In this assignment students need to predict whether a person makes over 50K per year or not from classic adult dataset using XGBoost.

The description of the dataset is as follows:

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Attribute Information:

Listing of attributes: >50K, <=50K.

age: continuous. workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, Stategov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool, education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Execmanagerial, Prof-specialty, Handlers-cleaners, Machine-op- inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces. relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, ElSalvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.

Following is the code to load required libraries and data:

import numpy as np

import pandas as pd

train_set = pd.read_csv('http://archive.ics.uci.edu/ml/machinelearning-databases/adult/adult.dat (http://archive.ics.uci.edu/ml/machinelearning-databases/adult/adult.dat) a', header = None)

test_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learningdatabases/adult/adult.test' (http://archive.ics.uci.edu/ml/machine-learningdatabases/adult/adult.test'), skiprows = 1, header = None)

col_labels = ["age", 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation','relationship', 'race', 'sex', capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'wage_class']

train set.columns = col labels

test_set.columns = col_labels

In [1]: #importing libraries import numpy as np import pandas as pd

```
In [2]: train_set = pd.read_csv('adult.data', header = None)
train_set.head()
```

Out[2]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0	40
1	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0	13
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0	40
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40

In [3]: test_set = pd.read_csv('adult.test', skiprows = 1, header = None)
test_set.head()

Out[3]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own- child	Black	Male	0	0	40	Un St
1	38	Private	89814	HS- grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	Un St
2	28	Local- gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	Un St
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	Un St
4	18	?	103497	Some- college	10	Never- married	?	Own- child	White	Female	0	0	30	Un St

In [4]: col_labels = ["age", 'workclass', 'fnlwgt', 'education', 'education_num', 'marita
 train_set.columns = col_labels
 test_set.columns = col_labels

In [5]: train_set.head()

Out[5]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	ra
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-family	Wr
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	Wh
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	Wh
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Bla
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Bla
4									•

```
In [6]: test_set.head()
```

Out[6]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	ra
-	25	Private	226802	11th	7	Never-married	Machine- op-inspct	Own-child	Bla
	1 38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	Wh
:	2 28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	Wh
;	3 44	Private	160323	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Bla
	4 18	?	103497	Some- college	10	Never-married	?	Own-child	Wh

```
In [7]: train_set.columns == test_set.columns
Out[7]: array([ True,
                        True,
                               True,
                                      True,
                                                    True, True,
                                                                  True, True,
                                             True,
                True,
                        True,
                               True,
                                      True,
                                             True,
                                                    True])
In [8]: #checking is there any missing values or not ?
        train_set.isnull().sum()
Out[8]: age
                           0
        workclass
                           0
        fnlwgt
                           0
        education
                           0
        education num
                           0
        marital_status
                           0
        occupation
                           0
        relationship
                           0
        race
                           0
                           0
        sex
        capital_gain
                           0
        capital_loss
                           0
        hours_per_week
                           0
        native_country
                           0
        wage_class
                           0
        dtype: int64
```

```
In [9]: #checking is there any missing values or not ?
         test_set.isnull().sum()
 Out[9]: age
                            0
         workclass
                            0
         fnlwgt
                            0
         education
         education num
         marital_status
                            0
         occupation
                            0
         relationship
                            0
         race
                            0
         sex
         capital_gain
                            0
         capital_loss
                            0
         hours_per_week
                            0
         native_country
                            0
         wage_class
                            0
         dtype: int64
In [10]: df = pd.DataFrame([train_set.dtypes , test_set.dtypes ],index = ['train_set' ,
```

Out[10]:

