MAT77C - Fundamentos de Análise - Lista 1

Fabio Zhao Yuan Wang*

- 1. Como vimos, existe uma função injetora $s: \mathbb{N} \to \mathbb{N}$, tal que s(n) = n+1, em que s(n) chama-se *sucessor* de n. A partir disso, podemos definir a operação *soma* em \mathbb{N} , que satisfaz a seguinte lei de recursão:
- Para todo $n \in \mathbb{N}$, temos que n + 1 = s(n);
- Para cada $m, n \in \mathbb{N}$, temos que n + s(m) = s(n + m).

Também podemos definir a operação de produto em ℕ, que satisfaz a seguinte lei de recursão:

- Para todo $n \in \mathbb{N}$, temos que $n \cdot 1 = n$;
- Para cada $m, n \in \mathbb{N}$, temos que $n \cdot s(m) = nm + n$.

Mostre que valem as seguintes propriedades:

a) (Comutatividade da soma) Para cada $m, n \in \mathbb{N}$, temos que m + n = n + m. Antes, considere a seguinte proposição:

Proposição: Seja $m \in \mathbb{N}$, então m + 1 = 1 + m.

Demonstração da proposição: Considere $S \subset \mathbb{N}$ tal que, $S = \{m \in \mathbb{N}; m+1=1+m\}$. Note que $1 \in S$, já que (1) + 1 = 2 = 1 + (1); Vejamos agora que $s(S) \subset S$. Seja $m \in S$, então:

$$s(m) + 1 = (m + 1) + 1,$$
 (Definição da função sucessor)
= $(1 + m) + 1,$ (Visto que $m \in S$)
= $1 + (m + 1),$ (Associatividade da soma em \mathbb{N})
= $1 + s(m)$. (Definição da função sucessor)

Deste modo, já que $1 \in S$ e $s(S) \in S$, pelo Princípio da Indução, temos que $S = \mathbb{N}$, como queríamos. \square

Dem: Considere $S \subset \mathbb{N}$ tal que $S = \{m \in \mathbb{N}; m+n=n+m, n \in \mathbb{N}\}$. Da proposição anterior, temos que $1 \in S$, visto que 1+n=n+1. Vejamos que $s(S) \subset S$. Tomando $m \in S$,

```
s(m) + n = (m + 1) + n, (Definição da função sucessor)

= m + (1 + n), (Associatividade da soma em \mathbb{N})

= m + (n + 1), (Proposição anterior)

= (m + n) + 1, (Associatividade da soma em \mathbb{N})

= (n + m) + 1, (Visto que m \in S)

= n + (m + 1), (Associatividade da soma em \mathbb{N})

= n + s(m). (Definição da função sucessor)
```


Visto que $1 \in S$ e $s(S) \subset S$, pelo Princípio da Indução, temos $S = \mathbb{N}$, como queríamos. \square

b) (Lei do cancelamento da soma) Para cada $m, n, p \in \mathbb{N}$, se m+p=n+p, então m=n. Dem: Seja $S \subset \mathbb{N}$ tal que $S = \{p \in \mathbb{N}; (m+p=n+p) \Longrightarrow m=n, m, n \in \mathbb{N}\}$. Ora, $1 \in S$, já que, se m+1=n+1, então s(m)=s(n), e, como s é injetora por definição, então m=n. Vejamos que $s(S) \subset S$. Tomando $p \in S$ e m+s(p)=n+s(p),

```
m+s(p)=n+s(p),

m+(p+1)=n+(p+1), (Definição da função sucessor)

(m+p)+1=(n+p)+1, (Associatividade da soma em \mathbb{N})

s(m+p)=s(n+p), (Definição da função sucessor)

m+p=n+p, (Injetividade da função sucessor)

m=n. (Já que p \in S)
```

Deste modo, como $1 \in S$ e $s(S) \subset S$, pelo Princípio da Indução, temos $S = \mathbb{N}$. \square

c) (Comutatividade do produto) Para cada $m, n \in \mathbb{N}$, temos que mn = nm. Antes, considere as seguintes proposições:

.....

Proposição 1: Seja $n \in \mathbb{N}$, $n \cdot 1 = 1 \cdot n$.

