Детерминированные циклические вычислительные процессы с управлением по аргументу. Численное интегрирование.

Цель работы: разработать и научиться использовать алгоритмы, основанные на детерминированных вычислительных процессах, управление которыми осуществляется по аргументу для расчета определенного интеграла.

Используемое оборудование: ПК.

Задание №1

Постановка задачи: Написать программу для вычисления определенного интеграла методом прямоугольника левых частей.

Математическая модель:
$$\int_{0,4}^{1,0} \frac{\sin(x+1.4)dx}{0.8+\cos(2x^2+0.5)}$$

$$H = \frac{b-a}{n}$$

Таблица 1 – список идентификаторов для 1 задачи

Название	Смысл	Тип
A	Левая граница	Real
	интеграла	
В	Правая граница	Real
	интеграла	
I	Счетчик для цикла	Real
S	Переменная для	Real
	накопления ответа	
Н	Шаг в цикле	Real
N	Кол-во точек при	Real
	расчете	

Код программы:

```
program mda;
var a,b,i,s,h,n:real;
begin
b := 1;
a := 0.4;
s := 0;
readln(n);
h := (b-a)/n;
i:=a;
  while i<=b-h do
  begin
    s:=s+(sin(i+1.4)/(0.8+cos(2*i*i+0.5)));
    i:=i+h;
  end;
  s:=h*s;
  writeln(s);
end.
```

Результаты выполненной работы:

```
10
0.573006589026206
```

Рис 2 – результат выполнения 1 программы

Анализ результатов вычисления:

Данный результат получен путем накопления расчетов в переменной s в цикле и последующего умножения на шаг h. Цикл проходит от значения а до значения b-h таким образом обеспечивая выполнение метода левых прямоугольников.

Задание №2

Постановка задачи: Написать программу для вычисления определенного интеграла методом прямоугольника правых частей.

Математическая модель:
$$\int_{0,4}^{1,0} \frac{\sin(x+1.4)dx}{0.8+\cos(2x^2+0.5)}$$

$$H = \frac{b-a}{n}$$

Рис 3 – блок схема к 2 задаче

Таблица 2 – список идентификаторов для 2 задачи

Название	Смысл	Тип
A	Левая граница	Real
	интеграла	
В	Правая граница	Real
	интеграла	
I	Счетчик для цикла	Real
S	Переменная для	Real
	накопления ответа	
H	Шаг в цикле	Real
N	Кол-во точек при	Real
	расчете	

Код программы:

```
program mda;
var a,b,i,s,h,n:real;
begin
b:=1;
a := 0.4;
s:=0;
readln(n);
h := (b-a)/n;
i:=a+h;
  while i<=b do</pre>
  begin
    s:=s+(sin(i+1.4)/(0.8+cos(2*i*i+0.5)));
    i:=i+h;
  end;
  s:=h*s;
  writeln(s);
```

Результаты выполненной работы:

```
10
0.805495859860789
```

Рис 4 – результат работы 2 программы

Анализ результатов вычисления: Данный результат получен путем накопления расчетов в переменной s в цикле и последующего умножения на

шаг h. Цикл проходит от значения a+h до значения b таким образом обеспечивая выполнение метода правых прямоугольников.

Задание №3

Постановка задачи: Написать программу для вычисления определенного интеграла методом трапеций.

Математическая модель:
$$\int_{0,4}^{1,0} \frac{\sin(x+1.4)dx}{0.8+\cos(2x^2+0.5)}$$

$$H = \frac{b-a}{n}$$

$$y1 = \frac{\sin(a+1.4)}{0.8 + \cos(2a^2 + 0.5)}$$

$$y2 = \frac{\sin(b+1.4)}{0.8 + \cos(2b^2 + 0.5)}$$

$$I = h * (\frac{y1+y2}{2} + s)$$

Рис 5 – блок схема к 3 задаче

Таблица 3 – список идентификаторов к 3 задаче

Наименование	Смысл	Тип
A	Левая граница интеграла	Real
В	Правая граница интеграла	Real
Н	Шаг	Real
N	Кол-во точек для измерения	Real
Ι	Результат вычисления интеграла	Real
S	Переменная для накопления результатов вычислений	Real
X	Счетчик цикла	Real
Y1	Расчет левой границы интеграла	Real
Y2	Расчет правой границы интеграла	Real

