Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy

Presented by : Atmani Hanan

University Mohammed VI Polytechnic

August 22, 2024

Presentation plan

- Introduction and motivation
- 2 Neural PPO
- Serrors of Policy Improvement, Policy Evaluation and Propagation
- 4 Global Convergence of Neural PPO

Introduction

- PPO and TRPO have shown significant empirical success, their global convergence remains poorly understood due to the non-convexity of the policy space and neural network parametrization. To bridge this theory-practice gap, three key questions need to be addressed:
 - How do PPO and TRPO converge to the optimal policy with infinite-dimensional updates?
 - 4 How does stochastic gradient descent improve the policy based on this approximate action-value function?

Neural Network Parametrization

- We consider the Markov decision process (S, A, P, r, γ) , where S is a campact state space, A is a finite action space.
- We denote by $v_k := v_{\pi_{\theta_k}}$: The stationary state distribution . $\sigma_k := \sigma_{\pi_{\theta_k}}$: The stationary state-action distribution. $\tilde{\sigma}_k := v_k \pi_0$: The auxiliary distribution
- We assume that $(s, a) \in \mathbb{R}^d$ for all $s \in \mathcal{S}$ and $a \in A$.
- We parametrize a function $u: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ (policy π action-value function Q^{π}) by two-layer neural network, which is denoted by $NN(\alpha; m)$,

$$u_{\alpha}(s,a) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} b_i * \sigma([\alpha]_i^t(s,a))$$
 (1)

- m: The width of the neural network, $b_i \in [-1,1] (i \in [m])$: the output weights. $\sigma(.)$: function activation (ReLU) $(\sigma(x) = max\{0,x\})$. $\alpha = ([\alpha]_1^t,...,[\alpha]_m^t) \in \mathbb{R}^{md}$ with $[\alpha]_i \in \mathbb{R}^d$ $(i \in [m])$ are the input weights.
- We consider the random initialization

$$b_i \sim^{i.i.d} Unif([-1,1]), [\alpha(0)]_i \sim^{i.i.d} \mathcal{N}(0, I_d/d), \forall i \in [m]$$

• We restrict the input weights α to an L_2 -ball centered at the initialization $\alpha(0)$ by the projection:

$$\Pi_{\mathcal{B}^{0}(R_{\alpha})}(\alpha') = \operatorname{argmin}_{\alpha \in \mathcal{B}^{0}(R_{\alpha})}\{||\alpha - \alpha'||_{2}\},$$

where

$$\mathcal{B}^{0}(R_{0}) = \{\alpha : ||\alpha - \alpha(0)||_{2} \leq R_{\alpha}\}$$

• Throughout training, we only update α , while keeping $b_i (i \in [m])$ fixed at the initialization, we omit the the dependency on b_i $(i \in [m])$ in $NN(\alpha, m)$ and $u_{\alpha}(s, a)$.

Policy Improvement

We consider the population version of the objective function:

$$L(\theta) = \mathbb{E}_{\nu_k}[\langle Q_{\omega_k}(s,.), \pi_{\theta}(.|s) \rangle - \beta_k \mathsf{KL}(\pi_{\theta}(.|s)||\pi_{\theta_k}(.|s))]$$

- Where Q_{ω_k} is an estimator of $Q^{\pi_{\theta_k}}$
- We consider the energy-based policy $\pi(a|s) \propto \exp\{\tau^{-1}f\}$. Here $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the energy function and $\tau > 0$ is the temperature parameter.

Proposition

Let $\pi_{\theta_k} \propto \exp\left\{\tau_k^{-1} f_{\theta_k}\right\}$ be an energy-based policy. Given an estimator Q_{ω_k} of $Q^{\pi\theta_k}$, the update

$$\widehat{\pi}_{k+1} \leftarrow \operatorname{argmax}_{\pi} \left\{ \mathbb{E}_{\nu_k} \left[\left\langle Q_{\omega_k}(s,\cdot), \pi(\cdot \mid s) \right\rangle - \beta_k \cdot \operatorname{KL} \left(\pi(\cdot \mid s) \| \pi_{\theta_k}(\cdot \mid s) \right) \right] \right\}$$

gives

$$\widehat{\pi}_{k+1} \propto \exp\left\{\beta_k^{-1} Q_{\omega_k} + \tau_k^{-1} f_{\theta_k}\right\} \tag{2}$$

