

Please write clearly in block capitals.			
Centre number	Candidate number		
Surname			
Forename(s)			
Candidate signature			
	I declare this is my own work.		

INTERNATIONAL A-LEVEL MATHEMATICS

(9660/MA04) Unit S2 Statistics

Friday 13 January 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

	Answer all questions in the spaces provided.	ou
1	The continuous random variable $ X $ has mean 12 and variance 5 The continuous random variable $ Y $ has mean 15 and variance 2.5	
	The random variables X and Y are independent.	
1 (a)	Find the value of $E(3Y-2X)$	[2 marks]
	Answer	
1 (b)	Find the value of $Var(3Y-2X)$	[2 marks]
	Answer	

A hypothesis test is carried out by a student to determine whether there is evidence that the mean μ of a normally distributed random variable X has changed from 18.3

A random sample of size 16 has a sample mean of 19

The standard deviation of X is known to be 2.5

A 10% level of significance is used.

There are errors in **three** stages of the student's attempt at the hypothesis test below.

	Statement	
Stage 1	$H_0: \overline{x} = 18.3$ $H_1: \overline{x} \neq 18.3$	
Stage 2	Under H_0 $X \sim N(18.3, 2.5^2)$	
Stage 3	$n = 16$ $\overline{X} \sim N\left(18.3, \frac{2.5^2}{16}\right)$	
Stage 4	10% level of significance gives $z_{critical} = \pm 1.2816$	
Using sample mean = 19 $z = \frac{19 - 18.3}{\left(\frac{2.5}{4}\right)}$		
Stage 6	Test statistic $z = 1.12$	
Stage 7	$Z \le Z_{ m critical}$	
Stage 8	As we have evidence to suggest a change in mean occurred at the 10% level of significance, we reject ${\rm H}_0$	

2 (a) Identify the **three** stages with errors and write down the correct statements for each of the stages.

[4 marks]

Error 1 Stage

Correct statement

	Error 2	Stage	outside box
		Correct statement	
	Error 3	Stage	
		Correct statement	
2 (b)	Explain v	hy the Central Limit Theorem is not needed in the student's h	ypothesis test. [1 mark]
2 (c)	Which of	the five options below correctly completes the following sente	nce?
		_ is the set of values for the test statistic for which we reject th	e null hypothesis.
	Tick (✓)	one box.	[1 mark]
		A Confidence Interval	
		A Critical Region	
		An Unbiased Estimator	
		A Critical Value	
		A Significance Test	6

3		The continuous random variable T has the cumulative distribution function	
		$F(t) = \begin{cases} 0 & t < 0 \\ \frac{t^3}{64} & 0 \le t \le 4 \\ 1 & t > 4 \end{cases}$	
3	(a)	Find the probability density function of $\ T$ for all values of $\ t$	[3 marks]
		Answer	
3	(b)	The mean of T is μ and the standard deviation of T is σ	
3	(b) (i)	Find the value of μ	[2 marks]
		Answer	

3	(b) (ii)	Find the value of σ	
		Give your answer to three significant figures. [4 marks]	
		Answer	
3	(c)	Find $P(\mu-2\sigma \le T \le \mu+2\sigma)$	
		Give your answer to three significant figures. [4 marks]	
		Answer	

13

Hand-drying machines are designed to switch off automatically after a set drying time.			
A manufacturer makes hand-drying machines which have a mean drying time of 25 seconds.			
An engineer redesigns the hand-drying machine and a random sample of 500 redesigned machines are tested.			
The drying time, $\ X$ seconds, is measured for each of the redesigned machines and the results are summarised as			
$\sum x = 12430$ and $\sum x^2 = 310000$			
The engineer now claims that the mean drying time has been reduced.			
Test the engineer's claim at the 1% level of significance. [10 marks]			

5	(a) (i)	(i) State two conditions required for using a Poisson distribution as an approximation binomial distribution $B(n, p)$	
		binomial distribution $B(n, p)$	[1 mark]
		Condition 1	
		Condition 2	
5	(a) (ii)	It is given that $X \sim B(500, 0.02)$	
		Use a Poisson approximation to find the parameter $\ \lambda$ for this distribution.	[1 mark]
		Answer	
5	(a) (iii)	Using your Poisson approximation for X find $P(X \le 10)$	
		Give your answer to three significant figures.	
			[2 marks]
		Answer	

