Ray Tracing & Ray Casting

Realistic Graphics Inpsired by Nature

Ashrafur Rahman

Adjunct Lecturer

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology (BUET)

Index

Motivation

The Story of Light

Ray Casting: Foundation

Mathematics of Rays

Ray-Plane Intersection

Ray-Sphere Intersection

Ray-Quadric Surface Intersection

Ray-AABB Intersection

Cameras

Pinhole Camera

Orthographic Camera

Camera Representation

Motivation

Elsa's Castle in Frozen

Elsa's Castle in Frozen

Cyberpunk 2077 with RTX

Realistic graphics of your favourite animated movies are the result
of ground-breaking work in Ray Tracing by studios like Disney, Pixar,
and DreamWorks. Do you know these films take years to render? 30
hours per frame!

Elsa's Castle in Frozen

Cyberpunk 2077 with RTX

- Realistic graphics of your favourite animated movies are the result
 of ground-breaking work in Ray Tracing by studios like Disney, Pixar,
 and DreamWorks. Do you know these films take years to render? 30
 hours per frame!
- Lately, **RTX** is all the rage in gaming. New titles boast ray-tracing effects in real-time, not 30 hours per frame!

Elsa's Castle in Frozen

Cyberpunk 2077 with RTX

- Realistic graphics of your favourite animated movies are the result
 of ground-breaking work in Ray Tracing by studios like Disney, Pixar,
 and DreamWorks. Do you know these films take years to render? 30
 hours per frame!
- Lately, RTX is all the rage in gaming. New titles boast ray-tracing effects in real-time, not 30 hours per frame!
- It's fun! You will know when you create your first ray-traced image!

The Story of Light

Natural Process

- 1. Light travels from source
- 2. Light hits objects
- 3. Light bounces to our eyes
- 4. Our brain interprets the signal

Physical Process

- Photon is emitted from source
- 2. Photon hits objects
- 3. Part of the photon is reflected or absorbed
- 4. The reflected photons reach our eyes
- 5. The rods and cones in our retina detect the photons
- Our brain interprets the signal
- Colour: The wavelength of the photons
- 8. **Brightness**: The number of photons

Question: How do we simulate this?

The Computer Graphics Challenge

Challenges:

- Infinite light rays/photons
- Complex physics
- High computational cost

Ray Casting: Foundation

The Key Insight

1. Reverse Engineering

Instead of following light rays from light sources —

Let's trace backwards!

Shoot rays from the eye,

find where it hits and find out how much light reaches there.

This is the opposite of what happens in reality. Why does this work?

The Key Insight

1. Reverse Engineering

Instead of following light rays from light sources —

Let's trace backwards!

Shoot rays from the eye, find where it hits and find out how much light reaches there.

This is the opposite of what happens in reality. **Why does this work?**

• Most light never reaches our eyes

The Key Insight

1. Reverse Engineering

Instead of following light rays from light sources —

Let's trace backwards! Shoot rays from the eye, find where it hits and find out how much light reaches there.

This is the opposite of what happens in reality. **Why does this work?**

- Most light never reaches our eyes
- Only trace rays that matter
- Much more efficient!

2. Cutting Costs

Instead of tracing infinite rays — Trace one ray per pixel.

2. Cutting Costs

Instead of tracing infinite rays — Trace one ray per pixel.

This comes with little tradeoff, because:

• An image is just a grid of pixels

2. Cutting Costs

Instead of tracing infinite rays — Trace one ray per pixel.

- An image is just a grid of pixels
- Each pixel can only be of one color

2. Cutting Costs

Instead of tracing infinite rays — Trace one ray per pixel.

- An image is just a grid of pixels
- Each pixel can only be of one color
- In the end, we just need to know the color of each pixel

2. Cutting Costs

Instead of tracing infinite rays — Trace one ray per pixel.

- An image is just a grid of pixels
- Each pixel can only be of one color
- In the end, we just need to know the color of each pixel
- Hence, one ray from the mid-point of each pixel should be a good approximation*
- We will discuss more advanced techniques later that improve quality

Place screen in front of eye Eye **Object** Screen

Mathematics of Rays

What is a Ray?

Ray Representation

A ray is defined by:

$$\mathbf{P}(t) = \mathbf{R_o} + t \cdot \mathbf{R_d} \quad (1)$$

where:

- $\bullet \ \mathbf{R_o} = \mathsf{Origin} \ \mathsf{point}$
- \bullet $\mathbf{R_d}$ = Direction vector
- $t = \text{Parameter } (t \ge 0)$

Check out here on desmos.

The Heart of Ray Tracing

Finding Intersections

Key Objects:

- Planes
- Spheres
- Triangles
- AABB (Bounding Boxes)
- General Quadrics

Challenge: Find the **closest** intersection efficiently!

