

# Sistema de Informação Lógica para Computação

## NOTAS DE AULA 6: Equivalência Lógica.

O que vamos estudar nesta Aula:

- Conceito de Equivalência Lógica
- > Exemplificação
- > Regra de Equivalência: Dupla negação
- Regra de Equivalência: Regra de Clavius
- Regra de Equivalência: Regra da Absorção
- > Outras equivalências lógicas.
- > Tautologia e Equivalência Lógica

- > Método de demonstração por absurdo
- Regra de Exportação-Importação
- Proposições associadas a uma condicional
- Negação conjunta de duas proposições
- > Negação disjunta de duas proposições
- Propriedades da Equivalência Lógica
- Conceito de Equivalência Lógica: Diz-se que uma proposição P(p,q,r,...) logicamente equivalente (ou abreviadamente, é equivalente a) uma proposição Q(p,q,r,...), se a tabela-verdade da proposição P é idêntica tabela-verdade da proposição Q.

Notação: Dizemos que: P equivale a Q

$$P(p,q,r,\ldots) \underset{\text{\'e equivalente } a}{\bigoplus} Q(p,q,r,\ldots)$$
 $P \underset{\text{\'e equivalente } a}{\bigoplus} Q$ 
 $equivalente a$ 

Em particular, se as proposição  $P \in Q$  são ambas **Tautológicas** (t) ou **Contradições** (c) então são ambas **Equivalentes**, ou seja:

Se 
$$V(P) = t$$
 e  $V(Q) = t$  então  $P \iff Q$   
ou  
Se  $V(P) = c$  e  $V(Q) = c$  então  $P \iff Q$ 

## > Regra de Equivalência: Dupla negação

Dada a proposição R:

$$R: \sim \sim p$$

Temos a Tabela-Verdade:

1° RESOLUÇÃO

| COLUNA |    |     |  |  |  |  |
|--------|----|-----|--|--|--|--|
| 1      | 2  | 3   |  |  |  |  |
| р      | ~p | ~~p |  |  |  |  |
| F      | V  | F   |  |  |  |  |
| V      | F  | V   |  |  |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica:

## > Equivalência Lógica 1:

$$p \Leftrightarrow \sim \sim p$$
, ou seja,  $p \Leftrightarrow R$ 

Prova disso são as **COLUNAS: 1 e 3** da Tabela-Verdade que são **Idênticas**.

A Equivalência Lógica 1 acima é prova de uma Regra de Inferência denominada de Dupla Negação. Observe a proposição, a seguir:

p: O sol é quente.

Com isso, por **Dupla Negação** temos:

 $\sim p$ : NÃO é verdade que o sol NÃO é quente. Ou seja:  $\sim p \Leftrightarrow p$ 

## > Regra de Equivalência: Regra de Clavius

Dada a proposição composta R:

$$R: \sim p \rightarrow p$$

Temos a Tabela-Verdade:

1° RESOLUÇÃO

| COLUNA |    |                           |  |  |  |  |
|--------|----|---------------------------|--|--|--|--|
| 1      | 2  | 3                         |  |  |  |  |
| p      | ~p | $R: \sim p \rightarrow p$ |  |  |  |  |
| F      | V  | F                         |  |  |  |  |
| V      | F  | V                         |  |  |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica:

#### > Equivalência Lógica 1:

$$\sim p \rightarrow p \Leftrightarrow p$$
, ou seja,  $R \Leftrightarrow p$ 

Prova disso são as **COLUNAS: 1 e 3** da Tabela-Verdade que são **Idênticas**.

A Equivalência Lógica 1 acima é prova de uma Regra de Inferência denominada de Regra de Clavius.

