

Communication Theory (5ETB0) Module 3.2

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 3.2

Presentation Outline

Part I MAP Detection

Part II ML Detection

Part III Vectorial Channels

MAP Detection (1/2)

Motivation MAP Decision Rule

■ Recall that

$$P_{c} = \sum_{r \in \mathcal{R}} \Pr\{R = r, M = f(r)\}$$
 (1)

- Interpretation: For each column (R = r), decision rule picks a row (M = m).
- This interpretation leads to the upper bound

$$P_{c} \le \sum_{r \in \mathcal{R}} \max_{m \in \mathcal{M}} \Pr\{R = r, M = m\}$$
 (2)

lacksquare Upper bound is achieved by f(r) that picks the row that maximizes the joint probability

MAP Detection (2/3)

A Different Interpretation

The optimum receiver is a maximization over $f: \mathcal{R} \to \mathcal{M}$, i.e.,

$$\max_{f} \{P_{\mathsf{c}}\} = \max_{f} \sum_{r \in \mathcal{R}} \Pr\{R = r, M = f(r)\}$$
(3)

$$= \sum_{r \in \mathcal{P}} \max_{f(r)} \Pr\{R = r, M = f(r)\}$$

$$\tag{4}$$

$$= \sum_{r \in \mathcal{R}} \max_{f(r)} \left\{ \underbrace{\Pr\{R = r, 1 = f(r)\}, \dots, \Pr\{R = r, |\mathcal{M}| = f(r)\}}_{\left\{\Pr\{R = r, M = m\}, \text{ if } f(r) = m \atop 0, \text{ if } f(r) \neq m \right\}}_{\left\{\text{odd} \right\}} \right\}$$

Thus,

$$\max_{f} \{ P_{c} \} = \sum_{r \in \mathcal{R}} \max_{m \in \mathcal{M}} \Pr\{ R = r, M = m \}$$

$$= \sum_{m \in \mathcal{M}} \max_{m \in \mathcal{M}} \Pr\{ M = m | R = r \} \underbrace{\Pr\{ R = r \}}_{m \in \mathcal{M}}$$

$$(6)$$

(5)

(9)

MAP Detection (3/3)

Decision Variables

For a communication system using a DIDO channel, the joint PMFs

$$\Pr\{M = m, R = r\} = \Pr\{M = m\} \Pr\{R = r | M = m\}$$
 (8)

$$= \Pr\{M = m\} \Pr\{R = r | S = s_m\}$$

are called the **decision variables**. An optimum receiver uses these variables.

MAP Decision Rule

The maximum a-posteriori probability (MAP) decision rule is

$$\hat{m}^{\mathsf{MAP}}(r) \stackrel{\triangle}{=} \underset{m \in \mathcal{M}}{\operatorname{argmax}} \Pr\{M = m | R = r\}$$
 (10)

and has two important properties:

- \Rightarrow Maximizes $P_c \Rightarrow$ Minimizes $P_e \Rightarrow$ optimum receiver!
- \blacksquare Produces the largest decision variable for each r (Bayes' rule)

Example 3.1 Revisited

MAP for Example 3.1

A-posteriori probabilities:

m	$\Pr\{M = m R = a\}$	$\Pr\{M = m R = b\}$	$\Pr\{M = m R = c\}$
1	20/26	16/34	4/40
2	6/26	18/34	36/40

obtained from $\Pr\{R=a\}=0.26, \Pr\{R=b\}=0.34,$ and $\Pr\{R=c\}=0.4$

- \blacksquare Correct probability is $P_{\rm c}=0.2+0.18+0.36=0.74 \Rightarrow P_{\rm e}=0.26$
- \blacksquare MAP decision rule coincides with the one that maximizes P_c

Intuition behind MAP decision rule

Maximize the probability that, for a given R=r, the chosen message is equal to the transmitted message

$$\hat{m}^{\mathsf{MAP}}(r) \stackrel{\Delta}{=} \operatorname*{argmax} \Pr\{M = m | R = r\}$$

Module 3.2

Presentation Outline

Part I MAP Detection

Part II ML Detection

Part III Vectorial Channels

Detection with Equally Likely Messages

Probabilities

- A-priori probabilities: $Pr\{M=m\}$
- A-posteriori probabilities: $Pr\{M = m | R = r\}$

Uniform a-priori Probabilities

All messages are equally likely (uniform probability)

$$\Pr\{M=m\} = \frac{1}{|\mathcal{M}|} \text{ for all } m \in \mathcal{M} = \{1, 2, \dots, |\mathcal{M}|\}, \tag{11}$$

Decision variables are

$$\Pr\{M = m, R = r\} = \Pr\{R = r | S = s_m\} \Pr\{S = s_m\}$$

$$= \frac{1}{|\mathcal{M}|} \Pr\{R = r | S = s_m\}$$
(12)
(13)

ML Detection

ML decision rule

The maximum likelihood (ML) decision rule is

$$\hat{m}^{\mathsf{ML}}(r) \stackrel{\Delta}{=} \operatorname*{argmax}_{m \in \mathcal{M}} \Pr\{R = r | M = m\}$$

A few words on ML

- Name comes from definition
- For equally likely messages:
 - Largest decision variable for each r
 - \Rightarrow Maximizes $P_c \Rightarrow$ Minimizes $P_e \Rightarrow$ optimum receiver!
- For nonequally likely messages:
 - Can be used (it is simple to implement)
 - Suboptimal

Example 3.1 Re-revisited (1/2)

ML for Example 3.1

■ Transition probabilities:

m	$\Pr\{R = a S = s_m\}$	$\Pr\{R = b S = s_m\}$	$\Pr\{R = c S = s_m\}$
1	0.5	0.4	0.1
2	0.1	0.3	0.6

■ The maximum-likelihood decision rule is then:

Correct probability is 0.72, lower than MAP (0.74).

