A. MARTIN

PCSI 1 - Stanislas

A. MARTIN

# **FILTRAGE ET ONDES**

#### Etude d'un filtre (d'après Centrale II TSI 2010)

#### I.1. Etude expérimentale

PCSI 1 - Stanislas

1. Il y a chaque fois 5 périodes, donc  $T_1 = 100 \,\mathrm{ms}, T_2 = 200 \,\mu\mathrm{s}, T_3 = 20, 0 \,\mu\mathrm{s}, \mathrm{donc}$ 

$$f_1 = 10,0 \,\mathrm{Hz}, f_2 = 5,00 \,\mathrm{kHz}, f_3 = 50,0 \,\mathrm{kHz}$$

La tension de sortie est très faible à haute fréquence et importante à basse fréquence. Cela est caractéristique d'un filtre passe-bas.

**2.** Le rapport des amplitudes donne le gain (cf Fig. 1)  $G = \frac{0.50 \text{ V}}{1.00 \text{ V}}$ 

On peut mesurer le retard temporel de la sortie sur l'entrée en comparant par exemple les instants des zéros montant :  $\Delta t = 0.06 \,\mathrm{ms}$ . Donc  $\phi = -\omega \Delta t = -2\pi f_2 \,\Delta t = -1.9 \,\mathrm{rad}$ .



FIGURE 1 – Etude à  $f_2$ 

- 3. On passe de -17dB pour 10 kHz à -97dB à 1 MHz, c'est-à-dire en  $\log 10^6 \log 10^4 = 2$  décades (cf Fig. 2). La pente de l'asymptote est donc de  $\frac{-97--17}{2} = -40 \, \text{dB/decade}$  : c'est donc un filtre d'ordre 2
- 4. On cherche la fréquence pour laquelle le gain en décibel vaut  $G_{dB} = G_{dB,max} 3,0\,\mathrm{dB} = -3,0\,\mathrm{dB}$ . Il vient graphiquement  $f_c \approx 4 \, \text{kHz}$ .

## I.2. Etude théorique

5.

À basses fréquences, un condensateur se comporte comme un interrupteur ouvert. Donc l'intensité  $i_+$  traverse les deux résistances R. Comme  $i_+=0$ , il vient  $V_+=V_e=u_e$ . Or  $V_s = V_- = V_+$ , donc  $u_s = u_e$ .





FIGURE 2 - Diagramme de Bode du filtre

À hautes fréquences, un condensateur se comporte comme un fil. Donc  $V_+ = 0$  donc  $u_s = V_- = V_+ = 0$ 

Il s'agit donc bien d'un filtre passe-bas.



- **6.** a) Comme  $i_+ = 0$ , R et C forme un pont diviseur de tension donc :  $|\underline{V}_+| = \frac{1}{1 + iRC\omega}\underline{V}_A$ 
  - b) La loi des noeuds en terme de potentiel s'écrit :

$$\frac{\underline{V}_E - \underline{V}_A}{R} + \frac{\underline{V}_+ - \underline{V}_A}{R} + j2C\omega(\underline{V}_S - \underline{V}_A) = 0 \quad \Leftrightarrow \quad \boxed{2\left(1 + j\omega RC\right)\underline{V}_A = \underline{u}_e + \underline{V}_+ + 2j\omega RC\,\underline{u}_s}$$

c) En injectant  $V_{+}=V_{-}=u_{s}$  dans les deux équations ci-dessus, on obtient

$$2(1+j\omega RC)^2 \underline{u}_s = \underline{u}_e + (1+2j\omega RC) \underline{u}_s \quad \Leftrightarrow \quad \underline{H} = \left(1+2j\omega RC + 2(j\omega RC)^2\right)^{-1}.$$

D'où 
$$\underline{H} = \frac{H_0}{1 - \frac{\omega^2}{\omega_0^2} + j\frac{\omega}{Q\omega_0}}$$
 avec  $\underline{H_0 = 1}$  ,  $\underline{\omega_0 = \frac{1}{\sqrt{2}RC}}$  et  $\underline{Q = \frac{1}{\sqrt{2}}}$ 

7. On a 
$$G = |\underline{H}| = \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + 2\frac{\omega^2}{\omega_0^2}}}$$
 d'où  $G = \frac{1}{\sqrt{1 + \frac{\omega^4}{\omega_0^4}}}$ 

8. Basses fréquences :  $G_{dB} \xrightarrow[\omega_0]{\omega} 0$  donc l'asymptote est horizontale confondue avec l'axe des abscisses pour

 $\frac{f}{f_0} \ll 1$ . C'est cohérent avec le tracé expérimental.

