

Master GL/SI/IM

Année Académique : 2024 - 2025

Travaux Dirigés (3): Mathématiques pour l'Informatique

Periode: Novembre 2024

Exercice I.

1. On pose

$$A = \{0, 1, 2, 3, 4\}$$

$$B = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$\mathscr{G} = \{(0, 0); (1, 2); (2, 4); (3, 6); (4, 8)\}$$

$$\mathscr{P} = \{(1, 0); (2, 1); (3, 2); (4, 3)\}$$

$$\Gamma = \{(1, 0); (1, 20)\}.$$

- i) Justifier que $\mathcal G$ est une relation de A vers B.
 - Représenter son diagramme sagittal.
 - Existe-il une autre représentation de $\mathcal G$?
 - Définir $\mathcal G$ en compréhension, si possible. C'est-à-dire, donner à quelle condition un élément quelconque $x\in A$ est en relation avec un élément quelconque $y\in B$.
- ii) Justifier que ${\mathscr P}$ est une relation de A vers B.
 - Définir ${\mathcal P}$ en compréhension, si possible.
- iii) Γ est-elle une relation de A vers B?

2. On pose

$$E = \{1, 2, 3, 4, 5\}$$

$$\Delta \ = \ \Big\{(1,\,1);\,(2,\,2);\,(3,\,3);\,(4,\,4);\,(5,\,5);\,\Big\} \qquad {\rm et} \quad \mathscr{D} \ = \ \Big\{(1,\,6);\,(2,\,6);\,(3,\,6);\,(6,\,6)\Big\}.$$

- i) Justifier que Δ est une relation dans E.
 - Représenter son diagramme de Venn.
 - Définir Δ en compréhension, si possible.

- ii) Justifier que \mathcal{D} est une relation dans E.
 - Représenter son diagramme de Venn.
 - Définir \mathcal{D} en compréhension, si possible.

Exercice II.

Considérons l'ensemble suivant:

 $E = \{\text{nigeria, botswana, brésil, grande - bretagne, tchad, france, ghana, senegal, usa, australie}$ et puis définissons une relation $\mathcal C$ dans E par la règle "... est dans le même continent que ...". Par exemples, ghana $\mathcal C$ tchad.

- 1. Vérifier que \mathcal{C} est une relation déquivalence dans E.
- 2. Donner l'ensemble quotient de E; c'est-à-dire l'ensemble de toutes les classes d'équivalence of E.

Exercice III.

Considérons l'ensemble suivant:

$$C_1 = \{\text{cameroun, tchad, ghana, nigeria, senegal}\}$$

and

$$C_2 = \{ \text{Benin, cameroun, tchad, ghana, nigeria, senegal} \}.$$

Definir une relation \mathcal{R}_1 dans C_1 par la relation '... a même frontière que ou est égal à ..." et une relation \mathcal{R}_2 dans C_2 par la même règle. Par exemple; nigeria \mathcal{R}_1 nigeria,

- 1. Vérifier que \mathcal{R}_1 est une relation d'équivalence dans C_1 .
- 2. Donner l'ensemble quotient de C_1 ; c'est-à-dire l'ensemble de toutes les classes d'équivalence of E.
- 3. \mathcal{R}_2 est-elle une relation d'équivalence.

Exercice IV.

Considérons \mathbb{R} muni de la relation d'ordre \leq .

1. On définit dans \mathbb{R}^2 la relation \leq telle que pour tous éléments $x=(x_1, x_2)$ et $y=(y_1, y_2)$ de \mathbb{R}^2 ,

$$x \le y \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{l} x_1 & \leqslant & y_1 \\ x_2 & \leqslant & y_2 \end{array} \right. .$$

Montrer que ≤ est une relation d'ordre partiel.

2. (Ordre lexicographique) On définit dans \mathbb{R}^2 la relation \leq telle que pour tous éléments $x=(x_1, x_2)$ et $y=(y_1, y_2)$ de \mathbb{R}^2 ,

$$x \leq y \qquad \Longleftrightarrow \qquad x_1 < y_1 \text{ ou bien } \left\{ \begin{array}{ll} x_1 &=& y_1 \\ x_2 &\leqslant& y_2 \end{array} \right. .$$

Montrer que \leq est une relation d'ordre total.

