Solutions to Pathria's Statistical Mechanics Chapter 3

SM-at-THU

March 14, 2016

- Problem 3.1
- Problem 3.2
- Problem 3.3
- Problem 3.4
- Problem 3.5
- Problem 3.6
- Problem 3.7

Problem 3.11

Suppose $pV^n = C$, so the work done is

$$\Delta W = \int_{V_1}^{V_2} \frac{C}{V^n} dV = \frac{C}{n-1} (V_2^{1-n} - V_1^{1-n})$$
 (1)

The energy difference is given by

$$\Delta U = p_2 V_2 - p_1 V_1 = C(V_2^{1-n} - V_1^{1-n})$$
(2)

Therefore, the heat absorbed is

$$\Delta Q = C \frac{n-2}{n-1} (V_2^{1-n} - V_1^{1-n}) \tag{3}$$

Problem 3.21

(a) Classically, the harmonic equation of motion leads to $x=A\sin\omega t$. As a result, the kinetic energy and potential energy will be $m\omega^2A^2\cos^2\omega t/2$ and $m\omega^2A^2\sin^2\omega t/2$ respectively. Average them it's easy to see that $\bar{K}=\bar{U}=m\omega^2A^2/4$.

Quantum-mechanically, $\psi = \sum_n c_n \psi_n$ where ψ_n is the *n*-th Hermitian polynomial. Using the recursive relations, we have

$$\bar{K} = -\frac{\hbar^2}{2m} \sum_{n} |c_n|^2 \int \psi^* \frac{d^2}{dx^2} \psi dx = \sum_{n} |c_n|^2 \frac{\hbar \omega (2n+1)}{4} = \frac{1}{2} \sum_{n} |c_n|^2 E_n$$
 (4)

$$\bar{U} = \frac{m\omega^2}{2} \sum_{n} |c_n|^2 \int \psi^* x^2 \psi dx = \sum_{n} |c_n|^2 \frac{\hbar\omega(2n+1)}{4} = \frac{1}{2} \sum_{n} |c_n|^2 E_n$$
 (5)

(b) In Bohr-sommerfeld model, a quantized orbits are hypothesized, namely $m_e v r = n\hbar$. In the *n*-th orbit, the total energy is $E_n = -Z^2 k^2 e^4 m_e / 2\hbar^2 n^2$. The radius of which is $r_n = n^2 \hbar^2 / Z k e^2 m_e$. By a naive calculation $\bar{U} = -Z^2 k^2 e^4 m_e / \hbar^2 n^2$ and $\bar{T} = Z^2 k^2 e^4 m_e / 2\hbar^2 n^2$.

In the Schroedinger hydrogen atom, $\psi_{nlm} = R_{nl}(r)Y_{lm}(\theta,\phi)$. The kinetic energy is given by

$$\bar{T} = \frac{\hbar^2}{2m} \int \psi_{nlm}^* \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} - \frac{l(l+1)}{r^2} \right) \psi_{nlm} r^2 \sin \theta dr d\theta d\phi
= \frac{\hbar^2}{2m} \int R_{nl}(r) \left(\frac{1}{n^2 a^2} \right) R_{nl}(r) r^2 dr
= \frac{e^2}{2an^2}$$
(6)

so $\bar{U} = -e^2/an^2$. a is the Bohr radius.

(c) This is also a central force case. The results are quite identical to (b).

Problem 3.31

"Partition function" for single particle is

$$Q_1 = 1 + e^{-\varepsilon/kT}. (7)$$

So a list of quatities can be obtained:

$$Q_N = (1 + e^{-\varepsilon/kT})^N \tag{8}$$

$$A = -NkT\ln(1 + e^{-\varepsilon/kT}) \tag{9}$$

$$\mu = -kT\ln(1 + e^{-\varepsilon/kT}) \tag{10}$$

$$p = 0 \tag{11}$$

$$S = Nk \ln(1 + e^{-\varepsilon/kT}) + \frac{N\varepsilon}{T} \frac{e^{-\varepsilon/kT}}{1 + e^{-\varepsilon/kT}}$$
(12)

$$U = N\varepsilon \frac{e^{-\varepsilon/kT}}{1 + e^{-\varepsilon/kT}} \tag{13}$$

$$C_p = C_V = \frac{N\varepsilon^2 e^{-\varepsilon/kT}}{kT^2(1 + e^{-\varepsilon/kT})^2}$$
(14)

This specific heat is sometimes referred to Schottky anomaly.

Problem 3.41

The equilibrium temperature will be positive, since the energy of the whole system is not bounded from above. This case is a bit like the spin and lattice case. For the subsystem of spins, its energy is bounded from above, so it is possible to attain a negative temperature. While the subsystem of lattice, i.e. ideal gas in this problem, only has positive temperature. The whole system doesn't have a energy limit, so the temperature will only be positive. And energy may flow from the spin subsystem to the ideal gas.