

아키텍처 설계 확인 방법

학습목표

- 설계된 아키텍처를 분석할 수 있다.
- 아키텍처 검증을 통해 적합한 아키텍처를 결정할수 있다.

학습내용

- 아키텍처 분석
- 아키텍처 결정

- 1. 아키텍처 분석 배경 및 목적
 - 1) 배경

아키텍처는 의사결정의 중요한 수단

아키텍처를 분석하는 배경은?

- 위험 요소나 불확실한 상황에 대한 중요한
 의사결정을 하기 어려움
- 아키텍처가 목표로 하는 품질을 어느 정도 만족시켰는지 판단 필요

- 1. 아키텍처 분석 배경 및 목적
 - 2) 목적

소프트웨어 프로젝트의 실패 사전 방지

문제를 찾아내는 시기의 빠름

더 나은 소프트웨어의 개발이 가능하고 더 좋은 아키텍처 설계가 가능

- 1. 아키텍처 분석 배경 및 목적
 - 2) 목적

적합하지 못한 아키텍처 탐색

잘못된 아키텍처를 설계한 프로젝트를 찾아내서 품질 불량 최소화

시스템 품질 불량의 가장 큰 원인은?

소프트웨어 아키텍처의 부재 부적합한 아키텍처 설계

품질 불량

- 1. 아키텍처 분석 배경 및 목적
 - 3) 필요성

문제점 조기 식별 가능

시스템 품질, 프로젝트 일정, 예산, 조직 구조 등에 영향

4) 장점

Check Point 1

이해관계자 간의 의사소통 Check Point 2

우선순위 결정 가능

명확한 품질목표 정의

Check Point 3프로젝트 간재사용 기회 향상 및아키텍처 수립 사례확보 가능

• 아키텍처 정의

- 1. 아키텍처 분석 배경 및 목적
 - 5) 아키텍처 분석 조직

- 전체적인 평가 리딩
- 분석 수행

- 1. 아키텍처 분석 배경 및 목적
 - 5) 아키텍처 분석 조직

- 아키텍처 관련 이해관계자
- 개발팀
 - → Coder integrator, Tester, Maintainer 등
- 의사결정권자, 아키텍트
- 컴포지트 설계자, 프로젝트 관리자
- 고객, 스폰서 등

2. 아키텍처 분석 시점

설계가 어느 정도 명확해지고 수행이 가능하며 본격적인 구현 단계에 착수 전 진행

일반적으로 요구사항 분석 후 상세설계 전, 아키텍처 분석 진행

2. 아키텍처 분석 시점

최근, 개발 라이프 사이클 동안 모든 단계에서 **언제든 아키텍처 검증 수행** 가능

■ 특별히 정해진 단계, 프로세스는 없음

- 1) 아키텍처 정의 도중 평가
- 목적
 - : 품질 및 기능 요구사항 만족
- 산출물
 - : 좀 더 견고한 요구사항명세

- 2. 아키텍처 분석 시점
 - 2) 요구사항이 고정되기 전에 평가
 - 참여자
 - : 소수의 이해관계자 및 의사결정권자
 - 산출물
 - : 우선순위가 매겨진 요구사항 목록이 추가

- 3) 아키텍처가 고정되고 구현이 끝난 다음 평가
- 평가 자체
 - : 기존 레가시(Legacy)를 이해하는 데 도움이 됨
- 레가시 아키텍처를 평가하는 기법
 - : 아키텍처를 새로 만드는 경우와 동일

- 3. 아키텍처 분석 과정
 - 1) 분석 검증 과정 요약

평가 대상 아키텍처 (아키텍처 이해 분석, 검증)

- 아키텍처 이해
- 아키텍처 분석
- 아키텍처 검증

평가 대상 아키텍처

- 검증 활동 소개
- 개발 대상 시스템 환경 설명 자료
- 품질 속성 시나리오
- 아키텍처 설계 뷰 및 문서
- 기타 관련 문서

- 3. 아키텍처 분석 과정
 - 1) 분석 검증 과정 요약

설계 분석 및 검증 (아키텍처 이해 분석, 검증)

진행 리더

질문자

검증 리더

분석, 설계 검증팀

- 아키텍처 개요 설명 자료
- 품질 속성 시나리오
- 아키텍처 접근 방법 (결정사항)
- 품질 속성 유틸리티 트리
- 아키텍처 분석서
- 최종 보고서
- 아키텍처 이해
- 활동 소개 및 역할 소개
- 비즈니스/아키텍처 목표 소개
- 작성된 아키텍처 소개

