Билет 55. Сравнение бесконечно малых и бесконечно больших функций. Сравнение бесконечно малых.

Две б.м.ф. сравниваются между собой с помощью их отношения:

1. если $\lim_{x\to x_0}\frac{\alpha}{\beta}=A\neq 0, (A\in R),$ то α и β называются **бесконечно малыми одного**

порядка

- 2. если $\lim_{x\to x_0}\frac{\alpha}{\beta}=0$, то α называется бесконечно малой более высокого порядка, чем β .
- 3. если $\lim_{x\to x_0}\frac{\alpha}{\beta}=\infty$, то α называется бесконечно малой более низкого порядка, чем β .
- 4. если $\lim_{x\to x_0}\frac{\alpha}{\beta}$ не существует, то α и β называются **несравнимыми бесконечно**

малыми.

Таковы же правила сравнения б.м.ф. при $x \to \pm \infty$ и $x \to x_0 \pm 0$. $x \to \pm \infty$ и $x \to x_0 \pm 0$.

Эквивалентные бесконечно малые:

Sinx	x , при $x \rightarrow 0$	e ^x - 1	$x, x \rightarrow 0$
tgx	$x, x \rightarrow 0$	a^{x} - 1	$x*lna, x \rightarrow 0$
arcsinx	$x, x \rightarrow 0$	ln(1+x)	$x, x \rightarrow 0$
arctgx	$x, x \rightarrow 0$	log _a (1+x)	$x*log_a^e x \rightarrow 0$
1-cosx	$\frac{x^2}{2}$, $x \rightarrow 0$	$(1+x)^k - 1$	$k*x, k>0, x \rightarrow 0$
	2		

Сравнение бесконечно больших.

Две б.б.ф. сравниваются между собой с помощью их отношения:

1. если $\lim_{x\to x_0}\frac{\alpha}{\beta}=1$, то α и β называются **бесконечно малыми одного порядка**.

(эквивалентными бесконечно большими) используется обозначение вида

$$f(x) \sim g(x)$$
.

- 2. если $\lim_{x \to x_0} \frac{\alpha}{\beta} = 0$, то α назыв. **бесконечно большой более низкого порядка, чем** β .
- 3. если $\lim_{x\to x_0} \frac{\alpha}{\beta} = \infty$, то α назыв. **бесконечно большой более высокого порядка, чем** β .
- 4. если f(x)и $g^n(x)$ представляют собой бесконечно большие функции одного и того же порядка, то функция f(x) называется **бесконечно большой** n-го **порядка** по сравнению с g(x). Например, функция x^2 является бесконечно большой 4-го порядка по сравнению с \sqrt{x} при $x \to \infty$. Таковы же правила сравнения б.б.ф. при $x \to \pm \infty$ и $x \to x_0 \pm 0$. $x \to \pm \infty$ и $x \to x_0 \pm 0$.

Связь между бесконечно малыми и бесконечно большими функциями

Если функция α (x) — бесконечно малая при $x \to x_0$, то функция $\alpha(x) = \frac{1}{\alpha(x)}$ является бесконечно большой при $x \to x_0$, и наоборот.