ECON 6356 International Finance and Macroeconomics

LECTURE 6:

THE GLOBAL FINANCIAL CYCLE: DILEMMA OR TRILEMMA?

Camilo Granados

University of Texas at Dallas

Fall 2023

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection

1/42

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection
- Example 1: QE ⇒ USD depreciates

Real Broad Trade Weighted US Dollar

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection
- Example 1: QE ⇒ USD depreciates ⇒ Emerging markets response
 - ► In 2009, Brazil adopts tax on portfolio flows
 - ► In late 2010, Turkey increases reserve requirements
 - In 2010, Indonesia introduces one-month minimum holding period for debt

Camilo Granados (UTD) International Finance and Macro Fall 2023 1

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection
- Example 2: "Taper tantrum" ⇒ USD appreciates

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection
- Example 2: "Taper tantrum" ⇒ USD appreciates ⇒ Emerging markets response
 - ► In spring of 2013, Brazil and Indonesia start raising rates
 - ► In June 2013, Brazil removes tax on portfolio flows
 - ► In early 2014, India, South Africa and Turkey also increase interest rate

Camilo Granados (UTD) International Finance and Macro Fall 2023

Introduction

- Monetary policy decisions have global effects
 - ► Financial globalization has created even more interconnection
- How do other countries respond to US monetary policy shocks?
 - Do emerging markets responses make sense?
 - ► Is some form of international monetary policy coordination desirable?

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

• Textbook reference framework: Uncovered Interest-Rate Parity (UIP)

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

• How does monetary policy in other countries respond to US shocks?

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

- How does monetary policy in other countries respond to US shocks?
 - ► Flexible exchange rate ⇒ Do nothing, exchange rate adjusts

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

- How does monetary policy in other countries respond to US shocks?
 - ► Flexible exchange rate ⇒ Do nothing, exchange rate adjusts
 - ► Fixed exchange rate ⇒ Domestic interest rate tracks US rate (FFR)

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

- How does monetary policy in other countries respond to US shocks?
 - ► Flexible exchange rate ⇒ Do nothing, exchange rate adjusts
 - ► Fixed exchange rate ⇒ Domestic interest rate tracks US rate (FFR)
- Problem: UIP does not work well empirically (Fama, 1984)
 - ▶ If so, how does consensus view based on UIP change?

A Reignited Debate

- UIP puzzle around for a long time
 - ► Yet consensus on monetary policy response to foreign shocks largely unscathed
 - lacktriangleright Flexible exchange rate provides insulation from foreign shocks (\Rightarrow desirable)

Camilo Granados (UTD) International Finance and Macro Fall 2023

3/42

A Reignited Debate

- UIP puzzle around for a long time
 - ► Yet consensus on monetary policy response to foreign shocks largely unscathed
 - ► Flexible exchange rate provides insulation from foreign shocks (⇒ desirable)
- Rey (2013) reignited policy debate
 - ► Showed existence of a "global financial cycle" (GFC)
 - ► Argued flexible exchange rate not enough to insulate countries from foreign shocks
 - Concluded policymakers need to actively manage capital flows

Camilo Granados (UTD) International Finance and Macro Fall 2023 3/4

A Reignited Debate

- UIP puzzle around for a long time
 - Yet consensus on monetary policy response to foreign shocks largely unscathed
 - ► Flexible exchange rate provides insulation from foreign shocks (⇒ desirable)
- Rey (2013) reignited policy debate
 - ► Showed existence of a "global financial cycle" (GFC)
 - ► Argued flexible exchange rate not enough to insulate countries from foreign shocks
 - Concluded policymakers need to actively manage capital flows
- Obstfeld (2014): Flexible exchange rate still desirable
 - ► Although financial globalization may worsen tradeoffs
 - Financial stability concerns may hamper monetary policy effectiveness

Camilo Granados (UTD) International Finance and Macro Fall 2023 3

Outline

- Empirical evidence on GFC
 - ▶ International transmission of monetary policy shocks (Rey, 2013; Miranda-Agrippino and Rey, 2020)
 - ▶ International transmission of credit shocks (Cesa-Bianchi, Ferrero and Rebucci, 2018)
 - ► Relevance of exchange rate regime (Obstfeld, Ostry and Qureshi, 2019)
 - * Tools: Regression analysis and vector autoregressions (VARs)

The Trilemma

_ .. .

Trilemma

Proposition: A country can contemporaneously achieve only two of the following three objectives:

- 1. Independent monetary policy;
- 2. Fixed exchange rate;
- 3. Free international movement of financial capital.

Back to UIP

Recall UIP

$$i_t = i_t^* + \mathbb{E}_t e_{t+1} - e_t$$

where

- \cdot i_t = Nominal interest rate on domestic government bond
- $i_t^* = \text{Nominal interest rate on foreign government bond}$
- e_t = Nominal exchange rate (units of domestic currency per unit of foreign currency)
- UIP is a no-arbitrage condition

Example: Suppose a US citizen has 100 USD to invest:

- ► Can buy US government bond that pays i_t
- ► Alternatively can buy UK government bond that pays i_t^*
- But in this case need to convert domestic USD into GBP today at exchange rate e_t
- And need to convert payoff back in USD tomorrow at exchange rate $\mathbb{E}_t e_{t+1}$

6/42

Trilemma and UIP

- Trilemma logic relies on UIP
 - ► Assume free international movement of financial capital
 - Fixed exchange rate implies $e_t = 0 \ \forall t \ (\Rightarrow \mathbb{E}_t e_{t+1} = 0) \Rightarrow i_t = i_t^*$
 - ► Home country looses domestic monetary policy independence

The Trilemma

Trilemma and UIP

- Trilemma logic relies on UIP
 - Assume free international movement of financial capital
 - ▶ Fixed exchange rate implies $e_t = 0 \ \forall t \ (\Rightarrow \mathbb{E}_t e_{t+1} = 0) \Rightarrow i_t = i_t^*$
 - ► Home country looses domestic monetary policy independence
- But if UIP does not hold, is Trilemma logic still sound?
 - ► Failure of UIP well documented empirically
 - Policy implications much less explored

Camilo Granados (UTD) International Finance and Macro Fall 2023

Trilemma and UIP

- Trilemma logic relies on UIP
 - Assume free international movement of financial capital
 - ▶ Fixed exchange rate implies $e_t = 0 \ \forall t \ (\Rightarrow \mathbb{E}_t e_{t+1} = 0) \Rightarrow i_t = i_t^*$
 - ▶ Home country looses domestic monetary policy independence
- But if UIP does not hold, is Trilemma logic still sound?
 - ► Failure of UIP well documented empirically
 - Policy implications much less explored
- Enter Rey (2013): Policy implication challenge existing consensus

"Independent monetary policies are possible if and only if the capital account is managed."

