伴随矩阵 三类初等变换 低阶矩阵逆矩阵 n阶矩阵逆矩阵 Binet-Cauchy 公式

线性代数第六次习题课

秦吴隽 PB20020661

数学科学学院

2023年4月15日

- 1 伴随矩阵
- 2 三类初等变换
- ③ 低阶矩阵逆矩阵
- 4 n阶矩阵逆矩阵
- 5 Binet-Cauchy 公式

定义

$$A^* = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}^T$$

其中 A_{ij} 是 a_{ij} 的代数余子式.

推论

对于任意方阵 $A \in \mathbb{F}^{n \times n}$,

$$A^*A = AA^* = \det(A)I$$

推论

对于可逆方阵 $A \in \mathbb{F}^{n \times n}$.

$$A^* = \det(A)A^{-1}$$

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times n}$,

$$(\lambda A)^* = \lambda^{n-1} A^*$$
$$(AB)^* = B^* A^*$$
$$\det(A^*) = (\det(A))^{n-1}$$

证明.

(1). 若 B 为 n 阶矩阵, $\det(\lambda B) = \lambda^n \det(B)$. 结合伴随矩阵的定义.

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$.

$$(\lambda A)^* = \lambda^{n-1} A^*$$

证明.

$$A^* = \det(A)A^{-1}, \ (\lambda A)^* = \det(\lambda A)A^{\lambda - 1},$$

$$\implies (\lambda A)^* = \lambda^n \det(A)\frac{1}{\lambda}A^{-1} = \lambda^{n-1}A^*.$$

对于 A 不可逆的情形用摄动法即可.

摄动法

对于不可逆矩阵 $A \in \mathbb{R}^{n \times n}$, 考虑 $\det(A + tI_n) = f(t)$. 则 f(t) 是一个至多 n 次多项式.

定理

在 \mathbb{C} 上, n 次多项式有 n 个根.

不妨设 f(t) 的 n 个根为 $\lambda_1, ..., \lambda_n \in \mathbb{C}$. 因为 A 不可逆, 故 $\det(A) = 0$, 所以 t = 0 是 f(t) 的一个根, 不妨记为 λ_1 .

令 $\delta = \min_{i \geq 2} |\lambda_i|$, 则 f(t) 在 $(-\delta, \delta) \setminus \{0\}$ 上没有根.

所以一定能找到一列 $\{t_m\} \in (-\delta, \delta) \setminus \{0\}$, 使得 $t_m \to 0$ 且 $\det(A + t_m I_n) \neq 0$

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times n}$,

$$(AB)^* = B^*A^*$$

证明.

(2). 若 A, B 均可逆, 则由推论

$$A^* = \det(A)A^{-1}, B^* = \det(B)B^{-1}.$$

且

$$(AB)^* = \det(AB)(AB)^{-1} = \det(A)\det(B)B^{-1}A^{-1}$$

= $\det(B)B^{-1}\det(A)A^{-1}$
= B^*A^*

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$, $B \in \mathbb{F}^{n \times n}$,

$$(AB)^* = B^*A^*$$

证明.

(2). 若 A, B 不都可逆, 不妨设 A 不可逆. 则存在 $\{t_m\}$ 满足 $t_m \to 0$ 且使得 $(A + t_m I_n)$ 可逆. 由前面证明知:

$$((A + t_m I_n)B)^* = B^* (A + t_m I_n)^*.$$

由连续性, 两边令 $m \to \infty$, 则有

$$(AB)^* = B^*A^*.$$

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$,

$$\det(A^*) = (\det(A))^{n-1}$$

证明.

(3). 由推论

$$A^*A = \det(A)I_n$$

两边取行列式:

$$\det(A^*A) = \det(A) \det(A^*)$$
$$\det(\det(A)I_n) = (\det(A))^n$$

2013-2014 期中

问题

对于任意方阵 $A \in \mathbb{F}^{n \times n}$, $n \ge 2$,

$$(A^*)^* = (\det(A))^{n-2}A$$

证明.

不妨设 A 可逆, 则由推论:

$$A^* = \det(A)A^{-1}.$$

则有

$$(A^*)^* = (\det(A)A^{-1})^* = (\det(A))^{n-1}A^{*-1}$$
$$= (\det(A))^{n-1}(\det(A)A^{-1})^{-1}$$
$$= (\det(A))^{n-2}A.$$

9 Q C

2014-2015 期中

问题

方阵 A 交换第 k,l 行得到 B, 则伴随矩阵 B^* 可由 A^* 经过怎样的初等变换得到?

证明.

记 Skl 为第一类初等变换矩阵.

$$S_{kl}A = B$$

两边取伴随

$$A^*S_{kl}^* = B^*$$

且由
$$\det(S_{kl}) = -1 = S_{kl}^{-1} = S_{kl}$$
:

$$-A^*S_{kl} = B^*$$

2015-2016 期中

问题

已知
$$3$$
 阶矩阵 A 的伴随矩阵 $A^*=\begin{bmatrix} -5 & 2 & -1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{bmatrix}$, 求 A .

证明.

$$A^*A = \det(A)I_n = (\det(A^*))^{\frac{1}{n-1}}I_n$$

对左边做初等变换:

$$\begin{bmatrix}
-5 & 2 & -1 & \pm 2 \\
10 & -2 & 2 & \pm 2 \\
7 & -2 & 1 & \pm 2
\end{bmatrix}$$

第四次作业 27

问题

设方阵 A 的逆矩阵 $A^{-1}=\begin{bmatrix}1&1&1\\1&2&1\\1&1&3\end{bmatrix}$, 求 A^* .

证明.

由推论:

$$A^* = \det(A)A^{-1}.$$

而

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

故

$$A^* = \frac{A^{-1}}{\det(A^{-1})}.$$

三类初等变换的定义

(1). 交换单位矩阵的第 i,j 行或第 i,j 列,

有以下性质:

$$S_{ij} = S_{ij}^{-1}.$$
$$\det(S_{ij}) = -1.$$

三类初等变换的定义

(2). 将单位矩阵的第i行或第i列乘以非零常数 λ ,

$$D_i(\lambda) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & \lambda & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

有以下性质:

$$D_i(\lambda)^{-1} = D_i(\frac{1}{\lambda}).$$

 $\det(D_i(\lambda)) = \lambda.$

三类初等变换的定义

(3). 将单位矩阵的第 j 行的 λ 倍加到第 i 行 (第 i 列的 λ 倍加到第 j 列),得 到

有以下性质:

$$T_{ij}(\lambda)^{-1} = T_{ij}(-\lambda).$$

$$\det(T_{ij}(\lambda)) = 1.$$

2012-2013 期中

问题

若对可逆矩阵 A 作如下初等变换后得到(可逆)矩阵 B, 那么相应地 $, B^{-1}$ 是由 A^{-1} 经怎样的变换得到的? 并说明理由.

- (1). 互换 A 的第 i 列与第 j 列.
- (2). 用非零数 λ 乘 A 的第 i 列.
- (3). 将 A 的第 i 列 μ 倍加到第 j 列上.

证明.

(1).

$$AS_{ij} = B \implies S_{ij}A^{-1} = B^{-1}$$

即交换 A^{-1} 的第 i,j 行.

2012-2013 期中

问题

若对可逆矩阵 A 作如下初等变换后得到(可逆)矩阵 B $, 那么相应地<math>, B^{-1}$ 是由 A^{-1} 经怎样的变换得到的? 并说明理由.

(2). 用非零数 λ 乘 A 的第 i 列.

证明.

(2).

$$AD_i(\lambda) = B \implies D_i(\frac{1}{\lambda})A^{-1} = B^{-1}$$

即将 A^{-1} 的第 i 行乘 $\frac{1}{\lambda}$.

2012-2013 期中

问题

若对可逆矩阵 A 作如下初等变换后得到(可逆)矩阵 B, 那么相应地, B^{-1} 是由 A^{-1} 经怎样的变换得到的? 并说明理由.

(3). 将 A 的第 i 列 μ 倍加到第 j 列上.

证明.

(3).

$$AT_{ij}(\mu) = B \implies T_{ij}(-\mu)A^{-1} = B^{-1}$$

即将 A^{-1} 的第 j 行 $-\mu$ 倍加到第 i 行上.

2014-2015 期中

问题

令 $A = S_{ij}D_i(\lambda)T_{ij}(\lambda)$, 其中 S_{ij} , $D_i(\lambda)$, $T_{ij}(\lambda)$ 是三种初等方阵, 则 A^{-1} .

