

THESIS

BY

TIGRAN SAIDNIA

Emission kernel of parton shower

Emission kernel of parton shower

Karlsruhe institute for Technology (KIT)
Institute of theoretical physics

Referents: PD Dr. Stefan Gieseke

Dr. Simon Plätzer

Supervisor: Emma Simpson

statement of originality
I hereby confirm that I have written the accompanying thesis by myself, without contributions from any sources other than those cited in the text and acknowledgements. This applies also to all graphics, drawings, maps and images included in the thesis.
Karlsruhe, March 9, 2019
Tigran Saidnia

Contents

Ta	able	of contents	3
	0.1	Brief history of particle physics	1
	0.2	Old parametrisation	2
	0.3	new kinematic	2
		0.3.1 useful relations	2
	0.4	Single emission part	4
	0.5	Common scalar products	5
	0.6	Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_k) \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots$	8
	0.7	Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_i) \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots \cdot \dots$	8
	0.8	Altarelli-Parisi splitting functions	9
	0.9	Colour factor calculation	10
1	Qua	ark antiquark gluon emission kernel	12
	1.1	qg- $ar{q}$	13
	1.2	$ar{q}$ g-q	18
	1.3	$M_1M_2^\dagger$	21
	1.4	$ M^2 $	24
2	Glu	on gluon gluon emission kernel	26
2	Gl u	on gluon gluon emission kernel Gluon-Emitter Bubble	26 27
2			
2		Gluon-Emitter Bubble	
2		Gluon-Emitter Bubble	27
2	2.1	Gluon-Emitter Bubble	27 29 37
2	2.1	Gluon-Emitter Bubble	27 29 37 r 38
2	2.12.22.3	Gluon-Emitter Bubble	27 29 37 r 38 38
2	2.1 2.2 2.3 2.4	Gluon-Emitter Bubble	27 29 37 r 38 38 44
2	2.1 2.2 2.3 2.4 2.5	Gluon-Emitter Bubble	27 29 37 r 38 38 44 44
2	2.1 2.2 2.3 2.4	Gluon-Emitter Bubble	27 29 37 r 38 38 44
3	2.1 2.2 2.3 2.4 2.5 2.6	Gluon-Emitter Bubble	27 29 37 r 38 38 44 44
	2.1 2.2 2.3 2.4 2.5 2.6	Gluon-Emitter Bubble	27 29 37 rr 38 38 44 44 45
	2.1 2.2 2.3 2.4 2.5 2.6 Qua	Gluon-Emitter Bubble	27 29 37 rr 38 38 44 45 47
	2.1 2.2 2.3 2.4 2.5 2.6 Qua 3.1	Gluon-Emitter Bubble	27 29 37 rr 38 38 44 45 47

4	Glu	oı	ı qı	uai	rk	qı	ua	rk	e	m	is	sic	on	k	ce :	rn	\mathbf{el}												52
	4.1	1	I_1																										53
	4.2	1	I_2																										54
	4.3	1	M1I	M_2^{\dagger}																									55

0.1 Brief history of particle physics

Knowledge is a human need. For thousands of years we have been trying to understand the secrets of the universe. Such riddles fascinated even Johann Wolfgang von Goethe, as he wrote in his book Faust chapter 4; eine Tragedie, "What holds the world together in its innermost." Almost 400 years before Christ, an ancient Greek philosopher, Democritus, and his teacher Leukipp claimed that matter cannot be divided at will. Rather, there must be an Atomos (Greek: indivisible) that could no longer be subdivided. Democritus was of the opinion that there were infinitely many atoms with different geometric forms that were in contact in a certain way. He pointed out that a thing has a color, taste or even soul, based on the apparent effect of the composition of these small grains. Wilhelm Capelle: Die Vorsokratiker, Leipzig 1935, S. 399.

This statement of Democritus was first laughed at by the renowned philosopher aristotiles. It took about 2000 years for a chemist named John Dalton to deal with the subject. Based on various test series, he summarized his conclusion in his book A New System of Chemical Philosophy, that all substances consist of spherical indivisible atoms. The atoms of different elements have different masses and volumes. This was exactly the most striking difference to Democritus's atomic world. A New System of Chemical Philosophy, Band 1, Teil 1, Manchester, London 1808,

The discovery of the periodic system by D. Mendeleev and P. Meyer enabled us to arrange the atoms according to their mass in such a way that their properties occur in a certain order.

In 1897 Joseph Thompson was able to obtain a stream of particles by heating metals and deflecting them by a magnetic field. This electron beam was 200 times lighter than the lightest atom, hydrogen. His conclusion was that atoms cannot be indivisible. He suggested that each atom consists of an electrically positively charged sphere in which electrically negatively charged electrons are stored - like raisins in a cake.

furthermore, renowned scientists as well as Marie and Pierre Curie have contributed much to the development of atomic theory by discovering radioactivity, Boltzmann by kinetic gas theory and M. Plank, the founder of quantum physics. However, one of the most important steps in the atomic model was taken by the British physicist E. Rutherford. He bombarded a thin aluminium foil with a radioactive sample. If Thompson's cake model were correct, only a few alpha particles would be detected behind the aluminium foil. Surprisingly, many particles were visible, which could only be explained by the assumption that the majority of atoms consisted of empty spaces. Another miracle was that some particles could be seen above or below the target sample. Since we knew that the alpha particles were positively charged, we could assume the electric repulsive force of two positive charges. In 1911, RUTHERFORD created the planetary model of the atom, which was developed a year later by his pupil NIELS BOHR (1885-1962) into a model known as the Bohr atom model. At first, however, it remained unclear what this core should consist of. In 1912, the Austrian physicist Victor Hess discovered during his balloon flights that the ionization rate of the Earth's atmosphere increases with altitude. This result was not expected because until then the Earth's radioactivity was known as the only source of air ionization. Therefore, he postulated this new type of radiation as cosmic radiation, which must originate outside the Earth's atmosphere [?].

Further investigations two years later confirmed the thesis of a cosmic background of such radiation. After this new discovery, it was discovered that the radiation consists of charged particles. In 1932, the American physicist Carl David Anderson was able to prove the postulated particle of Dirac, the positron, as a component of an air shower through his cloud chamber. For a long time, cosmic rays were the only way to analyze such exotic particles. This changed when particle accelerators were able to generate particles in collisions. But even today, cosmic rays are the only way to study particles of the highest energies, since these energies cannot be reached by today's particle accelerators, such as the LHC. The LHC, the world's largest accelerator at CERN, produces particles with centre-of-mass energy equivalent to a cosmic particle of nearly $10^{17}eV$, with the energy spectrum of cosmic particles reaching up to $10^{20} eV$. However, we can only analyze such exotic particles in detail by increasing the luminosity and procession of the particle accelerators at the nucleus. The discovery of the neutron by Chadwick (1932) showed thatatomic nuclei are made up of protons and neutrons. It was also clear that, in addition to gravitation and the electromagnetic force, there should exist two short-range forces in nature: a strong forcewhich binds the nucleons together and a weak force which is responsible for radioactive. In the meantime it was agreed that a new theory was needed for the classification and grouping of this particle zoo. This is how the current standard model came into being.

0.2 Standard model

0.3 Old parametrisation

$$q_{i}^{\mu} = zp_{i}^{\mu} + y(1-z)p_{j}^{\mu} + \sqrt{zy(1-z)}m_{\perp}$$

$$q^{\mu} = (1-z)p_{i}^{\mu} + yzp_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{j}^{\mu} = (1-y)p_{j}^{\mu}$$

$$y = \frac{q_{i}q}{p_{i}p_{j}}$$

$$q_{i} + q = p_{i} + yp_{j}$$

$$q_{j} + q = (1-z)p_{i}^{\mu} + (1+yz-y)p_{j}^{\mu} - \sqrt{zy(1-z)}m_{\perp}$$

$$q_{i} \cdot q = y(1-2z+2z^{2})(p_{i} \cdot p_{j})$$

$$q_{i} \cdot q_{j} = z(1-y)(p_{i} \cdot p_{j})$$

$$q_{j} \cdot q = (1-z)(1-y)(p_{i} \cdot p_{j})$$

0.4 new kinematic

$$k_{l}^{\mu} = \alpha_{l} \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y \beta n^{\mu} + \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l} \qquad l = 1, ..., m$$

$$q_{i}^{\mu} = (1 - \sum_{l=1}^{m} \alpha_{l}) \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} + y (1 - \sum_{l=1}^{m} \beta_{l}) n^{\mu} - \sqrt{y \alpha_{l} \beta_{l}} n^{\mu}_{\perp,l} \qquad (2)$$

$$q_{k}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$

0.4.1 useful relations

$$q_i^2 = p_i^2 = q_k^2 = k_l^2 = p_j^2 = p_k^2 = n^2 = 0 \quad \text{All hard momenta are on-shell}$$

$$Q^\mu = q_i^\mu + \sum_{l=1}^m k_l^\mu + \sum_{k=1}^m q_k^\mu = p_i^\mu + \sum_{k=1}^m p_k^\mu \quad \text{total momentum}$$

$$n^\mu = Q^\mu - \frac{Q^2}{2p_i \cdot Q} p_i^\mu \qquad \qquad n^\mu \text{ is the recoil}$$

$$q_i^\mu + \sum_{l=1}^m k_l^\mu = \alpha \Lambda^\mu_{\ \nu} p_i^\nu + y n^\mu$$

$$\alpha \Lambda^\mu_{\ \nu} Q^\nu = Q^\mu - y n^\mu$$

$$\alpha \Lambda^\mu_{\ \nu} Q^\nu = Q^\mu - y n^\mu$$

$$n^\mu_{\perp,l} \Lambda^\mu_{\ \nu} p_i^\nu = n_{\perp,l} \cdot n = n_{\perp,l} \cdot Q = 0$$

$$n^\mu_{\perp,l} \cdot p_k \neq 0$$

$$n^2_{\perp,l} = -2\alpha \Lambda^\mu_{\ \nu} p_i^\nu n_\mu$$

$$n^2_{\perp,1} = -2p_i \cdot Q$$

$$\alpha_1 = 1 - \beta_1$$

$$\alpha = \sqrt{1 - \nu}$$

Lorenz trafo

$$\alpha \Lambda^{\mu}{}_{\nu} = p_{i}{}^{\mu} p_{i\nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}{}^{\mu} Q_{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu}$$

$$(4)$$

$$\hat{p}_{i}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} = p_{i}^{\mu} p_{i\nu} p_{i}^{\nu} \frac{-y^{2} Q^{2}}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + p_{i}^{\mu} Q_{\nu} p_{i}^{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_{i}^{\nu} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}_{\nu} p_{i}^{\nu}$$

$$(5)$$

$$\hat{p}_{i}^{\mu} = p_{i}^{\mu} (Q \cdot p_{i}) \frac{y(1 + \sqrt{1 - y})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} p_{i}^{\mu}$$

$$= p_{i}^{\mu} \left[\frac{y(1 + \sqrt{1 - y})}{(2 + 2\sqrt{1 - y} - y)} + \sqrt{1 - y} \right] = p_{i}^{\mu}$$

$$\hat{p}_{i}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} = p_{i}^{\mu}$$
(6)
$$\hat{p}_{i}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_{i}^{\nu} = p_{i}^{\mu}$$

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} p_{i\nu} p_k{}^{\nu} \frac{-y^2 Q^2}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + p_i{}^{\mu} Q_{\nu} p_k{}^{\nu} \frac{y(1 + \sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + Q^{\mu} p_{i\nu} p_k{}^{\nu} \frac{(y^2 - y - y\sqrt{1 - y})}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \eta^{\mu}{}_{\nu} p_k{}^{\nu}$$

$$(8)$$

$$\hat{p_k}^{\mu} = \alpha \Lambda^{\mu}_{\nu} p_k^{\nu} = p_i^{\mu} \left[\frac{-y^2 Q^2 (p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + Q^{\mu} \left[\frac{(y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} p_k^{\mu}$$

$$(9)$$

$$\begin{split} \hat{p_k}^{\mu} &= \alpha \Lambda^{\mu}{}_{\nu} p_k{}^{\nu} = p_i{}^{\mu} \left[\frac{-y^2 Q^2 (p_i \cdot p_k)}{4(p_i \cdot Q)^2 (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] \\ &+ Q^{\mu} \left[\frac{(y^2 - y - y\sqrt{1 - y})(p_i \cdot p_k)}{2(p_i \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} p_k{}^{\mu} \end{split}$$

with

$$A_{1} \equiv \frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$

$$A_{2} \equiv \frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}$$
(10)

$$\hat{p}_k^{\mu} = A_1 p_i^{\mu} + A_2 Q^{\mu} + \sqrt{1 - y} p_k^{\mu}$$
(11)

$$\begin{split} \hat{Q}^{\mu} &= \alpha \Lambda^{\mu}{}_{\nu} Q^{\nu} = p_{i}{}^{\mu} \left[\frac{-y^{2} Q^{2} (p_{i} \cdot Q)}{4(p_{i} \cdot Q)^{2} (1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y}) Q^{2}}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] \\ &+ Q^{\mu} \left[\frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot Q)}{2(p_{i} \cdot Q) (1 + \sqrt{1 - y} - \frac{y}{2})} \right] + \sqrt{1 - y} Q^{\mu} \end{split}$$

with

$$S_{1} \equiv \frac{Q^{2}}{2p_{i} \cdot Q} \left[\frac{-y^{2}}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})}{(1 + \sqrt{1 - y} - \frac{y}{2})} \right] = \frac{Q^{2}}{2p_{i} \cdot Q} y$$

$$S_{2} \equiv \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} = 1 - y$$

$$(12)$$

$$\hat{Q}^{\mu} = \frac{Q^2}{2p_i \cdot Q} y \, p_i^{\mu} + (1 - y) \, Q^{\mu}$$
(13)

0.5 Single emission part

$$k_{1}^{\mu} = (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\beta_{1}Q^{\mu} + \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,1}$$

$$q_{i}^{\mu} = (\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\mu} + y\alpha_{1}Q^{\mu} - \sqrt{y\alpha_{1}\beta_{1}}n^{\mu}_{\perp,l}$$

$$q_{k}^{\mu} = \alpha\Lambda^{\mu}_{\nu}p_{k}^{\nu} \qquad k = 1, ..., n \qquad k \neq i$$
(14)

$$k_1^{\mu} = \zeta_1 p_i^{\mu} + \lambda_1 Q^{\mu} + \sqrt{y \alpha_1 \beta_1} n^{\mu}_{\perp,1}$$

$$q_i^{\mu} = \zeta_q p_i^{\mu} + \lambda_q Q^{\mu} - \sqrt{y \alpha_1 \beta_1} n^{\mu}_{\perp,l}$$

$$q_k^{\mu} = A_1 p_i^{\mu} + A_2 Q^{\mu} + \sqrt{1 - y} p_k^{\mu}$$

$$\zeta_{1}\zeta_{1} = (\alpha_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{1}\lambda_{1} = (y\alpha_{1}\beta_{1} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{1}\zeta_{q} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{1}\lambda_{q} = (y\alpha_{1}^{2} - y^{2}\beta_{1}\alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{q}\zeta_{q} = (\beta_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{q}\lambda_{1} = (y\beta_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\zeta_{q}\zeta_{1} = (\beta_{1}\alpha_{1} - y(\beta_{1}^{2} + \alpha_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}) + y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2})
\zeta_{q}\lambda_{q} = (y\beta_{1}\alpha_{1} - y^{2}\alpha_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{1}\lambda_{1} = y^{2}\beta_{1}^{2}
\lambda_{1}\zeta_{q} = (y\beta_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{1}\lambda_{q} = y^{2}\beta_{1}\alpha_{1}
\lambda_{1}\zeta_{1} = (y\beta_{1}\alpha_{1} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{q}\lambda_{q} = y^{2}\alpha_{1}\beta_{1}
\lambda_{q}\zeta_{q} = (y\alpha_{1}\beta_{1} - y^{2}\alpha_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}))
\lambda_{q}\zeta_{1} = (y\alpha_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

