Boiling Studies Run Plan, BEAM Energy 10.549 GeV

March 2023

1 Target Boiling Studies (part 1)

Prescale GUI settings for deuteron d(e, e'p) luminosity scan

COIN DAQ		
TRIGGER	PRE-SCALE	TARGET RATE
PS1 (SHMS-3/4)	-1	
PS2 (SHMS-ELREAL)	-1	
PS3 (HMS-3/4)	-1	
PS4 (HMS-ELREAL)	-1	
PS5 (SHMS-ELREAL x HMS-3/4)	-1	
PS6 (HMS-3/4 x SHMS-3/4)	0	
EDTM Target Prescale Rate		10 Hz

Change kinematics back to $P_m=120 \text{ MeV/c}$ setting to do a luminosity scan.

- o Check SHMS is set to -8.55 GeV/c, 12.2 deg.
- o Set HMS momentum to +3.0523 GeV/c, 38.63 deg (will need to cycle HMS magnets to MOL)
- o Ensure target is set to 10 cm LD2 $\,$
- o From previous measurements at this setting, DAQ T6 rates were 48 Hz @ 35 μ A, but after analysis cuts (except Q^2), the good (e,e'p) rates were 16.5 Hz, therefore, to scale to **X** beam current, good (e,e'p) (@ **X** μ A) = 16.5 Hz ×**X** μ A/35 μ A

1.1 LD2 @ 10 μ A:

- 1. Request MCC to deliver 10 μA beam current
- 2. Start a run for \sim 40 min. of beam-on-target to collect at least \sim 10k good (e,e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

1.2 LD2 @ 20 μ A:

- 1. Request MCC to deliver 20 $\mu\mathrm{A}$ beam current
- 2. Start a run for \sim 20 min. of beam-on-target to collect at least \sim 10k good (e,e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

1.3 LD2 @ 30 μ A:

- 1. Request MCC to deliver 30 μA beam current
- 2. Start a run for ~ 15 min. of beam-on-target to collect at least ~ 10 k good (e, e'p) events.
- 3. When the run ends, execute Execute: $./run_deut_prod.sh deep < run_num > to begin full replay$

1.4 LD2 @ 40 μ A:

- 1. Request MCC to deliver 40 μA beam current
- 2. Start a run for ~ 10 min. of beam-on-target to collect at least ~ 10 k good (e, e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

1.5 LD2 @ 50 μ A:

- 1. Request MCC to deliver 50 μA beam current
- 2. Start a run for ~ 8 min. of beam-on-target to collect at least ~ 10 k good (e, e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

1.6 LD2 @ 60 μ A:

- 1. Request MCC to deliver 60 μ A beam current
- 2. Start a run for ~ 7 min. of beam-on-target to collect at least ~ 10 k good (e, e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

1.7 LD2 @ 70 μ A:

- 1. Request MCC to deliver 70 μA beam current
- 2. Start a run for ~ 6 min. of beam-on-target to collect at least ~ 10 k good (e, e'p) events.
- 3. When the run ends, execute Execute: ./run_deut_prod.sh deep <run_num> to begin full replay

2 Target Boiling Studies (part 2)

Prescale GUI settings for luminosity scan using SHMS (e-) singles

COIN DAQ			
TRIGGER	PRE-SCALE	TARGET RATE	
PS1 (SHMS-3/4)	-1		
PS2 (SHMS-ELREAL)	TBD	2000 Hz	
PS3 (HMS-3/4)	-1		
PS4 (HMS-ELREAL)	-1		
PS5 (SHMS-ELREAL x HMS-3/4)	-1		
PS6 (HMS-3/4 x SHMS-3/4)	-1		
EDTM Target Prescale Rate		10 Hz	

NOTE: Only enable T2 (e- singles) trigger, and monitor the trigger rates to ensure they are below \sim 2 kHz. This should be done while accelerator delivers desired beam current. If target rate exceeds \sim 2 kHz, then set target rate to 2000 (in units of Hz), press return, then click Save on the pre-scale GUI. If target rate is <2000 Hz, then leave trigger un-prescaled. This check should be done before starting a run at the start of every setting.

