Exercise 1.1.2

Suppose
$$(X, f)$$
 is a factor of (Y, g) by a semi-conjugacy $\pi: Y \to X$. (1)

Show that if
$$y \in Y$$
 is a periodic point, then $\pi(y) \in X$ is periodic. (2)

Give an example to show that the preimage of a periodic point does not necessarily contain a periodic point. (3)

Proof + reasoning:

Let
$$y \in Y$$
 be periodic. (4)

$$f(\pi(y)) = \pi(g(y)) = \pi(y). \tag{5}$$

So,
$$(2)$$
 follows from (5) . (6)

Let A and B be sets, and
$$\pi_A \colon A \times B \to A$$
 the projection. (7)

For all α and β , the following diagram commutes:

$$\begin{array}{ccc}
A \times B & \xrightarrow{\alpha \times \beta} & A \times B \\
\downarrow \pi_A & & \downarrow \pi_A \\
A & \xrightarrow{\alpha} & A
\end{array} \tag{8}$$

Let A be any nonempty set,
$$B = (0, 1], \alpha = \mathrm{id}_A$$
 and $\beta : (x \mapsto \frac{1}{2}x)$ (9)

Clearly, β has no periodic points, so $\alpha \times \beta$ has no periodic points, but all points in A are periodic with respect to α . (10)

By
$$(10)$$
, (3) follows. (11)

Exercise 1.2.3

Let G be a topological group.	(1)
Prove that for each $g \in G$, the closure $H(g)$ of the set $\{g^n\}_{n=-\infty}^{\infty}$ is a commutative subgroup of G .	(2)
Thus, if G has a minimal left translation, then G is abelian.	(3)
Proof + reasoning:	
Define $\langle g \rangle := \{g^n\}_{n=-\infty}^{\infty}$.	(4)
Let $g \in G$. Let $a, b \in \operatorname{cl}(\langle g \rangle)$.	(5)
Since the group multiplication $\alpha: G \times G \to G$ is continuous, $\alpha^{-1}(U)$ is open in $G \times G$. Since $(a,b) \in \alpha^{-1}(U)$, and since sets of the form $A \times B$, where A and B are open, form a basis for the topology on $G \times G$, there exist open V and W such that $a \in V$, $b \in W$, and such that $V \times W \subseteq \alpha^{-1}(U)$.	(6)
Since $a, b \in \operatorname{cl}(\langle g \rangle)$ there exist $g^{\ell} \in V$ and $g^{p} \in W$. By (6), $g^{\ell}g^{p} \in U$, hence $g^{\ell+p} \in U$, so $ab \in \operatorname{cl}(\langle g \rangle) = H(g)$.	(7)
By (7) , $H(g)$ is closed under taking products.	(8)
Let C be a neighborhood of a^{-1} and $U \subseteq C$ an open set such that $a^{-1} \in U$. Since the inverse is continuous, $U' := \{x \in G : x^{-1} \in U\}$ is open, and it contains a .	(9)
Since $a \in H(g)$, there exists $g^q \in U'$, where $q \in \mathbb{Z}$.	(10)
By (10), $g^{-q} = (g^q)^{-1} \in U$, so $a^{-1} \in H(g)$.	(11)
By (11) , $H(g)$ is closed under taking inverses.	(12)
Let $c, d \in G$ with $cd \neq dc$.	(13)
Suppose that G is Hausdorff.	(14)
By (14) and (13), there exist open neighborhoods U of cd and U' of dc such that $U \cap U' = \emptyset$.	(15)
Suppose $c, d \in H(g)$.	(16)
Similarly to (6), $(c,d) \in \alpha^{-1}(U)$ and $(d,c) \in \alpha^{-1}(U')$.	(17)
So there are open sets V, V', W, W' such that $(c, d) \in V \times W \subseteq \alpha^{-1}(U)$ and $(d, c) \in V' \times W' \subseteq \alpha^{-1}(U')$.	(18)
From (18), $c \in V \cap V'$ and $d \in W \cap W'$, and $V \cap V'$ and $W \cap W'$ are open.	(19)
So, by (16), there exist $s, t \in \mathbb{Z}$ such that $g^s \in V \cap V'$ and $g^t \in W \cap W'$.	(20)
By (20), $(g^s, g^t) \in V \times W$ and $(g^t, g^s) \in W' \times V'$.	(21)
By (21) and (18), $g^s g^t \in U$ and $g^t g^s \in U'$, so $g^{t+s} \in U \cap U'$.	(22)
(22) contradicts (14), so (16) is false, hence $c \notin H(g)$ or $d \notin H(g)$, so $H(g)$ is commutative.	(23)
By (23) , (8) and (12) , $H(g)$ is a commutative subgroup of G .	(24)
Suppose that G has a minimal left translation $L_h: G \to G$ where $h \in G$.	(25)
By (24) , $H(h)$ is a commutative subgroup of G .	(26)

By definition, L_h has no proper closed non-empty invariant subsets.	(27)
H(h) is a closed non-empty subset of G .	(28)
Let $a \in H(h)$. Let C be a neighborhood of ha and U open with $ha \in U \subseteq C$. $a \in h^{-1}U$, and $h^{-1}U$ is open, so $\exists q \in \mathbb{Z}$ such that $h^q \in h^{-1}U$.	(29)
By (29), $h^{q+1} \in U$, so $H(h)$ is invariant.	(30)
By (30), (28) and (27), $H(h) = G$, so G is abelian.	(31)

Exercise 1.3.3

For $m \in \mathbb{Z}$, |m| > 1, define the times-m map $E_m : S^1 \to S^1$ by $E_m x = mx \mod 1$. Show that the set of points with dense orbits is uncountable. (1)

Proof + reasoning:

- As stated in ch1.3, the orbit of a point $0.x_1x_2...$ is dense in S^1 iff every finite sequence of elements in $\{0, ..., m-1\}$ appears in the sequence $(x_i)_{i \in \mathbb{N}}$. (2)
- Let U be the set of points in S^1 with a unique base-m expansion. (3)
- By the remarks in section 1.3, U is uncountable. (4)
- Define $\phi: \Sigma_m \to S^1$. by $\phi((x_i)_{i \in \mathbb{N}}) := \sum_{i=1}^{\infty} x_i/m^i$ (5)
- By the remarks in section 1.3, ϕ is bijective on $\phi^{-1}(U)$. (6)
- Let $x \in U$, with base-*m* expansion $(x_i)_{i \in \mathbb{N}}$. (7)
- Let $\mathcal{F}_m = \bigcup_{k=1}^{\infty} \{0, \dots, m-1\}^k$. (8)
- Clearly, \mathcal{F}_m is countable, so it can be indexed by $(\omega_i)_{i \in \mathbb{N}}$. (9)
- Define $\alpha: U \to \Sigma_m$ by letting $\alpha(x) = x_1 \omega_1 x_2 \omega_2 x_3 \omega_3 \dots$, and define $\beta = \phi \circ \alpha$. (10)
- Since every $y \in U$ has a unique base-m expansion, α is injective, so by (6), β is bijective. By construction, every finite sequence appears in $\alpha(y)$ for every $y \in U$, so by (2), every point in $\beta(U)$ has a dense orbit. (11)
- From (12), (11) and (4), we get that the set of all points in S^1 with dense orbits is uncountable. (12)

Exercise 1.4.3.

Verify that the metrics on Σ_m and Σ_m^+ generate the product topology (1)

Proof + reasoning:

Let
$$C := C_{j_1,...,j_k}^{n_1,...,n_k} = \{x = (x_\ell) : x_{n_i} = j_i, i = 1,...,k\}$$
 where $n_1 < n_2 < \cdots < n_k$ are indices in \mathbb{Z} or \mathbb{N} , and $j_i \in A_m$. (2)

Let
$$x := (x_i) \in C$$
. (3)

Let
$$m = \max\{|n_i| : i \le k\}, y \in B(x, 2^{-m}), \text{ and } l = \min\{|i| : y_i \ne x_i\}.$$
 (4)

We have
$$2^{-l} = d(x, y) < 2^{-m}$$
. (5)

From (5),
$$l > m$$
, so $x_{n_i} = y_{n_i} \ \forall i \le k$, hence $y \in C$. (6)

Therefore
$$B(x, 2^{-m}) \subseteq C$$
. (7)

By (7), and the fact that the collection of sets such as $C_{j_1,\ldots,j_k}^{n_1,\ldots,n_k}$ form a basis for the product topology, the metrics generate the product topology. (8)

Exercise 1.5.3.