证明.

$$A^{-1} = (S_{ij}D_i(\lambda)T_{ij}(\lambda))^{-1}$$
$$= T_{ij}(\lambda)^{-1}D_i(\lambda)^{-1}S_{ij}^{-1}$$
$$= T_{ij}(-\lambda)D_i(\frac{1}{\lambda})S_{ij}$$

2018-2019 期中

问题

设 A 为三阶矩阵,将 A 的第二列加到第一列得到矩阵 B, 再交换 B 的第二行与第三行得到矩阵 C, 记

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \ P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

则 C 与 A 的关系为?

证明.

$$P_1 = S_{23}, P_2 = T_{21}(1).$$

故

$$S_{23}AT_{21}(1) = C \implies P_1AP_2 = C.$$

矩阵求逆的方法

矩阵求逆的方法:

- (1). 行(列)初等变换法.
- (2). 矩阵分块求逆.
- (3). *伴随矩阵(只适用于子行列式好求的矩阵).
- (4). *Sherman-Morrison-Woodbury 公式

2013-2014 期中

问题

则 A 的逆矩阵为?

2013-2014 期中 Method 1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & -1 & & 1 \\ 0 & 0 & 2 & -2 & 0 & 1 & -1 \\ 0 & 0 & 0 & -4 & -1 & 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

2013-2014 期中 Method 2

则 B 是一个正交阵.

正交阵

定义

方阵A 满足, 各行(列)向量模长为 1, 且相互正交, 则称 A 是一个正交阵.

推论

若 A 是正交矩阵. 则

$$A^{-1} = A^T.$$

故而

$$A = 2B \implies A^{-1} = \frac{1}{2}B^{-1} = \frac{1}{2}B^{T}.$$

2019-2020 期中

问题

设 $a \neq 0$,

$$A = \begin{bmatrix} 0 & a & 0 & 0 \\ -a & 0 & a & 0 \\ 0 & -a & 0 & a \\ 0 & 0 & -a & 0 \end{bmatrix}$$

则 A 的逆矩阵为?

2019-2020 期中

矩阵分块初等变换例 4.4.2

给定分块矩阵, 其中 A 可逆

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

则有下列等式:

$$\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}$$
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I & -A^{-1}B \\ O & I \end{bmatrix} = \begin{bmatrix} A & O \\ C & D - CA^{-1}B \end{bmatrix}$$
$$\begin{bmatrix} I & O \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I & -A^{-1}B \\ O & I \end{bmatrix} = \begin{bmatrix} A & O \\ O & D - CA^{-1}B \end{bmatrix}$$

矩阵分块求逆 例4.4.3

问题

设 A, B, I 均为 n 阶方阵, 且 BA = 0, 计算分块矩阵的逆矩阵.

$$M = \begin{bmatrix} I & A \\ B & I \end{bmatrix}$$

$$\begin{bmatrix} I & A & I & O \\ B & I & O & I \end{bmatrix} \rightarrow \begin{bmatrix} I & A & I & O \\ O & I - BA & -B & I \end{bmatrix} = \begin{bmatrix} I & A & I & O \\ O & I & -B & I \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} I & O & I + AB & -A \\ O & I & -B & I \end{bmatrix}$$

习题四 35(4)

问题

求逆矩阵.

$$A = \begin{bmatrix} & & & A_1 \\ & & A_2 & \\ & \dots & & \\ A_k & & & \end{bmatrix}$$

其中 A_i 均可逆.

证明.

$$A^{-1} = \begin{bmatrix} & & A_k^{-1} \\ & & A_{k-1}^{-1} \\ & & & A_1^{-1} \end{bmatrix}$$

2018-2019 期中

问题

设 $a \neq 0$,

$$A = \begin{bmatrix} 0 & a & b \\ 0 & c & d \\ e & 0 & 0 \end{bmatrix}$$

则 A 的逆矩阵为?

证明.

用前一道题的结论.

