Machine Learning Sistemas de Recomendação Aprendizado por Reforço Conclusões

Machine Learning para Sistemas de Recomendação

Otávio Augusto Malheiros Rodrigues

- Um tipo de Inteligência Artificial
- Decisões
- Padrões
- Previsões

- Arthur Samuel
- Pioneiro americano no campo dos jogos de computador e da Inteligência Artificial
- 1959 "Aprendizado Automático de Máquinas"

Sistemas de Recomendação

- Nota-se uma forte migração da Era da Informação, para a Era da Recomendação;
- Melhorar a relevância dos itens para os usuários, enquanto aprende-se mais sobre os seus gostos.

Sistemas de Recomendação

Sistemas de recomendação podem ser classificados em três tipos principais:

- Sistemas baseados em filtragem colaborativa;
- Sistemas baseados em conteúdo;
- Sistemas híbridos.

Abordagem Baseada em Filtragem Colaborativa

Abordagem Baseada em Conteúdo

Abordagem Híbrida

Cold Start

- Problema de Recomendação de vídeos com ausência de informação prévia de preferência dos usuários.
- Sistemas de Recomendação

Proposta

- Um Framework de dois níveis de recomendação;
 - Explorar a similaridade entre itens;
 - Algoritmo no primeiro nível para selecionar um grupo de itens a serem recomendados;
 - Algoritmo no segundo nível para selecionar o item mais relevante neste agrupamento.

Intuição

Vídeos com conteúdo parecido possuem padrões de acesso similares.

• Ex.: Vídeos de comédia possuem um determinado padrão, vídeos de drama possuem outro...

Sistemas de Recomendação

As preferências dos usuários podem ser extraídas de forma implícita ou explícita:

• Preferência Implícita

Sistemas de Recomendação

As preferências dos usuários podem ser extraídas de forma implícita ou explícita:

• Preferência Explícita

Aprendizado por Reforço

Paradigma de Aprendizado por Reforço. Nesse paradigma, o agente interage com o ambiente por meio de uma ação, para a qual recebe uma recompensa. O objetivo é aprender sobre o ambiente maximizando as recompensas recebidos ao longo do tempo.

Aprendizado por Reforço

- O alto custo de ter uma base de dados com todas as possibilidades de movimentos;
- Não existe a noção de melhor movimento, o quão bom é um movimento depende dos movimentos subsequentes.

Algoritmos Multi-armed Bandits

- Possuem origem no paradigma de aprendizagem por reforço;
- O desafio central é a necessidade de equilibrar prospecção (exploration) e exploração (exploitation).
 - O algoritmo A explora o conhecimento prévio do ambiente para escolher a opção que parece ser a melhor no momento;
 - O algoritmo A tem que prospectar selecionando opções aparentemente sub-ótimas para coletar mais informações sobre elas.

Algoritmos Multi-armed Bandits

O problema pode ser descrito através de um exemplo abstrato:

Algoritmos Multi-armed Bandits

Recompensas

Algoritmo *Multi-armed Bandit* de Dois Níveis - *(TL-Bandits)*

- Em um sistema de recomendação de filmes, por exemplo, cada filme pertence a uma ou mais categorias;
- Assim, fica explícito que filmes de uma mesma categoria possuem similaridade de gênero.

Algoritmo *Multi-armed Bandit* de Dois Níveis - (TL-Bandits)

- Vídeos parecidos podem ser agrupados para melhorar a qualidade da recomendação;
- Vídeos de um mesmo agrupamento podem agradar o usuário-alvo da recomendação e ao invés de escolher dentre todo o universo de vídeos, busca-se um processo de tomada de decisão em dois níveis.

Algoritmo *Multi-armed Bandit* de Dois Níveis - *(TL-Bandits)*

Visão geral do *TL-Bandits*. Assume-se *K* agrupamentos de itens.

Conjunto de Dados

Conjunto de dados MovieLens1M

- 1.000.209 avaliações para 3.883 filmes, realizadas por 6.040 usuários;
- As avaliações coletadas estão em uma escala de 1 a 5 estrelas.

A plataforma hospeda experimentos desde o seu lançamento em 1997, ou seja, 20 anos de atualizações e pesquisas em sua base de dados.

Métodos de Agrupamento

Utilizou-se três métodos distintos para agrupamentos dos vídeos de acordo com suas similaridades:

- Categoria de vídeo;
- Algoritmo k-Means;
- Algoritmo de extração de tópicos Latent Dirichlet Allocation (LDA).

Efeito do número de agrupamentos

Taxa de cliques vs Número de Clusters.

Análise da qualidade da recomendação através das rodadas

Recompensa Cumulativa.

Conclusões

- Foi proposto um novo algoritmo (TL-BANDIT) do tipo Multi-Armed Bandit que funciona em duas etapas;
- A estrutura do algoritmo proposto é flexível e pode ser instanciada de maneiras diferentes dependendo do cenário de aplicação;
- Foram realizados vários experimentos utilizando um conjunto de dados do mundo real para recomendação de vídeos;
- Com isso, escolhendo agrupamentos de vídeos e dentro destes, selecionando um vídeo relevante, foi possível:
 - Recomendar vídeos para novos usuários, sobre os quais não havia nenhuma informação prévia disponível;
 - Permitir que se aprendesse mais sobre os usuários.

Reprodutibilidade

Todos os métodos de referência utilizados, bem como as implementações, também estão disponíveis:

https://github.com/OtavioAugusto/RecSys

Contribuição

 Rodrigues, O. A. M., Lacerda, A. M. e Padua, F. L. C. (2017).
Improved User Cold-Start Recommendation via Two-Level Bandit Algorithms (Submetido ao ENIAC - Encontro Nacional de Inteligência Artificial e Computacional - 2017).

Kaggle

https://www.kaggle.com/

Kaggle

Perguntas?