Suppose p is an attracting fixed point for f. Show that there is a neighborhood U of p such that the forward orbit of every point in U converges to p. (1)

Proof + reasoning:

By assumption, there exists a neighborhood U of p such that \overline{U} is compact, $f(\overline{U}) \subseteq U$, and $\bigcap_{n \ge 0} f^n(\overline{U}) = \{p\}.$ (2)

Clearly,

$$U \subset \overline{U}$$
. (3)

From (3) and (2)

$$f(U) \subseteq f(\overline{U}) \subseteq U.$$
 (4)

Therefore,

$$f^{n+1}(U) \subseteq f^n(U) \text{ for all } n \in \mathbb{N}$$
 (5)

Clearly,

$$\bigcap_{n\geq 0} f^n(U) \subseteq \bigcap_{n\geq 0} f^n(\overline{U}) \tag{6}$$

Conversely,

$$\bigcap_{n\geq 0} f^n(\overline{U}) \subseteq \bigcap_{n\geq 1} f^n(\overline{U}) = \bigcap_{n\geq 0} f^{n+1}(\overline{U}) \subseteq \bigcap_{n\geq 0} f^n(U)$$
 (7)

So, from (7)

$$\bigcap_{n\geq 0} f^n(U) = \bigcap_{n\geq 0} f^n(\overline{U}) \tag{8}$$

(9)

(11)

(14)

Let $x \in U$. Define $(x_n)_{n \in \mathbb{N}} = (f^n(x))_{n \in \mathbb{N}}$.

Assume (x_n) does not converge. Then $\exists \varepsilon' > 0$ such that $\forall n : \exists k \geq n : d(f^k(x), p) > \varepsilon'$. (10)

From (10), there exists a sequence $f^{m_n}(x)$ such that $d(f^{m_n}(x), p) \ge \varepsilon$ for all $n \ge 0$. By compactness of \overline{U} , this sequence has a convergent subsequence $(f^{z_n}(x))_{n\ge 0}$ with $f^{z_n}(x) \to z \in \overline{U}$ and $z_n \to \infty$.

Since f is continuous and \overline{U} compact, $f^n(\overline{U})$ is compact for all $n \ge 0$. (12)

$$\forall n \ge 0 \text{ there exists } K \text{ s.t. } f^{z_K}(x) \in f^n(\overline{U}), \text{ hence } \forall m \ge K, f^{z_m}(x) \in f^n(\overline{U}).$$
 (13)

From (13), the limit point z must be in $f^n(\overline{U})$ for all $n \geq 0$.

Therefore,
$$z \in \bigcap_{n \ge 0} f^n(\overline{U}) = \{p\}.$$
 (15)

So, z = p, which contradicts (10), so assumption (10) is false. Hence (x_n) converges. (16)

Suppose $x_n \to q$ and $q \neq p$. (17)

Let
$$n \geq 0$$
. The sequence $(x_i)_{i \geq n}$ is contained in $f^n(\overline{U})$, which is compact, so $q \in f^n(\overline{U})$. Therefore, $q \in \bigcap_{n \geq 0} f^n(\overline{U})$. (18)

By (8),
$$q \in \bigcap_{n>0} f^n(U) = \{p\}$$
, which is a contradiction. Hence, (17) is false. (19)

From (19) and (16) it follows that $x_n \to p$. Therefore, the forward orbit of any point in U converges to p. (20)

Exercise 1.7.3.

Show that the eigenvalues of a two-dimensional hyperbolic toral automorphism are irrational (so the stable and unstable manifolds are dense by exercise 1.11.1). (1)

Proof + reasoning:

Let A be a 2×2 integer matrix such that det(A) = 1 and such that for all eigenvalues λ of A, $|\lambda| \neq 1$.

Let
$$\lambda$$
 be an eigenvalue of A . (3)

(2)

Note that
$$\det(\lambda I - A) = 0$$
. (4)

Denote
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
. (5)

$$(\lambda - a_{11})(\lambda - a_{22}) - a_{12}a_{21} = 0 \tag{6}$$

$$\lambda^2 - \lambda a_{11} - \lambda a_{22} + a_{11} a_{22} - a_{12} a_{21} = 0 \tag{7}$$

By assumption,
$$det(A) = 1$$
, so $a_{11}a_{22} - a_{12}a_{21} = 1$ (8)

Substituting
$$1 = a_{11}a_{22} - a_{12}a_{21}$$
 in (7) gives: $\lambda^2 - \lambda a_{11} - \lambda a_{22} + 1 = 0$ (9)

$$\lambda^2 - \lambda(a_{11} + a_{22}) + 1 = 0 \tag{10}$$

By the quadratic formula,
$$\lambda = \frac{1}{2}(a_{11} + a_{22} + ((a_{11} + a_{22})^2 - 4)^{1/2})$$
 or $\lambda = \frac{1}{2}(a_{11} + a_{22} - ((a_{11} + a_{22})^2 - 4)^{1/2})$ (11)

From (11) we see that
$$\lambda \in \mathbb{R} \setminus \mathbb{Q}$$
 if and only if $((a_{11} + a_{22})^2 - 4)^{1/2} \in \mathbb{R} \setminus \mathbb{Q}$ (12)

By definition of
$$A$$
, $(a_{11} + a_{22}) \in \mathbb{N}$ (13)

Suppose
$$((a_{11} + a_{22})^2 - 4)^{1/2} \in \mathbb{C}$$
. Then $|\lambda|^2 = \frac{1}{4}((a_{11} + a_{22})^2 + 4 - (a_{11} + a_{22})^2) = 1$ (14)

(14) contradicts (2), hence
$$((a_{11} + a_{22})^2 - 4)^{1/2} \in \mathbb{R}$$
 (15)

From (15) and (13),
$$a_{11} + a_{22} \ge 3$$
 (16)

Conjecture 1 (stm:ex1.7.3-c23). $\{n \in \mathbb{N} : \sqrt{n} \in \mathbb{Q} \setminus \mathbb{N}\} = \emptyset$

Proof. Suppose $\sqrt{n} \in \mathbb{Q} \setminus \mathbb{N}$. Then $\sqrt{n} = \frac{p}{q}$, where p and q are natural numbers. Since $\sqrt{n} \notin \mathbb{N}$, q does not divide p, so q^2 does not divide p^2 . From (17), $n = \frac{p^2}{q^2}$, hence $nq^2 = p^2$. This contradicts (18), so (17) is false. \square_{c23}

Proof of (??): Suppose $\sqrt{n} \in \mathbb{Q} \setminus \mathbb{N}$. Then $\sqrt{n} = \frac{p}{q}$, where p and q are natural numbers. (17)

Since
$$\sqrt{n} \notin \mathbb{N}$$
, q does not divide p , so q^2 does not divide p^2 (18)

From (17),
$$n = \frac{p^2}{q^2}$$
, hence $nq^2 = p^2$ (19)

(18) contradicts (19), so (17) is false
$$\square_{c23}$$
 (20)

Conjecture:
$$\forall n \in \mathbb{N}, n \ge 3 \text{ implies } (n^2 - 4)^{1/2} \notin \mathbb{N}$$
 (21)

Proof of (21): Suppose
$$(n^2 - 4)^{1/2} = k$$
 where $k \in \mathbb{N}$ (22)

Then
$$n^2 - 4 = k^2$$
 (23)

So
$$n^2 - k^2 = 4$$
 (24)

Clearly,
$$n > k$$
 (25)

Then
$$n^2 - k^2 \ge n^2 - (n-1)^2 = n^2 - n^2 + 2n - 1 = 2n - 1$$
 (26)

So
$$n^2 - k^2 > 4$$
 (27)

(27) contradicts (24), so
$$\square_{c34}$$
 (28)

Now we can conclude. By (16) and (21),
$$((a_{11} + a_{22})^2 - 4)^{1/2} \notin \mathbb{N}$$
 (29)

So, by (29), (15) and (??),
$$((a_{11} + a_{22})^2 - 4)^{1/2}$$
 is irrational (30)

So, by (30) and (11),
$$\lambda$$
 is irrational (31)

Let $x \in \mathbb{T}^2$. Without loss of generality, $\lambda > 1 > \lambda^{-1}$, where λ and λ^{-1} are the eigenvalues of A. The stable manifold $W^u(x)$ is the line through x parallel to v where v is the eigenvector corresponding to λ .

Denote
$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
. A line parallel to v has slope equal to $\frac{v_2}{v_1}$ (33)

(32)

$$Av = \lambda v \tag{34}$$

$$\begin{bmatrix} a_{11}v_1 + a_{12}v_2 \\ a_{21}v_1 + a_{22}v_2 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \end{bmatrix}$$
 (35)

$$a_{11}v_1 + a_{12}v_2 = \lambda v_1 \tag{36}$$

$$a_{21}v_1 + a_{22}v_2 = \lambda v_2 \tag{37}$$

$$v_2(\lambda - a_{22}) = a_{21}v_1 \tag{38}$$

$$v_1(\lambda - a_{11}) = a_{12}v_2 \tag{39}$$

Since
$$v$$
 is an eigenvector, $v_1 \neq 0$ or $v_2 \neq 0$ (40)

By (31),
$$(\lambda - a_{22})$$
 and $(\lambda - a_{11})$ are irrational. (41)

If
$$v_1 \neq 0$$
, then by (41) and (39), $v_2 \neq 0$ (42)

If
$$v_2 \neq 0$$
, then by (41) and (38), $v_1 \neq 0$ (43)

So,
$$v_1 \neq 0$$
 and $v_2 \neq 0$ (44)

By (44) and (38),
$$v_2v_1^{-1} = (\lambda - a_{22})^{-1}a_{21} \neq 0$$
 (45)

By (45) and (41),
$$v_2v_1^{-1}$$
 is irrational (46)

Denote
$$x = (x_1, x_2)$$
, let $t \in \mathbb{R}^+$ (47)

Let
$$\phi_{\frac{v_1}{v_2}}^t(x) := (x_1 + \frac{v_1}{v_2}t, x_2 + t) \mod 1$$
 (48)

Then
$$\bigcup_{t \in \mathbb{R}^+} \phi^t_{\frac{v_1}{v_2}}(x) \subseteq W^u(x)$$
 (49)

By exercise 1.11.1, the orbit of $\phi_{\frac{v_1}{v_2}}$ is dense, so $W^u(x)$ is dense. For the stable manifold, the proof is similar. (50)

Exercise 1.8.3.

Let
$$\phi: \Sigma_2 = \{0,1\}^{\mathbb{Z}} \to H$$
 be the map that assigns to each infinite sequence $\omega = (\omega_i) \in \Sigma_2$ the unique point $\phi(\omega) = \bigcap_{-\infty}^{\infty} f^{-i}(R_{\omega_i})$. (1)

Prove that
$$\phi$$
 is a bijection and that both ϕ and ϕ^{-1} are continuous. (2)

Proof + reasoning:

Suppose $x, y \in \Sigma_2$ with $\phi(x) = \phi(y)$. Then

$$\bigcap_{-\infty}^{\infty} f^{-i}(R_{x_i}) = \phi(x) = \phi(y) = \bigcap_{-\infty}^{\infty} f^{-i}(R_{y_i}). \tag{3}$$

From the description of f, we see that f is injective. (4)

By definition,

$$R_0 = f(D_0) \cap R$$
 and $R_1 = f(D_1) \cap R$. (5)

From (4), (5), and
$$D_0 \cap D_1 = \emptyset$$
, we get $R_0 \cap R_1 = \emptyset$. (6)

By (4) and (6),
$$f^{-i}(R_0) \cap f^{-i}(R_1) = \emptyset$$
 for all $i \in \mathbb{Z}$. (7)

From (3) and (7),
$$x_i = y_i$$
 for all $i \in \mathbb{Z}$, so $x = y$, so ϕ is injective. (8)

Note
$$f(R) \cap R = R_1 \cup R_0$$
, and $f^{-1}(R) \subseteq R$. (9)

By (9),
$$f^{-i}(R) = f^{-i}(R_0) \cup f^{-i}(R_1)$$
 for all $i \ge 1$. (10)

Clearly,
$$R_0 \cap R_1 = \emptyset$$
. (11)

By (4) and (9), for all $i \geq 0$,

$$(f^{-i}(R_0) \cup f^{-i}(R_1)) \cap R = f^{-i}(R_0 \cup R_1) \cap R = f^{-i+1}(R) \cap f^{-i}(R) \cap R.$$
(12)

Let
$$x \in H$$
 and $j \in \mathbb{Z}$. By (10), (11) and (12), $x \in f^j(R_0)$ or $x \in f^j(R_1)$, but not both. (13)

By (13), we can define
$$x_j = 0$$
 if $x \in f^j(R_0)$ and $x_j = 1$ if $x \in f^j(R_1)$. Clearly, this gives a sequence $(x_j)_{j \in \mathbb{Z}} \in \Sigma_2$ such that $\phi((x_j)_{j \in \mathbb{Z}}) = x$. So ϕ is surjective. (14)

By (14) and (8),
$$\phi$$
 is bijective. (15)

Let $\omega \in \phi^{-1}(A \times B)$. For a sequence $\omega \in \{0,1\}^{\mathbb{Z}}$, define

$$R_{\omega_{-m},\dots,\omega_m} = \bigcap_{i=-m}^m f^{-i}(R_{\omega_i}). \tag{16}$$

Define
$$C_m = \{R_{\omega_{-m},\dots,\omega_m} \times R_{\omega_0,\dots,\omega_m}\}, \ \omega \in \{0,1\}^{\mathbb{Z}}, \ m \in \mathbb{N}, \text{ and define } \mathcal{C} = \bigcup_{m \in \mathbb{N}} \{H \cap C : C \in \mathcal{C}_m\}.$$
 (17)

Conjecture 2. C is a basis for the topology on H.

Proof: Let
$$C \in \mathcal{C}$$
. Then $C = H \cap (R^- \times R^+)$ where $R^- \times R^+ \in \mathcal{C}_m$ for some $m \in \mathbb{N}$. (18)

Note
$$R^- = [x_1, x_2]$$
 and $R^+ = [y_1, y_2]$ for $x_1, x_2, y_1, y_2 \in \mathbb{R}$. (19)

By (11), for all
$$D \neq D' \in \mathcal{C}_m$$
, $D \cap D' = \emptyset$. (20)

By (19) and (20), there exist open intervals
$$I^-, I^+ \subset \mathbb{R}$$
 such that $R^- \times R^+ \subseteq I^- \times I^+$ and such that $(I^- \times I^+) \cap D = \emptyset$ for all $D \in \mathcal{C}_m$ with $D \neq R^- \times R^+$. (21)

Clearly,
$$C_m$$
 covers H . (22)

By (21) and (22),
$$H \cap (R^- \times R^+) = H \cap (I^- \times I^+)$$
. (23)

By
$$(23)$$
, C is open in H . (24)

Let
$$A$$
 and B be open intervals in \mathbb{R} . (25)

Let
$$x \in H \cap (A \times B)$$
. (26)

Let
$$\varepsilon = \min\{d(x, y) : y \in A \times B\}.$$
 (27)

Because
$$A \times B$$
 is open, $\varepsilon > 0$. (28)

Let
$$k = \min\{n \in \mathbb{N} : \mu^{-n} \le \varepsilon, \lambda^n \le \varepsilon\}.$$
 (29)

By (28), and since
$$\lambda < 1/2$$
 and $\mu > 2$, $k > 0$. (30)

If
$$R^- \times R^+ \in \mathcal{C}_m$$
, then R^- has width equal to $\mu^{-k} \leq \varepsilon$ and R^+ has width equal to $\lambda^k \leq \varepsilon$. (31)

By (31), (27) and (22), there exists an
$$R^- \times R^+ \in \mathcal{C}_k$$
 such that $x \in R^- \times R^+$ and $R^- \times R^+ \subseteq A \times B$. (32)

By (24),
$$H \cap R^- \times R^+$$
 is open, so \mathcal{C} is a basis for the topology on H . (33)

Let
$$C \in \mathcal{C}$$
. $C = H \cap (R_{\omega_{-m},\dots,\omega_m} \times R_{\omega_0,\dots,\omega_m})$ for $\omega \in \{0,1\}^{\mathbb{Z}}$. (34)

Let
$$j \in \{-m, -m+1, \dots, m\}.$$
 (35)

Suppose $z \in \phi^{-1}(C)$. By definition of ϕ ,

$$\phi(z) = \bigcap_{i \in \mathbb{Z}} f^{-i}(R_{z_i}) \subseteq f^j(R_{z_j}). \tag{36}$$

Since
$$\phi(z) \in R^+ \times R^-, \ \phi(z) \in f^j(R_{\omega_i}).$$
 (37)

By (11),
$$f^{j}(R_{1}) \cap f^{j}(R_{0}) = \emptyset$$
, so $z_{i} = \omega_{i}$, so $z \in B(\omega, 2^{-m})$. (38)

Clearly
$$B(\omega, 2^{-m}) \subseteq \phi^{-1}(C)$$
. (39)

By (38) and (39),
$$\phi^{-1}(C) = B(\omega, 2^{-m})$$
, so $\phi^{-1}(C)$ is open, so, by 2, ϕ is continuous. (40)

Let $B(\gamma, 2^{-n})$ be an open ball in Σ_2 . By the same argument as for (40),

$$B(\gamma, 2^{-n}) = \phi^{-1}(H \cap (R_{\gamma_{-n}, \dots, \gamma_n} \times R_{\gamma_0, \dots, \gamma_n})). \tag{41}$$

So
$$\phi(B(\gamma, 2^{-n})) = H \cap (R_{\gamma_{-n}, \dots, \gamma_n} \times R_{\gamma_0, \dots, \gamma_n}).$$
 (42)

By (42) and 2,
$$\phi(B(\gamma, 2^{-n}))$$
 is open, so ϕ^{-1} is continuous. (43)

Exercise 1.9.3.

Let \mathbb{T} denote the set of sequences $(\phi_i)_{i=0}^{\infty}$ where $\phi_i \in S^1$ and $\phi_i = 2\phi_{i+1} \mod 1$ for all i. Let $\alpha : \mathbb{T} \to \mathbb{T}$ be defined by

$$(\phi_0, \phi_1, \dots) \mapsto (2\phi_1, \phi_1, \phi_2, \dots). \tag{1}$$

Show that \mathbb{T} is a topological group. (2)

Show that α is an automorphism (3)

Proof + reasoning:

Lemma 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \ a, b \in \mathbb{N} : x \equiv_a y \Rightarrow bx \equiv_a by.$

Proof.
$$\exists p \in \mathbb{Z} : x = y + pa$$
, so $bx = by + bpa$, so $bx \equiv_a by$.

Lemma 2. $\forall x \in \mathbb{R}, a, b \in \mathbb{N}, a(x \mod b) \equiv_b ax.$

Proof. Clearly,
$$x \mod b \equiv_b x$$
. By lemma 1, $a(x \mod b) \equiv_b ax$.

