BACALAUREAT 2009 SESIUNEA IULIE

MT1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Să se determine partea reală a numărului complex $(\sqrt{3}+i)^6$.
- **2.** Se consideră funcția $f:(0,\infty)\to\mathbb{R},\ f(x)=\frac{1}{\sqrt[3]{x}}$. Să se calculeze $(f\circ f)(512)$.
- 3. Să se rezolve în mulțimea numerelor reale ecuația $\cos 2x + \sin x = 0$.
- **4.** Se consideră mulțimea $M = \{0, 1, 2, 3, 4, 5\}$. Să se determine numărul tripletelor (a, b, c) cu proprietatea că $a, b, c \in M$ și a < b < c.
- 5. Să se calculeze distanța dintre dreptele paralele de ecuații x + 2y = 6 și 2x + 4y = 11.
- **6.** Paralelogramul ABCD are AB=1, BC=2 şi $m(\triangleleft BAD)=60^{\circ}$. Să se calculeze produsul scalar $\overrightarrow{AC} \cdot \overrightarrow{AD}$.

SUBIECTUL II

- $\textbf{1.} \quad \text{Pentru } a,\, b,\, c \in \mathbb{R}^*, \, \text{se consideră sistemul} \begin{cases} ax+by+cz=b \\ cx+ay+bz=a \\ bx+cy+az=c \end{cases},\, x,\, y,\, z \in \mathbb{R}.$
 - a) Să se arate că determinantul sistemului este $\Delta = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$.
 - b) Să se rezolve sistemul în cazul în care este compatibil determinat.
 - c) Știind că $a^2 + b^2 + c^2 ab bc ca = 0$, să se arate că sistemul are o infinitate de soluții (x, y, z), astfel încât $x^2 + y^2 = z 1$.
- **2.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z}_4 \right\}$
 - a) Să se determine numărul elementelor mulțimii G.
 - b) Să se dea un exemplu de matrice $A \in G$ cu proprietatea că det $A \neq 0$ și det $A^2 = \hat{0}$.
 - c) Să se determine numărul soluțiilor ecuației $X^2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, X \in G.$

SUBIECTUL III

- 1. Se consideră funcția $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, f(x) = \frac{x^2 + x + 1}{x + 1}$
 - a) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
 - **b)** Să se calculeze f'(x), $x \in \mathbb{R} \setminus \{-1\}$.
 - c) Să se demonstreze că funcția f este concavă pe intervalul $(-\infty, -1)$.
- **2.** Pentru orice $n \in \mathbb{N}^*$ se consideră funcția $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = |\sin nx|$ și numărul $I_n = \int_{\pi}^{2\pi} \frac{f_n(x)}{x} dx$.

1

- a) Să se calculeze $\int_0^{\pi} f_2(x) dx$.
- **b)** Să se arate că $I_n \leq \ln 2$, (\forall) $n \in \mathbb{N}^*$.
- c) Să se arate că $I_n \ge \frac{2}{\pi} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \right), (\forall) n \in \mathbb{N}^*.$

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, specializarea toate calificările profesionale; profilul resurse, specializarea toate calificările profesionale; profilul tehnic, specializarea toate calificările profesionale.

SUBIECTUL I

- 1. Se consideră progresia aritmetică $(a_n)_{n\geq 1}$ în care $a_1=3$ şi $a_3=7$. Să se calculeze suma primilor 10 termeni ai progresiei.
- **2.** Să se determine numerele reale m pentru care punctul A(m,-1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 3x + 1$.
- 3. Să se rezolve în mulțimea numerelor reale ecuația $\log_5(2x+3)=2$.
- 4. Să se calculeze numărul submulțimilor cu 3 elemente ale unei mulțimi care are 5 elemente.
- 5. În reperul cartezian xOy se consideră punctele A(-1,-2), B(1,2) și C(2,-1). Să se calculeze distanța de la punctul C la mijlocul segmentului AB.
- **6.** Triunghiul ABC are AB = 8, AC = 8 şi $m(\triangleleft BAC) = 30^{\circ}$. Să se calculeze aria triunghiului ABC.

