

ICON Database Reference Manual

D. Reinert, F. Prill, H. Frank and G. Zängl

Deutscher Wetterdienst Research and development (FE13)

Preliminary Version: 0.1

Last changes: March 21, 2013

Offenbach am Main, Germany

Contents

1	\mathbf{Ava}	vilable output fields in GRIB2-format	1
	1.1	Deprecated output fields	1
	1.2	New output fields	1
	1.3	Available output fields listed in tabular form	2

iv

Chapter 1

Available output fields in GRIB2-format

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- step Type (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

In the following, typeOfFirstFixedSurface and typeOfSecondFixedSurface will be abbreviated by Lev-Typ 1/2.

1.1 Deprecated output fields

With the launch of ICON, the following output fields will no longer be available:

- OMEGA [Pa/s]: Vertical velocity in pressure coordinates $\omega = \frac{dp}{dt}$
- BAS_CON [-]: Level index of convective cloud base
- TOP_CON [-]: Level index of convective cloud top
- **T_S** [K]: Temperature at the soil-atmosphere-, or soil-snow-interface. Note that T_S = T_SO(0), thus T_S is redundant.
- \bullet W_G1 [mm H2O]: Soil water content in upper layer (0 to $10\,\mathrm{cm})$
- W_G2 [mm H2O]: Soil water content in middle layer (10 to 100 cm)

1.2 New output fields

New output fields that will become available with the launch of ICON are:

- W [m/s]: vertical velocity in height coordinates $w = \frac{dz}{dt}$
- **DEN** $[kg/m^3]$: density of moist air

1.3 Available output fields listed in tabular form

Table 1.1: Hybrid multi-layer forecast (VV > 0) and initialised analysis (VV = 0) products

ShortName	Description	Discipline	Category	Number	m Lev-Typ	$\operatorname{stepType}$	Unit
U	Zonal wind	0	2	2	105	inst	${ m ms^{-1}}$
V	Meridional wind	0	2	3	105	inst	$\rm ms^{-1}$
W	Vertical wind	0	2	9	105	inst	$\rm ms^{-1}$
T	Temperature	0	0	0	105	inst	K
DEN	Density of moist air	0	3	10	105	inst	${\rm kgm^{-3}}$
QV	Specific humidity	0	1	0	105	inst	$\rm kgkg^{-1}$
QC	Cloud mixing ratio ¹	0	1	22	105	inst	$\rm kgkg^{-1}$
QI	Cloud ice mixing ratio ¹	0	1	82	105	inst	$\rm kgkg^{-1}$
QR	Rain mixing ratio ¹	0	1	24	105	inst	$\rm kgkg^{-1}$
QS	Snow mixing ratio ¹	0	1	25	105	inst	$\rm kgkg^{-1}$
CLC	Cloud cover	0	6	22	105	inst	%
O3	Ozone mixing ratio ²	0	14	1	105	inst	$\rm kgkg^{-1}$

Table 1.2: Single-layer forecast (VV>0) and initialised analysis (VV=0) products

ShortName	Description	Discipline	Category	Number	Lev-Typ	${ m stepType}$	Unit
PS	Surface pressure (not reduced)	0	3	1	1	inst	Pa
T_SNOW	Temperature of the snow surface	0	0	18	1	inst	K
$T_{-}G$	Ground temperature (temperature at sfc-atm interface)		0	0	1	inst	K
QV_S	Surface specific humidity	0	1	0	1	inst	$\rm kgkg^{-1}$
W_SNOW	Snow depth water equivalent	0	1	60	1	inst	${\rm kgm^{-2}}$
WI	Plant canopy surface water	2	0	13	1	inst	${\rm kgm^{-2}}$

Continued on next page

 $^{^{1}}$ for the time being, erroneously encoded as mixing ratios instead of specific quantities