Lemma 3. $\forall x, y \in \mathbb{R}, \ \forall k \in \mathbb{N}, \ (x \mod k) + (y \mod k) \equiv_k x + y.$

Proof.
$$x + y = (x \mod k) + (y \mod k) + pk + qk = (x \mod k) + (y \mod k) + (p + q)k$$
. So, $x + y \equiv_k (x \mod k) + (y \mod k)$.

Given
$$\psi$$
 and ϕ in \mathbb{T} , define $(\psi + \phi)_i = (\psi_i + \phi_i) \mod 1$. (4)

Let
$$\psi$$
 and ϕ be elements of \mathbb{T} . It suffices to show $\psi_i + \phi_i \equiv_1 2(\psi + \phi)_{i+1}$. (5)
By (1), lemma 3 and lemma 2,

$$\psi_{i} + \phi_{i} = (2\psi_{i+1} \mod 1) + (2\phi_{i+1} \mod 1)$$

$$\equiv_{1} 2\psi_{i+1} + 2\phi_{i+1}$$

$$= 2(\psi_{i+1} + \phi_{i+1})$$

$$\equiv_{1} 2((\psi + \phi)_{i+1} \mod 1)$$

$$\equiv_{1} 2(\psi + \phi)_{i+1}$$
(6)

From (6) and (5), \mathbb{T} is closed under addition. (7)

For
$$\phi \in \mathbb{T}$$
, define $(-\phi)_i := -\phi_i$. (8)

Clearly, this is the inverse of ϕ . (9)

Suppose that
$$\phi^n \to \phi$$
 and $\psi^n \to \psi$ in $(S^1)^{\mathbb{N}_0}$. Let $n \geq 0$. By assumption, $\exists K_n$ s.t. $\forall j \leq n, \ \phi^i_j = \phi_j, \ \psi^i_j = \psi_j$, hence $(\phi^i - \psi^i)_j = \phi_j - \psi_j$. (10)

By (10),
$$\forall \varepsilon > 0, \exists k \text{ s.t. } d(\phi^i - \psi^i, \phi - \psi) \le \varepsilon \ \forall i \ge k, \text{ so } \lim_{n \to \infty} d(\phi^n - \psi^n, \phi - \psi) = 0,$$

hence $(\phi, \psi) \mapsto \phi - \psi$ is continuous. (11)

Let $\phi, \psi \in \mathbb{T}$. Show $\alpha(\phi) + \alpha(\psi) = \alpha(\phi + \psi)$. By lemma 3 and lemma 2,

$$(\alpha(\phi) + \alpha(\psi))_i = ((2\phi_i) \mod 1 + (2\psi_i) \mod 1) \mod 1$$

$$\equiv_1 2(\phi_i + \psi_i)$$

$$\equiv_1 2((\phi + \psi)_i \mod 1)$$

$$= \alpha(\phi + \psi)_i.$$
(12)

Clearly, α preserves the identity. (13)

Suppose $\alpha(\phi) = \alpha(\psi)$. Then $\phi_{i-1} = \alpha(\phi)_i = \alpha(\psi)_i = \psi_{i-1} \ \forall i \geq 1$, so $\phi = \psi$, hence α is injective. (14)

Let
$$\phi \in \mathbb{T}$$
. Let $(\phi')_i := \phi_{i+1} \ \forall i \ge 1$. (15)

$$\alpha(\phi') = \phi$$
, so α is surjective. (16)

By (14) and (16), α is bijective. By (12), (13), and (14), α is a group automorphism. (17) For product topologies the 1-d cylinders form a subbasis. So, to show that α is continuous it suffices to show that $\forall i \in \mathbb{N}, \pi_i \circ \alpha$ is continuous. (18)

Let
$$i \in \mathbb{N}$$
. Note $\pi_i \circ \alpha : (\phi_0, \phi_1, \dots) \mapsto \begin{cases} \phi_{i-1} & \text{if } i \ge 1\\ 2\phi_0 & \text{if } i = 0 \end{cases}$ (19)

The map $r: S^1 \to S^1: s \mapsto 2s \mod 1$ is clearly continuous. (20)

By (20), if $A \in \mathcal{T}(S^1)$, then

$$(\pi_i \circ \alpha)^{-1}(A) = \begin{cases} (S^1)^{i-1} \times A \times S^1 \times \cdots & \text{if } i \ge 1\\ r^{-1}(A) \times S^1 \times \cdots & \text{if } i = 0 \end{cases}$$
 (21)

By (21) and (20), $\pi_i \circ \alpha$ is continuous, so by (18), α is continuous. (22)

Note $\pi_i \circ \alpha^{-1} : (\phi_0, \phi_1, \dots) \mapsto \phi_{i+1}$. This is clearly continuous, so by (18), α^{-1} is continuous, so by (22) and (17), α is a homeomorphism. (23)

Exercise 1.10.3.

Let
$$f: \mathbb{R}^n \to \mathbb{R}$$
 be a smooth function. (1)

Show that
$$-f$$
 is a Lyapunov function for the gradient flow. (2)

Show that the trajectories of the gradient flow are orthogonal to the level sets of f. (3)

Proof + reasoning:

The gradient flow is the flow of the differential equation
$$\dot{x} = \nabla f(x)$$
. (4)

Let
$$x \in \mathbb{R}^n$$
 and $t \in \mathbb{R}^+$. Note $(f \circ g_x)(0) = f(x)$ and $(f \circ g_x)(t) = f(g^t(x))$. (5)

By (5), if
$$(f \circ g_x)'(s) \ge 0$$
 for all $s \in \mathbb{R}^+$ then $-f$ is Lyapunov. (6)

By (4),
$$g'_x(t) = \nabla f(g_x(t))$$
. (7)

By the multivariate chain rule and (7),

$$(f \circ g_x)'(t) = \langle \nabla f(g_x(t)), g_x'(t) \rangle = \langle g_x'(t), g_x'(t) \rangle$$

where
$$\langle \cdot, \cdot \rangle$$
 is the inner product in \mathbb{R}^n . (8)

By definition of inner products,
$$\langle g'_x(t), g'_x(t) \rangle \ge 0.$$
 (9)

By
$$(8)$$
, (9) and (6) , $-f$ is Lyapunov. (10)

Let
$$x \in \mathbb{R}^n$$
. (11)

Define the level set
$$C := f^{-1}(f(x))$$
. (12)

Let
$$T_x = {\dot{\gamma}(0) : \exists \varepsilon > 0 \text{ s.t. } \gamma : (-\varepsilon, \varepsilon) \to C \text{ is smooth and } \gamma(0) = x}.$$
 (13)

By (7),
$$(f \circ g_x)'(0) = \nabla f(g_x(0)) = \nabla f(x) = g_x'(0)$$
. (14)

Let
$$V \in T_x$$
, with corresponding path $\gamma: (-\varepsilon, \varepsilon) \to C$. (15)

Since
$$\gamma(t) \in C$$
 for all $t \in (-\varepsilon, \varepsilon)$, $f(\gamma(t)) = f(\gamma(0))$ for all $t \in (-\varepsilon, \varepsilon)$. (16)

By the multivariate chain rule,

$$\langle \nabla f(x), V \rangle = \sum_{k=1}^{n} V_{k} \frac{\partial f}{\partial y_{k}}(x)$$

$$= \sum_{k=1}^{n} V_{k} \frac{\partial f}{\partial y_{k}}(\gamma(0))$$

$$= \sum_{k=1}^{n} \dot{\gamma}(0)_{k} \frac{\partial f}{\partial y_{k}}(\gamma(0))$$

$$= (f \circ \gamma)'(0). \tag{17}$$

By (16), $(f \circ \gamma)'(0) = 0$, so by (17), $\langle \nabla f(x), V \rangle = 0$, so by (14), the trajectories of the gradient flow are orthogonal to the level sets of f. (18)

Exercise 1.11.3.

Suppose 1, s and αs are real numbers that are linearly independent over \mathbb{Q} . (1)

Show that every orbit of the time-s map ϕ_{α}^{s} is dense in \mathbb{T}^{2} . (2)

Proof + reasoning:

Let
$$x \in \mathbb{T}^2$$
, $y \in \mathbb{T}^2$, $\varepsilon' > 0$ and $\varepsilon = \frac{\varepsilon'}{2\sqrt{2}}$. (3)

Let
$$\mathcal{P}_{\varepsilon}$$
 be a partition of \mathbb{T}^2 into finitely many squares of the form $[a,b)^2$, where $\frac{\varepsilon}{2} < |a-b| < \varepsilon$. (4)

By the pigeonhole principle, there exists a $P \in \mathcal{P}_{\varepsilon}$ and k > m in \mathbb{Z} such that $\phi_{\alpha}^{ks}(x)$ and $\phi_{\alpha}^{ms}(x)$ are in P. (5)

By (5),
$$d(z, \phi_{\alpha}^{(k-m)s}(z)) < \sqrt{2\varepsilon}$$
 for all $z \in \mathbb{T}^2$, where d is the metric on \mathbb{T}^2 .

