Réseaux de neurones
IFT 780

Réseaux à convolution
Par
Pierre-Marc Jodoin

Convolution et couche convolutionnelle 1D

En gros

convolution = produit scalaire + translation

La convolution des réseaux de neurones = $\frac{(f * W)(v)}{c} = \sum_{u=-\infty}^{\infty} f(u)W(v+u)$				
	(signal d'entrée) f(u) 10 20 -30 40 -50	(filtre) W(u) .1 .2 .3	(filtre) W(+u) 1.2.3	'
(f*W)(1) 10 20 -30 40 -50 × × × .1 .2 .3 1+4-9 -4	(f*\ 10 20 -30 4 × × × [:1], 2 , :: 2-6+12 ↓ 4 8	.	(f°W) 1020-3040 × .11.2 -3+8-1 -4 8-10	-50 × .3

Stride et calcul de la taille de la carte d'activation

D=9

40 | 50 | 70 | 80 | 90 | 10 | 20 | 30 | 40 |

prod. scal.

F=3

21 | 21

Stride = 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26

28

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7

29

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7 23

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

21 21 26 -7 23 8

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 4 -5 .6

Stride et calcul de la taille de la carte d'activation

D=9
40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 4 -5 .6

35 -18 33

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 4 -5 .6

35 -18 33 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

Stride = 1

Stride = 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

Taille de la carte d'activation = 3

40

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35

41

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

35 33

Stride = 2

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

1 2 -3 4 -5 6

Stride = 3

Convolution et couche convolutionnelle 2D

Tout comme un Perceptron multi-couches, un réseau à convolution contient plusieurs couches consécutives

Tout comme un perceptron multicouches, un réseau à convolution se termine par une couche de sortie avec 1 neurone par variable prédite

103

104

113

Réseaux à convolution vs Réseaux **pleinement** convolutifs

Configurations équivalentes

couche 1 : 3 filtres de taille 7x7 couche 2 : 5 filtres de taille 9x9 couche 3 : 4 filtres de taille 11x11 couche 4 pleinement connectée 256x4 Softmax couche 1:3 filtres de taille 7x7 couche 2:5 filtres de taille 9x9 couche 3:4 filtres de taille 11x11 couche 4:4 filtres de taille 8x8 Softmax

En fait, presque équivalent ...

Question: qu'arrive-t-il si on remplace l'image 32x32x3 par une image 64x64x3?

125

Pooling

Multiplication matricielle parcimonieuse

https://towards data science.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

134

Il est plus rapide de multiplier des matrices que de les convoluer. Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3 Entrée Filtre X0 X1 X2 Х3 W0 W1 W2 Y2 Y1 X6 X7 W3 W5 X8 W6 W7 X9 X10 X11 W8 X12 X13 X14 X15

X	0 W0	W ₁	W2	Y0 Y1
X		W4	W5	Y2 Y3
X	8 W6	₩7	-W8	
X	2 X13	X14	X15	
Y1 =W0).X1+W	1.X2+V	W2.X3	+W3.X5+W4.X6+W5.X7+W6.X9+W7.X10+W8.X1

(Linéarisation de l'entrée et « matriçage » du <u>filtre</u>																				
	Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3 x2																				
	X3 X4																				
X5																					
	W0	Wl	W2	0	W3	W4	W5	0	W6	W7	W8	0	0	0	0	0		X6		Y0	ı
	0	W0	Wl	W2	0	W3	W4	W5	0	W6	W7	W8	0	0	0	0	x	X7	=	Yl	ı
	0	0	0	0	W0	Wl	W2	0	W3	W4	W5	0	W6	W7	W8	0	^	X8		Y2	
	0	0	0	0	0	W0	Wl	W2	0	W3	W4	W5	0	W6	W7	W8		X9		Y3	ı
																		X10			ı
																		X11			ı
																		X12			ı
																		X13			1
																		X14			1
`																		X15			1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 Filtre w0 w1 w2 w3 y4 y5 y6 y7 y8 Filtre	Linéarisation de l'entrée et « matriçage » du filtre Ex.: convolution « valid », un canal d'entrée, une carte d'activation, filtre 2x2											
X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 **But No.			e 2 enti	rees.		Filtr	e					
X4 X5 X6 X7 W2 W3 = Y3 Y4 Y5 Y6 Y7 Y8 X12 X13 X14 X15 X16 X17 X18 X19 X10 X21 X22 X23 X24 X23 X24 X25 X2	X0	X1	X2	Х3		W0	W1		Y0	Y1	Y2	
X12 X13 X14 X15 Y9 Y10 Y11 X16 X17 X18 X19 Y00 X21 X22 X23	X4	X5	X6	X7	*	W2	W3	=	Y3	Y4	Y5	
X16 X17 X18 X19 X10 X21 X22 X23 X24	X8	X9	X10	X11					Y6	Y7	Y8	
Y20 Y21 Y22 Y22	X12	X13	X14	X15					Y9	Y10	Y11	
X20 X21 X22 X23 Y15 Y16 Y17	X16	X17	X18	X19	ĺ				Y12	Y13	Y14	
	X20	X21	X22	X23					Y15	Y16	Y17	
X24 X25 X26 X27	X24	X25	X26	X27								
X28 X29 X30 X21	X28	X29	X30	X21								

