Árvores Digitais

Letícia Rodrigues Bueno

UFABC

 Problema geral de busca: conjunto de chaves S e chave x a localizar em S;

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - chaves são elementos indivisíveis;

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - chaves são elementos indivisíveis;
 - tamanho da chave permite armazenamento em memória de forma eficiente;

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - · chaves são elementos indivisíveis;
 - tamanho da chave permite armazenamento em memória de forma eficiente;
 - chaves têm mesmo tamanho;

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - chaves são elementos indivisíveis;
 - tamanho da chave permite armazenamento em memória de forma eficiente;
 - chaves têm mesmo tamanho;
- E se a busca consistir em <u>frases</u> em <u>texto literário</u>?

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - chaves são elementos indivisíveis;
 - tamanho da chave permite armazenamento em memória de forma eficiente;
 - chaves têm mesmo tamanho;
- E se a busca consistir em <u>frases</u> em <u>texto literário</u>?
- Utilizamos busca digital;

- Problema geral de busca: conjunto de chaves S e chave x a localizar em S;
- Assumido até agora:
 - chaves são elementos indivisíveis;
 - tamanho da chave permite armazenamento em memória de forma eficiente;
 - chaves têm mesmo tamanho;
- E se a busca consistir em <u>frases</u> em <u>texto literário</u>?
- Utilizamos busca digital;
- Estrutura utilizada: árvore digital;

 Trie: originado de "information reTRIEval" devido a aplicação em recuperação de informação;

- Trie: originado de "information reTRIEval" devido a aplicação em recuperação de informação;
- Na comparação de chaves:

- Trie: originado de "information reTRIEval" devido a aplicação em recuperação de informação;
- Na comparação de chaves:
 - NÃO compara chave procurada com chaves do conjunto armazenado;

- Trie: originado de "information reTRIEval" devido a aplicação em recuperação de informação;
- Na comparação de chaves:
 - NÃO compara chave procurada com chaves do conjunto armazenado;
 - SIM, compara dígitos da chave individualmente.
 Número de passos igual tamanho da chave;

• Conjunto chaves: $S = \{s_1, s_2, \dots, s_n\}$;

- Conjunto chaves: $S = \{s_1, s_2, \dots, s_n\}$;
- s_i é sequência dígitos d_j;

- Conjunto chaves: $S = \{s_1, s_2, \dots, s_n\}$;
- s_i é sequência dígitos d_i;
- Alfabeto de S: d₁ < d₂ < ... < d_m;

- Conjunto chaves: $S = \{s_1, s_2, ..., s_n\};$
- s_i é sequência dígitos d_i;
- Alfabeto de S: $d_1 < d_2 < ... < d_m$;
- p primeiros dígitos de chave: <u>prefixo</u>;

- Conjunto chaves: $S = \{s_1, s_2, \dots, s_n\}$;
- s_i é sequência dígitos d_j;
- Alfabeto de S: d₁ < d₂ < ... < d_m;
- p primeiros dígitos de chave: prefixo;
- Árvore digital é árvore m-ária T não vazia onde:

Árvores Digitais ou Trie

- Conjunto chaves: $S = \{s_1, s_2, ..., s_n\};$
- s_i é sequência dígitos d_j;
- Alfabeto de S: $d_1 < d_2 < ... < d_m$;
- p primeiros dígitos de chave: prefixo;
- Árvore digital é árvore m-ária T não vazia onde:
 - **1.** Nó v é j-ésimo filho de seu pai $\Rightarrow v$ corresponde dígito d_j ;

Árvores Digitais ou Trie

- Conjunto chaves: $S = \{s_1, s_2, ..., s_n\};$
- s_i é sequência dígitos d_i;
- Alfabeto de S: $d_1 < d_2 < ... < d_m$;
- p primeiros dígitos de chave: prefixo;
- Árvore digital é árvore m-ária T não vazia onde:
 - **1.** Nó v é j-ésimo filho de seu pai $\Rightarrow v$ corresponde dígito d_j ;
 - Sequência de dígitos da raiz até um nó corresponde a prefixo de alguma chave de S.