0.6 Common scalar products

$$k_{1} \cdot q_{i} = (\zeta_{1}\lambda_{q} + \lambda_{1}\zeta_{q})p_{i} \cdot Q + \lambda_{1}\lambda_{q}Q^{2} - y\alpha_{1}\beta_{1}n^{2}_{\perp,1}$$

$$= [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))y\alpha_{1} + y\beta_{1}(\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q \qquad (16)$$

$$\Rightarrow k_{1} \cdot q_{i} = [y\alpha_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}) + y\beta_{1}^{2} - y^{2}\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})] p_{i} \cdot Q$$

$$y^{2}\beta_{1}\alpha_{1} Q^{2} + 2y\alpha_{1}\beta_{1} p_{i}Q$$

$$k_{1} \cdot q_{i} = y(\alpha_{1} + \beta_{1})^{2} p_{i} \cdot Q = y p_{i} \cdot Q \qquad (17)$$

$$k_{1} \cdot q_{k} = (\zeta_{1}A_{2} + \lambda_{1}A_{1})p_{i} \cdot Q + \zeta_{1}\sqrt{1 - y} p_{i} \cdot p_{k} + \lambda_{1}A_{2} Q^{2} + \lambda_{1}\sqrt{1 - y} Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1} = \{ [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] + y\beta_{1} [\frac{-y^{2}Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] \} p_{i} \cdot Q + (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\sqrt{1 - y} p_{i} \cdot p_{k} + y\beta_{1} \frac{(y^{2} - y - y\sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} Q^{2} + y\beta_{1}\sqrt{1 - y}Q \cdot p_{k} + \sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$

$$(18)$$

$$k_{1} \cdot q_{k} = \alpha_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k})$$

$$+ y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} Q \cdot p_{k}$$

$$+ \alpha_{1}\sqrt{1 - y} p_{i} \cdot p_{k} - y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y} p_{i} \cdot p_{k}$$

$$+ y\beta_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\beta_{1}\sqrt{1 - y}(Q \cdot p_{k})$$

$$+ \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp,1}$$

$$(19)$$

$$k_{1} \cdot q_{k} = \left[\alpha_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \alpha_{1}\sqrt{1 - y}\right]$$
$$-y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y}] p_{i} \cdot p_{k} + \left[y\beta_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\beta_{1}\sqrt{1 - y}\right](Q \cdot p_{k})$$
$$+\sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$
(20)

$$k_{1} \cdot q_{k} = \left\{ \alpha_{1} \left[\frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right] + y\beta_{1} \left(\frac{Q^{2}}{p_{i} \cdot Q} \right) \left[\frac{-y^{2}}{4(1 + \sqrt{1 - y} - \frac{y}{2})} - \sqrt{1 - y} \right] \right\} p_{i} \cdot p_{k} + y\beta_{1} \left[\frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right] (Q \cdot p_{k}) + \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp, 1}$$

$$(21)$$

$$k_1 \cdot q_k = \left[\alpha_1(1-y) + y\beta_1(\frac{Q^2}{2p_i \cdot Q})\right] p_i \cdot p_k + y\beta_1 Q \cdot p_k + \sqrt{\alpha_1\beta_1 y(1-y)} p_k \cdot n_{\perp,1}$$
 (22)

$$q_{i} \cdot q_{k} = (\zeta_{q} A_{2} + \lambda_{q} A_{1}) p_{i} \cdot Q + \zeta_{q} \sqrt{1 - y} \ p_{i} \cdot p_{k} + \lambda_{q} A_{2} \ Q^{2} + \lambda_{q} \sqrt{1 - y} \ Q \cdot p_{k}$$

$$- \sqrt{\alpha_{1} \beta_{1} y (1 - y)} p_{k} \cdot n_{\perp,1}$$

$$= \{ [(\beta_{1} - y \alpha_{1} (\frac{Q^{2}}{2p_{i} \cdot Q})) \frac{(y^{2} - y - y \sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}]$$

$$+ y \alpha_{1} [\frac{-y^{2} Q^{2}(p_{i} \cdot p_{k})}{4(p_{i} \cdot Q)^{2}(1 + \sqrt{1 - y} - \frac{y}{2})} + \frac{y(1 + \sqrt{1 - y})(Q \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})}] \} \ p_{i} \cdot Q$$

$$+ (\beta_{1} - y \alpha_{1} (\frac{Q^{2}}{2p_{i} \cdot Q})) \sqrt{1 - y} \ p_{i} \cdot p_{k} + y \alpha_{1} \frac{(y^{2} - y - y \sqrt{1 - y})(p_{i} \cdot p_{k})}{2(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} Q^{2}$$

$$+ y \alpha_{1} \sqrt{1 - y} Q \cdot p_{k} - \sqrt{\alpha_{1} \beta_{1} y (1 - y)} p_{k} \cdot n_{\perp,1}$$

$$(23)$$

$$q_{i} \cdot q_{k} = \beta_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) - y\alpha_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k})$$

$$+ y\alpha_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\alpha_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} Q \cdot p_{k}$$

$$+ \beta_{1}\sqrt{1 - y} p_{i} \cdot p_{k} - y\alpha_{1} (\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y} p_{i} \cdot p_{k}$$

$$+ y\alpha_{1} (\frac{Q^{2}}{2p_{i} \cdot Q}) \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} (p_{i} \cdot p_{k}) + y\alpha_{1}\sqrt{1 - y}(Q \cdot p_{k})$$

$$- \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp,1}$$

$$(24)$$

$$q_{i} \cdot q_{k} = \left[\beta_{1} \frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\alpha_{1} \frac{-y^{2}Q^{2}}{4(p_{i} \cdot Q)(1 + \sqrt{1 - y} - \frac{y}{2})} + \beta_{1}\sqrt{1 - y}\right]$$
$$-y\alpha_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{1 - y}] p_{i} \cdot p_{k} + \left[y\alpha_{1} \frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + y\alpha_{1}\sqrt{1 - y}\right](Q \cdot p_{k})$$
$$-\sqrt{\alpha_{1}\beta_{1}y(1 - y)}p_{k} \cdot n_{\perp,1}$$
(25)

$$k_{1} \cdot q_{k} = \{\beta_{1} \left[\frac{(y^{2} - y - y\sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right]$$

$$+ y\alpha_{1} \left(\frac{Q^{2}}{p_{i} \cdot Q} \right) \left[\frac{-y^{2}}{4(1 + \sqrt{1 - y} - \frac{y}{2})} - \sqrt{1 - y} \right] \} p_{i} \cdot p_{k}$$

$$+ y\alpha_{1} \left[\frac{y(1 + \sqrt{1 - y})}{2(1 + \sqrt{1 - y} - \frac{y}{2})} + \sqrt{1 - y} \right] (Q \cdot p_{k})$$

$$- \sqrt{\alpha_{1}\beta_{1}y(1 - y)} p_{k} \cdot n_{\perp, 1}$$

$$(26)$$

$$q_i \cdot q_k = \left[\beta_1(1-y) + y\alpha_1(\frac{Q^2}{2p_i \cdot Q})\right] p_i \cdot p_k + y\alpha_1 Q \cdot p_k - \sqrt{\alpha_1\beta_1 y(1-y)} p_k \cdot n_{\perp,1}$$
 (27)

0.7 Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_k)$

$$(k_1 \cdot q_i)(k_1 \cdot q_k) \approx y(1 - \beta_1)(1 - y) (p_i \cdot p_k)(p_i \cdot Q)$$
(28)

$$\begin{split} k_1^{\eta}k_1^{\eta'} &= [(1-\beta_1)^2 - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})^2]p_i^{\eta}p_i^{\eta'} - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})p_i^{\eta}Q^{\eta'} - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})Q^{\eta}p_i^{\eta'} \\ k_1^{\eta}q_i^{\eta'} &= [\beta_1(1-\beta_1) - y\beta_1^2(\frac{Q^2}{2p_i \cdot Q})]p_i^{\eta}p_i^{\eta'} + y\beta_1^2Q^{\eta}p_i^{\eta'} \\ q_i^{\eta}k_1^{\eta'} &= [\beta_1(1-\beta_1) - y\beta_1^2(\frac{Q^2}{2p_i \cdot Q})]p_i^{\eta}p_i^{\eta'} + y\beta_1^2p_i^{\eta}Q^{\eta'} \\ q_i^{\eta}q_i^{\eta'} &= \beta_1^2p_i^{\eta}p_i^{\eta'} \\ k_1^{\eta}q_k^{\eta'} &= [(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q})]\sqrt{1-y}p_i^{\eta}p_k^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_1 p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_2 p_i^{\eta}Q^{\eta'} \\ &+ y\beta_1A_1 Q^{\eta}p_i^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}Q^{\eta}p_k^{\eta'} \\ q_i^{\eta}q_k^{\eta'} &= A_1\beta_1p_i^{\eta}p_i^{\eta'} + A_2\beta_1p_i^{\eta}Q^{\eta'} + \beta_1\sqrt{1-y}p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_1 p_i^{\eta}p_i^{\eta'} - y\beta_1(\frac{Q^2}{2p_i \cdot Q})A_2 Q^{\eta}p_i^{\eta'} \\ &+ y\beta_1A_1 p_i^{\eta}Q^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}p_k^{\eta}Q^{\eta'} \\ &+ y\beta_1A_1 p_i^{\eta}Q^{\eta'} + y\beta_1A_2 Q^{\eta}Q^{\eta'} + y\beta_1\sqrt{1-y}p_k^{\eta}Q^{\eta'} \\ q_k^{\eta}q_i^{\eta'} &= A_1\beta_1p_i^{\eta}p_i^{\eta'} + A_2\beta_1Q^{\eta}p_i^{\eta'} + \beta_1\sqrt{1-y}p_k^{\eta}p_i^{\eta'} \end{aligned} \tag{29}$$

0.8 Parametrization in terms of $(k_1 \cdot q_i)(k_1 \cdot q_i)$

$$(30)$$

$$k_{1}^{\eta}k_{1}^{\eta'} = [(1-\beta_{1})^{2} - 2y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y(1-\beta_{1})^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y(1-\beta_{1})^{2}Q^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y(1-\beta_{1})^{2}(\frac{Q^{2}}{2p_{i} \cdot Q}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y(1-\beta_{1})^{2}p_{i}^{\eta}Q^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = [\beta_{1}^{2} - 2y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} + y\beta_{1}(1-\beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = (1-\beta_{1})A_{1}p_{i}^{\eta}p_{i}^{\eta'} + (1-\beta_{1})A_{2}p_{i}^{\eta}Q^{\eta'} + (1-\beta_{1})\sqrt{1-y}p_{i}^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{i}^{\eta}p_{i}^{\eta'}$$

$$q_{k}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}Q^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$(31)$$

0.9 Altarelli-Parisi splitting functions

$$\langle \hat{P}_{qq} \rangle = C_F \left[\frac{1+z^2}{1-z} - \varepsilon (1-z) \right]$$

$$\langle \hat{P}_{gq} \rangle = T_R \left[1 - \frac{2z(1-z)}{1-\varepsilon} \right]$$

$$\langle \hat{P}_{qg} \rangle = C_F \left[\frac{1+(1-z)^2}{z} - \varepsilon z \right]$$

$$\langle \hat{P}_{gg} \rangle = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right]$$
splitting functions (32)

0.10 Colour factor calculation

fundamental representation in SU(2) and SU(3)

$$T^{a} = \tau^{a} \equiv \frac{\sigma^{2}}{2}$$
 with Pauli matrices σ^{a}

$$T^{a} = \vartheta^{a} \equiv \frac{\lambda^{2}}{2}$$
 with Gell – Mann matrices λ^{a} (33)

$$\lambda^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 \end{pmatrix}, \quad \lambda^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \\ 0 \end{pmatrix}, \quad \lambda^{3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \lambda^{4} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda^{5} = \begin{pmatrix} -i \\ i \\ 0 \end{pmatrix}, \quad \lambda^{6} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \lambda^{7} = \begin{pmatrix} 0 & 0 \\ 0 & -i \\ i & 0 \end{pmatrix}, \quad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ 0 & -2 \end{pmatrix}$$
(34)

As we can see, λ^3 and λ^8 are diagonal. These generators satisfy:

$$[T^a, T^b] = i\epsilon^{abc}T^c \tag{35}$$

The most common convention for the normalization of the generators in physics is:

$$\sum_{c,d} f^{acd} f^{bcd} = N \delta^{ab} \tag{36}$$

The main relation we will use later for SU(N):

$$tr(T^aT^b) = T_{ij}{}^aT_{ji}{}^b = T_F\delta^{ab}$$
(37)

$$\sum_{a} (T^a T^a) = C_F \delta^{ij} \tag{38}$$

$$f^{acd}f^{bcd} = C_A \delta^{ab} \tag{39}$$

With $T_F = \frac{1}{2}$, $C_A = N$ and $C_F = \frac{N^2 - 1}{2N}$.

$$f^{abc} = -2itr(T^a[T^b, T^c]) \tag{40}$$

$$d^{abc} = 2tr(T^a T^b, T^c) (41)$$

$$T^{a}T^{b} = \frac{1}{2}(\frac{1}{N}\delta_{ab} + (d^{abc} + if^{abc})T^{c})$$
(42)

$$tr(T^a T^b T^c) = \frac{1}{4} (d^{abc} + i f^{abc}) \tag{43}$$

$$tr(T^a T^b T^a T^c) = \frac{-1}{4N} \delta_{bc} \tag{44}$$

$$f^{acd}f^{bcd} = N\delta^{ab} \tag{45}$$

$$f^{acd}d^{bcd} = 0 (46)$$

$$f^{ade}f^{bef}f^{cfd} = \frac{N}{2}f^{abc} \tag{47}$$

Fierz identity:

$$\sum_{a} T_{ij}{}^{a} T_{kl}{}^{a} = \frac{1}{2} \left(\delta_{il} \delta_{kj} - \frac{1}{N} \delta_{ij} \delta_{kl} \right) \tag{48}$$

Chapter 1

Quark antiquark gluon emission kernel

$1.1~{\sf qg}$ - \bar{q}

$$M_{1} = \left[\bar{u}_{\sigma}(q_{i})(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l})\frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}}\varepsilon^{\lambda_{1}}{}_{\mu}(q)\right]\left[v_{\tau}(q_{j})\right]$$
(1.1)

$$(b, \mu', \lambda_2)$$

$$q \qquad q_i + q$$

$$(o', \sigma') \xrightarrow{q_i} \qquad (k, \beta)$$

$$(f', \tau') \xrightarrow{q_j} \qquad (n, \delta)$$

$$M_1^{\dagger} = \left[\frac{-i(\not q_i + \not q)}{(q_i + q)^2} \left(ig_s \gamma^{\mu'} \times [T^b]_{\sigma'}^{k} \right) u_{\sigma'}(q_i) \, \varepsilon^{\lambda_2}{}_{\mu'}(q) \right] \left[\bar{v}_{\tau'}(q_j) \right]$$
(1.2)

$$(l, \alpha) \xrightarrow{q_i + q} (o, \sigma) (o', \sigma') \xrightarrow{q_i} (h, \alpha)$$

$$(m, \gamma) \xrightarrow{q_j} (f, \tau) (f', \tau') \xrightarrow{q_j} (n, \delta)$$

$$|M_{1}|^{2} = M_{1} M_{1}^{\dagger} = [\bar{u}_{\sigma}(q_{i}) (-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)][v_{\tau}(q_{j})]$$

$$[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} (ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q)][\bar{v}_{\tau'}(q_{j})]$$

$$(1.3)$$

$$|M_{1}|^{2} = \left[\frac{-i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left(ig_{s}\gamma^{\mu'} \times [T^{b}]_{o'}^{k}\right) \bar{u}_{\sigma}(q_{i}) u_{\sigma'}(q_{i}) \varepsilon^{\lambda_{2}}_{\mu'}^{*}(q) \varepsilon^{\lambda_{1}}_{\mu}(q) \right. \\ \left. \times \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \left[\bar{v}_{\tau'}(q_{j})v_{\tau}(q_{j})\right] \right.$$

$$(1.4)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) \ u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) \ v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.5)

and sum over polarization index (λ_1, λ_2) :

$$\sum_{\mu,\mu'} \varepsilon^{\lambda_2^*}_{\mu'}(q) \varepsilon^{\lambda_1}_{\mu}(q) = -g_{\mu\mu'} \delta^{ab}$$
(1.6)

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \ \not q_i \ g_{\mu'\mu} \gamma^{\mu} (\not q_i + q)] [\not q_j]$$
(1.7)

from here and after contraction between all indices we can actually make statements about the last result.

