Blockchains & Cryptocurrencies

Mining and Alternative Puzzles

Instructor: Abhishek Jain Johns Hopkins University - Spring 2021

Today

- Mining Strategies
- Alternative puzzles

Along the way, keep identifying directions for improvements (or, motivation for altcoins)

Mining strategies

Game-theoretic analysis of mining

Several strategic decisions

- Which transactions to include in a block
 - O Default: any above minimum transaction fee
- Which block to mine on top of
 - Default: longest valid chain
- How to choose between colliding blocks
 - Default: first block heard
- When to announce new blocks
 - Default: immediately after finding them

Game-theoretic analysis of mining

Assume you control $0 < \alpha < 1$ of mining power

Can you profit from a non-default strategy?

For some α , YES!

Forking attacks

Forking attacks

- Certainly possible if α >0.5
 may be possible with less
- Attack is detectable
- Might be reversed
- Might crash exchange rate

PoW 51% Attack Cost

This is a collection of coins and the theoretical cost of a 51% attack on each network.

Name	Symbol	Market Cap	Algorithm	Hash Rate	1h Attack Cost	NiceHash-able
Bitcoin	втс	\$212.07 B	SHA-256	156,092 PH/s	\$641,748	0%
Ethereum	ETH	\$43.26 B	Ethash	240 TH/s	\$272,454	3%
BitcoinCashABC	ВСН	\$4.70 B	SHA-256	2,947 PH/s	\$12,117	16%
Litecoin	LTC	\$3.29 B	Scrypt	272 TH/s	\$20,709	5%
Zcash	ZEC	\$707.21 M	Equihash	7 GH/s	\$13,521	3%
Dash	DASH	\$686.48 M	X11	6 PH/s	\$2,070	3%
EthereumClassic	ETC	\$625.51 M	Ethash	4 TH/s	\$4,075	231%
BitcoinGold	BTG	\$138.61 M	Zhash	768 KH/s	\$287	71%

What can a "51% attacker" do?

 $\sqrt{}$

Steal coins from existing address?

Suppress some transactions?

- From the block chain
- From the P2P network

Change the block reward?

Destroy confidence in Bitcoin?

Selfish Mining

(Block-Withholding Attack)

Majority is not Enough: Bitcoin Mining is Vulnerable*

Ittay Eyal and Emin Gün Sirer

Department of Computer Science, Cornell University ittay.eyal@cornell.edu, egs@systems.cs.cornell.edu

Selfish Mining Strategy (aka block withholding)

- Form a pool.
- Secretly mine blocks. Don't announce blocks right away. Try to get ahead!
- Announce as and when necessary to maintain lead, or to avoid falling behind

Public Chain

Public Chain

Public Chain

• The honest miners and the selfish miner pool start mining at the current public head.

Honest Miners

Selfish Miner Pool

- There are 2 competing chains of the same length now.
- The selfish pool mines to extend its branch.
- Honest miners choose to mine on either branch.

Selfish Pool gets a lead of >2 blocks

- Selfish pool continues to mine on its private branch.
- For each subsequent block mined by an honest party, it publishes one block from its private chain.
- Tries to maintain a lead of 2 blocks for as long as possible.
- If the lead reduces to 1, it publishes its private branch.

Earns revenue for all its blocks.

Selfish Pool gets a lead of >2 blocks

If the selfish pool is in minority, then with a very high probability this lead will eventually reduce to one block.

Analysis

- Set of miners in the system : 1, ..., n
- Miner i has mining power: m_i

$$\sum_{i=1}^{n} m_i = 1$$

- ullet Let the total mining power of selfish pool be: lpha
- Mining power of others: (1α)
- \bullet Ratio of honest miners that choose to mine on pool's block: γ
- Ratio of honest miners that choose to mine on the other block : (1γ)

Analysis: Revenue Rate (Ideal Case)

- Revenue rate of each agent is the revenue earned by it for each block mined in the system.
- ullet Let revenue rate of selfish pool be: r_{pool}
- Let total revenue rate of others be: r_{others}
- Revenue rate should be proportional to the mining power.

$$r_{pool} \propto \alpha$$

• Ideally, $r_{pool} + r_{others} = 1$

Analysis: Revenue Rate (Selfish Mining)

- Since selfish mining causes intentional branching in the blockchain, several mined blocks are not included in the blockchain.
- Total block generation rate drops.
- As a result, $r_{pool} + r_{others} < 1$

Analysis: Revenue Rate Ratio

- Actual revenue rate of each agent is the revenue rate ratio.
- Revenue rate ratio of an agent is defined as the ratio of its blocks out of the total blocks added to the main chain

$$R_{pool} = \frac{r_{pool}}{r_{pool} + r_{others}} = \frac{\alpha \left(1 - \alpha^2\right) \left(4\alpha + \gamma (1 - 2\alpha)\right) - \alpha^3}{1 - \alpha (1 + (2 - \alpha)\alpha)}$$

Assuming honest majority,

$$0 \le \alpha \le \frac{1}{2}$$

• Selfish miners earn more revenue than their mining power if,

$$R_{pool} > \alpha$$

• For a given γ , a selfish miners pool of size α earns more revenue than its relative size for,

$$\frac{1-\gamma}{3-2\gamma} \le \alpha \le \frac{1}{2}$$

$$\frac{1-\gamma}{3-2\gamma} \le \alpha \le \frac{1}{2}$$

Honest miners always mine on the pool's branch

For
$$\gamma = 1$$
, $0 \le \alpha \le \frac{1}{2}$

• Honest miners randomly choose which branch to mine on For $\gamma = \frac{1}{2}, \quad \frac{1}{4} \le \alpha \le \frac{1}{2}$

