The Electromotive Force (emf) (P566 § 24-1)

How to maintain a steady current?

Electromotive force —— emf

Steady current loop

$$W_n = \int_{-}^{+} \overrightarrow{F}_n \cdot d\overrightarrow{s} = \int_{-}^{+} q \overrightarrow{E}_n \cdot d\overrightarrow{s}$$

$$\mathcal{E} = \frac{W_n}{Q} = \int_{-}^{+} \overrightarrow{E}_n \cdot \overrightarrow{A} \overrightarrow{S}$$

ideal source:

$$\mathcal{E} = \oint \vec{E}_n \cdot d\vec{s}$$

$$\underline{E}_{q\mathcal{E}} = qV_{ab}$$
 \Rightarrow $V_{ab} = \mathcal{E}^{R}$

$$V_{ab} = \mathcal{E}^{K}$$

Chapter 27, 28 Faraday's Law and Inductance

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{encl}}$$

electric current

magnetic field

- Question: Can an electric current be produced by a magnetic field?
 - M. Faraday (1791-1867) answered this question in 1831.

The Experiment of Induction

- From the experiment:
 - Steady magnetic field can not produce any current.
 - A time-varying magnetic field can induce an electric current.
 - The galvanometer shows a larger induced current when the relative motion of the magnet is faster.
 - ▶ It is the rate of change in the number of the magnetic field lines passing through the loop that determine the induced emf in the loop.

The Experiment of Induction

➤ It is the rate of change in the number of the magnetic field lines passing through the loop that determine the induced emf in the loop.

4

Faraday's Law and Lenz's Law

- Faraday's law:
 - The emf induced in a circuit is equal to the time rate of change of magnetic flux through the circuit.

▶ If the circuit is a coil consists of N turns.

$$|\mathcal{E}| = N \left| \frac{d\Phi_B}{dt} \right|$$

- How about the direction of the induced emf?
- Lenz's law

Faraday's Law and Lenz's Law

Lenz's law

→ The polarity of the induced emf in a loop is such that it produces a current whose magnetic field opposes the change in magnetic flux through the loop.
Another statement:

→ The induced current is in a direction such that the induced magnetic field attempts to maintain the original flux through the loop.

Faraday's law

Complete Faraday's law:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \iint_{\text{surrounding surface}} \vec{B} \cdot d\vec{A}$$

→ A coil consists of N turns:

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

How to Determine the Sign of Induced emf

- The relationship between the direction of emf ${\cal E}$ and the sign of $\Phi_{\rm B}$
 - ▶ Using the right-hand rule to determine the sign of $\Phi_{\rm B}$ and the sign of emf \mathcal{E} .

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt} \iint_{\substack{\text{surrounding} \\ \text{surface}}} \vec{B} \cdot d\vec{A}$$

How to Determine the Sign of Induced emf

• Using the right-hand rule to determine the sign of $\Phi_{\rm B}$ and the sign of emf \mathcal{E} .

Positive flux
$$(\Phi_B > 0)$$

Flux becoming more positive $(\frac{d\Phi_B}{dt} > 0)$
Induced emf is negative $(\mathcal{E} < 0)$

Positive flux
$$(\Phi_B > 0)$$

Flux becoming less positive $(\frac{d\Phi_B}{dt} < 0)$
Induced emf is positive $(\mathcal{E} > 0)$

How to Determine the Sign of Induced emf

• Using the right-hand rule to determine the sign of $\Phi_{\rm B}$ and the sign of emf \mathcal{E} .

Negative flux ($\Phi_B < 0$)
Flux becoming more negative ($\frac{d\Phi_B}{dt} < 0$)
Induced emf is positive ($\mathcal{E} > 0$)

Negative flux $(\Phi_B < 0)$ Flux becoming less negative $(\frac{d\Phi_B}{dt} > 0)$ Induced emf is negative $(\mathcal{E} < 0)$

Example

A plane loop of area A is placed in a region where a uniform magnetic field is an angle θ to the normal to the plane. The magnitude of the magnetic field varies with time according to the expression $B = B_{\text{max}} e^{-\alpha t}$. Find the induced emf in the loop as a function of time.

Solution: Choose the direction of area vector point to downward.

$$\Phi_{B} = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta$$
$$= AB_{\text{max}} e^{-\alpha t} \cos \theta$$

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

$$= -\left(-\alpha A B_{\text{max}} e^{-\alpha t} \cos \theta\right)$$

$$= \alpha A B_{\text{max}} \cos \theta e^{-\alpha t}$$

What makes the magnetic flux change?

