(5)

CO₂Et

(E):(Z) = 8:1

Chlorotrimethylgermane

Me₃GeCl

[1529-47-1] C₃H₉ClGe (MW 153.16) InChI = 1/C3H9ClGe/c1-5(2,3)4/h1-3H3

InChIKey = ZZBNZZCHSNOXOH-UHFFFAOYAP

(precursor of germanium masked dienolate for regioselective C–C bond formation; 1 germanium enolates and α -germyl ester for aldol, 10 Peterson-type reaction, 8 and Claisen rearrangement 11)

Alternate Name: trimethylgermanium chloride.

Physical Data: mp -13 °C; bp 102 °C; d 1.240 g cm⁻³.

Solubility: sol ether, THF, hexane, benzene, CH₂Cl₂, CHCl₃.

Form Supplied in: colorless liquid; widely available.

Handling, Storage, and Precautions: is air-stable, but moisture sensitive. Germanium compounds are reputed to be of lower toxicity than stannanes. Use in a fume hood.

Allylgermanes. The reaction of certain lithium dienolates with trimethylgermanium halides (Me₃GeCl and Me₃GeBr) produces the α -trimethylgermylated β , γ -unsaturated esters (1) (eq 1).¹ On the other hand, the reaction of lithium dienolate (2a) with tin chlorides Bu_xSnCl_{4-x} (x = 0-3) produces the γ -stannylated α , β -unsaturated esters, and the same reaction with *Chlorotrimethylsilane* gives the *O*-silylated dienol ethers (eq 2). The α -germylation of (2) is a reflection of kinetic control, as is observed in the alkylation of (2) with alkyl halides. The γ -stannylation is due to the thermodynamic stability of the product, and the *O*-silylation is ascribed to the strong affinity of Si for oxygen. In fact, the α -germylated (1a) undergoes rearrangement to the γ -isomer upon heating. Further, treatment of (2a) with chlorotriphenylgermane gives the γ -germylated product, owing to the steric bulkiness of the triphenylgermyl group.

In general, lithium dienolates (for example 2) react with carbon electrophiles at the α -position and thus the carbon chain elongation at the γ -position is not easy. However, C–C bond

(2a)

formation at the γ -position takes place via the α -germylated compounds (1), which are α -alkoxycarbonylallylgermane derivatives. The Lewis acid mediated reactions of (1) with acetals, aldehydes, and reactive halides afford the γ -alkylated α,β -unsaturated esters having predominant (E) geometry (eq 3). The reaction of allylic halides with (1a) in the presence of TMSCl at 10 kbar is highly regioselective and gives the head-to-tail coupling product in high yields (e.g. eq 4). The use of high pressures and TMSCl is essential to this regioselective allylic-allylic coupling. The amination reaction of lithium dienolates often produces a mixture of α - and γ-amino acid derivatives. However, the Lewis acid mediated reaction of α -germyl (Ge-masked dienolates) derivatives (1) with DEAD (Diethyl Azodicarboxylate) regioselectively provides the γ -adduct (see eq 5).^{1,2} On the other hand, the **Zinc Chloride** mediated reaction of the γ -stannylated dienolates (shown in eq 2) with DEAD gives the α -adduct.

PhCH(OMe)₂
$$\frac{1. \text{ TiCl}_4, \text{CH}_2\text{Cl}_2}{2. \text{ (1a)}} \qquad OMe \\ Ph \qquad CO_2\text{Et} \qquad (3)$$

$$87\% \qquad (E):(Z) = 9.5:1$$
Ph \text{ TiCl}_2 \text{ (1a)}, \text{ CH}_2\text{ Cl}_2, \text{ TMSCl} \text{ Ph} \text{ (E):(Z)} = 1.2:1

The reaction of Ge-masked dienolates (1) with Michael acceptors in the presence of Lewis acids produces the 1,4- γ -adduct regioselectively, whereas the reaction in the presence of *Tetrabutylammonium Fluoride* gives the 1,4- α -adduct exclusively (eq 6).³ The coupling between cyclopentenone and the crotonate lithium dienolate gives a 1,4- α -adduct,⁴ and the reaction of some enones with the vinylogous Reformatsky reagent derived from ethyl 4-bromocrotonate to some enones affords a 1,4- α -adduct under the controlled reaction conditions.⁵ The 1,2- γ -selectivity is obtained in the reaction of lithium dienolates with certain enones⁶ and enols.⁷

Germanium Enolates and α -Germyl Esters. Peterson-type reaction of *t*-butyl (trimethylgermyl)acetate, derived from lithium *t*-butylacetate and Me₃GeCl, with aldehydes and ketones gives stereoselectively (*E*)-2-alkenoic acid esters (eq 7).⁸ Normally, high (*E*)-selectivity is obtained: (*E*)/(*Z*) = 93:7 for R¹ = Me(CH₂)₆,

