TF 30 GPS Engine

Laipac Technology, Inc.
105 West Beaver Creek Rd. Unit 207 Richmond Hill Ontario L4B 1C6 Canada Tel: (905) 762-1228 Fax: (905) 763-1737 http://www.laipac.com

Contents

1. Introduction to TF GPS series	8
TF30 GPS Receiver	8
Quick View on Specifications	8
2. Specifications	9
TF30	9
3. Interface Description and Options	
Phsical Diagram	11
Pin Definition of the Digital Interface Connector	12
TF30	12
Option Descriptions	14
TricklePower Option	14
RS-232 I/O Option	15
4. SiRF Binary Protocol Specification	
Protocol Layers	
Transport Message	
Transport	
Message Validation	
Payload Length	16
Payload Data	
Checksum	17
Input Messages for SiRF Binary Protocol	17
Initialize Data Source - Message I.D. 128	
Switch To NMEA Protocol - Message I.D. 129	19
Set Almanac – Message I.D. 130	21
Software Version – Message I.D. 132	
Set DGPS Source – Message I.D. 133. (For TF10,100/200)	
Set Main Serial Port - Message I.D. 134	
Mode Control - Message I D 136	24

DOP Mask Control - Message I.D. 137
DGPS Control - Message I.D. 138
Elevation Mask – Message I.D. 139
Power Mask - Message I.D. 140
Editing Residual – Message I.D. 141
Steady State Detection - Message I.D. 142
Static Navigation- Message I.D. 143
Poll Clock Status – Message I.D. 144
Set DGPS Serial Port - Message I.D. 145
Poll Almanac - Message I.D. 146
Poll Ephemeris - Message I.D. 147
Flash Update - Message I.D. 148
Set Ephemeris - Message I.D. 149
Switch Operating Modes - Message I.D. 150
Set Trickle Power Parameters - Message I.D. 151
Computation of Duty Cycle and On Time
Push-to-Fix
Poll Navigation Parameters - Message I.D. 152
Set UART Configuration – Message I.D.165
Low Power Acquisition parameters - Message I.D. 167
Output Messages for SiRF Binary Protocol
Measure Navigation Data Out - Message I.D. 2
Measured Tracker Data Out - Message I.D. 4
Raw Tracker Data Out - Message I.D. 5
Software Version String (Response to Poll) - Message I.D. 6
Response: Clock Status Data - Message I.D. 7
50 BPS Data – Message I.D. 8
CPU Throughput – Message I.D. 9
Command Acknowledgment – Message I.D. 11
Command NAcknowledgment – Message I.D. 12
Visible List – Message I.D. 13
Almanac Data - Message I.D. 14
Ephemeris Data (Response to Poll) – Message I.D. 15
OkToSend - Message I.D. 18
Navigation Parameters (Response to Poll) – Message I.D. 19

Nav. Lib. Measurement Data – Message I.D.28	47
Nav. Lib. DGPS Data – Message I.D.29	50
Nav. Lib. SV State Data – Message I.D.30	51
Nav. Lib. Intialization Data – Message I.D.31	52
Development Data – Message I.D. 255	53
Additional Information	54
TricklePower Operation in DGPS Mode	54
GPS Week Reporting	54
NMEA Protocol in TricklePower Mode	54
5. NMEA Input/Output Messages	56
NMEA Output Messages	56
GGA —Global Positioning System Fixed Data	56
GLL—Geographic Position - Latitude/Longitude	57
GSA—GNSS DOP and Active Satellites	57
GSV—GNSS Satellites in View	58
RMC—Recommended Minimum Specific GNSS Data	59
VTG—Course Over Ground and Ground Speed	60
SiRF Proprietary NMEA Input Messages	60
Transport Message	60
SiRF NMEA Input Messages	61
SetSerialPort	61
NaviagtionInitialization	62
SetDGPSPort	
Query/Rate Control	63
LLANaviagtionInitialization	64
Development Data On/Off	

Tables

Table 3-1 Pin List of the 20- pin Digital Interface Connector of
TF30
Table 3-2 TricklePower Power Consumption
Table 4-1 SiRF Messages – Input Message
Table 4-2 Initialize Data Source
Table 4-3 Reset Configuration Bitmap
Table 4-4 Switch To NMEA Protocol
Table 4-5 Set Almanac message
Table 4-6 Software Version
Table 4-7 Set DGPS Source
Table 4- 8 Set DGPS Source Selections
Table 4- 9 Set DGPS Source Selections
Table 4- 10 Internal Beacon Serach Settings
Table 4- 11 Set Main Serial Port
Table 4-12 Mode Control
Table 4- 13 Degraded Mode Byte Value
Table 4- 14 DOP Mask Control
Table 4- 15 DOP Selection
Table 4- 16 DGPS Control
Table 4- 17 DGPS Selection
Table 4- 18 Elevation Mask
Table 4- 19 Power Mask
Table 4- 20 Static Navigation
Table 4- 21 Message ID 143 Description
Table 4- 22 Clock Status
Table 4- 23 Set DGPS Serial Port
Table 4- 24 Almanac
Table 4- 25 Ephemeris Message I.D
Table 4- 26 Flash update30
Table 4- 27 Ephemeris

Table 4- 28 Switch Operating Mode I.D.150
Table 4- 29 Set Trickle Power Parameters I.D.151
Table 4- 30 Example of Selections for Trickle Power Mode of Operation 32
Table 4- 31 Trickle Power Mode Settings
Table 4- 32 Poll Receiver for Navigation Parameters
Table 4- 33 Set UART Configuration
Table 4- 34 Set Message Rate
Table 4- 35 Set Low Power Acquisition Parameters
Table 4- 36 SiRF Messages – Output Message List
Table 4- 37 Measured Navigation Data Out - Binary & ASCII Message Data
Format
Table 4- 38 Mode 1
Table 4- 39 Mode 2
Tab e 4- 40 Measured Tracker Data Out
Table 4- 41 TrktoNAVStruct.trk_status Field Definition
Table 4- 42 Software Version String
Table 4- 43 Clock Status Data Message
Table 4- 44 50 BPS Data
Table 4- 45 CPU Throughput
Table 4- 46 Command Acknowledgment
Table 4- 47 Command Nacknowledgment
Table 4- 48 Visible List
Table 4- 49 Almanac Data
Table 4- 50 Ephemeris Data
Table 4- 51 Navigation Parameters
Table 4- 52 Measurement Data
Table 4- 53 Sync. Flag Fields
Table 4- 54 Detaied Description of the Measurement Data
Table 4- 55 Detaied Description of the Measurement Data
(Conti.)50
Table 4- 56 Measurement Data50
Table 4- 57 SV State Data51
Table 4- 58 Measurement Data52
Table 4- 59 Development Data
Table 4- 60 NMEA Data Rates Under Trickle Power Operation

Table 5-1 NMEA-0183 Output Messages	
Table 5-2 GGA Data Format	56
Table 5-3 Position Fix Indicator	57
Table 5-4 GLL Data Format	57
Table 5-5 GSA Data Format	58
Table 5-6 Mode 1	58
Table 5-7 Mode 2	58
Table 5-8 GSV Data Format	58
Table 5-9 RMC Data Format	59
Table 5-10 VTG Data Format	60
Table 5-11 Set Serial Port Data Format	61
Table 5-12 Navigation Initialization Data Format	62
Table 5-13 Reset Configuration.	62
Table 5-14 Set DGPS Port Data Format	63
Table 5-15 Query/Rate Control Data Format (See example 1.)	64
Table 5-16 Messages	64
Table 5-17 LLA Navigation Initialization Data Format	65
Table 5-18 Reset Configuration.	65
Table 5-19 Development Data On/Off Data Format	65

Chapter 1 Introduction to TF30 GPS Receiver

TF30 GPS Receiver Module

Features

- Ultra miniature size (30 x 40 mm)
- 12 Channel "All-in-view" GPS C/A and carrier
- Integrated powerful 16-bit ARM7 TDMI CPU core
- 8 GPIO pins left for tremendous embedded applications
- · Support WAAS signal
- Fast Cold/Warm/Hot Start TTFF time of 45/38/8 sec
- Fast re acquisition time of 0.1 sec
- Degraded mode solution enables during short blockage situation
- Enhanced sensitivity under weak satellite signals
- Single satellite tracking capability
- Dual multipath rejection
- · NMEA0183 ver 2.2 GGA, GLL, GSA, GSV, RMC, and VTG
- · SiRF binary protocol output
- · On-board Real-time RTCM SC-104 differential
- 1 PPS (one pulse per sec ond) signal
- Two serial ports with TTL level (RS-232 optional)
- TricklePower function (power saving)
- Full shield design to withstand external EMI interferences
- · Capability of adding use's task implementation to current throughput

Based on the SiRF star II TM chip set, TF30 is a compact 12-channel "ALL-in-View" GPS. TF30 GPS receiver offers not only superior performance (integrated powerful ARM7 TDMI CPU core), but also high reliability at very competitive compact price in the market. With its delicate miniature size (30 x 40 mm) and flexibility for eight GPIO pins extension, TF30 GPS receiver module is suitable for all embedded applications such as s handheld, wireless, leisure, navigation, emergency call, and location identification. Besides, its unique full shield design (refer to the photo shown above) will efficiently withstand all external EMI or RFI interference si gnals.

Quick View on Specifications

Channel, Frequency Position/Velocity Time Accuracy Max Speed Acceleration Jerk 12 Channel L1 C/A
25 m CEP/0.1 m/s without SA
1 us synchronized to GPS time
515 meters/sec max
4 g., max.
20 meters /sec. ³ max.

Max Altitude 18,000 meters max.

Time to First Fix 45/38/8/0.1 sec (Cold/Warm/Hot

Start)

0.1 sec (Reacquisition)

Update Rate
Receiver Sensitivity
Map Datum
Input Voltage
Current (Avg.)