- What makes the magnetic flux change?
 - Is the loop or coil changing orientation or part of the loop moving? —— Motional emf.
 - ▶ Is the magnetic field changing? —— Induced electric field as the nonelectrostatic field.

Motional emf

Induced emf

§ 2 Motional emf

Staring with the slide-wire generator

A U-shaped conductor in a uniform magnetic field B perpendicular to the plane, directed into page. A metal rod with length L across the two arms of the conductor, forming a circuit. The metal rod slides to the right with a constant velocity \vec{v} . Find the motional emf.

Motional emf

Choose the direction of area A as directing into the page.

→ The magnetic flux through the circuit:

$$\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A} = B(Lvt)$$

The induced emf:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -BLv$$

The negative sign means that direction of emf is counterclockwise.

The Origin of the Motional emf

- → The magnetic force exerting on the moving charge in rod acts as the non-electric force that produces the emf.
- ▶ The magnetic force: $\overrightarrow{F} = q\overrightarrow{v} \times \overrightarrow{B}$
- → The emf along the rod:

$$\mathcal{E} = \int_{a}^{b} \overrightarrow{E}_{n} \cdot d\overrightarrow{s} = \int_{a}^{b} \frac{\overrightarrow{F}}{q} \cdot d\overrightarrow{s} = \int_{a}^{b} (\overrightarrow{v} \times \overrightarrow{B}) \cdot d\overrightarrow{s}$$
$$= -\int_{0}^{L} vB ds = -vBL$$

The emf is induced in a conductor moving through a magnetic field, called motional emf.

The Origin of the Motional emf

➡ With Faraday's law, we cannot know which part of the circuit is the source of the emf. Here we know that the moving rod is the source of emf; within it, positive charge moves from lower to higher potential, and in the remainder of the circuit, charge moves from higher to lower potential.

Definition of Motional emf

- Definition of motional emf:
 - For moving current-carrying wire of any shape in a magnetic field

$$d\mathcal{E} = (\vec{v} \times \vec{B}) \cdot d\vec{s}, \quad \mathcal{E} = \int_{L} (\vec{v} \times \vec{B}) \cdot d\vec{s}$$

▶For any closed conducting loop:

$$\mathcal{E} = \oint_L (\vec{v} \times \vec{B}) \cdot d\vec{s}$$

Example

Motional emf induced in a rotating bar

A conducting bar of length <ali>length rotates with a angular speed <ali>length about a pivot at <ali>length one end. <ali>length is uniform and perpendicular to the plane of rotation. Find the emf induced the emf induced between the ends of the bar.

Motional emf induced in a rotating bar

Solution: Choose the direction of integration

to be from end O to end A.

$$\mathcal{E} = \int_{O}^{A} (\vec{v} \times \vec{B}) \cdot d\vec{s}$$

$$= \int_{0}^{l} (-Bv)dr = -\int_{0}^{l} B\omega r dr = -\frac{1}{2} B\omega l^{2} dr$$

The negative sign means that the real direction of emf is opposite to the direction of integration, and potential at end *A* is lower than end *O*.

The alternating-current generator

A N -turn rectangular loop of area A is made to rotate in an external uniform magnetic field, with a angular velocity ω about the axis. Find the emf.

The alternating-current generator

Solution: Assume at time t=0, the direction of area \overrightarrow{A} is in alignment with \overrightarrow{B} .

The flux through the loop

$$\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta = BA \cos \omega t$$

By Faraday's law,

$$\mathcal{E} = -N \frac{d\Phi_B}{dt} = \omega NAB \sin \omega t$$
$$= \mathcal{E}_{\text{max}} \sin \omega t$$

Example

A rod with length *l*, mass *m*, and resistance *R* slides without friction down parallel conducting rails of negligible resistance. The rails are connected together at the bottom, forming a conducting loop with the rod as the top member. The plane of the rails makes an angle θ with the horizontal, and a uniform vertical magnetic field *B* exists throughout the region. (1) What is the terminal speed of the rod? (2) What is the induced current in the rod when the terminal speed has been reached?

