

What is claimed is:

1 1. A peptide comprising an amino acid sequence having a cleavage site specific for an
2 enzyme having a proteolytic activity of prostate specific antigen, wherein the peptide is 20
3 or fewer amino acids in length.

1 2. The peptide of claim 1, wherein the sequence comprises: the amino acids

3 $X_5X_4X_3X_2X_1$,

5 5 wherein X_5 is from 0 to 16 amino acids; X_4 is serine, isoleucine, or lysine; X_3 is serine or
6 lysine; X_2 is leucine, tyrosine or lysine; and X_1 is glutamine, asparagine or tyrosine.

1 3. The peptide of claim 2, further comprising X_{11} linked to X_1 , wherein X_{11} is from 1 to
2 10 amino acids.

1 4. The peptide of claim 2, wherein X_1 is glutamine.

1 5. The peptide of claim 2, further comprising amino acid X_6 linked to the amino terminus
2 of X_5 , wherein X_6 is from 0 to 15 amino acids and wherein X_5 is serine or lysine.

1 6. The peptide of claim 5, further comprising amino acid X_7 linked to the amino terminus
2 of X_6 , wherein X_7 is from 0 to 14 amino acids and wherein X_6 is histidine or asparagine.

1 7. The peptide of claim 3, wherein X_{11} comprises leucine.

1 8. The peptide of claim 6, wherein the amino acid sequence is selected from the group
2 consisting of His-Ser-Ser-Lys-Leu-Gln, Glu-His-Ser-Ser-Lys-Leu-Gln, Gln-Asn-Lys-Ile-
3 /Ser-Tyr-Gln, and Glu-Asn-Lys-Ile-Ser-Tyr-Gln.

1 19. A composition comprising a prodrug, the prodrug comprising
2 a therapeutically active drug; and
3 a peptide of claim 1,
4 wherein the peptide is linked to the therapeutically active drug to inhibit the
5 therapeutic activity of the drug, and wherein the therapeutically active drug is cleaved
6 from the peptide upon proteolysis by an enzyme having a proteolytic activity of prostate
7 specific antigen (PSA).

1 20. The composition of claim 19, wherein the peptide is linked directly to the therapeutic
2 drug.

1 21. The composition of claim 20, wherein the peptide is linked directly to a primary
2 amine group on the drug.

1 22. The composition of claim 19, wherein the peptide is linked to the therapeutic drug via
2 a linker.

1 23. The composition of claim 22, wherein the linker is an amino acid sequence.

1 24. The composition of claim 23, wherein the linker comprises a leucine residue.

1 25. The composition of claim 19, wherein the therapeutically active drug inhibits a
2 SERCA pump.

1 26. The composition of claim 25, wherein the therapeutically active drug is selected from
2 the group of primary amine containing thapsigargin or thapsigargin derivatives.

1 27. The composition of claim 19, wherein the therapeutically active drug intercalates into
2 a polynucleotide.

10:
1 28. The composition of claim 27, wherein the therapeutically active drug is an
2 anthracycline antibiotic.

10

11:
1 29. The composition of claim 28, wherein the therapeutically active drug is selected from
2 the group consisting of doxorubicin, daunorubicin, epirubicin and idarubicin.

1 30. The composition of claim 19, wherein the peptide is His-Ser-Ser-Lys-Leu-Gln-Leu.

12:
1 31. The composition of claim 19, wherein the therapeutic drug is a compound belonging
2 to the group of thapsigargins which have been derivatized with a moiety containing a
3 primary amine group, the peptide is His-Ser-Ser-Lys-Leu-Gln, and the linker is selected
4 from the group consisting of unsubstituted or alkyl-, aryl-, halo-, alkoxy-, alkenyl-, amido-
5 or amino-substituted $\text{CO}-(\text{CH}=\text{CH})_{n_1}-(\text{CH}_2)_{n_2}-\text{Ar}-\text{NH}_2$, $\text{CO}-(\text{CH}_2)_{n_2}-(\text{CH}=\text{CH})_{n_1}-\text{Ar}-\text{NH}_2$,
6 $\text{CO}-(\text{CH}_2)_{n_2}-(\text{CH}=\text{CH})_{n_1}-\text{CO}-\text{NH}-\text{Ar}-\text{NH}_2$ and $\text{CO}-(\text{CH}=\text{CH})_{n_1}-(\text{CH}_2)_{n_2}\text{CO}-\text{NH}-\text{Ar}-\text{NH}_2$,
7 wherein n1 and n2 are from 0 to 5, Ar is any substituted or unsubstituted aryl group, and
8 attachment of NH_2 to Ar is in a ortho, meta or para position with respect to the remainder
9 of the linker.

13:
1 32. The composition of claim 19, wherein the therapeutically active drug has an IC_{50}
2 toward ER Ca^{2+} -ATPase of at most 500 nM.

14

15:
1 33. The composition of claim 32, wherein the therapeutically active drug has an IC_{50}
2 toward ER Ca^{2+} -ATPase of at most 50 nM.

16:
1 34. The composition of claim 19, wherein the therapeutically active drug has an LC_{50}
2 toward PSA-producing tissue of at most 20 μM .