■ If a-priori probabilities are $Pr\{M=m\}=1/2$:

$$P_{\mathsf{c}}^{\mathsf{ML}} = \Pr{\{\hat{M}^{\mathsf{ML}} = M\}} \tag{14}$$

$$= \sum \Pr{\{\hat{M}^{\mathsf{ML}} = M | M = m\}} \Pr{\{M = m\}}$$
 (15)

$$= \frac{1}{2}(0.5 + 0.4) + \frac{1}{2}0.6 = 0.75.$$
 (16)

(17)

Example 3.1 Re-revisited (2/2)

ML for Example 3.1

■ Transition probabilities:

m	$\Pr\{R = a S = s_m\}$	$\Pr\{R = b S = s_m\}$	$\Pr\{R = c S = s_m\}$
1	0.5	0.4	0.1
2	0.1	0.3	0.6

■ The maximum-likelihood decision rule is then:

• If a-priori probabilities are $Pr\{M=m\}=1/2$:

$$P_{\rm c}^{\rm ML} = \frac{1}{2}(0.5 + 0.4) + \frac{1}{2}0.6 = 0.75.$$

Three Questions

- Q1: What would the MAP detector give?
- **Q**2: If the a-priori probabilities are now 0.4 and 0.6, $P_{\rm c}^{\rm ML}=0.72$ and $P_{\rm c}^{\rm MAP}=0.74$. Does this make sense?
- Q3: Why do we care about ML if it is suboptimal?

Module 3.2

Presentation Outline

Part I MAP Detection

Part II ML Detection

Part III Vectorial Channels

MAP and ML for DIDO Channels

Definitions

- Source: Produces a message $m \in \mathcal{M} \stackrel{\Delta}{=} \{1, 2, \dots, |\mathcal{M}|\}$ with probability $\Pr\{M = m\}$ for $m \in \mathcal{M}$. The r.y. is M
- lacksquare Transmitter: Sends a $signal\ s_m \in \mathcal{S}$ if message m is to be transmitted. The r.v. is S
- Channel: Produces output $r \in \mathcal{R}$ (r.v. is R) with conditional probability $\Pr\{R = r | S = s\}$
- Receiver: Forms an estimate \hat{m} by observing the received channel output $r \in \mathcal{R}$ using a mapping $\hat{m} = f(r) \in \mathcal{M}$. The r.v. is \hat{M}

MAP and ML Detection for Vectorial Channels

Definitions

- \blacksquare Transmitter: Sends a $\mathit{signal}\ \underline{s}_m \in \mathcal{S}^N$ if message m is to be transmitted. The random vector is \underline{S}
- Vector Channel: Produces output $\underline{r} \in \mathcal{R}^N$ (random vector is \underline{R}) with conditional probability $\Pr{\underline{R} = \underline{r} | \underline{S} = \underline{s}}$
- Receiver: Forms an *estimate* \hat{m} by observing the received channel output $\underline{r} \in \mathcal{R}^N$ using a mapping $\hat{m} = f(r) \in \mathcal{M}$. The r.v. is \hat{M}

MAP and ML Detection: Summary

$\begin{array}{ll} \text{Decision} & \text{MAP} \\ \\ \text{Variable} & \Pr\{M=m\}\Pr\{\underline{R}=\underline{r} \underline{S}=\underline{s}_m\} \\ \\ \text{Rule} & \operatorname{argmax}_{m\in\mathcal{M}}\Pr\{M=m \underline{R}=\underline{r}\} \end{array}$	AP Detection	
	Decision	MAP
Rule $\operatorname{argmax}_{m \in \mathcal{M}} \Pr\{M = m \underline{R} = \underline{r}\}$	Variable	$\Pr\{M=m\}\Pr\{\underline{R}=\underline{r} \underline{S}=\underline{s}_m\}$
	Rule	$\operatorname{argmax}_{m \in \mathcal{M}} \Pr\{M = m \underline{R} = \underline{r}\}$

ML Detection		
	Decision	ML
	Variable	$\frac{1}{ \mathcal{M} } \Pr{\{\underline{R} = \underline{r} \underline{S} = \underline{s}_m\}}$
	Rule	$\operatorname{argmax}_{m \in \mathcal{M}} \Pr\{\underline{R} = \underline{r} M = m\}$

Summary Module 3.2

Take Home Messages

- MAP is the optimal receiver
- ML is sometimes optimal and in general simpler to implement
- Scalar analysis can be generalized to vectorial channels

Communication Theory (5ETB0) Module 3.2

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/