

Motor de físicas mejorado para simulador robótico basado en tecnologías web

TRABAJO FIN DE GRADO

NATALIA MONFORTE RODRÍGUEZ

JOSÉ MARÍA CAÑAS PLAZA

Introducción

Objetivos

Herramientas

Mejora de las físicas en WebSim

Nuevos ejercicios con físicas realistas

Conclusiones

Introducción

Albada Sea

(d) Tesla

(b) Thermomix

(e) Robot DaVinci

(c) Tello

(f) Robots LEGO

Robótica

- o Creación de máquinas automatizadas útiles que recrean comportamientos humanos o animales.
- o Partes de un robot:
- Hardware
- Software

Tecnologías web

- Aplicaciones web
- Modelo cliente servidor -> Protocolo HTTP

- Tecnologías de *frontend*:
- Tecnologías de backend

- HTML5
- CSS3
- JavaScript

Docencia robótica

Robótica + tecnologías web → docencia robótica

Educación STEM

- Lenobotics
- \circ LEGO education
- \circ OpenRoberta
- *iRobot*
- Scratch
- ∘ *Kibotics* → soporta *Python* y *Scratch*

Interfaz de programación en Kibotics de un ejercicio en Scratch

Interfaz de programación en Kibotics de un ejercicio en Python

Objetivos

Objetivos

1 2

- Motor de físicas basado en *A-Frame* que replique de modo realista el movimiento autónomo de los robots.
 - Complementario a CANNON.
 - Robots de distinta masa.

- Novedosos ejercicios para la plataforma educativa *Kibotics* que aprovechen el nuevo motor de físicas.

Herramientas

Mejora de las físicas en *WebSim*

Estudios previos: motor de físicas por defecto en *A-Frame*

• *CANNON* es el motor por defecto de *A-Frame*

Gravedad

Colisiones

Fricción

Motor de físicas actual para robots en WebSim

- o No recrea un movimiento realista.
- Modelo cinemático: los robots adquieren instantáneamente la velocidad ideal.
- o Aceleración infinita.

```
updatePosition(rotation, velocity, robotPos) {
if(simEnabled) {
   let x = velocity.x / 10 * Math.cos(rotation.y * Math.PI / 180);
   let z = velocity.x / 10 * Math.sin(-rotation.y * Math.PI / 180);
   let y = (velocity.y / 10);
   robotPos.x += x;
   robotPos.z += z;
   robotPos.y += y;
}
return robotPos;
```

Nuevo motor de físicas complementario

1. DISEÑO

Fuerza robot = Fuerza autónoma + Fuerza gravedad + Fuerza fricción

- · <u>Fuerzas gravedad y fricción</u>: materializadas por *CANNON a* su propio ritmo.
- <u>Fuerza autónoma</u>: materializada por el motor complementario a otro ritmo y teniendo en cuenta las velocidades deseadas por el cerebro programado.

Parámetros del modelo de fuerzas		
mass	Masa del robot	
inertia	Momento de inercia del robot	
Fmax	Fuerza máxima aplicable	
Tmax	Torque máximo aplicable	
accelerationMax	Aceleración lineal máxima	
angularAccelerationMax	Aceleración angular máxima	
linealSpeedMax	Velocidad lineal máxima	
meanspectaviax	que puede alcanzar el robot	
angularSpeedMax	Velocidad angular máxima	
angular speculific	que puede alcanzar el robot	
Parámetros de A-Frame		
	Conservación de la energía cinética	
restitution		
	en un choque entre partículas	
gravity	Gravedad	
friction	Fricción (rozamiento estático y dinámico)	
linearDamping	Amortiguación lineal	
	(rozamiento dinámico en el movimiento lineal)	
angularDamping	Amortiguación angular	
angularDamping	(rozamiento dinámico en el movimiento angular)	

2. MODELO DE FUERZAS

- A partir de la definición de la masa y el momento de inercia del robot, se calcula la aceleración a aplicar en el siguiente diferencial de tiempo.
- · Esa aceleración determina la evolución de las velocidades y posiciones del robot.

Parámetros

- Fuerza máxima.
- Par máximo.
- Masa.
- · Momento de inercia.
- Velocidad lineal máxima.
- Velocidad angular máxima.

3. CONTROLADOR PD

• Traducción de las velocidades deseadas en cada momento del cerebro a la fuerza autónoma a aplicar al robot.

