Generalization of stochastic calculus and its applications in large deviations theory

Sudip Sinha

2019-04-05

Advisors
Prof Hui-Hsiung Kuo
Prof Padmanabhan Sundar

Outline

1	Introduction and motivation	3
2	Generalization of Itô calculus	13
3	Conclusion	21

§ 1 Introduction and motivation

Quick revision and notations

- Let $T \in (0, \infty)$, and denote $\mathbb{T} = [0, T]$ as the index set for t.
- Let $(\Omega, \mathcal{F}, \mathcal{F}_{\cdot}, \mathbb{P})$ be a filtered probability space.
- B. is a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}_{\cdot}, \mathbb{P})$.
- Properties of *B*.
 - starts at 0
 - has independent increments
 - $B_t B_s \sim \mathcal{N}(0, t s)$
 - continuous paths

- has unbounded linear variation 🕃
- has bounded quadratic variation ©
- $\mathbb{E}(B_t B_s) = s \wedge t$
- martingale
- Naive stochastic integration w.r.t. B_t : not possible.
- A stochastic process X_t is called (\mathcal{F}_t) -adapted if $\forall t, X_t$ is measurable w.r.t. \mathcal{F}_t .

Wiener integral $(f \in L^2[0,T])$

Definition

- 1. Step functions $f = \sum_{j=0}^{n-1} c_j \mathbb{1}_{[t_j, t_{j+1})}(t)$: Define $\int_0^T f(t) dB_t = \sum_{j=0}^{n-1} c_j \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
- 2. $f \in L^2[0,T]$: Use step functions approximating f to extend the integral a.s.

Properties

- * Linear.
- * Gaussian distribution with mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- * Corresponds to the Riemann–Stieltjes integral for $f \in C[0, T]$.
- The associated process $I_t = \int_0^t X_s dB_s$ has the following properties.
 - * continuity
 - * martingale
- Problem: Cannot integrate stochastic processes.

Trying to integrate stochastic processes naively

• $\int_0^T B_t \, \mathrm{d}B_t \stackrel{?}{=}$. Since B_t is continuous, let us try Riemann–Stieltjes integral. Consider a sequence of partitions Δ_n such that $\|\Delta_n\| \to 0$. Then

$$\int_{0}^{T} B_t \, \mathrm{d}B_t = \lim_{j=0}^{n-1} B_{t_j^*} \Delta B_j.$$

• Choosing different endpoints for t_j^* gives us different results.

t_j^*	$\int_0^t B_s \mathrm{d}B_s$	E	Martingale?	Theory
left	$\frac{1}{2}\left(B_t^2 - t\right)$	0		Itô
mid	$\frac{1}{2}\left(B_t^2\right)$	$\frac{1}{2}t$		Stratonovich
right	$\frac{1}{2}\left(B_t^2 + t\right)$	\overline{t}		[AK08]

• Which one do we choose?

Itô integral $(X \in L^2_{ad}([0,T] \times \Omega))$

Definition

- 1. Adapted step processes $X_t(\omega) = \sum_{j=0}^{n-1} \xi_j(\omega) \mathbb{1}_{[t_j,t_{j+1})}(t)$: define $\int_0^T X_t dB_t = \sum_{j=0}^{n-1} \xi_j \Delta B_j$.
- 2. $X \in L^2_{ad}([0,T] \times \Omega)$: use step processes approximating X to extend the integral in $L^2(\Omega)$.

Properties

- * Linear.
- * Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- * For X. continuous, $\int_0^T X_t dB_t = \lim \int_0^T X_{\lfloor \frac{tn}{n} \rfloor} dB_t = \lim \sum_{j=0}^{n-1} X_{\lfloor \frac{tn}{n} \rfloor} \Delta B_j$.
- The associated process $I_t = \int_0^t X_s dB_s$ has the following properties.
 - * continuity
 - * martingale
- Example: $\int_0^T B_t dB_t = \frac{1}{2}(B_T^2 T)$.

Itô integral
$$(\int_0^T X_t^2 dt < \infty \text{ a.s.})$$

- Definition: Use sequences of processes in $L^2_{ad}([0,T]\times\Omega)$ approximating X in probability to extend the integral in probability.
- Properties
 - * Linear.
 - * Mean 0, but variance?

 .
- The associated process $I_t = \int_0^t X_s dB_s$ has the following properties.
 - * continuity
 - * local martingale
- Example: $\int_0^T e^{B_t^2} dB_t = \int_0^{B_1} e^{t^2} dt \int_0^T B_t e^{B_t^2} dt$.

Itô formula

• An Itô process is a process of the form $X_t = X_0 + \int_0^t m(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB_s$, equivalently expressed as $dX_t = m(t, X_t) \, dt + \sigma(t, X_t) \, dB_t$. [Only makes sense when $\int_0^T \left(|m(s, X_s)| + |\sigma(s, X_s)|^2 \right) \, ds < \infty$ a.s.]

