A New Gas-Phase Scheme for Advanced Regional Climate Modelling with RegCM4

James M. Ciarlo` 1,2,3, Noel Aquilina 4, Susanna Strada 2, Ahmed Shalaby 5, Fabien Solmon 6

- 1. Department of Geosciences, University of Malta, Msida, Malta
- 2. Earth System Physics Section, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
 - 3. National Institute of Oceanography and Experimental Geophysics (OGS), Trieste
 - 4. Department of Chemistry, University of Malta, Msida, Malta
 - 5. Faculty of Forestry and Environmental Management, UNB, NB, Canada
 - 6. LA, CNRS, Universite Paul Sabatier, OMP, Tolouse, France

International Workshop on ICTP Regional Climate Model:
Applications over South Asia CORDEX Domain
22-28 February 2021

Motivation: Direct effects of SOAs

Figure 1.4: The annual direct SOA radiative forcing; obtained by calculating the difference in clear-sky top of atmosphere Sw flux between SOA and no SOA (O'Donnell et al., 2011).

Motivation: Indirect effects of SOAs

Figure 1.5: The annual indirect SOA radiative forcing; obtained using cloudy-sky radiative forcing (O'Donnell et al., 2011).

Gas-Phase reactions: Anthropogenic sources

Gas-Phase reactions: Biogenic sources

CB6-C Gas-Phase Scheme in RegCM4

	CBM-Z	CB6-C
variable species	57	77
reactions	124	216

- alternative to CBM-Z (Shalaby et al., 2012; Zaveri and Peters, 1999)
- Based on Carbon Bond Mechanism 6 (rev 2)
 (Yarwood et al., 2012; Ruiz and Yarwood, 2013; Goldberg et al., 2016)
- Reactions:
 - 95 similar chemical reactions;
 - additional isoprene products;
 - new oxidation mechanisms for formic acid.
- new chemical species:
 - pentane, ethyne, ethanol, acetic acids, methyl ethyl ketone, glyoxal, glycolaldehyde, benzene, nitrocresol, methacrolein, epoxides, and monoterpenes.

Chemical Boundary Conditions

- Model for Ozone and Related chemical Tracers (MOZART)
- Climatology 1999-2009
- Emmons et al. (2009)

СВ6-С	MOZART data	Mf
Propane	Propane	3
Isoprene	Isoprene	0
Methacrolein	(Methyl vinyl ketone +Methacrolein+Hydroxycarbonyl)	4
Glycolaldehyde	Glycolaldehyde	4
Multifunc. nitrates	Organic nitrates	1
Isoprene nitrates	Isoprene+NO3 peroxy radical	1
Benzene	Toluene	0.29
Ethanol	Ethanol	1
Pinene	Pinene	1

Emissions

- International Institute for Applied System Analysis (IIASA)
- global emission database 1990 to 2010
- Lamarque et al. (2010)

Photolysis Rates

- Madronich Tropospheric Ultraviolet (TUV) scheme
- Madronich and Flocke (1999), Tie et al. (2003).
- photolytic rates were assumed to be equal (or very similar) for chemicals with a similar composition

CB6-C J-val Source				
C3+ Peroxyacyl nitrate	Peroxyacyl nitrate	СВ6-С	IIASA data	Mf
Butyl hydroperoxide	Methylhydroperoxide	Butene	Internal Olefins	7
Glycolaldehyde	Methacrolein	Isoprene	Isoprene	0.05
Methyl ethyl ketone	Acetone	Ethyne	Ethene	1.12
(Z)-4-Hydroperoxy-3-methyl-2-butenal	Methylhydroperoxide	Ethanol	Ethene	0.82
Nitro-cresols	Hydroxy/Alkyl nitrates	Benzene	Toluene	0.29
2-Pentenedial	Glyoxal	Pinene	Isoprene	0.2
Butenedial	Glyoxal			8

Domain & Simulation

• Resolution: 50 km

Chem Data: MZCLM

• SST data: Weekly OISST

• ICBC data: NCEP/NCAR

Reanalysis

• Time Period: 2003-2005

• Sub-regions:

Northern: 45 to 75 NSouthern: 30 to 45 N

ICTP cluster 'Argo'

