

## Identification de paramètres et optimisation Cours de Master 2 STIM 2014-2015

Sébastien Adam

3 décembre 2015

## Présentation (1)

### Qui suis-je?

- Sébastien ADAM
  - Professeur, laboratoire LITIS
  - Équipe document et apprentissage
  - Sebastien.Adam@univ-rouen.fr
  - 02.32.95.52.10
  - ▶ Bureau U2.1.41
  - Responsable de la spécialité GEII du Master IGIS

## Équipe « DocApp »

- 18 enseignants chercheurs + 20 doctorants
- Apprentissage statistique, séquences, structurel, ensembles
- Application : analyse d'images de document, BCI, RI

# Présentation (2)

### Mes thématiques de recherche

- Reconnaissance de formes apprentissage
  - Forêts aléatoires
  - Apprentissage multi-objectif
- Représentations structurelles en reconnaissance de formes
  - Distances entre graphes
  - ▶ Recherche d'isomorphismes de sous graphes
  - Classification de graphes

### Applications cibles

- Analyse d'images de documents
- Analyse d'images médicales

## Présentation (3)

### Unité d'Enseignement Optimisation et apprentissage

- Objectifs :
  - Maîtriser certains outils de base utilisés en optimisation (Moindres carrés, Gradient, Gauss-Newton, Recuit Simulé)
  - Introduction aux réseaux de neurones
  - Introduction aux méthodes évolutionnaires
  - Introduction à l'optimisation multi-objectifs, ROC-based learning
  - ► Liens optimisation/Apprentissage
- Volumes horaires :
  - ▶ 15h de Cours
  - ▶ 15h de TP
- Evaluation : 60 points
  - Un examen terminal écrit : 40 points
  - ▶ Une note de TP : 20 points
- Cours disponible sur universitice

### Plan du Cours

- 1 Présentation de l'enseign(ant)emen
- 2 Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- Méthodes de descente locale
- 6 Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif



### Cadre historique du cours : la modélisation paramétrique

• Objectif : identifier les paramètres  $\theta$  du modèle d'un système pour que son comportement « ressemble » au maximum à celui du système..



- K paramètres
- N observations du système

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_K \end{pmatrix} y_S = \begin{pmatrix} Y_{S1} \\ Y_{S2} \\ \vdots \\ Y_{SN} \end{pmatrix} y_M = \begin{pmatrix} y_{M1} \\ y_{M2} \\ \vdots \\ y_{MN} \end{pmatrix}$$

### Objectifs de la modélisation

- Centré « modèle » : comprendre le fonctionnement d'un système
- Centré « commande » : utiliser le modèle pour piloter le système





6 / 51



### Les problèmes à résoudre en modélisation paramétrique

- Quel modèle?
  - Statique / Dynamique?
  - ► Continu / Discret?
  - Quel niveau de connaissances : loi générales / boîtes noires / boîtes grises ?
- Quel critère pour quantifier la qualité d'un modèle?
- Quelle méthode pour déterminer (optimiser) la valeur des paramètres ?

3 décembre 2015

#### Exemple 1

- Système : points de contour
- Modèle : équation du cercle
- Paramètres : centre et rayon









#### Exemple 2

- le processus : le circuit, (entrée = u(t))
- le modèle : l'équation différentielle y + RCdy/dt = u
- les observations processus :  $y_p(t_n) = \text{relev\'e}$  aux instants  $t_n$
- la sortie modèle  $y(t_n) = y_m(t_n) =$ expression mathématique de la solution de l'équation différentielle aux mêmes instants  $t_n$
- le paramètre  $\theta$  à identifier :  $\theta = RC$
- le critère : l'écart entre  $y_p$  et  $y_m$ ,

### Propriétés des modèles

- Propriétés mathématiques : linéarité (par rapport aux paramètres et/ou aux entrées), dérivabilité...
- Identifiabilité: unicité du vecteur de paramètres pour un comportement donné du modèle.
- Complexité
  - Dimension du vecteur de paramètres
    - + de calculs
    - + de données
    - Modélise le bruit