Camilo Granados (UTD) International Finance and Macro Fall 2023 7 /

The Global Financial Cycle

Global Financial Cycle (GFC)

- Strong common component among risky asset prices globally
- Same common component also drives capital flows
 - Credit flows are particularly pro-cyclical and volatile

Camilo Granados (UTD) International Finance and Macro Fall 2023

8 / 42

Global Financial Cycle (GFC)

- Strong common component among risky asset prices globally
- Same common component also drives capital flows
 - Credit flows are particularly pro-cyclical and volatile
- Excessive credit growth in booms and retrenchment in busts
 - Credit growth one of best predictor of financial crisis
 - **★** Gourinchas and Obstfeld (2012)
 - ★ Schularick and Taylor (2012)

Camilo Granados (UTD) International Finance and Macro Fall 2023

8 / 42

Global Financial Cycle (GFC)

- Strong common component among risky asset prices globally
- Same common component also drives capital flows
 - Credit flows are particularly pro-cyclical and volatile
- Excessive credit growth in booms and retrenchment in busts
 - ► Credit growth one of best predictor of financial crisis
 - ★ Gourinchas and Obstfeld (2012)
 - ★ Schularick and Taylor (2012)
- Rey (2013): Dilemma
 - ▶ GFC makes exchange rate regime irrelevant
 - Actual tradeoff: Free capital mobility vs. monetary policy autonomy (dilemma and not a trilemma)

Camilo Granados (UTD) International Finance and Macro Fall 2023 8/42

Gross Capital Flows Co-Movement

Faulty Faulty Faulty Faulty Faulty Faulty FDI FDI FDI

Liability

Correlations of capital inflows by asset classes into geographical regions

Debt Debt Debt

Debt Debt Debt Credit C

Liability										וטו							Dent										Credit Credi
Flows	- 1	V. Am. I	LatAm (CE. EU	W. EU	Em.As	Asia	Africa .	N. Am	LatAm (CE. EU	W. EU	Em.As	Asia	Africa	N. Am	LatAm	CE. EU	W. EU	Em.As	Asia .	Africa	N. Am I	LatAm (CE. EU W. E	U Em.As	Asia Africa
Equity N	. Am	1.00																									
Equity Lo	ıtAm	0.39	1.00																								
Equity Cl	E. EU	0.52	0.49	1.00																							
Equity W	/. EU	0.63	0.35	0.50	1.00																						
Equity Er	n. As	0.37	0.24	0.28	0.47	1.00																					
Equity A		0.24		0.28	0.40	0.31	1.00																				
Equity A		0.41	0.22	0.26	0.55	0.34		1.00																			
FDI N		0.54			0.45	0.52			1.00																		
FDI Lo	_	0.41			0.29	0.32		0.04	0.68	1.00																	
FDI CI	_	0.46	0.11		0.18	0.23		0.09	0.61	0.65	1.00																
FDI W	_	0.57		0.19	0.38	0.35		0.16	0.61	0.59		1.00															
FDI Er	_	0.47	0.24	0.16	0.34	0.36				0.77			1.00														
FDI A		0.36		0.03	0.29	0.30		0.05					0.69														
FDI A		0.33	0.01	0.10	0.18					0.36		0.35		0.27	1.00												
Debt N	_	0.42	0.17	0.32		0.29		0.31					0.48			1.00											
Debt Lo	_	0.20	0.40	0.33	0.16	0.13		-0.05				0.05				0.10	1.00	4.00									
Debt Cl		0.37	0.42	0.50	0.43	0.13		0.19	0.14	0.35			0.47	0.21		0.37	0.52 -0.13	1.00 0.28									
Debt Er	_	0.49		0.65	0.35	0.23		0.47								0.38	0.38	0.28		1.00							
Debt E	_		0.58	0.05	0.35			0.20					0.35	0.15		0.32	0.38	0.55		0.39	1.00						
Debt A			0.18	0.39	0.18					0.31			0.43			0.43	0.46	0.42			0.32	1.00					
Credit N.		0.29	-0.02		0.38	0.15		0.32					0.12			0.21	0.14	0.23		0.23	0.25	0.03	1.00				
Credit Lo	_	0.41		0.21	0.26			0.22		0.35			0.48	0.35		0.35	0.25	0.41			0.46	0.28	0.22	1.00			
Credit Cl		0.42		0.27	0.28			0.21					0.47	0.36		0.54	0.14	0.13			0.48	0.12	0.17	0.55	1.00		
Credit W	_		_					0.26					0.19	0.13		0.45	0.20	0.25		0.26	0.45	0.16	0.63		0.34 1.0	00	
Credit Er	_	0.25		0.39						0.16						0.40	0.31	0.33			0.51	0.27	0.24	0.45	0.48 0.2)
Credit A	_				-0.01	0.00				0.23			0.31			0.32	0.18	0.17			0.37	0.08	0.43		0.23 0.5		7 1.00
Credit A	_	0.11	0.06					_		0.30						0.32	0.11	0.00	_	0.03	0.34	-0.02	0.24	0.30	0.40 0.3		0.31 1.00
																		,									

