

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C11D 17/00, 3/39, 17/06, 3/12		A1	(11) International Publication Number: WO 00/18869 (43) International Publication Date: 6 April 2000 (06.04.00)
(21) International Application Number: PCT/US98/20221 (22) International Filing Date: 25 September 1998 (25.09.98)			(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(71) Applicant (<i>for all designated States except US</i>): THE PROCTER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US).			
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): HARTSHORN, Richard, Timothy [GB/GB]; 139 Dene Road, Wylam, Northumberland NE41 8EY (GB). ALAM, Zayeed [GB/GB]; 39 Huntingdon Close, Kingston Park, Newcastle upon Tyne NE3 2XY (GB). NORWOOD, Kevin [US/US]; 311 Hilltop Lane, Cincinnati, OH 45217 (US).			
(74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217-1087 (US).			
(54) Title: SOLID DETERGENT COMPOSITIONS			
(57) Abstract			
<p>The invention relates to solid detergent compositions comprising an aluminosilicate builder and an anionic surfactant and comprising (n) components (i), n being at least 2, whereby the level of aluminosilicate builder in said components together is at least 5 % by weight of the composition and the level of the anionic surfactant in said components together is at least 5 % by weight of the composition, and whereby the degree of mixture (M) of the anionic surfactant and the aluminosilicate builder is from 0 to 0.7, as defined in the description.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

SOLID DETERGENT COMPOSITIONS

5 Technical Field of the Invention

The invention relates to solid detergent compositions comprising aluminosilicate builder and surfactants comprised in two or more components which have an improved cleaning performance, an improved delivery to the wash and a reduced residue formation on the
10 fabrics.

Background to the Invention

All detergents on the market contain surfactants and builders. One of the most commonly
15 used builders in phosphate-free detergents are aluminosilicates. They are inexpensive builders, which have as an additional benefit that they are easy to process. They are in fact useful process aids because they are very good structurants, binders or carrier materials for other detergent ingredients. Therefore, most detergents comprise a base powder, made by spray-drying a slurry of aluminosilicate and surfactant or by agglomerating
20 aluminosilicate and surfactant. Furthermore, aluminosilicates are useful as dusting agent, to reduce the stickiness or caking of the product.

A problem encountered with these detergents comprising a builder system containing aluminosilicates, is that they tend to cause fabric residues. These residues contain
25 detergent products which is entrapped in the fabrics and/ or are insoluble in water. They are noticeable by the consumer as spotting on the fabric.

Another problem encountered with, in particular solid, detergents is their tendency to gel upon contact with water. This leads to poor dispensing of the product from the dispensing
30 drawer or from a dispensing device, and also to poor dissolution of the product into the

wash water. This results in residues in the drawer, dispensing device, washing machine and on the fabrics, which may be noticeable as spots on the fabric. It has been found that in particular surfactants gel upon contact with water.

- 5 The inventors have now surprisingly found that this problems in particular arises when the surfactants and the aluminosilicates in the detergent are in close contact with one another, for example when they are in the detergent in an intimately mixture. This is for example the case in most known and used base powders, which are agglomerates or spray-dried powders containing. The inventors have now found that the residue
- 10 formation problem but also the gelling problem or dissolution or dispensing problem mainly arises in most known products, when about all the anionic surfactants and aluminosilicates are intimately mixed with one another. When the degree of intimate mixing is reduced or even avoided completely, they have found that these problems are reduced or even solved completely.

15

- Thus, the inventors have found a solution which still allows the incorporation of aluminosilicates and surfactants in detergent, but in a different manner: the invention provides thereto detergents comprising at least two components comprising the surfactants and the aluminosilicate in such a manner that a limited degree of intimate mixing occurs.

- 20 The detergents of the invention have a reduced fabric residue, in particular of insoluble detergent ingredients, gelling, an improved dispensing and dissolution. It has been found that these benefits are obtained by any convention way of introducing detergent to the wash, including by use of a dispensing drawer, a dispensing device or by addition of the detergent in the washing prior to addition of the wash load or addition of the detergent on top of the wash load.

- 25 The compositions may comprise an effervescence system to further aid the dispensing or dissolution or foaming.

Summary of the Invention

The invention provides a detergent composition comprising an aluminosilicate builder
5 and an anionic surfactant and comprising (n) components (i), n being at least 2, whereby
the level of aluminosilicate builder in said components together is at least 5% by weight
of the composition and the level of the anionic surfactant in said components together is
at least 5% by weight of the composition, and whereby the degree of mixture (M) of the
anionic surfactant and the aluminosilicate builder is from 0 to 0.7, M being

10

$$\sum_{i=1}^n \sqrt{(\sigma_i \cdot \zeta_i)}$$

σ is the fraction of the anionic surfactant of the composition comprised in component (i);
 ζ is the fraction of the aluminosilicate of the composition comprised in component (i).

15

The composition is in particular in granular form, in the form of an extrudate, marumerate
or pastille, or in the form of an tablet.

20

The invention also relates to the use in a detergent composition of at least two
components which comprise together an aluminosilicate at a level of at least 5% by
weight of the composition and an anionic surfactant at a level of at least 5% by weight of
the composition or mixtures thereof, whereby the degree of mixture (M) of the anionic
surfactant and the aluminosilicate builder is from 0 to 0.7 for improvement of the delivery
of the detergent to the washing water, M being as defined above.

25

The detergent compositions have an improved delivery to the washing water. This means
for the purpose of the invention that the compositions provide a reduction of fabric
residues, in particular of water-insoluble detergent ingredients such as the aluminosilicate,
an improvement of the dispensing of the detergent composition, an improvement in the
dissolution of the detergent, a reduction in gelling of the detergent and / or a reduction of

lump formation of the detergent on the fabrics and for bleach-containing compositions, an reduced risk of fabric damage.

Detailed Description of the Invention

5

The detergent composition herein comprise at least two components which comprise an anionic surfactant or an aluminosilicate or mixtures thereof, whereby if mixtures of aluminosilicate and the surfactant are present in one or more of the components, the degree of mixture M is less than 0.7, as defined by the formula. Thus, each component
10 comprises part or all of the aluminosilicate, all or part of the anionic surfactant or mixtures thereof, provided that M is from 0 to 0.7.

The components of the detergent composition of the invention comprise each at least two ingredients, including the anionic surfactant and/ or the aluminosilicate, which are
15 intimately mixed. This means for the purpose of the invention that the two or more ingredients the component are substantially homogeneously divided in the component.

Preferably, a component is such that when it comprises an anionic surfactant, the level of the anionic surfactant is less than 95%, preferably less than 85% or even less than 80% by
20 weight of the component, whereby it may be preferred that the level of the anionic surfactant is at least 5%, preferably at least 10% more preferably at least 20% or even at least 30% or even 35% by weight of the component.

Preferably, a component is such that when it comprises an aluminosilicate, the level of the aluminosilicate is less than 95%, preferably less than 85% or even less than 80% by weight of the component, whereby it may be preferred that the level of the aluminosilicate is at least 5%, preferably at least 10% by weight of the component.

It should be understood that the detergent composition herein may also comprise
30 additional intimately mixtures which are free of anionic surfactant and free of

aluminosilicate. Also, the detergent composition may comprise additional ingredients which are not in an intimate mixture with another ingredient and thus not comprised in a component of the composition, as defined herein. For example, the composition may comprise a detergent ingredient sprayed onto the components herein or dry-added to the

5 components herein.

The components together comprise the aluminosilicate builder at a level of least 5% by weight of the composition of and the anionic surfactant at a level of at least 5% by weight of the composition. Preferably, the components comprise the aluminosilicate at a level of
10 at least 7%, or more preferably at least 10% or even 15% by weight of the composition. Depending on the precise formulation of the composition and the conditions of use, the compositions of the invention can even comprise higher levels of aluminosilicate, such as more than 20% or even more than 25%, whilst still providing an improved delivery of the detergent to the wash.

15 Preferably at least 7% or more preferably at least 10% or even at least 12% by weight of the composition of anionic surfactant is present in the components. Depending on the precise formulation of the composition and the conditions of use, it may be preferred to have levels of anionic surfactants of 18% by weight of the composition or more.