#### Linéarité

- $y(k) = \theta u(k)$
- $y(k) = \sqrt{\theta}u(k)$
- $y(k) = \theta u(k)^2$
- $y(k) = \sqrt{\theta}u(k)^2$

### Complexité



• Akaike AIC = 2n - ln(L)

### Exemple de choix de complexité

Modélisation polynomiale



 Exemple Matlab : comment choisir l'ordre K d'un polynôme pour modéliser les données :

$$Y_M(z) = \theta_0 + \theta_1 z + \dots \theta_K z^K = x^T \theta \text{ avec } x^T = [1, z, \dots z^K]$$

11 / 51

### Impact de la complexité des modèles en RDF

Sur-apprentissage



• Problème omniprésent en apprentissage, au cœur des problématique recherche (capacité de généralisation, régularisation, sparsité)

S. Adam (Master STIM) Optimisation 3 décembre 2015 12 / 51

#### Choix des critères

- Doit traduire la ressemblance entre comportement du système et comportement du modèle
- Un modèle  $M(\theta_1)$  sera meilleur qu'un autre  $M(\theta_2)$  au sens d'un critère J si  $J(\theta_1) < J(\theta_2)$
- Notion subjective



ullet Changer de critère o change de paramètres optimaux

### Exemples de critères fréquemment rencontrés

- Critère des moindres carrés :  $J_{MC}(\theta) = \sum_{n} [y_{S_n} y_{M_n}(\theta)]^2$ 
  - ▶ on peut ajouter un facteur de normalisation 1/N : permet de comparer des valeurs de critères pour des nombre d'observations variables.
  - on peut pondérer les mesures par des  $w_n$  positifs. Ces pondérations changent le critère, et donc le minimum. Exemple : permanent/transitoire
- ullet Critère de valeur absolue (norme  $L^1$ ) ou maximum (norme  $L^\infty$ )
- Critère du maximum de vraisemblance  $J_{MV}=p\left(y_S|\theta\right)$ : on maximise la "vraissemblance" qu'un jeu de paramètres associés à une distribution ait généré des observations. On considère souvent la log vraissemblance pour des raisons calculatoires.
- Critère du maximum a posteriori  $J_{MP} = p\left(\theta|y_S\right) = \frac{p(y_S|\theta)p(\theta)}{p(y_S)}$
- Les critères peuvent aussi être vectoriels : optimisation multi-objectif

1 U P 1 UP P 1 E P 1 E P 2 P 2 P 3 P 1

#### Cas du maximum de vraissemblance

- Exemple tiré de Wikipedia : on effectue 9 mesures expérimentales. On les suppose indépendantes et issues d'une loi normale
- La vraissemblance est le produit des probabilités d'apparition de la valeur



## Introduction : Bilan sur l'identification de paramètres



#### Nombreux choix

- Observations
- Modèles
- Critères
- Algorithmes

#### Et encore bien d'autres

Problèmes numériques, contraintes, modèles dynamiques ...

### Au delà de l'identification de paramètres

• De nombreux problèmes de RDF impliquent l'optimisation de critères

#### **SVM**



- Un critère à minimiser :  $J = \frac{1}{2} \|w\|^2 + C \sum \xi_k$
- Des contraintes :  $I_k(w^Tx_k + w_0) \ge 1 \xi_k$

#### Au delà de l'identification de paramètres

• De nombreux problèmes de RDF impliquent l'optimisation de critères

### Distances d'édition entre graphes

An attributed graph G is a 4-tuple  $G = (V, E, \mu, \xi)$ , where :

- V is a set of vertices,
- E is a set of edges, such that  $\forall e = (i,j) \in E, i \in V \text{ and } j \in V$ ,
- $\mu: V \to L_V$  is a vertex labeling function
- $\xi: E \to L_E$  is an edge labeling function

