Customer Churn Predictive Modeling

William Sparks

EKU - CSC 746

October 8, 2024

Introduction

- Predicting customer churn helps businesses retain valuable customers.
- We are using the Telco Churn dataset to train Random Forest model.
- Objective: Identify customers likely to churn based on features such as MonthlyCharges, TotalCharges, and Contract.

Data Preprocessing

- Cleaned dataset by removing the customerID column and handling missing values.
- Replaced categorical values like No phone service and No internet service with No for consistency.
- Replaced yes/no with 1/0.
- Applied one-hot encoding to categorical features such as InternetService, Contract, and PaymentMethod.

Cleaned Data Info

Index: 7032 entries, 0 to 7042			
Data columns (total 27 columns):			
#	Column	Non-Null Count	Dtype
0	gender	7032 non-null	int64
1	SeniorCitizen	7032 non-null	int64
2	Partner	7032 non-null	int64
3	Dependents	7032 non-null	int64
4	tenure	7032 non-null	int64
5	PhoneService	7032 non-null	int64
6	MultipleLines	7032 non-null	int64
7	OnlineSecurity	7032 non-null	int64
8	OnlineBackup	7032 non-null	int64
9	DeviceProtection	7032 non-null	int64
10	TechSupport	7032 non-null	int64
11	StreamingTV	7032 non-null	int64
12	StreamingMovies	7032 non-null	int64
13	PaperlessBilling	7032 non-null	int64
14	MonthlyCharges	7032 non-null	float6
15	TotalCharges	7032 non-null	float6
16	Churn	7032 non-null	int64
17	InternetService_DSL	7032 non-null	bool
18	InternetService_Fiber optic	7032 non-null	bool
19	InternetService_No	7032 non-null	bool
20	Contract_Month-to-month	7032 non-null	bool
21	Contract_One year	7032 non-null	bool
22	Contract_Two year	7032 non-null	bool
23	PaymentMethod_Bank transfer (automatic)	7032 non-null	bool
24	PaymentMethod_Credit card (automatic)	7032 non-null	bool
25	PaymentMethod_Electronic check	7032 non-null	bool
26	PaymentMethod_Mailed check	7032 non-null	bool

Random Forest Model

- Used Random Forest for churn prediction due to its robustness with large datasets and high accuracy.
- Split the data into 80% training and 20% testing sets.
- Applied Random Forest with 100 estimators and balanced class weights.

Figure: Random Forest Structure

Initial Results

- Achieved an accuracy of 79% on the test set.
- Precision, Recall, and F1-scores indicate the model is better at predicting non-churners (Class 0) than churners (Class 1).

Figure: Confusion Matrix for Initial Model

Feature Importance

- Identified the most important features for predicting churn.
- Key features include: TotalCharges, MonthlyCharges, and Tenure.
- Less important features to the right in figure below were filtered out to improve model robustness. Acceptance threshold used: > 0.02.

Figure: Top Features by Importance

Optimized Results

- After feature reduction, retrained the model with the most important features and maximized F1-score for class 1 (churn).
- Model performance: Accuracy dropped slightly to 78%, but F1-score for class 1 (churners) improved.
- Optimal threshold found to be 0.31.

Figure: Precision-Recall Curve

Conclusion

- Random Forest is effective at predicting churn, especially for non-churners.
- Optimizing the threshold and feature set can improve performance for identifying churners if we accept a greater risk of false positives.
- Next steps: Explore further hyperparameter tuning and alternative models such as XGBoost, CatBoost, LightGBM.

Figure: ROC Curve (AUC = 0.81)

Sources

- 1. https://www.flickr.com/photos/piro007/26178213572
- 2. https://commons.wikimedia.org/wiki/File: Random_forest_explain.png
- 3. https://www.kaggle.com/datasets/blastchar/telco-customer-churn