Module 9: Linear regression

Siyue Yang

06/17/2022

Outline

In this module, we will review linear regression.

Linear regression

Model:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

• Equivalently:

$$y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \dots, n$$

Linear regression

Model:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

Equivalently:

$$y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \dots, n$$

- Standard assumptions
 - y_i independent (equivalently ϵ_i independent)
 - $\mathbb{E}(\epsilon_i) = 0$
 - $var(\epsilon_i) = \sigma^2$, constant
 - x_i known, β to be estimated

Linear regression

Model:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \epsilon_{n\times 1}$$

Equivalently:

$$y_i = x_i^{\mathrm{T}} \beta + \epsilon_i, \quad i = 1, \dots, n$$

- Standard assumptions
 - y_i independent (equivalently ϵ_i independent)
 - $\mathbb{E}\left(\epsilon_{i}\right)=0$
 - $var(\epsilon_i) = \sigma^2$, constant
 - x_i known, β to be estimated
- More concisely:

$$\mathbb{E}(Y \mid X) = X\beta$$
, $\operatorname{var}(Y \mid X) = \sigma^2 I$

Interpretation of β_i

• Effect on the expected response of a unit change in jth explanatory variable, all other variables held fixed

Another interpretation

 think of this is as the projection of Y onto the linear subspace spanned by the columns of X

Least squares estimation

• Definition (minimize the residuals)

$$\hat{\beta}_{\mathrm{LS}} := \min_{\beta} \sum_{i=1}^{n} \left(y_i - x_i^{\mathrm{T}} \beta \right)^2$$

Equivalently,

$$\hat{eta}_{LS} := \min_{eta} (y - Xeta)^{\mathrm{T}} (y - Xeta)$$

• Equivalently (L2 distance),

$$\hat{\beta}_{\mathrm{LS}} := \min_{\boldsymbol{\beta}} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2$$

• Equivalently, $\hat{\beta}$ is the solution of the score equation

$$X^{\mathrm{T}}(y - X\beta) = 0$$

Solution

$$\hat{eta}_{ ext{LS}} = \left(m{X}^{ ext{T}} m{X}
ight)^{-1} \left(m{X}^{ ext{T}} m{y}
ight)$$

Least squares estimation (cont'd)

Assume X is fixed,

Expected value

$$\mathbb{E}\left(\hat{\beta}_{\mathrm{LS}}\right) = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}\mathbb{E}(y) = \left(X^{\mathrm{T}}X\right)^{-1}\left(X^{\mathrm{T}}X\right)\beta = \beta$$

Variance

$$\operatorname{var}\left(\hat{\beta}_{LS}\right) = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}\operatorname{var}(y)X\left(X^{\mathrm{T}}X\right)^{-1}$$
$$= \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}\sigma^{2}IX\left(X^{\mathrm{T}}X\right)^{-1}$$
$$= \sigma^{2}\left(X^{\mathrm{T}}X\right)^{-1}$$

Assumptions for ordinary least squares

- **Linearity**: the expectation of Y is linear in $X_1 \dots X_p$
- Independence: the ϵ_i are independent
- Mean zero errors: the ϵ_i have mean zero, i.e. $E[\epsilon_i] = 0$
- Equal variance (homoscedasticity): the ϵ_i have the same variance, i.e. $\text{Var}\left[\epsilon_i\right] = \sigma^2$

What about normal distribution?

- If we further assume $\epsilon_i \sim N\left(0,\sigma^2\right)$ (and independent across i), then
- $y \mid X \sim N(X\beta, \sigma^2 I)$, and
- likelihood function is

$$L\left(\beta,\sigma^2;y\right) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2}(y-X\beta)^T(y-X\beta)\right\}$$

log-likelihood function is

$$\ell\left(\beta, \sigma^2; y\right) = -\frac{n}{2} \log\left(\sigma^2\right) - \frac{1}{2\sigma^2} (y - X\beta)^{\mathrm{T}} (y - X\beta)$$

• maximum likelihood estimate of β is

$$\hat{eta}_{ML} = \left(X^{\mathrm{T}}X\right)^{-1}X^{\mathrm{T}}\mathbf{y} = \hat{eta}_{\mathrm{LS}}$$

What about normal distribution? (cont'd)

ullet distribution of \hat{eta} is normal

$$\hat{\beta} \sim N_{p} \left(\beta, \sigma^{2} \left(X^{\mathrm{T}} X \right)^{-1} \right)$$

ullet distribution of \hat{eta}_j is

$$N\left(eta_{j},\sigma^{2}\left(X^{\mathrm{T}}X\right)_{jj}^{-1}\right),\quad j=1,\ldots,p$$

• maximum likelihood estimate of σ^2 is

$$\frac{1}{n}(y-X\hat{\beta})^{\mathrm{T}}(y-X\hat{\beta})$$

but we use

$$\tilde{\sigma}^2 = \frac{1}{n-p} (y - X\hat{\beta})^{\mathrm{T}} (y - X\hat{\beta})$$

Maximum likelihood estiamtion vs. OLS

- We did not place any distributional assumptions on the outcome,
 - We only required that $E[\epsilon_i] = 0$ with constant variance
 - In other words, OLS is a semiparametric method

Maximum likelihood estiamtion vs. OLS

- We did not place any distributional assumptions on the outcome,
 - We only required that $E[\epsilon_i] = 0$ with constant variance
 - In other words, OLS is a semiparametric method
- Sometimes, people assume that $\epsilon_i \sim N(0, \sigma^2)$, which means

$$Y_i \sim N\left(\beta_0 + \beta_1 X_{i1} + \ldots + \beta_1 X_{ip}, \sigma^2\right)$$

- \bullet If this additional assumption is made, then we can instead use maximum likelihood estimation for β
- This connects to a whole other class of models called generalized linear models (GLMs)
- ullet Interestingly, in this case, you will end up with the same estimates for β

Resources

This tutorial is based on

- Nancy Reid's STA2101 Methods of Applied Statistics [links]
- Harvard's Biostatistics Preparatory Course Methods [links].