Optimal Algae species for Efficient use in photobioreactors

Study	Citation (APA 7 th Edition)	Key Focus/ Notes
Advances in Chlorella Microalgae for Sustainable Wastewater Treatment and Bioproduction.	Yazan Abuhasheesh, Ghazal, A., Ying, D., Banat, F., Hasan, S. W., & Show, P. L. (2025). Advances in Chlorella Microalgae for Sustainable Wastewater Treatment and Bioproduction. Chemical Engineering Journal Advances, 100715–100715. https://doi.org/10.1016/j.cej a.2025.100715 (Yazan Abuhasheesh et al., 2025)	This study highlights the potential of Chlorella microalgae for efficient wastewater treatment and bioproduction, emphasizing its role in nutrient removal, biomass recovery, and sustainability in engineered systems.
Recent Developments on the Performance of Algal Bioreactors for CO2 Removal: Focusing on the Light Intensity and Photoperiods	Shareefdeen, Z., Elkamel, A., & Babar, Z. B. (2023). Recent Developments on the Performance of Algal Bioreactors for CO2 Removal: Focusing on the Light Intensity and Photoperiods. <i>BioTech</i> , <i>12</i> (1), 10. https://doi.org/10.3390/biotech12010010	This study explores how light intensity, and photoperiods affect the performance of algal bioreactors for CO ₂ removal, offering insights into optimizing lighting conditions for enhanced algal growth and carbon capture efficiency.

These citations help in brainstorming ideas and solutions for materials and set up processes in low-income regions.

Bioreactor Design Studies in Low-income areas

Study	Citation (APA 7 th Edition)	Key Focus/ Notes
Development of thin-film	Jae Jun Yoo, Seung Phill Choi,	Research shows thin film
photo-bioreactor and its	Kim, Won Seok Chang, &	photobioreactors made
application to outdoor	Sang Jun Sim. (2013)	from polypropylene are
culture of microalgae	Development of thin-film	effective for outdoor
(2013)	photo-bioreactor and its	cultivation of <i>Chlorella</i>
	application to outdoor	<i>vulgari</i> s. This design
	culture of microalgae.	supports efficient light
	Bioprocess and Biosystems	penetration and algae
	Engineering (Print), 36(6),	growth in a compact, low-
	729–736.	cost setup, which could be
	https://doi.org/10.1007/s004	adapted for low-income
	49-013-0898-2	community applications.
	(Jae Jun Yoo., 2013)	
A simple and low-cost airlift	Xu, Z., Baicheng, Z., Yiping, Z.,	A simple, low-cost airlift
photobioreactor for	Zhaoling, C., Wei, C., & Fan,	photobioreactor uses air
microalgal mass culture	O. (2002). Biotechnology	bubbles for mixing and CO ₂
(2002)	Letters, 24(21), 1767–1771.	supply, enabling efficient
	https://doi.org/10.1023/a:10	microalgae cultivation
	20648919331 (Xu et al., 2002)	without mechanical stirring.
	(Xu et al., 2002)	, mane de moentame de cum mg.
Development of a	Ugwuishiwu, B., Obi, O., & JN	A low-cost, 12-chamber
photobioreactor for	Nwakaire. (2016).	photobioreactor using
microalgae culture (2016)	DEVELOPMENT OF A	poultry dung as a nutrient
	PHOTOBIOREACTOR FOR	source and powered by
	MICROALGAE CULTURE.	solar and rechargeable
	Nigerian Journal of	battery illumination,
	Technology, 32(1), 148-151.	designed for continuous
	https://doi.org/10.4314/njt.3	algae growth in rural or off-
	21.622	grid settings.
	(Ugwuishiwu et al., 2016)	