# Линейная алгебра

### Дима Трушин

## Семинар 7

#### Билинейные формы

Пусть V – векторное пространство, можно думать для простоты, что  $V = \mathbb{R}^n$ . Тогда билинейная форма на V – это отображение  $\beta \colon V \times V \to \mathbb{R}$  такое, что

- 1.  $\beta(v_1 + v_2, u) = \beta(v_1, u) + \beta(v_2, u)$  для всех  $v_1, v_2, u \in V$ .
- 2.  $\beta(\lambda v, u) = \lambda \beta(v, u)$  для всех  $v, u \in V$  и  $\lambda \in \mathbb{R}$ .
- 3.  $\beta(v, u_1 + u_2) = \beta(v, u_1) + \beta(v, u_2)$  для всех  $v, u_1, u_2 \in V$ .
- 4.  $\beta(v, \lambda u) = \lambda \beta(v, u)$  для всех  $v, u \in V$  и  $\lambda \in \mathbb{R}$ .

Думать про эту процедуру надо так: у нас даны два вектора v и u из V, мы их «перемножаем» и получаем число  $\beta(v,u) \in \mathbb{R}$ . Самый важный пример билинейной формы – стандартное скалярное произведение: пусть даны два вектора  $x,y \in \mathbb{R}^n$ , зададим тогда  $\beta(x,y) = x^t y = \sum_{i=1}^n x_i y_i$ .

Основной план взаимодействия с билинейными формами такой. Среди всех билинейных форм мы выделим «хорошие» и назовем их скалярными произведениями. Эти товарищи будут иметь хороший геометрический смысл, с помощью которого мы определим движения в векторных пространствах. Но нашей конечной целью будет изучение самих движений с помощью скалярных произведений.

#### Как задавать билинейные формы

Пусть V – векторное пространство с базисом  $e_1, \ldots, e_n$  и  $\beta$  – билинейная форма на V. Тогда определим числа  $b_{ij} = \beta(e_i, e_j)$  – произведения базисных векторов, и составим из них матрицу  $B \in \mathrm{M}_n(\mathbb{R})$ . Тогда для любых векторов  $v = x_1e_1 + \ldots + x_ne_n$  и  $u = y_1e_1 + \ldots + y_ne_n$  имеем

$$\beta(v,u) = \sum_{ij} x_i y_j \beta(e_i, e_j) = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} B \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

В частности, если  $V = \mathbb{R}^n$  и  $x, y \in \mathbb{R}^n$ , а  $e_i$  – стандартный базис. То получаем  $\beta(x, y) = x^t B y$ .

Таким образом и линейные операторы и билинейные формы задаются матрицами. Основная разница между ними – как эта самая матрица меняется при замене базиса. Для операторов ответы мы знаем, для билинейных форм мы сейчас займемся данным вопросом.

#### Смена базиса

Пусть в векторном пространстве V заданы два базиса  $e_1, \ldots, e_n$  и  $f_1, \ldots, f_n$  с матрицей перехода  $C \in \mathrm{M}_n(\mathbb{R})$ , т.е.  $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$ . Пусть нам даны два вектора v и u в V. Тогда их можно разложить по базисным

 $<sup>^1</sup>$ На самом деле можно рассматривать отображения  $\beta\colon V\times U\to\mathbb{R}$ , то есть можно перемножать вектора из разных пространств, но мы этого делать не будем.

векторам следующим образом

$$v = x_1 e_1 + \dots + x_n e_n = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad u = y_1 e_1 + \dots + y_n e_n = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
$$v = x_1' f_1 + \dots + x_n' f_n = \begin{pmatrix} f_1 & \dots & f_n \end{pmatrix} \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}, \quad u = y_1' f_1 + \dots + y_n' f_n = \begin{pmatrix} f_1 & \dots & f_n \end{pmatrix} \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix}$$

Благодаря матрице перехода C, мы знаем, что

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = Cx' \text{ и } y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = C \begin{pmatrix} y_1' \\ \vdots \\ y_n' \end{pmatrix} = Cy'$$

Тогда в базисе  $e_i$  форма записывается в виде  $\beta(v,u)=x^tBy$ , а в базисе  $f_i$  в виде  $\beta(v,u)=(x')^tB'y'$ . Но это одно и то же число посчитанное в разных базисах. Значит

$$(x')^t B' y' = x^t B y = (Cx')^t B C y' = (x')^t C^T B C y'$$

для всех  $x', y' \in \mathbb{R}^n$ . Значит  $B' = C^t B C$ .

#### Симметричность и кососимметричность

Форма  $\beta: V \times V \to \mathbb{R}$  называется симметричной, если  $\beta(v,u) = \beta(u,v)$  для всех  $v,u \in V$ . Она называется кососимметричной, если  $\beta(v,u) = -\beta(u,v)$ .

Если в координатах  $\beta(x,y)=x^tBy$ , то  $\beta(y,x)=y^tBx$ . Так как выражение  $y^tBx$  является числом, то оно не меняется при транспонировании, то есть  $y^tBx=(y^tBx)^t=x^tB^ty$ . Значит симметричность означает  $x^tBy=x^tB^ty$  для всех  $x,y\in\mathbb{R}^n$ . А это равносильно тому, что  $B=B^t$ . Такая матрица B называется симметричной. Аналогично, форма кососимметрична, тогда и только тогда, когда  $B^t=-B$ . В этом случае матрица B называется кососимметричной.