The graph edit distance d(.,.) is a function

$$d: \mathcal{G} imes \mathcal{G} o \mathbb{R}^+$$
 
$$(G_1, G_2) \mapsto d(G_1, G_2) = \min_{o = (o_1, \dots, o_k) \in \Gamma(G_1, G_2)} \sum_{i=1}^k c(o_i)$$

#### Classification de graphes



$$mGDG = \{gdg_{11}, ..., gdg_{1m}, ..., gdg_{N1}, ..., gdg_{Nm}\}$$

$$= \underset{\{g_{ik}\}_{i=1,k=1}^{N,m} \subset U}{\arg \min} \Delta \left(T, \{g_{ik}\}_{i=1,k=1}^{N,m}\right)$$
(1)

### Recherche de sous graphes : un problème d'optimisation

- Programmation linéaire en nombres entiers (PLNE)
  - ► Formulation en « programme mathématique »
  - ▶ Résolution par un solveur

## Des variables entières

$$\min_{x} \ c^{t}x$$
 sous la contrainte  $Ax \leq b$  
$$x \in C \subset \mathbb{Z}^{n}$$



### Un objectif linéaire

$$\min_{\mathbf{x}, \mathbf{y}} \left( \sum_{i \in V_{\mathcal{S}}} \sum_{k \in V_{\mathcal{G}}} c_{V}(i, k) * \mathbf{x}_{i, k} + \sum_{ij \in \mathcal{E}_{\mathcal{S}}} \sum_{kl \in \mathcal{E}_{\mathcal{G}}} c_{E}(ij, kl) * \mathbf{y}_{ij, kl} \right)$$

#### Des contraintes linéaires

$$\begin{split} \sum_{k \in V_{\mathcal{G}}} x_{i,k} &= 1 \quad \forall i \in V_{\mathcal{S}} \\ \sum_{kl \in E_{\mathcal{G}}} y_{ij,kl} &= 1 \quad \forall ij \in E_{\mathcal{S}} \\ \sum_{i \in V_{\mathcal{S}}} x_{i,k} &\leq 1 \quad \forall k \in V_{\mathcal{G}} \\ \sum_{kl \in E_{\mathcal{G}}} y_{ij,kl} &= x_{i,k} \quad \forall k \in V_{\mathcal{G}}, \forall ij \in E_{\mathcal{S}} \\ \sum_{kl \in E_{\mathcal{G}}} y_{ij,kl} &= x_{j,l} \quad \forall l \in V_{\mathcal{G}}, \forall ij \in E_{\mathcal{S}} \end{split}$$

4 D > 4 D > 4 D > 4 D > 4 D > 9 Q Q

### Au delà de l'identification de paramètres

• Exemple des réseaux de neurones



### Un exemple d'objectifs multiples en apprentissage

- Contexte : problèmes de classification à deux classes
- ullet On a une machine d'apprentissage paramétrée par heta
- On veut choisir la meilleure valeur de  $\theta$  : sélection de modèles
- Critère classique : taux d'erreur

#### Schéma habituel d'évaluation des modèles



### Un exemple d'objectifs multiples en apprentissage

• Problème : si les erreurs n'ont pas la même gravité

#### Coût de mauvaise affectation non-symétrique



### Un exemple d'objectifs multiples en apprentissage

- Problème identique : si les effectifs sont déséquilibrés
- Exemple du COIL challenge, visant à détecter des personnes qui vont prendre une police d'assurance

| 0.0650           |      |     |      |  |  |  |  |
|------------------|------|-----|------|--|--|--|--|
| Confusion matrix |      |     |      |  |  |  |  |
|                  | No   | Yes | Sum  |  |  |  |  |
| No               | 3731 | 31  | 3762 |  |  |  |  |
| Yes              | 229  | 9   | 238  |  |  |  |  |
| Sum              | 3960 | 40  | 4000 |  |  |  |  |

### Un exemple d'objectifs multiples en apprentissage : la courbe ROC

- Dans un tel contexte de cost-sensitive classification : il faut distinguer les deux types d'erreur
- L'espace ROC





