Characterizing Collision and Second-Preimage Resistance in Linicrypt

Ian McQuoid Trevor Swope Mike Rosulek

An Introduction

What is Linicrypt?

<u>Linicrypt</u> programs are a class of algorithms

Introduced by Carmer and Rosulek, Crypto 2016

Operations:

- **Sampling** uniformly from a field.
- Querying a random oracle over the field.
- **Performing a fixed linear combination** on field elements.

Sometimes to be explicit we write: \mathcal{P}^H

Useful for algebraically analyzing those algorithms.

$$\mathcal{P}^{H}(v_{1},v_{2},v_{3}): \ v_{4}:=H(v_{1}) \ v_{5}:=H(v_{3}) \ v_{6}:=v_{4}+v_{5}+v_{2} \ v_{7}:=H(v_{6}) \ v_{8}:=v_{7}+v_{1} \ return(v_{8},v_{5})$$

Take field elements as input	$\mathcal{P}^H(v_1,v_2,v_3)$:
	$v_4 := H(1; v_1)$
	$v_5 := H(2; v_3)$
	$v_6 := v_4 + v_5 + v_2$
	$v_7 := H(3; v_6)$
	$v_8 := v_7 + v_1$
	$return(v_8, v_5)$

Take field elements as input

$$\mathcal{P}^H(v_1, v_2, v_3):$$
 $v_4 := H(1; v_1)$

Query the random oracle
$$v_5 \coloneqq H(2;v_3)$$
 $v_6 \coloneqq v_4 + v_5 + v_2$ $v_7 \coloneqq H(3;v_6)$ $v_8 \coloneqq v_7 + v_1$ $return(v_8,v_5)$

 $\mathcal{P}^{H}(v_{1},v_{2},v_{3}):$ Take field elements as input $v_4 := H(1; v_1)$ $v_5 := H(2; v_3)$ Query the random oracle $v_6 := v_4 + v_5 + v_2$ Use a fixed linear combination $v_7 := H(3; v_6)$ $v_8 := v_7 + v_1$ $return(v_8, v_5)$

 $\mathcal{P}^{H}(v_{1},v_{2},v_{3}):$ Take field elements as input $v_4 := H(1; v_1)$ $v_5 := H(2; v_3)$ Query the random oracle $v_6 := v_4 + v_5 + v_2$ Use a fixed linear combination $v_7 := H(3; v_6)$ $v_8 := v_7 + v_1$ $return(v_8, v_5)$

Return any number of elements

Modeling Linicrypt Programs

Algorithmically

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}): \ v_{4} := H(v_{1}) \ v_{5} := H(v_{3}) \ v_{6} := v_{4} + v_{5} + v_{2} \ v_{7} := H(v_{6}) \ v_{8} := v_{7} + v_{1} \ return(v_{8}, v_{5})$$

Modeling Linicrypt Programs

Algorithmically

$$\mathcal{P}^H(v_1,v_2,v_3)$$
:

$$v_4 := H(v_1)$$

$$v_5 := H(v_3)$$

$$v_6 := v_4 + v_5 + v_2$$

$$v_7 := H(v_6)$$

$$v_8 := v_7 + v_1$$

$$return(v_8, v_5)$$

Graphically

Modeling Linicrypt Programs

Algorithmically

$$\mathcal{P}^H(v_1,v_2,v_3)$$
:

$$v_4 := H(v_1)$$

$$v_5 := H(v_3)$$

$$v_6 := v_4 + v_5 + v_2$$

$$v_7 := H(v_6)$$

$$a_1 := a_1 + a_2$$

$$v_8 := v_7 + v_1$$
$$return(v_8, v_5)$$

Algebraically

Informal Main Theorem

When is this class of linicrypt programs not resistant to collisions/second preimages?

Characterizable by algebraic properties!

Informal Main Theorem

When is this class of linicrypt programs not resistant to collisions/second preimages?

Characterizable by algebraic properties!

