Veriopt Theories

September 22, 2022

Contents

1	Can	onicalization Optimizations	1
	1.1	AbsNode Phase	3
	1.2	AddNode Phase	8
	1.3	AndNode Phase	11
	1.4	BinaryNode Phase	15
	1.5	ConditionalNode Phase	16
	1.6	MulNode Phase	19
	1.7	Experimental AndNode Phase	28
	1.8	NotNode Phase	42
	1.9	OrNode Phase	42
	1.10	ShiftNode Phase	46
	1.11	SignedDivNode Phase	47
	1.12	SignedRemNode Phase	48
	1.13	SubNode Phase	48
	1.14	XorNode Phase	53
		NegateNode Phase	55
	1.16	AddNode	58
	1.17	NegateNode	58
1	Ca	anonicalization Optimizations	
theory Common imports OptimizationDSL.Canonicalization Semantics.IRTreeEvalThms			
be			
lemma size-pos[size-simps]: $0 < size \ y$ apply (induction y ; auto?) by (smt (z3) add-2-eq-Suc' add-is-0 not-gr0 size.elims size.simps(12) size.simps(13) size.simps(14) size.simps(15) zero-neq-numeral zero-neq-one)			

```
lemma size-non-add[size-simps]: size (BinaryExpr op a b) = size a + size b + 2
\longleftrightarrow \neg (is\text{-}ConstantExpr\ b)
 by (induction b; induction op; auto simp: is-ConstantExpr-def)
lemma \ size-non-const[size-simps]:
  \neg is\text{-}ConstantExpr y \Longrightarrow 1 < size y
 using size-pos apply (induction y; auto)
 by (metis Suc-lessI add-is-1 is-ConstantExpr-def le-less linorder-not-le n-not-Suc-n
numeral-2-eq-2 pos2 size.simps(2) size-non-add)
lemma \ size-binary-const[size-simps]:
  size\ (BinaryExpr\ op\ a\ b) = size\ a + 2 \longleftrightarrow (is-ConstantExpr\ b)
 by (induction b; auto simp: is-ConstantExpr-def size-pos)
lemma size-flip-binary[size-simps]:
   \neg (is\text{-}ConstantExpr\ y) \longrightarrow size\ (BinaryExpr\ op\ (ConstantExpr\ x)\ y) > size
(BinaryExpr\ op\ y\ (ConstantExpr\ x))
 by (metis add-Suc not-less-eq order-less-asym plus-1-eq-Suc size.simps(11) size.simps(2)
size-non-add)
lemma size-binary-lhs-a[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ a
 by (metis add-lessD1 less-add-same-cancel1 pos2 size-binary-const size-non-add)
lemma size-binary-lhs-b[size-simps]:
  size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ b
 by (metis IRExpr.disc(42) One-nat-def add.left-commute add.right-neutral is-ConstantExpr-def
less-add-Suc2 numeral-2-eq-2 plus-1-eq-Suc size.simps(11) size-binary-const size-non-add
size-non-const trans-less-add1)
lemma size-binary-lhs-c[size-simps]:
 size (BinaryExpr \ op \ (BinaryExpr \ op' \ a \ b) \ c) > size \ c
 \textbf{by} \ (\textit{metis IRExpr.disc} (42) \ \textit{add.left-commute add.right-neutral is-ConstantExpr-def}
less-Suc-eq\ numeral-2-eq-2\ plus-1-eq-Suc\ size.simps (11)\ size-non-add\ size-non-const
trans-less-add2)
lemma size-binary-rhs-a[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ a
 by (smt (verit, best) less-Suc-eq less-add-Suc2 less-add-same-cancel1 linorder-neqE-nat
not-add-less1 order-less-trans pos2 size.simps(4) size-binary-const size-non-add)
lemma size-binary-rhs-b[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ b
 \mathbf{by}\ (\textit{metis add.left-commute add.right-neutral is-ConstantExpr-def lessI\ numeral-2-eq-2})
plus-1-eq-Suc\ size.simps(11)\ size.simps(4)\ size-non-add\ trans-less-add2)
lemma size-binary-rhs-c[size-simps]:
  size (BinaryExpr \ op \ c \ (BinaryExpr \ op' \ a \ b)) > size \ c
```

```
by simp
lemma \ size-binary-lhs[size-simps]:
  size (BinaryExpr op x y) > size x
  by (metis One-nat-def Suc-eq-plus1 add-Suc-right less-add-Suc1 numeral-2-eq-2
size-binary-const size-non-add)
lemma size-binary-rhs[size-simps]:
  size (BinaryExpr op x y) > size y
 by (metis\ IRExpr.disc(42)\ add\text{-}strict\text{-}increasing\ is\text{-}ConstantExpr\text{-}def\ linorder\text{-}not\text{-}le
not-add-less1 size.simps(11) size-non-add size-non-const size-pos)
\mathbf{lemmas} \ arith[\mathit{size-simps}] = \mathit{Suc-leI} \ add\text{-}\mathit{strict-increasing} \ order\text{-}\mathit{less-trans} \ trans\text{-}\mathit{less-add2}
definition well-formed-equal :: Value \Rightarrow Value \Rightarrow bool
  (infix \approx 50) where
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
lemma well-formed-equal-defn [simp]:
  well-formed-equal v_1 v_2 = (v_1 \neq UndefVal \longrightarrow v_1 = v_2)
 unfolding well-formed-equal-def by simp
end
        AbsNode Phase
1.1
theory AbsPhase
 imports
    Common
begin
phase AbsNode
 terminating size
begin
lemma abs-pos:
 fixes v :: ('a :: len word)
 assumes 0 \le s v
 shows (if v < s \ 0 \ then - v \ else \ v) = v
 by (simp add: assms signed.leD)
lemma abs-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 assumes -(2 \hat{\ } (Nat.size \ v - 1)) < s \ v
```

shows (if $v < s \ \theta$ then -v else v) = $-v \land \theta < s -v$

```
by (smt\ (verit,\ ccfv\text{-}SIG)\ assms(1)\ assms(2)\ signed-take-bit-int-greater-eq-minus-exp
    signed-take-bit-int-greater-eq-self-iff\ sint-0\ sint-word-ariths (4)\ word-sless-alt)
lemma abs-max-neg:
 fixes v :: ('a :: len word)
 assumes v < s \theta
 \mathbf{assumes} - (2 \ \widehat{} \ (\mathit{Nat.size} \ v - 1)) = v
 shows -v = v
 using assms
 by (metis One-nat-def add.inverse-neutral double-eq-zero-iff mult-minus-right size-word.rep-eq)
lemma final-abs:
 fixes v :: ('a :: len word)
 assumes take-bit (Nat.size v) v = v
 \mathbf{assumes} - (2 \ \widehat{} \ (Nat.size \ v - 1)) \neq v
 shows 0 \le s (if v < s \ 0 then -v else v)
proof (cases v < s \theta)
 case True
  then show ?thesis
 proof (cases\ v = -(2 \cap (Nat.size\ v - 1)))
   case True
   then show ?thesis using abs-max-neg
     using assms by presburger
 \mathbf{next}
   case False
   then have -(2 \cap (Nat.size\ v-1)) < s\ v
     unfolding word-sless-def using signed-take-bit-int-greater-self-iff
       by (smt (verit, best) One-nat-def diff-less double-eq-zero-iff len-gt-0 lessI
less-irrefl
        mult-minus-right neg-equal-0-iff-equal signed.rep-eq signed-of-int
        signed-take-bit-int-greater-eq-self-iff\ signed-word-eqI\ sint-0\ sint-range-size
       sint-sbintrunc' sint-word-ariths(4) size-word.rep-eq unsigned-0 word-2p-lem
        word-sless.rep-eq word-sless-def)
   then show ?thesis
     using abs-neg abs-pos signed.nless-le by auto
 qed
next
 case False
  then show ?thesis using abs-pos by auto
qed
lemma wf-abs: is-IntVal x \Longrightarrow intval-abs x \ne UndefVal
 using intval-abs.simps unfolding new-int.simps
 using is-IntVal-def by force
```

```
fun bin-abs :: 'a :: len word <math>\Rightarrow 'a :: len word where
  bin-abs\ v = (if\ (v < s\ 0)\ then\ (-\ v)\ else\ v)
lemma val-abs-zero:
  intval-abs (new-int b \theta) = new-int b \theta
 by simp
lemma less-eq-zero:
 assumes val-to-bool (val[(IntVal\ b\ 0) < (IntVal\ b\ v)])
 shows int-signed-value b \ v > 0
 using assms unfolding intval-less-than.simps(1) apply simp
 by (metis\ bool-to-val.elims\ val-to-bool.simps(1))
lemma val-abs-pos:
 assumes val-to-bool(val[(new\text{-}int\ b\ \theta) < (new\text{-}int\ b\ v)])
 shows intval-abs (new-int b v) = (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-abs-neg:
  assumes val-to-bool(val[(new\text{-}int\ b\ v) < (new\text{-}int\ b\ 0)])
 shows intval-abs (new-int b v) = intval-negate (new-int b v)
 using assms using less-eq-zero unfolding intval-abs.simps new-int.simps
 by force
lemma val-bool-unwrap:
  val-to-bool (bool-to-val v) = v
 by (metis\ bool-to-val.elims\ one-neq-zero\ val-to-bool.simps(1))
lemma take-bit-unwrap:
  b = 64 \implies take-bit\ b\ (v1::64\ word) = v1
 by (metis size64 size-word.rep-eq take-bit-length-eq)
lemma bit-less-eq-def:
 fixes v1 v2 :: 64 word
 assumes b \leq 64
 shows sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v1))
   < sint (signed-take-bit (b - Suc (0::nat)) (take-bit b v2)) \longleftrightarrow
    signed-take-bit (63::nat) (Word.rep v1) < signed-take-bit (63::nat) (Word.rep
v2)
 using assms sorry
lemma less-eq-def:
 shows val-to-bool(val[(new\text{-}int\ b\ v1) < (new\text{-}int\ b\ v2)]) \longleftrightarrow v1 < s\ v2
 unfolding new-int.simps intval-less-than.simps bool-to-val-bin.simps bool-to-val.simps
```

```
int-signed-value.simps apply (simp add: val-bool-unwrap)
   apply auto unfolding word-sless-def apply auto
   unfolding signed-def apply auto using bit-less-eq-def
   apply (metis bot-nat-0.extremum take-bit-0)
   by (metis bit-less-eq-def bot-nat-0.extremum take-bit-0)
lemma val-abs-always-pos:
   assumes intval-abs (new-int b v) = (new-int b v')
  shows 0 \le s v'
   using assms
proof (cases \ v = \theta)
   case True
   then have v' = \theta
     using val-abs-zero assms
        by (smt (verit, ccfv-threshold) Suc-diff-1 bit-less-eq-def bot-nat-0.extremum
diff-is-0-eq len-gt-0 l
take-bit-unwrap)
   then show ?thesis by simp
next
   case neq0: False
   then show ?thesis
   proof (cases\ val\ to\ bool(val[(new\ int\ b\ 0)<(new\ int\ b\ v)]))
     case True
     then show ?thesis using less-eq-def
         using assms val-abs-pos
           by (smt (verit, ccfv-SIG) One-nat-def Suc-leI bit.compl-one bit-less-eq-def
cancel-comm-monoid-add-class.diff-cancel diff-zero len-gt-0 len-of-numeral-defs(2)
mask-0\ mask-1\ one-le-numeral\ one-neq-zero\ signed-word-eqI\ take-bit-dist-subL\ take-bit-minus-one-eq-mask
take-bit-not-eq-mask-diff\ take-bit-signed-take-bit\ zero-le-numeral)
  next
      case False
     then have val-to-bool(val[(new-int b \ v) < (new-int b \ 0)])
         using neq0 less-eq-def
        by (metis\ signed.neqE)
        then show ?thesis using val-abs-neg less-eq-def unfolding new-int.simps
intval-negate.simps
         by (metis signed.nless-le take-bit-0)
   qed
qed
lemma intval-abs-elims:
   assumes intval-abs x \neq UndefVal
  shows \exists t \ v \ . \ x = IntVal \ t \ v \land intval-abs \ x = new-int \ t \ (if int-signed-value \ t \ v <
0 then - v else v
   using assms
```