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^{\ k} [T^a]_o^{\ l}}{(q_i + q)^2 (q_i + q)^2} [(\not q_i + \not q) \ \gamma^{\mu'} \ \not q_i \ \gamma_{\mu'} (\not q_i + q)] [\not q_j]$$
(1.8)

In other words we expect the tree level diagram from LO and a number: Which means:

$$|M^2| = \left| \begin{array}{c|c} P_i & q_i & q_i \\ \hline \\ P_j & \end{array} \right|^2 \otimes \left| \begin{array}{c|c} q_i & q_i \\ \hline \\ q_i + q & Q \\ \hline \end{array} \right|^2$$

contribution from LO

 $a\ complex\ number$

$$|M_1|^2 = \frac{-g_s^2 [T^a]_o^{\ k} [T^a]_o^{\ l}}{(q_i + q)^2 (q_i + q)^2} [P_i] [P_j] \otimes (a \ complex \ number)$$
 (1.9)

Let's calculate the contribution and compare the final result with this expectation:

$$N =: \gamma^{\mu'} \not A_i \gamma_{\mu'} = q_{i\sigma} \gamma^{\mu'} \gamma^{\sigma} \gamma_{\mu'}$$

$$= q_{i\sigma} (\{\gamma^{\mu'}, \gamma^{\sigma}\} - \gamma^{\sigma} \gamma^{\mu'}) \gamma_{\mu'}$$

$$= q_{i\sigma} 2g^{\mu'\sigma} \gamma_{\mu'} - d \gamma^{\sigma}$$

$$= (2 - d) \not A_i$$

$$(1.10)$$

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [(\not q_i + \not q) \quad \not q_i \quad (\not q_i+q)][\not q_j]$$
(1.11)

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(q_i+q)^2 (q_i+q)^2} [\not q_i \not q_i \not q_i + \not q_i \not q_i \not q_i$$
(1.12)

For the momenta are on-shell which means:

$$A_i A_i = q_i^2 = m_i^2$$

$$A_i A_j = q^2 = m^2$$

$$A_j A_j = q_j^2 = m_j^2$$
(1.13)

we can first neglect the mass of patrons and ignore each term with $\not q_i \not q_i$ and $\not q \not q$ as well.

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{(2q_i q)(2q_i q)} [\not A \not A_i \not A] [\not A_j]$$
(1.14)

$$L = \not A \not A_i \not A = \not A [q_{i\sigma}q_{\mu} (\{\gamma^{\mu}, \gamma^{\sigma}\} - \gamma^{\sigma}\gamma^{\mu})]
\not A [2q_i{}^{\mu}q_{\mu} - q_{i\sigma}q_{\mu}\gamma^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\gamma^{\mu}\gamma^{\mu}\gamma^{\sigma}]
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[\frac{\gamma^{\mu}\gamma^{\mu}}{2} + \frac{\gamma^{\mu}\gamma^{\mu}}{2}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q_{\mu}[g^{\mu\mu}]\gamma^{\sigma}
= \not A (2q_iq) - q_{\mu}q_{i\sigma}q^{\mu}\gamma^{\sigma}
= \not A (2q_iq) - q^2 \not A_i
= \not A (2q_iq)$$
(1.15)

After inserting the last result of L and simplify the term $(2q_iq)$ from the denominator and nominator because, we get:

$$|M_1|^2 = -(2-d) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [\not A] [\not A_j]$$
(1.16)

Now we are going to use the parametrisation from equation (1) to reduce the 3-member matrix element to 2-member and take out the singularity term from the amplitude.

$$|M_1|^2 = (d-2) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [(1-z) \not p_i + zy \not p_j - \sqrt{zy(1-z)} \not m_\perp] [(1-y) \not p_j]$$

$$(1.17)$$

Multiplying the both sides

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} [T^{a}]_{o}^{k} [T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [(1-z)(1-y) \not p_{i} \not p_{j}$$

$$+zy(1-y) \not p_{j} \not p_{j} + (1-y)\sqrt{zy(1-z)} \not m_{\perp} \not p_{j}]$$

$$(1.18)$$

and under consideration of the fact that p_i and p_j are the on-shell momenta of the emitter and spectator partons, we can ignore the terms with $\not p_i$ $\not p_i$ and $\not p_j$ $\not p_j$. The $p_i \cdot m_{\perp}$ and $p_j \cdot m_{\perp}$ are always 0 because the p_i and p_j are lightlike, i.e. zero transverse component. So those terms can be neglected.

$$|M_1|^2 = (d-2)(1-z)(1-y) \frac{g_s^2 [T^a]_o^k [T^a]_o^l}{2y(1-2z+2z^2)(p_i \cdot p_j)} [p_i] [p_j]$$
 (1.19)

with the new parametrisation

$$|M_1|^2 = (d-2) \frac{g_s^2 C_F}{(2k_1 \cdot q_i)} [k_1] [\not q_k]$$
(1.20)

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} C_{F}}{2y p_{i} \cdot Q} [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\beta_{1} \not Q + \sqrt{y\alpha_{1}\beta_{1}} \not n_{\perp,1}]$$

$$[A_{1} \not p_{i} + A_{2} \not Q + \sqrt{1-y} \not p_{k}]$$

$$(1.21)$$

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} C_{F}}{2y p_{i} \cdot Q} [(A_{2}(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) + A_{1}y\beta_{1})p_{i} \cdot Q + (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\sqrt{1 - y}p_{i} \cdot p_{k} + A_{2}y\beta_{1}Q^{2} + \sqrt{1 - y}\sqrt{y\alpha_{1}\beta_{1}}n_{\perp,1} \cdot p_{k}]$$

$$(1.22)$$

For the collinearity $y \to 0$ we'll get:

$$|M_{1}|^{2} = (d-2) \frac{g_{s}^{2} C_{F}}{2y p_{i} \cdot Q} [(A_{2}(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) + A_{1}y\beta_{1}) \not p_{i} \not Q + (\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))\sqrt{1 - y} \not p_{i} \not p_{k} + A_{2}y\beta_{1}Q^{2} + \sqrt{1 - y}\sqrt{y\alpha_{1}\beta_{1}} \not p_{\perp,1} \not p_{k}]$$

$$(1.23)$$

$$|M_1|^2 = (d-2)(1-\beta_1)\sqrt{1-y} \frac{g_s^2 C_F}{2y \ p_i \cdot Q} [p_i \ p_k]$$
(1.24)

1.2 \bar{q} g-q

$$M_{2} = \left[\frac{i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} (-ig_{s}\gamma^{\nu} \times [T^{c}]_{f}^{m}) v_{\tau}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\right] [u_{\sigma}(q_{i})]$$
(1.25)

$$(f', \tau') \xrightarrow{q_j} q_j + q \qquad (n, \delta)$$

$$(o', \sigma') \xrightarrow{\qquad \qquad } (k, \beta)$$

$$M_2^{\dagger} = \left[\bar{v}_{\tau'}(q_j) \left(ig_s \gamma^{\nu'} \times [T^d]_{f'}^{n}\right) \frac{-i(\not q_j + \not q)}{(q_j + q)^2} \varepsilon^{\lambda_4}_{\nu'}(q)\right] \left[\bar{u}_{\sigma'}(q_i)\right]$$
(1.26)

$$(m, \gamma) \xrightarrow{q_{j} + q} (c, \nu, \lambda_{3}) \qquad (d, \nu', \lambda_{4})$$

$$q \qquad \qquad q_{j} + q \qquad \qquad q_{j} + q \qquad \qquad q_{j} + q \qquad \qquad (n, \delta)$$

$$(l, \alpha) \xrightarrow{q_{i}} (o, \sigma) (o', \sigma') \xrightarrow{q_{i}} (k, \beta)$$

$$|M_{2}|^{2} = M_{2} M_{2}^{\dagger} = \left[\frac{i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} (-ig_{s}\gamma^{\nu} \times [T^{c}]_{f}^{m}) v_{\tau}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\right] [u_{\sigma}(q_{i})]$$

$$\left[\bar{v}_{\tau'}(q_{j}) (ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}) \frac{-i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] [\bar{u}_{\sigma'}(q_{i})]$$
(1.27)

$$|M_{2}|^{2} = \frac{g_{s}^{2} [T^{c}]_{f}^{m} [T^{d}]_{f'}^{n}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(\not q_{j} + \not q)\gamma^{\nu} v_{\tau}(q_{j})\bar{v}_{\tau'}(q_{j}) \varepsilon^{\lambda_{3}}{}_{\nu}(q)\varepsilon^{\lambda_{4}}{}_{\nu'}(q)\gamma^{\nu'}(\not q_{j} + \not q)]$$

$$[u_{\sigma}(q_{i})] [\bar{u}_{\sigma'}(q_{i})]$$

$$(1.28)$$

and after sum over the lorenz index (σ, σ') and (τ, τ') and unsing the spin addition relation:

$$\sum_{\sigma,\sigma'} \bar{u}_{\sigma}(q_i) u_{\sigma'}(q_i) = \not q_i \delta^{oo'},$$

$$\sum_{\tau,\tau'} \bar{v}_{\tau}(q_j) v_{\tau'}(q_j) = \not q_j \delta^{ff'}$$
(1.29)

and sum over polarization index (λ_3, λ_4) :

$$\sum_{\nu,\nu'} \varepsilon^{\lambda_4}_{\nu'}^*(q) \varepsilon^{\lambda_3}_{\nu}(q) = -g_{\nu\nu'} \delta^{cd}$$
(1.30)

$$|M_2|^2 = \frac{g_s^2 [T^c]_f^m [T^c]_f^n}{(q_i + q)^2 (q_i + q)^2} [(\not q_j + \not q)\gamma^{\nu} \not q_j (-g_{\nu\nu'})\gamma^{\nu'} (\not q_j + \not q)] [\not q_i]$$
(1.31)

After the same calculation from the last part, we'll get:

$$|M_2|^2 = (d-2)\frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{(2qq_i)} [A] [A_i]$$
(1.32)

finally:

$$|M_2|^2 = -(d-2)yz^2 \frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{2(1-z)(1-y)(p_i \cdot p_j)} [p_i] [p_j]$$
(1.33)

with the new kinematic

$$|M_2|^2 = (d-2)\frac{g_s^2 \left[T^c\right]_f^m \left[T^c\right]_f^n}{2k_1 \cdot q_k} [k_1] [k_1]$$
(1.34)

$$|M_{2}|^{2} = (d-2)\frac{g_{s}^{2}C_{F}}{2k_{1} \cdot q_{k}} [(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\beta_{1} \not Q + \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,1}]$$

$$[(\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\alpha_{1} \not Q - \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,l}]$$
(1.35)

$$|M_{2}|^{2} = (d-2)\frac{g_{s}^{2}C_{F}}{2k_{1} \cdot q_{k}}[y\alpha_{1}(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} Q + y\beta_{1}(\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))] Q \not p_{i}$$

$$+ y^{2}\alpha_{1}\beta_{1}Q^{2} - y\beta_{1}\sqrt{y\alpha_{1}\beta_{1}} Q \not p_{\perp,1} + y\beta_{1}\sqrt{y\alpha_{1}\beta_{1}} \not p_{\perp,1} Q - y\alpha_{1}\beta_{1} n_{\perp,l}^{2}$$

$$+ (\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{y\alpha_{1}\beta_{1}} \not p_{\perp,1} \not p_{i} - (\alpha_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})\sqrt{y\alpha_{1}\beta_{1}} \not p_{i} \not p_{\perp,1}]$$

$$(1.36)$$

Which means:

$$|M_2|^2 \sim (d-2) \frac{g_s^2 C_F}{2k_1 \cdot q_k} y[...]$$

$$|M_2|^2 \to 0 \quad \text{for} \quad y \to 0$$
(1.37)

1.3 $M_1 M_2^{\dagger}$

$$M_{1} M_{2}^{\dagger} = \left[\bar{u}_{\sigma}(q_{i}) \left(-ig_{s}\gamma^{\mu} \times [T^{a}]_{o}^{l}\right) \frac{i(\not q_{i} + \not q)}{(q_{i} + q)^{2}} \varepsilon^{\lambda_{1}}{}_{\mu}(q)\right] \left[v_{\tau}(q_{j})\right]$$

$$\left[\bar{v}_{\tau'}(q_{j}) \left(ig_{s}\gamma^{\nu'} \times [T^{d}]_{f'}^{n}\right) \frac{-i(\not q_{j} + \not q)}{(q_{j} + q)^{2}} \varepsilon^{\lambda_{4}}{}_{\nu'}(q)\right] \left[u_{\sigma'}(q_{i})\right]$$

$$(1.38)$$

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{d}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q_{i})] \varepsilon^{\lambda_{1}}_{\mu}(q) \varepsilon^{\lambda_{4}}_{\nu'}(q)$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q_{i})]$$
(1.39)

$$M_{1} M_{2}^{\dagger} = \frac{g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [\not q_{i} \gamma^{\mu} (\not q_{i} + \not q)] - g_{\mu\nu'}$$

$$[\not q_{j} \gamma^{\nu'} (\not q_{j} + \not q)]$$

$$(1.40)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [\not q_i \gamma^{\mu} (\not q_i + \not q)] [\not q_j \gamma_{\mu} (\not q_j + \not q)]$$
(1.41)

