Álgebra Universal e Categorias

3º teste

____ duração: 1h45min _____

1. (a) Sejam \mathbf{C} uma categoria e $f:A\to B$ um morfismo de \mathbf{C} . Mostre que se f é um morfismo invertível à direita, então f é um epimorfismo.

Suponhamos que f é invertível à direita. Então f tem um inverso direito, isto é, existe $g:B\to A$ tal que $f\circ g=id_B$. Pretndemos mostrar que f é um epimorfismo, ou seja, pretende-se provar que, para quaisquer C-morfismos $i,j:B\to C$,

$$i \circ f = j \circ f \Rightarrow i = j$$
.

De facto, da hipótese segue que para quaisquer C-morfismos $i, j : B \to C$

$$\begin{array}{lll} i\circ f=j\circ f & \Rightarrow & (i\circ f)\circ g=(j\circ f)\circ g \\ & \Rightarrow & i\circ (f\circ g)=j\circ (f\circ g) & \text{(por associatividade)} \\ & \Rightarrow & i\circ id_B=j\circ id_B & \text{(g \'e inverso direito de f)} \\ & \Rightarrow & i=j. \end{array}$$

Logo, f é cancelável à direita, ou seja, f é um epimorfismo.

(b) Dê exemplo de uma categoria na qual nem todo o epimorfismo é invertível à direita.

Na categoria 2

$$\begin{array}{ccc}
id_A & & f & & id_B \\
& & & & & \\
A & & & & & \\
\end{array}$$

o morfismo f é um epimorfismo, pois, para quaisquer $X \in \mathrm{Obj}(\mathbf{C})$ e $i, j \in \mathrm{hom}_{\mathbf{C}}(B, X)$

$$i \circ f = j \circ f \Rightarrow i = id_B = j$$

(note-se que id_B é o único morfismo com domínio B). O morfismo f não é invertível à direita, uma vez que não existe qualquer morfismo $g:B\to A$ tal que $f\circ g=id_B$; de facto, não existe qualquer morfismo de B em A.

2. Sejam C uma categoria e T_1 , T_2 objetos de C. Mostre que se T_1 e T_2 são objetos terminais, então T_1 e T_2 são isomorfos.

Sejam T_1 e T_2 objetos terminais de ${\bf C}$. Uma vez que T_2 é um objeto terminal, existe um e um só morfismo $f:T_1\to T_2$. Como T_1 é um objeto terminal, existe um e um só morfismo $g:T_2\to T_1$. Logo $g\circ f:T_1\to T_1$ e $f\circ g:T_2\to T_2$ são morfismos de ${\bf C}$. Uma vez que T_1 é um objeto de ${\cal C}$ e ${\cal C}$ é uma categoria, $id_{T_1}:T_1\to T_1$ é um morfismo de ${\bf C}$. Então, atendendo a que os morfismos id_{T_1} e $g\circ f$ são elementos de $\hom(T_1,T_1)$ e $|\hom(T_1,T_1)|=1$ (pois T_1 é um objeto terminal), conclui-se que $g\circ f=id_{T_1}$. De modo análogo, conclui-se que $f\circ g=id_{T_2}$. Logo f é invertível à direita e à esquerda e, portanto, f é um isomorfismo. Por conseguinte, T_1 e T_2 são objetos isomorfos.

3. Sejam A, B, P objetos de uma categoria \mathbf{C} tais que $\hom_{\mathbf{C}}(A,B) \neq \emptyset$ e $p_A: P \to A$ e $p_B: P \to B$ são morfismos de \mathbf{C} . Mostre que se $(P,(p_A,p_B))$ é um produto de A e B, então p_A é invertível à direita.

Admitamos que $(P;(p_A,p_B))$ é um produto de A e B. Então

- (i) $p_A: P \to A$ e $p_B: P \to B$ são **C**-morfismos;
- (ii) para cada objeto X de ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f_A:X\to A$ e $f_B:X\to B$, existe um e um só ${\bf C}$ -morfismo $u:X\to P$ tal que $p_A\circ u=f_A$ e $p_B\circ u=f_B$.