by (meson intval-abs.elims)

```
lemma wf-abs-new-int:
 assumes intval-abs (IntVal\ t\ v) \neq UndefVal
 shows intval-abs (IntVal\ t\ v) = new-int\ t\ v\ \lor\ intval-abs\ (IntVal\ t\ v) = new-int
t(-v)
 using assms
 using intval-abs.simps(1) by presburger
lemma mono-undef-abs:
 assumes intval-abs (intval-abs x) \neq UndefVal
 shows intval-abs x \neq UndefVal
 using assms
 by force
lemma val-abs-idem:
 assumes intval-abs(intval-abs(x)) \neq UndefVal
 shows intval-abs(intval-abs(x)) = intval-abs(x)
 using assms
proof -
 obtain b v where in-def: intval-abs x = new-int b v
   using assms intval-abs-elims mono-undef-abs by blast
 then show ?thesis
 proof (cases\ val\ to\ bool(val[(new\ int\ b\ v)\ <\ (new\ int\ b\ 0)]))
   {\bf case}\  \, True
   then have nested: (intval-abs\ (intval-abs\ x)) = new-int\ b\ (-v)
     using val-abs-neg intval-negate.simps in-def
     by simp
   then have x = new\text{-}int \ b \ (-v)
     using in-def True unfolding new-int.simps
   by (smt\ (verit,\ best)\ intval-abs.simps(1)\ less-eq-def\ less-eq-zero\ less-numeral-extra(1)
      mask-1 mask-eq-take-bit-minus-one neg-one.elims neg-one-signed new-int.simps
            one-le-numeral\ one-neq\hbox{-}zero\ signed.neqE\ signed.not\hbox{-}less\ take-bit-of-0
val-abs-always-pos)
   then show ?thesis using val-abs-always-pos
     using True in-def less-eq-def signed.leD
     using signed.nless-le by blast
 next
   case False
   then show ?thesis
     using in-def by force
 qed
qed
lemma val-abs-negate:
 assumes intval-abs (intval-negate x) \neq UndefVal
 shows intval-abs (intval-negate x) = intval-abs x
 using assms apply (cases x; auto)
```

```
apply (metis less-eq-def new-int.simps signed.dual-order.strict-iff-not signed.less-linear
        take-bit-0)
 by (smt (verit, ccfv-threshold) add.inverse-neutral intval-abs.simps(1) less-eq-def
less-eq-zero
   less-numeral-extra(1) mask-1 mask-eq-take-bit-minus-one neg-one.elims neg-one-signed
   new-int.simps one-le-numeral one-neg-zero signed.order.order-iff-strict take-bit-of-0
    val-abs-always-pos)
Optimisations
optimization AbsIdempotence: abs(abs(x)) \longmapsto abs(x)
  apply auto
 by (metis UnaryExpr unary-eval.simps(1) val-abs-idem)
optimization AbsNegate: (abs(-x)) \longmapsto abs(x)
   apply auto using val-abs-negate
 by (metis\ unary-eval.simps(1)\ unfold-unary)
end
end
       AddNode Phase
1.2
theory AddPhase
 imports
   Common
begin
phase AddNode
 terminating size
begin
lemma binadd-commute:
 assumes bin-eval\ BinAdd\ x\ y \neq UndefVal
 shows bin-eval BinAdd x y = bin-eval BinAdd y x
 using assms intval-add-sym by simp
optimization AddShiftConstantRight: ((const v) + y) \mapsto y + (const v) when
\neg (is\text{-}ConstantExpr\ y)
 using size-non-const
 apply (metis add-2-eq-Suc' less-Suc-eq plus-1-eq-Suc size.simps(11) size-non-add)
 unfolding le-expr-def
 apply (rule impI)
 subgoal premises 1
```

```
apply (rule \ all I \ imp I) +
   subgoal premises 2 for m p va
     apply (rule BinaryExprE[OF 2])
     subgoal premises 3 for x ya
      apply (rule BinaryExpr)
      using 3 apply simp
      using 3 apply simp
      using 3 binadd-commute apply auto
      done
     done
   done
 done
optimization AddShiftConstantRight2: ((const\ v) + y) \longmapsto y + (const\ v) when
\neg (is\text{-}ConstantExpr\ y)
 unfolding le-expr-def
  apply (auto simp: intval-add-sym)
 using size-non-const
 by (metis add-2-eq-Suc' lessI plus-1-eq-Suc size.simps(11) size-non-add)
lemma is-neutral-\theta [simp]:
 assumes 1: intval-add (IntVal\ b\ x)\ (IntVal\ b\ 0) \neq UndefVal
 shows intval-add (IntVal b x) (IntVal b 0) = (new-int b x)
 using 1 by auto
optimization AddNeutral: (e + (const (IntVal 32 0))) \mapsto e
 unfolding le-expr-def apply auto
 using is-neutral-0 eval-unused-bits-zero
 by (smt (verit) add-cancel-left-right intval-add.elims val-to-bool.simps(1))
ML-val \langle @\{term \langle x = y \rangle \} \rangle
\mathbf{lemma}\ \mathit{NeutralLeftSubVal} :
 assumes e1 = new\text{-}int \ b \ ival
 shows val[(e1 - e2) + e2] \approx e1
 apply simp using assms by (cases e1; cases e2; auto)
optimization RedundantSubAdd: ((e_1 - e_2) + e_2) \longmapsto e_1
 apply auto using eval-unused-bits-zero NeutralLeftSubVal
 unfolding well-formed-equal-defn
```

```
by (smt (verit) evalDet intval-sub.elims new-int.elims)
lemma allE2: (\forall x \ y. \ P \ x \ y) \Longrightarrow (P \ a \ b \Longrightarrow R) \Longrightarrow R
 by simp
lemma just-goal2:
  assumes 1: (\forall a \ b. \ (intval-add \ (intval-sub \ a \ b) \ b \neq UndefVal \ \land \ a \neq UndefVal
   intval-add (intval-sub a b) b = a))
 shows (BinaryExpr BinAdd (BinaryExpr BinSub e_1 e_2) e_2) \geq e_1
 unfolding le-expr-def unfold-binary bin-eval.simps
 by (metis 1 evalDet evaltree-not-undef)
optimization RedundantSubAdd2: e_2 + (e_1 - e_2) \longmapsto e_1
 apply (metis add.commute add-less-cancel-right less-add-Suc2 plus-1-eq-Suc size-binary-const
size-non-add trans-less-add2)
  by (smt (verit, del-insts) BinaryExpr BinaryExprE RedundantSubAdd(1) bi-
nadd-commute le-expr-def rewrite-preservation.simps(1))
\mathbf{lemma}\ Add To Sub Helper Low Level:
 shows intval-add (intval-negate e) y = intval-sub y \in (is ?x = ?y)
 by (induction y; induction e; auto)
print-phases
{f lemma}\ val	ext{-}redundant	ext{-}add	ext{-}sub:
 assumes a = new-int bb ival
 assumes val[b + a] \neq UndefVal
 \mathbf{shows} \ val[(b+a)-b] = a
 using assms apply (cases a; cases b; auto)
 by presburger
\mathbf{lemma}\ \mathit{val-add-right-negate-to-sub} :
 assumes val[x + e] \neq UndefVal
 shows val[x + (-e)] = val[x - e]
 using assms by (cases x; cases e; auto)
```

```
\mathbf{lemma}\ exp\text{-}add\text{-}left\text{-}negate\text{-}to\text{-}sub\text{:}
exp[-e + y] \ge exp[y - e]
 apply (cases e; cases y; auto)
 \mathbf{using}\ \mathit{AddToSubHelperLowLevel}\ \mathbf{by}\ \mathit{auto} +
Optimisations
optimization RedundantAddSub: (b + a) - b \mapsto a
  apply auto using val-redundant-add-sub eval-unused-bits-zero
  by (smt (verit) evalDet intval-add.elims new-int.elims)
optimization AddRightNegateToSub: x + -e \longmapsto x - e
 apply (metis Nat.add-0-right add-2-eq-Suc' add-less-mono1 add-mono-thms-linordered-field(2)
less-SucI not-less-less-Suc-eq size-binary-const size-non-add size-pos)
  using AddToSubHelperLowLevel intval-add-sym by auto
optimization AddLeftNegateToSub: -e + y \longmapsto y - e
 \mathbf{using}\ \mathit{exp-add-left-negate-to-sub}\ \mathbf{apply}\ \mathit{blast}
 by (smt (verit, best) One-nat-def add.commute add-Suc-right is-ConstantExpr-def
less-add-Suc2\ numeral-2-eq-2\ plus-1-eq-Suc\ size.simps(1)\ size.simps(11)\ size-binary-const
size-non-add)
end
end
       AndNode Phase
1.3
theory AndPhase
 imports
   Common
```

 $\begin{array}{c} \mathbf{phase} \ \mathit{AndNode} \\ \mathbf{terminating} \ \mathit{size} \end{array}$

begin

begin

$$(^{\sim}x \& ^{\sim}y) = (^{\sim}(x \mid y))$$

by $simp$

Proofs.StampEvalThms

```
lemma bin-and-neutral:
(x \& ^{\sim}False) = x
 \mathbf{by} \ simp
lemma val-and-equal:
 assumes x = new\text{-}int \ b \ v
 and val[x \& x] \neq UndefVal
 shows val[x \& x] = x
  using assms by (cases x; auto)
\mathbf{lemma}\ val\text{-}and\text{-}nots:
  val[^{\sim}x \& ^{\sim}y] = val[^{\sim}(x \mid y)]
 apply (cases x; cases y; auto) by (simp add: take-bit-not-take-bit)
lemma val-and-neutral:
 assumes x = new\text{-}int \ b \ v
          val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] \neq UndefVal
 and
 shows val[x \& ^{\sim}(new\text{-}int \ b' \ \theta)] = x
  using assms apply (cases x; auto) apply (simp add: take-bit-eq-mask)
  by presburger
lemma val-and-zero:
 assumes x = new\text{-}int \ b \ v
 shows val[x \& (IntVal \ b \ \theta)] = IntVal \ b \ \theta
  using assms by (cases x; auto)
lemma exp-and-equal:
  exp[x \& x] \ge exp[x]
  apply auto using val-and-equal eval-unused-bits-zero
 by (smt (verit) evalDet intval-and.elims new-int.elims)
lemma exp-and-nots:
  exp[^{\sim}x \& ^{\sim}y] \ge exp[^{\sim}(x \mid y)]
  apply (cases x; cases y; auto) using val-and-nots
 by fastforce+
lemma exp-sign-extend:
 assumes e = (1 \ll In) - 1
 \mathbf{shows} \quad \textit{BinaryExpr BinAnd (UnaryExpr (UnarySignExtend In Out) x)}
                          (ConstantExpr(new-int b e))
                        \geq (UnaryExpr (UnaryZeroExtend In Out) x)
 apply auto
 subgoal premises p for m p va
```

```
proof -
     obtain va where va: [m,p] \vdash x \mapsto va
      using p(2) by auto
     then have va \neq UndefVal
      by (simp add: evaltree-not-undef)
     then have 1: intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b
e)) \neq UndefVal
      using evalDet p(1) p(2) va by blast
     then have 2: intval-sign-extend In Out va \neq UndefVal
      by auto
     then have 21:(0::nat) < b
      by (simp \ add: \ p(4))
     then have 3: b \sqsubseteq (64::nat)
      by (simp\ add:\ p(5))
     then have 4:-((2::int) \hat{b} div (2::int)) \subseteq sint (signed-take-bit (b - Suc
(0::nat) (take-bit\ b\ e)
      by (simp\ add:\ p(6))
   then have 5: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) < (2::int)
^ b div (2::int)
      by (simp\ add:\ p(7))
     then have 6: [m,p] \vdash UnaryExpr (UnaryZeroExtend In Out)
            x \mapsto intval-and (intval-sign-extend In Out va) (IntVal b (take-bit b e))
      apply (cases va; simp)
      apply (simp \ add: \langle (va::Value) \neq UndefVal \rangle) defer
       subgoal premises p for x3
        proof -
         have va = ObjRef x3
           using p(1) by auto
           then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
         then show ?thesis
           using 2 intval-sign-extend.simps(3) p(1) by blast
       subgoal premises p for x4
        proof -
         have sg1: va = ObjStr x4
           using 2 p(1) by auto
            then have sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e)) <
(2::int) ^ b div (2::int)
           by (simp add: 5)
         then show ?thesis
           using 1 sg1 by auto
        qed
        subgoal premises p for x21 x22
         proof -
```

```
have sgg1: va = IntVal x21 x22
             by (simp\ add:\ p(1))
           then have sgg2: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b e))
< (2::int) \hat{} b div (2::int)
              by (simp add: 5)
            then show ?thesis
             sorry
            qed
          done
     then show ?thesis
       by (metis evalDet p(2) va)
   qed
 done
lemma val-and-commute[simp]:
  val[x \& y] = val[y \& x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ word-bw-comms(1))
Optimisations
optimization And Equal: x \& x \longmapsto x
 using exp-and-equal by blast
optimization And Shift Constant Right: ((const\ x)\ \&\ y) \longmapsto y\ \&\ (const\ x)
                                    when \neg (is\text{-}ConstantExpr\ y)
 using size-flip-binary by auto
optimization And Nots: (^{\sim}x) \& (^{\sim}y) \longmapsto ^{\sim}(x \mid y)
   defer using exp-and-nots
  apply presburger
 by (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const size-non-add)
optimization And Sign Extend: Binary Expr Bin And (Unary Expr (Unary Sign Extend
In Out)(x)
                                         (const\ (new\text{-}int\ b\ e))
                          \longmapsto (UnaryExpr\ (UnaryZeroExtend\ In\ Out)\ x)
                             when (e = (1 << In) - 1)
  using exp-sign-extend by simp
optimization And Neutral: (x \& ^{\sim}(const\ (IntVal\ b\ \theta))) \longmapsto x
  when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
  apply auto using val-and-neutral
```

```
new-int.simps new-int-bin.simps take-bit-eq-mask)
end
context stamp-mask
begin
lemma And Right Fall through: (((and (not (\downarrow x)) (\uparrow y)) = \theta)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     using p(2) xv yv
     by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = yv
     using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) eval-unused-bits-zero intval-and.elims new-int.elims new-int-bin.elims
p(2) unfold-binary xv yv)
   then show ?thesis using yv by simp
 \mathbf{qed}
 done
lemma AndLeftFallthrough: (((and (not (\downarrow y)) (\uparrow x)) = 0)) \longrightarrow exp[x \& y] \ge
 apply simp apply (rule impI; (rule allI)+)
 apply (rule\ impI)
 subgoal premises p for m p v
 proof -
   obtain xv where xv: [m, p] \vdash x \mapsto xv
     using p(2) by blast
   obtain yv where yv: [m, p] \vdash y \mapsto yv
     using p(2) by blast
   have v = val[xv \& yv]
     using p(2) xv yv
     by (metis BinaryExprE bin-eval.simps(4) evalDet)
   then have v = xv
     using p(1) not-down-up-mask-and-zero-implies-zero
   by (smt (verit) and commute eval-unused-bits-zero intval-and elims new-int.simps
```

by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-and.elims intval-word.simps

new-int-bin.simps p(2) unfold-binary xv yv)

```
then show ?thesis using xv by simp
  qed
  done
end
end
1.4
       BinaryNode Phase
{\bf theory} \ BinaryNode
 imports
    Common
begin
{f phase} BinaryNode
 terminating size
begin
optimization BinaryFoldConstant: BinaryExpr op (const v1) (const v2) \longmapsto Con-
stantExpr (bin-eval op v1 v2)
  unfolding le-expr-def
  {\bf apply} \ (\mathit{rule} \ \mathit{allI} \ \mathit{impI}) +
 subgoal premises bin for m p v
   print-facts
   apply (rule BinaryExprE[OF bin])
   subgoal premises prems for x y
     print-facts
   proof -
     have x: x = v1 using prems by auto
     have y: y = v2 using prems by auto
     have xy: v = bin\text{-}eval op } x y  using prems x y  by simp
     have int: \exists b vv \cdot v = new\text{-}int b vv \text{ using } bin\text{-}eval\text{-}new\text{-}int prems } \mathbf{by} \text{ } fast
     show ?thesis
       unfolding prems \ x \ y \ xy
       apply (rule ConstantExpr)
       apply (rule validDefIntConst)
       using prems x y xy int sorry
     qed
   done
  done
print-facts
```

