要点回顾 ▶ 连点成面

概念与几何意义	概念	$f(x)$ 在点 x_0 处的导数 $f'(x_0) = \Delta \lim_{X \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$.			
	几何意义	(1) "在"点 (x_1, y_1) 处的切线: ①斜率 $k=f'(x_1)$; ②切线方程为 $_y-y_1=f'(x_1)(x-x_1)$ 曲线 $y=f(x)$ 在点 $P(x_0, f(x_0))$ 处的切线斜率是 $f'(x_0)$,相应地,切 线方程是 $y-y_0=f'(x_0)(x-x_0)$. (2) "过"点 (x_1, y_1) 的切线. ①设切点 (x_0, y_0) ; ②求切线方程; ③列方程组: 切点 (x_0, y_0) 在 曲线上, $y_0=f(x_0)$; 切点在切线 $_y-y_1=f'(x_0)(x-x_1)$ 上; ④解 方程组,得 x_0 ,求切线.			
	物理意义	v=s'(t)表示瞬时速度a=v'(t)表示加速度.			
运算	基本 公式	①C'=0; ②(x ⁿ)'=nx ⁿ⁻¹ ; ③(sin x)'=cos x; ④(cos x)'=-sin x; ⑤(a ^x)'=a ^x ln a; ⑥(e ^x)'=e ^x ; ⑦(log _a x)'= $\frac{1}{x \ln a}$; ⑧(ln x)'= $\frac{1}{x}$.			
	运算 法则	$(u\pm v)'=\underline{u'\pm v'}_{;}$ $(uv)'=\underline{u'v\pm uv'}_{;}$; $(uv)'=\underline{u'v\pm uv'}_{;}$; $(uv)'=\underline{u'v\pm uv'}_{;}$; $(v\ne 0)_{;}$ 复合函数求导法则: $\underline{[f(g(x))]'=f'\ (g(x))g'(x)_{;}}$.			
研究函数性质	函数的 单调性	①若 $f'(x)>0$,则 $f(x)$ 为增函数;若 <u>$f'(x)<0$</u> ,则 $f(x)$ 为减函数;若 $f'(x)$ 的符号不确定,则 $f(x)$ 不是单调函数. ②若函数 $y=f(x)$ 在区间 (a,b) 上单调递增,则 <u>$f'(x)\ge0$</u> ,反之等号不成立;若函数 $y=f(x)$ 在区间 (a,b) 上单调递减,则 $f'(x)\le0$,反之等号不成立.			
	极值	设函数 $f(x)$ 在点 x_0 附近有定义,如果对 x_0 附近所有的点,都有 $\underline{f(x)} < f(x_0)$,就说 $f(x_0)$ 是函数 $f(x)$ 的一个极大值,记作 $y_{\text{极大值}}$ = $f(x_0)$.如果对 x_0 附近所有的点,都有 $f(x) > f(x_0)$,就说 $f(x_0)$ 是函数 $f(x)$ 的一个极小值,记作 $y_{\text{极小值}} = f(x_0)$.极大值和极小值统称为极值.			
	最值	闭区间上的连续函数一定存在最大值和最小值,最大值是区间端 点值和区间内的极大值中的最大者,最小值是区间端点值和区间 内的极小值中的 <u>最小者</u>			

考法聚焦▶核心突破

考法1 导数的几何意义

例1 已知函数 $f(x) = xe^{2x} - a(2x + \ln x)(a \in \mathbb{R})$,若曲线 y = f(x)在点(1, f(1))处的切线方程为 $y = -e^2$,求 a 的值.

【解析】由题意知,f(x)的定义域为 $(0, +\infty)$, $f'(x) = e^{2x} + 2xe^{2x} - a\left(2 + \frac{1}{x}\right) = (2x + 1)\left(e^{2x} - \frac{a}{x}\right)$,

则 $f(1)=3(e^2-a)$,又因为 $f(1)=e^2-2a$,

所以曲线 y=f(x)在点(1, f(1))处的切线方程为 $y-(e^2-2a)=3(e^2-a)(x-1)$, 即 $y-(e^2-2a)=3(e^2-a)x+3a-3e^2$.

所以
$$\begin{cases} 3 (e^2-a) = 0, \\ 3a-3e^2+(e^2-2a) = -e^2, \end{cases}$$
解得 $a=e^2$.

【题组训练】

1. 已知曲线 $y=\ln x-x^2$ 上的一点 P(1, f(1)),在点 P 处的切线的倾斜角为 θ ,则角 $\theta=$

【答案】 $\frac{3\pi}{4}$

【解析】因为 $y=\ln x-x^2$,所以 $y'=\frac{1}{x}-2x$,则 $y'|_{x=1}=-1$,即 $\tan \theta=-1$.而 $\theta\in[0,\pi)$,所以 $\theta=\frac{3\pi}{4}$.

