物理学表

化学 参据

研究文章 | 1996年11月1日

一种新的二氧化碳覆盖状态方程 在压力高达800 MPa Q时,从三点温度到1100 K

罗兰斯潘;沃尔夫冈瓦格纳

J. 物理学。化学裁判员数据25, 1509-1596(19 96)https//doi_org/10.1063/1.555991

20年5月5日

安全计划 出版

从三点温度到1100 Kat压力至800 MPa的新状态方程

R. Span和W. Wagner

德国波鸿鲁尔大学, D-44780

1994年5月25日收到

Thiswork reviews the available data on thermodynamic properties of carbondioxide 以基本方程的形式表示状态的公式

亥姆霍兹自由能。亥姆霍兹自由能剩余部分的函数

拟合的数据如下: (a) 热性能 液相饱和度曲线的单相区域 (ppT) 和(b) (ps、p'、p")

包括麦克斯韦准则、声速 (c) w和 (d) 特定相区等压热容和饱和曲线、 (e) 特定等温热容、 (1) 特定温度、 (g) 特定内部能量、 (h) 理论系数 μ 。 通过应用现代策略来优化状态方程的数学形式,并同时对所有这些特性的数据进行非线性拟合,结果公式可以代表最精确的数据到其实验的不确定性。 在技术上最重要的温度为 30m,估计equationrangesfrom $\pm 0.03\%$ 到 $\pm 0.05\%$,density, $\pm 0.03\%$ 到 $\pm 1.5\%$ 。特别关注的是一直集中在关键区域的描述和公式的外推行为上。在没有补充状态尺度的情况下,新的形式甚至可以对该点直接附近的热量性质进行合理的描述。对于压力、韧性、焓等基本性质,序列可以推定二氧化碳化学稳定性的极限。蒸气压和升华和熔化曲线压力的独立方程,模拟饱和液体和蒸汽密度,以及等压环气体热容量也包括在内。根据状态序列计算出的属性表见附录。0, 1996年,美国物理研究所和美国化学学会

关键词:二氧化碳、相关性临界区域数据评价状态方程外推基本方程熔化线性质表升华线热和热量性质蒸汽液共存。

内容

命名法1513	3. PhaseEquilibria ofCarbon Dioxi.	1519
二氧化碳的物理常数1513	3.1三重点	1519
1. 导入管i1514	3.2关键点	
1.1背景1514	3.3熔化压力	
1.2二氧化碳的先验相关性	3.4改进方案	152
PropertiesandDemandson theNew	3.5蒸汽压力	
相关系数1514	3.6饱和液体密度	1524
1.3文章的组织1516	3.7饱和蒸汽密度	152
2. 方程式发展的基本要素	3.8液蒸汽相的热量数据	
以一个基本方程的形式表示的状态1516	边界	1526
2.1 HelmholtzFunction1516	4. 的新方程的实验基础	
2.2理想gs的亥姆霍兹能量1516	状态	1526
2.3头盔能源的剩余合作伙伴1517	4.1热性能	1527
2.3.1 Fitingan EmpiricalEquationfor	4.2比等压热容量	1528
ф	4.2.1实验结果为具体分析	
到数据1517	等重电容	1528
2.3.2优化的数学形式1518	比等压热的4.2.2结果	
2.3.3加权程序1518		

1510 R. SPANAND W. 瓦格纳

埋想汽油状态 卜 的谷量1529	5. 为碳的临界点提供的选定数据	
4. 3比等容热容1530	二氧化物15	20
4.4声音速度1532	6. 为升华的数据集的总结	
4. 5焓1532	二氧化碳预处理15	21
4. 6内能1532	7. 蒸汽压数据集汇总	21
4. 7焦耳托姆森系数1532	二氧化碳155	00
		22
4.8 VirialCoefficients	8. 对饱和液体的数据集的总结	
4. 9液体蒸气1533	二氧化碳密度152	23
4.10 Adjustmentof Dat	9. 饱和蒸汽的数据集汇总	
4.10.1对数据集的调整,如描述性	二氧化碳密度155	24
关键的雷1534	10. Summaryofthe datasetsforcaloricproper	rtie
4.10.2 Adjustmentof ppTData1534	关于碳的液蒸汽相边界的研究	. 010
4.10.3对等压热的校正		0.0
容量1535	二氧化物15	26
5. 本研究中热力学概率的定义	11. theppT的数据集摘要	
临界日1535	二氧化碳的关系15	27
5.1状态解析方程的极限。1536	12. 碳的ppT数据汇总	
5.2将非解析项作为积分的使用	二氧化碳; 详细信息见	
在一个经验的宽范围内的组件	作者估计的不确定性评估和使用	
状态方程1537	在加权程序中1529	
	13. 的可用的数据集的摘要	
6. 新的状态方程		
6.1亥姆霍兹能量的理想气体部分1541	二氧化碳的比等压热容。1530	
6.2亥姆霍兹能量的剩余部分1543	14. 选定数据的摘要	
7. 比较了新的状态方程与	二氧化碳的等压热能力;详情	
实验数据和其他状态方程。1546	信息提供了不确定性值	
7.1液体蒸发边界1546	由作者估计,并由	
7.1.1关于共存的热特性	ourselvesandused intheweightingproced	ure
曲线1546		
在共存问题上的7.1.2热量性质	15.Datasetsfortheisobaricheat的容量在	
曲线1547	用碳二氧化物计算的理想气体状态	
7. 2单相区域1547	理论方法15	30
7.2.1在单相结构中的热性能	16. 本文件中可用的数据集的摘要	50
1.2.1在手相结构中的然性能 地区1547		
地区1041	碳的比等容热容	
单相结构中的7.2.2热量性质	二氧化物15	31
地区	17. 选定数据的摘要	
7.3新事物的外推行为	二氧化碳的等氯热容;详情	
基本方程1556	给出了关于不确定性值的信息	
7.3.1的外推法超出了它的范围	由作者估计,然后估计由	
主要数据1557	我们自己使用,并在加权程序中使用…153	.1
"理想曲线"的7.3.2表示1557	18. 可用数据集的总结	-
8. 新的基本方程式的不确定性1559	of sound of carbondioxi	91
9. 结论		31
10. 附录: 碳的热力学特性	19. 关于声速的选定数据的汇总	
二氧化物	二氧化碳;详细的信息	
二氧化物	对所估计的不确定性值进行	
12. 参考文献	authorsandthoseestimated byourselvesa	
12. 多写文献1093	在加权程序中使用153	32
	20. 焓可用数据集的总结	
表清单	differencesof carbondioxid153	32
1. 可用的宽范围的状态方程	21. 可用于差异的数据集的摘要	J _
二氧化碳1515 2. 碳排放状态的选定比例序列	二氧化碳的内部能量155	32
2. 碳排放状态的选定比例序列		J _
二氧化物1515	22. 为Joule-可用的数据集的摘要	0.0
二氧化物1515 3. 与热力学性质的关系	Thomsoncoefficientof carbondioxide.15	33
dimensionlessHelmholtzfunction φ组成的	23. 可用的数据汇总	
φ° 和φ';看到等式(2.1)1517	二氧化碳的第三个维里系数。为了	
	rcasonsexplainedin thetext, nodatawer	rc
4. 关于碳的三点的扫描数据 一 氨 化 奶 1520	分配给组1155	33

J. 物理学。化学Ref. 数据, 第25卷, 第6期, 1996年

关于二氧化碳的一个新的状态方程式1511

24. 对选定数据的摘要,描述了
二氧化碳的液蒸气相平衡
给出了关于不确定性的详细信息
由作者估计的值和那些
由我们自己估计并用于加权 程序1534
25. 等压曲线的温度相关性修正 热容数据1535
26. 幂律描述的例子
沿着某些路径的热力学性质
在整个关键区域1535
27. 相关方程的系数,式
(6.2) and Eq. (6.3), 分别为c和φ°1540
28. 无量次的亥姆霍兹的理想气体部分
能量 Φ° 及其衍生物1541
29. 用于线性分析的数据汇总 优化过程和非线性拟合1541
30. 银行中非解析项的参数
条款的""1543
31. 等式的成本系数和指数 (6. 5)
32. 无量次亥姆霍兹的残余部分
能量 φ 及其衍生物1545
33. 零阶理想和一阶理想的定义
压缩因子Z的曲线1557
34. 饱和碳的热力学性质
二氧化物1560 35. 二氧化碳的热力学性质1562
1002
图的列表
图的列表 1. 实验熔化的相对偏差
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中,
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的 数据被绘制出来(见Sec.3.3)
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的 数据被绘制出来(见Sec.3.3) 1521
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的 数据被绘制出来(见Sec. 3.3) 1521 2. 选定的实验升华压力数据的绝对偏差△Psub=
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的 数据被绘制出来(见Sec.3.3) 1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出 的值
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中, 校正的和未校正的 数据被绘制出来(见Sec. 3.3) 1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec.3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub=(Psub, exp-Psub, cale)从升华中计算出的值 压力方程式, Eq. (3.12)。在这个图中,校正的和未校正的数据
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec.3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub=(Psub, exp-Psub, cale)从升华中计算出的值 压力方程式, Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。4 are绘制(见第3.4节)1522
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub,exp-Psub,cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13).
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub,exp-Psub,cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13).蒸汽压力由
 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程, Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec.3.3)1521 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式, Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13).蒸汽压力由 Angusetat.³ are的对应方程式 绘制比较图
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13). 蒸汽压力由 Angusetat.³ are的对应方程式 绘制比较图
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13).蒸汽压力由 Angusetat.³ are的对应方程式 绘制比较图
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec.3.3)1521 2. 选定的实验升华压力数据的绝对偏差△Psub= (Psub, exp-Psub, cale)从升华中计算出的值 压力方程式,Eq. (3.12)。在这个图中,校正的和未校正的数据 Bilkadi等人。⁴ are绘制(见第3.4节)1522 3. 选定实验的相对偏差 瓦尔恩斯的蒸汽压数据 从蒸汽压方程可知,等式(3.13).蒸汽压力由 Angusetat.³ are的对应方程式 绘制比较图1523 4. 相对偏差100△p¹=100(p 'exp-p' 计算)/ 选定的实验饱和液体 密度数据来自于从计算出的值 Eq. (3.14).饱和液体密度的计算结果 从相应的安格斯方程中得到
1. 实验熔化的相对偏差 压力数据从计算出的值从 混合压力方程,Eq. (3.10)。在这个图中,校正的和未校正的 数据被绘制出来(见Sec. 3.3)

计算从Eq. (3.15)。由Angus等人 3 are的相应方程计算出的饱和蒸汽密度,绘制为

	比较	状态方程,例如。(6.1),产生连续的第二个衍生物s
--	----	----------------------------

J. 物理学。化学裁判员数据,卷。1996年6月25日

1512r. 跨度和W. WAGNER

5. 对于Te和Tc+之间的温度,1KEq(6.1)导 致了一个振荡图 该密度附近的等压热容量。1539	
6. c的相对偏差,数据与值的关系 根据式(6.2)计算。图上的图示	
显示了根据统计数据计算出的数据 热力学(见表15)和温度 图中显示了从	
实验结果(见表13)。由相应的方程式计算出 的cp值	
³and Ely等人。I⁵are绘制 比较15	40
7. 实验数据的分布用于建立的残余部分	
newfund母马 向 diagra	
i n, E, q. (6.5), nai p T	42
8. 相对偏差100△y=100 (y=ps, p', p")的实验饱和度	
Duschek等人58的数据来自于Eq. (6.1) 计	
算的值。计算从 辅助方程的辅助方程。3、的	
Ely等人的状态方程 ⁵ and Angus等 ³ are的辅助	
方程 比较1546	
9. 近临界实验的相对偏差100△y=100 (=-△) /yexp (y=, p ', p ")	
Duschek等人5 ⁸ from的饱和数据 根据公式(6.1)计算出的值。对价值的看法	
由所给出的辅助方程计算得出	
在第二秒。3和从的交叉方程中得到的 绘制Chen等人27以进行比较	1 E 4 C
玄両Clieli号八ィ以近行に収 0. 相对偏差100△y=100(yexp-Yae)/yexp	1340
(y=w", w', c)的实验热量数据	
由从等式计算出的值得出的饱和度(6.1). 由宽范围方程计算出的数据	
fand Angus等人的 ³ are绘制了	
比较1547	
1. 非常精确的ppT的相对密度偏差 在亚临界温度下的数据	
根据式(6.1)计算。所计算的值:	
Ely等人的宽范围方程。Isand	
Angus等人, ³ areplotted进行比较	1548
2. 相对关系压力偏差非常准确 扩展临界区域的ppT数据来自	
根据公式(6.1)计算出的值。对价值的看法	
由Ely的宽范围方程计算得到	
等人。' ⁵ and Pitzer和Schreiber' ⁹ and来自 绘制了Chen等人27的交叉方程	
为了比较1549	
3. 植被分布的相对密度偏差	
在超临界温度下的数据,从取值中计算出来 calculatedfrom Eq. (6.1). 所计算的值:	
Ely等人15and的宽范围假设	
Anguser aL3are被绘制出来以供比较	1550

24. 所选ppl数据与Eq. (6.1) 计算的值的相对密度偏差。对价值的看法
根据Ely等人在 ⁵ and Angus等人 ³ are绘制的广泛方
程计算
比较1551
25. 选定的ppT数据在高温下与式(6.1)计算值的相对
密度偏差。计算从
Ely等人, ⁵ and Angus的宽范围方程式
³ are等人绘制了比较图。155年226年。所选ppT数据的相对密度偏差
在高压下,由计算出的值从
公式(6.1)。从大范围内计算出的值
5 and Angus et al ³ are
绘制,以便比较;在此压力范围内
这两个状态方程至少部分地是这样的
外推结果(见表1)1552
27. 所选择的等压热的相对偏差
计算的容量数据
公式(6.1)。从大范围内计算出的值 ' ⁵ and Angus等, ³ are
绘制出来以供比较1553
28. 对上的等压热容的表示
等压线在气体区域和各州上
升华曲线(饱和蒸汽)。对价值的看法
由Ely的宽范围方程计算得到
⁵ and Angus et al ³ are等人绘制了图
比较1553
29. 等压热容数据的相对偏差
在高温下,计算出的值由
公式(6.1)。计算从 Ely等人的鉴定。i ⁵ and Angus
台
30. 选定的等氯热的相对偏差
来自从等式计算出的值的容量数据
(6.1). 从大范围范围内计算出的值
¹⁵ and Angus等人是
绘制了比较ri1554
31. 在高密度等位线上的等温热容的表示。对于每个等位线,绘制的压力范围从
位线,绘制的压力范围从相应的蒸汽压力。由Ely等i⁵的宽方程计算的值
和Anguset al ³ areplotted进行比较······1554年
32. 声数据速度的相对性偏差
超临界温度的值
根据式(6.1)计算。Valuescalculated
从皮策和施赖伯的Ely等人 ⁵ and的宽范围,I ⁶ and的
范围内
其有效性,从陈氏氏的交叉方程出发
绘制 ² 7等人以比较
33. 声音数据的速度的相对偏差
高压的计算值由
公式(6.1)。由Ely等人 ⁵ and Angus等人 ³ are的广 泛方程计算的值
会制的比较,在这个压力范围内,这两个状态方
程至少是部分的

二氧化碳的新状态方程式1513

		- 11. NC N/I
外推式(见表1)1555	R	气体常数
34. 实验确定的焦耳-汤姆逊系数与取值的相对偏	S	特殊熵
差	T	热力学温度,ITS-90的比质间能
根据式(6.1)计算。已计算出的值	1	双相体积
从Elyetal. 5and的广泛序列	u	声速
Angusetal. ³ are绘制以进行比较。这个	V	
_	W	自变量
武卡洛维奇等人的数据没有被使用. 206	v	任何热力学性质的压缩因
正在建立"等式"(6.1)1556	х,	子
35. 通过实验确定的表示法	У	
在非常高温下的等温线上的模糊度	Z	可调参数的临界指
和压力。从计算值	Z	数
Ely等人在. ⁵ and Angus	希腊语	在任何不同数量的函数
³ are等人绘图进行比较1556	α , β , y ,	任任何不可数重的函数 降低密度(δ=plpe)
	Δ , 0	
36. 实验数据的表示,描述	α, β,y,	偏微分模糊度
二氧化碳的胡戈诺特曲线。胡戈尼奥	δ	无量纲亥姆霍兹能量
曲线的计算范围较广	Δ	$[\phi = A/(RTD)]$
l ⁵ and Angus等,³are	\triangle , 0,	焦耳-汤姆逊系数,质量
为c ris绘制的1557		密度
37. 由式计算的计算曲线	ψδ	方差
(6.1) 并以aplpe、日志 (T/T) 绘制图表	d	
	ф	逆降低温度(r=T./T)加权平方和
焦耳-汤姆逊反转曲线和焦耳反转曲线都超过	Ψ	
了温度范围		理想气体特性残
在其中,等式 (6.1) 拟合了实验数据1557 38	ф	留物
年。根据密度计算得出的密度公差图	T	饱和液态,饱和蒸
E . (6.1). 在iBther eg o n u 新闻界不确定性		汽态表示一个矢量
E _{sq.} (6.1). 在iBther eg o n u 新闻界不确定性 giVen .	μ	100.000
ure	p	在临界点
1558	0	
39. 声音数据的速度公差图		己计算
根据式(6.1)计算。在立即	x2	已更正
它就在临界点(区域G)附近	上标0	实验指标
很难估计w中的不确定性,因为		表示熔化压力, Dnotes,
中国对不确定性的影响越来越大		蒸汽压力,表示升华
温度和压力测量1558		压力
40. 等压热容公差图		在三点加权时
根据式(6.1)计算。在立即	Z #π+c	
它就在临界点(区域G)附近	子脚本C	在参考状态下沿着饱和液体曲
	卡	线
很难估计cp中的不确定性,因为	尔	在曲线曲线的初始状态
对日益增长的影响		量度
温度和压力测量1558	克	温度根据ITS-90温度根据IPTS-68温
	exp	度根据IPTS-48温度
	<i>i j, k, L, m</i> m	
命名法		
符号描述	S	
A、B、C、D、A、B、D、n、t等可调参数	潜水艇	
比亥姆霍兹能量第二维里系		
A 粉笋三维甲系粉	t	
DU英国协会以第二协会以协会	wt	
C	J	
C ₂ 比吉布斯能量比焓	0	
Co		
Co 序列号	ОН	
最大序列号数ij	00	
8 数据数,摩尔质量压力	90	
h	68	
h ij, k,	48	
1, mI, J		
15 HL5 .1		

M p

M摩尔mass: M=(44.0098±0.0016) g/摩尔; 请参见参考文献。1

J. 物理学。化学裁判员数据,第25卷,编号。6, 1996

1514r. 跨度和 w. 瓦格纳

R摩尔气体常数: Rm=(8.314510±0.000210°) J/(molK); 参见参考文献。2

R专用气体constant: R=Rm/M= (0.1889241 ±0.0000116) kJ/ (kg K)

Tc临界温度: Tc=(304.1282±0.015) K; 请参见 第3.2节

Pc临界压力: pe= (7.3773±0.0030) MPa; 见第二节 3.2

*个人计算机*临界密度:型=(467.6±0.6)kg/m³;s第3.2节

T, 三点temperature: T, =(216.592±0.002) K; 参见第3.1节

Pt三点压力: pi= (0.51795±0.00010) MPa 见第3.1节

To 参考温度:至=298.15K 便壶参考压力:po=0.101325 MPa

h8理想气体状态下的参考焓在 T_o : h8=0 kJ/kg 理想气体状态下的s参考熵,Po: s8=0 kJ/ (kg K)

1. 介绍

1.1背景

在过去的十五年里,人们对二氧化碳的特性产生了极大的兴趣。这种兴趣是从工业和科学应用中发展而来的。从工程的角度来看,二氧化碳已被证明是超临界流体萃取中最常用的溶剂,是提高采收率的良好工具。二氧化碳处理和流水线技术已经变得相当重要的商业意义。此外,对温室效应的讨论也集中在技术上关注二氧化碳作为影响大气的最重要的燃烧产物

从热力学的角度来看,二氧化碳通常是具有强四极矩的分子的最佳已知参考物,以及用于校准的测试流体。然而,在与热力学相关的科学中,兴趣主要是基于二氧化碳的广泛存在。例如,在外地幔条件下,化学平衡的地球物理计算需要在非常高的压力和温度下的二氧化碳的可裁剪的热力学数据。

此外,对二氧化碳热力学性质的研究一直受到结晶区域位置的影响。一方面,大约304 K的临界过程允许许多技术过程,例如管道过程,在临界或至少在扩展临界区域进行。因此,从技术的角度来看,一个足够准确的计算热力学性质对二氧化碳比对其他物质更困难。另一方面,临界区域的数据情况非常好,这使得二氧化碳成为一个参考子

参考文献2给出了±0.000070 J/(mol K)的标准化偏差

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

对处理纯流体临界区域的理论方法的立场。几乎每一个描述关键区域的物理模型都经过了二氧化碳的测试

1965年,在国际纯化学和应用化学联盟(IUPAC)的鼓动下,建立了一个关于二氧化碳热动力学特性的国际研究项目。1976年,Angus等人³published出版了一本专著,回顾了到1973年为止的实验数据,并提出了来自选定状态序列的热和热量性质的广泛表。然而,对二氧化碳的热力学性质的了解仍然不能令人满意。因此,自1973年以来,为了提高整个数据集的质量,已经进行了大量的实验,包括显著提高精度的最先进的实验;目前可用的数据集有三分之一属于这一组

除了实验数据数量的增加外,相关性技术在过去的十年中也有了显著的改进。复杂的"多属性"拟合procedures 5and是一种优化经验相关equations have 结构的新策略,为经验状态方程的发展提供了新的基础。

1. 2二氧化碳的先验相关性 对新的相关性的属性和要求

自1960年以来,研究了许多二氧化碳的运动动力学性 质的相关方程,但它们仅描述了在足够大的范围内的性 质,包括气体、液体和超临界态。表一总结了自1970年 以来发展起来的二氧化碳的状态方程。在研究了1973年 现有的广泛的状态方程后, Angus等人3discussed IUPAC专著中的三个方程,即Bender方程,?阿尔图宁 和加迪茨基, and Stein, 构成了表1的开始。最后, Angus等人决定使用Altunin和Gadetskii8as的方程作为 IUPAC专著的基础。当时,现有的宽范围状态方程都没 有对临界区域进行合理的描述。因此, 安格斯等 ³ combined的宽状态方程由查佩拉和罗林森开发的转换 函数。20虽然已知组合相关方程的评价会导致数值问题 , 并对开关开关的导出性质产生不正确的结果, 但该方 程被普遍接受为二氧化碳的参考。1988年, Pitzer和 Schreibei¹⁶twok再次进行了IUPAC的编译,并表明如果 在阿尔图宁和加德茨基方程中添加描述关键区域的特殊 项,可以以更少的数值费用实现非常相似的重复侮辱。

唯一真正改善Angus等人³ are结果的相关性是由Ely¹ 4 和Ely在国家标准与技术研究所开发的方程

二氧化碳的新状态方程式1515

表1。可用的广泛范围的二氧化碳状态方程

作者	年	温度 范围(K)	压力 范围 (MPa)	方程的结构	系数的数量。残余 部分	在相关性中使用 的数据
Bender ²	1970	216-1076	0-50	ExtendedBWR ²	20	ppT. psp'p"
阿尔图宁和加德斯基	1971	215-1300	0-300	多项式	50	ррТ, ср
Stein ⁹	1972	6	b	多氏症	44	ppT, psp'p"
斯塔林等人10	1972	243-413	0-48	扩展BWR ²	11	ppT, h, ps
迈耶皮特罗夫	1973	200-1273	0-60	多氏症	84	ppT, psp'p",c.,h
Angus等人³(IUPAC)	1976	220-1100	0-100	组合	50+5+4	ррТ, ср
黄等人12	1985	216-423	0-310	超过BWR*	27	ppT, pse'g
E1y1 4	1986	216-1023	0-300	施密特和Wagner4	32	ppT, psp'p",c.,C
伊利埃尔1	1987	216-1023	0-300	施密特和Wagner4	32	ppT, psp'p",c.,C
Pitzerand Schrciber	1988	230-1.030	0-100	扩展多项式	53	ppT, psp'p",c.d
伊利er al17	1989	216-1023	0-316	Jacobsenand Stewart ¹	32	ppT, pse'p",c,,c
皮策和Sterner ¹	1994	220-2000	0-10000	分数形式	28	ppT, psp'p".B.f

Benedlct-Webb-鲁宾。

由Ewer和Wagner¹³ for开发的术语对关键地区的描述被取消。 4 Besides一些实验数据,

主要是IUPAC tables3were作为输入数据

保留包含一些实验数据,主要来自Fly等ai方程。"被作为输入数据

这些方程考虑了几乎所有已发表的实验结果。然而,一些最重要的二氧化碳实验当时还没有得到。一个详细的comparison²显示了在参考文献中给出的方程。14和15表示由施密特和Wagner⁴is开发的形式优于参考文献中给出的方程。它使用了由雅各布森和斯图尔特开发的形式。18

对这些相关性的检验表明,所有现有的状态方程,独 立于它们的不同质量,显示出以下局限性:

关于ppT关系的最先进的数据没有被重新代表 在他们的实验不确定性。

描述液-蒸气相的最新数据

平衡在实验不代表的不确定性范围内 在临界区域内,热量支柱的计算-错误产生不合理的结果

不合理的行为可以在有a 数据状况不佳 将外推到外部的温度和压力上

有效性的范围会产生不合理的结果。

使用的温度值不对应于温度

1990年国际温度等级(ITS-90)。

皮克泽尔和斯特纳的关系主要可以被认为是具有合理 外推行为的经验状态方程的一个例子;作者并没有声称 这个方程改进了存在精确数据区域的热力学性质的描述

与描述临界区域内性质描述有关的问题基本上可以通过使用比例状态方程来解决;表2显示了描述二氧化碳裂缝区域的比例方法的选择相关性。然而,这些方程的有效性范围相对较小和其复杂的数学结构限制了它们的使用

关于有效性范围的一个例外是经验方程。这个方程使用了转换程序的改进形式,最初由福克斯开发,9来实现一个合理但不是as-

表2。二氧化碳的选定比例状态序列

作者	年	温度范围 (K)	密度 范围(kg/m³)	使用的缩放技术	数偏置系数
Schofield' ⁹ 维森蒂米索尼a 墨菲e al= 艾布赖特er 奥尔布赖特等25 埃里克森 Chenet al. Kiselev2	1969 1969 1973 1987 1987 1987 1990	8 301-313 304-314 301-323 298-3224 291-373 298-395	.6 327-608 336-598 290-595 245-600 193-712 280-655	简单缩放 简单缩放 简单证和扩展 杂交 转换 杂交	5 6 13 12 32+7 19 12

[&]quot;对p=P的有效性范围对T=T

的有效性范围

[&]quot;没有信息发布。

[&]quot;没有信息发布。

[&]quot;比例尺宽范围方程。在温度从212 K到1000 K时,压力高达300个MPa

1516年,跨度和瓦格纳

对关键区域的热量性质的精确正确描述。与其他参数 化方法一样,这个方程仍然需要复杂的迭代过程,但 它在工程应用中足够广泛的范围内是有效的。埃里克 森警告的测试?6表明,在该区外,由Jacobsen和 Stewart¹8提出的基于该形式的变换方程低于Ely方程 。4.15

本文的目的是提出一个新的亥姆霍兹能量中的二氧化碳状态方程,旨在克服现有相关性的缺点。持续使用复杂的fitting^{3 o}and optimization⁶procedures允许在实验不确定性范围内表示最准确的数据。对数据集的广泛研究防止了该方程在拟合区域内的不合理行为,并引入了新的程序来保证新方程的合理外推行为。在临界区域的热量性质的表示已经通过一种经验方法得到了改进,该方法即使在临界点附近也能产生可靠的结果

本文给出的所有相关方程均对应于ITS-90的温度尺度

1.3本篇文章的组织结构

. 2在秒中,我们简要回顾了亥姆霍兹能量的经验方程作为密度和温度的应用;这种变量的组合是基本方程的一种形式。简要介绍了用于开发发展的技术(多性能变换、优化程序)。第3节讨论了二氧化碳的液一蒸气、固-蒸气和固-液相平衡。本文讨论了现有的数据。除了式中的方程之外

建立了熔化压力Pm、升华强度、蒸汽强度、饱和液体密度p '和饱和蒸汽密度p"的温度依赖性的简短补充方程。二节讨论了二氧化碳单相区域的实验信息。 4. 在第二节中。5. 详细描述了表示临界区域的新方法。在经验的大范围状态方程中使用非解析项的可能性和局限性是孤立的。第6节自由能给出了亥姆霍兹自由能理想部分和剩余部分的新结论方程,给出了最终的数据集和建立新方程的项库。将从新的二氧化碳状态方程计算出的性质与选定的实验数据以及从先前的相关性计算出的值进行比较,这是presentedinSec. 7. A 本节讨论了新的基本方程的外推行为。最后,估计了新配方的不确定性,并在附录中列出了二氧化碳的热力学性质表。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

2. 是发展的基本要素 以a的形式存在的状态方程 基本方程

另外,为表示二氧化碳的热力学性质而发展起来的新的状态方程,是在赫尔姆霍尔兹能中显式的基本方程的经验表示。由于塞茨曼和Wagner⁶.30以及Saul和Wagner广泛讨论了优化程序和多性质变换技术的应用,⁵this部分局限于一些基本事实,对发展新方程的程序有了一个粗略的理解。然而,这些以前没有发表过的事实被更详细地概述了

2.1亥姆霍兹函数

本文给出的基本方程表示为亥姆霍兹能量的两个自变量密度p和温度t。无因次亥姆霍兹能量 ϕ =/(RT)通常分为部分取决于理想气体行为 ϕ °和部分考虑到剩余的流体行为 ϕ ',即

$$\phi (\delta, r) = \phi (\delta, r) + p(8, r), (2.1)$$

其中, δ =p1p. 为降低密度,r=T. /T为逆降低温度。密度p和温度T分别具有临界值pee和T。

由于亥姆霍兹能量作为密度和温度的函数是基本方程的一种形式,纯物质的所有热力学性质都可以通过结合等式的导数来得到(2.1).表3给出了g之间的关系。(2.1)以及本文中所考虑的特性。蒸汽压和饱和液体和饱和蒸汽的密度可以通过等式的in Φ by同时解方程来确定

$$\frac{p_s}{RTo''} = 1 + \delta' \phi^r_{\delta}(\delta', \tau),$$

$$RTo'' = 1 + \delta'' \phi^s_{\delta}(\delta'', \tau),$$
(2.2b)

$$\frac{p_{s}}{RT} \left(\frac{1}{\rho''} - \frac{1}{\rho'} \right) - \ln \left(\frac{\rho'}{\rho''} \right) = \phi^{r}(\delta', \tau) - \phi^{r}(\delta'', \tau), \tag{2.2c}$$

这对应于共存相中压力、温度和特定吉布斯能(麦克斯韦判据)的相等

2.2理想气体的亥姆霍兹能量由

$$A (p, T) = h^{\circ} (T) - RT - Ts^{\circ} (p, T) . (2.3)$$

表3。热力学性质与由 ϕ and d'组成的无量次亥姆霍兹函数 ϕ 的关系;见Eq。(2.1)

财产和共同 热力学定义 与减少的亥姆霍兹能量的关系 ф 及其衍生物 $p(\delta, \tau)$ 压力: $= 1 + \delta \phi'$ p (T, p) =- (OA /Ov) r熵: ρRT $s(\delta, \tau)$ $= \tau(\phi_{\bullet}^{0} + \phi_{\bullet}^{1}) - \phi^{0} - \phi$ s (T, p)=-(0A/0T). 内部能量: $u(\delta, \tau)$ u(T, p) = A - T(OA/OT). RT同色热容: $c_v(\delta, \tau)$ $= -\tau^2(\phi_{-}^0 + \phi_{-}^r)$ c, (T, p) = (ou/oT).R $h(\delta, \tau)$ $= 1 + \tau (\phi_{\tau}^{0} + \phi_{\tau}^{1}) + \delta \phi_{s}^{1}$ h(T, p) = A - T(0A/0T).) r等压热能力: c (T, p) = (oh/0T)饱和液体热容量: c.(T)=(oh/8T) , +T (ap10T) • (dps/dT)/(aplov), $\left\{ (1 + \delta \phi_{\mathcal{S}}^r - \delta \tau \phi_{\mathcal{S}_r}^r) - \frac{\rho_c}{R \delta} \frac{\mathrm{d} p_s}{\mathrm{d} T} \right\}$ $SmI. p) = \langle oplop,$ 同事: μ (T, p) = (0Tlop $\mu R \rho = \frac{1}{(1 + \delta \phi_{\delta}^{r} - \delta \tau \phi_{\delta \tau}^{r})^{2} - \tau^{2} (\phi_{\tau \tau}^{o} + \phi_{\tau \tau}^{r})(1 + 2\delta \phi_{\delta}^{r} + \delta^{2} \phi_{\delta \delta}^{r})}$ 模糊性: $\ln(\varphi(T,p)) = \int_{0}^{p} \left[\frac{v(T,p)}{RT} - \frac{1}{p} \right] dp_{T}$ 在φ (8,7) =d+8φg-In (1+8φ0 第二维里系数:B(T) = $\lim_{t\to\infty} (\partial(p/(\rho RT))/\partial\rho)_T$ $B(\tau)\rho_c = \lim \phi_{\mathcal{S}}^t(\delta, \tau)$ 第三维里系数: $C(T) = \frac{1}{2} \lim_{n \to \infty} \{ \partial^2 [p/(\rho RT)] / \partial \rho^2 \}$ $C(\tau)\rho_c^2 = \lim \phi_{\delta\delta}^r(\delta,\tau)$

-。 , d

理想气体的焓hoof是温度的函数 而理想气体的熵s°取决于蛋彩画-缝合和密度。这两个属性都可以从一个 理想气体热容方程。何时进入-cpc 插入到等式中h(T)和s(p、T)的表达式中(2.3)

$$A^{\circ} = \int_{T_0}^{T} c_p^{\circ} dT + h_0^{\circ} - RT - T \int_{T_0}^{T} \frac{c_p^{\circ} - R}{T} dT$$

$$-RT[In (plpo)] - Ts8, (2.4)$$

其中po=po(T_{\bullet})为密度,h8为焓,s为理想气体的熵。 $\Phi^{\bullet}=A\%$ (RT)的最终结果见第6.1节。

2.3亥姆霍兹能量的剩余部分

与理想气体的亥姆霍兹能量相比,没有已知的理论方 法可以得到亥姆霍兹能量剩余部分的充分计算方程,并 且在纯粒子的整个流体区域是有效的 态度因此,必须通过优化其函数形式并通过将其系数与实验结果拟合来确定剩余部分的方程。由于亥姆霍兹能量无法直接测量,因此已经开发了一种程序,允许利用不同性质的数据建立亥姆霍兹能量残余部分的经验方程

2.3.1拟合φ'对数据的经验方程

赫尔姆-霍尔兹能量剩余部分的经验方程可以写成 Φ (8, r, n), 其中n表示需要利用的系数的向量。阿伦茨和Bachr³

表明,确定最优系数集可以使平方和最小化,定义为属 于拟合的不同属性的部分平方和:

本文中的"数据"一词被用来描述这些实验结果。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

$$\chi^{2} = \sum_{j=1}^{J} \chi_{j}^{2} = \sum_{j=1}^{J} \sum_{m=1}^{M_{j}} \left[\frac{\left[z_{\exp} - z_{\text{calc}}(x_{\exp}, y_{\exp}, \bar{n})\right]^{2}}{\sigma_{\text{tot}}^{2}} \right]_{j,m}, (2.5)$$

其中,j是匹配中涉及的属性的数量。M,用于第j个属性的数据点的数量,任何属性z(x,y)的Zexp测量,以及从参数向量n的相关方程计算的Xexp,Yexp的值。通用变量通常对应于T,但y可以对应于p。p,p,或p,p),甚至可以消失。ps(Tj。在Sec. 2. 3. 3中解释的方差o² is。

在一个线性的正规方程组中,如果z依赖于T和p,如果z和 ϕ i之间的关系以及 ϕ iare线性的导数,则通过最小化x²results来确定n(见Iable 3)。如果这些条件不满足,数据必须使用适当的procedures³2-5或非线性algorithms³³have进行线性化。塞茨曼和瓦格纳详细描述了使用与 ϕ 有非线性关系的数据所产生的迭代拟合过程。30在这篇文章中,线性数据的ppT关系的内能u,等温热容量有限公司,第三维里系数C,和线性化数据的焓h,等压热容量C的均匀区域和饱和液体的声速w,饱和液体,饱和蒸汽,麦克斯韦标准被用于线性拟合算法。在非线性拟合过程中,数据所有这些性质和焦耳-汤姆逊系数 μ ,不能以合理的方式线性化,被直接使用,这意味着没有任何线性化

2.3.2优化了数学形式

上述的拟合过程假设一个相关方程的数学形式已经已知,并且只需要确定系数n。由于描述亥姆霍兹能量的重对偶部分的方程的通用形式还不知道,因此不满足这个重偶要求。因此,首先要建立一个合适的数学结构。除了伊利和他的同事发展的状态方程,4。根据反复错的方程制造者的经验,以主观的方式确定了二氧化碳方程的I⁵the形式。改进这个程序。Wagner和他的同事们开发了不同的优化策略。136. 通过引入选择数学结构的客观准则。Ely和同事应用的数学结构是由施密特和Wagner⁴ for氧气通过使用"进化优化方法"开发的。EOM。13

在本工作中,由Setzmann和Wagner⁶was开发的优化方法用于确定一个合适的数学结构。对优化过程的随机部分进行了微小的改进。然而,更重要的是塞茨曼-瓦格纳程序中关于处理不同功能形式所做的改变。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

亥姆霍兹能量剩余部分的复杂相关方程由大量的项组成。因此,单个项的数学形式可以与不同的官能团相关联,从简化密度δ的简单多项式和逆降低温度r到复杂的指数表达式(见第6.2节给出的项组)。在已知的优化过程中,只有优化方程的项的总数被限制在一个预选的值内。在这项工作中,关于属于特殊官能团的术语数目的额外限制被证明是有用的。对优化程序的实际修正允许对特定术语形式的定义进行这种限制。新的二氧化碳方程已被发展为四个非分析项,以避免在临界区域的不合理行为(cf。Sec.5.2)和八个多项式项来改进外推行为(cf。第7.3节和Span和Wagner³5)。

正如Setzmann andWagner, 6.30所指出的,优化程序只适用于线性或线性化的数据。这个限制导致了以前的described³ cyclic过程,包括线性化数据,优化相关方程的数学结构,以及系数的非线性拟合;这些步骤是发展这些基本状态方程的典型步骤

2.3.3加权的程序

当使用不同性质的数据集来建立相关方程时,必然需要使用等式中的残差(Zexp-Zcale)(2.5)通过对数据点的不确定性进行适当的测量来降低。根据高斯误差传播公式,给出了测量数据点的不确定度

$$\sigma_{\exp}^{2} = \left(\left[\frac{\partial \Delta z}{\partial x} \right]_{q,z}^{2} \sigma_{x}^{2} + \left[\frac{\partial \Delta z}{\partial y} \right]_{x,z}^{2} \sigma_{y}^{2} + \left[\frac{\partial \Delta z}{\partial z} \right]_{x,y}^{2} \sigma_{z}^{2} \right)$$
(2. 6)

其中, o_2 、 σ y和o是关于不相关的单个变量x、y和z的不确定性; z的偏导数可以从一个初步的状态方程中计算出来。

为了对数据集产生额外的影响,引入了一个加权因子fw。在等式中使用的数据点的总方差 σ rot (2.5) 被定义为

$$\sigma_{\text{tot}}^2 - \sigma_{\text{exp}}^2 / f_{\text{wt}}^2. \tag{2.7}$$

这样,加权因子fu>1就扩大了·····的影响 一个关于平方和和加权的数据点 因子fw<1还原它。通常对onc和oic是 σ²等于;然而,在某些情况下,会有不同的权重 因子是用来补偿由 数据集的结构。这些影响可以分为以下两种: 以下组:

在一个特殊的区域内,只有少数(fw>1)或excep-也有许多(fm<1)数据点 具有大型实验技术的复杂数据集 可以被转换到一个更小但更一致的数据中吗

二氧化碳的新状态方程1519

通过适当的数据选择进行设置(fm>1)。 在校正系统偏差后,一个数据集产生 结果远好于其原始实验不确定度fw>1)。 在一个特殊的区域,扩大,但分歧可分配 所选数据的确定性是预期的(fm<1)。

以提高数据的透明度

尽可能设置,显示选定数据的表(参见秒。4)包含关于加权程序中使用的不确定性以及加权因子的平均值的附加信息。讨论了与fw=1显著偏离的加权因素

3. 二氧化碳的相等式

用辅助均衡准确描述相平衡是发展大范围状态方程的重要前提,对只对相平衡感兴趣的用户也有帮助。因此,综述了三点、临界点、温度压、升华压、饱和液体密度以及液汽相边界的热性质等方面的实验信息。除了热量性质,简单的相关方程的温度依赖系引对数据情况的描述,将单个数据集的特征信息汇总在表中,得到相应的属性。这些数据集被分为三组。该分配考虑了数据的严格评估的不确定性、数据集的大小和所覆盖的温度范围。此外,还需要关注各自财产的数据情况。组1包含用于开发相关响应相关方程的数据集。组2包含适合用于比较的数据集。与组1数据相比,这些数据线至少在上述三个方面之一。组3包含非常小的数据集和具有相当高的不确定性的数据集。在这里所期望的准确性水平上,考虑这些数据是不合理的。Nev-

然而,这意味着这些数据集不会贬值——整个排名更多的是基于与最佳有效参考数据相关的质量,而不是绝对水平的不确定性;为了其他目的,即使是第三组数据集也可以是vaSrcye eulafunle.本文中的W相关方程和所有的温度值都对应于ITS-90的温度尺度。6根据较老的温度尺度,将现有数据的温度值转换为ITS-90。从IPTS-68温度等级到ITS-90温度的转换是根据Rusby解释的普雷斯顿一托马斯aral.37的国际同意程序进行的。转换值的位数增加了一位,以保证数值上一致的再转换。但右边不超过四位

使用了小数点。根据Bedford和Kirby给出的程序,将IPTS-48温度尺度对应的数据转换为IPTS-68。39对于90K~900K之间的温度,ITS-27和IPTS-48的温度尺度不会相互偏离

并且没有使用超过1927年的数据。

用于从IPTS-68转换到ITS-90温度scale³8的算法会导致温度低于273.15 K的±增加1.5mK,温度超过273.15 K。不考虑本节表中给出的不确定性,因为这些不确定性主要用于不同作者的数据之间的一致性测试。在这种情况下,由转换的不确定性所注入的绝对温度的不确定性就不那么重要了。两个温度非常相似的温度值之间的比较,如果温度采用相同的温度进行转换,则不受转换类型的影响程序3 1=重占