20 It may be preferred that the detergent composition comprises additional dry-added aluminosilicate, in particular to dust the detergent components to reduce the risk of caking and/ or to provide whiteness to the product.

25 Preferably, M is less than 0.65, or even less than 0.45 or even 0.4 or even 0.35. It may be preferred that M is 0, and that thus no components are present in the detergent composition which comprise both aluminosilicate and anionic surfactants. Whether this is preferred will for example depend the levels of aluminosilicate and anionic surfactant in the detergent, on the other ingredients present in the formulation and the amount of
30 components present in the formulation.

The components herein preferably are particles, having a particle size of at least 50 microns, preferably the particles have an weight average particle size of more than 150 or more than 250 microns or even more than 350 microns, as measured by sieving the
5 composition on sieves of different mesh size, and calculating the fraction which remain on the sieve and the fraction which passes through the sieve.

It may be preferred that at least one component is made by a spray-drying process, as known in the art, and at least one component is made by an agglomeration process, as
10 known in the art.

Preferably, the density of the components is from 250 g/litre to 1500 g/litre, more preferably at least one of the components, preferably all of the components, has a density from 400 g/litre to 1200gr/litre, more preferably from 500 g/litre to 900g/litre.
15

A highly preferred additional ingredient of the detergent compositions herein may be oxygen based bleach, preferably containing an hydrogen peroxide source, preferably a perhydrogen compound and a bleach activator, described herein after. It has been found that the improved product delivery to the wash results in an improved delivery of the
20 bleach system therein, which reduces the risk of deposition of bleach on the fabric and the risk of patchy fabric damage.

Another preferred additional ingredient is one or more additional builder materials, such as one or more monomeric, oligomeric or polymeric carboxylate builders and/ or
25 crystalline layered silicate builder material, described herein after.

Also, depending on the use of the composition and the specific formulation, the detergent composition may be substantially free of specific spray-on nonionic alkoxylated alcohol surfactants, which have been found to cause gelling or dispensing or dissolution
30 problems. It may then be preferred that the composition comprises other nonionic

surfactants, preferably nonionic surfactants which are solid at room temperature. A further advantage can be that the omission of sprayed-on nonionic alkoxylated alcohols allows the reduction or omission of powdered materials normally required to dust the detergent particles containing these liquid nonionic surfactants, such as fine 5 aluminosilicates. This not only reduces the process complexity, but moreover reduces the degree of mixing or contact of the s and surfactants.

Furthermore, the inventors have found that in certain embodiments of the invention it may be beneficial to reduce the degree of mixing between the aluminosilicate and one or 10 more of the organic polymeric compounds, when present, for example flocculation polymers and polycarboxylate polymers, as described herein. The degree of mixture of the aluminosilicate and one or more of these polymers can be determined by the formula above, wherein σ would indicate the weight fraction of the specific polymer in a certain component. It has been found that this may reduce the fabric residue formation on the 15 fabrics, in particular of water-insoluble components, such as the aluminosilicate.

It may also be useful that in certain embodiments of the invention , the degree of mixing between amorphous silicate and an anionic surfactant is reduced, when an amorphous silicate is present, in particular in mixtures containing anionic surfactant which are to be 20 spray-dried, it may be beneficial to reduce the amount of silicate present, for example to levels of less than 3% by weight of the mixture, or even less than 2%, or even less than 1% or even 0% by weight of the mixture.

Aluminosilicate

25

Suitable aluminosilicates herein are zeolites which have the unit cell formula $\text{Na}_z[(\text{AlO}_2)_z(\text{SiO}_2)_y] \cdot x\text{H}_2\text{O}$ wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicates are in preferably in hydrated form and are preferably

crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form. However, it may be useful to incorporate overdried aluminosilicates.

The aluminosilicates can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula

10

wherein x is from 20 to 30, especially 27. Zeolite X has the formula $\text{Na}_{86}[(\text{AlO}_2)_{86}(\text{SiO}_2)_{106}] \cdot 276\text{H}_2\text{O}$.

Anionic Surfactant

15

Any anionic surfactant can be incorporated in the compositions of the invention.

The anionic surfactant herein preferably comprises at least a sulphate surfactant and/or a sulphonate surfactant or mixtures thereof. It may be preferred that the anionic surfactant comprises only alkyl sulphonate surfactant or optionally combined with fatty acids or soap salts thereof. Alternatively, it may be preferred that the composition comprises only alkyl sulphate surfactant, but hereby it is preferred that at least a mid-chain branched alkyl surfactant is present or at least two alkyl surfactants are present.

Depending on the precise formulation of the composition and the use thereof, it may be preferred that the compositions herein comprise a particulate component, as described above, preferably in the form of a flake of an alkyl sulfate or sulphonate surfactant, preferably an alkyl benzene sulphonate, present at a concentration of from 85% to 95% of the particle or flake, the balance being an sulfate salt and moisture, the particle or flake being admixed to the other detergent component(s) or ingredients.

30

Other possible anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C₁₂-C₁₈ monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C₆-C₁₄ diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.

Anionic Sulphonate Surfactant

10 The anionic sulphonate surfactants in accordance with the invention include the salts of C₅-C₂₀ linear or branched alkylbenzene sulphonates, alkyl ester sulphonates, C₆-C₂₂ primary or secondary alkane sulphonates, C₆-C₂₄ olefin sulphonates, sulphonated polycarboxylic acids, and any mixtures thereof.

15 Highly preferred is a C12-C16 linear alkylbenzene sulphonate. Preferred salts are sodium and potassium salts.

The alkyl ester sulphonated surfactant are also suitable for the invention, preferably those of formula

wherein R¹ is a C₆-C₂₂ hydrocarbyl, R² is a C₁-C₆ alkyl, A is a C₆-C₂₂ alkylene, alkenylene, x is 0 or 1, and M is a cation. The counterion M is preferably sodium, potassium or ammonium.

The alkyl ester sulphonated surfactant is preferably a α -sulpho alkyl ester of the formula above, whereby thus x is 0. Preferably, R¹ is an alkyl or alkenyl group of from 10 to 22,

preferably 16 C atoms and x is preferably 0. R² is preferably ethyl or more preferably methyl.

It can be preferred that the R¹ of the ester is derived from unsaturated fatty acids, with
5 preferably 1, 2 or 3 double bonds. It can also be preferred that R¹ of the ester is derived from a natural occurring fatty acid, preferably palmic acid or stearic acid or mixtures thereof.

Anionic Alkyl Sulphate Surfactant

The anionic sulphate surfactant herein include the linear and branched primary and secondary alkyl sulphates and disulphates, alkyl ethoxysulphates having an average ethoxylation number of 3 or below, fatty oleoyl glycerol sulphates, alkyl phenol ethylene oxide ether sulphates, the C₅-C₁₇ acyl-N-(C₁-C₄ alkyl) and -N-(C₁-C₂ hydroxyalkyl) glucamine sulphates, and sulphates of alkylpolysaccharides.
15

Primary alkyl sulphate surfactants are preferably selected from the linear and branched primary C₁₀-C₁₈ alkyl sulphates, more preferably the C₁₁-C₁₅ linear or branched chain alkyl sulphates, or more preferably the C₁₂-C₁₄ linear chain alkyl sulphates.
20

Preferred secondary alkyl sulphate surfactant are of the formula

25 wherein R³ is a C₈-C₂₀hydrocycarbyl, R⁴ is a hydrocycarbyl and M is a cation.

Alkyl ethoxy sulphate surfactants are preferably selected from the group consisting of the C₁₀-C₁₈ alkyl sulphates which have been ethoxylated with from 0.5 to 3 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulphate surfactant is a

C₁₁-C₁₈, most preferably C₁₁-C₁₅ alkyl sulphate which has been ethoxylated with from 0.5 to 3, preferably from 1 to 3, moles of ethylene oxide per molecule.

A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulphate and alkyl ethoxysulphate surfactants. Preferred salts are sodium and potassium salts.

