$12n_{0535} \ (K12n_{0535})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -34964567u^{18} - 147929889u^{17} + \dots + 84548050b - 17321241, \\ &- 36305359u^{18} - 171870803u^{17} + \dots + 84548050a - 72540507, \ u^{19} + 4u^{18} + \dots - 3u^3 + 1 \rangle \\ I_2^u &= \langle u^5 - u^4 + 2u^2 + b - a + 1, \\ &- u^6a - 2u^5a - u^6 + u^4a + u^5 + 2u^3a - u^4 - 2u^2a - 2u^3 + a^2 + au + u^2 - a - 3u - 1, \\ &- u^7 - 2u^6 + 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1 \rangle \\ I_3^u &= \langle u^3 + 2u^2 + b + 3u + 2, \ -u^3 - 3u^2 + a - 5u - 2, \ u^4 + 3u^3 + 5u^2 + 3u + 1 \rangle \\ I_4^u &= \langle -u^5 + u^4 + b - a - 2u + 1, \ u^5a + a^2 + 2au + u^2, \ u^6 - u^5 + u^4 + 2u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -3.50 \times 10^7 u^{18} - 1.48 \times 10^8 u^{17} + \dots + 8.45 \times 10^7 b - 1.73 \times 10^7, \ -3.63 \times 10^7 u^{18} - 1.72 \times 10^8 u^{17} + \dots + 8.45 \times 10^7 a - 7.25 \times 10^7, \ u^{19} + 4u^{18} + \dots - 3u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.429405u^{18} + 2.03282u^{17} + \cdots - 0.972166u + 0.857980 \\ 0.413547u^{18} + 1.74965u^{17} + \cdots + 0.520629u + 0.204869 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.658072u^{18} - 2.36766u^{17} + \cdots - 0.942839u + 0.860317 \\ -0.0707958u^{18} + 0.0522380u^{17} + \cdots + 0.273040u + 0.587276 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.587276u^{18} - 2.41990u^{17} + \cdots - 1.21588u + 0.273040 \\ -0.0707958u^{18} + 0.0522380u^{17} + \cdots + 0.273040u + 0.587276 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0380189u^{18} + 0.291456u^{17} + \cdots - 1.06339u + 0.968309 \\ 0.355477u^{18} + 1.40522u^{17} + \cdots + 0.129243u + 0.0290509 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.500327u^{18} - 2.21013u^{17} + \cdots - 0.556008u + 0.0492471 \\ -0.402635u^{18} - 1.32006u^{17} + \cdots + 0.181729u + 0.279600 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.473557u^{18} - 1.49737u^{17} + \cdots - 2.34644u + 1.18683 \\ 0.396856u^{18} + 1.98083u^{17} + \cdots + 0.186827u + 0.473557 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.761277u^{18} + 3.01695u^{17} + \cdots - 0.400542u + 0.304195 \\ -0.280164u^{18} - 1.43418u^{17} + \cdots + 1.18128u - 0.688967 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.484468u^{18} - 1.92696u^{17} + \cdots - 2.04880u + 0.702358 \\ 0.0109112u^{18} + 0.429590u^{17} + \cdots - 0.297642u + 0.484468 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0158583u^{18} + 0.283163u^{17} + \cdots - 1.49279u + 0.653111 \\ 0.413547u^{18} + 1.74965u^{17} + \cdots - 0.520629u + 0.204869 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{20137897}{8454805}u^{18} + \frac{69147964}{8454805}u^{17} + \dots + \frac{1296527}{8454805}u + \frac{31835641}{8454805}u$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 14u^{18} + \dots - 28u - 4$