在过去的90年里,许多作者已经确定了二氧化碳的两点温度,但三点压力的数据情况相当差。幸运的是,少数可用的测量值是非常一致的。表4显示了二氧化碳三点的选定数据。在对现有数据进行全面审查后,我们选择了以下内容

 T_1 = (216.592±0.003)K, (3.1)pe=(0.517 95±0.00010)MPa. (3.2)

没有饱和液体和饱和蒸汽密度的数据,但中给出的相 应相关方程的评价

第3.6节和3.7节收益率

3.2关键点

总共有75篇论文给出了二氧化碳临界点的数据。表5显示了临界温度、临界压力和临界强度的选定值。临界点密度的值在预期的不确定性范围内吻合良好,但裂缝的值。卡尔的温度显示出显著的差异,远远超出了一些作者给出的不确定性。本质上,临界压力的差异可以用蒸汽压力与假设的临界压力的变化来解释

peratur

在本工作中,没有新的尝试来确定二氧化碳的关键参数,但Duschek等人的评价在不同方面进行了测试。没有改变数据的理由变得明显,因此,我们已经使用了

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

1520 R跨度和w. 瓦格纳

表4。选择了二氧化碳这三点的数据

	* : ***				
根源	年	T (K)	在(K)	p (MPa)	Ap (MPa)
迈耶斯和Van Dusen ⁴ 0 安布罗斯4	1933 1957	216. 5885 216. 5885	±0.005 +0.002	0. 51799	±0.00006
Love joy ⁴ ² 哈罗塔特4	1963 1979	216. 5915 216. 5945	± 0.001 ± 0.002		
斯塔维利等人。 Blanes-Rex等	1981 1982	216. 591 216. 5945	±0.001	0.51796	
帕维斯和菲米4 贝德福德等人47	1982 1984	216. 5915 216. 5905	± 0.002 ± 0.001		
博尼尔er al. 4	1984	216. 5917	± 0.0002		
达什克	1989	216. 5915	± 0.003	0. 51795	± 0.0001

[&]quot;所有的温度都被转换为ITs-90。高达0.1 mK时,一个额外的数字将持续转换到IPTS-68温度。这里不考虑从IPTS-68到ITS-90的转换的不确定性。

$$Te=(304.1282\pm0.015)K$$
, (3.5)

$$Pc = (7.3773 \pm 0.0030) MPa, (3.6)$$

 $pe=(467.6\pm0.6)\,kg/m^3$ (3.7) (Te中的附加数字在任何转换到IPTS-68温度的数字一致性

规模

3.3熔化压力

只有两组可用的测量方法来降低二氧化碳的混合压力。 1942年,Michels等人测量了温度在217 K和266K之间的25 个熔化压力,对应于0.9 MPa和284 MPa之间的压力。1960年,Clusiuset al 6 1发表了21份数据,覆盖范围从217 K到222 K,对应0.5 MPa到24 MPa

不幸的是,这些数据集彼此不一致,并且与最近的三点 压力数据不一致。在这两个实验中,温度计都在二氧化碳 的三点处进行了校准。因为是三点的值 米歇尔塞特al. 60和Clusius等al⁶假设的温度偏离实际值[ef。衰退商数(3.1),所有的断层测量值都根据

在它们转换到ITS-90的温度之后。

修正后的数据在预期的不确定度范围内是一致的,并用于建立熔化压力的简单相关方程:

$$\frac{p_{\rm m}}{p_{\rm t}} = 1 + a_1 \left(\frac{T}{T_{\rm t}} - 1\right) + a_2 \left(\frac{T}{T_{\rm t}} - 1\right)^2,$$
 (3.10)

与 T_1 =216.592 K, p_1 =0.51795 MPa, a_1 =1955.5390和 a_2 =2055.4593合作。该方程的函数形式约束于三点压力。校正数据和未校正数据的表示如图所示。L. 等式的不确定性(3.10)估计为 \triangle pm/Pm \le ±1.5%for T_1 \le T \le 225K and \triangle pm/pm \le ±0.5%for

表5。纸箱二氧化碳的临界点的分段数据

秋0。							
根源	年	T. (K)-h	Pe (MPa)	P. (kg/m)			
水平信使和Chen30	1972	304. 182					
Moldovcr ⁵	1974	304.1192 ± 0.004	7. 3753	467.8 ± 2.2			
安格斯等人	1976	304.202 ± 0.05	7. 3858 ± 0.005	468 ± 5			
Lipa ea132	1977	303.9170 ± 0.005					
莫尔多弗等人	1979	304, 122	7. 375	467			
Baade ⁵ 4	1983	304. 122	7. 375	467			
EdwardsS ³	1984	304.0984 ± 0.0001					
复仇者和复仇者	1986	304, 122	7. 372	468			
奥尔布赖特埃拉特。24	1987	304. 0992	7. 3719	467. 67			
Ely等2	1987	304. 1192	7. 37479	466.5			
陈等人。"	1990	304. 0992	7. 3916	467. 69			
陈埃塔	1990	304. 1192	7. 3753	467.83			
达什克等人。	1990	304.1282 ± 0.015	7.3773 ± 0.003	467.6 ± 0.6			
阿卜杜拉加托夫等。"	1991	304. 1272=0. 010		4675			

[&]quot;所有的温度都被转换为ITS-90。超过小数点的4位数字是

添加,以保证持续的重新转换到IPTS-68的温度。 这里不考虑从IPTS-68到ITS-90的转换的不确定性。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

Michesa Michas dcond

根据熔化压力方程,Eq. (3.10) 计算出的实验熔化压力数据的FiG. 1. Relative偏差。在此图中,分别绘制了校正的和未校正的数据(见第3.3节)。

225K<T≤270K。方程的简单形式应确保合理的较高温度外推

3.4临界压力

由于固体二氧化碳的广泛使用,升华压力的数据情况非常好。二氧化碳升华压力的可用数据集见表6。这些数据按照上述程序进行分类。Bilkadi等人74的数据集必须进行校正,因为最近的三点温度与Bilkadi等人用于校准目的的数据集之间存在差异,因此需要进行校正。修正后的温度由

T⁹o=Tpi90-0.049 K (3.11)

升华压力可以用相关方程来描述

$$\ln\left(\frac{p_{\text{sub}}}{p_{\text{t}}}\right) = \frac{T_{\text{t}}}{T} \cdot \left\{ a_1 \left(1 - \frac{T}{T_{\text{t}}}\right) + a_2 \left(1 - \frac{T}{T_{\text{t}}}\right)^{1.9} + a_3 \left(1 - \frac{T}{T_{\text{t}}}\right)^{2.9} \right\}, \tag{3.12}$$

使用 T,=216.592 K,p₁=0.51795 MPa,a₁=14.740846,a₂=2.4327015和a₃=-5。3061778.该方程以其函数形式约束于三点压力。图2比较了1组和2组数据与Eq.(3.12计算的值)。估计185K \leqslant T为 \triangle Psub \leqslant 250 Pa,170K \leqslant 185K为 \triangle \leqslant ±100Pa,T \leqslant 170K为 \triangle \leqslant ±50Pa。Bedford等人47得出结论,在常压(po=0.101325 MPa)下,升华温度的最新值为T=194.6857 K±0.0030K;与等式迭代(3.12)yields T=194.6855 K.

式 (3.12) 与154 K以上的数据进行拟合。Bryson 等人75are的低温数据不代表在作者给出的不确定性范围内,但T>85 K和0.0001 Pa的偏差分别不超过0.001Pa。

3.5蒸汽压力

关于二氧化碳蒸气压的信息由36个数据集提供,相应的信息汇总见表7(重复发布的数据集仅列出一次)。Duschek等人58的非常精确的数据集描述了从三点温度到临界温度的蒸汽压。我们只选择了这组数据集来开发新的蒸汽压方程。对于转换为ITS-90温度尺度的数据,最佳值为

表6。二氧化碳升华压力的数据集总结

根源	年	数据 数量	温度范围, T(K)	△T (mK)	△psub	组
Boisand W1s*2	1899	8	149-196			3
库宁和罗布森6	1902	6	195-215	± 32		
Onnes和Weber ⁶ 4	1913	9	90-106			
Siemens ⁶	1913	29	118-195	± 20		3
Wcber和Onncs ⁶ 6	1913	15	104-138			
Henning ⁶	1914	18	192-195		±100 Pa	3
海斯和奥托6	1931	19	193-195	± 2		3
Heuse和0uo6	1932	7	195	±1		3
迈耶斯和范杜森40	1933	28	195-217		$\pm 0.02\%$	3
Giauke和Egan ⁷	1936	12	154-196	±	±3 Pa	
提克纳和损失	1951	13	106-154	± 300		3
安布罗斯	1955	16	179-198	± 1	±4 Pa	
希萨?	1970		216	± 10		
比尔卡迪等人7	1974	132	154-217	± 20		
布赖森等75	1974	62	70-103			
贝德福德等人+	1984		195	±3		
费尔南德斯-法斯纳特和德尔里约7	1984	21	194-243	± 1	±100 Pa	

1522年,跨度和瓦格纳

□ Ambrose"² ● 贝德福德等等。4 乔克和伊根⁷⁰ ◇费尔南德斯-法斯纳克特和del里约热内卢⁷⁶ V Bilkadi etal. ⁷⁴ △Bilkadi et al.# (corr. data)

根据升华压力方程(3.12)计算出的Fic. 2. Absolute偏差 \triangle Psub= (Pswbap-Pabale)。在此图中,Bikadi er al⁷⁴ areplotted的校正和未校正数据(见第3.4节)

表7。二氧化碳压力的数据集总结

表7。二氧化碳/	玉刀 的	表7。二氧化碳压力的数据集总结									
根源	年	数据 数量	温度范围T (K)	AT (mK	∆ps	组					
Kuenen和Robson ⁶ 3	1902	13	217-273	± 32							
基索姆	1903	4	298-304	± 20	±1000 Pa	3					
Jenkin和Pve7	1914	23	222-296	± 10	$\pm 0.2\%$	3					
Bridgeman ⁷ 9	1927	30	273		± 140 Pa						
迈耶斯和Van Dusen ⁴	1933	67	217-304		$\pm 0.01\%$	63					
罗巴克等人8	1936	10	276-304	6 ± 10	≤±100Pa	:					
	1942	19	223-304			co					
米歇尔等人。8	1950	19	217-276			63					
铰刀er al. 83	1951	2	279, 294	± 14	$\pm 0.1\%$						
比尔林和韦伯斯特	1953	9	274-304	± 20	$\pm 0.01\%$						
Cook ⁸	1953	9_4	293-304	± 10							
Cook ⁸ 6	1953	4	293-303	± 10	±1000 Pa						
施密特和托马斯8	1954	∞4	274-304		$\pm 0.05\%$						
Wentorf ⁸	1956		304	± 1	± 132 Pa						
Kletskii ⁹	1964	2	260, 266								
格雷格和Dadson90	1966		273		$\pm 0.003.4\%$						
爱德华兹和Johnson ⁹	1968	28	273								
Vukalovich er al. 92	1968	4	301-304								
Kirillin er al. 93	1969		283-303								
Klolodov er al	1972	5	243-283								
水平信使和Chen ⁵ 0	1972	37	267-304	± 2	± 500 Pa						
Fredenslund andMollerup ⁵	1974	5	223-293	± 20	± 2000 Pa						
Gugoni er al9	1974		241-269								
贝塞尔和罗宾逊9	1975		274	=60	±24000 Pa						
达瓦洛斯等人98	1976		230-270	± 10	±3000 Pa						
Steadand Williams ⁹ 9	1980	9	220-300	± 10	$\leq \pm 0.1\%$						
王百等100	1982	5	263-298	± 30	± 3500 Pa						
Al-Sahhafer al.!0	1983	4	219-270		$\pm 0.14\%$						
百叶54	1983	227	220-304	±3	±80 Pa						
费尔南德斯-法斯纳克特和德尔Rio7	1984	21	217-243	\pm	±100 Pa						
Krat102	1984	7	289-294	±3	$\pm 0.005\%$						
Holste等,103	1987	12	250-303	± 10							
布朗er al。0 4	198g	4	220-270	± 20	\pm 0.1%						
达什克等人。⁵8	1990	109	217-	±3	$\leq \pm 0.005$						
Shah等人103	1991	:	304	± 2	% ±0.5%	13					
			276+29	0							
V++ * 10		9	3	1.0							
Yurttas等10	1994		230-280	±3	$\pm 0.01\%$						

二氧化碳的新状态方程1523

>比尔林和韦伯斯特

◆费尔南德斯-法斯纳克特和 delRio⁷×Meyers和Van Dusen⁴

□百叶窗

●达什克埃拉尔

---Angus et al. (aux.eq.) .

卡帕塔尔。

△水平SengersandChen⁵ ▽Michols等人⁸

选定的实验蒸汽压数据与从蒸汽压方程计算出的值的Fic. 3. Relative偏差。Eq. (3.13).根据Angus等人的 3 are计算计算出的蒸气压力以进行比较。

表8。二氧化碳饱和液体密度的数据集总结

根源	年	数据 数量	温度范围 T (K)	△T (mk)	△p'(k)	组
阿玛加特0	1892	35	273-304			3
Bchn10	1900	1]	215-297			3 3
Lowryand Erickson108	1927	8	267-296		± 0.1	
米歇尔斯等人	1936	2	276-	写		
	1951	10	304	±1	± 0.2	
			279+29	0		
			4	±2		
				0		
比尔林和韦伯斯特	1953	9	274-304	± 20	± 0.5	
库克85	1053	11	203303	± 10	± 0.5	
乌卡洛维奇等人	1968	4	301-304		± 0.5	
Straub ⁰ 0	1972	34	294-304			
Gugoni等9	1974	3	241-269			
贝塞尔和罗宾逊	1975		274	± 60		
巴德	1983	115	220-304	± 3		
海恩斯110	1985	17	220-300	± 30	± 0.1	2
埃斯佩特	1987	3	266-303		± 0.2	
霍尔斯特等人103	1987	3	266-303	± 10		
达什克等人。5	1990	50	217-304	± 3	$\pm 0.015h$	
Abdulagatoyet a159	1994	5	304			

Esper "'和Holsteeral. 0'are的数据集对相同测量值的不同评估。在温度超过300k时,轮胎会上升到生值0. 27。

Fic. 4. Relative偏差 $100 \triangle p$ '=100(选择的实验饱和液位密度数据的pap1/Pap从等式计算的值(3.14). 根据Angus et al³ are的相应方程计算出的饱和液位密度,以供比较

氮化过程得到了与Duschek等人使用的相同的数学形式, 58to在IPTS-68温度尺度中描述了该数据集; 只有系数a; 发生了变化。蒸汽压方程可以写成

$$\ln\left(\frac{p_s}{p_c}\right) = \frac{T_c}{T} \cdot \left[\sum_{i=1}^4 a_i \left(1 - \frac{T}{T_c}\right)^{t_i}\right], \quad (3.13)$$

与Te=304.1282 K, pe=7.3773 MPa, a₁ =-7.0602087合作

 a_2 =1.9391218, a_3 =-1.6463597, a_4 =-3.2995634, t_1 =1.0, t_2 =1.5、 t_3 =2.0和 t_4 =4.0。

图3显示了标记为组1和组2数据的数据集与Duschek等 人5⁸Considering测量的数据表示之间的良好一致性 这些数据的实验不确定性,即等式的类型(3.13)估计为整个温度范围的 $\triangle ps \le \pm 0.012\% for$

图3中的虚线对应于Angus等人将³ after转换为ITS-90的蒸汽压方程计算出的值。这种相关性的结果非常好,但是,当然,目前可用的最准确的数据并没有体现在他们的实验的不确定性范围内

3.6饱和液体密度

表8显示了17个二氧化碳分级液体密度数据集的信息。同样,只有数据

数据 温度范围 根源 年 数量 T(K)	△T (mK)	△p"(%)	
		△p (70)	组
阿马加特尔0 1892 35 273-304			3
洛林和埃里克森10 1927 8 267-296		± 0.7	3
米歇尔和aL80 1936 9 276-304	$\leq \pm 10$		3
雷默等人8 1951 2 279, 294	± 20	± 0.2	3
比尔林和Webster ⁸ 4 1953 9 274-304	± 20	± 0.5	_
库克85 1953 1 293-303	± 10	± 0.5	
乌卡洛维奇和92 1968 4 301-304		± 0.8	
Kholodover. 94 1972 5 243-283			
斯特劳布109 1972 34 294-304			3
贝塞尔和罗宾逊9 1975 1 274	± 60		3
Baade ³ 1983 145 220-304	± 3		3
埃斯佩尔! 1 1987 5 245-304		± 0.5	3
霍尔斯特等人103 1987 5 245-304	± 10		3
达斯切克等人 1990 42 217-304	± 3	± 0.0250	
阿卜杜拉加托夫等人59 1994 2 304			3

[&]quot;Esper''"和Ho1ste等人103的数据集是对温度在295K以上的相同测量值的不同评估,不确定度上升到±0.25%

巴德塔尔斯普尔DMichesetal

选择的实验饱和蒸汽密度数据与Eg.(3.15计算值的Fic. 5.Relative偏差)。根据Angus等人 3 are的相应方程计算出的饱和蒸汽密度,以便进行比较。

利用Duschek等人的集合8,建立了一个简单的饱和液体密度方程。组2仅限于数据集,它们提供的不确定性与单相区域中的常见不确定性相当,即 Δp ' \leq ±0.2%outside为临界区域。不幸的是,这一标准只有海恩斯,10Esper,"I和Holste等人; 10^3 all其他数据被证明是较少的。

对于整个温度范围,都有简单的相关性

$$\ln\left(\frac{\rho'}{\rho_c}\right) = \sum_{i=1}^4 a_i \left(1 - \frac{T}{T_c}\right)^{t_i} \tag{3.14}$$

使用T=304.1282 K, pc=467.6 kg/m³.a₁ =1.9245108,

 a_2 =-0.62385555, a_3 =-0.32731127, a_4 =0.39245142, t_4 = $\frac{1}{6}$ t₁ =0.34, t_2 =去, t_3 =言, 并描述了Duschek等人58within的实验不确定性数据。对于这个方程,系数和指数都不同于Duschek等人给出的公式8,该公式对IPTS-68上的温度有效。相关性函数形式的改变导致了临界区域的结果略有改善。根据所选数据的不确定性,等式的不确定性(3.14)估计为 \triangle p' \leq ±0.015%for T \leq T \leq 295 K, \triangle p¹ \leq ±0.04%for 295K<T \leq 303K, \triangle p¹ \leq ±为303K<TT \leq Tg。

图4显示了组1和组2数据的不良情况,以及组I数据的高度准确表示。虚线对应于由Angus等人³ for给出的饱和液体密度的辅助方程计算出的值

3.7饱和蒸汽密度

关于二氧化碳饱和蒸汽密度的数据见15个来源,其弧列于表9。如果使用第3.6节中提到的相同标准来区分第2组和第3组数据,则将米歇尔和alL⁸0can的数据分配到第2组。虽然许多作者发表了均匀气体区域的准确ppT数据,但即使是最近的饱和蒸汽密度数据集的密度分散高达±0.5%。

饱和蒸汽的新相关方程强度,

$$\ln\left(\frac{\rho''}{\rho_c}\right) = \sum_{i=1}^{5} a_i \left(1 - \frac{T}{T_c}\right)^{t_i},\tag{3.15}$$

使用Ta=304.1282 K, pe=467.6 kg/m³, a_1 =-1.7074879, a_2 =-0.82274670, a_3 =-4.6008549, a_4 =-10.111178,

as =-29.742252, t₁ =0.340, t₂ =去, t₃ =1, t4=3, 和t₅ =号, J. Phys。化学裁

判员数据, 第25卷, 第6期, 1996年

1526年,跨度和瓦格纳

表10。碳液汽相边界热性质数据集总结

二氧化物

根源	年	财产	数据 数量	温度范围 T(K)	无把握	组
Euckenand Hauck112 诺维科夫和特雷林113	1928 1960	Ca w"	8 18	223-293 293-304		3
阿米尔哈诺夫, ¹ 4佩切 和范达尔	1972 1972	c w	11 23	304 217-293	$\triangle w^1 = \pm 1\%$	3
Magee和Elyl16 Abdulagatov etal.5	1986 1994	c	77 8	220-303 304		3

在相边界上的特定等温热容不能直接测量: 这些数据只能通过从均匀区域的外推来确定。

描述了Duschek er al. 58在其实验不确定性范围内的第1组数据。与相应的方程Duschek等,58的系数和指数相关已经修改为了实现稍微改进的表示数据sct已经转换为ITS-90温度尺度,不确定性的估计可以由实验的不确定性。我们预计等式的不确定性(3.15)为 $\triangle p$ " $\leq \pm 0.025$ %for $T \leq T \leq 295$ K , $\triangle p$ " $\leq \pm 0.08$ %for 295K $< T \leq 303$ K ,和 $\triangle p$ " $\leq \pm 1$ %用于303K $< T \leq T$

图5显示了令人费解的糟糕数据情况,al-尽管只有自1970年以来发表的测量数据和米歇尔斯等人的旧数据。80年被绘制出来了。Duschek等人8的数据集是唯一一个能够发展饱和蒸汽强度精确相关性的数据集。Angusetal. 3 yields的相关方程在275K以上的温度下得到可靠的结果,它主要依赖于米歇尔等人的数据集

3.8液蒸汽相的热量数据 边界

表10列出了有关数据集的信息,其中包含了在二氧化碳的液体-汽相边界上的不同热量性质的测量值。没有开发出描述这些数据的辅助公式。相反,在新状态方程的发展中考虑了第一组数据,即在优化中线性化形式,在非线性拟合中直接形式。关于这些数据的更详细信息在第4.9节中提供,以及描述Maxwc11标准的选定数据

直接非线性拟合唯一没有考虑的数据是沿饱和液体线的比热-容量cg数据。表3显示,无量次亥姆霍兹能量与c.之间的关系包含了蒸汽压的一阶导数。因此,根据式(2.2),将该性质直接包含到非线性拟合中,将涉及到与麦克斯韦准则的连锁关系。为了避免数值问题,根据关系将沿饱和液体线的比热容转化为饱和液体密度下的比等压热容

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

$$c_{p}'(T) = c_{\sigma}(T) - \frac{T}{(\rho')^{2}} \frac{\left(\frac{\partial p}{\partial T}\right)_{v} \frac{\mathrm{d}p_{e}}{\mathrm{d}T}}{\left(\frac{\partial p}{\partial \rho}\right)_{T}}.$$
 (3.16)

温度高达295K,在等式中的分数(3.16)仍然小于cg的20%,可以从一个初步的状态方程中确定,估计的不确定度小于0.5%。因此,在cp中,由变换引起的不确定度小于0.1%,因此与由Magee和Ely测量的c.数据的实验不确定度相比可以忽略不计。16在295K以上的温度下,分数项的影响迅速增加,导数(apldp)r的不确定性也同样增加。因此,仅使用295K以上的转换c.数据进行比较;见图.20.

4. 新方程的实验基础

的状态

在本节中,介绍了描述二氧化碳堆积-相区热力学性质的数据集。对于本工作中考虑的每个属性,在相应的表中给出了关于所有可用数据集的一般信息和关于所选数据集的更详细信息。再次,数据集分为三组解释Sec. 3. Since均匀地区数据的情况不如明确的不同属性的情况阶段边界许多数据集与不止一组通常这些数据集在地区贫穷的数据情况,但他们只用于比较在更可靠的数据存在

所选数据集的信息包括作者估计的不确定性、我们自己估计的不确定性,以及由式(2.7)定义的加权因子fw的均方值。特别是对于一些有20多年历史的数据集,作者和我们自己估计的不确定性有很大差异。这种不同评估的原因可能是基于数据的分散和不确定性之间的差异,许多人没有考虑到

二氧化碳的新状态方程1527

过去的作者。我们审查的不确定性造成的广泛的比较, 至少应该是一个合理的估计。这些值在加权过程中被使 用了

第4.9节包含了用于描述液-蒸气平衡的所有数据的相应信息。

4.1热性能

自1903年以来,已有59篇论文对二氧化碳密度的温度和压力依赖性进行了研究,覆盖了具有5508个数据点的叠相区域。表11显示了关于可用数据集的信息,包括它们的分类

对于温度高达360 K,压力高达13 MPa,ppT关系的描述主要基于Duschek等人的数据集。I⁵4和Gilgen等人1S9这些数据集支持ps,p',p等人测量的数据由郭等人¹⁵7and ppT数据测量的313 K等温线。I⁶0d所有这些测量都是使用"双沉"浮力法进行的,161,这可能提供了目前可用的最准确的ppT数据。来自不同的双弦幽灵的数据在它们之间是一致的

无把握然而,在重叠区域(主要在8 MPa和9MPa之间) ,Duschek等1⁵4和Gilgen等1⁵9的数据集显示密度的小系 统偏差高达±0.01%。

在233 K到523 K之间的7个等温线上,最近的研究补充了双胞胎的测量测量160,1606与一个新的"单烧结"装置160,160e,允许测量高达30 MPa的压力。原则上,对于密度超过100kg/m³的材料,该仪器的精度与双弦弦装置的精度相当,但由于二氧化碳的测量部分处于新仪器的测试阶段,因此必须假定略微增大的不确定性在压力超过13 MPa时,Lau、49基里林等人93、137、140和米

歇尔斯等人123(见Sec. 4.9.2)的调整数据集产生了Gilgen等人数据给出的过程的平稳延续。I⁵9在30 MPa时,调整后的数据通常与新的单弦数据within±0.05%in密度相一致,但调整后的数据达到显著更高的压力。由于其高质量,这些调整后的数据集的使用显著增加了权重因子;详情见表12。对于523 K和698 K之间的温度和高达34MPa的压力,凤等最近的数据160改进了数据现场一

表11年。二氧化碳关系的数据集总结

根源	年	数据 数量	温度范围 T (K)	Pressurerange, p (MPa)	组
凯森"	1903	151	298-333	6, 0-14, 2	3
詹金! 17	1920	82	236-303	1.4-9.7	3
Maas和Menniel ¹ 8	1926	16	203-373	0-0.1	3
库珀和马斯119	1930	30	273-297	0-0.1	3
库珀和马斯120	1931	47	242-350	0-0.1	3
卡伍德和帕特森12	1933	8	273	0-0.4	3
米歇尔和Michels ¹ 22	1935	190	273-423	1.6-25.3	1-2
米歇尔等人123	1935	140	298-423	7.5-315.8	1-2
米歇尔等人0	1936	179	276-413	3.6-9.9	2
Reamer等124	1944	147	344-510	0-	ಬ
波顿利等人125 巴图埃卡斯和洛萨126	1950		295	70. 0 01	
	1954	32	280-282	0-0.1	ယ
肯尼迪127	1954	32	273-1273	2. 5-140. 0	ω
温托夫8	1956	106	304	7.4	1-2
武卡洛维奇和阿尔图宁12	1959	120	348-773	2. 7-32. 7	-2
武卡洛维奇和Altunin ¹ 29	1962	205	473-1023	1. 1-60. 0	1-2
武卡洛维奇等人30	1963	22	923-1076	2. 1-15. 0	1
武卡洛维奇等人13	1963	124	313-423	2. 1-60. 0	1-2
Juza等人132g	1965	82	323-748	70, 0-400, 0	1 2
Ku和Dodgel	1967	13	373	0.6-	.3
Sass等人, ³ 4	1967	47	348-398	25. 1 0. 8- 25. 3	ಚ
武卡洛维奇al135	1968	168	273-308	0, 8-30, 0	2
戈洛夫斯基和底马尔尼36	1969	129	217-303	13. 0-60. 0	1-2
Kirillin等7	1969	21	433-473	2. 0-69. 0	1-2
柯里林等人	1969	39	283-308	1.6-49.2	1-2
柯里林等人1384	1969	99	223-473	1. 6-54. 0	1-2
Tsiklis等39	1969	50	323-673	200. 0-700. 0	I
Kirillin etal140	1970	24	223-273	2, 0-56. 0	-
Popov和Sayapoy ¹ 4	1970	117	223-303	0, 7-30, 0	1-2
Vukalovich er al. 142	1970	95	238-268	0. 7-19. 0	1-2
43年申曼	1971	85	373-573	0.4-5.9	ಬ
霍洛多夫等人14	1972	141	293-363	0.5-4.8	

1528 R斯潘和w. 瓦格纳

该工厂的IABLE 11.5ummary可用来生产二氧化碳-继续

根源	年	没有 ,数 据	温度范围 T (K)	压力范围 p (MPa)	组
Kholodov等人,94	1972	85	243-283	0.5-4.4	3
关卡复仇者和陈5	1972	22	304-319	7.4-10.0	2
斯特劳布109	1972	24	304	7.4	2
贝塞尔和罗宾逊14	1973	76	310-394	0.7-11.0	3
拉斯卡佐夫等人47	1974	148	248-303	0. 5-5. 6	2
Shmonov andShmulovich¹4	1974	64	681-980	50.0-800.0	
刘149,	1986	69	240-350	1.6-70.0	1-2
Esper'1,	1987	73	246-320	0.1-47.7	1-2
Ilolte gt aL103.	1987	236	215-448	01-500	1-2
杰斯克15	1987	245	260-360	0.2-28.5	
杰斯克15	1987	27	273-353	0.2-30.0	
Magee和Ely ¹	1988	10	250-330	5.8-27.1	1-2
Elye aL	1989	61	250-330	2. 2-35. 4	1-2
霍因基斯145	1989	186	298-423	0.2-58.0	1-2
McElroy e al15	1989	44	303-333	0.8-6.0	3
Duschek等在154	1990	362	217-340	0.3-9.0	
达什克et al³8	1990	87	295-304	6.0-7.4	
杰斯克等人。"	1990	270	270-320	0.2-12.0	
Nebendah1 ⁵ 6	1990	21	337-413	1. 9-4. 4	
郭等152	1992	40	273-293	1. 0-3. 3	
Wcber158	1992	12	320	0.1-6.0	
Oilgeu a159	1993	264	220360	0.3-13.0	
布拉查图斯164	1993	29	233-523	0.8-30.1	
160度的丰裕	1995	120	330-698	3.0-34.2	
Klimeck etat160%	1995	60	300-430	0.5-30.1	
Gokmenoglu etat160	1996	142	297-425	6.1-66.6	
Nowake1160	1997	21	313	8.4-12.1	

从度量值派生出来的属性表。"数据在两阶

段区域内的参数。

ationsignificantly. Straub¹ 09was的数据集不包含在用于开发最终方程的数据集中,但它被用作描述临界区域的敏感测试

4.2比等压热容

对于特定的等压热容,数据情况的描述必须被划分为描述理想气体的热量行为的数据集和另外包含残余行为的数据集。虽然理想气体的热性质的数据情况是由理论方法主导的,但对实际气体行为的描述,其中考虑了热容的理想和残余部分,实际上局限于实验研究。为了解释这些不同的情况,本节分为两个子部分。

J. 物理学。化学瑞特。数据,第25卷,第6期,1996年

4.2.1对比等压热的实验结果

量名

今天,用各种设备进行的量热测量提供了在温度和压力的较宽范围内的特定等压热容的精确数据。在低密度区域,这些结果通常比等脉络膜热容测量更有效

包括最先进的数据的声音二氧化碳可用的温度范围,只有0.9 MPa的压力,表13中给出的数据集,特别是表14所示的数据集代表最重要的信息来源二氧化碳的热量行为。虽然Bender等人77的数据集提供了对低密度区域的准确描述,但Ernst和Hochberg¹78和Ernst等人179的数据允许对高达90 MPa的热量特性的精确描述。至少对于亚临界压力,这些数据集的准确性通过适当的修正得到提高;见Sec. 4.9.3。

[&]quot;我们使用的是最初公开的平滑数据; Angus etat³ cannot发布的非光滑数据因为非常大的散点。

本文还包含了Refs. 137. 91和140中的所有数据参数

[&]quot;ThedataofSchonmann⁴ ³were由霍因基斯重新评估: 45个评估数据在本工作中考虑的数据幸福"是对霍尔斯泰塔尔. 1⁹3发表的测量结果的重新评估

^{*}相边界附近的5published数据数据,用于确定近临界区域的饱和液体和蒸汽密度。

二氧化碳的新状态方程1529

表12年。多化碳的ppT数据汇总;详细介绍了作者估计的不确定值和我们在加权程序中使用的值

		估计的不确定度			估计的不确定度 作者们
	数据数量	作者们 估计的不确定度		平均数据	估计的不确定度
根源	含义	我们单独地根源		数量f	我们单独地
米歇尔斯	9	N. R. E. #			
和米歇尔122	4.00	△p=1000 Pa, △p=0. 2% Lau149		42	Ap=0.1%
米歇尔等人123	75 1. 0	Ap ⁶ = 0.05% △p=0.02%, △p=0.1%埃斯佩尔		3. 7 1	\triangle T=10 mK, \triangle p=0.02%, \triangle p=0.1
	0	Δp 0. 02%, Δp 0. 1% 50, γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ		45	% △p=0.03-0.11%
Wentorf ⁸	87	△T=1 mK, △p=132 Pa, △p=0.02%	. 1 100	1.00	\triangle T=10 mK, \triangle p=0.015%, \triangle p=0.05%
乌卡洛维奇	0.09	△T=2 mK, △p=500 Pa, Ap=0.09%Holste △p=0.15-0.35%	et al. 103	80	$\triangle T = 10 \text{ mK}, \triangle p = 0.015\%,$
与下份组可 和阿尔图宁128	44 1. 07	△p=0. 15=0. 55% △p=0. 4%杰斯克150		0.80 245	△T=10 mK, △p=0.015%, △p=0.05% N, R. E
乌卡洛维奇	134	NPF		0.69	\triangle T=5mK, \triangle p=0. 1%, \triangle p=0. 1%
andAltunin12	1.00	△p=0.2%杰斯克克15		27	N. R. E.
乌卡洛维奇等人18	22	N. R. E.		1.14	\triangle T=5 mK, \triangle p=0.05%, \triangle p=0.05%
-D L \h \D -t \kk	1.00		的变体 152Ely	9	\triangle T=30 mK. \triangle p=0.01%. \triangle p=0.1% \triangle T=30 mK, \triangle p=0.01%, \triangle p=0.1%
武卡洛维奇等人13	36 0, 64	N. R. E. 等等		0. 16 52	$\triangle T=30$ mK, $\triangle p=0.01\%$, $\triangle p=0.1\%$ $\triangle T=30$ mK, $\triangle p=0.01\%$, $\triangle p=0.1-0.15\%$
	0.04	△p=0.1		32	
		% 			A.T. 00 H. A. 0.01W A. 0.1
Juza e at12	82 1. 0	Ap=2 MPa, \triangle p=0.3% \triangle T=0.2 K, \triangle p=2 MPa. \triangle p=0.4% Hoink	is145	1.0	△T=30 mK, △p=0.01%, △p=0.1- 0.15% △T=10
	0	21 0.2 K, 2p 2 m a. 2p 0. 1% norm	.13110	72	mK, △p=0.01%, △p=0.16%
戈洛夫斯基	108	\triangle T=80 mK, \triangle p=0.08%, \triangle p=0.15%		1.8	△T=10
和西玛尼	2. 2 5	△T=80 mK, △p=0.08%, △p=0.15%Dusche	ek er al.	3 362	mK, △p=0.01%, △p=0.16% AT=3 mK, Ap=0.006%, △p=0.015%
Kinlliu er ul137e	-	△ph=0.1%		1.8	ΔT-3 uK, Δp-0. 006%, Δp-
Kiniiiu ei uiisve	9. 6 5	$\triangle p=0.05\%$, $\triangle p=0.2\%$ Dus	chek等人。58		0.015% $\triangle p=0.03-0.259d$
Kinillin等	29	N. R. E.		2, 25	△p=0.03-0.25%
	4.00	△p=0.05%, △p=0.2%·杰斯克	克等人,159岁		N. R. E.
W. 111 1100		△p=0.15-0.2%郭等157		0.75	△T=5 mK, △p=0.05-0.1%, △p=0.05-0.01%
Kirillin etal138	66 1. 0	$\triangle p=0.15=0.2\%$ $\Rightarrow 157$ $\triangle p=0.05\%$, $\triangle p=0.2\%$		40 2, 25	$\triangle P = 0.05 = 0.01\%$ $\triangle T = 3$ mK, $\triangle p = 0.005\%$, $\triangle p = 0.01\%$
	0	△p=0.3%Gilgen等159			A.T. D. W. A. O. 0050 A. O. 010
Tsiklis等39	49 1. 00	$\triangle T=0.5$ K, $\triangle p=1$ MPa, $\triangle p=1.0\%$		264 2. 18	\triangle T=3 mK, \triangle p=0.005%, \triangle p=0.01% \triangle T=1.5 mK, \triangle p=0.006%, \triangle p=0.015%
Kirillin等人140e	24	Ap=0.1%布拉查图斯16		2. 16	$\triangle T$ =1.5 mK, $\triangle p$ =0.006%, $\triangle p$ =0.015%
	4.00	△p=0. 05%. △p=0. 1%		1.00	$\triangle p = 0.016 - 0.051\%$
波波夫	73		. E. 风和aL160		△p=0.016-0.051%
Sayapoy14	1.00	△T=30 mK, △p=0.05%, △p=0.15% △p=0.08-0.15%克里	梅古笙 L 160b	1.00	$\triangle p=0.05-0.10\%$ $\triangle p=0.10\%$
武卡洛维奇等人14	86	$\triangle T=15$ mK, $\triangle p=0.005\%$,	4年元 47(1000	00	\triangle T=6 mK. \triangle p=0.006%, \triangle p=0.02-
	1. 0 0	△p=0. 08-0. 15%		1. 0 0	0. 04% △T=6
/I # > # +	-	△p=0.25-0.5%诺瓦克等150			mK, △p=0.006%, △p=0.02-0.04% △T=1.5 mK, △p=0.006%. △p=0.015%
什莫诺夫 和什穆洛维希尔4	60 1. 44	Др-0. 25-0. 5% ил гд 5д 47130 ДТ=0. 4 К, Др=0. 2%, Др=1. 0%		21 1.00	$\triangle T=1.5$ mK, $\triangle p=0.006\%$. $\triangle p=0.015\%$
和1111111111111111111111111111111111111	1. 44	□ 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1		1.00	

N. R. E.: 作者没有给出合理的估计。给出了一致性,而不是不确定性。

Rivkin和Gukov171.174的数据集描述了二氧化碳的超临界区域。由于经验的状态等程可能对该区域内的氯化性质产生误导性的结果,这些数据集被认为对该新的基本方程的发展具有重要意义。不幸的是,这些数据被证明与其他数据和最先进的ppT数据不一致。由于参考文献中给出的数据。174是从一种二氧化碳含量较高的混合物的测量中推导出来的,

该数据集被分为第3组。参考文献中给出的数据集。171仅 使用了相关的加权因子

4. 2. 2结果的比低压热容量 天然气状态

根据《等式》(2.4),对理想气体状态下的比等压热容的知识形成了基础

调整值在最终数据扫描, sce Sce. 4.10。

给出了饱和液体和饱和蒸汽密度的共同确定性。

1530r. 跨度和W. WAGNER

表13年。二氧化碳特定等压热容的数据集汇总

根源	年	数据 数量	温度范围 T (K)	压力范围 p (MPa)	组
凯斯和柯林斯162	1932		300	0, 2	3
Kistiakowsky和大米16	1939	3	300-367	0. 1	
德格鲁特和米歇尔斯164ah	1948	92	298-423	0.1-206.5	
Masi和Perkor165a	1952	12	243-363	0.05-0.15	
Schrock¹66	1952	26	311-783	0.1-7.0	2-3
科佩尔和史密斯16	1960	102	291-322	7. 2-8. 3	3
武卡洛维奇等人168	1964	23	295-355	0.4-8.2	2-3
武卡洛维奇和Gureey¹69	1964	8	313-333	0.8-8.0	2-3
武卡洛维奇等	1965	86	293-493	1. 0-22. 2	2-3
里夫金和古科伊17	1968	221	283-403	8.8-24.5	1
Altunin andKuznetsoy¹72	1969	36	293-333	1. 0-5. 0	2-3
阿尔图宁和库兹尼斯! 73	1970	54	283-373	1. 0-6. 0	2-3
Rivkin和Oukuv74	1971	40	306-332	8.8-11.8	3
阿尔图宁和Kuznetsoy¹7	1972	30	253-323	0.9-6.0	2-3
塞古萨等等。76	1980	35	245-346	0, 3-3, 7	
Benderet at177	1981	60	233-473	0. 1-1. 5	
埃姆斯特和霍赫格178	1989	9	303	0.3-52.2	
Emst et al ⁹	1989	55	333-393	0. 2-90. 0	
多丹在al17	1994	40	327-416	5. 1-25. 1	3

本文还包含了理想中二氧化碳比等压热容的外推值

亥姆霍兹能量A的理想气体部分的描述(p,7)。c的结果,通过将cp测量值外推到零压力(cf。表13)对于这个应用程序既没有足够的管理范围,也没有覆盖足够宽的温度范围。因此,综述了描述二氧化碳在理想气体状态下的热量行为的理论方法。

关于二氧化碳分子的基本频率的信息可以在各种汇编中 找到,但是

表14年。关于二氧化碳的特定等压热容量的选定数据的汇总;详细介绍了作者估计的不确定性值和我们自己估计的不确定性值 加重法

根源	数据数量 马恩夫	估计的不确定度 作者们 估计的不确定度 我们单独地
基斯佳科夫斯基	3	△c,=0.3%
和Rice ⁶ 3	1.00	\triangle T=30 mK, \triangle c, =0.3%
马西	12	AT=30 mK, Ac, =0.19
andPerkor165	1.00	\triangle T=30 mK, \triangle c, =0.1%
里夫金	220	\triangle T=10 mK, $^{\circ}$ \triangle p=0.05%, Ac, =2%
和Gukoy	0.17	\triangle T=25 mK, \triangle p=0.05%, \triangle c, =2%
Benderat a17	60	△c,=0.1%-0.15%
	1.0	AT=10 mK, △p=0.01%, Ac, =0.12%
埃姆斯特	9	Ac, =0. 2%~0. 9%
andHochberg178b	2, 25	△T=20 mK. △p=0.1%, △c, =0.2-0.9%
Emst等	55	Ac,=0.2%-0.9%
	1.9	\triangle T=20 mK. \triangle p=0.1%, \triangle c, =0.2-0.9%
	2	

给出了一致性,而不是不确定性。修正后的值在最终的数据集中使用,见第二秒. 4. 10.

