

# Acknowledgement

The work shown here is a contribution of the 'Perception: Lane' team in China and US.

# The goal

- Hand-crafted logic and heuristics → data driven models
- Redundancy when generating critical lane outputs
- Make classical and deep learning approaches self-consistent

Simple model

Complex classical algorithms

Model learns to do:

- Detection
- Filtering
- Clustering
- Tracking
- Fitting
- Reasoning

Complex model

Simpler classical algorithms

# It's models all the way



#### Outputs

## Simple Lane Detection:

- Lane Detection
- Drivable Area

## Metadata-driven modeling/ Augmentation:

- Handling Occlusions
- Drivable Area augmentations from Occlusion
- Lane Instance model
- Split-Merge Model
- Ego Boundary Model
- Ego DP model

### Multi-task reasoning:

Lane + Obstacle

#### Spatio-Temporal Consistency -> Tracking:

- Lane Pose Model
- Lane Tracking with instance + pose [Future Work]
- Lane + Obstacle Tracking [Future Work]

Increasing Complexity



## Lane + Drivable Area Model

- Different lane types: solid, dashed, curb
- Drivable Area
- "Almost" camera-pose agnostic; we can use front, rear or side cameras with minimal retraining/ fine-tuning effort.





|       |           | 0811v4 | Unified lane + drivable<br>20210803 | Lane + Occluded lane<br>model 20210814 | Lane + drivable area +<br>occluded lane (+<br>artificial occlusions) |
|-------|-----------|--------|-------------------------------------|----------------------------------------|----------------------------------------------------------------------|
| solid | f1        | 0.909  | 0.914                               | 0.912                                  | 0.914                                                                |
|       | recall    | 0.906  | 0.921                               | 0.911                                  | 0.907                                                                |
|       | precision | 0.912  | 0.908                               | 0.913                                  | 0.921                                                                |
| dash  | f1        | 0.847  | 0.860                               | 0.855                                  | 0.860                                                                |
|       | recall    | 0.809  | 0.835                               | 0.827                                  | 0.838                                                                |
|       | precision | 0.887  | 0.887                               | 0.885                                  | 0.887                                                                |
| curb  | f1        | 0.723  | 0.731                               | 0.726                                  | 0.726                                                                |
|       | recall    | 0.761  | 0.777                               | 0.768                                  | 0.768                                                                |
|       | precision | 0.689  | 0.691                               | 0.688                                  | 0.689                                                                |

|          | Drivable area region metrics |        |       |       | Drivable area boundary metrics |        |       |
|----------|------------------------------|--------|-------|-------|--------------------------------|--------|-------|
|          | precision                    | recall | f1    | loU   | precision                      | recall | f1    |
| 20210124 | 0.997                        | 0.988  | 0.993 | 0.986 | 0.822                          | 0.793  | 0.808 |
| 20210722 | 0.997                        | 0.990  | 0.994 | 0.988 | 0.851                          | 0.823  | 0.837 |



# Handling Occlusions:

- Model infers lane marks occluded by obstacles.
- Classical logic gets some more information to work with.
- Helps with:
  - Vehicles cutting-in; especially during curves on a non-planar road surface.

# Using Drivable Area for augmenting data:

- Reproduce not-very-frequent, but hard, cases.
- Bypass the need for human labeling





# **Ego Driving Path Model**

- Directly outputs driving path in image space.
- Helps with:
  - A redundant driving path estimate.
- Future work: generate all valid lane paths.
- Combined with the obstacle model, use other vehicle trajectories to create a valid path



# Ego Boundary Model

- Detecs lane marks that belong to ego left and right boundaries.
- Helps with:
  - Multiple faint/ old lane marks
  - Large motion/ bumps that affect tracking



# Split/ Merge Models

 Detects different types of split and merge geometries.







# **Instance Segmentation**

- Clusters points belonging to a lane boundary, in image space
- Helps with:
  - Reducing filtering+clustering code complexity
  - Noisy lane marks
  - Non-planar road surface

## Lane + Obstacle

 Model learns to reason about lane AND obstacles.





| Model                                         | Parameters | Training Data                              |
|-----------------------------------------------|------------|--------------------------------------------|
| Lane                                          | 1.2M       | 84K (lane)                                 |
| Lane + Drivable Area                          | 1.2M       | 100K (lane), 34K (drivable area)           |
| Lane + Drivable Area + Occluded lane          | 1.2M       | 96K (lane instances) + 10K (artificial GT) |
| Lane + Drivable Area + Occluded lane + Ego DP | 1.2M       | 40K (ego DP)                               |
| Lane + Drivable Area + Split/ Merge           | 1.3M       | 27K (various split/ merge scenarios)       |
| Lane + Drivable Area + Instance               | 1.37M      | 96K (lane instances)                       |
| Lane + Obstacle                               | 20M        | 140K (2D obstacle), 220K (lane)            |