Exemplo de Árvore Digital

Árvore ternária;

Alfabeto: $\{e, r, s\} : e < r < s$ m = 3 $S = \{erre, erres, es$

```
buscaDigital(x, pt, l, a):
2
      se l < k então
3
          seja j a posição de d(I+1)
              na ordenação do alfabeto
          se pt.pont[i] \neq null então
5
             pt \leftarrow pt.pont[j];
6
             I \leftarrow I + 1:
             buscaDigital(x, pt, l, a);
      senão se pt.terminal = true então
8
9
          a ← 1;
```

```
Análise da complexidade:
   buscaDigital(x, pt, l, a):
2
      se l < k então
3
          seja j a posição de d(I+1)
              na ordenação do alfabeto
          se pt.pont[i] \neq null então
5
             pt \leftarrow pt.pont[j];
6
             I \leftarrow I + 1:
             buscaDigital(x, pt, l, a);
      senão se pt.terminal = true então
8
          a ← 1:
9
```

```
buscaDigital(x, pt, l, a):
2
      se l < k então
3
          seja j a posição de d(I+1)
              na ordenação do alfabeto
          se pt.pont[i] \neq null então
             pt \leftarrow pt.pont[j];
5
6
             I \leftarrow I + 1:
             buscaDigital(x, pt, l, a);
      senão se pt.terminal = true então
8
          a ← 1:
9
```

Análise da complexidade:

Linha 3: gasta
 O(log m) usando
 busca binária;

```
buscaDigital(x, pt, l, a):
2
      se l < k então
3
          seja j a posição de d(I+1)
              na ordenação do alfabeto
          se pt.pont[i] \neq null então
4
5
             pt \leftarrow pt.pont[j];
6
             I \leftarrow I + 1:
              buscaDigital(x, pt, I, a);
      senão se pt.terminal = true então
8
          a ← 1:
9
```

Análise da complexidade:

- Linha 3: gasta
 O(log m) usando
 busca binária;
- Complexidade total: O(k ⋅ log m);

```
buscaDigital(x, pt, l, a):
2
      se l < k então
3
          seja j a posição de d(I+1)
              na ordenação do alfabeto
          se pt.pont[i] \neq null então
4
             pt \leftarrow pt.pont[j];
5
6
             I \leftarrow I + 1:
              buscaDigital(x, pt, I, a);
      senão se pt.terminal = true então
8
          a ← 1:
9
```

Representação binária

de dígitos faz complexidade: O(k);

x é a chave procurada com k dígitos.

Chamada inicial:

```
I \leftarrow 0; a \leftarrow 0; buscaDigital(x, raiz, I, a)
```

Análise da complexidade:

- Linha 3: gasta
 O(log m) usando
 busca binária;
- Complexidade total:
 O(k · log m);

```
insereDigital(x, pt):
      pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
       buscaDigital(x, pt, I, a);
 3
       se a=0 então
 4
 5
            para h = l + 1, \ldots, k faça
                seja i a posição de
 6
                   d(h) no alfabeto;
                ocupar(ptz);
 7
                para i = 1, \ldots, m faça
 8
 9
                   ptz.pont[i] \leftarrow null;
                pt.pont[j] \leftarrow ptz;
10
11
                ptz.terminal \leftarrow false;
12
                pt \leftarrow ptz:
13
            pt.terminal \leftarrow true;
       senão "inclusão inválida":
14
```

```
insereDigital(x, pt):
      pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
 3
       buscaDigital(x, pt, I, a);
                                               Análise da complexidade:
       se a=0 então
 4
 5
           para h = l + 1, \ldots, k faça
               seja i a posição de
 6
                  d(h) no alfabeto;
               ocupar(ptz);
 7
 8
               para i = 1, \ldots, m faca
 9
                   ptz.pont[i] \leftarrow null;
               pt.pont[j] \leftarrow ptz;
10
11
               ptz.terminal \leftarrow false;
12
               pt \leftarrow ptz;
13
           pt.terminal \leftarrow true;
       senão "inclusão inválida":
14
```

```
insereDigital(x, pt):
       pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
 3
        buscaDigital(x, pt, I, a);
       se a=0 então
 4
 5
            para h = l + 1, \ldots, k faça
                seja i a posição de
 6
                   d(h) no alfabeto;
                ocupar(ptz);
 7
 8
                para i = 1, \ldots, m faca
 9
                   ptz.pont[i] \leftarrow null;
                pt.pont[j] \leftarrow ptz;
10
11
                ptz.terminal \leftarrow false;
12
               pt \leftarrow ptz;
13
            pt.terminal \leftarrow true;
       senão "inclusão inválida":
14
```