Expectation:

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^{\ l} [T^a]_{f'}^n}{(2q_i q)(2q_j q)} [(\not q_i + \not q) \gamma^{\mu} \not q_i] [(\not q_j + \not q) \gamma_{\mu} \not q_j]$$
(1.42)

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [-(\not q_{i} + \not q) \not q_{i} \gamma^{\mu} + 2(\not q_{i} + \not q) q_{i}^{\mu}]$$

$$[-(\not q_{j} + \not q) \not q_{j} \gamma_{\mu} + 2(\not q_{j} + \not q) q_{j\mu}]$$

$$(1.43)$$

$$|M^2| = \left| \begin{array}{c|c} & P_i & \\ \hline & & \\$$

contribution from LO

 $a\ complex\ number$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [(\not q_{i} + \not q) \not q_{i} \gamma^{\mu}] [(\not q_{j} + \not q) \not q_{j}\gamma_{\mu}]$$

$$-2[(\not q_{i} + \not q) \not q_{i} \gamma^{\mu}] [(\not q_{j} + \not q)q_{j\mu}] -2[(\not q_{i} + \not q) q_{i}^{\mu}] [(\not q_{j} + \not q) \not q_{j}\gamma_{\mu}]$$

$$+4[(\not q_{i} + \not q) q_{i}^{\mu}] [(\not q_{j} + \not q)q_{j\mu}]$$

$$(1.44)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [(\not q_{i} + \not q) \not q_{i} \gamma^{\mu}] [(\not q_{j} + \not q) \not q_{j}\gamma_{\mu}]$$

$$-2[(\not q_{i} + \not q) \not q_{i} \not q_{j}] [\not q_{j} + \not q] -2[\not q_{i} + \not q] [(\not q_{j} + \not q) \not q_{j} \not q_{i}]$$

$$+4[(\not q_{i} + \not q) q_{i}^{\mu}] [(\not q_{j} + \not q) q_{j\mu}]$$

$$(1.45)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}q)(2q_{j}q)} [(\not q_{i} + \not q) \not q_{i} \gamma^{\mu}] [(\not q_{j} + \not q) \not q_{j}\gamma_{\mu}]$$

$$+ 4[(\not q_{i} + \not q) q_{i}^{\mu}][(\not q_{j} + \not q) q_{j\mu}]$$

$$(1.46)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$[y(1-2z+2z^{2}) \not p_{i} \not p_{j} \gamma^{\mu}] [(1-z)(1-y) \not p_{i} \not p_{j} \gamma_{\mu}]$$

$$+4(q_{i}^{\mu} \cdot q_{j\mu})[(\not q_{i}+\not q)][(\not q_{j}+\not q)]$$
(1.47)

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{4(1-z)(1-y)y(1-2z+2z^{2})(p_{i}\cdot p_{j})(p_{i}\cdot p_{j})}$$

$$[y(1-2z+2z^{2}) \not p_{i} \not p_{j} \gamma^{\mu}] [(1-z)(1-y) \not p_{i} \not p_{j} \gamma_{\mu}]$$

$$+4(p_{i}\cdot p_{j})[(\not p_{i}+y \not p_{j})][(1-z) \not p_{i}+(1+yz-y) \not p_{j}-\sqrt{zy(1-z)} \not m]$$

$$(1.48)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)(1-y)y(1-2z+2z^2)(p_i \cdot p_i)} z(1-y)[\not p_i][\not p_j]$$
(1.49)

$$M_1 M_2^{\dagger} = \frac{-g_s^2 [T^a]_o^l [T^a]_{f'}^n}{(1-z)y(1-2z+2z^2)(p_i \cdot p_i)} z[p_i] [p_j]$$
(1.50)

With the new kinematic

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} [T^{a}]_{o}^{l} [T^{a}]_{f'}^{n}}{(2q_{i}k_{1})(2q_{k}k_{1})} [(\not q_{i} + \not k_{1}) \not q_{i} \gamma^{\mu}] [(\not q_{k} + \not k_{1}) \not q_{k}\gamma_{\mu}]$$

$$+ 4[(\not q_{i} + \not k_{1}) q_{i}^{\mu}] [(\not q_{k} + \not k_{1})q_{k\mu}]$$

$$(1.51)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} C_{F}}{4y(1-\beta_{1})(1-y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)}$$

$$[(A_{i} A_{i} + k_{1} A_{i}) \gamma^{\mu}][(A_{k} A_{k} + k_{1} A_{k})\gamma_{\mu}] + 4(q_{i}^{\mu}q_{k\mu})[A_{i} + k_{1}][A_{k} + k_{1}]$$
(1.52)

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} C_{F}}{4y(1-\beta_{1})(1-y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)}$$

$$[k_{1} \not q_{i} \gamma^{\mu}][k_{1} \not q_{k} \gamma_{\mu}] + 4(q_{i} \cdot q_{k})[\not q_{i} \not q_{k} + k_{1} \not q_{k} + \not q_{i} k_{1}]$$

$$(1.53)$$

$$\begin{split} M_{1} M_{2}^{\dagger} &= \frac{-g_{s}^{2} C_{F}}{4y(1-\beta_{1})(1-y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)} \\ 4(A_{1}\beta_{1}p_{i} \cdot p_{i} + A_{2}\beta_{1}p_{i} \cdot Q + \beta_{1}\sqrt{1-y}p_{i} \cdot p_{k}) \\ &[A_{1}\beta_{1} \not p_{i} \not p_{i} + A_{2}\beta_{1} \not p_{i} \not Q + \beta_{1}\sqrt{1-y} \not p_{i} \not p_{k} \\ &+ [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]\sqrt{1-y} \not p_{i} \not p_{k} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1} \not p_{i} \not p_{i} \\ &- y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2} \not p_{i} \not Q + y\beta_{1}A_{1} \not Q \not p_{i} + y\beta_{1}A_{2} \not Q \not Q + y\beta_{1}\sqrt{1-y} \not Q \not p_{k} \\ &+ [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})] \not p_{i} \not p_{i} + y\beta_{1}^{2} \not p_{i} \not Q \end{split}$$

$$(1.54)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} C_{F}}{4y(1-\beta_{1})(1-y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)}$$

$$4(A_{2}\beta_{1}p_{i} \cdot Q + \beta_{1}\sqrt{1-y}p_{i} \cdot p_{k})[A_{2}\beta_{1} \not p_{i} \not Q + \beta_{1}\sqrt{1-y} \not p_{i} \not p_{k}$$

$$+ [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]\sqrt{1-y} \not p_{i} \not p_{k} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2} \not p_{i} \not Q$$

$$+ y\beta_{1}A_{1} \not Q \not p_{i} + y\beta_{1}A_{2} \not Q \not Q + y\beta_{1}\sqrt{1-y} \not Q \not p_{k} + y\beta_{1}^{2} \not p_{i} \not Q]$$

$$(1.55)$$

$$M_{1} M_{2}^{\dagger} = \frac{-g_{s}^{2} C_{F}}{4y(1-\beta_{1})(1-y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)}$$

$$4(\beta_{1}\sqrt{1-y}p_{i} \cdot p_{k})[\beta_{1}\sqrt{1-y} \not p_{i} \not p_{k} + (1-\beta_{1})\sqrt{1-y} \not p_{i} \not p_{k}]$$

$$(1.56)$$

$$M_1 M_2^{\dagger} = \frac{-g_s^2 C_F}{y(1-\beta_1) (p_i \cdot p_k)(p_i \cdot Q)} \beta_1(p_i \cdot p_k) [\beta_1 \not p_i \not p_k + (1-\beta_1) \not p_i \not p_k]$$
 (1.57)

$$M_1 M_2^{\dagger} = \frac{\beta_1}{(1 - \beta_1)} \frac{-g_s^2 C_F}{y (p_i \cdot Q)} [\not p_i \not p_k]$$
 (1.58)

1.4 $|M^2|$

$$|M|^2 = |M_1|^2 + |M_2|^2 + M_1 M_2^{\dagger} + M_1^{\dagger} M_2$$
(1.59)

$$|M|^2 = |M_1|^2 + |M_2|^2 + \frac{2RE(M_1 M_2^{\dagger})}{}$$
(1.60)

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}[T^{a}]_{o}^{k}[T^{a}]_{o}^{l}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}[T^{c}]_{f}^{m}[T^{c}]_{f}^{n}}{2(1-z)(1-y)(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1})\frac{g_{s}^{2}[T^{a}]_{o}^{l}[T^{a}]_{f}^{n}}{2y(1-2z+2z^{2})(p_{i}\cdot p_{j})} [\not p_{i}][\not p_{j}])$$
(1.61)

$$T^{a}{}_{ok} T^{a}{}_{lo} = \frac{1}{2} (\delta_{oo} \delta_{lk} - \frac{1}{N} \delta_{ok} \delta_{lo}) = \frac{1}{2} (N \delta_{lk} - \frac{1}{N} \delta_{lk}) = C_F \delta_{lk}$$
 (1.62)

After summation over the final colour states and averaging over initial colour states we get:

$$T^{a}{}_{ok} T^{a}{}_{lo} = C_{F} \delta_{lk} = \frac{1}{N} \sum_{l=1}^{N} \delta_{lk} C_{F} = C_{F}$$
 (1.63)

The same calculation for $T^c_{mf} T^c_{fn}$ and $T^a_{ol} T^a_{fn}$ turns C_F out as the colour factor. Now we are going to compute the splitting function in the case of the colinearity, wich means, if:

$$y \longrightarrow 0 \tag{1.64}$$

$$|M|^{2} = (d-2)(1-z)(1-y) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$-(d-2)yz^{2} \frac{g_{s}^{2}C_{F}}{2(1-z)(1-y)(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$+2RE((\frac{-2z}{z-1}) \frac{g_{s}^{2}C_{F}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$
(1.65)

$$|M|^{2} = C_{F}((d-2)(1-z) - \frac{4z}{z-1}) \frac{g_{s}^{2}}{2y(1-2z+2z^{2})(p_{i} \cdot p_{j})} [p_{i}][p_{j}]$$
(1.66)

for

$$d = 4 - 2\epsilon \tag{1.67}$$

$$|M|^{2} = C_{F}((4 - 2\epsilon - 2)(1 - z) + \frac{4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= C_{F}(\frac{2(1 - \epsilon)(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$C_{F}(\frac{2 - 4z + 2z^{2} - \epsilon(1 - z)^{2} + 4z}{1 - z}) \frac{g_{s}^{2}}{2y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= C_{F}(\frac{(1 + z^{2})}{1 - z} - \epsilon(1 - z)) \frac{g_{s}^{2}}{y(1 - 2z + 2z^{2})(p_{i} \cdot p_{j})} [\not p_{i}] [\not p_{j}]$$

$$= \langle \hat{P}_{qq} \rangle \frac{g_{s}^{2}}{q_{i} \cdot q} [\not p_{i}] [\not p_{j}]$$

Chapter 2

Gluon gluon emission kernel

2.1 Gluon-Emitter Bubble

$$M_{1} = \left[\frac{-i}{(q+q_{i})^{2}} (-g_{s} f^{a \circ l} (g^{\mu \zeta} (q-q_{i})^{\eta} + g^{\zeta \eta} (-q - (q+q_{i}))^{\mu} + g^{\eta \mu} (q_{i} + q_{i} + q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q) \varepsilon^{\lambda_{6}}{}_{\zeta}(q) \left[\varepsilon^{\theta}{}_{\tau'}(q_{j}) \right]$$
(2.1)

$$M_{1} = \left[\frac{-i}{(q_{i} + q)^{2}} \left(-g_{s} f^{a \, o \, l} \left(g^{\mu \zeta} (q - q_{i})^{\eta} - g^{\zeta \eta} (2q + q_{i})^{\mu} + g^{\eta \mu} (2q_{i} + q)^{\zeta} \right) \right.$$

$$\left. \varepsilon^{\lambda_{1}}_{\mu}(q_{i}) \varepsilon^{\lambda_{6}}_{\zeta}(q) \right] \left[\varepsilon^{\theta}_{\tau'}(q_{j}) \right]$$

$$(2.2)$$

$$(o', \zeta', \lambda_5)$$

$$q$$

$$q_i + q$$

$$(a', \mu', \lambda_2) \qquad q_i$$

$$(k, \eta', \lambda_4)$$

$$(f', \tau', \theta') \qquad QQQQQQ \qquad (n, \delta, \vartheta')$$

$$q_j$$

$$M_{1}^{\dagger} = \left[\frac{i}{(q_{i}+q)^{2}}(-g_{s}f^{a'ko'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'}+g^{\eta'\zeta'}(2q+q_{i})^{\mu'}+g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\right]$$

$$\varepsilon^{\lambda_{2}}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{5}}_{\zeta'}{}^{*}(q)\right]\left[\varepsilon^{\theta'}_{\tau'}{}^{*}(q_{j})\right]$$
(2.3)

$$|M_{1}|^{2} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{a o l}(g^{\mu\zeta}(q-q_{i})^{\eta} - g^{\zeta\eta}(2q+q_{i})^{\mu} + g^{\eta\mu}(2q_{i}+q)^{\zeta})\right]$$

$$\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i}) \varepsilon^{\lambda_{2}}{}_{\mu'}{}^{*}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q) \varepsilon^{\lambda_{5}}{}_{\zeta'}{}^{*}(q) \qquad (2.4)$$

$$(-g_{s}f^{a'ko'}(-g^{\mu'\eta'}(2q_{i}+q)^{\zeta'} + g^{\eta'\zeta'}(2q+q_{i})^{\mu'} + g^{\zeta'\mu'}(q_{i}-q)^{\eta'})\frac{i}{(q_{i}+q)^{2}}][g^{\gamma\delta}]$$

$$\begin{array}{c|c} q_i + q & q & \\ \hline (l,\eta,\lambda_3) & & & \\ (m,\gamma,\vartheta) & & & \\ q_j & & & \\ \hline \end{array} (a,\mu,\lambda_1) & & & \\ (a',\mu',\lambda_2) & & & \\ \hline (a',\mu',\lambda_2) & & & \\ \hline (a',\mu',\lambda_4) & & \\ \hline (a',\tau',\theta') & & & \\ \hline (a',\tau',\theta') & & & \\ \hline (a',\eta',\lambda_4) & & \\ \hline (a',\eta',\lambda_4) & & \\ \hline (a',\eta',\lambda_2) & & \\ \hline (a',\eta',\lambda_2) & & \\ \hline (a',\eta',\lambda_3) & & \\ \hline (a',$$