c_2, c_4, c_6	$u^{19} + 7u^{17} + \dots - 2u - 2$
c_3,c_{11}	$u^{19} + 2u^{18} + \dots - 11u - 1$
c_5, c_7, c_{10}	$u^{19} - 2u^{18} + \dots + 2u - 1$
c ₈	$u^{19} - u^{18} + \dots - 25u - 25$
<i>c</i> 9	$u^{19} - 3u^{18} + \dots + 46u - 11$
c_{12}	$u^{19} - 4u^{18} + \dots - 3u^3 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} + 26y^{18} + \dots - 16y - 16$
c_2, c_4, c_6	$y^{19} + 14y^{18} + \dots - 28y - 4$
c_3, c_{11}	$y^{19} - 32y^{18} + \dots + y - 1$
c_5, c_7, c_{10}	$y^{19} + 18y^{18} + \dots + 44y - 1$
c_8	$y^{19} + 3y^{18} + \dots - 1125y - 625$
<i>c</i> ₉	$y^{19} - 23y^{18} + \dots + 3194y - 121$
c_{12}	$y^{19} - 2y^{18} + \dots + 12y^2 - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.821475 + 0.594834I		
a = 1.075950 + 0.336378I	1.42522 + 6.81402I	5.23193 - 9.88797I
b = 1.334340 + 0.079123I		
u = 0.821475 - 0.594834I		
a = 1.075950 - 0.336378I	1.42522 - 6.81402I	5.23193 + 9.88797I
b = 1.334340 - 0.079123I		
u = -1.173600 + 0.155605I		
a = -0.125477 - 0.508306I	4.32774 + 1.07425I	4.82406 - 6.05931I
b = 0.471294 - 0.636829I		
u = -1.173600 - 0.155605I		
a = -0.125477 + 0.508306I	4.32774 - 1.07425I	4.82406 + 6.05931I
b = 0.471294 + 0.636829I		
u = 0.279280 + 0.633920I		
a = -0.361697 - 0.610800I	-1.90560 + 1.10773I	-3.54412 - 5.69242I
b = -0.662543 + 0.872189I		
u = 0.279280 - 0.633920I		
a = -0.361697 + 0.610800I	-1.90560 - 1.10773I	-3.54412 + 5.69242I
b = -0.662543 - 0.872189I		
u = -0.612161		
a = 0.732439	0.849367	11.9240
b = 0.209228		
u = 0.494731 + 0.181504I		
a = -0.30870 + 2.20346I	0.84702 - 3.36304I	2.65369 + 2.27076I
b = -0.343936 + 0.280922I		
u = 0.494731 - 0.181504I		
a = -0.30870 - 2.20346I	0.84702 + 3.36304I	2.65369 - 2.27076I
b = -0.343936 - 0.280922I		
u = -1.04681 + 1.06903I		
a = 1.189010 - 0.129598I	12.2196 - 13.0819I	3.46696 + 5.71029I
b = 2.18978 + 1.06580I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.04681 - 1.06903I		
a = 1.189010 + 0.129598I	12.2196 + 13.0819I	3.46696 - 5.71029I
b = 2.18978 - 1.06580I		
u = -0.135208 + 0.466592I		
a = 2.29915 - 0.00071I	0.56206 - 3.63168I	1.44719 + 4.79816I
b = 0.675260 + 1.111080I		
u = -0.135208 - 0.466592I		
a = 2.29915 + 0.00071I	0.56206 + 3.63168I	1.44719 - 4.79816I
b = 0.675260 - 1.111080I		
u = -1.09457 + 1.05677I		
a = 0.132959 - 1.097140I	12.33420 + 5.22927I	3.55290 - 2.35688I
b = 1.282940 - 0.166221I		
u = -1.09457 - 1.05677I		
a = 0.132959 + 1.097140I	12.33420 - 5.22927I	3.55290 + 2.35688I
b = 1.282940 + 0.166221I		
