臺中區國立高級中學 103 學年度 大學入學第四次指定科目聯合模擬考

數學甲

考試日期:104年5月4~5日

-作答注意事項-

考試時間:80分鐘

作答方式: •選擇(填)題用 2B 鉛筆在「答案卡」上作答;更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時, 可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答説明:選填題的題號是A,B,C,……,而答案的格式每題可能不同, 考生必須依各題的格式填答,且每一個列號只能在一個格子畫 記。請仔細閱讀下面的例子。

例:若第 B 題的答案格式是 $\frac{18}{19}$,而依題意計算出來的答案是 $\frac{3}{8}$,則考生

必須分別在答案卡上的第 18 列的 凸 與第 19 列的 凸 畫記,如:

例:若第 C 題的答案格式是 $\frac{2021}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案卡的第 20 列的 \Box 與第 21 列的 $\frac{7}{2}$ 畫記,如:

第壹部分:選擇題(單選題、多選題及選填題共占 76 分)

一、單選題(占 24 分)

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 已知 $a \times b \times c$ 爲相異的三實數,二次多項式 f(x)有以下三種表示法
 - (a) $f(x) = Dx^2 + Ex + F$
 - (b) f(x) = S(x-a)(x-b) + T(x-a) + U

(c)
$$f(x) = P\frac{(x-a)(x-b)}{(c-a)(c-b)} + Q\frac{(x-b)(x-c)}{(a-b)(a-c)} + R\frac{(x-a)(x-c)}{(b-a)(b-c)}$$

以上所列之 $D \setminus E \setminus F \setminus S \setminus T \setminus U \setminus P \setminus Q \setminus R$ 均為實數,請選出下列 $\overline{R} - \overline{R} = \overline{R} + \overline{R} = \overline{R} = \overline{R} + \overline{R} = \overline{R} = \overline{R} + \overline{R} = \overline{R$

- (1) D = S
- (2) U = Q

(3)
$$F = \frac{Pab}{(c-a)(c-b)} + \frac{Qbc}{(a-b)(a-c)} + \frac{Rac}{(b-a)(b-c)}$$

- $(4) Dc^2 + Ec + F = P$
- $(5) \quad T(a-b)+U=R$

- 2. 一四面體 ABCD,已知 ΔBCD 爲邊長 20 的正三角形,且 $\overline{AB} = \overline{AC} = \overline{AD} = 25$,則 \overline{AB} 與 \overline{CD} 兩歪斜線的距離爲:
 - (1) $\frac{5}{2}\sqrt{23}$
 - (2) $\frac{5}{2}\sqrt{59}$
 - (3) $\sqrt{525}$
 - (4) $\sqrt{236}$
 - $(5) \sqrt{300}$

- 3. 設 $z = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$,試問複數 1-z 的主輻角爲以下哪一選項?
 - $(1) \ \frac{2\pi}{7}$
 - (2) $\frac{12\pi}{7}$
 - $(3) \ \frac{13\pi}{7}$
 - (4) $\frac{19\pi}{14}$
 - $(5) \frac{23\pi}{14}$
- 4. 消防局獲報 A 地有天然氣(甲烷)外洩,消防局人員到達 A 地後,不知已外洩多久,以儀器測量當地的甲烷濃度為 0.05%,經過 10 分鐘後,再測量一次濃度為 0.26%,假設現場甲烷濃度在濃度 0%到 10%的擴散公式為 $f(t) = (2^k 1)\%$,其中 t 為甲烷外洩的時間(以分為單位), f(t)表甲烷外洩 t 分時的濃度, k 為一常數,已知甲烷的濃度到達 4.04%時,有立即爆炸的危險。請利用下列對數表,選出第二次測量後,至甲烷的濃度到達 4.04%所需要的時間最接近的選項:

267 18 (X 2) 2 1:01/0// III											
x	0	1	2	3	4	5	6	7	8	9	
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	
:	:	:	:	:	:	:	:	:	:	:	

- (1) 25 分
- (2) 50 分
- (3) 75 分
- (4) 100 分
- (5) 125 分

二、多選題(占40分)

説明:第5題至第9題,每題有5個選項,其中至少有一個是正確的選項,請將 正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定, 所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項 者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計 算。

