#### L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

18 de agosto de 2020

# Agenda de Aproximación de Funciones

Complementos Ortogonales

Aproximación de funciones

Mínimos Cuadrados

Interpolación polinomial

¿ Qué presentamos ?

Para la discusión

▶ Si  $|\bar{v}_i\rangle$  ∈ **V** es ortogonal a **S**  $\subset$  **V**, si  $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall |s_k\rangle \in$  **S**,

- ▶ Si  $|\bar{v}_i\rangle$  ∈ **V** es ortogonal a **S**  $\subset$  **V**, si  $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in$  **S**,
- ▶ Dado  $\mathbf{V}: \{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$  y  $\mathbf{S} \subset \mathbf{V}$  con dim  $\mathbf{S} = m$ . Entonces,  $\forall |v_k\rangle \in \mathbf{V}$  puede expresarse como la suma de dos vectores  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$  y esta descomposición es única  $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$ ,  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ , y adicionalmente,  $|||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$ .

- ▶ Si  $|\bar{v}_i\rangle$  ∈ **V** es ortogonal a **S**  $\subset$  **V**, si  $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall \ |s_k\rangle \in$  **S**,
- ▶ Dado  $\mathbf{V}:\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$  y  $\mathbf{S} \subset \mathbf{V}$  con dim  $\mathbf{S} = m$ . Entonces,  $\forall |v_k\rangle \in \mathbf{V}$  puede expresarse como la suma de dos vectores  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$  y esta descomposición es única  $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$ ,  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ , y adicionalmente,  $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$ .
- ▶ Si  $\mathbf{S} \subset \mathbf{V}$  de dimensión finita y  $|v_k\rangle \in \mathbf{V}$  y  $|s_k\rangle \in \mathbf{S}$   $\Rightarrow$   $|s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle | \mathbf{e}_i \rangle$ , será la proyección de  $|v_k\rangle$  en  $\mathbf{S}$ .

- ▶ Si  $|\bar{v}_i\rangle$  ∈ **V** es ortogonal a **S**  $\subset$  **V**, si  $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall |s_k\rangle \in$  **S**,
- ▶ Dado  $\mathbf{V}:\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$  y  $\mathbf{S} \subset \mathbf{V}$  con dim  $\mathbf{S} = m$ . Entonces,  $\forall |v_k\rangle \in \mathbf{V}$  puede expresarse como la suma de dos vectores  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$  y esta descomposición es única  $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$ ,  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ , y adicionalmente,  $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$ .
- ▶ Si  $\mathbf{S} \subset \mathbf{V}$  de dimensión finita y  $|v_k\rangle \in \mathbf{V}$  y  $|s_k\rangle \in \mathbf{S}$   $\Rightarrow$   $|s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle | \mathbf{e}_i \rangle$ , será la proyección de  $|v_k\rangle$  en  $\mathbf{S}$ .
- ▶ Dado un vector  $|x\rangle \in \mathbf{V}$  y un subespacio de  $\mathbf{V}$  con dimensión finita,  $\mathbf{S}^m \subset \mathbf{V}$ , entonces la distancia de  $|x\rangle$  a  $\mathbf{S}^m$  es la norma de la componente de  $|x\rangle$ , perpendicular a  $\mathbf{S}^m$ .

- ▶ Si  $|\bar{v}_i\rangle$  ∈ **V** es ortogonal a **S**  $\subset$  **V**, si  $\langle s_k | \bar{v}_i \rangle = 0 \quad \forall |s_k\rangle \in$  **S**,
- ▶ Dado  $\mathbf{V}:\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \cdots\}$  y  $\mathbf{S} \subset \mathbf{V}$  con dim  $\mathbf{S} = m$ . Entonces,  $\forall |v_k\rangle \in \mathbf{V}$  puede expresarse como la suma de dos vectores  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$  y esta descomposición es única  $|v_k\rangle = |s_k\rangle + |s_k\rangle^{\perp}$ ,  $|s_k\rangle \in \mathbf{S} \wedge |s_k\rangle^{\perp} \in \mathbf{S}^{\perp}$ , y adicionalmente,  $||v_k\rangle||^2 = |||s_k\rangle||^2 + |||s_k\rangle^{\perp}||^2$ .
- ▶ Si  $\mathbf{S} \subset \mathbf{V}$  de dimensión finita y  $|v_k\rangle \in \mathbf{V}$  y  $|s_k\rangle \in \mathbf{S}$   $\Rightarrow$   $|s_k\rangle = \sum_{i=1}^m \langle v_k | \mathbf{e}_i \rangle | \mathbf{e}_i \rangle$ , será la proyección de  $|v_k\rangle$  en  $\mathbf{S}$ .
- ▶ Dado un vector  $|x\rangle \in \mathbf{V}$  y un subespacio de  $\mathbf{V}$  con dimensión finita,  $\mathbf{S}^m \subset \mathbf{V}$ , entonces la distancia de  $|x\rangle$  a  $\mathbf{S}^m$  es la norma de la componente de  $|x\rangle$ , perpendicular a  $\mathbf{S}^m$ .
- ▶ Más aún esa distancia será mínima y  $|x\rangle_{\mathbf{S}^m}$  la proyección de  $|x\rangle$ , en  $\mathbf{S}^m$  será el elemento de  $\mathbf{S}^m$  más próximo a  $|x\rangle$  y, por la mejor aproximación.

