

Fig. 2.23. Anthropomorphic arm

Table 2.4. DH parameters for the anthropomorphic arm

Link	a_i	$lpha_i$	d_i	ϑ_i
1	0	$\pi/2$	0	ϑ_1
2	a_2	0	0	ϑ_2
3	a_3	0	0	ϑ_3

The homogeneous transformation matrices defined in (2.52) are for the single joints:

$$m{A}_1^0(artheta_1) = egin{bmatrix} c_1 & 0 & s_1 & 0 \ s_1 & 0 & -c_1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

$$\mathbf{A}_{i}^{i-1}(\vartheta_{i}) = \begin{bmatrix} c_{i} & -s_{i} & 0 & a_{i}c_{i} \\ s_{i} & c_{i} & 0 & a_{i}s_{i} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad i = 2, 3.$$

Computation of the direct kinematics function as in (2.50) yields

$$T_3^0(\mathbf{q}) = \mathbf{A}_1^0 \mathbf{A}_2^1 \mathbf{A}_3^2 = \begin{bmatrix} c_1 c_{23} & -c_1 s_{23} & s_1 & c_1 (a_2 c_2 + a_3 c_{23}) \\ s_1 c_{23} & -s_1 s_{23} & -c_1 & s_1 (a_2 c_2 + a_3 c_{23}) \\ s_{23} & c_{23} & 0 & a_2 s_2 + a_3 s_{23} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.66)

where $\mathbf{q} = \begin{bmatrix} \vartheta_1 & \vartheta_2 & \vartheta_3 \end{bmatrix}^T$. Since z_3 is aligned with z_2 , Frame 3 does not coincide with a possible end-effector frame as in Fig. 2.13, and a proper constant transformation would be needed.