<u>Trabajo Práctico Nº 3:</u> Modelos para Variables Categóricas No Ordenadas.

Ejercicio 1: Alternativas de Pesca.

La variable dependiente y toma el valor 1, 2, 3 o 4, dependiendo de cuál de los cuatro modos alternativos de pesca, respectivamente, playa, muelle, barco privado y barco chárter, se elija. En la base de datos, estos son beach, pier, private o charter. Los datos provienen de Herriges, J. A. y Kling, C. L. (1999): "Nonlinear Income Effects in Random Utility Models", Review of Economics and Statistics, 81, 62-72.

(a) Abrir la base y describir las categorías.

Fishing mode	 N(income	mean(income)	sd(income)
beach pier private charter	13 17 41 45	8 3.387172 8 4.654107	2.50542 2.340324 2.777898 2.050029

Fishing mode		mean(pbeach)	mean(p	pier)	mean(pprivate) mean(pcharter)
beach pier private charter		35.69949 30.57133 137.5271 120.6483	30. 137	69949 57133 7.5271 0.6483	97.8091 82.4290 41.6068 44.5637	8 109.7634 1 70.58408

Fishing mode		mean(qbeach)	mean(qpier)	mean(qprivate)	mean(qcharter)
beach pier private charter	 	.2791948 .2614444 .2082868 .2519077	.2190015 .2025348 .1297646 .1595341	.1593985 .1501489 .1775412 .1771628	.5176089 .4980798 .6539167 .6914998

(b) *Estimar un modelo logit multinomial.*

Logit multinomial (betas):

Multinomial logistic regression Log likelihood = -1477.1506					Number of ob LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000
mode	Coefficient	Std. err.			[95% conf.	interval]
	(base outcor +	ne)				
pier income	1434029 .8141503	.0532884				
	.0919064 .7389208					
	 0316399 1.341291		-0.76 6.90		1136571 .9600457	

<u>Logit multinomial (relative-risk ratios):</u>

Multinomial logistic regression Log likelihood = -1477.1506					Number of obs LR chi2(3) Prob > chi2 Pseudo R2	= 41.14 = 0.0000
mode	RRR	Std. err.	z	P> z	[95% conf.	interval]
beach	' (base outcor +	me)				
pier income _cons	.8664049 2.257257				.7804799 1.442013	.9617896 3.5334
private income _cons	1.096262 2.093675		2.26 3.76		1.012282 1.423808	1.18721 3.078697
charter incomecons	.9688554 3.823979		-0.76 6.90		.8925639 2.611816	1.051668 5.598715

Note: $_{cons}$ estimates baseline relative risk for each outcome.

(c) Estimar un modelo logit condicional.

Maestría en Econometría UTDT - Microeconometría I | 3

Juan Menduiña

<u>Logit condicional:</u>

Alternative-specific conditional logit Case ID variable: id				Number o			•
Alternatives v	Alts per	a	in = vg = ax =	4 4.0 4			
Log likelihood	d = -1215.1376			chi2(5) > chi2			
d	Coefficient		Z		[95%	conf.	interval]
fishmode p q	0251166 .357782						
beach	(base alter	native)					
charter income _cons	0332917 1.694366			0.508			
pier income _cons	1275771 .7779593						
private income _cons	.0894398 .5272788	.0500671 .2227927					.1875694

Ejercicio 2: Predicción de Calificaciones de Clientes.

Net Promoter Score®, o NPS®, mide la experiencia del cliente y predice el crecimiento del negocio. Es utilizada por empresas que brindan servicios al consumidor final (bancos, telefónicas, etc). EL NPS se calcula usando la respuesta a una pregunta usando una escala de 0 a 10: ¿Qué tan probable es que recomiende a un amigo o colega? Los encuestados se agrupan de la siguiente manera:

- Los promotores (puntuación 9-10) son entusiastas leales que seguirán comprando y recomendarán a otros, lo que impulsará el crecimiento.
- Los neutrales (puntuación 7-8) son clientes satisfechos pero poco entusiastas que son vulnerables a las ofertas de la competencia.
- Los detractores (puntuación 1-6) son clientes insatisfechos que pueden dañar su marca e impedir el crecimiento a través del boca a boca negativo.

Al restar el porcentaje de detractores del porcentaje de promotores, se obtiene el puntaje neto del promotor, que puede oscilar entre un mínimo de -100 (si todos los clientes son detractores) y un máximo de 100 (si todos los clientes son promotores). Estas encuestas se utilizan para generar estrategias de originacion (nuevos clientes) y de reducción de churn (fuga de clientes). La base con la que se va a hacer la primera parte de la práctica consiste en la encuesta de NPS que se le hace a los clientes de un Banco luego de efectuar una transacción en caja. En base a esto, utilizando la base "NPS.dta", responder las siguientes preguntas.