Gross Capital Flows Co-Movement

Correlations of capital outflows by asset classes into geographical regions

Asset		Equity	FDI	FDI	FDI	FDI	FDI	FDI	FDI	Debt	Debt	Debt	Debt	Debt	Debt	Debt	Credit	Credit	Credit	Credit C	redit	Credit Credi						
Flows		N. Am.	LatAm	CE. EU	W. EU	Em.As	Asia	Africa	N. Am	LatAm	CE. E	U W. E	U Em.As	Asia	Africa	N. Am	LatAm	CE. EU	W. EU	Em.As	Asia	Africa	N. Am	LatAm (CE. EU V	N. EU E	m.As	Asia Africa
Equity	N. Am	1.00																										
Equity	LatAm	0.25	1.00																									
Equity	CE. EU	0.53	0.63	1.00																								
Equity	W. EU	0.58	0.61	0.72	1.00	1																						
Equity	Em. As	0.05	0.34	0.28	0.15	1.00																						
Equity	Asia	0.26	0.23	0.38	0.20	0.63	1.00																					
Equity	Africa	0.02	-0.09	-0.04	0.06	0.23	0.20	1.00																				
FDI	N. Am	0.19	0.34	0.45	0.20	0.40	0.47	0.20	1.00	1																		
FDI	LatAm	-0.04	0.07	0.12	-0.07	0.27	0.30	0.16	0.55	1.00																		
	CE. EU	0.03	0.21				0.44	0.11	0.65																			
	W. EU	0.26	0.26				0.66			0.62		77 1.0																
	Em. As	0.09	0.09				0.35																					
	Asia	-0.12	-0.09							0.60		57 0.5																
	Africa	0.06	0.29	0.16				-0.48	0.17	-0.02	0.1	L5 0.0	4 0.10	-0.16	1.00													
	N. Am	0.37	0.50	0.51								0.0				1.00)											
	LatAm	0.17	0.21	0.43	0.41	0.08			0.25			0.1				0.30	1.00											
	CE. EU	-0.11	0.20	0.11	0.04	0.32	0.24	-0.08	0.22	0.40			8 0.14	0.23				1.00										
	W. EU	0.46	0.56									25 0.2		-0.20		0.59		0.25										
	Em. As	0.30	0.52	0.46	0.45	0.39				0.12			3 0.37					0.06		5 1.00								
Debt		0.25	0.27										3 0.38			0.20				_								
Debt	_		-0.10					0.40					6 0.59			-0.04		l .	_	0.29								
	N. Am.		0.15					-0.17		_	•		0.03			0.35		_		_		_						
	LatAm	0.17						0.05	0.42				5 0.51			-0.08							0.03					
	CE. EU	-0.01			_			0.25					9 0.45			-0.16							0.05	0.10	1.00			
Credit	_	0.42				_		_					3 0.12			0.28		_					0.61	0.27	0.22			
	Em. As		0.41					0.01					7 0.35			0.43								0.15	0.24		1.00	
Credit		0.32										16 0.1				0.17				0.28				0.28	0.11			1.00
Credit	Africa	0.22	0.06	0.21	0.28	-0.22	-0.16	-0.16	-0.07	-0.10	-0.1	L7 -0.1	8 -0.14	-0.13	-0.07	0.18	0.29	-0.14	0.12	-0.15	-0.12	-0.17	0.17	0.03	-0.23	0.20	0.07	-0.08 1.00

Capital Inflows and the VIX

Camilo Granados (UTD) International Finance and Macro Fall 2023

10 / 42

Credit Growth, Leverage and the VIX

Conditional correlation of credit growth and leverage with the VIX

Correlations			Central				
credit / VIX	North America	Latin America	Eastern Europe	Western Europe	Emerging Asia	Asia	Africa
Domestic credit							
growth	-0.26	-0.14	-0.14	-0.11	-0.01	-0.30	0.01
Leverage	-0.17	0.05	0.30	-0.09	-0.12	-0.25	0.03
Leverage							
growth	-0.32	0.06	0.07	-0.21	-0.06	-0.31	0.01

Conditioning variables: World real short rate and world growth rate

Camilo Granados (UTD) International Finance and Macro Fall 2023 1

Estimating a Common Factor

- Capital flows, credit and leverage follow global financial cycle
 - What about asset prices (equity, corporate bonds, commodities)?
- Miranda-Agrippino and Rey (2020) estimate common factor driving asset prices globally

$$p_{it} = \lambda_{ig} f_{gt} + \lambda_{im} f_{mt} + \xi_{it}$$

 p_{it} = Asset price i

 f_{gt} = Global factor (with loading λ_{ig})

 f_{mt} = Market (country)-specific factor (with loading λ_{im})

 ξ_{it} = Idiosyncratic shock

Number of asset prices by region

Sample	North America	Latin America	Europe	Asia Pacific	Australia	Commodity	Corporate	Total
1975:2010	114	-	82	68	-	39	-	303
1990:2012	364	16	200	143	21	57	57	858

Camilo Granados (UTD) International Finance and Macro Fall 2023 12/42

The Common Factor

Camilo Granados (UTD) International Finance and Macro Fall 2023

13 / 42

The Role of Monetary Policy

- What drives co-movement of capital flows, asset prices, leverage, credit and VIX?
- Global banks crucially rely on USD funding (Shin, 2012; Bruno and Shin, 2015)
 - Explore role of monetary policy as key driver of GFC

Camilo Granados (UTD) International Finance and Macro Fall 2023 14/42

The Role of Monetary Policy

- What drives co-movement of capital flows, asset prices, leverage, credit and VIX?
- Global banks crucially rely on USD funding (Shin, 2012; Bruno and Shin, 2015)
 - Explore role of monetary policy as key driver of GFC
- Vector autoregression (VAR) analysis on quarterly data between 1990 and 2012
 - Seven macro-financial variables
 - ★ US real GDP
 - ★ US GDP deflator
 - ★ Log of global credit
 - * Global credit inflows
 - ★ Median leverage of European banks
 - ★ Federal funds target rate
 - ★ Log of VIX

Camilo Granados (UTD) International Finance and Macro Fall 2023 14/42

Identification

Identification

• Structural VAR (for simplicity one lag, no constant) describes "true" underlying economic structure

$$Y_t = A_1 Y_{t-1} + B \varepsilon_t$$

- Structural shocks ε_t have well-defined economic interpretation
- Elements of ε_t independent of each other \Rightarrow Can study their effects one at a time