	train_set	test_set
age	int64	int64
workclass	object	object
fnlwgt	int64	int64
education	object	object
education_num	int64	int64
marital_status	object	object
occupation	object	object
relationship	object	object
race	object	object
sex	object	object
capital_gain	int64	int64
capital_loss	int64	int64
hours_per_week	int64	int64
native_country	object	object
wage_class	object	object

```
In [11]: |#Finding columns with data types as object
         for i in train set.columns:
             if train set[i].dtypes=='object':
                 print(i)
         workclass
         education
         marital status
         occupation
         relationship
         race
         sex
         native_country
         wage class
In [12]: print('(',train_set.workclass.nunique(),',' ,train_set.education.nunique(),',', t
         train_set.relationship.nunique() ,',',train_set.race.nunique(),',', train_set.sex
         train set.wage class.nunique() ,')')
         (9,16,7,15,6,5,2,42,2)
In [13]: |x_train = train_set.copy()
         x_test = test_set.copy()
In [14]: x train.columns
Out[14]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education_num',
                 'marital_status', 'occupation', 'relationship', 'race', 'sex',
                 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
                 'wage class'],
               dtype='object')
In [15]: #converting categorical values into numerical values
         dict_sex = {}
         count = 0
         for i in x_train.sex.unique():
             dict sex[i]= count
             count+=1
In [16]: dict workclass = {}
         count = 0
         for i in x train.workclass.unique():
             dict workclass[i]= count
             count+=1
```

```
In [17]: dict_education = {}
         count = 0
         for i in x train.education.unique():
             dict education[i]= count
             count+=1
         dict marital status = {}
         count = 0
         for i in x_train.marital_status.unique():
             dict marital status[i]= count
             count+=1
         dict_occupation = {}
         count = 0
         for i in x train.occupation.unique():
             dict_occupation[i]= count
             count+=1
         dict relationship = {}
         count = 0
         for i in x_train.relationship.unique():
             dict relationship[i]= count
             count+=1
         dict_race = {}
         count = 0
         for i in x train.race.unique():
             dict_race[i]= count
             count+=1
         dict_native_country = {}
         count = 0
         for i in x_train.native_country.unique():
             dict_native_country[i]= count
             count+=1
         dict_wage_class = {}
         count = 0
         for i in x train.wage class.unique():
             dict wage class[i]= count
             count+=1
```

```
In [18]: dict_workclass, dict_education, dict_marital_status, dict_occupation, dict_relations
Out[18]: ({' State-gov': 0,
             Self-emp-not-inc': 1,
            ' Private': 2,
             Federal-gov': 3,
            ' Local-gov': 4,
            '?':5,
            ' Self-emp-inc': 6,
           ' Without-pay': 7,
            ' Never-worked': 8},
          {' Bachelors': 0,
            ' HS-grad': 1,
           ' 11th': 2,
           ' Masters': 3,
            '9th': 4,
            ' Some-college': 5,
             Assoc-acdm': 6,
            ' Assoc-voc': 7,
             7th-8th': 8,
             Doctorate': 9,
In [19]: | x_train["workclass"]=x_train["workclass"].map(dict_workclass)
         x_train['education']=x_train["education"].map(dict_education)
         x_train['marital_status']=x_train['marital_status'].map(dict_marital_status)
         x train['occupation']=x train['occupation'].map(dict occupation)
         x_train['relationship']=x_train['relationship'].map(dict_relationship)
         x train['race']=x train['race'].map(dict race)
         x train['sex']=x train['sex'].map(dict sex)
         x_train['native_country']=x_train['native_country'].map(dict_native_country)
         x train['wage class']=x train['wage class'].map(dict wage class)
In [20]: x train.isnull().sum()
Out[20]: age
                            0
         workclass
                            0
         fnlwgt
                            0
         education
                            0
         education num
         marital status
                            0
         occupation
                            0
         relationship
                            0
                            0
         race
         sex
                            0
         capital gain
                            0
         capital loss
         hours_per_week
                            0
         native country
                            0
         wage class
                            0
         dtype: int64
In [21]: | xtrain = x_train.astype(int)
```

```
In [22]: x_train.head()
```

Out[22]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	rac
0	39	0	77516	0	13	0	0	0	
1	50	1	83311	0	13	1	1	1	
2	38	2	215646	1	9	2	2	0	
3	53	2	234721	2	7	1	2	1	
4	28	2	338409	0	13	1	3	2	
4									•

In [23]: x_train.describe()

Out[23]:

	age	workclass	fnlwgt	education	education_num	marital_status	C
count	32561.000000	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	325
mean	38.581647	2.309972	1.897784e+05	3.424465	10.080679	1.083781	
std	13.640433	1.225728	1.055500e+05	3.453582	2.572720	1.251381	
min	17.000000	0.000000	1.228500e+04	0.000000	1.000000	0.000000	
25%	28.000000	2.000000	1.178270e+05	1.000000	9.000000	0.000000	
50%	37.000000	2.000000	1.783560e+05	2.000000	10.000000	1.000000	
75%	48.000000	2.000000	2.370510e+05	5.000000	12.000000	1.000000	
max	90.000000	8.000000	1.484705e+06	15.000000	16.000000	6.000000	
4							•

```
In [24]: dict_native_country = {}
count = 0
for i in x_test.native_country.unique():
    dict_native_country[i]= count
    count+=1

dict_wage_class = {}
count = 0
for i in x_test.wage_class.unique():
    dict_wage_class[i]= count
    count+=1
```

```
In [25]: x_test["workclass"]=x_test["workclass"].map(dict_workclass)
    x_test['education']=x_test["education"].map(dict_education)
    x_test['marital_status']=x_test['marital_status'].map(dict_marital_status)
    x_test['occupation']=x_test['occupation'].map(dict_occupation)
    x_test['relationship']=x_test['relationship'].map(dict_relationship)
    x_test['race']=x_test['race'].map(dict_race)
    x_test['sex']=x_test['sex'].map(dict_sex)
    x_test['native_country']=x_test['native_country'].map(dict_native_country)
    x_test['wage_class']=x_test['wage_class'].map(dict_wage_class)
```