Mid-Chain Branched Anionic Surfactants

10

Preferred mid-chain branched primary alkyl sulfate surfactants for use herein are of the formula

15 These surfactants have a linear primary alkyl sulfate chain backbone (i.e., the longest linear carbon chain which includes the sulfated carbon atom) which preferably comprises from 12 to 19 carbon atoms and their branched primary alkyl moieties comprise preferably a total of at least 14 and preferably no more than 20, carbon atoms. In the surfactant system comprising more than one of these sulfate surfactants, the average total
20 number of carbon atoms for the branched primary alkyl moieties is preferably within the range of from greater than 14.5 to about 17.5. Thus, the surfactant system preferably comprises at least one branched primary alkyl sulfate surfactant compound having a longest linear carbon chain of not less than 12 carbon atoms or not more than 19 carbon atoms, and the total number of carbon atoms including branching must be at least 14, and
25 further the average total number of carbon atoms for the branched primary alkyl moiety is within the range of greater than 14.5 to about 17.5.

R, R¹, and R² are each independently selected from hydrogen and C₁-C₃ alkyl group (preferably hydrogen or C₁-C₂ alkyl, more preferably hydrogen or methyl, and most preferably methyl), provided R, R¹, and R² are not all hydrogen. Further, when z is 1, at least R or R¹ is not hydrogen.

5

M is hydrogen or a salt forming cation depending upon the method of synthesis.

w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; and w + x + y + z is an integer from 8 to 14.

- 10 A preferred mid-chain branched primary alkyl sulfate surfactant is, a C16 total carbon primary alkyl sulfate surfactant having 13 carbon atoms in the backbone and having 1, 2, or 3 branching units (i.e., R, R¹ and/or R²) of in total 3 carbon atoms, (whereby thus the total number of carbon atoms is at least 16). Preferred branching units can be one propyl branching unit or three methyl branching units.

15

Another preferred surfactant are branched primary alkyl sulfates having the formula

- wherein the total number of carbon atoms, including branching, is from 15 to 18, and
- 20 when more than one of these sulfates is present, the average total number of carbon atoms in the branched primary alkyl moieties having the above formula is within the range of greater than 14.5 to about 17.5; R¹ and R² are each independently hydrogen or C₁-C₃ alkyl; M is a water soluble cation; x is from 0 to 11; y is from 0 to 11; z is at least 2; and x + y + z is from 9 to 13; provided R¹ and R² are not both hydrogen.

25

Dianionic Surfactants

The dianionic surfactants are also useful anionic surfactants for the present invention, in particular those of formula

where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C₁ to C₂₈, preferably C₃ to C₂₄, most preferably C₈ to C₂₀,
 10 or hydrogen; A nad B are independently selected from alkylene, alkenylene, (poly) alkoxylene, hydroxyalkylene, arylalkylene or amido alkylene groups of chain length C₁ to C₂₈ preferably C₁ to C₅, most preferably C₁ or C₂, or a covalent bond, and preferably A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic groups selected from the group comprising
 15 carboxylate, and preferably sulfate and sulfonate, z is 0 or preferably 1; and M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.

The most preferred dianionic surfactant has the formula as above where R is an alkyl group of chain length from C₁₀ to C₁₈, A and B are independently C₁ or C₂, both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.
 20

Preferred dianionic surfactants herein include:

25 (a) 3 disulphate compounds, preferably 1,3 C₇-C₂₃ (i.e., the total number of carbons in the molecule) straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:

wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C₄ to about C₂₀;

- 5 (b) 1,4 disulphate compounds, preferably 1,4 C₈-C₂₂ straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:

- 10 wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C₄ to about C₁₈; preferred R are selected from octanyl, nonanyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, and mixtures thereof; and

- (c) 1,5 disulphate compounds, preferably 1,5 C₉-C₂₃ straight or branched chain alkyl or alkenyl disulphates, more preferably having the formula:

15

wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C₄ to about C₁₈.

- 20 It can be preferred that the dianionic surfactants of the invention are alkoxylated dianionic surfactants.

The alkoxylated dianionic surfactants of the invention comprise a structural skeleton of at least five carbon atoms, to which two anionic substituent groups spaced at least three

atoms apart are attached. At least one of said anionic substituent groups is an alkoxy-linked sulphate or sulphonate group. Said structural skeleton can for example comprise any of the groups consisting of alkyl, substituted alkyl, alkenyl, aryl, alkaryl, ether, ester, amine and amide groups. Preferred alkoxy moieties are ethoxy, propoxy, and combinations thereof.

The structural skeleton preferably comprises from 5 to 32, preferably 7 to 28, most preferably 12 to 24 atoms. Preferably the structural skeleton comprises only carbon-containing groups and more preferably comprises only hydrocarbyl groups. Most preferably the structural skeleton comprises only straight or branched chain alkyl groups.

The structural skeleton is preferably branched. Preferably at least 10 % by weight of the structural skeleton is branched and the branches are preferably from 1 to 5, more preferably from 1 to 3, most preferably from 1 to 2 atoms in length (not including the sulphate or sulphonate group attached to the branching).

A preferred alkoxylated dianionic surfactant has the formula

20

where R is an, optionally substituted, alkyl, alkenyl, aryl, alkaryl, ether, ester, amine or amide group of chain length C₁ to C₂₈, preferably C₃ to C₂₄, most preferably C₈ to C₂₀, or hydrogen; A and B are independently selected from, optionally substituted, alkyl and alkenyl group of chain length C₁ to C₂₈, preferably C₁ to C₅, most preferably C₁ or C₂, or a covalent bond; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propanoate groups, wherein n and m are independently within the range of from about 0 to about 10, with at least m or n being at least 1; A and B in total contain at least 2 atoms; A, B, and R in total contain from 4 to about 31 carbon atoms; X and Y are anionic

groups selected from the group consisting of sulphate and sulphonate, provided that at least one of X or Y is a sulfate group; and M is a cationic moiety, preferably a substituted or unsubstituted ammonium ion, or an alkali or alkaline earth metal ion.

- 5 The most preferred alkoxylated dianionic surfactant has the formula as above where R is an alkyl group of chain length from C₁₀ to C₁₈, A and B are independently C₁ or C₂, n and m are both 1, both X and Y are sulfate groups, and M is a potassium, ammonium, or a sodium ion.

- 10 Preferred alkoxylated dianionic surfactants herein include:
ethoxylated and/or propoxylated disulphate compounds, preferably C₁₀-C₂₄ straight or branched chain alkyl or alkenyl ethoxylated and/or propoxylated disulphates, more preferably having the formulae:

- 15 wherein R is a straight or branched chain alkyl or alkenyl group of chain length from about C₆ to about C₁₈; EO/PO are alkoxy moieties selected from ethoxy, propoxy, and mixed ethoxy/propxoy groups; and n and m are independently within the range of from about 0 to about 10 (preferably from about 0 to about 5), with at least m or n being 1.

20 Anionic Carboxylate Surfactant

Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.

25

Suitable alkyl ethoxy carboxylates include those with the formula RO(CH₂CH₂O)_xCH₂COO⁻M⁺ wherein R is a C₆ to C₁₈ alkyl group, x ranges from 0 to 10, and the

ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR₁-CHR₂-O)-R₃ wherein R is a C₆ to C₁₈ alkyl group, x is from 1 to 25, R₁ and R₂ are selected from the group consisting of

5 hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R₃ is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.

Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl-1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.

15 Certain soaps may also be included as suds suppressors.

Alkali Metal Sarcosinate Surfactant

Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON(R¹)CH₂COOM, wherein R is a C₅-C₁₇ linear or branched alkyl or alkenyl group, R¹ is a C₁-C₄ alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.

Effervescence System

25 Any effervescence system known in the art can be used in the composition of the invention. A preferred effervescence system comprises an acid source, capable of reacting with an alkali source in the presence of water to produce a gas.

The acid source is preferably present at a level of from 0.5% to 35%, more preferably from 1.0% or even 2% to 20% or even from 4% to 20% by weight of the composition.

It may be preferred that the acid source or part thereof and the alkali source or part thereof
5 are comprised in an intimate mixture, for example in the form of a compacted particle.
The molecular ratio of the acid source to the alkali source, is preferably from 50:1 to 1:50,
more preferably from 20:1 to 1:20 more preferably from 10:1 to 1:10, whereby when an
intimate mixture of the acid source and the alkali source is present, this ratio is more
preferably from 5:1 to 1:3, more preferably from 3:1 to 1:2, more preferably from 2:1 to
10 1:2.

