

WHAT IS CLAIMED IS:

- 1 1. A method comprising the steps of:
 - 2 receiving a first quantization value for a first macroblock;
 - 3 determining a second quantization value for the first macroblock based on the first
 - 4 quantization value and a first expected amount of video data in a video buffer.
- 1 2. The method of claim 1, further comprising the step of modifying the first macroblock based on
the second quantization value.
- 1 3. The method of claim 1, wherein the first quantization value is received from a source of the first
macroblock.
- 1 4. The method of claim 1, wherein an address location of a video buffer represents the first expected
amount of data in the video buffer.
- 1 5. The method of claim 1, wherein a buffer delay value indicating when a frame is to be processed
2 represents the first expected amount of data in the video buffer.
- 1 6. The method of claim 5, wherein the buffer delay value is based on a number of frames stored in a
2 buffer location of the video buffer.
- 1 7. The method of claim 1, wherein the first expected amount of data is determined based on a
2 modeling of the video buffer.

1 8. The method of claim 7, wherein the modeling of the video buffer includes determining a fullness
2 of a video buffer based on a difference between a input rate and a output rate.

1 9. The method of claim 7, wherein modeling of the video buffer includes using a VBV buffer
2 model.

1 10. The method of claim 1, wherein the step of determining further includes determining the second
2 quantization value based on a first ratio of a input bit rate to a output bit rate.

1 11. The method of claim 10, wherein the step of determining further includes determining the
2 second quantization value based on a second ratio of the first ratio to a source bit count.

1 12. The method of claim 10, wherein the step of determining further includes determining the
2 second quantization value based on a product value of a X scaling value and a Y scaling
 value, wherein the product value is raised to a power of Z where Z is less than one.

1 13. The method of claim 12, wherein the X scaling value includes a horizontal frame size value and
2 the Y scaling value includes a vertical frame size value.

1 14. The method of claim 13, wherein Z is .75 +/- 0.1.

1 15. The method of claim 1, wherein the second quantization value includes a ratio value of the first
2 quantization value to a quantization ratio.

1 16. The method of claim 15, wherein the quantization ratio is based on the first expected amount of
2 data.

- 1 17. The method of claim 16, wherein:
- 2 the quantization ratio includes a first constant value when the first expected amount of data
3 is greater than a first indicator;
- 4 the quantization ratio includes a second constant value when the first expected amount of data
5 is less than the first indicator and greater than a second indicator; and
- 6 the quantization ratio is determined from a non-linear function when the first expected
7 amount of data is less than the second indicator.
18. The method of claim 17, wherein the first indicator is a buffer fullness value of 75% +/- 1% of a maximum buffer fullness.
19. The method of claim 17, wherein the second indicator is a buffer fullness value of 20% +/- 1% of a maximum buffer fullness.
20. The method of claim 17, wherein the non-linear function includes an equation:

$$R = Q * X^{(Y-W)/Z}$$

3 where R is the quantization ratio, Q is an initial quantization ratio, X is a first constant
4 value, Y is a second constant, W is a value representing the amount of data, and Z is a
5 third constant value.

- 1 21. A method comprising the steps of:
- 2 modifying a quantization value for a first macroblock by a first constant value when an
3 amount of data stored in a buffer is greater than a first indicator;
- 4 modifying the quantization value for the first macroblock by a second constant value when
5 the amount of data stored in the buffer is greater than a second indicator and less than
6 the first indicator; and
- 7 modifying the quantization value for the first macroblock by a non-linear value when the
8 amount of data stored in the buffer is less than the second indicator.

