Lab2 - Assignment2

Fei Xie

Lab2- Part1: 2a, 2b

```
library(readr)
library(car)
## Loading required package: carData
library(lmtest)
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
##
    method from
     +.gg ggplot2
library(gridExtra)
library(MASS)
library(leaps)
library(glmnet)
## Loading required package: Matrix
## Loaded glmnet 3.0-2
library(caret)
## Loading required package: lattice
```

```
library(gbm)
## Loaded gbm 2.1.5
library(tidyverse)
## -- Attaching packages -----
## v tibble 2.1.3
                     v dplyr 0.8.4
## v tidyr 1.0.2 v stringr 1.4.0
## v purrr 0.3.3 v forcats 0.4.0
## -- Conflicts -----
## x dplyr::combine() masks gridExtra::combine()
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::lift() masks caret::lift()
## x tidyr::pack() masks Matrix::pack()
## x dplyr::recode() masks car::recode()
## x dplyr::select() masks MASS::select()
## x purrr::some() masks car::some()
## x tidyr::unpack() masks Matrix::unpack()
library(dplyr) # sample_n(), sample_frac(), arrang(), summerise(), %>% (pipe) (ref:https://datacarpentr
```

Lab2a. Measures of Central Tendency/Histograms/ Data Manipulation:

Generate Central Tendency values for EPI and DALY variable

Note: I used the EPI/EPI_data.csv under https://aquarius.tw.rpi.edu/html/DA/EPI/

```
data <- read_csv("EPI_data.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     ISO3V10 = col_character(),
##
     Country = col_character(),
##
     EPI_regions = col_character(),
     GEO_subregion = col_character()
##
## )
## See spec(...) for full column specifications.
# data %>% glimpse()
attach(data)
```

summary() shows the mean, median, and quantiles for numeric variables in a data frame
summary(EPI)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 32.10 48.60 59.20 58.37 67.60 93.50 68
```

summary(DALY)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.00 37.19 60.35 53.94 71.97 91.50 39
```

Generate the Histogram for EPI and DALY variables

Generate the Histogram for EPI variable

hist(EPI)

Histogram of EPI

Generate the Histogram for DALY variable

hist(DALY)

Histogram of DALY

Data Manipulation with Dplyr

5

NA

```
df_EPI = data.frame(EPI)
df_DALY = data.frame(DALY)
# (1) sample_n() ==> pick random number of rows that we wish to choose:
# random 5 rows
sample_n(df_EPI, 5)
##
      EPI
## 1 63.5
## 2 58.0
## 3 71.4
## 4 86.0
## 5 33.3
sample_n(df_DALY, 5)
##
      DALY
## 1 33.86
## 2 63.34
## 3 86.86
## 4 58.50
```

```
# (2) sample_frac() ==> pick a percentage of rows
\# sample with a 10% of rows from the total number of rows
sample_frac(df_EPI, 0.1)
       EPI
##
## 1 60.4
## 2
     72.5
## 3 68.2
## 4 56.4
## 5 49.9
## 6 55.3
## 7
       NA
## 8
       NA
## 9 47.0
## 10 62.9
## 11 48.9
## 12 51.1
## 13 69.2
## 14 67.3
## 15 33.3
## 16
       NA
## 17 64.6
## 18 48.3
## 19
       NA
## 20 65.6
## 21 93.5
## 22
       NA
## 23 49.0
```

sample_frac(df_DALY, 0.1)

```
##
      DALY
## 1 10.17
## 2 86.86
## 3 84.77
## 4 39.85
## 5 27.06
## 6 54.28
## 7 73.01
## 8
        NA
## 9 58.50
## 10 71.63
## 11 27.75
## 12 91.50
## 13 89.10
## 14 31.43
## 15 47.21
## 16 39.35
## 17 67.82
## 18
## 19 80.96
## 20 19.76
```

```
## 21 66.64
## 22 43.04
## 23 16.40
# (4) arrange() and desc() ==> arrange values in the descending order in the EPI and DALY
new_decs_EPI <- arrange( data, desc(EPI) )</pre>
new_decs_DALY <- arrange( data, desc(DALY) )</pre>
new_decs_EPI
## # A tibble: 231 x 160
##
       code ISO3V10 Country EPI_regions GEO_subregion GDPCAP07 Population07
                                                          <dbl>
##
      <dbl> <chr>
                    <chr>
                            <chr>
                                         <chr>>
                                                                        <dbl>
##
        352 ISL
                    Iceland Europe
                                         Western Euro~
                                                         36118.
                                                                      310997
   1
##
   2
        756 CHE
                    Switze~ Europe
                                        Western Euro~
                                                         37581.
                                                                    7550077
        188 CRI
                    Costa ~ Latin Amer~ Meso America
                                                         10239.
##
    3
                                                                    4462193.
##
   4
        752 SWE
                    Sweden Europe
                                        Western Euro~
                                                         34090.
                                                                    9148092
##
   5
        578 NOR
                    Norway Europe
                                        Western Euro~
                                                         49359.
                                                                    4709153
##
   6
        480 MUS
                    Maurit~ Sub-Sahara~ Western Indi~
                                                         10668.
                                                                    1260692
##
   7
        250 FRA
                    France Europe
                                         Western Euro~
                                                         31625.
                                                                   61707072
##
   8
         40 AUT
                    Austria Europe
                                        Western Euro~
                                                         35537.
                                                                    8315427
##
   9
        192 CUB
                    Cuba
                            Latin Amer~ Caribbean
                                                          9100
                                                                   11257013.
## 10
        170 COL
                    Colomb~ Latin Amer~ South America
                                                          8109.
                                                                   43987000
## # ... with 221 more rows, and 153 more variables: Landarea <dbl>,
## #
       PopulationDensity <dbl>, Landlock <dbl>, No_surface_water <dbl>,
## #
       Desert <dbl>, High_Population_Density <dbl>, EPI <dbl>, ENVHEALTH <dbl>,
       ECOSYSTEM <dbl>, DALY <dbl>, AIR_H <dbl>, WATER_H <dbl>, AIR_E <dbl>,
## #
## #
       WATER_E <dbl>, BIODIVERSITY <dbl>, FORESTRY <dbl>, FISHERIES <dbl>,
## #
       AGRICULTURE <dbl>, CLIMATE <dbl>, DALY_pt <dbl>, ACSAT_pt <dbl>,
       ACSAT pt imp <dbl>, WATSUP pt <dbl>, WATSUP pt imp <dbl>, INDOOR pt <dbl>,
## #
       PM10_pt <dbl>, S02_pt <dbl>, NOX_pt <dbl>, NMVOC_pt <dbl>, OZONE_pt <dbl>,
## #
## #
       WQI_pt <dbl>, WQI_pt_imp <dbl>, `WQI_pt_GEMS station data` <dbl>,
## #
       WSI_pt <dbl>, WATSTR_pt <dbl>, PACOV_pt <dbl>, MPAEEZ_pt <dbl>,
## #
       AZE_pt <dbl>, FORGRO_pt <dbl>, FORCOV_pt <dbl>, MTI_pt <dbl>,
## #
       EEZTD_pt <dbl>, AGWAT_pt <dbl>, AGSUB_pt <dbl>, AGPEST_pt <dbl>,
## #
       GHGCAP_pt <dbl>, GHGCAP_pt_imp <dbl>, GHGIND_pt <dbl>, CO2KWH_pt <dbl>,
## #
       CO2KWH_pt_imp <dbl>, DALY_raw <dbl>, ACSAT_raw <dbl>, ACSAT_raw_imp <dbl>,
## #
       WATSUP_raw <dbl>, WATSUP_raw_imp <dbl>, INDOOR_raw <dbl>, PM10_raw <dbl>,
## #
       OZONE_raw <dbl>, WQI_raw <dbl>, WQI_raw_imp <dbl>, `WQI_raw_GEMS station
## #
       data` <dbl>, SO2_raw <dbl>, NOX_raw <dbl>, NMVOC_raw <dbl>, WSI_raw <dbl>,
## #
       WATSTR_raw <dbl>, PACOV_raw <dbl>, AZE_raw <dbl>, MPAEEZ_raw <dbl>,
       FORGRO_raw <dbl>, FORCOV_raw <dbl>, MTI_raw <dbl>, EEZTD_raw <dbl>,
## #
## #
       AGWAT_raw <dbl>, AGSUB_raw <dbl>, AGPEST_raw <dbl>, GHGCAP_raw <dbl>,
## #
       GHGCAP_raw_imp <dbl>, GHGIND_raw <dbl>, CO2KWH_raw <dbl>,
## #
       CO2KWH raw imp <dbl>, DALY w <dbl>, ACSAT w <dbl>, WATSUP w <dbl>,
       INDOOR_w <dbl>, PM10_w <dbl>, OZONE_w <dbl>, SO2_w <dbl>, NOX_w <dbl>,
## #
       NMVOC_w <dbl>, WSI_w <dbl>, WATSTR_w <dbl>, PACOV_w <dbl>, AZE_w <dbl>,
## #
       MPAEEZ_w <dbl>, FORGRO_w <dbl>, FORCOV_w <dbl>, MTI_w <dbl>, EEZTD_w <dbl>,
## #
       AGWAT w <dbl>, ...
new_decs_DALY
```

