A. Giovanidis 2020

4. Bayesian Inference

Data Analysis for Networks - NDA'20 Anastasios Giovanidis

Sorbonne-LIP6

Octobre 21, 2020

Bibliography

A. Giovanidis 2020

- B.1 Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer 2006.
- B.2 H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Chapter 8.3, 8.4

Bayesian Art

A. Giovanidis 2020

Heads or Tails?

A. Giovanidis 2020

Suppose we toss a coin three times: (H, H, H)

What can we say about the probability to get heads (H) in the next toss?

Probability of Heads

A. Giovanidis 2020

We remind the frequentist estimation (Sample Mean):

$$\hat{\Theta} = \overline{X} = \frac{1+1+1}{3} = 1$$

The estimated probability for heads (H) is 1, thus we expect surely to get heads next time we throw the coin.

Is this a good estimate?

Probability of Heads

A. Giovanidis 2020

We remind the frequentist estimation (Sample Mean):

$$\hat{\Theta} = \overline{X} = \frac{1+1+1}{3} = 1$$

The estimated probability for heads (H) is 1, thus we expect surely to get heads next time we throw the coin.

Is this a good estimate?

This is the best we can do, given the information we have.

Limited experience

A. Giovanidis 2020

In the "Heads or Tails" game, we can repeat the experiment several times, until we get a good "frequentist" estimate of the chance to fall Heads (H).

If the coin is fair, the unknown parameter will obviously be 1/2. The sample mean will "eventually" converge to this value because of zero bias.

But, there are also other events that cannot be repeated many times:

Will the Arctic ice cap have disappeared by the end of the century?

Revise Uncertainty

A. Giovanidis 2020

By obtaining fresh data, we can revise every year our opinion on the rate of ice loss, given some previous idea that we had.

Thomas Bayes (1701-1761)

A. Giovanidis 2020

- ► Theologist, scientist, mathematician.
- Inverse Probability "Essay towards solving a problem in the doctrine of chances" (1764)
- ▶ The name "Bayes Theorem" was given by Poincaré.

Pierre-Simon Laplace (1749-1827)

A. Giovanidis 2020

- "Best mathematician in France" at that time.
- ▶ "Théorie Analytique des Probabilités" (1812)

Bayes rule

A. Giovanidis 2020

Back to our estimation problem. Suppose that we observe data $\mathcal{D} = \{x_1, \dots, x_n\}$, and we want to estimate θ .

In the Heads-Tails example, the estimate was the probability of Heads.

Bayes rule, assumes a prior distribution $f_{\Theta}(\theta)$ over the value of θ .

$$f_{\Theta|\mathcal{D}}(\theta|\mathcal{D}) = \frac{P(\mathcal{D}|\theta) \cdot f_{\Theta}(\theta)}{P(\mathcal{D})}$$

The posterior density $f_{\Theta|\mathcal{D}}(\theta|\mathcal{D})$ can be used to infer Θ .

Bayes rule assumes that the unknown is a random variable Θ rather than fixed and deterministic.

Prior and Posterior distributions

A. Giovanidis 2020

- ▶ $P(\mathcal{D}|\theta)$ is just the likelihood function! How probable is the observed data given the parameter θ and the distribution.
- $ightharpoonup P(\mathcal{D})$ is the overall probability to observe the data

$$P(\mathcal{D}) = \int P(\mathcal{D}|\theta) f_{\Theta}(\theta) d\theta.$$

Note: It is a normalisation constant.

Bayes theorem in simple words

posterior \propto likelihood \times prior

Prior and Posterior distributions

A. Giovanidis 2020

- ▶ $P(\mathcal{D}|\theta)$ is just the likelihood function! How probable is the observed data given the parameter θ and the distribution.
- $ightharpoonup P(\mathcal{D})$ is the overall probability to observe the data

$$P(\mathcal{D}) = \int P(\mathcal{D}|\theta) f_{\Theta}(\theta) d\theta.$$

Note: It is a normalisation constant.

Bayes theorem in simple words

posterior \propto likelihood \times prior

The prior distribution summarises our initial **uncertainty** over the parameter value θ , and the posterior, how this uncertainty is updated after the data is taken into account.

