Software Engineering For Data Science (SEDS)

Class: 2nd Year 2nd Cycle

Branch: AIDS

Dr. Belkacem KHALDI ESI-SBA

Lecture 08:

Data Processing & Cleaning for Data Science: Statistics for Data Science

Data Processing & Cleaning for Data Science

Part IIV: Statistics for Data Science

Probability, Distributions, and Sampling

Probability, Distributions, & Sampling

- **☐** Foundational probability concepts:
 - Probability is all about uncertainty:
 - Flipping a normal coin → uncertain to get a **head** or a **tail**.
 - Can be estimated with a probability function:

$$OP(E) = \frac{Number of Outcomes Corresponding to the event E}{Total Number of equaly-likely Outcomes}$$

- A random variable → A function that map the outcomes of a random process to a numeric value:
 - \circ X = 1 if the flip of the coin is a **head**
 - \circ X = o if the flip of the coin is a **tail**
- O Why random variable → Provides a way to ask questions about the random process in a concise mathematical way:
 - \circ P(X = 2) What is the probability of getting exactly 2 heads?
 - P(X < 4) What is the probability of getting exactly 2 heads?

 $P(CoinFlip = "Head") = \frac{1}{2}$

Probability, Distributions, & Sampling

- **☐** Foundational probability concepts:
 - o Random Variable vs Deterministic Variable:
 - A random variable's value is not perfectly predictable.
 - o In contraste, A deterministic's variable value is deterministic
 - **e.g.:** The outcome of the event 1 + 2 is not a random variable
 - Discret Variable vs Continuous Variable:
 - A discrete random variable → Takes only on certain values, like heads and tails.
 - A continuous random variable → Takes any value between two points, like time or length.

Independent vs Conditional Probabilities:

 ○ A conditional Probability → When an outcome of one event affects the probability of another event happening.

- Probability of getting red candies in two draws in a row:
 - O(R1 and R2) = P(R1) * P(R2 | R1)

Probability, Distributions, & Sampling

- **☐** Foundational probability concepts:
 - O Bayes' Theorem:

$$P(A|B) = P(A) * P(B|A) / P(B)$$

Another way to write this is with a hypothesis (a condition we can test), H, and evidence, E:

$$P(H|E) = P(H) * P(E|H) / P(E)$$

o **e.g.:**

$$P(spam \mid "Xanax") = P(spam) * P("Xanax" \mid spam) / P("Xanax")$$

H
E

Our prior belief about any given email to be a spam

Probability of seeing the evidence given the hypothesis

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

Probability Distributions:

o A way of describing all possible outcomes a random variable can take within a sample space.

o **Types:**

- The Normal (Gaussian)
 Distribution:
 - Seen when taking measurements from a biological population,
 - Measurements of a manufacturing process

```
import numpy as np
from scipy.stats import norm

x = np.linspace(-4, 4, 100)
plt.plot(x, norm.pdf(x))
plt.plot(x, norm.cdf(x)
```


PDF: Gives us the relative likelihood of an event at that value x.

CDF: Tells us the probability that our value will be less than or equal to any point on the plot

Probability, Distributions, & Sampling

- ☐ Foundational probability concepts:
 - Probability Distributions:
 - O A way of describing all possible outcomes a random variable can take within a sample space.
 - o **Types:**
 - The Normal (Gaussian)Distribution:
 - Random Variable Sampling using rvs function.

```
data = norm.rvs(size=10000, random_state=42)
plt.hist(data, bins=30)
```

seed

Generating 10,000 data points for a normal distribution

Probability, Distributions, & Sampling

- **☐** Foundational probability concepts:
 - Probability Distributions:
 - O A way of describing all possible outcomes a random variable can take within a sample space.
 - o **Types:**
 - The Normal (Gaussian)Distribution:
 - Descriptive statistics:
 - The normal distribution's PDF is represented with an equation:

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

```
x = np.linspace(12, 16, 100)
plt.plot(x, norm.pdf(x, loc=14, scale=0.5))
```


- Generating 100 data points for a normal distribution
- set the mean and standard deviation parameters (loc and scale) to the specified values of 14 and 0.5

Probability, Distributions, & Sampling

- **☐** Foundational probability concepts:
 - Probability Distributions:
 - A way of describing all possible outcomes a random variable can take within a sample space.
 - o **Types:**
 - The Normal (Gaussian)Distribution:
 - Sampling from a distribution


```
data.mean()
data.std()
```

13.998932008315789 0.5017061030649937

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

Probability Distributions:

O A way of describing all possible outcomes a random variable can take within a sample space.

o **Types:**

- Fitting distributions to data to get parameters:
- If we have data from measurements, say the efficiency of solar cells from a manufacturing line, we can fit a distribution to that data to extract the distribution's PDF parameters and moments

	d.read_cs cribe()	v('data	a/solar_cell	l_efficiencies.csv')	
	efficiency		efficiency		
0	14.260772	count	187196.000000		
1	13.463545	mean	14.181805		
2	14.704418	std	0.488751		
3	13.671162	min	9.691218		
4	14.186147	25%	13.932445		
		50%	14.205567		
187191	14.602182	75%	14.482341		
187192	14.158041	max	17.578530		
187193	14.093038	scip	y.stats.nor	<pre>m.fit(df['efficiency'])</pre>	
187194	14.478059	(14.1	(14.181805365742568, 0.4887500401256815)		
187195	13.833728	(22	(225255557, 12555)		

