Фа	ми	лия	
----	----	-----	--

1. Выберите верные утверждения:

		T
Nº	Задание	Ответ
a	Любая стойкая PRF даёт стойкий MAC	
b	Любая стойкая PRF, с сверх полиномиальной областью значений	
	даёт стойкий МАС	
С	Любая стойкая PRP, с сверх полиномиальной областью значений	
	даёт стойкий МАС	
d	Стойкая PRF с сверх полиномиальной областью значений является	
	более сильным определением, чем стойкий МАС	
е	На любой МАС на (K, M, T) возможна теоретическая атака	
	сложностью $O(T)$	
f	На любой CBC-MAC на (K,M,T) возможна теоретическая атака	
	сложностью $O(\sqrt{ T })$	
g	СМАС требует использования трех независимых случайных	
	ключей	
h	Любое беспрификсное кодирование увеличивает длину	
	сообщения	
i	Стойкий МАС обеспечивает целостность сообщений при передаче	
j	Стойкий МАС обеспечивает аутентичность источника информации	
	(т.е. гарантирует, что только имеющий секретный ключ мог	
	отправить это сообщение)	
k	Добавление длины сообщения в конец сообщения является	
	беспрификсным кодированием	
	Не заполнять!	/ 10

2. Рассмотрим ЕСВС МАС. Вместо использования нулевого IV будем использовать случайный IV для каждого сообщения и включать его в состав итоговой метки. Т.е. t = IV || MAC(k,m). Данная система не является стойким МАС. Задача — от имени противника получить верный МАС для сообщения 0^n , где n — размер блока PRF. Является ли данный МАС стойкой **беспрификсной** PRF?

	Ответ
Не заполнять!	/4

3. Аlice отправляет данные 6 получателям B_1,\ldots,B_6 . Задача — обеспечить целостность. Alice использует MAC. Использование одного ключа для всех получателей не обеспечивает целостность, так как если противником является одним из получателей, то он может подделать MAC для любого сообщения и рассылать сообщения от имени Alice. Вместо этого Alice использует 4 секретных ключа $S=\{k_1,\ldots,k_4\}$. Alice пересылает по защищенному каналу некое подмножество $S_i\subseteq S$ каждому получателю B_i . Пересылая затем каждое сообщение, она включает также 4 кода аутентичности для каждого сообщения, выработанных на этих ключах. Каждый пользователь B_i считает пакет целостным, если для всех его ключей S_i совпали коды аутентичности (те кода, которые не соответствуют ключам пользователя им игнорируются). Как Alice должна распределить ключи между пользователями?

	Ответ
Не заполнять!	/4

4. Пусть (S,V) — стойкий МАС на (K,M,T), $M=\{0,1\}^n$, $T=\{0,1\}^{128}$. Какой их описанных МАС является стойким? Формально докажите или опровергните стойкость. Если явно не указан алгоритм проверки V — считать МАС детерминированным. a[x,...,y] — взятие подверктора вектора a с индексами от x до y, a[q...] — взятие подвектора вектора a начиная с индекса a и до длины вектора a.

Nº	Задание	Ответ
а	S'(k,m) = S(k,m m), V'(k,m,t) = V(k,m m,t)	
b	S'(k,m) = S(k,m),	
	$V'(k, m, t,) = [V(k, m, t) = 1$ или $V(k, m \oplus 1^n, t) = 1]$	
С	$S'(k,m) = S(k,m \oplus 1^n), V'(k,m,t) = (k,m \oplus 1^n,t)$	
d	$S'(k,m) = [t \leftarrow S(k,m), \text{output } (t,t)]$	
	$V'(k, m, (t_1, t_2)) = \begin{cases} V(k, m, t_1), & \text{if } t_1 = t_2 \\ 0, & \text{else} \end{cases}$	
e	S'(k,m) = S(k,m[0,,n-2] 0	
	V'(k, m, t) = V(k, m[0,, n-2] 0, t)	
f	$S'(k,m) = (S(k,m),S(k,0^n))$	
	$V'(k, m, (t_1, t_2)) = [V(k, m, t_1) \text{ и } V(k, 0^n, t_2)]$	
g	S'(k,m) = S(k,m) m	
	V'(k,m,t) = [V(k,m,t[0,,127]) и $m = t[128]]$	
h	$S'(k, (a_1, a_2)) = S(k, a_1) S(k, a_2)$	
i	$S'(k,(a_1,a_2)) = S(k,a_1) \oplus S(k,a_2)$	
j	$S'((k_1, k_2), (a_1, a_2)) = S(k_1, a_1) S(k_2, a_2)$	
k	$S'((k_1, k_2), (a_1, a_2)) = S(k_1, a_1) \oplus S(k_2, a_2)$	
	Не заполнять!	/22

5. Докажите утверждения ниже

Nº	Задание	Ответ
	Пусть $I_1=(S_1,V_1), I_2=(S_2,V_2)$ — МАС. Пусть $I=(S,V)$: $Sig((k_1,k_2),mig)=ig(S_1(k_1,m),S_2(k_2,m)ig),$ $Vig((k_1,k_2),m,(t_1,t_2)ig)=[V_1(k,m,t_1)=1$ и $V_2(k,m,t_2)=1].$ Докажите, что I — стойкий, если хотя бы один из I_1,I_2 — стойкий МАС	(доп листы)
	Пусть $I_1=(S_1,V_1), I_2=(S_2,V_2)$ — детерминированные МАС. Пусть $I=(S,V)$: $Sig((k_1,k_2),mig)=ig(S_1(k_1,m)\oplus S_2(k_2,m)ig)$. Докажите, что I — стойкий, если хотя бы один из I_1,I_2 — стойкий МАС	(доп листы)
	Не заполнять!	/4