$$N \equiv g_{\mu\mu'}g_{\zeta\zeta'}[-g^{\mu\zeta}g^{\mu'\eta'}(q-q_{i})^{\eta}(2q_{i}+q)^{\zeta'}+g^{\mu\zeta}g^{\eta'\zeta'}(q-q_{i})^{\eta}(2q+q_{i})^{\mu'} +g^{\mu\zeta}g^{\zeta'\mu'}(q-q_{i})^{\eta}(q_{i}-q)^{\eta'}+g^{\zeta\eta}g^{\mu'\zeta'}(2q+q_{i})^{\mu}(2q_{i}+q)^{\zeta'} -g^{\zeta\eta}g^{\eta'\zeta'}(2q+q_{i})^{\mu}(2q+q_{i})^{\mu'}-g^{\zeta\eta}g^{\zeta'\mu'}(2q+q_{i})^{\mu}(q_{i}-q)^{\eta'} -g^{\eta\mu}g^{\mu'\eta'}(2q_{i}+q)^{\zeta}(2q_{i}+q)^{\zeta'}+g^{\eta\mu}g^{\eta'\zeta'}(2q_{i}+q)^{\zeta}(2q+q_{i})^{\mu'} +g^{\eta\mu}g^{\zeta'\mu'}(2q_{i}+q)^{\zeta}(q_{i}-q)^{\eta'}][g^{\gamma\delta}]$$

$$(2.5)$$

$$N \equiv \left[-(q - q_i)^{\eta} (2q_i + q)^{\eta'} + (q - q_i)^{\eta} (2q + q_i)^{\eta'} + d(q - q_i)^{\eta} (q_i - q)^{\eta'} + (2q + q_i)^{\eta'} (2q_i + q)^{\eta} - g^{\eta\eta'} (2q + q_i)^{\mu} (2q + q_i)_{\mu} - (2q + q_i)^{\eta} (q_i - q)^{\eta'} \right]$$

$$-g^{\eta\eta'} (2q_i + q)^{\zeta} (2q_i + q)_{\zeta} + (2q_i + q)^{\eta'} (2q + q_i)^{\eta} + (2q_i + q)^{\eta} (q_i - q)^{\eta'} \left[g^{\gamma\delta} \right]$$
(2.6)

$$N \equiv \left[-(q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} - 2q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} - 4q_{i}^{\eta}q_{i}^{\eta'}) + (4q^{\eta'}q_{i}^{\eta} + 2q^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta} + q_{i}^{\eta'}q^{\eta}) + (-2q^{\eta}q^{\eta'} + 2q^{\eta}q_{i}^{\eta'} - q_{i}^{\eta}q^{\eta'} + q_{i}^{\eta}q_{i}^{\eta'}) + (2q^{\eta'}q^{\eta} + q^{\eta'}q_{i}^{\eta} + 4q_{i}^{\eta'}q^{\eta} + 2q_{i}^{\eta'}q_{i}^{\eta}) + (-q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'} - 2q_{i}^{\eta}q^{\eta'} + 2q_{i}^{\eta}q_{i}^{\eta'}) - g^{\eta\eta'}(5q^{2} + 5q_{i}^{2} + 8qq_{i})\right]\left[g^{\gamma\delta}\right]$$

$$(2.7)$$

$$N \equiv [(6-d)q^{\eta}q^{\eta'} + (d+3)q^{\eta}q_i^{\eta'} + (d+3)q_i^{\eta}q^{\eta'} + (6-d)q_i^{\eta}q_i^{\eta'} -g^{\eta\eta'}(5q^2 + 5q_i^2 + 8qq_i)][g^{\gamma\delta}]$$
(2.8)

$$|M_{1}|^{2} = \frac{g_{s}^{2} f^{a \circ l} f^{a k \circ o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d)q^{\eta}q^{\eta'} + (d + 3)q^{\eta}q_{i}^{\eta'} + (d + 3)q_{i}^{\eta}q^{\eta'} + (6 - d)q_{i}^{\eta}q_{i}^{\eta'} - g^{\eta\eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i})][g^{\gamma\delta}]$$

$$(2.9)$$

2.1.1 One-loop corrections to the gluon self-energy diagram(Gluon-Emitter Bubble)

$$|M_1|_{Ghost \, loop}^2 = \frac{g_s^2 \, f^{\, a \, o \, l} \, f^{\, a \, k \, o}}{(q_i + q)^2 (q_i + q)^2} [-q_i^{\, \eta} q^{\eta'} - q^{\eta} q_i^{\, \eta'}] [g^{\gamma \delta}]$$
 (2.10)

$$|M'_{1}|^{2} = |M_{1}|^{2} + |M_{1}|_{Ghost \, loop}^{2}$$

$$= \frac{g_{s}^{2} f^{a \, o \, l} f^{a \, k \, o}}{(q_{i} + q)^{2} (q_{i} + q)^{2}} [(6 - d)q^{\eta} q^{\eta'} + (d + 3)q^{\eta} q_{i}^{\eta'} \qquad (2.11)$$

$$+ (d + 3)q_{i}^{\eta} q^{\eta'} + (6 - d)q_{i}^{\eta} q_{i}^{\eta'} - g^{\eta\eta'} (5q^{2} + 5q_{i}^{2} + 8qq_{i}) - q_{i}^{\eta} q^{\eta'} - q^{\eta} q_{i}^{\eta'}] [g^{\gamma\delta}]$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{(q_i + q)^2 (q_i + q)^2} [(6 - d)q^{\eta}q^{\eta'} + (d + 2)q^{\eta}q_i^{\eta'} + (d + 2)q^{\eta}q_i^{\eta'} + (d + 2)q_i^{\eta}q^{\eta'} + (6 - d)q_i^{\eta}q_i^{\eta'} - g^{\eta\eta'}(8qq_i)][g^{\gamma\delta}]$$
(2.12)

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y^{2}(\alpha_{1} + \beta_{1})^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6 - d)(\zeta_{1}p_{i}^{\eta} + \lambda_{1}Q^{\eta} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{1}p_{i}^{\eta'} + \lambda_{1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(d + 2)(\zeta_{1}p_{i}^{\eta} + \lambda_{1}Q^{\eta} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{q}p_{i}^{\eta'} + \lambda_{q}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(d + 2)(\zeta_{q}p_{i}^{\eta} + \lambda_{q}Q^{\eta} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{1}p_{i}^{\eta'} + \lambda_{1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$+(6 - d)(\zeta_{q}p_{i}^{\eta} + \lambda_{q}Q^{\eta} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1})(\zeta_{q}p_{i}^{\eta'} + \lambda_{q}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}n^{\eta'}_{\perp,1})$$

$$-8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1 - \beta_{1}))n_{\perp,1} \cdot n_{\perp,1}]][g^{\gamma\delta}]$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{y^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6-d)[\zeta_{1}\zeta_{1}p_{i}^{\eta}p_{i}^{\eta'} + \zeta_{1}\lambda_{1}p_{i}^{\eta}Q^{\eta'} + \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{1}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{1}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1} + \lambda_{1}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{1}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}Q^{\eta}n^{\eta'}_{\perp,1}$$

$$+\zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} + \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}$$

$$+\lambda_{1}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \zeta_{1}\lambda_{q}p_{i}^{\eta}Q^{\eta'} - \zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$+\zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}$$

$$+(d+2)[\zeta_{q}\zeta_{1}p_{i}^{\eta}p_{i}^{\eta'} + \zeta_{q}\lambda_{1}p_{i}^{\eta}Q^{\eta'} + \zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$+\lambda_{q}\zeta_{1}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{1}Q^{\eta}Q^{\eta'} + \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$-\zeta_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} - \lambda_{1}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} - \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}$$

$$+(6-d)[\zeta_{q}\zeta_{q}p_{i}^{\eta}p_{i}^{\eta'} + \zeta_{q}\lambda_{q}p_{i}^{\eta}Q^{\eta'} - \zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$+\lambda_{q}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{q}Q^{\eta}Q^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$+\lambda_{q}\zeta_{q}Q^{\eta}p_{i}^{\eta'} + \lambda_{q}\lambda_{q}Q^{\eta}Q^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}p_{i}^{\eta}n^{\eta'}_{\perp,1}$$

$$-\zeta_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}p_{i}^{\eta'} - \lambda_{q}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}Q^{\eta'} + \sqrt{y\alpha_{1}\beta_{1}}\sqrt{y\alpha_{1}\beta_{1}}n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}$$

$$-\delta g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1-\beta_{1}))n_{\perp,1} \cdot n_{\perp,1}]][g^{\gamma\delta}]$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{4y^2 (p_i, Q)} (p_i, Q)$$

$$[(6-d)[(\alpha_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i, Q}) + y^2\beta_1^2(\frac{Q^2}{2p_i, Q})^2)p_i^n p_i^{n'} + (y\alpha_1\beta_1 - y^2\beta_1^2(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} + \zeta_1 \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\beta_1\alpha_1 - y^2\beta_1^2(\frac{Q^2}{2p_i, Q}))Q^n p_i^{n'} + y^2\beta_1^2 Q^n Q^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(\zeta_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} + \sqrt{y\alpha_1\beta_1}\sqrt{y\alpha_1\beta_1}n^n_{\perp,1}n^{n'}_{\perp,1}]$$

$$+(\zeta_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} + \sqrt{y\alpha_1\beta_1}\sqrt{y\alpha_1\beta_1}n^n_{\perp,1}n^{n'}_{\perp,1}]$$

$$+(\zeta_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} - \zeta_1 \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\beta_1^2 - y^2\beta_1\alpha_1(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} - \zeta_1 \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\beta_1^2 - y^2\alpha_1\beta_1(\frac{Q^2}{2p_i, Q}))Q^n p_i^{n'} + y^2\beta_1\alpha_1Q^n Q^{n'}$$

$$-\lambda_1 \sqrt{y\alpha_1\beta_1}Q^n n^{n'}_{\perp,1} + \zeta_q \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'}$$

$$+\lambda_q \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} - \sqrt{y\alpha_1\beta_1}\sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'}$$

$$+\lambda_q \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} - \sqrt{y\alpha_1\beta_1}\sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'}$$

$$+(y\beta_1^2 - y^2\alpha_1\beta_1(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} + \zeta_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\beta_1^2 - y^2\alpha_1\beta_1(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} + \zeta_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\alpha_1^2 - y^2\alpha_1\beta_1(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} + \zeta_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$-\zeta_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}p_i^{n'} - \lambda_1 \sqrt{y\alpha_1\beta_1}n^n_{\perp,1}Q^{n'} - \sqrt{y\alpha_1\beta_1}\sqrt{y\alpha_1\beta_1}n^n_{\perp,1}n^{n'}_{\perp,1}$$

$$+(y\beta_1\alpha_1 - y^2\alpha_1^2(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} - \zeta_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\beta_1\alpha_1 - y^2\alpha_1^2(\frac{Q^2}{2p_i, Q}))p_i^n Q^{n'} - \zeta_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\alpha_1\beta_1 - y^2\alpha_1^2(\frac{Q^2}{2p_i, Q}))Q^n p_i^{n'} + y^2\alpha_1^2Q^n Q^{n'} - \lambda_q \sqrt{y\alpha_1\beta_1}p_i^n n^{n'}_{\perp,1}$$

$$+(y\alpha_1\beta_1 n^n_{\perp,1}n^{n'}_{\perp,1} - 8g^{nn'}[(\alpha_1^2 + \beta_1^2)p_i \cdot Q - (\beta_1(1-\beta_1))n_{\perp,1} \cdot n_{\perp,1}]][g^{n\delta}]$$

$$+(2.15)$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{4y^2 (p_i \cdot Q) (p_i \cdot Q)}$$

$$[(6-d)\{(\alpha_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))p_i^n p_i^{n'} + y\alpha_1\beta_1 p_i^n Q^{n'} + \zeta_1 \sqrt{y\alpha_1\beta_1} p_i^n n^{n'}_{\perp,1}$$

$$+y\beta_1\alpha_1 Q^n p_i^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1} Q^n n^{n'}_{\perp,1} + \zeta_1 \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} p_i^{n'} + \lambda_1 \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} Q^{n'}$$

$$+y\alpha_1\beta_1 n^n_{\perp,1} n^{n'}_{\perp,1}\} + (d+2)\{(\alpha_1\beta_1 - y(\alpha_1^2 + \beta_1^2)(\frac{Q^2}{2p_i \cdot Q}))p_i^n p_i^{n'} + y\alpha_1^2 p_i^n Q^{n'}$$

$$-\zeta_1 \sqrt{y\alpha_1\beta_1} p_i^n n^{n'}_{\perp,1} + y\beta_1^2 Q^n p_i^{n'} - \lambda_1 \sqrt{y\alpha_1\beta_1} Q^n n^{n'}_{\perp,1} + \zeta_q \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} p_i^{n'}$$

$$+\lambda_q \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} Q^{n'} - y\alpha_1\beta_1 n^n_{\perp,1} n^{n'}_{\perp,1} \}$$

$$+(d+2)\{(\beta_1\alpha_1 - y(\beta_1^2 + \alpha_1^2)(\frac{Q^2}{2p_i \cdot Q}))p_i^n p_i^{n'} + y\beta_1^2 p_i^n Q^{n'} + \zeta_q \sqrt{y\alpha_1\beta_1} p_i^n n^{n'}_{\perp,1} \}$$

$$+y\alpha_1^2 Q^n p_i^{n'} + \lambda_q \sqrt{y\alpha_1\beta_1} Q^n n^{n'}_{\perp,1} - \zeta_1 \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} p_i^{n'} - \lambda_1 \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} Q^{n'}$$

$$-y\alpha_1\beta_1 n^n_{\perp,1} n^{n'}_{\perp,1} \} + (6-d)\{(\beta_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))p_i^n p_i^{n'} + y\beta_1\alpha_1 p_i^n Q^{n'}$$

$$-\zeta_q \sqrt{y\alpha_1\beta_1} p_i^n n^{n'}_{\perp,1} + y\alpha_1\beta_1 Q^n p_i^{n'} - \lambda_q \sqrt{y\alpha_1\beta_1} Q^n n^{n'}_{\perp,1} - \zeta_q \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} p_i^{n'}$$

$$-\zeta_q \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} n^{n'}_{\perp,1} + y\alpha_1\beta_1 Q^n p_i^{n'} - \lambda_q \sqrt{y\alpha_1\beta_1} Q^n n^{n'}_{\perp,1} - \zeta_q \sqrt{y\alpha_1\beta_1} n^n_{\perp,1} p_i^{n'}$$

$$|M_1'|^2 = \frac{g_s^2 f^{a \circ l} f^{a k}}{4y^2 (p_i \cdot Q) (p_i)} [(6-d)\{(\alpha_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))p_i^{\eta}p_i^{\eta'} + y\alpha_1\beta_1p_i^{\eta}Q^{\eta'} + y\beta_1\alpha_1Q^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'} + y\alpha_1^2p_i^{\eta}Q^{\eta'} + y\beta_1^2Q^{\eta'} + y\alpha_1^2Q^{\eta}p_i^{\eta'} - y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}\} + (6-d)\{(\beta_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))p_i^{\eta'} + y\beta_1\alpha_1p_i^{\eta}Q^{\eta'} + y\alpha_1\beta_1Q^{\eta}p_i^{\eta'} + y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1}\} - 8g^{\eta\eta'}[(\alpha_1^2 + \beta_1^2)p_i \cdot Q - (\beta_1(1-\beta_1))n_{\perp,1} \cdot n_{\perp,1}]]$$

