Forms with real coefficients and differing degrees

Simon L. Rydin Myerson 2 September 2024

Warwick Mathematics Institute

Download these slides:

maths.fan/WiMGo.pdf

Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.

- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.

Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\} \le (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}} B^{s-\sum d_i}$.

Notation (density of solutions)

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ will be a system of R homogenous forms of degrees d_i in $s > \sum d_i$ variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size B, where B is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s : \vec{f}(\vec{x}) = \vec{0}\} \le (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}} B^{s-\sum d_i}$.
- But: if $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_f(B) = 1$ as $\vec{x} = \vec{0}$ "mod 2^{∞} ".
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Predict

$$egin{aligned} N_{ec{f}}(B)-1 &= (1+o(1))(2B)^s \mathbb{P}[ec{f}(ec{X}) \in [0,1)^R] \ & \cdot \prod_{
ho} \lim_{N o \infty}
ho^{NR} \mathbb{P}[
ho^N \mid ec{f}(ec{X}_
ho)]. \end{aligned}$$

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}} B^{s-\sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = \frac{(1 + o(1))(2B)^{s} \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^{R}] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^{N} \mid \vec{f}(\vec{X}_{p})].$$

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a=O(b) iff $a\ll b$ iff |a|< Cb for some constant C. Also write $a\asymp b$ iff $a\ll b\ll a$. And put $a\sim b$ iff $a/b\to 1$ as $B\to \infty$. And put a=o(b) iff $a/b\to 0$ as $B\to \infty$.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}} B^{s-\sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = \frac{(1 + o(1))(2B)^{s} \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^{R}] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^{N} \mid \vec{f}(\vec{X}_{p})].$$

• This is the *quantitative Hasse principle*; the *Manin-Peyre conjecture* is a more sophisticated version needed for $s \le 2 \sum d_i$ or \vec{f} singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a=O(b) iff $a\ll b$ iff |a|< Cb for some constant C. Also write $a\asymp b$ iff $a\ll b\ll a$. And put $a\sim b$ iff $a/b\to 1$ as $B\to \infty$. And put a=o(b) iff $a/b\to 0$ as $B\to \infty$.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B,B]^s$. Maybe $N_{\vec{f}}(B) \sim (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0,1)^R]$, which is typically $\times c_{\vec{f}}B^{s-\sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 1$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

$$N_{\vec{f}}(B) = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_{p} \lim_{N \to \infty} p^{NR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$$

• This is the quantitative Hasse principle; the Manin-Peyre conjecture is a more sophisticated version needed for $s \le 2 \sum d_i$ or \vec{f} singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff $a \ll b$ iff |a| < Cb for some constant C. Also write $a \asymp b$ iff $a \ll b \ll a$. And put $a \sim b$ iff $a/b \to 1$ as $B \to \infty$. And put a = o(b) iff $a/b \to 0$ as $B \to \infty$.

The circle method

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- Set $N_{\vec{f}}(B) := \# \{ \vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \le P \}, \, \vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i.$

$$N_{\vec{f}}(P) = \int_0^1 \cdots \int_0^1 \sum_{\substack{\vec{x} \in \mathbb{Z}^n \\ \|\vec{x}\|_{\infty} \le B}} e^{2\pi i \vec{t} \cdot \vec{f}(\vec{x})} d\vec{t}$$

The Birch-Davenport circle method

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \leq B\}.$
- \vec{f} is smooth if $\vec{f}=0$ defines a smooth s-R dimensional complex manifold in \mathbb{C}^s away from the origin.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Notation

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\|_{\infty} \leq B\}.$
- \vec{f} is smooth if $\vec{f} = 0$ defines a smooth s R dimensional complex manifold in \mathbb{C}^s away from the origin.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Hope for s > 2dR. Much work on the range for s if R = 1. For $R \ge 2$:

- (d, R, s) = (2, 2, 11) by Munshi (2015) s = 10, Li-RM-Vishe, soon!
- $d = 2, s \ge 9R$, RM (2018)
- $d = 3, s \ge 25R$, RM (2019)
- (d, R, s) = (3, 2, 39) by Northey and Vishe (2024)

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim cB^{s-dR}$ as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1=2, d_2=3, s\geq 29$.
- If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning-Dietmann-Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).