16

17:
1 35. The composition of claim 34, wherein the therapeutically active drug has an LC_{50}
2 toward PSA-producing tissue of less than or equal to 2.0 μM .

1 16.36. The composition of claim 19, wherein cleavage of the peptide by the enzyme yields
2 at least 5 picomoles of cleaved peptide per minute per 200 picomoles of enzyme.

1 A. 37. The composition of claim 19, wherein cleavage of the peptide in human serum yields
2 at most 2.0 picomoles of cleaved peptide per minute.

1 D.

1 38. The composition of claim 19, further comprising an added substituent which renders
2 the composition water soluble.

21,

10

1 39. The composition of claim 38, wherein the added substituent is a polysaccharide.

22.

21

1 40. The composition of claim 39, wherein the polysaccharide is selected from the group
2 consisting of modified or unmodified dextran, cyclodextrin and starch.

1 41. A therapeutically active sesquiterpene- γ -lactone derivative containing a primary
2 amine.

1 42. The derivative of claim 41, wherein the sesquiterpene- γ -lactone is a thapsigargin
2 derivative.

1 43. The thapsagargin derivative of claim 42, further comprising a boc protecting group.

1 44. The thapsigargin derivative of claim 42, wherein the derivative is linked to an
2 antibody.

Sal-A2

1 55. A method of producing a prodrug, the method comprising the step of linking
2 a therapeutically active drug and
3 a peptide of claim 1,
4 wherein the linking of the peptide to the drug inhibits the therapeutic activity of
5 the drug.

24

23

1 56. The method of claim 55, wherein the therapeutically active drug has a primary amine.

25

23

1 57. The method of claim 56, wherein the prodrug contains a linker between the peptide
2 and the drug.

26

25

1 58. The method of claim 57, wherein the linker comprises Leu.

27

23

1 59. The method of claim 58, wherein the peptide further comprises a capping group
2 attached to the N-terminus of the peptide, the group inhibiting endopeptidase activity on
3 the peptide.

28

27

1 60. The method of claim 59, wherein the capping group is selected from the group
2 consisting of acetyl, morpholinocarbonyl, benzyloxycarbonyl, glutaryl, and succinyl
3 substituents.

29

1 61. A method of treating a PSA-producing cell proliferative disorder, the method
2 comprising administering the composition of claim 19 in a therapeutically effective
3 amount to a subject having the cell proliferative disorder.

30

29

1 62. The method of claim 61, wherein the disorder is benign.

31

29

1 63. The method of claim 61, wherein the disorder is malignant.

32

29

1 64. The method of claim 63, wherein the malignant disorder is prostate cancer.

1 23 31
1 65. The method of claim 63, wherein the malignant disorder is breast cancer.

1 66. A method of detecting prostate specific antigen-producing tissue, the method
2 comprising:

3 contacting the tissue with a composition comprising

4 a detectably labeled peptide of claim 1 for a period of time sufficient to
5 allow cleavage of the peptide; and

6 detecting the detectable label.

1 67. The method of claim 66, wherein the peptide further comprises a capping group
2 attached to the N-terminus of the peptide, the group inhibiting endopeptidase activity.

1 68. The method of claim 67, wherein the capping group is selected from the group
2 consisting of acetyl, morpholinocarbonyl, benzyloxycarbonyl, glutaryl, and succinyl
3 substituents.

1 69. The method of claim 66, wherein the detectable label is a fluorescent label.

1 70. The method of claim 69, wherein the fluorescent label is selected from the group
2 consisting of 7-amino-4-methyl coumarin, 7-amino-4-trifluoromethyl coumarin, rhodamine
3 110, and 6-aminoquinoline.

1 71. The method of claim 66, wherein the detectable label is a radioactive label.

1 72. The method of claim 71, wherein the radioactive label is selected from the group
2 consisting of tritium, carbon-14, and iodine-125.

1 73. The method of claim 66, wherein the detectable label is a chromophoric label.

1 9. The peptide of claim 1, further comprising a capping group attached to the N-terminus
2 of the peptide, the group inhibiting endopeptidase activity on the peptide.

1 10. The peptide of claim 9, wherein the capping group is selected from the group
2 consisting of acetyl, morpholinocarbonyl, benzyloxycarbonyl, glutaryl and succinyl
3 substituents.

1 11. The peptide of claim 1, wherein the cleavage of the peptide by the enzyme yields at
2 least 5 picomoles of cleaved peptide per minute per 200 picomoles of enzyme.

1 12. The peptide of claim 1, wherein the cleavage of the peptide in human serum yields at
2 most 2.0 picomoles of cleaved peptide per minute.

1 13. A peptide of claim 1, further comprising an added substituent which renders the
2 peptide water-soluble.

1 14. A peptide of claim 13, wherein the added substituent is a polysaccharide.

1 15. A peptide of claim 14, wherein the polysaccharide is selected from the group
2 consisting of modified or unmodified dextran, cyclodextrin, and starch.

1 16. A peptide of claim 2, further comprising an antibody attached to the amino terminus
2 of X_5 , or X_4 when X_5 is 0.

