The Grammar of Graphics Data / Variables

제 3장 데이터(Data)

개념들

- 데이터(Data)
- 플랫 파일(flat files)
- 데이터 소스(Data Source)
- 뷰(View)
- 스트리밍(Streaming)

데이터(Data)

• 라틴어 어원: 주어진 것

데이터(Data)

We ordinarily think of data as derived from measurements from a machine, survey, census, test, rat-ing, or questionnaire — most frequently numerical.

In a more general sense, however, data are symbolic representations of observations or thoughts about the world.

- The Grammar of Graphics 41p

플랫 파일(flat files)

- 과거의 그래픽 시스템에서 사용하던 형식
- 행열로 이루어진 숫자 변수들을 저장한 파일
- 데이터의 형식에 의해 차트 형태가 결정
 - 꺾은 선 그래프(line charts)
 - 막대 그래프(bar charts)
 - 파이 차트(pie charts)
 - 산포도(scatterplots)

데이터 소스(Data Source)

- 객체 지향 그래픽 시스템에서 사용
- 데이터는 Data Source의 일부
- 기저의 데이터 형식에 대해 가정하지 않음

뷰(View)

- 그래프와의 맵핑하는 데 사용
- 데이터 소스와 어떤 관계를 가지고 있음
- 스트리밍(Streaming)되는 데이터 소스에 대응
 - 뷰는 시시각각 변화할 수 있어야한다
 - 기저 데이터의 이해를 위해 고정된 뷰는 피한다

세가지 데이터 형식

- 실증적 데이터(empirical)
- 추상적 데이터(abstract)
- 메타 데이터(meta)

데이터 함수(Data Functions)

데이터 함수(Data Functions)

- 데이터셋으로부터 변수(variables)를 만드는 함수
 - function(dataset) -> variables
- 객체지향 데이터베이스와 함께 사용할 수 있음
- 참조하는 스킴과 실제 데이터와는 무관하다

데이터 함수(Data Functions)

Table 3.1 Data Functions

Empirical Data	Abstract Data	Metadata
<pre>col(source(), name(), unit(), weight()) map(source(), id()) stream(source(), id()) image(source()) sample(x, n) reshape(x₁,,x_n, "<index>")</index></pre>	<pre>iter(from,to,step) mesh(min, max, n) count(n) proportion(n) percent(n) constant(c, n) string("<string>", n) rand(n)</string></pre>	meta(source(), name())

실증적(Empirical) 함수

• 관찰된 데이터의 열을 조작하는 하는 함수

col(source(), name(), unit(), weight())

- 데이터 소스의 열을 변수와 연결한다
- 그래프 스펙(GPL 표현) 상에서 이 함수가 사용되지 않 았다면 열이름과 변수명이 같다고 추정
- unit(): 단위
- weight(): 통계적 계산을 위한 가중치 지정

map, stream, image

- map(source(), id(())
 - 지도
- stream(source(), id(())
 - 데이터 스트리밍
- image(source())
 - 이미지 소스

sample(x,n)

- 샘플링 기법들을 구현
 - sample.srs(simple random)
 - sample.jackknife(Tukey, 1958)
 - sample.boot(Efrom & Tibshirani, 1993)

$$reshape(x_1, \ldots x_n, "< index >")$$
 (1)

- 행렬이나 표를 하나의 변수(컬럼)으로 변환
 - $\mathbf{X}_{m \times n}$ ($x_1 \dots x_n$ columns)
 - $ullet i, j = row \ and \ column \ indices$
 - $\mathbf{X}(i = 1, ... m \ and \ j = 1, ... n)$

$reshape(x_1, \ldots x_n, "< index >")$ (2)

- Let k be the row index of the variable × output by the reshape() function
- $reshape.rect(): k = n \cdot (i-1) + j$
- $reshape.tri(): k = i \cdot (i-1)/2 + j: (i \ge j)$
- \bullet reshape. low():
 - $k = (i-1) \cdot (i-2)/2 + j : (i > j)$
- reshape.diag(): k = i: (i = j)

$reshape.\,rect()$

 $ullet \quad reshape.\,rect(): k=n\cdot (i-1)+j$

• $t(\times) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{bmatrix}$

reshape.tri()

