

HOTEL BOOKING PREDICTION

Meliane Ayebah Matricola: A04402

SOMMARIO

INTRODUZIONE

EXPLORATION DATA ANALYSIS (EDA)

DATA PRE-PROCESSING

MODEL BUILDING

MODELS COMPARISON

CONCLUSIONE

INTRODUZIONE

L'argomento trattato per il progetto finale è hotel booking prediction.

L'obiettivo è quello di creare degli stimatori significativi a partire dal dataset a disposizione e selezionare il modello migliore per predire la prenotazione confrontandolo con i punteggi di accuratezza di diversi modelli di Machine Learning.

EXPLORATION DATA ANALYSIS (EDA)

Nella fase di exploration si cercherà a rispondere ai seguenti quesiti:

- ❖ Da dove proviene la maggior parte degli ospiti?
- Quanto pagano gli ospiti a notte per una camera?
- Come varia il prezzo a notte di una camera durante l'anno?

DA DOVE PROVIENE LA MAGGIOR PARTE DEGLI OSPITI?

La maggior parte degli ospiti soggiornano nei due hotel (Hotel City e Resort Hotel) e sono tutti provenienti per la maggior parte dal Portogallo e dagli altri paesi europei.

COME VARIA IL
PREZZO A NOTTE DI
UNA CAMERA
DURANTE L'ANNO E
QUANTO GLI OSPITI
PAGANO UNA CAMERA
A NOTTE?

Questa tabella mostra chiaramente che i prezzi del Resort Hotel sono molto più alti durante l'estate mentre i prezzi dell'Hotel city variano di meno e sono più alti durante la primavera e l'autunno.

```
In [505]: final hotel = resort hotel.merge(city hotel, on = 'arrival date month')
            final hotel.columns = ['month', 'price for resort', 'price for city hotel']
           final_hotel
                    month price_for_resort price_for_city_hotel
                                75.867816
                                                  111.962267
                    August
                               181.205892
                                                  118.674598
                                68.410104
                                                   88.401855
              2 December
                                54.147478
                                                   86.520062
                  February
                                48.761125
                                                   82.330983
                  January
                               150.122528
                                                  115.818019
                      July
                     June
                               107.974850
                                                  117.874360
                                57.056838
                                                   90.658533
                    March
                                76.657558
                                                  120.669827
                      May
                                48.706289
                                                   86.946592
                November
                   October
                                61.775449
                                                  102.004672
             11 September
                                96.416860
                                                  112.776582
```

DATA PRE-PROCESSING

In questa slide si osserva che le features con alta correlazione sono tutte collocate in corrispondenza della diagonale della piramide.

