ECE 450 - Homework #5

Collin Heist

October 4, 2019

1 ECE 450 - Homework #5

1.1 Problem 7.3.1

1.1.1 Part (a)

$$H(s) = \frac{s}{(s+1)(s^2+7s+10)(s+14)}$$

Step Response

$$e_{ss}^{step} = \frac{1}{1 + \lim_{s \to 0} (\frac{s}{(s+1)(s^2+7s+10)(s+14)})}$$

$$e_{ss}^{step} = 1$$

Ramp Response

$$e_{ss}^{ramp} = \frac{1}{\lim_{s \to 0} \left(s \cdot \frac{s}{(s+1)(s^2+7s+10)(s+14)}\right)}$$

$$e_{ss}^{ramp} = \infty$$

Parabolic Response

$$e_{ss}^{parabola} = \frac{2}{\lim_{s \to 0} \left(s^2 \cdot \frac{s}{(s+1)(s^2+7s+10)(s+14)}\right)}$$

$$e_{ss}^{parabola} = \infty$$

1.1.2 Part (b)

$$H(s) = \frac{s+5}{s(s+1)^2(s+2)(s^2+s+1)}$$

Step Response

$$e_{ss}^{step} = \frac{1}{1 + \lim_{s \to 0} (\frac{s+5}{s(s+1)^2(s+2)(s^2+s+1)})}$$

$$e_{ss}^{step} = 0$$

Ramp Response

$$e_{ss}^{ramp} = rac{1}{\lim_{s o 0} (s \cdot rac{s+5}{s(s+1)^2(s+2)(s^2+s+1)})}$$

$$e_{ss}^{ramp} = rac{1}{rac{5}{(1)^2(2)(1)}}$$

$$e_{ss}^{ramp} = rac{2}{5}$$

Parabolic Response

$$e_{ss}^{parabola} = \frac{2}{\lim_{s \to 0} (s^2 \cdot \frac{s+5}{s(s+1)^2(s+2)(s^2+s+1)})}$$

$$e_{ss}^{parabola} = \infty$$

1.2 Problem 7.5.1

1.2.1 Package Imports

```
In [1]: import numpy as np
    import seaborn as sns
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy import signal as sig
    from control import margin, tf
```

1.2.2 Generic functions for the step, ramp, and parabolic response

1.2.3 Generic function to convolve any number of equations

```
In [3]: def convolve_all(values):
    temp_conv = values[0]
    if len(values) > 1:
        for next_val in values[1:]:
        temp_conv = np.convolve(temp_conv, next_val)
    return temp_conv
```

1.2.4 Generic function to generate the magnitude and phase of $H(j\omega)$ values

```
system = sig.lti(num, den)
w, h_mag, h_phase = sig.bode(system, np.arange(omega_range[0], omega_range[1], ome
_, phase_margin, _, crossover_w = margin(h_mag, h_phase, w)

df_list = []
df = pd.DataFrame(list(zip(w, h_mag)), columns=["$\omega$", "Value"])
df["Kind"] = "Magnitude Response"
df_list.append(df)

df = pd.DataFrame(list(zip(w, h_phase)), columns=["$\omega$", "Value"])
df["Kind"] = "Phase Response"
df_list.append(df)

return pd.concat(df_list, ignore_index=True, axis=0), phase_margin, crossover_w
```

1.2.5 Generic function to obtain response of a system to inputs

```
In [111]: def response_to_inputs(num, den, input_funcs, input_names, time, gain_num=None, gain_d
              df_list = []
              # If a gain equation was given, adjust the system num / dun
              if isinstance(gain_num, (np.ndarray, list)) and isinstance(gain_den, (np.ndarray,
                  num = convolve_all([num, gain_num])
                  den = convolve_all([den, gain_den])
              num = np.pad(num, (len(den) - len(num), 0), "constant") # Make arrays same length
              den = np.add(den, num)
              for in_name, in_f in zip(input_names, input_funcs):
                  df = pd.DataFrame(list(zip(time, in_f(time))), columns=["Time", "Value"])
                  df["Kind"] = df["Name"] = in_name
                  df["Error"] = "Response"
                  df_list.append(df)
                  _, response, _ = sig.lsim((num, den), in_f(time), time)
                  df = pd.DataFrame(list(zip(time, response)), columns=["Time", "Value"])
                  df["Kind"] = in_name
                  df["Name"] = in_name + " - Response"
                  df["Error"] = "Response"
                  df_list.append(df)
                  response_err = np.subtract(in_f(t), response)
                  df = pd.DataFrame(list(zip(time, response_err)), columns=["Time", "Value"])
                  df["Kind"] = in_name
                  df["Name"] = in_name + " - Error"
                  df["Error"] = "Error"
                  df_list.append(df)
```

```
return pd.concat(df_list, ignore_index=True, axis=0)
```

