FUNZIONI A PIÙ VARIABILI

Si dice funzione a più variabili una funzione del tipo:

$$f: \mathbb{R}^n \to \mathbb{R}^m$$

Inoltre possiamo definire "scalare" una funzione del tipo $f: \mathbb{R}^n \to \mathbb{R}$ mentre viene definita vettoriale una funzione del tipo $f: \mathbb{R}^n \to \mathbb{R}^m$.

FUNZIONI A DUE VARIABILI SCALARI

È una funzione del tipo $f: \mathbb{R}^2 \to \mathbb{R}$, chiamo le variabili x, y. **Dominio** \to In generale, dati $f: D \to \mathbb{R}$ con $D \subset \mathbb{R}^2$, D viene

detto dominio.

Segno \rightarrow Studio dove f:(x,y)>0,=0 oppure <0. Si tratta quindi di determinare uno di questi sottoinsiemi (spesso è utile rappresentarlo graficamente).

Al fine di definire la continuità di una funzione è necessario definire i concetti di "distanza" e tutti i concetti che ne derivano e quello di "limite":

Distanza in $\mathbb{R}^2 \to \text{Dati due punti } (x,y) \in (x_0,y_0) \text{ la}$ distanza tra loro è data dalla norma a 2, cioè:

$$||(\mathbf{x}, \mathbf{y}) - (\mathbf{x_0}, \mathbf{y_0})|| = \sqrt{(\mathbf{x} - \mathbf{x_0})^2 + (\mathbf{y} - \mathbf{y_0})^2}$$

Intorno (Circolare) \rightarrow Dato un punto (x_0, y_0) , I viene detto intorno circolare di (x_0, y_0) se:

 $I(x_0, y_0) = \{(x, y) \mid ||(x - y) - (x_0, y_0)|| < r\}$

Interno \rightarrow Dato un punto $(x_0, y_0) \in A$, tale punto si dice interno ad A se:

$$\exists I(\mathbf{x}_0,\mathbf{y}_0) \subset A$$

Frontiera (o Bordo) \rightarrow Un punto (x_0, y_0) si dice appartenere alla frontiera (o bordo) di A, e si scrive

$$\forall \mathbf{I}(\mathbf{x_0}, \mathbf{y_0}) \begin{cases} \exists (x, y) \neq (x_0, y_0) \text{ t.c. } (x, y) \in A \cap I(x_0, y_0) \\ \exists (z, t) \neq (x_0, y_0) \text{ t.c. } (z, t) \in A^c \cap I(x_0, y_0) \end{cases}$$

Punto di Accumulazione \rightarrow Dato un punto (x_0, y_0) , questo si dice punto di accumulazione per A se: $\forall I(x_0, y_0) \; \exists (x.y) \neq (x_0, y_0) \; \text{t.c.} \; (x, y) \in I(x_0, y_0) \cap A$

Insieme Aperto/Chiuso \rightarrow A è un insieme aperto se coincide con l'insieme dei sui punti interni (cioè A ha tutto il bordo "tratteggiato"), mentre A è un insieme se $\partial A \subset A$ (cioè **A ha tutto il bordo** "continuo").

Chiusura di un Insieme \rightarrow La chiusura di un insieme A è data dall'insieme stesso unito con la sua frontiera, cioè:

$$\overline{\mathbf{A}} = \mathbf{A} \cup \partial \mathbf{A}$$

Inoltre possono anche essere utili altre definizioni secondarie come:

Insieme Limitato \rightarrow Un insieme A è limitato in \mathbb{R}^2 se: $\exists \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R} \text{ t.c. } \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{A} : \mathbf{a} \leq \mathbf{x} \leq \mathbf{b}, \ \mathbf{c} \leq \mathbf{y} \leq \mathbf{d}$ oppure $\exists \mathbf{c} \in \mathbb{R}^+ \text{ t.c. } \forall (\mathbf{x}, \mathbf{y}) \in \mathbf{A} : \mathbf{x^2} + \mathbf{y^2} \leq \mathbf{c}$ Insieme non Limitato \rightarrow Un insieme A è non limitato

$$\forall \mathbf{c} \exists (\mathbf{x}, \mathbf{y}) \text{ t.c. } ||(\mathbf{x}, \mathbf{y})|| > \mathbf{c}$$

Insieme Compatto \rightarrow Un insieme si dice compatto se è chiuso e limitato.

