Reelle Zahlen

 $(K,+,\cdot)$ angeordneter Körper, $X\subset K$ nicht leer

Sup, Inf, Max, Min

- $s \in K \operatorname{sup}(\mathbf{X}) \Leftrightarrow s$ kleinste obere Schranke
- $s \in K$ inf(\mathbf{X}) \Leftrightarrow s größte untere Schranke
- $s \in K \max(\mathbf{X}) \Leftrightarrow s = \sup(\mathbf{X}) \land s \in K$
- $s \in K \min(\mathbf{X}) \Leftrightarrow s = \inf(\mathbf{X}) \land s \in K$

ε -Charakterisierung des Supremums

 $s = \sup(X) \Leftrightarrow \forall \varepsilon > 0 \ \exists x \in X : s - \varepsilon < x \le s$ Entsprechendes gilt für das Infimum

Rechenregeln für sup $X,Y \subset \mathbb{R}$ nach oben beschränkt:

- $\sup(X+Y) = \sup(X) + \sup(Y)$
- $\lambda > 0 \Rightarrow \sup(\lambda X) = \lambda \sup(X)$
- $X, Y \subset [0, \infty) \Rightarrow \sup(X) \cdot \sup(Y)$
- $X \subset Y \Rightarrow \sup(X) \leq \sup(Y)$

Archimedische Anordnung

- \mathbb{R} archimedisch angeordnet $\Rightarrow \forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x$
- $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : \frac{1}{\varepsilon} < \varepsilon$
- $\forall a, b \in \mathbb{R} : a < b : \exists q \in \mathbb{Q} : a < q < b$

Def: 2.2 - Grenzwert einer reellen Folge

- $a \in \mathbb{R}$ Grenzwert von $(a_n) \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |a_n a| < \varepsilon$
- Existiert $a \in \mathbb{R}$ Grenzwert $\Rightarrow (a_n)$ konvergent, sonst (a_n) divergent $(n_k)_{k \in \mathbb{N}}$ streng monoton wachsend in \mathbb{N}

Nullfolge
$$\lim_{n\to\infty} (a_n) \to 0$$

Satz 2.3 - Rechenregeln für Grenzwerte

 $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ reelle Folgen, $\lim a_n=a$, $\lim b_n=b$

- Folge $(a_n + b_n)$ konvergiert gegen a + b
- Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$
- $b \neq 0 \Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}}$ konvergiert gegen $\frac{a}{b}$ $a_n \leq b_n$ für fast alle $n \in \mathbb{N} \to a \leq b$

• Einschließungskriterium

 $a = b \land a_n \le c_n \le b_n$ für fast alle $n \in \mathbb{N} \Rightarrow c_n \to a$ Spezialfall des Einschließungskriteriums:

 $(x_n)_{n\in\mathbb{N}} Folge, x\in R, (y_n)_{n\in\mathbb{N}}$ Nullfolge, sodas
s $|x_n-x|\leq y_n$ für fast alle $n \Rightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert gegen x

Satz 2.4 - Eigenschaften konvergenter Folgen

Sei a_n konvergente reelle Folge

 \Rightarrow (a_n) beschränkt \land (a_n) besitzt genau einen Grenzwert

Def: 2.5 - Uneigentliche Konvergenz

- $(a_n)_{a\in\mathbb{N}}$ konvergiert uneigentlich gegen $\infty \Leftrightarrow$ $\forall K > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0 : a_n > K$
- $(a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen $-\infty \Leftrightarrow$ $(-a_n)_{n\in\mathbb{N}}$ konvergiert uneigentlich gegen ∞

Satz 2.6 - Rechenregeln für uneigentliche Konvergenz

 $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ reelle Folgen

 $\lim_{n \to \infty} (b_n)_{n \in \mathbb{N}} = \infty, \lim_{n \to \infty} a_n = a, a \in \mathbb{R} \cup \{\infty, -\infty\}$

- $a \neq -\inf \Rightarrow (a_n + b_n)_{n \in \mathbb{N}} \to \infty$
- $a \neq 0 \Rightarrow (a_n \cdot b_n)_{n \in \mathbb{N}}$ konvergiert uneigentlich
- $a > 0 \Rightarrow \lim_{n \to \infty} a_n b_n = \infty$
- $a < 0 \Rightarrow \lim_{n \to \infty} a_n b_n = -\infty$
- $a \notin \{-\infty, \infty\} \vee (a_n)_{n \in \mathbb{N}}$ beschränkt $\Rightarrow (\frac{a_n}{b_n})_{n \in \mathbb{N}} \to 0$

Def 2.7 - Monotone Folgen $(a_n)_{n\in\mathbb{N}}$ reelle Folge heißt

- monoton wachsend, falls $a_{n+1} \ge a_n, \forall n \in \mathbb{N}$ streng monoton wachsend, falls $a_{n+1} > a_n, \forall n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n, \forall n \in \mathbb{N}$ streng monoton fallend, falls $a_{n+1} < a_n, \forall n \in \mathbb{N}$

 Monotoniesatz $(a_n)_{n\in\mathbb{N}}$ monoton wachsend \wedge nach oben beschränkt $\Rightarrow \lim a_n = \sup a_n = \sup \{a_n : n \in \mathbb{N}\}\$

Def 2.9 Häufungspunkt $a \in \mathbb{R}$ Häufungspunkt \Leftrightarrow $\exists (a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$, die gegen a konvergiert.

