Final Exam (Tentative)

Date Time	Location
Saturday, 10-Dec, 7:00 PM	Odette Building (OB) 104, 112

Last Week × Q4Me

Book vs. Slides

CH02, CH05 (2nd Ed.), CH05 (1st Ed.)

Lab

Last Weeks

•

Today

Real World Entity

Conceptual Level | Entity-Relationship Model (E/R) Level

Conceptual Level | Logical Level | Relational Model

Conceptual Level | Logical Level | Physical Level | SQL

Conceptual Level | Logical Level | Computable Entity

Relational

Edgar Frank "Ted" Codd, IBM, 1969, 1970

Information Retrieval

A Relational Model of Data for Large Shared Data Banks

E. F. Codd IBM Research Laboratory, San Jose, California

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Query in Natural Language -> Query in Math Formula

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

(R1 × R2:) Cartesian Product

Vertical

Filtering

Algebra \times Project (π)

 π , pi, is used to select a subset of <u>attributes</u> (columns) from a relation

R is a relation

<attribute list> subset of attributes of R

A is a <u>relation</u> including all tuples in R with only attributes in list

 σ , sigma, is used to select a subset of <u>tuples</u> from a relation

based on a <u>condition</u> (θ) over relation's attributes.

$$A = \sigma_{\theta}(R)$$

R is a relation

 θ is a Boolean expression on the attributes of R A is a <u>relation</u> including tuples that make θ true

\theta can be made up of number of Boolean clauses

Operation Precedence for Logical Operations

$$() > NOT > AND = OR$$

Commutative Law

A AND B = B AND A (we say A commutes with B under AND)

 $A \cap B = B \cap R A$ (we say A commutes with B under $\cap R$)

Associative Law

A AND (B AND C) = (A AND B) AND C = A AND B AND CA OR (B OR C) = (A OR B) OR C = A OR B OR C

Distributive Law

A AND (B OR C) = (A AND B) OR (A AND C)

A OR (B AND C) = (A OR B) AND (A OR C)

de Morgan's Theorem**

NOT (A AND B) = NOT(A) OR NOT(B)

NOT (A OR B) = NOT(A) AND NOT(B)

$$(A - B) = A - B$$

$$\sigma_{\theta}(\sigma_{\theta}, (R))$$

$$\sigma_{\theta \text{ AND } \theta}(R)$$

$$=$$

$$\sigma_{\theta' \text{ AND } \theta}(R)$$

$$=$$

$$\sigma_{\theta'}(\sigma_{\theta}(R))$$

$$=$$

Corollary: $\sigma_{\theta}(\sigma_{\theta'}(\sigma_{\theta''}, (\sigma_{\theta'''}, (R)) \neq \sigma_{\theta \text{ AND } \theta' \text{AND } \theta'' \dots \text{ AND } \theta'''}(R))$

Algebra \times Rename (ρ)

 ρ_{ℓ} rho, is used to rename a relation or its attributes or both

$$A = (\rho_{R'})_{a'/a', b'/b, ...)} (R)$$

R is a relation

R' is the new name for R(a, b, ...)

a' is the new name for attribute a of R

b' is the new name for attribute b of R

. . .

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

 $\pi(R)$: Project

 $\sigma(R)$: Select

 $\rho(R)$: Rename

Binary Operation (Set Theory)

R1 ∪ R2: Union

R1 ∩ R2: Intersection

R1 \ R2 : Set Difference

R1 × R2: Cartesian Product

Algebra × Binary Operations

Algebra × Union (U)

U, union, is used to include tuples exist in either relations

$$A = R1 \cup R2$$

R1 and R2 are relations A has all tuples from R1 and R2

No duplicate!

Algebra × Intersection ()

on, intersection, is used to include tuples exist in both relations

$$A = R1 \cap R2$$

R1 and R2 are relations

A has tuples exist both in R1 and R2

Algebra × Set Difference (\)

\, minus, is used to exclude tuples from a relation

$$A = R1 \sqrt{R2}$$

R1 and R2 are relations A has tuples in R1 but not in R2

X Commutative Law $R1 \setminus (R2 \setminus R3) \neq (R1 \setminus R2) \setminus R3 \text{ (Why?)}$

Algebra × Set Compatibility

	Director						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

	Movie Movie					
lc		Title	Language	RunningTime		
	1	2001: A Space Odyssey	English	142		
	2	Rosemary's Baby	English	136		

Director and Movie do <u>not</u> share same

- i) Number of attributes
- ii) Datatype in attributes
- iii) Semantics in attributes

A = Director & Movie

A = Director \(\cdot \) Movie

A = Director\\ Movie

Algebra × Set Compatibility

	Director V						
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount	
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13	
2	Alfred	Hitchcock	Aug. 13, 1899	England	[203	47	
3	Clint	Eastwood	May 31, 1930	USA	803	35	

	Movie					
<u>ld</u>	Title	Language	RunningTime			
1	2001: A Space Odyssey	English	142			
2)	Rosemary's Baby	English	136			

Find movies which are NOT the best movies of any directors?

