Formelsammlung

July 8, 2018

Contents

1	Bay	ves'scher Ansatz
	1.1	Entscheidungsregionen
		1.1.1 Ungleiche Klassifizierungswahrscheinlichkeit
		1.1.2 Fehlklassifizierung
		1.1.3 Umformung
		1.1.4 pq-Formel
	1.2	Zurückweisung
2	Lin	eare Klassifikatoren
	2.1	Fisher Diskriminante
	2.2	Lineare Kleinste Quadrate
3	Per	ceptron
1	Abs	standsmaße
5	Lös	ungen für Probeklausur
	5.1	ProbeKlausur Muster SS17
		5.1.1 Aufgabe 1
		5.1.2 Aufgabe 2
		5.1.3 Aufgabe 5
	5.2	Prüfungs SS17
		5.2.1 Aufgabe 1

1 Bayes'scher Ansatz

1.1 Entscheidungsregionen

Bei gleicher Klassifizierungswahrscheinlichkeit gilt

$$p(x|C_1) = p(x|C_2)$$

$$p(x|C_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \cdot e^{\frac{-\frac{1}{2}(x-\mu_i)^2}{\sigma_i^2}}$$

1.1.1 Ungleiche Klassifizierungswahrscheinlichkeit

Wenn eine Klasse wahrscheinlicher ist so gilt

$$p(C_1) \cdot p(x|C_1) = p(x|C_2) \cdot p(C_2)$$

$$\frac{p(C_1)}{p(C_2)} \cdot \frac{\sqrt{2\pi\sigma_2^2}}{\sqrt{2\pi\sigma_1^2}} = e^{\frac{-\frac{1}{2}(x-\mu_2)^2}{\sigma_2^2} - \frac{-\frac{1}{2}(x-\mu_1)^2}{\sigma_1^2}}$$

 $\frac{p(C_1)}{p(C_2)}$ definieren wir als \mathcal{P} . Als Reziproge von \mathcal{P} bezeichnen wir \mathcal{P}' . Bei gleichen Wahrscheinlichkeiten $p(C_{1/2})=0,5$ ist $\mathcal{P}=1$ und kann ignoriert werden.

1.1.2 Fehlklassifizierung

Wenn eine Verlustmatrix V gegeben ist so wird die Gewichtung der Fehlklassifikation pro Klasse berücksichtigt über

$$V_{1,2} \cdot p(x|C_1) = p(x|C_2) \cdot V_{2,1}$$

$$\frac{V_{1,2}}{V_{2,1}} \cdot \frac{\sqrt{2\pi\sigma_2^2}}{\sqrt{2\pi\sigma_1^2}} = e^{\frac{-\frac{1}{2}(x-\mu_2)^2}{\sigma_2^2} - \frac{-\frac{1}{2}(x-\mu_1)^2}{\sigma_1^2}}$$

 $\frac{V_{1,2}}{V_{2,1}}$ definieren wir als \mathcal{V} . Bei gleicher Verlustgewichtung $V_{(1/2),(2/1)}=x$ ist $\mathcal{V}=1$ und kann ignoriert werden.

1.1.3 Umformung

Mit diesen Parametern kann die Formel wie folgt umgeformt werden

$$ln(\mathcal{P} \cdot \mathcal{V} \cdot \frac{\sqrt{\sigma_2^2}}{\sqrt{\sigma_1^2}}) = \frac{-\frac{1}{2}(x - \mu_2)^2}{\sigma_2^2} - \frac{-\frac{1}{2}(x - \mu_1)^2}{\sigma_1^2}$$
(1)

$$\sigma_2^2 \cdot \sigma_1^2 \cdot \ln(\mathcal{P} \cdot \mathcal{V} \cdot \frac{\sqrt{\sigma_2^2}}{\sqrt{\sigma_1^2}}) = -\frac{1}{2} \cdot \sigma_1^2 (x - \mu_2)^2 - \frac{1}{2} \cdot \sigma_2^2 (x - \mu_1)^2$$
 (2)

$$= \sigma_1^2(x^2 - 2\mu_2 x + \mu_2^2) - \sigma_2^2(x^2 - 2\mu_1 x + \mu_1^2)$$
 (3)

$$= (\sigma_1^2 - \sigma_2^2) \cdot x^2 + (-\mu_2 \sigma_1^2 + \mu_1 \sigma_2^2) 2x + \sigma_1^2 \mu_2^2 - \sigma_2^2 \mu_1^2$$
(4)

$$0 = (\sigma_1^2 - \sigma_2^2) \cdot x^2 + (-\mu_2 \sigma_1^2 + \mu_1 \sigma_2^2) 2x + \sigma_1^2 \mu_2^2 - \sigma_2^2 \mu_1^2 + 2 \cdot \sigma_2^2 \cdot \sigma_1^2 \cdot ln(\mathcal{P} \cdot \mathcal{V} \cdot \frac{\sqrt{\sigma_2^2}}{\sqrt{\sigma_1^2}})$$
(5)