2016-2017 期中

问题

求逆矩阵,

$$A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \cdots & 0 \\ 0 & 1 & \frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & \frac{1}{2} \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\frac{1}{2}$ 1	$0 \\ \frac{1}{2}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	$0 \\ \frac{1}{2}$		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	0 0		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
:	:	٠	:	:		:	:	٠	:	:		:	:	٠	:	:
0	0		1	$\frac{1}{2}$		0	0		1	$\frac{1}{2}$		0	0		1	$\frac{1}{2}$
0	0		0	1		0	0		0	1		0	0		0	$\tilde{1}$
1	0	0		0		1	$-\frac{1}{2}$	0		0	$\overline{}$	1	$-\frac{1}{2}$	$\frac{1}{4}$		0
0	1	0		0		0	1	0	• • •	0		0	1	$-\frac{1}{2}$	• • •	0
:	:	•	:	:		:	:	٠.	:	:			:	٠.	:	:
0	0		1	0		0	0		1	0		0	0		1	0
Lo	0		0	1		0	0		0	1		Lo	0		0	1

最终的结果为

$$\begin{bmatrix}
1 & -\frac{1}{2} & \frac{1}{4} & \cdots & (-\frac{1}{2})^{n-1} \\
0 & 1 & -\frac{1}{2} & \cdots & (-\frac{1}{2})^{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -\frac{1}{2} \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix}$$

2016-2017 期中

问题

求逆矩阵,

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ -1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & \cdots & 1 & 1 \\ -1 & -1 & \cdots & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ -1 & 1 & \cdots & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ -1 & -1 & \cdots & 1 & 1 & 1 & 1 \\ -1 & -1 & \cdots & -1 & 1 & 1 & 1 \\ \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 & 1 \\ 0 & 2 & \cdots & 2 & 2 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & 1 & \ddots \\ 0 & 0 & \cdots & 2 & 2 & 1 & 1 & 1 \\ 0 & 0 & \cdots & 0 & 2 & 1 & 1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 & 1 \\ 0 & 1 & \cdots & 1 & 1 & \frac{1}{2} & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & 1 & 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ 0 & 1 & \cdots & 1 & 1 & \frac{1}{2} & \frac{1}{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ 0 & 0 & \cdots & 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

200

2017-2018 期中

问题

求逆矩阵,

$$A = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ 1 & 2 & & & \\ \vdots & & \ddots & & \\ 1 & & & 2 \end{bmatrix}$$

对 A 作分块:

$$A = \begin{bmatrix} 0 & 1 & \cdots & 1 \\ \hline 1 & 2 & & \\ \vdots & & \ddots & \\ 1 & & & 2 \end{bmatrix} = \begin{bmatrix} 0 & \beta^T \\ \beta & 2I \end{bmatrix}$$

2017-2018 期中

对分块后的矩阵作初等变换:

$$\begin{bmatrix} 0 & \beta^{T} & 1 & 0 \\ \beta & 2I & 0 & I \end{bmatrix} \rightarrow \begin{bmatrix} -\frac{1}{2}\beta^{T}\beta & 0 & 1 & -\frac{1}{2}\beta^{T} \\ \beta & 2I & 0 & I \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & \frac{-2}{\beta^{T}\beta} & \frac{\beta^{T}}{\beta^{T}\beta} \\ \beta & 2I & 0 & I \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -\frac{2}{\beta^{T}\beta} & \frac{\beta^{T}}{\beta^{T}\beta} \\ 0 & 2I & \frac{2\beta}{\beta^{T}\beta} & I - \frac{\beta\beta^{T}}{\beta^{T}\beta} \end{bmatrix}$$

最终的结果为:

$$\begin{bmatrix} -\frac{2}{\beta^T\beta} & \frac{\beta^T}{\beta^T\beta} \\ \frac{\beta}{\beta^T\beta} & \frac{1}{2}(I - \frac{\beta\beta^T}{\beta^T\beta}) \end{bmatrix} = \begin{bmatrix} -\frac{2}{n-1} & \frac{1}{n-1} & \cdots & -\frac{1}{n-1} \\ \frac{1}{(n-1)} & \frac{1}{2} - \frac{1}{2(n-1)} & \cdots & -\frac{1}{2(n-1)} \\ \frac{1}{(n-1)} & -\frac{1}{2(n-1)} & \cdots & -\frac{1}{2(n-1)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{(n-1)} & -\frac{1}{2(n-1)} & \cdots & \frac{1}{2} - \frac{1}{2(n-1)} \end{bmatrix}$$

第六次作业 35(3)

问题

求逆矩阵,

$$A = \begin{bmatrix} & & & 1\\ & & 1 & 1\\ & \dots & & \vdots\\ 1 & 1 & \dots & 1 \end{bmatrix}$$

证明.

$$A = \begin{bmatrix} & & & -1 & 1 \\ & & & -1 & 1 \\ & \cdots & \cdots & \\ -1 & 1 & & \\ 1 & & & & \end{bmatrix}$$

