Arithmétique -

Exercices complémentaires – Feuille 3

Exercice 1. Dire si chacune des relations ci-dessous est réflexive, symétrique, ou transitive.

- a) $x, y \in \mathbb{Q}$: $x \mathcal{R} y \iff xy \neq 0$.
- b) $a, b \in \mathbb{Z}$: $aSb \iff a b$ est divisible par 2 ou par 3.

Exercice 2. Déterminer si les relations suivantes sont ou non des relations d'équivalence. Si elle le sont, décrire les classes d'équivalence :

- a) $n, m \in \mathbb{Z} : n\mathcal{R}m \iff n+m$ est pair.
- b) $x, y \in \mathbb{R} : x\mathcal{R}y \iff e^x = e^y$.
- c) Les relations sur $\mathbb C$ définies par :
 - (a) $z_1, z_2 \in \mathbb{C} : z_1 \mathcal{R} z_2 \iff |z_1| = |z_2|$.
 - (b) $z_1, z_2 \in \mathbb{C} : z_1 \mathcal{S} z_2 \iff |z_1 z_2| = 1.$

Exercice 3. Soit E un ensemble. Les relations définies ci-dessous sont-elles des relations d'équivalence sur $\mathcal{P}(E)$?

- a) $A, B \in \mathcal{P}(E)$: $ARB \iff A \subset B$.
- b) $A, B \in \mathcal{P}(E) : ASB \iff A \cap B \neq \emptyset$.
- c) Posons $E = \mathbb{R}$, $A, B \in \mathcal{P}(E)$: $ATB \iff A \cup [0, 1] = B \cup [0, 1]$.

Exercice 4. Soit E l'ensemble de droites contenues dans le plan afin réel \mathbb{R}^2 . Pour chaque point $P \in \mathbb{R}^2$, on définit $\mathcal{F}_P = \{L \in E \mid P \in L\}$ le faisceau de droites passant par P. Est-ce que peut-il exister une certaine relation d'équivalence \mathcal{R} sur E tel que les faisceaux de droites $\{\mathcal{F}_P\}_{P \in \mathbb{R}^2}$ soient les classes d'équivalence? Pour-quoi?

Exercice 5. Déterminer si les relations suivantes sont ou non des relations d'ordre. Si elle le sont, dire s'il s'agit d'un ordre total :

- a) Les relations sur R définies par :
 - (a) $x, y \in \mathbb{R} : x\mathcal{R}y \iff x y \in \mathbb{N}$.
 - (b) $x, y \in \mathbb{R} : xSy \iff x y \in \mathbb{Z}$.
- b) Sur l'ensemble des vecteurs du plan $\mathbb{R}^2: \vec{u}\mathcal{R}\vec{v} \Longleftrightarrow \vec{u} \cdot \vec{v} = 0.$
- c) Sur même ensemble : $\vec{u}\mathcal{R}\vec{v} \iff ||\vec{u}|| \le ||\vec{v}||$.
- d) La relation $z_1 \mathcal{R} z_2 \iff \Re(z_1) \leq \Re(z_2)$, pour $z_1, z_2 \in \mathbb{C}$.
- e) L'ordre alphabétique sur les mots du dictionnaire.
- f) La relation $(u_n)_{n\in\mathbb{N}}\mathcal{R}(v_n)_{n\in\mathbb{N}} \iff u_n \leq v_n, \forall n\in\mathbb{N}$, sur l'ensemble des suites réelles.

Exercice 6. Soient E un ensemble fini non vide et $x_0 \in E$ un élément fixé. Les relations définies ci-dessous sont-elles des relations d'ordre sur $\mathcal{P}(E)$?

- a) $A, B \in \mathcal{P}(E) : A\mathcal{R}B \iff A \subset B$.
- b) $A, B \in \mathcal{P}(E) : ASB \iff x_0 \in A \cap B^c$.

Exercice 7. On considère la relation \mathcal{R} définie sur les complexes par :

$$z_1, z_2 \in \mathbb{C}$$
: $z_1 \mathcal{R} z_2 \iff \operatorname{Re} z_1 < \operatorname{Re} z_2$ ou $[\operatorname{Re} z_1 = \operatorname{Re} z_2 \text{ et } \operatorname{Im} z_1 \leq \operatorname{Im} z_2]$

- a) Vérifier qu'il s'agit d'une relation d'ordre sur $\mathbb C$ (La transitivité sera supposé vraie). Est $\mathcal R$ une relation d'ordre totale sur $\mathbb C$?
- b) Dessiner l'ensemble $X = \{z \in \mathbb{C} \mid 1\mathcal{R}z\}.$
- c) Soient les ensembles $A = \{0, 1, i, 1-i, 3+i, 100i\}$ et $B = \{z \in \mathbb{C} \mid |z| < 2\}$. Déterminer les majorants et les minorants de A, B et $A \cap B$. Chaque un de ces ensembles, possèdent-il de plus grand élément? et de plus petit élément?

Exercice 8. Soit \mathcal{R} une relation binaire réflexive et transitive définie sur un ensemble E. On définit une relation \mathcal{S} sur E par :

$$x, y \in E: xSy \iff xRy \text{ et } yRx$$

Montrer que \mathcal{S} est une relation d'équivalence et que \mathcal{R} permet de définir une relation d'ordre dure les classes d'équivalences de \mathcal{S} .