Técnicas de Desenvolvimento de Algoritmos (parte 1)

Prof. Marcelo Rosa

Algoritmos e Estrutura de Dados 2 (AE43CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Paradigmas de Projeto de Algoritmos
 - Força-Bruta
 - Método Guloso
 - Problema do troco
 - Problema da mochila
 - Seleção de atividades

Sumário

- Paradigmas de Projeto de Algoritmos
 - Força-Bruta
 - Método Guloso
 - Problema do troco
 - Problema da mochila
 - Seleção de atividades

- O projeto de algoritmos requer abordagens adequadas:
 - Dependendo da forma de tratamento do problema, o algoritmo pode ter desempenho ineficiente
 - Em certo casos, o algoritmo pode não conseguir resolver o problema em tempo viável
- Algoritmos polinomiais vs. exponenciais
- Problemas tratáveis vs. intratáveis
 - Um problema é considerado intratável se não existe um algoritmo polinomial para resolvê-lo
- Algoritmos recursivos vs. não-recursivos

• Para projetar um algoritmo eficiente, é fundamental a preocupação com a sua complexidade

Sequência de Fibonacci

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

$$F(n) = \begin{cases} 0 & \text{se } n = 0 \\ 1 & \text{se } n = 1 \\ F(n-1) + F(n-2) & \text{se } n > 1 \end{cases}$$

ullet Dado o valor de n, queremos obter o n-ésimo elemento da sequência

Sequência de Fibonacci

```
long int fib(int n){
   if (n <= 0)
     return 0;
   else if (n == 1)
     return 1;
   else
     return fib(n-1) + fib(n-2);
}</pre>
```


- ullet A complexidade dessa solução é na ordem de $O(2^n)$, tanto para tempo quanto para espaço
- ullet Para n=100, o algoritmo levaria muito tempo para executar 2^{100} operações

Sequência de Fibonacci

• Outra implementação da sequência de Fibonacci

```
long int fib2(int n){
    int i, atual = 1; \\
    int p = 0; // penúltimo
    int u = 1: // último
      if (n \le 0)
         return 0:
      for (i = 2; i \le n; i++){
         atual = p + u;
         p = u;
10
         u = atual:
11
12
       return atual;
13
```

• A complexidade de tempo: O(n)

Problema do Caixeiro Viajante (PVC)

Problema do Caixeiro Viajante (Traveling Salesman Problem)

Dado um conjunto de cidades e as distâncias (ou custos) entre cada par delas, determine o menor caminho possível que permite ao caixeiro:

- Visitar cada cidade exatamente uma vez
- Retornar à cidade de origem

Figura 1 - Instância do PCV para 20 cidades

Problema do Caixeiro Viajante (PVC)

- ullet Espaço de busca é um conjunto de permutação das n cidades
- ullet Cada permutação das n cidades caracteriza-se como uma lista ordenada que define a sequência das cidades a serem visitadas
- A solução ótima é uma permutação que corresponda a uma tour (ou passeio) de caminho mínimo
- ullet Cada tour pode ser representada de 2n maneiras diferentes (para um modelo simétrico)
- Considerando-se que há n! formas de permutar n números, o tamanho do espaço de busca é $|S|=\frac{n!}{2n}=\frac{(n-1)!}{2}$
- Logo, a complexidade é O(n!)

- Métodos (Paradigmas) de desenvolvimento de algoritmos:
 - Força-bruta
 - Método guloso
 - Divisão e conquista
 - Programação dinâmica

Sumário

- Paradigmas de Projeto de Algoritmos
 - Força-Bruta
 - Método Guloso
 - Problema do troco
 - Problema da mochila
 - Seleção de atividades

Força-Bruta

- Também conhecida como "busca exaustiva" e "tentativa e erro"
- É a estratégia mais trivial e intuitiva para a solução de problemas
- Essa abordagem enumera todas as combinações possíveis de soluções
 - No final, é escolhida uma solução, se houver, que satisfaça o problema
 - A melhor solução é escolhida
- Entretanto, algoritmos força-bruta comumente possuem custo computacional alto
 - Muitas vezes exponenciais (e.g. $O(2^n)$)

Forca-Bruta

Problema da Mochila (knapsack problem)

Problema da Mochila (0-1)

