

AD-A057 422

BOEING AEROSPACE CO SEATTLE WASH  
COST ALUMINUM STRUCTURES TECHNOLOGY, PHASE III (CAST). (U)

F/G 1/3

JAN 78 D GOEHLER

F33615-76-C-3111

UNCLASSIFIED

D180-22807-1

AFFDL-TR-78-7

NL

1 OF 2  
ADA  
057422



AU NO.

DDC FILE COPY

AD A 057422

(18) (19)  
AFFDL-TR-78-7

(2)

LEVEL II

(6)

**CAST ALUMINUM STRUCTURES TECHNOLOGY,  
PHASE III (CAST).**

NT

THE BOEING COMPANY  
SEATTLE, WASHINGTON 98124

(14)

D180-22807-1

(11) JAN [REDACTED] 78

(12) 135 P.

TECHNICAL REPORT AFFDL-TR-78-7  
Final Report [REDACTED] Feb [REDACTED] - Dec [REDACTED] 77

(9)

(10) Donald Gochler

Approved for public release; distribution unlimited.

DDC



(15)

F 33615-76-C-3111

(16)

4864

AIR FORCE FLIGHT DYNAMICS LABORATORY  
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES 63211 F  
AIR FORCE SYSTEMS COMMAND  
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

78 07 28 043  
059 640 mt

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

John R. Williamson

JOHN R. WILLIAMSON  
Project Engineer,

William R. Johnston

WILLIAM R. JOHNSTON  
Actg Prog Mgr, AMS Program Office  
Structural Mechanics Division

FOR THE COMMANDER

Holland B. Lowndes

HOLLAND B. LOWNDES  
Acting Chief  
Structural Mechanics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFFDL/FBA, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

## SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>AFFDL-TR-78-7                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER                                                                         |
| 4. TITLE (and Subtitle)<br><br>CAST ALUMINUM STRUCTURES TECHNOLOGY, PHASE III<br>(CAST)                                                                                                                                                                                                                                                                                                                                                               |                       | 5. TYPE OF REPORT & PERIOD COVERED<br><br>February 1977-December 1977                                 |
| 7. AUTHOR(s)<br><br>Donald Goehler                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 6. PERFORMING ORG. REPORT NUMBER<br>D180-22807-1                                                      |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><br>The Boeing Company<br>Boeing Aerospace Company<br>Seattle, Washington 98124                                                                                                                                                                                                                                                                                                                        |                       | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><br>Project No. 486U<br>Work Unit 485U |
| 11. CONTROLLING-OFFICE NAME AND ADDRESS<br><br>Air Force Flight Dynamics Laboratory (FBA)<br>Air Force Wright Aeronautical Laboratories<br>AFSC, Wright-Patterson AFB, OH 45433                                                                                                                                                                                                                                                                       |                       | 12. REPORT DATE<br><br>January 1978                                                                   |
| 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                            |                       | 13. NUMBER OF PAGES<br>102                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 15. SECURITY CLASS. (of this report)<br><br>Unclassified                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                            |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br>Approved for public release, distribution unlimited.                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br><br>Approved for public release, distribution unlimited.                                                                                                                                                                                                                                                                                                |                       |                                                                                                       |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                       |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><br>CAST, aluminum castings, YC-14 bulkhead, A357 aluminum alloy, allowables, fatigue, durability, damage tolerance, detail design, static loads, stress                                                                                                                                                                                                        |                       |                                                                                                       |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><br>The objective of CAST is to establish the necessary structural and manufacturing technologies and to demonstrate the validate the integrity, producibility, and viability of cast aluminum primary airframe structures.<br><br>The baseline design is the AMST prototype YC-14 and the component selected was the Nose Landing Gear Support Bulkhead. (Over) |                       |                                                                                                       |

Block 20 (Continued)

Detail design activities are described that were aimed at providing a cast bulkhead design for production with no weight penalty and at a minimum of 30% acquisition cost savings.

A detail design was completed that resulted in a 6.5-pound weight savings and an estimated 37.7% cost saving.

FOREWORD

This report was prepared by the Boeing Military Airplane Development Division of the Boeing Aerospace Company, Seattle, Washington under USAF Contract No. F33615-76-C-3111. The contract work was performed under project 486U under the direction of the Air Force Flight Dynamics Laboratory, Advanced Metallic Structures/Advanced Development Program Office, Wright-Patterson AFB, Ohio. A significant portion of the contract is being funded by the Metals Branch of the Manufacturing Technology Division of the Air Force Materials Laboratory. The Air Force Project Engineer is John R. Williamson of the AMS Program Office, Structural Mechanics Division, Air Force Flight Dynamics Laboratories (AFFDL/FBA).

The Boeing Aerospace Company, Military Airplane Development, is the contractor, with Donald E. Strand as Program Manager and Donald D. Goehler as Technical Leader. This phase of the program was conducted by Richard C. Jones assisted by Carlos J. Romero and Christian K. Gunther.

The contractor's report number is D180-22807-1. This report covers work from February 1977 through December 1977.

Previous work conducted on this contract over the period June 1976 to February 1977 has been reported in Technical Report AFFDL-TR-77-36, dated May 1977.

A 043 469

|                                 |                                                   |  |
|---------------------------------|---------------------------------------------------|--|
| ACCESSION for                   |                                                   |  |
| RTTB                            | White Section <input checked="" type="checkbox"/> |  |
| RTBC                            | Buff Section <input type="checkbox"/>             |  |
| MANUFACTURER                    |                                                   |  |
| JUSTIFICATION                   |                                                   |  |
| BY                              |                                                   |  |
| DISTRIBUTION/AVAILABILITY CODES |                                                   |  |
| Distr.                          | AVAIL and/or SPECIAL                              |  |
| A                               |                                                   |  |

## CONTENTS

| <u>Section</u>                                                                    | <u>Page</u> |
|-----------------------------------------------------------------------------------|-------------|
| I. INTRODUCTION . . . . .                                                         | 1           |
| II. DETAIL DESIGN . . . . .                                                       | 2           |
| 1. Design Layout . . . . .                                                        | 3           |
| 2. Design Coordination . . . . .                                                  | 4           |
| 3. Drawing Release . . . . .                                                      | 5           |
| 4. Production Drawings . . . . .                                                  | 6           |
| a. Bulkhead Casting . . . . .                                                     | 6           |
| b. Bulkhead Assembly . . . . .                                                    | 6           |
| 5. Baseline Component Data . . . . .                                              | 19          |
| a. Initial Baseline Component Data . . . . .                                      | 19          |
| b. Updated Baseline Component Data . . . . .                                      | 19          |
| III. ANALYSIS . . . . .                                                           | 21          |
| 1. Static Strength Analysis . . . . .                                             | 21          |
| a. Summary--Margins of Safety . . . . .                                           | 22          |
| b. Finite Element Analysis of Cast Bulkhead and<br>Transition Structure . . . . . | 23          |
| c. Critical Components Stress Analysis . . . . .                                  | 23          |
| 2. Damage Tolerance Analysis . . . . .                                            | 23          |
| a. Initial Flaw Assumption . . . . .                                              | 59          |
| b. Material Properties . . . . .                                                  | 59          |
| c. Stress Intensity Factor Solution . . . . .                                     | 63          |
| d. Loads . . . . .                                                                | 67          |
| e. Results . . . . .                                                              | 67          |

78 07 28 043

CONTENTS (Continued)

| <u>Section</u>                                                         | <u>Page</u> |
|------------------------------------------------------------------------|-------------|
| 3. Sensitivity Studies . . . . .                                       | 70          |
| a. Sensitivity to Material Properties . . . . .                        | 71          |
| b. Sensitivity to Aircraft Usage . . . . .                             | 74          |
| c. Sensitivity to Initial Flaw Assumption . . . . .                    | 74          |
| 4. Durability Analysis . . . . .                                       | 76          |
| a. Detail Design S-N Curves . . . . .                                  | 78          |
| b. Economic Life . . . . .                                             | 83          |
| 5. Weights . . . . .                                                   | 88          |
| 6. Cost . . . . .                                                      | 88          |
| 7. Effects of Defects . . . . .                                        | 91          |
| REFERENCES . . . . .                                                   | 95          |
| APPENDIX A--LOAD ATTACHMENT POINT A ANALYSIS STRESS SPECTRUM . . . . . | 96          |
| APPENDIX B--SHEAR WEB ANALYSIS STRESS SPECTRUM . . . . .               | 102         |

## ILLUSTRATIONS

| <u>No.</u> |                                                                                      | <u>Page</u> |
|------------|--------------------------------------------------------------------------------------|-------------|
| 1          | Station 170 Body Bulkhead from Phase I . . . . .                                     | 3           |
| 2          | Conventionally Fabricated Station 170 Bulkhead Costs                                 |             |
|            | Updated Baseline Component . . . . .                                                 | 20          |
| 3          | Finite Element Computer Model of CAST Bulkhead and<br>Transition Structure . . . . . | 24          |
| 4          | CAST -- Finite Element Computer Model . . . . .                                      | 25          |
| 5          | CAST -- Finite Element Computer Model . . . . .                                      | 26          |
| 6          | CAST -- Finite Element Computer Model . . . . .                                      | 27          |
| 7          | CAST -- Finite Element Computer Model . . . . .                                      | 28          |
| 8          | CAST -- Finite Element Computer Model . . . . .                                      | 29          |
| 9          | CAST -- Finite Element Computer Model . . . . .                                      | 30          |
| 10         | CAST -- Finite Element Computer Model . . . . .                                      | 31          |
| 11         | CAST -- Finite Element Computer Model . . . . .                                      | 32          |
| 12         | CAST -- Finite Element Computer Model . . . . .                                      | 33          |
| 13         | CAST -- Finite Element Computer Model . . . . .                                      | 34          |
| 14         | CAST -- Finite Element Computer Model Applied Loads . . .                            | 35          |
| 15         | CAST Bulkhead Critical Lugs at BL 28 . . . . .                                       | 36          |
| 16         | CAST Bulkhead Web Gages and Stresses . . . . .                                       | 37          |
| 17         | CAST Bulkhead Web ( $t = 0.1$ ) . . . . .                                            | 38          |
| 18         | CAST Bulkhead Web ( $t = 0.14$ ) . . . . .                                           | 39          |
| 19         | Web Ultimate Shear Stress (Shear Resistant Web Design) . .                           | 40          |
| 20         | Shear Resistant Web Design . . . . .                                                 | 41          |

ILLUSTRATIONS (Continued)

| <u>No.</u> |                                                             | <u>Page</u> |
|------------|-------------------------------------------------------------|-------------|
| 21         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 42          |
| 22         | Compression Crippling Curves . . . . .                      | 43          |
| 23         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 44          |
| 24         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 45          |
| 25         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 46          |
| 26         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 47          |
| 27         | CAST Bulkhead Critical Stiffener BL 28 . . . . .            | 48          |
| 28         | Horizontal Beam at WL 150 . . . . .                         | 49          |
| 29         | Horizontal Beam at WL 150 . . . . .                         | 50          |
| 30         | Horizontal Beam at WL 150 . . . . .                         | 51          |
| 31         | CAST -- Bulkhead Perimeter Chord . . . . .                  | 52          |
| 32         | CAST -- Bulkhead Perimeter Chord . . . . .                  | 53          |
| 33         | CAST -- Bulkhead Perimeter Chord . . . . .                  | 54          |
| 34         | Torque Box at WL 105 L.G. Door Actuator Support . . . . .   | 55          |
| 35         | Torque Box at WL 105 L.G. Door Actuator Support . . . . .   | 56          |
| 36         | Lug Back-up Structure for Lug at BL 8.7 . . . . .           | 57          |
| 37         | Damage Tolerance Critical Control Point Locations . . . . . | 58          |
| 38         | Load Attachment Point A Initial Flaw Location . . . . .     | 60          |
| 39         | Shear Web Initial Flaw Location . . . . .                   | 61          |
| 40         | A357 Aluminum Crack Growth Rate Data . . . . .              | 62          |

ILLUSTRATIONS (Continued)

| <u>No.</u> |                                                            | <u>Page</u> |
|------------|------------------------------------------------------------|-------------|
| 41         | A357 Crack Growth Rate Data . . . . .                      | 72          |
| 42         | A357 S-N Data for Smooth and Open Hole Specimens . . . . . | 79          |
| 43         | Detail Design S-N Curves for Smooth Fatigue Specimens . .  | 80          |
| 44         | A357 Detail Design S-N Curves for Open Hole Specimens . .  | 81          |
| 45         | Station 170 CAST Bulkhead Costs . . . . .                  | 89          |

## TABLES

| <u>No.</u> |                                                                                  | <u>Page</u> |
|------------|----------------------------------------------------------------------------------|-------------|
| 1          | K <sub>IC</sub> Plane Strain Fracture Toughness Data . . . . .                   | 64          |
| 2          | K <sub>C</sub> Plane Stress Fracture Toughness Data . . . . .                    | 65          |
| 3          | Flaw Growth Summary for Bulkhead Details . . . . .                               | 68          |
| 4          | Material Properties Sensitivity Studies . . . . .                                | 73          |
| 5          | Mission Mix Make-up . . . . .                                                    | 75          |
| 6          | Aircraft Usage Sensitivity Studies . . . . .                                     | 75          |
| 7          | Initial Flaw Assumption Sensitivity Tests . . . . .                              | 77          |
| 8          | Load Attachment Point A -- Relative Damage . . . . .                             | 84          |
| 9          | Shear Web -- Relative Damage . . . . .                                           | 85          |
| 10         | Equivalent Initial Flaw Sizes for Types of Defects and<br>X-ray Grades . . . . . | 94          |

SECTION I  
INTRODUCTION

The purpose of the CAST program is to demonstrate that aluminum castings can be used for primary aircraft structural components. The program goal is to achieve the above with no weight penalty and with a minimum of 30% cost savings. The baseline component selected to demonstrate structural casting capability is the YC-14 body bulkhead at body station 170. This is the body nose bulkhead which provides forward support for the nose landing gear and nose gear door, carries cabin pressure on upper segment, and provides support for the nose radome.

The Phase III objective is to complete and release a detail design of the cast bulkhead and the machined bulkhead assembly that meets or exceeds the CAST program goals.

The detail design phase (Phase III) consists of: production drawing preparation to include design layouts for review, analysis, and completion of final production drawings; strength and stability analysis; fatigue and damage tolerance analysis; effects of defects analysis; detail design weight analysis; preparation of detailed projected cost estimates; final review, approval, and release of the production detail design bulkhead; an update of the baseline component data originally released in Phase I; and an on-site review covering Phase III activity.

The detail design of the transition structure and test fixtures will be prepared and released in Phase V, "Structural Test and Evaluation."

This report summarizes the work completed during Phase III.

## SECTION II

### DETAIL DESIGN

The Phase III Detail Design efforts continued on from Phase I Preliminary Design. The detail design of the production cast bulkhead was based on the final cast bulkhead concept and the preliminary design criteria established in Phase I. Efforts in this phase were on detail drawing completion, analysis, and release to manufacturing, plus an update of the baseline component data.

#### 1. DESIGN LAYOUT

The first design layout of the body station 170 cast bulkhead was an update of the final approved concept from Phase I (fig. 1). Design features of this concept included the following.

- o A close physical match to the existing bulkhead structure, especially in the areas of interface with adjacent structure. This was to provide continuity of existing load paths and required no revision to the adjacent structure.
- o The single casting replaced all parts of the original baseline component plus the crosswise slanted beam at WL 150.
- o Machining of casting is required only for close tolerance contour at skin IML and at nose gear fitting interface locations.
- o Bulkhead web of minimum castable thickness and with the upper pressurized section made in a corrugated form replacing the original stiffened web. A transition section to the lower stiffened web segment is located between WL's 124.6 and 130.



Figure 1 . Station 170 Body Bulkhead From Phase I

- o Below WL 124.6, the web stiffeners extend both fore and aft of the web. The reduced height of the stiffeners from the web provides better castability and reduced amount of draft material.
- o No outstanding (zee) flanges on web stiffeners. This reduces the requirement for coring to the outer angled tee chord, the upper beam at WL 150, and the lower torque box.
- o Material is located and shaped to provide the most direct load path from load application to reaction. Primary load application points are the four nose gear attach points and the two door actuator pivot locations. Reactions are the floor at WL 130 for horizontal and the outer skin at each side for vertical.
- o Casting draft was held to  $1/2^\circ$  with the concurrence of Manufacturing Research and Development, except in selected areas.

The cast bulkhead layout was completed in detail, sized to preliminary design loads, and released to Manufacturing, Allowables, and Structures Staff for checking, coordination, and comments.

## 2. DESIGN COORDINATION

The initial cast bulkhead drawings were studied and analyzed by Manufacturing, Materials Technology, Allowables, and Structures Staff with the following changes or additions recommended in the production drawing.

- o Web gages, beam flange thickness, and fitting lug thickness checked and revised as required to match structural loads derived from the stress computer model.

- o Added integral cast-on test coupons for mechanical property testing. Located preproduction test coupons to be excised and tested for mechanical properties.
- o The chord casting configuration was revised to remove the step in the parting plane around the periphery of the bulkhead. This reduced cost of the pattern with no increase in machining cost.
- o A cross beam extending outboard and upward from the lower boss for the door actuator pivot to the outer chord was revised to be horizontal. This beam would have crossed from one mold flask to another at a very flat angle, requiring extremely close tolerance in mold assembly. The revision located the beam entirely within one flask.
- o Recesses were added in the large boss at approximately RBL 8.7 and WL 120. These were added for reduction of casting thickness in an area of low stress.

### 3. DRAWING RELEASE

After completion of drawing revisions resulting from design coordination, the drawings were rechecked and approved by Stress, Design, and Project. Copies of the drawing were then released to Manufacturing organizations, Structures Test, and Structures Staff groups including Stress, Fatigue, Weights, and Allowables.

#### **4. PRODUCTION DRAWINGS**

The production bulkhead casting drawing, 162-00017, is a four-sheet drawing on mylar with a half-size rear view and full-size section views.

The production bulkhead assembly drawing, 162-00018, is a four-sheet drawing made from "brown line" reproducible copies of the bulkhead casting drawing. This drawing deletes the basic casting dimensioning and adds machining dimensions, bushings, inspection requirements, and finishes.

##### **a. Bulkhead Casting**

Drawing 162-00017 Sheets 1 through 4 were reduced to document size and are included for reference only (pages 7 through 10).

##### **b. Bulkhead Assembly**

Drawing 162-00018 Sheets 1 through 4 were reduced to document size and are included for reference only (pages 11 through 14).

