Relacionamento entre classes: Associação, Agregação e Composição

Prof. Pedro Pongelupe

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Departamento de Ciência da Computação

Sumário

Relacionamento entre objetos

- Associação
- Agregação
- Composição
- Agregação x Composição

Uso e reuso: pensando em orientação por objetos

Modularidade e Reusabilidade

Quando pensamos sistemas em módulos, intuitivamente, pensamos em reutilizar os módulos em várias partes do mesmo sistema ou em até vários sistemas.

- Programar é uma atividade de repetição com pequenas modificações.
- Pensar em abordagens para construir um catálogo de componentes de software.
- Modularidade é a chave para atingir alto grau de reusabilidade.
- Reusabilidade é fundamental para reduzir custos e aumentar confiabilidade.

Objetos e relacionamentos

Objetos não funcionam sozinhos!

- Usam/se comunicam com outros;
- Contêm ou são formados por outros;
- Programação Orientada por Objetos é baseada na troca de mensagens entre os objetos.

Relacionamentos entre objetos

- Associação: objeto "usa" serviços de outro objeto.
 - Mensagens disparam operações.
 - Operações (métodos) retornam resultados.
- Agregação: objeto definido em termos de seus componentes.
 - relação parte/todo ("tem um").
- Composição: relação "está contido".
 - dependência de tempo de vida entre a parte e o todo.

Associação

Principais características

- Relacionamento denotado por "usa um".
- Objetos são associados, mas não há relação de pertinência.
 - Um carro usa uma estrada.
 - Pessoas fazem uma festa.
 - Vários instrumentos são tocados por uma orquestra.

Associação

Pessoa	proprietario	frota	Carro
	1	*	

Classe de associação

Agregação

Principais características

- Relacionamento denotado por "tem/contém um".
- Objetos definidos em termos dos seus componentes.
- Tempos de vida independentes.
 - Um computador tem um teclado.
 - Um time tem vários atletas.
 - Um automóvel contém um rádio.

Agregação

Representação gráfica: losango vazado (no lado todo)

Agregação

Composição

Principais características

- Relacionamento denotado por "é formado por".
- Relacionamento mais forte que a agregação.
- Tempos de vida dependentes A existência da parte não faz sentido se o todo deixar de existir.
 - Um livro é formado por vários capítulos.
 - Um pedido é feito de vários itens.
 - Um automóvel contém um motor e portas.

Composição

Representação gráfica: losango preenchido (no lado todo)

Agregação x composição

- Agregação: a existência da "parte" faz sentido, mesmo não existindo "todo".
 - partes podem eventualmente pertencer a mais de um todo (n\u00e3o simultaneamente).
 - Ex: Atleta → Time
- Composição: relacionamento mais forte. A existência da parte não faz sentido se o todo não existir.
 - as partes n\u00e3o podem ser compartilhadas.
 - Ex: Itens → Pedido
- Relacionamentos do tipo "composição" indicam que se apaguem os objetos associados quando o todo for destruído/finalizado.

Agregação x Composição

Exemplo de agregação e composição

Exemplo de agregação e composição

Agregação x Composição

Obrigado!!

Muito obrigado pela atenção! Alguma dúvida? Bora praticar!!!

"O conhecimento nos faz responsáveis."