1.1.4 pq-Formel

Benötigt einen Ausdruck der Form $x^2+px+q=0$. Um die pq-Formel $x_{1/2}=-\frac{p}{2}\pm\sqrt{(\frac{p}{2})^2-q}$ anzuwenden muss der Term mit $/\div(\sigma_1^2-\sigma_2^2)$ umgeformt werden

1.2 Zurückweisung

$$p(C_1|x) \ge \theta$$

$$p(C_1|x) = \frac{p(C_1) \cdot p(x|C_1)}{p(x)}$$

$$p(x) = p(C_1) \cdot p(x|C_1) + p(C_2) \cdot (x|C_2)$$

$$\frac{p(C_1) \cdot p(x|C_1)}{p(C_1) \cdot p(x|C_1) + p(C_2) \cdot (x|C_2)} \ge \theta$$

Dieser Ausdruck hat die Form $\frac{A}{A+B}$ was umgeformt werden kann in $\frac{1}{1+\frac{B}{A}}$

$$\frac{1}{1 + \frac{p(C_2) \cdot (x|C_2)}{p(C_1) \cdot p(x|C_1)}} \ge \theta$$

$$1 \ge \theta (1 + \frac{p(C_2) \cdot (x|C_2)}{p(C_1) \cdot p(x|C_1)}) \tag{6}$$

$$\frac{1}{\theta} \ge 1 + \mathcal{P}' \cdot \frac{p(x|C_2)}{p(x|C_1)} \tag{7}$$

$$\frac{1}{\theta} - 1 \ge \mathcal{P}' \cdot \frac{\frac{1}{\sqrt{2\pi\sigma_2^2}} \cdot e^{\frac{-\frac{1}{2}(x - \mu_2)^2}{\sigma_2^2}}}{\frac{1}{\sqrt{2\pi\sigma_1^2}} \cdot e^{\frac{-\frac{1}{2}(x - \mu_1)^2}{\sigma_1^2}}}$$
(8)

$$\frac{1}{\theta} - 1 \ge \mathcal{P}' \cdot \frac{\sqrt{2\pi\sigma_1^2}}{\sqrt{2\pi\sigma_2^2}} \cdot e^{\frac{-\frac{1}{2}(x-\mu_2)^2}{\sigma_2^2} - \frac{-\frac{1}{2}(x-\mu_1)^2}{\sigma_1^2}} \tag{9}$$

Nun kann analog zu 1 der Term weiter umgeformt werden zu

$$0 = (\sigma_1^2 - \sigma_2^2) \cdot x^2 + (-\mu_2 \sigma_1^2 + \mu_1 \sigma_2^2) 2x + \sigma_1^2 \mu_2^2 - \sigma_2^2 \mu_1^2 + 2 \cdot \sigma_1^2 \cdot \sigma_2^2 \cdot ln((\frac{1}{\theta} - 1) \cdot \mathcal{P}' \cdot \frac{\sqrt{\sigma_2^2}}{\sqrt{\sigma_1^2}})) + \frac{1}{\theta} \cdot \frac{1}{$$

Nun muss für $p(C_2|x)$ dies Analog geschehen

$$\frac{p(C_2) \cdot p(x|C_2)}{p(C_1) \cdot p(x|C_1) + p(C_2) \cdot (x|C_2)} \ge \theta$$

$$\frac{1}{1 + \frac{p(C_1) \cdot p(x|C_1)}{p(C_2) \cdot p(x|C_2)}} \ge \theta$$

$$\frac{1}{\theta} \ge 1 + \mathcal{P} \cdot \frac{p(x|C_1)}{p(x|C_2)}$$

$$\frac{1}{\theta} - 1 \ge \mathcal{P} \cdot \frac{\sqrt{2\pi\sigma_2^2}}{\sqrt{2\pi\sigma_1^2}} \cdot e^{\frac{-\frac{1}{2}(x - \mu_1)^2}{\sigma_1^2} - \frac{-\frac{1}{2}(x - \mu_2)^2}{\sigma_2^2}}$$

$$0 = (\sigma_2^2 - \sigma_1^2) \cdot x^2 + (-\mu_1 \sigma_2^2 + \mu_2 \sigma_1^2) 2x + \sigma_2^2 \mu_1^2 - \sigma_1^2 \mu_2^2 + 2 \cdot \sigma_1^2 \cdot \sigma_2^2 \cdot ln((\frac{1}{\theta} - 1) \cdot \mathcal{P} \cdot \frac{\sqrt{\sigma_1^2}}{\sqrt{\sigma_2^2}})) + \frac{1}{2} \left(\frac{1}{\theta} - \frac{1}{\theta} - \frac{1}{\theta} \right) \cdot \frac{1}{\theta} \cdot \frac{$$