end

1.5 ConditionalNode Phase

```
{\bf theory}\ {\it Conditional Phase}
 imports
    Common
    Proofs. Stamp Eval Thms
begin
phase ConditionalNode
 terminating size
begin
lemma negates: \exists v \ b. \ e = IntVal \ b \ v \land b > 0 \implies val-to-bool \ (val[e]) \longleftrightarrow
\neg(val\text{-}to\text{-}bool\ (val[!e]))
 unfolding intval-logic-negation.simps
 by (metis (mono-tags, lifting) intval-logic-negation.simps(1) logic-negate-def new-int.simps
of\text{-}bool\text{-}eq(2) one-neg-zero take-bit-of-0 take-bit-of-1 val-to-bool.simps(1))
{f lemma} negation-condition-intval:
 assumes e = IntVal \ b \ ie
 assumes \theta < b
 shows val[(!e) ? x : y] = val[e ? y : x]
 using assms by (cases e; auto simp: negates logic-negate-def)
lemma negation-preserve-eval:
  assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v'. ([m, p] \vdash exp[e] \mapsto v') \land v = val[!v']
 using assms by auto
lemma negation-preserve-eval-intval:
 assumes [m, p] \vdash exp[!e] \mapsto v
 shows \exists v' \ b \ vv. \ ([m, p] \vdash exp[e] \mapsto v') \land v' = IntVal \ b \ vv \land b > 0
 using assms
 by (metis eval-bits-1-64 intval-logic-negation.elims negation-preserve-eval unfold-unary)
optimization NegateConditionFlipBranches: ((!e) ? x : y) \mapsto (e? y : x)
 apply simp using negation-condition-intval negation-preserve-eval-intval
 by (smt (z3) ConditionalExpr ConditionalExprE evalDet negates negation-preserve-eval)
optimization DefaultTrueBranch: (true ? x : y) \mapsto x.
optimization DefaultFalseBranch: (false ? x : y) \longmapsto y.
optimization Conditional Equal Branches: (e ? x : x) \mapsto x.
optimization condition-bounds-x: ((u < v) ? x : y) \mapsto x
   when (stamp-under\ (stamp-expr\ u)\ (stamp-expr\ v)\ \land\ wf-stamp\ u\ \land\ wf-stamp\ v)
```

```
optimization condition-bounds-y: ((u < v) ? x : y) \mapsto y
   when (stamp-under\ (stamp-expr\ v)\ (stamp-expr\ u) \land wf-stamp\ u \land wf-stamp\ v)
  using stamp-under-defn-inverse by auto
\mathbf{lemma}\ \mathit{val-optimise-integer-test}\colon
 assumes \exists v. x = IntVal \ 32 \ v
  shows val[((x \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0) : (IntVal 32 0)]
[1)] =
        val[x \& IntVal 32 1]
 using assms apply auto
 apply (metis (full-types) bool-to-val.<math>simps(2) val-to-bool.<math>simps(1))
 by (metis (mono-tags, lifting) and-one-eq bool-to-val.simps(1) even-iff-mod-2-eq-zero
odd-iff-mod-2-eq-one val-to-bool.simps(1))
optimization Conditional Eliminate Known Less: ((x < y) ? x : y) \mapsto x
                              when \ (stamp\text{-}under \ (stamp\text{-}expr \ x) \ (stamp\text{-}expr \ y)
                                  \land wf-stamp x \land wf-stamp y)
   using stamp-under-defn by auto
optimization Conditional Equal Is RHS: ((x \ eq \ y) \ ? \ x : y) \longmapsto y
 apply auto
 by (smt (verit) Value.inject(1) bool-to-val.simps(2) bool-to-val-bin.simps evalDet
intval-equals. elims\ val-to-bool. elims(1))
optimization normalizeX: ((x eq const (IntVal 32 0)) ?
                             (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto x
                        when \ (x = Constant Expr \ (Int Val \ 32 \ 0) \mid (x = Constant Expr \ 
(Int Val \ 32 \ 1))).
optimization normalizeX2: ((x eq (const (IntVal 32 1))) ?
                              (const\ (IntVal\ 32\ 1)): (const\ (IntVal\ 32\ 0))) \longmapsto x
                                     when (x = ConstantExpr (IntVal 32 0) | (x =
ConstantExpr (IntVal 32 1))) .
optimization flip X: ((x \ eq \ (const \ (Int Val \ 32 \ 0))) \ ?
                        (const\ (Int Val\ 32\ 1)): (const\ (Int Val\ 32\ 0))) \longmapsto
                         x \oplus (const (IntVal 32 1))
                        when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
```

using stamp-under-defn by auto

```
optimization flip X2: ((x eq (const (Int Val 32 1))) ?
                        (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto
                        x \oplus (const (IntVal 32 1))
                       when (x = ConstantExpr (IntVal 32 0) | (x = ConstantExpr
(Int Val \ 32 \ 1))).
lemma stamp-of-default:
 assumes stamp-expr \ x = default-stamp
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv. \ v = IntVal \ 32 \ vv)
 using assms
 by (metis default-stamp valid-value-elims(3) wf-stamp-def)
optimization OptimiseIntegerTest:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
     (const\ (Int Val\ 32\ 0)): (const\ (Int Val\ 32\ 1))) \longmapsto
      x & (const (IntVal 32 1))
      when (stamp-expr \ x = default-stamp \land wf-stamp \ x)
 apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
  obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval by fast
  then have x32: \exists v. xv = IntVal 32 v
   using stamp-of-default eval by auto
 obtain lhs where lhs: [m, p] \vdash exp[((x \& (const (IntVal 32 1))) eq (const (IntVal 32 1)))]
32 0))) ?
     (const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1)))] \mapsto lhs
   using eval(2) by auto
 then have lhsV: lhs = val[((xv \& (IntVal 32 1)) eq (IntVal 32 0)) ? (IntVal 32 0))
0): (Int Val \ 32 \ 1)]
   using \ xv \ evaltree. Binary Expr \ evaltree. Constant Expr \ evaltree. Conditional Expr
  by (smt\ (verit)\ Conditional ExprE\ Constant ExprE\ bin-eval.simps(11)\ bin-eval.simps(4))
evalDet intval-conditional.simps unfold-binary)
  obtain rhs where rhs: [m, p] \vdash exp[x \& (const (Int Val 32 1))] \mapsto rhs
   using eval(2) by blast
  then have rhsV: rhs = val[xv \& IntVal 32 1]
   by (metis BinaryExprE ConstantExprE bin-eval.simps(4) evalDet xv)
  have lhs = rhs using val-optimise-integer-test x32
   using lhsV rhsV by presburger
  then show ?thesis
   by (metis\ eval(2)\ evalDet\ lhs\ rhs)
qed
  done
optimization opt-optimise-integer-test-2:
    (((x \& (const (IntVal 32 1))) eq (const (IntVal 32 0))) ?
```

```
(const\ (IntVal\ 32\ 0)): (const\ (IntVal\ 32\ 1))) \longmapsto \\ x \\ when\ (x = ConstantExpr\ (IntVal\ 32\ 0) \mid (x = ConstantExpr\ (IntVal\ 32\ 1))) \ .
```