Dado um conjunto $I=\{1,2,\ldots,n\}$ de n itens, onde cada item $i\in I$ possui um peso w_i e um valor v_i associados. Para uma dada mochila com capacidade limitada de peso W, selecionar um subconjunto de itens $I'\subseteq I$ tal que

- $\sum_{i \in I'} w_i \leq W$
- ullet $\sum v_i$ é máxima

(a soma dos pesos não ultrapassa a capacidade)

Força-Bruta

Problema da Mochila (knapsack problem)

Capacidade da mochila: 15 kg

ltem	Peso (kg)	Valor (R\$)		
Α	12	4		
В	1	2		
C	4	10		
D	1	1		
Е	2	2		

Força-Bruta

Problema da Mochila (knapsack problem)

Capacidade da mochila: 15 kg

• Espaço de estados: todas as combinações

Α	В	С	D	Е	Peso	Valor	Viável?
0	0	0	0	0	0	0	Sim
0	0	0	0	1	2	2	Sim
0	0	0	1	0	1	1	Sim
0	0	0	1	1	3	3	Sim
0	0	1	0	0	4	10	Sim
0	0	1	0	1	6	12	Sim
0	0	1	1	0	5	11	Sim
0	0	1	1	1	7	13	Sim
0	1	0	0	0	1	2	Sim
0	1	0	0	1	3	4	Sim
0	1	0	1	0	2	3	Sim
0	1	0	1	1	4	5	Sim
0	1	1	0	0	5	12	Sim
0	1	1	0	1	7	14	Sim
0	1	1	1	0	6	13	Sim
0	1	1	1	1	8	15	Sim

9	Comp	lexidade	de	tempo	O((2^n)	
					- (. /	

Α	В	С	D	E	Peso	Valor	Viável?
1	0	0	0	0	12	4	Sim
1	0	0	0	1	14	6	Sim
1	0	0	1	0	13	5	Sim
1	0	0	1	1	15	7	Sim
1	0	1	0	0	16	14	Não
1	0	1	0	1	18	16	Não
1	0	1	1	0	17	15	Não
1	0	1	1	1	19	17	Não
1	1	0	0	0	13	6	Sim
1	1	0	0	1	15	8	Sim
1	1	0	1	0	14	7	Sim
1	1	0	1	1	16	9	Não
1	1	1	0	0	17	16	Não
1	1	1	0	1	19	18	Não
1	1	1	1	0	18	17	Não
1	1	1	1	1	20	19	Não

Força-Bruta

- Vantagens:
 - Simples implementação
 - Solução ótima
- Principal desvantagem:
 - Custo computacional pode ser proibitivo

Sumário

- Paradigmas de Projeto de Algoritmos
 - Força-Bruta
 - Método Guloso
 - Problema do troco
 - Problema da mochila
 - Seleção de atividades

Método Guloso (*Greedy Algorithms*)

• Algoritmos gulosos são tipicamente usados para resolver problemas de otimização

- Constrói uma solução por meio de uma sequência de decisões que visam o melhor cenário de curto prazo.
- Um algoritmo guloso escolhe, em cada iteração, o objeto mais apetitoso que vê pela frente
- O objeto selecionado passa a fazer parte da solução do problema
- As decisões são tomadas com base em informações disponíveis na iteração corrente, desconsiderando as consequências futuras
- Nunca reconsidera uma solução, independentemente das consequências
- Pode não produzir a melhor solução
 - muita vezes, na verdade, não produz!

- Objetivo de um algoritmo guloso pode ser:
 - Minimizar
 - Maximizar

Implementação de algoritmos gulosos

- Construir por etapas (iteração) uma solução (sub)ótima
- Em cada iteração:
 - Selecione um elemento conforme uma função gulosa (o melhor local)
 - Marque-o para não considerá-lo novamente nos próximos estágios
 - Examine o elemento selecionado quanto sua viabilidade
 - Decida a sua participação ou não na solução
- No final, verifique se a solução foi encontrada

Exemplo: encontrar o caminho mais curto entre duas cidades

- Problema: Encontrar um caminho de Arad até Bucharest.
- Estratégia Gulosa: Escolhe sempre a estrada que parece mais promissora no momento atual.