Algebra × Set Compatibility

BestMovield	
1	
203	
803	

1 2

Find movies which are NOT the best movies of any directors?

$$A = (\pi_{ld}(Movie)) \setminus (\pi_{BestMovield}(Director))$$

Given relational (table) schema filled with actual data instances (rows): Operations to SELECT Information FROM Relations

Operations to write query

Unary Operation

Binary Operation (Set Theory) R1 ∪ R2: Union

 $\pi(R)$: Project

R1

R2: Intersection

 $\sigma(R)$: Select

R1 \ R2 : Set Difference

 $\rho(R)$: Rename

R1 × R2: Cartesian Product

×, product, is used to pair two relations

$$A = R1 \times R2$$

 $R1(a_1, a_2, ..., a_n)$ and $R2(a'_1, a'_2, ..., a'_m)$ are relations

- \underline{A} is a relation with all attributes in R1 & R2: $A(a_1, a_3, ..., a_n, a'_1, a'_2, ..., a'_m)$
- In A, each tuple of R1 is paired with all tuples of R2

×, product, is used to pair two relations

$$A = R1 \times R2$$

attributes in A, #attributes in R1 + #attributes in R2
tuples in A, $|A| = |R1| \times |R2|$

Commutative Law

$$R1 \times R2 = R2 \times R1$$

Associative Law

$$R1 \times (R2 \times R3) = (R1 \times R2) \times R3 = R1 \times R2 \times R3$$

×, product, is used to pair two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible

Any two relations can be paired!

×, product, is used to pair two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible Any two relations can be paired.

But if you want to pair two or more relations, which ones?

29

				-
	Movie			
<u>ld</u>	Title	Language	RunningTime	
1	2001: A Space Odyssey	English	142	$ \leftarrow $
2	Rosemary's Baby	English	136	

\sim					
	User				
<u>ld</u>	Username	Password			
7	fani	***			
2	cjason	***			
3	h_f492	***			
	<i>1 2</i>	IdUsername1fani2cjason			

Spenhfoni

What meaningful queries can be answered by pairing these two relations?

What meaningful queries can be answered by pairing these three relations?

		•				
	MovieGenre					
	Movield	Genreld				
4	1	1				
	1	<u>എ</u>				
	2	6				
	2	7				
	2	2				

		Genre			
	<u>ld</u>	Title			
((1)	S <u>ci-fi</u>			
	2	Action			
	(m)	Adventure			
	4	Comedy			
	5	Crime			
	6	Drama			
	7	Horror			
		·			

ld	Title	vie x MovieGe Language		Movield	Genrel <u>d</u>	. /
(7)	2001: A Space Odyssey	English	142	1	(1)	
1	2001: A Space Odyssey	English	142	7	[3]	7
$\overline{1}$	2001: A Space Odyssey	English	142	2	6 X	
1	2001: A Space Odyssey	English	142	2	7	
1	2001: A Space Odyssey	English	142	2	2 X	
2	Rosemary's Baby	English	136	1	1 X	
2	Rosemary's Baby	English	136	7	<i>3</i> X	
2	Rosemary's Baby	English	136	2	6	
2	Rosemary's Baby	English	136	2	7	
2	Rosemary's Baby	English	136	2	2	

	Genre
<u>ld</u>	Title
1	Sci-fi
2	Action
ന	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

	Movie × MovieGenre								
<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>				
1	2001: A Space Odyssey	English	142	1	1				
1	2001: A Space Odyssey	English	142	1	3				
1	2001: A Space Odyssey	English	142	2	6				
1	2001: A Space Odyssey	English	142	2	7				
1	2001: A Space Odyssey	English	142	2	2				
2	Rosemary's Baby	English	136	1	7				
2	Rosemary's Baby	English	136	1	3				
2	Rosemary's Baby	English	136	2	6				
2	Rosemary's Baby	English	136	2	7				
2	Rosemary's Baby	English	136	2	2				

