$= 8.314 \frac{\overline{\text{L} \cdot \text{kPa} \vee \text{J}}}$ $R_{\rm gas\text{-}law} = 0.0821 \frac{{\sf L} \cdot {\sf atm}}{{\sf mol} \cdot {\sf K}} = 62.4 \frac{{\sf L} \cdot {\sf mmHg}}{{\sf mol} \cdot {\sf M}} = 62.4 \frac{{\sf L} \cdot {\sf mmHg}}{{\sf mol} \cdot {\sf M}} = 62.4 \frac{{\sf L} \cdot {\sf M}}{{\sf mol} \cdot {\sf M}} = 62.$ $453.6 \; \mathrm{g}$ $2.54 \; \mathrm{cm}$ $0.946 \; \mathrm{L}$ $6.022 \times 10^{23} \; \mathrm{units}$ $22.4 \; \mathrm{L}$ 1 in 1 qt 1 lb P_{sea} $\frac{1}{g_{\text{water}}} =$ $1 \mathsf{\ atm}$ $\frac{1}{1} \frac{1}{\text{mL}_{\text{water}}} = \frac{1}{101325} \frac{1}{\text{Pa}} = \frac{1}{760} \frac{1}{\text{mmHg}} = \frac{1}{14.7} \frac{1}{\text{psi}}$ $^{\circ}\mathsf{C} = \frac{5}{9}(^{\circ}\mathsf{F} - 32)$ and $^{\circ}\mathsf{F} = \frac{9}{5}{}^{\circ}\mathsf{C} + 32$

 $h = 6.626 \times 10^{-34} \text{Js} \vee \text{kgm}^2 \text{s}^{-1} \text{ and } c = 3.00 \times 10^8 \text{ ms}^{-1}$

2 IIA

Be

Beryllium

9.01

12 1.31

Mg

Magnesium

24.31

Ca

Calcium

40.08

Sr

Strontium

87.62

Ba

Barium

137.33

Ra

Radium

(226)

Alkali Metal

Metalloid

Non-metal

Noble Gas

 C_4H_{10} HCIO $_4$ EN, IE, EA, & \mathbb{Z}_{eff} increase $\rightarrow \uparrow$

Halogen

Metal

1.00

0.95

0.89

0.9

Alkaline-Earth **Z**

Lanthanide/Actinide

Radius & Metallic increase ←↓

20

38

56

88

1.57

1 IA

 H_2

Hydrogen 1.01

Lithium

6.94

Na

Sodium 22.99

Potassium

39.10

Rb

Rubidium

85.47

Cs

Caesium

132.91

Fr

Francium

(223)

HI

HBr

HCI

HNO₃

H₂SO₄

 $C_3H_8 \mid HCIO_3$

Gas

CO

 CO_2

 CH_4

 C_2H_6

NO NO₂

N₂O NH₃

 $SO_3 SO_2$ H₂S HCl

Super⁷

0.82

0.79

0.7

19

37

55

2.20

0.98

0.93

0.82

1

 $\triangle H_{\text{vap}} = 40.67 \text{kJ mol}^{-1}$

 $E_n = -\frac{R_H}{n^2}$

 $E_{\rm photon} = hf = \frac{hc}{\lambda}$ and $\lambda = \frac{h}{mv}$

 $(K_b, K_f) = (0.512, 1.86)^{\circ} \text{C/m}$

 $\Pi = iMRT$ and $S_q = kP_q$

 $\triangle T_f = K_f mi$ and $\triangle T_b = K_b mi$

4 IVB

22 1.54

Ti

Titanium

47.87

40 1.33

Zr

Zirconium

91.22

72 1.3

Hf

Hafnium

178.49

104 Ruther-

fordium

Rf

(267)

La

Lanthanum

138.91

Ac

Actinium

(227)

1.1

57

 $R_{H_{\text{Rydberg}}} \stackrel{n}{=} 2.18 \times 10^{-18} \text{ J}$

 $\triangle E = R_H \left(\frac{1}{n^2} - \frac{1}{n^2} \right)$

= Van't Hoff

3 IIIA

21 1.36

Sc

Scandium

44.96

Y

Yttrium

88.91

La-Lu

Lanthanide

Ac-Lr

Actinide

Sym

Name

mass

E.N.

57-71

89-103

1.22

39

 $C_{\text{water}} = 4.184 \text{J (gK)}^{-1} v_{\text{rms}} = \sqrt{C_{\text{steam}} = 1.865 \text{J (gK)}^{-1}}$

Periodic Table of Elements

$PV = nRT$ and $\left[P + \frac{an^2}{V^2}\right][V - nb] = nRT$	<u> </u>
$PV \propto 1$ and $VT \propto 1$ (Boyle and Charle).	
$M = \frac{\text{moles solute}}{\text{L solution}} \text{ and } m = \frac{\text{moles solute}}{\text{kg solvent}}$	H
L solution kg solvent	
$X_{\text{mol fraction}} = \frac{\text{mol component}}{\text{mol total}}.$	

