This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims:

Claims 1-22 (canceled)

23. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R^{5}$$
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7}

in which R⁵ is (i) o-phenylene, unsubstituted or substituted with 1 to 4 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkylamino, dialkylamino, acylamino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, or (ii) the divalent residue of pyridine, pyrrolidine, imidizole, naphthalene, or thiophene, wherein the divalent bonds are on vicinal ring carbon atoms;

$$R^6$$
 is -CO -, -CH₂-, or -SO₂-;

R⁷ is (i) hydrogen if R⁶ is -SO₂-, (ii) straight, branched, or cyclic alkyl of 1 to 12 carbon atoms, (iii) pyridyl, (iv) phenyl or phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, (v) alkyl of 1 to 10 carbon atoms, (vi) benzyl unsubstituted or substituted with 1 to 3 substituents selected from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, (vii) naphthyl, (viii) benzyloxy, or (ix) imidazol-4-yl methyl;

R¹² is -OH, alkoxy of 1 to 12 carbon atoms, or

n has a value of 0, 1, 2, or 3;

R^{8'} is hydrogen or alkyl of 1 to 10 carbon atoms; and

 $R^{9'}$ is hydrogen, alkyl of 1 to 10 carbon atoms, $-COR^{10}$, or $-SO_2R^{10}$ in which R^{10} is hydrogen, alkyl of 1 to 10 carbon atoms, or phenyl.

24. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$H_2N-CH-(C_nH_{2n})-C-R^{12}$$

in which R⁷ is (i) straight, branched, or cyclic alkyl of 1 to 12 carbon atoms, (ii) pyridyl, (iii) phenyl or phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, (iv) benzyl unsubstituted or substituted with one to three substituents selected from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo, (v) napthyl, (vi) benzyloxy, or (vii) imidazol-4-ylmethyl;

R¹² is -OH, alkoxy of 1 to 12 carbon atoms, -O-CH₂-pyridyl, -O-benzyl or

where n has a value of 0, 1, 2, or 3;

R8' is hydrogen or alkyl of 1 to 10 carbon atoms; and

 $R^{9^{\circ}}$ is hydrogen, alkyl of 1 to 10 carbon atoms, -CH₂-pyridyl, benzyl, -COR¹⁰, or -SO₂R¹⁰ in which R^{10} is hydrogen, alkyl of 1 to 4 carbon atoms, or phenyl.

25. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R^{5}$$
 R^{6}
 R^{6}
 R^{1}
 R^{2}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{2}

wherein:

(1) one of R¹ and R² is R³-X- and the other is hydrogen, nitro, cyano, trifluoromethyl, carbo(lower)alkoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, or R³-X-;

R³ is monocycloalkyl, bicycloalkyl, or benzocycloalkyl of up to 18 carbon atoms;

X is a carbon-carbon bond, -CH₂-, or -O-;

R⁵ is (i) o-phenylene, unsubstituted or substituted with 1 to 3 substituents each selected independently from nitro, cyano, halo, trifluoromethyl, carbo(lower)alkoxy, acetyl, or carbamoyl, unsubstituted or substituted with lower alkyl, acetoxy, carboxy, hydroxy, amino, lower alkylamino, lower acylamino, or lower alkoxy; (ii) a vicinally divalent residue of pyridine, pyrrolidine, imidazole, naphthalene, or thiophene, wherein the divalent bonds are on vicinal ring carbon atoms; (iii) a vicinally divalent cycloalkyl or cycloalkenyl of 4-10 carbon atoms, unsubstituted or substituted with 1 to 3 substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbo(lower)alkoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkylamino, lower alkyl, lower alkoxy, or phenyl; (iv) vinylene di-substituted with lower alkyl; or (v) ethylene, unsubstituted or monosubstituted or disubstituted with lower alkyl;

 R^6 is -CO-, -CH₂-, or -CH₂CO-;

Y is -COZ, $-C \equiv N$, $-OR^8$, lower alkyl, or aryl;

Z is $-NH_2$ -OH, -NHR, $-R^9$, or $-OR^9$

R⁸ is hydrogen or lower alkyl;

R⁹ is lower alkyl or benzyl; and,

n has a value of 0, 1, 2, or 3,

(2) one of R¹ and R² is R³-X- and the other is hydrogen, nitro, cyano, trifluoromethyl, carbo(lower)alkoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, or R³-X-;

R³ is monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms;

X is $-CH_2$ -, or -O-;

R⁵ is (i) the vicinally divalent residue of pyridine, pyrrolidine, imidazole, naphthalene, or thiophene, wherein the two bonds of the divalent residue are on vicinal ring carbon atoms;

- (ii) a vicinally divalent cycloalkyl of 4-10 carbon atoms, unsubstituted or substituted with 1 to 3 substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or phenyl;
- (iii) di-substituted vinylene, substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;
- (iv) ethylene, unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;

 R^6 is -CO-, -CH₂-, or -CH₂CO-;

Y is -COX, -C \equiv N, -OR⁸, alkyl of 1 to 5 carbon atoms, or aryl;

X is -NH₂, -OH, -NHR, -R⁹, -OR⁹, or alkyl of 1 to 5 carbon atoms;

R⁸ is hydrogen or lower alkyl;

R9 is alkyl or benzyl; and,

n has a value of 0, 1, 2, or 3, or

(3) one of R¹ and R² is R³-X- and the other is hydrogen, nitro, cyano, trifluoromethyl, carbo(lower)alkoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, HF₂CO, F₃CO, or R³-X-;

R³ is monocycloalkyl, bicycloalkyl, benzocyclo alkyl of up to 18 carbon atoms, tetrahydropyran, or tetrahydrofuran;

X is a carbon-carbon bond, -CH₂-, -O-, or -N=;

