Algorithmic Concepts Computational Neuroscience

Genomics and Proteomics

Simulation and Modeling

Visualization

Immuno and Chemo-Informatics

Models

Databases and Data Management Transcriptomics Structural Variations Structural Bioinformatics

Structure Prediction Computational Methods

Computational Intelligence

Web Services in Bioinformatics

Pattern Recognition, Clustering and Classification

Biostatistics and Stochastic Models

Information Technologies

Methods

Pharmaceutical Applications

Systems Biology

Methods and Algorithms

Algorithms

Data Mining and Machine Learning Algorithms and Software Tools

Formal Verification of Biological Systems

Model Design and Evaluation

Modelling Frameworks

Next Generation Sequencing

Sequence Analysis Image Analysis

Computational Molecular Systems

La bioinformática permite investigar, desarrollar y aplicar herramientas informáticas y computacionales para permitir y mejorar el manejo de datos biológicos.

La bioinformática permite investigar, desarrollar y aplicar herramientas informáticas y computacionales para permitir y mejorar el manejo de **datos** biológicos.

UNIVERSIDAD DE BURGOS

Human Genome Project

Human Genome Project

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB

1.000.000\$

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB

Coste del Human Genome Project:

1.000.000\$

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB

Coste del Human Genome Project:

3.000.000.000\$

1.000.000\$

• Ensamblado:

- Human Genome Project
- 3.000.000.000 bases
- 3.4 GB
- 1.5% del genoma: genes

ARN

https://bit.ly/3D6ZPH

ADN: ATGTGTCCATAG

ADN: ATGTGTCCATAG

ARN:

ADN: ATGTGTCCATAG

ARN: AUGUGUCCAUAG

ADN: ATGTGTCCATAG

ARN: AUGUGUCCAUAG

P:

ADN: ATG TGT CCA TAG

ARN: AUG UGU CCA UAG

P:

Automatización

- 0 y 1 A, C, G, T
- Menor coste → Más datos

Análisis de Secuencias

ACGATATTACACGTACACTCAAGTCGT
TCGAGATTGCATGTACCCTCAAGCCGTCGG
ACGATATTACACGTACACTCACGTCGT
ACGATATTACACGTACACTCACGTCGTTCGGA
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT
ACGATATTACACGTACACTCACGTCGTTCGGAA
ATTACACGTACACTCACGTCGTTCGGAACCT
TACACGTACACTCAAGTCGTTCGGAACCT
CACGTACACTCAAGTCGTTCTGAACCT
CACGTACACTCACGTCGTTCTGAACCT

Análisis de Secuencias

ACGATATTACACGTACACTCAAGTCGT
TCGAGATTGCATGTACCCTCAAGCCGTCGG
ACGATATTACACGTACACTCACGTCGT
ACGATATTACACGTACACTCACGTCGTTCGGA
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT
ACGATATTACACGTACACTCACGTCGTTCGGAA_
ATTACACGTACACTCACGTCGTTCGGAACCT
TACACGTACACTCAAGTCGTTCGGAACCT
CACGTACACTCAAGTCGTTCTGAACCT
CACGTACACTCACGTCGTTCGGAACCT

ACGATATTACACGTACACTCAAGTCGT
TCGAGATTGCATGTACCCTCAAGCCGTCGG_
ACGATATTACACGTACACTCACGTCGT
ACGATATTACACGTACACTCACGTCGTTCGGA
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT
ACGATATTACACGTACACTCACGTCGTTCGGAA
ATTACACGTACACTCACGTCGTTCGGAACCT
TACACGTACACTCAAGTCGTTCGGAACCT
CACGTACACTCAAGTCGTTCTGAACCT
CACGTACACTCACGTCGTTCGGAACCT

ACGATATTACACGTACACTCAAGTCGT
TCGAGATTGCATGTACCCTCAAGCCGTCGG_
ACGATATTACACGTACACTCACGTCGT
ACGATATTA GTACACTCACGTCGTTCGGA
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT
ACGATATTACACGTACACTCACGTCGTTCGGAA
ATTACACGTACACTCACGTCGTTCGGA/CT
TACACGTACACTCAAGTCGTTCG
CACGTACACTCAAGTCGTTCTGAACCT
CACGTACACTCACGTCGTTCGGAACCT

