IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method of noise filtering an image sequence (V1), comprising the steps of:

determining (11) statistics from a spatial spread of a set of original pixel values (P_t, M_i) in at least one image of the image sequence (V1); and

calculating $\frac{\langle 14 \rangle}{}$ at least one filtered pixel value (Pt') from the set of original pixel values (Pt,Mi) obtained from the at least one image, wherein the original pixel values (Pt,Mi) are weighted $\frac{\langle 13 \rangle}{}$ under control $\frac{\langle 12, a \rangle}{}$ of the statistics $\frac{\langle 11 \rangle}{}$.

2. (Currently Amended) The method of noise filtering as claimed in claim 1, wherein the step of calculating comprises the steps of:

weighting $\frac{(13)}{(12,\alpha)}$ the set of original pixel values (P_t,M_i) 5 under control $\frac{(12,\alpha)}{(12,\alpha)}$ of the statistics $\frac{(11)}{(12)}$ to obtain a weighted set of pixel values (P_t,N_i) , and

furnishing the weighted set of pixel values (P_t, N_i) to a static filter, in which the at least one filtered pixel value (P_t') is calculated from the weighted set of pixel values (P_t, N_i) .

3. (Currently Amended) The method of noise filtering as claimed in claim 1, further comprising:

determining a temporal spread $(S_{\underline{\text{temp}}})$ of the set of original pixel values $(P_{\underline{\text{t}}},M_{\underline{\text{i}}})$.

- 4. (Currently Amended) The method of noise filtering as claimed in claim 1, wherein the spread (S) is a sum of absolute differences, a given absolute difference being obtained by subtracting an average pixel value from a given original pixel value (Pt, Mi).
 - 5. (Currently Amended) The method of noise filtering as claimed in claim 1, wherein the set of original pixel values (P_t, M_i) include a central pixel value (P_t) and surrounding pixel values (M_i) , wherein as a result of the noise filtering, the central pixel value (P_t) is replaced by the filtered pixel value (P_t) .
 - 6. (Currently Amended)) The method of noise filtering as claimed in claim 2, wherein the set of weighted pixel values (P_t,N_i) is obtained by taking, for each pixel value in the set of original pixel values (P_t,M_i) , a combination of a portion α of said

914 332 0615

- each pixel value in the set of original pixel values (Pt,Mi) and a 5 portion 1-a of a central pixel value (P_t) .
 - 7. (Currently Amended) The method of noise filtering as claimed in claim 1.

wherein the statistics (11) are furnished to a look-up table-(12), from which look up-table (12) a control signal (a) is being obtained from said look-up table, which said control signal (a) eentrols controlling the weighting (13).

(Currently Amended) The method of noise filtering as claimed in claim 2,

wherein the at least one filtered pixel value $(P_{t'})$ is obtained by calculating (14) a median of the weighted set of pixel 5 values (P_t, N_i) .

(Currently Amended) The method of noise filtering as claimed in claim 2,

wherein the at least one filtered pixel value (P_t') is obtained by calculating (14) an average of the weighted set of pixel values (P_t, N_i) .

10. (Currently Amended) The method of noise filtering as claimed in claim 3,

wherein the spatial spread (S_{spat}) is calculated from spatially displaced original pixel values (P_t, M_i, P_t, P_t) in the set of original pixel values (P_t, M_i, P_t, P_t) ; and

the temporal spread (S_{temp}) is calculated from temporally displaced original pixel values (P_t , P_{t1} , P_{t2}) in the set of original pixel values (P_t , M_i , P_{t1} , P_{t2}); and

weighting (46) the spatially displaced original pixel values (P_t, M_i) under control (43) of the spatial spread (S_{spat}) and the temporally displaced original pixel values (P_t, P_{t1}, P_{t2}) under control (44,45) of the temporal spread (S_{temp}) .

- 11. (Currently Amended) The method of noise filtering as claimed in claim 10, wherein the weighted temporally displaced original pixel values (WP₁,WP₂) are divided to lessen their weight in the filtering—(47).
- 12. (Currently Amended) The method of noise filtering as claimed in claim 10, wherein the temporally displaced original pixel values include two original pixel values (Pt1,Pt2) from

5

different fields in a same frame (F_0) and at least one original pixel value of a previous frame (F_{-1}) .

- 13. (Currently Amended) The method of noise filtering as claimed in claim 12, wherein filtered said temporally displaced original pixel values are used rather than temporally displaced original pixel values filtered.
- 14. (Currently Amended) A method of encoding (1) an image sequence (V1), comprising the steps of:

encoding a plurality of filtered images, wherein the filtered images are

obtained by the steps of:

determining statistics from a spatial spread of a set of original pixel values (P_t, M_i) in each image of the image sequence (V1); and

calculating a filtered pixel value (P_t ') from a set of original pixel values (P_t , M_i) obtained from each image, wherein the original pixel values (P_t , M_i) are weighted (13)—under control (12, a)—of the statistics—(11).

15. (Currently Amended) A device for noise filtering an image sequence, the device comprising:

5

10

5

computing means $\frac{\{11\}}{}$ for determining statistics from a spatial spread of a set of original pixel values (P_t, M_i) in at least one image of the image sequence (V1); and

filtering means $\frac{(14)}{}$ for calculating at least one filtered pixel value (P_t ') from a set of original pixel values (P_t , M_i) obtained from the at least one image, wherein the original pixel values (P_t , M_i) are weighted $\frac{(13)}{}$ under control $\frac{(12,a)}{}$ of the statistics— $\frac{(11)}{}$.

16. (Currently Amended) A device for encoding (1) an image sequence (V1), the device comprising:

receiving means for receiving filtered images, wherein the filtered images of the image sequence created by a device comprising:

computing means $\frac{\langle 11 \rangle}{}$ for determining statistics from a spatial spread of a set of original pixel values (P_t, M_i) in each image of the image sequence (V1); and

filtering means (14)—for calculating a filtered pixel value (P_t ') from a the set of original pixel values (P_t , M_i) obtained from each image, wherein the original pixel values (P_t , M_i) are weighted (13)—under control (12,a)—of the statistics—(11).