### Характеристики билинейных форм

Как и выше  $\beta: V \times V \to \mathbb{R}$  – билинейная форма. И пусть в некотором базисе она задана в виде  $\beta(x,y) = x^t B y$  для некоторой матрицы  $B \in \mathrm{M}_n(\mathbb{R})$ . Посмотрим какие характеристики матрицы B не зависят от выбора базиса.

- 1. Ранг матрицы B не меняется при замене  $B \mapsto C^t BC$ , где  $C \in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица.
- 2. Знак определителя B не меняется при замене  $B \mapsto C^t BC$ , где  $C \in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица. Но сам определитель меняется на  $\det(C)^2$ . Потому можно лишь говорить о ситуации определитель меньше нуля, больше нуля или равен нулю.
- 3. Обратим внимание, что невырожденность матрицы B не меняется при замене  $B\mapsto C^tBC$ , где  $C\in \mathrm{M}_n(\mathbb{R})$  невырожденная матрица.
- 4. След матрицы B вообще говоря может стать каким угодно при замене  $B\mapsto C^tBC$ . Потому он не несет никакой информации.
- 5. Симметричность и кососимметричность матрицы B не зависят от замены  $B \mapsto C^t B C$ .

 $<sup>^{2}</sup>$ Напомним, что матрица A линейного оператора  $\phi \colon V \to V$  меняется по правилу  $A' = C^{-1}AC$ .

#### Ядра и ортогональные дополнения

Как и выше  $\beta \colon V \times V \to \mathbb{R}$  – билинейная форма. Множества  $^{\perp}V = \{v \in V \mid \beta(v,V) = 0\}$  и  $V^{\perp} = \{v \in V \mid \beta(V,v) = 0\}$  называются левым и правым ядрами формы  $\beta$ . Эти подмножества являются подпространствами в V. Если в координатах форма задана  $\beta(x,y) = x^t B y$ , то  $^{\perp}\mathbb{R}^n = \{x \in \mathbb{R}^n \mid x^t B = 0\}$  и  $(\mathbb{R}^n)^{\perp} = \{y \in \mathbb{R}^n \mid By = 0\}$ . В частности отсюда видно, что ядра имеют одинаковую размерность равную  $n - \mathrm{rk}\,B$ . Если форма симметричная или кососимметричная, то нет разницы между правыми и левыми ядрами. Ядра – это неинтересная часть пространства, которая «ортогональна» всему относительно этой формы.

Более обще, пусть  $U\subseteq V$  – подпространство в V. Тогда его левым ортогональным дополнением является подпространство  $^{\perp}U=\{v\in V\mid \beta(v,U)=0\}$ . Аналогично, правое ортогональное дополнение это  $U^{\perp}=\{v\in V\mid \beta(U,v)=0\}$ . Если в координатах форма задана  $\beta(x,y)=x^tBy$  и  $U=\langle u_1,\ldots,u_k\rangle$ . Пусть D – матрица составленная из столбцов  $u_i$ . Тогда  $^{\perp}U=\{x\in\mathbb{R}^n\mid x^tBD=0\}$  и  $U^{\perp}=\{y\in\mathbb{R}^n\mid D^tBy=0\}$ . Обычно ортогональные дополнения и ядра интересны в случае симметрических или кососимметрических форм, так как в этом случае левые и правые ортогональные дополнения равны между собой.

### Двойственность для подпространств

Напомню, что для двух подпространств  $U,W\subseteq V$  определены их сумма  $U+W=\{u+w\mid u\in U,w\in W\}$  и пересечение  $U\cap W$ . Сумма – это наименьшее подпространство, которое содержит U и W одновременно (объединение не является подпространством вообще говоря). А пересечение – это наибольшее подпространство, которое лежит и в том и в том. Про них надо думать, как бы как про НОК и НОД подпространств, соответственно.

В общем случае нет хорошей связи между подпространством и его ортогональным (левым или правым) дополнением. Например, если билинейная форма нулевая, то есть  $\beta\colon V\times V\to\mathbb{R}$  все переводит в ноль (это соответствует нулевой матрице в любом базисе), то любые два подпространства ортогональным дополнением к чему угодно будет все пространство V. Однако для хороших билинейных форм можно доказать теорему о двойственности на подпространствах.

**Утверждение.** Пусть  $\beta$ :  $V \times V \to \mathbb{R}$  – невырожденная билинейная форма (то есть ее матрица не вырождена). Тогда:

1. Для любого подпространства  $W \subseteq V$  выполнено

$$\dim W^{\perp} + \dim W = \dim V$$

- 2. Для любого подпространства  $W\subseteq V$  выполнено  $^{\perp}(W^{\perp})=W$ .
- 3. Для любых подпространств  $W\subseteq E\subseteq V$  верно, что  $W^\perp\supseteq E^\perp$ . Причем W=E тогда и только тогда, когда  $W^\perp=E^\perp$ .
- 4. Для любых подпространств  $W, E \subseteq V$  выполнено равенство

$$(W+E)^{\perp} = W^{\perp} \cap E^{\perp}$$

5. Для любых подпространств  $W, E \subseteq V$  выполнено равенство

$$(W \cap E)^{\perp} = W^{\perp} + E^{\perp}$$

Аналогично выполнены все свойства для подпространств  $W\subseteq U$  и их левых ортогональных дополнений  $^\perp W$ .

