RWorksheet_Porras#5

Porras, Dorlyne Fate

2022-11-23

1. The table shows the enrollment of BS in Computer Science, SY 2010-2011

```
enrollment <- data.frame("Course Year" = c("1st","2nd","3rd","4th"),</pre>
                           "2019-2020" = c(80, 75, 70, 60))
enrollment
     Course. Year X2019.2020
##
## 1
              1st
                           75
## 2
              2nd
## 3
              3rd
                           70
                           60
## 4
              4th
```

a. Plot the data using a bar graph. Write the codes and copy the result.

```
data <- c("1st" = 80, "2nd" = 75, "3rd" = 70, "4th" = 60)
data
```

```
## 1st 2nd 3rd 4th
## 80 75 70 60
```

barplot(data)

b. Using the same table, label the barchart with

Title = "Enrollment of BS Computer Science horizontal axis = "Curriculum Year" and vertical axis = "number of students"

Enrollment of BS Computer Science

Number of Students

- 2. The monthly income of De Jesus family was spent on the following: 60% on Food, 10% on electricity, 5% for savings, and 25% for other miscellaneous expenses.
- a. Create a table for the above scenario. Write the codes and its result.

0 0

1 0 0

##

##

Electricity

Food

```
income_data <- data.frame(facts = c("Food", "Electricity", "Savings",</pre>
                                       "MiscellaneousExpenses"), spent = c(60,10,5,25)
                                  )
income_data
##
                      facts spent
## 1
                       Food
                                60
## 2
                                10
                Electricity
                    Savings
                                 5
## 4 MiscellaneousExpenses
                                25
tableData <- table(income_data)</pre>
tableData
##
                            spent
## facts
                             5 10 25 60
```

```
## MiscellaneousExpenses 0 0 1 0
## Savings 1 0 0 0
```

- b. Plot the data using a pie chart. Add labels, colors and legend. Write the codes and its result.
- 3. Open the mtcars dataset.

```
data("mtcars")
```

a. Create a simple histogram specifically for mpg (miles per gallon) variable. Use \$ to select the mpg only. Write the codes and its result.

```
data_mtcars <- (mtcars$mpg)
data_mtcars

## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
## [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
## [31] 15.0 21.4
hist(data_mtcars, breaks = 12)</pre>
```

Histogram of data_mtcars

b. Colored histogram with different number of bins.

```
hist(mtcars$mpg, breaks=12, col="red")
```

Histogram of mtcars\$mpg

hist(data_mtcars, breaks = 12, col = "purple")

Histogram of data_mtcars

c. Add a Normal Curve x < -mtcarsmpgh < -hist(x, breaks = 10, col = "red", xlab = "MilesPerGallon", main = "HistogramwithNormalCurve") xfit < -seq(min(x), max(x), length = 40) yfit < -dnorm(xfit, mean = mean(x), sd = sd(x)) yfit < -yfit * diff(hmids[1:2])*length(x) lines(xfit, yfit, col="blue", lwd=2)

```
Copy the result.
```

```
data_curve <- data_mtcars</pre>
data_curve
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
## [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
## [31] 15.0 21.4
data_curve <- data_mtcars</pre>
data_curve
## [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
## [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
## [31] 15.0 21.4
data_hist <-hist(data_curve, breaks=10, col="red", xlab="Miles Per Gallon",</pre>
    main="Histogram with Normal Curve")
    xfit<-seq(min(data_curve), max(data_curve), length=40)</pre>
    yfit<-dnorm(xfit,mean=mean(data_curve),sd=sd(data_curve))</pre>
    yfit <- yfit*diff(data_hist$mids[1:2])*length(data_curve)</pre>
    lines(xfit, yfit, col="blue", lwd=2)
```

Histogram with Normal Curve

data_hist

```
## $breaks
## [1] 10 12 14 16 18 20 22 24 26 28 30 32 34
##
## $counts
## [1] 2 1 7 3 5 5 2 2 1 0 2 2
##
## $density
```

```
[1] 0.031250 0.015625 0.109375 0.046875 0.078125 0.078125 0.031250 0.031250
##
   [9] 0.015625 0.000000 0.031250 0.031250
##
## $mids
   [1] 11 13 15 17 19 21 23 25 27 29 31 33
##
##
## $xname
## [1] "data_curve"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

- 4. Open the iris dataset. Create a subset for each species.
- a. Write the codes and its result.

data("iris")