• Identification boils down to obtaining B

Identification

• Structural VAR (for simplicity one lag, no constant) describes "true" underlying economic structure

$$Y_t = A_1 Y_{t-1} + B \varepsilon_t$$

- lacktriangle Structural shocks $arepsilon_t$ have well-defined economic interpretation
- Elements of ε_t independent of each other \Rightarrow Can study their effects one at a time
- But we can only estimate reduced-form VAR

$$Y_t = A_1 Y_{t-1} + u_t$$

- Elements of u_t are linear combinations of structural shocks ($u_t = B\varepsilon_t$)
- \triangleright Response to u_t confounds effects of different structural shocks
- Identification boils down to obtaining B

Example

• Assume Y_t contains two variables: GDP growth (x_t) and monetary policy rate (i_t)

Structural VAR in matrix form

$$\begin{bmatrix} x_t \\ i_t \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{t-1} \\ i_{t-1} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_t^{dem} \\ \varepsilon_t^{mon} \end{bmatrix}$$

System representation

$$\begin{cases} x_{t} = a_{11}x_{t-1} + a_{12}i_{t-1} + \underbrace{b_{11}\varepsilon_{t}^{dem} + b_{12}\varepsilon_{t}^{mon}}_{=u_{t}^{x}} \\ i_{t} = a_{21}x_{t-1} + a_{22}i_{t-1} + \underbrace{b_{21}\varepsilon_{t}^{dem} + b_{22}\varepsilon_{t}^{mon}}_{=u_{t}^{t}} \end{cases}$$

• Elements of ε_t cannot be identified without further assumptions (only u_t^X and u_t^i can be estimated)

VAR Estimation

Can estimate

$$Y_t = A_1 Y_{t-1} + u_t$$

- Estimation delivers
 - ► Matrix *A*₁
 - Reduced-form residuals ut
 - ▶ Covariance matrix Σ_u
- ullet Reduced-form residuals are related to structural shocks $arepsilon_t$ according to

$$\begin{bmatrix} u_t^{\mathsf{x}} \\ u_t^i \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_t^{\mathsf{dem}} \\ \varepsilon_t^{\mathsf{mon}} \end{bmatrix} \Rightarrow \begin{cases} u_t^{\mathsf{x}} &= b_{11} \varepsilon_t^{\mathsf{dem}} + b_{12} \varepsilon_t^{\mathsf{mon}} \\ u_t^i &= b_{21} \varepsilon_t^{\mathsf{dem}} + b_{22} \varepsilon_t^{\mathsf{mon}} \end{cases}$$

- If we knew b_{ii} 's, we could recover elements of ε_t given estimates of elements of u_t
 - ▶ Identification \equiv Figuring out b_{ii} 's

• Consists of finding matrix B that solves

$$u_t = B\varepsilon_t$$

• Consists of finding matrix B that solves

$$u_t = B\varepsilon_t$$

• Estimation allows to recover variance-covariance matrix of reduced-form residuals

$$\Sigma_{u} = \mathbb{E}(u_{t}u_{t}') = \mathbb{E}[B\varepsilon_{t}(B\varepsilon_{t})'] = B\mathbb{E}(\varepsilon_{t}\varepsilon_{t}')B' = \underbrace{B\Sigma_{\varepsilon}B' = BB'}_{\Sigma_{\varepsilon} \equiv \mathcal{I}_{2} \text{ by assumption}}$$

• Consists of finding matrix B that solves

$$u_t = B\varepsilon_t$$

• Estimation allows to recover variance-covariance matrix of reduced-form residuals

$$\Sigma_u = \mathbb{E}(u_t u_t') = \mathbb{E}[B\varepsilon_t (B\varepsilon_t)'] = B\mathbb{E}(\varepsilon_t \varepsilon_t') B' = \underbrace{B\Sigma_\varepsilon B' = BB'}_{\Sigma_\varepsilon \equiv \mathcal{I}_2 \text{ by assumption}}$$

• Find B that satisfies $\Sigma_u = BB'$

• Consists of finding matrix B that solves

$$u_t = B\varepsilon_t$$

• Estimation allows to recover variance-covariance matrix of reduced-form residuals

$$\Sigma_{u} = \mathbb{E}(u_{t}u_{t}') = \mathbb{E}[B\varepsilon_{t}(B\varepsilon_{t})'] = B\mathbb{E}(\varepsilon_{t}\varepsilon_{t}')B' = \underbrace{B\Sigma_{\varepsilon}B' = BB'}_{\Sigma_{\varepsilon}\equiv\mathcal{I}_{2} \text{ by assumption}}$$

- Find B that satisfies $\Sigma_u = BB'$
- Sounds easy but is actually impossible without further assumptions
 - ▶ Infinite combinations of B that give same Σ_u

One Σ_u , Many *B*'s

• Why is it impossible to find one B that satisfies $\Sigma_u = BB'$?

$$\begin{bmatrix} \sigma_{\mathsf{x}}^2 & \sigma_{\mathsf{x}i} \\ \sigma_{\mathsf{x}i} & \sigma_{\mathsf{i}}^2 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix}$$

One Σ_u , Many B's

• Why is it impossible to find one B that satisfies $\Sigma_u = BB'$?

$$\begin{bmatrix} \sigma_{\mathsf{x}}^2 & \sigma_{\mathsf{x}i} \\ \sigma_{\mathsf{x}i} & \sigma_{i}^2 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix}$$

Rewrite in system form

$$\begin{cases} \sigma_{x}^{2} &= b_{11}^{2} + b_{12}^{2} \\ \sigma_{xi} &= b_{11}b_{21} + b_{12}b_{22} \\ \sigma_{xi} &= b_{11}b_{21} + b_{12}b_{22} \\ \sigma_{i}^{2} &= b_{21}^{2} + b_{22}^{2} \end{cases}$$

Camilo Granados (UTD) International Finance and Macro Fall 2023 19/42

One Σ_u , Many *B*'s

• Why is it impossible to find one B that satisfies $\Sigma_u = BB'$?

$$\begin{bmatrix} \sigma_{\mathsf{x}}^2 & \sigma_{\mathsf{x}i} \\ \sigma_{\mathsf{x}i} & \sigma_{i}^2 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix}$$

Rewrite in system form

$$\begin{cases} \sigma_{x}^{2} &= b_{11}^{2} + b_{12}^{2} \\ \sigma_{xi} &= b_{11}b_{21} + b_{12}b_{22} \\ \sigma_{xi} &= b_{11}b_{21} + b_{12}b_{22} \\ \sigma_{i}^{2} &= b_{21}^{2} + b_{22}^{2} \end{cases}$$

- Because variance-covariance matrix is symmetric, second and third equations are perfectly collinear
 - ▶ Only 3 equations to determine 4 unknowns (elements of B)

Camilo Granados (UTD) International Finance and Macro Fall 2023 19 / 42

How to Solve the Identification Problem?

