

Dra. Soledad Espezua Ll.

Temas

- Definiciones y características básicas
- Conjuntos difusos y sus propiedades
- Operaciones lógicas en conjuntos difusos
- Relaciones difusas y reglas de composición difusas
- Sistemas basados en reglas difusas
- Adquisición y representación del conocimiento
- Sistemas de inferencia difusas
- Fusificación y defusificación
- Modelos de inferencia de Mamdani y Takagi-Sugeno

Bibliografia

- O. Yazdanbakhsh, S.Dick. A systematic review of complex fuzzy sets and logic. Fuzzy Sets and Systems. Vol 338:1 22.(2018).
- ▶ Zadeh, L.A.Fuzzy logic: a personal perspective. Fuzzy Sets and Systems, Vol281, (2015).
- ▶ G. Feng. Analysis and Synthesis of Fuzzy Control Systems. CRC Press, 2010.

Software

- Fuzzytech: http://www.fuzzytech.com/
- Fuzzy Logic Toolbox/Matlab

International Fuzzy Systems Association

IFSA 2017

http://fuzzysystems.org/

https://www.youtube.com/watch?v=J_Q5X0nTmrA&feature=emb_rel_pause

Padre de la Lógica difusa

Lofti A. Zadeh 1921-2017

- 1965: Lofti A. Zadeh ¹, publica la teoría de los "Conjuntos Difusos", una nueva álgebra que emula la manera de pensar de las personas.
 - Zadeh propone vincular el lenguaje natural a sistemas lógico-matemáticos formales. De esta forma, términos del lenguaje natural serian usados en un sistema de lógica matemática.
- 1973: Zadeh publica "Outline of a New Approach to the Analysis of Complex Systems and Decision Processes", donde define la "lógica difusa".
- https://www2.eecs.berkeley.edu/Faculty/Homepages/zadeh.html

- 1974: Ebrahim H.Mamdani controla con lógica difusa una máquina de vapor. Satisfecho de los resultados da conferencias explicando el proceso.
- A inicios de los 80 Japón se vuelve potencia en lógica difusa. Se destacan los trabajos de Terano y Sugeno para construir reglas difusas.

Ebrahim H. Mamdani

• 1983: Yasunobu y Miyamoto de Hitachi Corp. diseñan el control de frenado y aceleración del metro de Sendai (Japón) y lo implementan en 1987. Este sistema después es aplicado en Tokyo.

El metro de la ciudad japonesa de Sendai acelera y frena mediante un sistema basado en lógica difusa.

Consiguió el permiso para operar en 1986 después de 300 000 simulaciones y 3000 viajes sin pasajeros.

• 1987: en el 2do congreso de la IFSA² en Tokyo, Yamakawa controla el péndulo invertido con integrados diseñados expresamente por lógica difusa.

Michio Sugeno Professor, Tokyo Institute of Technology, Japan

• 1991: Michio Sugeno, control inteligente de un helicóptero no tripulado, usando control difuso a través de instrucciones verbales combinadas con datos de vuelo en tiempo real (GPS) y cámaras.

Helicóptero de Michio Sugeno

- 1991: Japón controla el 80% del mercado de productos basados en lógica difusa. Se combina el estudio con las patentes. Empresas ven en ello un potencial.
- 1997: la NASA por primera vez envió el Sujourner, un vehículo espacial, para operar en el rocoso suelo marciano. Se doto al vehículo con una inteligencia neuro-fuzzy³. Las decisiones de navegación las gobierna el sistema difuso complementadas con la información cualitativa sobre la tracción superficial del suelo dada por las redes neuronales.