Pretende-se mostrar que p_A é invertível à direita, isto é, pretende-se provar que existe um \mathbf{C} -morfismo $g:A\to P$ tal que $p_A\circ g=\mathrm{id}_A.$

Uma vez que $\hom(A,B) \neq \emptyset$, existe um \mathbf{C} -morfismo $h:A \to B$. Atendendo a que \mathbf{C} é uma categoria e A é um objeto de \mathbf{C} , $\mathrm{id}_A:A \to A$ é um morfismo de \mathbf{C} . Assim, tem-se o seguinte diagrama em \mathbf{C}

Então, por (ii), existe um e um só C-morfismo $u:A\to P$ tal que $p_A\circ u=\mathrm{id}_A$ e $p_B\circ u=h$. Dado que existe o morfismo $u:A\to P$ tal que $p_A\circ u=\mathrm{id}_A$, conclui-se que p_A é invertível à dieita.

4. Sejam A e B conjuntos, $f:A\to B$ e $g:A\to B$ funções, $I=\{a\in A: f(a)=g(a)\}$ e $i:I\to A$ a função definida por i(x)=x, para todo $x\in I$. Mostre que, na categoria **Set**, (I,i) é um igualizador de f e g.

O par (I, i) é um igualizador de f e g se:

- (1) $i \in \text{um } \mathbf{Set}\text{-morfismo de } I \text{ em } A \text{ tal que } f \circ i = g \circ i;$
- (2) para cada $X \in \mathrm{Obj}(\mathbf{C})$ e para qualquer morfismo $j: X \to A$ tal que $f \circ j = g \circ j$, existe um, e um só, morfismo, $u: X \to I$ tal que $i \circ u = j$.

Mostremos as confições (1) e (2).

(1) A coleção de morfismos de **Set** é a classe de todas as funções entre conjuntos. Então, uma vez que i é uma função de I em A, i é um **Set**-morfismo de I em A, pois. Considerando a definição do conjunto I, a prova de $f \circ i = g \circ i$ é imediata, pois $f \circ i$ e $g \circ i$ são funções com o mesmo domínio e conjunto de chegada e, para qualquer $x \in I$, tem-se

$$(f \circ i)(x) = f(i(x)) = f(x) = g(x) = g(i(x)) = (g \circ i)(x).$$

(2) Note-se que se X é um objeto de \mathbf{C} e $j:X\to A$ é um C-morfismo tal que $f\circ j=g\circ j$, então, para todo $x\in X$, tem-se f(j(x))=g(j(x)), pelo que $j(x)\in I$. Assim, pode-se definir a função

$$\begin{array}{ccc} u: X & \to & I \\ x & \mapsto & i(x) \end{array}$$

A respeito desta função, é simples verificar que $i\circ u=j$, pois tratam-se de funções com o mesmo domínio e conjunto de chegada e, para todo $x\in X$, $(i\circ j)(x)=i(j(x))=j(x)$. Além disso, a função u é a única função $u':X\to I$ que satisfaz $i\circ u'=j$; de facto, se admitirmos que existe uma outra função $v:X\to I$ tal que $i\circ v=j$, tem-se $(i\circ v)(x)=j(x)$, para todo $x\in X$, donde v(x)=j(x)=u(x) e, portanto, as funções u e v são a mesma.

5. Sejam \mathbf{C} uma categoria e $f:A\to B$ um morfismo em \mathbf{C} . Mostre que se f é um epimorfismo, então $(B,(\mathrm{id}_B,\mathrm{id}_B))$ é uma soma amalgamada de (f,f).

Admitamos que $f: A \to B$ é epimorfismo. Pretende-se mostrar que $(B, (id_B, id_B))$ é uma soma amalgamada de (f, f), ou seja, pretende-se provar que:

- (1) $id_B \circ f = id_B \circ f$;
- (2) para qualquer $X \in \mathrm{Obj}(\mathbf{C})$ e para quaisquer C-morfismos $i, j : B \to X$ tais que $i \circ f = j \circ f$, existe um, e um só morfismo, $u : B \to X$ tal que $u \circ id_B = i$ e $u \circ id_B = j$.

Claramente tem-se (1), pelo que resta provar (2). Considerando $X \in \mathrm{Obj}(\mathbf{C})$ e $i,j:B \to X$ morfismos de \mathbf{C} tais que $i \circ f = j \circ f$, segue que i=j, uma vez que f é cancelável à direita. Então, considerando $u:B \to X$ tal que u=i, tem-se

$$u \circ id_B = i \circ id_B = i = j.$$

Além disso, se $v: B \to X$ é um ${\bf C}$ -morfismo tal que $v \circ id_B = i$ e $v \circ id_B = j$, tem-se v = i = j e, portanto, u = v. Logo tem-se (2).