3D Plane Representation

Plane Definition

A plane is defined by:

- Point $\mathbf{P_0} = (x_0, y_0, z_0)$ on plane
- Normal vector $\mathbf{n} = (A, B, C)$

Implicit equation:

$$\mathbf{n} \cdot (\mathbf{P} - \mathbf{P_0}) = 0$$

$$oxed{\mathbf{n}\cdot\mathbf{P}+D=0}$$
 where $D=-\mathbf{n}\cdot\mathbf{P_0}$

$$Ax + By + Cz + D = 0$$

3D Plane Representation

Plane Definition

A plane is defined by:

- Point $P_0 = (x_0, y_0, z_0)$ on plane
- Normal vector $\mathbf{n} = (A, B, C)$

Implicit equation:

$$\mathbf{n} \cdot (\mathbf{P} - \mathbf{P_0}) = 0$$

$$\mathbf{n} \cdot \mathbf{P} + D = 0$$
 where $D = -\mathbf{n} \cdot \mathbf{P_0}$

$$Ax + By + Cz + D = 0$$

Point-Plane Distance

If n is normalized: $d = n \cdot P + D = n \cdot (P - P_0)$

Signed distance: d > 0 (front), d < 0 (back), d = 0 (on plane)

Ray-Plane Intersection

Intersection Method

Step 1: Substitute ray into equation

$$\mathbf{n} \cdot (\mathbf{R_o} + t\mathbf{R_d}) + D = 0$$

$$\mathbf{n} \cdot \mathbf{R_o} + t(\mathbf{n} \cdot \mathbf{R_d}) + D = 0$$

Step 2: Solve for parameter t

$$t = -\frac{D + \mathbf{n} \cdot \mathbf{R_o}}{\mathbf{n} \cdot \mathbf{R_d}}$$

Ray-Plane Intersection

Intersection Method

Step 1: Substitute ray into equation

$$\mathbf{n} \cdot (\mathbf{R_o} + t\mathbf{R_d}) + D = 0$$

$$\mathbf{n} \cdot \mathbf{R_o} + t(\mathbf{n} \cdot \mathbf{R_d}) + D = 0$$

Step 2: Solve for parameter t

$$t = -\frac{D + \mathbf{n} \cdot \mathbf{R_o}}{\mathbf{n} \cdot \mathbf{R_d}}$$

Cases

- If $\mathbf{n} \cdot \mathbf{R_d} = 0$: Ray parallel to plane (0 or infinite)
- If $\mathbf{n} \cdot \mathbf{R_d} < 0$: Ray hits front face
- If $\mathbf{n} \cdot \mathbf{R_d} > 0$: Ray hits back face

Additional Checks

Validation Rules

After computing t, verify:

- 1. Behind check: $t > t_{min}$
- 2. Closest check: $t < t_{current}$
- 3. Valid range: $t \ge 0$

Where:

- t_{min}: Minimum ray distance (not behind eye/screen)
- t_{current} : Distance to closest intersection so far

Ray-Triangle Intersection Overview

Two Main Approaches

Method 1: Two-Step Process

- 1. Ray-plane intersection
- 2. Inside/outside triangle test

Method 2: Direct Barycentric

- 1. Set up 3×3 linear system
- 2. Solve for t, β , γ simultaneously

What Are Barycentric Coordinates?

Barycentric Definition

Any point P in the triangle's plane:

$$\mathbf{P}(\alpha, \beta, \gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

where: $\alpha + \beta + \gamma = 1$

Check out the Desmos demo.

What Are Barycentric Coordinates?

Barycentric Definition

Any point P in the triangle's plane:

$$\mathbf{P}(\alpha, \beta, \gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

where:
$$\alpha + \beta + \gamma = 1$$

Physical Interpretation:

- α , β , γ are weights
- P is the center of mass
- Also called barycenter

Check out the Desmos demo.

What Are Barycentric Coordinates?

Barycentric Definition

Any point P in the triangle's plane:

$$\mathbf{P}(\alpha, \beta, \gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

where:
$$\alpha + \beta + \gamma = 1$$

Physical Interpretation:

- α , β , γ are weights
- P is the center of mass
- Also called barycenter

Check out the Desmos demo.

Area Relationship

$$lpha = rac{A_{lpha}}{A_{
m total}}$$
 , $eta = rac{A_{eta}}{A_{
m total}}$, $\gamma = rac{A_{\gamma}}{A_{
m total}}$

Barycentric Coordinates: Inside vs Outside

Triangle Interior Test

Point P is **inside** triangle if:

$$\alpha, \beta, \gamma \geq 0$$

Since $\alpha + \beta + \gamma = 1$, we can rewrite as:

$$\beta \geq 0$$

$$\gamma \geq 0$$

$$\alpha \geq 0 \text{ or } \beta + \gamma \leq 1$$

Barycentric Coordinates: Inside vs Outside

Triangle Interior Test

Point P is **inside** triangle if:

$$\alpha, \beta, \gamma \ge 0$$

Since $\alpha+\beta+\gamma=1$, we can rewrite as:

$$\begin{split} \beta &\geq 0 \\ \gamma &\geq 0 \\ \alpha &> 0 \text{ or } \beta + \gamma < 1 \end{split}$$

Insight

Barycentric coordinates doesn't just tell us if a point is inside a triangle, but also it's position with respect to other vertices.