Theorem ([Itô44]) Let X_t be a d-dimensional Itô process, and let $Y_t = f(X_t)$, where $f \in C^2(\mathbb{R})$. Then $f(X_t)$ is also a d-dimensional Itô process, and

$$\mathrm{d}f(X_t) = \left\langle (\mathrm{D}f)(X_t), \, \mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \, \mathrm{d}X_t, (D^2 f)(X_t) \, \, \mathrm{d}X_t \right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: For σ constant, $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$, $d\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t dt + \sigma \mathcal{E}_t dB_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (dB_t)^2$.

Exponential processes and Girsanov theorem

• Let h, be a stochastic process. The associated exponential process is defined as

$$\mathcal{E}_t^{(h)} = \exp\left(\int_0^t h_s \, \mathrm{d}B_s - \frac{1}{2} \int_0^t h_s^2 \, \mathrm{d}s\right).$$

- The exponential process is a martingale if and only if $\mathbb{E}\mathcal{E}_t = 1 \ \forall t$.
- (Novikov condition) The exponential process is a martingale if $\mathbb{E} \exp\left(\frac{1}{2}\int_0^t h_s^2 ds\right) < \infty \ \forall t$.
- (Girsanov theorem) The translated stochastic process $W_t = B_t \int_0^t h(s) \, ds$ is a Brownian motion under the probability measure $\tilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}} = \mathcal{E}_T^h$. Moreover the process $Z_t := \mathbb{E}\left(\mathcal{E}_T^h \mid \mathcal{F}_t\right)$ is a martingale.

Stochastic differential equations

- Let $\xi \in L^2(\Omega)$ be independent of B, and $m, \sigma : [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R}$ be $\mathcal{B}[0, T] \times \mathcal{B}(\mathbb{R}) \times \mathcal{F}$ measurable such that $m(t, \cdot, \cdot)$ and $\sigma(t, \cdot, \cdot)$ are $\mathcal{B}(\mathbb{R}) \times \mathcal{F}_t$ measurable $\forall t$.

 Then a \mathcal{F}_t -adapted stochastic process X_t is called a solution of the stochastic *integral* equation $X_t = \xi + \int_0^t m(s, X_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s$ if for each t, the X_t satisfies the integral equation a.s.
- The stochastic differential equation $dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t$, $X_0 = \xi$ is a symbolic representation of the stochastic integral equation.

Theorem (Existence and uniqueness, Markov property) The stochastic differential equation above has a unique solution if there exists an M > 0 such that the following two conditions are satisfied:

- * (Lipschitz condition) $|m(t,x) m(t,y)|^2 + |\sigma(t,x) \sigma(t,y)|^2 \le M|x y|^2$ a.s.
- * (growth condition) $|m(t,x)|^2 + |\sigma(t,y)|^2 \le M(1+|x|^2)$ a.s.

The solution is a Markov process. Moreover if $\xi \in \mathbb{R}$, then the solution is also stationary.

• Example: For σ constant, $d\mathcal{E}_t = \sigma \mathcal{E}_t dB_t$, $\mathcal{E}_0 = 1$ is solved by $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$.

Multiple Wiener-Itô integrals

- How to define the double integral?
- $\int_0^T \int_0^T dB_s dB_t = \int_0^T dB_s \int_0^T dB_t = B_T^2.$ But $\mathbb{E} \int_0^t \int_0^t dB_u dB_v = t \neq 0$, so no martingale property. \otimes
- Itô's idea: remove the diagonal to get $\int_0^T \int_0^T dB_s dB_t = 2 \int_0^T \int_0^t dB_s dB_t = B_T^2 T$.

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$I_n(f) = \int_{[0,T]^n} f(t_1, ..., t_n) \, dB_{t_1} ... \, dB_{t_n} = n! \int_0^T ... \int_0^{t_{n-1}} \hat{f}(t_1, ..., t_n) \, dB_{t_n} ... \, dB_{t_1},$$

TODO

§ 2 Generalization of Itô calculus

Motivation

- Iterated integrals: Consider the iterated integral $\int_0^T \int_0^T dB_s dB_t = \int_0^T B_T dB_t \stackrel{?}{=} B_T B_t$.
- Note that $\mathbb{E}(B_TB_t) = T \wedge t = t \neq 0$, so no martingale property \odot .
- Stochastic differential equations with anticipation

$$dX_t = X_t dB_t$$

$$X_0 = B_1$$

$$Y_0 = 1$$

- Problem: We want to define $\int_0^T X_t dB_t$, where X_t is not adapted (anticipating).
- Some approaches
 - * Itô's decomposition of integrand $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} ds\right) + \int_0^t \frac{B_T B_s}{T s} ds$
 - * Enlargement of filtration
 - White noise theory
 - * ...

