

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3F03 Advanced Differential Equations

Instructor: David Earn

Lecture 32 Index Theory Wednesday 20 November 2013

Announcements

- Assignment 5 due this Friday, 22 Nov 2013, at 1:30pm.
 - Also look at Assignment 5 from 2011: includes problem on Poincaré Bendixson theorem and other relevant problems.
- Test 2 next Wednesday, 27 Nov 2013, at 11:30am.
 - Emphasis is on material covered since Test 1, including what we cover this week.
 - Location: T29 / 101

Index Theory: Concept

Consider a simply connected domain $D \subset \mathbb{R}^2$ and a closed loop $\Gamma \subset D$ that contains no fixed points (equilibria) of X' = F(X).

 Arrows represent values of the vector field F.

- As you slide all the way along Γ , the angle ϕ of the vector field changes by an integer number of full rotations: $\Delta \phi = 2k\pi$ $\exists k \in \mathbb{Z}$.
- \blacksquare *k* is the **index** of Γ .

Index Theory: Formal Definition

Definition (Index of a closed curve Γ)

Consider a smooth, planar vector field, (x',y')=(f(x,y),g(x,y)), defined in a simply connected domain $D\subset\mathbb{R}^2$. Suppose Γ is a closed loop in D ($\Gamma\subset D$) and that Γ contains no fixed points of the vector field (*i.e.*, there is no point $(x_*,y_*)\in\Gamma$ such that $f(x_*,y_*)=g(x_*,y_*)=0$). Then the index of Γ is

$$k = \frac{1}{2\pi} \oint_{\Gamma} d\phi \,,$$

which can be calculated in Cartesian coordinates via

$$k = \frac{1}{2\pi} \oint_{\Gamma} d\left(\arctan\frac{g(x,y)}{f(x,y)}\right) = \frac{1}{2\pi} \oint_{\Gamma} \frac{f \, dg - g \, df}{f^2 + g^2} \, .$$

Index Theory: Meaning of ϕ in the definition of index k

$$k = \frac{1}{2\pi} \oint_{\Gamma} d\phi$$

- Here, ϕ refers to the angle that the vector field makes with horizontal at the point in question.
 - It does NOT refer to the azimuth of polar coordinates (r, θ) in the phase plane!
 - If the vector field is expressed in polar coordinates then it is *usually harder* to compute the index of a given curve:

$$k = \frac{1}{2\pi} \oint_{\Gamma} d\left(\arctan\frac{y'}{x'}\right)$$
$$= \frac{1}{2\pi} \oint_{\Gamma} d\left(\arctan\frac{r'\sin\theta + r(\cos\theta)\theta'}{r'\cos\theta - r(\sin\theta)\theta'}\right),$$

where r and θ are the standard polar coordinates in the plane.

Index Theory: Properties

- The index is the same if Γ is smoothly deformed, as long as it is not deformed through some fixed point of the vector field.
- The index of a fixed point is defined to be the index of a closed curve that contains only this one fixed point, and where no fixed points are on the closed curve.
- Although the index of a given curve is often difficult to compute from the definition for a given vector field, some very useful general results can be proved.

Index Theory: Basic Theorem

Theorem (The Index Theorem)

The index of a

- (i) sink, source, or centre is +1;
- (ii) hyperbolic saddle point is -1;
- (iii) periodic orbit is +1;
- (iv) closed curve not enclosing any fixed points is 0;
- (v) closed curve is equal to the sum of the indices of the fixed points enclosed within it;

where "closed curve" refers to a closed loop on which there are no fixed points.

Example: periodic orbit

Index of equilibrium at origin

Index of periodic orbit

Index along closed curve outside periodic orbit

Index Theory: Global Theorem Concerning Periodic Orbits

Corollary (Corollary to the Index Theorem)

- (i) Inside any periodic orbit γ there must be at least one fixed point.
- (ii) If there is only one fixed point inside γ then it must be a sink, source, or centre.
- (iii) If all the fixed points within γ are hyperbolic, then there must be an odd number, 2n+1, of which n are saddles and n+1 are either sinks or sources.

Example of use of Bendixson Negative Criterion

$$x' = xy^{2} + \sin y$$
$$y' = x^{2}y + \sin x + \alpha y$$

 $\alpha = -1$

$$\begin{aligned} \nabla \cdot F &> 0, \\ \text{if } \|X\| &> \sqrt{|\alpha|} \end{aligned}$$

$$\nabla \cdot F > 0$$
, $\forall X \neq (0,0)$

$$\alpha = 1$$

$$\nabla \cdot F > 0$$
, $\forall X \in \mathbb{R}^2$

lacktriangle Index theorem \Longrightarrow no periodic orbits enclosing these saddles.