Example

Solution: (1) Newton's law for the rod

$$m\frac{dv}{dt} = mg\sin\theta - F_B\cos\theta$$

The motional emf: $\vec{L}: a \rightarrow b$

$$\mathcal{E} = (\vec{v} \times \vec{B}) \cdot \vec{L} = vB\sin(90^{\circ} + \theta)L = vBL\cos\theta$$

The current in the loop:

$$I = \frac{\mathcal{E}}{R} = \frac{vBL\cos\theta}{R}$$

The magnetic force acts on the rod

$$F_B = I \mid \overrightarrow{L} \times \overrightarrow{B} \mid = ILB = \frac{vB^2L^2\cos\theta}{R}$$

Example Cont'd

Newton's law for the rod becomes:

$$m\frac{dv}{dt} = mg\sin\theta - \frac{vB^2L^2\cos^2\theta}{R}$$

When the rod reaches its terminal speed: $\frac{dv}{dt} = 0$

The terminal speed:

$$v = \frac{mgR}{B^2 L^2} \frac{\sin \theta}{\cos^2 \theta}$$

(2) When the rod reaches the terminal speed, the induced current is:

$$I = \frac{vBL\cos\theta}{R} = \frac{mg}{BL}\tan\theta$$

Ch27 Prob. 11, 26, 27 (P640)

§ 3 Induced Electric Field

- What is the basis of induced emf when there is a changing flux through a stationary conducting loop?
 - Now we can understand that magnetic force is the reason of the induced emf in a moving conductor.
 - By Faraday's law, we only know the result that an induced emf also occurs when there is a changing flux through a stationary conducting loop.
 - ➡ But up to now, we don't know what force makes the charges moving around the loop. It can't be a magnetic force because the conductor is not moving in the

magnetic field.

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

The Induced Electric Field as the Source of Induced emf

- Maxwell's suggestion: induced electric field
 - There must be an induced electric field (nonelectrostatic field) created in the conductor as a result of changing magnetic flux.
 - This kind of electric field is induced even when no conductor is present.

The Confused Points for Induced emf

- Confused points
 - ▶ We were accustomed to thinking about electric field as being caused by electric charges. Now we know that a changing magnetic field can also act as a source of electric field.

Electrostatic field

Induced electric field

The Confused Points for Induced emf

▶ By the definition of emf, \mathcal{E} is equal to the work done by a non-electrostatic field, induced electric field \overrightarrow{F}_i , per unit charge.

$$\mathcal{E} = \oint \overrightarrow{E}_{i} \cdot d\overrightarrow{s} = -\frac{d\Phi_{B}}{dt} = -\frac{d}{dt} \iint_{\text{the surface suround the loop}} \overrightarrow{B} \cdot d\overrightarrow{A}$$

$$= \iint_{\text{Region of increasing } \overrightarrow{B}} -\frac{\partial \overrightarrow{B}}{\partial t} \cdot d\overrightarrow{A}$$
Region of increasing \overrightarrow{B}

→ The line integral around a closed path is not zero.
So the induced electric field is not conservative.

General Form of Faraday's Law

 The relationship between the induced electric field and the changing magnetic field

$$\oint_{L} \overrightarrow{E_{i}} \cdot d\overrightarrow{s} = -\frac{d\Phi_{B}}{dt} = -\iint_{S} \frac{\partial \overrightarrow{B}}{\partial t} \cdot d\overrightarrow{A}$$

Valid not only in conductors, but in any region of space.

The Features of Induced Electric Field

Electrostatic field vs. Induced electric field

	Electrostatic field \overrightarrow{E}_s	Induced electric field \overrightarrow{E}_i
The source of the field	The charges	The changing magnetic field
Line integral around a closed path	$ \oint_{L} \vec{E}_{s} \cdot d\vec{s} = 0 $ Conservative	$ \oint_{L} \vec{E}_{i} \cdot d\vec{s} = -\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A} $ Non-conservative
Gauss's law	$\iint_{S} \overrightarrow{E}_{s} \cdot d\overrightarrow{A} = \frac{q_{\text{encl}}}{\mathcal{E}_{0}}$ Field lines begin and end on	$ \oint_{S} \overrightarrow{E}_{i} \cdot d\overrightarrow{A} = 0 $ Field lines form closed
	charge	loops

Example

Electric field induced by a changing magnetic field in a solenoid

A long solenoid of radius R has

n turns of wire per unit length and carries a time-varying current that varies sinusoidally as $I=I_{max}\cos\omega t$.

- (1) Determine the magnitude of the induced electric field outside the solenoid, a distance *r>R* from its long central axis.
- (2) Find the induced electric filed inside the solenoid, a distance r < R from its axis.