- 5. 隨機變數 X 與 Y 的期望値分別以 E(X) 與 E(Y)表示,變異數以 Var(X) 與 Var(Y)表示,標準差以 $\sigma(X)$ 與 $\sigma(Y)$ 表示。請選出下列正確的選項:
 - (1) 設 a,b 爲常數,若 Y = aX + b,則 E(Y) = aE(X) + b
 - (2) 設 a,b 爲常數,若 Y = aX + b,則 Var(Y) = |a|Var(X)
 - (3) 若 E(X) > E(Y), 則 $E(X^2) > E(Y^2)$
 - (4) 若 E(X) > E(Y) > 0,且 $E(X^2) > E(Y^2)$,則 $\sigma(X) > \sigma(Y)$
 - (5) 若 E(X) > E(Y) > 0,且 Var(X) > Var(Y),則 $E(X^2) > E(Y^2)$

- 6. 請選出下列正確的選項:
 - (1) $\lim_{x \to 2} \frac{x^2 4}{x 2}$ 極限不存在

(2)
$$\left[\lim_{x\to 1}(x^2-1)\right]\left[\lim_{x\to 1}\frac{1}{x-1}\right]=0$$

(4)
$$f(x) = \begin{cases} ax + b & x \ge 1 \\ x^2 & x < 1 \end{cases}$$
, $\exists x \in A$, $\exists x \in$

(5)
$$\exists \exists \exists (\tan x) dx = F(x) + c$$
, $\exists \lim_{x \to \frac{\pi}{4}} \frac{F(x) - F(\frac{\pi}{4})}{x - \frac{\pi}{4}} = 1$

- 7. $\triangle ABC$ 中, \overline{AB} =7, \overline{AC} =5, \overline{BC} =6,若其內切圓與 \overline{BC} 、 \overline{AC} 分別切於 D、E 點,且 \overline{AD} 與 \overline{BE} 交於 M點,請選出下列正確的選項:
 - (1) $\triangle ABC$ 的內切圓的半徑爲 $\frac{2\sqrt{6}}{3}$
 - (2) $\overrightarrow{AD} = \frac{5}{12} \overrightarrow{AB} + \frac{7}{12} \overrightarrow{AC}$
 - $(3) \quad \overline{AD} = \frac{\sqrt{105}}{2}$
 - (4) $\overline{AD} = 5$
 - (5) $\overrightarrow{AM} = \frac{3}{13} \overrightarrow{AB} + \frac{6}{13} \overrightarrow{AC}$

- 8. 考慮函數 $f(x) = \sin 2x \cos 2x$,其中 x 爲任意實數。請選出下列正確的選項:
 - (1) f(x) 為奇函數
 - (2) $f(\frac{\pi}{10}) > f(\frac{\pi}{9})$
 - (3) $x = \frac{7}{8}\pi$ 爲 y = f(x) 圖形的對稱軸
 - (4) 若 $0 \le x \le \frac{\pi}{2}$, 則 f(x)的最大值爲 $\sqrt{2}$, 最小值爲 -1
 - (5) y = f(x)的圖形可由 $y = \sqrt{2} \sin 2x$ 的圖形左移 $\frac{7}{8}\pi$ 而得

- 9. 設 $\langle a_n \rangle$ 、 $\langle b_n \rangle$ 為兩實數數列,若 $\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$,對任何自然數 n 均成立。請選出下列正確的選項:
 - (1) $a_3 = 20$
 - (2) $< b_n >$ 為等比數列
 - (3) a_{50} 爲 7 的倍數
 - $(4) \quad \frac{a_{50}}{b_{50}} = -105$
 - $(5) \quad \frac{a_{104}}{b_{104}} = -207$

三、選填題(占12分)

- 説明:1. 第 A 題與第 B 題,請將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號 $(10\sim19)$ 。
 - 2. 每題完全答對給 6 分,答錯不倒扣,未完全答對不給分。
- A. $\triangle ABC$ 中, \overline{AB} =12, \overline{AC} =5, \overline{BC} =13,P 點爲 $\triangle ABC$ 內部一點,若 D 點在 \overline{BC} 上,且 $\overline{PD} \perp \overline{BC}$,則 $\overline{AP}^2 + \overline{PD}^2$ 最小値爲 $\frac{(0)(1)(2)(3)}{(4)(3)(6)}$ 。(化爲最簡分數)

B. $\Gamma: y = \frac{1}{6}x^2 + 3$ 和 $L_1 \times L_2$ 分别切於 $P(4, \frac{17}{3}) \times Q(0,3)$ 兩點,若有一圓 C,亦和 $L_1 \times L_2$ 皆相切,且此圓的半徑爲 2,已知圓心 (h,k)不在第一象限,則 (h,k) = (① (18), (19))。

