General-purpose input/output (**GPIO**) — важный компонент любого микроконтроллера, с помощью которого он взаимодействует с окружающим миром. В микроконтроллерах STM32 порты именуются буквами A, B, C и так далее: GPIOA, GPIOB, GPIOC...

В зависимости от конкретных аппаратных характеристик каждого порта вводавывода, перечисленных в этой книге, каждый бит порта универсальных портов ввода-вывода (GPIO) может быть индивидуально настроен программным способом в нескольких режимах:

- Input floating вход с отключенными подтягивающими резисторами
- Input pull-up вход с подтяжкой к логической единице
- Input-pull-down вход с подтяжкой к логическому нулю
- Analog аналоговый вход (например, для АЦП)
- Output open-drain выход с открытым коллектором (записали 1 выход в высокоимпедансном состоянии, записали 0 выход прижат внутренним транзистором к земле)
- Output push-pull выход «тяни-толкай» (записали 1 на выходе лог. 1, записали 0 — на выходе лог. 0)
- Alternate function push-pull альтернативная функция в режиме «тяни-толкай»
- Alternate function open-drain альтернативная функция в режиме открытого коллектора

Каждый вывод порта ввода-вывода свободно программируется, однако к регистрам порта ввода-вывода необходимо обращаться как к 32-битным словам (доступ к полуслову или байту запрещен). Назначение регистров GPIOx_BSRR и GPIOx_BRR - разрешить атомарный доступ для чтения / изменения к любому из регистров GPIO. Таким образом, отсутствует риск возникновения IRQ между доступом на чтение, модификацию и изменение, в отличии от использования ODRx.

Режим Analog. Внутри микроконтроллера есть аналогово-цифровые преобразователи, которые, как известно, должны иметь аналоговые входы. В режиме Analog вывод микроконтроллера подключается к аналоговому входу АЦП внутри микроконтроллера. Кроме того, отключается вся цифровая обвязка этого вывода для уменьшения цифрового шума и энергопотребления.

Режим Alternate function. В этом режиме выводом микроконтроллера управляет внутренняя цифровая периферия, например, модуль *USART, SPI*...

Все выводы GPIO имеют внутренний слабый подтягивающий к питанию и слабый подтягивающий к земле резистор, который может быть активирован или отключен при настройке вывода в качестве входа.

Рисунок 14: Базовая структурная схема вывода порта І/О

Таблица 20. Таблица конфигурации битов любого порта

Configuration mode	•	CNF1	CNF0	MODE1	MODE0	PxODR register
General purpose	Push-pull	0	0	0)1	0 or 1
output Alternate Function output	Open-drain		1	1	0	0 or 1
	Push-pull	1	0		1	Don't care
	Open-drain	 '	1	see <i>Ta</i>	able 21	Don't care
	Analog	0	0			Don't care
Input	Input floating	0	1] ,	0	Don't care
	Input pull-down	1	0] "	10	0
	Input pull-up		0			1

Таблица 21. Биты MODE вывода

MODE[1:0]	Meaning
00	Reserved
01	Maximum output speed 10 MHz
10	Maximum output speed 2 MHz
11	Maximum output speed 50 MHz

Установка или сброс атомарного бита

Программно не требуется отключать прерывания при программировании GPIOx_ODR на битовом уровне: можно изменить только один или несколько битов в одном атомарном доступе записи APB2. Это достигается программированием в «1» регистра установки / сброса битов (GPIOx_BSRR или только для сброса GPIOx_BRR) для выбора битов для изменения. Невыбранные биты не будут изменены.

9.2 GPIO registers

Доступ к периферийным регистрам должен осуществляться по словам (32-битным).

9.2.1 Port configuration register low (GPIOx_CRL) (x=A...G)

Address offset: 0x00

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	E7[1:0]	CNF	6[1:0]	MODE	E6[1:0]	CNF	5[1:0]	MODE	E5[1:0]	CNF	4[1:0]	MODE	4[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF:	3[1:0]	MODE	E3[1:0]	CNF	2[1:0]	MODE	E2[1:0]	CNF	1[1:0]	MODE	E1[1:0]	CNF	0[1:0]	MODE	E0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

CNFy[1:0]: Конфигурация режима:

В режиме входа (MODEy[1:0]=00):

- 00: Analog mode аналоговый режим (подключен к АЦП или ЦАП-у)
- 01: Floating input вход с отключенными подтягивающими резисторами (значение после сброса)
- 10: Input with pull-up / pull-down вход с подтяжкой к питанию или к земле
- 11: Reserved не используется

В режиме выхода (MODEy[1:0]>00):

- 00: General purpose output push-pull выход в режиме тяни/толкай
- 01: General purpose output Open-drain выход с открытым коллектором
- 10: Alternate function output Push-pull выход альтернативной функции режиме тяни/толкай
- 11: Alternate function output Open-drain выход альтернативной функции с открытым коллектором

MODEy[1:0]: Режим ножки порта, вход или выход. В режиме выхода нужно выбрать максимальную частоту переключения данной ножки, это также является мерой оптимизацией энергопотребления порта.

- 00: Вход (значение после сброса)
- 01: Выход, максимальная частота 10 МНz.
- 10: Выход, максимальная частота 2 МНz.
- 11: Выход, максимальная частота 50 МНz.

9.2.2 Port configuration register high (GPIOx_CRH) (x=A...G)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	15[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	12[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	11[1:0]	MODE	11[1:0]	CNF1	0[1:0]	MODE	10[1:0]	CNF	9[1:0]	MODE	E9[1:0]	CNF	8[1:0]	MODE	8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Это конфигурационный регистр для выводов порта с номерами от 8 до 15. Тут все то же, что и для регистра **GPIOx_CRL**.

9.2.3 Port input data register (GPIOx_IDR) (x=A...G)

Address offset: 0x08h

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

IDRy: в этих битах содержится входное значение соответствующего порта ввода-вывода, и оно доступно только для чтения

9.2.4 Port output data register (GPIOx_ODR) (x=A...G)

Address offset: 0x0C

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	5 14 1		12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 **ODRy**: выходные данные порта.

Эти биты могут быть прочитаны и записаны программно.

Примечание: для установки / сброса атомарных битов биты, ODR могут быть индивидуально установлены и очищены путем записи в perистр GPIOx_BSRR ($x = A \dots G$).

9.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A...G)

Address offset: 0x10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

С помощью этого регистра можно сбросить или установить любой бит регистра *ODR* без операций чтение-модификация-запись (как в ODR).

BRy: Сбросить бит y регистра *ODR* порта ввода-вывода (y = 0 ... 15)

- 0: не оказывает влияние на соответствующий бит ODRx
- 1: Сбрасывает в ноль соответствующий бит ODRx Важное примечание: Если установлены и BSx, и BRx, приоритет имеет BSx.

BSy: Установить бит y регистра *ODR* порта ввода-вывода (y= 0 ... 15)

- 0: не оказывает влияние на соответствующий бит ODRx
- 1: Устанавливает в единицу соответствующий бит ODRx

Written by NR.electronics.

9.2.6 Port bit reset register (GPIOx_BRR) (x=A...G)

Address offset: 0x14

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w

С помощью этого регистра можно сбросить любой бит регистра *ODR* без операций чтение-модификация-запись. В эти биты можно только записать.

BRy: Сбросить бит y регистра *ODR* порта ввода-вывода (y = 0 ... 15)

- 0: не оказывает влияние на соответствующий бит ODRx
- 1: Сбрасывает в ноль соответствующий бит ODRx

9.2.7 Port configuration lock register (GPIOx_LCKR) (x=A...G)

Address offset: 0x18

Этот регистр используется для блокировки конфигурационных битов порта после записи корректной последовательности в 16 бит (*LCKK*) регистра. Значения битов [15:0] используется для блокировки конфигурации *GPIO*. Во время блокирующей последовательности в *LCKK* значения *LCKR* [15: 0] не должны меняться. Когда блокирующая последовательность была записана, конфигурация выбранных портов ввода/вывода может быть изменена только после сброса микроконтроллера. Каждый *LCKy* бит блокирует возможность изменения четырех битов конфигурации порта (*CRL*, *CRH*).

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Paganyad								LCKK
	Reserved														rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw rw rw rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw			

LCKK[16]: Ключ блокировки.

- 0: Блокировка конфигурации порта не активна.
- 1: Блокировка конфигурации порта активна. *GPIOx_LCKR* заблокирован до следующего сброса микроконтроллера.

Для блокировки необходимо выполнить следующую последовательность:

- Записать 1
- Записать 0
- Записать 1
- Прочитать 0
- Прочитать 1 (эта операция чтения не является обязательной, а всего лишь подтверждает успешность установки блокировки)

Примечание. Во время последовательной записи команд LOCK значение LCK [15: 0] не должно изменяться. Любая ошибка в последовательности блокировки приведет к отмене блокировки.

LCKy: Эти биты могут быть прочитаны и записаны, но запись можно произвести только если бит LCKK равен нулю.

- 0: Конфигурация пина номер у не заблокирована
- 1: Конфигурация пина номер у заблокирована

Таблица. Карта регистров GPIO и значений сброса.

		_	_														_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	7	10	6	œ	7	9	S	4	က	2	-	0
	GPIOx	CI	7 7 6 6 5 5 4 4 3 E3 2 2 1 E1 0 0																														
0x00	_CRL																																
oxoo		[1	:0]	1														[1	:0]	[1	:0]	[1	:0]	[1	:0]	[1	:0]	[1:	:0]	ן נו	:0]	[1	:0]
	Reset value	0	1	0															1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
	GPIOx	CI		MODE CNF MODE CNF MODE CNF MODE 15 14 14 13 13 12 12															NF		ÓD		NF		DE		NF	MC			NF		DE
0x04	_CRH	1			15 14 14 13 13 12 1														1		11		0		0		9	E			8		B
0,00		[1	-	1 -	[1:0] [1:0] [1:0] [1:0] [1:0] [1:0]													1 -	:0]	1 -	:0]	[1	:0]	1 -	:0]	1 -	:0]	[1:	-	-	:0]	1 -	:0]
	Reset value	0	1	0	0 0 0 1 0 0 0 1 0 0 0 1 0														1	0	0	0	1	0	0	0	1	0	0	0	1	0	0
	GPIOx																								ID	Ry							
0x08	_IDR								Rese	erved	1															.,							
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx																								OI	DRy							
0x0C	_ODR								Rese	erved	1														-	,							
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx								BRI'	15:0]															BSR	[15:0	.— 11						
0x10	_BSRR								Div	10.0]															0011		-1						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx				_	_	_												_		_		_		BBI	15:0	1			_			
0x14	_BRR								Rese	erved	1														אוט	10.0	1						
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx			ν.													×	Г	_							IAE.C	,						
0x18	_LCKR							Re	serv	ed							LCKK								LUK	[15:0	'1						
	Reset value																-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																		_	_		_	_	_				_	_	_		_		ш

