Работа № 1. Моделирование линейных динамических систем

Цель работы. Ознакомление с основными представлениями и принципами построения линейных стационарных динамических систем, а также приемами моделирования в программной среде MATLAB/Simulink.

Методические рекомендации. До начала работы студенты должны ознакомиться с видами представления линейных динамических систем и описанием пакета прикладных программ MATLAB/Simulink, а также получить от преподавателя вариант задания.

Теоретические сведения. Модель *вход-выход* — это описание связи входных и выходных сигналов динамической системы. Необходимость в таком описании появляется при рассмотрении поведения как отдельных блоков и, в частности, объекта управления, так и всей системы управления в целом. Линейная модель входвыход *одноканальной* стационарной динамической системы может быть представлена *обыкновенным дифференциальным уравнением* вида:

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} \dot{y} + a_n y = = b_0 u^{(m)} + b_1 u^{(m-1)} + \dots + b_{m-1} \dot{u} + b_m u$$
(1)

где a_i, b_i — коэффициенты (параметры модели), n — порядок модели, $0 \le m \le n, y(t)$ — выходная переменная, u(t) — входной сигнал, число r = n - m — относительная степень модели. В частном случае когда $a_0 = 1$, уравнение (1) называется приведенным.

Решением дифференциального уравнения (1) является функция времени y(t), обращающая данное уравнение в тождество и удовлетворяющая заданным начальным условиям. Для дифференциального уравнения (1) начальные условия накладываются на переменную y и ее производные до (n-1)-го порядка включительно:

$$y^{(j)}(0) = y_{j0}, j = \overline{0, n-1}.$$

Под начальными условиями понимают условия, которые существовали до момента приложения входного сигнала. Поэтому для любой функции f(t) ее начальное значение понимается в смысле

предела

$$f(0) = \lim_{\tau \to 0} f(\tau),\tag{2}$$

где переменная τ стремится к нулю, оставаясь отрицательной ($\tau < 0$). При этом говорят, что предел (2) задает начальные условия слева, т.е. в начальный момент t=-0.

Введем для операции дифференцирования по времени обозначение p:

$$p = \frac{d}{dt}, \quad p^i = \frac{d^i}{dt^i}.$$

Теперь мы можем записать выражение (1) в операторной форме

$$a(p)y(t) = b(p)u(t) \tag{3}$$

где

$$a(p) = a_0 p^n + a_1 p^{n-1} + \dots + a_{n-1} p + a_n$$

— дифференциальный оператор при выходной переменной (*собственный оператор*),

$$b(p) = b_0 p^m + b_1 p^{m-1} + \dots + b_{m-1} p + b_m$$

— дифференциальный оператор при входной переменной (*onepamop* воздействия).

Из уравнения (3) можно вывести явную связь переменных y(t) и u(t) в виде операторного уравнения:

$$y(t) = \frac{b(p)}{a(p)}u(t) = W(p)u(t). \tag{4}$$

Отношение оператора воздействия к собственному оператору называется nepedamovhoù функцией в операторной форме, которая обозначается как W(p).

При рассмотрении линейных дифференциальных уравнений с постоянными коэффициентами удобно использовать преобразование Лапласа, так как оно решение дифференциальных уравнений сводит к алгебраическим операциям.

Преобразованием Лапласа называют соотношение

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty f(t)e^{-st}dt,\tag{5}$$

ставящее функции f(t) вещественного переменного в соответствие функцию F(s) комплексного переменного $s=\sigma+j\omega$. При этом f(t) называют оригиналом, F(s) — изображением или изображением по Лапласу, s — переменной преобразования Лапласа, $\mathcal L$ — оператором Лапласа.

Передаточная функция в изображениях Лапласа равна отношению изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.