Таким образом, мы как бы переворачиваем подпространства вверх ногами под действием операции взятия ортогонального дополнения. Операции взятия левого и правого ортогонального дополнения становятся взаимнообратными. При этом эти операции большие подпространства переводят в маленькие, обращают вложения и меняют НОК и НОД подпространств местами.

### Симметричные формы

**Утверждение.** Пусть  $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  – симметрическая билинейная форма заданная  $\beta(x,y) = x^t By$ . Тогда существует такой базис, что матрица B диагональная u на диагонали стоят либо 1, либо -1, либо 0, т.е. блочно имеет вид  $B' = {E \choose 0}$ . При этом количество единиц u минус единиц на диагонали не зависит от базиса.

На это утверждение еще можно смотреть так. Для любой симметрической матрицы  $B \in \mathrm{M}_n(\mathbb{R})$  можно найти такую невырожденную матрицу  $C \in \mathrm{M}_n(\mathbb{R})$ , что матрица  $C^tBC$  имеет описанный диагональный вид.

Суммарно количество единиц и минус единиц дает ранг матрицы B, то есть ранг билинейной формы. Тот факт, что количество единиц и минус единиц является инвариантом формы надо понимать так: у нас ранг как бы складывается из положительной и отрицательной части и размеры этих частей определены однозначно.

Количество единиц #1 в таком виде называется положительным индексом инерции формы, количество минус единиц #-1 – отрицательным индексом, а количество нулей #0 – нулевым индексом. Вместе набор чисел (#1, #-1, #0) называется сигнатурой формы.

### Определение сигнатуры формы

Для определения сигнатуры билинейной формы можно воспользоваться разными методами. Самый простой – Симметричный Гаусс. Мы диагонализуем форму и считаем количество положительных, отрицательных и нулевых элементов на диагонали. Этот метод работает всегда.

Симметрический Гаусс Теперь, когда мы знаем, что симметрические билинейные формы диагонализуются в каком-то базисе, хорошо было бы иметь какой-нибудь (ну хотя бы плохонький) алгоритм, приводящий форму к диагональному виду, если она задана в каком-то случайном базисе. Пусть, скажем, нам задана билинейная форма  $\beta \colon F^n \times F^n \to F$  по правилу  $(x,y) \mapsto x^t B y$ , где  $B \in \mathrm{M}_n(F)$  – некоторая симметричная матрица. Тогда в новом базисе матрица будет иметь вид  $C^t B C$ , где  $C \in \mathrm{M}_n(F)$  – некоторая невырожденная матрица.  $S^t B \in \mathrm{M}_n(F)$  – некоторая невырожденная матрица.  $S^t B \in \mathrm{M}_n(F)$  – некоторая невырожденная матрица.  $S^t B \in \mathrm{M}_n(F)$  – это выполнение одного и того же преобразования и над строками и над столбцами (не важно в каком порядке, так как произведение матриц ассоциативно). То есть у нас есть следующий запас операций:

- Прибавляем i-ю строку умноженную на  $\lambda$  к j-ой строке, потом прибавляем i-ый столбец умноженный на  $\lambda$  к j-ому столбцу.
- Меняем местами і и ј строки, после чего меняем местами і и ј столбцы.
- Умножаем на ненулевое  $\lambda$  *i*-ю строку, потом умножаем на  $\lambda$  *i*-ый столбец.

Таким образом предыдущая теорема гласит, что выполняя подобные симметричные элементарные преобразования над симметрической матрицей, мы обязательно приведем ее к диагональному виду.

**Метод Якоби** Также для определения сигнатуры формы используется метод Якоби. Этот метод работает почти всегда и я поясню, что это значит и что делать, когда он не работает. Но прежде всего я хочу обратить внимание, что у него есть ограничения на входные данные. Матрица B обязательно должна быть невырождена. Это в частности означает, что метод работает только для форм у которых в сигнатуре только единицы и минус единицы и совсем нет нулей.

Пусть  $B \in \mathrm{M}_n(\mathbb{R})$  — симметричная невырожденная матрица и  $\beta(x,y) = x^t B y$ . Выделим в матрице B верхние левые блоки:

$$B = \begin{pmatrix} b_{11} & & & \\ & \ddots & & \\ & & B_k & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \end{pmatrix}$$

 $<sup>^3</sup>$ На самом деле C – матрица перехода из старого в новый базис.

То есть  $B_k$  – подматрица состоящая из первых k строк и столбцов. Теперь определим числа  $\Delta_k = \det(B_k)$ , которые называются угловыми минорами. Если так получилось, что все числа  $\Delta_k$  НЕ равны нулю<sup>4</sup>, то мы строим последовательность

$$\Delta_1, \frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_2}, \dots, \frac{\Delta_n}{\Delta_{n-1}}$$

Тогда положительный индекс инерции для B равен количеству положительных чисел в этой последовательности, а отрицательный индекс инерции равен количеству отрицательных чисел в этой последовательности.