df = magnitude_phase_response(num, den, [0.1, 1e2], 0.001)

1.2.6 Generic function to plot the responses of a system

create_plots(df);

The above errors **do** correspond to the errors determined by looking at the steady state errors of the transfer function.

1.2.8 Part (b)

I'll adjust the gain to try and reduce the ramp error without adding too much of a sinusoidal response.

```
In [62]: comp_network_num = [2.5]
    comp_network_den = [1]

t = np.arange(0, 30, 0.01)
    df = response_to_inputs(num, den, [step, ramp, parabola],
```

["Step", "Ramp", "Parabolic"], t, comp_network_num, comp_networ
create_plots(df, True);

Without being given specifics on what is 'unacceptable' behavior for this system, I am concluding that reducing the steady state ramp error to 0.2 is adequate, and the response's sinusoidal behavior is acceptable.

1.3 Problem 7.6.1

```
In [97]: num = [10 ** 3]
    den = [1, 20, 10]
    gain_num, gain_den = [1], [1]

df, phase_margin, crossover_w = magnitude_phase_response(num, den, [0.1, 10 ** 3], 0.1,
```

print ("Crossover at {:.3f} (rad/s) has a phase-margin of {:.3f} degrees".format(crosso create_plots(df);

Crossover at 26.856 (rad/s) has a phase-margin of 37.060 degrees

In [119]:
$$df[(df["Value"] \le -2.76) \& (df["Value"] \ge -2.77)]$$

In order to design a phase margin of 50 degrees, I'll do the following:

$$\alpha = \frac{1 + \sin(50^{\circ} - 37.06^{\circ} + 5)}{1 - \sin(50^{\circ} - 37.06^{\circ} + 5)} = 1.89 = -2.765dB$$

Thus,

$$\omega_m \approx 40.32 \frac{rad}{s}$$
 $\omega_p = \omega_m \cdot \sqrt{\alpha} = 55.43$
 $\omega_z = \frac{\omega_m}{\sqrt{\alpha}} = 29.33$

Therefore, the total transfer function of the gain compensation network is defined as:

$$G_c(s) = \frac{55.43}{29.33} \cdot \frac{s + 29.33}{s + 55.43}$$

```
In [120]: num = [10 ** 3]
          den = [1, 20, 10]
          gain_num = np.multiply(55.43, [1, 29.33])
          gain_den = np.multiply(29.33, [1, 55.43])

df, phase_margin, crossover_w = magnitude_phase_response(num, den, [0.1, 10 ** 3], 0.0
          print ("Crossover at {:.3f} (rad/s) has a phase-margin of {:.3f} degrees".format(cross create_plots(df);
```

Crossover at 30.934 (rad/s) has a phase-margin of 50.519 degrees

Given the previously computed $G_c(s)$, the new phase margin is 50.519°, which was what was requested.

1.4 Problem 7.6.5

I will start with a simple compensation network with a gain of 65, as this should reduce the parabolic error at one second to less than 1%.

However, this results in unacceptable oscillation for the step response. To combat this, I'll add a phase lead component to this compensation network.

After some trial and error, the below listed compensation network gives me a parabolic response error of less than 1% by 1 second, the overshoot to the step response is less than 10%, and settles to less than 1% within 0.05 seconds.

The network is characterized by:

$$H_c(s) = 75 \cdot \frac{s + 60}{s + 200}$$