Код программы:

```
program mda;
var a,b,h,n,i,s,x,y1,y2:real;
begin
```

```
a:=0.4;
b:=1;
s:=0;
readln(n);
h:=(b-a)/n;
y1:=(sin(a+1.4)/(0.8+cos(2*a*a+0.5)));
y2:=(sin(b+1.4)/(0.8+cos(2*b*b+0.5)));
x:=a+h;
while x<=b-h do
begin
   s:=s+(sin(x+1.4)/(0.8+cos(2*x*x+0.5)));
   x:=x+h;
end;
i:=h*((y1+y2)/2+s);
writeln(i);
end.
```

Результаты выполненной работы:

Рис 6 – результат работы 3 программы

Анализ результатов вычисления: Данный результат получен путем накопления расчетов в переменной s в цикле и последующего умножения на шаг h. Цикл проходит от значения a+h до значения b-h, а крайние значения рассчитываются отдельно, и складываются в конце таким образом обеспечивая выполнение метода трапеций.

Задание №4

Постановка задачи: Написать программу для вычисления определенного интеграла методом Симпсона.

Математическая модель:
$$\int_{0,4}^{1,0} \frac{\sin(x+1.4)dx}{0.8+\cos(2x^2+0.5)}$$

$$H = \frac{b-a}{n}$$

$$I = h * \frac{4*s1+2*s2+s}{3}$$

Рис 7 – блок схема к 4 задаче

Таблица 4 – список идентификаторов к 4 задаче

Наименование	Смысл	Тип
A	Левая граница интеграла	
В	Правая граница интеграла	
Н	Шаг	Real
N	Кол-во точек для измерения	Real
Ι	Результат вычисления интеграла	Real
S	Переменная для накопления результатов вычислений	Real
X	Счетчик цикла	Real
S1	Расчет левой границы интеграла	Real
S2	Расчет правой границы интеграла	Real

Код программы:

```
program mda;
var x,a,b,h,s1,s2,i,s: real;
n:integer;
begin
  a := 0.4;
  b:=1;
  s1:=0;
  s2:=0;
  readln(n);
  h := (b-a)/n;
  s:=\sin(a+1.4)/(0.8+\cos(2*a*a+0.5));
  s:=s+(sin(b+1.4)/(0.8+cos(2*b*b+0.5)));
  x := a+h;
  while x<=b-h do
    s1:=s1+(sin(x+1.4)/(0.8+cos(2*x*x+0.5)));
    x := x + 2 * h;
  end;
  x:=a+h*2;
  while x \le b-h*2 do
    s2:=s2+(sin(x+1.4)/(0.8+cos(2*x*x+0.7)));
    x := x + 2 * h;
  end;
  i:=h*(4*s1+2*s2+s)/3;
  writeln(i);
end.
```

Результаты выполненной работы:

```
1000
2.98440922574633
```

Рис 8 – результат выполнения 4 программы

Анализ результатов вычисления: В результате создания программы был разработан алгоритм удовлетворяющим условиям задачи.

N	Н	Метод левых	Метод правых	Метод трапеций	Метод парабол
		частей	частей		
10	0.06	0.573006589026206	0.805495859860789	-17.1658539820416	-10.9030525813238
100	0.006	1.19952100069976	1.49989632170345	-0.574365056407028	-0.0718533162871488
1000	0.0006	2.02812753411372	3.40436390895446	1.85073892840305	2.98440922574633
10000	0.00006	8.08479963885929	8.04932191768616	8.06706077828823	2.48215856332982

Вывод: Сделать вывод о том какой вывод является наиболее точным не представляется возможным т.к. показания довольно-таки противоречивые. По такой же причине нельзя сделать вывод как можно увеличить точность любого метода, но законы логики подсказывают увеличить кол-во точек, таким образом уменьшив шаг.