Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

1 – 1 de 8/)

Notação

- ► Conjunto: coleção não ordenada de elementos.
- $ightharpoonup S = \{x \mid P(x)\}\ (P \text{ \'e um predicado un\'ario}).$
- Conjuntos padrões:
 - \mathbb{N} : inteiros não negativos $(0 \in \mathbb{N})$.
 - \mathbb{Z} : inteiros.
 - \mathbb{Q} : racionais. \mathbb{R} : reais.
 - C: complexos.
 - \varnothing : conjunto vazio.

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos (2 - 10 de 87)

Notação

INF/UFG - LFA 2021/1 - H. Longo

- ▶ $A \subseteq B \equiv A \subset B \equiv A \subseteq B$ e $A \neq B$: subconjunto próprio.
- $A = B \Rightarrow A \subseteq B \in B \subseteq A$.
- ▶ Para qualquer conjunto $S \neq \emptyset$:
 - $S \subseteq S$: subconjunto impróprio.
 - $\emptyset \subset S$: \emptyset é subconjunto próprio de qualquer conjunto S.
- \triangleright P(S): conjunto das partes de S.
 - conjunto potência de S.
 - ▶ todos os subconjuntos de *S* .
 - $|P(S)| = 2^{|S|}$. (Exercício: Provar esta igualdade.)

Operações em conjuntos

- U : conjunto universo.
- $ightharpoonup A B = \{x \in \mathbb{U} \mid x \in A \text{ e } x \notin B\}.$
- $A \cap B = \{ x \in \mathbb{U} \mid x \in A \text{ e } x \in B \}.$
- $A \cup B = \{x \in \mathbb{U} \mid x \in A \text{ ou } x \in B\}.$
- $ightharpoonup \overline{A}$: complemento do conjunto A.
 - $\overline{A} = \{x \mid x \in \mathbb{U} \text{ e } x \notin A\}.$
 - $\overline{A} = A' = A^{c} = C_{\mathbb{U}}^{A}$.
 - $ightharpoonup \overline{A} \cap A = \emptyset \ \ \ \ \overline{A} \cup A = \mathbb{U}.$

 - $ightharpoonup
 binom{B}{A}$ quando $B \subseteq A$.

Produto cartesiano

 $A \times B = \{(a,b) \mid a \in A \in b \in B\}$

$$A_i = A, i = 1, \dots, n \implies \bigwedge_{i=1}^n A_i = A^n$$

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos (5 – 10 de 87)

Propriedades

- $ightharpoonup A \subseteq (A \cup B)$ e $B \subseteq (A \cup B)$.
- $ightharpoonup A \subseteq D \in B \subseteq D \Rightarrow (A \cup B) \subseteq D.$
 - \triangleright $D \subseteq A \in D \subseteq B \Rightarrow D \subseteq (A \cap B).$
- $|A \cup B| \leq |A| + |B|.$
- $|A \cap B| \leq \min\{|A|, |B|\}.$
- $|A B| \leq |A|$.
- $|A \times B| \leq |A|.|B|.$

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos (6 – 10 de 87)

Princípio da inclusão e da exclusão

- $|A \cup B| = |A| + |B| |A \cap B|$.
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|.$

$$|A \cup B \cup C| = |A| + |B| + |C| = |A \cap B| = |A \cap C| = \begin{cases} \sum_{i=1}^{n} |A_i| & - \\ \sum_{1 \le i < j \le n} |A_i \cap A_j| & + \\ \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| & - \\ \vdots & + \\ (-1)^{n+1} |A_1 \cap \cdots \cap A_n|. \end{cases}$$

Leis da álgebra de conjuntos

- Comutativas:
 - $ightharpoonup A \cup B = B \cup A.$
 - $\qquad \qquad A\cap B=B\cap A.$
- Associativas:
 - $(A \cup B) \cup C = A \cup (B \cup C).$
 - $(A \cap B) \cap C = A \cup (B \cap C).$
- Distributivas:
 - $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$
 - $(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$
- Identidades:
 - $(A \cup \emptyset) = A$.
 - $ightharpoonup (A \cup \mathbb{U}) = \mathbb{U}.$
 - $(A \cap \emptyset) = \emptyset.$
 - $(A \cap \mathbb{U}) = A$.

Leis da álgebra de conjuntos

- Idempotentes:
 - $\blacktriangleright (A \cup A) = A.$
 - $(A \cap A) = A.$
- ▶ Complementação:
 - $(A \cup A^{c}) = \mathbb{U}.$
 - $(A \cap A^{c}) = \emptyset.$
 - ightharpoonup $\mathbb{U}^{c}=\varnothing$.
 - \triangleright $\emptyset^{c} = \mathbb{U}$.
 - ▶ $(A^{c})^{c} = A$.
- ▶ DeMorgan:
 - $(A \cup B)^{c} = A^{c} \cap B^{c}.$
 - $(A \cap B)^{c} = A^{c} \cup B^{c}.$
 - ► $A (B \cup C) = (A B) \cap (A C)$.
 - $\blacktriangleright A (B \cap C) = (A B) \cup (A C).$

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos (9 – 10 de 87)

Partição de um conjunto

- $\blacksquare \Pi = \{A_i \subset A \mid i \in I\}.$
 - ► *I* : conjunto de índices (não necessariamente finito).
 - ► *A* : conjunto qualquer.
- $ightharpoonup \Pi$ é uma partição de A se:
 - $ightharpoonup A_i \cap A_j = \emptyset, \ \forall \ i \neq j, \ i, j \in I.$
 - $\bigcup_{i\in I} A_i = A.$

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos (10 - 10 de 87

Relação binária

- $ightharpoonup R \subseteq A \times A$:
 - $ightharpoonup a R b \Leftrightarrow (a,b) \in R.$
- $R_1 = \{(x, y) \mid x = y + 1\} \subseteq \mathbb{N} \times \mathbb{N}.$
- $ightharpoonup R_2 = \{(x,y) \mid x+y \text{ \'e impar}\} \subseteq \mathbb{N} \times \mathbb{N}.$
- $ightharpoonup R_3 = \{(x,y) \mid x \cdot y \text{ \'e par}\} \subseteq \mathbb{N} \times \mathbb{N}.$

