

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 1 of 3

<i>Application Number</i>	09/833,222	INTER 14
<i>Filing Date</i>	April 11, 2001	
<i>First Named Inventor</i>	QIN	1600/2900
<i>Group Art Unit</i>		
<i>Examiner Name</i>		
<i>Attorney Docket Number</i>	ORT-1414	

SEP 14 2001

U.S. PATENT DOCUMENTS

RECEIVED
DEC 06 2007
HCENTER

~~DEC 06 2001~~

~~TECH CENTER 1600/2900~~ 06 2007

FOREIGN PATENT DOCUMENTS

Examiner Signature		Date Considered	
-------------------------------	--	----------------------------	--

***EXAMINER:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Unique citation designation number. ² See attached *Kinds of U.S. Patent Documents*. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U. S. Patent and Trademark Office, Washington, DC 20231.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS..SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

SEP 14 2001

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 2 of 3

Application Number	09/833,222
Filing Date	April 11, 2001
First Named Inventor	QIN
Group Art Unit	
Examiner Name	
Attorney Docket Number	ORT-1414

OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS		
Examiner's Initials*	Cite No. ¹	Include name of the author (in CAPITOL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published
SHS	2	BEAN et al., 1989. Classes of Calcium Channels in Vertebrate Cells. Annu. Rev. Physiol. 51:367-84
	3	BERTOLINO et al., 1992. The Central Role of Voltage-Activated and Receptor-Operated Calcium Channels in Neuronal Cells. Annu. Rev. Pharmacol. Toxicol. 32:399-421
	4	BIRNBAUMER et al., 1998. Structures and Functions of Calcium Channel β Subunits. Journal of Bioenergetics and Biomembranes. Vol. 30(4): 357-375
	5	CASTELLANO et al., 1993. Cloning and Expression of a Neuronal Calcium Channel β Subunits. The Journal of Biological Chemistry. Vol. 268(17) Issue of June 15, pp. 12359-12366
	6	CASTELLANO et al., 1993. Cloning and Expression of a Third Calcium Channel β Subunits. The Journal of Biological Chemistry. Vol. 268(5) Issue of February 15, pp. 3450-3455
	7	CATTERALL. 1988. Structure and Function of Voltage-Sensitive Ion Channels. Science, 242:50-61
	8	D'ANDREA et al., 1998. Characterization of Protease-activated Receptor-2 Immunoreactivity in Normal Human Tissues. The Journal of Histochemistry & Cytochemistry. 46(2):157-164
	9	ELLIS et al., 1988. Sequence and Expression of mRNAs Encoding the α_1 and α_2 Subunits of a DHP-Sensitive Calcium Channel. Science. 241:1661-1664
	10	ERTEL et al., 2000. Nomenclature of Voltage-Gated Calcium Channels. Neuron. 25:533-535
	11	FELEX et al., 1997. Dissection of Functional Domains of the Voltage-Dependent Ca^{2+} Channel $\alpha_2\delta$ Subunit. The Journal of Neuroscience. 17(18):6884-6891
	12	GEE et al., 1996. The Novel Anticonvulsant Drug, Gabapentin (Neurontin), Binds to the $\alpha_2\delta$ Subunit of a Calcium Channel. 27(10), Issue of March 8, pp. 5768-5776
	13	GILAD et al., 1995. Identification of the alternative spliced form of the $\alpha_2\delta$ subunit of voltage sensitive Ca^{2+} channels expressed in PC12 cells. Neuroscience Letters. 193:157-160
	14	GURNETT et al., 1996. Transmembrane auxiliary Subunits of Voltage-dependent Ion Channels. The Journal of Biological Chemistry. 271(45), Issue of November 8, pp. 27975-27978
	15	GURNETT et al., 1996. Dual Function of the Voltage-Dependent Ca^{2+} Channel $\alpha_2\delta$ Subunit in Current Stimulation and Subunit Interaction. Neuron. 16:431-440
	16	HESS, 1990. Calcium Channels in Vertebrate Cells. Annu. Rev. Neurosci. 13:357-56
	17	HOSSET et al., L-type Calcium Channels in Cardiac and Skeletal Muscle Purification and Phosphorylation. Annual New York Academy of Sciences. pp. 27-66
SHS	18	HUI et al., 1991. Molecular Cloning of Multiple Subtypes of a Novel Rat Brain Isoform of the α_1 Subunit of the Voltage-Dependent Calcium Channel. Neuron. 7:35-44
	19	JAY et al., 1990. Primary Structure of the γ Subunit of the DHP-Sensitive Calcium Channel from Skeletal Muscle. Science. 248:490-492
	20	KLUGBAUER et al., 1999. Molecular Diversity of the Calcium Channel $\alpha_2\delta$ Subunit. The Journal of Neuroscience. 19(2):684-691
	21	KOZAK, 1991. An analysis of Vertebrate mRNA Sequences: Intimations of Translational Control. The Journal of Cell Biology. 115(4):887-903
	22	LACERAD et al., 1991. Normalization of current kinetics by interaction between the α_1 and β subunits of the skeletal muscle dihydropyridine-sensitive Ca^{2+} channel. Nature. 352:527-530
	23	LEE et al., 1999. Cloning and Expression of a Novel Member of the Low Voltage-Activated T-Type Calcium Channel Family. The Journal of Neuroscience. 19(6):1912-1921
	24	LITTLETON et al., 2000. Ion Channels and Synaptic Organization: Analysis of the Drosophila Genome. Neuron. 26:35-43
	25	MIKAMI et al., 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 340:230-233
	26	MORI et al., 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 350:398-402
	27	PEREZ-REYES et al., 1989. Induction of calcium currents by the expression of the α_1 -subunit of the dihydropyridine receptor from skeletal muscle. Nature. 340:233-236
	28	PEREZ-REYES et al., 1992. Cloning and Expression of a Cardiac/Brain β Subunit of the L-type Calcium Channel. The Journal of Biological Chemistry. 267(3) Issue of January 25, pp. 1792-1797

