Dynamics of Computation in the Brain 76908 Solution EX #1

Barak Haim

20/05/2024

Contents

1	Euler's Method for Numerical Integration				
	1.1	Analytical Part	2		
		1.1.1 Single-step Simulation Error	2		
		1.1.2 Fixed-time Simulation Error			
	1.2	Numerical Part	5		
		1.2.1 Numerical Simulations of $x(t)$			
		1.2.2 Error Function	5		
	1.3	Qualitative Observation	6		
2	Di	erential equation with time-dependent input	6		

1 Euler's Method for Numerical Integration

1.1 Analytical Part

$$(t) = jx(t) \quad \hat{x}(t)j$$

1.1.1 Single-step Simulation Error

(a) The approximated solution after a single-step is:

$$\hat{x}(0+t) = \hat{x}(0) + f(\hat{x}(0)) \quad t = \hat{x}(0) \qquad \hat{x}(0) \quad t$$

Note $\hat{x}(0) = x_0$ the starting condition for the solution and we get:

$$\hat{x}(t) = x_0 \qquad x_0 \quad t$$

(b) The analytical solution as we know is $x(t) = x_0 e^{-t}$. The single-step error is:

$$(t) = jx(t) \quad \hat{x}(t)j = jx_0e \quad t \quad x_0 + x_0 \quad tj$$

$$= jx_0j \quad je \quad t \quad 1 + tj$$

Using the fact that $e^x = P_{i=0}^{1} \frac{x^i}{i!}$ (Tylor expansion of e^x at 0), we get:

$$(t) = jx_0j \ j1$$
 $t + \frac{2}{2}t^2 + O(t^3)$ $1 + tj = jx_0j \ j - \frac{2}{2}t^2 + O(t^3)j$

$$jx_{0}j = \frac{2}{2}t^{2}$$

1.1.2 Fixed-time Simulation Error

(a) Given t_1 and t, let n be the maximal integer such that: $n < \frac{t_1}{t}$ (less formally, this means $t_1 = n$ t up to a small residual). We then get:

$$\hat{x}(0) = x_0; \hat{x}(-t) = x_0$$
 $x_0 = t = x_1; ...; \hat{x}(n-t) = x_{n-1}$ $x_{n-1} = t = x_n = \hat{x}(t_1)$

So, for 1 i n:

$$\frac{X_{i}}{X_{i-1}} = \frac{X_{i-1}}{X_{i-1}} = \frac{X_{i-1}}{X_{i-1}} = 1$$

And now we can get a closed formula:

$$\hat{x}(i \quad t) = x_i = x_0(1 \quad t)^i$$

Specifically:

$$\hat{x}(t_1) = x_0(1 \qquad t)^n$$

(b) First, note that 0 < t, so we get 0 < t and thus t < 0 and 1 < t < 1. Ergo, we only need to consider what happens to q := 1 t in the ray (1,1). Given a fixed t, this will singularly determine the different qualitative outcomes. Moreover, note $t_1 \nmid 1$ in $t \nmid 1$. Thus, it such that consider the asymptotic behavior of $t_1 \nmid 1$ in $t \mid 1$. Thus, it such that $t \mid 1$ is $t \mid 1$.

I.e. , for 0 q < 1, q^n will monotonically decrease to 0. For 1 < q < 0, q^n will still converge to 0 but will do it in an alternating fashion where the sign of q^n will socialite between + and . Similar oscillations will occurs for q 1 however, in this case there will be no convergence. In the spacial case of q = 1, q^n will oscillate between 1, otherwise, between 1. Now:

0 1
$$t < 1$$
, 1 $t < 0$, 1 $t > 0$, $\frac{1}{t}$ $t > 0$
1 < 1 $t < 0$, 2 < $t < 1$, 2 > $t > 1$, $\frac{2}{t}$ > $t > \frac{1}{t}$
1 $t = 1$, $t = 2$, $t = 2$, $t = 2$

(c) The error is:

$$(t_1) = jx(t_1)$$
 $\hat{x}(t_1)j = jx_0e^{-t_1}$ $x_0(1$ $t)^nj = jx_0jje^{-t_1}$ $(1$ $t)^nj$

Assume for simplicity $jx_0 = 1$:

$$(t_1) = je^{-t_1} e^{n \ln(2 - t)} j = je^{-t_1} e^{n \ln(1 - t)} j$$

We use Tylor's expansion around 0 of $ln(1+x) = x + \frac{x^2}{2} + o(x^3)$. For this to work, we'll add the condition that $(t-x) = x + \frac{x^2}{2} + o(x^3)$. For this to work, we'll add the condition that $(t-x) = x + \frac{x^2}{2} + o(x^3)$. For this to work, we'll add the condition that $(t-x) = x + \frac{x^2}{2} + o(x^3)$. For this to work, we'll add the condition that $(t-x) = x + \frac{x^2}{2} + o(x^3)$.

$$(t_1)$$
 je^{-t_1} $e^{\frac{t_1}{t}}$ $(t_1)^2$ $j=t_1$ $(t_1)^2$ $j=t_2$ $(t_1)^2$ $j=t_1$ $(t_1)^2$ $(t_2)^2$ $(t_2)^2$ $(t_1)^2$ $(t_2)^2$ $(t_2)^2$ $(t_1)^2$ $(t_2)^2$ $(t_2)^2$ $(t_1)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_1)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_2)^2$ $(t_1)^2$ $(t_2)^2$ $(t_2$