ENGG 5501: Foundations of Optimization

2018–19 First Term

Homework Set 1

Instructor: Anthony Man-Cho So Due: September 19, 2018

INSTRUCTIONS: Problems 1 and 2 are compulsory. The remaining problems are for practice and will not be graded.

Problem 1 (10pts). In Section 2.2 of Handout 1 we motivated the following sparse data fitting problem:

minimize
$$||Ax - b||_2^2$$

subject to $||x||_0 \le K$, $x \in \mathbb{R}^n$. (S)

Suppose we are given a constant M > 0 such that $||x^*||_{\infty} \leq M$ for some optimal solution x^* to (S). Give a formulation of problem (S) that involves only linear and binary constraints. Justify your answer.

Problem 2 (20pts).

- (a) (10pts). Let $S \subseteq \mathbb{R}$ be a set with the property that $(x+y)/2 \in S$ whenever $x, y \in S$. Is it true that S must be convex? Justify your answer.
- (b) **(10pts).** Show that the set $S = \{x \in \mathbb{R}^n_+ : x_1 x_2 \cdots x_n \ge 1\}$ is convex. You may use the fact that for any $a, b \ge 0$ and $0 \le \theta \le 1$, we have $a^{\theta} b^{1-\theta} \le \theta a + (1-\theta)b$.

Problem 3. Let $S = \{x \in \mathbb{R}^n : x^T A x + b^T x + c \leq 0\}$, where $A \in \mathcal{S}^n$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$ are given.

- (a) Show that S is convex if $A \succeq \mathbf{0}$. Is the converse true? Explain.
- (b) Let $H = \{x \in \mathbb{R}^n : g^T x + h = 0\}$, where $g \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $h \in \mathbb{R}$. Show that $S \cap H$ is convex if $A + \lambda g g^T \succeq \mathbf{0}$ for some $\lambda \in \mathbb{R}$.

Problem 4.

- (a) Consider the hyperplane $H(s,c) = \{x \in \mathbb{R}^n : s^T x = c\}$, where $s \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $c \in \mathbb{R}$ are given. Let $x \in \mathbb{R}^n$ be arbitrary. Find a formula for $\Pi_{H(s,c)}(x)$ in terms of s and c and prove its correctness.
- (b) Consider the space S^n of $n \times n$ real symmetric matrices equipped with the inner product \bullet , where

$$A \bullet B = \sum_{i,j=1}^{n} A_{ij} B_{ij}$$
 for any $A, B \in \mathcal{S}^n$.

Let $A \in \mathcal{S}^n$ be arbitrary and $A = U\Lambda U^T$ be its spectral decomposition. Prove that $\Pi_{\mathcal{S}^n_+}(A) = U\Lambda^+U^T$, where Λ^+ is the $n \times n$ diagonal matrix given by

$$\Lambda_{ii}^+ = \max\{\Lambda_{ii}, 0\} \quad \text{for } i = 1, \dots, n.$$