- o Prior to starting the luminosity scan, check SHMS NGCER, pre-Shower LO, pre-Shower HI scaler rates and increase hardware thresholds on these pre-triggers accordingly such that they are NOT ~ 1 MHz with no beam. Expert will do this part.
- o the lumi option in the analysis script: ./run_deut_prod.sh lumi <run_num>, applies general acceptance and PID cuts, and integrates over the SHMS momentum acceptance, δ_{SHMS} from -10 to 22 %) to get total (e,e') singles counts.

2.1 LD2 @ 10 μ A:

- 1. Set SHMS to -4.0 GeV/c, 20.0 deg
 - Should NOT need to cycle magnets, as going down in momentum.
- 2. Update the DBASE/COIN/STD/standard.kinematics with the new settings
- 3. Request MCC to deliver 10 μA beam current
- 4. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 5. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 6. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.2 LD2 @ 15 μ A:

- 1. Request MCC to deliver 15 μA beam current
- 2. Start a run for $\sim 5-30$ min. of beam-on-target to collect at least ~ 100 k good (e, e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.3 LD2 @ 25 μ A:

- 1. Request MCC to deliver 25 μA beam current
- 2. Start a run for $\sim 5-30$ min. of beam-on-target to collect at least ~ 100 k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.4 LD2 @ 35 μ A:

- 1. Request MCC to deliver 35 μA beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.5 LD2 @ 40 μ A:

- 1. Request MCC to deliver 40 μ A beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.6 LD2 @ 45 μ A:

- 1. Request MCC to deliver 45 μA beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.7 LD2 @ 55 μ A:

- 1. Request MCC to deliver 55 μA beam current
- 2. Start a run for $\sim 5-30$ min. of beam-on-target to collect at least ~ 100 k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.8 LD2 @ 65 μ A:

- 1. Request MCC to deliver 65 $\mu\mathrm{A}$ beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.9 LD2 @ 70 μ A:

- 1. Request MCC to deliver 70 $\mu\mathrm{A}$ beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.10 C12 @ 15 μ A:

- 1. Request MCC mask the target and change to C12.
- 2. Update the DBASE/COIN/STD/standard.kinematics with the new settings
- 3. Request MCC to deliver 15 μA beam current
- 4. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 5. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take
- 6. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.11 C12 @ 30 μ A:

- 1. Request MCC to deliver 30 μ A beam current
- 2. Start a run for $\sim 5-30$ min. of beam-on-target to collect at least ~ 100 k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.12 C12 @ 45 μ A:

- 1. Request MCC to deliver 45 μA beam current
- 2. Start a run for \sim 5-30 min. of beam-on-target to collect at least \sim 100k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.13 C12 @ 60 μ A:

- 1. Request MCC to deliver 60 μA beam current
- 2. Start a run for $\sim 5-30$ min. of beam-on-target to collect at least ~ 100 k good (e,e') events
- 3. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e,e') rates and project how long the run will take
- 4. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay

2.14 Al dummy @ 40 μ A:

- 1. Request MCC mask the target and change to Al. dummy
- 2. Update the DBASE/COIN/STD/standard.kinematics with the new settings
- 3. Request MCC to deliver 40 μ A beam current
- 4. Start a run for ~ 30 min. of beam-on-target to collect at least ~ 100 k good (e, e') events
- 5. During mid-run, execute: ./run_deut_sample.sh lumi <run_num> <evt_num> to estimate good (e, e') rates and project how long the run will take (when script asks for target input, enter LD2 to analyze it as if it were deuterium)
- 6. When the run ends, execute: ./run_deut_prod.sh lumi <run_num> to begin full replay (when script asks for target input, enter LD2 to analyze it as if it were deuterium)