is_canceled	1	0.29	0.017	0.0083	-0.0059	-0.0013	0.026	0.058	0.0049	-0.033	-0.084	0.11	-0.057	-0.14	-0.047	-0.084	0.054	0.046	-0.2	-0.23
lead_time	0.29	1	0.04	0.13	0.0023	0.086	0.17	0.12	-0.038	-0.021	-0.12	0.086	-0.074	0.0022	-0.013	-0.086	0.17	-0.065	-0.12	-0.096
arrival_date_year	0.017	0.04	1	-0.54	-0.00012	0.022	0.031	0.03	0.055	-0.013	0.01	-0.12	0.029	0.031	0.056	0.034	-0.056	0.2	-0.014	0.11
arrival_date_week_number	0.0083	0.13	-0.54	1	0.067	0.019	0.016	0.027	0.0056	0.01	-0.031	0.035	-0.021	0.0063	-0.018	-0.033	0.023	0.076	0.002	0.026
arrival_date_day_of_month	-0.0059	0.0023	-0.00012	0.067	1	-0.016	-0.028	-0.0018	0.015	-0.00023	-0.0065	-0.027	-0.00031	0.011	0.00016	0.0037	0.023	0.03	0.0086	0.003
stays_in_weekend_nights	-0.0013	0.086	0.022	0.019	-0.016	1		0.095	0.046	0.019	-0.086	-0.013	-0.043	0.05	0.16	-0.081	-0.054	0.051	-0.019	0.073
stays_in_week_nights	0.026	0.17	0.031	0.016	-0.028	0.49	1	0.096	0.045	0.02	-0.095	-0.014	-0.049	0.08	0.2	-0.044	-0.002	0.067	-0.025	0.069
adults	0.058	0.12	0.03	0.027	-0.0018	0.095	0.096	1	0.029	0.018	-0.14	-0.0071	-0.11	-0.041	0.023	-0.17	-0.0084	0.22	0.014	0.12
children	0.0049	-0.038	0.055	0.0056	0.015	0.046	0.045	0.029	1	0.024	-0.032	-0.025	-0.021	0.051	0.05	-0.043	-0.033	0.33	0.056	0.082
babies	-0.033	-0.021	-0.013	0.01	-0.00023	0.019	0.02	0.018	0.024	1	-0.0088	-0.0075	-0.0066	0.086	0.03	-0.0094	-0.011	0.029	0.037	0.098
is_repeated_guest	-0.084	-0.12	0.01	-0.031	-0.0065	-0.086	-0.095	-0.14	-0.032	-0.0088	1	0.083	0.42	0.013	-0.052	0.16	-0.022	-0.13	0.078	0.013
previous_cancellations	0.11	0.086	-0.12	0.035	-0.027	-0.013	-0.014	-0.0071	-0.025	-0.0075	0.083	1	0.15	-0.027	-0.018	-0.0011	0.0059	-0.066	-0.019	-0.048
previous_bookings_not_canceled	-0.057	-0.074	0.029	-0.021	-0.00031	-0.043	-0.049	-0.11	-0.021	-0.0066	0.42	0.15	1	0.012	-0.046	0.11	-0.0094	-0.072	0.048	0.038
booking_changes	-0.14	0.0022	0.031	0.0063	0.011	0.05	0.08	-0.041	0.051	0.086	0.013	-0.027	0.012	1	0.039	0.09	-0.012	0.027	0.067	0.055
agent	-0.047	-0.013	0.056	-0.018	0.00016	0.16	0.2	0.023	0.05	0.03	-0.052	-0.018	-0.046	0.039	1	-0.12	-0.041	0.016	0.12	0.061
company	-0.084	-0.086	0.034	-0.033	0.0037	-0.081	-0.044	-0.17	-0.043	-0.0094	0.16	-0.0011	0.11	0.09	-0.12	1	-0.023	-0.13	0.039	-0.091
days_in_waiting_list	0.054	0.17	-0.056	0.023	0.023	-0.054	-0.002	-0.0084	-0.033	-0.011	-0.022	0.0059	-0.0094	-0.012	-0.041	-0.023	1	-0.041	-0.031	-0.083
adr	0.046	-0.065	0.2	0.076	0.03	0.051	0.067	0.22	0.33	0.029	-0.13	-0.066	-0.072	0.027	0.016	-0.13	-0.041	1	0.057	0.17
required car parking spaces	-0.2	-0.12	-0.014	0.002	0.0086	-0.019	-0.025	0.014	0.056	0.037	0.078	-0.019	0.048	0.067	0.12	0.039	-0.031	0.057	1	0.083
total_of_special_requests	-0.23	-0.096	0.11	0.026	0.003	0.073	0.069	0.12	0.082	0.098	0.013	-0.048	0.038	0.055	0.061	-0.091	-0.083	0.17	0.083	1
	Pa	<u>е</u>	je je	-i-	£	ži	ភ	ħ	E .	S	ti	su	P	S	ŧ	è	ts	- ip	S	ħ
	is_canceled	lead_time	arrival_date_year	arrival_date_week_number	arrival_date_day_of_month	stays_in_weekend_nights	stays_in_week_nights	adults	children	babies	is_repeated_guest	previous_cancellations	vious_bookings_not_canceled	booking_changes	agent	company	days_in_waiting_list	10	required_car_parking_spaces	total_of_special_requests