------以下第貳部分的非選擇題,必須作答於答案卷-----

第貳部分:非選擇題(占24分)

説明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二)與子題號((1)、(2)、……),同時必須寫出演算過程或理由, 否則將予扣分甚至給零分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- 一、若以點 (1,2) 為切點且與 $y = f(x) = x^3 6x^2 + 11x 4$ 函數圖形相切的直線為 L,則:
 - (1) L直線的方程式爲何?(4分)
 - (2) L 與 y = f(x)兩函數圖形所圍成的封閉區域面積爲何?(8分)

- 二、空間中有三個相異平面 E_1 、 E_2 、 E_3 , E_1 與 E_2 交於直線 $L:\frac{x+5}{3}=\frac{y+2}{2}=\frac{z-a}{2}$, E_2 與 E_3 交於直線 $M:\frac{x-5}{4}=\frac{y+a}{3}=\frac{z-1}{2}$,試求:
 - (1) a = ? (3 分)
 - (2) L 與 M 的交點坐標爲何?(4 分)
 - (3) E₂的方程式:(5分)

臺中區國立高級中學 103 學年度大學入學第四次指定科目聯合模擬考

數學甲者科解析

1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15
5	4	5	3	15	345	145	345	125	1	8	0	0	1	6
16	17	18	19											
9	_	2	1											

第壹部分:選擇題

一、單撰題

1. 為了方便區分,令 $f_1(x) = S(x-a)(x-b) + T(x-a) + U$

$$f_2(x) = P\frac{(x-a)(x-b)}{(c-a)(c-b)} + Q\frac{(x-b)(x-c)}{(a-b)(a-c)} + R\frac{(x-a)(x-c)}{(b-a)(b-c)}$$

- (1) 觀察 f(x) 和 f(x) 的二次項係數,可知成立
- (2) 由 $f_1(a) = U$, $f_2(a) = Q$, 可知 U = Q 成立。
- (3) $\oplus f(0) = F$

$$f_2(0) = \frac{Pab}{(c-a)(c-b)} + \frac{Qbc}{(a-b)(a-c)} + \frac{Rac}{(b-a)(b-c)}$$

可知
$$F = \frac{Pab}{(c-a)(c-b)} + \frac{Qbc}{(a-b)(a-c)} + \frac{Rac}{(b-a)(b-c)}$$
 成立

- (4) $\boxplus f(c) = Dc^2 + Ec + F$, $f_2(c) = P$
- 可知 $Dc^2 + Ec + F = P$ 成立
- (5) $\boxplus f_1(b) = T(b-a) + U$, $f_2(b) = R$
- 可知應爲T(b-a)+U=R才正確
- 而 T(a-b)+U=R 不一定成立
- 2. 取 \overline{CD} 的中點E做 $\overline{EF} \perp \overline{AB}$ 交 \overline{AB} 於F
 - 因 $\triangle AFC \cong \triangle AFD \Rightarrow \overline{CF} = \overline{DF}$,故 $\overline{EF} \perp \overline{CD}$

$$\overline{AE} = \sqrt{25^2 - 10^2} = \sqrt{525}$$

$$\overline{BE} = \sqrt{20^2 - 10^2} = \sqrt{300}$$

 $rac{dF}{dF} = x$

則
$$\overline{EF}^2 = 525 - x^2$$

$$=300-(25-x)^2$$

$$=300-(25-$$

⇒
$$x = 17$$

故 $\overline{EF} = \sqrt{525 - 17^2} = \sqrt{236}$, 選(4)

3. $1-z=1-\cos\frac{2\pi}{7}-i\sin\frac{2\pi}{7}=2\sin^2\frac{\pi}{7}-i(2\sin\frac{\pi}{7}\cos\frac{\pi}{7})$

$$= 2\sin\frac{\pi}{7}(\sin\frac{\pi}{7} - i\cos\frac{\pi}{7}) = 2\sin\frac{\pi}{7}(\cos\frac{5\pi}{14} - i\sin\frac{5\pi}{14})$$

$$=2\sin\frac{\pi}{7}\left[\cos(-\frac{5\pi}{14})+i\sin(-\frac{5\pi}{14})\right]$$

$$=2\sin\frac{\pi}{7}\left[\cos\frac{23\pi}{14}+i\sin\frac{23\pi}{14}\right]$$

故
$$Arg(1-z) = \frac{23\pi}{14}$$
, 選(5)

