Discrete Mathematics

T-step, T-route, number of T-routes, André's reflection principle, Bertrand's ballot problem, Catalan number

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Shortest Path

DEFINITION: A $p \times q$ -grid is a collection of pq squares of side length 1, organized as a rectangle of side length p and q.

THEOREM: # of shortest paths from (0,0) to (p,q) is $\frac{(p+q)!}{p!q!}$.

- Let $A = \{p \rightarrow , q \uparrow \}$ be a (p + q)-multiset.
- # of shortest paths=# of permutations of A.

T-Route

DEFINITION: Let $A = (x, y), B \in \mathbb{Z}^2$. //integral (lattice) points

- A **T-Step** at *A* is a segment from *A* to (x + 1, y + 1) or (x + 1, y 1).
- A **T-Route** from *A* to *B* is a route where each step is a **T-step**.

T-Route

THEOREM: There is a T-route from $A = (a, \alpha)$ to $B = (b, \beta)$ only if (1) b > a; (2) $b - a \ge |\beta - \alpha|$; and (3) $2|(b + \beta - a - \alpha)$.

- Let $A = P_0, P_1, ..., P_k = B$ be a T-route from A to B, where $P_i = (x_i, y_i)$.
 - $x_0 = a, y_0 = \alpha; x_k = b, y_k = \beta;$
 - $x_i x_{i-1} = 1$; $y_i y_{i-1} \in \{\pm 1\}$ for every i = 1, 2, ..., k
- $b a = x_k x_0 = (x_k x_{k-1}) + (x_{k-1} x_{k-2}) + \dots + (x_1 x_0) = k > 0$
- $\beta \alpha = y_k y_0 = (y_k y_{k-1}) + (y_{k-1} y_{k-2}) + \dots + (y_1 y_0)$
 - $|\beta \alpha| \le |y_k y_{k-1}| + |y_{k-1} y_{k-2}| + \dots + |y_1 y_0| = k = b a$
- $b + \beta a \alpha = \sum_{i=1}^{k} (y_i y_{i-1} + x_i x_{i-1})$
 - $y_i y_{i-1} + x_i x_{i-1} \in \{0,2\}$
 - $2|(b+\beta-a-\alpha)$

REMARK: The T-condition (1)+(2)+(3) is also sufficient for the existence of a T-route.

Number of T-Routes

THEOREM: If $A = (a, \alpha)$, $B = (b, \beta)$ satisfy the T-condition. Then

the number of T-routes from *A* to *B* is $\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)!\left(\frac{b-a}{2} - \frac{\beta-\alpha}{2}\right)!}$.

The number of T routes from A to B = the number of shortest paths from A to B on the $p \times q$ -grid.

•
$$AC: y - \alpha = -(x - \alpha); AD: y - \alpha = x - \alpha;$$

•
$$BC: y - \beta = x - b; BD: y - \beta = -(x - b).$$

•
$$p = \frac{1}{2} \cdot (a + b - \alpha + \beta) - a = \frac{1}{2} \cdot (b - a) + \frac{1}{2} \cdot (\beta - \alpha)$$

•
$$q = \frac{1}{2} \cdot (\alpha - \beta + a + b) - a = \frac{1}{2} \cdot (b - a) - \frac{1}{2} \cdot (\beta - a)$$

$$1/2 \cdot (a+b-\alpha+\beta, \alpha+\beta-a+b)$$

The number of T routes from A to B= the number of shortest paths from A

to B on the
$$p \times q$$
-grid. This number is $\frac{(p+q)!}{p!q!} = \frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)!\left(\frac{b-a}{2} - \frac{\beta-\alpha}{2}\right)!}$

Number of T Routes

THEOREM: Let $A = (a, \alpha), B = (b, \beta)$ satisfy the T-condition, where $\alpha, \beta > 0$. Then # of T-routes from A to B that intersect the x-axis=# of T routes from $A'(a, -\alpha)$ to B. And this number is $\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta+\alpha}{2}\right)!\left(\frac{b-a}{2} - \frac{\beta+\alpha}{2}\right)!}$.

- Ω : the set of T-routes from A to B
- $U = \{\omega \in \Omega : \omega \text{ intersects y=0} \}$
- *V*: the set of T-routes from *A'* to *B*
- $f: U \to V \ u \mapsto f(u)$
 - *u*: the brown T route
 - f(u): the blue T route
 - *f* is a bijection

André's Reflection Principle-D. André, Solution directe du problème résolu par M. Bertrand, Comptes Rendus Acad. Sci. Paris 105 (1887), 436–437.