▶ Sea  $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$  un espacio euclidiano de dimensión infinita,  $\mathbf{V}$ , y un subespacio  $\mathbf{S}^m \subset \mathbf{V}$ , con dimensión finita dim  $\mathbf{S} = m$ , y sea un elemento  $|v_i\rangle \in \mathbf{V}$ . La proyección de  $|v_i\rangle$  en  $\mathbf{S}^m, |s_i\rangle$ , será el elemento de  $\mathbf{S}^m$  más próximo a  $|v_k\rangle$ . En otras palabras  $||v_i\rangle - |s_i\rangle|| \le ||v_i\rangle - |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$ .

- ▶ Sea  $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$  un espacio euclidiano de dimensión infinita,  $\mathbf{V}$ , y un subespacio  $\mathbf{S}^m \subset \mathbf{V}$ , con dimensión finita dim  $\mathbf{S} = m$ , y sea un elemento  $|v_i\rangle \in \mathbf{V}$ . La proyección de  $|v_i\rangle$  en  $\mathbf{S}^m, |s_i\rangle$ , será el elemento de  $\mathbf{S}^m$  más próximo a  $|v_k\rangle$ . En otras palabras  $\||v_i\rangle |s_i\rangle\| \le \||v_i\rangle |t_i\rangle\| \ \forall \ |t_i\rangle \in \mathbf{S}$ .
- Considemos funciones continuas, reales de variable real, en  $[0,2\pi]$ ,  $\mathcal{C}^{\infty}_{[0,2\pi]}$ , mediante funciones trigonométricas y con el producto interno definido por:  $\langle f|g\rangle=\int_0^{2\pi}\mathrm{d}x\ f(x)\ g(x)$ .

- ▶ Sea  $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$  un espacio euclidiano de dimensión infinita,  $\mathbf{V}$ , y un subespacio  $\mathbf{S}^m \subset \mathbf{V}$ , con dimensión finita dim  $\mathbf{S} = m$ , y sea un elemento  $|v_i\rangle \in \mathbf{V}$ . La proyección de  $|v_i\rangle$  en  $\mathbf{S}^m, |s_i\rangle$ , será el elemento de  $\mathbf{S}^m$  más próximo a  $|v_k\rangle$ . En otras palabras  $||v_i\rangle |s_i\rangle|| \leq |||v_i\rangle |t_i\rangle|| \; \forall \; |t_i\rangle \in \mathbf{S}$ .
- Considemos funciones continuas, reales de variable real, en  $[0,2\pi]$ ,  $\mathcal{C}^{\infty}_{[0,2\pi]}$ , mediante funciones trigonométricas y con el producto interno definido por:  $\langle f|g\rangle=\int_0^{2\pi}\mathrm{d}x\ f(x)\ g(x)$ .
- Para ese espacio vectorial tenemos una base ortogonal definida por  $|e_0\rangle=1,\ |e_{2n-1}\rangle=\cos(nx)$  y  $|e_{2n}\rangle=\sin{(nx)}$ ,