• 2 critères à comparer : Pareto

### La courbe ROC

 Pour des classifieurs de type mesure : on peut construire une courbe ROC

| Inst# | Class        | Score | Inst# | Class        | Score |
|-------|--------------|-------|-------|--------------|-------|
| 1     | p            | .9    | 11    | P            | .4    |
| 2     | $\mathbf{p}$ | .8    | 12    | $\mathbf{n}$ | .39   |
| 3     | $\mathbf{n}$ | .7    | 13    | $\mathbf{p}$ | .38   |
| 4     | $\mathbf{p}$ | .6    | 14    | $\mathbf{n}$ | .37   |
| 5     | P            | .55   | 15    | $\mathbf{n}$ | .36   |
| 6     | p            | .54   | 16    | $\mathbf{n}$ | .35   |
| 7     | n            | .53   | 17    | p            | .34   |
| 8     | $\mathbf{n}$ | .52   | 18    | n            | .33   |
| 9     | р            | .51   | 19    | p            | .30   |
| 10    | n            | .505  | 20    | n            | .1    |



#### La courbe ROC

• Courbe ROC : bon outil de comparaison **cost-sensitive** de classifieurs



• Critère classique de comparaison : AUC

#### La courbe ROC

- Fixer le point de fonctionnement : iso-performance line
- Pente d'une iso-performance line :
  - ▶ Coûts éq. :  $err = pos*(1 tpr) + neg*fpr \rightarrow p = \frac{neg}{pos}$
  - ▶ Coûts deséq. :  $cost = pos(1 tpr)cfn + neg * fpr * cfp \rightarrow p = \frac{neg*cfp}{pos*cfn}$



### Exemple de choix de classifieur

pos = neg



• acc = 82%

## Exemple de choix de classifieur

• pos = neg \* 4



• acc = 84%

### Exemple de choix de classifieur

• pos = neg/4



• acc = 86%





### Plan pour la suite

- Minimum du critère analytiquement calculable : moindres carrés
- Critères continûment dérivables : gradient, Gauss-Newton
- Critères quelconques : recuit simulé, algorithmes évolutionnaires
- Critères multiples
- ullet On relache les contraintes sur le modèle o on augmente la complexité

### Plan du Cours

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- Méthodes de descente locale
- Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

#### Moindres carrés

### Hypothèses nécessaires et notations

• Hypothèse 1 : Le modèle  $Y_M$  est linéaire par rapport aux paramètres : chaque composante  $y_{Mi}$  du vecteur modèle peut s'écrire :

$$y_{Mi} = x_{1i}\theta_1 + x_{2i}\theta_2 + x_{3i}\theta_3 + ... + x_{Ki}\theta_K = x_i^T \theta_i$$

En adoptant une notation matricielle

$$Y_{M} = \begin{pmatrix} y_{M1} \\ y_{M2} \\ \vdots \\ y_{MN} \end{pmatrix} X = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{K1} \\ x_{12} & x_{22} & \dots & x_{K2} \\ x_{13} & x_{23} & \dots & x_{K3} \\ \dots & \dots & \dots & \dots \\ x_{1N} & x_{2N} & \dots & x_{KN} \end{pmatrix} \theta = \begin{pmatrix} \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{K} \end{pmatrix}$$

On écrit :

$$Y_M(\theta) = X\theta$$

#### Moindres carrés

#### Vision "algébrique" du problème

• On cherche à résoudre :

$$\begin{cases} x_{11}\theta_1 + x_{21}\theta_2 + x_{31}\theta_3 + \dots + x_{K1}\theta_K &= y_{S_1} \\ x_{12}\theta_1 + x_{22}\theta_2 + x_{32}\theta_3 + \dots + x_{K2}\theta_K &= y_{S_2} \\ & \dots \\ x_{1N}\theta_1 + x_{2N}\theta_2 + x_{3N}\theta_3 + \dots + x_{KN}\theta_K &= y_{NN} \end{cases}$$