Если подвергнуть преобразованию Лапласа левую и правую части дифференциального уравнения (3), то в результате будет получено уравнение для изображений. Используя свойства [Ким, Воронов] преобразования Лапласа, при нулевых начальных условиях $(y^{(j)}(0)=0,j=\overline{0,n-1})$ получим

$$a(s)Y(s) = b(s)U(s),$$
 (6)
где $Y(s) = \mathcal{L}\{y(t)\}, U(s) = \mathcal{L}\{u(t)\},$ $a(s) = a_0s^n + a_1s^{n-1} + \dots + a_{n-1}s + a_n,$ $b(s) = b_0s^m + b_1s^{m-1} + \dots + b_{m-1}s + b_m.$

Передаточная функция в изображениях Лапласа получается формально совпадающей с соответствующей передаточной функцией в операторной форме (4) при замене p на s:

$$W(s) = \frac{Y(s)}{U(s)} = \frac{b(s)}{a(s)}. (7)$$

Знаменатель передаточной функции a(s) называется xapaxme- pucmuческим nonuhomom. Корни знаменателя передаточной функции (корни характеристического уравнения a(s)=0) называются nonocamu системы, корни числителя передаточной функции (корни уравнения b(s)=0) называются nynsmu системы.

Линейная модель вход-выход *многоканальной* стационарной динамической системы описывается системой операторных уравнений:

$$a_{11}(p)y_{1} + \dots + a_{1q}(p)y_{q} = b_{11}(p)u_{1} + \dots + b_{1l}(p)u_{l},$$

$$a_{21}(p)y_{1} + \dots + a_{2q}(p)y_{q} = b_{21}(p)u_{1} + \dots + b_{2l}(p)u_{l},$$

$$\dots$$

$$a_{q1}(p)y_{1} + \dots + a_{qq}(p)y_{q} = b_{q1}(p)u_{1} + \dots + b_{ql}(p)u_{l},$$

$$(8)$$

где $y = col(y_1, ..., y_q)$ — вектор выходов, $u = col(u_1, ..., u_l)$ — вектор входов, q — количество выходов, l — количество входов.

Приведём систему (8) к векторно-матричной форме:

$$A(p)y(t) = B(p)u(t) (9)$$

где

$$A(p) = \begin{bmatrix} a_{11}(p) & \dots & a_{1}(p) \\ \vdots & \ddots & \vdots \\ a_{q1}(p) & \dots & a_{qq}(p) \end{bmatrix}, B(p) = \begin{bmatrix} b_{11}(p) & \dots & b_{1l}(p) \\ \vdots & \ddots & \vdots \\ b_{q1}(p) & \dots & b_{ql}(p) \end{bmatrix}.$$

Тогда связь векторов у и и можно выразить как

$$y(t) = A(p)^{-1}B(p)u(t) = W(p)u(t),$$
(10)

где

$$W(p) = \begin{bmatrix} W_{11}(p) & \dots & W_{1l}(p) \\ \vdots & \ddots & \vdots \\ W_{q1}(p) & \dots & W_{ql}(p) \end{bmatrix}$$

— передаточная матрица в операторной форме. Модель (10) можно записать в виде

$$y_{1} = W_{11}(p)u_{1} + \dots + W_{1q}(p)u_{q},$$

$$y_{2} = W_{21}(p)u_{1} + \dots + W_{2q}(p)u_{q},$$

$$\dots$$

$$y_{q} = W_{q1}(p)u_{1} + \dots + W_{qq}(p)u_{q},$$
(11)

В качестве примера приведем представление двухканальной системы (q = l = 2), схема которой изображена на рисунке 1:

$$y_1 = W_{11}(p)u_1 + W_{12}(p)u_2,$$

 $y_2 = W_{21}(p)u_1 + W_{22}(p)u_2.$

Модель *вход-состояние-выход* (ВСВ) описывает связи входов и выходов динамической системы в виде системы дифференциальных уравнений 1-го порядка в форме пространства состояний (системы в форме Коши) с использованием промежуточных переменных — переменных состояния.