- 6. (a) Seja $F = (F_{Ob}, F_{hom})$ o funtor de **Set** em **Set**, onde $F_{Ob} : \mathrm{Obj}(\mathbf{Set}) \to \mathrm{Obj}(\mathbf{Set})$ é a função que a cada objeto X de **Set** associa o conjunto $F_{Ob}(X) = \{1,2\}$ e $F_{hom} : \mathrm{Mor}(\mathbf{Set}) \to \mathrm{Mor}(\mathbf{Set})$ é a função que a cada **Set**-morfismo $f : X \to Y$ associa o morfismo $F_{hom}(f) = \mathrm{id}_{\{1,2\}}$. Diga, justificando, se:
 - i. o funtor F é fiel e se é pleno.

Sejam C e D categorias. Um funtor $F : C \to D$ diz-se:

- um funtor ideal se, para quaisquer $X,Y\in \mathrm{Obj}(\mathbf{C})$ e para quaisquer $f,g:X\to Y$,

$$F(f) = F(g) \Rightarrow f = g.$$

- um funtor pleno se, para quaisquer $X,Y\in \mathrm{Obj}(\mathbf{C})$ e $g:F(X)\to F(Y)\in \mathrm{Mor}(\mathbf{D})$, existe um \mathbf{C} -morfismo $f:X\to Y$ tal que F(f)=g.

Uma vez que as funções seguintes

são **Set**-morfismos tais que $f \neq g$ e $F(f) = id_{\{1,2\}} = F(g)$, concluímos que o funtor F definido no enunciado não é um funtor fiel.

Considerando que a função

$$g: F(\{3\}) \rightarrow F(\{3\})$$

$$\begin{array}{ccc} 1 & \mapsto & 2 \\ 2 & \mapsto & 2 \end{array}$$

é um **Set**-morfismo $(F(\{3\}) = \{1,2\})$ e não existe qualquer **Set**-morfismo $f: \{3\} \to \{3\}$ tal que F(f) = g, pois $g \neq id_{\{1,2\}}$, concluímos que o funtor não é pleno.

ii. o funtor F reflete morfismos invertíveis à esquerda.

O funtor F reflete morfismos invertíveis à esquerda se, para qualquer **Set**-morfismo $f: X \to Y$,

F(f) é invertível à esquerda $\Rightarrow f$ é invertível à esquerda.

Na categoria **Set**, os morfismos invertíveis à esquerda são as funções injetivas com domínio não vazio. Então o **Set**-morfismo

$$\begin{array}{cccc} f: \{2,3\} & \rightarrow & \{4\} \\ 2 & \mapsto & 4 \\ 3 & \mapsto & 4 \end{array}$$

não é invertível à esquerda (pois não é uma função injetiva) e $F(f)=id_{\{1,2\}}$ é invertível à esquerda (pois é uma função injetiva com domínio não vazio). Logo o funtor F não reflete morfismos invertíveis à esquerda.

(b) Sejam ${\bf C}$ e ${\bf D}$ categorias e F um funtor de ${\bf C}$ em ${\bf D}$. Mostre que se F é um funtor fiel e pleno, então F reflete morfismos invertíveis à esquerda.

Mostremos que se F é fiel e pleno, então F reflete morfismos invertíveis à esquerda. Seja $f:A\to B$ um ${\bf C}$ -morfismo tal que $F(f):F(A)\to F(B)$ é invertível à esquerda. Então existe um ${\bf D}$ -morfismo $g':F(B)\to F(A)$ tal que $g'\circ F(f)=id_{F(A)}$. Uma vez que F é pleno, existe um ${\bf C}$ -morfismo $g:B\to A$, tal que F(g)=g'. Por conseguinte, $F(g)\circ F(f)=id_{F(A)}$, donde $F(g\circ f)=F(id_A)$. Então, atendendo a que F é fiel, vem que $g\circ f=id_A$ e, portanto, f é invertível à esquerda. Logo F reflete morfismos invertíveis à esquerda.