HW2 Solution

18340013 陈琮昊

6.5

(a)若N < D, S_w 不可逆。

(b)因为 $S_B=\Sigma_{i=1}^CN_i(\mu_i-\mu)(\mu_i-\mu)^T$ (其中 μ_i 为为每类样本的均值, μ 为全部样本的均值, N_i 为第i类样本所占个数)。由于 S_B 中的 $tank(\mu_i-\mu)=1$,根据秩的性质:

 $rank(A) = rank(AA^T), rank(A+B) \leq rank(A) + rank(B)$

可以知道 $rank(S_B) \leq C$ 。又因为存在线性组合使得 $\Sigma_{i=1}^C N_i(\mu_i - \mu) = 0$,因此根据上述性质可以得到 $rank(S_B) \leq C - 1$ 。则广义特征向量的个数最多为C - 1。

(c)因为当N>D(N>>D)时, S_w 通常是非奇异的,故很大可能上为可逆矩阵。

(d)

第三步里,不妨记对角化
$$C$$
得到的矩阵为 D ,则 $D=Q^TCQ(C=Q^{-T}DQ^{-1})$ 为对角矩阵。

$$X^TS_BX=Q^TG^{-1}S_BG^{-T}Q=Q^TCQ=D$$
,因为 D 为对角矩阵,故 X^TS_BX 为对角矩阵。

$$X^TS_WX=Q^TG^{-1}GG^TG^{-T}Q=Q^TQ=I(Q$$
正交 $)$ 。故 X^TS_WX 为单位阵。

由于 $X^TS_BX(=D)$ 为对角矩阵,由对角矩阵性质可知该矩阵的特征值即为对角线上元素。

因此若证明广义特征值 λ 位于 $X^TS_BX(=D)$ 的对角线上,只需证 $Dt=\lambda t$.

(其中t为D的特征向量,该特征向量与本题的广义特征向量w不同)

将
$$C=G^{-1}S_BG^{-T}$$
, $S_W=GG^T$ 代入 $S_Bw=\lambda S_Ww$ 得:

$$GCG^Tw=\lambda GG^Tw$$
. 两边同时左乘 G^{-1} : $CG^Tw=\lambda G^Tw$

将
$$D=Q^TCQ(C=Q^{-T}DQ^{-1})$$
代入得: $Q^{-T}DQ^{-1}G^Tw=\lambda G^Tw$

又因为
$$Q^TQ=I(Q$$
正交),故上式化简得: $D(Q^{-1}G^Tw)=\lambda(Q^{-1}G^Tw)$

可以看到取 $t=Q^{-1}G^Tw$ 即可满足 $Dt=\lambda t$ 形式,故证明了广义特征值 λ 位于 X^TS_BX 的对角线上。

根据前面的推导可以知道:
$$D(Q^{-1}G^Tw) = \lambda(Q^{-1}G^Tw),$$
 (即 $Dt = \lambda t$)

由于D为对角矩阵(必对称),那么必存在标准正交的特征向量系满足:

$$t_i^T t_j = egin{cases} 0 & i
eq j \ 1 & i = j \end{cases}$$

回推可得
$$t_i^Tt_j=(Q^{-1}G^Tw_i)^T(Q^{-1}G^Tw_j)=w_i^TS_Ww_j$$
(根据 $S_W=GG^T,QQ^T=I)$

即有:
$$w_i^T S_W w_j = egin{cases} 0 & i
eq j \ 1 & i = j \end{cases}$$

所以在矩阵 S_W 下,广义特征向量w之间两两正交且具有单位范数。

最后再证明广义特征向量位于X的每一列上:

设广义特征向量组为 $\{w_1,w_2,\ldots,w_n\}$ 。其中 w_i 为列向量,对应的特征值为 λ_i .

显然有 $S_B w_i = \lambda S_W w_i$. 若X的每一列为特征向量,不妨记 $X = [w_1, w_2, \ldots, w_n]$.