```
iris_data <- data.frame(iris)
iris_data</pre>
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.2	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa

	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7	1.4 vers	sicolor
##	52	6.4	3.2	4.5	1.5 vers	sicolor
##	53	6.9	3.1	4.9	1.5 vers	sicolor
##	54	5.5	2.3	4.0	1.3 vers	sicolor
##	55	6.5	2.8	4.6	1.5 vers	sicolor
##	56	5.7	2.8	4.5	1.3 vers	sicolor
##	57	6.3	3.3	4.7	1.6 vers	sicolor
##	58	4.9	2.4	3.3	1.0 vers	sicolor
##	59	6.6	2.9	4.6	1.3 vers	sicolor
##	60	5.2	2.7	3.9	1.4 vers	sicolor
##	61	5.0	2.0	3.5	1.0 vers	sicolor
##	62	5.9	3.0	4.2	1.5 vers	sicolor
##	63	6.0	2.2	4.0	1.0 vers	sicolor
##	64	6.1	2.9	4.7	1.4 vers	sicolor
##	65	5.6	2.9	3.6	1.3 vers	sicolor
##	66	6.7	3.1	4.4	1.4 vers	sicolor
##	67	5.6	3.0	4.5	1.5 vers	sicolor
##	68	5.8	2.7	4.1	1.0 vers	sicolor
##	69	6.2	2.2	4.5	1.5 vers	sicolor
##	70	5.6	2.5	3.9	1.1 vers	sicolor
##	71	5.9	3.2	4.8	1.8 vers	sicolor
##	72	6.1	2.8	4.0	1.3 vers	sicolor
##	73	6.3	2.5	4.9	1.5 vers	sicolor
##	74	6.1	2.8	4.7	1.2 vers	sicolor
##	75	6.4	2.9	4.3	1.3 vers	sicolor
##	76	6.6	3.0	4.4	1.4 vers	sicolor
##	77	6.8	2.8	4.8	1.4 vers	sicolor
##	78	6.7	3.0	5.0	1.7 vers	sicolor
##	79	6.0	2.9	4.5	1.5 vers	sicolor
##	80	5.7	2.6	3.5	1.0 vers	sicolor
##	81	5.5	2.4	3.8	1.1 vers	sicolor
##	82	5.5	2.4	3.7	1.0 vers	sicolor
##	83	5.8	2.7	3.9	1.2 vers	sicolor
##	84	6.0	2.7	5.1	1.6 vers	sicolor
##	85	5.4	3.0	4.5	1.5 vers	sicolor

