

Αναπτύξη Λογισμικού για Αλγορίθμικα Προβληματα Χειμέρινο εξάμηνο 2020

3η Προγραμματίστικη Εργασία

ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΙΚΟΝΑΣ ΣΕ ΧΩΡΟ ΧΑΜΗΛΟΤΕΡΗΣ ΔΙΑΣΤΑΣΗΣ ΜΕ ΧΡΗΣΗ ΝΕΥΡΩΝΙΚΟΥ ΔΙΚΤΥΟΥ ΑΥΤΟΚΩΔΙΚΟΠΟΙΗΣΗΣ.

Αριθμός Μητρώου (ΑΜ):

1115201700217

1115201700203

Ονοματεπώνυμο:

Ορέστης Στεφανος

Λεωνίδας Εφραιμ

Ακαδημαϊκή Χρονία 2020-2021

Π EPIEXOMENA

1	ΕΙΣ	ΑΓΩΓΗ	3		
2	MEPOΣ A' AUTOENCODER				
	2.1	ΥΛΟΠΟΙΗΣΗ	4		
	2.2	ПЕІРАМАТА - REPORTS	5		
3	MEI	ΡΟΣ Β' LSH	10		
	3.1	ΥΛΟΠΟΙΗΣΗ	10		
	3.2	ПЕІРАМАТА - REPORTS	10		
4	MEI	POΣ Γ' Earth Mover's Distance (EMD)	10		
	4.1	ΥΛΟΠΟΙΗΣΗ	10		
	4.2	ПЕІРАМАТА - REPORTS	10		
5	MEPOΣ Δ' CLUSTERING				
	5.1	ΥΛΟΠΟΙΗΣΗ	11		
	5.2	ПЕІРАМАТА - REPORTS	11		

1

ΕΙΣΑΓΩΓΗ

Σε αυτή την εργασία κληθήκαμε να εξάγουμε τα συμπιεσμένα δεδομένα απο το ένα ένα νευρωνικό δίκτυο αυτοκωδικοποίησης ψηφιακών εικόνων. Στην συνέχεια αυτά τα δεδομένα τα χρησιμοιποιήσαμε για κάνουμε συσταδοποίση και να συγκρίνουνε τα αποτελέσματα με τον αρχικό χώρο. Επίσης είχαμε να υλοποιήσοτνε τη μετρική Εαττh Mover's Distance που ανάγεται σε επίλυση προβλήματος Γραμμικού Προγραμματισμού για να ξανακανουμε συστασταδοποιση και να συγκρίνουμε τον χρόνο και την ορθότητα των αποτελέσματων. Τέλος είχαμε να κάνουμε συσταδοποίση κ-medians των εικόνων στον παλίο και τον καινουριό καθός και σύσταδοποίση βάση του μοντέλου του clustering της δευτερης εργασίας με σκοπό να τα συγκρίνουμε. Για την υλοποίηση χρησιμοποιήσαμε τη γλώσσα Python με τη βοήθεια των βιβλιοθηκών Keras και Tensorflow. Εκτός από αυτά χρησιμοποιήσαμε και το Google Collab το οποίο μας παρείχε επεξεργαστική ισχύ για τους μεγάλους υπολογισμούς που χρειαστήκαμε μέσω των GPU που μας παρείχε. Στο πρώτο μέρος δημιουργήσαμε τον encoder και τον εκπαιδεύσαμε, ενώ στη συνέχεια στο δεύτερο μέρος υλοποιήσαμε και κατηγοριοποίηση στον encoder μας.