Demonstração da proposição: Seja $T \subset \mathbb{N}$ tal que $T = \{n \in \mathbb{N}; n \cdot 1 = 1 \cdot n\}$, queremos mostrar que $T = \mathbb{N}$. Ora, $1 \in T$, já que pela definição do produto em \mathbb{N} , $(1) \cdot 1 = 1 = 1 \cdot (1)$. Vejamos que $s(T) \subset T$. Tomando $n \in T$, temos que:

```
s(n) \cdot 1 = s(n), (Definição do produto em \mathbb{N})
= n+1, (Definição da função sucessor)
= 1 \cdot n + 1, (Da definição do produto e sabendo que n \in T, n = n \cdot 1 = 1 \cdot n)
= 1 \cdot s(n). (Definição do produto em \mathbb{N}, m \cdot s(n) = mn + m)
```

Portanto, como $1 \in T$ e $s(T) \subset T$, segue do Princípio da Indução que $T = \mathbb{N}$. \square

.....

Proposição 2: (Distributiva comutada) Para cada $m, n, p \in \mathbb{N}$, temos que

$$(n+p)m = nm + pm$$
.

Demonstração da proposição: Considere $R = \{m \in \mathbb{N}; (n+p)m = nm + pm, n, p \in \mathbb{N}\}$. Note que $1 \in R$, visto que, da definição de produto, $(n+p) \cdot 1 = n+p = n \cdot 1 + p \cdot 1$. Vejamos que $s(R) \subset R$. Assumindo $m \in R$, temos que:

```
(n+p)s(m)=(n+p)m+(n+p), (Definição do produto em \mathbb{N})

=(nm+pm)+(n+p), (Visto que m\in R, (n+p)m=nm+pm)

=nm+(pm+(p+n)), (Associatividade e comutatividade da soma em \mathbb{N})

=nm+(n+(pm+p)), (Associatividade da soma em \mathbb{N})

=(nm+n)+(pm+p), (Associatividade da soma em \mathbb{N})

=n\cdot s(m)+p\cdot s(m). (Definição do produto em \mathbb{N})
```

Sendo assim, já que $1 \in R$ e $s(R) \subset R$, segue do Princípio da Indução que $R = \mathbb{N}$. \square

Dem: Seja $S = \{n \in \mathbb{N} | m \cdot n = n \cdot m, m \in \mathbb{N}\}$. Vejamos que $S = \mathbb{N}$. Da proposição 1, temos que $1 \in S$. Para verificar que $S(S) \subset S$, suponhamos que $S(S) \subset S$, tendo assim:

```
m \cdot s(n) = mn + m, (Definição do produto em \mathbb{N})

= nm + m, (Visto que n \in S, mn = nm)

= nm + 1m, (Da proposição 1, m = m \cdot 1 = 1 \cdot m)

= (n + 1)m, (Distributiva comutada)

= s(n) \cdot m. (Definição da função sucessor)
```

Deste modo, como $1 \in S$ e $s(S) \subset S$, do Princípio da Indução, temos que $S = \mathbb{N}$, como queríamos. \square

d) (Distributividade) Para cada $m,n,p \in \mathbb{N}$, temos que m(n+p) = mn + mp.

Dem: Ora, da *distributiva comutada*, demonstrada no item anterior, temos que, para cada $m,n,p \in \mathbb{N}, (n+p)m = nm + pm$. Portanto,

```
m(n+p) = (n+p)m, (Comutatividade do produto em \mathbb{N})
= nm + pm, (Distributiva comutada)
= mn + mp. (Comutatividade do produto em \mathbb{N})
```

Com isto, temos o que queríamos.

e) (Lei do cancelamento do produto) Para cada $m,n,p \in \mathbb{N}$, se mp = np, então m=n. Antes, mostraremos a unicidade da identidade do produto em \mathbb{N} .

.....

Proposição: (Unicidade da identidade do produto) Para todo $n \in N$, se mn = m, então m = 1.

