CS 547: Foundation of Computer Security

S. Tripathy IIT Patna

Previous Class

- Access Control
 - Discretionary Access Control

Present class

- Access Control
 - Mandatory Access Control
 - Role-Based Access Control

Mandatory Access Control (MAC)

- Defined by three major properties:
 - Administratively-defined security policy
 - Control over all subjects (process) and objects (files, sockets, network interfaces)
 - Decisions based on all security-relevant info

• MAC

- by assigning security levels to users and objects'
- Access to an object is granted only if the security levels of the subject and the object satisfy certain constraints.
- The MAC pattern is also known as multilevel security model and lattice-based access control.

Mandatory Access Control (MAC)

.

Bell-LaPadula Model: Multi-level Security

- Introduced in 1973
- Air Force was concerned with security in timesharing systems
 - Many OS bugs
 - Accidental misuse

- · Main Objective:
 - Enable one to formally show that a computer system can securely process classified information

The BLP Security Policy

- A state is secure if it satisfies
 - Simple Security Condition (no read up):
 - S can read O iff $L_m(S) \ge L(O)$
 - The Star Property (no write down): for any S that is not trusted
 - S can read O iff $L_c(S) \ge L(O)$ (no read up)
 - S can write O iff $L_c(S) \leq L(O)$ (no write down)
 - Discretionary-security property
 - every access is allowed by the access matrix
- A system is secure if and only if every reachable state is secure.

Categories and Need to Know Principle

- Expand the model by adding a set of categories.
 - Each category describe a kind of information.
 - These category arise from the "need to know" principle
 - "no subject should be able to read objects unless reading them is necessary for that subject to perform its function."
- Example: three categories: NUC, EUR, US.
- Each security level and category form a security level or compartment.
- Subjects have clearance at (are cleared into, or are in) a security level.
- Objects are at the level of (or are in) a security level.

Security Lattice

- William may be cleared into level (5, {EUR})
- George into level (TS, {NUC, US}).
- A document may be classified as (C, {EUR})
- Someone with clearance at (TS, {NUC, US}) will be denied access to document with category EUR.

Dominate (dom) Relation

- The security level (L, C) dominates the security level (L', C') if and only if $L' \leq L$ and $C' \subseteq C$
- $\neg Dom \rightarrow dominate relation is false.$
- Geroge is cleared into security level (S, {NUC, EUR})
- DocA is classified as (C, {NUC})
- DocB is classified as (S, {EUR, US})
- DocC is classified as (S, {EUR})
- George dom DocA
- George ¬ dom DocB
- George dom DocC

New Security Condition and *-Property

- Let C(S) be the category set of subject S.
- Let C(O) be the category set of object O.
- Simple Security Condition (not read up):
 S can read O if and only if S dom O and S has discretionary read access to O.
- *-Property (not write down):
 S can write to O if and only if O dom S and
 S has discretionary write access to O.
- Basic Security Theorem: Let Σ be a system with secure initial state σ_0 Let T be the set of state transformations. If every element of T preserves the simple security condition, preliminary version, and the *-property, preliminary version, Then every state σ_i , $i \ge 0$, is secure.

Allow Write Down?

- Bell-LaPadula allows higher-level subject to write into lower level object that low level subject can read.
- A subject has a maximum security level and a current security level.
 - maximum security level must dominate current security level.
- A subject may (effectively) decrease its security level from the maximum in order to communicate with entities at lower security levels.
- Colonel's maximum security level is (5, {NUC, EUR}).
 She changes her current security level to (5, {EUR}).
 Now she can create document at Major is clearance level (5, {EUR}).

Limitations with BLP

 Deal only with confidentiality, does not deal with integrity at all

Addressed by integrity models (such as Biba, Clark-Wilson)

 Does not deal with information flow through covert channels

What is integrity?

Attempt 1: Critical data do not change.

- Attempt 2: Critical data changed only in "correct ways"
 - E.g., in DB, integrity constraints are used for consistency
- Attempt 3: Critical data changed only through certain "trusted programs"

 Attempt 4: Critical data changed only as intended by authorized users.

The Biba Model

 Kenneth J. Biba: "Integrity Considerations for Secure Computer Systems", MTR-3153, The Mitre Corporation, April 1977.

 Motivated by the fact that BLP does not deal with integrity

Biba: Integrity Levels

- Each subject (program) has an integrity level
- Each object has an integrity level
- Integrity levels are totally ordered

- Integrity levels different from security levels in confidentiality protection
 - a highly sensitive data may have low integrity

Five Mandatory Policies in Biba

- Strict integrity policy
- Subject low-water mark policy
- Object low-water mark policy
- Low-water mark Integrity audit policy
- Ring policy

Strict Integrity Policy (BLP reversed)

- Rules:
 - \blacksquare s can read o iff $i(s) \le i(o)$
 - no read down
 - stops indirect sabotage by contaminated data
 - \blacksquare s can write to o iff $i(s) \ge i(o)$
 - no write up
 - stops directly malicious modification
- Fixed integrity levels

• Thanks