Satz v. Bolzano-Weierstraß

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge und hat min. einen Häufungspunkt

Def 2.11 - Limes superior, limes inferior $(a_n)_{n\in\mathbb{N}}$ nach oben (unten) beschränkt ⇒ größter (kleinster) Häufungspunkt: Limes superior (in-

Komplexe und mehrdimensionale Folgen

Grenzwert komplexer Folgen

 $z \text{ GW von } (z_n) \Leftrightarrow \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |z_n - z| < \varepsilon$ Existiert $z \Rightarrow (z_n)$ konvergent gegen z.

Konvergenz komplexer Folgen

- $z_n = a_n + ib_n$ konvergiere $\Leftrightarrow a_n$ und b_n konvergieren z_n konvergent $\Rightarrow \lim_{n \to \infty} z_n = \lim_{n \to \infty} a_n + i \cdot \lim_{n \to \infty} b_n$
- z_n konvergent $\Rightarrow |z_n|$ konvergent

Grenzwert mehrdimensionaler Folgen

- z_n konvergent $\Leftrightarrow \forall i \in [0, n] : z_i$ konvergent
- $\lim_{n \to \infty} v_n = v \Leftrightarrow \lim_{n \to \infty} \|v_n v\|_2 = 0 \Leftrightarrow \lim_{n \to \infty} \|v_n v\|_\infty = 0$

Konvergenz $(s_n)_{n\in\mathbb{N}}$ konvergent gg. $s\in\mathbb{C}\Leftrightarrow$ Folge der Partialsummen gg. s konvergiert

Teilfolge, Häufungspunkte $(a_n)_{n\in\mathbb{N}}$ reelle Folge:

- $\Rightarrow (a_{n_k})_{k \in \mathbb{N}}$ Teilfolge von $(a_n)_{n \in \mathbb{N}}$
- $a \in \mathbb{R}$ Häufungspunkt von $(a_n)_{n \in \mathbb{N}} \Leftrightarrow$ \exists Teilfolge, die gg. a konvergiert

Majoranten- & Minorantenkriterium

 $a_n := \sum_{k=0}^{\infty} a_k$; $b_n := \sum_{k=0}^{\infty} b_k$; $(a_k)_{k \in \mathbb{N}}$, $(b_k)_{k \in \mathbb{N}}$ relle Folgen, $|(a_k)| \leq b_k$ für fast alle $k \in \mathbb{N}$

- b_s konvergiert $\Rightarrow a_s$ konvergiert absolut a_s divergiert $\Rightarrow b_s$ divergiert

Quotientenkriterum

 $\sum_{k=0}^{\infty} a_k, a_k \neq 0$ für fast alle $k \in \mathbb{N}$, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| := q$ existiert $\Rightarrow \bigotimes$

$$\sum_{k=0}^{\infty} a_k, \ a_k \in \mathbb{C} : q := \limsup_{k \to \infty} \sqrt[k]{|a_k|} \Rightarrow \bigotimes$$

- $q < 1 \Rightarrow$ Reihe konvergiert absolut $q > 1 \Rightarrow$ Reihe divergiert

Leibniz-Kriterium $(a_n)_{n\in\mathbb{N}}$ relle, monoton fallende Nullfolge \Rightarrow $\sum_{k=0}^{\infty} (-1)^k a_k \Rightarrow \forall n \in \mathbb{N} \left| \sum_{k=0}^{\infty} (-1)^k a_k - s_n \right| \leq a_{n+1}$ Anm. $\sum_{k=0}^{\infty} x_n \text{ konvergiert} \Rightarrow x_n \text{ Nullfolge}$

Integralvergl.-Kriterium $f:(a,\infty)\to\mathbb{R}^+$ monoton fallend: $\sum_{k=0}^{\infty} f(k)$ konv. $\Leftrightarrow \int_{a}^{\infty} f(k)dk < \infty$

Umordnungssatz

- Jede Umordnung einer konv. Reihe konv. gg. denselben Wert
- Konvergiert eine Reihe aus reellen Summanden, aber nicht absolut $\Rightarrow \forall s \in \mathbb{R} \ \exists$ bijektive Abbildung $\mathbb{N} \to \mathbb{N}$: die umgeordnete Reihe konvergiert gegen s

$\begin{array}{ll} \textbf{Potenzreihe} & P(z) := \sum_{k=0}^{\infty} c_k z^k; c_k \in \mathbb{C}; z \in \mathbb{C} \\ R := \frac{1}{\lim\limits_{k \to \infty} \frac{1}{\sqrt{|c_k|}}} = \lim\limits_{k \to \infty} \left|\frac{a_k}{a_{k+1}}\right| \text{ Konvergenz radius} \end{array}$

- $|z| < R \Rightarrow P(z)$ konvergiert
- $|z| > R \Rightarrow P(z)$ divergient

Cauchy-Produkt

- $\sum_{k=0}^{\infty} a_k, \sum_{k=0}^{\infty} b_k \text{ absolut konvergent} \in \mathbb{C} \Rightarrow (\sum_{k=0}^{\infty} a_k)(\sum_{k=0}^{\infty} b_k) =$
- $\sum_{k=0}^{\infty} a_k, \sum_{k=0}^{\infty} b_k$ absolut konvergent $\in \mathbb{C} \Rightarrow (\sum_{k=0}^{\infty} a_k)(\sum_{k=0}^{\infty} b_k) = (\sum_{m=0}^{\infty} c_m)$ mit $c_m = (\sum_{k=0}^{m} a_k b_{m-k})$ mit c_k absolut konvergent. Seien $\sum_{k=0}^{\infty} a_k z^k, \sum_{k=0}^{\infty} b_k z^k$ zwei Potenzreihen mit Konvergenzradien R_a und $R_b \Rightarrow (\sum_{k=0}^{\infty} a_k z^k)(\sum_{k=0}^{\infty} b_k z^k) = (\sum_{m=0}^{\infty} c_b z^m)$ mit $c_m = \sum_{k=0}^{m} a_k b_{m-k}$ und Konvergenzradius min $\{R_a, R_b\}$

Natürliche Exponentialfunktion

$$exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

Eigenschaften von exp $\forall z, w \in \mathbb{C}, x \in \mathbb{R}, n \in \mathbb{N}$

- $\exp(z+w) = \exp(z) \cdot \exp(w)$
- $\exp(-z) = \frac{1}{\exp(z)}, \exp(z) \neq 0 \land \exp(\overline{z}) = \exp(z)$
- $|\exp(z) \sum_{k=0}^{n} \frac{z^k}{k!}| \le 2 \cdot \frac{|z|^{n+1}}{(n+1)!}$ $\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$
- $\bullet \quad \lim_{x \to \infty} \frac{e^x 1}{x} = 1$
- $\bullet \quad \lim^{x \to 0} \quad x^n e^x = 0$
- $\lim \frac{e^x}{x^{-n}} = \infty$
- $\begin{array}{ll}
 & x \to \infty \\
 & e^{i\frac{\pi}{2}} = i \\
 & e^{i\pi} = -1 \\
 & e^{z+2\pi i} = e^z
 \end{array}$
- $e^{ix} = \cos(x) + i\sin(x)$
- $|e^{ix}| = 1$

$$\begin{aligned} & \text{Trigonometrische Funktionen} \\ & \sin(z) := \frac{e^{iz} - e^{-iz}}{2i} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^7) \\ & \cos(z) := \frac{e^{iz} + e^{-iz}}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \mathcal{O}(x^7) \\ & \tan(x) := \frac{\sin(x)}{\cos(x)} \\ & \arcsin(x) = x + \frac{x^6}{6} + \frac{3x^5}{40} + \mathcal{O}(x^7) \\ & \arccos(x) = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3x^5}{40} + \mathcal{O}(x^7) \\ & \arctan(x) := \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} + \mathcal{O}(x^7) \\ & \sinh(x) := \frac{1}{2}(e^x - e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k)!} = x + \frac{x^3}{6} + \frac{x^5}{120} + \mathcal{O}(x^7) \\ & \cosh(x) := \frac{1}{2}(e^x + e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \mathcal{O}(x^7) \\ & \tanh(x) := \frac{\sinh(x)}{\cosh(x)} = x + \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7) \end{aligned}$$

Eigenschaften trigonometrischer Funktionen $\forall z, w \in \mathbb{C}, x \in \mathbb{R}$

- $\sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
- $\sin(2z) = 2\sin(z)c\cos(z)$
- $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$
- $cos(x) = Re(e^{ix})$, $sin(x) = Im(e^{ix})$
- $\bullet \quad \cos(2z) = \cos^2(z) \sin^2(z)$
- $\sin^2(z) + \cos^2(z) = 1$
- $\arccos(x) + \arcsin(x) = \frac{\pi}{2}$ • $z = \tan(c) : \arctan'(z) = \frac{1}{\tan'(c)} = \frac{1}{1 + (\tan(c))^2} = \frac{1}{1 + z^2}$
- $\cosh^2(x) = \frac{1}{2} \cosh(x) + \frac{1}{2}$
- $\cosh^2(z) \sinh^2(z) = 1$

Stetigkeit

Definition $f: D \to \mathbb{R}$ stetig in $c \Leftrightarrow \forall (x_n)$ mit $\lim_{x \to 0} x_n = c$ gilt $\lim_{x \to 0} f(x_n) = f(c)$

Rechergeln $D \subseteq \mathbb{R}$; $f, g: D \to \mathbb{R}$; f, g stetig in c $\Rightarrow f + g, f \cdot g, \frac{f}{g} \ (g \neq 0)$ stetig in c

Komposition $D, D' \subseteq \mathbb{R}, f: D \to \mathbb{R}$ stetig in c

- $y:=f(c)\in D'\wedge g$ stetig in $y\Rightarrow (g\circ f):D\to \mathbb{R}$ stetig in c
- $f, g \text{ stetig } \land f(D) \subseteq D' \Rightarrow (g \circ f) : D \to \mathbb{R} \text{ stetig}$

 ε - δ -Charakterisierung $D \subseteq \mathbb{R}, f: D \to \mathbb{R}, c \in D \Rightarrow$ fstetig in $c \Leftrightarrow \forall \varepsilon > 0 \exists \delta > \overline{0} : \forall x \in D : |x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$

Zwischenwertsatz $f:[a,b] \rightarrow \mathbb{R}$ stetig $\Rightarrow \forall y \in \mathbb{R}$ mit $\min\{f(a), f(b)\} \le y \le \max\{f(a), f(b)\} : \exists x \in [a, b] : f(x) = y$

Satz v. Max. und Min. [a,b] beschränkt, $f:[a,b] \to \mathbb{R}$ stetig

- f beschränkt
- $\exists x_{\max}, x_{\min} \in [a,b]: f(x_{\max}) = \sup\{f(x): x \in [a,b]\} \land f(x_{\min}) = \max\{f(x): x \in [a,b]\}$ $\inf\{f(x): x \in [a,b]\}$

Stetigkeit in \mathbb{C} & \mathbb{R}^n wörtlich übertragbar

 $D \subseteq \mathbb{C}$ bzw. \mathbb{R}^n abgeschlossen: $\forall f$ stetig: $D \to \mathbb{C}$ bzw. $f: D \to \mathbb{R}^m$ beschränkt und nimmt auf D Maximum und Minimum an

Stetigkeit von Potenzreihen

$$f(z) = \sum_{k=0}^{\infty} c_k z^k \Rightarrow f : \{z : |z| < R\} \to \mathbb{C}$$
 stetig

Differenziation

Diff'barkeit \Rightarrow **Stetigkeit** f diffbar in $c \Rightarrow f$ in \mathbb{C} stetig

Monotonie & Umkehrbarkeit

- fstetig & injektiv $\Leftrightarrow f$ streng monoton wachsend oder fallend
- f außerdem surjektiv $\Rightarrow f^{-1}$ stetig \land monoton wachsend / fallend

Differentiation der Umkehrfunktion

f bijektiv,
$$f'(c) \neq 0 \Rightarrow z := f(c)$$
 diff'bar, $(f^{-1})'(z) = \frac{1}{f'(c)}$

Logarithmus
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

Diff. v. Potenzreihen
$$f(x)=\sum_{k=0}^\infty c_k x^k\in\mathbb{R}: f'(x)=\sum_{k=1}^\infty k c_k x^{k-1},\ D=|R|$$

Höhere Ableitungen $\mathscr{C}^n(I)$: Vektorraum aller n-mal stetig diff'baren Funktionen $f: I \to \mathbb{R}$

- Extrema lokales Maximum $\Leftrightarrow \varepsilon > 0: f(c) \geq f(x) \forall x \in (c-\varepsilon, c+\varepsilon) \cap I$
- lokales Minimum $\Leftrightarrow \varepsilon > 0: f(c) \leq f(x) \forall x \in (c \varepsilon, c + \varepsilon) \cap I$

Satz von Rolle $f:[a,b]\to\mathbb{R}, f(a)=f(b)\Rightarrow\exists\xi\in(a,b):f'(\xi)=0$

- isoliertes lok. Max/Min \Leftrightarrow Max/min $\land x \neq c$

- **Hinreichend für Extrema** f diff'bar, $\exists c : f'(c) = 0$
- f streng monoton wachsend um c \Rightarrow f in c isol. lok. Min.

• globales Max (Min) $f(x) \ge (\le) f(c)$

- $f \in \mathcal{C}^2$, $f''(c) > 0 \Rightarrow f$ in c isol. lok. Min. • f' um c str. monoton fallend \Rightarrow f in c isol. lok. Max.
- $f \in \mathcal{C}^2$, $f''(c) < 0 \Rightarrow f$ in c isol. lok. Max.

- Taylor • $n \in \{ \mathbb{N} \cup \infty \} : T_n f(x; c) := \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x - c)^k$
- $T_n(f \cdot g) = T_n f \cdot T_n g$ • Potenzreihen: Das n-te Taylorpolynom (im Nullpunkt) von Potenzreihen ist deren n-te Partialsumme

Lipschitz-Stetigkeit (LS)

f:
$$D \subseteq \mathbb{R} \to \mathbb{R}$$
 LS $\Leftrightarrow \exists L: |f(x) - f(y)| \leq L|x - y| \ \forall x, y \in D$

Umkehrfunktion
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Integration

Riemann-Integral

$$\varphi \in \tau[a,b]: \int_a^b \varphi \ dx := \sum_{k=1}^n c_k (x_k - x_{k-1})$$

Stetigkeit & Monotonie \Rightarrow Integrierbarkeit $f:[a,b] \to \mathbb{R}$

- f stetig \vee f monoton \Rightarrow f integrierbar
- \exists Unterteilung v. [a, b] stetig oder monoton $\Rightarrow f$ integrierbar

Mittelwertsatz der Integralrechnung.

$$f:[a,b]\to\mathbb{R}$$
 stetig: $\exists \xi\in[a,b]:\int_a^bf(x)dx=f(\xi)(b-a)$

Partielle Integration

$$f,g:[a,b]\to \mathbb{R}$$
 stetig: $\int_a^b f(x)g'(x)dx=[f(x)g(x)]_a^b-\int_a^b f'(x)g(x)dx$

Substitution
$$\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Majorantenkriterium für Integrale

f über [a,b] absolut integrierbar \Leftrightarrow

- f in jedem Teilintervall $\in [a, b]$ integrierbar
- $|f(x)| \le g(x) \forall x \in [a, b)$
- g über [a,b) uneig. integrierbar

Folgerung z. uneig. Integrierbarkeit

- $f:(a,b] \to \mathbb{R}$ auf allen Teilintervallen $\in (a,b]$ integrierbar, f(x)= $\mathcal{O}(\frac{1}{|x-a|^s})$ für $x \to a$ mit $s \in [0,1) \Rightarrow$ füber (a,b] uneig. integrierbar $\nabla^2 f(x) =$
- $f: [a, \infty) \to \mathbb{R}, a < b \text{ integrierbar}, f(x) = \mathcal{O}(\frac{1}{a^s}) \text{ mit } x \to \infty,$ $s > 1 \Rightarrow f$ über $[a, \infty]$ uneig. integrierbar

Integralvergl.krit. $f:[1,\infty]\to\mathbb{R}$ monoton fallend, $\forall x: f(x) > 0, f \text{ über } [1, \infty] \text{ uneig. integr.} \Rightarrow \sum_{k=1}^{\infty} f(k) \text{ konvergient}$

Potenzreihen
$$f(x) = \sum_{k=0}^{\infty} c_k x^k \Rightarrow \int f(x) dx = \sum_{k=0}^{\infty} \frac{1}{k+1} c_k x^{k+1}$$

Diff'bare Kurven

- k regulär in $t \Leftrightarrow k'(t) \neq 0$, sonst singulär
- k singulär in $t \Rightarrow \nexists$ Tangentialvektor
- $k'(t) = (k'_1(t), ...,)$ Tangentialvektor $T_k(t) = \frac{k'(t)}{\|k'(t)\|_2}$ Tangentialeinheitsvektor in t
- Normalenvektor (2D)

Rektifizierbarkeit, Bogenlänge

$$k: [a, b] \to \mathbb{R}^n$$
 rektifizierbar $\Leftrightarrow \{\sum_{k=1}^N || \gamma(t_k) - \gamma(t_{k+1})||_2 : a = t_0 < t_1 < \dots < t_N = b$ Unterteilung v. $[a, b]\}$

Bogenlänge stetig diff'barer Kurven

 $k: [a,b] \to \mathbb{R}^n$ stückweise stetig diff'bar $\Rightarrow L(k) = \int_a^b ||k'(t)||_2 dt$

Parametertransformation

- $f: J \to I$ Parametertransformation \Leftrightarrow bijektiv und stetig
- $f, f^{-1}k$ -mal stetig diff'bar $\Rightarrow \mathscr{C}^k$ Parametertransformation
- \mathscr{C}^1 -Par.transf. f orientierungstreu wenn $f'(t) > 0 \ \forall t$; orientierungsumkehrend für <
- k und \tilde{k} äquivalente Kurven wenn mit Par.transf. f: $\tilde{k} = k \circ f$ äquivalente Kurven \Rightarrow gleiche Bogenlänge

Bogenlänge/Umparametrisierung

- $k:[a,b]\to\mathbb{R}^n$ stetig diff'bare Kurve;
- $f:[c,d]\to [a,b]$ \mathscr{C}^1 -Param.transf.; k und $k\circ f$ gleiche Länge
- k regulär $\Rightarrow \exists$ orientierungserhaltende \mathscr{C}^1 -Param.transformation $f: [a, L(k)] \to [a, b]$, sodass diese Kurve $k: J \to \mathbb{R}, k:= k \circ f$ "mit Einheitsgeschwindigkeit läuft", also $||k'(t)|| = 1 \ \forall t \in [0, L(k)]$
- Man erhält f als Umkehrfunktion von $s \to \int_s^s ||k'(t)|| dt$

Krümmung

- $k: I \to \mathbb{R}^2$ regulär in $t \in I \Rightarrow \kappa(t)$ Krümmung im Punkt t
- $R(t) = \frac{1}{\kappa(t)}$ Krümmungsradius
- $k: I \to \mathbb{R}^2$ regulär, zweimal stetig diff'bar, k die dazugehörige unparametrisierte Kurve \Rightarrow Krümmung von k in t als \tilde{k} an \tilde{t} : $k(t) = \tilde{k}(\tilde{t})$ $k:I\to\mathbb{R}^2$ zweimal stetig diff'bar, $t\in I:k$ in t regulär:
- k nach Bogenlänge parametrisiert $\Rightarrow \kappa(t) = \langle k''(t), N(t) \wedge | \kappa(t) | =$ ||T'(t)|| = ||k''(t)||
- $k(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \Rightarrow \kappa(t) = \frac{x'(t)y''(t) y'(t)x''(t)}{\sqrt{(x'(t)^2 + y'(t)^2)^3}}$

Mehrdimensionale Differentialrechnung

 $M \subseteq \mathbb{R}^n$ offen, $f: M \to \mathbb{R}, x \in M$

Richtungsableitung $v \in \mathbb{R}^n \setminus \{0\}$ Richtungsvektor \Rightarrow Richtungsableitung von f in Richtung $v:\partial_v f(x) = \lim\limits_{\longleftarrow} \frac{f(x+tv) - f(x)}{t}$

Totale Differenzierbarkeit f in x (total) diff'bar \Leftrightarrow \exists lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^n, h \in \mathbb{R}^n \setminus \{0\}$: $\lim_{h \to 0} \frac{f(x+h) - f(x) - Lh}{\|h\|} = \lim_{h \to 0} \frac{f(x+h) - f(x) - \langle w, h \rangle}{\|h\|} = 0$

Diff'barkeit im Mehrdimensionalen f (total) diff'bar \Leftrightarrow $\forall x \in M$ alle partiellen Ableitungen existieren und stetig sind

$$w = \begin{pmatrix} \partial_1 f(x) \\ \vdots \\ \partial_v \dot{f}(x) \end{pmatrix} =: \nabla f(x), \ \partial_v f(x) = \langle \nabla f(x), v \rangle$$

$$\nabla^2 f(x) = \begin{pmatrix} \partial_{11} f(x) & \cdots & \partial_{1,n} f(x) \\ \vdots & \ddots & \vdots \\ \partial_{n1} f(x) & \cdots & \partial_{nn} f(x) \end{pmatrix}$$

Taylor in höheren Dimensionen

$$T_n f((\frac{x}{y}), (\frac{a}{b})) = \sum_{j+k=0}^{n} \frac{\partial_x^j \partial_y^k f(\frac{a}{b})}{j! \ k!} (x-a)^j (y-b)^k$$

Extrema/Kritische Punkte

- kritischer Punkt: $\nabla f(c) = 0$
- lokales Min. $\Rightarrow \nabla^2 f(c)$ pos. semidefinit lokales Max. $\Rightarrow \nabla^2 f(c)$ neg. semidefinit
- $\nabla f(c) = 0$ und $\nabla^2 f(c)$ pos. definit \Rightarrow isoliertes lok. Min.
- $\nabla f(c) = 0$ und $\nabla^2 f(c)$ neg. definit \Rightarrow isoliertes lok. Max.
- $\nabla f(c) = 0$ und $\nabla^2 f(c)$ pos. und neg. EW \Rightarrow Sattelpunkt

Jacobi-Matrix
$$F:\mathbb{R}^n o \mathbb{R}^m; F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

- f in c (total) diff'bar wenn lin. Abb. (oder Matrix) L existiert mit: F(x + h) - F(x) - Lh = 0 $h \to 0$ $h \in \mathbb{R}^n \setminus \{0\}$
- Alle $\partial_j f_k(x)$ $(j = 1 \dots n, k = 1 \dots m)$ in c stetig \Rightarrow f in c stetig diff'bar und Jacobi-Matrix

$$DF(c) := \begin{pmatrix} \partial_1 f_1(c) & \dots & \partial_n f_1(c) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(c) & \dots & \partial_n f_m(c) \end{pmatrix}$$

Mehrdimensionale Kettenregel

 $D(G \circ F)(c) = DG(F(c)) \cdot DF(c)$

Mehrdimensionale Integralrechnung

$$\begin{array}{ll} \textbf{Transformationssatz} & T: M_2 \rightarrow M_1; f: M_1 \rightarrow \mathbb{R} \\ \int \cdots \int f(x) \mathrm{d}x = \int \cdots \int f(T(y)) \; |\mathrm{det}(DT(y))| \; \mathrm{d}y \end{array}$$

Differentialgleichungen

- Flow 1. DGL nicht linear \Rightarrow TDV 2. DGL homogen \Rightarrow char. Polynom, Grad 2
- 3. Sonst: Lösung raten

Trennung der Variablen (TDV)

- 1. Schreibe y' als $\frac{dy}{dt}$
- 2. Umstellen nach Termen mit y / ohne y
- 3. Beide Seiten getrennt integrieren
- 4. Konstanten bestimmen <wi>e Meth. 1>

Rezepte

1	$y'(t) = f(t) \cdot g(y(t))$		Funkt. f, g
2	$y'(t) + a(t) \cdot y(t) = 0$		Funkt. a
3	$y'(t) + a(t) \cdot y(t) = f(t)$		Funkt. a, f
4	y''(t) + ay'(t) + by(t) = 0		Konst. a, b
5	y''(t) + ay'(t) + by(t) = p(t)		Konst. a, b ; Polyn. p
6	y''(t) + ay'(t) + by(t)	=	Konst. $\alpha, \beta, a_1, a_2, b \neq 0$
	$e^{\alpha t}(a_1\cos(\beta t) + a_2\sin(\beta t))$		

Meth. 1 $F(t) = \int f(t) dt$; $G(t) = \int \frac{1}{g(t)dt}$

Jede allgemeine Lsg für y(t) erfüllt die Gleichung G(y(t)) = F(t) + cMit Anfangsbedingung erfüllt jede Lsg. $\int_{u_0}^{y(t)} \frac{1}{q(u)} du = \int_{x_0}^{t} f(u) du$

Meth. 2
$$A(t) = \int a(t) dt$$
; allgemeine Lsg. $y(t) = ce^{-A(t)}$ Für **AWP**: $y(t_0) = y_0 : y(t) = y_0 e^{A(t_0) - A(t)}$

Meth. 3
$$A(t) = \int a(t) dt; B(t) = \int e^{A(t)} \cdot f(t) dt$$

Allg. Lsg. $y(t) = e^{-A(t)} \cdot (c + B(t))$
Für AWP : $y(t_0) = y_0 : y(t) = e^{A(t_0) - A(t)} (y_0 + \int_{t_0}^{t} e^{A(s) - A(t_0)} \cdot f(s) ds)$

- $a^2 > 4b$: Löse $\lambda_{1,2} = \lambda^2 + a\lambda + b = 0$ allg. Lsg.: $y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$ $a^2 = 4b$: $\lambda = -\frac{a}{2}$ allg. Lsg.: $y(t) = (c_1 + c_2)e^{\lambda t}$
- $a^2 < 4b$: $\omega = \sqrt{b (\frac{a}{2})^2}$

allg. Lsg.: $y(t) = (c_1 cos(\omega t) + c_2 sin(\omega t))e^{-\frac{a}{2}t}$

Für AWP: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Meth. 5

- 1. Bestimme allg. Lsg. $y_h(t)$ von $y_h''(t) + ay_h'(t) + by_h(t) = 0$
- 2. Stelle Polyn. $q(t) = a_n t^n + \cdots + a_1 t + a_0$ mit Grad n =deg(p) und Param. a_0, \ldots, a_n auf
- $b \neq 0$ $\begin{cases} tq(t) \\ t^2q(t) \end{cases}$ $a \neq 0, b = 0$ a = 0, b = 0
- in Abhängigkeit von a_0, \ldots, a_n ; $y_p''(t) + ay_p'(t) + by_p(t) = p(t)$
- 4. Ermittle a_1, \ldots, a_n durch Koeffizientenvergleich
- 5. Allg. Lsg.: $y(t) = y_h(t) + y_p(t)$

Für AWP: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Meth. 6

- 1. Bestimme allg. Lsg. $y_h(t)$ von $y''_h(t) + ay'_h(t) + by_h(t) = 0$
- 2. Löse $\lambda^2 + a\lambda + b = 0$ 3. In Abhängigkeit von k:

$$y_p(t) = \begin{cases} ke^{ct} & \lambda_1 \neq c \neq \lambda_2 \\ kte^{ct} & \lambda_1 = c \neq \lambda_2 \text{ oder } \lambda_1 \neq c = \lambda_2 \end{cases}$$

$$(1/t) + kt^2e^{ct} & \lambda_1 = c = \lambda_2$$

- 4. $y_p''(t) + ay_p'(t) + by_p(t) = e^{ct}$ ermittle k
- 5. Allg. Lsg.: $y(t) = y_h(t) + y_p(t)$ Für AWP: $y(t_0) = y_0, y'(t_1) = y_1$ setze $t = t_1, t = t_2$ in allg. Lösung ein und bestimme c_1, c_2

Mehrdimensionale DGLs $\{v_1,\ldots,v_n\}\subset\mathbb{R}^n$ Basis von Eigenvektoren von $A \in \mathbb{R}^{n \times n}$ zu EW $\lambda_1, \dots, \lambda_n$ Lin. unabh. Lösungen v. DGL der Form y' = Ay: $y = e^{\lambda_j t} v_j$

Satz von Picard-Lindelöf f stetig diff'bar bzgl. y, stetig in $t \Rightarrow AWP$ $y' = f(t, y), y(t_0) = y_0$ auf $(t_0 - \varepsilon, t_0 + \varepsilon)$ besitzt genau eine Lösung (für $\varepsilon > 0$ klein genug)