Exemplo: encontrar o caminho mais curto entre duas cidades

- Problema: Encontrar um caminho de Arad até Bucharest.
- Estratégia Gulosa: Escolhe sempre a estrada que parece mais promissora no momento atual.

Algoritmo Guloso

- $\bullet \quad \mathsf{Arad} \rightarrow \mathsf{Zerid} \rightarrow \mathsf{Oradea} \rightarrow \mathsf{Sibiu} \rightarrow \mathsf{Rimniu} \ \mathsf{Vilcea} \rightarrow \mathsf{Pitesti} \rightarrow \mathsf{Bucharest}.$
- \bullet Total = 75 + 71 + 151 + 80 + 97 + 101 = 484 km

Exemplo: encontrar o caminho mais curto entre duas cidades

- Problema: Encontrar um caminho de Arad até Bucharest.
- Estratégia Gulosa: Escolhe sempre a estrada que parece mais promissora no momento atual.

Algoritmo Guloso

- $\bullet \quad \mathsf{Arad} \rightarrow \mathsf{Zerid} \rightarrow \mathsf{Oradea} \rightarrow \mathsf{Sibiu} \rightarrow \mathsf{Rimniu} \ \mathsf{Vilcea} \rightarrow \mathsf{Pitesti} \rightarrow \mathsf{Bucharest}.$
- \bullet Total = 75 + 71 + 151 + 80 + 97 + 101 = 484 km

Solução ótima

- Arad → Sibiu → Rimniu Vilcea → Pitesti → Bucharest.
- \bullet Total = 140 + 80 + 97 + 101 = 418 km

Implementação de algoritmos gulosos

- Um dos "segredos" dos algoritmos gulosos é a forma da ordenação/organização do conjunto de entrada
- Algoritmos gulosos são utilizados para resolver problemas de otimização que funcionem através de uma sequência de passos

Exemplos

- Problema do troco
- Problema da mochila
- Seleção de atividades

Problema do troco

Sejam:

- ullet $M=\{m_1,m_2,\ldots,m_n\}$ o conjunto de valores de moedas disponíveis, com $m_i\in\mathbb{N}^+$;
- ullet $V\in\mathbb{N}^+$ o valor total para o qual se deseja fornecer o troco.

Deseja-se encontrar um vetor de inteiros não negativos:

$$(x_1, x_2, \dots, x_n) \in \mathbb{N}^n$$

tal que:

$$\sum_{i=1}^{n} x_i \cdot m_i = V$$

Objetivo: minimizar o número total de moedas usadas:

$$\min\left(\sum_{i=1}^{n} x_i\right)$$

25

Problema do troco

- Descrição: seja $M=\{m_1,m_2,...,m_n\}$, $m_1>m_2>...>m_n$, um conjunto de n denominações de moedas (ou cédulas), e V um valor positivo que representa o troco
- ullet Problema: fornecer o montante V com o menor número de moedas
- Sequência de decisões: escolher r_1 , depois r_2 , ...
 - ullet $r_i=j$, tal que $m_j\leq M$ e $m_{j-1}>M$

Problema do troco: algoritmo

- ullet Seja $M=\{m_1,m_2,...,m_n\}$, e V, um valor positivo que representa o troco
- ullet Algoritmo, supondo que M esteja ordenado de forma decrescente
 - No passo i, escolher $r_i=j$, tal que $m_j \leq M$ e $m_{j-1}>M$
 - ullet Dividir M por m_j
 - ullet No próximo passo, utilizar o resto da divisão $(M\%m_j)$
 - Aplicar esse processo até o troco ser zerado (resto de divisão for zero) ou todas as moedas terem sido percorridas

Exemplos: problema do troco

- Suponha que um valor de 450 deve ser devolvido como troco:
- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $M=\{100,50,25,10,5,1\}$? Caso positivo, a resposta é ótima?

Exemplos: problema do troco

- Suponha que um valor de 450 deve ser devolvido como troco:
- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $M=\{100,50,25,10,5,1\}$? Caso positivo, a resposta é ótima?
 - A estratégia, além de funcionar, retorna uma solução ótima: cinco (quatro moedas de 100 e uma de 50)

Exemplos: problema do troco

- Suponha que um valor de 450 deve ser devolvido como troco:
- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $M = \{100, 50, 25, 10, 5, 1\}$? Caso positivo, a resposta é ótima?
 - A estratégia, além de funcionar, retorna uma solução ótima: cinco (quatro moedas de 100 e uma de 50)

• Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $E = \{300, 250, 100, 1\}$? Caso positivo, a resposta é ótima?