$$(2.17)$$

$$\begin{split} |M_1'|^2 &= \frac{g_s^2 \, f^{\,a\,o\,l} \, f^{\,a\,k\,o}}{4y^2 \, (p_i \cdot Q) \, (p_i \cdot Q)} \\ &[(6-d)(\alpha_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q})) + 2(d+2)(\alpha_1\beta_1 - y(\alpha_1^2 + \beta_1^2)(\frac{Q^2}{2p_i \cdot Q})) \\ &\quad + (6-d)(\beta_1^2 - 2y\alpha_1\beta_1(\frac{Q^2}{2p_i \cdot Q}))]p_i^{\,\eta}p_i^{\,\eta'} \\ &\quad + [2(6-d)y\alpha_1\beta_1 + (d+2)y(\alpha_1^2 + \beta_1^2)]p_i^{\,\eta}Q^{\eta'} \\ &\quad + [2(6-d)y\beta_1\alpha_1 + (d+2)y(\alpha_1^2 + \beta_1^2)]Q^{\eta}p_i^{\,\eta'} \\ + [2(6-d) - 2(d+2)]y\alpha_1\beta_1n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}[(\alpha_1^2 + \beta_1^2)p_i \cdot Q - (\beta_1(1-\beta_1))n_{\perp,1} \cdot n_{\perp,1}][g^{\gamma\delta}]] \\ &\quad + (2.18) \end{split}$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y^{2} (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[(6-d)(\alpha_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) + 2(d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

$$+(6-d)(\beta_{1}^{2} - 2y\alpha_{1}\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q}))]p_{i}^{\eta}p_{i}^{\eta'}$$

$$+y[(4d-8)\alpha_{1}^{2} + (8-4d)\alpha_{1} + (d+2)]p_{i}^{\eta}Q^{\eta'}$$

$$+y[(4d-8)\alpha_{1}^{2} + (8-4d)\alpha_{1} + (d+2)]Q^{\eta}p_{i}^{\eta'}$$

$$+y[8-4d](\alpha_{1} - \alpha_{1}^{2})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1-\beta_{1}))n_{\perp,1} \cdot n_{\perp,1}][g^{\gamma\delta}]]$$

$$(2.19)$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[[8 - 4d]\beta_{1}(1 - \beta_{1})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1 - \beta_{1}))n_{\perp,1} \cdot n_{\perp,1}][g^{\gamma\delta}]]$$

$$(2.20)$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[8[\epsilon - 1]\beta_{1}(1 - \beta_{1})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1 - \beta_{1}))(-2p_{i} \cdot Q)][g^{\gamma\delta}]]$$
(2.21)

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[8[\epsilon - 1]\beta_{1}(1 - \beta_{1})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} - 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q + 2\alpha_{1}\beta_{1}p_{i} \cdot Q)][g^{\gamma\delta}]]$$

$$(2.22)$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{4y (p_i \cdot Q) (p_i \cdot Q)}$$

$$[8[\epsilon - 1]\beta_1 (1 - \beta_1) n^{\eta}_{\perp,1} n^{\eta'}_{\perp,1} - 8g^{\eta\eta'} [(\alpha_1 + \beta_1)^2 p_i \cdot Q)][g^{\gamma\delta}]]$$
(2.23)

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{y(p_i \cdot Q)} [2[\epsilon - 1]\beta_1 (1 - \beta_1) n^{\eta}_{\perp,1} n^{\eta'}_{\perp,1} - 2g^{\eta\eta'}] [g^{\gamma\delta}]]$$
(2.24)

Another way:

$$k_{1}^{\eta}k_{1}^{\eta'} = (\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = (\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = (\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$(2.25)$$

$$N \equiv (6-d)(\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}^{2}Q^{\eta}p_{i}^{\eta'} - y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$+ (6-d)(\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))p_{i}^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}p_{i}^{\eta}Q^{\eta'} + y\alpha_{1}\beta_{1}Q^{\eta}p_{i}^{\eta'} + y\alpha_{1}\beta_{1}n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$- 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1 - \beta_{1}))n_{\perp,1} \cdot n_{\perp,1}]$$

$$(2.26)$$

$$N \equiv [(6-d)(\alpha_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) + (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q}))$$

$$+ (d+2)(\alpha_{1}\beta_{1} - y(\alpha_{1}^{2} + \beta_{1}^{2})(\frac{Q^{2}}{2p_{i} \cdot Q})) + (6-d)(\beta_{1}^{2} - 2\alpha_{1}\beta_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q}))]p_{i}^{\eta}p_{i}^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} + (d+2)y\alpha_{1}^{2} + (d+2)y\beta_{1}^{2} + (6-d)y\alpha_{1}\beta_{1}]p_{i}^{\eta}Q^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} + (d+2)y\beta_{1}^{2} + (d+2)y\alpha_{1}^{2} + (6-d)y\alpha_{1}\beta_{1}]Q^{\eta}p_{i}^{\eta'}$$

$$+ [(6-d)y\alpha_{1}\beta_{1} - (d+2)y\alpha_{1}\beta_{1} - (d+2)y\alpha_{1}\beta_{1} + (6-d)y\alpha_{1}\beta_{1}]n_{\perp,1}^{\eta}n_{\perp,1}^{\eta'}$$

$$- 8g^{\eta\eta'}[(\alpha_{1}^{2} + \beta_{1}^{2})p_{i} \cdot Q - (\beta_{1}(1-\beta_{1}))n_{\perp,1} \cdot n_{\perp,1}]$$

$$(2.27)$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q)^{2}} [(12 - 2d)y \alpha_{1} \beta_{1} - 2(d + 2)y \alpha_{1} \beta_{1}] n_{\perp,1}^{\eta} n_{\perp,1}^{\eta'} - 8y g^{\eta\eta'} p_{i} \cdot Q] [g_{\gamma\delta}]$$

$$\Rightarrow |M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q)^{2}} [(12 - 2d)\alpha_{1}\beta_{1} - 2(d + 2)\alpha_{1}\beta_{1}] n_{\perp,1}^{\eta} n_{\perp,1}^{\eta'} - 8g^{\eta\eta'} (\alpha_{1}^{2} + \beta_{1}^{2}) p_{i} \cdot Q] [g_{\gamma\delta}]$$

$$|M'_{1}|^{2} = \frac{g_{s}^{2} f^{aol} f^{ako}}{4y (p_{i} \cdot Q) (p_{i} \cdot Q)}$$

$$[8[\epsilon - 1]\beta_{1}(1 - \beta_{1})n_{\perp,1}^{\eta} n_{\perp,1}^{\eta'} - 8g^{\eta\eta'} [(\alpha_{1}^{2} + \beta_{1}^{2}) p_{i} \cdot Q - \beta_{1}\alpha_{1}(-2p_{i} \cdot Q)]] [g_{\gamma\delta}]$$

$$(2.28)$$

$$|M_1'|^2 = \frac{g_s^2 f^{aol} f^{ako}}{y (p_i \cdot Q)} [2[\epsilon - 1]\beta_1 (1 - \beta_1) n^{\eta}_{\perp, 1} n^{\eta'}_{\perp, 1} - 2g^{\eta\eta'}] [g^{\gamma\delta}]$$
 (2.29)

2.2 Gluon-Spectator Bubble

$$|M_{2}|^{2} = \left[\frac{-i}{(q_{j}+q)^{2}}(-g_{s}f^{bfm}(g^{\tau\gamma}(-2q_{j}-q)^{\rho}+g^{\gamma\rho}(2q+q_{j})^{\tau}+g^{\rho\tau}(q_{j}-q)^{\gamma})\right]$$

$$g_{\tau\tau'}g_{\rho\rho'}(-g_{s}f^{b'nf'}(g^{\rho'\delta}(-2q-q_{j})^{\tau'}+g^{\delta\tau'}(2q_{j}+q)^{\rho'}+g^{\tau'\rho'}(q-q_{j})^{\delta})\frac{i}{(q_{j}+q)^{2}}][g^{\eta\eta'}]$$

$$(2.30)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{b f m} f^{b' n f'} \delta^{aa'} \delta^{f f'} \delta^{bb'}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [g_{\tau \tau'} g_{\rho \rho'} (g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\rho' \delta} (2q + q_{j})^{\tau'} - g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\delta \tau'} (2q_{j} + q)^{\rho'} - g^{\tau \gamma} (2q_{j} + q)^{\rho} g^{\tau' \rho'} (q - q_{j})^{\delta} - g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\rho' \delta} (2q + q_{j})^{\tau'} + g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\delta \tau'} (2q_{j} + q)^{\rho'} + g^{\gamma \rho} (2q + q_{j})^{\tau} g^{\tau' \rho'} (q - q_{j})^{\delta} - g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\rho' \delta} (2q + q_{j})^{\tau'} + g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\delta \tau'} (2q_{j} + q)^{\rho'} + g^{\rho \tau} (q_{j} - q)^{\gamma} g^{\tau' \rho'} (q - q_{j})^{\delta}] [g^{\eta \eta'}]$$

$$(2.31)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{b f m} f^{b n f}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(2q + q_{j})^{\gamma} (2q_{j} + q)^{\delta} - g^{\delta \gamma} (2q_{j} + q)^{\rho} (2q_{j} + q)_{\rho} - (2q_{j} + q)^{\gamma} (q - q_{j})^{\delta} - g^{\delta \gamma} (2q + q_{j})^{\tau} (2q + q_{j})_{\tau} + (2q_{j} + q)^{\gamma} (2q + q_{j})^{\delta} + (2q + q_{j})^{\gamma} (q - q_{j})^{\delta} - (q_{j} - q)^{\gamma} (2q + q_{j})^{\delta} + (q_{j} - q)^{\gamma} (2q_{j} + q)^{\delta} + d(q_{j} - q)^{\gamma} (q - q_{j})^{\delta}] [g^{\eta \eta'}]$$

$$(2.32)$$

$$|M_{2}|^{2} = \frac{g_{s}^{2} f^{bfm} f^{bnf}}{(q_{j} + q)^{2} (q_{j} + q)^{2}} [(3+d)q^{\gamma} q_{j}^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_{j}^{\gamma} q_{j}^{\delta} + (3+d)q_{j}^{\gamma} q^{\delta} - g^{\delta \gamma} (5q_{j}^{2} + 5q^{2} + 8qq_{j})$$

$$[g^{\eta \eta'}]$$
(2.33)

2.2.1 One-loop corrections to the gluon self-energy diagram (Gluon-Spectator Bubble)

$$|M_2|_{Ghost \, loop}^2 = \frac{g_s^2 f^{b f m} f^{b n f}}{(q_j + q)^2 (q_j + q)^2} [-q_j^{\gamma} q^{\delta} - q^{\delta} q_j^{\gamma}] [g^{\eta \eta'}]$$
(2.34)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{(q_j + q)^2 (q_j + q)^2} [(2+d)q^{\gamma} q_j^{\delta} + (6-d)q^{\gamma} q^{\delta} + (6-d)q_j^{\gamma} q_j^{\delta} + (2+d)q_j^{\gamma} q^{\delta} - g^{\delta\gamma} (8qq_j)] [g^{\eta\eta'}]$$
(2.35)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{4(q_j \cdot q)(q_j \cdot q)} [-8g^{\delta\gamma}(q \cdot q_j)][g^{\eta\eta'}]$$
(2.36)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{(q_i \cdot q)} [-2g^{\delta \gamma}][g^{\eta \eta'}]$$
 (2.37)

$$|M_2'|^2 = \frac{g_s^2 f^{bfm} f^{bnf}}{(1 - \beta_1)(1 - y) (p_i \cdot p_k)} [-2g^{\delta\gamma}][g^{\eta\eta'}]$$
(2.38)

2.3 Interference term $M_1 M_2^{\dagger}$

$$M_{1}M_{2}^{\dagger} = \left[\frac{-i}{(q_{i}+q)^{2}}(-g_{s}f^{lao}(g^{\eta\mu}(2q_{i}+q)^{\zeta}+g^{\mu\zeta}(q-q_{i})^{\eta}-g^{\zeta\eta}(2q+q_{i})^{\mu})\varepsilon^{\lambda_{1}}{}_{\mu}(q_{i})\varepsilon^{\lambda_{6}}{}_{\zeta}(q)\right]$$

$$\left[\varepsilon^{\theta}{}_{\tau}^{*}(q_{j})\right]$$

$$\left[\frac{i}{(q+q_{j})^{2}}(-g_{s}f^{f'b'n}(g^{\tau'\rho'}(q_{j}-q)^{\delta}+g^{\rho'\delta}(2q+q_{j})^{\tau'}-g^{\delta\tau'}(2q_{j}+q)^{\rho'})\varepsilon^{\theta'}{}_{\tau'}^{*}(q_{j})\varepsilon^{\lambda_{8}}{}_{\rho'}^{*}(q)\right]$$

$$\left[\varepsilon^{\lambda_{2}}{}_{\mu'}^{*}(q_{i})\right]$$

$$(2.39)$$

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l a o} f^{f' b' n} \delta^{aa'} \delta^{ob'} \delta^{ff'}}{(q_{i} + q)^{2} (q_{j} + q)^{2}} [g_{\mu}^{\eta'} g_{\tau\tau'} (g^{\eta\mu} (2q_{i} + q)^{\zeta} + g^{\mu\zeta} (q - q_{i})^{\eta} - g^{\zeta\eta} (2q + q_{i})^{\mu})$$

$$g_{\zeta\rho'} (g^{\tau'\rho'} (q_{j} - q)^{\delta} + g^{\rho'\delta} (2q + q_{j})^{\tau'} - g^{\delta\tau'} (2q_{j} + q)^{\rho'}]$$
(2.40)

