Strain-space model for Sars-CoV-2

Peter C. Jentsch, PhD ^{1,4} Finlay Maguire, PhD ^{3,5} Samira Mubareka, MD, FRCPC ^{1,2}

¹Sunnybrook Research Institute, Toronto, Canada

²University of Toronto, Toronto, Canada

³Dalhousie University, Halifax, Canada

⁴Simon Fraser University, Burnaby, Canada

⁵Shared Hospital Laboratory, Toronto, Canada

March 25, 2022

- Dynamic model of Sars-CoV-2 evolution, representing antigenic diversity on a lattice (as in e.g. [Gog and Grenfell, 2002, Kryazhimskiy et al., 2007])
- Antigenically distinct variants of the virus are mapped to 2D grid, distance between variants corresponds to the proportional reduction in maximum serum viral titre [Wilks et al., 2022, van der Straten et al., 2022]

Figure: Antigenic cartography of Sars-CoV-2, reproduced from [Wilks et al., 2022], Fig. 2

Model parameters/variables

Symbol	Description
\overline{N}	Size of variant grid
S_{ij}	Population susceptible to variant $(i, j) \in [0, N]^2$
I_{ij}	Population infected by variant $(i, j) \in [0, N]^2$
R_{ij}	Recovered/Immune to variant $(i, j) \in [0, N]^2$
σ_{ijkl}	Probability that exposure to variant (i, j) causes
	immunity
	to variant (k, l)
eta_{ij}	Transmission rate of variant (i, j)
ξ	Recovery rate of all strains
γ	Rate of immunity loss of all strains

Table: Table of symbols for Model 2

In practice, we assume σ_{ijkl} is just a 2-D gaussian distribution parameterized by the distance between (i, j) and (k, l).

Model Equations

$$\frac{S_{ij}}{dt} = -\sum_{kl} \beta_{kl} \sigma_{ijkl} S_{ij} I_{kl} + \gamma R_{ij} \tag{1}$$

$$\frac{I_{ij}(t)}{dt} = \beta_{ij} S_{ij} I_{ij} - \xi I_{ij} + M(-4I_{ij} + I_{i-1,j} + I_{i+1,j} + I_{i,j-1} + I_{i,j+1})$$
 (2)

$$\frac{R_{ij}(t)}{dt} = \xi I_{ij} - \gamma R_{ij} \tag{3}$$

Boundary conditions: $I_{0,j} = 0$, $I_{j,0} = 0$, $I_{N,j} = 0$, $I_{j,N} = 0$ Initial conditions computed from genomic data in GISAID

- Gog, J. R. and Grenfell, B. T. (2002). Dynamics and selection of many-strain pathogens. Proceedings of the National Academy of Sciences, 99(26):17209–17214.
- Kryazhimskiy, S., Dieckmann, U., Levin, S. A., and Dushoff, J. (2007).
 On State-Space Reduction in Multi-Strain Pathogen Models, with an Application to Antigenic Drift in Influenza A.
 PLOS Computational Biology, 3(8):e159.
- van der Straten, K., Guerra, D., van Gils, M., Bontjer, I., Caniels, T. G., van Willigen, H. D., Wynberg, E., Poniman, M., Burger, J. A., Bouhuijs, J. H., et al. (2022). Mapping the antigenic diversification of sars-cov-2. *medRxiv*.

Wilks, S. H., Mühlemann, B., Shen, X., Türeli, S., LeGresley, E. B., Netzl, A., Caniza, M. A., Chacaltana-Huarcaya, J. N., Daniell, X., Datto, M. B., Denny, T. N., Drosten, C., Fouchier, R. A. M., Garcia, P. J., Halfmann, P. J., Jassem, A., Jones, T. C., Kawaoka, Y., Krammer, F., McDanal, C., Pajon, R., Simon, V., Stockwell, M., Tang, H., van Bakel, H., Webby, R., Montefiori, D. C., and Smith, D. J. (2022). Mapping SARS-CoV-2 antigenic relationships and serological responses. Preprint, Immunology.