

Machine Learning

Introducción a Redes Neuronales

- ¿Por qué un nuevo algoritmo de clasificación o regresión si ya tenemos varios?
 - Regresión lineal, polinomial, logística, kNN
- Debemos aprender mejores herramientas.
 - Para calcular hipótesis más complejas

Redes Neuronales y Aprendizaje Profundo

Caja Negra (Red Neuronal)

Determinar el tipo de animal que se encuentra en la imagen

Consideremos el modelo de regresión logística para determinar si una imagen contiene un vehículo o no.

¿Cuáles serían las características?

- Los pixeles de la imagen
- Ahora, si una imagen es de tamaño 50x50, tendríamos 2500 (en blanco y negro)
- Si es RGB, ¡tendríamos 7500!

Al realizar el modelo de clasificación

se consideran muchos, muchos parámetros, inclusive en el simple caso del modelo lineal:

$$z = x_0 + \theta_1 x_1 + \dots + \theta_{2500} x_{2500}$$

El modelo lineal es limitado, por lo que se puede hacer más complicado. Por ejemplo, podemos agregar como características TODAS las combinaciones que resultan al multiplicar dos pixeles, e.g., para x_1 :

$$x_1^2, x_1 x_2, x_1 x_3, \cdots x_1 x_{2500}$$

¡Esto crece, y mucho!

¿Cuántas caraceterísticas tendría el modelo? ¡A calcular!

Conclusión:

- Para este tipo de problemas más complejos de clasificación, se necesitan modelos que soporten una cantidad asquerosa de características.
- Hasta el momento, lo que tenemos puede resultar poco útil.

Redes Neuronales y Aprendizaje Profundo

Es difícil definir *Deep Learning* (DL):

- Una forma de verlo es que el DL comprende lo que **NO ES** Machine Learning (ML).
- Comprende algoritmos de ML que usan múltiples capas de unidades computacionales donde cada capa aprende su propia representación de los datos de entrada, que son combinados en cada capa subsecuente de forma jerárquica → Una red neuronal → Perceptrón multicapa (?)

Redes Neuronales y Aprendizaje Profundo

Relación entre inteligencia artificial, Machine Learning, Deep Learning y Redes Neuronales Profundas.

Redes Neuronales

- Se inspiran en el cerebro humano, específicamente en la neurona.
- En la actualidad, es un modelo que representa el estado del arte en la inteligencia artificial.
- Permite atacar problemas complejos, especialmente tareas que realiza el ser humano de manera natural.

La Neurona Biológica

La neurona se puede ver como una unidad computacional. Entra información por la dendrita y manda señales a otras neuronas por el axón.

Estructura Típica de una Neurona Artificial

Se calcula la señal que entra a la neurona ponderándolas:

$$w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$= \sum_{i=1}^{n} w_i x_i$$

Si exceden cierto valor de umbral, la neurona se activa:

$$y = h_w \left| \sum_{i=1}^n w_i x_i \right|$$

En el caso anterior, h_w es la función sigmoide. Existen otras, además de esta.

Estructura Típica de una Neurona Artificial

- El Bias, que siempre es constante, es una entrada adicional en cada capa de neuronas que tiene el valor de 1.
- No son influenciadas por las capas anteriores (no entra nada) pero sí mandan señales con sus propios pesos.
- El Bias garantiza que, si todas las entradas son cero, existirá una activación en la neurona.

Neurona de McCulloch y Pitts

- En 1943 se da el primer intento para simular el comportamiento biológico de la neurona humana.
- Proponen un proceso de aprendizaje complejo por medio de un modelo matemático.
- Permite clasificar patrones, una imitación del sistema biológico sensorial, por medio de una unidad computacional.

Neurona artificial de McCulloch & Pitts. Cornelio Yáñez Vázquez, Luis Octavio López Leyva y Mario Aldape Pérez. Instituto Politécnico Nacional. Centro de Investigación en Computación, 2007. Disponible en: https://www.repositoriodigital.ipn.mx/handle/123456789/8640

En el caso de la neurona de McCulloch y Pitts, las salidas y entradas solo pueden ser 1 ó 0.

Es decir, son valores booleanos.

Supongamos que queremos predecir la decisión de un amigo de ver un partido de *football* en la televisión.

Las entradas y salidas son valores booleanos (1 = sí, 0 = no)

Vamos a modelar nuestro problema:

- x_1 indica si el partido es de la *Premier League*.
- x₂ indica si es un partido competitivo.
- x_3 indica si el partido se juega en un horario diponible.
- x₄ indica si el partida incluye al equipo favorito.

En este problema, lo que falta es determinar el valor de θ, el límite de decisión, para que la respuesta sea excitatoria o inhibitoria.

Función AND lógica

Función de activación escalón

$$H_{\theta}(x) = \begin{cases} 1 & si \ g(x) \ge \theta \\ 0 & si \ g(x) < \theta \end{cases}$$

Función OR lógica

Función de activación escalón

$$H_{\theta}(x) = \begin{cases} 1 & si \ g(x) \ge \theta \\ 0 & si \ g(x) < \theta \end{cases}$$

$$\theta = ?$$

$$\theta = 1$$

Neurona de McCulloch y Pitts

- La neurona de McCulloch y Pitts (y en general, el perceptrón) tiene sus limitantes.
- No pueden representar funciones muy complejas.
- Esto ocasionó, en 1969, el primer invierno de la IA, principalmente por el libro de Minsky y Papert.
- Sin embargo, esto se resuelve si se combinan múltiples neuronas.