A tibble: 231 x 160

```
##
       code ISO3V10 Country EPI_regions GEO_subregion GDPCAPO7 Population07
##
                    <chr>
      <dbl> <chr>
                            <chr>>
                                         <chr>
                                                          <dbl>
                                                                        <dbl>
                    Iceland Europe
                                                                     310997
##
   1
        352 ISL
                                        Western Euro~
                                                         36118.
##
        376 ISR
                    Israel Middle Eas~ Western Euro~
                                                         24824.
                                                                    7180100
   2
##
   3
        784 ARE
                    United~ Middle Eas~ Arabian Peni~
                                                         51586.
                                                                    4364746.
##
   4
       756 CHE
                    Switze~ Europe
                                        Western Euro~
                                                         37581.
                                                                    7550077
##
   5
        414 KWT
                    Kuwait Middle Eas~ Arabian Peni~
                                                         45152.
                                                                    2662966.
                                                         99100
##
   6
        634 QAT
                    Qatar
                            Middle Eas~ Arabian Peni~
                                                                    1137553
##
   7
        702 SGP
                    Singap~ East Asia ~ South East A~
                                                         47497.
                                                                    4588600
##
   8
        40 AUT
                    Austria Europe
                                        Western Euro~
                                                         35537.
                                                                    8315427
##
   9
         96 BRN
                    Brunei~ East Asia ~ South East A~
                                                         47407.
                                                                     389252.
        124 CAN
                    Canada North Amer~ North America
                                                                   32976000
## 10
                                                         36260.
## # ... with 221 more rows, and 153 more variables: Landarea <dbl>,
       PopulationDensity <dbl>, Landlock <dbl>, No_surface_water <dbl>,
       Desert <dbl>, High_Population_Density <dbl>, EPI <dbl>, ENVHEALTH <dbl>,
## #
## #
       ECOSYSTEM <dbl>, DALY <dbl>, AIR_H <dbl>, WATER_H <dbl>, AIR_E <dbl>,
       WATER_E <dbl>, BIODIVERSITY <dbl>, FORESTRY <dbl>, FISHERIES <dbl>,
## #
## #
       AGRICULTURE <dbl>, CLIMATE <dbl>, DALY_pt <dbl>, ACSAT_pt <dbl>,
## #
       ACSAT_pt_imp <dbl>, WATSUP_pt <dbl>, WATSUP_pt_imp <dbl>, INDOOR_pt <dbl>,
## #
       PM10_pt <dbl>, S02_pt <dbl>, NOX_pt <dbl>, NMVOC_pt <dbl>, OZONE_pt <dbl>,
## #
       WQI_pt <dbl>, WQI_pt_imp <dbl>, `WQI_pt_GEMS station data` <dbl>,
## #
       WSI_pt <dbl>, WATSTR_pt <dbl>, PACOV_pt <dbl>, MPAEEZ_pt <dbl>,
## #
       AZE_pt <dbl>, FORGRO_pt <dbl>, FORCOV_pt <dbl>, MTI_pt <dbl>,
       EEZTD_pt <dbl>, AGWAT_pt <dbl>, AGSUB_pt <dbl>, AGPEST_pt <dbl>,
## #
## #
       GHGCAP_pt <dbl>, GHGCAP_pt_imp <dbl>, GHGIND_pt <dbl>, CO2KWH_pt <dbl>,
## #
       CO2KWH_pt_imp <dbl>, DALY_raw <dbl>, ACSAT_raw <dbl>, ACSAT_raw_imp <dbl>,
## #
       WATSUP_raw <dbl>, WATSUP_raw_imp <dbl>, INDOOR_raw <dbl>, PM10_raw <dbl>,
## #
       OZONE_raw <dbl>, WQI_raw <dbl>, WQI_raw_imp <dbl>, `WQI_raw_GEMS station
## #
       data \ dbl>, SO2_raw \ dbl>, NOX_raw \ dbl>, NMVOC_raw \ dbl>, WSI_raw \ dbl>,
## #
       WATSTR_raw <dbl>, PACOV_raw <dbl>, AZE_raw <dbl>, MPAEEZ_raw <dbl>,
## #
       FORGRO_raw <dbl>, FORCOV_raw <dbl>, MTI_raw <dbl>, EEZTD_raw <dbl>,
## #
       AGWAT_raw <dbl>, AGSUB_raw <dbl>, AGPEST_raw <dbl>, GHGCAP_raw <dbl>,
## #
       GHGCAP_raw_imp <dbl>, GHGIND_raw <dbl>, CO2KWH_raw <dbl>,
## #
       CO2KWH_raw_imp <dbl>, DALY_w <dbl>, ACSAT_w <dbl>, WATSUP_w <dbl>,
## #
       INDOOR_w <dbl>, PM10_w <dbl>, OZONE_w <dbl>, SO2_w <dbl>, NOX_w <dbl>,
## #
       NMVOC_w <dbl>, WSI_w <dbl>, WATSTR_w <dbl>, PACOV_w <dbl>, AZE_w <dbl>,
## #
       MPAEEZ_w <dbl>, FORGRO_w <dbl>, FORCOV_w <dbl>, MTI_w <dbl>, EEZTD_w <dbl>,
## #
       AGWAT_w <dbl>, ...
# (5) mutate() ==> create new columns (ref: https://www.sharpsightlabs.com/blog/add-a-column-to-a-dataf
# (ref: https://cengel.github.io/R-data-wrangling/dplyr.html)
# in additing to selecting sets of existing columns in the dataframe, sometimes
# we need to add new columns that are functions of existing columns in the dataframe.
# we can use the mutate() function to do that.
data %>% mutate(double_EPI = EPI * 2) %>% head() %>% glimpse()
## Observations: 6
## Variables: 161
## $ code
                                 <dbl> 533, 4, 24, 660, 8, 20
## $ ISO3V10
                                 <chr> "ABW", "AFG", "AGO", "AIA", "ALB", "AND"
## $ Country
                                 <chr> "Aruba", "Afghanistan", "Angola", "Angu...
## $ EPI regions
                                 <chr> "Latin America and Caribbean", "South A...
## $ GEO subregion
                                 <chr> "Caribbean", "South Asia", "Southern Af...
```

```
## $ GDPCAP07
                                 <dbl> NA, NA, 4875.36, NA, 6811.38, NA
## $ Population07
                                 <dbl> 104176, NA, 17554585, NA, 3132458, 82180
                                 <dbl> 189.12, 634924.74, 1251895.62, 82.83, 2...
## $ Landarea
                                 <dbl> 550.85, NA, 14.02, NA, 110.51, 177.19
## $ PopulationDensity
## $ Landlock
                                 <dbl> 0, 1, 0, 0, 0, 1
## $ No surface water
                                 <dbl> 0, 0, 0, 0, 0
## $ Desert
                                 <dbl> 0, 1, 0, 1, 0, 0
## $ High_Population_Density
                                 <dbl> 1, 0, 0, 1, 0, 1
## $ EPI
                                 <dbl> NA, NA, 36.3, NA, 71.4, NA
## $ ENVHEALTH
                                 <dbl> NA, 11.55, 18.29, NA, 69.93, 90.21
## $ ECOSYSTEM
                                 <dbl> NA, NA, 54.40, NA, 72.92, NA
## $ DALY
                                 <dbl> NA, 0.00, 0.00, NA, 65.50, 84.77
## $ AIR_H
                                 <dbl> NA, 35.49, 43.47, NA, 52.97, 91.28
## $ WATER_H
                                 <dbl> 100.00, 10.72, 29.70, NA, 95.73, 100.00
## $ AIR_E
                                 <dbl> 33.13, 72.03, 40.13, 86.54, 49.16, 52.41
## $ WATER_E
                                 <dbl> NA, 57.43, 64.76, NA, 91.24, NA
## $ BIODIVERSITY
                                 <dbl> 0.23, 3.11, 58.43, 0.26, 77.02, 57.16
## $ FORESTRY
                                 <dbl> 100.00, 22.63, 94.79, 100.00, 100.00, 1...
                                 <dbl> 92.86, NA, 86.74, NA, 62.54, NA
## $ FISHERIES
## $ AGRICULTURE
                                 <dbl> 40.00, 39.59, 54.55, 40.00, 54.55, 40.00
## $ CLIMATE
                                 <dbl> NA, NA, 53.85, NA, 68.97, NA
## $ DALY pt
                                 <dbl> NA, 0.00000, 0.00000, NA, 65.50225, 84....
                                 <dbl> NA, 21.43659, 43.88328, NA, 96.63300, 1...
## $ ACSAT_pt
## $ ACSAT pt imp
                                 <dbl> 0, 0, 0, 0, 0, 0
                                 <dbl> 100.00000, 0.00000, 15.51724, NA, 94.82...
## $ WATSUP pt
## $ WATSUP_pt_imp
                                 <dbl> 0, 0, 0, 0, 0
## $ INDOOR_pt
                                 <dbl> NA, 9.168421, 49.747368, NA, 47.368421,...
## $ PM10_pt
                                 <dbl> NA, 61.81838, 37.18680, NA, 58.56530, 8...
## $ SO2_pt
                                 <dbl> 17.63125, 80.49462, 56.46289, 100.00000...
## $ NOX_pt
                                 <dbl> 17.02643, 92.98855, 40.77051, 66.43237,...
                                 <dbl> 28.83952, 58.79643, 30.60573, 52.78802,...
## $ NMVOC_pt
## $ OZONE_pt
                                 <dbl> 100.00000, 38.89569, 0.00000, 100.00000...
## $ WQI_pt
                                 <dbl> 48.00000, 44.80000, 51.80000, NA, 82.47...
                                 <dbl> 1, 1, 1, 0, 0, 1
## $ WQI_pt_imp
## $ `WQI_pt_GEMS station data`
                                 <dbl> NA, NA, NA, NA, 82.47194, NA
                                 <dbl> NA, 100, 100, NA, 100, NA
## $ WSI pt
## $ WATSTR pt
                                 <dbl> NA, 40.17494, 55.35011, NA, 100.00000, NA
## $ PACOV_pt
                                 <dbl> 0.306, 4.145, 98.368, 0.000, 96.279, 57...
## $ MPAEEZ pt
                                 <dbl> 0.00683877, NA, 36.96774581, 1.03444056...
## $ AZE_pt
                                 <dbl> NA, O, O, NA, NA, NA
## $ FORGRO_pt
                                 <dbl> NA, 41.6748, 95.8012, NA, 100.0000, NA
## $ FORCOV pt
                                 <dbl> 100.000000, 3.576983, 93.779160, 100.00...
                                 <dbl> 100.000, NA, 98.961, NA, 100.000, NA
## $ MTI pt
## $ EEZTD_pt
                                 <dbl> 85.72373, NA, 74.51304, 95.29017, 25.08...
## $ AGWAT_pt
                                 <dbl> NA, 47.95721, 100.00000, NA, 100.00000, NA
                                 <dbl> 100, 100, 100, 100, 100, 100
## $ AGSUB_pt
## $ AGPEST_pt
                                 <dbl> 0.000000, 0.000000, 9.090909, 0.000000,...
## $ GHGCAP_pt
                                 <dbl> NA, 93.3000, 37.8481, NA, 70.5000, NA
## $ GHGCAP_pt_imp
                                 <dbl> 0, 1, 0, 0, 1, 0
                                 <dbl> NA, 100.00000, 100.00000, NA, 66.91523, NA
## $ GHGIND_pt
## $ CO2KWH_pt
                                 <dbl> NA, NA, 39.68988, NA, 68.00976, NA
## $ CO2KWH pt imp
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ DALY_raw
                                <dbl> NA, 255, 288, NA, 29, 16
## $ ACSAT raw
                                 <dbl> NA, 30, 50, NA, 97, 100
```

```
## $ ACSAT raw imp
                                <dbl> 0, 0, 0, 0, 0, 0
## $ WATSUP_raw
                                <dbl> 100, 22, 51, NA, 97, 100
## $ WATSUP_raw_imp
                                <dbl> 0, 0, 0, 0, 0, 0
                                 <dbl> NA, 86.29, 47.74, NA, 50.00, 5.00
## $ INDOOR_raw
## $ PM10 raw
                                 <dbl> NA, 41.26848, 65.85132, NA, 43.89564, 2...
## $ OZONE raw
                                 <dbl> 0.00000e+00, 1.83308e+05, 1.36433e+09, ...
## $ WQI raw
                                 <dbl> 48.00000, 44.80000, 51.80000, NA, 82.47...
                                 <dbl> 1, 1, 1, 0, 0, 1
## $ WQI raw imp
## $ `WQI_raw_GEMS station data` <dbl> NA, NA, NA, NA, 82.47194, NA
## $ SO2_raw
                                 <dbl> 27.566208, 0.065268, 0.658351, 0.000109...
## $ NOX_raw
                                 <dbl> 26.278820, 0.019452, 2.760811, 0.241785...
## $ NMVOC_raw
                                 <dbl> 6.374132, 0.420557, 5.430189, 0.725463,...
## $ WSI_raw
                                 <dbl> NA, O, O, NA, O, NA
## $ WATSTR_raw
                                 <dbl> NA, 11.28, 5.50, NA, 0.00, NA
## $ PACOV_raw
                                 <dbl> 0.0306, 0.4145, 9.8368, 0.0000, 9.6279,...
                                 <dbl> NA, O, O, NA, NA, NA
## $ AZE_raw
## $ MPAEEZ_raw
                                 <dbl> 0.000164, NA, 1.426495, 0.025115, 0.586...
## $ FORGRO raw
                                 <dbl> NA, 0.854187, 0.989503, NA, 1.035620, NA
## $ FORCOV_raw
                                 <dbl> 0.0, -3.1, -0.2, 0.0, 0.6, 0.0
## $ MTI raw
                                 <dbl> 0.025715, NA, -0.000354, NA, 0.018862, NA
## $ EEZTD_raw
                                 <dbl> 14.276271, NA, 25.486959, 4.709826, 74....
## $ AGWAT raw
                                 <dbl> NA, 35.140, 0.141, NA, 2.541, NA
## $ AGSUB_raw
                                <dbl> 0, 0, 0, 0, 0, 0
## $ AGPEST raw
                                 <dbl> 0, 0, 2, 0, 2, 0
                                 <dbl> NA, 3.20000, 16.16991, NA, 6.40000, NA
## $ GHGCAP_raw
## $ GHGCAP_raw_imp
                                 <dbl> 0, 1, 0, 0, 1, 0
## $ GHGIND_raw
                                 <dbl> NA, 0.00000, 16.06677, NA, 72.75947, NA
## $ CO2KWH_raw
                                 <dbl> NA, NA, 153.4030, NA, 42.5599, NA
## $ CO2KWH_raw_imp
                                 <dbl> 0, 0, 0, 0, 0
## $ DALY_w
                                 <dbl> NA, 5.388905, 5.388905, NA, 3.367296, 2...
## $ ACSAT_w
                                 <dbl> NA, 30, 50, NA, 97, 100
## $ WATSUP_w
                                 <dbl> 100, 42, 51, NA, 97, 100
## $ INDOOR_w
                                 <dbl> NA, 86.29, 47.74, NA, 50.00, 5.00
## $ PM10_w
                                 <dbl> NA, 3.720099, 4.187399, NA, 3.781815, 3...
## $ OZONE w
                                 <dbl> 0.000000, 12.118929, 19.833180, 0.00000...
## $ SO2_W
                                 <dbl> 3.3165907, -2.7292534, -0.4180171, -9.1...
## $ NOX w
                                 <dbl> 3.26876329, -3.93980539, 1.01552448, -1...
## $ NMVOC_w
                                 <dbl> 1.8522479, -0.8661753, 1.6919739, -0.32...
## $ WSI w
                                 <dbl> NA, O, O, NA, O, NA
## $ WATSTR_w
                                 <dbl> NA, 2.507972, 1.871802, NA, 0.000000, NA
## $ PACOV w
                                 <dbl> 0.0306, 0.4145, 9.8368, 0.0000, 9.6279,...
## $ AZE w
                                 <dbl> NA, O, O, NA, NA, NA
                                 <dbl> 0.000163987, NA, 0.886447829, 0.0248048...
## $ MPAEEZ w
## $ FORGRO_w
                                 <dbl> NA, 0.854187, 0.989503, NA, 1.035620, NA
## $ FORCOV_w
                                 <dbl> 0.0, -3.1, -0.2, 0.0, 0.6, 0.0
## $ MTI_w
                                 <dbl> 0.025715, NA, -0.000354, NA, 0.018862, NA
## $ EEZTD_w
                                 <dbl> 14.276271, NA, 25.486959, 4.709826, 74....
## $ AGWAT_w
                                 <dbl> NA, 3.5874003, 0.1319051, NA, 1.2644092...
## $ AGSUB_w
                                 <dbl> 0, 0, 0, 0, 0
## $ AGPEST_w
                                 <dbl> 0, 0, 2, 0, 2, 0
## $ GHGCAP_w
                                 <dbl> NA, 1.423393, 2.843158, NA, 2.008084, NA
## $ GHGIND_w
                                 <dbl> NA, 0.000000, 2.837133, NA, 4.300809, NA
## $ CO2KWH_w
                                 <dbl> NA, NA, 5.033068, NA, 3.750912, NA
## $ DALY tr
                                 <dbl> NA, 5.541264, 5.662960, NA, 3.367296, 2...
```

```
## $ OZONE tr
                                 <dbl> 0.000000, 12.118929, 21.033929, 0.00000...
## $ SO2 tr
                                 <dbl> 3.3165907, -2.7292534, -0.4180171, -9.1...
                                 <dbl> 3.26876329, -3.93980539, 1.01552448, -1...
## $ NOX_tr
## $ NMVOC tr
                                 <dbl> 1.8522479, -0.8661753, 1.6919739, -0.32...
## $ WATSTR tr
                                 <dbl> NA, 2.507972, 1.871802, NA, 0.000000, NA
## $ MPAEEZ_tr
                                 <dbl> 0.000163987, NA, 0.886447829, 0.0248048...
## $ AGWAT tr
                                 <dbl> NA, 3.5874003, 0.1319051, NA, 1.2644092...
                                 <dbl> NA, 1.423393, 2.843158, NA, 2.008084, NA
## $ GHGCAP tr
## $ GHGIND_tr
                                 <dbl> NA, 0.000000, 2.837133, NA, 4.300809, NA
## $ CO2KWH_tr
                                 <dbl> NA, NA, 5.033068, NA, 3.750912, NA
## $ DALY t
                                 <dbl> 10, 10, 10, 10, 10, 10
## $ ACSAT_t
                                 <dbl> 100, 100, 100, 100, 100, 100
## $ WATSUP_t
                                 <dbl> 100, 100, 100, 100, 100, 100
## $ INDOOR_t
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ PM10_t
                                 <dbl> 20, 20, 20, 20, 20, 20
## $ OZONE_t
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ SO2 t
                                 <dbl> 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
## $ NOX_t
                                 <dbl> 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
## $ NMVOC t
                                 <dbl> 0.01, 0.01, 0.01, 0.01, 0.01
## $ WSI_t
                                 <dbl> 0, 0, 0, 0, 0
## $ WATSTR t
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ PACOV_t
                                 <dbl> 10, 10, 10, 10, 10, 10
                                 <dbl> 100, 100, 100, 100, 100, 100
## $ AZE t
## $ MPAEEZ t
                                 <dbl> 10, 10, 10, 10, 10, 10
## $ FORGRO t
                                 <dbl> 1, 1, 1, 1, 1, 1
## $ FORCOV_t
                                 <dbl> 0, 0, 0, 0, 0
## $ MTI_t
                                 <dbl> 0, 0, 0, 0, 0
## $ EEZTD_t
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ AGWAT t
                                 <dbl> 10, 10, 10, 10, 10, 10
## $ AGSUB_t
                                 <dbl> 0, 0, 0, 0, 0, 0
## $ AGPEST_t
                                 <db1> 22, 22, 22, 22, 22, 22
## $ GHGCAP_t
                                 <dbl> 2.5, 2.5, 2.5, 2.5, 2.5, 2.5
## $ GHGIND_t
                                 <dbl> 36.3, 36.3, 36.3, 36.3, 36.3, 36.3
## $ CO2KWH t
                                 <dbl> 10, 10, 10, 10, 10, 10
## $ DALY_ttr
                                 <dbl> 2.302585, 2.302585, 2.302585, 2.302585,...
## $ PM10 ttr
                                 <dbl> 2.995732, 2.995732, 2.995732, 2.995732,...
## $ OZONE_ttr
                                 <dbl> 0, 0, 0, 0, 0
## $ SO2 ttr
                                 <dbl> -4.60517, -4.60517, -4.60517, -4.60517,...
                                 <dbl> -4.60517, -4.60517, -4.60517, -4.60517,...
## $ NOX_ttr
## $ NMVOC ttr
                                 <dbl> -4.60517, -4.60517, -4.60517, -4.60517,...
## $ WATSTR ttr
                                 <dbl> 0, 0, 0, 0, 0, 0
                                 <dbl> 2.397895, 2.397895, 2.397895, 2.397895,...
## $ MPAEEZ_ttr
## $ AGWAT_ttr
                                 <dbl> 2.397895, 2.397895, 2.397895, 2.397895,...
## $ GHGCAP_ttr
                                 <dbl> 1.252763, 1.252763, 1.252763, 1.252763,...
                                 <dbl> 3.618993, 3.618993, 3.618993, 3.618993,...
## $ GHGIND_ttr
## $ CO2KWH ttr
                                 <dbl> 2.302585, 2.302585, 2.302585, 2.302585,...
## $ double_EPI
                                 <dbl> NA, NA, 72.6, NA, 142.8, NA
# If you only want to see the new column instead of calling the mutate, you can
# use the transmute() fuction.
# The difference between the mutate() and transmute() is that mutate() function returns
# the entire dataframe along with the new column and the transmute() shows only the new column.
data %>% transmute(double_DALY = DALY * 2) %>% glimpse()
```

