Two-Way ANOVA

Now we consider two factors, Factor A and Factor B, called main effects.

- Factor A has a levels (groups).
- Factor B has b levels (groups).

What's different?

- · Treatments are combinations of factor levels # trt = axb
- · Interactions between 2 factors are possible - interaction plots
 - test for interaction using

 Meplications = # obs per trt.

 Assured

 Assured

Example: Which pain medicine gives fastest relief?

Suppose we want to study 3 pain meds (Advil, Tylenol, Excedrin) on 2 types of pain: headaches and muscle pain. We are interested in studying the mean time to pain relief. Suppose we assign 4 people to each treatment.

- · Response: time to pain relief
- Factors: 2 Factors. Pain Meds + Type Pain

 (0=3 levels)

 3x2=6 trts.
- Experimental Units: $N = 4 \times 6 = 24$ PPI.
- · Replications: ni=nj=4ppl per trt H with Ad

30

ction Plats = Plots of the means.

What are some possibilities for effects of the factors on the response variable? We can use plots of Treatment MEANS to determine whether there are interaction effects and main effects.

Expect to see: SIG DIFF due to both
Type of pain & Meds.

- · Time pain relief for H shorter than MP (expect SIG DIFF due to type of pain)
- · Time pain relief w/Advil larger than Ty (expect SIG DIFF due to Med) & Ex

Expect: SIG DIFF due to Type of Pain but NOT SIG DIFF in Med.

Expect: SIG DIFF due to Med, but NOT SIG DIFF due to Type of Pain.

3 time Ty Ad Ex Med ** Med ** Med ** Med

Expect: NO SIG PIFF due to either Fam Med or Type of Pain.

Ty Ad Ex Med

Ty Ad Ex Med

*MP

*MP

Expect: INTERACTIONS

between Med + Type of Pain

"Best" pain med DEPENDS on Type of
Pain

TWO-WAY ANOVA table to determine significant effects.

	TWO-WAY AND	VA table to determine	e significant effec	ts.		
affect 5	Source	H	SS	MS	F	p-val
war god	Factor A	a-1	SSA	$MSA = \frac{SSA}{aH}$	MSA	* I test for
New	Factor B	6-1	SSB	MSB= SSB	MSB MSE	effects *
Err	Interaction A	B (a-1)x(b-1)	SSAB	MSAB=SSAB (07)(6-1)	MSAB MSE	* > interaction
Parlon Try	Factor B Interaction A Error	leftovers	SSEI	MSE = SSE Tefforers	,	
	Total	NI	SST.			
	\$ Always +	test for	interaction	n first	1 Atomostion	1
	Ho: N	0 interaction	present	Ha: There IS	Mergonor	•
	IF	= pral for	interacti	on 13:	Jense Ce C	٦,
	(Small) (say:	(2005)[SIG]			(NOT SIG	J
. I		1 - 4-10	A+B	ed · Losk	nteraction at p-vals-	for
. P	relationship in	7	^	m	ain effect	(A+B)
.10	ok at levels separately	of factor 1	of Facti	or B.		
	separately.	for each to	a of pain	• bok	at factors	s separately
Ex	Separately order Meds: Headache	MP luken	ignored ta	coturB Ex:	. 1 -	D
	Headache Try Ex	Ad	Ty	seless)	Ty Ty	pe Pain
	Add Ty	Ad Ty EX	Ad (V	A	ned Ty Ty id Ex	MP
	the Ad	EX at myal for	33	L	. ×	
• Do	n't even look Main Effe	ets (A+B))			

Two-Way ANOVA Examples

SCANDAL

Can "Low-Fat" Nutrition Labels Lead to Obesity?

BRIAN WANSINK and PIERRE CHANDON JOURNAL OF MARKETING RESEARCH, NOVEMBER 2006

Study examines whether low-fat nutrition labels increase the actual consumption of hedonic chocolate candies by overweight and normal-weight consumers. To achieve this, we asked adult family members (53% males, 31 years old, 25.3 body mass index [BMI]) participating in a university open house to serve themselves unusual colors of M&M's (gold, teal, purple, and white), which were clearly labeled either as "New Colors of Regular M&M's" (regular-label condition) or as "New 'Low-Fat' M&M's" (low-fat-label condition). We then measured how many calories of M&M's they ate.

Two-way ANOVA: Consumption versus Body Mass, Label

					\ /	
Source	DF	SS	MS	F	PX	
BodyMass	1	11458.2	11458.2	12.34	0,001	1
Label	1	35581.2	35581.2	38.32	0.000	
Interaction	1	9030.0	9030.0	9.72	0.004	
Error	36	33430.5	928.6			
Total	39	89500.0		/		
			/			

S = 30.47 R-Sq = 62.65% R-Sq(adj) = 59.53%

	BodyMass			
Label	overweight	regular weight		
"regular" m&m's	Mean=191.6 Stdev=45.0 N= 10	Mean=187.80 Stdev=17.37 N=10		
"low fat" m&m's	Mean=281.3 Stdev=34.6 N=10	Mean=217.4 Stdev=13.56 N=10		

Expect:

p-val for interaction - SIGNIFICANT.

- Reg label works similarly for both types of body mass
 (eat about same # of calories on average)
- Low-fact label both groups eat more calories But overut ppl eat much more than reg ut ppl.