- C'est un système de N équations à K inconnues décrit par  $X\theta = Y_S$ . Pour  $N \le K$ , vous savez résoudre.
- On s'intéresse ici aux systèmes sur-déterminés (N > K), pour lesquels il n'y a pas de solution.
- On va chercher à minimiser l'erreur commise

◆ロト ◆昼 ト ◆ 差 ト ◆ 差 ・ 夕 へ ②

### Moindres carrés

### Ys与Ym正交

### Vision "géométrique" du problème

• On cherche donc à exprimer  $Y_S$  (b sur la figure) comme combinaison linéaire des vecteurs colonnes de X (les  $v_i$  sur la figure). Cette combinaison appartient à l'espace engendré par ces vecteurs



• On va chercher  $y_M$  ( $\hat{b}$  sur la figure) tel que  $||Y_S - Y_M||^2$  ( $||\hat{b} - b||^2$ ) soit minimale : la projection orthogonale de b dans l'espace vectoriel.

S. Adam (Master STIM) Optimisation 3 décembre 2015 36 / 51

### Vision "analytique" du problème

- On cherche  $\theta^T = (\theta_1, \theta_2...\theta_K)$  tel que  $Y_M = X\theta$  soit le plus proche possible de  $Y_S$
- On voit apparaître la notion de distance (critère).
- Hypothèse 2 : on considère la distance Euclidienne (norme  $L^2$ ).
- $\theta_{MC} = \arg\min \|Y_S X\theta\|^2 = \arg\min \sum_{i=1}^{N} (y_{Si} x_i^T \theta)^2$  avec :

$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_K \end{pmatrix} X = \begin{pmatrix} x_1^T \\ x_2^T \\ x_3^T \\ \vdots \\ x_N^T \end{pmatrix} Y_S = \begin{pmatrix} y_{S1} \\ y_{S2} \\ \vdots \\ y_{SN} \end{pmatrix}$$

• Remarque : on peut pondérer les différentes observations :  $J_{MC}(\theta) = \sum_{i=1}^{N} w_i \left( y_{Si} - x_i^T \theta \right)^2 = (Y_S - X\theta)^T W(Y_S - X\theta)$ 

S. Adam (Master STIM) Optimisation 3 décembre 2015 37 / 51

### Remarques sur la pondération

- $J_{MC}(\theta) = \sum_{i=1}^{N} w_i (y_{Si} x_i^T \theta)^2 = (Y_S X\theta)^T W (Y_S X\theta)$
- ullet Les  $w_i$  pondèrent les erreurs, ils doivent être positifs.
- Si w<sub>i</sub> est grand, plus d'importance est accordée à y<sub>Si</sub>.
- Exemple 1 : on pondère avec l'indice de la mesure
  - $w_i = t_i$ : régime permanent favorisé
  - $w_i = 1/t_i$  : régime transitoire favorisé
- Exemple 2 : on pondère par l'écart type  $\sigma_i$  de la mesure  $i. \sigma_i$  caractérise la fiabilité des mesures. Si les erreurs de mesures suivent une loi normale, cette grandeur s'appelle le khi-deux.

$$J_{MC}(\theta) = \sum_{i=1}^{N} \left( \frac{y_{S_i} - x_i^T \theta}{\sigma_i} \right)^2$$

• Dans la suite, pour simplifier les calculs, on posera souvent  $w_i = 1 \forall i$  (W = I)

S. Adam (Master STIM) Optimisation 3 décembre 2015 38 / 51

## Résolution du problème de minimisation

- On cherche à minimiser  $J_{MC}(\theta) = \|Y_S X\theta\|^2 = \|X\theta Y_S\|^2$ .
- $J_{MC}(\theta)$  est quadratique  $\rightarrow$  le critère est convexe
- On cherche les valeurs de heta telles que  $rac{\partial J_{MC}( heta)}{\partial heta} = 0$

### Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

#### Résolution

- $J_{MC}(\theta) = \|X\theta Y_S\|^2$
- $\frac{\partial J_{MC}(\theta)}{\partial \theta} =$

### Résolution du problème de minimisation

- On cherche à minimiser  $J_{MC}(\theta) = \|Y_S X\theta\|^2 = \|X\theta Y_S\|^2$ .
- $J_{MC}(\theta)$  est quadratique  $\rightarrow$  le critère est convexe
- On cherche les valeurs de heta telles que  $rac{\partial J_{MC}( heta)}{\partial heta} = 0$

### Rappels de dérivation

- $\forall x \in \mathbb{R}^k, a \in \mathbb{R}^k, \frac{\partial a^T x}{\partial x} = \frac{\partial x^T a}{\partial x} = a$
- $\forall x \in \mathbb{R}^k, A \in \mathbb{M}_{k,k}, \frac{\partial x^T A x}{\partial x} = (A + A^T) x$

#### Résolution

- $\bullet \ \frac{\partial J_{MC}(\theta)}{\partial \theta} = \frac{\partial \theta^T X^T X \theta}{\partial \theta} \frac{\partial 2 \theta^T X^T Y_S}{\partial \theta} + \frac{\partial Y_S^T Y_S}{\partial \theta} = 2 X^T X \theta 2 X^T Y_S$
- $\frac{\partial J_{MC}(\theta)}{\partial \theta} = 0 \Rightarrow X^T X \theta = X^T Y_S$

#### Inversion

L'estimée  $\theta_{MC}$  est donc la valeur de  $\theta$  solution de l'équation :

$$X^T Y_S = X^T X \theta_{MC}$$

Deux cas de figure :

- $X^TX$  est inversible. On a alors  $\theta_{MC} = (X^TX)^{-1}X^TY_S$
- $X^TX$  n'est pas inversible.  $\theta_{MC}$  n'est pas unique.

Cas pratiques de non inversibilité :

- Moins d'observations N que de paramètres K: rang $(X^TX) \le N < K$  (rang $(AB) \le rang(A) \le min(dim(A))$ ).
- Dépendance linéaire entre les colonnes de X : on ne peut pas résoudre le système

Dans le cas pondéré, on aura :  $\theta_{MC} = (X^T W X)^{-1} X^T W Y_S$ 

1 4 7 1 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7

S. Adam (Master STIM) Optimisation 3 décembre 2015 40 / 5

## Moindres carrés (9)

### Exemple: Approximation polynomiale

- On choisit de modéliser un processus d'entrée z et de sortie  $Y_s(z)$  par un polynôme d'ordre 3 dont on cherche les coefficient optimaux au sens des moindres carrés.
- On relève les mesures suivantes :

| Z     | 1  | 3    | 4    | 5   |
|-------|----|------|------|-----|
| $Y_S$ | -2 | -0.7 | -0.7 | 0.7 |

• Mettre en équation ce système et donner le calcul à effectuer

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

# Moindres carrés (10)

### Exemple: Approximation polynomiale (2)

On obtient :



• 4 paramètres, 4 observations : on a résolution un système de quatre équation à 4 inconnues.

# Moindres carrés (11)

### Exemple: Approximation polynomiale

• On ajoute une observation :

| Z       | 1  | 3    | 4    | 5   | 6 |
|---------|----|------|------|-----|---|
| $Y_{5}$ | -2 | -0.7 | -0.7 | 0.7 | 0 |

• 4 paramètres, 5 observations : il n'y a pas de solution exacte. Celle de coût minimal (0.5125) obtenue par les Moindres Carrés donne :



S. Adam (Master STIM) Optimisation 3 décembre 2015 43 / 51

## Moindres carrés (12)

### Propriétés de l'estimateur

- Modèle :  $Y_M = X\theta$
- Minimum du critère  $J_{MC}(\theta)$  atteint pour  $\theta_{MC} = (X^TX)^{-1}X^TY_S$
- On a alors  $(Y_M)_{MC} = X(X^TX)^{-1}X^TY_S = QY_S$
- L'erreur d'estimation vaut :  $Y_S Y_{MMC} = (1 Q)Y_S$
- Démontrons quelques propriétés de Q :
  - Q est symétrique
  - $Q^2 = Q$
  - $(Y_S QY_S)^T QY_S = 0 : Y_S (Y_M)_{MC}$  est orthogonal à  $(Y_M)_{MC}$
- Retour sur l'interprétation géométrique

# Moindres carrés (13)

### Interprétation stochastique

- On suppose :
  - ▶  $Y_S = Y_M(\theta_S) + b = X\theta_S + b$  où  $\theta_S$  représente la vraie valeur (inconnue) des paramètres du système.
  - ▶ b est un bruit blanc (Gaussien, de moyenne nulle et de variance  $\sigma^2$ ) indépendant des  $x_i$
- ullet On appelle erreur d'estimation le vecteur  $e_{ heta}= heta_{MC}- heta_{S}$
- On a  $e_{\theta} = (X^T X)^{-1} X^T (Y_S X \theta_S) = (X^T X)^{-1} X^T b$
- Donc :  $E[e_{\theta}] = (X^T X)^{-1} X^T E[b] = 0$
- Et  $\operatorname{var}(e_{\theta}) = E[e_{\theta}e_{\theta}^T] = (X^TX)^{-1}X^TE[bb^T]X(X^TX)^{-1} = \sigma^2(X^TX)^{-1}$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (\*)

# Moindres carrés (14)

#### Bilan moindre carrés

- Modèle linéaire par rapport aux paramètres :  $Y_M(\theta) = X\theta$
- Critère erreur quadratique :  $J_{MC}(\theta) = \sum_{i=1}^{N} w_i (y_{S_i} y_{m_i})^2$
- Si  $X^TX$  est inversible :  $\theta_{MC} = (X^TX)^{-1} X^T Y_S$
- Remarque : en pratique  $(X^TX)$  sera calculé par des méthodes QR
- Estimateur non biaisé le moins dispersé (Gauss-Markov) si la contrainte de linéarité est respectée.
- Modèle généralisable :
  - ▶ Si les  $\theta$  apparaissent dans des expressions telles que  $\cos(\theta_1)$ ,  $\theta_1^2$  ... : on change de paramètres.
  - Pour certains cas où  $Y_M$  n'est pas linéaire par rapport aux paramètres. Exemple :  $Y_M = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \rightarrow ln(Y_M) = \alpha_1 ln(\theta_1) + \alpha_2 ln(\theta_2)$  : on change de paramètres et de critère.
- Comment mettre à jour une estimation?

S. Adam (Master STIM)

Optimisation

3 décembre 2015

46 / 51

# Moindres carrés (15)

### Exerçons nous ...

#### ...sur l'exemple 1 de l'introduction

- Observations  $Y_S$  = points de contours  $X_n$
- Sorties du modèle  $Y_M(\theta)$ : ensemble de points  $M_n$





#### Exemple 1

- O (a, b)
- $|O, M_N| = r$
- Paramètres : a,b,r
- Critère :  $J(a, b, r) = \sum_{n} (MnX_n)^2$

S. Adam (Master STIM)

- Présentation de l'enseign(ant)ement
- 2 Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- 4 Méthodes de descente locale
- 6 Réseaux de neurones
- 6 Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)emen
- 2 Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- 4 Méthodes de descente locale
- 6 Réseaux de neurones
- Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)emen
- 2 Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- 4 Méthodes de descente locale
- 6 Réseaux de neurones
- 6 Méthodes itératives globales
- Optimisation multi-objectif

- Présentation de l'enseign(ant)emen
- Introduction
- Méthodes des moindres carrés
  - Ecriture matricielle
- Méthodes de descente locale
- 6 Réseaux de neurones
- 6 Méthodes itératives globales
- Optimisation multi-objectif