# STA261 MANAJEMEN DATA RELASIONAL

## Konsep Dasar Basis Data

DEPARTEMEN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR

SEMESTER GANJIL 2021/2022

Pengguna (Users) Accounting Salos Customer Purchasing Internet Web/Application Server Web to Detabase Middlewere Database Server Basis Data Database

#### **Pendekatan Basis Data**

- Model Data (*Data Model*)
- Entiti (*Entity*)
- Hubungan antar Entiti (*Relationship*)
- Basis Data Relasional (*Relational Database*)

#### **Model Data**

- Gambaran umum tentang hubungan (relationship) antar data secara grafis.
- Model data digunakan pada tingkat abstraksi suatu basis data berupa konsep rancangan.
- Model Data Projek yang menggambarkan lebih rinci mengenai tampilan (view), kesesuaian struktur data dalam basis data atau kumpulan basis data (data warehouse).

#### Kategori Model Data → struktur basis data

- ✓ High-level atau conceptual data models (entities, attributes, and relationships)
   → entity-relationship model → relational data model, network and hierarchical models
- ✓ **Low-level** atau **physica**l data models to describe the details of how data is stored on the computer storage media, typically magnetic disks → computer specialists



SQL syntax

#### Entiti

- Bentuk objek seperti orang, tempat, kejadian, atau konsep lingkungan pengguna yang diharapkan memelihara data.
- Terdiri dari atribut-atribut

## Hubungan antar Entiti (Relationship)

- Hubungan one-to-many (1:M)
- Hubungan many-to-many (M:N)









#### Contoh Model Data



#### Analisis Kebutuhan Basis Data

- Setiap CUSTOMER memesan banyak ORDER; sebaliknya, setiap ORDER dipesan oleh seorang CUSTOMER.
- 2. Setiap ORDER terdiri dari sejumlah ORDER LINE; sebaliknya, setiap ORDER LINE berisi hanya satu ORDER.
- 3. Setiap PRODUCT mempunyai banyak ORDER LINEs; sebaliknya, setiap ORDER LINE hanya untuk satu PRODUCT.
- 4. Setiap ORDER dengan satu INVOICE dan setiap INVOICE untuk satu ORDER.

#### Atribut-Atribut Data untuk Entiti-Entiti dalam Model Data

| Entity Type  | Attribute                      |  |  |  |
|--------------|--------------------------------|--|--|--|
| Customer     | Customer Identifier            |  |  |  |
|              | Customer Name                  |  |  |  |
|              | Customer Type                  |  |  |  |
|              | Customer Zip Code              |  |  |  |
| Product      | Product Identifier             |  |  |  |
|              | Product Description            |  |  |  |
|              | Product Finish                 |  |  |  |
|              | Product Price                  |  |  |  |
|              | Product Cost                   |  |  |  |
|              | Product Annual Sales Goal      |  |  |  |
|              | Product Line Name              |  |  |  |
| Product Line | →Product Line Name             |  |  |  |
|              | Product Line Annual Sales Goal |  |  |  |



→ KEY setiap entiti

#### Perancangan Basis Data



#### **Sistem Basis Data**

- **client/server**  $\rightarrow$  komputer secara terpusat (*large centralized mainframe computers*)
- **distributed architectures** → banyak server (*many large servers* (**big data**))

#### Dua tipe modul dalam client/server DBMS:

- Client module
  - ✓ Dirancang untuk alat alat *mobile* , *user workstation*, atau computer pribadi (PC)
  - ✓ Program aplikasi dan user interfaces untuk akse basis data
- Server module
  - ✓ Menangani penyimpanan data storage, akses, pencarian data, dll

## Skema Basis Data (Database Schema)

- ✓ Deskripsi suatu basis data yang ditetapkan selama perancangan basis data dan diharapkan tidak sering ada perubahan
  - → diagram skema (schema diagram)



#### **Three-Schema Architecture**

- ✓ external or view level → external schema
- √ conceptual level → conceptual schema
- ✓ internal level → internal schema (logical and physical schemas)



Figure 1-9 Three-schema architecture

#### **Internal Schema (logical and physical schemas)**

- describes the physical storage structure of the database
- uses a physical data model
- describes the data storage and access paths for the database



#### **Conceptual Schema**

- the structure of the whole database for users.
- hides the details of physical storage structures.
- describes entities, data types, relationships, user operations, and constraints.