PCT/EP2016/066610

- 1 22. A method comprising the steps of:
2 determining a first quantization value associated with a first macroblock;
3 modifying the first macroblock using a second quantization value, wherein the second
4 quantization value is based on a ratio of a first quantization ratio to the first
5 quantization value, and where the first quantization ratio is based on a first expected
6 characteristic of a video buffer.
- 1 23. The method of claim 22, wherein the step of determining the first quantization value includes
2 receiving the first quantization value from a source of the first macroblock.
- 1 24. The method of claim 22, wherein the first expected characteristic of the video buffer includes a
2 fullness of the video buffer.
- 1 25. The method of claim 22, wherein a buffer delay value indicating when a frame is to be
2 processed represents the first expected characteristic of the video buffer.
- 1 26. The method of claim 25, wherein the buffer delay value is based on a number of frames stored
2 in a buffer location.
- 1 27. The method of claim 22, wherein the first expected characteristic is determined based on a
2 modeling of the video buffer.
- 1 28. The method of claim 27, wherein the modeling of the video buffer includes determining a
2 fullness of the video buffer based on a difference between an input rate and an output rate.

1 29. The method of claim 27, wherein the modeling of the video buffer includes using a VBV buffer
2 model.

1 30. The method of claim 22, wherein the quantization ratio is based on a product value of a X
2 scaling value and a Y scaling value, wherein the product value is raised to a power of Z
3 where Z is less than one.

1 31. The method of claim 30, wherein the X scaling value includes a horizontal frame scaling value
2 and the Y scaling value includes a vertical frame scaling value.

1 32. The method of claim 30, wherein Z is .75 +/- 0.1.

1 33. The method of claim 30, wherein:
2 the quantization ratio includes a first constant value when the first expected characteristic is
3 greater than a first indicator;
4 the quantization ratio includes a second constant value when the first expected characteristic
5 is less than the first indicator and greater than a second buffer indicator; and
6 the quantization ratio is determined from a non-linear function when the first expected
7 characteristic is less than the second indicator.

1 34. The method of claim 33, wherein the first indicator is a buffer fullness value of 75% +/- 1% of a
2 maximum buffer fullness.

1 35. The method of claim 33, wherein the second indicator is a buffer fullness value of 20% +/- 1%
2 of a maximum buffer fullness.

1 36. The method of claim 33, wherein the non-linear function includes an equation:

$$R = Q * X^{(Y-W)/Z}$$

where R is the quantization ratio, Q is an initial quantization ratio, X is a first constant value, Y is a second constant, W is a value representing the amount of data, and Z is a third constant value.

1 37. A system for rate control comprising:

a monitoring module having an output, said monitoring module to determine a first expected characteristic of a target decoder and to determine a source quantization value for a received source macroblock; and

a rate control module having a first input coupled to the output of said monitoring module to receive the first expected characteristic and the source quantization value and an output, said rate control module to determine a transcoding quantization value for the source macroblock based on the first expected characteristic and the source quantization value.

38. The system of claim 37, further including a quantizer having an input coupled to said rate control module, said quantizer to quantize the source macroblock using the transcoding quantization value.

39. The system of claim 37, further including a ratio generator having an output, said ratio generator to determine a quantization ratio based on the first expected characteristic of the target decoder.

1 40. The system of claim 39, said rate control module further having an input coupled to the output
2 of said ratio generator to receive the quantization ratio, the rate control module to determine
3 the transcoding quantization value based on a ratio value of the source quantization value to
4 the quantization ratio.

1 41. The system of claim 37, wherein said rate control module determines the transcoding
2 quantization value based on a non-linear function applied to the source quantization value.

1 42. The system of claim 37, wherein the first expected characteristic includes a fullness of a buffer
2 associated with the target decoder.

1 43. The system of Claim 42, wherein the fullness of the buffer is obtained from the target decoder.

1 44. The system of Claim 42, wherein the fullness of the buffer is determined from a model of the
2 buffer.

1 45. The system of Claim 42, wherein the model includes a VBV buffer model.

1 46. The system of claim 42, wherein said monitoring module uses an address location of the buffer
2 to determine the fullness of the buffer.

