Lecture 19 – Interacting with HPC Resources

Learning Objectives:

- 4. Produce code that is reproducible and produces results that are replicable.
 - 4.5 Use scripts to make command-line functions reproducible.
- 5. Learn to interact with HPC resources.
 - 5.1 Connect and navigate HPC via SSH and Bash shell.
 - 5.2 Setup your workspace by editing bash_rc and bash_profile.
 - 5.3 Understand the use of module files for loading specific programs.
 - 5.4 Execute scripts via command line.
 - 5.5 Execute scripts via SLURM job manager.

High-Performance Computational (HPC) Resources

- Starting in the late 1990's, the speed of single CPUs started to plateau.
 - People figured out that the job could be made faster by running processes on multiple CPUs at once (in parallel).
 - This saw the rise of "supercomputers" with multiple cores capable of tera-FLOP/s of processing (floating-point operations per second)
 - top500.org maintains a list of the largest and fastest supercomputers on Earth, updated twice a year.
 - Current (as of June 2021) largest/fastest supercomputer in the world is Supercomputer Fugaku: 7.63 million cores with a peak rate of 537k Tera FLOP/s

High-Performance Computational (HPC) Resources

- Shared HPC resources are both common and widespread in science and industry.
 - Not everyone needs 1,000 TFLOP/s machines sitting around not being used, so it's efficient to have a large system that is centrally maintained and available to many users.
 - The eXtreme Science and Engineering Discovery Environment (XSEDE)
 is an NSF-funded network of HPC resources which you can request
 resources through for research projects. xsede.org
 - In order for this to be effective, HPC resources or "clusters" must have management systems to:

SSH • allow users to connect remotely and securely from around the world

modules • allow users to use vastly different programs and applications

SLURM • allow users to run programs in an equitable way

sftp • allow users to transfer and store data on and off "site"

Securely Connecting via SSH

- Secure Shell (SSH) is a cryptographic network protocol that allows users to operate on a network securely and remotely.
 - Common on Unix-based platforms (which is most HPC resources).
 - Allows remote logins to login "nodes" (or special CPUs dedicated to typical user interactions and not computation)
 - Also allows for tunneling, forward TCP ports, and X11 connections, but those are a pain to set up sometimes.

General operation from Bash shell:

ssh username@resource-name.resourcelocation.ext

For Keck Research Cluster:

ssh chapmanemail@keckcluster.chapman.edu

How is Software Handled?

- Software is handled on many clusters using modulefiles, which are written to modify your PATH and LIB so that it finds specific software builds available to all users.
 - Example of a module file, my build of R 4.0.3, which is in my home directory in sfw folder.
 - Basic usage of module command:

module avail	lists available modules
module load/add modulename	adds module file by name
module unload/rm modulename	removes module file by name
module list	lists currently loaded modules

Set up your .bash_profile and .bashrc

- We need to set these up such that you will be able to easily run R on the cluster
 - bashrc:

bash_profile:

.bash_profile This makes sure you are loading the bashrc on login.

Secure file transfer protocol (SFTP)

- SFTP works on SSH and allows for secure file transfers.
 - Isn't quite the same as bash, commands are a little different
 - There is a remote working directory and a local working directory
 - You can get files from the remote to your local, and put files from your local to the remote.
 - Basic usage of sftp command:

sftp <u>login@resource.ext</u>	login to sftp
pwd	retrieve remote working dir
lpwd	retrieve local working dir
get filename	move file from remote to local
put filename	move file from local to remote

Running R on the Keck Cluster

- To enter command-line R, simply type R and hit enter!
- Use R like normal!
- To exit, type quit() and then n
- To run a script from bash, type:

[login ~]\$ Rscript src/scriptname.R

Submitting a Job via SLURM

- Simple Linux Utility for Resource Management (SLURM) is a popular job scheduling and workload management tool for HPC resources.
 - SLURM will schedule your job on any available nodes and queue it if resources aren't immediately available.
 - Your job's position in the queue is determined by how many resources you have used recently, compared to other users' usages. This is a way of equitably distributing resources.
 - Jobs can either be submitted via command line using srun or in simple scripts using sbatch.
 - Example sbatch script in simpleR.job in AdvDiff/src
 - Submit this job by entering: sbatch simpleR.job in the src folder

Assignment

Complete the AdvDiff full assignment by running the script in full on the HPC cluster. Download the results files and submit those alongside your code.