- 3. 아키텍처 분석 과정
 - 1) 분석 검증 과정 요약
- 아키텍처 분석
- 아키텍처 접근 방법 식별
- 품질 속성 시나리오 검증
- 시나리오, 아키텍처 상세 분석

- 아키텍처 검증
- 품질 속성 시나리오 검증
- 아키텍처 접근 방법 검증
- 검증결과 발표 및 문서화

- 3. 아키텍처 분석 과정
 - 2) 입력물

개발 대상 시스템의 <u>비즈</u>니스 환경

개발 환경 및 기술 환경

비즈니스 품질 목표

시스템 제약사항

기능 요구사항

핵심 품질 속성

품질 속성 시나리오

아키텍처 드라이버

- 3. 아키텍처 분석 과정
 - 2) 입력물

후보 아키텍처 패턴

후보 아키텍처 설계 전술

아키텍처 결정사항

다양한 관점의 아키텍처 뷰

아키텍처 구성요소 설계 문서

기타 관련 문서

- 3. 아키텍처 분석 과정
 - 3) 산출물

품질 속성 시나리오 목록 사용된 아키텍처 접근법 목록

위험요소와 비 위험 요소

우선 순위가 결정된 것

> 품질 속성 유틸리티 트리

아키텍처 분석서

설계 검증 결과 보고서

- 1. 평가 기법
 - 1) 평가 기법이란?

아키텍처의 접근법인 품질 속성에 미치는 영향을 판단하여 **아키텍처 적합성 판단 및** 평가하는 표준 기법

2) 유형

- ☼ 가시적 평가 Inspection, Review, Validation & Verification
 - ☼ 비가시적 평가 SAAM, ATAM, CBAM, ARID, ADR

- 1. 평가 기법
 - 3) 평가 결과 분석

설계하고 있는 시스템에 대한 아키텍처의 적절성 판단

시스템의 품질 목표 만족

성능, 시스템 변경, 보안 제약조건, 요구 기능 등 만족

가용 자원 내 시스템 개발

• 한정된 인원, 예산, 시간 내 시스템 개발

적절성의 의미

 특정 목표를 위한 상황에서 상대적 의미 존재

- 1. 평가 기법
 - 3) 평가 결과 분석

모든 품질 목표를 만족시키는 아키텍처는 없음

하나의 품질 목표에 적절한 아키텍처

그러나, 또 다른 품질 목표에는 적절하지 않을 수 있음

아키텍처 평가 시 가장 중요한 것은?

목표 설정

우선순위 설정

- 1. 평가 기법
 - 3) 평가 결과 분석

아키텍처 평가 결과(적절성)는 실수(Scalar)로 표현되지 않음

- 평가 결과에 영향을 주는 파라미터들이 구현에 종속적인 경우가 많음
- (초기 설계 단계에서는) 결과값이 정확할(구체적일) 수 없음
- 아키텍처 평가
 - : 어떤 목표에는 적절하고, 어떤 목표에는 문제가 있을 수 있는지 말해 줌

2. 평가 기법 모델

1) ATAM(Architecture Tradeoff Analysis Method)

아키텍처의 품질 속성에 초점을 맞춘 평가기법으로 품질 속성 간의 상충관계를 평가

ATAM의 특징

- 명확한 분석, Legacy System 분석에 활용 가능
- 비기능적 요구사항(신뢰성, 사용성, 유지 보수성 등)
 중심 분석
- 아키텍처 스타일, 품질 속성은 SAAM 영향을 받음

2. 평가 기법 모델

1) ATAM(Architecture Tradeoff Analysis Method)

ATAM의 수행 단계

Setup 단계

- 평가팀 구성
- 평가를 수행하는 조직과 아키텍처를 평가받는 조직 사이에 협력관계 제휴

Evaluation 단계

- 아키텍처 중심
- 아키텍처 정보 도출과 분석에 집중
- 스테이크 홀더 관점에서 아키텍처 정보 도출과 분석 결과 검증

Follow-up 단계

■ 최종 보고서 작성

- 2. 평가 기법 모델
 - 2) CBAM(Cost Benefit Architecture Method)

아키텍처의 경제적 측면에 초점을 맞춘 평가 기법

CBAM의 특징

- ATTAM의 결과물을 기반으로 아키텍처의 경제성 분석
- ROI 측면의 의사결정을 위한 기준 제시

- 2. 평가 기법 모델
 - 2) CBAM(Cost Benefit Architecture Method)