1/sec
-175dBW
WGS-84
3.3V DC
50 mA

Serial Comm. 4800 baud (default)

Protocol Messages NMEA 0183 v2.2, SiRF Binary

RTCM SC-104 v2.0 type 1,2,9 Integrated 16-bit ARM7 TDMI

8 GPIO pins

Dimensions 30 x 40 x 7 mm

Full Shield design

Operating Temp -10°C to +70°C Storage Temp -40°C to +85°C

Chapter 2 Specifications

TF30

Electrical Characteristics	5	
1.1 General	Frequency C/A code Channels	L1,1575.42MHz 1.023 MHz chip rate 12
1.2 Accuracy	Position Velocity Time	25 meters CEP without SA 0.1 meters/second, without SA 1 microsecond synchronized to GPS til
1.3 DGPS Accuracy	Position Velocity	1 to 5 meters, typical 0.05 meters/second, typical
1.4 Datum	WGS-84	
1.5 Acquisition Rate	Reacquisition Cold start Warm start Hot start	0.1 sec., average 45 sec., average 38 sec., average 8 sec., average
1.6 Dynamic Condition	Altitude Velocity Acceleration Jerk	18,000 meters (60,000 Feet) max. 515 meters/sec.(1000 Knots) max. 4 g., max. 20 meters/sec. ³ max.

1.7 Power	Main Power	3.3 Vdc± 10%
1.7 1 OWC1	Mairi Owei	3.5 Vuoli 1070
	Supply Current,	~ 150 mA
	continuous Supply Current,	~ 50 mA
	TricklePower mode	
	Backup Power	+2.5V to 3.1V
1.8 External Reset	Backup Current Active low input	10μA typical
1.0 External Neset	Active low input	
1.9 Serial Port	Electrical interface	Two full duplex serial communication(TTL level or EIA RS-232 level (optional))
	Protocol	Design-in binary and NMEA-0183, Version 2.20 with a baud rate selection
	NMEA output	GGA,GLL,GSA,GSV,RMC, and VTG (on
		customer request) Default six NMEA
	DGPS protocol	(Baud Rate :4800) RTCM SC-104, version 2.00, type 1,2 and
	DOI O PIOLOCOI	9
		WAAS Supported
1.10 Time-1PPS Pulse	Level	TTL
	Pulse duration Time reference	100 ms At the pulse positive edge
	Measurements	Aligned to GPS second, ± 1µ sec.
2. Environmental Characteri	stics	, ,
2.1Temperature	Operating range	- 10 °C to + 70 °C
•	Storage range	- 40 °C to + 85 °C
2.2 Physical characteristics	Dimension	40 X 30 mm, thickness less then 7 mm
	Antenna connector	MMCX type
	Interface connector	20-pin (2X 6) low profile socket, 1mm 8-pin (2X 4) JTAG, 1mm (optional)
3. Antenna	Passive or Active Antenna	
4.CPU Throughput	GPS Signal Process Software	or & Integrated 16-bit,50 MHz ARM7TDMI CPU core & 1M DRAM memory 90% CPU throughput available for user tasks
5.RF Interference	It is assembled with full shield case design to withstand the highest possible interference	

Chapter 3 Interface and Options

This chapter describes the pin definitions of the interface connector and flexible options of TF30.

Physical Diagram

Pin Definition of the Digital Interface Connector

TF30

Table 3-1 Pin List of the 20- pin Digital Interface Connector of TF30

Pin#	Name	Description
1	VCC	+3.3V +- 10% DC Power Input
2	TXA	Host Serial Data Output A
3	RXA	Host Serial Data Input A
4	TXB	Aux. Serial Data Output B
5	RXB	Aux. Serial Data Input B (DGPS)
6	TIMEMARK	1PPS Time Mark Output
7	BAT	Battery Backup Power Input
8	GPIOA	General Purpose Input/Output
9	RESET	Reset, Active Low
10	RESERVED	Reserved
11	GROUND	Ground
12	BOOTSEL	Internal/External Boot selective
13	GPIOB	General Purpose Input/Output
14	GPIOC	General Purpose Input/Output
15	GPIOD	General Purpose Input/Output
16	GPIOE	General Purpose Input/Output
17	GPIOF	General Purpose Input/Output
18	GPIOG	General Purpose Input/Output
19	GPIOH	General Purpose Input/Output
20	GROUND	Ground

 $\fine Most Serial Data I/O$ is nominally a CMOS logical high +3.3VDC. $\fine Most Serial Data Input A (Pin# 3) suggest to an active high(ex.100K <math>\Omega$ serial to +Vcc) when not used.

VCC (+3.3V DC Power Input)

This is the main DC power supply for a +3.3V powered TF30 board.

TXA

This is the main transmit channel and is used to output navigation and measurement data

RXA

This is the main receiver channel and is used to receive software commands to the TF30 board

TXB

For user's application (not currently used).

RXB

This is the auxiliary receive channel and is used to input differential corrections to the TF30 board to enable DGPS navigation.

Timemark

This pin provides one pulse-per-second output from TF30 board, which is synchronized to GPS time. This is not available in TricklePower mode.

BAT

This is the battery backup input that powers the SRAM and RTC when main power is removed. Typical current draw is 10uA.

Without an external backup battery or supercap, TF30 will execute a cold start after every power on. To achieve the faster start-up offered by a hot or warm start, a battery backup must be connected. To maximize battery lifetime, the battery voltage should not exceed the supply voltage and should be between 2.5V and 3.1V.

GPIOA

The pin is connected to the digital interface connector for custom applications

RESET

This pin provides an active-low reset input to the TF30 board. It causes the TF30 board to reset and start searching for satellites. If not utilized, it may be left open.

GND

GND provides the ground for the TF30 board.

BOOTSEL

Internal/External Boot selective.

GPIOB - GPIOH

These pins are connected to the digital interface connector for custom applications

Option Descriptions

TricklePower Option

The design of TF30 includes all the functionality necessary to implement the - TricklePower mode of operation. In this mode, the lowest average power dissipation is achieved by powering down the board (after a position is determined) in such a manner that when it is turned back on it can re-compute a position fix in the shortest amount of time. The standard TricklePower operates in three states:

(1) Tracking State

In this state, the board is fully powered, tracking satellites and gathering data. This time in this state is selectable via SiRFdemo demo software from 200-900ms. After this time the measurements to calculate a position are ready.

(2) CPU State

In this state, the GRF1/LX (RF IC) has been turned off (by the control signal) removing the clock to the GSP1/LX (Baseband ASIC). Without a clock, the GSP1/LX is effectively powered down (although the RTC keeps running). The CPU is kept running to process the GPS data until a position fix is determined and the result has been transmitted by the serial communication interface.

(3) Trickle State

In this state, the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active. After a set amount of time, the RTC generates a NMI signal to wakeup the Hitachi microprocessor and set the receiver back to the tracking state. The default time for each TricklePower state (and the approximate current consumed) is shown below in Table 3-3. For example, the TricklePower duty cycle (20%), the average receiver power dissipation is approximately 165mW (50mA @ 3.3v) while maintaining a one-second update rate.

Table 3-2 TricklePower Power Consumption

State	Time	+3.3V Current
Tracking	220mS	145mA
CPU	360mS	40mA
Trickle	420mS	0.5mA

Note: Table 3-2 does not include the external antenna power consumption.

RS-232 I/O Option

TF30 allows populating an RS-232 driver. Customers can make request for I/O of TTL Level (5V) or RS-232 Level (12V).

Chapter 4 SiRF Binary Protocol Specification

The serial communication protocol is designed to include:

- Reliable transport of messages
- Ease of implementation
- Efficient implementation
- Independence from payload

Protocol Layers

Transport Message

Start	Payload	Pavload	Message	End
Sequence	<i>Length Payload</i>		Checksum	Sequence
0xA0 ¹ , 0xA2	Two-bytes (15-bits)	Up to 2 10 –1 (<1023)	Two-bytes (15-bits)	0xB0, 0xB3

^{1. 0}xYY denotes a hexadecimal byte value. 0xA0 equals 160.

Transport

The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters. The values are chosen to be easily identifiable and such that they are unlikely to occur frequently in the data. In addition, the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) check sum. The values of the start and stop characters and the choice of a 15-bit values for length and check sum are designed such that both message length and check sum can not alias with either the stop or start code.

Message Validation

The validation layer is of part of the transport, but operates independently. The byte count refers to the payload byte length. Likewise, the check sum is a sum on the payload.

Payload Length

The payload length is transmitted high order byte first followed by the low byte.

High Byte	Low Byte
< 0x7F	Any value

Even though the protocol has a maximum length of (2 ¹⁵ -1) bytes practical considerations require the SiRF GPS module implementation to limit this value to a smaller number. Likewise, the SiRF receiving programs (e.g., SiRFdemo) may limit the actual size to something less than this maximum.

Payload Data

The payload data follows the payload length. It contains the number of bytes specified by the payload length. The payload data may contain any 8-bit value. Where multi-byte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the big-endian order.

Checksum

The check sum is transmitted high order byte first followed byte the low byte. This is the so-called big-endian order.

High Byte	Low Byte
< 0x7F	Any value

The check sum is 16-bit checksum of the bytes in the payload data. The following pseudo code defines the algorithm used.

Let message to be the array of bytes to be sent by the transport.

Let msgLen be the number of bytes in the message array to be transmitted.

Index = first
checkSum = 0
while index < msgLen
checkSum = checkSum + message[index]
checkSum = checkSum AND (2 10 -1).

Input Messages for SiRF Binary Protocol

Note – All input messages are sent in **BINARY** format.

Table 4-1 lists the message list for the SiRF input messages.

Table 4- / SiRF Messages - Input Message List

Hex	ASCII	Name			
0 x 80	128	Initialize Data Source			
0 x 81	129	Switch to NMEA Protocol			
0 x 82	130	Set Almanac (upload)			
0 x 84	132	Software Version (Poll)			
0 x 85	133	Set DGPS Source Control			
0 x 86	134	Set Main Serial Port			
0 x 88	136	Mode Control			
0 x 89	137	DOP Mask Control			
0 x 8A	138	DGPS Mode			
0 x 8B	139	Elevation Mask			
0 x 8C	140	Power Mask			
0 x 8D	141	Editing Residual (Not implemented)			
0 x 8E	142	Steady-State Detection (Not implemented)			
0 x 8F	143	Static Navigation			
0 x 90	144	Poll Clock Status			
0 x 91	145	Set DGPS Serial Port			
0 x 92	146	Poll Almanac			
0 x 93	147	Poll Ephemeris			
0 x 94	148	Flash Update			
0 x 95	149	Set Ephemeris (upload)			
0 x 96	150	Switch Operating Mode			
0 x 97	151	Set Trickle Power Parameters			
0 x 98	152	Poll Navigation Parameters			
0 x A5	165	Set UART Configuration			
0 x A6	166	Set Message Rate			
0 x A7	167	Low Power Acquisition Parameters			

Initialize Data Source - Message I.D. 128

Table 4-2 contains the input values for the following example:

Warm start the receiver with the following initialization data: ECEF XYZ (-2686727 m, -4304282 m, 3851642 m), Clock Offset (75,000 Hz), Time of Week (86,400 s), Week Number (924), and Channels (12). Raw track data enabled, Debug data enabled.