1. Controlador PD en velocidad del plano horizontal (para drones y robots de suelo)

CONTROL PD

2. Controlador PD en velocidad del eje vertical (para drones)

CONTROL PD

3. Controlador PD en velocidad angular horizontal (yaw) (para drones y robots de suelo)

CONTROL PD

4. Controlador PD en posición para la altura (para drones cuando Vz = 0)

CONTROL PD

4. TIMING

Tienen que trabajar en la misma escala temporal:

Aceleración autónoma = iteraciones CANNON x aceleración calculada

- ¿Timing del nuevo motor complementario? 20 ms setTimeout(this.auxiliaryPhysics.bind(this), 20);
- ¿Timing de CANNON? Desconocido
 No mide tiempos explícitamente, depende de la carga de la máquina.

Validación experimental

Simulación realista de robots terrestres

mBot subiendo una rampa con una fuerza máxima insuficiente

Giro de 90º es un escenario con una fricción muy baja

(pista de hielo)

Variación de la aceleración en función de la fricción

Controlador PD en velocidad del plano horizontal

Tiempo - Velocidad

Simulación realista de drones

(a) Despegue del drone Tello de 1 Kg

(b) Despegue del drone Tello de 100 Kg

Controlador PD en posición para la altura Tiempo – posición

Controlador PD en velocidad del eje vertical Tiempo – velocidad

Nuevos ejercicios con físicas realistas

Sigue-Líneas con rampa

Aprovecha el motor de físicas complementario en la subida de la rampa.

Parámetros del modelo de fuerzas		
mass	1	
inertia	1.3	
Fmax	10	
Tmax	1	
accelerationMax	10	
angularAccelerationMax	0.77	
linealSpeedMax	10	
angularSpeedMax	5	
Parámetros de A-Fi	rame	
restitution	0.3	
gravity	-9.8	
friction	0.00003	
linearDamping	-1.3	
angularDamping	-1.3	

Laberinto 3D para mBot

Aprovecha el motor de físicas complementario en la subida de la rampa.

Parámetros del modelo de fuerzas		
mass	1	
inertia	1.3	
Fmax	10	
Tmax	1	
accelerationMax	10	
angularAccelerationMax	0.77	
linealSpeedMax	10	
angularSpeedMax	5	
Parámetros de A-Fr	ame	
restitution	0.3	
gravity	-9.8	
friction	0.0005	
linearDamping	-1.3	
angularDamping	-1.3	

Laberinto para drone

- · Con señalización y sin señalización
- Aprovecha el motor de físicas complementario durante el vuelo del drone (controlador PD en velocidad) y mientras que el drone permanece quieto a una cierta altura (controlador PD en posición)

Parámetros del modelo	de fuerzas
mass	1
inertia	1.3
Fmax	10
Tmax	1
accelerationMax	10
angularAccelerationMax	0.77
linealSpeedMax	10
angularSpeedMax	5
Parámetros de A-F	Frame
restitution	0.3
gravity	-9.8
friction	0.0000001
linearDamping	0.01
angularDamping	0.01

Fútbol competitivo

- · Ejercicio competitivo uno contra uno
- · Cuenta con un evaluador automático
- Saca provecho de las nuevas físicas al golpear el balón (colisión) y cuando el balón rueda por el suelo (fricción)

Sin el nuevo motor complementario

Con el nuevo motor complementario

Parámetros del modelo de fuerzas		
mass	1	
inertia	1.3	
Fmax	10	
Tmax	1	
accelerationMax	10	
angularAccelerationMax	0.77	
linealSpeedMax	10	
angularSpeedMax	5	
Parámetros de A-Fr	ame	
restitution	0.5	
gravity	-9.8	
friction	0.0005	
linearDamping	0.01	
angularDamping	0.01	

Conclusiones

Conclusiones

- ∘ Creado un motor de físicas mejorado para *WebSim* basado en tecnologías web y que dota al simulador robótico de unas físicas más realistas → En producción ✓
- ∘ Robots con distinta masa ✓
- ∘ Coexiste con el motor *CANNON* (materializa gravedad, fricción y colisiones) ✓
- ∘ Nuevos ejercicios que aprovechan el nuevo motor de físicas ✓

Líneas futuras

• Ejercicios competitivos para cuatro jugadores

• Nuevo motor de físicas *ammo.js*

• Efectos de sonido a los ejercicios ()

¡Muchas gracias!