4. 分別假設 t, ,t, ,t, 為三個濃度所經過外洩的時間,所以有下 列關係

$$0.05 = 2^{kt_1} - 1 \quad \dots (1)$$

$$\begin{cases} 0.26 = 2^{kt_2} - 1 & \dots (2) \end{cases}$$

$$4.04 = 2^{kt_3} - 1$$
(3)

移項後
$$\frac{(2)}{(1)}$$
,得 $\frac{1.26}{1.05} = \frac{2^{k_2}}{2^{k_1}}$

再
$$\frac{(5)}{(2)} = \frac{5.04}{1.26} = \frac{2^{kt_3}}{2^{kt_2}} \Rightarrow 4 = 2^{k(t_3 - t_2)} = (2^{10k})^{\frac{t_3 - t_2}{10}} \dots (6)$$

將(4)代入(6), 得 $4 = (1.2)^{\frac{t_3-t_2}{10}}$, 再兩邊同取對數

$$\log 4 = \log(1.2)^{\frac{t_3 - t_2}{10}} = \frac{t_3 - t_2}{10} \log(1.2)$$

查表得 log 1.2 = 0.0792 , log 4 = 0.6020

代入
$$t_3 - t_2 = (\frac{0.6020}{0.0792})10 \approx 76$$
,所以選(3)

二、多選題

- 5. (1) 期望值的性質
 - (2) $Var(Y) = a^2 Var(X)$
 - (3) 不一定。舉例:設E(X) > 0且Y = -X,則 $E(X^2) = E(Y^2)$
 - (4) 不一定,由 $\sigma^2(X) = E(X^2) [E(X)]^2$ 仍無法判斷
 - $(5) E(X^{2}) = Var(X) + \left[E(X) \right]^{2} > Var(Y) + \left[E(Y) \right]^{2} = E(Y^{2})$ 故正確選項爲(1)(5)
- 6. (1) 由 $\lim_{x\to 2} \frac{x^2-4}{x-2} = \lim_{x\to 2} (x+2) = 4$,可知(1)不正確
 - (2) 因為 $\left[\lim_{x\to 1}\frac{1}{x-1}\right]$ 不存在,所以 $\left[\lim_{x\to 1}(x^2-1)\right]\left[\lim_{x\to 1}\frac{1}{x-1}\right]$ 不存

 - (3) 因為 $\lim_{x\to 1} \frac{x^2 + ax + b}{x^2 1}$ 存在,所以 x = -1 代入分子為 0,得
 - $(-1)^2 a + b = 0$, 將 b = a 1 代入上式,得

$$\lim_{x \to -1} \frac{x^2 + ax + a - 1}{x^2 - 1} = \lim_{x \to -1} \frac{(x+1)(x-1+a)}{(x+1)(x-1)} = \lim_{x \to -1} \frac{x - 1 + a}{x - 1}$$

又已知極限値 $\lim_{x\to -1} \frac{x-1+a}{x-1} = \frac{3}{2}$, 得 a=-1

再代入得b=-2,可知(3)正確

(4) 因爲 f(x) 在 x=1 可微分

所以
$$\lim_{x\to 1^+} \frac{f(x)-f(1)}{x-1} = \lim_{x\to \Gamma} \frac{f(x)-f(1)}{x-1}$$
,得 $a=2$

又因爲 f(x) 在 x=1 可微分,可推得 f(x) 在 x=1 爲連續 所以 $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^-} f(x) = f(1)$,得 a+b=1 ,所以 b=-1可知(4)正確

(5) 由 $\int (\tan x) dx = F(x) + c$,可知 $F'(x) = \tan x$,而由微分的

定義可知 $\lim_{x \to \frac{\pi}{4}} \frac{F(x) - F(\frac{\pi}{4})}{x - \frac{\pi}{4}} = F'(\frac{\pi}{4}) = \tan \frac{\pi}{4} = 1$,所以(5)正確

7. (1) 設 $\triangle ABC$ 的內切圓的半徑爲 r

$$\exists \ \ | \ r = \frac{\Delta}{s} = \frac{\sqrt{9 \times 2 \times 3 \times 4}}{9} = \frac{2\sqrt{6}}{3}$$

(2) 設內切圓與 \overline{AB} 交於 F

則
$$\overline{AF} = \overline{AE}$$
 , $\overline{BF} = \overline{BD}$

 $\overline{CD} = \overline{CE}$

$$\overline{BF} = \overline{BD} = y$$
, $\overline{CD} = \overline{CE} = z$

$$\Rightarrow \begin{cases} x + y = 7 \\ y + z = 6 \end{cases}$$
, $\Rightarrow \begin{cases} x = 3 \\ y = 4 \\ z = 2 \end{cases}$

$$\Rightarrow \overline{AD} = \frac{2}{4 + 2} \overline{AB} + \frac{4}{4 + 2} \overline{AC} = \frac{1}{3} \overline{AB} + \frac{2}{3} \overline{AC}$$
 為非

⇒
$$\overline{AD} = a = 5$$
, (3) 爲非

(4) 爲眞

$$(5) \ \ \widehat{\uparrow} \ \overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$$

$$\iiint \overrightarrow{AM} = \alpha \overrightarrow{AB} + \beta (\frac{5}{3} \overrightarrow{AE}) = \alpha (\frac{7}{3} \overrightarrow{AF}) + \beta \overrightarrow{AC}$$

因 $B \cdot M \cdot E$ 三點共線,且 $C \cdot M \cdot F$ 也三點共線,故

8. (1) $f(-x) = \sin(-2x) - \cos(-2x) = -\sin 2x - \cos 2x$ $\neq -(\sin 2x - \cos 2x) = -f(x)$,故 f(x) 不是奇函數

(2)〈解法一〉:

$$f(\frac{\pi}{10}) = \sin\frac{\pi}{5} - \cos\frac{\pi}{5}$$
, $f(\frac{\pi}{9}) = \sin\frac{2\pi}{9} - \cos\frac{2\pi}{9}$

$$\sqrt{\sin\frac{\pi}{5}} < \sin\frac{2\pi}{9}$$
, $\cos\frac{\pi}{5} > \cos\frac{2\pi}{9}$, $\forall f(\frac{\pi}{10}) < f(\frac{\pi}{9})$

〈解法二〉:

$$f(x) = \sin 2x - \cos 2x = \sqrt{2} \left(\sin 2x \cdot \cos \frac{\pi}{4} - \cos 2x \cdot \sin \frac{\pi}{4}\right)$$

$$=\sqrt{2}\sin(2x-\frac{\pi}{4})$$

$$f(\frac{\pi}{10}) = \sqrt{2}\sin(2\cdot\frac{\pi}{10} - \frac{\pi}{4}) = \sqrt{2}\sin(-\frac{\pi}{20})$$

$$f(\frac{\pi}{9}) = \sqrt{2}\sin(2\cdot\frac{\pi}{9} - \frac{\pi}{4}) = \sqrt{2}\sin(-\frac{\pi}{36})$$

$$\sqrt{2}\sin(-\frac{\pi}{20}) < \sqrt{2}\sin(-\frac{\pi}{36})$$
, the $f(\frac{\pi}{10}) < f(\frac{\pi}{9})$

(3) 通過最大值與最小值處的鉛直線,即爲圖形的對稱軸

對稱軸方程式:
$$2x - \frac{\pi}{4} = (2k+1) \cdot \frac{\pi}{2}$$
, $k \in \mathbb{Z}$

$$\Rightarrow x = (\frac{k}{2} + \frac{3}{8})\pi \quad k \in \mathbb{Z}$$

故 $x = \frac{7}{8}\pi$ 爲 y = f(x) 圖形的對稱軸

(4)
$$0 \le x \le \frac{\pi}{2} \Rightarrow 0 \le 2x \le \pi \Rightarrow -\frac{\pi}{4} \le 2x - \frac{\pi}{4} \le \frac{3\pi}{4}$$

$$\Rightarrow -\frac{\sqrt{2}}{2} \le \sin(2x - \frac{\pi}{4}) \le 1 \Rightarrow -1 \le \sqrt{2}\sin(2x - \frac{\pi}{4}) \le \sqrt{2}$$

$$\Rightarrow -1 \le f(x) \le \sqrt{2}$$

(5)
$$y = \sqrt{2} \sin 2x - \frac{\pm 8 \frac{7}{8} \pi}{\sqrt{2} \sin 2(x + \frac{7}{8} \pi)}$$

$$= \sqrt{2}\sin(2x + \frac{7}{4}\pi) = \sqrt{2}\sin(2x - \frac{\pi}{4}) = f(x)$$

故正確選項爲(3)(4)(5)

