Mathématiques I

Algèbre linéaire Systèmes d'équations linéaires

Dr. Mucyo Karemera (enseignant), Prof. Stéphane Guerrier

Matériel disponible en ligne: https://mkaremera-math1.netlify.app/

Licence: CC BY-NC-SA 4.0

Systèmes d'équations linéaires: définition

Pour déterminer les extrema d'une fonction z = f(x, y) sous la contrainte g(x, y) = c, nous avons résolu un système d'équations issu du Lagrangien (et de la contrainte):

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x}(x, y, \lambda) &= 0\\ \frac{\partial \mathcal{L}}{\partial y}(x, y, \lambda) &= 0\\ g(x, y) &= c \end{cases}$$

Nous allons désormais nous intéresser à un type particulier de système

Définition (Système linéaire).

Un système d'équations linéaires $m \times n$ consiste en m équations linéaires à n variables. Un tel système s'écrit en général

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

où les nombres $a_{i,j}$ et b_j sont des constantes nommées **coefficients** du système et x_i sont les **variables** du système $(1 \le i \le n, 1 \le j \le m)$

Systèmes d'équations linéaires: exemples

Les systèmes d'équations suivants sont tous linéaires

$$\begin{cases} 2x + 3y + 7z = 4 \\ x - 3y + 4z = 0 \end{cases} \begin{cases} 2x_1 + 3x_2 = 4 \\ -10x_1 + 2x_2 = -1 \\ x_1 + 5x_2 = 13 \end{cases} \begin{cases} 2x + 3y = 4 \\ -10x + 2y = -1 \end{cases}$$

Les deux premiers systèmes n'ont pas le même nombre d'équations que de variables. On parle de système **sous-déterminé** pour le premier et **sur-déterminé** pour le deuxième.

Les systèmes d'équations suivants ne sont pas linéaires

$$\begin{cases} 3y^2 + 2x + 7z = 4 \\ x - 3y + 4z = 0 \end{cases} \begin{cases} 2x_1 + 3x_2 = 4 \\ -10x_1 + 2x_2 = -1 \\ x_1x_2 + 5x_2 = 13 \end{cases} \begin{cases} 2x + 3y = 4 \\ -10x_3^3 + 2y = -1 \end{cases}$$

Systèmes d'équations linéaires: ensemble des solutions

Étant donné un système

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ & \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

une solution est un n-uple $(s_1, s_2, ..., s_n) \in \mathbb{R}^n$ qui vérifie toutes les équations du système. Trois cas peuvent se présenter:

- le système possède une unique solution
- le système possède une infinité de solutions
- le système ne possède aucune solution

On notera $\mathcal S$ l'ensemble des solutions. Résoudre un système d'équation (linéaire ou non) revient à déterminer ce dernier ensemble.

Systèmes d'équations linéaires: ensemble des solutions

On peut géométriquement comprendre pourquoi il n'y a pas d'autre possibilité pour $\mathcal S$ dans le cas de système 2×2 . Considérons les systèmes suivants

$$\begin{cases} 5x + 10y = 2 \\ x - 3y = 0 \end{cases} \begin{cases} 5x + 10y = 2 \\ 10x + 20y = 4 \end{cases} \begin{cases} 5x + 10y = 2 \\ 5x + 10y = 10 \end{cases}$$

Chaque équation correspond à l'équation d'une droite. Ainsi, une solution correspond à un point d'intersection des droites, d'où les trois possibilités mentionnées pour S.

Méthodes de résolution: par substitution

Cette méthode consiste à

- 1) isoler une variable dans l'une des équations pour l'exprimer en fonction des autres,
- 2) substituer cette dernière expression dans les autres équations pour qu'elles aient une variable de moins,
- 3) répéter cette procédure jusqu'à avoir une équation d'une variable dont on détermine la solution (s'il y en a une). De là, on détermine la valeur des autres variables.

