Formulario

Métodos Numericos I

González Ramos Zayra Alejandra

5 de abril de 2023

Definición: Sea f una función definida en un conjunto X de numeros reales. Entonces, f tendra por limite L en x_0 , $\lim_{x\to x_0} f(x) = L$, si dado cualquier $\epsilon > 0$ existe otro número real $\delta > 0$ tal que $|f(x) - L| < \epsilon$ siempre que $x \in X$ y $0 < |x - x_0| < \delta$

Definición: Sea $f: x \to \mathbb{R}$ f es una continua en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$. f es continua en x si lo es en cada $x \in X$.

Definición: Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de números reales. La sucesión converge a un número x (el límite) si $\forall \epsilon > 0 \; \exists \; \text{un} \; N(\epsilon)$ tal que $n > N(\epsilon)$ implica $|x_n - x| < \epsilon$

Teorema: Sea $f: x \to \mathbb{R}$ y $x_0 \in X$. Los siguientes enunciados son equivalentes.

- a) f es continua en x_0 .
- b) Si $\{x_n\}_{n=1}^{\infty}$ es una sucesión en x y converge en x_0 entonces $\lim_{x\to x_0} f(x) = f(x_0)$.

Definición: Si f es una función definida en un intervalo abierto que contiene a x_0 , entonces f será diferenciable en x_0 si:

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 existe.

Teorema: Si f es diferenciable en x_0 , entonces f es continua en x_0 .

Teorema de Rolle: Supongamos que $f \in C[a,b]$ y que es diferenciable en (a,b), si f(a) = f(b) = 0, entonces existirá un número C en (a,b) con f'(c) = 0

Teorema del valor medio: Si $f \in C[a,b]$ y f es diferenciable en (a,b) tal que

$$f'(c) = \frac{f(b) - f(a)}{b}$$

Teorema del valor extremo: Si $f \in C[a,b]$ entonces existirá $c_1, c_2 \in [a,b]$ con $f(c_1) \leq f(x) \leq f(c_2)$ para $x \in [a,b]$. Si además f es diferenciable en (a,b), los números c_1 y c_2 estarán ya sea en los extremos de [a,b] o donde f' sea cero.

Teorema generalizado de Rolle: Supongamos que $f \in C[a, b]$ es n veces diferenciable en (a,b). Si f(x) es cero en n+1 puntos distintos $x_0, ..., x_n$ en [a,b] entonces existirá un número c en (a,b) con $f^{(n)}(c) = 0$

Teorema del valor intermedio: Si $f \in C[a,b]$ y k es un número cualquiera entre f(a) y f(b) existirá un número c en (a,b) para el cual f(c) = k.

Teorema de Taylor: Supongamos que $f\in C^n[a,b]$, que $f^{(n+1)}$ existe en [a,b] y que $x_0\in [a,b]$. Para toda $x\in [a,b]$ habrá un número $\xi(x)$ entre x_0 y x tal que

$$f(x) = P_n(x) + R_n(x)$$

donde

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^k(x_0)}{k!}(x - x_0)^k$$

y
$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{(n+1)}$$

Propiedades

 $|\cos(x)| \le 1$

 $|sen(x)| \le |x|$

Orden de convergencia

Definición: Si un método iterativo converge y existen dos constantes $p \ge 1$ y $c \le 0$ tales que:

$$\lim_{n\to\infty}\mid\frac{\epsilon_{n+1}}{\epsilon_n{}^p}\mid=c$$

entonces p se llama orden de corvengencia del método y c es la constante de error asintótico.