CLAIMS:

1. (currently amended) A transfer tool comprising:

a housing having an interior surface; and

a ribbon substrate that travels inside the housing, the ribbon substrate being coated with a coating film to be transferred from the substrate; and

wherein-multiple projections that are formed at least in a region of the interior surface of the housing is roughened at least in a region-where the coating film on the ribbon substrate may contact the interior surface of the housing, wherein each of the projections has a center average height equal to or greater than 7.0 µm.

- 2. (original) A transfer tool as recited in claim 1, wherein the ribbon substrate is a tape.
- 3. (currently amended) A transfer tool as recited in claim 1, wherein at least the roughened surface of the housing contains a non-stick material is made, by a process of injection molding, of a material selected from a group comprising polyethylene and polypropylene.
- 4. (currently amended) A transfer tool as recited in claim 1, wherein <u>each of</u> the <u>roughened surface is formed of multiple projections has a higher point than any other points thereof in its configuration.</u>
- 5. (currently amended) A transfer tool as recited in claim 4, wherein the center line average height of the multiple projections is at leastgreater than 5.09.0 µm.
 - 6. (cancelled)
 - 7. (cancelled)
 - 8. (cancelled)

- 9. (currently amended) A transfer tool as recited in elaim 5claim 1, wherein a load length ratio of the multiple projections at a cut level of 20% is equal to or less than 20%.
- 10. (currently amended) A transfer tool as recited in claim 1, wherein the multiple projections are formed in the entire innerinterior surface of the housing has a roughened surface.
- 11. (currently amended) A transfer tool as recited in claim 1, wherein the housing has a roughened surfacethe multiple projections along a path where the substrate travels inside the housing.
- 12. (currently amended) A transfer tool as recited in claim 10claim 1, further comprising a dispenser at which the coating film is dispensed from the substrate, wherein the roughed multiple projections are formed surface is provided at least on an upstream side of the dispenser.

13. (cancelled)

- 14. (currently amended) A transfer tool as recited in claim 1, wherein the housing and the roughened inner surface are is formed, by a process of injection molding, of a material comprising that contains in it a non-stick material in an amount of 0.3 to 0.8% of material weight selected from a group comprising magnesium stearate, zinc stearate, aluminum stearate and calcium stearate.
- 15. (currently amended) A transfer tool as recited in claim 13-14, wherein the non-stick material is contained in the housing at an amount of 0.3 to 0.8% of material weightselected from a group comprising magnesium stearate, zinc stearate, aluminum stearate and calcium stearate.
- 16. (currently amended) A transfer tool as recited in <u>claim 4 claim 1</u>, wherein the projections are formed in a <u>patter pattern</u> selected from a group consisting of a

creping pattern, a grain pattern, a woven fabric pattern, a leather pattern, a repetition of predetermined pattern and a mat-finished pattern.

- 17. (original) A transfer tool as recited in claim 1, wherein the coating film is a correction film.
- 18. (original) A transfer tool as recited in claim 1, wherein the coating film is an adhesive film.
- 19. (original) A transfer tool as recited in claim 1, wherein the substrate is formed mainly of polyethylene terephthalate and has a thickness of about 25 µm.
- 20. (currently amended) A transfer tool as recited in claim 1, wherein the substrate is processed for both surfaces to exhibit a characteristic of releasability.
- 21. (currently amended) A transfer tool as recited in claim 18claim 1, wherein the coating film comprising emulsion-type acrylic adhesive, rosin-type tackifier, phthalocyanine blue colorant, crawling inhibitor and water.
- 22. (currently amended) A transfer tool as recited in elaim 18claim 1, wherein the coating film is about 20 μ m in thickness.
 - 23. (new) A transfer tool comprising:

a housing having an interior surface;

a ribbon substrate that travels inside the housing, the ribbon substrate being coated with a coating film to be transferred from the substrate; and

multiple projections that are formed at least in a region of the interior surface of the housing where the coating film on the ribbon substrate may contact the interior surface of the housing, wherein a ratio of a pitch to a height of the multiple projections is equal to or lower than 22.0.

24. (new) A transfer tool as recited in claim 23, wherein a tapered angle of a tip of each projection falls between 5° and 120°.

- 25. (new) A transfer tool as recited in claim 23, wherein the ribbon substrate is a tape.
- 26. (new) A transfer tool as recited in claim 23, wherein the housing is made, by a process of injection molding, of a material selected from a group comprising polyethylene and polypropylene.
- 27. (new) A transfer tool as recited in claim 23, wherein the multiple projections are formed in the entire interior surface of the housing.
- 28. (new) A transfer tool as recited in claim 23, wherein the housing has the multiple projections along a path where the substrate travels inside the housing.
- 29. (new) A transfer tool as recited in claim 23, further comprising a dispenser at which the coating film is dispensed from the substrate, wherein the multiple projections are formed at least on an upstream side of the dispenser.
- 30. (new) A transfer tool as recited in claim 23, wherein the housing is formed, by a process of injection molding, of a material that contains in it a non-stick material selected from a group comprising magnesium stearate, zinc stearate, aluminum stearate and calcium stearate.
- 31. (new) A transfer tool as recited in claim 30, wherein the non-stick material is contained in the housing at an amount of 0.3 to 0.8% of material weight.
- 32. (new) A transfer tool as recited in claim 23, wherein the coating film is a correction film.
- 33. (new) A transfer tool as recited in claim 23, wherein the coating film is an adhesive film.
- 34. (new) A transfer tool as recited in claim 23, wherein the substrate is formed mainly of polyethylene terephthalate and has a thickness of about 25 μ m.

- 35. (new) A transfer tool as recited in claim 23, wherein the substrate is processed for both surfaces to exhibit a characteristic of releasability.
- 36. (new) A transfer tool as recited in claim 23, wherein the coating film comprising emulsion-type acrylic adhesive, rosin-type tackifier, phthalocyanine blue colorant, crawling inhibitor and water.
- 37. (new) A transfer tool as recited in claim 23, wherein the coating film is about 20 μ m in thickness.