2. 已知函数 $f(x) = 2\sin x + 3xf'(0)$, 则曲线 y = f(x)在点 $\left(\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)\right)$ 处的切线方程是

【答案】 3x+y-2=0

【解析】由 $f(x)=2\sin x+3xf'(0)$,得 $f'(x)=2\cos x+3f'(0)$,所以 $f'(0)=2\cos 0+3f'(0)$,得 f'(0)=-1,所以 $f(x)=2\sin x-3x$, $f'(x)=2\cos x-3$,则 $f\left(\frac{\pi}{2}\right)=2\cos\frac{\pi}{2}-3=-3$.又因为 $f\left(\frac{\pi}{2}\right)=2\sin\frac{\pi}{2}-3\times\frac{\pi}{2}=2-\frac{3\pi}{2}$,所以曲线 y=f(x)在点 $\left(\frac{\pi}{2}\right)$,处的切线方程为 $y=2+\frac{3\pi}{2}=-3\left(x-\frac{\pi}{2}\right)$,即 3x+y-2=0.

3. 过曲线 $y=2e^x$ (e 为自然对数的底数)上一点 A(1, 2e)作曲线的切线,则切线与直线 4ex+y-6e=0 以及 y 轴所围图形的面积为______.

【答案】 3e

【解析】由已知得 $y'=2e^x$,所以切线的斜率为 k=y' $|_{x=1}=2e$,切线方程为 y-2e=2e(x-1),即 y=2ex.由 4ex+y-6e=0,得当 x=0 时,y=6e.联立 $\begin{cases} y=2ex, \\ 4ex+y-6e=0, \end{cases}$ 解得 $\begin{cases} x=1, \\ y=2e, \end{cases}$ 所以此时所围图形的面积 $S=\frac{1}{2}\times 6e\times 1=3e$.

考法 2 含参函数的单调性讨论

囫2 已知函数 $f(x) = ax + \frac{a}{x} + (1 - a^2) \ln x$, $a \in \mathbb{R}$, 求函数 f(x)的单调区间.

【解析】因为 $f(x) = ax + \frac{a}{x} + (1 - a^2) \ln x$, x > 0,

所以
$$f(x)=a-\frac{a}{x^2}+\frac{1-a^2}{x}=\frac{ax^2+(1-a^2)x-a}{x^2}=\frac{(x-a)(ax+1)}{x^2}$$
.

当 a=0 时, $f'(x)=\frac{1}{x}>0$ 恒成立,故 f(x)在 $(0,+\infty)$ 上单调递增.

当 $a \neq 0$ 时,令 f(x) = 0,解得 x = a 或 $x = -\frac{1}{a}$.

当 a>0 时, 令 f(x)>0, 即 x>a 时,函数单调递增,

令 f(x)<0, 即 0<x<a 时,函数单调递减.

当 a<0 时,令 f(x)>0,即 $0<x<-\frac{1}{a}$ 时,函数单调递增;

综上所述: 当 a=0 时,f(x)的增区间为 $(0, +\infty)$.当 a>0 时,f(x) 的增区间为 $(a, +\infty)$,

减区间为(0, a); 当 a < 0 时,f(x)的增区间为 $\left(0, -\frac{1}{a}\right)$,减区间为 $\left(-\frac{1}{a}, +\infty\right)$.

【题组训练】

1. 已知函数 $f(x) = e^{2x} - me^{x} - m^{2} \left(3x - \frac{1}{2}\right)$, 讨论 f(x)的单调性.

【解析】 $f'(x) = 2e^{2x} - me^x - 3m^2 = (2e^x - 3m)(e^x + m)$.

- ①当 m=0 时, $f'(x)=2e^{2x}>0$ 恒成立,所以 f(x)在 R 上单调递增.
- ②当 m<0 时, $2e^x-3m>0$,令 f(x)=0,解得 $x=\ln(-m)$,

当 $x > \ln(-m)$ 时,f'(x) > 0,函数 f(x)在($\ln(-m)$, $+\infty$)上单调递增;当 $x < \ln(-m)$ 时,f'(x) < 0,函数 f(x)在($-\infty$, $\ln(-m)$)上单调递减.

③当 m>0 时, $e^x+m>0$,令 f'(x)=0,解得 $x=\ln \frac{3m}{2}$,

当 $x>\ln\frac{3m}{2}$ 时,f'(x)>0,函数 f(x)在 $\left(\ln\frac{3m}{2}, +\infty\right)$ 上单调递增;

当 $x < \ln \frac{3m}{2}$ 时,f'(x) < 0,函数 f(x)在 $\left(-\infty, \ln \frac{3m}{2}\right)$ 上单调递减.

