

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

P

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS STANDINGS CUSTOM INVOCATION

C. Cool Partition

time limit per test: 2 seconds memory limit per test: 256 megabytes

Yousef has an array a of size n. He wants to partition the array into one or more contiguous segments such that each element a_i belongs to exactly one segment.

A partition is called cool if, for every segment b_j , all elements in b_j also appear in b_{j+1} (if it exists). That is, every element in a segment must also be present in the segment following it.

For example, if a=[1,2,2,3,1,5], a cool partition Yousef can make is $b_1=[1,2]$, $b_2=[2,3,1,5]$. This is a cool partition because every element in b_1 (which are 1 and 2) also appears in b_2 . In contrast, $b_1=[1,2,2]$, $b_2=[3,1,5]$ is not a cool partition, since 2 appears in b_1 but not in b_2 .

Note that after partitioning the array, you do **not** change the order of the segments. Also, note that if an element appears several times in some segment b_j , it only needs to appear at least once in b_{j+1} .

Your task is to help Yousef by finding the maximum number of segments that make a *cool* partition.

Input

The first line of the input contains integer t ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains an integer n ($1 \leq n \leq 2 \cdot 10^5$) — the size of the array.

The second line of each test case contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$ — the elements of the array.

It is guaranteed that the sum of n over all test cases doesn't exceed $2 \cdot 10^5$.

Output

For each test case, print one integer — the maximum number of segments that make a *cool* partition.

Example

→ Last submissions		
Submission	Time	Verdict
323457518	Jun/08/2025 18:13	Accepted

The first test case is explained in the statement. We can partition it into $b_1=[1,2]$, $b_2=[2,3,1,5]$. It can be shown there is no other partition with more segments.

In the second test case, we can partition the array into $b_1=[1,2]$, $b_2=[1,3,2]$, $b_3=[1,3,2]$. The maximum number of segments is 3.

In the third test case, the only partition we can make is $b_1=[5,4,3,2,1]$. Any other partition will not satisfy the condition. Therefore, the answer is 1.

Codeforces (c) Copyright 2010-2025 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Jun/08/2025 22:15:21^{UTC+7} (k1).

Desktop version, switch to mobile version.

Privacy Policy | Terms and Conditions

Supported by

