9. 正規部分群・剰余群

G を群, H を G の部分群とする. もし任意の $g \in G$ に対し $g^{-1}Hg = H$ ($\Leftrightarrow Hg = gH$) が成り立つならば, H を G の正規部分群といい, $G \triangleright H$ と書く. (とくに, G がアーベル群ならば G の任意の部分群は正規部分群である.)

問題 9.1. 次の (a)(b)(c) が同値であることを示せ.

- (a) *H* が *G* の正規部分群.
- (b) 任意の $g \in G$ に対して $g^{-1}Hg \subset H$.
- (c) 任意の $g \in G$, $h \in H$ に対して, ある $h' \in H$ が存在して $h = gh'g^{-1}$.

問題 9.2. 次の G,H について, H が G の正規部分群になるかどうかを調べよ.

- (1) $G = S_4 \supset H = \{(1), (1,3)(2,4), (1,4,3,2), (1,2,3,4)\}$
- (2) $G = S_4 \supset H = \{(1), (1,2), (3,4), (1,2)(3,4)\}$
- (3) $G = S_4 \supset H = \{(1), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$
- (4) $G = D_{12} = \langle r, s \mid r^6 = s^2 = e, sr = r^{-1}s \rangle \supset H = \{e, r, r^2, r^3, r^4, r^5\}$
- (5) $G = D_{12} \supset H = \{e, rs\}$

(6)
$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\} \supset H = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| b, c \in \mathbb{R} \right\}$$

$$(7) G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\} \supset H = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| c \in \mathbb{R} \right\}$$

問題 9.3. G を群, H を G の部分群とする. もし [G:H]=2 ならば H は G の正規 部分群であることを示せ.

問題 9.4.~G を群、H を G の部分群、K を G の正規部分群とする.

- (1) HK = KH, 従って HK は G の部分群になることを示せ.
- (2) $H \cap K$ は H の正規部分群になることを示せ.
- (3) HK が有限群のとき, $|HK|=\dfrac{|H||K|}{|H\cap K|}$ となることを示せ.

問題 9.5. G を群, H, K を G の正規部分群とする.

- (1) *G* ▷ *HK* を示せ.
- (2) $G \triangleright H \cap K$ を示せ.

問題 9.6. $\varphi: G \to G'$ を群の準同型とする.

- (1) $G \triangleright H$ ならば $\varphi(G) \triangleright \varphi(H)$ であることを示せ.
- (2) $G' \triangleright H'$ ならば, $G \triangleright \varphi^{-1}(H')$ であることを示せ.

 $\varphi:G\to G'$ を群の準同型, e' を G' の単位元とするとき, e' の逆像 $\varphi^{-1}(e')=\{g\in G\mid \varphi(g)=e'\}$ を $\operatorname{Ker}\varphi$ と書き, φ の核 (kernel) という.

問題 9.6'. $\varphi: G \to G'$ を群の準同型, e を G の単位元とする.

- (1) Ker φ は G の正規部分群であることを示せ.
- $(2) \varphi$ が単射であることと $\operatorname{Ker} \varphi = \{e\}$ が同値であることを示せ.

さて, G を群, H を G の正規部分群とし, H の左剰余類全体の集合を $G/H=\{gH\mid g\in G\}$ と書く. このとき G/H は積

$$(G/H) \times (G/H) \rightarrow G/H$$

 $(g_1H, g_2H) \mapsto g_1g_2H$

に関して群となる. これを G の H による剰余群という.

問題 9.7. (1) 上記の積が写像として well-defined であること, すなわち $(g_1H,g_2H)=(g_1'H,g_2'H)$ のときはちゃんと $g_1g_2H=g_1'g_2'H$ となることを示せ.

- (2) 上記の積が結合律を満たし、さらに単位元、逆元をもち、確かに G/H が群になることを示せ.
 - $(3) \varphi: G \to G/H, q \mapsto qH$ は準同型写像で、 $\operatorname{Ker} \varphi = H$ となることを示せ.

問題 9.8. G を巡回群, H をその部分群とすると, (G はアーベル群なので) $G \triangleright H$ である. このとき剰余群 G/H も巡回群となることを示せ.

 $G \rhd H$ のとき, |G/H| = [G:H] だから, H の指数が有限ならば G/H は有限群である.

問題 9.9. 実数全体 $\mathbb R$ が加法に関してなす群を考える. H を $\mathbb R$ の部分群とするとき、もし H の指数 $[\mathbb R:H]$ が有限ならば $H=\mathbb R$ であることを示せ.

 $\varphi: G \to G'$ を群の準同型とするとき、

$$\bar{\varphi}: G/\operatorname{Ker} \varphi \to \operatorname{Im} \varphi$$

$$g\operatorname{Ker} \varphi \mapsto \varphi(g)$$

は同型写像になり, $G/\operatorname{Ker}\varphi\cong\operatorname{Im}\varphi$ であることが分かる (準同型定理).

問題 9.10. 上記を確かめよ.

- (1) $\bar{\varphi}$ が写像として well-defined であること、つまり、 $g \operatorname{Ker} \varphi = g' \operatorname{Ker} \varphi$ のときは ちゃんと $\varphi(g) = \varphi(g')$ となることを示せ.
 - (2) *▽* が同型写像であることを証明せよ.