Here we are given a data set diamonds.csv in which we have to predict the diamond price.

```
In [727]:
```

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import math
import random
import os
```

To deal with shuffling.

```
In [728]:
```

```
def seed():
    np.random.seed(42)
    random.seed(42)
    os.environ["PYTHONHASHSEED"] = "42"
seed()
```

In [729]:

```
ds = pd.read_csv('/content/diamonds.csv')
```

In [730]:

```
ds.loc[:20,:]
```

Out[730]:

Unnamed: 0	carat	cut	color	clarity	depth	table	price	x	у	z
1	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
2	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
3	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
4	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
5	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
6	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
7	0.24	Very Good	1	VVS1	62.3	57.0	336	3.95	3.98	2.47
8	0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
9	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
10	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39
11	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73
12	0.23	Ideal	J	VS1	62.8	56.0	340	3.93	3.90	2.46
13	0.22	Premium	F	SI1	60.4	61.0	342	3.88	3.84	2.33
14	0.31	Ideal	J	SI2	62.2	54.0	344	4.35	4.37	2.71
15	0.20	Premium	E	SI2	60.2	62.0	345	3.79	3.75	2.27
16	0.32	Premium	E	l1	60.9	58.0	345	4.38	4.42	2.68
17	0.30	Ideal	ı	SI2	62.0	54.0	348	4.31	4.34	2.68
18	0.30	Good	J	SI1	63.4	54.0	351	4.23	4.29	2.70
19	0.30	Good	J	SI1	63.8	56.0	351	4.23	4.26	2.71
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 0.23 2 0.21 3 0.23 4 0.29 5 0.31 6 0.24 7 0.24 8 0.26 9 0.22 10 0.23 11 0.30 12 0.23 13 0.22 14 0.31 15 0.20 16 0.32 17 0.30 18 0.30	1 0.23 Ideal 2 0.21 Premium 3 0.23 Good 4 0.29 Premium 5 0.31 Good 6 0.24 Very Good 7 0.24 Very Good 8 0.26 Very Good 9 0.22 Fair 10 0.23 Very Good 11 0.30 Good 12 0.23 Ideal 13 0.22 Premium 14 0.31 Ideal 15 0.20 Premium 16 0.32 Premium 17 0.30 Ideal 18 0.30 Good	1 0.23 Ideal E 2 0.21 Premium E 3 0.23 Good E 4 0.29 Premium I 5 0.31 Good J 6 0.24 Very Good J 7 0.24 Very Good H 8 0.26 Very Good H 9 0.22 Fair E 10 0.23 Very Good J 11 0.30 Good J 12 0.23 Ideal J 13 0.22 Premium F 14 0.31 Ideal J 15 0.20 Premium E 16 0.32 Premium E 17 0.30 Ideal I 18 0.30 Good J	1 0.23 Ideal E SI2 2 0.21 Premium E SI1 3 0.23 Good E VS1 4 0.29 Premium I VS2 5 0.31 Good J SI2 6 0.24 Very Good J VVS2 7 0.24 Very Good H SI1 8 0.26 Very Good H SI1 9 0.22 Fair E VS2 10 0.23 Very Good H VS1 11 0.30 Good J SI1 12 0.23 Ideal J VS1 13 0.22 Premium F SI1 14 0.31 Ideal J SI2 15 0.20 Premium E SI2 16 0.32 Premium E SI2 16 0.32 Premium E I1 17 0.30 Ideal I SI2 18 0.30 Good J SI1	1 0.23 Ideal E SI2 61.5 2 0.21 Premium E SI1 59.8 3 0.23 Good E VS1 56.9 4 0.29 Premium I VS2 62.4 5 0.31 Good J SI2 63.3 6 0.24 Very Good J VVS2 62.8 7 0.24 Very Good I VVS1 62.3 8 0.26 Very Good H SI1 61.9 9 0.22 Fair E VS2 65.1 10 0.23 Very Good H VS1 59.4 11 0.30 Good J SI1 64.0 12 0.23 Ideal J VS1 62.8 13 0.22 Premium F SI1 60.4 14 0.31 Ideal J SI2 62.2 15 0.20 Premium E SI2 60.2 16 0.32 Premium E I1 60.9 17 0.30 Ideal I SI2 62.0 18 0.30 Good J SI1 63.4	1 0.23 Ideal E SI2 61.5 55.0 2 0.21 Premium E SI1 59.8 61.0 3 0.23 Good E VS1 56.9 65.0 4 0.29 Premium I VS2 62.4 58.0 5 0.31 Good J SI2 63.3 58.0 6 0.24 Very Good J VVS2 62.8 57.0 7 0.24 Very Good I VVS1 62.3 57.0 8 0.26 Very Good H SI1 61.9 55.0 9 0.22 Fair E VS2 65.1 61.0 10 0.23 Very Good H VS1 59.4 61.0 11 0.30 Good J SI1 64.0 55.0 12 0.23 Ideal J VS1 62.8 56.0 13 0.22 Premium F SI1 60.4 61.0 14 0.31 Ideal J SI2 62.2 54.0 15 0.20 Premium E SI2 60.2 62.0 16 0.32 Premium E I1 60.9 58.0 17 0.30 Ideal I SI2 62.0 54.0 18 0.30 Good J SI1 63.4 54.0	1 0.23 Ideal E SI2 61.5 55.0 326 2 0.21 Premium E SI1 59.8 61.0 326 3 0.23 Good E VS1 56.9 65.0 327 4 0.29 Premium I VS2 62.4 58.0 334 5 0.31 Good J SI2 63.3 58.0 335 6 0.24 Very Good J VVS2 62.8 57.0 336 7 0.24 Very Good I VVS1 62.3 57.0 336 8 0.26 Very Good H SI1 61.9 55.0 337 9 0.22 Fair E VS2 65.1 61.0 337 10 0.23 Very Good H VS1 59.4 61.0 338 11 0.30 Good J SI1 64.0 55.0 339 12 0.23 Ideal J VS1 62.8 56.0 340 13 0.22 Premium F SI1 60.4 61.0 342 14 0.31 Ideal J SI2 62.2 54.0 344 15 0.20 Premium E SI2 60.2 62.0 345 16 0.32 Premium E I1 60.9 58.0 345 17 0.30 Ideal I SI2 62.0 54.0 348 18 0.30 Good J SI1 63.4 54.0 351	1 0.23 Ideal E SI2 61.5 55.0 326 3.95 2 0.21 Premium E SI1 59.8 61.0 326 3.89 3 0.23 Good E VS1 56.9 65.0 327 4.05 4 0.29 Premium I VS2 62.4 58.0 334 4.20 5 0.31 Good J SI2 63.3 58.0 335 4.34 6 0.24 Very Good J VVS2 62.8 57.0 336 3.94 7 0.24 Very Good I VVS1 62.3 57.0 336 3.95 8 0.26 Very Good H SI1 61.9 55.0 337 4.07 9 0.22 Fair E VS2 65.1 61.0 337 3.87 10 0.23 Very Good H VS1 59.4 61.0 338 4.00 11 0.30 Good J	1 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 3 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 4 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 5 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 6 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 7 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 8 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 9 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 10 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 11 0.30 Good J SI1 64.0 55.0 339 4.25 4.28 12 0.23 Ideal J VS1 62.8 56.0 340 3.93 3.90 13 0.22 Premium F SI1 60.4 61.0 342 3.88 3.84 14 0.31 Ideal J SI2 62.2 54.0 344 4.35 4.37 15 0.20 Premium E SI2 60.2 62.0 345 3.79 3.75 16 0.32 Premium E SI2 60.2 62.0 345 3.79 3.75 16 0.32 Premium E I1 60.9 58.0 345 4.38 4.42 17 0.30 Ideal I SI2 62.0 54.0 348 4.31 4.34 18 0.30 Good J SI1 63.4 54.0 351 4.23 4.29