u = -1.00078 + 1.20924I		
a = -0.714217 + 0.472369I	-8.03695 - 4.24763I	1.64467 - 2.22109I
b = -2.07929 - 0.76223I		
u = -1.00078 - 1.20924I		
a = -0.714217 - 0.472369I	-8.03695 + 4.24763I	1.64467 + 2.22109I
b = -2.07929 + 0.76223I		
u = 1.16156 + 1.21360I		
a = -0.553206 - 0.397416I	-6.57114 + 4.42656I	-2.73910 - 5.25491I
b = -1.47244 + 0.48967I		
u = 1.16156 - 1.21360I		
a = -0.553206 + 0.397416I	-6.57114 - 4.42656I	-2.73910 + 5.25491I
b = -1.47244 - 0.48967I		

II. $I_2^u = \langle u^5 - u^4 + 2u^2 + b - a + 1, \ u^6a - u^6 + \dots - a - 1, \ u^7 - 2u^6 + 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1 \rangle$

(i) Arc colorings

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{2} + a - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5}a - u^{6} + u^{4}a + u^{5} - u^{4} - 2u^{2}a - u^{3} + au - a - 3u + 1 \\ u^{6}a - u^{6} + \cdots - a + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6}a + u^{5}a - 2u^{3}a - au - u \\ u^{6}a - u^{6} + \cdots - a + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6}a + u^{5}a - 2u^{3}a - au - u \\ u^{6}a - u^{6} + \cdots - a + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} - u^{4} - u^{2}a + 2u^{2} + 1 \\ -u^{6} + u^{4}a + u^{5} + u^{2}a - 2u^{3} + a - 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{6}a - u^{6} + \cdots - 2a + 2 \\ -u^{6}a + 2u^{6} + \cdots + a - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{6}a + u^{5}a + u^{6} - u^{5} - 2u^{3}a + u^{4} + 2u^{3} - au - u^{2} - a + 2u + 1 \\ u^{6}a - u^{5}a - 2u^{5} + 2u^{3}a + u^{4} + au - 5u^{2} + a - u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5}a + 2u^{6} + u^{4}a - 2u^{5} + u^{4} - 2u^{2}a + 4u^{3} - a + 3u - 1 \\ u^{6}a - 4u^{6} + 6u^{5} + 3u^{3}a - 4u^{4} + 2u^{2}a - 7u^{3} + au + 5u^{2} + a - 9u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{6} - 2u^{5} + u^{4} + 4u^{3} - u^{2} + 4u \\ u^{6}a - u^{5}a - u^{6} + 2u^{3}a - 2u^{3} + au - u^{2} + a - 3u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - u^{4} + 2u^{2} + 1 \\ -u^{5} + u^{4} - 2u^{2} + a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-9u^6 + 12u^5 7u^4 19u^3 + 10u^2 16u + + 10u^2 16u$

Crossings	u-Polynomials at each crossing
c_1	$u^{14} - 12u^{13} + \dots - 44u + 4$
c_2	$u^{14} + 6u^{12} + \dots + 11u^2 + 2$
<i>c</i> ₃	$u^{14} + 2u^{13} + \dots - 2u + 1$
c_4, c_6	$u^{14} + 6u^{12} + \dots + 11u^2 + 2$
c_5, c_7	$u^{14} - 3u^{13} + \dots - 3u^2 + 1$
c_8	$u^{14} - 2u^{13} + \dots + u + 1$
c_9	$u^{14} - 6u^{13} + \dots - 80u + 25$
c_{10}	$u^{14} + 3u^{13} + \dots - 3u^2 + 1$
c_{11}	$u^{14} - 2u^{13} + \dots + 2u + 1$
c_{12}	$(u^7 - 2u^6 + 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 16y^{12} + \dots - 136y + 16$