1E5-000155



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|
| <p align="center"><b>3</b></p> <p><b>NOTES</b></p> <p>1) ORGANIZATIONS AND STANDARDS FOR THE CONTROL OF MANUFACTURING OPERATIONS AS APPROVED<br/>2) SHELL, STRAIGHTEN &amp; FIT METAL PARTS FOR ONE SIDE<br/>3) DRAFT, GROOVING &amp; OTHERS FOR ONE SIDE<br/>4) BOLT &amp; NUT INSTALLATION FOR ONE SIDE<br/>5) PAINT SPRAYING FOR ONE SIDE<br/>6) TURNED SURFACE FOR EXTERIOR OR SIDE</p> <p><b>D</b></p> <p><b>1) BEVEL TARGET POINT DIMENSION. GENL Dwg TOL DOES NOT APPLY</b></p> <p><b>2) HORIZONTAL DIMENSION TO DATUM PLANE C (RBL 261 REF)</b></p> <p><b>3) STEP RESULTING FROM CASTING DRAFT</b><br/>CROSS SECTION C-C IN CRITICALLY STRESSED AREAS. GRADE C ELSEWHERE<br/>PER MIL-W-4844. INSPECT PER MIL-A-4452 SECTION 2. CRITICALLY<br/>STRESSED AREAS DEFINED ON DRAWING AS SHOWN (---).</p> <p><b>4) RAISED .25 LETTERS &amp; NUMBERS (RUBBER STAMP OPTIONAL)</b></p> <p><b>5) DIMENSIONS &amp; TOLERANCES</b><br/>EDGE RADIUS <math>.03 \pm .03</math><br/>FILLET RADIUS <math>.25 \pm .06</math> EXCEPT AS NOTED<br/>CORNER RADIUS <math>.06 \pm .06</math><br/>DRAFT ANGLE <math>\frac{1}{2}^\circ</math> MAX<br/>SEE DIM. &amp; TOL. BLOCK, ZN A-2<br/>BREAK ALL SHARP EDGES .02 MIN</p> <p><b>6) HEAT TREAT TG PER MIL-A-4452, 3.1.8, 3264-335</b></p> <p><b>7) WELD CORRECTION OF DEFECTS DETECTED PRIOR TO MACHINING IS ALLOWED<br/>PER MIL-W-4844 (C.8.1)<br/>HEAT TREAT CORRECTED CASTING PER <b>6</b><br/>INSPECT CORRECTED CASTING PER <b>6</b></b></p> | <p align="center"><b>2</b></p> <p><b>REV STATUS</b></p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>1</td><td>A</td></tr> <tr><td>2</td><td>A</td></tr> <tr><td>3</td><td>A</td></tr> <tr><td>4</td><td>A</td></tr> </table> <p align="center"><b>1</b></p> <p><b>REVISIONS</b></p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>1000-17</td><td>DATE 10-20</td><td>DATE 10-20-12</td></tr> </table> <p><b>C</b></p> | 1             | A                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                         | A   | 3   | A                             | 4                           | A                          | 1000-17                       | DATE 10-20                  | DATE 10-20-12              | <p align="center"><b>1</b></p> <p><b>MIL-W-4844(CAST) PROCESS SPEC</b></p> <p><b>MIL-Y-4844 (CAST) PROCESS SPEC</b></p> <p><b>162-00017</b></p> <p><b>A</b></p> |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 1000-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATE 10-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE 10-20-12 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 10%;">ST</td> <td style="width: 10%;">SPF</td> <td style="width: 10%;">SPF</td> <td style="width: 10%;">GTF</td> <td style="width: 10%;">GTF</td> <td style="width: 10%;">FAB</td> <td style="width: 10%;">FAB</td> <td style="width: 10%;">PART OR IDENTIFICATION NUMBER</td> <td style="width: 10%;">MANUFACTURER OR DESCRIPTION</td> <td style="width: 10%;">MATERIAL AND SPECIFICATION</td> <td style="width: 10%;">CODE IDENT NO.</td> <td style="width: 10%;">WHT</td> <td style="width: 10%;">WHT</td> <td style="width: 10%;">WHT</td> </tr> <tr> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> </tr> </table> <p>-1</p> <p>BULKHEAD CASTING A4-2 A357 ALUMINUM PER MIL-A-4844(CAST)</p> <p>F210</p> <p><b>162-00017</b></p> <p><b>1</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | ST                                                                                                                                                                                                                                                                                                                                                                                                           | SPF                                                                                                                                                                                                                                       | SPF | GTF | GTF                           | FAB                         | FAB                        | PART OR IDENTIFICATION NUMBER | MANUFACTURER OR DESCRIPTION | MATERIAL AND SPECIFICATION | CODE IDENT NO.                                                                                                                                                  | WHT | WHT | WHT | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPF                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SPF           | GTF                                                                                                                                                                                                                                                                                                                                                                                                          | GTF                                                                                                                                                                                                                                       | FAB | FAB | PART OR IDENTIFICATION NUMBER | MANUFACTURER OR DESCRIPTION | MATERIAL AND SPECIFICATION | CODE IDENT NO.                | WHT                         | WHT                        | WHT                                                                                                                                                             |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3             | 4                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                         | 6   | 7   | 8                             | 9                           | 10                         | 11                            | 12                          | 13                         |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%; vertical-align: top;"> <p>DESCRIPTION &amp; TOLERANCING<br/>SHEET NUMBER 1 OF 1</p> <p>DESIGNATION SPECIFIED<br/>MANUFACTURED AND INSPECTED<br/>TOLERANCE RADII <math>\frac{1}{2}^\circ</math><br/>GENERAL RADS <math>.03</math><br/>GENERAL TOL <math>.010</math><br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG<br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG</p> <p><b>3</b></p> <p><b>PARTS LIST</b></p> </td> <td style="width: 50%; vertical-align: top;"> <p>REVISED ADDRESS</p> <p>REVISED DATE</p> <p>REVISED BY</p> <p>RELEASING OFFICE</p> <p>TYPE</p> <p>STL</p> <p>END</p> <p>ONE APPROVAL</p> <p>PROJECT APPROVAL</p> <p>CHARGED BY</p> <p>DATE CODE IDENT NO.</p> <p>162-00017</p> <p>1</p> </td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <p>DESCRIPTION &amp; TOLERANCING<br/>SHEET NUMBER 1 OF 1</p> <p>DESIGNATION SPECIFIED<br/>MANUFACTURED AND INSPECTED<br/>TOLERANCE RADII <math>\frac{1}{2}^\circ</math><br/>GENERAL RADS <math>.03</math><br/>GENERAL TOL <math>.010</math><br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG<br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG</p> <p><b>3</b></p> <p><b>PARTS LIST</b></p> | <p>REVISED ADDRESS</p> <p>REVISED DATE</p> <p>REVISED BY</p> <p>RELEASING OFFICE</p> <p>TYPE</p> <p>STL</p> <p>END</p> <p>ONE APPROVAL</p> <p>PROJECT APPROVAL</p> <p>CHARGED BY</p> <p>DATE CODE IDENT NO.</p> <p>162-00017</p> <p>1</p> |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <p>DESCRIPTION &amp; TOLERANCING<br/>SHEET NUMBER 1 OF 1</p> <p>DESIGNATION SPECIFIED<br/>MANUFACTURED AND INSPECTED<br/>TOLERANCE RADII <math>\frac{1}{2}^\circ</math><br/>GENERAL RADS <math>.03</math><br/>GENERAL TOL <math>.010</math><br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG<br/>SHEET METAL THICKNESS<br/>MIN. 12 SWG<br/>MAX. 16 SWG</p> <p><b>3</b></p> <p><b>PARTS LIST</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <p>REVISED ADDRESS</p> <p>REVISED DATE</p> <p>REVISED BY</p> <p>RELEASING OFFICE</p> <p>TYPE</p> <p>STL</p> <p>END</p> <p>ONE APPROVAL</p> <p>PROJECT APPROVAL</p> <p>CHARGED BY</p> <p>DATE CODE IDENT NO.</p> <p>162-00017</p> <p>1</p>                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%; vertical-align: top;"> <p>ST ONLY</p> <p>EFFECTIVE</p> <p>END OF CLASSES</p> <p>REV L74</p> </td> <td style="width: 50%; vertical-align: top;"> <p><b>3</b></p> <p><b>PARTS CODES</b></p> </td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <p>ST ONLY</p> <p>EFFECTIVE</p> <p>END OF CLASSES</p> <p>REV L74</p>                                                                                                                                                                                                                                                                                                                                         | <p><b>3</b></p> <p><b>PARTS CODES</b></p>                                                                                                                                                                                                 |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <p>ST ONLY</p> <p>EFFECTIVE</p> <p>END OF CLASSES</p> <p>REV L74</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <p><b>3</b></p> <p><b>PARTS CODES</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%; vertical-align: top;"> <p>1</p> </td> <td style="width: 50%; vertical-align: top;"> <p>2</p> </td> </tr> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <p>1</p>                                                                                                                                                                                                                                                                                                                                                                                                     | <p>2</p>                                                                                                                                                                                                                                  |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |
| <p>1</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <p>2</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |     |     |                               |                             |                            |                               |                             |                            |                                                                                                                                                                 |     |     |     |   |   |   |   |   |   |   |   |   |    |    |    |    |

162-00017

162-00017

7

2





2



3



4



5

E-0001





2



162-00017





10

105-00001

162-00015



6

1



CASTING DATUM  
PLANE B  
M.L. 130.007

BIN'S THIS AREA - SAME AS GAG-2<sub>49-3</sub>  
EXCEPT AS NOTED

**CASTING DATUM  
PLANE A**

This technical drawing illustrates a casting pattern with specific dimensions and taper requirements. Key features include:

- Straight Taper:** Labeled "STRAIGHT TAPER TO .250 AT ML 1246".
- Vertical Dimensions:** Top height is RSL 500. Bottom height is RSL 500 (REF).
- Horizontal Dimensions:**
  - Left side: 120.
  - Center: -350, -2.52 (REF), 50.
  - Right side: 350 TO CASTING DATUM PLANE B.
  - Total width at the bottom is labeled M4-M5.50.
- Vertical Reference:** A vertical dimension of 14.51 is shown on the right side.

This technical drawing illustrates a casting part with various dimensions and features. A crosshair symbol at the top center indicates the Casting Datum Plane A. The drawing shows a main vertical body with a horizontal slot and a stepped base. Key dimensions include:

- Vertical height from the base to the top edge: 1.35
- Thickness of the top horizontal slot: 1.58
- Width of the top horizontal slot: .340
- Width of the bottom horizontal slot: .100
- Diameter of the top circular feature: 1.75 DIA.
- Radius of the top circular feature: .25 R. (TYP)
- Vertical distance from the base to the top of the slot: 1.70
- Vertical distance from the base to the bottom of the slot: 1.30
- Diameter of the bottom circular feature: 1.50 DIA.
- Radius of the bottom circular feature: .25 R. (REM)
- Width of the bottom slot: .44 CS
- Base thickness: 1.00
- Base width: 4.50

The drawing is labeled 4A4-2 at the bottom.

**SEE 2A5-2A  
FOR DIM'S  
THIS AREA**

162-00017 A4

2



162-00017 A4

162-00017

162-00001

D

C

B

A

6

5

4

▼

|         |           |        |             |
|---------|-----------|--------|-------------|
| -1      | 162-00001 | 225.T. | TEST ONLY   |
| TEST    | PROGRAM   | DATA   | OPERATION   |
| INITIAL | RESET     | DATA   | APPLICATION |

6

5

4

▲

11  
1165-00018

13

2

81000-521





2





4



**IES-00018**









4



105.00018

4

c

b

a

9

8

7

↓

9

8

7

↑

7

6

5

4



162-00018 4



17

95-00018

## 5. BASELINE COMPONENT DATA

### a. Initial Baseline Component Data

The initial baseline cost data were derived during Phase I, Preliminary Design. The first unit YC-14 bulkhead total cost was estimated to be \$122,000 and the projected unit cost of the bulkhead, based on a 300-airplane production run, was \$10,900. These costs were derived primarily from actual records and are for the built-up baseline component bulkhead prior to release of the updated baseline data.

The initial baseline component weight was 184.6 lb. This weight was the actual weight of the YC-14 baseline component bulkhead and did not reflect a reduction for non-optimum prototype structures.

### b. Updated Baseline Component Data

A baseline component revision was released September 30, 1977. The revised baseline component includes the original YC-14 bulkhead components plus that portion of the slanted beam assembly at WL 150 between LBL 41.0 and RBL 41.0. The updated cost summary is shown in figure 2, giving both the first unit cost and the projected unit cost based on a 300-airplane production run. The \$12,894 figure replaces the \$10,900 previously used for a cost comparison of the cast concept versus the baseline component.

The revised baseline component weight is 187.6 lb. This weight is for the YC-14 component components plus the WL 150 slanted beam between LBL 41.0 and RBL 41.0, and also includes the deletion of non-optimum weight items that would not be required on a production (YC-14) bulkhead.

|                      | No. 1 A/P<br>cost | 300 A/P<br>cost    |
|----------------------|-------------------|--------------------|
| <b>Raw material</b>  | \$ 1,228          | \$ 384,000         |
| <b>Labor:</b>        |                   |                    |
| Detail tools         | 45,450            | 302,577            |
| Assembly tools       | 55,325            | 366,345            |
| Detail fabrication   | 45,250            | 1,701,120          |
| Sub-assembly         | 9,750             | 743,505            |
| Section installation | --                | 247,680            |
| <b>Total</b>         | <b>\$157,003</b>  | <b>\$3,745,227</b> |
| <b>Cost per unit</b> | <b>\$157,003</b>  | <b>\$ 12,484</b>   |

*Figure 2 . Conventionally Fabricated Station 170 Bulkhead Costs  
Updated Baseline Component*

## SECTION III

### ANALYSIS

#### 1. STATIC STRENGTH ANALYSIS

The YC-14 design loads were used to structurally size the cast bulkhead and transition structure. A finite element computer model was used to calculate the internal loads. The exploded computer model geometry of the cast bulkhead and transition structure (fig. 3) is shown on figures 4 and 5. Detailed sections of the computer model showing nodes, rods, beams, and plates can be seen in figures 6 through 14. Loads were applied at specific nodes to simulate landing gear loads and loads due to a jammed landing gear door actuator. All nodes in the computer model are fixed at station 230.

Detailed stress analysis of major critical components includes:

- o Lug analysis of BL 28 (Figure 15)
- o Critical webs (Figures 16 through 20)
- o Stiffener at BL 28 (Figures 21 through 27)
- o Horizontal beam at WL 150 (Figures 28 through 30)
- o Bulkhead perimeter chord (Figures 31 through 33)
- o Backup structure for landing gear door actuator (Figures 34 and 35)
- o Lug backup structure at BL 8.7 (Figure 36)

a. Summary of Margins of Safety

The following summarizes the margins of safety of the critical components. The least margins of safety were found for the lug at BL 28 and for the perimeter beam at WL 150. The lug exhibits a positive 9% margin of safety for the maximum tensile force and the perimeter beam also shows a 9% positive margin of safety for combined bending and axial loads.

| Critical Component             | Fig. No. | M.S.  |
|--------------------------------|----------|-------|
| Critical lug at BL 28          |          |       |
| Shear-Bearing                  | 15       | +0.13 |
| Tension                        | 15       | +0.09 |
| Critical webs                  |          |       |
| $t = 0.1$                      | 17       | +0.67 |
| $t = 0.14$                     | 18       | +0.29 |
| Critical stiffener at BL 28    |          |       |
| WL 150                         | 24       | +0.82 |
| WL 140                         | 24       | +0.72 |
| WL 130                         | 25       | +0.32 |
|                                | 26       | +0.33 |
|                                | 26       | +0.64 |
| WL 124.7                       | 27       | +0.75 |
|                                |          | High  |
| Horizontal beam at WL 150      |          |       |
| Upper flange                   | 30       | High  |
| Web                            | 30       | High  |
| Perimeter beam                 |          |       |
| Inboard of BL 13.5             | 30       | +0.09 |
| Outboard of BL 13.5            | 30       | +0.22 |
| Torque box at WL 105           |          |       |
| Tension                        | 35       | +0.50 |
| Compression                    | 35       | +0.10 |
| Lug backup structure at BL 8.7 | 36       | +0.24 |

b. Finite Element Analysis of Cast Bulkhead and Transition Structure

Figures 4 through 14 show the details of the finite element model used to determine the internal loads. The model consists of 276 nodes and 895 elements. It represents the structure indicated on figure 3. Figure 4 represents an exploded view of the model, while the detail nodal diagrams are shown on figures 6 through 14.

c. Critical Components Stress Analysis

Figures 15 through 36 contain the strength analysis of the critical components of the bulkhead. The margins of safety are summarized in Section III.1.a.

2. DAMAGE TOLERANCE ANALYSIS

Bulkhead stresses obtained from finite element computer runs were reviewed to determine which points would be considered damage tolerance critical. The details selected for this analysis are:

- o Outer load attachment point A (fig. 37)
- o Shear web located between LBL 28-LBL 32 and WL 124.7-WL 130 (fig. 37)

Damage tolerance analyses were performed on the respective details for the following flaw types:

- o Corner flaw at a clevis hole
- o Surface flaw in a shear web



*Finite Element Computer Model of CAST Bulkhead and Transition structure.*

|       |           |          |         |      |                                        |      |
|-------|-----------|----------|---------|------|----------------------------------------|------|
| ENGR. | C. Ritter | 11-28-71 | REVISED | DATE | CAST Bulkhead and Transition structure | CAST |
| CHECK | BOLLINGER | 11-29-71 |         |      |                                        |      |
| APR   |           |          |         |      |                                        |      |
| APR   |           |          |         |      |                                        |      |
|       |           |          |         |      |                                        |      |
|       |           |          |         |      |                                        |      |



EXPLODED GEOMETRY

CAST BULKHEAD & TRANSITION STRUCTURE

|                        |           |          |         |      |                                                |      |
|------------------------|-----------|----------|---------|------|------------------------------------------------|------|
| ENGR.                  | J. Lomax  | 11-18-77 | REVISED | DATE | CAST - FINITE ELEMENT COMPUTER MODEL<br>BOEING | CAST |
| CHECK                  | BOLLINGER | 11-25-77 |         |      |                                                |      |
| APR                    |           |          |         |      |                                                |      |
| APR                    |           |          |         |      |                                                |      |
|                        |           |          |         |      |                                                |      |
|                        |           |          |         |      |                                                |      |
| D1 4100 5320 REV. 8/71 |           |          |         |      | Fig. 4                                         |      |
|                        |           |          |         |      | 25                                             |      |



FRONT VIEW

CAST BULKHEAD

|       |           |          |         |      |                                                          |        |
|-------|-----------|----------|---------|------|----------------------------------------------------------|--------|
| ENGR. | C. Lomero | 11-18-77 | REVISED | DATE | CAST - FINITE ELEMENT<br>COMPUTER MODEL<br><b>BOEING</b> | CAST   |
| CHECK | BOLLINGER | 11-29-77 |         |      |                                                          | Fig. 5 |
| APR   |           |          |         |      |                                                          |        |
| APR   |           |          |         |      |                                                          |        |
|       |           |          |         |      |                                                          |        |
|       |           |          |         |      |                                                          | 26     |



| ENGR. | P. BOLLINGER | 11-10-77 | REVISED | DATE | <b>CAST - FINITE ELEMENT<br/>COMPUTER MODEL</b><br><b>BOEING</b> | CAST          |
|-------|--------------|----------|---------|------|------------------------------------------------------------------|---------------|
| CHECK | BOLLINGER    | 11-29-77 |         |      |                                                                  | <b>Fig. 6</b> |
| APR   |              |          |         |      |                                                                  |               |
| APR   |              |          |         |      |                                                                  |               |
|       |              |          |         |      |                                                                  | 27            |



TRANSITION STRUCTURE OUTER SKIN  
(LEFT HAND SIDE)

|       |                  |          |         |      |                                                 |                                  |
|-------|------------------|----------|---------|------|-------------------------------------------------|----------------------------------|
| ENGR. | <i>C. Lomars</i> | 11-10-77 | REVISED | DATE | <b>CAST - FINITE ELEMENT<br/>COMPUTER MODEL</b> | <b>CAST</b><br><br><i>Fig. 7</i> |
| CHECK | <i>BOLLINGER</i> | 11-29-77 |         |      |                                                 |                                  |
| APR   |                  |          |         |      |                                                 |                                  |
| APR   |                  |          |         |      |                                                 |                                  |
|       |                  |          |         |      | <b>BOEING</b>                                   | 28                               |



SIDE VIEW  
TRANSITION STRUCTURE OUTER SKIN  
(RIGHT HAND SIDE)

|       |                  |          |         |      |                                                 |                              |
|-------|------------------|----------|---------|------|-------------------------------------------------|------------------------------|
| ENGR. | <i>C. Remora</i> | 11-10-77 | REVISED | DATE | <i>CAST - FINITE ELEMENT<br/>COMPUTER MODEL</i> | <i>CAST</i><br><i>Fig. 8</i> |
| CHECK | <i>BOLLINGER</i> | 11-29-77 |         |      |                                                 |                              |
| APR   |                  |          |         |      |                                                 |                              |
| APR   |                  |          |         |      |                                                 |                              |
|       |                  |          |         |      | <b>BOEING</b>                                   | 29                           |