Haute fréquence :  $G_{dB} \approx -20 \log \left(\frac{f^2}{f_0^2}\right) = 40 \log(f_0) - 40 \log f$ . L'asymptote est **une droite de pente** 

 $-40\,\mathrm{dB/decade}$ .

Le point d'intersection des deux asymptotes est en  $f = f_0$ . On peut donc trouver  $f_0$  graphiquement. On trouve  $f_0 \approx 4 \,\mathrm{kHz}$ .

On retrouve bien que  $f_0 = f_c$  comme attendu théoriquement pour cette valeur du facteur de qualité Q.

9. On a  $\underline{H}(f_0) = \frac{1}{\sqrt{2}j}$  donc  $\phi(\omega_0) = -\frac{\pi}{2} = \underline{-90^\circ}$ , ce qui est cohérent avec le tracé expérimental.

#### 1.3. Application du filtre : démodulation d'un signal en amplitude

10. En linéarisant s(t), on obtient trois composantes spectrales (3 harmoniques) :

$$s(t) = A_p \cos(2\pi f_p t) + \frac{k A_p A_m}{2} \left( \cos(2\pi (f_m + f_p)t) + \cos(2\pi (f_p - f_m)t) \right)$$

En linéarisant  $s'(t) = kA_p^2[1 + kA_m\cos(2\pi f_m t)]\cos^2(2\pi f_p t)$ , on obtient 4 harmoniques :

$$s'(t) = \frac{kA_p^2}{2} + \frac{k^2A_p^2A_m}{2}\cos(2\pi f_m t) + \frac{kA_p^2}{2}\cos(4\pi f_p t) + \frac{k^2A_p^2A_m}{4}\left(\cos(2\pi (f_m + 2f_p)t) + \cos(2\pi (2f_p - f_m)t)\right)$$

On en déduit les deux spectres en amplitude respectifs :



Spectre du signal modulé s(t).

Spectre du signal s'(t)

11. Le filtre passe-bas doit permettre de ne garder que le signal de fréquence  $f_m$  et la valeur moyenne. Grâce à cette contrainte de 80 dB, on atténue d'un facteur  $10^4$  les signaux qu'on ne désire pas garder situés au voisinage de la fréquence  $2f_p$ , ce qui les élimine totalement. On veut donc :

$$G(2f_p) = 10^{-4} \Leftrightarrow 1 + \frac{16f_p^4}{f_0^4} = 10^8 \Leftrightarrow 2f_p \approx 10^2 f_0 \Leftrightarrow \boxed{R = \frac{10^2}{4\pi\sqrt{2}Cf_p}} = \frac{30 \text{ k}\Omega}{2}.$$

- 12. Dans ces conditions, et compte-tenu du fait que  $f_m \ll f_c = f_0$ , le gain et le déphasage qui s'appliquent respectivement à la composante continue et à la fréquence  $f_m$  sont :  $G(0) = |H_0| = 1 \approx G(f_m)$  et  $\varphi(0) = \arg(1) = 0 \approx \varphi(f_m)$ . Finalement, on conserve les deux premières composantes de s'(t) intactes à la sortie du filtre (cad celles de plus basses fréquences), ce qui donne  $s''(t) = \frac{kA_p^2}{2} + \frac{k^2A_p^2A_m}{2}\cos(2\pi f_m t)$ .
- 13. On veut maintenant récupérer uniquement le signal modulant, donc la composante de fréquence  $f_m$ . Il faut concevoir <u>un filtre passe-haut</u>. À l'aide de dipôles de type R, L et C, différents choix sont possibles : i. un circuit R-C série en prenant la tension de sortie sur la résistance (filtre d'ordre 1) :

ii. un circuit R-L série en prenant la tension de sortie sur la bobine (filtre d'ordre 1) :

iii. un circuit R-L-C série en prenant la tension de sortie sur la bobine (filtre d'ordre 2) :

iv. d'autres filtres passifs plus compliqués, ou des filtres actifs...



Avec la première solution, la fréquence de coupure est  $f_c = \frac{1}{2\pi RC}$  et on veut  $f_c \ll f_m \Leftrightarrow \left\lfloor RC \gg \frac{1}{2\pi f_m} \right\rfloor$ . On doit pouvoir transmettre des fréquences sonores dans la bande [50 Hz;5 kHz], ce qui impose  $RC \gg 3 \times 10^{-3}$  s. Cela peut être obtenu par exemple avec  $R = 30 \text{ k}\Omega$  et  $C = 1 \mu\text{F}$  ce qui donne  $RC = 3 \times 10^{-2}$  s.