(a) Abrir y describir la base.

Variable	Obs	Mean	Std. dev.	Min	Max
nps marital_st~e	42 , 019	8.369975	2.263878	1	10
gender_code edad branch_desc	42 , 020	52.16497	12.56996	19	101
segmento	0				
operaciones mes nps anterior	42,020 42,020	1.728439 6.736292	1.476585 3.241668	1 1	31 12
hora	42,020	11.7812	1.743031	7	18
dia dia	42 , 020 0	14.91792	8.634796	1	31
espera cliente	42,020 42,020	10.89938 21372.36	10.70589 12335.51	0 1	60 42760

(b) Generar una variable que clasifique a los clientes en función de si son promotores, detractores o neutrales.

clasificaci			
on	Freq.	Percent	Cum.
Detractor Neutral Promotor	6,265 9,579 26,175	14.91 22.80 62.29	14.91 37.71 100.00
Total	42 , 019	100.00	

(c) Analizar cómo cambia la variable de espera en función de la clasificación de los clientes.

(d) Tomar una muestra del 10% de los datos. Estimar un logit multinomial para predecir cómo cambian las clasificaciones en función de la espera, condicionando en explicativas que se considere relevantes.

Logit (betas):

Multinomial log	Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542				
clasificacion	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral _Igender_co_2	0106823 12.80348 .0192837 7049277 5423917	.1117659 .0042832 730.9035 .1868698 .1983862 .2023154 .0044156 .2819115	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	2213368 .0022873 -1419.741 3469745 -1.093758 9389226 032066 0957557	.2167774 .0190772 1445.348 .3855418 3160979 0147573 1.009317
Promotor _Igender_co_2 _edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 _espera _cons	13.38895 .254493 6899248 7035198	.0991182 .0038062 730.903 .1689136 .1774649 .1827513 .0040826 .2520943	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	2683366 .0147969 -1419.155 0765715 -1.03775 -1.061706 0559326 .5763835	.1201995 .0297169 1445.933 .5855575 3421 3453338 039929 1.564575

<u>Logit multinomial (relative-risk ratios):</u>

Multinomial log	-	sion			Number of obs LR chi2(14) Prob > chi2 Pseudo R2	= 4,202 = 418.26 = 0.0000 = 0.0542
clasificacion	RRR	Std. err.	Z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral	.9977229 1.01074 363481.5 1.019471 .4941443 .5813562 .9768603 1.578982	.1115114 .0043292 2.66e+08 .1905084 .0980314 .1176173 .0043134 .4451333	-0.02 2.49 0.02 0.10 -3.55 -2.68 -5.30 1.62	0.984 0.013 0.986 0.918 0.000 0.007 0.000 0.105	.8014467 1.00229 0 .7068233 .3349555 .3910489 .9684427 .9086859	1.242068 1.01926 1.470411 .7289881 .8642781 .985351 2.743726
Promotor _Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 espera _cons	.9286081 1.022506 652751.9 1.289808 .5016138 .4948405 .9531997 2.916777	.0920419 .0038919 4.77e+08 .217866 .0890188 .0904327 .0038915 .7353029	-0.75 5.85 0.02 1.51 -3.89 -3.85 -11.74 4.25	0.455 0.000 0.985 0.132 0.000 0.000 0.000	.7646504 1.014907 0 .9262867 .354251 .3458654 .9456029 1.779591	1.127722 1.030163 1.795992 .7102772 .707984 .9608576 4.780643

Note: _cons estimates baseline relative risk for each outcome.

(e) Calcular los efectos marginales.

Efectos marginales en Logit multinomial (detractor):

Marginal effects after mlogit

y = Pr(clasificacion == Detractor) (predict, pr outcome(1))

= .13172136

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	.0062526 0021919 1331684 0220274 .0931274 .0890482 .0047328	.01127 .0012 .00569 .02219 .05089 .04974	0.56 -1.83 -23.41 -0.99 1.83 1.79 1.92	0.579 0.067 0.000 0.321 0.067 0.073 0.055	015827 004541 144317 065524 006608 008432 000097	.028332 .000157 12202 .021469 .192863 .186529	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) $\mathrm{d}y/\mathrm{d}x$ is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (neutral):

Marginal effects after mlogit

y = Pr(clasificacion==Neutral) (predict, pr outcome(2))

= .23194672

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
_Igend~2* edad	.01049 001382 0628502 034214 02724 .0021924 .0029036	.01435 .00072 .1635 .02341 .02669 .02992 .00123	0.73 -1.91 -0.38 -1.46 -1.02 0.07 2.37	0.465 0.056 0.701 0.144 0.307 0.942 0.018	017644 002801 383304 08009 079548 056453 .000501	.038624 .000037 .257604 .011662 .025068 .060838	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Logit multinomial (promotor):

