Pattern Recognition and Analysis BBL514E, Jan 12, 2010, Final Exam (25%).

1	2	3	4	5	Total
25	20	15	25	15	

Name:
Number:
Signature:
Duration, 120 min

Duration: 120 minutes.

Write your answers neatly in the space provided for them. Write your name on each sheet.

Books, notes and cellphones are closed.

Good Luck!

QUESTIONS

QUESTION1) [25 points, 5 points each] What is (use at most three sentences per question, you can use drawings, formulas, etc. also):

- a) the difference between a Bayesian Network and a Markov Random Network?
- b) the difference between bagging and Adaboost?
- c) the difference between k-means clustering and Gaussian Mixture Model (GMM) clustering?
- d) the Naïve Bayes classifier?
- e) the backpropagation algorithm?

QUESTION 2) [20 points]

Consider the Bayesian network given below and compute P(R|W).

QUESTION 3) [15 points]

The following are the actual outputs and outputs produced by 7 classifiers for a classification problem. The outputs on 3 training instances and 2 test instances are given.

Use **bagging** to compute the outputs for the test instances. What outputs do you produce and what is the confusion matrix for the test samples? Show all steps of your solution.

	Actual	$g_1(x)$	$g_2(x)$	$g_3(x)$	$g_4(x)$	$g_5(x)$	$g_6(x)$	g ₇ (x)
Train	0	0	1	0	0	0	1	1
	1	0	1	1	0	1	0	0
	0	1	0	0	1	1	0	0
Test	1	1	1	1	0	0	1	0
	0	0	1	0	1	0	0	0

QUESTION 4. [25 points]

Given an HMM $\lambda = (\pi, A, B)$ with state transition probability matrix A, emission probabilities B, initial state probabilities π , and two states and two symbols red and green,

$$\pi = [0.3 \ 0.7]^T$$

$$A = \begin{array}{|c|c|c|} 0.8 & 0.2 \\ 0.7 & 0.3 \end{array}$$

What is the $Pr(O|\lambda)$ where $O = \{green, green, green\}$

QUESTION 5. [15 points]

[7 points] Given the decision tree below and w10=10, w20=20, which class does the data point $[25,23]^T$ belong to?

[8 points] How do you produce a decision tree using using the entropy as the impurity criterion? Assume that you have a classification problem and binary inputs.

Extra sheet