**Что делать, если встретились нули** Нам на самом деле надо чуть-чуть пошевелить матрицу B правильным образом. Мы можем сгенерировать случайную матрицу C. Она с вероятностью один будет невырожденной. Потом надо рассмотреть матрицу  $B' = C^t B C$  и применить метод Якоби к матрице B' вместо B. Сделаю одно замечание по организации вычислений. В этом методе надо генерировать случайную матрицу C и НЕ проверять ее на невырожденность. Вместо этого, надо сразу применить метод Якоби к матрице B'. Если все  $\Delta_k$  оказались не нулевые, то нам повезло и метод и так сработал (матрица C в этом случае автоматически окажется невырожденной). А если не повезло, то нам все равно надо будет генерировать новую матрицу C и не важно какой она была.

Продвинутый метод определения сигнатуры Пусть  $B \in \mathcal{M}_n(\mathbb{R})$  — симметричная матрица и  $\beta(x,y)=x^tBy$ . Тогда найдем спектр матрицы B с кратностями. В случае симметрической матрицы окажется, что спектр будет обязательно вещественным. Тогда количество положительных чисел в спектре с учетом кратности равно положительному индексу инерции, количество отрицательных чисел в спектре с кратностью равно отрицательному индексу инерции, а количество нулей — нулевому индексу. Надо понимать, что сам спектр не является корректно определенной величиной для билинейной формы, он может измениться кардинальной при смене базиса, но знаки собственных значений, оказывается, не изменятся.

### Квадратичные формы

Если нам дана какая-то билинейная форма  $\beta\colon V\times V\to\mathbb{R}$ , то отображение  $Q\colon V\to\mathbb{R}$  вида  $Q(x)=\beta(x,x)$  называется квадратичной формой. Если векторное пространство  $V=\mathbb{R}^n$ , то билинейная форма превращается в  $\beta(x,y)=x^tBy$ , а соответствующая квадратичная форма в  $Q(x)=x^tBx$ . Если расписать явно последнее выражение, то мы получим

$$Q(x) = \beta(x, x) = x^{t}Bx = \sum_{ij} b_{ij}x_{i}x_{j} = \sum_{i} b_{ii}x_{i}^{2} + \sum_{i < j} (b_{ij} + b_{ji})x_{i}x_{j}$$

Обратите внимание, что в отличие от билинейной формы, квадратичная форма не однозначно задается матрицей B. Действительно,

$$Q(x_1,x_2) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2x_1x_2$$

За счет этого эффекта, при переходе к квадратичным формам от билинейных, мы теряем часть информации. Однако, квадратичная форма однозначно задается симметрической матрицей B, то есть матрицей B с условием  $B^t=B$ . В примере выше – это последний случай.

Для полноты картины добавлю, что в случае симметричной матрицы B или что то же самое симметричной билинейной формы  $\beta$ , мы можем вернуться от квадратичной формы к билинейной с помощью так называемой поляризационной формулы, а именно

$$\beta(x,y) = \frac{Q(x+y) - Q(x) - Q(y)}{2}$$

Идейно это означает, что изучать симметричные билинейные формы – это то же самое, что изучать квадратичные формы. Но у квадратичных форм есть красивый геометрический смысл. Его мы и обсудим далее.

 $<sup>^4</sup>$ Матрицу B с таким условием можно разложить в виде B=LU, где L – нижнетреугольная матрица, U – верхнетреугольная матрица с 1 на диагонали. Это называется LU разложением. Для этого надо применить Гаусса к B вычитая из более верхних строчек более низкие. Тогда мы приведем B к верхнетреугольному виду. Отсюда можно вытащить LU разложение стандартным рассуждением.

### Графики квадратичных форм

Пусть  $V = \mathbb{R}^2$ . Тогда квадратичная форма Q(x,y) задает функцию от двух переменных, а именно z = Q(x,y). Давайте нарисуем ее графики в некоторых частных случаях.

1.  $z=x^2+y^2$ . Начало координат – точка минимума. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}1&0\\0&1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



2.  $z=-x^2-y^2$ . Начало координат – точка максимума. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



3.  $z=x^2$ . Минимум достигается на прямой x=0. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}1&0\\0&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



4.  $z=-x^2$ . Максимум достигается на прямой x=0. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}-1&0\\0&0\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 

6



5. 
$$z=x^2-y^2$$
. Начало координат – седловая точка. Матричная запись  $z=Q(x,y)=\begin{pmatrix}x\\y\end{pmatrix}^t\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}$ 



Обратите внимание, что поведение графика зависит от знаков чисел на диагонали матрицы два на два. В общем случае поведение графика зависит от сигнатуры формы.

