Aprenda Astronomia (e outras coisas) com KM-AstCalc

João Luiz Kohl Moreira¹

20 de setembro de 2024

Sumário

1	Pri	meiros Passos	9
	1.1	Como Usar	1
	1.2	Painel das Funções Matemáticas	4
		1.2.1 O Botão INV	6
		1.2.2 O Sub-Painel das Funções Astronômicas 1	7
	1.3	O Painel de Precisão Numérica e do SI	8
		1.3.1 Sistema de Unidades	8
		1.3.2 O Campo de Opções "Scale"	0
		1.3.3 Em Suma	0
		1.3.4 O Botão Coalesce	3
		1.3.5 O Botão (Inv) Convert	3
		1.3.6 Operando com Unidades	3
	1.4	Manipulando a Pilha	5
2	O F	Painel das Constantes 2'	7
	2.1	As Constants Físicas	7
		2.1.1 Indo além	7
	2.2	As Constantes Astronômicas	0
		2.2.1 Indo Além	0
	2.3	Unidades Naturais × Unidades Terrestres	3
		2.3.1 A Constante de Hubble	5
		2.3.2 O Raio de Schwartzchild	6
		2.3.3 Poder de Resolução 3'	7
		2.3.4 Magnitude Limite de um Telescópio	8
3	Co	ordenadas Celestes e Posicionamento 39	9
	3.1	O Calendário	9
	3.2	Tempo Solar e Sideral	0
		3.2.1 Tempo Sideral de Greenwich a 0 ^h	2
		-	

4 SUMÁRIO

		3.2.2	Tempo Solar de Greenwich 4	3
		3.2.3	Tempo Sideral de Greenwich 4	13
		3.2.4	Tempo Sideral Local 4	4
	3.3	Coord	lenadas Esféricas	16
		3.3.1	Triângulos Esféricos 4	6
	3.4	Sisten	na Equatorial	8
	3.5		na da Eclíptica	9
	3.6	Sisten	na de Referência Local	2
		3.6.1	Sistema de Referência Local Equatorial 5	2
		3.6.2	Referência Local Horizontal 5	3
		3.6.3	O Sistema de Referência Galáctico 5	5
	3.7	Movin		6
		3.7.1	Precessão and Nutação 5	6
		3.7.2	Aberração	8
4	Co	rpos d	lo Sistema Solar 6	1
	4.1	Introd	lução	1
		4.1.1	Movimento Médio n no Sistema Solar 6	5 4
	4.2	Posiçõ	ões Heliocêntricas e Geocêntricas 6	5
		4.2.1	Elongação - Ângulo de Fase 6	7
	4.3		tas, Asteróides e Cometas 6	8
	4.4	Explic	cação sobre os Dados Planetários 6	9
		4.4.1	Planetas	9
		4.4.2	Longitude do Perihélio	1
		4.4.3		1
		4.4.4		5
		4.4.5	3	31
	4.5	Astero	óides e Cometas	
		4.5.1	Asteróides	
		4.5.2	Cometas	39
	4.6	Perihé	élio e Afélio	
		4.6.1	Planetas	
		4.6.2	Asteróides	
		4.6.3	Cometas	9
	4.7	Veloci	dade dos Astros no Perihélio e Afélio 10)(
	4.8	A Lua	ı	1
\mathbf{A}			o Teclado 10	3
	A.1	O Tec	lado "direto")3
Ð	A + 0	lhos T	Inidados 10	

5

\mathbf{C}	Atalhos Constantes	113
D	Atalhos Fator de Escala	117
\mathbf{E}	Formato e Notação	119

6 SUMÁRIO

Introdução

Olá.

Benvindo à KM-AstCalc, a calculadora astronômica na internet. KM-AstCalc veio para ajudá-lo a fazer cálculos científicos com particular atenção para a astronomia. Com KM-AstCal, você pode perfazer cálculos complexos e intrincados e obter resultados imediatos. Ao procurar valores de constantes físicas e astronômicas e, com elas, fazer alguns cálculos rapidamente, você pode contar com KM-AstCalc, indo diretamente à sua página na internet: http://km-cienctec.rf.gd/astcalc/, ou baixá-la livremente de https://astcalc.sourceforge.io e usá-la em seu PC. KM-AstCalc foi integralmente desenvolvido em JavaScript. Você pode acessá-la e modificá-la, se você está familiarizado com essa linguagem de programação, desde que em conformidade com a GNU-GPL, a GNU General Public License em vigor. KM-AstCalc foi concebida para permitir-lhe obter resultados imediatos, sem a necessidade de programas pesados, ou mesmo quando desenvolvendo programas, será útil para alguns testes e cálculos rápidos.

Com alguma prática você pode fazer cálculos rapidamente, entrando com dados seja através do mouse, seja usando atalhos no teclado.

O método de cálculo é baseado na RPN - (Reversed Polish Notation, Notação Polaca Reversa), presente nas famosas calculadoras HP dos anos 1960. Mesmo que você não esteja familiarizado, com alguns exercícios aqui propostos, você aprenderá a usá-la rapidamente. Estou certo que, no final, você não encontrará qualquer dificuldade em aplicá-la, e mesmo vai preferí-la à notação das calculadoras mais modernas.

A idéia neste livro é lhe ensinar alguma coisa de astronomia usando a KM-AstCalc. Novatos poderão aprender, especialistas poderão testar seus conhecimentos com as facilidades da calculadora (e mesmo relembrar seus tempos de aprendizes).

Então aproveite o que KM-AstCalc lhe oferece e use o quanto precisar.

8 SUMÁRIO

Capítulo 1

Primeiros Passos

A Fig. 1.1 mostra a tela da KM-AstCalc.

Você pode dividir KM-AstCalc em oito painéis:

- O painel das pilhas dos registros numéricos e das unidades (painel superior esquerdo);
- O painel da notação e precisão numérica, e o conjunto do Sistema Internacional de Unidades e suas derivadas (superior direito):
- O painel do teclado numérico, controle da pilha e da memória (meio à esquerda);
- O painel das funções matemáticas e sub-seção de botões para resolver problemas astronômicos (meio à direita);
- Os painéis das constantes físicas (meio-baixo à esquerda) e constantes astronômicas (meio-baixo à direita);
- O painel dos dados primários e osculadores dos planetas (inferior esquerdo); e,
- O painel dos elementos orbitais dos asteróides e dos cometas (inferior direito).

Abaixo encontram-se links para sites das origens dos dados constantes que KM-AstCalc oferece, manuais em inglês e português (este aqui), além de um guia de atalhos do teclado.

Figura 1.1: A tela da KM-AstCalc

Pile	Pile V		es		Units	
T		0.00				
Z			0.0000			
Y			0.0000			
X			0.0000			
C	C/CE	E	CHS	1/x	Enter	
	7	8	9	+	RDwn	
	4	5	6	-	х-у	
	1	2	3	*	Sto	
		0	<-	1	Rcl	

Figura 1.2: Cálculo numérico

1.1 Como Usar

Com o uso do mouse, você pode fazer todas as operações disponíveis. No entanto, você pode fazer uso do teclado, também, com os mesmos resultados. O link "Shortcuts" abaixo da calculadora leva às planilhas contendo esses "atalhos". Pressionando as teclas diretamente, ou antecedidas por "Page-Down", "PageUp" ou "End", você acessa comandos e valores de constantes e unidades, e a tecla "f", você controla a notação adotada. Mais à frente, veremos essas facilidades com detalhes.

Primeiro, nos fixemos nos registros numéricos e o teclado virtual numérico. Veja na Fig 1.2. Vemos os registros numéricos X, Y, Z, e T no lado de cima. No lado de baixo, o teclado numérico e alguns botões de controle do cálculo. Esqueça o coluna "Units", por enquanto. Com os botões deste teclado, podemos fazer todas as operações aritméticas, não somente para propósitos astronômicos.

Clique com o mouse em um botão numérico e o dígito correspondente aparece no registro-X. Continue e compor o número com os botões numéricos, além do ponto e E, e o número desejado vai sendo composto no registro-X. Quando completo, clique no botão Enter. Então, inicie um novo número. O número que você compôs, então, deverá subir ao registro-Y, enquanto os novos dígitos vão aparecendo no registro-X.

Exemplo: entre com o número 45.378 clicando nos botões numéricos, na sequência usual, e clique em Enter. Você verá em 'X':

X	45.378	

Agora, entre, da mesma forma com o número 21.1. Você verá:

L		0.0000
Y		15.378
X		21.100

Clique no botão +, e você verá o resultado no registro-X:

Y	0.0000
X	66.478

Com o mesmo procedimento, você pode fazer as quatro operações aritméticas.

Com o botão $\fill \mbox{\sc CHS}\end{\sc CHS},$ você muda o sinal algébrico do número no registro- X.

O botão especial, $\boxed{\mathsf{E}}$, ajuda a compor grandes números na notação da exponencial de dez. Depois de compor a mantissa, clique em $\boxed{\mathsf{E}}$ para iniciar a compor o expoente, p. ex, o número 4.5×10^4 é composto clicando em $\boxed{\mathsf{4}}$ $\boxed{\cdot}$ $\boxed{\mathsf{5}}$ $\boxed{\mathsf{E}}$ $\boxed{\mathsf{4}}$. O reseultado será:

*	00.770
X	4.5E4

Clicando em Enter, teremos:

	00.110	
X	45000	

Veja que se trata do mesmo número, em notações diferentes.

Conserte, em qualquer momento, os dígitos compostos com <- que você encontra à direita de $\boxed{\mathbf{0}}$.

Notação Polaca Reversa (RPN)

A Hewlett-Packard Co. introduziu esta Notação Polaca Reversa, quando apresentou a série de calculadoras científicas HP-2x. Com os parcos recursos de programação da época, a idéia permitiu a execução de cálculos sofisticados sem a necessidade de compor as teclas "+", "-", "*", e "/" com o sinal "=". Mais tarde, a Texas Co. lançou no mercado suas calculadoras científicas dotadas do sinal "=". Nesse caso, foi necessário também introduzir os sinais

13

"(" e ")", com o quê podíamos abrir uma certa quantidade de níveis para permitir tratar cálculos complexos. Mesmo depois de me tornar um usuário desta calculadora da Texas, a idéia da RPN permaneceu como solução elegante de problemas, sem a necessidade de escrever resultados parciais no papel. A RPN ainda tem bastante adeptos no mercado financeiro, enquanto que no mundo científico ela rareou.

Na operação "normal" fazemos a sequência:

[número] [operador] [número] "=",

enquanto na RPN fazemos:

[número] "Enter" [número] [operador].

Com os registros: "X", "Y", "Z," e "T", na RPN, podemos fazer cálculos complexos. Exemplo: para calcular:

$$4.34 + \frac{18 - 7.1}{61 + 3.5} = 4.5090,$$

fazemos, entre outras formas,

Operação	Registro
1 8 Enter	X 18.000
7 . 1 -	X 10.900
6 1 Enter	X 61.000
3 • 5 + /	X 0.16899
4 (3) (4) (+)	X 4.5090

Com alguma experiência, você verá como esta sequência é mais rápida. Além das quatro operações aritméticas, alguns botões adicionais ajudam. Tem o botão <-, como já visto, que tem a função de apagar o que foi feito de errado na composição. O botão 1/x inverte o valor no registro-X. Já x-y faz intercambiar os valores dos registros X e Y. RDwn faz rolar a pilha para baixo, colocando o número em "X" no registro-T, levando o valor de T em Z e assim por diante. Clicando uma vez em C/CE apaga o registro-X, clicando duas vezes, vai apagar o conteúdo de todos os registros.

Os Botões de Memória 'Sto' and 'Rcl'

Os botões Sto e Rcl permitem usar a memória de registros 0 a 9. Você pode guardar o número do registro-X em qualquer dos registros R0 a R9. Clique no botão Sto e em um dígito de 0 a 9, o número em 'X' será guardado na memória correspondente. Quando quiser o número de volta ao

registro-X, clique em Rcl seguido do mesmo dígito, a pilha vai se deslocar para cima e colocar o conteúdo no registro-X.

Exercícios

1. Faça o cálculo com KM-AstCalc:

$$3.4 + \frac{1}{6.8 + \frac{3}{3.4 + \frac{5}{6.8} \dots}}.$$

Use a memória de 0 a 9. Veja o quanto você pode ir usando a memória.

2. Idem

$$1.43 \left(\frac{28}{2.77 - 1.884} - \frac{0.993 \times 10^3}{(2.12 - 4.3(219 - 12.76))} \right),$$

3. Entre o número:

$$-5.3038 \times 10^{-5}$$
.

inverta e multiplique por

$$3.001 \times 10^{-3}$$

1.2 Painel das Funções Matemáticas

Na in Fig. 1.3 temos o painel das funções matemátias. Você pode ver as funções usuais no cálculo numérico, como valor absoluto, porcentagem, exponencial, parte inteira, etc. Além disso, temos as funções trigonométricas. Estas exigem que os valores tenham unidades de ângulo, o que veremos depois.

Todas as funções operam no registro-X ou na combinação deste com o registro-Y, quando a situação exige a combinação. Vejamos o que cada função faz, quando clicamos em seu botão:

ABS: Sempre retorna o valor positivo de X. Ex. ABS[-13.4] dá 13.4, enquanto que ABS[44.1] dá 44.1;

%: Faz a operação: X * Y/100 e coloca o resultado em X;

EXP: Calcula e^X ;

 $10^{\hat{}}$: Calcula 10^X ;

Figura 1.3: Panel of Mathematical Functions

INT: Acha a parte inteira do número em X;

->P: Transforma os valores em X e Y de coordenadas retangulares para polares. Os registros X e Y devem estar na mesma unidade (ver adiante);

Quad : Reduz o número em X para o quadrante $[0, 2\pi]$, se necessário. O número deve estar em unidades de ângulo (ver adiante);

RND: Gera um número aleatório entre 0 e 1 (não incluido);

SQR : Acha o quadrado de X;

 $\mathbf{y} \hat{\mathbf{x}}$: Calcula y^x ;

<u>D:M:S</u>]: Converte o número em X para o formato DD:MM:SS.sss. O número deve estar em unidades de graus ou horas (ver adiante);

PI: Coloca o número π em X;

SIN, COS, TAN: Calcula, respectivamente, o seno, cosseno e tangente do número em X que deve estar em unidades de ângulo (ver adiante);

x!: Calcula o fatorial do número em X. Atenção: números de ponto flutuante não vão gerar a função gama. O cálculo é feito da forma:

$$f(x) = (x - 1)f(x - 1),$$

Figura 1.4: As funções matemáticas com o botão 'INV'.

repetidamente até x < 1;

SNH, CSH, TNH: Calcula o seno, cosseno e tangente hiperbólicos, respectivamente. Os valores em X devem se adimensionais.

Juld: Uma função especial que fornece o dia Juliano, dado o dia no calendário Gregoriano no formato "dd:mm:yyyy". A formatação depende de como o registro de unidades é construído. Veremos esta questão mais amiúde mais à frente.

1.2.1 O Botão INV

Bem acima do painel das funções matemáticas, à direita, vemos o botão INV. Clicando em INV podemos alternar alguns botões importantes para outras funções, alguns perfazendo a função inversa. Tem uma cor diferente (rosa) e fica cinza quando clicado INV. Apresenta cores diferentes quando passamos o mouse em cima, para indicar sua função especial. A Fig. 1.4 mostra a calculadora quando clicamos em INV.

-ABS: O negativo do valor absoluto de X;

D% : Calcula a operação

$$100\frac{X-Y}{Y};$$

LN : Calcula $\log_e X$;

LOG: Calcula $\log_{10} X$;

FRAC: Retorna a parte fracionária de X;

->R: Converte as coordenadas polares em $X(R), Y(\theta)$ nas coordenadas retangulares X, Y;

Atan2: Calcula o valor algébrico (considerando o quadrante) $\arctan(Y/X)$;

SQRT: Raiz quadrada de X;

 $\mathbf{x} \hat{\mathbf{y}}$: Calcula X^Y ;

D.ddd: Coloca o número em X do formato "DD:MM:SS.sss" para o formato "D.ddd";

PI/2: Coloca o valor de $\pi/2$ em X;

ASIN, ACOS, ATAN: Calculam as funções inversas do seno, cosseno e tangente, respectivamente;

ASNH, **ACSH**, **ATNH**: Calculam as funções inversas seno, cosseno e tangente hiperbólicos, respectivamente;

GrgD: Coloca o valor de X (em unidades de dy - dia) em dia Juliano no formato de data Gregoriana: "dd:mm:aaaa".

Todas as funções trigonométricas resultam em valores em radianos (rad).

1.2.2 O Sub-Painel das Funções Astronômicas

Abaixo do painel das funções matemáticas, vemos cinco botões: Kepler EqH, EEc, EGa e GSTO. Eles executam funções diferentes para a astrometria e dinâmica celeste. Veremos essas funções mais adiante.

Exercícios

1. Calcule

$$2\pi\sqrt{0.911\left(\frac{2}{3.1}-\frac{1}{1.6^{3.2}}\right)}.$$

Figura 1.5: Painel da precisão numérica e SI

2. Calcule $\frac{5.5!}{5!},$ e então, $\frac{5.4!}{5!}.$

Você vê alguns resultados inesperados? Por que?

1.3 O Painel de Precisão Numérica e do SI

O painel superior direito presta-se a definir o número de dígitos de precisão e seu formato. Veja na Fig. 1.5.

Na primeira fileira você vê três campos de escolha e uma barra de escolha do número de dígitos. O resto, veremos depois. Os três campos de escolha definem o formato de como os números sairão:

Fix: Define um número fixo de dígitos depois da vírgula;

Sci: Notação científica. O primeiro dígito significativo é seguido pelo número de dígitos pré-definido multiplicado pela potência de dez necessária para representar o número;

Prc: Dá o número com a precisão dada pelo número pré-definido;

N Digits: Pode ser 0...12. Para as notações "Fix" and "Sci", define o número de dígitos significativos após o ponto decimal, "Prc" faz escrever o número de dígitos na precisão definida.

1.3.1 Sistema de Unidades

As duas fileiras abaixo do painel da precisão numérica são dedicadas às unidades, especialmente do SI - Sistema Internacional de Unidades. De

Grandeza	Símbolo	Unidade Basica	Barra de opções
Intensidade Luminosa	cd	candela	Radiation
Quant. de substância	mol	mol	Thermo
Temp. termodinâmica	°K	kelvin	Thermo
Corrente elétrica	A	ampere	ElectroMag
Massa	kg^1	kilograma	Mass
Comprimento	m	metro	Space
Tempo	s	segundo	Time
Ângulo	rad	radiano	Angle
Veloc., força energia		-	Momentum

Tabela 1.1: Unidades básicas e derivadas. Mais à frente vamos discutir o significado da última coluna.

acordo com a orientação deste sistema, são sete unidades básicas. Além destas, temos as unidades derivadas, que são obtidas com a combinação destas sete. A Tab. 1.1 apresenta as unidades básicas presentes na KM-AstroCalc. Quando consideradas, cada barra de opções oferece variantes das unidades. Por exemplo, para unidades do tema "Space", você pode escolher 'pé', 'milha', etc

Em função das múltiplas variantes de unidades, para maior facilidade, elas foram agrupadas segundo indicação de proximidade física. Por exemplo, sob o tema "Momentum", agrupam-se unidades de velocidade, pressão, energia, etc. Porém, sob o tema "Thermo", encontramos unidades de temperatura, como também de caloria, que, em princípio, é unidade de energia.

Depois de escolher a unidade, você preenche o campo X da coluna "Units", à direita da pilha numérica (Fig. 1.6). Para isso, você clica com o mouse exatamente em cima deste campo. A(s) unidade(s) escolhida(s) aparece(m) no campo, separadas pelo ponto. Chamaremos este campo de unit-X. Esta operação será indicada pelo sinal var. A cada vez que você clica em unit-X, a(s) unidade(s) aparecerá(ão) em unit-X. Se alguma delas já estiver presente, a ela será adicionada uma unidade no expoente. Por exemplo, se você escolhe a unidade "metro" e clica em unit-X, o 'm' vai aparecer. Escolhendo novamente, e clicando outra vez em unit-X, você terá m². Para

 $^{^1\}mathrm{Para}$ facilitar a operação, a unidade básica de massa aqui é o grama, em vez do kilograma.

Figura 1.6: Uma vez que você escolheu a unidade entre os campos de opções, você clica no campo da unit-X.

corrigir algum eventual erro, use o botão Clean. Se, antes de escolher a unidade, você acionar a tecla INV, ao escolher, o expoente da variável será subtraida de uma unidade. Assim, se você quer unidade invertida, use INV antes de escolhê-la.

1.3.2 O Campo de Opções "Scale"

Ao lado das opções "Digits" encontra-se o campo de opções de escala (Scale). Ele oferece as escalas a serem aplicadas às unidades, segundo nomenglatura do Sistema Internacional de Unidades (SI). Ao escolher uma delas, você fará acrescentá-la à unidade que você escolher a seguir. Ao clicar em unit-X, a unidade será antecedida pela letra da escala. A Tab 1.2, mostra as escalas a serem aplicadas, seus nomes e a letra no teclado, precedida pela tecla End, que aplicará diretamente esta escala, sem necessidade de escolher na campo de opções. Tratam-se de "atalhos" e não há deles somente para as escalas, senão para virtualmente todas as funções do KM-AstCalc.

1.3.3 Em Suma

Tomemos este pequeno tutorial:

Problema: Um motorista viaja de sua cidade para outra, distante de 455km em 6^h35^m. Qual a velocidade média?

Resposta:

Nome	Símbolo	Base 10	End-key
quecto	q	-30	q
ronto	r	-27	r
yocto	у	-24	У
zepto	${f z}$	-21	${f z}$
atto	a	-18	a
femto	f	-15	f
pico	p	-12	p
nano	n	-9	n
micro	μ	-6	u
milli	m	-3	m
centi	c	-2	c
deci	d	-1	d
		0	
deca	da	1	D
hecto	h	2	\mathbf{C}
kilo	k	3	k
mega	M	6	M
giga	G	9	G
tera	${ m T}$	12	${ m T}$
peta	P	15	Р
exa	Е	18	Е
zetta	Z	21	Z
yotta	Y	24	Y
ronna	R	27	R
quetta	Q	30	Q

Tabela 1.2: Escalas a serem aplicadas à unidade escolhida.

X	455.00	km
А	455.00	KIII

Agora entre o tempo, no texto: 6 : 35, e aí no campo Time, escolha a unidade 'hr' e clique em unit-X. Deve aparecer:

Y	455.00	km
X	6:35	hr

Antes de dividir, transforme 6 : 35hr, no formato decimal. Clique em, INV, e depois, D.ddd. Agora, faça a divisão com a tecla / . O resultado será:

Y	0.0000	
X	69.114	hr ⁻¹ .km

Problema: Entre a densidade 3.22 g.cm⁻³ no KM-AstrCalc.