#### **External Schema**

- a number of external schemas or user views.
- each external schema describes the part of the database that a particular user group is interested in and hides the rest of the database from that user group.
- each external schema is implemented using a representational data model, based on an external schema design in a high-level conceptual data model.



| Data Item Name | Starting Position in Record | Length in Characters (bytes) |  |  |
|----------------|-----------------------------|------------------------------|--|--|
| Name           | 1                           | 30                           |  |  |
| Student_number | 31                          | 4                            |  |  |
| Class          | 35                          | 1                            |  |  |
| Major          | 36                          | 4                            |  |  |

Figure 1.4 Internal storage format for a STUDENT record

#### TRANSCRIPT

| Student_name | Student_transcript |       |          |      |            |  |
|--------------|--------------------|-------|----------|------|------------|--|
|              | Course_number      | Grade | Semester | Year | Section_id |  |
| Smith        | CS1310             | С     | Fall     | 08   | 119        |  |
|              | MATH2410           | В     | Fall     | 08   | 112        |  |
| Brown        | MATH2410           | Α     | Fall     | 07   | 85         |  |
|              | CS1310             | Α     | Fall     | 07   | 92         |  |
|              | CS3320             | В     | Spring   | 08   | 102        |  |
|              | CS3380             | Α     | Fall     | 08   | 135        |  |

Figure 1.5 The TRANSCRIPT view (External / User view

## **Data Independence**

- ✓ **Logical data independence**: perubahan pada *conceptual schema* **tanpa** harus merubah *external schemas* atau program aplikasi.
- ✓ Physical data independence: perubahan pada internal schema
  (reorganisasi physical files) tanpa harus merubah conceptual schema dan
  external schemas.

#### **Bahasa DBMS**

- 1. Data Definition Language (DDL)
  - → used by the DBA and by database designers to define schemas
  - → used to define both conceptual and external schemas
- 2. Storage Definition Language (SDL)
  - → used to specify the internal schema
- 3. View Definition Language (VDL)
  - → specify user views and their mappings to the conceptual schema
- 4. Data Manipulation Language (DML)
  - → retrieval, insertion, deletion, and modification

## **Classification of Database Management Systems**

The main data model used in many current commercial DBMSs is relational data model  $\rightarrow$  SQL systems

- **1. Centralized** DBMS if the data is stored at a single computer site.
- 2. Distributed DBMS (DDBMS) can have the actual database and DBMS software distributed over many sites connected by a computer network
  - Homogeneous DDBMSs use the same DBMS software at all the sites, whereas
  - Heterogeneous DDBMSs can use different DBMS software at each site.

#### Latihan:

Istilah-istilah dalam Basis Data:

- 1. Entity adalah setiap objek yang akan disimpan.
- 2. Field / Attribute adalah unsur-unsur pada entity yang berisi data.
- 3. Record adalah kumpulan unsur-unsur data yang berhubungan pada entity.
- 4. Data Value adalah data yang disimpan pada setiap unsur.
- 5. Key adalah pengenal yang unik untuk mengidentifikasi suatu entity.
- 6. Table adalah kumpulan record untuk setiap entity.

#### Perancangan Basis Data untuk data berikut:

- 1. Data Mahasiswa
- 2. Data Mata Kuliah
- 3. Data Fakultas
- 4. Data Program Studi

#### Tetapkan:

- Entity dan Field/Attribute setiap Entity masing-masing data
- Key masing-masing Entity
- Relation antar Entity

# Konsep Dasar Basis Data