Corollary:
Second preimage resistance and collision resistance are the same (asymptotically)

Second Preimages in Linicrypt

$$(\boldsymbol{x} \neq \boldsymbol{x}') \wedge (\mathcal{P}^H(\boldsymbol{x}) = \mathcal{P}^H(\boldsymbol{x}'))$$

Second Preimages in Linicrypt

$$(\boldsymbol{x} \neq \boldsymbol{x}') \land (\mathcal{P}^H(\boldsymbol{x}) = \mathcal{P}^H(\boldsymbol{x}'))$$

1. The set of input base variables are different

Second Preimages in Linicrypt

$$(\boldsymbol{x} \neq \boldsymbol{x}') \wedge (\mathcal{P}^H(\boldsymbol{x}) = \mathcal{P}^H(\boldsymbol{x}'))$$

- 1. The set of input base variable are different
- 2. The outputs are the same

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $v_{1} \neq v_{1}$
 $v_{2} \neq v_{1}$

$$\mathcal{P}^{H}(v_{1},v_{2},v_{3}):$$
 $v_{4}:=H(v_{1})$
 $v_{5}:=H(v_{3})$
 $v_{6}:=v_{4}+v_{5}+v_{2}$
 $v_{7}:=H(v_{6})$
 $v_{8}:=v_{7}+v_{1}$
 $v_{1}'\neq v_{1}'$
 $v_{2}'v_{3}$
 $v_{1}'\neq v_{1}$

 $(\mathcal{P}^H(oldsymbol{x}) = \mathcal{P}^H(oldsymbol{x}'))$

$$\mathcal{P}^{H}(v_{1}, v_{2}, v_{3}):$$
 $v_{4} := H(v_{1})$
 $v_{5} := H(v_{3})$
 $v_{6} := v_{4} + v_{5} + v_{2}$
 $v_{7} := H(v_{6})$
 $v_{8} := v_{7} + v_{1}$
 $return(v_{8}, v_{5})$
 $v_{1} \neq v_{1}$
 $v_{2} \quad v_{3}$

Finding Collisions

1. Identify oracle queries that are the same between runs

$$v_3$$

2. Identify an oracle query that is different

$$\overline{w}$$

3. Solve backwards using linear algebra until all queries are defined

$$v_1' v_2'$$

Theorem Statement

For a linicrypt program with distinct nonces:

Lack of collision resistance iff there exists a collision structure (or degeneracy)

Existence of a collision structure **iff** no second preimage resistance

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix};$$

$$\boldsymbol{C} = \left\{ \begin{array}{c} \left([1 \ 0 \ 0 \ 0 \ 0 \ 0], [0 \ 0 \ 0 \ 1 \ 0 \ 0] \right), \\ \left[[0 \ 0 \ 1 \ 0 \ 0], [0 \ 0 \ 0 \ 0 \ 1] \right), \\ \left[[0 \ 1 \ 0 \ 1 \ 1 \ 0], [0 \ 0 \ 0 \ 0 \ 0 \ 1] \right) \end{array} \right\}$$

 $oldsymbol{M}$ holds the returned vectors from a program

$$oldsymbol{M} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \ \hline 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}; \ \mathcal{C} = \left\{ egin{array}{c} \left([1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{array}], [0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{array} \right), \left[0 \ 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix}, \left[0 \ 0 \ 0 \ 0 \ 0 \ 1 \end{array} \right), \left[0 \ 0 \ 0 \ 0 \ 0 \ 1 \end{bmatrix}
ight), \ \left[[0 \ 1 \ 0 \ 1 \ 1 \ 0], [0 \ 0 \ 0 \ 0 \ 0 \ 1] \right) \right\}$$

 $m{M}$ holds the returned vectors from a program $return(v_7+v_1,v_5)$

$$m{M} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}; \ \mathcal{C} = \left\{ egin{array}{c} \left([1 \ 0 \ 0 \ 0 \ 0 \ 0], [0 \ 0 \ 0 \ 1 \ 0] \right), \\ \left([0 \ 0 \ 1 \ 0 \ 0], [0 \ 0 \ 0 \ 0 \ 1] \right), \\ \left([0 \ 1 \ 0 \ 1 \ 1 \ 0], [0 \ 0 \ 0 \ 0 \ 0] \right), \end{array}
ight.$$