•
$$reshape.tri(): k = i \cdot (i-1)/2 + j: (i \ge j)$$

•
$$t(\times) = [1 \ 4 \ 5 \ 7 \ 8 \ 9]$$

$reshape.\ low()$

ullet reshape.low()

•
$$k = (i-1) \cdot (i-2)/2 + j : (i > j)$$

•
$$t(\times) = [4 \ 7 \ 8]$$

$reshape.\,diag()$

ullet reshape. diag(): k=i: (i=j)

• $t(\times) = [1 \ 5 \ 9]$

$$reshape(x_1, \ldots x_n, "< index >")$$
 (3)

- < index >에 들어갈 수 있는 값
 - value: the value of the entries
 - rowindex: the row index
 - colindex: the column index
 - rowname: the row name
 - colname: the column name

추상적 함수(Abstrcat Functions)

- 열(columns)를 생성하는 함수
- 행수(n)을 인자로 받는 경우가 많다
 - n이 없으면 데이터셋의 행수를 n으로 사용

iter(from, to, step)

- from에서 to까지 step 간격을 가진 seqence를 생성
- count(10) = iter(1, 10, 1)
- proportion(10) = iter(.1, 1.0, .1)
- percent(n):

mesh(min, max, n)

- mesh(min, max, n):
 - 1D, 2D, 3D mesh 계산

constant, string

- constant(c, n):
 - n 개의 c 생성
- string("<string>", n):
 - n개의 문자열 생성
 - DATA: s = string("Hello world")
 - DATA: s = "Hello world"(축약표현)

rand(n)

- rand(n):
 - 독립적 무작위 숫자 생성
 - rand.uniform()
 - rand.normal()

메타데이터 함수

- meta(source(), name()):
 - 데이터셋의 행과 source()를 연결시키는 함수
 - source(): 비디오, 이미지, 웹주소 등등

실증적 데이터(Empirical Data)

Empirical

• 그리스어 어원: 경험, 무엇과 가까워지다

실증적 데이터를 바라보는 두 견해

- Realist(실재론자)
 - 데이터란 잠재적 현상들의 현시(manifestations)
 - 데이터는 보편적이며 기본적인 사실을 가리킴
- Nominalist(유명론자)
 - 데이터란 데이터가 보여주는 것
 - 루트비히 포이어바흐 당신은 당신이 먹는 것

Figure 3.1 Cumulative record

Reshaping Data

Correlation Matrix

ex)

```
mpg cyl disp hp drat wt mpg 1.00 -0.85 -0.85 -0.78 0.68 -0.87 cyl -0.85 1.00 0.90 0.83 -0.70 0.78 disp -0.85 0.90 1.00 0.79 -0.71 0.89 hp -0.78 0.83 0.79 1.00 -0.45 0.66 drat 0.68 -0.70 -0.71 -0.45 1.00 -0.71 wt -0.87 0.78 0.89 0.66 -0.71 1.00
```

reshape.low(mpg,cyl,disp,hp,drat,wt)

- -0.85
- -0.85
- 0.90
- -0.78
- 0.83
- 0.79
- 0.68
- -0.70
- -0.71
- -0.45
- -0.87
- 0.78
- 0.89
- 0.66
- -0.71

DATA: r = reshape.low(pounding, sinking, shaking, nauseous, stiff, faint, vomit, bowels, urine, "value")

ELEMENT: point.dodge.asymmetric(position.bin.dot(r))

Figure 3.2 Dot plot of correlations from correlation matrix

reshape.tri(mpg,cyl,disp,hp,drat,wt)

- 1.00
- -0.85
- 1.00
- -0.85
- 0.90
- 1.00
- -0.78
- 0.83
- 0.79
- 1.00
- 0.68
- -0.70
- -0.71
- -0.45
- 1.00
- -0.87
- 0.78
- 0.89
- 0.66
- -0.71

DATA: row = reshape.tri(pounding, sinking, shaking, nauseous, stiff, faint, vomit, bowels, urine, "rowname")

DATA: col = reshape.tri(pounding, sinking, shaking, nauseous, stiff, faint, vomit, bowels, urine, "colname")