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

只有几篇论文包含cp的可靠数据,其中对多个刚性旋转器考虑了谐波振荡器模式,以达到较高的精度。表15总结了这些数据集,其中Chao¹84的数据集是最新的一个。Chao考虑刚性振器的一阶校正,谐振器模式)

由彭宁顿和神户开发的;85年,他估计他的结果的不确定性小于±0.02%

4.3比等容热容

关于二氧化碳的等温热容有七个数据集。表16总结了关于这些数据集的信息。更详细的信息是关于

表15年。用理论方法计算出的二氧化碳在理想气体状态下的等压热容量的数据集

根源	年	温度范围, T(K)
伍利180 Bachr等	1954 1968	50-5.000 10-6000
Gurvich¹8	1979	10-10.000
Chao ¹	1983	50-5000
赵18	1986	10-1500

气态

根据ppT关系的测量值计算出的数据。

[&]quot;高二氧化碳含量的混合物的测量;本文所考虑的结果从混合物实验外推到纯二氧化碳。

二氧化碳的新状态方程1531

表16年。二氧化碳等氯热容数据集汇总

根源	年	数据 数量	温度范围, T (K)	密度范围, p (k g/m³)	组
欧肯和哈克!2 米歇尔斯和斯特杰兰86	1928 1952	8 50	223-293 297-313	274-839	3
阿米尔哈诺夫等人187	1970	214	280-393	500-831	2
阿米尔哈诺夫和波利赫罗尼迪8 Edwards ⁵ 5	1971 1984	733 221	276-403 301-312	512-903 434-467	1-2 1
Mageeand Ely116	1986	113	223-330	88-1140	1-2
Abdulagatov etal. 阿卜杜拉加托夫等人。	1991 1994	331 88	304-357 304-357	460-510 460-510	1-2 1
59b	1994	230°	280-357	460-519	1-2

[&]quot;由于温度分配不明确,阻碍了对数据的评估。*有些数据是在两相区域。

所选数据见表17。对于二氧化碳,等温热容的测量在下面讨论的两个区域是非常重要的。

Magee 和Ely¹ ⁶yields的数据集是对高密度区域内热量特性的唯一全面的描述。在液体密度下,该数据集仅限于临界压力以上的压力,在均匀区域的有效热量数据和饱和液体曲线之间留下了一个差距(见Sec. 7. 2. 2)。在密度低于600kg/m³ 时,这些数据只能用作者估计的不确定性之外的系统偏差来表示。另一方面,在该区域,几个精确的state3. 5-17方程彼此一致,新的状态方程等压热容在2%左右,满足等压热容数据

表17年。特定二氧化碳等温热容量的选定数据摘要;提 供了关于由作者估计的不确定性值和由我们自己估计并 在加权程序中使用的不确定性值的详细信息

根源	数据含义的 数量	估计的不确定度 作者们 估计的不确定度 我们单独地
阿米尔哈诺夫 和波利赫罗尼迪188 Edwards⁵5	18 1. 0 0 124	AT=5 mK, △c, =2-4% △T=50mK, △p=0.05%, △c, =2.5% △c, =0.75%
Magee和Ely ¹ 16	0. 16 80 0. 37	\triangle T=1 mK. \triangle p=0.05%, \triangle c, =2% AT=10 mK, \triangle p=0.1%, \triangle c, =0.5-2% \triangle T=10 mK, \triangle p=0.1%,
Abdulagatoy e at5	233 0. 2 5	\triangle c, =0. 5-2% \triangle p=0. 023%. \triangle c, =2-3. 5% \triangle T=10 mK. \triangle p=0. 05%, \triangle c, =5%
59岁时发育不全等	88 0. 2 5	
Abdulagatov eal59	% 10 0. 2 5	\triangle p=0.023%, \triangle c, =2-3.5% \triangle T=10 mK. \triangle p=0.05%, \triangle c, =5%

在最终的数据集中使用了调整后的值;参见第4.10节。给出的是精度,而不是不确定性。

由新的状态方程,小于0.5%。基于这些事实,我们得出结论,1热热容高达8%的偏差可能是由于数据集的缺陷。因此,低密度测量的加权因子被大大降低

在扩展的临界区域内,Edwards⁵5和阿卜杜拉加托夫等人的数据集59,59.596的数据集对新的状态方程的发展有很大的影响。(爱德华兹的thesis⁵⁵only书中包含了研究结果的图形插图。这里使用的数据是由Sengers提供的。189)选择表17中给出的减少的加权因子是因为在一个小而非常敏感的区域内有大量的数据点。使用fwt=I的这些数据集会导致对关键区域的过分强调;细节见秒。5.

阿卜杜拉加托夫等人最近的数据首次发表在1991年在博尔德举行的第十届物理物理性质研讨会论文集上。当相应的paper⁵9在三年后发表时,它只包含了从诉讼程序中给出的331个数据点中分离出的88个数据点。同年,发表了另一个paper⁵98,其中包含之前发表的88个点,均匀相中一个等线的10个点,以及两个额外的132个点

表18年。对二氧化碳声速数据集的总结

根源	的数 量年数据		压力 范围 , p(MPa)	组
赫格特9	1940 195	301-3117.0	-10. 3	2
诺维科夫和Trelin'92	1962236288	-3733. 0-10. 0		1
皮塔耶夫斯卡亚和比列维奇193	1973176298-	47350. 0-450. 01-	-2	
勒明	1989 5	0 240-3600.4	-0.9	

[&]quot;光滑的数据

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

由Senger提供的自沙选择数值,18997次测量描述了两相区域内的状态。

这些数据选择自阿卜杜拉加托夫等人提供的数据5

^{*132}个数据位于两相区域;在单相区域的98个数据中有88个已经来自阿卜杜拉加托维等人。9.59

1532 R跨度和 w. 瓦格纳

表19年。二氧化碳声速的分段数据摘要;详细提供了由作者估计的不确定性值和由我们自己估计并在加权程序中使用的不确定性值的信息

根源	平均数据 数量f	估计的不确定度 作者们 估计的不确定度 我们单独地
人名 和Trelin19 皮塔耶夫斯卡亚 和比列维奇19 莱明19	234 0. 77 144 2. 25 44 0. 0 6	N. R. E. $\triangle T = 0.1 \text{ K, } \triangle p = 0.1\%, \ \triangle w = 0.5\%$ N. R. E. $AT = 0.1 \text{ K, } \triangle p = 0.2\%, \ \triangle w = 2\%$ $\triangle T = 8m\text{K, } \triangle p = 4.2 \text{ mbar,}$ $\triangle w = 0.015\% \triangle T = 8m\text{K, } \triangle p = 4.2 \text{ mbar,}$ $\triangle w = 0.015\% \triangle T = 8m\text{K, } \triangle p = 4.2 \text{ mbar,}$

作者没有给出合理的估计。

相域阿卜杜拉加托夫等人的数据的不确定性被估计为至少与在原始数据集中可见的散点一样大。9

Lipa等人19052的论文经常在二氧化碳文献中引用,不包含数值再硫。由于Edwards⁵cover的数据是相同的,是用相同的设备测量,受杂质的影响较小,因此本研究未考虑Lipa等人的5⁵the数据

4.4声音速度

二氧化碳声速数据中的三组被用于开发新的状态方程。表18包含了可用的数据集,表19提供了关于所选数据的附加信息。诺维科夫和Trelin,92、皮塔耶夫斯卡娅和Bilevich¹⁹3的数据集分别提供了关于扩展临界区和高压区的重要信息。虽然Lemmingl⁹4is发布的数据质量优于其他数据集,但这些数据仅在使用时降低了权重因子。在气体区域中,在压力低于1 MPa时,声速的剩余部分都小于总声速的2%。由于测量的不确定性与声速的总值有关,而不仅仅与残差部分有关,因此这些数据对描述残差模糊行为的经验相关性的发展的贡献是非常有限的

表20。二氧化碳焓差的数据集总结

根源	年	数据 数量	临时雇 员 范围T (K)	压力 一系列 p (MPa)G	roup
马斯和巴恩斯200 Koppel和Smith ¹ 6 Masalov ² 0武卡洛维奇和 Masalov ² 02 Moller等人 aL20	1926 1960 1964 1964 1993	4 102 54 68 10		0. 1 7. 2-8. 3 2. 5-9. 8 2. 5-9. 8 15. 5	3

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

表21年。关于二氧化碳内能差异的数据集的总结

根源	年	数据 数量	温度范围, T(K)	密度范围 p (kg/m)	组
克鲁格20	1964	454°	274-325	190-870	1-2
巴克尔20	1968	47	291-316	466	3

² Someof the测量的温度间隔部分达到两相区域

除了表18中的数据外,还有5篇论文195-199涉及临界点附近的声速。这些发表于1951年至1970年的论文都没有包含数值结果。我们没有试图评估这些论文中给出的图形表示,因为当时没有充分考虑与关键区域的实验工作相关的具体问题

4.5焓

有关焓测量的文献来源汇总在表20中。武卡洛维奇和 Masalov²01,202和Moller等人的数据。本研究考虑了 203个数据,但只有Moller等人的数据和作者给出的不确定性(10个数据选择了 f^2 =2.78, \triangle h=0.7%or \triangle h=0.6 kJ/kg的平均值,以较大者为准)。这些数据提供了重要的信息,在高密度的数据情况,热量性质是差的。利用武卡洛维奇和Masalov²01,202的数据来测试关于高温下热量性质的新方程的质量

4.6内能

表21列出了可用于内能差异的两个数据集的一般信息。由于(ou/8T)的温度位移,Baehr² 0³ were在临界等位线上测量的数据没有使用。Baehr观察到的最大值无法解释。Kruger选择的150个数据,204个没有到达两相区域,估计的不确定度为 \triangle T=40 mK, \triangle p=0.2%, \triangle u=2%-4%,平均加权系数为f²=0.88。作者(\triangle T=10 mK, \triangle p=0.03%, \triangle u=1.4%-3%)给出的不确定性太小,无法解释数据的分散性

4.7焦耳汤姆逊系数

由于焦耳-汤姆逊系数的数据只能用于非线性拟合过程,而不能用于优化过程的线性算法,因此它们对经验基本方程的发展的影响相当小。Bender等人77的数据是唯一包含在用于非线性拟合的数据集中的数据

二氧化碳1533的新状态方程式3

表22, 二氧化碳焦耳-汤姆逊系数的数据集汇总

根源	年	数据 数量	温度范围, T(K)	压力范围 p (MPa)	组
布米特20	1923	127	273-393	2.0-7.7	3
罗巴克等人8	1942	151	198-573	0.1-20.7	3
德格鲁特和米歇尔斯164	1948	92	298-423	0.1-206.5	3
阿尔图宁和古里20岁	1970	131	253-343	0, 6-5, 9	2
	1972	92	293-500	1.5-22.0	2-3
本德等人7	1981	35	233-473	0.1-1.5	_
库斯科er aL208	1995	33	350-500	1.0-4.6	ω

由测量的ppT数据计算出的AJoule-汤姆逊系数。等温焦耳-汤姆逊系数。8r=c。=

(使用 Δ T-10 mK, Δ p-0.01%选择了34例数据, Δ μ= 为0.4%, f^2 =为0.36)。武卡洛维奇和al₂06的数据被证明是对气体区域一致描述的敏感性。表22给出了对处理焦耳-汤姆逊系数的数据集的调查

4.8维里亚尔厨师

关于二氧化碳的文献中包含了许多论文,其中给出了 关于第二和第三维里系数的信息。表23总结了相应的资 料来源

表23年。第二和第三维二氧化碳系数的数据集汇总。由于文本中解释的原因,没有将数据分配给组I

根源	年	数据编号 B/C	温度范围, T (K)	组
米歇尔斯和米歇尔斯12	1935	13/13	273-423	3/3
Schafer ² 09	1937	16/	203-273	3/
麦科马克和Schneider210	1950	9/9	273-873	3/3
科特雷尔和Hamilton ²	1955	7/…	303-333	3/…
Pfefferle等人212	1955	2/2	303	3/3
科特雷尔等人213	1956	3/	303-363	3/…
库克214	1952	6/…	213-303	3/…
马西亚和佩纳219	1958	6/…	298-423	3/…
屠夫和爸爸21	1963	13/13	263-473	3/3
Huff和Reed ²¹ 7	1963	10/	298-510	3/
武卡洛维奇和马萨洛夫2	1966	18/18	423-773	2/3
达德森等人219	1967	9/•••	263-398	3/…
Ku和Dodge13	1967	1/	373	3/3
Sass等14。	1967	3/	348-398	3/…
季莫申科等人22	1970	9/•••	224-313	3/…
武卡洛维奇等人+	1970	10/10	253-343	3/3
Vukaloviche aL206	1970	14/	238-308	3/…
瓦克斯马尼塔尔2	1973	6/…	273-423	2/…
本德等人! 7	1981	4/…	233-263	3/…
Ohgaki等222	1984	2/…	423-473	3/…
Holste等。	1987	18/16	217-448	2/2
Mallu等人22	1987	3/…	323-423	3/…
Hoinkis ¹ 45	1989	4/4	298-423	2/2
Mallu等人224小时	1989	···/3	323-423	···/3
我EIroy等人1	1989	4/4	303-333	3/3
Duschek等14	1990	7/4	220-340	2/2

维里膨胀是在压力下形成的。 这份文件还包括了已经是published²³ in 1987的值。 最近,Span² 25指出,将实验中的第二和第三维里系数纳入用于发展一个广泛范围方程的数据集并不是很有用的。大多数数据集来自于ppT测量,已经评估以确定维里系数。因此,使用原始测量值可以更好地获得所需的实验信息。此外,只有当维里系数的方程对应于维里系数的项相互独立时才有用,就像简单的维里展开的情况一样。但是,如果状态方程中包含指数函数,则不再满足这个条件。因此,在本文中,维里系数的可用值仅用于比较;没有一个数据集被分配到第1组。

然而,在温度低于220K时,第三维里系数[p/(pRT)=···+Cp²+...] 的 全 部 贡 献 小 于 最 近 的 data¹⁵4throughout的不确定性。因此,在低温下,如果方程只拟合toppT数据,则可能会出现从状态方程计算出的第三维里系数的物理不合理表示,因为在这个温度范围内,不能通过实验评估第三病毒效率的可靠值来建立,第三维里系数的13个值是由一个简单的多项式方程计算出来的,该方程描述了在实验不确定度内气体区域不同热力学性质的所有选定数据,并得到了低温下第三维里系数的合理图。这些第三个维里系数的"人工"数据随后在开发新的状态方程时被使用。

4.9液蒸气平衡

在优化新状态方程结构的过程中,液-蒸气平衡以线性化的方式使用。32.30为此目的使用的数据集由205温度下的ps(T)、p'(T)和p"(T)值组成,这些值由eqs计算得出。(3.13) to (3.15).这些数据覆盖了整个液汽相边界,温度间隔在接近时减小

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

1534 R跨度和

表24年。描述二氧化碳液气相平衡的选定数据的摘要;详细提供了作者估计的污染值和我们估计的,以及在加权程序中使用的信息

由作者估计的不确定性 的数量估计的数据不确定度 属性含义我们单独地

		+ 3: 4 11 3 1 30	
根源			
诺维科夫和特雷林! 13,	w"	18 1.00	N. R. E. " △T=10mK, △w"=0.5%
佩切和范达尔马吉和	W	23 1. 23	$\triangle w^1 = 1\%$ $\triangle T = 0.1K$, $\triangle w' = 0.5\%$
伊利尔16	Ca	739 2. 04	N. R. E. △T=10mK, Ac.=1%
Duschek等人58	Ps	109 1.00 50	\triangle T=3mK, \triangle p, =0. 005% \triangle T=3mK, \triangle p, =0. 005% \triangle T=3mK, \triangle p ¹ =0. 015%
Duschek等5	p ″	1.00 42	\triangle T=3mK, \triangle p ¹ =0.015% \triangle T=3mK, \triangle p"=0.025%
	p	1.00	\triangle T=3mK, \triangle p"=0. 025%

名词性的。: 作者给出的非估计"使用最终的数据集调整值;见第4.10节。

只考虑了atT<295K的数据;见第3.8节。

临界温度此外,表10中已经出现的组1热量数据被用于拟合新的状态方程。

最终的方程直接与Duschek等人5⁸andto的相平衡数据进行非线性拟合。表24给出了用于描述液-蒸气平衡的实验热量和热数据的详细信息。

4.10数据调整

为了实现尽可能一致的最终数据集,必须调整一些选定的数据。因此,可以区分出三组数据,它们由于不同的原因进行了修正。这三组在以下的小节中被解释

4.10.1对描述关键区域的数据集的调整

对于描述临界点附近的热力学表面,测量温度和临界温度之间的温差比绝对温度更重要,这种温差可能也可能较少受系统偏差或样品杂质的影响。如果给出了相应的临界温度,则绝对温度可以通过该值与本工作中使用的值之间的差值来修正[cf]。公式(3.5))。这项技术被用于两组重要的热量数据

爱德华兹55。Tog=Tea. +29.8 mK, *

Novikov和Trelinl¹3: T₄ 8=TNo-44mK。(4.2)

Wentorf⁸8did没有提供任何与他的ppT数据对应的 临界温度信息,但有类似的相关-

J. 物理学。化学瑞特。数据,第25卷,第6期,1996年

w. 瓦格纳

o杜谢克特al¹³ (233K-240K) □Gilgen等人。 (240K+323K) ◇Kirllinn等人 (233K-243K) □Michels等人² (323K)

Fo. 6. Relative偏差 $100\Delta p=100$ (实验ppT数据从Eq. 1(6. 1)计算的值。这张图说明了调整基尔林等人、 140 和米歇尔斯•埃尔• 12 3的数据的原因(见Sec. 4. 10. 2)。

它可以根据临界等位线上的压力来确定。 建议824. reasweabse与之前

Wentort⁸8:T₄ 8=Twe. -27 mK. (4.3)

ppT数据的4.10.2调整

如果在一组参考数据重叠的区域出现系统偏差,可以对ppT测量进行合理的调整。通过这种方式,准确的信息ppT关系可以获得大约100 MPa,而数据等 54 和吉尔根等 159 限于9 MPa和13 MPa,分别的数据Brachthauser 164 和克里梅克等被限制在30 MPa。. 160

这种简单的修正被用于以下数据集:

Kirillin ct al, 137. 93, 140. p-Pk₁ . 0. 9995, (4. 4)

哦,恩斯特等人! ?" (333K) □Bender ct al! "(363K)

FIO.7度。实验c的相对偏差 $100\Delta c$,=100 (Cp. exp-Cp. cale)/cp. cp,由式(6.1)计算出的特定等压热容量数据。此图说明了纠正Ernst等人9和Bender等人77的数据的原因(见Sec. 4. 10.3)。

二氧化碳的一个新的状态方程式1535

表25年。等压热容数据的温度依赖性修正

温度	Cp.cor-
T (K)	<u>Cp. exp</u>
	<u>Cpeap</u>
	本德et aL17
233	+0.40%
243	+0.25%
273	+0.13%
323	+0.05%
363	+0.31%
393	+0.14%
423	+0.10%
473	-0.17%
	埃姆斯特和霍奇伯格"?
303	+0.36% Emst等在17
333	0.18%
363	$\pm0.00\%$
393	-0.37%

米歇尔等。123p=PMi • 0.9995, (4.5)

Lau¹ 49 . P=PLa • 0. 9993 . (4. 6)

图6显示了一个通过在一个单一偏差图中组合两个完全不同的等温线来证明这些调整的例子。由Kirillin等人发表的99项测量结果仅在参考文献中发表。138不能根据公式(4.4)进行调整。米歇尔等人的校正数据仅在18 MPa以上的压力下使用。在密度与温度和压力的依赖性较强的区域,数据根据等式进行调整(4.5)也产生了不令人满意的结果。

在过去的20年里,不同的作者50212427对米歇尔等人80,123和米歇尔和米歇尔所使用的温度尺度提出了修正。22在这项工作中测试了可能的修正,但在ITS-27温度尺度和当时范德瓦尔斯实验室使用的温度尺度之间不能建立合理的温度变化。如果这些数据的系统偏差是由于温度尺度的误差,则对于在米歇尔的不同论文中发表的测量数据,必须假设不同的尺度。由于气体和扩展临界区域的数据情况有了显著改善,因此决定不在这些区域内兜售米歇尔斯的数据

等压热容的4.10.3修正

由于等压热容的低压极限,cp°非常清楚地含有二氧化碳(见第6.1节),测量的等压热容的温度相关误差可以很容易地确定。图7显示了由Bender等人77和Ernst等人测量的数据的系统偏差。179同样,两个传入等温线合并在一个单一偏差图中。亥姆霍兹能量剩余部分等式的新方程的系统误差(6.5),会导致偏差,并随着压力的增加,因为对等压热容的剩余贡献在-

起折痕

为了补偿这些温度依赖性的偏差,Bender等人的数据 集,7Frmst和霍赫伯格的数据集。178和Ernst等人的 179根据表25中给出的值进行了校正。

5. 在临界区域的热力学性质的描述

很好的是,热力学性质可以用在整个纯流体的临界区域沿着特定路径的"幂律"来描述。这种描述,最初是由Verschaffel2²7在1896年作为一种实证尝试而提出的,现在已经得到了最近的理论结果的支持。特别是,由Wilson²28引入的重整化群方法扩展了关于纯熔点在临界区行为的知识,并得到了临界指数的"普遍"值。这些值被定义为在与临界点消失距离的极限处的幂律指数。表26给出了一些最重要的幂律,并给出了通过对重整化群理论的评价所建立的相应临界指数的不同值。56通过在点上展开所谓三点接触的经典方程,以及在该点上展开所谓五点接触的经典方程。没有一个经典方程能够重现重整化群理论所预测的值

表26年。描述沿着整个临界区域的某些路径的热力学性质的幂次定律的例子

			关键的	由评估所研	由评估所确定的值	
财产	幂律	描述的路径	拥护者	RG理论	三点方程式。	5点eq。
饱和密度	(p'-p") [~] (T,-T)	相界	β	0.326±0.002	0. 5	0. 25
等温压缩性	$\mathrm{Kr}^{\sim} \mathrm{T-T.}$ –	crit.isochore	人	1.239 ± 0.002		
压力	p-Pd1 [~] p-pc ⁸	临界等温线	51	4.80 ± 0.02	3	
同色热容	c, ~ T-T.	crit.isochore	a	0.110 ± 0.003	0	0

根据信使和关卡信使的说法。56

*这样的状态方程在临界点上受到条件(iplap)r=0和(q²plap²)r=0.where(²plap³)>0的约束。除了脚注b中给出的条件外,这个方程还产生(a³plap³)¬=0和(a¹plap⁴)r=0.where(8plap³r>0

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

1/4

Fio. 8. Relative偏差100△p=100 (Pexp-Pauk) /Pappp实验数据从等式计算的值(6.1). 从Chen et al²7的交叉方程和使用CH₄ -和O₂ -形式(见Sec. 5.1) 中计算出的值被绘制出来以进行比较。

5.1状态解析方程的限制

通常得出结论,状态解析方程具有临界区域内纯流体的概率,因为它们不能产生正确的临界指数。对于本文中所考虑的大多数性质,如果考虑到最先进的方程式,这个结论是不正确的。

在本节中,从两个宽范围方程的临界范围内得到的结果与实验结果以及从专门为描述扩展临界区域而设计的非解析方程计算出的值进行了比较。为此,我们选择了陈的交叉方程etal.²7交叉方程的临界参数被改变了在这项工作中使用的值,因为否则方程的比较不同的关键参数会产生误导性的结果附近的临界。此较不同的关键参数会产生误导性的结果附近的临界。将一个典型的现代宽范围方程的例子,我们将施密特和Wagner⁴ for氧发表的方程拟合到本工作中使用的数据集上;这个方程称为0₂ 型方程。Ely⁴ and Ely等人⁵use的方程具有相同的函数形式,但这些方程具有不同的临界参数。为了说明状态解析方程的极限,我们重新设计了塞茨曼和Wagner³0发表的甲烷公式,我们重新设计了塞茨曼和Wagner³0发表的甲烷公式,称为CH₄ 型方程。就临界区域的描述而言,这个方程可能是目前最有效的解析方程

图8显示了从二氧化碳的新状态方程计算出的压力之间的相对偏差。(6.1)].from参考的CH4型和02型方程和Chen等人的交叉方程,与Straub测量的非常一致的数据相比,109直接对二氧化碳的临界等温线。(没有一个宽范围方程拟合Straub的数据;这些数据仅作为临界区域的一致性检验: cf。第4.1节)。)在图8中选择的分辨率中,只有

J. 物理学。化学裁判员数据,第25卷,编号。6,1996

临界区代表性等容热容数据的Fio.9.Representation。绘制的曲线对应于Cheneral.²7的膝盖计算和使用CH₄ -和O₂ -form (seeSec.5.1重新构建的方程计算的值)。

O₂ 型方程显示了临界等温线的0陡变过程,这是由一个状态的解析方程所期望的。解析的CH₄ -type方程和新的状态方程得到几乎相同的结果,并且表示数据与交叉方程一样准确,尽管它们没有得到热极化群理论预测的相应临界指数δ的极限

沿临界等温线,ppT数据可以用宽范围方程非常准确地描述,因为相应的幂律描述了在接近临界点时消失的压力差(cf。表26)。因此,临界指数 δ 的不同值,即定义为极限 $|p-pc\rightarrow 0$,几乎不影响ppT表面的表示。本文中考虑的大多数性质在接近临界点时表现出相似的行为

然而,有两种性质表现出完全不同的方式:特定的等温热容Cy和声速w。解析方程的计算得到一个临界指数 α =0,在临界点得到一个有限的值c,而热化群理论预测 α =0.110,导致特定等氯热容量在裂缝点的缓慢发散

图9显示了二氧化碳临界等孔上的比等温热容量以及由02型方程、CH4型方程和交叉方程计算出的相关值。当接近临界温度时,只有交叉方程能够跟踪数据的陡峭过程。CH4型方程在临界温度附近约±0.5 K的区间内失效,02型方程在约±2 K的区间内失效

由于声速与等温热的倒数值有关,因此也可以得到 类似的结果 容量从理论的角度来看,声速预计会在临界点上消失,而解析方程只能产生一个有限的最小值。同样,解析方程失效的温度区间,分别在临界温度周围延伸到约±0.5 K和±2K上。

5. 2将非解析项作为积分的使用 在一个经验的宽范围方程中的分量 的状态

一个复杂的状态解析方程的性能,如CH4 型状态,对于关键区域内的任何技术应用都是足够的。然而,由于二氧化碳临界补充的科学重要性,只要评估结果相关性的数值费用仍然是合理的,对热量性质的改进描述被认为是可取的。因此,我们拒绝了基于物理变量 T 和 p 以 \mathcal{D} 所 使 H 的 数 学 变 量 的 模 型 ,如 switching 3 . 3 . 3 . 4 29 4 和 4 ransformation 3 4 approaches

在本文中提出的基本方程显然是经验的情况下,与 重整化群理论的预测相对应的渐近行为被认为是次要 的,混合理论和经验方法甚至可能产生误导性的结果 。因此,我们试图通过引入特殊的非解析项,将经验 的宽范围方程的定性正确行为扩展到临界点的附近。

这些公式的发展始于检查减少的亥姆霍兹能量和热量性质之间的关系。比等压热容量可以表示为

$$\frac{c_{p}}{R} = \underbrace{-\tau^{2}(\phi_{s_{p}}^{0} + \phi_{s_{p}}^{T})}_{C_{v}} + \underbrace{\frac{(1 + \delta\phi_{\delta}^{r} - \delta\tau\phi_{\delta\tau}^{r})^{2}}{1 + 2\delta\phi_{\delta}^{r} + \delta^{2}\phi_{\delta\delta}^{r}}}_{\sim \lfloor \frac{\partial p}{\partial p} \rfloor_{T}}.$$
(5. 1)

其中R对应比气体常数, ϕ 对应还原亥姆霍兹能量的理想(上标o)和残余(上标r)部分,T对应逆还原温度, δ 对应还原密度。作为下标的量r和 δ 表示d的相应导数;见表3的脚注。因为(oplap)=¹ grows在接近临界点时比c快,在等式中快得多(5.1)比等压热容主要由分数所主导,这与ppT数据的表示密切相关。因此,一个产生精确解的方程

在临界区域内的ppt表面也应该产生比等压热容量的可靠值。

等温比热容的情况有所不同

$$\frac{c_{v}}{R} = -\tau^{2} (\phi_{\tau\tau}^{o} + \phi_{\tau\tau}^{r}). \tag{5.2}$$

如果亥姆霍兹能量的残余部分在临界点上是有限的二阶导数,特定等容热容的值也是有限的,只有在 Φ 中具有非解析行为的方程,才能重现c中的期望散度。同时,这样的公式会导致声速值的消失,因为w对应于

$$\frac{w^{2}}{RT} = \underbrace{1 + 2 \delta \phi_{\delta}^{r} + \delta^{2} \phi_{\delta\delta}^{r}}_{\sim \left(\frac{\partial p}{\partial \mu}\right)_{T}} - \underbrace{\frac{(1 + \delta \phi_{\delta}^{r} - \delta \tau \phi_{\delta\tau}^{r})^{2}}{\tau^{2} (\phi_{\tau\tau}^{o} + \phi_{\tau\tau}^{r})}}_{\sim \left(\frac{\partial p}{\partial \mu}\right)_{T}}.$$
(5. 3)

在临界点上,表达式(apldp)变为零,而(apl8T) p是一个有限的值。因此,如果c变为无限,声速就变 为零

因此,一个公式被发展,它可以包含在一个经验的 广泛状态方程,作为对通常的项和的常规贡献,并产 生 \(\phi\)的预期的非解析行为,。这样的公式必须满足三 个附加的条件

对于 ϕ r 所产生的值,必须到处都是有限的除了在高度点

其他二阶导数的奇异行为

关于δ的导数必须到处避免,然而,对于这些导数的行为没有进一步的限制——完整的状态方程必须以一种特殊的方式来设计,而不仅仅是方程中的一项

在the δ, r表面的临界区域, 最大值

,必须遵循饱和蒸汽和饱和液体线的路线,以避免 在该环相区域出现不合理的铜最大值

如果将以下数学形式的公式作为亥姆霍兹能量的剩余部分方程中的第1项,则可以满足这些条件

$$\phi :=n : \triangle 18 \exp[-C : (8-1)^2 - D_1 (r-1)^2]$$
 (5.4)

和

$$\triangle = \{ (1-r) + A; \lceil (8-1)^2 \rceil^1 (2B) \}^2 + B \lceil (8-1)^2 \rceil a;$$

指数函数抑制了该表达式在临界区域外的影响。距离 函数△bi引入了非解析行为,并确保了

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

Fo. 10. While的初步状态方程显示了还原的亥姆霍兹能量的 三阶密度导数的不连续图,即新的状态方程,等式(6.1),生成三阶导数的连续图。

在c中的最大值,遵循相位边界。最后, φ乘积中的 密度降低在低密度极限下具有物理上的正确行为。

除了系数n; , Eq。 (5.4) 介绍了七个信息: 每个参数的"内部"参数(a、B₁、C、D、a、b、₁)

项i;原则上,这些参数扫描应该包含在整个方程的非线性拟合中。然而,由于这些参数的高度相关影响,单多点非线车拟合非常困难,因此,我们决定用我们的优化策略确定 B_1 , C_i , a_i ,和b的合理起点。随后对b;, C_i ,和 D_1 resulted的非线性拟合,仅在对方程的微小改进中。 B_1 and a_i 在当前的项目中没有重新安装。原则上, $A和\beta_1$ corre符合比例因子和幂律对饱和液体和饱和蒸汽密度的临界解释(见表26),可以独立确定。在最后的术语组(见表30)中,使用了 β 的值,它略小于相应临界指数的预期值,以满足条件

$$b_1 > 0.5 + \beta$$
 (5.5)

和

$$\beta_i < \frac{1}{2a_i(1-b_i)+2}. \tag{5.6}$$

方程(5.5)和(5.6)的结果是,除了在临界点上至少有相应的温度导数外,到处都必须避免奇异行为。未发表的初步方程没有满足这些条件,并导致了第三霍尔兹能量(a^3 ϕ $18o^3$)在临界等位线处的不连续图。图10显示了这种可能的错误行为的一个例子,并显示了最终的方程,等式(6.1),得到了一个关键的三阶导数的连续图。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

临界区代表性等容热容数据的Fig. 11. Representation。所绘制的曲线对应于从等式中计算出的值(6.1),Chen等人的交叉方程采用CH4 形式重新调整的方程(见第5.1节)。

状态序列中最小指数b₁ occurring与临界指数 α 有 关,该指数描述了比等温热容的散度 表达

$$b_i = 1 - \frac{\alpha}{2}.\tag{5.7}$$

在临界区域的等温线上的声速的Fic. 12. Representation。 绘制的曲线与等式计算的值相应(6.1),Chenet等人27的交叉请求和使用 CH_4 形式重新构建的方程(见第5.1节)。

二氧化碳的一个新的状态方程式1539

在临界区域的等温线上的等温热容量的Fio.13.Representation。所绘制的曲线对应于从等式中计算出的值(6.1),Chen等人的交叉方程。"和一个使用CH4形式的回归方程(见第5.1节)。

然而,结合整个状态方程的所有项之和,渐近期望的领先值b;=0.945得到了不令人满意的结果。本节稍后将讨论这种差异

二氧化碳的最终状态方程,在第二秒中详细介绍。6,通过使用式 (5.4) 对应的非解析项来发展。优化状态方程结构的过程被限制在总共42项内最多4个非解析项。与四个以上的非分析项的初步相关性倾向于具有c依赖的不合理行为,并在临界区域赢得密度;此外,当使用四个以上的复杂项时,如果没有显著提高,数值费用就会增加。预计秒。G关于临界区域,等式 (6.1) 我们将在本节中进行讨论,以避免在本文后面重复对关键区域的热量性质表示的讨论

图I1显示了c在临界等位线上的图;对于状态的解析方程,这个图已经在图9中显示出来了。然而,在此图中,实线对应于公式(6.1)。与解析的CH4型方程相比,新的公式能够遵循c的强曲率,在临界温度附近绘制,并产生临界点上特定等脉络热容的无限值。因此,评估

单相对数图(T>Tc)和两相T<T₂)单相(T<T₂)区域的实验等色热容量数据的Fig. 14. Representation。绘制的曲线对应于eq计算的临界等孔的数据。(6.1),Chen等人27的交叉方程和使用 0_2 形式的改装方程(见第5.1节)。

平衡 (6.1) 在临界点处产生一个正在消失的声速。图12显示了声速的曲线,绘制在两个等温线上作为密度的函数。在等温线Te+0.5K下,解析的 CH_4 型方程,Chen等人27和等式的交叉方程 (6.1) 结果在非常

Fi G. 15. For温度在T和T之间,+IK等式(6.1)结果是在临界密度附近的等压热容量的振荡图。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

1540r. 跨度和W. WAGNER

表27日。相关方程的系数,如。(6.2)和Eq。(6.3),分别为c 和 ϕ °

a ⁹	0	i	a 9	69
8. 37304456	3. 15163	5	0. 62105248	6. 11190
-3. 70454304		6	0. 411952. 93	6. 77708
2. 50000000		7	1. 04028922	11. 32384
41. 99427042		8	0. 08327678	27. 08792

关于声速的相似值。然而,在接近临界温度时,交叉方程和非解析的宽范围方程,等式(6.1),在声速上发展一个急剧的最小值,而由解析方程计算的声速在接近临界界时没有显著变化。在相同的密度范围内,图13显示了由同一组方程计算出的比等温热容的相应图

因此,等式(6.1)是第一个宽范围方程,它产生一个非解析行为的等温热容和声速的附近

这仍然是物理变量T和p的解释。在第二节中。7这将表明,这种非解析行为并不影响方程的质量,而不是对临界区域以外的其他性质的表示。

然而,如果需要对渐近幂律的精确满足,则包含非解析项的经验状态方程也会有一定的极限。等式中的非解析项(6.1)它们不能取代分析项在临界点周围的贡献,但它们填补了分析行为和非分析行为之间日益扩大的差距。因此,指数的有效值

b, 比理论预期的要小, 并导致一个渐近指数 α , 从渐 近的角度来看太大[见等式](5.5)].

图14显示了等式(6.1)表示c的测量和理论预测值,在 |T-T|>0.2 K区域的温度没有显著偏差,0.2K \geqslant (T-T) $\geqslant 0.3$ mK和-0.2K \geqslant ($T-T_2$)-10mk两相区域的温度在 ± 10 %内。绘制的c,过程对应于——(T>T)和两相(T<T)的临界等位线

e的Fic. 16. Relatie偏差,从公式(6.2) 计算值的数据。上面的图显示了从统计热力学中计算出来的数据(见表15,下面的图显示了从实验结果中推断出来的数据(见表13)。c值,由Angus et al³and Ely er在®are的共响应方程计算,绘制比较。

二氧化碳状态方程1541

表28年。无量次海尔姆霍尔兹函数 o°的理想气体部分及其derivatives²

φ°	在 b + a +a27	+a ⁹ In (7)+	$\sum_{i=4}^{8} a_{i}^{o} \ln(1 - e^{-\theta_{i}^{p} \tau})$
ф	1 8 0 + 0	+ 0 +	1=4 O
ф 8=-1/8	/ + +0	+ 0 +	0
$\Phi =$	0 +0 + 0	+ 0 +	0
$\Phi =$	0 + 0 +a2	+ a9/r $+$	$\sum_{i=4} a_i^{\alpha} \theta_i^{\alpha} [(1 - e^{-\theta_i^{\alpha} \tau})^{-1} - 1]$
$\Phi =$	0 +0 + 0	$\mathrm{a}^{9}/\mathrm{r}^2$	$\sum_{i=4}^{8} a_{i}^{o} (\theta_{i}^{o})^{2} e^{-\theta_{i}^{o} \tau} (1 - e^{-\theta_{i}^{o} \tau})^{-2}$

 $\phi 8 = [o \phi \% 08], \phi 08 = [o^2 \phi 108 -], \phi = [o \phi \% 8r]g, \phi 8r = [o^2 \phi \% ar^2]g, \text{ and } \phi 8 = [o^2 \phi 1080r].$

地区然而,在约+0.1mK(在图14所示的温度范围之外)和-10mK附近的区域内,等式(6.1)产生特定的等脉络热容,显著大于交叉状态方程预测的值

图15显示了一个与接近临界点的导数(oplop)r的小振荡有关的问题。由于这个导数的数值在接近临界点时很小,即使是这个导数中很小的振荡也会导致其倒数值的显著振荡,如等压热容[见等式](5.1)或等温可压缩性。这些特性的衍生物[例如,(3c,/ap),]不应在 $440 \text{kg/m}^3 \leq p \leq 500 \text{kg/m}^3$ and $(T-T) \leq 2 \text{K范围内使用。在衍生物中也观察到os冷却(dc,107)。适用于约<math>420 \text{kg/m}^3 \leq p \leq 550 \text{kg/m}^3$ and $(T-T.) \leq 15 \text{K}$.

Eq的质量。(6.1)对于任何需要临界区域热力学性质数值的应用,都应该是足够的。然而,方程(6.1)不适用于研究热力学性质的渐近性态,上述导数不应在所指示的区域中使用。

6. 新的状态方程式

如在第2.1节中所讨论的,二氧化碳的新状态方程是一个以亥姆霍兹能量为的形式表示的基本方程

A (p, T) / (RT) =
$$\varphi$$
 (δ , r) = φ (8,7) + φ (δ , 7) , (6.1)

Wagner等人230对"热"指数β.y.和8的实验解析。根据临界点附近的测量表明,与重整化群理论预测的相关值有明显的差异。这些令人惊讶的结果可能是由于所谓的重力的显式影响(重力的隐性影响,例如。在评价实验ppT数据时,考虑了基于密度分层的平均误差)。因此,我们认为

在纯燃料的气液临界点上的渐近行为尚未最终澄清。

其中, δ =p1pe和r=T. /T与pe=467. 6kg/m³ and T. =304. 1282K

描述亥姆霍兹能量的理想气体部分的公式,等式(6.3),以及亥姆霍兹能量的剩余部分,等式(6.5),,将在本节中进行介绍

6.1亥姆霍兹能量的理想气体部分

根据《等式》((2.4),如果函数c)(T)已知,则很容易得到亥姆霍兹能量的理想气体部分。利用Chao¹84的 $150c^\circ$ 数据作为输入值,通过非线性拟合程序建立了 c° (T)的相关方程(cf。Sec. 4. 2. 2). 根据系数见表27,得到的方程

表29年。用于线性优化方法和非直线车拟合的选定数据的汇总

	数据集的细节	数据数量	1
财产	是给出	线性的 最优化	非线性批 合
p (T.p)	表12	2824	2824
c (T, p)	表14	553	553
c (T, p)	表17	359#	359
c'(7)	表24	73 "	73
w (T.p)	表19	422*	422
w' (T)	表24	230	23
w" (T)	表24	18a	18
$\triangle h(T, p)$	第4.5节	10#	10
$\triangle u(T, p)$	第4.6节	150	150
μ (T, p)	第4.7节		34
p (T, p')		205h	
p(T, p")		205	
Maxwcrit.		205b	
p(T)	表7		109
p'(T)	表8		50
p"(T)	表9		42
总	数 的数据点	5 s5047	4667

[&]quot;在优化过程中使用的线性化数据:见塞茨曼和Wagner30 当使用辅助方程计算的数据时,麦克斯韦准则的解解。(3.13)到 (3.15);参见Wagner.²

1542 R 斯潘和 w 瓦格纳

, 第

$$\frac{c_p^{\rm o}(T)}{R} = 1 + a_3^{\rm o} + \sum_{i=4}^8 a_i^{\rm o} (\theta_i^{\rm o} \tau)^2 \frac{\exp(\theta_i^{\rm o} \tau)}{\left[\exp(\theta_i^{\rm o} \tau) - 1\right]^2}$$
(6.2)

表示Chao的数据,偏差小于±0.005% 对于 $10K \le T < 210K$ 和小于±0.002% $210K \le T \le 1500K$ 。这意味着等式的不确定性 (6.2)几乎和数据的类型相等 据Chao估计,这将小于±的0.02%。的外推法 平衡 (6.2)产生的结果是可靠的±1% T $\le 4000K$ 和 $4000K < T \le 5000K$ 的±值为2%。图16显示从cor—计算出的值之间的偏差 e_s 0 由Angus et al³ and,Ely等人给出的关系,I5 data通过理论方法和外推法得到的实验结果,瓦尔恩斯由Fq计算。(6.2).它对应于零线

 Φ (8, T) 的表达式,来源于等式 (6.2) 通过集成,是

$$\phi (8, r) = \text{In}(\delta) + a9 + air + a3 \text{ In (r)}
+ \sum_{i=4}^{8} a_i^0 \ln[1 - \exp(-\tau \theta_i^0)]. \quad (6.3)$$

系数a⁹and θ 见表27。这个系数 a° 我们重新调整了 To =298.15K 的 理 想 气 体 焓 和 To =298.15K 和 po=0.101325 MPa的理想气体熵为零。表28明确给出了计算热力学性质所需的理想气体部分Φ°的所有导数。

6.2亥姆霍兹能量的剩余部分

利用该方法,建立了亥姆霍兹能量剩余部分的公式

在第2.3节中所讨论的内容。在Sec. 4. Table 29中给出了构成二氧化碳新状态序列的实验基础的选定数据,并给出了所用数据的简要总结,并参考了相应的表格,其中给出了详细的信息。图17显示了所使用的实验数据的分布情况。此外,已经从辅助方程和初步状态方程计算了数据,以保证在现有测量产生的信息不足的区域的是否形态。详细地说,这些是

第三个维里系数的13个值,这已经是

根据辅助方程计算(见第4.8节),

23个比等温热容的值

已根据Chen等人27的交叉方程计算,以保证c对临界区域密度的依赖性

27个Tp点描述了焦耳曲线的发展过程

这是由图形外推法确定的(见Sec. 7.3.2),

和70 ppT数据,这是计算从一个前

阈值状态方程与一个异常好的外推法有关(见Sec. 7. 3. 1)。

所有这些"人工"数据既没有在表29中考虑,也没有在Fig. 17. The中考虑液体区域内和500 K以上温度下缺乏热量数据的后果,在秒中讨论. 7. 2. 2.