The acid source component may be any organic, mineral or inorganic acid, or a derivative
thereof, or a mixture thereof. Preferably the acid source component comprises an organic
acid.

15 The acid compound is preferably substantially anhydrous or non-hygroscopic and the acid
is preferably water-soluble. It may be preferred that the acid source is overdried.

Suitable acids source components include citric, malic, maleic, fumaric, aspartic,
20 glutaric, tartaric succinic or adipic acid, monosodium phosphate, boric acid, or derivative
thereof. Citric acid, maleic or malic acid are especially preferred.

Most preferably, the acid source provides acidic compounds which have an average
particle size in the range of from about 75 microns to 1180 microns, more preferably from
25 150 microns to about 710 microns, calculated by sieving a sample of the source of acidity
on a series of Tyler sieves.

As discussed above, the effervescence system preferably comprises an alkali source,
however, for the purpose of the invention, it should be understood that the alkali source
30 may be part of the effervescence particle or can be part of the cleaning composition

comprising the particle, or can be present in the washing liquor, whereto the particle or the cleaning composition is added.

- Any alkali source which has the capacity to react with the acid source to produce a gas
- 5 may be present in the particle, which may be any gas known in the art, including nitrogen oxygen and carbondioxide gas. Preferred can be perhydrate bleaches, including perborate, and silicate material. The alkali source is preferably substantially anhydrous or non-hydroscopic. It may be preferred that the alkali source is overdried.
- 10 Preferably this gas is carbon dioxide, and therefore the alkali source is a preferably a source of carbonate, which can be any source of carbonate known in the art. In a preferred embodiment, the carbonate source is a carbonate salt. Examples of preferred carbonates are the alkaline earth and alkali metal carbonates, including sodium or potassium carbonate, bicarbonate and sesqui-carbonate and any mixtures thereof with ultra-fine
- 15 calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973. Alkali metal percarbonate salts are also suitable sources of carbonate species, which may be present combined with one or more other carbonate sources.
- 20 The carbonate and bicarbonate preferably have an amorphous structure. The carbonate and/ or bicarbonates may be coated with coating materials. It can be preferered that the particles of carbonate and bicarbonate can have a mean particle size of 75 microns or preferably 150 μm or greater, more preferably of 250 μm or greater, preferably 500 μm or greater. It may be preferred that the carbonate salt is such that fewer than 20% (by weight)
- 25 of the particles have a particle size below 500 μm , calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves. Alternatively or in addition to the previous carbonate salt, it may be preferred that the fewer than 60% or even 25% of the particles have a particle size below 150 μm , whilst fewer than 5% has a particle size of more than 1.18 mm, more preferably fewer than 20% have a particle size of more than

212 µm, calculated by sieving a sample of the carbonate or bicarbonate on a series of Tyler sieves.

Additional Ingredients

- 5 The compositions herein may contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the compositions comprising the builder component and the precise nature of the washing operation for which it is to be used.
- 10 Additional ingredients include additional builders, additional surfactants, bleach, enzymes, suds suppressors, lime soap, dispersants, soil suspension and anti-redeposition agents soil releasing agents, perfumes, brightners, photobleaching agents and additional corrosion inhibitors.

15 Water-Soluble or Partially Water-Soluble Builders

The composition preferably comprises one or more water-soluble or partially water-soluble builders.

- 20 These include crystalline layered silicates an organic carboxylates or carboxylic acids. The preferred crystalline layered silicate herein have the general formula

- 25 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. M is preferably H, K or Na or mixtures thereof, preferably Na.
- 30 The most preferred material is $\alpha\text{-Na}_2\text{Si}_2\text{O}_5$, $\beta\text{-Na}_2\text{Si}_2\text{O}_5$ or $\delta\text{-Na}_2\text{Si}_2\text{O}_5$, or mixtures

thereof, preferably being at least 75% -Na₂Si₂O₅, for example available from Clariant as NaSKS-6.

- The crystalline layered silicate material, in particular of the formula Na₂Si₂O₅
- 5 may optionally comprise other elements such as B, P, S, for example obtained by processes as described in EP 578986-B.

The crystalline layered silicate may be in an intimate mixture with other materials, including one or more of surfactants of the surfactant system herein. Preferred other

10 materials are other water-soluble builders, including (poly) carboxylic acids and salts thereof, including polymeric compounds such as acrylic and/ or maleic acid polymers, inorganic acids or salts, including carbonates and sulphates, or small levels of other silicate material, including amorphous silicate, meta silicates, and aluminosilicates, as described herein.

15 Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more than two carbon atoms and mixtures of any of the foregoing.

20 The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance. In addition to these water-soluble builders, polymeric polycarboxylates may be present, including homo and copolymers of maleic acid and acrylic acid and their salts.

25 Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and

30 fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.

Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands 5 Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.

Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane 10 tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more 15 particularly citrates.

Most preferred may be citric acid, malic acid, and fumaric acid, or their salts or mixtures thereof.

20 The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures, are also contemplated as useful builder components.

Alkoxylated Nonionic Surfactant

25 Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.

Preferred alkoxylated surfactants can be selected from the classes of the nonionic 30 condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic

ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.

5

Nonionic Alkoxylated Alcohol Surfactant

The condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The 10 alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.

15 Nonionic Polyhydroxy Fatty Acid Amide Surfactant

Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R^2CONR^1Z wherein : R₁ is H, C₁-C₄ hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C₁-C₄ alkyl, more preferably C₁ or C₂ alkyl, most preferably C₁ alkyl (i.e., methyl); and R₂ is a C₅-C₃₁ hydrocarbyl, 20 preferably straight-chain C₅-C₁₉ alkyl or alkenyl, more preferably straight-chain C₉-C₁₇ alkyl or alkenyl, most preferably straight-chain C₁₁-C₁₇ alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxyated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar 25 in a reductive amination reaction; more preferably Z is a glycetyl.

Nonionic Fatty Acid Amide Surfactant

Suitable fatty acid amide surfactants include those having the formula: $R^6CON(R^7)_2$ wherein R^6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R^7 is selected from the group consisting of hydrogen, C_1-C_4 alkyl, C_1-C_4 hydroxyalkyl, and $-(C_2H_4O)_xH$, where x is in the range of from 1 to 3.

5

Nonionic Alkylpolysaccharide Surfactant

Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.

Preferred alkylpolyglycosides have the formula:

15

wherein R^2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.

Amphoteric Surfactant

Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.

Suitable amine oxides include those compounds having the formula $R^3(OR^4)_xN^0(R^5)_2$ wherein R^3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R^4 is an alkylene or

hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R⁵ is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C₁₀-C₁₈ alkyl dimethylamine oxide, and C₁₀₋₁₈ acylamido alkyl dimethylamine oxide.

A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.

10 Zwitterionic Surfactant

Zwitterionic surfactants can also be incorporated into the detergent compositions in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, 15 or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.

Suitable betaines are those compounds having the formula R(R')₂N⁺R²COO⁻ wherein R 20 is a C₆-C₁₈ hydrocarbyl group, each R¹ is typically C₁-C₃ alkyl, and R² is a C₁-C₅ hydrocarbyl group. Preferred betaines are C₁₂₋₁₈ dimethyl-ammonio hexanoate and the C₁₀₋₁₈ acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.

25 Cationic Surfactants

Suitable cationic surfactants to be used in the detergent herein include the quaternary ammonium surfactants. Preferably the quaternary ammonium surfactant is a mono C₆-C₁₆, preferably C₆-C₁₀ N-alkyl or alkenyl ammonium surfactants wherein the remaining

N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Preferred are also the mono-alkoxylated and bis-alkoxylated amine surfactants.

