Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №8 по дисциплине «Математическая статистика»

Выполнил студент:

Кондратьев Д. А. группа: 3630102/70301

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1.	Пос	Постановка задачи			
2.	Teo	Теория			
		Доверительные интервалы для параметров нормального			
		распределения	2		
	2.2.	Доверительные интервалы для математического ожидания т и среднего квадратического отклонения σ произвольного			
		распределения при большом объёме выборки. Асимптоти-			
		ческий подход	3		
3.	Pea	лизация	3		
4.	Рез	ультаты	4		
	4.1.	Доверительные интервалы для параметров нормального			
		распределения	4		
	4.2.	Доверительные интервалы для параметров произвольного распределения. Асимптотический подход	4		
5.	Обсуждение				
6.	Литература				
7.	При	иложение	5		
\sim		2011 705 7111			
U	шис	сок таблиц			
	1	Доверительные интервалы для параметров нормального			
	0	распределения	4		
	2	Доверительные интервалы для параметров произвольного	.4		
		распределения. Асимптотический подход	4		

1. Постановка задачи

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x,0,1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$.

2. Теория

2.1. Доверительные интервалы для параметров нормального распределения

Оценкой максимального правдоподобия для математического ожидания является среднее арифметическое: $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Оценка максимального правдоподобия для дисперсии вычисляется по формуле: $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$.

Доверительным интервалом или интервальной оценкой числовой характеристики или параметра распределения θ с доверительной вероятностью γ называется интервал со случайными границами (θ_1, θ_2) , содержащий параметр θ с вероятностью γ .

Функция распределения Стьюдента:

$$T = \sqrt{n-1} \frac{\overline{x} - \mu}{\delta} \tag{1}$$

Функция плотности распределения χ^2 :

$$f(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0 \end{cases}$$
 (2)

Интервальная оценка математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{\sigma t_{1-\frac{\alpha}{2}}(n-1)}{\sqrt{n-1}}\right) = \gamma, \tag{3}$$

где $t_{1-\frac{\alpha}{2}}$ — квантиль распределения Стьюдента порядка $1-\frac{\alpha}{2}$.

Интервальная оценка дисперсии:

$$P = \left(\frac{\sigma\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^2(n-1)}} < \sigma < \frac{\sigma\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^2(n-1)}}\right) = \gamma,\tag{4}$$

где $\chi^2_{1-\frac{\alpha}{2}},~\chi^2_{\frac{\alpha}{2}}$ — квантили распределения Стьюдента порядков $1-\frac{\alpha}{2}$ и $\frac{\alpha}{2}$ соответственно

2.2. Доверительные интервалы для математического ожидания m и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход

Асимптотическая интервальная оценка математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma u_{1-\frac{\alpha}{2}}}{\sqrt{n}} < m < \overline{x} + \frac{\sigma u_{1-\frac{\alpha}{2}}}{\sqrt{n}}\right) = \gamma, \tag{5}$$

где $u_{1-\frac{\alpha}{2}}$ — квантиль нормального распределения N(x,0,1) порядка $1-\frac{\alpha}{2}$.

$$\sigma(1 - 0.5u_{1-\alpha/2}\sqrt{e+2}/\sqrt{n}) < \sigma < \sigma(1 + 0.5u_{1-\alpha/2}\sqrt{e+2}/\sqrt{n})$$
 (6)

3. Реализация

Лабораторная работа выполнена на программном языке Python 3.8 в среде разработки $Jupyter\ Notebook\ 6.0.3$. В работе использовались следующие пакеты языка Python:

- numpy для генерации выборки и работы с массивами;
- scipy.stats содержит все необходимые распределения.

Ссылка на исходный код лабораторной работы приведена в приложении.

4. Результаты

4.1. Доверительные интервалы для параметров нормального распределения

n	m	σ
20	(-0.62; 0.28)	(0.73; 1.40)
100	(-0.24; 0.12)	(0.81; 1.07)

Таблица 1. Доверительные интервалы для параметров нормального распределения

4.2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n	m	σ
20	(-0.58; 0.24)	(0.83; 1.09)
100	(-0.24; 0.12)	(0.86; 1.01)

Таблица 2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

5. Обсуждение

Исходя из полученных результатов можно сделать следующие выводы:

- Генеральные характеристики (m=0 и $\sigma=1$) накрываются построенными доверительными интервалами.
- Лучший результат достигается на выборках большого объема, так как получаемые интервалы получаются меньшей длины.
- Доверительные интервалы для параметров нормального распределения более надёжны, так как основаны на точном, а не асимптотическом распределении.

6. Литература

- 1) Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001. 592 с., илл.
- 2) Confidence interval. URL: https://en.wikipedia.org/wiki/Confidence_interval

7. Приложение

- 1) Код лабораторной. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_8/Lab_8.ipynb
- 2) Код отчёта. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_8/Lab_report_8.tex