Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 10.11.2015

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Leitungsgleichungen

a. Zeichnen Sie eine schematische Skizze der Leiteraufhängung, beschriften Sie die Leiter und bemaßen Sie die Leiterabstände in beiden Koordinatenachsen.

b. Wie groß ist die **längenbezogene symmetrische Betriebsinduktivität** und **längenbezogene symmetrische Betriebskapazität** der Leitung?

$$L_{B}' = 1107 \frac{\mu H}{km}$$

$$C_{B}' = 10.28 \frac{\text{nF}}{\text{km}}$$

c. Wie groß ist der Wellenwiderstand der verlustlosen Leitung (R' = $0\frac{\Omega}{\rm km}$, G' = $0\frac{S}{\rm km}$) ?

$$Z_{w} = 328.17 \ \Omega$$

d. Die Leitung wird im Leerlauf betrieben. Wie groß ist die **Spannung am Ende** der verlustlosen Leitung?

$$U_2 = 221.24 \text{ kV}$$

e. Berechnen Sie die thermisch übertragbare Scheinleistung der Leitung.

$$S_{th} = 278.17 \text{ MVA}$$

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

Prüfung vom 10.11.2015 **EV - 2015**

f. Die Leitung wird an ihrem Ende mit einer dreiphasigen, ohmsch-induktiven Last abgeschlossen (siehe Bild rechts) und am Leitungsanfang mit Nennspannung betrieben. Wie groß ist die ist die Eingangsimpedanz Z₁ der verlustlosen Leitung?

$$Z_1 = 41.52 + j75.35 \Omega$$

2. Zweipoliger Kurschluss mit Erdberührung

a. Zeichnen Sie die **Ersatzschaltung** im Mit-, Gegen- und Nullsystem mit korrekter Verschaltung der drei Systeme für den dargestellten Kurzschlussfall

b. Berechnen Sie die wirksamen Impedanzen des Generators, des Transformators und der Leitung (in Ohm) am Kurzschlussort.

$$\underline{Z}_G = j7 \Omega$$

$$\underline{Z}_T = j8 \ \Omega$$

$$\underline{Z}_{L1_V}=j9~\Omega$$

$$\underline{Z}_{CE} = -j1.989 \cdot 10^4 \Omega$$

c. Berechnen Sie die Mit-, Gegen und Nullimpedanz.

$$\underline{Z}_{(1)} = j24 \Omega$$

$$\underline{\underline{Z}}_{(2)} = j24 \Omega$$

$$\underline{Z}_{(0)} = \infty$$
 (Parallelresonanz)

Prüfung vom 10.11.2015 **EV - 2015**

d. Wie groß ist die im Sternpunkt verwendete **Petersenspule**, sodass die Leitungskapazitäten exakt kompensiert werden?

$$L_{PFT} = 21.09 \text{ H}$$

e. Wie groß sind die drei **Komponentenströme** $\underline{I}_{(0)}$, $\underline{I}_{(1)}$ und $\underline{I}_{(2)}$ am Kurzschlussort?

$$\underline{l}_{(0)} = 0 \text{ A}$$
 $\underline{l}_{(1)} = -j240.56 \text{ A}$
 $\underline{l}_{(2)} = j240.56 \text{ A}$

f. Wie groß sind die drei **Phasenströme** <u>I(a)</u>, <u>I(b)</u> und <u>I(c)</u> am Kurzschlussort?

$$I_a = 0 \text{ A}$$
 $I_b = -416.67 \text{ A}$
 $I_c = 416.67 \text{ A}$

3. Wirtschaftlichkeitsbetrachtung eines Solarkraftwerks

g. Wie hoch sind die **Stromgestehungskosten** für das **Versuchskraftwerk** "Gemasolar"

$$k_{Sol} = 0.3048$$
 $\frac{\text{kWh}}{\text{kWh}}$

h. Wie hoch sind die **Stromgestehungskosten** des **GuD-Kraftwerks**, wenn es die gleiche Volllaststundenzahl pro Jahr aufweist, wie das Versuchskraftwerk?

$$k_{GuD} = 0.112 \frac{\text{m}}{kWh}$$

i. Wie hoch dürften die spezifischen Errichtungskosten vom Solarkraftwerk maximal sein, damit dieses mit dem konventionellen GuD-Kraftwerk konkurrieren kann? Hinweis: Auch die leistungsabhängigen Kosten ändern sich, sie belaufen sich weiterhin auf 6% der jeweiligen Errichtungskosten!

i. Um zusätzliche 25 Mio. € könnte das **Solarkraftwerk** mit größeren Speichern ausgestattet werden, wodurch sich die Volllaststundenzahl um 15% erhöht. Wäre dies eine **sinnvolle Investition**? (Es gilt hier ebenso der Hinweis von Punkt c.)

$$k'_{Sol} = 0.294$$
 $\frac{\epsilon}{kWh}$

Dies ist eine sinnvolle Investition.

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Theoriefragen

Richtige Lösungen: 1a, 2a, 3a, 4b, 5c, 6a, 7c, 8a, 9a, 10a, 11a, 12a, 13b, 14c, 15a, 16a, 17.1b, 17.2c, 17.3a, 18b, 19b, 20a, 21a