Най-редки насекоми

Има N насекоми, индексирани от 0 до N-1, тичащи около къщата на Пак Блангкон. Всяко насекомо има **тип**, което е цяло число между 0 и 10^9 включително. Няколко насекоми могат да имат един и същи тип.

Да предположим, че насекомите са групирани по тип. Ние определяме кардиналността на **най-често срещания** тип насекомо като броя на насекомите в група с най-голям брой насекоми. По същия начин кардиналността на **най-редкия** тип насекомо е броят на насекомите в група с най-малък брой насекоми.

Да предположим например, че има 11 насекоми, чиито типове са [5,7,9,11,11,5,0,11,9,100,9]. В този случай кардиналността на **най-често срещания** тип насекомо е 3. Групите с най-голям брой насекоми съдържат насекоми от тип 9 и от тип 11, всяка от които се състои от 3 насекоми. Кардиналността на **най-редкия** вид насекомо е 1. Групите с най-малък брой насекоми съдържат насекоми от тип 7, от тип 0 и от тип 100, всяка от които се състои от 1 насекомо.

Пак Блангкон не знае вида на нито едно насекомо. Той има машина с един бутон, която може да предостави информация за видовете насекоми. Първоначално машината е празна. При използване на машината, могат да се извършват три вида операции:

- 1. Преместете насекомо вътре в машината.
- 2. Преместете насекомо извън машината.
- 3. Натиснете бутона на машината.

Всеки тип операция може да се извърши най-много $40\ 000$ пъти.

Всеки път, когато бутонът бъде натиснат, машината отчита кардиналността на **най-често срещания** тип насекомо, като се вземат предвид само насекомите вътре в машината.

Вашата задача е да определите кардиналността на **най-редкия** тип насекомо сред всички N насекоми в къщата на Пак Блангкон, като използвате машината. Освен това, в някои подзадачи вашият резултат зависи от максималния брой операции от даден тип, които се изпълняват (за подробности вижте раздела Подзадачи).

Детайли по имплементацията

Трябва да имплементирате следната процедура:

int min_cardinality(int N)

- N: броят на насекомите.
- Тази процедура трябва да върне кардиналността на **най-редкия** тип насекомо сред всички N насекоми в къщата на Пак Блангкон.
- Тази процедура се извиква точно веднъж.

Горната процедура може да извиква следните процедури:

```
void move_inside(int i)
```

- i: индексът на насекомото, което ще бъде преместено вътре в машината. Стойността на i трябва да бъде между 0 и N-1 включително.
- Ако това насекомо вече е вътре в машината, извикването няма ефект върху набора от насекоми в машината. Въпреки това, то се брои като отделно извикване.
- Тази процедура може да бъде извикана най-много $40\ 000$ пъти.

```
void move_outside(int i)
```

- i: индексът на насекомото, което ще бъде преместено извън машината. Стойността на i трябва да бъде между 0 и N-1 включително.
- Ако това насекомо вече е извън машината, извикването няма ефект върху набора от насекоми в машината. Въпреки това, то се брои като отделно извикване.
- Тази процедура може да бъде извикана най-много $40\ 000$ пъти.

```
int press_button()
```

- Тази процедура връща кардиналността на най-често срещания тип насекомо, като се вземат предвид само насекомите вътре в машината.
- Тази процедура може да бъде извикана най-много $40\ 000$ пъти.
- ullet Грейдърът е **не адаптивен**. Това означава, че типовете на всички N насекоми са фиксирани, преди да се извика min_cardinality.

Пример

Разглеждаме сценарий, в който има 6 насекоми съответно от типове [5,8,9,5,9,9]. Процедурата min_cardinality се извиква по следния начин:

```
min_cardinality (6)
```

Процедурата може да извика move_inside, move_outside и press_button, както следва.

Извикване	Върната стойност	Насекоми в машината	Видове насекоми в машината
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		$\{0,1\}$	[5, 8]
<pre>press_button()</pre>	1	$\{0,1\}$	[5, 8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
<pre>press_button()</pre>	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
<pre>press_button()</pre>	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
<pre>press_button()</pre>	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

Към този момент, е събрана достатъчно информация, за да заключим, че кардиналността на най-редкия вид насекомо е 1. Следователно процедурата $min_cardinality$ трябва да върне 1.

В този пример move_inside се извиква 7 пъти, move_outside се извиква 1 пъти, a press_button се извиква 6 пъти.

Ограничения

• $2 \le N \le 2000$

Подзадачи

- 1. (10 points) $N \leq 200$
- 2. (15 points) $N \leq 1000$
- 3. (75 points) Без допълнителни ограничения.

Ако в някой от тестовите случаи извикванията на процедурата move_inside, move_outside или press_button не съответстват на ограниченията, описани в Детайли по

имплементацията, или върнатата стойност на $min_cardinality$ е неправилна, резултатът от вашето решение за тази подзадача ще бъде 0 точки.

Нека q е **максимумът** от следните три стойности: броя извиквания на move_inside, броя извиквания на move_outside и броят извиквания на press_button.

В подзадача 3 можете да получите частичен резултат. Нека m е максималната стойност на $\frac{q}{N}$ във всички тестови случаи в тази подзадача. Вашият резултат за тази подзадача се изчислява съгласно следната таблица:

Условие	Точки		
20 < m	0 (съобщава се като "Output isn't correct" в CMS)		
$6 < m \leq 20$	$\frac{225}{m-2}$		
$3 < m \le 6$	$81-rac{2}{3}m^2$		
$m \leq 3$	75		

Примерен грейдър

Нека T е масив от N цели числа, където T[i] е видът на насекомото i.

Примерният грейдър чете входа в следния формат:

- ред 1: *N*
- ред 2: \$T[0] \; T[1] \; \Іточки \; T[N 1]\$

Ако примерният грейдър открие нарушение на протокола, изходът на примерния грейдър е Protocol Violation: <MSG>, където <MSG> е едно от следните:

- invalid parameter: при извикване на move_inside или move_outside, стойността на i не е между 0 и N-1 включително.
- \bullet too many calls: броят на извикванията на **някое** от move_inside, move_outside или press_button надвишава 40~000.

В противен случай изходът на примерния грейдър е в следния формат:

- ред 1: върнатата стойност на min_cardinality
- ред 2: q