- Need additional relations between elements of B and element of Σ_u
- Can economic theory help?
 - ► Map assumptions about economy into relations among VAR parameters

Camilo Granados (UTD) International Finance and Macro Fall 2023 20 / 42

How to Solve the Identification Problem?

- Need additional relations between elements of B and element of Σ_u
- Can economic theory help?
 - ▶ Map assumptions about economy into relations among VAR parameters
- Additional relations are called restrictions
- In bi-variate example, need one extra restriction for identification
 - lacktriangle More generally, need k(k-1)/2 additional restrictions (where k= number of endogenous variables)
 - ► Number of restrictions increases with size of VAR

Camilo Granados (UTD) International Finance and Macro Fall 2023 20/42

Zero Contemporaneous Restrictions (Choleski)

- Many identification schemes available
 - ► Here we focus on zero contemporaneous restrictions (Choleski identification)
 - ► Some alternatives: Long-run restrictions, sign restrictions, IV, and more.

(We saw it before: Linkages between shocks in B dictate contemporaneous effects in variables)

► Other shocks are left unidentified (hence the "partial")

Camilo Granados (UTD) International Finance and Macro Fall 2023 21/42

Zero Contemporaneous Restrictions (Choleski)

- Many identification schemes available
 - ► Here we focus on zero contemporaneous restrictions (Choleski identification)
 - ▶ Some alternatives: Long-run restrictions, sign restrictions, IV, and more.
- Key idea: Assume some shocks have no contemporaneous effect on some variables
 (We saw it before: Linkages between shocks in B dictate contemporaneous effects in variables)

► Other shocks are left unidentified (hence the "partial")

Camilo Granados (UTD) International Finance and Macro Fall 2023 21/42

Zero Contemporaneous Restrictions (Choleski)

- Many identification schemes available
 - ► Here we focus on zero contemporaneous restrictions (Choleski identification)
 - ▶ Some alternatives: Long-run restrictions, sign restrictions, IV, and more.
- Key idea: Assume some shocks have no contemporaneous effect on some variables
 (We saw it before: Linkages between shocks in B dictate contemporaneous effects in variables)
- Rey (2013) assumes
 - GDP and prices respond with a lag (slow moving)
 - ► FFR responds to any variable but VIX
- Partial identification: Only focuses on effects of monetary policy shocks
 - ► Other shocks are left unidentified (hence the "partial")

Camilo Granados (UTD) International Finance and Macro Fall 2023 21/42

How to Impose Zero Contemporaneous Restrictions

- Back to our example: Monetary policy has no contemporaneous effect on output
 - ► How do we impose such a restriction?
- Recall matrix representation

$$\begin{bmatrix} x_t \\ i_t \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{t-1} \\ i_{t-1} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_t^{dem} \\ \varepsilon_t^{mon} \end{bmatrix}$$

- No contemporaneous effect of monetary policy shocks on output $\Rightarrow b_{12} = 0$
- Impose restriction in $\Sigma_u = BB' \Rightarrow$ System now has unique solution

$$\begin{bmatrix} \sigma_{\mathsf{x}}^2 & \sigma_{\mathsf{x}i} \\ \sigma_{\mathsf{x}i} & \sigma_{i}^2 \end{bmatrix} = \begin{bmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{21} \\ 0 & b_{22} \end{bmatrix} \Rightarrow \begin{cases} \sigma_{\mathsf{x}}^2 & = b_{11}^2 \\ \sigma_{\mathsf{x}i} & = b_{11}b_{21} \\ \sigma_{i}^2 & = b_{21}^2 + b_{22}^2 \end{cases}$$

Camilo Granados (UTD) International Finance and Macro Fall 2023 22 / 42

Impulse Response Functions

• We can now analyze impact of monetary policy shock on output and interest rates

$$\begin{bmatrix} x_t \\ i_t \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_{t-1} \\ i_{t-1} \end{bmatrix} + \begin{bmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_t^{dem} \\ \varepsilon_t^{mon} \end{bmatrix}$$

- ullet Set $arepsilon_t^{mon}=1$ (or any other meaningful normalization)
 - OLS gives us consistent estimates of elements of A
 - lacktriangleright Identification gives us consistent estimates of elements of B (because of consistent estimate of Σ_u)
- Impulse response function (IRF) of x_{t+j} to ε_t^{mon} (for $j \geq 0$)

$$IRF_{t+j}^{x} \equiv \frac{\partial x_{t+j}}{\partial \varepsilon_{t}^{mon}}$$

Camilo Granados (UTD) International Finance and Macro Fall 2023 23 / 42

How to Compute IRFs to a Monetary Policy Shock

• For monetary policy shock (second element of ε_t), define shock vector as

$$s = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Camilo Granados (UTD) International Finance and Macro Fall 2023 24/42

How to Compute IRFs to a Monetary Policy Shock

• For monetary policy shock (second element of ε_t), define shock vector as

$$s = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• We can compute IRFs to a monetary policy shock from

$$Y_t = A_1 Y_{t-1} + Bs$$

• In particular, IRFs follow recursion

$$IRF_t = egin{cases} Bs & ext{for } t = 0 \ A_1IRF_{t-1} & ext{for } t \geq 1 \end{cases}$$

Camilo Granados (UTD) International Finance and Macro Fall 2023 24/42

Dilemma

Narrative

- How does presence of GFC affects transmission of monetary policy shocks?
 - $\,\blacktriangleright\,$ Consider interest rate tightening in US

Narrative

- How does presence of GFC affects transmission of monetary policy shocks?
 - Consider interest rate tightening in US
- Textbook mechanism:
 - With flexible exchange rates (e.g. UK, Euro Area), USD appreciates
 - ► Trade channel: Foreign goods more competitive ⇒ Foreign boom
 - Demand channel: Economic activity may contract if US demand slows down