 ${\mathcal C}$ holds the oracle queries a program makes

$$\boldsymbol{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix};$$

$$\boldsymbol{C} = \left\{ \begin{array}{c} \left([1 \ 0 \ 0 \ 0 \ 0 \ 0], [0 \ 0 \ 0 \ 1 \ 0] \right), \\ \left([0 \ 0 \ 1 \ 0 \ 0], [0 \ 0 \ 0 \ 0 \ 1] \right), \\ \left([0 \ 1 \ 0 \ 1 \ 1 \ 0], [0 \ 0 \ 0 \ 0 \ 0] \right) \end{array} \right\}$$

Each query is written(t,q,a) where: t is our nonce, q is our input vector and a is the oracle result

$$m{M} = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}; \ \mathcal{C} = egin{bmatrix} [1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ [1 & 0 & 0 & 0 & 0 &], [0 & 0 & 0 & 1 & 0 & 0], \ [0 & 0 & 1 & 0 & 0 &], [0 & 0 & 0 & 0 & 1 & 0], \ [0 & 1 & 0 & 1 & 1 & 0], [0 & 0 & 0 & 0 & 0 & 1] \end{pmatrix}, \ \begin{bmatrix} [0 & 1 & 0 & 1 & 1 & 0], [0 & 0 & 0 & 0 & 0 & 1] \end{bmatrix}, \end{bmatrix}$$

This query corresponds to $v_4 := |H(v_1)|$

Let $\mathcal{P} = (\mathbf{M}, \mathcal{C})$ be a Linicrypt program.

A collision structure for \mathcal{P} is a tuple $(i^*; c_1, \ldots, c_n)$, where:

Let $\mathcal{P} = (\mathbf{M}, \mathcal{C})$ be a Linicrypt program.

A collision structure for \mathcal{P} is a tuple $(i^*; c_1, \ldots, c_n)$, where:

 $|1, c_1, \ldots, c_n|$ is an ordering of C

Let $\mathcal{P} = (\mathbf{M}, \mathcal{C})$ be a Linicrypt program.

A collision structure for \mathcal{P} is a tuple $(i^*; c_1, \ldots, c_n)$, where:

- 1. c_1, \ldots, c_n is an ordering of \mathcal{C}
- 2. c_{i^*} is not determined already by the queries before it

Let $\mathcal{P} = (\mathbf{M}, \mathcal{C})$ be a Linicrypt program.

A collision structure for \mathcal{P} is a tuple $(i^*; c_1, \ldots, c_n)$, where:

- 1. c_1, \ldots, c_n is an ordering of \mathcal{C}
- 2. c_{i*} is not determined already by the queries before it
- 3. all following queries $(c_j \mid j \geq i^*)$ are

not fixed by queries $(c_k \mid k < j)$ before them

1. Identify oracle queries that are the same between runs

$$v_3$$

2. Identify an oracle query that is different

3. Solve backwards using linear algebra until all queries are defined

$$v_1' v_2'$$

What is a collision structure?

1. Identify oracle queries that are the same between runs

$$c_1,\ldots,c_{i^*-1}$$

2. Identify an oracle query that is different

$$C_{i^*}$$

3. Solve backwards using linear algebra until all queries are defined

$$c_{i^*+1},\ldots,c_n$$

Finding Collision Structures

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix};$$

$$\mathcal{C} = \left\{ \begin{array}{l} (q_1 = [0 \ 0 \ 1 \ 0 \ 0 \ 0], a_1 = [0 \ 0 \ 0 \ 0 \ 1 \ 0]), \\ (q_2 = [0 \ 1 \ 0 \ 1 \ 1 \ 0], a_2 = [0 \ 0 \ 0 \ 0 \ 0 \ 1]), \\ (q_3 = [1 \ 0 \ 0 \ 0 \ 0], a_3 = [0 \ 0 \ 0 \ 1 \ 0 \ 0]), \end{array} \right\}$$

Finding Collision Structures

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix};$$

$$\mathcal{C} = \left\{ \begin{array}{l} (q_1 = [0 \ 0 \ 1 \ 0 \ 0 \ 0], a_1 = [0 \ 0 \ 0 \ 0 \ 1 \ 0]), \\ (q_2 = [0 \ 1 \ 0 \ 1 \ 1 \ 0], a_2 = [0 \ 0 \ 0 \ 0 \ 0 \ 1]), \\ (q_3 = [1 \ 0 \ 0 \ 0 \ 0], a_3 = [0 \ 0 \ 0 \ 1 \ 0 \ 0]), \end{array} \right\}$$