Application: Wireless Communications

A. Giovanidis 2020

Figure: Source H. Pishro-Nik (B.2)

Application: Wireless Communications

A. Giovanidis 2020

Figure: Source H. Pishro-Nik (B.2)

We want to estimate X_n based on the received Y_n , and assuming we know the prior distribution. Then, the posterior (pdf) is

$$f_{X_n|Y_n}(x|y) = \frac{f_{Y_n|X_n}(y|x) \cdot f_X(x)}{f_Y(y)}.$$

Application: Spam filter

A. Giovanidis 2020

Given that a certain word W appears in an email, is it Spam or Ham?

The Software applies Bayes' theorem (PMF):

$$P(S|W) = \frac{P(W|S) \cdot P(S)}{P(W|S) \cdot P(S) + P(W|H) \cdot P(H)}$$

Pr(S|W) probability that a message is a spam, given it contains "W" overall probability that any message is spam Pr(W|S) probability that the word "W" appears in spam messages Pr(H) overall probability that any given message is not spam Pr(W|H) probability that the word "W" appears in "ham" messages.

Example: Inference

A. Giovanidis 2020

3 coins in my pocket

- 1. Biased 3:1 in favour of Tails
- 2. Fair coin
- 3. Biased 3:1 in favour of Heads

I randomly pick one coin, flip it and get Heads (H). What is the probability that I have chosen coin No.3?

INPUT

X=1 means Heads, X=0 means Tails, θ is the mean.

Prior: $P(\theta = 0.25) = P(\theta = 0.5) = P(\theta = 0.75) = \frac{1}{3}$.

Example: Inference cont'd

A. Giovanidis 2020

		Prior	Likelihood	Posterior	Posterior Norm.
Coin	θ	$P(\theta)$	$P(X=1 \theta)$	$P(X=1 \theta)P(\theta)$	$\frac{P(X=1 \theta)P(\theta)}{P(X=1)}$
No.1	0.250	0.333	0.250	0.083	0.167
No.2	0.500	0.333	0.500	0.167	0.333
No.3	0.750	0.333	0.750	0.250	0.500

where, the normalising constant is

$$P(X = 1) = 0.083 + 0.167 + 0.250 = 0.500.$$

Answer: I have chosen No.3 with probability 50%, No.2 with probability 33.3% and No.1 with probability 16.7%.

Coin No.3 is both the ML estimate as well as the "MAP" estimate.

MAP Estimator

A. Giovanidis 2020

Maximum Likelihood (ML) estimator

$$\theta_{ML} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

Maximum A Posteriori (MAP) estimator

$$egin{array}{lll} heta_{MAP} &=& rg \max_{ heta} P(heta \mid \mathcal{D}) \ &=& rg \max_{ heta} P(\mathcal{D} \mid heta) \cdot P_{\Theta}(heta) \end{array}$$

Note: When the prior is a uniform distribution, then $P_{\Theta}(\theta)$ is a constant and $\theta_{ML} = \theta_{MAP}$.

The MAP is a summary statistic of the posterior distribution, which corresponds to the mode (arg max).

MMSE

A. Giovanidis 2020

We saw that the **MAP** corresponds to the estimator that maximizes the posterior distribution.

Are there other possibilities?

The posterior mean

$$\hat{\theta} = \mathbb{E} [\theta \mid \mathcal{D}].$$

is called the Minimum Mean Squared Error Estimate (MMSE).

It is the best estimate, in terms of the mean squared error.

⇒ It is an unbiased estimator!

Minimise the MSE

A. Giovanidis 2020

Let a general estimate for θ , given data $\mathcal D$ be a function of the data

$$\hat{\Theta} := g(\mathcal{D}).$$

The mean squared error (MSE) is given by

$$\mathbb{E}\left[\left(heta-\mathsf{g}(\mathcal{D})
ight)^2\mid\mathcal{D}
ight].$$

By developing this we get

$$\mathbb{E}\left[\theta^2 - 2\theta g(\mathcal{D}) + g(D)^2 \mid \mathcal{D}\right] = \mathbb{E}\left[\theta^2\right] - 2g(\mathcal{D})\mathbb{E}\left[\theta \mid \mathcal{D}\right] + g(D)^2.$$

To minimize, we differentiate over $g(\mathcal{D})$ and set to 0

$$-2\mathbb{E}\left[\theta\mid\mathcal{D}\right]+2g(D) = 0.$$

Normal distribution

A. Giovanidis 2020

Consider a single real-valued variable \boldsymbol{x} that follows a Gaussian distribution

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},$$

- \blacktriangleright with mean μ ,
- \triangleright variance σ^2 ,
- ▶ standard deviation σ (derived as $\sqrt{Var(X)}$),
- (Sometimes we use precision $\beta = 1/\sigma^2$ instead of variance).