• Honest miners never mine on the pool's branch For
$$\gamma=0, \quad \frac{1}{3} \leq \alpha \leq \frac{1}{2}$$

Problem with Bitcoin Protocol

- In case of multiple branches of the same length:
 - A miner mines and propagates only the first branch it received.
- There is no measure to guarantee a low γ .
- Sybil attack combined with selfish mining can lead to $\gamma \approx 1$.
 - In this case, a selfish pool of any size would earn more revenue than its mining power.
 - Rational miners will join the selfish pool.
 - The selfish pool would increase towards majority.

Solution: A simple change in the Bitcoin Protocol

- In case a miner encounters multiple branches of the same length:
 - He should propagate all the branches it receives.
 - He should choose which one to mine on uniformly at random.
- This change would yield $\gamma = \frac{1}{2}$.
- This change is backward compatible.

Selfish-mining attacks

- Surprising departure from previous assumptions
- Not yet observed in practice!
- Plausible reason: selfish-mining is detectable, could lead to a crash in exchange rates for Bitcoin

Punitive forking

- Suppose you want to blacklist transactions from address X
 - Freeze an individual's money forever
- Extreme strategy: announce that you will refuse to mine on any chain with a transaction from X

With α < 0.5, you'll soon fall behind the network

Feather-forking strategy

- To blacklist transactions from X, announce that you will refuse to mine directly on any block with a transaction from X
 - o but you'll concede after *n* confirming blocks

• Chance of pruning an offending block, when n=1, is α^2

Response to feather forking

- For other miners, including a transaction from X induces an α^2 chance of losing a block
- Might be safer to join in on the blacklist
- Can enforce a blacklist with $\alpha < 0.5!$

Success depends on convincing other miners you'll fork

Feather-forking: what is it good for?

- Freezing individual bitcoin owners
 - ransom/extortion
 - o law enforcement?
- Enforcing a minimum transaction fee
 - Current transaction fees are low (about 2% of revenue)
 - But may become significant when mining reward becomes low

Summary

- Miners are free to implement any strategy
- Very little non-default behavior in the wild
- Game-theoretic analysis necessary
- Recent works in this direction. See, e.g.: [Badertscher-Garay-Maurer-Tshudi-Zikas, EUROCRYPT'18]

Puzzles

Puzzles are the core of Blockchains

- Determine the incentive system, and nature of puzzles determines behavior of miners
- Basic features of Bitcoin's proof-of-work puzzle (recap)
 - Puzzle is difficult to solve, so large-scale attacks are difficult
 - o ... but not too hard, so honest miners are compensated
- What other features could a puzzle have?

Today (and next time...)

- Alternative puzzle designs
 Used in practice, and research proposals
- Variety of possible goals
 ASIC resistance, pool resistance, environmental-friendliness, intrinsic benefits...
- Essential security requirements

Basic Puzzle Requirements

Puzzle requirements

- Cheap to Verify
 - since other users have to verify solutions
- Adjustable difficulty
 - E.g., due on increase in hash rate or more users
- In PoW puzzles, chance of winning should be proportional to computing power (e.g., hash power in Bitcoin)
 - Large players get only proportional advantage
 - Even small players get proportional compensation

Bad PoW puzzle: a sequential puzzle

Consider a puzzle that takes N steps to solve a "Sequential" Proof of Work

Bad PoW puzzle: a sequential puzzle

Problem: fastest miner always wins the race!

Good PoW puzzle → Weighted sample

ASIC Resistant (PoW) Puzzles

ASIC resistance - Why? (1 of 2)

Goal: Ordinary people with idle laptops, PCs, or even mobile phones can mine!

Lower barrier to entry

Approach: Reduce the gap between custom hardware and general purpose equipment

ASIC resistance - Why? (2 of 2)

Goal: Prevent large manufacturers from dominating

the game

"Burn-in" advantage In-house designs

Approach: reduce the "gap" between future hardware and the custom ASICs we already have

Memory hard puzzles

<u>Premise</u>: the cost and performance of memory is more stable than for processors

SCTYPt Colin Percival, 2009

- Memory hard hash function
 - Constant time/memory tradeoff
 - Memory consumes a large amount of on-chip area. High memory requirement => small number of hashing engines on special-purpose chips
- Widely used alternative PoW puzzle (e.g., Litecoin)
- Also used in Password-hashing

- I. Fill memory with random values
- 2. Read from the memory in random order

scrypt - step I of 2 (write)

scrypt - step 2 of 2 (read)

scrypt - time/memory tradeoff

Why is this memory-hard?

Reduce memory by half, 1.5x the # steps

scrypt

<u>Disadvantages</u>: Also requires N steps, N memory to check

Is it actually ASIC resistant?

scrypt ASICs *are* already available

Exploit time-memory trade-offs, lower values of N, etc.

Academic research

- Many subsequent candidates: Argon2i (winner of PW-hashing contest), Ballon-Hashing, etc.
- Proofs of memory hardness in various models using graph pebbling techniques (see, e.g., Alwen-Serbeninko' I 5 and many subsequent works)