Example:

A0A20019—Start Sequence and Payload Length 80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33—Payload 0A91B0B3—Message Checksum and End Sequence

Table 4-2 Initialize Data Source

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		80		ASCII 128
ECEF X	4		FFD700F	meters	
ECEF Y	4		FFBE5266	meters	
ECEF Z	4		003AC57A	meters	
Clock Offset	4		000124F8	Hz	
Time of Week	4	*100	0083D600	seconds	
Week Number	2		039C		
Channels	1		0C		Range 1-12
Reset Config.	1		33		See table Table 4-3

Payload Length: 25 bytes

Table 4-3 Reset Configuration Bitmap

Bit	Description
0	Data valid flag—set warm/hot start
1	Clear ephemeris—set warm start
2	Clear memory—set cold start
3	Factory Reset
4	Enable raw track data (YES=1, NO=0)
5	Enable debug data for SiRF binary protocol (YES=1, NO=0)
6	Enable debug data for NMEA protocol (YES=1, NO=0)
7	Reserved (must be 0)

Note – If Nav Lib data is ENABLED then the resulting messages are enabled. Clock Status (MID 7), 50 BPS (MID 8), Raw DGPS (17), NL Measurement Data (MID 28), DGPS Data (MID 29), SV State Data (MID 30), and NL Initialize Data (MID 31). All messages are sent at 1 Hz and the baud rate will be automatically set to 57600.

Switch To NMEA Protocol - Message I.D. 129

Table 4-4 contains the input values for the following example:

Request the following NMEA data at 4800 baud:

GGA – ON at 1 sec, GLL – OFF, GSA - ON at 5 sec,

GSV – ON at 5 sec, RMC-OFF, VTG-OFF

Example:

016AB0B3—Message Checksum and End Sequence

Table 4-4 Switch To NMEA Protocol

		Bina	ry(Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		81		ASCII 129
Mode	1		02		
GGA Message ¹	1		01	1/s	See Chapeter 5 for format.
Checksum 2	1		01		
GLL Message	1		00	1/s	Se Chapeter 5 for format.
Checksum	1		01		
GSA Message	1		05	1/s	See Chapeter 5 for format.
Checksum	1		01		
GSV Message	1		05	1/s	See Chapeter 5 for format.
Checksum	1		01		
RMC Message	1		00	1/s	See Chapeter 5 for format.
Checksum:	1		01		
VTG Message	1		00	1/s	See Chapeter 5 for format.
Checksum	1		01		
Unused Field	1		00		Recommended value.
Unused Field	1		01		Recommended value.
Unused Field	1		00		Recommended value.
Unused Field	1		01		Recommended value.
Unused Field	1		00		Recommended value.
Unused Field	1		01		Recommended value.
Unused Field	1		00		Recommended value.
Unused Field	1		01		Recommended value.
Baud Rate	2		12C0	<u></u>	38400,
					19200,9600,4800,2400

Payload Length: 24 bytes

Note – In Trickle Power mode, update rate is specified by the user. When you switch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate (i.e. Trickle Power update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, $(2 \times 5 = 10)$).

^{1.} A value of 0x00 implies NOT to send message, otherwise data is sent at 1 message every X seconds requested (i.e., to request a message to be sent every 5 seconds, request the message using a value of 0x05.) Maximum rate is 1/255s.

^{2.} A value of 0x00 implies the checksum NOT transmitted with the message (not recommended). A value of 0x01 will have a checksum calculated and transmitted as part of the message (recommended).

Set Almanac – Message I.D. 130

This command en ables the u ser to upload an alman ac TF30 Example:

A0A20380 – Start Sequence and Payload Length

82xx.... - Payload

xxxxB0B3 – Message Checksum and End Sequence

Table 4-5 Set Almanac message

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		82		ACSII 130
Almanac	896		00		Reserved

Payload Length: 897 bytes

The almanac data is stored in the code as a 448 element array of INT16 values. These 448 elements are partitioned as 32 x 14 elements where the 32 represents the satellite number minus 1 and the 14 represents the number of INT16 values associated with this satellite. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps

Software Version – Message I.D. 132

Table 4-6 contains the input values for the following example:

Poll the software version

Example:

A0A20002—Start Sequence and Payload Length

8400—Payload

0084B0B3—Message Checksum and End Sequence

Table 4-6 Software Version

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		84		ACSII 132
TBD	1		00		Not used

Payload Length: 2 bytes

Set DGPS Source – Message I.D. 133

This command allows the user to select the source for DGPS Corrections. Options available are:

External RTCM Data (any serial port)

WAAS(subject to WAAS satellite a vailability)

Internal DGPS beacon receiver

Example 1: Set the D GPS source to External RTCM Data

A0A200007—Start Sequence and Payload Length

0087B0B3—Checksum and End Seq uence

Table 4-7 Set DGPS Source

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		85		de cimal 133
DGPS Source	1		02		See Table 4-9- DGPS
					Source Selections
Internal Beacon	4		00000000	Hz	Internal Beacon Se arch
Frequency					Sett ings
Internal Beacon	1		00	BPS	Internal Beacon Se arch
Bit Rate					Sett ings

Payload Length: 7 bytes

Example 2: Set the D GPS source to Internal DGPS Beacon Rece (Current ly TF30 is not supported)

Search Frequency 310000, Bit Rate 200

A0A200007—Start Sequence and Payload Length

85030004BAF0C802—Payload

02FEB0B3—Checksum and End Sequence

Table 4 - 8 DGPS Source Selection (Example 2)

Name	Bytes	Scale	Hex	Units	Decimal	Description
Message I.D.	1		85		133	Message Identification.
DGPS Source	1		03		3	See Table 4-9 DGPS
						Source Selections.
Internal Beacon	4		0004BAF0	HZ	310000	See Table 4-9 Internal
Frequency						Beacon Search Settings .
Internal Beacon	1		C8	BPS	200	See Table 4-10 Internal
Bit Rate						Beacon Search Settings.

Table 4-9 Set DGPS Source Selections

DGPS	Hex	Decimal	Description
None	0	0	DGPS corrections will not be used (even if
			available).
WAAS	1	1	Uses WAAS Satellite (subject to availability).
External RTCM	2	2	External RTCM input source (i.e., Coast Guard
Data			Beacon).
Internal DGPS	3	3	Internal DGPS beacon receiver.
Beacon Receiver			
User software	4	4	Corrections provided using a interface module
			routine in a customer user application

Table 4- 10 Internal Beacon Search Settings

Search Type	Frequency 1	Bit Rate ²	Description
Auto Scan	0	0	Auto scanning of all frequencies and
			bit rates are performed.
Full Frequency	0	None Zero	Auto scanning of all frequencies and
Scan			specified bit rate are performed.
Full Bit Rate	None Zero	0	Auto scanning of all bit rates and
Scan			specified frequency are performed.
Specific Search	None Zero	None Zero	Only the specified frequency and bit
Scan			rate search are performed.

^{1.} Frequency Range is 283500 to 325000 Hz.

Set Main Serial Port - Message I.D. 134

Table 4-11 contains the input values for the following example:

Set Main Serial port to 9600,n,8,1.

Example:

A0A20009—Start Sequence and Payload Length

860000258008010000—Payload

0134B0B3—Message Checksum and End Sequence

Table 4- 11 Set Main Serial Port

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		86		Decimal 134

^{2.}Bit Rate selection is 25, 50, 100 and 200 BPS.

Baud	4	00002580	38400,19200,9600,4800,2400,
			1200
Data Bits	1	08	8,7
Stop Bit	1	01	0,1
Parity	1	00	None=0, Odd=1, Even=2
Pad	1	00	Reserved

Payload Length: 9 bytes

Mode Control - Message I.D. 136

Table 4-12 contains the input values for the following example:

3D Mode = Always, Alt Constraining = Yes, Degraded Mode = clock then

direction, TBD=1, DR Mode = Yes, Altitude = 0, Alt Hold Mode = Auto, Alt

Source =Last Computed, Coast Time Out = 20, Degraded Time Out=5, DR Time

Out = 2, Track Smoothing = Yes

Example:

A0A2000E—Start Sequence and Payload Length

88010101010100000002140501—Payload

00A9B0B3—Message Checksum and End Sequence

Table 4-12 Mode Control

		Bina	ry (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		88		ASCII 136
3D Mode	1		01		1 (always true=1)
Alt Constraint	1		01		YES=1, NO=0
Degraded Mode	1		01		See Table 4-13
TBD	1		01		Reserved
DR Mode	1		01		YES=1, NO=0
Altitude	2		0000	meters	range -1,000 to 10,000
Alt Hold Mode	1		00		Auto=0, Always=1, Disable=2
Alt Source	1		02		Last Computed=0,Fixed to=1
Coast Time Out	1		14	Seconds	0 to 120
Degraded Time	1		05	Seconds	0 to 120
Out					
DR Time Out	1		01	Seconds	0 to 120
Track	1		01		YES=1, NO=0
Smoothing					

Payload Length: 14 bytes

Table 4-13 Degraded Mode Byte Value

Byte Value	Description
0	Use Direction then Clock Hold
1	Use Clock then Direction Hold
2	Direction (Curb) Hold Only
3	Clock (Time) Hold Only
4	Disable Degraded Modes

DOP Mask Control - Message I.D. 137

Table 4-14 contains the input values for the following example:

Auto Pdop/Hdop, Gdop =8 (default), Pdop=8, Hdop=8

Example:

A0A20005—Start Sequence and Payload Length

8900080808—Payload

00A1B0B3—Message Checksum and End Sequence

Table 4- 14 DOP Mask Control

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		89		ASCII 137
DOP Selection	1		00		See Table 4-15
GDOP Value	1		08		Range 1 to 50
PDOP Value	1		08		Range 1 to 50
HDOP Value	1		08		Range 1 to 50

Payload Length: 5 bytes

Table 4- 15 DOP Selection

Byte Value	Description			
0	Auto PDOP/HDOP			
1	PDOP			
2	HDOP			
3	GDOP			
4	Do Not Use			

DGPS Control - Message I.D. 138

Table 4-16 contains the input values for the following example:

Set DGPS to exclusive with a time out of 30 seconds.