FRAME STA. 190



FRAME STA. 180



FRAME STA. 190



FRAME STA. 200

| ENGR. | C. Ramey | CHECK | BOLLINGER | REVISED | DATE | CAST - FINITE ELEMENT COMPUTER MODEL | CAST |
|-------|----------|-------|-----------|---------|------|--------------------------------------|------|
| APR   |          |       |           |         |      |                                      |      |
| APR   |          |       |           |         |      |                                      |      |
|       |          |       |           |         |      | Fig. 9                               | 20   |



SIDE VIEW  
BEAM AT GL 32 (RIGHT SIDE)

|       |                 |          |         |      |                                         |         |
|-------|-----------------|----------|---------|------|-----------------------------------------|---------|
| ENGR. | C. L. BOLLINGER | 11-10-77 | REVISED | DATE | CAST - FINITE ELEMENT<br>COMPUTER MODEL | CAST    |
| CHECK | BOLLINGER       | 11-29-77 |         |      |                                         |         |
| APR   |                 |          |         |      |                                         | Fig. 10 |
| APR   |                 |          |         |      |                                         |         |
|       |                 |          |         |      | BOEING                                  | 31      |

01-4100-3320 REV. 3/71

J18-047



| ENGR. | C. Lommer | 11-10-77 | REVISED | DATE |
|-------|-----------|----------|---------|------|
| CHECK | BOLLINGER | 11-29-77 |         |      |
| APR   |           |          |         |      |
| APR   |           |          |         |      |

CAST - FINITE ELEMENT  
COMPUTER MODEL

BOEING

CAST  
Fig. 11

32



|       |                  |          |         |      |
|-------|------------------|----------|---------|------|
| ENGR. | <u>J. Romero</u> | 11-11-71 | REVISED | DATE |
| CHECK | BOLLINGER        | 11-29-71 |         |      |
| APR   |                  |          |         |      |
| APR   |                  |          |         |      |
|       |                  |          |         |      |

# CAST - FINITE ELEMENT COMPUTER MODEL

**BOEING**

CAST

33



PLAN VIEW  
(CANTED BULKHEAD)

|       |           |          |         |      |                                                          |         |
|-------|-----------|----------|---------|------|----------------------------------------------------------|---------|
| ENGR  | R. Romeo  | 11-1-77  | REVISED | DATE | CAST - FINITE ELEMENT<br>COMPUTER MODEL<br><b>BOEING</b> | CAST    |
| CHECK | BOLLINGER | 11-29-77 |         |      |                                                          | Fig. 13 |
| APR   |           |          |         |      |                                                          |         |
| APR   |           |          |         |      |                                                          |         |



## LANDING GEAR BACK-UP STRUCTURE

## & LANDING GEAR DOOR ACTUATOR SUPPORT

| LOAD CONDITION                         | LOCATION & LOAD* APPLIED ON STRUCTURE |                |                |                |                |                |
|----------------------------------------|---------------------------------------|----------------|----------------|----------------|----------------|----------------|
|                                        | NODE 302                              |                |                | NODE 303       |                |                |
|                                        | F <sub>X</sub>                        | F <sub>Y</sub> | F <sub>Z</sub> | F <sub>X</sub> | F <sub>Y</sub> | F <sub>Z</sub> |
| Landing - Spring Back                  | -31.84                                | 0              | 79.5           | -22.56         | 0              | 56.91          |
| Boeing Side Load                       | -1.44                                 | -22.5          | 98.89          | -56.16         | -22.5          | -78.4          |
| 3 Point Broken Roll                    | -102.6                                | 0              | -5.8           | -109.4         | 0              | -37.7          |
| Landing Gear Door Actuator Jammed Load | NODE 306                              |                |                | NODE 307       |                |                |
|                                        | 0                                     | -27.0          | -21.2          | 0              | -11.5          | 36.0           |

\* All loads are in kips & ultimate.

|       |                  |          |         |      |                                                                                    |         |
|-------|------------------|----------|---------|------|------------------------------------------------------------------------------------|---------|
| ENGR. | <u>C. Romero</u> | 11-14-77 | REVISED | DATE | <b>CAST - FINITE ELEMENT<br/>COMPUTER MODEL<br/>APPLIED LOADS</b><br><b>BOEING</b> | CAST    |
| CHECK | <u>BOLLINGER</u> | 11-25-77 |         |      |                                                                                    |         |
| APR   |                  |          |         |      |                                                                                    |         |
| APR   |                  |          |         |      |                                                                                    |         |
|       |                  |          |         |      |                                                                                    | Fig. 14 |
|       |                  |          |         |      |                                                                                    | 35      |

## Lug Analysis @ BL 28.0 (Critical Lug)

Material - A-357

$$F_{2u} = 50 \text{ ksi}$$

$$F_{2y} = 40 \text{ ksi}$$

$$\text{Elong. } = 5\%$$



$$P_{max} = 80 \times 1.15 = 92^k \text{ (15% fitting Factor)}$$

### Shear Bearing □

$$a/D = 1.38/1.4375 = 0.96$$

$$D/t = 1.4375/0.94 = 1.53$$

$$k_{br} = 0.77 \text{ (Fig. 13 pg. 167)}$$

$$P_{by} = k_{br} F_{2u} D t = 0.77 \times 50 \times 1.4375 \times 1.88 = 104.0^k$$

$$M.S. = \frac{104}{92} - 1 = +0.13$$

### Tension □ (Assume w = 3.0)

$$w/D = 3.0/1.4375 = 2.09$$

$$k_t = 0.682 \text{ (Fig. 12 pg. 166)}$$

$$P_t = k_t (w-D) F_{2u} t = 0.682 (3-1.4375) 50 \times 1.88 = 100.2^k$$

$$M.S. = \frac{100.2}{92} - 1 = +0.09$$

□ Lug Analysis Structural Bulletin 1.712 Product Eng. June 1953

| ENGR. | C. Lomax<br>11-15-77  | REVISED | DATE | CAST Bulkhead<br>Critical Lug @ BL 28<br><b>BOEING</b> | CAST |
|-------|-----------------------|---------|------|--------------------------------------------------------|------|
| CHECK | BOLLINGER<br>11-29-77 |         |      |                                                        |      |
| APR   |                       |         |      |                                                        |      |
| APR   |                       |         |      |                                                        |      |
|       |                       |         |      |                                                        | 36   |



Shear stresses are taken from finite element computer model output

| ENGR. | R. B. BOLLINGER | 11-10-77 | REVISED | DATE | CAST BULKHEAD<br>Web GAGES & STRESSES | CAST    |
|-------|-----------------|----------|---------|------|---------------------------------------|---------|
| CHECK | BOLLINGER       | 11-29-77 |         |      |                                       | Fig. 16 |
| APR   |                 |          |         |      |                                       |         |
| APR   |                 |          |         |      |                                       |         |
|       |                 |          |         |      | <b>BOEING</b>                         | 37      |

## Bulkhead Web Analysis

Material Properties -  $F_u = 40 \text{ ksi}$   
 $F_y = 30 \text{ ksi}$   
 $F_{su} = 28 \text{ ksi}$   
 $E/\text{long.} = 37.$

Web analysis criteria - Cast bulkhead webs must be shear resistant. For analysis use charts in Figs. 19 & 20.

Web t = .1

(Between RBL 28 & LBL 28)



Critical Panel

$$f_{s_{\max}} = 9.9 \text{ ksi} \text{ (see Fig. 16)}$$

$$F'_{scr} = 16.0 \text{ ksi} \text{ (Fig. 19)}$$

$$b/a = 5.5/20 = 0.275$$

$$c_a = 1.06 \text{ (see Fig. 19)}$$

$$F_{scr(\text{elastic})} = c_a F'_{scr} = 1.06 \times 16 = 17.0 \text{ ksi.}$$

$$c_p = 0.97 \text{ (see Fig. 20)}$$

$$F_{scr} = F_{scr(\text{elastic})} \times c_p = 17 \times 0.97 = 16.5 \text{ ksi.}$$

$$M.S. = \frac{16.5}{9.9} - 1 = \underline{\underline{+0.67}}^*$$

\* Margin of Safety for 0.1 web is high, however, this is the minimum gage for manufacturing a casting of this size.

| ENGR. | A. Lomax  | H-14-77  | REVISED | DATE | CAST Bulkhead<br>Web ( $t = 0.1$ ) | CAST<br>Fig. 17 |
|-------|-----------|----------|---------|------|------------------------------------|-----------------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                    |                 |
| APR   |           |          |         |      |                                    |                 |
| APR   |           |          |         |      |                                    |                 |
|       |           |          |         |      | BOEING                             | 38              |

## Bulkhead Web Analysis (Cont'd.)

Web t = 0.14  
 (Between BL 45 & BL 28)

For analysis use charts in  
 Figs. 19 & 20

$$f_s = 14.6 \text{ ksi (Fig. 16)}$$

$$F_{scr}' = 18.0 \text{ ksi (see Fig. 19)}$$

$$b/a = 7.5/10 = 0.75$$

$$C_a = 1.42 \text{ (Fig. 19)}$$

$$F_{scr(\text{elastic})} = C_a \times F_{scr} = 1.42 \times 18 = 25.6 \text{ ksi}$$

$$C_p = 0.77 \text{ (Fig. 20)}$$

$$F_{scr} = C_p \times F_{scr(\text{elastic})} = 0.77 \times 25.6 = 19.7 \text{ ksi.}$$

Combining shear w/ Tension -

$$P = 8.9^c \text{ (Bm 137 axial load Fig. 21)}$$

$$A = 0.96 \text{ in}^2$$

$$P/A = 8.9/0.96 = 9.3 \text{ ksi} < 40 \text{ ksi (F}_{t,u}\text{)}$$

$$R_s = 14.6/19.7 = 0.74$$

$$R_t = 9.3/40 = 0.23$$



Critical Panel



Cross-section  
 (Bm 137)

$$\text{M.S.} = \frac{1}{\sqrt{R_s^2 + R_t^2}} - 1 = \underline{+0.29}$$

|       |            |          |         |      |                                     |         |
|-------|------------|----------|---------|------|-------------------------------------|---------|
| ENGR. | J. Lemoine | 11-14-77 | REVISED | DATE | CAST Bulkhead<br>Web ( $t = 0.14$ ) | CAST    |
| CHECK | BOLLINGER  | 11-29-77 |         |      |                                     | Fig. 18 |
| APR   |            |          |         |      |                                     |         |
| APR   |            |          |         |      |                                     |         |
|       |            |          |         |      | BOEING                              | 38      |



(Boeing Design Manual) Figure 19. Web Ultimate Shear Stress (Sheer Resistant Web Design)

WEB BUCKLING (SHEAR)

PROGRAM CAST

A357-T6 CASTINGS                   $70^{\circ}\text{F}$   
CL I    50/40/5  
CL II   45/35/3  
CL III   40/30/3  
CL IV   35/30/5

PRELIMINARY DESIGN  
ALLOWABLES  
S-BASIS

FOR USE WITH FIGURE 8.2.1.1-1 OF DM86B1

$$F_{SCR} = F_{SCR} (\text{ELASTIC}) \cdot C_p$$



(Boeing Design Manual) Figure 20.

Shear Resistant Web Design

Stiffeners @ LBL 28 & RBL 28 Axial Loads & Moments



Axial loads and moments come from finite element computer model output.

| ENGR. | P. Roman  | 11-16-77 | REVISED | DATE | CAST BULKHEAD CRITICAL STIFFENER BL 28 | CAST    |
|-------|-----------|----------|---------|------|----------------------------------------|---------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                        | Fig. 21 |
| APR   |           |          |         |      |                                        |         |
| APR   |           |          |         |      |                                        |         |
|       |           |          |         |      | BOEING                                 | 42      |



Figure 22. Compression Crippling Curves

Section @ WL 150

## Section Properties -

$$A = 1.98 \text{ in}^2$$

$$\bar{y} = 2.3$$

$$I = 6.34 \text{ in}^4$$

$$\left. \begin{array}{l} P = -10.6^k \\ M = 19.1^{\text{re}} \end{array} \right\} \text{Bm 129}$$

see Fig. 21.

$$P/A = -10.6/1.98 = -5.35$$

$$\frac{M_C}{I} = \frac{19.1 \times 2.3}{6.34} = \frac{-6.93}{-12.28} \text{ ksi.}$$

$$\frac{MC}{I} = \frac{19.1 \times 2.05}{6.34} = +8.59$$

$$P/A = \frac{-5.35}{+3.24} \text{ bei } .$$

### *Crippling* (See Fig. 22)

$$\text{web (a14)} \quad b/t = 4.26 / 2.3 \times 0.14 = 13.2$$

$$F_{cc} = \frac{4.9}{5.35} \times 30 = 27.4 \text{ ksi}$$

$$\text{stem (414)} \frac{6}{f_t} = 5.01 / \frac{2.3}{2.3 \times 914} = 15.6$$

$$F_{cc} = \frac{4.4}{5.35} \times 30 = 24.7 \text{ ksi.}$$

### Panel Buckling -

Shear -  $f_s = 5.1 \text{ ksi}$  (see Fig. 16, web 7)

$$F_s' = 45 \text{ ksi} \quad (\text{Fig. 19})$$

$$\frac{b}{a} = 4.4/10 = 0.44$$

$C_a = 1.15$  (Fig. 19)

$$F_{scr(\text{elastic})} = C_a \times F'_{scr} = 1.15 \times 45 = 51.75$$

$$c_p = 0.42 \quad (\text{Fig. 20})$$

$$F_{scr} = C_p \times F_{scr(\text{elastic})} = 0.42 \times 51.75 = 21.7 \text{ kN}$$



(section @ WL 150)

|       |             |          |         |      |                                           |         |
|-------|-------------|----------|---------|------|-------------------------------------------|---------|
| ENGR. | P. R. ROYER | 11-16-77 | REVISED | DATE | CAST BULKHEAD CRITICAL<br>STIFFENER BL 28 | CAST    |
| CHECK | BOLLINGER   | 11-29-77 |         |      |                                           |         |
| APR   |             |          |         |      |                                           | Fig. 23 |
| APR   |             |          |         |      |                                           |         |
|       |             |          |         |      | BOEING                                    | 44      |

### Section @ WL 150 (Contd.)

#### Panel Buckling -

Compression -  $a/b = 10/4.4 = 2.27$   
 Aircraft Structures  
 by Parry pg. 372  $k = 3.6$  (4 sides simply supported)  
 Fig. 14.25  $E_{cr} = kE(t/b)^2$

$$E_{cr} = 3.6 \times 10.4 \times 10^3 \left(\frac{1}{4.4}\right)^2 = 37.9 \text{ ksi} > 30 \text{ ksi (Fay)} \\ \text{buckling is not critical}$$

#### Combined Compression & Shear -

$$R_c = f_c/F_{sc} = 12.28/24.7 = 0.497$$

$$R_s = f_s/F_{sc} = 5.1/21.7 = 0.235$$

$$\text{M.S.} = \frac{1}{\sqrt{R_c^2 + R_s^2}} - 1 = +0.82$$

(Comp. + shear)

LB 28



PLAN VIEW  
(Section @ WL 150)

### Section @ WL 140

#### Section Properties -

$$A = 1.66 \text{ in}^2$$

$$\bar{y} = 1.74$$

$$I = 3.38 \text{ in}^4$$

$$P = \frac{10.6 + 25.3}{2} = 17.95 \text{ k} \quad \left. \begin{array}{l} \text{Bms 129 \& 131} \\ \text{see Fig. 21.} \end{array} \right\}$$

$$M = 4.3 \text{ in-ki}$$

$$P/A = 17.95/1.66 = -10.8$$

$$\frac{Mc}{J} = \frac{4.3 \times 1.74}{3.38} = -\frac{2.2}{-13.0} \text{ ksi.} < 27.4 \text{ ksi. (Fay prov. pg.)}$$

$$f_s = 7.3 \text{ ksi (Fig. 16, web [23])} < 21.7 \text{ ksi (F}_{sc}\text{ prov. pg.)}$$

$$R_s = f_s/F_{sc} = 7.3/21.7 = 0.336$$

$$R_c = f_c/F_{sc} = 12/27.4 = 0.444$$

$$\text{M.S.} = \frac{1}{\sqrt{R_s^2 + R_c^2}} - 1 = +0.72$$

(Comp + shear)

| ENGR. | P. Camara  | 11-K-77  | REVISED | DATE | <b>CAST BULKHEAD CRITICAL<br/>STIFFENER BL 28</b> | <b>CAST</b><br><b>Fig. 24</b> |
|-------|------------|----------|---------|------|---------------------------------------------------|-------------------------------|
| CHECK | BOLLMANGER | 11-29-77 |         |      |                                                   |                               |
| APR   |            |          |         |      |                                                   |                               |
| APR   |            |          |         |      |                                                   |                               |
|       |            |          |         |      |                                                   |                               |

Section @ WL 130

$$A = 2.47 \text{ in}^2$$

$$\bar{J} = 0.95$$

$$I = 4.88 \text{ in}^4$$

$$q = 7.3 \times 1.14$$

$$= 1.02 \frac{\text{in}}{\text{in}}$$

web number 23

WL 130

$$q = 13.6 \times 0.25$$

$$= 3.4 \frac{\text{in}}{\text{in}}$$

$$q = 5.3 \times 0.25$$

$$= 1.32 \frac{\text{in}}{\text{in}}$$

$$25.3$$

$$q = 8.7 \times 1$$

$$= 0.87 \frac{\text{in}}{\text{in}}$$

$$q = 5.3 \times 0.25$$

$$= 1.32 \frac{\text{in}}{\text{in}}$$

$$36.9$$

Node 41



PLAN VIEW

(Section @ WL 130)

For axial loads see Fig. 21.

For shear stresses see Fig. 16.

$$P = 25.3 + (1.02 + .87) 5 = 34.8 \text{ k}$$

(@ WL 130)

$$M = -19.6 \text{ in}^k \text{ (see Fig. 21)}$$

(@ WL 130)

$$P/A = 34.8 / 2.47 = -14.1$$

$$\frac{Mc}{I} = \frac{19.6 \times 2.05}{4.88} = -8.2 \quad + \frac{Mc}{I} = \frac{19.6 \times 2.45}{4.88} = +9.8$$

$$Z = -22.3 \text{ ksi.}$$

$$-14.1$$

$$+9.8$$

$$-4.3 \text{ ksi}$$

$$f_s = 1.02 / 3 = 3.4 \text{ ksi.} < f_{su} = 28 \text{ ksi.}$$

Combined compression & shear -

$$R_c = f_c / f_{c'y} = 22.3 / 30 = 0.743$$

$$R_s = f_s / f_{su} = 3.4 / 28 = 0.121$$

$$M.S. = \frac{1}{\sqrt{R_c^2 + R_s^2}} - 1 = +0.32$$

(Extreme fiber)

| ENGR. | A. Romano | 11-16-77 | REVISED | DATE | CAST BULKHEAD CRITICAL<br>STIFFENER BL 28<br>BOEING | CAST          |
|-------|-----------|----------|---------|------|-----------------------------------------------------|---------------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                                     | Fig. 25<br>46 |
| APR   |           |          |         |      |                                                     |               |
| APR   |           |          |         |      |                                                     |               |

Section @ WL 130 (Cont'd.)

Check location 0.3 from extreme fiber (see sketch prev. pg.) -

$$\frac{M_c}{I} = \frac{19.6 \times 1.75}{4.88} = -7.0$$

$$P/A = \text{prev. pg. } \approx \frac{-14.1}{-21.1 \text{ ksi.}} < 30 \text{ ksi. (F}_{\text{cy}})$$

$$f_s = 1.02/0.14 = 7.3 \text{ ksi. (prev. pg.)} < 28 \text{ ksi. (F}_{\text{su}})$$

Combined comp. & shear -

$$R_c = 21.1/30 = 0.703$$

$$R_s = 7.3/28 = 0.261$$

$$\text{M.S.} = \frac{1}{\sqrt{R_c^2 + R_s^2}} - 1 = +.33$$

(from  
extreme fiber)

Check Pressure Case -

$$P = 2.2^c \\ M = 38.0 \text{ in.}$$

} 13m 132  
see Fig. 21.

