

CZ3005 Artificial Intelligence

Logistic Regression

Asst/P Mahardhika Pratama

Email: mpratama@ntu.edu.sg

Office: N4-02a-08

Instructor

- □ I got my PhD from UNSW, Australia. I completed my PhD in 2.5 years. After graduation, I did my postdoc for few years at UTS, Australia and then worked as a faculty at Latrobe University, Australia before joining NTU. My research is in the area of autonomous learning and data stream mining. I currently serve as EIC of IJBIDM and a consultant at Lifebytes, Australia.
- ☐ My consultation time is at 5pm, Wednesday.

- Tutorial starts from week 10 12
- 3 tutorials in the second half: fuzzy logic, logical reasoning, first-order logic

- One lab in the second half
- Lab is an individual assignment
- Takes place in week 9/10
- Attendance is not compulsory

Final Grade

 60% Final Exam + 40% Labs (Lab 1 and Lab 2)

Artificial Intelligence

- □ Problem Solving
- □ Knowledge Representation and Reasoning
- □ Acting Logically
- □ Uncertain Knowledge and Reasoning
- □ Learning
- ☐ Communicating, Perceiving and Acting

Outline

- □ Classification
- □ Hypothesis Representation
- □ Decision Boundary
- □Cost Function
- **□**Optimization

Classification

- Develop the logistic regression algorithm to determine what class a new input should fall into
- Classification problems
 - Email -> spam/not spam?
 - Online transactions -> fraudulent?
 - Tumor -> Malignant/benign
- Y is either 0 or 1
 - 0 = negative class (absence of something)
 - 1 = positive class (presence of something)

Tumour Prediction Problem

- Tumour Size vs Malignancy (0 or 1)
- We can develop linear classifier
 - Use a threshold to determine the class label
 - It seems working

Linear Classifier

- How if we have a single yes for a very small tumour
- Output values beyond 0 or 1
- Logistic regression outputs value between 0 and 1
 - Logistic regression is for classification problem

Hypothesis Representation

- The classifier output is bounded in [0,1]
- The linear classifier : $y = \theta^T x$
- The logistic regression : we use sigmoid function

-
$$y = g(\theta^T x)$$
 where $g(z) = \frac{1}{1 + e^{-z}}$

Interpretation

- We treat the hypothesis as the estimated probability of Y=1
- If X is a feature vector with $x_0 = 1$, $x_1 = tumoursize$
- $g(\theta^T x) = 0.7$ means a patient has 70% chance of a tumour being malignant or it can be written in the probabilistic notation as $g(\theta^T x) = P(y = 1 | x; \theta)$
- P(y = 1|z) + P(y = 0|z) = 1, P(y = 0|z) = 1 P(y = 1|z)

- When probability of y=1 being 1 is greater than 0.5 then we can predict y=1
- $g(z) \ge 0.5$, when $z \ge 0$
- Y=1 when $\theta^T x \ge 0$

- $g(\theta^T x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
- □Suppose $\theta_0 = -3$, $\theta_1 = 1$, $\theta_2 = 1$, $\theta = [-3,1,1]$
- □We can rewrite it as $x_1 + x_2 \ge 3$
- □ Decision boundary is a property of hypothesis

- $\Box g(z) = g(\theta_0 + x_1\theta_1 + x_2\theta_2 + \theta_3x_1^2 + \theta_4x_2^2)$
- \Box If $\theta = [-1,0,0,1,1]$, $g(z) = -1 + x_1^2 + x_2^2$
- \Box Y=1 if $x_1^2 + x_2^2 \ge 1$.
- ☐ This gives us a circle with a radius of 1 around 0
- ☐ By using higher order polynomial terms,

we can get even more complex decision boundaries

Cost Function

- \Box Define the cost function to tune θ
- $\square \text{ Suppose } cost = \frac{1}{2}(g(z) y)^2,$

the cost function is written as $J(\theta) = \sum_{i=1}^{m} Cost(g(z), y)$

- ☐ This is a non-convex function, having many local minimums
- Need a convex function to converge to a global minimum

Cost Function

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

$$\mbox{\bf m examples} \qquad x \in \left[\begin{array}{c} x_0 \\ x_1 \\ \dots \\ x_n \end{array} \right] \qquad x_0 = 1, y \in \{0,1\}$$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Non-convex

convex

Cost Function

■ Logistic regression cost function is as follows

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(g(z), y), \text{ where}$$

$$Cost(g(z), y) = \begin{cases} -\log(g(z)), & y = 1 \\ -\log(1 - g(z)), & y = 0 \end{cases}$$

- \Box If y=1, g(z)=1, Cost=0
- \Box But if g(z)=0, $g(z)=\infty$
- \Box With this, $J(\theta)$ is convex and avoids local minima

Simplified Cost Function

- ☐ For binary classification, problem y is either 0 or, 1
- ☐ We can compress the cost function into one line

$$Cost(g(z), y) = -ylog(g(z)) - (1 - y)log(1 - g(z))$$

So, the cost function is now $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(g(z), y)$

$$= \frac{-1}{m} \left[\sum_{i=1}^{m} y \log(g(z)) + (1-y) \log(1-g(z)) \right]$$

- ☐ This cost function can be derived using the maximum likelihood estimation, assuming that data follows Bernoullie distribution
- \square Now, we can find θ that minimizes $J(\theta)$

Gradient Descent

- \Box To minimize $J(\theta)$, we can use the gradient descent method
- □ Note that $\theta \in \Re^{n+1}$, where n is the number of input attributes
- Update rule: $\theta_j = \theta_j \alpha \frac{\partial J(\theta)}{\partial \theta} = \theta_j \alpha \sum_{i=1}^m (g(z) y) x_{i,j}$
- Where α is a learning rate

Multiclass classification problem

- ☐ Multiclass classification problem : Classification with multiple classes
- ☐ One versus All classification: split the problem into three binary classification problems
- □ Triangles vs Squares and Crosses, Squares vs Triangles and Crosses, Crosses vs Triangles and Squares

Multiclass Classification Problem

- ☐ Train a logistic regression g(z) for each class I
- ☐ To make a prediction, choose the class I that maximizes the probability of g(z)=1

$$I = \max_{i=1,2,3} G_i(Z)$$