Marginal effects after mlogit

y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

= .63633192

variable	dy/dx	Std. err.	z	P> z	[95%	C.I.]	X
_Igend~2* edad _Isegm~2* _Isegm~3* _Isegm~4* _Isegm~5* espera	0167426 .0035739 .1960187 .0562415 0658873 0912406 0076364	.01648 .0009 .16356 .02657 .04487 .04211	-1.02 3.99 1.20 2.12 -1.47 -2.17 -4.77	0.310 0.000 0.231 0.034 0.142 0.030 0.000		.015551 .005331 .516589 .108311 .022054 008712 004497	.678486 52.2109 .000952 .567587 .183246 .148263 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(f) Repetir el análisis con un Probit multinomial y comparar.

Probit multinomial:

Multinomial pro	Number of obs Wald chi2(14) Prob > chi2	•				
clasificacion	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Detractor	(base outco	ome)				
Neutral _Igender_co_2 edad _Isegmento_2 _Isegmento_3 _Isegmento_4 _Isegmento_5 espera _cons	.0092218 352632 .0867023 7015738 3109711	.0798336 .003062 .5757431 .1308623 .1429056 .1472973 .0033331 .2034099	-0.67 3.01 -0.61 0.66 -4.91 -2.11 -4.16 1.04	0.502 0.003 0.540 0.508 0.000 0.035 0.000 0.298	2100787 .0032205 -1.481068 1697831 9816635 5996685 020404 1867675	.1028631 .0152231 .7758037 .3431876 421484 0222737 0073386 .6105848
Promotor _Igender_co_2	097611 097611 .012833 -1.411541 .2629534 6144694 4984651 0350071 1.035228	.0738029 .002822 .6475008 .1220016 .1313595 .1378136 .0031476 .1878494	-1.32 4.55 -2.18 2.16 -4.68 -3.62 -11.12 5.51	0.186 0.000 0.029 0.031 0.000 0.000 0.000	242262 .007302 -2.680619 .0238348 8719294 7685749 0411763 .6670502	.0470399 .018364 1424626 .5020721 3570095 2283554 0288379 1.403406

Efectos marginales en Probit multinomial (detractor):

variable	dy/dx	Std. err.	z	P> z	 [95%	C.I.]	X
_Igend~2*	.0136968	.01125	1.22	0.223	008346	.03574	.677297
edad	0019418	.00044	-4.41	0.000	002806	001078	52.1844
_Isegm~2*	.2216672	.14863	1.49	0.136	06965	.512984	.002618
_Isegm~3*	0345801	.01966	-1.76	0.079	07312	.00396	.578058
_ Isegm~4*	.1251906	.02726	4.59	0.000	.071753	.178628	.183484
_ Isegm~5*	.0823211	.02707	3.04	0.002	.02926	.135382	.140171
espera	.0046788	.00048	9.74	0.000	.003737	.005621	11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (neutral):

variable	dy/dx	Std. err.	Z	P> z	[95%	C.I.]	X
Igend~2*	.0048601	.01424	0.34	0.733	023054	.032774	.677297
	00013	.00055	-0.24	0.812	0012	.00094	52.1844
	.1369606	.15124	0.91	0.365	159457	.433378	.002618
	0261368	.0229	-1.14	0.254	071021	.018747	.578058
	0571084	.02392	-2.39	0.017	103993	010224	.183484
	.0120419	.02754	0.44	0.662	041943	.066027	.140171
	.0029577	.00066	4.52	0.000	.001674	.004242	11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

Efectos marginales en Probit multinomial (promotor):

Marginal effects after mprobit
 y = Pr(clasificacion==Promotor) (predict, pr outcome(3))

= 63482617

variable	dy/dx	Std. err.	z z	P> z	[95%	C.I.]	X
_Igend~2*	0185569 .0020718 3586278 .0607169 0680822 0943629 0076366	.01634 .00063 .15141 .0265 .0313 .03271	-1.14 3.31 -2.37 2.29 -2.18 -2.88 -10.01	0.256 0.001 0.018 0.022 0.030 0.004 0.000	.008771 12943 158476	061868 .112663 006734	.677297 52.1844 .002618 .578058 .183484 .140171 11.1349

^(*) dy/dx is for discrete change of dummy variable from 0 to 1

(g) Realizar un test de la significatividad de las variables.

Stata.

Ejercicio 3.

Utilizando la EPH del cuarto trimestre de 2016, estimar un modelo multinomial que permita predecir la condición de actividad de una persona, entre inactivo, ocupado o desocupado.

<mark>Stata.</mark>