Key Idea

 $\label{eq:equation:equation} \begin{array}{l} \bullet \mbox{ The sides } e_1 = b - a \mbox{ and} \\ e_2 = c - a \mbox{ are linearly independent} \\ \mbox{ vectors on the triangle's plane.} \end{array}$

Key Idea

- The sides e₁ = b a and
 e₂ = c a are linearly independent vectors on the triangle's plane.
- Therefore, any vector in the triangle's plane (e.g. P - a) can be expressed as a linear combination of these vectors.

Key Idea

- The sides e₁ = b a and
 e₂ = c a are linearly independent
 vectors on the triangle's plane.
- Therefore, any vector in the triangle's plane (e.g. P - a) can be expressed as a linear combination of these vectors.
- ullet We can express ${f P}$ as:

$$\mathbf{P} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$
$$= \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$

Where $\alpha = 1 - \beta - \gamma$.

Area Interpretation

 Let û be an unit vector in the direction of the altitude towards C.

Area Interpretation

- Let û be an unit vector in the direction of the altitude towards C.
- The height of the triangle is $h = \hat{\mathbf{u}} \cdot (\mathbf{c} \mathbf{a})$ (projection).

Area Interpretation

- Let û be an unit vector in the direction of the altitude towards C.
- The height of the triangle is $h = \hat{\mathbf{u}} \cdot (\mathbf{c} \mathbf{a})$ (projection).
- The height of the shaded triangle is $h' = \hat{\mathbf{u}} \cdot (\mathbf{P} \mathbf{a}).$

Area Interpretation

- Let û be an unit vector in the direction of the altitude towards C.
- The height of the triangle is $h = \hat{\mathbf{u}} \cdot (\mathbf{c} \mathbf{a})$ (projection).
- The height of the shaded triangle is $h' = \hat{\mathbf{u}} \cdot (\mathbf{P} \mathbf{a}).$
- Hence,

$$\begin{split} A_{\gamma} &= \frac{1}{2} \cdot h' \cdot |\mathbf{b} - \mathbf{a}| \\ &= \frac{1}{2} \cdot (\hat{\mathbf{u}} \cdot (\mathbf{P} - \mathbf{a})) \cdot |\mathbf{b} - \mathbf{a}| \\ &= \frac{1}{2} \cdot \gamma \left(\hat{\mathbf{u}} \cdot (\mathbf{c} - \mathbf{a}) \right) \cdot |\mathbf{b} - \mathbf{a}| \\ &= \gamma \frac{1}{2} \cdot h \cdot |\mathbf{b} - \mathbf{a}| = \gamma A_{\text{total}} \end{split}$$

Area Interpretation

- Let û be an unit vector in the direction of the altitude towards C.
- The height of the triangle is $h = \hat{\mathbf{u}} \cdot (\mathbf{c} \mathbf{a})$ (projection).
- The height of the shaded triangle is $h' = \hat{\mathbf{u}} \cdot (\mathbf{P} \mathbf{a}).$
- Hence,

$$\begin{split} A_{\gamma} &= \frac{1}{2} \cdot h' \cdot |\mathbf{b} - \mathbf{a}| \\ &= \frac{1}{2} \cdot (\hat{\mathbf{u}} \cdot (\mathbf{P} - \mathbf{a})) \cdot |\mathbf{b} - \mathbf{a}| \\ &= \frac{1}{2} \cdot \gamma \left(\hat{\mathbf{u}} \cdot (\mathbf{c} - \mathbf{a}) \right) \cdot |\mathbf{b} - \mathbf{a}| \\ &= \gamma \frac{1}{2} \cdot h \cdot |\mathbf{b} - \mathbf{a}| = \gamma A_{\mathsf{total}} \end{split}$$

$$\mathbf{P} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}),$$

$$P - a = \beta(b - a) + \gamma(c - a)$$

$$\hat{\mathbf{u}} \cdot (\mathbf{P} - \mathbf{a}) = \gamma (\hat{\mathbf{u}} \cdot (\mathbf{c} - \mathbf{a}))$$

Since $\hat{\mathbf{u}}$ is perpendicular to $\mathbf{b} - \mathbf{a}$.

Method 1: Two-Step Ray-Triangle Intersection

Algorithm Steps

Step 1: Ray-Plane Intersection

$$t = -\frac{D + \mathbf{n} \cdot \mathbf{R_o}}{\mathbf{n} \cdot \mathbf{R_d}}$$

Method 1: Two-Step Ray-Triangle Intersection

Algorithm Steps

Step 1: Ray-Plane Intersection

$$t = -\frac{D + \mathbf{n} \cdot \mathbf{R_o}}{\mathbf{n} \cdot \mathbf{R_d}}$$

Step 2: Inside/Outside Test

$$\mathbf{P} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

Solve for β , γ and check bounds.

Method 2: Direct Barycentric Intersection

Direct Approach

Set ray equation equal to barycentric form:

$$\mathbf{R_o} + t\mathbf{R_d} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a})$$

Rearrange to linear system:

$$\begin{bmatrix} -\mathbf{R_d} & (\mathbf{b} - \mathbf{a}) & (\mathbf{c} - \mathbf{a}) \end{bmatrix} \begin{bmatrix} t \\ \beta \\ \gamma \end{bmatrix} = \mathbf{R_o} - \mathbf{a}$$

Solve using Cramer's rule or LU decomposition.