Tipos de relação

- ightharpoonup A, B: conjuntos finitos.
- $ightharpoonup R = \{(a, b) \mid a \in A \in b \in B\}:$
 - um-para-um (injetiva, biunívoca);
 - um-para-vários;
 - vários-para-um (unívoca); e
 - vários-para-vários.
- Relação inversa:
 - $ightharpoonup R = \{(a, b) \mid a \in A \in b \in B\}.$
 - $ightharpoonup R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}.$

Operações com relações

- ▶ R_1, R_2 : relações definidas no conjunto finito $S \neq \emptyset$.
- $\blacktriangleright x(R_1 \cup R_2)y \Leftrightarrow xR_1y \text{ ou } xR_2y.$
- $\blacktriangleright x(R_1 \cap R_2)y \Leftrightarrow xR_1y \in xR_2y.$
- $\blacktriangleright x(R_1^c)y \Leftrightarrow xR_1y \ ((x,y) \notin R_1).$

Propriedades

ightharpoonup R: relação definida no conjunto finito $S \neq \emptyset$.

Reflexiva : xRx, $\forall x \in S$.

Irreflexiva: x R x, $\forall x \in S ((x, x) \notin R)$.

Simétrica : $xRy \Rightarrow yRx, \forall x, y \in S$.

Antissimétrica : $xRy \in yRx \Rightarrow x = y, \forall x, y \in S$.

Antissimétrica : $x \neq y \Rightarrow x R y$ ou y R x.

Transitiva : $xRy \in yRz \Rightarrow xRz, \forall x, y, z \in S$.

INF/UFG - LFA 2021/1 - H. Longo Relações e funções (13 - 26 de 87) INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (14 - 26 de 87)

Fecho de uma relação

- $ightharpoonup R, R^*$: relações definidas no conjunto finito $S \neq \emptyset$.
- $ightharpoonup R^*$ é o fecho de *R* em relação à propriedade *P* se:
 - $ightharpoonup R^*$ tem a propriedade P;
 - $ightharpoonup R \subseteq R^*$;
 - $ightharpoonup R^*$ é o menor conjunto que satisfaz os itens anteriores;
 - $ightharpoonup R^*$ é subconjunto de qualquer outra relação em S que inclui R e tem a propriedade P.

Fecho de uma relação

Exemplo 1.1

- \triangleright $S = \{1, 2, 3\}.$
- $ightharpoonup R = \{(1,1), (1,2), (1,3), (3,1), (2,3)\}.$
 - Fecho reflexivo: $\{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (2, 2), (3, 3)\}.$
 - Fecho simétrico: $\{(1,1),(1,2),(1,3),(3,1),(2,3),(2,1),(3,2)\}.$
 - Fecho transitivo: $\{(1, 1), (1, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (2, 1), (2, 2)\}.$

Ordem parcial

- ightharpoonup R: relação definida no conjunto finito $S \neq \emptyset$.
- ▶ *R* é de ordem parcial se é reflexiva, antissimétrica e transitiva:
 - $\forall x \in S \Rightarrow xRx.$
 - $\forall x, y \in S, xRy \in yRx \Rightarrow x = y.$
 - $\forall x, y, z \in S, xRy \in yRz \Rightarrow xRz.$
- $x \le y(R) \equiv (x, y) \in R$:
 - x precede y na relação R.

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (17 - 26 de 87)

Ordem total

- ightharpoonup R: relação definida no conjunto finito $S \neq \emptyset$.
- R é de ordem total se:
 - R é de ordem parcial.
 - $\forall x, y \in S \Rightarrow x \leq y(R) \text{ ou } y \leq x(R).$

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (18 - 26 de 87)

Relação de equivalência

- ightharpoonup R: relação definida no conjunto finito $S \neq \emptyset$.
- ► *R* é relação de equivalência se e somente se é reflexiva, simétrica e transitiva:
 - $\forall x \in S \Rightarrow xRx.$
 - $\forall x, y \in S, xRy \Rightarrow yRx.$
 - \lor $\forall x, y, z \in S$, $xRy \in yRz \Rightarrow xRz$.
- $ightharpoonup R = \{(x, y) \in \mathbb{N} \times \mathbb{N} \mid x y = 3 \cdot k \text{ para algum } k \in \mathbb{Z}\}.$

Classe de equivalência

- ightharpoonup R: relação definida no conjunto finito $S \neq \emptyset$.
- ▶ $\overline{a} = \{x \in S \mid xRa \text{ e } a \in S\}$: classe de equivalência módulo R determinada por a.
- ightharpoonup S/R : conjunto das classes de equivalência módulo R.

Teorema 1.2

ightharpoonup Se R é relação de equivalência sobre o conjunto S, então S/R é partição de S.

Teorema 1.3

Se Π é uma partição do conjunto S, então existe uma relação R de equivalência sobre S, de modo que $S/R = \Pi$.

Relação n-ária

- \triangleright S_1, S_2, \dots, S_n conjuntos.
- ▶ Relação *n*-ária em S_1, S_2, \dots, S_n :
 - Subconjunto de $S_1 \times S_2 \times \cdots \times S_n$.
- ► Relação unária *R* em um conjunto *S* :
 - $ightharpoonup R \subset S$.
 - $x \in S$ satisfaz R se e somente se $x \in R$.
- ► Relação *n*-ária *R* em um conjunto *S* :
 - $ightharpoonup R \subset S^n$.
 - Conjunto de *n*-uplas ordenadas de elementos de *S* .

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (21 - 26 de 87)

Funções

Definição

- ▶ $f: ARB \subset A \times B$: função de um conjunto A no conjunto B.
 - Cada elemento de A aparece exatamente uma vez como primeiro componente de um par ordenado de f.
 - Método para associar cada $a \in A$ a um único $b \in B$. Logo, se $(a,b),(a,c)\in f\Rightarrow b=c.$

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (22 - 26 de 87)

Funções

Notação

- $f: ARB \ (f: A \rightarrow B):$
 - A é o domínio (D(f)) e B o contradomínio de f.
 - $(a,b) \in f \Rightarrow f(a) = b.$
 - \triangleright b é a imagem de a por f.
 - ightharpoonup a é a pré-imagem de b por f.
- ▶ Uma relação R de A em B é uma função $f: A \rightarrow B$ se:
 - \triangleright D(f) = A;
 - ▶ Dado $a \in D(f)$, é único o elemento $b \in B$ tal que $(a,b) \in f$.