In [26]: dict_wage_class

Out[26]: {' <=50K.': 0, ' >50K.': 1}

In [27]: x_test.head()

Out[27]:

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	rac
0	25	2	226802	2	7	0	9	3	
1	38	2	89814	1	9	1	8	1	
2	28	4	336951	6	12	1	12	1	
3	44	2	160323	5	10	1	9	1	
4	18	5	103497	5	10	0	11	3	
4									•

In [28]: x_test.describe()

Out[28]:

	age	workclass	fnlwgt	education	education_num	marital_status	C
count	16281.000000	16281.000000	1.628100e+04	16281.000000	16281.000000	16281.000000	162
mean	38.767459	2.315030	1.894357e+05	3.386954	10.072907	1.084270	
std	13.849187	1.246499	1.057149e+05	3.440725	2.567545	1.269622	
min	17.000000	0.000000	1.349200e+04	0.000000	1.000000	0.000000	
25%	28.000000	2.000000	1.167360e+05	1.000000	9.000000	0.000000	
50%	37.000000	2.000000	1.778310e+05	2.000000	10.000000	1.000000	
75%	48.000000	2.000000	2.383840e+05	5.000000	12.000000	1.000000	
max	90.000000	8.000000	1.490400e+06	15.000000	16.000000	6.000000	
4							•

In [29]: import seaborn as sns
import matplotlib.pyplot as plt

```
In [30]: sns.countplot('sex',data = train_set , hue = "wage_class")
```

Out[30]: <AxesSubplot:xlabel='sex', ylabel='count'>


```
In [31]: g = sns.countplot('workclass',data = train_set , hue = "wage_class")
g.set_xticklabels(g.get_xticklabels() , rotation =90 , fontsize = 12)
```



```
In [32]: g = sns.countplot('education',data = train_set , hue = "wage_class")
g.set_xticklabels(g.get_xticklabels() , rotation =90 , fontsize = 12)
```



```
In [33]: g = sns.countplot("wage_class",data = train_set , )
g.set_xticklabels(g.get_xticklabels() , rotation =90 , fontsize = 12)
```

