SSV. IES Haría UT2. Prueba práctica Características y funciones de los SSOO

1. Tenemos 5 procesos alojados en memoria paginada (P1,P2, P3, P4 y P5): P1 ocupa 1MB, P2 ocupa 4 MB, P3 ocupa 2MB, P4 ocupa 10MB y P5 32MB. El tamaño de las páginas es de 3 MB. ¿Cuál es la **fragmentación interna? (1p)**

Procesos	Marcos Página	Fragmentación
P1 (1MB)	ЗМВ	2MB
P2(4MB)	ЗМВ	
P2(4MB)	ЗМВ	2MB
P3(2MB)	ЗМВ	1MB
P4(10MB)	ЗМВ	
P4(10MB)	ЗМВ	
P4(10MB)	ЗМВ	
P4(10MB)	ЗМВ	2MB
P5(32MB)	ЗМВ	
P5(32MB)	3МВ	
P5(32MB)	3МВ	
P5(32MB)	3МВ	
P5(32MB)	3MB	
P5(32MB)	3MB	
P5(32MB)	3МВ	
P5(32MB)	3MB	
P5(32MB)	3MB	
P5(32MB)	3MB	1MB
		TOTAL: 8MB

2. Tenemos un sistema que gestiona la memoria por **segmentación**. La memoria tiene 5000 MB. En un momento determinado la memoria está ocupada por 3 procesos P1, P2, P3 llegados en ese orden de la forma:

Memoria inicial

Diamaiía inicial	000	400	500	200	800	300
Dirección inicial	00	Ō	1	7	2	m

La estrategia de reemplazo cuando se carga en memoria un proceso es la del (**best fit**). Si falla (no existe un hueco en memoria) se crea un hueco desplazando los procesos en memoria **hacia la dirección 0**.

Si hay que cargar cuatro procesos P4, P5, P6 y P7 que ocupan **500** , **1200, 600** y **700KB** (en ese orden). Describir el contenido final de la memoria, poniendo todos los pasos. **(2p)**

Dirección inicial	0000	0400	1500	2200	2800	3300
Libre/ <mark>ocupado</mark>	P1 400	1100	P2 700	600	P3 500	1700

P4=500KB

Dirección inicial	0000	0400	1500	2200	2700	2800	3300
Libre/ <mark>ocupado</mark>	P1 400	1100	P2 700	P4 500	1 0 0	P3 500	1700

P5=1200KB

Dirección inicial	0000	0400	1500	2200	2700	2800	3300	4500
Libre/ <mark>ocupado</mark>	P1 400	1100	P2 700	P4 500	1 0 0	P3 500	P5 1200	500

P6=600KB

Dirección inicial	0000	0400	1000	1500	2200	2700	2800	3300	4500
Libre/ <mark>ocupado</mark>	P1 400	P6 600	500	P2 700	P4 500	1 0 0	P3 500	P5 1200	500

P7=700KB (compactar)

Dirección inicial	0000	0400	1000	1700	2200	2700	2800	3300	4500
Libre/ <mark>ocupado</mark>	P1 400	P6 600	P2 700	500	P4 500	1 0 0	P3 500	P5 1200	500

Dirección inicial	0000	0400	1000	1700	2200	2800	3300	4500
Libre/ <mark>ocupado</mark>	P1 400	P6 600	P2 700	P4 500	600	P3 500	P5 1200	500

Dirección inicial	0000	0400	1000	1700	2200	2700	3300	4500
Libre/ <mark>ocupado</mark>	P1 400	P6 600	P2 700	P4 500	P3 500	600	P5 1200	500

Dirección inicial	0000	0400	1000	1700	2200	2700	3900
Libre/ <mark>ocupado</mark>	P1 400	P6 600	P2 700	P4 500	P3 500	P5 1200	1100

P7=700KB

Dirección inicial	0000	0400	1000	1700	2200	2700	3900	4600
Libre/ <mark>ocupado</mark>	P1 400	P6 600	P2 700	P4 500	P3 500	P5 1200	P7 700	400

3) Si después de haberse reservado espacio para el sistema, sólo queda sitio suficiente en la memoria principal para 4 páginas de los programas de usuario. Supóngase también que inicialmente esas 4 páginas están vacias

Aplicando las políticas de sustitución de páginas: **LRU** (la página menos recientemente usada) y **FIFO** (la página que ha estado en memoria durante más tiempo). ¿Qué estrategia de sustitución de las dos trabajará mejor cuando la máquina acceda a las páginas en el siguiente orden : (1, 4, 3, 5, 6, 4, 1, 3, 1, 5, 6, 3, 4, 1, 7, 6, 4, 5, ...)?

LRU (1,5p)

	<u> </u>																	
Магсо	1	4	3	5	6	4	1	3	1	5	6	3	4	1	7	6	4	5
0	1	1	1	1	6	6	6	6	6	5	5	5	5	1	1	1	1	5
1		4	4	4	4	4	4	4	4	4	6	6	6	6	7	7	7	7
2			3	3	3	3	1	1	1	1	1	1	4	4	4	4	4	4
3				5	5	5	5	3	3	3	3	3	3	3	3	6	6	6

FIFO **(1,5p)**

Магсо	1	4	3	5	6	4	1	3	1	5	6	3	4	1	7	6	4	5
0	1	1	1	1	6	6	6	6	6	6	6	6	6	6	6	6	6	5
1		4	4	4	4	4	1	1	1	1	1	1	1	1	1	1	1	1
2			3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4
3				5	5	5	5	5	5	5	5	5	5	5	7	7	7	7

4. A un sistema operativo monoprocesador llega la siguiente secuencia de procesos:

Proceso	Te (tiempo de llegada)	Tx (tiempo de ejecución)
P1	1	4
P2	2	5
Р3	0	6
P4	7	2
P5	5	3

Obtén la secuencia de ejecución procesos y la tabla en la que especificaremos los tiempos de llegada y de ejecución medios y de cada proceso

a) utilizando el algoritmo de planificación SJF (Shortest Job First) (1,5p)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P1																				
P2																				
Р3																				
P4																				
P5																				

(0,5p)

Proceso	Ts (tiempo de espera)	Tr (tiempo de respuesta)
P1	10	14
P2	13	18
Р3	0	6
P4	2	4
P5	1	4
Media	5,2	9,2

Proceso	Te (tiempo de llegada)	Tx (tiempo de ejecución)
P1	1	4
P2	2	5
Р3	0	6
P4	7	2
P5	5	3

b) Utilizando el algoritmo de planificación Round Robin con q = 3 (1,5p) 3 4 2 5 8 12 13 10 | 11 14 15 16 17 18 19 20 Р1 P2 Р3 Р4 Р5

(0,5p)

Proceso	Ts (tiempo de espera)	Tr (tiempo de respuesta)
P1	13	17
P2	13	18
P3	11	17
P4	5	7

P5	4	7
Media	9,2	13,2