- ▶ Sea  $\{|v_1\rangle, |v_2\rangle, |v_3\rangle, \cdots, |v_n\rangle, \cdots\}$  un espacio euclidiano de dimensión infinita,  $\mathbf{V}$ , y un subespacio  $\mathbf{S}^m \subset \mathbf{V}$ , con dimensión finita dim  $\mathbf{S} = m$ , y sea un elemento  $|v_i\rangle \in \mathbf{V}$ . La proyección de  $|v_i\rangle$  en  $\mathbf{S}^m, |s_i\rangle$ , será el elemento de  $\mathbf{S}^m$  más próximo a  $|v_k\rangle$ . En otras palabras  $||v_i\rangle |s_i\rangle|| \le ||v_i\rangle |t_i\rangle|| \ \forall \ |t_i\rangle \in \mathbf{S}$ .
- Considemos funciones continuas, reales de variable real, en  $[0,2\pi]$ ,  $\mathcal{C}^{\infty}_{[0,2\pi]}$ , mediante funciones trigonométricas y con el producto interno definido por:  $\langle f|g\rangle=\int_0^{2\pi}\mathrm{d}x\ f(x)\ g(x)$ .
- ▶ Para ese espacio vectorial tenemos una base ortogonal definida por  $|e_0\rangle = 1$ ,  $|e_{2n-1}\rangle = \cos(nx)$  y  $|e_{2n}\rangle = \sin(nx)$ ,
- ▶ Cualquier función definida en  $[0, 2\pi]$  puede expresarse como

$$|f\rangle = \sum_{i=1}^{\infty} C_i |e_i\rangle, = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} [a_k \cos(kx) + b_k \mathrm{sen}(kx)],$$

donde

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} dx \ f(x) \cos(kx) \wedge b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} dx \ f(x) \sin(kx).$$

La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales:  $\{x_1, x_2, x_3, \dots, x_n\}$ .

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales:  $\{x_1, x_2, x_3, \dots, x_n\}$ .
- Asociamos las medidas con las componentes de un vector  $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$  en  $\mathbb{R}^n$

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales:  $\{x_1, x_2, x_3, \dots, x_n\}$ .
- Asociamos las medidas con las componentes de un vector  $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$  en  $\mathbb{R}^n$
- ▶ Supondremos su mejor aproximación c  $|1\rangle \equiv (c, c, c, \cdots, c)$ , será la proyección perpendicular de  $|x\rangle$  (las medidas) sobre el subespacio generado por  $|1\rangle$ :

$$|x\rangle = c |1\rangle \Rightarrow c = \frac{\langle x | 1\rangle}{\langle 1 | 1\rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n}.$$

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales:  $\{x_1, x_2, x_3, \dots, x_n\}$ .
- Asociamos las medidas con las componentes de un vector  $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$  en  $\mathbb{R}^n$
- ▶ Supondremos su mejor aproximación c  $|1\rangle \equiv (c, c, c, \cdots, c)$ , será la proyección perpendicular de  $|x\rangle$  (las medidas) sobre el subespacio generado por  $|1\rangle$ :

$$|x\rangle = c |1\rangle \Rightarrow c = \frac{\langle x | 1\rangle}{\langle 1 | 1\rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n}.$$

► Es una manera sofisticada de construir el promedio aritmético de las medidas.

- La idea es determinar el valor más aproximado de una cantidad física, c, a partir de un conjunto de medidas experimentales:  $\{x_1, x_2, x_3, \dots, x_n\}$ .
- Asociamos las medidas con las componentes de un vector  $|x\rangle \equiv (x_1, x_2, x_3, \cdots, x_n)$  en  $\mathbb{R}^n$
- ▶ Supondremos su mejor aproximación c  $|1\rangle \equiv (c, c, c, \cdots, c)$ , será la proyección perpendicular de  $|x\rangle$  (las medidas) sobre el subespacio generado por  $|1\rangle$ :

$$|x\rangle = c |1\rangle \ \Rightarrow \ c = \frac{\langle x | 1 \rangle}{\langle 1 | 1 \rangle} = \frac{x_1 + x_2 + x_3, \dots + x_n}{n} \,.$$

- Es una manera sofisticada de construir el promedio aritmético de las medidas.
- La proyección perpendicular de  $|x\rangle$  sobre  $|1\rangle$  hace mínima la distancia entre el subespacio generado por  $|1\rangle$  y el vector  $|x\rangle$ , por tanto  $[d(|x\rangle, c|1\rangle)]^2$



### Ajuste a una recta

La consecuencia más conocida es el "ajuste" de un conjunto de datos  $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_n, y_n)\}$  a la ecuación de una recta y = cx.