Función AND

x_1	x_2	$h_w(x)$
1	1	
1	0	
0	1	
0	0	

Función de activación Sigmoide
$h_w(x) = \frac{1}{1 + e^{-w^T x}}$

Función NOT

x_1	$h_w(x)$
1	
0	

Función OR

x_1	x_2	$h_w(x)$
1	1	
1	0	
0	1	
0	0	

Función de activa	ación Sigmoide
h (as) -	1
$n_w(x) =$	$\frac{1}{1 + e^{-w^T x}}$

Función $\neg x_1 AND \neg x_2$

x_1	x_2	$h_w(x)$
1	1	
1	0	
0	1	
0	0	

25/02/2024

o de entrada

Tres neuronas

por cada

Redes Neuronales

o capa oculta

25

 $a_i^{(j)} =$ activación o valor de salida de la neurona i en la capa j

 $w^j = \text{matriz de pesos de la capa } j$ a la capa j+1

$$a_1^{(2)} = g(w_{10}^{(1)}x_0 + w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2 + w_{13}^{(1)}x_3)$$

 $a_i^{(j)} =$ activación o valor de salida de la neurona i en la capa j

 $w^j = \text{matriz de pesos de la capa } j$ a la capa j+1

$$a_1^{(2)} = g(w_{10}^{(1)}x_0 + w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2 + w_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(w_{20}^{(1)}x_0 + w_{21}^{(1)}x_1 + w_{22}^{(1)}x_2 + w_{23}^{(1)}x_3)$$

 $a_i^{(j)} =$ activación o valor de salida de la neurona i en la capa j

 $w^j = \text{matriz de pesos de la capa } j$ a la capa j+1

$$a_1^{(2)} = g(w_{10}^{(1)}x_0 + w_{11}^{(1)}x_1 + w_{12}^{(1)}x_2 + w_{13}^{(1)}x_3)$$

$$a_2^{(2)} = g(w_{20}^{(1)}x_0 + w_{21}^{(1)}x_1 + w_{22}^{(1)}x_2 + w_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(w_{30}^{(1)}x_0 + w_{31}^{(1)}x_1 + w_{32}^{(1)}x_2 + w_{33}^{(1)}x_3)$$

 $a_i^{(j)} =$ activación o valor de salida de la neurona i en la capa j

 $w^j = \text{matriz de pesos de la capa } j$ a la capa j+1

$$w^1 \in R^{3 \times 4}$$

$$a_{1}^{(2)} = g(w_{10}^{(1)}x_{0} + w_{11}^{(1)}x_{1} + w_{12}^{(1)}x_{2} + w_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(w_{20}^{(1)}x_{0} + w_{21}^{(1)}x_{1} + w_{22}^{(1)}x_{2} + w_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(w_{30}^{(1)}x_{0} + w_{31}^{(1)}x_{1} + w_{32}^{(1)}x_{2} + w_{33}^{(1)}x_{3})$$

¿Cómo quedarían las expresiones para la tercera capa?

$$a_{1}^{(2)} = g(w_{10}^{(1)}x_{0} + w_{11}^{(1)}x_{1} + w_{12}^{(1)}x_{2} + w_{13}^{(1)}x_{3})$$

$$a_{1}^{(2)} = g(w_{10}^{(1)}x_{0} + w_{11}^{(1)}x_{1} + w_{12}^{(1)}x_{2} + w_{13}^{(1)}x_{3})$$

$$a_{1}^{(3)}$$

 $a_i^{(j)} =$ activación o valor de salida de la y₁ neurona *i* en la capa *j*

 $w^j = \text{matriz de pesos de la capa } j$ a la capa j+1

Este parte se le conoce como *forward propagation*.

$$a_1^{(3)} = g(w_{10}^{(2)}a_0^{(2)} + w_{11}^{(2)}a_1^{(2)} + w_{12}^{(2)}a_2^{(2)} + w_{13}^{(2)}a_3^{(2)})$$

$$a_2^{(3)} = g(w_{20}^{(2)}a_0^{(2)} + w_{21}^{(2)}a_1^{(2)} + w_{22}^{(2)}a_2^{(2)} + w_{23}^{(2)}a_3^{(2)})$$

Red Neuronal: Segunda Intuición

Capa 2

25/02/2024

Capa des Neuronales

Red Neuronal: Segunda Intuición

Tarea

• Verificar manualmente que la red anterior es una implementación de la función XNOR.

Redes Neuronales – Primeras Conclusiones

- En general, permiten calcular diferentes funciones.
- Conforme se van agregando capas, se pueden calcular funciones más y más complejas.
- En el caso del XNOR, se pasa de un margen de decisión lineal a uno no lineal.
- Un poco más del campo de la interpretación, cada capa permite extraer «ideas» más complejas y abstractas de las características x_i .
- Pueden manejar «fácilmente» muchas características.

Redes Neuronales Entran al Ruedo

Fin de la presentación

¡Gracias por su atención!

25/02/2024 Redes Neuronales 35