Cramer's Rule Solution

Matrix Form

$$\underbrace{\begin{bmatrix} -R_{dx} & b_x - a_x & c_x - a_x \\ -R_{dy} & b_y - a_y & c_y - a_y \\ -R_{dz} & b_z - a_z & c_z - a_z \end{bmatrix}}_{A} \begin{bmatrix} t \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} R_{ox} - a_x \\ R_{oy} - a_y \\ R_{oz} - a_z \end{bmatrix}$$

Cramer's Rule Solution

Matrix Form

$$\begin{bmatrix}
-R_{dx} & b_x - a_x & c_x - a_x \\
-R_{dy} & b_y - a_y & c_y - a_y \\
-R_{dz} & b_z - a_z & c_z - a_z
\end{bmatrix}
\begin{bmatrix}
t \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
R_{ox} - a_x \\
R_{oy} - a_y \\
R_{oz} - a_z
\end{bmatrix}$$

Cramer's Rule

$$t = \frac{1}{|A|} \begin{vmatrix} R_{ox} - a_x & b_x - a_x & c_x - a_x \\ R_{oy} - a_y & b_y - a_y & c_y - a_y \\ R_{oz} - a_z & b_z - a_z & c_z - a_z \end{vmatrix}$$

$$\beta = \frac{1}{|A|} \begin{vmatrix} -R_{dx} & R_{ox} - a_x & c_x - a_x \\ -R_{dy} & R_{oy} - a_y & c_y - a_y \\ -R_{dz} & R_{oz} - a_z & c_z - a_z \end{vmatrix}$$

$$\gamma = \frac{1}{|A|} \begin{vmatrix} -R_{dx} & b_x - a_x & R_{ox} - a_x \\ -R_{dy} & b_y - a_y & R_{oy} - a_y \\ -R_{dz} & b_z - a_z & R_{oz} - a_z \end{vmatrix}$$

Cramer's Rule Solution

Matrix Form

$$\begin{bmatrix}
-R_{dx} & b_x - a_x & c_x - a_x \\
-R_{dy} & b_y - a_y & c_y - a_y \\
-R_{dz} & b_z - a_z & c_z - a_z
\end{bmatrix}
\begin{bmatrix}
t \\
\beta \\
\gamma
\end{bmatrix} = \begin{bmatrix}
R_{ox} - a_x \\
R_{oy} - a_y \\
R_{oz} - a_z
\end{bmatrix}$$

Cramer's Rule

$$t = \frac{1}{|A|} \begin{vmatrix} R_{ox} - a_x & b_x - a_x & c_x - a_x \\ R_{oy} - a_y & b_y - a_y & c_y - a_y \\ R_{oz} - a_z & b_z - a_z & c_z - a_z \end{vmatrix}$$

$$\beta = \frac{1}{|A|} \begin{vmatrix} -R_{dx} & R_{ox} - a_x & c_x - a_x \\ -R_{dy} & R_{oy} - a_y & c_y - a_y \\ -R_{dz} & R_{oz} - a_z & c_z - a_z \end{vmatrix}$$

$$\gamma = \frac{1}{|A|} \begin{vmatrix} -R_{dx} & b_x - a_x & R_{ox} - a_x \\ -R_{dy} & b_y - a_y & R_{oy} - a_y \\ -R_{dz} & b_z - a_z & R_{oz} - a_z \end{vmatrix}$$

Checks

- $t_{\min} < t < t_{\text{current}}$ (valid intersection)
- $\begin{array}{l} \bullet \ \ \, \beta, \gamma \geq 0 \ \, \text{and} \\ \beta + \gamma \leq 1 \\ \text{(inside triangle)} \end{array}$

Bonus of Using Barycentric Coordinates

Advantages

- Efficient to compute
- Get Barycentric coordinates for free
- Enables interpolation of vertex attributes
 Used in —
 - Textures
 - Normals
 - Colors

Ray-Sphere Intersection Overview

Two Main Approaches

Method 1: Algebra

- 1. Setup quadratic equation
- 2. Solve for t

Method 2: Geometry

- 1. Use geomety to find intersection step by step
- 2. Reject early if hit is not possible

Sphere Representation

Implicit Sphere Equation

Sphere centered at origin:

$$\mathbf{P} \cdot \mathbf{P} - r^2 = 0$$
$$x^2 + u^2 + z^2 - r^2 = 0$$

General sphere at center C:

$$(\mathbf{P} - \mathbf{C}) \cdot (\mathbf{P} - \mathbf{C}) - r^2 = 0$$

Note: Translation to origin simplifies calculation!