- Another suitable group of cationic surfactants which can be used in the
- 5 detergent compositions or components thereof herein are cationic ester surfactants. The cationic ester surfactant is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
- 10 Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
- In one preferred aspect the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain
- 15 comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms. The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer
- 20 groups having, for example, -O-O- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH₂-O- CH₂- and -CH₂-NH-CH₂- linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
- 25 Cationic mono-alkoxylated amine surfactants

Highly preferred herein are cationic mono-alkoxylated amine surfactant preferably of the general formula I:

wherein R¹ is an alkyl or alkenyl moiety containing from about 6 to about 18 carbon atoms, preferably 6 to about 16 carbon atoms, most preferably from about 6 to about 14 carbon atoms; R² and R³ are each independently alkyl groups containing from one to about three carbon atoms, preferably methyl, most preferably both R² and R³ are methyl groups; R⁴ is selected from hydrogen (preferred), methyl and ethyl; X⁻ is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, to provide electrical neutrality; A is a alkoxy group, especially a ethoxy, propoxy or butoxy group; and p is from 0 to about 30, preferably 2 to about 15, most preferably 2 to about 8.

Preferably the ApR⁴ group in formula I has p=1 and is a hydroxyalkyl group, having no greater than 6 carbon atoms whereby the —OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms. Particularly preferred ApR⁴ groups are —CH₂CH₂OH, —CH₂CH₂CH₂OH, —CH₂CH(CH₃)OH and —CH(CH₃)CH₂OH, with —CH₂CH₂OH being particularly preferred. Preferred R¹ groups are linear alkyl groups. Linear R¹ groups having from 8 to 14 carbon atoms are preferred.

Another highly preferred cationic mono-alkoxylated amine surfactants for use herein are 20 of the formula

wherein R¹ is C₁₀-C₁₈ hydrocarbyl and mixtures thereof, especially C₁₀-C₁₄ alkyl, preferably C₁₀ and C₁₂ alkyl, and X is any convenient anion to provide charge balance, preferably chloride or bromide.

- 5 As noted, compounds of the foregoing type include those wherein the ethoxy (CH₂CH₂O) units (EO) are replaced by butoxy, isopropoxy [CH(CH₃)CH₂O] and [CH₂CH(CH₃O] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.
- 10 The levels of the cationic mono-alkoxylated amine surfactants used in detergent compositions of the invention is preferably from 0.1% to 20%, more preferably from 0.2% to 7%, most preferably from 0.3% to 3.0% by weight of the composition.

Cationic Bis-Alkoxylated Amine Surfactant

15

The cationic bis-alkoxylated amine surfactant preferably has the general formula II:

- 20 wherein R¹ is an alkyl or alkenyl moiety containing from about 8 to about 18 carbon atoms, preferably 10 to about 16 carbon atoms, most preferably from about 10 to about 14 carbon atoms; R² is an alkyl group containing from one to three carbon atoms, preferably methyl; R³ and R⁴ can vary independently and are selected from hydrogen (preferred), methyl and ethyl, X⁻ is an anion such as chloride, bromide, methylsulfate, sulfate, or the like, sufficient to provide electrical neutrality. A and A' can vary independently and are each selected from C₁-C₄ alkoxy, especially ethoxy, (i.e., -CH₂CH₂O-), propoxy, butoxy
- 25

and mixtures thereof; p is from 1 to about 30, preferably 1 to about 4 and q is from 1 to about 30, preferably 1 to about 4, and most preferably both p and q are 1.

Highly preferred cationic bis-alkoxylated amine surfactants for use herein are of the
5 formula

wherein R¹ is C₁₀-C₁₈ hydrocarbyl and mixtures thereof, preferably C₁₀, C₁₂, C₁₄ alkyl and mixtures thereof. X is any convenient anion to provide charge balance, preferably chloride. With reference to the general cationic bis-alkoxylated amine
10 structure noted above, since in a preferred compound R¹ is derived from (coconut) C₁₂-C₁₄ alkyl fraction fatty acids, R² is methyl and A'qR³ and A'qR⁴ are each monoethoxy.

Other cationic bis-alkoxylated amine surfactants useful herein include compounds of the formula:

15 wherein R¹ is C₁₀-C₁₈ hydrocarbyl, preferably C₁₀-C₁₄ alkyl, independently p is 1 to about 3 and q is 1 to about 3, R² is C₁-C₃ alkyl, preferably methyl, and X is an anion, especially chloride or bromide.

20 Other compounds of the foregoing type include those wherein the ethoxy (CH₂CH₂O) units (EO) are replaced by butoxy (Bu) isopropoxy [CH(CH₃)CH₂O] and [CH₂CH(CH₃O)] units (i-Pr) or n-propoxy units (Pr), or mixtures of EO and/or Pr and/or i-Pr units.

Perhydrate Bleaches

A highly preferred additional components of the compositions herein is an oxygen bleach,
5 preferably comprising a hydrogen peroxide source and a bleach precursor or activator.

A preferred source of hydrogen peroxide is a perhydrate bleach, such as metal perborates,
more preferably metal percarbonates, particularly the sodium salts. Perborate can be mono
or tetra hydrated. Sodium percarbonate has the formula corresponding to
10 $2\text{Na}_2\text{CO}_3 \cdot 3\text{H}_2\text{O}_2$, and is available commercially as a crystalline solid.

In particular the percarbonate salts are preferably coated. Suitable coating agent are
known in the art, and include silicates, magnesium salts and carbonates salts.

15 Potassium peroxymonopersulfate, sodium per is another optional inorganic perhydrate
salt of use in the detergent compositions herein.

Organic Peroxyacid Bleaching System

20 A preferred feature of the composition herein is an organic peroxyacid bleaching system.
In one preferred execution the bleaching system contains a hydrogen peroxide source and
an organic peroxyacid bleach precursor compound. The production of the organic
peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen
peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches,
25 such as the perborate bleach of the claimed invention. In an alternative preferred
execution a preformed organic peroxyacid is incorporated directly into the composition.
Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid
precursor in combination with a preformed organic peroxyacid are also envisaged.

30 Peroxyacid Bleach Precursor

Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as

5

where L is a leaving group and X is essentially any functionality, such that on perhydrolysis the structure of the peroxyacid produced is

10

Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably 15 from 1.5% to 10% by weight of the detergent compositions.

Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes. Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles 20 and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.

Leaving Groups

The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.

10

Preferred L groups are selected from the group consisting of:

15

and mixtures thereof, wherein R¹ is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R³ is an alkyl chain containing from 1 to 8 carbon atoms, R⁴ is H or R³, and Y is H or a solubilizing group. Any of R¹, R³ and R⁴ may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups.

The preferred solubilizing groups are -SO₃⁻M⁺, -CO₂⁻M⁺, -SO₄⁻M⁺, -N⁺(R³)₄X⁻ and O<-N(R³)₃ and most preferably -SO₃⁻M⁺ and -CO₂⁻M⁺ wherein R³ is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator. Preferably, M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.

Alkyl Percarboxylic Acid Bleach Precursors

Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.

Preferred alkyl percarboxylic precursor compounds of the imide type include the N,N,N¹N¹ tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred. The

TAED is preferably not present in the agglomerated particle of the present invention, but preferably present in the detergent composition, comprising the particle.

- Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl
 5 hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.

Amide Substituted Alkyl Peroxyacid Precursors

- 10 Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:

- 15 wherein R^1 is an alkyl group with from 1 to 14 carbon atoms, R^2 is an alkylene group containing from 1 to 14 carbon atoms, and R^5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.

20 Perbenzoic Acid Precursor

- Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis. Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol,
 25 glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing

perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.

5 Preformed Organic Peroxyacid

The detergent composition may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid, typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the
10 composition.

A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:

wherein R¹ is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms, R² is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms, and R⁵ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted
20 organic peroxyacid compounds of this type are described in EP-A-0170386.

Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioic acid, diper oxytetradecanedioic acid and diper oxyhexadecanedioic acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-
25 phthaloylaminoperoxycaproic acid are also suitable herein.

Heavy Metal Ion Sequestrant

Heavy metal ion sequestrant are also useful additional ingredients herein. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have a limited calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, 5 manganese and copper. They are thus not considered builders for the purpose of the invention.

Heavy metal ion sequestrants are generally present at a level of from 0.005% to 10%, preferably from 0.1% to 5%, more preferably from 0.25% to 7.5% and most preferably 10 from 0.3% to 2% by weight of the compositions.

Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.

15

Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate, 1,1 hydroxyethane diphosphonic acid and 1,1 hydroxyethane dimethylene phosphonic acid.

20

Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminetetraacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutamic acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.

