Contents

Clase 3: Sistemas Numéricos: Naturales, Enteros, Racionales e Irracionales

1. Objetivos específicos de la clase:

- Distinguir entre los diferentes sistemas numéricos: naturales, enteros, racionales e irracionales.
- Comprender las propiedades fundamentales de cada sistema numérico.
- Convertir números entre diferentes representaciones (fracción, decimal).
- Identificar números racionales e irracionales.

2. Contenido teórico detallado:

2.1. Números Naturales ():

- Definición: Conjunto de números positivos que se utilizan para contar (1, 2, 3, 4,...). No incluyen el cero.
- Propiedades:
 - Cerradura bajo la suma y la multiplicación: La suma y el producto de dos números naturales siempre es un número natural.
 - Orden total: Dados dos números naturales, siempre se puede determinar cuál es mayor, menor o si son iguales.

2.2. Números Enteros ():

- Definición: Conjunto que incluye los números naturales, sus negativos y el cero (...-3, -2, -1, 0, 1, 2, 3...).
- Propiedades:
 - Cerradura bajo la suma, resta y multiplicación: La suma, la resta y el producto de dos números enteros siempre es un número entero.
 - No cerradura bajo la división: La división de dos números enteros no siempre resulta en un número entero (ej: 1/2).

2.3. Números Racionales ():

- Definición: Conjunto de números que pueden expresarse como una fracción p/q, donde p y q son enteros y q 0. Incluyen los enteros (ya que cualquier entero 'n' puede expresarse como n/1).
- Propiedades:
 - Cerradura bajo la suma, resta, multiplicación y división (excepto por cero): La suma, la resta, el producto y la división (por un número diferente de cero) de dos números racionales siempre es un número racional.
 - Representación decimal finita o periódica: Todo número racional tiene una representación decimal que termina (ej: 1/4 = 0.25) o se repite (ej: 1/3 = 0.333...).
- Conversión de decimales periódicos a fracciones: Se explica el método para convertir un decimal periódico en una fracción.

2.4. Números Irracionales ():

- Definición: Conjunto de números que no pueden expresarse como una fracción p/q, donde p y q son enteros.
- Propiedades:
 - Representación decimal infinita no periódica: Su representación decimal continúa indefinidamente sin repetir ningún patrón (ej: = 3.1415926535..., √2 = 1.4142135623...).
 - Ejemplos comunes: Raíces cuadradas no perfectas $(\sqrt{2}, \sqrt{3}, \sqrt{5})$, e (número de Euler).

2.5. Relación entre los sistemas numéricos:

- (Los números naturales son un subconjunto de los enteros, que son un subconjunto de los racionales, que son un subconjunto de los reales).
- (Los números reales son la unión de los números racionales e irracionales).

3. Ejemplos o casos de estudio:

- Ejemplo 1: Clasificar los siguientes números: -5, 0, 1/2, $\sqrt{2}$, 3,1416, , 7
 - -5: Entero, Racional, Real
 - 0: Entero, Racional, Real
 - 1/2: Racional, Real
 - $-\sqrt{2}$: Irracional, Real
 - 3,1416: Racional (aproximación de), Real
 - : Irracional, Real
 - 7: Natural, Entero, Racional, Real
- **Ejemplo 2:** Convertir el decimal periódico 0.333... a fracción.
 - Sea x = 0.333...
 - -10x = 3.333...
 - -10x x = 3.333... 0.333...
 - -9x = 3
 - -x = 3/9 = 1/3
- Ejemplo 3: Demostrar que √2 es irracional (por contradicción).
 - Supongamos que $\sqrt{2}$ es racional, es decir, $\sqrt{2}$ = p/q, donde p y q son enteros y q 0 y la fracción p/q está en su forma más simple (no tienen factores comunes).
 - Elevando al cuadrado ambos lados: $2 = p^2/q^2$
 - Entonces, $p^2 = 2q^2$. Esto significa que p^2 es par.
 - Si p^2 es par, entonces p también es par (ya que el cuadrado de un número impar es impar). Por lo tanto, p = 2k para algún entero k.
 - Sustituyendo p = 2k en p² = 2q²: $(2k)^2 = 2q^2 = > 4k^2 = 2q^2 = > 2k^2 = q²$. Esto significa que q² es par.
 - Si q² es par, entonces q también es par.
 - Hemos demostrado que tanto p como q son pares, lo que contradice nuestra suposición inicial de que p/q está en su forma más simple (no tienen factores comunes).
 - Por lo tanto, nuestra suposición de que $\sqrt{2}$ es racional es falsa. $\sqrt{2}$ es irracional.

4. Problemas prácticas o ejercicios con soluciones:

- 1. Clasifica los siguientes números en naturales, enteros, racionales o irracionales: 5, -3, 2/7, $\sqrt{5}$, 0, /2, 1.75, -1/3
 - 5: Natural, Entero, Racional, Real
 - -3: Entero, Racional, Real
 - 2/7: Racional, Real
 - √5: Irracional, Real
 - 0: Entero, Racional, Real
 - /2: Irracional, Real
 - 1.75: Racional, Real
 - -1/3: Racional, Real
- 2. Convierte los siguientes decimales periódicos a fracciones:
 - a) 0.666...
 - Solución: 2/3
 - b) 0.121212...
 - Solución: 4/33
- 3. ¿Es la suma de dos números irracionales siempre un número irracional? Justifica tu respuesta con ejemplos.
 - No. Ejemplo: $\sqrt{2} + (-\sqrt{2}) = 0$, que es racional.
- 4. ¿Es el producto de dos números irracionales siempre un número irracional? Justifica tu respuesta con ejemplos.
- 5. No. Ejemplo: $\sqrt{2} * \sqrt{2} = 2$, que es racional.
- 6. Demuestra que 0.999... = 1
 - Sea x = 0.999...

- 10x = 9.999...
- 10x x = 9.999... 0.999...
- 9x = 9
- x = 1

5. Materiales complementarios recomendados:

- Libro de texto de Álgebra Universitaria: Capítulo sobre sistemas numéricos.
- Khan Academy: Videos y ejercicios sobre números racionales e irracionales.
- Recursos en línea sobre demostraciones de irracionalidad.
- Ejercicios resueltos de conversión de decimales a fracciones.