## Regra de Equivalência: Regra de Absorção

Dada as proposições compostas *R* e *S* a sequir:

$$R: p \to p \land q$$
 e  $S: p \to q$ 

$$S: p \rightarrow a$$

Temos a Tabela-Verdade:

1° RESOLUÇÃO

| COLUNA |   |       |                      |                      |  |  |  |  |
|--------|---|-------|----------------------|----------------------|--|--|--|--|
| 1      | 2 | 3     | 4                    | 5                    |  |  |  |  |
| p      | q | p ^ q | $R: p \to p \land q$ | $S: p \rightarrow q$ |  |  |  |  |
| F      | F | F     | V                    | V                    |  |  |  |  |
| F      | V | F     | V                    | V                    |  |  |  |  |
| V      | F | F     | F                    | F                    |  |  |  |  |
| V      | V | V     | V                    | V                    |  |  |  |  |

Portanto; podemos deduzir a seguinte **Equivalência Lógica**:

### > Equivalência Lógica 1:

$$p \rightarrow p \land q \Leftrightarrow p \rightarrow q$$
, ou seja,  $R \Leftrightarrow S$ 

Prova disso são as **COLUNAS: 4 e 5** da Tabela-Verdade que são **Idênticas**.

A Equivalência Lógica 1 acima é prova de uma Regra de Inferência denominada de Regra de Absorção.

### > Regra de Equivalência: Equivalência Condicional-Disjuntiva

Dada as proposições compostas *R* e *S* a sequir:

$$R: p \rightarrow q$$

3

$$S: \sim p \vee q$$

Temos a Tabela-Verdade:

1° RESOLUÇÃO

| COLUNA |   |              |    |                    |  |  |  |
|--------|---|--------------|----|--------------------|--|--|--|
| 1      | 2 | 3            | 4  | 5                  |  |  |  |
| p      | q | $R: p \to q$ | ~p | $S: \sim p \vee q$ |  |  |  |
| F      | F | V            | V  | V                  |  |  |  |
| F      | V | V            | V  | V                  |  |  |  |
| V      | F | F            | F  | F                  |  |  |  |
| V      | V | V            | F  | V                  |  |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica:

### > Equivalência Lógica 1:

$$p \rightarrow q \Leftrightarrow \sim p \vee q$$
, ou seja,  $R \Leftrightarrow S$ 

Prova disso são as COLUNAS: 3 e 5 da Tabela-Verdade que são Idênticas.

A Equivalência Lógica 1 acima é a prova de uma Regra de Inferência que relaciona os conectores: Condicional ( $\rightarrow$ ) e Disjunção ( $\vee$ ) em uma relação que podemos denominar de Equivalência Condicional-Disjuntiva.

## > Regra de Equivalência: Equivalência Bicondicional-Conjuntiva

Dada as proposições compostas R e S a sequir:

$$R: p \leftrightarrow q$$
 e  $S: (p \rightarrow q) \land (q \rightarrow p)$ 

Temos a Tabela-Verdade:

1° RESOLUÇÃO

| COLUNA |   |                        |                   |                   |                                |  |  |  |
|--------|---|------------------------|-------------------|-------------------|--------------------------------|--|--|--|
| 1      | 2 | 3                      | 4                 | 5                 | 6                              |  |  |  |
| p      | q | $R:p\leftrightarrow q$ | $p \rightarrow q$ | $q \rightarrow p$ | $S: (p \to q) \land (q \to p)$ |  |  |  |
| F      | F | V                      | V                 | V                 | V                              |  |  |  |
| F      | V | F                      | V                 | F                 | F                              |  |  |  |
| V      | F | F                      | F                 | V                 | F                              |  |  |  |
| V      | V | V                      | V                 | V                 | V                              |  |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica 1:

#### > Equivalência Lógica 1:

$$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$$
, ou seja,  $R \Leftrightarrow S$ 

Prova disso são as COLUNAS: 3 e 6 da Tabela-Verdade que são Idênticas.

A Equivalência Lógica 1 acima é a prova de uma Regra de Inferência que relaciona os conectores: Bicondicional ( ↔ ) e Conjunção ( ^ ) em uma relação que podemos denominar de Equivalência Bicondicional-Conjuntiva.