Resposta:

1. Entre com o número 3.22 no campo numérico do registro-X. Escolha a unidade 'g' no campo 'Mass', clique em unit-X (). Agora, clique em INV, escolha 'c' no campo 'Scale' e 'm' no campo 'Space' e então clique em unit-X (). Repida o procedimento três vezes. Finalmente, clique em Enter. Você terá:

1		
X	3.2200	g.cm ⁻³

- 2. Outra forma seria, entrar com 3.22g, clicking on Enter e, então 1cm³, escolhendo e clicando em unit-X () três vezes e fazendo a divisão com /.
- 3. Para fazer $1 \mathrm{cm}^3$, você pode entrar com $\boxed{1}$, escolher 'c' no campo Scale, escolher 'm' no campo Space, clicar em unit-X ($\boxed{\cancel{\nu_x}}$), $\boxed{\mathsf{Enter}}$ $\boxed{\mathsf{g} \hat{\mathsf{x}}}$.
- 4. Calcular $\sin(35^{\circ}48'33'')$.

Resposta:

3 5 INV :	\mathbf{X}	35:	
4 8 INV :	\mathbf{X}	35:48:	
3 3	\mathbf{X}	35:48:33	
$Angle ightarrow \left(deg \right) \boxed{\mathcal{V}_x}$	\mathbf{X}	35:48:33	deg
INV D.ddd	\mathbf{X}	35.809	deg
SIN	\mathbf{X}	0.58509	

1.3.4 O Botão Coalesce

No lado superior direito deste painel, há o botão <code>Coalesce</code>. Além desta função se aplicar implicitamente a muitas operações do KM-AstrCalc, você pode precisar dela em algumas situações. A função Coalesce toma todas as unidades no campo unit-X e as reduz às unidades básicas SI, fazendo as conversões numéricas, quando for o caso. Ex., a unidade de comprimento é o metro, digamos que se você coloca 8.1km, a função Coalesce vai converter para 8100.0m. Muitas funções do KM-AstCalc aplicam a função 'coalesce' antes de executar as operações demandadas

Importante: a função Coalesce não opera se o número está em um formato contendo ":".

1.3.5 O Botão (Inv) Convert

Você pode converter as unidades de uma quantidade fazendo: Escolha a unidade para a qual você quer converter e clique em INV Convert.

Ex. converter 1AU (Unidade Astronômica) em kilômetros:

1 escolha AU no campo Space, clique unit-X, Enter, escolha 'k' no campo 'Scale', escolha 'm' no campo 'Space', então clique INV Convert

$\boxed{1 \text{Space} \rightarrow \boxed{\text{AU}} \cancel{y_x}}$	X	1	AU
$Scale \rightarrow [k] Space \rightarrow [m]$			
INV Convert	\mathbf{X}	1.4960e+8	km

Este é o valor da AU em km.

1.3.6 Operando com Unidades

Algumas funções matemáticas operam somente com as unidades apropriadas. Ex. as funções trigonoméricas seno, cosseno e tangente exigem que o número esteja em unidades de ângulo. Pode ser qualquer um, a escolher no

campo "Angle". Se o número não está em uma unidade de ângulo, a função não será calculada.

Logaritmos e exponenciais exigem que os parâmetros sejam adimensionais. O mesmo com funções hiperbólicas e o operador fatorial x!.

O operador especial JuID exige que as unidades funcionem com 'modelo' para o dado numérico, que é separado com ":", dando indicações de como este é montado. Ex. se o dado numérico está na forma "aaaa:mm:dd", então unit-X deve ser montado como "yr.mth.dy". O inverso, GrgD, unit-X deve estar em unidades de dias (dy).

Exercício

1. Calcular o número de dias entre 15/05/2023 e 01/01/2001.

Resposta:

$\boxed{\text{5 Time} \rightarrow \boxed{\text{mth}}} \boxed{\mathcal{V}_x}$	X [5	mth
	\mathbf{X}	5:15	mth.dy
	\mathbf{X}	5:15:2023	mth.dy.yr
JulD	\mathbf{X}	2460079.50000	dy

você pode colocar a notação em 'Fix'. Agora, vamos achar o dia juliano de 01/01/2001:

1.1	
1:1	dy.mth
1:1:2001	dy.mth.yr
2451910.50000	dy

agora, é só tirar a diferença:

- X	8169.00000	dy

1.4 Manipulando a Pilha

Os seguintes botões pemitem manipular a pilha:

C/CE: apaga o registro-X assim como unit-X com um clique. Um clique duplo apaga todos os registros;

Enter: entra com o número no registro-X. Se o número está completo, empurra este um passo acima;

INV Down: puxa a pilha para baixo;

RDwn : Rola pilha para baixo;

RUp : Rola a pilha para cima;

x-y: Intercambeia os conteúdos dos registros X e Y;

INV LstX: Recupera o valor do último registro-X antes da operação executada;

Clean: Especial para limpar somente o conteúdo de unit-X, ou de todos, com duplo clique.

Exercícios

- 1. A magnitude do Sol é 4.82, qual é sua magnitude aparente? Dica: a magnitude absoluta na astrofísica estelar é sua magnitude aparente se a estrela é colocada a uma distância de 10pc da Terra.
- 2. Entre com o número 2451545.466 no registro X. Então, clique alternadamente nas opções de formato "Fix", "Sci" e retorne ao "Prc" e veja como os números são mostrados. Mude o número de dígitos e repida a operação com o formato. Dessa forma você poderá ver os diferentes formatos e as precisões numéricas possíveis em KM-AstCalc.
- O porta-aviões francês Charles de Gaulle pode navegar a 27 nós (Wi-kipedia). Calcule essa velocidade em km/hr, e em mi/hr, e nmi/hr (milhas náuticas).

Capítulo 2

O Painel das Constantes

Os dois penúltimos paineis inferiores são dedicados a que se opere com algumas constantes físicas e astronômicas. À esquerda, o campo de opções oferece as principais constantes físicas, e à direita, as astronômicas.

As opções de cada uma permite que você escolha a constante que quiser. Passando o mouse por cima, você terá o nome e uma descrição sumária. Um botão à direita de cada

campo Upload permite colocar o valor da constante e suas unidades (quando for o caso) no registro-X.

Uma vez que você levantou a constante, você pode converter suas unidades desde que apropriadamente. Se as unidades a serem convertidas não são compatíveis, a operação terminará com uma combinação de unidades na forma possível.

2.1 As Constants Físicas

As constantes físicas são expostas nas Tab. 2.1 / 2.2. Contém as constantes mais importantes de uso corrente na física, exemplo, velocidade da luz (c), constante de Plank (h), permissividade elétrica no vácuo (ϵ_0) , e permeabilidade magnética (μ) , entre outras.

2.1.1 Indo além

Você pode "dar uma de Maxwell" e descobrir que a velocidade da luz no váculo é o inverso da raiz quadrada do produto entre a permissividade elétrica

Constant	Symbol	Value	Unit	PgUp-key
massa alpha particle	A_P	6.644657×10^{-27}	kg	A
angstron estrela	A^*	1.000015×10^{-10}	m	*
massa atômica	m_a	1.660539×10^{-27}	kg	ಡ
constante de Avogadro	N_A	$6.022141 \times 10^{+23}$	mol^{-1}	Z
magneton de Bohr	μ_B	9.274010×10^{-24}	JT^{-1}	Р
raio de Bohr	a_0	5.291772×10^{-11}	m	В
constante de Boltzmann	k_B	1.380649×10^{-23}	$J \circ K^{-1}$	K
Impedance do vacuum	Z_0	376.7303	Ω	W
raio do electron	r_e	2.817940×10^{-15}	m	
massa do deuteron	D_M	3.343584×10^{-27}	kg	~
massa do elétron	m_e	9.109384×10^{-31}	kg	е
electron-volt	eV	1.602177×10^{-19}	J	>
carga elementar	в	1.602177×10^{-19}	C	ď
constante de Faraday	F	96485.33	$C mol^{-1}$	伍
const. de estrutura-fina	α	0.007297353		J
energia de Hartree	E_h	4.359745×10^{-18}	J	Τ
constante de Josephson	K	$4.835978 \times 10^{+14}$	HzV^{-1}	1
parâmetro lattice Si	a	5.431021×10^{-10}	m	t
const. gás molar	R	8.314463	$J mol^{-1} ^o K^{-1}$	$_{\rm R}$
magneton nuclear	μ_N	5.050784×10^{-27}	JT^{-1}	_

Tabela 2.1: Constantes físicas

Constant	Symbol	Value	Unit	PgUp-key
constante de Planck	h	6.626070×10^{-34}	$J Hz^{-1}$	h
massa do proton	P	1.672622×10^{-27}	kg	28
constante de Rydberg	R_{∞}	$1.097373 \times 10^{+7}$	m^{-1}	×
veloc. da luz	c	$2.997925 \times 10^{+8}$	$m s^{-1}$	ပ
acceleração da gravidade	9	9.806650	$m s^{-2}$	5.0
atmosphere padrão	Atm	101325.0	Pa	m
constante de Stefan-Boltzmann	\square	5.670374×10^{-8}	$W m^{-2} ^{o} K^{-4}$	ß
permissividade elétrica	ω	8.854188×10^{-12}	$F m^{-1}$	n
permeabilidade magnética	η	0.000001256637	NA^{-2}	Ω
constante de von Klitzing	R_k	25812.81	Ω	>

Tabela 2.2: Constantes físicas

	_			
$\overline{\text{Phys.Const.} \rightarrow \boxed{\epsilon_0}}$	Upload	X	8.8542e-12	$F.\mathrm{m}^{-1}$
Phys.Const. $\rightarrow \mu$	Upload	\mathbf{X}	0.0000012566	$N.A^{-2}$
*		\mathbf{X}	1.1127e-17	$N.A^{-2}.F.m^{-1}$
Coalesce		\mathbf{X}	1.1127e-17	$m^{-2}.s^2$
1/x		\mathbf{X}	8.9876e+16	$m^2.s^{-2}$
INV SQRT		X	2.9979e+8	$m.s^{-1}$
$Momentum \rightarrow \boxed{c}$		X	2.9979e+8	$m.s^{-1}$
[INV] Convert		\mathbf{X}	1.0000	С

e a permeabilidade magnética. Vejamos, tente a sequência:

Em outros termos, você fez o produto da permissibilidade elétrica com a permeabilidade magnética, então, inverteu e tirou a raiz quadrada. Então, você converteu o resultado (que deve estar em unidades de $m.s^{-1}$) para c, como unidade de velocidade. O resultado é 1c, o que mostra que a operação nos dá exatamente a velocidade da luz.

2.2 As Constantes Astronômicas

As constantes astronômicas são mostradas na Tab. 2.3/2.4.

2.2.1 Indo Além

Note que há quatro tipos de anos na lista das constantes astronômicas. O primeiro, o ano Juliano tem 365.25 dias. Este é o valor da duração do ano no tempo de Júlio César, em Roma. Quando Júlio César adotou seu calendário, esta era a medida do ano que eles tinham. Mais tarde, o Papa Gregório II adotou o calendário atual, em 1582, com o ano tendo a duração de 365.2425 dias, sendo, portanto, este o ano Gregoriano. Recentemente, depois de uma deliberaçãon da IAU, o ano tropical, como é conhecido, é de 365.24219 dias. Este é o tempo médio que o sol toma para cruzar duas vezes seguidas o equinócio vernal. Finalmente, o ano sideral, considerando-se a precessão, será de 365.256363004 dias. Este é o ano adotado para o período na teoria da gravitação, com o movimento da terra sendo observado de fora do planeta.

Podemos tirar algumas conclusões importantes acerca da teoria da mecânica celeste, por exemplo, deduzindo a dita constante de Gauss (registrada com o símbolo 'k' na lista do campo de opções). De acordo com Gauss, o sistema Terra-Lua orbita em torno do Sol, considerado simplificadamente como problema de dois corpos, a uma taxa de 0.886 graus por

Constant	Symbol	Value	Unit	PgUp-key
Unidade Astronômica	AU	$1.495979 \times 10^{+11}$	m	×
parsec	$^{ m pc}$	$3.085678 \times 10^{+16}$	m	d
ano-luz	ly	$9.460730 \times 10^{+15}$	m	Y
Dia Juliano Modificado	mdj0	2400001	dy	
Ano Juliano	JulYr	365.2500	dy	ſ
Século Juliano	JulCy	36525.00	dy	×
Época $1.5/\mathrm{Jan}/2000$	J2000.0	2451545	dy	0
Época Besseliana	B1950.0	2433282.42350	dy	%
Ano sideral	Syr	365.256363040	dy	_
Ano tropical	Tyr	365.24219	dy	
Ano Gregoriano	$_{ m Gyr}$	365.2425		
aceleração da gravidade	В	9.806650	$m s^{-2}$	5.0
Const. de gravitação	\mathcal{C}	6.674280×10^{-11}	$m^3 kg^{-1} s^{-2}$	ŭ
massa do Sol	\mathcal{S}	$1.988550 \times 10^{+30}$	kg	∞
Const. gravitacional Gaussiana	k	0.000008169351	$m^{1.5} kg^{-0.5} s^{-1}$	Ŋ
Raio equatorial da Terra	R_e	6378137	m	0
Elipsidade da Terra	в	0.003352820		
Const. gravitacional geocêntrica	GE	$3.986004 \times 10^{+14}$	$m^3 s^{-2}$	О
Massa Terra / Massa da Luz	$1/\mu$	81.30056		n

Tabela 2.3: Constantes astronômicas

Constant	Symbol	Value	Unit	PgUp-key
Precessão em longitude	θ	0.02438029	rad	r
Termo de Precessão em m	m	3.0750	$^{\mathrm{s}}.yr^{-1}$	Z
Termo de Precessão em n	u	20.043	$''yr^{-1}$	
Obliquidade da ecliptic	ω	0.4089906	rad	0
Taxa sideral	ė	0.997269624573		
Constante de nutação	N	0.000004462823	rad	2
Constante de aberração	Z	0.000009936509	rad	П
Const. gravit. Heliocêntrica	GS	$1.327244 \times 10^{+20}$	$m^3 s^{-2}$	Γ
Massa Sol / Terra	S/E	332946.1		臼
Massa Sol / Terra+Lua	S/E+M	328900.6		#
Constante de Hubble	H_0	70.10000	$km s^{-1} Mpc^{-1}$	Н
Luminosidade solar	L_0	3.939e + 26	W	W

Tabela 2.4: Constantes astronômicas (cont.)

dia, ou cerca de 0.0172 radianos por dia. Este valor é deduzido pela relação $k: (rad/d) = (GM)_{\odot}^{0.5} AU^{-1.5}$ (https://en.wikipedia.org/wiki/Gaussian_gravitational_constant), sendo G a Constante Gravitacional e M_{\odot} , a massa do Sol. No campo de opções das Constantes Astronômicas o produto GM_{\odot} tem o símbolo GS.

Vejamos: abra o campo de Astronomical Constants, selecione o valor de Heliocentric Gravitational Constant (GS), e levante ao registro-X:

$Astr.Const. \rightarrow GS$ Upload	X	1.3272e+20	$\mathrm{m}^{-3}\mathrm{sc}^{-2}$				
agora, faça a raiz quadrada:							
INV SQRT	X	1.1521e+10	$m^{-1.5}sc^{-1}$				
Levante a constante AU:							
$Astr.Const. \rightarrow \boxed{AU} \boxed{Upload}$	X	1.4960e+11	m				
e eleve à potência 1.5:							
1 · 5 y^x	X	5.7861e+16	m ^{1.5}				
Agora, divida:							
	X	1.9911e-7	sc^{-1}				
TT 1: 1			. 1 1 1 1 /				

Uma vez que o resultado está em unidade angular, a unidade 'rad' é acrescentada ao da unidade s^{-1} (frequência, ou taxa).

Falta converter o resultado para unidades de dia:

$Time \rightarrow \boxed{dy}$			
INV Convert	X	0.017203	dy^{-1}

Exercício:

1. Veja como G se relaciona com k.

2.3 Unidades Naturais × Unidades Terrestres

Podemos ir adiante com as constantes presentes em KM-AstCalc, deduzindo as chamadas unidades naturais de Planck, ou unidades naturais. Em 1899, Max Planck publicou um artigo introduzindo unidades que poderiam ser consideradas naturais, porque elas não dependem de padrões "terrestres".

Entre outras, temos o comprimento de Planck, considerada a menor distância que a física atual pode descrever um fenômeno. Ela é:

$$l_p = \sqrt{\frac{\hbar G}{c^3}} = \sqrt{\frac{hG}{2\pi c^3}} = 1.616255(18) \times 10^{-35} m.$$

O '18' entre parênteses refere-se à flutuação dos últimos dois dígitos para mais ou para menos. Na KM-AstCalc nós podemos fazer:

$\overline{\text{Phys.Const.} \rightarrow \left[\text{h} \right] \left[\text{Upload} \right]}$	\mathbf{X}	6.6261e-34	J.Hz ⁻¹
2 / PI /	\mathbf{X}	1.0546e-34	J.Hz ⁻¹
$Phys.Const. \rightarrow \boxed{c} \boxed{Upload}$	\mathbf{X}	2.9979e+8	$\mathrm{m.sc^{-1}}$
3 y^x /	\mathbf{X}	3.9139e-60	$m^{-3}.sc^{3}.J.Hz^{-1}$
$Astr.Const. \rightarrow G$ Upload	\mathbf{X}	6.6743e-11	$\mathrm{m}^3.\mathrm{kg}^{-1}.\mathrm{sc}^{-2}$
*	\mathbf{X}	2.6123e-70	$\mathrm{kg}^{-1}.\mathrm{sc.J.Hz}^{-1}$
INV SQRT Coalesce	X	1.6163e-35	m

Exercícios

- 1. Ache as unidades de Planck para:
 - (a) Massa:

$$m_p = \sqrt{\frac{\hbar c}{G}};$$

(b) Tempo:

$$t_p = \sqrt{\frac{\hbar G}{c^5}};$$

(c) Temperatura:

$$T_p = \sqrt{\frac{\hbar c^5}{G \, k_B^2}}.$$

- 2. E algumas outras derivadas:
 - (a) área:

$$l_p^2 = \frac{\hbar G}{c^3};$$

(b) volume:

$$l_p^3 = \sqrt{\frac{(\hbar G)^3}{c^9}};$$

(c) momento:

$$m_p c = \sqrt{\frac{\hbar c^3}{G}};$$

(d) energia:

$$E_p = \sqrt{\frac{\hbar c^5}{G}}$$

(e) força:

$$F_p = \frac{c^4}{G};$$

(f) densidade:

$$\rho_p = \frac{c^5}{\hbar G^2};$$

(g) aceleração:

$$a_p = \sqrt{\frac{c^7}{\hbar G}}.$$

3. Calcule a aceleração da gravidade em unidades naturais.

2.3.1 A Constante de Hubble

Depois que Hubble formulou a lei geral da recessão das galáxias¹, a constante de proporcionalidade para a velocidade com a distância foi medida e revisada várias vezes. O valor atual registrado na KM-AstCalc é:

$$H_0 = 70.100 \,\mathrm{km.s^{-1}.Mpc^{-1}}.$$

Vamos levantar esta constante e coalescê-la:

$Astr.Const. \rightarrow \boxed{H0} \boxed{Upload}$	\mathbf{X}	70.100	$k, m.sc^{-1}.M, pc^{-1}$	
Coalesce	X	2.2718e-18	s^{-1}	

Você pode ver que a constante de Hubble é essencialmente expressa em unidades de frequência. Se a invertermos:

1/x	X	4.4018e+17	S	
E convertendo em anos:				
$Time \rightarrow yr$				
INV Convert	\mathbf{X}	1.3948e+10	yr	

ou 13.95 gigaanos. Ele é chamado de tempo de Hubble e é supostamente a idade do universo.

¹Hoje, esta lei é creditada a uma série de autores. Veja em https://en.wikipedia.org/wiki/Hubble%27s_law

Exercícios

- 1. Calcule o tempo de Hubble em unidades de Planck.
- 2. Calcule o comprimento de Hubble: $l_H = cH_0^{-1}$. Converta-o em unidades de Planck.

2.3.2 O Rajo de Schwartzchild

Karl Schwartzchild estabeleceu, da Teoria da Relatividade Geral, que existe um raio numa esfera contendo uma certa massa em que as equações chegam a uma singularidade, fazendo com que toda grandeza se anula ou diverge ao infinito. Por exemplo, o relógio para e a curvatura espaço-tempo vai ao infinito. Deste cálculo temos:

$$R_S = 2 \frac{GM}{c^2}$$

hoje chamado o raio de Schwartzchild, ou o Horizonte de Eventos. G é a constante gravitacional, M é a massa dentro da esfera e c é a velocidade da luz.

Muitos na academia "clássica" dizem que a força é tanta que nada escapa, mesmo a luz. Esta é a razão por que objetos assim são chamados "Buracos Negros". Não há limite para a massa possuir esta propriedade. Teoricamente, qualquer coisa tendo massa pode ser um buraco negro, desde que o limite do raio obedeça a relação acima.

Podemos usar a KM-AstCalc para calcular o buraco negro para a massa do Sol:

$Astr.Const. \rightarrow G$	Upload	\mathbf{X} [6.6743e-11	${\rm m^3.kg^{-1}.sc^{-2}}$
$Astr.Const. \rightarrow \boxed{S}$	Upload	* X [1.3272e+20	$\mathrm{m}^3.\mathrm{sc}^{-2}$
Phys.Const. \rightarrow \boxed{c}	Upload	\mathbf{X}	2.9979e+8	$\mathrm{m.sc}^{-1}$
SQR /		\mathbf{X} [1476.7	m
2 (*)		X	2953.4	m

Assim, se o sol se contrair repentinamente a uma esfera de raio não mais que 3km, ele pode se transformar em um buraco negro.

Exercícios

- 1. Calcule o tamanho de um buraco negro com as massas da Terra e da Lua.
- 2. Idem para o elétron.

- 3. De acordo com https://www.cfa.harvard.edu/news/mass-milky-way, a massa da Via Láctea é entre 1.2 and 1.9×10^{12} massas solares. Calcule um buraco negro contendo essa massa. Coloque-a em AU.
- 4. Supõe-se que existe um buraco negro de massa $4\times10^6\mathrm{S}$, a Sagitarius* no centro da Via Láctea. Calcule o "raio" deste buraco negro.
- 5. Suponha que o disco solar tenha 32′ de diâmetro. Ache o diametro solar em comprimento físico e compare com o "raio" do buraco negro no interior da Via Láctea.

Resposta: a dica é que o diâmetro aparente do sol decorre da distância da terra ao sol (1AU)

$\boxed{\textbf{32} \text{Angle} \rightarrow \boxed{\textbf{min}} \cancel{y_x}}$	\mathbf{X}	32	min
TAN	\mathbf{X}	0.0093087	
AU (Upload)	\mathbf{X}	1.4960e+11	m
*	X	1.3926e+9	m
$\overline{\text{Scale} \rightarrow \left[G \right] \text{Space} \rightarrow \left[m \right]}$	•		
[INV] (Convert)	X	1.3926	Gm

O valor adotado para o diâmetro do sol é ^2 1.3927 Gm.

2.3.3 Poder de Resolução de Imagem de um Telescópio

Um dispositivo óptico, uma vez que tenha uma abertura, apresenta um poder de resolução. Se a abertura é circular, então o poder de resolução é simétrico. De acordo com o critério de Rayleigh, esta resolução é

$$r_D'' = 0.25 \frac{\lambda}{\phi},$$

em que λ é o comprimento de radiação em $\mu m,$ e ϕ é a abertura em metros.