Illustrons la méthode par l'exemple suivant

$$\begin{cases} 2x + 3y = 7 \\ x - 2y = 2 \end{cases} \Rightarrow \begin{cases} 2x + 3y = 7 \\ 2y + 2 = x \end{cases} \Rightarrow \begin{cases} 7y + 4 = 7 \\ 2y + 2 = x \end{cases}$$
$$\Rightarrow \begin{cases} y = \frac{3}{7} \\ x = 2y + 2 \end{cases} \Rightarrow \begin{cases} y = \frac{3}{7} \\ x = 2 \cdot \frac{3}{7} + 2 \end{cases} \Rightarrow \begin{cases} y = \frac{3}{7} \\ x = \frac{20}{7} \end{cases}$$

Il convient de toujours vérifier la solution obtenue

$$2x + 3y = 2 \cdot \frac{20}{7} + 3 \cdot \frac{3}{7} = \frac{40}{7} + \frac{9}{7} = \frac{49}{7} = 7$$

$$x - 2y = \frac{20}{7} - 2 \cdot \frac{3}{7} = \frac{20}{7} - \frac{6}{7} = \frac{14}{7} = 2$$

L'ensemble des solutions est donc $S = \{(20/7, 3/7)\}.$

Méthodes de résolution: par combinaison

Cette méthode repose sur le théorème suivant

Théorème (Opérations élémentaires).

L'ensemble S des solutions d'un système linéaire reste inchangé par

- 1) l'échange de deux équations dans le système
- 2) la multiplication d'une équation par une constante non nulle
- 3) l'addition d'une équation avec un multiple quelconque d'une autre équation

La méthode par combinaison consiste à utiliser les points du théorème pour déterminer S. On reprend l'exemple précédent pour l'illustrer.

$$\begin{cases} 2x + 3y = 7 & \xrightarrow{\ell_1 \leftrightarrow \ell_2} \\ x - 2y = 2 & \Longrightarrow \end{cases} \begin{cases} x - 2y = 2 & \xrightarrow{\ell_2 := \ell_2 - 2\ell_1} \\ 2x + 3y = 7 & \Longrightarrow \end{cases} \begin{cases} x - 2y = 2 \\ 7y = 3 \end{cases} \Longrightarrow \begin{cases} x - 2y = 2 \\ y = 3/7 \end{cases}$$

On voit dès lors qu'on obtient le même résultat qu'auparavant, i.e.

$$S = \{(20/7, 3/7)\}.$$

Élimination de Gauss

Dans les exemples qui suivent, nous allons utiliser les opérations élémentaires de sorte que la première variable, disons x_1 , n'apparaisse que dans la première équation, la deuxième, disons x_2 , que dans la première et la deuxième équation et ainsi de suite.

Ce procédé de résolution porte le nom d'élimination de Gauss et le système obtenu à la fin de cette procédure et nommé système échelonné. Les systèmes suivants sont échelonnés

$$\begin{cases} x - 2y = 2 \\ 7y = 3 \end{cases} \begin{cases} 2x_1 + 4x_2 + 6x_3 = 4 \\ 2x_2 + 9x_3 = 8 \\ 4x_3 = 3 \end{cases} \begin{cases} 6x_1 + 3x_2 = 12 \\ 2x_2 = 3 \\ 0 = 1 \end{cases} \begin{cases} 2x_1 + 4x_2 + 7x_3 = 1 \\ 2x_2 - 4x_3 = 3 \end{cases}$$

Il est plus simple de déterminer ${\cal S}$ pour un système sous cette forme.

On considère le système suivant

$$\begin{cases} 2x_2 - x_3 = -7 \\ x_1 + x_2 + 3x_3 = 2 \\ -3x_1 + 2x_2 + 2x_3 = -10 \end{cases}$$

et on calcule

$$\begin{cases} 2x_2 - x_3 = -7 \\ x_1 + x_2 + 3x_3 = 2 \\ -3x_1 + 2x_2 + 2x_3 = -10 \end{cases} \xrightarrow{\ell_1 \leftrightarrow \ell_2} \begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -7 \\ -3x_1 + 2x_2 + 2x_3 = -10 \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -10 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \frac{5}{2}\ell_2} \begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -10 \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -10 \end{cases} \xrightarrow{\ell_3 := \ell_3 - \frac{5}{2}\ell_2} \begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -7 \end{cases} \xrightarrow{\ell_3 := \ell_3 - \frac{5}{2}\ell_2} \begin{cases} x_1 + x_2 + 3x_3 = 2 \\ 2x_2 - x_3 = -7 \end{cases}$$