R⁵ is (i) o-phenylene, unsubstituted or substituted with 1 to 3 substituents each selected independently from nitro, cyano, halo, trifluoromethyl, carbo(lower)alkoxy, acetyl, or carbamoyl, unsubstituted or substituted with lower alkyl, acetoxy, carboxy, hydroxy, amino, lower alkylamino, lower acylamino, or lower alkoxy; (ii) a vicinally divalent residue of pyridine, pyrrolidine, imidazole, naphthalene, or thiophene, wherein the divalent bonds are on vicinal ring carbon atoms; (iii) a vicinally divalent cycloalkyl or cycloalkenyl of 4-10 carbon atoms, unsubstituted or substituted with 1 or more substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbo(lower)alkoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower

alkylamino, lower alkyl, lower alkoxy, or phenyl; (iv) vinylene di-substituted with lower alkyl; or (v) ethylene, unsubstituted or monosubstituted or disubstituted with lower alkyl;

 R^6 is -CO-, -CH₂-, or -CH₂CO-; Y is -COX, -C \equiv N, -OR⁸, alkyl of 1 to 5 carbon atoms, or aryl; X is -NH₂, -OH, -NHR, -R⁹, -OR⁹, or alkyl of 1 to 5 carbon atoms; R^8 is hydrogen or lower alkyl; R^9 is alkyl or benzyl; and,

n has a value of 0, 1, 2, or 3.

26. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R^{5}$$
 R^{6}
 R^{7}
 R^{6}
 R^{7}

wherein:

Y is $-C \equiv N$ or $CO(CH_2)_m CH_3$; m is 0, 1, 2, or 3;

R⁵ is (i) o-phenylene, unsubstituted or substituted with 1 to 3 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; (ii) the divalent residue of pyridine, pyrrolidine, imidizole, naphthalene, or thiophene, wherein the divalent bonds are on vicinal ring carbon atoms; (iii) a divalent cycloalkyl of 4-10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo; (iv) disubstituted vinylene, substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkyl of 1 to 4 carbon atoms, or halo; or (v) ethylene, unsubstituted or substituted

with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;

$$R^6$$
 is -CO-, -CH₂-, -CH₂CO-, or -SO₂-;

R⁷ is (i) straight or branched alkyl of 1 to 12 carbon atoms; (ii) cyclic or bicyclic alkyl of 1 to 12 carbon atoms; (iii) pyridyl; (iv) phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, straight, branched, cyclic, or bicyclic alkyl of 1 to 10 carbon atoms, straight, branched, cyclic, or bicyclic alkoxy of 1 to 10 carbon atoms, CH₂R where R is a cyclic or bicyclic alkyl of 1 to 10 carbon atoms, or halo; (v) benzyl substituted with one to three substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo; (vi) naphthyl; or (vii) benzyloxy; and

n has a value of 0, 1, 2, or 3.

27. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$\begin{array}{c|c}
O \\
| | \\
C \\
R^{5} \\
N - CH - (CH_{2})_{\overline{n}} - Y
\end{array}$$

wherein:

R⁵ is (i) the divalent residue of pyridine, pyrrolidine, imidizole, naphthalene, or thiophene, wherein the divalent bonds are on vicinal ring carbon atoms; (ii) a divalent cycloalkyl of 4-10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo; (iii) di-substituted vinylene, substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy,

amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; or (iv) ethylene, unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;

$$R^6$$
 is -CO-, -CH₂-, -CH₂CO-, or -SO₂-;

R⁷ is (i) cyclic or bicyclic alkyl of 4 to 12 carbon atoms; (ii) pyridyl; (iii) phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, straight, branched, cyclic, or bicyclic alkyl of 1 to 10 carbon atoms, straight, branched, cyclic, or bicyclic alkoxy of 1 to 10 carbon atoms, CH₂R where R is a cyclic or bicyclic alkyl of 1 to 10 carbon atoms, or halo; (iv) benzyl substituted with one to three substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo; (v) naphthyl; or (vi) benzyloxy; and

Y is COX, $-C \equiv N$, OR^8 , alkyl of 1 to 5 carbon atoms, or aryl; X is $-NH_2$, -OH, -NHR, $-R^9$, $-OR^9$, or alkyl of 1 to 5 carbon atoms; R^8 is hydrogen or lower alkyl; R^9 is alkyl or benzyl; and n has a value of 0, 1, 2, or 3.

28. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

wherein:

Ar is (i) straight, branched, or cyclic, unsubstituted alkyl of 1 to 12 carbon atoms; (ii) straight, branched, or cyclic, substituted alkyl of 1 to 12 carbon atoms; (iii) phenyl; (iv) phenyl substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy,

carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo; (v) heterocycle; or (vi) heterocycle substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo;

R is -H, alkyl of 1 to 10 carbon atoms, CH₂OH, CH₂CH₂OH, or CH₂COZ where Z is alkoxy of 1 to 10 carbon atoms, benzyloxy, or NHR¹ where R¹ is H or alkyl of 1 to 10 carbon atoms; and

Y is i) a phenyl or heterocyclic ring, unsubstituted or substituted one or more substituents each selected independently one from the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo or ii) naphthyl.

29. (new) The method of claim 28, wherein said selective cytokine inhibitory drug is of the formula:

wherein:

Ar is 3,4-disubstituted phenyl where each substituent is selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, and halo;

Z is alkoxy of 1 to 10 carbon atoms, benzyloxy, amino, or alkylamino of 1 to 10 carbon atoms; and

Y is (i) a phenyl, unsubstituted or substituted with one or more substituents each selected, independently one from the other, from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, and halo, or (ii) naphthyl.