1 47. The system of claim 37, wherein the first expected characteristic includes a delay value
2 associated with a buffer.

1 48. The method of claim 47, wherein the delay value is based on a number of frames stored in an
2 the buffer.

1 49. The system of claim 37, wherein said monitoring module models the target decoder to
2 determine the first expected characteristic.

1 50. The system of claim 49, wherein said monitoring module models a measurement of a difference
2 between a input rate and a output rate.

- 1 51. A computer readable medium, said computer readable medium including instructions to
2 manipulate a processor to:
3 receive a first quantization value for a first macroblock;
4 determine a second quantization value for the first macroblock based on the first
5 quantization value and a first expected amount of video data in a video buffer.
- 1 52. The computer readable medium of claim 51, wherein said instructions further include
2 instructions to manipulate said processor to modify the first macroblock based on the second
3 quantization value.
53. The computer readable medium of claim 51, wherein the first quantization value is received
from a source of the first macroblock.

- 1 54. The computer readable medium of claim 51, wherein an address location of a video buffer
2 represents the first expected amount of data in the video buffer.

1 55. The computer readable medium of claim 51, wherein a buffer delay value indicating when a
2 frame is to be processed represents the first expected amount of data in the video buffer.

1 56. The computer readable medium of claim 55, wherein the buffer delay value is based on a
2 number of frames stored in a buffer location of the video buffer.

1 57. The computer readable medium of claim 51, wherein the first expected amount of data is
2 determined based on a modeling of the video buffer.

1 58. The computer readable medium of claim 57, wherein the modeling of the video buffer includes
2 using a VBV buffer model.

1 59. The computer readable medium of claim 57, wherein the modeling of the video buffer includes
2 determining a fullness of a video buffer based on a difference between a input rate and a
3 output rate.

1 60. The computer readable medium of claim 51, wherein said instructions to manipulate said
2 processor to determine further include instructions to manipulate said processor to determine
3 the second quantization value based on a first ratio of a input bit rate to a output bit rate.

1 61. The computer readable medium of claim 60, wherein said instructions to manipulate said
2 processor to determine further include instructions to manipulate said processor to determine
3 the second quantization value based on a second ratio of the first ratio to a source bit count.

1 62. The computer readable medium of claim 60, wherein said instructions to manipulate said
2 processor to determine further include instructions to manipulate said processor to determine
3 the second quantization value based on a product value of a X scaling value and a Y scaling
4 value, wherein the product value is raised to a power of Z where Z is less than one.

1 63. The computer readable medium of claim 62, wherein the X scaling value includes a horizontal
2 frame size value and the Y scaling value includes a vertical frame size value.

64. The computer readable medium of claim 63, wherein Z is .75 +/- 0.1.

65. The computer readable medium of claim 51, wherein the second quantization value includes a
ratio value of the first quantization value to a quantization ratio.

66. The computer readable medium of claim 65, wherein the quantization ratio is based on the first
expected amount of data.

1 67. The computer readable medium of claim 66, wherein:
2 the quantization ratio includes a first constant value when the first expected amount of data
3 is greater than a first indicator;
4 the quantization ratio includes a second constant value when the first expected amount of
5 data is less than the first indicator and greater than a second indicator; and
6 the quantization ratio is determined from a non-linear function when the first expected
7 amount of data is less than the second indicator.

1 68. The computer readable medium of claim 67, wherein the first indicator is a buffer fullness value
2 of 75% +/- 1% of a maximum buffer fullness.

1 69. The computer readable medium of claim 67, wherein the second indicator is a buffer fullness
2 value of 20% +/- 1% of a maximum buffer fullness.

1 70. The computer readable medium of claim 67, wherein the non-linear function includes an
2 equation:

3 $R = Q * X^{(Y-W)/Z}$

where R is the quantization ratio, Q is an initial quantization ratio, X is a first constant value, Y is a second constant, W is a value representing the amount of data, and Z is a third constant value.