Securitatea Sistemelor Informati

- Curs 5.2 -Securitate CCA

Adela Georgescu

Facultatea de Matematică și Informatică Universitatea din București Anul universitar 2022-2023, semestrul I

- Reamintim câteva dintre scenariile de atac pe care le-am mai întâlnit:
 - Atac cu text clar ales chosen plaintext attack (CPA):
 Atacatorul poate obține criptarea unor texte clare alese de el;

- Reamintim câteva dintre scenariile de atac pe care le-am mai întâlnit:
 - Atac cu text clar ales chosen plaintext attack (CPA): Atacatorul poate obţine criptarea unor texte clare alese de el;
 - Atac cu text criptat ales chosen ciphertext attac (CCA): Atacatorul are posibilitatea să obțină decriptarea unor texte criptate alese de el.

▶ In aceste scenarii de atac adversarul are putere crescută;

- In aceste scenarii de atac adversarul are putere crescută;
- Acesta devine un adversar activ, care primește abilitatea de a obține criptarea și / sau decriptarea unor mesaje, respectiv texte criptate alese de el;

- ▶ In aceste scenarii de atac adversarul are putere crescută;
- Acesta devine un adversar activ, care primește abilitatea de a obține criptarea și / sau decriptarea unor mesaje, respectiv texte criptate alese de el;
- ▶ În plus, adversarul poate alege mesajele sau textele criptate în mod **adaptiv** în funcție de răspunsurile primite precedent.

Noțiuni de securitate

▶ Definim astfel 2 noțiuni de securitate:

Noțiuni de securitate

- Definim astfel 2 noțiuni de securitate:
 - ► CPA (Chosen-Plaintext Attack): adversarul poate să obțină criptarea unor mesaje alese de el; discutată în cursul anterior

Noțiuni de securitate

- Definim astfel 2 noțiuni de securitate:
 - ► CPA (Chosen-Plaintext Attack): adversarul poate să obțină criptarea unor mesaje alese de el; discutată în cursul anterior
 - CCA (Chosen-Ciphertext Attack): adversarul poate să obțină criptarea unor mesaje alese de el și decriptarea unor texte criptate alese de el.

Capabilitățile adversarului: el poate interacționa cu un oracol de criptare și cu un oracol de decriptare, fiind un adversar activ care poate rula atacuri în timp polinomial;

- Capabilitățile adversarului: el poate interacționa cu un oracol de criptare și cu un oracol de decriptare, fiind un adversar activ care poate rula atacuri în timp polinomial;
- Adversarul poate transmite către oracolul de criptare orice mesaj m şi primeşte înapoi textul criptat corespunzător sau poate transmite către oracolul de decriptare anumite mesaje c şi primeşte înapoi mesajul clar corespunzător;

- Capabilitățile adversarului: el poate interacționa cu un oracol de criptare și cu un oracol de decriptare, fiind un adversar activ care poate rula atacuri în timp polinomial;
- Adversarul poate transmite către oracolul de criptare orice mesaj m și primește înapoi textul criptat corespunzător sau poate transmite către oracolul de decriptare anumite mesaje c și primește înapoi mesajul clar corespunzător;
- Dacă sistemul de criptare este nedeterminist, atunci oracolul de criptare folosește de fiecare dată o valoare aleatoare nouă și neutilizată anterior.

 Considerăm că securitatea este impactată dacă adversarul poate să distingă între criptările a două mesaje aleatoare;

- Considerăm că securitatea este impactată dacă adversarul poate să distingă între criptările a două mesaje aleatoare;
- Vom defini securitatea CCA pe baza unui experiment de indistinctibilitate $Priv_{\mathcal{A},\pi}^{cca}(n)$ unde $\pi=(Enc,Dec)$ este schema de criptare iar n este parametrul de securitate al schemei π ;

- Considerăm că securitatea este impactată dacă adversarul poate să distingă între criptările a două mesaje aleatoare;
- Vom defini securitatea CCA pe baza unui experiment de indistinctibilitate $Priv_{\mathcal{A},\pi}^{cca}(n)$ unde $\pi=(Enc,Dec)$ este schema de criptare iar n este parametrul de securitate al schemei π ;
- Personajele participante: adversarul A care încearcă să spargă schema și un provocator (challenger);

Adversar ${\cal A}$

▶ Pe toată durata experimentului, \mathcal{A} are acces la oracolul de criptare $Enc_k(\cdot)$ și la oracolul de decriptare $Dec_k(\cdot)$ cu restricția că nu poate decripta c!