- 30. (new) The method of claim 28, wherein said selective cytokine inhibitory drug is N-benzoyl-3-amino-3-(3',4'-dimethoxyphenyl)-propanamide.
- 31. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or

a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R^{3}$$
 N-CH-(CH₂) $\frac{1}{n}$ O-R²

wherein:

R¹ is (i) straight, branched, or cyclic, unsubstituted alkyl of 1 to 12 carbon atoms; (ii) straight, branched, or cyclic, substituted alkyl of 1 to 12 carbon atoms; (iii) phenyl; or (iv) phenyl substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, acylamino, alkylamino, di(alkyl) amino, alkyl of 1 to 10 carbon atoms, cycloalkyl of 3 to 10 carbon atoms, bicycloalkyl of 5 to 12 carbon atoms, alkoxy of 1 to 10 carbon atoms, cycloalkoxy of 3 to 10 carbon atoms, bicycloalkoxy of 5 to 12 carbon atoms, and halo;

R² is hydrogen, alkyl of 1 to 8 carbon atoms, benzyl, pyridylmethyl, or alkoxymethyl;

R³ is (i) ethylene, (ii) vinylene, (iii) a branched alkylene of 3 to 10 carbon atoms, (iv) a branched alkenylene of 3 to 10 carbon atoms, (v) cycloalkylene of 4 to 9 carbon atoms unsubstituted or substituted with one or more substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, amino substituted with alkyl of 1 to 6 carbon atoms, amino substituted with acyl of 1 to 6 carbon atoms, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 12 carbon atoms, and halo, (vi) cycloalkenylene of 4 to 9 carbon atoms unsubstituted or substituted with one or more substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, amino substituted with alkyl of 1 to 6 carbon atoms, amino substituted with acyl of 1 to 6 carbon atoms, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 12 carbon atoms, and halo, (vii) o-phenylene unsubstituted or substituted with one or more substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, amino substituted with alkyl of 1 to 6 carbon atoms, amino substituted with acyl of 1 to 6 carbon atoms, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 12 carbon atoms, and halo, (viii) naphthyl, or (ix) pyridyl;

$$R^4$$
 is -CX-, -CH₂- or -CH₂CX-;
X is O or S; and
n is 0, 1, 2, or 3.

- 32. (new) The method of claim 31, wherein said selective cytokine inhibitory drug is 3-phthalimido-3-(3',4'-dimethoxyphenyl)propan-1-ol).
- 33. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$\begin{array}{c|c}
 & O \\
 & R^3 & N \\
 & R^2 & R^1
\end{array}$$

$$\begin{array}{c}
 & R^4 \\
 & R^5
\end{array}$$

wherein:

 R^1 is -CH₂-, -CH₂CO-, or -CO-;

R² and R³ taken together are (i) ethylene unsubstituted or substituted with alkyl of 1-10 carbon atoms or phenyl, (ii) vinylene substituted with two substituents each selected, independently of the other, from the group consisting of alkyl of 1-10 carbon atoms and phenyl, or (iii) a divalent cycloalkyl of 5-10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl unsubstituted or substituted with alkyl of 1-3 carbon atoms, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, norbornyl, phenyl or halo;

R⁴ is (i) straight or branched unsubstituted alkyl of 4 to 8 carbon atoms, (ii) cycloalkyl or bicycloalkyl of 5-10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, branched, straight or cyclic alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo, (iii) phenyl substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, cycloalkyl or bicyctoalkyl of 3 to 10 carbon atoms, cycloalkoxy or bicycloalkoxy of 3 to 10 carbon atoms, phenyl or halo, (iv) pyridine or pyrrolidine, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy,

carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo; and,

 R^5 is -COX, -CN, -CH₂COX, alkyl of 1 to 5 carbon atoms, aryl, -CH₂OR, -CH₂ aryl, or -CH₂OH,

where X is NH_2 , OH, NHR, or OR^6 , where R is lower alkyl; and where R^6 is alkyl or benzyl.

- 34. (new) The method of claim 33, wherein said selective cytokine inhibitory drug is methyl 3-(3',4',5'6'-petrahydrophthalimdo)-3-(3'',4''-dimethoxyphenyl)propionate).
- 35. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

wherein:

R¹ is (i) straight, branched, or cyclic alkyl of 1 to 12 carbon atoms, (ii) phenyl or phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, straight or branched alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, (iii) benzyl or benzyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo, or (iv) -Y-Ph where Y is a straight, branched, or cyclic alkyl of 1 to 12 carbon atoms and Ph is phenyl or phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo;

R² is -H, a branched or unbranched alkyl of 1 to 10 carbon atoms, phenyl, pyridyl, heterocycle, -CH₂-aryl, or -CH₂-heterocycle;

R³ is i) ethylene, ii) vinylene, iii) a branched alkylene of 3 to 10 carbon atoms, iv) a branched alkenylene of 3 to 10 carbon atoms, v) cycloalkylene of 4 to 9 carbon atoms unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo, vi) cycloalkenylene of 4 to 9 carbon atoms unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo, or vii) o-phenylene unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 4 carbon atoms, alkoxy 1 to 4 carbon atoms, or halo; and,

$$R^4$$
 is -CX, or -CH₂-;
X is O or S.

- 36. (new) The method of claim 35, wherein said selective cytokine inhibitory drug is 2-phthalimido-3-(3',4'-dimethoxyphenyl) propane).
- 37. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{8}

wherein:

the carbon atom designated constitutes a center of chirality;

Y is C=O, CH_2 , SO_2 or $CH_2C=O$;

X is hydrogen, or alkyl of 1 to 4 carbon atoms;

each of R¹, R², R³, and R⁴, independently of the others, is hydrogen, halo, trifluoromethyl, acetyl, alkyl of 1 to 8 carbon atoms, alkoxy of 1 to 4 carbon atoms, nitro, cyano, hydroxy, - CH₂NR⁸R⁹, -(CH₂)₂NR⁸R⁹, or -NR⁸R⁹ or

any two of R¹, R², R³, and R⁴ on adjacent carbon atoms, together with the depicted benzene ring are naphthylidene, quinoline, quinoxaline, benzimidazole, benzodioxole or 2-hydroxybenzimidazole;

each of R⁵ and R⁶, independently of the other, is hydrogen, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 6 carbon atoms, cyano, benzocycloalkoxy, cycloalkoxy of up to 18 carbon atoms, bicyloalkoxy of up to 18 carbon atoms, tricylcoalkoxy of up to 18 carbon atoms, or cycloalkylalkoxy of up to 18 carbon atoms;

each of R⁸ and R⁹, taken independently of the other is hydrogen, straight or branched alkyl of 1 to 8 carbon atoms, phenyl, benzyl, pyridyl, pyridylmethyl, or one of R⁸ and R⁹ is hydrogen and the other is -COR¹⁰, or -SO₂R¹⁰, or R⁸ and R⁹ taken together are tetramethylene, pentamethylene, hexamethylene, -CH=NCH=CH-, or -CH₂CH₂X¹CH₂CH₂- in which X¹ is -O-, -S-, or -NH-

R¹⁰ is hydrogen, alkyl of 1 to 8 carbon atoms, cycloalkyl, cycloalkylmethyl of up to 6 carbon atoms, phenyl, pyridyl, benzyl, imidazolylmethyl, pyridylmethyl, NR¹¹R¹², CH₂R¹⁴R¹⁵, or NR¹¹R¹²

wherein R¹⁴ and R¹⁵, independently of each other, are hydrogen, methyl, ethyl, or propyl, and wherein R¹¹ and R¹², independently of each other, are hydrogen, alkyl of 1 to 8 carbon atoms, phenyl, or benzyl; and

the acid addition salts of said compounds which contain a nitrogen atom susceptible of protonation.

