

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 10-T

2. Máquinas Sequencias Síncronas: Síntese de circuitos sequenciais. Exemplos. Mapeamento e alternativas de implementação de máquinas de estado: "hardwired", PLA, ROM e PLD.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Alternativas de Implementação de FSMs

Registrador de Estados:

- Tipos de registradores:
 - Feito com FFDs ou com FFJKs ou com FFTs
 - Pode ser um registrador-deslocador
 - Pode ser um registrador-contador
- Quanto à forma de fabricação:
 - Registradores podem estar prontos, integrados em chips com 4 ou 8 bits, cascateáveis (componentes MSI CMOS ou TTL)
 - Registradores podem fazer uso de flip-flops pre-existentes dentro de um componente programável tipo SPLD, CPLD ou FPGA.
 - Registradores podem ser especificados para serem fabricados do zero (opção de fabricação com máscaras ou *masked*)

Alternativas de Implementação de FSMs

Lógica de Próximo Estado e Lógica de Saída:

• Tipos de implementações:

hardwired

- Implementando as equações por meio de um circuito combinacional ("lógica aleatória")
- Implementando as equações pela configuração de planos "E" e
 "OU" (PALs e PLAs)

Microprogramação

- Gravando a tabela-verdade em bloco de memória (ROM, EPROM, EEPROM ou RAM)
- Quanto à forma de fabricação:
 - Usando chips de memória ROM, EPROM ou EEPROM
 - Usando chips programáveis SPLDs: PLAs ou PALs
 - Usando chips programáveis CPLDs ou FPGAs
 - Mandando fabricar um chip do zero (masked)

Alternativas de Implementação de FSMs

Os blocos lógica de próximo estado e lógica de saída podem ser realizados por:

- Memória (PROM, EPROM, EEPROM)
- Arranjos regulares (PLA, PAL)
- Circuitos-padrão (TTLs ...)

Alternativas de Implementação de FSMs

Mealy Usando Memória ROM

Alternativas de Implementação de FSMs

Mealy Usando Memória ROM (outra forma de desenhar...)

Alternativas de Implementação de FSMs

Exemplo 7

Propor uma implementação do circuito do exemplo 3, versão Moore, usando o esquema mostrado no slide anterior (Usar somente uma memória ROM). Mostrar o conteúdo a ser gravado na memória ROM.

	Estado atual y1y0	W	Próximo estado Y1Y0	
A	00	0	00	A
A	00	1	01	В
В	01	0	00	A
В	01	1	10	С
С	10	0	00	A
С	10	1	10	С
_	11	0	XX	-
_	11	1	XX	-

Alternativas de Implementação de FSMs

Exemplo 7

Juntando a tabela de transição com a tabela de saída (pois só será usada uma ROM).

	Estado atual y1y0	W	Próximo estado Y1Y0		z
A	00	0	00	A	0
A	00	1	01	В	0
В	01	0	00	A	0
В	01	1	10	C	0
C	10	0	00	A	1
C	10	1	10	C	1
_	11	0	XX	ı	-
_	11	1	XX		-

Alternativas de Implementação de FSMs

Exemplo 7

Arrumando a nova tabela.

Estado atual y1y0	w	Próximo estado Y1Y0	Z
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	1
10	1	10	1
11	0	XX	-
11	1	XX	-
Endereços da ROM		conteúdo d ROM	a

Alternativas de Implementação de FSMs

Exemplo 7

Alternativas de Implementação de FSMs

Exemplo 8

	1			
Estado atual y1y0	E1	E0	Próximo estado Y1Y0	saídas
00	0	0	00	
00	0	1	00	
00	1	0	01	
00	1	1	01	
01	0	0	01	
01	0	1	10	
01	1	0	01	
01	1	1	10	
10	0	0	11	
10	0	1	11	
10	1	0	11	
10	1	1	11	
11	0	0	00	
11	0	1	00	
11	1	0	00	
11	1	1	00	
		•	• •	

Propor uma implementação do circuito cujo comportamento está na tabela ao lado, usando o esquema mostrado no slide 7T.9. Mostrar o conteúdo a ser gravado na memória ROM.

Alternativas de Implementação de FSMs

Para Cada Linha da Tabela de Estados uma Linha da ROM

Estado atual y1y0	E1	E0	Próximo estado Y1Y0	saídas
00	0	0	00	
00	0	1	00	
00	1	0	01	
00	1	1	01	
01	0	0	01	
01	0	1	10	
01	1	0	01	
01	1	1	10	
10	0	0	11	
10	0	1	11	
10	1	0	11	
10	1	1	11	
11	0	0	00	
11	0	1	00	
11	1	0	00	
11	1	1	00	

ROM

endereço

endereço

o 0 0 1 1 0 1 1 0 1 0 1

o 0 0 0 1 1 0 1 1 0 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

o 1 0 1

- O número de linhas da ROM é limitado
- Pode haver diversas linhas da tabela de transição que resultem nos mesmos valores para as saídas

INE/CTC/UFSC Slide 10T.12

Prof. José Luís Güntzel

Sistemas Digitais - semestre 2010/2

Alternativas de Implementação de FSMs

A Solução é Agrupar Casos Equivalentes na Tabela de Transição

Estado atual y1y0	E1	E0	Próximo estado Y1Y0
00	0	0	00
00	0	1	00
00	1	0	01
00	1	1	01
01	0	0	01
01	0	1	10
01	1	0	01
01	1	1	10
10	X	X	11
11	X	X	00