Output-ul experimentului este 1 dacă b'=b și 0 altfel. Dacă $Priv^{cca}_{\mathcal{A},\pi}(n)=1$, spunem că \mathcal{A} a efectuat experimentul cu succes.

Definiție

O schemă de criptare $\pi = (Enc, Dec)$ este CCA-sigură dacă pentru orice adversar PPT $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Priv_{\mathcal{A},\pi}^{cca}(n) = 1] \leq \frac{1}{2} + negl(n).$$

Definiție

O schemă de criptare $\pi = (Enc, Dec)$ este CCA-sigură dacă pentru orice adversar PPT $\mathcal A$ există o funcție neglijabilă negl așa încât

$$Pr[Priv^{cca}_{\mathcal{A},\pi}(n)=1] \leq rac{1}{2} + negl(n).$$

Un adversar nu poate determina care text clar a fost criptat cu o probabilitate semnificativ mai mare decât dacă ar fi ghicit (în sens aleator, dat cu banul), chiar dacă are acces la oracolele de criptare şi decriptare.

► Întrebare: Un sistem de criptare CCA-sigur este întotdeauna CPA-sigur?

- ► Întrebare: Un sistem de criptare CCA-sigur este întotdeauna CPA-sigur?
- ▶ Răspuns: DA! Experimentul $Priv_{\mathcal{A},\pi}^{cpa}(n)$ este $Priv_{\mathcal{A},\pi}^{cca}(n)$ în care \mathcal{A} nu folosește oracolul de decriptare.

- ► Întrebare: Un sistem de criptare CCA-sigur este întotdeauna CPA-sigur?
- ▶ Răspuns: DA! Experimentul $Priv_{\mathcal{A},\pi}^{cpa}(n)$ este $Priv_{\mathcal{A},\pi}^{cca}(n)$ în care \mathcal{A} nu folosește oracolul de decriptare.
- Întrebare: Un sistem de criptare determinist poate fi CCA-sigur?

- ▶ Întrebare: Un sistem de criptare CCA-sigur este întotdeauna CPA-sigur?
- ▶ Răspuns: DA! Experimentul $Priv_{\mathcal{A},\pi}^{cpa}(n)$ este $Priv_{\mathcal{A},\pi}^{cca}(n)$ în care \mathcal{A} nu folosește oracolul de decriptare.
- Întrebare: Un sistem de criptare determinist poate fi CCA-sigur?
- Răspuns: NU! Sistemul nu este CPA-sigur, deci nu poate fi CCA-sigur.

Securitate CCA - Criptare multiplă

În definiția precedentă am considerat cazul unui adversar care primește un singur text criptat;

Securitate CCA - Criptare multiplă

- ▶ În definiția precedentă am considerat cazul unui adversar care primește un singur text criptat;
- În realitate, în cadrul unei comunicații se trimit mai multe mesaje pe care adversarul le poate intercepta;

Securitate CCA - Criptare multiplă

- În definiția precedentă am considerat cazul unui adversar care primește un singur text criptat;
- În realitate, în cadrul unei comunicaţii se trimit mai multe mesaje pe care adversarul le poate intercepta;
- Definim ce înseamnă o schemă sigură chiar și în aceste condiții.

Adversar ${\cal A}$

Pe toată durata experimentului, \mathcal{A} are acces la oracolul de criptare $Enc_k(\cdot)$ și la oracolul decriptare $Dec_k(\cdot)$ cu restricția că nu poate decripta $c_1, \ldots, c_t!$

• Output-ul experimentului este 1 dacă b' = b și 0 altfel;

- Output-ul experimentului este 1 dacă b' = b și 0 altfel;
- Definiția de securitate este aceeași, doar că se referă la experimentul de mai sus.