2. c_{i^*} is not determined already by the queries before it

Finding Collision Structures

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix};$$

$$\mathcal{C} = \left\{ \begin{array}{l} (q_1 = [0 \ 0 \ 1 \ 0 \ 0 \ 0], a_1 = [0 \ 0 \ 0 \ 0 \ 1 \ 0]), \\ (q_2 = [0 \ 1 \ 0 \ 1 \ 1 \ 0], a_2 = [0 \ 0 \ 0 \ 0 \ 0 \ 1]), \\ (q_3 = [1 \ 0 \ 0 \ 0 \ 0], a_3 = [0 \ 0 \ 0 \ 1 \ 0]), \end{array} \right\}$$

- 2. c_{i*} is not determined already by the queries before it
- 3. all following queries $(c_j \mid j \geq i^*)$ are

not fixed by queries $(c_k \mid k < j)$ before them

Degeneracy?
$$\mathcal{P}^H(x,y)$$
 : $H(x+y)$

The set of inputs to H do not determine its output

Degeneracy?
$$\mathcal{P}^H(x,y)$$
 :

$$H(x+y)$$

The set of inputs to *H* do not determine it's output

$$H(\mathbf{a} + \mathbf{b}) = \mathbf{c} = H(\mathbf{d} + (\mathbf{a} + \mathbf{b} - \mathbf{d}))$$

Degeneracy? $\mathcal{P}^H(x,y)$: H(x+y)

The set of inputs to H do not determine it's output

$$H(\mathbf{a} + \mathbf{b}) = \mathbf{c} = H(\mathbf{d} + (\mathbf{a} + \mathbf{b} - \mathbf{d}))$$

We have an entire space of collision inputs!

1. $C_{i}*'$ s input isn't determined by previous queries.

2. All following queries aren't fixed by those preceding.

$$H(x) = y$$

What if y is already fixed?

1. $C_{i}*'$ s input isn't determined by previous queries.

2. All following queries aren't fixed by those preceding.

3. Finally, our outputs are the same, but our inputs differ!

$$(oldsymbol{x}
eq oldsymbol{x}') \wedge (\mathcal{P}^H(oldsymbol{x}) = \mathcal{P}^H(oldsymbol{x}'))$$

Let c_1, \ldots, c_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x})$ and c'_1, \ldots, c'_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x}')$

$$(oldsymbol{x}
eq oldsymbol{x}') \wedge (\mathcal{P}^H(oldsymbol{x}) = \mathcal{P}^H(oldsymbol{x}'))$$

Let c_1,\ldots,c_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x})$ and c'_1,\ldots,c'_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x}')$

Assuming non-degeneracy, there must be a call C_ist that differs.

$$(oldsymbol{x}
eq oldsymbol{x}') \wedge (\mathcal{P}^H(oldsymbol{x}) = \mathcal{P}^H(oldsymbol{x}'))$$

Let c_1,\ldots,c_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x})$ and c'_1,\ldots,c'_n be the order of oracle calls computed by $\mathcal{P}^H(\boldsymbol{x}')$

Assuming non-degeneracy, there must be an earliest call C_{i^*} that differs.

Claim: If we order the C_i 's so that all queries that differ between the runs (here out, other divergent queries) come after those which are not, then we have a collision structure.

$$\begin{vmatrix} \forall i < i^*, \mathbf{q}_i \cdot \mathbf{v} = \mathbf{q}_i' \cdot \mathbf{v}' \\ \mathbf{a}_i \cdot \mathbf{v} = \mathbf{a}_i' \cdot \mathbf{v}' \end{vmatrix} \begin{vmatrix} \forall j \geq i^*, \mathbf{q}_j \cdot \mathbf{v} \neq \mathbf{q}_j' \cdot \mathbf{v}' \\ \mathbf{a}_j \cdot \mathbf{v} \neq \mathbf{a}_j' \cdot \mathbf{v}' \end{vmatrix}$$

$$m{q}_{i^*}
ot \in \mathsf{span}\left(\{m{q}_1,\ldots,m{q}_{i^*-1}\} \cup \{m{a}_1,\ldots,m{a}_{i^*-1}\} \cup \mathsf{rows}(\mathbf{M})
ight)$$

