

Date: 11 / 20 / 21

d

I. Construct a (3)-to-32 line decoder with cour 3-to-8 line decoder with enable and a (2-to-4) line decoder. Use block diagrams for the components, label all inputs and outputs.

en=1				en=	0			
3bit	8 bit			×	0000	0000		
000	0000	0001						
001	0000	0010						
111	1000	0000						
input	dø	OUL	Put [31:0]					
00 000	1	0000	0000	0000	0000	0000 0000	9 0000	0001
	NO	d4		d3		d2	dı	
00	.							
01 000] _n ,							
10 000	N2							
10 111	ļ							
11 00 <i>0</i> ; 11 111	\hat{\range 13}							

2. A combinational circuit is defined by the following three Boolean functions:

Design the circuit with a decoder and external gates. Draw the diagram, and label all inputs and outputs. (Hints: turn each function to sum of minterms.)

9

10

4. Construct a 16x1 multiplexer with (wo 8x1) and (one 2x1) multiplexers. Use block diagrams and label all inputs and outputs. $z^3 = 8$

Date:

5. Implement a full adder with (two 4x1) multiplexers. Draw the truth-table, diagram and label the inputs and outputs.

6. An 8x1 multiplexer has inputs A, B, And C connected to the selection inputs S2, S1, and S0, respectively. The data inputs 10 through 17 are as follows

11 = 12 = 0, 13 = 17 = 1; 14 = 15 = 10'; and 10 = 16 = 10;

Determine the Boolean function that the multiplexer implements

	Dec	Α	8	c	0	F	
1	٥	o	0	0	0	0	F=D
[<u> </u>	0	٥	0	1	•	_ 10
1	2	0	0	١	0	0	£:0
J	3	0	0	ı	1	0	-11
1	4	o	١	o	o	O	F=0
- 1	5	0	١	0	١	0	_12
A	6	o	ı	ı	0	1	
1	7	o	ı	1	١	1	—13 ==1
A	8	ι	0	0	G	١	-17 F=0
1	9	1	0	0	١	0	-14
4	10	١	0	ı	0	ı	F=D
1	n.		0	١	١	o	- 15
1	12	١	ı	0	0	0	F= D
٦ ا	13	١	١	0	١	1	- 16
	14	١	١	١	0	١	6=1
1	15	٠		١	١	ı	` 17
							T.

F(A,B,C,D) = ABCD+8C+ABD+ABD

10

7. Using a case statement, write an HDL behavioral description of an eight-bit arithmetic logic unit (ALU). The circuit has a three-bit select bus (SeI), 8-bit input datapaths (A[7:0] and B[7:0]), an eight-bit output datapath (y[7:0]), and performs the arithmetic and logic operations listed below.

```
y = 8'00
000
                    Bitwise AND
     Y = A & B
001
                      Bitwise OR
010
     A = V | B
    A = V . B
                     Bitwise exclusive OR
011
100
     y = ~ A
                      Bitwise complement
                     Subtract
101
         A - B
     y = A + B
                    Add (Assume A and B are unsigned)
110
TIII
     y = 8'NFF
```

Sel Operation Description

```
module Alu(y,A,B,Sel)
// 8bit input datapaths
input [7:0] A,B;
// 3 bit bus
input [2:0] Sel;
output reg [7:0] y;
always @(A,B,Sel)
begin
case(SeI)
// follow given operations
    3'b000: y = 8'b0;
   3'b001: y = A & B;
   3'b010: y = A | B;
   3'boll: y = A ^ B;
   3'0100: y = -A;
   3'b101: y = A - B;
   3'b110: y = A + B;
   3'b111: y = 8'hff;
end case
end
```

endmodule

9

10