EE 205003 Session 6

Che Lin

Institute of Communications Engineering

Department of Electrical Engineering

Addition

 $A_{(m \times n)}$: m rows, n columns $B_{(p \times q)}$: p rows, q columns

Q: Can you do A + B ?

Only when m=p, n=q \Rightarrow two matrices are of same size

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 2 \\ 4 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 7 & 8 \end{bmatrix} (\checkmark)$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} (\textbf{X})$$

Multiplication

Q: Can you do AB?

If A has n col.s, we can do AB only when B has n rows $\Rightarrow A_{m\times n}B_{n\times p}=C_{m\times p}$ [check of dim. is important to trace errors]

Four different ways of thinking AB = C

Ex1

$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 0 \end{bmatrix}$$

(dim. chk : square matrices can be multiplied iff they are of same size)

(if $n \times n$: involves n^2 dot products each dot product = n multiplications \Rightarrow total n^3 multiplications)

Ex2

$$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 2 + 6 = 8 \text{ (inner product)}$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 3 & 6 \end{bmatrix} \text{ (outer product)}$$

Columns

$$C = AB = A \begin{bmatrix} \mathbf{b}_1, & \mathbf{b}_2, & \cdots, & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1, & A\mathbf{b}_2, & \cdots, & A\mathbf{b}_p \end{bmatrix}$$
 each col. of C is $A\mathbf{b}_i$ (lin. comb. of col.s of A) \Rightarrow each col. of C is a lin. comb. of col.s of A

Rows

$$\begin{bmatrix} \mathbf{c}_1^{\mathsf{T}} \\ \mathbf{c}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{c}_m^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^{\mathsf{T}} \\ \mathbf{a}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{a}_m^{\mathsf{T}} \end{bmatrix} B = \begin{bmatrix} \mathbf{a}_1^{\mathsf{T}} B \\ \mathbf{a}_2^{\mathsf{T}} B \\ \vdots \\ \mathbf{a}_m^{\mathsf{T}} B \end{bmatrix}$$

each row of C is $\mathbf{a}_i B$ (lin. comb. of rows of B) \Rightarrow each row of C is a lin. comb. of rows of B

Column times row

$$\begin{bmatrix} \mathbf{a}_1 \mathbf{a}_2 \cdots \mathbf{a}_n \end{bmatrix} \begin{bmatrix} \mathbf{b}_1^\intercal \\ \mathbf{b}_2^\intercal \\ \vdots \\ \mathbf{b}_n^\intercal \end{bmatrix} = \mathbf{a}_1 \mathbf{b}_1^\intercal + \mathbf{a}_2 \mathbf{b}_2^\intercal + \cdots + \mathbf{a}_n \mathbf{b}_n^\intercal$$

<u>Ex</u>

$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix} + \begin{bmatrix} 4 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix} \quad (3, 2) \text{ lies in the same line as } (6, 4)$$

 \Rightarrow row space is a line

Similarly, col. space is also a line

Blocks

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix}$$
here $C_1 = A_1B_1 + A_2B_3$

Ex Elimination by blocks

$$A = \begin{bmatrix} 1 & \times & \times \\ 3 & \times & \times \\ 4 & \times & \times \end{bmatrix}$$

one at a time

$$E_{21} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

Ex Elimination by blocks (cont.)

$$E = E_{21}E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

$$EA = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & \times & \times \\ 3 & \times & \times \\ 4 & \times & \times \end{bmatrix} = \begin{bmatrix} 1 & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{bmatrix}$$

$$\left(\begin{bmatrix} -3\\-4 \end{bmatrix} 1 + I \begin{bmatrix} 3\\4 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \right)$$
 (Schur component)

$$\left(\left[\begin{array}{c|c} I & 0 \\ \hline -CA^{-1} & I \end{array} \right] \left[\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right] = \left[\begin{array}{c|c} A & B \\ \hline 0 & D - CA^{-1}B \end{array} \right] \right)$$

$$({\rm check}: \, -CA^{-1}A + C = 0, -CA^{-1}B + D)$$

The Laws for matrix operations

For addition

$$A+B=B+A \qquad \text{commtative} \\ c(A+B)=cB+cA \qquad \text{distributive} \\ A+(B+C)=(A+B)+C \qquad \text{associative}$$

For multiplication

$$AB \neq BA$$
 commutative broken ! $C(A+B) = CA + CB$ distributive from left $(A+B)C = AC + BC$ distributive from right $A(BC) = (AB)C$ associative

$AB \neq BA$

Obvious if A, B not square

$$A_{(m \times n)}B_{(n \times p)} = AB(m \times p)$$

$$B_{(n\times p)}A_{(m\times n)}$$
 (not legal if $p\neq m$)

$$B_{(n\times m)}A_{(m\times n)} = BA_{(n\times n)} \ (p=m)$$

$$(AB_{(m\times m)}\neq BA \text{ if } m\neq n)$$

Even if both square,

$$AB = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$BA = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Exception

AI = IA (only cI commutes with other matrices)

$$A(B+C) = AB + AC$$

$$A(\mathbf{b} + \mathbf{c}) = A\mathbf{b} + A\mathbf{c}$$
 (can prove a col. at a time)

Powers

$$A^p = AA \cdots A$$

$$(A^p)(A^q) = A^{p+q}, (A^p)^q = A^{pq}$$