## Text Mining

on

## Yelp Reviews







- 10,000 Yelp reviews with 10 columns from Kaggle.
- Text data: Text of review
- Other attributes: Stars, Cool, Useful, Funny
- Stars is a categorical variable with the number of stars the reviewer gave, from 1 to 5
- Cool, Useful, and Funny are numerical variables with the number of votes the review got from other users in the 3 categories

| 14 | А          | В          | С                      | D     | E                                                            | F      | G          | Н    | 1      | J     |   |
|----|------------|------------|------------------------|-------|--------------------------------------------------------------|--------|------------|------|--------|-------|---|
| 1  | business_  | date       | review_id              | stars | text                                                         | type   | user_id    | cool | useful | funny |   |
| 2  | 9yKzy9PA   | 1/26/2011  | fWKvX83p0-ka4JS3dc6E5A | 5     | My wife took me here on my birthday for breakfast and        | review | rLtl8ZkDX5 | 2    | 2      | 5     | 0 |
| 3  | ZRJwVLyzl  | 7/27/2011  | IjZ33sJrzXqU-0X6U8NwyA | 5     | I have no idea why some people give bad reviews about        | review | 0a2KyEL0c  | C    | )      | 0     | 0 |
| 4  | 6oRAC4uy   | 6/14/2012  | IESLBzqUCLdSzSqm0eCSxQ | 4     | love the gyro plate. Rice is so good and I also dig their ca | review | 0hT2KtfLic | C    | )      | 1     | 0 |
| 5  | _1QQZuf4   | 5/27/2010  | G-WvGalSbqqaMHlNnByodA | 5     | Rosie, Dakota, and I LOVE Chaparral Dog Park!!! It's very    | review | uZetl9T0N  | 1    |        | 2     | 0 |
| 6  | 6ozycU1R   | 1/5/2012   | 1uJFq2r5QfJG_6ExMRCaGw | 5     | General Manager Scott Petello is a good egg!!! Not to go     | review | vYmM4KT    | C    | )      | 0     | 0 |
| 7  | #NAME?     | 12/13/2007 | m2CKSsepBCoRYWxiRUsxAg | 4     | Quiessence is, simply put, beautiful. Full windows and       | review | sqYN3lNg   | 4    | ı      | 3     | 1 |
| 8  | zp713qNh   | 2/12/2010  | riFQ3vxNpP4rWLk_CSri2A | 5     | Drop what you're doing and drive here. After I ate here I    | review | wFweIWh    | 7    | 7      | 7     | 4 |
| 9  | hW0Ne_H    | 7/12/2012  | JL7GXJ9u4YMx7Rzs05NfiQ | 4     | Luckily, I didn't have to travel far to make my              | review | 1ieuYcKS7  | C    | )      | 1     | 0 |
| 10 | wNUea3IX   | 8/17/2012  | XtnfnYmnJYi71yluGsXIUA | 4     | Definitely come for Happy hour! Prices are amazing, sake     | review | Vh_DlizgG  | C    | )      | 0     | 0 |
| 11 | nMHhuYar   | 8/11/2010  | jJAIXA46pU1swYyRCdfXtQ | 5     | Nobuo shows his unique talents with everything on the        | review | sUNkXg8-   | C    | )      | 1     | 0 |
| 12 | AsSCv0q_I  | 6/16/2010  | E11jzpKz9Kw5K7fuARWfRw | 5     | The oldish man who owns the store is as sweet as can         | review | #NAME?     | 1    |        | 3     | 1 |
| 13 | e9nN4Xxj   | 10/21/2011 | 3rPt0LxF7rgmEUrznoH22w | 5     | Wonderful Vietnamese sandwich shoppe. Their baguett          | review | C1rHp3dm   | 1    |        | 1     | 0 |
| 14 | h53YuCiID  | 1/11/2010  | cGnKNX3I9rthE0-TH24-qA | 5     | They have a limited time thing going on right now with       | review | UPtysDF6   | 1    |        | 2     | 0 |
| 15 | WGNIYMe    | 12/23/2011 | FvEEw1_OsrYdvwLV5Hrliw | 4     | Good tattoo shop. Clean space, multiple artists to choose    | review | Xm8HXE1    | 1    |        | 2     | 0 |
| 16 | ус5АН9Н7   | 5/20/2010  | pfUwBKYYmUXeiwrhDluQcw | 4     | I'm 2 weeks new to Phoenix. I looked up Irish bars in        | review | JOG-4G4e   | 1    |        | 1     | 0 |
| 17 | Vb9FPCEL   | 3/20/2011  | HvqmdqWcerVWO3Gs6zbrOw | 2     | Was it worth the 21\$ for a salad and small pizza?           | review | ylWOj2y7   | C    | )      | 2     | 0 |
| 18 | supigcPN(  | 10/12/2008 | HXP_0UI-FCmA4f-k9CqvaQ | 3     | We went here on a Saturday afternoon and this place          | review | SBbftLzfY  | 3    | 3      | 4     | 2 |
| 19 | O510Re68   | 5/3/2010   | j4SIzrIy0WrmW4yr4Khg   | 5     | okay this is the best place EVER! i grew up shopping at th   | review | u1KWcbPI   | C    | )      | 0     | 0 |
| 20 | b5cEoKR8i  | 3/6/2009   | v0cTd3PNpYCkTyGKSpOfGA | 3     | I met a friend for lunch yesterday.                          | review | UsULgP4b   | 5    | 5      | 6     | 4 |
| 21 | 4JzzbSbK9  | 11/17/2011 | a0lCu-j2Sk_kHQsZi_eNgw | 4     | They've gotten better and better for me in the time          | review | nDBly08j5  | 1    |        | 1     | 1 |
| 22 | 8FNO4D36   | 10/8/2008  | MuqugTuR5DdIPcZ2IVP3aQ | 3     | DVAP                                                         | review | C6IOtaaYd  | 2    | 2      | 4     | 1 |
| 23 | tdcjXyFLM  | 6/28/2011  | LmuKVFh03Uz318VKnUWrxA | 5     | This place shouldn't even be reviewed - because it is the    | review | YN3ZLOdg   | 1    |        | 1     | 2 |
| 24 | eFA9dqXT   | 7/13/2011  | CQYc8hgKxV4enApDkx0IhA | 5     | first time my friend and I went there it was delicious!      | review | 6lg55RIP2  | C    | )      | 0     | 0 |
| 25 | IJ0o6b8bJI | 9/5/2010   | Dx9sfFU6Zn0GYOckijom-g | 1     | U can go there n check the car out. If u wanna buy 1 there   | review | zRIQEDYd   | C    | )      | 1     | 1 |
| 26 | JhupPnW1   | 5/22/2011  | cFtQnKzn2VDpBedy_TxlvA | 5     | I love this place! I have been coming here for ages.         | review | 13xj6FSvY  | C    | )      | 1     | 0 |
| 27 | wzP2yNp\   | 5/26/2010  | ChBeixVZerfFkeO0McdlbA | 4     | This place is great. A nice little ole' fashion homemade     | review | rLtl8ZkDX  | C    | )      | 0     | 0 |
| 28 | qjmCVYkv   | 1/3/2013   | kZ4TzrVX6qeF0OvrVTGVEw | 5     | I love love LOVE this place. My boss (who is into healthy    | review | fpltLlgimo | C    | )      | 0     | 0 |
| 29 | wct7rZKyZ  | 3/21/2008  | B5h25WK28rJjx4KHm4gr7g | 4     | Not that my review will mean much given the more in-         | review | RRTraCQw   |      | 2      | 4     | 1 |
| 20 | 12200ci    |            | V EDVOQUISMEDICHIVENSA | 4     | Came here for breakfast vesterday, it had been years sin     | roviow | ED2cGlyVi  | 1    |        | 1     | 1 |



