

Сравнение производительности кластера Citus на базе Patoni и ArenadataDB на большом объеме данных

Меня хорошо видно & слышно?

Защита проекта

Tema: Сравнение производительности кластера **Citus на базе Patoni** и **ArenadataDB** на большом объеме данных

Воронов Алексей

DevOps инженер OOO «РТК ИТ»

План защиты

Цель и задачи проекта

Какие технологии использовались

Что получилось

Выводы

Вопросы и рекомендации

Цель и задачи проекта

Цель проекта: сравнить производительность аналитических запросов кластеров "Citus на базе Patoni" и "ArenadataDB"

- 1. Установить кластер Citus и кластер ArenadataDB
- 2. Установить базовый мониторинг кластеров
- **3.** Загрузить датасет для тестирования OLAP запросов
- **4.** Выполнить тестовые OLAP запросы и сравнить результаты тестов
- **5.** Сделать результирующие выводы и ответить для себя на вопрос: В чем разница между Citus и Greenplum ?

Какие технологии использовались

- Citus + Patroni
- 2. ADCM + ArenadataDB
- 3. Prometheus + etc.exporters + Grafana
- 4. extension PostGIS
- 5. Ansible для ad-hook операций + Vmware в качестве платформы виртуализации использовалась

Конфигурация нод:

Bepcия OS: Ubuntu 22.04 CPU/8, Mem/16GB, SSD/30GB

Распределение нод:

3 для мастер нод 6 для воркер нод

Ограничения:

используется виртуализация vmware под капотом один SSD диск на все BM

Датасет для тестирования:

https://zenodo.org/records/7923702

(открытые данные авиаперелетов с 2019 по 2022 год)

Схема стенда "кластера Citus на базе Patoni"

Схема тестирования кластера Citus+Patroni standby standby leader c-master-1 192.168.0.232 192.168.0.233 192.168.0.231 etcd etcd etcd patroni patroni patroni postgres postgres postgres leader leader c-worker1-1 c-worker2-1 c-worker3-1 192.168.0.234 192.168.0.236 192.168.0.238 patroni patroni patroni postgres postgres postgres standby 📥 standby 🕏 standby 🖶 c-worker1-2 c-worker2-2 c-worker3-2 192.168.0.235 192.168.0.237 192.168.0.239 patroni patroni patroni postgres postgres postgres

Статус кластера Citus после установки

```
root@c-worker1-1:~# patronictl --config-file=/etc/patroni/config.yml list
+ Citus cluster: patroni ------
| Group | Member
                              I Role
                  | Host
                                            l State
    0 | c-master1 | c-master1 | Leader
                                            | running
        c-master2 | c-master2 | Quorum Standby | streaming | 1 |
        c-master3 | c-master3 | Quorum Standby | streaming | 1 |
        c-worker1-1 | c-worker1-1 | Leader | running |
     1 | c-worker1-2 | c-worker1-2 | Ouorum Standby | streaming | 1 |
     2 | c-worker2-1 | c-worker2-1 | Leader | running |
       c-worker2-2 | c-worker2-2 | Quorum Standby | streaming | 1 |
     3 | c-worker3-1 | c-worker3-1 | Leader | running |
        c-worker3-2 | c-worker3-2 | Quorum Standby | streaming | 1 |
```


Схема стенда кластера ArenadataDB

Схема тестирования кластера ArenadataDB

Статус кластера Monitoring:

OLAP запросы использованные для сравнительного тестирования

- 1) Общее кол-во полетов: SELECT COUNT(*) FROM opensky;
- 2) Кол-во полетов "callsign IN ('UUEE', 'UUDD', 'UUWW')": SELECT COUNT(*) FROM opensky WHERE callsign IN ('UUEE', 'UUDD', 'UUWW');
- 3) ТОП 10 аэропортов с максимальным кол-вом полетов: SELECT origin, COUNT(*) FROM opensky WHERE origin != " GROUP BY origin ORDER BY count(*) DESC limit 10;
- 4) ТОП 10 аэропортов с максимальным кол-вом полетов и с расчетом суммарного полетного расстояния: SELECT origin, count(*), round(avg(ST_Distance(ST_MakePoint(longitude_1, latitude_1)::geography, ST_MakePoint(longitude_2, latitude_2)::geography))) AS distance FROM opensky WHERE origin != " GROUP BY origin ORDER BY count(*) DESC LIMIT 10;
- 5) ТОП 10 аэропортов с максимальным кол-вом полетов и с расчетом суммарного полетного расстояния за 2019-09-01:

SELECT origin, count(*), round(avg(ST_Distance(ST_MakePoint(longitude_1, latitude_1)::geography,
ST_MakePoint(longitude_2, latitude_2)::geography))) AS distance FROM opensky WHERE firstseen >= '2019-09-01'
AND firstseen < '2019-09-02' and origin != " GROUP BY origin ORDER BY count(*) DESC LIMIT 10;

6) Суммарное растояние за все время наблюдения: SELECT sum(ST_Distance(ST_MakePoint(longitude_1, latitude_1)::geography, ST_MakePoint(longitude_2, latitude_2)::geography))/1000 AS distance FROM opensky;

Сравнение результатов тестирования

Результаты тестирования сведены в таблицу:

Аналитические запросы	Citus	ArenadataDB
1. Общее кол-во полетов	1925 ms	1919 ms
2. Кол-во полетов "callsign IN ('UUEE', 'UUDD', 'UUWW')"	899 ms	1382 ms
3. ТОП 10 аэропортов с максимальным кол-вом полетов	4378 ms	4103 ms
4. ТОП 10 аэропортов с макс/кол-вом полетов и с расчетом суммарного полетного расстояния	110239 ms	78939 ms
5. ТОП 10 аэропортов с макс/кол-вом полетов и с расчетом суммарного полетного расстояния за 1 мес.	875 ms	513 ms
6. Суммарное растояние за все время наблюдения	110386 ms	98788 ms
7. Скорость загрузки датасета	30 минут	20 минут

Citus - статистика с одной из воркер нод

ArenadataDB - статистика с одной из воркер нод

Citus - статистика postgres-exporter

ArenadataDB Monitoring

Выводы (по результатам тестирования):

ArenadataDB (Greenplum) представляет собой массив отдельных баз данных PostgreSQL, работающих вместе для представления единого образа базы данных.

Citus преобразует отдельные экземпляры PostgreSQL в распределенный кластер, который будет размещать части табличных данных (шарды), где данные распределены по ключу шардирования.

Оба решения разработаны с учетом горизонтального масштабирования, позволяя распределять данные и запросы по множеству узлов

Скорость выполнения простых OLAP запросов примерно одинакова у обоих решений, но сложные OLAP запросы **ArenadataDB** выполняет значительно быстрее

Загрузка данных в ArenadataDB происходит значительно быстрее

При тестовых OLAP запросах **ArenadataDB** значительно меньше нагружает CPU на воркер нодах

Оба решения позволяют использовать колоночный тип хранилища с сжатием данных.

Оба решения имеют удобные инструменты для контроля состояния

Выводы (по внутреннему устройству):

Citus для управления распределенными транзакциями использует протокол двухфазной фиксации (2PC), он необходим чтобы гарантировать, что транзакция будет зафиксирована либо на всех узлах, либо не зафиксирована нигде.

Тем не менее, в **Citus** ранее подготовленные транзакции на отдельных узлах применяются в разное время.

Поэтому последующая транзакция сможет прочитать данные, которые были применены на одном узле, но еще не были применены на другом.

Фактически, это нарушает принцип атомарности, позволяя увидеть часть данных о зафиксированной транзакции.

В ArenadataDB(Greenplum) это невозможно благодаря работе со снапсшотами.

Ядро Greenplum отслеживает информацию об активных распределенных транзакциях, храня идентификатор распределенной транзакции в общей памяти процесса каждого бэкенда, аналогично стандартным локальным идентификаторам транзакций PostgreSQL.

Координатор запросов отвечает за генерацию и назначение значения идентификатор распределенной транзакции.

Выводы:

Таким образом, хотя установка **Citus** расширяет возможности PostgreSQL, она не делает его эквивалентом **Greenplum**,

поскольку оба решения имеют разные архитектурные подходы и оптимизированы для различных типов рабочих нагрузок.

Citus может повысить производительность PostgreSQL в распределенных OLTP-нагрузках.

Greenplum имеет специфические функции аналитической обработки больших данных, включая поддержку сложных аналитических запросов,

а также **интеграцию с различными инструментами анализа и ETL/ELT-процессов**.

Вопросы и рекомендации

___ если вопросов нет

Спасибо за внимание!