Algebraic Solution

Step 1: Substitute ray equation $P(t) = R_o + tR_d$ into sphere

$$(\mathbf{R}_{\mathbf{o}} + t\mathbf{R}_{\mathbf{d}}) \cdot (\mathbf{R}_{\mathbf{o}} + t\mathbf{R}_{\mathbf{d}}) - r^2 = 0$$

Algebraic Solution

Step 2: Expand and rearrange

$$\mathbf{R_d} \cdot \mathbf{R_d} t^2 + 2\mathbf{R_d} \cdot \mathbf{R_o} t$$
$$+\mathbf{R_o} \cdot \mathbf{R_o} - r^2 = 0$$

Algebraic Solution

Step 3: Quadratic formula

$$(ax^2 + bx + c = 0)$$

$$a = \mathbf{R_d} \cdot \mathbf{R_d} = 1$$
 (normalized)

$$b = 2\mathbf{R_d} \cdot \mathbf{R_o}$$

$$c = \mathbf{R_0} \cdot \mathbf{R_0} - r^2$$

Algebraic Solution

Step 3: Quadratic formula

$$(ax^2 + bx + c = 0)$$

$$a = \mathbf{R_d} \cdot \mathbf{R_d} = 1$$
 (normalized)

$$b = 2\mathbf{R_d} \cdot \mathbf{R_o}$$

$$c = \mathbf{R_0} \cdot \mathbf{R_0} - r^2$$

Discriminant Analysis

$$\Delta = b^2 - 4ac = (2\mathbf{R_d} \cdot \mathbf{R_o})^2 - 4(\mathbf{R_o} \cdot \mathbf{R_o} - r^2)$$

$$t_{\pm} = \frac{-b \pm \sqrt{\Delta}}{2a} = -\mathbf{R_d} \cdot \mathbf{R_o} \pm \frac{\sqrt{\Delta}}{2}$$

Algebraic Method: Three Cases

The discriminant Δ determines the number of intersections:

Additional Check

Remember to check t_{\min} to find closest valid intersection.

Geometric Approach

Step 1: Check ray origin (eye) position

Inside: $\mathbf{R_o} \cdot \mathbf{R_o} < r^2$

Outside: $\mathbf{R}_{\mathbf{o}} \cdot \mathbf{R}_{\mathbf{o}} > r^2$

On surface: $\mathbf{R}_{\mathbf{o}} \cdot \mathbf{R}_{\mathbf{o}} = r^2$

Geometric Approach

Step 2: Find parameter t_p for the point on the ray closest to the sphere center

$$t_P = -\mathbf{R_o} \cdot \mathbf{R_d}$$

Geometric Approach

Step 3: Early rejection test

If ray origin outside & $t_P < 0 \Rightarrow$ no hit

Geometric Approach

Step 4: Find squared distance to sphere center

$$d^2 = \mathbf{R_o} \cdot \mathbf{R_o} - t_P^2$$

Geometric Approach

Step 5: Second rejection test

If
$$d^2 > r^2 \Rightarrow$$
 no hit

Ray-Sphere Intersection: Geometric Method

Geometric Approach

Step 6: Find intersection distance

$$t'^{2} = r^{2} - d^{2}$$
$$t' = \sqrt{r^{2} - d^{2}}$$

Ray-Sphere Intersection: Geometric Method

Geometric Approach

Step 7: Choose correct intersection parameter

Outside:
$$t_- = t_P - t'$$

Inside: $t_+ = t_P + t'$

$$t_{\rm min} < t_+ < t_{\rm current} \Rightarrow {\rm hit}$$

Ray-Sphere Intersection: Geometric Method

Geometric Approach

Step 7: Choose correct intersection parameter

Outside:
$$t_- = t_P - t'$$

Inside: $t_+ = t_P + t'$

$$t_{\rm min} < t_{+} < t_{\rm current} \Rightarrow {\rm hit}$$

Benefits of Method

- Early rejection: Avoid extra work for rays missing sphere
- Optimized: Efficient for rays outside pointing away

General Quadric Surfaces

Quadric Surface Definition

General equation:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz$$
$$+Fxz + Gx + Hy + Iz + J = 0$$

Common Quadric Surfaces:

- Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- Cone: $\frac{x^2}{a^2} \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$
- Cylinder: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- Hyperboloid & Paraboloid

Reference: Quadric Surfaces in Paul's Online Notes

Intersection Method

Step 1: Substitute ray equation into quadric

$$\mathbf{P}(t) = \mathbf{R_o} + t \cdot \mathbf{R_d}$$

$$P_x = R_{0x} + t \cdot R_{dx}$$

$$P_y = R_{0y} + t \cdot R_{dy}$$

$$P_z = R_{0z} + t \cdot R_{dz}$$

Intersection Method

Step 2: Results in quadratic equation

$$ax^2 + bx + c = 0$$

Intersection Method

Step 3: Solve using quadratic formula

$$t = \frac{-b \pm \sqrt{b^2 - 4a\alpha}}{2a}$$

Intersection Method

Step 3: Solve using quadratic formula

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solution Cases

Check the discriminant $\Delta = b^2 - 4ac$:

- $\Delta > 0$: Two real solutions (ray intersects surface twice)
- $\Delta = 0$: One solution (ray tangent to surface)
- $\Delta < 0$: No real solutions (ray misses surface)
- Accept: Accept smaller t such that $t_{\min} < t < t_{\text{current}}$

Ray-AABB Intersection: Overview

Axis-Aligned Bounding Box

A simple 3D box or rectangle aligned with the coordinate axes.