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l a o} f^{f' b' n} \delta^{a a'} \delta^{o b'} \delta^{f f'}}{(q_{i} + q)^{2} (q_{j} + q)^{2}}$$

$$[g^{\eta \eta'} (2q_{i} + q)^{\gamma} (q_{j} - q)^{\delta} + g^{\eta \eta'} (2q + q_{j})^{\gamma} (2q_{i} + q)^{\delta} - g^{\eta \eta'} g^{\gamma \delta} (2q_{i} + q) \cdot (2q_{j} + q)$$

$$+ g^{\gamma \eta'} (q - q_{i})^{\eta} (q_{j} - q)^{\delta} + g^{\eta' \delta} (q - q_{i})^{\eta} (2q + q_{j})^{\gamma} - g^{\gamma \delta} (q - q_{i})^{\eta} (2q_{j} + q)^{\eta'}$$

$$- g^{\gamma \eta} (2q + q_{i})^{\eta'} (q_{j} - q)^{\delta} - g^{\eta \delta} (2q + q_{i})^{\eta'} (2q + q_{j})^{\gamma} + g^{\gamma \delta} (2q_{j} + q)^{\eta} (2q + q_{i})^{\eta'}]$$

$$(2.41)$$

$$\begin{split} M_{1}M_{2}^{\dagger} &= \frac{g_{s}^{2}f^{l\,a\,o}f^{f\,o\,n}}{4(q\cdot q_{i})(q\cdot q_{j})} \\ \{g^{\eta\eta'}[2q_{i}^{\gamma}q_{j}^{\delta} + 2q_{i}^{\gamma}q^{\delta} + q^{\gamma}q_{j}^{\delta} + q^{\gamma}q^{\delta} + 4q^{\gamma}q_{i}^{\delta} + 2q^{\gamma}q^{\delta} + 2q_{j}^{\gamma}q_{i}^{\delta} + q_{j}^{\gamma}q^{\delta}] \\ &- g^{\eta\eta'}g^{\gamma\delta}(2q\cdot q_{j} + q\cdot q + 4q_{i}\cdot q_{j} + 2q_{i}\cdot q) + g^{\gamma\eta'}[q^{\eta}q_{j}^{\delta} - q^{\eta}q^{\delta} - q_{i}^{\eta}q_{j}^{\delta} + q_{i}^{\eta}q^{\delta}] \\ &+ g^{\eta'\delta}[2q^{\eta}q^{\gamma} + q^{\eta}q_{j}^{\gamma} + q_{i}^{\eta}q^{\gamma} + q_{i}^{\eta}q_{j}^{\gamma}] - g^{\gamma\delta}[2q^{\eta}q_{j}^{\eta'} + q^{\eta}q^{\eta'} - 2q_{i}^{\eta}q_{j}^{\eta'} - q_{i}^{\eta}q^{\eta'}] \\ &- g^{\gamma\eta}[2q^{\eta'}q_{j}^{\delta} - 2q^{\eta'}q^{\delta} + q_{i}^{\eta'}q_{j}^{\delta} - q_{i}^{\eta'}q^{\delta}] - g^{\eta\delta}[4q^{\eta'}q^{\gamma} + 2q^{\eta'}q_{j}^{\gamma} + 2q_{i}^{\eta'}q^{\gamma} + q_{i}^{\eta'}q_{j}^{\gamma}] \\ &+ q^{\gamma\delta}[4q_{i}^{\eta}q^{\eta'} + 2q_{i}^{\eta}q_{i}^{\eta'} + q^{\eta}q^{\eta'} + q^{\eta}q_{i}^{\eta'}] \} \end{split}$$

$$k_{1}^{\eta}k_{1}^{\eta'} = [(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})^{2}]p_{i}^{\eta}p_{i}^{\eta'} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})p_{i}^{\eta}Q^{\eta'} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})Q^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}Q^{\eta}p_{i}^{\eta'}$$

$$q_{i}^{\eta}k_{1}^{\eta'} = [\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i} \cdot Q})]p_{i}^{\eta}p_{i}^{\eta'} + y\beta_{1}^{2}p_{i}^{\eta}Q^{\eta'}$$

$$q_{i}^{\eta}q_{i}^{\eta'} = \beta_{1}^{2}p_{i}^{\eta}p_{i}^{\eta'}$$

$$k_{1}^{\eta}q_{i}^{\eta'} = [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]\sqrt{1-y}p_{i}^{\eta}p_{k}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1}p_{i}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2}p_{i}^{\eta}Q^{\eta'}$$

$$+ y\beta_{1}A_{1}Q^{\eta}p_{i}^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}Q^{\eta}p_{k}^{\eta'}$$

$$q_{i}^{\eta}q_{k}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}p_{i}^{\eta}Q^{\eta'} + \beta_{1}\sqrt{1-y}p_{i}^{\eta}p_{k}^{\eta'}$$

$$q_{k}^{\eta}k_{1}^{\eta'} = [(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})]\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{1}p_{i}^{\eta}p_{i}^{\eta'} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})A_{2}Q^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$+ y\beta_{1}A_{1}p_{i}^{\eta}Q^{\eta'} + y\beta_{1}A_{2}Q^{\eta}Q^{\eta'} + y\beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$q_{k}^{\eta}q_{i}^{\eta'} = A_{1}\beta_{1}p_{i}^{\eta}p_{i}^{\eta'} + A_{2}\beta_{1}Q^{\eta}p_{i}^{\eta'} + \beta_{1}\sqrt{1-y}p_{k}^{\eta}p_{i}^{\eta'}$$

$$(2.43)$$

Calculation of the first Term

$$g^{\eta\eta'}[2\{A_{1}\beta_{1}p_{i}^{\gamma}p_{i}^{\delta} + A_{2}\beta_{1}p_{i}^{\gamma}Q^{\delta} + \beta_{1}\sqrt{1-y}p_{i}^{\gamma}p_{k}^{\delta}\}$$

$$+2\{[\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}^{\gamma}p_{i}^{\delta} + y\beta_{1}^{2}p_{i}^{\gamma}Q^{\delta}\}$$

$$+\{[(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]\sqrt{1-y}p_{i}^{\gamma}p_{k}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}p_{i}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}p_{i}^{\gamma}Q^{\delta}$$

$$+y\beta_{1}A_{1}Q^{\gamma}p_{i}^{\delta} + y\beta_{1}A_{2}Q^{\gamma}Q^{\delta} + y\beta_{1}\sqrt{1-y}Q^{\gamma}p_{k}^{\delta}\}$$

$$+3\{[(1-\beta_{1})^{2} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]p_{i}^{\gamma}p_{i}^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})p_{i}^{\gamma}Q^{\delta} - y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})Q^{\gamma}p_{i}^{\delta}\}$$

$$+4\{[\beta_{1}(1-\beta_{1}) - y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}^{\gamma}p_{i}^{\delta} + y\beta_{1}^{2}Q^{\gamma}p_{i}^{\delta}\}$$

$$+2\{A_{1}\beta_{1}p_{i}^{\gamma}p_{i}^{\delta} + A_{2}\beta_{1}Q^{\gamma}p_{i}^{\delta} + \beta_{1}\sqrt{1-y}p_{k}^{\gamma}p_{i}^{\delta}\}$$

$$+\{[(1-\beta_{1}) - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]\sqrt{1-y}p_{k}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}p_{i}^{\gamma}p_{i}^{\delta} - y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}Q^{\gamma}p_{i}^{\delta}$$

$$+y\beta_{1}A_{1}p_{i}^{\gamma}Q^{\delta} + y\beta_{1}A_{2}Q^{\gamma}Q^{\delta} + y\beta_{1}\sqrt{1-y}p_{k}^{\gamma}Q^{\delta}\}]$$

$$(2.44)$$

$$g^{\eta\eta'}\{[2A_{1}\beta_{1}+2[\beta_{1}(1-\beta_{1})-y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})] + 4[\beta_{1}(1-\beta_{1})-y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})] + 3[(1-\beta_{1})^{2}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]$$

$$+2A_{1}\beta_{1}-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}]p_{i}^{\gamma}p_{i}^{\delta}$$

$$+[2A_{2}\beta_{1}+2y\beta_{1}^{2}-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}-3y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})+y\beta_{1}A_{1}]p_{i}^{\gamma}Q^{\delta}$$

$$+[2\beta_{1}+[(1-\beta_{1})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]]\sqrt{1-y}p_{i}^{\gamma}p_{k}^{\delta}$$

$$+[y\beta_{1}A_{1}+4y\beta_{1}^{2}+2A_{2}\beta_{1}-3y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}]Q^{\gamma}p_{i}^{\delta}$$

$$+[y\beta_{1}A_{2}+y\beta_{1}A_{2}]Q^{\gamma}Q^{\delta}+y\beta_{1}\sqrt{1-y}Q^{\gamma}p_{k}^{\delta}$$

$$+[2\beta_{1}+[(1-\beta_{1})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]]\sqrt{1-y}p_{k}^{\gamma}p_{i}^{\delta}+y\beta_{1}\sqrt{1-y}p_{k}^{\gamma}Q^{\delta}\}$$

Calculation of the second term

$$-g^{\eta\eta'}g^{\gamma\delta}(2q\cdot q_i + q\cdot q + 4q_i\cdot q_i + 2q_i\cdot q) \tag{2.46}$$

$$-g^{\eta\eta'}g^{\gamma\delta}[2([\alpha_{1}(1-y)+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\beta_{1}Q\cdot p_{k}+\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$4([\beta_{1}(1-y)+y\alpha_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\alpha_{1}Q\cdot p_{k}-\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$+2(yp_{i}\cdot Q)]$$
(2.47)

Calculation of the third term

$$+ g^{\gamma\eta'} \{ [(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q})] \sqrt{1-y} p_i^{\eta} p_k^{\delta} - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_1 p_i^{\eta} p_i^{\delta} - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_2 p_i^{\eta} Q^{\eta'} + y\beta_1 A_1 Q^{\eta} p_i^{\delta} + y\beta_1 A_2 Q^{\eta} Q^{\delta} + y\beta_1 \sqrt{1-y} Q^{\eta} p_k^{\delta}$$

$$- [[(1-\beta_1)^2 - y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q})^2] p_i^{\eta} p_i^{\delta} - y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q}) p_i^{\eta} Q^{\delta} - y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q}) Q^{\eta} p_i^{\delta}]$$

$$- [A_1 \beta_1 p_i^{\eta} p_i^{\delta} + A_2 \beta_1 p_i^{\eta} Q^{\delta} + \beta_1 \sqrt{1-y} p_i^{\eta} p_k^{\delta}]$$

$$+ [\beta_1 (1-\beta_1) - y\beta_1^2 (\frac{Q^2}{2p_i \cdot Q})] p_i^{\eta} p_i^{\eta'} + y\beta_1^2 p_i^{\eta} Q^{\eta'} \}$$

$$(2.48)$$

Calculation of the fourth term

$$+ g^{\eta'\delta} \{ [(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) - \beta_1] \sqrt{1-y} p_i^{\eta} p_k^{\gamma}$$

$$+ [2[(1-\beta_1)^2 - y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q})^2] - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_1 + A_1 \beta_1 +$$

$$[\beta_1(1-\beta_1) - y\beta_1^2 (\frac{Q^2}{2p_i \cdot Q})] p_i^{\eta} p_i^{\gamma}$$

$$+ [-2y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q}) - y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_2 + A_2 \beta_1 + y\beta_1^2] p_i^{\eta} Q^{\gamma}$$

$$+ [y\beta_1 A_1 + 2y^2 \beta_1^2 (\frac{Q^2}{2p_i \cdot Q})] Q^{\eta} p_i^{\gamma} + y\beta_1 A_2 Q^{\eta} Q^{\gamma} + y\beta_1 \sqrt{1-y} Q^{\eta} p_k^{\gamma} \}$$

$$(2.49)$$

Calculation of the fifth term

$$-g^{\gamma\delta}\{[2[(1-\beta_{1})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]-2\beta_{1}]\sqrt{1-y}p_{i}^{\eta}p_{k}^{\eta'}$$

$$[-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}+[(1-\beta_{1})^{2}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]-2A_{1}\beta_{1}$$

$$-[\beta_{1}(1-\beta_{1})-y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]]p_{i}^{\eta}p_{i}^{\eta'}$$

$$[-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})-y\beta_{1}^{2}-2A_{2}\beta_{1}]p_{i}^{\eta}Q^{\eta'}$$

$$+[2y\beta_{1}A_{1}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]Q^{\eta}p_{i}^{\eta'}+2y\beta_{1}A_{2}Q^{\eta}Q^{\eta'}+2y\beta_{1}\sqrt{1-y}Q^{\eta}p_{k}^{\eta'}\}$$

Calculation of the sixth term

$$-g^{\gamma\eta}\{[2[(1-\beta_{1})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]+\beta_{1}]\sqrt{1-y}p_{i}^{\eta'}p_{k}^{\delta}$$

$$[-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}-2[(1-\beta_{1})^{2}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]$$

$$-[\beta_{1}(1-\beta_{1})-y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]+A_{1}\beta_{1}]p_{i}^{\eta'}p_{i}^{\delta}$$

$$[-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}+2y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})+A_{2}\beta_{1}-y\beta_{1}^{2}]p_{i}^{\eta'}Q^{\delta}$$

$$+[2y\beta_{1}A_{1}+2y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]Q^{\eta'}p_{i}^{\delta}+2y\beta_{1}A_{2}Q^{\eta'}Q^{\delta}+2y\beta_{1}\sqrt{1-y}Q^{\eta'}p_{k}^{\delta}\}$$

$$(2.51)$$

Calculation of the seventh term

$$-g^{\eta\delta}\{[2[(1-\beta_{1})-y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]+\beta_{1}]\sqrt{1-y}p_{i}^{\eta'}p_{k}^{\gamma}$$

$$[4[(1-\beta_{1})^{2}-y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})^{2}]-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{1}+A_{1}\beta_{1}$$

$$+2[\beta_{1}(1-\beta_{1})-y\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})]]p_{i}^{\eta'}p_{i}^{\gamma}$$

$$+[-4y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})-2y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})A_{2}+2y\beta_{1}^{2}+A_{2}\beta_{1}]p_{i}^{\eta'}Q^{\gamma}$$

$$+[-4y^{2}\beta_{1}^{2}(\frac{Q^{2}}{2p_{i}\cdot Q})+2y\beta_{1}A_{1}]Q^{\eta}p_{i}^{\eta'}+2y\beta_{1}A_{2}Q^{\eta}Q^{\eta'}+2y\beta_{1}\sqrt{1-y}Q^{\eta'}p_{k}^{\gamma}\}$$

Calculation of the eighth term

$$+ g^{\gamma\delta} \{ [4[(1-\beta_1) - y\beta_1(\frac{Q^2}{2p_i \cdot Q})] + 2\beta_1] \sqrt{1-y} p_k^{\eta} p_i^{\eta'}$$

$$+ [-4y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_1 + 2A_1\beta_1 + [\beta_1(1-\beta_1) - y\beta_1^2(\frac{Q^2}{2p_i \cdot Q})]$$

$$+ [(1-\beta_1)^2 - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})^2]] p_i^{\eta} p_i^{\eta'}$$

$$+ [4y\beta_1 A_1 - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q})] p_i^{\eta} Q^{\eta'} + 4y\beta_1 A_2 Q^{\eta} Q^{\eta'} + 4y\beta_1 \sqrt{1-y} p_k^{\eta} Q^{\eta'}$$

$$+ [2A_2\beta_1 - 4y\beta_1(\frac{Q^2}{2p_i \cdot Q}) A_2 - y^2\beta_1^2(\frac{Q^2}{2p_i \cdot Q}) + y\beta_1^2] Q^{\eta} p_i^{\eta'} \}$$

$$(2.53)$$

Final result

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2}C_{A}}{4y(1-\beta_{1})(1-y)(p_{i}\cdot p_{k})(p_{i}\cdot Q)}g^{\eta\eta'}g^{\gamma\delta}$$

$$[2([\alpha_{1}(1-y)+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\beta_{1}Q\cdot p_{k}+\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$4([\beta_{1}(1-y)+y\alpha_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\alpha_{1}Q\cdot p_{k}-\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$+2(y p_{i}\cdot Q)]$$
(2.54)

$$M_{1}M_{2}^{\dagger} = g_{s}^{2} C_{A} g^{\eta \eta'} g^{\gamma \delta} \left[\frac{1}{2y(p_{i} \cdot Q)} + \frac{\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})}{2y(1 - \beta_{1})(1 - y) (p_{i} \cdot Q)} + \frac{\beta_{1} Q \cdot p_{k}}{2y(1 - \beta_{1})(1 - y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)} + \frac{\beta_{1}}{y(1 - \beta_{1})(p_{i} \cdot Q)} + \frac{1}{2(1 - \beta_{1})(1 - y)(p_{i} \cdot p_{k})} \right]$$

$$(2.55)$$

2.4 Interference term of inverse $M_1 {M_2}^{\dagger'}$

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l o a} f^{f' a' n} \delta^{aa'} \delta^{ob'} \delta^{ff'}}{(q_{i} + q)^{2} (q_{j} + q_{i})^{2}} [g_{\zeta}^{\eta'} g^{\gamma}_{\tau'} (g^{\eta \zeta} (2q + q_{i})^{\mu} + g^{\zeta \mu} (q_{i} - q)^{\eta} - g^{\mu \eta} (2q_{i} + q)^{\zeta})$$

$$g_{\mu \mu'} (g^{\tau' \mu'} (q_{j} - q_{i})^{\delta} + g^{\mu' \delta} (2q_{i} + q_{j})^{\tau'} - g^{\delta \tau'} (2q_{j} + q_{i})^{\mu'}]$$
(2.56)