Note: moment is reversed from previous critical condition. Shear is small, neglect.

$$P/A = 2.2/2.47 = 0.9$$

$$\frac{M_c}{I} = \frac{38 \times 2.05}{4.88} = \frac{16.0}{16.9 \text{ ksi.}} < 40 \text{ ksi. (F}_{\text{tu}})$$

$$P/A = 2.2/2.47 = +0.9$$

$$\frac{M_c}{I} = \frac{38 \times 2.05}{4.88} = \frac{-19.1}{-18.2 \text{ ksi.}} < 30 \text{ ksi. (F}_{\text{cy}})$$

$$\text{M.S.} = \frac{30}{18.2} - 1 = +0.64$$

(pressure case)

| ENGR. | C. Lomax  | 11-17-77 | REVISED | DATE | CAST BULKHEAD CRITICAL<br>STIFFENER BL 28<br>BOEING | CAST    |
|-------|-----------|----------|---------|------|-----------------------------------------------------|---------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                                     | Fig. 26 |
| APR   |           |          |         |      |                                                     |         |
| APR   |           |          |         |      |                                                     |         |
|       |           |          |         |      |                                                     |         |

Section @ WL 124.7

$$A = 1.97 \text{ in}^2$$

$$\bar{y} = 2.39$$

$$I = 1.28 \text{ in}^4$$

$$P = -15.6 \text{ k}$$

$$M = 3.6 \text{ in}^{\text{in}} \quad \left. \begin{array}{l} \text{Bm 13c} \\ \text{see Fig. 21.} \end{array} \right\}$$

$$\frac{P/A}{I} = \frac{15.6}{1.97} = -7.9$$

$$\frac{Mc}{I} = \frac{3.6 \times 2.39}{1.28} = -6.7 \quad -14.6 \text{ ksi}$$



Plan View  
(Section @ WL 124.7)

Crippling - (Fig. 22.)

$$\text{stem (.18)} \quad b/t = 2.25/0.18 = 12.5$$

$$F_{cr} = \frac{5.1}{5.33} \times 30 = 28.6 \text{ ksi.}$$

Buckling - □ (pg. 372 Fig. 14.25)

$$a/b = 16/2.25 = 7.1$$

$$k = 0.385$$

$$F_{cr} = kE(t/b)^2 = 0.385 \times 10.4 \times 10^3 (16/2.25)^2$$

$$= 25.6 \text{ ksi}$$



$$\frac{M.S.}{(\text{comp.})} = \frac{25.6}{14.6} - 1 = +0.75$$

$$P = 19.7 \text{ k} \quad \left. \begin{array}{l} \text{Bm 13c} \\ \text{see Fig. 21.} \end{array} \right\}$$

Note - Moment is reverse from Bm 13c

$$\frac{P/A}{I} = \frac{19.7}{1.97} = 10.0$$

$$\frac{Mc}{I} = \frac{5 \times 2.39}{1.28} = \frac{9.3}{19.3} \text{ ksi} < 40 \text{ ksi } (F_{2n})$$

$$\frac{M.S.}{(\text{tension})} = \frac{40}{19.3} - 1 = \underline{\text{high}}$$

□ Aircraft structures by D. J. Perry

| ENGR. | P. RUMA   | 11-17-77 | REVISED | DATE | CAST BULKHEAD CRITICAL STIFFENER BL 28 | CAST    |
|-------|-----------|----------|---------|------|----------------------------------------|---------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                        | Fig. 27 |
| APR   |           |          |         |      |                                        |         |
| APR   |           |          |         |      |                                        |         |
|       |           |          |         |      | BOEING                                 | 48      |

Horizontal Beam @ WL 150



Horizontal Beam @ WL 150  
(See Fig. 6 cast bolted)

Axial loads and moments come from finite element computer model output.

Matt. Prop. for hor. Bm.

$$\begin{aligned} F_{21} &= 40 \text{ ksi} \\ F_{22} &= 30 \text{ ksi} \\ F_{31} &= 28 \text{ ksi} \end{aligned}$$

All values are maximum  
not ultimate.



Cross-Section  
Horizontal Beam

| ENGR. | R. LAMM   | N-12-77  | REVISED | DATE |
|-------|-----------|----------|---------|------|
| CHECK | BOLLINGER | 11-29-77 |         |      |
| APR   |           |          |         |      |
| APR   |           |          |         |      |
|       |           |          |         |      |

Horizontal Beam  
@ WL 150

BOEING

CAST  
Fig. 28

49

### Horizontal Beam @ WL 150 (cont'd.)

$$\begin{aligned} P &= 12.8^k \\ M &= 17.6 \text{ in} \end{aligned} \quad \left. \begin{array}{l} \text{Bm 7} \\ (\text{see prev. pg.}) \end{array} \right\}$$

$$P/A = 12.8/1.11 = 11.53 \quad + 11.53$$

$$\frac{M_c}{I} = \frac{17.6 \times 2.6}{4.7} = \frac{9.74}{+ 21.27 \text{ ksi}} \quad \frac{M_c}{I} = \frac{17.6 \times 2.84}{4.7} = \frac{-10.63}{+ 0.90 \text{ ksi}}$$

(Gen. on top see sketch in prev. pg.)

$$\begin{aligned} P &= -7.7^k \\ M &= 15.2 \text{ in} \end{aligned} \quad \left. \begin{array}{l} \text{Bm 8} \\ (\text{see prev. pg.}) \end{array} \right\}$$

$$P/A = 7.7/1.11 = -6.94 \quad -6.94$$

$$\frac{M_c}{I} = \frac{15.2 \times 2.6}{4.7} = \frac{-8.41}{-15.35 \text{ ksi.}} \quad \frac{M_c}{I} = \frac{15.2 \times 2.84}{4.7} = \frac{+9.18}{+2.24 \text{ ksi}}$$

(comp. on top see sketch in prev. pg.)

### Crippling (Fig. 22)

$$\text{top flange } (t = 0.2) \quad b/t = 1.4/0.2 = 7 \quad F_{cr} = F_{cg} = 30 \text{ ksi}$$

$$\text{web } (t = 0.12) \quad b/t = 5.27/1.2 \times 2.3 = 19 \quad F_{cr} = \frac{3.7}{5.27} \times 30 = 20.7 \text{ ksi}$$

$$\text{lower flange } (t = 0.12) \quad b/t = 1.2/0.12 = 10 \quad F_{cr} = F_{cg} = 30 \text{ ksi.}$$

### Buckling (Fig. 14.25) -

$$\text{upper flange} - \frac{a}{b} = 8.7/1.4 = 6.2$$

$L = .385$  (one side free - 3 sides pinned)

$$F_{cr} = kE(t/b)^2 = .385 \times 10.4 \times 10^3 (.7/1.4)^2$$

$$= 81.7 \text{ ksi.} > 30 \text{ ksi.} (F_{cg})$$

upper flange not buckling critical

$$\text{web} - \frac{a}{b} = 8.7/5.27 = 1.65$$

$L = 3.8$  (4 sides simply supported)

$$F_{cr} = kE(t/b)^2 = 3.8 \times 10.4 \times 10^3 (.12/5.27)^2 = 20.5 \text{ ksi.}$$

### ► Aircraft Structures by Perry

| ENGR. | C. Palmer | H-17-77  | REVISED | DATE | Horizontal Beam<br>@ WL 150 | CAST<br>Fig. 29<br><b>BOEING</b> |
|-------|-----------|----------|---------|------|-----------------------------|----------------------------------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                             |                                  |
| APR.  |           |          |         |      |                             |                                  |
| APR.  |           |          |         |      |                             |                                  |
|       |           |          |         |      |                             |                                  |

### Horizontal Beam @ WL 150 (cont'd.)

$$\begin{aligned} P &= 12.8 \text{ k} \\ M &= 17.6 \text{ in.} \end{aligned} \quad \left. \begin{array}{l} \text{Bm 7} \\ \text{(see prev. pg.)} \end{array} \right\}$$

$$\begin{aligned} P/A &= 12.8/1.11 = 11.53 \\ \frac{Mc}{I} &= \frac{17.6 \times 2.6}{4.7} = \frac{9.74}{21.27 \text{ ksi} < 40 \text{ ksi}} \\ &\text{upper flange stress, see sketch in Fig. 28} \end{aligned}$$

$$M.S. = \frac{42}{21.27} - 1 = \underline{\text{high}}$$

$$\begin{aligned} P &= -7.7 \text{ k} \\ M &= 15.2 \text{ in.} \end{aligned} \quad \left. \begin{array}{l} \text{Bm 8} \\ \text{(see prev. pg.)} \end{array} \right\}$$

$$\begin{aligned} P/A &= 7.7/1.11 = -6.94 \\ \frac{Mc}{I} &= \frac{15.2 \times 2.6}{4.7} = \frac{-8.41}{-15.35 \text{ ksi}} \quad \left. \begin{array}{l} \text{upper flange} \\ \text{stress, see} \\ \text{sketch in} \\ \text{Fig. 28} \end{array} \right\} \end{aligned}$$

Web Crippling -  $b/t = 5.27/6.12 \times 2.3 = 19$        $F_c = \frac{3.7}{5.35} \times 30 = 20.7 \text{ ksi}$

Web Buckling compression ( $\Delta$  pg. 372 Fig. 14.25)

$$a/b = 7.0/5.27 = 1.33$$

$k = 3.7$  (4 sides simply supported)

$$F_{cr} = kE(b/a)^2 = 3.7 \times 10.4 \times 10^3 (6.12/5.27)^2 = 20.0 \text{ ksi.}$$

Web Buckling Shear (see Figs. 19 & 20)

$$t = 0.12 \quad F_{scr} = 27 \text{ ksi}$$

$$b/a = 5.27/7.0 = 0.75 \quad C_a = 1.44$$

$$F_{scr(\text{elastic})} = C_a \times F_{scr} = 1.44 \times 27 = 38.9 \text{ ksi} \quad C_p = 0.56$$

$$F_{scr} = C_p \times F_{scr(\text{elastic})} = 0.56(38.9) = 21.8 \text{ ksi.}$$

Combined Compression & shear -  $f_s = 1.5/5.27 \times .12 = 2.4 \text{ ksi}$   
 $R_c = f_c/F_{scr} = 6.94/20 = 0.347$       (Fig. 28, Bm No. 8)

$$R_b = f_b/F_{tu} = 8.41/30 = 0.280$$

$$R_s = f_s/F_{scr} = 2.4/21.8 = 0.110$$

M.S. = high  
 (combined stresses)  
 web

$\Delta$  Aircraft Structures by Perry

| ENGR. | N. L. KENNEDY | H-18-77  | REVISED | DATE | Horizontal Beam<br>@ WL 150<br><b>BOEING</b> | CAST |
|-------|---------------|----------|---------|------|----------------------------------------------|------|
| CHECK | BOLLINGER     | 11-23-77 |         |      |                                              |      |
| APR   |               |          |         |      |                                              |      |
| APR   |               |          |         |      |                                              |      |
|       |               |          |         |      |                                              |      |



LBC 08.85      WL 150  
Axial loads & moments come from finite  
element computer model output.  
All values are maximum & ultimate.

Section properties:

$$\begin{aligned} A &= 2.43 \text{ in}^2 \\ J &= 3.81 \\ I &= 9.07 \text{ in}^4 \end{aligned}$$



Typical Beam  
Cross-Section

Between LBC 13.5 & RBC 13.5



Beams Along CAST  
Bulkhead Perimeter

(Fig. 6, CAST Bulkhead)

| ENGR. | REvised   | DATE     | CAST - Bulkhead Perimeter Chord | CAST    |
|-------|-----------|----------|---------------------------------|---------|
| CHECK | BOLLINGER | 11-29-77 |                                 |         |
| APR   |           |          |                                 |         |
| APR   |           |          |                                 |         |
|       |           |          | BOEING                          | Fig. 31 |
|       |           |          |                                 | 52      |

Axial loads and moments come from finite element computer model output.  
All values are maximum & ultimate.

Section properties:

$$A = 1.98 \text{ in}^2$$

$$J = 3.87 \text{ in}^4$$

$$I = 7.32 \text{ in}^4$$

Sta. 170



Typical Beam  
Cross-Section

(Outboard of CBL 13.5 & RBL 13.5)



| ENGR. | C. Lamm   | 11-18-77 | REVISED | DATE |
|-------|-----------|----------|---------|------|
| CHECK | BOLLINGER | 11-29-77 |         |      |
| APR   |           |          |         |      |
| APR   |           |          |         |      |

CAST - Bulkhead  
Perimeter Chord

BOEING

CAST  
Fig. 32

Critical Perimeter Beam Between LBL 13.5 & RBL 13.5

$$\begin{aligned} P &= -4.0^k \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{Bm 104} \\ M &= 76.4^{\text{in ft}} \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{(see Fig. 32)} \end{aligned}$$

$$\begin{aligned} A &= 2.43 \text{ in}^2 \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{see Fig. 31.} \\ \bar{y} &= 3.81 \\ I &= 9.07 \text{ in}^4 \end{aligned}$$

$$P/A = -4.0/2.43 = -1.6 \text{ ksi}$$

$$\frac{Mc}{I} = \frac{76.4 \times 3.81}{9.07} = -32.1 \text{ ksi (Pt. A)}$$

$$\frac{Mc}{I} = \frac{76.4 \times 2.31}{9.07} = -19.5 \text{ ksi (Pt. B)}$$



$$f_c^{\text{average}} = \frac{32.1 + 19.5}{2} = -25.8 \text{ ksi.}$$

(in flange)

$$f_c = (P/A \text{ above}) = \frac{-1.6}{-27.4} \text{ ksi} < 30 \text{ ksi (F_{cy})}$$

$$\text{M.S.} = \frac{30}{27.4} - 1 = \underline{+0.09}$$

(comp flange)

Critical Perimeter Beam Outboard of BL 13.5

$$\begin{aligned} P &= -0.9^k \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{Bm 102} \\ M &= 56.4^{\text{in ft}} \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{see Fig. 32.} \end{aligned}$$

$$\begin{aligned} A &= 1.98 \text{ in}^2 \quad \left. \begin{array}{l} \\ \end{array} \right\} \text{see Fig. 32} \\ \bar{y} &= 3.87 \\ I &= 7.32 \text{ in}^4 \end{aligned}$$

$$P/A = -0.9/1.98 = -0.5 \text{ ksi.}$$

$$\frac{Mc}{I} = \frac{56.4 \times 3.87}{7.32} = -29.8 \text{ ksi (Pt. A)}$$

$$\frac{Mc}{I} = \frac{56.4 \times 2.37}{7.32} = -18.3 \text{ ksi (Pt. B)}$$

$$f_c^{\text{average}} = \frac{29.8 + 18.3}{2} = -24.0$$

(in flange)

$$\frac{0.5 = f_c \text{ (above } P/A)}{-24.5 \text{ ksi} < 30 \text{ ksi (F}_{cy}\text{)}}$$

$$\text{M.S.} = \frac{30}{24.5} - 1 = \underline{+0.22}$$

(comp flange)

|          |         |      |                                    |         |
|----------|---------|------|------------------------------------|---------|
| 11-19-77 | REVISED | DATE | CAST - Bulkhead<br>Perimeter Chord | CAST    |
| 11-20-77 |         |      |                                    | Fig. 33 |
|          |         |      | BOEING                             | 54      |
|          |         |      |                                    | J18-047 |

Torque Box @ WL 105 - Landing Gear Door Actuator Support



Torque Box Segment of  
CAST Bulkhead

All values come from finite element computer model output.  
All values are maximum & ultimate.

Check Section @ LBL 5.5

$$A = 4.47 \text{ in}^2$$

$$\bar{y} = 2.34$$

$$I = 6.78 \text{ in}^4$$

$$J = 9.85$$



Section @ BL 5.5

|       |              |          |         |      |                            |         |
|-------|--------------|----------|---------|------|----------------------------|---------|
| ENGR. | C. Bollinger | 11-21-77 | REVISED | DATE | Torque Box @ WL 105        | CAST    |
| CHECK | BOLLINGER    | 11-29-77 |         |      | L.G. Door Actuator Support | Fig. 34 |
| APR   |              |          |         |      |                            |         |
| APR   |              |          |         |      |                            |         |
|       |              |          |         |      | BOEING                     | 55      |

Torque Box @ WL 105 (Cont'd.)

Section @ LBL 5.5



$$\text{Axial load} @ \text{LBL } 5.5 = 8 + (1.11 - .3) z = 9.6^k$$

$$\text{Moment} @ \text{LBL } 5.5 = 26.2 + (101.4 - 26.2) 5.5 / 7 = 85.3^{lk}$$

$$P/A = 9.6 / 4.47 = 2.1$$

$$\frac{Mc}{I} = \frac{85.3 \times 1.75}{6.78} = \frac{22.0}{24.1 \text{ ksi}} < 40 \text{ ksi} (F_{Ew})$$

$$f_s = \frac{T}{2t(a-t)(b-t)} = \frac{48}{2 \times 3(4-.3)(3.09-.3)} = 7.7 \text{ ksi} < 28 \text{ ksi} (F_{Sw})$$

Combined stressor -

$$R_c = 24.1 / 40 = 0.603$$

$$R_s = 7.7 / 28 = 0.275$$

$$\text{(tension)} \quad M.S. = \frac{1}{\sqrt{R_c^2 + R_s^2}} - 1 = \underline{+0.50}$$

$$P/A = 9.6 / 4.47 = + 2.1$$

$$\frac{Mc}{I} = \frac{85.3 \times 2.34}{6.78} = - \frac{29.4}{-27.3 \text{ ksi}} < 30 \text{ ksi} (F_{cy})$$

$$\text{(comp.)} \quad M.S. = \frac{30}{27.3} - 1 = \underline{+0.10}$$

| ENGR. | 3 Pneas   | 11-21-77 | REVISED | DATE | Torque Box @ WL 105<br>L.G. Door Actuator Support | CAST |
|-------|-----------|----------|---------|------|---------------------------------------------------|------|
| CHECK | BOLLINGER | 11-29-77 |         |      |                                                   |      |
| APR   |           |          |         |      |                                                   |      |
| APR   |           |          |         |      |                                                   |      |
|       |           |          |         |      | BOEING                                            | 56   |

Lug Back-up structure @ BL 8.7



Lug is critical for lateral load  
section properties of A-A -

$$A = 4.53 \text{ in}^2$$

$$J = 3.3$$

$$I = 11.3 \text{ in}^4$$

$$M = 44.1 (4.38 - 3.3) = 47.63 \text{ in-k}$$

$$P/A = 44.1 / 4.53 = +9.7$$

$$\frac{Mc}{I} = \frac{47.63 \times 3.45}{11.3} = +14.5$$

$\pm 24.2 \text{ ksi}$  (load is reversible)

$$\text{M.S.} = \frac{30}{24.2} - 1 = +0.24$$

(comp.)



\* Load comes from finite element computer model  
Sum  $V_2$  (lateral beam shear) of BMS 613 & 617

| ENGR. | C. Koenig | 11-22-71 | REVISED | DATE | Lug Back-up structure<br>for Lug @ BL 8.7<br><br><b>BOEING</b> | CAST    |
|-------|-----------|----------|---------|------|----------------------------------------------------------------|---------|
| CHECK | BOLLINGER | 11-29-71 |         |      |                                                                | Fig. 36 |
| APR   |           |          |         |      |                                                                |         |
| APR   |           |          |         |      |                                                                |         |
|       |           |          |         |      | 57                                                             |         |

THE BOEING COMPANY



FIGURE 37 DAMAGE TOLERANCE CRITICAL CONTROL POINT LOCATIONS

A third detail/flaw combination consisting of a corner crack at a stiffener on the pressure web was considered; however, finite element analysis showed detail stresses to be uncritical.

