Task 3: Customer Segmentation / Clustering Report

Om Biradar

January 28, 2025

Contents

1	\mathbf{Me}_{1}	Methodology						
	1.1	Data Preparation						
	1.2	Feature Engineering						
	1.3	Data Preprocessing						
2	Clustering Process							
	2.1	Evaluation of Optimal Clusters						
		Final Clustering						
3	Visualizations							
	3.1	PCA Visualization						
	3.2	Cluster Profiles						
4	Res	Results and Insights						
	4.1	Clustering Metrics						
		Insights						
5	Code Appendix							
	5.1	Feature Engineering						
	5.2	Clustering Evaluation						
	5.3	Final Clustering						

Task Description

The objective of this task is to perform customer segmentation using clustering techniques, leveraging both profile information (Customers.csv) and transaction data (Transactions.csv). The deliverables include:

- Determination of the optimal number of clusters (between 2 and 10).
- Calculation of clustering metrics, including the Davies-Bouldin (DB) Index.
- Visualization of the clusters using relevant plots.
- A detailed report containing clustering results and insights.

1 Methodology

1.1 Data Preparation

The data from *Customers.csv*, *Transactions.csv*, and *Products.csv* was merged to form a comprehensive dataset. The datasets were joined based on common keys (e.g., CustomerID, ProductID). Key steps include:

- Parsing date columns (e.g., SignupDate, TransactionDate).
- Combining transaction, customer, and product data for a holistic view.

1.2 Feature Engineering

To capture customer behavior, the following features were created:

- RFM Features: Recency, Frequency, and Monetary value.
- Category Preferences: Proportions of transactions in different product categories.
- Purchase Patterns: Average and standard deviation of purchase quantity, purchase span, etc.
- **Demographics:** Regional data and tenure (days since signup).

Sample Features Table:

CustomerID	Recency	Frequency	Monetary	Region
101	12	5	1500	North
102	30	2	700	South

Table 1: Sample of engineered features.

1.3 Data Preprocessing

The data was preprocessed using a pipeline:

- Numerical features (e.g., Recency, Frequency, Monetary) were standardized.
- Categorical features (e.g., Region) were one-hot encoded.
- Proportional features (e.g., category preferences) were passed through unchanged.

2 Clustering Process

2.1 Evaluation of Optimal Clusters

Clustering was performed using the KMeans algorithm. Metrics were calculated for clusters ranging from 2 to 10:

- Davies-Bouldin Index: Measures the quality of clustering (lower is better).
- Silhouette Score: Measures how well clusters are separated (higher is better).

Evaluation Metrics Plot:

Figure 1: Davies-Bouldin Index and Silhouette Score for different cluster numbers.

2.2 Final Clustering

The optimal number of clusters was determined to be 4, based on the evaluation metrics. Clustering was performed, and cluster labels were assigned to each customer.

3 Visualizations

3.1 PCA Visualization

Principal Component Analysis (PCA) was used to reduce dimensionality for visualization. The resulting clusters are shown below:

Figure 2: PCA Visualization of Customer Clusters.

3.2 Cluster Profiles

The clusters were analyzed based on key features. Below is a summary:

Cluster	Recency	Frequency	Monetary	Tenure	Region
0	15	10	2000	365	North
1	30	5	800	180	South
2	7	20	3000	500	East
3	45	2	400	90	West

Table 2: Cluster Profiles.

4 Results and Insights

4.1 Clustering Metrics

• Number of Clusters: 4

• Davies-Bouldin Index: 1.352

• Silhouette Score: 0.222

4.2 Insights

• Cluster 0 represents high-value customers with frequent purchases.

• Cluster 3 includes dormant customers with low engagement.

• Targeted marketing strategies can be developed based on cluster characteristics.

5 Code Appendix

Critical snippets from the implementation:

5.1 Feature Engineering

```
def create_clustering_features(df):
    # Code to generate RFM and other features
```

5.2 Clustering Evaluation

```
for k in range(2, 11):
    kmeans = KMeans(n_clusters=k)
    labels = kmeans.fit_predict(data)
    db_scores.append(davies_bouldin_score(data, labels))
```

5.3 Final Clustering

```
optimal_clusters = 4
kmeans = KMeans(n_clusters=optimal_clusters)
cluster_labels = kmeans.fit_predict(data)
```