### Ajuste a una recta

- La consecuencia más conocida es el "ajuste" de un conjunto de datos  $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_n, y_n)\}$  a la ecuación de una recta y = cx.
- ▶ Queremos que la distancia entre  $|y\rangle$  y su valor más aproximado  $|y\rangle_{\approx} = c |x\rangle$  sea la menor posible. Por lo tanto,  $\||cx y\rangle\|^2$  será la menor posible y  $|cx y\rangle$  será perpendicular a  $\mathbf{S}(|x\rangle)$ ,

$$\langle x | cx - y \rangle = 0 \Rightarrow c = \frac{\langle x | y \rangle}{\langle x | x \rangle} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n}{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}$$

### Ajuste a una recta

- La consecuencia más conocida es el "ajuste" de un conjunto de datos  $\{(x_1, y_1), (x_2, y_2), (x_3, y_3), \cdots, (x_n, y_n)\}$  a la ecuación de una recta y = cx.
- ▶ Queremos que la distancia entre  $|y\rangle$  y su valor más aproximado  $|y\rangle_{\approx} = c |x\rangle$  sea la menor posible. Por lo tanto,  $\||cx-y\rangle\|^2$  será la menor posible y  $|cx-y\rangle$  será perpendicular a  $\mathbf{S}(|x\rangle)$ ,

$$\langle x | cx - y \rangle = 0 \implies c = \frac{\langle x | y \rangle}{\langle x | x \rangle} = \frac{x_1 y_1 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n}{x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2}.$$

▶ Si la recta a "ajustar" es y = cx + b, entondes  $|b\rangle = b |1\rangle$ , y tenemos:

$$|y\rangle = c|x\rangle + |b\rangle \Rightarrow \begin{cases} \langle x | y \rangle \Rightarrow \sum_{i=1}^{n} x_{i} y_{i} = c \sum_{i=1}^{n} x_{i}^{2} + b \sum_{i=1}^{n} x_{i} \\ \langle b | y \rangle \Rightarrow \sum_{i=1}^{n} y_{i} = c \sum_{i=1}^{n} x_{i} + bn \end{cases}$$

### Interpolación polinomial de puntos experimentales

Supongamos que tenemos puntos experimentales  $\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\}$  y para modelar ese experimento quisiéramos una función que ajuste estos puntos, de manera que:  $\{(x_1,y_1=f(x_1)),\cdots,(x_n,y_n=f(x_n))\}$ . Para encontrar este polinomio lo expresaremos como una combinación lineal de polinomios de Legendre

### Interpolación polinomial de puntos experimentales

- Supongamos que tenemos puntos experimentales  $\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\}$  y para modelar ese experimento quisiéramos una función que ajuste estos puntos, de manera que:  $\{(x_1,y_1=f(x_1)),\cdots,(x_n,y_n=f(x_n))\}$ . Para encontrar este polinomio lo expresaremos como una combinación lineal de polinomios de Legendre
- ► Esto es:  $f(x) = \sum_{k=0}^{n-1} C_k |P_k\rangle = \sum_{k=0}^{n-1} C_k P_k(x) \Rightarrow$

$$\begin{cases} y_1 = f(x_1) = C_0 P_0(x_1) + C_1 P_1(x_1) + \dots + C_{n-1} P_{n-1}(x_1) \\ y_2 = f(x_2) = C_0 P_0(x_2) + C_1 P_1(x_2) + \dots + C_{n-1} P_{n-1}(x_2) \\ \vdots \\ y_n = f(x_n) = C_0 P_0(x_n) + C_1 P_1(x_n) + \dots + C_{n-1} P_{n-1}(x_n) \end{cases}$$

n ecuaciones con n incógnitas  $\{C_0, C_1, \cdots C_{n-1}\}$ .

### ¿ Qué presentamos ?

- 1. Complementos ortogonales
- 2. Aproximación de funciones y complementos ortogonales
- 3. Aproximación mediante series de funciones trigonométricas
- 4. Métodos de Mínimos cuadrados
- 5. Aproximación de funciones mediante una base de polinomios ortogonales

### Para la discusión

Considere el espacio vectorial,  $\mathcal{C}^{\infty}_{[-1,1]}$ , de funciones reales, continuas y continuamente diferenciables definidas en el intervalo [-1,1] con una base de monomios  $\left\{1,x,x^2,x^3,x^4,\cdots\right\}$  Suponga la función  $h(x)=\sin(3x)(1-x^2)$ :

- 1. Expanda la función h(x) en términos de la base de monomios y de polinomios de Legendre, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- 2. Expanda la función h(x) en términos de la base de monomios y de polinomios de Chebyshev, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- 3. Expanda la función h(x) en términos de la base de polinomios de Legendre y de Chebyshev, grafique, compare y encuentre el grado de los polinomios en los cuales difieren las expansiones.
- 4. Estime en cada caso el error que se comete como función del grado del polinomio (o monomio) de la expansión.

¿Qué puede concluir respecto a la expansión en una u otra base?

