Learning Discourse-level Diversity for Neural Dialog Models Using Conditional Variational Autoencoders

Tiancheng Zhao, Ran Zhao and Maxine Eskenazi Language Technologies Institute Carnegie Mellon University

Introduction

 End-to-end dialog models based on encoder-decoder models have shown great promises for modeling open-domain conversations, due to its flexibility and scalability.

Introduction

However, **dull response problem!** [Li et al 2015, Serban et al. 2016]. Current solutions include:

- Add more info to the dialog context [Xing et al 2016, Li et al 2016]
- Improve decoding algorithm, e.g. beam search [Wiseman and Rush 2016]

Our Key Insights

- Response generation in conversation is a ONE-TO-MANY mapping problem at the discourse level.
- A similar dialog context can have many different yet valid responses.
- Learn a probabilistic distribution over the valid responses instead of only keep the most likely one.

Our Key Insights

- Response generation in conversation is a ONE-TO-MANY mapping problem at the discourse level.
 - A similar dialog context can have many different yet valid responses.
- Learn a probabilistic distribution over the valid responses instead of only keep the most likely one.

Our Contributions

- Present an E2E dialog model adapted from Conditional Variational Autoencoder (CVAE).
- Enable integration of expert knowledge via knowledge-guided CVAE.
- 3. Improve the training method of optimizing CVAE/VAE for text generation.

Conditional Variational Auto Encoder (CVAE)

• **C** is dialog context

C: the preceding k-1 utterances conversational floor meta features (e.g. the topic)

- o B: Do you like cats? A: Yes I do
- **Z** is the latent variable (gaussian)
- X is the next response
 - o B: So do I. p(x,z|c) = p(x|z,c)p(z|c)p(z|c) p(x|z,c)

Conditional Variational Auto Encoder (CVAE)

- **C** is dialog context
 - o B: Do you like cats? A: Yes I do
- **Z** is the latent variable (gaussian)
- X is the next response
 - o B: So do I.
- Trained by Stochastic Gradient Variational
 Bayes (SGVB) [Kingma and Welling 2013]

$$\mathcal{L}(\theta, \phi; x, c) = -KL(q_{\phi}(z|x, c) || p_{\theta}(z|c))$$

$$+ \mathbf{E}_{q_{\phi}(z|c, x)}[\log p_{\theta}(x|z, c)] \qquad (1)$$

$$\leq \log p(x|c)$$

Knowledge-Guided CVAE (kgCVAE)

- Y is linguistic features extracted from responses
 - Dialog act: statement -> "So do I".
- Use Y to guide the learning of latent Z

$$\mathcal{L}(\theta, \phi; x, c, y) = -KL(q_{\phi}(z|x, c, y) || P_{\theta}(z|c))$$

$$+ \mathbf{E}_{q_{\phi}(z|c, x, y)} [\log p(x|z, c, y)]$$

$$+ \mathbf{E}_{q_{\phi}(z|c, x, y)} [\log p(y|z, c)] \quad (4)$$

Training of (kg)CVAE Reconstruction loss like cats </s> Recognition like cats Network like cats LKL(qllp) Utterance Encoder dialog act Prior Context Encoder **►** MLP_V Network meta Response Decoder Softmax Conversation Floor MLPb x_{bow} ►like u_{k-1} `**d**cats 0 0 **KL-divergence loss**

Testing of (kg)CVAE

Optimization Challenge

Training CVAE with RNN decoder is hard due to the *vanishing latent variable problem* [Bowman et al., 2015]

RNN decoder can cheat by using LM information and ignore Z!

Bowman et al. [2015] described two methods to alleviate the problem :

- 1. KL annealing (KLA): gradually increase the weight of KL term from 0 to 1 (need early stop).
- Word drop decoding: setting a proportion of target words to 0 (need careful parameter picking).

BOW Loss

- Predict the bag-of-words in the responses **X** at once (word counts in the response)
- Break the dependency between words and eliminate the chance of cheating based on LM.

$$\mathcal{L}'(\theta, \phi; x, c) = \mathcal{L}(\theta, \phi; x, c) + \mathbf{E}_{q_{\phi}(z|c, x, y)}[\log p(x_{bow}|z, c)]$$
(6)

BOW Loss

- Predict the bag-of-words in the responses **X** at once (word counts in the response)
- Break the dependency between words and eliminate the chance of cheating based on LM.

$$\mathcal{L}'(\theta, \phi; x, c) = \mathcal{L}(\theta, \phi; x, c) + \mathbf{E}_{q_{\phi}(z|c, x, y)}[\log p(x_{bow}|z, c)]$$
(6)

Dataset

Data Name	Switchboard Release 2
Number of dialogs	2,400 (2316/60/62 - train/valid/test)
Number of context-response pairs	207,833/5,225/5,481
Vocabulary Size	Top 10K
Dialog Act Labels	42 types, tagged by SVM and human
Number of Topics	70 tagged by humans

Quantitative Metrics

Quantitative Metrics

d(r, h) is a distance function [0, 1] to measure the similarity between a reference and a hypothesis.

Distance Functions used for Evaluation

- 1. Smoothed Sentence-level BLEU (1/2/3/4): lexical similarity
- 2. Cosine distance of Bag-of-word Embeddings: distributed semantic similarity.

(pre-trained Glove embedding on twitter)

- a. Average of embeddings (A-bow)
- b. Extrema of embeddings (E-bow)
- 3. Dialog Act Match: illocutionary force-level similarity
 - a. (Use pre-trained dialog act tagger for tagging)

Models (trained with BOW loss)

Quantitative Analysis Results

Metrics	Perplexi	BLEU-1	BLEU-2	BLEU-3	BLEU-4	A-bow	E-bow	DA
	ty (KL)	(p/r)	(p/r)	(p/r)	(p/r)	(p/r)	(p/r)	(p/r)
Baseline (sample)	35.4 (n/a)	0.405/ 0.336	0.3/ 0.281	0.272/ 0.254	0.226/ 0.215	0.387/ 0.337	0.701/ 0.684	0.736 / 0.514
CVAE	20.2 (11.36)	0.372/	0.295/	0.265/	0.223/	0.389/	0.705/	0.704/
(greedy)		0.381	0.322	0.292	0.248	0.361	0.709	0.604
kgCVAE	16.02	0.412/	0.350/	0.310/	0.262/	0.373/	0.711/	0.721/
(greedy)	(13.08)	0.411	0.356	0.318	0.272	0.336	0.712	0.598

Note: BLEU are normalized into [0, 1] to be valid precision and recall distance function

Qualitative Analysis

Topic: Recycling **Context**: **A**: are they doing a lot of recycling out in Georgia? **Target** (statement): well at my workplace we have places for aluminium cans

Baseline + Sampling	kgCVAE + Greedy
1. well I'm a graduate student and have two kids.	1. (non-understand) pardon.
2. well I was in last year and so we've had lots of recycling.	2. (statement) oh you're not going to have a curbside pick up here.
3. I'm not sure.	3. (statement) okay I am sure about a recycling center.
4. well I don't know I just moved here in new york.	4. (yes-answer) yeah so.

Latent Space Visualization

- Visualization of the posterior **Z** on the test dataset in 2D space using t-SNE.
- Assign different colors to the top 8 frequent dialog acts.
- The size of circle represents the response length.
- Exhibit clear clusterings of responses w.r.t the dialog act

The Effect of BOW Loss

Same setup on PennTree Bank for LM [Bowman 2015]. Compare 4 setups:

1	1	Star	ndar	'h	/Δ	F
		Olai	ıuaı	u	$v extsf{}$	ᆫ

- 2. KL Annealing (KLA)
- 3. BOW
- 4. BOW + KLA

Goal: low reconstruction loss + small but non-trivial KL cost

Perplexity	KL Cost
122.0	0.05
111.5	2.02
97.72	7.41
73.04	15.94
	122.0 111.5 97.72

KL Cost during Training

- Standard model suffers from vanishing latent variable.
- KLA requires early stopping.
- BOW leads to stable convergence with/without KLA.
- The same trend is observed on CVAE.

Conclusion and Future Work

- Identify the ONE-TO-MANY nature of open-domain dialog modeling
- Propose two novel models based on latent variables models for generating diverse yet appropriate responses.
- Explore further in the direction of leveraging both past linguistic findings and deep models for controllability and explainability.
- Utilize crowdsourcing to yield more robust evaluation.

Thank you!

Questions?

References

- 1. Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A persona-based neural conversation model. arXiv preprint arXiv:1603.06155
- 2. Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2015. A diversity-promoting objective function for neural conversation models. *arXiv* preprint arXiv:1510.03055.
- 3. Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An- drew M Dai, Rafal Jozefowicz, and Samy Bengio. 2015. Generating sentences from a continuous space. *arXiv preprint arXiv:1511.06349*.
- 4. Diederik P Kingma and Max Welling. 2013. Auto- encoding variational bayes. arXiv preprint arXiv:1312.6114.
- 5. Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A persona-based neural conversation model. arXiv preprint arXiv:1603.06155

Training Details

Word Embedding	200 Glove pre-trained on Twitter
Utterance Encoder Hidden Size	300
Context Encoder Hidden Size	600
Response Decoder Hidden Size	400
Latent Z Size	200
Context Window Size	10 utterances
Optimizer	Adam learning rate=0.001

Testset Creation

- Use 10-nearest neighbour to collect similar context in the training data
- Label a subset of the appropriateness of the 10 responses by 2 human annotators
- bootstrap via SVM on the whole test set (5481 context/response)
- Resulting 6.79 Avg references responses/context
- Distinct reference dialog acts 4.2