 \mathbf{end}

 \mathbf{end}

1.6 MulNode Phase

lemma bin-multiply-eliminate:

```
theory MulPhase
 imports
    Common
    Proofs.StampEvalThms
begin
fun mul-size :: IRExpr \Rightarrow nat where
  mul-size (UnaryExpr\ op\ e) = (mul-size e) + 2
  mul\text{-}size\ (BinaryExpr\ BinMul\ x\ y) = ((mul\text{-}size\ x) + (mul\text{-}size\ y) + 2) * 2
  mul\text{-}size\ (BinaryExpr\ op\ x\ y) = (mul\text{-}size\ x) + (mul\text{-}size\ y) + 2
 mul-size (ConditionalExpr cond tf) = (mul-size cond) + (mul-size t) + (mul-size
f) + 2 |
  mul-size (ConstantExpr\ c) = 1
  mul-size (ParameterExpr\ ind\ s) = 2 |
  mul-size (LeafExpr\ nid\ s) = 2 |
  mul-size (Constant Var c) = 2
  mul-size (VariableExpr x s) = 2
{\bf phase}\ \mathit{MulNode}
  terminating mul-size
begin
\mathbf{lemma}\ bin\text{-}eliminate\text{-}redundant\text{-}negative:}
  uminus\ (x:: 'a::len\ word)*uminus\ (y:: 'a::len\ word) = x*y
 \mathbf{by} \ simp
lemma bin-multiply-identity:
 (x :: 'a :: len word) * 1 = x
 \mathbf{by} \ simp
```

```
(x :: 'a :: len word) * \theta = \theta
 by simp
lemma bin-multiply-negative:
(x :: 'a :: len \ word) * uminus 1 = uminus x
 by simp
lemma bin-multiply-power-2:
(x:: 'a::len \ word) * (2^j) = x << j
 \mathbf{by} \ simp
lemma take-bit64[simp]:
 fixes w :: int64
 shows take-bit 64 w = w
proof -
 have Nat.size w = 64
   by (simp add: size64)
 then show ?thesis
  by (metis lt2p-lem mask-eq-iff take-bit-eq-mask verit-comp-simplify1(2) wsst-TYs(3))
qed
lemma testt:
 fixes a :: nat
 fixes b c :: 64 word
 shows take-bit a (take-bit a (b) * take-bit a (c)) =
        take-bit \ a \ (b * c)
\textbf{by} \ (\textit{smt} \ (\textit{verit}, \textit{ccfv-SIG}) \ take-bit-mult \ take-bit-of-int \ unsigned-take-bit-eq \ word-mult-def)
{\bf lemma}\ val\text{-}eliminate\text{-}redundant\text{-}negative\text{:}
 assumes val[-x * -y] \neq UndefVal
 \mathbf{shows} \ val[-x * -y] = val[x * y]
 using assms apply (cases x; cases y; auto)
 using testt by auto
lemma val-multiply-neutral:
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ 1)] = val[x]
 using assms by force
{\bf lemma}\ val\text{-}multiply\text{-}zero\text{:}
 assumes x = new\text{-}int \ b \ v
 shows val[x * (IntVal \ b \ \theta)] = IntVal \ b \ \theta
 using assms by simp
```

```
lemma val-multiply-negative:
 \mathbf{assumes}\ x = \mathit{new-int}\ b\ v
 shows val[x * intval-negate (IntVal b 1)] = intval-negate x
 using assms
 by (smt\ (verit)\ Value.disc(1)\ Value.inject(1)\ add.inverse-neutral\ intval-negate.simps(1)
      is-IntVal-def mask-0 mask-eq-take-bit-minus-one new-int.elims of-bool-eq(2)
   take-bit-of-1\ val-eliminate-redundant-negative\ val-multiply-neutral\ val-multiply-zero
     verit-minus-simplify(4) zero-neq-one)
\mathbf{lemma}\ \mathit{val-MulPower2}\colon
 fixes i :: 64 word
 assumes y = IntVal\ 64\ (2 \cap unat(i))
 and
          0 < i
 and
          i < 64
 and
          val[x * y] \neq UndefVal
 shows val[x * y] = val[x << IntVal 64 i]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
   proof -
    have 63: (63 :: int64) = mask 6
      by eval
     then have (2::int) \cap 6 = 64
      by eval
     then have uint \ i < (2::int) \ \widehat{\phantom{a}} \ 6
      by (metis linorder-not-less lt2p-lem of-int-numeral p(4) size 64 word-2p-lem
word-of-int-2p wsst-TYs(3))
     then have and i \pmod{6} = i
      using mask-eq-iff by blast
     then show x2 \ll unat i = x2 \ll unat (and i (63::64 word))
      unfolding 63
      by force
   qed
   by presburger
lemma val-MulPower2Add1:
 fixes i :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + 1)
 and
          0 < i
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
          val-to-bool(val[IntVal\ 64\ 0\ <\ y])
 and
 shows val[x * y] = val[(x << IntVal 64 i) + x]
 using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
```

```
proof -
   have 63: (63 :: int64) = mask 6
     by eval
   then have (2::int) \cap 6 = 64
     by eval
   then have and i \pmod{6} = i
     using mask\text{-}eq\text{-}iff by (simp\ add:\ less\text{-}mask\text{-}eq\ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) + x2
     by (simp add: distrib-left)
   then show x2 * ((2::64 \ word) \cap unat \ i + (1::64 \ word)) = x2 << unat \ (and \ i
(63::64 \ word)) + x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   qed
   using val-to-bool.simps(2) by presburger
lemma val-MulPower2Sub1:
 fixes i :: 64 \ word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) - 1)
 and
          \theta < i
 and
          i < 64
 and
          val-to-bool(val[IntVal\ 64\ 0< x])
 and
          val-to-bool(val[IntVal\ 64\ 0< y])
 shows val[x * y] = val[(x << IntVal 64 i) - x]
  using assms apply (cases x; cases y; auto)
   subgoal premises p for x2
 proof -
   have 63: (63::int64) = mask 6
     by eval
   then have (2::int) \cap 6 = 64
     by eval
   then have and i \pmod{6} = i
     using mask-eq-iff by (simp \ add: \ less-mask-eq \ p(6))
   then have x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = (x2 * ((2::64 \ word)))
\hat{} unat i)) - x2
     by (simp add: right-diff-distrib')
   then show x2 * ((2::64 \ word) \cap unat \ i - (1::64 \ word)) = x2 << unat \ (and \ i
(63::64 \ word)) - x2
     by (simp add: 63 \langle and (i::64 word) (mask (6::nat)) = i\rangle)
   using val-to-bool.simps(2) by presburger
{f lemma}\ val	ext{-} distribute	ext{-} multiplication:
 assumes x = new\text{-}int \ 64 \ xx \land q = new\text{-}int \ 64 \ qq \land a = new\text{-}int \ 64 \ aa
 shows val[x * (q + a)] = val[(x * q) + (x * a)]
 apply (cases x; cases q; cases a; auto) using distrib-left assms by auto
```

```
\mathbf{lemma}\ \mathit{val-MulPower2AddPower2}\colon
 fixes i j :: 64 word
 assumes y = IntVal\ 64\ ((2 \cap unat(i)) + (2 \cap unat(j)))
 and
           0 < i
           0 < j
 and
 and
          i < 64
 and
          j < 64
          x = new-int 64 xx
 and
 shows val[x * y] = val[(x << IntVal 64 i) + (x << IntVal 64 j)]
 using assms
 proof -
   have 63: (63::int64) = mask 6
     \mathbf{by} \ eval
   then have (2::int) \cap 6 = 64
     \mathbf{by} \ eval
   then have n: IntVal 64 ((2 \cap unat(i)) + (2 \cap unat(j))) =
          val[(IntVal\ 64\ (2 \cap unat(i))) + (IntVal\ 64\ (2 \cap unat(j)))]
     using assms by (cases i; cases j; auto)
  then have 1: val[x * ((IntVal 64 (2 \cap unat(i))) + (IntVal 64 (2 \cap unat(j))))]
          val[(x * IntVal 64 (2 \cap unat(i))) + (x * IntVal 64 (2 \cap unat(j)))]
    using assms val-distribute-multiplication val-MulPower2 by simp
  then have 2: val[(x * IntVal 64 (2 \cap unat(i)))] = val[x << IntVal 64 i]
    using assms val-MulPower2
    using Value.distinct(1) intval-mul.simps(1) new-int.simps new-int-bin.simps
    by (smt\ (verit))
  then show ?thesis
   using 1 Value.distinct(1) assms(1) assms(3) assms(5) assms(6) intval-mul.simps(1)
n
          new\text{-}int.simps\ new\text{-}int\text{-}bin.elims\ val\text{-}MulPower2
    by (smt (verit, del-insts))
  qed
thm-oracles val-MulPower2AddPower2
lemma exp-multiply-zero-64:
exp[x * (const (IntVal 64 0))] \ge ConstantExpr (IntVal 64 0)
 using val-multiply-zero apply auto
 \mathbf{using}\ Value.inject(1)\ constant AsStamp.simps(1)\ int-signed-value-bounds\ intval-mul.elims
     mult\text{-}zero\text{-}right \ new\text{-}int\text{-}simps \ new\text{-}int\text{-}bin.simps \ nle\text{-}le \ numeral\text{-}eq\text{-}Suc \ take\text{-}bit\text{-}of\text{-}0
       unfold\text{-}const\ valid\text{-}stamp.simps(1)\ valid\text{-}value.simps(1)\ zero\text{-}less\text{-}Suc
 by (smt\ (verit))
```

```
\mathbf{lemma}\ exp\text{-}multiply\text{-}neutral\text{:}
exp[x * (const (IntVal \ b \ 1))] \ge x
 using val-multiply-neutral apply auto
 by (smt (verit) Value.inject(1) eval-unused-bits-zero intval-mul.elims mult.right-neutral
     new-int.elims new-int-bin.elims)
thm-oracles exp-multiply-neutral
lemma exp-MulPower2:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 (2 ^unat(i)))
          0 < i
 and
          i < 64
 and
 and
          exp[x > (const\ IntVal\ b\ 0)]
 and
          exp[y > (const\ IntVal\ b\ \theta)]
 \mathbf{shows}\ exp[x*y] \geq exp[x << ConstantExpr\ (IntVal\ 64\ i)]
 using assms apply simp using val-MulPower2
 by (metis ConstantExprE equiv-exprs-def unfold-binary)
\mathbf{lemma}\ exp\text{-}MulPower2Add1:
 fixes i :: 64 \ word
 assumes y = ConstantExpr (IntVal 64 ((2 ^unat(i)) + 1))
 and
         0 < i
 and
          i < 64
 and
          exp[x > (const\ IntVal\ b\ 0)]
 and
          exp[y > (const\ IntVal\ b\ \theta)]
         exp[x * y] = exp[(x << ConstantExpr (IntVal 64 i)) + x]
shows
 sorry
lemma greaterConstant:
 assumes a > b
 and y = ConstantExpr (IntVal 64 a)
 and x = ConstantExpr (IntVal 64 b)
 shows y > x
 apply auto
 sorry
Optimisations
optimization EliminateRedundantNegative: -x * -y \longmapsto x * y
 using mul-size.simps apply auto[1]
 using val-eliminate-redundant-negative bin-eval.simps(2)
 by (metis BinaryExpr)
optimization MulNeutral: x * ConstantExpr (IntVal \ b \ 1) \longmapsto x
```

```
using exp-multiply-neutral by blast
optimization MulEliminator: x * ConstantExpr (IntVal b 0) <math>\longmapsto const (IntVal b 0)
 apply auto using val-multiply-zero
 \mathbf{using} \ \mathit{Value.inject}(1) \ \mathit{constantAsStamp.simps}(1) \ \mathit{int-signed-value-bounds} \ \mathit{intval-mul.elims}
       mult-zero-right new-int.simps new-int-bin.simps take-bit-of-0 unfold-const
       valid-stamp.simps(1) valid-value.simps(1)
 by (smt\ (verit))
optimization MulNegate: x * -(const (IntVal \ b \ 1)) \longmapsto -x
 apply auto using val-multiply-negative
 by (smt\ (verit)\ Value.distinct(1)\ Value.sel(1)\ add.inverse-inverse\ intval-mul.elims
   intval-negate.simps(1) mask-eq-take-bit-minus-one new-int.simps new-int-bin.simps
     take-bit-dist-neg unary-eval.simps(2) unfold-unary
     val-eliminate-redundant-negative)
fun isNonZero :: Stamp \Rightarrow bool where
  isNonZero (IntegerStamp \ b \ lo \ hi) = (lo > 0)
  isNonZero - = False
lemma isNonZero-defn:
  assumes isNonZero (stamp-expr x)
 assumes wf-stamp x
 shows ([m, p] \vdash x \mapsto v) \longrightarrow (\exists vv \ b. \ (v = Int Val \ b \ vv \land val-to-bool \ val[(Int Val \ b
(0) < v(0)
 apply (rule impI) subgoal premises eval
proof
 obtain b lo hi where xstamp: stamp-expr x = IntegerStamp b lo hi
   using assms
   by (meson\ isNonZero.elims(2))
  then obtain vv where vdef: v = IntVal\ b\ vv
   by (metis assms(2) eval valid-int wf-stamp-def)
 have lo > 0
   using assms(1) xstamp by force
  then have signed-above: int-signed-value b vv > 0
   using assms unfolding wf-stamp-def
   using eval vdef xstamp by fastforce
  have take-bit b vv = vv
   using eval eval-unused-bits-zero vdef by auto
  then have vv > 0
   \mathbf{using}\ signed\text{-}above
  \textbf{by} \ (\textit{metis bit-take-bit-iff int-signed-value.simps not-less-zero \ signed-eq-0-iff \ signed-take-bit-eq-if-positive})
take-bit-0 take-bit-of-0 verit-comp-simplify1(1) word-gt-0)
  then show ?thesis
   using vdef using signed-above
```

```
by simp
qed
 done
optimization MulPower2: x * y \longmapsto x << const (IntVal 64 i)
                         when (i > 0 \land
                              y = exp[const (IntVal 64 (2 \cap unat(i)))])
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
 obtain xv where xv: [m, p] \vdash x \mapsto xv
   using eval(2) by blast
 then obtain xvv where xvv: xv = IntVal 64 xvv
   using eval
  {f using} \ Constant ExprE \ bin-eval. simps (2) \ eval Det \ intval-bits. simps \ intval-mul. elims
new-int-bin.simps unfold-binary
   by (smt (verit))
 obtain yv where yv: [m, p] \vdash y \mapsto yv
   using eval(1) eval(2) by blast
 then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
   by (metis\ bin-eval.simps(2)\ eval(1)\ eval(2)\ evalDet\ unfold-binary\ xv)
 have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
  by (smt (verit, ccfv-SIG) ConstantExpr constantAsStamp.simps(1) eval-bits-1-64
take-bit64 validStampIntConst valid-value.simps(1) xv xvv)
 then have rhs: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
i)
   using xv xvv using evaltree.BinaryExpr
  by (metis Value.simps(5) bin-eval.simps(8) intval-left-shift.simps(1) new-int.simps)
 have val[xv * yv] = val[xv << (IntVal 64 i)]
   using val-MulPower2
   by (metis ConstantExprE eval(1) evaltree-not-undef lhs yv)
 then show ?thesis
   by (metis eval(1) eval(2) evalDet lhs rhs)
qed
 done
optimization MulPower2Add1: x * y \longmapsto (x << const (IntVal 64 i)) + x
                         when (i > 0 \land
                              y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1)))
  defer
  apply simp apply (rule impI; (rule allI)+; rule impI)
 subgoal premises p for m p v
 proof -
```

```
obtain xv where xv: [m,p] \vdash x \mapsto xv
     using p by fast
   then obtain xvv where xvv: xv = IntVal 64 xvv
     by (smt (verit) p ConstantExprE bin-eval.simps(2) evalDet intval-bits.simps
intval	ext{-}mul.elims
        new-int-bin.simps unfold-binary)
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using p by blast
   have ygezero: y > ConstantExpr (IntVal 64 0)
     using greaterConstant p by fastforce
   then have 1: 0 < i \land
              i < 64 \land
              y = ConstantExpr (IntVal 64 ((2 \cap unat(i)) + 1))
    using p by blast
   then have lhs: [m, p] \vdash exp[x * y] \mapsto val[xv * yv]
     by (metis bin-eval.simps(2) evalDet p(1) p(2) xv yv unfold-binary)
   then have [m, p] \vdash exp[const\ (IntVal\ 64\ i)] \mapsto val[(IntVal\ 64\ i)]
     by (metis verit-comp-simplify1(2) zero-less-numeral ConstantExpr constan-
tAsStamp.simps(1)
        take-bit64 validStampIntConst valid-value.simps(1))
   then have rhs2: [m, p] \vdash exp[x << const (IntVal 64 i)] \mapsto val[xv << (IntVal 64 i)]
64 i)
   by (metis\ Value.simps(5)\ bin-eval.simps(8)\ intval-left-shift.simps(1)\ new-int.simps
xv \ xvv
        evaltree.BinaryExpr)
   then have rhs: [m, p] \vdash exp[(x << const (IntVal 64 i)) + x] \mapsto val[(xv <<
(IntVal \ 64 \ i)) + xv
        by (metis (no-types, lifting) intval-add.simps(1) rhs2 bin-eval.simps(1)
Value.simps(5)
         evaltree.BinaryExpr intval-left-shift.simps(1) new-int.simps xv xvv)
    then have val[xv * yv] = val[(xv << (IntVal 64 i)) + xv]
     using 1 exp-MulPower2Add1 ygezero by auto
    then show ?thesis
    by (metis evalDet lhs p(1) p(2) rhs)
 qed
done
end
end
       Experimental AndNode Phase
theory NewAnd
 imports
   Common
   Graph.Long
```

begin

```
lemma bin-distribute-and-over-or:
  bin[z \& (x | y)] = bin[(z \& x) | (z \& y)]
 by (smt (verit, best) bit-and-iff bit-eqI bit-or-iff)
lemma intval-distribute-and-over-or:
  val[z \& (x | y)] = val[(z \& x) | (z \& y)]
 apply (cases x; cases y; cases z; auto)
 using bin-distribute-and-over-or by blast+
lemma exp-distribute-and-over-or:
  exp[z \& (x | y)] \ge exp[(z \& x) | (z \& y)]
 apply simp using intval-distribute-and-over-or
 using BinaryExpr\ bin-eval.simps(4,5)
 using intval-or.simps(1) unfolding new-int-bin.simps new-int.simps apply auto
 by (metis\ bin-eval.simps(4)\ bin-eval.simps(5)\ intval-or.simps(2)\ intval-or.simps(5))
\mathbf{lemma}\ intval\text{-} and\text{-} commute:
  val[x \& y] = val[y \& x]
 by (cases x; cases y; auto simp: and.commute)
{f lemma}\ intval	ext{-}or	ext{-}commute:
  val[x \mid y] = val[y \mid x]
 by (cases x; cases y; auto simp: or.commute)
{f lemma}\ intval	ext{-}xor	ext{-}commute:
  val[x \oplus y] = val[y \oplus x]
 \mathbf{by}\ (\mathit{cases}\ x;\ \mathit{cases}\ y;\ \mathit{auto}\ \mathit{simp} \colon \mathit{xor.commute})
lemma exp-and-commute:
  exp[x \& z] \ge exp[z \& x]
 apply simp using intval-and-commute by auto
lemma exp-or-commute:
  exp[x \mid y] \ge exp[y \mid x]
 apply simp using intval-or-commute by auto
lemma exp-xor-commute:
  exp[x \oplus y] \ge exp[y \oplus x]
 apply simp using intval-xor-commute by auto
lemma bin-eliminate-y:
 assumes bin[y \& z] = 0
 shows bin[(x \mid y) \& z] = bin[x \& z]
 using assms
 by (simp add: and.commute bin-distribute-and-over-or)
lemma intval-eliminate-y:
```

```
assumes val[y \& z] = IntVal \ b \ 0
 shows val[(x \mid y) \& z] = val[x \& z]
 using assms bin-eliminate-y by (cases x; cases y; cases z; auto)
lemma intval-and-associative:
  val[(x \& y) \& z] = val[x \& (y \& z)]
 apply (cases x; cases y; cases z; auto)
 by (simp \ add: \ and. \ assoc)+
lemma intval-or-associative:
  val[(x \mid y) \mid z] = val[x \mid (y \mid z)]
 apply (cases x; cases y; cases z; auto)
 by (simp\ add:\ or.assoc)+
lemma intval-xor-associative:
  val[(x \oplus y) \oplus z] = val[x \oplus (y \oplus z)]
 apply (cases x; cases y; cases z; auto)
 by (simp \ add: xor.assoc)+
lemma exp-and-associative:
  exp[(x \& y) \& z] \ge exp[x \& (y \& z)]
 apply simp using intval-and-associative by fastforce
lemma exp-or-associative:
  exp[(x \mid y) \mid z] \ge exp[x \mid (y \mid z)]
 apply simp using intval-or-associative by fastforce
lemma exp-xor-associative:
  exp[(x \oplus y) \oplus z] \ge exp[x \oplus (y \oplus z)]
 apply simp using intval-xor-associative by fastforce
lemma intval-and-absorb-or:
 assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \& (x | y)] \neq UndefVal
 shows val[x \& (x \mid y)] = val[x]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-and.simps(5))
lemma intval-or-absorb-and:
 assumes \exists b \ v \ . \ x = new\text{-}int \ b \ v
 assumes val[x \mid (x \& y)] \neq UndefVal
 shows val[x \mid (x \& y)] = val[x]
 using assms apply (cases x; cases y; auto)
 \mathbf{by} \ (\textit{metis} \ (\textit{mono-tags}, \ \textit{lifting}) \ \textit{intval-or.simps}(5))
lemma exp-and-absorb-or:
  exp[x \& (x \mid y)] \ge exp[x]
 apply auto using intval-and-absorb-or eval-unused-bits-zero
```

```
by (smt (verit) evalDet intval-or.elims new-int.elims)
\mathbf{lemma}\ exp\text{-}or\text{-}absorb\text{-}and:
  exp[x \mid (x \& y)] \ge exp[x]
 apply auto using intval-or-absorb-and eval-unused-bits-zero
 by (smt (verit) evalDet intval-or.elims new-int.elims)
definition IRExpr-up :: IRExpr \Rightarrow int64 where
  IRExpr-up \ e = not \ \theta
definition IRExpr-down::IRExpr \Rightarrow int64 where
  IRExpr-down \ e = 0
lemma
 assumes y = \theta
 shows x + y = or x y
 using assms
 \mathbf{by} \ simp
lemma no-overlap-or:
 assumes and x y = 0
 shows x + y = or x y
 using assms
 by (metis bit-and-iff bit-xor-iff disjunctive-add xor-self-eq)
context stamp-mask
begin
lemma intval-up-and-zero-implies-zero:
 assumes and (\uparrow x) (\uparrow y) = 0
 assumes [m, p] \vdash x \mapsto xv
 assumes [m, p] \vdash y \mapsto yv
 assumes val[xv \& yv] \neq UndefVal
 shows \exists b \cdot val[xv \& yv] = new\text{-}int b \theta
 using assms apply (cases xv; cases yv; auto)
 \mathbf{using}\ up\text{-}mask\text{-}and\text{-}zero\text{-}implies\text{-}zero
 apply (smt (verit, best) take-bit-and take-bit-of-0)
 by presburger
```