<dbl> NA, 3.720099, 4.187399, NA, 3.781815, 3...

\$ PM10 tr

```
## Observations: 231
## Variables: 1
## $ double_DALY <dbl> NA, 0.00, 0.00, NA, 131.00, 169.54, NA, 178.20, 143.26,...

# (6) summaries() and mean ==> summarize the data frame into a single row using another aggrigate funct data %>% summarise(mean_EPI = mean(EPI, na.rm = TRUE), mean_DALY = mean(DALY, na.rm = TRUE)) %>% glimps

## Observations: 1
## Variables: 2
## $ mean_EPI <dbl> 58.37055
## $ mean_DALY <dbl> 53.94313

# (7) draw boxplot and qqplot
boxplot(ENVHEALTH,ECOSYSTEM)
```


qqplot(ENVHEALTH,ECOSYSTEM)

Lab2b Regression

Using the EPI (under /EPI on web) dataset find the single most important factor in increasing the EPI in a given region ### Linear and Least-Squares

```
# (1) create a multilinear regression model

lmENVH <- lm(ENVHEALTH~DALY+AIR_H+WATER_H)
```

```
# (2) display the mode
lmENVH
```

```
##
## Call:
## lm(formula = ENVHEALTH ~ DALY + AIR_H + WATER_H)
##
## Coefficients:
## (Intercept) DALY AIR_H WATER_H
## -2.673e-05 5.000e-01 2.500e-01 2.500e-01
```

- 1) sinece DALY has the largest coefficient, which could mean that DALY has the largest effect on increaseing EPI in a given region
- 2) all three factors are significant based on their p-values

```
summary( lmENVH )
```

```
##
## Call:
## lm(formula = ENVHEALTH ~ DALY + AIR_H + WATER_H)
##
```

```
## Residuals:
         Min 1Q
                           Median
##
                                          30
                                                    Max
## -0.0072734 -0.0027299 0.0001145 0.0021423 0.0055205
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2.673e-05 6.377e-04 -0.042 0.967
          5.000e-01 1.922e-05 26020.669 <2e-16 ***
## DALY
## AIR_H
             2.500e-01 1.273e-05 19645.297 <2e-16 ***
## WATER_H
             2.500e-01 1.751e-05 14279.903 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.003097 on 178 degrees of freedom
    (49 observations deleted due to missingness)
## Multiple R-squared: 1, Adjusted R-squared:
## F-statistic: 3.983e+09 on 3 and 178 DF, p-value: < 2.2e-16
cENVH<-coef(lmENVH)
cENVH
    (Intercept)
                        DALY
                                     AIR_H
                                                 WATER H
## -2.673362e-05 5.000401e-01 2.499968e-01 2.499781e-01
Predict
# keep copies
origin_DALY <- DALY</pre>
origin_AIR_H <- AIR_H
origin_WATER_H <- WATER_H
DALY <- c(seq(5, 95, 5))
AIR_H \leftarrow c(seq(5, 95, 5))
WATER_H <- c(seq(5, 95, 5))
NEW <- data.frame( DALY, AIR_H, WATER_H )</pre>
pENV<- predict(lmENVH, NEW, se.fit = TRUE, interval="prediction", na.action = na.pass)</pre>
cENV<-predict(lmENVH,NEW,se.fit = TRUE,interval="confidence",na.action = na.pass)
```

reference: https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/predict.lm

Repeat for AIR E

```
DALY <-origin_DALY
AIR_H <- origin_AIR_H
WATER_H <- origin_WATER_H
# (1) create a multilinear regression model
lmAIR_E <- lm(AIR_E~DALY+AIR_H+WATER_H)
```

```
# (2) display the mode
lmAIR_E
##
## Call:
## lm(formula = AIR_E ~ DALY + AIR_H + WATER_H)
## Coefficients:
                                             WATER_H
                                  AIR_H
## (Intercept)
                      DALY
##
      59.2903
                   -0.1248
                                 0.1686
                                             -0.1798
summary( lmAIR_E )
##
## Call:
## lm(formula = AIR_E ~ DALY + AIR_H + WATER_H)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -32.708 -7.328 -1.739 8.117 38.182
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59.29025 2.55759 23.182 < 2e-16 ***
## DALY
             -0.12482
                          0.07707 -1.620 0.10710
              0.16863
                                   3.304 0.00115 **
## AIR_H
                          0.05104
## WATER_H
             -0.17982
                        0.07021 -2.561 0.01126 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 12.42 on 178 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.1803, Adjusted R-squared: 0.1664
## F-statistic: 13.05 on 3 and 178 DF, p-value: 9.654e-08
cAIR_E<-coef(lmAIR_E)
cAIR_E
## (Intercept)
                     DALY
                                AIR_H
                                          WATER_H
## 59.2902524 -0.1248238 0.1686255 -0.1798231
Predict
DALY <- c(seq(5, 95, 5))
AIR_H \leftarrow c(seq(5, 95, 5))
WATER_H <- c(seq(5, 95, 5))
NEW <- data.frame( DALY, AIR_H, WATER_H )</pre>
pAIR_E<- predict(lmAIR_E,interval="prediction")</pre>
```