c_2, c_4, c_6	$y^{14} + 12y^{13} + \dots + 44y + 4$
c_3, c_{11}	$y^{14} - 6y^{13} + \dots + 24y + 1$
c_5, c_7, c_{10}	$y^{14} + 5y^{13} + \dots - 6y + 1$
c_8	$y^{14} + 4y^{13} + \dots - 19y + 1$
c_9	$y^{14} - 20y^{13} + \dots + 150y + 625$
c_{12}	$(y^7 + 4y^5 - y^4 - 6y^3 - 3y^2 - 2y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.17019		
a = -0.358738 + 0.564857I	4.47571	7.29710
b = -0.028132 + 0.564857I		
u = -1.17019		
a = -0.358738 - 0.564857I	4.47571	7.29710
b = -0.028132 - 0.564857I		
u = -0.011299 + 0.825523I		
a = 1.027240 + 0.770138I	-0.48483 - 2.53884I	-0.79327 + 1.93613I
b = 1.88010 + 0.45019I		
u = -0.011299 + 0.825523I		
a = -1.62561 + 0.25747I	-0.48483 - 2.53884I	-0.79327 + 1.93613I
b = -0.772756 - 0.062472I		
u = -0.011299 - 0.825523I		
a = 1.027240 - 0.770138I	-0.48483 + 2.53884I	-0.79327 - 1.93613I
b = 1.88010 - 0.45019I		
u = -0.011299 - 0.825523I		
a = -1.62561 - 0.25747I	-0.48483 + 2.53884I	-0.79327 - 1.93613I
b = -0.772756 + 0.062472I		
u = 0.542568 + 0.510771I		
a = -1.041010 - 0.581670I	1.30894 + 4.72329I	3.88706 - 9.04709I
b = -2.22904 - 1.51686I		
u = 0.542568 + 0.510771I		
a = 2.06212 + 0.40264I	1.30894 + 4.72329I	3.88706 - 9.04709I
b = 0.874091 - 0.532548I		
u = 0.542568 - 0.510771I		
a = -1.041010 + 0.581670I	1.30894 - 4.72329I	3.88706 + 9.04709I
b = -2.22904 + 1.51686I		
u = 0.542568 - 0.510771I		
a = 2.06212 - 0.40264I	1.30894 - 4.72329I	3.88706 + 9.04709I
b = 0.874091 + 0.532548I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.05382 + 1.07114I		
a = -0.779358 - 0.521402I	-5.52936 + 3.91715I	4.75768 - 1.97459I
b = -1.60948 + 0.43022I		
u = 1.05382 + 1.07114I		
a = -0.284648 - 0.316560I	-5.52936 + 3.91715I	4.75768 - 1.97459I
b = -1.114770 + 0.635064I		
u = 1.05382 - 1.07114I		
a = -0.779358 + 0.521402I	-5.52936 - 3.91715I	4.75768 + 1.97459I
b = -1.60948 - 0.43022I		
u = 1.05382 - 1.07114I		
a = -0.284648 + 0.316560I	-5.52936 - 3.91715I	4.75768 + 1.97459I
b = -1.114770 - 0.635064I		

$$III. \ I_3^u = \langle u^3 + 2u^2 + b + 3u + 2, \ -u^3 - 3u^2 + a - 5u - 2, \ u^4 + 3u^3 + 5u^2 + 3u + 1
angle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 3u^{2} + 5u + 2 \\ -u^{3} - 2u^{2} - 3u - 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + 3u^{2} + 4u + 1 \\ -u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + 3u^{2} + 5u + 2 \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{3} + 6u^{2} + 9u + 4 \\ -u^{2} - 2u - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3u^{3} + 8u^{2} + 12u + 4 \\ -u^{3} - 3u^{2} - 4u - 3 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - 2u^{2} - 2u + 1 \\ u^{3} + 2u^{2} + 3u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3u^{3} + 7u^{2} + 10u + 2 \\ -u^{3} - 3u^{2} - 5u - 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} - 3u^{2} - 4u \\ u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 2u^{3} + 5u^{2} + 8u + 4 \\ -u^{3} - 2u^{2} - 3u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-10u^3 24u^2 25u 5$