Policy Improvement

• To represent the ideal improved policy $\widehat{\pi}_{k+1}$ in Proposition using the energy-based policy $\pi_{\theta_{k+1}} \propto \exp\left\{\tau_{k+1}^{-1}f_{\theta_{k+1}}\right\}$, we solve the subproblem of minimizing the MSE,

$$\theta_{k+1} \leftarrow \underset{\theta \in \mathcal{B}^{0}(R_{f})}{\operatorname{argmin}} \mathbb{E}_{\tilde{\sigma}_{k}} \left[\left(f_{\theta}(s, a) - \tau_{k+1} \cdot \left(\beta_{k}^{-1} Q_{\omega_{k}}(s, a) + \tau_{k}^{-1} f_{\theta_{k}}(s, a) \right) \right) \right]$$
(3)

- Here we use the neural network parametrization $f_{\theta} = \operatorname{NN}(\theta; m_f)$ defined in (1), where θ denotes the input weights and m_f is the width.
- To solve (3), we use the SGD update: $\theta(t+1/2) \leftarrow \theta(t) \eta \cdot \left(f_{\theta(t)}(s,a) \tau_{k+1} \cdot \left(\beta_k^{-1} Q_{\omega_k}(s,a) + \tau_k^{-1} f_{\theta_k}(s,a)\right)\right) \cdot \nabla_{\theta} f_{\theta(t)}(s,a)$ where $(s,a) \sim \widetilde{\sigma}_k$ and $\theta(t+1) \leftarrow \Pi_{\mathcal{B}^{\circ}(R_f)}(\theta(t+1/2))$. Here η is the stepsize.

Policy Evaluation

• To obtain the estimator Q_{ω_k} of $Q^{\pi_{\theta_k}}$ in (3.3), we solve the subproblem of minimizing the MSBE (Mean Squared Bellman Error),

$$\omega_k \leftarrow \underset{\omega \in \mathcal{B}^0(R_Q)}{\operatorname{argmin}} \mathbb{E}_{\sigma_k} \left[\left(Q_{\omega}(s, a) - \left[\mathcal{T}^{\pi_{\theta_k}} Q_{\omega} \right](s, a) \right)^2 \right]$$
 (4)

• The Bellman evaluation operator \mathcal{T}^{π} of a policy π is defined as:

$$\begin{split} & \left[\mathcal{T}^{\pi} Q \right] (s, a) = \\ & \mathbb{E} \left[(1 - \gamma) \cdot r(s, a) + \gamma \cdot Q \left(s', a' \right) \mid s' \sim \mathcal{P}(\cdot \mid s, a), a' \sim \pi \left(\cdot \mid s' \right) \right] \end{aligned}$$

• We use the neural network parametrization $Q_{\omega}=\operatorname{NN}\left(\omega;m_{Q}\right)$ defined in (1), where ω denotes the input weights and m_{Q} is the width.

Policy Evaluation

• To solve (4) we use the TD update:

$$\omega(t+1/2) \leftarrow \omega(t) - \eta \cdot \left(Q_{\omega(t)}(s, a) - (1-\gamma) \cdot r(s, a) - \gamma \cdot Q_{\omega(t)}(s', a')\right) \cdot \nabla_{\omega} Q_{\omega(t)}(s, a)$$

• where
$$(s, a) \sim \sigma_k, s' \sim \mathcal{P}(\cdot \mid s, a), a' \sim \pi_{\theta_k} (\cdot \mid s')$$
, and $\omega(t+1) = \Pi_{\mathcal{B}^{\circ}(R_{\mathcal{O}})}(\omega(t+1/2))$.

Neural PPO Algorithm

Require:MDP($\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma$), penalty parameter β , widths m_f and m_Q , number of SGD and TD iterations T, number of TRPO iterations K, and projection radii $R_f \geq R_Q$

- for k = 0, ..., K 1 do
 - Set temperature parameter $\tau_{k+1} \leftarrow \beta \sqrt{K}/(k+1)$ and penalty parameter $\beta_k \leftarrow \beta \sqrt{K}$
 - Sample $\left\{\left(s_{t}, a_{t}, a_{t}^{0}, s_{t}^{\prime}, a_{t}^{\prime}\right)\right\}_{t=1}^{T}$ with $\left(s_{t}, a_{t}\right) \sim \sigma_{k}, a_{t}^{0} \sim \pi_{0}\left(\cdot \mid s_{t}\right), s_{t}^{\prime} \sim \mathcal{P}\left(\cdot \mid s_{t}, a_{t}\right)$ and $a_{t}^{\prime} \sim \pi_{\theta_{k}}\left(\cdot \mid s_{t}^{\prime}\right)$
 - **3** Solve for $Q_{\omega_k} = \operatorname{NN}(\omega_k; m_Q)$ in (4) (Algorithm 3)
 - Solve for $f_{\theta_{k+1}} = NN(\theta_{k+1}; m_f)$ in (3) (Algorithm 2)
 - **5** Update policy: $\pi_{\theta_{k+1}} \propto \exp\left\{\tau_{k+1}^{-1} f_{\theta_{k+1}}\right\}$
- end for

