Унификация посредством поиска путей с контекстно-свободными ограничениями в графе Source-tracking unification

Екатерина Вербицкая

Лаборатория языковых инструментов JetBrains

16 ноября 2020

TI DR

Задачу унификации можно свести к поиску путей с КС ограничениями в графе 1

Путь — доказательство (не)унифицируемости термов

¹Choppella, V., and Haynes, C. T. (2005). Source-tracking unification.

План докалада

- Что такое унификация
- Как задача унификации представима в виде графа
- Какой язык будем использовать в качестве ограничений
- Почему это работает
- Какую дополнительную информацию можно получить из пути

Унификация

Даны два терма t,s

Задача: найти подстановку на свободных переменных термов (унификатор) θ , такую что

$$t\theta = s\theta$$

Подстановка

Терм:
$$\mathcal{T} :: \mathcal{V} \mid \mathcal{F}^n \mathcal{T}_1 \dots \mathcal{T}_n$$

Подстановка: $heta :: \mathcal{V} o \mathcal{T}$

Применение подстановки $t\{x_1\mapsto t_1,\dots,x_k\mapsto t_k\}$: одновременно заменить свободные переменные x_i терма t на t_i

$$(f \times a (g z) y)\{x \mapsto h \ a \ y, z \mapsto y\} = f (h \ a \ y) \ a (g \ y) \ y$$

Применение унификации

apply :: (a -> b) -> a -> b

apply f x = f x

f :: Int -> Int

```
f x = x + 1

apply_f :: ?

apply_f = apply f

Унифицируем a -> b и Int -> Int, получаем a == Int, b == Int

apply_f :: Int -> Int
```

Простой алгоритм унификации

Будем искать подстановку как множество уравнений $\mathcal{E} = \{t_i = s_i\}$

- Упрощение термов: $(f\ t_1 \dots t_n = g\ s_1 \dots s_m) \in \mathcal{E}$
 - ▶ Если f,g различные константы, то $\mathcal{E}=\bot$
 - lacktriangle Иначе заменяем уравнение в ${\cal E}$ на множество $t_1=s_1,\ldots,t_n=s_n$
- ullet Переориентация: $(t=x)\in \mathcal{E}$
 - lacktriangle Если t терм, x переменная, заменяем в ${\mathcal E}$ уравнение на x=t
- ullet Элиминация переменных: $(x=t)\in \mathcal{E}$, x входит в какое-то уравнение
 - lacktriangle Если x входит в t, $t\equiv x$, то удаляем уравнение из ${\mathcal E}$
 - lacktriangle Иначе, если x входит в t, то $\mathcal{E}=ot$
 - lacktriangle Иначе, подставляем t вместо x во всех уравнениях в ${\mathcal E}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 2\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 2\ emp\ emp\}$ $\{El=1,T=node\ 2\ emp\ emp,2=2,emp=emp,emp=emp\}$ $\{El=1,T=node\ 2\ emp\ emp\}$

Унификация: пример

$$\{ node\ El\ T\ T=node\ 1\ (node\ 2\ emp\ emp)\ (node\ 3\ emp\ emp) \}$$
 $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=node\ 3\ emp\ emp\}$ $\{El=1,T=node\ 2\ emp\ emp,node\ 2\ emp\ emp=emp,emp=emp\}$

Чем плох простой алгоритм

- Не очень эффективный
- Не говорит, почему унификация не завершилась успехом

Граф унификации

$$a \rightarrow b \stackrel{?}{=} Int \rightarrow Int$$

Граф унификации

$$a \rightarrow b \stackrel{?}{=} Int \rightarrow Int$$

Отношение эквивалентности на вершинах

Отношение на вершинах R замкнуто вниз, если для любой метки на ребре δ и двух вершин в отношении uRu' с ребрами $u\stackrel{\delta}{\to} v$ и $u'\stackrel{\delta}{\to} v'$ верно vRv'

Замыкание унификации отношения R это наименьшее замкнутое вниз отношение на вершинах, содержащее R

Отношение эквивалентности на вершинах

Отношение на вершинах R замкнуто вниз, если для любой метки на ребре δ и двух вершин в отношении uRu' с ребрами $u\stackrel{\delta}{\to} v$ и $u'\stackrel{\delta}{\to} v'$ верно vRv'

Замыкание унификации отношения R это наименьшее замкнутое вниз отношение на вершинах, содержащее R

Факторграф унификации

Вершины pавны, если связаны ε -ребром

Факторизуем граф унификации по отношению эквивалентности на вершинах, которое построено как замыкание унификации отношения равенства вершин

Факторграф унификации

Вершины ρ авны, если связаны ε -ребром

Факторизуем граф унификации по отношению эквивалентности на вершинах, которое построено как замыкание унификации отношения равенства вершин