- Loading the Data from CSV
- Removing the new lines
- Putting all reviews in the List







- We Identified the Model features for our Data Set
- Cool, Funny, Useful and Total number of Stars
- Number of words, sentences, and paragraphs

```
#create binary variables for cool, funny, and useful - consider something cool/etc if 2+ votes
df['is cool']= df.cool>1
df['is funny'] = df.funny>1
df['is useful']= df.useful>1
#create binary variables for stars
df['star 1']= df.stars == 1
df['star 2']= df.stars == 2
df['star 3']= df.stars == 3
df['star 4']= df.stars == 4
df['star 5']= df.stars == 5
#save other features
df['avg non zero tf idf'] = avg non zero tf idf
df['sum tf idf'] = sum tf idf
df['n words']= n words
df['n sent']= n sent
df['n paras']= n paras
df['exclaim'] = df.text.str.contains('!')
```



```
analyzer=SentimentIntensityAnalyzer()
## to account for sentiment, we can include the results from sentinment analysis
#into the model as features
## try both numerical (positive, negative, neutral scores) or binary
# a review can have a high amount of both positive and negative sentiment, so keep both
# positive and negtive aspects seperate instead of using compound score
neg = []
pos =[]
neu = []
for review in all reviews:
    sent=analyzer.polarity_scores(review)
    neg.append(sent['neg'])
    pos.append(sent['pos'])
    neu.append(sent['neu'])
df['neg']= neg
df['pos']= pos
df['neu']= neu
df['is_neg'] = df['neg']>.5
df['is_pos']= df['pos']>.5
df['is neu']= df['neu']>.5
```

## Sentiment Polarity Distribution





## Sentiment Polarity Distribution













Average
TF- IDF
over non
zero values

```
#split into train and test set

X = df[['is_pos','is_neg','is_cool','is_funny','is_useful','star_1','star_2','star_3','star_4','
y = df[['avg_non_zero_tf_idf']]

# Split X and y into X_
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)

#fit model
regression_model = LinearRegression(fit_intercept=True)
regression_model.fit(X_train, y_train)

for idx, col_name in enumerate(X_train.columns):
    print("The coefficient for {} is {}".format(col_name, regression_model.coef_[0][idx]))

pred=regression_model.predict(X_test) #make prediction on test set
error = math.sqrt(metrics.mean_squared_error(y_test,pred)) #calculate rmse

print('Test RMSE:: ',error)
print('Test score::',regression_model.score(X_test,y_test)) #R2 score
```

