Project Title

Unified Hydropower Data Platform in Microsoft Fabric

Deliverables

Data Sources: Fingrid, Zenodo, Hydropower Database

- Integrate three main data sources Fingrid's real-time hydropower generation in Finland, Zenodo's historical modeled capacity factors, and a European hydropower plant metadata set containing capacity and typology details.
- Using Spark notebooks, clean and harmonize these datasets to compare actual production against installed capacity and long-term climatic potential.
- The solution would use CI/CD pipelines for automation and Power BI for visualization, enabling insights into seasonal efficiency trends and how climate conditions affect hydropower performance in Finland.

Plan of Action / Project Flow

Example in Fabric Project Flow

1. Bronze Layer

a. Ingest hydropower metadata CSV/API from the GitHub database (id, capacity, type, etc.)

2. Silver Layer

- a. Clean metadata (e.g. unify country codes, types)
- b. Compute "total capacity in Finland" by summing all plants in Finland
- c. Possibly normalize types (e.g. run-of-river vs reservoir)

3. Gold / Analytics Layer

- a. From Fingrid's observed output → compute observed capacity factor
- b. Compare observed capacity factor to modeled capacity factor (Zenodo) for Finland.
- c. Drill down by type: e.g. "What is the capacity factor of storage plants vs runof-river in observed data vs model?"

4. Visual & Insights

- Show charts: time series of observed generation, capacity factor, model vs actual
- b. Use metadata to create charts by plant type or region

Description

Here's the **architecture diagram** showing how the three datasets - **Fingrid (real-time)**, **Zenodo (historical modeled)**, and **Hydropower Metadata (capacity/type)**. Following is the flow through Microsoft Fabric:

- Bronze layer: raw ingestion from APIs and CSVs.
- **Silver layer:** cleaned, aligned data (hourly averages, extracted Finland columns, capacity summaries).
- Gold layer: unified analytics comparing observed vs. modeled capacity factors.
- **CI/CD** automates deployment, and **Power BI** dashboards visualize performance and climate insights.

Unified Hydropower Data Platform in Microsoft Fabric

Layer	Data Source(s)	Tasks	Output Example
Bronze	Fingrid API (real-	Ingest raw data from all	`bronze_fingrid_
(Raw)	time MW), Zenodo	sources into Fabric	raw`,
	CSV (modeled CF	Lakehouse. Store each as-is in	bronze_zenodo_ra
	1981–2010),	separate tables or folders.	W`,
	Hydropower	·	`bronze_hydro_me
	Metadata CSV		tadata_raw`
	(plant-level info)		

Silver (Cleaned & Unified)	All three	- Clean timestamps and normalize time zones Convert Fingrid's 3-min data → hourly averages Extract Finland columns (FI_ROR, FI_STO) from Zenodo Clean metadata (country, plant type, capacity) Aggregate total installed capacity by type (run-of-river, storage).	`silver_fingrid_ hourly`, `silver_zenodo_f i_cf`, `silver_capacity _summary`
Gold (Analytics & Modeling)	Joined dataset (Fingrid + Zenodo + Metadata)	 Join observed generation with installed capacity to compute observed capacity factor. Compare observed vs. modeled (Zenodo) capacity factors. Analyze efficiency by plant type and season. Compute correlation between inflow (Zenodo proxy) and generation (Fingrid). 	`gold_hydro_fi_s ummary` (capacity factors, efficiency trends, deviations)
Visualizati on (BI)	Power BI (connected to Fabric Lakehouse)	 Create interactive dashboards showing: Real vs. modeled capacity factors Efficiency trends by month/season Breakdown by plant type Anomalies or deviations from model 	`hydro_power_eff iciency.pbix `(Fabric or Power Bl Service dashboard)
Streaming (Real-time layer)	Fingrid API (3-min intervals)	 Ingest real-time data into Eventstream. Compare live generation vs. historical baseline from Zenodo. (Zenodo as long term baseline data, using scenario analysis) Trigger alerts for underperformance or anomalies. 	Real-time Fabric dashboard (Power BI streaming tiles)