Domácí zábava z Kombinatorické teorie her, 2. série

Veškerá tvrzení precizně zdůvodněte.

- (2.1) Nechť $G \in \mathcal{L}$ a $H \in \mathcal{N}$. Dokažte, že potom hra (G společně s H) patří do třídy $\mathcal{L} \cup \mathcal{N}$. 2 body
- (2.2) Najděte příklady dvojic kombinatorických her $G \in \mathcal{L}$ a $H \in \mathcal{R}$ takových, že jejich součty (hra G společně s H) patří po řadě do tříd \mathcal{L} , \mathcal{R} , \mathcal{P} a \mathcal{N} a samozřejmě to zdůvodněte. Udělejte to samé pro $G \in \mathcal{N}$ a $H \in \mathcal{N}$.
- (2.3) Analyzujte partie velikosti $3 \times n$ v Dominování pro každé přirozené n. Návod jak na to: nejprve ručně rozeberte konfigurace 3×1 , 3×2 , 3×3 . Potom částečně ručně a částečně principem svázané ruky ukažte, že pozice 3×4 až 3×7 jsou \mathcal{R} . Na pozice $3 \times n$ pro n > 7 vhodně aplikujte princip svázané ruky.
- (2.4) Uvažme následující hru. V aktuálním tahu máme hromádku n sirek. Hráč ve svém tahu odebere z hromádky libovolného netriviálního (tj. různého od n) dělitele čísla n. (Příklad: Pro n=12 lze zanechat na hromádce 11, 10, 9, 8 nebo 6 sirek. Kdyby začínající zanechal 10 sirek, druhý hráč může zanechat 9, 8 nebo 5 sirek, a tak dále.) Hráč, který po svém tahu zanechal hromádku s jednou sirkou, vyhrál.
 - (i) Charakterizujte \mathcal{N} a \mathcal{P} pozice této hry, dokažte své tvrzení nejlépe indukcí.

 $2 \ body$

(ii) A jak dopadne misère varianta této hry?

1 bod

(2.5) Nim je hra, ve které máme k hromádek sirek, na i-té hromádec leží n_i sirek. Ve svém tahu hráč vybere jednu hromádku a z ní odebere nějaký nenulový počet sirek (klidně všechny). Hladový Nim je Nim, ve kterém je povoleno odebírat pouze z hromádky s nejvyšším počtem sirek (pokud je více takových, tak z libovolné z nich). Charakterizujte \mathcal{N} pozice a \mathcal{P} pozice hladového Nimu. $3 \ body$