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 3u^3 + 2u^2 + 1$
c_2, c_{11}	$u^4 + u^3 + 2u^2 + 2u + 1$
c_3, c_4, c_6	$u^4 - u^3 + 2u^2 - 2u + 1$
c_5, c_7	$u^4 - u^3 - u^2 + u + 1$
<i>c</i> ₈	$(u^2 - u + 1)^2$
<i>c</i> ₉	$u^4 - 6u^3 + 14u^2 - 15u + 7$
c_{10}	$u^4 + u^3 - u^2 - u + 1$
c_{12}	$u^4 + 3u^3 + 5u^2 + 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^4 - 5y^3 + 6y^2 + 4y + 1$
c_2, c_3, c_4 c_6, c_{11}	$y^4 + 3y^3 + 2y^2 + 1$
c_5, c_7, c_{10}	$y^4 - 3y^3 + 5y^2 - 3y + 1$
c_8	$(y^2+y+1)^2$
<i>c</i> ₉	$y^4 - 8y^3 + 30y^2 - 29y + 49$
c_{12}	$y^4 + y^3 + 9y^2 + y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.378256 + 0.440597I		
a = 0.121744 + 1.306620I	-1.54288 - 0.56550I	4.01988 - 4.05120I
b = -0.929304 - 0.758745I		
u = -0.378256 - 0.440597I		
a = 0.121744 - 1.306620I	-1.54288 + 0.56550I	4.01988 + 4.05120I
b = -0.929304 + 0.758745I		
u = -1.12174 + 1.30662I		
a = -0.621744 + 0.440597I	-8.32672 - 4.62527I	-9.5199 + 10.6712I
b = -2.07070 - 0.75874I		
u = -1.12174 - 1.30662I		
a = -0.621744 - 0.440597I	-8.32672 + 4.62527I	-9.5199 - 10.6712I
b = -2.07070 + 0.75874I		

$$IV. \\ I_4^u = \langle -u^5 + u^4 + b - a - 2u + 1, \ u^5 a + a^2 + 2au + u^2, \ u^6 - u^5 + u^4 + 2u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u^{4} + a + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5}a - u^{4}a + u^{3} + au - a \\ u^{5}a + u^{3} + au + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4}a - a - u \\ u^{5}a + u^{3} + au + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} + u^{4} - u^{2}a - 2u + 1 \\ u^{4}a - u^{4} + u^{2}a + a + u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5}a - u^{4}a + u^{5} + u^{3}a - u^{4} - u^{2}a - u^{3} + 2au - a + 2u - 1 \\ u^{4}a + u^{4} + u^{2}a + u^{3} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4}a - 2u^{5} + u^{2} - u + 2 \\ -u^{4}a + 2u^{5} - u^{4} - 2u^{3} - 3u^{2} + u - 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3u^{5}a - 3u^{4}a + 3u^{4} - 4u^{2}a + 2au + 2u^{2} - 3a + u + 1 \\ -u^{5}a + 5u^{4}a - 4u^{5} + 3u^{3}a - 2u^{4} + 4u^{2}a - u^{3} + u^{2} + 2a - 3u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + 2u^{3} + u^{2} + 2 \\ -u^{4}a - u^{5} - u^{4} - 2u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} + u^{4} - 2u + 1 \\ u^{5} - u^{4} + a + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^5 2u^4 + u^3 4u^2 7u 2$