38. (new) The method of claim 37, wherein:

the carbon atom designated* constitutes a center of chirality;

Y is C=O, CH₂, SO₂ or CH₂C=O;

X is hydrogen, or alkyl of 1 to 4 carbon atoms;

- (i) each of R^1 , R^2 , R^3 , and R^4 , independently of the others, is hydrogen, halo, trifluoromethyl, acetyl, alkyl of 1 to 8 carbon atoms, alkoxy of 1 to 4 carbon atoms, nitro, cyano, hydroxy, $CH_2NR^8R^9$, - $(CH_2)_2NR^8R^9$, or - NR^8R^9 or
- (ii) any two of R¹, R², R³, and R⁴ on adjacent carbon atoms, together with the depicted benzene ring to which they are bound are naphthylidene, quinoline, quinoxaline, benzimidazole, benzodioxole or 2-hydroxybenzimidazole;

each of R⁵ and R⁶, independently of the other, is hydrogen, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 6 carbon atoms, cyano, benzocycloalkoxy, cycloalkoxy of up to 18 carbon atoms,

bicyloalkoxy of up to 18 carbon atoms, tricylcoalkoxy of up to 18 carbon atoms, or cycloalkylalkoxy of up to 18 carbon atoms;

- (i) each of R⁸ and R⁹, independently of the other, is hydrogen, alkyl of 1 to 8 carbon atoms, phenyl, benzyl, pyridyl, pyridylmethyl, or
- (ii) one of R^8 and R^9 is hydrogen and the other is $-COR^{10}$, or $-SO_2R^{10}$, in which R^{10} is hydrogen, alkyl of 1 to 8 carbon atoms, cycloalkyl, cycloalkylmethyl of up to 6 carbon atoms, phenyl, pyridyl, benzyl, imidazolylmethyl, pyridylmethyl, $NR^{11}R^{12}$, or $CH_2NR^{14}R^{15}$, wherein R^{11} and R^{12} , independently of each other, are hydrogen, alkyl of 1 to 8 carbon atoms, phenyl, or benzyl and R^{14} and R^{15} , independently of each other, are hydrogen, methyl, ethyl, or propyl; or
- (iii) R⁸ and R⁹ taken together are tetramethylene, pentamethylene, hexamethylene, -CH=NCH=CH-, or -CH₂CH₂X¹CH₂CH₂- in which X¹ is -O-, -S-, or -NH-.
- 39. (new) The method of claim 37, wherein said selective cytokine inhibitory drug is 2-[1-(3-cyclopentyloxy-4-methoxyphenyl)-2-(1,3,4-oxadiazole-2-yl)ethyl]-5-methylisoindoline-1,3-dione.
- 40. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

wherein:

- (a) X is -O- or - (C_nH_{2n}) in which n has a value of 0, 1, 2, or 3, and R^1 is alkyl of one to 10 carbon atoms, monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms, or
- (b) X is -CH= and R¹ is alkylidene of up to 10 carbon atoms, monocycloalkylidene of up to 10 carbon atoms, or bicycloalkylidene of up to 10 carbon atoms;

R² is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkylidenemethyl, lower alkoxy, or halo;

R³ is (i) phenyl, unsubstituted or substituted with 1 or more substituents each selected independently from nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 5 carbon atoms, alkyl of up to 10 carbon atoms, cycloalkyl of up to 10 carbon atoms, alkoxy of up to 10 carbon atoms, cycloalkoxy of up to 10 carbon atoms, alkylidenemethyl of up to 10 carbon atoms, cycloalkylidenemethyl of up to 10 carbon atoms, phenyl, or methylenedioxy; (ii) pyridine, substituted pyridine, pyrrolidine, imidizole, naphthalene, or thiophene; (iii) cycloalkyl of 4-10 carbon atoms, unsubstituted or substituted with 1 or more substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl;

each of R⁴ and R⁵ taken individually is hydrogen or R⁴ and R⁵ taken together are a carbon-carbon bond;

Y is -COZ, -C \equiv N, or lower alkyl of 1 to 5 carbon atoms;

Z is -OH, -NR 6 R 6 , -R 7 , or -OR 7 ; R 6 is hydrogen or lower alkyl; and R 7 is alkyl or benzyl.

- 41. (new) The method of claim 40, wherein:
- (a) X is -O- or - (C_nH_{2n}) in which n has a value of 0, 1, 2, or 3, and R^1 is alkyl of one to 10 carbon atoms, monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms, or
- (b) X is -CH= and R¹ is alkylidene of up to 10 carbon atoms, monocycloalkylidene of up to 10 carbon atoms, or bicycloalkylidene of up to 10 carbon atoms;

R² is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkylidenemethyl, lower alkoxy, or halo;

R³ is pyrrolidine, imidazole or thiophene unsubstituted or substituted with 1 or more substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or phenyl;

each of R⁴ and R⁵ taken individually is hydrogen or R⁴ and R⁵ taken together are a carboncarbon bond;

Y is -COZ, -C \equiv N, or lower alkyl of 1 to 5 carbon atoms;

Z is -OH, -NR 6 R 6 , -R 7 , or -OR 7 ; R 6 is hydrogen or lower alkyl; and R 7 is alkyl or benzyl.

42. (new) The method of claim 40, wherein said selective cytokine inhibitory drug is of the formula:

$$R^2$$
 $C=CH-C\equiv N$
 R^1x

$$R^2$$
 — CHCH₂—C \equiv N

wherein:

- (a) X is -O- or - (C_nH_{2n}) in which n has a value of 0, 1, 2, or 3, and R^1 is alkyl of up to 10 carbon atoms, monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms, or
- (b) X is -CH=, and R¹ is alkylidene of up to 10 carbon atoms or monocycloalkylidene of up to 10 carbon atoms;

R² is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, or halo; and

R³ is (i) phenyl or naphthyl, unsubstituted or substituted with 1 or more substituents each selected independently from nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, or carbamoyl substituted with alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 5 carbon atoms, alkoxy or cycloalkoxy of 1 to 10 carbon atoms; or (ii) cycloalkyl of 4 to 10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, or phenyl.

43. (new) The method of claim 40, wherein said selective cytokine inhibitory drug is of the formula:

- 44. (new) The method of claim 40, wherein said selective cytokine inhibitory drug is 3,3-bis-(3,4-dimethoxyphenyl) acrylonitrile.
- 45. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

$$R_1$$
 R_2
 R_4
 R_5
 R_5
 R_1
 R_2
 R_2

wherein:

one of X and X' is =C=O or =SO₂, and the other of X and X' is =C=O, =CH₂, =SO₂ or =CH₂C=O;

n is 1, 2 or 3;

 R_1 and R_2 are each independently (C_1 - C_4)alkyl, (C_1 - C_4)alkoxy, cyano, (C_3 - C_{18})cycloalkyl, (C_3 - C_{18})cycloalkyl methoxy;

R₃ is SO₂-Y, COZ, CN or (C₁-C₆)hydroxyalkyl, wherein:

Y is (C_1-C_6) alkyl, benzyl or phenyl;

Z is $-NR_6R_7$, (C_1-C_6) alkyl, benzyl or phenyl;

 R_6 is H, (C_1-C_4) alkyl, (C_3-C_{18}) cycloalkyl, (C_2-C_5) alkanoyl, benzyl or phenyl, each of which can be optionally substituted with halo, amino or (C_1-C_4) alkyl-amino;

 R_7 is H or (C_1-C_4) alkyl;

 R_4 and R_5 are taken together to provide -NH-CH₂-R₈-, NH-CO-R₈-, or -N=CH-R₈-, wherein: R_8 is CH₂, O, NH, CH=CH, CH=N, or N=CH; or

one of R_4 and R_5 is H, and the other of R_4 and R_5 is imidazoyl, pyrrolyl, oxadiazolyl, triazolyl, or a structure of formula (A),

$$R_{10}$$
 $(CH_2)_z$ (A)

wherein:

z is 0 or 1;

 R_9 is: H; (C_1 - C_4)alkyl, (C_3 - C_{18})cycloalkyl, (C_2 - C_5)alkanoyl, or (C_4 - C_6)cycloalkanoyl, optionally substituted with halo, amino, (C_1 - C_4)alkyl-amino, or (C_1 - C_4)dialkyl-amino; phenyl; benzyl; benzoyl; (C_2 - C_5)alkoxycarbonyl; (C_3 - C_5)alkoxyalkylcarbonyl; N-morpholinocarbonyl; carbamoyl; N-substituted carbamoyl substituted with (C_1 - C_4)alkyl; or methylsulfonyl; and

R₁₀ is H, (C₁-C₄)alkyl, methylsulfonyl, or (C₃-C₅)alkoxyalkylcarbonyl; or
R₉ and R₁₀ are taken together to provide -CH=CH-CH=CH-, -CH=CH-N=CH-, or (C₁-C₂)alkylidene, optionally substituted with amino, (C₁-C₄)alkyl-amino, or (C₁-C₄)dialkyl-amino; or
R₄ and R₅ are both structures of formula (A).

- 46. (new) The method of claim 45, wherein z is not 0 when (i) R^3 is -SO₂-Y, -COZ, or -CN and (ii) one of R^4 or R^5 is hydrogen.
- 47. (new) The method of claim 45, wherein R⁹ and R¹⁰, taken together, is -CH=CH-CH=CH-, -CH=CH-N=CH-, or (C₁-C₂)alkylidene substituted by amino, (C₁-C₄)alkyl-amino, or (C₁-C₄)dialkyl-amino.
 - 48. (new) The method of claim 45, wherein R_4 and R_5 are both structures of formula (A).
- 49. (new) The method of claim 45, wherein said selective cytokine inhibitory drug is isoindoline-1-one and isoindoline-1,3-dione substituted in the 2-position with an α -(3,4-disubstituted phenyl)alkyl group and in the 4- and/or 5-position with a nitrogen-containing group.
- 50. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or

a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

wherein:

the carbon atom designated * constitutes a center of chirality,

R⁴ is hydrogen or -(C=O)-R¹²,

each of R¹ and R¹², independently of each other, is alkyl of 1 to 6 carbon atoms, phenyl, benzyl, pyridyl methyl, pyridyl, imidazoyl, imidazolyl methyl, or

CHR*(CH₂)_nNR*R⁰,

wherein R^* and R^0 , independently of the other, are hydrogen, alkyl of 1 to 6 carbon atoms, phenyl, benzyl, pyridyl methyl, pyridyl, imidazoyl or imidazolylmethyl, and n = 0, 1, or 2;

 R^5 is C=O, CH₂, CH₂-CO-, or SO₂;

each of R^6 and R^7 , independently of the other, is nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 6 carbon atoms, alkoxy of 1 to 6 carbon atoms, cycloalkoxy of 3 to 8 carbon atoms, halo, bicycloalkyl of up to 18 carbon atoms, tricycloalkoxy of up to 18 carbon atoms, 1-indanyloxy, 2-indanyloxy, C_4 - C_8 -cycloalkylidenemethyl, or C_3 - C_{10} -alkylidenemethyl;

each of R⁸, R⁹, R¹⁰, and R¹¹, independently of the others, is

- (i) hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkylamino, dialkylamino, acylamino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, halo, or
- (ii) one of R^8 , R^9 , R^{10} , and R^{11} is acylamino comprising a lower alkyl, and the remaining of R^8 , R^9 , R^{10} , and R^{11} are hydrogen, or
- (iii) hydrogen if R⁸ and R⁹ taken together are benzo, quinoline, quinoxaline, benzimidazole, benzodioxole, 2-hydroxybenzimidazole, methylenedioxy, dialkoxy, or dialkyl, or
- (iv) hydrogen if R¹⁰ and R¹¹, taken together are benzo, quinoline, quinoxaline, benzimidazole, benzodioxole, 2-hydroxybenzimidazole, methylenedioxy, dialkoxy, or dialkyl, or
 - (v) hydrogen if R⁹ and R¹⁰ taken together are benzo.

- 51. (new) The method of claim 50, wherein said selective cytokine inhibitory drug is (3-(1,3-dioxoisoindoline-2-yl)-3-(3-ethoxy-4-methoxyphenyl) propanoylamino) propanoate.
- 52. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of formula:

wherein:

 R_1 , R_2 and R_3 are independently H or C_{1-8} -alkyl, with the proviso that at least one of R_1 , R_2 and R_3 is not H.

53. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of formula:

$$R_{1}$$
 X

wherein:

 R_1 is -CN, lower alkyl, -COOH, -C(O)-N(R_9)₂, -C(O)-lower alkyl, -C(O)-benzyl, C(O)O-lower alkyl, -C(O)O-benzyl;

R₄ is -H, -NO₂, cyano, substituted or unsubstituted lower alkyl, substituted or unsubstituted alkoxy, halogen, -OH, -C(O)(R₁₀)₂, -COOH, -NH₂, -OC(O)-N(R₁₀)₂;

R₅ is substituted or unsubstituted lower alkyl, substituted or unsubstituted alkoxy, or substituted or unsubstituted alkenyl;

X is substituted or unsubstituted phenyl, substituted or unsubstituted pyridine, substituted or unsubstituted pyrrolidine, substituted or unsubstituted imidizole, substituted or unsubstituted naphthalene, substituted or unsubstituted thiophene, or substituted or unsubstituted cycloalkyl; each occurrence of R₉ is independently -H or substituted or unsubstituted lower alkyl; and each occurrence of R₁₀ is independently -H or substituted or unsubstituted lower alkyl.

54. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of formula:

$$\begin{array}{c|c}
R_1 & R_2 \\
R_3 & R_6 \\
R_4 & R_5 & R_6
\end{array}$$

wherein:

 R_1 and R_2 are independently -H, -CN, substituted or unsubstituted lower alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, -C(O)-lower alkyl, -C(O)O-lower alkyl, -C(O)-N(R_9)₂, substituted or unsubstituted aryl, or substituted or unsubstituted heterocycle;

each occurrence of R_a , R_b , R_c and R_d is independently -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R_9)₂, -OC(O)- R_{10} , -OC(O)- R_{10} -N(R_{10})₂, -C(O)N(R_{10})₂, -NHC(O)- R_{10} , -NHC(O)- R_{10} , -NHC(O)NHSO₂- R_{10} , -NHC(O)- R_{10} -NHC(O)

 R_3 is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -C(O)N(R₁₀)₂, -NHC(O)-R₁₀, -NHS(O)₂-R₁₀, -S(O)₂-R₁₀, -NHC(O)NH-R₁₀, -NHC(O)N(R₁₀)₂, -NHC(O)NHSO₂-R₁₀, -NHC(O)-R₁₀-N(R₁₀)₂, -NHC(O)CH(R₁₀)(N(R₉)₂) or -NHC(O)-R₁₀-NH₂, or R₃ with either R_a or with R₄, together form -O-C(R₁₆R₁₇)-O- or -O-(C(R₁₆R₁₇))₂-O-;

R₄ is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -

 $C(O)N(R_{10})_2, -NHC(O)-R_{10}, -NHS(O)_2-R_{10}, -S(O)_2-R_{10}, -NHC(O)NH-R_{10}, -NHC(O)N(R_{10})_2, \\ -NHC(O)NHSO_2-R_{10}, -NHC(O)-R_{10}-N(R_{10})_2, -NHC(O)CH(R_{10})(N(R_9)_2) \ or \ -NHC(O)-R_{10}-NH_2; \\ -NHC(O)NHSO_2-R_{10}, -NHC(O)-R_{10}-N(R_{10})_2, -NHC(O)-R_{10}-N(R_{10})_2$

 R_5 is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -C(O)N(R₁₀)₂, -NHC(O)-R₁₀, -NHC(O)-R₁₀, -NHC(O)NH-R₁₀, -NHC(O)N(R₁₀)₂, -NHC(O)NHSO₂-R₁₀, -NHC(O)-R₁₀-N(R₁₀)₂, -NHC(O)CH(R₁₀)(N(R₉)₂) or -NHC(O)-R₁₀-NH₂;

 R_6 is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -C(O)N(R₁₀)₂, -NHC(O)-R₁₀, -NHS(O)₂-R₁₀, -S(O)₂-R₁₀, -NHC(O)NH-R₁₀, -NHC(O)N(R₁₀)₂, -NHC(O)-R₁₀-NHC

 R_7 is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocycle, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -C(O)N(R₁₀)₂, -NHC(O)-R₁₀, -NHS(O)₂-R₁₀, -S(O)₂-R₁₀, -NHC(O)NH-R₁₀, -NHC(O)N(R₁₀)₂, -NHC(O)-R₁₀-NHC(O)-R₁

 R_8 is -H, substituted or unsubstituted lower alkyl, substituted or unsubstituted aryl, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted alkoxy, halogen, cyano, -NO₂, -OH, -OPO(OH)₂, -N(R₉)₂, -OC(O)-R₁₀, -OC(O)-R₁₀-N(R₁₀)₂, -C(O)N(R₁₀)₂, -NHC(O)-R₁₀, -NHS(O)₂-R₁₀, -S(O)₂-R₁₀, -NHC(O)NH-R₁₀, -NHC(O)N(R₁₀)₂, -NHC(O)NHSO₂-R₁₀, -NHC(O)-R₁₀-N(R₁₀)₂, -NHC(O)CH(R₁₀)(N(R₉)₂) or -NHC(O)-R₁₀-NH₂, or R₈ with either R_c or with R₇, together form -O-C(R₁₆R₁₇)-O- or -O-(C(R₁₆R₁₇))₂-O-;

each occurrence of R₉ is independently -H, substituted or unsubstituted lower alkyl, or substituted or unsubstituted cycloalkyl;

each occurrence of R_{10} is independently substituted or unsubstituted lower alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted lower hydroxyalkyl, or R_{10} and a nitrogen to which it is attached form a substituted or unsubstituted heterocycle, or R_{10} is -H where appropriate; and

each occurrence of R₁₆ and R₁₇ is independently -H or halogen.

55. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine

inhibitory drug is 2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione, 3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide, or cyclopropanecarboxylic acid {2-[1-(3-ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]-3-oxo-2,3-dihydro-1 H-isoindol-4-yl}-amide.

56. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is of the formula:

or

57. (new) A method of treating macular degeneration, which comprises administering to a patient in need thereof a therapeutically effective amount of a selective cytokine inhibitory drug, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof, wherein said selective cytokine inhibitory drug is selected from the group consisted of 2-[1-(3-Ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-4,5-dinitroisoindoline-1,3-dione; 2-[1-(3-Ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-4,5-diaminoisoindoline-1,3-dione; 7-[1-(3-Ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-3-pyrrolino[3,4-e]benzimidazole-6,8-dione; 7-[1-(3-Ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]hydro-3-pyrrolino[3,4 -e]benzimidazole-2,6,8-trione; 2-[1-(3-Ethoxy-4methoxyphenyl)-2-methylsulfonylethyl]-3-pyrrolino[3,4-f]quinoxaline-1,3-dione; Cyclopropyl-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-1,3-d ioxoisoindolin-4-yl}carboxamide; 2-Chloro-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-1,3-dioxoisoindolin-4yl}acetamide; 2-Amino-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-1,3dioxoisoindolin-4-yl}acetamide; 2-N,N-Dimethylamino-N-{2-[-(3-ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-1,3-dioxoisoindolin-4-yl}-2,2,2-trifluoroacetamide; N-{2-[1-(3-Ethoxy-4methoxyphenyl)-2-methylsulfonylethyl]-1,3-dioxoisoindolin-4-yl}methoxycarboxamide; 4-[1-Aza-2-(dimethylamino)vinyl]-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]isoindoline-1,3dione; 4-[1-Aza-2-(dimethylamino)prop-1-enyl]-2-[1-(3-ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]isoindoline-1,3-dione; 2-[1-(3-Ethoxy-4-methoxyphenyl)-2methylsulfonylethyl]-4-(5-methyl-1,3,4-oxadiazol-2-yl)isoindoline-1,3-dione; 2-[1-(3-Ethoxy-4methoxyphenyl)-2-methylsulfonylethyl]-4-pyrrolylisoindoline-1,3-dione; 4-(Aminomethyl)-2-[1-(3ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-isoindoline-1,3-dione; 2-[1-(3-Ethoxy-4methoxyphenyl)-2-methylsulfonylethyl]-4-(pyrrolylmethyl)isoindoline-1,3-dione; N-{2-[1-(3-ethoxy-4-methoxyphenyl)-3-hydroxybutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1-(3-Ethoxy-4methoxyphenyl)-3-oxobutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1R-(3-ethoxy-4-

