Correction Exercices

A quelle classe appartiennent ces adresses IP?

1. 143.25.67.89

Réseau de Classe B.

5. 221.45.67.123

Réseau de Classe C.

Déterminer combien de bits sont nécessaires pour créer le nombre de sous-réseaux demandés

1. 84 sous-réseaux

128 est la plus proche puissance de 2 par valeur supérieure : $128 = 2^7$ soit 7 bits nécessaires.

2. 145 sous-réseaux

256 est la plus proche puissance de 2 par valeur supérieure : $256 = 2^8$ soit 8 bits nécessaires.

A partir d'un identifiant de réseau et d'un nombre voulu de sous-réseaux, calculez le masque de sous-réseau et le nombre d'hôtes par sous-réseau.

1. Identifiant réseau : 148.25.0.0 et 37 sous-réseaux

On montre facilement que le réseau appartient à la classe B (voir Exercice n°1)

Le masque d'un réseau de classe B est 255.255.0.0 (voir Cours)

Pour créer 37 sous-réseaux, il faut consacrer 6 éléments binaires supplémentaires (64 est la plus proche puissance de 2 par valeur supérieure : $64 = 2^6$ soit 6 bits).

Ces sous-réseaux seront créés en « empiétant » sur le nombre d'hôtes (voir Cours), d'où :

255.255. « **1111 1100** » . 0 que l'on traduit par 255.255.252.0

Le masque de sous-réseau est donc : **255.255.252.0**

Le nombre d'hôtes est représenté par le nombre de combinaisons des X :

Soit 2^{10} = 1024 où l'on retire 2 adresses (adresse réseau et adresse de diffusion) soit **1022** hôtes possibles

A partir d'un identifiant de réseau et d'un nombre voulu de sous-réseaux, calculez le masque de sous-réseau, le nombre d'hôtes par sous-réseau et les identifiant de sous-réseau

1. Identifiant réseau : 114.0.0.0 et 7 sous-réseaux.

On montre facilement que le réseau appartient à la classe A (114 = (0111 0010)₂

Le masque d'un réseau de classe A est 255.0.0.0 (voir Cours)

Pour créer 7 sous-réseaux, il faut consacrer 3 éléments binaires supplémentaires (8 est la plus proche puissance de 2 par valeur supérieure : $8 = 2^3$ soit 3 bits).

Ces sous-réseaux seront créés en « empiétant » sur le nombre d'hôtes (voir Cours), d'où :

255. « **1110** 0000 ». 0 . 0 que l'on traduit par 255.224.0.0

Le masque de sous-réseau est donc : **255.224.0.0**

Le nombre d'hôtes est représenté par le nombre de combinaisons des X :

Soit $2^{21} = 2.097$ 152 où l'on retire 2 adresses (adresse réseau et adresse de diffusion) soit **2 097 150** hôtes possibles.

Pour chaque sous-réseau, les identifiants réseaux seront :

Pour le sous-réseau n°1 : 114 . « 0000 0000 » . 0 . 0 soit 114.0.0.0

Pour le sous-réseau n°2 : 114 . « 0010 0000 » . 0 . 0 soit 114.32.0.0

Pour le sous-réseau n°3 : 114 . « 0100 0000 » . 0 . 0 soit 114.64.0.0 etc...

Déterminer les adresses de diffusion pour chaque sous-réseau

1. Identifiant réseau : 114.0.0.0 et 7 sous-réseaux.

Pour le sous-réseau n°1 : 114 . « 0000 0000 » . 0 . 0 soit 114.0.0.0

L'adresse de diffusion se définit lorsque tous les bits « hôte » sont à 1 soit :

114 . « 0001 1111 » . 1111 1111 . 1111 1111 soit l'adresse de diffusion : 114.31.255.255

(Voir le site http://infotecservice.com/tools/calcul_IP.htm)

Plan d'adressage IP

Nombre de sous-réseaux : 3

Nombre de bits nécessaires : **2 bits** (4 sous-réseaux potentiels)

Nombre maximum de machines dans un sous-réseau : 29

Nombre de bits nécessaires : **5 bits** (32-2 = 30 machines potentielles par sous-réseau)

Nombre de bits pour identifiant sous-réseau et identifiant hôte : 2 + 5 = 7 bits

On peut donc travailler en classe C:

Identifiant réseau: 192. 168. 0. 0 (Voir Cours: réseau privé)

Masque de sous-réseau :

2 bits supplémentaires sont utilisés pour définir les sous-réseaux :

Le masque de sous-réseau est donc : 255 . 255 . 255 . 192

Identifiant Sous-réseau - Nombre de machines configurables - Adresse de diffusion

Identifiant sous-	Première machine	Dernière machine	Dernière machine	Adresse de
réseau		configurée	potentielle	diffusion
192.168.0.0	192.168.0.1	192.168.0.62	192.168.0.63	192.168.0.63
192.168.0.64	192.168.0.65	192.168.0.126	192.168.0.127	192.168.0.127
192.168.0.128	192.168.0.129	192.168.0.190	192.168.0.191	192.168.0.191
192.168.0.192				

Explicitons la première ligne :

Identifiant du premier sous-réseau : 1100 0000 1010 1000 0000 0000 0000

soit 192.168.0.0

Première machine : immédiatement après soit 192.168.0.1

Dernière machine: $(1100\ 0000\ 1010\ 1000\ 0000\ 0000\ 0011\ 1111)_2 - 1$ soit **192.168.0.62**

Adresse de diffusion : (1100 0000 1010 1000 0000 0000 0011 1111)₂ soit **192.168.0.63**