

Practical Course MATLAB/SIMULINK

Session 2: Symbolic Math Toolbox

Lecture Objectives & Preparation

- Which MathWorks products are covered?
 - Symbolic Math Toolbox
- What skills are learnt?
 - Usage of symbolic objects within MATLAB
 - Symbolic calculus including differentiation, integration and vector analysis
 - Solving symbolic algebraic equations and equation systems
 - Solving symbolic differential equations and symbolic Laplace transform
- How to prepare for the session?
 - MathWorks Tutorials:
 - https://de.mathworks.com/help/symbolic/getting-started-with-symbolic-math-toolbox.html
 - https://de.mathworks.com/help/symbolic/create-symbolic-numbers-variables-and-expressions.html
 - https://de.mathworks.com/help/symbolic/create-symbolic-functions.html

Lecture Outline

- 1. Introduction
- 2. Symbolic Objects
 - 2.1. Variables, Numbers, Expressions & Function
 - 2.2. Assumptions & Simplification
 - 2.3. Variable Precision Arithmetic
- 3. Calculus
 - 3.1. Differentiation & Integration
 - 3.2. Vector Analysis
 - 3.3. Series & Limits
 - 3.4. Transforms

Lecture Outline

- 4. Equation Solving
 - 4.1. Algebraic Equations
 - 4.2. Ordinary Differential Equations (ODEs)
- 5. Symbolic Plotting Functions
- 6. Code Generation
- 7. List of Useful Commands
- 8. Self-Assessment

1. Introduction

Symbolic vs Numeric

SYMBOLIC

- "you write it down"
- The symbol π stands for an infinite number
- $y = \sin^2 x + \cos^2 x$ can be simplified to y = 1

- Computation of indefinite integrals
- Results are always exact

vs. NUMERIC

- "you (or a computer) compute it"
- A finite number must be used to approximate π
- $y = \sin^2 x + \cos^2 x$ can be computed for different values of x. The result is always close to 1, depending on the numerical precision.
- Computation of definite integrals
- Results are always approximate

Symbolic Computation Software

Key Features of the Symbolic Math Toolbox

Analytic manipulation and solving of mathematic expressions:

Simplification

Differentiation

Series

Transforms

Equation Solving

Integration

Limits

Vector Analysis

Perform variable-precision arithmetic (VPA):

Exact computations

1/3

VPA

0.33 or 0.33333

Double-precision floatingpoint arithmetic

3FD5 5555 5555 5555₁₆

Generate code from symbolic expressions for MATLAB, Simulink, Simscape, C, Fortran, MathML, and TeX.

2. Symbolic Objects

2.1. Variables, Numbers, Expressions & Functions

Symbolic Objects sym and symfun

Symbolic Variables

rho, s

MATLAB data type: sym

Symbolic Numbers

sqrt(2), 1/3

MATLAB data type: sym

Symbolic Expressions

distance = rho*exp(s)

MATLAB data type: sym

Symbolic Functions

distance(rho,s) = rho*exp(s)

MATLAB data type: symfun

Creating Symbolic Variables

There are two ways to create symbolic variables:

```
x = sym('x');
y = sym('y');
or
syms x y
```

MATLAB language vector and matrix notation extends to symbolic variables:

Creating Symbolic Matrices

To create matrices of symbolic variables, either create the matrix elements and assemble them, or use the functionality of the sym command:

```
syms a b c d
A = [a,b; c,d];
                                    Only when using the first method,
B = sym('b', 2);
                                   are the individual matrix elements
C = sym('val%d%d', [2,3]);
                                      are created in the workspace.
A =
[a, b]
[c, d]
[b1_1, b1_2]
[b2_1, b2_2]
C =
```

[val11, val12, val13]

[val21, val22, val23]

Symbolic Matrices Operations

Operations can be performed on symbolic matrices. For example:

2.2. Assumptions & Simplification

Assumptions

It is possible to define **assumptions** about symbolic variables.