Definition

For any constant R > 0, we define the function class $\mathcal{F}_{R,m} = \left\{ \frac{1}{\sqrt{m}} \sum_{i=1}^m b_i \cdot \mathbb{1} \left\{ [\alpha(0)]_i^\top(s,a) > 0 \right\} \cdot [\alpha]_i^\top(s,a) : \|\alpha - \alpha(0)\|_2 \le R \right\}$ where $[\alpha(0)]_i$ and $b_i(i \in [m])$ are the random initialization

- Assumptions
 - **1 Bounded Reward:** There exists a constant $R_{\max} > 0$ such that $R_{\max} = \sup_{(s,a) \in \mathcal{S} \times \mathcal{A}} |r(s,a)|$, which implies $|V^{\pi}(s)| \leq R_{\max}$ and $|Q^{\pi}(s,a)| \leq R_{\max}$ for any policy π .
 - **2** Action-Value Function Class: It holds that $Q^{\pi}(s, a) \in \mathcal{F}_{R_0, m_0}$ for any π .
 - **3 Regularity of Stationary Distribution:** There exists a constant c>0 such that for any vector $z\in\mathbb{R}^d$ and $\zeta>0$, it holds almost surely that $\mathbb{E}_{\sigma_n}\left[1\left\{|z^{\top}(s,a)|\leq\zeta\right\}\mid z\right]\leq c\cdot\zeta/\|z\|_2$ for any π .

Policy Improvement Error

Theorem

Suppose that Assumptions 1, 2, and 3 hold. We set $T \ge 64$ and the stepsize to be $\eta = T^{-1/2}$. Within the k-th iteration of Algorithm 1, the output $f_{\hat{\theta}}$ of Algorithm 2 satisfies

$$\mathbb{E}_{init, \bar{\sigma}_{k}} \left[\left(f_{\hat{\theta}}(s, a) - \tau_{k+1} \cdot \left(\beta_{k}^{-1} Q_{\omega_{k}}(s, a) + \tau_{k}^{-1} f_{\theta_{k}}(s, a) \right) \right)^{2} \right]$$

$$= O \left(R_{f}^{2} T^{-1/2} + R_{f}^{5/2} m_{f}^{-1/4} + R_{f}^{3} m_{f}^{-1/2} \right)$$

Policy Evaluation Error

Theorem

Suppose that Assumptions 1, 2, and 3 hold. We set $T \geq 64/(1-\gamma)^2$ and the stepsize to be $\eta = T^{-1/2}$. Within the k-th iteration of Algorithm 1, the output $Q_{\bar{\omega}}$ of Algorithm 3 satisfies

$$\mathbb{E}_{init, \ \sigma_k} \left[\left(Q_{\bar{\omega}}(s, a) - Q^{\pi_{\theta_k}}(s, a) \right)^2 \right] = O\left(R_Q^2 T^{-1/2} + R_Q^{5/2} m_Q^{-1/4} + R_Q^3 m_Q^{-1/4} \right)$$

Error Propagation

0

- π^* : Optimal policy.
- ν^* : Stationary state distribution under π^* .
- σ^* : Stationary state-action distribution under π^* .
- π_{k+1} : Improved policy based on $Q^{\pi_{\theta_k}}$, defined as: $\pi_{k+1} = \underset{\pi}{\operatorname{argmax}} \{ \mathbb{E}_{\nu_k} \left[\langle Q^{\pi_{\theta_k}}(s,\cdot), \pi(\cdot,s) \rangle \beta_k \cdot \operatorname{KL} \left(\pi(\cdot \mid s) \| \pi_{\theta_k}(\cdot \mid s) \right) \right] \}$
- Energy-based policy:

$$\pi_{k+1} \propto \exp\left\{\beta_k^{-1} Q^{\pi_{\theta_k}} + \tau_k^{-1} f_{\theta_k}\right\}$$

$$\phi_k^* = \mathbb{E}_{\bar{\sigma}_k} \left[| d\sigma^* / d\tilde{\sigma}_k - d(\pi_{\theta_k} \nu^*) / d\tilde{\sigma}_k |^2 \right]^{1/2}$$
$$\psi_k^* = \mathbb{E}_{\sigma_k} \left[| d\sigma^* / d\sigma_k - d\nu^* / d\nu_k |^2 \right]^{1/2}$$

where $d\sigma^*/d\widetilde{\sigma}_k$, $d(\pi_{\theta_k}\nu^*)/d\widetilde{\sigma}_k$, $d\sigma^*/d\sigma_k$, and $d\nu^*/d\nu_k$ are the Radon-Nikodym derivatives.