Electric field induced by a changing magnetic field

in a solenoid

Solution: Choose a path for the line integral to be a circle of radius \underline{r} centered on the solenoid. By symmetry, the \overline{E} is tangent to the circle and has constant magnitude on it.

$$\left| \oint_{L} \vec{E} \cdot d\vec{s} \right| = \left| E \oint_{L} ds \right| = \left| E \right| (2\pi r)$$

$$= \left| -\frac{d\Phi_B}{dt} \right| = \left| \frac{d}{dt} \left(B\pi R^2 \right) \right| = \pi R^2 \left| \frac{dB}{dt} \right|$$

$$I_{\text{max}} \cos \omega t$$

$$\left| \overrightarrow{E} \right| = \frac{R^2}{2r} \left| \frac{dB}{dt} \right| = \frac{R^2}{2r} \left| \frac{d}{dt} (\mu_0 n I_{\text{max}} \cos \omega t) \right|$$

$$=\frac{\mu_0 n I_{\max} \omega R^2}{2r} |\sin \omega t|$$

(for r > R)

Example Cont'd

For an interior point (r < R)

$$|E|(2\pi r) = \left| -\frac{d\Phi_B}{dt} \right| = \left| \frac{d}{dt} (B\pi r^2) \right| = \pi r^2 \left| \frac{dB}{dt} \right|$$

$$\left| \overrightarrow{E} \right| = \frac{r}{2} \left| \frac{dB}{dt} \right|$$

$$= \frac{r}{2} \left| \frac{d}{dt} \left(\mu_0 n I_{\text{max}} \cos \omega t \right) \right|$$

$$= \frac{\mu_0 n I_{\text{max}} \omega}{2} r |\sin \omega t| \quad \text{for } r < R \qquad |I_{\text{max}} \cos \omega t|$$

A uniform magnetic field **B** fill with cylinrical volume of radius R. A metal rod ab of length L is placed as shown in the figure. If B is changing at the constant rate (dB/dt) > 0, find the emf acting between the end a and b of the rod.

Example Cont'd

Solution I: By line integration of induced electric field.

For
$$(dB/dt) > 0$$
 we have know that : $E = \begin{cases} \frac{r}{2} \frac{dB}{dt} \\ \frac{R^2}{2r} \frac{dB}{dt} \end{cases}$

for
$$r < R$$

$$\frac{dB}{dt}$$

for
$$r > R$$

$$\mathcal{E}_{ab} = \int_{a}^{b} \overrightarrow{E} \cdot d\overrightarrow{s} = \int_{-L/2}^{L/2} E \cos \theta ds$$

$$\int_{-L/2}^{L/2} r \, dB \cos \theta ds$$

$$= \int_{-L/2}^{L/2} \frac{r}{2} \frac{dB}{dt} \cos \theta ds$$

$$=\frac{1}{2}\frac{dB}{dt}\int_{-L/2}^{L/2}r\cos\theta ds$$

$$r\cos\theta = \sqrt{R^2 - \frac{L^2}{4}},$$

$$r\cos\theta = \sqrt{R^2 - \frac{L^2}{4}}, \quad \mathcal{E}_{ab} = \frac{1}{2}\sqrt{R^2 - \frac{L^2}{4}} \frac{dB}{dt} \int_{-L/2}^{L/2} ds = \frac{L}{2}\sqrt{R^2 - \frac{L^2}{4}} \frac{dB}{dt}$$

Solution II: Using Faraday's law Choose the loop *abO*.

$$\Phi_B = \overrightarrow{B} \cdot \overrightarrow{A}_{abO} = -BA_{abO} = -B\frac{L}{2}\sqrt{R^2 - \frac{L^2}{4}}$$

$$\mathcal{E}_{OabO} = \mathcal{E}_{Oa} + \mathcal{E}_{ab} + \mathcal{E}_{bO} = -\frac{d\Phi_B}{dt}$$

$$=A_{abO}\frac{dB}{dt}$$

$$\mathcal{E}_{Oa} = \int_{O}^{a} \overrightarrow{E}_{n} \cdot d\overrightarrow{s} = 0,$$

$$\mathcal{E}_{bO} = 0, \qquad \mathcal{E}_{ab} = \frac{L}{2} \sqrt{R^2 - \frac{L^2}{4} \frac{dB}{dt}}$$

When
$$\frac{dB}{dt} > 0$$
, $\varepsilon_{ab} > 0$

The potential at end b is higher than end a.