		$k = Ae^{-\frac{E_a}{RT}}$ $[A]_t = [A]_0 - kt$ $[A]_t = [A]_0e^{-kt}$ $[A]_t = \frac{1}{kt + \frac{1}{ A _0}}$	
K	$K_a=rac{[{\sf H_3O^+}][{\sf A}^-]}{[{\sf HA}]}$ and $K_b=rac{[{\sf HB}][{\sf OH}^-]}{[{\sf B}^-]}$, in water, ${\sf K_a}$	$K_{b} = 1.0 \times 10^{-14}$	

ol					Ion	Soluble with	Precipita								
		Γ2]			NO ₃ Nitrate	Most cations	No commo								
		$\left[P + \frac{an^2}{V^2}\right] \left[V - \right]$		$=Ae^{-\frac{E_a}{RT}}$	CIO ₄	Most cations	No commo								
	$PV \propto 1$ and VT	$7 \propto 1$ (Boyle and	Charle). $\begin{vmatrix} \kappa = 1 \\ 0 \end{vmatrix}$	$= Ae^{-RT}$	CIO ₃	Most cations	No commo								
	$M = \frac{\text{moles solut}}{M}$	$\frac{\text{te}}{\text{n}}$ and $m = \frac{\text{mol}}{\text{kg}}$	es solute [A]	$t = [A]_0 - kt$ $t = [A]_0 e^{-kt}$	$C_2H_3O_2^-$	Most cations	Ag^+,I								
	L solution	n kg	solvent $\begin{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix} \\ \begin{bmatrix} A \end{bmatrix}$	$t = \frac{1}{kt + \frac{1}{ A _0}}$	F ⁻	Most cations	Cr ³								
	$X_{\text{mol fraction}} = \frac{\text{mod}}{1}$	mol total ·	[1-1]	$t kt + \frac{1}{[A]_0}$	CI ⁻	Most cations	(Ag, TI) ⁺ , Pb	$Hg_{2}^{2+,4+},Hg_{2}^{2+}$							
7.7	[H ₂ O ⁺][A ⁻]	7.2 [HB][OH ⁻]		1.0. 10-14	Br ⁻	Most cations	(Ag, TI) ⁺ , Pb	$\frac{p^{2+,4+},Hg_2^{2+}}{p^{2+,4+},Hg_2^{2+}}$							
	L J	$K_b = \frac{[HB][OH^-]}{[B^-]},$		1 1	- -	Most cations	(Ag, TI) ⁺ , Pb	$P^{2+,4+},Hg_2^{2+}$						18 VIIIA	
pl	$H = -\log_{10}[H^+]$	$-\log [-\log t]$	${ m g}_{10}[{\sf OH}^-]$, ${\sf pK}_{\sf a}=$	$= -\log_{10}[K_a]$	SO^{2-}_4	Most cations	Ag ⁺ , Ba ² Pb ^{2+,4+} , C	*+,Sr*+,						2	
pH ⊣	- $pOH = 14$, and	$K_c = rac{[product]}{[reactant]}$,	$K_{eq}, K_{sp} \leftrightarrow K_{p}$	$= K_{c}(RT)^{\triangle n} \underline{\hspace{0.2cm}}$	C 02-	N4	Pb ²⁺ , 1, C	a^{2+}, Hg_2^{2+}	5.2		. 21	12 - 21 - 21 21	2 2	2	
K _{a-}	$_{\rm acetic} = 1.8 \times 10$	0^{-5} , and in buff	$er pH = pK_a +$	$\log_{10}\left(\frac{[A^-]}{[HA]}\right)$.	CrO_4^{2-}	Most cations	Ba ²⁺ , Sr ²⁺		Li ⁺ , K ⁺ , Ba ²	$^+$, Ca^{2+} , Na^+ , Na^+	Mg^{2+} , Al^{3+} , Mn^{-1}	$^{+2}$, Zn^{2+} , $Cr^{3+,2+}$	⁺ , Fe ^{3+,2+} ,	He	
				-10 ([IIA])	S ²⁻	$Na^+, K^+, NH_4^+,$	Ca ²⁺ ,		Co-1, NI1, S	on-', Pb-', 2H'	, Cu-''', Ag', I	agar, Ptar, Aus	1,1	Helium	
$=\frac{h}{mv}$					3	Li^+, Sr^{2+}	Most othe	er Cations	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	4.00	
$\overline{}$ mv		D A 1/		Z + DAIZ	1 ⁻ HO	Na^+, K^+, NH_4^+, Li^-	, Most other	ar cations	5 0.04		7 0.14	0 244	0 2.00	10	
I		$+ w = q - P \triangle V$ $\triangle S = \frac{q_{\text{if-reverse}}}{T}$, o				Sr^{2+} , Ba^{2+} , Ca^{2+}		ci cations	5 2.04	6 2.55	7 3.14	8 3.44	9 3.98	10	
		1	$r S = \kappa m W $ (II	iicro-state)	CO ₃ ²⁻	$\frac{(Na, K, NH_4, Li)^+}{(Na, K, NH_4, Li)^+}$	Most othe	er cations	В	C	N_2	O_2	F_2	Ne	
		$\times 10^{-23} \text{JK}^{-1}$			PO ₄ ³⁻	Na^+, K^+, NH_4^+	Most othe		Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon	
	$\triangle S = k \ln S$	$\ln\left(rac{W_{final}}{W_{initial}} ight)$ and $ riangle$	$\Delta S_{surr.} = -\frac{\Delta H^{\circ}}{T}$			No _{common} cations			10.81	12.01	14.01	116.00	19.00	20.18	