25

Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glycetyl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants 30 described in EP-A-516,102 are also suitable herein. The β-alanine-N,N'-diacetic acid,

aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.

EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331

5 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.

10

Especially preferred are diethylenetriamine pentacetic acid, ethylenediamine-N,N'-disuccinic acid (EDDS) and 1,1 hydroxyethane diphosphonic acid or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.

15

Enzyme

Another preferred ingredient useful herein is one or more additional enzymes.

20

Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.

25

Organic Polymeric Compound

Organic polymeric compounds are preferred additional components of the compositions herein.

By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as binder, dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein, including

- 5 quaternised ethoxylated (poly) amine clay-soil removal/ anti-redeposition agent.

Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.01% to 30%, preferably from 0.1% to 15%, most preferably from 0.5% to 10% by weight of the compositions.

10

Examples of organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.

- 15 The polyamino compounds are useful herein including those derived from aspartic acid
20 such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.

Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.

25

Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.

Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.

- 5 Highly preferred polymeric components herein are cotton and non-cotton soil release polymer according to U.S. Patent 4,968,451, Scheibel et al., and U.S. Patent 5,415,807, Gosselink et al., and in particular according to US application no.60/051517.

- Another organic compound, which is a preferred clay dispersant/ anti-redeposition agent,
10 for use herein, can be the ethoxylated cationic monoamines and diamines of the formula:

- wherein X is a nonionic group selected from the group consisting of H, C₁-C₄ alkyl or
15 hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 1 or 0; for cationic monoamines (b=0), n is at least 16, with a typical range of from 20 to 35; for cationic diamines (b=1), n is at least about 12 with a typical range of from about 12 to about 42.
20 Other dispersants/ anti-redeposition agents for use herein are described in EP-B-011965 and US 4,659,802 and US 4,664,848.

Suds Suppressing System

25

The detergent compositions of the invention, when formulated for use in machine washing compositions, may comprise a suds suppressing system present at a level of from

0.01% to 15%, preferably from 0.02% to 10%, most preferably from 0.05% to 3% by weight of the composition.

- Suitable suds suppressing systems for use herein may comprise essentially any known
- 5 antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alkanol antifoam compounds.

By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent

10 composition, particularly in the presence of agitation of that solution.

- Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term
- 15 "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
- 20 Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium,
- 25 potassium, and lithium salts, and ammonium and alkanolammonium salts.

- Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C₁₈-C₄₀ ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-
- 30 alkylmelamines or di- to tetra alkyl diamine chlortriazines formed as products of cyanuric

chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.

5 A preferred suds suppressing system comprises:

- (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
 - 10 (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and
 - (ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
- 15 wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
- 20 (b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544;
- 25 (c) an inert carrier fluid compound, most preferably comprising a C₁₆-C₁₈ ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;

- A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50°C to 85°C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20
- 5 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45°C to 80°C.
- 10 Other highly preferred suds suppressing systems comprise polydimethylsiloxane or mixtures of silicone, such as polydimethylsiloxane, aluminosilicate and polycarboxylic polymers, such as copolymers of laic and acrylic acid.

Polymeric Dye Transfer Inhibiting Agents

- 15 The compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
- 20 The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers or combinations thereof, whereby these polymers can be cross-linked polymers.

Optical Brightener

The compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners, as known in the art.

Polymeric Soil Release Agent

Polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%,
5 typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.

Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and
10 rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.

Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
15

Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P. Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b)
20 reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al., for example those produced by
25 transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and
30

poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully-anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of 5 U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and 10 fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.

SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 15 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C₁-C₄ alkyl celluloses and C₄ hydroxyalkyl celluloses, see U.S. 4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average 20 degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20°C as a 2% aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu 25 Kagaku Kogyo KK.

25

Additional classes of SRA's include: (I) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al. and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to 30 trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms

- linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S. 4,525,524 Tung et al.. Other classes include:
- 5 (III) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;

Other Optional Ingredients

10 Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, speckles, colours or dyes, filler salts, with sodium sulfate being a preferred filler salt.

Also, minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides and dyes, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 (herein incorporated by reference), can be present.

20 Highly preferred are encapsulated perfumes, preferably comprising a starch encapsulte.

In the compositions of the invention, it may be preferred that when dyes and/ or perfumes are sprayed onto the another component, the component does not comprise spray-on nonionic alkoxylated alcohol surfactant.

25

Form of the Compositions

The composition of the invention thereof can be made via a variety of methods involving the mixing of ingredients, including dry-mixing, compaction such as agglomerating, 30 extrusion, tabletting, or spray-drying of the various compounds comprised in the

detergent component, or mixtures of these techniques, whereby the components herein also can be made by for example compaction, including extrusion and agglomerating, or spray-drying.

- 5 The compositions herein can take a variety of physical solid forms including forms such as tablet, flake, pastille and bar, and preferably the composition is in the form of granules or a tablet.

The compositions in accord with the present invention can also be used in or in
10 combination with bleach additive compositions, for example comprising chlorine bleach.

The compositions preferably have a density of more than 350 gr/litre, more preferably more than 450 gr/litre or even more than 570 gr/litre.

Abbreviations used in Examples

In the detergent compositions, the abbreviated component identifications have the following meanings:

5	LAS	:	Sodium linear C ₁₁ -13 alkyl benzene sulfonate
	LAS (I)	:	Flake containing sodium linear C ₁₁ -13 alkyl benzene sulfonate (90%) and sodium sulphate and moisture
	LAS(II)	:	Potassium linear C ₁₁ -13 alkyl benzene sulfonate
10	MES	:	α -sulpho methylester of C ₁₈ fatty acid
	TAS	:	Sodium tallow alkyl sulfate
	CxyAS	:	Sodium C _{1x} - C _{1y} alkyl sulfate
	C46SAS	:	Sodium C ₁₄ - C ₁₆ secondary (2,3) alkyl sulfate
	CxyEzS	:	Sodium C _{1x} -C _{1y} alkyl sulfate condensed with z moles of ethylene oxide
15	CxyEz	:	C _{1x} -C _{1y} predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide
	QAS	:	R ₂ .N ⁺ (CH ₃) ₂ (C ₂ H ₄ OH) with R ₂ = C ₁₂ - C ₁₄
	QAS 1	:	R ₂ .N ⁺ (CH ₃) ₂ (C ₂ H ₄ OH) with R ₂ = C ₈ - C ₁₁
20	SADS	:	Sodium C ₁₄ -C ₂₂ alkyl disulfate of formula 2-(R).C ₄ H ₇ -1,4-(SO ₄ -) ₂ where R = C ₁₀ -C ₁₈
	SADE2S	:	Sodium C ₁₄ -C ₂₂ alkyl disulfate of formula 2-(R).C ₄ H ₇ -1,4-(SO ₄ -) ₂ where R = C ₁₀ -C ₁₈ , condensed with z moles of ethylene oxide
25	APA	:	C ₈ - C ₁₀ amido propyl dimethyl amine
	Soap	:	Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids
	STS	:	Sodium toluene sulphonate

	CFAA	:	C ₁₂ -C ₁₄ (coco) alkyl N-methyl glucamide
	TFAA	:	C ₁₆ -C ₁₈ alkyl N-methyl glucamide
	TPKFA	:	C ₁₆ -C ₁₈ topped whole cut fatty acids
	STPP	:	Anhydrous sodium tripolyphosphate
5	TSPP	:	Tetrasodium pyrophosphate
	Zeolite A	:	Hydrated sodium aluminosilicate of formula $\text{Na}_{12}(\text{AlO}_2\text{SiO}_2)_{12}\cdot 27\text{H}_2\text{O}$ having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis)
10	NaSKS-6 (I)	:	Crystalline layered silicate of formula δ - $\text{Na}_2\text{Si}_2\text{O}_5$ of weight average particle size of 18 microns and at least 90% by weight being of particle size of below 65.6 microns.
	NaSKS-6 (II)	:	Crystalline layered silicate of formula δ - $\text{Na}_2\text{Si}_2\text{O}_5$ of weight average particle size of 18 microns and at least 90% by weight being of particle size of below 42.1 microns.
15	Citric acid	:	Anhydrous citric acid
	Borate	:	Sodium borate
	Carbonate	:	Anhydrous sodium carbonate with a particle size between 200 μm and 900 μm
20	Bicarbonate	:	Anhydrous sodium bicarbonate with a particle size distribution between 400 μm and 1200 μm
	Silicate	:	Amorphous sodium silicate ($\text{SiO}_2:\text{Na}_2\text{O} = 2.0:1$)
	Sulfate	:	Anhydrous sodium sulfate
	Mg sulfate	:	Anhydrous magnesium sulfate
25	Citrate	:	Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425 μm and 850 μm
	MA/AA	:	Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000

