

朴素贝叶斯分类

谢佳标(Daniel.xie)

贝叶斯方法的基本概念

- 贝叶斯概率理论植根于这样一个思想,即一个事件的似然估计应建立在已有证据的基础上。
- 事件(event)就是可能的结果
- 试验(trail)就是事件发生一次的机会
- 一个事件发生的概率可以通过观测到的数据来估计,即用该事件发生的试验的次数除以试验的总次数
- 一个试验的所有可能结果的概率之和一定为100%
- 用符号P(A)来表示事件A发生的概率,P(¬A)来表示事件A不发生的概率

讲师:谢佳标

联合概率

- ▶ 我们希望估计P(垃圾邮件)和P(伟哥)同时发生的概率,记为P(垃圾邮件∩伟哥);
- ▶ 概率P(垃圾邮件∩伟哥)的计算取决于这两个事件的联合概率,即如何将一个事件发生的概率和另一个事件发生的概率连续在一起。如果这两个事件是完全不相关,我们成为独立事件。
- 如果P(垃圾邮件)和P(伟哥)是相互独立的,即P(垃圾邮件∩伟哥)= P(垃圾邮件)*P(伟哥)=0.2*0.05=0.01。

大善智能 TIANSHAN SOFT

讲师: 谢佳标

基于贝叶斯定理的条件概率

• 相关事件之间的关系可以用贝叶斯定理来描述,如下面的公式所示。符号P(A|B)表示在事件B已经发生的条件下,事件A发生的概率。这就是条件概率,因为事件A发生的概率依赖于事件B的发生。

$$P(垃圾邮件|$$
伟哥 $) = \frac{P($ 伟哥 $|$ 垃圾邮件 $)P($ 垃圾邮件 $)}{P($ 伟哥 $)}$

例子

		伟哥		
频数	Yes	No	Ę	总计
垃圾邮件		4	16	20
非垃圾邮件		1	79	80
总计		5	95	100

		伟哥		
似然	Yes	No	总计	
垃圾邮件	4/20	16/20		20
非垃圾邮件	1/80	79/80		80
总计	5/100	95/100		100

$$P(垃圾邮件 \cap 伟哥) = P(伟哥|垃圾邮件)P(垃圾邮件) = \left(\frac{4}{20}\right) * \left(\frac{20}{100}\right) = 0.04$$

P(垃圾邮件|伟哥) = P(垃圾邮件 ∩ 伟哥)*P(伟哥)=P(伟哥|垃圾邮件)P(垃圾邮件)*P(伟哥) = (4/20)*(20/100)*(5/100)=0.002

朴素贝叶斯算法

• 朴素贝叶斯(Baïve Bayes,NB)算法描述应用贝叶斯定理进行分类的一个简单应用。

优点	缺点
简单、快速、有效	依赖于一个常用的错误假设,即一样的 重要性和独立性特征
能处理好噪声数据和缺失的数据	应用在含有大量数值特征的数据集时并 不理想
需要用来训练的例子相对较少,但同样 能处理好大量的例子	概率的估计值相对于预测的类而言更加 不靠谱
很容易获得一个预测的估计概率值	

讲师:谢佳标

朴素贝叶斯分类-例子1

	W	1	W	2		'3	W	4	
似然	Yes	No	Yes	No	Yes	No	Yes	No	总计
垃圾邮件	4/20	16/20	10/20	10/20	0/20	20/20	12/20	8/20	20
非垃圾邮件	1/80	79/80	14/80	66/80	8/80	71/80	23/80	57/80	80
总计	5/100	95/100	24/100	76/100	8/100	91/100	35/100	65/100	100

有一条消息包含单词W1和W4,不包含W2和W3,请判断此消息属于垃圾邮件还是非垃圾邮件?

 $P(垃圾邮件|W_1 \cap \neg W2 \cap \neg W3 \cap W4) = \frac{P(W_1 \cap \neg W2 \cap \neg W3 \cap W4|垃圾邮件)P(垃圾邮件)}{P(W_1 \cap \neg W2 \cap \neg W3 \cap W4)}$

P(W1垃圾邮件)P(-W2垃圾邮件)P(¬W3垃圾邮件)P(w4垃圾邮件)P(垃圾邮件) 0.012

 $P(W1)P(\neg W2)P(\neg W3)P(W4)$

 $=\frac{(4/20)(10/20)(20/20)(12/20)(20/100)}{(\frac{5}{100})(\frac{76}{100})(\frac{91}{100})(\frac{35}{100})}$

0.012/(0.012+0.002)=0.857

 $P(非垃圾邮件|W_1 \cap \neg W2 \cap \neg W3 \cap W4) = \frac{P(W_1 \cap \neg W2 \cap \neg W3 \cap W4|非垃圾邮件)P(非垃圾邮件)}{\neg W3}$

 $P(W_1 \cap \neg W2 \cap \neg W3 \cap W4)$

 $_{P}(W_{1}$ 非垃圾邮件) $_{P}(-W_{2}$ 非垃圾邮件) $_{P}(\neg W_{3}$ 非垃圾邮件) $_{P}(w_{4}$ 非垃圾邮件) $_{P}(\psi_{4}$ 非垃圾邮件)

 $P(W1)P(\neg W2)P(\neg W3)P(W4)$

朴素贝叶斯分类-例子2

性别	身高(英尺)	体重(磅)	脚掌(英寸)
男	6	180	12
男	5.92	190	11
男	5.58	170	12
男	5.92	165	10
女	5	100	6
女	5.5	150	8
女	5.42	130	7
女	5.75	150	9

这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算。怎么办?

这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。

已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?

 $P(男性|身高 = 6 \cap 体重 = 130 \cap 脚掌 = 8) = 1.239414e-08$ $P(女性|身高 = 6 \cap 体重 = 130 \cap 脚掌 = 8) = 0.001075582$

有99.99%的概率说明该人是女性

讲师: 谢佳标