	Genre						
<u>ld</u>	Title						
1	Sci-fi						
2	Action						
3	Adventure						
4	Comedy						
5	Crime						
6	Drama						
7	Horror						

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	
1	2001: A Space Odyssey	English	142	1	$\left(1\right)$	Z
1	2001: A Space Odyssey	English	142	1	(3))
2	Rosemary's Baby	English	136	2	6 X	7
2	Rosemary's Baby	English	136	2	7 X	/ (
2	Rosemary's Baby	English	136	2	2 X	/)

Jd=Movield	(Movie×MovieGenre)
75/2-16	The state of the s

	Genre
<u>ld</u>	Title
1	Sci-fi
2	Action
3	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

<u>ld</u>	Title	Language	RunningTime	Movield	<u>Genreld</u>
1	2001: A Space Odyssey	English	142	7	1
1	2001: A Space Odyssey	English	142	1	3

	Genre
<u>ld</u>	Title
1	Sci-fi
2	Action
3	Adventure
4	Comedy
5	Crime
6	Drama
7	Horror

	mai.		D. or a in a Time a	Mandalal			T01 -
1	Title 2001: A Space Odyssey	Language English	RunningTime 142	Movield 1	Genreld 7		Title Sci-fi
1	2001: A Space Odyssey	English	142	1	1,4	2	Action X
1	2001: A Space Odyssey	English	142	1	1	3	Adventure
1	2001: A Space Odyssey	English	142	1	1	4	Comedy 🗸
1	2001: A Space Odyssey	English	142	1	1	5	Crime S
1	2001: A Space Odyssey	English	142	1	1	6	Drama
7	2001: A Space Odyssey	English	142	1	1	7	Horror
1	2001: A Space Odyssey	English	142	1	3	1	Sci-fi 💢
1	2001: A Space Odyssey	English	142	1	3	2	Action
1	2001: A Space Odyssey	English	142	1	3	3	Adventure
1	2001: A Space Odyssey	English	142	1	3	4	Comedy
1	2001: A Space Odyssey	English	142	1	3	5	Crime
1	2001: A Space Odyssey	English	142	1	3	6	Drama
1	2001: A Space Odyssey	English	142	1	3	7	Horror

(σ_{Id=Movield AND} (Movie×MovieGenre)×Genre)
Title='2001: A Space Odyssey'

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	1	2	Action
1	2001: A Space Odyssey	English	142	1	1	3	Adventure
1	2001: A Space Odyssey	English	142	1	1	4	Comedy
1	2001: A Space Odyssey	English	142	1	1	5	Crime
1	2001: A Space Odyssey	English	142	1	1	6	Drama
1	2001: A Space Odyssey	English	142	1	1	7	Horror
1	2001: A Space Odyssey	English	142	1	3	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	2	Action
1	2001: A Space Odyssey	English	142	1	3	3	Adventure
1	2001: A Space Odyssey	English	142	1	3	4	Comedy
1	2001: A Space Odyssey	English	142	1	3	5	Crime
1	2001: A Space Odyssey	English	142	1	3	6	Drama
1	2001: A Space Odyssey	English	142	1	3	7	Horror

(σ_{Id=Movield AND} (Movie×MovieGenre)×Genre)
Title='2001: A Space Odyssey'

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1/	2001: A Space Odyssey	English	142	7		1)(Sci-fi_
1	2001: A Space Odyssey	English	142	17	(3	3	Adventure

×, product, is used to pair two relations

$$A = R1 \times R2$$

R1 and R2 do <u>not</u> have to be set compatible
Any two relations can be paired.
But if you want to pair two or more relations, which ones?
Those have relationship in E/R diagram
Those have linked by foreign keys (FK) in relational model

Id		Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	1	2001: A Space Odyssey	English	142	1	3	3	Adventure

$$A = \sigma_{\text{Id}=\text{GenreId}}(\sigma_{\text{Id}=\text{Movield AND}}^{\text{Id}=\text{Movield AND}} \text{ (Movie × Movie Genre)) × Genre)}$$

$$\text{Title='2001: A Space Odyssey'}$$

Ambiguous name reference! Solution?

<u>ld</u>	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	1	1	Sci-fi
1	2001: A Space Odyssey	English	142	7	3	3	Adventure

Ambiguous name reference! Solution?