Exercício

1. Ache o poder de resolução de um binóculo de 4cm de abertura.

Resposta: É usual adotar a sensibilidade espectral central da visão humana no comprimento de onda 5500 Å para se estimar o poder de resolução de um telescópio, logo

²https://science.nasa.gov/sun/facts/

$\boxed{\text{5500 Space} \rightarrow \boxed{\text{AA}}} \cancel{\nu_x}$	\mathbf{X}	5500	AA
Enter	\mathbf{X}	5500.0	AA
$Scale \rightarrow [mu]Space \rightarrow [m]$			
INV Convert	\mathbf{X}	0.55000	mum
$\boxed{\textbf{4} \text{Scale} \rightarrow \textbf{c}}$	\mathbf{X}	4	
$\operatorname{Space} o \mathbb{m}$ $[\mathcal{V}_x]$	\mathbf{X}	4	cm
Enter	\mathbf{X}	4.0000	c,m
$Space \rightarrow m$ INV Convert	\mathbf{X}	0.040000	m
/ Clean	\mathbf{X}	13.750	
$\overline{\text{Angle}} ightarrow \overline{\text{sec}} $	\mathbf{X}	13.750	sec
0.25 *	X	3.4375	sec

Considerando que o olho humano é capaz de resolver 1', podemos adotar uma ocular que nos dá um fator de aproximação de $250\times$ sem perda de resolução.

2.3.4 Magnitude Limite de um Telescópio

A magnitude limite de um telescópio é calculado com a fórmula:

$$m_l = 17.1 + 5\log\phi,$$

sendo ϕ a abertura do telescópio em metros.

Exercício

1. Calcule a magnitude limite de um binóculo de 4cm de abertura.

Resposta:

4	\mathbf{X}	4	
$Scale \rightarrow \boxed{c}$	X [4	
$\overline{\text{Space} \rightarrow \mathbf{m} \mathcal{Y}_x} \overline{\mathcal{Y}_x}$	X [4	cm
Coalesce Clean	X [0.04	
INV LOG	\mathbf{X}	-1.3979	
5 *	\mathbf{X}	-6.9897	
17.1 +	X	10.110	

Capítulo 3

Coordenadas Celestes e Posicionamento

3.1 O Calendário

A astronomia se ocupa de contar o tempo e preparar o calendário, que conta dias, meses, anos etc. Inicialmente, esta era uma tarefa da religião, mas os clérigos usavam a astronomia para fazê-lo. Universalmente, a astronomia conta os dias através da data Juliana, contada a partir de 1.5/01/4712 aC. Esta data foi escolhida por uma série de razões, uma delas sendo ser ela anterior a qualquer fato histórico conhecido. O calendário gregoriano foi estabelecido em 1582 (os países anglos o têm em 1642 quando foi adotado na Inglaterra) pelo papa Gregório II. Para a astronomia, o dia é contado a partir do meio-dia. Esta é a razão de, na data Juliana, os dias serem mostrados com meio dia a mais.

Você pode converter data gregoriana para juliana e vice-versa usando o botão $\left[J_{ul} D \right] / \left[INV \right]$ GrgD no lado inferior direito do painel das funções. Você entra com a data gregoriana no registro-X compondo os números separados por dois pontos. O significado de cada número é determinado pela sequência das unidades compostas no campo das unidades de X. Ex^1 .

X	23:9:2023	dy.mth.yr	
---	-----------	-----------	--

JulD

Significa que a data está no formato "dd/mm/aaaa". Clicando em você terá o dia juliana correspondente:

 $^{^{1}\}mathrm{O}$ símbolo $\ \ \Box$ é obtido clicando na sequência $\ \ \boxed{\mathsf{INV}} \ \ \Box.$

23 : 9 : 2023	\mathbf{X}	23:9:2023	
$Time \rightarrow \boxed{dy} \boxed{y_x}$	\mathbf{X}	23:9:2023	dy
$\overline{\text{Time}} \rightarrow \boxed{\text{mth}} \boxed{\mathcal{Y}_x}$	\mathbf{X}	23:9:2023	dy.mth
$\overline{\text{Time}} \rightarrow \boxed{\text{yr}} \boxed{\cancel{\nu_x}}$	X [23:9:2023	dy.mth.yr
JulD	X	2460210.50000	dy

O inverso é direto:

INV GrgD	X 23.00000:9:2023	dy.mth.yr
----------	-------------------	-----------

O formato do dia é o determinado pelo formato que você definiu para os números. No caso de mês e ano, são no formato inteiro. A resposta do botão INV GrgD está sempre no formato "dd:mm:aaaa".

3.2 Tempo Solar e Sideral

Sabemos que a Terra gira em torno do eixo dos polos Norte-Sul (como disse Galileo Galilei, "Et pur si muove") no movimento de rotação. Esta rotação determina a marcha do relógio, marcando as horas e os dias. Determinamos a marcha do tempo observando o céu. Contudo, existem duas maneiras de determinar o tic-tac do relógio. A primeira, o tempo adotado pela sociedade civil (ou militar), é definida pelo Sol. A outra é determinada pelas estrelas. A primeira define o Tempo Solar, e a segunda, o Tempo Sideral. Para ver a diferença, vamos dar uma olhada na Fig. 3.1.

Imagine que, ao meio-dia, quando o Sol cruza o meridiano local, você possa ver o Sol e uma estrela fixa exatamente no mesmo meridiano. Neste momento, você dispara dois relógios, A e B, e os deixa contando até o dia seguinte. Você para o relógio A quando você vê a estrela que você viu na véspera cruzar novamente o meridiano local, e para o relógio B quando o Sol fizer o mesmo. Você verá que os dois relógios não mostram o mesmo valor. Isto, porque, no curso de um dia, a Terra moveu-se $360/365.25 \, \text{deg} = 0^\circ.98563 = 59'8''.2546$ em sua órbita em torno do Sol, na escala juliana. Se você fizer a escala dos dois relógios em referência às suas origens de tempo, você chamará o relógio A de sideral e o B de solar. Considerando a variação do dia-a-dia, ao final de um ano, o tempo sideral vai ganhar um dia completo com respeito ao solar. Então, para converter o tempo medido pelo relógio solar para o sideral, usamos o fator $\epsilon = 365.25/366.25$, chamado taxa sideral. Você acessa o valor da taxa sideral na KM-AstCalc na lista do campo de opções das Constantes Astronômicas (ϵ).

Figura 3.1: Tempo Solar e Tempo Sideral. Em um dia, por causa do movimento de translação da Terra no caminho de sua órbita, a marca da posição do sol é deslocada para a esquerda, avançando sobre posições já cobertas no movimento de rotação.

Exercício

1. Converter 18^h do tempo sideral em tempo solar.

Resposta:

$\boxed{18 \text{ Time} \rightarrow \boxed{\text{hr}}}$	U_x	X	18	hr
$\overline{\text{Astr.Const.} \rightarrow \boxed{\epsilon}}$	Upload	\mathbf{X}	0.99727	
*		X	17.951	hr
D:M:S		X	17:57:3.0717	hr

2. Calcular quanto o tempo sideral ganha sobre o solar em $24^{\rm h}$.

Resposta:

$\boxed{24 \text{ Time} \rightarrow \boxed{\text{hr}} \qquad \boxed{\mathcal{V}_x}}$	\mathbf{X}	24	hr
$\overline{\text{Astr.Const.} \rightarrow \epsilon \text{Upload}}$	X	0.99727	
	\mathbf{X}	24.065	hr
$\boxed{24 \text{ Time} \rightarrow \boxed{\text{hr}} \qquad \boxed{\mathcal{Y}_x}}$	X	24	hr
- D:M:S	X	0:3:56.550	hr

3.2.1 Tempo Sideral de Greenwich a $0^{\rm h}$

A origem do tempo sideral em Greenwich (GST) é quando o equinócio vernal (ponto-gama) cruza seu meridiano. Existe uma equação que calcula o tempo sideral para 0^h do tempo solar em Greenwich. Ela é, em graus²:

$$ST_0 = 100.46061837 + 36000.77053608 S + 0.000387933 S^2 - \frac{S^3}{38710000.0},$$
(3.1)

sendo S a fração do século juliano da diferença da data juliana e J2000.0:

$$S = \frac{T - 2451545.0}{36525},$$

em que T é o dia juliano para a data.

Fora de lá, o tempo sideral (LST) é calculado considerando a longitude local. Se se está a oeste, subtraímos a longitude. Do contrário, adcionamos ao valor de GST.

Exercício

1. Ache o GST at 0^{UT} para 15/05/2023.

Resposta:

15 : 5 : 2023	\mathbf{X}	5:15:2023	
$\text{Time} \rightarrow \boxed{\text{mth}} \boxed{\mathscr{Y}_x}$	\mathbf{X}	5:15:2023	mth
$Time \rightarrow \left(dy \right) \left(y_{x} \right)$	X	5:15:2023	mth.dy
$Time \rightarrow yr$	X	5:15:2023	mth.dy.yr
JulD	X	2.4601e+6	dy
GST0	X	567.50	hour

O resultado não considera o quadrante, já que é muito maior do que 24^h. Existem duas maneiras de reduzir este valor ao quadrante. A primeira é clicar no botão Quad, que dá o valor em radianos. Você faria a conversão para horas. A segunda maneira é dividindo por 24, obtendo a parte fracional e multiplicando por 24 novamente:

² Jean Meeus, 2000, Astronomical Algorithms, 2nd Edition, Willmann-Bell, Inc.

³Note que esta função GSTO dá o resultado em unidades de ângulo, não de tempo. A razão é a facilidade com que vamos lidar com este dado na trigonometria esférica, que vamos ver mais tarde.

2 4 / X	23.646	hour
INV FRAC X	0.64574	hour
2 4 * X	15.498	hour
D:M:S	15:29:52.181	hour

 Determine o ST0 local para a longitude 43°27′38″W para o GST0 do último exercício.

Resposta:

INV D.ddd	X	15.498	hour
43 27 38	\mathbf{X}	43:27:38	
$Angle ightarrow \left[deg \right] \boxed{\mathcal{V}_x}$	\mathbf{X}	43:27:38	deg
D.ddd	\mathbf{X}	43.461	deg
$\overline{\mathrm{Angle}}{ ightarrow}$ [NV] [Convert]	\mathbf{X}	2.8974	hour
	\mathbf{X}	12.601	hour
D:M:S	\mathbf{X}	12:36:2.1600	hour

3.2.2 Tempo Solar de Greenwich

Como vimos, a origem do tempo solar é quando o Sol cruza o primeiro meridiano (em Greenwich). Precisamos ligar os relógios em torno do mundo ao de Greenwich. Por isso, o globo foi dividido em 24 fusos horários, cada um tendo uma diferença de horas inteiras com Greenwich⁴. Os fusos a oeste de Greenwich são negativos, e a leste, positivos. Assim, nós temos fusos que variam de 0h a -12h e de 0h a +12h. O lado oposto ao primeiro meridiano, em Greenwich, marca a linha da mudança do dia, já que quando o Sol cruza o primeiro meridiano, é meio-dia em Greenwich, e no outro lado do globo, será meia-noite. Cada fuso é denominado "±N GUT", sendo N o número de horas inteiras (or mais ou menos meia hora) que é somado ou subtraido do tempo Solar (ou Universal) de Greenwich. Ex. Fuso horário de Brasília: -3 GUT.

3.2.3 Tempo Sideral de Greenwich

Uma vez que você sabe o tempo sideral a 0^h do tempo solar em Greenwich, você sabe o tempo sideral para qualquer tempo solar. Para isso, você deve converter o tempo solar para a escala do tempo sideral. Use a taxa sideral

⁴Índia e Afeganistão adotam zonas de 1/2 hora.

 ϵ no campo de opções das Constantes Astronômicas da KM-AstCalc para fazer a conversão.

Exercício

1. Determine o tempo sideral para $13^{\rm h}23^{\rm m}48^{\rm s}$ do tempo solar.

Resposta:

13 : 23 : 48	X [13:23:48	
$Angle \rightarrow \boxed{hour}$	\mathbf{X} [13:23:48	hour
INV D.ddd	\mathbf{X} [13.397	hour
$Astr.Const. ightarrow \epsilon$ Upload	\mathbf{X} [0.99727	
/ D:M:S	X	13:26:1.2444	hour

Uma vez o GST0 e o tempo solar convertido para o tempo sideral, você obtém o tempo sideral em Greenwich para a data.

Exercício

1. Calcule o tempo sideral em Greenwich para 15/05/2023, às $13^{\rm h}23^{\rm m}48^{\rm s}$.

Resposta: Já temos o GST0 do último exercício. Vamos usá- lo^5 .

IN	V D.ddd	X	13.434	hour	
+		\mathbf{X}	25.115	hour	

O resultado excede $24^{\rm h}$ então, subtraimos deste valor para colocar o resultado no quadrante:

$\boxed{24 \text{Angle} \rightarrow \boxed{\text{hour}} \boxed{\mathcal{Y}_x}}$	X	24	hour
-	\mathbf{X}	1.1150	hour
D:M:S	X	1:6:54.000	hour

3.2.4 Tempo Sideral Local

Para calcular o tempo sideral local operamos da seguinte forma:

1. Subtraia o fuso (positivo a leste) do tempo dado, para chegarmos ao tempo solar em Greenwich:

 $^{^5{\}rm Importante}:$ a KM-AstCalc não opera no formato "D:M:S", assim, antes de fazer qualquer coisa, reverta para o formato original "D.ddd".

- 2. Converta para a escala sideral dividindo pela taxa sideral;
- 3. Some o tempo sideral a 0UT de Greenwich para a data;
- 4. Subtraia do longitude local (positiva a oeste);
- 5. Corrija para o quadrante, se necessário.

Matematicamente, este algoritmo pode ser escrito como:

$$ST = Q[(LT - F)/\epsilon + GST0 - \lambda].$$

Sendo Q[] o operador quadrante e F, o fuso horário.

Exercício

1. Determine o tempo sideral local para a longitude $43^\circ 27'38''$ para 15 de maio de 2023 às $21^{\rm h}30^{\rm m}$. Fuso horário: $-3^{\rm h}$.

Resposta:

2023:5:15	\mathbf{X}	2023:5:15	
$Time \rightarrow yr $ v_x	\mathbf{X}	2023:5:15	yr
$Time \rightarrow \boxed{mth}$	X [2023:5:15	yr:mth
$Time \rightarrow \boxed{dy} \boxed{y_x}$	X [2023:5:15	yr:mth:dy
JulD	\mathbf{X}	2.4601e+6	dy
GST0	\mathbf{X}	567.50	hour
24 /	\mathbf{X}	23.646	hour
INV FRAC	\mathbf{X}	0.64574	hour
24 *	\mathbf{X}	15.498	hour
43 : 27 : 38	\mathbf{X}	43:27:38	
$Angle ightarrow \left[deg \right] \boxed{\mathcal{V}_x}$	\mathbf{X}	43:27:38	deg
D.ddd	\mathbf{X}	43.461	deg
$Angle \rightarrow \boxed{hour}$	\mathbf{X}	43.461	deg
INV Convert	\mathbf{X}	2.8974	hour
-	X	12.600	hour
21 INV :	\mathbf{X}	21:	

$\boxed{30 \text{Angle} \rightarrow \left[\text{hour} \right] \left[\mathcal{V}_{x} \right]}$	\mathbf{X}	21:30	hour
INV D.ddd	\mathbf{X}	21.500	hour
3 CHS	\mathbf{X}	-3	
$Angle \rightarrow $ hour V_x	X [-3	hour
-	\mathbf{X}	24.500	hour
$Astr.Const. \rightarrow \epsilon $ Upload /	\mathbf{X}	24.567	hour
+	\mathbf{X}	37.168	hour
$24 \text{Angle} \rightarrow \text{(hour)} \boxed{\mathcal{V}_x} -$	\mathbf{X}	13.168	hour
D:M:S	\mathbf{X}	13:10:3.0195	hour

3.3 Coordenadas Esféricas

Quem quiser trabalhar ou estudar astronomia deve ter noções mínimas de trigonometria esférica. Por isso, KM-AstCalc está aqui para lhe ajudar a resolver alguns dos principais problemas nesta área: equações envolvendo triângulos esféricos.

3.3.1 Triângulos Esféricos

Imagine o céu acima como uma grande esfera contendo os astros que vemos. Grande círculo é a linha nesta esfera definida pelo cruzamento de um plano com esta esfera, passando pelo seu centro. Definimos triângulo esférico como o triângulo determinado por três grandes círculos não coincidentes (Fig. 3.2).

Chamamos esta esfera de esfera celeste. Convencionalmente, o raio desta esfera é considerado unitário, assim, as distâncias na superfície desta esfera serão em unidades de ângulos. Por consequência, os lados de um triângulo esférico são dados em unidades de ângulo. Seus três vértices também são dados em ângulos. Em astronomia, respresentamos a posição de um objeto em termos de posicionamento na esfera celeste⁶. Eventualmente, se conhecemos a distância até o astro, adotamos a distância radial, fazendo sua posição em termos de coordenadas polares esféricas.

Normalmente representamos os vértices de um triângulo esférico com as letras maiúsculas, como A, B, and C. Os lados terão letras minúculas, com o nome equivalente do vértice oposto: ex. lado <u>a</u> é oposto ao vértice A, e assim por diante.

A solução de um problema de triângulo esférico é encontrar seus vértices e lados. Sabemos que se tivermos três destes elementos, é possível determinar

⁶Mesmo sabendo que a Terra não está no centro do universo.

Figura 3.2: Definição de triângulo esférico: três grandes círculos não coincidentes.

os outros três, isto é, se temos dois vértices e um lado, podemos encontrar o terceiro vértice e os outros dois lados. Se temos um vértice e dois lados, podemos achar o terceiro lado e os outros dois vértices. O problema mais frequente em astronomia de posição refere-se à transformação entre sistemas de referências, o que, geralmente, representa a solução de problema de triângulo esférico.

É possível demonstrar a validade das seguintes equações que nos ajudam a resolver um triângulo esférico. São três conjuntos de equações cujos componentes giram num padrão cíclico com respeito às variáveis. Exemplo:

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C},\tag{3.2}$$

conhecidas como "lei dos senos".

Similarmente, temos três equações que perfazem a lei dos cossenos:

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$

$$\vdots \qquad (3.3)$$

Podemos rescrever a equação acima substituindo "a" por "b" e, então, por "c" desde que os vértices também variem na mesma sequência, com os lados obedecendo os mesmos preceitos da definição.

Um terceiro conjunto de equações é:

$$\sin a \cos C = \cos c \sin b - \sin c \cos b \cos A$$

$$\vdots$$
(3.4)

e assim por diante.

KM-AstCalc está em condições de fornecer a solução dos problemas mais frequentes na astronomia: transformação do sistema equatorial para eclíptico, local, galáctico, e vice-versa. Vamos tratar disso a seguir.

3.4 Sistema Equatorial

Observemos Fig. 3.3. Definimos Equador, o grande círculo, perpendicular ao eixo de rotação da Terra, dividindo a esfera celeste nos hemisférios norte e sul. Um astro no céu é assim posicionado através de duas coordenadas esféricas: a ascenção reta e declinação, normalmente denotadas, respectivamente, com as letras gregas α e δ .

A declinação é contada a partir do Equador, sendo positiva para o norte e negativa no lado oposto. Seu valor absoluto vai de 0° a 90° ($\pi/2$ rad) no máximo.

A ascenção reta é medida ao longo do Equador a partir do equinócio vernal, que é denotado com a letra grega γ , crescendo para leste. Seu valor geralmente é dado em horas e varia de $0^{\rm h}$ a $24^{\rm h}$, equivalente a $0-360^{\circ}$ $(2\pi\,{\rm rad})$.

Uma vez que o ponto γ não é fixo (veja adiante na Seção 3.7), temos que referir as coordenadas equatoriais ao ponto do momento em que o equinócio é tomado. A este instante, damos o nome de Época. Os textos mais recentes referem-se à Época J2000.0, o que quer dizer o dia juliano 2451545.0, ou a data gregoriana de primeiro de janeiro de 2000 ao meio-dia.

Se você está na superfície terrestre, você é localizado através das suas coordenadas geográficas. São: longitude e latitude, usualmente denotadas pelas letras gregas λ e ϕ .

A longitude é medida ao longo do Equador, a partir do meridiano de Greenwich (que é um subúrbio de Londres). Por razões políticas, a longitude cresce para ambos os lados, à leste e à oeste, levando as letras 'E' ou 'W', de acordo onde se esteja, à leste, ou à oeste de Greenwich.

A latitude é medida verticalmente a partir do Equador. Novamente, por razões políticas, denota-se a latitude com as letras 'N' ou 'S', dependendo se se está ao norte ou ao sul do Equador.

Na astronomia, precisamos diferenciar as coordenadas geocêntricas das topocêntricas. As primeiras são obtidas considerando se estar no centro da

Figura 3.3: Cordenadas Equatoriais

Terra. As segundas leva em consideração o fato de estarmos na superfície da Terra. As diferenças envolvem a relação entre as distâncias siderais e o raio da Terra. São desprezíveis para as estrelas mas têm papel crucial para corpos no sistema solar (mais crítico quanto mais perto). A correção deste efeito é chamada paralaxe.

Na astronomia, adotamos a longitude crescendo para leste e latitude para norte (seguindo o padrão da ascenção reta e declinação). Temos, pois, que ter cuidado quando à direção das coordenadas com que lidamos.

Exercício

1. Recupere J2000.0 do campo de opções das Constantes Astronômicas para o registro-X e determine sua data gregoriana.

3.5 Sistema da Eclíptica

As coordenadas em referência à Eclíptica são a longitude celeste (λ) e a latitude celeste (β) para marcar a diferença com as coordenadas geográficas. A eclíptica é determinada pela órbita média da Terra. As coordenadas do equador e da eclíptica são tais que as coordenadas no plano de base têm a mesma origem, o equinócio da primavera do hemisfério norte (γ) . Como consequência, o Sol (médio) sempre tem latitude nula.

Figura 3.4: Ecliptic / Equatorial transform geometry. Converting Equatorial to Ecliptic or vice-versa is solving the triangle PKS that is of prototype SVS.

A transformação das coordenadas eclípticas para equatoriais é direta. Veja a Fig. 3.4. As coordenadas do astro em S são definidas como α, δ no caso equatorial, e λ, β no caso da eclíptica. Seja 'P' o polo norte geométrico, 'K' o norte celeste e 'S' a posição do astro. Temos o triângulo esférico \widehat{PKS} com os lados PK com valor $\varepsilon,$ a obliquidade da eclíptica, PS, tendo o valor $\frac{\pi}{2}-\delta$ e KS, tendo o valor $\frac{\pi}{2}-\beta$. Desenhando o grande círculo que conecta P a $\gamma,$ podemos medir ao longo do equador a ascenção reta. Da figura, o ângulo P é $\frac{\pi}{2}+\alpha$. Fazendo o mesmo com K, ao longo da eclíptica, temos o ângulo K: $\frac{\pi}{2}-\lambda$.