Унификация невозможна, тогда и только тогда, когда в факторграфе есть цикл или вершина с разными функциональными символами

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$

$$t_2 \stackrel{?}{=} t_4$$

$$t_3 \stackrel{?}{=} bool$$

$$t_4 \stackrel{?}{=} t_5$$

$$t_3 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} t_7 \rightarrow t_4$$

$$t_5 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} int \rightarrow int$$

$$t_7 \stackrel{?}{=} t_1$$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$

$$t_2 \stackrel{?}{=} t_4$$

$$t_3 \stackrel{?}{=} bool$$

$$t_4 \stackrel{?}{=} t_5$$

$$t_3 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} t_7 \rightarrow t_4$$

$$t_5 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} int \rightarrow int$$

$$t_7 \stackrel{?}{=} t_1$$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

Большой пример: $t_7 = int$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

Большой пример: $t_4 = int$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$

$$t_2 \stackrel{?}{=} t_4$$

$$t_3 \stackrel{?}{=} bool$$

$$t_4 \stackrel{?}{=} t_5$$

$$t_3 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} t_7 \rightarrow t_4$$

$$t_5 \stackrel{?}{=} t_1$$

$$t_6 \stackrel{?}{=} int \rightarrow int$$

$$t_7 \stackrel{?}{=} t_1$$

Большой пример: $t_7 = bool$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

Большой пример: $t_4 = bool$

$$t_0 \stackrel{?}{=} t_1 \rightarrow t_2$$
 $t_2 \stackrel{?}{=} t_4$
 $t_3 \stackrel{?}{=} bool$
 $t_4 \stackrel{?}{=} t_5$
 $t_3 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} t_7 \rightarrow t_4$
 $t_5 \stackrel{?}{=} t_1$
 $t_6 \stackrel{?}{=} int \rightarrow int$
 $t_7 \stackrel{?}{=} t_1$

Факторграф для примера: унификация невозможна

Полудиков язык: соотношения отмены

$$\Sigma = \{\delta_1, \dots, \delta_n\}$$

$$\Sigma^{-1} = \{\delta_1^{-1}, \dots, \delta_n^{-1}\}$$

$$\Sigma \cap \Sigma^{-1} = \emptyset$$

$$\boldsymbol{S}(\Sigma) = \{\delta^{-1}\delta \approx \varepsilon \mid \delta \in \Sigma\}$$

 $u \overset{{m S}(\Sigma)}{pprox} v,$ если u можно получить из v применением равенств из ${m S}(\Sigma)$

Полудиков 2 язык

$$\mu_{m S(\Sigma)}(I)$$
 — нормальная форма I относительно равенств из $m S(\Sigma)$
$$S(\Sigma,L) \stackrel{def}{=} \{I \in (\Sigma \cup \Sigma^{-1})^* \mid \mu_{m S(\Sigma)}(I) \in L\}$$

$$S^0(\Sigma) = S(\Sigma,\varepsilon)$$

$$S^+(\Sigma) = S(\Sigma,\Sigma^+)$$

$$S^*(\Sigma) = S(\Sigma,\Sigma^*)$$

$$S^0(\Sigma)$$
 — полудиков язык (semi-Dyck set)

²Определение полудикова языка может показаться неожиданным

Примеры строк полудикова языка

$$\begin{split} \Sigma &= \{(,[] \\ \Sigma^{-1} &= \{),] \} \\ \varepsilon, \))((,\][[[,\)][()(\in S^0(\Sigma) \\ (),\))(,\])[(\notin S^0\Sigma \\ \\ (,\)[(,\)(()[(\in S^*(\Sigma) \setminus S^0(\Sigma) \\),\)() \notin S^*(\Sigma) \end{split}$$

Пути унификации: обращение ребер

Пути унификации: обращение ребер

Пути унификации

Путь унификации — такой путь p в графе $G \cup G^{-1}$, что нормальная форма его метки $\mu_{S(\Sigma)}(I(p)) \in \Sigma^*$

G — граф унификации, G^{-1} — граф с обращенными ребрами

Путь унификации: пример

$$\mu_{S(\Sigma)}(I(p^{-1}f^{-1}hr)) = \mu_{S(\Sigma)}((\rightarrow_1)^{-1} \rightarrow_1) = \varepsilon \in \Sigma^*$$

$$a:t_0\stackrel{?}{=}t_1\rightarrow t_2$$

$$b: t_2 \stackrel{?}{=} t_4$$

$$c: t_3 \stackrel{?}{=} bool$$

$$d: t_4 \stackrel{?}{=} t_5$$

$$e: t_3 \stackrel{?}{=} t_1$$

$$f:t_6\stackrel{?}{=}t_7\to t_4$$

$$g: t_5 \stackrel{?}{=} t_1$$

$$h: t_6 \stackrel{?}{=} int \rightarrow int$$

$$i: t_7 \stackrel{?}{=} t_1$$

Путь унификации: пример

$$\mu_{\mathbf{S}(\Sigma)}(I(s^{-1}f^{-1}hq)) = \mu_{\mathbf{S}(\Sigma)}((\rightarrow_2)^{-1}\rightarrow_2) = \varepsilon \in \Sigma^*$$