·, dot, namespace operator

Mld	Title	Language	RunningTime	<u>Movield</u>	<u>Genreld</u>	<u>ld</u>	Title
1	2001: A Space Odyssey	English	142	1	7	1	Sci-fi
1	2001: A Space Odyssey	English	142	1	3	3	Adventure

$$A = \sigma_{\text{Id}=\text{GenreId}}(\sigma_{\text{MId}=\text{Movield AND}} (\rho_{\text{R(MId/Id)}}(\text{Movie})) \times \text{MovieGenre})) \times \text{Genre})$$
Title='2001: A Space Odyssey'

Ambiguous name reference! Solution? p, rho, rename operator

Who made 'Pulp Fiction'?

Who made 'Pulp Fiction'?

- i) Find the movie in Movie relation-
- ii) Find directors in Director relation
- iii) Find who made a movie in MovieDirector relation

```
Who made 'Pulp Fiction'?

The state of the s
```

Who made 'Pulp Fiction'?

```
O (Movie × MovieDirector)) × Director MovieDirector) × Director MovieDirector. Director MovieDirector. MovieDir
```

Selection (σ) is commutative

Who made 'Pulp Fiction'?

```
σ (Movie × MovieDirector)) × Director

Movie.Title='PulpFiction' AND

Movie.Id=MovieDirctor.Movield

=

σ (Movie × MovieDirector)) × Director

Movie.Id=MovieDirctor.Movield

πονίε.Title='PulpFiction' AND

Movie.Title='PulpFiction' AND

Movie.Id=MovieDirctor.Movield AND

Director.Id=MovieDirctor.DirectorId
```

Who acted in 'Pulp Fiction'?

Who acted in 'Pulp Fiction'?

```
π (Movie × Starln × Actor))

Actor.FirstName Actor.LastName Movie(Id=Starln.Movield AND ActorId)

Actor.LastName Movie(Id=Starln.ActorId)
```

×, product, is used to pair two relations

$$A = R1 \times R2$$

P.S.

- l) Product is the most important operator in relational model
- II) Product is the most common operator in relational model
- III) Product is the most expensive operator in relational model

```
\pi(R) Project \sigma(R) Select \rho(R) Rename R1 \cup R2 Union R1 \setminus R2 Set Difference R1 \times R2 Cartesian Product
```

Any other relational algebra expression can be expressed by a combination of these operations.

No Need for Intersection!

 $R1 \cap R2 = What mixture of other operators?$

$$R1 \cap R2 = (R1 \cup R2) \setminus ?)$$

 $R1 \cap R2 = (R1 \cup R2) \setminus ?)$

 $R1 \cap R2 = (R1 \cup R2) \setminus ((R1 \setminus R2) \cup (R2 \setminus R1))$

 θ -join, is product (×) of relations followed by selection (σ)

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

Movies and their genres?

 $\sigma_{\text{Genre.Id}=\text{GenreId}}(\sigma_{\text{Movie.Id}=\text{MovieId}}(Movie \times Movie Genre)) \times Genre)$

Movies and their directors?

 $\sigma_{\text{Genre.Id=GenreId}}(\sigma_{\text{Movie.Id=MovieId}} \, (\text{Movie} \times \text{MovieGenre})) \times \text{Genre})$

Movie Movie.Id=Movield MovieGenre

Movies and their directors?

$$\sigma_{\text{Genre.Id=GenreId}}(\sigma_{\text{Movie.Id=MovieId}}(\text{Movie}\times\text{MovieGenre}))\times\text{Genre})$$

 \bowtie , natural join, is product (×) of relations followed by selection (σ)

$$\frac{2}{R1} \bowtie_{\theta} R2 = \sigma_{\theta}(R1 \times R2)$$

- / Commutative?
- Associative?

 \bowtie , natural join, is product (×) of relations followed by selection (σ)

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

Commutative: R1 \bowtie_{θ} R2 = R2 \bowtie_{θ} R1

Associative: (R1 \bowtie_{θ} R2) $\bowtie_{\theta'}$ R3 \neq R1 \bowtie_{θ} (R2 $\bowtie_{\theta'}$ R3) (Why?)