lemma *exp-eliminate-y*:

```
and (\uparrow y) (\uparrow z) = 0 \longrightarrow BinaryExpr\ BinAnd\ (BinaryExpr\ BinOr\ x\ y)\ z \ge Bina-
ryExpr\ BinAnd\ x\ z
 apply simp apply (rule impI; rule allI; rule allI; rule allI)
 subgoal premises p for m p v apply (rule \ impI) subgoal premises e
 proof -
   obtain xv where xv: [m,p] \vdash x \mapsto xv
     using e by auto
   obtain yv where yv: [m,p] \vdash y \mapsto yv
     using e by auto
   obtain zv where zv: [m,p] \vdash z \mapsto zv
     using e by auto
   have lhs: v = val[(xv \mid yv) \& zv]
     using xv yv zv
       by (smt (verit, best) BinaryExprE bin-eval.simps(4) bin-eval.simps(5) e
evalDet)
   then have v = val[(xv \& zv) | (yv \& zv)]
     by (simp add: intval-and-commute intval-distribute-and-over-or)
   also have \exists b. \ val[yv \& zv] = new\text{-}int \ b \ 0
     using intval-up-and-zero-implies-zero
     by (metis calculation e intval-or.simps(5) p unfold-binary yv zv)
   ultimately have rhs: v = val[xv \& zv]
     using intval-eliminate-y lhs by force
   from lhs rhs show ?thesis
     by (metis BinaryExpr BinaryExprE bin-eval.simps(4) e xv zv)
 \mathbf{qed}
 done
 done
\mathbf{lemma}\ leading Zero Bounds:
 fixes x :: 'a :: len word
 assumes n = numberOfLeadingZeros x
 shows 0 \le n \land n \le Nat.size x
 using assms unfolding numberOfLeadingZeros-def
 by (simp add: MaxOrNeg-def highestOneBit-def nat-le-iff)
lemma above-nth-not-set:
 fixes x :: int64
 assumes n = 64 - numberOfLeadingZeros x
 shows j > n \longrightarrow \neg(bit \ x \ j)
 using assms unfolding numberOfLeadingZeros-def
 by (smt (verit, ccfv-SIG) highestOneBit-def int-nat-eq int-ops(6) less-imp-of-nat-less
max\text{-}set\text{-}bit\ size 64\ zeros Above Highest One)
no-notation LogicNegationNotation (!-)
lemma zero-horner:
 horner-sum of-bool 2 (map (\lambda x. False) xs) = 0
 apply (induction xs) apply simp
 by force
```

```
lemma zero-map:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows map \ f \ [0..< n] = map \ f \ [0..< j] @ map \ (\lambda x. \ False) \ [j..< n]
 apply (insert assms)
 by (smt (verit, del-insts) add-diff-inverse-nat atLeastLessThan-iff bot-nat-0.extremum
leD map-append map-eq-conv set-upt upt-add-eq-append)
lemma map-join-horner:
 assumes map \ f \ [0..< n] = map \ f \ [0..< j] @ map \ (\lambda x. \ False) \ [j..< n]
 shows horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 (map f [0..< j])
proof -
 have horner-sum of-bool (2::'a::len word) (map f[0..< n]) = horner-sum of-bool
2 \pmod{f[0..< j]} + 2 \cap length[0..< j] * horner-sum of-bool 2 \pmod{f[j..< n]}
   using horner-sum-append
    by (smt (verit) assms diff-le-self diff-zero le-add-same-cancel2 length-append
length-map length-upt map-append upt-add-eq-append)
  also have ... = horner-sum of-bool 2 (map f [0..< j]) + 2 ^ length [0..< j] *
horner-sum of-bool 2 (map (\lambda x. False) [j..<n])
   using assms
   by (metis calculation horner-sum-append length-map)
 also have ... = horner-sum of-bool 2 (map f [0..<j])
   using zero-horner
   using mult-not-zero by auto
 finally show ?thesis by simp
qed
lemma split-horner:
 assumes j \leq n
 assumes \forall i. j \leq i \longrightarrow \neg(f i)
 shows horner-sum of-bool (2::'a::len \ word) \ (map \ f \ [0..< n]) = horner-sum of-bool
2 (map f [0..< j])
 apply (rule map-join-horner)
 apply (rule zero-map)
 using assms by auto
lemma transfer-map:
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows (map f [0..< n]) = (map f' [0..< n])
 using assms by simp
lemma transfer-horner:
 assumes \forall i. i < n \longrightarrow f i = f' i
 shows horner-sum of-bool (2::'a::len word) (map f [0..< n]) = horner-sum of-bool
2 (map f' [0..< n])
 using assms using transfer-map
 by (smt (verit, best))
```

```
lemma L1:
    assumes n = 64 - numberOfLeadingZeros (\uparrow z)
    assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
    shows and v zv = and (v mod 2^n) zv
proof -
    have nle: n \leq 64
        using assms
        using diff-le-self by blast
    also have and v zv = horner-sum \ of-bool \ 2 \ (map \ (bit \ (and \ v \ zv)) \ [0...<64])
        using horner-sum-bit-eq-take-bit size 64
        by (metis size-word.rep-eq take-bit-length-eq)
    also have ... = horner-sum of-bool 2 (map (\lambda i. bit (and v zv) i) [0..<64])
        by blast
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit v i) \wedge (bit zv i))) [\theta..<64])
        using bit-and-iff by metis
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit \ v \ i) \land (bit \ zv \ i))) [0..< n])
    proof -
        have \forall i. i \geq n \longrightarrow \neg(bit\ zv\ i)
            using above-nth-not-set assms(1)
            using assms(2) not-may-implies-false
         by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne\ linorder-not-le\ nat-int-comparison(2)\ not-numeral-le-zero\ size 64\ zero-less-Suc
zerosAboveHighestOne)
        then have \forall i. i \geq n \longrightarrow \neg((bit \ v \ i) \land (bit \ zv \ i))
            by auto
        then show ?thesis using nle split-horner
            by (metis (no-types, lifting))
    qed
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [\theta ... < n])
    proof -
        have \forall i. i < n \longrightarrow bit (v \bmod 2^n) i = bit v i
            by (metis bit-take-bit-iff take-bit-eq-mod)
        then have \forall i. i < n \longrightarrow ((bit \ v \ i) \land (bit \ zv \ i)) = ((bit \ (v \ mod \ 2 \widehat{\ n}) \ i) \land (bit \ v) \land (bit \
zv(i)
            by force
        then show ?thesis
            by (rule transfer-horner)
    also have ... = horner-sum of-bool 2 (map (\lambda i. ((bit (v \mod 2^n) i) \wedge (bit zv
i))) [0..<64])
    proof -
        have \forall i. i \geq n \longrightarrow \neg(bit\ zv\ i)
            using above-nth-not-set \ assms(1)
            using assms(2) not-may-implies-false
         by (smt (verit, ccfv-SIG) One-nat-def diff-less int-ops(6) leadingZerosAddHigh-
estOne linorder-not-le nat-int-comparison(2) not-numeral-le-zero size64 zero-less-Suc
zerosAboveHighestOne)
```

```
then show ?thesis
            by (metis (no-types, lifting) assms(1) diff-le-self split-horner)
    qed
   also have ... = horner-sum of-bool 2 (map (bit (and (v mod 2^n) zv)) [0...<64])
        by (meson bit-and-iff)
    also have ... = and (v \mod 2^n) zv
        using horner-sum-bit-eq-take-bit size 64
        by (metis size-word.rep-eq take-bit-length-eq)
    finally show ?thesis
           using \langle and (v::64 \ word) \ (zv::64 \ word) = horner-sum \ of-bool \ (2::64 \ word)
(\mathit{map}\ (\mathit{bit}\ (\mathit{and}\ v\ \mathit{zv}))\ [0::\mathit{nat}..<\!64::\mathit{nat}]) \\ \land (\mathit{horner-sum}\ \mathit{of-bool}\ (2::64\ \mathit{word})\ (\mathit{map}\ \mathit{vard})) \\ \land (\mathit{map}\ \mathit{vard}) \\ \land (\mathit{map}\ \mathit{va
(\lambda i::nat. bit ((v::64 \ word) \ mod \ (2::64 \ word) \ \widehat{\ } (n::nat)) i \land bit \ (zv::64 \ word)
i) [0::nat..<64::nat]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (bit\ (and\ (v\ mod\ v))))
(2::64 \ word) \ \hat{\ } n) \ zv)) \ [0::nat..<64::nat]) \land (horner-sum \ of-bool \ (2::64 \ word) \ (map)
(\lambda i::nat.\ bit\ ((v::64\ word)\ mod\ (2::64\ word)\ ^(n::nat))\ i\ \wedge\ bit\ (zv::64\ word)\ i)
[0::nat..< n] = horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v mod (2::64)
word) \widehat{} n) i \wedge bit zv i) [0::nat..<64::nat]) \land (horner-sum of-bool (2::64 word))
(map\ (\lambda i::nat.\ bit\ (v::64\ word)\ i\ \land\ bit\ (zv::64\ word)\ i)\ [0::nat..<64::nat]) =
horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<n::nat])
\langle horner-sum of-bool (2::64 word) (map (\lambda i::nat. bit (v::64 word) i \wedge bit (zv::64
word) i) [0::nat..< n::nat]) = horner-sum\ of-bool\ (2::64\ word)\ (map\ (\lambda i::nat.\ bit
(v \mod (2::64 \mod ) \cap n) i \wedge bit zv i) [0::nat..< n]) \land (horner-sum of-bool (2::64 \mod ))
word) \ (map \ (bit \ (and \ ((v::64 \ word) \ mod \ (2::64 \ word) \ ^(n::nat)) \ (zv::64 \ word)))
[0::nat..<64::nat]) = and (v \mod (2::64 \mod ) \cap n) zv> (horner-sum \ of-bool \ (2::64 \mod ) \cap n)
word) (map\ (bit\ (and\ (v::64\ word)\ (zv::64\ word)))\ [0::nat..<64::nat]) = horner-sum
of-bool (2::64 word) (map (\lambda i::nat. bit v i \wedge bit zv i) [0::nat..<64::nat]) by pres-
burger
\mathbf{qed}
lemma up-mask-upper-bound:
    assumes [m, p] \vdash x \mapsto IntVal\ b\ xv
    shows xv \leq (\uparrow x)
   \mathbf{using}\ \mathit{assms}
  by (metis (no-types, lifting) and idem and right-neutral bit.conj-cancel-left bit.conj-disj-distribs(1)
bit.double-compl ucast-id up-spec word-and-le1 word-not-dist(2))
lemma L2:
    assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
    assumes n = 64 - numberOfLeadingZeros (\uparrow z)
    assumes [m, p] \vdash z \mapsto IntVal\ b\ zv
    assumes [m, p] \vdash y \mapsto IntVal\ b\ yv
    shows yv \mod 2 \hat{\ } n = \theta
proof -
    have yv \mod 2 \hat{n} = horner\text{-}sum \text{ of-bool } 2 \pmod{bit } yv) [0..< n])
        by (simp add: horner-sum-bit-eq-take-bit take-bit-eq-mod)
    also have ... \leq horner-sum of-bool 2 (map (bit (\uparrow y)) [0..< n])
        using up-mask-upper-bound assms(4)
     by (metis (no-types, opaque-lifting) and right-neutral bit.conj-cancel-right bit.conj-disj-distribs(1)
bit. double-compl \ horner-sum-bit-eq-take-bit\ take-bit-and\ ucast-id\ up-spec\ word-and-le1
```

```
word-not-dist(2))
 also have horner-sum of-bool 2 (map (bit (\uparrow y)) [0..<n]) = horner-sum of-bool 2
(map (\lambda x. False) [0..< n])
 proof -
   have \forall i < n. \neg (bit (\uparrow y) i)
     using assms(1,2) zerosBelowLowestOne
     by (metis add.commute add-diff-inverse-nat add-lessD1 leD le-diff-conv num-
berOfTrailingZeros-def)
   then show ?thesis
     by (metis (full-types) transfer-map)
 also have horner-sum of-bool 2 (map (\lambda x. False) [0..<n]) = 0
   using zero-horner
   \mathbf{by} blast
 finally show ?thesis
   by auto
\mathbf{qed}
thm-oracles L1 L2
lemma unfold-binary-width-add:
 shows ([m,p] \vdash BinaryExpr\ BinAdd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAdd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
          (IntVal\ b\ val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1]
   apply (smt (verit) intval-add.elims intval-bits.simps)
   by blast
next
 assume R: ?R
 then obtain x y where [m,p] \vdash xe \mapsto IntVal b x
       and [m,p] \vdash ye \mapsto IntVal\ b\ y
       and new-int b \ val = bin-eval \ BinAdd \ (IntVal \ b \ x) \ (IntVal \ b \ y)
       and new-int b val \neq UndefVal
   by auto
 then show ?L
   using R by blast
qed
\mathbf{lemma}\ unfold\text{-}binary\text{-}width\text{-}and:
 shows ([m,p] \vdash BinaryExpr\ BinAnd\ xe\ ye \mapsto IntVal\ b\ val) = (\exists\ x\ y.
         (([m,p] \vdash xe \mapsto IntVal\ b\ x) \land
          ([m,p] \vdash ye \mapsto IntVal\ b\ y) \land
          (IntVal\ b\ val = bin-eval\ BinAnd\ (IntVal\ b\ x)\ (IntVal\ b\ y))\ \land
```

```
(IntVal\ b\ val \neq UndefVal)
      )) (is ?L = ?R)
proof (intro iffI)
 assume 3: ?L
 show ?R apply (rule evaltree.cases[OF 3])
   apply force+ apply auto[1] using intval-and.elims intval-bits.simps
   apply (smt (verit) new-int.simps new-int-bin.simps take-bit-and)
   by blast
next
 assume R: ?R
 then obtain x \ y where [m,p] \vdash xe \mapsto IntVal \ b \ x
      and [m,p] \vdash ye \mapsto IntVal\ b\ y
      and new-int b val = bin-eval BinAnd (IntVal b x) (IntVal b y)
      and new\text{-}int\ b\ val \neq UndefVal
   by auto
 then show ?L
   using R by blast
\mathbf{qed}
lemma mod-dist-over-add-right:
 fixes a \ b \ c :: int64
 fixes n :: nat
 assumes 1: \theta < n
 assumes 2: n < 64
 shows (a + b \mod 2\widehat{\ n}) \mod 2\widehat{\ n} = (a + b) \mod 2\widehat{\ n}
 using mod-dist-over-add
 by (simp add: 1 2 add.commute)
lemma number Of Leading Zeros-range:
 0 \leq numberOfLeadingZeros \ n \wedge numberOfLeadingZeros \ n \leq Nat.size \ n
 unfolding numberOfLeadingZeros-def highestOneBit-def using max-set-bit
 by (simp add: highestOneBit-def leadingZeroBounds numberOfLeadingZeros-def)
lemma improved-opt:
 assumes number Of Leading Zeros (\uparrow z) + number Of Trailing Zeros (\uparrow y) \geq 64
 shows exp[(x + y) \& z] > exp[x \& z]
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
proof -
 obtain n where n: n = 64 - numberOfLeadingZeros (\uparrow z)
 obtain b val where val: [m, p] \vdash exp[(x + y) \& z] \mapsto IntVal \ b \ val
   by (metis BinaryExprE bin-eval-new-int eval new-int.simps)
 then obtain xv\ yv where addv: [m,\ p] \vdash exp[x+y] \mapsto IntVal\ b\ (xv+yv)
   apply (subst (asm) unfold-binary-width-and) by (metis add.right-neutral)
 then obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
   apply (subst (asm) unfold-binary-width-add) by blast
 from addv obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
   apply (subst (asm) unfold-binary-width-add) by blast
```

```
from val obtain zv where zv: [m, p] \vdash z \mapsto IntVal \ b \ zv
   apply (subst (asm) unfold-binary-width-and) by blast
  have addv: [m, p] \vdash exp[x + y] \mapsto new\text{-}int \ b \ (xv + yv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using yv apply simp
   by simp+
  have lhs: [m, p] \vdash exp[(x + y) \& z] \mapsto new\text{-int } b \ (and \ (xv + yv) \ zv)
   apply (rule evaltree.BinaryExpr)
   using addv apply simp
   using zv apply simp
   using addv apply auto[1]
   by simp
  have rhs: [m, p] \vdash exp[x \& z] \mapsto new\text{-}int \ b \ (and \ xv \ zv)
   apply (rule evaltree.BinaryExpr)
   using xv apply simp
   using zv apply simp
    apply force
   by simp
  then show ?thesis
  proof (cases numberOfLeadingZeros (\uparrow z) > 0)
   case True
   have n-bounds: 0 \le n \land n < 64
     {\bf using} \ diff-le-self \ n \ number Of Leading Zeros-range
     by (simp add: True)
   have and (xv + yv) zv = and ((xv + yv) mod 2^n) zv
     using L1 \ n \ zv by blast
   also have ... = and ((xv + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
     \mathbf{using}\ mod\text{-}dist\text{-}over\text{-}add\text{-}right\ n\text{-}bounds
     by (metis take-bit-0 take-bit-eq-mod zero-less-iff-neq-zero)
   also have ... = and (((xv \mod 2\widehat{n}) + (yv \mod 2\widehat{n})) \mod 2\widehat{n}) zv
      by (metis bits-mod-by-1 mod-dist-over-add n-bounds order-le-imp-less-or-eq
power-0)
   also have ... = and ((xv \mod 2 \hat{} n) \mod 2 \hat{} n) zv
     using L2 \ n \ zv \ yv
     using assms by auto
   also have ... = and (xv \mod 2^n) zv
     using mod-mod-trivial
    by (smt (verit, best) and idem take-bit-eq-mask take-bit-eq-mod word-bw-assocs(1))
   also have \dots = and xv zv
     using L1 \ n \ zv by metis
   finally show ?thesis
     using eval lhs rhs
     by (metis evalDet)
  next
   {\bf case}\ \mathit{False}
   then have numberOfLeadingZeros (\uparrow z) = 0
     by simp
   then have numberOfTrailingZeros\ (\uparrow y) \geq 64
```

```
using assms(1)
            by fastforce
        then have yv = \theta
            using yv
                by (metis (no-types, lifting) L1 L2 add-diff-cancel-left' and.comm-neutral
and.idem\ bit.compl-zero\ bit.conj-cancel-right\ bit.conj-disj-distribs(1)\ bit.double-complex and and all of the complex and all of th
less-imp-diff-less\ linorder-not-le\ word-not-dist(2))
        then show ?thesis
            by (metis add.right-neutral eval evalDet lhs rhs)
   \mathbf{qed}
qed
done
\textbf{thm-oracles} \ improved\text{-}opt
lemma falseBelowN-nBelowLowest:
    assumes n \leq Nat.size a
   assumes \forall i < n. \neg (bit \ a \ i)
   shows lowestOneBit a \ge n
proof (cases \{i. bit a i\} = \{\})
    case True
    then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
        using assms(1) trans-le-add1 by presburger
next
    case False
    have n \leq Min (Collect (bit a))
     by (metis False Min-ge-iff assms(2) finite-bit-word linorder-le-less-linear mem-Collect-eq)
    then show ?thesis unfolding lowestOneBit-def MinOrHighest-def
        using False by presburger
\mathbf{qed}
lemma noZeros-Count:
   fixes a :: 64 word
   assumes zeroCount \ a = 0
   \mathbf{shows} \ i < \textit{Nat.size} \ a \longrightarrow \textit{bit} \ a \ i
   using assms unfolding zeroCount-def size64
    using zeroCount-finite by auto
lemma allZeros-Count:
    fixes a :: 64 word
    assumes zeroCount \ a = 64
    shows \neg(bit\ a\ i)
    using assms unfolding zeroCount-def size64
    using zeroCount-finite apply auto sorry
lemma zeroBits:
    fixes a :: 'a::len word
    shows (\forall i. \neg (bit \ a \ i)) \longleftrightarrow a = 0
    apply auto
```

```
by (simp \ add: bit-word-eqI)
lemma mask-bit-iff:
 fixes a :: 'a::len word
 assumes n \leq Nat.size a
 \mathbf{shows} \ a = \mathit{mask} \ n \Longrightarrow \mathit{bit} \ a \ i \longleftrightarrow i < n
 apply auto
 using Word.bit-mask-iff
  apply auto[1] using assms
 by (simp\ add: Word.bit-mask-iff\ wsst-TYs(3))
\mathbf{lemma}\ \mathit{maskBitCount} :
 fixes a :: 'a::len word
 assumes n \leq Nat.size a
 shows a = mask \ n \Longrightarrow card \ \{i. \ bit \ a \ i\} = n
 using mask-bit-iff assms
 \mathbf{by} fastforce
lemma packedMask:
 fixes a :: 64 \ word
 assumes number Of Leading Zeros \ a = zero Count \ a
 shows a = mask (64 - numberOfLeadingZeros a)
{f proof}\ (induction\ 64\ -\ numberOfLeadingZeros\ a)
  case \theta
 have numberOfLeadingZeros\ a=64
  by (metis 0.hyps local.numberOfLeadingZeros-range nat-less-le size64 zero-less-diff)
  then have zeroCount \ a = 64
   using assms by fastforce
  then have a = \theta
   using allZeros-Count zeroBits by blast
  then show ?case
   by (simp \ add: \ \theta.hyps)
\mathbf{next}
 case (Suc \ x)
 then have numberOfLeadingZeros\ a = 64 - Suc\ x
  by (metis add-diff-cancel-right' add-diff-inverse-nat less-numeral-extra(3) nat-diff-split
zero-less-Suc)
  then have zeroCount \ a = 64 - Suc \ x
   using assms by presburger
 from Suc show ?case sorry
qed
{f lemma}\ zerosAboveOnly:
 fixes a :: 64 word
 assumes numberOfLeadingZeros \ a = zeroCount \ a
 shows \neg(bit\ a\ i) \longrightarrow i \ge (64 - numberOfLeadingZeros\ a)
proof -
```

```
obtain n where n: n = 64 - numberOfLeadingZeros a
   \mathbf{by} \ simp
 then have n-range: n \leq Nat.size a
   using size64
   by presburger
 then have a = (mask \ n)
   \mathbf{using}\ packedMask
   using assms n by blast
 then have \neg bit a \ i \longrightarrow i \ge n
   using Word.bit-mask-iff
  by (metis (mono-tags) le-antisym linorder-le-less-linear min-def n-range word-size)
 then show ?thesis using n
   by blast
qed
end
lemma ucast-zero: (ucast (0::int64)::int32) = 0
 by simp
lemma ucast-minus-one: (ucast (-1::int64)::int32) = -1
 apply transfer by auto
interpretation simple-mask: stamp-mask
 IRExpr-up :: IRExpr \Rightarrow int64
 IRExpr-down :: IRExpr \Rightarrow int64
 unfolding IRExpr-up-def IRExpr-down-def
 apply unfold-locales
 by (simp add: ucast-minus-one)+
phase NewAnd
 terminating size
begin
optimization redundant-lhs-y-or: ((x \mid y) \& z) \longmapsto x \& z
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y by blast
optimization redundant-lhs-x-or: ((x \mid y) \& z) \longmapsto y \& z
                          when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
```

```
by (meson exp-or-commute mono-binary order-refl order-trans)
optimization redundant-rhs-y-or: (z \& (x \mid y)) \longmapsto z \& x
                          when (((and (IRExpr-up y) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson exp-and-commute order.trans)
optimization redundant-rhs-x-or: (z \& (x \mid y)) \longmapsto z \& y
                          when (((and (IRExpr-up x) (IRExpr-up z)) = 0))
 apply (simp add: IRExpr-up-def)
 using simple-mask.exp-eliminate-y
 by (meson dual-order.trans exp-and-commute exp-or-commute mono-binary or-
der-refl)
end
end
       NotNode Phase
1.8
theory NotPhase
 imports
   Common
begin
phase NotNode
 terminating size
begin
lemma bin-not-cancel:
bin[\neg(\neg(e))] = bin[e]
 by auto
lemma val-not-cancel:
 assumes val[^{\sim}(new\text{-}int\ b\ v)] \neq UndefVal
 shows val[^{\sim}(^{\sim}(new\text{-}int\ b\ v))] = (new\text{-}int\ b\ v)
  using bin-not-cancel
 by (simp add: take-bit-not-take-bit)
lemma exp-not-cancel:
 shows exp[^{\sim}(^{\sim}a)] \ge exp[a]
  using val-not-cancel apply auto
 by (metis eval-unused-bits-zero intval-logic-negation.cases intval-not.simps(1)
```

```
intval-not.simps(2) intval-not.simps(3) intval-not.simps(4) new-int.simps)
```

```
Optimisations
```

```
optimization NotCancel: exp[^{\sim}(^{\sim}a)] \longmapsto a by (metis\ exp-not-cancel)
```

