Optional] Suppose h is a consistent heuristic, and we conduct solution.	
	(i) Answer exactly the same questions for each conditions in Q	Question (a)(i).
	1. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$ 3. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$	2. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	3. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$	$4. \bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$
	5. $\bigcirc C = h^*(S) \bigcirc C > h^*(S) \bigcirc C \ge h^*(S)$	
	(ii) In which of the conditions above, h' is still consistent and	for sure to dominate h ? Check all that apply. 1 $$ 2 $$ 3 $$ 4 $$ 5 $$ 6

(c) [Optional] Suppose h is an admissible heuristic, and we conduct A^* tree search using heuristic h' and finally find a solution.

If $\epsilon > 0$, and X_0 is a node in the graph, and h' is a heuristic such that

$$h'(X) = \begin{cases} h(X) & \text{if } X = X_0 \\ h(X) + \epsilon & \text{otherwise} \end{cases}$$

- Alice claims h' can be inadmissible, and hence $C = h^*(S)$ does not always hold.
- Bob instead thinks the node expansion order directed by h' is the same as the heuristic h'', where

$$h''(X) = \begin{cases} h(X) - \epsilon & \text{if } X = X_0 \\ h(X) & \text{if otherwise} \end{cases}$$

Since h'' is admissible and will lead to $C = h^*(S)$, and so does h'. Hence, $C = h^*(S)$ always holds.

The two conclusions (<u>underlined</u>) apparently contradict with each other, and **only exactly one of them are correct and the other is wrong**. Choose the **best** explanation from below - which student's conclusion is wrong, and why are they wrong?

WIOI	ıg;
\bigcirc	Alice's conclusion is wrong, because the heuristic h' is always admissible.
O optii	Alice's conclusion is wrong, because an inadmissible heuristics does not necessarily always lead to the failure of the mality when conducting A* tree search.
\bigcirc	Alice's conclusion is wrong, because of another reason that is not listed above.
same	Bob's conclusion is wrong, because the node visiting expansion ordering of h'' during searching might not be the e as h' .
\bigcirc	Bob's conclusion is wrong, because the heuristic h'' might lead to an incomplete search, regardless of its optimally
prop	perty.
\bigcirc	Bob's conclusion is wrong, because of another reason that is not listed above.

Q2. Iterative Deepening Search

Pacman is performing search in a maze again! The search graph has a branching factor of b, a solution of depth d, a maximum depth of m, and edge costs that may not be integers. Although he knows breadth first search returns the solution with the smallest depth, it takes up too much space, so he decides to try using iterative deepening. As a reminder, in standard depth-first iterative deepening we start by performing a depth first search terminated at a maximum depth of one. If no solution is found, we start over and perform a depth first search to depth two and so on. This way we obtain the shallowest solution, but use only O(bd) space.

But Pacman decides to use a variant of iterative deepening called **iterative deepening A***, where instead of limiting the depth-first search by depth as in standard iterative deepening search, we can limit the depth-first search by the f value as defined in A* search. As a reminder f[node] = g[node] + h[node] where g[node] is the cost of the path from the start state and h[node] is a heuristic value estimating the cost to the closest goal state.

In this question, all searches are tree searches and **not** graph searches.

(a) Complete the pseudocode outlining how to perform iterative deepening A* by choosing the option from the next page that fills in each of these blanks. Iterative deepening A* should return the solution with the lowest cost when given a consistent heuristic. Note that cutoff is a boolean and new-limit is a number.

function ITERA	TIVE-DEEPENIN	G-Tree-Search(p	problem)					
$start-node \leftarrow MAKE-NODE(INITIAL-STATE[problem])$								
$limit \leftarrow f[stace]$	$limit \leftarrow f[start-node]$							
loop								
$fringe \leftarrow$	$fringe \leftarrow MAKE-STACK(start-node)$							
new-limi	<i>t</i> ←	(i)						
$\textit{cutoff} \leftarrow$		(ii)						
while fri	nge is not empty	do do						
node	\leftarrow Remove-Fr	ONT(fringe)						
if Go	OAL-TEST(proble	em, STATE[node])	then					
r	eturn node							
end i	f							
for c	<i>hild-node</i> in Ex	PAND(STATE[node], problem) do					
if	$f[child-node] \leq$	≤ limit then						
	$fringe \leftarrow Insi$	ERT(<i>child-node</i> , fri	inge)					
	new - $limit \leftarrow [$	(iii)						
	$cutoff \leftarrow$	(iv)						
e	lse							
	new - $limit \leftarrow [$	(v)						
	cutoff ←	(vi)						
e	nd if							
end for								
end while								
if not cutoff then								
return failure								
end if								
$limit \leftarrow $	$limit \leftarrow $ (vii)							
end loop	ζ.	· /						

A_1	-∞	$\mathbf{A_2} \boxed{0}$		A ₃	∞] A ₄	limit
B_1	True	B ₂ False	e	\mathbf{B}_3	cutoff	B ₄	not cutoff
C_1	new-limit	C ₂ new	-limit + 1	C ₃	new- $limit + f[node]$		new-limit + f[child-node]
C_5	MIN(new-limit, f[node])	~	(new-limit, ild-node])	C ₇	MAX(new-limit, f[node])	C ₈	MAX(new-limit, f[child-node])
(i)	$\bigcirc A_1$	$\bigcirc A_2$	$\bigcirc A_3$	$\bigcirc \mathbf{A}$	4		
(ii)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(iii)		$\bigcirc C_2 \\ \bigcirc C_6$	$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C			
(iv)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(v)			$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C	•		
(vi)	$\bigcirc B_1$	$\bigcirc B_2$	$\bigcirc B_3$	$\bigcirc \mathbf{B}$	4		
(vii)		$\bigcirc C_2 \\ \bigcirc C_6$	$\bigcirc C_3 \\ \bigcirc C_7$	\bigcirc C			

- **(b)** Assuming there are no ties in *f* value between nodes, which of the following statements about the number of nodes that iterative deepening A* expands is True? If the same node is expanded multiple times, count all of the times that it is expanded. If none of the options are correct, mark None of the above.
 - \bigcirc The number of times that iterative deepening A* expands a node is greater than or equal to the number of times A* will expand a node.
 - \bigcirc The number of times that iterative deepening A* expands a node is less than or equal to the number of times A* will expand a node.
 - \bigcirc We don't know if the number of times iterative deepening A* expands a node is more or less than the number of times A* will expand a node.
 - O None of the above