## 86	6.0	3.4	4.5	1.6 versicolor
## 87	6.7	3.1	4.7	1.5 versicolor
## 88	6.3	2.3	4.4	1.3 versicolor
## 89	5.6	3.0	4.1	1.3 versicolor
## 90	5.5	2.5	4.0	1.3 versicolor
## 91	5.5	2.6	4.4	1.2 versicolor
## 92	6.1	3.0	4.6	1.4 versicolor
## 93	5.8	2.6	4.0	1.2 versicolor
## 94	5.0	2.3	3.3	1.0 versicolor
## 95	5.6	2.7	4.2	1.3 versicolor
## 96	5.7	3.0	4.2	1.2 versicolor
## 97	5.7	2.9	4.2	1.3 versicolor
## 98	6.2	2.9	4.3	1.3 versicolor
## 99	5.1	2.5	3.0	1.1 versicolor
## 100	5.7	2.8	4.1	1.3 versicolor
## 101	6.3	3.3	6.0	2.5 virginica
## 102	5.8	2.7	5.1	1.9 virginica
## 103	7.1	3.0	5.9	2.1 virginica
## 104	6.3	2.9	5.6	1.8 virginica
## 105	6.5	3.0	5.8	2.2 virginica
## 106	7.6	3.0	6.6	2.1 virginica
## 107	4.9	2.5	4.5	1.7 virginica
## 108	7.3	2.9	6.3	1.8 virginica
## 109	6.7	2.5	5.8	1.8 virginica
## 110	7.2	3.6	6.1	2.5 virginica
## 111	6.5	3.2	5.1	2.0 virginica
## 112	6.4	2.7	5.3	1.9 virginica
## 113	6.8	3.0	5.5	2.1 virginica
## 114	5.7	2.5	5.0	2.0 virginica
## 115	5.8	2.8	5.1	2.4 virginica
## 116	6.4	3.2	5.3	2.3 virginica
## 117	6.5	3.0	5.5	1.8 virginica
## 118	7.7	3.8	6.7	2.2 virginica
## 119	7.7	2.6	6.9	2.3 virginica
## 120	6.0	2.2	5.0	1.5 virginica
## 121	6.9	3.2	5.7	2.3 virginica
## 122	5.6	2.8	4.9	2.0 virginica
## 123	7.7	2.8	6.7	2.0 virginica
## 124	6.3	2.7	4.9	1.8 virginica
## 125	6.7	3.3	5.7	2.1 virginica
## 126	7.2	3.2	6.0	1.8 virginica
## 127	6.2	2.8	4.8	1.8 virginica
## 128	6.1	3.0	4.9	1.8 virginica
## 129	6.4	2.8	5.6	2.1 virginica
## 130	7.2	3.0	5.8	1.6 virginica
## 131	7.4	2.8	6.1	1.9 virginica
## 132	7.9	3.8	6.4	2.0 virginica
## 133	6.4	2.8	5.6	2.2 virginica
## 134	6.3	2.8	5.1	1.5 virginica
## 135	6.1	2.6	5.6	1.4 virginica
## 136	7.7	3.0	6.1	2.3 virginica
## 137	6.3	3.4	5.6	2.4 virginica
## 138	6.4	3.1	5.5	1.8 virginica
## 139	6.0	3.0	4.8	1.8 virginica
100	5.0	5.0	4.0	1.0 VIIgIIIICa

```
5.4 2.1 virginica
               3.1
## 140
         6.9
## 141
          6.7
                    3.1
                            5.6
                                     2.4 virginica
## 142
                                     2.3 virginica
          6.9
                   3.1
                            5.1
## 143
          5.8
                    2.7
                             5.1
                                      1.9 virginica
                                      2.3 virginica
## 144
           6.8
                    3.2
                             5.9
                                      2.5 virginica
## 145
           6.7
                    3.3
                             5.7
## 146
          6.7
                    3.0
                                      2.3 virginica
                             5.2
                                      1.9 virginica
## 147
          6.3
                    2.5
                             5.0
## 148
           6.5
                             5.2
                                      2.0 virginica
                    3.0
## 149
                             5.4
                                     2.3 virginica
           6.2
                    3.4
## 150
           5.9
                    3.0
                             5.1
                                     1.8 virginica
```

data_setosa <- subset(iris_data, Species == 'setosa')
data_setosa</pre>

##		Conol Ioneth	Conol Width	Dotal Ionath	Dotal Width	Cnasias
## ##	1	5.1	3.5	Petal.Length 1.4	0.2	=
##	2	4.9	3.0	1.4	0.2	setosa setosa
	3	4.7	3.0	1.3	0.2	setosa
	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.2	setosa
##	7	4.6	3.4	1.4	0.3	setosa
##	8	5.0	3.4	1.5	0.3	setosa
##	9	4.4	2.9	1.4	0.2	setosa
##	10	4.9	3.1	1.5	0.1	setosa
##	11	5.4	3.7	1.5	0.2	setosa
##	12	4.8	3.4	1.6	0.2	setosa
##	13	4.8	3.0	1.4	0.1	setosa
##	14	4.3	3.0	1.1	0.1	setosa
##	15	5.8	4.0	1.2	0.2	setosa
##	16	5.7	4.4	1.5	0.4	setosa
##	17	5.4	3.9	1.3	0.4	setosa
##	18	5.1	3.5	1.4	0.3	setosa
##	19	5.7	3.8	1.7	0.3	setosa
##	20	5.1	3.8	1.5	0.3	setosa
##	21	5.4	3.4	1.7	0.2	setosa
##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa

```
0.2 setosa
## 40
            5.1
                 3.4
                                 1.5
## 41
            5.0
                      3.5
                                 1.3
                                            0.3 setosa
## 42
            4.5
                      2.3
                                 1.3
                                            0.3 setosa
## 43
            4.4
                      3.2
                                 1.3
                                            0.2 setosa
## 44
            5.0
                                  1.6
                                            0.6 setosa
                      3.5
## 45
            5.1
                       3.8
                                  1.9
                                            0.4 setosa
## 46
                                            0.3 setosa
            4.8
                      3.0
                                 1.4
                                            0.2 setosa
## 47
            5.1
                      3.8
                                 1.6
                                            0.2 setosa
## 48
            4.6
                       3.2
                                  1.4
## 49
            5.3
                       3.7
                                 1.5
                                            0.2 setosa
## 50
            5.0
                       3.3
                                 1.4
                                            0.2 setosa
```

data_versicolor <- subset(iris_data, Species == 'versicolor')
data_versicolor</pre>

