Tutorial questions-11

- 1. Let $\mathbf{u_1} = (3, -1, 2)$ and $\mathbf{u_2} = (3, 1, 5)$.
 - (a) Express the vector $\mathbf{v} = (9, 11, 27)$ as a linear combination of $\mathbf{u_1}$ and $\mathbf{u_2}$ if possible.
 - (b) Find k such that the vector $\mathbf{w} = (-5, 4, k)$ is a linear combination of $\mathbf{u_1}$ and $\mathbf{u_2}$.

2. Let
$$\mathbf{a}_1 = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 9 \\ -3 \\ 5 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 7 \\ 6 \\ h \end{bmatrix}$.

- (a) Find h so that b is in Span{a₁, a₂}.
- (b) For the h that you found in the previous part, express \mathbf{b} as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 .
- 3. Let $\mathbf{b}_1 = (h, 5, 7)$, $\mathbf{b}_2 = (-1, 3, 7)$, and $\mathbf{b}_3 = (1, 1, 2)$. Find h so that $\mathbf{b}_3 \in \operatorname{Span}\{\mathbf{b}_1, \mathbf{b}_2\}$.
- 4. Let $\mathbf{u_1} = (2,0,3,-1)$, $\mathbf{u_2} = (-4,0,-6,2)$, $\mathbf{u_3} = (5,5,0,3)$, $\mathbf{u_4} = (1,3,-6,5)$,

Determine whether each set is linearly independent or linearly dependent.

- (a) $\{u_1, u_2\}$
- (b) $\{u_1, u_2, u_3\}$

5. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

- (a) Express a_3 as linear combinations of a_1 and a_2 if possible.
- (b) Is $\{a_1, a_2, a_3\}$ a basis for \mathbb{R}^2 ? Why or why not?
- (c) Is $\{a_2, a_3\}$ a basis for \mathbb{R}^2 ? Why or why not?

6. Let
$$\mathbf{u_1} = (4, 2, 5), \mathbf{u_2} = (3, -1, -2), \text{ and } \mathbf{u_3} = (6, 2, 0)$$

- (a) Is $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ a basis for \mathbb{R}^3 ? Justify.
- (b) Is it possible to express u₃ as a linear combination of u₁ and u₂? Justify without solving.

7. Let
$$\mathbf{a_1} = (2, 3, -1, 1)$$
, $\mathbf{a_2} = (-2, -3, 1, -1)$, $\mathbf{a_3} = (2, 3, 1, 5)$, $\mathbf{a_4} = (2, 3, 2, 7)$, $\mathbf{a_5} = (4, 6, 3, 12)$. Find a basis for $S = \mathrm{Span}\{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{a_4}, \mathbf{a_5}\}$.

8. Given that

$$S = \left\{ \left(\begin{array}{cc} a & b \\ b & d \end{array} \right) \mid a, b, d \in \mathbb{R} \right\}$$

Show that

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right\} \text{ is a basis for } S$$