MANDATORY ASSIGNMENT MAT3400

IVAR HAUGAØKKEN STANGEBY

Problem 1

Let Ω be a non-empty set, $\{x_n\}_n$ a sequence of distinct elements and $\{b_n\}_n$ a sequence of non-negative real numbers. For $E \subseteq \Omega$ define

$$\mu(E) = \sum_{\{n \in \mathbb{N} | x_n \in E\}} b_n.$$

Prove that μ is a measure on $\mathcal{P}(\Omega)$. Note that the function μ is defined as a sum of non-negative real numbers. Hence it follows directly that $\mu(E) \leq 0$ for all $E \in \mathcal{P}(\Omega)$. We also see that since $x_n \notin \emptyset$ for all n, so in the case of $\mu(\emptyset)$ we have no contributions. Hence $\mu(\emptyset) = 0$. For the countable disjoint union, we simply write it out:

$$\mu\left(\bigcup_{n} A_{n}\right)_{\left\{i\mid x_{i}\in\bigcup_{n} A_{n}\right\}} = \sum_{i} b_{n}$$

but since the sets are disjoint we can write this as distinct sums

$$=\sum_n \left(\sum_{\{i|x_i\in A_n\}} b_n\right) = \sum_n \mu(A_n).$$

Consequently, μ is a measure on $\mathcal{P}(\Omega)$ and the triplet $(\Omega, \mathcal{P}(\Omega), \mu)$ is a measure space.

Problem 2

Consider the measure space ([0,1], $\mathcal{M}_{[0,1]}$, λ) where λ is the Lebesgue measure restricted to [0,1]. Let f_n be defined on [0,1] as follows

$$f_n(x) = \frac{n\sqrt{n}}{1 + n^2 x^2}.$$

We wish to compute $\lim_n \int_{[0,1]} f_n d\lambda$. For $x \in [0,1]$ we have that $f_n(x)$ is bounded by $1/(2\sqrt{x})$ and since $f_n(x) \to 0$ as $n \to \infty$ we can apply Dominated Convergence Theorem. This yields:

$$\lim_{n\to\infty}\int_{[0,1]}f_n\,d\lambda=\int_{[0,1]}\lim_{n\to\infty}f_n\,d\lambda.$$

Using L'Hôpitals rule, we see that

$$\lim_{n \to \infty} \int_{[0,1]} f_n \, d\lambda = 0.$$

Date: October 13, 2015.

Problem 3

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $f: \Omega \to [0, 1]$ an \mathcal{A} -measurable function. We wish to prove that

$$\lim_{n \to \infty} \int_{\Omega} f^{1/n} \, d\mu = \mu(f^{-1}((0,1])).$$

We also wish to show that under the assumption $\mu(\Omega) \leq \infty$, that

$$\lim_{n\to\infty} \int_{\Omega} f^n d\mu = \mu \left(f^{-1}(\{1\}) \right).$$

Note that the function $f^{1/n}$ is monotone on Ω since f takes values in [0,1]. If we partition our set Ω into two disjoint sets Ω_1 and Ω_2 , the set where f takes the value 0 and, the set where f takes values in (0,1], respectively, then we can split our integral into two:

$$\lim_{n\to\infty}\int_{\Omega}f^{1/n}\,d\mu=\lim_{n\to\infty}\int_{\Omega_1}f^{1/n}\,d\mu+\lim_{n\to\infty}\int_{\Omega_2}f^{1/n}\,d\mu.$$

Applying the Monotone Convergence Theorem lets us interchange limits and inte-

$$\lim_{n\to\infty}\int_\Omega f^{1/n}\,d\mu=\int_{\Omega_2}1\,d\mu=\mu(\Omega_2)=\mu\left(f^{-1}(0,1])\right)$$
 as we wanted to show. The integral over Ω_1 vanishes due to the pointwise limit in

Let us now assume that $\mu(\Omega) < \infty$. We consider the function f^n . This is a monotone decreasing function on the interval [0,1) and we again partition our integration domain into Ω_1 and Ω_2 , the set where f attains the value 1 and the set where f takes values in [0,1) respectively. Applying the Monotone Convergence Theorem for monotone decreasing sequences tells us that

$$\lim_{n\to\infty}\int_\Omega f^n\,d\mu=\int_{\Omega_1}\lim_{n\to\infty}f^n\,d\mu=\int_{\Omega_1}1\,d\mu=\mu\left(f^{-1}(\{1\})\right).$$

Let $\sum_{k=0}^{\infty} a_k$ be a convergent series of non-negative real numbers and suppose that b_{n_k} are complex numbers such that $|b_{n_k}| \leq M \leq \infty$ for all $n, k \in \mathbb{N}$ and some positive real number m.

We wish to consider $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ with μ the counting measure and write down a sequence $\{f_n\}_n$ of complex-valued $\mathcal{P}(\mathbb{N})$ -measurable functions such that the following is satisfied:

$$\sum_{n=1}^{\infty} \int_{\mathbb{N}} |f_n| \, d\mu < \infty.$$

Integrating with respect to the counting measure is equivalent to summing over function values. Hence

$$\int_{\mathbb{N}} |f_n| \, d\mu = \sum_{i=1}^{\infty} |f_n(i)|.$$

If we define the function f_n by

$$f_n(k) = \frac{a_n b_{n_k}}{2^k}$$

then $\sum_{k=1}^{\infty} a_n b_{nk}/2^k \leq a_n M$. Our integral then becomes

$$\sum_{n=1}^{\infty} \int_{\mathbb{N}} |f_n(k)| \, d\mu = M \sum_{n=1}^{\infty} a_n < \infty.$$