- The sides are parallel to the axes, that's why it's called axis-aligned.
- Usually used to enclose complex objects, which is why it's called a bounding box.
- Very efficient for intersection tests.
 (Just test 6 planes)

AABB Mathematical Representation

AABB Representation

$$\mathsf{AABB} = \left\{ (x, y, z) \left| \begin{array}{c} x_{\min} \le x \le x_{\max} \\ y_{\min} \le y \le y_{\max} \\ z_{\min} \le z \le z_{\max} \end{array} \right\} \right|$$

We can store.

$$\mathbf{P}_{\min} = (x_{\min}, y_{\min}, z_{\min})$$

$$\mathbf{P}_{\mathsf{max}} = (x_{\mathsf{max}}, y_{\mathsf{max}}, z_{\mathsf{max}})$$

Approach

Consider z axis first. There are two planes:

$$z=z_{\mathsf{min}}$$

$$z = z_{\sf max}$$

Approach

Consider z axis first. There are two planes:

$$\begin{array}{ccc} z & -z_{\min} & = 0 \\ \mathbf{n} = (0,0,1) & D = -z_{\min} & \\ z & -z_{\max} & = 0 \end{array}$$

Approach

Compute intersection with ray:

$$\begin{split} t_{\text{min},z} &= -\frac{D + \mathbf{n} \cdot \mathbf{R_o}}{\mathbf{n} \cdot \mathbf{R_d}} \\ &= -\frac{-z_{\text{min}} + R_{oz}}{R_{dz}} \\ t_{\text{min},z} &= \frac{z_{\text{min}} - R_{oz}}{R_{dz}} \end{split}$$

Similarly,

$$t_{\mathsf{max},z} = \frac{z_{\mathsf{max}} - R_{oz}}{R_{dz}}$$

Well, actually $t_{\min,z}$ should be $t_{\max,z}$ and $t_{\max,z}$ should be $t_{\min,z}$ in the diagram. This is why we need the swap in step 2 of the algorithm.

Approach

Similarly for y and z axes:

$$\begin{split} t_{\text{min},x} &= \frac{x_{\text{min}} - R_{ox}}{R_{dx}} \\ t_{\text{max},x} &= \frac{x_{\text{max}} - R_{ox}}{R_{dx}} \\ t_{\text{min},y} &= \frac{y_{\text{min}} - R_{oy}}{R_{dy}} \\ t_{\text{max},y} &= \frac{y_{\text{max}} - R_{oy}}{R_{dy}} \end{split}$$

Approach

Find the overlap of the intervals:

$$t_{ ext{enter}} = \max(t_{ ext{min},x},t_{ ext{min},y},t_{ ext{min},z})$$
 $t_{ ext{exit}} = \min(t_{ ext{max},x},t_{ ext{max},y},t_{ ext{max},z})$

If there is overlap, i.e. $t_{\rm enter} \leq t_{\rm exit}, \ \ {\rm then} \ \ {\rm the} \ \ {\rm ray}$ intersects the AABB.

Algorithm

Step 1: Compute t_{\min} and t_{\max} for each axis

Step 2: If $t_{\rm min} > t_{\rm max}$ for any axis, swap $t_{\rm min}$ and $t_{\rm max}$

Step 3: Find

$$t_{\mathsf{enter}} = \max_{i \in x, y, z} t_{\min, i}$$

$$t_{\mathsf{exit}} = \min_{i \in x, y, z} t_{\max, i}$$

Edge Case

Ray parallel to an axis

$$(R_{dx}/R_{dy}/R_{dz}=0)$$

Automatically handled by division by zero. For example, if $R_{dx}=0$, then:

$$t_{\min/\max,x} = \frac{x_{\min/\max} - R_{ox}}{0} = \pm \infty$$

Edge Case

Ray parallel to an axis

$$(R_{dx}/R_{dy}/R_{dz}=0)$$

Automatically handled by division by zero. For example, if $R_{dx}=0$, then:

$$t_{\min/\max,x} = \frac{x_{\min/\max} - R_{ox}}{0} = \pm \infty$$

• If the ray is within the slab:

$$x_{\min} \le R_{ox} \le x_{\max}$$

In this case,

$$t_{\min,x} = -\infty$$
 and $t_{\max,x} = \infty$

Edge Case

Ray parallel to an axis

$$(R_{dx}/R_{dy}/R_{dz}=0)$$

Automatically handled by division by zero. For example, if $R_{dx}=0$, then:

$$t_{\min/\max,x} = \frac{x_{\min/\max} - R_{ox}}{0} = \pm \infty$$

• If ray is outside the slab:

$$R_{ox} < x_{\min} \text{ or } x_{\max} < R_{ox}$$

Then:

$$t_{\min,x} = t_{\max,x} = \infty$$
 or $t_{\min,x} = t_{\max,x} = -\infty$

Edge Case

Ray parallel to an axis

$$(R_{dx}/R_{dy}/R_{dz}=0)$$

Automatically handled by division by zero. For example, if $R_{dx}=0$, then:

$$t_{\min/\max,x} = \frac{x_{\min/\max} - R_{ox}}{0} = \pm \infty$$

• If ray is outside the slab:

$$R_{ox} < x_{\min} \text{ or } x_{\max} < R_{ox}$$

Then:

$$t_{\mathrm{min},x} = t_{\mathrm{max},x} = \infty$$
 or $t_{\mathrm{min},x} = t_{\mathrm{max},x} = -\infty$

Cameras

Pinhole Camera

The simplest camera. A box with a pinhole. Light entering the pinhole creates an image on the other side of the box.