Рис. 1. Пример двухканальной системы

Пространством состояний называется n-мерное (n - порядок уравнения) пространство, по осям координат которого отложены переменные состояния $x_1,...,x_n$. Переменные состояния — это обобщенные координаты, которые позволяют в любой момент времени определить состояние объекта. Они образуют вектор состояния $x = col(x_1,...,x_n)$ размерности $n \times 1$.

В общем случае модель BCB динамической одноканальной системы содержит уравнения вида

$$\dot{x}_1 = a_{11}x_1 + \dots + a_{1n}x_n + b_1u,
\dot{x}_2 = a_{21}x_1 + \dots + a_{2n}x_n + b_2u,
\dots
\dot{x}_n = a_{n1}x_1 + \dots + a_{nn}x_n + b_nu,
y = c_1x_1 + \dots + c_nx_n,$$
(12)

где a_{ij}, b_i, c_i — вещественные коэффициенты (постоянные параметры).

Перепишем систему дифференциальных уравнений первого порядка в векторно-матричной форме:

$$\dot{x} = Ax + Bu,
 y = Cx.$$
(13)

где $x\in\mathbb{R}^n$ — вектор состояния, $y\in\mathbb{R}^1$ — выход, $u\in\mathbb{R}^1$ — вход, $A\in\mathbb{R}^{n\times n}$ — матрица состояний, $B\in\mathbb{R}^{n\times 1}$ — матрица входа, $C\in\mathbb{R}^n$

 $\mathbb{R}^{1\times n}$ — матрица выхода,

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}, B = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, C = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix}.$$

Если система имеет многоканальную среду, то модель BCB системы описывается уравнениями

$$\dot{x}_{1} = a_{11}x_{1} + \dots + a_{1n}x_{n} + b_{11}u_{1} \dots + b_{1l}u_{l},
\dots
\dot{x}_{n} = a_{n1}x_{1} + \dots + a_{nn}x_{n} + b_{n1}u_{1} \dots + b_{nl}u_{l},
y_{1} = c_{11}x_{1} + \dots + c_{1n}x_{n},
\dots
y_{q} = c_{q1}x_{1} + \dots + c_{qn}x_{n}.$$
(14)

В этом случае система в векторно-матричной форме имеет вид (13), где $y \in \mathbb{R}^q$ — выходы, $u \in \mathbb{R}^l$ — входы, $B \in \mathbb{R}^{n \times l}$ — матрица входов, $C \in \mathbb{R}^{q \times n}$ — матрица выходов,

$$B = \begin{bmatrix} b_{11} & \dots & b_{1l} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nl} \end{bmatrix}, C = \begin{bmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{q1} & \dots & c_{qn} \end{bmatrix}.$$

Построение и моделирование систем, описанных дифференциальными уравнениями, может быть осуществлено в программной среде MATLAB/Simulink с помощью блоков элементарных операций — интегратора, сумматора и блока усиления (см. рисунок 2).

Рис. 2. Блоки элементарных операций (слева направо): интегратор; сумматор; усилитель

Рассмотрим один из способов построения схем моделирования уравнения (1). Пусть динамическая система описывается уравнением

$$y^{(3)} + 5y^{(2)} + 2\dot{y} + y = 4u^{(2)} + 6\dot{u} + 3u \tag{15}$$

с начальными условиями y(0) = 1, $\dot{y}(0) = 2$, $y^{(2)}(0) = 0$ и входным воздействием $u = \sin t$.

Теперь введем оператор дифференцирования p = d/dt

$$yp^3 + 5yp^2 + 2yp + y = 4up^2 + 6up + 3u$$

и выразим y при старшей степени p^3 :

$$y = \frac{1}{p}(4u - 5y) + \frac{1}{p^2}(6u - 2y) + \frac{1}{p^3}(3u - y)$$

Таким образом, выходная переменная y представлена в виде суммы сигналов прямых и обратных связей, проинтегрированных соответствующее число раз. Схема моделирования приведена на рисунке 3.