Otherwise q_{i*} would be completely determined!

$$\left|oldsymbol{q}_{i^*}
ot\in\mathsf{span}\left(\{oldsymbol{q}_1,\ldots,oldsymbol{q}_{i^*-1}\}\cup\{oldsymbol{a}_1,\ldots,oldsymbol{a}_{i^*-1}\}\cup\mathsf{rows}(\mathbf{M})
ight)
ight|$$

Otherwise $oldsymbol{q}_{i^*}$ would be completely determined!

$$\forall j \geq i^*, \mathbf{q}_j \cdot \mathbf{v} \neq \mathbf{q}'_j \cdot \mathbf{v}' \\ \mathbf{a}_j \cdot \mathbf{v} \neq \mathbf{a}'_j \cdot \mathbf{v}'$$

For
$$j \geq i^*$$
: $a_j \not\in \operatorname{span}\left(\{m{q}_1,\ldots,m{q}_j\} \cup \{m{a}_1,\ldots,m{a}_{j-1}\} \cup \operatorname{rows}(\mathbf{M})\right)$

Wrap Up

1. Collisions and preimages can be boiled down to algebra

2. Asymptotically, collision resistance <=> second preimage resistance

3. Properties can be determined in poly time

Limitations and future work

Distinct nonces:

$$H(\mathbf{x}, \mathbf{y}) = H(2; H(1; \mathbf{x})) - H(3; \mathbf{y})$$
$$H(\mathbf{x}, \mathbf{y}) = H(H(\mathbf{x})) - H(\mathbf{y})$$

Limitations and future work

Distinct nonces:

$$H(\mathbf{x}, \mathbf{y}) = H(2; H(1; \mathbf{x})) - H(3; \mathbf{y})$$
$$H(\mathbf{x}, \mathbf{y}) = H(H(\mathbf{x})) - H(\mathbf{y})$$

$$\mathbf{y} := H(\mathbf{x})$$
?

NP complete problem!

Limitations and future work

Distinct nonces:

$$H(\mathbf{x}, \mathbf{y}) = H(2; H(1; \mathbf{x})) - H(3; \mathbf{y})$$
$$H(\mathbf{x}, \mathbf{y}) = H(H(\mathbf{x})) - H(\mathbf{y})$$

$$\mathbf{y} := H(\mathbf{x})$$
?

NP complete problem!

Ideal cipher model?

Thank you

Following this slide are deleted slides

$$\mathcal{P}^{H}(x_{1}, x_{2}, \dots, x_{k}):$$
 $y_{1} := x_{1}$
 $y_{2} := H(2; y_{1}, x_{2})$
 $y_{3} := H(3; y_{2}, x_{3})$
 \vdots
 $y_{k} := H(k; y_{k-1}, x_{k})$

Collision Structure Algorithm!

$$\mathcal{P}^{H}(x_{1}, x_{2}, \dots, x_{k}):$$
 $y_{1} := x_{1}$
 $y_{2} := H(2; y_{1}, x_{2})$
 $y_{3} := H(3; y_{2}, x_{3})$
 \vdots

 $y_k := H(k; y_{k-1}, x_k)$

Collision Structure Algorithm! Steps:

- 1. Put all queries in LEFT
- 2. Move queries to RIGHT if a is not fixed by queries in LEFT or M

```
\mathcal{P}^H(x_1,x_2,\ldots,x_k):
y_1 := x_1
y_2 := H(2; y_1, x_2)
y_3 := H(3; y_2, x_3)
y_k := H(k; y_{k-1}, x_k)
```

Collision Structure Algorithm! Steps:

- 1. Put all queries in LEFT
- 2. Move queries to RIGHT if a is not fixed by queries in LEFT or M
- 3. Move queries to LEFT if q is fixed by queries in LEFT or M
- 4. Output: $(i^*; c_1, \dots, c_n) = (|\text{LEFT}|; \text{LEFT}||\text{RIGHT}(\text{in reverse order}))$