3. Comparer dans $(\mathbb{R}^2 \leq)$, les couples suivants :

$$(1, 0); (0, 1); (1, 1) \text{ et } (2, 0).$$

Exercice V.

1. On considére dans l'ensemble $A = \{-3, -2, -1, 1, 2\}$, la relation \mathcal{S} définie par

$$\forall (x,y) \in A^2, \qquad x \mathcal{S} y \quad \Longleftrightarrow \quad xy \geqslant 0.$$

- i) Dessiner le diagramme de S.
- ii) S est-elle une relation d'équivalence? Si oui, préciser la classe de 1, celle de -1 et puis celle de -3.
- iii) Si on remplace l'ensemble A par $A' = A \cup \{0\}$ et l'on considère sur A' la même règle S, a-t-on (toujours) une relation d'équivalence?
- 2. On considére dans l'ensemble $B = \{1, 2, 4, 6\}$, la relation \mathcal{D} définie par

$$\forall (x,y) \in B^2$$
, $x \mathcal{D} y \iff x \text{ est un diviseur de } y$.

- i) Dessiner le diagramme de \mathcal{D} .
- ii) Vérifier que $\mathcal D$ est une relation d'ordre et représenter son diagramme de Hasse. Cet ordre est-il total ?
 - (B, \mathcal{D}) possède t-il un minimum? des éléments maximaux?
- iii) Si on remplace l'ensemble B par $B' = B \cup \{0\}$ et l'on considère sur B' la même règle \mathcal{D} , a-t-on (toujours) une relation d'ordre? Si oui ya-t-il un maximum (B', \mathcal{D})

Exercice VI.

- 1. Lesquelles des relations ci-dessous sont des fonctions?
- 2. Parmi ces fonctions, lesquelles sont des applications?
- i) Pour tout $(x, y) \in \mathbb{R} \times \mathbb{R}$, $x \mathcal{R} y \iff x^2 + y^2 = 1$.
- ii) Pour tout $(x,y) \in \mathbb{R} \times \mathbb{R}^+$, $x \mathcal{R} y \iff x^2 y^2 + 1 = 0$.
- iii) Pour tout $(x, y) \in \mathbb{R} \times \mathbb{R}$, $x \mathcal{R} y \iff |x| y = 0$.
- iv) Pour tout $(x, y) \in \mathbb{R} \times \mathbb{R}$, $x \mathcal{R} y \iff x + y = 7$.
- v) Pour tout $(x, y) \in \mathbb{Q} \times \mathbb{Z}$, $x \mathcal{R} y \iff \exists q \in \mathbb{N} \text{ tel que } qx = y$.

Exercise VII.

1. Lesquelles des relations suivantes sont des relations d'équivalence? On précisera si possible les classes d'équivalence.

i)
$$\forall x, y \in \mathbb{R}^*, \qquad x \, \mathcal{S} \, y \quad \Longleftrightarrow \quad xy > 0.$$

ii)
$$\forall\,x,y\in\mathbb{R},\qquad x\,\mathcal{S}\,y\quad\Longleftrightarrow\quad xy\geqslant0.$$
 iii)

iii)
$$\forall \, x,y \in \mathbb{R}, \qquad x \, \mathcal{M} \, y \quad \Longleftrightarrow \quad x-y \in \mathbb{Z}.$$

iv)
$$\forall x, y \in \mathbb{R}, \qquad x \, \mathcal{E} \, y \iff x = y.$$

v)
$$\forall x, y \in \mathbb{R}, \qquad x \mathcal{R} y \iff x + y = 0.$$

2. Lesquelles des relations suivantes sont des relations d'ordre? On précisera si possible si l'ordre est total.

i)
$$\forall x, y \in \mathbb{R}, \qquad x \, \mathcal{E} \, y \quad \Longleftrightarrow \quad x = y.$$