	MA/AA (1)	:	Copolymer of 4:6 maleic/acrylic acid, average molecular weight about 10,000
	AA	:	Sodium polyacrylate polymer of average molecular weight 4,500
5	CMC	:	Sodium carboxymethyl cellulose
	Cellulose ether	:	Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals
	Protease	:	Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the trademark Savinase
10	Protease I	:	Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int. Inc.
	Alcalase	:	Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A/S
15	Cellulase	:	Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the trademark Carezyme
	Amylase	:	Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the trademark Termamyl 120T
20	Amylase II	:	Amylolytic enzyme, as disclosed in PCT/ US9703635
	Lipase	:	Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the trademark Lipolase
25	Lipase (1)	:	Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the trademark Lipolase Ultra
	Endolase	:	Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries A/S
30			

	PB4	:	Sodium perborate tetrahydrate of nominal formula $\text{NaBO}_2 \cdot 3\text{H}_2\text{O} \cdot \text{H}_2\text{O}_2$
	PB1	:	Anhydrous sodium perborate bleach of nominal formula $\text{NaBO}_2 \cdot \text{H}_2\text{O}_2$
5	Percarbonate	:	Sodium percarbonate of nominal formula $2\text{Na}_2\text{CO}_3 \cdot 3\text{H}_2\text{O}_2$
	DOBS	:	Decanoyl oxybenzene sulfonate in the form of the sodium salt
	DPDA	:	Diperoxydodecanedioic acid
10	NOBS	:	Nonanoyloxybenzene sulfonate in the form of the sodium salt
	NACA-OBS	:	(6-nonamidocaproyl) oxybenzene sulfonate
	LOBS	:	Dodecanoyloxybenzene sulfonate in the form of the sodium salt
15	DOBS	:	Decanoyloxybenzene sulfonate in the form of the sodium salt
	DOBA	:	Decanoyl oxybenzoic acid
	TAED	:	Tetraacetyl ethylenediamine
	DTPA	:	Diethylene triamine pentaacetic acid
20	DTPMP	:	Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename Dequest 2060
	EDDS	:	Ethylenediamine-N,N'-disuccinic acid, (S,S) isomer in the form of its sodium salt.
	Photoactivated bleach:		Sulfonated zinc phthalocyanine or sulfonated aluminophthalocyanine encapsulated in or carried by a soluble polymer
25	Brightener 1	:	Disodium 4,4'-bis(2-sulphostyryl)biphenyl
	Brightener 2	:	Disodium 4,4'-bis(4-anilino-6-morpholino-1,3,5-triazin-2-yl)amino) stilbene-2:2'-disulfonate
30	HEDP	:	1,1-hydroxyethane diphosphonic acid

	PEGx	:	Polyethylene glycol, with a molecular weight of x (typically 4,000)
	PEO	:	Polyethylene oxide, with an average molecular weight of 50,000
5	TEPAE	:	Tetraethylenepentaamine ethoxylate
	PVI	:	Polyvinyl imidosole, with an average molecular weight of 20,000
	PVP	:	Polyvinylpyrrolidone polymer, with an average molecular weight of 60,000
10	PVNO	:	Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000
	PVPVI	:	Copolymer of polyvinylpyrrolidone and vinylimidazole, with an average molecular weight of 20,000
	QEA	:	bis((C ₂ H ₅ O)(C ₂ H ₄ O) _n)(CH ₃) -N ⁺ -C ₆ H ₁₂ -N ⁺ -(CH ₃)
15			bis((C ₂ H ₅ O)-(C ₂ H ₄ O)) _n , wherein n = from 20 to 30
	SRP 1	:	Anionically end capped poly esters
	SRP 2	:	Diethoxylated poly (1, 2 propylene terephthalate) short block polymer
20	PEI	:	Polyethyleneimine with an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues per nitrogen
	Silicone antifoam	:	Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1
25	Opacifier	:	Water based monostyrene latex mixture, sold by BASF Aktiengesellschaft under the tradename Lytron 621
	Wax	:	Paraffin wax

Example I

	A	B	C	D	E	F	G	H	I
<u>Blown powder</u>									
LAS	5.0	8.0	3.0	5.0	5.0	10.0	-	-	-
TAS	-	1.0	-				-	-	-
MBAS	-	-		5.0	5.0		-	-	-
C ₄₅ AS	-	-	1.0		2.0	2.0	-	-	-
C ₄₅ AE ₃ S	-	-		1.0			-	-	-
QAS			1.0	1.0			-	-	-
DTPA, HEDP and/ or EDDS	0.3	0.3	0.5	0.3			-	-	-
MgSO ₄	0.5	0.5	0.1	-			-	-	-
Sodium citrate	-	-	-	3.0	5.0		-	-	-
Sodium carbonate	10.0	7.0	15.0			10.0	-	-	-
Sodium sulphate	5.0	5.0	-	-	5.0	3.0	-	-	-
Sodium silicate 1.6R	-	-	-	-	2.0		-	-	-
Zeolite A	16.0	18.0	20.0	-	-	-	-	-	-
SKS-6	-	-	-	3.0	5.0	-	-	-	-
MA/AA or AA	1.0	2.0	11.0	-	-	2.0	-	-	-
PEG 4000	-	2.0	-	1.0	-	1.0	-	-	-
QEA	1.0	-	-	-	1.0	-	-	-	-
Brightener	0.05	0.05	0.05	-	0.05	-	-	-	-
Silicone oil	0.01	0.01	0.01	-	-	0.01	-	-	-
<u>Agglomerate</u>									
LAS			-	-	-	-	-	2.0	-
MBAS			-	-	-	-	2.0	-	1.0

C24AE ₃			-	-	-	-	-	1.0	0.5
Carbonate			-	-	-	1.0	1.0	1.0	-
Sodium citrate			-	-	-	-	-	-	5.0
CFAA					-	2.0	-	-	2.0
QAS			-	-	-	1.0	-	1.0	1.0
QEA			-	-	-	2.0	2.0	1.0	-
SRP			-	-	-	1.0	1.0	0.2	-
Zeolite A			-	-	-	10.0	26.0	15.0	16.0
Sodium silicate			-	-	-	-	-	-	-
PEG	-	-	-	-	-	-	4.0	-	-
<u>Agglomerates</u>									
SKS-6	6.0	8.0	-	-	6.0	3.0	-	7.0	10.0
LAS	4.0	5.0	-	-	5.0	3.0	-	10.0	12.0
<u>Dry-add particulate components</u>									
Maleic acid/carbonate/bicarbonate	8.0	10.0	10.0	4.0	-	8.0	2.0	2.0	4.0
(40:20:40)									
QEA	-	-	-	0.2	0.5	-	-	-	-
NACAOBS	3.0	-	-	1.5	-	-	-	2.5	-
NOBS	-	3.0	3.0	-	-	-	-	-	5.0
TAED	2.5	-	-	1.5	2.5	6.5	-	1.5	-
MBAS	-	-	-	8.0	-	-	8.0	-	4.0
LAS (I)	10.0	10.0	10.0	-	-	-	12.0	8.0	-

