### ECOM90025 Advanced Data Analysis

Tutorial 6

Zheng Fan

The University of Melbourne

#### Introduction

#### Zheng Fan

- Ph.D. student in Economics
- Email: fan.z@unimelb.edu.au
- Tutorial code and slides: github.com/zhengf1/ADA2022

#### Seek help?

- Ed discussion board
- Consultations: refer to Canvas for details

Section: Introduction

#### TE

Consider the treatment d takes value of 0 and 1. A simple model for a well-randomized experiment generates data y. So we observe independent pairs  $(y_i, d_i)$  for individual i. In addition, the allocation of  $d_i$  is purely random.

- Use  $n_0$  ( $n_1$ ) as the number untreated (treated) individuals.
- Define  $\mu_1$  and  $\mu_0$  as the mean of the treated and untreated outcomes, respectively.
- Define  $\sigma_1$  and  $\sigma_0$  as the standard deviation of the treated and untreated outcomes, respectively.
- What is the mean and variance of the sample mean of the (un)treated outcomes?
- What is the true value of the treatment effect (TE)?
- 3 What is the estimator for TE?
- 4 What is the variance of the estimator?
- 6 How to compute the standard error of the estimator?

### Simulation

Assume that  $\mu_0=0$ ,  $\mu_1=1$ ,  $\sigma_0=1$  and  $\sigma_1=2$ . Randomly draw  $n_0=100$  and  $n_1=50$  observations. Assume that the distribution of  $y_i$  is normal.

- Simulate a data set and estimate the TE.
- 2 Carry out a Monte Carlo study to compare the simulated standard deviation to the theory.

## Heterogeneity and ATE

The simulation study has two kinds of individuals, male and female. Use  $g_i = 1$  for individual i being female and 0 for male.

Assume that

$$\mu_0^m = 0$$
  $\mu_1^m = 1$   $\mu_0^f = 0$   $\mu_1^f = 2$ 

where superscript m and f means male and female, respectively.

Randomly draw  $n_0 = 100$  and  $n_1 = 50$  observations (half female and half male). Assume that the distribution of  $y_i$  is normal. For simplicity, assume that the variance of each category is fixed at 1 (homoskedasticity).

Use Monte Carlo study to plot a histogram of TE

### Regression for ATE: DGP

Simulate a data set from the previous question.

- Your data should have 150 rows (observations  $n_0 + n_1$ ) and 3 columns  $(y_i, d_i, g_i)$ .
- 2 Half of  $g_i$  in the control and treatment groups is zero.
- 3 The data should be in the 'R' data frame format.

The data is constructed to be used in a regression to estimate the ATE

The DGP in Section **Heterogeneity and ATE** can be represented in a regression form as

$$y = \alpha_{g} + \gamma_{g}d + \epsilon$$

where  $\sim N(0,1)$ .

• What is the ATE?

If, instead, we estimate a simple regression model

$$y = \alpha + \gamma d + u$$

while the true model has heterogeneity in gender.

Assume the true model is  $y = \alpha_g + \gamma_g d + \epsilon$ 

• What is  $\gamma$ ? Is it still ATE?

If, instead, we estimate a simple regression model

$$y = \alpha + \gamma d + u$$

while the true model has heterogeneity in gender.

Assume the true model is  $y = \alpha_g + \gamma_g d + \epsilon$ 

• What is  $\gamma$ ? Is it still ATE?

We can know

$$u = \epsilon + (\alpha_g - \alpha) + (\gamma_g - \gamma)d$$

$$E(y \mid d=1) - E(y \mid d=0) = E(\alpha + \gamma + u) - E(\alpha + u) = \gamma$$
. So, yes,  $\gamma$  is ATE.

If, instead, we estimate a simple regression model instead

$$y = \alpha_g + \gamma d + u$$

while the true model has heterogeneity in gender.

Assume the true model is  $\mathbf{y} = \alpha_{\mathbf{g}} + \gamma_{\mathbf{g}} \mathbf{d} + \epsilon$ 

• What is  $\gamma$ ? Is it still ATE?

If, instead, we estimate a simple regression model instead

$$y = \alpha_g + \gamma d + u$$

while the true model has heterogeneity in gender.

Assume the true model is  $\mathbf{y} = \alpha_{\mathbf{g}} + \gamma_{\mathbf{g}} \mathbf{d} + \epsilon$ 

• What is  $\gamma$ ? Is it still ATE?

We can know

$$u = \epsilon + (\gamma_g - \gamma)d$$

Similar to before. ATE is still  $\gamma$ .

#### Estimate three models

$$2 y = \alpha_g + \gamma d + u$$

And compute the ATE.

### The end

Thanks for your attention! §



Tutorial code and slides: github.com/zhengf1/ADA2022

Section: End 1