Análise da complexidade:

• Seja $k_1 + k_2 = k$;

```
insereDigital(x, pt):
       pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
 3
        buscaDigital(x, pt, I, a);
       se a=0 então
 4
 5
            para h = l + 1, \ldots, k faça
                seja i a posição de
 6
                   d(h) no alfabeto;
                ocupar(ptz);
 7
 8
                para i = 1, \ldots, m faça
 9
                   ptz.pont[i] \leftarrow null;
                pt.pont[j] \leftarrow ptz;
10
11
                ptz.terminal \leftarrow false;
12
               pt \leftarrow ptz;
13
            pt.terminal \leftarrow true;
       senão "inclusão inválida":
14
```

Análise da complexidade:

- Seja $k_1 + k_2 = k$;
- Linha 3: gasta
 O(k₁ · log m);

```
insereDigital(x, pt):
       pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
 3
        buscaDigital(x, pt, I, a);
       se a=0 então
 4
 5
            para h = l + 1, \ldots, k faça
                seja i a posição de
 6
                   d(h) no alfabeto;
                ocupar(ptz);
 7
 8
                para i = 1, \ldots, m faça
 9
                    ptz.pont[i] \leftarrow null;
                pt.pont[j] \leftarrow ptz;
10
                ptz.terminal \leftarrow false;
11
12
                pt \leftarrow ptz:
13
            pt.terminal \leftarrow true;
       senão "inclusão inválida":
14
```

Análise da complexidade:

- Seja $k_1 + k_2 = k$;
- Linha 3: gasta
 O(k₁ · log m);
- Linha 8: executa m vezes. Portanto, inserir gasta O(k₂ · m);

```
insereDigital(x, pt):
       pt \leftarrow ptraiz; I \leftarrow a \leftarrow 0;
 3
       buscaDigital(x, pt, I, a);
                                              Análise da complexidade:
       se a=0 então
 4
 5
           para h = l + 1, \ldots, k faça
                                                 • Seja k_1 + k_2 = k;
               seia i a posição de
 6
                  d(h) no alfabeto;
                                                 Linha 3: gasta
               ocupar(ptz);
                                                    O(k_1 \cdot \log m);
 7
 8
               para i = 1, \ldots, m faça

    Linha 8: executa m

 9
                  ptz.pont[i] \leftarrow null;
                                                    vezes. Portanto.
               pt.pont[j] \leftarrow ptz;
10
                                                    inserir gasta O(k_2 \cdot m);
11
               ptz.terminal \leftarrow false;
12

    Complexidade total:

               pt \leftarrow ptz:
13
           pt.terminal \leftarrow true;
                                                    O(k_1 \log m + k_2 m);
       senão "inclusão inválida":
14
```

x é chave a inserir. **Chamada inicial:** *insercaoDigital*(x, ptraiz)

Diferente de métodos clássicos de busca pois:

- Diferente de métodos clássicos de busca pois:
 - independe do número total de chaves (e de tamanho arquivo);

- Diferente de métodos clássicos de busca pois:
 - independe do número total de chaves (e de tamanho arquivo);
 - depende do tamanho chave procurada e do alfabeto;

- Diferente de métodos clássicos de busca pois:
 - independe do número total de chaves (e de tamanho arquivo);
 - depende do tamanho chave procurada e do alfabeto;
- Alternativa implementação: lista circular para ponteiros para evitar inúmeros ponteiros nulos (otimiza memória);