<u>Spray-on</u>									
Brightener	0.2	0.2	0.3	0.1	0.2	0.1	-	0.6	-
Dye	-	-	-	0.3	0.05	0.1	-	-	-
AE7	-	-	-	-	-	0.5	-	0.7	-
Perfume	-	-	-	0.8	-	0.5	-	0.5	-
<u>Dry-add</u>									
Citrate	-	-	20.0	4.0	-	5.0	15.0	-	5.0
Percarbonate	15.0	3.0	6.0	10.0	-	-	-	18.0	5.0
Perborate	-	-	-	-	6.0	18.0	-	-	-
Photobleach	0.02	0.02	0.02	0.1	0.05	-	0.3	-	0.03
Enzymes (cellulase, amylase, protease, lipase)	1.3	0.3	0.5	0.5	0.8	2.0	0.5	0.16	0.2
Zeolite A	-	-	-	10.0	10.0	-	-	-	-
Carbonate	0.0	10.0	-	-	-	5.0	8.0	10.0	5.0
Perfume (encapsulated)	0.6	0.5	0.5	-	0.3	0.5	0.2	0.1	0.6
Suds suppressor	1.0	0.6	0.3	-	0.10	0.5	1.0	0.3	1.2
Soap	0.5	0.2	0.3	3.0	0.5	-	-	0.3	-
Citric acid	-	-	-	6.0	6.0	-	-	-	5.0
Dyed carboanate (blue, green)	0.5	0.5	1.0	2.0	-	0.5	0.5	0.5	1.0
SKS-6	-	-	-	4.0	-	-	-	6.0	-
Fillers up to 100%									

Example 2

The following are detergent formulations according to the present invention:

	J	K	L	M
Blown Powder				
Zeolite A	12.0	20.0	-	-
Sodium sulfate	-	5.0	2.0	-
LAS	-	10.0	3.0	-
C45AS	-	4.0	4.0	-
QAS	-	-	1.5	-
DTPA/HEDP/EDDS	0.4	0.4	0.4	-
CMC	0.4	0.4	0.4	-
Carbonate	-	-	3.0	
AA or MA/AA	4.0	2.0	10.0	-
Agglomerates				
QAS	1.0	-	-	-
LAS	1.0	-	2.0	10.0
TAS	-	-	-	1.0
Silicate	1.0	-	-	0.3
Zeolite A	8.0	-	8.0	3.0
Carbonate	8.0	-	4.0	3.0
Agglomerate				
NaSKS-6	15.0	12.0	-	10.0
LAS	8.0	13.0	-	8.0
AS	5.0	-	-	
Spray On				
Perfume	0.3	0.3	0.3	0.5

Brightener	0.01	0.01	0.01	0.01
C25E5	2.0	-	1.0	-
Dry additives				
LAS (l)	-	-	7.0	-
QEA	1.0	0.5	0.5	0.5
Citrate	-	-	10.0	-
Bicarbonate	-	3.0	-	
Carbonate	8.0	15.0	10.0	
NAC OBS	4.0	-	-	-
TAED	2.0	-	0.3	5.0
NOBS	-	2.0	3.0	
PC/PB1	14.0	3.0	3.0	18.0
PEG	-	-	0.9	0.5
Soap	-	0.5	-	-
Malic acid	7.0	-	-	-
Zeolite A	2.0	-	-	-
Polyethylene oxide of MW 5,000,000	-	-	-	-
Citric acid	-	-	-	5.0
Protease	1.0	0.5	0.3	0.5
Lipase	-	0.4	-	-
Amylase	0.6	0.6	0.6	
Zeolite A	-	-	16.0	10.0
Cellulase	0.6	0.2	-	0.3
SKS-6	-	-	10.0	-
SRP	0.1	0.1	0.1	0.1
CMC	-	0.3	-	0.5
PVP	-	-	0.1	0.2
Silicone antifoam	0.5	1.5	1.0	0.3

Sodium sulfate	0.0	3.0	0.0	-
Balance (Moisture and Miscellaneous)	100.0	100.0	100.0	
Density (g/litre)	800	600	700	850

Example 3

The following are detergent formulations according to the present invention:

5

	N	O	P	R
Agglomerate				
QAS	2.0	-	2.0	-
MES	-	2.0	-	-
LAS (II)	6.0	-	-	-
C45AS	6.0	4.0	2.0	-
MBAS16.5, 1.9	4.0	-	-	-
Zeolite A	-	6.0	8.0	8.0
Carbonate	4.0	8.0	-	8.0
MA/AA	4.0	2.0	2.0	6.0
CMC	0.5	0.5	1.0	0.5
DTPMP	0.4	0.4	-	0.5
Spray On				
C25E3	1.0	1.0	-	-
Perfume	0.5	0.5	0.5	0.5
Agglomerate				
SKS-6	7.0	15.0	15.0	10.0
LAS	3.0	9.0	15.0	10.0
Zeolite	15.0	-	-	-
C45 AS	-	3.0	-	-
Dry Adds				
LAS (I)	-	-	-	15.0
EDDS/HEDP	0.5	0.3	0.5	0.8

Zeolite A	3.0	12.0	5.0	3.0
NaSKS 6	-	-	-	11.0
Citrate	-	1.0	-	-
Citric acid	2.0	-	2.0	4.0
NAC OBS	4.1	-	5.0	4.0
TAED	0.8	2.0	-	2.0
Percarbonate	20.0	20.0	15.0	17.0
SRP 1	0.3	0.3	-	0.3
Protease	1.4	1.4	1.0	0.5
Lipase	0.4	0.4	0.3	-
Cellulase	0.6	0.6	0.5	0.5
Amylase	0.6	0.6	-	0.3
QEA	1.0	-	1.0	1.0
Silicone antifoam	1.0	0.5	0.5	1.5
Brightener 1	0.2	0.2	-	6.2
Brightener 2	0.2	-	0.2	-
Density (g/litre)	850	850	800	775

Claims

- 5 1. A detergent composition comprising an aluminosilicate builder and an anionic surfactant and comprising (n) components (i), n being at least 2, whereby the level of aluminosilicate builder in said components together is at least 5% by weight of the composition and the level of the anionic surfactant in said components together is at least 5% by weight of the composition, and whereby the degree of mixture (M) of the anionic surfactant and the aluminosilicate builder is from 0 to 0.7, M being
- 10

$$\sum_{i=1}^n \sqrt{(\sigma_i \cdot \zeta_i)}$$

15 σ is the fraction of the anionic surfactant of the composition comprised in component (i);
 ζ is the fraction of the aluminosilicate of the composition comprised in component (i).

2. A detergent composition according to claim 1 wherein M is from 0 to 0.65, preferably from 0 to 0.5 or more preferably 0 to 0.45.
- 20
3. A detergent composition according to any preceding claim, wherein the components are particles having an weight average particle size of more than 150 microns, more preferably more than 350 microns.
- 25
4. A detergent composition according to any preceding claim, wherein anionic surfactant comprises an alkyl sulphonate surfactants or an alkylsulphate surfactant, or mixtures thereof, preferably comprising an alkyl benzene sulphonate surfactant.

5. A detergent composition according to any preceding claim comprising at least 10% by weight of aluminosilicate builder, whereby part of the aluminosilicate is not comprised in the components, preferably being admixed to the components.
 - 5 6. A detergent composition according to any preceding claim wherein the components are components are free of sprayed-on nonionic alkoxylated alcohol surfactants.
 7. A composition according to any preceding claim wherein an effervesce system is present.
- 10
9. A composition according to any preceding claim in granular form or on the form of a tablet.
 - 15 8. A composition according to any preceding claim comprising a hydrogen peroxide source and a bleach activator.
 10. Use in a detergent composition of at least two components, which comprise an aluminosilicate at a level of at least 5% by weight of the composition and an anionic surfactant at a level of at least 5% by weight of the composition, and whereby the degree of mixture (M) of the anionic surfactant and the aluminosilicate builder is from 0 to 0.7 for improvement of the delivery of the detergent to the washing water, M being
- 20

$$\sum_{i=1}^n \sqrt{(\sigma_i \cdot \zeta_i)}$$

25

n being the number of said type of components; σ is the fraction of the anionic surfactant of the composition comprised in component (i); ζ is the fraction of the aluminosilicate of the composition comprised in component (i).

INTERNATIONAL SEARCH REPORT

Internat'l Application No
 PCT/US 98/20221

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C11D17/00 C11D3/39 C11D17/06 C11D3/12				
---	--	--	--	--

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 6 C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 32952 A (PROCTER & GAMBLE) 12 September 1997 see claims 1,3,9 -----	1,4,10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 June 1999	30/06/1999
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Van Bellingen, I

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 98/20221

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9732952	A 12-09-1997	CA 2248160 A	12-09-1997

THIS PAGE BLANK (USPTO)