Gaussian PDF: properties

A. Giovanidis 2020

- Positive: $\mathcal{N}\left(x|\mu,\sigma^2\right) > 0$,
- lacksquare Valid probability density: $\int_{-\infty}^{+\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1$
- ▶ Mean: $\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x dx = \mu$,
- Second moment: $\mathbb{E}[X^2] = \mu^2 + \sigma^2$,
- Variance: $\mathbb{E}[X^2] (\mathbb{E}[X])^2 = \mu^2 + \sigma^2 \mu^2 = \sigma^2$.

Source: Bishop (B.2)

Gaussian inference

Data

$$\mathcal{D} = \{x_1, \dots, x_N\}$$

Data i.i.d. from Gaussian PDF

$$\mathcal{N}\left(x|\mu,\sigma^{2}\right) = \frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$

► Unknown parameters

$$\theta = \{\mu, \sigma^2\}$$

A. Giovanidis 2020

Source: Bishop (B.2)

Gaussian ML

Likelihood

$$P(\mathcal{D}|\theta) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

Maximum likelihood

$$\theta_{\mathit{ML}} = \arg\max_{\theta} P(\mathcal{D}|\theta)$$

equivalent problem

$$\theta_{\textit{ML}} = \arg\max_{\theta} \log P(\mathcal{D}|\theta)$$

A. Giovanidis 2020

Source: Bishop (B.2)

Gaussian ML solution

A. Giovanidis 2020

$$\left(\mu_{\mathit{ML}}, \sigma_{\mathit{ML}}\right) \ = \ \arg\max_{\mu, \sigma} \left\{ -\frac{1}{2\sigma^2} \sum_{n=1}^{\mathit{N}} (x_n - \mu)^2 - \frac{\mathit{N}}{2} \log\sigma^2 - \frac{\mathit{N}}{2} \log(2\pi) \right\}$$

Maximise first over μ

$$\frac{\partial \log P(\mathcal{D}|\theta)}{\partial \mu} = 0 \quad \Rightarrow \quad \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n =: \overline{X}_n$$

▶ Then, maximise over σ^2

$$\frac{\partial \log P(\mathcal{D}|\theta)}{\partial \sigma^2} = 0 \quad \Rightarrow \quad \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{ML})^2.$$

A. Giovanidis 2020

Problems related to ML solution

The available dataset, could be a result of i.i.d Gaussian realisations, but the available values contain uncertainty. Let us observe the extreme case for ${\it N}=1$

 \blacktriangleright ML estimate of μ

$$\mu_{\mathit{ML}} = \mathit{x}_1$$

▶ and ML estimate of σ^2

$$\sigma_{ML}^2 = (x_1 - \mu_{ML})^2 = (x_1 - x_1)^2 = 0.$$

How about the Bayesian approach?

A. Giovanidis 2020

Gaussian posterior

 \blacksquare Assume for simplicity known $\{\sigma^2\}$ variance.

Unknown parameter $\theta = \{\mu\}$.

Likelihood

$$P(\mathcal{D}|\mu, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

ightharpoonup Combine likelihood with a Gaussian prior over μ

$$P(\mu) = \mathcal{N}(\mu \mid m_0, s_0^2)$$

The posterior is proportional to

$$P(\mu \mid \mathcal{D}, \sigma^2) \propto P(\mathcal{D} \mid \mu, \sigma^2) \cdot P(\mu)$$