end

 \mathbf{end}

begin

1.9 OrNode Phase

```
theory OrPhase
imports
Common
begin

phase OrNode
terminating size
```

lemma bin-or-equal:

$$bin[x \mid x] = bin[x]$$
by $simp$

lemma bin-shift-const-right-helper:

$$x \mid y = y \mid x$$
 by $simp$

lemma bin-or-not-operands:

```
(^{\sim}x\mid ^{\sim}y)=(^{\sim}(x\ \&\ y))
by simp
```

lemma val-or-equal:

```
\begin{array}{ll} \textbf{assumes} \ x = \textit{new-int} \ \textit{b} \ \textit{v} \\ \textbf{and} \quad (\textit{val}[x \mid x] \neq \textit{UndefVal}) \\ \textbf{shows} \quad \textit{val}[x \mid x] = \textit{val}[x] \\ \textbf{apply} \ (\textit{cases} \ x; \ \textit{auto}) \ \textbf{using} \ \textit{bin-or-equal} \ \textit{assms} \\ \textbf{by} \ \textit{auto} + \end{array}
```

 $\mathbf{lemma}\ \mathit{val-elim-redundant-false} :$

```
assumes x = new\text{-}int\ b\ v
and val[x \mid false] \neq UndefVal
shows val[x \mid false] = val[x]
using assms apply (cases\ x;\ auto) by presburger
```

