What Is Claimed Is:

1	1. A method for using a computer system to solve a system of
2	nonlinear equations specified by a vector function, f , wherein $f(x) = 0$ represents a
3	set of nonlinear equations, $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$, $f_3(\mathbf{x}) = 0$,, $f_n(\mathbf{x}) = 0$, wherein \mathbf{x}
4	is a vector $(x_1, x_2, x_3, \dots x_n)$, the method comprising:
5	receiving a representation of a subbox $\mathbf{X} = (X_1, X_2,, X_n)$, wherein for
6	each dimension, i , the representation of X_i includes a first floating-point number,
7	a_i , representing the left endpoint of X_i , and a second floating-point number, b_i ,
8	representing the right endpoint of X_i ;
9	storing the representation in a computer memory;
10	applying term consistency to the set of nonlinear equations, $f_I(\mathbf{x}) = 0$,
1	$f_2(\mathbf{x}) = 0, f_3(\mathbf{x}) = 0,, f_n(\mathbf{x}) = 0$, over X , and excluding portions of X that violate
12	any of these nonlinear equations;
13	applying box consistency to the set of nonlinear equations over X, and
14	excluding portions of X that violate any of the nonlinear equations; and
15	performing an interval Newton step on X to produce a resulting subbox Y,
16	wherein the point of expansion of the interval Newton step is a point x within X ,
17 ·	and wherein performing the interval Newton step involves evaluating $f(x)$ using
18	interval arithmetic to produce an interval result $f^{I}(x)$.

- 1 2. The method of claim 1, wherein performing the interval Newton 2 step involves:
- computing J(x,X), wherein J(x,X) is the Jacobian of the function f
- 4 evaluated as a function of x over the subbox X; and
- determining if J(x,X) is regular as a byproduct of solving for the subbox Y
- 6 that contains values of y that satisfy M(x,X)(y-x) = r(x), where

- 1 $\mathbf{M}(\mathbf{x}, \mathbf{X}) = \mathbf{B}\mathbf{J}(\mathbf{x}, \mathbf{X})$, $\mathbf{r}(\mathbf{x}) = -\mathbf{B}\mathbf{f}(\mathbf{x})$, and \mathbf{B} is an approximate inverse of the center of 2 $\mathbf{J}(\mathbf{x}, \mathbf{X})$.
- 1 3. The method of claim 2, further comprising:
- 2 applying term consistency to the preconditioned set of nonlinear equations
- 3 $\mathbf{Bf}(\mathbf{x}) = \mathbf{0}$ over the subbox \mathbf{X} ; and
- 4 excluding portions of **X** that violate the preconditioned set of nonlinear
- 5 equations.
- 1 4. The method of claim 2, further comprising:
- 2 applying box consistency to the preconditioned set of nonlinear equations
- 3 $\mathbf{Bf}(\mathbf{x}) = \mathbf{0}$ over the subbox \mathbf{X} ; and
- 4 excluding portions of **X** that violate the preconditioned set of nonlinear
- 5 equations.
- 1 5. The method of claim 1, wherein applying term consistency to the
- 2 set of nonlinear equations involves:
- for each nonlinear equation $f_i(\mathbf{x}) = 0$ in the system of equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$,
- 4 symbolically manipulating $f_i(\mathbf{x}) = 0$ to solve for an invertible term, $g(x'_j)$, thereby
- 5 producing a modified equation $g(x'_j) = h(\mathbf{x})$, wherein $g(x'_j)$ can be analytically
- 6 inverted to produce an inverse function $g^{-l}(y)$;
- 7 substituting the subbox X into the modified equation to produce the
- 8 equation $g(X'_{l}) = h(X)$;
- 9 solving for $X'_{J} = g^{-1}(h(\mathbf{X}))$; and
- intersecting X'_{j} with the vector element X_{j} to produce a new subbox \mathbf{X}^{+} ;

2

3

4

5

6

7

7.

11	wherein the new subbox \mathbf{X}^+ contains all solutions of the system of
12	equations $f(x) = 0$ within the subbox X, and wherein the width of the new subbox
13	\mathbf{X}^{+} is less than or equal to the width of the subbox \mathbf{X} .

- The method of claim 1, further comprising: 1 6. evaluating a first termination condition, wherein the first termination 2 3 condition is TRUE if. zero is contained within $f^{I}(x)$, 4 J(x,X) is regular, wherein J(x,X) is the Jacobian of the 5 function f evaluated as a function of x over the subbox X, and 6 7 the solution Y of M(x,X) (y-x) = r contains X; and if the first termination condition is TRUE, terminating and recording X as 8 9 a final bound.
 - The method of claim 6, wherein the method further comprises: evaluating a second termination condition; wherein the second termination condition is TRUE if a function of the width of the subbox X is less than a pre-specified value, ε_X , and the width of the function f over the subbox X is less than a pre-specified value, ε_F ; and if the second termination condition is TRUE, terminating and recording X as a final bound.
- 8. A computer-readable storage medium storing instructions that 1 when executed by a computer cause the computer to perform a method for using a 2 3 computer system to solve a system of nonlinear equations specified by a vector function, f, wherein f(x) = 0 represents a set of nonlinear equations, $f_i(x) = 0$, 4