Bayesian update

A. Giovanidis 2020

$$P(\mu \mid \mathcal{D}, \sigma^{2}) \propto P(\mathcal{D} \mid \mu, \sigma^{2}) \cdot P(\mu)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right) \cdot \frac{1}{\sqrt{2\pi s_{0}^{2}}} \exp\left(-\frac{(\mu - m_{0})^{2}}{2s_{0}^{2}}\right)$$

$$= \frac{1}{(2\pi\sigma^{2})^{\frac{N}{2}}} \frac{1}{\sqrt{2\pi s_{0}^{2}}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x_{i} - \mu)^{2} - \frac{1}{2s_{0}^{2}} (\mu - m_{0})^{2}\right)$$

$$= C_{1} \cdot \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{N} (x_{i}^{2} + \mu^{2} - 2\mu x_{i}) - \frac{1}{2s_{0}^{2}} (\mu^{2} + m_{0}^{2} - 2\mu m_{0})\right)$$

$$= C_{2} \cdot \exp\left(-\frac{1}{2\hat{\sigma}_{0}^{2}} \left[\mu^{2} - 2\mu\hat{\sigma}_{N}^{2} (\frac{N\mu_{ML}}{\sigma^{2}} + \frac{m_{0}}{s_{0}^{2}}) + C_{3}\right]\right).$$

 C_2 and C_3 are such that $\frac{P(\mathcal{D}|\mu,\sigma^2)\cdot P(\mu)}{Z}$ is a probability density function. For the Gaussian pdf the max coincides with the mean due to symmetry!

Gaussian MAP for (μ, σ^2)

A. Giovanidis 2020

The posterior distribution $P(\mu \mid \mathcal{D}, \sigma^2) \sim \mathcal{N}(\mu \mid \hat{\mu}_N, \hat{\sigma}_N^2)$:

$$\qquad \qquad \frac{1}{\hat{\sigma}_N^2} = \frac{1}{s_0^2} + \frac{N}{\sigma^2} \Rightarrow \hat{\sigma}_N^2 = \frac{\sigma^2 s_0^2}{N s_0^2 + \sigma^2} \text{ (post-variance)}$$

$$\hat{\mu}_N = rac{\sigma^2}{N s_0^2 + \sigma^2} m_0 + rac{N s_0^2}{N s_0^2 + \sigma^2} \mu_{ML}.$$
 (post-mean)

where $\hat{\mu}_N, \hat{\sigma}_N^2$ are the Bayesian MAP estimates, $\mu_{ML} = \frac{1}{N} \sum_{i=1}^N x_i$.

Limiting cases $N = 0 \quad N \to \infty$

$$\hat{\sigma}_N^2$$
 s_0^2 0 $\hat{\mu}_N$ m_0 μ_{ML}

Posterior for the mean

A. Giovanidis 2020

 Posterior of the Gaussian mean for increasing data size N (The variance reduces with N!)

Figure: Bishop (B.2), p.99

Conjugate Priors

A. Giovanidis 2020

In the above case:

Observe already that the posterior distribution has the same shape (Gaussian) as the prior!

 $P(\theta)$ is a **conjugate prior** for a particular likelihood $P(\mathcal{D} \mid \theta)$ if the posterior is of the same functional form as the prior.

*For all members of the exponential family it is possible to construct a conjugate prior

$$P(\mathbf{x} \mid \theta) = h(\mathbf{x})g(\theta) \exp(\theta^T u(\mathbf{x})).$$

Conjugate Priors for Gaussian variance*

A. Giovanidis 2020

Likelihood

$$P(\mathcal{D}|\mu, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n|\mu, \sigma^2)$$

$$\stackrel{\beta := 1/\sigma^2}{=} \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left\{-\frac{\beta}{2} \sum_{i=1}^{N} (x_i - \mu)^2\right\}$$

For known mean, the suitable prior is:

$$P(\beta) = \operatorname{Gam}(\beta \mid a, b) = \frac{1}{\Gamma(a)} b^a \beta^{a-1} \exp(-b\beta).$$

Note: $\Gamma(x) := \int_0^\infty u^{x-1} e^{-u} du$. Also $\Gamma(x+1) = x\Gamma(x)$. It holds:

 $\Gamma(1) = 1$ and hence $\Gamma(x+1) = x!$ when x is integer.

Properties: $\mathbb{E}[\lambda] = \frac{a}{b}$, and $Var[\lambda] = \frac{a}{b^2}$.