SUBIECTUL II

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 3 & 4 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și funcția $f : \mathcal{M}_3(\mathbb{R}) \to \mathcal{M}_3(\mathbb{R})$, $f(X) = X^2 3X + I_3$, unde $X^2 = X \cdot X$.
 - a) Să se calculeze $det(I_3 + B)$.
 - b) Să se demonstreze că $f(A) = I_3 + B$.
 - c) Să se arate că $(f(A))^3 = I_3 + 3B + 3B^2$, unde $(f(A))^3 = f(A) \cdot f(A) \cdot f(A)$.
- 2. Pe mulțimea numerelor întregi se definesc legile de compoziție $x \star y = x + y 3$ și $x \circ y = (x 3)(y 3) + 3$.
 - a) Să se rezolve în mulțimea numerelor întregi ecuația $x \circ x = x \star x$.
 - b) Să se determine numărul întreg a care are proprietatea că $x \circ a = 3$, oricare ar fi numărul întreg x.
 - c) Să se rezolve sistemul de ecuații $\begin{cases} x\star (y+1)=4\\ (x-y)\circ 1=5 \end{cases}$, unde $x,\,y\in\mathbb{Z}.$

SUBIECTUL III

- 1. Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = x^3 + \frac{3}{x}$
 - a) Să se calculeze $f'(x), x \in \mathbb{R}^*$.
 - **b)** Să se calculeze $\lim_{x\to 1} \frac{f(x) f(1)}{x-1}$.
 - c) Să se determine intervalele de monotonie ale funcției f.
- **2.** Se consideră funcția $f:[0,1]\to\mathbb{R}, f(x)=x\sqrt{2-x^2}$.
 - a) Să se calculeze volumul corpului obținut prin rotația în jurul axei Ox, a graficului funcției f.
 - **b)** Să se calculeze $\int_0^1 f(x) dx$.
 - c) Să se calculeze $\lim_{x\to 0} \frac{\int_0^x f(t) dt}{x^2}$.

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- 1. Să se calculeze probabilitatea ca, alegând un element din mulțimea $\{0, 1, 2, 3, 4\}$, acesta să fie soluție a ecuației $x^2 4x + 3 = 0$.
- **2.** Să se calculeze suma 1 + 2 + 3 + ... + 40.
- 3. Să se determine valorile parametrului real m astfel încât ecuația $x^2 4mx + 1 = 0$ să aibă soluții reale.
- **4.** Să se calculeze distanța de la punctul A(1,2) la dreapta d: x+y+1=0.
- **5.** Să se rezolve în \mathbb{R} ecuația $7^{2x} 8 \cdot 7^x + 7 = 0$.
- 6. Să se calculeze $\frac{1}{2}\cos 135^{\circ} + 3\sin 135^{\circ}$.

SUBIECTUL II

Pe mulțimea numerelor întregi se definește legea de compoziție $x \star y = xy + 2x + 2y + a$, cu $a \in \mathbb{Z}$.

- a) Să se determine $a \in \mathbb{Z}$ știind că legea "**" admite element neutru.
- b) Pentru a=2 să se demonstreze că legea " \star " este asociativă.
- c) Dacă a=2 să se arate că $(x+y+2)\star z=(x\star z)+(y\star z)+2$, pentru orice $x,\,y,\,z\in\mathbb{Z}$.
- **d)** Pentru a=2 să se determine mulțimea $M=\{x\in\mathbb{Z}\mid \text{există } x'\in\mathbb{Z}, \text{ astfel încât } x\star x'=-1\}.$
- e) Pentru a=2 să se determine $x, y \in \mathbb{Z}$, astfel încât $x \star y = 3$.
- f) Fie mulţimea $H = \{-3, -1\}$. Să se determine $a \in \mathbb{Z}$ astfel încât, pentru oricare $x, y \in H$, să rezulte că $x \star y \in H$.

3

SUBIECTUL III

Fie numerele reale a, b, c și determinantul $D = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$.

- a) Să se calculeze D pentru a = 1, b = 2 și c = 3.
- b) Să se arate că dacă a = b, atunci D = 0.
- c) Pentru b=2 și c=3, să se determine $a\in\mathbb{R}$, astfel încât D=2.
- d) Să se demonstreze că D = (b-a)(c-a)(c-b).
- e) Să se arate că dacă D=0, atunci cel puțin două dintre numerele a, b și c sunt egale.
- f) Să se arate că dacă $a, b, c \in \mathbb{Z}$, atunci D este număr întreg par.

