

Pláž

Problem Name	beach
Time Limit	1 second
Memory Limit	1 gigabyte

Maja by chcela na pobreží mora spraviť verejne dostupnú pláž. V rozpočte na to má B korún.

Na predaj je N po sebe idúcich segmentov pobrežia. Všetky sú rovnako dlhé, ale majú rôznu cenu: ich ceny sú $A_0,A_1,...,A_{N-1}$ korún.

Maja chce, aby jej pláž bola súvislá a čo najdlhšia. Koľko segmentov ju bude tvorit?

Input

V prvom riadku vstupu sú celé čísla N a B: počet segmentov a Majin rozpočet.

V druhom riadku je N celých čísel $A_0, A_1, ..., A_{N-1}$: ceny jednotlivých segmentov.

Output

Vypíš jedno celé číslo: najväčší počet po sebe idúcich segmentov, ktoré si Maja môže dovoliť kúpiť.

Constraints and Scoring

- $1 \le N \le 10^5$.
- $0 \le B \le 10^9$.
- $1 \leq A_i \leq 1000$ pre každé i z rozsahu $0 \leq i \leq N-1$.

Tvoje riešenie bude testované na viacerých sadách testov. Im zodpovedajúce počty bodov a dodatočné obmedzenia sú v nasledujúcej tabuľke.

Group	Score	Limits
1	21	$A_0 = A_1 = = A_{N-1}$
2	30	$N \leq 500$
3	49	bez ďalších obmedzení

Example

V prvom príklade má Maja dosť peňazí na kúpu celého pobrežia.

V druhom príklade sú dve optimálne riešenia: buď kúpi prvé tri alebo posledné tri segmenty.

V treťom príklade Maja kúpi segmenty s indexami 2,3,4,5,6 a 7. Toto ju bude stáť 3+4+6+2+1+2=18 korún. Viac ako šesť po sebe idúcich segmentov si už Maja nevie dovoliť kúpiť.

Input	Output
3 14 4 7 3	3
4 36 11 5 7 14	3
9 18 1 5 3 4 6 2 1 2 4	6