Using Node Similarity to Achieve Local Differential Privacy in Graph Neural Networks

Project Presentations (CMPUT-622)

Saqib Ameen (saqib1)
Thirupathi Reddy Emireddy (emireddy)
Justin Stevens (jdsteven)

Graph Neural Networks (GNN)

- Utilize graph structure
- Learns representation of relational data

Graph Neural Networks (GNN)

- Utilize graph structure
- Learns representation of relational data
- Superior performance:
 - Molecular chemistry
 - Social Networks
 - Network analysis
 - Fraud Detection
 - Recommendation Systems

Applications of GNN

- Node classification (our task)
- Edge/Link Prediction
- Graph Classification

Privacy in GNNs

- Recommendation engines
 - Facebook, Bumble, Ads

Privacy in GNNs

- Recommendation engines
 - Facebook, Bumble, Ads
- Node Data Privacy Settings
 - Personal Information Usage
 - Better Recommendations

Private Node Data

Privacy in GNNs

- Recommendation engines
 - Facebook, Bumble, Ads
- Node Data Privacy Settings
 - Personal Information Usage
 - Better Recommendations
- Problem
 - General Data Protection Regulation (GDPR)/ legal compliances
 - Data Privacy/ Anonymization

Private Node Data

Privacy in GNNs (cont.)

- Goal
 - Privacy guarantee for private data
 - Efficient Learning

Private Node Data

Graph Representation

• Consider a graph: $G = (V, \mathcal{E}, X, Y)$

V: Set of Nodes

ℰ: Set of Edges

X: Set of Nodes' Features

Y: Set of Nodes' Labels

- In this graph, the nodes' features are indicated by colouring the node either orange or yellow.
 - In practice, nodes' features are vectors.

Adjacency Matrix

- One way graphs are represented is using the adjacency matrix A
 - \circ A $_{ii}$ = 1 if there is an edge between node i to j
 - \circ A $_{ii}$ = 0 otherwise

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

GNN

GNN

 Learns node representation using set of stacked graph convolution layers

GNN: Big Picture

- Given the input graph from before, we apply several GNN blocks (explained in the next slide) to obtain a new transformed graph with the same structure.
 - This new graph will have different features for each node.
- We then apply a classifier to obtain a prediction for every node.

GNN Block

 To obtain a transformation on the graph, we apply a GNN block a certain number of times. This block updates the information at a node by aggregating the information from all the neighbour's nodes (known as aggregation).

GNN (cont.)

- ullet Initial embedding for node v is $\,h_v^0=x_v.\,$
- New Embedding (h) for a node (v) at a layer l, in an M-layers GNN:

$$\mathbf{h}_{\mathcal{N}(v)}^{l} = \mathbf{Aggregate}_{l} \left(\left\{ \mathbf{h}_{u}^{l-1}, \forall u \in \mathcal{N}(v) \right\} \right)$$
Neighboring nodes of v

Aggregated embeddings from layer l-1 of neighboring nodes of v

GNN (cont.)

- ullet Initial embedding for node v is $\,h_v^0=x_v.\,$
- New Embedding (h) for a node (v) at a layer l, in an M-layers GNN:

$$\mathbf{h}_{\mathcal{N}(v)}^{l} = \mathrm{Aggregate}_{l}\left(\{\mathbf{h}_{u}^{l-1}, \forall u \in \mathcal{N}(v)\}\right)$$

$$\mathbf{h}_{v}^{l} = \mathrm{UpDAte}_{l}\left(\mathbf{h}_{\mathcal{N}(v)}^{l}\right)$$
 Aggregated embeddings from layer l -1 of neighboring nodes of v

New Embedding for node v in layer l

Image: Sajadmanesh, Sina & Gatica-Perez, Daniel. (2020). Locally Private Graph Neural Networks.

Non-linear function (e.g. neural network)

Local Differential Privacy (LDP)

- Approach for collecting private data and computing statistical queries, such as mean, count, and histogram.
 - Used by Google, Microsoft, Apple
- ullet Data holders send a perturbed version of their data using randomized mechanism ${\cal M}$
 - Not meaningful individually
 - Can approximate the target query when aggregated

LDP (cont.)