Funções

Propriedades

- ▶ Uma função $f: A \rightarrow B$ pode ser:
 - ▶ Injetora: $\forall b \in B$, \exists no máximo um $a \in A$ tal que f(a) = b.
 - ▶ Sobrejetora: $\forall b \in B$, \exists pelo menos um $a \in A$ tal que f(a) = b.
 - ▶ Bijetora: $\forall b \in B$, \exists exatamente um $a \in A$ tal que f(a) = b.

Funções

Função identidade

▶ $f: A \to A$ é identidade (i_A) se f(a) = a, $\forall a \in A$.

Função composta

- $ightharpoonup f: A \rightarrow B.$
- $\triangleright g: B \to C$.
- $\triangleright g \circ f : A \to C.$
- $(g \circ f)(a) = g(f(a)).$

Teorema 1.4

▶ Se $f: A \to B$ e $g: B \to C$ são bijeções, então $(g \circ f)$ é uma bijeção.

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (25 - 26 de 87)

Funções

Função inversa

▶ Seja $f: A \to B$. Se existir $g: B \to A$ tal que $(g \circ f) = i_A$ e $(f \circ g) = i_B$, $g \in G$ chamada de inversa de f (denotada por f^{-1}).

Teorema 1.5

▶ Seja $f: A \to B$. f é uma bijeção se e somente se f^{-1} existe.

INF/UFG - LFA 2021/1 - H. Longo

Relações e funções (26 - 26 de 87

Conjuntos equinumerosos

- ightharpoonup A, B: conjuntos quaisquer.
- ▶ $A \in B$ são equinumerosos se existir uma bijeção $f : A \rightarrow B$.
 - ▶ Se existe $f: A \to B$, então existe $f^{-1}: A \to B$.
 - ► Equinumerosidade é uma relação de equivalência.

Conjuntos finitos e infinitos

- Um conjunto é:
 - Finito se ele é equinumeroso com $\{1, 2, ..., n\}$, para algum $n \in \mathbb{N}$.
 - ► Infinito se ele não é finito!!!
 - ► Contavelmente infinito se é equinumeroso com N.

- Georg Cantor, 1873.
- Problema da medição do tamanho de conjuntos infinitos.
 - Dados dois conjuntos infinitos, os dois são de mesmo tamanho ou um deles é maior que o outro?
 - Ex: $P = \{n = 2 \cdot k \mid k \in \mathbb{Z}^+\} \text{ e } S = \{s \mid s \in \{0, 1\}^*\}.$
- ► Cantor ⇒ dois conjuntos finitos têm o mesmo tamanho se os elementos de um conjunto podem ser emparelhados com os elementos do outros conjunto.
 - Método compara os tamanhos sem recorrer à contagem dos elementos.
 - Ideia pode ser estendida para conjuntos infinitos.

Definição 1.6

 \blacktriangleright Um conjunto \mathcal{A} é contável se é finito ou tem o mesmo tamanho que o conjunto \mathbb{N} .

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (29 - 41 de 87

Método da diagonalização

Exemplo 1.7

- ightharpoonup $\mathbb{N} = \{0, 1, 2, 3, \dots\}.$
- $P = \{2, 4, 6, \dots\}.$
- ▶ Intuitivamente \mathcal{P} parece ser menor que \mathbb{N} ($\mathcal{P} \subset \mathbb{N}$)!
- ightharpoonup Segundo a definição de Cantor, $\mathbb N$ e $\mathcal P$ tem o mesmo tamanho.
- ▶ A função $f(n) = 2 \cdot n + 2$ faz o mapeamento de \mathbb{N} para \mathcal{P} :

n	f(n)
0	2
1	4
2	6
:	:

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (30 - 41 de 87

Método da diagonalização

Exemplo 1.8

- $\mathbb{N}^* = \{1, 2, 3, \dots\}.$
- ▶ $\mathbb{Q}_{+}^{*} = \{ \frac{m}{n} \mid m, n \in \mathbb{N} \}.$
- ▶ Intuitivamente \mathbb{Q}_+^* parece ser muito maior que \mathbb{N}^* !
- ▶ Segundo a definição de Cantor, \mathbb{N}^* e \mathbb{Q}_+^* têm o mesmo tamanho.
- ▶ Listar todos os elementos de \mathbb{Q}_+^* e corresponder com \mathbb{N}^* .

 - ▶ $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots, \frac{3}{1}, \frac{3}{2}, \dots$ ▶ Primeiro da lista com 1, segundo com 2, etc.
 - ▶ Problema: elementos da sub-lista $\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \cdots$ nunca seriam considerados.

Método da diagonalização

Exemplo 1.8

▶ Correspondência entre \mathbb{Q}_+^* e \mathbb{N}^* :

- Quaisquer dois conjuntos infinitos têm o mesmo tamanho?
 - NÃO. Existem conjuntos infinitos que não têm correspondência com N.
 - ► Tais conjuntos não são contavelmente infinitos.
- \blacktriangleright Cantor provou que $\mathbb R$ não é contavelmente infinito.
 - ▶ A prova de Cantor mostra que o intervalo [0, 1] não é contavelmente infinito.
 - Argumento de Diagonalização de Cantor.

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (33 - 41 de 87

Método da diagonalização

Teorema 1.9

▶ O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

- 1. Supor que o intervalo [0, 1] é infinito enumerável.
 - ightharpoonup É possível enumerar todos os números deste intervalo como uma seqüência (r_1, r_2, r_3, \dots) .
 - Cada um de tais números pode ser representado como uma expansão decimal.

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (34 - 41 de 87)

Método da diagonalização

Teorema 1.9

▶ O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

- 2. Arranjar os números em uma lista (eles não precisam estar em ordem).
 - No caso de números com duas expansões decimais, como $0,499\cdots=0,500\ldots$, escolher aquela que acaba com 9's.

