Travaux dirigés n°3

Xavier JUVIGNY

12 février 2018

Table des matières

1	Produit scalaire	1
2	Produit matrice—matrice	1
	Tri bitonique 3.1 Tri d'une suite bitonique	
4	Ensemble de Bhudda	3

1 Produit scalaire

- À partir du fichier dotproduct.cpp, paralléliser le calcul du produit scalaire à l'aide de directives OPENMP;
- Calculer l'accélération du produit scalaire en faisant varier le nombre de threads à l'aide de la variable d'environnement OMP_NUM_THREADS. Comment expliquez-vous le résultat que vous obtenez pour l'accélération ?
- Écrire une deuxième version du produit scalaire mais cette fois ci paralléliser à l'aide des threads C++2011;
- Comparer les temps de calcul pour les deux approches;

2 Produit matrice-matrice

Soient A et B deux matrices définies à l'aide de deux couples de vecteurs $\{u_A, v_A\}$ et $\{u_B, v_B\}$:

$$\begin{cases} A = u_A.v_A^T \text{ soit } A_{ij} = u_{A_i}.v_{A_j} \\ B = u_B.v_B^T \text{ soit } B_{ij} = u_{B_i}.v_{B_j} \end{cases}$$

On calcule le produit matrice–vecteur C=A.B à l'aide d'un produit matrice–matrice plein (complexité de $2.n^3$ opérations arithmétiques) et on valide le résultat obtenu à l'aide de l'expression sous forme de produit tensoriel de A et B:

$$C = A.B = (u_A.v_A^T) \cdot (u_B.v_B^T) = u_A (v_A^T.u_B) v_B^T$$

= $u_A (v_A|u_B) v_B^T = (v_A|u_B) u_A.v_B^T$

Soit

$$C_{ij} = (v_A|u_B) u_{A_i}.v_{B_j}$$

ce qui nécéssite en tout $2.n + 2.n^2$ opérations arithmétiques (dont 2.n opérations pour le produit scalaire).

On se propose par étape de paralléliser le produit matrice—matrice fourni dans le fichier ${\tt ProdMatMat.cpp}$

1. Mesurer le temps de calcul du produit matrice-matrice donné;

- 2. **Première optimisation cache :** Permutez les boucles en *i*, *j* et *k* jusqu'à obtenir un temps optimum pour le calcul du produit matrice—matrice (et après vous être persuader que cela ne changera rien au calcul). Expliquez pourquoi la permutation des boucles obtenues est bien la meilleurs façon d'ordonner les boucles.
- 3. Première parallélisation : À l'aide d'OpenMP, paralléliser le produit matrice-matrice. Mesurez le temps obtenu à variant le nombre de threads à l'aide de la variable d'environnement OMP NUM THREADS. Calculez l'accélération et le résultat obtenu.
- 4. Deuxième optimisation de la mémoire cache : Pour pouvoir exploiter au mieux la mémoire cache, on se propose de transformer notre produit matrice—matrice "scalaire" en produit matrice—matrice par bloc (on se servira pour le produit "bloc—bloc" de la meilleurs version séquentielle du produit matrice—matrice obtenu précédemment).

L'idée est de décomposer les matrices A, B et C en sous-blocs matriciels :

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1N} \\ A_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ A_{N1} & & & A_{NN} \end{pmatrix}, B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1N} \\ B_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ B_{N1} & & & B_{NN} \end{pmatrix}, C = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1N} \\ C_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ C_{N1} & & & C_{NN} \end{pmatrix}$$

où A_{IJ}, B_{IJ} et C_{IJ} sont des sous-blocs possédant une taille fixée (par le programmeur).

Le produit matrice-matrice se fait alors par bloc. Pour calculer le bloc C_{IJ} , on calcul

$$C_{IJ} = \sum_{K=1}^{N} A_{IK}.B_{KJ}$$

Mettre en œuvre ce produit matrice—matrice en séquentiel puis faire varier la taille des blocs jusqu'à obtenir un optimum (aux alentours de 128). Comparer le temps pris par rapport au produit matrice—matrice "scalaire". Comment interprétez vous le résultat obtenu ?

5. Parallélisation du produit matrice—matrice par bloc : À l'aide d'OpenMP, parallélisez le produit matrice—matrice par bloc puis mesurez l'accélération parallèle en fonction du nombre de threads. Comparez avec la version scalaire paralléliser. Comment expliquez vous ce résultat ?

3 Tri bitonique

Le tri bitonique est un des tris les plus performants dans un contexte parallèle. Il se base sur une suite dite bitonique.

Définition 1 Une suite $a_0, a_1, \ldots, a_{n-1}$ est dite **bitonique** si il existe un élement $a_i, 0 < i < n-1$ tel qu'une des conditions suivantes est satisfaite :

- $a_0 \le a_1 \le \ldots \le a_i \ge a_{i+1} \ge \ldots \ge a_{n-1}$ ou
- $a_0 \ge a_1 \ge ... \ge a_i \le a_{i+1} \le ... \le a_{n-1}$ ou
- un décalage d'indice devrait satisfaire une des deux relations ci-dessus.

Fig. 1: Exemples de suites bitoniques

L'algorithme de tri se base sur le théorème de division bitonique :

Théorème 1 Soit une suite bitonique $a_0, a_1, \ldots, a_{2n-1}$. On définit les sous-suites :

$$x_i = \min(a_i, a_{i+n}) \ pour \ i = 0, \dots, n-1$$

 $y_i = \max(a_i, a_{i+n}) \ pour \ i = 0, \dots, n-1$

Alors les deux suites $x_0, x_1, \ldots, x_{n-1}$ et $y_0, y_1, \ldots, y_{n-1}$ sont des suites bitoniques et chaque éléments de la suite x_i sont plus petits que les éléments de la suite y_i .

Fig. 2 : Exemple de split bitonique

3.1 Tri d'une suite bitonique

Soit une suite bitonique de n éléments. Si on applique le théorème récursivement :

Après $\log(n-1)$ pas, chaque suite bitonique possédera seulement deux éléments qui pourront être triés trivialement.

L'algorithme complet de tri consistera donc à :

- 1. Trier les $\frac{n}{2}$ premiers éléments dans l'ordre croissant et les derniers $\frac{n}{2}$ éléments dans l'ordre décroissant
- 2. Trier la suite bitonique résultante en $\log n$ étapes.

Comment trier $\frac{n}{2}$ éléments ? \Rightarrow Récursivement

La complexité de l'algorithme de tri est de :

- $\log(n)$ étapes;
- Chaque pas i demande i sous-pas

Donc le nombre de pas est donc :

Nombre de pas =
$$\sum_{i=1}^{log(n)} i = \frac{1 + \log(n)}{2} log(n)$$

3.2 Travail à faire

Utiliser la version du tri fourni en séquentiel pour trier un tableau d'entier puis un tableau de vecteurs selon leurs normes L2.

Paralléliser à l'aide des threads de C++ 2011 l'algorithme de tri puis calculer l'accélération obtenue pour le tri sur les entiers puis pour le tri sur les vecteurs.

Comment interprétez-vous la différence d'accélération entre le tri sur les entiers et le tri sur les vecteurs

4 Ensemble de Bhudda

L'ensemble de bhudda est un ensemble dérivé de l'ensemble de Mandelbrot. Au lieu de dessiner des pixels en fonction du nombre d'itérations nécessaires à la détection éventuelle de divergence de la suite, on augmente l'intensité de chaque pixel par lesquels une suite divergente est passée (on ne fait rien pour les suites convergentes). À l'aide d'OpenMP, paralléliser le code Bhudda donné dans le fichier bhudda.cpp