	Linéarisation de l'entrée et « matriçage » du filtre																					
	d	lu	†1 I	tre	•													X0	X16			
	Ex.: convolution « <i>valid</i> », un canal d'entrée, une carte d'activation,																					
f	filtre 2x2 mini-batch de 2 entrées.																					
I <u>. </u>	X3 X19																					
W	-	Wl	0	0	W2	W3	0	0	0	0	0	0	0	0	0	0		X4	X20		Y1	Y10
0	<u> </u>	W0	Wl	0	0	W2	W3	0	0	0	0	0	0	0	0	0		X5	X21		• • •	
0	4	0	W0	WI	0	0	W2	W3	0	0	0	0	0	0	0	0		X6	X22		Y2	Y11
0	4	0 0 0 W0 W1 0 0 W2 W3 0 0 0 0 0 0											X7	X23		Y3	Y12					
0	4	0	0	0	0	W0	Wl	0	0	W2	W3	0	0	0	0	0	Х	X8	X24	=	Y4	Y13
0	4	0	0	0	0	0	W0	Wl	0	0	W2	W3	0	0	0	0	X9	X9	X25	Y:	Y5	Y14
0	1	0	0	0	0	0	0	0	W0	Wl	0	0	W2	W3	0	0		X10	X26		Y6	Y15
0		0	0	0	0	0	0	0	0	W0	Wl	0	0	W2	W3	0		X11	X27		Y7	Y16
0		0	0	0	0	0	0	0	0	0	W0	Wl	0	0	W2	W3		X11	X28		Y8	Y17
																		X13	X29			
																		X14	X30			
																		X15	X31)
۱ \	_																					/

Li	Linéarisation de l'entrée et « matriçage » du filtre																				
Ex	Ex.: convolution « valid », 2 canaux d'entrée, une carte d'activation,														X0						
fil	filtre 2x2 mini-batch de 1 entrée.														X1						
															X2						
														Х3							
																			X4		
																			X5		
																			X6		
W0	Wl	0	W2	W3	0	0	0	0	W4	W5	0	W6	W7	0	0	0	0		X7		Y0
0	W0	Wl	0	W2	W3	0	0	0	0	W4	W5	0	W6	W7	0	0	0	x	X8	=	Yl
0	0	0	W0	Wl	0	W2	W3	0	0	0	0	W4	W5	0	W6	W7	0		X9		Y2
0	0	0	0	W0	WI	0	W2	W3	0	0	0	0	W4	W5	0	W6	W7		X10		Y3
																			X11		
																			X12		
																			X13		
																			X14		
																			X15		
l																			X16		J
																			X17		

Ou encore Ex.: convolution « valid »													
									,	W0 W1		Y0]
X1 X4	X1 X2 X5	X2 X3 X6	X4 X5 X8	X5 X6 X9	X6 X7 X10	X8 X9	X9 X10 X12	X10 X11 X13	x	W2 W3	=	Y1	
X5	X6	X7	X9	X10	XII	X13	X12	X15		W4 W5		Y2 Y3	
										W7			ı
										.10			

	_
On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée	
mere et en « matrigant » i entree	
Exercice à la maison, voir comment cette 2° approche s'applique au cas à	
Plusieurs canaux en entrée Plusieurs cartes d'activation Plusieurs entrées (mini-batch)	
Sinon, voir im2col du travail pratique 2.	
157	
Comment calculer la rétropropagation dans un CNN?	
À faire au TP2	