Método da diagonalização

Teorema 1.9

O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

3. Supor que as expansões decimais do início da següência são como segue:

```
\begin{array}{rcl} r_1 & = & 0.5105110\dots \\ r_2 & = & 0.4132043\dots \\ r_3 & = & 0.8245026\dots \\ r_4 & = & 0.2330126\dots \\ r_5 & = & 0.4107246\dots \\ r_6 & = & 0.9937838\dots \\ r_7 & = & 0.0105135\dots \\ \vdots & & \vdots & & \\ \end{array}
```

INF/UFG - LFA 2021/1 - H. Longo Conjuntos infinitos (35 - 41 de 87) INF/UFG - LFA 2021/1 - H. Longo Conjuntos infinitos (36 - 41 de 87)

Teorema 1.9

▶ O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

4. Construir um $x \in [0, 1]$, considerando o k-ésimo dígito depois da vírgula da expansão decimal de r_k (dígitos em vermelho):

```
\begin{array}{rcl} r_1 & = & 0.5105110 \dots \\ r_2 & = & 0.4132043 \dots \\ r_3 & = & 0.8245026 \dots \\ r_4 & = & 0.2330126 \dots \\ r_5 & = & 0.4107246 \dots \\ r_6 & = & 0.9937838 \dots \\ r_7 & = & 0.0105135 \dots \\ \vdots & \vdots & & \vdots \end{array}
```

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (37 - 41 de 87

Método da diagonalização

Teorema 1.9

▶ O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

5. Definir, a partir desses dígitos, os dígitos do número *x* como:

$$x_k = \begin{cases} 4 & \text{se o } k\text{-\'esimo dígito de } r_k \text{ \'e 5}, \\ 5 & \text{se o } k\text{-\'esimo dígito de } r_k \text{ n\~ao \'e 5}. \end{cases}$$

- $ightharpoonup x_k$ é o k-ésimo dígito de x.
- Para o exemplo dado, x = 0,4555554...

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (38 - 41 de 87

Método da diagonalização

Teorema 1.9

▶ O intervalo [0, 1] não é contavelmente infinito.

Demonstração.

- 6. O número x é um número real dentro do intervalo [0, 1].
- 7. Logo, $r_n = x$ para algum n (supôs-se que $(r_1, r_2, r_3, ...)$ enumera todos os números reais no intervalo [0, 1]).
- 8. No entanto, por causa do modo que os dígitos de x foram escolhidos, x difere na n-ésima posição de r_n .

Método da diagonalização

Teorema 1.9

O intervalo [0, 1] n\u00e3o \u00e9 contavelmente infinito.

Demonstração.

- 9. Logo, x não está na seqüência $(r_1, r_2, r_3, ...)$.
- 10. Assim, essa seqüência não é uma enumeração do conjunto de todos os reais no intervalo [0, 1] (contradição).
- 11. Portanto, hipótese de que o intervalo [0,1] é contavelmente finita deve ser falsa.

Conjuntos infinitos (40 - 41 de 87)

Teorema 1.10

ightharpoonup O conjunto $\mathbb R$ não é contavelmente infinito.

INF/UFG - LFA 2021/1 - H. Longo

Conjuntos infinitos (41 - 41 de 87)

Operações booleanas

Conjunção	Disjunção	Negação
$0 \wedge 0 = 0$	$0 \lor 0 = 0$	$\neg 0 = 1$
$0 \wedge 1 = 0$	$0 \lor 1 = 1$	$\neg 1 = 0$
$1 \wedge 0 = 0$	$1 \lor 0 = 1$	
$1 \wedge 1 = 1$	$1 \lor 1 = 1$	

OU Exclusivo	Implicação	Igualdade
$0 \oplus 0 = 0$	$0 \rightarrow 0 = 1$	$0 \leftrightarrow 0 = 1$
$0 \oplus 1 = 1$	$0 \rightarrow 1 = 1$	$0 \leftrightarrow 1 = 0$
$1 \oplus 0 = 1$	$1 \rightarrow 0 = 0$	$1 \leftrightarrow 0 = 0$
$1 \oplus 1 = 0$	$1 \rightarrow 1 = 1$	$1 \leftrightarrow 1 = 1$
	-	•

INF/UFG - LFA 2021/1 - H. Longo

Lógica (42 - 43 de 87)

Expressões booleanas

$$\begin{array}{lcl} P \wedge (Q \vee R) & = & (P \wedge Q) \vee (P \wedge R) \\ P \vee (Q \wedge R) & = & (P \vee Q) \wedge (P \vee R) \\ P \vee Q & = & \neg (\neg P \wedge \neg Q) \\ P \rightarrow Q & = & \neg P \vee Q \\ P \leftrightarrow Q & = & (P \rightarrow Q) \wedge (Q \rightarrow p) \\ P \oplus Q & = & \neg (P \leftrightarrow Q) \end{array}$$

Teoremas e provas

- ► Teorema: respostas a questões matemáticas.
 - Se certas condições são verdadeiras, então alguma conclusão também é verdadeira.
 - ► Hipótese verdadeira ⇒ Tese verdadeira.
- Instância do teorema:
 - Atribuição particular de valores a variáveis livres nas hipóteses e conclusões.
 - Variáveis livres podem assumir quaisquer valores do universo em discussão.
- ► Teorema correto:
 - ► Tese verdadeira para toda instância que torne a hipótese verdadeira.

Teoremas e provas

- ▶ Contra-Exemplo
 - Instância que torna a hipótese verdadeira mas leva a uma conclusão falsa.
 - ► Encontrar um contra-exemplo é suficiente para mostrar que o teorema é falso.
 - ▶ Único modo de mostrar que um teorema é verdadeiro é provando-o!

Exemplo 1.11

- ► Teorema 1: Se x > 3 e y < 2, então $x^2 2y > 5$.
 - ▶ x = 5 e y = 1 ⇒ 23 > 5 : N\u00e3o prova o teorema, apenas verifica uma inst\u00e1ncia do mesmo.
- ► Teorema 2: Se x > 3, então $x^2 2 \cdot y > 5$.
 - $ightharpoonup x = 4 e y = 6 \Rightarrow x^2 2y = 4 > 5$: Contra-exemplo!

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (45 - 74 de 87)

Teoremas e provas

- A prova é um argumento dedutivo cujas premissas são as hipóteses e cuja conclusão é a tese do teorema.
 - Argumento válido.
 - ► Forma lógica das hipóteses ⇒ forma lógica da conclusão.
- Qual a estratégia de prova mais adequada às várias formas de hipóteses e teses?