**Классификация билинейных и квадратичных форм** Ниже я все определения отразил в единой табличке. В ней подразумевается, что билинейная форма задана на пространстве размерности n.

| Термин          | Обозначения                           | Условие                                    | Индексы            |
|-----------------|---------------------------------------|--------------------------------------------|--------------------|
| Положительная   | $\beta > 0$ или $Q > 0$               | $\forall x \neq 0 \Rightarrow Q(x) > 0$    | #1 = n             |
| Отрицательная   | $\beta < 0$ или $Q < 0$               | $\forall x \neq 0 \Rightarrow Q(x) < 0$    | # - 1 = n          |
| Неотрицательная | $eta\geqslant 0$ или $Q\geqslant 0$   | $\forall x \Rightarrow Q(x) \geqslant 0$   | # - 1 = 0          |
| Неположительная | $\beta\leqslant 0$ или $Q\leqslant 0$ | $\forall x \Rightarrow Q(x) \leqslant 0$   | #1 = 0             |
| Неопределенная  |                                       | $\exists x,y\Rightarrow Q(x)>0$ и $Q(y)<0$ | #1 > 0 и $#-1 > 0$ |

#### Скалярные произведения

Билинейная форма  $\beta\colon V\times V\to\mathbb{R}$  называется *скалярным произведением*, если она

- 1. симметрична  $\beta(v, u) = \beta(u, v)$ .
- 2. положительно определена, т.е. для любого ненулевого вектора  $v \in V$  имеем  $\beta(v,v) > 0$ .

В этом случае пишут (v,u) вместо  $\beta(v,u)$ . Самый важный пример – стандартное скалярное произведение:  $(x,y)=x^ty$ , где  $x,y\in\mathbb{R}^n$ . Векторное пространство, в котором зафиксировано какое-либо скалярное произведение называется Eвклидовым пространством.

По определению скалярного произведения у него в сигнатуре присутствуют только единицы, а минус единиц и нулей нет. В частности это означает, что матрица скалярного произведения всегда невырождена. Кроме того это еще означает, что для любого скалярного произведения существует такой базис, что в нем матрица B становится единичной матрицей. По-другому, на этот факт можно смотреть так: какие-бы два евклидовых пространства одинаковой размерности вы ни взяли бы, они оказываются одинаковыми (формально изоморфными).

Положительную определенность можно проверять несколькими способами.

- 1. Для формы  $\beta \colon V \times V \to \mathbb{R}$  проверить, что  $\beta(v,v) > 0$  для любого  $v \neq 0$  из пространства V.
- 2. Если представить  $\beta(x,y) = x^t B y$  в координатах, то надо проверить сигнатуру  $B \in \mathrm{M}_n(\mathbb{R})$ . Можно воспользоваться любым методом: симметричный гаусс, методя якоби, найти спектр матрицы B.
- 3. Матрица  $B \in \mathrm{M}_n(\mathbb{R})$  неотрицательно определена тогда и только тогда, когда она представима в виде  $B = C^t C$ , где  $C \in \mathrm{M}_n(\mathbb{R})$ . Если B еще и не вырождена, то она положительна определена.

Как задавать скалярные произведения? Самый простой способ такой: выберем любой базис  $e_1, \ldots, e_n \in V$  в пространстве V и положим в этом базисе матрицу  $\beta$  единичной. Тогда для любых векторов  $v, u \in V$ , мы имеем  $v = x_1e_1 + \ldots + x_ne_n$  и  $u = y_1e_1 + \ldots + y_ne_n$ . А значит,  $\beta(v, u) = x_1y_1 + \ldots + x_ny_n$ . Если кратко, то такой способ означает, что мы можем любой базис сделать по определению ортонормированным, в том смысле, что под любой базис можно найти единственное скалярное произведение, делающее этот базис ортонормированным.

#### Экзотические скалярные произведения

Ради интереса вот два примера любопытных скалярных произведений в неожиданных ситуациях.

- 1. Пусть в качестве векторного пространства у нас будет пространство матриц  $V = \mathrm{M}_{m\,n}(\mathbb{R})$  не обязательно квадратных. Пусть  $A, B \in \mathrm{M}_{m\,n}(\mathbb{R})$ , зададим скалярное произведение следующим образом  $(A, B) = \mathrm{tr}(A^t B).^5$  Можно руками проверить, что (A, B) = (B, A) и что  $(A, A) = \sum_{ij} a_{ij}^2 > 0$ , если  $A \neq 0$ . А потому эта штука удовлетворяет свойствам скалярного произведения. Значит можно в пространстве матриц мерить длины матриц и углы между ними. Длина матрицы в этом случае будет  $|A|_F = \sqrt{\mathrm{tr}(A^t A)}$  и называется «нормой Фробениуса» матрицы A.
- 2. Пусть теперь в качестве векторного пространства у нас будет множество всех непрерывных функций на отрезке [0,1], то есть  $V=C[0,1]=\{f\colon [0,1]\to\mathbb{R}\mid f$  непрерывна $\}$ . Тогда для двух функций  $f,g\in C[0,1]$  определим скалярное произведение следующим образом  $(f,g)=\int_0^1 f(x)g(x)\,dx$ . Получается, что теперь можно мерить длины функций и углы между функциями. Например, длина функции f будет  $\sqrt{\int_0^1 f(x)^2\,dx}$ .