Insieme Connesso \rightarrow Un insieme si dice connesso non ai può ricoprire con due insiemi non vuoti, aperti e disgiunti.

LIMITI DI FUNZIONI IN DUE VARIABILI

La principale differenza con i limiti di funzioni in una variabile sta nel fatto che in $\mathbb R$ esistono solo due possibili "direzioni" per cui una funzione può tendere ad un punto, mentre in \mathbb{R}^2 le direzioni sono infinite.

<u>DEF:</u> (Per Intorni) \to Data $f: D \to \mathbb{R}, D \subset \mathbb{R}^2$ e dato (x_0, y_0) punto di accumulazione per D dico che $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$ se $\forall \epsilon > 0$ $\exists \hat{\delta} > 0$ t.c. se $(x,y) \in D, (x,y) \neq (x_0,y_0)$:

 $||(\mathbf{x},\mathbf{y}) - (\mathbf{x_0},\mathbf{y_0})|| < \delta \implies |\mathbf{f}(\mathbf{x},\mathbf{y}) - \mathbf{l}| < \epsilon$

DEF: (Per Successioni) \to Data $f: D \to \mathbb{R}, D \subset \mathbb{R}^2$ e dato (x_0, y_0) punto di accumulazione per D dico che

 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)=l\text{ se }\forall(x_n,y_n)\in D\setminus(x_0,y_0),n\in\mathbb{N}\text{ t.c.}$

 $(\mathbf{x_n}, \mathbf{y_n}) \to (\mathbf{x_0}, \mathbf{y_0}) \text{ allora } \mathbf{f}(\mathbf{x_n}, \mathbf{y_n}) \to \mathbf{l}$

È anche possibile approcciare il problema sotto il punto di vista delle coordinate polari (ρ, Θ) , questo riduce il problema ad un limite ad una variabile in quanto il parametro Θ è libero è dobbiamo verificare solo la tendenza di ρ .

CONTINUITÀ DI FUNZIONI A DUE VARIABILI

<u>DEF:</u> \rightarrow Data $f: D \rightarrow \mathbb{R}, D \subset \mathbb{R}$ e dato $(x_0, y_0) \in D$ punto di accumulazione per D, si dice che f è continua in (x_0, y_0)

 $\exists_{(x,y)\to(x_0,y_0)}\inf(\mathbf{x},\mathbf{y})\text{ ed è pari a }\mathbf{f}(\mathbf{x_0},\mathbf{y_0}).$ Se la funzione è definita "a tratti" allora la continuità è da verificare nei punti di frontiera comune.

Teorema di Weierstrass \rightarrow Data $f: K \rightarrow \mathbb{R}$ con Kcompatto e f continua in $\mathbb R$ allora:

f ha massimo e minimo assoluti in K

RAPPRESENTAZIONE GRAFICA DI FUNZIONI A DUE VARIABILI

Superficie Associata \to Data $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^2$ definisco la superficie associata ad f come:

$$\mathbf{S_f} = \left\{ (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbb{R}^3 \middle| \begin{array}{l} (\mathbf{x}, \mathbf{y}) \in \mathbf{D} \\ \mathbf{z} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \end{array} \right\} \subset \mathbb{R}^3$$
 Insiemi di Livello \to Data $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^2$ e dato $c \in \mathbb{R},$

chiamo "insieme di livello di f a livello c" l'insieme:

$$\mathbf{U_c} := \big\{ (\mathbf{x}, \mathbf{y}) \in \mathbf{D} \big| \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{c} \big\} \subset \mathbf{D}$$

OSS:

$$U_c$$
 può essere:
$$\begin{cases} \emptyset \\ \text{insieme di punti isolati} \\ \text{curva} \\ \text{regione bidimensionale} \end{cases}$$

DERIVATE PARZIALI

<u>DEF:</u> \rightarrow Sia (x_0, y_0) un punto interno al dominio di f. si chiama derivata parziale di f rispetto ad x nel punto (x_0, y_0) , la derivata classica di:

 $x \to f(x, y_0)$ in $x = x_0$ e si indica con $\frac{\partial f}{\partial x}(x_0, y_0)$. Ricordando la definizione di derivata classica si ha che:

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x_0}, \mathbf{y_0}) = \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{x_0} + \mathbf{h}, \mathbf{y_0}) - \mathbf{f}(\mathbf{x_0}, \mathbf{y_0})}{\mathbf{h}}$$

OSS: Si possono usare le stesse regole di derivazione classiche considerando l'altra variabile come una costante.