187196 rows x 1 columns

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

- Probability Distributions:
 - A way of describing all possible outcomes a random variable can take within a sample space.
- o **Types:**
 - The Bernoulli distribution:
 - The **Bernoulli** distribution is a discrete distribution, meaning it can only take on a few values.
 - Discrete distributions have a probability mass function (PMF) instead of a probability distribution function (PDF).

$$f(x) = \begin{cases} p, & x = 1\\ (1-p), & x = 0 \end{cases}$$

```
scipy.stats.bernoulli(p=0.7).rvs()
```

1

- creating a bernoulli class from scipy.stats with a probability of 0.7 for success (the probability of getting a 1 and not 0).
- Sampling with rvs function

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

Probability Distributions:

o A way of describing all possible outcomes a random variable can take within a sample space.

o **Types:**

Output The binomial distribution:

- Bernoulli distribution → for a single binary event
- While the **Binomial** distribution → for a collection
 of Bernoulli events.
- The binomial distribution represents a number of successes out of a number of Bernoulli events

```
binom_dist = scipy.stats.binom(p=0.7, n=10)
plt.bar(range(11), binom_dist.pmf(k=range(11)))
```


• For example, if **10** customers visit our website and we have a **70%** chance of them buying a product, our binomial distribution would be:

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

- Probability Distributions:
 - O A way of describing all possible outcomes a random variable can take within a sample space.
- o **Types:**
 - **O The Uniform distribution:**
 - The uniform distribution shows up when we have several events, all with an equal likelihood of occurring.
 - o **example:** rolling a 6-sided dice

$$f(x) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, \\ 0 & ext{for } x < a ext{ or } x > b \end{cases}$$

r = scipy.stats.uniform.rvs(size=1000)

• Sampling 1000 points from a uniform distribution

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

- Probability Distributions:
 - O A way of describing all possible outcomes a random variable can take within a sample space.
- o **Types:**
 - The exponential distributions:
 - The exponential distribution describes the space or time between events that are independent.
 - o **example:** support center calls

$$y = \lambda e^{-\lambda x}$$

```
from labellines import labelLines x = np.linspace(0, 5, 100) plt.plot(x, scipy.stats.expon.pdf(x, scale=1), label='\lambda=1') plt.plot(x, scipy.stats.expon.pdf(x, scale=0.25), label='\lambda=4') labelLines(plt.gca().get_lines())
```


Probability, Distributions, & Sampling

☐ Foundational probability concepts:

Probability Distributions:

O A way of describing all possible outcomes a random variable can take within a sample space.

o **Types:**

The Weibull distribution:

- The Weibull distribution is like an extension of the exponential distribution, where the characteristic time or space between events changes over time.
- o **example:** useful for time-to-failure analysis, like with hard drives,

$$f(x;\lambda,k) = \left\{ egin{array}{ll} rac{k}{\lambda} \Big(rac{x}{\lambda}\Big)^{k-1} e^{-(x/\lambda)^k}, & x \geq 0, \ 0, & x < 0, \end{array}
ight.$$

The shape parameter, c, determines if the time-to-failure is:

- Decreasing over time (c<1),
- Staying constant (c=1, the exponential distribution), or
- Increasing over time (c>1).

Probability, Distributions, & Sampling

☐ Foundational probability concepts:

Probability Distributions:

O A way of describing all possible outcomes a random variable can take within a sample space.

o **Types:**

The Zipfian distribution:

- used in text data to model the ranked frequency of words.
- Used also in showing up in surprising places, like the ranking of cities by population from greatest to least and the distribution of company sizes.

```
x = range(1, 50)
plt.plot(x, scipy.stats.zipf(a=1.1).pmf(x), marker='.')
```


The shape parameter, a, determines if the time-to-failure is:

- Decreasing over time (c<1),
- Staying constant (c=1, the exponential distribution), or
- Increasing over time (c>1).

Probability, Distributions, & Sampling

☐ Sampling from data:

- Good methods for Data Scientists
 to:
 - Downsize a large dataset for analysis,
 - o Estimate confidence intervals, and
 - Balance imbalanced datasets for machine learning.
- Random Sampling:
 - The easiest sampling method is randomly sampling from a dataset.
 - Taking a random sample is like choosing a random value from a uniform distribution.

```
df = pd.read_csv('data/solar_cell_efficiencies.csv')
df.sample(100, random_state=42)
```

	efficiency
52332	13.661122
15695	13.608738
53972	13.704674
23400	13.902658
34656	14.413147
26601	13.786017
17128	14.325704
19828	14.616771
38002	13.839354
5549	14.628503

Random sample of 100 data points from our dataframe

100 rows x 1 columns

Probability, Distributions, & Sampling

☐ Sampling from data:

- Good methods for Data Scientists
 to:
 - Downsize a large dataset for analysis,
 - o Estimate confidence intervals, and
 - Balance imbalanced datasets for machine learning.

Bootstrap Sampling:

- Bootstrap sampling is random sampling, but with replacement.
- Every time we take a sample, it's independent and from the entire dataset.

```
df = pd.read_csv('data/solar_cell_efficiencies.csv')
df.sample(100, random_state=42)

13.997757103217898 (13.993327776033839, 14.002235170746314)
Calculate the mean, with confidence intervals
```

Bootstrap Sampling: Code from Scratch

100

13.94 13.96 13.98 14.00 14.02 14.04 14.06

Thanks for your Listening

