

Параметр	Обозначение			
	TEW 160	TEW 200	TEW 250	TEW 315
Площадь поверхности теплообмена, м ²	1,6	2	3	4,8
Сопротивление по воздуху, Па	66	66	66	67
Расход теплоносителя (max), м ³ /час	0,36	0,504	0,756	1,22
Гидравлическое сопротивление, кПа	3,7	6,8	19,3	24,7
Заправочный объём, л	0,4	0,45	0,62	0,95
Размер А, мм	270	295	345	420
Размер В, мм	210	235	285	360
Размер С, мм	200	225	275	350
Размер К, мм	163	186	236	313
Транспортировочная масса, кг	3	3.5	4	5

НАЗНАЧЕНИЕ И КОНСТРУКЦИЯ

Теплообменники предназначены для нагрева путем энергообмена входящего воздуха и других невзрывоопасных газовых смесей, агрессивность которых по отношению к углеродистым сталям обыкновенного качества не выше агрессивности воздуха, не содержащих липких веществ, волокнистых и абразивных материалов, с содержанием пыли и других твердых примесей не более 100 мг/м³.

Теплообменники предназначены для эксплуатации в условиях умеренного (У) климата 3-й категории размещения по ГОСТ 15150.

Конструктивно теплообменники являются 2^{-x} рядными медно-алюминиевыми пла- стинчатыми теплообменными агрегатами. Поверхность теплообмена изготовлена из алюминиевых пластин толщиной 0,13мм и проходящих через них медных трубок (диаметр 3/8"/9.52мм). Расположение трубок шахматное. Неразборный корпус изготавливается из оцинкованного листа марки 08Π С.

Для спуска воздуха и слива энергоносителя из контура теплообменника в обоих коллекторах предусмотрены резьбовые конические пробки M8x1 по DIN 906. Присоединение трубопроводов теплоносителя - резьбовое.

Примечание: Изготовитель может вносить в конструкцию изделий изменения, не ухудшающие их потребительских качеств и не учтенных в настоящем паспорте.

МОНТАЖ И ЭКСПЛУАТАЦИЯ

Монтаж

Монтаж теплообменника должен производиться в соответствии с требованиями ГОСТ 12.4.021-75, СниП 3.05.01-83, проектной документации и настоящего паспорта.

Перед монтажом необходимо произвести осмотр теплообменника. При обнаружении повреждений, дефектов, полученных в результате неправильной транспортировки или хранения, ввод его в эксплуатацию без согласования с предприятием-продавцом не допускается.

Теплообменники могут работать в любом положении, но необходимо помнить, что располагать теплообменники следует так, чтобы можно было обеспечить отвод воздуха из него (вентили отвода воздуха быть расположены в наиболее высоком месте теплообменника).

Для удобства обслуживания и ремонта теплообменника рекомендуется оборудовать места его подключения к гидросети разъёмными соединениями с запорными вентилями.

Теплообменник можно монтировать непосредственно в разрыве воздуховода без индивидуального подвеса, но не допустимо нагружать его конструкцию весом присоединяемых воздуховодов и трубопроводов энергоносителя.

ВНИМАНИЕ! Недопустимо нагружать его конструкцию весом при- соединяемых воздуховодов и трубопроводов теплоносителя. Используемые для управления производительностью теплообменника смесительные узлы и другая аппаратура может присоединяются непосредственно к патрубкам коллекторов теплообменника, но при должна иметь индивидуальное крепление.

ВНИМАНИЕ: При присоединении трубопроводов теплоносителя недопустима передача усилия затяжки резьбовых соединений на коллекторы теплообменника.

При подключении трубопроводов энергоносителя возможно использование двух схем (см. рисунок).

Противоточное подключение – обеспечивает максимальную мощность, но менее морозоустойчиво.

Прямоточное подключение — о беспечивает большую морозоустойчивость, но дает несколько пониженную мощность.

ВНИМАНИЕ! Для использования теплообменника в качестве охладителя рекомендуется противоточная схема его подключения.

Установку датчиков контроля температуры энергоносителя допускается производить на места штатных пробок G 1/2" в торцах коллекторов.

Для предотвращения засорения воздухонагревателя необходимо предусмотреть предварительную очистку входящего в него воздуха и теплоносителя фильтрами.

Эксплуатация

Теплообменники позволяют использовать в качестве теплоносителя не только воду, но и незамерзающие смеси. Для случая, когда теплоносителем является вода, теплообменники предназначены только для внутреннего использования в помещениях, где температура не опускается ниже температуры замерзания воды. При использовании незамерзающих смесей возможно наружное применение теплообменников.

Примечание: Используемый теплоноситель не должен содержать твердых примесей и агрессивных веществ, вызывающих коррозию, химическое разложение меди и стали.

Рекомендуемые параметры магистральной воды используемой как энергоноситель

Показатель	Значения	
Водородный показатель (рН)	6,59,0	
Щелочность (мг/л)	60300	
Удельная электропроводимость (мкСм/см)	0500	
Жесткость [Са2+,g2+]/[НСО3-]	От 0,5	
Хлориды (мг/л)	До 350	
Сульфаты (мг/л)	До 300	
Нитраты (мг/л)	До 45	

Показатель	Значения	
Свободные углекислоты (мг/л)	До 50	
Нашатыри (мг/л)	До 2	
Содержание растворенного кис- лорода (мг/л)	До 0,1	
Железо в растворе (мг/л)	До 0,3	
Марганец в растворе (мг/л)	До 0,1	
Сульфиды	Не желательны	
Хлор свободный (мг/л)	До 0,15	

Заполнение теплообменника водой (энергоносителем) производится при частично открытом вентиле подачи с одновременным открытием выхода для удаления воздуха;

Для спуска воздуха и слива энергоносителя из контура теплообменника в обоих коллекторах предусмотрены резьбовые конические пробки M8x1 по DIN 906.

Опорожнение теплообменника производится при закрытии крана подачи и медленном открытии сливного крана до падения давления, затем открыть выход для

выпуска воздуха и до конца открыть сливной вентиль;

Примечание: Для гарантированного полного слива теплоносителя из контура теплообменника рекомендуется производить окончательную их продувку сжатым воздухом (давление 0,2-0,3МПа) через патрубки спуска воздуха или слива воды при полностью открытой на слив гидросистеме и закрытой подаче на входе.

Во избежание снижения эффективности работы теплообменника необходимо регулярно (в среднем через 500 часов работы) осматривать и прочищать блок ламелей теплообменника от пыли и грязи.

Очистка производится струей воздуха или воды под давлением от 0,1 до 0,2МПа в перпендикулярном направлении против хода воздуха (необходимо осторожно обращаться с блоком ламелей).

6.2.6. В случае замятия ламелей (алюминиевых пластин) теплообменника их необходимо выпрямить специальным инструментом – гребёнкой.