Álgebra Universal e Categorias

Exercícios - Folha 4 -

21. Sejam $A=\{0,a,b,c,d,e,f,g,1\}$, $B=\{0,a,b,c,f,d,1\}$ e (A,\leq) o c.p.o. correspondente ao diagrama de Hasse a seguir representado. Considere as álgebras $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ e $\mathcal{B}=(B;(f^{\mathcal{B}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ de tipo (2,2,1,0,0), onde as operações binárias de \mathcal{A} e \mathcal{B} são definidas por

$$x \wedge^{\mathcal{A}} y = \inf\{x, y\} \in x \vee^{\mathcal{A}} y = \sup\{x, y\}, \forall x, y \in A,$$

 $x \wedge^{\mathcal{B}} y = \inf\{x, y\} \in x \vee^{\mathcal{B}} y = \sup\{x, y\}, \forall x, y \in B,$

as operações unárias são definidas pelas tabelas a seguir indicadas e $0^{\mathcal{A}}=0^{\mathcal{B}}=0$ e $1^{\mathcal{A}}=1^{\mathcal{B}}=1$.

- (a) Dê exemplo de um reduto de \mathcal{A} que seja:
 - i. um semigrupo. ii. um reticulado.
- (b) Para cada um dos conjuntos C a seguir indicados, diga se C é um subuniverso de \mathcal{A} :

i.
$$C = \emptyset$$
. ii. $C = \{0, f, d, 1\}$. iii. $C = \{0, a, b, c, f, d, 1\}$.

- (c) Diga se \mathcal{B} é uma subálgebra de \mathcal{A} .
- 22. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $a\in R$. Mostre que $I_a=\{x\in R:x\vee a=a\}$ é um subuniverso de \mathcal{R}
- 23. Seja $A=\{0,1,2,3\}$ e considere a cadeia (A,\leq) tal que $0\leq 1\leq 2\leq 3$. Sejam \land,\lor e + as operações binárias definidas em A por

$$\wedge(x,y) = \inf\{x,y\}, \ \forall (x,y) = \sup\{x,y\}, \ \forall x,y \in A,$$

$$+(x,y) = \text{ resto de } x + y \text{ na divisão inteira por } 4, \ \forall x,y \in A,$$

e seja — a operação unária definida por: $-(x) = \text{resto de } 3-x \text{ na divisão inteira por } 4, \ \forall x \in A.$ Considere a álgebra $\mathcal{A} = (A; \wedge, \vee, +, -)$. Determine todas as subálgebras de \mathcal{A} .

- 24. (a) Dê um exemplo de uma subálgebra de $(\mathbb{Z}, +)$, vista como uma álgebra de tipo (2), que não seja um grupo.
 - (b) Mostre que toda a subálgebra de um grupo finito visto como uma álgebra de tipo (2), é ainda um grupo.
- 25. Uma álgebra $\mathcal{A}=(A;F)$ diz-se mono-unária se F é formado por uma única operação e essa operação é unária. Uma subálgebra $\mathcal{B}=(B;G)$ de \mathcal{A} diz-se uma subálgebra própria se $B\subsetneq A$.
 - (a) Para cada inteiro n > 0, dê exemplo de uma álgebra mono-unária $\mathcal{A}_n = (\{0, 1, ..., n-1\}; f)$ que não admita subálgebras próprias.
 - (b) Mostre que qualquer álgebra mono-unária infinita tem subálgebras próprias.
- 26. Considere a álgebra \mathcal{A} definida no exercício 21..
 - (a) Dê exemplo de conjuntos $X,Y\subseteq A$ tais que:

i.
$$X \neq Y \in Sg^{\mathcal{A}}(X) = Sg^{\mathcal{A}}(Y)$$
. ii. $|X| = 2 \in Sg^{\mathcal{A}}(X) = A$.

- (b) Determine $Sg^{\mathcal{A}}(\{e\})$ e $Sg^{\mathcal{A}}(\{f,g\})$.
- 27. Sejam A = (A; F) uma álgebra e $X, Y \subseteq A$. Mostre que:
 - (a) $X \subseteq Sg^{\mathcal{A}}(X)$.
 - (b) $X \subseteq Y \Rightarrow Sg^{\mathcal{A}}(X) \subseteq Sg^{\mathcal{A}}(Y)$.
 - (c) $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X)) = Sg^{\mathcal{A}}(X)$.
 - (d) $Sg^{\mathcal{A}}(X) = \bigcup \{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\}.$