第六次作业 35(5)

问题

求逆矩阵,

$$A = \begin{bmatrix} 1 + a_1 & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_3 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_n \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 + \frac{1}{a_1} & \frac{1}{a_1} & \frac{1}{a_1} & \frac{1}{a_1} & \cdots & \frac{1}{a_1} \\ \frac{1}{a_2} & 1 + \frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} \\ \frac{1}{a_3} & \frac{1}{a_3} & 1 + \frac{1}{a_3} & \cdots & \frac{1}{a_3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n} \end{bmatrix}$$

$$s = 1 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$

$$\rightarrow \begin{bmatrix} s & s & s & \cdots & s \\ \frac{1}{a_2} & 1 + \frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} \\ \frac{1}{a_3} & \frac{1}{a_3} & 1 + \frac{1}{a_3} & \cdots & \frac{1}{a_3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n} \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \frac{1}{a_1} & \frac{1}{a_2} & \frac{1}{a_3} & \cdots & \frac{1}{a_n} \\ \frac{1}{a_2} & \frac{1}{a_3} & \cdots & \frac{1}{a_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n} \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
\frac{1}{a_2} & 1 + \frac{1}{a_2} & \frac{1}{a_2} & \cdots & \frac{1}{a_2} \\
\frac{1}{a_3} & \frac{1}{a_3} & 1 + \frac{1}{a_3} & \cdots & \frac{1}{a_3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n}
\end{bmatrix} \xrightarrow{\begin{array}{c} \frac{1}{sa_1} & \frac{1}{sa_2} & \frac{1}{sa_3} & \cdots & \frac{1}{sa_n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{1}{a_n} & \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1 + \frac{1}{a_n}
\end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & & -\frac{1}{sa_1} & \frac{1}{sa_2} & \frac{1}{sa_2} & \cdots & \frac{1}{sa_2a_3} & \cdots & -\frac{1}{sa_n} \\
& & 1 & & -\frac{1}{sa_3a_1} & -\frac{1}{sa_3a_2} & \frac{sa_3-1}{sa_3} & \cdots & -\frac{1}{sa_3a_n} \\
& & \vdots & \vdots & \vdots & \ddots & \vdots \\
& & 1 & -\frac{1}{sa_na_1} & -\frac{1}{sa_na_2} & -\frac{1}{sa_na_3} & \cdots & \frac{sa_n-1}{sa_n^2}
\end{bmatrix}$$

其中 $s = 1 + \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$

Sherman-Morrison-Woodbury 公式

定理

设 $U, V \in \mathbb{F}^{n \times m}$, 则有

$$(I_n + UV^T)^{-1} = I_n - U(I_m + V^T U)^{-1}V^T.$$

推论

设 $U, V \in \mathbb{F}^{n \times 1}$, 则有

$$(I_n + UV^T)^{-1} = I_n - \frac{UV^T}{(1 + V^T U)}.$$

$$A = \begin{bmatrix} a_1 & & & & & \\ & a_2 & & & \\ & & a_3 & & \\ & & & \ddots & \\ & & & & a_n \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & & & & \\ & a_2 & & & \\ & & a_3 & & & \\ & & & \ddots & & \\ & & & & & a_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

 $A = D(I_n + UV^T).$

$$A = D(I_n + UV^T).$$

由 Sherman-Morrison-Woodbury 公式:

2015-2016 期中

问题

求逆矩阵,

$$A = \begin{bmatrix} 2 & 1 & 1 & \cdots & 1 \\ 1 & 3 & 1 & \cdots & 1 \\ 1 & 1 & 4 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & n+1 \end{bmatrix}$$

 $a_i = i$ 即可.

2020-2021 期中

问题

求逆矩阵,

$$A = \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 1 & 1+a & 1 & \cdots & 1 \\ 1 & 1 & 1+a & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1+a \end{bmatrix}$$

Binet-Cauchy 公式

定义

设 $A \in \mathbb{F}^{m \times n}$, $A \begin{pmatrix} i_1 & \dots & i_s \\ j_1 & \dots & j_s \end{pmatrix}$ 表示 A 的一个 s 阶子式, 它由 A 的第 i_1,\dots,i_s 行与第 j_1,\dots,j_s 列交点上的元素按原次序排列组成的行列式.