#### > Regra de Equivalência: Equivalência Bicondicional-Disjuntiva

Dada as proposições compostas *R* e *S* a sequir:

$$R: p \leftrightarrow q$$
 e  $S: (p \land q) \lor (\sim p \land \sim q)$ 

Temos a Tabela-Verdade:

1° RESOLUÇÃO

|   | COLUNA |    |    |                        |       |        |                                             |  |  |
|---|--------|----|----|------------------------|-------|--------|---------------------------------------------|--|--|
| 1 | 2      | 3  | 4  | 5                      | 6     | 7      | 8                                           |  |  |
| p | q      | ~p | ~q | $R:p\leftrightarrow q$ | p ^ q | ~p ^~q | $S: (p \land q) \lor (\sim p \land \sim q)$ |  |  |
| F | F      | V  | V  | V                      | F     | V      | V                                           |  |  |
| F | V      | V  | F  | F                      | F     | F      | F                                           |  |  |
| V | F      | F  | V  | F                      | F     | F      | F                                           |  |  |
| V | V      | F  | F  | V                      | V     | F      | V                                           |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica 1:

### > Equivalência Lógica 1:

$$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q), \quad ou seja, \quad R \Leftrightarrow S$$

Prova disso são as COLUNAS: 5 e 8 da Tabela-Verdade que são Idênticas.

A Equivalência Lógica 1 acima é a prova de uma Regra de Inferência que relaciona os conectores: Bicondicional ( ↔ ) e Disjunção ( ∨ ) em uma relação que podemos denominar de Equivalência Bicondicional-Disjuntiva.

## > Tautologia e Equivalência Lógica

Teorema: Podemos dizer que:

se 
$$R \Leftrightarrow S$$
 então

A bicondicional  $R \leftrightarrow S$  é uma Tautologia.

**EXEMPLO 1 (Método de demonstração por absurdo)**: Dada as proposições R e S:

$$R: (p \land \sim a \rightarrow c)$$

$$S: (p \rightarrow q)$$

 $R:(p \land \sim q \rightarrow c)$  e  $S:(p \rightarrow q)$  , onde c:contradição

Temos a Tabela-Verdade:

1° RESOLUÇÃO

|   | COLUNA |    |   |        |                             |               |                       |  |  |
|---|--------|----|---|--------|-----------------------------|---------------|-----------------------|--|--|
| 1 | 2      | 3  | 4 | 5      | 6                           | 7             | 8                     |  |  |
| p | q      | ~q | С | p ^ ~q | $R: (p \land \sim q \to c)$ | $S:(p \to q)$ | $R \leftrightarrow S$ |  |  |
| F | F      | V  | F | F      | V                           | V             | V                     |  |  |
| F | V      | F  | F | F      | V                           | V             | V                     |  |  |
| V | F      | V  | F | V      | F                           | F             | V                     |  |  |
| V | V      | F  | F | F      | V                           | V             | V                     |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica:

### > Equivalência Lógica 1:

$$(p \land \sim q \rightarrow c) \Leftrightarrow (p \rightarrow q), \quad ou \, seja, \quad R \Leftrightarrow S$$

Prova disso são as COLUNAS: 6 e 7 da Tabela-Verdade que são Idênticas.

A Equivalência Lógica 1 acima é a prova de uma Regra de Inferência denominada de Método de demonstração por absurdo. Além disso, a coluna 8 da tabela é um exemplo de aplicação do teorema descrito acima, pois a bicondicional  $R \leftrightarrow S$  resulta em uma **Tautologia**.