20

- $f_2(\mathbf{x}) = 0$, $f_3(\mathbf{x}) = 0$, ..., $f_n(\mathbf{x}) = 0$, wherein \mathbf{x} is a vector $(x_1, x_2, x_3, ..., x_n)$, the 5 6 method comprising: receiving a representation of a subbox $X = (X_1, X_2, ..., X_n)$, wherein for 7 each dimension, i, the representation of X_i includes a first floating-point number, 8 9 a_i , representing the left endpoint of X_i , and a second floating-point number, b_i , representing the right endpoint of X_i ; 10 storing the representation in a computer memory; 11 applying term consistency to the set of nonlinear equations, $f_l(\mathbf{x}) = 0$, 12 $f_2(\mathbf{x}) = 0, f_3(\mathbf{x}) = 0, ..., f_n(\mathbf{x}) = 0$, over **X**, and excluding portions of **X** that violate 13 14 any of these nonlinear equations; applying box consistency to the set of nonlinear equations over X, and 15 excluding portions of X that violate any of the nonlinear equations; and 16 performing an interval Newton step on X to produce a resulting subbox Y, 17 wherein the point of expansion of the interval Newton step is a point x within X, 18
 - 1 9. The computer-readable storage medium of claim 8, wherein 2 performing the interval Newton step involves:

and wherein performing the interval Newton step involves evaluating f(x) using

- computing J(x,X), wherein J(x,X) is the Jacobian of the function f evaluated as a function of x over the subbox X; and
- determining if J(x,X) is regular as a byproduct of solving for the subbox Y
- that contains values of y that satisfy M(x,X)(y-x) = r(x), where

interval arithmetic to produce an interval result $f^{I}(x)$.

- 7 $\mathbf{M}(\mathbf{x}, \mathbf{X}) = \mathbf{B}\mathbf{J}(\mathbf{x}, \mathbf{X}), \mathbf{r}(\mathbf{x}) = -\mathbf{B}\mathbf{f}(\mathbf{x}),$ and **B** is an approximate inverse of the center of
- $8 \quad J(x,X).$

1	10.	The computer-readable storage medium of claim 9, wherein the
2	method furthe	r comprises:
3	applyi	ng term consistency to the preconditioned set of nonlinear equations

- 4 $\mathbf{Bf}(\mathbf{x}) = \mathbf{0}$ over the subbox \mathbf{X} ; and
- 5 excluding portions of **X** that violate the preconditioned set of nonlinear 6 equations.
- 1 11. The computer-readable storage medium of claim 9, wherein the 2 method further comprises:
- applying box consistency to the preconditioned set of nonlinear equations
- 4 $\mathbf{Bf}(\mathbf{x}) = \mathbf{0}$ over the subbox \mathbf{X} ; and
- excluding portions of **X** that violate the preconditioned set of nonlinear equations.
- 1 12. The computer-readable storage medium of claim 8, wherein 2 applying term consistency to the set of nonlinear equations involves:
- for each nonlinear equation $f_t(\mathbf{x}) = 0$ in the system of equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$,
- 4 symbolically manipulating $f_i(\mathbf{x}) = 0$ to solve for an invertible term, $g(x'_j)$, thereby
- 5 producing a modified equation $g(x') = h(\mathbf{x})$, wherein g(x') can be analytically
- 6 inverted to produce an inverse function $g^{-l}(\mathbf{y})$;
- 7 substituting the subbox X into the modified equation to produce the
- 8 equation $g(X'_j) = h(X)$;
- 9 solving for $X'_i = g^{-1}(h(\mathbf{X}))$; and
- intersecting X'_j with the vector element X_j to produce a new subbox \mathbf{X}^+ ;
- wherein the new subbox X^+ contains all solutions of the system of
- equations f(x) = 0 within the subbox X, and wherein the width of the new subbox
- 13 \mathbf{X}^+ is less than or equal to the width of the subbox \mathbf{X} .

*	~ •	,	1,	1	f	

1	13. The computer-readable storage medium of claim 8, wherein the		
2	method further comprises:		
3	evaluating a first termination condition, wherein the first termination		
4	condition is TRUE if,		
5	zero is contained within $f^{l}(x)$,		
6	J(x,X) is regular, wherein $J(x,X)$ is the Jacobian of the		
7	function \mathbf{f} evaluated as a function of \mathbf{x} over the subbox \mathbf{X} , and		
8	the solution Y of $M(x,X)$ (y-x) = r contains X; and		
9	if the first termination condition is TRUE, terminating and recording \mathbf{X} a		
10	a final bound.		
1	14. The computer-readable storage medium of claim 13, wherein the		
2	method further comprises:		
3	evaluating a second termination condition;		
4	wherein the second termination condition is TRUE if a function of the		
5	width of the subbox X is less than a pre-specified value, ε_X , and the width of the		
6	function f over the subbox X is less than a pre-specified value, ε_F ; and		
7	if the second termination condition is TRUE, terminating and recording X		

- 1 15. An apparatus that solves a system of nonlinear equations specified
- by a vector function, f, wherein f(x) = 0 represents a set of nonlinear equations,
- 3 $f_1(\mathbf{x}) = 0, f_2(\mathbf{x}) = 0, f_3(\mathbf{x}) = 0, ..., f_n(\mathbf{x}) = 0$, wherein \mathbf{x} is a vector $(x_1, x_2, x_3, ..., x_n)$,
- 4 the apparatus comprising:

as a final bound.