用于优化最终状态方程(见Sec. 2. 3. 2)的项库总 共包含了一个项

860条款。只要参数范围是由这种一般形式预先确定的,这些范围已经在广泛的测试中建立起来。本银行的条款可以写成

<u>4 20 6 10 8 8</u> 8 16 10 12	
$\phi^{\tau} = \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j/4} + \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j/2} e^{-\delta} + \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j} e^{-\delta^{2}} + \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j} e^{-\delta^{3}} + \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j/2} e^{-\delta} = \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j/2} e^{-\delta} + \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j/2} e^{-\delta} = \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} n_{i,j} \delta^{i} \tau^{j$	4
10 16 15 16 48	
$+ \sum_{i=1}^{\infty} \sum_{j=5}^{\infty} n_{i,j} \delta^{i} \tau^{2j} e^{-\delta^{5}} + \sum_{i=8}^{\infty} \sum_{j=5}^{\infty} n_{i,j} \delta^{i} \tau^{2j} e^{-\delta^{6}} + \sum_{i=1}^{\infty} n_{i} \delta^{d_{i}} \tau^{2i} e^{-\alpha_{i}(\delta - \epsilon_{i})^{2} - \beta_{i}(\tau - \gamma_{i})^{2}}$	
3 2 2 3 3	
$+\sum_{i=1}^{3}\sum_{j=1}^{2}\sum_{k=1}^{2}\sum_{l=1}^{3}\sum_{m=1}^{3}n_{i,j,k,\ell} \Delta b_{j} \delta e^{-C_{l}(\delta-1)^{2}-D_{m}(\tau-1)^{2}} $ (6)	3. 4)

使用 \triangle ={ (1-r) +A[(δ-1) 2]12B}2+B[(δ-1) 2}%

表30年。银行项中非解析项的参数

j. k, I, m	a,	b;	В	С	医学博士	A°	β²
2	3. 0 0 3. 5 0 4. 0 0	0. 87 5 0. 92 5	0.3 0 1.0 0	10. 0 0 12. 5 0 15. 0	225. 0 250. 0 275. 0	0.700	0.300

在临界区域的饱和液体和蒸汽密度。

最初由塞茨曼和Wagner³0引入的修正高斯项的参数 对二氧化碳略有变化;其中48个表达式被用于涵盖以 下参数范围的术语库:

 $I \leqslant d_1 \leqslant 3, 0 \leqslant t_1 \leqslant 3, 15 \leqslant a_1 \leqslant 25, 275 \leqslant \beta_1 \leqslant 325$,和

1. 1.6≤y; ≤1. 25 与e, =1。等式中108个非解析项参数的用数值(6.1)如表30所示。bj、C,和Dm的值来自于初步公式的非线性拟合

表31年。系数和指数指数。(6.5)

		次31年。东	XX/1□1日XX1日XX	. (0.0)				
	n;	d,	t					
	0. 38856823203161×10°		0.00					
2	0. 29385475942740×10		0.75					
3	$-0.558.67188534934 \times 10$		1.00					
4	-0. 76753199592477×10°		2. 00					
3	0. 31729005380416×100	2	0. 73					
6	0. 548. 033158977. 67×10°	2	2.00					
7	$0.12279411220335 \times 10$	3	0. 75					
	° n;	Ü						
	,	d;		С				
8	0. 216589615432. 20×10		1.50		_			
9	0. 15841735109724×10'	2	1.50					
10	-0. 23132705405503×10°	4	2. 50					
11	0. 58116916431436×10-1	4	0.00					
12	-0. 55369137205382×10°		1, 50					
13	0. 489466159. 09422×10°	5	2.00					
14	-0. 242757398435. 01×10-	6	0.00					
15	0. 62494790501678×10-	6	1.00					
16	-0.12175860225246×10°	b	2.00					
17	-0.37055685270086×10°		3.00					
18	-0.16775879700426×10-		6.00					
19	-0.11960736637987×10°		3.00					
20	$-0.456193.62508778 \times 10^{-1}$		6.00					
21	$0.35612789270346 \times 10^{-1}$	4	8.00					
22	$-0.74427727132052 \times 10^{-2}$		6.00					
23	-0.17395704902432×10-	8,	0.0					
24	2 -	~7	0					
25	0. 21810121289527 × 10− 0. 24332166559236 × 10−1		7. 00 12. 0 0					
26	-0.37440133423463×10-	3	16, 00	3				
27	0. 14338715756878×100	5	22. 00	4				
28	-0.134.91969083286×10°	5	24. 00	4				
29	-0. 23151225053480X10-	6	16, 00	4				
30	0. 12363125492901×10-	7	24.00	4				
31	$0.21058321972940 \times 10^{-2}$	8	8.00	4				
32	$-0.33958519026368 \times 10^{-3}$	10	2.00	4				
33	$0.55993651771592 \times 10^{-2}$	4	28.00	6				
34	$-0.30335118055646 \times 10^{-1}$	8	14.0					
	_	d	0	a	β	Υ	6	
	n	u	t ₁	a	r	Y	ь	
35	$-0.21365488688320 \times 10$	2	1.00	25	325	1. 16	1.00	
36	$0.26641569149272 \times 10^{2}$	2	0.00	25	300	1. 19	1.00	
37	$-0.24027212204557 \times 10^{3}$	2	1.00	25	300	1. 19	1.00	
38	$-0.283.416.03423999 \times 10$	3	3. 00	15	275	1. 25	1.00	
39	$0.212.47284400179 \times 10$	3	3.00	20	275	1. 22	1.00	
	n	a	b ₁	β 1	A ₁	В	С	0,
40	$-0.66642276540751 \times 10$	3, 500	0.875	0.300	0,700	0.3	10.0	275
41	$0.72608632349897 \times 109$	3. 500	0. 925	0.300	0.700	0. 3	10.0	275
42	0. $55068668612842 \times 10^{-1}$	3, 000	0.875	0.300	0.700	1.0	12.5	275
		0.000	0.010	0.000	000		10.0	

R=0.1889241kJ/(kg K); T_2 =304.1282K; p_6 =467.6kg/ m^3

采用改进后的优化方法(见Sec. 2. 3. 2)以确定产生最佳结果的术语的组合(6. 5)对线性化的数据集的表示。对发电机剩余部分的计算公式

$$\begin{split} \phi^{\ell} &= \sum_{i=1}^{7} n_{i} \delta^{d_{i}} \tau^{J_{i}} + \sum_{j=8}^{34} n_{i} \delta^{d_{i}} \tau^{J_{i}} e^{-\delta^{c_{i}}} \\ &+ \sum_{i=35}^{39} n_{i} \delta^{d_{i}} \tau^{J_{i}} e^{-\alpha_{i} (\delta - \epsilon_{i})^{2} - \beta_{i} (\tau - \gamma_{i})^{2}} \end{split}$$

$$+ \sum_{i=40}^{42} n_i \Delta^{b_i} \delta e^{-C_i(\delta-1)^2 - D_i(\tau-1)^2}$$

with $\Delta = \{(1-\tau) + A_1[(\delta-1)^2]^{1/(2\beta)}\}^2 + B_1[(\delta-1)^2]^{\eta}$. 经过这个线性优化过程后,等式的系数n的最终值(6.5)通过对线性和非线性数据进行直接非线性拟合来确定。这些值在表3I中给出了,以及从优化过程中产生的参数。没有进一步的改进

表32年。无量纲赫姆霍尔兹能 φ 的剩余部分及其导数

$$\phi^{i} = \sum_{i=1}^{7} n_{i} \delta^{d_{i}} \tau^{i} + \sum_{i=8}^{34} n_{i} \delta^{d_{i}} \tau^{i} e^{-\delta^{i}} + \sum_{i=35}^{29} n_{i} \delta^{d_{i}} \tau^{i} e^{-\alpha_{i}(\delta - \epsilon_{i})^{2} - \beta_{i}(\tau - \gamma_{i})^{2}} + \sum_{i=40}^{47} n_{i} \Delta^{b_{i}} \delta\Psi \text{ with } \Delta = \theta^{2} + \beta_{i} \left[(\delta - 1)^{2} \right]^{a_{i}}$$

$$0 = (1 - \tau) + \Lambda L \quad (8 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad (4 - 1)^{2} \quad 2 \text{ pp} \quad \Delta^{b_{i}} = -C \quad \Delta^{b_{i$$

距离函数△的衍生物

$$\begin{split} \frac{\partial \Delta^{b_i}}{\partial \delta} = & b_i \Delta^{b_i=1} \frac{\partial \Delta}{\partial \delta} \\ \frac{\partial^2 \Delta^{b_i}}{\partial \theta^2} = & b_i \left[\Delta^{b_i-1} \frac{\partial^2 \Delta}{\partial \theta^2} + (b_i-1) \Delta^{b_i-2} \frac{\partial^2 \Delta}{\partial \delta} \right]^2 \text{指数函数 ψ 的导数} \\ \frac{\partial \Delta^{b_i}}{\partial \tau} = & -2\theta b_i \Delta^{b_i-1} \\ \frac{\partial^2 \Delta^{b_i}}{\partial \tau^2} = & 2b_i \Delta^{b_i-1} + 4\theta^2 b_i (b_i-1) \Delta^{b_i-2} \\ \frac{\partial^2 \Delta^{b_i}}{\partial \theta^2} = & -A_i b_i \frac{2}{\beta_i} \Delta^{b_i-1} (\delta-1)^2 \right]^{1/(2\beta_i)-1} - 2\theta b_i (b_i-1) \Delta^{b_i-2} \frac{\partial \Delta}{\partial \delta} \\ \frac{\partial \Delta}{\partial \theta} = & (\delta-1) \left[A_i \theta \frac{2}{\beta_i} \left[(\delta-1)^2 \right]^{1/(2\beta_i)-1} + 2\beta_i a_i \left[(\delta-1)^2 \right]^{b_i-2} \right] \\ \frac{\partial^2 \Delta}{\partial \theta^2} = & \frac{1}{(\delta-1)} \frac{\partial \Delta}{\partial \delta} + (\delta-1)^2 \left[4\beta_i a_i (a_i-1) \left[(\delta-1)^2 \right]^{b_i-2} + 2A_i^2 \frac{1}{\beta_i} \right]^2 \left[\left[(\delta-1)^2 \right]^{1/(2\beta_i)-1} \right]^2 + A_i \theta \frac{4}{\beta_i} \left[\frac{1}{2\beta_i} - 1 \right] \left[(\delta-1)^2 \right]^{1/(2\beta_i)-2} \right] \end{split}$$

$${}^{3}\phi_{,\delta}^{t} = \left(\frac{\partial \phi^{t}}{\partial \delta}\right)^{t} \quad \phi_{,\delta,\delta}^{t} = \left(\frac{\partial^{2} \phi^{t}}{\partial \delta^{2}}\right)_{=}, \quad \phi_{\tau}^{t} = \left(\frac{\partial \phi^{t}}{\partial \tau}\right)_{=}, \quad \phi_{\tau\tau}^{t} = \left(\frac{\partial^{2} \phi^{t}}{\partial \tau^{2}}\right)_{=} \quad \text{and} \quad \phi_{,\delta\tau}^{t} = \left(\frac{\partial^{2} \phi^{t}}{\partial \delta \partial \tau}\right)_{=}, \quad \phi_{,\delta\tau}^{t} = \left(\frac{\partial^{2} \phi^{t}}{\partial \tau}\right)_{=}, \quad \phi_{,\tau\tau}^{t} = \left(\frac{\partial^{2} \phi^{t}}{\partial \tau}\right)_{=}, \quad \phi_{,\tau$$

通过参考b₁、C 和D jof的非解析项来实现相互关系。

二氧化碳等式的新基本方程(6.1),结合根据方程式得出的公式。(6.3)和(6.5),被限制在第3.2节中给出的关键参数的范围内。它适用于可靠数据所覆盖的整个流体区域,即为

216K≤T≤1100K和0MPa≤p≤800MPa

对等式的不确定性的估计(6.1)在第8节中给出;新状态序列的质量在第7节中讨论。Fq(65)的必要导数在表32中给出了导数。

Duschek等有效饱和数据=100的Fic. 18. Relative偏差100 (=, Δ)。 58 from值来自Eq(6.1)。 由辅助方程式计算出的值。3、ElyeraL. 15 and的状态方程,绘制Angusetal. 3 are的辅助方程进行比较。

7. 的新方程的比较 状态与实验数据和其他状态方程

在本节中,通过与选定的实验数据的比较,讨论了新的状态方程的质量。此外,大多数数据还显示了根据Angus等人发表的、³which是一种被公认的二氧化碳国际标准的状态方程计算出的值。I⁵which被证明是二氧化碳的可用状态方程中最好的。

对于扩展的临界区域,应与完全的iupac方程(Angusetal.³)进行比较,该方程包括一个解析的宽范围方程、一个开关函数和一个描述临界区域的比例方程(见第1.2节)。由于组合方程的评价引 起 数 值 问 题 , 我 们 决 定 使 用 皮 泽 和Schreiber¹ ⁶ for com-的方程

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

Fig. 19. 由式(6.1)计算出的Duschekaral. fromvalues的近临界实验饱和数据的相对偏差 $100 \triangle y = 100 (y = y - y = x +$

在扩展的临界区域中的参数。这个公式得到的结果与IUPAC方程非常相似,但数值费用明显更少。所有的数据呈现数据在这个地区还包含值计算的交叉方程陈et al. 27是最复杂的比例序列的状态公布的二氧化碳的表示特定等温热能力和声音的速度在关键地区详细讨论。 5.

现有的二氧化碳状态方程在ITS-90温度尺度上都不是有效的。因此,在从这些方程计算值之前,使用Preston-Thomas等人的程序将温度重新转换为IPTS-68尺度,37的IPTS-68尺度

7.1液体蒸气边界

共存曲线上的7.1.1热性质

如第二秒所示。3、对液汽边界热性质的讨论仅限于Duschek等人的数据58这些数据与等式计算的值之间的偏差(6.1)利用相平衡条件[见等式](2.2)]在Fig. 18. The中,偏差图中的附加线对应于辅助方程计算的值

IUPAC表中公布的数据根据IPTS-68温度尺度使用温度,但关于方程,所使用的温度尺度似乎有些不一致。在内部区域,已发表的等氯热容数据部分以图形方式确定。因为对组合方程的评价产生了不合理的结果。

FG. 20. Relative 偏差 $100\Delta y=100$ (yoxp-Yae) / Δ (y=w", 饱和实验热量数据由公式计算的值 (6.1)。根据Ely等人 5 and Angus等人 3 are的广泛方程计算的数据绘制了比较。

迄今为止已知的方程至少不能在其不确定性范围内 粗略地再现数据(不确定性值由表7-9给出)。

图19显示了在使用较大偏差尺度的临界区域的饱和特性的表示。当接近临界温度时,蒸汽压数据的良好表示实际上不受影响,而密度偏差仅略有增加。除了为饱和液体密度测量的最后一点。Duschek等人,58do没有对这一点的不确定性给出任何估计。

在饱和液体密度中的0.48%的温度偏差可以被认为是 在实验的不确定度范围内

7.1.2的热量报告

图20显示了第I组数据的表示,提供了关于相边界上的热量行为的信息。由Novikov和Trelinl¹³ are测量的饱和蒸汽态的声速数据再现了T>301 K的within±0.5%for T<301 K和±的3%。

当接近临界点时,这一结果强调了等式对临界区域的一致描述(6.1).

7.2单相区域

7.2.1在单相区的热特性

对于二氧化碳,地区ppT数据在参考质量可扩展13 MPa的温度高达360 K。在这个地区,数据集的 al. 58. 154Gilgen等,159诺瓦克等,160和郭等1fodestarts7describe ppT表面的不确定性约±0. 02密度和扩展0. 02%

1548年,斯普恩和瓦格纳

根据Eg,(6.1)计算出的硫糖温度流值下的真实准确的ppT数据的Fic. 21. Relative密度偏差。根据 5 and Angus等人 3 are的Ely er方程计算的值绘制了比较。

 \pm 区域的压力为0.02%。在一个压力达到30 MPa和温度达到523K的扩展区域内,Brachthauser 1 60和Klimeck等人。160b的数据描述了ppT表面的不确定度为 \pm 0.02%到

土密度为0.05%。现有的状态方程都无法访问这些数据集,因为这些数据自1990年开始公布。方程(6.1)能够在它们的实验不确定性范围内重现这些数据

扩展临界区域中非常精确的pT数据与公式 (6.1) 计算值的Fic. 22. Relative压力偏差。由Ely et al⁵and Pitzer和Schreiber⁶andfrom的宽度方程计算,Chen等人的交叉方程。⁷areplottedfor比较

不确定度的计量值见表12)。图21到23显示了典型等温线上的一些参考数据的表示,以说明这一陈述

图21还包含了Jaeschke150.155的数据,这也给出了ppT表面的高质量描述

在气体和超临界区域。Ely等人的方程式。I⁵yields是低温下气体区域的合适描述,但在250 K以上存在问题。Angus等³ is的方程无法重现气体区域的最新数据。在

从式(6.1)计算出的非常精确的ppT数据的Fic. 23. Relative密度偏差。根据Ely等人 5 andAngus等al 3 are的宽范围方程计算的数值进行比较。

液体区域,现有的状态方程都不能代表Duschek 等154和Gilgen等159的参考数据,至少大致在他们的实验不确定度范围内

扩展关键区域的高质量ppT数据由58、154和Gilgen等人的Fig. 22. The数据由Wentor*8的选定数据和Ely等人的数据补充,7which与一致

J. 物理学。化学瑞特。数据,第25卷,第6期,1996年

二氧化碳1551

选定的ppT数据与例(6.1)计算值的FIo.24.Relaive密度偏差。根据Elyetul.5and Angus和ul.3aie绘制的宽范围计算出的值。

参考数据由土约0.03%的压力。即使在这个地区,等式(6.1)表示在其实验不确定度范围内的参考数据。数据与Ely等人⁵increase的方程计算出的值之间的压力偏差高达0.1%,是数据不确定度的5倍,而Pitzer和Schreiber^{1.6}deviates的方程的偏差高达0.2%。Chen等人27的公式是专门为描述这个区域而设计的,得到了一个非常合适的代表-

在临界等位线周围的ppT数据。然而,在较低密度和较高密度下,但明显在其有效性范围内,交叉方程不能在其实验不确定性范围内重现参考数据

图23显示了在较高温度和压力下的高质量数据。在高达 523 K和30 MPa时,ppT表面由数据ofBrachthauser 1 0和 Klimeck等人的1600定义,不确定度小于±0.05%

1552年和瓦格纳

选定pT数据在高温下的Fia.25.Relative密度偏差。根据Ely等人的l³and Anguset al³areplotted的宽范围方程计算出的值,以进行比较。

在密度。对于高达698K的温度,最近的数据。1000 将ppT表面的不确定度提高到密度小于±0.1%

对温度为473 K的完整组ppT数据集的代表性观点

Fig. 24. Generally为200 MPa,状态计算比旧的方程更好地描述了可靠的数据。与Duschek等154和Gilgen等159的数据集进行比较,发现使用调整后的数据(见Sec. 4. 10)是合理的。

选定的pT数据在高压下与从等式计算出的值的FIo. 26. Relative密度偏差(6.1)根据飞all⁵and角度的广泛方程计算出的值:在此情况下,状态方程至少可以外推(见表1)。

选定等压热容数据与公式(6.1)计算的值的Fio. 27. Relative偏差。从Ely等人的广泛序列的价值。⁵and Angus等人³ are 绘制了比较图。

在温度超过698K时,Eq。(6.1)基本上是基于与 Ely等人的方程式相同的数据集。 I⁵和 Angusetal. ³Nevertheless,三个方程在15 MPa以上显示出显著不同的过程。图25显示,安格斯等 ³yields 最好的数据表示武卡洛维奇和 Altunin. i²8,129然而,为了实现一致的描述热量和热属性在其他地区,我们不得不假设这个数据集展品一个系统的错误。风等160a的数据支持我们对温度高达698 K的ppT表面的解释。

图26显示了在高压ppT数据下是如何表示的。因为有效性的范围仅限于100 MPa方程的安格斯等³ and 300 MPa伊利等方程, I^5 these 方程已经推断时绘制值计算这些方程Fig. 26. With估计不确定性从 I^8 39%,密度等的数据。 I^{39} 40种莫诺夫和Shmulovich I^{4} 8represent向等式的外推范围的过渡(I^{6} 6. I^{6} 1)这在第二节中讨论。

7.3.式(6.1)得到了这些数据的适当表示

单相区域的7.2.2热量特性

在气体和超临界区,二氧化碳状态方程的热量行为可以通过比等压热容的例子来最有利地讨论。图27显示了从等式计算出的值之间的偏差(6.1)Bender等人!7恩斯特和霍奇伯格,78和恩斯特等人i79were的数据根据描述校正

第4.10节。在气体区域内的良好的数据表示,其中众所周知的cp的贡献占主导地位,证明了这种修正是正确的。在cp的超临界最大值区域,偏差增加到约±1%(+1.3%for的一个数据点),但作者估计,他们的数据的不确定性在该区域也增加到+0.9%

在图28中,绘制了低温气体区域的比等压热容的绝对值。当接近边界曲线时,等式(6.1)产生了一个原因-

在气体区域的等压线和在升华曲线(饱和蒸汽)的状态上的等压热容量的FiG. 28. Representation。根据广泛的方程计算出的值。⁵and Angus et al³are绘制了比较。

森德克雷---Aygusala

高温下等压热容量数据与Eq. (6.1)计算的值的FiG. 29. Relative偏差。根据Elyeral. and Angus等are的广泛方程计算的值绘制了比较。

所绘制的等高压线的可外推。Angus等人³also的方程显示了合理的外推行为,但与最近233 K温度下的data¹77比较表明,温度弧过高。对此,由Ely等人的方程计算等高线。I⁵intersect与彼此和与特定的iso-

高密度等家务上的等氯热容的Fig. 31. Representation。对于每个等位线,绘制的压力范围从相应的蒸汽压开始。根据Ely等人的宽范围程计算的值。⁵and Angus等人为³are绘制了比较图。

在温度低于T时,升华线上的高压热容。由于CO₂ 的高三点压力(pt=0.51795 MPa)和干冰的广泛使用,该地区的不合理行为不如其他物质更容易接受

在400K以上的温度下,不同状态方程计算的值比绘制的 Schrockl^e6数据要好得多

选定等温热容量数据与公式(6.1)计算值的Fic. 30. Relative偏差。根据Elyetat. 和Angus等人的宽范围方程计算出的值以进行比较。

关于二氧化碳1555的一个新的状态方程式

超临界温度下声音数据的速度与公式(6.1)计算的值的Fio. 32. Relative偏差。由皮泽尔和施赖伯的! and的Elyeral. 1 and的宽范围计算的值,由Chen等人的交叉方程进行比较。

图29. 至多长达473K时,Bender等人的数据支持状态方程的结果。在较高的温度和中等压力下,cp剩余部分的注入减少。由于c°(T)的不确定性非常小(见Sec. 6. 1),而且至少从ppT数据中可以得到一些关于状态方程剩余部分的信息,因此该方程似乎比该区域可用的cp数据的更可靠

气体和液体密度的特定等温热容偏差见图30。在气体区域,基于cp和w的精确数据的热产新基本方程的行为;根据等式计算的c、Magee数据和Elyl¹ and值之间的偏差(6.1)和从其他状态方程,可能反映了数据的不确定性。这一事实导致了表17中列出的平均加权因子较低。然而,在高密度下,Magee和Elyl16的c,实验得到了可靠的结果,这一定是关于液体密度的热量性质的信息来源。

不幸的是,这些数据只描述了超临界压力下的状态(见图17),因此在单相区和饱和液态之间存在很大的差距。图31显示了两个液体等温器上的比等温热容的绝对值,绘制了与压力的关系。公式(6.1)遵循对880kg/m³.970kg/m³和1050kg/m³ isochors的测量值,随着压力的降低,产量的偏差略有增加,数值为1140kg/m³ isochore。与之形成对比

Pitaevskaya和Bilevich¹

这 种 行 为 , Elyet al 的 方 程 式 。 遵 循 $1140 kg/m^3$ isochore的过程,但在较低密度下产生的比等温热容略低。尽管有这些不同的趋势,从这些方程计算出的值c之间的偏差不超过1.5%。由于比热容的不确定性 (6.1) 估计压力高达40 MPa的be $\leq\pm1.5\%$ in(见秒。8),我们认为在亚临界压力下的不确定性不会由于数据集的差距而增加。为了证明这种说法是否准确,我们需要更准确地描述液体二氧化碳的热量行为的新数据。

Angus等人³fails的方程完全描述了高密度下的特定等脉络膜热容。在液体区,等式之间的偏差 (6.1) 这个配方会增长到16%。

对于二氧化碳,声速测量的表示是对后续两个单元中状态等量质量的敏感测试。No-vikov和Trelin,92的Tlhe数据描述了气体和超临界区域内的热量行为。图32显示了w值在该数据集的两个代表性等温线上的再现。虽然所有考虑的公式都代表了在373K的不确定性范围内的数据,但只有等式(6.1)能够重现308 K下的测量值;在扩展的临界区域,偏差不超过±0.7%,在308 K等温线上,Chen等人的交叉方程的²7yields偏差高达2%。

在温度在298 K到473 K之间。皮塔夫斯卡娅和Bilevich¹⁹3测量了在压力下的声音数据的速度

实验中确定的FIc. 34. Relative偏差均来自于根据实例(6.1)计算出的值。根据Ely et all³ and Angus et al³ are的宽度方程计算出的值来进行比较。在建立等式时,没有使用武卡洛维奇和al² 0的数据(6.1).

450 MPa. 这些数据用等式表示(6.1)在他们预期的不确定性范围内,约为土的2%。图33显示了覆盖该数据集的最低和最高温度的代表性偏差图。先前的状态方程都不能得到这些数据的合理表示。安格斯等人的方程仅向上有效.3 到 100 MPa,并且声速的外推值预计是不确定的。但Ely等人的方程至少在其有效性范围内产生可靠的结果,即高达300 MPa。.5

在压力高达1.5 MPa时, Bender等人的 '77的焦耳汤姆逊测量用于非线性拟合,但这些数据不能表示没有系统的轻微温度相关偏差。在完成了新的状态方程后,用武卡洛维奇测量了等温焦耳-汤姆逊系数

利用由式 (6.1) 计算出的比等压热容,将等206转化为微分焦耳-汤姆逊系数。新的方程表示Vukalovich等人的转换数据,没有系统偏差(见图34);气体区域非常精确的ppT数据集阻止了Bender等人的测量结果的表示。与相关性相差约0.5%到1%。

7.3新的基本度方程的外推行为

由于1990年在波鸿举行的第五届国际状态方程工作组的 讨论,在对二氧化碳的工作中,对经验状态方程进行了外 推行为,因为这些结果涵盖了不同子的特征

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

立场和一般的方法,它们将在其他地方讨论。35. 这里的考虑仅限于新的二氧化碳基本方程;下面的小节只会对等式的外推行为进行简要的调查(6.1).

在非常高的温度和压力下等温线上的熔度的FIo.35.Representation。根据Elyeral.15and Angus等人3are的宽范围方程计算出的值以进行比较。

描述二氧化碳胡戈诺特曲线的实验数据的Fio. 36. Representation。由Ely等人⁵and Anguseral.³ are的宽范围方程计算的曲线进行比较。

7.3.1外载超出主数据范围

等式的有效性范围(6.1)是基于可靠的热力学性质数据存在的范围,但有两种数据超过了这个范围。

图35显示了在1200 K和1600 K温度下达到约3600 MPa 的模糊度。在开发等式时没有使用哈塞尔顿等人23的数据(6.1)由于很难估计来自化学平衡测量的数据的不确定性,而且由于模糊度 Φ 和减少的亥姆霍兹能量之间的依赖关系的对数结构(见表3)阻止了纳入线性优化过程中。然而,等式(6.1)遵循测量过程,而Angus等人3的方程和Ely等人5的方程产生的融合明显过大。至少在低压下,剩余的系统偏差不能用状态方程的错误行为来解释。研究的铝等效态在1000 MPa以下压力下产生非常相似的熔度。在该区域,实验结果与较低温度下的ppT数据不一致。

在更高的压力下,冲击波测量得到胡戈诺关系的数据

表33年。压缩因子的零阶和一阶理想曲线的定义

理想曲线名称 定义 经典理想曲线 Z=pv/RT=1 博伊尔曲线 (oZ/op)r=0 焦耳汤姆逊反演曲线 (8Z/8T),=0 焦耳反演曲线 (8Z/ap).=0			
博伊尔曲线 (oZ/op)r=0 焦耳汤姆逊反演曲线 (8Z/8T),=0	理想曲线名称	定义	
	博伊尔曲线 焦耳汤姆逊反演曲线	(oZ/op) r=0 (8Z/8T),=0	

Fig. 37. The是由等式计算出的所谓的理想曲线(6.1)并绘制成plp. ,日志(TIT)图。焦耳-汤姆逊反转曲线和焦耳反转曲线都超过了 等式所处的温度范围(6.1)与实验数据相吻合。

$$h-hoh=0.5(p-PoH) \cdot (1/pon+1/p), (7.1)$$

其中为焓,p为压力,p为释放激波后的密度,PoH和Pon为初始值。尽管目前还不清楚这些测量结果是否描述了平衡状态,但与这些数据的比较是关于在超高压下状态的外推行为的实验信息的唯一来源。图36显示了等式的胡古诺图(6.1)并从这里考虑的其他两个状态方程,与数据fNellis等人23和Schot进行比较。233在大约34000 MPa时,Nellis等人在胡戈诺特曲线的过程中观察到一个扭结,这被解释为自发解体反应的迹象。所以我们可以看到,等式(6.1)对二氧化碳的胡戈诺曲线进行了合理的描述。这里没有给出的Tp图显示,由Ely等人、5and Angus和al³run的方程计算出的胡戈诺曲线变成了对应于约1400kg/m³密度以上的固体态的低温度解

"理想曲线"的7.3.2表示

不同的作者(见参考文献。讨论了所谓的理想曲线图[°]作为一个普遍的行为

理想曲线连接所有态的前,其中模糊的特殊性质等于相同状态下 的假设理想气体的对应性质

1558r. 跨度和瓦格纳

Fiu. 。 38. 根据公式(6.1) 计算的强度公差图。在B区内给出了轮胎压力

纯物质。1991年,de Reuck³9gave对这个话题进行了一个简短的调查。

最常见的理想曲线是压缩因数的第零阶和一阶曲线, 它们由表33中给出的关系定义。图37显示了。的绘图

图39. 由等式计算出的声数据速度公差图(6.1). 在临界点(区域G)附近,由于温度和压力测量中的不确定度的影响越来越大,很难估计w中的不确定度。

J. 物理学。化学裁判员数据, 第25卷, No. 6, 1996年

fg。 40. 根据式(6.1)计算的等压热容公差。在测量点(G区)附近,由于温度和压力测量中的不确定度的增长影响,难以估计c中的不确定度。

根据公式(6.1)计算得出。新的基本方程适用于 p/pc^108 降低压力下和 $T/Te \approx 3.5$ 降低温度下的数据。 因此,理想曲线的运动过程不会明显超过数据所覆盖的压力范围,但焦耳-汤姆逊反转曲线和焦耳反转曲线的温度都明显超过了用于拟合等式的数据范围(6.1).

初步方程显示在极高温下的焦耳反演曲线不合理。为了迫使方程形成一个最大的第二个维里系数,确保状态方程产生一个交点的焦耳反演曲线与零压力线的温度,27Tp数据是由图形外推的焦耳反演曲线pT图(见参考。35).根据这些状态变量的值,将焦耳反演曲线 ф s,=0.的条件引入调整式(6.1)时使用的数据集。由于估计反演条件的不确定性是不同的,因此这些数据的权重是通过估计自变量T和p的不确定性,并结合高斯误差传播公式来确定的[见等式](2.6)].

式 (6.1) 为高温区域理想曲线的合理图,见图37。 焦耳反转曲线与零压力线相交的温度和第二维里系数通过最大值的温度对应于约T/Te= 26.9。因此,等式的合理行为 (6.1) 甚至达到tem-

超过二氧化碳化学稳定性极限的性质

8. 的新方程的不确定性 状态

对经验状态方程的不确定性的估计必须通过与实验数据的比较来指导。在没有数据的地区,可以与现有的状态方程进行比较作为替代。由等式计算出的ppT、w和cp值的不确定性的保守估计(6.1)显示在公差图和图中。38岁至40岁。在扩展的临界区域中,c中的不确定度可能超过cp中的不确定度。由等式计算出的△h或△u值的不确定性(6.1)分别小于或等于cp或c中的不确定度

在其有效性的范围之外,等式(6.1)对二氧化碳整个化学稳定区域的压力、焓、气度等基本热力学性质可以得到合理的结果。当然,外推结果有更大的不确定性,无法估计。不建议计算衍生特性,如声速或比热容。如果需要这些数据,应仔细检查结果。

9. 结论

在对二氧化碳热力学性质的实验数据的基础上,建立了一个新的亥姆霍兹能量形式的基本方程。该经验公式在1100 K的温度和800 MPa的压力下是有效的。该方程能够表示均匀区域内的所有可靠数据

在其实验不确定度范围内的液-汽相边界。对技术数据的考虑导致了主要技术利益领域无与伦比的准确性。对所使用的数据集的一致性进行密集的研究,已经在数据状况较差的地区产生了合理的结果。

人们特别关注的是在临界区域的量热性质的行为和经验状态方程的外推行为。非解析项的引入使新的宽范围状态方程能够表示临界点附近的等色热容和声的速度;到目前为止,这个属性只是一个缩放状态方程域,引入了不同变量之间的迭代依赖关系和有限的有效性范围。对经验状态方程的外推行为的检验产生了新方法作为新公式的新方法。对于二氧化碳的基本性质,如压力、焓和浊度,新的基本方程应该在整个化学稳定性区域内得到合理的结果。

10. 附录: 热力学特性 二氧化碳

为了保持热力学一致性,表34和表35中给出的所有值都仅从新的状态方程式(6.1)中重新计算。理想情况下,表中的每一个条目都应该给予一个比输入数据更重要的数字,但是严格遵守这一原则是困难的,而且总是通过包含比严格必要的更多的数字来避免可能的冲突。特别是在扩展的临界区域,给定值之间的插值可能导致的不确定性明显大于等式的不确定性(6.1).对于复杂的应用程序,值应该直接从公式中计算出来

(6.1);可以从作者处获得适合于这类应用程序的 计算机代码

1560年,跨度和瓦格纳

表34年。饱和二氧化碳的热力学特性

温度(K)	压力 (M Pa)	密度(kg/m)	焓 (kJ/ kg)	熵 [kJ/(kg K)]	C. [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/s)
216. 592	0. 51796	1178. 46	-426. 74	-2, 2177	0. 97466	1. 9532	975. 85
218	0. 55042	13. 76 1	- 76. 364	- 0. 59999	0. 6292 1	0. 9087 2	222. 7 8
210	0,00012	1173.40	-	-2. 2051	0.9726	1,9566	965.66
		14. 584	423 . 98 -	0.60815	4 0. 6331	0. 9174 3	222. 94
220	0. 59913	1166. 14	75. 847 -	-2. 1873	8 0. 9698	1. 9618	951. 21
220	0.00010	15.81	420.05	-	3	0. 9303	223.1
		7	- 75. 142	0. 61957	0. 6389 4	2	5
222	0.65102	1158. 81 17. 13	- 416 . 11	-2. 1697 -	0. 9670 7	1.9676 0.9438	936. 7 9
		1	-	0.63080	0.6448	6	223. 31
224	0. 70621	1151.40	74. 473 -412. 16	-2. 1522	5 0. 96437	1. 9739	922. 37
		18.53	-	=	0. 6509	0.9580	223.4
226	0. 76484	0 1143. 92	73. 840 -	0. 64185 -2. 1348	1 0. 9617	7 1. 9810	4 907. 95
		20.016	408. 19	-	4 0. 6571	0. 9730 2	223. 52
			73. 246	0. 65274	2	2	
228	0. 82703	1136. 34 21. 59	- 404 . 21	-2. 1175 -	0. 9591 7	1. 9886 0. 9887	893. 5 3
		5	72. 692	0.66347	0.6635	5	223. 57
230	0.89291	1128.68	-	-2. 1003	0 0. 9566	1. 997	879.0
		23. 27 1	400 . 21	- 0. 67406	7 0. 6700	0 1. 005	9 223. 5
			72. 178	0. 01 100	4	3	7
232	0. 96262	1120. 93 25. 05	- 396 . 19	-2. 0832 -	0. 9542 5	2. 006 1	864. 6 3
		0	_	0.68452	0. 6767 5	1. 022 8	223. 5 4
234	1.0363	1113.08	71. 708 -392. 16	-2. 0661	0. 95190	o 2. 0160	850. 14
996	1 1141	26. 93	-	_	0.6836	1.041	223.4
236	1. 1141	6 1105 . 12	71. 283 -	0. 69487 -2. 0492	3 0. 9496	2 2. 026	6 835 . 61
		28. 935	388. 11	- 0. 70511	3 0. 6906	7 1. 060	223. 33
			70.903		8	8	
238	1. 1961	1097. 05 31. 05	- 384. 04	-2. 0323 -	0. 9474 5	2. 038 4	821. 0 2
		2	- 70. 573	0. 71526	0. 6979 2	1. 081 4	223. 17
240	1. 2825	1088.87	-	-2.0155	0.9453	2.0510 •	806.3
		33. 29 5	379 . 94 -	- 0. 72532	5 0. 7053	1. 1033	8 222. 9
0.40	1 0504	1000 50	70. 293		4	0.004	6
242	1. 3734	1080. 56 35. 67	- 375 . 82	-1. 9988 -	0. 9433 5	2. 064 7	791.6 7
		0	- 70. 066	0. 73533	0. 7129 7	1. 126 5	222. 7 0
244	1.4690	1072. 13	-	-1.9821	0.9414	2.079	776.8
		38. 18 4	371. 68 -	0. 74527	5 0. 7208	5 1. 151	7 222. 4
246	1. 5693	1063, 56	69. 894 -	-1.9654	1 0. 9396	3 2. 095	0 761. 9
210	1. 5055	40.84	367.51	-	5	6	701. <i>9</i> 7 222. 0
		5	- 69. 780	0. 75518	0. 7288 9	1. 177 8	6
248	1.6746	1054. 84 43. 66	-363. 30	-1.9488	0. 9379 7	2. 113	746. 9 5
		2	69. 726	0.76506	0. 7372	1 1. 206	221.6
250	1.7850	1045. 97	-359. 07	-1. 9323	5 0. 9364	1 2. 132	6 731. 7
		46. 64 4	- 69. 736	0. 77492	3 0. 7459	0 1. 236	8 221. 2
			03.130		1	6	2
252	1. 9007	1036. 93 49. 80	- 354. 80	-1. 9157 -	0. 9350 6	2. 152 7	716. 4 4
		1	69. 813	0.78479	0. 7548 9	1. 269 3	220. 7 2
254	2.0217	1027. 72	-	-1.8991	0. 9339	2. 175	700.8
		53. 14	350 . 50	-	0	1	8
		4	-	0. 79467	0. 7642	1. 304	220. 1

256	2. 1483	1018. 32 56. 68	- 346. 15	-1, 8826 -	0. 9330 0	2. 199 5	685. 08 219. 5
		5	-	0.80458	0. 7738	1. 342	6
			70. 181		8	9	
258	2. 2806	1008. 71 60. 43	- 341, 77	-1. 8660 -	0. 9324 4	2. 226 2	668. 9 9
		8	_	0.81453	0. 7839	1. 384	218. 9
			70. 480		0	4	0
260	2. 4188	998. 89	- 337. 34	-1. 8495 -	0. 9322 7	2. 255 4	652. 58 218. 1
		64. 417	-	0.82456	0. 7942	1. 429	9
0.00	0. =000	000 00	70.862		6	5	22= 24
262	2. 5630	988. 83	-332 . 86	-1.8329	0. 93258	2. 2874	635. 84
264	2. 7134	68. 64 0	71.332 -	- 0. 83467	0. 8049 8	1. 478 7	217. 4 1
201	2. 1101	978. 51	328. 33	-1. 8162	0. 9334	2. 322	618.75
		73. 124	-71. 896	- 0. 84488	4 0, 8160	6 1. 532	216. 59
				0.04400	4	6	
266	2.8701	967. 92	_	-1.7995	0. 9348	2. 361	601.3
		77. 891	323. 74	- 0. 85523	8 0, 8274	7 1. 591	1 215. 7
			72. 561	0.00020	9	9	0
268	3.0334	957.04	_	-1.7827	0. 9369	2. 405	583.5
		82. 965	319. 09	- 0. 86573	3 0, 8393	0 1. 657	4 214. 76
			73. 334	0.00313	5	5	214.70
270	3. 2033	945.83	-314. 37	-1.7658	0.9395	2. 453	565.4
		88. 374	- 74. 223	- 0. 87641	9 0.8516	4 1. 730	6 213. 7
			14. 220	0.07041	8	7	5 5
272	3. 3802	934. 26	-309.57	-1.7488	0.9428	2.507	547. 1
		94. 148	75. 24 0	0.88732	3 0. 8645	9 1. 812	1 212. 6
			U		4	8	8
274	3.5642	922. 3	-304. 70	-1.7317	0.9465	2.569	528.51
		0 100. 3	- 76. 395	- 0. 89849	9 0. 8780	4 1. 905	211. 5 5
		2	10. 555	0.03043	1	7	Ð
276	3. 7555	909.9	=	-1.7144	0.9508	2.639	509.7
		0	299. 73	- 0,000,00	2	6	1
		106. 9 5	- 77. 702	0. 90995	0. 8921 8	2. 011 7	210. 35