Example:

A0A20003—Start Sequence and Payload Length

8A011E—Payload

00A9B0B3—Message Checksum and End Sequence

Table 4- 16 DGPS Control

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		8A		ASCII 138
DGPS Selection	1		01		See Table 4-17
DGPS Time Out	1		1E	seconds	Range 0 to 255

Payload Length: 3 bytes

Table 4-17 DGPS Selection

Byte Value	Description
0	Auto
1	Exclusive
2	Never Use

Note – Configuration of the DGPS mode using MID 138 only applies to RTCM corrections received from an external RTCM source or internal or external beacon. It does not apply to WAAS operation.

Elevation Mask – Message I.D. 139

Table 4-18 contains the input values for the following example:

Set Navigation Mask to 15.5 degrees (Tracking Mask is defaulted to 5 degrees).

Example:

A0A20005—Start Sequence and Payload Length

8B0032009B—Payload

0158B0B3—Message Checksum and End Sequence

Table 4- 18 Elevation Mask

		Bina	ry (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		8B		ASCII 139
Tracking Mask	2	*10	0032	degrees	Not currently used
Navigation Mask	2	*10	009B	degrees	Range -20.0 to 90.0

Payload Length: 5 bytes

Power Mask - Message I.D. 140

Table 4-19 contains the input values for the following example:

Navigation mask to 33 dB Hz (tracking default value of 28)

Example:

A0A2000 3—Start Sequence and Payload Length

8C1C21—Payload

00C9B0B3—Message Checksum and End Sequ ence

Table 4-19 Power Mask

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		8C		ASCII 140
Tracking Mask	1		1C	dBHz	Not cu rrently implemented
Navigation Mask	1		21	dBHz	Range 20 to 50

Payload Length: 3 bytes

Editing Residual-Message I.D. 141

Note – Not implemented current ly.

Steady State Detection -Message I.D. 142

Note – Not implemented current ly.

Static Navigation – Message I.D. 143

This command allows the user to enable or disable navigatio TF30.

Example:

A0A20002 – Start Sequence and Payload Length

8F01 - Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 4-20 Static Navigation

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		8F		ASCII 143

Static Navigation	1	01	degrees	ASCII 1
Flag				

Payload Length: 2 bytes

Table 4-21 Message ID 143 Description

Name	Description
Message ID	Message ID number
Static Navigation Flag	Valid values:
	1: enable static navigation
	0: disable static navigation

Poll Clock Status – Message I.D. 144

Table 4-22 contains the input values for the following example:

Poll the clock status.

Example:

A0A20002—Start Sequence and Payload Length

9000—Payload

0090B0B3—Message Checksum and End Sequence

Table 4-22 Clock Status

		Binary (Hex)			
Name	Bytes	Scale Example		Units	Description
Message ID	1	90			ACSII 144
TBD	1		00		Not used

Payload Length: 2 bytes

Set DGPS Serial Port - Message I.D. 145

Table 4-23 contains the input values for the following example:

Set DGPS Serial port to 9600,n,8,1.

Example:

A0A20009—Start Sequence and Payload Length

910000258008010000—Payload

013FB0B3—Message Checksum and End Sequence

Tab e 4-23 Set DGPS Serial Port

		Binary (Hex)			
Name	Bytes	Scale	Scale Example		Description
Message ID	1		91		ASCII 145
Baud	4		00002580		38400,19200,9600,4800,2400,120
Data Bits	1		08		8,7
Stop Bit	1		01		0,1
Parity	1		00		None=0, Odd=1, Even=2
Pad	1		00		Reserved

Payload Length: 9 bytes

Note – Setting the DGPS serial port using MID 145 will effect ComB only regardless of the port being used to communicTF30.

Poll Almanac - Message I.D. 146

Table 4-24 contains the input values for the following example:

Poll for the Almanac.

Example:

A0A20002—Start Sequence and Payload Length

9200—Payload

0092B0B3—Message Checksum and End Sequence

Table 4-24 Almanac

		Binary (Hex)			
Name	Bytes	Scale Example		Units	Description
Message ID	1	92			ASCII 146
TBD	1		00		Reserved

Payload Length: 2 bytes

Poll Ephemeris - Message I.D. 147

Table 4-25 contains the input values for the following example:

Poll for Ephemeris Data for all satellites.

Example:

A0A20003—Start Sequence and Payload Length

930000—Payload

0092B0B3—Message Checksum and End Sequence

Table 4-25 Ephemeris Message I.D.

		Binary (Hex)			
Name	Bytes	Scale Example		Units	Description
Message ID	1		93		ASCII 147
Sv I.D. ¹	1		00		Range 0 to 32
TBD	1		00		Not used

Payload Length: 3 bytes

1. A value of 0 requests all available ephemeris records, otherwise the ephemeris of the Sv I.D. is requested.

Flash Update - Message I.D. 148

This command allows the user to command the Evaluation Receiver to go into internal boot mode without setting the boot switch. Internal boot mode allows the user to re-flash the embedded code in the receiver.

Note – It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload.

Example:

A0A20001 - Start Sequence and Payload Length

94 - Payload

0094B0B3 – Message Checksum and End Sequence

Table 4-26 Flash update

		Bina	ry (Hex)		
Name	Bytes	Scale Example		Units	Description
Message ID	1		94		ASCII 148

Payload Length: 1 bytes

Set Ephemeris – Message I.D. 149

This command enables the user to upload an ephemeris file to the Evaluation Receiver.

Example:

A0A2005B - Start Sequence and Payload Length

95..... – Payload

xxxxB0B3 - Message Checksum and End Sequence

Table 4-27 Ephemeris

		Binary (Hex)			
Name	Bytes	Scale Example		Units	Description
Message ID	1		95		ASCII 149
Ephemeris	90		00		Reserved

data			
------	--	--	--

Payload Length: 91 bytes

The ephemeris data for each satellite is stored as a two dimensional array of [3][15] UNIT16 elements. The 3 represents three separate sub-frames. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps.

Switch Operating Modes - Message I.D. 150

Table 4-28 contains the input values for the following example:

Sets the receiver to track a single satellite on all channels.

Example:

A0A20007—Start Sequence and Payload Length

961E510006001E—Payload

0129B0B3—Message Checksum and End Sequence

Table 4-28 Switch Operating Mode I.D.150

		Binary (Hex)			
Name	Bytes	Scale Example		Units	Description
Message ID	1		96		ASCII 150
Mode	2	1E51			0=normal,
					1E51=Testmode1,
					1E52=Testmode2,
					1E53= not supported
SvID	2		0006		Satellite to Track
Period	2		001E	seconds	Duration of Track

Payload Length: 7 bytes

Set Trickle Power Parameters - Message I.D. 151

Table 4-29 contains the input values for the following example:

Sets the receiver into low power Modes.

Example: Set receiver into Trickle Power at 1 hz update and 200 ms On Time.

A0A20009—Start Sequence and Payload Length

9700000C8000000C8—Payload

0227B0B3—Message Checksum and End Sequence

Table 4-29 Set Trickle Power Parameters I.D.151

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		97		ASCII 151
Push To Fix Mode	2		0000		ON = 1, $OFF = 0$
Duty Cycle	2	*10	00C8	%	% Time ON. A duty cycle of 1000 (100%) means continuous operation
Milli Seconds On Time	4		000000C8	msec	range 200 - 500 ms

Payload Length: 9 bytes

Note- On time of 700, 800, 900 msec are invalid if update rate of 1 second is selected.

Computation of Duty Cycle and On Time

The Duty Cycle is the desired time to be spent tracking. The On Time is the duration of each tracking period (range is 200 - 900 ms). To calculate the TricklePower update rate as a function of Duty cycle and On Time, use the following formula:

Off Time = On Time - (Duty Cycle * On Time)

Duty Cycle

Update rate = Off Time + On Time

Note – It is impossible to enter On Time of 900 ms.

Following are some examples of selections:

Table 4-30 Example of Selections for Trickle Power Mode of Operation

Mode	On Time (ms)	Duty Cycle (%)	Update Rate(1/Hz)
Continuous	1000	100	1
Trickle Power	200	20	1
Trickle Power	200	10	2
Trickle Power	300	10	3
Trickle Power	500	5	10

Table 4-31 Trickle Power Mode Settings

On Time		Update Rate (sec)								
(ms)	1	1 2 3 4 5 6 7 8 9 10								
200	\mathbf{Y}^{1}	Y	Y	Y	Y	Y	Y	Y	Y	Y

300	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
400	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
500	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
600	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
700	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
800	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
900	N	Y	Y	Y	Y	Y	Y	Y	Y	Y

^{1.}Y = Yes (Mode supported)

Push-to-Fix

In this mode the receiver will turn on every 30 minutes to perform a system update consisting of a RTC calibration and satellite ephemeris data collection if required (i.e., a new satellite has become visible) as well as all software tasks to support SnapStart in the event of an NMI. Ephemeris collection time in general takes 18 to 30 seconds. If ephemeris data is not required then the system will re-calibrate and shut down. In either case, the amount of time the receiver remains off will be in proportion to how long it stayed on:

Off period = On Period*(1-Duty Cycle)

Duty Cycle

The off period has a possible range between 10 and 7200 seconds. The default is 1800 seconds.

Poll Navigation Parameters - Message I.D. 152

Table 4-32 contains the input values for the following example:

Example: Poll receiver for current navigation parameters.

A0A20002—Start Sequence and Payload Length

9800—Payload

0098B0B3—Message Checksum and End Sequence

Table 4-32 Poll Receiver for Navigation Parameters

		Binary (Hex)			
Name	Bytes	Scale	Example	Units	Description
Message ID	1		98		ASCII 152
Reserved	1		00		Reserved

Payload Length: 2 bytes

^{2.} N = No (Mode NOT supported)

Set UART Configuration - Message I.D. 165

Table 4-33 contains the input values for the following example:

Example: Set port 0 to NMEA with 9600 baud, 8 data bits, 1 stop bit, no parity. Set port 1 to SiRF binary with 57600 baud, 8 data bits, 1 stop bit, no parity. Do not configure ports 2 and 3.

