ASSIGNMENT 2

Q1.1:

i	midterm, xi	final, yi	xi^2	yi^2	xiyi	yi hat	ei^2
1	1.5	2.5	2.25	6.25	3.75	1.83974359	0.43593853
2	4	3.5	16	12.25	14	4.05128205	0.3039119
3	3	4	9	16	12	3.16666667	0.69444444
4	3	2.5	9	6.25	7.5	3.16666667	0.4444444
5	4.5	5	20.25	25	22.5	4.49358974	0.25645135
6	2	1.5	4	2.25	3	2.28205128	0.61160421
sum	18	19	60.5	68	62.75	19	2.74679487
mean	3	3.16666667	10.0833333	11.3333333	10.4583333	3.16666667	0.45779915

Q1.2

$$\hat{b}_1 = \frac{6 \times 62.75 - (18 \times 14)}{6 \times 60.5 - (18)^2}$$

interpretation:

\$ = 0.8846 - Asther mattern grade increase, 1%, the average finglexan yiele increases by 0.8846%.

= 9= B. + B.x 9=0.5124+0.8846x

Bo=0.5129: When the common and temprode is on, the array total oxom grade is

91.3 Culcitate the error in it squares & the rejident moon square Sku = 2 = 2 = 2 - 7468 $\hat{G}^2 = MSLes = \frac{SSLes}{n-2} = \frac{2.9468}{4} = 0.6867$ 41-4 Cakulate me 96% confidence interval for Bo, B, And integral the confidence interval of the slope (Xi-Xbur) (Xi-Xbur)2 4090 (I of Bo: -1.5 1.5 8. ± (n-2) 6 /1+ x2 n = (xi-x)2 4.5 1.5 2,75 2 d=0-1 Bo=0.5129 mean 8= TMSRE = VO.6867 = 6.8787 0.5124+ 60,05 × 0.6787 × 1 + 32 = U. S129 ± 2-1318 XU. 6287 x 102455 = U, S119+ Z. 200 =(-1.6874, 2.7129) : Let d=0.1, we are acis confident that the confidence interval constructed

Contains the true Bu.

9095 CE of B. $\hat{\beta}_{1} \pm \hat{\xi}_{1/2}^{(\Lambda-2)} \hat{\delta} \sqrt{\frac{2}{\hat{\xi}_{1}}} (\chi_{i} - \bar{\chi})^{2}$ B = U.8846 X=0.1 6=0.8287 Z(Xi-X)=6.5 6.8846 ± tags × 0.8287x = U. 8846 + Z-13 18 XU- 8287x 0.3922 = 0.8846 + 0.6929 = (0.1417, 1-5775) () We we 459 confident that if the mother mark increased by 19 the mean final grade will increase by at least 0,19179's and at most 1-5775% (2) Of (I , hence we have exictnee that X (the mothern mark) & y (trail exam glade) has a linear relation

- A 90% prediction intrival for y, given x=3 is (12854, 5.075)

9.00 collaborate surge cutticient at determination 3 magle curretimen we take unt boased an meregiospaniadal. Interpret the relations by mathin of transplade P= Se = 1- Sees SST = Zy 2-ny2 SST= 68-6x (3.1667)2 SST = 7.8332 R2=1- 2,7488 7-8332 22-0-6493 -- U.6493% state fetal variation is explained by the regression model Since 8, =0.884670, v=+JR= 1=+ JO.6493 1=0.8058 Sincer- > 1 3 is very close to by midter in 3 first exam gode ove highly printively reloted

81.11 Apply a F-test to test Ma=B,=U, Ha: B, #U. Note: FO.1 = 4.5 448 Mo: R,=0 Ma: B) 70 F(medel) = MSR = SSR/1 ~ F(1, 4)

MSRes SSRes/(n-z) F(redc) = MSe = 5.0865/1 = 7.4072 Noles 27468/4 F(midel) 7.4072 : Mero let 40 since Flowed 1) > Fd mich more ne occept the only infulles is