- Output-ul experimentului este 1 dacă b' = b și 0 altfel;
- Definiția de securitate este aceeași, doar că se referă la experimentul de mai sus.
- Securitatea pentru criptare simplă implică securitate pentru criptare multiplă!

Nici una din schemele de criptare de până acum nu sunt CCA-sigure.

- Nici una din schemele de criptare de până acum nu sunt CCA-sigure.
- Arătăm pentru construcția anterioară, unde $Enc_k(m) = (r, F_k(r) \oplus m)$.

- Nici una din schemele de criptare de până acum nu sunt CCA-sigure.
- Arătăm pentru construcția anterioară, unde $Enc_k(m) = (r, F_k(r) \oplus m)$.
- ightharpoonup Considerăm că \mathcal{A} alege $m_0=0^n$ și $m_1=1^n$.

- Nici una din schemele de criptare de până acum nu sunt CCA-sigure.
- Arătăm pentru construcția anterioară, unde $Enc_k(m) = (r, F_k(r) \oplus m)$.
- ightharpoonup Considerăm că \mathcal{A} alege $m_0=0^n$ și $m_1=1^n$.
- ▶ \mathcal{A} primește c = (r, s), inversează primul bit al lui s și cere decriptarea textului rezultat c^* (permis deoarece $c^* \neq c$).

- Nici una din schemele de criptare de până acum nu sunt CCA-sigure.
- Arătăm pentru construcția anterioară, unde $Enc_k(m) = (r, F_k(r) \oplus m)$.
- ightharpoonup Considerăm că \mathcal{A} alege $m_0=0^n$ și $m_1=1^n$.
- ▶ \mathcal{A} primește c = (r, s), inversează primul bit al lui s și cere decriptarea textului rezultat c^* (permis deoarece $c^* \neq c$).
- Oracolul răspunde cu 10^{n-1} , și deci b=0 sau cu 01^{n-1} , deci $b=1 \Rightarrow Pr[Priv^{cca}_{\mathcal{A},\pi}(n)=1]=1$.

- Nici una din schemele de criptare de până acum nu sunt CCA-sigure.
- Arătăm pentru construcția anterioară, unde $Enc_k(m) = (r, F_k(r) \oplus m)$.
- ightharpoonup Considerăm că \mathcal{A} alege $m_0=0^n$ și $m_1=1^n$.
- ▶ \mathcal{A} primește c = (r, s), inversează primul bit al lui s și cere decriptarea textului rezultat c^* (permis deoarece $c^* \neq c$).
- ▶ Oracolul răspunde cu 10^{n-1} , și deci b = 0 sau cu 01^{n-1} , deci $b = 1 \Rightarrow Pr[Priv^{cca}_{\mathcal{A},\pi}(n) = 1] = 1$.
- Concluzie: orice schemă de criptare care permite ca textele criptate să fie modificate într-un mod controlat nu poate fi CCA-sigură.

Important de reținut!

- ► Securitate interceptare simplă \Rightarrow securitate interceptare multiplă
- ► Schemele deterministe nu sunt semantic / CPA / CCA sigure
- ► Securitate CCA ⇒ securitate CPA ⇒ securitate semantică

Exemplu

Fie (*Enc*, *Dec*) un sistem de criptare simetric. Se consideră sistemul de criptare (*Enc'*, *Dec'*) pentru mesaje de dimensiune dublă cu funcția de criptare definită astfel:

$$Enc'_k(m_1||m_2) = (Enc_k(m_2), Enc_k(m_1))$$

Arătați că sistemul nu este CCA-sigur.

Rezolvare

 \mathcal{A} transmite oracolului de decriptare $(Enc_k(m_{b0}), Enc_k(m_{b0}))$ și primește $m'=(m_{b0}, m_{b0})$, deci determină b' cu probabilitate 1.