MODELS BUILDING

Per poter valutare il modello migliore e scegliere quello efficiente si andrà ad implementare i seguenti modelli:

- ► Logistic Regression
- ➤ Decision Tree Classifier
- **►** Random Forest
- **KNN**
- ➤ Ada Boost Classifier
- ➤ Gradient Boosting Classifier

LOGISTIC REGRESSION

```
In [530]: lr = LogisticRegression()
          lr.fit(X_train, y_train)
          y pred lr = lr.predict(X test)
          acc_lr = accuracy_score(y_test, y_pred_lr)
          conf = confusion_matrix(y_test, y_pred_lr)
          clf report = classification report(y test, y pred lr)
          print(f"Accuracy Score of Logistic Regression is : {acc lr}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf report}")
          Accuracy Score of Logistic Regression is: 0.8108100550848643
          Confusion Matrix :
          [[21287 1246]
           [ 5520 7710]]
          Classification Report :
                        precision
                                    recall f1-score support
                                      0.94
                                                0.86
                             0.79
                                                         22533
                             0.86
                                      0.58
                                                0.70
                                                         13230
                                                0.81
                                                         35763
              accuracy
             macro avg
                                      0.76
                                                0.78
                                                         35763
                             0.83
          weighted avg
                            0.82
                                      0.81
                                                0.80
                                                         35763
```

DECISION TREE CLASSIFIER

```
In [531]: dtc = DecisionTreeClassifier()
          dtc.fit(X train, y train)
         y_pred_dtc = dtc.predict(X_test)
          acc_dtc = accuracy_score(y_test, y_pred_dtc)
          conf = confusion_matrix(y_test, y_pred_dtc)
          clf_report = classification_report(y_test, y_pred_dtc)
          print(f"Accuracy Score of Decision Tree is : {acc_dtc}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf_report}")
          Accuracy Score of Decision Tree is: 0.9416156362721249
          Confusion Matrix :
          [[21490 1043]
          [ 1045 12185]]
          Classification Report :
                        precision
                                   recall f1-score support
                            0.95
                                      0.95
                                                0.95
                                                         22533
                            0.92
                                      0.92
                                                0.92
                                                         13230
                                                0.94
                                                         35763
              accuracy
                            0.94
                                      0.94
                                                0.94
                                                         35763
             macro avg
          weighted avg
                            0.94
                                      0.94
                                                0.94
                                                         35763
```

RANDOM FOREST

```
In [532]: rd_clf = RandomForestClassifier()
          rd clf.fit(X train, y train)
          y pred rd clf = rd clf.predict(X test)
          acc_rd_clf = accuracy_score(y_test, y_pred_rd_clf)
          conf = confusion_matrix(y_test, y_pred_rd_clf)
          clf_report = classification_report(y_test, y_pred_rd_clf)
          print(f"Accuracy Score of Random Forest is : {acc rd clf}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf report}")
          Accuracy Score of Random Forest is: 0.9526605709811816
          Confusion Matrix :
          [[22346 187]
          [ 1506 11724]]
          Classification Report :
                        precision
                                    recall f1-score support
                                       0.99
                                                0.96
                                                         22533
                             0.94
                                      0.89
                             0.98
                                                0.93
                                                         13230
                                                0.95
                                                         35763
              accuracy
                             0.96
                                      0.94
                                                0.95
                                                         35763
             macro avg
          weighted avg
                             0.95
                                                0.95
                                       0.95
                                                         35763
```

