Pontificia Universidad Javeriana Departamento de Matemáticas Inferencia Estadística Taller 3

Marisol García Peña

- 1. Considere una muestra aleatoria de tamaño n, encuentre las estadísticas suficientes para los parámetros de las siguinetes distribuciones:
 - (a) $Beta(\alpha, \beta)$ donde: i. ambos son desconocidos, ii. solamente α desconocido, iii. solamente β desconocido.
 - (b) $Gamma(\alpha, \beta)$ bajo las mismas condiciones i., ii. y iii. del item 1a.
 - (c) $f(x) = \exp\{-x + \theta\}I_{(x>0)}$.

(d)
$$f(x; \mu, \sigma^2) = \left[\frac{1}{x\sigma\sqrt{2\pi}}\right] \exp\left\{\left(\frac{-1}{2\sigma^2}\right) \left[\log(x) - \mu\right]^2\right\} I_{(x>0)}.$$

(e)
$$f(x; \theta_1, \theta) = (1 - \theta_1)(\theta_1)^{x-\theta} I_{\{\theta, \theta+1, \dots\}}(x)$$
.

- 2. Encuentre las estadísticas suficientes minimales para
 - (a) $U(0, \theta)$.
 - (b) $BinNeg(1, \theta)$.
- 3. Suponga que X_1, \ldots, X_n son variables aleatorias independientes iid con distribución $N(\theta, \theta^2)$. Obtenga una estadística suficiente no trivial para θ .
- 4. Sean X_1, \ldots, X_n variables aleatorias iid con función de densidad $f(x;\theta) = (1+\theta)x^{\theta}$ para $0 \le x \le 1$. Obtenga una estadística suficiente minimal para θ .
- 5. Sean X_1,\ldots,X_n variables aleatorias iid con distribución geométrica cuya función de probabilidad está dada por $f(x;\theta)=(1-\theta)^{x-1}\theta I_{\{1,2,\ldots\}}(x)$. Muestre que $\sum_{i=1}^n X_i$ es una estadística suficiente minimal para θ $(\theta>0)$.
- 6. Sean X_1,\ldots,X_n variables aleatorias iid con distribución $G(\alpha,\beta)$ con α y β desconocidos. Muestre que $\left(\sum_{i=1}^n X_i,\sum_{i=1}^n \log(X_i)\right)$ es una estadística suficiente y completa para (α,β) . La función de densidad de una $G(\alpha,\beta)$ está dada por $f(x;\alpha,\beta)=\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}},x,\alpha,\beta>0$
- 7. Sean X_1, \ldots, X_n variables aleatorias iid con distribución $N(\theta, \theta^2), \theta > 0$. Muestre que $\left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right)$ es una estadística suficiente para θ , pero no es completa. Sugerencia, considere $U(X) = 2\left(\sum_{i=1}^n X_i\right)^2 (n+1)\sum_{i=1}^n X_i^2$.

- 8. Sean X_1, X_2 una muestra aleatoria de tamaño 2 de una distribución $N(\mu, \sigma^2)$. Muestre que (X_1, X_2) es una estadística suficiente pero completa.
- 9. Sean X_1,\dots,X_n una muestra aleatoria de tamaño n de una distribución Poisson truncada, o sea, $P[X=x]=\frac{e^{-\mu}\mu^x}{x!(1-e^{-\mu})}I_{\{1,2,\dots\}}(x), \mu>0.$
 - (a) Muestre que la distribución de la Poisson truncada es miembro de la familia exponencial.
 - (b) Encuentre una estadística suficiente o completa para μ .
- 10. Suponga que $X_1,\ldots,X_n,Y_1,\ldots,Y_m$ son variables aleatorias independientes y que $X_i\sim N(\mu,\sigma_1^2), (1\leq i\leq n)$ y $Y_i\sim N(\mu,\sigma_2^2), (1\leq i\leq m)$, donde $-\infty<\mu<+\infty,\sigma_1^2>0,\sigma_2^2>0$ desconocidos. Muestre que la estadística $T=\left(\sum_{i=1}^n X_i,\sum_{i=1}^n X_i^2,\sum_{i=1}^m Y_i,\sum_{i=1}^m Y_i^2\right)$ es una estadística suficiente, pero no es completa. Sugerencia, considere $U(T)=\overline{X}-\overline{Y}$.
- 11. Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n con función de densidad de probabilidad $f(x;\theta) = \theta x^{\theta-1} I_{(0,1)}(x), \theta > 0$. Encuentre una estadística suficiente y completa para θ .
- 12. Encuentre las estadísticas suficientes y completas para los parámetros de las siguientes distribuciones:

(a)
$$f(x;\theta) = \left(\frac{1}{6\theta^4}\right) x^3 \exp\left[-\frac{x}{\theta}\right]; x > 0, \theta > 0.$$

(b)
$$f(x;\theta,\gamma) = \left(\frac{\gamma}{\theta}\right)x^{\gamma-1}\exp\left[-\frac{x^{\gamma}}{\theta}\right]; x>0, \theta>0, \gamma>0$$
 conocido.

- 13. Muestre que las siguientes distribuciones pertenecen a la familia exponencial de la forma canónica, identificando μ y $V(\mu)$.
 - (a) En el caso de $Y \sim Poiss(\mu)$.
 - (b) Sea $Y \sim Bin(n,\mu)$ donde $0 < \mu < 1$, $y = 0,1,2,\ldots,n$. Hacer el siguiente cambio de variable $Y^* = \frac{Y}{n}$, asuma que $nY^* \sim Bin(n,\mu)$ cuya densidad puede ser escrita como $\binom{n}{ny^*}\mu^{ny^*}(1-\mu)^{n-ny^*}$. Muestre que de esta forma la binomial pertenece a la familia exponencial de forma canónica.
 - (c) Sea Y una variable aleatoria con distribución normal inversa de media μ y parámetro de forma ϕ , cuya densidad está dada por: $f(y;\mu,\phi)=\frac{\phi^{1/2}}{\sqrt{2\pi y^3}}\exp\left\{-\frac{\phi(y-\mu)^2}{2\mu^2y}\right\}$ donde $y>0,\mu>0$.