Estado atual y1y0	E1	E0	Próximo estado Y1Y0
00	0	X	00
00	1	X	01
01	X	0	01
01	X	1	10
10	X	X	11
11	X	X	00

Necessita de 10 linhas da ROM

Necessita de 6 linhas da ROM

Alternativas de Implementação de FSMs

Restrição do Agrupamento de Casos Equivalentes

Estado atual y1y0	E1	E0	Próximo estado Y1Y0	saídas
00	0	X	00	saída1
00	1	X	01	saída2
01	X	0	01	saída3
01	X	1	10	saída4
10	X	X	11	saída5
11	X	X	00	saída6

No caso de FSM de Moore:

 Não há restrição para o agrupamento pois os valores das saídas dependem apenas do estado atual!

No caso de FSM de Mealy:

• Só podem ser agrupados os casos em que as saídas têm os mesmos valores!! Vide exemplo ao lado...

Alternativas de Implementação de FSMs

Montagem dos Bits a Serem Usados para Endereçar a ROM

Estado atual y1y0	E1	Е0	Próximo estado Y1Y0	saídas
00	0	X	00	saída1
00	1	X	01	saída2
01	X	0	01	saída3
01	X	1	10	saída4
10	X	X	11	saída5
11	X	X	00	saída6

Alternativas de Implementação de FSMs

Montagem dos Bits a Serem Usados para Endereçar a ROM

Estado atual y1y0	E1	E0	Próximo estado Y1Y0	saídas
00	0	X	00	saída1
00	1	X	01	saída2
01	X	0	01	saída3
01	X	1	10	saída4
10	X	X	11	saída5
11	X	X	00	saída6

Alternativas de Implementação de FSMs

Caso Geral...

Alternativas de Implementação de FSMs

Explorando Características da FSM

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 **Slide 10T.18**

Prof. José Luís Güntzel

Alternativas de Implementação de FSMs

Bloco ROM + Registrador Contador (Incrementador)

INE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Slide 10T.19

Prof. José Luís Güntzel

Alternativas de Implementação de FSMs

Bloco ROM + Registrador Contador (Incrementador)

Alternativas de Implementação de FSMs

Lógica de Próximo Estado e Lógica de Saída como PLA

Alternativas de Implementação de FSMs PLA em Tecnologia CMOS

Soma de Produtos (SdP)

A
B
C
D
Negando as entradas e aplicando De Morgan...

NOR de NORs"

NOR de NORs"

Alternativas de Implementação de FSMs

Lógica de Próximo Estado e Lógica de Saída como PLA

NOR CMOS com muitas entradas

Alternativas de Implementação de FSMs

Lógica de Próximo Estado e Lógica de Saída como PAL

INE/CTC/UFSC Sistemas Digitais - semestre 2010/2 Slide 10T.24

Prof. José Luís Güntzel

Alternativas de Implementação de FSMs Implementando uma FSM Completa com PAL

Alternativas de Implementação de FSMs Implementando uma FSM Completa com PAL

Alternativas de Implementação de FSMs

Implementando uma FSM Completa em um CPLD

Estrutura de um CPLD

CPLDs existentes no mercado:

- Possuem entre 2 a 100 blocos tipo PAL
- Variedade de encapsulamentos, com até 200 pinos (QFP)

Prof. José Luís Güntzel

Alternativas de Implementação de FSMs

Implementando uma FSM Completa em um CPLD

FPGAs: LUTs (Lookup Tables)

- Implementadas com muxes 2:1 e bits de memória, SRAM (reprogramabilidade...)
- Normalmente, possuem 4 ou 5 entradas
- Implementam qualquer função lógica. Para 4 entradas, existem

$$2^{2^4}$$
 = 65.536 differentes funções!!!

FPGAs: LUTs (Lookup Tables)

Programando LUTs

Α	В	С	F1	F2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Alternativas de Implementação de FSMs Implementando uma FSM Completa em um FPGA

Arquitetura do CLB do dispositivo VIRTEX-II

- Fast Carry Logic Path
- Provides fast arithmetic add and sub

RESUMINDO O CLB

- 4 Slices
- 8 LUTS / 8 Flip-Flops
- 2 cadeias de vai-um
- · 64 bits para memória
- 64 bits para shift-register

Transparência de F. Moraes (PUCRS)

Slide 8T.3NE/CTC/UFSC
Sistemas Digitais - semestre 2010/2

Arquitetura (metade) do Slice

INE/CTC/UFS(
Sistemas Digi

Luís Güntzel

FPGAs Altera: Stratix II

Estrutura
Básica da
Matriz do
Stratix II

INE/CTC/UFSC

FPGAs Altera: Stratix II

Estrutura de um LAB (Logic Array Block)

Direct link

Cada LAB é constituído por:

- 8 ALMs (Adaptative Logic *Modules*)
- Cadeia de *carry*
- Cadeia aritmética compartilhada
- Sinais de controle do LAB
- Conexões locais
- Cadeia de registradores

FPGAs Altera: Stratix II

Diagrama de blocos de um ALM

FPGAs Altera: Stratix II

Detalhes de um ALM

INE/CTC/UFSC

Slide 10T.38

Prof. José Luís Güntzel