9.
$$\begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} a_{n-1} \\ b_{n-1} \end{bmatrix} \Rightarrow \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 0 & 2 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -4 \\ 0 & 2 \end{bmatrix}^{n-1} = \left(\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix} \right)^{n-1}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{n-1} + C_1^{n-1} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{n-2} \cdot \begin{bmatrix} 0 & -4 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2^{n-1} & -4(n-1) \cdot 2^{n-2} \\ 0 & 2^{n-1} \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} 2^{n-1} & -4(n-1) \cdot 2^{n-2} \\ 0 & 2^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2^{n-1}(2n-1) \\ -2^{n-1} \end{bmatrix}$$

(1) $a_3 = 2^{3-1}(2 \times 3 - 1) = 20$

(2) $b_{n+1} = 2b_n$,故 < b_n > 為首項 = -1,公比為 2 的等比數列

(3)
$$a_{50} = 2^{49}(2 \times 50 - 1) = 2^{49} \times 99 = 2^{49} \times 3^2 \times 11$$
,非7的倍數

(4)
$$\frac{a_n}{b_n} = \frac{2^{n-1}(2n-1)}{-2^{n-1}} = -(2n-1)$$
 , $\ddagger \frac{a_{50}}{b_{50}} = -99$

$$(5) \ \frac{a_{104}}{b_{104}} = -207$$

故(1)(2)(5)爲眞

三、選填題

A. 設 $\overline{PF} \perp \overline{AB}$ 於 F點, $\overline{PE} \perp \overline{AC}$ 於 E點, $\overline{PD} = x$, $\overline{PE} = y$, $\overline{PF} = z$, ΔABC 的面積爲 Δ

則 $\Delta = \frac{1}{2} \times 12 \times 5 = \frac{1}{2} (13x + 5y + 12z) \Rightarrow 13x + 5y + 12z = 60$

因
$$(x^2 + y^2 + z^2)(13^2 + 5^2 + 12^2) \ge (13x + 5y + 12z)^2$$

故
$$(x^2 + y^2 + z^2) \times 338 \ge 60^2$$

$$\Rightarrow \overline{AD}^2 + \overline{AP}^2 = x^2 + y^2 + z^2 \ge \frac{3600}{338} = \frac{1800}{169}$$

B. 由 $f'(x) = \frac{x}{3}$,得 $f'(4) = \frac{4}{3}$, f'(0) = 0 ,即爲兩切線斜率

所以
$$L_1$$
: $y - \frac{17}{3} = \frac{4}{3}(x - 4)$, L_2 : $y = 3$

整理得 $L_1: 4x-3y+1=0$

因爲圓C和 L_1 , L_2 皆相切,所以圓心必在 L_1 , L_2 的角平分線上

由角平分線公式
$$\frac{|4x-3y+1|}{5} = \frac{|y-3|}{1}$$

整理得角平分線為 x-2v+4=0 或 2x+v-7=0

因爲半徑爲 2,圓和 L_2 : y=3 相切,所以圓心的 y 坐標爲 1 或 5

分別代入角平分線得圓心爲 (-2,1) or (3,1) or (3,5) or (1,5)

因爲圓心不在第一象限,所以圓心爲(-2,1)

第貳部分:非選擇題

- (1) L: 2x-y=0; (2) $\frac{27}{4}$

詳解:

10-

(1) -5; (2) (1,2,-1); (3) 2x-2y-z+1=0

詳解:

(1) :: L 與 M均落在 E_2 上,且 $L \times M$,:: L 與 M 相交於一點

$$L: \begin{cases} x = -5 + 3t \\ y = -2 + 2t, t \in R \end{cases}, M: \begin{cases} x = 5 + 4s \\ y = -a + 3s, s \in R \\ z = 1 + 2s \end{cases}$$

欲求 L 與 M的交點坐標,即解 $\begin{cases} -5+3t=5+4s\\ -2+2t=-a+3s\\ a+2t=1+2s \end{cases}$

可得 t=2 , s=-1 , a=-5

- (2) 將 t = 2 代入 L 或將 s = -1 代入 M 可得交點坐標為 (1, 2, -1)
- (3) L的方向向量爲 (3,2,2),M的方向向量爲 (4,3,2) $\therefore L$ 與 M均落在 E_2 上,且 L 與 M的方向向量均與 E_2 的 法向量垂直

∴可取 $\overrightarrow{n_2}$ = (3,2,2)×(4,3,2) = (-2,2,1) (2 分) 可令 E_2 : -2x+2y+z=k ,將 (1,2,-1) 代入 ,可得 k=1,故 E_2 : 2x-2y-z+1=0(3 分)