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (46 - 74 de 87)

Teoremas e provas

► Regras básicas:

- Nunca afirme alguma coisa se você não puder justificá-la completamente.
- Se você tem qualquer dúvida a respeito da justificativa para uma afirmação, então ela não é adequada.
- Se o seu raciocínio não o convence, como convencerá a outros?

Teoremas e provas

- Supor e Afirmar
 - Afirmar um enunciado é alegar que o mesmo é verdadeiro e isso não é aceitável em uma prova, a menos que possa ser justificado.
 - Supor um enunciado permite dizer o que poderia ser verdadeiro se o enunciado fosse verdadeiro.

Transformação do problema

- Provar uma conclusão da forma $P \rightarrow Q$
 - a) Adicione P à lista de hipóteses.
 - b) Mude a conclusão de $P \rightarrow Q$ para Q.
 - Se resolver o novo problema, na verdade terá mostrado que se P é verdadeiro então Q também é verdadeiro, ou seja, terá resolvido o problema original $P \to Q$.
- Notação:
 - Dados: enunciados conhecidos ou aqueles que se assumiu serem verdadeiros em algum ponto da demonstração.
 - Objetivo: enunciados a serem provados.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (49 - 74 de 87)

Teoremas e provas

- Provar uma conclusão da forma $P \rightarrow Q$:
 - a) Suponha que P é verdadeiro.
 - b) Use este postulado para concluir que Q é verdadeiro.

Exemplo 1.12

- ▶ Sejam $a, b \in \mathbb{R}$. Prove que se 0 < a < b, então $a^2 < b^2$.
 - ▶ Dados: $a, b \in \mathbb{R}$ (hipótese).
 - ▶ Objetivo: Se 0 < a < b, então $a^2 < b^2$ (tese).
 - ▶ Dados: $a, b \in \mathbb{R}$, 0 < a < b.
 - Objetivo: $a^2 < b^2$.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (50 - 74 de 87)

Provar um "Objetivo" da forma $P \rightarrow Q$

Rascunho:

Dados	Objetivo
:	$P \rightarrow Q$
: P	Q

Antes da transformação.

Depois da transformação.

Solução:

Suponha que P é verdadeiro.

[Prove que Q é verdadeiro]

Portanto, $P \rightarrow Q$.

"Objetivo" da forma $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$

Rascunho:

Dados	Objetivo
:	$P \rightarrow Q$
:	$\neg P$
$\neg Q$	

Antes da transformação.

Depois da transformação.

Solução:

Suponha que Q é falso.

[Prove que $\neg P$ é verdadeiro]

Portanto, $P \rightarrow Q$.

"Objetivo" da forma $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$

Exemplo 1.13

▶ Sejam $a, b, c \in \mathbb{R}$ e tais que a > b. Prove que se $a \cdot c \leq b \cdot c$, então c < 0.

Dados	Objetivo
$a, b, c \in \mathbb{R}$	$a \cdot c \le b \cdot c \Rightarrow c \le 0$
a > b	
$a, b, c \in \mathbb{R}$	$a \cdot c > b \cdot c$
a > b	
<i>c</i> > 0	

► Solução:

Suponha c > 0. Multiplicando ambos os lados da desigualdade a > b por cconclui-se que $a \cdot c > b \cdot c$. Portanto, se $a \cdot c \le b \cdot c$ então $c \le 0$.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (53 - 74 de 87)

"Objetivo" da forma $\neg P$

Se possível, reescreva o objetivo de alguma outra forma (enunciado positivo) e use uma das estratégias de prova.

Exemplo 1.14

- ▶ Sejam os conjuntos $A, B, C \subseteq \mathbb{U}$. Suponha que $A \cap C \subseteq B$ e $a \in C$. Prove que $a \notin A \backslash B$.
- Rascunho:

Dados	Objetivo
$A, B, C \subseteq \mathbb{U}$	$a \notin A \backslash B$
$A \cap C \subseteq B$	
$a \in C$	

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (54 - 74 de 87)

"Objetivo" da forma $\neg P$

► Se possível, reescreva o objetivo de alguma outra forma (enunciado positivo) e use uma das estratégias de prova.

Exemplo 1.14

► Obs-1:

$$P \to Q \equiv \neg P \vee Q \equiv \neg (P \wedge \neg Q)$$

► Obs-2:

$$a \notin A \setminus B \equiv \neg (a \in A \land a \notin B)$$
 [Definição de $A \setminus B$]
 $\equiv a \notin A \lor a \in B$ [DeMorgan]
 $\equiv a \in A \Rightarrow a \in B$ [Condicional]

"Objetivo" da forma $\neg P$

Se possível, reescreva o objetivo de alguma outra forma (enunciado positivo) e use uma das estratégias de prova.

Exemplo 1.14

► Rascunho:

Dados	Objetivo
$A, B, C \subseteq \mathbb{U}$	$a \notin A \backslash B$
$A \cap C \subseteq B$	
$a \in C$	
$A, B, C \subseteq \mathbb{U}$	$a \in A \Rightarrow a \in B$
$A \cap C \subseteq B$	
$a \in C$	
$A, B, C \subseteq \mathbb{U}$	$a \in B$
$A \cap C \subseteq B$	
$a \in C$	
$a \in A$	

"Objetivo" da forma $\neg P$

- Nem sempre um objetivo da forma $\neg P$ pode ser reescrito como "enunciado positivo".
- Rascunho:

Dados	Objetivo
:	$\neg P$
: P	(Contradição)

Solução:

Suponha que P é verdadeiro. [Prove a contradição] Portanto, P é falso.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (57 - 74 de 87)

"Objetivo" da forma $\neg P$

- Prova por contradição:
 - ▶ Vantagem: supor *P* verdadeiro permite crescer a lista de hipóteses.
 - Desvantagem: Objetivo vago, ou seja, produzir uma contradição de alguma coisa que é verdadeiro.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (58 - 74 de 87)

"Objetivo" da forma $\neg P$

Exemplo 1.15

- ▶ Dados $x, y \in \mathbb{R}$, prove que se $x^2 + y = 13$ e $y \neq 4$ então $x \neq 3$.
 - ► $x \neq 3 \equiv \neg(x = 3)$, logo estratégia anterior não pode ser usada.

