Galton Board

Application of dynamic memory allocation

outline

- Introduction, see https://www.youtube.com/shorts/Kq7e6cj2nDw
- Apply dynamic spaces to represent a 2-dimensional array where number of columns differ from row to row.
- Implementation
- Read: Section 7.5, Arrays and Vectors of Pointers

Arrays and Vectors of Pointers

When you have a sequence of pointers, you can place them into an array or vector.

An array and a vector of ten int* pointers are defined as

```
int* pointer_array[10];
vector<int* > pointer_vector(10);
```

Arrays and Vectors of Pointers – A Triangular Array

In this array, each row is a different length. It would be inefficient to use a two-dimensional array, because almost half of the elements would be wasted

A Triangular Array

In this array, each row is a different length. It would be inefficient to use a two-dimensional array, because almost half of the elements would be wasted

Program Example: A Galton Board

A Galton board consists of a pyramidal arrangement of pegs and a row of bins at the bottom.

Balls are dropped onto the top peg and travel toward the bins.

At each peg, there is a 50 percent chance of moving left or right.

The ball counts in the bins approximate a bell-curve distribution.

https://www.youtube.com/watch?v=6YDHBFVIvIs

Conversion

• Image containers are before, between, and after pegs. Once a ball is bounded to the left, the ball passes the container left to the peg, otherwise, the ball passes the container right to the peg.

Conversion: II

- Each container records the number of balls passing it.
- How to represent the containers?

Galton board: throw a ball

A Galton Board Simulation

We will simulate a board with ten rows of pegs.

Each row requires an array of counters.

The following statements initialize the triangular array:

```
counts
int* counts[10];
for (int i = 0; i < 10; i++)
   counts[i] = new int[i + 1];
```

A Galton Board Simulation: Printing Rows

We will need to print each row:


```
// print all elements in the ith row
for (int j = 0; j <= i; j++)
{
    cout << setw(4) << counts[i][j];
}
cout << endl;</pre>
```

A Galton Board Simulation: Ball Bouncing on Pegs We will simulate a ball bouncing through the pegs:

```
row 1
                                row i + 1-
        int r = rand() % 2;
                                          column
        // If r is even, move down,
        // otherwise to the right
                                              column
        if (r == 1)
           j++;
Counts[i][j]++;
```

Copyright © 2008 by John Wiley &

Sons. All rights reserved

A Galton Board Simulation: Complete

```
#include <iomanip>
#include <cstdlib>
#include <ctime>
using namespace std;
int main()
   srand(time(0));
   int* counts[10];
   // Allocate the rows
   for (int i = 0; i < 10; i++)
       counts[i] = new int[i + 1];
       for (int j = 0; j \le 1; j++)
          counts[i][j] = 0;
```

A Galton Board Simulation: Complete

```
// Simulate 1,000 balls
for (int run = 0; run < RUNS; run++)</pre>
   // Add a ball to the top
   counts[0][0]++;
   // Have the ball run to the bottom
   int j = 0;
   for (int i = 1; i < 10; i++)
      int r = rand() % 2;
      // If r is even, move down,
      // otherwise to the right
      if (r == 1)
         j++;
      counts[i][j]++;
```

A Galton Board Simulation: Complete

```
Print all counts
for (int i = 0; i < 10; i++)
   for (int j = 0; j \le i; j++)
      cout << setw(4) << counts[i][j];</pre>
   cout << endl;</pre>
// Deallocate the rows
for (int i = 0; i < 10; i++)
   delete[] counts[i];
return 0;
```

A Galton Board Simulation: Results

This is the output from a run of the program, with each number being a count of the balls that hit that peg in the triangle.

Note the bell-curve distribution of balls on the "bottom line":

```
1000
480 520
241 500 259
 124 345 411 120
  68 232 365 271
                   64
  32 164 283 329 161
                      31
                       88
                            22
  16
      88 229 303 254
   9
         147 277
                  273
                                13
         103 203 288 228 113
                                33
                                61
      18
          64 149 239 265 186
                                     15
```

Draw a column chart in excel (optional)

- Copy the last line of the previous slides (or your output) in the first cell of excel for temporary storage.
- 1 18 64 149 239 265 186 61 15 2
- Then type in the corresponding values in cells A2 A11 in excel.

	А	В	С	D	Е	
1	1 18	54 149	239 26	5 186	61 15	2
2	1					
3	18					
4	64					
5	149					
6	239					
7	265					
8	186					
9	61					
10	15					
11	2					

Draw a column chart in excel (optional): II

- Highlight cells with data, in this example, from A2 to A11.
- Click A2, then press Shift key, at the same type, click A11. Then all cells from A2 to A11 are selected.

		Α	
1	1	18	6
2			1
3		1	18
4		E	64
5		14	19
6		23	39
7		26	55
8		18	36
9		6	51
10		1	L 5
11			2

Draw a column chart in excel (optional): III

• Then in excel menu, choose Insert->chart->column.

Draw a column chart in excel (optional): IV

A chart graph is drawn.

