

## Symbolic Math Toolbox: Quick Reference Sheet

| X Symbolic Variables |                                                                                                                                |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| syms                 | Create symbolic variables: syms x;                                                                                             |  |
|                      | Create arrays of symbolic scalar variables: syms M [2 3];                                                                      |  |
|                      | Create symbolic matrix variables: syms A [2 3] matrix;                                                                         |  |
| symmatrix2sym        | Convert symbolic matrix variable to array of symbolic scalar variables: syms A B [2 3] matrix; X = A + B; Y = symmatrix2sym(X) |  |

| $\int_{a}^{b} f(x) \mathrm{dx}$ | Calculus                                                                             |
|---------------------------------|--------------------------------------------------------------------------------------|
| diff                            | Differentiation: syms x t; diff(sin(x^2+t),x)                                        |
| int                             | Definite and indefinite integrals:<br>syms x z; int(x/(1 + z^2),z)                   |
| release                         | <pre>Evaluate integrals: syms x; F = int(cos(x), 'Hold', true); G = release(F)</pre> |
| <u>limit</u>                    | Compute limit of symbolic expression: limit(1/x,x,0,'left')                          |
| taylor                          | Taylor series: syms x; taylor(exp(-x))                                               |
| <u>series</u>                   | Puiseux series expansion: syms x; series(1/sin(x),x)                                 |
| symsum                          | Sum of a series:<br>syms k n; symsum(k,0,n-1)                                        |
| gradient                        | Gradient vector of scalar function: syms x y z; gradient(x*y + 2*z*x,[x y z])        |
| jacobian                        | Jacobian matrix: syms x y z u v; jacobian([x*y*z; y; x+z],[x y z])                   |
| hessian                         | Hessian matrix of scalar function: syms x y z; hessian(x*y + 2*z*x,[x y z])          |
| laplacian                       | Laplacian of scalar function:<br>syms x y z;<br>laplacian(1/x + y^2 + z^3,[x y z])   |
| <u>divergence</u>               | Divergence of vector field: syms x y z; divergence([x^2 2*y z],[x y z])              |

| π Algebra              |                                                                                                                                      |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>double</u>          | Convert symbolic values to double precision: symN = sym(pi); doubleN = double(symN)                                                  |  |
| vpa<br>subs            | Control precision of computations with variable-precision arithmetic:  syms x;  p = sym(pi);  piVpa = vpa(p)  Symbolic substitution: |  |
|                        | syms a b;<br>subs(a^3+b,[a,b],[2,sym('e')])                                                                                          |  |
| solve                  | Equations and systems solver: syms a b u v; S = solve(u+v==a, u-v==b)                                                                |  |
| dsolve                 | Solve differential equations:                                                                                                        |  |
|                        | <pre>syms y(t) a; eqn = diff(y,t)==a*y; S = dsolve(eqn)</pre>                                                                        |  |
| <u>pdeCoefficients</u> | <pre>Extract PDE Coefficients: syms u(x,y); pdeeq = laplacian(u,[x y])== -3; coeffs = pdeCoefficients(pdeeq,u)</pre>                 |  |
| isolate                | <pre>Isolate variable or expression in equation:     syms a b c x;     isolate(a*x^2+b*x+c==0,x)</pre>                               |  |
| <u>lhs</u>             | Left side (LHS) of equation: syms x y;                                                                                               |  |
|                        | lhs(x^2 >= y^2)                                                                                                                      |  |
| <u>rhs</u>             | Right side (RHS) of equation: syms x y;                                                                                              |  |
|                        | rhs(x^2 >= y^2)                                                                                                                      |  |
| simplify               | Algebraic simplification:<br>syms x;<br>simplify(sin(x)^2 + cos(x)^2)                                                                |  |
| <u>rewrite</u>         | Rewrite expression in terms of another function: syms x;                                                                             |  |
|                        | rewrite(tan(x)/cos(x),'sin')                                                                                                         |  |
| resultant              | Resultant of two polynomials:  syms x y;  p = x^2+y;  q = x-2*y;  resultant(p,q)                                                     |  |



## Symbolic Math Toolbox: Quick Reference Sheet

|                          | Graphics                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| fplot                    | Plot symbolic expression or function:<br>syms x; f(x) = sin(x)/x; fplot(f)                                                     |
| fplot3                   | <pre>Plot 3-D parametric curve:     syms x; fplot3(sin(x),cos(x),log(x))</pre>                                                 |
| fsurf                    | Plot 3-D surface, mesh or contour:  syms x y;  f(x,y)=x*exp(-x^2-y^2);  fsurf(f)                                               |
| fmesh                    | Plot 3-D mesh:<br>syms x y;<br>f(x,y)=x*exp(-x^2-y^2);<br>fmesh(f)                                                             |
| fcontour                 | Plot contours:<br>f(x,y)=x*exp(-x^2-y^2); fcontour(f)                                                                          |
| fimplicit,<br>fimplicit3 | Plot implicit symbolic equation or function: syms x y; fimplicit(y^2-x^2*(x+1),[-2 2]) syms x y z; fimplicit3(x^2*y*z+y^3-z^3) |
| <u>fanimator</u>         | Create stop-motion animation object: syms y t; fanimator(@fplot,sin(x+t),[0 t]); playAnimation                                 |

| fx Functions               |                                                                                                                                                                                                    |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>symfun</u>              | Create Symbolic Functions: syms x y; f = symfun(x+y,[x y]); f(1,2)                                                                                                                                 |  |
| <u>piecewise</u>           | Piecewise defined expression or function: syms x; g(x) = piecewise(x<0,- 1,x>=0,2); g(3)                                                                                                           |  |
| <u>matlabFunction</u>      | Convert symbolic expression to function handle or file: syms x y; f = sqrt(x^2 + y^2); g = matlabFunction(f)                                                                                       |  |
| <u>matlabFunctionBlock</u> | Convert symbolic expression to MATLAB function block for Simulink: new_system('my_system'); open_system('my_system'); syms x y z; f = x^2 + y^2 + z^2; matlabFunctionBlock('my_system/my_block',f) |  |
| <u>simscapeEquation</u>    | Convert symbolic expression to Simscape equations: syms t x(t) y(t); phi = diff(x) + 5*y + sin(t); simscapeEquation(phi)                                                                           |  |

## Learn More

www.mathworks.com/products/symbolic

## **Related Products**

**Control System Toolbox.** Design and analyze control systems.

Financial Toolbox. Analyze financial data

and develop financial models.

**Optimization Toolbox.** Solve linear, quadratic, conic, integer, and nonlinear optimization problems



Full MATLAB cheat sheet