 $^{^2}$ not clear yet, whether ozone will be provided as output field

Table 1.2: continued

TCM Turbulent transfer coefficient for 0 2 29 1 inst — momentum (surface) TCH Turbulent transfer coefficient for 0 0 19 1 inst — heat and moisture (surface) ASOB_S Net short-wave radiation flux 0 4 9 1 avg Wm^2 at surface (average since model start) ATHB_S Net long-wave radiation flux 0 5 5 1 avg Wm^2 ASOB_T Net short-wave radiation flux at 0 4 9 8 avg Wm^2 TOA (average since model start) ATHB_T Net long-wave radiation flux at 0 5 5 8 avg Wm^2
heat and moisture (surface) ASOB_S Net short-wave radiation flux 0 4 9 1 avg W m ⁻² at surface (average since model start) ATHB_S Net long-wave radiation flux 0 5 5 1 avg W m ⁻² at surface (average since model start) ASOB_T Net short-wave radiation flux at 0 4 9 8 avg W m ⁻² TOA (average since model start)
at surface (average since model start) ATHB_S Net long-wave radiation flux 0 5 5 1 avg W m ⁻² at surface (average since model start) ASOB_T Net short-wave radiation flux at 0 4 9 8 avg W m ⁻² TOA (average since model start)
at surface (average since model start) ASOB_T Net short-wave radiation flux at 0 4 9 8 avg W m ⁻² TOA (average since model start)
TOA (average since model start)
ATHR T Net long-wave radiation flux at 0 5 5 8 avg W m ⁻²
TOA (average since model start)
ALB_RAD Surface albedo for visible range, 0 19 1 1 inst $\%$ diffuse
RAIN_GSP Large scale rain (accumulated 0 1 77 1 accu $\rm kgm^{-2}$ since model start)
SNOW_GSP Large snowfall water equivalent 0 1 56 1 accu $\rm kgm^{-2}$ (accumulated since model start)
RAIN_CON Convective rain (accumulated 0 1 76 1 accu $\rm kgm^{-2}$ since model start)
SNOW_CON Convective snowfall water equiv- 0 1 55 1 accu $\rm kg m^{-2}$ alent (accumulated since model start)
TOT_PREC Total precipitation (accumulated 0 1 52 1 accu $\rm kg m^{-2}$ since model start)
RUNOFF_S Surface water runoff (accumu- 2 0 5 1 accu $\rm kgm^{-2}$ lated since model start) ³
RUNOFF_G Soil water runoff (accumulated 2 0 5 1 accu $\rm kgm^{-2}$ since model start) 3
U_10M Zonal wind at 10m above ground 0 2 2 103 inst ${\rm ms^{-1}}$
V_10M Meridional wind at 10m above 0 2 3 103 inst $\rm ms^{-1}$ ground
T_2M Temperature at 2m above 0 0 0 103 inst K ground
TD_2M Dew point temperature at 2m 006103 inst K above ground
Z0 Surface roughness (above land 2 0 1 1 inst m and water)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Continued on next page

Table 1.2: continued

CLCH	High level clouds ³	0	6	1	100	inst	%
CLCM	Mid level clouds ³	0	6	1	100	inst	%
CLCL	CLCL Low level clouds ³		6	1	100	inst	%
TQV	Total column integrated water vapour	0	1	64	1	inst	${\rm kgm^{-2}}$
TQC	Total column integrated cloud water	0	1	69	1	inst	${\rm kgm^{-2}}$
TQI	Total column integrated cloud ice	0	1	70	1	inst	${\rm kgm^{-2}}$
TQR	Total column integrated rain ³	0	1	45	1	inst	${\rm kg}{\rm m}^{-2}$
TQS	Total column integrated snow 3	0	1	46	1	inst	${\rm kgm^{-2}}$
HBAS_CON	Height of convective cloud base above msl	0	6	26	2	inst	m
HTOP_CON	Height of convective cloud top above msl	0	6	27	3	inst	m
HZEROCL	Height of 0 degree Celsius isotherm above msl	0	3	6	4	inst	m
$ASHFL_S$	Sensible heat net flux at surface (average since model start)	0	0	11	1	avg	${ m Wm^{-2}}$
$ALHFL_S$	Latent heat net flux at surface (average since model start)	0	0	10	1	avg	${ m Wm^{-2}}$
FRJCE	Sea ice cover (possible range: $[0,1]$)	10	2	0	1	inst	_
TJCE	Sea ice temperature (at ice-atm interface)	10	2	8	1	inst	K
H_ICE	Sea ice thickness (Max: 3 m)	10	2	1	1	inst	m
FRESHSNW	Fresh snow factor (weighting function for albedo indicating freshness of snow)	0	1	203	1	inst	-
RHO_SNOW	Snow density	0	1	61	1	inst	${\rm kg}{\rm m}^{-3}$
H_SNOW	Snow depth	0	1	11	1	inst	m

³Output fields not yet available, but planned.

level no.	depth [cm]	layer no.	upper/lower bounds [cm]
0	0.0		
1	0.5	1	0.0 - 1.0
2	2.0	2	1.0 - 3.0
3	6.0	3	3.0 - 9.0
4	18.0	4	9.0 - 27.0
5	54.0	5	27.0 - 81.0
6	162.0	6	81.0 - 243.0
7	486.0	7	243.0 - 729.0
8	1458.0	8	729.0 - 2187.0

Table 1.4: Soil model: vertical distribution of levels and layers

Table 1.3: Multi-layer forecast (VV > 0) and initialised analysis (VV = 0) products of the soil model

ShortName	Description	Discipline	Category	Number	Lev-Typ	stepType	Unit
T_SO	Soil temperature	2	3	18	106	inst	K
$W_{-}SO$	Soil moisture integrated over individual soil layers (ice $+$ liquid)	2	3	20	106	inst	${\rm kgm^{-2}}$
W_SO_ICE	Soil ice content integrated over individual soil layers	2	3	22	106	inst	${\rm kgm^{-2}}$

Soil temperature is defined at the soil depths given in Table 1.4 (column 2). Levels 1 to 8 define the full levels of the soil model. A zero gradient condition is assumed between levels 0 and 1, meaning that temperatures at the surface-atmosphere interface are set equal to the temperature at the first full level depth. $(0.5\,\mathrm{cm})$. Temperatures are prognosed for levels 1 to 7. At the lowermost level $(1458\,\mathrm{cm})$ the temperature is fixed to the climatological average $2\,\mathrm{m}$ -temperature.

Soil moisture W_SO is prognosed for layers 1 to 6. In the two lowermost layers W_SO is time constant.