ii)
$$\forall \, x,y \in \mathbb{R}, \qquad x \, \mathcal{I} \, y \quad \Longleftrightarrow \quad x \leqslant y.$$

iii)
$$\forall x, y \in \mathbb{R}, \qquad x \mathcal{R} y \quad \Longleftrightarrow \quad x < y.$$

iv)
$$\forall \, x,y \in \mathbb{R}, \qquad x \, \mathcal{R} \, y \quad \Longleftrightarrow \quad x^2 \leqslant y^2.$$

v)
$$\forall x, y \in \mathbb{R}, \qquad x \mathcal{R} y \quad \Longleftrightarrow \quad |x| \leq |y|.$$

Exercice VIII.

Soit Sgn la fonction définie de \mathbb{R} vers $\{-1, 0, 1\}$ par

$$\operatorname{Sgn}(x) = \begin{cases} -1 & \text{si } x < 0, \\ 0 & \text{si } x = 0, \\ 1 & \text{si } x > 0. \end{cases}$$

- 1. Trouver $\operatorname{Sgn}(10)$, $\operatorname{Sgn}(-100)$ et $\operatorname{Sgn}(0)$.
- 2. Justifier que Sgn est une application.
- 3. Montrer que

$$\operatorname{Sgn}(x) \cdot x = |x| \quad \forall x \in \mathbb{R}.$$

Remarque. L'application Sgn est définie de telle sorte que $\operatorname{Sgn}(x) \cdot x = |x|$ pour tout nombre réel x. Dans certains contextes, n'importe quel élément de [-1, 1] peut être choisi comme $\operatorname{Sgn}(0)$.

Exercice IX.

Soit \mathcal{F} la relation définie de \mathbb{N}^* vers \mathbb{N}^* par:

Pour all
$$x, y \in \mathbb{N}$$
, $x \mathcal{F} y \iff y^2 - 4x^2 + 4x - 1 = 0$.

1. Trouver $m, n, p \in \mathbb{N}^*$ tel que

$$1 \mathcal{F} m$$
, $4 \mathcal{F} n$ et $p \mathcal{F} 11$.

2. Montrer que \mathcal{F} est une application.

Exercice X. Soit A un sous-ensemble d'un ensemble universerl E. La fonction caractéristique 1_A ou χ_A de A est la fonction définie de E vers $\{0, 1\}$ par

$$\chi_{\scriptscriptstyle A}(x) \ = \ \left\{ \begin{array}{ll} 1 & \text{if} \quad x \in A \,, \\ \\ 0 & \text{if} \quad x \notin A \,. \end{array} \right.$$

- 1. Posons $E = \{-2, 0, 2, 3\}$ and $A = \{0, 2\}$.
 - i) Trouver $\chi_A(-2)$, $\chi_A(0)$, $\chi_A(2)$ et $\chi_A(3)$.
 - ii) Dessiner le diagramme de $\chi_{\scriptscriptstyle A}.$
 - iii) Comparer $\chi_A^{-1}(0)$, l'image réciproque de 0 par χ_A , et le complémentaire de A dans E.
- 2. Quelle est la fonction caractéristique de \emptyset ?
- 3. Quelle est la fonction caractéristique de l'ensemble plein E?

Exercice XI. (La relation de congruence modulo 2).

Considérons la relation \mathcal{R} définie dans \mathbb{Z} comme suit:

Pour tout
$$(m, n) \in \mathbb{Z} \times \mathbb{Z}$$
, $m \mathcal{R} n \iff 2 \text{ divise } m - n$.

- 1. L'élément 4 est-il en relation avec 0 par \mathcal{R} ? (i.e., Avons-nous $4\mathcal{R}0$?). Avons-nous $2\mathcal{R}6$? $3\mathcal{R}(-3)$? $5\mathcal{R}2$? $2017\mathcal{R}1$?
- 2. Donner six entiers qui sont en relation avec 1 par \mathcal{R} .
- 3. Montrer que \mathcal{R} est une relation d'équivalence. C'est la relation de congruence modulo 2.

Nous écrivons alors:

$$4 \equiv 0 \mod 2$$
 qui se lit "4 est congru à 0 modulo 2".