Conjecture 3. There exists a $\beta \in \mathbb{R} \setminus \mathbb{Q}$ such that for all $y \in \mathbb{T}^2$

$$\frac{(\phi_{\alpha}^{(k-m)s}(y))_2 - y_2}{(\phi_{\alpha}^{(k-m)s}(y))_1 - y_1} = \beta.$$

Proof. Suppose for contradiction that s=0. Then for p=1, q=1, r=0 we have $p\alpha s+qs+r=0$, a contradiction, so $s\neq 0$. Similarly, $\alpha s\neq 0$. Suppose for contradiction that $\alpha s\in \mathbb{Q}$. Let $p=1, q=-\alpha s, r=0$. Then $p\alpha s+qs+r=0$, a contradiction, so $\alpha s\notin \mathbb{Q}$. Suppose for contradiction that $\frac{1}{\alpha}\in \mathbb{Q}$. Then s is irrational. Let $p=\frac{1}{\alpha}, q=-1, r=0$. Then $p\alpha s+qs+r=0$, a contradiction, so $\frac{1}{\alpha}$ is irrational. Let $y\in \mathbb{T}^2$. Then

$$\frac{(\phi_{\alpha}^{(k+m)s}(y))_2 - y_2}{(\phi_{\alpha}^{(k+m)s}(y))_1 - y_1} = \frac{(k-m)s}{(k-m)\alpha s} = \frac{1}{\alpha}$$

So, with $\beta = \frac{1}{\alpha}$, the statement follows.

Let
$$\gamma$$
 be the line in \mathbb{T}^2 starting from x in the direction of $x - \phi_{\alpha}^{m-k}(x)$. (7)

Let
$$\beta$$
 be the slope of γ , which is finite and in $\mathbb{R} \setminus \mathbb{Q}$ by 3. (8)

By (8), considering γ as a subset of \mathbb{T}^2 , we have

$$\gamma \cap (y_1 \times \mathbb{T}) = \bigcup_{n \ge 0} \{ (y_1, (x_2 + \beta(y_1 - x_1) + \beta n) \bmod 1) \}$$

$$= \bigcup_{n \ge 0} \{ (y_1, R_{\beta}^n(x_2 + \beta(y_1 - x_1))) \}.$$
(9)

By (8), R_{β} has dense semiorbits. (10)

By (10) and (9), there exists a
$$z \in \gamma \cap (y_1 \times (y_2 - \varepsilon, y_2 + \varepsilon))$$
. (11)

By (6) and Conjecture 3, there exists a $p \in \mathbb{N}$ such that

$$d(\phi_{\alpha}^{p(k-m)s}(x), z) < \sqrt{2\varepsilon} \tag{12}$$

By (12) and (11),

$$d(\phi_{\alpha}^{p(k-m)s}(x), y) \leq d(\phi_{\alpha}^{p(k-m)s}(x), z) + d(z, y)$$

$$\leq \sqrt{2}\varepsilon + \varepsilon$$

$$\leq 2\sqrt{2}\varepsilon$$

$$\leq \varepsilon'.$$
(13)

(14)

By (13), every orbit of ϕ_{α}^{s} is dense in \mathbb{T}^{2} .

Exercise 1.12.3.

Compute the Lyapunov exponents for the solenoid.

Proof + reasoning:

Let
$$F: S^1 \times D^2 \to S^1 \times D^2$$
 be the solenoid. Let $x, y \in \mathbb{R}$ and let $\lambda \in (0, \frac{1}{2})$.

Note
$$F(\phi, x, y) = (2\phi, \lambda x + \frac{1}{2}\cos(2\pi\phi), \lambda y + \sin(2\pi\phi)).$$
 (3)

By writing out the composition, we see that:

$$F^{n}(\phi, x, y)_{1} = 2^{n}\phi$$

$$F^{n}(\phi, x, y)_{2} = \lambda^{n}x + \frac{1}{2}\lambda^{n-1}\cos(2\pi\phi) + \dots + \frac{1}{2}\lambda^{0}\cos(2^{n-1}\pi\phi)$$

$$= \lambda^{n}x + \frac{1}{2}\sum_{i=0}^{n-1}\lambda^{i}\cos(2^{n-1-i}\pi\phi)$$

$$F^{n}(\phi, x, y)_{3} = \lambda^{n}y + \frac{1}{2}\sum_{i=0}^{n-1}\lambda^{i}\sin(2^{n-1-i}\pi\phi)$$
(4)

(1)

By (4), denoting $\delta_{ij} := \frac{\partial F_i}{\partial z_j}(\phi, x, y)$, we can express $dF^n(\phi, x, y)$ as follows:

$$\delta_{11} = 2$$

$$\delta_{21} = -\frac{1}{2} \sum_{i=0}^{n-1} \lambda^{i} 2^{n-1-i} \pi \sin(2^{n-1-i} \pi \phi)$$

$$= -\frac{\pi}{2} \sum_{i=0}^{n-1} \lambda^{i} 2^{n-1-i} \sin(2^{n-1-i} \pi \phi)$$

$$\delta_{31} = \frac{\pi}{2} \sum_{i=0}^{n-1} \lambda^{i} 2^{n-1-i} \cos(2^{n-1-i} \pi \phi)$$

$$\delta_{22} = \lambda^{n}$$

$$\delta_{33} = \lambda^{n}$$

$$\delta_{ij} = 0 \quad \text{otherwise}$$
(5)

The Lyapunov exponent is defined as

$$\chi(\phi, x, y, v) = \lim_{n \to \infty} \frac{1}{n} \log \|dF^n(\phi, x, y)v\|$$
 (6)

By (5),

$$dF^{n}(\phi, x, y)v = v_{1}(2^{n} + \delta_{21} + \delta_{31}) + \lambda^{n}(v_{2} + v_{3})$$
(7)

Note, since
$$\lambda \in (0, \frac{1}{2})$$
, that $|\delta_{21}| \le \pi \cdot n \cdot 2^n$ and $|\delta_{31}| \le \pi \cdot n \cdot 2^n$. (8)

Suppose $v_1 \neq 0$. By (8) and (7), for n sufficiently large,

$$\frac{1}{n}\log\|dF^{n}(\phi, x, y)v\| = \frac{1}{2} \cdot \frac{1}{n}\log\left(\|dF^{n}(\phi, x, y)v\|^{2}\right)
= \frac{1}{2n}\log\left(v^{2}(2^{n} + \delta_{21} + \delta_{31})^{2} + \lambda^{2n}(v_{2} + v_{3})^{2}\right)
\leq \frac{1}{2n}\log\left((v_{1} \cdot 3\pi \cdot n \cdot 2^{n})^{2} + \lambda^{2n}(v_{2} + v_{3})^{2}\right)
\leq \frac{1}{2n}\log\left((v_{1} \cdot 4\pi \cdot n \cdot 2^{n})^{2}\right)
= \frac{1}{n}\log(v_{1} \cdot 4\pi \cdot n \cdot 2^{n})
= \frac{1}{n}\left(\log(v_{1} \cdot 4\pi \cdot n) + n\log(2)\right)
\xrightarrow{n \to \infty} \log(2)$$
(9)

By (9),
$$\chi(\phi, x, y, v) \le \log(2)$$
. (10)

For the lower bound, by (11) and (9),

$$\frac{1}{n}\log\|dF^{n}(\phi, x, y)v\| = \frac{1}{2n}\log\left(v_{1}^{2}(2^{n} + \delta_{21} + \delta_{31})^{2} + \lambda^{2n}(v_{2} + v_{3})^{2}\right)
\geq \frac{1}{2n}\log\left(v_{1}^{2} \cdot 2^{2n}\right)
= \frac{1}{n}\log(v_{1} \cdot 2^{n})
= \log(2) + \frac{1}{n}\log(v_{1}) \xrightarrow{n \to \infty} \log(2)$$
(11)

By (10) and (11),
$$\chi(\phi, x, y, v) = \log(2)$$
. (12)

Suppose $v_1 = 0$. By (13) and (7),

$$\frac{1}{n}\log ||dF^{n}(\phi, x, y)v|| = \frac{1}{n}\log(\lambda^{n}(v_{2} + v_{3}))$$

$$= \log(\lambda) + \frac{1}{n}\log(v_{2} + v_{3})$$

$$\xrightarrow{n \to \infty} \log(\lambda)$$
(13)

By (13),
$$\chi(\phi, x, y, v) = \log(\lambda)$$
. (14)

By (14) and (12), the Lyapunov exponents are
$$\log(2)$$
 and $\log(\lambda)$.

Exercise 2.1.3.

Let $f: X \to X$ be a topological dynamical system.

Show that $\mathcal{R}(f) \subseteq \mathrm{NW}(f)$.	(2)
Proof + reasoning:	
Let $x \in \mathcal{R}(f)$.	(3)
Let U be a neighborhood of x , and V an open set such that $V \subseteq U$ and $x \in V$.	(4)
By (3) and (4), there exists a recurrent point z in V .	(5)
By (5), there exists an increasing sequence (m_k) such that	
$f^{m_k}(z) \to z$ and $m_k \to \infty$.	(6)
Since V is a neighborhood of z, by (6) there exists an $M \geq 1$ such that $\forall i \geq M$,	
$f^{m_i}(z) \in V$, so $f^{m_M}(z) \in U$, hence $f^{m_M}(U) \cap U \neq \emptyset$.	(7)
By (7), $\mathcal{R}(f) \subseteq NW(f)$.	(8)

(1)

Exercise 2.2.3.