Dados	Objetivo
$x, y \in \mathbb{R}$	$x^2 + y = 13 \text{ e } y \neq 4 \Rightarrow x \neq 3$
$x, y \in \mathbb{R}$	$x \neq 3$
$x^2 + y = 13$	
$y \neq 4$	
$x, y \in \mathbb{R}$	(Contradição)
$x^2 + y = 13$	
$y \neq 4$	
x = 3	

Usar um "Dado" da forma $\neg P$

- ▶ Numa prova por contradição tente fazer de P o objetivo.
 - ▶ Se P pode ser provado, P contradiz o dado $\neg P$.

Dados	Objetivo
: ¬P	(Contradição)
: ¬ <i>P</i>	P

Solução:

[Prove que P é verdadeiro]

Como já se sabe que $\neg P$ é verdadeiro, tem-se uma contradição.

Provas por contradição

▶ Provas por contradição podem ser usadas com objetivos que não são da forma ¬P.

Exemplo 1.16

▶ Dados $A, B, C \subseteq \mathbb{U}$, tais que $A \setminus B \subseteq C$, se $x \in A \setminus C$, então $x \in B$.

Dados	Objetivo	Solução
$A \backslash B \subseteq C$	$x \in A \backslash C \Rightarrow x \in B$	
$A \backslash B \subseteq C$	$x \in B$	Suponha $x \in A \setminus C$.
$x \in A \backslash C$		[Prove que $x \in B$].
		Portanto, se $x \in A \setminus C$, então $x \in B$.
$A \backslash B \subseteq C$	(Contradição)	Suponha $x \in A \setminus C$.
$x \in A \backslash C$		Suponha $x \notin B$.
$x \notin B$		[Prove a contradição].
		Assim, $x \in B$.
		Portanto, se $x \in A \setminus C$, então $x \in B$.
$A \backslash B \subseteq C$	$x \in C$	Suponha $x \in A \setminus C$ $(x \in A \in x \notin C)$.
$x \in A$		Suponha $x \notin B$.
$x \notin C$		[Prove que $x \in C$].
$x \notin B$		Isto contradiz o fato de $x \notin C$.
		Assim, $x \in B$.
		Portanto, se $x \in A \setminus C$, então $x \in B$.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (61 - 74 de 87)

"Dado" da forma $P \rightarrow Q$

- Se P é dado também ou se é possível provar que P é verdadeiro, conclua que Q é verdadeiro.
 - ▶ Se P e $P \rightarrow Q$ são verdadeiros, então Q também é verdadeiro.
 - ▶ Se $P \rightarrow Q$ é verdadeiro e Q é falso, então P deve ser falso também.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (62 - 74 de 87)

"Dado" da forma $P \rightarrow Q$

Exemplo 1.17

▶ Suponha $P \to (Q \to R)$. Prove que $\neg R \to (P \to \neg Q)$.

$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$$
.

Dados	Objetivo	Solução
$P \to (Q \to R)$	$\neg R \rightarrow (P \rightarrow \neg Q)$	
$P \rightarrow (Q \rightarrow R)$	$P \rightarrow \neg Q$	Suponha ¬R.
$\neg R$		[Prove que $P \rightarrow \neg Q$].
		Portanto, $\neg R \rightarrow (P \rightarrow \neg Q)$.
$P \to (Q \to R)$	$\neg Q$	Suponha ¬R.
$\neg R$		Suponha P .
P		[Prove $\neg Q$].
		Portanto, $P \rightarrow \neg Q$.
		Portanto, $\neg R \rightarrow (P \rightarrow \neg Q)$.
$P \rightarrow (Q \rightarrow R)$	$\neg Q$	Suponha ¬R.
$\neg R$		Suponha P .
P		De $P \in P \to (Q \to R)$,
		segue que $Q \rightarrow R$.
$Q \rightarrow R$		[Prove $\neg Q$].
		Portanto, $P \rightarrow \neg Q$.
		Portanto, $\neg R \rightarrow (P \rightarrow \neg Q)$.

Provas por contradição

Exemplo 1.18

▶ Sejam $A, B \subseteq \mathbb{U}$ e tais que $A \subset B$. Considere elementos genéricos a e b tais que $a \in A$ e a e b não pertencem ao mesmo tempo a a. Prove que $b \notin B$.

Dados	Objetivo	Solução
$A \subset B$	$b \notin B$	
$a \in A$		
$\neg(a \in B \land b \in B)$		
$A \subset B$	$b \notin B$	
$a \in A$		
$a \in B \to b \notin B$		
$A \subset B$	$a \in B$	
$a \in A$		
$a \in B \to b \notin B$		

Provar um "Objetivo" da forma $\forall x P(x)$

- Considere x um objeto arbitrário e prove P(x).
- Rascunho:

Dados	Objetivo
•	$\forall x P(x)$
:	P(x)
x arbitrário	` '

Solução:

Considere um x arbitrário.

[Prove P(x)].

Como x é arbitrário, conclui-se que $\forall x P(x)$.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (65 - 74 de 87

Definições, teoremas e provas (66 - 74 de 87

Provar um "Objetivo" da forma $\exists x P(x)$

- ightharpoonup Tente encontrar um valor de x para o qual você acredita que P(x) seria verdadeiro e prove P(x) para este x.
- Rascunho:

Dados	Objetivo
÷	$\exists x P(x)$
:	P(x)
$x = \square$	

Solução:

Seja $x = \square$.

[Prove P(x)].

Portanto, $\exists x P(x)$.

Exemplo 1.19

▶ Sejam $A, B \subseteq \mathbb{U}$. Prove que se $A \cap B = A$, então $A \subseteq B$.

