

מערכות ספרתיות **2**

- אלגברה בוליאנית•
- אקסיומות וכללים•
 - •דואליות
 - •דהמורגן

ד"ר רון שמואלי

Boolean Algebra

אלגברה בוליאנית

• ב- 1854 המתמטיקאי George Boole הציג אלגברה לטיפול פונקציונלי בלוגיקה. על שמו Boolean Algebra.

ב- 1904 ב- Edward Vermilye Huntington ב- 1904 ב- הגדיר סדרה של כללים ואקסיומות לתיאור האלגברה

ב- Claude Shannon 1938 הראה בעבודת
 הוא ביצד למפות אלגברה בולאנית
 לאלגברה דו ערכית ולמעגלים לוגיים

אלגברה של קבוצות – הגדרות

- **אלגברה:** אוסף של אלמנטים, אופרטורים, אקסיומות וכללים
 - אופרטור המוגדר על קבוצת איברים S הוא כלל
 המתאים איבר יחיד לכל זוג איברים ב S.
 - קבוצה סגורה:

S קבוצה S סגורה ביחס לאופרטור, אם לכל זוג אברים ב האופרטור מגדיר איבר יחיד שגם הוא בתוך S.

דוגמא: קבוצת המספרים הטבעיים {.....N={1,2,3.....} האם סגורה ביחס לחיבור ? האם סגורה ביחס לחיסור?

הגדרה אקסיומטית של אלגברה בוליאנית לפי הכללים של Huntington

- **אלגברה בולאנית**: מיבנה אלגברי המוגדר על קבוצת איברים {B}, בצרוף שני אופרטורים + (OR) ו- (AND). כך שהכללים הבאים מתקיימים:
 - 1. הקבוצה B סגורה ביחס לאופרטורים + ו- •.

$$X+0=0+X=X$$
 קיים איבר יחידה ביחס ל + המסומן ב -0 . a .2 $X+0=0+X=X$ קיים איבר יחידה ביחס ל • המסומן ב -1 . b

$$x+y=y+x$$
 + מתקיים חוק החילוף ביחס ל a 3 $x\cdot y=y\cdot x$ • מתקיים חוק החילוף ביחס ל b

$$X+X'=1$$
 a המקיים: $\overline{x}\in B$ קיים איבר $x\in B$ לכל איבר איבר $x\cdot X'=0$ b

$$\mathbf{x} \neq \mathbf{y}$$
 כך ש אברים x , y \in B קיימים לפחות שני אברים 6

101 110 ₂₀₁11

אלגברה בוליאנית דו ערכית

- כדי להגדירה צריך להראות:
 - B את אברי הקבוצה –
- .•, + את כללי ההפעלה של האופרטורים הבינאריים
- להראות שקבוצת האברים B והאופרטורים מקיימים את כללי Huntington

xyz yz x+yz x+y x+z (x+y)·(x+z) (להראות את קיום הכללים) 000 דוגמא

001			
010			$x + (y \cdot z) = (x+y) \cdot (x+z)$
011			
100			

זהויות בסיסיות באלגברת מיתוג

 $1A) \times (y+z) = \underline{xy+xz}$ $1B) \times +yz = (\underline{x+y})(\underline{x+z})$

 $2A) \underline{x+x=x}$ $3A) \underline{x+xy=x}$ 2B) xx=x 3B) x(x+y)=x

 $4A) \times +x'=1$ $4B) \times x'=0$

5A) x+0=x $5B) x \cdot 1=x$ 6A) x+1=1 $6B) x \cdot 0=0$

7A) $y(\underline{x+y'})=\underline{xy}$ 7B) $\underline{xy'+y}=\underline{x+y}$

8A) $(\underline{x+y})(\underline{x+y'})=\underline{x}$ 9A) $(\underline{x+y})(\underline{x+z})=(\underline{x+y})(\underline{x+z})$ 8B) $\underline{xy+xy'}=\underline{x}$ 9B) $\underline{xy+x'z+yz}=\underline{xy+y}$

(x+y)=(x+y)(x'+z) 9B) (x+x'z+yz=xy+x'z)(x+y)=(x+y)(x'+z)

• המשפטים המסומנים ב B דואלים למשפטים המסומנים ב

:הוכחת הכללים הבאים

- 1. X+X=X
- 2. XX=X
- 3. X+1=1
- 4. X·O=0
- 5. x''=x

2011

(c)	Dr.	Ron	Shmueli

דוגמאות (ללמד קודם דמורגן)+ דואליות

- xy+x'z+wyz=xy+x'z הוכח את משפט הקונצנזוס
- (x+y)[x'(y'+z')]'+x'y'+x'z'=1 : הוכח את הזהות .2
- T=xy'+(x'+y)z צמצם את הביטוי: 3
- f=x+yz+x'y' f את המשלים של 1.4

, ,	_	_	~ 1	
(\cap)	1 I)r	$R \cap D$	Shm	أاكنا
いしょ	, וט	IVOLL	JI 11 11	uUII

$$(x_1+x_2+...+x_n)^D=x_1x_2...x_n$$
 פונקציה דואלית $(x_1x_2...x_n)^D=x_1+x_2+...+x_n$

$$[f(x_1,x_2,...,x_n,+,\cdot,0,1)]^D =$$
 הגדרה פורמלית של = $[f(x_1,x_2,...,x_n,\cdot,+,1,0)]$

- הטכניקה למעבר לדואלית:
 - הצורך:
- f=(x'+y)(xz+yz')• דוגמא: מצא את הדואלית של: מצא מתוכה את הפונקציה המשלימה:

(~)	D^{L}	Dan	Chi	mueli
	1 //	K()II	7111	\mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}
101	レ 1.	$\mathbf{I} \mathbf{V} \mathbf{U} \mathbf{I} \mathbf{I}$	21 11	писп

f=xy+xz+yz של הדואלית של מצא את הדואלית • **דוגמא**:

פונקציה דואלית לעצמה פונקציה דואלית לעצמה אלפונקציות המקיימות: $f=f^D$

דוגמא

?? z - אהם y שווה ל- x+y=x+z

אסור: 1. להוסיף/להכפיל איבר לא ידוע בשני צידי משוואה. 2. להעביר אגפים.

מותר: 1. לעשות משלים ו/או דואליות לשני צידי משוואה.

קדימות אופרטורים: NOT AND OR () נמוך → גבוהה

משפט דה מורגן

$$(x_1 + x_2 + ... + x_n)' = x_1' x_2' ... x_n'$$

 $(x_1 x_2 ... x_n)' = x_1' + x_2' + ... + x_n'$

<u>משפט דה-מורגן המורחב</u>

$$[f(x_1, x_2,..., x_n, +, \cdot, 0, 1)]' =$$

$$= [f(x_1', x_2',..., x_n', \cdot, +, 1, 0)]$$

הוכחת משפט דמורגן

 $(xy)'=x'+y' \leftarrow$ דואליות \rightarrow (x+y)'=x'y' •

x+y צריך להוכיח שx'y' הוא המשלים של