Example:

A0A20031—Start Sequence and Payload Length

A50001010000258008010000000100000000E1000801000000FF0505000000000000000000FF05050

0000000000000000000—Payload

0452B0B3—Message Checksum and End Sequence

Table 4-33 Set UART Configuration

Name Bytes		Binary (Hex)		Units	Description
		Scale	Example		
Message ID	1		A5		ASCII 165
Port	1		00		For UART 0
In Protocol ¹	1		01		For UART 0
Out Protocol	1		01		For UART 0 (Set to in protocol)
Baud Rate ²	4		00002580		For UART 0
Data Bits ³	1		08		For UART 0
Stop Bits 4	1		01		For UART 0
Parity ⁵	1		00		For UART 0
Reserved	1		00		For UART 0
Reserved	1		00		For UART 0
Port	1		01		For UART 1
In Protocol	1		00		For UART 1
Out Protocol	1		00		For UART 1
Baud Rate	4		0000E100		For UART 1
Data Bits	1		08		For UART 1
Stop Bits	1		01		For UART 1
Parity	1		00		For UART 1
Reserved	1		00		For UART 1
Reserved	1		00		For UART 1
Port	1		FF		For UART 2
In Protocol	1		05		For UART 2
Out Protocol	1		05		For UART 2
Baud Rate	4		00000000		For UART 2
Data Bits	1		00		For UART 2
Stop Bits	1		00		For UART 2
Parity	1		00		For UART 2
Reserved	1		00		For UART 2

Reserved	1	00	For UART 2
Port	1	FF	For UART 3
In Protocol	1	05	For UART 3
Out Protocol	1	05	For UART 3
Baud Rate	4	00000000	For UART 3
Data Bits	1	00	For UART 3
Stop Bits	1	00	For UART 3
Parity	1	00	For UART 3
Reserved	1	00	For UART 3
Reserved	1	00	For UART 3

Payload Length: 49 bytes

- 1.0 = SiRF Binary, 1 = NMEA, 2 = ASCII, 3 = RTCM, 4 = User1, 5 = No Protocol.
- 2. Valid values are 1200, 2400, 4800, 9600, 19200, 38400, and 57600.
- 3. Valid values are 7 and 8.
- 4. Valid values are 1 and 2.
- 5. 0 = None, 1 = Odd, 2 = Even.

Set Message Rate - Message I.D. 166

Table 4-34 contains the input values for the following example:

Set message ID 2 to output every 5 seconds starting immediately.

Example:

A0A20008—Start Sequence and Payload Length

A6010205000000000-Payload

00AEB0B3—Message Checksum and End Sequence

Table 4-34 Set Message Rate

Name	Bytes	Binary (Hex)		Units	Description
		Scale	Example		
Message ID	1		A6		ASCII 166
Send Now ¹	1		01		Poll message
MID to be set	1		02		
Update Rate	1		05	sec	Range = 1 - 30
Reserved	1		00		Not used
Reserved	1		00		Not used
Reserved	1		00		Not used
Reserved	1		00		Not used

Payload Length: 8 bytes

1.0 = No, 1 = Yes, if no update rate the message will be polled.

Low Power Acquisition Parameters - Message I.D. 167

Table 4-35 contains the input values for the following example:

Set maximum off and search times for re-acquisition while receiver is in low power.

Example:

Table 4-35 Set Low Power Acquisition Parameters

Name	Bytes	Binary (Hex)		Units	Description
		Scale	Example		
Message ID	1		A7		ASCII 167
Max Off Time	4		00007530	ms	Maximum time for sleep mode
Max Search	4		0001D4C	ms	Max. satellite search time
Time			0		
Push-To-Fix	4		000003C	sec	Push-To-Fix cycle period
period					

Output Messages for SiRF Binary Protocol

Note – All output messages are received in **BINARY** format. SiRFdemo interprets the binary data and saves it to the log file in **ASCII** format.

Table 4-36 lists the message list for the SiRF output messages.

Table 4-36 SiRF Messages - Output Message List

Hex	ASCII	Name	Description
0 x 02	2	Measured Navigation Data	Position, velocity, and time
0 x 03	3	True Tracker Data	Not Implemented
0 x 04	4	Measured Tracking Data	Satellite and C/No information
0 x 05	5	Raw Track Data	TF30 not supported
0 x 06	6	SW Version	Receiver software
0 x 07	7	Clock Status	Current clock status
0 x 08	8	50 BPS Subframe Data	Standard ICD format
0 x 09	9	Throughput	Navigation complete data
0 x 0A	10	Error ID	Error coding for message failure
0 x 0B	11	Command Acknowledgment	Successful request

0 x 0C	12	Command Nacknowledgment	Unsuccessful request
0 x 0D	13	Visible List	Auto Output
0 x 0E	14	Almanac Data	Response to Poll
0 x 0F	15	Ephemeris Data	Response to Poll
0 x 10	16	Test Mode 1	For use with SiRFtest ¹ (Test mode 1)
0 x 11	17	Differential Corrections	Received from DGPS broadcast
0 x 12	18	OkToSend	CPU ON / OFF (Trickle Power)
0 x 13	19	Navigation Parameters	Response to Poll
0 x 14	20	Test Mode 2	Additional test data (Test mode 2)
0 x 1C	28	Nav. Lib. Measurement Data	Measurement Data
0 x 1D	29	Nav. Lib. DGPS Data	Differential GPS Data
0 x 1E	30	Nav. Lib. SV State Data	Satellite State Data
0 x 1F	31	Nav. Lib. Initialization Data	Initialization Data
0 x FF	255	Development Data	Various status messages

^{1.} SiRFtest is product testing software tool.

Measure Navigation Data Out - Message I.D. 2

Output Rate: 1 Hz

Table 4-37 lists the binary and ASCII message data format for the measured navigation data

Example:

A0A20029—Start Sequence and Payload Length

 $02 \\FFD \\6F78 \\CFFB \\E536 \\E003 \\AC00400030104 \\A00036 \\B039780 \\E3$

09BBB0B3—Message Checksum and End Sequence.

Table 4-37 Measured Navigation Data Out - Binary & ASCII Message Data Format

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		02			2
X-position	4		FFD6F78C	m		-2689140
Y-position	4		FFBE536E	m		-4304018
Z-position	4		003AC004	m		3850244
X-velocity	2	*8	00	m/s	Vx÷ 8	0
Y-velocity	2	*8	03	m/s	Vy÷ 8	0.375
Z-velocity	2	*8	01	m/s	Vz÷ 8	0.125
Mode 1	1		04	Bitmap ¹		4
DOP ²	1	*5	A		÷ 5	2.0
Mode 2	1		00	Bitmap ³		0

GPS Week	2		036B			875
GPS TOW	4	*100	039780E3	seconds	÷ 100	602605.79
SVs in Fix	1		06			6
CH 1	1		12			18
CH 2	1		19			25
CH 3	1		0E			14
CH 4	1		16			22
CH 5	1		0F			15
CH 6	1		04			4
CH 7	1		00			0
CH 8	1		00			0
CH 9	1		00			0
CH 10	1		00			0
CH 11	1		00			0
CH 12	1		00			0

Payload Length: 41 bytes

- 1. For further information, go to Table 4-38.
- 2. Dilution of precision (DOP) field contains value of PDOP when position is obtained using 3D solution and HDOP in all other cases.
- 3. For further information, go to Table 4-39.

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

Note – Binary units scaled to integer values need to be divided by the scale value to receive true decimal value (i.e., decimal $X_{\text{vel}} = \text{binary } X_{\text{vel}}/8$).

Table 4-38 Mode 1

Bit	7	6	5	4	3	2	1	0	
Bit(s)	DGPS	DOP-	ALTMO	ODE	TPMODE	PM	ODE		
Name		Mask							

Bit(s) Name	Name	Value	Description
PMODE	Position mode	0	No navigation solution
		1	1 satellite solution
		2	2 satellite solution
		3	3 satellite solution
		4	>3 satellite solution
		5	2D point solution (Least square)
		6	3D point solution (Least square)

Laipac Technology Inc.Laipac Techno —

		7	Dead reckoning
TPMODE	Trickle power	0	Full power position
	mode		
		1	Trickle power position
ALTMOD	Altitude mode	0	No altitude hold
E			
		1	Altitude used from filter
		2	Altitude used from user
		3	Forced altitude (from user)
DOPMAS	DOP mask	0	DOP mask not exceeded
K	status		
		1	DOP mask exceeded
DGPS	DGPS status	0	No DGPS position
		1	DGPS position

Table 4-39 Mode 2

Mode 2		
Hex	ASCII	Description
0 x 00	0	Solution not validated
0 x 01	1	DR sensor data
0 x 02	2	Validated (1), Unvalidated (0)
0 x 04	4	If set, Dead Reckoning (Time Out)
0 x 08	8	If set, Output Edited by UI (i.e., DOP Mask exceeded)
0 x 10	16	Reserved
0 x 20	32	Reserved
0 x 40	64	Reserved
0 x 80	128	Reserved

Measured Tracker Data Out - Message I.D. 4

Output Rate: 1 Hz

Table 4-38 lists the binary and ASCII message data format for the measured tracker data.

Example:

A0A200BC—Start Sequence and Payload Length
04036C0000937F0C0EAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A...—Payload
****B0B3—Message Checksum and End Sequence

Table 4- 40 Measured Tracker Data Out

			y (Hex)		ASCII (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		04	None		4
GPS Week	2		036C			876
GPS TOW	4	s*100	0000937F	S	s÷ 100	37759
Chans	1		0C			12
1st Svid	1		0E			14
Azimuth	1	Az*[2/3]	AB	deg	÷ (2/3)	256.5
Elev	1	El*2	46	deg	÷ 2	35
State	2		003F	Bitmap 1		0 x BF
C/No 1	1		1A			26
C/No 2	1		1E			30
C/No 3	1		1D			29
C/No 4	1		1D			29
C/No 5	1		19			25
C/No 6	1		1D			29
C/No 7	1		1A			26
C/No 8	1		1A			26
C/No 9	1		1D			29
C/No 10	1		1F			31
2nd SVid	1		1D			29
Azimuth	1	Az*[2/3]	59	deg	÷ (2/3)	89
Elev	1	El*2	42	deg	÷ 2	66
State	2		3F	Bitmap 1		63
C/No 1	1		1A			26
C/No 2	1		1A			63

Payload Length: 188 bytes

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

Note – Message length is fixed to 188 bytes with nontracking channels reporting zero values.