According to the requirements of MIL-A-83444, the cast bulkhead is classified as slow crack growth structure and in-service noninspectable.

a. Initial Flaw Assumption

Initial flaw assumptions were made in accordance with MIL-A-83444 requirements for slow crack growth structure:

- o 0.05-inch radius corner flaw at the side of a hole (fig. 38)
- o Semicircular surface flaw with a length ( $2c$ ) equal to 0.25 inch and a depth ( $a$ ) equal to 0.125 inch (fig. 39)

b. Material Properties

Crack growth rate ( $da/dn$ ) for A357 cast aluminum was obtained from fatigue crack growth rate testing using thin compact tension specimens (Test Group A, Specimens ASEN 1 - ASEN 8, ref. 1). A least-squares fit of the data shown in figure 40 was calculated using the Erdogan equation:

$$da/dn = (4.76 \times 10^{-11}) (D) (K_{max})^{4.70}$$

where  $D = \begin{cases} 0 & ; R > 1 \\ (1-R)^{3.70} & ; 0 \leq R < 1 \\ (1-R/2) & ; -1 < R \leq 0 \\ 1.5 & ; R < -1 \end{cases}$



FIGURE 38. LOAD ATTACHMENT POINT A INITIAL FLAW LOCATION



FIGURE 39. SHEAR WEB INITIAL FLAW LOCATION



A357 CRACK GROWTH RATE DATA

TEST GROUP A

R = 0.06, LAB AIR

AVERAGE CRACK GROWTH RATE

$$\frac{da}{dn} \approx (4.76 \times 10^{-11})(1-R)^{3.70} (K_{\max})^{4.70}$$

FIGURE 40. A357 ALUMINUM CRACK GROWTH RATE DATA

This least-squares fit was used over the entire stress intensity range (i.e.,  $K_{th} = 0$ ) due to a lack of crack growth rate data in the lower  $\Delta K$  region. The integration of the crack growth rate equation was performed by computer program POWERS7 and is described in reference 2.

Plane strain fracture toughness ( $K_{IC}$ ) tests for A357 were conducted per ASTM 399-74 requirements, the results of which are presented in reference 1. An average value of  $K_{IC} = 17.55 \text{ ksi}\sqrt{\text{in.}}$  was derived from specimens that met  $K_{IC}$  validity requirements as shown in table 1.

Plane stress fracture toughness ( $K_C$ ) test results for 0.20-inch-thick A357 are reported in reference 7. An average value of  $K_C = 38.47 \text{ ksi}\sqrt{\text{in.}}$  was derived from the specimens shown in table 2. Specimens for which the final crack length exceeded one-third of the width of the specimens were not used in deriving the average value of  $K_C$ .

c. Stress Intensity Factor Solution

The stress intensity factor,  $K$ , is generally expressed as:

$$K = \sigma \cdot \sqrt{\pi a} \cdot Y$$

The correction factor for radius corner flaws,  $Y_{CF}$ , is the result of a number of correction factors found in reference 3 for the case of a corner radius flaw originating at a loaded hole as shown in figure 38.

The applied stress,  $\sigma$ , is the bearing stress resulting from the applied load through the pin and the clevis geometry.

TABLE 1.  $K_{IC}$  PLANE STRAIN FRACTURE TOUGHNESS DATA

| SPECIMEN<br>IDENTIFICATION | * $K_{IC}$<br>(KSI $\sqrt{\text{IN.}}$ ) |
|----------------------------|------------------------------------------|
| ACT 3-2                    | 16.6                                     |
| ACT 4-2                    | 16.0                                     |
| ACT 7-1                    | 19.4                                     |
| ACT 8-1                    | 18.2                                     |

\* Specimens meet ASTM E399-74 validity requirements

$$(K_{IC})_{\text{AVG}} = \frac{70.20}{4} = 17.55 \text{ KSI} \sqrt{\text{IN.}}$$

TABLE 2.  $K_c$  PLANE STRESS FRACTURE TOUGHNESS DATA

| SPECIMEN<br>IDENTIFICATION | $K_{APP}$<br>(KSI $\sqrt{\text{IN.}}$ ) |
|----------------------------|-----------------------------------------|
| ACC 1-1                    | 36.11                                   |
| ACC 1-2                    | 34.73                                   |
| ACC 2-1                    | 41.35                                   |
| ACC 2-2                    | 45.75                                   |
| ACC 3-2                    | 42.90                                   |
| ACC 4-1                    | 35.90                                   |
| ACC 4-2                    | 35.23                                   |
| ACC 5-1                    | 45.22                                   |
| ACC 6-2                    | 45.02                                   |
| ACC 7-1                    | 49.38                                   |
| ACC 7-2                    | 35.01                                   |
| ACC 8-1                    | 29.67                                   |
| ACC 8-2                    | 23.87                                   |

$$(K_c)_{AVG} = \frac{500.14}{13} = 38.14 \text{ KSI} \sqrt{\text{IN.}}$$

The stress intensity solution used for the corner radius flaw at a pin-loaded hole is:

$$K = \sigma \cdot \sqrt{\pi a} \cdot Y_{CF}$$

$$\text{where } Y_{CF} = 1/\sqrt{Q} \cdot M_F \cdot M_B \cdot F_6 \cdot [\cos^2 \beta + a^2/c^2 \sin^2 \beta]^{1/4}$$

$$\sqrt{\frac{2r + \pi ac/4t}{2r + 2\pi ac/4t}} \quad (\text{ref. 3})$$

The correction factor used for the surface flaw case,  $Y_{SF}$ , is derived from reference 4.

The surface flaw is oriented such that the principal tensile stresses acting on the web are perpendicular to the crack.

The stress intensity solution used for the surface flaw is:

$$K = \sigma \cdot \sqrt{\pi a} \cdot Y_{SF}$$

$$\text{where } Y_{SF} = 1/\sqrt{Q} \cdot M_B \cdot [\cos^2 \beta + a^2/c^2 \sin^2 \beta]^{1/4} \quad (\text{ref. 4})$$

$$\text{and } \sigma = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\frac{\sigma_x + \sigma_y}{2} + txy^2}$$

d. Loads

The repeated external loads noted in reference 2 are used for the analyses. The stresses applied are representative of the design usage as given by the mission mix of reference 2. Local stresses for both details were derived from unit load solutions based on finite element analysis of the bulkhead. Analysis stresses for attachment point A and shear web details are presented in appendix A and appendix B, respectively.

MIL-A-83444 requires that the assumed initial damage of in-service noninspectable slow crack growth structure shall not grow to critical size in two design service lifetimes. It also specifies that the structure must be capable of withstanding a residual strength load,  $P_{LT}$ , which is the maximum average internal member load that will occur once in 20 lifetimes. The residual strength load to be applied to the bulkhead is the design limit load for the Boeing Side Load condition and is given in reference 5.

e. Results

Damage tolerance analysis results presented in table 3 demonstrate that the requirements specified in MIL-A-83444 for in-service noninspectable slow crack growth structure were met for both details:

AD-A057 422

BOEING AEROSPACE CO SEATTLE WASH  
COST ALUMINUM STRUCTURES TECHNOLOGY, PHASE III (CAST). (U)

F33615-76-C-3111

UNCLASSIFIED

JAN 78 D GOEHLER  
D180-22807-1

F/G 1/3

NL

AFFDL-TR-78-7

2 OF 2  
ADA  
057422



TABLE 3 FLAW GROWTH SUMMARY FOR BULKHEAD DETAILS

| DETAIL                                    | $a_{initial}$ | $a_1$ life* | $a_2$ lives* | $a_{critical}$ ** |
|-------------------------------------------|---------------|-------------|--------------|-------------------|
| Load Attachment Point A                   | 0.05"         | 0.050"      | 0.050"       | 0.10"             |
| Shear Web<br>(LBL 28-32/<br>WL 124.7-130) | 0.125"        | 0.125"      | 0.125"       | 4.39"             |

\* One service life consists of 1516 applications of the mission mix block

\*\*  $a_{critical}$  is determined using design limit load.



A357 fatigue crack growth test results showed that little growth occurred below a stress intensity level of 10 ksi $\sqrt{\text{in.}}$ . The maximum spectrum stress intensity,  $K_{\max}$ , in the damage tolerance analysis for the 0.05-inch radius corner flaw at attachment point A is 7.25 ksi $\sqrt{\text{in.}}$ , while  $K_{\max}$  for the shear web surface flaw ( $2c = 0.250$  inch,  $a = 0.125$  inch) is 4.55 ksi $\sqrt{\text{in.}}$ . The maximum stress intensity that occurs each flight in the spectrum for the 0.05-inch radius corner flaw at attachment point A is 2.32 ksi $\sqrt{\text{in.}}$ , whereas for the shear web the maximum stress intensity that occurs every flight is 1.41 ksi $\sqrt{\text{in.}}$ . Therefore, little crack growth would be expected for either detail since the spectrum stress intensities for cracks on the order of MIL-A-83444 assumed initial flaw sizes are well below 10 ksi $\sqrt{\text{in.}}$ .

### 3. SENSITIVITY STUDIES

Sensitivity studies were performed to identify the sensitivity of crack growth life predictions to material properties, aircraft usage, and the initial flaw size assumed to exist. The details used for the studies are those selected for the damage tolerance analysis (sec. III.2, fig. 37):

- o Outer load attachment point A
- o Shear web located between LBL 28-LBL 32 and WL 124.7-WL 130.

The results of these studies are presented below.

a. Sensitivity to Material Properties

The sensitivity of the analysis results to the variability of the material properties was established by using upper bound and average crack growth rate (fig. 41) and average and lower bound fracture toughness properties (table 4) to perform crack growth analyses for each bulkhead detail. The loads spectrum representing the equivalence of typical usage was used. The results discussed below are shown in table 4.

- o Load attachment point A -- The corner radius flaw grows from 0.05 inch to 0.05933 inch in two service lifetimes using upper bound crack growth rate data. A critical crack length of 0.08 inch was calculated using a lower bound  $K_{IC} = 16.00 \text{ ksi}\sqrt{\text{in.}}$  and  $P_{LT} = 25.59 \text{ ksi}$  (sec. III.2.e).
- o Shear web -- The initial surface flaw ( $2c = 0.250 \text{ inch}$ ,  $a = 0.125 \text{ inch}$ ) grows to a crack depth of 0.13201 inch in two service lifetimes using upper bound crack growth rate data. The critical crack length was determined to be 1.69 inches for a through-the-thickness crack using a lower bound  $K_C = 23.87 \text{ ksi}\sqrt{\text{in.}}$  and  $P_{LT} = 10.36 \text{ ksi}$  (sec. III.2.e).

The use of upper bound crack growth rate data had little effect on the crack growth results for either detail, while lower bound fracture toughness properties caused the critical crack lengths of the details to be smaller. Thus, MIL-A-83444 requirements can still be met using upper bound crack growth data and lower bound fracture toughness properties.



TEST GROUP A

R = 0.06, LAB AIR

AVERAGE CRACK GROWTH RATE

$$\frac{da}{dn} = (4.76 \times 10^{-11})(1-R)^{3.70}(K_{\max})^{4.70}$$

UPPER BOUND CRACK GROWTH RATE

$$\frac{da}{dn} = (1.53 \times 10^{-10})(1-R)^{3.70}(K_{\max})^{4.70}$$

FIGURE 41 A357 CRACK GROWTH RATE DATA

TABLE 4. MATERIAL PROPERTIES SENSITIVITY STUDIES

| DETAIL                                                       | MATERIAL DATA          |                        | $a_{initial}$ | $a_1$ life | $a_2$ lives | $a_{critical}$ |
|--------------------------------------------------------------|------------------------|------------------------|---------------|------------|-------------|----------------|
|                                                              | $da/dn^*$              | $K_{IC}^{**}$          |               |            |             |                |
| LOAD ATTACHMENT<br>POINT A<br><br>(CORNER FLAW<br>AT A HOLE) | AVERAGE<br>DATA        | AVERAGE<br>DATA        | 0.05"         | 0.050"     | 0.050"      | 0.10"          |
|                                                              | UPPER<br>BOUND<br>DATA | LOWER<br>BOUND<br>DATA | 0.05"         | 0.050"     | 0.050"      | 0.08"          |
| SHEAR WEB<br>(SURFACE FLAW)                                  | AVERAGE<br>DATA        | AVERAGE<br>DATA        | 0.125"        | 0.125"     | 0.125"      | 4.39"          |
|                                                              | UPPER<br>BOUND<br>DATA | LOWER<br>BOUND<br>DATA | 0.125"        | 0.125"     | 0.125"      | 1.69"          |

\* AVERAGE DATA

$C = 4.76 \times 10^{-11}$ ,  $N = 3.70$ ,  $M = 4.70$

UPPER BOUND DATA       $C = 1.53 \times 10^{-10}$ ,  $N = 3.70$ ,  $M = 4.70$

\*\* LOAD ATTACHMENT POINT A: AVERAGE DATA       $K_{IC} = 17.55 \text{ KSI } \sqrt{\text{IN}}$   
 LOWER BOUND DATA       $K_{IC} = 16.00 \text{ KSI } \sqrt{\text{IN}}$   
 AVERAGE DATA       $K_C = 38.47 \text{ KSI } \sqrt{\text{IN}}$   
 LOWER BOUND DATA       $K_C = 23.87 \text{ KSI } \sqrt{\text{IN}}$

b. Sensitivity to Aircraft Usage

Crack growth analyses were performed for the two bulkhead details using average crack growth data (fig. 41) and fracture toughness properties (sec. III.2.b). Loads spectra representing aircraft usage which is more damaging than typical usage were used for this study. This spectrum consists of a mission mix containing three more STOL flights and three fewer CTOL flights than typical usage as shown in table 5. One service life of typical usage would contain 15,160 CTOL and 9,096 STOL flights, whereas the usage defined in this study contains 10,612 CTOL and 13,644 STOL flights in each lifetime. Typical usage is defined by the loads spectrum in appendix C of reference 2. Studies concerning spectra that are less damaging than normal usage were not conducted due to the small amount of crack growth produced by the typical usage loads spectrum.

The results of the aircraft usage sensitivity studies are presented in table 6. In two design service lifetimes, the radius corner flaw at load attachment point A grew from 0.05 inch to 0.05048 inch, whereas the shear web surface flaw grew from a surface crack length ( $2c$ ) of 0.250 inch to 0.2512 inch. From these results, it is evident that the change in mission mix for this study had little effect on the crack growth.

c. Sensitivity to Initial Flaw Assumption

Crack growth analyses were performed assuming larger initial flaw sizes than defined in MIL-A-83444. Average material properties (sec. III.2.b and typical aircraft usage were assumed.

TABLE 5 MISSION MIX MAKE-UP

| FLIGHT TYPE   | TYPICAL USAGE | STUDY USAGE |
|---------------|---------------|-------------|
| 1 (CTOL)      | 1             | 1           |
| 2 (CTOL)      | 4             | 1           |
| 3 (STOL)      | 3             | 3           |
| 4 (CTOL)      | 5             | 5           |
| 5 (STOL)      | 3             | 6           |
| FLIGHTS BLOCK | 16            | 16          |

TABLE 6 AIRCRAFT USAGE SENSITIVITY STUDIES

| DETAIL                                                      | SPECTRUM<br>MAKE-UP | a<br>initial | a<br>1 life | a<br>2 lives |
|-------------------------------------------------------------|---------------------|--------------|-------------|--------------|
| LOAD<br>ATTACHMENT<br>POINT A<br>(CORNER FLAW<br>AT A HOLE) | TYPICAL<br>USAGE    | 0.05"        | 0.050"      | 0.050"       |
|                                                             | STUDY<br>USAGE      | 0.05"        | 0.050"      | 0.050"       |
| SHEAR WEB<br>(SURFACE<br>FLAW)                              | TYPICAL<br>USAGE    | 0.125"       | 0.125 "     | 0.125 "      |
|                                                             | STUDY<br>USAGE      | 0.125"       | 0.125 "     | 0.125 "      |

The results of this study are presented in table 7. An initial corner radius flaw of 0.06 inch was assumed for outer load attachment point A. This grew to a flaw size of 0.06051 inch in two service lives. Additionally, when an initial flaw size of 0.080 inch was assumed, the crack grew to 0.090 inch in two service lifetimes, still below the 0.10-inch critical crack length. The shear web surface flaw was assumed to begin at a depth (a) of 0.150 inch and a surface length (2c) of 0.300 inch. After two service lifetimes of typical aircraft usage, the crack grew to a depth of 0.15008 inch and a surface length of 0.30016 inch. Analysis assuming an initial through-the-thickness flaw length of 1.35 inches resulted in the crack growing to a length of 3.00 inches in two lives.

From these analyses, it is evident that an equivalent initial flaw size that is much larger than that required by MIL-A-83444 will not grow to critical crack size in two service lifetimes for either detail.

#### 4. DURABILITY ANALYSIS

Durability analyses were performed for the details selected for the damage tolerance analysis:

- o Outer load attachment point A
- o Shear web located between LBL 28-LBL 32 and WL 124.7-WL 130

Detail locations are presented in figure 37. The loads acting on these two details were calculated from external loads using unit load solutions derived from finite element analysis results. The Boeing Durability Method is used for all durability calculations (ref. 2).

TABLE 7. INITIAL FLAW ASSUMPTION SENSITIVITY STUDIES

| DETAIL                                                         | <sup>a</sup><br>initial | <sup>a</sup><br>1 life | <sup>a</sup><br>2 lives |
|----------------------------------------------------------------|-------------------------|------------------------|-------------------------|
| LOAD<br>ATTACHMENT<br>POINT<br>A<br>(CORNER FLAW<br>AT A HOLE) | 0.05"                   | 0.050 "                | 0.050 "                 |
|                                                                | 0.06"                   | 0.060 "                | 0.060 "                 |
|                                                                | 0.080"                  | 0.083 "                | 0.090 "                 |
| SHEAR<br>WEB<br>(SURFACE<br>FLAW)                              | 0.125"                  | 0.125 "                | 0.125 "                 |
|                                                                | 0.150"                  | 0.150 "                | 0.150 "                 |
|                                                                | 1.350"                  | 1.985 "                | 3.00 "                  |

a. Detail Design S-N Curves

The S-N curves for A357 are developed from fatigue test data for both smooth and open-hole fatigue test specimens as shown in figure 42. The design S-n curves for each detail are derived from test data by applying appropriate factors to achieve 95% confidence and 95% reliability. Detail design S-N curves for smooth and open-hole specimens are presented in figures 43 and 44, respectively.

Detail design S-N curves are expressed by two parameters: a detail fatigue rating, DFR, and slope ratio, S. The slope ratio, S, is generally constant at 2.0 for aluminum alloys. The geometric severity of a particular detail considering its fatigue performance is therefore expressed by the DFR.

For a clevis or lug detail, the DFR is derived from:

$$DFR = DFR_{BASE} \cdot A \cdot L_s \cdot L_d \cdot L$$

The  $DFR_{BASE}$  value accounts for the particular geometry of the clevis or lug. Since the  $DFR_{BASE}$  charts are presently derived for wrought aluminum alloys, the factor A accounts for the effect of the casting alloy. The factor A is derived as the ratio:

$$A = \frac{DFR (\text{OPEN HOLE A357})}{DFR (\text{OPEN HOLE 2024})}$$

where DFR (open hole A357) is as shown on figure 44 and DFR (open hole 2024) is obtained from durability design charts.

Therefore,

$$A = \frac{11.0}{16.5} = 0.67$$



FIGURE 42. A357 S-N DATA FOR SMOOTH AND OPEN HOLE SPECIMENS



FIGURE 43. DETAIL DESIGN S-N CURVES FOR SMOOTH FATIGUE SPECIMENS



FIGURE 44. DETAIL DESIGN S-N CURVES FOR OPEN HOLE SPECIMENS

$L_s$  and  $L_d$  represent the geometric size and shape factor, respectively, and  $L_\theta$  is the oblique load factor.  $L_s$ ,  $L_d$ , and  $L_\theta$  are obtained from the durability design charts, and for this case:

$$L_s = 1.00$$

$$L_d = 1.06$$

$$L_\theta = 1.00$$

The DFR for the detail in consideration is

$$\begin{aligned} \text{DFR} &= (\text{DFR}_{\text{BASE}}) (A) (L_s) (L_d) (L_\theta) \\ &= (12.80) (0.67) (1.0) (1.06) (1.0) = 9.1 \end{aligned}$$

The value for  $\text{DFR}_{\text{BASE}}$  is obtained from the durability design charts for the particular geometry.