Crossings	u-Polynomials at each crossing	
c_1	$u^{12} - 8u^{11} + \dots - 9u + 1$	
c_2, c_4, c_6	$u^{12} - 4u^{10} + 16u^8 + 7u^7 - 20u^6 - 13u^5 + 14u^4 + 26u^3 + 20u^2 + 7u + 3u^4 + 20u^4 $	+ 1
c_3, c_{11}	$u^{12} - 16u^{10} + \dots + 10u + 1$	
c_5, c_7, c_{10}	$u^{12} - u^{11} + \dots + 606u + 317$	
c ₈	$u^{12} - 11u^{10} + \dots + 271u + 121$	
<i>c</i> ₉	$u^{12} - 4u^{11} + \dots - 14u + 11$	
c_{12}	$(u^6 + u^5 + u^4 + 2u^2 + u + 1)^2$	

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} + 32y^{11} + \dots + 47y + 1$
c_2, c_4, c_6	$y^{12} - 8y^{11} + \dots - 9y + 1$
c_3, c_{11}	$y^{12} - 32y^{11} + \dots + 70y + 1$
c_5, c_7, c_{10}	$y^{12} + 27y^{11} + \dots - 102224y + 100489$
c_8	$y^{12} - 22y^{11} + \dots + 14163y + 14641$
<i>c</i> ₉	$y^{12} - 10y^{11} + \dots - 196y + 121$
c_{12}	$(y^6 + y^5 + 5y^4 + 4y^3 + 6y^2 + 3y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.716019 + 0.809696I		
a = -0.440928 - 0.793162I	2.99789 - 2.65597I	5.23409 + 2.95001I
b = -0.869241 - 0.814613I		
u = -0.716019 + 0.809696I		
a = 1.193290 + 0.483169I	2.99789 - 2.65597I	5.23409 + 2.95001I
b = 0.764977 + 0.461718I		
u = -0.716019 - 0.809696I		
a = -0.440928 + 0.793162I	2.99789 + 2.65597I	5.23409 - 2.95001I
b = -0.869241 + 0.814613I		
u = -0.716019 - 0.809696I		
a = 1.193290 - 0.483169I	2.99789 + 2.65597I	5.23409 - 2.95001I
b = 0.764977 - 0.461718I		
u = 0.283231 + 0.633899I		
a = -0.673606 - 0.685761I	-1.90302 + 1.10871I	-3.38143 - 5.26909I
b = -0.942454 + 0.731417I		
u = 0.283231 + 0.633899I		
a = -0.032040 - 0.500452I	-1.90302 + 1.10871I	-3.38143 - 5.26909I
b = -0.300888 + 0.916727I		
u = 0.283231 - 0.633899I		
a = -0.673606 + 0.685761I	-1.90302 - 1.10871I	-3.38143 + 5.26909I
b = -0.942454 - 0.731417I		
u = 0.283231 - 0.633899I		
a = -0.032040 + 0.500452I	-1.90302 - 1.10871I	-3.38143 + 5.26909I
b = -0.300888 - 0.916727I		
u = 0.932789 + 0.951611I		
a = 1.217360 - 0.202209I	13.70950 + 3.42721I	4.64734 - 2.54199I
b = 2.41453 - 1.28852I		
u = 0.932789 + 0.951611I		
a = -0.26408 + 1.41445I	13.70950 + 3.42721I	4.64734 - 2.54199I
b = 0.933081 + 0.328142I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.932789 - 0.951611I		
a = 1.217360 + 0.202209I	13.70950 - 3.42721I	4.64734 + 2.54199I
b = 2.41453 + 1.28852I		
u = 0.932789 - 0.951611I		
a = -0.26408 - 1.41445I	13.70950 - 3.42721I	4.64734 + 2.54199I
b = 0.933081 - 0.328142I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^4 - 3u^3 + 2u^2 + 1)(u^{12} - 8u^{11} + \dots - 9u + 1)$ $\cdot (u^{14} - 12u^{13} + \dots - 44u + 4)(u^{19} + 14u^{18} + \dots - 28u - 4)$
c_2	$(u^{4} + u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{12} - 4u^{10} + 16u^{8} + 7u^{7} - 20u^{6} - 13u^{5} + 14u^{4} + 26u^{3} + 20u^{2} + 7u + 1)$ $\cdot (u^{14} + 6u^{12} + \dots + 11u^{2} + 2)(u^{19} + 7u^{17} + \dots - 2u - 2)$