• To prevent aggregator from inferring the original value, \mathcal{M} must satisfy:

$$\Pr[\mathcal{M}(x) = y] \le e^{\epsilon} \Pr[\mathcal{M}(x') = y]$$

Multi-bit Mechanism

- Multi-bit Encoder
 - Runs at user-side
 - Randomized feature selection and perturbation
 - Introduces bias
- Multi-bit Rectifier
 - Runs at server-side
 - Debiases
- Not a denoising step

Noisy Labels

- To further improve the privacy of the model, a randomized response mechanism is applied to the labels.
- ullet Let ϵ_y be the privacy budget for the labels. Then if c is the number of classes, we run a randomized response as
- $p(y'|y) = \begin{cases} \frac{e^{\epsilon y}}{e^{\epsilon y} + c 1}, & \text{if } y' = y\\ \frac{1}{e^{\epsilon y} + c 1}, & \text{otherwise} \end{cases}$

User Side

Server Side

KProp Denoising

- Motivation
 - Noise → Less Accuracy
 - For every node v, in the initial layer of GNN:

Linear Aggregation approx. error $\propto rac{1}{\sqrt{N(v)}}$

- To reduce first layer approximation error, we perform the KProp algorithm.
 - K consecutive linear Aggregate functions

KProp Example (k=2)

Private Data and Label Privacy

Private Data and Label Privacy

Research Question

- KProp expands neighbourhood of a node to k-hops away
 - Issue: Nodes k-hops away might be uncorrelated with the given node as the value of k increases. We might lose accuracy.
- Can aggregation of similar nodes' neighborhood with smaller **k** help us improve the denoising capabilities and provide better accuracy?

SIMGAT

- Proposed algorithm: SIM(ILARITY) (AGGRE)GAT(OR)
- Exploits node similarity
- SimGat:

 - Run k'-prop, where k' < k to avoid dissimilar nodes
 - Aggregate the features from neighbourhoods of similar nodes and the neighbours of the node itself.
- Goal: Denoise the aggregation data to obtain high accuracy

SIMGAT Example

Consider the node A' that is similar to node A and use its neighbours for node A aggregation

Node Similarity

- Three similarity metrics considered:
 - Multi-hop Similarity (GraRep^[1])
 - DeepWalk^[2]
 - o node2vec^[3]

^[1] Cao et al. 2015. GraRep: Learning Graph Representations with Global Structural Information

^[2] Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations.

^[3] Grover et al. 2016. node2vec: Scalable Feature Learning for Networks.

Multi-hop Similarity

1. Calculate the transition probability matrix **P**:

$$P_{ij} = rac{T_{ij}}{\sum\limits_{c} T_{ic}}$$
 where $T = \sum\limits_{m=1}^{n} A^m$

- 1. A is adjacency matrix, n is number of hops
- 2. We define the similarity matrix ${\bf S}$ based on similarity threshold ${m \delta}$:

$$S_{ij} = \begin{cases} 1, & \text{if } P_{ij} > \delta \\ 0, & \text{otherwise} \end{cases}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Random Walk

- Start from node u and run a random walk over the graph using a search strategy R.
- Similarity: Probability that u and v
 occur on the same random walk is
 used as a measure of their similarity.
- DeepWalk and node2vec are different strategies (R) of doing Random Walk.

DeepWalk

- Walks as sentence metaphor
- Use skip gram model to identify similar nodes during random walks
- Uses Hierarchical Softmax function to optimize the computation
- Unbiased random walks (treats all nodes equally to pick the next)

Image: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations.

node2vec

- Biased random walk that balances staying close to the node (parameter p) and moving away (parameter q).
- In the graph on the right, let's suppose the random walk strategy has moved from s₁ to w.
 - With probability proportional to 1/p, move back to s_1 .
 - With probability proportional to 1, move to a node
 1-hop away from s₁.
 - With probability proportional to 1/q, move to a node
 2-hops away from s₁.

Datasets

DATASET	#Classes	#Nodes	#Edges	#Features	Avg. Deg.
Cora	7	2,708	5,278	1,433	3.90
Ривмер	3	19,717	44,324	500	4.50
Г АСЕВООК	4	22,470	170,912	4,714	15.21
LASTFM	10	7,083	25,814	7,842	7.29

Evaluation

- Compare the accuracy of KProp (pre-existing work) to SimGAT (our proposed architecture) with each of the three different similarity methods on the datasets.
 - We use a 50% training, 25% validation, 25% testing split of the data.
- We keep the rest of the GNN model the same as the one in KProp paper [1].
- We'll vary the privacy budget for features, ε_{\downarrow} , for the experiments.

Preliminary Results

Future Experiments

- In the previous experiments, we ran this with k'=k-1. We plan to run it with different and much smaller values of k' and different hyperparameter to reduce k' while maintaining accuracy with SimGAT.
- We will run results on the other 3 datasets for a full comparison.

Summary

- GNN are powerful and widely used in a wide array of
- Using LDP to preserve user data privacy.
- Improved denoising of first layer of GNN to improve accuracy.
- Our New method utilizes similarity of nodes in the graph.
 - GraRep, DeepWalk, node2vec
- Results comparison with the state-of-the-art mechanism KProp

Questions?