Exemplos: problema do troco

- Suponha que um valor de 450 deve ser devolvido como troco:
- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $M = \{100, 50, 25, 10, 5, 1\}$? Caso positivo, a resposta é ótima?
 - A estratégia, além de funcionar, retorna uma solução ótima: cinco (quatro moedas de 100 e uma de 50)

- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $E=\{300,250,100,1\}$? Caso positivo, a resposta é ótima?
 - A estratégia funciona (encontra uma solução), mas não retorna uma solução ótima: 52 moedas (1 moeda de 300, uma de 100 e 50 de 1)
 - Solução ótima: 4 moedas (1 moeda de 250 e 2 de 100).

Exemplos: problema do troco

- Suponha que um valor de 450 deve ser devolvido como troco:
- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $M = \{100, 50, 25, 10, 5, 1\}$? Caso positivo, a resposta é ótima?
 - A estratégia, além de funcionar, retorna uma solução ótima: cinco (quatro moedas de 100 e uma de 50)

- Será que a estratégia gulosa apresentada funciona para o conjunto de moedas $E=\{300,250,100,1\}$? Caso positivo, a resposta é ótima?
 - A estratégia funciona (encontra uma solução), mas não retorna uma solução ótima: 52 moedas (1 moeda de 300, uma de 100 e 50 de 1)
 - Solução ótima: 4 moedas (1 moeda de 250 e 2 de 100).
- Dependendo do câmbio (e.g. real), a solução gulosa é ótima

Exemplos: problema do troco

Implementação do algoritmo troco mínimo

```
// Supõe-se que o vetor moedas esteja ordenado
int gtd moedas(int moedas[], int n, int troco){
  int i, n_moedas = 0;
  for (i = 0; i < n && troco > 0; i++){}
    // atualizar a quantidade de moedas de troco
   n moedas += troco / moedas[i]:
    // atualizar o valor do troco faltante
    troco = troco % moedas[i]:
  if (troco == 0)
    return n_moedas; // solução encontrada
  else
    return -1: // solução não encontrada
```

• Complexidade de tempo: O(n)

Problema do troco

• Exercício: adapte o algoritmo anterior para retornar o conjunto de moedas utilizadas para o troco. Por exemplo, para $moedas = \{100, 50, 10, 5, 1\}$ e troco = 450 deve ser retornada a seguinte sequência: $\{100, 100, 100, 100, 50\}$.

Problema da mochila

- Dados
 - Uma mochila que admite um determinado peso
 - Um conjunto de objetos, sendo cada com um valor e um peso

Problema da mochila

Problema da Mochila (fracionária)

Dado um conjunto $I=\{1,2,\ldots,n\}$ de n itens, onde cada item $i\in I$ possui um peso w_i e um valor v_i associados. Para uma dada mochila com capacidade limitada de peso W, selecionar uma sequência $S=(f_1,f_2,\ldots,f_n)$ em que $f_i\in[0,1]$, para todo $i\in I$, tal que

- ullet $\sum_{i\in I}f_iw_i\leq W$ (a soma dos pesos não ultrapassa a capacidade)
- $\sum_{i \in I} f_i v_i$ é máxima (maximiza o valor total)

Problema da mochila

Exemplo

$$S_1 = (0, 0, 0, 0, 0, 1, 0)$$
, peso = 60, valor = 60
 $S_2 = (0, 0, 0, 0, 0, 1, 0)$, peso = 50, valor = 150
 $S_3 = (0, 0, 0, 0, 1, 0, 0)$, peso = 50, valor = 200
 $S_4 = (0, 0, 0, \frac{1}{4}, 1, 0, 0)$, peso = 60, valor = 240
 $S_5 = (0, 1, 1, 0, 0, 0, 0)$, peso = 60, valor = 270
 $S_6 = (1, 1, \frac{1}{3}, 0, \frac{1}{5}, 0, 0)$, peso = 60, valor = 290
 $S_7 = (1, 1, 0, 0, \frac{2}{5}, 0, 0)$, peso = 60, valor = 290
 $S_8 = (1, 1, \frac{2}{3}, 0, 0, 0, 0)$, peso = 60, valor = 290