2 Lineare Klassifikatoren

2.1 Fisher Diskriminante

Brerechnen des Klassenmittelpunktes μ der Klasse i

$$\mu_i = \frac{1}{|i|} (\sum_{k \in C_1} x_k)$$

Berechnen der Kovarianz zwischen den Klassen

$$S_B = (\mu_2 - \mu_1)(\mu_2 - \mu_1)^T$$

Berechnen der Gesamtkovarianz innerhalb der Klassen

$$S_W = \sum_{k \in C_1} (x_k - \mu_1)(x_k - \mu_1)^T + \sum_{k \in C_2} (x_k - \mu_2)(x_k - \mu_2)^T$$
$$w^* = S_w^{-1}(\mu_2 - \mu_1)$$
$$w_0^* = w^{*T} \frac{1}{N} (N_1 \mu_1 + N_2 \mu_2)$$

wobei N die Anzahl aller Klassifizierten Vektoren und N_i die Anzahl der Vektoren die in der Klasse i ist

Klassifizieren eines Vektors V wird durch Wenn $V=\begin{pmatrix} x_1\\x_2 \end{pmatrix}$ so kann die Gleichung gegen null gesetzt werden und dieses Ergebniss ist die Diskriminanzfunktion.

$$-w^{*T} \cdot V - w_0$$

Das Signum des Ergebnisses gibt die Klassifizierung an.

2.2 Lineare Kleinste Quadrate

Berechnung der Diskriminanzfunktion w^*

$$w^* = (X^T X)^{-1} X^T t$$

3 Perceptron

Überführung des Inputs in höher Dimensionales Problem $x \in \! R^{D+1}$

$$x = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots \\ x_1 & x_2 & x_3 & x_4 & \dots \\ y_1 & y_2 & y_3 & y_4 & \dots \\ \vdots & & & & \\ g = w^T x + w_0 \cdot 1 \\ &= (w_1 \quad w_2) \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + w_0 \cdot 1 \\ &= (w_0 \quad w_1 \quad w_2) \cdot \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}$$

$$(10)$$

4 Abstandsmaße

 $d_1=$ manhatten Abstand. Definiert durch $d_1=|(x_1-x_2)|+|(y_1-y_2)|$ $d_2=$ euklidischer Abstand. Definiert durch $d_2=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$

5 Lösungen für Probeklausur

5.1 ProbeKlausur Muster SS17

5.1.1 Aufgabe 1

- a:
- b: $x_1 = 1,07449, x_2 = 8,06836$

• c:
$$x_1 = 0,590907, x_2 = 8,55195$$

• d:
$$x_1 = 1,00744, x_2 = 8,13541$$

• e:

$$p(C_1|x): x_1 = 0,8805, x_2 = 8.26236$$

 $p(C_2|x): x_1 = 1,2799, x_2 = 7,8629$

5.1.2 Aufgabe 2

- a:
- b: $S_w = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ $w^* = \begin{pmatrix} -4 \\ 9 \end{pmatrix}$
- c:
- d:

5.1.3 Aufgabe 5

• a

$$-a1 = \sqrt{5}$$

$$-a2 = 3$$

$$-a3 = \sqrt{5}$$

• b

Prüfungs SS17 5.2

5.2.1 Aufgabe 1

Aufgabe a:

Aufgabe b:

$$\mu_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \mu_2 = \begin{pmatrix} 12 \\ 4 \end{pmatrix}$$

$$S_w = \begin{pmatrix} 10 & -4 \\ -4 & 1 \end{pmatrix}$$

$$w^* = \begin{pmatrix} 6 \\ 12\frac{1}{2} \end{pmatrix} w_0 = 85.75$$

$$w^* = \begin{pmatrix} -4 & 1 \\ 6 \\ 12^{\frac{1}{2}} \end{pmatrix} w_0 = 85.75$$

Aufgabe c: