The file coefficients.gp calculates \widetilde{C}_l in [1, eq. (5.2)] up to 100. To explain the script, we simply recall the setting. We set

$$\lambda(y) = \frac{1}{e^y - 1} - \frac{1}{y} + \frac{1}{2} = \sum_{k=1}^{\infty} \frac{B_k}{(k+1)!} y^k,$$

where B_k is the k-th Bernoulli number. We define $P_k(T)$ by the generating function via

$$e^{-T\lambda(y)} = \sum_{k=0}^{\infty} P_k(T) y^k.$$

We note $P_0(T) = 1$. According to [1, Corollaries 5.4 and 5.5], we know $P_k(T) \in \mathbb{Q}[T]$ with degree k and $T^k P_k(T) \in T^2 \mathbb{Q}[T^2]$ for any $k \in \mathbb{Z}_{\geq 1}$. We also set

$$\begin{split} \widetilde{C}_l(T) &= \sum_{\substack{j,k \geq 0 \\ j+k=l}} (k+1,j) T^k P_k(T) 2^{-2j} \\ &= \sum_{k=0}^l (k+1,l-k) T^k P_k(T) 2^{-2(l-k)}, \end{split}$$

where (k+1,j) is the Hankel symbol. We notice $\widetilde{C}_0(T)=1$. For $l\geq 1$ we write

$$\widetilde{C}_l(T) = (1, l)2^{-2l} + \sum_{k=1}^l (k+1, l-k)T^k P_k(T)2^{-2(l-k)}.$$

We easily see $\widetilde{C}_l(T) \in \mathbb{Q}[T^2]$ and $\deg_{\mathbb{Q}[T]} \widetilde{C}_l(T) = 2l$. The numbers \widetilde{C}_l are given by $\widetilde{C}_l = \widetilde{C}_l(2\pi i)$. To run the script, we firstly change the directory ./coefficients/. Then we start Pari/GP and do \r coefficients.gp. Note that the script uses 128 MB. As a result, output the following three files:

- tCkTout: save $\widetilde{C}_l(T) \in \mathbb{Q}[T]$ for $1 \leq l \leq 100$ as a vector.
- tCkout_pi: save $\widetilde{C}_l(T)$ as Q-linear combinations of $1, \pi^2, \dots, \pi^{2l}$ for $1 \leq l \leq 100$ as a vector. Here $p = \pi$.
- tCkout_num: save numerical values of \widetilde{C}_l for $1 \leq l \leq 100$ as a vector.

References

[1] H. Akatsuka and Y. Murakami, An asymptotic property on a reciprocity law for the Bettin-Conrey cotangent sum, arXiv:2402.14216.