Bài 4 VMO-2010

Chứng minh rằng với mỗi số nguyên đương n, phương trình $x^2 + 15y^2 = 4^n$ có ít nhất n nghiệm tự nhiên (x, y).

Lời giải:

 $\overline{-V \circ i n} = 1$ hiển nhiên (x; y) = (2; 0) là nghiệm.

-Giả sử với $n = m \in \mathbb{Z}^+$ thì (x_k, y_k) ; $k = \overline{1, n}$ là các nghiệm phân biệt của $x^2 + 15y^2 = 4^m$.

Thế thì rõ ràng là $(2x_k; 2y_k)$ với $k = \overline{1; n}$ là n nghiệm tự nhiên phân biệt của $x^2 + 15y^2 = 4^{m+1}$.

Xét
$$x_n = \zeta^n + \overline{\zeta^n}$$
 và $y_n = \frac{\zeta^n - \overline{\zeta^n}}{i\sqrt{15}}$ với $\zeta = \frac{1 + i\sqrt{15}}{2}$.

Ta có $x_{n+2}=x_{n+1}-4x_n$; $y_{n+2}=y_{n+1}-4y_n \ \forall \ n\in \mathbb{N}$ đồng thời $x_0=2$; $x_1=y_1=1$ còn $y_0=0$, thế nên các dãy x_n và y_n là các dãy số nguyên hơn thế vì $x_{n+2}\equiv x_{n+1}$; $y_{n+2}\equiv y_{n+1} \bmod 2 \forall \ n\in \mathbb{N}$.

Vậy nên $x_{m+1} \equiv x_1$; $y_{m+1} \equiv y_1 \mod 2 \forall m \in \mathbf{Z}^+$ tức x_{m+1} ; y_{m+1} đều lẻ.

Sự kiện này dẫn đến $(x_{m+1}; y_{m+1}) \notin \{(2x_k; 2y_k) : k = \overline{1; m}\}.$

Lại thấy:
$$x_{m+1} + i\sqrt{15}y_{m+1} = 2.\zeta^m \Leftrightarrow x_{m+1}^2 + 15y_{m+1}^2 = 4.4^m = 4^{m+1}$$

Vậy phương trình $x^2 + 15y^2 = 4^{m+1}$ có n cặp nghiệm tự nhiên phân biệt là các phần tử của tập $\{(2x_k; 2y_k) : k = \overline{1; m}\} \cup \{(x_{m+1}; y_{m+1})\}.$

Sa mac han ..

Anh: con lạc đà lầm lụi cống Niềm Riêng.