- Actualmente son potencia en logica difusa, EEUU y Europa.
- [3] https://trs.jpl.nasa.gov/bitstream/handle/2014/16275/00-238.pdf?sequence=1

Compañías Japonesas con Sistemas difusos

Canon	SLR camera focusing	M inolta	Camera focusing
	Stepper control	Mitsubishi Chemical	Cement klin control
Casio	Cleaning room temp and	Mitsubishi Electric	Elevator control
	humidity control		Plasma Etching
□aldan	Gas cooling plant	Mitsubushi Heavy	Air-conditioning systems
Edji electronic	Chemical mixer	Matsushita(Panasonic)	Temperature controllers
	Waste buring plant	Mssan Motor Company	Automatic transmission
Hitachi	Sendai subway control		ABS braking system
	Elevator control	Muclear Power Corp	Nuclear power plant control
dec Izumi	GaAs crystal growth		Factory controllers
IshidaInstruments	Automatic measuring		Robotic controllers
Lon Auto Machinery	Food processing		Camera stabilizers
Di ppon Steel	Iron mill control	Ricoh	Camera focusing
Maruman	Golf club selection		Voice Recognition
Мусот	Robotic controllers	\$anyo	Camera iris control
Melden-sha	Dredging control	Seiko	Desing expert system
	Machine control	∑ baru	Automatic transmission
To shiba	Elevator control	Vamaichi Securities	Stock trading
	Product desing expert system		Digital measurement systems

Paradoja del centavo para ser millonario

Una persona recibe un centavo de peso cada minuto de su vida de forma continua. ¿Al cabo de un tiempo, se volverá millonario?

- ¿Cuál fue el centavo que convirtió a esa persona en millonaria?
- ¿Antes de ese centavo era <u>casi</u> millonaria?
- ¿Puede un centavo dividir personas millonarias de los que no lo son?

Juego de golf

- ✓ Si la bola está <u>lejos</u> del hoyo y el terreno está <u>ligeramente</u> inclinado de izquierda a derecha, golpee la bola <u>fuertemente</u> y en una dirección <u>un poco</u> a la izquierda de la bandera.
- ✓ Si la bola está <u>muy cerca</u> del hoyo y el terreno es plano, golpee la bola <u>suavemente</u> y directamente hacia el hoyo.
- Cómo se puede definir la distancia:
 - 1. Muy cerca: menos de 1 metro
 - 2. Cerca: entre 1 y 3 metros
 - 3. Medio: entre 3 y 5 metros
 - 4. Lejos: entre 5 y 7 metros
 - 5. Muy Lejos: mayor de 7 metros
- ¿Cómo clasificar la distancia 4.95m?
- Intuitivamente, se sabe que 4.95 está más para "Lejos" que para "Medio". El problema es cómo definir ese valor "lingüísticamente".

Ambigüedad

- La ambigüedad es una característica de nuestro lenguaje. Describe eventos inexactos y está relacionada con el grado de conocimiento de esos eventos sin importar la probabilidad de su ocurrencia.
- El cerebro humano procesa informaciones ambiguas de forma directa:
 - Hoy está más o menos frio.
 - Ese show es caro.
 - Es mucha tensión.
 - Tiene poca sal.
 - La carne está bien cocida.
- Para las personas no hay incerteza sobre la cuantificación del valor que se quiere representar.

Redes Bayesianas y Lógica Difusa

- * La teoría de lógica difusa, se desarrolló en paralelo con el surgimiento de las Redes Bayesianas (RB).
 - En RB la probabilidad, determina el grado de **incertidumbre (creencia)** de que cierto evento pueda ocurrir en base al conocimiento actual del agente. El grado de conocimiento se actualiza si se obtiene más información.
 - La <u>incertidumbre</u> está asociada al <u>desconocimiento</u> o falta de información del valor exacto que se pueda tener de una variable.
- * La motivación de la Lógica Difusa (LD), no fue el estudio de la <u>incertidumbre</u>, sino de la <u>ambigüedad</u> (imprecisión/incerteza).
 - La <u>ambigüedad</u> está relacionada con el <u>conocimiento</u> acerca del valor de una variable cuyo <u>valor exacto se desconoce</u>.
 - En LD se mide el grado de **imprecisión** en la forma como expresamos/comunicamos, nuestro conocimiento acerca de una variable.

3. Lógica Clásica

- En la lógica clásica (booleana, binaria, Aristotélica), los objetos pertenecen o no a una determinada clase o a un determinado conjunto.
- La salida se resume a "Si" o "No", "Verdadero" o "Falso", 0 o 1, etc.

