Background

Patterning in Biology

Generation of complex organizations through cell fate decisions

Rostrocaudal (RC) Patterning of neural tube

Background

Recapitulate CNS patterning using engineering tools

Achieve patterning

Microfluidics generate chemical gradient

Patterning achieved

Differential secretion of soluble factors

Dorsoventral (DV) Patterning of neural tube

Early CNS Development

Supply additional medium for larger tissue Side Channel Central Channel Side Channel

Achieve DV patterning with similar principle

Caudal cysts subject to ~2μM of inductive chemicals at steady state (compared to **rostral** ones at ~1μM, a two-fold change)

RC patterning relies on concentration difference over distance

Because of their small size, each cyst is not subject to sufficiently different microenvironment.

Difficult to trigger DV patterning in current design

Goal:

New device design to create a sharp chemical gradient at single-cyst level

Strategy:

Use cyst tissue to block chemical diffusion

Design:

Geometric confinement helps form sharper chemical gradient

- 1. Single cyst
- 2. Correct localization of DV markers
- 3. Lumen present at the center of structure

New design facilitates DV patterning on a single neural cyst

Dorsal Ventral