Provar um "Objetivo" da forma $\forall x P(x)$

► Rascunho:

Dados	Objetivo	Solução
$A,B\subseteq \mathbb{U}$	$A \cap B = A \Rightarrow A \subseteq B$	Suponha $A \cap B = A$.
$A,B\subseteq \mathbb{U}$	$A \subseteq B$	Considere um $x \in A$ arbitrário.
$A \cap B = A$		[Prove que $x \in B$].
$A,B\subseteq \mathbb{U}$	$\forall \ x \ (x \in A \to x \in B)$	Portanto, $x \in A \rightarrow x \in B$
$A \cap B = A$		Como x é arbitrário, conclui-se que
$A,B\subseteq \mathbb{U}$	$x \in B$	$\forall x (x \in A \rightarrow x \in B)$. Assim, $A \subseteq B$.
$A \cap B = A$		Portanto, se $A \cap B = A$, então $A \subseteq B$.
$x \in A$		

INF/UFG - LFA 2021/1 - H. Longo

Provar um "Objetivo" da forma $\exists x P(x)$

Exemplo 1.20

- Prove que para todo número real x, se x > 0 então existe um número real y tal que $y \cdot (y + 1) = x$.
- ► Rascunho:

Dados	Objetivo
$x \in \mathbb{R}$	$\forall x (x > 0) \Rightarrow \exists y (y \cdot (y + 1) = x)$
<i>x</i> > 0	$\exists y (y \cdot (y+1) = x)$
<i>x</i> > 0	$y \cdot (y+1) = x$
$y = \frac{-1 + \sqrt{1 + 4 \cdot x}}{2}$	

Solução:

Suponha um número real arbitrário x > 0. Seja $y = \frac{-1 + \sqrt{1 + 4 \cdot x}}{2}$. [Prove que $y \cdot (y+1) = x$]. Logo, $\exists y (y \cdot (y+1) = x)$. Assim, $x > 0 \Rightarrow \exists y (y \cdot (y+1) = x)$. Portanto, como x é arbitrário, conclui-se que $\forall x (x > 0) \Rightarrow \exists y (y \cdot (y + 1) = x)$.

Técnicas gerais

- Provar um objetivo da forma $P \wedge Q$.
 - ► Prove *P* e *Q* separadamente.
- ▶ Usar um "Dado" da forma $P \land O$.
 - ► Trate *P* e *Q* como "dados" separados.
- Provar um objetivo da forma $P \leftrightarrow Q$.
 - ▶ Prove $P \rightarrow Q$ e $Q \rightarrow P$ separadamente.
- ▶ Usar um "Dado" da forma $P \leftrightarrow Q$.
 - ▶ Trate como dois "dados" separados: $P \rightarrow Q$ e $Q \rightarrow P$.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (69 - 74 de 87)

Exemplos de demonstrações

Exemplo 1.21

- ▶ Dados $A, B, C \subseteq \mathbb{U}$ tais que $A \subseteq B$ e A e C são disjuntos, prove que $A \subseteq B \setminus C$.
- ► Rascunho:

Dados	Objetivo
$A \subseteq B$	$A \subseteq B \backslash C$
$A\cap C=\emptyset$	
$A \subseteq B$	$\forall \ x \ (x \in A \Rightarrow x \in B \backslash C)$
$A\cap C=\emptyset$	
$A \subseteq B$	$x \in B \backslash C$
$A \cap C = \emptyset$	
$x \in A$	
$A \subseteq B$	$x \in B$
$A \cap C = \emptyset$	$x \notin C$
$x \in A$	

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (70 - 74 de 87)

Exemplos de demonstrações

Exemplo 1.22

- ▶ Prove que $\forall x \neg P(x) \Leftrightarrow \neg \exists x P(x)$.
- Rascunho:

Exemplos de demonstrações

Exemplo 1.23

▶ Dados $A, B, C \subseteq \mathbb{U}$, prove que $A \cap (B \setminus C) = (A \cap B) \setminus C$.

$$\begin{split} A \cap (B \backslash C) &= (A \cap B) \backslash C \equiv [A \cap (B \backslash C) \subseteq (A \cap B) \backslash C] \land \\ & [(A \cap B) \backslash C \subseteq A \cap (B \backslash C)] \\ &\equiv \forall \, x \, ((x \in A \cap (B \backslash C) \Leftrightarrow x \in (A \cap B) \backslash C) \end{split}$$

Rascunho:

	Dados	Objetivo
\Rightarrow	$x \in A \cap (B \backslash C)$	$x \in (A \cap B) \backslash C$
=	$x \in (A \cap B) \backslash C$	$x \in A \cap (B \backslash C)$

Indução matemática

- ▶ Provar um objetivo da forma $\forall n \in \mathbb{N} P(n)$.
- Rascunho:
 - ightharpoonup Prove P(0).
 - ▶ Prove que $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1).$
- Exercícios:
 - Prove que $\forall n \in \mathbb{N}, n \geq 5, P(2^n > n^2).$
 - ▶ Prove que $\forall n \in \mathbb{N}, P(3 \mid (n^3 n)).$

Dados	Objetivo
$n \in \mathbb{N}$	$\exists j \in \mathbb{Z} (3.j = (n+1)^3 - (n+1))$
$\exists k \in \mathbb{Z} \ (3.k = n^3 - n)$	

Indução forte

- ▶ Provar um objetivo da forma $\forall n \in \mathbb{N}, P(n)$.
 - ▶ Prove que $\forall n [(\forall k < n P(k)) \Rightarrow P(n)], n, k \in \mathbb{N}.$
- ► Rascunho:
 - Suponha que n é um número natural arbitrário ($n \in \mathbb{N}$).
 - Suponha que $\forall k < n P(k)$.
 - Prove P(n).
- ▶ Obs: Não é necessário provar o caso base.
 - Suponha que se tenha provado $\forall n [(\forall k < n P(n)) \Rightarrow P(n+1)], n, k \in \mathbb{N}.$
 - ▶ Se n = 0, conclui-se que $\forall k < 0 \ P(k) \Rightarrow P(0)$.
 - Pode-se concluir que P(0) é verdadeiro.

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (73 - 74 de 87)

INF/UFG - LFA 2021/1 - H. Longo

Definições, teoremas e provas (74 - 74 de 87)

Provas por indução

Elemento mínimo

- ▶ Dado um subconjunto não vazio $S \subseteq \mathbb{N}$, o elemento mínimo de S é um elemento $x_0 \in S$ tal que $x_0 \leq x$, $\forall x \in S$.
 - $ightharpoonup \min S = x_0 \Leftrightarrow x_0 \in S \text{ e } x_0 \leqslant x, \ \forall \ x \in S.$

Princípio da boa ordenação

- ▶ Todo subconjunto não vazio $S \subseteq \mathbb{N}$ possui um elemento mínimo.
 - \lor $\forall S \subseteq \mathbb{N}, S \neq \emptyset \Rightarrow \exists \min S.$

Provas por indução

Teorema 1.24 (Princípio da indução finita)

- ▶ Seja $S \subseteq \mathbb{N}$ que satisfaz as seguintes condições:
 - i. $0 \in S$: e
 - ii. para todo inteiro positivo k, se $k \in S$, então $k + 1 \in S$.