Temos que resolver o problema do triângulo PKS para transformar tanto do sistema equatorial para o eclíptico e vice-versa. Assim, da geometria da Fig. 3.4 temos:

- Ângulo do vértice K: $\frac{\pi}{2} \lambda$;
- Ângulo do vértice P: $\frac{\pi}{2} + \alpha$;
- Lado \widehat{KS} : $\frac{\pi}{2} \beta$;
- Lado \widehat{PS} : $\frac{\pi}{2} \delta$;
- Lado \widehat{KP} : ε .

KM-AstCalc transforma em ambas as direções: do equatorial para o eclíptico e do eclíptico para o equatorial através dos botões | EEc | e | INV

 $\[\]$ EcE . Os ângulos da "Base" (aqueles que são medidos ao longo da base, perfazendo valores até 2π) estão no registro-X e a "Cota", no registro-Y Ex: para transformar de coordenadas equatoriais para eclípticas, colocamos a declinação em registro-Y e a ascenção reta no registro-X. Então, clicamos em $\[\]$ EEc .

Exercício:

1. Converta as coordenadas equatoriais da estrela Spica $\alpha=13^{\rm h}25^{\rm m}12^{\rm s}$, $\delta=-11^{\circ}09'41''$, equinócio J2000.0, to coordenadas eclípticas λ,β .

Resposta:

11 : 9 INV : 41	X	11:9:41	
$Angle \rightarrow \boxed{deg}$	\mathbf{X}	11:9:41	deg
INV D.ddd CHS	\mathbf{X}	-11.161	deg
1 3 INV :	\mathbf{X}	13:	
2 5 INV :	\mathbf{X} [13:25:	
$12 \text{ Angle} \rightarrow \text{ hour } $	\mathbf{X}	13:25:12	hour
INV D.ddd	\mathbf{X}	13.420	hour

Então, temos nos registros:

Y	-11.161	deg	
X	13.420	hour	

Clicamos em EEc e teremos na pilha:

Y[-2.05628	deg	
X [-156.15721	deg	

O valor no registro-X deve estar no intervalo $0^{\circ} \rightarrow 360^{\circ}$, ou $0^{\rm h} \rightarrow 24^{\rm h}$, logo o valor negativo é fora do quadrante. Para corrigir isso, colocamos no quadrante e convertemos para unidades de horas:

Quad	\mathbf{X}	3.55773	rad
$1) Angle \rightarrow \text{ hour } \boxed{\mathcal{V}_{x}}$	\mathbf{X}	1	hour
	X	13:35:22.26940	hour

Para ter β , fazemos⁷

 $^{^7}$ A primeira operação $\fbox{\mbox{INV}}$ $\fbox{\mbox{D.ddd}}$ é para evitar resultados desagradáveis no que está no formato D:M:S.

INV D.ddd ↓	X [-2.05628	deg	
$\boxed{D:M:S} \qquad (\beta)$	\mathbf{X}	-2:3:22.62136	deg	

Pode-se apresentar λ em graus, também, assim você pode convertê-la também.

O cálculo inverso pode ser obtido facilmente clicando em INV

3.6 Sistema de Referência Local

O céu está se movendo constantemente por conta da rotação e translação da Terra e portanto temos de considerar o tempo no caso do posicionamento local dos astros. Há dois sistemas de referência locais: o local equatorial e o local horizontal.

3.6.1 Sistema de Referência Local Equatorial

O sistema local equatorial mantém a declinação como coordenada, mas é preciso converter a ascenção reta a uma referência local. Seja t_S o tempo sideral local para um dado instante. Definimos a coordenada local Ângulo Horário (H) como

$$H = t_S - \alpha. (3.5)$$

H cresce para leste e é nulo quando o astro está no meridiano local. É, geralmente, dado em horas. Se você quiser o valor em graus, é multiplicá-lo por 15, ou, na KM-AstCalc, converter de ângulo em horas (H) para graus.

Se você tem um telescópio com montagem equatorial, você aponta o astro de posse das coordenadas ângulo horário H e declinação δ .

Exercício

A estrela Spica tem $\alpha=13^{\rm h}25^{\rm m}11^{\rm s}$ para uma dada época. Para o tempo sideral $t_S=10^{\rm h}35^{\rm m}31^{\rm s}$, determine seu ângulo horário H em horas e em graus.

Figura 3.5: Latitude Local. O meridiano está no plano do papel.

13 1 25 1 11*	\mathbf{X}	13:25:11	
$Angle \rightarrow $ hour \mathcal{V}_x	\mathbf{X}	13:25:11	hour
INV D.ddd	\mathbf{X}	13.41972	hour
10 35 31	\mathbf{X}	10:35:31	
$Angle \rightarrow \begin{array}{ c c } \hline \text{hour} & \hline \mathcal{V}_x \end{array}$	\mathbf{X}	10:35:31	hour
INV D.ddd	\mathbf{X}	10.58917	hour
x -y -	\mathbf{X}	-2.82778	hour
$\boxed{ D:M:S } \tag{$H^h$}$	\mathbf{X}	-2:49:40.000	hour
	\mathbf{X}	-2.82778	hour
$\begin{array}{ c c c c c }\hline {\sf INV} & {\sf Convert} & & & & \\\hline \end{array}$	X	-42.41670	deg

^{*} Você pode usar o teclado. Veja apêndice.

Aqui, Spica está do lado leste.

3.6.2 Referência Local Horizontal

Alguns telescópios possuem montagem no sistema de coordenadas horizontal, que aqui é descrito. Zênite é o ponto definido pela vertical local cruzando a esfera celeste acima. Nadir é o oposto para baixo. O meridiano local é o grande círculo que contém o zênite e os polos geográficos. Ele divide o céu em dois hemisférios.

A Fig. 3.5 mostra a projeção do meridiano local no plano do papel. O horizonte é o grande círculo determinado pelo plano perpendicular ao zênite. A distância angular entre o equador e o zênite, é a latitude local φ .

Figura 3.6: Transformação entre os sistemas de referência equatorial e horizontal. O meridiano local é paralelo ao plano do papel. O astro está no hemisfério oriental.

A distância ao zênite é chamada distância zenital (z). Alternativamente, a distância ao horizonte é chamada altura (h). Obviamente, $z+h=\pi/2$ rad.

Olhando para o norte, contamos o ângulo no plano horizontal chamado azimute (A). No hemisfério norte, a origem do azimute é o polo norte. O oposto se passa no hemisfério sul.

Imagine o meridiano local definido pelo plano do papel. Na esfera celeste, o astro é colocado no ponto S no hemisfério a leste (oriental). Na Fig. 3.6, vemos o triângulo esférico definido pelos vértices Z (zenith), N (polo norte), e S. Os vértices e lados assim definidos são mostrados na figura. Há o ângulo paralático S que não tem, em regra, interesse. A distância de S ao polo norte é, exatamente, o complemento da declinação, enquanto que sua distância a Z, como vimos, é a distância zenital.

Podemos querer transformar as coordenadas equatoriais locais em horizontais, ou vice-versa. Para transformar as coordenadas equatoriais, supõese que tenhamos $H,~\delta$ e a latitude local φ . Use o botão EqH para isto. Você deve incluir o valor de ϕ no registro-Z.

Exercício

1. Seja no Observatório de Kitt Peak ($\varphi=31^{\circ}58'48''$), quais são as coordenadas horizontais da estrela Spica ($\delta=-11^{\circ}09'41''$), para $t_S=10^{\rm h}35^{\rm m}31^{\rm s}$?

Resposta: Vamos usar o resultado do exercício anterior. Temos, no registro-

31 • 58 • 48	X	31:58:48	
$Angle ightarrow \left(deg \right) \mathcal{U}_x$	\mathbf{X}	31:58:48	deg
INV D.ddd	\mathbf{X}	31.98000	deg
x-y 1 1 CHS [†] •	\mathbf{X}	-11:	
09 • 41	\mathbf{X}	-11:09:41	
$Angle ightarrow \left[deg \right] \boxed{\mathcal{V}_x}$	\mathbf{X}	-11:09:41	deg
INV D.ddd	X	-11.161	deg
х-у	X	-2.82778	hour

X o valor de $H = -2^{\text{h}}82778$. Então,

[†] Você pode trocar o sinal, mas você deve fazê-lo antes de entrar ':' Agora, clique em EqH. O resultado será:

$(\phi)\mathbf{Z}$	31.98000	deg
$(z)\mathbf{Y}$	59.21283	deg
$(A)\mathbf{X}$	129.61768	rad

3.6.3 O Sistema de Referência Galáctico

Pode ser útil colocar as coordenadas do astro de interesse no sistema de referência galáctico, especialmente o pessoal que trabalha com extragaláctica, para saber da existência de nuvens galácticas que atrapalham a observação. Dadas as coordenadas equatoriais, obtemos as coordenadas galácticas b (g-longitude) e l (g-latitude) clicando-se no botão EGa.

Exercício

1. Ache as coordenadas equatoriais da fonte de rádio Sagittarius A, nosso buraco negro central.

Resposta:

0 Ang	$\mathrm{le} o$ de	\mathcal{U}_{a}		X	0	deg	
Enter	Enter	INV	GaE	X	265.61084	deg	

O resultado do objeto no centro de nossa Via Láctea (0,0), quando aplicamos a transformação Galactica-para-Equatorial é sua coordenada equatorial.

D:M:S	\mathbf{X}	265:36:39.03851	deg
INV D.ddd	\mathbf{X}	265.61084	deg
$Angle \rightarrow [hour]$			
INV Convert D:M:S	\mathbf{X}	17:42:26.60257	hour
e as coordenadas na pilha são:			
(δ)	Y	-28.91679	deg
(α)	X	17:42:26.60257	hour

Deve-se notar que essas coordenadas se referem à época B1950.0.

3.7 Movimentos da Terra

Sabemos que nosso planeta não é fixo no espaço. Ao contrário, ele rotaciona, e translada em torno do Sol (e vai com o conjunto através da trajetória na galáxia). Além de seu caminho orbital, este é afetado pela gravidade de outros planetas do sistema solar, principalmente dos gigantes: Júpiter, Saturno, e outros, introduzindo variações na excentricidade da órbita, no comprimento do ano, na inclinação da órbita, e outros.

A rotação também é mais complexa. Ela vem acompanhada da precessão e da nutação.

3.7.1 Precessão and Nutação

Entre os movimentos adicionais perceptíveis está a precessão dos equinócios (Fig. 3.7). É o moviemento do eixo de rotação da terra em torno do eixo da eclíptica, que é o eixo perpendicular ao plano médio da órbita terrestre. Enquanto a Terra roda para o leste, seu eixo recede em torno do norte do eixo da eclíptica. Consequentemente, os equinócios recedem em torno de 1 grau a cada 72 anos, perfazendo um ciclo inteiro em 25.772 anos. Os gregos já tinham observado isto tempos atrás. De um ano para o outro, você pode perder seu corpo celeste do seu campo ocular, então é melhor corrigir as coordenadas deste efeito.

O eixo de rotação da Terra faz um ângulo de 23°.433 com a eclíptica. Na KM-AstCalc, este valor é denotado com o símbolo: ε , e pode ser encontrado entre as Constantes Astronômicas.

A precessão é resultado principalmente do campo gravitacional do Sol e, em proporção menor, da Lua, este, provocando um período curto chamado nutação.

A precessão faz o equinócio mover-se pela eclíptica a uma taxa de 50″.288 yr^{-1} (ρ nas Constantes Astroô0micas da KM-AstCalc). Como consequência,

Figura 3.7: Precessão: a Terra gira em torno do eixo perpendicular ao equador, enquanto este recede em torno do eixo da eclíptica.

a ascenção reta e a declinação dos astros variam todo o tempo. Os valores adotados para estas coordenadas referem-se a algumas datas, usadas como padrão. Recentemente, dizemos o equinócio para J2000.0, o que quer dizer primeiro de janeiro de 2000 ao meio-dia. O Dia Juliano para esta data é denominada J2000.0 nas Constantes Astronômicas da KM-AstCalc.

Para colocar as coordenadas na data desejada (dizemos, precessionar à data), usamos a fórmula simples (com boa aproximação) derivada da análise trigonométrica do movimento dos equinócios para a eclíptica. Ela é

$$\begin{array}{rcl} \Delta \alpha & = & (m + n \sin \alpha \tan \delta) \, \Delta T \\ \Delta \delta & = & n \cos \alpha \Delta T \end{array} , \tag{3.6}$$

com ΔT sendo o tempo dispendiado da data para a época padrão em anos julianos, e

$$m = \rho \cos \varepsilon n = \rho \sin \varepsilon .$$

Sabemos, de antemão, que ρ é a variação dos equinócios em longitude celeste e ε é a obliquidade da eclíptica. Há uma pequena variação destes parâmetros com o tempo, mas não põe interesse a quem não é da área.

Por causa da precessão, a unidade básica para o cálculo da órbita terrestre não é em ano juliano, mas $20^{\rm m}24^{\rm h}.5$ a mais, isto é, 365.256363004 dy.

Exercício:

1. Calcular os valores de m e n em hsec. yr^{-1} a partir da constante de precessão em longitude ρ e da obliquidade da ecliptica ε . Calcular também n em arcsec. yr^{-1} .

Resposta:

Astr.Const. $\rightarrow \rho$ Upload	\mathbf{X}	0.02438	$rad.Cen{-1}$
$Astr.Const. o \varepsilon$ Upload	\mathbf{X}	0.40899	rad
COS *	X	0.022369	$rad.Cen^{-1}$
$Angle \rightarrow s Time \rightarrow yr$			
[INV] Convert	\mathbf{X}	3.0760	$s.yr^{-1}$
$Astr.Const. \rightarrow \boxed{\rho} \boxed{Upload}$	\mathbf{X}	0.024380	$rad.Cen^{-1}$
$Astr.Const. \rightarrow \varepsilon$ Upload	\mathbf{X}	0.40899	rad
SIN *	\mathbf{X}	0.0096956	$rad.Cen^{-1}$
$Angle \rightarrow s Time \rightarrow yr$			
[INV] Convert	\mathbf{X}	1.3332	$s.yr^{-1}$
$Angle \rightarrow \boxed{sec} Time \rightarrow \boxed{yr}$			
[INV] Convert	X	19.985	sec.yr ⁻¹

Os valores adotados para m e n são $3^h\!.075$ e $1^h\!.336$, ou $20''\!.043$. Estes são tomados considerando outras influências sobre a precessão.

3.7.2 Aberração

Aberração é o nome que damos à variação na posição dos astros como consequência de sua velocidade longitudinal relativa. Existem dois tipos de aberração: a estelar e a planetária.

A aberração estelar possui três componentes:

Anual: decorrente do movimento orbital da Terra em torno do Sol;

Diurna: da rotação da Terra;

Secular: do movimento do sistema solar como um todo.

A aberração planetária, que afeta os corpos do sistema solar, possui dois termos:

Aberração da luz: a usual, devido à velocidade relativa, e

Tempo-luz deslocamento: a partir do tempo de viagem da luz até o observador.

A aberração anual possui fórmulas bem conhecidas para corrigir as coordenadas celestes:

$$\Delta \lambda = \kappa \frac{-\cos(\odot - \lambda) + e\cos(\varpi - \lambda)}{\cos \beta}, \qquad (3.7)$$

$$\Delta \beta = -\kappa \sin \beta \left(\sin(\odot - \lambda) - e\sin(\varpi - \lambda)\right)$$

sendo κ a constante de aberração, e a excentricidade orbital da Terra, \odot a longitude do Sol e ϖ , a longitude do perihélio da órbita da Terra. κ and e são dados na KM-AstCalc, mas não confunda este último com a "elipcidade da Terra", que dá o índice de achatamento de nosso planeta. A excentricidade orbital da Terra é dada na Seção dos dados orbitais dos planetas, que veremos mais tarde. O valor de κ é da ordem de 2".

Exercício:

1. Calcule os termos da aberração anual da estrela Spica, em 10 de maio de 2023, dados $\varpi=102^\circ.94719$ e e=0.0167102. Nesta data, $\odot=49^\circ.35'51''$.

Resposta: Do exercício anterior, sabemos que, para : $\lambda=13^{\rm h}35^{\rm m}21^{\rm h}6,$ $\beta=-2^{\circ}3'21''\!.24,$ então

49:35:51	\mathbf{X}	49:35:51	
$Angle ightarrow \left(deg \right) \mathcal{V}_x$	\mathbf{X}	49:35:51	deg
INV D.ddd	\mathbf{X}	49.597	deg
13:35:21.6	\mathbf{X}	13:35:21.6	
$Angle \rightarrow $ hour \mathcal{V}_x	\mathbf{X}	13:35:21.6	hour
INV D.ddd	\mathbf{X}	13.589	hour
$Angle \rightarrow \boxed{deg}$	\mathbf{X}	13.589	hour
INV Convert Sto 0	\mathbf{X}	203.83	deg
- Sto 1	\mathbf{X}	-154.24	deg
COS	\mathbf{X}	-0.90062	

$\boxed{102.94719} \text{Angle} \rightarrow \boxed{\text{deg}} \boxed{\cancel{y_x}}$	X	102.94719	deg
Rcl 0 - Sto 0	X	-100.88	deg
COS CHS	X	0.18875	
x-y 0.0167102 Enter	X	0.0167102	
Sto 3 (*)	X	-0.015050	
+	X	0.17370	
	X	-2:3:21.24	deg
INV D.ddd Sto 2	\mathbf{X}	-2.0559	deg
COS /	\mathbf{X}	0.17386	
$Astr.Const. \rightarrow \kappa \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	X	0.0000099365	rad
(*)	X	0.0000017276	rad
$\overline{\text{Angle}} ightarrow \left[\text{sec} \right]$			
	\mathbf{X}	0.35634	sec
Rcl 0 SIN	\mathbf{X}	-0.98202	
Rcl 1 SIN	\mathbf{X}	-0.43460	
Rcl 3 *	X	-0.0072622	
	X	-0.97476	
Rcl 2 SIN	X	-0.035875	
$*$ Astr.Const. $\rightarrow \kappa$ Upload	X	0.0000099365	rad
* CHS	X	-3.4747e-7	rad
$\overline{\text{Angle}} \rightarrow \overline{\text{sec}}$	X	-3.4747e-7	rad
$oxed{INV}$ Convert (Δeta)	\mathbf{X}	-0.071671	sec

Estes valores devem ser adicionados aos valores de λ e β originais, e, então, convertidos para coordenadas equatoriais. Como $\cos\beta$ em $\Delta\lambda$ está no denominador, a correcção deve ser significante para altas latitudes.

Capítulo 4

Corpos do Sistema Solar

4.1 Introdução

KM-AstCalc oferece condições de determinar a posição de corpos do sistema solar segundo a lei de Kepler dos dois corpos, tomando o Sol como corpo central. Para um dado instante, você determina a posição dos planetas, asteróides e cometas. KM-AstCalc possui os dados necessários para calcular as posições de todos os planetas e centenas de asteróides e cometas.

Genericamente, temos os parâmetros orbitais definidos de acordo com a lei de Kepler e as equações de transformação. Veja na Fig. 4.1. Tratamos os dados, genericamente, como referenciados ao equinócio (ponto γ) para uma data. Cada classe de corpo terá suas próprias características que veremos quando discutirmos cada uma. Temos:

- a: semi-eixo maior;
- $e \boldsymbol{:}\,$ excentricidade da órbita $b = a \sqrt{1 e^2},$ com bsendo o semi-eixo menor;
- $i \boldsymbol{:}\,$ inclinação do plano da orbita em relação com a eclíptica;
- ω : argumento do perihélio, o angulo vindo da linha que cruza a eclíptica em direção ao perihélio no plano orbital;
- Ω : longitude do nodo ascendente, o ângulo na eclíptica que vem da direção do equinócio (γ) até a linha de cruzamento com o plano da órbita;
- t_0 : época de referência, ex. tempo da passagem pelo perihélio;
- γ : direção do equinócio, tomado como referência as coordenadas eclípticas (e equatoriais).

Figura 4.1: Ilustração dos parâmetros orbitais para o problema dos dois corpos de Kepler. Esquerda: uma visão 3-D da órbita cruzando com a eclíptica como plano de referência, com o Sol no centro; direita: ilustração esquemática do problema de Kepler.

Um corpo no sistema solar tem um movimento complexo a longo prazo, mas ele pode ser descrito através de equações simples se considerados curtos períodos de tempo. São as chamadas equações de Kepler para o problema dos dois corpos. A equação de Kepler para uma órbita elíptica é, em um dado instante t:

$$E - e\sin E = M, (4.1)$$

em que e é a excentricidade, M, a anomalia média. $M = n(t - t_0)$, sendo n chamado movimento médio e t_0 é o instante de referência. E é a anomalia excêntrica. Na KM-AstCalc, esta equação é resolvida clicando no botão Kepler que você vê à esquerda do painel das funções astronômicas, abaixo do painel das funções matemáticas. A regra é colocar o valor da excentricidade no registro-Y e a anomalia média em X. Você deve obedecer as unidades necessárias: excentricidade é adimensional e a anomalia média deve estar em unidades de ângulo (E é em dado em unidades angulares).

Exercício:

1. Resolva a equação de Kepler para e=0.5 e $M=30^{\rm o}.$

Resposta:

0.5	Enter	<u> </u>	(0.5	
30	deg	\mathcal{Y}_x \mathcal{Y}	C [30	deg
Kep	oler	>	(I	0.92201	rad

Converta o resultado para graus (deg). Note que o registro Y mantém o valor da excentricidade..

Seguindo o roteiro, obtemos o raio vetor e anomalia verdadeira ν para saber a posição do astro no céu. Se conhecemos a anomalia excêntrica, então

$$r = a(1 - e\cos E)$$

$$\tan\frac{\nu}{2} = \sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2}$$
(4.2)

Sabendo que ν está no mesmo semi-círculo que E. Se $E < \pi$, ν também o será. O mesmo para $E > \pi$, e assim, aplicando a fórmula para achar ν na Eq. (4.2), usamos esta proriedade para eliminar a ambiguidade na solução. Usualmente, precisamos do valor de $\cos \nu$ e de $\sin \nu$ para resolver esta ambiguidade.

Exercício:

1. Use o resultado do último exercício para encontrar a anomalia verdadeira ν .

Resposta:

No último exercício, o resultado do botão Kepler é o valor de E no registro-X, e e em Y, então

Sto 0 2 / TAN	X [0.49670		_
X-y Sto 1	X [0.5		_
1 +	X [1.5000		_
1 Rcl 1 -	\mathbf{X}	0.50000		
/ INV SQRT	\mathbf{X} [1.7321		
* INV (ATAN)	\mathbf{X}	0.71045	rad	_
2 * Sto 2	X	1.4209	rad	

A anomalia verdadeira ν obtida da operação acima é o ângulo de posição verdadeiro do astro em sua órbita.

2. Vamos achar agora o módulo do raio vetor ligando o astro ao Sol, que está no centro do sistema de referência. Suponha o semi-eixo maior sendo $a=3\mathrm{AU}$.

