- 1. (20) (Show all work). Find the solution to the boundary value problem: $\frac{dy}{dx} - 3x^2y = x^2, y(0) = 1/3.$
- 2. (20) (Show all work). Find all points on the surface given by $3z = x^2 + xy$ where the normal line to the surface is parallel to the line given by: x = 2t + 1, y = 4t - 1, z = -3t + 7.
- 3. (20) (Show all work). The temperature at a point (x, y, z) is given by the function $T(x,y,z) = 200e^{x^2-4y^2-9z^2}$, measured in degrees Celsius. Find the rate of change of the temperature at the point (2,1,0) in the direction from the point (2,1,0) toward the point (3,2,5).
- 4. (20) (Show all work). Find the maximum and minimum values of f(x, y, z) = x 2y + 5zon the sphere $x^2 + y^2 + z^2 = 30$.
- 5. (70) Multiple Choice Circle the correct response. (No partial credit will be given)

(a)
$$\frac{1}{3+4i} =$$

- **A.** $\frac{1}{3} + \frac{1}{4}i$ **B.** $\frac{1}{3} \frac{1}{4}i$ **C.** $\frac{3}{25} \frac{4}{25}i$ **D.** $\frac{3}{5} \frac{4}{5}i$

 - **E**. none of the above
- What is the arclength of the piece of the parabola $y = x^2$ from (0,0) to (2,4)? (b)

A.
$$\int_{0}^{4} (1+2t) dt$$

B.
$$\int_{0}^{4} \sqrt{1+4t^2} dt$$

A.
$$\int_0^4 (1+2t) dt$$
 B. $\int_0^4 \sqrt{1+4t^2} dt$ **C.** $\int_0^2 \sqrt{t^2+t^4} dt$

D.
$$\int_0^2 \sqrt{1+4t^2} dt$$
 E. none of the above

- The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{(x-5)^{2n}}{n^3 3^n}$ is
 - **A**. 1
- **B**. 3
- **C**. 5
- **D**. 3/5
- **E**. none of the above

Math 8

- It is well-known by Math 8 students that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \cdots$. If we (d) truncate this series after some point and use the partial sum as an approximation for $\pi/4$, what is the least number of terms needed in the partial sum so that the error is less than .01?
 - **A**. 49
- **B**. 50
- **C**. 98
- **D**. 99
- **E**. none of the above
- $\left(\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^n (3x)^{2n+1}}{(2n+1)!}\right)$ is a solution to which differential equation?

 - **A**. y'' + 5y' + 6y = 0 **B**. y'' 5y' + 6y = 0
 - C. y'' + 4y' + 13y = 0 D. y'' 4y' + 13y = 0

 - **E**. none of the above
- Let $f(x,y) = |\langle x,y \rangle|$. What is the largest set on which f is continuous? (f)
 - **A**. all of \mathbb{R}^2
- **B**. all of \mathbb{R}^2 except the axes
- C. all of \mathbb{R}^2 except the origin
- **D**. all of \mathbb{R}^2 except the x-axis
- **E**. none of the above
- (g) If $f(x,y) = \int_{y}^{x} \cos(t^{3}) dt$, then $\frac{\partial f}{\partial y} = \int_{y}^{x} \cos(t^{3}) dt$

 - **A**. $\cos(y^3)$ **B**. $3y^2\cos(y^3)$
- C. $\sin(y^3)$
- **D**. $-3y^2 \sin(y^3)$
- **E**. none of the above
- Suppose that you are given a function f(x,y) and vectors $\mathbf{u}=\langle \frac{1}{2},\frac{-\sqrt{3}}{2}\rangle$ and $\mathbf{v} = \langle \frac{1}{2}, \frac{\sqrt{3}}{2} \rangle$. If $(D_{\mathbf{u}}f)(x_0, y_0) = 2$ and $(D_{\mathbf{v}}f)(x_0, y_0) = -1$, then $\frac{\partial f}{\partial x}(x_0, y_0) = -1$

A. $\frac{1}{2}$

B. 1

C. 2

 $\mathbf{D}. \ \sqrt{3}$

E. none of the above

Suppose that f is a function of the variables x, y, and z, and that x is a function (i) of the variables s and t, y is a function only of s and z is a function only of the variable t. What is the correct expression for $\frac{\partial f}{\partial x}$?

A.
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$

A.
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$
 B. $\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}\right) \frac{\partial f}{\partial t}$

C.
$$\frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial s} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}$$
 D. $\frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}$

D.
$$\frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$$

E. none of the above

(j)The altitude of a right circular cylinder is 8 inches and is increasing at a rate of .8 in/min. The base radius is 10 inches and is decreasing at a rate of .05 in/min. The volume $(V = \pi r^2 h)$ is changing at the rate of

 \mathbf{A} . 72π

B. -72π

C. 88π

D. -88π

E. 800π

Let $f(x, y, z) = xy + yz^2 + xz^3$ and $\mathbf{v} = \langle -2, 0, 1 \rangle$. What can be said about the (k) change in f at the point (2,0,3) in the direction indicated by \mathbf{v} ?

A. strictly increasing

B. strictly decreasing

C. unchanging

D. first increasing, then decreasing

E. impossible to be determined

(1)Suppose that f(x,y) has continuous second partial derivatives and a critical point at (2,3). Suppose further that $f_{xx}(2,3) = -3$, $f_{xy}(2,3) = 2$, and $f_{yy}(2,3) = -4$. Classify the critical point.

A. local minimum

B. local maximum

C. saddle point

D. local extremum, but can't determine which

E. cannot be determined

Suppose that there is a function f(x,y) having continuous first partial derivatives with $f_x = (x^2 - 4)(y - 3)$ and $f_y = (y^2 - 9)(x - 2)$. How many critical points does f have in \mathbb{R}^2 ?

- **A**. 2
- **B**. 4
- **C**. 5
- **D**. 6
- E. infinitely many

(n) Suppose that the graph of z = f(x, y) represents the surface of a mountain, and you are standing at a point (x_0, y_0, z_0) on the surface. You are told that the gradient of f at (x_0, y_0) is $\nabla f(x_0, y_0) = \langle 1, 3 \rangle$. If you move in the direction of the gradient, what is your initial angle of elevation?

- \mathbf{A} . $\tan^{-1} 3$
- **B**. $\cos^{-1} 3$
- C. $\tan^{-1} \sqrt{10}$
- **D**. $\cos^{-1} \sqrt{10}$

E. none of the above