Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso segundo semestre 2022

PRÁCTICO 9: Grupos normales, Grupos cociente, Teoremas de isomorfismo

Ejercicio 1. Sea $\{H_i\}_{i\in I}$ una familia de subgrupos normales de un grupo G. Probar que $\cap_{i\in I}H_i$ es un subgrupo normal en G.

Ejercicio 2. Sea H un subgrupo de G tal que [G:H]=2. Probar que H es un subgrupo normal de G.

Ejercicio 3. Sea H un subgrupo de G. Probar que $\bigcap_{x \in G} xHx^{-1}$ es un subgrupo normal de G.

Ejercicio 4. Sea G un grupo y d un entero positivo. Supongamos que G posee un único subgrupo H de orden d. Demuestre que H es normal.

Ejercicio 5. Si S es un subconjunto de un grupo G, sea

$$N_S = \{x \in G : xSx^{-1} = S\}$$
 el normalizador de S en G .

- **a**. Probar que N_S es un subgrupo de G.
- **b**. Si S es un subgrupo de G entonces probar que S es un subgrupo normal de N_S . Probar que N_S es el subgrupo más grande de G con esa propiedad.

Ejercicio 6. Sea $Z_G = \{x \in G : xg = gx \text{ para todo } g \in G\}$ el **centro** de G.. Probar que Z_G es un subgrupo normal de G y, además, cualquiera sea $S \subset G$, se tiene $Z_G \subset N_S$.

Ejercicio 7. Si G es un grupo cualquiera y $x,y\in G$, el **conmutador** de x e y es el elemento $[x,y]=xyx^{-1}y^{-1}$.

- **a**. Verificar que si $z \in G$, entonces $z[x,y]z^{-1} = [zxz^{-1}, zyz^{-1}]$.
- **b**. Llamamos **subgrupo conmutador** o **subgrupo derivado**, y lo escribimos [G, G], al subgrupo de G generado por los conmutadores. Probar que [G, G] es un subgrupo normal de G.

Ejercicio 8. Sea $f: G \to G'$ un morfismo de grupos. Verificar que Ker(f) es un subgrupo normal de G y mostrar con un ejemplo que Im(f) no tiene porque ser normal.

Ejercicio 9. Sea G un grupo. Probar que $G/\{e\} \cong G$ y $G/G \cong \{e\}$.

Ejercicio 10. Sea H un subgrupo de G tal que $x^2 \in H$ para todo $x \in G$. Probar que H es un subgrupo normal de G y que G/H es un grupo abeliano.

Ejercicio 11. Si G/Z(G) es un grupo cíclico, demostrar que G es un grupo abeliano

Ejercicio 12. Sea $f: G \to K$ un homomorfismo de grupos sobreyectivo, con K grupo cíclico de orden 10. Pruebe que G tiene subgrupos normales de índices 2, 5 y 10.

Ejercicio 13. ¿Cuántos homomorfismos sobreyectivos existen del grupo diedral D_{13} en \mathbb{Z}_{12} ? (Sugerencia: Recordar que el grupo diedral D_n es un grupo de orden 2n)

Ejercicio 14. Se consideran los siguientes subconjuntos de $\mathbb C$

$$G = \{z \in \mathbb{C} : |z| = 1\}$$

$$H=\{z\in\mathbb{C}:z^n=1\text{ para algún }n\in\mathbb{Z}\}.$$

- **a**. Probar que G y H son subgrupos de \mathbb{C} .
- **b**. Probar que $\phi:\mathbb{R} \to G$ dado por $\phi(x)=e^{2x\pi}$ es un morfismo de grupos sobreyectivo.
- **c**. Probar que G es isomorfo al grupo aditivo \mathbb{R}/\mathbb{Z} .
- ${\bf d}.$ Probar que H es isomorfo al grupo aditivo $\mathbb{Q}/\mathbb{Z}.$