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	51	7.0	3.2	4.7		versicolor
##	52	6.4	3.2	4.5	1.5	versicolor
##	53	6.9	3.1	4.9	1.5	versicolor
##	54	5.5	2.3	4.0	1.3	versicolor
##	55	6.5	2.8	4.6	1.5	versicolor
##	56	5.7	2.8	4.5	1.3	versicolor
##	57	6.3	3.3	4.7	1.6	versicolor
##	58	4.9	2.4	3.3	1.0	versicolor
##	59	6.6	2.9	4.6	1.3	versicolor
##	60	5.2	2.7	3.9	1.4	versicolor
##	61	5.0	2.0	3.5	1.0	${\tt versicolor}$
##	62	5.9	3.0	4.2	1.5	versicolor
##	63	6.0	2.2	4.0	1.0	versicolor
##	64	6.1	2.9	4.7	1.4	versicolor
##	65	5.6	2.9	3.6		versicolor
##	66	6.7	3.1	4.4	1.4	${\tt versicolor}$
##	67	5.6	3.0	4.5	1.5	versicolor
##	68	5.8	2.7	4.1	1.0	versicolor
##	69	6.2	2.2	4.5	1.5	versicolor
##	70	5.6	2.5	3.9		versicolor
##	71	5.9	3.2	4.8		versicolor
##	72	6.1	2.8	4.0		versicolor
##	73	6.3	2.5	4.9		versicolor
##	74	6.1	2.8	4.7		versicolor
##	75	6.4	2.9	4.3		versicolor
##	76	6.6	3.0	4.4		versicolor
##	77	6.8	2.8	4.8		versicolor
##	78	6.7	3.0	5.0		versicolor
##	79	6.0	2.9	4.5		versicolor
##	80	5.7	2.6	3.5		versicolor
	81	5.5	2.4	3.8		versicolor
	82	5.5	2.4	3.7		versicolor
##	83	5.8	2.7	3.9		versicolor
##	84	6.0	2.7	5.1		versicolor
##	85	5.4	3.0	4.5		versicolor
##	86	6.0	3.4	4.5		versicolor
	87	6.7	3.1	4.7		versicolor
##	88	6.3	2.3	4.4		versicolor
##	89	5.6	3.0	4.1	1.3	versicolor

```
## 90
           5.5
                     2.5
                               4.0
                                     1.3 versicolor
## 91
           5.5
                      2.6
                                4.4
                                          1.2 versicolor
## 92
           6.1
                     3.0
                                4.6
                                          1.4 versicolor
## 93
            5.8
                      2.6
                                4.0
                                          1.2 versicolor
## 94
                      2.3
                                 3.3
                                           1.0 versicolor
            5.0
## 95
            5.6
                      2.7
                                 4.2
                                          1.3 versicolor
## 96
                                4.2
                                          1.2 versicolor
            5.7
                      3.0
## 97
            5.7
                      2.9
                                4.2
                                          1.3 versicolor
                                 4.3
                                          1.3 versicolor
## 98
            6.2
                      2.9
## 99
            5.1
                      2.5
                                 3.0
                                          1.1 versicolor
## 100
            5.7
                      2.8
                                4.1
                                          1.3 versicolor
```