Pinhole Camera

The simplest camera. A box with a pinhole. Light entering the pinhole creates an image on the other side of the box.

- Point aperture
 Just a single point for rays to pass through.
- Perfect focus everywhere
 All rays go through the
 pinhole. Therefore, all
 points in the image plane
 correspond to exactly one
 point in the scene.

Pinhole Camera

The simplest camera. A box with a pinhole. Light entering the pinhole creates an image on the other side of the box.

- Point aperture
- Perfect focus everywhere
- Inverted Image
 Rays from the top of the scene hit the bottom of the image plane, and vice versa.

Pinhole Camera

The simplest camera. A box with a pinhole. Light entering the pinhole creates an image on the other side of the box.

- Point aperture
- Perfect focus everywhere
- Inverted Image

Ray Generation:

$$\begin{aligned} \mathbf{R_o} &= \mathbf{hole} \\ \mathbf{R_d} &= \frac{\mathbf{hole} - \mathbf{pixel}}{|\mathbf{hole} - \mathbf{pixel}|} \end{aligned}$$

Pinhole Camera

The simplest camera. A box with a pinhole. Light entering the pinhole creates an image on the other side of the box.

- Point aperture
- Perfect focus everywhere
- Inverted Image

Ray Generation:

$$\begin{aligned} \mathbf{R_o} &= \mathbf{hole} \\ \mathbf{R_d} &= \frac{\mathbf{hole} - \mathbf{pixel}}{|\mathbf{hole} - \mathbf{pixel}|} \end{aligned}$$

Real pinhole cameras exist! They create sharp images but require very long exposure times due to tiny aperture.

Imaginary Plane

Let's place an imaginary plane in front of the hole.

Simplification

Place image plane in front! Equivalent to pinhole camera. The image plane will mirror the image of the pinhole camera if the plane is placed in the same distance in front of the eye.

Simplification

Place image plane in front! Equivalent to pinhole camera.

Physically unrealizable
 A real cannot have a sensor/film in front of the pinhole.

Simplification

Place image plane in front! Equivalent to pinhole camera.

- Physically unrealizable
- Non-inverted image
 The image plane is in front of the pinhole, so the rays hit the image plane directly.

Simplification

Place image plane in front! Equivalent to pinhole camera.

- Physically unrealizable
- Non-inverted image

Ray Generation:

$$R_{d} = \frac{pixel - eye}{|pixel - eye|}$$

Simplification

Place image plane in front! Equivalent to pinhole camera.

- Physically unrealizable
- Non-inverted image

Ray Generation:

$$\begin{aligned} \mathbf{R_o} &= \mathbf{eye} \\ \mathbf{R_d} &= \frac{\mathbf{pixel} - \mathbf{eye}}{|\mathbf{pixel} - \mathbf{eye}|} \end{aligned}$$

Advantage

Upright image, simpler ray generation, equivalent to real pinhole!

Orthographic Projection

Rays are all parallel to a specific direction, the camera's view direction w. It is called orthographic projection because rays are orthogonal to the image plane.

Orthographic Projection

Rays are all parallel to a specific direction, the camera's view direction w. It is called orthographic projection because rays are orthogonal to the image plane.

No perspective distortion
 Object appear the same size regardless of distance.

Orthographic Projection

Rays are all parallel to a specific direction, the camera's view direction w. It is called orthographic projection because rays are orthogonal to the image plane.

No perspective distortion
 Object appear the same size regardless of distance.

Ray Generation:

$$R_0 = pixel$$

$$R_d = w$$

Orthographic Projection

Rays are all parallel to a specific direction, the camera's view direction w. It is called orthographic projection because rays are orthogonal to the image plane.

No perspective distortion
 Object appear the same size regardless of distance.

Ray Generation:

$$R_0 = pixel$$

$$R_d = w$$

Applications

Technical drawings, CAD software, 2D games, architectural visualization

Perspective vs Orthographic

Perspective

- Natural/realistic scenes
- Depth perception
- Size $\propto \frac{1}{\text{distance}}$

Orthographic

- CAD/Engineering
- Precise measurements
- Size = constant

Camera Description

 Field of View fov Distance to image plane d Image dimension $(w \times h)$

Camera Description

Camera position e

Position of the camera in 3D space.

Orthobasis $\{u,v,w\}$

Field of View fovDistance to image plane dImage dimension $(w \times h)$

Camera Description

Camera position eOrthobasis $\{u, v, w\}$

Basis vectors defining the camera's orientation. Up direction v, right direction u, and forward direction w. The plane is perpendicular to w.

Camera Description

 $\label{eq:camera position e} \text{Orthobasis } \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$

Field of View fov

fov is the angle created by the screen at the camera's position. It determines how big the image plane is.