Movies and their genres?

```
\sigma_{\text{Movie.Id=Movield}} \sigma_{\text{Movie.Id=Movield}} (\text{Movie} \times \text{Movie} \times \text{Genre} \times \text{Genre}) \\ \sigma_{\text{Movie.Id=Movield}} \sigma_{\text{Movie.Id=Movield}} (\text{Movie} \times \text{Genre} \times \text{Movie} \times \text{Genre}) \\ \sigma_{\text{Movie.Id=Movield}} \sigma_{\text{Movie.Id=GenreId}} (\text{Genre} \times \text{Movie} \times \text{Movie} \times \text{Movie} \times \text{Genre}) \\ \sigma_{\text{Genre.Id=GenreId}} \sigma_{\text{GenreId=Movield}} (\text{Movie} \times \text{Movie} \times \text{Genre} \times \text{Genre})
```

Commutative and Associative law for AND and Product (×)

Movies and their genres?

```
omovie.ld=Movield AND Genre.ld=Genreld (Movie×MovieGenre×Genre)

(Movie Movield Movield MovieGenre) MovieGenre Genreld Genre (MovieGenre Movie.ld=Movield Movie) MovieGenreld Genreld Genre MovieGenre Movie.ld=Movield (Movie Movie.ld=Genreld Genre)

(Movie Movie.ld=Movield MovieGenre) Movie.ld=Movield Genre
```

Algebra × Natural Join X

 \bowtie , natural join, is θ -Join <u>equating all shared</u> attributes (same name)

$$R1 \bowtie R2 = R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

where θ : R1.a = R2.a AND R1.b = R2.b AND ... AND R1.z = R2.z

Algebra × Natural Join

	Director							
<u>ld</u>	FirstName	LastName	DateOfBirth	PlaceOfBirth	BestMovield	MovieCount		
1	Stanley	Kubrick	Jul. 26, 1928	USA	1	13		
2	Alfred	Hitchcock	Aug. 13, 1899	England	203	47		
3	Clint	Eastwood	May 31, 1930	USA	803	35		

	Movie Movie						
<u>ld</u>	Title	Language	RunningTime				
1	2001: A Space Odyssey	English	142				
2	Rosemary's Baby	English	136				

What are directors' best movie name?

Algebra × Natural Join

	A1	
FirstName	LastName	BestMovield-→ Id
Stanley	Kubrick	1
Alfred	Hitchcock	203
Clint	Eastwood	803

	Movie Movie						
<u>ld</u>	Title	Language	RunningTime				
1	2001: A Space Odyssey	English	142				
2	Rosemary's Baby	English	136				

What are directors' best movie name?

A1 =
$$\rho_{\text{Movie(Id/BestMovield)}}(\pi_{\text{FirstName, LastName, BestMovield}}(\text{Movie}))$$

Algebra × Natural Join

	A							
FirstName	LastName	BestMovield-→ Id	<u>ld</u>	Title	Language	RunningTime		
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142		
Alfred	Hitchcock	203						
Clint	Eastwood	803						
			2	Rosemary's Baby	English	136		

What are directors' best movie name?

A = A1
$$\bowtie$$
 Movie ____
= A1 $\bowtie_{A1.Id=Movie.Id}$ Movie ___
= $\sigma_{A1.Id=Movie.Id}$ (A1 × Movie)

Algebra × <u>Left</u> Outer Join (►)

				А			
	-irstName	LastName	BestMovield-> Id	<u>ld</u>	Title	Language	RunningTime
>	Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
)	Alfred	Hitchcock (EST .	NULL	NULL	NULL	NULL
,	Clint	Eastwood	26H	NULL	NULL	NULL	NULL
1				2	Rosemary's Baby	English	136

What are directors' best movie name if any?

Algebra × Right Outer Join (►)

FirstName	LastName	BestMovield-→ Id		Title	Language	RunningTime
Stanley	Kubrick	1	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203				
Clint	Eastwood	803				
NULL	NULL	NULL	2	Rosemary's Baby	English	136

List all movies and identify whether each one is the best of its director?

Algebra × Full Outer Join (➤)

, IrstName	LastName	BestMovield-→ Id	A <u>ld</u>	Title	Language	RunningTime
Stanley	Kubrick	7	1	2001: A Space Odyssey	English	142
Alfred	Hitchcock	203 🗶	MULL	NULL	NULL	NULL
Clint	Eastwood	803 X	NULL	NULL	NULL	NULL
NULL	NULL	NULL /	2	Rosemary's Baby	English	136
					'	

$$A = A1 \bowtie Movie$$

= $A1 \bowtie Movie \cup (A1 \bowtie Movie)$

Algebra × More

Relational algebra has more complex operators such as:

```
R1 > R2 Antijoin
R1 / R2 Division
```

→ https://en.wikipedia.org/wiki/Relational_algebra

/, division, is used to find tuples (rows) in R1 which matched with ALL tuples (rows) in R2 :

$$A = R1 / R2$$

R1 and R2 are relations

A is a relation with all attributes in R1

What movie(s) belong to ALL genres?