c_3	$(u^{4} - u^{3} + 2u^{2} - 2u + 1)(u^{12} - 16u^{10} + \dots + 10u + 1)$ $\cdot (u^{14} + 2u^{13} + \dots - 2u + 1)(u^{19} + 2u^{18} + \dots - 11u - 1)$
c_4, c_6	$(u^{4} - u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{12} - 4u^{10} + 16u^{8} + 7u^{7} - 20u^{6} - 13u^{5} + 14u^{4} + 26u^{3} + 20u^{2} + 7u + 1)$ $\cdot (u^{14} + 6u^{12} + \dots + 11u^{2} + 2)(u^{19} + 7u^{17} + \dots - 2u - 2)$
c_5, c_7	$(u^{4} - u^{3} - u^{2} + u + 1)(u^{12} - u^{11} + \dots + 606u + 317)$ $\cdot (u^{14} - 3u^{13} + \dots - 3u^{2} + 1)(u^{19} - 2u^{18} + \dots + 2u - 1)$
c ₈	$((u^{2} - u + 1)^{2})(u^{12} - 11u^{10} + \dots + 271u + 121)$ $\cdot (u^{14} - 2u^{13} + \dots + u + 1)(u^{19} - u^{18} + \dots - 25u - 25)$
<i>c</i> ₉	$(u^{4} - 6u^{3} + 14u^{2} - 15u + 7)(u^{12} - 4u^{11} + \dots - 14u + 11)$ $\cdot (u^{14} - 6u^{13} + \dots - 80u + 25)(u^{19} - 3u^{18} + \dots + 46u - 11)$
c_{10}	$(u^{4} + u^{3} - u^{2} - u + 1)(u^{12} - u^{11} + \dots + 606u + 317)$ $\cdot (u^{14} + 3u^{13} + \dots - 3u^{2} + 1)(u^{19} - 2u^{18} + \dots + 2u - 1)$
c ₁₁	$(u^{4} + u^{3} + 2u^{2} + 2u + 1)(u^{12} - 16u^{10} + \dots + 10u + 1)$ $\cdot (u^{14} - 2u^{13} + \dots + 2u + 1)(u^{19} + 2u^{18} + \dots - 11u - 1)$
c_{12}	$(u^{4} + 3u^{3} + 5u^{2} + 3u + 1)(u^{6} + u^{5} + u^{4} + 2u^{2} + u + 1)^{2}$ $\cdot ((u^{7} - 2u^{6} + \dots - 2u + 1)^{2})(u^{19} - 4u^{18} + \dots - 3u^{3} - 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 - 5y^3 + 6y^2 + 4y + 1)(y^{12} + 32y^{11} + \dots + 47y + 1)$ $\cdot (y^{14} - 16y^{12} + \dots - 136y + 16)(y^{19} + 26y^{18} + \dots - 16y - 16)$
c_2, c_4, c_6	$(y^4 + 3y^3 + 2y^2 + 1)(y^{12} - 8y^{11} + \dots - 9y + 1)$ $\cdot (y^{14} + 12y^{13} + \dots + 44y + 4)(y^{19} + 14y^{18} + \dots - 28y - 4)$
c_3,c_{11}	$(y^4 + 3y^3 + 2y^2 + 1)(y^{12} - 32y^{11} + \dots + 70y + 1)$ $\cdot (y^{14} - 6y^{13} + \dots + 24y + 1)(y^{19} - 32y^{18} + \dots + y - 1)$
c_5, c_7, c_{10}	$(y^4 - 3y^3 + 5y^2 - 3y + 1)(y^{12} + 27y^{11} + \dots - 102224y + 100489)$ $\cdot (y^{14} + 5y^{13} + \dots - 6y + 1)(y^{19} + 18y^{18} + \dots + 44y - 1)$
c ₈	$((y^{2} + y + 1)^{2})(y^{12} - 22y^{11} + \dots + 14163y + 14641)$ $\cdot (y^{14} + 4y^{13} + \dots - 19y + 1)(y^{19} + 3y^{18} + \dots - 1125y - 625)$
c_9	$(y^4 - 8y^3 + 30y^2 - 29y + 49)(y^{12} - 10y^{11} + \dots - 196y + 121)$ $\cdot (y^{14} - 20y^{13} + \dots + 150y + 625)(y^{19} - 23y^{18} + \dots + 3194y - 121)$
c_{12}	$(y^4 + y^3 + 9y^2 + y + 1)(y^6 + y^5 + 5y^4 + 4y^3 + 6y^2 + 3y + 1)^2$ $\cdot ((y^7 + 4y^5 - y^4 - 6y^3 - 3y^2 - 2y - 1)^2)(y^{19} - 2y^{18} + \dots + 12y^2 - 1)$