Is the product of two topologically transitive systems topologically transitive? (1)

Is a factor of a topologically transitive system topologically transitive? (2)

Proof + reasoning:

Let R_{α} be the circle translation, where α is irrational. (3)

It is known that R_{α} is topologically transitive. (4)

Let
$$(a,b) \in S^1 \times S^1$$
. (5)

If $a \geq b$, then the orbit of (a,b) under $R_{\alpha} \times R_{\alpha}$ is contained in $l_1 \cup l_2$ where

$$l_1 = \{t(a-b,0) + (1-t)(1,b-a+1) : t \in [0,1]\},$$

$$l_2 = \{t(1,b-a+1) + (1-t)(1,b-a+1) : t \in [0,1]\}.$$
(6)

If $b \geq a$, then the same holds with

$$l_1 = \{t(0, a - b + 1) + (1 - t)(b - a, 1) : t \in [0, 1]\},$$

$$l_2 = \{t(b - a, 0) + (1 - t)(1, a - b + 1) : t \in [0, 1]\}.$$
(7)

(8)

(9)

In both cases, l_1 and l_2 are lines contained in $[0,1)\times[0,1)$. Since these lines are clearly not dense in $S^1\times S^1$, the forward orbit of (a,b) is not dense in $S^1\times S^1$. Hence, $R_\alpha\times R_\alpha$ is not topologically transitive.

Suppose $f: X \to X$ and $g: Y \to Y$ are topological dynamical systems, that π is a topological semiconjugacy from f to g, and that f is topologically transitive with point $x \in X$ with dense forward orbit.

Let $U \subseteq Y$ be open. Since π is continuous, $\pi^{-1}(U)$ is open, so by (9), there exists a $k \in \mathbb{N}$ such that $f^k(x) \in \pi^{-1}(U)$. (10)

By (9),
$$\pi \circ f^k(x) = g^k(\pi(x))$$
. (11)

By (10) and (11), $g^k(\pi(x)) \in U$, so $\pi(x)$ is dense, hence a factor of a topologically transitive system is topologically transitive. (12)

Exercise 2.3.3.

Show that a factor of a topologically mixing system is also topologically mixing. (1)

Proof + reasoning:

Let $f:X\to X$ and $g:Y\to Y$ be topological dynamical systems, and π a topological semiconjugacy from f to g.

Let U and V be nonempty open sets in Y. (3)

Since π is surjective and continuous, $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are nonempty and open. (4)

By (2) and (4), there exists an $N \in \mathbf{N}$ such that for all $n \ge N$, $f^n(\pi^{-1}(U)) \cap \pi^{-1}(V) \ne \emptyset$. (5)

By (2),

$$\pi \left(f^{n}(\pi^{-1}(U)) \cap \pi^{-1}(V) \right) \subseteq \pi (f^{n}(\pi^{-1}(U))) \cap \pi (\pi^{-1}(V))$$

$$= g^{n}(\pi(\pi^{-1}(U))) \cap \pi (\pi^{-1}(V))$$

$$= g^{n}(U) \cap V. \tag{6}$$

By (6) and (5), $g^n(U) \cap V \neq \emptyset$, so g is topologically mixing, hence a factor of a topologically mixing system is topologically mixing. (7)

Exercise 2.5.3.

Let
$$\{a_n\}$$
 be a subadditive sequence of non-negative real numbers, i.e. (1)

$$0 \le a_{m+n} \le a_m + a_n \text{ for all } m, n \ge 0.$$

Show that
$$\lim_{n\to\infty} \frac{a_n}{n} = \inf_{n\geq 0} \frac{a_n}{n}$$
. (3)

Proof + reasoning:

Let
$$k \in \mathbb{N}_+$$
. (4)

Let
$$n \ge k$$
. (5)

By (5),
$$n = mk + m'$$
, where $m \in \mathbb{N}$ and $m' < k$. (6)

By (6), and the subadditivity of (a_n) ,

$$\frac{a_n}{n} - \frac{a_k}{k} = \frac{a_{mk+m'}}{n} - \frac{a_k}{k}$$

$$\leq \frac{a_{mk} + a_{m'}}{n} - \frac{a_k}{k}$$

$$\leq \frac{ma_k}{mk + m'} + \frac{ka_1}{n} - \frac{a_k}{k}$$

$$\xrightarrow{n \to \infty} 0$$
(7)

Hence, $\lim_{n\to\infty} \frac{a_n}{n}$ is a lower bound for $\left\{\frac{a_n}{n} : n \ge 1\right\}$. (8)

Additionally, if $C \leq \frac{a_m}{m}$ for all $m \in \mathbb{N}$, then clearly $C \leq \lim_{n \to \infty} \frac{a_n}{n}$, so by (8),

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \ge 0} \frac{a_n}{n}.$$
 (9)

Exercise 2.7.3.

Give a non-trivial example of a homeomorphism f of a compact metric space (X,d) such that $d(f^n(x), f^n(y)) \to 0$ as $n \to \infty$ for every pair $x, y \in X$. (1)

Proof + reasoning:

Define $f: S^1 \to S^1$ by

$$f(x) = \begin{cases} \frac{1}{2}x & \text{if } x \in [0, \frac{1}{2})\\ \frac{3}{2}x - \frac{1}{2} & \text{if } x \in [\frac{1}{2}, 1) \end{cases}$$
 (2)

Clearly, f is a homeomorphism such that $d(f^n(x), f^n(y)) \to 0$ as $n \to \infty$ for all pairs x, y.

Exercise 2.8.3.

Prove the following generalization of Proposition 2.1.2. If a commutative group G acts by homeomorphisms on a compact metric space X , then there is a non-empty, closed G -invariant subset X' on which G acts minimally.	(1)
Proof + reasoning:	
Let $\mathcal C$ be the collection of non-empty, closed G -invariant subsets of X , with the partial ordering given by inclusion.	(2)
Since $X \in \mathcal{C}$, \mathcal{C} is not empty.	(3)
Suppose $\mathcal{K} \subseteq \mathcal{C}$ is a totally ordered subset. Then, any finite intersection of elements of \mathcal{K} is nonempty, so by the finite intersection property for compact sets, $\bigcap_{K \in \mathcal{K}} K \neq \emptyset$. Thus, by Zorn's lemma, \mathcal{C} contains a minimal element M .	(4)
Suppose that G does not act minimally on M .	(5)
Then, there exists a point $b \in M$ and a nonempty open set $C \subseteq M$ such that $Gb \cap C = \emptyset$.	(6)
Since $GC = \bigcup_{g \in G} gC$, and each $g \in G$ is a homeomorphism, GC is open.	(7)
So, since M is closed, $M \setminus GC$ is closed.	(8)
Since $b \in M$ and $Gb \cap C = \emptyset$, $b \in M \setminus GC$, so $M \setminus GC$ is nonempty.	(9)
If $m \in M \setminus GC$ and $g \in G$, then $m \neq g^{-1}c$, so $gm \neq C$, so since M is G -invariant, $gm \in M \setminus GC$, so $M \setminus GC$ is G -invariant.	(10)
By (8)–(10), $M \setminus GC$ is a closed, nonempty, G -invariant proper subset of M , which contradicts (4), so (5) is false. Hence, G acts minimally on M .	(11)

Exercise 3.1.3.

Use a higher block presentation to prove that for any block code $c: X \to Y$ there is a subshift Z and an isomorphism $f: Z \to X$ such that $c \circ f: Z \to Y$ is a (0,0)-block code.

(1)

Proof + reasoning:

Let $c: X \to Y$ be a block code, with corresponding function $\alpha: W_{a+b+1} \to \mathcal{A}_m$. (2)Letting k = a + b + 1 and l = b, the higher block presentation d of X can be written

$$d(x)_i = x_{i-a} \dots x_{i+b}, \quad i \in \mathbb{Z}$$
(3)

Since $\operatorname{im}(d) \subseteq \Sigma_{W_{a+b+1}(X)}$ we have $W_1(\operatorname{im}(d)) \subseteq W_{a+b+1}(X)$. (4)

If $\omega \in W_{a+b+1}(X)$, then for some sequence $x \in X$ and $i \in \mathbb{Z}$,

$$\omega = x_{i-a} \dots x_{i+b}$$
, so $d(x)_i = \omega$,

so
$$\omega \in W_1(\operatorname{im}(d))$$
. (5)

By (5) and (4),
$$W_1(\operatorname{im}(d)) = W_{a+b+1}(X)$$
. (6)

By Exercise 3.1.2, d is an isomorphism onto its image. Let $d^{-1}: \operatorname{im}(d) \to X$ be its inverse. (7)

If $z \in \text{im}(d)$ and $i \in \mathbb{Z}$, then there exists a unique x such that d(x) = z, so

$$(c \circ d^{-1})(z)_i = c(d^{-1}(z))_i$$

$$= c(x)_i$$

$$= \alpha(x_{i-a} \dots x_{i+b})$$

$$= \alpha(z_i)$$
(8)

By (8) and (5), $c \circ d^{-1} : \operatorname{im}(d) \to Y$ is a (0,0)-block code and, by (7), d^{-1} is an (9)isomorphism.