#### **EXEMPLO 2 (Método de Exportação - Importação)**: Dada as proposições R e S:

$$R: p \land q \rightarrow r$$
 e  $S: (p \rightarrow (q \rightarrow r))$ 

Temos a Tabela-Verdade:

1° RESOLUÇÃO

|   | COLUNA |   |       |                              |                   |                        |                       |  |  |
|---|--------|---|-------|------------------------------|-------------------|------------------------|-----------------------|--|--|
| 1 | 2      | 3 | 4     | 5                            | 6                 | 7                      | 8                     |  |  |
| p | q      | r | p ^ q | $R: p \land q \rightarrow r$ | $q \rightarrow r$ | $S: (p \to (q \to r))$ | $R \leftrightarrow S$ |  |  |
| F | F      | F | F     | V                            | V                 | V                      | V                     |  |  |
| F | F      | V | F     | V                            | V                 | V                      | V                     |  |  |
| F | V      | F | F     | V                            | F                 | V                      | V                     |  |  |
| F | V      | V | F     | V                            | V                 | V                      | V                     |  |  |
| V | F      | F | F     | V                            | V                 | V                      | V                     |  |  |
| V | F      | V | F     | V                            | V                 | V                      | V                     |  |  |
| V | V      | F | V     | F                            | F                 | F                      | V                     |  |  |
| V | V      | V | V     | V                            | V                 | V                      | V                     |  |  |

Portanto; podemos deduzir a seguinte Equivalência Lógica:

#### > Equivalência Lógica 1:

$$(p \land q \rightarrow r) \Leftrightarrow (p \rightarrow (q \rightarrow r)), \quad \text{ou seja}, \quad R \Leftrightarrow S$$

Prova disso são as COLUNAS: 5 e 7 da Tabela-Verdade que são Idênticas.

A Equivalência Lógica 1 acima é a prova de uma Regra de Inferência denominada Método de Exportação-Importação. Além disso, a coluna 8 da tabela é um exemplo de aplicação do teorema descrito acima, pois a bicondicional  $R \leftrightarrow S$  resulta em uma Tautologia.

#### Proposições associadas a uma condicional

Dada a condicional  $p \to q$ , chama-se proposições associadas a  $p \to q$  as três seguintes proposições condicionais que contêm  $p \in q$ :

- a) Proposição recíproca de  $R: p \rightarrow q : S: q \rightarrow p$
- b) Proposição contrária de  $R: p \rightarrow q: T: \sim p \rightarrow \sim q$
- c) Proposição contrapositiva de  $R: p \to q: U: \sim q \to \sim p$

Com isso, temos a seguinte tabela-verdade:

1° RESOLUÇÃO

|   | COLUNA |    |    |              |                                |                      |                                |  |  |  |
|---|--------|----|----|--------------|--------------------------------|----------------------|--------------------------------|--|--|--|
| 1 | 2      | 3  | 4  | 5            | 6                              | 7                    | 8                              |  |  |  |
| p | q      | ~p | ~q | $R: p \to q$ | $U: \sim q \rightarrow \sim p$ | $S: q \rightarrow p$ | $T: \sim p \rightarrow \sim q$ |  |  |  |
| F | F      | V  | V  | V            | V                              | V                    | V                              |  |  |  |
| F | V      | V  | F  | V            | V                              | F                    | F                              |  |  |  |
| V | F      | F  | V  | F            | F                              | V                    | V                              |  |  |  |
| V | V      | F  | F  | V            | V                              | V                    | V                              |  |  |  |

Podemos afirmar que:

(i) A condicional  $R: p \to q$  e sua contrapositiva  $U: \sim q \to \sim p$  são equivalentes:

$$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$$
, ou seja,  $R \Leftrightarrow U$ 

(ii) A recíproca  $S: q \to p$  e a contrária  $T: \sim p \to \sim q$  da condicional  $R: p \to q$  são equivalentes:

$$q \rightarrow p \Leftrightarrow \sim p \rightarrow \sim q$$
, ou seja,  $S \Leftrightarrow T$ 

#### > Negação Conjunta de duas proposições

Chama-se **Negação Conjunta** de duas proposições p e q a proposição "não p e não q", isto é, em linguagem formal:  $\sim p \land \sim q$ .