MEPOΣ A' AUTOENCODER

2.1 ΥΛΟΠΟΙΗΣΗ

Για την κατασκευή του νευρωνικού δίκτυου αυτοκωδικοποίησης πήραμε σαν βάση τον κώδικα της δευτερης εργασίας τον οποίο τον τροποποοίσαμε καταλληλα έτσι ώστα να προσθέσουμε μία ενδίαμεση αναπάράσταση. Ο autoencoder έχει την παρακάτω μορφή

Out[14]:

Χρησημοποίσαμε αυτή την μορφή νευρωνικού δίκτυου αυτοκωδικοποίησης γίατί σύμφωνα με τα πειράματα μας είχε το λιγότερο loss. Αρχικά εφορμόσαμε 3 convolution layers στον encoder. Στην συνέχεια περάσαμε ένα flattern layer και ένα dense layer για να φτάσουμε στο bottleneck του autoencoder, όπου έχουμε την μεγαλύτερη συμπίεση πλήροφορίας. Για την αποσυμπίεση περάσαμε απο ενα dense layer, ένα reshape και 3 deconvolution layers. Αφού εκπεδεύσαμε το νευρωνικό μας δικτίο τότε έχουμε την δυνατότα να πάρουμε τα συμπιεσμένα δεδομένα από την ενδιάμεση αναπαράσταση

2.2 ПЕІРАМАТА - REPORTS

• Πείραμα εκπαίδευσης 1

128
100
3 layers 14 x 14 x 32 7 x 7 x 64 3 x 3 x 128
10
3 layers 7 x 7 x 64 14 x 14 x 32 28 x 28 x 1
Softmax και sigmoid στο εξωτερικό layer
Mean squared error
RMSprop

Loss: **0.0681** - Validation loss: **0.0682**

Batch size	256
Epochs	100
Encoder layers	4 layers 14 x 14 x 32 7 x 7 x 64 3 x 3 x 128 1 x 1 x 256
Bottleneck size	10
Decoder layers	4 layers 3 x 3 x 128 7 x 7 x 64 14 x 14 x 32 28 x 28 x 1
Activation Function	Softmax και sigmoid στο εξωτερικό layer
Loss function	Mean squared error
Optimizer	RMSprop

Loss: **0.0657** - Validation loss: **0.0678**

Batch size	256
Epochs	100
Encoder layers	4 layers 14 x 14 x 32 7 x 7 x 64 3 x 3 x 128 1 x 1 x 256
Bottleneck size	10
Decoder layers	4 layers 3 x 3 x 128 7 x 7 x 64 14 x 14 x 32 28 x 28 x 1
Activation Function	Relu και sigmoid στο εξωτερικό layer
Loss function	Mean squared error
Optimizer	RMSprop

Loss: **0.0190** - Validation loss: **0.0258**

Batch size	128
Epochs	100
Encoder layers	3 layers 14 x 14 x 32 7 x 7 x 64 3 x 3 x 128
Bottleneck size	1
Decoder layers	3 layers 7 x 7 x 64 14 x 14 x 32 28 x 28 x 1
Activation Function	Relu και sigmoid στο εξωτερικό layer
Loss function	Mean squared error
Optimizer	RMSprop

Loss: **0.0502** - Validation loss: **0.0510**

Batch size	128
Epochs	100
Encoder layers	3 layers 14 x 14 x 32 7 x 7 x 64 3 x 3 x 128
Bottleneck size	10
Decoder layers	3 layers 7 x 7 x 64 14 x 14 x 32 28 x 28 x 1
Activation Function	Relu και sigmoid στο εξωτερικό layer
Loss function	Mean squared error
Optimizer	RMSprop

Loss: **0.0119** - Validation loss: **0.0141**

MEPOΣ B' LSH

- 3.1 $\Upsilon \Lambda O \Pi O I H \Sigma H$
- 3.2 ПЕІРАМАТА REPORTS

4

MEPOΣ Γ' EARTH MOVER'S DISTAN-CE (EMD)

- 4.1 ΥΛΟΠΟΙΗΣΗ
- 4.2 ПЕІРАМАТА REPORTS

5

MEPOΣ Δ ' CLUSTERING

- 5.1 $\Upsilon\Lambda O\Pi OIH\Sigma H$
- 5.2 ПЕІРАМАТА REPORTS