A. MARTIN

# II. Piscine à vagues

PCSI 1 - Stanislas

### II.1. Utilisation d'une plaque oscillante

- 1. a) On a  $[\rho] = M.L^{-3}$  d'où  $[c^2] = L^2.T^{-2} = \frac{L.[A]}{M.L^{-1}}$  d'où  $[A] = M.T^{-2}$ .

  La constante de tension superficielle représente une énergie par unité de surface.
  - **b)** On a alors  $H = \frac{c^2}{g} = 1.6 \,\text{m}$ .
- 2. a) L'onde incidente se translate (sans déformation) vers la droite depuis x=-L, donc  $z_i(x,t)$  est la perturbation vue en x=-L à l'instant antérieur  $t-\frac{x+L}{c}$ , d'où  $\left[z_i(x,t)=Z_m\cos\left(\omega t-k(x+L)\right)\right]$ , en posant  $\left[k=\frac{\omega}{c}\right]$  le nombre d'onde angulaire. On a bien  $z_i(-L,t)=Z_m\cos\left(\omega t\right)$ .
  - b) Comme  $\omega \frac{T}{4} = \frac{\pi}{2}$ , on obtient  $z_i(x, \frac{T}{4}) = Z_m \sin(k(x+L))$ . La fonction n'est pas définie pour x < -L...



3. On a  $z_i(0,t)=Z_m\cos(\omega t-kL)$  donc  $z_r(0,t)=Z_{mr}\cos(\omega t-kL)$ . Comme l'onde réfléchie se propage en sens inverse depuis x=0, ceci conduit à  $z_r(x,t)=Z_{mr}\cos\left(\omega(t+\frac{x}{c})-kL\right)=Z_{mr}\cos\left(\omega t+k(x-L)\right)$ . Pour que l'amplitude des vibrations temporelles soit maximale en x=0, cela nécessite que

$$\forall t, \quad \frac{\partial (z_i + z_r)}{\partial x} (x = 0, t) = 0 \Leftrightarrow \forall t, \quad k(Z_m - Z_{mr}) \, \cos \left(\omega t - kL\right) = 0 \Leftrightarrow Z_m = Z_{mr} \, .$$

Ainsi l'onde réfléchie a la même amplitude que l'onde incidente, donc  $z_r(x,t) = Z_m \cos(\omega t + k(x-L))$ 

- 4. a) On peut factoriser la somme, ce qui donne  $z(x,t) = 2Z_m \cos(kx) \cos(\omega t kL)$ . Les variables x et t sont découplées donc cette onde n'est pas progressive. Elle vibre « sur place », il s'agit d'une **onde** stationnaire
  - b) On a donc  $\cos(-kL)=0$ , donc  $kL=(n+\frac{1}{2})\pi$  c'est-à-dire  $L=(2n+1)\frac{\lambda}{4}$  avec  $n\in\mathbb{N}$ . Cela s'interprète graphiquement simplement : puisque l'onde commence par un nœud et termine par un ventre, la longueur totale est décomposée comme un nombre impair de quarts de longueur d'onde.
  - c) S'il y a 4 nœuds, alors n=3 et  $L=7\frac{\lambda}{4}$ . Ci-dessous on représente la surface à deux instants correspondant aux positions extrêmes de chaque point de la surface (bleu et vert), et un instant quelconque (noir pointillé).



5

d) L'expression précédente s'écrit  $\boxed{L = \frac{7}{4}\,cT} = \underline{21}\,\underline{\mathrm{n}}$ 

#### II.2. Utilisation d'injecteurs

- 5. Les injecteurs sont placés au niveau du premier ventre consécutif à celui du bord, donc  $d=\frac{\lambda}{2}$ . Or il y a deux fuseaux entiers et deux demi-fuseaux, donc  $L=\frac{3}{2}\lambda$ . Par conséquent  $d=\frac{L}{3}$ .
- **6.** a) On a  $L = \frac{3c}{2f}$  donc  $f = \frac{3c}{2L} = 0.50 \,\text{Hz}$ .
  - b) Deux ventres consécutifs sont en opposition de phase, donc les jets doivent l'être aussi, c'est-à-dire déphasés de  $\pi$ . D'un point de vue temporel ils sont décalés de  $\frac{T}{2} = \frac{1}{2f} = 1,0$  s.
- 7. Avec un nœud de plus, on a un ventre de plus donc un jet supplémentaire, donc 3 jets au total. Les jets sont espacés de  $d = \frac{L}{4}$ .

Les deux jets extrêmes sont en phase, et le jet central est déphasé de  $\pi$  par rapport aux autres.