A **Negação Conjunta** de duas preposições pode ser indicada por  $p \downarrow q$ .

Logo: 
$$p \downarrow q \Leftrightarrow \sim p \land \sim q$$

Com isso, temos a seguinte tabela-verdade:

1° RESOLUÇÃO

|   | COLUNA |    |    |         |                  |  |  |  |  |
|---|--------|----|----|---------|------------------|--|--|--|--|
| 1 | 2      | 3  | 4  | 5       | 6                |  |  |  |  |
| p | q      | ~p | ~q | ~p ^ ~q | $p \downarrow q$ |  |  |  |  |
| F | F      | V  | V  | V       | V                |  |  |  |  |
| F | V      | V  | F  | F       | F                |  |  |  |  |
| V | F      | F  | V  | F       | F                |  |  |  |  |
| V | V      | F  | F  | F       | F                |  |  |  |  |

**As colunas: 5 e 6** representam a mesma operação lógica e são equivalentes. Com isso, a conjunção dupla é representada pelo conectivo ↓ denominado de conectivo de **Scheffer**.

## Negação Disjunta de duas proposições

Chama-se **Negação Disjunta** de duas proposições p e q a proposição "não p ou não q", isto é, em linguagem formal:  $\sim p \vee \sim q$ .

A **Negação Disjunta** de duas preposições pode ser indicada por  $p \uparrow q$ .

Logo: 
$$p \uparrow q \Leftrightarrow \sim p \lor \sim q$$

Com isso, temos a seguinte tabela-verdade:

1° RESOLUÇÃO

|   | COLUNA |    |    |                      |                |  |  |  |  |
|---|--------|----|----|----------------------|----------------|--|--|--|--|
| 1 | 2      | 3  | 4  | 5                    | 6              |  |  |  |  |
| p | q      | ~p | ~q | $\sim p \vee \sim q$ | $p \uparrow q$ |  |  |  |  |
| F | F      | V  | V  | V                    | V              |  |  |  |  |
| F | V      | V  | F  | V                    | V              |  |  |  |  |
| V | F      | F  | V  | V                    | V              |  |  |  |  |
| V | V      | F  | F  | F                    | F              |  |  |  |  |

**As colunas: 5 e 6** representam a mesma operação lógica e são equivalentes. Com isso, a disjunção dupla é representada pelo conectivo ↑ denominado de conectivo de **Scheffer**.

## > Propriedades da Equivalência Lógica

#### I. Reflexiva:

$$P(p,q,r,...) \Leftrightarrow P(p,q,r,...)$$

#### II. Transitiva:

Se 
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...) \Leftrightarrow R(p,q,r,...) \Leftrightarrow R(p,q,r,...) \Leftrightarrow R(p,q,r,...)$$

#### III. Simétrica:

Se 
$$P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$$
 então  $Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)$ 

## Exercícios de Fixação

Os exercícios: 3, 7, 8, 9, 10, 11 e 12 do <u>Capítulo 6</u>: Página 64.

LIVRO: ALENCAR FILHO, Edgard de.

Iniciação à lógica matemática. 21. ed. São Paulo: Nobel, 2002. 203 p. ISBN 852130403X

## Exercícios Complementar

1. Confirmar ou refutar, através de Tabela-Verdade, as seguintes equivalências lógicas por Tautologia:

a) 
$$\sim p \rightarrow q \Leftrightarrow p \land \sim q$$

**b**) 
$$p \rightarrow q \land q \Leftrightarrow (p \leftrightarrow q)$$

c) 
$$\sim p \land (\sim q \rightarrow p) \Leftrightarrow \sim (p \land \sim q)$$

**d**) 
$$p \rightarrow q \land r \rightarrow \sim q \Leftrightarrow r \rightarrow \sim p$$