Lista 1 z notatek

Charakterystyka Eulera

2023

1. Niech V(X) będzie przestrzenią wszystkich funkcji $X \to \mathbb{K}$ ze zbioru skończonego X w ciało \mathbb{K} . Uzasadnić, że V(X) jest przestrzenią liniową i

$$\dim V(X) = |X|$$

2. Niech $V = \bigoplus_{i < n} V_i$, $W = \bigoplus_{j < m} W_j$ będą zgradowanymi przestrzeniami liniowymi. Obliczyć $\chi(V \oplus W)$ oraz $\chi(V \otimes W)$ w terminach $\chi(V)$ i $\chi(W)$. Przypomnijmy, że dla zgradowanej przestrzeni liniowej V jak wyżej, definiujemy

$$\chi(V) = \sum_{i < n} (-1)^i \dim V_i.$$

- 3. Czym jest stożek *n*-sympleksu?
 - Opisać realizację geometryczną stożka nad kompleksem symplicjalnym \mathcal{K} (można zaczać od sympleksu).
 - Zdefiniować pojęcie stożka nad przestrzenią topologiczną.
 - Policzyć charakterystykę Eulera stożka.
- 4. Czym jest realizacja symplicjalna skończonego zbioru liniowo uporządkowanego? Pokazać, że realizacja symplicjalna posetu jest kompleksem flagowym.
- 5. Podać definicję podrozbicia barycentrycznego kompleksu symplicjalnego \mathcal{K} opisując zbiór wierzchołków oraz warunek na bycie n-sympleksem, w terminach sympleksów \mathcal{K} .
- 6. Opisać sympleksy geometryczne w realizacji geometrycznej n-sympleksu.
 - Przeanalizować definicję geometrycznego podrozbicia barycentrycznego kompleksu symplicjalnego.
 - Pokazać, że $\widehat{\mathcal{K}}$ jest homeomorficzny z $\widehat{\mathcal{K}'}.$

- 7. Pokazać, że realizacja geometryczna gwiazdy $\mathrm{St}(v)$ wierzchołka v kompleksu $\mathcal K$ jest homeomorficzna z małą kulą wokół v w $\widehat{\mathcal K}$.
 - Pokazać, że realizacja geometryczna linku Lk(v) wierzchołka v kompleksu \mathcal{K} jest homeomorficzna z małą sferą wokół v w $\hat{\mathcal{K}}$.
- 8. Pokazać, że liczba n-sympleksów w kompleksie symplicjalnym $f_n(\cdot)$ jest addytywnym niezmiennikiem kompleksów.
 - Pokazać, że kombinacja liniowa addytywnych niezmienników kompleksów jest addytywnym niezmiennikiem kompleksów.