Make a first assumption with either the sym or assume commands:

```
I = sym('I', 'integer');
P = sym('P', 'positive');
Q = sym('Q', 'rational');
syms R
assume(R, 'real');
```

To add further assumptions after the first one, use assumeAlso:

```
assumeAlso(I ~= 5);
```

To check the current assumptions:

```
assumptions
[0 < P, in(Q, 'rational'), in(R, 'real'), I ~= 5, in(I, 'integer')]
```

To clear the assumptions on a symbolic variable:

```
assume(R, 'clear')
```

Symbolic Numbers

Symbolic numbers have **no floating-point approximations** – they are exact! Symbolic numbers are created in a similar way to variables:

For a symbolic number:

```
sum_of_angles_of_a_triangle = sym('pi');
one_third = sym('1/3');
two_fifths = sym('2/5');
one_third + two_fifths
ans =
11/15
```

For a symbolic expression:

```
s = str2sym('sqrt(2)')
s_numeric = double(s)

s = 2^(1/2)
s_numeric =
```

1.4142

Numeric to Symbolic Conversion

It is also possible to **convert numeric values to symbolic numbers**.

For highest accuracy, be sure to use sym subexpressions instead of using sym on an entire expression:

When using sym on an entire expression, the expression is converted to a floating-point number first and this floating-point number then is converted to a symbolic number.

Numeric to Symbolic Conversion Technique

The conversion technique can be chosen by specifying a **second function argument**, 'r', 'f', 'e', or 'd'.

'r' stands for rational and is the default:

```
s_rational = sym(0.1,'r')
```

s_rational = 1/10

For modest sized integers p and q, floating point numbers obtained by evaluating expressions of the form:

- $\circ p/q$
- $\circ p \cdot \pi/q$
- $\circ \sqrt{p}$
- \circ 2^q
- $\circ 10^{q}$

are converted to the corresponding symbolic form.

Numeric to Symbolic Conversion Technique

'f' stands for floating-point:

```
s_float = sym(0.1,'f')
s_float =
3602879701896397/36028797018963968
```

'e' stands for estimate error. The 'r' form is supplemented by a term involving the variable eps, which estimates the difference between the theoretical rational expression and its actual floating-point value.

```
s_eps = sym(0.1, e')

s_eps = eps/40 + 1/10

eps is the distance from 1.0 to the next largest double-precision number: eps = 2^-52
```

Numeric to Symbolic Conversion Technique

'd' stands for decimal. This 32-digit result does not end in a string of zeros but is an accurate decimal representation of the floating-point number nearest to 0.1.

```
s_decimal = sym(0.1,'d')
```

s_decimal = 0.1000000000000000555111512312578

The number of significant decimal digits can be changed using the digits command.

s_decimal = sym(0.1,'d')

s_decimal =

0.1

Note the different result in the numeric to symbolic conversion!

Non-exact Floating-point Approximations

The following example illustrates possible consequences of **non-exact floating-point approximations**.

The signum or sign function is defined as follows:

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x < 0 \end{cases}$$

• Thus, in theory, $sgn(sin(\pi)) = 0$.

Non-exact Floating-point Approximations

However:

```
numeric_incorrect = sign(sin(pi))
symbolic_incorrect = sign(sym(sin(pi)))
symbolic_correct = sign(sin(sym(pi)))
numeric_incorrect=
    1
symbolic_incorrect =
1
symbolic_correct =
```

In this case, sin(pi) is computed with floating point accuracy before being converted to symbolic. The floating-point approximation is not exactly zero! This is the cause for the incorrect result.

0

Symbolic Expression & Substitution

 $A^2*cos(omega*t)^2 + A^2*sin(omega*t)^2$

Symbolic variables can be **combined** into **symbolic expressions**.

For Example:

```
syms A omega t
d = A*sin(omega*t);
e = d^2 + (A*cos(omega*t))^2
e =
```

In symbolic expressions, each symbolic variable can be substituted by a numeric value or by another symbolic variable:

```
f = subs(e, [omega,t], [A,2])
f = A^2*cos(2*A)^2 + A^2*sin(2*A)^2
f can be simplified. The next slide shows how...
```

Expression Simplification

Simplifying the previous expression yields:

```
syms A omega t
e = (A^2*cos(omega*t)^2 + A^2*sin(omega*t)^2)^(1/2);
simplify(e)
ans =
(A^2)^(1/2)
```

Simplified expressions are always mathematically equivalent to initial expressions! Therefore, the result is not A. If we add the assumption assume(A>0), the result would indeed be A.

```
syms A omega t;
assume(A>0);
e = (A^2*cos(omega*t)^2 + A^2*sin(omega*t)^2)^(1/2);
simplify(e)
ans =
```


Α

Expression Simplification

- The toolbox can simplify expressions and functions with:
 - polynomials,
 - o trigonometric,
 - logarithmic, and
 - other functions (e.g., Gamma or Bessel function)
- simplify(f,'Steps',n) with a positive integer n > 0 can increase simplification of a complex expression f.