 $\mathbf{lemma}\ \mathit{val-shift-const-right-helper}:$

```
val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
  by (simp \ add: \ or.commute) +
lemma val-or-not-operands:
val[^{\sim}x \mid ^{\sim}y] = val[^{\sim}(x \& y)]
 apply (cases \ x; \ cases \ y; \ auto)
 by (simp add: take-bit-not-take-bit)
lemma exp-or-equal:
  exp[x \mid x] \ge exp[x]
  using val-or-equal apply auto
  by (smt (verit, ccfv-SIG) evalDet eval-unused-bits-zero intval-negate.elims int-
val-or.simps(2)
      intval-or.simps(6) intval-or.simps(7) new-int.simps val-or-equal)
lemma exp-elim-redundant-false:
exp[x \mid false] \ge exp[x]
  using val-elim-redundant-false apply auto
  by (smt (verit) Value.sel(1) eval-unused-bits-zero intval-or.elims new-int.simps
      new-int-bin.simps val-elim-redundant-false)
Optimisations
optimization OrEqual: x \mid x \longmapsto x
 by (meson exp-or-equal le-expr-def)
optimization OrShiftConstantRight: ((const\ x)\ |\ y) \longmapsto y\ |\ (const\ x)\ when\ \neg (is-ConstantExpr
 using size-flip-binary apply force
 apply auto
 by (simp add: BinaryExpr unfold-const val-shift-const-right-helper)
optimization EliminateRedundantFalse: x \mid false \longmapsto x
 by (meson exp-elim-redundant-false le-expr-def)
optimization OrNotOperands: (^{\sim}x \mid ^{\sim}y) \longmapsto ^{\sim}(x \& y)
  apply (metis add-2-eq-Suc' less-SucI not-add-less1 not-less-eq size-binary-const
size-non-add)
  apply auto using val-or-not-operands
 by (metis\ BinaryExpr\ UnaryExpr\ bin-eval.simps(4)\ intval-not.simps(2)\ unary-eval.simps(3))
end
context stamp-mask
begin
Taking advantage of the truth table of or operations.
```

```
If row 2 never applies, that is, can BeZero x & can BeOne y = 0, then (x|y) =
x.
Likewise, if row 3 never applies, can Be Zero y & can Be One x = 0, then
(x|y) = y.
lemma OrLeftFallthrough:
 assumes (and (not (\downarrow x)) (\uparrow y)) = 0
 shows exp[x \mid y] \ge exp[x]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
   obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     using eval
     by (metis BinaryExprE bin-eval-new-int new-int.simps)
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval - or (IntVal b xv) (IntVal b yv)
     \mathbf{using}\ e\ xv\ yv
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) | (bit yv i) = (bit xv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ xv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
   by (smt (verit, ccfv-threshold) and idem assms bit.conj-disj-distrib eval-unused-bits-zero
intval\text{-}or.simps(1)\ new\text{-}int.simps\ new\text{-}int\text{-}bin.simps\ not\text{-}down\text{-}up\text{-}mask\text{-}and\text{-}zero\text{-}implies\text{-}zero
word-ao-absorbs(3) xv yv)
   then show ?thesis
     using vdef
     using xv by presburger
 qed
 done
lemma OrRightFallthrough:
 assumes (and (not (\downarrow y)) (\uparrow x)) = 0
 shows exp[x \mid y] \ge exp[y]
 using assms
 apply simp apply ((rule allI)+; rule impI)
 subgoal premises eval for m p v
 proof -
```

```
obtain b vv where e: [m, p] \vdash exp[x \mid y] \mapsto IntVal\ b\ vv
     using eval
     by (metis BinaryExprE bin-eval-new-int new-int.simps)
   from e obtain xv where xv: [m, p] \vdash x \mapsto IntVal\ b\ xv
     apply (subst (asm) unfold-binary-width)
     by force+
   from e obtain yv where yv: [m, p] \vdash y \mapsto IntVal\ b\ yv
     apply (subst (asm) unfold-binary-width)
     by force+
   have vdef: v = intval\text{-}or (IntVal b xv) (IntVal b yv)
     using e xv yv
     by (metis\ bin-eval.simps(5)\ eval(2)\ evalDet\ unfold-binary)
   have \forall i. (bit xv i) | (bit yv i) = (bit yv i)
     by (metis assms bit-and-iff not-down-up-mask-and-zero-implies-zero xv yv)
   then have IntVal\ b\ yv = intval\text{-}or\ (IntVal\ b\ xv)\ (IntVal\ b\ yv)
      by (metis (no-types, lifting) assms eval-unused-bits-zero intval-or.simps(1)
new-int. elims\ new-int-bin. elims\ stamp-mask. not-down-up-mask-and-zero-implies-zero
stamp-mask-axioms word-ao-absorbs(8) xv yv)
   then show ?thesis
     using vdef
     using yv by presburger
 \mathbf{qed}
 done
end
end
         ShiftNode Phase
1.10
theory ShiftPhase
 imports
   Common
begin
{f phase} ShiftNode
 terminating size
begin
fun intval-log2 :: Value \Rightarrow Value where
  intval-log2 (IntVal b v) = IntVal b (word-of-int (SOME e. v=2^e))
  intval-log2 - = UndefVal
fun in-bounds :: Value \Rightarrow int \Rightarrow int \Rightarrow bool where
  in-bounds (IntVal b v) l h = (l < sint <math>v \land sint v < h)
  in-bounds - l h = False
lemma
 assumes in-bounds (intval-log2 val-c) 0 32
```

```
shows intval-left-shift x (intval-log2 val-c) = intval-mul x val-c
  \mathbf{apply} \ (\mathit{cases} \ \mathit{val-c}; \ \mathit{auto}) \ \mathbf{using} \ \mathit{intval-left-shift.simps}(1) \ \mathit{intval-mul.simps}(1)
intval-log2.simps(1)
 sorry
lemma e-intval:
  n = intval{-}log2 \ val{-}c \wedge in{-}bounds \ n \ 0 \ 32 \longrightarrow
   intval-left-shift x (intval-log2 val-c) =
    intval-mul x val-c
proof (rule impI)
  assume n = intval{-}log2 \ val{-}c \land in{-}bounds \ n \ 0 \ 32
  show intval-left-shift x (intval-log2 val-c) =
    intval-mul \ x \ val-c
   proof (cases \exists v . val-c = IntVal 32 v)
     case True
     obtain vc where val-c = IntVal 32 vc
       using True by blast
     then have n = IntVal \ 32 \ (word-of-int \ (SOME \ e. \ vc=2^e))
        using \langle n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
   next
     case False
     then have \exists v . val-c = IntVal 64 v
       sorry
     then obtain vc where val\text{-}c = IntVal 64 vc
     then have n = IntVal\ 64\ (word-of-int\ (SOME\ e.\ vc=2^e))
        using \langle n = intval-log2 \ val-c \wedge in-bounds \ n \ 0 \ 32 \rangle \ intval-log2.simps(1) by
presburger
     then show ?thesis sorry
qed
qed
optimization e:
  x * (const \ c) \longmapsto x << (const \ n) \ when \ (n = intval-log2 \ c \land in-bounds \ n \ 0 \ 32)
  using e-intval
  using BinaryExprE ConstantExprE bin-eval.simps(2,7) sorry
end
end
          SignedDivNode Phase
1.11
{\bf theory} \ {\it SignedDivPhase}
 imports
```

```
Common
begin
{f phase} \ Signed Div Node
 terminating size
begin
\mathbf{lemma}\ \mathit{val-division-by-one-is-self-32}\colon
 assumes x = new\text{-}int 32 v
 shows intval-div x (IntVal 32 1) = x
 using assms apply (cases x; auto)
 by (simp add: take-bit-signed-take-bit)
end
end
         SignedRemNode Phase
1.12
{\bf theory}\ {\it SignedRemPhase}
 imports
   Common
begin
{\bf phase}\ Signed Rem Node
 terminating size
begin
lemma val-remainder-one:
 assumes intval-mod\ x\ (IntVal\ 32\ 1) \neq UndefVal
 shows intval\text{-}mod\ x\ (IntVal\ 32\ 1) = IntVal\ 32\ 0
 using assms apply (cases x; auto) sorry
value word-of-int (sint (x2::32 word) smod 1)
end
\quad \text{end} \quad
        SubNode Phase
1.13
theory SubPhase
 imports
   Common
```

Proofs. Stamp Eval Thms

```
\mathbf{phase}\ \mathit{SubNode}
 terminating size
begin
{f lemma}\ bin-sub-after-right-add:
  shows ((x::('a::len) \ word) + (y::('a::len) \ word)) - y = x
 \mathbf{by} \ simp
lemma sub-self-is-zero:
  shows (x::('a::len) word) - x = 0
 \mathbf{by} \ simp
lemma bin-sub-then-left-add:
  shows (x::('a::len) \ word) - (x + (y::('a::len) \ word)) = -y
 \mathbf{by} \ simp
\mathbf{lemma}\ bin\text{-}sub\text{-}then\text{-}left\text{-}sub:
  shows (x::('a::len) \ word) - (x - (y::('a::len) \ word)) = y
 \mathbf{by} \ simp
{f lemma}\ bin-subtract-zero:
  shows (x :: 'a::len \ word) - (0 :: 'a::len \ word) = x
 by simp
\mathbf{lemma}\ bin\text{-}sub\text{-}negative\text{-}value:
 (x :: ('a::len) \ word) - (-(y :: ('a::len) \ word)) = x + y
 by simp
lemma bin-sub-self-is-zero:
 (x :: ('a::len) word) - x = 0
 by simp
\mathbf{lemma}\ bin\text{-}sub\text{-}negative\text{-}const:
(x :: 'a::len \ word) - (-(y :: 'a::len \ word)) = x + y
 by simp
\mathbf{lemma}\ \mathit{val-sub-after-right-add-2}\colon
  \mathbf{assumes}\ x = \textit{new-int}\ \textit{b}\ \textit{v}
 assumes val[(x + y) - y] \neq UndefVal
 shows val[(x + y) - y] = val[x]
  \mathbf{using}\ \mathit{bin-sub-after-right-add}
  using assms apply (cases x; cases y; auto)
  by (metis (full-types) intval-sub.simps(2))
```

begin

 $\mathbf{lemma}\ val\text{-}sub\text{-}after\text{-}left\text{-}sub$:

```
assumes val[(x - y) - x] \neq UndefVal
 shows val[(x - y) - x] = val[-y]
 using assms apply (cases x; cases y; auto)
 using intval-sub.elims by fastforce
lemma val-sub-then-left-sub:
 assumes y = new\text{-}int b v
 \mathbf{assumes}\ val[x-(x-y)] \neq \mathit{UndefVal}
 shows val[x - (x - y)] = val[y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags)\ intval-sub.simps(5))
\mathbf{lemma}\ val\text{-}subtract\text{-}zero:
 assumes x = new\text{-}int \ b \ v
 assumes intval-sub x (IntVal\ b\ 0) \neq UndefVal
 shows intval-sub x (Int Val b 0) = val[x]
 using assms by (induction x; simp)
lemma val-zero-subtract-value:
 assumes x = new-int b v
 assumes intval-sub (IntVal\ b\ 0)\ x \neq UndefVal
 shows intval-sub (IntVal b \theta) x = val[-x]
 using assms by (induction x; simp)
\mathbf{lemma}\ val\text{-}sub\text{-}then\text{-}left\text{-}add:
  assumes val[x - (x + y)] \neq UndefVal
 shows val[x - (x + y)] = val[-y]
 using assms apply (cases x; cases y; auto)
 by (metis\ (mono-tags,\ lifting)\ intval-sub.simps(5))
{f lemma}\ val	ext{-}sub	ext{-}negative	ext{-}value:
 assumes val[x - (-y)] \neq UndefVal
 shows val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
lemma val-sub-self-is-zero:
 assumes x = new\text{-}int \ b \ v \land val[x - x] \neq UndefVal
 shows val[x - x] = new-int \ b \ \theta
 using assms by (cases x; auto)
lemma val-sub-negative-const:
  assumes y = new\text{-}int \ b \ v \land val[x - (-y)] \neq UndefVal
 \mathbf{shows} \ val[x - (-y)] = val[x + y]
 using assms by (cases x; cases y; auto)
\mathbf{lemma}\ exp\text{-}sub\text{-}after\text{-}right\text{-}add:
 shows exp[(x + y) - y] \ge exp[x]
 {\bf apply} \ auto \ {\bf using} \ val\text{-}sub\text{-}after\text{-}right\text{-}add\text{-}2
```

```
using evalDet eval-unused-bits-zero intval-add.elims new-int.simps
 by (smt (verit))
\mathbf{lemma}\ exp\text{-}sub\text{-}after\text{-}right\text{-}add2:
 shows exp[(x + y) - x] \ge exp[y]
 using exp-sub-after-right-add apply auto
 using bin-eval.simps(1) bin-eval.simps(3) intval-add-sym unfold-binary
 by (smt (z3) Value.inject(1) diff-eq-eq evalDet eval-unused-bits-zero intval-add.elims
     intval-sub.elims new-int.simps new-int-bin.simps take-bit-dist-subL)
lemma exp-sub-negative-value:
 exp[x - (-y)] \ge exp[x + y]
 apply simp using val-sub-negative-value
 by (smt (verit) bin-eval.simps(1) bin-eval.simps(3) evaltree-not-undef
     unary-eval.simps(2) unfold-binary unfold-unary)
lemma exp-sub-then-left-sub:
 shows exp[x - (x - y)] \ge exp[y]
 using val-sub-then-left-sub apply auto
 subgoal premises p for m p xa xaa ya
   proof-
     obtain xa where xa: [m, p] \vdash x \mapsto xa
      using p(2) by blast
     obtain ya where ya: [m, p] \vdash y \mapsto ya
      using p(5) by auto
     obtain xaa where xaa: [m, p] \vdash x \mapsto xaa
      using p(2) by blast
     have 1: val[xa - (xaa - ya)] \neq UndefVal
      by (metis evalDet p(2) p(3) p(4) p(5) xa xaa ya)
     then have val[xaa - ya] \neq UndefVal
      by auto
     then have [m,p] \vdash y \mapsto val[xa - (xaa - ya)]
       by (metis 1 Value.exhaust evalDet eval-unused-bits-zero evaltree-not-undef
intval-sub.simps(6) intval-sub.simps(7) new-int.simps p(5) val-sub-then-left-sub xa
xaa ya)
    then show ?thesis
      by (metis evalDet p(2) p(4) p(5) xa xaa ya)
   qed
   done
thm-oracles exp-sub-then-left-sub
Optimisations
optimization SubAfterAddRight: ((x + y) - y) \longmapsto x
 using exp-sub-after-right-add by blast
optimization SubAfterAddLeft: ((x + y) - x) \longmapsto y
 using exp-sub-after-right-add2 by blast
```

```
optimization SubAfterSubLeft: ((x - y) - x) \longmapsto -y
  \mathbf{apply} \; (\textit{metis Suc-lessI} \; \textit{add-2-eq-Suc'} \; \textit{add-less-cancel-right less-trans-Suc} \; \textit{not-add-less1} \; \textit{add-less-cancel-right less-trans-Suc} \; \textit{not-add-less-cancel-right less-cancel-right less-canc
size-binary-const size-binary-lhs size-binary-rhs size-non-add)
      apply auto
    by (metis evalDet unary-eval.simps(2) unfold-unary val-sub-after-left-sub)
optimization SubThenAddLeft: (x - (x + y)) \longmapsto -y
      apply auto
     by (metis\ evalDet\ unary-eval.simps(2)\ unfold-unary
             val-sub-then-left-add)
optimization SubThenAddRight: (y - (x + y)) \longmapsto -x
      apply auto
    \mathbf{by} \ (\textit{metis evalDet intval-add-sym unary-eval.simps}(2) \ \textit{unfold-unary}
             val-sub-then-left-add)
optimization SubThenSubLeft: (x - (x - y)) \mapsto y
    using size-simps apply simp
    using exp-sub-then-left-sub by blast
optimization SubtractZero: (x - (const\ IntVal\ b\ \theta)) \longmapsto x
    apply auto
   by (smt (verit) add.right-neutral diff-add-cancel eval-unused-bits-zero intval-sub.elims
             intval-word.simps new-int.simps new-int-bin.simps)
thm-oracles SubtractZero
optimization SubNegativeValue: (x - (-y)) \longmapsto x + y
     apply (metis add-2-eq-Suc' less-SucI less-add-Suc1 not-less-eq size-binary-const
size-non-add)
    using exp-sub-negative-value by simp
thm-oracles SubNegativeValue
lemma negate-idempotent:
    assumes x = IntVal\ b\ v \land take-bit\ b\ v = v
    shows x = val[-(-x)]
    using assms
    \mathbf{using}\ \mathit{is}\text{-}\mathit{IntVal}\text{-}\mathit{def}\ \mathbf{by}\ \mathit{force}
optimization ZeroSubtractValue: ((const\ IntVal\ b\ \theta) - x) \longmapsto (-x)
```

```
when (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo
hi \wedge \neg (is\text{-}ConstantExpr x))
  defer
 apply auto unfolding wf-stamp-def
 apply (smt (verit) diff-0 intval-negate.simps(1) intval-sub.elims intval-word.simps
        new\text{-}int\text{-}bin.simps\ unary\text{-}eval.simps(2)\ unfold\text{-}unary)
 using add-2-eq-Suc' size.simps(2) size-flip-binary by presburger
optimization SubSelfIsZero: (x - x) \mapsto const \ IntVal \ b \ 0 \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = IntegerStamp\ b\ lo\ hi)
 apply simp-all
  apply auto
 using IRExpr.disc(42) One-nat-def size-non-const apply presburger
  by (smt (verit, best) ConstantExpr evalDet eval-bits-1-64 eval-unused-bits-zero
new-int.simps take-bit-of-0 val-sub-self-is-zero validDefIntConst valid-int wf-stamp-def)
end
end
         XorNode Phase
1.14
theory XorPhase
 imports
   Common
   Proofs.StampEvalThms
begin
phase XorNode
 terminating size
begin
lemma bin-xor-self-is-false:
bin[x \oplus x] = 0
 by simp
lemma bin-xor-commute:
bin[x \oplus y] = bin[y \oplus x]
 by (simp add: xor.commute)
{\bf lemma}\ bin-eliminate-redundant-false:
bin[x \oplus \theta] = bin[x]
 \mathbf{by} \ simp
```

```
lemma val-xor-self-is-false:
 assumes val[x \oplus x] \neq UndefVal
 shows val-to-bool (val[x \oplus x]) = False
 using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-2}\colon
 assumes (val[x \oplus x]) \neq UndefVal
 and
          x = IntVal 32 v
 shows val[x \oplus x] = bool-to-val\ False
 using assms by (cases x; auto)
\mathbf{lemma}\ \mathit{val-xor-self-is-false-3}\colon
 assumes val[x \oplus x] \neq UndefVal \land x = IntVal 64 v
 shows val[x \oplus x] = IntVal 64 0
 using assms by (cases x; auto)
lemma val-xor-commute:
  val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
 by (simp\ add:\ xor.commute)+
\mathbf{lemma}\ \mathit{val-eliminate-redundant-false} :
 assumes x = new\text{-}int \ b \ v
 assumes val[x \oplus (bool\text{-}to\text{-}val\ False)] \neq UndefVal
 shows val[x \oplus (bool\text{-}to\text{-}val\ False)] = x
 using assms apply (cases x; auto)
 by meson
lemma exp-xor-self-is-false:
assumes wf-stamp x \wedge stamp-expr x = default-stamp
shows exp[x \oplus x] \ge exp[false]
 using assms apply auto unfolding wf-stamp-def
  using IntVal0 Value.inject(1) bool-to-val.simps(2) constantAsStamp.simps(1)
evalDet
          int-signed-value-bounds new-int.simps unfold-const val-xor-self-is-false-2
valid-int
       valid-stamp.simps(1) valid-value.simps(1)
 by (smt (z3) validDefIntConst)
lemma exp-eliminate-redundant-false:
 shows exp[x \oplus false] \ge exp[x]
 using val-eliminate-redundant-false apply auto
 subgoal premises p for m p xa
   proof -
     obtain xa where xa: [m,p] \vdash x \mapsto xa
       using p(2) by blast
```

```
then have val[xa \oplus (IntVal \ 32 \ 0)] \neq UndefVal
      using evalDet p(2) p(3) by blast
     then have [m,p] \vdash x \mapsto val[xa \oplus (IntVal\ 32\ 0)]
      apply (cases xa; auto) using eval-unused-bits-zero xa by auto
     then show ?thesis
      using evalDet \ p(2) \ xa \ by \ blast
   qed
 done
Optimisations
optimization XorSelfIsFalse: (x \oplus x) \longmapsto false \ when
                   (wf\text{-}stamp\ x \land stamp\text{-}expr\ x = default\text{-}stamp)
 using size-non-const apply force
 using exp-xor-self-is-false by auto
optimization XorShiftConstantRight: ((const \ x) \oplus y) \longmapsto y \oplus (const \ x) when
\neg(is\text{-}ConstantExpr\ y)
 using size-flip-binary apply force
 unfolding le-expr-def using val-xor-commute
 by auto
optimization EliminateRedundantFalse: (x \oplus false) \longmapsto x
   using exp-eliminate-redundant-false by blast
end
end
        NegateNode Phase
1.15
theory NegatePhase
 imports
   Common
begin
phase NegateNode
 terminating size
begin
lemma bin-negative-cancel:
-1 * (-1 * ((x::('a::len) word))) = x
 by auto
```

```
lemma val-negative-cancel:
 assumes intval-negate (new-int b v) \neq UndefVal
 shows val[-(-(new-int\ b\ v))] = val[new-int\ b\ v]
 using assms by simp
\mathbf{lemma}\ val	ext{-} distribute	ext{-} sub:
 assumes x \neq UndefVal \land y \neq UndefVal
 \mathbf{shows} \quad val[-(x-y)] = val[y-x]
 using assms by (cases x; cases y; auto)
lemma exp-distribute-sub:
 shows exp[-(x-y)] \ge exp[y-x]
 using val-distribute-sub apply auto
 using evaltree-not-undef by auto
thm-oracles exp-distribute-sub
lemma exp-negative-cancel:
 shows exp[-(-x)] \ge exp[x]
 using val-negative-cancel apply auto
 by (metis (no-types, opaque-lifting) eval-unused-bits-zero intval-negate.elims
     intval-negate.simps(1) minus-equation-iff new-int.simps take-bit-dist-neg)
lemma exp-negative-shift:
 assumes stamp-expr x = IntegerStamp b' lo hi
          unat y = (b' - 1)
 shows exp[-(x >> (const (new-int b y)))] \ge exp[x >>> (const (new-int b y))]
 apply auto
 subgoal premises p for m p xa
 proof -
   obtain xa where xa: [m,p] \vdash x \mapsto xa
    using p(2) by auto
    then have 1: intval-negate (intval-right-shift xa (IntVal b (take-bit b y))) \neq
UndefVal
    using evalDet p(1) p(2) by blast
   then have 2: intval-right-shift xa (IntVal b (take-bit b y)) \neq UndefVal
    then have 3: -((2::int) \cap b \ div \ (2::int)) \subseteq sint \ (signed-take-bit \ (b-Suc
(0::nat) (take-bit\ b\ y)
    by (simp \ add: p(6))
   then have 4: sint (signed-take-bit (b - Suc (0::nat)) (take-bit b y)) < (2::int)
^ b div (2::int)
    using p(7) by blast
   then have 5: (0::nat) < b
    by (simp \ add: \ p(4))
   then have 6: b \sqsubseteq (64::nat)
    by (simp \ add: \ p(5))
   then have 7: [m,p] \vdash BinaryExpr\ BinURightShift\ x
```

```
(ConstantExpr\ (IntVal\ b\ (take-bit\ b\ y))) \mapsto
                intval-negate (intval-right-shift xa (IntVal b (take-bit b y)))
     apply (cases y; auto)
     subgoal premises p for n
       proof -
        have sg1: y = word\text{-}of\text{-}nat n
          by (simp \ add: \ p(1))
        then have sg2: n < (18446744073709551616::nat)
          by (simp \ add: \ p(2))
        then have sg3: b \sqsubseteq (64::nat)
          by (simp add: 6)
        then have sg4: [m,p] \vdash BinaryExpr BinURightShift x
               (ConstantExpr\ (IntVal\ b\ (take-bit\ b\ (word-of-nat\ n))))\mapsto
               intval-negate (intval-right-shift xa (IntVal b (take-bit b (word-of-nat
n))))
           sorry
        then show ?thesis
          by simp
       qed
     done
   then show ?thesis
     by (metis evalDet p(2) xa)
 qed
 done
Optimisations
optimization NegateCancel: -(-(x)) \mapsto x
 using val-negative-cancel exp-negative-cancel by blast
optimization DistributeSubtraction: -(x - y) \longmapsto (y - x)
 apply (smt (z3) add.left-commute add-2-eq-Suc' add-diff-cancel-left' is-ConstantExpr-def
less-Suc-eq-0-disj plus-1-eq-Suc size.simps(11) size-binary-const size-non-add zero-less-diff)
 using exp-distribute-sub by simp
optimization NegativeShift: -(x >> (const\ (new\text{-}int\ b\ y))) \longmapsto x >>> (const\ (new\text{-}int\ b\ y))
(new\text{-}int \ b \ y))
                              when (stamp-expr \ x = IntegerStamp \ b' \ lo \ hi \land unat \ y)
= (b' - 1)
 using exp-negative-shift by simp
end
end
theory TacticSolving
 imports Common
```