Рис. 3. Схема моделирования уравнения (15)

Определим начальные условия интеграторов. Обозначим выходные сигналы интеграторов через $z_1,\,z_2$ и z_3 (см. рисунок 3) и, следовательно, искомые начальные условия — через $z_1(0),\,z_2(0)$ и $z_3(0)$. Так как $z_1=y$, то $z_1(0)=y(0)=1$. Далее, из схемы моделирования

видно, что $\dot{y}=\dot{z}_1=z_2+4u-5y$ и, следовательно, $z_2=\dot{y}-4u+5y$. Тогда $z_2(0)=\dot{y}(0)-4u(0)+5y(0)=7$. Так же из структурной схемы получаем, что $z_3=\dot{z}_2-6u+2y$. Дифференцируя z_2 , окончательно получаем $z_3=\ddot{y}-4\dot{u}+5\dot{y}-6u+2y$. Вычисляем начальное условие для третьего интегратора: $z_3(0)=\ddot{y}(0)-4\dot{u}(0)+5\dot{y}(0)-6u(0)+2y(0)=12$.

Поскольку рассматриваются начальные условия слева, то $\dot{u}(0) = u(0) = 0.$

Порядок выполнения работы.

- 1. Исследование модели вход-выход.
- $1.1.~\mathrm{B}$ соответствии с вариантом задания (см. табл.1), построить схему моделирования одноканальной линейной динамической системы (1).
- 1.2. Осуществить моделирование системы при двух видах входного воздействия u=1(t) и $u=2\sin t$ и нулевых начальных условиях. На экран выводить графики сигналов u(t) и y(t). Продолжительность интервала наблюдения выбрать самостоятельно.
- 1.3. Осуществить моделирование свободного движения системы, т.е. с нулевым входным воздействием и ненулевыми начальными условиями, заданными в табл.2. На экран выводить y(t).
- $1.4.~{\rm B}$ соответствии с вариантом задания (см. табл.3), построить схему моделирования многоканальной линейной динамической системы (11). Осуществить моделирование системы при входных воздействиях $u_1=1(t)$ и $u_2=2\sin t-$ и нулевых начальных условиях. На экран выводить графики сигналов u(t) и y(t). Продолжительность интервала наблюдения выбрать самостоятельно. Для построения передаточных функций использовать блок $Transfer\ Fcn.$
 - 2. Исследование модели вход-состояние-выход.
- 2.1. В соответствии с вариантом задания (см. табл.4)), построить схему моделирования одноканальной линейной динамической системы (13).
- 2.2. Осуществить моделирование линейной динамической системы при двух видах входного воздействия: u=1(t) и $u=2\sin t$. На экран выводить графики сигналов u(t) и y(t). Для всех вариантов начальное значение вектора состояния нулевое.
- 2.3. Осуществить моделирование свободного движения системы с начальными условиями, приведенными в табл.5. На экран выводить y(t).
 - 2.4. В соответствии с вариантом задания (см. табл.6), построить

схему моделирования многоканальной линейной динамической системы (14). Осуществить моделирование линейной динамической системы при входных воздействиях $u_1=1(t)$ и $u_2=2\sin t$. На экран выводить графики сигналов u(t) и y(t). Для всех вариантов начальное значение вектора состояния нулевое.

Содержание отчета:

- 1. Математические модели динамических систем и соответствующие им схемы моделирования.
- 2. Расчет начальных условий интеграторов для п.1.3 программы исследований.
 - 3. Результаты моделирования (графики переходных процессов).
 - 4. Выводы.

 Таблица
 1. Варианты параметров одноканальной модели входвыход

	/ 1												
Nº	a_0	a_1	a_2	b_0	b_1	b_2	№	a_0	a_1	a_2	b_0	b_1	b_2
1	2	9	16	2	4	4	9	6	5	2	9	1	4
2	4	12	7	3	2	8	10	9	4	9	2	4	1
3	6	7	3	8	9	3	11	1	8	2	1	6	3
4	3	5	8	7	4	5	12	3	1	7	7	9	9
5	7	8	5	4	5	2	13	2	9	8	8	2	6
6	9	3	6	12	7	7	14	5	16	4	6	5	7
7	8	11	2	6	1	4	15	7	4	5	3	8	3
8	7	5	4	2	6	8	16	4	3	3	10	7	2