Theorem (RM 2024)

$$s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$$
.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s} \vec{f}(\vec{x}) = \vec{0}$ 1.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning-Dietmann-Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If $d_1, \ldots, d_R \le d$, Browning–Heath-Brown (2017) handle around $d^3 R^2 2^D$ variables, improving on Schmidt (1985).

Theorem (RM 2024)

$$s \ge R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$$
.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim cB^{s-dR}$$
 as above if \vec{f} is smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

• If $d_1, \ldots, d_R \leq d$, Browning–Heath-Brown (2017) handle around $d^3R^22^D$ variables, improving on Schmidt (1985).

Theorem (RM 2024)

$$s \ge R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$$
.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

Key ideas: *p*-adic repulsion and a way to extract lower-order terms in exponential sums.

Forms with real coefficients

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \# \{ \vec{x} \in \mathbb{Z}^s : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \|\vec{x}\|_{\infty} \le B \}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- If \vec{g} is nonsingular and the number of variables s is very large, can we estimate M(B)?
- In the case R=1, d=2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

Forms with real coefficients

Notation

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \|\vec{x}\|_{\infty} \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- If \vec{g} is nonsingular and the number of variables s is very large, can we estimate M(B)?
- In the case R = 1, d = 2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a multiple of a form with rational coefficients.

If $s \geq 5$, then $M(B) \sim \nu B^{s-2}$ as $B \to \infty$ for some $\nu \geq 0$.

If \vec{X} is a uniform RV on $[-B, B]^s$, then $\nu B^{s-2} \sim B^s \mathbb{P}[g(\vec{X}) \in [0, 1)]$.

Notation

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \|\vec{x}\|_{\infty} \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- If \vec{g} is nonsingular and the number of variables s is very large, can we estimate M(B)?
- In the case R = 1, d = 2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a multiple of a form with rational coefficients.

If $s \geq 5$, then $M(B) \sim \nu B^{s-2}$ as $B \to \infty$ for some $\nu \geq 0$.

If \vec{X} is a uniform RV on $[-B, B]^s$, then $\nu B^{s-2} \sim B^s \mathbb{P}[g(\vec{X}) \in [0, 1)]$.

Quadratic forms with real coefficients

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \ 0 < \|\vec{x}\|_{\infty} \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Bentkus and Götze (1999) used the circle method to give a new proof of EMM's result $M(B) \sim \nu B^{s-2}$ when $s \geq 9$.

Quadratic forms with real coefficients

Notation

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \ 0 < \|\vec{x}\|_{\infty} \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Bentkus and Götze (1999) used the circle method to give a new proof of EMM's result $M(B) \sim \nu B^{s-2}$ when $s \geq 9$.

Theorem (Müller, 2008, slightly rephrased)

If $d_1 = \cdots = d_R = 2$, \vec{g} is nonsingular and irrational, and $s \ge 9R$, then we have $M(B) \sim \nu B^{s-2}$ as $P \to \infty$ for some $\nu \ge 0$.

• Buterus-Götze-Hille-Margulis (2022): $R=1, d=2, s\geq 5$ by the circle method.

Diophantine inequalities: Higher degrees

Notation

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^n : \|\vec{g}(\vec{x})\|_{\infty} \le 1, \ 0 < \|\vec{x}\|_{\infty} \le B\}.$
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Asymptotics for $d \ge 3$? Diagonal case: Freeman ('03), Wooley ('03)
- Schmidt (1980) gave a lower bound for M(B) when s is (very) large.
- Chow (2014) showed that $||g(\vec{x})||_{\infty} \le 1$ has a nontrivial integral solution when g is a cubic form and $n \ge 358~823~708$.

