概率论与数理统计模拟试题(六)

一、填空	题(每小题 3 分	·,共5小题,	,满分 15 分)
------	-----------	---------	-----------

1.	设事件 A 、	$B \nmid$	相互独立,	事件	B 、	C 互	不相容,	事	件 A -	与 <i>C</i> フ	下能同	时发	生,	且.
P(A) =	= P(B) = 0.5	5, <i>I</i>	P(C) = 0.2	,则	事件	<i>A</i> ,	<i>B</i> 和 <i>C</i> □	卜仅	C 发	生或仅	C 不	发生	的概	率
为多少														

2. 若 r. v X 的概率密度为 $f(x) = \begin{cases} 4x^2e^{-2x}, & x > 0 \\ 0, & x \le 0 \end{cases}$, 则 X 的分布函数为

 $F(x) = \underline{\hspace{1cm}}$

- 3. 设随机变量 X_1, X_2, X_3 相互独立,且 X_1 服从区间 (0,6) 上的均匀分布, X_2 服从正态分布 N(0,4) , X_3 服从参数为 3 的泊松分布,则 $Y = X_1 2X_2 + 3X_3$ 的方差 ______.
- 4. 设X,Y为两个随机变量, $DX=1,\ DY=4,\ {\rm cov}(X,Y)=1$,记 $X_1=X-2Y$, $X_2=2X-Y$,则 X_1,X_2 的相关系数是______.
- 5. 随机地取某种炮弹9发作试验,测得炮口速度的样本标准差S = 11m/s. 设炮口速度X 服从 $N(\mu, \sigma^2)$,求这种炮弹的炮口速度的标准差 σ 的95%的置信区间_____.

二、选择题(每小题3分,共5小题,满分15分)

(每小题给出的四个选项中,只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

- 1. 设 A, B, C 为三个事件且 A, B 相互独立,则以下结论中不正确的是 ()
- (A) 若P(C)=1,则AC 与 BC 也独立; (B) 若P(C)=1,则 $A \cup C 与 B$ 也独立;
- (C) 若P(C)=1,则A-C与A也独立; (D) 若 $C \subset B$,则A与C 也独立.
- 2. 设 r. v X, Y 独立同分布, $X \sim U[0,1]$,则下列 r. v 中服从均匀分布的是().
- (A) (X,Y); (B) X+Y; (C) X^2 ; (D) X-Y.
- 3. 设 X 为一随机变量 $EX=\mu$, $DX=\sigma^2$ (μ , $\sigma>0$, 常数),则对任意常数 C,必有 () .
 - (A) $E(X-C)^2 = E(X^2) C^2$; (B) $E(X-C)^2 = E(X-\mu)$;
 - (C) $E(X-C)^2 < E(X-\mu)^2$; (D) $E(X-C)^2 \ge E(X-\mu)^2$.
- 4. 设随机变量 X 的密度函数为 $f(x) = \frac{1}{2}e^{-|x|}$,则对随机变量 |X| 与 X ,下列结论成立的是().
 - (A) 相互独立; (B) 分布相同; (C) 互不相关; (D) 相关.

- 三、(10分)两台机床加工同样的零件,它们出现废品的概率分别为0.03和0.02。加工出的零件放在一起。设第一台机床加工的零件比第二台的多一倍,求任取一个零件是合格品的概率?

四、(10 分)设 r. v X 与 Y 相互独立,且均服从[0,1] 上的均匀分布,求 Z = X – Y | 的概率密度 $f_Z(z)$.

五、(10 分) 假定在排队等待胸透的50人中间有4个阳性患者,试求在发现第一个阳性患者之前已检查的阴性患者个数X的期望与方差?

六、(14 分) 假设随机变量
$$X$$
 的概率密度为 $f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}(x>0)$ (此

分布称作对数正态分布),求参数 μ 和 σ^2 的最大似然估计量和矩估计量.

七、 $(6\ eta)$ 几副相异的手套共2n 只,随机地分成n 堆,每堆2 只,以X 记"恰好成一副"的堆数,求EX 和DX.