 $R^2 = H$; (E)/(Z) = >99:1 for $R^1 = Ph$, $R^2 = Me$. The (E) selectivity via trimethylgermylacetate is higher than that via trimethylsilylacetates.

$$Me_{3}GeCH_{2}CO_{2}-t-Bu \xrightarrow{\begin{array}{c} 1. \text{ LDA, THF} \\ -78 \text{ °C} \end{array}} \xrightarrow{\text{rt}} \begin{array}{c} R^{1} \\ \\ -Me_{3}GeO^{-} \end{array} \xrightarrow{R^{2}} \begin{array}{c} H \\ \\ R^{2} \end{array} \xrightarrow{CO_{2}-t-Bu} (7)$$

The germanium enolate of propiophenone, prepared in situ by the reaction with *Lithium Diisopropylamide* in ether followed by treatment with Me₃GeCl, reacts with benzaldehyde to give mainly the *syn*-aldol, while the same enolate produces the *anti*-aldol predominantly if the coexisting lithium halides are removed before condensation (eq 8).¹⁰ The chemical yield is low in the absence of LiX, but is increased in the presence of *Boron Trifluoride Etherate* The salt effect on the diastereoselectivity is not observed with the germanium enolate prepared with chlorotriphenylgermane.

The asymmetric Claisen rearrangement of allyl vinyl ethers is effected with a chiral organoaluminum reagent, (R)-(3) or (S)-(3). This method provides a facile asymmetric synthesis of various acylgermanes (and acylsilanes) with high enantiomeric purity (eq 9). The reactions of the trimethylgermyl derivative proceeds with higher enantioselectivity (91% ee) than that of the trimethylsilyl analog (80% ee).

Other Trimethylgermyl Derivatives. Reactions of α -stannylvinyllithiums RR'C=C(Li)SnMe₃ with Me₃MCl (M = Si, Ge, Pb) give the corresponding mixed bis(trimethylmetal)alkenes, RR'C=C(SnMe₃)MMe₃. Irradiation of acyltriphenylgermanes in THF gives five- and six-membered cyclic ketones bearing an α -(triphenylgermyl)methyl group (eq 10). Cyanotrimethylgermane, prepared from Me₃GeCl and *Silver(I) Cyanide*, reacts with terminal alkynes in the presence of *Palladium(II) Chloride* catalyst in toluene to produce (Z)-3-trimethylgermyl-2-alkenenitriles in good yields. Similar addition reactions take place with *Cyanotrimethylsilane*, but the reaction is slower than that of Me₃GeCN.

GePh₃
$$hv (400 \text{ W Hg lamp})$$

$$rt, THF$$

$$27-97\%$$

$$n = 1, 2$$

- Yamamoto, Y.; Hatsuya, S.; Yamada, J., J. Chem. Soc., Chem. Commun. 1988, 1639; J. Org. Chem. 1990, 55, 3118.
- Yamamoto, Y.; Hatsuya, S.; Yamada, J., *Tetrahedron Lett.* 1989, 30, 3445.
- 3. Yamamoto, Y.; Okano, H.; Yamada, J., Tetrahedron Lett. 1991, 32, 4749.
- Oppolzer, W.; Pitteloud, R., J. Am. Chem. Soc. 1982, 104, 6478.
- Hudlicky, T.; Natchus, M. G.; Kwart, L. D.; Colwell, B. L., J. Org. Chem. 1985, 50, 4300. Casinos, I.; Mestres, R., J. Chem. Soc., Perkin Trans. 1 1978, 1651.
- 6. Suga, K.; Watanabe, S.; Fujita, T., Aust. J. Chem. 1972, 25, 2393.
- 7. Cardillo, G.; Orena, M.; Sandri, S., Tetrahedron 1976, 32, 107.
- 8. Inoue, S.; Sato, Y.; *J. Org. Chem.* **1991**, *56*, 347. Inoue, S.; Sato, Y.; Suzuki, T., *Organometallics* **1988**, *7*, 739.
- Taguchi, H.; Shimoji, K.; Yamamoto, H.; Nozaki, H., Bull. Chem. Soc. Jpn. 1974, 47, 2529.
- 10. Yamamoto, Y.; Yamada, J., J. Chem. Soc., Chem. Commun. 1988, 802.
- Maruoka, K.; Banno, H.; Yamamoto, H., Tetrahedron: Asymmetry 1991, 2, 647.
- Kiyooka, S.; Kaneko, Y.; Matsue, H.; Hamada, M.; Fujiyama, R., J. Org. Chem. 1990, 55, 5562.
- 13. Chatani, N.; Horiuchi, N.; Hanafusa, T., J. Org. Chem. 1990, 55, 3393.

Yoshinori Yamamoto Tohoku University, Sendai, Japan