Aufgabe 1

- a) Es sei $f(x,y) = x^2/2 + xy$ und $\mathbf{a} = (1,2)$. Berechnen Sie die Richtungsableitung von f im Punkt **a** in den Richtungen (2,3), (-1,-3), (3,2), (3,1), (-2,-3), (-3,-1) und (-1,3). Welchen Wert hat die größtmögliche Richtungsableitung von f im Punkt \mathbf{a} und in welcher Richtung \mathbf{n} wird sie angenommen?
- b) Berechnen Sie für $f(x,y) = x^3 3x^2y + 3xy^2 + 1$, $\mathbf{a} = (2,1)$ und $\mathbf{n} = (1,3)$ die Richtungsableitung von f im Punkt \mathbf{a} in Richtung \mathbf{n} .
- c) Berechnen Sie für $f(x, y, z) = x^2 y^2 z^2$ und $\mathbf{a} = (1, -1, 3)$ die Richtungsableitung von f im Punkt \mathbf{a} in die Richtung, die vom Punkt \mathbf{a} zum Punkt $\mathbf{b} = (0, 1, 1)$ zeigt.

Aufgabe 2 Untersuchen Sie jeweils die Funktion f auf lokale Extremwerte in \mathbb{R}^2 .

a)
$$f(x,y) = x^2 + 4y^2$$

b)
$$f(x,y) = 4x^2(2+y^2) + (2-y^2)^2$$

c)
$$f(x,y) = 8x^3 - 6x^2y - 3y^2 + 18y - 17$$
 d) $f(x,y) = x^3y^2(1-x-y)$

d)
$$f(x,y) = x^3y^2(1-x-y)$$

Aufgabe 3 Untersuchen Sie jeweils, ob es sich bei dem Vektorfeld f um ein Zentralfeld, ein sphärisches Feld, ein zylindrisches Feld oder ein Gradientenfeld handelt.

a)
$$f(x, y, z) = (x, y, z)$$

b)
$$\mathbf{f}(w, x, y, z) = (w^2 x^3 z^2, w x^4 z^2, w x^3 y z^2, w x^3 z^3)$$

c)
$$\mathbf{f}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

d)
$$\mathbf{f}(x, y, z) = (x^3, x^2y, 0)$$

c)
$$\mathbf{f}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$
 d) $\mathbf{f}(x,y,z) = \left(x^3, x^2y, 0\right)$ e) $\mathbf{f}(x,y,z) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, 0\right)$ f) $\mathbf{f}(x,y,z) = (xyz, xyz, xyz)$

f)
$$\mathbf{f}(x, y, z) = (xyz, xyz, xyz)$$

Aufgabe 4 Skizzieren Sie jeweils das ebene Vektorfeld \mathbf{f} , indem Sie an ausgewählten Punkten (x, y) den Vektor $\mathbf{f}(x,y)$ einzeichnen.

a)
$$\mathbf{f}(x,y) = (1,x)$$

b)
$$\mathbf{f}(x, y) = (x, y)$$

a)
$$\mathbf{f}(x,y) = (1,x)$$
 b) $\mathbf{f}(x,y) = (x,y)$ c) $\mathbf{f}(x,y) = (-y,x)$

Aufgabe 5 Zeigen Sie jeweils, dass das angegebene y als Funktion von x die allgemeine Lösung der angegebenen Differentialgleichung ist.

a)
$$y = Ce^{-4x}$$
, $y' + 4y = 0$

b)
$$y = Ae^x + Be^{-x}$$
, $y'' - y = 0$

c)
$$y = C \sinh x + D \cosh x$$
, $y'' - y = 0$

c)
$$y = C \sinh x + D \cosh x$$
, $y'' - y = 0$ d) $y = \frac{Cx}{1+x}$, $x(1+x)y' - y = 0$

e)
$$y = A \sin x + B \cos x$$
, $y'' + y = 0$

f)
$$y = -\ln(-\sin x + C), \quad y' = e^y \cos x$$

Tipp: Weisen Sie jeweils nach, dass jedes Anfangswertproblem der Differentialgleichung genau eine Lösung hat (Existenz- und Eindeutigkeitssatz!) und dass sich diese Lösung aus y ergibt, indem man geeignete Werte für die Integrationskonstanten wählt.

Aufgabe 6 Berechnen Sie jeweils die allgemeine Lösung der Differentialgleichung. Führen Sie dazu eine Trennung der Variablen und eventuell zuvor eine geeignete Substitution durch.

a)
$$2x^2y' = y^2$$

a)
$$2x^2y' = y^2$$
 b) $y' = (y+2)^2$

c)
$$y'(1+x^3) = 3x^2y$$

d)
$$y' = 1 - y^2$$

e)
$$u^2 u' = x^{\frac{1}{2}}$$

d)
$$y' = 1 - y^2$$
 e) $y^2y' = x^5$ f) $y' = (x + y + 1)^2$

g)
$$xy' = y + 4x$$

h)
$$y' \tan x - y = 1$$

g)
$$xy' = y + 4x$$
 h) $y' \tan x - y = 1$ i) $(3x - 2y)y' = 6x - 4y + 1$