### Углы и расстояния

Пусть V – евклидово пространство. Тогда  $\partial$ лина вектора v это  $|v| = \sqrt{(v,v)}$ . Если  $v,u \in V$  – два вектора, то определим yгол  $\alpha_{v,u}$  между этими векторами из равенства  $\cos \alpha_{v,u} = \frac{(v,u)}{|v||u|}$ .

Два вектора v и u называются opmoгoнальными, если (v,u)=0, т.е. угол между векторами  $90^\circ$ . Базис  $e_1,\ldots,e_n$  называется opmoroнальным, если любая пара векторов из базиса ортогональна, т.е.  $(e_i,e_j)=0$  при  $i\neq j$ . Базис называется opmonopmupoванным, если он ортогонален и все вектора имеют длину 1, т.е.  $(e_i,e_j)=0$  при  $i\neq j$  и  $(e_i,e_i)=1$ . По определению матрицы билинейной формы  $b_{ij}=(e_i,e_j)$ , а значит в ортонормированном базисе скалярное произведение имеет вид  $(x,y)=x^ty$ .

Для любого множества векторов  $S \subseteq \mathbb{R}^n$  мы можем определить ортогональное дополнение

$$S^{\perp} = \{ v \in V \mod(v, s) = 0$$
 для любого  $s \in S \}$ 

То есть это все возможные вектора, которые ортогональны всем векторам из S. Обратите внимание, что S может быть любым множеством, например, может состоять из одного вектора, но при этом  $S^{\perp}$  всегда будет векторным подпространством в  $\mathbb{R}^n$ .

Расстоянием между двумя векторами v и u пространства  $\mathbb{R}^n$  называется  $\rho(v,u)=|v-u|$ . Если мы хотим найти расстояние между двумя подмножествами, например,  $X,Y\subseteq V$ , то по определению расстояние между ними – это наименьшее расстояние между всеми парами точек из них, то есть

$$\rho(X,Y) = \inf_{\substack{x \in X \\ y \in Y}} \rho(x,y)$$

В частности можно говорить о расстоянии от вектора до подпространства. Напомню, что если  $U\subseteq \mathbb{R}^n$  – некоторое подпространство и  $U^\perp$  – его ортогональное дополнение, то любой вектор однозначно раскладывается в сумму вектора из U и вектора из  $U^\perp$ , то есть любой  $v\in V$  имеет вид v=u+w, где  $u\in U$  и  $w\in U^\perp$ . Тогда вектор u называется ортогональной проекцией v на U, а вектор w называется ортогональной составляющей v относительно U.

 $<sup>^5</sup>$ Обратите внимание, что матрица  $A^tB$  будет квадратной размера n на n, а потому для нее корректно определено понятие следа.

**Утверждение.** Пусть  $V = \mathbb{R}^n$  – евклидово пространство,  $U \subseteq V$  – подпространство,  $v \in V$  – некоторый вектор. Тогда расстояние от v до U равно длине ортогональной составляющей v относительно U.

**Пример** Пусть  $V = \mathbb{R}^n$  и задано стандартное скалярное произведение  $(x,y) = x^t y$ . Пусть U – подпространство заданное системой следующего вида:  $U = \{y \in \mathbb{R}^n \mid (a_1, \dots, a_n)y = 0\}$  (мы считаем, что хотя бы одно из чисел  $a_i \neq 0$ ). Если положим  $v = (a_1, \dots, a_n)^t$ . То  $U = \langle v \rangle^\perp$  по определению. То есть оно задается в виде  $\{y \in \mathbb{R}^n \mid (y,v) = 0\}$  для некоторого фиксированного ненулевого вектора v. Заметим, что это подпространство делит все пространство на два класса:

- 1. Положительные векторы  $\{y \in \mathbb{R}^n \mid (y, v) > 0\}.$
- 2. Отрицательные векторы  $\{y \in \mathbb{R}^n \mid (y, v) < 0\}$ .

Между этими классами как раз и расположено подпространство  $\langle v \rangle^{\perp}$ .

Пусть  $w \in V$  – произвольный вектор. Давайте поймем как найти расстояние от w до подпространства U. Вспомним, что  $w = \alpha v + u$ , где  $u \in U$ , а вектор  $\alpha v$  будет ортогональной составляющей v относительно U. Значит его длина и будет расстоянием. Надо лишь найти неизвестное  $\alpha$ . Для этого умножим равенство  $w = \alpha v + u$  скалярно на v и получим  $(w, v) = \alpha(v, v)$ . Откуда  $\alpha = \frac{(w, v)}{(v, v)}$ . Значит

$$\rho(w, U) = \left| \frac{(w, v)}{(v, v)} v \right| = \frac{|(w, v)|}{|v|} = |(w, v/|v|)|$$

Если вектор v имел единичную длину, то формула упрощается так

$$\rho(w, \langle v \rangle^{\perp}) = |(w, v)| = |w^t v|^6$$

### Двойственность для подпространств

Если у нас задано скалярное произведение, то оно является невырожденной и симметричной билинейной формой. А значит можно применить утверждение о двойственности для подпространств. При этом ситуация сильно упрощается, так как нет разницы между левыми и правыми ортогональными дополнениями. Давайте я явно проговорю, что получится в этом случае.

