

This implies that $Var(Y_i) = Cov(Y_i, Y_i) = \lambda_i$ and $Cov(Y_i, Y_j) = 0$.

total variance of $X_i = \sum_{i=1}^p \lambda_i = tr(D)$

total variance of $\,\hat{X}_l = \sum_{i=1}^m \lambda_i = tr(D)\,$

parallel shift component: affect in the same direction

curvature: mid -term is different from else

tilt component: short term is opposite with the long term