Examiner Signature	Date Considered
--------------------	-----------------

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Unique citation designation number. ² Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U. S. Patent and Trademark Office, Washington, DC 20231.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

TECH CENTER 1600/2900

SEP 14

PTO/SB/08A (08-09)

Approved for use through 10/31/2002. OMB 0651-003

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

I Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Substitute for form 1449A/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)
Sheet 3 of 3

<i>Application Number</i>	09/833,222	1
<i>Filing Date</i>	April 11, 2001	2001
<i>First Named Inventor</i>	QIN	
<i>Group Art Unit</i>		2900
<i>Examiner Name</i>		
<i>Attorney Docket Number</i>	ORT-1414	R

OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS

OTHER PRIOR ART - NON-PATENT LITERATURE DOCUMENTS		
Examiner's Initials*	Cite No. ¹	Include name of the author (in CAPITOL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published
SHS	29	PEREZ-REYES et al., 1998. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. <i>Nature</i> 391:896-900
	30	PRAGNELL et al., 1991. Cloning and tissue-specific expression of the brain calcium channel β -subunit. <i>Federation of European Biochemical Societies</i> . 291(2):253-258
	31	QIN et al., 1997. Direct interaction of G $\beta\gamma$ with a C-terminal G $\beta\gamma$ -binding domain of the Ca $^{2+}$ channel α_1 subunit is responsible for channel inhibition by G protein-coupled receptors. <i>Proc. Natl. Acad. Sci. USA</i> . 94:8866-8871
	32	QIN et al., 1998. Modulation of human neuronal α_1 -type calcium channel by α_2 - δ -subunit. <i>American Physiological Society</i> . 1324-1331
	33	RANDALL et al., 1995. Pharmacological Dissection of Multiple Types of Ca $^{2+}$ Channel Currents in Rat Cerebellar Granule Neurons. <i>The Journal of Neuroscience</i> . 15(4):2995-3012
	34	ROCK et al., 1993. Gabapentin actions on ligand- and voltage-gated responses in cultured rodent neurons. <i>Epilepsy Research</i> . 16:89-98
	35	RUTH et al., 1989. Primary Structure of the β Subunit of the DHP-Sensitive Calcium Channel from Skeletal Muscle. <i>Science</i> . 245:1115-1118
	36	SANFORD et al., 1991. γ -Subunits of G Proteins, but not Their α - or β -Subunits, are Polyisoprenylated. <i>The Journal of Biological Chemistry</i> . 266(15) Issue of May 25, pp. 9570-9579
	37	SNUTCH et al., 1990. Rat brain expresses a heterogeneous family of calcium channels. <i>Proc. Natl. Acad. Sci. USA</i> . <i>Neurobiology</i> . 87:3391-3395
	38	TANABE et al., 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. <i>Nature</i> . 328:311-318
	39	TANABE et al., 1988. Restoration of excitation-contraction coupling and slow calcium current in myogenic muscle by dihydropyridine receptor complementary DNA. <i>Nature</i> . 336:134-139
	40	TOKUMARU et al., 1995. A Calcium Channel from the Presynaptic Nerve Terminal of the Narke <i>Alosa</i> Electric Organ Contains a Non-N-Type α_2 - δ subunit. <i>Journal of Neurochemistry</i> . 65(2):831-836
	41	WILLIAMS et al., 1992. Structure and Functional Expression of an ω -Conotoxin-Sensitive Human N-Type Calcium Channel. <i>Science</i> . 257:389-395
	42	WISER et al., 1996. The α_2 - δ subunit of voltage sensitive Ca $^{2+}$ Channels is a single transmembrane extracellular protein which is involved in regulated secretion. <i>FEBS Letters</i> 379:15-20
	43	WITCHER et al., 1993. Subunit Identification and Reconstitution of the N-Type Ca $^{2+}$ Channel Complex Purified from Brain. <i>Science</i> . 261:486-489

Examiner Signature Shulamith H. Shafer Digitally signed by Shulamith H. Shafer
Date: 2006.12.07 14:23:49 -05'00'
Location: Shulamith H. Shafer, 104-AU-HST, sshafer@shulamith.com **Date Considered** 12/07/2006

***EXAMINER:** Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Unique citation designation number. Applicant is to place a check mark here if English language Translation is attached.

Burden Hour Statement: This form is estimated to take 2.0 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U. S. Patent and Trademark Office, Washington, DC 20231.

DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20233