2- Quelle est la quantité de chaleur nécessaire pour convertir 10 g de glace à -20°C en vapeur à 100°C ?

Capacité massique de l'eau : $Ce = 4.10^3 J.kg^{-1}.K^{-1}$ Chaleur latente de fusion de la glace $L_f = 335.10^3 J.kg^{-1}$ Capacité massique de la glace $Cg = 2.10^3 J.kg^{-1}.K^{-1}$ Chaleur latente de vaporisation $Lv = 225.10^4 J.kg^{-1}$ $Chaleur latente de vaporisation <math>Lv = 225.10^4 J.kg^{-1}$

AN:
$$Q = 10.10^{-3} (2.10^{3}.20 + 335.10^{3} + 4.10^{3}.100 + 225.10^{4})$$

= $10(40 + 335 + 400 + 2250)$
= $10.3025 = 30250 J. (2)$

3- Un calorimètre contient une masse m_1 = 150g d'eau. La température initiale de l'ensemble est θ_1 =20°C. On ajoute une masse m_2 = 250g d'eau à la température θ_2 =70°C. Calculer la capacité thermique C_{cal} du calorimètre sachant que la température d'équilibre est θ_e =50°C. On donne la capacité massique de l'eau : C_e = 4.10³JK-¹kg-¹.

Contrôle 2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

QCM

(4 points, pas de points négatifs)

Entourer la bonne réponse

1- L'énergie mécanique de la masse m d'un pendule simple est d'expression :

$$E_m = \frac{1}{2} mL^2 \cdot (\dot{\theta})^2 + mgL(1 - \cos(\theta))$$
; Où m, L et g sont des constantes.

La dérivée de cette énergie par rapport au temps est

a)
$$\frac{dE_m}{dt} = mL^2 \ddot{\theta} \dot{\theta} - mgL \sin(\theta) \dot{\theta}$$

$$b \frac{dE_m}{dt} = mL^2\ddot{\theta} + mgLsin(\theta)$$

$$b \frac{dE_m}{dt} = mL^2 \ddot{\theta} + mgL \sin(\theta)$$

$$c) \frac{dE_m}{dt} = mL^2 \ddot{\theta} \dot{\theta} + mgL \sin(\theta) \dot{\theta}$$

2- L'équation différentielle du mouvement de la masse du pendule simple, obtenue en écrivant $\frac{dE_m}{dt} = 0$, est

a)
$$\ddot{\theta} + \frac{g}{L}\cos(\theta) = 0$$
 b) $\ddot{\theta} + \frac{g}{L}\sin(\theta) = 0$ c) $\ddot{\theta} - \frac{g}{L}\sin(\theta) = 0$

3- La résolution de l'équation différentielle $x + \frac{\alpha}{m}x + \omega_0^2 x = 0$ nécessite de distinguer trois régimes. Le régime critique correspond à une valeur particulière de α (α étant le coefficient de frottement).

a)
$$\alpha_{crit} = 0$$

b)
$$\alpha_{crit} > 2m\omega_0$$

b)
$$\alpha_{crit} > 2m\omega_0$$
 (c) $\alpha_{crit} = 2m\omega_0$ d) $\alpha_{crit} < 2m\omega_0$

d)
$$\alpha_{crit} < 2m\omega_0$$

- 4- Un système qui n'échange ni matière, ni énergie avec le milieu extérieur est appelé :
 - (a) un système isolé
- b) un système exclusif
- c) un système fermé
- 5- Quelle est l'expression de la résistance thermique ?

a)
$$R_{th} = -\frac{\Phi}{\Delta\theta}$$

a)
$$R_{th} = -\frac{\Phi}{\Delta \theta}$$
 b) $R_{th} = \frac{e}{\lambda_{th}.S}$ c) $R_{th} = \frac{\lambda_{th}.S}{e}$

c)
$$R_{th} = \frac{\lambda_{th}.S}{e}$$

6- Un double vitrage est constitué de deux vitres en verre, chacune de résistance Rverre, séparées par un espace rempli d'air de résistance Rair. Que vaut la résistance totale du double vitrage ?