KNN

```
In [533]: knn = KNeighborsClassifier()
          knn.fit(X_train, y_train)
          y_pred_knn = knn.predict(X_test)
          acc_knn = accuracy_score(y_test, y_pred_knn)
          conf = confusion_matrix(y_test, y_pred_knn)
          clf_report = classification_report(y_test, y_pred_knn)
          print(f"Accuracy Score of KNN is : {acc_knn}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf_report}")
          Accuracy Score of KNN is: 0.8922629533316556
          Confusion Matrix :
          [[21752 781]
           [ 3072 10158]]
          Classification Report :
                        precision
                                    recall f1-score support
                             0.88
                                      0.97
                                                0.92
                                                         22533
                            0.93
                                      0.77
                                                0.84
                                                         13230
                                                0.89
                                                         35763
              accuracy
                                                         35763
             macro avg
                            0.90
                                      0.87
                                                0.88
          weighted avg
                            0.90
                                      0.89
                                                0.89
                                                         35763
```

ADA BOOST CLASSIFIER

```
In [534]: ada = AdaBoostClassifier(base estimator = dtc)
          ada.fit(X_train, y_train)
          y_pred_ada = ada.predict(X_test)
          acc_ada = accuracy_score(y_test, y_pred_ada)
          conf = confusion_matrix(y_test, y_pred_ada)
          clf_report = classification_report(y_test, y_pred_ada)
          print(f"Accuracy Score of Ada Boost Classifier is : {acc ada}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf report}")
          Accuracy Score of Ada Boost Classifier is: 0.9393507256102676
          Confusion Matrix :
          [[21414 1119]
          [ 1050 12180]]
          Classification Report :
                                    recall f1-score support
                        precision
                                      0.95
                                                0.95
                             0.95
                                                         22533
                             0.92
                                      0.92
                                                0.92
                                                         13230
                                                0.94
                                                         35763
              accuracy
                            0.93
             macro avg
                                       0.94
                                                0.94
                                                         35763
          weighted avg
                            0.94
                                       0.94
                                                0.94
                                                         35763
```

GRADIENT BOOSTING CLASSIFIER

```
In [535]: gb = GradientBoostingClassifier()
          gb.fit(X_train, y_train)
          y pred gb = gb.predict(X test)
          acc_gb = accuracy_score(y_test, y_pred_gb)
          conf = confusion matrix(y test, y pred gb)
          clf_report = classification_report(y_test, y_pred_gb)
          print(f"Accuracy Score of Ada Boost Classifier is : {acc gb}")
          print(f"Confusion Matrix : \n{conf}")
          print(f"Classification Report : \n{clf_report}")
          Accuracy Score of Ada Boost Classifier is: 0.9066633112434639
          Confusion Matrix :
          [[22340 193]
           [ 3145 10085]]
          Classification Report :
                        precision
                                    recall f1-score support
                                                0.93
                             0.88
                                       0.99
                                                         22533
                             0.98
                                       0.76
                                                 0.86
                                                         13230
                                                0.91
                                                         35763
              accuracy
                                                0.89
                             0.93
             macro avg
                                       0.88
                                                         35763
                             0.92
          weighted avg
                                       0.91
                                                 0.90
                                                         35763
```

MODELS COMPARISON

Models Comparison In [539]: models = pd.DataFrame({ 'Model' : ['Logistic Regression', 'KNN', 'Decision Tree Classifier', 'Random Forest Classifier', 'Ada Boost Classifier', 'Gradient Boosting Classifier',], 'Score' : [acc_lr, acc_knn, acc_dtc, acc_rd_clf, acc_ada, acc_gb] models.sort values(by = 'Score', ascending = False) Out[539]: Model Score Random Forest Classifier 0.952661 Decision Tree Classifier 0.941616 Ada Boost Classifier 0.939351 5 Gradient Boosting Classifier 0.906663 KNN 0.892263 Logistic Regression 0.810810

CONCLUSIONI

Come possiamo vedere dalla slide precedente, l'algoritmo Random Forest ha prodotto la migliore accuratezza.

Questo punteggio è buono e ideale in quanto riesce a predire con sicurezza la prenotazione di una camera in un hotel .