DATA: r = reshape.tri(pounding, sinking, shaking, nauseous, stiff, faint, vomit, bowels, urine, "value")

ELEMENT: polygon(position(bin.rect(col*row)), color.hue(r))

Figure 3.3 Correlation matrix of combat symptoms

ELEMENT: interval(position(summary.count(bin.rect(military, dim(1)))))

DATA: mean = sample.boot(military, 1000, "mean")

ELEMENT: interval(position(summary.count(bin.rect(mean, dim(1)))))

Figure 3.4 Bootstrapped means

DATA: case = iter(1, 256, 1)ELEMENT: line(position(case*rate))

Figure 3.5 Firing rate of cat retinal cell ganglion

DATA: $\mathbf{z} = constant(1)$ COORD: rect(dim(1, 2, 3))

ELEMENT: interval(position(summary.count(gov*urban*z)))

Figure 3.6 Count bar chart

DATA: $\mathbf{x}, \mathbf{y} = mesh(min(-5, -5), max(5, 5))$ TRANS: $\mathbf{z} = (\mathbf{x}^2+\mathbf{y}^2)/sqrt(\mathbf{x}^2+\mathbf{y}^2)$ COORD: rect(dim(1, 2, 3))ELEMENT: $surface(position(\mathbf{x}^*\mathbf{y}^*\mathbf{z}))$

Figure 3.7 Automated function plot

추상적 데이터(Abstract Data)

메타데이터(Metadata)

데이터 마이닝(Data Mining)

데이터 마이닝(Data Mining)

- MOLAP
- ROLAP
- Visual Query of Databases

제 4장 변수(Variables)

Variable (1)

- 라틴어 어원: variare, 다양하게 만들다
- 개념과 데이터를 연결 (income)
- 변수들 간의 연산 가능 (death * birth)

Variable (2)

- 기존 통계 그래픽 시스템
 - 케이스(행) * 변수(열)
 - 행은 변수의 인스턴스나 샘플
- 새로운 정의
 - 행을 나타내건, 열을 나타내건 상관없음
 - 단, 변수 맵핑 함수는 모든 인덱스에 대해 하나의 값을 반환해야한다

변환(Transforms)

- 변수를 변환하는 함수
- 변수를 적절하고 의미있게 만들기 위한 통계적인 조작
- 또는 새로운 변수 생성, 집계 합수, 요약

Table 4.1 Variable Transforms

Mathematical	Statistical	Multivariate
log(x) exp(x) sin(x) cos(x) tan(x) asin(x) acos(x) atan(x) atan(x)	mean(x) median(x) mode(x) residual(x,y) sort(x) rank(x) prank(x) cut(x,k) zinv(x)	$sum(\mathbf{x}_1,\mathbf{x}_2,,\mathbf{x}_n)$ $diff(\mathbf{x}_1,\mathbf{x}_2)$ $prod(\mathbf{x}_1,\mathbf{x}_2)$ $quotient(\mathbf{x}_1,\mathbf{x}_2)$ $influence(\mathbf{x}_1,\mathbf{x}_2,,\mathbf{x}_n)$ $miss(\mathbf{x}_1,\mathbf{x}_2,,\mathbf{x}_n,"<\hat{f>}")$
$sign(\mathbf{x})$ $pow(\mathbf{x}, p)$	lag(x) grpfun(x,g," <f>")</f>	

수학 함수(Mathematical Functions)

- log(x)
- \bullet exp(x)
- sin(x), asin(x)
- cos(x), acos(x)
- tan(x), atan(x)
- atanh(x)
- sign(x)

sin(x)

```
> sin(seq(1, 30, 1))
[1] 0.841470985 0.909297427 0.141120008 -0.756802495 -0.958924275
[6] -0.279415498 0.656986599 0.989358247 0.412118485 -0.544021111
[11] -0.999990207 -0.536572918 0.420167037 0.990607356 0.650287840
[16] -0.287903317 -0.961397492 -0.750987247 0.149877210 0.912945251
[21] 0.836655639 -0.008851309 -0.846220404 -0.905578362 -0.132351750
[26] 0.762558450 0.956375928 0.270905788 -0.663633884 -0.988031624
```

통계 함수(Statistical Functions)