C/m	$-T\triangle S_{\text{univ}}$	$_{\text{verse}} = \triangle H_{\text{system}}$	$-T\triangle S_{system}$		$(Na,K,NH_4)^+$	Most Anions	(NH ₄) ₂		40 4 44		4	44	4= 0.40		
$=K_b\eta$.	$T\triangle S_{universe} = \triangle$	-,		Bi ³⁺	Nothing	Most a		13 1.61	14 1.90	15 2.19	16 2.38	17 3.16	18	
g		universe -			As^{3+}	I-	Most a	nions	Al	Si	Р	S	Cl_2	Ar	
					Sb ³⁺	CI ⁻	Most a	nions	Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon	
3	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	26.98	28.09	30.97	32.10	35.45	39.95	
	00 1.00	24 1.66	05 1.55	06 100	07 1.00	00 1.01	29 1.90	20 1.55	21 1.01	20 0.01	22 0.10	24 0.55	25 0.06	26 0.00	
1.54	23 1.63		25 1.55	26 1.83	27 1.88	28 1.91		30 1.65	31 1.81	32 2.01	33 2.18	34 2.55	35 2.96	36 3.00	
	V	Cr*	Mn	Fe	Co	Ni	Cu*	Zn	Ga	Ge	As	Se	Br_2	Kr	
ım	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc ⁽²⁺⁾	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton	
,	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.64	74.92	78.96	79.90	83.80	
	41 16	42 0.16	43 1.0	44 0.0	4E 2.20	46 2.20	47 4.00			FO 1.06					
1.33	41 1.6	42 2.16	43 1.9	44 2.2	45 2.28	46 2.20	47 1.93	48 1.69	49 1.78	50 1.96	51 2.05	52 2.1	53 2.86	54 2.60	
	Nb★	Mo*	Tc	Ru*	Rh *	Pd*	Ag	Cd	In	Sn*	Sb	Te	I_2	Xe	
um	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	$Silver^{(1+)}$	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon	
2	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29	
							70 0.54							0.0	
1.3	73 1.5	74 2.36	75 1.9	76 2.2	77 2.20	78 2.28	79 2.54	80 2.00	81 1.62	82 1.87	83 2.02	84 2.0	85 2.2	86 2.2	
1	Ta	W	Re	Os	lr	Pt	Au★	Hg	TI	Pb	Bi	Po	At	Rn	
m	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon	
9	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)	
		106					444 5							110	
her-	105	106	107	108	109	110 Darm-	111 Roent-	112 Coper-	113	114	115	116 Liver-	117	118	
m	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	stadtium	genium	nicium	Nihonium	Flerovium	Moscovium	morium	Tennessine	Ogannesson	
	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og	
)	(268)	(269)	(270)	(277)	(278)	(281)	(282)	(285)	(286)	(289)	(290)	(293)	(294)	(294)	
1.1	58 1.12	59 1.13	60 1.14	61 1.13	62 1.17	63 1.2	64 1.2	65 1.1	66 1.22	67 1.23	68 1.24	69 1.25	70 1.1	71 1.27	
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
um					Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium	
1	Cerium	Praseodymium	Neodymium	Promethium	Samanum	Luiopiuiii							i tterbium		
T		Praseodymium 140.91	Neodymium 144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
1	Cerium			(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	
1.1	Cerium			(145) 93 1.36	150.36 94 1.28			158.93 97 1.3	162.50 98 1.3	164.93 99 1.3	167.26 100 1.3	168.93 101 1.3	173.05 102 1.3		
1.1	Cerium 140.12 90 1.3	140.91 91 1.5	144.24 92 1.38	(145) 93 1.36	150.36 94 1.28	151.96 95 1.13	157.25 96 1.28	158.93 97 1.3	162.50	164.93	167.26 100 1.3	168.93 101 1.3	173.05	174.97	
1.1 m	Cerium 140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50 98 1.3	164.93 99 1.3	167.26	168.93	173.05 102 1.3	174.97 103 1.3	
	Cerium 140.12 90 1.3 Th	140.91 91 1.5 Pa	92 1.38 U	(145) 93 1.36 Np	150.36 94 1.28 Pu	151.96 95 1.13 Am	157.25 96 1.28 Cm	158.93 97 1.3 Bk	162.50 98 1.3 Cf	164.93 99 1.3	167.26 100 1.3 Fm	168.93 101 1.3 Md	173.05 102 1.3 No	174.97 103 1.3 Lr	