**Утверждение.** Пусть  $V = \mathbb{R}^n$  – евклидово пространство. Тогда:

1. Для любого подпространства  $W \subseteq V$  выполнено

$$\dim W^{\perp} + \dim W = \dim V$$

- 2. Для любого подпространства  $W \subseteq V$  верно, что  $W \cap W^{\perp} = 0$  и  $W + W^{\perp} = V$ .
- 3. Для любого подпространства  $W \subseteq V$  выполнено  $(W^{\perp})^{\perp} = W$ .
- 4. Для любых подпространств  $W\subseteq E\subseteq V$  верно, что  $W^\perp\supseteq E^\perp$ . Причем W=E тогда и только тогда, когда  $W^\perp=E^\perp$ .
- 5. Для любых подпространств  $W, E \subseteq V$  выполнено равенство

$$(W+E)^{\perp} = W^{\perp} \cap E^{\perp}$$

6. Для любых подпространств  $W, E \subseteq V$  выполнено равенство

$$(W \cap E)^{\perp} = W^{\perp} + E^{\perp}$$

Напомню, что для подпространств  $W, E \subseteq V$  сумма W + E – это подпространство вида  $\{w + e \mid w \in W, e \in E\}$ . То есть линейная оболочка W и E.

 $<sup>^{6}</sup>$ Последнее равенство в силу того, что у нас стандартное скалярное произведение.

**Пример** Пусть  $V = \mathbb{R}^n$  со стандартным скалярным произведением  $(x,y) = x^t y$ . И пусть  $S \subseteq \mathbb{R}^n$  – подпространство заданное в виде линейной оболочки  $S = \langle v_1, \dots, v_k \rangle$ , где  $v_i \in \mathbb{R}^n$ . Тогда составим матрицу  $A = (v_1 | \dots | v_k)^t$  так, чтобы по строкам лежали векторы  $v_i$ . Тогда  $S^{\perp} = \{y \in \mathbb{R}^n \mid Ay = 0\}$ . Или более явно

$$\langle v_1, \dots, v_k \rangle^{\perp} = \{ y \in \mathbb{R}^n \mid (v_1 | \dots | v_n)^t y = 0 \}$$

А по утверждению двойственности мы получаем

$$\{y \in \mathbb{R}^n \mid (v_1|\dots|v_n)^t y = 0\}^{\perp} = \langle v_1, \dots, v_k \rangle$$

К этому примеру можно относиться так, когда мы работаем с системами, мы просто работаем с ортогональными дополнениями линейных оболочек, когда специально зафиксировали стандартное скалярное произведение.

### Отртогонализация Грама-Шмидта

Дано Множество векторов  $v_1, \ldots, v_k \in \mathbb{R}^n$ .

**Задача** Найти множество  $u_1, \ldots, u_s$  такое, что  $u_i$  попарно ортогональны и  $\langle v_1, \ldots, v_k \rangle = \langle u_1, \ldots, u_s \rangle$ .

#### Алгоритм

- 1. Берем первый ненулевой вектор среди  $v_i$ . Пусть это будет  $v_1$ . Тогда полагаем  $u_1 = v_1$ .
- 2. Рассмотрим  $v_2 \frac{(v_2, u_1)}{(u_1, u_1)} u_1$ . Если этот вектор не ноль, то обозначим его за  $u_2$ . Если ноль, то выкинем  $v_2$  и перенумеруем вектора так, что  $v_3$  теперь будет вектором  $v_2$ . Повторяем этот шаг до тех пор, пока не найдем  $u_2$  или пока не закончатся вектора  $v_i$ .
- 3. Рассмотрим  $v_3 \frac{(v_3, u_1)}{(u_1, u_1)} u_1 \frac{(v_3, u_2)}{(u_2, u_2)} u_2$ . Если он не ноль, то обозначим его за  $u_3$ . Иначе как и в предыдущем пункте переходим к следующему вектору и повторяем этот шаг.
- 4. Для поиска  $u_i$  надо рассмотреть вектор  $v_i \frac{(v_i, u_1)}{(u_1, u_1)} u_1 \ldots \frac{(v_i, u_{i-1})}{(u_{i-1}, u_{i-1})} u_{i-1}$ . Аналогично предыдущему пункту, если этот вектор не ноль, то это  $u_i$ . Если ноль, то рассматриваем следующий  $v_{i+1}$  вместо него и повторяем этот шаг.

Пример Пусть у нас заданы векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} \text{ if } v_4 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} \in \mathbb{R}^4$$

Первый вектор не ноль, значит  $u_1 = v_1$ . Теперь рассмотрим

$$v_2 - \frac{(v_2, u_1)}{(u_1, u_1)} u_1 = \begin{pmatrix} 3\\3\\1\\1 \end{pmatrix} - \frac{3+3+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$$

Значит  $u_2 = v_2$ . Теперь рассмотрим

$$v_3 - \frac{(v_3, u_1)}{(u_1, u_1)} u_1 - \frac{(v_3, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix} - \frac{2+2+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - \frac{2+2-1-1}{1+1+1+1} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = 0$$

Значит забываем про  $v_3$  и переходим к следующему вектору.

$$v_4 - \frac{(v_4, u_1)}{(u_1, u_1)} u_1 - \frac{(v_4, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} - \frac{2+1-1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2-1+1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

Таким образом ответ

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \text{ if } u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

### Ортогональные матрицы

**Утверждение.** Для матрицы  $A \in \mathrm{M}_n(\mathbb{R})$  следующие условия эквивалентны:

- 1.  $A^t A = E$ .
- 2.  $AA^t = E$ .
- 3.  $A^t = A^{-1}$ .