Resposta: Da Eq. (4.2):

Rcl 0 COS	X	0.60422	
Rcl 1 *	X	0.30211	
CHS 1 +	X	0.69789	
$3 \text{ AU } \mathcal{V}_x$	X	3.0000	AU
* Sto 3	X	2.0937	AU

3. Com estes dados (ν e r), você pode encontrar as coordenadas cartesianas no plano da órbita centradas no Sol:

$$x_0 = r \cos \nu$$

$$y_0 = r \sin \nu$$

Rcl	2	COS	0.14934	
Rcl	3	* X	0.31266	AU
Rcl	2	SIN	0.98879	
Rcl	3	* X	2.0702	AU

4.1.1 Movimento Médio n no Sistema Solar

O movimento médio n vem da relação:

$$n = \frac{2\pi}{T},$$

sendo T o período do movimento do corpo. O período mantém relação com o semi-eixo maior através da terceira lei de Kepler:

$$\frac{a^3}{T^2} = \frac{G(M_{\odot} + m_b)}{(2\pi)^2} \tag{4.3}$$

para todos os corpos do sistema solar. Se adotarmos as unidades em AU para comprimentos, $S+m_{\mathring{\nabla}}$ (massa solar+massa terrestre) para massas e Syr¹ para o tempo, esta constante é unitária. Assim,

$$T = \frac{2\pi}{k} \sqrt{\frac{a^3}{M_{\odot}(1+\mu_b)}},$$

em que μ_b é a massa reduzida para o astro considerado ($\mu_b = m_b/M_{\odot}$).

 $^{^1{\}rm Ano}$ sideral: o período orbital da Terra como visto de um sistema de referência estelar. Além de 365.25 dy, devemos considerar o movimento de precessão.

Da Eq. (4.3) temos:

$$n = k.\sqrt{\frac{M_{\odot} + m_b}{a^3}},\tag{4.4}$$

k é a constante gravitacional de Gauss.

Exercício

 Calcule o movimento médio para um corpo de massa desprezível com semi-eixo maior:

$$a = 3AU$$
.

Resposta:

$\overline{\text{Astr.Const.} o S}$ Upload	\mathbf{X}	1.98855e+30	k,g
$\boxed{3 \operatorname{Space} \to \left(\operatorname{AU} \right) \boxed{\mathcal{V}_{x}} \boxed{\operatorname{Enter}}$	\mathbf{X} [3.0000	AU
3 (y^x)	\mathbf{X} [27.000	AU^3
/ INV SQRT	\mathbf{X} [2.7139e+14	$AU^{-1.5}.kg^{0.5}$
$Astr.Const. \rightarrow k$ Upload	\mathbf{X} [0.0000081694	$m^{1.5}.kg^{-0.5}.sc^{-1}.rad$
* Coalesce	X [3.8316e-8	s^{-1} .rad
$Time \rightarrow \boxed{dy} \boxed{INV} \boxed{Convert}$	X	0.0033105	$rad.dy^{-1}$

O movimento médio será $n=0.0033105\,\mathrm{rad.dy}^{-1}$. Se você estiver curioso sobre o valor numérico do período, divida pro $2\pi\,\mathrm{rad}$, inverta o resultado e converta para anos.

4.2 Posições Heliocêntricas e Geocêntricas

Calculando a órbita de astros no sistema solar, chegamos às coordenadas num sistema de referência centrado no Sol. Mas, o que nos interessa é saber sua posição num sistema centrado na Terra. Queremos, mesmo, é a localização centrada no nosso ponto de observação. Dizemos que calculamos as posições em coordenadas heliocêntricas e queremos convertê-las em geocêntricas, para em seguida, levarmos para as coordenadas topocêntricas. Claro que, destas, a conversão entre coordenadas geocêntricas e heliocêntricas são mais importantes. Veja a Fig 4.2.

Tendo os sistemas de referência do Sol e da terra, devemos considerar os raios vetores $\vec{R}_{SB},~\vec{R}_{SE},~{\rm e}~\vec{R}_{B}$ para fazer a transformação entre elas. Da figura:

$$\vec{R}_B = \vec{R}_{SB} - \vec{R}_{SE}. \tag{4.5}$$

Figura 4.2: Conversão de coordenadas de Heliocentricas para Geocentricas.

Significa que, para um dado instante, devemos saber a posição do astro e da Terra relativamente ao Sol. Se o movimento do corpo segue as leis da gravitação universal, devemos resolver as equações de coordenadas para o astro e para a Terra.

Considerando a eclíptica média, sabemos que a coordenada z da Terra é nula:

$$x_B = R_{SB} \cos \theta_B \cos b_B - R_{SE} \cos \theta_E$$

$$y_B = R_{SB} \sin \theta_B \cos b_B - R_{SE} \sin \theta_E$$

$$z_B = R_{SB} \sin b_B$$
(4.6)

Uma vez que $\vec{R}_B = (x_B, y_B, z_B)$, podemos deduzir as coordenadas eclípticas:

$$R_{B} = \sqrt{x_{B}^{2} + y_{B}^{2} + z_{B}^{2}}$$

$$\lambda_{B} = \arctan \frac{y_{B}}{x_{B}}$$

$$\beta_{B} = \arcsin \frac{z_{B}}{R_{B}} = \arcsin \left(\frac{R_{SB}}{R_{B}} \sin b_{B}\right)$$

$$(4.7)$$

Se o corpo está na eclíptica, as equações simplificam. Veja a Fig $4.3.\ \mathrm{Da}$ lei dos cossenos:

$$R_B^2 = R_{SB}^2 + R_{SE}^2 - 2R_{SB}R_{SE}\cos(\theta_{SB} - \theta_{SE}). \tag{4.8}$$

Figura 4.3: Astro na eclíptica.

Comparando com o módulo da forma polar da Eq. (4.5):

$$\tan \lambda_B = \left(\frac{R_{SB}\sin\theta_{SB} - R_{SE}\sin\theta_{SE}}{R_{SB}\cos\theta_{SB} - R_{SE}\cos\theta_{SE}}\right) \quad ; \quad \beta_B = 0 \quad . \tag{4.9}$$

O ângulo λ_B vem a ser a longitude eclíptica geocêntrica. O ângulo β_B é a latitude geocêntrica.

4.2.1 Elongação - Ângulo de Fase

É útil saber a elongação, o ângulo que o corpo faz com o Sol do ponto de vista do observador na Terra. Ela determina o brilho observado do corpo uma vez que a elongação define sua região iluminada. A magnitude aparente de um astro no sistema solar é dada por:

$$m = H + 5.0 \log \Delta_S + 5.0 \log R_E + \Theta(\vartheta), \tag{4.10}$$

sendo $\Delta_S = \left| \vec{\mathbf{R}}_{SB} \right|$ e $R_E = \left| \vec{\mathbf{R}}_{B} \right|$, respectivamente, a distância ao Sol e até a Terra, ϑ , a elongação, $\Theta()$, uma função dependente do albedo, e H a magniude absoluta (para $\Delta_S = R_E = 1 \mathrm{AU}$, e $\vartheta = 180^\circ$ - Sol em oposição). A função $\Theta()$ é conhecida como função de fase e geralmente é obtida através de termos empíricos com a soma de funções de potêmcia de ϑ^2 .

 $^{^2} A$ literatura consagra a função de fase com a letra α , que eu não adoto aqui para não confundir com ascenção reta.

O ângulo de fase pode ser determinado pela relação simples:

$$\cos \vartheta = \frac{\vec{\mathbf{R}}_B \cdot \vec{\mathbf{R}}_{ES}}{R_B R_{ES}}.$$

Considerando que o Sol e a Terra estão no mesmo plano, que é a eclíptica, o cálculo nos leva a:

$$\cos \theta = \cos(\lambda_B - \lambda_S) \cos \beta_B. \tag{4.11}$$

Elongação é a versão "algébrica" do ângulo de fase, sendo positiva se o corpo está "na frente" do sol. Basta considerar a diferença $\lambda_B - \lambda_S$.

4.3 Planetas, Asteróides e Cometas

KM-AstCalc oferece os dados orbitais dos planetas e alguns asteróides e cometas. Esses dados são distribuidos por três campos de opções. O painel à esquerda é dedicado aos planetas do sistema solar, e à direita, dos asteróides e cometas.

No painel esquerdo, área dos planetas, além dos parâmetros orbitais, encontramos dados adicionais, como massa, diâmetro, densidade etc. Eles foram obtidos por métodos outros que as propriedades orbitais (lei de Kepler). Esses dados são grafados diferentemente dos orbitais. São em negrito, enquanto que os orbitais estão em itálicos.

Para levar esses dados para os registros da pilha numérica, escolha um astro (planeta, asteróide, cometa) do campo respectivo e clique sobre a letra relativa ao parâmetro desejado. Passando o mouse sobre as letras, você tem a descrição sumária do parâmetro em questão, com as suas unidades. Por exemplo, para obter a massa de Júpiter, selecione o planeta no campo de opções, clique com o mouse na letra $\boxed{\mathbf{M}}$, logo à direita. A massa de Júpiter vai aparecer no registro-X da pilha.

Exercício

1. Compare a massa de Jupiter com a da Terra.

Resposta:

$\boxed{Jupiter} \!$	1.8980e+27	kg
$\boxed{Earth}\!\!\to\!\! \boxed{\mathbf{M}}$	5.9700e+24	kg
// X	317.83	

Conclusão: Júpiter é 317.83 mais massivo que a Terra.

4.4 Explicação sobre os Dados Planetários

Os dados são referidos ao equinócio de J2000.0. A seguir, temos os parâmetros orbitais dos planetas obtidos de https://nssdc.gsfc.nasa.gov/planetary/factsheet/.

4.4.1 Planetas

 J_0 : Data juliana de quando a longitude média (ver abaixo) foi obtida;

a: Semi-eixo maior;

e: Excentricidade da órbita;

i : Inclinação do plano orbital com respeito à eclípitica;

 Ω : Longitude do nodo ascendente;

 $\overline{\omega}$: Longitude do perihélio, normalmente $\overline{\omega} = \Omega + \omega$, com ω sendo o argumento do perihélio;

L : Longitude média, ou seja $L = \Omega + \omega + M_0$, sendo M_0 a anomalia média inicial.

Temos mais dados dos planetas em³ https://nssdc.gsfc.nasa.gov/planet-ary/factsheet:

M : Massa em kg;

Φ : Diametro em km;

 ρ : Densidade em kg/cm³;

g: Gravidade em m/s²;

 $\mathbf{v_E}$: Velocidade de escape em km/s;

R : Período de rotação em hr;

D: Duração do dia em hr;

 $\Delta_{\mathbf{S}}$: Distância do Sol em in km;

³Não muito preciso. Dados aparecem apenas para ilustração.

q : Perihélio em km;

|Q|: Aphélio em km;

 T_0 : Período orbital em dy;

 ϵ : Obliquidade da órbita em graus;

Θ : Temperatura média em °C;

 $N_{\mathbf{M}}$: Número de luas;

H: Magnitude absoluta visual.

Algumas grandezas, como a gravidade (\mathbf{g}), velocity scape ($\mathbf{v}_{\mathbf{E}}$), distância, e outras, podem ser derivadas. A gravidade é dada por

$$g = 4G \frac{\mathbf{M}}{\mathbf{\Phi}^2},$$

enquanto a velocidade de escape é

$$\mathbf{v_E} = \sqrt{\frac{4GM}{\Phi}}.$$

Exercícios

 Calcule a gravidade e velocidade de escape para a Terra a partir das expressões acima e compare-as com os valores dados no painel dos planetas.

$Astr.Const. \rightarrow G Upload$	X [6.6743e-11	$m^3.kg^{-1}.s^{-2}$
4 *	\mathbf{X}	2.6697e-10	$m^3.kg^{-1}.s^{-2}$
	\mathbf{X}	1.5944e+15	${\rm m}^3.{\rm s}^{-2}$
Φ SQR / Coalesce	\mathbf{X}	10.081	$\mathrm{m.s}^{-1}$
g	\mathbf{X}	9.8000	$\mathrm{m.s}^{-1}$
INV D%	\mathbf{X}	-2.7897	
х-у Ф / Coalesce	\mathbf{X}	1.2678e+8	$\mathrm{m}^2.\mathrm{s}^{-2}$
INV SQRT	\mathbf{X}	11260	$\mathrm{m.s}^{-1}$
V _E Coalesce	\mathbf{X}	11200	$s^{-1}.m$
INV D%	\mathbf{X}	-0.53051	

Há uma diferença de $\sim 3\%$ entre o valor calculado e o fornecido para a gravidade da Terra. O valor calculado é obtido assumindo que a Terra seja uma esfera perfeita. O valor fornecido é o adotado e é resultado da média dos valores obtidos pela gravimetria. Para a velocidade de escape ($\sim 0.5\%$), a diferença provavelmente é devido a flutuações nas medidas.

4.4.2 Longitude do Perihélio

Ao contrário dos corpos do sistema solar em geral, os planetas possuem o valor da "Longitude do Perihélio" (ϖ), que seria a coordenada do perihélio na eclíptica, em vez de ser uma posição no plano orbital do planeta. A razão é o fato de a inclinação da órbita para os planetas ser irrisória. Na prática, é como se a órbita fosse paralela à eclíptica. Vejamos: a maior inclinação entre os planetas é Mercúrio: 7°. Este valor vai introduzir uma diferença nos cálculos de cerca de 0.75%. Por esta razão, adotamos a soma da Longitude do Nodo Ascendente (Ω) com o Argumento de Perihélio (ω) e colocamos no item Longitude do Perihélio somente para os planetas, e depois partirmos para correções de 2nd ordem, se necessário.

Ao mesmo tempo, o valor de $\boxed{J_0}$ é tomado como "data da osculação", o que quer dizer que os dados para cada planeta são fixados para esta data, incluindo a "longitude média" \boxed{L} , tal que, para termos a anomalia média M para a data J, fazemos:

$$M = n(J - J_0) + M_0, (4.12)$$

sendo M_0 , a anomalia média inicial:

$$M_0 = L - \varpi$$
.

4.4.3 Coordenadas Heliocêntricas da Terra

É útil conhecer as coordenadas heliocêntricas da Terra, logo, vamos calculálas para uma certa data. Tomemos 15/05/2023às $21^{\rm h}$ (GMT). Primeiro, vamos obter a respectiva data juliana:

15:5:2023	\mathbf{X}	15:5:2023	
$Time \rightarrow dy$	\mathbf{X}	15:5:2023	dy
$Time \rightarrow \boxed{mth}$	X [15:5:2023	dy.mth
$\overline{\text{Time}} \rightarrow \boxed{\text{yr}} \boxed{\text{y}_x}$	X [15:5:2023	dy.mth.yr
JulD	X [2.4601e+6	dy

Colocamos no formato "Fix" para vermos o valor no seu formato "normal":

	\mathbf{X}	2460079.50000	dy
Sendo 21 horas:			
21	X [21	
$Time \rightarrow hr$ v_x Enter	X	21	hr
$Time \rightarrow \text{ dy } \text{ INV } \text{ Convert }$	X [0.87500	dy
+	\mathbf{X}	2460080.37500	dy
Sto 0	X [2460080.37500	dy

Vamos salvar esta data juliana no registro de memória ${\bf R}_0$. Vamos, agora, ver o tempo decorrido desde a data de osculação dos dados da Terra.

	\mathbf{v}	0525 27500	al.	
$ $ Earth $ \rightarrow J_0 $		Λ	8535.37500	uy

De acordo com a teoria gravitacional de Gauss, o movimento médio de um corpo em órbita solar deve ser (em outros sistemas o valor de M_{\odot} deve ser trocado pela massa do corpo central):

$$n = k \cdot \sqrt{\frac{M_{\odot} + m_b}{a^3}}.$$

Assim:

$Astr.Const. \rightarrow k $ Upload	\mathbf{X}	0.00001	$m^{1.5}.kg^{-0.5}.sc^{-1}.rad$
* Coalesce	\mathbf{X}	190.51269	$\mathrm{m}^{1.5}.\mathrm{rad.g}^{-0.5}$
$Astr.Const. \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbf{X}	1.98855e+30	k,g
	\mathbf{X}	1.9886e+30	k,g
INV SQRT * Coalesce	\mathbf{X}	8.4956e+18	m ^{1.5} .rad
	\mathbf{X}	8.4956e+18	$\mathrm{AU}^{-1.5}.\mathrm{m}^{1.5}.\mathrm{rad}$
Coalesce	\mathbf{X}	146.82656	rad
	\mathbf{X}	-2.48284	deg
Coalesce +	\mathbf{X}	146.78323	rad
$oxed{Quad}$ (M)	\mathbf{X}	2.26997	rad

Vamos recuperar o valor da excentricidade e trocar os registros de modo a que possamos resolver a equação de Kepler⁴:

		_				_
igl Earth igrtarrow igl e	$\left[x-y\right]$	Kepler	\mathbf{X}	2.28262	rad	

Este é o valor da anomalia excêntrica (E). Vamos salvá-lo, temporariamente, na memória R_1 e calcular a anomalia verdadeira e o módulo do raio vetor pela Eq. (4.2), e calcular as coordenadas polares da Terra no plano

 $^{^4\}mathrm{Admitindo}$ que a Terra seja o planeta escolhido no campo de opções.

da eclíptica. Primeiro, o módulo do raio vetor, usando a Eq. (4.4.3), e guardando na memória R₂:

Sto 1 COS *	X	-0.01092	
CHS 1 +	X	1.01092	
$[Earth] ightharpoonup a$ $[*]$ $[Sto]$ $[2](r_{\displayseta})$	X	1.01092	AU

Aí, calculamos a anomalia verdadeira:

Rcl 1 2 /	1.14131	rad
TAN	2.18340	
1 e + X	1.01671	
1 e - X	0.98329	
/ INV SQRT X	1.01685	
* INV ATAN X	1.14760	rad
(2) (*) X	2.29520	rad

Somamos ϖ para encontrar a longitude heliocêntrica da Terra. Colocamos em graus em nome da compatibilidade com as outras variáveis. Guardamos em R₁ no lugar da anomalia excêntrica (supondo que não vamos mais usá-la):

$\overline{\text{Angle}} \rightarrow$	deg INV	Convert	\mathbf{X}	131.50544	deg
$\overline{\omega}$ $+$	Sto 1	(θ_{\colored})	X	234.45263	deg

Isto está em boa aproximação com as coordenadas da Terra na eclíptica, com o Sol no centro do sistema de referência.

Até agora, eis a situação da base de dados da memória:

 $R_0 \leftarrow J \quad data juliana$

 $\begin{array}{lcl} \mathbf{R}_1 & \leftarrow & \theta_{\mbox{$\dot{\tau}$}} & \mathrm{longitude\,heliocentrica\,da\,Terra} \\ \mathbf{R}_2 & \leftarrow & R_{\mbox{$\dot{\tau}$}} & \mathrm{raio\,vetor\,da\,Terra\,ao\,Sol} \end{array}$

O registro R_1 foi usado como tampão para a anomalia excêntrica da Terra. Obviamente, a posição do Sol no sistema geocêntrico se obtém somando 180° à longitude. Eventualmente, colocamos o resultado no quadrante:

$\boxed{\textbf{180} \text{Angle} \!\rightarrow\! }$	deg	\mathcal{V}_{x} $+$	X	414.45263	deg	
$\boxed{360}$ Angle \rightarrow	deg		\mathbf{X}	54.45263	deg	

A longitude refere-se ao equinócio de J2000.0. Para o valor verdadeiro, ainda se adiciona as correções da aberração, da paralaxe da precessão e nutação.

Exercício

- 1. Calcular as coordenadas equatoriais do Sol às $21^{\rm h}~({\rm GMT})$ do dia 15/05/2023 para
 - (a) Equinócio J2000.0
 - (b) Equinócio da data

Resposta:

(a) Conhecida a longitude do sol e sabendo que a latitude é nula, então

0 deg	X	0	deg
X-y INV EcE	\mathbf{X}	52.089528	deg
$Angle \rightarrow h$			
$oxed{INV}$ Convert D:M:S $(lpha_{\odot})$	X	3:28:21.48665	hour
INV D.ddd x-y	X	18.87890	deg
$lacksquare$ D:M:S (δ_{\odot})	\mathbf{X}	18:52:44.06898	deg

(b) Para considerar a precessão, é conveniente aplicá-la às coordenadas eclípticas, logo

Rcl 0 J0 -	X	8535.3750	dy
$Earth \rightarrow \rho$ Upload	\mathbf{X}	0.024380292	$rad.Cen^{-1}$
* Coalesce	\mathbf{X}	0.0056972296	rad
$Angle \rightarrow \left[deg \right]$			
INV Convert	X	0.32642721	deg
Rcl 1	X	234.45263	deg
$180 \text{ Angle} \rightarrow \text{ deg } $	X	180	deg
	X	54.452626	deg
+	X	54.77905	deg
$\boxed{0} \text{Angle} \rightarrow \boxed{\text{deg}} \boxed{\mathcal{Y}_{x}}$	X	0	deg
X-y INV EcE	X	52.424889	deg
$Angle \rightarrow \text{(hour)}$			
	X	3:29:41.973	hour
INV D.ddd x-y	\mathbf{X}	18.958530	deg
$oxed{ extsf{D:M:S}}$ (δ_{\odot})	X	18:57:30.706	deg

4.4.4 Coordenadas Heliocêntricas e Geocêntricas de um Planeta

Lembremos que, no exemplo anterior da Sec. 4.4.3, guardamos na memória: $\mathbf{R_0} \leftarrow \mathbf{J}$, a data juliana para 15/05/2023, $21^{\rm h}\mathrm{GMT}$; $\mathbf{R_1} \leftarrow \theta_{\buildrel o}$, longitude heliocêntrica da Terra na data; e $\mathbf{R_2} \leftarrow R_{\buildrel o}$, o módulo do raio vetor da Terra relativo ao Sol. Vamos, agora, proceder alguns cálculos para Júpiter.

Antes de mais nada, vamos calcular o período orbital a partir dos dados de osculação de Júpiter, usando os dados levantados por KM-AstCalc⁵.

$Astr.Const. \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbf{X}	1.98855e+30	kg
$\boxed{Jupiter \rightarrow \boxed{\mathbf{M}} + }$	X	1.99044813e+30	kg
$\boxed{\text{Jupiter}} \rightarrow \boxed{\mathbf{a}} \boxed{3} \boxed{\mathbf{y} \hat{\mathbf{x}}} \boxed{/}$	\mathbf{X}	1.4129e+28	$\mathrm{AU^{-3}.kg}$
INV SQRT	\mathbf{X}	1.1886e+14	$AU^{-1.5}.kg^{0.5}$
$Astr.Const. \rightarrow k$ Upload	\mathbf{X}	0.0000081694	m ^{1.5} .kg ^{-0.5} .sc ⁻¹ .rad
* Coalesce	X	1.6782e-8	${\sf rad.s}^{-1}$
	X	8535.37500	dy
* Coalesce Quad	X	6.09295	rad

E vamos ao cálculo usual⁶:

$\boxed{Jupiter ightarrow L}$	X [34.404	deg
	\mathbf{X}	19.65053	deg
Coalesce + Quad	\mathbf{X}	0.15273	rad
$ \boxed{ \text{Jupiter} \rightarrow \boxed{e} } \boxed{\text{x-y}} \boxed{\text{Kepler}} $	\mathbf{X}	0.16046	rad
Sto 3 COS	\mathbf{X}	0.98715	
* CHS 1 +	\mathbf{X}	0.95223	
$\boxed{\text{Jupiter}} \rightarrow \boxed{a} \qquad * \qquad \boxed{\text{Sto}} \qquad \boxed{4}$	X	4.95479	AU
Rcl 3 2 / TAN	\mathbf{X} [0.08040	
$ \boxed{1} \ \boxed{ Jupiter} \rightarrow \boxed{e} $	\mathbf{X}	1.04839	
1 Jupiter $\rightarrow e$ - $/$	\mathbf{X}	1.10171	
INV SQRT *	\mathbf{X}	0.08439	
INV ATAN 2 *	\mathbf{X}	0.16839	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	9.64795	deg

⁵https://nssdc.gsfc.nasa.gov/planetary/factsheet/

⁶Até aqui, os cálculos foram feitos trocando os formatos "Fix" e "Prc" para que os números caibam nos campos de dados.