A long, straight wire carries a time-varying current $I = I_0 \sin \omega t$. A rectangular wire loop of sides a and b is placed in the same plane as the straight current is, and a distance x_0 from the straight current. The wire loop starts to move to the right at the speed of v at t = 0. Determine the induced emf in the wire loop at

time t.

Solution I: Using Faraday's law

Choose the loop direction as shown in the figure

$$x = x_0 + vt$$

$$\Phi_B = \int_x^{x+a} \frac{\mu_0 I}{2\pi x} b dx = \frac{b\mu_0 I_0 \sin \omega t}{2\pi} \ln \frac{x+a}{x}$$

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

$$= -\frac{b\mu_0 I_0}{2\pi} \left[\sin \omega t \frac{x}{x+a} \frac{x - (x+a)}{x^2} \frac{dx}{dt} + \ln \frac{x+a}{x} \omega \cos \omega t \right]$$

$$= \frac{b\mu_0 I_0}{2\pi} \left[\frac{av}{x(x+a)} \sin \omega t - \ln \frac{x+a}{x} \omega \cos \omega t \right]$$

$$\mathcal{E} = \frac{b\mu_0 I_0}{2\pi} \left[\frac{av}{x(x+a)} \sin \omega t - \ln \frac{x+a}{x} \omega \cos \omega t \right]$$

Solution II: By calculation of motional emf and induced electric field.

$$\mathcal{E} = \mathcal{E}_m + \mathcal{E}_i$$

$$\mathcal{E}_{m} = vbB_{x} - vbB_{x+a} = vb\frac{\mu_{0}I}{2\pi} \left(\frac{1}{x} - \frac{1}{x+a}\right) = \frac{vb\mu_{0}I}{2\pi} \frac{a}{x(x+a)}$$

$$= \frac{b\mu_0 I_0}{2\pi} \frac{av}{x(x+a)} \sin \omega t$$

$$\left. \mathcal{E}_{i} = -\frac{d\Phi_{B}}{dt} \right|_{x=\text{const}} = -\frac{b\mu_{0}I_{0}}{2\pi} \ln \frac{x+a}{x} \omega \cos \omega t$$

§ 4 Self-Inductance

- Inductor and self-induced emf:
 - ◆ An inductor is a circuit element such as solenoid that stores energy in the magnetic field surrounding its current-carrying wires, just as a capacitor store energy in the electric field between its charged plates.
 - For a circuit including a solenoid

Inductor and self-induced emf

- → The emf set up by changing self-current is called self-induced emf \mathcal{E}_L
- ▶By Lenz's law a self-induced emf always opposes the change in the current that caused the emf, and then tends to make it more difficult for variation in current to occur.

Self-induced emf:

$$\mathcal{E}_{L} = -L \frac{dI}{dt}$$

- **▶**∠ > 0
- **▶**The negative sign reflects Lenz's law.

$$- \underbrace{\mathcal{E}_L}_{increasing}$$

Definition of the Self-inductance

- The self-inductance
 - → The proportionality constant L is called the selfinductance.
 - From Faraday's law

$$\mathcal{E}_{L} = -\frac{d(N\Phi_{B})}{dt} \implies L\frac{dI}{dt} = \frac{d(N\Phi_{B})}{dt}$$

▶ Integrating with respect to the time, and assuming that Φ_B =0 when I=0

$$L = \frac{N\Phi_B}{I}$$

SI unit: H (Henry)

▶ Note that, since Φ_B is proportional to the current, the self-inductance is independent of I. Just as the capacitance, the self-inductance depends only on the geometry of the device.

Inductance of a solenoid

Find the inductance of a uniformly round solenoid having *N* turns and length *l*. Assume that *l* is long compared with the radius and the core of the solenoid.

Inductance of a solenoid

Solution: For an ideal solenoid, the interior magnetic field is uniform.

$$B = \mu_0 nI = \mu_0 \frac{N}{l}I$$

The magnetic flux through each turn is

$$\Phi_{B} = BA = \mu_{0} \frac{NA}{l} I$$

$$L = \frac{N\Phi_{B}}{l} = \frac{\mu_{0}N^{2}A}{l} = \mu_{0} \frac{N^{2}}{l^{2}} (Al) = \mu_{0}n^{2}V$$

Inductance of a coaxial cable

A long coaxial cable consists of two concentric cylindrical conductors of radii *a* and *b* and length *l*. The conductors carry current *I* in opposite directions. Find the selfinductance of this cable.