Camilo Granados (UTD) International Finance and Macro Fall 2023 25/42

Narrative

- How does presence of GFC affects transmission of monetary policy shocks?
 - Consider interest rate tightening in US
- Textbook mechanism:
 - With flexible exchange rates (e.g. UK, Euro Area), USD appreciates
 - ► Trade channel: Foreign goods more competitive ⇒ Foreign boom
 - ► Demand channel: Economic activity may contract if US demand slows down
- Financial channel (GFC)
 - Cost of finance increases and asset prices fall worldwide
 - Global credit declines and so does leverage

Camilo Granados (UTD) International Finance and Macro Fall 2023 25 / 42

Narrative

- How does presence of GFC affects transmission of monetary policy shocks?
 - Consider interest rate tightening in US
- Textbook mechanism:
 - ▶ With flexible exchange rates (e.g. UK, Euro Area), USD appreciates
 - ► Trade channel: Foreign goods more competitive ⇒ Foreign boom
 - ► Demand channel: Economic activity may contract if US demand slows down
- Financial channel (GFC)
 - Cost of finance increases and asset prices fall worldwide
 - Global credit declines and so does leverage
- Financial channel amplifies demand channel

Response of VIX to Monetary Policy Shock

Figure 4a: 25 bp increase to the effective federal funds rate.

Camilo Granados (UTD) International Finance and Macro Fall 2023 26 / 42

Response of Financial Variables to VIX Shock

Figure 4b: Responses to a 1% increase in the VIX.

Camilo Granados (UTD) International Finance and Macro Fall 2023 27/42

Criticism

• GFC seems really conditional on VIX (not monetary policy) shock

Criticism

• GFC seems really conditional on VIX (not monetary policy) shock

Negative correlation between VIX and global factor

Camilo Granados (UTD) International Finance and Macro Fall 2023

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

The Trilemma Dilemma

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Response of leverage

12

16

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Response of asset prices

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Response of exchange rates and policy rates

Addressing the Criticism

• Miranda-Agrippino and Rey (2020) address criticism using large Bayesian VAR

Response of policy rates

- Foreign central banks tighten interest rates ⇒ Consistent with "dilemma" hypothesis
 - ► Although also consistent with "fear of floating" (Calvo and Reinhart, 2002)...

Camilo Granados (UTD) International Finance and Macro Fall 2023 29 / 42

The International Transmission

of Credit Shocks

An Alternative Driver of the GFC

- Could alternative factors drive GFC?
 - ► Cesa-Bianchi, Ferrero and Rebucci (2018) consider credit supply shocks

An Alternative Driver of the GFC

- Could alternative factors drive GFC?
 - ► Cesa-Bianchi, Ferrero and Rebucci (2018) consider credit supply shocks
- Idea: Study response to shocks to leverage of US broker-dealers
 - ► Capture financial innovation or changes in risk appetite

Camilo Granados (UTD) International Finance and Macro Fall 2023 30 / 42

An Alternative Driver of the GFC

- Could alternative factors drive GFC?
 - ► Cesa-Bianchi, Ferrero and Rebucci (2018) consider credit supply shocks
- Idea: Study response to shocks to leverage of US broker-dealers
 - Capture financial innovation or changes in risk appetite
- Approach: Panel VAR with **global variable** (leverage of US broker-dealers)
 - ▶ 57 countries (24 advanced and 33 emerging economies)
 - ► Sample: 1985:Q1-2012:Q4
 - Country-specific variables:
 - ★ International credit
 - ★ Private consumption
 - ★ Current account ratio to GDP
 - ★ Real house prices
 - ★ Real exchange rate vis-a-vis USD

International Credit and Leverage of US Broker-Dealers

- International credit = Cross-border total claims of BIS reporting banks on country i
- Leverage of US broker-dealers = Assets/Equity (source: Federal Reserve's Flow of Funds)
 - ► Empirical proxy for leverage of global banks (Bruno and Shin, 2015)

Camilo Granados (UTD) International Finance and Macro Fall 2023

International Credit and Leverage of US Broker-Dealers

- International credit = Cross-border total claims of BIS reporting banks on country i
- Leverage of US broker-dealers = Assets/Equity (source: Federal Reserve's Flow of Funds)
 - ► Empirical proxy for leverage of global banks (Bruno and Shin, 2015)

Camilo Granados (UTD) International Finance and Macro Fall 2023

PVAR

ullet Add leverage of US broker-dealers to vector of country-i variables

$$Y_{it} = \left[egin{array}{cccc} \textit{LEV}_t & \textit{KF}_{it} & \textit{C}_{it} & \textit{HP}_{it} & \textit{RER}_{it} & \textit{CA}_{it} / Y_{it} \end{array}
ight]$$

PVAR

• Add leverage of US broker-dealers to vector of country-i variables

$$Y_{it} = \begin{bmatrix} LEV_t & KF_{it} & C_{it} & HP_{it} & RER_{it} & CA_{it}/Y_{it} \end{bmatrix}$$

- Mean group estimator (Pesaran and Smith, 1995; Pesaran, 2006)
 - ► Estimate VAR country by country, confidence bands reflect cross-country heterogeneity

PVAR

• Add leverage of US broker-dealers to vector of country-i variables

$$Y_{it} = \begin{bmatrix} LEV_t & KF_{it} & C_{it} & HP_{it} & RER_{it} & CA_{it}/Y_{it} \end{bmatrix}$$

- Mean group estimator (Pesaran and Smith, 1995; Pesaran, 2006)
 - ► Estimate VAR country by country, confidence bands reflect cross-country heterogeneity
- \bullet Identification: Shocks to LEV_t shift global supply of cross-border bank credit
 - ► A "push" shock (Calvo, Leiderman and Reinhart, 1996)
 - Arguably exogenous to conditions in individual country i (small open economy assumption)
 - ► Drop US from sample
 - ► Implementation: Country-by-country Choleski decomposition

Camilo Granados (UTD) International Finance and Macro Fall 2023 32 / 42

The Transmission of Global Credit Supply Shocks

Camilo Granados (UTD) International Finance and Macro Fall 2023

Further Results

- Leverage shock explains non-trivial fraction of long-run variance of endogenous variables (15-20%)
 - ► Larger than a US monetary policy shock