Demonstração da proposição: A fim de absurdo, suponhamos que $m \neq 1$, isto é, existe $k \in \mathbb{N}$ tal que m = s(k), ou seja mn = n pode ser reescrito como:

$$n = s(k) \cdot n$$
,
 $= n \cdot s(k)$, (Comutatividade do produto em \mathbb{N})
 $= nk + n$. (Definição do produto em \mathbb{N}) (\star)

Porém, como visto em aula, para cada $x,y \in \mathbb{N}, x \neq x + y$, sendo assim, (*) é um absurdo. Deste modo, temos o que queríamos. \square

Dem: Considere os conjuntos $S = \{p \in \mathbb{N}; mp = np \implies m = n, m, n \in \mathbb{N}\}$ e $T = \{m \in \mathbb{N}; mp = np \implies m = n, n \in \mathbb{N}, p \in S\}$. Por construção, segue que $T \subset S$. Ora, $1 \in T$, já que, da unicidade da identidade no produto e da proposição 1 do item c, $1 \cdot p = np \implies n = 1$. Vejamos que $s(T) \subset T$, supondo que $m \in T$ e escolhendo $n \in \mathbb{N}$ e $p \in S$ de tal forma que s(m)p = np, queremos mostrar que s(m) = n, sendo assim,

$$s(m)p = np$$
,
 $p \cdot s(m) = pn$, (Comutatividade do produto em \mathbb{N})
 $pm + p = pn$. (Definição do produto em \mathbb{N}) ((1))

Note que, se n=1, p=p+pm, o que por (\star) , teremos um absurdo. Portanto $n\neq 1$, ou seja, existe $\omega\in\mathbb{N}$ tal que $n=s(\omega)$. Sendo assim, (1) pode ser reescrito da seguinte forma:

$$pm+p=pn=p\cdot s(\omega),$$

 $pm+p=p\omega+p,$ (Definição do produto em \mathbb{N})
 $pm=p\omega,$ (Lei do cancelamento da soma em \mathbb{N})
 $mp=\omega p,$ (Comutatividade do produto em \mathbb{N})
 $m=\omega,$ (Já que $p\in S$ e $m\in T$)
 $s(m)=s(\omega),$ (Injeção da função sucessor)
 $s(m)=n.$ (Já que $n=s(\omega)$)

Dito isto, já que como $1 \in T$ e $s(T) \subset T$, segue do Princípio da Indução que $T = \mathbb{N}$, mais ainda, $T \subset S \subset \mathbb{N}$, mas como $T = \mathbb{N}$, segue que $S = \mathbb{N}$, como queríamos. \square

- f) (Unicidade da identidade do produto) Para todo $n \in \mathbb{N}$, se mn = n, então m = 1 Demonstrado como proposição em (1e).
- 2. Sejam $m, n, p \in \mathbb{N}$. Mostre que
- a) Se $m \le n$ e n < p, então m < p.

Dem: Da hipótese, temos que n < p, isto é, p = n + k para algum $k \in \mathbb{N}$. Ademais, $m \le n \equiv (n = m) \lor (n = m + \omega)$ para algum $\omega \in \mathbb{N}$. Com isto, suponhamos que n = m, portanto p = n + k = m + k, isto é m < p; Agora, suponhamos que $n = m + \omega$,

$$p = n + k,$$

$$= (m + \omega) + k,$$

$$= m + (\omega + k) = m + k_1, \quad k_1 \in \mathbb{N}$$

ou seja, m < p. Já que $(n = m) \land (n < p) \implies m < p$ e $(m < n) \land (n < p) \implies m < p$, segue que $(m \le n) \land (n < p) \implies m < p$. \square

b) Se m < n e $n \le p$, então m < p.

Dem: Da hipótese, m < n, isto é, n = m + k para algum $k \in \mathbb{N}$, e, $n \le p \equiv (p = n) \lor (p = n + k_1)$ para algum $k_1 \in \mathbb{N}$. Supondo p = n, segue que m + k = n = p, isto é, m < p; Agora, supondo $p = n + k_1$,

$$p = n + k_1,$$

= $(m + k) + k_1,$
= $m + (k + k_1) = m + k_2, k_2 \in \mathbb{N}$

ou seja, m < p. Semelhante ao item anterior, segue que $(m < n) \land (n \le p) \implies m < p$. \square

c) Se $m \le n$ e $n \le p$, então $m \le p$.

Dos itens (a) e (b), sabemos que:

- $(m < n) \lor (n = p) \implies m < p$;
- $(m < n) \lor (n < p) \implies m < p$;
- $(m = n) \lor (n < p) \implies m < p$.