TDS - Tirie de Fornier

Ex- 1. Fouction 5 de Riemann.

$$S(2) = \frac{\pi^2}{6}$$
, $S(4) = \frac{\pi^4}{90}$, $S(6) = \frac{\pi^6}{90}$, $S(8) = \frac$

93556

1.1.5(2): jour calculer 5(4p), on calcule la série le Fourier de f: 12-012 211- periodique to f (t) = ti;

f impaire $f(t) = t - 2\pi$

f∈ L² (R), ie (≤ π²) I lf(t)12 dt < po juisque f se prolonge continument sur

t-11, 11 I, elle et donc bonné son ce compact, donc de cenné intégrable.

On peut donc calculer sa série de Fourier en la décomposant sur la b.l. $\sqrt{\frac{1}{\sqrt{1}}}$, $\frac{61}{\sqrt{1}}$, $\frac{1}{\sqrt{1}}$, $\frac{1}{\sqrt{1}}$ $\frac{\mathbb{R}_{\text{epp-el}}: (f18)}{\mathbb{L}_{\frac{1}{2}}^{2}(\mathbb{R})} = \int_{-\pi}^{\pi} \text{fuh. sun at}$ $=) f = \sum (f|e_n) \cdot e_n \quad (cf \cdot f)$ $cv \quad L^2 \quad ii : ||f - \sum (f|e_n) \cdot e_n||_{L^2} \rightarrow 0,$ et Pansevel: $N \rightarrow N \rightarrow 1$ $1 + 11^2 = 5 | (f(en))|^2$. Ici, $f = (f | \frac{1}{\sqrt{2\pi}}) \cdot \frac{1}{\sqrt{2\pi}} f \geq (f | \frac{Gint}{\sqrt{\pi}}) \cdot \frac{Gint}{\sqrt{\pi}}$ $\int \left| f(H) - \left(\left(f \right) \frac{1}{\sqrt{\pi}} \right) \cdot \frac{1}{\sqrt{\pi}} + \underbrace{\sum}_{n=0}^{\infty} \left(f \right) \frac{\omega_{1} + 1}{\sqrt{\pi}} \right) \cdot \frac{\omega_{1} + 1}{\sqrt{\pi}}$ + (f | mint). sinht) (at

fétent impaire, au = an =0, tro>, 1, cf. $G_{\bullet} = \left(f\left(\frac{1}{\sqrt{n}}\right) = \right)^{\frac{1}{1}} f_{\downarrow \downarrow \downarrow} \frac{1}{\sqrt{n}} dt = 0$ $iden four G_{\downarrow \downarrow \downarrow} + 21$ (idem jour an, h>1) No = (f (Minhe) = \int \f(\tau\). \frac{n'n nt}{\sqrt{1}} \delta t = 2 su fur. mut at et $f = \sum_{n=1}^{\infty} b_n \cdot \frac{n^{n+1}}{\sqrt{n}} (cv day L^2)$ $(11f11^2 = \sum_{n=1}^{\infty} b_n \cdot \frac{n^{n+1}}{\sqrt{n}}$ $N_{h} = 2 \int_{\sqrt{11}}^{\pi} \frac{1}{\sqrt{11}} \int_{0}^{\pi} \frac{1}{\sqrt{11}} \int_{0}^$ $= \frac{2}{\sqrt{\pi}} \left(\frac{1}{\sqrt{1 - G_{1}}} \right)^{\frac{1}{1}} + \frac{1}{\sqrt{1 - G_{1}}} \int_{0}^{1} \frac{G_{1} + 1}{\sqrt{1 - G_{1}}} dx$ $= 2 \left[-\frac{1}{\sqrt{1 - G_{1}}} \right]^{\frac{1}{1}} + \frac{1}{\sqrt{1 - G_{1}}} \int_{0}^{1} \frac{G_{1} + 1}{\sqrt{1 - G_{1}}} dx$ $\begin{bmatrix} -\pi \cos m\pi \\ \sqrt{\pi} \end{bmatrix} + \frac{2}{\sqrt{\pi}} \begin{bmatrix} mn + 1 \\ \sqrt{\pi} \end{bmatrix}$ $(-1)^{m}$ $= \frac{(-1)^{m+1} \cdot 2\sqrt{\pi}}{m}$

Parsevel: 11/112 = \$ N_ = \$ 411 $\int_{-\pi}^{\pi} |f(x)|^2 dx = 2 \int_{0}^{\pi} |f(x)|^2 dx = \frac{2\pi^3}{3}$ $=) 5(2) = \frac{2}{8} \frac{1}{n^2} = \frac{1}{44} \cdot \frac{2\pi^3}{3} = \frac{\pi^2}{6}$ Remanque: f 6° pan monceaux donc SN (t) - + f(+-)