Neste caso, S é o próprio conjunto \mathbb{N} , ou seja, $S = \mathbb{N}$.

Provas por indução

Demonstração.

- ▶ Supor, por absurdo, que $S \neq \mathbb{N}$.
- ▶ Seja *X* o conjunto de todos os inteiros que não pertencem a *S* :
 - $X = \{x \mid x \in \mathbb{N} \text{ e } x \notin S\} = \mathbb{N} S.$
- ▶ X é subconjunto não vazio de \mathbb{N} ($\emptyset \neq X \subset \mathbb{N}$) e, pelo "Princípio da Boa Ordenação", existe um elemento mínimo x_0 de X ($\min X$).

INF/UFG - LFA 2021/1 - H. Longo

Indução (// - 86 de 8

Provas por indução

Demonstração.

- ▶ Pela condição i, $0 \in S$, de modo que $x_0 > 0$ e, portanto, $x_0 1 \notin X$.
- ► Como $x_0 1 \in S$, pela condição ii, $(x_0 1) + 1 = x_0 \in S$.
- ▶ Dada a contradição ($x_0 = \min X \in X = \mathbb{N} S$, ou seja, $x_0 \notin S$), concluí-se que $X = \emptyset \in S = \mathbb{N}$.
- ightharpoonup O único subconjunto de $\mathbb N$ que satisfaz as condições i e ii é o próprio $\mathbb N$.

INF/UFG - LFA 2021/1 - H. Longo

Inducão (70 96 do 97)

Provas por indução

Teorema 1.25 (Princípio da indução matemática)

- ▶ Seja P(n) uma proposição associada a inteiros $n \ge 0$ e que satisfaz as seguintes condições:
 - 1. a proposição *P*(0) é verdadeira; e
 - 2. para todo inteiro positivo k, se a proposição P(k) é verdadeira, então a proposição P(k+1) também é verdadeira.

Neste caso, a proposição P(n) é verdadeira para todo inteiro $n \ge 0$.

Provas por indução

Demonstração.

- Seja S o conjunto de todos os inteiros para os quais a proposição P(n) é verdadeira.
 - ► $S = \{n \in \mathbb{N} \mid P(n) \text{ é verdadeira}\}.$
- Pela condição 1, P(0) é verdadeira e, portanto, $0 \in S$.
- Pela condição 2, para todo inteiro positivo k, P(k) verdadeira ($k \in S$) implica que P(k+1) é verdadeira ($k+1 \in S$).
- ▶ O conjunto S satisfaz às condições i e ii do "Princípio da Indução Finita" e, portanto, $S = \mathbb{N}$.
- A proposição P(n) é verdadeira para todo inteiro $n \ge 0$.

Provas por indução

Exemplo 1.26

- ▶ Todos os inteiros da forma $8^n 2^n$ são divisíveis por 6, para $n \in \mathbb{N}^+$.
- ▶ Seja P(n) a proposição: $8^n 2^n$ é divisível por 6, para $n \in \mathbb{N}^+$.
- ► Seja $S = \{k \in \mathbb{N}^+ \mid P(n) \text{ \'e verdadeira.}\}.$
- ▶ Objetivo: provar que $S = \mathbb{N}^+!$

INF/UFG - LFA 2021/1 - H. Longo

Indução (81 – 86 de 87

Provas por indução

Exemplo 1.26

Base: $1 \in S$, pois P(1) é verdadeira $(8^1 - 2^1 = 6)$.

H. I.: Suponha que $1 < k \in S$, ou seja, P(k) é verdadeira.

INF/UFG - LFA 2021/1 - H. Longo

I-d...= (00 00 d- 07)

Provas por indução

Exemplo 1.26

P. l.: $k+1 \in S$, ou seja, P(k+1) é verdadeira:

$$8^{k+1} - 2^{k+1} = 8 \cdot 8^k - 2 \cdot 2^k$$

$$= 8 \cdot 8^k - 2 \cdot 2^k + 8 \cdot 2^k - 8 \cdot 2^k$$

$$= 8 \cdot (8^k - 2^k) + 2^k \cdot (8 - 2)$$

$$= 8 \cdot (8^k - 2^k) + 2^k \cdot (6)$$

Por hipótese de indução, $(8^k - 2^k)$ é divisível por 6. Logo, $S = \mathbb{N} - \{0\}$ e a proposição P(n) é verdadeira para todo $n \ge 1$.

Indução matemática

Exemplo 1.27

- ▶ Para todo inteiro n maior que 3, $n! > 2^n$.
- ▶ Seja P(n) a proposição: $n! > 2^n$, para todo $4 \le n \in \mathbb{N}$.
- ► Seja $S = \{n \in \mathbb{N} \mid P(n) \text{ \'e verdadeira.}\}.$
- ▶ Objetivo: provar que $S = \mathbb{N} \{0, 1, 2, 3\}!$

Indução matemática

Exemplo 1.27

Base: Para n = 4, $4! = 24 > 16 = 2^4$. Logo, $4 \in S$.

H. I.: Suponha que um certo $4 \le n = k \in S$, ou seja, $k! > 2^k$ e $n = k \in S$.

INF/UFG - LFA 2021/1 - H. Longo Indução (85 - 86 de 87)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução Ā Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation. PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (87 - 87 de 87)

Indução matemática

Exemplo 1.27

P. I.: Deve-se mostrar que $n = k + 1 \in S$, ou seja, P(k + 1) é verdadeira:

$$\begin{array}{rcl} (k+1)! &=& (k+1) \cdot k! \\ &>& (k+1) \cdot 2^k \quad \text{(hipótese indutiva)} \\ &>& 2 \cdot 2^k \qquad \qquad \text{(já que } k+1 > 2\text{)} \\ &=& 2^{k+1} \end{array}$$

Dado que $(k+1)! > 2^{k+1}$, P(n) é verdadeira para todo $n \in \mathbb{N} - \{0, 1, 2, 3\}$, ou seja, $S = \mathbb{N} - \{0, 1, 2, 3\}.$

INF/UFG - LFA 2021/1 - H. Longo Indução (86 - 86 de 87)