2. 已知函数 $f(x)=(x-k)^2 e^{\frac{x}{k}}$, 求 f(x)的单调区间.

【解析】因为 $f(x) = \frac{1}{k} (x^2 - k^2) e^{\frac{x}{k}}$,

当 k>0 时,f'(x),f(x)随 x 的变化情况如下表:

х	$(-\infty, -k)$	-k	(-k, k)	k	$(k, +\infty)$
f'(x)	+	0	_	0	+
f(x)	增	$4k^2e^{-1}$	减	0	增

所以 f(x)的单调增区间是 $(-\infty, -k)$ 和 $(k, +\infty)$,单调减区间是(-k, k). 当 k<0 时,f'(x),f(x)随 x 的变化情况如下表:

Х	$(-\infty, k)$	k	(k, -k)	-k	$(-k, +\infty)$
f'(x)	_	0	+	0	_
f(x)	减	0	增	$4k^2e^{-1}$	减

所以 f(x)的单调减区间是 $(-\infty, k)$ 和 $(-k, +\infty)$,单调增区间是(k, -k).

考法3 极值与最值

囫3 已知函数 $f(x) = (ax^2 + bx + c)e^x(a>0)$ 的导函数 y=f(x)的两个零点为一3 和 0.

- (1) 求 f(x)的单调区间;
- (2) 若 f(x)的极小值为-1,求 f(x)的极大值.

【解析】(1) $f(x) = (2ax+b)e^x + (ax^2+bx+c)e^x = [ax^2+(2a+b)x+b+c]e^x$.

所以 y=f(x)的零点就是 $g(x)=ax^2+(2a+b)x+b+c$ 的零点,且 f(x)与 g(x)符号相同.

因为 a>0, 所以当 x<-3 或 x>0 时, g(x)>0, 即 f'(x)>0;

当-3< x<0时,g(x)<0,即f(x)<0,

所以 f(x)的单调增区间是 $(-\infty, -3)$, $(0, +\infty)$, 单调减区间是(-3, 0).

(2) 由(1)知, x=0 是 f(x)的极小值点,

所以有
$$\begin{cases} c=-1, \\ b+c=0, \\ 9a-3 & (2a+b) + b+c=0, \end{cases}$$

解得 a=1, b=1, c=-1.

所以函数 f(x)的解析式为 $f(x)=(x^2+x-1)e^x$.

又由(1)知,f(x)的单调增区间是 $(-\infty, -3)$, $(0, +\infty)$,单调减区间是(-3, 0).

所以函数 f(x)的极大值为 $f(-3) = (9-3-1)e^{-3} = \frac{5}{a^3}$.

囫4 已知函数 $f(x)=x^2-a \ln x (a \in \mathbb{R})$,求 f(x)在[1, e]上的最小值.

【解析】
$$f(x) = \frac{2x^2 - a}{x}$$
 (x>0),

当 $x \in [1, e]$ 时, $2x^2 - a \in [2-a, 2e^2 - a]$.

若 a≤2, 则当 x∈[1, e]时, f'(x)≥0,

所以 f(x)在[1, e]上是增函数,

又 f(1)=1,故函数 f(x)在[1, e]上的最小值为 1.

若 $a \ge 2e^2$, 则当 x ∈ [1, e]时, f'(x) ≤ 0,

所以 f(x)在[1, e]上是减函数,又 $f(e)=e^2-a$,

所以 f(x)在[1, e]上的最小值为 e^2-a .

若 $2 < a < 2e^2$,则当 $1 \le x < \sqrt{\frac{a}{2}}$ 时,f'(x) < 0,此时 f(x)是减函数;

当 $\sqrt{\frac{a}{2}} < x \le e$ 时,f'(x) > 0,此时 f(x) 是增函数.

$$abla f\left(\sqrt{\frac{a}{2}}\right) = \frac{a}{2} - \frac{a}{2} \ln \frac{a}{2},$$

所以 f(x)在[1, e]上的最小值为 $\frac{a}{2}$ $-\frac{a}{2}$ ln $\frac{a}{2}$.

综上可知, 当 $a \le 2$ 时, f(x)在[1, e]上的最小值为 1;

当 $2 < a < 2e^2$ 时,f(x)在[1, e]上的最小值为 $\frac{a}{2} - \frac{a}{2} \ln \frac{a}{2}$;

当 $a \ge 2e^2$ 时,f(x)在[1, e]上的最小值为 $e^2 - a$.