Table 4-41 TrktoNAVStruct.trk_status Field Definition

Field Definition	Hex	Description
	Value	
ACQ_SUCCESS	0x0001	Set, if acq/reacq is done successfully
DELTA_CARPHASE_VALI	0x0002	Set, Integrated carrier phase is valid
D		
BIT_SYNC_DONE	0x0004	Set, Bit sync completed flag
SUBFRAME_SYNC_DONE	0x0008	Set, Subframe sync has been done

^{1.} For further information, go to Table 4-41

CARRIER_PULLIN_DONE	0x0010	Set, Carrier pullin done
CODE_LOCKED	0x0020	Set, Code locked
ACQ_FAILED	0x0040	Set, Failed to acquire S/V
GOT_EPHEMERIS	0x0080	Set, Ephemeris data available

Note – When a channel is fully locked and all data is valid, the status shown is 0 x BF.

Raw Tracker Data Out - Message I.D. 5

Not implemented for TF30.

Software Version String (Response to Poll) - Message I.D. 6

Output Rate: Response to polling message

Example:

A0A20015—Start Sequence and Payload Length

0606312E322E30444B495431313920534D00000000000—Payload

0382B0B3—Message Checksum and End Sequence

Table 4- 42 Software Version String

		Binary (Hex)			ASCII (Decimal)	
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		06			6
Character	20		1			

Payload Length: 21 bytes

1. 06312E322E30444B495431313920534D0000000000

Note – Convert to symbol to assemble message (i.e., 0 x 4E is 'N'). These are low priority task and are not necessarily output at constant intervals.

Response: Clock Status Data - Message I.D. 7

Output Rate: 1 Hz or response to polling message

Example:

A0A20014—Start Sequence and Payload Length

0703BD021549240822317923DAEF—Payload

0598B0B3—Message Checksum and End Sequence

Table 4-43 Clock Status Data Message

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		07			7
GPS Week	2		03BD			957
GPS TOW	4	*100	002154924	S	÷100	349494.12
Svs	1		08			8
Clock Drift	4		2231	Hz		74289
Clock Bias	4		7923	nanosec		128743715
Estimated GPS	4		DAEF	millisec		349493999
Time						

Payload Length: 20 bytes

Note – The mersurement of GPS week item is with Extended GPS week (=ICD GPS week + 1024)

50 BPS Data – Message I.D. δ

Output Rate: As available (12.5 minute download time)

Example:

A0A2002B—Start Sequence and Payload Length

08xxxxxx—Payload

xxxxB0B3—Message Checksum and End Sequence

Table 4-44 50 BPS Data

		Bina	ry (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		08			8	
Channel	1						
Sv I.D	1						
Word[10]	40						

Payload Length: 43 bytes per subframe (5 subframes per page)

Note – Data is logged in ICD format (available from www.navcen.uscg.gov). The ICD specification is 30-bit words. The output above has been stripped of parity to give a 240 bit frame instead of 300 bits.

CPU Throughput - Message I.D. 9

Output Rate:1 Hz

Example:

A0A20009—Start Sequence and Payload Length

09003B0011001601E5—Payload

0151B0B3—Message Checksum and End Sequence

Table 4-45 CPU Throughput

		Binary (Hex)			ASCII	(Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		09			9
SegStatMax	2	*186	003B	millisec	÷186	.3172
SegStatLat	2	*186	60011	millisec	÷186	.0914
AveTrkTime	2	*186	60016	millisec	÷186	.1183
Last MS	2		01E5	millisec		485

Payload Length: 9 bytes

Command Acknowledgment – Message I.D. 11

Output Rate: Response to successful input message

This is successful almanac (message ID 0x92) request example:

A0A20002—Start Sequence and Payload Length

0B92—Payload

009DB0B3—Message Checksum and End Sequence

Table 4-46 Command Acknowledgment

		Binary (Hex)			ASCII ((Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0B			11
Ack. I.D.	1		92			146

Payload Length: 2 bytes

Command NAcknowledgment - Message I.D. 12

Output Rate: Response to rejected input message

This is an unsuccessful almanac (message ID 0x92) request example:

A0A20002—Start Sequence and Payload Length

0C92—Payload

009EB0B3—Message Checksum and End Sequence

Table 4-47 Command Nacknowledgment

		Binary (Hex)			ASCII ((Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0C			12
Nack. I.D.	1		92			146

Payload Length: 2 bytes

Visible List – Message I.D. 13

Output Rate: Updated approximately every 2 minutes

Note – This is a variable length message. Only the number of visible satellites are reported (as defined by Visible Svs in Table 4-48). Maximum is 12 satellites.

Example:

Table 4- 48 Visible List

		Binary (Hex)			ASCII ((Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		0D			13
Visible Svs	1		08			8
CH 1 – Sv	1		10			16
I.D.						
CH 1 – Sv	2		002A	degrees		42
Azimuth						
CH 1 – Sv	2		0038	degrees		56
Elevation						
CH 2 - Sv	1		09			9
I.D.						
CH 2 – Sv	2		0133	degrees		307
Azimuth						
CH 2 – Sv	2		002C	degrees		44
Elevation						
•••						

Payload Length: Variable

Almanac Data - Message I.D. 14

Output Rate: Response to poll

Example:

A0A203A1—Start Sequence and Payload Length

0E01***********---Payload

****B0B3—Message Checksum and End Sequence

Table 4-49 Almanac Data

		Binar	y (Hex)	
Name	Bytes	Scale	Example	
Message I.D.	1		0E	
Sv I.D.	1		01	Satellite PRN Number ¹
Almanac week and	2		1101	First 10 bits is the Almanac
Status				week.Next 5 bits have a zero
				value. Last bit is 1.
Almanac data	24			This information is taken from
				the 50BPS navigation message
				broadcast by the satellite. This
				information is the last 8 words in
				the 5th subframe but with the
				parity removed. ²
Package checksum	2		4CA1	This is the checksum of the
				preceding data in the payload. It
				is calculated by arranging the
				previous 26 bytes as 13 half-
				words and then summing them. ³

Payload Length: 30 bytes

- 1. Each satellite almanac entry is output in a single message.
- 2. There are 25 possible pages in subframe 5. Pages 1 through 24 contain satellite specific almanac information which is output as part of the almanac data. Page 25 contains health status flags and the almanac week number.
- 3. This checksum is not used for serial I/O data integrity. It is used internally for ensuring that almanac information is valid.

Note – The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps.

Ephemeris Data (Response to Poll) – Message I.D. 15

The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD- GPS -200 format for ephemeris data.

OkToSend - Message I.D. 18

Output Rate: Trickle Power CPU on/off indicator

Example:

A0A20002—Start Sequence and Payload Length

1200—Payload

0012B0B3—Message Checksum and End Sequence

Table 4-50 Ephemeris Data

		Binary (Hex)			ASCII ((Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message I.D.	1		12			12
Send Indicator ¹	1		00			00

Payload Length: 2 bytes

1.0 implies that CPU is about to go OFF, OkToSend==NO, 1 implies CPU has just come ON,

OkToSend==YES

Navigation Parameters (Response to Poll) – Message I.D. 19

Output Rate: 1 Response to Poll

Example:

A0A20018—Start Sequence and Payload Length

13010000000011E3C0104001E004B1E00000500016400C8—Payload

022DB0B3—Message Checksum and End Sequence

Table 4-51 Navigation Parameters

		Bina	ary (Hex)		A	SCII
Name	Bytes			Units	(D e	ecimal)
		Scale	Example		Scale	Example
Message ID	1		13			19
Reserved	4					
Altitude Hold Mode	1		00			0
Altitude Hold Source	1		00			0
Altitude Source Input	2		0000	meters		0
Degraded Mode ¹	1		01			1

Degraded Timeout	1	1E	seconds	30
DR Timeout	1	3C	seconds	60
Track Smooth Mode	1	01		1
Static Navigation	1			
3SV Least Squares	1			
Reserved	4			
DOP Mask Mode ²	1	04		4
Navigation Elevation Mask	2			
Navigation Power Mask	1			
Reserved	4			
DGPS Source	1			
DGPS Mode ³	1	00		0
DGPS Timeout	1	1E	seconds	30
Reserved	4			
LP Push-to-Fix	1			
LP On-time	4			
LP Interval	4			
LP User Tasks Enabled	1			
LP User Task Interval	4			
LP Power Cycling	1			
Enabled				
LP Max. Acq. Search	4			
Time				
LP Max. Off Time	4			
Reserved	4			
Reserved	4			

Payload Length: 65 bytes

- 1. See Table 4-13.
- 2. See Table 4-14.
- 3. See Table 4-15

Navigation Library Measurement Data - Message I.D. 28

Output Rate: Every measurement cycle (full power / continuous : 1Hz) Example:

A0A20038—Start Sequence and Payload Length

1C00000660D015F143F62C4113F42FF3FBE95E417B235C468C6964B8FBC5

82415CF1C375301734.....03E801F400000000—Payload

1533B0B3—Message Checksum and End Sequence

Table 4- 52 Measurement Data

Name	Bytes	Binary (Hex) Bytes		Units		ASCII Decimal)
		Scale	Example		Scale	Example
Message I.D.			1C			
Channel			00			
Time Tag			000660D0	ms		
Satellite ID			15			
GPS Software Time			F143F62C 4113F42F	ms		2.4921113 696e+005
Pseudo-range			F3FBE95E 417B235C	m		2.1016756 638e+007
Carrier Frequency			468C6964			1.6756767 578e+004
Carrier Phase			B8FBC582 415CF1C3			4.4345542 262e+004
Time in Track			7530	ms		10600
Sync Flags			17			23
C/No 1			34	dB-Hz		43
C/No 2				dB-Hz		43
C/No 3				dB-Hz		43
C/No 4				dB-Hz		43
C/No 5				dB-Hz		43
C/No 6				dB-Hz		43
C/No 7				dB-Hz		43
C/No 8				dB-Hz		43
C/No 9				dB-Hz		43
C/No 10				dB-Hz		43
Delta Range Interval			03E801F4	m		1000
Mean Delta Range Time			01F4	ms		500
Extrapolation Time			0000	ms		
Phase Error Count			00			0
Low Power Count			00			0