Distance to image plane dImage dimension $(w \times h)$

Camera Description

 Field of View fovDistance to image plane dDistance to the plane where the image is formed, along the ${\bf w}$ direction. Image dimension $(w \times h)$

Camera Description

Camera position eOrthobasis $\{u, v, w\}$ Field of View fov Distance to image plane d Image dimension $(w \times h)$ The resolution of the image. Determines the aspect ratio.

Mathematical Representation

Position of the camera is directly given by e.

$$eye = e$$

Mathematical Representation

Calculating the position of the pixel is a bit more involved. For pixel (i, j):

$$\mathbf{pixel} = \mathbf{e} + d\mathbf{w} + s\mathbf{u} + t\mathbf{v}$$

Where s and t are:

$$s = \left(2 \cdot \frac{i + 0.5}{w} - 1\right) \cdot d\tan\left(\frac{fov}{2}\right) \text{ and } t = \left(2 \cdot \frac{j + 0.5}{h} - 1\right) \cdot d\tan\left(\frac{fov}{2}\right) \cdot \frac{h}{w}$$

Assuming $i \in [0, w-1]$ and $j \in [0, h-1]$.

Intuition

Initially, we have a grid of pixels on the image plane. The pixels (i,j) are in the range (0,0) to (w-1,h-1).

(i+0.5, j+0.5)

Intuition

The pixel center is at the midpoints. Shift by 0.5 to center the pixels.

Intuition

We are still in the pixel space. We need to find actual distances.

Intuition

We first normalize the pixel coordinates to the range $\left(-1,1\right)$.

$$\left(2 \cdot \frac{i+0.5}{w} - 1, 2 \cdot \frac{j+0.5}{h} - 1\right)$$

Intuition

The pixel coordinates are now in the range (-1,-1) to (1,1). This makes it easier to calculate the pixel position.

Intuition

Now if we multiply the pixel coordinates with the half-length and half-width of the image plane, we get the pixel position in the image plane in actual distances.

$$\left(\left(2 \cdot \frac{i+0.5}{w} - 1\right) \cdot \!\! \boldsymbol{X}, \left(2 \cdot \frac{j+0.5}{h} - 1\right) \cdot \!\! \boldsymbol{Y}\right)$$

Intuition

X can be found by noticing that in the right angle triangle shown, $\tan\left(\frac{fov}{2}\right) = \frac{X}{d}$. Y can calculated from X because $\frac{h}{w} = \frac{Y}{X}$, as the aspect ratio is preserved.

$$\left(\left(2 \cdot \frac{i+0.5}{w} - 1\right) \cdot \boldsymbol{X}, \left(2 \cdot \frac{j+0.5}{h} - 1\right) \cdot \boldsymbol{Y}\right)$$

$$X = d \tan \left(\frac{fov}{2} \right)$$
 and $Y = d \tan \left(\frac{fov}{2} \right) \cdot \frac{h}{w}$

Intuition

Now that we have the pixel position in the image plane (s,t), we can calculate the pixel position in 3D space.

$$\left(\underbrace{\left(2\cdot\frac{i+0.5}{w}-1\right)\cdot X}_{s},\underbrace{\left(2\cdot\frac{j+0.5}{h}-1\right)\cdot Y}_{t}\right)$$

Intuition

Now that we have the pixel position in the image plane (s,t), we can calculate the pixel position in 3D space.

Step 1: Go to the camera position e.

$$\left(\underbrace{\left(2\cdot\frac{i+0.5}{w}-1\right)\cdot X}_{s},\underbrace{\left(2\cdot\frac{j+0.5}{h}-1\right)\cdot Y}_{t}\right)$$

Intuition

Now that we have the pixel position in the image plane (s,t), we can calculate the pixel position in 3D space.

Step 1: Go to the camera position e.

Step 2: Move along the forward direction \mathbf{w} by d.

Intuition

Now that we have the pixel position in the image plane (s,t), we can calculate the pixel position in 3D space.

Step 1: Go to the camera position e.

Step 3: Move along the right direction ${\bf u}$ by s and along the up direction ${\bf v}$ by t.

Intuition

Now that we have the pixel position in the image plane (s,t), we can calculate the pixel position in 3D space.

Step 1: Go to the camera position e.

Step 2: Move along the forward direction \mathbf{w} by d.

Step 3: Move along the right direction ${\bf u}$ by s and along the up direction ${\bf v}$ by t.

Putting it all together, we have:

$$\mathbf{pixel} = \mathbf{e} + d\mathbf{w} + s\mathbf{u} + t\mathbf{v}$$

Questions & Discussion

Questions?

References & Further Reading

Matt Pharr, Wenzel Jakob, and Greg Humphreys. *Physically Based Rendering: From Theory to Implementation (4th Edition)*. Morgan Kaufmann, 2023.

Availabe online

Peter Shirley. *Ray Tracing in One Weekend*. Self-published, 2016–2020.

Project Website

MIT OpenCourseWare: 6.837 Computer Graphics. ocw.mit.edu/6-837

Scratchapixel: Learn Computer Graphics Programming. scratchapixel.com