考法 4 导数与函数性质的综合应用

囫5 (多选)已知函数 f(x)是定义在 R 上的奇函数,当 x>0 时, $f(x)=e^x(x-1)$,则下列判断正确的是()

- A. 当 x < 0 时, $f(x) = -e^{-x}(x+1)$
- B. f(x) < 0 的解集为($-\infty$, -1) \cup (0, 1)
- C. 函数 f(x)在 R 上单调递增
- D. 函数 f(x)有 3 个零点

【答案】 BD

【解析】对选项 A,当 x<0 时,-x>0,所以 $f(-x)=e^{-x}(-x-1)=-f(x)$,所以 $f(x)=e^{-x}$

$$x(x+1)$$
,故 A 错误. 对选项 B,因为 $f(x) = \begin{cases} e^{-x} (x+1), & x < 0, \\ 0, & x = 0, \end{cases}$ 所以 $\begin{cases} x < 0, \\ e^{-x} (x+1) < 0 \end{cases}$ 冰 $x < 0$

1),故 B 正确;对选项 C,当 x>0 时, $f(x)=e^x(x-1)$, $f'(x)=e^x(x-1)+e^x=xe^x>0$,所以 f(x) 在(0, $+\infty$)上为增函数. 因为 f(x)是定义在 R 上的奇函数,所以函数 f(x)在($-\infty$, 0),(0, $+\infty$)上单调递增,又当 x=0 时, $e^0(0-1)=-1$,故不能说 f(x)在 R 上单调递增,故 C 错误. 对

选项 D, 因为
$$f(x) = \begin{cases} e^{-x} (x+1), & x < 0, \\ 0, & x = 0, \\ e^{x} (x-1), & x > 0, \end{cases}$$
 所以 $\begin{cases} x < 0, \\ e^{-x} (x+1) = 0 \end{cases}$ 泳 $x = -1; \begin{cases} x > 0, \\ e^{x} (x-1) = 0 \end{cases}$

变式 (多选)已知函数 $f(x) = \frac{x^2}{\pi} + \cos x - \frac{\pi}{4}$ ($x \in \mathbb{R}$),则下列说法正确的有()

- A. 直线 y=0 为曲线 y=f(x)的一条切线
- B. f(x)的极值点个数为3
- C. f(x)的零点个数为 4

【答案】 ABD

【解析】因为 $f(x) = \frac{x^2}{\pi} + \cos x - \frac{\pi}{4}$ ($x \in \mathbb{R}$),所以 $f'(x) = \frac{2x}{\pi} - \sin x$ ($x \in \mathbb{R}$),令 f'(x) = 0,

即 $\frac{2x}{\pi} = \sin x$.令 $y_1 = \sin x$, $y_2 = \frac{2x}{\pi}$, 在同一平面直角坐标系中作出两函数的图象, 如图(1)所

示,由图象得当 $x \in \left(\frac{\pi}{2}, +\infty\right)$ 和 $x \in \left(-\frac{\pi}{2}, 0\right)$ 时, $\sin x < \frac{2x}{\pi}$,所以此时 f(x) > 0 ,所以 f(x) 在 $\left(-\frac{\pi}{2}, 0\right)$ 和 $\left(\frac{\pi}{2}, +\infty\right)$ 上单调递增;当 $x \in \left(-\infty, -\frac{\pi}{2}\right)$ 和 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\sin x > \frac{2x}{\pi}$,所以此时 f'(x) < 0 ,所以 f(x) 在 $\left(-\infty, -\frac{\pi}{2}\right)$ 和 $\left(0, \frac{\pi}{2}\right)$ 上单调递减,且 $f(0) = 1 - \frac{\pi}{4}$, $\left(\frac{\pi}{2}\right)$ = $\left(-\frac{\pi}{2}\right)^2$, $\left(-\frac{\pi}{2}\right)^2$ 十 $\cos \left(-\frac{\pi}{2}\right)$ 一 $\frac{\pi}{4}$ = 0,作出函数 f(x) 的图象,如图(2)所示.对于 A,根据函数的图象知 A 正确.对于 B,由图象得 f(x) = 0 有 3 个不同的解,有 3 个极值点,故 B 正确.对于 C,当 $x = \frac{\pi}{2}$ 或 $x = -\frac{\pi}{2}$ 时,f(x) = 0,所以函数 f(x) 有 2 个零点,故 C 不正确.对于 D,因为 $f(-x) = \frac{(-x)^2}{\pi}$ 十 $\cos (-x) - \frac{\pi}{4} = \frac{x^2}{\pi}$ 十 $\cos x - \frac{\pi}{4}$ = f(x),所以函数 f(x)是偶函数,所以函数 f(x)的图象关于 f(x) = f(x),则 $f(x_1) = f(x_2) = f(-x_2)$,所以 $f(x_1) = f(x_2)$,可以 $f(x_1)$ 可以 $f(x_1)$ 可以 $f(x_1)$ 可以 $f(x_1)$ 可以 $f(x_1)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$ 可以 $f(x_1)$ 可以 $f(x_2)$ 可以 $f(x_2)$

