정보통신이론

정보통신 일반

목차

- 정보통신의 개념
- 통신시스템의 구성
- 데이터전송
- 통신 프로토콜

정보통신의 개념

- 정보통신의 정의
 - 기계와 기계간에 전기적 회선을 통해 정보를 송수신하는 시스템

• 용어정리

- System : 규칙에 따라 능동적으로 동작하는 환경
- Interface : 시스템과 시스템을 연결하기 위한 표준적인 접근 방식
- Transmission : 데이터를 왜곡없이 보내기 위한 동작방식
- Protocol : 시스템간 데이터를 송수신 하기 위한 규칙
- Server : 서비스를 해주는 시스템
- Client : 서비스를 받는 시스템

통신 시스템의 구성

- 통신 시스템의 분류
 - 정보 전송 시스템 : 데이터를 전송
 - 정보 처리 시스템 : 데이터를 처리/가공

통신 시스템의 구성

- 통신시스템의 구성도
 - DTE (Data Terminal Equipment) : 디지털 데이터를 입출력하는 단말장치
 - DCE (Data Communication Equipment) : 데이터 회선 종단 장치, DTE를 망에 연결하는 장치, 일반적으로 Modem역할을 함

• CCU(Communication Control Unit) : 데이터전송에 필요한 각종제어를 모두 담당 하며 일반적으로 DCE와 DTE사이에 위치

통신시스템의 구성

- Modem : 디지털 데이터를 아날로그 신호로 변환 (DAC), 기간 통신망이 아날로그 망인 경우 필요. (현재 안씀)
- DSU : 데이터를 망에 적합한 신호로 변환하는 장비, 망대 망 전 송시 필요

• CODEC: 아날로그 데이터를 디지털신호로 변환 (ADC)

- 아날로그 신호와 디지털 신호
 - 아날로그 신호 : 연속적으로 변하는 신호
 - 디지털 신호 : 미리 정해진 전압만 있는 신호

• 변조 : 신호를 멀리까지 왜곡없이 전송하기 위해 신호의 진폭, 주파수 위상등을 바꾸는 기법

- 변조는 아날로그 변조와 디지털 변조로 나눌 수 있다.
 - 아날로그 변조 : AM, FM, PM
 - 디지털 변조 : ASK, FSK, PSK, QAM

- ASK, FSK, PSK
 - ASK : 진폭 편이 변조
 - FSK : 주파수 편이 변조
 - PSK : 위상(각도 위치) 편이 변조
 - QAM : ASK + PSK

- 전송모드
 - 직렬전송 : 한 개의 통신 선로에서 하나의 논리적 전송 스트림
 - 병렬전송 : 한 개의 통신 선로에서 다수의 논리적 전송 스트림 (시간차)
- 전송방향
 - Simplex : 단방향 전송
 - Half-duplex : 반이중 전송, 무전기
 - Full-duplex : 전이중 전송

- 동기식 전송
 - 동기식전송: 상대방이 누군지 알고, 제어 프로토콜이 존재
 - 비동기식 전송: 상대방이 누군지 모름, 제어 프로토콜 부재
 - ** 제어프로토콜: 시간동기화, 에러검출 및 수정, 흐름제어등
- ASCII 의 전송제어문자
 - SOH : Start of Header, 헤더의 시작
 - STX : Start of text, 본문의 시작
 - ETX : End of text, 본문의 종료
 - ENQ : ENQuiry, 링크설정 요청(상대의 응답을 요청)
 - ACK : ACKnowledge, 긍정응답
 - NAK : Negative AcKnowledge, 부정응답 (재전송요구)
 - SYN : SYNnchronous idle, 동기
 - ETB : End of Transmission Block, 전송블록 종료

- 통신 프로토콜이란?
 - 서로 다른 시스템에 존재하는 개체간의 원활한 통신을 위한 규칙
- 통신 프로토콜의 3요소
 - 구문 (Syntax) : 데이터의 형식, 부호화, 신호레벨
 - 의미 (Semantics) : 제어정보 즉 데이터를 받았을때 송수신자가 해야할 행동
 - 시간 (Timing) : 순서, 속도조절

** 제어: 연결->회선->오류->흐름->혼잡 순서로 제어

• 통신 프로토톨의 예

구분	기능	설명	예시
구문 (Syntax)	단편화 및 재결합	데이터의 패킷화와 패킷화된 데이터의 재결합	IP Fragmentation
	캡슐화	전송 블록을 페이로드와 헤더로 구성	헤더+페이로드
	다중화	여러 개의 회선에서 데이터를 받아 한 개의 고속 회선으로 전송하거나 또는 그 반대 기능	FDM, TDM
의미 (Sementic)	연결제어	링크확립과 링크 해제 제어	TCP 세션
	흐름제어	데이터의 속도, 데이터블록의 개수 제어	슬라이딩 윈도우
	오류제어	수신된 오류를 검출, 재전송 요구	ARQ, 체크섬
	주소지정 및 라우팅	고유한 주소할당 및 경로설정	IP, 라우팅 알고리즘
	회선제어	신호간 충돌을 회피하기 위한 제어	CSMA/CD
시간 (Timing)	동기화	송수신간 타이밍 제어를 통한 순서 설정	TCP SYN, 3way handshaking
	순서제어	패킷의 순서 설정	TCP Sequence Number

• 계층 모델

- 다양한 시스템간 통신을 위한 프로토콜을 만들기 위해서는 이를 "표준화 " 하는것이 필요
- 만약 표준화를 하지 않는다면 "다양한 시스템" 과 "다양한 프로토콜"이 만들어질 수밖에 없음.
- 표준화를 위해 ISO에서는 OSI (Open System Interconnection)7 Layer 모델을 제안.

- OSI 7 Layer의 특징 (설계 원칙)
 - 적절한 수를 두어 시스템 복잡도 최소화
 - 계층간 독립성 유지
 - 상호작용성 및 효율성 제공
 - 상하위 계층간 인터페이스 (서비스 프리미티브)

계층	설명	예시
물리계층	물리적 전송 매체, 신호규정	RS-232, 10Base-T
데이터링크 계층	Point-to-Point 간 데이터 전송 동기화, 오류제어, 흐름제어	MAC, SDLC, X.25
네트워크 계층	NW 경로선택, 흐름제어 패킷 정보 전송	IP, ARP, RIP
전송계층	End-to-End 통신 제공 일관성, 투명성제공, 주소지정	TCP, UDP, RTP
세션 계층	데이터 교환을 관리하기 위한 수단 제공	TCP 세션관리
표현 계층	데이터 코드를 변환, 정보형식 정의	EBCDIC, ASCII
응용 계층	사용자의 서비스 제공	HTTP, SNMP

- 데이터링크 계층 (2계층)
 - 신뢰성 있는 Point-to-Point 통신을 수행하기 위한 프로토콜 계층
 - 역할
 - 동기화 : Ehternet-II Preamble
 - 오류제어 : FEC, BEC
 - 흐름제어 : 간접적 속도차 보상 메커니즘, Stop-N-Wait, ARQ등
 - 회선제어 : CSMA/CD
 - 연결제어 : MAC, 1:1, 반이중, 전이중
- ** LLC: Logical Link Control, MAC: Medium Access Control
- ** LLC 부계층(802.2) : 신뢰성 기능, 여러 상이한 MAC 부계층을 보완
- ** MAC 부계층 : 전송기능, 물리계층 상의 토폴로지 지원

- 데이터링크 계층 (2계층)의 오류제어
 - FEC (전진에러수정): 수신측이 에러 자체 정정
 - BEC (후진에러수정) : 에러발생에 대해 송신측에 재전송(ARQ)을 요구
 - 헤밍코드: 2비트 오류감지, 1비트 오류수정
 - RS코드: 랜덤오류, Burst 오류 해결
 - CRC : 잉여 비트를 추가, 다항식을 이용 오류 검사
 - Checksum : 비트열의 누적합을 계산 오류검출
 - Parity : 패리티비트를 추가하여 비트열의 0 또는1 값의 개수 검사
 - Stop-n-Wait : 한번의 프레임 전송에 대해 ACK, NAK 전송
 - Go Back N : 슬라이딩 윈도우 개념, 연속적으로 데이터전송, 오류로 인해 NAK 수신시 해당 프레임 부터 나머지 윈도우 프레임 만큼 전송
 - Selective ARQ : 에러 발생한 프레임만 재전송,
 - Adaptive ARQ : 오류발생률을 기반으로 발생률이 높으면 프레임 윈도우를 적게 할당, 발생률이 낮으면 윈도우를 늘림.

• BEC-ARQ 기법

Stop n Wait : 한번의 프레임 전송에 대해 ACK, NAK 전송

Go back N : 슬라이딩 윈도우 개념, 연속적으로 데이터전송, 오류로 인해 NAK 수신시 해당 프레임부터 나머지 전송 Adaptive-ARQ : 오류발생률을 기반으로 발생률이 높으면 프레임 윈도우를 적게 할당, 발생률이 낮으면 윈도우를 늘림.

- 네트워크 계층, Network Layer (3계층)
 - 패킷 통신을 위해 포워딩과 라우팅을 수행 프로토콜 계층
 - ** Forwarding : 패킷의 전달
 - ** Routing : 패킷의 경로 설정
 - ** Switching : Forwarding 과 비슷하나 패킷의 개별적 전달을 의미

• 역할

- Addressing : IP 할당
- 경로설정 : 라우팅 프로토콜
- 포워딩: 패킷의 전달
- 혼잡제어 : 네트워크 내 대기하는 패킷 수를 제어

- 전송계층, Transport Layer (4계층)
 - End-to-End 통신을 위한 데이터 전송 메커니즘을 제공하는 OSI 7계층 중 4계층 프로토콜
 - 역할
 - 흐름제어 : Sliding Window
 - 혼잡제어 : TCP 혼잡제어(SS, CA, Fast Retransmit, Fast Recovery)
 - 오류제어 : Sequence number, Checksum