Inductance of a coaxial cable

The magnetic field between $B = \frac{\mu_0 I}{2\pi r}$ the conductors:

Divide the rectangular cross section into strips of width dr.

$$\Phi_{B} = \iint \vec{B} \cdot d\vec{A} = \int_{a}^{b} \left(\frac{\mu_{0}I}{2\pi r}\right) (ldr)$$
$$= \frac{\mu_{0}Il}{2\pi} \int_{a}^{b} \frac{dr}{r} = \frac{\mu_{0}Il}{2\pi} \ln\left(\frac{b}{a}\right)$$

$$L = \frac{\Phi_B}{I} = \frac{\mu_0 l}{2\pi} \ln\left(\frac{b}{a}\right)$$

Ch28 Prob. 16, 48 (P656)

§ 6 Energy Stored in a Magnetic Field

- Starting with a RL circuit:
 - The switch jumps to 1 from 2.

$$\mathcal{E} = IR + L\frac{dI}{dt}$$

$$\int_0^t \mathcal{E}Idt = \int_0^t I^2 R dt + \int_0^t LI \frac{dI}{dt} dt$$

- ◆ The first term on right side:
 The energy is dissipated in the resistor.
- ◆ The second term on right side: The energy that is delivered to the inductor and is stored in the magnetic field through the coil.

Energy stored in an inductor

$$\int_0^t \mathcal{E}Idt = \int_0^t I^2 R dt + \int_0^t LI \frac{dI}{dt} dt$$

Energy stored in the inductor

$$U_B = \int_0^t LI \frac{dI}{dt} dt = \int_0^I LI dI = \frac{1}{2} LI^2$$

→Which one is the storehouse of the energy, the inductor or the magnetic field?

The Energy Density in Magnetic Field

- Energy stored in magnetic field.
 - ▶ Take a solenoid as an example.

$$L = \mu_0 n^2 V, \quad B = \mu_0 n I,$$

$$U_{B} = \frac{1}{2}LI^{2} = \frac{1}{2}(\mu_{0}n^{2}V)\left(\frac{B}{\mu_{0}n}\right)^{2} = \frac{B^{2}}{2\mu_{0}}V \propto \begin{cases} B^{2} \\ V \end{cases}$$

- Energy is indeed stored in the space where the magnetic field exists.
- Energy density

$$u_B = \frac{U_B}{V} = \frac{B^2}{2\mu_0}$$

For a non-uniformed magnetic field

$$U_B = \iiint dU_B = \iiint_V \left(\frac{B^2}{2\mu_0}\right) dV$$

Energy in Electric and Magnetic Field

	Electric field	Magnetic field
Energy stored in the device	A capacitor stores energy $U_E = \frac{1}{2}C(\Delta V)^2$	An inductor stores energy $U_B = \frac{1}{2}LI^2$
Energy density in the field	$u_E = \frac{1}{2} \varepsilon_0 E^2$	$u_B = \frac{1}{2\mu_0}B^2$

The energy stored in a coaxial cable

A long coaxial cable consists of two concentric cylindrical conductors of radii a and b and length l. The conductors carry current l in opposite directions. Find the energy stored in this cable.

The energy stored in a coaxial cable

Solution:

The magnetic field between the conductors is $B = \mu_0 I / 2\pi r$ The magnetic field is zero inside the inner conductor r<a, and outside the outer conductor r>b.

$$U_{B} = \iiint \left(\frac{B^{2}}{2\mu_{0}}\right) dV = \int_{a}^{b} \left[\frac{1}{2\mu_{0}} \left(\frac{\mu_{0}I}{2\pi r}\right)^{2}\right] (2\pi r l dr)$$
$$= \frac{\mu_{0}I^{2}l}{4\pi} \int_{a}^{b} \frac{dr}{r} = \frac{\mu_{0}I^{2}l}{4\pi} \ln\left(\frac{b}{a}\right)$$

$$U_B = \frac{1}{2}LI^2 = \frac{\mu_0 I^2 l}{4\pi} \ln\left(\frac{b}{a}\right), \qquad L = \frac{\mu_0 l}{2\pi} \ln\left(\frac{b}{a}\right)$$

Ch28 Prob. 22 (P657)