Université Sultan Moulay Slimane Faculté des Sciences et Techniques Département : Génie Electrique

Travaux Dirigés Electrotechnique GE-GM /S4

<u>Série 3</u>

Chap3-Circuits magnétiques

Exercice 1

Soit le circuit magnétique suivant. Le courant I est 1.2A, la perméabilité relative du matériau est $\mu_r = 3000$, le nombre de tours N est 100 et une profondeur de 4cm.

Calculer:

- 1. La longueur moyenne du circuit magnétique.
- 2. La section du circuit.
- 3. La réluctance du circuit.
- 4. Le flux magnétique.
- 5. La densité de flux B.

Exercice 2

Soit le circuit magnétique suivant. Le courant I est 2A, la perméabilité relative du matériau est μ_r = 2500, le nombre de tours N est 250 et une profondeur de 4cm. L'entrefer a une épaisseur de 0.5cm (l'entrefer est la section où il manque une petite partie du circuit).

1

Calculer:

- 1. La longueur moyenne du circuit magnétique.
- 2. La section du circuit.
- 3. La réluctance du fer.

Pr Ali Nejmi

- 4. La réluctance de l'entrefer
- 5. Le flux magnétique.
- 6. La densité de flux B.

Exercice 3

Le circuit suivant a une profondeur de 2cm. On suppose que le matériau magnétique est linéaire.

Calculer:

- 1. La réluctance du circuit.
- 2. L'inductance du circuit.

On ajoute un entrefer de 1 mm.

Recalculer:

- 3. La réluctance du circuit.
- 4. L'inductance du circuit.

Exercice 4

Un circuit magnétique homogène, en acier au silicium, est muni d'un entrefer et présente les dimensions suivantes :

• Longueur moyenne (dans l'acier) : 0,75 m.

• Longueur de l'entrefer : 0,5 mm,

• Section droite: 25 cm²

La f.m.m est engendrée par un enroulement de 120 spires. La courbe d'aimantation de l'acier est donnée par le tableau ci-dessous :

H(A/m)	10	100	150	250	520	1400
B(T)	0,04	0,4	0,8	1	1,2	1,4

- 1 Calculer le courant magnétisant i correspondant à un champ de 1,4 T dans l'entrefer.
- 2 Déterminer le flux magnétique à travers une section droite lorsque le courant est de 4A.

Exercice 5

Deux tores identiques, de section $S = 25 \text{ cm}^2$, de longueur moyenne 40 cm sont réalisés par un matériau magnétique dont la caractéristique de magnétisation est:

B(T)	0,1	0,2	0,25	0,3	0,35
H(A/m)	25	50	75	125	250

Sur chaque tore on a bobiné N=200 spires et dans le deuxième tore on a pratiqué deux entrefers de 2,5 mm chacun.

3

- 1 Calculer pour les deux tores :
 - 1.1 Les courants I_1 et I_2 qui donnent une induction B = 0.15T.

- 1.2 Les réluctances R_1 et R_2 .
- 1.3 Les inductances L_1 et L_2 . Que choisiriez- vous pour obtenir une self de valeur élevée.
- 2 Le courant tombe accidentellement à la moitié de sa valeur pour les deux tores.
 - 2.1 Quelles sont les nouvelles valeurs de l'induction B et de la perméabilité relative μ_r pour chaque tore ?
 - 2.2 Calculer les nouvelles valeurs L_1 ' et L_2 ' de L_1 et de L_2 .

(NB : On prendra dans tout le problème $1/\mu_0 = 8.10^5$.)

Exercice 6

Soit le circuit suivant, en acier au silicium. Calculer la force magnétomotrice (§) nécessaire pour produire un flux (φ) de 0.0014 Wb dans la section droite du circuit. Toutes les mesures sont en mètres ; la section du circuit est $0.05 \text{ m} \times 0.04 \text{ m}$, sauf pour la partie centrale, qui est $0.02 \text{ m} \times 0.04 \text{ m}$.

(On prend une perméabilité relative de l'acier au silicium de 5530).

Exercice 7

Le bobinage et le circuit magnétique ci-contre possèdent les caractéristiques suivantes:

Le bobinage est constitué de « N₁ » spires. Il possède une résistance totale « r₁ ».

Le circuit magnétique est réalisé dans un matériau ferromagnétique de perméabilité magnétique absolue constante μ . La longueur de sa longueur moyenne est « I » et sa section droite est « s ». Les fuites magnétiques seront négligées.

4

a) Préciser ce que signifient « longueur moyenne » et « section droite ».

- b) Exprimer l'inductance propre « L_1 » de la bobine en fonction de N_1 et des paramètres du circuit magnétique.
- c) Exprimer $u_1(t)$ en fonction de r_1 et $N_1.\phi(t)$; puis en fonction de r_1 , L_1 et $i_1(t)$.
- d) On ajoute à l'ensemble précédent un second bobinage de « N2 » spires.

Exprimer l'inductance mutuelle entre les deux bobinages en fonction des paramètres du nouvel ensemble.

Exercice 8

Hypothèses:

- $\mu_r = 1600$
- $S_1 = S_2 = 3 \text{ cm}^2$; $S_3 = 2 \text{ cm}^2$
- $l_1 = l_2 = 30$ cm; $l_3 = 10$ cm
- Bobine °1: N₁ = 240 spires
- Bobine °2: N₂ = 50 spires

Toutes les lignes d'induction se referment uniquement dans le circuit magnétique

(Les fuites sont négligées).

Pas de courant dans le bobinage °2.

- 1. Représenter le schéma électrique équivalent avec les flux, les f.m.m. et les réluctances.
- 2. Calculer i_1 dans les N_1 spires pour avoir B_3 = 0,8 T dans la colonne centrale, lorsque i_2 = 0.
- 3. Déterminer l'inductance propre de la bobine de N₁ spires.
- 4. Déterminer l'inductance mutuelle entre les bobines °1 et °2.