				A1				
Į	Id	Title	Language	RunningTime	Movield	Genreld	ld	Title
	1	2001: A Space Odyssey	<u>Eng</u> lish	142	1	1	7	Sci-fi
	1	2001: A Space Odyssey	English	142	1	3	3	Adventure
\langle	2	Rosemary's Baby	English	136	2	6	6	Drama)
	2	Rosemary's Baby	English	136	2	7	7	Horror (
	2	Rosemary's Baby	English	136	2	2	2	Action /
\setminus	2	Rosemary's Baby	English	136	2	1	1	Sci-fi
	2	Rosemary's Baby	English	136	2	3	3	Adventure
	2	Rosemary's Baby	English	136	2	4	4	Comedy
	2	Rosemary's Baby	English	136	2	5	5	Crime

Genre Id Title				
Title				
Sci-fi				
Action				
Adventure				
Comedy				
Crime				
Drama				
Horror				

$$A1 = \sigma$$
Movie.ld=Movield AND
Genre.ld=Genreld

(Movie×MovieGenré×Genre)

What movie(s) belong to ALL genres?

A2			
MovieTitle	Id	Title	
2001: A Space Odyssey	1	Sci-fi	
2001: A Space Odyssey	3	Adventure	
Rosemary's Baby	6	Drama	
Rosemary's Baby	7	Horror	
Rosemary's Baby	2	Action	
Rosemary's Baby	1	Sci-fi	
Rosemary's Baby	3	Adventure	
Rosemary's Baby	4	Comedy	
Rosemary's Baby	5	Crime	

Genre				
<u>ld</u>	Title			
1	Sci-fi			
2	Action			
3	Adventure			
4	Comedy			
5	Crime			
6	Drama			
7	Horror			

$$A2 = \rho_{A1(MovieTitle/Movie.Title)}(\pi_{Movie.Title, Genre.Id, Genre.Title} (A1))$$

What movie(s) belong to ALL genres?

A2			
MovieTitle	ld	Title	
2001: A Space Odyssey	7	Sci-fi	
2001: A Space Odyssey	3	Adventure	
Rosemary's Baby	6	Drama	
Rosemary's Baby	7	Horror	
Rosemary's Baby	2	Action	
Rosemary's Baby	1	Sci-fi	
Rosemary's Baby	3	Adventure	
Rosemary's Baby	4	Comedy	
Rosemary's Baby	5	Crime	

	Genre		
<u>ld</u>	Title		
1	Sci-fi		
2	Action		
3	Adventure		
4	Comedy		
5	Crime		
6	Drama		
7	Horror		

What movie(s) belong to ALL genres?

A2			
MovieTitle	Id	Title	
2001: A Space Odyssey	7	Sci-fi	
2001: A Space Odyssey	3	Adventure	
Rosemary's Baby	6	Drama	
Rosemary's Baby	7	Horror	
Rosemary's Baby	2	Action	
Rosemary's Baby	1	Sci-fi	
Rosemary's Baby	3	Adventure	
Rosemary's Baby	4	Comedy	
Rosemary's Baby	5	Crime	

A = A2 / Genre
= A2
$$\{\pi, \sigma, \rho, \cup, \setminus \times\}$$
 Genre

Genre				
<u>ld</u>	Title			
7	Sci-fi			
2	Action			
3	Adventure			
4	Comedy			
5	Crime			
6	Drama			
7	Horror			

Has been a movie won ALL Oscar awards?
Students who should graduate? (passed ALL the courses)
Girls who have collaborated with ALL boys in a class?
Boys who have collaborated with ALL girls in a class?

A (Fully Experienced) = R1 (Reality) //R2 (All Possibilities)

Has been a movie won ALL Oscar awards?
Students who should graduate? (passed ALL the courses)
Girls who have collaborated with ALL boys in a class?
Boys who have collaborated with ALL girls in a class?

Fully Experienced = Reality (All Possibilities - Reality)

Yet to Experience

https://en.wikipedia.org/wiki/Relational_algebra#Division_(%C3%B7)

Algebra × Extensions

Relational algebra accepts some extensions to support SQL from physical level such as:

Outerjoin Aggregation Functions (SUM, AVG, MAX, MIN) Grouping Sorting

We will cover them in more details when explaining SQL.