Conjugate Priors for Gaussian (general)* A. Giovanidis 2020

Likelihood reformulated

$$P(\mathcal{D}|\mu, \sigma^2) \stackrel{\beta := 1/\sigma^2}{=} \left(\frac{\beta}{2\pi}\right)^{N/2} \exp\left\{-\frac{\beta}{2} \sum_{i=1}^{N} (x_i - \mu)^2\right\}$$

$$\propto \left[\beta^{1/2} \exp\left(-\frac{\beta\mu^2}{2}\right)\right]^N \exp\left\{\beta\mu \sum_{i=1}^{N} x_i - \frac{\beta}{2} \sum_{i=1}^{N} x_i^2\right\}$$

For unknown mean and variance the conjugate prior is

$$P(\mu, \beta) = \mathcal{N}(\mu \mid \mu_0, (\beta)^{-1}) \cdot \operatorname{Gam}(\beta \mid a, b).$$

Normal-Gamma distribution (coupling between μ and β)

Bernoulli inference

A. Giovanidis 2020

Consider a number N of Bernoulli realisations with parameter θ

$$P(x = 1 \mid \theta) = \theta.$$

The probability distribution for Bernoulli is given by

Bernoulli
$$(x \mid \theta) = \theta^{x} (1 - \theta)^{1-x},$$

which has variance $Var[x] = \theta(1 - \theta)$.

The Likelihood function, given i.i.d. observations from $P(x = 1 \mid \theta)$

$$P(\mathcal{D} \mid \theta) = \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i}.$$

Bernoulli ML

A. Giovanidis 2020

From the Maximum Likelihood estimate, we get:

$$\begin{array}{ll} \theta_{ML} & = & \arg\max_{\mu} \log P(\mathcal{D} \mid \theta) \\ \\ & = & \arg\max_{\theta} \sum_{i=1}^{N} \log P(x_i \mid \theta) \\ \\ & = & \arg\max_{\theta} \sum_{i=1}^{N} \left\{ x_i \log(\theta) + (1 - x_i) \log(1 - \theta) \right\} \\ \\ \frac{d}{d\theta} \log P(\mathcal{D} \mid \theta) = 0 & \Rightarrow & \sum_{i=1}^{N} \frac{x_i}{\theta} = \sum_{i=1}^{N} \frac{1 - x_i}{1 - \theta} \\ \\ \theta_{ML} & = & \frac{1}{N} \sum_{i=1}^{N} x_i. \end{array}$$

Binomial Heads

A. Giovanidis 2020

Equivalently, we see that

$$\theta_{ML} = \frac{m(N)}{N},$$

where m(N) is the number of Heads (H) in a Heads-Tails experiment of size N.

The number m(N) follows the Binomial distribution

$$m(N) \sim \text{Binomial}(m \mid N, \theta) = \begin{pmatrix} N \\ m \end{pmatrix} \theta^m (1-\theta)^{N-m},$$

where $\binom{N}{m} = \frac{N!}{(N-m)!m!}$ is the number of choosing m objects out of N

Binomial Distribution

A. Giovanidis 2020

Figure: Bishop (B.2), p.70

- $ightharpoonup \mathbb{E}[m] := \sum_{m=0}^{N} m \text{Binomial}(m \mid N, \theta) = N\theta.$
- ▶ $Var[m] := \sum_{m=0}^{N} (m \mathbb{E}[m])^2 \text{Binomial}(m \mid N, \theta) = \frac{N\theta(1 \theta)}{n}$.

Bernoulli ML issues

A. Giovanidis 2020

The ML estimator for the Bernoulli is based strongly on the available data, and tends to severely overfit the estimated value for small data-sets.

Remember the Heads-Tails example $\{H, H, H\}$.

$$\theta_{ML} = \frac{1}{3} \sum_{i=1}^{3} x_i = \frac{1+1+1}{3} = 1.$$

Prediction: From the above the coin should always (a.s.) give Heads!

Bayesian approach

A. Giovanidis 2020

- We will use the Bayesian approach and will propose a conjugate prior that keeps the same shape when multiplied by the Likelihood function.
 - We saw that the Likelihood function is

$$P(\mathcal{D} \mid \theta) = \prod_{i=1}^{N} \theta^{x_i} (1-\theta)^{1-x_i} = \theta^{m} (1-\theta)^{\ell},$$

where m is the count of (H), ℓ is the count of (T) and $\ell = N - m$.

