Wavelet Analysis for Noisy Time Series

February 2020
Gregor Mönke
gregor.moenke@embl.de

Recap: Frequency Analysis with Fourier

Frequency domain

Recap: Frequency Analysis with Fourier

Both representations contain the same energy/information (e.g. jpeg compression)

Discrete and Continuous Spectra

stochastic/chaotic signal

continuous spectrum

Frequency

Most "real world" signals have both components!

Fourier Limitations

Short signal

Poor spectral resolution

Non-stationary signal

$\mathcal{F}: t \to \omega$

No time-resolution

- Amplitude and period potentially time-dependent!
- Uniquely characterize an analytic signal

$$A(t) \cos[\phi(t)], \ \omega(t) = \frac{d\phi}{dt}, \ \omega = \frac{2\pi}{T}$$

The Task:

- bias free estimation of period, phase and amplitude
- no spurious results

Fourier modes have no time localization

- Fourier modes have no time localization
- Idea from Gabor 1947: Localize them with a Gaussian

- Fourier modes have no time localization
- Idea from Gabor 1947: Localize them with a Gaussian

Morlet Mother Wavelet:

$$\psi(t) = \pi^{1/4} e^{i\omega_0 t} e^{-\frac{1}{2}t^2}$$

- Fourier modes have no time localization
- Idea from Gabor 1947: Localize them with a Gaussian

Morlet Mother Wavelet: $\psi(t)=\pi^{1/4}\left[cos(\omega_0 t)+isin(\omega_0 t)\right]e^{-\frac{1}{2}t^2}$

- Fourier modes have no time localization
- Idea from Gabor 1947: Localize them with a Gaussian

Morlet Mother Wavelet:
$$\psi(t)=\pi^{1/4}\left[cos(\omega_0 t)+isin(\omega_0 t)\right]e^{-\frac{1}{2}t^2}$$

Translation and Dilation: We have a Family!

Shift in time: Translation

Change of wavelength: Dilation

Wavelet Analysis and Spectrum

Asymptotic Spectrum

Time averaged Wavelet Spectrum is (optimal) estimate for the Fourier Spectrum!

Ridge Extraction

Wavelet power > 3 corresponds to 95% confidence interval for **white noise**

"A Practical Guide to Wavelet Analysis", Torrence and Compo 1997

Ridge Evaluation

Ridge Evaluation

Edge effects of convolutions most prominent for amplitude estimation

Noise Robustness

Wavelet analysis has a built-in noise robustness!

Detrending with optimal Sinc Filter

Cut-off period divides pass- and stopband of the filter without amplification or attenuation

$$1.5 T_c \geq T_{max}$$

Noise + Trend

Detrending is practically perfect here

Smoothing Noise

Smoothing Noise

Wavelet analysis has a built-in noise robustness: smoothing is not needed!

Wrapping up Time Series analysis