(变式)

一、 单项选择题(每个5分, 共20分)

1. 已知函数 y=f(x)的导函数的图象如图所示,则下列结论正确的是()

(第1题)

- A. -4 是函数 f(x)的极小值点
- B. -1 是函数 f(x)的极小值点
- C. 函数 f(x)在区间(-4, 1)上单调递减
- D. 函数 f(x)在区间(-4, -1)上先增后减

【答案】 A

【解析】 结合导函数的图象,可知 f(x)在 $(-\infty, -4)$ 上单调递减,在 $(-4, +\infty)$ 上单 调递增,所以-4 是函数 f(x)的极小值点,故 A 正确;-1 不是 f(x)的极值点,故 B 错误;函 数 f(x)在区间(-4, 1)上单调递增, 故 C 错误; 函数 f(x)在区间(-4, -1)上单调递增, 故 D错误.

2. 已知函数 $f(x) = x^2 e^{ax^{+1}} - ax$,若曲线 y = f(x)在点(1, f(1))处的切线与直线 y = 2x 平行, 则 a 等于()

$$A$$
. −2 B . −2 或 −1 C . −1 或 2 D . −1

【答案】 A

【解析】因为 $f(x)=x^2e^{ax^{+1}}-ax$,所以 $f'(x)=2xe^{ax^{+1}}+ax^2e^{ax^{+1}}=a$. 又曲线 y=f(x)在点(1, f(1))处的切线与直线 y=2x 平行,所以 $f'(1)=2e^{a^{+}1}+ae^{a^{+}1}-a=2$,即 $(2+a)e^{a^{+}1}=2+a$,所以 2+a=0, $\mathbb{H} a=-2$.

3. 对于二次函数 f(x)=ax²+bx+c(a 为非零整数),四位同学分别给出下列结论,其中有 且仅有一个结论是错误的,则错误的结论是()

A. -1 是函数 f(x)的零点 B. 1 是函数 f(x)的极值点

C.3 是函数 f(x)的极值 D. 点(2, 8)在曲线 y=f(x)上

【答案】 A

【解析】 由 A 知 a-b+c=0; 由 B 知 f'(x)=2ax+b, 2a+b=0; 由 C 知 f'(x)=2ax+b,

令 f'(x)=0,可得 $x=-\frac{b}{2a}$,则 $f\left(-\frac{b}{2a}\right)=3$,则 $\frac{4ac-b^2}{4a}=3$;由 D 知 4a+2b+c=8.假设 A

选项错误,则
$$\begin{cases} a-b+c\neq 0,\\ 2a+b=0,\\ \frac{4ac-b^2}{4a}=3,\\ 4a+2b+c=8, \end{cases}$$
 得
$$\begin{cases} a=5,\\ b=-10,\\ c=8, \end{cases}$$
 满足题意,故 A 结论错误;同理易知,当 B

或 C 或 D 选项错误时,不符合题意,故选 A.

4. 己知函数 $f(x)(x \in \mathbb{R})$ 满足 f(1)=1,且 f(x)<1,则不等式 $f(\lg^2 x)<\lg^2 x$ 的解集为()

A.
$$\left(0, \frac{1}{10}\right)$$
 B. $\left(0, \frac{1}{10}\right) \cup (10, +\infty)$

C.
$$\left(\frac{1}{10}, 10\right)$$
 D. $(10, +\infty)$

【答案】 B

【解析】 设 g(x)=f(x)-x,则 g'(x)=f'(x)-1,因为 f(x)<1,所以 g'(x)<0,即函数 g(x)为减函数. 因为 f(1)=1,所以 g(1)=f(1)-1=1-1=0,则不等式 g(x)<0 等价为 g(x)<g(1),则此不等式的解集为 x>1,即 f(x)<x 的解为 x>1.因为 $f(\lg^2x)<\lg^2x$,由 $\lg^2x>1$ 得 $\lg x>1$ 或 $\lg x<-1$,解得 x>10 或 $0<x<\frac{1}{10}$,故原不等式的解集为 $\left(0,\frac{1}{10}\right)\cup(10,+\infty)$.

- 二、多项选择题(每个5分,共15分)
- 5. 对于函数 $f(x) = 16\ln(1+x) + x^2 10x$,下列结论正确的是()
- A. x=3 是函数 f(x)的一个极值点
- B. 函数 f(x)的单调增区间是(-1, 1), $(2, +\infty)$
- C. 函数 f(x)在区间(1, 2)上单调递减
- D. 直线 $y=16\ln 3-16$ 与函数 f(x)的图象有 2 个交点

【答案】 AC

【解析】
$$f(x) = \frac{16}{x+1} + 2x - 10 = \frac{2(x-1)(x-3)}{x+1}$$
 (x>-1),所以当-1

f'(x) > 0,当 1 < x < 3 时,f'(x) < 0,当 x > 3 时,f'(x) > 0,所以 f(x)在(-1,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,故 3 是 f(x)的极小值点,故 A 正确,B 错误,C 正确;由函数 f(x)的单调性可知 f(3) < f(2) < f(1),而 f(2) = 16 ln 3—16,故直线 y = 16 ln 3—16 与 y = f(x) 的图象有 3 个交点,故 D 错误.