The coefficient for is\_cool is -0.0045355362765607515
The coefficient for is\_funny is 0.003715061315379831
The coefficient for is\_useful is -0.006841094631285491

```
The coefficient for is_pos is 0.1776609982034197
The coefficient for is_neg is 0.2950899698478633
The coefficient for is_cool is -0.0045355362765607515
The coefficient for is_funny is 0.003715061315379831
The coefficient for is_useful is -0.006841094631285491
The coefficient for star_1 is 0.005164424825925323
The coefficient for star_2 is 0.001334938989456654
The coefficient for star_3 is -0.0037651641889698143
The coefficient for star_4 is -0.002491606937099381
The coefficient for star_5 is -0.0002425926893122126
The coefficient for n_sent is -0.0007720840994842391
The coefficient for n_paras is 0.0006264516518845405
The coefficient for n_words is -0.00026134767730915076
Test RMSE:: 0.0448485889013482
Test score:: 0.5815141610624752
```



```
#split into train and test set
X = df[['is_pos', 'is_neg', 'is_cool', 'is_funny', 'is_useful', 'star_1', 'star_2', 'star_3', 'star_4
y = df[['sum tf idf']]
# Split X and y into X
X_train, X_test, y_train, y_test = train_test_split(X, y, test size=0.25, random state=1)
#fit model
regression model = LinearRegression(fit intercept=True)
regression model.fit(X train, y train)
for idx, col name in enumerate(X train.columns):
    print("The coefficient for {} is {}".format(col name, regression model.coef [0][idx]))
pred=regression model.predict(X test) #make prediction on test set
error = math.sqrt(metrics.mean squared error(y test,pred)) #calculate rmse
print('Test RMSE:: ',error)
print('Test score::',regression_model.score(X_test,y_test)) #R2 score
```

The coefficient for is cool is 0.1252788605723105 The coefficient for is\_funny is -0.05591191427811685 The coefficient for is\_useful is 0.20614544660674405 The coefficient for is pos is -2.308488693167044 The coefficient for is neg is -2.959191248893721 The coefficient for is cool is 0.1252788605723105 The coefficient for is funny is -0.05591191427811685 The coefficient for is useful is 0.20614544660674405 The coefficient for star 1 is -0.18245609725604203 The coefficient for star 2 is 0.0029790400279612363 The coefficient for star 3 is 0.14098843552614784 The coefficient for star 4 is 0.0844621058890759 The coefficient for star 5 is -0.04597348418716128 The coefficient for n\_sent is 0.013628495451273195 The coefficient for n paras is 0.005249693844832066 The coefficient for n words is 0.01811124864823142 The coefficient for exclaim is 0.16591592124229274 Test RMSE:: 1.0519696719454859

Test score:: 0.825400746543938



```
#split into train and test set

X = df[['pos','neg','is_cool','is_funny','is_useful','star_1','star_2','star_3','star_4','star_y = df[['LD']]

# Split X and y into X_
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)

#fit model
regression_model = LinearRegression(fit_intercept=True)
regression_model.fit(X_train, y_train)

for idx, col_name in enumerate(X_train.columns):
    print("The coefficient for {} is {}".format(col_name, regression_model.coef_[0][idx]))

pred=regression_model.predict(X_test) #make prediction on test set
error = math.sqrt(metrics.mean_squared_error(y_test,pred)) #calculate rmse

print('Test RMSE:: ',error)
print('Test score::',regression_model.score(X_test,y_test)) #R2 score
```

The coefficient for is\_cool is -0.004106111914817156
The coefficient for is\_funny is 0.0075405529330061175
The coefficient for is\_useful is -0.009053514687201168

The coefficient for pos is 0.18038689538091862
The coefficient for neg is 0.13303935534939482
The coefficient for is\_cool is -0.004106111914817156
The coefficient for is\_funny is 0.0075405529330061175
The coefficient for is\_useful is -0.009053514687201168
The coefficient for star\_1 is 0.013376026077075909
The coefficient for star\_2 is 0.0024796082358712716
The coefficient for star\_3 is -0.007479356107359969
The coefficient for star\_4 is -0.0053784397282642905
The coefficient for star\_5 is -0.002997838477322832
The coefficient for n\_sent is -0.004101873019909818
The coefficient for n\_paras is 0.0017757875341482304
The coefficient for n\_words is -0.0005984189063210627
Test RMSE:: 0.07168683795910731
Test score:: 0.6640064175131186



- We were able to create linear models for text quality that controlled for different features of a review.
- 'Useful' has negative relationships with lexical diversity and average non-zero of TF-IDF.
- This suggests that lexical diversity and average non-zero of TF-IDF are not measuring Yelp review quality since usefulness has a negative relationship with these measures.
- Sum of TF-IDF may a better quality measure.
- Even though cool and funny usually align, they contribute in opposite directions in the linear models.

Q & A

Thank You