គ្គ
$$w_i^T S_B w_j = \lambda w_i^T S_W w_j \left\{egin{array}{ll} 0 & i
eq j \ \lambda_i & i = j \end{array}
ight.$$

有
$$X^TS_BX=diag(\lambda_1,\lambda_2,\ldots,\lambda_n)=D$$
符合前面所证。

即便X的列与列之间发生了顺序上的交换,得到的D也是对角阵,同样对角线上为广义特征值。

故广义特征向量位于X的每一列上。

$$egin{aligned} min & rac{1}{2}w^Tw \ s.t. & y_iw^Tx_i-1\geq 0 \end{aligned}$$

(b)

首先得到拉格朗日函数: $L(w, lpha) = rac{1}{2} w^T w - \Sigma_{i=1}^n lpha_i (y_i w^T x_i - 1)$

$$s.t.$$
 $\alpha_i \geq 0, 1 \leq i \leq n.$

$$rac{\partial L}{\partial w}=w-\Sigma_{i=1}^{n}lpha_{i}y_{i}x_{i}=0$$
,可得 $w=\Sigma_{i=1}^{n}lpha_{i}y_{i}x_{i}$

故而
$$rac{1}{2}w^Tw=rac{1}{2}\Sigma_{i=1}^n\Sigma_{j=1}^nlpha_ilpha_jy_iy_jx_i^Tx_j$$

将
$$w=\Sigma_{i=1}^nlpha_iy_ix_i$$
代入得 $L(w,lpha)=-rac{1}{2}w^Tw+\Sigma_{i=1}^nlpha_i$

求 $\displaystyle \min_{w} L(w, \alpha)$ 对 $\displaystyle \alpha$ 的极大,即得到对偶问题:

$$egin{array}{ll} max & -rac{1}{2}w^Tw + \Sigma_{i=1}^nlpha_i = -rac{1}{2}\Sigma_{i=1}^n\Sigma_{j=1}^nlpha_ilpha_jy_iy_jx_i^Tx_j + \Sigma_{i=1}^nlpha_i \end{array}$$

s.t.
$$0 \le \alpha_i \le C, i = 1, 2, 3, \ldots, n$$
.

加负号将求解极大转为求解极小,便得到了题目要求的对偶形式:

$$egin{array}{ll} min & rac{1}{2}\Sigma_{i=1}^n\Sigma_{j=1}^nlpha_ilpha_jy_iy_jx_i^Tx_j-\Sigma_{i=1}^nlpha_i \end{array}$$

$$s.t. \quad 0 \le \alpha_i \le C, i = 1, 2, 3, \ldots, n.$$

如果得到关于 α 的解为 α^* ,可以通过 $w=\sum_{i=1}^n \alpha_i y_i x_i$ 来得到最优的 w^* .

(c)

偏置项b对应d+1维数据的情况下,w的d+1维.

因为
$$w_d^* = \sum_{i=1}^n lpha_i^* y_i x_i$$
,且在第 $i+1$ 维的情况下 $x_i=1$,

所以
$$b=w_{d+1}^*=\Sigma_{i=1}^nlpha_i^*y_i$$

8.6

9.1

$$||y_1-y_2||_2^2=(E_d^T(x_1-\overline{x})-E_d^T(x_2-\overline{x}))^2=(E_d^T(x_1-x_2))^2=(E_d^T(x_1-x_2))^TE_d^T(x_1-x_2)$$
 $=(x_1-x_2)^TE_dE_d^T(x_1-x_2)$ 而由 (9.15) 式可知 $d_A(x,y)=(x-y)^TA(x-y)$ 即 $d_A(x_1,x_2)=(x_1-x_2)^TA(x_1-x_2).$ 通过对比可以知道当 $A=E_dE_d^T$ 时,有 $d_A(x_1,x_2)=||y_1-y_2||_2^2$ 成立,得证。

10.3

首先有该式成立:
$$CE(p,q)=h(p)+KL(p||q)$$
 而 $KL(p||q)\geq 0$,故 $CE(p,q)\geq h(p)$ 成立 等号成立时当且仅当 $KL(p||q)=0$. 即对于任意的 x ,有 $p(x)=q(x)$.