- 6. 在平面直角坐标系内,由 A , B , C , D 四点所确定的 "N 型函数"指的是三次函数 f(x) = $ax^3 + bx^2 + cx + d(a \neq 0)$,其图象过 A , D 两点,且 f(x) 的图象在点 A 处的切线经过点 B , 在点 D 处的切线经过点 C.若将由 A(0,0) , B(1,4) , C(3,2) , D(4,0)四点所确定的 "N 型函数"记为 y = f(x) ,则下列选项正确的是(
 - A. 曲线 y=f(x)在点 D 处的切线方程为 y=-2x+8

B.
$$f(x) = \frac{1}{8} x(x-4)(x-8)$$

- C. 曲线 y = f(x)关于点(4, 0)对称
- D. 当 $4 \le x \le 6$ 时, $f(x) \ge 0$

【答案】 ABC

【解析】因为直线 *CD* 的斜率为 $\frac{0-2}{4-3}=-2$,所以直线 *CD* 的方程为 y-0=-2(x-4),即 y=8-2x,所以 A 正确;因为 f(x)的图象经过 A(0,0),D(4,0),所以 f(x)有两个零点 0,4,故可设 $f(x)=x(x-4)(kx+m)(k\neq0)$,f'(x)=kx(x-4)+(kx+m)(2x-4),由 f(0)=4,f'(4)=-2,可得 m=-1, $k=\frac{1}{8}$,所以 $f(x)=\frac{1}{8}$ x(x-4)(x-8),B 正确;由 f(x)+f(8-x)=0,所以曲线 y=f(x)关于点(4,0)对称,C 正确;当 $4 \le x \le 6$ 时,有 $x-4 \ge 0$, $x-8 \le 0$,所以 $f(x) \le 0$,即 D 不正确.

7. 已知偶函数 y=f(x)对于任意的 $x\in \left[0, \frac{\pi}{2}\right]$ 满足 $f'(x)\cos x+f(x)\sin x>0$ (其中 f(x)是 函数 f(x)的导函数),则下列不等式中成立的有(

A.
$$\sqrt{2} f\left(-\frac{\pi}{3}\right) < f\left(\frac{\pi}{4}\right)$$

A.
$$\sqrt{2} f\left(-\frac{\pi}{3}\right) < f\left(\frac{\pi}{4}\right)$$
 B. $\sqrt{2} f\left(-\frac{\pi}{3}\right) > f\left(\frac{\pi}{4}\right)$

C.
$$f(0) < \sqrt{2} f\left(-\frac{\pi}{4}\right)$$

C.
$$f(0) < \sqrt{2} f\left(-\frac{\pi}{4}\right)$$
 D. $f\left(\frac{\pi}{6}\right) < \sqrt{3} f\left(\frac{\pi}{3}\right)$

【答案】 BCD

【解析】 因为偶函数 y=f(x)对于任意的 $x\in \left[0,\frac{\pi}{2}\right]$,满足 $f(x)\cos x+f(x)\sin x>0$,所 以设 $g(x) = \frac{f(x)}{\cos x}$, $g'(x) = \frac{f'(x)\cos x + f(x)\sin x}{\cos^2 x} > 0$, 所以当 $x \in \left[0, \frac{\pi}{2}\right]$ 时, $g(x) = \frac{f(x)\cos x}{\cos^2 x}$ $\frac{f(x)}{\cos x}$ 是单调增函数,且是偶函数,所以 $g\left(-\frac{\pi}{3}\right) = g\left(\frac{\pi}{3}\right)$, $g\left(-\frac{\pi}{4}\right) = g\left(\frac{\pi}{4}\right)$.对于 A,因

为
$$g\left(\frac{\pi}{4}\right) < g\left(\frac{\pi}{3}\right)$$
,所以 $\frac{f\left(\frac{\pi}{4}\right)}{\frac{\sqrt{2}}{2}} < \frac{f\left(\frac{\pi}{3}\right)}{\frac{1}{2}}$,即 $\sqrt{2} f\left(\frac{\pi}{3}\right) > f\left(\frac{\pi}{4}\right)$,所以 $\sqrt{2} f\left(-\frac{\pi}{3}\right) = \sqrt{2} f\left(\frac{\pi}{3}\right)$

 $>f\left(\frac{\pi}{4}\right)$,所以 A 不正确,B 正确. 对于 C,根据 g(x)的单调性可知 $g\left(\frac{\pi}{4}\right)>g(0)$,所以 $\frac{f\left(\frac{\pi}{4}\right)}{\sqrt{2}}$

 $> \frac{f(0)}{1}$,所以 $f(0) < \sqrt{2} f(\frac{\pi}{4})$,因为f(x)是偶函数,所以 $f(0) < \sqrt{2} f(-\frac{\pi}{4})$,所以 C 正确.对

于 D, 因为根据 g(x)的单调性可知 $g\left(\frac{\pi}{3}\right) > g\left(\frac{\pi}{6}\right)$,所以 $\frac{f\left(\frac{\pi}{3}\right)}{\underline{1}} > \frac{f\left(\frac{\pi}{6}\right)}{\sqrt{3}}$,即 $\sqrt{3}$ $f\left(\frac{\pi}{3}\right) > f\left(\frac{\pi}{6}\right)$,

所以 D 正确.

三、 填空题(每个5分,共15分)

8. 若过点(2, 0)作曲线 $f(x) = x^3$ 的切线 l,则直线 l 的方程为_____.

【答案】 27x-y-54=0 或 y=0

【解析】因为点(2,0)不在函数 f(x)的图象上,所以它不是切点. $f(x)=3x^2$. 设切点为 P(a,x) a^3), $k=3a^2=\frac{a^3-0}{a-2}$,解得 a=3 或 a=0,切线的斜率为 27 或 0.当 k=27 时,切线方程为 27x-y-54=0; 当 k=0 时, 切线方程为 y=0.

9. 已知函数 $f(x) = ax^3 + 2x^2 - 4x + 5$, 当 $x = \frac{2}{3}$ 时,函数 f(x)有极值,则函数 f(x)在[-3, 1]上的最大值为_

【答案】 13

【解析】 因为 $f(x)=3ax^2+4x-4$,当 $x=\frac{2}{3}$ 时,函数f(x)有极值,所以 $f(\frac{2}{3})=\frac{4}{3}a-\frac{4}{3}$

=0,解得 a=1,所以 $f(x)=3x^2+4x-4=(3x-2)(x+2)$.当 $x\in (-3,-2)$ 时,f'(x)>0,f(x)单调递增;当 $x\in \left(-2,\frac{2}{3}\right)$ 时,f'(x)<0,f(x)单调递减;当 $x\in \left(\frac{2}{3},1\right)$ 时,f'(x)>0,f(x)单调递增,所以 f(x)在 x=-2 处取得极大值 f(-2)=13,且 f(-3)=8,f(1)=4,所以 f(x)在 f(x)0. 1]上的最大值为 13.

10. 在木工实践活动中,要求同学们将横截面半径为R、圆心角为 $\frac{\pi}{2}$ 的扇形木块锯成横截面为梯形的木块。 甲同学在扇形木块 OAB 的弧 \overline{AB} 上任取一点 D,作扇形的内接梯形 OCDB,使点 C 在 OA 上,则他能锯出来梯形木块 OCDB 面积的最大值为______.

【答案】
$$\frac{3\sqrt{3}R^2}{8}$$

四、解答题(第11,12题各15分,第13题20分,共50分)

11. 在 "①f(-1)=-4,f'(1)=0;②f(1)=0,f'(0)=1;③f(x)在(-1,f(-1))处的切线方程为 y=8x+4"这三个条件中任选一个,补充在下面问题中,并求解.

已知函数 $f(x)=x^3+ax^2+bx$,且______.

- (1) 求 a, b 的值;
- (2) 求函数 f(x)的极小值.

【解析】 (1) 方案一: 选择①f(-1)=-4, f'(1)=0,

因为 $f(x)=3x^2+2ax+b$, f(-1)=-4, f'(1)=0,

所以
$$\begin{cases} 3+2a+b=0, \\ -1+a-b=-4, \end{cases}$$
 解得 $a=-2, b=1.$

方案二: 选择②f(1)=0, f'(0)=1.

因为 $f(x) = 3x^2 + 2ax + b$,

$$f(1)=0, f'(0)=1, \text{ fix} \begin{cases} b=1, \\ 1+a+b=0, \end{cases}$$

解得 a=-2, b=1.

方案三: 选择③f(x)在(-1, f(-1))处的切线方程为 y=8x+4.

因为 $f(x)=3x^2+2ax+b$,

所以
$$\left\{ \begin{array}{ll} 3-2a+b=8, \\ -1+a-b=-4, \end{array} \right.$$
解得 $a=-2,\ b=1.$

(2) 由(1)得 $f(x)=x^3-2x^2+x$

所以 $f(x)=3x^2-4x+1$.

曲
$$f(x)=0$$
, 得 $x_1=\frac{1}{3}$, $x_2=1$.

当
$$x \in (\frac{1}{3}, 1)$$
 时, $f'(x) < 0$;

当 x∈(1, +∞)时, f' (x)>0,

当
$$x \in \left(-\infty, \frac{1}{3}\right)$$
 时, $f'(x) > 0$,故 $f(x)$ 在 $\left(\frac{1}{3}, 1\right)$ 上单调递减,在 $\left(-\infty, \frac{1}{3}\right)$, $(1, +\infty)$

上单调递增,

所以 f(x)的极小值为 f(1)=0.

- 12. 己知函数 $f(x) = \ln x + x ax^2$, $a \in \mathbb{R}$.
- (1) 若 f(x)在 x=1 处取得极值,求 a 的值;
- (2) 设 g(x)=f(x)+(a-3)x, 试讨论函数 g(x)的单调性.

【解析】 (1) 因为 $f(x) = \ln x + x - ax^2$,

所以
$$f(x) = \frac{1}{x} + 1 - 2ax$$
,

因为 f(x)在 x=1 处取得极值,

所以f(1)=1+1-2a=0,解得a=1.

易得 f(x)在 x=1 处取得极大值.

(2) 因为
$$g(x)=f(x)+(a-3)x=\ln x+x-ax^2+(a-3)x=\ln x-ax^2+(a-2)x$$
,

所以
$$g'(x) = \frac{1}{x} - 2ax + (a-2) = -\frac{(ax+1)(2x-1)}{x}$$
 (x>0).

①若
$$a \ge 0$$
,则当 $x \in \left(0, \frac{1}{2}\right)$ 时, $g'(x) > 0$,

所以函数 g(x)在 $\left(0, \frac{1}{2}\right)$ 上单调递增;

$$\stackrel{\omega}{=} x \in \left(\frac{1}{2}, +\infty\right)$$
 时, $g'(x) < 0$,

所以函数 g(x)在 $\left(\frac{1}{2}, +\infty\right)$ 上单调递减.

②若
$$a < 0$$
, $g'(x) = -\frac{a(x+\frac{1}{a})(2x-1)}{x}$ ($x > 0$),

当 a<-2 时,易得函数 g(x)在 $\left(0, -\frac{1}{a}\right)$ 和 $\left(\frac{1}{2}, +\infty\right)$ 上单调递增,在 $\left(-\frac{1}{a}, \frac{1}{2}\right)$ 上单调递减;

当 a=-2 时,g'(x) ≥ 0 恒成立,所以函数 g(x)在(0, +∞)上单调递增;

当-2 < a < 0 时,易得函数 g(x)在 $\left(0, \frac{1}{2}\right)$ 和 $\left(-\frac{1}{a}, +\infty\right)$ 上单调递增,在 $\left(\frac{1}{2}, -\frac{1}{a}\right)$ 上单调递减.

- 13. 已知 $a \in \mathbb{R}$,函数 $f(x) = ax 1 \ln x$ 在 x = 1 处取得极值.
- (1) 求函数 f(x)的单调区间;
- (2) 若对任意 $x \in (0, +\infty)$, $f(x) \ge bx 2$ 恒成立, 求实数 b 的取值范围.

【解析】
$$(1) f(x) = a - \frac{1}{x} = \frac{ax - 1}{x}$$
,由 $f(1) = a - 1 = 0$,解得 $a = 1$,所以 $f(x) = x - 1 - \ln x$,

$$f'(x) = \frac{x-1}{x}.$$

由 f(x) > 0, 得 x > 1; 由 f(x) < 0, 得 0 < x < 1,

所以 f(x)在(0, 1)上单调递减,在 $(1, +\infty)$ 上单调递增.

(2) 因为对任意 $x \in (0, +\infty)$, $f(x) \ge bx - 2$ 恒成立,

所以
$$b \le 1 + \frac{1}{x} - \frac{\ln x}{x}$$
 . $\diamondsuit g(x) = 1 + \frac{1}{x} - \frac{\ln x}{x}$,

所以
$$g'(x) = \frac{\ln x - 2}{x^2}$$
 , 令 $g'(x) = 0$,解得 $x = e^2$,

由 g'(x) > 0, 得 $x > e^2$, 由 g'(x) < 0, 得 $0 < x < e^2$,

所以 g(x)在 $(0, e^2)$ 上单调递减,在 $(e^2, +\infty)$ 上单调递增,所以 $g(x)_{min} = g(e^2) = 1 - \frac{1}{e^2}$, 所以 $b \le 1 - \frac{1}{e^2}$,

所以实数 b 的取值范围是 $\left(-\infty, 1-\frac{1}{e^2}\right]$.