```
19 Unnamed 20 cerate Very Good classy depth table pde 4.2x 4.2y 2.6s
20 21 0.30 Good I SI2 63.3 56.0 351 4.26 4.30 2.71
```

In [731]:

ds.describe()

Out[731]:

	Unnamed: 0	carat	depth	table	price	x	у	z
count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
mean	26970.500000	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
std	15571.281097	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
min	1.000000	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
25%	13485.750000	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
50%	26970.500000	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	40455.250000	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
max	53940.000000	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

Null Values

Checking for the null values

```
In [732]:
```

y 0 z 0 dtype: int64

Checking unique Values

0

In [733]:

price

X

```
ds.nunique()
```

Out[733]:

Unnamed: 0 53940 carat 273 5 cut 7 color 8 clarity 184 depth table 127 price 11602 Х 552 У 375 dtype: int64

We can drop the Unnamed Column as it is just indexing

In [734]:

```
ds.drop(axis="columns", labels="Unnamed: 0", inplace=True)
ds.loc[:10,:]
```

Out[734]:

	carat	cut	color	clarity	depth	table	price	X	у	z
0	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	ı	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
5	0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
6	0.24	Very Good	ı	VVS1	62.3	57.0	336	3.95	3.98	2.47
7	0.26	Very Good	н	SI1	61.9	55.0	337	4.07	4.11	2.53
8	0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
9	0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39
10	0.30	Good	J	SI1	64.0	55.0	339	4.25	4.28	2.73

We see x(length), y(width) and z(depth) has minimum value 0 which indicates these are wrong values so we can remove those rows

```
In [735]:
```

```
ds = ds.drop(ds[ds["x"]==0].index)
ds = ds.drop(ds[ds["y"]==0].index)
ds = ds.drop(ds[ds["z"]==0].index)
```

In [736]:

```
ds.describe()
```

Out[736]:

	carat	depth	table	price	x	У	z
count	53920.000000	53920.000000	53920.000000	53920.000000	53920.000000	53920.000000	53920.000000
mean	0.797698	61.749514	57.456834	3930.993231	5.731627	5.734887	3.540046
std	0.473795	1.432331	2.234064	3987.280446	1.119423	1.140126	0.702530
min	0.200000	43.000000	43.000000	326.000000	3.730000	3.680000	1.070000
25%	0.400000	61.000000	56.000000	949.000000	4.710000	4.720000	2.910000
50%	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
75%	1.040000	62.500000	59.000000	5323.250000	6.540000	6.540000	4.040000
max	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

In [737]:

```
ds.nunique()
```

Out[737]:

```
carat 273
cut 5
color 7
clarity 8
```

```
depth
              184
              127
table
price
            11597
              553
Х
              550
У
              374
Z
dtype: int64
Now we see cut, color and clarity has 5, 7 and 8 unique values. Lets check these.
In [738]:
ds["cut"].unique()
Out[738]:
array(['Ideal', 'Premium', 'Good', 'Very Good', 'Fair'], dtype=object)
In [739]:
ds["color"].unique()
```

Label Encoding

We can do label encoding on these columns. We have to take care of some cases like:

```
Color: J= Worst(1) D= Best(7)
```

Clarity: (I1 (1), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (8))

Cut: (Fair(1), Good, Very Good, Premium, Ideal(5))

```
In [741]:
```

```
ds["color"] = ds["color"].map({"J": 1,"I": 2,"H": 3,"G": 4,"F": 5,"E": 6,"D": 7})
ds["clarity"] = ds["clarity"].map({"II": 1,"SI2": 2,"SII": 3,"VS2": 4,"VS1": 5,"VVS2": 6
,"VVS1": 7, "IF": 8})
ds["cut"] = ds["cut"].map({"Fair": 1,"Good": 2,"Very Good": 3,"Premium": 4,"Ideal": 5})
```

```
In [742]:
```

```
ds.loc[:10,:]
```

Out[742]:

_		carat	cut	color	clarity	depth	table	price	X	У	Z
	0	0.23	5	6	2	61.5	55.0	326	3.95	3.98	2.43
	1	0.21	4	6	3	59.8	61.0	326	3.89	3.84	2.31
	2	0.23	2	6	5	56.9	65.0	327	4.05	4.07	2.31
	3	0.29	4	2	4	62.4	58.0	334	4.20	4.23	2.63
	4	0.31	2	1	2	63.3	58.0	335	4.34	4.35	2.75
	5	0.24	3	1	6	62.8	57.0	336	3.94	3.96	2.48
	e	N 94	3	2	7	62.3	57 N	336	2 05	3 08	2 47

```
V.4T
                                                  U.3U U.3U E.TI
                              depth
   carat
          cut
               color
                     clarity
                                     table
                                            price
     U 26
8
    0.22
            1
                   6
                           4
                               65.1
                                      61.0
                                             337 3.87 3.78 2.49
9
    0.23
            3
                   3
                           5
                               59.4
                                      61.0
                                             338
                                                  4.00 4.05 2.39
    0.30
            2
                   1
                           3
                               64.0
                                      55.0
                                             339 4.25 4.28 2.73
10
```

Duplicate Rows

We are removing the duplicate rows if present.

```
In [743]:
ds.duplicated().sum()
Out[743]:
145
In [744]:
ds.drop(axis="rows", labels=ds.index[ds.duplicated()], inplace=True)
ds.duplicated().sum()
Out[744]:
0
```

Feature Scaling

We are now doing the feature scaling for columns x, y, z, table and depth using min-max normalization

```
In [745]:

x = ds["x"] - np.min(ds["x"])
y = np.max(ds["x"]) - np.min(ds["x"])
ds["x"] = x/y
ds.loc[:20,:]
Out[745]:
```

```
carat cut color clarity depth table price
                                                        X
                                                             У
                                                                   Z
    0.23
            5
                                     55.0
                                            326 0.031384 3.98 2.43
                   6
                          2
                              61.5
    0.21
                   6
                          3
                              59.8
                                     61.0
                                            326 0.022825 3.84 2.31
            2
    0.23
                   6
                          5
                              56.9
                                     65.0
                                            327 0.045649 4.07 2.31
    0.29
            4
                   2
                                     58.0
                                            334 0.067047 4.23 2.63
                              62.4
            2
    0.31
                   1
                          2
                              63.3
                                     58.0
                                            335 0.087019 4.35 2.75
5
    0.24
            3
                   1
                          6
                              62.8
                                     57.0
                                            336 0.029957 3.96 2.48
6
    0.24
                   2
                          7
                              62.3
                                     57.0
                                            336 0.031384 3.98 2.47
7
    0.26
            3
                   3
                          3
                              61.9
                                     55.0
                                            337 0.048502 4.11 2.53
8
    0.22
                              65.1
                                     61.0
                                            337 0.019971 3.78 2.49
9
    0.23
            3
                   3
                          5
                              59.4
                                     61.0
                                            338 0.038516 4.05 2.39
10
    0.30
            2
                          3
                              64.0
                                     55.0
                                            339 0.074180 4.28 2.73
11
    0.23
            5
                   1
                          5
                              62.8
                                     56.0
                                            340 0.028531 3.90 2.46
12
                   5
                          3
                              60.4
                                     61.0
                                            342 0.021398 3.84 2.33
    0.22
13
    0.31
                   1
                          2
                              62.2
                                     54.0
                                            344 0.088445 4.37 2.71
    0.20
                              60.2
                                     62.0
                                            345 0.008559 3.75 2.27
14
    0.32
                              60.9
                                     58.0
                                            345 0.092725 4.42 2.68
```

```
carat cut color clarity depth table price x v z 16 0.30 5 2 2 62.0 54.0 348 0.082739 4.34 2.68
17
      0.30
              2
                     1
                             3
                                  63.4
                                        54.0
                                                351 0.071327 4.29 2.70
18
      0.30
                     1
                             3
                                  63.8
                                         56.0
                                                351 0.071327 4.26 2.71
                                                351 0.068474 4.27 2.66
      0.30
              3
                     1
                             3
                                  62.7
                                         59.0
19
                     2
                                         56.0
                                                351 0.075606 4.30 2.71
20
      0.30
                                  63.3
```

In [746]:

```
x = ds["price"] - np.min(ds["price"])
y = np.max(ds["price"]) - np.min(ds["price"])
ds["price"] = x/y
ds.loc[:20,:]
```

Out[746]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	5	6	2	61.5	55.0	0.000000	0.031384	3.98	2.43
1	0.21	4	6	3	59.8	61.0	0.000000	0.022825	3.84	2.31
2	0.23	2	6	5	56.9	65.0	0.000054	0.045649	4.07	2.31
3	0.29	4	2	4	62.4	58.0	0.000433	0.067047	4.23	2.63
4	0.31	2	1	2	63.3	58.0	0.000487	0.087019	4.35	2.75
5	0.24	3	1	6	62.8	57.0	0.000541	0.029957	3.96	2.48
6	0.24	3	2	7	62.3	57.0	0.000541	0.031384	3.98	2.47
7	0.26	3	3	3	61.9	55.0	0.000595	0.048502	4.11	2.53
8	0.22	1	6	4	65.1	61.0	0.000595	0.019971	3.78	2.49
9	0.23	3	3	5	59.4	61.0	0.000649	0.038516	4.05	2.39
10	0.30	2	1	3	64.0	55.0	0.000703	0.074180	4.28	2.73
11	0.23	5	1	5	62.8	56.0	0.000757	0.028531	3.90	2.46
12	0.22	4	5	3	60.4	61.0	0.000865	0.021398	3.84	2.33
13	0.31	5	1	2	62.2	54.0	0.000973	0.088445	4.37	2.71
14	0.20	4	6	2	60.2	62.0	0.001027	0.008559	3.75	2.27
15	0.32	4	6	1	60.9	58.0	0.001027	0.092725	4.42	2.68
16	0.30	5	2	2	62.0	54.0	0.001189	0.082739	4.34	2.68
17	0.30	2	1	3	63.4	54.0	0.001352	0.071327	4.29	2.70
18	0.30	2	1	3	63.8	56.0	0.001352	0.071327	4.26	2.71
19	0.30	3	1	3	62.7	59.0	0.001352	0.068474	4.27	2.66
20	0.30	2	2	2	63.3	56.0	0.001352	0.075606	4.30	2.71

In [747]:

```
x = ds["y"] - np.min(ds["y"])
y = np.max(ds["y"]) - np.min(ds["y"])
ds["y"] = x/y
ds.loc[:10,:]
```

Out[747]:

	carat	cut	color	clarity	depth	table	price	x	У	z
0	0.23	5	6	2	61.5	55.0	0.000000	0.031384	0.005433	2.43
1	0.21	4	6	3	59.8	61.0	0.000000	0.022825	0.002898	2.31
2	0.23	2	6	5	56.9	65.0	0.000054	0.045649	0.007063	2.31
3	0.29	4	2	4	62.4	58.0	0.000433	0.067047	0.009960	2.63

```
4 caret cut color clarity depth table 0.000489 0.087019 0.012138 2.75
5
   0.24
           3
                 1
                        6
                            62.8
                                  57.0 0.000541 0.029957 0.005071 2.48
                        7
6
   0.24
           3
                 2
                            62.3
                                  57.0 0.000541 0.031384 0.005433 2.47
                                  55.0 0.000595 0.048502 0.007787 2.53
   0.26
           3
                 3
                        3
                            61.9
7
   0.22
                 6
                        4
                            65.1
                                  61.0 0.000595 0.019971 0.001811 2.49
   0.23
           3
                 3
                        5
                                  61.0 0.000649 0.038516 0.006700 2.39
                            59.4
9
   0.30
                            64.0
                                  55.0 0.000703 0.074180 0.010866 2.73
```

In [748]:

```
x = ds["z"] - np.min(ds["z"])
y = np.max(ds["z"]) - np.min(ds["z"])
ds["z"] = x/y
ds.loc[:5,:]
```

Out[748]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	5	6	2	61.5	55.0	0.000000	0.031384	0.005433	0.044256
1	0.21	4	6	3	59.8	61.0	0.000000	0.022825	0.002898	0.040351
2	0.23	2	6	5	56.9	65.0	0.000054	0.045649	0.007063	0.040351
3	0.29	4	2	4	62.4	58.0	0.000433	0.067047	0.009960	0.050765
4	0.31	2	1	2	63.3	58.0	0.000487	0.087019	0.012133	0.054670
5	0.24	3	1	6	62.8	57.0	0.000541	0.029957	0.005071	0.045884

In [749]:

```
x = ds["depth"] - np.min(ds["depth"])
y = np.max(ds["depth"]) - np.min(ds["depth"])
ds["depth"] = x/y
ds.loc[:10,:]
```

Out[749]:

	carat	cut	color	clarity	depth	table	price	X	У	Z
0	0.23	5	6	2	0.513889	55.0	0.000000	0.031384	0.005433	0.044256
1	0.21	4	6	3	0.466667	61.0	0.000000	0.022825	0.002898	0.040351
2	0.23	2	6	5	0.386111	65.0	0.000054	0.045649	0.007063	0.040351
3	0.29	4	2	4	0.538889	58.0	0.000433	0.067047	0.009960	0.050765
4	0.31	2	1	2	0.563889	58.0	0.000487	0.087019	0.012133	0.054670
5	0.24	3	1	6	0.550000	57.0	0.000541	0.029957	0.005071	0.045884
6	0.24	3	2	7	0.536111	57.0	0.000541	0.031384	0.005433	0.045558
7	0.26	3	3	3	0.525000	55.0	0.000595	0.048502	0.007787	0.047511
8	0.22	1	6	4	0.613889	61.0	0.000595	0.019971	0.001811	0.046209
9	0.23	3	3	5	0.455556	61.0	0.000649	0.038516	0.006700	0.042955
10	0.30	2	1	3	0.583333	55.0	0.000703	0.074180	0.010866	0.054019

In [750]:

```
x = ds["table"] - np.min(ds["table"])
y = np.max(ds["table"]) - np.min(ds["table"])
ds["table"] = x/y
ds.loc[:10,:]
```

Out[750]:

	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	5	6	2	0.513889	0.230769	0.000000	0.031384	0.005433	0.044256
1	0.21	4	6	3	0.466667	0.346154	0.000000	0.022825	0.002898	0.040351
2	0.23	2	6	5	0.386111	0.423077	0.000054	0.045649	0.007063	0.040351
3	0.29	4	2	4	0.538889	0.288462	0.000433	0.067047	0.009960	0.050765
4	0.31	2	1	2	0.563889	0.288462	0.000487	0.087019	0.012133	0.054670
5	0.24	3	1	6	0.550000	0.269231	0.000541	0.029957	0.005071	0.045884
6	0.24	3	2	7	0.536111	0.269231	0.000541	0.031384	0.005433	0.045558
7	0.26	3	3	3	0.525000	0.230769	0.000595	0.048502	0.007787	0.047511
8	0.22	1	6	4	0.613889	0.346154	0.000595	0.019971	0.001811	0.046209
9	0.23	3	3	5	0.455556	0.346154	0.000649	0.038516	0.006700	0.042955
10	0.30	2	1	3	0.583333	0.230769	0.000703	0.074180	0.010866	0.054019

In [751]:

ds.describe()

Out[751]:

	carat	cut	color	clarity	depth	table	price	x	
count	53775.000000	53775.000000	53775.000000	53775.000000	53775.000000	53775.000000	53775.000000	53775.000000	537
mean	0.797536	3.904231	4.406267	4.052366	0.520784	0.278035	0.194908	0.285532	
std	0.473169	1.116097	1.701271	1.646733	0.039712	0.042947	0.215490	0.159574	
min	0.200000	1.000000	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.400000	3.000000	3.000000	3.000000	0.500000	0.250000	0.033789	0.139800	
50%	0.700000	4.000000	4.000000	4.000000	0.522222	0.269231	0.112180	0.281027	
75%	1.040000	5.000000	6.000000	5.000000	0.541667	0.307692	0.270206	0.400856	
max	5.010000	5.000000	7.000000	8.000000	1.000000	1.000000	1.000000	1.000000	
4)

- 1.0

- 0.8

- 0.6

Correlation

In [752]:

```
plt.figure(figsize=(11,11))
sns.heatmap(ds.corr(), annot=True)
```

Out[752]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8950970050>

"x", "y" and "z" show a high correlation to the "price" column. So we can drop any two columns. We also see "carat" is very much dependent on "x", "y" and "z" as it is obvious if length, width and depth increases carat will increase. So let's drop carat as it has the highest correlation.

"depth", "cut" and "table" show low correlation.

```
In [753]:
```

```
ds.drop(axis="columns", labels="carat", inplace=True)
```

In [754]:

```
ds.loc[:10,:]
```

Out[754]:

	cut	color	clarity	depth	table	price	x	у	z
0	5	6	2	0.513889	0.230769	0.000000	0.031384	0.005433	0.044256
1	4	6	3	0.466667	0.346154	0.000000	0.022825	0.002898	0.040351
2	2	6	5	0.386111	0.423077	0.000054	0.045649	0.007063	0.040351
3	4	2	4	0.538889	0.288462	0.000433	0.067047	0.009960	0.050765
4	2	1	2	0.563889	0.288462	0.000487	0.087019	0.012133	0.054670
5	3	1	6	0.550000	0.269231	0.000541	0.029957	0.005071	0.045884
6	3	2	7	0.536111	0.269231	0.000541	0.031384	0.005433	0.045558
7	3	3	3	0.525000	0.230769	0.000595	0.048502	0.007787	0.047511
8	1	6	4	0.613889	0.346154	0.000595	0.019971	0.001811	0.046209
9	3	3	5	0.45556	0.346154	0.000649	0.038516	0.006700	0.042955
10	2	1	3	0.583333	0.230769	0.000703	0.074180	0.010866	0.054019

Test and Training Data

In [755]:

```
train = ds.sample(frac = 0.75, replace = False)
test = ds.drop(train.index)
```

In [756]:

```
train = train.to numbv()
```

```
In [757]:
label col = 5
# label col is price column
y train = train[:,label col]
x_train = np.delete(train, label_col, 1)
#inserting bias b, this will work for both univariate and multivariate
x train = np.insert(x train, 0, np.ones(len(x train)), axis=1)
y_test = test[:,label_col]
x test = np.delete(test, label col, 1)
#inserting bias b
x test = np.insert(x test, 0, np.ones(len(y test)), axis=1)
In [758]:
print(x train.shape)
print(x test.shape)
print(y train.shape)
print(y_test.shape)
(40331, 9)
(13444, 9)
(40331,)
(13444,)
Linear Regression
Closed Form
W = (X.TX)^{\Lambda}-1X.T*Y
In [759]:
def closedForm(x, y):
  return np.dot(np.dot(np.linalg.inv(np.dot(x.T, x)), x.T), y)
Gradient Descent
In X, we are adding a column of all 1's which represents our bias (b) from the equation y = w^*x + b.
y cap = y pred = x w \cos t = J(w) = -1/m \operatorname{sigma}((y - y \operatorname{cap})^2) \text{ for } i = 1 \text{ to } m
dJ(w) / dw = -1/m X(y - y_cap); m = rows
a = alpha (learning rate)
w = w - a * dJ/dw
In [760]:
def gradientDescent(x, y, w, itr, alpha):
  costs list = [1]*itr
  for i in range(itr):
    y cap = np.dot(x, w)
    loss = y cap - y
    cost = np.sum(loss ** 2) / len(x)
    #each iterations cost
    costs list[i] = cost
    if (i % 50 == 0):
      print("Cost=", cost)
```

test = test.to_numpy()

#w = w - aplha * d(loss)/dw

```
grad = np.dot(x.T, loss) / len(x)
w = w - alpha * grad
return w, costs_list
```

Mean Squared Error

The Mean Squared Error measures how close a regression line is to a set of data points.

```
In [761]:
```

```
def meanSqErr(y_pred, y_test):
   MeanSquaredError = np.mean(np.square(y_pred - y_test))
   return MeanSquaredError
```

For Graph Plot

```
In [762]:
```

```
def plotCost(cost, method):
   plt.plot(cost)
   plt.ylabel('Cost')
   plt.xlabel('iteration')
   plt.title('Cost curve (' + method + ' solution)')
   plt.show()
```

UniVariate

Lets check the correlation Matrix and check which columns are most dependent on our label column

```
In [763]:
```

```
plt.figure(figsize=(11,11))
sns.heatmap(ds.corr(), annot=True)
```

Out[763]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f8950f421d0>


```
-0.12
           -0.26
                       -0.36
                                  -0.029
                                                                      0.97
                                                                                             0.96
-0.15
           -0.27
                       -0.37
                                  0.095
                                              0.15
                                                          0.87
                                                                      0.98
                                                                                  0.96
                                                                                               1
cut
           color
                      darity
                                  depth
                                              table
                                                          price
                                                                        Х
                                                                                               z
```

In [764]:

```
x train
Out[764]:
                                            , ..., 0.06419401, 0.00851141,
array([[1.
                               , 7.
        0.04913765],
                                            , ..., 0.2810271 , 0.03730532,
       [1.
                  , 3.
                                , 7.
        0.07972665],
       [1.
                  , 4.
                                            , ..., 0.53780314, 0.06700471,
                                , 3.
        0.11096648],
       . . . ,
                   , 5.
                                            , ..., 0.22253923, 0.02951829,
       [1.
                                , 4.
        0.07159128],
                               , 5.
                                           , ..., 0.41940086, 0.05378486,
        0.10055321],
                                           , ..., 0.50071327, 0.06519377,
       [1.
                               , 1.
        0.11519688]])
```

In [765]:

```
#here we are taking two columns from our x_train and x_test
# 1st column = bias (b) and i'th column = feature on which we will apply Univariate.
def train_test_univariate(i):
    # bias i'th column
    ux_train = np.array([x_train[:,0], x_train[:,i]]).T
    ux_test = np.array([x_test[:,0], x_test[:,i]]).T
    return ux_train, ux_test, y_train, y_test
```

We can take any of the columns: x, y, z for prediction of label

```
In [766]:
```

```
x_col = ds.columns.get_loc("x")
y_col = ds.columns.get_loc("y")
z_col = ds.columns.get_loc("z")
```

For X Column

```
In [767]:
```

```
ux_train, ux_test, uy_train, uy_test = train_test_univariate(x_col)
uy_train=uy_train.reshape((len(uy_train), 1))
uy_test=uy_test.reshape((len(uy_test), 1))
```

In [768]:

```
#Closed Form Solutin

weightC_UNI = closedForm(ux_train, uy_train)
y_pred_closed_UNI = np.dot(ux_test, weightC_UNI)
print("Closed form UniVariate using << X >> column Mean Squared Error = ", meanSqErr(y_pred_closed_UNI, uy_test))
```

Closed form UniVariate using << X >> column Mean Squared Error = 0.010007017074549722

In [769]:

```
#Gradient Descent Solution
```

```
weightG_UNI = 0.1
itr = 600
alpha = 0.35
weightG_UNI, costsG_UNI = gradientDescent(ux_train, uy_train, weightG_UNI, itr, alpha)
```