- mean(x), median(x), residual(x,y)
- residual(x, y)
- sort(x)
- rank(x), prank(x)
- cut(x,k)
- zinv(x)
- lag(x)

rank(x)

```
> rank(sample(1:10, 10, replace=T))
[1] 2.5 4.5 4.5 6.5 1.0 8.5 2.5 8.5 10.0 6.5
```

prank(x)

```
> (seq(1, 100) - 0.5) / 100
[1] 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.115
[13] 0.125 0.135 0.145 0.155 0.165 0.175 0.185 0.195 0.205 0.215 0.225 0.235
[25] 0.245 0.255 0.265 0.275 0.285 0.295 0.305 0.315 0.325 0.335 0.345 0.355
[37] 0.365 0.375 0.385 0.395 0.405 0.415 0.425 0.435 0.445 0.455 0.465 0.475
[49] 0.485 0.495 0.505 0.515 0.525 0.535 0.545 0.555 0.565 0.575 0.585 0.595
[61] 0.605 0.615 0.625 0.635 0.645 0.655 0.665 0.675 0.685 0.695 0.705 0.715
[73] 0.725 0.735 0.745 0.755 0.765 0.775 0.785 0.795 0.805 0.815 0.825 0.835
[85] 0.845 0.855 0.865 0.875 0.885 0.895 0.905 0.915 0.925 0.935 0.945 0.955
[97] 0.965 0.975 0.985 0.995
```

zinv(x)

```
> qnorm((seq(1, 50) - 0.5) / 100)
[1] -2.57582930 -2.17009038 -1.95996398 -1.81191067 -1.69539771 -1.59819314
[7] -1.51410189 -1.43953147 -1.37220381 -1.31057911 -1.25356544 -1.20035886
[13] -1.15034938 -1.10306256 -1.05812162 -1.01522203 -0.97411388 -0.93458929
[19] -0.89647336 -0.85961736 -0.82389363 -0.78919165 -0.75541503 -0.72247905
[25] -0.69030882 -0.65883769 -0.62800601 -0.59776013 -0.56805150 -0.53883603
[31] -0.51007346 -0.48172685 -0.45376219 -0.42614801 -0.39885507 -0.37185609
[37] -0.34512553 -0.31863936 -0.29237490 -0.26631061 -0.24042603 -0.21470157
[43] -0.18911843 -0.16365849 -0.13830421 -0.11303854 -0.08784484 -0.06270678
```

다변량 함수(Multivariate Functions)

- $ullet sum(x_1,x_2,\ldots,x_n)$
- ullet $diff(x_1,x_2)$
- $ullet prod(x_1,x_2)$
- $ullet quotient(x_1,x_2)$
- $ullet influence(x_1,x_2,\ldots,x_n)$
- $ullet miss(x_1, x_2, \ldots, x_n, "< f>")$

정렬

- 시카고의 투표 조작을 밝혀내는 방법
 - 모든 투표자의 테입을 정렬해놓고
 - 중복된 이름과 주소를 찾음
- 정렬
 - one-to-one transformation
 - 변수의 패턴을 드러냄
 - 서브셋들의 비교를 쉽게 해줌

범죄자 성별 비율 그래프

```
TRANS: total = sum(male, female)
TRANS: m = quotient(male, total)
TRANS: f = quotient(female, total)
TRANS: mf = diff(m, f)
TRANS: mf = sort(mf)
ELEMENT: point(position(mf*crime))
```


Figure 4.1 Gender differences in crime patterns

Demo

Notebook Link

TRANS: alpha = prank(military)

TRANS: z = zinv(alpha)

ELEMENT: point(position(military*z))

TRANS: alpha = prank(military)

TRANS: z = zinv(alpha)

SCALE: log(dim(1), base(10))

ELEMENT: point(position(military*z))

Figure 4.2 Probability plots of military expenditures

TRANS: quartile = cut(birth, 4)
TRANS: birthquart = grpfun(birth, quartile, "median")
ELEMENT: schema(shape(shape.box), position(birthquart*birth))

Figure 4.3 Box plot of a variable against its quartile medians

TRANS: residual = residual.linear.student(birth, death)
ELEMENT: point(position(birth*residual))

Figure 4.4 Studentized residual plot