Payload Length: 56 bytes

Tabl e 4-53 Sync Flag Fields

Bit Fields	Description
[0]	Coherent Integration Time
	0 = 2ms
	1 = 10ms
[2:1]	Synch State
	00 = Not aligned
	01 = Consistent code epoch alignment
	10 = Consistent data bit alignment
	11 = No millisecond errors

[4:3]	Autocorrelation Detection State
	00 = Verified not an autocorrelation
	01 = Testing in progress
	10 = Strong signal, autocorrelation detection not run
	11 = Not used

Tabl e 4-54 Detailed Description of the Measurement Data

Name	Description
Message I.D.	Message I.D. number.
Channel	Receiver channel number for a given satellite being searched
	or tracked.
Time Tag	This is the Time Tag in milliseconds of the measurement block
	in the receiver software time.
Satellite ID	Satellite or Space Vehicle (SV) I.D. number or Pseudo-random
	Noise (PRN) number.
GPS Software	This is GPS Time or Time of Week (TOW) estimated by the
Time	software in milliseconds.
Pseudo-range	This is the generated pseudo range measurement for a
	particular SV.
Carrier	This is can be interpreted in two ways:
Frequency	1) The delta-pseudo range normalized by the reciprocal of the
	delta pseudo range measurement interval.
	2) The frequency from the AFC loop. If, for example, the delta
	pseudo range interval computation for a particular channel
	is zero, then it can be the AFC measurement, otherwise it is a
	delta-pseudo range computation.
Carrier Phase	This is the integrated carrier phase given in meters.
Time in Track	The Time in Track counts how long a particular SV has been
	in track. For any count greater than zero (0), a generated
	pseudo range is present for a particular channel. The length of
	time in track is a
~	measure of how large the pull-in error may be.
Sync Flags	This byte contains two a two bit fields that report the
	integration inter-val and sync value achieved for a particular
	channel.
	1)Bit 0: Coherent Integration Interval (0 = 2 milliseconds, 1 =
	10 milli- seconds)
	2) Bits: (1 2) = Synchronization
	3) Bit: (2 1) Value: (0 0) Not Aligned
	Value: {0 0} Not Aligned Value: {0 1} Consistent Code Epoch Alignment
	Value: {1 0} Consistent Code Epoch Angilinent Value: {1 0} Consistent Data Bit Alignment
	Value: {1 1} No Millisecond Errors

Tabl e 4-55 Detailed Description of the Measurement Data (Continued)

Name	Description
C/No 1	This array of Carrier To Noise Ratios is the average signal
	power in dB-Hz for each of the 100-millisecond intervals in the
	previous second or last epoch for each particular SV being track
	in a channel.First 100 millisecond measurement
C/No 2	Second 100 millisecond measurement
C/No 3	Third 100 millisecond measurement
C/No 4	Fourth 100 millisecond measurement
C/No 5	Fifth 100 millisecond measurement
C/No 6	Sixth 100 millisecond measurement
C/No 7	Seventh 100 millisecond measurement
C/No 8	Eighth 100 millisecond measurement
C/No 9	Ninth 100 millisecond measurement
C/No 10	Tenth 100 millisecond measurement
Delta Range	This is the delta-pseudo range measurement interval for the
Interval	preceding second. A value of zero indicated that the receiver has
	an AFC measurement or no measurement in the Carrier
	Frequency field for a particular channel.
Mean Delta Range	This is the mean calculated time of the delta-pseudo range
Time	interval in milliseconds measured from the end of the interval
	backwards Extrapolation Time This is the pseudo range
	extrapolation time in milliseconds, to reach the common Time
	tag value.
Phase Error Count	This is the count of the phase errors greater than 60 Degrees
	measured in the preceding second as defined for a particular
	channel.
Low Power Count	This is the low power measurements for signals less than 28 dB-
	Hz in the preceding second as defined for a particular channel

Navigation Library DGPS Data - Message I.D. 29

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A2001A—Start Sequence and Payload Length

1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000-Payload

0956B0B3—Message Checksum and End Sequence

Table 4-56 Measurement Data

Name	Bytes	ytes Binary (Hex)			ASCII (Decimal)	
		Scale	Example		Scale	Example
Message I.D.	1		1D			

Satellite ID	2	000F		
IOD	2	00B5		
Source ¹	1	01		
Pseudo-range Correction	4	BFC97C67	ms	
Pseudo-range rate	4	3CAAAAAB	m/s	
Correction				
Correction Age	4	3FBFFE12	S	
Reserved	4			
Reserved	4			

Payload Length: 26 bytes

Navigation Library SV State Data - Message I.D. 30

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20053—Start Sequence and Payload Length

1E15....2C64E99D01....408906C8—Payload

2360B0B3—Message Checksum and End Sequence

Table 4- 57 SV State Data

		Binary (Hex)			ASCII	
Name	Bytes			Units	(Decimal)	
		Scale	Example		Scale	Example
Message I.D.	1		1E			
Satellite ID	1		15			
GPS Time	8			S		
Position X	8			m		
Position Y	8			m		
Position Z	8			m		
Velocity X	8			m/s		
Velocity Y	8			m/s		
Velocity Z	8			m/s		
Clock Bias	8			S		
Clock Drift	4		2C64E99D	/s		744810909
Ephemeris Flag ¹	1		01			1
Reserved	8					
Ionospheric Delay	4		408906C8	m		1082721992

Payload Length: 83 bytes

^{1. 0 =} Use no corrections, 1 = Use WAAS channel, 2 = Use external source, 3 = Use Internal Beacon, 4

⁼ Set DGPS Corrections

 $^{1.\ 0 =} no\ valid\ SV\ state,\ 1 = SV\ state\ calculated\ from\ ephemeris,\ 2 = Satellite\ state\ calculated\ from\ almanac$

Navigation Library Initialization Data - Message I.D. 31

Output Rate: Every measurement cycle (full power / continuous : 1Hz)

Example:

A0A20054—Start Sequence and Payload Length

1F....0000000000001001E000F....00....000000000F....00....02....043402....

....02—Payload

0E27B0B3—Message Checksum and End Sequence

Table 4-58 Measurement Data

		Bin	ary (Hex)			ASCII
Name	Bytes		T	Units		Decimal)
		Scale	Example		Scale	Example
Message I.D.	1		1E			
Reserved	1					
Altitude Mode ¹	1		00			0
Altitude Source	1		00			0
Altitude	4		00000000			0
Degraded Mode ²	1		01			1
Degraded Timeout	2		001E			30
Dead-reckoning Timeout	2		000F			15
Reserved	2					
Track Smoothing Mode ³	1		00			0
Reserved	1					
Reserved	2					
Reserved	2					
Reserved	2					
DGPS Selection ⁴	1		00			0
DGPS Timeout	2					
Elevation Nav. Mask	2					
Reserved	2					
Reserved	1					
Reserved	2					
Reserved	1					
Reserved	2					
Static Nav.Mode ⁵	1					
Reserved	2					
Position X	8					
Position Y	8					
Position Z	8					
Position Init. Source 6	1		02			2
GPS Time	8					

GPS Week	2	0434		1076
Time Init. Source ⁷	1	02		2
Drift	8			
Drift Init. Source 8	1	02		2

Payload Length: 84 bytes

- 1. 0 = Use last know altitude 1 = Use user input altitude 2 = Use dynamic input from external source
- 2. 0 = Use direction hold and then time hold 1 = Use time hold and then direction hold 2 = Only use direction hold 3 = Only use time hold 4 = Degraded mode is disabled
- 3.0 = True 1 = False
- 4. 0 = Use DGPS if available 1 = Only navigate if DGPS corrections are available 2 = Never use DGPS corrections
- 5.0 = True 1 = False
- 6.0 = ROM position 1 = User position 2 = SRAM position 3 = Network assisted position
- 7. 0 = ROM time 1 = User time 2 = SRAM time 3 = RTC time 4 = Network assisted time
- 8. 0 = ROM clock 1 = User clock 2 = SRAM clock 3 = Calibration clock 4 = Network assisted clock

Development Data – Message I.D. 255

Output Rate: Receiver generated

Example:

A0A2****—Start Sequence and Payload Length

FF************--Payload

****B0B3—Message Checksum and End Sequence

Table 4-59 Development Data

		Binary (Hex)			ASCII (Decimal)
Name	Bytes	Scale	Example	Units	Scale	Example
Message ID	1		FF			255

Payload Length: Variable

Note – MID 255 is output when SiRF binary is selected and development data is enabled. The data output using MID 255 is essential for SiRF assisted troubleshooting support.

Additional Information

TricklePower Operation in DGPS Mode

When in TricklePower mode, serial port DGPS corrections are supported. The CPU goes into sleep mode but will wake up in response to any interrupt. This includes UART's. Messages received during the TricklePower 'off' period are buffered and processed when the receiver awakens for the next TricklePower cycle.

GPS Week Reporting

Since Aug, 22, 1999, the GPS week roll from 1023 weeks to 0 weeks is in accordance with the ICD-GPS-200 specifications. To maintain roll over compliance, SiRF reports the ICD GPS week between 0 and 1023. If the user needs to have access to the Extended GPS week (ICD GPS week + 1024) this information is available through the Clock Status Message (007) under the Poll menu.

NMEA Protocol in TricklePower Mode

The NMEA standard is generally used in continuous update mode at some predefined rate. This mode is perfectly compatible with all SiRF TricklePower and Push-to-Fix modes of operations. There is *no* mechanism in NMEA that indicates to a host application when the receiver is on or in standby mode. If the receiver is in standby mode (chip set OFF, CPU in standby), then no serial communication is possible for output of NMEA data or receiving SiRF proprietary NMEA input commands. To establish reliable communication, the user must repower the receiver and send commands while the unit is in full-power mode (during start-up) and prior to reverting to TricklePower operation. Alternatively, the host application could send commands (i.e., poll for position) repeatedly until the request has been completed.