```
Cost= 0.1230726656888536

Cost= 0.04556362687616016

Cost= 0.03102156416809773

Cost= 0.024656724709065096

Cost= 0.02187093137612901

Cost= 0.020651632045205953

Cost= 0.02011796329066754

Cost= 0.019884384601376395

Cost= 0.019782150765074398

Cost= 0.019737404571332398

Cost= 0.019717819843547355

Cost= 0.019709247906353627
```

In [770]:

```
y_pred_grad_UNI = np.dot(ux_test, weightG_UNI)
print("Gradient Descent UniVariate using <X> column Mean Squared Error = ", meanSqErr(y_p
red_grad_UNI, uy_test))
```

Gradient Descent UniVariate using <X> column Mean Squared Error = 0.010011437186306944

In [771]:

```
plotCost(costsG_UNI, "Gradient descent using UniVariate: ")
```


For Y Column

In [772]:

```
ux_train, ux_test, uy_train, uy_test = train_test_univariate(y_col)
uy_train=uy_train.reshape((len(uy_train), 1))
uy_test=uy_test.reshape((len(uy_test), 1))
```

In [773]:

```
#Closed Form Solutin

weightC_UNI = closedForm(ux_train, uy_train)
y_pred_closed_UNI = np.dot(ux_test, weightC_UNI)
print("Closed form UniVariate using << Y >> column Mean Squared Error = ", meanSqErr(y_pr
ed_closed_UNI, uy_test))
```

Closed form UniVariate using << Y >> column Mean Squared Error = 0.017043747722067813

In [774]:

```
#Gradient Descent Solution
weightG_UNI = 0.1
```

```
itr = 1000
alpha = 0.011
weightG UNI, costsG UNI = gradientDescent(ux train, uy train, weightG UNI, itr, alpha)
Cost= 0.13697936620553774
Cost= 0.09631344469359934
Cost= 0.09269088319243472
Cost= 0.09147294628003394
Cost= 0.09104936538727677
Cost= 0.09088820245596667
Cost= 0.09081373642459524
Cost= 0.09076791938236774
Cost= 0.0907315757084925
Cost= 0.09069837090116778
Cost= 0.09066621240927056
Cost= 0.09063440897276392
Cost= 0.090602732235794
Cost= 0.0905711067588329
Cost= 0.09053950761691729
Cost= 0.09050792657212775
Cost= 0.09047636089896492
Cost= 0.09044480969291056
Cost= 0.09041327265099361
Cost= 0.09038174966896048
```

In [775]:

```
y_pred_grad_UNI = np.dot(ux_test, weightG_UNI)
print("Gradient Descent UniVariate using << Y >> column Mean Squared Error = ", meanSqErr
(y_pred_grad_UNI, uy_test))
```

Gradient Descent UniVariate using << Y >> column Mean Squared Error = 0.0457747901126378

In [776]:

```
plotCost(costsG_UNI, "Gradient descent using UniVariate: ")
```


Z Column

In [777]:

```
#Gradient Descent Solution
weightG_UNI = 0.1
itr = 1000
alpha = 0.011
weightG_UNI, costsG_UNI = gradientDescent(ux_train, uy_train, weightG_UNI, itr, alpha)

Cost= 0.13697936620553774
Cost= 0.09631344469359934
```

Cost= 0.09147294628003394 Cost= 0.09104936538727677

Cost= 0.09269088319243472

```
Cost= 0.09081373642459524
Cost= 0.09076791938236774
Cost= 0.0907315757084925
Cost= 0.09069837090116778
Cost= 0.09066621240927056
Cost= 0.09063440897276392
Cost= 0.090602732235794
Cost= 0.0905711067588329
Cost= 0.09053950761691729
Cost= 0.09050792657212775
Cost= 0.09047636089896492
Cost= 0.09044480969291056
Cost= 0.09041327265099361
Cost= 0.09038174966896048
In [778]:
ux train, ux test, uy train, uy test = train test univariate(z col)
uy train=uy train.reshape((len(uy train), 1))
uy test=uy test.reshape((len(uy test), 1))
In [779]:
#Closed Form Solutin
weightC UNI = closedForm(ux_train, uy_train)
y pred closed_UNI = np.dot(ux_test, weightC_UNI)
print("Closed form UniVariate using << Z >> column Mean Squared Error = ", meanSqErr(y pr
ed closed UNI, uy test))
Closed form UniVariate using << Z >> column Mean Squared Error = 0.014940489937509394
In [780]:
#Gradient Descent Solution
weightG UNI = 0.1
itr = 1000
alpha = 0.012
weightG UNI, costsG UNI = gradientDescent(ux train, uy train, weightG UNI, itr, alpha)
Cost= 0.1352712007544064
Cost= 0.09508750523039379
Cost= 0.09196686550196595
Cost= 0.09101135470391955
Cost= 0.09069821895911043
Cost= 0.09057568290888587
Cost= 0.09050971242647102
Cost= 0.09046054184024391
Cost= 0.09041637333653367
Cost= 0.09037370669260293
Cost= 0.09033150344076013
Cost= 0.09028945547445004
Cost= 0.09024747137293321
Cost= 0.09020552400249734
Cost= 0.09016360530231136
Cost= 0.09012171287015225
Cost= 0.0900798459826169
Cost= 0.09003800441438607
Cost= 0.0899961880879201
Cost= 0.0899543969695295
In [781]:
y_pred_grad_UNI = np.dot(ux_test, weightG_UNI)
print("Gradient Descent UniVariate using << Z >> column Mean Squared Error = ", meanSqErr
(y pred grad UNI, uy test))
Gradient Descent UniVariate using << Z >> column Mean Squared Error = 0.0455579780196802
```

CUBL- 0.0700002023370007

In [782]:

```
plotCost(costsG UNI, "Gradient descent using UniVariate: ")
     Cost curve (Gradient descent using UniVariate: solution)
  0.13
  0.12
්වී <sub>0.11</sub>
  0.10
  0.09
              200
                      400
                             600
                                     800
                                            1000
                        iteration
MultiVariate
In [783]:
#Closed Form Solution
weightC = closedForm(x train, y train)
#Gradient Descent Solution
weightG = [0.1] * len(x train[0])
itr = 220
alpha = 0.001
weightG, costsG = gradientDescent(x train, y train, weightG, itr, alpha)
Cost= 1.7276138171175495
Cost= 0.04461621990072215
Cost= 0.038621204751832144
Cost= 0.038480786396332324
Cost= 0.03836601866517273
In [784]:
#closed form prediction
y_pred_closed = np.dot(x_test, weightC)
#gradient descent prediction
y pred grad = np.dot(x test, weightG)
In [785]:
print("Closed form Mean Squared Error = ", meanSqErr(y_pred_closed, y_test))
Closed form Mean Squared Error = 0.011663738954442171
In [786]:
print("Gradient descent Mean Squared Error = ", meanSqErr(y_pred_grad, y_test))
Gradient descent Mean Squared Error = 0.03892606575592581
```

```
Cost curve (Gradient descent solution)

1.75

1.50
```

plotCost(costsG, "Gradient descent")

In [787]:

Further checking for correlated columns and checking for results

```
In [788]:
```

```
plt.figure(figsize=(11,11))
sns.heatmap(ds.corr(), annot=True)
```

Out[788]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f895031fe50>

Let's also try with dropping x, y and z values as they are highly correlated to our target column

```
In [789]:
```

```
x_col = ds.columns.get_loc("x")
y_col = ds.columns.get_loc("y")
z_col = ds.columns.get_loc("z")
```

```
In [790]:

ds.head()
Out[790]:
```

```
cut color clarity
                      depth
                                table
                                         price
                                                     X
                                                               У
                 2 0.513889 0.230769 0.000000 0.031384 0.005433 0.044256
0
1
    4
          6
                 3 0.466667 0.346154 0.000000 0.022825 0.002898 0.040351
2
                 5 0.386111 0.423077 0.000054 0.045649 0.007063 0.040351
                 4 0.538889 0.288462 0.000433 0.067047 0.009960 0.050765
3
    4
          2
    2
          1
                 2 0.563889 0.288462 0.000487 0.087019 0.012133 0.054670
4
```

```
In [791]:
```

```
ds.drop(axis="columns", labels="y", inplace=True)
ds.drop(axis="columns", labels="x", inplace=True)
ds.drop(axis="columns", labels="z", inplace=True)
```

Again calculating x_train, x_test, y_train and y_test after dropping columns and checking for multivariate values

```
In [792]:
ds.head()
```

```
Out[792]:
```

	cut	color	clarity	depth	table	price
0	5	6	2	0.513889	0.230769	0.000000
1	4	6	3	0.466667	0.346154	0.000000
2	2	6	5	0.386111	0.423077	0.000054
3	4	2	4	0.538889	0.288462	0.000433
4	2	1	2	0.563889	0.288462	0.000487

Removing from test and train sets

```
In [793]:
```

```
label_col = 5
# label_col is price column
y_train = train[:,label_col]

#removing label_column and x, y, z columns
x_train = np.delete(train,[label_col, x_col, y_col, z_col],1)

#inserting bias b, this will work for both univariate and multivariate
x_train = np.insert(x_train, 0, np.ones(len(x_train)), axis=1)

y_test = test[:,label_col]

#removing label_column and x, y, z columns
x_test = np.delete(test,[label_col, x_col, y_col, z_col],1)

#inserting bias b
x_test = np.insert(x_test, 0, np.ones(len(y_test)), axis=1)
```

Final Solution after removing all the correlated columns

```
In [794]:
```

```
#Closed Form Solution
```

```
weightC = closedForm(x_train, y_train)

#Gradient Descent Solution
weightG = [0.1] * len(x_train[0])
itr = 220
alpha = 0.001
weightG, costsG = gradientDescent(x_train, y_train, weightG, itr, alpha)
```

Cost= 1.6398328097028203 Cost= 0.05199669078742636 Cost= 0.046331486882540414 Cost= 0.046238802235241565 Cost= 0.04617420689155505

In [795]:

```
#closed form prediction
y_pred_closed = np.dot(x_test, weightC)

#gradient descent prediction
y_pred_grad = np.dot(x_test, weightG)
```

In [796]:

```
print("Closed form Mean Squared Error = ", meanSqErr(y_pred_closed, y_test))
```

Closed form Mean Squared Error = 0.044246800117223595

In [797]:

```
print("Gradient descent Mean Squared Error = ", meanSqErr(y_pred_grad, y_test))
```

Gradient descent Mean Squared Error = 0.04680266014458536

In [798]:

```
plotCost(costsG, "Gradient descent")
```