Symbolic Functions

Symbolic functions are created by specifying the function variables and the function itself:

```
syms A omega t
f(A,omega,t) = A*sin(omega*t);
```

A generic function and its variables can be created simply by:

```
syms g(x,y)
```

Symbolic functions can be evaluated as follows, without using the command subs:

```
f(3, 0.1*t, t)
ans =
3*sin(t^2/10)
```

■ To find all symbolic variables in expressions, functions and matrices, use:

```
symvar(f)
ans =
[A, omega, t]
```


2.3. Variable-Precision Arithmetic

Variable Precision Arithmetic

Symbolic numbers can be approximated with varying accuracy, trading off accuracy for code performance. Default accuracy, defined in significant decimal digits, can be retrieved or set with the digits command.

```
old_digits_setting = digits;
digits(3);
```

Variable-Precision Arithmetic

■ The **approximation** is done using the vpa command:

The second argument of the vpa command substitutes the digits accuracy.

3. Calculus

3.1. Differentiation & Integration

Differentiation

Symbolic expressions or **functions** can be differentiated as follows:

```
syms A omega t x y
f = A*sin(omega*t);
g(x,y) = x^2 + x^y^2;
df_dt = diff(f,t)
ddf_dtdt = diff(f,t,2)
ddg_dxdy = diff(g,x,y)
df_dt =
A*omega*cos(omega*t)
                                 The function or expression
                                  character is conserved.
ddf_dtdt =
-A*omega^2*sin(omega*t)
```

2*y

 $ddg_dxdy(x,y) =$

Differentiation

• **Specify** the variable to be differentiated by! The diff(f) command would **otherwise** assume the **default variable**, given by symvar(f,1). Whatever it is...

Integration

Similarly, you can perform indefinite and definite integrations on the functions f, g from above:

```
F = int(f, t)

Gdef = int(g, x, -3, 1)
```

The integration constant is missing from indefinite integration

Integration

By default, the integration function also considers special cases:

```
int(x^t, x)

int(x^t, x, 'IgnoreSpecialCases', true)

ans=

piecewise([t == -1, log(x)], [t ~= -1, x^t(t+1)/(t+1)])

ans =
```

 $x^{(t+1)/(t+1)}$

3.2. Vector Analysis

Vector Analysis

There are various functions for **vector analysis**, including:

gradient

```
syms x y z
m = x*y*z;
n = gradient(m, [x,y,z])
n =
y*z
```

x*z

x*y

Vector Analysis

divergence

```
p = [x, 2*y^2, 3*z^3];
q = divergence(p, [x,y,z])
```

```
Q = 9*z^2 + 4*y + 1
```

- Other functions for vector analysis:
 - o curl
 - hessian
 - jacobian
 - laplacian
 - potential
 - vectorPotential

3.3. Series & Limits

Series & Limits

Examples of operations on series include:

Symbolic summations:

```
syms x k
s = symsum(x^k, k, 0, inf)
```

s = piecewise([1 <= x, Inf], [abs(x) < 1, -1/(x-1)])

Remember that the geometric series is only finite for x<1

- Other functions for series and limits:
 - cumprod
 - o cumsum
 - pade
 - o rsums
 - symprod
 - o limit

Taylor Series

Taylor series:

$$T = (49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9$$

Taylor series can also be graphically manipulated:

taylortool(f)

3.4. Transforms

Transforms

- The symbolic toolbox can perform the transforms:
 - Fourier fourier
 - Laplace laplace
 - Z-Transforms ztrans

```
syms x s
f = 1/sqrt(x);
Lf = laplace(f, x, s)
```

```
Lf = pi^{(1/2)}/s^{(1/2)}
```

... and their inverse, ifourier, laplace and iztrans.

```
iLf = ilaplace(Lf, s, x) 。
```

```
iLf = 1/x^{(1/2)}
```


4. Equation Solving

Symbolic vs Numeric Solvers

SYMBOLIC SOLVER vs. NUMERIC SOLVER

solve

vpasolve

- Returns exact solutions, which can then be approximated using vpa
- Returns approximate solutions, whose precision can be controlled using digits
- Returns a general form of the solution, providing insight into the solution.

 Returns all/the first numeric solution(s) of polynomial/nonpolynomial equations.