CBAM의 수행 절차

Step 1

시나리오와 아키텍처 전략 선택

- 시스템의 이해관계자가 고려할 수 있는 시나리오 선택
- 각 시나리오별 아키텍처 전략 선택

Step 2

품질 속성 이익 평가

비즈니스가 요구하는
 시스템의 성능과 운영과
 관련된 품질 속성 도출

- 2. 평가 기법 모델
 - 2) CBAM(Cost Benefit Architecture Method)

Step 3

아키텍처 전략에 대한 이익 정량화

서로 다른 아키텍처 전략에 요구된 이익의 정량화

Step 5

바람직한 아키텍처 전략의 효과 계산

평가팀이 각 아키텍처 전략의 비용대비 효과를 평가

Step 4

아키텍처 전략의 비용과 일정 간의 관계 정량화

- 시스템 이해관계자로부터 비용과 일정 간의 관계를 파악
- 아키텍처 전략의 비용 측정

Step 6

아키텍처 결정

 단계의 평가를 기준으로 비용 대비 효과가 좋은 아키텍처를 결정

- 2. 평가 기법 모델
 - 3) SAAM(Software Architecture Analysis Method)

사용자의 요구사항 시나리오와 아키텍처 간의 매핑을 통한 적합성 분석

SAAM의 특징

- 아키텍처의 Modifiability와 Functionality 집중 분석
- 평가 경험이 없는 조직에서도 활용 가능

- 2. 평가 기법 모델
 - 3) SAAM(Software Architecture Analysis Method)

SAAM의 평가 절차

2. 평가 기법 모델

3) SAAM(Software Architecture Analysis Method)

(1) 직접 시나리오

아키텍처에 의해 시나리오가 어떻게 실행되는지 증명

간접 시나리오

아키텍처 변화를 리스트 하고 변화에 따른 비용 추정

- 2. 평가 기법 모델
 - 4) ADR(Active Design Review)

ADR(Active Design Review)이란?

- 아키텍처의 구성요소 간의 응집도를 평가하는 기법
- 검토자의 실습문제 풀이에 기초한 평가 기법

YES?
NO?

Yes / No 질문 형태 지양

- 2. 평가 기법 모델
 - 4) ADR(Active Design Review)
 - 질문 내용
 - : 문서 품질 / 완성도, 설계에서 제공한 서비스의 충분성 / 타당성 적합성
 - 질문 사례

프로그램마다 예외를 정의했는가?

데이터 타입의 정의?

프로그램이 충분한가?

2. 평가 기법 모델

- 5) ARID (Architecture Reviews for Intermediate Design)
- 전체 아키텍처가 아닌 특정 부분에 대한 품질
 요소에 집중하여 평가
- ADR과 ATAM의 하이브리드 기법

ARID의 목적

• 아키텍처 설계의 적절성 판정

- 2. 평가 기법 모델
 - 5) ARID (Architecture Reviews for Intermediate Design)

ARID의 수행 절차

핵심정리

1. 아키텍처 분석

- 아키텍처는 의사결정의 중요한 수단으로 아키텍처 분석은 프로젝트 초반에 문제를 찾아내어 좀 더 좋은 품질의 소프트웨어 아키텍처 설계를 가능하게 함
- •아키텍처 분석은 문제점을 조기 식별할 수 있게 하며 시트 품질, 프로젝트 일정, 예산 조직 구조 등에 영향을 줌
- 아키텍처 분석을 통하여 이해관계자 간의 의사소통, 명확한 품질 목표를 정의하여 우선순위를 결정 가능한 이점이 있음
- •분석 시점은 일반적으로 요구사항 분석 후 상세설계 전에 분석을 시행하지만 최근 들어 개발 라이프 사이클 모든 기간 동안 언제든지 분석을 수행하기도 함

핵심정리

2. 아키텍처 결정

- •아키텍처 평가 기법은 아키텍처의 접근법인 품질 속성에 미치는 영향을 판단하여 아키텍처 적합성을 판단 및 평가하는 표준 기법으로 가시적 평가, 비가시적 평가 유형으로 분류할 수 있음
- ATAM 기법
 - ✓ 아키텍처의 품질 속성에 초점을 맞춘 평가기법으로 품질 속성 간의 상충관계를 평가함
- CBAM 기법
 - ✓ 아키텍처의 경제적 측면에 초점을 맞춘 기법
- SAAM 기법
 - ✓ 사용자의 요구사항 시나리오와 아키텍처 간의 매핑을 통하여 적합성을 분석하는 기법
- ADR 기법
 - ✓ 아키텍처 구성요소 간의 응집도를 평가하는 기법
- ARID 기법
 - ✓ 전체 아키텍처가 아닌 특정 부분에 대한 품질요소에 집중하여 평가하는 방법