

Digitális technika 2. BMEVIIIAA02

elődás 2020/21 tavaszi félév

Aritmetika

Miről volt szó

Aszinkron számlálók

A következő fokozat órajele az előző fokozat kimenete Számlálási ciklus csökkentése Impulzus formálás

Szinkron számlálók

Szinkron sorrendi hálózat

Moore modell

Z = y

Egy fokozat akkor lép, ha az összes alacsonyabb helyiérték 1-es

4 bites számláló

Engedélyezés, törlés, töltés, kaszkádosítás támogatása

Számlálási ciklus módosítása

Szinkron törlés / aszinkron törlés

Bináris összeadás

Α	В	ci	S	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

1 bites teljes összeadó

A,B: operandusok

ci: átvitel az előző helyi értékről

S: összeg

co: átvitel a következő helyi érték felé

S	3	ci	
	0	1	
	1	0	E
A	0	1	
*	1	0	

$$S = A \oplus B \oplus ci$$

$$S_{1,3}^{3}$$

$$co = A \cdot B + A \cdot ci + B \cdot ci$$

Összeadás - kaszkádosítás

4 bites összeadó: $Z_{3..0} = X_{3..0} + Y_{3..0}$

Mikor érvényes az eredmény?

n bites összeadó \rightarrow n * $\Delta t_{t\ddot{o}}$

Összeadás – gyors átvitelképzés

$$co = A \cdot B + A \cdot ci + B \cdot ci = A \cdot B + ci \cdot (A + B)$$

G

p

propagate

$$co0 = A_0 \cdot B_0 + A_0 \cdot c0 + B_0 \cdot c0 = G_0 + P_0 \cdot c0$$

$$co1 = A_1 \cdot B_1 + A_1 \cdot c1 + B_1 \cdot c1 = G_1 + P_1 \cdot c1 = G_1 + P_1(G_0 + P_0 \cdot c0) = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot c0$$

$$\vdots$$

$$co_i = Ai \cdot Bi + Ai \cdot ci + Bi \cdot ci = G_i + Pi \cdot ci = G_i + P_i \cdot G_{i-1} + P_i \cdot P_{i-1} \cdot G_{i-2} + \dots + P_i \cdot P_{i-1} \cdot \dots \cdot P_0 \cdot c0$$

3 szintű hálózat

Gyors átvitelképzés (carry-look-ahead)

16 bites összeadó (carry-look-ahead)

Aritmetika - kivonás

$$Z = X - Y = X + (-Y)$$
 (-Y) \rightarrow kettes komplemes

Kettes komplemens képzés

$$-Y = \overline{Y} + 1$$

Aritmetikai túlcsordulás: az eredmény már nem ábrázolható Különböző előjelű operandusok esetén **nem** léphet fel

4 bites kettes komplemens: -8 ... +7

6: 0110 3: 0011 -6: 1010 -3: 1101

túlcsordulás: azonos előjelű operandusok esetén az eredmény előjele nem egyezik meg az operandusok előjelével

túlcsordulás ≠ átvitel !!

Aritmetikai túlcsordulás: overflow (OVF)

kettes komplemes előjel: a legmagasabb helyiérték

Ha a legmagasabb helyiértéket előállító összeadó átvitel bemenete és átvitel kimenete elérhető:

OVF

Összeadó/kivonó

$$Z = X + Y$$
, ha $v=0$

$$Z = X + Y$$
, ha $v=0$ $Z = X - Y$, ha $v=1$ $-Y = \overline{Y} + 1$

A
$$\rightarrow$$
 F = A, ha v = 0
F = \overline{A} , ha v = 1

4 bites összeadó/kivonó

Előjel kiterjesztés

X: n bites pozitív

$$X_{n-1} X_{n-2} \dots X_1 X_0$$

$$X_{n-1} X_{n-2} \dots X_1 X_0$$
 $0 X_{n-1} X_{n-2} \dots X_1 X_0$

a szám pozitív kell, hogy maradion

X: n bites kettes komplemens

 \rightarrow n+1 bites kettes komplemens

$$X_{n-1}X_{n-2} \dots X_1 X_0$$

$$(X_{n-1})X_{n-2} \dots X_1 X_0$$
 $(X_{n-1})X_{n-1} X_{n-1} X_{n-2} \dots X_1 X_0$

a szám előjele nem változhat meg

4 bites kettes komplemens 1111 5 bites kettes komplemens 11111

n bites kettes komplemens 11...11

Aritmetika – BCD összeadás

BCD összeadó

Használjunk bináris összeadót maximális érték

bináris eredmény <= 9 bináris eredmény >9

- → BCD eredmény = bináris eredmény
- → BCD eredmény = bináris eredmény + 6

Aritmetika – BCD összeadás

BCD átvitel előállítása

$$co = 1$$

$$C_{BCD} = co + S3 \cdot S2 + S3 \cdot S1$$

Aritmetika – BCD összeadás

BCD összeadó → A, B, S: BCD számok

$$C_{BCD} = co + S3 \cdot S2 + S3 \cdot S1$$

6: 0110

Decimális szám szorzása "kézzel"

<u>123</u> * 456

492

615

 $\frac{738}{56088}$

Mit kell tudni?

- Egyjegyű számmal szorozni
- Összeadni

Mekkora lesz az eredmény?

999 * 999 = 998001 6 jegyű szám

Két n jegyű szám szorzata legfeljebb 2n jegyű

Bináris számok szorzása

Egyjegyű bináris szorzás

4 bites szorzás → eredmény 8 bites

Hány bites összeadó kell?

Egyszerre elegendő 4 bitet összeadni

Hány összeadó kell?

4 operandus → 3 összeadó

4 bites szorzás

Bináris számok szorzása – sorrendi hálózattal Z = X * Y

(A) (B) (C)
$$1010 * 0101 = 00110010$$
 (10 * 5 = 50)

	Α	В	С		
1	00001010	0101	00000000	kezdeti értékadás	
			00001010	$C = C + A * B_{LSB}$	
2	00010100	0010		Léptetés	
			00001010	C = C + A * B _{LSB}	
3	00101000	0001		Léptetés	
			00110010	C = C+ A * B _{LSB}	
4	01010000	0000		Léptetés	
			00110010	C = C + A * B _{LSB}	

00000000 00001010 00001010	C A*B _{LSB}
00001010 00000000 00001010	C A*B _{LSB}
00001010 00101000 00110010	C A*B _{LSB}
00110010 00000000 00110010	C A*B _{LSB}

4 BITES SZORZÓ

Építőelemek

Vezérlés

Léptető regiszterek (A,B): lépés felfutó élre Regiszter (C): tárolás lefutó élre

léptető regiszter

8 bites

4 bites

S/L	>	művelet
0	1	lép
1	1	tölt

S/L

regiszter 8 bites

0	DILES
A	QA
A B	QB
C D	QC
D	QD
E	QE
F	QF
G	QG
Н	QH
>	CL

CL	>	művelet	
1	Х	aszinkron törlés	
0	1	tárolás	

összeadó

\sim	1 '1	
×	bites	
()	いいてご	
_		

	 	_		_
A 0				
A 1				
A 2				
ΑЗ				
A4				
A 5			s	0
A 6			s	1
A 7			S	2
			S	3
в0			S	4
в1			s	5
в2			s	6
вЗ			s	7
В4				
в5				
в6				
в7				
ci			C	0

Multiplexer

Α	S	Υ	ÉS kapu
х	0	0	A — , , ,
Α	1	Α	s — r

kezdeti értékadás