Figura 4.4: Triângulo esférico de conversão para as coordenadas da eclíptica.

Agora, temos o valor de ν_{\uparrow} para Júpiter, a anomalia verdadeira medida a partir do perihélio. Temos que somar o argumento do perihélio ω para termos o ângulo de Júpiter na órbita, digamos ψ , a partir do ponto de cruzamento com a eclíptica, o nodo ascendente, isto é, $\psi = \nu + \omega$. Não temos ω directamente, mas sabemos que: $\omega = \varpi - \Omega$, assim, com Júpiter escolhido no campo de opções:

$\boxed{Jupiter \!\to\! \boxed{\varpi} +}$	X [24.40180	deg	
$\boxed{Jupiter} \rightarrow \boxed{\Omega} \qquad \boxed{-} Sto \boxed{9}$	X	-76.15435	deg	

Este é o valor de ψ . Agora, estamos no ponto dos cálculos de segunda ordem na posição de Júpiter porque a inclinação da órbita é pequena (1°.85), mas podemos aproveitar as facilidades de KM-AstCalc. Veja a Fig. 4.4. Se chamamos os vértices e lados com as letras em azul na figura, com as Eqs. (3.2), (3.3) e (3.4) encontramos as soluções:

$$\sin b = \sin i \sin(\omega + \nu)
\cos b \sin(\theta - \Omega) = \cos i \sin(\omega + \nu) .
\cos b \cos(\theta - \Omega) = \cos(\omega + \nu)$$
(4.13)

A solução dessas três equações é have:

$$b = \arcsin(\sin i \sin(\omega + \nu))$$

$$\theta = \Omega + \arctan_2(\cos i \sin(\omega + \nu), \cos(\omega + \nu)) , \qquad (4.14)$$

o "índice 2" no operador arctan significa o botão [INV] Atan2 na KM-AstCalc.

SIN	\mathbf{X}	-0.97094392			
$ \boxed{ Jupiter \rightarrow \boxed{i} } \qquad \boxed{SIN} \qquad \boxed{*} $	\mathbf{X}	-0.031355			
INV (ASIN)	X	-0.031355296	rad		
$\overline{\text{Angle} ightarrow \left[\text{deg} \right]}$					
INV Convert Sto 5	\mathbf{X}	-1.79682	deg		
	X	-1:47:48.5542	deg		
	X	0.999478			
Rcl 9 SIN *	X	-0.97044			
Rcl 9 COS	\mathbf{X}	0.23931			
INV Atan2	X	-1.32902	rad		
$ \boxed{ Jupiter } \!$	\mathbf{X}	1.75504	rad		
+	X	0.42601	rad		
$\overline{\text{Angle}} ightarrow \left[deg \right]$					
INV Convert Sto 3	\mathbf{X}	24.40875	deg		
	X	24:24:31.49516	deg		

Assim temos as coordenadas $R_{\uparrow}=4.95508 {\rm AU},~\theta_{\uparrow}=24^{\circ}49'17''.94,~e$ $\beta_{\uparrow}=-1^{\circ}47'36''.90$ para Júpiter na eclíptica com o sistema centrado no Sol. Para termos as coordenadas geocêntricas, $\rho_{\uparrow}, \lambda_{\uparrow}, \beta_{\uparrow}$, precisamos transformar as coordenadas da Terra em relação ao Sol.

Vejamos o status dos registros da memória:

```
\begin{array}{lll} \mathbf{R}_0 & \leftarrow & J & \mathrm{dia\,juliano} \\ \mathbf{R}_1 & \leftarrow & \theta_{\mathring{\Box}} & \mathrm{longitude\,heliocentrica\,da\,Terra} \\ \mathbf{R}_2 & \leftarrow & R_{\mathring{\Box}} & \mathrm{raio\,vetor\,da\,Terra\,para\,o\,Sol} \\ \mathbf{R}_3 & \leftarrow & \theta_{\mathring{\Box}} & \mathrm{longitude\,heliocentrica\,de\,Jupiter} \\ \mathbf{R}_4 & \leftarrow & R_{\mathring{\Box}} & \mathrm{raio\,vetor\,de\,Jupiter\,relativo\,ao\,Sol} \\ \mathbf{R}_5 & \leftarrow & b_{\mathring{\Box}} & \mathrm{latitude\,heliocentrica\,de\,Jupiter} \end{array}
```

Usamos as fórmulas da Eqs. (4.8) e (4.9) para encontrar as coordenadas geocêntricas.

Rcl 3	\mathbf{X}	0.42601	rad
Rcl 1 Coalesce -	\mathbf{X}	-3.66596	rad
COS	\mathbf{X}	-0.86564	
Rcl 2 *	\mathbf{X}	-0.87509	AU
Rcl 4 *	\mathbf{X}	-4.33590	AU^2
2 * CHS	\mathbf{X} [8.67179	AU^2
Rcl 2 SQR +	\mathbf{X} [9.69374	AU^2
Rcl 4 SQR +	\mathbf{X}	34.24372	AU^2
INV SQRT Sto 6	X	5.85181	AU

Temos $\Delta_{\uparrow}=5.85 \mathrm{AU}$, distância Júpiter, Terra. Agora, calculemos λ_J . Dado novo na memória: $\mathrm{R}_6 \leftarrow r_{\uparrow}$, raio vetor de Jupiter para a Terra.

Rcl	4	\mathbf{X}	4.95479	AU
Rcl	3 SIN *	\mathbf{X}	2.04754	AU
Rcl	2	\mathbf{X}	1.01092	AU
Rcl	1 SIN * -	\mathbf{X}	2.87005	AU
Rcl	4	\mathbf{X}	4.95479	AU
Rcl	3 COS *	\mathbf{X}	4.51194	AU
Rcl	2	\mathbf{X}	1.01092	AU
Rcl	1 COS * -	\mathbf{X}	5.09966	AU
INV	Atan2 Sto 7	\mathbf{X}	0.51261	rad
Angle	ightharpoonup iggl(hour iggr)			
[INV]	Convert D:M:S (λ_{7_+})	\mathbf{X}	1:57:28.92145	hour

Assim, $\lambda_{7\!\!+}=1^{\rm h}57^{\rm m}28^{\rm h}92,$ e na memória, $R_7\leftarrow\lambda_{7\!\!+},$ longitude geocêntrica de Júpiter.

Todas estas coordenadas referem-se ao equinócio J2000.0. Vamos, agora, considerar para o equinócio da data.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X	8535.3750	dy
$Astr.Const. \rightarrow \rho $ [Upload]	\mathbf{X}	0.024380	rad.Cen ⁻¹
* Coalesce	\mathbf{X}	0.0056972	rad
Rcl 7 + Sto 7	\mathbf{X}	0.51831	rad

Façamos o cálculo na latitude eclíptica:

Rcl 4	\mathbf{X}	4.95479	AU
Rcl 6 /	\mathbf{X}	0.84671	
Rcl 5 SIN *	\mathbf{X}	-0.02655	
INV ASIN Sto 8	\mathbf{X}	-0.02655	rad
$Angle \rightarrow \left[deg \right]$			
	X	-1:31:16.74033	deg

 $E \beta_{2} = -1^{\circ}31'5''.04.$

O status final dos registros da memória é:

Jdia julian $R_0 \leftarrow$ R_1 θ_{\circ} longitude heliocentrica da Terra $R_2 \leftarrow$ raio vetor da Terra para o Sol R_{\star} longitude heliocentrica de Jupiter $R_3 \leftarrow$ θ_{2} $R_4 \leftarrow$ raio vetor de Jupiter relativo ao Sol . R_{2} $R_5 \leftarrow$ b_{2} latitude heliocentrica de Jupiter $R_6 \leftarrow$ raio vetor Jupiter da Terra Δ_{1} $R_7 \leftarrow$ λ_{4} longitude geocentrica de Jupiter latitude geocentrica de Jupiter $R_8 \leftarrow$

Aplicamos agora as equações em Eq. (3.7) para correção da aberração. Lembre que, na equação, \odot é a longitude geocêntrica do Sol: $\theta_{\stackrel{.}{\Box}} + \pi$:

Rcl 1	\mathbf{X}	234.45263	deg
$180 \text{ Angle} \rightarrow \text{ deg} \qquad \qquad$	X [180	deg
+ Quad	\mathbf{X}	0.95038	rad
Rcl 7 - Sto 9	\mathbf{X}	0.43207	rad
COS CHS	\mathbf{X}	-0.90810	
$ \boxed{Jupiter} \!$	\mathbf{X}	0.25750	rad
Rcl 7 -	\mathbf{X}	-0.26081	rad
COS	\mathbf{X}	0.04676	
+	\mathbf{X}	-0.86135	
Rcl 8 COS /	\mathbf{X}	-0.86165	
$Astr.Const. \rightarrow \boxed{\kappa} \boxed{Upload} \boxed{*}$	\mathbf{X}	-17.660	rad

A correção da aberração para a velocidade relativa de Júpiter com respeito à Terra é -17''.7.

A elongação de Júpiter será:

Rcl 7	\mathbf{X}	0.51831	rad
Rcl 1	\mathbf{X}	234.45	deg
$180 \text{ Angle} \rightarrow \text{ deg} \cancel{\nu_x} - $	X [54.453	deg
Coalesce -	\mathbf{X}	-0.43207	rad

O sinal menos é importante aqui. Significa que Júpiter está 'atrás' do Sol (no céu).

COS	\mathbf{X}	0.90810	
Rcl 8	\mathbf{X}	-0.026552	rad
COS *	\mathbf{X}	0.90778	
[INV] (ACOS)	\mathbf{X}	0.43283	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	24.799	deg
Sto 9	\mathbf{X}	24.799	deg

A última unidade de memória livre, R_9 , guarda, então, o ângulo de fase. Porque a diferença das longitudes do Júpiter e do Sol é negativa, usamos a elongação negativa: $\vartheta_{\downarrow} = -24^{\circ}.8^{7}$.

As coordenadas equatoriais de Júpiter vêm diretamente:

Rcl 8 Rcl 7	\mathbf{X}	0.51831	rad
INV EcE	\mathbf{X}	28.16635	deg
$\overline{\text{Angle} \rightarrow [\text{hour}]}$			
[INV] Convert D:M:S (α_{7_+})	\mathbf{X}	1:52:39.92375	hour
D.ddd X-y	X	9.8237	deg
	\mathbf{X}	9:56:18.08193	deg

Exercício

 Estime a magnigude aparente de Júpiter para 15 de maio de 2023 às 21^h. Da Eq. (4.10) (supondo que a memória ainda esteja populada com os dados desta seção):

 $^{^7 \}text{Adotei} \ \vartheta$ aqui, em vez do adotado na comunicade β para não confundir com a latitude celeste.

$\boxed{Jupiter} \!$	\mathbf{X}	-9.39500	
Rcl 4	\mathbf{X}	4.95479	AU
Rcl 6	\mathbf{X}	5.85181	AU
* Clean	\mathbf{X}	28.99452	
INV LOG 5 *	\mathbf{X}	7.31158	
+	\mathbf{X}	-2.08342	

Esta é a magnitude de Júpiter para ângulo de fase nulo. A função de fase empírica para ângulos $> 12^{\circ 8}$ é:

$$\Theta(\vartheta) = -0.033 - 2.5\log(1 - 1.507x - 0.363x^2 - 0.062x^3 + 2.809x^4 - 1.876x^5),$$

com

$$x = \frac{\vartheta}{180^{\circ}},$$

 ϑ em graus. Então:

Rcl 9	X	24.79945	deg
$180 \text{ Angle} \rightarrow \text{ deg} /$	X [0.13777	
Sto 9 5 y^x	X	0.00005	
1.876 CHS *	X	-0.00009	
Rcl 9 SQR SQR	X	0.00036	
2.809 * +	X	0.00092	
Rcl 9 3 (y^x)	\mathbf{X}	0.00262	
0.062 * -	X	0.00076	
Rcl 9 1.507 * -	X	-0.20687	
1 +	\mathbf{X}	0.79313	
INV LOG	\mathbf{X}	-0.10066	
2.5 * -	\mathbf{X}	-1.83178	
0.033	\mathbf{X}	-1.86478	

4.4.5 Perturbações Planetárias

Sabemos agora como encontrar um objeto em órbita do Sol resolvendo a equação de Kepler. Admitimos estar diante do problema dos dois corpos, isto é, isolando o sistema Sol-objeto do resto do sistema solar. O que fizemos,

⁸ARXIV1808.01973

então, foi uma aproximação. Outros corpos, especialmente os planetas gigantes, influenciam significativamente a trajetória de um objeto no sistema solar. Chamamos estas variações de perturbação.

A forma mais fácil de lidar com o problema da perturbação é colocar os elementos da órbita de um astro em termos de séries de potência com o tempo, geralmente até a terceira ordem. O tempo geralmente é dado em fração de século.

Os parâmetros orbitais dados em KM-AstCalc são, portanto, as componentes 'zero-ordem'.

Os componentes de primeira ordem são chamados de perturbação secular e são mais importantes para L, Ω , e ϖ . Os componentes de segunda ordem são bem menos significativos 9 .

4.5 Asteróides e Cometas

Asteróides e cometas são classificados como pequenos astros. São como pedregulhos indo e vindo pelo espaço sideral. Porém, seus movimentos fornecem indícios essenciais sobre a origem do sistema solar. São muito parecidos, mas se diferenciam principalmente pela constituição química. Os antigos gregos chamavam cometas (cabeleira) por causa da longa cauda eles costumam apresentar. São formados de uma neve tipo "gelo sujo" que chamamos CHONdritos: variedades de moléculas de Carbono - Hidrogênio - Oxigênio - Nitrogênio. São voláteis e sublimam quando se aproximam da vizinhança do Sol. Empurrada pela pressão de radiação do Sol, a poeira forma a cauda, e o vento solar atua sobre as moléculas (ainda não destruídas pela radiação UV) para gerar a coma (vírgula, em inglês). São bonitos de ver quando passam perto da Terra.

No entanto, através dos séculos, os cometas foram considerados de mau agouro. Mesmo nos tempo modernos, no início do século XX, muita gente pensou que a cauda do cometa de Halley iria envenenar a atmosfera da Terra e nos matar a todos! Estavam errados (ainda bem)!

Asteróides são feitos de rocha e metal. Minerais, em suma. Não são voláteis; os detectamos por causa do rápido movimento em relação as estrelas do fundo do campo. Possivelmente, alguns cometas podem ter seu interior como um asteróide.

O JPL-Caltech Solar System Dynamics Institute¹⁰ listou um pouco menos do que quatro mil cometas e 620 mil asteróides com seus elementos

⁹Detalhes bem acessíveis são encontrados em Jean Meeus, 2000, Astronomical Algorithms, 2nd Edition, Willmann-Bell, Inc.

¹⁰https://ssd.jpl.nasa.gov/sb/elem_tables.html

orbitais. Para a KM-AstCalc, decidi limitar os asteróides à sua magnitude absoluta de 10 (passível de ser visto com um binóculo), e órbita interior à de Júpiter; e os cometas ao período orbital de cem anos. Esses limites colocaram 701 asteróides e 776 cometas. Acessamos esses dados no painel inferior à direita, logo abaixo das Constantes Astronômicas:

Astronomical Constants none	∨ Upload				
Asteroid	E_0 aei ω	Ω	M_0	Н	G
Comet	E_0 qei ω	Ω	T_p		

Os elementos são essencialmente os mesmos, exceto pelo elemento espacial: asteróides têm o semi-eixo maior e os cometas têm a distância do perihélio; asteróides ainda possuem parâmetros de brilho, enquanto os cometas, não. Os parâmetros comuns são:

$$E_0 = J_0 - \text{mdj}_0$$

sendo J_0 a data juliana normal e mdj₀ é igual a 2400000.5, tal que para termos J_0 basta somar mdj₀ que se encontra no campo de opções das Constantes Astronômicas logo acima;

- e Excentricidade da órbita;
- $\lceil i \rceil$ Inclinação da órbita em relação à eclíptica média em graus;
- ω Argumento do perihélio em graus;
- Ω Longitude do nodo ascendente em graus.

4.5.1 Asteróides

Os elementos exclusivos dos asteróides são:

- a Semi-eixo maior em AU;
- M_0 Anomalia média inicial, tal que, para termos a anomalia média para a data:

$$M = n(J - J_0) + M_0. (4.15)$$

H Magnitude absoluta. Assim como os planetas, é a magnitude para $\Delta_A = R_A = 1 \text{AU}$, ângulo de fase $= 0^{\circ}$;

G Declive da magnitude. Asteróides raramente são esféricos e giram relativamente rápido, e assim, geralmente apresentam curvas de luz complexas, refletindo este comportamento na magnitude. Depois de longos estudos no seio da União Astronômica Internacional, em 1985, conclui-se que¹¹

$$m_A = H + 5 \log R_A \Delta_A - 2.5 \log [(1 - G) \Phi_1 + G \Phi_2],$$
 (4.16)

com

$$\Phi_{1} = \exp\left[-3.33 \left(\tan\frac{\vartheta}{2}\right)^{0.63}\right] ,$$

$$\Phi_{2} = \exp\left[-1.87 \left(\tan\frac{\vartheta}{2}\right)^{1.22}\right]$$
(4.17)

em que θ é o ângulo de fase. Esta fórmula é válida para $0^{\circ} \leq \theta \leq 120^{\circ}$.

Exercício

Calcular as coordenadas equatoriais para o equinócio J2000.0 do asteróide Ceres às 21^hGMT de 15/05/2023 e sua m magnitude.

Resposta: Primeiro, temos que saber onde a Terra está. Assim, seguimos o procedimento da Sec. 4.4.4 para ter na memória:

$$\begin{array}{lcl} \mathbf{R}_0 & \leftarrow & J & \mathrm{dia\,juliano} \\ \mathbf{R}_1 & \leftarrow & \theta_{\mathring{\eth}} & \mathrm{longitude\,helioentrica\,da\,Terra} \\ \mathbf{R}_2 & \leftarrow & R_{\mathring{\eth}} & \mathrm{raio\,vetor\,da\,Terra\,ao\,Sol} \end{array}.$$

E assim avançamos para calcular a posição de Ceres.

Recuperamos a data juliana guardada em ${\bf R}_0$ e calculemos a anomalia média:

Rcl 0	\mathbf{X}	2460080.37500	dy
	\mathbf{X}	59800.00000	dy
	\mathbf{X}	2400280.375000	dy
$\overline{\text{Astr.Const.} \rightarrow \left[\text{mdj0}\right] \left[\text{Upload}\right]}$	X	2400000.50000	dy
-	X	279.87500	dy

Pela Eq. (4.4), consideramos a massa do asteróide pequena demais para ser considerada, logo:

¹¹Jean Meeus, Op. cit.

$Astr.Const. \rightarrow S$ Upload	X	1.9885e+30	kg
	\mathbf{X}	9.3905e+28	$\mathrm{AU^{-3}.kg}$
INV SQRT	\mathbf{X}	3.0644e+14	$AU^{-1.5}.kg^{0.5}$
$Astr.Const. \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	X	2.5034e+9	m ^{1.5} .sc ⁻¹ .rad.AU ^{-1.5}
* Coalesce	\mathbf{X}	1.0462	rad

Adicionamos a anomalia média inicial para chegarmos à anomalia média para a data. Devemos coalescer para compatibilizar as unidades.:

$Ceres \rightarrow M_0$ $Coalesce +$	X	6.8813	rad	_
Quad	\mathbf{X}	0.59814	rad	_

Vamos preparar os dados para a solução da equação de Kepler:

	$\overline{}$			
Ceres $\rightarrow e$ $x-y$	Kepler	\mathbf{X}	0.64544	rad

Com a anomalia excêntrica em mãos, temos condições de calcular o módulo da raio vetor e a anomalia verdadeira.

Sto 3 COS *	\mathbf{X}	0.062817	
CHS 1 +	\mathbf{X}	0.93718	
$Ceres \rightarrow a$ *	\mathbf{X}	2.5928	AU
lacksquare Sto $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$	\mathbf{X}	2.5928	AU
Rcl 3 2 /	\mathbf{X}	0.32272	rad
	\mathbf{X}	1.07864	
$ \boxed{1 Ceres} \rightarrow \boxed{e} \boxed{-} $	\mathbf{X}	0.92136	
/ INV SQRT *	\mathbf{X}	0.36183	
INV ATAN 2 *	\mathbf{X}	0.69435	rad
$Angle \rightarrow \left[deg \right] \left[INV \right] \left[Convert \right]$	\mathbf{X}	39.783	deg

Esta é a anomalia verdadeira. Somamos com o argumento de perihélio ω para estarmos em condições de resolver o problema do triângulo esférico e achar a projeção da posição orbital na eclíptica.

	X	113.31	deg	
--	---	--------	-----	--

Recordemos as Eqs. (4.13) que nos dão uma maneira de obter as coordenadas eclípticas heliocêntricas. Assim,

Sto 9 SIN	X	0.91834	
$Ceres \rightarrow i$ SIN $*$	\mathbf{X}	0.16872	
INV ASIN	\mathbf{X}	0.16953	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	9.7135	deg
$lacksquare$ Sto $lacksquare$ 5 (b_C)	\mathbf{X}	9.7135	deg
Rcl 9 SIN	\mathbf{X}	0.91834	
$Ceres \rightarrow i COS$	\mathbf{X}	0.98298	
Rcl 9 COS	X	-0.39579	
INV Atan2	X	1.9840	rad
Ω Coalesce $+$	X	3.3849	rad
Sto 3 (θ_C)	X	3.3849	rad

Lembrando a configuração da memória até agora:

 $R_0 \leftarrow J \quad dia juliano$

 $\mathbf{R}_{2} \;\; \leftarrow \;\; \check{R_{\circlearrowleft}} \quad \mathrm{raio}\,\mathrm{vetor}\,\mathrm{da}\,\mathrm{Terra}\,\mathrm{ao}\,\mathrm{Sol}$

 $R_3 \leftarrow \theta_C$ longitude heliocentrica de Ceres .