Le derivate parziali si mettono in un vettore chiamato gradiente. Questo, come funzione di x, y è un campo vettoriale:

$$\nabla f(x,y) = (\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial x}(x,y))$$

 $\nabla f(x,y) = (\tfrac{\partial f}{\partial x}(x,y)\;,\; \tfrac{\partial f}{\partial y}(x,y))$ Derivate Parziali di Ordine Superiore \to Per una funzione a due variabili esistono 4 derivate di secondo ordine, infatti ogni derivata prima può essere derivata rispetto ad x o rispetto ad y:

$$D^{2} f(x,y) = \begin{pmatrix} \frac{\partial^{2} f}{\partial x^{2} x} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial x^{2} y} \end{pmatrix}$$

Tale matrice viene detta Matrice Essiana

Teorema di Schwarz \rightarrow Se f è di classe C^2 , cioè le derivate seconde esistono e sono continue allora: $\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$ cioè la matrice essiana è simmetrica.

Differenziabilità \to Data $f: A \to \mathbb{R}$ con A aperto di \mathbb{R}^2 , $\nu \in \mathbb{R}^2 \ (\nu \to 0 \text{ significa } ||\nu|| \to 0)$, allora f si dice

$$\lim_{x \to 0} \frac{f((x,y)+\nu)-f(x,y)-\nabla f(x,y)\cdot\nu}{\|x\|^{2}} = 0$$

differenziabile se: $\lim_{\nu \to 0} \frac{f((x,y)+\nu)-f(x,y)-\nabla f(x,y)\cdot \nu}{||\nu||} = 0$ Teorema del Differenziale \to Data $f:A \to \mathbb{R}$ con Aaperto di \mathbb{R}^2 se:

f è di classe $C^1 \implies f$ è differenziabile. OSS: Se f è di classe $C^1 \Longrightarrow f$ differenziabile \Longrightarrow f è di classe $C^0 \Longrightarrow f$ continua.

PIANO TANGENTE

Se una funzione è differenziabile, si può approssimare "bene" con un piano. Si chiama Piano Tangente il piano in \mathbb{R}^3 di equazione:

$$z:=f(x_0,y_0)+\nabla f(x_o,y_0) \bullet (x-x_0,y-y_0)$$
è della forma $z=ax+by+c$ e il punto $(x_0,y_0,f(x_0,y_0))$ è il punto di contatto tra il piano e la funzione.

DERIVATA DIREZIONALE

Dato ν un vettore unitario di \mathbb{R}^2 (cioè $||\nu||=1$) la derivata direzionale di f in direzione ν nel punto (x_0, y_0) è la derivata classica di:

$$t \to f((x_0, y_0) + t \cdot \nu)$$

cioè:

$$\lim_{\substack{f \to 0 \\ h \to 0}} \frac{\mathbf{f}((\mathbf{x_0}, \mathbf{y_0}) + \mathbf{h} \cdot \nu) - \mathbf{f}(\mathbf{x_0}, \mathbf{y_0})}{\mathbf{h}}$$

$$\frac{\partial f}{\partial u}(x,y) = \nabla f(x,y) \cdot \iota$$

cioè: $\lim_{f\to 0} \frac{\mathbf{f}((\mathbf{x_0,y_0}) + \mathbf{h}\cdot \nu) - \mathbf{f}(\mathbf{x_0,y_0})}{\mathbf{h}}$ e si indica con $\frac{\partial f}{\partial \nu}(x_0,y_0)$. **Teorema** \to Se f è differenziabile, allora: $\frac{\partial f}{\partial \nu}(x,y) = \nabla f(x,y) \bullet \nu$ **ESEMPIO:** Data f(x,y) e (x_0,y_0) trovare ν t.c.

 $\frac{\partial f}{\partial \nu}(x_0,y_0)$ sia massima/minima. Il modo migliore per svolgerlo è trovare il versore del gradiente e e il suo opposto. Quelli saranno i due ν che minimizzeranno/massimizzeranno la derivata direzionale in (x_0, y_0) .

$$\nu_{MAX} = \frac{\nabla f(x_0, y_0)}{||f(x_0, y_0)||} \\
\nu_{MIN} = -\frac{\nabla f(x_0, y_0)}{||f(x_0, y_0)||}$$

Vici Francesco

2