Warning in predict.lm(lmAIR_E, interval = "prediction"): predictions on current data refer to _futur

cAIR_E-predict(lmAIR_E,interval="prediction") ## Warning in predict.lm(lmAIR_E, interval = "prediction"): predictions on current data refer to _futur ## Warning in cAIR_E - predict(lmAIR_E, interval = "prediction"): longer object ## length is not a multiple of shorter object length ## fit lwr ## 2 -4.05681417 -38.26518 -28.970071 ## 3 -61.40447961 -36.50292 -86.361042 ## 5 -42.66329819 41.25097 -67.455941 ## 6 -46.29858949 -21.56547 -70.976711 ## 8 20.60174588 -13.49201 -4.426121 ## 9 -44.67895399 -20.07082 -69.342091 -46.15677710 37.62988 -70.821804 ## 10 -50.69237764 -25.95216 -75.377599 ## 12 ## 13 12.14455694 -22.28006 -12.552451 -44.78040900 -20.14135 -69.474468 ## 14 -50.48275383 33.22437 -75.068246 ## 15 ## 16 -58.20044248 -33.16690 -83.178987 ## 17 12.18665854 -22.26844 -12.479869 ## 18 -56.66839334 -31.99303 -81.398751 ## 19 -55.67283222 28.34874 -80.572780 ## 20 -46.54171452 -21.40266 -71.625773 ## 21 15.23566854 -19.14555 -9.504736 ## 22 -41.85089702 -17.13668 -66.620112 ## 23 -47.41809150 36.38902 -72.103572 ## 24 -46.02671891 -21.32791 -70.670529 ## 25 7.43974701 -26.77302 -17.469110 ## 26 -56.60144068 -31.83660 -81.421279 -50.87113898 32.87776 -75.498412 ## 28 ## 29 -53.10916470 -28.38727 -77.776064 ## 30 13.61961802 -20.85616 -11.026226 -42.59165056 -17.90089 -67.337413 ## 31 ## 32 -58.10030273 25.80564 -82.884620 ## 33 -51.39104717 -26.54766 -76.179437 ## 34 2.57467139 -31.80245 -22.169835 -47.00963755 -22.35216 -71.722117 ## 35 ## 36 -45.35569390 38.48330 -70.073063 ## 37 -45.52850132 -20.81573 -70.186277 ## 38 13.61035997 -20.75039 -11.150522 ## 39 -58.12527845 -33.34041 -82.965143 ## 40 30.71590 -78.026180 -53.21595467 ## 41 -61.23156571 -36.32450 -86.083630 5.03289582 -29.30721 -19.748626 ## 42 -50.16207353 -25.52478 -74.854369 ## 43 -51.73465678 32.03718 -76.384866 ## 44 -53.13472209 -28.46320 -77.751247 ## 45 5.57448641 -28.76135 -19.211308 ## 46