Or fail to produce a collision structure

$$\mathcal{P}^{H}(x_{1}, x_{2}, \dots, x_{k}):$$
 $y_{1} := x_{1}$
 $y_{2} := H(2; y_{1}, x_{2})$
 $y_{3} := H(3; y_{2}, x_{3})$
 \vdots
 $y_{k} := H(k; y_{k-1}, x_{k})$
LEFT

1. Put all queries in LEFT

RIGHT

$$\mathcal{P}^{H}(x_{1},x_{2},\ldots,x_{k}):$$
 LEFT RIGHT $y_{1}:=x_{1}$ $y_{1}:=x_{1}$ $y_{2}:=H(2;y_{1},x_{2})$ $y_{2}:=H(2;y_{1},x_{2})$ $y_{3}:=H(3;y_{2},x_{3})$ \vdots \vdots \vdots \vdots $y_{k}:=H(k;y_{k-1},x_{k})$ $y_{k}:=H(k;y_{k-1},x_{k})$

2. Move queries to RIGHT if $oldsymbol{a}$ is not fixed by queries in LEFT or M

$$\mathcal{P}^{H}(x_{1}, x_{2}, \dots, x_{k}):$$
 LEFT RIGHT
 $y_{1} := x_{1}$ $y_{1} := x_{1}$
 $y_{2} := H(2; y_{1}, x_{2})$ $y_{2} := H(2; y_{1}, x_{2})$
 $y_{3} := H(3; y_{2}, x_{3})$ $y_{3} := H(3; y_{2}, x_{3})$
 \vdots \vdots \vdots $y_{k} := H(k; y_{k-1}, x_{k})$ $y_{k} := H(k; y_{k-1}, x_{k})$

2. Move queries to RIGHT if $oldsymbol{a}$ is not fixed by queries in LEFT or M

$$\mathcal{P}^{H}(x_{1}, x_{2}, \dots, x_{k}):$$
 LEFT RIGHT
 $y_{1} := x_{1}$ $y_{1} := x_{1}$
 $y_{2} := H(2; y_{1}, x_{2})$ $y_{2} := H(2; y_{1}, x_{2})$
 $y_{3} := H(3; y_{2}, x_{3})$ $y_{3} := H(3; y_{2}, x_{3})$
 \vdots \vdots \vdots $y_{k} := H(k; y_{k-1}, x_{k})$ $y_{k} := H(k; y_{k-1}, x_{k})$

2. Move queries to RIGHT if $oldsymbol{a}$ is not fixed by queries in LEFT or M

For
$$j \geq i^*$$
: $a_j \not\in \operatorname{span}\left(\{m{q}_1,\ldots,m{q}_j\} \cup \{m{a}_1,\ldots,m{a}_{j-1}\} \cup \operatorname{rows}(\mathbf{M})\right)$

$$\exists i : \mathbf{a}_i = \sum_{j \le i} \alpha_j \mathbf{q}_j + \sum_{j \le i} \beta_j \mathbf{a}_j + \gamma \mathbf{M}$$

For $j \geq i^*$: $a_j \not\in \operatorname{\mathsf{span}} \left(\{ m{q}_1, \dots, m{q}_j \} \cup \{ m{a}_1, \dots, m{a}_{j-1} \} \cup \operatorname{\mathsf{rows}}(\mathbf{M}) \right)$

$$\exists i : \mathbf{a}_i = \sum_{j \le i} \alpha_j \mathbf{q}_j + \sum_{j \le i} \beta_j \mathbf{a}_j + \gamma \mathbf{M}$$

$$\mathbf{a}_i \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j \le i} \alpha_j \mathbf{q}_j \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j \le i} \beta_j \mathbf{a}_j \cdot (\mathbf{v}' - \mathbf{v}) + \gamma \mathbf{M}(\mathbf{v}' - \mathbf{v})$$