data_virginica <- subset(iris_data, Species == 'virginica')
data_virginica</pre>

##		Senal Length	Senal Width	Petal.Length	Petal Width	Species
	101	6.3	3.3	6.0		virginica
##	102	5.8	2.7	5.1		virginica
##	103	7.1	3.0	5.9		virginica
##	104	6.3	2.9	5.6		virginica
##	105	6.5	3.0	5.8		virginica
##	106	7.6	3.0	6.6		virginica
##	107	4.9	2.5	4.5		virginica
##	108	7.3	2.9	6.3		virginica
##	109	6.7	2.5	5.8		virginica
##	110	7.2	3.6	6.1	2.5	virginica
##	111	6.5	3.2	5.1	2.0	virginica
##	112	6.4	2.7	5.3	1.9	virginica
##	113	6.8	3.0	5.5	2.1	virginica
##	114	5.7	2.5	5.0	2.0	virginica
##	115	5.8	2.8	5.1	2.4	virginica
##	116	6.4	3.2	5.3	2.3	virginica
##	117	6.5	3.0	5.5	1.8	virginica
##	118	7.7	3.8	6.7	2.2	virginica
##	119	7.7	2.6	6.9	2.3	virginica
##	120	6.0	2.2	5.0	1.5	virginica
##	121	6.9	3.2	5.7	2.3	virginica
##	122	5.6	2.8	4.9	2.0	virginica
##	123	7.7	2.8	6.7	2.0	virginica
##	124	6.3	2.7	4.9	1.8	virginica
##	125	6.7	3.3	5.7		virginica
##	126	7.2	3.2	6.0		virginica
##	127	6.2	2.8	4.8		virginica
##	128	6.1	3.0	4.9		virginica
	129	6.4	2.8	5.6		virginica
	130	7.2	3.0	5.8		virginica
##	131	7.4	2.8	6.1		virginica
##	132	7.9	3.8	6.4		virginica
##	133	6.4	2.8	5.6		virginica
##	134	6.3	2.8	5.1		virginica
	135	6.1	2.6	5.6		virginica
##	136	7.7	3.0	6.1		virginica
##	137	6.3	3.4	5.6		virginica
##	138	6.4	3.1	5.5		virginica
##	139	6.0	3.0	4.8	1.8	virginica

```
## 140
                6.9
                             3.1
                                           5.4
                                                        2.1 virginica
## 141
                 6.7
                             3.1
                                           5.6
                                                        2.4 virginica
                                                        2.3 virginica
## 142
                 6.9
                             3.1
                                           5.1
                             2.7
                                                        1.9 virginica
## 143
                5.8
                                           5.1
## 144
                 6.8
                             3.2
                                           5.9
                                                        2.3 virginica
## 145
                                                        2.5 virginica
                6.7
                             3.3
                                           5.7
## 146
                6.7
                             3.0
                                                        2.3 virginica
                                           5.2
                                                        1.9 virginica
## 147
                6.3
                             2.5
                                           5.0
## 148
                 6.5
                             3.0
                                           5.2
                                                        2.0 virginica
## 149
                 6.2
                                           5.4
                                                        2.3 virginica
                             3.4
## 150
                 5.9
                             3.0
                                           5.1
                                                        1.8 virginica
```

b. Get the mean for every characteristics of each species using colMeans().

Write the codes and its result.

```
Example: setosa <- colMeans(setosa[sapply(setosaDF,is.numeric)])
```

```
data_setosa <- colMeans(data_setosa[sapply(data_setosa,is.numeric)])
data_setosa</pre>
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.006 3.428 1.462 0.246

data_versicolor <- colMeans(data_versicolor[sapply(data_versicolor,is.numeric)])
data_versicolor</pre>
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.936 2.770 4.260 1.326

data_virginica <- colMeans(data_virginica[sapply(data_virginica,is.numeric)])
data_virginica</pre>
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width ## 6.588 2.974 5.552 2.026
```

c. Combine all species by using rbind() The table should be look like this:

```
combine <- rbind(data_setosa,data_versicolor,data_virginica)
iris <- data.frame(combine)
iris</pre>
```

```
##
                    Sepal.Length Sepal.Width Petal.Length Petal.Width
## data_setosa
                           5.006
                                        3.428
                                                     1.462
                                                                  0.246
                                                                  1.326
## data_versicolor
                           5.936
                                        2.770
                                                     4.260
## data_virginica
                           6.588
                                        2.974
                                                     5.552
                                                                  2.026
```

d. From the data in 4-c: Create the barplot(). Write the codes and its result. The barplot should be like this.

```
barplot(height = as.matrix(iris),
    main = "Iris Data",
    ylab = "Mean Scores",
    beside = T, col = rainbow(3)
)
```

Iris Data