For the shear web detail, the DFR is derived from:

$$\text{DFR} = \text{DFR}_{\text{BASE}} \cdot B$$

The  $\text{DFR}_{\text{BASE}}$  value was calculated from smooth fatigue test results applying the reliability considerations as discussed in reference 2. Since the specimens were loaded in tension, the factor B accounts for the fact that the web detail will be loaded in shear. The factor B is from the Boeing Durability Manual:

$$B = 0.7$$

The DFR for the shear web detail is:

$$\text{DFR} = \text{DFR}_{\text{BASE}} \cdot B = (17.2) (0.7) = 12.0$$

b. Economic Life

The economic life of the cast bulkhead is predicted for the design usage as represented by the mission mix noted in reference 2. The relative damage due to the five different flights within the mission mix consisting of 16 total flights is calculated and summarized for both the load attachment point A and shear web details in tables 8 and 9, respectively.

The relative damage of each flight is the sum of the damages of the individual stress excursions applied during each flight. The relative damages for the individual stress cycles are calculated from the S-N curves by:

$$\text{relative damage} = \frac{100,000}{N_{S-N}} \cdot n_{\text{applied}}$$

The GAG damage ratio is calculated from

$$\text{GAG damage ratio} = \frac{\text{relative damage GAG cycle}}{\text{relative damage total flight}}$$

For load attachment point A, the average GAG cycle was determined to be:

$$(f_{\max})_{\text{GAG}} = 7.88 \text{ ksi}$$

$$(f_{\min})_{\text{GAG}} = 0.0 \text{ ksi}$$

The average relative damage of this GAG cycle is established as:

$$\text{relative GAG damage} = 0.361 \text{ (ref. table 8)}$$

The average GAG damage ratio for this detail is:

$$0.361/1.242 = 0.29$$

TABLE 8. LOAD ATTACHMENT POINT A--RELATIVE DAMAGE

| FLIGHT<br>TYPE                    | No. of<br>FLIGHTS | DAMAGE EACH<br>FLIGHT <sup>1</sup> | TOTAL<br>DAMAGE | GAG DAMAGE<br>EACH FLIGHT |
|-----------------------------------|-------------------|------------------------------------|-----------------|---------------------------|
| 1                                 | 1                 | 1.055                              | 1.055           | 0.542                     |
| 2                                 | 4                 | 1.055                              | 4.220           | 0.542                     |
| 3                                 | 3                 | 1.424                              | 4.272           | 0.279                     |
| 4                                 | 5                 | 0.629                              | 3.145           | 0.279                     |
| 5                                 | 3                 | 2.394                              | 7.182           | 0.279                     |
|                                   | 16                |                                    | 19.874          |                           |
| average damage per flight = 1.242 |                   |                                    |                 |                           |
| average GAG damage = 0.361        |                   |                                    |                 |                           |

<sup>1</sup> based on DFR = 16

TABLE 9. SHEAR WEB--RELATIVE DAMAGE

| FLIGHT TYPE                        | NO. OF FLIGHTS | DAMAGE EACH FLIGHT  | TOTAL DAMAGE | GAG DAMAGE EACH FLIGHT |
|------------------------------------|----------------|------------------------------------------------------------------------------------------------------|--------------|------------------------|
| 1                                  | 1              | 0.0227                                                                                               | 0.0227       | 0.0178                 |
| 2                                  | 4              | 0.0227                                                                                               | 0.0908       | 0.0178                 |
| 3                                  | 3              | 0.0414                                                                                               | 0.1242       | 0.0281                 |
| 4                                  | 5              | 0.0164                                                                                               | 0.0820       | 0.0123                 |
| 5                                  | 3              | 0.0526                                                                                               | 0.1578       | 0.0281                 |
|                                    | 16             |                                                                                                      | 0.04775      |                        |
| average damage per flight = 0.0298 |                |                                                                                                      |              |                        |
| average GAG damage = 0.0220        |                |                                                                                                      |              |                        |

 based on DFR = 16

For the life predictions, the GAG cycle will be used in place of the variable amplitude flight stress excursions. For that purpose, an equivalent number of cycles for the GAG excursions must be established as the life goal. The design service life of the bulkhead is 25,000 hours. Using the average duration for one flight of 1.03 hours, the number of flights is 24,272. The equivalent number of GAG cycles for the life requirement is:

$$N_{equ} = \frac{(N_{FLIGHTS}) (FRF)}{\text{GAG damage ratio}}$$

$$N_{equ} = \frac{(24272) (1.5)}{0.2907} = 125,243 \text{ cycles}$$

An additional fatigue reliability factor, FRF, is applied in accordance with the Boeing Durability Method. The factor is mainly a function of the location of the analysis detail on the airplane.

Using the detail design curve defined by a DFR = 9.1,  $f_{max} = 7.88 \text{ ksi}$ , and  $R = 0$  for the clevis detail results in a life prediction expressed in terms of GAG cycles of 135,000 cycles. In terms of hours, the economic life is predicted as:

$$\text{life} = (25000) \frac{(135,000)}{(125,243)} = 26,948 \text{ hours}$$

The economic life therefore exceeds the design life by 8%. In terms of stresses, the fatigue margin is:

$$FM = \frac{f_{max}}{f_{max}} - 1 = \frac{8.25}{7.88} - 1 = 0.037$$

where  $F_{max}$  is the maximum allowable GAG stress.

The shear web analysis was performed in the same manner. The GAG cycle was determined to be:

$$(f_{\max})_{GAG} = 2.85 \text{ ksi}$$

$$(f_{\min})_{GAG} = -3.16 \text{ ksi}$$

The average relative damage for this GAG cycle as shown in table 9 is:

$$\text{relative GAG damage} = 0.0200$$

The average GAG damage ratio for this detail is:

$$\frac{0.0200}{0.0298} = 0.67$$

The equivalent number of GAG cycles for the life requirement becomes:

$$N_{\text{equ}} = \frac{(24272)(1.5)}{(0.67)} = 54,340 \text{ cycles}$$

Using the detail design curve defined by a DFR = 12.0,  $f_{\max} = 2.85$  ksi, and  $R = -0.9$  for the shear web detail results in a life prediction that is very large. The economic life therefore exceeds the design life by a large margin.

## 5. WEIGHTS

The calculated weight of the bulkhead casting is 205.2 lb. This weight results from a detailed weight calculation of the bulkhead and includes a +2.5% increment for manufacturing tolerance. The 2.5% represents half the drawing tolerance over nominal (+0.005) on web and flange thickness. Past experience with aircraft parts calculated at nominal dimensions versus actual part weight shows this approach to be satisfactory. The density value of A357 cast aluminum was assumed to be the same as for A356, which is 0.097 lb/in.<sup>3</sup>.

The weight of the finished machined bulkhead including bushings is 181.1 lb. This weight results from machining the periphery to contour and machining the interfaces for the nose gear and door actuator fittings.

The finished bulkhead weight of 181.1 lb results in a 6.5-lb weight reduction when compared to the updated baseline component weight of 187.6 lb.

## 6. COST

The cost summary for the YC-14 station 170 cast bulkhead is shown in figure 45. These cost figures are based on the CAST bulkhead assembly, 162-00018, using the final detail design of the station 170 bulkhead casting, 162-00017, as the major part.

|                           | No. 1 A/P<br>cost | 300 A/P<br>cost |
|---------------------------|-------------------|-----------------|
| Raw material              | \$ 1,870          | \$ 309,000      |
| Labor:                    |                   |                 |
| Detail and assembly tools | 200,018           | 200,018         |
| Foundry tools             | 95,000            | 95,000          |
| Fabrication               | 10,003            | 1,482,313       |
| Section installation      | --                | 247,680         |
| Total                     | \$306,891         | \$2,334,011     |
| Cost per unit             | \$306,891         | \$ 7,780        |

Figure 45. Station 170 Cast Bulkhead Costs

The raw material figure covers aluminum, sand, and binder. The aluminum, for one unit only, comes to almost 2000 lb including the bulkhead and all excess material, i.e., gates, risers, flashing, etc. For the 300-unit production run, approximately 75% of each pour is remelted and brought up to specification requirements for the next pour with completely new material used after each five castings. The sand and binder are not reusable.

The item for detail and assembly tools covers the initial hard production tooling costs only. The figure shown for the No. 1 airplane would be drastically reduced if only one unit were to be made.

The foundry tool costs cover the pattern, special mold flask tooling, and chills.

Fabrication costs for the 300-unit production run include a factored cost increment for tool maintenance and refurbishment.

The section installation costs shown are the same as shown on the updated baseline component. These costs were not recalculated based on the assumption that final installation cost differences between a built-up and a cast bulkhead would be negligible.

Engineering costs are not included here, nor are they included in the updated baseline costs in section II.5.b. For a 300-unit production run, the unit cost for engineering is relatively small, having little or no effect on the cost comparison between a built-up and a cast bulkhead.

The cost comparison between the updated baseline component as noted in section II.5.b and the detail designed cast bulkhead (fig. 45) is as shown:

$$\Delta \text{Cost} = \frac{12484 - 7780}{12484} (100) = 37.7\% \text{ reduction}$$

## 7. EFFECT OF DEFECTS

The occurrence of discontinuities in the castings produced during the development of foundry manufacturing procedures did not result in a wide variety of discontinuity types or sizes from which to test the effects of defects. Also, few defects were found in locations having sufficient material for specimen fabrication. The most common discontinuities encountered were gas and shrink porosity, sponge and shrinkage cavities, and less dense inclusions. Crack-like discontinuities were almost completely absent.

With a given casting, some discontinuities, such as shrinkage cavities and sponge, can be anticipated in certain locations because of an association with mold design, gating, risering, chilling, and other foundry practices. However, experience in Phase II has shown that many of the common discontinuities (dross, inclusions, and gas pores) have occurred randomly. Dispersed shrinkage porosity was somewhat controlled by type and placement of chills, but the presence of this condition away from chills was unpredictable.

The capability of NDE (nondestructive evaluation) to detect "defects" is difficult to assess quantitatively. Results of both the penetrant method for surface discontinuities and radiography for those occurring internally are highly subjective in interpretation. Industry reference standards and defect dimensional limits for penetration inspection do not exist. Reference radiographs under ASTM E155 are only comparative standards and no means of quantifying many of the defect conditions seems presently feasible. Therefore, in reality, inspectors exercise considerable individual judgement in evaluating those discontinuities that are tolerable in some approximate degree.

NDE capabilities are also significantly influenced by many manufacturing process and inspection technique variables. While it was shown that penetrant methods will reveal pore openings of the order of 0.001-inch diameter in cast surfaces, sawing, grinding, and abrasive blasting will prevent detection of these and much larger openings. Larger shallow defects also may be overlooked if technique is not closely controlled. Radiographic technique is often governed by configuration of the casting. Individual pores of 0.002-0.003 inch may be detected in 0.125-inch-thick material, but must be of the order of 0.015-inch diameter to be resolved through 0.75-inch-thick material. Also, crack-like defects must be oriented closely parallel to the incident X-ray beam to be detected in any thickness.

Because of the importance of human, processing, and technique factors, precise quantitative determination of NDE capabilities must be based on a statistical approach. Such a study is outside of the scope of this program. However, determination of what types and levels of discontinuities are truly "defects" is of initial importance. Considerable information is expected from the allowables and effects of defects data, in conjunction with fractographic examination and correlation with NDE results. When complete, this will provide some measure of actually achieved NDE capabilities, and aid in determining necessary NDE improvements and final requirements.

Improvement in NDE is needed in the following areas:

1. Assuring soundness of heavy sections, greater than 0.75-inch thickness.
2. Penetrant standards for porosity-type discontinuities.

The analytical approach to the effects of defects consists of accounting for defects in crack growth and fatigue analysis by using the equivalent initial flaws and detail fatigue ratings (DFR) for the various types of defects and X-ray grades.

The equivalent flaws and DFR's are being derived from constant-amplitude fatigue specimen tests. Specimens have been saw cut from existing castings considering the defect types and X-ray grades as presented in table 10. The specimens were located on the existing castings (20- x 40-inch fracture toughness panels and Hitchcock #9 casting) such that the defects are placed approximately in the center of the test section.

In order to evaluate specimen size effect, a number of 6- x 12-inch specimens in addition to the regular S-N specimens will be tested. The experiments will yield cycles to failure, from which equivalent initial flaws will be derived by calculating the initial dimensions of an assumed flaw that results in a crack growth life equal to the test life. DFR's will be determined from the cycles to failure according to the procedure described in appendix E of reference 2.

TABLE 10. EQUIVALENT INITIAL FLAW SIZES FOR TYPES OF DEFECTS AND X-RAY GRADES

| DEFECT TYPE              | X-RAY GRADES                                                    |   |   |
|--------------------------|-----------------------------------------------------------------|---|---|
|                          | B                                                               | C | D |
| GAS HOLES                |                                                                 |   |   |
| GAS POROSITY (ROUND)     |                                                                 |   |   |
| GAS POROSITY (ELONGATED) | Equivalent Initial Flaw Sizes to be Determined from Experiments |   |   |
| SHRINKAGE CAVITY         |                                                                 |   |   |
| SHIRNKAGE POROSITY       |                                                                 |   |   |
| FOREIGN MATERIAL         |                                                                 |   |   |

## REFERENCES

1. "General Material Property Data," CAST Quarterly Report: April-June 1977.
2. "Damage Tolerance and Durability Control Plan," January 1977.
3. "Fracture and Fatigue Crack Growth Behavior of Surface Flaws and Flaws Originating at Fastener Holes," AFFDL Report: AFFDL-TR-74-47, May 1974.
4. Shah, R. C. and Kobayashi, A. S., "On the Surface Flaw Problem," ASME, 1972.
5. "Structural Test Plan -- Full-Scale Test," June 1977.
6. "Final Report, Phase I, Cast Aluminum Structures Technology (CAST)," AFFDL Report AFFDL-TR-77-36, May 1977.
7. "General Material Property Data," CAST Quarterly Report: July-September 1977.

APPENDIX A

LOAD ATTACHMENT POINT A ANALYSIS STRESS SPECTRUM

THE BOEING COMPANY

| FLIGHT TYPE & FLIGHT TIME, L1C |       | NUMBER OF FLIGHTS IN THE BLOCK |          | NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE = 41 |            | PERCENT OF UA PER FLIGHT UNSTARTED |      | PERCENT DURABILITY |     |
|--------------------------------|-------|--------------------------------|----------|-------------------------------------------------------|------------|------------------------------------|------|--------------------|-----|
| PCT. TOTAL BLOCK DAMAGE THIS   |       | DURATION                       |          | FLIGHT                                                |            | UNSTARTED                          |      | DURABILITY         |     |
| L1                             | PHASE | MIN                            | MAX      | CYCLES                                                | M.T.P.A.C. | 0.00                               | 0.00 | 0.00               | 100 |
| T1                             | 1.00  | .89                            | 1.00     | 1.00E+02                                              | .000       | 0.00                               | 0.00 | 0.00               | 100 |
| T2                             | 1.00  | .80                            | 1.05E+02 | .000                                                  | 0.00       | 0.00                               | 0.00 | 0.00               | 100 |
| T3                             | 1.17  | .70                            | 2.70E+01 | .000                                                  | 0.00       | 0.00                               | 0.00 | 0.00               | 100 |
| T4                             | 1.20  | .60                            | 2.00E+00 | .000                                                  | 0.00       | 0.00                               | 0.00 | 0.00               | 100 |
| T5                             | 1.38  | .52                            | 9.00E+02 | .000                                                  | 0.00       | 0.00                               | 0.00 | 0.00               | 100 |
| T6                             | 1.45  | .42                            | 4.00E+03 | .000                                                  | 0.00       | 0.00                               | 0.00 | 0.00               | 100 |
| T7                             | 1.07  | .00                            | 3.12E+01 | .000                                                  | 0.00       | 0.01                               | 0.00 | 0.00               | 100 |
| T8                             | 1.24  | .00                            | 3.12E+01 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T9                             | 1.72  | .00                            | 7.00E+02 | .035                                                  | 0.00       | 0.47                               | 0.02 | 0.00               | 100 |
| T10                            | 1.68  | .06                            | 7.00E+02 | .000                                                  | 0.00       | 0.07                               | 0.00 | 0.00               | 100 |
| T11                            | 1.00  | .00                            | 1.74E+01 | .000                                                  | 0.00       | 0.01                               | 0.00 | 0.00               | 100 |
| T12                            | 1.09  | .00                            | 1.74E+01 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T13                            | 2.53  | .00                            | 1.74E+01 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T14                            | 1.00  | .00                            | 4.30E+02 | .134                                                  | 0.00       | 0.45                               | 0.07 | 0.00               | 100 |
| T15                            | 1.02  | .00                            | 4.30E+02 | .000                                                  | 0.00       | 0.07                               | 0.00 | 0.00               | 100 |
| T16                            | 1.25  | .00                            | 1.33E+01 | .000                                                  | 0.00       | 0.01                               | 0.00 | 0.00               | 100 |
| T17                            | 1.25  | .00                            | 1.33E+01 | .000                                                  | 0.00       | 0.05                               | 0.00 | 0.00               | 100 |
| T18                            | 1.25  | .00                            | 4.60E+02 | .653                                                  | 0.00       | 1.04                               | 0.00 | 0.00               | 100 |
| T19                            | 1.25  | .00                            | 2.60E+02 | .037                                                  | 0.00       | 0.16                               | 0.01 | 0.00               | 100 |
| T20                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T21                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T22                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T23                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T24                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T25                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T26                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T27                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T28                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T29                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T30                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T31                            | 1.25  | .00                            | 5.20E+02 | .000                                                  | 0.00       | 0.02                               | 0.00 | 0.00               | 100 |
| T32                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T33                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T34                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T35                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T36                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T37                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T38                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T39                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T40                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T41                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T42                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T43                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T44                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T45                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T46                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T47                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T48                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T49                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T50                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T51                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T52                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T53                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T54                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T55                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T56                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T57                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T58                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T59                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T60                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T61                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T62                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T63                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T64                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T65                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T66                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T67                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T68                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T69                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T70                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T71                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T72                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T73                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T74                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T75                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T76                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T77                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T78                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T79                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T80                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T81                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T82                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T83                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T84                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T85                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T86                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T87                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T88                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T89                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T90                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T91                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T92                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T93                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T94                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T95                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T96                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T97                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T98                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T99                            | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |
| T100                           | 1.25  | .00                            | 4.00E+03 | 1.00                                                  | 0.00       | 1.00                               | 0.00 | 0.00               | 100 |

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDCG

THE BOEING COMPANY

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDG

FLIGHT TYPE = FLIGHT TYPE 2  
NUMBER OF FLIGHTS IN THE BLOCK = 9  
PC% TOTAL BLOCK DAMAGE THIRD FLIGHT CAUSES UNREL.  
PC% DURABILITY

NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE = 41

| LABEL | F MAX | F MIN | CYCLES    | RAT.PAC. | PERCENT OF UA FLIGHT<br>UNRELIABLE | PERCENT OF UA FLIGHT<br>REFARDED |
|-------|-------|-------|-----------|----------|------------------------------------|----------------------------------|
| T1    | .98   | .89   | 1,000E+02 | .000     | .00                                | .00                              |
| T2    | 1.08  | .80   | 1,000E+02 | .000     | .00                                | .05                              |
| T3    | 1.17  | .70   | 2,700E+01 | .000     | .00                                | .05                              |
| T4    | 1.26  | .60   | 2,000E+00 | .000     | .00                                | .01                              |
| T5    | 1.35  | .52   | 9,000E+02 | .000     | .00                                | .00                              |
| T6    | 1.45  | .42   | 6,000E+03 | .000     | .00                                | .00                              |
| T7    | 1.57  | .30   | 3,000E+01 | .000     | .00                                | .00                              |
| T8    | 1.67  | .20   | 3,000E+01 | .000     | .00                                | .00                              |
| T9    | 1.77  | .10   | 3,000E+01 | .000     | .00                                | .00                              |
| T10   | 1.87  | .00   | 7,000E+02 | .033     | .02                                | .00                              |
| T11   | 1.97  | .00   | 7,000E+02 | .000     | .02                                | .00                              |
| T12   | 2.07  | .00   | 7,000E+02 | .000     | .02                                | .00                              |
| T13   | 2.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T14   | 2.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T15   | 2.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T16   | 2.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T17   | 2.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T18   | 2.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T19   | 2.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T20   | 2.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T21   | 2.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T22   | 3.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T23   | 3.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T24   | 3.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T25   | 3.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T26   | 3.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T27   | 3.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T28   | 3.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T29   | 3.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T30   | 3.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T31   | 3.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T32   | 4.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T33   | 4.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T34   | 4.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T35   | 4.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T36   | 4.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T37   | 4.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T38   | 4.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T39   | 4.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T40   | 4.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T41   | 4.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T42   | 5.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T43   | 5.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T44   | 5.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T45   | 5.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T46   | 5.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T47   | 5.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T48   | 5.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T49   | 5.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T50   | 5.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T51   | 5.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T52   | 6.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T53   | 6.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T54   | 6.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T55   | 6.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T56   | 6.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T57   | 6.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T58   | 6.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T59   | 6.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T60   | 6.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T61   | 6.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T62   | 7.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T63   | 7.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T64   | 7.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T65   | 7.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T66   | 7.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T67   | 7.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T68   | 7.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T69   | 7.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T70   | 7.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T71   | 7.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T72   | 8.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T73   | 8.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T74   | 8.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T75   | 8.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T76   | 8.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T77   | 8.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T78   | 8.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T79   | 8.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T80   | 8.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T81   | 8.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T82   | 9.07  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T83   | 9.17  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T84   | 9.27  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T85   | 9.37  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T86   | 9.47  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T87   | 9.57  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T88   | 9.67  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T89   | 9.77  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T90   | 9.87  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T91   | 9.97  | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T92   | 10.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T93   | 10.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T94   | 10.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T95   | 10.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T96   | 10.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T97   | 10.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T98   | 10.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T99   | 10.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T100  | 10.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T101  | 10.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T102  | 11.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T103  | 11.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T104  | 11.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T105  | 11.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T106  | 11.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T107  | 11.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T108  | 11.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T109  | 11.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T110  | 11.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T111  | 11.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T112  | 12.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T113  | 12.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T114  | 12.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T115  | 12.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T116  | 12.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T117  | 12.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T118  | 12.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T119  | 12.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T120  | 12.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T121  | 12.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T122  | 13.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T123  | 13.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T124  | 13.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T125  | 13.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T126  | 13.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T127  | 13.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T128  | 13.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T129  | 13.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T130  | 13.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T131  | 13.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T132  | 14.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T133  | 14.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T134  | 14.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T135  | 14.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T136  | 14.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T137  | 14.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T138  | 14.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T139  | 14.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T140  | 14.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T141  | 14.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T142  | 15.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T143  | 15.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T144  | 15.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T145  | 15.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T146  | 15.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T147  | 15.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T148  | 15.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T149  | 15.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T150  | 15.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T151  | 15.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T152  | 16.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T153  | 16.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T154  | 16.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T155  | 16.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T156  | 16.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T157  | 16.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T158  | 16.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T159  | 16.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T160  | 16.87 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T161  | 16.97 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T162  | 17.07 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T163  | 17.17 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T164  | 17.27 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T165  | 17.37 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T166  | 17.47 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T167  | 17.57 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T168  | 17.67 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T169  | 17.77 | .00   | 1,000E+01 | .000     | .00                                | .00                              |
| T170  | 17.87 | .00   |           |          |                                    |                                  |

THE BOEING COMPANY

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

| FLIGHT TYPE 3                                      |       |      |           |          |                                        |                                    |                       |  |
|----------------------------------------------------|-------|------|-----------|----------|----------------------------------------|------------------------------------|-----------------------|--|
| NUMBER OF FLIGHTS IN THE BLOCK 3                   |       |      |           |          |                                        |                                    |                       |  |
| PCT. TOTAL BLOCK DAMAGE THIS FLIGHT 0.5%           |       |      |           |          |                                        |                                    |                       |  |
| NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE 3 |       |      |           |          |                                        |                                    |                       |  |
| LABEL                                              | PHASE | FREQ | CYCLES    | DET.FAC. | PACHT UP DA PER FLIGHT<br>UNITS HANDED | PACHT UP DA PER FLIGHT<br>RETAINED | PERCENT<br>DURABILITY |  |
| T1                                                 | 0.8   | .74  | 9.000E-02 | 1.000    | .000                                   | .000                               | 100                   |  |
| T2                                                 | 0.9   | .66  | 3.000E-02 | .000     | .000                                   | .000                               | 100                   |  |
| T3                                                 | 1.0   | .12  | 5.400E-02 | .000     | .000                                   | .000                               | 100                   |  |
| T4                                                 | 1.1   | .09  | 4.000E-02 | .000     | .000                                   | .000                               | 100                   |  |
| T5                                                 | 1.2   | .07  | 1.800E-01 | .000     | .000                                   | .000                               | 100                   |  |
| T6                                                 | 1.3   | .07  | 6.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T7                                                 | 1.4   | .60  | 1.500E-02 | .000     | .000                                   | .000                               | 100                   |  |
| T8                                                 | 1.5   | .60  | 1.500E-02 | .000     | .000                                   | .000                               | 100                   |  |
| T9                                                 | 1.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T10                                                | 1.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T11                                                | 1.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T12                                                | 1.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T13                                                | 2.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T14                                                | 2.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T15                                                | 2.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T16                                                | 2.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T17                                                | 2.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T18                                                | 2.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T19                                                | 2.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T20                                                | 2.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T21                                                | 2.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T22                                                | 2.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T23                                                | 3.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T24                                                | 3.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T25                                                | 3.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T26                                                | 3.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T27                                                | 3.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T28                                                | 3.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T29                                                | 3.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T30                                                | 3.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T31                                                | 3.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T32                                                | 3.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T33                                                | 4.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T34                                                | 4.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T35                                                | 4.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T36                                                | 4.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T37                                                | 4.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T38                                                | 4.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T39                                                | 4.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T40                                                | 4.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T41                                                | 4.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T42                                                | 4.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T43                                                | 5.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T44                                                | 5.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T45                                                | 5.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T46                                                | 5.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T47                                                | 5.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T48                                                | 5.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T49                                                | 5.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T50                                                | 5.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T51                                                | 5.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T52                                                | 5.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T53                                                | 6.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T54                                                | 6.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T55                                                | 6.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T56                                                | 6.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T57                                                | 6.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T58                                                | 6.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T59                                                | 6.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T60                                                | 6.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T61                                                | 6.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T62                                                | 6.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T63                                                | 7.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T64                                                | 7.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T65                                                | 7.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T66                                                | 7.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T67                                                | 7.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T68                                                | 7.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T69                                                | 7.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T70                                                | 7.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T71                                                | 7.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T72                                                | 7.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T73                                                | 8.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T74                                                | 8.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T75                                                | 8.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T76                                                | 8.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T77                                                | 8.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T78                                                | 8.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T79                                                | 8.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T80                                                | 8.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T81                                                | 8.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T82                                                | 8.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T83                                                | 9.0   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T84                                                | 9.1   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T85                                                | 9.2   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T86                                                | 9.3   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T87                                                | 9.4   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T88                                                | 9.5   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T89                                                | 9.6   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T90                                                | 9.7   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T91                                                | 9.8   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T92                                                | 9.9   | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T93                                                | 10.0  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T94                                                | 10.1  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T95                                                | 10.2  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T96                                                | 10.3  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T97                                                | 10.4  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T98                                                | 10.5  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T99                                                | 10.6  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T100                                               | 10.7  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T101                                               | 10.8  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T102                                               | 10.9  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T103                                               | 11.0  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T104                                               | 11.1  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T105                                               | 11.2  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T106                                               | 11.3  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T107                                               | 11.4  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T108                                               | 11.5  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T109                                               | 11.6  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T110                                               | 11.7  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T111                                               | 11.8  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T112                                               | 11.9  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T113                                               | 12.0  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T114                                               | 12.1  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T115                                               | 12.2  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T116                                               | 12.3  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T117                                               | 12.4  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T118                                               | 12.5  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T119                                               | 12.6  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T120                                               | 12.7  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T121                                               | 12.8  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T122                                               | 12.9  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T123                                               | 13.0  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T124                                               | 13.1  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T125                                               | 13.2  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T126                                               | 13.3  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T127                                               | 13.4  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T128                                               | 13.5  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T129                                               | 13.6  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T130                                               | 13.7  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T131                                               | 13.8  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T132                                               | 13.9  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T133                                               | 14.0  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T134                                               | 14.1  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T135                                               | 14.2  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T136                                               | 14.3  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T137                                               | 14.4  | .00  | 4.000E-03 | .000     | .000                                   | .000                               | 100                   |  |
| T138                                               | 14.5  | .00  | 4.000E-03 | .000     | .000                                   | .0                                 |                       |  |

THE BOEING COMPANY

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

THE **BOEING** COMPANY

~~THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC~~

**APPENDIX B**  
**SHEAR WEB ANALYSIS STRESS SPECTRUM**

THE BOEING COMPANY

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

FLIGHT TYPE 1  
NUMBER OF FLIGHTS IN THE BLOCK = 1  
PERCENT TOTAL BLOCK DEDICATED THIS FLIGHT CLASSES UNDIA  
4.87  
4.00

NUMBER OF SPECTRUM INPUTS OBSERVING FLIGHT TYPE 25

| LABEL | F-N | F-N     | CYCLES   | REL. FAC. | PERCENT OF DA PER FLIGHT UNEXHAUSTED RETAINED | PERCENT DURABILITY |
|-------|-----|---------|----------|-----------|-----------------------------------------------|--------------------|
| T1    | .31 | .30     | 5.00E+02 | .000      | 0.0                                           | 0.0                |
| T2    | .32 | .31     | 5.00E+02 | .000      | 0.0                                           | 0.0                |
| T3    | .33 | .32     | 2.00E+02 | .000      | 0.0                                           | 0.0                |
| T4    | .34 | .33     | 2.00E+02 | .000      | 0.0                                           | 0.0                |
| T5    | .35 | .34     | 9.00E+01 | .000      | 0.0                                           | 0.0                |
| T6    | .36 | .35     | 9.00E+01 | .000      | 0.0                                           | 0.0                |
| T7    | .37 | .36     | 4.00E+02 | .000      | 0.0                                           | 0.0                |
| T8    | .38 | .37     | 4.00E+02 | .000      | 0.0                                           | 0.0                |
| T9    | .39 | .38     | 4.00E+02 | .000      | 0.0                                           | 0.0                |
| T10   | .40 | .39     | 7.00E+02 | .100      | 0.0                                           | 0.0                |
| T11   | .41 | .40     | 7.00E+02 | .100      | 0.0                                           | 0.0                |
| T12   | .42 | .41     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T13   | .43 | .42     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T14   | .44 | .43     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T15   | .45 | .44     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T16   | .46 | .45     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T17   | .47 | .46     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T18   | .48 | .47     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T19   | .49 | .48     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T20   | .50 | .49     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T21   | .51 | .50     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T22   | .52 | .51     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T23   | .53 | .52     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T24   | .54 | .53     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T25   | .55 | .54     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T26   | .56 | .55     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T27   | .57 | .56     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T28   | .58 | .57     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T29   | .59 | .58     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T30   | .60 | .59     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T31   | .61 | .60     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T32   | .62 | .61     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T33   | .63 | .62     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T34   | .64 | .63     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T35   | .65 | .64     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T36   | .66 | .65     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T37   | .67 | .66     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T38   | .68 | .67     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T39   | .69 | .68     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T40   | .70 | .69     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T41   | .71 | .70     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T42   | .72 | .71     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T43   | .73 | .72     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T44   | .74 | .73     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T45   | .75 | .74     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T46   | .76 | .75     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T47   | .77 | .76     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T48   | .78 | .77     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T49   | .79 | .78     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T50   | .80 | .79     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T51   | .81 | .80     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T52   | .82 | .81     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T53   | .83 | .82     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T54   | .84 | .83     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T55   | .85 | .84     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T56   | .86 | .85     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T57   | .87 | .86     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T58   | .88 | .87     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T59   | .89 | .88     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T60   | .90 | .89     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T61   | .91 | .90     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T62   | .92 | .91     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T63   | .93 | .92     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T64   | .94 | .93     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T65   | .95 | .94     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T66   | .96 | .95     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T67   | .97 | .96     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T68   | .98 | .97     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T69   | .99 | .98     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T70   | .00 | .99     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T71   | .01 | .00     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T72   | .02 | .01     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T73   | .03 | .02     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T74   | .04 | .03     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T75   | .05 | .04     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T76   | .06 | .05     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T77   | .07 | .06     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T78   | .08 | .07     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T79   | .09 | .08     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T80   | .10 | .09     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T81   | .11 | .10     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T82   | .12 | .11     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T83   | .13 | .12     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T84   | .14 | .13     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T85   | .15 | .14     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T86   | .16 | .15     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T87   | .17 | .16     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T88   | .18 | .17     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T89   | .19 | .18     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T90   | .20 | .19     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T91   | .21 | .20     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T92   | .22 | .21     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T93   | .23 | .22     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T94   | .24 | .23     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T95   | .25 | .24     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T96   | .26 | .25     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T97   | .27 | .26     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T98   | .28 | .27     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T99   | .29 | .28     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T100  | .30 | .29     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T101  | .31 | .30     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T102  | .32 | .31     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T103  | .33 | .32     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T104  | .34 | .33     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T105  | .35 | .34     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T106  | .36 | .35     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T107  | .37 | .36     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T108  | .38 | .37     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T109  | .39 | .38     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T110  | .40 | .39     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T111  | .41 | .40     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T112  | .42 | .41     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T113  | .43 | .42     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T114  | .44 | .43     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T115  | .45 | .44     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T116  | .46 | .45     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T117  | .47 | .46     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T118  | .48 | .47     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T119  | .49 | .48     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T120  | .50 | .49     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T121  | .51 | .50     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T122  | .52 | .51     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T123  | .53 | .52     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T124  | .54 | .53     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T125  | .55 | .54     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T126  | .56 | .55     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T127  | .57 | .56     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T128  | .58 | .57     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T129  | .59 | .58     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T130  | .60 | .59     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T131  | .61 | .60     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T132  | .62 | .61     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T133  | .63 | .62     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T134  | .64 | .63     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T135  | .65 | .64     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T136  | .66 | .65     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T137  | .67 | .66     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T138  | .68 | .67     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T139  | .69 | .68     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T140  | .70 | .69     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T141  | .71 | .70     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T142  | .72 | .71     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T143  | .73 | .72     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T144  | .74 | .73     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T145  | .75 | .74     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T146  | .76 | .75     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T147  | .77 | .76     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T148  | .78 | .77     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T149  | .79 | .78     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T150  | .80 | .79     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T151  | .81 | .80     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T152  | .82 | .81     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T153  | .83 | .82     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T154  | .84 | .83     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T155  | .85 | .84     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T156  | .86 | .85     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T157  | .87 | .86     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T158  | .88 | .87     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T159  | .89 | .88     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T160  | .90 | .89     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T161  | .91 | .90     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T162  | .92 | .91     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T163  | .93 | .92     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T164  | .94 | .93     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T165  | .95 | .94     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T166  | .96 | .95     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T167  | .97 | .96     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T168  | .98 | .97     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T169  | .99 | .98     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T170  | .00 | .99     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T171  | .01 | .00     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T172  | .02 | .01     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T173  | .03 | .02     | 1.00E+03 | .100      | 0.0                                           | 0.0                |
| T174  | .04 | .03</td |          |           |                                               |                    |

THE **BOEING** COMPANY

FLIGHT TYPE B FLIGHT TYPE C FLIGHT TYPE MU. 3

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

THE **BOEING** COMPANY

| NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE n |                  | FLIGHT TYPE n FLIGHT TYPE k        |          | FLIGHT TYPE n FLIGHT TYPE k        |                                        | PERCENT DURABILITY                  |                    |
|----------------------------------------------------|------------------|------------------------------------|----------|------------------------------------|----------------------------------------|-------------------------------------|--------------------|
| NUMBER OF FLIGHTS IN THE BLOCK n                   |                  | NUMBER OF FLIGHTS IN THE BLOCK k   |          | NUMBER OF FLIGHTS IN THE BLOCK k   |                                        | PERCENT DURABILITY                  |                    |
| PCT. TOTAL ALIEN n-MGT THIS FLIGHT                 |                  | PCT. TOTAL ALIEN k-MGT THIS FLIGHT |          | PCT. TOTAL ALIEN k-MGT THIS FLIGHT |                                        | PCT. TOTAL ALIEN n-MGT THIS FLIGHT  |                    |
| LABEL                                              | F <sub>MAX</sub> | F <sub>MIN</sub>                   | CYCLES   | NET F <sub>AC.</sub>               | PERCENT UP OR PWD FLIGHT UNCONSTRAINED | PERCENT UP OR PWD FLIGHT RESTRICTED | PERCENT DURABILITY |
| T1                                                 | .42              | .38                                | 3.00E+02 | .000                               | 1.00                                   | 1.00                                | 100                |
| T2                                                 | .46              | .38                                | 1.60E+02 | .000                               | .01                                    | .00                                 | 0                  |
| T3                                                 | .50              | .38                                | 2.70E+01 | .000                               | .01                                    | .00                                 | 0                  |
| T4                                                 | .55              | .26                                | 2.00E+01 | .000                               | .00                                    | .00                                 | 0                  |
| T5                                                 | .59              | .22                                | 9.00E+02 | .000                               | .00                                    | .00                                 | 0                  |
| T6                                                 | .93              | .18                                | 4.00E+03 | .000                               | .00                                    | .00                                 | 0                  |
| T11                                                | .68              | .05                                | 6.20E+01 | .000                               | .16                                    | .00                                 | 0                  |
| T12                                                | .77              | .04                                | 1.50E+01 | .005                               | .72                                    | .01                                 | 0                  |
| T21                                                | 1.19             | .74                                | 3.40E+01 | .000                               | .42                                    | .00                                 | 0                  |
| T22                                                | 2.39             | .70                                | 6.00E+02 | .280                               | 1.60                                   | .01                                 | 0                  |
| T31                                                | 1.59             | .98                                | 2.40E+01 | .000                               | .75                                    | .00                                 | 0                  |
| T32                                                | 3.19             | .04                                | 5.20E+02 | 1.000                              | .74                                    | .00                                 | 0                  |
| T41                                                | 1.49             | .124                               | 1.00E+01 | .037                               | .07                                    | .00                                 | 0                  |
| T42                                                | 3.98             | .07                                | 2.80E+02 | 1.000                              | .53                                    | .00                                 | 0                  |
| T51                                                | 2.34             | .144                               | 3.60E+01 | .283                               | .68                                    | .38                                 | 100                |
| T52                                                | 4.78             | .00                                | 6.00E+03 | 1.000                              | .98                                    | .04                                 | 0                  |
| T61                                                | 2.14             | .174                               | 1.20E+02 | .692                               | .60                                    | .09                                 | 0                  |
| T62                                                | 5.54             | .00                                | 2.00E+03 | 1.000                              | .99                                    | .32                                 | 0                  |
| T71                                                | 3.17             | .144                               | 3.00E+01 | .000                               | .28                                    | .00                                 | 0                  |
| T81                                                | 3.57             | .23                                | 5.00E+03 | 1.000                              | .32                                    | .54                                 | 0                  |
| R1                                                 | .040             | .000                               | 5.00E+00 | .000                               | .04                                    | .00                                 | 0                  |
| R2                                                 | .040             | .000                               | 2.00E+00 | .000                               | .10                                    | .00                                 | 0                  |
| S1                                                 | 1.37             | .00                                | 1.00E+00 | .000                               | 1.34                                   | .00                                 | 0                  |
| T1                                                 | 4.06             | .00                                | 1.00E+00 | .000                               | 30.19                                  | .00                                 | 0                  |
| G45                                                |                  |                                    | 1.00E+00 | .000                               | 31.04                                  | .00                                 | 0                  |
|                                                    |                  |                                    |          |                                    | 42.07                                  | .00                                 | 0                  |
|                                                    |                  |                                    |          |                                    | 45.01                                  | .00                                 | 0                  |