Матрица обладающая одним из этих эквивалентных условий называется *ортогональная*. Важно понимать следующий результат.

**Утверждение.** Пусть V – евклидово пространство и  $e_1, \ldots, e_n$  – ортонормированный базис. Тогда

- 1. Для любой ортогональной матрицы  $C \in M_n(\mathbb{R})$  векторы  $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$  образуют ортонормированный базис.
- 2. Если векторы  $f_1, \ldots, f_n$  образуют ортонормированный базис, то матрица перехода от  $e_1, \ldots, e_n$  к  $f_1, \ldots, f_n$  будет ортогональной.

Таким образом, если мы зафиксируем один ортонормированный базис в V, то все остальные описываются с помощью ортогональных матриц. В частности, если мы возьмем  $\mathbb{R}^n$  со стандартным скалярным произведением  $(x,y)=x^ty$ , то стандартный базис будет ортонормированным. Если  $f_1,\ldots,f_n\in\mathbb{R}^n$  – ортонормированный базис, то  $(f_1,\ldots,f_n)=(e_1,\ldots,e_n)C$ , где  $e_i$  – стандартный базис, а C – ортогональная матрица размера n. Но это равенство можно интерпретировать, как матричное равенство. Тогда  $(e_1,\ldots,e_n)$  превращается в единичную матрицу, а значит  $f_1,\ldots,f_n$  – это столбцы матрицы C. То есть все ортонормированные базисы в этом случае описываются как столбцы ортогональных матриц.

**QR-разложение** Пусть у нас дан набор векторов  $v_1, \ldots, v_k \in \mathbb{R}^n$  и задано стандартное скалярное произведение  $(x,y)=x^ty$ . Давайте для начала для простоты будем считать, что все векторы линейно независимы. Проведем для них процесс ортогонализации Грама-Шмидта и получим векторы  $v_1', \ldots, v_k'$ . Если в формулах для Грама-Шмидта перенести все старые векторы влево, а новые вправо, то получится следующий набор равенств:

$$(v_1 \dots v_k) = (v'_1 \dots v'_k) \begin{pmatrix} 1 & \frac{(v_2, v'_1)}{(v'_1, v'_1)} & \frac{(v_3, v'_1)}{(v'_1, v'_1)} & \dots & \frac{(v_k, v'_1)}{(v'_1, v'_1)} \\ 1 & \frac{(v_3, v_2)}{(v'_2, v'_2)} & \dots & \frac{(v_k, v_2)}{(v'_2, v'_2)} \\ & 1 & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

При этом векторы  $v_1', \dots, v_k'$  являются ортогональными. В силу предположенной линейной независимости исходных векторов новые векторы тоже будут линейно независимыми, а в частности не нулевыми. Если теперь поделить каждый из них на его длину, то получится

$$(v_1 \dots v_k) = \begin{pmatrix} v'_1 \\ |v'_1| & \frac{(v_2, v'_1)}{|v'_1|} & \frac{(v_3, v'_1)}{|v'_1|} & \dots & \frac{(v_k, v'_1)}{|v'_1|} \\ |v'_2| & \frac{(v_3, v'_2)}{|v'_2|} & \dots & \frac{(v_k, v'_2)}{|v'_2|} \\ |v'_3| & & & \ddots & \vdots \\ |v'_k| \end{pmatrix}$$

Пусть теперь  $A=(v_1|\dots|v_k)\in \mathrm{M}_{n\,k}(\mathbb{R})$  – матрица составленная из исходных векторов, а  $Q'=\left(\frac{v_1'}{|v_1'|}|\dots|\frac{v_k'}{|v_k'|}\right)$ , а  $R'\in \mathrm{M}_k(\mathbb{R})$  – матрица из коэффициентов справа в верхнем равенстве. Тогда верхнее равенство записывается так A=Q'R'. Мы можем добавить столбцы в матрицу Q' в конце так, чтобы получилась ортогональная

матрица Q, тогда A = Q(R'|0). Таким образом A представлена в виде произведения ортогональной матрицы Q и верхнетреугольной матрицы R = (R'|0). Такое разложение называется QR разложением.

Если же у исходной матрицы A столбцы оказались линейно зависимыми, то в результате нашего алгоритма, Q' может содержать нулевые столбцы, но все они будут ортогональны. В этом случае поступают так. Для каждого нулевого столбца Q' зануляют соответствующую строку в матрице R'. После этого все равно, что стоит в соответствующем столбце Q'. В этом случае в место нулевых столбцов вставляют недостающие векторы до ортонормированного базиса. А последний шаг перехода от Q' и R' к Q и R абсолютно такой же.