1 17. A peptide composition comprising a plurality of peptides, each peptide comprising an
2 amino acid sequence having a cleavage site specific for an enzyme having a proteolytic
3 activity of prostate specific antigen, wherein each peptide has 20 or fewer amino acids.

1 18. A polynucleotide encoding the peptide of claim 1

1 45. The thapsigargin derivative of claim 42, having the following structure

12 wherein R₁ is a primary amine-containing alkanoyl, alkenoyl, or arenoyl substituent, R₂ is
13 an alkanoyl, alkenoyl, or arenoyl substituent, and R₃ is an alkanoyl or alkenoyl substituent.

1 46. The thapsigargin derivative of claim 45, wherein R₁ is selected from the group
2 consisting of unsubstituted or alkyl-, aryl-, halo-, alkoxy-, alkenyl-, amido- or amino-
3 substituted CO-(CH=CH)_{n1}-(CH₂)_{n2}-Ar-NH₂, CO-(CH₂)_{n2}-(CH=CH)_{n1}-Ar-NH₂, CO-(CH₂)_{n2}
4 (CH=CH)_{n1}-CO-NH-Ar-NH₂ and CO-(CH=CH)_{n1}-(CH₂)_{n2}-CO-NH-Ar-NH₂, wherein n1 and
5 n2 are from 0 to 5, and Ar is any substituted or unsubstituted aryl group.

1 47. The thapsigargin derivative of claim 42, having the following structure

13 wherein R₁ is an alkanoyl, alkenoyl, or arenoyl substituent, R₂ is a primary amine-containing alkanoyl, alkenoyl, or arenoyl substituent, and R₃ is an alkanoyl or alkenoyl substituent.

1 48. The thapsigargin derivative of claim 47, wherein R₂ is selected from the group consisting of unsubstituted or alkyl-, aryl-, halo-, alkoxy-, alkenyl-, amido- or amino-substituted CO-(CH=CH)_{n1}-(CH₂)_{n2}-Ar-NH₂, CO-(CH₂)_{n2}-(CH=CH)_{n1}-Ar-NH₂, CO-(CH₂)_{n2}-(CH=CH)_{n1}-CO-NH-Ar-NH₂ and CO-(CH=CH)_{n1}-(CH₂)_{n2}CO-NH-Ar-NH₂, wherein n1 and n2 are from 0 to 5, and Ar is any substituted or unsubstituted aryl group.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 49. The thapsigargin derivative of claim 48, having the following structure

wherein R₂ is CO-CH=CH-Ph-p-NH₂, wherein Ph-p-NH₂ is the para-aminophenyl substituent.

1 50. The thapsigargin derivative of claim 48, having the following structure

2

3

4

11

12

13

14

15 wherein R_2 is $\text{CO}-\text{CH}_2-\text{CH}_2-\text{Ph}-\text{p-NH}_2$, wherein Ph-p-NH_2 is the para-aminophenyl
16 substituent.

1 51. The thapsigargin derivative of claim 42, wherein the derivative has an IC_{50} toward ER
2 $\text{Ca}^{2+}\text{-ATP-ase}$ of at most 500 nM.

1 52. The thapsigargin derivative of claim 51, wherein the derivative has an IC_{50} toward ER
2 $\text{Ca}^{2+}\text{-ATP-ase}$ of at most 50 nM.

1 53. The thapsigargin derivative of claim 42, wherein the derivative has an LC_{50} toward
2 PSA-producing tissue of at most 20 μM .

1 54. The thapsigargin derivative of claim 53, wherein the derivative has an LC_{50} toward
2 PSA-producing tissue of at most 2.0 μM .

1 74. The method of claim 66, wherein the detectable label is a chemiluminescent label.

1 75. A method of selecting a prostate specific antigen activatable prodrug wherein the
2 prodrug is substantially specific for target tissue comprising prostate specific antigen-
3 producing cells, the method comprising:

- 4 a) linking a peptide of claim 1 to a therapeutic drug to produce a peptide-drug
5 composition;
- 6 b) contacting the composition with cells of the target tissue;
- 7 c) contacting the composition with cells of a non-target tissue; and
8 selecting complexes that are substantially toxic towards target tissue cells, but
9 which are not substantially toxic towards non-target tissue cells.

1 76. A method of determining the activity of prostate specific antigen (PSA) in a
2 sample containing PSA, the method comprising:

- 3 a) contacting the sample with a composition comprising a detectably labeled
4 peptide of claim 1 for a period of time sufficient to allow cleavage of the peptide;
- 5 b) detecting the detectable label to yield a detection level;
- 6 c) comparing the detection level with a detection level obtained from contacting
7 the detectably labeled peptide with a standard PSA sample.

1 77. A method of imaging PSA-producing tissue, the method comprising:

- 2 a) administering a peptide linked to a lipophilic imaging label to a subject having
3 or suspected of having a PSA producing associated cell-proliferative disorder;
- 4 b) allowing a sufficient period of time to pass to allow cleavage of the peptide by
5 PSA and to allow clearance of uncleaved peptide from the subject to provide a
6 reliable imaging of the imaging label; and
- 7 c) imaging the subject.