SESIUNEA AUGUST

MT1

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

SUBIECTUL I

- 1. Să se arate că numărul $(1+i\sqrt{3})^3$ este întreg.
- **2.** Să se determine imaginea funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 x + 2$.
- 3. Să se rezolve în multimea numerelor reale ecuația $\sqrt{-2x+1} = 5$.
- 4. Să se determine probabilitatea ca, alegând un număr \overline{ab} din mulțimea numerelor naturale de două cifre, să avem a+b=4.
- 5. Să se determine ecuația dreptei care trece prin punctul A(-1,1) și este perpendiculară pe dreapta d: 5x-4y+1=0.
- 6. Să se calculeze perimetrul triunghiului ABC știind că $AB=6,\,B=\frac{\pi}{4}$ și $C=\frac{\pi}{6}$

SUBIECTUL II

- 1. Se consideră matricea $A=\begin{pmatrix} a & a+1 & a+2 \\ b & b+1 & b+2 \\ 1 & 1 & a \end{pmatrix}$, cu $a,\,b\in\mathbb{R}.$
 - a) Să se arate că det(A) = (a b)(a 1).
 - b) Să se calculeze $\det(A A^t)$.
 - c) Să se arate că rang $(A) \geq 2$, (\forall) $a, b \in \mathbb{R}$.
- **2.** Se consideră polinomul $f \in \mathbb{R}[X]$, $f = X^3 + pX^2 + qX + r$, cu $p, q, r \in (0, \infty)$ și cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$.
 - a) Să se demonstreze că f nu are rădăcini în intervalul $[0, \infty)$.
 - b) Să se calculeze $x_1^3 + x_2^3 + x_3^3$ în funcție de p, q și r.
 - c) Să se demonstreze că dacă a, b, c sunt trei numere reale astfel încât a+b+c<0, ab+bc+ca>0 și abc<0, atunci $a, b, c \in (-\infty, 0)$.

SUBIECTUL III

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = 2x + \ln(x^2 + x + 1)$.
 - a) Să se demonstreze că funcția f este strict crescătoare.
 - b) Să se demonstreze că funcția f este bijectivă.
 - c) Să se arate că graficul funcției f nu are asimptotă oblică spre $+\infty$.
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \{x\}(1 \{x\})$, unde $\{x\}$ este partea fracționară a numărului real x.

4

- a) Să se calculeze $\int_0^1 f(x) dx$.
- b) Să se demonstreze că funcția f admite primitive pe \mathbb{R} .
- c) Să se arate că valoarea integralei $\int_a^{a+1} f(x) \ dx$ nu depinde de numărul real a.

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, specializarea toate calificările profesionale; profilul resurse, specializarea toate calificările profesionale; profilul tehnic, specializarea toate calificările profesionale.

SUBIECTUL I

- 1. Să se calculeze $2\log_3 4 4\log_3 2$.
- 2. Să se determine soluțiile reale ale ecuației $2^{x-1} + 2^x = 12$
- 3. Să se determine numărul natural $n, n \ge 1$ știind că $A_n^1 + C_n^1 = 10$.
- **4.** Fie funcția $f:[0,2]\to\mathbb{R}, f(x)=-4x+3$. Să se determine mulțimea valorilor funcției f.
- 5. Se consideră triunghiul echilateral \overrightarrow{ABC} înscris într-un cerc de centru O. Să se arate că $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \vec{0}$.
- 6. Să se calculeze sin 135°.

SUBIECTUL II

- **1.** În mulțimea $\mathcal{M}_3(\mathbb{Z})$ se consideră matricele $F = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$.
 - a) Să se determine numerele a, b și c astfel încât $A+F=\begin{pmatrix} 2 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{pmatrix}$.
 - b) Să se arate că pentru a=c=0 și b=-1 matricea A este inversa matricei F.
 - c) Să se rezolve ecuația $F \cdot X = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, unde $X \in \mathcal{M}_3(\mathbb{Z})$.
- 2. Pe mulțimea \mathbb{R} se consideră legea de compoziție $x \star y = 2xy x y + 1$.
 - a) Să se arate că $x \star y = xy + (1-x)(1-y)$, oricare ar fi $x, y \in \mathbb{R}$.
 - b) Să se arate că legea de compoziție "*" este asociativă.
 - c) Să se rezolve în mulțimea numerelor reale ecuația $x \star (1-x) = 0$.

