$$Y_1 = Y_1 + U_0 + U_1 * Time_1$$

 $Y_2 = Y_2 + U_0 + U_1 * Time_2$
 $Y_3 = Y_3 + U_0 + U_1 * Time_3$

Description of Variables

- 1) Random intercept: U_0 has a Logistic (0, 1) distribution, which requires a sixth cumulant correction of 1.75
- 2) Random slope for time: U_1 has a t(df = 10) distribution
- 3) Correlation between random effects is 0.4

In this example, the random intercept and time slope have continuous non-mixture distributions for all Y. However, the functions corrsys and corrsys2 permit a combination of none, non-mixture, and mixture distributions across the Y (i.e., if rand.int = c("non_mix", "mix", "none") then the random intercept for Y_1 has a non-mixture, and the random intercept for Y_2 has a mixture distribution; there is no random intercept for Y_3). In addition, the distributions themselves can vary across outcomes. This is also true for random effects assigned to independent variables as specified in rand.var.