Bayesian approach

A. Giovanidis 2020

- We will use the Bayesian approach and will propose a conjugate prior that keeps the same shape when multiplied by the Likelihood function.
 - We saw that the Likelihood function is

$$P(\mathcal{D} \mid \theta) = \prod_{i=1}^{N} \theta^{\mathsf{x}_i} (1-\theta)^{1-\mathsf{x}_i} = \theta^{\mathsf{m}} (1-\theta)^{\ell},$$

where m is the count of (H), ℓ is the count of (T) and $\ell = N - m$.

► The Beta function has the conjugate property

$$\operatorname{Beta}(\theta \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1} (1-\theta)^{b-1}.$$

Beta Moments

A. Giovanidis 2020

The mean and variance of the Beta distribution are given by

$$\mathbb{E}[\theta] = \frac{a}{a+b},$$

$$Var[\theta] = \frac{ab}{(a+b)^2(a+b+1)}.$$

Beta plots

A. Giovanidis 2020

Figure 2.2 Plots of the beta distribution $\mathrm{Beta}(\mu|a,b)$ given by (2.13) as a function of μ for various values of the hyperparameters a and b.

Figure: Bishop (B.2), p.72

Bernoulli posterior

A. Giovanidis 2020

• Suppose $\mathrm{Beta}(\theta|a,b)$ is the prior distribution for θ and multiply with the binomial likelihood function.

Posterior distribution $Beta(\theta|a+m,b+\ell)$:

$$P(\theta \mid m, \ell, a, b) \propto \theta^{m+a-1} (1-\theta)^{\ell+b-1}.$$

Bernoulli posterior cont'd

A. Giovanidis 2020

Taking into account the normalisation, we have:

$$P(\theta \mid m, \ell, a, b) = \frac{\Gamma(m+a+\ell+b)}{\Gamma(m+a)\Gamma(\ell+b)} \theta^{m+a-1} (1-\theta)^{\ell+b-1}.$$

- \square Observing m Heads in data, adds m to a. Similarly, observing ℓ Tails in data adds ℓ to b. \rightarrow These hyperparameters can be seen as the effective number of observations of x = 1 and x = 0.
- ☐ The posterior probability distribution has an updated mean

$$P(x = 1 \mid \mathcal{D}) = \frac{m+a}{m+a+\ell+b}$$

When $m, \ell \to \infty$: $P(x = 1 \mid \mathcal{D}) \approx \frac{m}{m+\ell} = \frac{m}{N} = \frac{\theta_{ML}}{M}$.

Sequential Learning

A. Giovanidis 2020

- ightharpoonup Very often we do not have the whole dataset ${\cal D}$ available.
- ▶ Data arrives sequentially, and we need to update our estimates using the new info.
- \triangleright e.g. \mathcal{D}_1 , \mathcal{D}_2 , ..., \mathcal{D}_t ,...
- ▶ In the simplest case, each data-set consists of 1 single new data (measurement)

Question: How do the ML and MAP (Bayesian) estimators update sequentially?

Sequential ML

A. Giovanidis 2020

Consider we have observed data from $\mathcal{D}'=\{x_1,\ldots,x_{N-1}\}$, estimate $\theta_{ML}^{(N-1)}$, and then observe x_N and update the estimate.

► Gaussian, Bernoulli:

$$\theta_{ML}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$= \dots$$

$$= \theta_{ML}^{(N-1)} + \frac{1}{N} \left(x_N - \theta_{ML}^{(N-1)} \right)$$

Robbins-Monro algorithm

A. Giovanidis 2020

In the more general case, we can use following sequential algorithm:

$$\theta^{(N)} = \theta^{(N-1)} - a_{N-1} \frac{\partial}{\partial \theta^{(N-1)}} \left[-\log P(x_N \mid \theta^{(N-1)}) \right]$$

where

- $\blacktriangleright \ \lim_{N\to\infty} a_N = 0,$
- $\qquad \qquad \sum_{N=1}^{\infty} a_N^2 < \infty$

Note that in the case of Gaussian $-\log P(x|\mu,\sigma^2) = \frac{1}{2\sigma^2}(x-\mu)^2$,

$$\mu^{(N)} = \mu^{(N-1)} + a_{N-1} \frac{1}{\sigma^2} \left(x_N - \mu^{(N-1)} \right).$$

What is a_{N-1} for the Gaussian ML?