Example of use of Bendixson-Dulac Negative Criterion

$$x' = \frac{1}{x^2 + y^2 + 1}$$
$$y' = \frac{y}{x^2 + y^2 + 1}$$

- $\nabla \cdot F$ changes sign in the plane.
- But Dulac function $h(x,y) = x^2 + y^2 + 1$ works: $\nabla \cdot (hF) > 0$ on \mathbb{R}^2 , so no periodic orbits.
- Alternative argument: this system has no equilibria, hence index theorem implies there are no periodic orbits.

Example of use of Bendixson-Dulac Negative Criterion

Slightly different example:

$$x' = \frac{x}{x^2 + y^2 + 1}$$
$$y' = \frac{y}{x^2 + y^2 + 1}$$

- Now there is an equilibrium, and it is a source, so index theorem does not rule out periodic orbits.
- $\nabla \cdot F$ changes sign in the plane again.
- But Dulac function $h(x,y) = x^2 + y^2 + 1$ works again: $\nabla \cdot (hF) > 0$ on \mathbb{R}^2 , so no periodic orbits.

Example with homoclinic orbit

Index of equilibrium at origin

Index of homoclinic orbit?

Index computed outside homoclinic orbit

Index of homoclinic point

Index along closed curve containing both equilibria

Example with heteroclinic orbits

k = -1

Example with more complex heteroclinic cycle

Example: every point on unit circle is an equilibrium

Creating examples with homoclinic or heteroclinic orbits

- No radial motion on unit circle.
- Equilibria on unit circle and origin only.
- n equilibria on unit circle
 - $n=1 \implies \text{homoclinic}$
 - $n \ge 2$ \Longrightarrow heteroclinic cycle

Example (Invariant unit circle containing n equilibria)

$$r' = r(1 - r)$$

 $\theta' = r \sin\left(\frac{n\theta}{2}\right) + (1 - r)$

- $n = 0 \implies$ all points on unit circle fixed.
- The vector field is C^{∞} in this example \implies such complications are possible even in a very smooth flow.

Example: homoclinic orbit without interior equilibrium

Index of homoclinic point

Homoclinic points can be saddle points (even hyperbolic!)

Homoclinic points can be saddle points (even hyperbolic!)

This is a sketch only (not solutions of ODEs).

k = -1

Index theory comments

- The sketches on previous slides are not rigorous.
- Analytical index calculation (when occasionally possible) will not miss any fast rotations of sliding vector.
- Remember there can be no equilibria on a closed curve used to calculate an index!
- Homoclinic orbits are not like periodic orbits: they do not necessarily enclose equilibria.
- We have seen examples with homoclinic points that have index k = 0, 1 or -1. Being a homoclinic point is a non-local phenomenon.
- There is an analogue of index theory in higher dimensions (degree theory).

Question

■ Is it possible for an equilibrium point to have an index other than 0 or ± 1 ? *i.e.*, other than the cases we've seen?

Example: all orbits (except one) homoclinic to origin

Example: all orbits (except one) homoclinic to origin

k = 2

Example: all orbits (except one) homoclinic to origin

$$x' = x^2 - y^2$$
$$y' = 2xy$$

- Non-hyperbolic
- Can we construct an example where ALL orbits are homoclinic to a given point?
- Yes, on the sphere:
 - Just join the two orbits on the x axis to itself "at infinity" and squash everything onto the surface of a sphere.
 - This transformation is NOT a topological conjugacy.

saddle-node example

saddle-node example

k = 0

saddle-node example

$$x' = x^2$$
$$y' = -y$$

- Non-hyperbolic.
- This arises when a saddle and a node collide (a saddle-node bifurcation).
- A **node** is a general term for a source or sink. A source is an **unstable node** and a sink is a **stable node**.
- lacktriangle The bifurcation occurs as lpha passes through 0 in the system

$$x' = x^2 - \alpha$$
$$y' = -y$$

Announcements

Dora's office hours on Wed 27 Nov 2013 are MOVED TO TUESDAY 26 NOV 2013, 3:30-4:30pm.

Online Course Evaluations

Your course evaluations are critical to future course development and instructor assessment processes.

Course Evaluations for 2013 Fall Term 1

Open: Wednesday November 20, 2013 at 10:00 a.m.* Close: Wednesday December 4, 2013 at 4:00 p.m.

- * Faculties of ENG. HUM. SOCSCI. SCI. and DSB
- Log in with your MAC ID to evaluate your courses.
- Each evaluation will take approximately 5 to 15 minutes to complete.
- Your responses are completely anonymous.
- Evaluation results are not made available to instructors until after final marks have been submitted to the Office of the Registrar.

https://evals.mcmaster.ca

