American Museum of Natural History

RGGS Comparative Genomics 2 - Computational Methods (Session 14)

Jose Barba

Gerstner Scholar in Bioinformatics & Computational Biology

AMNH Arachnology Lab
Institute for Comparative Genomics
Iparba@amnh.org
Iparba

Session 14 outline

- ML and Bayesian phylogenetic inference (topics from Session 13 refer to that presentation)
- Molecular clock dating using phylogenomic data
- A tutorial for conducting a phylogenomic analysis using simulated data will be completed
 - A comparison of phylogenetic methods will be conducted
 - A Bayesian timetree will be inferred

Relative-rate test

 If substitution rate is constant over time or among lineages, molecular clock holds. For distantly related species this hypothesis should not be assumed

Molecular clock hypothesis

 Simple but powerful approach measuring timescale of evolutionary divergences. Expected distance between sequences grows linearly with time of divergence

 Ages from fossil record or geological events, can be used to translate distances between sequences or tree branch lengths into absolute geological times

Molecular clock model

Phylogenetic uncertainty in molecular dating

- Types of molecular clock methods
 - Generate reliable phylogeny before estimating divergence times
 - Jointly infer phylogeny and divergence times

Sequential Analysis

- MCMCTree
- MultiDivTime
- PhyloBayes
- RelTime
- TreePL

Joint analysis

- BEAST
- BEAST2
- MrBayes
- RevBayes
- TREETIME

Bayesian divergence time estimation

 Using Bayesian method, can integrate fossil, molecule and clock uncertainty

$$\frac{f(\mathbf{t},\mathbf{r},\theta|D)}{f(\mathbf{t})f(\mathbf{r}|\mathbf{t},\theta)L(D|\mathbf{t},\mathbf{r},\theta)/k}$$
 time and rate estimates fossil uncertainty rate uncertainty branch length uncertainty

Calculating the posterior involves a complex integral (k), so MCMC algorithms are used to generate samples from joint posterior dist.

Relaxed clocks and prior model of rate drift

- In AR model, rate at each node specified by conditioning on rate at ancestral node
 - Given the rate r_A at ancestral node, rate r at current node has a lognormal dist.

Geometric Brownian motion model of rate drift

Relaxed clocks and prior model of rate drift

- In IR model, rate for branch is a random variable drawn from a common probability distribution
- Rates effectively evolve independently on each lineage, but extent of rate variation has evolutionary constraint (imposed by prior distribution on rates)

$$f(r \mid \underline{\mu}, \underline{\sigma^2}) = \frac{1}{r\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2} (\log(r/\mu) + \frac{1}{2}\sigma^2)^2\}, \quad 0 < r < \infty$$
 mean rate across loci

variance of the logarithm of the rate

Fossil calibration

Probability densities for describing uncertainty in fossil calibrations

Approaches to represent uncertainty of calibrations in phylogenetic tree

Cladogenesis model

BD process with species sampling:

– Specified by a per-lineage birth rate λ , a per-lineage death rate μ and a sampling fraction ρ

Rapid relaxed clock methods

Penalized likelihood

Least-squares

Relative rate framework

Xia and Yang (2011); To et al. (2016)

Tamura *et al.* (2012, 2018)