De même

$$-1 \equiv 1 \mod 2$$
, $-2 \equiv 0 \mod 2$, $2013 \equiv 1 \mod 2$, etc...

Maintenant, trouver les classes d'équivalence $\dot{0}$ et $\dot{1}$ de 0 et 1 respectivement.

Montrer que

$$\mathbb{Z}_2 = \{\dot{0}, \dot{1}\} = \{[0], [1]\}$$

sur lequel est bien définie l'addition modulaire et la multiplication modulaires comme suit:

$$[m] + [n] = [m+n]$$
 et $[m] \times [n] = [m \times n]$.

Remplissez alors les tabeaux suivants d'operations dans \mathbb{Z}_2 .

+	Ó	i	
Ò			
i			

X	Ó	i
Ó		
i		

Exercice XII. (La relation de congruence modulo n).

Soit $n \ge 2$ un entier naturel.

On dit qu'un entier relatif a est congru à b modulo n, si n divise a - b.

1. Remplissez convenablement les pointillés suivants par l'un des nombres 0, 1 and 2.

$$9 \equiv \dots \mod 3$$
, $-1 \equiv \dots \mod 3$, $10 \equiv \dots \mod 3$.

Donner en description l'ensemble quotient \mathbb{Z}_3 .

2. Remplissez convenablement les pointillés suivants par l'un des nombres $\ 0, \ 1, \ 2$ and $\ 3.$

$$2013 \equiv \dots \mod 4, \qquad -4 \equiv \dots \mod 4, \qquad 10 \equiv \dots \mod 4, \qquad 19 \equiv \dots \mod 4.$$

Décrivez \mathbb{Z}_4 .

3. Remplissez alors les tabeaux suivants d'operations dans \mathbb{Z}_3 .

+	Ó	i	$\dot{2}$
Ò			
İ			
$\dot{2}$			

×	Ó	i	$\dot{2}$
Ò			
i			
$\dot{2}$			

4. Remplissez alors les tabeaux suivants d'operations dans \mathbb{Z}_4 .

+	Ò	i	$\dot{2}$	3
Ò				
i				
$\dot{2}$				
3				

×	Ó	i	$\dot{2}$	3
Ò				
i				
$\dot{2}$				
3				

Page 6 sur 7

Résumé. Congruence / Equivalence modulaire.

Etant dnné un entier naturel $n \ge 2$, on dit par définition qu' "un entier relatif a est congru à un entier relatif b modulo n" et on écrit $a \equiv b \pmod{n}$, quand n divise a - b (i.e., a - b est un multiple de n ou encore $a - b \in n\mathbb{Z}$).

En d'autres termes:

$$\forall (a, b) \in \mathbb{Z} \times \mathbb{Z}, \ a \equiv b \pmod{n} \iff n|_{(a-b)}.$$

Le reste de a modulo n est le reste de la division eucldienne de a par n et est noté a mod n.

1. Soient $a, b \in \mathbb{Z}$ et $n \ge 2$ un entier naturel.

Alors les assertions suivantes sont équivalentes.

- i. $n|_{(a-b)}$.
- ii. $a \equiv b \pmod{n}$
- iii. a = b + kn pour un certain entier entier relatif k.
- iv. a et b ont le même reste (positif ou nul) dans leurs divisions euclidiennes par n.
- $\mathbf{v.} \quad (a \bmod n) = (b \bmod n).$
- 2. On montre que la congruence modulo $n \in \mathbb{N}$ est une relation d'équivalence sur \mathbb{Z} .
- 3. Etant donné $n \in \mathbb{N}\setminus\{1\}$, l'ensemble des classes d'équivalence modulo n est noté \mathbb{Z}_n ou encore $\mathbb{Z}/_{n\mathbb{Z}}$.

Décrire en extension \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_5 , and more generally \mathbb{Z}_n and say what allows Modular Arithmetics.

Exercice XIII.

Le 05 décembre 2023 est un Mardi.

Quel sera le jour de la semaine dans 100 jours?

Dans 1.000 jours?