Eksamen på Økonomistudiet. Vinteren 2011 - 2012

MATEMATIK B

1. årsprøve

Onsdag den 22. februar 2012

(3 timers skriftlig prøve med hjælpemidler. Dog må der ikke medbringes lommeregnere eller anvendes nogen form for elektroniske hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 V-1B rx

EKSAMEN I MATEMATIK B

Onsdag den 22. februar 2012

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} -s & s & 1\\ s & -s & 0\\ 1 & 0 & 1 \end{pmatrix}.$$

- (1) Bestem determinanten $\det(A(s))$ for matricen A(s) for et vilkårligt $s \in \mathbb{R}$, og bestem dernæst de tal $s \in \mathbb{R}$, for hvilke matricen A(s) er regulær.
- (2) Vis, at matricen A(s) hverken er positiv definit eller negativ definit for nogen værdi af $s \in \mathbf{R}$.
- (3) Vis, at matricen A(s) er indefinit for ethvert $s \in \mathbf{R}$.
- (4) Bestem egenværdierne for matricen A(0).
- (5) Bestem 3×3 matricen $B = A(0)^2 = A(0)A(0)$, og vis, at B er positiv semidefinit.
- (6) Bestem en forskrift for den til matricen B hørende kvadratiske form $K: \mathbf{R}^3 \to \mathbf{R}$, og godtgør, at K er en konveks funktion på mængden \mathbf{R}^3 .
- (7) Vis, at funktionen $g: \mathbb{R}^3 \to \mathbb{R}$, som er givet ved

$$\forall (x_1, x_2, x_3) \in \mathbf{R}^3 : g(x_1, x_2, x_3) = \sqrt{K(x_1, x_2, x_3) + 2\pi},$$

er kvasikonveks.

Opgave 2. Vi betragter mængden

$$D = \{(x, y) \in \mathbf{R}^2 \mid x \ge 0 \, \land \, y \ge 0\}$$

og funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in D : f(x,y) = xy + \sqrt{x} + \sqrt{y}.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in D^o$, hvor

$$D^{o} = \{(x, y) \in \mathbf{R}^{2} \mid x > 0 \land y > 0\}.$$

- (2) Bestem værdimængden R(f) for funktionen f.
- (3) Bestem Hessematricen H(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in D^o$, og vis, at H(1,1) er indefinit, og at $H(1,\frac{1}{9})$ er negativ definit.
- (4) Vi betragter funktionen $g: \mathbf{R}_+ \to \mathbf{R}$, som er givet ved forskriften

$$\forall x \in \mathbf{R}_+ : g(x) = \det H(x, x).$$

Bestem Taylorpolynomiet P_3 af tredje orden for funktionen g ud fra punktet a=1.

Opgave 3. For t > 0 betragter vi differentialligningen

$$\frac{dx}{dt} = \ln(t) + 3t^2.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til differentialligningen (*), så betingelsen $\tilde{x}(1) = 5$ er opfyldt.
- (3) Vis, at enhver maksimal løsning x = x(t) til differentialligningen (*) er en strengt konveks funktion på hele \mathbf{R}_{+} .

Opgave 4. Lad $n \in \mathbb{N}$ være givet, og antag, at $n \geq 4$. Betragt mængden

$$U = \{1, 2, 3, \dots, n\}$$

og funktionen $P: U \to \mathbf{R}$, som er givet ved

$$\forall i \in \{1, 2, 3, \dots, n\} : P(i) = a(\ln i + 2^i),$$

hvor a > 0.

- (1) Bestem a>0, så funktionen P er en sandsynlighedsfunktion på mængden U.
- (2) Bestem sandsynligheden $P(\{1,3\})$ for vilkårligt $n \geq 4.$
- (3) Bestem sandsynligheden $P(\{1,3\})$ for n=4.