$$a:t_0\stackrel{?}{=}t_1\rightarrow t_2$$

$$b: t_2 \stackrel{?}{=} t_4$$

$$c: t_3 \stackrel{?}{=} bool$$

$$d: t_4 \stackrel{?}{=} t_5$$

$$e: t_3 \stackrel{?}{=} t_1$$

$$f: t_6 \stackrel{?}{=} t_7 \rightarrow t_4$$

$$g:t_5\stackrel{?}{=}t_1$$

$$h: t_6 \stackrel{?}{=} int \rightarrow int$$

$$i: t_7 \stackrel{?}{=} t_1$$

Путь унификации в факторграфе

Theorem

Если в графе унификации существует путь p из вершины u в вершину v, то в факторграфе существует путь из класса эквивалентности [u] в класс эквивалентности [v] с меткой $\mu_{S(\Sigma)}(I(p))$

Theorem

Если в факторграфе унификации существует путь p' из класса эквивалентности [u] в класс эквивалентности [v], то в графе унификации существует путь p из u в вершину v с меткой, чья нормальная форма $\mu_{S(\Sigma)}(I(p)) = p'$

Критерий унифицируемости термов

Два терма унифицируются тогда и только тогда, когда между ними есть путь унификации, нормальная форма которого — ε

Два терма унифицируются тогда и только тогда, когда между ними есть путь унификации, метка которого в полудиковом языке $S^0(\Sigma)$

Логика над путями

$$\overline{G \vdash c : u \xrightarrow{\eta} v}, c : u \xrightarrow{\eta} v \in G$$

$$\frac{}{G \vdash \varepsilon : u \xrightarrow{\varepsilon} v} , u \in G$$

$$\frac{G \vdash p : v \xrightarrow{\varepsilon} u}{G \vdash p^{-1} : u \xrightarrow{\varepsilon} v}$$

$$\frac{G \vdash p : u \xrightarrow{l} v' \quad G \vdash q : v' \xrightarrow{l'} u}{G \vdash pq : u \xrightarrow{ll'} v}$$

$$\frac{G \vdash p : u' \xrightarrow{\varepsilon} v'}{G \vdash b^{-1}pb' : u \xrightarrow{\varepsilon} v}, b : u' \xrightarrow{\delta} u \in G, b' : v' \xrightarrow{\delta} v \in G$$

Вывод успешного пути

$$\frac{G \vdash f : t_6 \xrightarrow{\varepsilon} w_2}{G \vdash f^{-1} : w_2 \xrightarrow{\varepsilon} t_6} \qquad G \vdash h : t_6 \xrightarrow{\varepsilon} w_3}{G \vdash f^{-1}h : w_2 \xrightarrow{\varepsilon} w_3} G \vdash p^{-1}f^{-1}hr : t_7 \xrightarrow{\varepsilon} w_4}$$

Вывод успешного пути

$$G \vdash f : t_{\underline{0}} \xrightarrow{\varepsilon} w_{2} \xrightarrow{d} t_{\underline{0}} \underbrace{\begin{array}{c} G \vdash b : t_{2} \xrightarrow{\varepsilon} t_{4} \\ G \vdash b^{-1} : t_{4} \xrightarrow{\varepsilon} t_{2} \end{array}}_{G \vdash qb^{-1} : t_{2} \xrightarrow{-2} t_{2}} \underbrace{\begin{array}{c} G \vdash gb^{-1} : t_{4} \xrightarrow{\varepsilon} t_{2} \\ G \vdash fqb^{-1} : t_{6} \xrightarrow{-2} t_{2} \end{array}}_{G \vdash qb^{-1} : t_{6} \xrightarrow{-2} t_{2}} \underbrace{\begin{array}{c} G \vdash gb^{-1} : t_{4} \xrightarrow{\varepsilon} t_{4} \\ G \vdash gb^{-1} : t_{6} \xrightarrow{-2} t_{2} \end{array}}_{G \vdash qb^{-1} : t_{6} \xrightarrow{-2} t_{2}}$$

Вывод неуспешного пути

Алгоритмы унификации через поиск путей

- Один алгоритм ищет кратчайшие пути, работает за $O(n^3)$
- Второй алгоритм интегрируется в стандартный алгоритм унификации, работает на константу хуже и строит не самые маленькие доказательства унифицируемости (но и не самые плохие)