Exercise 3.2.3.

Show that every edge shift is an SFT.	(1)
If Σ_B^e is an edge shift with graph Γ_B , then Σ_B^e is precisely the set of sequences that	
do not contain the words $e'e$ of length 2 in which the target of e is not equal to the	
source of e' .	(2)
Since this collection of words is finite, Σ_{R}^{e} is an SFT.	(3)

Exercise 4.2.3

Prove that if T is a measure-preserving transformation, then so are the induced transformations. (1)

Proof + reasoning:

Let
$$T:(X,\mathcal{A},\mu)\to (X,\mathcal{A},\mu)$$
 be a measure-preserving transformation. (2)

Let's start with proving that the derivative transformation is measure preserving. First, let's check that it is measurable.

Let
$$\mathcal{E}$$
 be the trace σ -algebra with respect to $A \in \mathcal{A}$. (4)

(3)

Let
$$B \in \mathcal{E}$$
. (5)

By definition,
$$B = C \cap A$$
, $C \in \mathcal{A}$. (6)

Let (R_n) and (D_n) be sequences of sets defined inductively by letting

$$R_{0} = B,$$
 $D_{0} = \emptyset$
 $R_{1} = T^{-1}(B) \setminus A,$ $D_{1} = T^{-1}(B) \cap A$
 $R_{n+1} = T^{-1}(R_{n}) \setminus A,$ $D_{n+1} = T^{-1}(R_{n}) \cap A \quad \forall n \geq 2$ (7)

Let
$$D := \bigcup_{n \ge 1} D_n$$
 (8)

Conjecture 4. $D = T_A^{-1}(B)$

Proof. Let $n \geq 2$

$$R_{n} = T^{-1}(R_{n-1}) \setminus A$$

$$= T^{-1}(R_{n-1}) \cap A^{c}$$

$$= T^{-1}(T^{-1}(R_{n-2}) \cap A^{c}) \cap A^{c}$$

$$= (T^{-2}(R_{n-2}) \cap T^{-1}(A^{c})) \cap A^{c}$$

$$= (T^{-n}(B) \cap \cdots \cap T^{-1}(A^{c})) \cap A^{c}$$

$$= T^{-n}(B) \cap \left(\bigcap_{i=0}^{n-1} T^{-i}(A^{c})\right).$$

This gives

$$D_n = T^{-n}(B) \cap \left(\bigcap_{i=1}^{n-1} T^{-i}(A^c)\right) \cap A.$$

By definition, $T_A^{-1}(B)$ is the set of points $y \in A$ such that $T(y) \in B$ or such that there exists a $k \in \mathbb{N}$ with $k \geq 2$ such that $T^k(y) \in B$ and $T^i(y) \notin A$ for all $i \in \{1, \dots, k-1\}$. From the above, , it follows that $D = T_A^{-1}(B)$.

T is \mathcal{A} -measurable, so from $D_n = T^{-n}(B) \cap \left(\bigcap_{i=1}^{n-1} T^{-i}(A^c)\right) \cap A$ it follows that $D_n \in \mathcal{E}$. Since D is a countable union of such D_n , $D \in \mathcal{E}$, so by conjecture 4, $T_A^{-1}(B) \in \mathcal{E}$, so T_A is \mathcal{E} -measurable. (9)

Let
$$i, j \in \mathbb{N}$$
 with $i > j \ge 1$. (10)

Suppose
$$D_j \cap D_i \neq \emptyset$$
. (11)

By (11), there exists
$$x \in D_j \cap D_i$$
. By the fact that $D_n = T^{-n}(B) \cap \left(\bigcap_{i=1}^{n-1} T^{-i}(A^c)\right) \cap$

$$A$$
, it follows that $T^{j}(x) \in B$. (12)

Since
$$j < i, T^j(x) \in A^c$$
, but this contradicts (12), so D_j and D_i are disjoint. (13)

From (7), it is clear that
$$\forall n \in \mathbb{N}, D_n \cap R_n = \emptyset$$
 (14)

$$\mu(R_{n+1}) + \mu(D_{n+1}) = \mu(R_n) \quad \forall n \in \mathbb{N}$$
(15)

From (15), $\mu(R_n)$ is decreasing. (16)

By (13),

$$\mu(D) = \sum_{n>1} \mu(D_n) \tag{17}$$

From (15),

$$\sum_{1 \le i \le n} \mu(D_n) = \mu(B) - \mu(R_n) \quad \forall n \in \mathbb{N}$$
(18)

By (17), (18) and (16),

$$\mu(D) = \lim_{n \to \infty} \sum_{1 \le i \le n} \mu(D_n) = \mu(B) - \lim_{n \to \infty} \mu(R_n)$$
(19)

By the Poincaré recurrence theorem.

$$\mu(T_A^{-1}(B)) \ge \mu(B)$$
 (20)

By conjecture 4 and (20),
$$\mu(D) \ge \mu(B)$$
. (21)

By (21) and (19),

$$\mu(B) - \lim_{n \to \infty} \mu(R_n) = \mu(D) \ge \mu(B)$$
(22)

From (22),

$$\lim_{n \to \infty} \mu(R_n) = 0 \tag{23}$$

From (23), (19) and conjecture 4,

$$\mu(T_A^{-1}(B)) = \mu(D) = \mu(B) \tag{24}$$

By (24), T_A is measure-preserving. (25)

Let $T_f: X_f \to X_f$ be the primitive transformation, where $f: X \to \mathbb{N}$ is measurable. (26)

Let
$$A \in \mathcal{A}$$
 and $k \in \mathbb{N}$. (27)

Note,
$$(A \times \{k\}) \cap X_f = (A \cap C_k) \times \{k\}$$
 where $C_k = f^{-1}(\{n \in \mathbb{N} : n \ge k\})$ (28)

$$X_f = \{(x,k) : x \in X, 1 \le k \le f(x)\} \subseteq X \times \mathbb{N}$$

$$(29)$$

Suppose k > 1. By (28):

$$T_f^{-1}((A \times \{k\}) \cap X_f) = T_f^{-1}((A \cap C_k) \times \{k\}) = (A \cap C_k) \times \{k-1\}$$
(30)

Suppose
$$k = 1$$
 (31)

$$T_f^{-1}(A \times \{k\}) = \bigcup_{i \ge 1} (T^{-1}(f^{-1}(i) \cap A) \times \{i\})$$
(32)

From (30) and (32), $T_f^{-1}(A \times \{k\}) \cap X_f \in \mathcal{U}_f \quad \forall k$ (33) If k > 1, then by (30) and (28),

$$\mu_f(T_f^{-1}((A \times \{k\}) \cap X_f)) = \mu_f((A \cap C_k) \times \{k - 1\})$$

$$= \mu_f((A \cap C_k) \times \{k\} \cap X_f)$$
(34)

If k = 1, then by (32) and T being measure-preserving,

$$\mu_{f}(T_{f}^{-1}(A \times \{1\})) = \mu_{f} \left(\bigcup_{i \geq 1} (T^{-1}(f^{-1}(i) \cap A) \times \{i\}) \right)$$

$$= \sum_{i \geq 1} \mu_{f}(T^{-1}(f^{-1}(i) \cap A) \times \{i\})$$

$$= \sum_{i \geq 1} \mu(T^{-1}(f^{-1}(i) \cap A))$$

$$= \mu \left(\bigcup_{i \geq 1} T^{-1}(f^{-1}(i) \cap A) \right)$$

$$= \mu(T^{-1}(f^{-1}(\mathbb{N}) \cap A))$$

$$= \mu(T^{-1}(A))$$

$$= \mu(A)$$

$$= \mu_{f}(A \times \{1\})$$
(35)

(36)

By (34) and (35), the primitive transformation is measure-preserving.

Exercise 4.3.3.

A measure-preserving transformation or flow T of a probability space (X, \mathcal{U}, μ) is called *(strong) mixing* if

$$\lim_{t \to \infty} \mu(T^t(A) \cap B) = \mu(A) \cdot \mu(B)$$

for any two measurable sets $A, B \in \mathcal{U}$.

Equivalently, T is mixing if

$$\lim_{t\to\infty} \int_X f(T^t(x))g(x)\,d\mu = \int_X f\,d\mu \int_X g\,d\mu$$

for any two bounded measurable functions.