定理 (Binet-Cauchy)

设 $A \in \mathbb{F}^{m \times n}$, $B \in \mathbb{F}^{n \times m}$, 则有

- (1). 若 m > n, 则 $\det(AB) = 0$.
- (2). 若 m = n, 则 det(AB) = det(A) det(B).
- (3). 若 m < n, 则

$$\det(AB) = \sum_{1 \leq j_1 < \ldots < j_m \leq n} A \begin{pmatrix} 1 & \ldots & m \\ j_1 & \ldots & j_m \end{pmatrix} B \begin{pmatrix} j_1 & \ldots & j_m \\ 1 & \ldots & m \end{pmatrix}$$

(3) 只有理论上的作用, 不重要. 但 (1) 与 (2) 非常重要。

问题

证明下矩阵奇异, n > 3,

$$A = \begin{bmatrix} \cos(\alpha_1 - \beta_1) & \cos(\alpha_1 - \beta_2) & \cdots & \cos(\alpha_1 - \beta_n) \\ \cos(\alpha_2 - \beta_1) & \cos(\alpha_2 - \beta_2) & \cdots & \cos(\alpha_2 - \beta_n) \\ \vdots & \vdots & \ddots & \vdots \\ \cos(\alpha_n - \beta_1) & \cos(\alpha_n - \beta_2) & \cdots & \cos(\alpha_n - \beta_n) \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \alpha_1 \cos \beta_1 + \sin \alpha_1 \sin \beta_1 & \cdots & \cos \alpha_1 \cos \beta_n + \sin \alpha_1 \sin \beta_n \\ \cos \alpha_2 \cos \beta_1 + \sin \alpha_2 \sin \beta_1 & \cdots & \cos \alpha_2 \cos \beta_n + \sin \alpha_2 \sin \beta_n \\ \vdots & \vdots & \vdots & \vdots \\ \cos \alpha_n \cos \beta_1 + \sin \alpha_n \sin \beta_1 & \cdots & \cos \alpha_n \cos \beta_n + \sin \alpha_n \sin \beta_n \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha_1 & \sin \alpha_1 \\ \cos \alpha_2 & \sin \alpha_2 \\ \vdots & \vdots & \vdots \\ \cos \alpha_n & \sin \alpha_n \end{bmatrix} \begin{bmatrix} \cos \beta_1 & \cos \beta_2 & \cdots & \cos \beta_n \\ \sin \beta_1 & \sin \beta_2 & \cdots & \sin \beta_n \end{bmatrix} \implies \det(A) = 0$$

问题

证明下矩阵奇异, $n \geq 3$,

$$A = \begin{bmatrix} 1 + x_1 y_1 & 1 + x_1 y_2 & \cdots & 1 + x_1 y_n \\ 1 + x_2 y_1 & 1 + x_2 y_2 & \cdots & 1 + x_2 y_n \\ \vdots & \vdots & \ddots & \vdots \\ 1 + x_n y_1 & 1 + x_n y_2 & \cdots & 1 + x_n y_n \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \implies \det(A) = 0$$

Lagrange 恒等式与 Cauchy-Schwartz 不等式

$$\begin{bmatrix} \sum_{i=1}^{n} a_i^2 & \sum_{i=1}^{n} a_i b_i \\ \sum_{i=1}^{n} a_i b_i & \sum_{i=1}^{n} b_i^2 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \\ \vdots & \vdots \\ a_n & b_n \end{bmatrix}$$

两边求行列式, 利用 Binet-Cauchy 公式:

$$(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) - (\sum_{i=1}^{n} a_i b_i)^2 = \sum_{1 \le i < j \le n} \det(\begin{bmatrix} a_i & a_j \\ b_i & b_j \end{bmatrix}) \det(\begin{bmatrix} a_i & b_i \\ a_j & b_j \end{bmatrix})$$

$$= \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i)^2$$

Lagrange 恒等式与 Cauchy-Schwartz 不等式

定理 (Lagrange)

$$\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) - \left(\sum_{i=1}^{n} a_i b_i\right)^2 = \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i)^2.$$

推论 (Cauchy-Schwartz)

$$(\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2) \ge (\sum_{i=1}^{n} a_i b_i)^2.$$

伴随矩阵 三类初等变换 低阶矩阵逆矩阵 n阶矩阵逆矩阵 Binet-Cauchy 公式

Thanks!