Nondeterministic finite automata

Definition 1.7 (Nondeterministic finite automaton) A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set of states.
- Σ is a finite alphabet.

 $\{q_1, q_2\}$ $\{q_1\}$

 $\{q_4\}$

 $\{q_3\}$

- 3. $\delta: O \times \Sigma_c \to \mathcal{P}(O)$ is the transition function, with $\Sigma_c := \Sigma \cup \{\varepsilon\}$.
- 4. $q_0 \in Q$ is the start state, and
- F ⊆ Q is the set of accept states.

$$N_1 = (Q, \Sigma, \delta, q_1, F), \quad Q = \{q_1, q_2, q_3, q_4\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_4\}$$

Definition 1.8 (Strings accepted by NFA N)

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton and w be a string over alphabet Σ .

N accepts w if we can write w as $w = y_1 y_2 \dots y_m$, $y_i \in \Sigma_{\varepsilon}$ and if there exists a sequence of states r_0, r_1, \ldots, r_m (in Q), such that all following three conditions hold: (N starts in start state.) 1. $r_0 = q_0$

- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for $i = 0, \dots m-1$
- (State change follows transition function.)
- 3. $r_m \in F$ (N ends up in accept state)

If N does not accept w, it rejects it.

Definition 1.9 (Computation branch of an NFA) Let $N=(Q,\Sigma,\delta,q_0,F)$ be a nondeterministic finite automaton and $w=w_1w_2\cdots w_n$ be a string over alphabet Σ .

A computation branch of N on w allows for a modification of the input string w to a string $w=y_1y_2\cdots y_m,\,y_i\in \Sigma_\varepsilon$ and is a sequence of states $c=r_0,r_1,\ldots,r_m$, such that the following two conditions hold:

1.
$$r_0 = q_0$$

2.
$$r_{i+1} \in \delta(r_i, w_{i+1})$$
, for $i = 0, \dots m-1$

We call c an accepting computation branch, if $r_n \in F$, otherwise we call it a rejecting computation branch.

Definition 1.10 (Language of NFA N) Let $N=(Q,\Sigma,\delta,q_0,F)$ be a nondeterministic finite automaton.

(N starts in start state.)

The language of N L(N) is the set of all strings that are accepted by N. We say: N recognizes L(N).

1 Reading and understanding NFAs

You are given the following state transition diagram:

- 1. Give the formal description of the corresponding NFA as 5-tuple.
- 2. Let the NFA "run" on the input strings 12, 122, 1212.
- 3. Find the language recognized by this automaton.

12 12 3) accept

2 Constructing an FA

You are given the following regular languages over $\Sigma = \{0, 1\}$.

- 1. $L_1 = \{w | w \text{ ends with } 00\}$
- 2. $L_2 = \{w | w \text{ is given by an arbitrary number of 0s}\}$ 3. $L_3 = \{w | w \text{ has length at least 3 and its third symbol is a 0}\}$

Find for each of the languages the nondeterministic finite automaton the recognizes L it and describe it by an STD.

Theorem 1.3 Every nondeterministic finite automaton has an equivalent deterministic finite automaton, i.e. there exists for every NFA N a DFA M such that L(M) = L(N).

Central idea:

M "simulates" the computation of N by simultaneously going through all computation branches of N.

Corollary 1.1 A language is regular if and only if some nondeterministic finite automaton recognizes it.

3 Example for proof of Theorem 1.3

Let the NFA N be given by its STD:

Use the construction from the proof of Theorem 1.3 to find (as an STD) the FA M such that L(M) = L(N).

Ose the constitution from the proof of Theorem 1.5 to find (as an STD) the PA M such that
$$Z(M) = Z(M)$$
.

$$Z(M) = Z(M) =$$

Theorem The class of regular languages is closed under the union operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Theorem The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages, then $A_1 \circ A_2$ is regular.