Transformation T is called weak mixing if $\forall A, B \in \mathcal{U}$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left| \mu(T^{-i}(A) \cap B) - \mu(A)\mu(B) \right| = 0.$$
 (3)

(1)

(2)

Equivalently, T is weak mixing if for all bounded measurable functions,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \left| \int_X f(T^i(x)) g(x) \, d\mu - \int_X f \, d\mu \int_X g \, d\mu \right| = 0. \tag{4}$$

Flow T is called weak mixing if $\forall A, B \in \mathcal{U}$,

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \mu(T^{-s}(A) \cap B) - \mu(A)\mu(B) \right| \, ds = 0. \tag{5}$$

Equivalently, T is weak mixing if for all bounded measurable functions,

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \int_X f(T^s(x)) g(x) \, d\mu - \int_X f \, d\mu \int_X g \, d\mu \right| ds = 0.$$
 (6)

Show that the two definitions of strong and weak mixing given in terms of sets and bounded measurable functions are equivalent. (7)

Proof + reasoning:

Let T be a measure-preserving flow on
$$(X, \mathcal{U}, \mu)$$
. (8)

Suppose f and g are simple, with

$$f = \sum_{i \le n} \mathbf{1}_{A_i} a_i, \quad g = \sum_{j \le n} \mathbf{1}_{A_j} b_j. \tag{10}$$

Define

$$M := \lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \int_X f(T^s(x)) g(x) \, d\mu - \int_X f \, d\mu \int_X g \, d\mu \right| ds. \tag{11}$$

Then

$$M = \lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \int_X f(T^s(x)) g(x) \, d\mu - \sum_{i,j \le n} \mu(A_i) \mu(A_j) a_i b_j \right| ds.$$
 (12)

Let $h : \mathbb{R} \to \mathbb{R}$ be an arbitrary function. For all $x \in \mathbb{R}$, we have that $f(h(x)) = a_i$ if $h(x) \in A_i$. Hence, for all $x \in \mathbb{R}$,

$$f(h(x)) = \sum_{i \le n} a_i \mathbf{1}_{h_{-1}(A_i)}(x).$$
(13)

By (13),

$$\int_{X} f(T^{s}(x))g(x) d\mu = \int_{X} \left(\sum_{i \leq n} \mathbf{1}_{T^{-s}(A_{i})} a_{i} \right) \left(\sum_{j \leq n} \mathbf{1}_{A_{j}} b_{j} \right) d\mu$$

$$= \sum_{i,j \leq n} \mu(T^{-s}(A_{i}) \cap A_{j}) a_{i} b_{j}.$$
(14)

Clearly,

$$\int_{X} f \, d\mu \int_{X} g \, d\mu = \left(\sum_{i \le n} \mu(A_i) a_i\right) \left(\sum_{j \le n} \mu(A_j) b_j\right) = \sum_{i,j \le n} \mu(A_i) \mu(A_j) a_i b_j. \tag{15}$$

By (14) and (15),

$$M = \lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \sum_{i,j \le n} a_i b_j \left(\mu(T^{-s}(A_i) \cap A_j) - \mu(A_i) \mu(A_j) \right) \right| ds. \tag{16}$$

By (16),

$$M \leq \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \sum_{i,j \leq n} |a_{i}b_{j}| \left| \mu(T^{-s}(A_{i}) \cap A_{j}) - \mu(A_{i})\mu(A_{j}) \right| ds$$

$$= \sum_{i,j \leq n} |a_{i}b_{j}| \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \left| \mu(T^{-s}(A_{i}) \cap A_{j}) - \mu(A_{i})\mu(A_{j}) \right| ds$$

$$= 0. \tag{17}$$

(18)

Assume that f and g are measurable and bounded by some C > 0.

By (36), f and g are the uniform limits of sequences (f_n) and (g_n) respectively, where f_n and g_n are simple functions that are bounded by C. (19) By the dominated convergence theorem,

$$M = \lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \int_X \lim_{n \to \infty} f_n(T^s(x)) \lim_{n \to \infty} g_n(x) d\mu - \int_X \lim f_n d\mu \int_X \lim g_n d\mu \right| ds$$
$$= \lim_{t \to \infty} \frac{1}{t} \int_0^t \lim_{n \to \infty} \left| \int_X f_n(T^s(x)) g_n(x) d\mu - \int_X f_n d\mu \int_X g_n d\mu \right| ds$$
(20)

Note,

$$\left| \int_X f_n(T^s(x)) g_n(x) d\mu - \int_X f_n d\mu \int_X g_n d\mu \right| \le 2C\mu(X). \tag{21}$$

By (20), by the fact that the absolute value is continuous, and by (21) together with the dominated convergence theorem,

$$M = \lim_{t \to \infty} \frac{1}{t} \int_0^t \lim_{n \to \infty} \left| \int_X f_n(T^s(x)) g_n(x) d\mu - \int_X f_n d\mu \int_X g_n d\mu \right| ds$$
$$= \lim_{t \to \infty} \lim_{n \to \infty} \frac{1}{t} \int_0^t \left| \int_X f_n(T^s(x)) g_n(x) d\mu - \int_X f_n d\mu \int_X g_n d\mu \right| ds$$
(22)

Let
$$\mathcal{T} = (0, \delta)$$
, where $\delta > 0$. (23)

Let
$$\Delta_1 > 0$$
. (24)

There exists a $k \in \mathbb{N}$ such that for all $n \geq k$ and all $x \in X$, $f_n(T^s(x))g_n(x) \in B(f(T^s(x))g(x), \Delta_1)$, where $B(x, \epsilon)$ denotes a ball around x of radius ϵ , so

$$\int_{X} f_n(T^s(x))g_n(x) d\mu \in B\left(\int_{X} f(T^s(x))g(x) d\mu, \Delta_1\mu(X)\right)$$
(25)

Let $\Delta_2 \geq 0$. Then there exists an m such that for $n \geq m$,

$$\int_{X} f_n d\mu \in B\left(\int_{X} f d\mu, \Delta_2 \mu(X)\right) \quad \text{and} \quad \int_{X} g_n d\mu \in B\left(\int_{X} g d\mu, \Delta_2 \mu(X)\right). \tag{26}$$

By (25) and (26), for all $n \ge \max(m, k)$,

$$\frac{1}{t} \int_0^t \left| \int_X f_n(T^s(x)) g_n(x) d\mu - \int_X f d\mu \int_X g d\mu \right| ds$$

$$\in B\left(\frac{1}{t} \int_0^t \left| \int_X f(T^s(x)) g(x) d\mu - \int_X f d\mu \int_X g d\mu \right| ds, \Delta_1 \mu(X) + 2\Delta_2 \mu(X)\right) \tag{27}$$

Since Δ_1 and Δ_2 were arbitrary, and (27) does not depend on t,

$$||h_n(t) - h(t)||_{\mathcal{T}} \to 0.$$
 (28)

(30)

(32)

Therefore, by the Moore-Osgood theorem,

$$M = \lim_{n \to \infty} \lim_{t \to \infty} \frac{1}{t} \int_0^t \left| \int_X f_n(T^s(x)) g_n(x) \, d\mu - \int_X f_n \, d\mu \int_X g_n \, d\mu \right| ds = 0.$$
 (29)

Clearly, (6) implies (5), so (5) and (6) are equivalent.

We will skip the proof of $(3) \Leftrightarrow (4)$, since it is likely very similar to the one for $(5) \Leftrightarrow (6)$.

Next, suppose

$$\lim_{t \to \infty} \mu(T^{-t}(A) \cap B) = \mu(A) \cdot \mu(B)$$

for any two measurable sets $A, B \in \mathcal{U}$.

By (32) and by dominated convergence,

$$\lim_{t \to \infty} \int_{X} f_{n}(T^{-t}(x)) g_{n}(x) d\mu = \lim_{t \to \infty} \int_{X} \left(\sum_{i=1}^{n} \mathbf{1}_{T^{-t}(A_{i})} a_{i}^{n} \right) \left(\sum_{j=1}^{n} \mathbf{1}_{A_{j}} b_{j}^{n} \right) d\mu$$

$$= \lim_{t \to \infty} \int_{X} \left(\sum_{i,j \le n} \mathbf{1}_{T^{-t}(A_{i}) \cap A_{j}}(x) a_{i}^{n} b_{j}^{n} \right) d\mu$$

$$= \sum_{i,j \le n} \lim_{t \to \infty} \int_{X} \mathbf{1}_{T^{-t}(A_{i}) \cap A_{j}}(x) a_{i}^{n} b_{j}^{n} d\mu$$

$$= \sum_{i,j \le n} \lim_{t \to \infty} \mu(T^{-t}(A_{i}) \cap A_{j}) a_{i}^{n} b_{j}^{n}$$

$$= \sum_{i,j \le n} \mu(A_{i}) \mu(A_{j}) a_{i}^{n} b_{j}^{n}.$$

$$(33)$$

So,

$$\int_{X} f \, d\mu \int_{X} g \, d\mu. \tag{34}$$

Using (19), (34) and dominated convergence, it follows from an argument similar to the one used to derive (29) that

$$M_{s}(f,g) := \lim_{t \to \infty} \int_{X} f(T^{t}(x))g(x) d\mu$$

$$= \lim_{t \to \infty} \int_{X} \lim_{n \to \infty} f_{n}(T^{t}(x)) \lim_{n \to \infty} g_{n}(x) d\mu$$

$$= \lim_{t \to \infty} \lim_{n \to \infty} \int_{X} f_{n}(T^{t}(x))g_{n}(x) d\mu$$

$$= \lim_{n \to \infty} \lim_{t \to \infty} \int_{X} f_{n}(T^{t}(x))g_{n}(x) d\mu$$

$$= \lim_{n \to \infty} \int_{X} f_{n} d\mu \int_{X} g_{n} d\mu$$

$$= \int_{X} f d\mu \int_{X} g d\mu.$$
(35)

In other words, statement (1) implies statement (2). Since the converse is trivial, (1) and (2) are equivalent. (36)