Math 260 Exercises 1.B Solutions

David L. Meretzky

Tuesday August 21th, 2018

Problem 1. Prove that -(-v) = v for every $v \in V$

Solution 1. By the definition, it is clear that -(-v) is the additive inverse for (-v), -(-v)+(-v)=0, however, v+(-v)=0 so v is also an additive inverse for (-v). Thus by the uniqueness of additive inverses **1.26** the result holds.

Problem 2. Suppose $a \in \mathbb{F}$, $v \in V$ and av = 0. Prove that a = 0 or v = 0.

Solution 2. Suppose $v \neq 0 \in V$, and suppose that $a \neq 0$. Then there exists a multiplicative inverse for a, a^{-1} such that $a^{-1}a = 1$. Then $a^{-1}(av) = (a^{-1}a)v = 1v = v$ Thus $v = a^{-1}(av) = a^{-1}(0) = 0$ where the last equality holds because a number times the 0 vector is 0. This is a contradiction. Therefore a = 0. Suppose $a \neq 0$ in \mathbb{F} , then there exists a multiplicative inverse for a, a^{-1} such that $a^{-1}a = 1$. Then $a^{-1}(av) = (a^{-1}a)v = 1v = v$. Thus $v = a^{-1}(av) = a^{-1}(0) = 0$ where the last equality holds because a number times the 0 vector is 0. Thus v = 0

Problem 3. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

Solution 3. There exists a unique additive identity for v, (-v). Let x = (1/3)(w + (-v)) then v + (3)(1/3)(w + (-v)) = v + w - v = w.

Problem 4. The empty set is not a vectorspace. The empty set fails to satisfy only one of the requirements listed in 1.19. Which one?

Solution 4. The empty set does not have an additive identity.

Problem 5. Show that in the definition of a vectorspace (1.19), the additive inverse condition can be replaced with the condition that 0v = 0 for all $v \in V$. Here 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.

Solution 5. Let 0 = 0v = (1-1)v = 1v + (-1)v = v + (-1)v. Therefore, (-1)v is an additive inverse for v.

Problem 6. Let ∞ and $-\infty$ denote two distinct objects, neither of which is in \mathbb{R} . Define an addition and scalar multiplication on $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbb{R}$ define $t\infty = -\infty$ if t < 0, $t\infty = 0$ if t = 0 and $t\infty = \infty$ for t > 0. Also $t + \infty = \infty + t = \infty$, $t + (-\infty) = (-\infty) + t = -\infty$.

 $\infty + \infty = \infty$, $(-\infty) + (-\infty) = (-\infty)$, $0 = (-\infty) + \infty$. Is $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ a vectorspace over \mathbb{R} ? Explain.

Solution 6. note that for any $t \in \mathbb{R}$, and any $s \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$, $t+s=(t+0)+s=(t+(-\infty+\infty))+s=((t+-\infty)+\infty)+s=(-\infty+\infty)+s=0+s=s$. Thus t is an additive identity for $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$. Therefore, since $t \neq 0$ we fail to have uniqueness of additive identities. Thus $\mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ cannot be a vectorspace. You can follow this back further. What other properties does it not satisfy?