Further Results

- Leverage shock explains non-trivial fraction of long-run variance of endogenous variables (15-20%)
 - ► Larger than a US monetary policy shock
- ullet Robustness: Small open economy assumption rules out local factors can drive LEV_t
 - But LEV_t could be affected by globally synchronized factors
 - ► If so, same synchronized shocks should affect world GDP
 - ► Control by augmenting vector of endogenous variables with world GDP (ordered first)
 - Results largely unchanged (slightly noisier)

Camilo Granados (UTD) International Finance and Macro Fall 2023 34/42

Further Results

• Leverage shock explains non-trivial fraction of long-run variance of endogenous variables (15-20%)

- ► Larger than a US monetary policy shock
- Robustness: Small open economy assumption rules out local factors can drive LEV_t
 - But LEV_t could be affected by globally synchronized factors
 - If so, same synchronized shocks should affect world GDP
 - ► Control by augmenting vector of endogenous variables with world GDP (ordered first)
 - Results largely unchanged (slightly noisier)
- Results also robust to further checks
 - ► Exclude other large economies (Germany, Japan, Switzerland, UK) that could affect credit supply
 - Control for world equity prices
 - ► Exclude lagged country variables from leverage equation

Camilo Granados (UTD) International Finance and Macro Fall 2023 34 / 42

The Determinants of Broker-Dealers' Leverage

Xt	(1)	(2)	(3)	(4)	(5)
ΔFFR_t	-2.477** [-2.364]				-2.613** [-2.536]
ϵ^{MP}		-0.0497 [-0.650]			
$R_t^L - R_t$		()	-0.900 [-1.642]		
VIX_t			[1.042]	-0.00182** [-2.057]	-0.00195** [-2.252]
Obs. Adj. R^2	111 0.049	91 0.005	111 0.024	111 0.037	111 0.091

- Leverage of US broker-dealers weakly related to monetary policy and VIX
 - ▶ But small $R^2 \Rightarrow$ Most of variance unexplained
 - ▶ Our interpretation: Other factors (financial innovation and changes in risk appetite) drive credit supply

Camilo Granados (UTD) International Finance and Macro Fall 2023 35/42

Does the Exchange Rate Regime

Still Matter?

FX Regime and Emerging Markets

• Obstfeld, Ostry and Qureshi (2019) focus on role of exchange rate in insulating EMEs

Camilo Granados (UTD) International Finance and Macro Fall 2023

FX Regime and Emerging Markets

- Obstfeld, Ostry and Qureshi (2019) focus on role of exchange rate in insulating EMEs
- Question: Does response to VXO shocks differ across FX regimes?
 - ► Quarterly data over 1986-2013
 - VXO = Volatility index precursor of VIX

Camilo Granados (UTD) International Finance and Macro Fall 2023 36/42

FX Regime and Emerging Markets

- Obstfeld, Ostry and Qureshi (2019) focus on role of exchange rate in insulating EMEs
- Question: Does response to VXO shocks differ across FX regimes?
 - Quarterly data over 1986-2013
 - VXO = Volatility index precursor of VIX
- Answer: Yes!
 - Domestic financial conditions respond in all FX regimes but more under fixed exchange rates
 - ► With fixed exchange rates, one standard deviation increase in VXO implies
 - ★ One percentage point larger reduction in domestic credit growth
 - * About two percentage points larger reduction in real house price growth
 - ★ Banking system leverage and capital flows also more sensitive
 - ★ But no systematic difference in the response of stock returns

Camilo Granados (UTD) International Finance and Macro Fall 2023 36/42

Methodology

Panel regression

$$\textit{f}_{\textit{it}} = \beta_0 + \mu_{\textit{i}} + \beta_1 \; \textit{fix}_{\textit{it}} + \beta_2 \; \textit{int}_{\textit{it}} + \frac{\beta_3}{\beta_3} \; \textit{VXO}_t + \beta_4 \; \textit{fix}_{\textit{it}} \times \textit{VXO}_t + \beta_5 \; \textit{int}_{\textit{it}} \times \textit{VXO}_t + \sum_k \lambda_k z_{\textit{itk}} + \varepsilon_{\textit{it}}$$

where

- f_{it} = Financial variable
- fix_{it}, int_{it} = Dummy variables for fixed/intermediate FX regime
- VXO_t = Log of VXO index (financial shocks)
- $z_{itk} = \text{Global and domestic control variables}$
- ullet If global financial conditions relevant for domestic financial conditions $\Rightarrow eta_3$ statistically significant

Camilo Granados (UTD) International Finance and Macro Fall 2023 37/42

Methodology

Panel regression

$$\textit{f}_{\textit{it}} = \beta_0 + \mu_{\textit{i}} + \beta_1 \; \textit{fix}_{\textit{it}} + \beta_2 \; \textit{int}_{\textit{it}} + \beta_3 \; \textit{VXO}_t + \beta_4 \; \textit{fix}_{\textit{it}} \times \textit{VXO}_t + \beta_5 \; \textit{int}_{\textit{it}} \times \textit{VXO}_t + \sum_k \lambda_k z_{\textit{itk}} + \varepsilon_{\textit{it}}$$

where

- f_{it} = Financial variable
- fix_{it}, int_{it} = Dummy variables for fixed/intermediate FX regime
- $VXO_t = \text{Log of VXO index (financial shocks)}$
- $ightharpoonup z_{itk} = \text{Global and domestic control variables}$
- ullet If global financial conditions relevant for domestic financial conditions $\Rightarrow eta_3$ statistically significant
 - ▶ But iff FX regime matters, β_4 and/or β_5 statistically significant too
 - ▶ Also estimate version with time fixed effects (β_3 not separately identified)