The new integral [AK08; AK10]: Idea

- A process Y and filtration \mathcal{F} are called instantly independent if Y^t and \mathcal{F}_t are independent $\forall t$.
- Ideas
 - 1. Decompose the integrand into adapted and instantly independent parts.
 - 2. Evaluate the adapted and the instantly independent parts at the left and right endpoints.
- Consider two continuous stochastic processes, X_t adapted and Y^t instantly independent w.r.t. \mathcal{F} . Then the integral $\int_0^T X_t Y^t dB_t$ is defined as

$$\int_{0}^{T} X_t Y^t dB_t \triangleq \lim_{\|\Delta_n\| \to 0} \sum_{j=0}^{n-1} X_{t_j} Y^{t_{j+1}} \Delta B_j,$$

provided that the limit exists in probability.

- Now, for any stochastic process $Z(t) = \sum_{k=1}^{n} X_t^{(k)} Y_{(k)}^t$ we extend the definition by linearity.
- This is well-defined [HKS+16].

A simple example

• In the following, denote $\Delta B_j = B_{t_{j+1}} - B_{t_j}$ and \lim is the \lim in L^2 .

$$\int_{0}^{t} B_{T} dB_{t} = \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) dB_{t} = \int_{0}^{t} B_{t} dB_{t} + \int_{0}^{t} (B_{T} - B_{t}) dB_{t}$$

$$= \lim_{t \to 0} \sum_{j=0}^{t-1} B_{t_{j}} \Delta B_{j} + \lim_{t \to 0} \sum_{j=0}^{t-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j}$$

$$= \lim_{t \to 0} \sum_{j=0}^{t-1} (B_{T} - \Delta B_{j}) \Delta B_{j}$$

$$= B_{T} \lim_{t \to 0} \sum_{j=0}^{t-1} \Delta B_{j} - \lim_{t \to 0} \sum_{j=0}^{t-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t$$

- Note that $\mathbb{E}(B_T B_t t) = 0$.
- In general, $\mathbb{E} \int_0^t Z(t) dB_t = 0$.

Generalized Itô formula [HKS+16]

• Let $dX_t = m(t) dt + \sigma(t) dB_t$ be an d-dimensional Itô process, $Y^t = \tilde{m}(t) dt + \tilde{\sigma}(t) dB_t$ be a \tilde{d} -dimensional instantly independent process, $f(x,y) \in C^2(\mathbb{R}^2)$. Then

$$\begin{split} \mathrm{d}f(X_t,Y^t) &= \left\langle (\,\mathrm{D}_x f)(X_t,Y^t),\,\mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \,\mathrm{d}X_t,(D_x^2 f)(X_t,Y^t)\,\,\mathrm{d}X_t \right\rangle \\ &+ \left\langle (\,\mathrm{D}_y f)(X_t,Y^t),\,\mathrm{d}Y^t \right\rangle - \frac{1}{2} \left\langle \,\mathrm{d}Y^t,(D_y^2 f)(X_t,Y^t)\,\,\mathrm{d}Y^t \right\rangle, \end{split}$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: TODO

Exponential processes and generalized Girsanov theorem

TODO

Iterated integrals

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = n! \int_0^T \cdots \int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) \, \mathrm{d}B_{t_n}... \, \mathrm{d}B_{t_1},$$

Theorem ([AK10]) Let $f \in L^2([0,T]^n)$. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = \int_0^T \cdots \int_0^T f(t_1,...,t_n) \, \mathrm{d}B_{t_n}... \, \mathrm{d}B_{t_1}.$$

Near-martingale property [HKS+17]

- Question: What are the analogues of the martingale property and the Markov property?
- Answer for martingales: "near-martingales".
- Let Z(t) be a stochastic process such that $\mathbb{E}|Z(t)| < \infty \ \forall t$, and $0 \le s \le t \le T$. Then, with respect to \mathcal{F}_{\cdot} , the process Z(t) is called a
 - * near-martingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) = 0$,
 - * near-submartingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) \ge 0$, and
 - * near-supermartingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) \leq 0$.
- TODO

§3 Conclusion

Open areas for research

- Extension to SDEs with anticipating coefficients
- Near-Markov property
- Girsanov theorem for anticipating integrals
- Freidlin-Wintzell type result for SDEs with anticipation

Bibliography

- Ayed, W. & Kuo, H. H. (2008). An extension of the Itô integral. *Communications on Stochastic Analysis*, 2(3). doi:10.31390/cosa.2.3.05
- (2010). An extension of the Itô integral: Toward a general theory of stochastic integration. *Theory of Stochastic Processes*, 16(32), 17–28. Retrieved from http://mi.mathnet.ru/thsp56
- Hwang, C. R., Kuo, H. H., Saitô, K., & Zhai, J. (2016). A general Itô formula for adapted and instantly independent stochastic processes. *Communications on Stochastic Analysis*, 10(3). doi:10.31390/cosa.10.3.05
- (2017). Near-martingale Property of Anticipating Stochastic Integration. *Communications on Stochastic Analysis*, 11(4). doi:10.31390/cosa.11.4.06
- Itô, K. (1944). Stochastic integral. Proc. Imp. Acad., 20(8), 519–524. doi:10.3792/pia/1195572786
- _____ (1951). Multiple Wiener Integral. *J. Math. Soc. Japan*, 3(1), 157–169. doi:10.2969/jmsj /00310157