In Trickle-Power mode, the user is required to select an update rate (seconds between data output) and On Time (milli-seconds the chipset is on). When the user changes to NMEA mode, the option to set the output rate for each of the selected NMEA messages is also required. These values are multiplied by the TricklePower update rate value as shown in Table 4-58.

Table 4- 60 NMEA Data Rates Under Trickle Power Operation

Power Mode	Continuous	Trickle Power	Trickle Power	Trickle Power
Update Rate	1 every second	1 every second	1 every 5 seconds	1 every 8 seconds
On Time	1000	2000	4000	6000
NMEA Update Rate	1 every second	1 every 5 seconds	1 every 2 seconds	1 every 5 seconds
Message Output Rate	1 every second	1 every 5 seconds	1 every 10 seconds	1 every 40 seconds

Note – The On Time of the chip set has no effect on the output data rates.

Chapter 5 NMEA Input/Output Messages

TF30 may also o utp ut data in NM EA-0183 format as defined by the National Marine Electronics Asso ciation (NMEA), St and ard For Interfacing Marine Electronic Devices, Version 2. 20, J anuary 1, 1997. Refer to Chapter 4 for detailed instructions.

NMEA Output Messages

TF30 outputs the following messa ges as shown in Table 5 -1:

Table 5-1 NMEA0183 Output Messages

NMEA Record	Description
GGA	Global positioning system fixed data
GLL	Geographic position - latitude/longitude
GSA	GNSS DOP and active satellites
GSV	GNSS satellites in view
RMC	Recommended minimum specific GNSS data
VTG	Course over ground and ground speed

GGA — Global Positioning System Fixed Data

Table 5-2 contains the values for the following example: \$GPGGA 161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,,,,0000*18

Tabl e 5-2 GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 5-3
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude ¹	9.0	meters	

Units	M	meters	
Geoid Separation ¹		meters	
Units	M	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr> <lf></lf></cr>			End of message termination

^{1.} Values are WGS84 ellipsoid heights.

Table 5-3 Position Fix Indicator

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

GLL—Geographic Position - Latitude/Longitude

Table 5-4 contains the values for the following example: \$GPGLL \(\) 3723.2475,N,12158.3416,W,161229.487,A*2C

Tabl e 5-4 GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.sss
Status	A		A=data valid or V=data not valid
Checksum	*2C		
<cr> <lf></lf></cr>			End of message termination

GSA—GNSS DOP and Active Satellites

Table 5-5 contains the values for the following example: \$GPGSA,A,3,07,02,26,27,09,04,15, , , , , 1.8,1.0,1.5*33

Tabl e 5-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table 5-6
Mode 2	3		See Table 5-7
Satellite Used ¹	07		Sv on Channel 1
Satellite Used ¹	02		Sv on Channel 2
••••			
Satellite Used ¹			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr> <lf></lf></cr>			End of message termination

^{1.} Satellite used in solution.

Tabl e 5- 6 Mode 1

Value	Description
M	Manual—forced to operate in 2D or 3D mode
A	2Dautomatic—allowed to automatically switch 2D/3D

Tabl e 5-7 Mode 2

Value	Description
1	Fix Not Available
2	2D
3	3D

GSV—GNSS Satellites in View

Table 5-8 contains the values for the following example: \$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Tabl e 5-8 GSV Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of	2		Range 1 t o 3
Messages 1			
Message	1		Range 1 t o 3
Number ¹			
Satellites in	07		

View			
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
••••			
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination

^{1.}Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC—Recommended Minimum Specific GNSS Data

Table 5-9 contains the values for the following example: \$GPRMC \, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,*10

Tabl e 5- 9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	161229.487		hhmmss.sss
Status	A		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over	0.13	knots	
Ground			
Course Over	309.62	degrees	True
Ground			
Date	120598		Ddmmyy
Magnetic		degrees	E=east or W=west
Variation ¹			
Checksum *10			
<cr> <lf></lf></cr>			End of message termination

^{1.}All "course over ground" data are geodetic WGS84 directions.

VTG—Course Over Ground and Ground Speed

Table 5-10 contains the values for the following example: \$GPVTG 1309.62,T, ,M,0.13,N,0.2,K*6E

Tabl e 5- 10 VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	T		True
Course		degrees	Measured heading
Reference	M		Magnetic ¹
Speed	0.13	knots	Measured horizontal speed
Units	N	knots	
Speed	0.2	km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Checksum	*6E		
<cr> <lf></lf></cr>			End of message termination

^{1.} All "course over ground" data are geodetic WGS84 directions.

SiRF Proprietary NMEA Input Messages

NMEA input messages are provided to allow you to control the Evaluation Unit while in NMEA protocol mode. The Evaluation Unit may be put into NMEA mode by sending the SiRF Binary protocol message "Switch To NMEA Protocol - Message I.D. 129" using a user program or using Sirfdemo.exe and selecting Switch to NMEA Protocol from the Action menu. If the receiver is in SiRF Binary mode, all NMEA input messages are ignored. Once the receiver is put into NMEA mode, the following messages may be used to command the module.

Transport Message

Start Sequence	Payload	Checksum	End Sequence
PSRF < MID > 1	Data ²	*CKSUM ³	$\langle CR \rangle \langle LF \rangle^4$

^{1.}Message Identifier consisting of three numeric characters. Input messages begin at MID 100.

^{2.}Message specific data. Refer to a specific message section for <data>...<data> definition.

- 3.CKSUM is a two-hex character checksum as defined in the NMEA specification. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D 0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note – All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

SiRF NMEA Input Messages

Message	MID 1	Description
Set Serial Port	100	Set PORT A parameters and protocol
Navigation Initialization	101	Parameters required for start using X/Y/Z
Set DGPS Port	102	Set PORT B parameters for DGPS input
Query/Rate Control	103	Query standard NMEA message and/or set output
		rate
LLA Navigation	104	Parameters required for start using Lat/Lon/Alt ²
Initialization		
Development Data	105	Development Data messages On/Off
On/Off		

- 1. Message Identification (MID).
- 2. Input coordinates must be WGS84.

SetSerialPort

This command message is used to set the protocol (SiRF Binary or NMEA) and/or the communication parameters (baud, data bits, stop bits, parity). Generally, this command is used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and then the Evaluation Unit restarts using the saved parameters.

Table 5-11 contains the input values for the following example:

Switch to SiRF Binary protocol at 9600,8,N,1 \$P\$RF100,0,9600,8,1,0*0C

Table 5-11 Set Serial Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF Binary, 1=NMEA

Baud	9600	4800, 9600, 19200, 38400
DataBits	8	8,7 1
StopBits	1	0,1
Parity	0	0=None, 1=Odd, 2=Even
Checksum	*0C	
<cr> <lf></lf></cr>		End of message termination

^{1.} Only valid for 8 data bits, 1stop bit, and no parity.

NaviagtionInitialization

This command is used to initialize the module for a warm start, by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the TF30 to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable TF30 to acquire signals quickly.

Table 5-12 contains the input values for the following example:

Start using known position and time.

\$P\$RF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F

Table 5-12 Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkOffset	96000	Hz	Clock Offset of TF 30 ¹
TimeOfWeek	497260	seconds	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5-13
Checksum	*7F		
<cr> <lf></lf></cr>			End of message termination

^{1.} Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Tabl e 5- 13 Reset Configuration

Hex	Description
0x01	Data Valid—Warm/Hot Starts=1
0x02	Clear Ephemeris—Warm Start=1
0x04	Clear Memory—Cold Start=1

SetDGPSPort

This command is used to control Serial Port B which is an input-only serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. The default communication parameters for PORT B are 9600 baud, 8 data bits, stop bit, and no parity. If a DGPS receiver is used which has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and then the receiver restarts using the saved parameters.

Table 5-14 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0*12

Tabl e 5- 14 Set DGPS Port Data Format

Name	Example	Units	Description
Message ID	\$PSRF102		PSRF102 protocol header
Baud	9600		4800, 9600, 19200, 38400
DataBits	8		8,7
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*12		
<cr> <lf></lf></cr>			End of message termination

Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 5-15 contains the input values for the following examples:

- 1. Query the GGA message with checksum enabled \$PSRF103,00,01,00,01*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$P\$RF103,05,00,01,01*20

3. Disable VTG message \$P\$RF103,05,00,00,01*21

Tabl e 5- 15 Query/Rate Control Data Format (See example 1.)

Name	Example	Units	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	00		See Table 5-16
Mode	01		0=SetRate, 1=Query
Rate	00	seconds	Output—off=0, max=255
CksumEnabe	01		0=Disable Checksum, 1=Enable Checksum
Checksum	*25		
<cr> <lf></lf></cr>			End of message termination

Table 5- 16 Messages

Value	Description
0	GGA
1	GLL
2	GSA
3	GSV
4	RMC
5	VTG

Note – In Trickle Power mode, update rate is specified by the user. When you witch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the Trickle Power Update rate AND the NMEA update rate (i.e. Trickle Power update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds, $(2 \times 5 = 10)$).

LLANaviagtionInitialization

This command is used to initialize the module for a warm start, by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 5-17 contains the input values for the following example:

Start using known position and time.

\$P\$RF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37

Table 5-17LLA Navigation Initialization Data Format

Name	Example	Units	Description
Message ID	\$PSRF104		PSRF104 protocol header
Lat	37.3875111	degrees	Latitude position (Range 90 to -90)
Lon	-121.97232	degrees	Longitude position (Range 180 to -180)
Alt	0	meters	Altitude position
ClkOffset	95000	Hz	Clock Offset of the Evaluation Unit ¹
TimeOfWeek	237759	seconds	GPS Time Of Week
WeekNo	922		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5-18
Checksum	*37		
<cr> <lf></lf></cr>			End of message termination

^{1.}Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Tabl e 5- 18 Reset Configuration

Hex	Description
0x01	Data Valid—Warm/Hot Starts=1
0x02	Clear Ephemeris—Warm Start=1
0x04	Clear Memory—Cold Start=1

Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 5-19 contains the input values for the following examples:

- 1. Debug On \$PSRF105,1*3E
- 2. Debug Off \$PSRF105,0*3F

Tabl e 5- 19 Development Data On/Off Data Format

Name	Example	Units	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off, 1=On
Checksum	*3E		
<cr> <lf></lf></cr>			End of message termination