	2ª Prova de F-128 - Diurno	1)
		2)
	22/10/2011	3)
		4)
Nome:	RA: Tur	•ma: Nota:

Obs: Na solução desta prova, considere $g = 10 \text{ m/s}^2$

Questão 01

A figura mostra um bloco de massa m_1 sobre um plano inclinado de ângulo θ_1 . O coeficiente de atrito entre este bloco e a rampa é μ . Um segundo bloco de massa m_2 , sobre um plano inclinado de ângulo θ_2 , está ligado ao primeiro por uma corda passando por uma polia. Não há

atrito entre esta caixa e o plano inclinado. Considere que a corda e a polia têm massas desprezíveis e a polia não tem atrito.

- a) (0.5 ponto) Faça um diagrama das forças agindo sobre o bloco de massa m_1 quando este está na iminência de descer o plano inclinado;
- b) (1,0 ponto) Quais são os valores máximo e mínimo a massa m_2 pode assumir que mantém o sistema em equilíbrio ?;
- c) (1,0 ponto) Considere que m_1 =3,0 kg, θ_1 = 30°, m_2 =4,0 kg, θ_2 = 60° e μ =0,2. Calcule a aceleração do sistema e tração na corda?

2ª Prova de F-128 - Diurno

Questão 02

Na figura abaixo, um carro de massa M=800 kg, passa com velocidade constante por uma elevação circular e por uma depressão circular de mesmo raio R. Despreze os efeitos de atrito e resistência do ar.

- a) (0,5 ponto) Faça um diagrama das forças agindo sobre o carro no ponto mais alto da elevação circular;
- b) (1,0 ponto) Qual é a máxima velocidade que o carro pode ter no ponto de máxima elevação para que não perca o contato com a estrada?
- c) (1,0 ponto) Estando o carro com a máxima velocidade calculada no item (b) qual é o módulo da força normal exercida pelo assento sobre o motorista quando o carro passa pelo fundo do vale?

2ª Prova de F-128 - Diurno

Questão 03

Dois blocos de massas m = 2.0 kg e 2m, estão ligados a uma mola de constante elástica k = 200 N/m que tem uma das extremidades fixa como mostra a figura. A superfície horizontal e a polia tem massa desprezível. Os blocos são liberados a partir do repouso com a mola na posição relaxada.

- a) (0,5 ponto) Qual a energia cinética do conjunto após o bloco pendurado ter descido uma distância h = 9 cm?
- b) (0,5 ponto) Qual é a velocidade do bloco pendurado após ele ter descido esta distância h?
- c) (0,5 ponto) Qual a distância que o bloco pendurado percorre antes de parar momentaneamente pela primeira vez?
- d) (1,0 ponto) Qual a maior velocidade atingida pelos dois blocos e em altura ela ocorre?

2ª Prova de F-128 - Diurno

Questão 04

Considere a energia potencial mostrada na figura, referente a uma partícula de massa m = 0.2 kg.

- a) (0,5 ponto) determine se a força F_x é positiva, negativa ou nula nos quatro pontos indicados;
 A partícula é liberada em x = 5,0 m, onde U forma uma "barreira de potencial" de altura U = 12,0 J, com energia cinética de 4,0 J.
- b) (1,0 ponto) Qual é a velocidade da partícula em x = 3,5m e em x = 7,5 m?
- c) (1,0 ponto) Determine as posições de retorno desta partícula.

RASCUNHO

Nome:	RA: