- **Problem 1.** (Concurrent circles) Consider a triangle ABC which has inscribed circle ω with center I. Let H_a , H_b and H_c denote the feet of altitudes from A,B and C respectively. Let line AI meet ω at point A_1 , line BI meet ω at point B_1 , line CI meet ω at point C_1 . Let Ω_a be a circumcircle of triangle AH_aA_1 . Similarly, we define Ω_b and Ω_c . Prove, that Ω_a , Ω_b and Ω_c are coaxial.
- **Problem 2.** (Ellipse's property) Consider an ellipse \mathcal{P} with foci A and B and an arbitrary point S outside of \mathcal{P} . Let C be an arbitrary point on \mathcal{P} . Let D be point on \mathcal{P} , such that $\angle ASC = \angle BSD$ and C, D belong the same half-plane of the line AB. Then tangent lines at C and D to \mathcal{P} intersect on the angle bisecor of $\angle ASB$.
- **Problem 3.** (Poncelet's porism property) Hypothesis. Consider a n-gon $A = A_1 A_2 A_n$, inscribed in and circumscribed about two conics C_1 and C_2 respectively. Consider now all intersection points of the diagonals $A_i A_{i+2}$ and let $A_{n+j} = A_j$ for $j \ge 1$. They form a n-gon $B = B_1 B_2 B_n$ for $n \ge 5$. By the Poncelet theorem, we can "rotate" polygon A between conics C_1 and C_2 . Then, as it turns out, polygon B rotates between some fixed conics V_1 and V_2 .
- **Note.** If n = 4, then polygon \mathcal{B} degenerates into a point \mathcal{B} . By this theorem we can conclude, that as long as quadrilateral \mathcal{A} rotates, point \mathcal{B} is fixed. We will get well-known fact, if we let conics \mathcal{C}_1 and \mathcal{C}_2 be a circles.
 - P.S. It's checked for cases n = 4, 5, 6.
- **Problem 4.** (Property of Pascal Theorem for 4 points) Consider a cyclic quadrilateral ABCD, which is inscribed in circle ω . Let $\ell_a, \ell_b, \ell_c, \ell_d$ be the tangent lines to the ω at points A, B, C, D respectively. Denote the intersection point of the lines ℓ_b and ℓ_c by F, the intersection point of the lines ℓ_a and ℓ_d by H. Let E be the common point of the lines AB and CD, G the common point of the lines BD and AC. Let E be an arbitrary point on E. Lines E is E, E, E, E in the points E, E, E, E, E is harmonic. (It's well-known fact)
- (b) Let ℓ be the line, passing through the points E, F, G, H. Prove, that the tangent lines at $K, M \ell_k, \ell_m$ to ω , the line ℓ and the line JL are concurrent.
- **Problem 5.** (Property of the humpty point of triangle) Let ℓ be the perpendicular line from orthocenter of the triangle ABC onto the line AM, where M is midpoint of the side BC. Let H_b and H_c denote the feet of the altitudes from B and C respectively. Then lines H_bH_c , BC and ℓ are concurrent.

Problem 6. (Found, while solving marathon problem)

Consider a triangle ABC. Let T be an arbitrary point on the circumcircle of the triangle ABC, E is an arbitrary point on the line AT. We denote the circumcenter of ABC by O. Lines OE and BT meet at F. Point G is the projection of the point F onto line AC, and point D is the projection of the point E onto line E0. Let E1 be E2 and E3 and E4 contains E5. Then points E5 and E6 are symmetric with respect to line E6.

Problem 7. (Nice problem about hyperbola and ellipse of the quadrilateral)

Consider a circumscribed quadrilateral ABCD, with inscribed circle ω with center at I. Let points P,Q be the intersection points of lines AB and CD; AD and BC respectively. Then we draw ellipse P with foci at P,Q, passing through the points B,D and hyperbola C, with foci at P,Q and passing through the points A,C. Let $Y=AC\cap BD$. Prove, that the intersection points of C and P, I and Y are collinear.