

ADJUSTING FOR MULTIPLE TESTING IN MICROBIOME DATA ANALYSIS

Research Group: Statistical Diversity Lab (new!)

Pl: Amy D Willis PhD, Assistant Professor, Department of Biostatistics, UW

@AmyDWillis adwillis@uw.edu

GOAL OF SCIENCE

- Find "truth"
 - Find an interesting result that stands up to replication
- Get papers published?

APPROACHES

Exploratory

- hypothesis generating
- "I wonder if [diet] affects
 [the microbiome], and if so, how..."

Confirmatory

- hypothesis confirming
- "Does the abundance of [firmicutes] change with diet?"

HYPOTHESISTESTING

- Tests that use data to assess the "statistical significance" of a result
- Definition: the p-value of a test is the probability of observing a more extreme result than we did if the null hypothesis were true.
- Idea: If our results were extreme under the assumption of the null hypothesis, then maybe the hypothesis isn't supported by the data.

- Extreme things happen occasionally: the longer you look, the more likely they are
- If you have no signal in your experiment, what's the probability of a p-value < 0.01?</p>

- If you have no signal in your experiment, the probability of a p-value < 0.01 is 0.01</p>
 - If you do 2 hypothesis tests, the probability that one or more has p-value < 0.01 is 1.99%</p>
 - 3 tests = 3%; 10 tests = 10%, 20 tests = 18%, 100 tests = 63%

- 128 families + Simpson + Shannon: 130 \times 4 = 520 tests = 99.5% chance of finding something at 1% level when there is no difference
- 10 phyla + 20 families + Simp. + Shann.: $32 \times 4 = 128$ tests = 73% chance

- Two strategies for correcting for multiple comparisons
 - Family wise error rate control
 - False discovery rate control
- Both either decrease your significance threshold OR increase your p-value
- Both start with a protocol: a list of every hypothesis you're interested in

PROTOCOL

- "Characterize the taxonomic composition of the gut microbiome before, during and after the dietary intervention..."
- Write down a list of every single hypothesis you're interested in
 - Confirmatory study: maybe 10, definitely < 20
 - Exploratory study: could be hundreds, thousands

FAMILY WISE ERROR RATE CONTROL

- Idea: Want to guard against any false positives
 - Very, very strict standard
- Many, many methods exist!
- Simplest method is Bonferroni: new p-values are

$$p_{new} = min(\# tests \times p_{old}, I)$$

FALSE DISCOVERY RATE CONTROL

- Idea: False positives inevitable, try to limit the number
 - Less strict than FWERC
- Many, many methods exist!
- Simplest method is Benjamini-Hochberg

FALSE DISCOVERY RATE CONTROL

- Benjamini-Hochberg: Control percentage of false discoveries at 10%
- Order p-values $p_1 \le p_2 \le ... \le p_m$
- $p_1,...,p_j$ are significant for largest j such that $p_j \leq 0.1 \times j/m$

rank		2	3	4	5	6	7	8	9	10
p-value	0.0008	0.009	0.165	0.205	0.396	0.450	0.641	0.781	0.9	0.993
0.1j/m	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1

EXAMPLE METHODS SECTION

- Main: The large number of inferential tests performed in this article necessitated a multiple comparisons adjustment. Details of the adjustment procedure are available in Supplementary Statistical Methods. The procedure implies that a significance level of $\alpha = 0.0244$ should be used to assess significant hypotheses. Throughout the article, only hypotheses that meet this threshold are described as significant.
- Supp: ...to control false discovery rate (FDR) at 5%, we employ the Benjamini-Hochberg procedure on all 38 hypotheses investigated. This count includes hypotheses that were investigated prior to preparing the manuscript...

DEMONSTRATION

- DePaolo Lab study on non-alcoholic fatty liver disease (NAFLD)
- Mice fed a non-alcoholic fatty liver disease (NAFLD) inducing diet for 6 weeks
- Then assigned for 8 weeks to either a NAFLD diet, a HFF diet or a LFF diet
- 2 cohorts
- lleum & fecal matter
- Amy's analysis: "We found a significant alteration of Firmicutes in both fecal and ileum samples (p = 0.01 and p = 0.04), and a significant alteration of Verrucomicrobia in both fecal and ileum samples (p = 0.02, p = 0.03). We also found changes in Actinobacteria abundance in fecal matter (p = 0.01)."

DEPAOLO LAB STUDY

AMY'S TWEAK

ANALYZING SCRAMBLED DATA

- First fit logistic regression to all phyla abundances with diet and cohort as fixed effects... nothing
- Repeat at family level... nothing
- Then fit logistic regression with only diet... nothing
- Then fit linear model with only diet...

"We found a significant alteration of Firmicutes in both fecal and ileum samples (p = 0.01 and p = 0.04), and a significant alteration of Verrucomicrobia in both fecal and ileum samples (p = 0.02, p = 0.03). We also found changes in Actinobacteria abundance in fecal matter (p = 0.01)."

KEEP IN MIND

- If you don't know every statistical analysis that was involved in preparing a paper, you cannot make an informed decision about the "significance" of its results
- Fishing: Many tests conducted but only "interesting" results reported
 - Withholds information necessary to adjust for multiple comparisons

RESOURCES

- Departments of Biostatistics and Statistics @ UW provide consulting services
 - stat.washington.edu/consulting/
- The new Statistical Diversity Lab @ UW
 - http://faculty.washington.edu/adwillis/
 - new site coming soon...
- Any STAT/BIOST class in any university...

ADJUSTING FOR MULTIPLE TESTING IN MICROBIOME DATA ANALYSIS

Research Group: Statistical Diversity Lab (new!)

Pl: Amy D Willis PhD, Assistant Professor, Department of Biostatistics, UW

@AmyDWillis adwillis@uw.edu