- 5 a receiving mechanism that is configured to receive a representation of a
- 6 subbox $\mathbf{X} = (X_1, X_2, ..., X_n)$, wherein for each dimension, i, the representation of

20

1

2

3

4

 $\tau^{\frac{1}{2}} = \frac{1}{1 - \frac{1}{2}} \cdot \frac{1}{2}$

7	X_i includes a first floating-point number, a_i , representing the left endpoint of X_i ,
8	and a second floating-point number, b_i , representing the right endpoint of X_i ;
9	a computer memory for storing the representation;
10	a term consistency mechanism that is configured to apply term consistency
11	to the set of nonlinear equations, $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$, $f_3(\mathbf{x}) = 0$,, $f_n(\mathbf{x}) = 0$, over
12	X, and to exclude portions of X that violate any of these nonlinear equations;
13	a box consistency mechanism that is configured to apply box consistency
14	to the set of nonlinear equations over X, and to exclude portions of X that violate
15	any of the nonlinear equations; and
16	an interval Newton mechanism that is configured to perform an interval
17	Newton step on X to produce a resulting subbox Y, wherein the point of
18	expansion of the interval Newton step is a point x within X, and wherein

16. The apparatus of claim 15, wherein the interval Newton mechanism is configured to:

arithmetic to produce an interval result $f^{I}(x)$.

performing the interval Newton step involves evaluating f(x) using interval

- compute J(x,X), wherein J(x,X) is the Jacobian of the function f evaluated as a function of x over the subbox X; and
- determine if J(x,X) is regular as a byproduct of solving for the subbox Y that contain the values of y that satisfy M(x,X)(y-x) = r(x), where
- 7 M(x,X) = BJ(x,X), r(x) = -Bf(x), and B is an approximate inverse of the center of
- 8 J(x,X).
- 1 17. The apparatus of claim 16, wherein the term consistency 2 mechanism is configured to:

 $=\frac{1}{r}\cdot\frac{d}{r}-\frac{1}{r}\cdot\frac{d}{r}\in \mathbb{R}.$

1	apply term consistency to the preconditioned set of nonlinear equations
2	$\mathbf{Bf}(\mathbf{x}) = 0$ over the subbox \mathbf{X} ; and to
3	exclude portions of X that violate the preconditioned set of nonlinear
4	equations.

- 1 18. The apparatus of claim 16, wherein the box consistency
 2 mechanism is configured to:
 3 apply box consistency to the preconditioned set of nonlinear equations
 4 Bf(x) = 0 over the subbox X; and to
 5 exclude portions of X that violate the preconditioned set of nonlinear
 6 equations.
- The apparatus of claim 15, wherein for each nonlinear equation 1 19. 2 $f_{i}(\mathbf{x}) = 0$ in the system of equations $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, the term consistency mechanism is 3 configured to: symbolically manipulate $f_i(\mathbf{x}) = 0$ to solve for an invertible term, $g(\mathbf{x}'_i)$, 4 thereby producing a modified equation $g(x'_i) = h(\mathbf{x})$, wherein $g(x'_i)$ can be 5 analytically inverted to produce an inverse function $g^{-1}(\mathbf{y})$; 6 substitute the subbox X into the modified equation to produce the equation 7 8 $g(X'_1) = h(\mathbf{X});$ solve for $X'_{l} = g^{-l}(h(\mathbf{X}))$; and to 9 intersect X', with the vector element X_i to produce a new subbox \mathbf{X}^+ ; 10 wherein the new subbox X^+ contains all solutions of the system of 11 equations f(x) = 0 within the subbox X, and wherein the width of the new subbox 12

 X^{+} is less than or equal to the width of the subbox X.

- ' - ' - ' · ' ·

1	20.	The apparatus of claim 15, further comprising a termination	
2	mechanism that is configured to:		
3	evaluate a first termination condition, wherein the first termination		
4	condition is TRUE if,		
5		zero is contained within $f^{I}(x)$,	
6		J(x,X) is regular, wherein $J(x,X)$ is the Jacobian of the	
7		function f evaluated as a function of x over the subbox X , and	
8		the solution Y of $M(x,X)$ $(y-x) = r$ contains X; and to	
9	terminate and record X as a final bound if the first termination condition i		
0	TRUE.		
1	21.	The apparatus of claim 20, wherein the termination mechanism is	
2	additionally of	configured to:	
3	evaluate a second termination condition;		
4	wherein the second termination condition is TRUE if a function of the		
5	width of the subbox X is less than a pre-specified value, ε_X , and the width of the		
6	function f over the subbox X is less than a pre-specified value, ε_F ; and to		
7	terminate and record X as a final bound if the second termination		
8	condition is TRUE.		