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2} f^{l \circ a} f^{f a n}}{4(q \cdot q_{i})(q_{i} \cdot q_{j})}$$

$$[g^{\eta \eta'}(2q + q_{i})^{\gamma}(q_{j} - q_{i})^{\delta} + g^{\eta \eta'}(2q_{i} + q_{j})^{\gamma}(2q + q_{i})^{\delta} - g^{\eta \eta'} g^{\gamma \delta}(2q + q_{i}) \cdot (2q_{j} + q_{i}) \quad (2.57)$$

$$+ g^{\gamma \eta'}(q_{i} - q)^{\eta}(q_{j} + q_{i})^{\delta} + g^{\eta' \delta}(q_{i} - q)^{\eta}(2q_{i} + q_{j})^{\gamma} - g^{\gamma \delta}(q_{i} - q)^{\eta}(2q_{j} + q_{i})^{\eta'}$$

$$- g^{\gamma \eta}(2q_{i} + q)^{\eta'}(q_{j} - q_{i})^{\delta} - g^{\eta \delta}(2q_{i} + q)^{\eta'}(2q_{i} + q_{j})^{\gamma} + g^{\gamma \delta}(2q_{j} + q_{i})^{\eta}(2q_{i} + q)^{\eta'}]$$

2.5 Parametrization in terms of $(k_1 \cdot q_i)(q_i \cdot q_k)$

$$(2.58)$$

Calculation of the third term

$$-g^{\eta\eta'}g^{\gamma\delta}\{4k_1\cdot q_j + 2k_1\cdot q_i + 2q_i\cdot q_k\}$$
(2.59)

$$M_{1}M_{2}^{\dagger} = \frac{g_{s}^{2}C_{A}}{4y\beta_{1}(1-y)(p_{i}\cdot p_{k})(p_{i}\cdot Q)}g^{\eta\eta'}g^{\gamma\delta}$$

$$[4([\alpha_{1}(1-y)+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\beta_{1}Q\cdot p_{k}+\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$2([\beta_{1}(1-y)+y\alpha_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\alpha_{1}Q\cdot p_{k}-\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$+2(y p_{i}\cdot Q)]$$
(2.60)

$$-g^{\eta\eta'}g^{\gamma\delta}[4([\alpha_{1}(1-y)+y\beta_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\beta_{1}Q\cdot p_{k}+\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$2([\beta_{1}(1-y)+y\alpha_{1}(\frac{Q^{2}}{2p_{i}\cdot Q})]p_{i}\cdot p_{k}+y\alpha_{1}Q\cdot p_{k}-\sqrt{\alpha_{1}\beta_{1}y(1-y)}p_{k}\cdot n_{\perp,1})$$

$$+2(y p_{i}\cdot Q)]$$
(2.61)

$$M_{1}M_{2}^{\dagger} = g_{s}^{2} C_{A} g^{\eta \eta'} g^{\gamma \delta} \left[\frac{1 - \beta_{1}}{y \beta_{1}(p_{i} \cdot Q)} + \frac{1}{2y(p_{i} \cdot Q)} + \frac{(1 - \beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})}{2y \beta_{1}(1 - y)(p_{i} \cdot Q)} + \frac{(1 - \beta_{1}) Q \cdot p_{k}}{2y \beta_{1}(1 - y)(p_{i} \cdot p_{k})(p_{i} \cdot Q)} + \frac{1}{2(1 - \beta_{1})(1 - y)(p_{i} \cdot p_{k})} \right]$$

$$(2.62)$$

2.6 $|M^2|$

$$\begin{split} |M|^2 &= |M'_2|^2 + |M'_1|^2 + 2RE(M_1M_2^{\dagger} + M_1M_2^{\dagger'}) \\ |M|^2 &= \frac{g_s^2 C_A}{y (p_i \cdot Q)} [2[\epsilon - 1]\beta_1 (1 - \beta_1) n^{\eta}_{\perp,1} n^{\eta'}_{\perp,1} - 2g^{\eta\eta'}] [g^{\gamma\delta}] \\ &+ \frac{g_s^2 C_A}{(1 - \beta_1)(1 - y) (p_i \cdot p_k)} [-2g^{\delta\gamma}] [g^{\eta\eta'}] \\ &+ 2Re(g_s^2 C_A g^{\eta\eta'} g^{\gamma\delta} [\frac{1}{2y(p_i \cdot Q)} + \frac{\beta_1(\frac{Q^2}{2p_i \cdot Q})}{2y(1 - \beta_1)(1 - y) (p_i \cdot Q)} \\ &+ \frac{\beta_1 Q \cdot p_k}{2y(1 - \beta_1)(1 - y) (p_i \cdot p_k)(p_i \cdot Q)} + \frac{\beta_1}{y(1 - \beta_1)(p_i \cdot Q)} + \frac{1}{2(1 - \beta_1)(1 - y)(p_i \cdot p_k)}] \\ &+ g_s^2 C_A g^{\eta\eta'} g^{\gamma\delta} [\frac{1 - \beta_1}{y\beta_1(p_i \cdot Q)} + \frac{1}{2y(p_i \cdot Q)} + \frac{(1 - \beta_1)(\frac{Q^2}{2p_i \cdot Q})}{2y\beta_1(1 - y) (p_i \cdot Q)} \\ &+ \frac{(1 - \beta_1) Q \cdot p_k}{2y\beta_1(1 - y) (p_i \cdot p_k)(p_i \cdot Q)} + \frac{1}{2(1 - \beta_1)(1 - y)(p_i \cdot p_k)}]) \end{split}$$

$$|M|^{2} = |M'_{2}|^{2} + |M'_{1}|^{2} + 2RE(M_{1}M_{2}^{\dagger} + M_{1}M_{2}^{\dagger'})$$

$$|M|^{2} = g_{s}^{2} C_{A} g^{\eta\eta'} g^{\gamma\delta} [2[\epsilon - 1]\beta_{1}(1 - \beta_{1})n^{\eta}_{\perp,1}n^{\eta'}_{\perp,1} + \frac{\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})}{y(1 - \beta_{1})(1 - y)(p_{i} \cdot Q)} + \frac{\beta_{1} Q \cdot p_{k}}{y(1 - \beta_{1})(1 - y)(p_{i} \cdot Q)} + \frac{2\beta_{1}}{y(1 - \beta_{1})(p_{i} \cdot Q)} + \frac{2\beta_{1}}{y(1 - \beta_{1})(p_{i} \cdot Q)} + \frac{(1 - \beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})}{y\beta_{1}(p_{i} \cdot Q)} + \frac{(1 - \beta_{1})(\frac{Q^{2}}{2p_{i} \cdot Q})}{y\beta_{1}(1 - y)(p_{i} \cdot Q)} + \frac{y_{k}}{y\beta_{1}(1 - y)(p_{i} \cdot Q)}]$$

$$|M|^{2} = g_{s}^{2} C_{A} g^{\eta \eta'} g^{\gamma \delta} \left[2\beta_{1} (1 - \beta_{1}) + \frac{2\beta_{1}}{y(1 - \beta_{1})(p_{i} \cdot Q)} + \frac{2(1 - \beta_{1})}{y\beta_{1}(p_{i} \cdot Q)} + \frac{(\frac{Q^{2}}{2p_{i} \cdot Q})}{y\beta_{1}(1 - y)(p_{i} \cdot Q)} + \frac{Q \cdot p_{k}}{y\beta_{1}(1 - y)(p_{i} \cdot p_{k})(p_{i} \cdot Q)} \right]$$

$$(2.65)$$

$$|M|^2 = 2\frac{g_s^2 C_A}{y(p_i \cdot Q)} g^{\eta \eta'} g^{\gamma \delta} \left[\beta_1 (1 - \beta_1) + \frac{\beta_1}{1 - \beta_1} + \frac{1 - \beta_1}{\beta_1}\right]$$
(2.66)

Chapter 3

Quark gluon quark emission kernel

3.1 Quark loop

$$|M_1|^2 = \left[\frac{-i}{(q_i + q)^2} \not q_i (-ig_s \gamma^{\eta} \times [T^l]_a^o) \not q (ig_s \gamma^{\eta'} \times [T^k]_{o'}^{a'}) \frac{i}{(q_i + q)^2}\right] [\not q_j]$$
(3.1)

$$|M_1|^2 = \frac{g_s^2 [T^l]_a^{\ o} [T^k]_{o'}^{\ o}}{4(k_1 \cdot q_i)(k_1 \cdot q_i)} [\not q_i \gamma^{\eta} \not k_1 \gamma^{\eta'}] [\not q_k]$$
(3.2)

$$|M_1|^2 = -\frac{g_s^2 [T^l]_a{}^o [T^k]_{o'}{}^{a'}}{4y^2 (p_i \cdot Q)(p_i \cdot Q)} [\not A_i \not k_1 \gamma^\eta \gamma^{\eta'}] [\not A_k]$$
(3.3)

$$|M_{1}|^{2} = -\frac{g_{s}^{2}[T^{l}]_{a}^{o}[T^{k}]_{o'}^{a'}}{4y^{2}(p_{i} \cdot Q)(p_{i} \cdot Q)}$$

$$[((\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\alpha_{1} \not Q - \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,l})$$

$$((\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\beta_{1} \not Q + \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,1}) \gamma^{\eta}\gamma^{\eta'}]$$

$$[A_{1} \not p_{i} + A_{2} \not Q + \sqrt{1 - y} \not p_{k}]$$

$$(3.4)$$

$$|M_{1}|^{2} = -\frac{g_{s}^{2}[T^{l}]_{a}^{o}[T^{k}]_{o'}^{a'}}{4y^{2}(p_{i} \cdot Q)(p_{i} \cdot Q)}$$

$$[(y\beta_{1}(\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} \not Q + y\alpha_{1}(\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} \not Q + y^{2}\alpha_{1}\beta_{1} \not Q \not Q)g^{\eta\eta'}]$$

$$[A_{1} \not p_{i} + A_{2} \not Q + \sqrt{1 - y} \not p_{k}]$$

$$(3.5)$$

$$|M_{1}|^{2} = -\frac{g_{s}^{2}[T^{l}]_{a}^{o}[T^{k}]_{o'}^{a'}}{4y^{2}(p_{i} \cdot Q)(p_{i} \cdot Q)}[(y\beta_{1}^{2} \not p_{i} \not Q + y\alpha_{1}^{2} \not Q \not p_{i})g^{\eta\eta'}][A_{1} \not p_{i} + A_{2} \not Q + \sqrt{1-y} \not p_{k}]$$

$$(3.6)$$

$$|M_1|^2 = -\frac{g_s^2 [T^l]_a^{\ o} [T^k]_{o'}^{\ o'}}{4y^2 (p_i \cdot Q)(p_i \cdot Q)} [y(\beta_1^2 - \alpha_1^2) \not p_i \not Q g^{\eta \eta'}] [A_1 \not p_i + A_2 \not Q + \sqrt{1 - y} \not p_k]$$
(3.7)

$$|M_1|^2 = -\frac{g_s^2 [T^l]_a^{\ o} [T^k]_{o'}^{\ o'}}{4y(p_i \cdot Q)(p_i \cdot Q)} [g^{\eta \eta'}] [\sqrt{1 - y}(\beta_1^2 - \alpha_1^2) \not p_i \not Q \not p_k]$$
(3.8)

3.2 Spectator Quark loop

$$|M_2|^2 = \frac{g_s^2 [T^m]_f^b [T^n]_f^b}{4(k_1 \cdot q_k)(k_1 \cdot q_k)} [\not q_k \gamma^{\gamma} \not k_1 \gamma^{\delta}] [\not q_i]$$
(3.9)

3.3 Interference term

$$M_1 M_2^{\dagger} = \frac{g_s^2 [T^l]_a^{\ o} [T^n]_f^{\ o}}{4(qq_i)(qq_j)} [\not q_i \gamma^{\eta} \not q \gamma^{\delta} \not q_j]$$
(3.10)

$$M_1 M_2^{\dagger} = -\frac{g_s^2 [T^l]_a{}^o [T^n]_f{}^o}{4(k_1 \cdot q_i)(k_1 \cdot q_k)} [\not q_i \not k_1 \not q_k] [g^{\eta \delta}]$$
(3.11)

$$M_{1} M_{2}^{\dagger} = -\frac{g_{s}^{2} [T^{l}]_{a}^{o} [T^{n}]_{f}^{o}}{4y(1 - \beta_{1})(1 - y) (p_{i} \cdot p_{k})(p_{i} \cdot Q)} [g^{\eta \delta}]$$

$$[((\beta_{1} - \alpha_{1}y(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\alpha_{1} Q - \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,l})$$

$$((\alpha_{1} - y\beta_{1}(\frac{Q^{2}}{2p_{i} \cdot Q})) \not p_{i} + y\beta_{1} Q + \sqrt{y\alpha_{1}\beta_{1}} \not h_{\perp,l})$$

$$(A_{1} \not p_{i} + A_{2} Q + \sqrt{1 - y} \not p_{k})]$$

$$(3.12)$$

$$M_1 M_2^{\dagger} = -\frac{g_s^2 [T^l]_a^{\ o} [T^n]_f^{\ o}}{4y(1-\beta_1)(1-y) (p_i \cdot p_k)(p_i \cdot Q)} [g^{\eta \delta}] [\beta_1 \sqrt{1-y} \not p_i \not Q \not p_k]$$
(3.13)

3.4 $|M^2|$

$$|M|^{2} = |M_{2}|^{2} + |M_{1}|^{2} + 2RE(M_{1}M_{2}^{\dagger})$$

$$- \frac{g_{s}^{2}[T^{l}]_{a}^{o}[T^{k}]_{o'}^{a'}}{4y(p_{i} \cdot Q)(p_{i} \cdot Q)}[g^{\eta\eta'}][\sqrt{1 - y}(\beta_{1}^{2} - \alpha_{1}^{2}) \not p_{i} \not Q \not p_{k}]$$

$$+ 2RE(-\frac{g_{s}^{2}[T^{l}]_{a}^{o}[T^{n}]_{f}^{o}}{4y(1 - \beta_{1})(1 - y)(p_{i} \cdot p_{k})(p_{i} \cdot Q)}[g^{\eta\delta}][\beta_{1}\sqrt{1 - y} \not p_{i} \not Q \not p_{k}])$$
(3.14)

Chapter 4

Gluon quark quark emission kernel

4.1 M_1

4.2 M_2

4.3 $M1M_2^{\dagger}$

