	Utech
Name:	
Roll No.:	In the property of the State of
Invigilator's Signature :	

CS / B.TECH (CSE/IT) / SEM-4 / M-401/ 2011 2011

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$

- i) A group contains 12 elements. Then the possible number of elements in a subgroup is
 - a) 3

b) 5

c) 7

d) 11.

4101 [Turn over

- ii) In a group (G, 0) if ($a \circ b$)⁻¹ = $a^{-1} \circ b^{-1}$, then
 - a) G is finite
- b) G is infinite
- c) G is abelian
- d) none of these.
- iii) The mapping $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = |x|, x \in \mathbb{R}$ is
 - a) injective
- b) surjective
- c) bijective
- d) none of these.
- iv) The relation $\{(a,b): a,b \in z, a \ b > 0\}$ defined on z (the set of integers) is
 - a) symmetric
- b) reflexive
- c) anti-symmetric
- d) equivalence.
- v) The number of unit elements of the ring $(z, +, \cdot)$ is
 - a) 2

b) 3

c) 1

d) infinite.

- vi) If $F: G \to G'$ be a homomorphism and e is positive identity element of G then f(e) is
 - a) identity element of G
 - b) identity element of G'
 - c) inverse of each element of *G'*
 - d) none of these.
- vii) Number of operations required in a Boolean Algebra is
 - a) 1

b) 2

c) 3

- d) 4.
- viii) The Boolean function (x'y' + xy + x'y) is equivalent to
 - a) x' + y'

b) x + y

c) x' + y

d) none of these.

CS / B.TECH (CSE/IT) / SEM-4 / M-401/ 2011

- a)
- $-\log_e (1-x)$ b) $\log_e (1+x)$
- e^{x} c)

ix)

d) none of these.

The solution of the recurrence relation $S_n = 2S_{n-1}$ with x) $S_0 - 1$ is $S_n =$

a)

b)

 2^{n+1} c)

none of these. d)

The maximum number of edges in a simple connected xi) graph with n vertices is

 $2 \bullet {}^n C_2$

(n-1)c)

none of these. d)

xii) A complete graph is

- regular a)
- b) connected

c) simple d) circuit.

4101

Answer any *three* of the following. $3 \times 5 = 15$

- 2. If $f: G \to G'$ be a group homomorphism from a group G to the Group G', then show that kerf is a normal subgroup of G.
- 3. If in a ring R with unity, $(xy)^2 = x^2y^2$, for all $x, y \in R$ then show that R is commutative.
- 4. Using generating function, find the integral solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 10$, whenever, $1 \le x_i \le 5$; i = 1, 2, ..., 5.
- 5. Define isomorphism of graph. Show that the graphs G and G' are isomorphic.

6. Show that the number of pendent vertices in a binary tree is (n+1)/2, where n is the number of vertices in the tree.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- Prove that the relation ρ defined on z by $a \rho b$ iff 7. a) $a^2 \equiv b^2 \pmod{5}, a, b \in z$ is an equivalence relation and also find all equivalence classes.
 - Define normal subgroup of a group. If G is a group and b) H is a subgroup of index 2 in G, prove that H is a normal subgroup of *G*.
 - Let G be a group. If $a, b \in G$ such that $a^4 = e$, the c) identity element of G and $ab = ba^2$, prove that a = e.

5 + 5 + 5

- If two operations * and 0 on the set Z of integers are 8. a) defined as follows: a * b = a + b - 1, $a \circ b = a + b - ab$, prove that (Z, *, o) is commutative ring with unit element.
 - Construct a simple logic circuit for each of the Boolean b) functions:
 - xy' + x'yz + x'y'z
 - ii) (yx + xz)z'.
 - c) Using generating function, solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for a > 1 and $a_0 = 3$, $a_1 = 3$.

5 + 5 + 5

4101

- 9. a) Prove that the intersection of two subrings is a subring.
 - b) Find the disjunctive normal form (sum of product) for the Boolean expression $(x + y + z) \cdot (xy + x'z)'$.
 - c) Prove that every cut set in a connected graph contains at least one branch of every spanning tree of the graph.

$$5 + 5 + 5$$

10. a) Construct the Adjacency matrix of the following di-graph:

- b) Prove that a tree with n number of vertices has (n-1) number of edges.
- c) Find by Kruskal's Algorithm a minimal spanning tree for the following graph:

5 + 5 + 5

========