Theorem (RM 2024)

Let $d_i \leq d$. Suppose that \vec{g} is nonsingular and irrational, and that

$$s \ge R + \sum_{i=1}^{R} d_i \max\{d_i - 2, 1\} 2^{d_i} 3^{2d(d-d_i)}.$$

Then $M(B) \sim \nu B^{n-\sum d_i}$ as $P \to \infty$ for $\nu = \lim_{Z \to \infty} B^{\sum d_i} \mathbb{P}[\vec{g}(\vec{X}) \in [0,1)^R]$.

Accessing the lower-degree part

Notation

- $e(t) = 2^{2\pi i t}$, $\Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) f(\vec{x})$, $\Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$
- $f^{[k]}$ is the degree k homogeneous part of a polynomial f
- NB $\Delta_{\vec{h}_1,...,\vec{h}_k} f^{[k]}$ is a multilinear form in the \vec{h}_i , independent of \vec{x}

Proposition

Given $w \in C_c^{\infty}(\mathbb{R}^s)$ there is $\tilde{w} \in C_c^{\infty}(\mathbb{R}^{ks})$ as follows. For any $f \in \mathbb{R}[\vec{x}]$ of degree $\leq d$, and any 1 < k < d,

$$\begin{split} \left| \sum_{\vec{x} \in \mathbb{Z}^s} \frac{1}{B^s} w \left(\frac{\vec{x}}{B} \right) e \left(f(\vec{x}) \right) \right|^{\left(2^{d-1} + 1 \right) \cdots \left(2^k + 1 \right) 2^{k-1} 3^{(k+1)(d-k-1)+1}} \\ & \leq B^{-ks} \sum_{\vec{h}_1, \dots, \vec{h}_{k-1} \in \mathbb{Z}^s} \left| \sum_{\vec{h}_k \in \mathbb{Z}^s} \tilde{w} \left(\frac{\vec{h}_1}{B}, \dots, \frac{\vec{h}_k}{B} \right) e \left(\Delta_{\vec{h}_1, \dots, \vec{h}_k} f^{[k]} \right) \right| \end{split}$$

Lemma

Given $w \in C_c^{\infty}(\mathbb{R}^s)$ there is $\tilde{w} \in C_c^{\infty}(\mathbb{R}^{(d+1)s})$ as follows. For any $f \in \mathbb{R}[\vec{x}]$ of degree $\leq d$,

$$\left| \sum_{\vec{x} \in \mathbb{Z}^s} \frac{1}{B^s} w \left(\frac{\vec{x}}{B} \right) e \left(f(\vec{x}) \right) \right|^{2^{d-1} + 1}$$

$$\leq \left| \sum_{\vec{x}_1, \vec{x}_d} \sum_{\vec{x}} \tilde{w} \left(\frac{\vec{x}_d}{B}, \dots, \frac{\vec{x}_1}{B}, \frac{\vec{x}}{B} \right) e \left(f^{[< d]} + F \left(\vec{x}; \vec{x}_1, \dots, \vec{x}_d \right) \right) \right|$$

where $F = f^{[d]} - \Delta_{\vec{x} + \vec{x}_1, \dots, \vec{x} + \vec{x}_d} f$ has degree < d in \vec{x} and ≤ 1 in each \vec{x}_i .

Lemma

For $L \in GL_s(\mathbb{R})$, $A := \{ \|\vec{x}\|_{\infty} \leq B : \|L\vec{x} - \vec{u}\|_{\infty} \leq 1/B \text{ some } \vec{u} \in \mathbb{Z}^s \}$. Given $w \in C_c^{\infty}(\mathbb{R}^{2s})$ there are $\tilde{w}_{\vec{c}}^{L,B} \in C_c^{\infty}(\mathbb{R}^s)$, whose values, support and derivatives are bounded in terms of w only, such that for all real g,

$$\left| \sum_{\vec{x}, \vec{y}} w \left(\frac{\vec{x}}{B}, \frac{\vec{y}}{B} \right) e \left(\vec{y} \cdot L \vec{x} + g(\vec{x}) \right) \right|^{3} \leq \sum_{\vec{c} \in A - A} \sum_{\vec{x}} \tilde{w}_{\vec{c}}^{L, B} \left(\frac{\vec{x}}{B} \right) e \left(\Delta_{\vec{c}} g(\vec{x}) \right).$$