#### |Chapter 29 Sources of the Magnetic Field

#### **Introduction to Magnetic Field Sources**

• Focus: Unlike the previous chapter that discussed magnetic fields as causes of force, this chapter explores what generates magnetic fields themselves.

#### **Biot-Savart Law**

- Law Overview:
  - Describes the magnetic field  $d\vec{B}$  generated by a small segment of a current-carrying conductor.
  - The direction of  $d\vec{B}$  is perpendicular to both the current segment  $d\vec{s}$  and the position vector  $\hat{r}$  from the segment to the observation point.
- Mathematical Form:

$$dec{B}=rac{\mu_0}{4\pi}rac{Idec{s} imes\hat{r}}{r^2}$$

- $\mu_0$ : Permeability of free space,  $\mu_0 = 4\pi \times 10^{-7}~\mathrm{T\cdot m/A}$
- I: Current in the wire
- $d\vec{s}$ : Small segment of the wire
- $\hat{r}$ : Unit vector from  $d\vec{s}$  to point P
- r: Distance between  $d\vec{s}$  and point P

How to specify a magnetic field?



## **Total Magnetic Field**

- Integration:
  - To find the total magnetic field  $\vec{B}$  due to a current distribution, integrate  $d\vec{B}$  over the entire current path:

$$ec{B}=rac{\mu_0}{4\pi}\intrac{Idec{s} imes\hat{r}}{r^2}$$



## Magnetic Field Due to a Long, Straight Conductor

- Result:
  - $\bullet\,$  For a straight conductor carrying current I, the magnetic field at a distance a from the wire is given by:

$$B = \frac{\mu_0 I}{2\pi a}$$

- Direction:
  - Determined by the right-hand rule: thumb in the direction of current, fingers curl in the direction of  $\vec{B}$ .



# Magnetic Field for a Long, Straight

# Conductor

 A thin, straight wire is carrying a constant current and we want to calculate the magnetic field from this whole finitelength wire. We already know





 If a is fixed for Point P, the length of the wire can be represented by θ<sub>1</sub> and θ<sub>2</sub>. We can derive that

$$B = \frac{\mu_0 I}{4\pi a} (\cos \theta_1 - \cos \theta_2)$$
at point *P* due to the whole length of current-carrying wire.



If the conductor is an infinitely long and straight wire, we let  $\theta_1$  = 0° and  $\theta_2$  =180°, the magnetic field becomes

$$B = \frac{\mu_o I}{4\pi a} (\cos 0^\circ - \cos 180^\circ)$$
$$= \frac{\mu_o I}{4\pi a} (1 - (-1)) = \boxed{\frac{\mu_o I}{2\pi a}}$$



Magnetic Field B due to infinitely Long and Straight Conductor

## **Magnetic Field of a Circular Loop**

At the Center of a Loop:

$$B=rac{\mu_0 I}{2R}$$

- R: Radius of the loop
- Direction:
  - Follows the right-hand rule for loops: curl of fingers in current direction, thumb points to  $\vec{B}$  at the center.



## Ampère's Law

- Law Statement:
  - For any closed loop path, the sum of  $B \cdot ds$  around the loop is proportional to the total current enclosed:

$$\oint ec{B} \cdot dec{s} = \mu_0 I_{
m enc}$$

Applications:

• Used for calculating  $\vec{B}$  in symmetrical situations such as solenoids and toroids.



#### Magnetic Field of a Solenoid

- Uniform Field:
  - Inside a long solenoid:

 $B = \mu_0 n I$ 

- n: Number of turns per unit length
- I: Current
- Characteristics:
  - Field is approximately uniform inside and zero outside.



- Ideal Solenoid
  - Infinitely long and the coils are closely packed
  - Many turns
  - Internal magnetic field is regarded as uniform and its magnitude is a constant
  - The external magnetic field is regarded as 0

#### **Earth's Magnetic Field Overview**

- Model: The Earth's magnetic field resembles that produced by a large bar magnet buried within the Earth, although this is a simplified model for explanation.
- Poles:
  - The south magnetic pole is located near the north geographic pole.
  - The north magnetic pole is located near the south geographic pole.
- Important Note: The actual magnetic field is more complex than the bar magnet model due to variations and deviations.



#### Dip Angle of Earth's Magnetic Field

- Definition:
  - The **dip angle** is the angle between the horizontal surface at a location and the direction of the magnetic field at that point.
- Examples:
  - $\bullet \quad \text{At the } \textbf{equator}, \text{ the dip angle is nearly } \textbf{0}^{\bullet}, \text{ meaning the compass needle stays parallel to the Earth's surface}.$
  - Near Hudson Bay in Canada, the dip angle reaches 90°, where the compass needle points directly down.





#### **Magnetic Declination**

- Definition:
  - The magnetic declination is the angle difference between true north (geographic north) and magnetic north as indicated by a compass.
- Variation:
  - Declination varies based on location on the Earth's surface and can be crucial for navigation.



#### Source of the Earth's Magnetic Field

- Explanation:
  - The core of the Earth is too hot for permanent magnetization due to temperatures around **5200°C**.
  - The most likely source is **convection currents** in the molten metal part of the Earth's core.
  - The Earth's rotation may also contribute to generating the magnetic field.

#### **Reversals of the Earth's Magnetic Field**

- Phenomenon
  - The direction of the Earth's magnetic field has reversed multiple times over millions of years.
  - Evidence is found in **basalt rocks** formed from volcanic activity, which contain records of the Earth's past magnetic orientations.
- Uncertainty
  - The exact cause of these reversals is not fully understood.



Age of the Earth: 4.543 billion years