General probability questions

- 1. Exercises 2E1 in the book.
- 2. Exercises 2E2 in the book.
- 3. Exercises 2E3 in the book.

Bayes theorem

1. In this exercise we will use Bayes theorem for spell correction. Let θ be the word one wanted to spell, and let Y be the word that is actually spelled, which in this case is 'radom'. Suppose we know that it should be one of the three words $\{'radom', 'radom', radon'\}$. The three words are not equally like a priori (unnormalized prior taken from frequency of the word occurring):

θ	$P(\theta)$
random'	7×10^{-5}
'radon'	7×10^{-6}
'radom'	3×10^{-7}

The conditional probability of θ given one has spelled 'radom' (the likelihood) is, by Google spell checker, given by (again not normalized):

θ	$P(Y = 'radom' \theta)$
random'	0.00193
'radon'	0.000143
'radom'	0.975

What is the posterior distribution of θ given that Y = radom'?

Proportionality

Recall that two functions $f_1(x)$ and $f_2(x)$ are proportional, ∞ , to each other if there exists a positive constant c > 0 such that $f_1(x) = cf_2(x)$.

- 1. Suppose $f(x) = e^{-x^2}$ which of the following functions are f(x) proportional to
 - a) $f_1(x) = e^{-\frac{x^2}{2}}$.
 - b) $f_2(x) = e^{-(x-\mu)^2}$
 - c) $f_3(x) = e^{-x^2 \mu^2}$.
- 2. Suppose $f(p) = \frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$ which of the following functions are f(p) proportional to
 - a) $f_1(x) = x^{\alpha 1} (1 x)^{\beta 1}$.
 - b) $f_2(x) = x^{\alpha+2-1}(1-x)^{\beta-1}$.
 - c) $f_3(x) = x^{\alpha-1}(1-x)^{\beta+3-1}$.

Independence

Independence recall that the definition of independence for probabilities is given by

$$P(A \cap B) = P(A)P(B).$$

The same holds for densities, i.e.

$$p_{X,Y}(x,y) = p_X(x)p_Y(y).$$

1. Suppose that the joint density of X_1 and X_2 given p is proportional to:

$$p(x_1, x_2|p) \propto p^{x_1+x_2}(1-p)^{2-x_1-x_2}$$

Show that given p that X_1 and X_2 two are independent.

2. Suppose we have a uniform prior on p (i.e. p(p) = 1), and suppose we observe n independent observations of a Bernoulli random variable (i.e. $p(X|p) = p^X(1-p)^{1-X}$). Show that (using Bayes theorem and independence)

$$p(p|X_1, X_2, \dots, X_n) \propto p^{\sum_{i=1}^n X_i} (1-p)^{n-\sum_{i=1}^n X_i}$$

Distributions

A key concept in Bayesian modeling is distribution.

1. The most famous distribution is the Normal distribution:

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}.$$

- a) Is the distribution of x continuous or discrete?
- b) Suppose we want to put a prior on μ , if we have no special information should the prior be continuous or discrete?
- c) Suppose we want to put a prior on σ , if we have no special information should the prior be continuous or discrete? Should there be any other restriction on the domain of σ (which values σ can take)?
- d) Write the integral form of $P(X > 2 | \mu = 2, \sigma = 4)$.
- 2. An other classical distribution is the Poisson distribution:

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!} x = 0, 1, 2 \dots$$

- a) Is the distribution of x continuous or discrete?
- b) Suppose we want to put a prior on λ , if we have no special information should the prior be continuous or discrete?
- c) Write the sum form of $P(X > 2|\lambda = 2)$
- d) Suppose we observe two independent observation (X_1, X_2) observations of $p(x|\lambda)$. Further assume a an exponential prior on λ $(p(\lambda) = e^{-\beta\lambda})$. Use Bayes theorem and independence to derive the posterior distribution of λ $(p(\lambda|X_1, X_2))$