

CNAPs: Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes

James Requeima *1,2 , Jonathan Gordon *1 , John Bronskill *1 , Sebastian Nowozin 3 , and Richard E. Turner 1,4 st Equal contributors. 1 University of Cambridge, 2 Invenia Labs, 3 Google Research, and 4 Microsoft Research.

Summary

- CNAPs: Image classification system that automatically adapts to new tasks at test time. Adaptation Networks: Meta-learn good classifier parameters for any task.
- Fast: Adapts network parameters in a single forward pass.

- Robust: Avoids over-fitting with few and under-fitting with many training examples.
- State-of-the-art: Best on Meta-Dataset 4 multi-task, few-shot learning benchmark.
- Versatile: Trained model deployable to continual and active learning scenarios.

CNAPs

- Directly specify the predictive distribution in terms of the task context data¹: $p\left(\boldsymbol{y}^{*}|\boldsymbol{x}^{*},\boldsymbol{\theta},D^{\tau}\right)=p\left(\boldsymbol{y}^{*}|\boldsymbol{x}^{*},\boldsymbol{\theta},\boldsymbol{\psi}^{\tau}\right)=p\left(\boldsymbol{y}^{*}|\boldsymbol{x}^{*},\boldsymbol{\theta},\boldsymbol{\psi}_{\phi}\left(D^{\tau}\right)\right).$
- Graphical Model

We use the following two-step training procedure to simulate test time adaptation.

- 1) Pretrain and fix feature extractor parameters θ on large dataset.
- 2) Train adaptation parameters ϕ via maximum likelihood:
- (i) Sample a task $\tau \sim p(\tau)$.
- (ii) Randomly split data into context D^{τ} and target $\{(x_m^{\tau}, y_m^{\tau})\}_{m=1}^{M_{\tau}}$.
- (iii) Evaluate $L^{ au} = \frac{1}{M_{ au}} \sum_{m=1}^{M_{ au}} \log p(x_m^{ au}|y_m^{ au}, oldsymbol{ heta}, oldsymbol{\psi_{\phi}}(D^{ au})).$
- (iv) Update $oldsymbol{\phi} \leftarrow oldsymbol{\phi} + \eta
 abla_{oldsymbol{\phi}} L^{ au}$

Adapting a Classification Model

Classification Model Parameter Adaptation Faster at Test-Time Meta-LSTM Adapters TADAM Disc. k-shot Classifier Weights 상 및 Multi-step Gradient Few-step Gradient Semi-Amortized

Adaptation Networks ψ

FiLM Layers

CNAPs vs. Gradient Adaptation

- Accuracy on 5-way classification tasks as a function of processing time. $CNAPs > 5 \times$ faster in adapting to an unseen task.
- Dot size reflects shot number (1 to 25 shots). CNAPs is more accurate at low shot and resists over-fitting.

Meta-Dataset⁴ Few Shot Image Classification

Dataset	Finetune	${\sf MatchingNet}$	ProtoNet	fo-MAML	Proto-MAML	CNAPs (no FiLM)	CNAPs (no AR)	CNAPs
ILSVRC	43.1	36.1	44.5	32.4	47.9	43.8	51.3	52.3
Omniglot	71.1	78.3	79.6	71.9	82.9	60.1	88.0	88.4
Aircraft	72.0	69.2	71.1	52.8	74.2	53.0	76.8	80.5
Birds	59.8	56.4	67.0	47.2	70.0	55.7	71.4	72.2
Textures	69.1	61.8	65.2	56.7	67.9	60.5	62.5	58.3
Quick Draw	47.0	60.8	64.9	50.5	66.6	58.1	71.9	72.5
Fungi	38.2	33.7	40.3	21.0	42.0	28.6	46.0	47.4
VGG Flower	85.3	81.9	86.9	70.9	88.5	75.3	89.2	86.0
Traffic Signs	66.7	55.6	46.5	34.2	52.3	55.0	60.1	60.2
MSCOCO	35.2	28.8	39.9	24.1	41.3	41.2	42.0	42.6

Continual Learning

- ullet Compute running averages for $oldsymbol{\psi}^{ au}$, otherwise not specifically trained to do continual learning.
- Model performs incremental updates using the new data and old model, and does not need to access old data.

	$M \wedge$	IIST	CIFAR100		
Method	Multi	Single	Multi	Single	
SI	99.3	57.6	73.2	22.8	
EWC	99.3	55.8	72.8	23.1	
VCL	98.5	-	-	-	
RWalk	99.3	82.5	74.2	34.0	
CNAPs	98.9	80.9	76.0	37.2	
		_			

Active Learning

- Requires accurate data efficient learning that returns well-calibrated uncertainty estimates.
- CNAPs and prototypical networks using variation ratios and predictive entropy compared against random acquisition.

- 1. M. Garnelo et al. "Conditional neural processes." arXiv preprint arXiv:1807.01613, 2018. 2. E. Perez, et al. "Film: Visual reasoning with a general conditioning layer." AAAI, 2018.
- 3. K. He et al. "Deep residual learning for image recognition." CVPR, 2016. 4. E. Triantafillou et al. "Meta-dataset: A dataset of datasets for learning to learn from few examples." arXiv:1903.03096, 2019.
- Paper: arxiv.org/abs/1906.07697