Camilo Granados (UTD) International Finance and Macro Fall 2023 37/42

FX Regimes

Figure 2. De Facto Exchange Rate Regimes in EMEs, 1986–2013

Camilo Granados (UTD) International Finance and Macro Fall 2023

Example: Credit Growth

	1986-2013	1986-2013	1986-2013	1986-2013	1986-2013	2000-13	1986-2013
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Fixed regime	3.007***	8.942***	8.822***	9.345***	10.089***	10.061***	9.222**
	(1.011)	(3.149)	(3.165)	(3.151)	(3.086)	(3.440)	(4.095)
Intermediate regime	1.141	0.436	0.529	0.894	1.650	3.714*	2.001
	(0.726)	(2.131)	(2.132)	(2.197)	(2.270)	(2.024)	(2.347)
Log (VXO)	-1.542***	-1.241*	-1.228*	-1.136*	(=.=,	(=:==:)	(=,
Eog (Tho)	(0.490)	(0.655)	(0.643)	(0.672)			
Fixed x log (VXO)	,,	-1.981*	-1.942*	-2.091**	-2.312**	-2.543**	-3.069**
		(1.003)	(1.002)	(1.002)	(0.988)	(1.068)	(1.237)
Intermediate x log (VXO)		0.237	0.204	0.111	-0.087	-0.921	-0.743
, , , , ,		(0.726)	(0.723)	(0.743)	(0.768)	(0.628)	(0.726)
Lagged real GDP grow th	1.006***	0.994***	0.994***	0.976***	0.871***	0.723***	0.720***
	(0.164)	(0.163)	(0.164)	(0.166)	(0.174)	(0.263)	(0.244)
Lagged private credit/GDP	-0.090***	-0.091***	-0.092***	-0.090***	-0.085***	-0.145***	-0.109***
	(0.013)	(0.013)	(0.014)	(0.014)	(0.013)	(0.018)	(0.020)
Real US T-bill rate	(0.0.0)	(0.0.0)	0.036	(0.0,	(0.0.0)	(0.0.0)	(0.020)
rada do raminato			(0.079)				
Fixed x real US T-bill rate			-0.103				
rixed x real oo r-biii rate			(0.173)				
Intermediate x real US T-bill	rate		0.021				
intermediate x rear 03 1-biii	rate		(0.076)				
Real shadow federal funds			(0.076)	-0.002			
real shadow rederal runds				(0.072)			
Fixed x real shadow rate				0.072)			
rixed x real shadow rate							
				(0.129)			
Intermediate x real shadow	rate			0.077			
				(0.063)			
Lagged net capital flows/GI	OP .						0.050***
							(0.017)
Lagged central bank policy	rate						-0.238**
							(0.113)
Linear trend	0.016	0.015	0.017*	0.022*			
	(0.010)	(0.010)	(0.010)	(0.012)			
Global financial crisis	1.619***	1.714***	1.674***	1.523**			
	(0.552)	(0.553)	(0.571)	(0.578)			
Country fixed effects	Yes						
Quarter-year effects	No	No	No	No	Yes	Yes	Yes
Observations	2,555	2,555	2,555	2,555	2,555	1,844	1,598
Adjusted R2	0.235	0.240	0.240	0.240	0.253	0.434	0.421
No. of countries	43	43	43	43	43	42	35

Camilo Granados (UTD) International Finance and Macro Fall 2023

Macroeconomic Effects

	1986-2013	1986-2013	1986-2013	1986-2013	2000-13
	(1)	(2)	(3)	(4)	(5)
Fixed regime	2.521**	2.511**	2.518**	2.879***	2.564**
	(1.011)	(0.998)	(0.980)	(1.019)	(1.050)
Intermediate regime	0.406	0.294	0.253	0.895	0.693
	(0.477)	(0.461)	(0.471)	(0.541)	(0.462)
Log (VXO)	-0.459***	-0.479***	-0.492***	,,	,,
	(0.101)	(0.101)	(0.102)		
Fixed x log (VXO)	-0.756**	-0.756**	-0.753**	-0.856**	-0.758**
, , , , , , , , , , , , , , , , , , , ,	(0.320)	(0.317)	(0.312)	(0.333)	(0.337)
Intermediate x log (VXO)	-0.158	-0.122	-0.117	-0.291	-0.189
, , , , , , , , , , , , , , , , , , , ,	(0.157)	(0.151)	(0.153)	(0.186)	(0.163)
Real US T-bill rate		-0.034*			
		(0.019)			
Fixed x real T-bill rate		0.020			
		(0.027)			
Intermediate x real T-bill rate		-0.015			
		(0.025)			
Real shadow federal funds rate		,/	-0.011		
			(0.020)		
Fixed x real shadow rate			0.011		
			(0.026)		
Intermediate x real shadow rate			-0.014		
			(0.026)		
Lagged net capital flows/GDP	0.013***	0.014***	0.014***	0.010**	0.008*
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Lagged institutional quality	0.654	0.741	0.775	0.930	1.183
and good in a management quanty	(0.908)	(0.919)	(0.944)	(1.098)	(1.899)
Lagged private credit/GDP	-0.018***	-0.018***	-0.018***	-0.017***	-0.023***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
Lagged real GDP per capita	-1.947***	-1.872***	-1.920***	-2.022***	-1.541*
Lagged roar obr por ouplia	(0.609)	(0.587)	(0.585)	(0.611)	(0.840)
Linear trend	0.014**	0.011**	0.011**	(0.011)	(0.040)
Linear trend	(0.005)	(0.005)	(0.005)		
Global financial crisis	-1.462***	-1.419***	-1.411***		
Global financial crisis	(0.249)	(0.248)	(0.244)		
	,	,	,		
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Quarter-year effects	No	No	No	Yes	Yes
Observations	2,121	2,121	2,121	2,121	1,635
Adjusted R2	0.345	0.351	0.347	0.421	0.497
No. of countries	38	38	38	38	38

Camilo Granados (UTD) International Finance and Macro Fall 2023 40/42

Transmission of Global Credit Supply Shocks by FX Regime

Conclusions

- \bullet Financial integration \Rightarrow Global financial cycle
 - ► Financial shocks (monetary policy, credit, etc.) originate in hegemon countries, propagate globally

Conclusions

- Financial integration ⇒ Global financial cycle
 - Financial shocks (monetary policy, credit, etc.) originate in hegemon countries, propagate globally
- Flexible exchange rate does not fully insulate countries from financial shocks
 - Yet transmission not completely independent of exchange rate regime
- Next: Frameworks to think about cross-border macroeconomic interdependence
 - ▶ Policy spillovers, expenditure switching, coordination.