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

二氧化碳的一个新的状态方程式1561

表34年。饱和二氧化碳的热力学性质-继续

温度(K)	压力 (M Pa)	密度(kg/m)	焓(kJ/ kg)	熵 [kJ/(kg K)]	公司 [kJ/(kg K)]	C [kJ/(kgK)]	声音冻结 (m/s)
278	3. 9542	897. 0	-	-1.6969	0. 9554	2. 720	490.7
		2 114. 0	294. 66 -	- 0. 92178	5 0. 9071	3 2. 134	2 209. 0
280	4. 1607	7 883. 5	79. 177 –	-1.6792	9 0. 9604	1 2. 814	7 471. 5
200	4. 1007	8	289.48	-	6	1	4
		121. 7 4	- 80. 840	0. 93401	0. 9231 6	2. 276 9	207. 7 2
282	4. 3752	869. 5 2	- 284. 17	-1.6611 -	0. 9658 4	2. 924 6	452. 19 206. 2
		130.0	-	0. 94674	0.9402	2. 445	8
284	4. 5978	5 854. 7	82. 713 -	-1.6428	9 0. 9716	8 3. 056	432.63
201	1.0010	4 139. 0	278. 71	- 0. 96006	6 0. 9587	9 2. 649	204. 7 4
		9	84. 825	0.90000	8	0	4
286	4.8289	839. 1 2	- 273. 08	-1. 6239 -	0. 9780 6	3. 218 1	412.8 1
		148. 9 8	87. 214	0.97407	0. 9789 5	2. 897 9	203.1
288	5. 0688	822. 5	_	-1.6046	0. 9852	3. 418	0 392 . 6
		0 159. 8	267. 24 -	- 0. 98894	8 1. 0012	9 3. 210	3 201. 3
000	5.0155	7	89. 926		0. 9937	4	4 371. 9
290	5. 3177	804. 6 7	261.15	1. 5846	3	3. 675 6	5
		171. 9 6	93. 025	1. 0049	1. 0260	3. 614 2	199, 4 5
292	5. 5761	785. 3 3	- 254. 76	- 1. 5637	1.004 1	4.014 5	350. 4 9
		185. 5	_	-	1.054	4. 155	197. 38
294	5. 8443	5 764. 09	96. 599 -247. 97	1. 0221 -1. 5418	3 1. 0177	8 4. 4834	327.85
		201.0	100.7	1.041	1.087	4.919	195.0
296	6. 1227	6 740. 2	7 - 240. 68	1 - 1. 5183	2 1. 037	6 5 . 181	9 303 . 4
		8 219. 1	-105. 74	-1.0624	1 1. 126	3 6. 074	4 192. 4
		4			9	1	9
298	6. 4121	712. 7 7	- 232. 64	- 1. 4926	1. 067 5	6. 347 3	276. 4 2
		24090	- 111. 83	- 1. 0872	$\frac{1.177}{4}$	8. 012 8	180. 3 8
300	6.7131	679. 2	_	=	1. 119	8. 697	245.6
		⁴ 268. 5	223. 40	1. 4631 -	9 1. 247	9 11. 92	7 185. 3
301	6. 8683	8 658. 6	119. 70 -	1. 1175 -	6 1. 163	1 11. 05	3 228. 1
301	0.0003	9 286. 1	218.03	1. 4460	1. 103 1 1. 297	3 15. 85	8 182. 6
		5	124.73	- 1. 1361	2	15. 85 9	1
302	7. 0268	633. 6 9	- 211. 76	- 1. 4261	1. 231 6	15. 78 6	208. 0 8
		308. 1	-	=	1.367	23.80	178.9
303	7. 1890	5 599. 8	131. 05 -	1. 1588 -	6 1. 370	0 30. 23	1 182. 1
	1000	6 339. 0	203. 73	1. 4004 -	2 1. 492	3 47. 59	4 172. 7
20.4		0	139. 91	1. 1897	5	9	1
304	7. 3555	530. 30 406. 4	-188 . 42 -	-1. 3509 -	2. 0531 2. 0679	386. 88 555. 58	134. 14 147. 62
304. 1282	7. 3773	2	158.84	1. 2536			
		467. 6 0	- 174. 53	- 1. 3054			

三点。关键点

1562年,斯潘和瓦格纳

表35年。二氧化碳的热力学性质

温度(K)	密度(kg/m)	间质能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	C [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/)
			0.05 M	Pa Isubar			
186. 436*	1. 4370	-123.74	-88. 944	-0. 23757	0.54404	0. 74495	216. 947
190	1.4089	-121.78	-86. 286	-0. 22345	0.54661	0.74660	218. 90
200	1. 3359	-116. 22	-78.792	-0.18501	0. 55478	0. 75266	224. 26
210	1. 2704	-110.59	-71.228	-0.14811	0. 56398	0. 76029	229, 41
220	1.2112	-104.86	-63.582	-0.11254	0. 57386	0. 76897	234. 38
230	1. 1575	-99.044	-55.846	-0.07816	0. 58417	0. 77834	239. 20
240	1.1084	-93. 125	-48.014	-004483	0. 59473	0. 78815	243. 88
250	1.0634	-87. 104	-40.082	-0.01245	0.60542	0. 79823	248. 44
260	1.0219	-80.978	-32.049	0.01906	0.61612	0. 80845	252. 88
270	0.98360	-74.747	-23.913	0.04976	0.62679	0.81871	257. 23
280	0.94810	-68.412	-15.675	0.07972	0.63737	0, 82895	261.49
290	0.91510	-61.973	-7.3344	0.10899	0. 64782	0. 83912	265.67
300	0.88434	-55. 432	1.1072	0.13761	0. 65812	0.84917	269.77
325	0.81585	-38.641	22.645	0.20655	0.68307	0.87366	279.71
350	0.75726	-21. 246	44.781	0. 27216	0. 70681	0. 89707	289. 27
375	0.70656	-3.2771	67.489	0.33481	0.72932	0. 91933	298. 50
400	0.66224	15. 237	90.738	0.39483	0.75063	0.94046	307.42
425	0.62317	34. 268	114.50	0.45245	0.77081	0.96051	316.08
450	0.58847	53. 788	138.76	0.50789	0.78995	0.97953	324.50
475	0.55743	73.774	163.47	0.56134	0.80811	0.99760	332.69
500	0. 52951	94. 201	188.63	0.61295	0.82537	1.0148	340.67
525	0.50426	115.05	214.20	0.66286	0.84179	1.0312	348, 46
550	0.48130	136. 29	240.18	0.71120	0.85744	1.0468	356.08
575	0.46035	157. 92	266.54	0.75806	0.87236	1.0616	363. 53
600	0.44115	179.92	293. 26	0.80354	0.88660	1.0758	370.83
700	0.37809	271.21	403.45	0.97331	0.93747	1. 1266	398.65
800	0.33081	367. 15	518.30	1. 1266	0.97994	1.1690	424.64
900	0.29404	466.98	637.03	1. 2664	1.0155	1.2045	449.13
1000	0. 26463	570.06	759.01	1.3949	1.0452	1.2342	472.37
100	0. 24057	675. 87	883.71	1. 5137	1.0702	1. 2592	494. 54
			0.10	MPa Isoba			
194. 525°	2. 7796	-120. 24	-84. 267	-0.34184	0.56013	0.76998	219.98
200	2.6980	-117. 11	-80.049	-0.32046	0.56339	0.77091	223.00
210	2.5617	-111.36	-72 . 323	-0. 28276	0.57062	0.77476	228.33
220	2. 4394	-105.54	-64. 547	-0. 24659	0.57907	0.78067	233.45
230	2. 3288	-99.645	-56. 705	-0. 21173	0.58833	0. 78795	238.38
240	2. 2282	-93. 664	-48.785	-0. 17803	0.59811	0.79618	243. 15
250	2. 1363	-87. 589	-40. 780	-0. 14535	0.60818	0.80501	247. 79
260	2.0519	-81. 419	-32.684	-0.11360	0.61843	0.81424	252.31
270	1.9741	-75 . 151	-24. 494	-0.08269	0.62872	0.82371	256. 72
280	1.9021	-68. 784	-16.209	-0.05256	0.63900	0.83330	261.03
290	1.8352	-62 . 317	-7.8279	-0.02315	0.64922	0.84293	265. 25
300	1.7730	-55. 751	0.64941	0.00559	0.65932	0.85253	269.39
325	1.6348	-38.911	22. 260	0.07477	0.68392	0.87619	279.42
350	1.5167	-21. 479	44. 452	0.14054	0.70743	0.89903	289.04
375	1. 4147	-3.4815	67. 203	0.20332	0.72978	0.92090	298. 31
400	1. 3257	15.056	90. 488	0.26342	0.75099	0.94173	307. 28
425	1.2472	34. 105	114. 28	0.32111	0.77109	0.96156	315.97
450	1. 1776	53.640	138.56	0.37661	0.79017	0.98041	324.41
475	1. 1154	73. 639	163. 29	0.43011	0.80829	0.99835	332.62
500	1.0594	94.076	188. 47	0.48175	0.82552	1.0154	340.62

表35年。二氧化碳的热力学性质-继续

温度(K)	密度 (kg/m³)	Intermal energ) (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	古巴 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/:)
			0.10 M	Pa Isobar			
525	1.0088	114. 93	214.06	0.53169	0.84192	1.0317	348. 43
550	0.96283	136. 19	240.05	0.58005	0.85755	1.0473	356.06
575	0.92087	157.82	266. 42	0.62693	0.87245	1.0621	363. 52
600	0.88242	179.82	293. 15	0.67243	0.88668	1.0762	370.83
700	0.75619	271. 13	403.38	0.84226	0.93752	1.1269	398.68
800	0.66158	367. 09	518. 24	0.99558	0.97997	1.1692	424.68
900	0.58803	466. 93	636.99	1. 1354	1.0155	1.2046	449.19
1000	0. 52921	570.02	758. 98	1. 2639	1.0452	1. 2343	472.43
1100	0. 48109	675. 83	883.69	1. 3827	1. 0702	1. 2593	494.61
			0. 101325	MPa Isoba			
194. 6854	2. 8147	-120. 18	-84. 180	-0. 34383	0. 56049	0.77056	220.03
200	2. 7345	-117. 14	-80.083	-0.32307	0.56362	0.77141	222.97
210	2. 5963	-111.38	-72 . 352	-0.28535	0.57080	0.77516	228.30
220	2.4722	-105.56	-64. 573	-0.24916	0.57921	0.78098	233. 42
230	2. 3601	-99,661	-56, 728	-0.21429	0.38845	0. 78821	238. 36
240	2. 2581	-93.678	-48.806	-0.18057	0.59820	0. 79639	243. 14
250	2. 1649	-87.602	-40.798	-0.14789	0.60826	0.80519	247.78
260	2.0793	-81.431	-32.701	-0.11613	0.61849	0.81440	252.30
270	2.0004	-75. 162	-24.509	-0.08522	0.62878	0.82384	256.71
280	1.9274	-68. 793	-16. 223	-0.05508	0.63905	0.83341	261.02
290	1.8597	-62.326	-7.8410	-0.02567	0.64925	0.84303	265. 24
300	1.7966	-55. 760	0.63726	0.00307	0.65935	0.85262	269.38
325	1.6565	-38.918	22. 250	0.07226	0.68394	0.87625	279.41
350	1.5369	-21.486	44. 443	0. 13803	0.70745	0.89908	289.03
375	1.4335	-3.4869	67. 196	0. 20082	0.72980	0. 92094	298.31
400	1.3433	15.051	90.482	0. 26092	0.75100	0. 94177	307.28
425	1. 2638	34. 100	114. 28	0. 31862	0.77110	0.96159	315.97
450	1. 1932	53.637	138. 55	0.37412	0.79018	0. 98044	324.41
475	1. 1302	73.635	163. 29	0. 42761	0.80829	0. 99837	332.62
500	1.0735	94.073	188.46	0. 47926	0.82552	1.0155	340.62
525	1.0222	114. 93	214.06	0. 52920	0.84192	1.0317	348.43
550	0. 97559	136. 18	240.04	0. 57756	0.85755	1.0473	356.06
575	0. 93308	157.82	266. 41	0. 62444	0. 87246	1.0621	363.52
600	0.89412	179.82	293. 14	0. 66994	0.88668	1.0762	370.83
700	0.76621	271. 13	403.38	0.83977	0. 93752	1. 1269	398.68
800	0.67035	367. 09	518. 24	0. 99309	0. 97997	1. 1692	424.69
900	0. 59582	466. 93	636.99	1. 1329	1. 0155	1. 2046	449.19
1000	0.53622	570.02	758. 98	1.2614	i.0452	1. 2343	472.44
1100	0.48746	675.83	883.69	1.3803	1.0702	1.2593	494.61

1564年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质-连续的

温度(K)	密度(kg/m³)	内能 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	Co [kJ/(kg K)]	De (kg k	声速(n s)
			0.00 ME			K	
			0.20 MF	a Isobar			
203. 314	5.4054	-116.97	-79. 973	-0. 44750	0.58210	0.80842	222. 32
210	5. 2116	-112.95	-74. 577	-0. 42138	0.58456	0.80597	226. 10
220	4.9495	-106. 93	-66 . 522	-0. 38391	0. 58993	0.80556	231. 52
230	4.7152	-100.87	-58. 456	-0. 34806	0. 59692	0.80819	236. 70
240	4. 5039	-94. 758	-50. 352	-0. 31357	0.60502	0.81291	241. 68
250 260	4.3120	-88. 575 -82. 313	-42. 193	-0. 28026 -0. 24800	0. 61383 0. 62310	0.81906	246. 49
200 270	4. 1369	-82. 313 -75. 967	-33. 967 -25. 667	-0. 24800 -0. 21668	0. 63264	0. 82618 0. 83396	251. 16 255. 69
280	3. 9761 3. 8280		-25. 667 -17. 286	-0. 21008	0. 64231	0. 84219	
		-69. 534	-17. 286 -8. 8222	-0. 18620 -0. 15650	0. 65203	0. 84219 0. 85070	260. 10
290 300	3.6909	-63. 010 -56. 394	-0. 8222 -0. 27188	-0. 12751	0.66174	0.85938	264. 42 268. 64
325	3. 5636 3. 2819	-39. 454	21. 487	-0. 12751 -0. 05786	0. 68562	0.88131	278. 83
350	3. 0423	-21. 947	43. 792	0.00825	0.70867	0. 90300	288. 58
375	2. 8360	-3.8914	66.631	0.07127	0.73072	0. 92405	297. 95
400	2.6562	14. 692	89. 987	0, 13156	0.75170	0. 94429	306, 99
425	2. 4981	33, 778	113. 84	0. 18939	0. 77166	0. 96367	315, 74
450	2. 3580	53, 344	138. 16	0. 24500	0.79062	0.98219	324. 23
475	2. 2328	73. 368	162. 94	0. 29858	0.80865	0.99986	332. 49
500	2.1204	93, 827	188. 15	0.35030	0.82582	1.0167	340, 53
525	2.0188	114.70	213.77	0.40030	0.84217	1. 0329	348. 37
550	1.9265	135. 97	239.79	0.44871	0.85776	1.0482	356.02
575	1.8424	157.62	266.18	0.49563	0.87263	1.0630	363.51
600	1.7653	179.63	292.93	0. 54117	0.88684	1.0770	370.83
700	1.5124	270. 99	403.22	0.71109	0. 93761	1. 1274	398.74
800	1. 3230	366.97	518.13	0.86447	0.98003	1. 1696	424. 78
900	1. 1759	466. 82	636. 91	1. 0043	1.0155	1. 2049	449. 30
1000	1.0582	569. 93	758. 93	1. 1329	1.0452	1. 2345	472. 56
1100	0. 96197	675. 75	883.66	1. 2517	1. 0702	1. 2594	494. 75
			0.30 MF	a Isobar			
208. 797"	8.0141	-115.37	-77. 936	-0.51088	0.59903	0.84154	223.07
210	7. 9594	-114.62	-76 . 925	-0. 50605	0.59918	0.84031	223. 78
220	7. 5367	-108.37	-68. 563	-0. 46715	0.60144	0.83277	229. 53
230	7. 1633	-102. 13	-60. 253	-0. 43021	0.60593	0.82996	234. 98
240	6. 8298	-95 . 878	-51. 953	-0. 39488	0.61219	0. 83067	240. 18
250	6. 5292	-89. 579 -83. 222	-43. 632	-0. 36091 -0. 32812	0.61964	0. 83382	245. 17
260	6. 2564		-35. 271	-0. 32812 -0. 29636	0. 62788 0. 63662	0. 83863 0. 84459	249. 98 254. 64
270 280	6.0072	-76. 795 -70. 293	-26. 855	-0. 26553	0. 64567	0.85136	254. 04
280 290	5. 7785 5. 5675	-63. 710	-18. 376 -9. 8262	-0. 23553	0. 65488	0. 85869	263. 58
290 300	5. 3723	-63. 710 -57. 043	-9. 8262 -12010	-0. 20629	0. 66418	0. 85869 0. 86640	267. 88
300 325	5. 3723 4. 9416	-57. 043 -40. 000	20. 709	-0.13615	0.68733	0.88653	278. 24
350	4. 5770	-22. 417	43. 128	-0. 06970	0.70992	0. 90702	288. 11
375	4. 2638	-22. 417 -4. 3028	66. 057	-0.00643	0.73165	0. 92723	297. 58
400	4. 2036 3. 9916	14. 326	89. 485	0.05404	0.75242	0. 94687	306. 70

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	Intermal energ) (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	古巴 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速 (m/)
			0.30 MF	a Isobar			
425	3. 7526	33. 450	113.40	0.11202	0.77222	0.96580	315. 52
450	3.5410	53, 048	137.77	0.16774	0.79107	0. 98397	324.06
475	3. 3523	73. 097	162. 59	0. 22141	0.80902	1.0014	332.36
500	3. 1829	93. 578	187.83	0.27320	0.82612	1.0180	340.43
525	3.0299	114.47	213.48	0.32326	0.84242	1.0340	348.30
550	2.8911	135.76	239. 53	0.37172	0.85797	1.0492	355.98
575	2.7646	157.42	265.94	0.41868	0.87282	1.0638	363.49
600	2.6487	179.45	292.71	0.46426	0.88699	1.0778	370.84
700	2. 2687	270.84	403.07	0.63428	0.93770	1.1279	398.80
800	1.9844	366.84	518.02	0.78771	0.98009	1.1699	424.87
900	1.7635	466.72	636.83	0.92761	1.0156	1.2052	449.41
1000	1.5870	569.84	75887	1.0562	1.0453	1. 2347	472.69
1100	1.4426	675.67	883.63	1. 1750	1.0703	1. 2596	494.88
			0.50 MF	a Isobar			
216. 075 ⁴	13. 282	114.05	76. 405	-0. 59404	0. 62692	0. 90323	222. 86
220	12. 974	-111.42	-72.876	-0.57785	0.62625	0.89522	225. 33
230	12. 265	-104.78	-64.010	-0.53843	0.62547	0.87913	231.38
240	11.646	-98. 202	-55. 270	-0.50124	0.62750	0.86991	237.06
250	11097	-91650	-46, 594	-0.46582	0.63186	0.86583	242.44
260	10.606	-85.086	-37. 941	-0.43188	0.63782	0.86526	247.58
270	10. 161	-78.487	-29. 281	-0.39920	0.64484	0.86710	252. 51
280	9.7568	-71.840	-20. 594	-0.36761	0.65255	0.87063	257. 27
290	9. 3864	-65. 133	-11.865	-0.33697	0.66071	0.87537	261.87
300	9.0456	-58.359	-3.0836	-0.30721	0.66916	0.88096	266. 35
325	8. 2996	-41.105	19. 139	-0.23606	0.69081	0.89726	277.05
350	7. 6736	-23.365	41.793	-0.16892	0.71244	0. 91523	287. 18
375	7. 1393	-5. 1305	64.905	-0.10514	0. 73353	0.93370	296.85
400	6,6770	13. 593	88. 478	-0.04430	0.75386	0.95209	306.13
425	6. 2725	32. 793	112.51	0.01397	0.77335	0.97010	315.07
450	5. 9154	52. 453	136.98	0.06991	0.79197	0. 98757	323, 72
475	5. 5975	72. 554	161.88	0. 12376	0,80975	1. 0044	332. 10
500	5. 3126	93. 079	187. 19	0. 17570	0.82672	1.0207	340, 25
525	5. 0558	114.01	212.91	0. 22588	0.84292	1.0363	348. 18
550	4. 8229	135, 33	239.00	0. 27443	0. 85840	1. 0512	355, 91
575	4.6108	157.02	265, 46	0. 32148	0. 87318	1. 0656	363, 47
600	4. 4168	179. 07	292. 28	0. 36713	0. 88731	1. 0794	370. 85
700	3. 7814	270, 54	402.76	0. 53734	0. 93789	1. 1289	398. 92
800	3. 3067	366.60	517. 81	0. 69090	0. 98022	1. 1707	425, 06
900	2. 9383	466.51	636. 68	0. 83087	1. 0157	1. 2057	449.64
1000	2. 6439	569. 65	758. 77	0. 95947	1. 0453	1. 2352	472. 94
1100	2. 4033	675, 51	883. 56	1. 0784	1. 0703	1. 2600	495. 15

1566年,斯潘和瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	Intermal energ) (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	C [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/s)
			0.75 MPa	Isobar			
216. 642	1178.77	-427. 22	-426. 58	-2. 2178	0. 97489	1. 9518	976.77
220	1166.48	-420.66	-420.01	-2.1878	0.97002	1.9607	952.10
225	1147.71	-410 . 82	-410. 17	-2.1435	0.96306	1.9772	915. 26
225. 505	1145. 78	-409, 83	-409.17	-2.1391	0.96238	1.9792	911. 52
225.505°	19.640	-111.58	-73.389	-0.65006	0.65557	0.96925	223.51
230	19. 095	-108, 34	-69, 068	-0.63108	0.65297	0.95402	226.53
235	18. 535	-104. 80	-64. 335	-0.61073	0.65047	0. 93952	229. 79
240	18.018	-101.29	-59.668	-0.59107	0.64888	0.92783	232. 92
245	17. 536	-97.821	-55. 052	-0.57204	0. 64826	0. 91866	235.94
250	17. 087	-94. 371	-50. 477	-0. 55356	0.64852	0.91161	238. 87
255	16. 665	-90. 937	-45. 933	-0. 53556	0. 64951	0.90630	241. 70
260	16. 269	-87. 513	-41. 412	-0. 51800	0.65110	0. 90241	244. 46
265	15. 894	-84. 094	-36. 907	-0. 50084	0. 65318	0.89969	247. 14
270	15. 540	-80. 676	-32. 414	-0. 48404	0. 65565	0.89792	249. 76
275	15. 204	-77. 256	-27. 927	-0. 46757	0. 65844	0. 89696	252. 32
	14. 884	-73. 831	-23. 443	-0. 45141	0. 66150	0. 89665	254. 83
280 285	14. 580	-70. 399	-18. 959		0. 66478	0.89691	
285 290	14. 290	-66. 957	-14. 473	-0. 43554 -0. 41994			257. 29 259. 70
			-9. 9821		0. 66824	0. 89764 0. 89878	
295	14. 013	-63. 505		-0. 40458	0. 67184 0. 67556	0. 90026	262. 07
300	13. 747	-60. 041	-5. 4847	-0. 38947			264. 41
305	13. 493	-56. 564	-0.97908	-0. 37457	0. 67937 0. 68326	0. 90202 0. 90404	266. 70
310	13. 249	-53. 072	3. 5360	-0. 35989			268. 96
315	13. 015	-49. 566	8. 0617	-0. 34540	0. 68720	0. 90627	271. 19
320	12. 789	-46. 044	12. 599	-0. 33111	0.69120	0. 90868	273. 39
325	12. 572	-42. 507	17. 149	-0. 31701	0. 69523	0. 91126	275. 56
330	12. 363	-38. 952	21.712	-0.30307	0. 69928	0. 91397	277. 70
335	12. 162	-35. 381	26. 289	-0. 28931	0.70336	0.91680	279.82
340	11.967	-31. 793	30.880	-0. 27570	0.70744	0. 91973	281. 91
545	11.77y	-28. 187	35. 486	-0. 26225	0.71154	0. 92274	283. 98
350	11. 597	-24. 563	40. 107	-0. 24896	0.71562	0. 92583	286. 02
360	11. 251	-17. 262	49.397	-0.22279	0.72378	0. 93217	290. 05
370	10.927	-9. 8882	58.751	-0. 19716	0.73188	0.93869	294.00
380	10.621	-2 . 4415	68. 171	-0.17204	0.73991	0. 94532	297. 88
390	10. 333	5.0782	77. 658	-0. 14739	0.74784	0.95202	301.68
400	10.062	12.671	87.212	-0.12321	0.75568	0. 95875	305.42
410	9.8042	20.336	96.833	-0.09945	0.76340	0.96549	309.11
420	9.5603	28.072	106. 52	-0.07610	0.77101	0.97221	31273
430	9. 3287	35.880	116. 28	-0.05315	0.77850	0.97890	316.31
440	9. 1085	43.758	126. 10	-0.03057	0.78586	0.98554	319.83
450	8. 8987	51.706	135. 99	-0. 00835	0. 79310	0. 99212	323. 30
460	8. 6988	59. 723	145. 94	0. 01353	0.80022	0. 99864	326.73
470	8. 5079	67.807	155. 96	0. 03508	0.80722	1.0051	330. 12
480	8. 3254	75, 957	166. 04	0. 05631	0. 81409	1. 0115	333. 46
490	8. 1508	84. 174	176, 19	0. 07723	0. 82084	1. 0113	336. 76
500	7. 9835	92. 455	186. 40	0. 09785	0. 82748	1. 0240	340. 03

二氧化碳1567

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	间歇能量(kJ/kg	焓(kJ/ kg)	熵(kJ/ (kgK))	[kJ/(kg K)]	Cp [kJ/(k K)] g	声速(m/ s)
			0.75 MPa	Isobar			
525	7. 5946	113. 43	212. 19	0. 14818	0.84355	1. 0391	348.03
550	7. 2425	134. 79	238.35	0.19686	0.85893	1.0537	355, 83
575	6, 9222	156. 52	264.87	0.24401	0.87363	1.0678	363. 44
600	6. 6294	178.60	291.74	0.28974	0.88769	1.0813	370.87
625	6. 3608	201. 02	318.93	0.33415	0.90115	1.0943	378. 14
650	6, 1133	223. 76	346, 45	0. 37732	0.91402	1. 1068	385, 26
675	5. 8846	246. 82	374. 27	0. 41931	0. 92634	1. 1188	392. 23
700	5.6725	270. 16	402.38	0.46021	0. 93812	1. 1302	399.08
800	4.9589	366. 29	517.53	0.61391	0.98037	1. 1716	425.30
900	4.4056	466. 25	636.49	0.75398	1.0158	1. 2064	449.93
1000	3, 9639	569. 43	758.63	0.88265	1. 0454	1. 2357	473. 27
1100	3, 6030	675. 32	883. 47	1.0016	1.0704	1. 2604	495.50
			1.00 MPa	ı Isobar			
216. 695b	1179. 10	-427. 26	-426. 41	-2. 2180	0. 97514	1. 9503	977. 76
220	1167.03	-420.80	-419.95	-2.1884	0.97034	1.9589	953. 55
225	1148.32	-410.99	-410.11	-2.1442	0.96337	1.9751	916.83
230	1128.97	-401.08	-400.19	-2.1006	0.95680	1. 9959	879.82
233.028°	1116.90	-395.02	-394.12	-2.0744	0.95303	2.0111	857. 18
233.028°	26.006	-109.94	-71.484	-0.68986	0.68026	1.0322	223.50
235	25.665	-108.42	-69.459	-0.68120	0.67819	1.0220	224. 93
240	24.857	-104.64	-64.408	-0.65993	0.67332	0.99915	228.46
245	24. 117	-100. 92	-59.460	-0.63953	0.66959	0.98058	231.84
250	23. 435	-97. 266	-54.595	-0.61987	0.66716	0.96579	235.08
255	22.803	-93.650	-49.797	-0.60087	0.66588	0.95411	238. 19
260	22. 215	-90.065	-45.050	-0. 58243	0.66557	0. 94495	241. 19
265	21.664	-86. 503	-40.344	-0. 56450	0.66605	0. 93783	244. 10
270	21. 147	-82.957	-35.669	-0. 54703	0.66718	0. 93235	246.91
275	20.660	-79.422	-31.018	-0. 52996	0.66884	0.92821	249.66
280	20. 199	-75.892	-26.385	-0.51326	0.67092	0.92518	252. 33
285	19.763	-72. 364	-21.765	-0. 49691	0. 67335	0. 92307	254.93
290	19.349	-68.836	-17. 153	-0. 48087	0.67607	0.92172	257.49
295	18.955	-65.303	-12. 547	-0. 46512	0.67902	0.92103	259.98
300	18. 579	-61.765	-7. 9420	-0. 44964	0.68217	0.92089	262.43
305	18. 221	-58. 220	-3. 3370	-0. 43442	0. 68547	0.92121	264.83
310	17.878	-54.665	1. 2707	-0. 41943	0.68890	0.92192	267. 20
315	17. 549	-51. 100	5. 8828	-0. 40467	0. 69243	0. 92298	269. 52
320	17. 234	-47. 523	10. 501	-0.39013	0.69605	0. 92433	271.80
325	16. 932	-43.934	15. 126	-0. 37578	0.69974	0. 92594	274.06
330	16. 641	-40. 331	19. 761	-0. 36163	0. 70349	0. 92777	276. 28
335	16. 361	-36. 715	24. 405	-0. 34767	0. 70729	0. 92981	278.46
340	16.092	-33. 084	29. 059	-0. 33387	0.71112	0. 93200	280.62
345	15.832	-29. 438	33. 725	-0. 32025	0.71498	0. 93435	282.76
350	15. 581	-25. 777	38. 403	-0.30679	0.71885	0. 93681	284.86

1568年,斯普恩和瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	CCp速度 [kJ/(kg K)][k	J/(kg K)]声音 (m	/s)
			1.00 MP	a Isobar			
360	15. 105	-18. 406	47.797	-0. 28033	0. 72664	0. 94206	289.0
370	14. 659	-10. 970	57. 245	-0.25444	0. 73442	0.94763	293.0
380	14. 241	-3, 4677	66, 750	-0.22909	0.74217	0.95345	297.0
390	13. 848	4. 1027	76. 315	-0.20425	0.74988	0. 95944	300.9
400	13, 477	11.741	85. 939	-0.17988	0.75751	0.96555	304.7
410	13. 127	19. 449	95.626	-0.15596	0.76505	0.97174	308.4
420	12.796	27. 224	105.37	-0.13247	0.77251	0.97798	312. 1
430	12, 482	35. 068	115. 19	-0.10939	0.77986	0. 98423	315.7
440	12. 183	42.979	125.06	-0.08669	0.78710	0.99049	319.3
450	11. 899	50. 957	135.00	-0.06436	0.79424	0.99673	322.8
460	11.629	59.001	144.99	-0.04238	0.80126	1.0029	326. 3
470	11. 371	67. 112	155. 05	-0.02075	0.80817	1.0091	329.7
480	11. 125	75. 287	165. 18	0.00056	0.81497	1.0152	333. 1
490	10.889	83. 526	175.36	0.02156	0.82166	1.0213	336. 5
500	10.664	91.829	185.60	0.04225	0.82823	1. 0273	339. 8
525	10. 141	112.86	211.47	0.09273	0. 84418	1.0420	347. 9
550	9.6675	134. 26	237. 70	0. 14154	0.85946	1.0563	355.7
575	9. 2375	156.02	264. 28	0. 18879	0.87408	1.0700	363.4
600	8. 8449	178. 14	291.19	0. 23462	0.88808	1.0833	370.9
625	8. 4849	200. 58	318, 44	0. 27910	0.90149	1.0961	378. 2
650	8. 1535	223. 35	345.99	0.32233	0.91432	1.1084	385.3
675	7.8474	246. 42	373.85	0.36438	0.92660	1.1202	392. 3
700	7. 5638	269. 79	402.00	0.40533	0.93835	1. 1315	399.2
800	6.6102	365. 98	517. 26	0.55918	0.98053	1.1725	425.5
900	5. 8718	465. 99	636. 29	0.69934	1.0159	1.2071	450.2
1000	5. 2826	569.20	758. 50	0.82807	1.0455	1.2362	473. 5
100	4.8014	675. 12	883.39	0.94708	1.0704	1.2608	495.8
			2.00 MP	a Isobar			
216. 908	1180. 41	-427. 40	-425. 70	-2. 2187	0.97612	1. 9443	981. 7
220	1169. 23	-421.39	-419.68	-2.1911	0.97160	1. 9517	959.3
225	1150.73	-411.63	-409.89	-2. 1471	0. 96458	1. 9667	923. (
230	1131.64	-401.78	-400.01	-2.1037	0.95796	1.9858	886. 5
235	1111.85	-391.82	-390.02	-2.0607	0.95178	2.0100	849.7
240	1091.24	-381.73	-379.90	-2.0181	0.94610	2.0404	812.
245	1069.65	-371.47	-369.60	-1.9756	0.94098	2.0786	773.7
250	1046.88	-361.01	-359. 10	-1.9332	0. 93660	2. 1271	733.9
253. 647	1029. 36	-353. 20	-351. 26	-1.9021	0.93409	2.1710	703. 6
253. 647	52. 540	-107. 99	-69. 929	-0.79292	0.76254	1. 2983	220. 2
255	51. 941	-106.69	-68. 187	-0.78607	0.75793	1.2773	221.5
260	49. 914	-102.04	-61.969	-0.76192	0.74331	1.2130	226.0
265	48. 129	-97. 586	-56.031	-0.73930	0.73233	1.1646	230. 2
270	46. 533	-93. 285	-50. 304	-0.71789	0.72439	1. 1276	234. 2
275	45, 090	-89. 098	-44. 742	-0.69748	0.71881	1.0987	237. 9

表35年。二氧化碳的热力学性质-继续

温度 (K)	密度(kg/m)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	佛得角 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m /s)
			2.00 MP	a Isobar			
280	43.772	-84. 999	-39. 308	-0.67789	0.71503	1.0758	241.45
285	42.560	-80. 969	-33. 977	-0.65902	0.71265	1.0574	244. 82
290	41.438	-76. 992	-28. 728	-0.64076	0.71135	1.0425	248.05
295	40.395	-73.058	-23. 547	-0. 62305	0.71092	1.0305	251.15
300	39.420	-69. 155	-18.420	-0.60581	0.71116	1.0206	254. 15
305	38. 506	-65. 278	-13. 338	-0.58901	0.71195	1.0125	257.06
310	37.645	-61. 420	-8. 2920	-0. 57260	0.71317	1.0059	259.89
315	36.832	-57. 577	-3. 2763	-0. 55655	0.71475	1.0005	262.63
320	36.063	-53. 744	1.7152	-0. 54083	0.71664	0. 99621	265.31
325	35. 333	-49. 917	6.6872	-0. 52541	0.71879	0. 99276	267.93
330	34.639	-46. 095	11.644	-0. 51028	0.72117	0. 99008	270.49
335	33. 977	-42. 273	16. 589	-0. 49541	0. 72373	0. 98805	272. 99
340	33. 346	-38. 451	21.526	-0. 48078	0.72645	0. 98659	275.45
345	32. 743	-34. 627	26. 456	-0. 46638	0.72929	0. 98561	277. 85
350	32. 165	-30. 798	31.382	-0. 45221	0.73225	0. 98506	280. 22
360	31.078	-23. 121	41.232	-0. 42446	0.73841	0. 98503	284.83
370	30.075	-15. 414	51.087	-0.39746	0.74484	0. 98616	289. 30
380	29. 143	-7. 6685	60.958	-0. 37113	0.75144	0. 98819	293. 64
390	28. 276	0.12033	70.853	-0. 34543	0.75815	0.99093	297. 87
400	22. 464	7. 9565	80.778	-0. 32030	0. 76494	0. 99423	301.99
410	26. 704	15. 843	90.739	-0. 29571	0. 77175	0. 99798	306.02
420	25. 989	23. 782	100. 74	-0. 27161	0. 77856	1. 0021	309. 96
430	25. 314	31. 775	110. 78	-0. 24798	0. 78535	1. 0064	313. 83
440	24. 678	39. 824	120. 87	-0. 22479	0. 79211	1.0110	317.61
450	24. 075	47. 929	131.00	-0. 20202	0. 79881	1.0158	321.33
460	23. 504	56.091	141. 18	-0. 17964	0.80545	1. 0207	324. 99
470	22. 961	64. 310	151. 42	-0. 15763	0.81202	1. 0256	328. 58
480	22. 444	72. 587	161. 70	-0. 13599	0.81852	1.0307	332. 12
490	21. 952	80. 920	172. 03	-0.11468	0. 82493	1. 0358	335. 60
500	21. 482	89. 311	182. 41	-0.09371	0.83126	1.0409	339. 03
525	20. 396	110. 54	208. 59	-0.04261	0.84670	1. 0537	347.41
550	19. 419	132. 11	235. 10	0.00670	0.86158	1.0664	355. 52
575	18. 536	154. 02	261. 91	0.05438	0. 87589	1. 0790	363. 39
600	17. 733	176. 26	289. 04	0. 10056	0. 88964	1.0912	371.05
625	16. 999	198. 82	316. 47	0. 14535	0. 90284	1. 1031	378. 52
650 673	16. 325	221. 69	344. 20	0. 18884	0.91550	1. 1147 1. 1259	385. 81
700	15. 705	244. 85	372. 20	0. 23112	0. 92764 0. 93928	1. 1259 1. 1367	392. 94 399. 92
	15. 130 13. 207	268. 30	400. 49	0. 27227	0. 93928 098114		
800 900	13. 207	364. 75 464. 95	516. 19	0. 42670 0. 56724	1. 0163	1. 1762 1. 2099	426. 52 451. 40
1000			635. 54	0. 69622	1. 0459	1. 2384	451. 40
1100	10. 544 9. 5815	568. 30 674. 33	757. 99 883. 06	0. 81542	1. 0459	1. 2625	474. 89

1570年,跨度和瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(k g/m³)	间质能量 (kJ/kg)	焓(kJ/k g)	熵 [kJ/(kg K)]	[kJ/(kgK)]	发光强度 [kJ/(kg K)]	声速(m /s)
			3.00 MPa	Isobar			
217. 121b	1181.71	-427.54	-425.00	-2. 2193	0. 97705	1.9386	985. 63
220	1171.40	-421.97	-419.41	-2.1938	0.97282	1.9449	965.03
225	1153. 10	-412.25	-409.65	-2.1499	0.96576	1.9587	929. 2
230	1134. 25	-402.46	-399.82	-2.1067	0.95909	1.9763	893. 2
235	1114.74	-392. 57	-389.88	-2.0639	0.95286	1.9986	856. 9
240	1094. 46	-382. 56	-379.82	-2.0216	0.94711	2. 0265	820. 08
245	1073.29	-372.40	-369.61	-1.9795	0.94190	2. 0613	782. 4
250	1051.02	-362.05	-359. 19	-1.9374	0. 93737	2. 1051	743. 69
255	1027. 42	-351, 46	-348, 54	-1.8952	0. 93383	2. 1608	703. 2
260	1002. 13	-340. 55	-337. 56	-1.8526	0. 93209	2. 2331	660. 22
265	974. 65	-329. 24	-326. 16	-1.8091	0. 93362	2. 3306	613. 4
267. 5985	959, 25	-323. 15	-320. 03	-1. 7861	0. 93647	2. 3959	587. 1
267. 598	81. 919	-109. 79	-73. 169	-0. 86360	0. 83693	1. 6438	214. 9
270	79. 807	-106. 92	-69. 327	-0. 84931	0. 82029	1. 5582	217. 9
275	76, 011	-101. 35	-61. 879	-0. 82197	0. 79485	1. 4301	223. 5
280	70. 011	-96. 166	-54. 960	-0. 79703	0. 77747	1. 3423	228. 5
285	70, 025	-90. 100 -91. 258	-48, 416	-0. 77387	0. 76520	1. 2784	233. 14
285	67. 568			-0. 75207	0. 75645	1. 2300	237. 39
		-86. 550 -81. 993	-42. 151 -36. 099	-0. 73138		1. 1923	241. 3
295 300	65. 368 63. 376		-30. 215	-0. 71160	0. 75024 0. 74589		
		-77. 552				1. 1623	245. 13
305	61. 556	-73. 203	-24. 466	-0. 69260 -0. 67426	0. 74293	1. 1380	248.70
310	59. 881	-68. 927	-18. 827		0. 74101 0. 73994	1. 1181	252. 12
315	58. 332	-64. 710	-13. 280	-0.65650		1. 1016	255. 40
320	56. 890	-60. 540	-7. 8071	-0. 63927	0. 73955	1. 0878	258. 56
325	55. 544	-56. 409	-2. 3975	-0. 62249	0. 73974	1. 0763	261.6
330	54. 281	-52. 309	2. 9594	-0.60614	0. 74041	1. 0667	264. 50
335	53.092	-48. 233	8. 2721	-0. 59016	0. 74148	1.0586	267. 43
340	51.970	-44. 178	13. 548	-0. 57453	0. 74287	1.0518	270. 21
345	50.908	-40. 137	18.792	-0. 55921	0. 74453	1.0462	272. 93
350	49. 901	-36. 108	24. 011	-0. 54419	0. 74643	1.0414	275. 58
360	48.031	-28. 073	34. 387	-0.51496	0. 75077	1.0343	280. 7
370	46. 327	-20.052	44. 705	-0. 48669	0. 75568	1.0296	285. 63
380	44.765	-12.030	54. 986	-0. 45928	0.76102	1.0269	290. 37
390	43. 326	-3.9958	65. 247	-0. 43262	0.76667	1.0256	294. 95
400	41.992	4.0597	75. 502	-0.40666	0.77255	1.0255	299.39
410	40.752	12. 143	85.760	-0.38133	0.77858	1.0263	303.70
420	39. 594	20. 261	96.030	-0. 35658	0.78472	1.0279	307. 9
430	38. 509	28.416	106.32	-0. 33237	0.79093	1.0301	312.00
440	37. 491	36.613	116.63	-0.30866	0.79717	1.0327	316.00
450	36. 531	44. 854	126. 98	-0. 28542	0.80343	1.0358	319.9
460	35. 625	53. 141	137. 33	-0. 26261	0.80967	1.0392	323. 74
470	34.768	61. 475	147. 76	-0. 24023	0.81589	1.0428	327. 50
480	33. 956	69. 858	158, 21	-0. 21823	0.82207	1.0467	331. 19
490	33. 185	78. 291	168. 69	-0. 19661	0. 82821	1.0507	334. 81
500	32, 451	86, 774	179. 22	0. 17534	0. 83429	1, 0549	338. 37