Problema da mochila fracionária: algoritmo

```
1 Ordene os itens pela razão valor/peso e os renomeie de forma que
    v_1/w_1 > v_2/w_2 > \cdots > v_n/w_n
 \mathbf{2} \ capacidade = W
 i = 1
 4 enquanto i \leq n e capacidade \geq w_i faça
 f_i = 1
 capacidade = capacidade - w_i
 7 | i = i + 1
s se i \leq n então
g \mid f_i = capacidade/w_i
10 para j = i + 1 até n, incrementando faça
11 | f_j = 0
12 devolve (f_1, \ldots, f_n)
```

Problema da mochila fracionária: algoritmo

```
1 Ordene os itens pela razão valor/peso e os renomeie de forma que
    v_1/w_1 > v_2/w_2 > \cdots > v_n/w_n
 2 capacidade = W
 3 i = 1
 4 enquanto i \le n e capacidade \ge w_i faça
 f_i = 1
 \mathbf{6} \quad | \quad capacidade = capacidade - w_i
 7 | i = i + 1
s se i \leq n então
g \mid f_i = capacidade/w_i
10 para i = i + 1 até n, incrementando faca
11 f_i = 0
12 devolve (f_1, \ldots, f_n)
```

- O algoritmo guloso retorna solução ótima para o problema da mochila fracionária
- Complexidade de tempo: O(n)

Exemplos: problema da mochila binária

Exemplo

Exemplos: problema da mochila binária

Solução ótima do exemplo

• O algoritmo guloso pode não gerar uma solução ótima para o problema da mochila binária

Seleção de atividades

- Diversas atividades podem requerer o uso de um mesmo recurso
- Considerando aula como exemplo:
 - Cada atividade (aula) tem um horário de início e um horário de fim
 - Só existe uma sala disponível
 - Duas aulas não podem ser ministradas na mesma sala ao mesmo tempo

Exemplos: seleção de atividades

• Exemplo para 11 atividades e 14 unidades de tempo

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															

Exemplos: seleção de atividades

- Considerando aula como exemplo:
 - Objetivo: selecionar um conjunto máximo de atividades compatíveis
 - Sem sobreposição de tempo
 - Criação do maior grupo de atividades sem sobreposição de tempo

Exemplos: seleção de atividades

- Como fazer a seleção de atividades?
 - Estratégia 1: selecionar as atividades que começam primeiro

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															

• Solução não ótima

Exemplos: seleção de atividades

- Como fazer a seleção de atividades?
 - Estratégia 2: selecionar as atividades que são executadas em menos tempo

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															

Solução não ótima

Exemplos: seleção de atividades

- Como fazer a seleção de atividades?
 - Estratégia 3: escolher as atividades que terminam primeiro

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															

Solução ótima

Exemplos: seleção de atividades

- Algoritmo guloso
 - Receber a lista de atividades ordenadas pelo horário de término
 - Em cada iteração, checar se a atividade atual é compatível
 - Caso a atividade seja compatível, adicione-a no conjunto solução

Exemplos: seleção de atividades

- Algoritmo guloso
 - Receber a lista de atividades ordenadas pelo horário de término
 - Em cada iteração, checar se a atividade atual é compatível
 - Caso a atividade seja compatível, adicione-a no conjunto solução

Exercício

Implemente uma solução gulosa para o problema de seleção de atividades. A função deverá receber como entrada: vetor de horário de início, vetor de horário de término, tamanho dos vetores (obs.: os vetores poderão ser de números inteiros, em vez de itens no formato hh:mm). Como saída, a função deverá retornar a quantidade de atividades alocadas.

Considerações Finais

- Vantagens:
 - Simples implementação
 - Rápida execução
- Desvantagens:
 - Pode não gerar soluções ótimas
 - Pode entrar em *loop* infinito, se não detectar a expansão de estados repetido

Referências I

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Clifford, S. *Algoritmos: teoria e prática*. Elsevier, 2012.

🔋 Oliva, J. T.

Árvores B. AE23CP - Algoritmos e Estrutura de Dados II. Slides. Engenharia de Computação. Dainf/UTFPR/Pato Branco, 2025.