Search ranges can be specified using inequalities.

Search ranges and starting points can be specified.

Can return parameterized solutions

- Does not return parameterized solutions.
- Equations may comprise parameters and inequalities
- Runs faster than the symbolic solver.

4.1. Algebraic Equations

Algebraic Equation Definition and Solving

An algebraic equation can be defined and solved using the solve command:

```
syms a b c x
eqn = a*x^2 + b*x + c == 0;
sol_x = solve(eqn, x)

sol_x =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
```

With the second argument of the solve function, specify the variable to solve for!
Otherwise, solve(eqn) would solve for the default variable, given by symvar(eqn,1).

```
sol_b = solve(eqn, b)

sol_b =

-(a*x^2 + c)/x
```

Algebraic Equation with Multiple Solutions

■ The solve function does **not** return **all solutions** by default:

```
syms x
sol_x = solve(cos(x) == -sin(x), x)
```

Algebraic Equation with Multiple Solutions

To return all solutions along with the parameters in the solution and the conditions on the solution, set the ReturnConditions option to true.

```
[sol_x, parameters, conditions] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)
sol_x =
pi*k - pi/4
parameters =
k
conditions =
in(k, 'integer')
```

Algebraic Equation with Multiple Solutions

■ Moreover, it is possible to use the **parameters** and **conditions** to find solutions under **additional conditions**. For instance, to find values of $x \in (0,2\pi)$:

```
assume(conditions)

sol_k = solve(0 < sol_x, sol_x < 2*pi, parameters)

It is possible to hand over multiple equations and even multiple variables!
```

To find values of x corresponding to these values of k, use subs to substitute for k in sol_x:

```
x_values = subs(sol_x, sol_k)

x_values =
(3*pi)/4
(7*pi)/4
```

System of Algebraic Equations

When solving for multiple variables at a time, solve returns a structure of solutions. For example, for the system:

$$u^{2} - v^{2} = a^{2}$$

$$u + v = 1$$

$$a^{2} - 2a = 3$$

```
syms u v a
S = solve(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3, [a, u, v])
```

a: [2x1 sym]

S =

u: [2x1 sym]

v: [2x1 sym]

Specifying the variables is optional when the number of equations equals the number of variables.

System of Algebraic Equations

■ The system of equations has **2 solutions**. The second solution can be **visualized** as follows.

$$[3, 5, -4]$$

System of Linear Equations

A systems of linear algebraic equations can also be solved using matrix division.

```
syms u v x y
equations = [x + 2*y == u, 4*x + 5*y == v];
[A,b] = equationsToMatrix(equations, x, y)
S = A \setminus b
                              Remember: this
A =
                             expression solves
[1, 2]
[4, 5]
                              A \cdot S = b for S.
```

```
b =
 u
 V
S =
 (2*v)/3 - (5*u)/3
     (4*u)/3 - v/3
```

Numerical Solving of Algebraic Equations

• Equations can be solved **numerically** using vpasolve. This is especially useful to find **polynomial roots**. For example, to solve $X^2 - 2 = 0$:

- -1.4142135623730950488016887242097
- 1.4142135623730950488016887242097

Again, digits can be used to adjust the desired precision.

Numerical Solving: Cases of Multiple Solutions

■ Non-polynomial equations can be solved numerically as well. Consider the function $f(x) = e^x + e^{-x} - 10$, with a minimum on zero and two (symmetrical) roots.

```
syms f(x)
f(x) = exp(x) + exp(-x) - 10;
sol_x = vpasolve(f)
```

Note that only one root has been found! To find the second root, provide an initial guess:

-2.292431669561177687800787311348

Numerical Solving: Cases of Multiple Solutions

The initial guess can also be a range:

It is also possible to make a random initial guess. We will randomly get either solution.

-2.292431669561177687800787311348

■ To avoid this, **combine** the **range** with a **random initial guess**.

vpasolve(f,[-3 3],'Random',true)

4.2. Ordinary Differential Equations (ODEs)

ODEs

ODEs can be solved using dsolve. For example,

$$\frac{dx(t)}{dt} = -5 \cdot x(t)$$

$$\Rightarrow x(t) = C \cdot e^{-5t}$$

$$x(t) = C5*exp(-5*t)$$

ODEs with Initial Condition

Note that dsolve works with integration constants. They can be directly eliminated by specifying initial conditions:

Higher order ODEs

Higher order ODEs require multiple initial conditions. To be able to specify these, create additional symbolic functions, like Du in this case.

```
syms u(b)
Du = diff(u,b);
u(b) = dsolve(diff(u, b, b) == cos(2*b) - u, u(0) == 1, Du(0) == 0)

u(b) =
```

```
1 - (8*\sin(x/2)^4)/3
```

Nonlinear ODEs can have multiple solutions, even if initial conditions are specified.

```
syms x(t)

x(t) = dsolve((diff(x,t) + x)^2 == 1, x(0) == 0)

x(t) = exp(-t) - 1
```

 $1 - \exp(-t)$

Systems of Ordinary Differential Equations

Systems of differential equations can be solved much like systems of algebraic equations.

```
syms f(t) g(t)
S = dsolve(diff(f,t) == 3*f + 4*g, diff(g,t) == -4*f + 3*g)

S =
    g: [1x1 sym]
    f: [1x1 sym]
```

It is also possible to retrieve f and g directly:

C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

```
[f(t), g(t)] = dsolve(diff(f,t) == 3*f + 4*g, diff(g,t) == -4*f + 3*g)

f(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
g(t) =
```

Systems of Ordinary Differential Equations

Systems of differential equations can also be solved in matrix form:

$$\dot{x} = Ax + B$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ t \end{bmatrix}$$

```
syms x1(t) x2(t)
A = [1 2; -1 1];
B = [1; t];
x = [x1; x2];
[x1, x2] = dsolve(diff(x) == A*x + B)
```

Systems of Ordinary Differential Equations


```
syms x1(t) x2(t)
A = [1 \ 2; -1 \ 1];
B = [1; t];
x = [x1; x2];
[x1, x2] = dsolve(diff(x) == A*x + B)
x1 =
2^{(1/2)} \exp(t) * \cos(2^{(1/2)} * t) * (C3 + (exp(-t) * (4*sin(2^{(1/2)} * t) + 2^{(1/2)} * cos(2^{(1/2)} * t)
+ 6*t*sin(2^{(1/2)*t}) + 6*2^{(1/2)*t*cos(2^{(1/2)*t})))/18) +
2^{(1/2)} \exp(t) \sin(2^{(1/2)}t) (C2 - (\exp(-t)^{(4*\cos(2^{(1/2)}t) - 2^{(1/2)}\sin(2^{(1/2)}t)}
+ 6*t*cos(2^{(1/2)*t}) - 6*2^{(1/2)*t*sin(2^{(1/2)*t}))/18)
x2 =
\exp(t)*\cos(2^{(1/2)*t})*(C2 - (\exp(-t)*(4*\cos(2^{(1/2)*t}) - 2^{(1/2)*sin(2^{(1/2)*t}) +
6*t*cos(2^{(1/2)*t}) - 6*2^{(1/2)*t*sin(2^{(1/2)*t}))/18) - exp(t)*sin(2^{(1/2)*t})*(C3 + C3)
(\exp(-t)*(4*\sin(2^{(1/2)*t}) + 2^{(1/2)*\cos(2^{(1/2)*t}) + 6*t*\sin(2^{(1/2)*t}) +
6*2^(1/2)*t*cos(2^(1/2)*t)))/18)
```


5. Symbolic Plotting Functions

Symbolic Plotting Functions

Apart from the standard MATLAB plotting functions, there are also symbolic plotting functions. Here are very simple example (corresponding figure on the bottom left):

```
syms x;
fplot(sin(6*x));
```


Symbolic Plotting Functions

With fimplicit, it is possible to combine two variables and plot an implicit equation:

```
syms x y;
fimplicit(sin(x) + sin(y) == sin(x*y));
```


Symbolic Plotting Functions

Numeric and symbolic plots can be combined:

```
x = 0:pi/10:4*pi;
y = sin(x) + (-1).^randi(10, 1, 41).*rand(1, 41)./2;
syms t;
figure; plot(x,y,'o'); hold on;
fplot(sin(t),[0, 4*pi]);
```

3-D symbolic plots are possible as well:

```
syms t;
x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
fplot3(x, y, z, [0 1]);
```


Other Symbolic Plotting Functions

Examples for other symbolic plots:

6. Code Generation

Code Generation: MATLAB Functions

Symbolic expressions and functions can be converted into code (MATLAB, Simulink, Simscape, C, Fortran, MathML, and TeX):

```
syms x y;

z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;

matlabFunction(z,'file','MExample.m');
```