Sequential MAP

A. Giovanidis 2020

- ▶ We consider again a data set \mathcal{D}' of N-1 data ponts, and observation x_N .
- Posterior distribution:

$$P(\theta \mid \{\mathcal{D}', x_N\}) \propto \prod_{i=1}^{N} P(x_i \mid \theta)) \cdot P(\theta)$$

$$= \left[\prod_{i=1}^{N-1} P(x_i \mid \theta) \cdot P(\theta)\right] P(x_N \mid \theta)$$

$$= P(x_N \mid \theta) \cdot P(\theta \mid \mathcal{D}').$$

The posterior distribution after N-1 observations, becomes the new prior!

A radar scans a surface for dangerous targets every time unit [hour].

- ► The detection mechanism of the radar can detect a real target in 99% of all cases (True Positive).
- ► It happens that in 2% of scans there is a False Alarm (False Positive).
- ▶ We know: a real target appears every 1000 time units.

Question: What is the probability that an alarm by the radar corresponds to a true target?

Solution 1: RADAR

A. Giovanidis 2020

- $ightharpoonup P(Alarm \mid Target) = 0.99$
- $ightharpoonup P(Alarm \mid Nothing) = 0.02$
- ▶ P(Target) = 0.001

$$P(\textit{Target} \mid \textit{Alarm}) = \frac{P(\textit{Alarm} \mid \textit{Target}) \cdot P(\textit{Target})}{P(\textit{Alarm})}$$

$$= \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.02 \cdot 0.999}$$

$$\approx 0.05.$$

Exercise 2: WIFI

A. Giovanidis 2020

Users want to use a public WiFi shared with others. At different times per day, users have different access probability:

- 1. When there are few users connected (GOOD): P(Access) = 99/100.
- 2. When there are many users online (BAD): P(Access) = 50/100.

We do not know how many users are connected. Suppose a first user requests access and he receives it!

Question: What is the probability that a second user will receive access as well? (i.i.d.)

Solution 2: WIFI

A. Giovanidis 2020

The user does not know if the channel is GOOD or BAD, so let us choose a prior distribution

$$P(GOOD) = P(BAD) = 0.5.$$

We want to compute:

$$P(X_2 = 1 \mid X_1 = 1) = \frac{P(X_2 = 1, X_1 = 1)}{P(X_1 = 1)}.$$

We have the following information:

$$P(X_i = 1 \mid GOOD) = 0.99$$
 $P(X_i = 1 \mid BAD) = 0.5.$

Solution 2: WIFI cont'd

A. Giovanidis 2020

$$\begin{array}{lcl} \textit{P}(\textit{X}_{2}=1,\textit{X}_{1}=1) & = & \textit{P}(\textit{X}_{2}=1|\textit{GOOD})\textit{P}(\textit{X}_{1}=1|\textit{GOOD})\textit{P}(\textit{GOOD}) \\ & + & \textit{P}(\textit{X}_{2}=1|\textit{BAD})\textit{P}(\textit{X}_{1}=1|\textit{BAD})\textit{P}(\textit{BAD}) \\ & = & (0.99)^{2}\frac{1}{2} + (0.50)^{2}\frac{1}{2} \end{array}$$

Also,

$$P(X_1 = 1) = P(X_1 = 1|GOOD)P(GOOD) + P(X_1 = 1|BAD)P(BAD)$$

= $0.99\frac{1}{2} + 0.50\frac{1}{2}$

Altogether,

$$P(X_2 = 1 \mid X_1 = 1) = \frac{(0.99)^2 \frac{1}{2} + (0.50)^2 \frac{1}{2}}{0.99 \frac{1}{2} + 0.50 \frac{1}{2}}$$
$$= \frac{(0.99)^2 + (0.50)^2}{0.99 + 0.50} \approx 82,6\%$$

Solution 2: WIFI cont'd

A. Giovanidis 2020

The states of the two efforts to access are **not independent!**

82.6%
$$\approx P(X_2 = 1 \mid X_1 = 1) \neq P(X_2 = 1) = \frac{1}{2}(0.99 + 0.50) \approx 75\%$$

The fact that the first user got access, gives extra information in order to infer the probability that the second user gets also access.

A. Giovanidis 2020

END