Number of T Routes

THEOREM: Let $A = (a, \alpha), B = (b, \beta) \in \mathbb{Z}^2$ satisfy the

T-condition, where $\alpha, \beta > 0$. Then # of T routes from *A* to *B* that do not intersect the x-axis is

$$\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta-\alpha}{2}\right)! \left(\frac{b-a}{2} - \frac{\beta-\alpha}{2}\right)!} -$$

$$\frac{(b-a)!}{\left(\frac{b-a}{2} + \frac{\beta+\alpha}{2}\right)! \left(\frac{b-a}{2} - \frac{\beta+\alpha}{2}\right)!}$$

Bertrand's Ballot Problem

- **History**: First published by **W. A. Whitworth** in **1878** but named after **Joseph Louis François Bertrand** who rediscovered it in **1887**.
- **Special case**: there are two candidates A and B in an election. Each receives n votes. What is the probability p_n that A will never trail B during the count of votes?
- **EXAMPLE**. AABABBBAAB is bad, since after seven votes, A receives 3 while B receives 4.

Solution

- Define a variable x_i for i = 1, 2, ..., 2n (2n votes in total)
 - $x_i = \begin{cases} 0 & \text{A receives the } i \text{th vote} \\ 1 & \text{B receives the } i \text{th vote} \end{cases}$
- The sequence $x_1x_2 ... x_{2n}$ is a ballot sequence such that A never trails B if and only if

$$\begin{cases} x_1 + x_2 + \dots + x_{2n} = n \\ x_1 + x_2 + \dots + x_i \le i/2, i = 1, 2, \dots, 2n - 1 \end{cases} (*)$$

$$x_i \in \{0,1\}, i = 1, 2, \dots, 2n$$

- C_n : The number of solution of the system (*)
- The probability that A never trials B is

$$p_n = C_n / \binom{2n}{n}$$

Catalan Number

1838, Catalan (1814-1894); 1730s, Ming Antu (1692-1763)

THEOREM: C_n is the number of solutions of the equation system

$$\begin{cases} x_1 + x_2 + \dots + x_{2n} = n \\ x_1 + x_2 + \dots + x_i \le i/2, i = 1, 2, \dots, 2n - 1 \\ x_i \in \{0, 1\}, i = 1, 2, \dots, 2n \end{cases}$$

In particular, $C_n = \frac{(2n)!}{n!(n+1)!}$

- \mathcal{C}_n is the set of all solutions of the equation system
- \mathcal{T}_n : the set of all T-routes from (1,2) to (2n, 1) above the x-axis
- A map $f: \mathcal{C}_n \to \mathcal{T}_n$ Given a solution $(x_1, x_2, ..., x_{2n})$ of the equation system
 - Let $P_i = (i, 1 + 1 2x_1 + \dots + 1 2x_i)$ for all $i = 1, 2, \dots, 2n$
 - $1 + 1 2x_1 + \dots + 1 2x_i > 0$ for $i = 1, 2, \dots 2n$
 - $P_1 = (1,1+1-2x_1) = (1,2); P_{2n} = (2n,1)$
 - P_1, P_2, \dots, P_{2n} is a T-route above the x-axis

Catalan Number

1838, Catalan (1814-1894); 1730s, Ming Antu (1692-1763)

- A map $g: \mathcal{T}_n \to \mathcal{C}_n$ Let $\{P_i = (u_i, v_i): 1 \le i \le 2n\}$ be the points on a T-Route from $P_1 = (1,2)$ to $P_{2n} = (2n,1)$, where the T-Route is above the x-axis
 - $x_1 = (2 v_1)/2 = 0$
 - $x_i = (1 (v_i v_{i-1}))/2 \in \{0,1\}, i = 2, ..., 2n$
 - $x_1 + x_2 + \dots + x_{2n} = (2n + 1 v_{2n})/2 = n$
 - $x_1 + x_2 + \dots + x_i = (i + 1 v_i)/2 < i/2, i = 1, 2, \dots, 2n$
- $A = P_1 = (1,2)$: $\alpha = 1$, $\alpha = 2$; $B = P_{2n} = (2n,1)$: b = 2n, $\beta = 1$
 - $|\mathcal{C}_n| = \frac{(2n-1)!}{(n-1)!n!} \frac{(2n-1)!}{(n+1)!(n-2)!} = \frac{(2n)!}{n!(n+1)!}$
- **Parenthesization**: Let $a_1, a_2, ..., a_n, a_{n+1}$ be n+1 numbers. Let * be any binary operator. Let C_n be the number of different ways of parenthesizing $a_1 * a_2 * \cdots * a_n * a_{n+1}$ such that the calculation is not ambiguous. What is C_n ?
 - Eugène Charles **Catalan** (1838)