2.19

$x \equiv \dots \mod 4$	0	1	2	3
$x^2 \equiv \dots \mod 4$	0	1	0	1
$7x^2 \equiv \dots \mod 4$	0	3	0	3

$y \equiv \dots \mod 4$	0	1	2	3
$y^2 \equiv \dots \mod 4$	0	1	0	1
$4y^2 \equiv \dots \mod 4$	0	0	0	0

Ces deux tableaux montrent que les seuls restes possibles dans la division par 4 de l'expression $7\,x^2-4\,y^2$ sont 0 et 3.

On remarque plus particulièrement que ce reste ne saurait valoir 1.

Il est donc impossible de trouver des entiers x et y tels que $7\,x^2-4\,y^2=1$.