methoxyphenyl)-3-hydroxybutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1R-(3-ethoxy-4methoxyphenyl)-3-oxobutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1S-(3-Ethoxy-4methoxyphenyl)-3-hydroxybutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1S-(3-ethoxy-4methoxyphenyl)-3-oxobutyl]-1,3-dioxoisoindolin-4-yl}acetamide; 4-Amino-2-[1-(3-ethoxy-4methoxyphenyl)-3-hydroxybutylisoindoline-1,3-dione; 4-Amino-2-[1-(3-ethoxy-4-methoxyphenyl)-3oxobutyl]isoindoline-1,3-dione; 2-[1-(3-Ethoxy-4-methoxyphenyl)-3-oxobutyl]-4-pyrrolylisoindoline-1,3-dione; 2-Chloro-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-3-oxobutyl]-1,3-dioxoisoindol-4yl}acetamide; 2-(Dimethylamino)-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-3-oxobutyl]-1,3dioxoisoindolin-4-yl}acetamide; 4-Amino-2-[1R-(3-ethoxy-4-methoxyphenyl)-3hydroxybutyl]isoindoline-1,3-dione; 4-Amino-2-[1R-(3-ethoxy-4-methoxyphenyl)-3oxobutyl]isoindoline-1,3-dione; 2-[1R-(3-ethoxy-4-methoxyphenyl)-3-oxobutyl]-4pyrrolylisoindoline-1,3-dione; 2-(Dimethylamino)-N-{2-[1R-(3-ethoxy-4-methoxyphenyl)-3oxobutyl]-1,3-dioxoisoindolin-4-yl}acetamide; Cyclopentyl-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}carboxamide; 3-(Dimethylamino)-N-{2-[1-(3ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}propanamide; 2-(Dimethylamino)-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3dioxoisoindolin-4-yl}propanamide; N-{2-[(1R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}-2-(dimethylamino)acetamide; N-{2-[(1S)-1-(3ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}-2-(dimethylamino)acetamide; 4-{3-[(Dimethylamino)methyl]pyrrolyl}-2-[1-(3-ethoxy-4methoxyphenyl)-2-(methylsulfonyl)ethyl]isoindoline-1,3-dione; Cyclopropyl-N-{2-[(1S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}carboxamide; 2-[1-(3,4dimethoxyphenyl)-2-(methylsulfonyl)ethyl]-4-pyrrolylisoindoline-1,3-dione; N-{2-[1-(3,4dimethoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}-2-(dimethylamino)acetamide; Cyclopropyl-N-{2-[1-(3,4-dimethoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4yl}carboxamide; Cyclopropyl-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-3oxoisoindolin-4-yl}carboxamide; 2-(Dimethylamino)-N-{2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-3-oxoisoindolin-4-yl}acetamide; Cyclopropyl-N-{2-[(1S)-1-(3-ethoxy-4methoxyphenyl)-2-(methylsulfonyl)ethyl]-3-oxoisoindolin-4-yl}carboxamide; Cyclopropyl-N-{2-[(1R)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-3-oxoisoindolin-4-yl}carboxamide; (3R)-3-[7-(Acetylamino)-1-oxoisoindolin-2-yl]-3-(3-ethoxy-4-methoxyphenyl)-N,Ndimethylpropanamide; (3R)-3-[7-(Cyclopropylcarbonylamino)-1-oxoisoindolin-2-yl]-3-(3-ethoxy-4methoxyphenyl)-N,N-dimethylpropanamide; 3-{4-[2-(Dimethylamino)acetylamino]-1,3dioxoisoindolin-2-yl}-3-(3-ethoxy-4-methoxyphenyl)-N,N-dimethylpropanamide; (3R)-3-[7-(2Chloroacetylamino)-1-oxoisoindolin-2-yl]-3-(3-ethoxy-4-methoxy-phenyl)-N,Ndimethylpropanamide; (3R)-3-{4-[2-(dimethylamino)acetylamino]-1,3-dioxoisoindolin-2-yl}-3-(3ethoxy-4-methoxyphenyl)-N,N-dimethylpropanamide; 3-(1,3-Dioxo-4-pyrrolylisoindolin-2-yl)-3-(3ethoxy-4-methoxyphenyl)-N,N-dimethylpropanamide; 2-[1-(3-Ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-4-(imidazolyl-methyl)isoindoline-1,3-dione; N-({2-[1-(3-Ethoxy-4methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}methyl)acetamide; 2-Chloro-N-({2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4yl}methyl)acetamide; 2-(Dimethylamino)-N-({2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1,3-dioxoisoindolin-4-yl}methyl)acetamide; 4-[Bis(methylsulfonyl)amino]-2-[1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]isoindoline-1,3-dione; 2-[1-(3-Ethoxy-4methoxyphenyl)-2-(methylsulfonyl)ethyl]-4-[(methylsulfonyl)amino]isoindoline-1,3-dione; N-{2-[1-(3-Ethoxy-4-methoxyphenyl)-3-hydroxypentyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1-(3-Ethoxy-4-methoxyphenyl)-3-oxopentyl]1,3-dioxoisoindolin-4-yl}acetamide; 2-[(1R)-1-(3-Ethoxy-4methoxyphenyl)-3-hydroxybutyl]-4-(pyrrolylmethyl)isoindoline-1,3-dione; 2-[(1R)-1-(3-Ethoxy-4methoxyphenyl)-3-oxobutyl]-4-(pyrrolylmethyl)isoindoline-1,3-dione; N-{2-[1-(3-Cyclopentyloxy-4methoxyphenyl)-3-hydroxybutyl]-1,3-dioxoisoindolin-4-yl}acetamide; N-{2-[1-(3-Cyclopentyloxy-4methoxyphenyl)-3-oxobutyl]-1,3-dioxoisoindolin-4-yl}acetamide; 2-[1-(3-Cyclopentyloxy-4methoxyphenyl)-3-oxobutyl]-4-pyrrolylisoindoline-1,3-dione; 2-[1-(3,4-Dimethoxyphenyl)-3oxobutyl]-4-[bis(methylsulfonyl)amino]isoindoline-1,3-dione; and pharmaceutically acceptable salts, solvates, and stereoisomers thereof.

- 58. (new) The method of one of claims 23-57, which further comprises administering to the patient a therapeutically effective amount of at least one second active agent.
- 59. (new) The method of claim 58, wherein the second active agent is a steroid, a light sensitizer, an integrin, an antioxidant, an interferon, a xanthine derivative, a growth hormone, a neutrotrophic factor, a regulator of neovascularization, an anti-VEGF antibody, a prostaglandin, an antibiotic, a phytoestrogen, an anti-inflammatory compound or an antiangiogenesis compound.
- 60. (new) The method of claim 58, wherein the second active agent is thalidomide, verteporfin, purlytin, an angiostatic steroid, rhuFab, interferon-2α or pentoxifylline, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof.
 - 61. (new) The method of claim 59, wherein antiangiogenesis compound is thalidomide.

sensitizer, an integrin, an antioxidant, an interferon, a xanthine derivative, a growth hormone, a neutrotrophic factor, a regulator of neovascularization, an anti-VEGF antibody, a prostaglandin, an antibiotic, a phytoestrogen, an anti-inflammatory compound or an antiangiogenesis compound.

- 60. (new) The method of claim 58, wherein the second active agent is thalidomide, verteporfin, purlytin, an angiostatic steroid, rhuFab, interferon-2α or pentoxifylline, or a pharmaceutically acceptable salt, solvate, or stereoisomer thereof.
 - 61. (new) The method of claim 59, wherein antiangiogenesis compound is thalidomide.
- 62. (new) The method of one of claims 23-57, wherein the macular degeneration is wet macular degeneration, dry macular degeneration, age-related macular degeneration, age-related maculopathy, choroidal neovascularisation, retinal pigment epithelium detachment, atrophy of retinal pigment epithelium, Best's disease, vitelliform, Stargardt's disease, juvenile macular dystrophy, fundus flavimaculatus, Behr's disease, Sorsby's disease, Doyne's disease, honeycomb dystrophy, or macular damaging condition.
- 63. (new) The method of one of claims 23-57, wherein the stereoisomer of the selective cytokine inhibitory drug is enantiomerically pure.
- 64. (new) The method of one of claims 23-57, wherein the selective cytokine inhibitory drug can be administrated before, during or after surgical intervention directed at reducing or avoiding a symptom of macular degeneration in the patient.
- 65. (new) The method of claim 64, wherein the surgical intervention is light therapy, laser therapy, radiation therapy, retinal pigment epithelium transplantation, or foveal translocation.
- 66. (new) The method of one of claims 23-57, wherein the selective cytokine inhibitory drug is administered orally or topically.
- 67. (new) The method of claim 66, wherein the selective cytokine inhibitory drug is administered in the form of a solution, capsule or tablet.