SUBIECTUL III

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^2 1}{x^2 + 1}$
 - a) Să se arate că $f'(x) = \frac{4x}{(x^2+1)^2}$, oricare ar fi $x \in \mathbb{R}$.
 - b) Să se determine intervalele de monotonie ale funcției f.
 - c) Ştiind că $g: \mathbb{R}^* \to \mathbb{R}$, $g(x) = f(x) + f\left(\frac{1}{x}\right)$, să se determine

$$\lim_{x \to 0} \frac{g(x) + g(x^2) + g(x^3) + \ldots + g(x^{2009}) + x^{2010}}{x^{2009}}.$$

- **2.** Se consideră $I_n = \int_e^{e^2} x \ln^n x \, dx$, pentru orice $n \in \mathbb{N}$.
 - a) Să se calculeze I_0 .
 - **b)** Să se arate că $I_n \leq I_{n+1}$, oricare ar fi $n \in \mathbb{N}$.
 - c) Să se demonstreze că are loc relația $I_n = \frac{e^2(e^2 \cdot 2^n 1)}{2} \frac{n}{2}I_{n-1}$, pentru orice $n \in \mathbb{N}^*$.

5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

SUBIECTUL I

- **1.** Să se determine funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = ax + b, $a \neq 0$, știind că punctele A(-1,0); B(0,2) aparțin graficului funcției.
- **2.** Să se calculeze $\vec{v} = 4\vec{a} 2\vec{b} + \vec{c}$, unde $\vec{a} = 5\vec{i} 7\vec{j}$, $\vec{b} = -2\vec{i} + 3\vec{j}$, $\vec{c} = 5\vec{i} + 5\vec{j}$.
- 3. Să se calculeze $\cos 135^{\circ} + \cos 45^{\circ}$.
- 4. Să se calculeze valoarea expresiei $E = \frac{x_1}{x_2} + \frac{x_2}{x_1}$, unde x_1, x_2 sunt soluțiile ecuației $x^2 6x + 4$.
- 5. Să se rezolve în mulțimea numerelor reale ecuația $\lg(2^x + 4^x + 4) = 1$.
- **6.** Să se calculeze $|2 3\sqrt{2}| + |3 2\sqrt{2}|$.

SUBIECTUL II

Pe mulțimea numerelor naturale se definește legea de compoziție $x \star y = r$, unde r este restul împărțirii produsului $x \cdot y$ la 10. Se admite că legea " \star " este asociativă pe \mathbb{N} . Se consideră mulțimea $I = \{1, 3, 5, 7, 9\}$.

6

- a) Să se arate că $10 \star x = 0$, $(\forall) x \in \mathbb{N}$.
- **b)** Să se calculeze $5 \star 5 \star 5 \star 5 \star 5$.
- c) Să se arate că $x \star y \in I$, pentru oricare $x, y \in I$.
- d) Să se demonstreze că legea " \star " determină pe mulțimea $I \setminus \{5\}$ o structură de grup comutativ.
- e) Să se calculeze $2 \star 4 \star 6 \star \ldots \star 2008 \star 2010$.
- f) Să se demonstreze că legea "⋆" nu admite element neutru.

SUBIECTUL III

Fie matricele $A = \begin{pmatrix} 1 & -3 \\ 1 & -2 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- a) Să se calculeze A^2 .
- **b)** Să se arate că $\det(A) = \det(A^2)$.
- c) Să se determine $x, y \in \mathbb{R}$ pentru care are loc egalitatea $A^2 + xA + yI_2 = O_2$.
- d) Să se verifice egalitatea $A + A^2 + A^3 = O_2$.
- e) Să se calculeze $A + A^2 + ... + A^{28}$.
- f) Să se arate că pentru orice $a \in \mathbb{R}$ matricea $aI_2 + A$ este inversabilă.