Ejemplo:

> Sea el siguiente gráfico denotando el concepto de "Velocidad Alta"

Función característica (inclusión):

$$\mu(v) = \begin{cases} 1, & \text{si } 180 \le v \le 210 \\ 0, & \text{caso contrario} \end{cases}$$

Selección de umbrales

- ¿Cuál es la salida de la función característica, cuando la velocidad de 179.999 km/h?
- La imprecisión y la incerteza del mundo real acaba restringiendo la aplicación de la lógica clásica en problemas del día a día.
- Principio de incompatibilidad de Zadeh → A medida que la complejidad de un sistema aumenta, la habilidad de hacer afirmaciones precisas que sean significativas disminuye.

4. Lógica Difusa (LD)

LD es un método de razonamiento aproximado no probabilista, que puede ser visto como una extensión de la lógica multivaluada que <u>facilita enormemente el modelado de información cualitativa de forma aproximada</u>. El objetivo de LD es desarrollar un razonamiento aproximado que pueda emular el razonamiento humano en un lenguaje natural.

LD permite crear una <u>escala de valores intermedios</u> (grados de pertenencia), que representan las similitudes de un evento con respecto a otro evento.

{Caliente/tibio/frio}, {pequeño/mediano/grande}, {poco/regular/mucho}

4. Lógica Difusa (LD)

Características:

- Utiliza grados de pertenencia a los conjuntos (grados de verdad de las variables) en lugar de valores estrictos como verdadero o falso.
- Permite representar matemáticamente la ambigüedad, proporcionando herramientas formales para su tratamiento.
- Proporciona una manera simple de obtener una conclusión a partir de información de entradas ambiguas, imprecisas, con ruido o incompletas.

Función de pertenencia

- En LD, la función de Inclusión se flexibiliza, permitiendo que los objetos puedan pertenecer más o menos a un determinado conjunto.
- La <u>Función de Inclusión</u> a un conjunto difuso, o **Función de Pertenencia**, es dada por la siguiente expresión:

$$\mu_A(x)$$
: $x \to [0,1]$; donde $x \in X$

- donde μ_A (x) retorna el grado de pertenencia del elemento x al conjunto difuso A, siendo x perteneciente al universo de discurso X.
- Por ejemplo, en la siguiente figura un conjunto difuso A define el concepto de "Velocidad Alta".

Función de pertenencia

Velocidad Alta

Los elementos pertenecerán a un conjunto con grados de pertenencia. El grado de pertenencia se normaliza entre 0 y 1 e indican respectivamente exclusión e inclusión total.

Función de pertenencia vs Función característica

- La Función de Pertenencia en LD es la generalización de la Función Característica en Lógica Clásica y matemáticamente es equivalente.
 - Función Característica

A:X
$$\rightarrow$$
[0,1]
$$A(x) = \begin{cases} 1, & si \ x \in A \\ 0, & si \ x \notin A \end{cases}$$

• Función de Pertenencia

$$\mu_A: \mathbf{X} \longrightarrow [0,1] \qquad \qquad \mu_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A \end{cases}$$

* Las funciones de pertenencia son una forma de representar gráficamente un conjunto difuso sobre un universo de discurso.

Principales tipos de funciones de pertenencia

Función triangular:

Función trapezoidal:

Principales tipos de funciones de pertenencia

Función Gaussiana:

Ejemplo: Sean tres conjuntos difusos discretos: A_1, A_2, A_3 que representan el concepto de edad, definidos en el universo de discurso $X = \{0, ..., 80\}$, representados en la siguiente figura:

Nediana A. Viejo A3

Funciones de pertenencia de cada conjunto

$$\mu_{A1}(x) = \begin{cases} 1, & x \le 20 \\ \frac{35 - x}{15}, & 20 < x < 35 \\ 0, & x \ge 35 \end{cases} \qquad \mu_{A2}(x) = \begin{cases} 0, & x \le 20, x > 60 \\ \frac{(x - 20)}{15}, & 20 < x \le 35 \\ 1, & 35 < x \le 45 \\ \frac{(60 - x)}{15}, & 45 < x \le 60 \end{cases}$$

$$\mu_{A3}(x) = \begin{cases} 0, & x \le 45\\ \frac{x - 45}{15}, & 45 < x \le 60\\ 1, & x > 60 \end{cases}$$