For $j \geq i^*$:

$$m{a}_j
ot\in \operatorname{span} ig(\{m{q}_1, \dots, m{q}_j \} \cup \{m{a}_1, \dots, m{a}_{j-1} \} \cup \operatorname{rows}(\mathbf{M}) ig)$$

$$\exists i : \mathbf{a}_i = \sum_{j \le i} \alpha_j \mathbf{q}_j + \sum_{j \le i} \beta_j \mathbf{a}_j + \gamma \mathbf{M}$$

$$\mathbf{a}_i \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j} \alpha_j \mathbf{q}_j \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j} \beta_j \mathbf{a}_j \cdot (\mathbf{v}' - \mathbf{v}) + \gamma \mathbf{M}(\mathbf{v}' - \mathbf{v})$$

$$\mathbf{a}_{i} \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j=i^{*}}^{i} \alpha_{j} \mathbf{q}_{j} \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j=i^{*}}^{i-1} \beta_{j} \mathbf{a}_{j} \cdot (\mathbf{v}' - \mathbf{v})$$

For $j > i^*$:

$$m{a}_j
ot \in \mathsf{span}\left(\{m{q}_1,\ldots,m{q}_j\} \cup \{m{a}_1,\ldots,m{a}_{j-1}\} \cup \mathsf{rows}(\mathbf{M})
ight)$$

$$\exists i : \mathbf{a}_i = \sum_{j < i} \alpha_j \mathbf{q}_j + \sum_{j < i} \beta_j \mathbf{a}_j + \gamma \mathbf{M}$$

$$j \leq i$$
 $\alpha_j \mathbf{q}_j + \sum_{j \leq i} \beta_j \mathbf{a}_j + \gamma \mathbf{v}_j$

$$\mathbf{a}_i \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j \le i} \alpha_j \mathbf{q}_j \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j < i} \beta_j \mathbf{a}_j \cdot (\mathbf{v}' - \mathbf{v}) + \gamma \mathbf{M} (\mathbf{v}' - \mathbf{v})$$

$$\mathbf{a}_{i} \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j=i^{*}}^{i} \alpha_{j} \mathbf{q}_{j} \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j=i^{*}}^{i-1} \beta_{j} \mathbf{a}_{j} \cdot (\mathbf{v}' - \mathbf{v})$$

$$\mathbf{a}_{i} \cdot \mathbf{v}' = \mathbf{a}_{i} \cdot \mathbf{v} + \sum_{i=1}^{i} \alpha_{j} \mathbf{q}_{j} \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{i=1}^{i-1} \beta_{j} \mathbf{a}_{j} \cdot (\mathbf{v}' - \mathbf{v})$$

For $j > i^*$:

 $m{a}_j
ot\in \mathsf{span}\left(\{m{q}_1,\ldots,m{q}_i\} \cup \{m{a}_1,\ldots,m{a}_{j-1}\} \cup \mathsf{rows}(\mathbf{M})\right)$

$$\exists i : \mathbf{a}_i = \sum_{j < i} \alpha_j \mathbf{q}_j + \sum_{j < i} \beta_j \mathbf{a}_j + \gamma \mathbf{M}$$

$$j \leq i$$
 $\alpha_j \mathbf{q}_j + \sum_{j \leq i} eta_j \mathbf{a}_j + \gamma_j \mathbf{v}_j$

$$\mathbf{a}_i \cdot (\mathbf{v}' - \mathbf{v}) = \sum \alpha_j \mathbf{q}_j \cdot (\mathbf{v}' - \mathbf{v}) + \sum \beta_j \mathbf{a}_j \cdot (\mathbf{v}' - \mathbf{v}) + \gamma \mathbf{M}(\mathbf{v}' - \mathbf{v})$$

$$\mathbf{a}_i \cdot (\mathbf{v}' - \mathbf{v}) = \sum_{j=i^*}^i \alpha_j \mathbf{q}_j \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j=i^*}^{i-1} \beta_j \mathbf{a}_j \cdot (\mathbf{v}' - \mathbf{v})$$

$$\mathbf{a}_{i} \cdot \mathbf{v}' = \mathbf{a}_{i} \cdot \mathbf{v} + \sum_{j=i^{*}}^{i} \alpha_{j} \mathbf{q}_{j} \cdot (\mathbf{v}' - \mathbf{v}) + \sum_{j=i^{*}}^{i-1} \beta_{j} \mathbf{a}_{j} \cdot (\mathbf{v}' - \mathbf{v})$$