begin

```
fun size :: IRExpr \Rightarrow nat where
  size (UnaryExpr op e) = (size e) * 2 |
  size (BinaryExpr BinAdd x y) = (size x) + ((size y) * 2)
  size (BinaryExpr \ op \ x \ y) = (size \ x) + (size \ y) \mid
  size (ConditionalExpr \ cond \ t \ f) = (size \ cond) + (size \ t) + (size \ f) + 2
  size (ConstantExpr c) = 1
  size (ParameterExpr ind s) = 2
  size (LeafExpr \ nid \ s) = 2
  size (Constant Var c) = 2
  size (VariableExpr x s) = 2
lemma size-pos[simp]: 0 < size y
  apply (induction y; auto?)
 subgoal premises prems for op a b
   using prems by (induction op; auto)
 done
phase TacticSolving
 terminating size
begin
         AddNode
1.16
lemma value-approx-implies-refinement:
 assumes lhs \approx rhs
 assumes \forall m \ p \ v. \ ([m, \ p] \vdash elhs \mapsto v) \longrightarrow v = lhs
 assumes \forall m \ p \ v. \ ([m, p] \vdash erhs \mapsto v) \longrightarrow v = rhs
 assumes \forall m \ p \ v1 \ v2. \ ([m, p] \vdash elhs \mapsto v1) \longrightarrow ([m, p] \vdash erhs \mapsto v2)
 shows elhs \ge erhs
 using assms unfolding le-expr-def well-formed-equal-def
 using evalDet evaltree-not-undef
 by metis
method explore-cases for x y :: Value =
  (cases x; cases y; auto)
method explore-cases-bin for x :: IRExpr =
  (cases x; auto)
method obtain-approx-eq for lhs rhs x y :: Value =
  (rule meta-mp[where P=lhs \approx rhs], defer-tac, explore-cases x y)
method obtain-eval for exp::IRExpr and val::Value =
  (rule meta-mp[where P = \bigwedge m \ p \ v. ([m, p] \vdash exp \mapsto v) \Longrightarrow v = val], defer-tac)
method solve for lhs rhs x y :: Value =
  (match \ \mathbf{conclusion} \ \mathbf{in} \ size \ - < size \ - \Rightarrow \langle simp \rangle)?
```

```
(match \ \mathbf{conclusion} \ \mathbf{in} \ (elhs::IRExpr) \geq (erhs::IRExpr) \ \mathbf{for} \ elhs \ erhs \Rightarrow \langle
   (obtain-approx-eq \ lhs \ rhs \ x \ y)?)
print-methods
thm BinaryExprE
optimization opt-add-left-negate-to-sub:
  -x + y \longmapsto y - x
  apply (solve val[-x1 + y1] \ val[y1 - x1] \ x1 \ y1)
  apply simp apply auto using evaltree-not-undef sorry
1.17
         NegateNode
\mathbf{lemma}\ val	ext{-}distribute	ext{-}sub:
 val[-(x-y)] \approx val[y-x]
 by (cases x; cases y; auto)
optimization distribute-sub: -(x-y) \longmapsto (y-x)
  apply simp
  using val-distribute-sub apply simp
  using unfold-binary unfold-unary by auto
\mathbf{lemma}\ \mathit{val-xor-self-is-false} :
  assumes x = IntVal \ 32 \ v
  shows val[x \oplus x] \approx val[false]
 apply simp using assms by (cases x; auto)
definition wf-stamp :: IRExpr \Rightarrow bool where
  \textit{wf-stamp } e = (\forall \ m \ p \ v. \ ([m, \ p] \vdash e \mapsto v) \longrightarrow \textit{valid-value } v \ (\textit{stamp-expr } e))
lemma exp-xor-self-is-false:
 assumes stamp-expr \ x = IntegerStamp \ 32 \ l \ h
 assumes wf-stamp x
 shows exp[x \oplus x] >= exp[false]
 unfolding le-expr-def using assms unfolding wf-stamp-def
 using val-xor-self-is-false evaltree-not-undef
 \mathbf{by}\;(smt\;(z3)\;bin\text{-}eval.simps(6)\;bin\text{-}eval\text{-}new\text{-}int\;constant} \\ AsStamp.simps(1)\;evalDet
int-signed-value-bounds new-int.simps new-int-take-bits unfold-binary unfold-const
valid-int valid-stamp.simps(1) valid-value.simps(1) well-formed-equal-defn)
lemma val-or-commute[simp]:
   val[x \mid y] = val[y \mid x]
  apply (cases x; cases y; auto)
  by (simp add: or.commute)+
```

```
lemma val-xor-commute[simp]:
  val[x \oplus y] = val[y \oplus x]
  apply (cases x; cases y; auto)
 by (simp \ add: word-bw-comms(3))
lemma exp-or-commutative:
  exp[x \mid y] \ge exp[y \mid x]
 by auto
lemma exp-xor-commutative:
  exp[x \oplus y] \ge exp[y \oplus x]
 by auto
lemma OrInverseVal:
 assumes n = IntVal \ 32 \ v
 shows val[n \mid {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto) using take-bit-or
 by (metis bit.disj-cancel-right mask-eq-take-bit-minus-one)
optimization OrInverse: exp[n \mid {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using OrInverseVal unfolding wf-stamp-def
 by (smt (23) constantAsStamp.simps(1) evalDet int-signed-value-bounds mask-eq-take-bit-minus-one
     new-int.elims new-int-take-bits unfold-const valid-int valid-stamp.simps(1)
     valid-value.simps(1) well-formed-equal-defn)
optimization OrInverse2: exp[{}^{\sim}n \mid n] \longmapsto (const (new-int 32 (not 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using OrInverse apply simp
  using OrInverse exp-or-commutative
 by auto
lemma XorInverseVal:
  assumes n = IntVal 32 v
 shows val[n \oplus {}^{\sim}n] \approx new\text{-}int \ 32 \ (-1)
 apply simp using assms using word-or-not apply (cases n; auto)
 by (metis (no-types, opaque-lifting) bit.compl-zero bit.xor-compl-right bit.xor-self
     mask-eq-take-bit-minus-one take-bit-xor)
optimization XorInverse: exp[n \oplus {}^{\sim}n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  unfolding size.simps apply (simp add: Suc-lessI)
 apply auto using XorInverseVal
  by (smt (verit) constantAsStamp.simps(1) evalDet int-signed-value-bounds int-
```

```
val-xor.elims
    mask-eq-take-bit-minus-one\ new-int.\ elims\ new-int-take-bits\ unfold-const\ valid-stamp.simps(1)
     valid-value.simps(1) well-formed-equal-defn wf-stamp-def)
optimization XorInverse2: exp[(^{\sim}n) \oplus n] \longmapsto (const\ (new\text{-}int\ 32\ (not\ 0)))
                     when (stamp-expr \ n = IntegerStamp \ 32 \ l \ h \land wf-stamp \ n)
  using XorInverse apply simp
  \mathbf{using}\ \mathit{XorInverse}\ \mathit{exp-xor-commutative}
  by simp
end
end
theory ProofStatus
 imports
    AbsPhase
   AddPhase
   AndPhase
    Conditional Phase
    MulPhase
    NegatePhase
    NewAnd
    NotPhase
    OrPhase
    ShiftPhase
   SignedDivPhase
    SignedRemPhase
    \ddot{SubPhase}
    Tactic Solving
    XorPhase
begin
declare [[show-types=false]]
print-phases
print-phases!
print-methods
print-theorems
\mathbf{thm}\ \mathit{opt-add-left-negate-to-sub}
\textbf{thm-oracles} \ \textit{AbsNegate}
export-phases \langle Full \rangle
```

end