- Diferente de métodos clássicos de busca pois:
 - independe do número total de chaves (e de tamanho arquivo);
 - depende do tamanho chave procurada e do alfabeto;
- Alternativa implementação: lista circular para ponteiros para evitar inúmeros ponteiros nulos (otimiza memória);
- Trie é tão mais eficiente quanto maior quantidade de chaves com prefixos comuns;

- Diferente de métodos clássicos de busca pois:
 - independe do número total de chaves (e de tamanho arquivo);
 - depende do tamanho chave procurada e do alfabeto;
- Alternativa implementação: lista circular para ponteiros para evitar inúmeros ponteiros nulos (otimiza memória);
- Trie é tão mais eficiente quanto maior quantidade de chaves com prefixos comuns;
- Trie com muitos ziguezagues é quase sempre ineficiente;

- Árvore digital binária com alfabeto {0,1};
- Chaves são sequência binária;

- Árvore digital binária com alfabeto {0,1};
- Chaves são sequência binária;
 - Filho esquerdo: 0;

- Árvore digital binária com alfabeto {0,1};
- Chaves são sequência binária;
- Filho esquerdo: 0;
- Filho direito: 1;

- Árvore digital binária com alfabeto {0,1};
- Chaves são sequência binária;
- Filho esquerdo: 0;
- Filho direito: 1;

- Árvore digital binária com alfabeto {0,1};
- Chaves são sequência binária;
- Filho esquerdo: 0;
- Filho direito: 1;
- Maior utilização de árvores digitais é caso binário;

Chaves/códigos binários são mais empregados em computação;

- Chaves/códigos binários são mais empregados em computação;
- Número de ponteiros vazios é menor;

- Chaves/códigos binários são mais empregados em computação;
- Número de ponteiros vazios é menor;
- Árvore binária de prefixo:

- Chaves/códigos binários são mais empregados em computação;
- Número de ponteiros vazios é menor;
- Árvore binária de prefixo:
 - 1. nenhum código é prefixo de outro;

- Chaves/códigos binários são mais empregados em computação;
- Número de ponteiros vazios é menor;
- Árvore binária de prefixo:
 - 1. nenhum código é prefixo de outro;
 - 2. chaves representadas por folhas;

- Chaves/códigos binários são mais empregados em computação;
- Número de ponteiros vazios é menor;
- Árvore binária de prefixo:
 - 1. nenhum código é prefixo de outro;
 - 2. chaves representadas por folhas;

 PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;

- PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;
- Criador: Donald Morrison, em 1968;

- PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;
- Criador: Donald Morrison, em 1968;
- Árvore Patricia: árvore digital binária de prefixos;

- PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;
- Criador: Donald Morrison, em 1968;
- Árvore Patricia: árvore digital binária de prefixos;
- Estritamente binária;

- PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;
- Criador: Donald Morrison, em 1968;
- Árvore Patricia: árvore digital binária de prefixos;
- Estritamente binária;
- Sequência de nós com apenas um filho são compactados em um único nó;

- PATRICIA: acrônimo de Practical Algorithm To Retrieve Information Coded In Alphanumeric;
- Criador: Donald Morrison, em 1968;
- Árvore Patricia: árvore digital binária de prefixos;
- Estritamente binária;
- Sequência de nós com apenas um filho são compactados em um único nó;
- Nenhuma chave é prefixa de outra chave.

Exemplo de Árvore Patricia

Exemplo de Árvore Patricia

(c) Árvore Dig. Bin. Prefixo

Exemplo de Árvore Patricia

Exercícios

1. Escreva o procedimento de inserção de uma chave em árvores *Trie*.

Exercícios

- 1. Escreva o procedimento de inserção de uma chave em árvores *Trie*.
- Escreva o procedimento de remoção de uma chave em árvores Trie.

Bibliografia

SZWARCFITER, J. L. e MARKENZON, L. Estruturas de Dados e seus Algoritmos, LTC, 1994.

Perguntas?