ACGATATTACACGTACACTCAAGTCGT	\rightarrow	Calidad:	98/100
TCGAGATTGCATGTACCCTCAAGCCGTCGG	\rightarrow	Calidad:	14/100
ACGATATTACACGTACACTCACGTCGT	\rightarrow	Calidad:	95/100
ACGATATTA GTACACTCACGTCGTTCGGA	\rightarrow	Calidad:	98/100
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT	\rightarrow	Calidad:	25/100
ACGATATTACACGTACACTCACGTCGTTCGGAA	\rightarrow	Calidad:	98/100
ATTACACGTACACTCACGTCGTTCGGA/CT		Calidad:	·
TACACGTACACTCAAGTCGTTCG ACCT	\rightarrow	Calidad:	89/100
CACGTACACTCAAGTCGTTCTGAACCT	\rightarrow	Calidad:	99/100
CACGTACACTCACGTCGTTCGGAACCT	\rightarrow	Calidad:	95/100

ACGATATTACACGTACACTC	:AA	FTCGT	\rightarrow	Calidad:	98/100
TCGAGATTGCATGTACCCTC	AA	CCGTCGG	\rightarrow	Calidad:	14/100
ACGATATTACACGTACACTC	ACC	TCGT	\rightarrow	Calidad:	95/100
ACGATATTACACGTACACTO	AC	TCGTTCGGA	\rightarrow	Calidad:	98/100
ACGATATTACACGCACACT(AAC	ICGTTCGGAACCT	\rightarrow	Calidad:	25/100
ACGATATTACACGTACACT(AC	ICGTTCGGAA	\rightarrow	Calidad:	98/100
ATTACACGTACACT(AC	TCGTTCGGAACCT	\rightarrow	Calidad:	90/100
TACACGTACACTC	AAG	TCGTTCGGAACCT	\rightarrow	Calidad:	89/100
CACGTACACTO	AA	TCGTTCTGAACCT	\rightarrow	Calidad:	99/100
CACGTACACTO	CAC	TCGTTCGGAACCT	\rightarrow	Calidad:	95/100

ACGATATTACACGTACACTCAAGTCGGATCGGAACCT → Referencia

ACGATATTACACGTACACTCAAGTCGT	\rightarrow	Calidad:	98/100
TCGAGATTGCATGTACCCTCAAGCCGTCGG	\rightarrow	Calidad:	14/100
ACGATATTACACGTACACTCACGTCGT	\rightarrow	Calidad:	95/100
ACGATATTACACGTACACTCACGTCGTTCGGA	\rightarrow	Calidad:	98/100
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT	\rightarrow	Calidad:	25/100
ACGATATTACACGTACACTCACGTCGTTCGGAA	\rightarrow	Calidad:	98/100
ATTACACGTACACTCACGTCGTTCGGAACCT	\rightarrow	Calidad:	90/100
TACACGTACACTCAAGTCGTTCGGAACCT	\rightarrow	Calidad:	89/100
CACGTACACTCAAGTCGTTCTGAACCT	\rightarrow	Calidad:	99/100
CACGTACACTCACGTCGTTCGGAACCT	\rightarrow	Calidad:	95/100

ACGATATTACACGTACACTCAAGTCGATCGGAACCT

ACGATATTACACGTACACTCAAGTCGT	\rightarrow	Calidad:	98/100
TCGAGATTGCATGTACCCTCAAGCCGTCGG	\rightarrow	Calidad:	14/100
ACGATATTACACGTACACTCACGTCGT	\rightarrow	Calidad:	95/100
ACGATATTACACGTACACTCACGTCGTTCGGA	\rightarrow	Calidad:	98/100
ACGATATTACACGCACACTCAAGTCGTTCGGAACCT	\rightarrow	Calidad:	25/100
ACGATATTACACGTACACTCACGTCGTTCGGAA	\rightarrow	Calidad:	98/100
ATTACACGTACACTCACGTCGTTCGGAACCT	\rightarrow	Calidad:	90/100
TACACGTACACTCAAGTCGTTCGGAACCT	\rightarrow	Calidad:	89/100
CACGTACACTCAAGTCGTTCTGAACCT	\rightarrow	Calidad:	99/100
CACGTACACTCACGTCGTTCGGAACCT	\rightarrow	Calidad:	95/100

Medicina Personalizada

www.pandrugs.org

Biología de sistemas

Mycoplasma

Biología de sistemas

Biología de sistemas

Modelado de proteínas

• Diseño de fármacos

Plegado de proteínas

Plegado de proteínas

Más problemas: Rosalind

https://bit.ly/BIERosalind