Таблица 2. Варианты начальных условий одноканальной модели вход-выход

No॒	y(0)	$\dot{y}(0)$	$\ddot{y}(0)$	№	y(0)	$\dot{y}(0)$	$\ddot{y}(0)$
1	1	0,9	0,6	9	1	0,1	0,4
2	1	0,2	0,7	10	1	0,4	0,1
3	1	0,7	0,3	11	1	0,6	0,3
4	1	0,5	0,8	12	1	0,9	0,9
5	1	0,8	0,5	13	1	0,2	0,6
6	1	0,3	0,6	14	1	0,5	0,7
7	1	0,1	0,2	15	1	0,8	0,3
8	1	0,5	0,4	16	1	0,7	0,2

Таблица 3. Варианты параметров многоканальной модели входвыход

$N_{\overline{0}}$	$a_{11}(p)$	$a_{12}(p)$	$a_{21}(p)$	$a_{22}(p)$	$b_{11}(p)$	$b_{12}(p)$	$b_{21}(p)$	$b_{22}(p)$
1	p+12	p+3	p+6	p+2	4	4	6	5
2	p+14	p+2	p+7	p+3	2	8	9	4
3	p+16	p+7	p+3	p+8	9	3	1	8
4	p+13	p+5	p+3	p+7	4	5	3	1
5	p+17	p+8	p+1	p+4	5	2	2	9
6	p+19	p+3	p+6	p+2	7	7	5	6
7	p+18	p+1	p+2	p+6	1	4	7	4
8	p+17	p+5	p+4	p+2	6	8	4	3
9	p+18	p+1	p+2	p+6	1	4	7	4
10	p+17	p+5	p+4	p+2	6	8	4	3
11	p+12	p+2	p+6	p+2	4	4	6	5
12	p+14	p+2	p+7	p+3	2	8	9	4
13	p+16	p+7	p+3	p+8	9	3	1	8
14	p+13	p+5	p+3	p+7	4	5	3	1
15	p+17	p+1	p+5	p+4	5	2	2	9
16	p+19	p+3	p+6	p+2	7	7	5	6

Таблица 4. Варианты параметров одноканальной модели вход-состояние-выход

No॒	\overline{A}	B	C^{\top}	Nº	A	B	C^{\top}
1	$\begin{bmatrix} 0 & -5 \end{bmatrix}$	$\lceil 4 \rceil$	$\lceil 5 \rceil$	9	$\begin{bmatrix} 0 & -6 \end{bmatrix}$	[1]	
	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	[3]	[7]		$\begin{bmatrix} 1 & -4 \end{bmatrix}$	[7]	[7]
2	$\begin{bmatrix} 0 & -2 \end{bmatrix}$	[2]	[3]	10	$\begin{bmatrix} 0 & -9 \end{bmatrix}$	[9]	$\lceil 5 \rceil$
4	$\begin{bmatrix} 1 & -3 \end{bmatrix}$	[8]		10	$\begin{bmatrix} 1 & -3 \end{bmatrix}$	$\lfloor 2 \rfloor$	
3	0 -1	[3]	[3]	11	[0 -8]	[2]	[8]
3	$\begin{vmatrix} 1 & -1 \end{vmatrix}$	1	7	11	1 -6	6	7
4	0 -4	[7]	2	12	[0 -7]	3	4
4	1 -6	8	4	12	1 -9	8	6
5	0 -2	5	2	13	$\begin{bmatrix} 0 & -3 \end{bmatrix}$	3	2
3	1 -7	6	6	13	$\begin{vmatrix} 1 & -4 \end{vmatrix}$	7	6
6	0 -9	1	2	14	[0 -7]	[5]	2
0	1 -6	5	5	14	1 -6		
7	$\begin{bmatrix} 0 & -5 \end{bmatrix}$	6		15	$\begin{bmatrix} 0 & -4 \end{bmatrix}$	[1]	[2]
'	$\begin{bmatrix} 1 & -9 \end{bmatrix}$	$\lfloor 4 \rfloor$		13	$\begin{bmatrix} 1 & -8 \end{bmatrix}$	$\lfloor 5 \rfloor$	$\lfloor 6 \rfloor$
8	0 -2	1	1	16	[0 -5]	6	[3]
	$\begin{bmatrix} 1 & -7 \end{bmatrix}$	$\lfloor 5 \rfloor$	[6]	10	$\begin{bmatrix} 1 & -8 \end{bmatrix}$	[8]	[7]