The file created has the following content:

```
function z = MExample(x,y)
%MEXAMPLE
% Z = MEXAMPLE(X,Y)

% This function was generated by the Symbolic Math Toolbox version 8.3.
% 01-Oct-2019 15:29:18

by default, optimized code is
generated. (This intermediate variable
z = (x.^4.*3.0e+1)./(t2.*x+1.0e+1)-x.^3.*(t2+1.0).^2;
makes the code more efficient.)
```

Code Generation: Simulink Blocks

- Similarly, blocks can be created in a Simulink model.
 - First, the model needs to be opened (here simulink_system).
 - Then, a block (type: MATLAB function) can be created (here named pythagoras).

```
syms a b;
c = sqrt(a^2 + b^2);
matlabFunctionBlock('simulink_system/pythagoras',c);
```

Code Generation: C-Code

It is also possible to generate optimized C-Code:

```
syms x y;
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
ccode(z,'file','CExample');
```

It is also possible to generate optimized C-Code:

```
t2 = y*y;
t0 = ((x*x*x*x)*3.0E+1)/(t2*x+1.0E+1)-(x*x*x)*pow(t2+1.0,2.0);
```


7. List of Useful Commands

Code Generation: C-Code

Command	Explanation	Slide #	Command	Explanation	Slide #
sym	Create symbolic object	9	hessian	Hessian matrix	-
syms	Create symbolic object	9	jacobian	Jacobian matrix	-
assume	Make/clear an assumption	11	laplacian	Laplacian of scalar function	-
assumeAlso	Add assumptions	11	potential	Potential of vector field	-
assumptions	Show assumptions	11	vectorPotential	Vector potential of vec. field	-
subs	Substitute	18	symsum	Sum of series	26
simplify	Simplify expression/function	19	symprod	Product of series	-
symvar	Show symbolic variables	20	cumsum	Cumulative sum	-
digits	Show/set signif. decim. digits	16, 21	cumprod	Cumulative product	-
vpa	Variable Precision Arithmetic	21	taylor	Taylor series expansion	26
diff	Differentiate	23	taylortool	Taylor series calculator	26
int	Integrate	24	pade	Padé approximant	-
gradient	Compute gradient	25	rsums	Riemann sums (interactive)	-
divergence	Compute divergence	25	limit	Compute limit	-
curl	Curl of vector field	-	sympref	Symbolic preferences	-

Code Generation: C-Code

Command	Explanation	Slide #
laplace	Laplace transform	27
ilaplace	Inverse Laplace transform	27
fourier	Fourier transform	-
ifourier	Inverse Fourier transform	-
ztrans	Z-transform	-
iztrans	Inverse Z-transform	-
solve	Symbolic solver	31
vpasolve	Numeric solver	36
equationsToMatrix	Convert set of linear equations to matrix form	35
dsolve	ODE solver	39

Command	Explanation	Slide #
fplot	Symbolic 2D plot	45
fplot3	Symbolic 3D plot	46
ezpolar	Symbolic polar plot	-
fsurf	Symbolic surface plot	47
fmesh	Symbolic mesh plot	47
fcontour	Symbolic contour plot	47
fimplicit	Implicit function 2D plot	45
fimplicit3	Implicit function 3D plot	-
matlabFunction	Generate MATLAB function	49
matlabFunctionBlock	Generate MATLAB function block for Simulink	50
ccode	Generate C-Code	50

8. Self-assessment

Self-assessment

- What are the differences between numeric and symbolic computation?
- How can you tell, simply looking at the Command Window, that an output is symbolic?
- What two commands allows you to create symbolic variables? Symbolic matrices?
- What command do you use to convert an expression (string) into a symbol?
- Write down the lines of code to:
 - Define a symbolic variable r
 - Assume it to be real
 - Then assume it to be positive
 - Finally, clear the assumptions on r
- Do you need the subs command to evaluate a symbolic function?
- How does the digits command affect the output of the vpa command?

Self-assessment

What famous number is given by the following series?

$$\sqrt{12}\sum_{k=0}^{\infty}\frac{(-3)^{-k}}{2k+1}$$

You should find it to be equal to:

$$\int_{-\infty}^{+\infty} \frac{dx}{1+x^2}$$

- What additional symbolic function can it be useful to define when solving higher order differential equations?
- What function do you use to plot implicit functions? Plot the equation of a hyperbola:

$$x^2 - y^2 = 1$$