Fotal points 30/3	
ubmitted cannot	be
0 0	f 0 points
	0 0

Students Enrollment No. *

40315003118

Questions

30 of 30 points

All Questions are compulsory. No Internal Choice.

 \checkmark 3n = o(n)^2, (little oh)

1/1

False

True

✓ Which of the following is the longest common subsequence between the 2/2. strings "ABCDGH" and "AEDFHR"?

ABH

ADH

ADRE

ADHR

✓ You are given a knapsack that can carry a maximum weight of 60. There 2/2 are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack?

160

170

90

Which of the following sorting algorithms is the fastest for sorting small 2/2 arrays?

Quick sort

Insertion sort

Shell sort

Heap sort

✓ Which of the given options provides the increasing order of asymptotic 2/2 complexity of functions f1, f2, f3 and f4? $f1(n) = 2^n$; $f2(n) = n^3(3/2)$; f3(n) $= nLogn ; f4(n) = n^(Logn)$

f3, f2, f4, f1

f2, f3, f1, f4

f3, f2, f1, f4

f2, f3, f4, f1

What is recurrence for worst case of QuickSort and what is the time 2/2 complexity in Worst case?

Recurrence is T(n) = T(n-2) + O(n) and time complexity is $O(n^2)$

Recurrence is T(n) = T(n-1) + O(n) and time complexity is $O(n^2)$

Recurrence is T(n) = 2T(n/2) + O(n) and time complexity is O(nLogn)

Medaliende is itinj - itin ij i otinj and time domplekity is otin 2)

Recurrence is T(n) = T(n/10) + T(9n/10) + O(n) and time complexity is O(nLogn)

 \checkmark T(n) = 3T(n/4) +cn², cost will be?

2/2

n^3

n^2

nlogn

✓ Consider the strings "PQRSTPQRS" and "PRATPBRQRPS". What is the 3/3 length of the longest common subsequence?

Floyd Warshall's Algorithm is used for solving _____? 1/1

Single Source shortest path problems

Network flow problems

Sorting problems

	All pair	shortest	path	problems
--	----------	----------	------	----------

~	Running time $T(n)$ where 'n' is the input size of the recursive algorithm given as : $T(n) = n^2 + T(n-1)$, if $n > 1$; $T(n) = d$ if $n < 1$. The order of the algorithm is	2/2
0	n^2	
0	n	
•	n^3	✓
0	n^n	

✓ What is the running time of the Floyd Warshall Algorithm? 1/1 Big-oh(V) Theta(V^2) Big-Oh(VE) Theta(V^3)

✓ Consider the matrices P, Q, R and S which are 20 x 15, 15 x 30, 30 x 5 and 4/4 5 x 40 matrices respectively. What is the minimum number of multiplications required to multiply the four matrices?

6050 7500

7750

12000

T(n) = T(2n/3) + 1. Cost will be

2/2

nlogn

logn

n^2

n^n

 \checkmark 2ⁿ = w(n!), (little omega)

1/1

True

False

 \checkmark Running time of an algorithm T(n), where n is input size, is given by T(n) = 2/2 8T(n/2) + qn, if n > 1 and T(n) = p if n = 1, where p and q are constants. The order of the algorithm is

n^2

n^3

n

✓ What approach is being followed in Floyd Warshall Algorithm?	1/1
Greedy technique	
Dynamic Programming	✓
C Linear Programming	
O Divide and Conquer	

This form was created inside of Maharaja Surajmal Institute of Technology.

Google Forms