-45.55653986 -20.97249 -70.195589

-49.86208013 33.94174 -74.544272 -43.60275621 -18.83307 -68.317442

11.15156794 -23.30092 -13.517573

47 ## 48

50

51

```
## 52 -47.51517380 -22.88396 -72.201383
## 53
      -54.01848742 30.03105 -78.946403
      -48.25208174 -23.57012 -72.879046
## 55
       11.66897838 -22.77333 -13.010337
## 56
       -53.63044191 -28.93441 -78.381470
## 57
      -47.20489935 36.52383 -71.812002
## 58
      -51.56954760 -26.85111 -76.232984
## 59
       13.41094752 -21.04327 -11.256464
## 60
       -59.15129102 -34.16482 -84.192765
## 62
      -44.94344698 38.85258 -69.617844
## 63
      -49.98459934 -25.16730 -74.746901
## 64
       -1.36023897 -35.43264 -26.409466
## 65
      -47.51517380 -22.88396 -72.201383
      -57.34211762 27.10094 -82.663550
## 66
      -47.57017310 -22.82897 -72.256382
## 68
## 71
       -0.06283985 -34.35856 -24.888746
## 72
       -47.74609777 -23.12178 -72.425413
## 73
      -42.70108234 41.17548 -67.456016
      -56.76054841 -32.00781 -81.458289
## 74
## 76
        4.35635145 -29.97395 -20.434975
## 78
      -47.22518200 -22.17167 -72.333697
       -56.75896173 27.22888 -81.625175
## 79
      -71.08468288 -45.27458 -96.839782
## 80
       14.30713634 -20.15033 -10.357023
## 81
## 82
      -47.35128092 -22.76357 -71.993989
## 84
      -42.94751986 41.14813 -67.921542
      -52.50808802 -27.72856 -77.232612
## 87
## 89
       10.46138090 -24.03648 -14.162386
## 90
      -46.28803990 -21.70736 -70.923721
      -58.00791618 26.02045 -82.914652
## 91
## 92
      -49.58857342 -24.79916 -74.322987
## 93
       10.33575404 -24.07179 -14.378333
## 95
      -51.82421281 -27.23024 -76.473189
## 96
      -46.97706999 36.84156 -71.674077
       -48.77156828 -24.11858 -73.369554
## 97
        5.93284365 -28.19714 -19.058804
## 98
## 99 -46.43045527 -21.72407 -71.191840
## 100 -44.12193183 39.74776 -68.869995
## 101 -45.77971086 -21.03161 -70.472811
## 102 14.52422651 -19.91117 -10.162003
## 103 -47.32570338 -22.77466 -71.931748
## 104 -44.96754233 38.84605 -69.659503
## 105 -52.75814357 -27.63566 -77.825630
        0.48315846 -33.91423 -24.241075
## 106
## 107 -50.87095858 -26.18287 -75.614045
## 108 -55.48346906 28.37605 -80.221364
## 110 -50.14782317 -25.38046 -74.860184
## 111 10.95397549 -23.51871 -13.694967
## 112 -39.69835073 -14.82423 -64.627473
## 113 -52.82383968 31.04512 -77.571177
## 114 -47.41372954 -22.66674 -72.105719
## 115 -5.03293030 -39.03644 -30.151048
## 116 -47.30687508 -22.65870 -72.010052
## 117 -48.15093768 35.59158 -72.771832
```

```
## 119 -44.55311611 -19.46422 -69.587010
## 120 6.48594446 -27.93836 -18.211382
## 121 -54.04285139 -29.36791 -78.772796
## 122 -47.22172458 36.58611 -71.907933
## 123 -52.39773324 -27.63656 -77.103911
## 125
        4.52513621 -29.80112 -20.270235
## 126 -46.56615259 -21.91805 -71.269251
## 127 -50.32055636 33.39154 -74.911023
## 128 -61.85665462 -36.69909 -86.959224
## 129
        4.21045459 -30.20203 -20.498683
## 130 -47.73581430 -23.16821 -72.358416
## 132 -47.03166050 36.70947 -71.651163
## 133 -53.07069400 -27.84040 -78.245992
## 134 12.84892356 -21.56961 -11.854174
## 135 -45.34112321 -20.37291 -70.364337
## 136 -46.20752303 38.00559 -71.299004
## 138 -61.87701624 -36.87302 -86.826018
## 139
       2.33845238 -31.98794 -22.456784
## 142 -49.68147464 -25.05007 -74.367882
## 143 -53.94755254 30.29611 -79.069591
## 144 -49.60162633 -24.87164 -74.276609
       8.96966962 -25.50190 -15.680390
## 148 -59.45217376 -34.48594 -84.473402
## 150 -61.54543301 22.41424 -86.383478
## 151 -52.82884075 -27.98016 -77.622521
## 152 10.78261512 -23.57099 -13.985409
## 153 -44.68935125 -20.04952 -69.384183
## 154 -47.22172458 36.58611 -71.907933
## 155 -53.25423150 -28.57733 -77.876129
## 157 11.89990235 -22.53552 -12.786306
## 158 -44.76586766 -19.98635 -69.600384
## 159 -44.48612008 39.62256 -69.473175
## 160 -48.01704446 -23.32550 -72.653594
## 162 11.51924144 -22.95569 -13.127458
## 163 -49.95644191 -25.40363 -74.564252
## 165 -59.88541127 24.26535 -84.914543
## 166 -50.08453761 -25.39078 -74.723300
## 168 14.37156963 -19.94518 -10.433309
## 169 -47.53651700 -22.93328 -72.194753
## 170 -45.95164054 38.03516 -70.816814
## 173 -42.60312027 -17.78375 -67.367489
## 175
       6.50415941 -27.93802 -18.175286
## 176 -53.86420218 -28.91630 -78.867102
## 177 -60.87220917 23.09108 -85.713876
## 178 -44.66423658 -19.90577 -69.367704
       8.77554070 -25.63904 -15.931506
## 179
## 180 -49.71712443 -24.79186 -74.697391
## 181 -54.49991811 29.34461 -79.222814
## 182 -43.60812799 -18.81917 -68.342087
## 185
       1.93562266 -32.06789 -23.182492
## 186 -62.08045345 -37.24863 -86.967278
## 187 -49.95269637 33.75411 -74.537872
## 189 -64.51699844 -39.50672 -89.472280
## 191
       1.20106138 -33.22802 -23.491482
```

```
## 192 -51.17336642 -26.60494 -75.796797
## 193 -48.78202167 35.04161 -73.484031
## 194 -46.11174487 -21.41454 -70.753952
## 195 12.40543861 -22.00371 -12.307041
## 196 -58.20633520 -33.56847 -82.899204
## 197 -50.65601048 33.13508 -75.325479
## 198 -45.44583966 -20.72851 -70.108169
## 200
        0.76561753 -33.39290 -24.197489
## 201 -59.93779123 -35.12796 -84.802619
## 202 -44.06228387 39.92233 -68.925270
## 203 -53.47607314 -28.76674 -78.130407
## 205
         2.85995751 -31.60346 -21.798250
## 207 -43.26283590 -18.53659 -68.044084
## 208 -43.63467543 40.20061 -68.348333
## 209 -50.07066697 -25.39535 -74.690986
## 210 11.64485665 -22.86442 -12.967490
## 213 -60.27327261 -35.55834 -85.043207
## 214 -60.01577708 23.87177 -84.781700
## 215 -52.33745029 -27.41582 -77.204083
## 216 18.77087813 -15.43749 -6.142380
## 217 -47.83208591 -23.21946 -72.499708
## 218 -47.88616326 35.93836 -72.589064
## 221 -52.40476556 -27.64593 -77.108601
## 224 13.99467392 -20.38253 -10.749745
## 225 -54.74781835 -29.67228 -79.878354
## 228 -55.80074369 27.97105 -80.450907
## 229 -57.25062757 -32.31323 -82.133030
## 230
        1.87881048 -32.46296 -22.901044
## 231 -56.32190028 -31.61676 -81.082041
```

Repeat for CLIMATE

```
DALY <-origin_DALY
AIR_H <- origin_AIR_H
WATER_H <- origin_WATER_H
# (1) create a multilinear regression model
lmCLIMATE <- lm(CLIMATE~DALY+AIR_H+WATER_H)
```

```
# (2) display the mode
lmCLIMATE
```

```
##
##
Call:
## lm(formula = CLIMATE ~ DALY + AIR_H + WATER_H)
##
## Coefficients:
## (Intercept) DALY AIR_H WATER_H
## 75.3487 -0.1732 0.0181 -0.1538
summary( lmCLIMATE )
```

```
##
## Call:
## lm(formula = CLIMATE ~ DALY + AIR_H + WATER_H)
## Residuals:
##
                                3Q
       Min
                1Q Median
                                       Max
## -37.578 -9.768
                    1.165
                             9.164 44.434
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 75.34874
                           3.01412 24.999
                                             <2e-16 ***
                           0.09050 -1.914
               -0.17323
                                             0.0573 .
## DALY
## AIR H
               0.01810
                           0.05919
                                     0.306
                                             0.7602
               -0.15385
                           0.08161 -1.885
## WATER_H
                                             0.0611 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.15 on 168 degrees of freedom
     (59 observations deleted due to missingness)
## Multiple R-squared: 0.255, Adjusted R-squared: 0.2417
## F-statistic: 19.17 on 3 and 168 DF, p-value: 9.704e-11
cCLIMATE <-coef (lmCLIMATE)
cCLIMATE
## (Intercept)
                      DALY
                                 AIR_H
                                           WATER_H
## 75.3487356 -0.1732265
                             0.0180960 -0.1538496
DALY <- c(seq(5, 95, 5))
AIR_H \leftarrow c(seq(5, 95, 5))
WATER_H <- c(seq(5, 95, 5))
NEW <- data.frame( DALY, AIR_H, WATER_H )</pre>
pCLIMATE<- predict(lmCLIMATE, NEW, interval="prediction")</pre>
cCLIMATE <-predict(lmCLIMATE, NEW, interval="confidence")
```

Lab2- Part2: 2a, 2b

MultiLinear Regression

```
df = read_csv( "dataset_multipleRegression.csv" )

## Parsed with column specification:
## cols(
## YEAR = col_double(),
## ROLL = col_double(),
## UNEM = col_double(),
## URRAD = col_double(),
## INC = col_double()
```

```
# attach data frame
attach(df)
# create a linear model using lm(FORMULA, DATAVAR)
# predict the fall enrollment (ROLL) using the unemployment rate (UNEM) and number of spring high school
twoPredictorModel <- lm( ROLL ~ UNEM + HGRAD, df )
# display model
twoPredictorModel
##
## Call:
## lm(formula = ROLL ~ UNEM + HGRAD, data = df)
## Coefficients:
                                   HGRAD
## (Intercept)
                       UNEM
## -8255.7511
                                  0.9423
                   698.2681
\# the expected fall enrollment (ROLL) given this year's unemployment rate
# (UNEM) of 7% and spring high school graduating class (HGRAD) of 90,000 is:
ans1 <- -8255.7511 + 698.2681 * 7 + 0.9423 * 90000
# Repeat and add per capita income (INC) to the model. Predict ROLL if INC=$25,000
# Summarize and compare the two models.
# Comment on significance
threePredictorModel <- lm( ROLL ~ UNEM + HGRAD + INC, df )
# display model
threePredictorModel
##
## Call:
## lm(formula = ROLL ~ UNEM + HGRAD + INC, data = df)
## Coefficients:
                                   HGRAD
## (Intercept)
                       UNEM
                                                  INC
## -9153.2545
                 450.1245
                                  0.4065
                                               4.2749
# the expected fall enrollment (ROLL) given this year's unemployment rate (UNEM) of 9%, spring high sch
ans2 <- -9153.2545 + 450.1245 * 9 + 0.4065 * 100000 + 4.2749 * 30000
ans2
## [1] 163794.9
# generate model summaries
summary(twoPredictorModel)
##
## Call:
## lm(formula = ROLL ~ UNEM + HGRAD, data = df)
##
## Residuals:
              1Q Median
##
      Min
                                3Q
                                       Max
```

```
## -2102.2 -861.6 -349.4 374.5 3603.5
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -8.256e+03 2.052e+03 -4.023 0.00044 ***
## UNEM
              6.983e+02 2.244e+02 3.111 0.00449 **
## HGRAD
              9.423e-01 8.613e-02 10.941 3.16e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1313 on 26 degrees of freedom
## Multiple R-squared: 0.8489, Adjusted R-squared: 0.8373
## F-statistic: 73.03 on 2 and 26 DF, p-value: 2.144e-11
summary(threePredictorModel)
##
## lm(formula = ROLL ~ UNEM + HGRAD + INC, data = df)
## Residuals:
       Min
                 1Q Median
                                          Max
                                  30
## -1148.84 -489.71
                      -1.88
                              387.40 1425.75
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.153e+03 1.053e+03 -8.691 5.02e-09 ***
## UNEM
              4.501e+02 1.182e+02 3.809 0.000807 ***
## HGRAD
              4.065e-01 7.602e-02 5.347 1.52e-05 ***
## INC
               4.275e+00 4.947e-01 8.642 5.59e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 670.4 on 25 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9576
## F-statistic: 211.5 on 3 and 25 DF, p-value: < 2.2e-16
```

kNN

```
mutate(age=case_when(
   Rings %in% 1:5 ~ "young",
   Rings %in% 6:13 ~ "adult",
   Rings %in% 14:30 ~ "old"
  ))
# remove rings, sex
abalone \leftarrow abalone [c(-1, -9)]
str(abalone)
## 'data.frame': 4177 obs. of 9 variables:
                   : num 0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
## $ Length
                   : num 0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
## $ Diameter
                   : num 0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
## $ Height
## $ Whole.weight : num 0.514 0.226 0.677 0.516 0.205 ...
## $ Shucked.weight: num 0.2245 0.0995 0.2565 0.2155 0.0895 ...
## $ Viscera.weight: num 0.101 0.0485 0.1415 0.114 0.0395 ...
## $ Shell.weight : num 0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
                    : num 0 0 1 0 2 2 1 1 0 1 ...
## $ sex num
## $ age
                    : chr "old" "adult" "adult" "adult" ...
### the dependent variable is age , with the different values young adult old
### standardize the predictors
set.seed(100)
abalone scale <- data.frame(scale(abalone[1:8]))
### add the target variable to the data set abalone_scale
abalone$age <- as.factor(abalone$age)</pre>
abalone_scale <- cbind(abalone_scale, age = abalone$age)
i <- sample(4177, 2088)
abalone_train <- abalone_scale[i,]
abalone_test <- abalone_scale[-i,]
```

The value of K is important in the KNN algorithm, because the prediction accuracy in the test set depends on it. The optimal value of K is the value that leads to the highest prediction accuracy.

```
### we use the tune.knn function in the e1071 package to determine a good K number
### this function performs a 10-fold cross-validation
library(e1071)
t_knn <- tune.knn(abalone_train[,-9], factor(abalone_train[,9]), k = 1:100)
t_{knn} # names(t_{knn}) to see the list of variables
##
## Parameter tuning of 'knn.wrapper':
##
## - sampling method: 10-fold cross validation
##
## - best parameters:
##
   k
## 15
##
## - best performance: 0.1398601
```

plot(t_knn)

Performance of 'knn.wrapper'


```
# Run the prediction
library(class)
age <- abalone_train$age
pred <- knn(train = abalone_train[,-9], test = abalone_test[,-9], c1 = age, k = t_knn$best.parameters)

### get the prediction accuracy in the test set
mean(pred == abalone_test$age)

## [1] 0.8697942

table(pred,abalone_test$age)</pre>
```

```
## ## pred adult old young ## adult 1727 218 34 ## old 9 30 0 ## young 11 0 60
```

Kmeans (Clustering)

```
data("iris")
iris_dataset<-iris
view(iris_dataset)</pre>
```

Splitting the data into training and testing Sets

```
# Load the Caret package which allows us to partition the data
library(caret)
# We use the dataset to create a partition (80% training 20% testing)
index <- createDataPartition(iris_dataset$Species, p=0.80, list=FALSE)
# select 20% of the data for testing
testset <- iris_dataset[-index,]</pre>
# select 80% of data to train the models
trainset <- iris_dataset[index,]</pre>
# Since Kmeans is a random start algo, we need to set the seed to ensure reproduceability
set.seed(1000)
irisCluster <- kmeans(iris[, 1:4], centers = 3, nstart = 1000)</pre>
irisCluster
## K-means clustering with 3 clusters of sizes 62, 50, 38
##
## Cluster means:
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width
       5.901613
                            4.393548
## 1
                2.748387
                                      1.433871
## 2
       5.006000
                 3.428000
                            1.462000
                                      0.246000
       6.850000
## 3
                 3.073684
                            5.742105
                                      2.071053
##
## Clustering vector:
  ## [149] 3 1
##
## Within cluster sum of squares by cluster:
## [1] 39.82097 15.15100 23.87947
## (between_SS / total_SS = 88.4 %)
##
## Available components:
##
## [1] "cluster"
                  "centers"
                              "totss"
                                                       "tot.withinss"
                                           "withinss"
                  "size"
## [6] "betweenss"
                              "iter"
                                           "ifault"
table(irisCluster$cluster, iris$Species)
##
##
     setosa versicolor virginica
##
    1
         0
                  48
##
    2
         50
                   0
                           0
##
         0
                          36
plot(iris[c("Sepal.Length", "Sepal.Width")], col=irisCluster$cluster)
points(irisCluster$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3, pch=8, cex=2)
```

