

Disciplina: ICC204 – Aprendizagem de Máquina e Mineração de Dados Prof. Rafael Giusti (rgiusti@icomp.ufam.edu.br)

27/06/2019

Lista de Exercícios 5

- 1. Qual é a diferença existente entre agrupamento particional e agrupamento hierárquico?
- 2. É possível converter uma estrutura de grupos particional em uma estrutura de grupos hierárquica? Mostre como ou argumente por que não é possível.
- 3. É possível converter uma estrutura de grupos hierárquica em uma estrutura de grupos particional? Mostre como ou argumente por que não é possível.
- 4. Poderíamos gerar um agrupamento particional utilizando-se do conceito de ganho de informação? Mostre como ou argumente por que não é possível.
- 5. Execute o algoritmo k-means, com k=3, no conjunto $X=\{(1,1), (2,1), (1.5, 1.5), (4, 2.5), (5, 4), (6, 2.5), (3, 2), (5, 2)\}$. Considere que os centroides foram iniciados nas posições (4, 1), (6, 4) e (3, 3) e que todas as instâncias são determinadas pelos valores dos atributos (X_1, X_2) . Use distância Manhattan.
- 6. Execute o algoritmo k-means, com k=2, no conjunto $X=\{(2,3), (3,1), (4,2), (11,5), (12,4), (12,6), (7,5), (8,4), (8,6)$
- 7. Repita o mesmo procedimento, mas utilize distância Chebyshev para atualizar os centroides. O resultado obtido foi diferente?
- 8. De modo geral, qual é o impacto da função de distância no algoritmo k-means?
- 9. Utilizando a função Manhattan como distância, aplique o algoritmo AGNES para agrupamento hierárquico aglomerativo no conjunto de dados "tennis". Use a distância máxima (complete-linking) como critério de mesclagem dos grupos. Desenhe o dendograma resultante.
- 10. Repita o exercício utilizando distância mínima (single-linking).
- 11. Na página seguinte apresenta-se a matriz de distâncias Manhattan para todos os pares de pontos do conjunto de dados "tennis". Aplique o algoritmo de agrupamento DBSCAN, iniciando na instância #1. Considere que o número mínimo de pontos para encontrar um core point é minpoints=4 e o raio é ϵ =1.

Poder Executivo Ministério da Educação Universidade Federal do Amazonas Instituto de Computação

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	1	1	2	3	4	4	1	2	3	3	3	2	3
2	1	0	2	3	4	3	3	2	3	4	2	2	3	2
3	1	2	0	2	3	4	3	2	3	3	4	2	1	3
4	2	3	2	0	2	3	4	1	3	1	3	2	3	1
5	3	4	3	2	0	1	2	3	1	1	3	4	2	3
6	4	3	4	3	1	0	1	4	2	2	2	3	3	2
7	4	3	3	4	2	1	0	4	2	3	2	2	2	3
8	1	2	2	1	3	4	4	0	2	2	2	2	3	2
9	2	3	3	3	1	2	2	2	0	2	2	4	2	4
10	3	4	3	1	1	2	3	2	2	0	2	3	2	2
11	3	2	4	3	3	2	2	2	2	2	0	2	3	2
12	3	2	2	2	4	3	2	2	4	3	2	0	3	1
13	2	3	1	3	2	3	2	3	2	2	3	3	0	4
14	3	2	3	1	3	2	3	2	4	2	2	1	4	0