表35年。二氧化碳的热力学性质-连续的

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	$[kJ/(kg \ K)$	[kJ/(kg K)]	声速(m/s)
			3.00 MPa	a Isobar			
525	30. 761	108. 20	205. 73	-0. 12361	0.84921	1.0656	347.04
550	29. 252	129.95	232. 51	-0.07378	0.86369	1.0768	355.39
575	27. 893	152.01	259. 57	-0.02567	0.87769	1.0880	363.46
600	26.661	174. 38	286. 91	0.02087	0.89118	1.0992	371.30
625	25.540	197.06	314.53	0.06597	0.90418	1.1102	378.92
650	24. 513	220.03	342. 42	0.10972	0.91667	1. 1211	386.34
675	23. 569	243. 29	370.58	0. 15223	0.92868	1. 1316	393. 58
700	22. 697	266, 82	399.00	0. 19357	0.94020	1.1419	400, 65
800	19. 789	363. 53	515. 13	0.34859	0.98175	1.1799	427.55
900	17. 556	463.91	634. 79	0.48950	1.0168	1.2126	452.61
1000	15. 783	567. 41	757. 48	0.61874	1. 0462	1.2405	476. 2
1100	14. 340	673. 54	882.75	0.73811	1.0710	1.2642	498.61
			4.00 MP	aIsobar			
217. 334°	1182. 98	-427. 67	-424. 29	-2. 2200	0. 97796	1. 9330	989. 53
220	1173. 53	-422. 54	-419. 13	-2.1964	0. 97402	1. 9384	970. 66
225	1155. 43	-412. 87	-409, 41	-2.1527	0.96691	1.9510	935. 29
230	1136.80	-403. 13	-399.62	-2.1096	0.96020	1.9673	899. 79
235	1117. 56	-393. 31	-389.73	-2.0671	0. 95391	1.9878	864.02
240	1097.60	-383. 37	-379. 73	-2.0250	0.94810	2.0134	827.80
245	1076. 81	-373. 30	-369. 59	-1.9832	0.94281	2.0452	790. 92
250	1055. 01	-363.06	-359. 26	-1.9415	0.93814	2. 0849	753. 10
255	1032.00	-352.60	-348.72	-1.8997	0. 93435	2. 1348	713.89
260	1007.49	-341.86	-337. 89	-1.8577	0.93199	2. 1986	672.67
265	981.06	-330. 78	-326. 70	-1.8150	0. 93201	2. 2823	628, 62
270	952. 10	-319, 22	-315.02	-1.7714	0.93573	2.3972	580. 72
275	919.56	-306. 99	-302. 64	-1.7259	0.94504	2.5660	527. 52
278. 450°	894.05	-297. 98	-293.51	-1.6929	0.95655	2.7401	486. 42
278.450°	115. 74	-114.09	-79.534	-0.92449	0.91069	2. 1642	208. 78
280	113.08	-111.66	-76. 288	-0.91286	0.89131	2.0294	211.36
285	106.02	-104.65	-66.920	-0.87969	0. 84827	1.7461	218.60
290	100.47	-98. 453	-58.641	-0.85089	0.82129	1. 5780	224. 72
295	95.884	-92.766	-51.048	-0.82493	0. 80299	1.4657	230. 14
300	91.965	-87. 427	-43.932	-0.80101	0.79011	1. 3850	235. 04
305	88. 543	-82.340	-37. 165	-0. 77864	0.78082	1. 3244	239. 56
310	85. 508	-77. 445	-30.665	-0.75750	0.77402	1. 2773	243.77
315	82. 781	-72.697	-24.376	-0.73737	0.76906	1.2397	247. 73
320	80. 306	-68.066	-18. 256	-0. 71809	, 0. 76551	1. 2092	251.49
325	78. 043	-63. 529	-12. 275	-0. 69955	0. 76308	1. 1842	255. 07
330	75. 958	-59. 068	-6. 4078	-0. 68163	0. 76156	1. 1633	258. 49
355	74. 028	-54. 670	-0.63601	-0.66427	0. 76076	1. 1459	261. 78
340	72. 231	-50. 322	5. 0556	-0.64741	0.76054	1.1312	264.95
345	70. 552	-46 . 017	10.679	-0.63099	0.76080	1. 1187	268. 01
350	68, 976	-41. 746	16, 245	-0. 61497	0. 76145	1. 1080	270. 98

1572 R斯潘和w. 瓦格纳

表35。二氧化碳燃烧的热力学性质

温度(K)	密度(kg/m)	土著(kJ/kg	焓(kJ/ kg)	熵 [kJ/(kg K)]	C [kJ/(kg K)}	c [kJ/(kg K)]	音速(m s)
			4.00 MF	a Isobar			
360	66.092	-33. 284	27. 237	-0.58400	0.76371	1.0912	276.67
370	63.509	-24.899	38. 084	-0.55428	0.76695	1.0789	282.06
380	61, 173	-16.562	48. 826	-0, 52564	0.77091	1.0700	287. 22
390	59.045	-8. 2521	59. 493	-0.49793	0.77542	1.0637	292. 17
400	57. 094	0.04711	70. 107	-0.47105	0.78032	1.0595	296. 93
410	55. 294	8. 3478	80.688	-0.44493	0.78553	1.0569	301.53
420	53.627	16.660	91. 249	-0.41948	0.79097	1.0555	305.99
430	52. 076	24. 990	101.80	-0.39465	0.79657	1.0552	310.31
440	50.628	33. 346	112.35	-0.37039	0.80228	1.0556	314. 52
450	49. 270	41.732	122.92	-0.34665	0.80808	1.0568	318.63
460	47.995	50. 151	133.49	-0. 32341	0.81391	1.0585	322.64
470	46.794	58. 607	144.09	-0.30062	0.81978	1.0607	326. 55
480	45.659	67. 102	154.71	-0. 27826	0.82564	1.0633	330. 39
490	44. 585	75. 638	165. 35	-0. 25631	0.83150	1.0661	334. 15
500	43. 566	84. 217	176.05	-0, 23474	0.83733	1.0692	337.84
525	41. 233	105. 86	202.87	-0. 18237	0.85173	1.0779	346.77
550	39. 160	127. 79	229.93	-0.13201	0.86580	1.0873	355. 36
575	37. 302	(50.00	257. 24	-0.08346	0.87948	1.0971	363. 63
600	35.625	172.51	284. 79	-0.03655	0.89272	1.1072	371.63
625	34. 103	195. 30	312.60	0.00885	0.90551	1.1174	379.39
650	32.712	218.38	340.66	0.05287	0.91784	1.1274	386.93
675	31.437	241.73	368. 97	0.09561	0.92971	1. 1374	394. 28
700	30. 262	265. 35	397. 52	0. 13715	0.94111	1. 1471	401.45
800	26. 355	362. 32	514.09	0.29274	0.98236	1. 1835	428.62
900	23. 367	462.88	634.07	0.43402	1.0172	1.2153	453.,84
1000	21.001	566. 52	756. 99	0.56351	1.0465	1.2425	477.55
1100	19. 077	672. 77	882.44	0.68306	1.0712	1. 2658	500.01
			5.00 MF	a Isobar			
217. 546	1184. 25	-427.80	-423.58	-2. 2206	0. 97883	1.9275	993, 41
220	1175.62	-423. 10	-418.85	-2.1990	0.97518	1.9321	976, 23
225	1157.72	-413.48	-409. 16	-2.1554	0.96803	1.9436	941.27
230	1139.31	-403. 79	-399. 41	-2.1125	0.96127	1.9586	906. 23
235	1120.32	-394.03	-389.57	-2.0702	0. 95493	1.9775	870.97
240	1100.66	-384. 17	-379.62	-2.0283	0.94906	2.0011	835.35
245	1080.22	-374. 18	-369.55	-1,9868	0.94369	2.0302	799. 17
250	1058.86	-364. 03	-359.31	-1.9454	0. 93891	2.0663	762. 21
255	1036.39	-353. 69	-348. 87	-1.9041	0. 93492	2. 1112	724. 10
260	1012.57	-343. 12	-338. 18	-1.8626	0. 93209	2. 1678	684. 39
265	987.07	-332. 23	-327. 16	-1.8206	0.93107	2. 2407	642.50
270	95930	-320. 04	-315.73	-1.7779	0. 93262	2. 3377	597. 75
275	928. 78	-309. 11	-303.72	-1.7338	0. 93765	2. 4735	549. 26
280	893.90	-296. 47	-290.88	-16875	0. 94778	2.6797	495. 52
285	852.04	-282.54	-276.67	-1.6373	0.96716	3.0437	433.50

表35年。二氧化碳的热力学性质-连续的

温度(K)	密度(kg/m³)	间质能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	C [kJ/(kgK)	[kJ/(kg K)]	声速(m,s)
			5.00 MPa	Isobar			
287. 434	827. 32	-274. 96	-268. 91	-1.6101	0. 98314	3. 3572	398. 39
287. 4345	156, 67	-121.04	-89. 122	-0.98464	0.99465	3.1142	201.86
290	148. 41	-115.58	-81.892	-0.95959	0.94334	2.5783	207. 56
295	136.85	-106.98	-70.445	-0.92044	0.88615	2.0671	216. 24
300	128.40	-99. 772	-60.830	-0.88811	0.85258	1.8025	223. 25
305	121.69	-93. 344	-52. 258	-0.85977	0.83051	1.6378	229. 28
310	116. 13	-87. 423	-44. 367	-0.83411	0.81508	1.5246	234.66
315	111.37	 81. 856	-36.961	-0.81041	0.80388	1.4418	239.55
320	107. 22	-76.552	-29.917	-0.78822	0.79562	1.3786	244.08
325	103.53	-71.448	-23. 153	-0.76724	0.78951	1.3289	248. 32
330	100.22	-66. 502	-16.612	-0.74727	0.78505	1.2890	252.30
335	97. 221	-61.681	-10. 251	-0.72814	0.78185	1.2564	256.08
340	94. 478	-56. 961	-4.0388	-0.70973	0.77963	1. 2294	259.68
345	91.955	-52.325	2.0498	-0.69195	0.77820	1.2067	263. 13
350	89.619	-47.757	8.0342	-0.67473	0.77739	1.1875	266.45
360	85.418	-38.785	19.750	-0.64172	0.77727	1.1573	272.74
370	81.726	-29.974	31. 205	-0.61034	0.77863	1.1349	278.64
380	78. 440	-21. 276	42. 467	-0.58030	0.78109	1.1182	284. 23
390	75. 484	-12.655	53. 584	-0.55142	0.78436	1.1058	289. 55
400	72.804	-4.0846	64. 593	-0. 52355	0.78824	1.0965	294.63
410	70. 355	4. 4545	75. 523	-0.49656	0.79259	1.0898	299. 52
420	68. 104	12,978	86. 396	-0.47036	0.79729	1.0850	304. 24
430	66.024	21.498	97. 228	-0. 44487	0.80226	1.0818	308.79
440	64.094	30.024	108.03	-0.42003	0.80743	1.0798	313. 21
450	62. 295	38. 564	118, 83	-0.39578	0.81274	1.0788	317.50
460	60.613	47. 123	129.61	-0.37207	0.81817	1.0787	321.68
470	59.035	55. 707	140.40	-0.34886	0.82367	1.0792	325.75
480	57. 550	64.320	151. 20	-0. 32613	0.82921	1.0804	329.73
490	56. 150	72. 964	162.01	-0.30384	0.83478	1.0820	333. 62
500	54.826	81.644	172. 84	-0. 28196	0.84035	1.0840	337.43
525	51.807	103. 51	200.02	-0. 22893	0.85423	1.0903	346.63
550	49.140	125.62	227. 37	-0.17803	0.86790	1.0979	355.43
575	46.761	147. 99	254. 92	-0.12904	0.88126	1.1064	363.88
600	44.621	170.64	282.69	-0.08177	0.89425	1.1153	372.04
625	42.685	193. 55	310.69	-0.03605	0.90684	1.1245	379.93
650	40. 921	216. 73	338. 92	0.00823	0.91900	1.1338	387. 59
675	39. 307	240. 17	367. 38	0.05120	0.93073	1.1431	395. 04
700	37.823	263. 87	396.07	0.09293	0.94202	1.1523	402.30
800	32.904	361.11	513.07	0. 24911	0.98296	1.1871	429.72
900	29. 156	461.86	633. 35	0.39075	1.0176	1.2179	455.10
1000	26. 196	565.64	756. 51	0. 52048	1.0469	1.2446	478.91
1100	23. 793	671.99	882. 14	0.64021	1.0715	1.2674	501.43

1574年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	间质能量 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	公司 [kJ/(kg K)]	cp [kJ/(kg K)]	声速(m s)
			6.00 MPa	Isobar			
217. 758°	1185. 49	-427. 93	-422.87	-2. 2212	0.97967	1.9222	997. 26
220	1177.69	-423.65	-418.56	-2.2015	0.97632	1.9260	981. 74
225	1159.97	-414.07	-408.90	-2. 1581	0.96912	1. 9366	947. 17
230	1141.77	-404.44	-399. 19	-2.1154	0.96232	1. 9504	912. 57
235	1123.02	-394.73	-389.39	-2. 0733	0. 95593	1. 9678	877. 80
240	1103.65	-384.94	-379, 50	-2.0316	0. 95000	1. 9894	842. 74
245	1083.55	-375.03	-369. 49	-1. 9903	0. 94456	2. 0162	807. 22
250	1062.59	-364.98	-359.33	-1. 9493	0. 93968	2. 0491	771. 04
255	1040.62	-354.75	-348.99	-1. 9083	0. 93551	2. 0897	733. 92
260	1017. 43	-344. 31	-338. 42	-1.8673	0. 93233	2. 1402	695. 50
265	992.74	-333, 60	-327. 56	-1.8259	0. 93057	2. 2042	655. 38
270	966. 16	-322. 55	-316.34	-1. 7840	0. 93070	2. 2873	613. 08
275	937. 12	-311.04	-304. 64	-1. 7410	0. 93321	2. 3994	568. 01
280	904.68	-298. 90	-292. 27	-1.6965	0. 93889	2. 5594	519. 20
285	867. 13	-285. 81	-278. 89	-1. 6491	0. 94979	2. 8131	464. 94
290	820. 77	-271.08	-263.77	-1. 5965	0. 97135	3. 2947	401. 70
295	753. 39	-252. 51	-244. 55	-1. 5308	1. 0250	4. 7540	317. 23
295. 1285	751. 03	-251. 92	-243. 93	-1. 5288	1. 0277	4. 8386	314. 35
295. 1285	210. 88	-131. 91	-103. 46	-1. 0528	1. 1086		193. 67
300	182. 31	-117. 53	-84. 623	0. 08943	0.96413	5. 5056	207. 78
305	166, 26	-107. 73		-0. 94650		2. 9858	
310	154. 99	-99. 750	-71. 643 -61. 037	-0. 94650 -0. 91200	0. 90457	2. 3038	217. 07
315	146. 25	-92. 751	-51. 726		0.87020	1. 9705	224. 44
320	139. 11	-86. 373	-43. 243	-0. 88220 -0. 85548	0. 84761 0. 83170	1. 7687	230. 73
325	133. 08	-80. 425				1.6322	236. 30
330	127. 87	-74. 792	-35. 341 -27. 869	-0. 83098 -0. 80816	0.82010	1.5335	241. 37
335		-69. 398			0.81151	1. 4588	246. 04
	123. 27	-64 . 191	-20. 726	-0.78668	0.80512	1.4004	250. 39
340	119. 18	-59 . 133	-13. 846	-0.76629	0.80035	1. 3536	254. 48
345 350	115. 48 112. 12	-59. 133 -54. 197	-7. 1762	-0.74682	0.79684	1. 3154	258. 36
360		-44. 606	-0.68096	-0.72812	0. 79430	1. 2837	262. 05
370	106. 19 101. 10	-44. 606 -35. 295	11. 897	-0.69269	0. 79142	1. 2346	268. 98
380	96. 643	-35. 295 -26. 182	24. 054	-0.65937	0. 79070	1. 1988	275. 41
			35. 903	-0.62778	0.79152	1. 1722	281. 43
390	92.694	-17. 210	47. 519	-0. 59760	0. 79347	1. 1521	287. 12
400	89. 155	-8. 3384	58. 960	-0. 56863	0. 79627	1. 1368	292. 53
410	85. 954	0. 46261	70. 268	-0.54071	0. 79971	1. 1252	297. 71
420	83. 036	9. 2162	81.474	-0.51371	0.80365	1. 1164	302. 67
430	80. 360	17. 940	92.604	-0. 48752	0.80797	1. 1099	307. 45
440	77. 892	26.648	103.68	-0.46206	0.81258	1. 1051	312. 07
450	75. 605	35. 351	114.71	-0.43726	0.81742	1. 1018	316. 54
460	73. 477	44. 059	125. 72	-0.41307	0.82242	1.0996	320. 88
470	71, 488	52. 778	136.71	-0.38944	0.82755	1.0984	325. 1
480	69.625	61. 513	147.69	-0.36632	0.83277	1.0980	329. 21
490	67.874	70. 271	158.67	-0.34367	0.83805	1.0983	333. 2
500	66. 223	79.054	169.66	-0.32148	0.84337	1.0991	337. 15

表35年。二氧化碳的热力学性质-继续

			【化碳的热力学性质				
温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)	公司 [kJ/(kg K)	[kJ/(kg K)	声速 (m/s)
			6.00 MF	PaIsobar			
525	62.477	101.14	197. 18	-0. 26777	0.85672	1. 1030	346.60
550	59. 186	123.45	224.82	-0.21633	0.86998	1. 1087	355.60
575	56. 264	145. 98	252.62	-0.16690	0.88302	1. 1157	364. 23
600	53.645	168.76	280.61	-0.11925	0.89577	1. 1234	372. 5
625	51.282	191.80	308.80	-0.07323	0.90815	1. 1317	380. 5
650	49. 136	215.09	337.20	-0.02868	0.92015	1. 1402	388.3
675	47. 176	238.62	365.81	0.01451	0.93174	1. 1488	395. 86
700	45. 377	262.41	394.64	0.05645	0.94292	1. 1574	403. 20
800	39. 435	359. 91	512.06	0.21320	0.98356	1. 1906	430.87
900	34. 924	460.85	632.65	0.35520	1.0181	1. 2206	456. 3
1000	31. 368	564.76	756.04	0.48518	1.0472	1. 2466	480. 28
1100	28.480	671. 23	881.83	0.60507	1. 0718	1. 2691	502. 86
			700 MP	a Isoba			
217. 9695	1186, 73	-428.06	-422. 16	-2.2218	0.98048	1.9170	1001.1
220	1179.72	-424.19	-418. 26	-2. 2040	0.97743	1. 9202	987. 18
225	1162. 17	-414.66	-408. 64	-2. 1607	0.97018	1. 9298	952. 99
230	1144. 18	-405.07	-398.96	-2.1182	0.96334	1.9425	918.81
235	1125.67	-395.42	-389. 21	-2.0763	0.95691	1. 9585	884. 52
240	1106. 56	-385.69	-379.30	-2.0348	0.93092	1.9785	849.99
245	1086.78	-375.85	-369.41	-1.9938	0.94542	2.0030	815.07
250	1066.20	-365.89	-359. 33	-1.9530	0.94045	2.0330	779.62
255	1044.69	-355.77	-349.07	-1.9124	0.93613	2.0699	743. 39
260	1022.07	-345.46	-338.61	-1.8718	0.93267	2.1152	706.11
265	998.11	-334.91	-327. 90	-1.8310	0.93037	2. 1718	667. 47
270	972. 50	-324.07	-316 . 87	-1. 7898	0.92952	2. 2439	627.14
275	944.77	-312.83	-305.42	-1. 7478	0. 93042	2.3383	584.70
280	914. 25	-301.09	-293. 43	-1.7045	0. 93353	2.4674	539. 49
285	879.80	-288.61	-280.65	-1.6593	0.94003	2.6565	490. 42
290	839. 25	-275.01	-266.66	-1.6107	0. 95290	2.9683	435.61
295	787.63	-259. 35	-250.47	-1. 5553	0. 97893	3.5994	371. 18
300	706. 06	-238. 25	-228. 34	-1.4810	1.0529	5. 9775	281.10
301.833°	638. 31	-223. 87	-212.90	-1. 4297	1. 2173	14.685	211.72
301. 833	304. 03	-152.89	-129.87	-1. 1546	1. 3535	21.953	179.63
305	243.08	-131.34	-102 . 55	-1.0644	1.0602	5.0681	199.60
310	210.63	-116.70	-83. 469	-1.0024	0. 95569	3.0512	212. 29
315	191.97	-106.54	-70.071	-0. 95947	0. 90676	2.3936	221.05
320	178.74	-98. 192	-59. 029	-0. 92468	0,87690	2.0539	228. 16
325	168.48	-90.870	-49. 322	-0.89458	0.85650	1.8433	234. 30
330	160.11	-84. 207	-40. 487	-0. 86760	0. 84183	1.6992	239. 80
335	153. 05	-78.004	-32. 266	-0. 84287	0. 83102	1. 5942	244. 81
340	146. 95	-72 . 139	-24. 503	-0.81987	0. 82293	1. 5144	249. 45
345	141. 59	-66. 532	-17.094	-0. 79823	0.81682	1. 4517	253. 79
350	136.82	-61.129	-9. 9662	-0.77772	0.81220	1.4012	257.89

1576年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	内能 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK)	公司 [kJ/(kg K)]	[kJ/(kg K)]	声速(m s)
			700 MPa	Isobar			
360	128.61	-50.782	3.6440	-0.73937	0.80615	1. 3254	265. 4
370	121.75	-40.880	16.616	-0.70383	0.80311	1.2718	272. 4
380	115.86	-31.289	29. 127	-0.67046	0.80216	1.2325	278.8
390	110.73	-21.922	41. 298	-0.63885	0.80271	1.2030	284. 9
400	106. 18	-12.716	53. 210	-0.60869	0.80437	1.1805	290. 6
410	102.11	-3.6281	64.925	-0.57976	0.80688	1.1632	296. 1
420	98.436	5. 3748	76. 487	-0.55189	0.81003	1.1499	301.3
430	95.090	14. 318	87. 932	-0.52496	0.81369	1. 1396	306. 3
440	92.024	23. 220	99. 287	-0.49886	0.81773	1. 1317	311.
450	89. 200	32. 097	110. 57	-0.47350	0.82208	1. 1258	315. 7
460	86. 584	40. 960	121. 81	-0.44880	0. 82666	1. 1214	320. 2
470	84. 151	49. 820	133. 00	0. 42472	0. 83141	1. 1183	324. 6
480	81.880	58.684	144. 18	-0. 40120	0. 83631	1.1162	328.8
490	79. 752	67. 559	155. 33	-0. 37820	0. 84130	1. 1150	332.9
500	77. 753	76. 450	166. 48	-0. 35568	0. 84636	1. 1145	337. (
525	73. 239	98. 773	194. 35	-0.30129	0. 85919	1. 1158	346. 6
550	69. 294	121. 27	222. 29	-0. 24930	0. 87205	1. 1196	355. 8
575	65. 807	143. 97	250. 34	-0. 19942	0. 88478	1. 1250	364. 6
600	62. 694	166. 90	278. 55	-0. 15140	0. 89727	1. 1316	373.
625	59. 892	190.05	306. 93	-0. 10506	0. 90945	1. 1388	381. 2
650	57. 354	213. 45	335, 50	-0. 06025	0. 92129	1. 1465	389.
675	55. 041	237. 08	364. 26	-0. 01683	0. 93275	1. 1545	396. 7
700	52. 922	260. 95	393, 22	0. 02530	0. 94382	1. 1625	404.
800	45. 945	358.71	511. 07	0. 18262	0. 98415	1. 1942	432. (
900	40. 668	459. 84	631. 96	0. 32498	1. 0185	1. 2232	457.7
1000	36. 517	563. 89	755. 58	0. 45520	1. 0475	1. 2486	481.6
1100	33. 158	670, 46	881. 58	0. 57527	1. 0720	1. 2707	504. 3
1100	00.100	010.10	7.50 MPa		11.01.00	172101	
218. 074b	1105.01	100.10				1 0145	1002
	1187. 34	-428. 12	-421. 80	-2. 2221	0. 98087 0. 97797	1. 9145 1. 9173	1003. 989. 8
220	1180. 72 1163. 26	-424. 46	-418. 11	-2. 2052	0. 97797	1. 9265	955. 8
225		-414. 95	-408. 50	-2. 1621			
230	1145. 37	-405. 39	-398. 84	-2. 1196 -2. 0777	0. 96384	1. 9387	921. 9
235	1126. 97	-395. 76	-389. 11		0. 95738 0. 95138	1. 9541 1. 9732	887. 8
240	1107. 99	-386. 06	-379. 29	-2.0364			853. 9
245	1088. 36	-376. 26	-369. 37	-1. 9955	0. 94584	1. 9967	818. 9
250	1067. 96	-366. 34	-359. 32	-1.9549	0. 94083	2. 0254	783.8
255	1046.67	-356. 27	-349. 10	-1.9144 -1.8740	0. 93644 0. 93286	2. 0605 2. 1036	748. (711. 2
260	1024. 32	-346. 02	-338. 70				
265	1000.70	-335. 55	-328. 05 -217. 10	-1.8334	0. 93034	2. 1570	673. 2
270	975. 52	-324. 79	-317. 10 -205. 79	-1. 7925	0. 92912	2. 2243	633.7
275	948. 38	-313.68	-305. 78	-1.7510	0. 92943	2. 3115	592.
280	918. 68	-302. 10	-293. 94	-1.7083	0. 93163	2. 4284	548. 7
285	885.48	-289. 88	-281.41	-1.6640	0. 93668	2. 5947	501.6

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	[kJ/(kg K)]	[kJ/(kg K)]	声速(m /s)
			7.50 MPa	Isobar			
290	847.07	-276.69	-267.84	-1.6168	0. 94689	2.8557	449.9
295	799.88	-261.88	-252.50	-1.5643	0.96694	3.3335	390.8
300	733.90	-243.62	-233.40	-1.5001	1.0115	4.5507	317.3
305	389.85	-171.22	-151.98	-1.2323	1.5317	67. 567	168.5
310	253.36	-129.11	-99.510	-1.0611	1.0261	4.5173	204.6
315	222. 11	-115.30	-81.528	-1.0035	0.94620	2.9805	215.7
320	203. 04	-105. 22	-68. 283	-0.96181	0. 90445	2.3876	223.9
325	189. 27	-96. 845	-57.220	-0.92750	0.87759	2.0648	230.7
330	178. 52	-89. 456	-47. 442	-0.89764	0.85879	1.8598	236. 7
335	169.70	-82. 714	-38.518	-0.87080	0.84513	1.7176	242. 1
340	162. 24	-76. 430	-30. 204	-0.84616	0. 83499	1.6131	247.0
345	155.80	-70. 486	-22.346	-0.82322	0.82734	1.5331	251.6
350	150. 13	-64. 802	-14.845	-0.80163	0.82151	1.4699	255. 9
360	140. 52	-54.014	-0.64140	-0.76161	0.81370	1.3768	263.8
370	132. 60	-43. 777	12.785	-0.72482	0.80942	1.3121	271.0
380	125. 88	-33. 921	25.660	-0.69048	0.80754	1. 2652	277. 7
390	120.06	-24., 337	38. 129	-0.65809	0.80736	1.2302	283.9
400	114. 95	-14. 951	50. 293	-0.62729	0.80844	1.2036	289.8
410	110.40	-5. 7101	62. 222	-0.59783	0.81047	1. 1832	295. 4
420	106. 31	3, 4250	73. 971	-0. 36932	0.81323	1. 1673	300. 7
430	102.60	12. 483	85. 580	-0.54220	0. 81654	1. 1550	305.8
440	99. 215	21. 487	97.080	-0.51576	0.82030	1.1454	310.7
450	96. 102	30. 454	108.50	-0.49011	0.82440	1.1381	315.4
460	93, 227	39, 399	119.85	-0.46516	0.82877	1.1325	319.9
470	90. 558	48. 331	131.15	-0.44085	0.83334	1.1284	324.4
480	88.072	57. 262	142, 42	-0.41713	0.83807	1.1254	328.7
490	85.747	66. 197	153.66	-0.39394	0.84291	1.1235	332.9
500	83.566	75. 143	164.89	-0.37126	0.84785	1.1224	336.9
525	78.652	97. 585	192. 94	-0.31651	0.86041	1.1223	346.7
550	74. 369	120. 18	221.03	-0.26425	0.87307	1.1251	356.0
575	70. 592	142.97	249. 21	-0.21414	0.88565	1.1297	364.9
600	67. 225	165.96	277.53	-0. 16594	0.89802	1.1357	373.4
625	64.201	189. 18	306.00	-0.11944	0.91010	1.1424	381.6
650	61.464	212. 63	334.65	-0.07450	0. 92186	1.1497	389. 5
675	58. 972	236. 31	363.49	-0.03096	0. 93325	1. 1573	397. 2
700	56. 691	260. 22	392.52	0.01126	0. 94426	1.1651	404.6
800	49. 193	358. 12	510.58	0. 16887	0. 98445	1. 1959	432.6
900	43.532	459.34	631.63	0. 31141	1.0187	1.2245	458.3
1000	39. 083	563.46	755. 36	0. 44175	1.0477	1.2496	482. 3
1100	35. 485	670.08	881.44	0.56190	1.0722	1.2714	505.0
			8.00 MPa	Isobar		1, 5, 1	
218. 180 ⁵	1187. 95	-428. 17	-421. 44	-2. 2224	0. 98126	1 0120	1004.
220	1181. 72	-424. 73	-417. 96	-2. 2065	0. 97851	1. 9120 1. 9145	992. 5
225	1161.72	-424. 73 -415. 23	-417. 96 -408. 36	-2. 1634	0. 97122	1. 9233	958. 7
230		-415. 23 -405. 70	-408. 30 -398. 72	-2. 1210	0. 96433	1. 9349	924. 9
235	1146. 54 1128. 26	-396. 10	-389. 01	-2. 0792	0. 95786	1. 9497	891. 1

1578年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度 (kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	[kJ/(kg K)	发光强度 [kJ/(kg K)]	声速(m/s)
			8.00 MF	alsobar			
240	1109. 41	-386, 43	-379. 22	-2.0380	0.95182	1.9681	857. 09
245	1089. 93	-376. 66	-369. 32	-1.9972	0. 94626	1.9906	822.75
250	1069. 70	-366, 78	-359. 30	-1.9567	0.94120	2.0181	787. 97
255	1048, 62	-356, 76	-349. 13	-1.9164	0. 93676	2.0516	752, 55
260	1026, 53	-346, 57	-338. 77	-1.8762	0. 93307	2. 0925	716. 27
265	1003. 23	-336, 16	-328. 19	-1.8359	0. 93036	2. 1429	678, 91
270	978. 46	-325, 50	-317. 32	-1. 7952	0.92882	2. 2060	640. 22
275	951. 86	-314. 51	-306. 10	-1.7541	0. 92864	2. 2867	599. 89
280	922. 92	-303, 08	-294. 41	-1. 7119	0. 93010	2. 3931	557. 45
285	890. 82	-291. 08	-282. 10	-1.6684	0. 93400	2. 5408	512. 17
290	854. 20	-278, 25	-268. 88	-1.6224	0. 94218	2. 7633	462. 96
295	810. 40	-264 . 09	-254. 22	-1.5722	0. 95803	3. 1417	408. 04
300	753. 17	-247. 44	-236, 82	-1.5138	0. 98934	3. 9320	343.66
305	656. 77	-223.65	-211. 47	-1.4301	1. 0822	7. 3125	255. 09
310	327. 71	-149. 25	-124. 84	-1. 1485	1.1499	95864	194. 28
	261. 29	-149. 25 -126. 27	-95 . 650	-1. 0550	0. 99624	4. 0300	210. 19
315 320	231. 91	-113. 35	-78. 854	-1.0021	0. 93636	2. 8750	210. 19
320 325		-103. 49	-65. 909	-0.96190	0. 90103	2. 3574	227. 35
330	212. 90	-103. 49 -95. 152	-54. 926	-0. 92836	0. 87714	2. 0594	233. 83
	198. 87		-45. 140	-0. 92836 -0. 89894	0.86009		
335 340	187. 79 178. 65	-87. 747 -80. 965	-36. 184	-0. 87239	0. 84758	1. 8648 1. 7274	239. 37 244. 79
345		-74. 629	-27. 814	-0. 84795	0. 83820		249. 61
350	170. 89 164. 16	-68. 627	-19. 893	-0. 82515	0. 83106	1. 6253 1. 5463	254. 10
360	152. 93	-57. 348	-5. 0372	-0. 78329	0. 82137	1. 4326	262. 32
370	143. 82	-46. 747	8. 8792	-0. 74516	0. 81579	1. 3552	269. 78
		-36, 607	22. 140	-0. 70979	0.81295	1. 2998	276. 65
380 390	136. 18 129. 63	-26. 793	22. 140 34. 923	-0. 67659	0. 81202	1. 2588	283. 05
		-26. 793 -17. 218	47. 348	-0. 64513	0. 81251	1. 2277	289. 07
400	123. 90		59. 501	-0.61512	0.81406	1. 2038	
410 420	118. 84	-7. 8163	71. 442	-0. 58634	0.81641	1. 1852	294. 76 300. 19
	114. 31	1. 4561	83. 219	-0. 55863	0. 81939	1. 1708	305. 37
430	110. 21	10. 634		-0. 53185	0. 82286	1. 1708	305. 37 310. 36
440 450	106. 49 103. 07	19. 742 28. 802	94. 868 106. 42	-0. 50589	0. 82671	1. 1506	315. 15
		28. 802 37. 829	117. 89	-0. 48068	0. 83087	1. 1438	319. 79
460	99. 928			-0. 45614	0. 83525	1. 1386	
470 480	97. 016	46. 837	129. 30 140. 66	-0. 43221	0. 83982	1. 1348	324. 28 328. 64
	94. 307	55. 834		-0. 40884			332. 88
490	91. 778	64. 831	152. 00	-0. 38599	0. 84452 0. 84933	1. 1321 1. 1302	337, 00
500	89.410	73. 833	163. 31	-0. 33090	0. 86163		346. 90
525 EEO	84. 085	96. 397	191. 54		0. 87409	1. 1288	356. 28
550 575	79. 458	119.09	219. 78	-0. 27835 -0. 22802	0. 88651	1. 1306 1. 1345	365 . 22
575	75. 385	141. 96	248. 08		0.89876	1. 1343	373. 78
600	71. 762	165. 03	276. 51	-0. 17963 -0. 13298	0. 89876 0. 91075	1. 1460	382. 03
625	68. 511	188. 31	305. 08	-0. 13298 -0. 08790	0. 92242	1. 1529	389. 98
							397. 69
650 6/5	65. 573 62. 901	211. 81 235. 54	333. 82 362. 73	-0. 04425	0. 93375	1. 1601	

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	Intermal energ) (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	厘巴 [kJ/(kg K)]	发光强 度 [kJ/(kg K)]	声速 (m/s)
			8.00 MI	PaIsobar			
700 800 900 1000 1100	60. 457 52. 435 46. 389 41. 644 37. 807	259. 50 357. 53 458. 84 563. 03 669. 71	391. 82 510. 10 631. 29 755. 14 881. 31	-0. 00193 0. 15596 0. 29867 0. 42913 0. 54937	0. 94470 0. 98474 1. 0189 1. 0478 1. 0723	1. 1676 1. 1977 1. 2257 1. 2506 1. 2722	405. 18 433. 26 459. 03 483. 08 505. 75
			10.00 MF	Pa Isobar			
218. 600 220 225 230 235 240 245 250 255 260 265 270 275 280 295 300 305 310 315 310 315 320 325 330 335 340	1190. 34 1185. 63 1168. 59 1151. 15 1133. 28 1114. 92 1095. 99 1076. 42 1056. 11 1034. 95 1012. 80 989. 46 964. 71 938. 22 909. 56 878. 06 842. 67 801. 62 751. 67 685. 77 586. 02 448. 28 358. 04 310. 25 280. 11 258. 62 242. 11	-428. 40 -425. 77 -416. 36 -406. 91 -397. 41 -387. 85 -378. 22 -368. 49 -358. 64 -348. 66 -338. 51 -328. 16 -317. 56 -306. 65 -295. 36 -283. 55 -271. 03 -257. 46 -242. 25 -224. 06 -199. 41 -166. 19 -140. 73 -124. 28 -112. 06 -192. 06 -93. 404 -85. 626	10. 00 Mi -420. 00 -417. 34 -407. 80 -398. 22 -388. 59 -378. 88 -369. 09 -359. 20 -349. 18 -339. 00 -328. 64 -318. 06 -307. 20 -296. 00 -284. 36 -272. 16 -259. 16 -244. 98 -228. 94 -209. 48 -182. 35 -143. 88 -112. 80 -92. 049 -76. 359 -63. 396 -52. 100 -41. 921	Pa Isobar -2. 2235 -2. 2113 -2. 1685 -2. 1264 -2. 0849 -2. 0441 -2. 0037 -1. 9637 -1. 9240 -1. 8845 -1. 8450 -1. 8055 -1. 7656 -1. 7253 -1. 6841 -1. 6416 -1. 5972 -1. 5496 -1. 4333 -1. 3465 -1. 2253 -1. 1289 -1. 0655 -1. 0183 -0. 97991 -0. 94692 -0. 91762	0. 98274 0. 98061 0. 97323 0. 96625 0. 95969 0. 95356 0. 94788 0. 94269 0. 93803 0. 93400 0. 93072 0. 92828 0. 92676 0. 92632 0. 92734 0. 93072 0. 93777 0. 94964 0. 96817 0. 99962 1. 0487 1. 0577 1. 0095 0. 96291 0. 92780 0. 90255 0. 88431 0. 87083	1. 9023 1. 9039 1. 9111 1. 9208 1. 9333 1. 9488 1. 9679 1. 9910 2. 0189 2. 0524 2. 0930 2. 1425 2. 2034 2. 2798 2. 3782 2. 5108 2. 7009 2. 9906 3. 4711 4. 4460 6. 6962 7. 6175 4. 9438 3. 5312 2. 8165 2. 4017 2. 1341 1. 9480	1012. 5 1003. 1 970. 04 937. 0; 904. 0 870. 9 837. 63 804. 05 770. 0; 735. 50 700. 2; 664. 1; 627. 0 588. 6; 548. 68 506. 63 461. 99 414. 28 363. 01 307. 04 249. 42 219. 14 219. 84 225. 91 232. 23 238. 14 243. 58 248. 62
350 360 370 380 390	228. 80 208. 25 192. 74 180. 38 170. 18	-83, 626 -71, 776 -59, 374 -47, 885 -37, 015	-41. 921 -23. 756 -7. 4896 7. 5523 21. 746	-0. 91762 -0. 86644 -0. 82186 -0. 78174 -0. 74486	0. 85262 0. 84146 . 0. 83458 0. 83060	1. 7065 1. 5574 1. 4570	248. 62 257. 77 265. 97 273, 47 280. 40
400 410 420 430	170. 18 161. 53 154. 05 147. 48 141. 63	-37.015 -26.584 -16.473 -6.5998 3.0936	21. 746 35. 325 48. 443 61. 208 73. 698	-0. 71048 -0. 67809 -0. 64733 -0. 61794	0. 83060 0. 82867 0. 82827 0. 82901 0. 83064	1. 3856 1. 3327 1. 2927 1. 2616 1. 2373	280. 40 286. 88 292. 99 298. 77 304. 28
440 450 460 470	136. 39 131. 63 127. 30 123. 32	12. 651 22. 106 31. 483 40. 803	85. 972 98. 073 110. 04 121. 89	-0. 58972 -0. 56252 -0. 53623 -0. 51073	0. 83297 0. 83584 0. 83915 0. 84280	1. 2181 1. 2028 1. 1906 1. 1809	309. 55 314. 60 319. 48 324. 18

1580年和瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	间质能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	古巴 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	音速(m/s)
			10.00 M	Pa Isobar			
480	119.65	50.083	133.66	-0.48595	0.84672	1. 1732	328. 74
490	116, 24	59. 335	145, 36	-0.46183	0.85085	1. 1671	333.16
500	113. 07	68. 569	157.01	-0.43830	0.85516	1. 1624	337. 45
525	106.01	91.633	185, 97	-0.38178	0.86644	1. 1552	347. 71
550	99.930	114.74	214.81	-0.32811	0.87812	1. 1527	357. 39
575	94.626	137. 95	243.63	-0.27686	0.88993	1. 1533	366. 58
600	89. 941	161. 31	272.49	-0. 22773	0.90169	1.1561	375. 37
625	85. 761	184. 84	301.45	-0. 18045	0. 91329	1. 1603	383. 79
650	81. 999	208. 57	330. 52	-0.13485	0, 92464	1. 1655	391.91
675	78. 592	232. 49	359. 73	-0.09075	0. 93571	1. 1714	399. 76
700	75. 486	256. 61	389. 09	-0.04804	0. 94645	1. 1777	407.36
800	63, 349	355. 17	508. 20	0.11097	0. 98591	1. 2046	435.79
900	57. 759	456. 85	629.99	0. 25438	1. 0198	1. 2308	461.77
1000	51.825	561. 32	754. 28	0.38532	1.0485	1. 2545	485.94
1100	47.040	668. 21	880.79	0.50588	1.0728	1. 2753	508.69
			15.00 M	IPa Isobar			
219. 644	1196, 11	-428. 91	-416, 37	-2. 2260	0. 98604	1. 8799	1030, 9
220	1194. 96	-428. 25	-415. 70	-2. 2230	0. 98548	1. 8801	1028.7
225	1178. 64	-419. 02	-406. 29	-2. 1807	0. 97789	1. 8841	997. 14
230	1162. 02	-409. 76	-396, 86	-2. 1392	0. 97070	1. 8900	965. 81
235	1145. 06	-400. 49	-387. 39	-2. 0985	0. 96394	1. 8980	934. 61
240	1127. 73	-391. 17	-377. 87	-2. 0584	0. 95760	1. 9081	903. 50
245	1109. 98	-381. 82	-368. 30	-2. 0190	0. 95169	1. 9206	872. 40
250	1091. 77	-372, 40	-358, 66	-1. 9800	0. 94623	1. 9358	841. 27
255	1073. 03	-362. 92	-348. 94	-1. 9415	0. 94121	1. 9539	810. 04
260	1053. 71	-353, 35	-339. 12	-1.9034	0. 93667	1. 9752	778. 68
265	1033. 73	-343. 69	-329. 18	-1. 8655	0. 93264	2. 0002	747. 13
270	1013. 01	-333, 92	-319. 11	-1.8279	0. 92914	2. 0294	715. 36
275	991. 45	-324. 01	-308. 88	-1. 7903	0. 92619	2. 0635	683. 32
280	968. 93	-313. 95	-298. 47	-1.7528	0. 92381	2. 1034	650, 96
285	945. 30	-303. 70	-287. 83	-1. 7152	0. 92211	2. 1501	618. 23
290	920. 40	-293. 25	-276. 95	-1. 6773	0. 92132	2. 2055	585. 07
295	894.00	-282. 54	-265. 76	-1.6390	0. 92183	2. 2727	551. 45
300	865. 82	-271. 52	-254. 20	-1. 6002	0.92380	2. 3557	517.40
305	835. 48	-260. 12	-242. 17	-1.5604	0. 92683	2. 4583	483.07
310	802. 54	-248. 27	-229. 58	-1. 5195	0. 93036	2. 5830	448. 77
315	766. 51	-235. 86	-216. 30	-1.4770	0. 93449	2. 7343	414. 97
320	726. 83	-222.81	-202. 18	-1.4325	0. 93978	2. 9188	382. 22
325	683. 09	-209.02	-187. 06	-1. 3857	0. 94662	3. 1280	351.34
330	635. 51	-194. 51	-170. 91	-1. 3363	0. 95475	3. 3309	323. 89
335	585. 40	-179. 47	-153. 85	-1. 2850	0.96004	3, 4748	301.72
340	535. 55	-164, 42	-136. 41	-1. 2333	0. 95711	3. 4738	286. 11
345	489. 42	-150. 03	-119. 38	-1. 1836	0. 94688	3. 3164	276. 63
350	449. 20	-136. 79	-103. 39	-1. 1376	0. 93439	3. 0688	271. 76
	387. 08	-114.04	-75. 292	-1. 0584	0. 91214	2. 5672	270. 06
360							