5	(b)	Yellow jacket wasps live in ground nests found on farmland.
		The number of ground nests found on farmland is known to fit a Poisson distribution with a mean of 8 per hectare.
		Sally has a farm which has trialled a new crop.
		Sally believes that the new crop has caused a change in the Poisson distribution mean number of ground nests for yellow jacket wasps.
		Over 30 hectares Sally finds 150 ground nests for yellow jacket wasps.
5	(b) (i)	Construct a hypothesis test for Sally's claim at the 10% level of significance. [6 marks]
		Ougstion E continues on the next ness
		Question 5 continues on the next page

(D) (II	Find the critical region for the hypothesis test in part (b)(i) at the 10% level of	
	significance.	[3 marks]
	Answer	
(c) (i)	Describe in the context of the test in part (b)(i) a Type I error.	[1 mark]
(c) (ii	Calculate the probability of a Type I error for the test in part (b)(i) .	[1 mark]
	Δπανιστ	
	Answer	

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

6		independent normal distributions as shown below.		
		Vertical Slide	$X_1 \sim N(12, 1.5^2)$	
		High Swings	$X_2 \sim N(8, 0.8^2)$	
		Gravity Wheel	$X_3 \sim N(7, 1^2)$	
		Roller Coaster	$X_4 \sim N(14, 2^2)$	
		Jump Drop	$X_5 \sim N(\mu, \sigma^2)$	
6	(a)	Find the probability that the queue time	for the Vertical Slide is less than 10 minutes.	
		Give your answer to three significant fig	ures. [2 marks]	
		Answer_		
6 (b)		Find the queue time exceeded by 10% of people for the High Swings.		
		Give your answer to three significant fig	ures. [3 marks]	
		Answer_		

6	(c)	For the Jump Drop it	is given that			
			$P(X_5 < 16) = 0.82$	and	$P(X_5 > 10) = 0.53$	
		Find the value of μ	and the value of σ			
		Give your answers to	three significant figu	ıres.		IC was a wheal
						[6 marks]
			$\mu = $		$\sigma =$	
		Qı	uestion 6 continues			

	Find $P(T < 35)$ Give your answer to three significant figures.	[3 marks]
	The total queue time is $\ensuremath{\mathit{T}}$ minutes.	
(e)	A person queues once for each of the Vertical Slide, High Swings, Gravity Wh	neel and
	as this normal distribution might not be appropriate in this context.	[1 mark]

7		Don runs a business where people make appointments to ride ponies.	
		The number of appointments made by customers for rides each week can be no by a Poisson distribution with $\lambda=2.5$	nodelled
7	(a)	Find the probability that there are exactly four appointments in a given week.	
		Give your answer to four significant figures.	[2 marks]
		Answer	
7	(b)	The summer holiday period lasts 6 weeks.	
		Find the probability that there are more than 18 appointments over the summer period.	holiday
		Give your answer to four significant figures.	[3 marks]
		Answer	

7	(c)	The time, ${\cal T}$ weeks, between appointments can be modelled by an exponential distribution.	
7	(c) (i)	Find the mean of $\ensuremath{\mathit{T}}$	mark]
		Answer	
7	(c) (ii)	Find the variance of $\it T$	mark]
		Answer	
7	(d)	A week lasts 7 days.	
		Find the value of c such that $P(T < c) = 0.9$	
		Give your answer to the nearest day. [3 m	arks]
		Answer	

10

8 The probability density function f for a continuous random variable X is given by

$$f(x) = \begin{cases} \frac{96}{(5x+k)^2} & 2 \le x \le d \\ 0 & \text{otherwise} \end{cases}$$

where k and d are constants, k > 0 and d > 2

8 (a) Show that the cumulative distribution function F for X is given by

$$F(x) = \begin{cases} 0 & x < 2 \\ \frac{96(x-2)}{(10+k)(5x+k)} & 2 \le x \le d \\ 1 & x > d \end{cases}$$

[4 marks]

		Do not v
		box
	·	
8 (b)	It is given that $F(4.4) = 0.8$	
o (b)	1 13 given that 1 (4.4) 0.0	
	Find the value of k	
		[3 marks]
	Anguar	$\left \left \frac{}{7} \right \right $
	Answer	L

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