• 60 (3 x20) processors

• 63Gb memory

	CBM-Z	СВ6-С	CB6-C Change
Sim. Time [/mon]	1.400 hr	2.092 hr	49.4 % slower
Output [/mon]	6.3 GB	9.4 GB	49.2 % bigger

Stations

• European Air quality Database (AirBase) station data

• Number of stations

Chemical Species	N Min	N Mean	N Max	S Min	S Mean	S Max
Benzene	106	158.3	190	24	69.4	120
Carbon monoxide	381	418.9	452	145	217.3	293
Nitrogen dioxide	801	927.3	1003	232	346.8	452
Nitrogen monoxide	401	523.3	643	140	245.2	349
Ozone	792	885.2	945	251	348.0	435
Toluene	49	60.2	73	0	24.2	55

Inter-annual variability for surface concentration (ug/m³) compared to the mean of all AirBase stations.

Comparing stations with grid-cells

Relative bias (%) of the surface mixing ratio annual mean compared to CAMS data (Inness et al., 2019).

The right-most column shows the differences (%) between the absolute biases of the two models.

Annual cycle of surface concentration (ppb) spatial means compared to CAMS data.

Relative bias (%) of the vertical meridional means of carbon monoxide.

The rightmost column shows the differences (%) between the absolute biases.

The pressure levels are expressed in hPa.

Relative bias (%) of the vertical meridional means of ozone.

The rightmost column shows the differences (%) between the absolute biases.

The pressure levels are expressed in hPa.

Relative bias (%) of the vertical meridional means of formaldehyde.

The rightmost column shows the differences (%) between the absolute biases.

The pressure levels are expressed in hPa.

Conclusions

- Model is operational with reliable O₃ and CO products
- Formaldehyde and organic products require further tuning
 - Additional testing in progress...
- Next Step: Activation of SOA Module

$$G_p(g) \xrightarrow{\text{oxidation}} G_s(g) \xrightarrow{\text{condensation/dissolution}} G_s(aq)$$

- Source:
 - Ciarlo` JM, et al. (*in review*). A Modified Gas-Phase Scheme for Advanced Regional Climate Modelling with RegCM4. Climate Dynamics.
- Model available at:
 - https://github.com/ciarloj/RegCM4.5-CB6C
 - Tutorial starting shortly...

Thank You

jciarlo@ictp.it

References

- Emmons LK et al (2009) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geoscientic Model Development Discussions 2(2):1157{1213, DOI 10.5194/gmdd-2-1157-2009.
- Goldberg DL et al (2016) CAMx ozone source attribution in the eastern United States using guidance from observations during DISCOVER-AQ Maryland. Geophysical Research Letters 43(5):2249{2258, DOI 10.1002/2015GL067332.
- Inness A et al (2019) The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics 19(6):3515{3556, DOI 10.5194/acp-19-3515-2019.
- Lamarque JF et al (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics. 10(15):7017{7039, DOI 10.5194/acp-10-7017-2010
- Madronich S, Flocke S (1999) The Role of Solar Radiation in Atmospheric Chemistry. In: Boule P (ed) Handbook of Environmental Chemistry, January 1998, pp 1{26, DOI 10.1007/978-3-540-69044-3 1
- O'Donnell D et al (2011). Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmospheric Chemistry and Physics 11(16):8635{8659.
- Ruiz LH, Yarwood G (2013) Interactions between Organic Aerosol and Noy: Influence on Oxidant Production. Prepared for the Texas AQRP (Project 12-012). Tech. rep., The University of Texas at Austin
- Shalaby A, et al (2012) Implementation and evaluation of online gas phase chemistry within a regional climate model (RegCM-CHEM4). Geoscientic Model Development 5(3):741-760, DOI 10.5194/gmd-5-741-2012
- Tie X, Madronich S, Walters S, Zhang R, Rasch P, Collins W (2003) Eect of clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research 108(D20):4642, DOI 10.1029/2003JD003659
- Yarwood G, et al (2012) Environmental Chamber Experiments to Evaluate NOx Sinks and Recycling in Atmospheric Chemical Mechanisms AQRP Project 10-042. Tech. rep., The University of Texas at Austin
- Zaveri Ra, Peters LK (1999) A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research 104(D23):30387, DOI 10.1029/1999JD900876