表35年。二氧化碳的热力学性质

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	[kJ/(kg K)]	[kJ/(kgK)]	声速(m/)
			15.00 MI	Pa Isobar			
380	311.48	-79. 159	-31.001	-0.93853	0.88143	1.9402	278. 46
390	286.97	-64.804	-12 . 533	-0.89055	0.87178	1.7638	284. 22
400	267.42	-51.652	4. 4400	0.84757	0.86502	1.6376	290. 12
410	251.33	-39.353	20. 329	-0.80833	0.86053	1.5445	295.97
420	237.78	-27. 678	35. 405	-0.77200	0.85782	1.4739	301.68
430	226.14	-16.471	49.860	-0.73798	0.85650	1.4192	307.22
440	215. 98	-5. 6217	63. 828	-0.70587	0.85630	1. 3761	312. 59
450	207.01	4. 9509	77. 410	-0.67534	0.85698	1. 3416	317. 79
460	199.00	15. 307	90. 682	-0.64617	0.85839	1. 3138	322.83
470	191.79	25. 492	103.70	-0.61817	0.86037	1. 2911	327.70
480	185. 24	35. 541	116.52	-0.59119	0.86283	1. 2725	332.43
490	179. 26	45. 484	129.16	-0.56511	0.86568	1. 2572	337. 03
500	173. 76	55. 342	141.67	-0. 53985	0.86884	1. 2445	341. 50
525	161.74	79. 733	172. 48	-0.47972	0.87776	1. 2218	352. 18
550	151.63	103.91	202.83	-0. 42323	0.88763	1. 2080	362. 24
575	142.97	128.01	232. 93	-0.36972	0.89803	1. 2002	371.77
600	135. 43	152. 12	262.88	-0.31873	0. 90867	1. 1963	380.86
625	128.78	176.29	292.77	-0. 26992	0. 91936	1. 1953	389.55
650	122.86	200. 57	322.66	-0. 22303	0. 92998	1. 1963	397. 91
675	117.54	224. 98	352. 59	-0. 17784	0. 94044	1. 1987	405. 96
700	112.72	249. 53	382.60	-0.13418	0.95067	1. 2022	413. 74
800	97. 199	349.41	503.73	0. 02753	0. 98876	1. 2213	442.71
900	85. 740	452.00	626.95	0. 17264	1.0218	1. 2430	469.01
1000	76.856	557.14	752. 31	0. 30470	1.0501	1. 2639	493. 37
1100	69. 730	664. 55	879. 66	0. 42606	1. 0741	1. 2828	516. 21
			20.00 MI	Pa Isobar			
220.677	1201.58	-429. 34	412.70	2. 2283	0. 98884	1.8600	1048.9
225	1188.00	-421.49	-404.66	-2.1922	0. 98212	1.8614	1022.8
230	1172.07	-412. 41	-395. 34	-2. 1513	0. 97475	1.8644	992.92
235	1155.89	-403. 31	-386. 01	-2. 1111	0.96780	1.8690	963. 24
240	1139.41	-394. 20	-376. 65	-2.0717	0.96128	1.8753	933.74
245	1122.62	-385. 07	-367. 25	-2.0330	0. 95519	1.8833	904. 38
250	1105. 47	-375. 91	-357. 81	-1. 9948	0. 94951	1.8932	875. 14
255	1087.95	-366. 70	-348. 32	-1.9572	0. 94426	1.9050	845. 98
260	1070.01	-357. 45	-338. 76	-1. 9201	0. 93944	1.9188	816.88
265	1051.60	-348. 15	-329. 13	-1.8834	0. 93504	1.9349	787.84
270	1032.69	-338. 77	-319. 41	-1.8471	0. 93107	1. 9533	758.85
275	1013. 23	-329. 33	-309. 59	-1.8110	0. 92753	1.9742	729.90
280	993. 16	-319. 80	-299. 66	-1.7753	0. 92441	1.9979	701.00
285	972. 43	-310. 17	-289. 61	-1.7397	0. 92176	2. 0245	672.16
290	950. 97	-300. 44	-279. 41	-1.7042	091964	2. 0543	643.38
295	928. 71	-290. 59	-269.06	-1.6688	0. 91824	2.0881	614.69
300	905. 57	-280. 61	-258. 52	-1.6334	0. 91763	2. 1267	586. 17
305	881.46	-270. 47	-247. 78	-1. 5979	0. 91763	2. 1709	537. 91
310	856. 27	-260. 16	-236. 80	-1. 5622	0. 91780	2. 2204	530.04
315	829.92	-249.67	-225. 57	-1.5262	0. 91794	2. 2743	502.71

1582 R斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质。继续

温度(K)	密度(kg/m³	Intecmal energ) (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	[kJ/(kg K)	发光强 度 [kJ/(kgK)]	声速(i /s)
			20.00 MP	a 1sobar			
320	802.33	-238, 98	-214.05	-1.4900	0. 91835	2. 3324	476.
325	773.46	-228. 09	-202.24	-1.4533	0.91938	2. 3952	450.
330	743.30	-217.00	-190.10	-1.4163	0.92095	2.4010	420.
335	711.96	-205. 72	-177.63	-1.3788	0. 92254	2. 5246	404.
340	679.68	-194. 29	-164.87	-1.3410	0.92342	2. 5778	384. (
345	646.90	-182.80	-151.88	-1.3030	0.92298	2.6122	366.
350	614. 18	-171.35	-138. 79	-1.2654	0.92115	2.6207	351.
360	551.54	-149.10	-112.84	-1.1923	0.91549	2. 5511	329.
370	496.14	-128. 36	-88. 048	-1.1243	0.90910	2. 3976	316.
380	449.68	-109.47	-64. 990	-1.0628	0.90195	2. 2129	311.
390	411.63	-92. 347	-43.760	-1.0077	0.89472	2.0369	309.
400	380.50	-76. 728	-24. 165	-0.95804	0.88827	1.8868	310.
410	354.772	-62.306	-5.9310	-0.91301	0.88304	1.7645	313.
420	333. 19	-48.819	11.205	-0.87171	0.87912	1.6664	316.
430	314.83	-36.064	27. 462	-0.83346	0.87643	1. 5878	320.
440	298.99	-23.881	43.011	-0.79771	0.87484	1. 5244	324.
450	285. 14	-12.151	57. 989	-0.76405	0.87419	1. 4729	328.
460	272.92	-0.78247	72.500	-0.73215	0.87434	1. 4307	333.
470	262.02	10. 296	86. 627	-0. 70177	0.87517	1. 3959	337.
480	252. 21	21.140	100.44	-0. 67269	0.87657	1. 3671	341.
490	243. 34	31.794	113.98	-0.64476	0.87845	1. 3430	346.
500	235. 24	42. 292	127. 31	-0.61783	0.88074	1. 3228	350.
525	217. 77	68. 036	159. 88	-0. 55427	0.88779	1. 2852	360.
550	203.30	93. 302	191.68	-0.49509	0.89618	1. 2606	370.
575	191.06	118. 30	222. 98	-0. 43943	0.90540	1. 2446	379.
600	180. 50	143. 15	253. 95	-0.38670	0.91508	1. 2344	388.
625	171.28	167. 96	284. 73	-0. 33644	0. 92499	1. 2284	397.
650	163. 12	192. 79	315. 40	-0. 28833	0. 93496	1. 2254	405.
675	155.83	217. 68	346. 02	-0. 24210	0. 94487	1. 2246	413.
700	149. 27	242.66	376.64	-0. 19756	0.95465	1. 2253	421.
800	128. 34	343. 83	499.67	-0.03329	0.99149	1. 2370	450.
900	113.04	447. 31	624. 23	0.11340	1. 0238	1. 2545	476.
1000	101. 27	553. 10	750. 60	0. 24652	1.0516	1. 2727	501.
1100	91. 857	661, 01	878. 74	0. 36864	1. 0754	1. 2898	523.
			25.00 MPa	a Isobar			
221.701	1206. 79	-429. 71	-409,00	-2.2303	0.99124	1.8421	1006
225	1196. 78	-423. 81	-402.92	-2.2031	0.98601	1. 8419	1047
230	1181.45	-414.87	-393.71	-2.1626	0.97846	1.8427	1018
235	1165. 92	-405. 93	-384.49	-2.1230	0.97135	1.8448	990.
240	1150. 17	-396, 00	-375. 26	-2.0841	0.96468	1.8482	962.
245	1134. 16	-388.05	-366.00	-2.0460	0.95843	1.8530	934.
250	1117.90	-379.09	~356 . 73	-2.0085	0.95259	1.8591	906.
255	1101.35	-370. 11	-347.41	-1.9716	0.94717	1.8666	878.
260	1084.49	-361.11	-338.06	-1.9352	0.94215	1.8755	851.
265	1067.29	-352.08	-328.65	-1.8994	0.93752	1.8859	824.

二氧化碳1583

表35年。二氧化碳的热力学性质-续续

温度(K)	密度(kg/m³)	冰层能量 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	$[kJ/(kg \ K)]$	发光强 度 [kJ/(kg K)]	音速(i /s)
			25.00 MPa	Isobar			
270	1049.74	-343.01	319.20	-1.8641	0.93329	1. 8978	797. 30
275	1031.,80	-333.90	-309.67	-1.8291	0. 92943	1.9111	770. 50
280	1013.45	-324.75	-300.08	-1.7946	0. 92595	1.9259	743. 98
285	994.67	-315.55	-290.41	-1.7603	0. 92283	1.9422	717. 6
290	975. 42	-306. 29	-280.66	-1.7264	0.92013	1.9600	691. 5
295	955. 68	-296.97	-270.81	-1.6927	0.91792	1.9794	665. 7
300	935. 42	-287. 59	-260.86	-1.6593	0.91623	2.0008	640.3
305	914.62	-278. 13	-250.80	-1.6260	0.91497	2.0242	615.3
310	893. 25	-268.60	-240.61	-1.5929	0.91387	2.0495	590. 9
315	871.29	-258.99	-230. 30	-1.5599	0.91273	2.0760	567.0
320	848.72	-249. 31	-219.85	-1.5270	0.91162	2. 1032	543.8
325	825. 55	-239.55	-209.27	-1.4942	0.91081	2.1309	521.3
330	801.80	-229.72	-198.54	-1.4614	0.91044	2. 1592	499.7
335	777.50	-219.83	-187.68	-1.4287	0.91042	2. 1876	479. 2
340	752. 73	-209.88	-176.67	-1.3961	0.91046	2. 2143	460.0
345	727. 58	-199.90	-165.54	-1.3636	0.91032	2. 2369	442. 2
350	702. 22	-189.91	-154. 31	-1.3313	0.90989	2, 2525	425. 9
360	651.72	-170. 10	-131.74	-1.2677	0.90829	2. 2554	398. 4
370	603.10	-150.79	109.34	-1.2064	0.90620	2. 2187	377. 4
380	557. 99	-132.28	-87.474	-1.1480	0.90373	2. 1495	362. 5
390	517. 36	-114.74	-66.415	-1.0933	0.90075	2.0598	352.8
400	481.55	-98. 223	-46. 307	-1.0424	0.89744	1.9613	347. 1
410	450.35	-82.696	-27. 183	-0.99520	0.89418	1.8644	344. 4
420	423. 27	-68.058	-8.0932	-0.05136	0.89131	1.7753	343.6
430	399.72	-54. 187	8.3578	-0.91053	0.88902	1.6967	344. 3
440	379.13	-40.963	24.978	-0.87232	0.88742	1.6290	345.9
450	361.01	-28. 279	40.971	-0.83637	0.88650	1, 5713	348. 1
460	344. 95	-16.042	56. 432	-0.80239	0.88624	1.5222	350. 9
470	330.61	-4. 1769	71.440	-0.77011	0.88657	1.4806	353. 9
480	317.72	7. 3809	86.066	-0.73932	0.88744	1.4453	357. 1
490	306.07	18.683	100.36	-0.70983	0.88878	1.4153	360. 5
500	295. 46	29.772	114. 39	-0.68150	0.89052	1. 3897	363. 9
525	272.64	56. 782	148. 48	-0.61496	0.89633	1.3407	372.7
550	253.87	83.077	181.55	-0.55341	0.90365	1.3073	381.5
575	238.08	108.92	213.93	-0.49583	0.91195	1. 2845	390. 2
600	224. 54	134.50	245.84	-0.44152	0.92086	1. 2689	398. 7
023	212.77	159. 92	277. 42	-0.38994	0.93012	1.2586	407.0
650	202.40	185. 28	308.80	-0.34072	0.93954	1. 2520	415.0
675	193. 18	210.63	340.05	-0.29354	0.94899	1. 2483	422.9
700	184.90	236.02	371. 23	-0.24818	0.95838	1. 2465	430.5
800	158.65	338.44	496.02	-0.08156	0.99409	1.2516	459.0
900	139.62	442.77	621.83	0.06661	1.0258	1.2653	485.1
1000	125.04	549. 19	749. 14	0.20073	1.0532	1.2810	509.3
1100	113.42	657. 58	878.01	0. 32355	1.0766	1, 2964	531. 9

1584年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质。继续

温度(K)	密度(kg/m)	Intemal cnergy (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	古巴 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m s)
			30.00	MPa Isobar			
222.715	1211.77	-430.02	-405. 26	-2. 2321	0. 99332	1.8259	1083.4
225	1205.06	-425.99	-401.09	-2. 2135	0.98964	1.8251	1070.6
230	1190. 25	-417. 17	-391.97	-2. 1734	0. 98193	1.8241	1043.0
235	1175. 29	-408. 37	-382.85	-2. 1342	0. 97467	1.8242	1015.8
240	1160. 15	-399. 58	-373.72	-2.0958	0.96786	1.8254	988. 70
245	1144.83	-390. 80	-364. 59	-2. 0581	0.96147	1.8277	962.0
250	1129.30	-382. 01	-355.45	-2.0211	0.95550	1. 8311	935. 5
255	1113. 55	-373. 22	-346. 28	-1.9848	0. 94994	1.8355	909.3
260	1097.57	-364. 42	-337. 09	-1.9491	0. 94478	1.8410	883. 4
265	1081.34	-355. 61	-327.87	-1.9140	0.94000	1.8475	857. 7
270	1064.86	-346. 78	-318.61	-1.8794	0. 93559	1.8550	832. 2
275	1048.09	-337. 94	-309. 32	-1.8453	0. 93153	1. 8G35	807. 0
280	1031.04	-329. 07	-299. 97	-1.8116	0. 92783	1.8729	782. 2
285	1013.68	-320. 18	-290. 58	-1.7784	0. 92446	1.8831	757. 6
290	996.01	-311. 26	-281. 14	-1. 7456	0. 92145	1. 8942	733. 4
295	978.02	-302. 32	-271.64	-1.7131	0. 91882	1. 9060	709. 6
300	959.70	-293. 34	-262.08	-1.6809	0. 91659	1. 9186	686 . 2
305	941.04	-284. 33	-252. 45	-1.6491	0. 91471	1. 9322	663. 3
310	922. 04	-275. 29	-242. 76	-1.6176	0. 91301	1. 9464	640. 9
315	902.69	-266. 22	-232.99	-1. 5863	0. 91135	1. 9610	619. 2
320	883.00	-257. 12	-223. 15	-1. 5553	0. 90973	1. 9756	598. 0
325	862. 99	-248. 00	-213. 23	-1.5246	0. 90830	1. 9899	577. 56
330	842.66	-238. 85	-203. 25	-1. 4941 -1. 4639	0. 90721 0. 90648	2. 0041	557. 78
335	822. 06	-229. 69	-193. 19	-1. 4339		2. 0179	538. 80
340	801. 21	-220. 51	-183. 07		0. 90599	2. 0312	520. 7
345	780. 17	-211. 34	-172 . 88	-1.4041	0. 90560	2. 0432	503. 63
350	758. 98	-202. 17	-162. 64	-1. 3746	0. 90520	2. 0529	487. 58
360 370	716. 55	-183. 92 -165. 93	-142. 05 -121. 47	-1. 3166 -1. 2602	0. 90427	2. 0618 2. 0517	458. 95 435. 21
380	674. 75 634. 51	-148. 37	-101. 09	-1. 2059	0. 90323 0. 90215	2. 0224	416. 28
390	596. 59	-146. 37 -131. 36	-81. 073	-1. 1539	0. 90099	1. 9781	401. 7
400	561. 50	-114. 99	-61. 559	-1. 1045	0. 89970	1. 9233	390. 9
410	501. 50 529. 46	-114. 99 -99. 289	-61. 559 -42. 627	-1.0577	0. 89833	1. 9233 1. 8625	383. 4
420	529. 40	-99. 289 -84. 257	-42. 627 -24. 317	-1. 0136	0. 89698	1. 7995	378. 49
430	474. 48	-69, 860	-24. 317 -6. 6324	-0. 97200	0. 89581	1. 7378	375, 55
440	451. 16	-56. 044	10. 452	-0. 93272	0. 89494	1. 6799	374. 14
450	430. 25	-56. 044 -42. 746	26, 982	0. 93272	0. 69446	1. 6270	373. 8
460	411. 46	-42. 740 -29. 901	43. 010	-0.86034	0. 89440	1. 5796	374. 49
470	394. 52	-17. 449	58. 593	-0. 82682	0. 89476	1. 5378	375. 7
480	379. 18	-5. 3349	73. 783	-0. 79484	0. 89554	1. 5011	377. 4
490	365. 24	6. 4911	88. 629	-0. 76423	0.89671	1. 4689	379. 56
500	352. 51	18. 071	103. 18	-0. 73484	0. 89824	1. 4409	381. 9
525	325. 03	46. 167	138. 47	-0. 66595	0. 90339	1. 3857	388. 60
550	302. 37	73. 376	172. 59	-0. 60245	0. 91002	1. 3465	395. 90
575	283. 31	99, 995	205. 89	-0, 54324	0.91767	1. 3187	403. 46

表35年。二氧化碳的热力学性质-继续

温度(K)	光度(kg/m)	冰原能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	C. [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/s)
			30.00 M	Pa Isobar			
600	266. 99	126. 23	238. 59	-0.48756	0.92601	1.2990	411.10
625	252.82	152. 22	270.88	-0.43483	0.93476	1. 2852	418.70
650	240, 36	178.08	302.89	-0.38462	0.94374	1.2757	426. 21
675	229.30	203.86	334.70	-0.33660	0.95281	1.2695	433.60
700	219.39	229.64	366.38	-0.29051	0.96185	1.2657	440.86
800	188.05	333. 24	492.77	-0.12174	0.99658	1.2650	468. 48
900	165. 44	438.40	619.73	0.02779	1.0277	1.2752	494.02
1000	148. 15	545. 42	747.91	0.16283	1.0547	1.2887	517.84
1100	134.40	654. 27	877.48	0. 28631	1.0778	1.3026	540. 25
			40.00 M	Pa Isobar			
224. 715	1221. 12	-430. 49	-397. 73	-2. 2352	0. 99675	1.7975	1116.0
225	1220.33	-429.99	-397. 22	-2.2329	0.99628	1.7973	1114.5
230	1206.41	-421.40	-388, 24	-2.1935	0. 98829	1.7937	1088.7
235	1192.39	-412 . 82	-379.28	-2.1549	0.98078	1.7910	1063.3
240	1178. 27	-404. 28	-370.33	-2.1172	0.97373	1.7892	1038.2
245	1164.03	-395.75	-361.39	-2.0804	0.96713	1.7881	1013.4
250	1149.68	-387. 24	-352, 45	-2.0442	0.96096	1.7877	988.91
255	1135. 19	-378. 74	-343.51	-2.0088	0.95520	1.7881	964.76
260	1120.58	-370. 26	-334.56	-1.9741	0.94983	1.7892	040.93
265	1105.83	-361.79	-325. 61	-1.9400	0.94484	1.7908	917.41
270	1090.93	-353. 32	-316.65	-1.9065	0.94022	1.7931	894. 22
275	1075.88	-344.86	-307.68	-1.8736	0.93594	1.7959	871.38
280	1060.68	-336.41	-298.69	-1.8412	0.93198	1.7991	848, 90
285	1045.33	-327.96	-289.69	-1.8093	0.92835	1.8027	826.79
290	1029.82	-319.51	-280.67	-1.7779	0.92502	1.8066	805.09
295	1014. 16	-311.07	-271.62	-1.7470	0.92201	1.8108	783. 81
300	998, 35	-302, 62	-262, 56	-1.7166	0.91930	1.8152	762.99
305	982.39	-294. 19	-253.47	-1.6865	0.91688	1.8198	742.65
310	966. 29	-285. 76	-244. 36	-1.6569	0.91467	1.8245	722.85
315	950.05	-277. 33	-235. 23	-1.6277	0.91261	1.8291	703, 59
320	933.68	-268, 91	-226.07	-1.5988	0.91069	1.8334	684, 89
325	917. 21	-260. 50	-216, 89	-1,5704	0.90894	1.8375	666. 75
330	900. 63	-252. 11	-207. 70	-1.5423	0.90743	J. 8412	649. 20
335	883. 97	-243. 73	-198.48	-1.5146	0.90618	1.8444	632. 25
340	867. 25	-235, 37	-189.25	-1.4872	0.90518	1.8473	615.94
345	850. 50	-227. 04	-180, 01	-1.4602	0.90437	1.8497	600, 32
350	833. 72	-218.73	-170.76	-1. 4336	0.90369	1.8514	585. 39
360	800. 23	-202. 22	-152.23	-1. 3814	0.90261	1.8525	557. 71
370	767. 03	-185. 87	-133.72	-1. 3307	0.90182	1.8492	533. 02
380	734. 39	-169. 74	-115. 27	-1. 2815	0.90130	1.8400	511.44
390	702. 64	-153, 87	-96. 942	-1. 2339	0.90102	1.8242	493, 01
400	672. 08	-138. 32	-78, 806	-1. 1880	0.90094	1.8021	477. 59
410	642. 96	-123. 13	-60. 917	-1. 1438	0. 90101	1.7750	464. 90
420	615. 44	-108. 31	-43, 316	-1. 1014	0.90123	1.7446	454.60
430	589. 59	-93, 874	-26, 030	-1.0607	0. 90157	1.7123	446.38

1586年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m)	内能 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	[kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/)
			40.00 MF	a Isobar			
440	565. 45	-79. 814	-9. 0735	-1.0217	0. 90206	1.6790	439.96
450	542.98	-66. 118	7. 5496	-0. 98436	0.90270	1.6457	435. 07
460	522. 12	-52. 769	23.842	-0.94855	0. 90351	1.6129	431.49
470	502. 79	39.744	39.812	0.91420	0.90452	1.5814	429.01
480	484. 89	-27.017	55. 476	-0.88122	0.90574	1. 5516	427. 45
490	468. 31	-14.563	70.851	-0.84952	0.90717	1.5238	426.63
500	452.94	-2, 3539	85. 959	-0.81899	0. 90882	1.4981	426. 42
525	419. 10	27. 259	122. 70	-0. 74727	0. 91383	1. 4435	427. 89
550	390.67	55. 849	158. 24	-0.68114	0.91996	1. 4013	431. 27
575	366. 46	83. 699	192. 85	-0. 61959	0. 92697	1. 3692	435. 81
600	345, 60	111. 02	226. 76	-0. 56185	0. 93462	1. 3451	441.07
625	327. 40		260. 16	-0. 50733			446. 76
650	311. 36	137. 98 164. 69	293. 16	-0. 45555	0. 94271 0. 95107	1. 3271 1. 3139	452. 71
675	297. 09	191. 24	325. 88	-0. 40615	0. 95957	1. 3043	458. 80
700	284. 29	217. 70	358. 40	-0. 35885	0, 96810	1. 2975	464. 97
800	243, 83	323. 44	487. 49	-0. 18646	1. 0012	1. 2880	489. 58
900			616. 45	-0. 03457	1. 0313		
1000	214. 66 192. 37	430. 11 538. 25	746. 18	0. 10210		1. 2926	513. 34 535. 98
					1.0575	1. 3024	
1100	174. 67	647. 97	876. 98	0. 22676	1. 0802	1. 3137	557. 53
			50.00 MF	oa Isobar			
226.679	1229.78	-430.78	-390. 13	-2. 2377	0.99951	1. 7735	1146.9
230	1221.01	-425. 19	-384. 24	-2.2119	0. 99412	1.7700	1130.8
235	1207.74	-416.81	-375.41	-2. 1739	0.98640	1.7654	1106.8
240	1194.42	-408. 45	-366. 59	-2. 1368	0.97918	1.7615	1083.2
245	1181.04	-400.13	-357. 79	-2.1005	0. 97242	1.7582	1059.9
250	1167.59	-391.83	-349.01	-2.0650	0.96609	1.7556	1037.0
255	1154.07	-383. 56	-340. 23	-2.0303	0.96020	1.7534	1014.4
260	1140.47	-375 . 31	-331.47	-1.9962	0. 95470	1.7518	992.10
265	1126.80	-367.09	-322.71	-1.9629	0. 94958	1.7507	970.17
270	1113.05	-358.88	-313.96	-1.9301	0. 94483	1.7500	948.60
275	1099.22	-350.70	-305.21	-1.8980	0. 94042	1.7496	927.39
280	1085.32	-342.53	-296.47	-1.8665	0. 93634	1. 7496	906. 55
285	1071.33	-334.39	-287.72	-1.8355	0. 93257	1.7498	886.10
290	1057. 27	-326, 26	-278.97	-1.8051	0. 92910	1.7502	866, 05
295	1043. 14	-318. 15	-270.21	-1. 7752	0. 92592	1. 7507	846. 42
300	1028. 94	-310.05	261.46	1. 7458	0. 92303	1. 7514	827. 23
305	1014. 67	-301.98	-252. 70	-1. 7168	0. 92039	1. 7521	808. 50
310	1000. 35	-293. 92	-243. 94	-1. 6883	0.91799	1. 7527	790. 25
315	985. 97	-285. 88	-235. 17	-1.6603	0. 91578	1. 7533	772. 50
320	971. 55	-277. 87	-226, 41	-1. 6326	0. 91376	1. 7538	755. 25
325	957. 10	-269. 88	-217. 64	-1.6055	0. 91193	1. 7540	738. 51
330	942. 63	-261.91	-208. 87	-1. 5055 -1. 5787	0. 91030	1. 7539	722. 28
335	928. 14	-253. 97	-200. 10	-1. 5523	0. 90890	1. 7536	706. 59
340	913. 66	-246. 06	-191. 33	-1. 5263	0. 90769	1. 7529	691. 43
345	899. 19	-238. 17		-1. 5263 -1. 5007		1. 7520	676. 84
040	099. 19	-238.11	-182.57	-1.5007	0. 90668	1. 7020	010.04

二氧化碳1587的新状态方程1587

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	Jotemal cnergy (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	[kJ/(kg K)]	C [kJ/(kgK)]	声速(m s)
			50.00 MI	oa Isobar			
350	884.76	-230. 32	-173. 81	-1.4755	0. 90581	1.7507	662. 8
360	856.03	-214.73	-156 . 32	-1.4263	0.90448	1.7469	636.4
370	827.61	-199.29	-138.88	-1.3785	0.90360	1.7414	612.4
380	799.62	-184.03	-121.50	-1.3321	0.90311	1.7340	590. 7
390	772. 18	-168.96	-104. 21	-1.2872	0.90297	1.7243	571. 2
400	745. 45	-154.10	-87.024	-1.2437	0.90314	1.7120	554.0
410	719. 54	-139.47	-69.977	-1. 2016	0.90357	1.6970	539.0
420	694. 59	-125.08	-53.092	-1.1609	0.90423	1.6796	526. 1
430	670.67	-110.94	-36.392	-1. 1216	0.90508	1.6602	515. 1
440	647.87	-97.069	-19.893	-1.0837	0.90612	1.6394	505. 8
450	626. 20	-83, 452	-3.6055	-1.0471	0.90732	1.6180	498. 1
460	605. 67	-70. 087	12.460	1.0118	0. 90868	1. 5964	491. 6
470	586. 26	-56. 964	28. 322	-0. 97766	0.91018	1. 5749	486. 4
480	567. 95	-44,071	43.965	-0. 94473	0. 91184	1. 5538	482. 1
490	550.68	-31.396	59.400	-0.91290	0. 91363	1.5333	478. 7
500	534, 42	-18.926	74. 634	-0.88213	0.91557	1. 5136	476. 1
525	497. 78	11. 454	111.90	-0.80939	0.92101	1. 4687	472. 4
550	466. 18	40. 875	148. 13	-0. 74197	0. 92723	1. 4308	471. 7
575	438. 78	69. 547	183. 50	-0.67907	0.93410	1. 3999	472. 9
600	414. 84	97. 651	218. 18	-0. 62003	0. 94148	1. 3753	475. 5
625	393. 77	125. 33	252. 31	-0. 56429	0. 94924	1. 3561	479. 0
650	375.06	152. 71	286. 02	-0. 51141	0. 95724	1. 3412	483. 0
675	358. 33	179. 87	319.40	-0. 46101	0. 96537	1. 3300	487. 6
700	343. 27	206. 88	352. 54	-0. 41281	0. 97355	1. 3215	492. 4
800	295. 34	314. 44	483.74	-0. 23759	1. 0055	1. 3064	513. 1
900	260. 55	422. 42	614. 33	-0. 08378	1. 0347	1. 3070	534. 4
1000	233. 89	531. 57	745. 34	0. 05425	1.0603	1. 3140	555. 4
1100	212. 66	642. 08	877. 19	0. 17991	1. 0825	1. 3232	575. 7
1100	212.00	012.00		°a Isobar	1.0023	1. 0202	313.1
231. 448b	1249.06	-430.98	-370.94	-2. 2420	1.0049	1.7265	1217.6
235	1240. 63	-425. 27	-364. 81	-2. 2157	0. 99929	1. 7213	1202. 5
240	1228. 76	-417. 26	-356. 22	-2. 1795	0. 99178	1.7146	1181.5
245	1216.90	-409.30	-347. 67	-2. 1442	0. 98477	1.7083	1160.9
250	1205.04	-401.38	-339.14	-2. 1098	0.97824	1.7025	1140.6
255	1193. 18	-393. 50	-330. 64	-2. 0761	0. 97215	1.6972	1120.6
260	1181.32	-385. 66	-322. 17	-2.0432	0.96649	1.6922	1101.0
265	1169.46	-377. 85	-313. 72	-2.0110	0.96122	1.6876	1081.7
270	1157.60	-370.08	-305. 29	-1. 9795	0. 95633	1.6833	1062.7
275	1145. 74	-362.34	-296. 88	-1.9487	0.95179	1.6793	1044. 1
280	1133.89	-354.64	-288.50	-1.9184	0. 94758	1.6756	1025.9
285	1122.04	-346. 97	-280. 13	-1.8888	0.94369	1.6720	1008.0
290	1110.20	-339.33	-271.78	-1.8598	0.94010	1.6687	990. 4
295	1098.37	-331.72	-263.44	-1.8313	0.93680	1.6654	973. 2
300	1086.56	-324. 15	-235.12	-1.8033	0. 93376	1.0623	956. 5

1588年, r. 斯潘和w. 瓦格纳

表35年。二氧化碳的热动力学性能-继续

温度(K)	密度(kg/m)	Iotemal energ) (kJ/kg)	焓(kJ/ kg)	Eotuopy [kJ/(kgK)]	C [kJ/(kg K)]	(kJ/(kg K)	音速(m /s)
			75.00 MP	aIsobar			
305	1074, 76	-316, 60	-246, 82	-1.7759	0. 93097	1.6593	940, 12
310	1062, 97	-309.09	-238. 53	-1.7489	0. 92843	1.6563	924. 14
315	1051.22	-301.60	-230. 25	-1.7224	0.92610	1.6534	908. 56
320	1039.49	-294.15	-222.00	-1.6964	0.92399	1.6504	893. 38
325	1027, 79	-286, 72	-213.75	-1.6708	0, 92208	1.6474	878. 62
330	101G. 13	279. 33	-205. 52	-1.6457	0.92037	1.6444	864. 28
335	1004.51	-271.97	-197. 31	-1.6210	0.91884	1.6413	850. 35
340	992.95	-264.64	-189. 11	-1.5967	0.91750	1.6381	836. 84
345	981.43	-257.35	-180. 93	-1.5728	0.91632	1.6348	823. 75
350	969.98	-250, 08	-172.76	-1.5493	0.91530	1.6314	811.08
360	947. 28	-235.66	-156.48	-1.5035	0.91369	1.6244	787.00
370	924.90	-221. 36	-140.27	-1.4591	0.91262	1.6170	764. 58
380	902.87	-207. 21	-124. 14	-1.4160	0.91202	1.6091	743. 77
390	881. 23	-193. 20	-108.09	-1.3744	0.91184	1.6009	724. 52
400	860.03	-170.33	-92126	1.3339	0.91204	1. 5924	706. 78
410	839, 31	-165, 61	-76. 246	-1.2947	0.91258	1.5836	690. 47
420	819.07	-152.02	-60. 456	-1.2567	0.91342	1. 5745	675. 53
430	799. 37	-138, 58	-44. 757	-1.2197	0.91452	1.5652	661.90
440	780. 21	-125, 28	-29. 152	-1.1838	0.91585	1. 5557	649.53
450	761.62	-112.12	-15.643	-1.1490	0.91738	1. 54G0	G38. 34
460	743.60	-99, 093	1.7669	-1.1151	0.91910	1.5360	628. 29
470	726. 18	-86. 204	17.076	-1.0822	0.92098	1. 5258	619. 31
480	709.36	-73.446	32. 283	-1.0502	0.92300	1.5155	611. 32
490	693.14	-60.816	47. 387	-1.0190	0.92515	1.5052	604. 25
500	677.52	-48. 311	62.387	-0.98873	0.92742	1. 4949	598. 02
525	641.03	-17.555	99. 444	-0.91641	0.93352	1. 4699	585. 62
550	608.02	12. 545	135.90	-0.84857	0.94012	1. 4468	576. 92
575	578. 19	42.085	171.80	-0.78473	0.94711	1.4260	571.08
OUO	551.22	71.136	207. 22	0.72443	0.95439	1.4077	567.48
625	526.81	99.843	242. 21	-0.66730	0.96187	1.3920	565. 64
650	504.66	128. 22	276.84	-0.61297	0.96949	1. 3786	565. 16
675	484. 49	156. 36	311.16	-0.56116	0.97717	1. 3675	565. 73
700	466.06	184. 31	345. 23	-0.51159	0.98486	1. 3585	567. 45
800	405.95	295. 12	479.87	-0. 33177	1.0149	1. 3379	57/01
900	361.14	405.66	613.33	-0. 17457	1.0424	1. 3330	592. 07
1000	326. 23	516.83	746.72	-0.03403	(. 0668	(. 3356	608. 08
1100	298.11	628.97	880.55	0.09352	1.0880	1. 3414	624. 65

关于二氧化碳的一个新的状态方程式1589

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	C [kJ/(kg K)	发光强度 [kJ/(kg K)]	音速(m /s)
			100.00 N	MPaIsobar			
236.031	1265. 83	-430, 62	-351.62	-2. 2443	1.0097	1.6919	1280. 4
240	1257. 21	-424. 46	-344. 92	-2.2162	1.0037	1.6854	1265. 1
245	1246. 37	-416. 74	-336.51	-2. 1815	0.99659	1.6778	1246. 2
250	1235, 57	-409.07	-328. 14	-2.1477	0.98997	1.6706	1227.6
255	1224.80	-401.45	-319.80	-2.1147	0.98383	1.6637	1209.4
260	1214.06	-393. 87	-311.50	-2.0824	0.97812	1.6573	1191.4
265	1203. 36	-386. 33	-303. 23	-2.0509	0.97282	1.6512	1173.7
270	1192.69	-378. 83	-294.99	-2.0201	0.96790	1.6454	1156.4
275	1182.06	-371. 37	-286.77	-1.9900	0.96335	1.6399	1139.3
280	1171.46	-363. 95	-278.59	-1.9605	0.95913	1.6347	1122.6
285	1160.90	-356. 57	-270.43	-1.9316	0.95524	1.6297	1106. 2
290	1150.37	-349. 22	-262.29	-1.9033	0.95164	1.6249	1090.2
295	1139.89	-341.90	-254. 18	-1.8755	0. 94833	1.6203	1074.5
300	1129.45	-334.63	-246.09	-1.8484	0. 94528	1.6158	1059.1
305	1119.04	-327. 38	-238.02	-1.8217	0. 94249	1.6115	1044.0
310	1108.69	320. 17	-220.97	1. 7955	0.03993	1.6073	1029.3
315	1098.38	-312 . 99	-221.94	-1.7698	0. 93760	1.6032	1015.0
320	1088. 12	-305. 84	-213 . 94	-1.7446	0. 93548	1.5992	1001.0
325	1077. 91	-298.72	-205.95	-1.7198	0. 93356	1. 5953	987.36
330	106776	-29164	-19799	-1.6955	0.93183	1.5914	974.07
335	1057.66	-284. 59	-190.04	-1.6716	0. 93028	1.5876	961.13
340	1047.62	-277. 56	-182 . 11	-1.6481	0. 92891	1. 5838	948. 54
345	1037.64	-270. 57	-174.20	-1.6250	0. 92769	1.5800	936.31
350	1027.73	-263.61	-166 . 31	-1.6023	0. 92663	1. 5762	924. 42
360	1008. 12	-249.78	-150.58	-1.5580	0. 92495	1. 5687	901.70
370	988.80	-236.07	-134. 93	-1.5151	0. 92378	1. 5612	880. 34
380	969.80	-222. 47	-119.36	-1.4736	0. 92309	1. 5537	860.31
390	951.13	-209.00	-103.86	-1.4333	0. 92283	1.5461	841.58
400	932.81	-195.64	-88. 438	-1.3943	0. 92295	1. 5386	824.08
410	914.87	-182.39	-73. 089	-1.3564	0. 92341	1.5311	807. 78
420	897. 31	-169. 26	-57. 815	-1.3196	0. 92418	1.5237	792.60
430	880.14	-156 . 23	-42.614	-1. 2838	0. 92522	1.5164	778. 51
440	863.37	-143. 31	-27. 486	-1. 2490	0. 92650	1.5092	765. 42
450	847.00	-130. 49	-12. 430	-1. 2152	092801	1.5021	753. 30
460	831.05	-117. 77	2. 5559	-1. 1823	0. 92970	1.4952	742.08
470	815.51	-105. 15	17. 473	-1. 1502	0. 93157	1.4884	731.73
480	800.39	-92.616	32. 324	-1.1189	0. 93359	1.4817	722. 18
490	785. 67	-80. 171	47. 108	-1.0884	0. 93574	1. 4752	713. 39
500	771. 37	-67. 812	61. 828	-1.0587	0. 93801	1. 4688	705. 34
525	737. 38	-37. 261	98. 354	-0.98741	0. 94412	1. 4534	688. 12
550	705. 86	-7. 1663	134. 50	0. 92014	0. 95070	1. 4388	674. 60
575	676. 71	22. 527	170. 30	-0.85649	0. 95763	1. 4251	664. 18
600	649. 77	51. 872	205. 77	-079610	0. 96480	1. 4127	656. 31
625	624. 90	80. 921	240. 95	-0.73867	0. 97211	1. 4016	650. 49
650	60191	10972	275.86	-0.68380	0. 97951	1. 3918	646.36

1590年和瓦格纳

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	内能 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	公司 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速 (m/s
			100.00 M	Pa Isobar			
675	580, 64	138. 32	310. 55	-0.63153	0. 98693	1. 3833	643. 59
700	560. 93	166. 76	345.04	-0.58135	0.99434	1. 3760	641.95
800	494. 96	279. 54	481.58	-0.39900	1.0231	1. 3573	643.10
900	444. 32	391.83	616.89	-0. 23962	1.0494	1. 3505	651.25
1000	404. 15	504.47	751.91	-0.09737	1.0728	1. 3507	662.59
1100	371. 36	617.86	887. 14	0.03152	1. 0931	1. 3544	675.48
			200.00 M	Pa Isoban			
252.864	1318.45	-426. 12	-274.43	-2. 2449	1. 0320	1.6131	1476. 5
255	1314.84	-423. 09	-270.99	-2. 2314	1.0295	1.6096	1470.1
260	1306.44	-416.05	-262.96	-2.2002	1.0240	1.6016	1455. 4
265	1298.11	-409. 04	-254.97	-2. 1697	1.0188	1. 5940	1440.8
270	1289.84	-402.08	-247.02	-2.1400	1.0141	1. 5867	1426.6
275	1281.64	-395. 15	-239.10	-2.1110	1.0097	1.5797	1412.5
280	1273.50	-388. 27	-231.22	-2.0826	1. 0057	1.5730	1398.7
285	1265.43	-381, 42	-223. 37	-2.0548	1.0020	1. 5666	1385, 1
290	1257.43	-374. 61	-215.55	-2. 0276	0. 99855	1. 5604	1371.8
295	1249.48	-367. 83	-207.77	-2. 0010	0. 99539	1. 5545	1358.7
300	1241.61	-361.09	-200, 01	-1.9749	0. 99248	1. 5488	1345.9
305	1233. 79	-354. 38	-192. 28	-1.9493	0. 98981	1. 5434	1333. 3
310	1226.04	-347. 70	-184.57	-1.9243	0. 98736	1. 5381	1321.0
315	1218.35	-341.05	-176.90	-1.8997	0.98512	1. 5331	1308.9
320	1210.72	-334. 43	-169.24	-1.8756	0.98307	1. 5282	1297. 1
325	1203.16	-327. 84	-161.61	-1.8519	0. 98121	1. 5235	1285.5
330	1195.66	-321. 28	-154. 01	-1.8287	0.97952	1.5190	1274. 2
335	1188. 22	-314.74	-146.42	-1.8059	0.97799	1.5146	1263. 1
340	1180, 84	-308. 23	-138.86	-1.7835	0.97662	1.5104	1252. 2
345	1173.53	-301.75	-131.32	-1.7615	0.97539	1. 5064	1241.6
350	1166.27	-295. 28	-123.80	-1.7398	0.97430	1. 5025	1231.2
360	1151.94	-282. 43	-108.81	-1.6976	0.97249	1.4950	1211.2
370	1137.86	-269. 67	-93.896	-1.6568	0.97114	1. 4880	1192.1
380	1124.01	-256. 98	-79.049	-1.6172	0.97020	1. 4815	1173.9
390	1110.41	-244. 38	-64. 266	-1. 5788	0.96963	1. 4753	1156.5
400	1097.04	-231.85	-49.543	-1.5415	0.96940	1.4695	1140.0
410	1083.91	-219.39	-34. 876	-1.5053	0. 96947	1. 4640	1124. 3
420	1071.02	-207.00	-20. 262	-1.4700	0. 96981	1. 4588	1109. 4
430	1058.36	-194.67	-5.6992	-1.4358	0.97040	1. 4539	1095.3
440	1045.94	-182.40	8.8159	-1.4024	0. 97121	1.4492	1081.9
450	1033.74	-170.19	23. 286	-1.3699	0.97222	1. 4448	1069. 2
460	1021.78	-158.02	37.713	-1.3382	0.97341	1. 4406	1057. 1
470	1010.04	-145.91	52. 099	-1.3072	0.97477	1. 4367	1045.7
480	998. 53	-133.85	66. 447	-1. 2770	0.97627	1. 4329	1034.8
490	987. 24	-121.83	80.758	-1.2475	0.97791	1. 4294	1024.6
500	976. 16	-109.85	95. 035	-1.2187	0.97967	1. 4260	1014.9
525	949.42	-80.066	130. 59	-1. 1493	0. 98451	1. 4185	992.79
550	923. 96	-50. 491	165.97	-1.0835	0. 98986	1. 4120	973. 51
575	899. 74	-21.088	201. 20	-1.0208	0. 99559	1. 4065	956.68
600	876.60	8, 1703	236. 30	-0.06106	1.0016	1. 4019	042. 00

