EBU6018 Advanced Transform Methods

Eigenvalues/Eigenvectors

and the Karhunen-Loeve Transform (PCA)

Andy Watson

Eigenvalues

The eigenvalues, λ , of a square matrix A are the solutions of:

$$|A - \lambda I| = 0$$

As an example, consider the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

$$|A - \lambda I| = \begin{vmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

So λ_1 = 1 and λ_2 = 3

Eigenvectors

Eigenvectors v are the solutions of:

$$(A - \lambda I)v = 0$$

For
$$\lambda_1 = 1$$
, $(A - I)v_{\lambda_1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so, $v_1 + v_2 = 0$, $v_1 = -v_2$, $v_{\lambda_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
For $\lambda_2 = 3$, $(A - I)v_{\lambda_2} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so, $-v_1 + v_2 = 0$, $v_1 = v_2$, $v_{\lambda_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Note that any scalar multiple of each eigenvector is OK. They can be normalised.

For a symmetric matrix, the eigenvalues are always real and the corresponding eigenvectors are always orthogonal.

Example 1

Evaluate the normalised eigenvectors of the covariance matrix of the following 2D dataset.

X	У
-3.01	-2.67
0.18	-2.12
-6.56	-4.24
1.60	1.92
2.78	-1.20
2.03	2.14

Example 1....solution

Example 1....solution

FOR EIGENVALUES.

$$\begin{vmatrix}
13.00 & 7.30 \\
7.30 & 6.60
\end{vmatrix} - \lambda \begin{vmatrix}
0 & 07 \\
0 & 17
\end{vmatrix} = 0$$

$$\begin{vmatrix}
(13.00 - \lambda) & 7.30 \\
7.30 & (6.60 - \lambda) \end{vmatrix} = 0$$

$$\begin{vmatrix}
\lambda^2 - 19.6\lambda + 32.51 = 0
\\
\lambda_1 = 17.77, \lambda_2 = 1.83
\end{vmatrix}$$

Example 1....solution

FOR EIGENVECTORS.

$$\lambda_{1} = 17.77 \quad \left[-4.77 \quad 7.30 \quad \left[\phi_{11} \right] = \begin{bmatrix} 0.7 \\ 7.30 \quad -11.17 \end{bmatrix} \right] = \begin{bmatrix} 0.7 \\ \phi_{11} \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.7 \end{bmatrix}$$

$$\phi_{1} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix}$$

$$\lambda_{2} = 1.83 \quad \left[11.17 \quad 7.30 \quad \left[\phi_{21} \right] = \begin{bmatrix} 0.7 \\ 0.7 \end{bmatrix}$$

$$\gamma_{1} = \begin{bmatrix} 0.65 \\ 1.00 \end{bmatrix}$$

$$\phi_{2} = \begin{bmatrix} -0.65 \\ 1.00 \end{bmatrix}$$

$$\rho_{3} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.84 \\ 0.55 \end{bmatrix}$$

$$\rho_{1} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.84 \\ 0.55 \end{bmatrix}$$

$$\rho_{1} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.84 \\ 0.55 \end{bmatrix}$$

$$\rho_{1} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.84 \\ 0.55 \end{bmatrix}$$

$$\rho_{1} = \begin{bmatrix} 1.53 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 0.84 \\ 0.55 \end{bmatrix}$$

Example 2

For the 2D data set given, determine:

- i) Covariance matrix
- ii) Eigenvalues
- iii) Eigenvectors
- iv) The KLT of the given 2D data set.

X	у
2.5	2.4
0.5	0.7
2.2	2.9
1.9	2.2
3.1	3.0
2.3	2.7
2.0	1.6
1.0	1.1
1.5	1.6
1.1	0.9

Example 2.....answers

Mean of x = 1.81Mean of y = 1.91

Values of x with mean of x subtracted and values of y with the mean of y subtracted:

$$cov = \begin{bmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{bmatrix}$$

X	y
o.69	0.49
-1.31	-1.21
0.39	0.99
0.09	0.29
1.29	1.09
0.49	0.79
0.19	-0.31
-0.81	-0.81
-0.31	-0.31
-0.71	-1.01

Example 2.....answers

Eigenvalues =
$$\begin{bmatrix} 0.0491 \\ 1.2840 \end{bmatrix}$$

Normalised eigenvectors =

$$\begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & -0.7352 \end{bmatrix}$$

Multiplying the original data by this eigenvector matrix gives:

X'	Υ'
-0.8280	-0.1751
1.7776	0.1429
-0.9921	0.3844
-0.2742	0.1304
-1.6758	-0.2095
-0.9129	0.1753
0.09911	-0.3498
1.1446	0.0464
0.4380	0.0178
1.2238	-0.1627