 $R_4 \leftarrow R_C$ raio vetor Ceres ao Sol

 $R_5 \leftarrow b_C$ latitute heliocentrica de Ceres

Vamos, agora, calcular as coordenadas retangulares de Ceres seguindo as transformações das Eqs. (4.6):

Rcl 4	\mathbf{X}	2.5928	AU
Rcl 3 COS *	\mathbf{X}	-2.5165	AU
Rcl 5 COS *	X	-2.4804	AU
Rcl 2	\mathbf{X}	1.0109	AU
Rcl 1 COS *	X	-0.58772	AU
$lacksquare$ Sto $lacksquare$ (x_C)	X	-1.8927	AU
Rcl 4	\mathbf{X}	2.5928	AU
Rcl 3 SIN *	X	-0.62467	AU
Rcl 5 COS *	X	-0.61572	AU
Rcl 2	\mathbf{X}	1.0109	AU
Rcl 1 SIN *	\mathbf{X}	-0.82252	AU
$lacksquare$ Sto $lacksquare$ 8 (y_C)	X	0.20680	AU
Rcl 4 Rcl 5	\mathbf{X}	9.7135	deg
SIN * Sto 9 (z_C)	X	0.43747	AU

e usamos as Eqs. (4.7) para obter as coordenadas eclípticas geocêntricas:

Rcl 7 SQR	\mathbf{X}	3.5821	AU^2
Rcl 8 SQR +	\mathbf{X}	3.6249	AU^2
Rcl 9 SQR +	\mathbf{X}	3.8163	AU^2
INV SQRT	\mathbf{X}	1.9535	AU
Sto 6 (Δ_C)	X	1.9535	AU
Rcl 8 Rcl 7	\mathbf{X}	-1.8927	AU
INV Atan2	\mathbf{X}	3.0328	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	173.76442	deg
Sto 7 (λ_C)	\mathbf{X}	173.76442	deg
Rcl 4 Rcl 6 /	\mathbf{X}	1.32725	
Rcl 5 SIN *	\mathbf{X}	0.22394	
INV ASIN	\mathbf{X}	0.22585	rad
$Angle \rightarrow \left[deg \right] \left[INV \right] \left[Convert \right]$	\mathbf{X}	12.94038	deg
Sto 8 (β_C)	X	12.94038	deg

O ângulo de fase é importante para estimarmos a magnitude, então, usando Eq. (4.7):

Rcl 7 Rcl 1 -	X [-60.68820	deg
COS CHS	\mathbf{X}	-0.48956	
Rcl 8 COS *	\mathbf{X}	-0.47713	
INV ACOS	\mathbf{X}	2.06818	rad
$Angle \rightarrow \boxed{deg}$			
INV Convert Sto 9	\mathbf{X}	118.49805	deg

Sendo $\lambda_c-\theta_{\mbox{$\stackrel{\circ}{\supset}$}}$ negativa e inferior a 180°, asseguramos que $\lambda_C-\lambda_{\mbox{$\stackrel{\circ}{\supset}$}}$ é positiva, então, Ceres é 118°.5 $al\acute{e}m$ do Sol no céu.

Vamos atualizar o status da memória:

R_0	\leftarrow	J	dia juliano
R_1	\leftarrow	$ heta_{\darkown}$	longitude helioentrica da Terra
R_2	\leftarrow	$R_{\dot{\uparrow}}$	raio vetor da Terra ao Sol
R_3	\leftarrow	$\overset{\smile}{ heta_C}$	longitude heliocentrica de Ceres
R_4	\leftarrow	R_C	raio vetor Ceres ao Sol
R_5	\leftarrow	b_C	latitute heliocentrica de Ceres
R_6	\leftarrow	Δ_C	radio vetor ate a Terra
R_7	\leftarrow	λ_C	longitude geocentrica ecliptica de Ceres
R_8	\leftarrow	β_C	latitude geocentrica ecliptica de Ceres
R_{α}	\leftarrow	ϑ_C	elongação de Ceres

Agora, vamos estimar a magnitude de Ceres com a ajuda das Eqs. (4.16) e (4.17). Primeiro, vamos reescrever o termo dentro da função log na Eq. (4.16):

$$(1-G)\Phi_1 + G\Phi_2 \to \Phi_1 - G(\Phi_2 - \Phi_1).$$

Assim, calculamos Φ_1 e Φ_2 da Eq. (4.17):

Rcl 9 2 / TAN	X [1.68078	
Enter 0.63 y^x	\mathbf{X}	1.38699	
3.33 CHS * EXP	\mathbf{X}	0.00987	
x-y	\mathbf{X} [1.68078	
1.22 y^x	\mathbf{X} [1.88419	
1.87 CHS * EXP	\mathbf{X} [0.02950	
x-y Enter \downarrow -	\mathbf{X}	0.01963	
$Ceres \rightarrow G$ *	\mathbf{X} [0.00236	
CHS (†) (+)	\mathbf{X}	0.00751	
INV LOG	\mathbf{X}	-2.12436	
2.5 CHS *	\mathbf{X} [5.31089	

Chegamos ao declive da contribuição da magnitude. Vamos, agora, calcular o componente as distâncias:

Rcl 6 Rcl 4 *	\mathbf{X}	5.06518	AU^2
Clean INV LOG	\mathbf{X} [0.70459	
5 *	\mathbf{X}	3.52297	
	X	12.16386	

Você vai precisar de um telescópio no mínimo de $10\,\mathrm{cm}$ de aberture para ver Ceres. Um binóculo não é suficiente.

Calculemos as coordenadas equatoriais de Ceres.

Rcl 8 Rcl 7	\mathbf{X}	173.76442	deg
INV EcE	\mathbf{X}	179.52269	deg
$\overline{\text{Angle} \rightarrow [\text{hour}]}$			
	X	11:58:5.44551	hour
D.ddd X-y	\mathbf{X}	14.33349	deg
\square : D:M:S (δ_C)	\mathbf{X}	14:20:0.57422	deg

Em 15 de maio de 2023, Ceres parecia vagar pela constelação de Leão perto da borda com Coma Berenice.

4.5.2 Cometas

O painel dos cometas é caracterizado por dois elementos exclusivos. São eles:

 \boxed{q} distância do perihélio ao Sol, no lugar do semi-eixo maior;

 $\boxed{T_p}$ dia juliano da passagem pelo perihélio, em vez de uma época arbitrária

Sem informação do brilho. A razão é que não há informação padronizada a respeito, já que os cometas, na verdade, são formados de gelo (muito) sujo. Imagine a neve numa cidade cheia de gente que passa, automóveis, restos de tudo quanto é coisa, poeira poluindo esta neve. Cometas são assim. A luz do Sol reflete muito pouco, se é que reflete.

Se cometas brilham, é que na proximidade do Sol, eles aquecem e o material volátil sublima, enchendo a região com gases que brilham sob a radiação solar. Assim, formam-se a coma e a cauda.

Sabendo o instante do perihélio, podemos chegar à anomalia média simplesmente aplicando a fórmula:

$$M = \frac{2\pi}{P_c} \left(J - T_P \right),$$

sendo que sabemos o período da lei de Kepler, lembrando Eq. (4.4):

$$P_c = \frac{2\pi}{k} \sqrt{\frac{a^3}{M_{\odot}}},.$$

A massa do cometa sendo desprezível neste cálculo. Logo,

$$M = k\sqrt{\frac{M_{\odot}}{a^3}} \left(J - T_P \right).$$

O problema é que não temos o semi-eixo maior. Contudo, sabemos que:

$$a = \frac{q}{(1 - e)}.$$

E então, seguimos a mesma rotina para localizar um astro no sistema solar.

Exercício

1. Ache a posição do cometa de Halley às $21^{\rm h}{\rm GMT}$ de 15/05/2023.

Resposta: Para alguém envolvido com as observações do cometa de Halley nos anos 1980, como membro da International Halley Watch, consórcio global concentrando esforços para obter o máximo de informação possível deste cometa mítico, estou particularmente curioso para saber onde ele se encontra no presente

Vamos admitir que os dados sobre a posição da Terra ainda esteja guardada na memória da KM-AstCalc.

Calculemos o período¹²:

$\boxed{Comet} \boxed{1P/Halley} \!$	\mathbf{X}	0.57472	AU
$\boxed{1 \boxed{1P/\text{Halley}} \rightarrow \boxed{e} \boxed{-}}$	X	0.03206	
/ Sto 9	X	17.92782	AU

Guardamos o valor do semi-eixo maior (a) na memória R_9 , pois vamos precisar dele mais tarde. Agora, usamos para calcular o período:

3 (y^x)	\mathbf{X}	5762.1	AU ³
$Astr.Const. \rightarrow S Upload /$	\mathbf{X}	2.8976e-27	$\mathrm{kg^{-1}.AU^{3}}$
INV SQRT	\mathbf{X}	5.3830e-14	$kg^{-0.5}.AU^{1.5}$
$Astr.Const. \rightarrow k Upload /$	\mathbf{X}	6.5892e-9	$m^{-1.5}.s.rad^{-1}.AU^{1.5}$
Coalesce	X	3.8126e+8	$s.rad^{-1}$
2 PI *	X	6.2832	
$Angle ightarrow rad \boxed{\mathcal{V}_x} *$	\mathbf{X}	2.3955e+9	SC
$Time \rightarrow yr INV Convert (P_C)$	X	75.962	yr

Veja que o período orbital do cometa de Halley é 75.9 anos. Essa é uma característica que o faz tão "charmoso". Equivale a cerca de uma geração humana. Toda geração pode dizer que viu o cometa de Halley ao menos uma vez. Além disso, é o corpo celeste que confirmou a validade da teoria de Newton para a mecânica celeste. Em 1705, Edmond Halley, o amigo que convenceu Newton a publicar seu Principia Mathematica (que ficou na gaveta por vinte anos), calculou que o cometa que apareceu em 1682 era o mesmo que teria aparecido tantas vezes antes e que retornaria em 1758, o que aconteceu (quatro anos depois é verdade, mas, então eles perceberam que a perturbação dos grandes planetas era importante, e que isso seria mais um aspecto da teoria gravitacional).

Vamos agora à anomalia média:

 $^{^{12}\}mathrm{Coloque}$ no formato "Fix", com cinco dígitos.

	\mathbf{X}	13610.22610	dy
x-y / Coalesce	\mathbf{X}	0.49088	
$\boxed{360 \text{Angle} \rightarrow \left[\text{deg} \right] \boxed{\cancel{\nu_x}} *}$	X	176.71698	deg

Veja que o valor próximo de 180° mostra que o cometa de Halley está perto do afélio. Conhecendo M, estamos aptos para aplicar o operador de solução da equação de Kepler, arranjando corretamente os parâmetros:

	X	3.11247	rad	Ī
--	---	---------	-----	---

Tendo a anomalia excêntrica, podemos obter o módulo do raio vetor e a anomalia verdadeira:

Sto 3 COS *	X	-0.96753	
CHS 1 +	\mathbf{X}	1.96753	
Rcl 9 * Sto 4	X	35.27356	AU

O cometa de Halley agora está a meio caminho entre as órbitas de Netuno e Plutão. Como a inclinação da órbita é perto de 180° , a influência desses planetas é importante.

Rcl 3 2 /	X [1.55624	rad
TAN 1	\mathbf{X}	1	
$1P/Halley \rightarrow e$ $+$	\mathbf{X} [1.96794	
	X [61.38846	
INV SQRT *	\mathbf{X} [538.11444	
INV (ATAN) 2 *	\mathbf{X} [3.13788	rad
$Angle \rightarrow \left[deg \right] \left[INV \right] \left[Convert \right]$	\mathbf{X} [179.78705	deg

A anomalia verdadeira soma-se ao argumento do perihélio (ω) para chegarmos ao lado da órbita do triângulo esférico na Fig. 4.4:

1F/Halley 7 w + A 292.04484 deg

Retomando Eqs. (4.13), temos:

Enter SIN Enter	\mathbf{X}	-0.92689	
$1P/Halley \rightarrow i$ SIN	\mathbf{X}	0.30590	
* INV ASIN	X	-0.28748	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	-16.47117	deg
$oxed{Sto} oxed{5} oxed{(b_C)}$	X	-16.47117	deg

O cometa está ao "sul" da eclíptica, com o Sol no centro.

Vamos calcular a longitude eclíptica:

	\mathbf{X}	-0.92689	
$1P/Halley \rightarrow i COS *$	\mathbf{X}	0.88246	
x-y COS	\mathbf{X}	0.37533	
INV Atan2	\mathbf{X}	1.16865	rad
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	X	66.95874	deg

Vamos considerar a terceira equação de Eqs. (4.13). Sabemos que $\cos b$ é sempre positivo, então devemos examinar o que acontece com $\cos(\omega + \nu)$. Já sabemos que $\omega + \nu = 292^\circ.04$, logo, está no quarto quadrante, isto é, $\cos(\omega + \nu)$ é positivo, o mesmo para $\cos(\theta - \Omega)$, o que o coloca entre o primeiro e o quarto. Sendo $\tan(\theta - \Omega)$ positiva, seu parâmetro deve estar no primeiro quadrante. Concluimos que $\theta - \Omega$ está no primeiro quadrante.

Somando Ω , a longitude do nodo ascendente, teremos a longitude heliocêntrica do cometa (θ) :

$1P/Halley \rightarrow \Omega$	Sto 3 X	126.07322	deg
--------------------------------	---------	-----------	-----

Façamos como com o asteróide Ceres, e vejamos o status da memória de KM-AstCalc:

J $R_0 \leftarrow$ dia juliano $R_1 \leftarrow$ θ_{\dagger} longitude helioentrica da Terra R_{\pm} raio vetor da Terra ao Sol $R_2 \leftarrow$ $heta_H$ $R_3 \leftarrow$ longitude heliocentrica de Ceres, $R_A \leftarrow$ R_H raio vetor Halley ao Sol $R_5 \leftarrow$ b_H latitute heliocentrica de Halley semi – eixo maior de Halley $R_9 \leftarrow$ a_H

acrescentado pelo semi-eixo maior em in R_9 , já que não é obtido diretamente do painel.

Para transformar as coordenadas heliocêntricas em geocêntricas, retomamos o procedimento que fizemos para Ceres, usando as equações de transformação Eqs. (4.6):

Rcl 4	X	35.27356	AU
Rcl 3	COS * X	-20.76973	AU
Rcl 5	COS * X	-19.91739	AU
Rcl 2	X	1.0109	AU
Rcl 1	COS * X	-0.58772	AU
- Sto	$7 (x_C)$ X	-19.32967	AU
Rcl 4	X	35.27356	AU
Rcl 3	SIN * X	28.51039	AU
Rcl 5	COS * X	27.34040	AU
Rcl 2	X	1.0109	AU
Rcl 1	SIN * X	-0.82252	AU
- Sto	$8 (y_C)$ X	28.16291	AU
Rcl 4	Rcl 5 X	-16.47117	deg
SIN *	Sto $9(z_C)$ X	-10.00121	AU

Para obter as coordenadas eclípticas geocêntricas, usamos Eq. (4.7):

Rcl 7 SQR	X	373.63619	AU^2
Rcl 8 SQR +	X	1166.78593	$\mathrm{AU^2}$
Rcl 9 SQR +	X	1166.78593	AU^2
INV SQRT	\mathbf{X}	35.59228	AU
Sto 6 (Δ_C)	\mathbf{X}	35.59228	AU
Rcl 8 Rcl 7	\mathbf{X}	-19.32967	AU
INV Atan2	\mathbf{X}	2.17230	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	124.46383	deg
Sto 7 (λ_C)	\mathbf{X}	124.46383	deg
Rcl 4 Rcl 6 /	\mathbf{X}	0.99105	
Rcl 5 SIN *	X	-0.28099	
INV ASIN	X	-0.28483	rad
$Angle \rightarrow \boxed{deg} \boxed{INV} \boxed{Convert}$	\mathbf{X}	-16.31954	deg
Sto 8 (β_C)	X	-16.31954	deg

Vamos atualizar o status da memória da KM-AstCalc:

 $R_0 \leftarrow J$ dia juliano

 $R_1 \leftarrow \theta_{\uparrow}$ longitude helioentrica da Terra

 $R_2 \leftarrow R_{\pm}$ raio vetor da Terra ao Sol

 $R_3 \leftarrow \theta_H$ longitude heliocentrica de Ceres

 $R_4 \leftarrow R_H$ raio vetor Halley ao Sol

 $R_5 \leftarrow b_H$ latitute heliocentrica de Halley

 $R_6 \leftarrow \Delta_H$ radio vetor ate a Terra

 $R_7 \leftarrow \lambda_H$ longitude geocentrica ecliptica de Halley

 $R_8 \leftarrow \beta_H$ latitude geocentrica ecliptica de Halley

 $R_9 \leftarrow a_H \text{ semi } - \text{eixo maior de Halley}$

Então, vamos calcular as coordenadas equatoriais do cometa de Halley.

Rcl 8 Rcl 7	X	124.46383	deg
INV EcE	\mathbf{X}	122.95403	deg
$Angle \rightarrow [hour]$			
	\mathbf{X}	8:11:48.96727	hour
D.ddd x-y	\mathbf{X}	3.25928	deg
\square D:M:S (δ_H)	X	3:15:33.40359	deg

Não há meio direto para obter a magnitude de um cometa. É uma composição de "gelo sujo", como a neve numa grande cidade, como Paris. Asteróides, compostos de rochas, são bem mais brilhantes. Recentemente, estimativas do JPL nos dão conta de valores como 25.6 para a magnitude do cometa de Halley, isto é, muito menos brilhante que o fundo do céu $(21-22^{\rm mag})$.

Por fim, temos que explicar que os cálculos feitos aqui foram feitos considerando a aproximação de dois-corpos para o problema de Kepler. Na realidade não é bem isso que acontece. Assim, nossos resultados podem ser diferentes daqueles feitos por cálculos profissionais. Mesmo assim, se você comparar, verá que eles não estão muito em desacordo.

4.6 Perihélio e Afélio

Determinar o perihélio e afélio de um corpo no sistema solar é relativamente simples. Basta estabelecer

$$\nu = E = M = 2j\pi,$$

com $j = 0, 1, 2, 3, \ldots$, para o perihélio, e

$$E = \nu = M = (2j+1)\pi,$$

para o afélio. Estas são as condições para que E e ν coincidam, independente da excentricidade. Para ambas as condições, $\sin E=0$ na equação de Kepler.

Como isto varia é da particularidade de cada tipo de objeto.

4.6.1 Planetas

A Eq. (4.12) diz que

$$M = n(J - J_0) + M_0,$$

com

$$M_0 = L - \varpi$$
.

A condição é que, para o perihélio, o instante em que

$$\frac{2\pi}{P}(J_q - J_0) + M_0 = 2\pi j.$$

com P, sendo o período orbital. O número j será determinado por quantos períodos P encaixam na diferença $J_q - J_0$. Vamos achar a "primeira" passagem pelo perihélio depois da data de osculação J_0 :

$$\frac{2\pi}{P}(J_q - J_0) + M_0 = 0,$$

ou

$$J_{q0} = J_0 - (L - \varpi) \frac{P}{2\pi}.$$

Assim, a condição para a passagem no perihélio é:

$$\frac{J_q - J_{q0}}{P} = j.$$

Vamos, agora, determinar o número inteiro j. Vamos supor que você queira saber a próxima passagem do corpo pelo perihélio depois de hoje. Vamos dizer que seja na data juliana J. Então, você sabe que a o perihélio será depois de N dias. Colocando na condição acima, temos:

$$\frac{J+N-J_{q0}}{P}=j.$$

Ou,

$$\frac{J - J_{q0}}{P} + \frac{N}{P} = j.$$

Mas, claramente N < P, então para que a equação acima seja verdade, a relação N/P deve ser substituida pela unidade. Em outros termos, dizemos, matematicamente

 $j = \mathrm{Ceil} \left[\frac{J - J_{q0}}{P} \right].$

Ou, tomamos a parte inteira da fração e adicionamos a unidade.

Uma vez que conhecemos j aplicamos em

$$J_q = jP + J_{q0}.$$

No caso do afélio, não é difícil entender que o "primeiro" depois da data de osculação é:

$$J_{Q0} = J_0 - (L - \varpi) \frac{P}{2\pi} + \frac{P}{2}.$$

Com procedimento similar para o restante.

Exercício

1. Encontrar o próximo perihélio e afélio para a Terra depois de 15/05/2023.

Resposta:

	\mathbf{X}	-2.48284	deg
$Astr.Const. \rightarrow \boxed{Syr} \boxed{Upload} \boxed{*}$	\mathbf{X} [-906.87311	dy.deg
$\boxed{360} \text{Angle} \rightarrow \boxed{\text{deg}} \boxed{\cancel{y_x}} \boxed{/}$	\mathbf{X} [-2.51909	dy
	X	2451547.51909	dy
15:5:2023	\mathbf{X}	15:5:2023	
$Time \rightarrow \left(dy \right) \boxed{\mathcal{V}_{x}}$	\mathbf{X}	15	dy
$Time \rightarrow \boxed{mth} \boxed{\cancel{y_x}}$	\mathbf{X}	15:5	dy.mth
$Time \rightarrow yr$ y_x	\mathbf{X} [15:5:2023	dy.mth.yr
JulD	\mathbf{X} [2460079.50000	dy
<u>x-y</u> <u>-</u>	\mathbf{X}	8531.98091	dy
$Astr.Const. \rightarrow $ $ Syr $	\mathbf{X}	23.35888	
INT 1 +	\mathbf{X}	24.00000	
$Astr.Const. \rightarrow \boxed{Syr} \boxed{Upload} \boxed{*}$	\mathbf{X}	8766.15271	dy
(J_q)	X	2460313.67180	dy

Esta é a data juliana do primeiro perihélio da Terra depois de 15/05/2023. Se você está curioso para saber no formato "normal", faça:

INV	GrgD	X	4.17180:1:2024	dy.mth.yr	
()	(J		, ,	1

Ou seja, você sabe que o próximo perihélio da Terra será no dia 4 de janeiro de 2024. Você, além disso, pode saber a hora em que se dá:

JulD Enter	\mathbf{X}	2460311.15271	dy
INT	\mathbf{X}	2460313.00000	dy
$\boxed{0.5 \text{ Atime} \rightarrow \left[\text{dy} \right] \boxed{\cancel{\nu_x}} + }$	\mathbf{X}	2460313.50000	dy
	\mathbf{X}	0.17180	dy
$Time \rightarrow hr$			
INV Convert D:M:S	\mathbf{X}	4:7:23.52001	hr

O próximo perihélio da Terra, depois de 15/05/2023, será 4/01/2024 às $4^{\rm h}7^{\rm m}23^{\rm s}$

Não é difícil entender que o próximo afélio depois disto será $J_Q = J_q + P/2$.

D.ddd 🔱	X	2460313.67180	dy
$\overline{\text{Astr.Const.} o} \left[Syr \right] \left[Upload \right]$	X	365.25636	dy
2 /	X	182.62818	dy
$\overline{\hspace{1cm}}$ (J_Q)	\mathbf{X}	2460496.29998	dy
INV GrgD	\mathbf{X}	4.79998:7:2024	dy.mth.yr
JulD Enter INT	\mathbf{X}	2460496.00000	dy
$\boxed{0.5} \text{Time} \rightarrow \boxed{\text{dy}} \boxed{\cancel{\nu_x}} \boxed{+}$	\mathbf{X}	2460496.50000	dy
	X	-0.20002	dy
$Time \rightarrow $	X	-4.80048	hr
$\boxed{24 \text{ Time}} \rightarrow \boxed{\text{hr}} \boxed{\cancel{y_x}} \boxed{+}$	\mathbf{X}	19.19952	hr
D:M:S	X	19:11:58.27201	hr

Então, será às $19^{\rm h}11^{\rm m}58^{\rm s}$, de 4/01/2024. Com isso, sabemos que haverá um afélio anterior, a partir de 15/05/2023. Para sabermos, basta subtrair P/2 do perihélio calculado, em vez de somar.

