

Universidad de Panamá

Facultad de Informática, Electrónica y Comunicación

Escuela de Ingeniería de informática

Computabilidad y Complejidad de Algoritmo

Práctica

Máquina de Turing

Integrantes:

Jesús de Gracia / 8-1086-1646 Gisela Ojo / 8-904-2058

Profesor

Ajax Mendoza

Fecha de Entrega

18 de septiembre de 2020

Ejercicios de Máquinas de Turing

Generar la tabla de Transición y el diagrama transición para los diferentes problemas

1. Diseñar una Máquina de Turing que calcule el complemento a 1 de un número binario.

(Es decir, que sustituya los 0's por 1's y los 1's por 0's).

Solución:

$$\begin{array}{l} \textbf{Q} \! = \! \{ q0, \! q1, \! q2 \} \\ \boldsymbol{\Sigma} \! = \! \{ 0, \! 1 \} \\ \boldsymbol{\Gamma} \! = \! \{ 0, \! 1, \! B \} \\ \delta(q0, \! 0) = (q0, \! 1, \, R), \, \delta(q0, \! 1) = (q0, \! 0, \, R), \, \delta(q0, \, B) = (q1, \, B, \, L), \, \delta(q1, \! 0) = (q1, \, 0, \, L), \\ \delta(q1, \! 1) = (q1, \! 1, \, L), \, \delta(q1, \! B) = (q2, \, B, \, R) \\ \boldsymbol{S} \! = \! \{ \! q0 \! \} \\ \boldsymbol{F} \! = \! \{ \! q2 \! \} \end{array}$$

Tabla de transición:

Estados	0	1	В
q0	(q0,1, R)	(q0,0, R)	(q1, B, L)
q1	(q1, 0, L)	(q1,1, L)	(q2, B, R)
q2			

2. Diseñar una Máquina de Turing que obtenga el sucesor de un número en codificación unaria. Considerar en la codificación unaria que el 0 se representa por la cadena vacía, el 1 por 1, el 2 por 11, etc.

Solución:

$$Q=\{q0,\,q1\}$$

$$\Sigma=\{1\}$$

$$\Gamma=\{1,\,B\}$$

$$\delta(q0,1)=(q0,1,\,R),\,\delta(q0,\,B)=(q1,1,S)$$

$$S=\{q0\}$$

$$F=\{q1\}$$

Tabla de transición:

Estados	1	В
q0	(q0,1,R)	(q1,1,S)
q 1		

3. Diseñar una Máquina de Turing que obtenga el predecesor de un número en codificación unaria. Considerar la codificación unaria del 0 igual que en el ejercicio 2.

Solución:

$$Q = \{q0, q1, q2\}$$

$$\Sigma$$
= {1}

$$\Gamma$$
= {1, B}

$$\delta(q0,1) = (q0,1, R), \delta(q0,1)? = (q1, B, L), \delta(q1,1) = (q2, B, L)$$

$$S = \{q0\}$$

$$F=\{q2\}$$

Tabla de transición:

Estados	1	В
q0	(q0,1,R)	(q1,B,L)
q1	(q2,B,L)	
q2		

4. Diseñar una Máquina de Turing que calcule la paridad de un número binario. Es decir, si el número de 1's de la cadena es par, se añade un 0 al final, y si es impar, se añade un 1.

Solución:

$$Q = \{q0, q1, q2\}$$

$$\Sigma = \{0,1\}$$

$$\Gamma = \{0,1,B\}$$

$$\delta(q0,0) = (q0,0, R), \delta(q0,1) = (q1,1, R), \delta(q0,0) = (q2,0, S),$$

$$\delta(q1,0) = (q1,0, R), \delta(q1,1) = (q0,1, R), \delta(q1, B) = (q2,1,S)$$

$$F = \{q2\}$$

Tabla de transición:

Estados	0	1	В
q0	(q0,0,R)	(q1,1,R)	(q2,0,S)
q1	(q1,0, R)	(q0,1,R)	(q2,1,S)
q 2			

