PROJECT REPORT:

Architectural diagram of the processor:

RTL Schematic:

Main memory Design:

- Harvard style memory design: separate data and instruction memory
- Data memory: 256*4 = 1024 bytes = 1KB consisting of 256 32-bit registers. Addressing is word-aligned.
- Instruction memory: 1024 bytes = 1 KB consisting of 1024 8-bit registers. Addressing is byte-aligned. Each instruction is of 4 bytes.

Instructions supported:

- R-type:
 - o ADD
 - SUB
 - o AND
 - o OR
 - NOR
 - XOR
 - SLT
 - SLTU
 - o SRL

- SRLV
- o SRA
- SRAV
- o SLL
- o SLLV
- <u>I-type:</u>
 - o ADDI
 - o ORI
 - ANDI
 - XORI
 - o SLTI
 - SLTIU
 - o BEQ
 - o BNE
 - o BLTZ
 - o BGTZ
 - o LW
 - ∘ SW
- <u>J-type:</u>
 - \circ J
 - JAL

Instructions not supported:

Certain R-type instructions haven't been implemented such as NAND, XNOR etc. Also, more complex instructions like MUL, DIV, move operations and trap instructions cannot be run on our simple processor.

Processor clock frequency:

Clock period = $100 \text{ ns} = 10^{-3} \text{ s}$

Other notable features:

- 2-stage pipeline: A register between the fetch and the decode/ exe stage stores the fetched instruction.
- Branch involves a No-Op instruction after the branch statement as due to the 2-stage pipeline, in the same clock cycle in which the Branch instruction is executed, the No-Op instruction is fetched and it doesn't affect the overall running of the processor.
- CPI: N+1/N where N is the no. Of instructions to be executed.
 CPI tends to 1 as N becomes very large.