4.6.2 Asteróides

O procedimento é similar para asteróides, já que o valor inicial da anomalia é fornecido diretamente, neste caso. Somente que, a data juliana inicial está em Data Juliana Modificada, então, temos que adicionar a constante mjd0 antes de procedermos o cálculo:

$$J_{q0} = E_0 + \text{mjd0} - 2\pi \frac{M_0}{P}.$$

O resto da rotina é a mesma.

Exercício

1. Encontrar o próximo perihélio e afélio de Ceres.

Resposta: Antes de mais nada, vamos calcular o período orbital de Ceres e guardá-lo na memória, digamos R_1 :

igl(Asteroid igr) igl(Ceres igr) igl) igl(a igr)	X	2.7666	AU
3 y^x	X	21.17620	AU^3
$Astr.Const. \rightarrow S$ Upload	X	1.98855e+30	k,g
/ Coalesce	X	35.65232	$g^{-1}.m^3$
INV SQRT	\mathbf{X}	5.97096	$g^{-0.5}.m^{1.5}$
$Astr.Const. \rightarrow k $ Upload	X	8.16935e-6	m ^{1.5} .kg ^{-0.5} .sc ⁻¹ .rad
/ Coalesce	X	23113000.77390	$sc.rad^{-1}$
2 PI *	X	6.28319	
Angle ightarrow rad	X	145223266.86740	SC
$Time \rightarrow [dy]$			
INV Convert Sto 1	X	1680.82485	dy
E partimos para encontrar o	prir	neiro perihélio apó	os a época E_0 :
$oxed{Ceres}\!$	X	334.32717	deg
$\boxed{360 \text{Angle} \rightarrow \left[\text{deg} \right] $\not\!$	X	360	deg
/ Rcl 1 *	X	1560.95948	dy
	X	58239.04052	dy
Astr.Const. o [mdj0][Upload]	X	2400000.50000	dy
+ Sto 2	X	2458239.54052	dy
$\boxed{ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	X	1.04052:5:2018	dy.mth.yr

Agora, vamos atrás de quantos períodos encaixam entre J_{q0} e 15/05/2023. Digamos que a data juliana deste último esteja em R_0 ,

JulD Rcl 0 -	\mathbf{X}	-1839.95948	dy
CHS Rcl 1 /	\mathbf{X}	1.09468	
INT 1 +	\mathbf{X}	2.00000	
Rcl 1 *	\mathbf{X}	3361.64970	dy
Rcl 2 +	\mathbf{X}	2461601.19021	dy
$oxed{INV} egin{pmatrix} GrgD \end{pmatrix} & (J_q) \end{pmatrix}$	\mathbf{X}	14.69021:7:2027	dy.mth.yr

Dada esta data, e sabendo o período (4.6yr), sabemos que o afélio vem antes do perihélio, então, subtraimos P/2 de J_q :

D.ddd Rcl 1	\mathbf{X}	1680.82485	dy
2 / -	X	2460760.77779	dy
$\fbox{ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	X	26.27779:3:2025	dy.mth.yr

4.6.3 Cometas

Encontrar o perihélio / afélio de cometas talvez seja a tarefa mais fácil entre os três tipos de objetos estudados aqui, porque o último perihélio já vem nos dados: T_P . Podemos obter diretamente o número de ciclos j:

$$j = {\tt Ceil} \left[\frac{J - T_P}{P_C} \right].$$

E prosseguimos com os cálculos normais.

Exercício

1. Encontrar o próximo perihélio do cometa P/Halley.

Resposta: Primeiro, o período orbital

$\boxed{Comet} \boxed{1P/Halley} \rightarrow \boxed{q}$	\mathbf{X}	0.57472	AU
$ \boxed{1 \boxed{1 \text{P/Halley}} \rightarrow \boxed{e} \boxed{-} } $	\mathbf{X}	0.032057	
	\mathbf{X}	17.928	AU
3 (y^x)	\mathbf{X}	5762.1	AU^3
$Astr.Const. \rightarrow S$ Upload	X	1.9885e+30	kg
/ INV SQRT	X	5.3830e-14	$kg^{-0.5}.AU^{1.5}$
$Astr.Const. \rightarrow \boxed{k} \boxed{Upload}$	\mathbf{X}	0.0000081694	$m^{1.5}.kg^{-0.5}.sc^{-1}.rad$
/ Coalesce	\mathbf{X}	3.8126e+8	$\mathrm{sc.rad}^{-1}$
2 PI *	\mathbf{X}	6.2832	
$\overline{\mathrm{Angle}}{ ightarrow}$ $\overline{[\mathcal{V}_x]}$	\mathbf{X}	6.2832	rad
*	\mathbf{X}	2.3955e+9	SC
$\overline{\text{Time}} \rightarrow \boxed{dy}$			
INV Convert Sto 9	X	27726.14876	dy

Agora, vamos entrar com a data e achar o número de ciclos orbitais:

15:5:2023	\mathbf{X}	15:05:2023	
$Time \rightarrow \left[dy \right] \boxed{\mathcal{V}_x}$	\mathbf{X}	15:05:2023	dy
$\text{Time} \rightarrow \boxed{\text{mth}} \boxed{\mathscr{V}_x}$	\mathbf{X}	15:05:2023	dy.mth
$Time \rightarrow yr y_x$	\mathbf{X}	15:05:2023	dy.mth.yr
JulD	\mathbf{X}	2460079.50000	dy
T_p	\mathbf{X}	2446470.14890	dy
	\mathbf{X}	13609.35110	dy
	\mathbf{X}	0.49085	

Vemos que, obviamente, não ocorreu qualquer perihélio do cometa de Halley, depois deste último! Então, para saber o próximo, basta somar o perído T_p .

Rcl 9	X [27726.14876	dy
T_p +	X	2474196.29766	dy
$oxed{INV} egin{pmatrix} GrgD \ (J_q) \end{pmatrix}$	X	6.79766:1:2062	dy.mth.yr

Haverá somente uma passagem do cometa de Halley no século XXI, contrariamente do passado, quando tivemos duas: (1911 e 1986).

Para saber o próximo afélio, também é fácil:

D.ddd Rcl 9	X	27726.14876	dy
2 / -	\mathbf{X}	2432607.07452	dy
$oxed{INV} oxed{GrgD}(J_Q)$	X	23.72328:1:2024	dy.mth.yr

Janeiro de 2024! Ali na porta! Infelizmente não temos dispositivo para detectá-lo. Sua magnitude será mais de 26, muito mais fraco do que o próprio fundo do céu.

4.7 Velocidade dos Astros no Perihélio e Afélio

A velocidade de um astro solar no perihélio e afélio é encontrada facilmente, uma vez que o deslocamento é perpendicular ao raio vetor. Ela é:

$$V_P = \frac{2\pi a}{T} \sqrt{\frac{1+e}{1-e}},$$

no perihélio, e

$$V_A = \frac{2\pi a}{T} \sqrt{\frac{1-e}{1+e}},$$

4.8. A LUA 101

no afélio.

Exercício

1. Calcule a velocidade da Terra no perihélio e no afélio.

Resposta:

$ \boxed{1} \ \boxed{Earth} \rightarrow \boxed{e} \boxed{+} $	X	1.0167	
	\mathbf{X}	1.0340	
INV SQRT Enter	X	1.0169	
2 PI *	X	6.2832	
$Earth \rightarrow a$ *	X	6.2832	AU
$Astr.Const. \rightarrow Syr Upload /$	\mathbf{X}	0.017202	dy^{-1} .AU
Coalesce Enter	\mathbf{X}	29785	$\mathrm{sc}^{-1}.\mathrm{m}$
	X	30287	$\mathrm{sc}^{-1}.\mathrm{m}$
$\downarrow \qquad (Ap)$	\mathbf{X}	29291	$\mathrm{sc}^{-1}.\mathrm{m}$

4.8 A Lua

Os elementos orbitais da Lua não são confiáveis, uma vez que muitos deles são nulos na KM-AstCalc. Os únicos dados disponíveis são os parâmetros físicos, como a massa, diâmetro, etc.

O movimento da Lua é complexo. É influenciado pelas forças de maré do Sol, que são notáveis, tal que, mais do que o simples modelo dos dois corpos (Terra - Lua) para o movimento orbital será necessário para uma precisão aceitável.

Exercício

1. Compare o comprimento do dia da Lua (D) e seu período orbital (T_0) . A que conclusões você chega?

Resposta:

$oxed{Moon} oldsymbol{ ext{D}}$	X	708.70	hr	
$oxed{Moon} ightarrow oxedsymbol{T_0}$	X	27.300	dy	

As unidades não são as mesmas, então, vamos converter uma delas:

$Time \rightarrow hr$ INV Convert	X	655.20	hr	
-	X	53.500	hr	

O comprimento do dia da Lua excede o período orbital em 53\hat{.}5, tal que o lado visível da lua aponta para um outro lugar, após uma lunação completa. Para a Lua apontar sempre o mesmo lado para a Terra, o período orbital não pode ser do seu comprimento do dia.

Apêndice A

Atalhos no Teclado

KM-AstCalc permite você use atalhos para carregar unidades (escaladas ou não), e constantes diretamente no registro-X sem a necessidade de clicar com o mouse nos botões virtuais da tela. Vem a calhar se você tem que usar a mesma operação repetidamente. Usar os atalhos do teclado pode permitir que você ganhe alguns minutos preciosos e chegar ao resultado rapidamente.

Você encontra nos Apêndices de A a D as instruções de acessar esses atalhos e a lista de teclas para obtê-los. Quatro configurações do teclado são disponíveis, empregando um "chaveamento", isto é, premindo teclas de controle. Essas quatro chaves permitem você inserir unidades ou constantes que desejar, assim como executar operações com as funções matemáticas disponíveis. São elas:

- 1. O teclado "direto";
- 2. PgDn chaveia para o teclado de unidades;
- 3. End chaveia para o teclado das escalas de unidades;
- 4. PgUp chaveia para o teclado das constantes;
- 5. f chaveia para a mudança de format numérico.

A tecla especial \bigcap faz o papel do botão na tela \bigcap .

A.1 O Teclado "direto"

Você pode pressionar qualquer tecla numérica para compor o número desejado no registro-X. Use o para entrar o símbolo potência de 10 "E". Ou

tecla especial ② é usada para compor tempo e ângulos em hexadecimal, assim como datas.

A Tab. (A.1) mostra a lista de comandos que você pode aplicar diretamente premindo as respectivas teclas. Por exemplo, você pode calcular o seno de um ângulo premindo a tecla \circ no teclado¹.

Os Apêndices (B) a (C) instruem sobre atalhos de teclado com detalhes.

Exercício

1. Calcule sin 35°28′56″

Resposta:

(a) Usando o mouse nos comandos da tela:

3 5	\mathbf{X}	35	
INV : 2 8	\mathbf{X} [35:28	
INV : 5 8	\mathbf{X} [35:28:56	
deg	\mathbf{X} [35:28:56	deg
INV D.ddd	\mathbf{X} [35.482	deg
SIN	X [0.58045	

(b) Usando o teclado

3 5 X	35	
9 2 8 X	35:28	
9 5 8 X	35:28:56	
PgDn o X	35:28:56	deg
X	35.482	deg
S X	0.58045	

¹Maiúsculas e minúsculas fazem diferença. E não esqueça que as funções trigonométricas só são calculadas se acompanhadas da unidade correta.

Key	×	×	;	7 .	+	\mathbf{S}	C	H	Ь			[·		7		_											_
		5	£	17.	(HN	HS	HN				Kox	INCY	٦ (7 0	η,	4	2	9	7	∞	6	0		,	. Fi	1
Function	/ Ln	ğ0'1 <u>Σ</u>	SORT		. X Y	I ASNH	CSH ACSH	TNH ATNH	$\pi/2$			Lundion	CETOII														
Fun	Exp	10^X	SOB		X X	$_{ m HNS}$	CSH	TNI	H	×		7	-	٦ ٥	7 0	ر د	7	ಬ	9	7	∞	6	0		· -	· . [i	ב
y.					Τ							Key	_	n / U	Home	ম	Insert	Delete		+	Finter	2	III	r			
Key	→	Д	,	S	٠) +	_				-						Ė						+				
		toPolar toKect	D:M:S D.dddd	sin asin	2026 202		tan atan					Function	Inv*	Carrega unidades	Coalesce Convert	Convert	Clean Clean All		Rdown	Inv Bun	Enter Down		70	RCL			
	\dashv	<u>ک</u>	\square		15	7 4	.5					<u> </u>	Ir	O	O	0				<u> </u>		1 0	J (<u>~</u>			
1	Key	+	-	*	_	\		Kon	Ivey	-	Ω	V	I	\downarrow	n	8%			Коу		ج د	-	. (<u></u>	#	W	
	Function	$\operatorname{Sum} X + Y$	Difference Y-X	Product Y*X	Division V/X	V/ T HOISINIT		Dungtion	Function	CHS ADG ADG	—	1/X	INT FRAC	X-Y LstX	RND	% D%			Function	InlD Greon	Kenler	FoH HEA		HEC ECE	EGa GaE	GST0	

^{*} Funções que aceitam "Inv" trocam com o sinal "\".

Tabela A.1: Comandos no teclado

Apêndice B

Atalhos para Unidades (Sequências PageDown)

Você pode usar atalhos no teclado para acessar as unidades sem necessidade de usar os campos de opções na tela. Embaixo na página da KM-AstCalc, você encontra o link "Shortcuts". Ali você encontra listas de todos os atalhos que você pode acessar, sejam unidades, constantes, ou funções na KM-AstCalc. Todas as funções presentes na tela da KM-AstCalc pode ser acionada através de um atalho no teclado.

As teclas precessidas por "PageDown" (PgDn) no teclado permite acessar as unidades. Com KM-AstCalc na tela, pressione PgDn , e você verá o painel das unidades sendo colorido pela cor azul clara, indicando que qualquer tecla que se segue vai definir uma unidade que será carregada no registro-X, como abaixo:

Você, então, escolhe a letra que corresponde à unidade desejada. Para levantar seu inverso, pressione (função INV) antes de escolher a unidade. Desta forma a unidade será carregada diretamente no campo de unidade no registro-X. Após escolher as unidades, tecle u ou U para carregá-las no registro X das unidades.

As listas de unidades disponíveis na KM-AstCalc são mostradas nas Tabelas B.1 a B.5.

															orvida	uivalente
	Type	Quant. substancia	Temperatura	Temperatura	Temperatura	Energia, Trab., Calor	Atividade Catalítica		ão	Type	Intensidade luminosa	Fluxo luminoso	Iluminância	Radioactividade	Radiação ionizante absorvida	Radiação absorvida equivalente
Termo	PgDwn seq	*	刄	D	ĹΤι	ď	J		Radiação	PgDwn seq	©	W	Ι	ᅯ	Я	D
	Symbol	lom	$^{\circ}\mathrm{K}$	၃ ့	o.F	cal	kat			Symbol	cq	lm	lx	Bq	Gy	Sv
	Unit	mole	kelvin	celsius	farenheit	calorie	katal			Unit	candela	lumen	lux	becquerel	gray	slevert
						PgDwn seq	20	L	w	8	0					
					Massa	Symbol	5.0	$_{ m Lh}$	S	lb	0					
						Unit	gram	ton	SunMass	libra	arroba					

Tabela B.1: Unidades disponíveis na KM-AstCalc: Thermo, Radiation e Mass.

		Momento	
Unit	Symbol	PgDwn seq	Type
kt	knot		Velocidade
mach	M	^	Velocidade
light speed	C	+	Velocidade
gravity	grav	n	Aceleração, Campo Potencial
newton	Z	Z	Força, peso
pascal	Pa	4	Pressão, tensão
bar	bar	9	Pressão, tensão
atm	atmosphere	\	Pressão, tensão
joule	ſ	į	Energia, Trabalho, Calor
erg	erg	2	Energia, Trabalho, Calor
electron volt	eV	Λ	Energia, Trabalho, Calor
watt	M	t	Potência, Fluxo radiante
horse-power	$^{ m dy}$	2	Potência, Fluxo radiante
${ m LNL}_*$	TNT	Z	Energia, Trabalho, Calor

 $\ ^{*}Equivalente\ em\ energia\ da\ tonelada-dinamite.$

Tabela B.2: Unidades disponíveis na KM-AstCalc: Momentum & Electro-Mag

		ElectroMag	Mag
Unit	Symbol	PgDwn seq	Type
ampere	A	A	Corrente elétrica
conlomb	C	2	Carga Elétrica
volt	Λ	Λ	Potencial elétrico ,Voltagem,FEM
farad	Far	р	Capacitância
ohm	υ	0	Resistancia,Impedância,Reatância
siemens	S	3	Condutância elétrica
weber	Wb	В	Fluxo magnético
tesla	Les	1	Densidade de Fluxo Magnético
henry	Н	р	Indutância

Tabela B.3: Unidades disponíveis na KM-AstCalc: ElectroMag

	Es	Espaço	
Unit	Symbol	Symbol PgDwn seq	\mathbf{Type}
metre	m	m	Comprimento
inch	in	n	Comprimento
foot	ft	J	Comprimento
yard	yd	,	Comprimento
mile	mi	8	Comprimento
nautical mile	nmi	W	Comprimento
angstron	AA	_	Comprimento
astronomic unit	AU	X	Comprimento

	\mathbf{Type}	Comprimento	Comprimento	Superfície	Superfície	Volume	Volume	Volume	Volume	Volume
Espaço	\mathbf{PgDwn} seq	d	Y	6	\$	Т	Z	,	ß	Ь
	Symbol	bc	ly	are	ac	Г	ZO	Bar	Gal	Pin
	\mathbf{Unit}	parsec	lightyear	are	acre	litre	onça	barrel	gallon	pint

Tabela B.4: Unidades disponíveis na KM-AstCalc: Space.

	Type	Tempo	Tempo	Tempo	Tempo	Tempo	Tempo	Tempo	Frequência	
Tempo	\mathbf{PgDwn} seq	S	n	Ч	B	е	У	Э	Z	
	Symbol	s	uш	hr	ф	ųзш	Уľ	Cen	Hz	
	Unit	second	minute	hour	day	month	year	century	hertz	

	$\hat{\mathbf{A}}_{\mathbf{ngulo}}$	0
Unit	Symbol	\mathbf{PgDwn} seq
radian	rad	ı
$_{ m degree}$	deg	0
minute	mim	,
second	sec	"
grad	grd	0
Hour	hour	Н
H-min	hmin	=
H-sec	hsec	+

Tabela B.5: Unidades disponíveis na KM-AstCalc: Time & Angle.

Apêndice C

Atalhos para as Constantes (Sequências PageUp)

Assim como você tem atalhos para as unidades na KM-AstCalc, através das sequências 'PageDown', você pode acessar as constantes registradas na KM-AstCalc empregando as sequências 'PageUp'. Quando você pressiona PgUp no teclado, os paineis dos campos de opções das constantes físicas e astronomicas se tornam laranjas, como abaixo:

Isso é sinal que a próxima tecla pressionada vai carregar a constante respectiva no registro-X. Digamos, pressionando PgUp e vai carregar a massa do elétron no registro-X. Por outro lado, pressionando PgUp X vai carregar o valor da Unidade Astronômica (AU).

As listas dos atalhos para as constantes físicas e astronômicas são mostradas nas Tabs. C.1 e C.2.

Physical constants			
Name	Symbol	PgUp sequence	
alpha particle mass	AP	A	
angstron star	A*	*	
atomic mass	ma	a	
Avogadro constant	NA	N	
Bohr magneton	μВ	b	
Bohr radius	a0	В	
Boltzmann constant	kB	K	
impedance of vacuum	Z0	W	
electron radius	re	!	
deuteron mass	DM	Q	
electron mass	me	e	
electron volt	eV	v	
elementary charge	е	q	
Faraday constant	F	F	
fine-structure constant	α	f	
Hartree energy	Eh	Т	
Josephson constant	K	1	
lattice parameter Si	a	t	
molar gas constant	R	R	
nuclear magneton	μN	(
Planck constant	h	h	
proton mass	P	&	
Rydberg constant	$R\infty$	x	
speed of light	c	c	
acceleration of gravity	g	g	
standard atmosphere	Atm	m	
Stefan-Boltzmann constant	Σ	s	
electric permittivity	ϵ	n	
magnetic permeability	μ	U	
von Klitzing constant	Rk	V	

Tabela C.1: Constantes físicas.

Astronomical constants			
Name	Symbol	PgUp sequence	
Astronomical Unit	AU	X	
parsec	pc	p	
kiloparsec	Kpc	Р	
megaparsec	Mpc	M	
lightyear	ly	Y	
Modified Julian Day	mdj0	j	
Julian Year	JulYr	J	
Julian Century	JulCy	у	
Epoch 2000-Jan-1.5TD	J2000.0	0	
Besselian Epoch	B1950.0	%	
Sidereal Year	Syr	/	
Tropical Year	Tyr	[
Gregorian Year	Gyr]	
acceleration of gravity	g	g	
constant of gravitation	G	G	
mass of Sun	S	S	
Gaussian gravitational constant	k	k	
Equatorial radius for Earth	Re	О	
Earth ellipticity	e	i	
Geocentric gravitational constant	GE	D	
Earth mass / Moon mass	$1/\mu$	u	
Precession in longitude	ρ	r	
Precession in RA	m	Z	
Precession in DEC	n	Z	
Obliquity of ecliptic	ε	0	
Sidereal rate	ϵ	:	
Constant of nutation	N	2	
Constant of aberration	х	1	
Heliocentric gravitational constant	GS	L	
Sun mass / Earth mass	S/E	E	
Sun mass / Earth+Moon mass	S/E+M	#	
Hubble constant	Н0	Н	
Solar luminosity	L0	W	

Tabela C.2: Constantdes astronômicas.

Apêndice D

Atalhos para o Fator de Escala (Sequências End)

Pressionando a tecla End você tem a possibilidade de adicionar um fator de escala à unidade que quer carregar. Por exemplo, pressionando End , seguido de k você adiciona o prefixo "kilo" à unidade escolhida, digamos, escolhendo PgDn m (metro) como unidade, você terá "k,m" no campo de unidade do registro-X. Ao pressionar End o sub-painel de Escalas (Scale) torna-se violeta, como abaixo:

Então, pressionando a tecla relativa à escala, você acrescenta a escala correspondente à unidade que será escolhida. A Tab. 1.2 mostra as teclas ligando o fator de escala no campo de opções "Scale".

Apêndice E

Atalho para Formato e Notação Numérica

Pressionando a tecla **f** coloca KM-AstCalc no modo de definição do formato e notação numérica. O sub-painel de formato fica com a cor verde, como abaixo

Então, você pode pressionar as teclas **F**, para a notação 'Fix', **S** para notação 'Sci' e **E** (de engenharia) para notação 'Prc'¹. Além disso, pressionando as teclas **0** a **9**, ou **A**, **B**, **C** para definir o número de dígitos de zero a doze, que é a máxima precisão a que chega o JavaScript.

 $^{^1\}mathrm{Todas}$ as letras aqui são maiúsculas.