# Ch. 8/9 - Relations and Functions

Saturday, July 16, 2016 10:44 AM

## 8.1 RELATIONS

A relation, R, from A to B is a subset of AXB

For example, 
$$A=\{x,y,\pm\}$$
  $B=\{1,2\}$ 
 $R=\{(x,2)(y,1)(y,2)\}$ 
 $R\leq A\times B$ , so it is a relation

Lymaps as A to bets

Pomain  $R=\{acA:(a,b)cR \text{ for some bots}\}$ 

Lythe first coordinates of the relation elements

dom  $(R)=\{x,y\}$ 

Range  $R=\{bcB:(a,b)cR \text{ for some asA}\}$ 

Lythe second coordinates of the relation elements

vange  $(R)=\{1,2\}$ 

Inverse relation,  $R^{-1}=\{(b,a):(a,b)cR\}$ 

Ly swap the coordinates of the relation

 $R^{-1}=\{(2,x)(1,y)(2,y)\}$ 

4.1 FUNCTIONS

Ly a relation such that each element of A is mapped to exactly one element of 13

$$f: \{(1,\gamma)(1,x)(2,\gamma)\}$$

I cannot go to both y and x

if  $f(a)=b$  and  $f(c)=b$ , then  $a=c$ 

Codomain -> subset of the range, the set B







ox not all domain mopped (not function)



one item of A napped to two items of B

La doesn't pass vertical line test

9.2 SET OF ALL FUNCTIONS FROM A to B

9.3 ONE-TO-ONE AND ONTO FUNCTIONS

One-to-one (Injective) [A | S | B | A > B | A > B | A > B



Prone: If f(a)=f(b), then a=b

Ex) Determine if  $f(x) = x^2 - 3x - 2$  is bijective

$$f(0) = -2$$
,  $f(3) = -2$   
 $f(0) = f(3)$ , where  $0 \neq 3$  so not injective

f(0) = -2, f(3) = -2 f(0) = f(3), where  $0 \neq 3$  so not injective

Onto (surjective) [A|3|B| f:A>B

Wif every element of the codomain is mapped to by some element of the domain

 $f: A \to B$   $A = \{(1, 1)(2, 1)(3, 1)\}$   $f = \{(1, 1)(2, 1)(3, 1)\}$ 

X not onto b/c z and x are not defined in the function

Lanumerically, view as furction spanning entire vertical axis



Prone: Let f:A>B. We say f is surjective when for every b in B, there is an a in A such that f(a)=b

VbeB, Jack s.t f(a)=6

Bijective (both surjective and injective) |A|=|B|



Ex) Prove  $f: \mathbb{R} \to \mathbb{R}$  f(x)=7x-2 is bijectine

We must prone

1) f is injective

Consider f(a)=f(b), then 7a-2=7b-2

So 7a=7b. Thus a=b, hence f is injective.

2) + is surjective

For every aGR we must show there exists xGR such that f(x)=a.

Consider  $x = \frac{a+2}{7}$ , then  $f(x) = 7(\frac{a-2}{7}) + 2 = a$ 

Hence f is surjective.

Since (1) and (2) are true, f is bijective.

# 9.5 COMPOSITION OF FUNCTIONS

Composition: Let  $f:A \rightarrow B$  and  $g:B \rightarrow C$  be two functions. The composition is a new function  $g \circ f:A \rightarrow C$  $(g \circ f)(a) = g(f(a))$ 

Notes: if  $f \not = g$  are both injective,  $g \circ f$  is injective if  $f \not = g$  are both surjective,  $g \circ f$  is surjective

$$(f+g)(x) = f(x) + g(x)$$

$$(fg)(x) = f(x) \cdot g(x)$$

$$f \circ g \neq g \circ f$$

$$(n \circ g) \circ f = n \circ (g \circ f)$$

## 9.6 INVERSE FUNCTIONS

Inverse relation,  $R^{-1} = \{(b,a): (a,b) \in R\}$ 



THEOREM 9.15:  $f^{-1}$  exists if and only if f is bijective Ly furthermore  $f^{-1}$  is also bijective

An inverse function is always bijective.

THEOREM 9.16: Let  $f: A \rightarrow B$  and  $f^{-1}: B \rightarrow A$ .  $f \circ f^{-1} = ig$  and  $f^{-1} \circ f = i_A$ 

 $E\times f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{3\}$  defined by  $f(x)=\frac{3x}{2}$ 

$$f \circ f^{-1} = ig$$
 and  $f^{-1} \circ f = iA$ 

$$[x]$$
  $f: \mathbb{R} - \{2\} \longrightarrow \mathbb{R} - \{3\}$  defined by  $f(x) = \frac{3x}{x-2}$ 

is known to be bijective. Determine f-1

$$x = \frac{3 + 1}{4^{-1} - 2}$$

$$x(f - 2) = 3f$$

$$xf - 3f = 2x$$

$$+ \frac{2x}{x - 3}$$