a)
$$R_{verre} + R_{ai}$$

b)
$$\frac{2}{R_{verre}} + \frac{1}{R_{air}}$$

a)
$$R_{verre} + R_{air}$$
 b) $\frac{2}{R_{verre}} + \frac{1}{R_{air}}$ c) $2R_{verre} + R_{air}$

7- La température d'équilibre atteinte lorsque l'on mélange dans un calorimètre (de capacité calorifique négligeable) un volume V_1 d'eau à la température θ_1 et un volume V_2 d'eau à la

(a)
$$\theta_e = \frac{v_1\theta_1 + v_2\theta_2}{v_1 + v_2}$$
 (b) $\theta_e = \frac{\theta_1 + \theta_2}{2}$ (c) $\theta_e = V_1\theta_1 + V_2\theta_2$

8- Laquelle des grandeurs ci-dessous n'est pas extensive?

(a) la température

b) la masse

d) le nombre de moles

Exercice 1 (5 points)

On considère un système (ressort, masse m) représenté sur la figure ci-dessous. On écarte la masse de sa position d'équilibre x = 0 d'une distance x_0 , $(x_0 > 0)$, et on la lâche sans vitesse initiale.

La masse est soumise à une force de frottement d'expression : $\vec{f} = -\alpha \cdot \vec{V}$, α est un coefficient de frottement positif.

On pose x(t) la position de la masse à un instant t quelconque et k le coefficient de raideur du ressort.

- 1- Représenter sur le schéma les forces appliquées sur la masse m. On suppose la masse se déplacant de x_0 vers x = 0.
- 2- a) Utiliser la deuxième loi de Newton pour retrouver l'équation différentielle du mouvement

b) Donner l'équation caractéristique de l'équation différentielle, préciser les trois régimes pour chacun des régimes.

Exercice 2 (5 points)

1- Rappeler l'expression du flux thermique Φ traversant un milieu, en fonction de l'écart de température $\Delta\theta$ et de la résistance thermique R_{th} . On suppose une propagation de chaleur à une dimension et en régime stationnaire. Retrouver les unités de Φ , R_{th} et de la conductivité thermique λ_{th}

$$\phi = -\frac{\Delta \theta}{Kth} \quad \phi = \frac{d \theta}{dt} \quad \text{avec } \theta \text{ la quantie de chaleur en } (T)$$

$$\text{danc étant un flux thomaque, } [\phi] = W(=T/S)$$

$$\text{Sachart ula, on an dealuit que } [hth] = W'K$$

$$\text{avec la fainule de } \phi.$$

$$\text{Rth} = \frac{e}{\lambda th S} \quad \text{(a)} \quad \text{Rth} \leq \frac{e}{Kth S} \quad \text{avec e: spoisson} (m)$$

$$\text{Signatule } (m^2)$$

$$\text{dennc } [\lambda th] = \frac{m}{W'Km^2} = W.K'', m''$$

2- Montrer que la résistance thermique R_{th} d'un système formé de trois milieux, de conductivités respectives λ_1 , λ_2 et λ_3 , de même surface S et d'épaisseurs respectives e_1 , e_2 et e_3 , s'écrit :

 $R_{th} = R_{th1} + R_{th2} + R_{th3}$. Les trois milieux sont traversés par le même flux thermique Φ .

Exercice 3 (6 points) Les questions 1, 2 et 3 sont indépendantes.

1- Dans un calorimètre de capacité thermique 100 J.K⁻¹, on introduit 100 g d'eau, l'ensemble est à 20°C. On y ajoute 100 g d'huile à 100°C (température inférieure à sa température d'ébullition). La température finale est de 40°C.

Calculer la capacité massique de l'huile. On donne : ceau = 4.10³ J.kg⁻¹.K⁻¹