```
Code 1:
clear all
close all
clc
f=@(x)exp(-2*x)
%7.1.3
T = 10000;
lambda = 2;
U = rand(T, 1); % generation of uniform R.V.}
Y = (-1 / lambda) * log(1 - U);
mean(Y)
var(Y)
plot(Y)
%7.1.4
figure(1)
z = histogram(Y,'Normalization','probability')
ccdf=zeros(length(z.Values), 1);
error=zeros(length(z.Values),1);
xaxis=zeros(length(z.Values),1);
for i=1:length(z.Values)
  xaxis(i,1)=(z.BinEdges(i)+z.BinEdges(i+1))/2
end
for i=1:length(z.Values)
  ccdf(i, 1) = sum(z.Values(i:end));
end
figure(2)
plot(xaxis,ccdf)
for i=1:length(z.Values)
  error(i,1) = ccdf(i,1)-f((z.BinEdges(i)+z.BinEdges(i+1))/2)
end
figure(3)
plot(xaxis,error)
errorsum=0;
```

```
for i=1:length(error)
  errorsum=errorsum+error(i)*(z.BinEdges(i+1)-z.BinEdges(i));
end
display(errorsum)
Code 2:
lambda=2;
meani=zeros(5000);
variancei=zeros(5000);
errormeani=zeros(5000);
errorvariancei=zeros(5000);
for i=1:5000
  U = rand(i, 1); % generation of uniform R.V.}
  Y = (-1 / lambda) * log(1 - U);
  meani(i)=mean(Y);
  variancei(i)=var(Y);
end
for i=1:5000
  errormeani(i)=meani(i)-0.5;
  errorvariancei(i)=variancei(i)-0.25;
end
figure(1)
plot(meani)
figure(2)
plot(variancei)
figure(3)
plot(errormeani)
figure(4)
plot(errorvariancei)
Code 3:
errorsume=zeros(100,1);
for i=1:100
  errorsume(i,1)=errorsum(i*10000,2);
end
```

```
figure(5)
plot(errorsume)
errorsume=zeros(5000,1);
for i=1:5000
  errorsume(i,1)=errorsum(i,2);
end
figure(6)
plot(errorsume 2)
Code 4:
function errorsum1 = errorsum(T,lambda)
f=@(x)exp(-lambda*x);
%7.1.3
U = rand(T, 1); % generation of uniform R.V.}
Y = (-1 / lambda) * log(1 - U);
z = histogram(Y,'Normalization','probability');
ccdf=zeros(length(z.Values), 1);
error=zeros(length(z.Values),1);
xaxis=zeros(length(z.Values),1);
for i=1:length(z.Values)
  xaxis(i,1)=(z.BinEdges(i)+z.BinEdges(i+1))/2;
for i=1:length(z.Values)
  ccdf(i, 1) = sum(z.Values(i:end));
end
%plot(xaxis,ccdf);
for i=1:length(z.Values)
  error(i,1) = ccdf(i,1)-f((z.BinEdges(i)+z.BinEdges(i+1))/2);
end
%plot(xaxis,error)
errorsum1=0;
for i=1:length(z.Values)
  errorsum1=errorsum1+error(i,1)*(z.BinEdges(i+1)-z.BinEdges(i));
End
```

Figure of error

Figure of Histogram

Figure of our ccdf

Graph of mean versus no of samples

Graph of variance versus no of samples

Graph of error in mean

Graph of error in variance

Graph of errorsum versus number of samples