Out[33]: [Text(0, 0, ' <=50K'), Text(1, 0, ' >50K')]


```
In [34]: pd.DataFrame.hist(train_set , figsize=[15,15])
Out[34]: array([[<AxesSubplot:title={'center':'age'}>,
                       <AxesSubplot:title={'center':'fnlwgt'}>],
                      [<AxesSubplot:title={'center':'education_num'}>,
                       <AxesSubplot:title={'center':'capital_gain'}>],
                      [<AxesSubplot:title={'center':'capital_loss'}>,
                       <AxesSubplot:title={'center':'hours_per_week'}>]], dtype=object)
                                                                                             fnlwgt
                                                                     16000
              6000
                                                                     14000
              5000
                                                                     12000
                                                                     10000
              4000
                                                                      8000
              3000
                                                                      6000
              2000
                                                                      4000
              1000
                0
                    20
                          30
                                     50
                                          60
                                                     80
                                                                          0.0
                                                                                0.2
                                                                                     0.4
                                                                                          0.6
                                                                                               0.8
                                  education_num
                                                                                           capital_gain
             10000
                                                                     30000
                                                                     25000
              8000
                                                                     20000
              6000
                                                                     15000
              4000
                                                                     10000
              2000
                                                                      5000
                                                                                  20000
                                                                                                                 100000
                                          10
                                                12
                                                     14
                                                                                         40000
                                                                                                 60000
                                                                                                         80000
                                   capital loss
                                                                                         hours_per_week
                                                                     17500
             30000
                                                                     15000
             25000
                                                                     12500
             20000
                                                                     10000
             15000
                                                                      7500
             10000
                                                                      5000
              5000
                                                                      2500
                0
                                                                        0
                                             3000
```

```
In [35]: y_train = x_train['wage_class']
          x_train = x_train.drop('wage_class',axis =1 )
          y_test = x_test['wage_class']
          x_test = x_test.drop('wage_class',axis =1)
In [36]: X = x_{train.values}
          Y = y_train.values
          Xtest = x_test.values
          Ytest = y_test.values
In [37]: x_train.head()
Out[37]:
             age
                 workclass
                            fnlwgt education education_num marital_status occupation relationship rac
          0
              39
                         0
                            77516
                                          0
                                                       13
                                                                     0
                                                                                0
                                                                                           0
              50
                             83311
                                          0
                                                                     1
          1
                                                       13
                                                                                1
                                                                                           1
          2
              38
                         2 215646
                                                                     2
                                                                                2
                                                                                           0
                                          1
                                                        9
                                          2
                                                                                2
              53
                         2 234721
                                                        7
                                                                     1
                                                                                           1
                         2 338409
                                          0
                                                                                3
                                                                                           2
              28
                                                       13
In [38]: x_train.shape , y_train.shape , X.shape , Y.shape , Xtest.shape , Ytest.shape
Out[38]: ((32561, 14), (32561,), (32561, 14), (32561,), (16281, 14), (16281,))
In [39]: from xgboost.sklearn import XGBClassifier
```

```
In [40]: #set the parameter for XGBoost model
params = {
    "objective": "binary:logistic",
    'max_depth':2,
    'learning_rate':1.0,
    'silent':1.0,
    'n_estimstor':5
}
params['eval_metric'] = ['logloss','auc']
```

```
In [41]: #Train the XGBoost model classifier
bst = XGBClassifier(**params).fit(X,Y)
```

C:\Users\idofa\anaconda3\lib\site-packages\xgboost\sklearn.py:892: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label encoder deprecation msg, UserWarning)

[09:52:06] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.
0/src/learner.cc:541:
Parameters: { n estimstor, silent } might not be used.

This may not be accurate due to some parameters are only used in language bin dings but

passed down to XGBoost core. Or some parameters are not used but slip throug ${\sf h}$ this

verification. Please open an issue if you find above cases.

Predicted correctly :- 14196 / 16281

Accuracy score :-0.8719

Error: - 0.1281

In [45]: from sklearn.metrics import classification_report
print(classification_report(Ytest,pred))

	precision	recall	f1-score	support
0	0.90	0.94	0.92	12435
1	0.77	0.66	0.71	3846
accuracy			0.87	16281
macro avg	0.83	0.80	0.81	16281
weighted avg	0.87	0.87	0.87	16281

```
In [46]: #Creating confusion matrix
import scikitplot
scikitplot.metrics.plot_confusion_matrix(Ytest , pred)
```



```
In [47]: #Creating ROC
scikitplot.metrics.plot_roc_curve(Ytest , pred_prob)
```

C:\Users\idofa\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:86: Fut
ureWarning: Function plot_roc_curve is deprecated; This will be removed in v0.
5.0. Please use scikitplot.metrics.plot_roc instead.
 warnings.warn(msg, category=FutureWarning)

Out[47]: <AxesSubplot:title={'center':'ROC Curves'}, xlabel='False Positive Rate', ylabe
l='True Positive Rate'>


```
In [ ]: #Using bagging method and base method as logistic regression
        from sklearn.ensemble import BaggingClassifier
        bag_LR = BaggingClassifier(LogisticRegression() , n_estimators=10,max_samples=0.5
In [ ]: bag LR.fit(X,Y)
In [ ]: #Prediction by bagging ensemble technique
        bag pred = bag LR.predict(Xtest)
        bag pred
In [ ]: bag_pred_prob = bag_LR.predict_proba(Xtest)
        bag pred prob
In [ ]: #Score of the bagging ensemble model
        bag LR.score(Xtest ,Ytest)
In [ ]: print("Accuracy score :-{:.4f}".format(accuracy score(Ytest , bag pred)))
In [ ]: print(classification report(Ytest,bag pred))
In [ ]: #Creating ROC
        scikitplot.metrics.plot_roc_curve(Ytest , bag_pred_prob)
In [ ]: |#CONCLUSION
        #The boosting classifier method yields a better performance in this scenario as d
        #classifier and bagging method
In [ ]:
In [ ]:
```