Objective

The notebook aims to build a Named Entity Recognition (NER) model using **Conditional Random Fields (CRF)** to identify key components in recipe data, such as:

- Ingredients
- Quantities
- Units

Data Description

The given data is in JSON format, representing a **structured recipe ingredient list** with **Named Entity Recognition (NER) labels**. Below is a breakdown of the data fields:

```
Json Input
[
{
```

"input": "6 Karela Bitter Gourd Pavakkai Salt 1 Onion 3 tablespoon Gram flour besan 2 teaspoons Turmeric powder Haldi Red Chilli Cumin seeds Jeera Coriander Powder Dhania Amchur Dry Mango Sunflower Oil",

"pos": "quantity ingredient ingredient ingredient ingredient quantity ingredient quantity unit ingredient ingredient quantity unit ingredient i

```
}, ...
```

Key	Description
input	Contains a raw ingredient list for recipe
pos	Represents the corresponding part-of-speech (POS) tags or NER labels,
	identifying quantities, ingredients, and units.

Data Ingestion and Preparation

- Given input was read through pandas and a dataframe was created
- > The input and pos columns were splitted to input_tokens and pos_tokens
- There were totally 285 input values
- After cleaning up the data based on the comparison of lengths of input_tokens and pos_tokens, we are left with **280** input values and corresponding pos values.

Train Validation Split

> Train and validation split was performed on the data which resulted in **196 rows of train data** and **84 rows of validation data**.

ERD on Training Data set

- Flattening the input data, we got totally **6772 tokens** of input and their respective pos tokens
- No of unique labels are identified to be 3 which are ['ingredient' 'quantity' 'unit']
- Most frequent Ingredients in the train data are found to be

Top 10 Ingredients in Training Set

120

100

80

40

20

Agreedient

Ingredient

> Most frequent units in the train data are found to be

> Similarly most frequent Ingredients and units in the validation data are found as below

➤ Both training data and validation data shows similar pattern when visualized for the most frequent tokens.

Insights on the top 10 ingredient tokens in training data

- 1. "powder" & "Salt" dominate ingredient tokens
- "powder" (125) is highest—reflecting repeated mentions in spice names (e.g. "Turmeric powder").
- "Salt" (105) ranks second, underscoring its universal use.
- 2. Preparation descriptors are frequent
- "chopped" (71) and "Green" (80) appear as often as many core ingredients, indicating your NER must handle both food items and prep cues.
- 3. Whole-spice mentions
- "seeds" (84) highlights the frequent use of items like "Cumin seeds" and "Mustard seeds".

Insights on the top 10 unit token in the training data

- 1. Units skewed to small measures
- "teaspoon" (153) and "cup" (131) together make up almost half of all unit mentions.
- "tablespoon" (87) is a distant third, while larger measures ("inch", "sprig") are much rarer.
- 2. Plural and Singular forms of tokens
- teaspoon and teaspoons are taken as 2 different tokens
- similarly tablespoon and tablespoons are treated as different tokens
- these forms should be handled through lemmatization which we will do it later.
 - > Total label counts were found to be

quantity: 959unit: 813

o ingredient: 5000

Model Creation and Evaluation

CRF model was created using following script

```
crf = sklearn_crfsuite.CRF(
    algorithm='lbfgs',
    c1=0.5,
    c2=0.1,
    max_iterations=100,
    all_possible_transitions=True
)
```

➤ **F1-Score** calculated for the training set is **0.99** which is much good and is supported with the classification report as below

	precision	recall	f1-score	support
ingredient	0.990	0.997	0.994	5000
quantity	0.996	0.985	0.991	959
unit	0.984	0.954	0.969	813
accuracy			0.990	6772
macro avg	0.990	0.979	0.984	6772
weighted avg	0.990	0.990	0.990	6772

Insights

1. ingredient (most frequent class):

- Very high recall (0.997): Model captures nearly all true ingredient tokens.
- Precision (0.990): Few false positives.
- F1-score (0.994): Excellent overall the model is extremely confident and accurate for this class.

2. quantity:

- Precision (0.996) > Recall (0.985): Model is slightly more conservative, making fewer mistakes when it does predict a quantity but misses a few.
 - F1-score (0.991): Still very strong.

3. unit (least frequent class):

- Recall is lowest (0.954): Some actual unit tokens are missed.
- F1-score (0.969): Lower than other classes but still strong, especially considering its relatively small support (813).

Confusion Matrix

Interpretation

- CRF model is highly effective, especially on more frequent classes like ingredient.
- Slight performance drops on the unit class are expected due to lower representation.
- These results suggest the model is well-fit to the training data possibly even slightly overfitting, as these are training scores.

Evaluation on Validation set

Classification Report

	precision	recall	f1-score	support
ingredient	0.992	0.996	0.994	2430
quantity	0.995	0.988	0.992	432
unit	0.974	0.958	0.966	356
accuracy			0.991	3218
macro avg	0.987	0.981	0.984	3218
weighted avg	0.991	0.991	0.991	3218

Confusion Matrix

- Validation Accuracy = 99.07% which is too good.
- Label wise error analysis was done and is captured in the following table

Error Analysis

Label-wise Error Analysis:

	Label	Total	Errors	Accuracy	Class Weight
1	unit	356	15	0.9579	0.1106
2	ingredient	2430	10	0.9959	0.7551
0	quantity	432	5	0.9884	0.1342

Sample Errors with Context:

	token	previous_token	next_token	true_label	<pre>predicted_label</pre>	context
0	sprig	laung	curry	ingredient	unit	laung sprig curry
1	inch	salt	ginger	ingredient	unit	salt inch ginger
2	little	meat	extra	quantity	ingredient	meat little extra
3	for	honey	glazing	quantity	ingredient	honey for glazing
4	clove	chopped	garlic	unit	ingredient	chopped clove garlic
5	cloves	florets	thyme	unit	ingredient	florets cloves thyme
6	cut	breasts	into	unit	ingredient	breasts cut into
7	into	cut	cm	unit	ingredient	cut into cm
8	cm	into	cubes	unit	ingredient	into cm cubes
9	finely	garlic	chopped	unit	ingredient	garlic finely chopped

Transition captured

ingredient -> ingredient 0.716170 → Highly probable sequence observed by the model

quantity -> unit 0.203486

unit -> ingredient 0.002671

unit -> quantity -0.028030

unit -> unit -0.151569

ingredient -> unit -0.246678 → Least probable sequence observed by the model

Conclusion

Accuracies for both training data and validation data is more than 99% which shows that the model is very good.