二氧化碳的一个新的状态方程式1591

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	间质能量 (kJ/kg)	焓(kJ/ kg)	熵(kJ/ (kgK))	[kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/s)
			200.00 MI	Pa Isobar			
625	854.75	37. 312	271.30	-0.90391	1.0078	1. 3980	929. 18
650	833.86	66.359	306. 21	-0.84915	1.0140	1.3948	918.02
675	813.97	95. 331	341.04	-0.79656	1.0204	1. 3922	908.32
700	795.00	124. 25	375.82	-0.74597	1.0267	1. 3900	899. 91
800	727.46	239.61	514. 53	-0.56073	1.0513	1. 3851	876. 78
900	671.10	354. 93	652. 94	-0.39771	1.0740	1. 3836	865.84
1000	623.57	470. 58	791. 32	-0. 25192	1.0942	1. 3841	862.60
1100	583.00	586.76	929. 81	-0.11992	1. 1119	1. 3860	864. 16
			400.00 MI	Pa Isobar			
281. 544	1392. 45	-410, 72	-123.46	-2. 2315	1. 0894	1.5590	1732. 5
285	1388. 17	-406. 23	-118.08	-2. 2125	1.0870	1. 5546	1724. 6
290	1382.04	-399.75	-110. 32	-2. 1855	1.0838	1. 5485	1713. 3
295	1375.97	-393.30	-102.59	-2. 1591	1.0808	1. 5426	1702. 1
300	1369.95	-386.88	-94.895	-2.1332	1.0780	1. 5369	1691.2
305	1364.00	-380.48	-87. 224	-2. 1078	1.0754	1. 5314	1680.4
310	1358.11	-374. 11	-79. 581	-2.0830	1.0729	1.5260	1669.9
315	1352. 28	-367.76	-71.964	-2.0586	1.0707	1.5209	1659.5
320	1346. 50	-361.44	-64. 371	-2.0347	1.0686	1.5160	1649.3
325	1340. 78	355. 14	56.803	2.0112	1.0667	1. 5112	1630.3
330	1335.11	-348.86	-49.259	-1.9882	1.0650	1. 5067	1629.5
335	1329.50	-342.60	-41.737	-1.9656	1.0633	1. 5022	1619.8
340	1323.95	-336.36	-34. 236	-1.9433	1.0618	1.4980	1610.3
345	1318.44	-330.14	-26. 757	-1.9215	1.0605	1. 4939	1601.1
350	1312.99	-323.94	-19.297	-1.9000	1.0592	1. 4899	1591.9
360	1302.24	-311.60	-4. 4362	-1.8582	1.0570	1.4824	1574.2
370	1291.69	-299.32	10. 353	-1.8177	1.0552	1. 4754	1557.2
380	1281.33	-287.10	25.074	-1.7784	1.0537	1.4690	1540.8
390	1271.16	-274.94	39. 733	-1.7403	1.0525	1.4630	1525.0
400	1261.17	-262.83	54. 335	-1.7033	1.0516	1. 4574	1509.8
410	1251.35	-250.77	68. 883	-1.6674	1.0510	1. 4522	1495.3
420	1241.70	-238.76	83. 381	-1.6325	1.0506	1. 4475	1481.2
430	1232. 22	-226.78	97.833	-1.5985	1.0504	1.4430	1467.7
440	1222.89	-214.85	112.24	-1.5654	1.0503	1.4389	1454.8
450	1213.72	-202.95	126.61	-1.5331	1.0505	1. 4352	1442.3
460	1204.70	-191.08	140.95	-1.5016	1.0508	1. 4317	1430.3
470	1195.83	-179.25	155. 25	-1.4708	1.0513	1. 4285	1418.8
480	1187.10	-167.44	169. 52	-1.4408	1.0519	1. 4255	1407.7
490	1178. 51	-155.65	183. 76	-1.4114	1.0526	1. 4228	1397.1
500	1170.05	-143.89	197. 97	-1.3827	1.0534	1. 4203	1386.9
025	1149.47	-114.58	233. 41	-1.3135	1.0559	1. 4149	1363.0
550	1129.67	-85. 361	268.72	-1.2478	1.0588	1.4106	1341.4
575	I110. 59	-56. 223	303.94	-1.1852	1.0622	1.4072	1321.8
600	1092. 21	-27. 143	339.09	-1.1253	1.0659	1. 4045	1304.1
625	1074.47	1.8990	374. 18	-1.0681	1.0698	1.4025	1288. 1

1592r. 跨度和W. WAGNER

表35年。二氢化碳的热力学性质-连续的

			L碳的热力学性质-道			45.1.44.3.	
温度(K)	密度(kg/m)	间歇性能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	公司 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速 (m/)
			40000 N	IPa Teohar			
650	1057.35	30.916	409. 22	-1.0131	1.0739	1.4011	1273.5
675	1040.82	59. 921	444. 23	-0.96022	1.0781	1.4001	1260.4
700	1024.84	88. 926	479. 23	-0.90931	1.0825	1. 3995	1248.5
800	966.02	205.09	619. 16	-0.72246	1.0999	1. 3997	1211.0
900	914. 22	321.71	759. 24	-0. 55747	1. 1165	1.4023	1185.7
1000	868. 27	438.97	899.65	-0.40954	1. 1316	1.4060	1168.7
1100	827. 20	556. 88	1040.44	-0. 27535	1. 1451	1. 4098	1157. 6
			600.00	MPa Isobar			
305.996°	1448.66	-391.42	22.754	-2. 2128	1. 1462	1.5467	1910. 7
310	1444.64	-386. 39	28. 939	-2. 1927	1. 1442	1. 5427	1903.0
315	1439.67	-380. 12	36.640	-2. 1681	1. 1419	1. 5377	1893. 5
320	1434.75	-373. 88	44. 317	-2. 1439	1. 1397	1.5329	1884. 2
325	1429.88	-367. 65	51.970	-2. 1201	1. 1376	1. 5283	1875. 1
330	1425. 06	-361.44	59.600	-2. 0969	1. 1357	1. 5238	1866. 1
335	1420. 28	-355. 24	67. 208	-2. 0740	1. 1338	1.5194	1857. 3
340	1415. 56	-349. 07	74. 794	-2. 0515	1. 1321	1.5152	1848.6
345	1410.88	-342. 91	82.360	-2.0294	1. 1305	1.5111	1840. 1
350	1406. 25	-336. 76	89. 905	-2.0077	1. 1290	1. 5071	1831. 7
360	1397. 12	-324. 52	104.94	-1.9653	1. 1263	1.4996	1815. 4
370	1388. 16	-312. 33	119.90	-1.9243	1. 1240	1. 4925	1799.7
380	1379. 38	-300. 19	134. 79	-1.8846	1. 1219	1. 4858	1784.5
390	1370. 75	-288. 10	149.62	-1.8461	1. 1201	1. 4796	1769.8
400	1362. 28	276.05	164. 38	1. 8087	1. 1186	1. 4738	1755. 6
410	1353. 97	-264. 05	179. 09	-1. 7724	1. 1174	1.4683	1741. 9
420	1345. 79	-252. 08	193. 75	-1. 7371	1. 1163	1.4633	1728. 7
430	1337. 76	-240. 15	208. 36	-1. 7027	1. 1154	1. 4585	1715. 9
440	1320. 87	-228. 25	222. 92	-1. 6692	1. 1147	1. 4541	1703. 6
450	1322. 10	-216. 38	237. 44	-1. 6366	1. 1142	1.4500	1691.6
460	1314. 46	-204. 54	251. 92	-1.6048	1. 1139	1. 4462	1680. 1
470	1306. 94	-192. 72	266. 37	-1. 5737	1. 1136	1. 4427	1668. 9
480	1299. 54	-180. 92	280. 78	-1. 5434	1. 1135	1. 4394	1658. 1
490	1292. 26	-169. 15	295. 16	-1. 5137	1. 1135	1. 4363	1647. 7
500	1285. 08	-157. 39	309. 50	-1. 4847	1. 1137	1. 4335	1637. 5
525	1267. 60	-128. 07	345. 26	-1. 4149	1. 1144	1. 4275	1613. 7
550 575	1250. 74	-98. 828 -69. 645	380. 89 416. 40	-1. 3487	1. 1157 1. 1174	1. 4226 1. 4187	1591. 6 1571. 3
	1234. 45			-1. 2855			
600 625	1218. 69	-40. 503	451. 83	-1. 2252 -1. 1675	1. 1195	1. 4157	1552. 5
650	1203. 43	-11. 386	487. 19	-1. 1675 -1. 1121	1. 1218	1.4134	1535. 1 1519. 1
	1188.63	17. 720	522. 50	-1. 1121	1. 1243	1. 4117	
675 700	1174. 27 1160. 32	46. 825 75. 938	557. 78	-1. 0588	1. 1271 11299	1. 4106 1. 4099	1504. 2 1490. 5
800			593. 04	-1. 0075 -0. 81026			
	1108. 23	192.61	734. 02	-0. 81926	1. 1419	1. 4103	1445. 3
900	1061. 27	309. 84	875. 20	-0. 65298	1. 1538	1.4134	1412. 4
1000	1018.66	427.73	1016. 74	-0. 50386	1. 1649	1. 4175	1388. 8
1100	979. 76	546.30	1158.69	-0.36856	1. 1749	1.4216	1371.9

表35年。二氧化碳的热力学性质-继续

温度(K)	密度(kg/m³)	体内能量 (kJ/kg)	焓(kJ/ kg)	熵 [kJ/(kg K)]	公司 [kJ/(kg K)]	发光强度 [kJ/(kg K)]	声速(m/)
			800.00 M	Pa Isobar			
327. 673b	1495. 70	-369. 91	164. 96	-2. 1926	1. 1961	1. 5477	2052. 8
330	1493.71	-367. 02	168.56	-2. 1817	1. 1951	1. 5457	2048.9
335	1489.46	-360.83	176. 28	-2. 1585	1. 1931	1. 5415	2040.7
340	1485. 25	-354.66	183. 97	-2. 1357	1.1912	1.5373	2032.6
345	1481.08	-348. 50	191.65	-2.1132	1. 1894	1.5333	2024.6
350	1476.96	-342. 35	199.31	-2.0912	1. 1877	1.5294	2016.8
360	1468.83	-330.09	214.56	-2.0482	1.1846	1.5218	2001.6
370	1460.85	-317.88	229.74	-2.0066	1. 1817	1.5147	1986.8
380	1453.03	-305. 72	244.86	-1.9663	1. 1791	1.5080	1972. 5
390	1445.35	-293. 59	259.90	-1.9272	1. J769	1.5016	1958. 7
400	1437.82	-281.51	274.89	-1.8893	1. 1748	1.4956	1945.4
410	1430.42	-269.46	289.82	-1.8524	1. 1730	1.4899	1932. 4
420	1423. 15	-257. 45	304.69	-1.8166	1. 1714	1. 4845	1919. 9
430	1416.00	-245.46	319.51	-1.7817	1.1699	1. 4795	1907.8
440	1408.98	-233. 51	334. 28	-1.7478	1. 1687	1. 4748	1896.0
450	1402.08	221. 58	349.01	1.7147	1. 1676	1. 4703	1884. G
460	1395. 29	-209. 67	363.69	-1.6824	1. 1667	1. 4661	1873. 5
470	1388.60	-197. 79	378.33	-1.6509	1. 1659	1.4622	1862.8
480	1382.03	-185. 93	392.93	-1.6202	1.1652	1.4586	1852. 4
490	1375. 55	-174.08	407.50	-1.5001	1.1647	1.4551	1842.3
500	1369.17	-162. 26	422.04	-1. 5608	1. 1642	1. 4519	1832. 5
525	1353.64	-132. 76	458. 24	-1.4901	1. 1636	1. 4448	1809.1
550	1338.65	-103.33	494. 29	-1.4230	1. 1636	1. 4389	1787.4
575	1324. 16	-73. 959	530. 20	-1. 3592	1. 1640	1. 4340	1767. 1
600	1310. 14	-44. 627	566.00	-1. 2982	1. 1648	1. 4301	1748. 1
625	1296. 54	-15. 319	601.71	-1. 2399	1. 1659	1. 4269	1730. 4
650	1283. 34	13. 975	637.35	-1. 1840	1. 1673	1. 4244	1713.8
675	1270. 52	43. 267	672. 93	-1. 1303	1. 1688	1. 4225	1698. 2
700	1258. 04	72. 565	708. 47	-1.0786	1. 1706	1. 4211	1683.6
800	1211. 18	189. 94	850. 45	-0.88900	1. 1785	1. 4193	1633. 6
900	1168. 47	307. 80	992. 46	-0. 72175	1. 1868	1. 4212	1594. 8
1000	1129. 16	426. 25	1134. 74	-0. 57184	1. 1948	1. 4247	1564.9
1100	1092.77	545. 32	1277.40	-0. 43587	1. 2020	1. 4286	1542. 2

极限温度。b熔化温度 饱和温度。

11. 确认信息

作者非常感谢德国联邦科学基金会 感谢他们对这个项目的财政支持

12. 参考文献

IUPAC原子量和同位素原子委员会, J物理。化学裁判员数据 24.1561(1995)。

²E. R. Cohen和B. N。泰勒, 1986年基本面的调整

心理学常数, CODATA公牛。No. 63 (波加蒙, 牛津, 1986)。S. 安格斯。B. 阿姆斯特朗, 和K. M. 德·雷克, 国际表格 流体状态-3: 二氧化碳 (Pergamon, 牛津。1976).

'R. 施密特和瓦格纳,《流体相平衡》,19.175(1985)。A. 扫罗和瓦格纳。J. 物理学。化学裁判员数据18、1537(1989)。U. 塞茨曼和W。瓦格纳,国际。J. Thermophys. 10.1103 (1989).

E. 狂饮作乐状态方程精确地表示裸物质的相行为。在第五十五届热 学研讨会上

phvsic属性。C.F.博尼拉。协调编辑器(ASME。纽约1970)。

*v.V. Altuninand O.G.Gadetskii, Teploenergetica 18,81(1971. W.A.Stein . 化学雕刻Sci. 27.1371 (1972).

10K.E. Starling, P.N. Batdorf, 和Y.C. Kwok, 氢气探针。51,2,86 (1972).

论文, 慕尼黑大学(1973)。

1ºF.H.Huang.M.H李。LL Lee, K.E.Starling和F.T.H. Chung, J

化学 .N字g..Jpn18.049 (1985). J Eers a na w wagn er, A M et h 为了理论的建议 状态值及其对氧状态方程的应用

过程8th Symp. 热生理学。道具-卷1. J. V. Sengers,协调编辑(Am。社会机械。雕刻纽约,1982)。

J.P.Ely, PureCO2 and CO2 Rich MAx的状态模型

项目中的线程。第65圈。公约气体程序。使发生联系(圣安东尼奥,德克萨斯州,1986年)。

15J. F. Ely. J. W. Magee, 和W. M. Haynes。二氧化碳PAC,项目可在Natl提供。Bur。站。(博尔德,科罗拉多州,1987)。

⁶k.S. Pitzer和D.R.Schreiber, 流体相平衡41,1(1988)

1J. F. Ely. W. M. Haynes. and B. C. Bain, J. 化学热动力学。21.879 (1989).

18R. I. Jacobsen和R. B. Stewar, J。物理学家。化学裁判员数据 2.757(1972年)。10K. S. Pitzer和S. M. Stemer。J. 化学。物理学。 101, 4.311(1994)

9p. 肖菲尔德。物理学。发动机的旋转Lett. 22. 606 (1969). G. A. hapela和J. S. Rowlinson。J. 化学。社会法拉第反式。(1)70 584 (1974).

JF EIy. J.. 麦高。和.M.。海恩斯,热物理性质

1594 R斯潘和w. 瓦格纳

特殊的高CO₂ Comtent混合物,重新提取报告RR-110(国家级 美国标准局,博尔德出版社,1987年)。

22M. Vicenti-Missoni, J. M. H. 水平和M. S. Green, J. Res.

Natl。Bur。站。A 73,563(1969).

2T. A. Murphy, J. V. Sengers, and J. M. H. 水平信使,分析 *气体的压力应该是尺度方程中的临界点*

在,中。6th Symp.热电偶。Prop., P.E.Liley,协调编辑 (ASME, 纽约, 1973年)。

24p. C. Albright, T. J. Edwards, Z. Y. Chen, 和J. V. Sengers, J。化学 Phys87,1717 (1987).

25p.C. Albright, Z.Y.Chen, 和J.V.Sengers, 物理学。Rev。快速Commun. 36,877(1987).

26p. D. Erickson, T. W. Leland, 和J. F. Ely, 流体相位平衡 37 185(1987) ,

27z. Y. 陈的话,一个。Abbaci, S. Tang, and J. V. Sengers,物理学家。 发动机的旋转A 4470 (1990).

28S.B. Kiselev, I.G. 和A.A. Povodyrev, Int. J.热 菲斯。12,877(1991).

2R. 福克斯, Fuid相位不平衡14,45(1983)。

30U. 塞茨曼和瓦格纳,J。物理学家。化学裁判员数据20、1061(1990)。

3J. 阿伦茨和H. D. Baehr,福尔施。英格。韦斯

45, 1, 1(1979). 32w. 瓦格纳,《低温学12214》(1972)。

3J. 阿伦茨和H. D. Bachr, 福尔施。英格。韦斯45, 2, 51 (1979).

34w. Wagner, VDI Fortschrit-Ber, Reihe 3, Nr. 39(VDI-Verlag。杜塞尔

道夫,1974年)。

35R. 斯潘和W. 瓦格纳,Int。J. Thermophys. (己提交) 36小时。普雷斯顿-托马斯,大都会大学27、3 (1990)

3H. 普雷斯顿-托马斯, P。布隆伯根, 和T. J. Quinn, 补充 1990年国家温度表资料

《思想与方法间理论》,塞弗斯,1990)。

8R. L. Rusby, J. 化学热动力学。23, 1153 (1991).

39R.E. Bedford和C.G.M. Kirby, 大都会餐厅5,83 (1969)。

40C.H. Meyers和M.S. Van Dusen说。站。J. Res. 10. 381 (1933). 41D.

安布罗斯,英国人。J. Appl. 物理学。8,32(1957).

42D. R. Lovejoy,《自然》,197,353(1963)

43E. 哈罗, E。费尔南德斯-法斯纳克特,和F. 德尔里约热内卢,牧师。社会奎姆。军用交换机 23,369 (1979).

44L. A. K. 斯特夫利L. Q. Lobo和J. C. G. Calado, 低温学出版社, 21, 131 (1981).

4R. Blanes-Rex, E. P. A. 费尔南德斯和F. 古兹曼,低温学家22, 113 (1982).

46F. Pavese和D. Feri, TMCSI 5,217 (1982)

47R. E. 贝德福德, G。邦尼尔, H。Maas和F。帕维斯, 大都会20,145 (1984).

48G. 邦尼埃,Y。Hermier,andW. B. Qin,"多室密封细胞中的二氧化碳三重点",在第二届IMEKO论文集

工业与科学中的温度测量研讨会,B。

苏尔,协调编辑,民主德国,1984。

49W.Duschck, VDI Fortschrit-Ber, Reihe 3,Nr.187(VDI-Verlag, 博士-

seldorf, 1989).

50J. M. H. 水平和W. T. Chen, J。化学物理学家。56,595 (1972)

5M. R. Moldover, J. 化学物理学。61,1766(1974).

52J. A. Lipa, C. 编辑器,和M. J. Buckingham,物理学。发动机的旋转A 15, 778

(1977).

M.R.Moldover, J.V.Sengers, R.W.Gammon, 和R.J.Hocken, 牧师。 模块。物理学。51,79(1979).

5H. J. Badc, 毕业论文, 布劳恩施威格理工大学 (1983)

5ST. J. Edwards, Ph. D. Thesis, 澳大利亚韦斯特姆大学 (1984年)

5J. V. Sengers和J. M. H. 水平的信使们,安努。发动机的旋转物理学。化学37, 189(1986).

57z. Y. Chen, P. C. Albright, 和J. V. Sengers, 物理学。发动机的旋转A 41, 3161 (1990).

58w. 杜谢克, R。克莱因拉姆和瓦格纳, J。化学热动力学。 22.

841 (1990).

59I. M. Abdulagatov, I. M. Abdurakhamov, R. G. Batyrova, and, "临界态区二氧化碳的等容热容与液气共存曲线",关于热物理》。提案,博尔德,科罗拉多,1991年。

59-1. M. Abdulagatov, N. G. Polikhronidi, 和R. G. Batyrova, Ber. Bun-森格斯。物理学。化学98,1068(1994).

59%1. M. Abdulagatov, N. G. 和R. G. Batyrova, J。化学 热动力学。26, 1031 (1994).

- OA. 米歇尔, B。布莱斯和J。胡格沙根, 《物理学杂志, 9565年(1942
- 61K. Clusius, U. 皮斯伯根和瓦尔德, 海尔夫。奇姆。Acta 43. 1290 (1960).
- 62 H. Bois和A.P, 遗嘱, 德国Verhandl.der物理学。Ges。1,168 (1899).
- 6 J. P. Kuenen和W. G. Robson, Philos。 Mag. 6, 149 (1902).
- 64K.H.Onnes和S Weber, Com。物理学。实验室大学。莱顿137b, 8 (1913).
- 6H. 西门子, 安。物理学。42,871(1913).
- 66s. Weber和H. K. Onnes, Com。物理,实验室。大学。莱顿137c,26 (1913).
- 67F. 亨宁, 安。物理学。43, 282(1914).
- 68W. Heuse and J. 哦,安。
- Phys. 9. 486 (1931) 69W. 休斯和J. 奥
- 托,安。物理学。14,185(1932).
- 70W. F. Giauque和C. J. Egan, J. 化学物理学。5, 45 (1936)
- 7A. W. Tickner和F. P. Losing, J。物理学家。胶体化学。55,733(1951).
- 7D. 安布罗斯, 跨。法拉第公司。
- 52,772 (1955) 7³ M. J. Hiza, 低温
- 学学10,106(1970)。
- 74Z. Bilkadi, M. W. Lee, and J. Biegeleisen, J. 化学物理学。62, 2087 (1974).
- 7⁵C. E. Bryson, V. Cazcara, 和L. L. Levenson
- , J。化学雕刻数据19、107(1974)。
- 76E. 费曼德斯-法斯纳克特和F,德尔里约热内卢,J。化学热动力学。 16, 469
 - (1984).
- 77W. H. KeesomCom。物理学。实验室大学。莱顿市88岁、1岁(1903年)。 78C.F. Jenkin和D.R. Pye, 菲洛斯。反式
- R. Soc. 213, 67 (1914). 790. C. Bridgeman, J. Am. Chen . 社
- 会49,1174(1927).
- 80A. 米歇尔斯, B. Blaisse, 和 C. 米歇尔斯, 专业人员。R. Soc. A160. 358 (1936).
- 8J. R. Roebuck, T. A. Murell, 和E. E. Miller, J. Am. Chem。社会64,400 (1942)
- 82A. 米歇尔斯, T. Wassenar, Th. 兹维特林和P. 斯密斯 ,物理学16501 (1950).
- 83H. H. Reamer, B. H. Sage和W. N. Lacey, Ind。雕刻化学432515 (1951).
- J. 物理学。化学裁判员数据,第25卷,第6期,1996年

- 84J. A. Bierlein和B. K. Webster, 印第安纳州。雕刻化学 45,618(1953) 8SD. 库克,项目。R. Soc. 219,245(1953).
- D. 库克,跨国公司。法拉第Soc。49,716(1953)
- 8E. 施密特和托马斯, 福尔施。英格。韦斯
- 20, 161 (1954). 88R. H. Wentorf, J. 化学物理学。 24,607 (1956).
- 89A.B. Kletskii, Ing. 物理学。Zeitshr。7,40(1964).
- 90R. G. P. Greig和R. S. Dadson,英国人。J. Appl. 物理学。
- 17,1633(1966).9IJ.L.Edwards和D.P.Johnson, J. Res. Nat. Bur. 站。Sec, C72, 27 (1968).
- 92M. P. Vokalovich. V. P. Kobelev, 和N. I. Timoshenko, 四能量学 15, 6, 80 (1968).
- 93V. A. Kirllin, S. A. Ulybin和E. P. Zherdev, 四能量学16.6,92 (1969).
- 94E. P. Kholodov, N. 1. Timoshenko, 和A. L. Yainov, 四能量学 19, 4, 84 (1972).
- 95A. Fredenslund and J. Mollerup, J. 化学社会法拉迪 跨。(1)70 1653(1974).
- 96R. J. Gugoni, J. W. Eldrdge, V. C. Okay, 和T. J. Lee, A. LCh. E. J. 20, 93(1974).
- 97G. J. Besserer和D. B. Robinson, J。化学雕刻数据21、81 (1975) 98J. Davalos, W. R. Anderson, R. E. Phelps, 和A. J. Kidnay, 我。 化学
- 雕刻数据21、81(1976)。 99K. Stead和J. M. Williams, J。化学Thermodyn. 12. 265(1980) 100H. 黄裴, N。长滨先生, 和平田先生, J。化学雕刻数据27、25
- 101T. A. Al-Sahhaf, A. J. Kidnay和E. D. Sloan, Ind。雕刻化学基金
- 22, 372 (1983). 102H. G. Kratz, 毕业论文, 波鸿鲁尔大学(1984年)
- 103J. C. Holste, K. R. Hall, P. T. Eubank, G. 经验。 M. O. Warowny . D. M Bailey, J. G. Young, 和M. T. Bellamy, J. 化学热动力学。19,1233
- 104T. S. Brown, A. J. Kidnay, 和E. D. Sloan, Fuid相位不平衡40, 169 (1988).
- 105N. N. Shah, J. A. Zollweg, 和W. B. Street, J. 化学雕刻数据36、188
- 105L Yurttas, J. C. Holste, K. R. Hall, B. E. Gammon, 和K. N. Marsh, J. 化学雕刻Data39,418(1994).
- 106M. E.24 . Amagat, C. R. Acad . 科学。114, 1093 (1892).
 - 年 5 貞 5 日

一个关于二氧化碳的新状态方程式1595 107U. 贝恩,安。Phys. 3.733 (1900). 10sH. H. Lowryand W. R. Erickson, J. Am. Chem. 社会 49.2729 (1927).1091 斯特劳布,《战争和战争》556(1972)。 10w.M. Haynes,正法液体密度和介质常数 二氧化碳,纸张出现在冷冻室。雕刻Conf.,质量。在。技术, 剑桥, 1985年 G. J. Esper, 毕业论文, 波鸿鲁尔大学(1987)。 欧几肯和F. 哈克, Z。物理学家。化学134, 161(1928). 111. I. Novikov和Y. S. Trelin, Zur。Prik。机械。技术Fiz。 2,112(1960).1¹⁴ K.I.Amirkhanov, N.G.Polikhronidi, B. G. Alibekov, and R. G. Baty 罗瓦,第19、1、61页(1972年)。 115w. Pecceu和W. Van Dael, Physica63.154 (1972)。 116j. W. Magee和J.F.Ely, Int。 J. Thermophys. 7, 1163 (1986). 117C. F. Jenkin,程序。R. 98, 170 (1920). 1180. Maass和J. H. Mennie, Proc。 R. Soc. A 110, 198 (1926). 119D. LeB. Cooper和O. Maass, 是可以的 . J. Res. 2, 388 (1930). 120D. LeB. Cooper和O。马斯岛,可以。J. Res. 4, 283 (1931). 21w. Cawood和H. S. Patterson, J. 化学 Soc, 619 (1933). 122A. 米歇尔斯和C. 米歇尔斯, Proc。R. Soc. A 153, 201 (1935), A. 米歇尔斯, 米歇尔斯和沃特斯, 教授。R. Soc. A 153, 214 (1935).1² 4H. H. Reamer, R. H. Olds, B. H. Sage和W. N. Lacey, Ind。雕刻化学 36,88 (1944). 12SG. A. Bottomley, D. S. Massie, 和R. 惠特劳-格雷, Proc。R. Soc. A 200. 201 (1950). 126T. 巴图埃卡斯和C。G. Losa。Fis. 奎姆。B 50, 845 (1954) 127G. C. Kennedy. Am. J. Scie. 252. 225 (1954).128M. P. Vukalovich和V. V. Altunin, 四能量学6, 11, 58 (1959)。 129M. P. Vukalovich和V. V. Altunin, 四能量学9, 5, 56 (1962) 130M. P. Vukalovich, V. V. Altunin, 和N. L. Timoshenko, 四能量学 10. 2. 92 (1963) 131 M. P. Vukalovich, V. V. Altunin, and N. L. Timoshenko, Teploene rgetica 10, 1,85(1963). 132J. Juza, V. 克莫尼切克和西夫纳, 物理31, 1735 (1965) I3p. S. Ku和B. F. Dodge, J。化学雕刻数据12、158(1967) 13#A. 萨斯, B. F. Dodge, 和R. H. Bretton, J. Chem。雕刻数据12、168 (1967).1M. P. Vukalovich, V. P. Kobelev, and N. I. Timoshenko, Teploenergetica 15. 4. 81 (1968). 136E. A. Golovskii和诉。Tsymamyi, Teploenergetica 16, 1.67 (1969). 1³ 7V. A. Kirillin. S. A. Ulybin和E. P. Zherdey, 能 量16。, 294 (1969).

138V. A. Kirillin. S. A. Ulybin和E. P. Zherdev, "二氧化碳密度在-50到+200 C和压力高达500巴的温度下的实验投资",在第一次

1D. S. Tsiklis, L. R. Linshits, 和S. S. Tsierann, "在高压和温度 下,二氧化碳的摩尔体积和热力学特性的测量和计算"

10V. A. Kirllin. S. A. Ulybin和E. P. Zherdev, 四能量学17, 5.69 141v. N. Popov和M. K. Sayapov。Teploenergetica 17.4.76(1970).

EP. holodov . N. I. Tioshenko. and A. L. Yamnov. 四倍能量学

)。+7D. S. Rasskazov. E. K. Petrov . G. A. Spiridonov, 和

1+w-W. R. Lau. Ph. D. Thesis . 德克萨斯农工大学 (1986) 150M. Jaeschke. ppT来自折射率测量的数据(私人通信)(19871,

D. B. Robinson和D. B. Robinson。J. 化学, 英。数据18.137(1973

148v. M. Shmonov和K. I. Shmulovich, Akad。Wouk SSSR 217.935

M.P. 武卡洛维奇。N.L. 铁木辛哥和V.P。科贝列夫。

量热学和热力学专题会议, 华沙, 1969年。

第一次量热法和热力学国际会议,战争

Teploencrgetica 17.12.59(1970) w. 申曼。论文。卡尔斯鲁厄(1971)。

Teploenergetica 21.1.80(1974).

+5J. Hoinkis. 论文。TH Karlsruhe(1989)。

锯1969.

19. 3. 84 (19721.

E.R. Ushmaikin.

(1974).

实验-

I5IM. Jaeschke. ppT数据来自布美特测量(私人社区)(19871。 马吉和伊利。J. Thermophys. 9.547 (19881

```
153P. J. M
                            M. K. Dowd, J. 化学热动力学。瓦
  cElroy,
  R. 巴蒂
                             格纳, J。化学热动力学。22
  诺,和
  1287 (
  1989)
1S<sup>4</sup> w. 杜舍
克, R。
克莱因拉
姆, 和
  827 (199
15SM. Jaeschke, A. E. Humphreys, P. 范·卡内格姆
  , M。福, R。詹森-范·罗斯马伦, 和Q. 佩尔雷
  , GERG技术专著
  4-GERG数据库的高精度压缩系数均值-
  《采购》,由欧洲研究集团编辑(VDIVerlag,
  杜塞尔多夫,1990年)。
156P. 内本达尔, 贝尔, 里赫3号。212 (VDI-
  Verlag, 杜塞尔多夫, 1990年)。
157X. Y. Guo, R. Kleinrahm, and W. 瓦格纳, 实验者
  系统Meβfehler vonBetriebsdichteaufnehmern
  -Meβ trecken-Meβ ergebnisse
  Meβergebnisse Meβergebnisse, 氩, 氖, 氖
  ,报告热器,鲁尔-
  波鸿大学,波鸿,1992年。
158L. A. Weber, Int. J. Thermophys. 13, 1011 (1992).
159R. 吉尔根, R。克莱因拉姆和瓦格纳, J。化学热动力学。24,1493
  (1992).
160K. Brachthauser, R. Kleinrahm, H-W。洛什, 和W. 瓦格纳, VDI
  的的。,河8号。371 (VDI-Verlag杜塞尔多夫,1993年)
160-A. Fenghour, W. A. Wakeham和J. T. R. Watson, JI。化学热dyn 27,219 (1995)
1600J. Klimcck, R. 克莱因拉姆, 和W. Wagner (私人通信
   (1995).
 160z. Gokmenoglu, Y. 熊, 和基兰, 我。化学雕刻数据41、354
   (1996)
 100uP. 诺瓦克石油公司, T. Tielkes, R. Kleinrahm和W. Wagner (未发
 表)。
 160ew. 瓦格纳, K. Brachthauser. R. 克莱因拉
   姆和H-W。损失, Int。J. 热生理学。
  16, 399 (1995).
161R. 克莱因拉姆和瓦格纳,北京大学,nr。92
  (VDI-Verlag, 迪塞尔多夫, 1986年)。
162F. G. Keyes和S. C. Collins, Proc. N. A. S. 18, 328 (1932)
163G. B. Kistiakowsky和W. W. Rice, J. 化学物理
学。7,5,281(1939).164s.R.de Groot和A。米歇
尔斯, 物理学14218(1948)。
165J.F. Masi和B. Petkof, J. Res. Natl. Bur. 站。48,179(1952).
166V. E. Schrock, Calorineric Determinaionof Conslanl-Presure
Specifc
  二氧化碳在高压和温度下的热量, Na-
  航空技术咨询委员会。注2838(1952)
167L.B. Koppel和J.M. Smith, J。化学雕刻数
据5437 (1960)。
168M. P. Vukalovich. V. V. Altunin和A. N. Gureev。
  Teploenergetica 11, 9,68(1964).
169M. P. Vukalovich和A. N. Gureev, 四能量学11, 8, 80(1964)。
170M. P. Vukalovich, V. V. Altunin和A. N. Gureev, 能量,
  7.58 (1965).
17s.L. Rivkin和V. M. Gukov, 四15, 10, 72 (1968)。
172v. V. Altunin和D. O. Kuznetsov, 四16, 8, 82
 (1969) 。173v. V. Altunin和D.O. Kuznetsov,
四倍能量学17.11,91 (1970) 17+。L.
Rivkinand V. M. Gukov, Teploenergetica
18, 10.82 (1971).
173v. V. Altunin和D. O. Kuznetsov,四能量学19.6.67(1972)。
176s. 塞古萨。T. 小林尊, Y。高桥和渡边k, 公牛
  。 JSME 23, 2055(1980).
17R. 狂饮作乐K. Bier和G. Maurer, Ber。邦森格斯。物理学。
Chem. 85.778
  (1981).
178G. 恩斯特和U. E. Hochberg。 J. 化学。Thermodyn. 21. 407 (1989).
179G. Emst. G. 毛雷尔和维德鲁赫。J. 化学。热动力学。21,53
  (1989).
```

179年,多丹,科克森和戈利尔。RevSci Instnm 65.10.

180H. W. Wooley. J. Natl. Bur。站。 52.289(1954).

3263 (1994).

18H. D. Baehr. H. 哈特曼, H-C。波尔和舒马克。热工 温度为6000° K, 编辑 byH. D. Baehr(施普林格-verlag, 柏林, 1968年)。 18-L. V. Gurvich. 特征物质的热力学性质 (瑙卡。莫斯克瓦1979年),卷。二、IL部分 18J. Chao,在TRC热模拟表Hydrocarbons,K. W. Marsh,协调编辑(德州农工大学,奥斯汀。1983). 卷数。罗马数字 7 184J. Chao(私人通信)(1986)。 18SR. E. Pennington和K. A. Kobe,J。化学Phys. 22. 1442(1954) 18A. 米歇尔斯和斯特里兰,物理学18. 613(1952) 187K. L. Amirkhanoy,N. G. Polikhronidi,和R. G. Batyrova。地球地质学17. 3. 70(1970)。

J. 物理学。化学裁判员数据,第25卷,第6期,1996年

2024年5月5日15

: 21

18K. 我是阿米尔哈诺夫和N. G. Polikhronidi, 时间报18. 12, 59 (1 971)。

189j. V. Sengers (私人通信) (1986)。

190J. A. Lipa, C. 爱德华兹,和M. J. Buckingham。物理学。发动机的旋转警报。25,1086(1970).

19iC. M. Herget, J. 化学物理学。8,537(1940)

12[我。Novikov和Y. S. Trelin,四倍能量学9,2,79(1962)。

19L L. 皮塔耶夫斯卡娅和A. V. Bilevich, 拉斯。J. 物理学。化学47, 126

(1973).

14w. 乐明。VDI Fortschrit-Ber, Reihe 19,Nr. 32(VDIVerlag, Disseldorf, 1989).

1J. 滋养, 《我们的生活》(科学院,1951年)。

196y. S. Trelin和E. P. Sheludiakov, J. E. TP. Let. 3. 2. 63 (1966) 1四R. W. Gammon, H. L. Swinney, 和H. Z. Cummins, 物理学。发动机的旋转让19,

1467 (1967).

18G. T. Feke, K. Frisch, 和E. F. Carome, 物理学家。发动机的旋转拉脱维亚的23, 1282 (1969)

1° K. Frtsch和E. E. Carome,流体在批评点附近的行为。NASA研究报告CR-1670(1970)。

200. aass和W. H. Barnes,项目。R. Soe. A 111,224(1926).

201M.P. Vokalovich和Y.E. asalov。Teploenergetica

11, 7, 78 (1964). 202M. P. Vukalovichand

Y. F. asalov, Teploenergetica 11, 11, 75 (1964).

20¹ D. Moler, B. E. Gammon . K. N. Marsh, K. R. Hall 和J. C. Holste, J。化学热动力学。 25, 1273 (1993)

克里格,北尔,6号。1 (VDI-Verlag,迪塞尔多夫,1964年)。 20H. D. Baehr, "内部能量的测量和谷物在CO₂ 临界点附近的注 入",在第四篇论文集上

热物理性质研讨会(ASME,纽约,1968年)。

20M. P. Vukalovich, v. V. Altunin, K. 布尔, D. S。拉斯卡佐夫和D。

厄特尔Teploenergetica

17.5.60(1970).伯内特,物理学。发

动机的旋转22,590(1923).

20ty. V. Altunin和A. N. Gureev, 四19.1,59 (1972)

20L. Cusco, S. E. MeBain, 和G. Savlle, J。化学热动力学。27,721 (1995).

200K. 谢弗, Z。物理学。化学B 36,85 (1937)

200K E. 麦考马克和W. G. 。 施耐德, J。 化学物理学。 18,1269 (1950),

2T. L. Cottrel和R. A. Hamilton,反式的。法拉第Soc。

51,156(1955).20w.C. Pfefferle, J.A.Goff, 和J.G.Miller, J。化学Phys.23.509 (1955).

J. 物理学。化学瑞特。数据,第25卷,第6期,1996年

w. 瓦格纳

```
23T.L.Cotrll, R.A.Hamilton, 和R.P.Taubinger, Trans。法拉达索克
52, 1310 (1956).
214p. 库克,可以。J. 化学, 35268 (1957)。
215A. P. Masia和M. D. Pena, 安娜。Fis. 奎姆。B
54.661(1958).216E.G. Butcher和R.S. Dadson, Proc。
R. Soc. 227, 448 (1963). 217IA. Huff和T. M. Reed, J。化学雕刻
数据8306(1963)。
武卡洛维奇和Y.E. Masalov, 四13,5.58(1966。219RS. Dadson,
E. J. Evans和J. H. King。过程物理学。社会92,115 (1967).
220N. L. Timoshenko, V. P. Kobelev, 和E. P. Kholodov, 四能量学
17. 9. 64 (1970).
22M. 韦克斯曼, H。戴维斯和J. R·黑斯廷斯, "一个新的决定因素"
在0°和150℃之间的二氧化碳温度系数及其可靠性的评价
热物理特性研讨会(ASME,纽约1973)。
222K. Ohgaki, N. 酒井岛, Y。佳野和片山, J。化学雕刻Jpn。 17.
545 (1984)
222B. V. Mallu, G. 和D. S. Viswanath, J。化学热动力
学。19.549(1987).
224B. V. Mallu, G. 和D. S. Visanath, J。化学热动力
学。21.989(1989).
2125R. 跨度, 北号, 6号。285 (VDI-Verlag。解卷。
226 j. M. H. Levelt Sengers, W. L. Greer, 和J. V. Sengers, J。物理学家。化学
裁判员数据5.1(1976)。
2271E. 弗斯卡费尔特。Com。物理学。实验室莱顿28(1896)。
20K G. 威尔逊, 物理。发动机的旋转4,3174(1974).
229p. 希尔, J。物理学。化学裁判员数据19.1233(1990)。
                                                      24
20w. 瓦格纳, N。Kurzeja, andB. 皮佩贝克,未来相平衡79。
151 (1992).
                                                       5
20H. T. Haselton, W. E. Sharp和R. C. Newton, 地质。物品让5,
                                                      月
753 (1978).
222w. I. 内利斯。A.C. Mitchell, F.H. Ree, N.C. Holmes, 和R.J. Trainor。日
J. 化学。物理学。95,5268(1991).
20G. L. Schon, 高总统。Res. 6. 187 (1991).
24E.H. Brown, Bul. Int。在。Refrig. 1.169 (1960).
莫里,论文,卡尔努赫(1963)。
26D. 斯特劳布论文。TH Karlsruhe(
1964) 。
29A. 沙伯,论文。TH Karlsuthe (1965). 238p. G.
米勒, 印第安纳州。雕刻化学Fund. 9.585
(1970).1° K.M. deReuck (私人通讯) (1991年)
```