Таблица 5. Варианты начальных условий одноканальной модели вход-состояние-выход

Nº	$x_1(0)$	$x_2(0)$	№	$x_1(0)$	$x_2(0)$
1	0,4	0,4	9	4	0,4
2	0,2	0,7	10	1	0,1
3	0,7	0,3	11	5	0,3
4	0,5	0,6	12	3	0,9
5	0,8	0,5	13	1	0,6
6	0,4	0,4	14	2	0,7
7	0,1	0,6	15	1	0,3
8	0,5	0,4	16	7	0,2

Таблица 6. Варианты параметров многоканальной модели вход-состояние-выход

COCIO	олиис-выло,	4					
№	A	В	C^{\top}	№	A	В	C^{T}
1	$\begin{bmatrix} 0 & -5 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 4 & 3 \\ 1 & 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 3 & 6 \end{bmatrix}$	9	$\begin{bmatrix} 0 & -6 \\ 1 & -4 \end{bmatrix}$	$\begin{bmatrix} 1 & 9 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$
2	$\begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 4 \\ 5 & 7 \end{bmatrix}$	10	$\begin{bmatrix} 0 & -9 \\ 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 9 & 5 \\ 2 & 11 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 6 & 8 \end{bmatrix}$
3	$\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 5 & 7 \end{bmatrix}$	$\begin{bmatrix} 3 & 1 \\ 7 & 4 \end{bmatrix}$	11	$\begin{bmatrix} 0 & -8 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 8 & 7 \\ 2 & 3 \end{bmatrix}$
4	$\begin{bmatrix} 0 & -4 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 6 \\ 5 & 7 \end{bmatrix}$	12	$\begin{bmatrix} 0 & -7 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 3 & 7 \\ 1 & 4 \end{bmatrix}$	$\begin{bmatrix} 4 & 6 \\ 7 & 1 \end{bmatrix}$
5	$\begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix}$	$\begin{bmatrix} 5 & 5 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 6 \\ 3 & 7 \end{bmatrix}$	13	$\begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \\ 8 & 5 \end{bmatrix}$
6	$\begin{bmatrix} 0 & -9 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 4 \\ 7 & 6 \end{bmatrix}$	14	$\begin{bmatrix} 0 & -7 \\ 1 & -6 \end{bmatrix}$	$\begin{bmatrix} 5 & 3 \\ 12 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 9 \\ 8 & 1 \end{bmatrix}$
7	$\begin{bmatrix} 0 & -5 \\ 1 & -9 \end{bmatrix}$	$\begin{bmatrix} 6 & 5 \\ 4 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 4 \\ 3 & 7 \end{bmatrix}$	15	$\begin{bmatrix} 0 & -4 \\ 1 & -8 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 \\ 2 & 7 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ 9 & 1 \end{bmatrix}$
8	$\begin{bmatrix} 0 & -2 \\ 1 & -7 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 2 & 7 \end{bmatrix}$	$\begin{bmatrix} 0 & 4 \\ 7 & 6 \end{bmatrix}$	16	$\begin{bmatrix} 0 & -5 \\ 1 & -8 \end{bmatrix}$	$\begin{bmatrix} 0 & 3 \\ 6 & 5 \end{bmatrix}$	$\begin{bmatrix} 3 & 0 \\ 4 & 7 \end{bmatrix}$