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

THE **BOEING** COMPANY

| FLIGHT TYPE & FLIGHT TYPES                               |       | FLIGHT TYPE NO. 9                                     |            |
|----------------------------------------------------------|-------|-------------------------------------------------------|------------|
| NUMBER OF FLIGHTS IN THE BLOCK = 3                       |       | NUMBER OF UNRECOVERED FLIGHTS = 45.00                 |            |
| PERCENT TOTAL AIRCRAFT DAMAGE THIS FLIGHT CAUSES = 0.710 |       | DURABILITY = 0.710                                    |            |
| NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE = 37    |       | NUMBER OF SPECTRUM INPUTS DESCRIBING FLIGHT TYPE = 37 |            |
| LABEL:                                                   | F/T/N | CYCLES                                                | REF. FACT. |
| T1                                                       | 4.42  | 4.38                                                  | 0.0000002  |
| T2                                                       | 4.46  | 3.54                                                  | 0.0000002  |
| T3                                                       | 4.50  | 5.40                                                  | 0.0000001  |
| T4                                                       | 4.54  | 4.10                                                  | 0.0000001  |
| T5                                                       | 4.58  | 4.06                                                  | 0.0000001  |
| T6                                                       | 4.62  | 4.07                                                  | 0.0000001  |
| T7                                                       | 4.66  | 4.00                                                  | 0.0000001  |
| T8                                                       | 4.70  | 4.00                                                  | 0.0000001  |
| T9                                                       | 4.74  | 4.00                                                  | 0.0000001  |
| T10                                                      | 4.78  | 4.00                                                  | 0.0000001  |
| T11                                                      | 4.82  | 4.00                                                  | 0.0000001  |
| T12                                                      | 4.86  | 4.00                                                  | 0.0000001  |
| T13                                                      | 4.90  | 4.00                                                  | 0.0000001  |
| T14                                                      | 4.94  | 4.00                                                  | 0.0000001  |
| T15                                                      | 4.98  | 4.00                                                  | 0.0000001  |
| T16                                                      | 5.02  | 4.00                                                  | 0.0000001  |
| T17                                                      | 5.06  | 4.00                                                  | 0.0000001  |
| T18                                                      | 5.10  | 4.00                                                  | 0.0000001  |
| T19                                                      | 5.14  | 4.00                                                  | 0.0000001  |
| T20                                                      | 5.18  | 4.00                                                  | 0.0000001  |
| T21                                                      | 5.22  | 4.00                                                  | 0.0000001  |
| T22                                                      | 5.26  | 4.00                                                  | 0.0000001  |
| T23                                                      | 5.30  | 4.00                                                  | 0.0000001  |
| T24                                                      | 5.34  | 4.00                                                  | 0.0000001  |
| T25                                                      | 5.38  | 4.00                                                  | 0.0000001  |
| T26                                                      | 5.42  | 4.00                                                  | 0.0000001  |
| T27                                                      | 5.46  | 4.00                                                  | 0.0000001  |
| T28                                                      | 5.50  | 4.00                                                  | 0.0000001  |
| T29                                                      | 5.54  | 4.00                                                  | 0.0000001  |
| T30                                                      | 5.58  | 4.00                                                  | 0.0000001  |
| T31                                                      | 5.62  | 4.00                                                  | 0.0000001  |
| T32                                                      | 5.66  | 4.00                                                  | 0.0000001  |
| T33                                                      | 5.70  | 4.00                                                  | 0.0000001  |
| T34                                                      | 5.74  | 4.00                                                  | 0.0000001  |
| T35                                                      | 5.78  | 4.00                                                  | 0.0000001  |
| T36                                                      | 5.82  | 4.00                                                  | 0.0000001  |
| T37                                                      | 5.86  | 4.00                                                  | 0.0000001  |
| T38                                                      | 5.90  | 4.00                                                  | 0.0000001  |
| T39                                                      | 5.94  | 4.00                                                  | 0.0000001  |
| T40                                                      | 5.98  | 4.00                                                  | 0.0000001  |
| T41                                                      | 6.02  | 4.00                                                  | 0.0000001  |
| T42                                                      | 6.06  | 4.00                                                  | 0.0000001  |
| T43                                                      | 6.10  | 4.00                                                  | 0.0000001  |
| T44                                                      | 6.14  | 4.00                                                  | 0.0000001  |
| T45                                                      | 6.18  | 4.00                                                  | 0.0000001  |
| T46                                                      | 6.22  | 4.00                                                  | 0.0000001  |
| T47                                                      | 6.26  | 4.00                                                  | 0.0000001  |
| T48                                                      | 6.30  | 4.00                                                  | 0.0000001  |
| T49                                                      | 6.34  | 4.00                                                  | 0.0000001  |
| T50                                                      | 6.38  | 4.00                                                  | 0.0000001  |
| T51                                                      | 6.42  | 4.00                                                  | 0.0000001  |
| T52                                                      | 6.46  | 4.00                                                  | 0.0000001  |
| T53                                                      | 6.50  | 4.00                                                  | 0.0000001  |
| T54                                                      | 6.54  | 4.00                                                  | 0.0000001  |
| T55                                                      | 6.58  | 4.00                                                  | 0.0000001  |
| T56                                                      | 6.62  | 4.00                                                  | 0.0000001  |
| T57                                                      | 6.66  | 4.00                                                  | 0.0000001  |
| T58                                                      | 6.70  | 4.00                                                  | 0.0000001  |
| T59                                                      | 6.74  | 4.00                                                  | 0.0000001  |
| T60                                                      | 6.78  | 4.00                                                  | 0.0000001  |
| T61                                                      | 6.82  | 4.00                                                  | 0.0000001  |
| T62                                                      | 6.86  | 4.00                                                  | 0.0000001  |
| T63                                                      | 6.90  | 4.00                                                  | 0.0000001  |
| T64                                                      | 6.94  | 4.00                                                  | 0.0000001  |
| T65                                                      | 6.98  | 4.00                                                  | 0.0000001  |
| T66                                                      | 7.02  | 4.00                                                  | 0.0000001  |
| T67                                                      | 7.06  | 4.00                                                  | 0.0000001  |
| T68                                                      | 7.10  | 4.00                                                  | 0.0000001  |
| T69                                                      | 7.14  | 4.00                                                  | 0.0000001  |
| T70                                                      | 7.18  | 4.00                                                  | 0.0000001  |
| T71                                                      | 7.22  | 4.00                                                  | 0.0000001  |
| T72                                                      | 7.26  | 4.00                                                  | 0.0000001  |
| T73                                                      | 7.30  | 4.00                                                  | 0.0000001  |
| T74                                                      | 7.34  | 4.00                                                  | 0.0000001  |
| T75                                                      | 7.38  | 4.00                                                  | 0.0000001  |
| T76                                                      | 7.42  | 4.00                                                  | 0.0000001  |
| T77                                                      | 7.46  | 4.00                                                  | 0.0000001  |
| T78                                                      | 7.50  | 4.00                                                  | 0.0000001  |
| T79                                                      | 7.54  | 4.00                                                  | 0.0000001  |
| T80                                                      | 7.58  | 4.00                                                  | 0.0000001  |
| T81                                                      | 7.62  | 4.00                                                  | 0.0000001  |
| T82                                                      | 7.66  | 4.00                                                  | 0.0000001  |
| T83                                                      | 7.70  | 4.00                                                  | 0.0000001  |
| T84                                                      | 7.74  | 4.00                                                  | 0.0000001  |
| T85                                                      | 7.78  | 4.00                                                  | 0.0000001  |
| T86                                                      | 7.82  | 4.00                                                  | 0.0000001  |
| T87                                                      | 7.86  | 4.00                                                  | 0.0000001  |
| T88                                                      | 7.90  | 4.00                                                  | 0.0000001  |
| T89                                                      | 7.94  | 4.00                                                  | 0.0000001  |
| T90                                                      | 7.98  | 4.00                                                  | 0.0000001  |
| T91                                                      | 8.02  | 4.00                                                  | 0.0000001  |
| T92                                                      | 8.06  | 4.00                                                  | 0.0000001  |
| T93                                                      | 8.10  | 4.00                                                  | 0.0000001  |
| T94                                                      | 8.14  | 4.00                                                  | 0.0000001  |
| T95                                                      | 8.18  | 4.00                                                  | 0.0000001  |
| T96                                                      | 8.22  | 4.00                                                  | 0.0000001  |
| T97                                                      | 8.26  | 4.00                                                  | 0.0000001  |
| T98                                                      | 8.30  | 4.00                                                  | 0.0000001  |
| T99                                                      | 8.34  | 4.00                                                  | 0.0000001  |
| T100                                                     | 8.38  | 4.00                                                  | 0.0000001  |
| T101                                                     | 8.42  | 4.00                                                  | 0.0000001  |
| T102                                                     | 8.46  | 4.00                                                  | 0.0000001  |
| T103                                                     | 8.50  | 4.00                                                  | 0.0000001  |
| T104                                                     | 8.54  | 4.00                                                  | 0.0000001  |
| T105                                                     | 8.58  | 4.00                                                  | 0.0000001  |
| T106                                                     | 8.62  | 4.00                                                  | 0.0000001  |
| T107                                                     | 8.66  | 4.00                                                  | 0.0000001  |
| T108                                                     | 8.70  | 4.00                                                  | 0.0000001  |
| T109                                                     | 8.74  | 4.00                                                  | 0.0000001  |
| T110                                                     | 8.78  | 4.00                                                  | 0.0000001  |
| T111                                                     | 8.82  | 4.00                                                  | 0.0000001  |
| T112                                                     | 8.86  | 4.00                                                  | 0.0000001  |
| T113                                                     | 8.90  | 4.00                                                  | 0.0000001  |
| T114                                                     | 8.94  | 4.00                                                  | 0.0000001  |
| T115                                                     | 8.98  | 4.00                                                  | 0.0000001  |
| T116                                                     | 9.02  | 4.00                                                  | 0.0000001  |
| T117                                                     | 9.06  | 4.00                                                  | 0.0000001  |
| T118                                                     | 9.10  | 4.00                                                  | 0.0000001  |
| T119                                                     | 9.14  | 4.00                                                  | 0.0000001  |
| T120                                                     | 9.18  | 4.00                                                  | 0.0000001  |
| T121                                                     | 9.22  | 4.00                                                  | 0.0000001  |
| T122                                                     | 9.26  | 4.00                                                  | 0.0000001  |
| T123                                                     | 9.30  | 4.00                                                  | 0.0000001  |
| T124                                                     | 9.34  | 4.00                                                  | 0.0000001  |
| T125                                                     | 9.38  | 4.00                                                  | 0.0000001  |
| T126                                                     | 9.42  | 4.00                                                  | 0.0000001  |
| T127                                                     | 9.46  | 4.00                                                  | 0.0000001  |
| T128                                                     | 9.50  | 4.00                                                  | 0.0000001  |
| T129                                                     | 9.54  | 4.00                                                  | 0.0000001  |
| T130                                                     | 9.58  | 4.00                                                  | 0.0000001  |
| T131                                                     | 9.62  | 4.00                                                  | 0.0000001  |
| T132                                                     | 9.66  | 4.00                                                  | 0.0000001  |
| T133                                                     | 9.70  | 4.00                                                  | 0.0000001  |
| T134                                                     | 9.74  | 4.00                                                  | 0.0000001  |
| T135                                                     | 9.78  | 4.00                                                  | 0.0000001  |
| T136                                                     | 9.82  | 4.00                                                  | 0.0000001  |
| T137                                                     | 9.86  | 4.00                                                  | 0.0000001  |
| T138                                                     | 9.90  | 4.00                                                  | 0.0000001  |
| T139                                                     | 9.94  | 4.00                                                  | 0.0000001  |
| T140                                                     | 9.98  | 4.00                                                  | 0.0000001  |
| T141                                                     | 10.02 | 4.00                                                  | 0.0000001  |
| T142                                                     | 10.06 | 4.00                                                  | 0.0000001  |
| T143                                                     | 10.10 | 4.00                                                  | 0.0000001  |
| T144                                                     | 10.14 | 4.00                                                  | 0.0000001  |
| T145                                                     | 10.18 | 4.00                                                  | 0.0000001  |
| T146                                                     | 10.22 | 4.00                                                  | 0.0000001  |
| T147                                                     | 10.26 | 4.00                                                  | 0.0000001  |
| T148                                                     | 10.30 | 4.00                                                  | 0.0000001  |
| T149                                                     | 10.34 | 4.00                                                  | 0.0000001  |
| T150                                                     | 10.38 | 4.00                                                  | 0.0000001  |
| T151                                                     | 10.42 | 4.00                                                  | 0.0000001  |
| T152                                                     | 10.46 | 4.00                                                  | 0.0000001  |
| T153                                                     | 10.50 | 4.00                                                  | 0.0000001  |
| T154                                                     | 10.54 | 4.00                                                  | 0.0000001  |
| T155                                                     | 10.58 | 4.00                                                  | 0.0000001  |
| T156                                                     | 10.62 | 4.00                                                  | 0.0000001  |
| T157                                                     | 10.66 | 4.00                                                  | 0.0000001  |
| T158                                                     | 10.70 | 4.00                                                  | 0.0000001  |
| T159                                                     | 10.74 | 4.00                                                  | 0.0000001  |
| T160                                                     | 10.78 | 4.00                                                  | 0.0000001  |
| T161                                                     | 10.82 | 4.00                                                  | 0.0000001  |
| T162                                                     | 10.86 | 4.00                                                  | 0.0000001  |
| T163                                                     | 10.90 | 4.00                                                  | 0.0000001  |
| T164                                                     | 10.94 | 4.00                                                  | 0.0000001  |
| T165                                                     | 10.98 | 4.00                                                  | 0.0000001  |
| T166                                                     | 11.02 | 4.00                                                  | 0.0000001  |
| T167                                                     | 11.06 | 4.00                                                  | 0.0000001  |
| T168                                                     | 11.10 | 4.00                                                  | 0.0000001  |
| T169                                                     | 11.14 | 4.00                                                  | 0.0000001  |
| T170                                                     | 11.18 | 4.00                                                  | 0.0000001  |
| T171                                                     | 11.22 | 4.00                                                  | 0.0000001  |
| T172                                                     | 11.26 | 4.00                                                  | 0.0000001  |
| T173                                                     | 11.30 | 4.00                                                  | 0.0000001  |
| T174                                                     | 11.34 | 4.00                                                  | 0.0000001  |
| T175                                                     | 11.38 | 4.00                                                  | 0.0000001  |
| T176                                                     | 11.42 | 4.00                                                  | 0.0000001  |
| T177                                                     | 11.46 | 4.00                                                  | 0.0000001  |
| T178                                                     | 11.50 | 4.00                                                  | 0.0000001  |
| T179                                                     | 11.54 | 4.00                                                  | 0.0000001  |
| T180                                                     | 11.58 | 4.00                                                  | 0.0000001  |
| T181                                                     | 11.62 | 4.00                                                  | 0.0000001  |
| T182                                                     | 11.66 | 4.00                                                  | 0.0000001  |
| T183                                                     | 11.70 | 4.00                                                  | 0.0000001  |
| T184                                                     | 11.74 | 4.00                                                  | 0.0000001  |
| T185                                                     | 11.78 | 4.00                                                  | 0.0000001  |
| T186                                                     | 11.82 | 4.00                                                  | 0.0000001  |
| T187                                                     | 11.86 | 4.00                                                  | 0.0000001  |
| T188                                                     | 11.90 | 4.00                                                  | 0.0000001  |
| T189                                                     | 11.94 | 4.00                                                  | 0.0000001  |
| T190                                                     | 11.98 | 4.00                                                  | 0.0000001  |
| T191                                                     | 12.02 | 4.00                                                  | 0.0000001  |
| T192                                                     | 12.06 | 4.00                                                  | 0.0000001  |
| T193                                                     | 12.10 | 4.00                                                  | 0.0000001  |
| T194                                                     | 12.14 | 4.00                                                  | 0.0000001  |
| T195                                                     | 12.18 | 4.00                                                  | 0.0000001  |
| T196                                                     | 12.22 | 4.00                                                  | 0.0000001  |
| T197                                                     | 12.26 | 4.00                                                  | 0.0000001  |
| T198                                                     | 12.30 | 4.00                                                  | 0.0000001  |
| T199                                                     | 12.34 | 4.00                                                  | 0.0000001  |
| T200                                                     | 12.38 | 4.00                                                  | 0.0000001  |
| T201                                                     | 12.42 | 4.00                                                  | 0.0000001  |
| T202                                                     | 12.46 | 4.00                                                  | 0.0000001  |
| T203                                                     | 12.50 | 4.00                                                  | 0.0000001  |
| T204                                                     | 12.54 | 4.00                                                  | 0.0000001  |
| T205                                                     | 12.58 | 4.00                                                  | 0.0000001  |
| T206                                                     | 12.62 | 4.00                                                  | 0.0000001  |
| T207                                                     | 12.66 | 4.00                                                  | 0.0000001  |
| T208                                                     | 12.70 | 4.00                                                  | 0.0000001  |
| T209                                                     | 12.74 | 4.00                                                  | 0.0000001  |
| T210                                                     | 12.78 | 4.00                                                  | 0.0000001  |
| T211                                                     | 12.82 | 4.00                                                  | 0.0000001  |
| T212                                                     | 12.86 | 4.00                                                  | 0.0000001  |
| T213                                                     | 12.90 | 4.00                                                  | 0.0000001  |
| T214                                                     | 12.94 | 4.00                                                  | 0.0000001  |
| T215                                                     | 12.98 | 4.00                                                  | 0.0000001  |
| T216                                                     | 13.02 | 4.00                                                  | 0.0000001  |
| T217                                                     | 13.06 | 4.00                                                  | 0.0000001  |
| T218                                                     | 13.10 | 4.00                                                  | 0.0000001  |
| T219                                                     | 13.14 | 4.00                                                  | 0.0000001  |
| T220                                                     | 13.18 | 4.00                                                  | 0.0000001  |
| T221                                                     | 13.22 | 4.00                                                  | 0.0000001  |
| T222                                                     | 13.26 | 4.00                                                  | 0.0000001  |
| T223                                                     | 13.30 | 4.00                                                  | 0.0000001  |
| T224                                                     | 13.34 | 4.00                                                  | 0.0000001  |
| T225                                                     | 13.38 | 4.00                                                  | 0.0000001  |
| T226                                                     | 13.42 | 4.00                                                  | 0.0000001  |
| T227                                                     | 13.46 | 4.00                                                  | 0.0000001  |
| T228                                                     | 13.50 | 4.00                                                  | 0.0000001  |
| T229                                                     | 13.54 | 4.00                                                  | 0.0000001  |
| T230                                                     | 13.58 | 4.00                                                  | 0.0000001  |
| T231                                                     | 13.62 | 4.00                                                  | 0.0000001  |
| T232                                                     | 13.66 | 4.00                                                  | 0.0000001  |
| T233                                                     | 13.70 | 4.00                                                  | 0.0000001  |
| T234                                                     | 13.74 | 4.00                                                  | 0.0000001  |
| T235                                                     | 13.78 | 4.00                                                  | 0.0000001  |
| T236                                                     | 13.82 | 4.00                                                  | 0.0000001  |
| T237                                                     | 13.86 | 4.00                                                  | 0.0000001  |
| T238                                                     | 13.90 | 4.00                                                  | 0.0000001  |
| T239                                                     | 13.94 | 4.00                                                  | 0.0000001  |
| T240                                                     | 13.98 | 4.00                                                  | 0.0000001  |
| T241                                                     | 14.02 | 4.00                                                  | 0.0000001  |
| T242                                                     | 14.06 | 4.00                                                  | 0.0000001  |
| T243</td                                                 |       |                                                       |            |