Error Propagation

Lemma

Suppose that the policy improvement error in Line 4 of Algorithm 1 satisfies

$$\mathbb{E}_{\tilde{\sigma}_k}\left[\left(f_{\theta_{k+1}}(s,a) - \tau_{k+1} \cdot \left(\beta_k^{-1}Q_{\omega_k}(s,a) - \tau_k^{-1}f_{\theta_k}(s,a)\right)\right)^2\right] \leq \epsilon_{k+1}$$

and the policy evaluation error in Line 3 of Algorithm 1 satisfies

$$\mathbb{E}_{\sigma_k}\left[\left(Q_{\omega_k}(s,a)-Q^{\pi_{ heta_k}}(s,a)
ight)^2
ight] \leq \epsilon_k'$$

For π_{k+1} and $\pi_{\theta_{k+1}}$ obtained in Line 5 of Algorithm 1, we have

$$\left|\mathbb{E}_{\nu^*}\left[\left\langle \log\left(\pi_{\theta_{k+1}}(\cdot\mid s)/\pi_{k+1}(\cdot\mid s)\right), \pi^*(\cdot\mid s) - \pi_{\theta_k}(\cdot\mid s)\right\rangle\right]\right| \leq \varepsilon_k$$

where
$$\varepsilon_k = \tau_{k+1}^{-1} \epsilon_{k+1} \cdot \phi_{k+1}^* + \beta_k^{-1} \epsilon_k' \cdot \psi_k^*$$
.

Stepwise Energy Difference

Lemma

Under the same conditions of last Lemma , we have

$$\mathbb{E}_{\nu^*} \left[\left\| \tau_{k+1}^{-1} f_{\theta_{k+1}}(s, \cdot) - \tau_k^{-1} f_{\theta_k}(s, \cdot) \right\|_{\infty}^2 \right] \leq 2\varepsilon_k' + 2\beta_k^{-2} M$$

where
$$\varepsilon_k' = |\mathcal{A}| \cdot \tau_{k+1}^{-2} \epsilon_{k+1}^2$$
 and

$$M = 2\mathbb{E}_{
u^*} \left[\mathsf{max}_{a \in \mathcal{A}} \left(Q_{\omega_0}(s, a) \right)^2 \right] + 2R_f^2.$$

Convergence of Neural PPO

Theorem

Suppose that Assumptions 1, 2 and 3 hold. For the policy sequence $\{\pi_{\theta_k}\}_{k=1}^K$ attained by neural PPO in Algorithm 1, we have

$$\begin{split} \min_{0 \leq k \leq K} \left\{ \mathcal{L} \left(\pi^* \right) - \mathcal{L} \left(\pi_{\theta_k} \right) \right\} &\leq \frac{\beta^2 \log |\mathcal{A}| + M + \beta^2 \sum_{k=0}^{K-1} \left(\varepsilon_k + \varepsilon_k' \right)}{(1 - \gamma)\beta \cdot \sqrt{K}} \\ \text{Here } \varepsilon_k &= \tau_{k+1}^{-1} \epsilon_{k+1} \cdot \phi_k^* + \beta_k^{-1} \epsilon_k' \cdot \psi_k^* \text{ and } \varepsilon_k' = |\mathcal{A}| \cdot \tau_{k+1}^{-2} \epsilon_{k+1}^2, \\ \text{where } \epsilon_{k+1} &= O \left(R_f^2 T^{-1/2} + R_f^{5/2} m_f^{-1/4} + R_f^3 m_f^{-1/2} \right), \epsilon_k' = \\ O \left(R_Q^2 T^{-1/2} + R_Q^{5/2} m_Q^{-1/4} + R_Q^3 m_Q^{-1/2} \right). \text{ Also, we have} \\ M &= 2 \mathbf{E}_{\nu^*} \left[\max_{a \in \mathcal{A}} \left(Q_{\omega_0}(s, a) \right)^2 \right] + 2 R_f^2. \end{split}$$

Iteration Complexity

Corollary

Suppose that Assumptions 1, 2 and 3 hold. Let
$$m_f = \Omega\left(K^6R_f^{10} \cdot \phi_k^{*4} + K^4R_f^{10} \cdot |\mathcal{A}|^2\right)$$
, $m_Q = \Omega\left(K^2R_Q^{10} \cdot \psi_k^{*4}\right)$, and $T = \Omega\left(K^3R_f^4 \cdot \phi_k^{*2} + K^2R_f^4 \cdot |\mathcal{A}| + KR_Q^4 \cdot \psi_k^{*2}\right)$ for any $0 < k < K$. We have

$$\min_{0 \leq k \leq K} \left\{ \mathcal{L}\left(\pi^*\right) - \mathcal{L}\left(\pi_{ heta_k}
ight)
ight\} \leq rac{eta^2 \log |\mathcal{A}| + M + O(1)}{(1 - \gamma)eta \cdot \sqrt{K}}$$