Le système est maintenant échelonné et on déduit aisément de ℓ_3 que $x_3=1$ puis de ℓ_2 que $x_2=-3$ et enfin de ℓ_1 que $x_1=2$. En vérifiant cette solution, on conclue que

$$S = \{(2, -3, 1)\}.$$

On considère le système suivant

$$\begin{cases} 2x_1 + 4x_2 = 4 \\ 2x_1 - 3x_2 = 18 \\ x_1 - 4x_2 = 10 \end{cases}$$

et on calcule

$$\begin{cases} 2x_1 + 4x_2 = 4 \\ 2x_1 - 3x_2 = 18 \\ x_1 - 4x_2 = 10 \end{cases} \xrightarrow{\ell_2 := \ell_2 - \ell_1} \begin{cases} 2x_1 + 4x_2 = 4 \\ -7x_2 = 14 \\ -6x_2 = 8 \end{cases}$$

$$\ell_{2 := \ell_2 \div (-7)} \Rightarrow \begin{cases} 2x_1 + 4x_2 = 4 \\ k_1 - 4x_2 = 4 \end{cases} \xrightarrow{\ell_3 := \ell_3 - \ell_2} \begin{cases} 2x_1 + 4x_2 = 4 \\ k_2 = -2 \end{cases} \xrightarrow{\ell_3 := \ell_3 \div (-6)} \begin{cases} 2x_1 + 4x_2 = 4 \\ 0 = 2 \end{cases}$$

Le système est échelonné et mène à une contradiction. Il ne possède donc pas de solution. Dans ce cas, on écrit $\mathcal{S} = \emptyset$, où \emptyset désigne l'ensemble vide.

On considère le système suivant

$$\begin{cases}
5x_2 - 3x_3 = 1 \\
x_1 + 3x_2 - x_3 = 4 \\
2x_1 + x_2 + x_3 = 7
\end{cases}$$

et on calcule

$$\begin{cases} 5x_2 - 3x_3 = 1 \\ x_1 + 3x_2 - x_3 = 4 \end{cases} \xrightarrow{\ell_1 \leftrightarrow \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \\ 2x_1 + x_2 + x_3 = 7 \end{cases}$$

$$\ell_3 := \ell_3 - 2\ell_1 \Rightarrow \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 5x_2 - 3x_3 = 1 \end{cases} \xrightarrow{\ell_3 := \ell_3 + \ell_2} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 0 = 0 \end{cases}$$

Le système est échelonné et on peut déduire les solutions. En effet, de ℓ_2 on tire que $x_3=\frac{5}{3}x_2-\frac{1}{3}$, puis par substitution, on obtient de ℓ_1 que $x_1=-\frac{4}{3}x_2-\frac{11}{3}$. Après vérification, on conclut que

$$\mathcal{S} = \left\{ \left(\frac{11}{3} - \frac{4}{3}s, \, s, \, \frac{5}{3}s - \frac{1}{3} \right) \, \middle| \, s \in \mathbb{R} \right\}.$$

On considère le système suivant

$$\begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 2x_1 + 6x_2 - 2x_3 = 8 \end{cases}$$

et on calcule

$$\begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 2x_1 + 6x_2 - 2x_3 = 8 \end{cases} \xrightarrow{\ell_2 := \ell_2 - 2\ell_1} \begin{cases} x_1 + 3x_2 - x_3 = 4 \\ 0 = 0 \end{cases}$$

Le système est échelonné et les solutions se déduise de ℓ_1 d'où l'on tire que $x_3=x_1+3x_2-4$. Après vérification, on conclut que

$$S = \left\{ (s_1, s_2, s_1 + 3s_2 - 4) \mid s_1, s_2 \in \mathbb{R} \right\}.$$