UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og
Eksamensdag:	beregninger. Fredag 10. oktober 2008.
Tid for eksamen:	15:00 – 17:00.
Oppgavesettet er på 6	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Ingen.
	oppgavesettet er komplett før ner å besvare spørsmålene.
Husk å fylle	e inn kandidatnummer under.
	Kandidatnr:
eller lar være å krysse av j ikke "straffet" med minuspe	ett av disse som er riktig. Dersom du svarer feil på et spørsmål, får du null poeng. Du blir altså oeng for å svare feil. <i>Lykke til!</i>
	ppgave- og svarark
Oppgave 1. Det binære tallet	e tallet 101101 er det samme som det desimale
□ 37	
□ 45 □ 36	
□ 43	
□ 49	
Oppgave 2. Skrevet i to	tallssystemet blir det heksadesimale tallet $3af_{16}$
□ 1110111111	
□ 1110101111	
□ 1110101111 □ 1100101111	
☐ 11101010111 ☐ 1110101011	

Oppgave 3.	Desimaltallet 1.625 kan skrives på binær form som
□ 1.101	•
□ 1.0011	
□ 1.001	
□ krever uende	elig mange binære siffer
Oppgave 4.	På heksadesimal form blir det binære tallet 11.00111
$\Box c.11_{16}$	
$\square 3.3e_{16}$	
$\Box 3.31_{16}$	
$\Box 3.38_{16}$	
$\Box c.f4_{16}$	
Oppgave 5.	Tallet
	$\frac{\ln \sqrt{e^{\pi}}}{}$
or	π
er	t +oll
□ et irrasjonal	
\square et rent imag \square 0	mært tan
□ eksisterer ikl	lro
□ et rasjonalt	
Oppgave 6. største nedre sl	En følge er definert ved $x_n = 1 + 1/n^2$ for $n \ge 1$. Hva er kranke for tallmengden gitt ved $\{x_n \mid n \ge 1\}$?
$\square 1/2$	
\square er ikke defin	ert
$\square 0$	
$\square 1$	
$\square \infty$	
Oppgave 7. Hva blir da kod	Anta at vi multipliserer ut parentesene i uttrykket $(1+x)^{100}$. effisienten foran x^{99} ?
\square 99	
□ 100	
\square 445	
□ 101	
\square 1	

Oppgave 8. $f(x) = x^3$?	Hva er taylorpolynomet om $a=0$ av grad 2 for funksjonen
Oppgave 9. $f(x) = x^3$? x^3 x^2 0 $1 + 3x + 3x^2$ $1 - 3x + 3x^2$	
	Vi har funksjonen $f(x) = x^2$ og punktene $x_0 = 0, x_1 = 1$ har den dividerte differansen $f[x_0, x_1, x_2]$ verdien
Oppgave 11. $f(x) = \sin x + c$ $\Box 1 + x + x^2/2$ $\Box 1 + x - x^2/2$ $\Box 1 - x + x^2/2$ $\Box -1 - x + x^2$ $\Box -1 + x - x^2/2$	$+ x^{3}/6$ $- x^{3}/6$ $- x^{3}/6$ $+ x^{3}/6$
	Vi interpolerer funksjonen $f(x) = x^2$ med et polynom p_3 nktene 0, 1, 2 og 3. Hva blir da $p_3(4)$, altså verdien av $p_3(x)$

Oppgave 13. Anta at vi beregner Taylorpolynomet av grad n om punktet a=0 for funksjonen $f(x)=\cos x$. Hva kan vi da si om feilleddet $R_n(x)$? \square Feilleddet vil for hver x bli større når n øker \square For ethvert reelt tall x vil feilleddet gå mot 0 når n går mot ∞ \square Feilleddet er 0 overalt \square Feilleddet vil gå mot 0 for alle x i intervallet $[-\pi, \pi]$, men ikke for andre verdier av x \square For alle n og alle reelle tall x vil absoluttverdien til feilleddet være mindre enn 1 Oppgave 14. Hvilken av de følgende differensligningene er lineær og har konstante koeffisienter? $\square \ x_{n+1} + x_n/n = 1$ $\Box x_{n+2} - 4x_{n+1} + x_n^2 = 0$ $\Box x_{n+2} - (\ln 2)x_{n+1} + x_n = -\cos(n)$ $\square x_{n+1} = n^2 x_n$ Oppgave 15. Differensligningen $2x_{n+2} - 3x_n = 15 \cdot 2^n$ har en partikulærløsning (med notasjonen $a \cdot b$ menes a multiplisert med b) $\Box x_n = (3/2)^n$ $\square \ x_n = 15 \cdot 2^n$ $\square x_n = 5 \cdot 2^n$ $\square x_n = 3^n$ $\square \ x_n = 3 \cdot 2^n$

Oppgave 16. Vi har gitt en differensligning med initialbetingelser,

$$x_{n+2} + x_{n+1} + x_n = 0$$
, $x_0 = 0$, $x_1 = \sqrt{3}/2$.

Hva er løsningen?

$$\Box x_n = \sin(2n\pi/3)$$

$$\square x_n = \cos(2n\pi/3) + \sin(n\pi/3)$$

$$\square x_n = 1 - (2 - \sqrt{3})\cos(n\pi/3)$$

$$\square x_n = \sin(n\pi/3)$$

$$\square x_n = -\sin(5n\pi/3)$$

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdi,

$$x_{n+1} = x_n/(2n), \quad n \ge 1, \quad x_1 = 1.$$

Hva er løsningen?

$$\Box x_n = 1/((n-1)! \, 2^{n-1})$$

$$\square x_n = 1/n$$

$$\square x_n = 1/(n! \, 2^n)$$

$$\square x_n = 1/(n!)^2$$

$$\square x_n = 1/n^2$$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - x_n/3 = 1$$
 $n \ge 1$, $x_1 = 1$

og simulerer denne med 64-bits flyttall på datamaskin. For store n vil da den beregnede løsningen \bar{x}_n nærme seg

 \square n

 $\square 1$

 $\square 0$

 $\Box 3^{1-n}/2$

 $\square 3/2$

Oppgave 19. Vi har differensligningen

$$3x_{n+2} + 4x_{n+1} - 4x_n = 0$$
, $x_0 = 1$, $x_1 = 2/3$

og simulerer denne med 64-bits flyttall. For store n vil da den beregnede løsningen \bar{x}_n gi som resultat

 $\square 0$

 \square underflow

 $\square 1$

 $\square (2/3)^n$

□ overflow

Oppgave 20. Vi lar P_n betegne påstanden

$$\sum_{i=1}^{n} i2^{i} = n2^{n+1} - 2.$$

Et induksjonsbevis for at P_n er sann for alle heltall $n \geq 1$ kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_1, \ldots, P_k er sanne. For å fullføre induksjonsbeviset må vi vise at P_{k+1} også er sann. Siden P_k er sann har vi

$$\sum_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1)2^{k+1}$$
$$= k2^{k+1} - 2 + (k+1)2^{k+1}$$
$$= (2k+2)2^{k+1} - 2$$
$$= (k+1)2^{k+2} - 2.$$

Vi ser dermed at om P_k er sann så må også P_{k+1} være sann. Hvilket av følgende utsagn er sanne?

- \square Påstanden P_n er sann, men del 2 av induksjonsbeviset er feil
- \square Påstanden P_n er feil, og del 2 av induksjonsbeviset er feil
- \square Påstanden P_n er feil, og del 1 av induksjonsbeviset er feil
- \square Både påstanden P_n og induksjonsbeviset er riktige
- □ Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!