Quiz5

HengMa

```
install.packages("ggplot2")
Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
(as 'lib' is unspecified)
  install.packages("MASS")
Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
(as 'lib' is unspecified)
  library(ggplot2)
  library(MASS)
  set.seed(1)
  days <- 1:100
  matt_pages <- rnorm(100, mean=50, sd=10)</pre>
  rol_pages <- rnorm(100, mean=60, sd=15)</pre>
  mike_pages <- rnorm(100, mean=40, sd=5)</pre>
  mean_pages \leftarrow c(45, 55)
  sigma <- matrix(c(100, 80, 80, 100), ncol=2)</pre>
  correlated_pages <- mvrnorm(n=100, mu=mean_pages, Sigma=sigma)</pre>
  ash_pages <- correlated_pages[,1]
```

Pages Read by Each Undergraduate Over 100 Days

Explaintion

To simulate the reading habits of five undergraduates—Matt, Ash, Jacki, Rol, and Mike—over 100 days, with each individual's daily page counts independent from the others, we use R to generate random data reflecting their unique reading patterns. By assigning each person a mean and standard deviation for their daily reading, we create a diverse set of

reading behaviors, without any correlation, even between Ash and Jacki who were previously considered as a couple. This data is then visualized using ggplot2, producing a line graph that color-codes each undergraduate's reading journey across the days, clearly showcasing their individual reading habits in a straightforward, comparative manner. This approach provides a simple yet effective way to analyze and display the independent reading trends of each student over the specified period.

Five Tests

Descriptive Statistics Test

Calculate the mean, median, standard deviation, minimum, and maximum number of pages read by each undergraduate.

One-Way ANOVA (Analysis of Variance)

To determine if there are statistically significant differences in the average number of pages read between the undergraduates

Kruskal-Wallis Test

If the data do not meet the assumptions of normality required for ANOVA, the Kruskal-Wallis test, a non-parametric alternative to ANOVA, can be used.

Pairwise Comparison Test

Following ANOVA or Kruskal-Wallis, if we find significant differences, pairwise comparison tests like Tukey's HSD (for ANOVA) or Dunn's test (for Kruskal-Wallis) can be conducted.

Time Series Analysis

Since the data is over a period of 100 days, conducting a time series analysis on the number of pages read daily by each undergraduate could reveal trends, cycles, or patterns in their reading habits over time.