Komplexe Zahlen

- $\mathbb{C} = \{ z | z = x + iy, x, y \in \mathbb{R}, i^2 = -1 \}$
- $z_1 + z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
- $z_1 \cdot z_2 = x_1 x_2 y_1 y_2 + i(x_1 y_2 + x_2 y_1)$
- $\frac{z_1}{z_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 x_1y_2}{x_2^2 + y_2^2} = \frac{z_1\overline{z_2}}{|z_2|^2}$
- $|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$
- $\varphi = \arctan(\frac{x}{x}), r = |z|, x = r \cdot \cos(\varphi), y = r \cdot \sin(\varphi)$
- $\overline{z} = x iy$
- $z = r(\cos(\varphi) + i\sin(\varphi)) = r \cdot e^{i\varphi}$

Koordinatentransformation

2D - Kreiskoordinaten

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto r \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}, \quad dxdy \mapsto r \cdot d\varphi dr$$

3D - Kugelkoordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto r \begin{pmatrix} \sin(\theta)\cos(\varphi) \\ \sin(\theta)\sin(\varphi) \\ \cos(\theta) \end{pmatrix}, \quad dxdydz \mapsto r^2\sin(\theta)drd\theta d\varphi$$

3D - Zylinderkoordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} r \cdot \cos(\varphi) \\ r \cdot \sin(\varphi) \end{pmatrix}, \quad dxdydz \mapsto r \cdot drd\varphi dz$$

Sonstiges

Bekannte Abl. und Integrale

$\frac{\mathrm{d}}{\mathrm{d}x}f(x)$	f(x)	$\int f(x) \mathrm{d}x$
$\frac{1}{\cos^2(x)}$	tan(x)	$-\ln(\cos(x))$
$\cosh(x)$	sinh(x)	$\cosh(x)$
$\frac{1}{\cosh^2(x)}$	tanh(x)	$\ln(\cosh(x))$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$\sqrt{1-x^2} + x\sin^{-1}(x)$
$-\frac{1}{\sqrt{1-x^2}}$	$\arccos(x)$	$x \arccos^{-1}(x) - \sqrt{1 - x^2}$
$\frac{1}{x^2+1}$	$\arctan(x)$	$x \tan^{-1}(x) - \frac{1}{2}\ln(x^2 + 1)$
$\frac{1}{\sqrt{x^2+1}}$	arcsinh(x)	$x\sinh^{-1}(x) - \sqrt{x^2 + 1}$
$\frac{1}{\sqrt{x-1}\sqrt{x+1}}$	arccosh(x)	$x \cosh^{-1}(x) - \sqrt{x-1}\sqrt{x+1}$
$\frac{1}{1-x^2}$	arctanh(x)	$\frac{1}{2}\ln(1-x^2) + x \tanh^{-1}(x)$
$\cos(2x)$	$\sin(x)\cos(x)$	$-\frac{1}{2}\cos^2(x)$
$\sin(2x)$	$\sin^2(x)$	$\frac{1}{2}(x-\sin(x)\cos(x))$
$-2\sin(x)\cos(x)$	$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$
$\frac{1}{x}$	ln(x)	$x \cdot \ln(x) - x$
$\frac{x}{\sqrt{1-x^2}}$	$\sqrt{1-x^2}$	$\frac{1}{2}(\sqrt{1-x^2}x + \sin^{-1}(x))$

Landau-Notation

- $f \in \mathcal{O}(g) \leftrightarrow \lim_{x \to a} \frac{|f(x)|}{g(x)} < \infty$
- $f \in o(g) \leftrightarrow \lim_{x \to a} \frac{|f(x)|}{g(x)} = 0$
- $f \in \Omega(g) \leftrightarrow \lim_{x \to a} \frac{g(x)}{|f(x)|} < \infty$
- $f \in \omega(g) \leftrightarrow \lim_{x \to a} \frac{g(x)}{|f(x)|} = 0$

Bekannte Reihen

 $\sum_{k=1}^{\infty} \frac{1}{k_k} = +\infty$ $\sum_{k=1}^{\infty} \frac{1}{k^a} \text{ div. für } a \le 1 \text{ , konv. sonst}$ $\sum_{k=1}^{\infty} a_0 q^k = \frac{a_0}{1-q} \ \forall |q| < 1$ $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} = \ln(1+x)$ $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = \arctan(x) \text{ in } [-1,1]$ Harmonische Reihe Potenzreihe Logarithmusreihe Arcus-Tangens-Reihe $\sum_{k=0}^{\infty} \frac{z^k}{k!} = exp(z)$ $\sum_{k=0}^{\infty} \frac{z^k}{k!} = e$ $\sum_{k=0}^{\infty} \binom{k!}{k} x^k = (1+x)^{\alpha}$ Exponentialreihe

Binomialreihe

- **Allgemeines** • $\lim \sqrt[n]{n} = 1$
- $\bullet \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^k = \frac{1}{e}$
- $k! \ge 2^{n+1}$
- $x > 0 \Rightarrow e^x > \frac{x^{n+1}}{(n+1)!}$
- $||a| |b|| \le |a b| \le |a| + |b|, |a + b| \le |a| + |b|$
- $\forall n > 0 : (1+x)^n \ge 1 + nx$ (Bernoulli-Ungleichung)