N-2 Li t = (2le+1) IT (le EZ), fontime ent, donc INCh _ for; Li E = (26+11) T, SN(h --- > 1.2. 5(4): p=2, ful= = = = t=0, =0, prolonger pen 217 - périodicté mulk: Remanque: feH27 can fl=f(5) + Jo 5 Gras

in get la fanction to g(h = 2taiteting c (M prolongé = 12 par 17 - priodicité): (fonction de 1.1 2 un ceff. 2 brit ceff. 2 pris) Ic, f pain = 1 & =0, ~> 1; $a_0 = \left(\frac{1}{\sqrt{1 + 1}}\right) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dt$ = 2] T feh. dt $= \frac{2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)_{0}^{1} = \frac{2\pi^{3}}{3\sqrt{2\pi}}$ a = (f/Gint) =) The coint ut = 2 j Teh. coint ar = 2] " troint at

$$\int_{0}^{\infty} \frac{1}{1} \frac{$$

en parkion l'ar,
$$f(0) = 0 = 90$$
. $\frac{1}{\sqrt{11}} + \frac{2}{2} = \frac{1}{\sqrt{11}} = 0$

=) $\frac{2}{5} = \frac{1}{\sqrt{11}} = -\frac{2}{3}$. $\frac{\pi}{\sqrt{11}} = \frac{1}{\sqrt{2\pi}}$

=) $\frac{2}{5} = \frac{(-1)^m}{n^2} = -\frac{\pi}{12}$ (145 5(2) = $\frac{\pi}{6}$)

Exo 2.

$$f(n)$$

$$f(n) = \frac{1}{\sqrt{11}}$$

$$f(n) = \frac{1}{\sqrt{11}}$$

Let $f(n) = \frac{1}{\sqrt{11}}$

Let $f(n) = \frac{1}{\sqrt{11}}$

Let $f(n) = \frac{1}{\sqrt{11}}$

Let $f(n) = \frac{1}{\sqrt{11}}$

CV $f(n) = \frac{1}{\sqrt{11}}$

$$a_{n} = \left(\frac{1}{1} \frac{1}{\sqrt{2\pi}}\right) = \int_{-\pi_{1}}^{\pi} f(x) \cdot \frac{1}{\sqrt{2\pi}} dx$$

$$= 2 \int_{0}^{\pi} f(x) \cdot \frac{1}{\sqrt{2\pi}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\pi} (\pi - 2x) \cdot 1 dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\pi} (\pi - 2x) \cdot 1 dx$$

$$= \int_{-\pi_{1}}^{\pi} f(x) \cdot \frac{1}{\sqrt{2\pi}} dx$$

$$= \int_{0}^{\pi} f(x) \cdot \frac{1}{\sqrt{2\pi}} dx$$

$$= \int_{0}^$$

=)
$$q_{2p} = 0$$
, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $p > 0$ (inclut $q_0 = 0$)

 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$
 $q_{2p} = 0$, $q_{2p} = 0$
 $q_{2p} = 0$

$$f(s) = \pi = \frac{9}{52\pi} + \frac{8}{2} a_{14} + \frac{1}{5\pi}$$

$$=) \frac{2}{5} \frac{1}{(2+1)^2} = \frac{\pi^2}{8} < 5(2) = \frac{\pi^2}{6}$$

Remark pur:
$$5(2) = \frac{2}{8} \frac{1}{n^2}$$

$$= \frac{2}{8} \frac{1}{(2p)^2} \quad f = \frac{1}{8} \frac{1}{(2p)^2}$$

$$= \frac{1}{2} \cdot 5(2)$$

$$= \frac{1}{4} \cdot 5(2)$$

$$= \frac{1}{4} \cdot 5(2)$$

$$= \frac{1}{4} \cdot 5(2)$$

$$= \frac{2}{4} \cdot \frac{1}{4} \cdot \frac{1}$$

De nêm:
$$(1 - \frac{1}{2}) F(4) = \frac{2}{5} \frac{1}{(21917)^4} = \frac{11}{56}$$

be que l'on trouve ever Penseval:

$$||f||_{2}^{2} = \int_{0}^{\infty} f \int_{0}^{\infty} q_{n}^{2} = \int_{0}^{\infty} q_{n$$

$$2\int_{0}^{\pi} (\pi - 2x)^{2} dx = (2x - \pi)^{3} \int_{0}^{\pi} = \frac{2\pi^{3}}{3}$$