计算机组织结构

9 外部存储器

刘博涵 2023年11月9日

教材对应章节

第8章 互连及输入输出组织

第6章 外部存储器

存储器层次结构

外部存储设备发展: 以音乐存储为例

光盘 (1965年诞生)

黑胶唱片 (1948年诞生) 2016第一次购买

盒式磁带 (1963年诞生)1997年第一次购买

2003第一次购买

外部存储设备发展:一种古老的播放方式

外部存储设备

・特性

- 用于存储不经常使用的、数据量较大的信息
- 非易失

・类型

- 磁盘存储器 (magnetic disk)
- 光存储器 (optical memory)
- 磁带 (magnetic tape)
- U盘 (USB flash disk) , 固态硬盘 (solid state disk, SSD)

磁盘存储器

- 磁盘是由涂有可磁化材料的非磁性材料 (基材) 构成的圆形盘片
 - 基材: 铝、铝合金、玻璃......
 - · 玻璃基材的优势 (稳定可靠、为存储更多信息提供基础)
 - 改善磁膜表面的均匀性, 提高磁盘的可靠性
 - 显著减少整体表面瑕疵, 以帮助减少读写错误
 - 能够支持(磁头)较低的飞行高度
 - 更高的硬度,使磁盘转动时更加稳定
 - 更强的抗冲击和抗损伤能力

磁盘存储器: 类型

硬盘 (目前主流为TB级)

硬磁盘存储器: 结构

硬磁盘存储器: 结构 (续)

- 磁盘存储器每个盘片表面有一个读写磁头, 所有磁头通过机械方式固定在一起,同时 移动
- 在任何时候,所有磁头都位于距磁盘中心等距离的磁道上

硬磁盘存储器: 结构 (续)

- 对盘片进行读写操作的装置叫做磁头 (head)
 - 磁头必须产生或感应足够大的电磁场,以便正确地读写
 - 磁头越窄, 电磁感应能力越弱, 离盘片的距离就越近
 - 更高的数据密度需要更窄的磁头和更窄的磁道,这将导致更高的出错风险
 - 硬盘必须密封
 - 温彻斯特磁头 (Winchester head)
 - 磁头实际上是一个空气动力箔片,当磁盘静止时,它轻轻地停留在盘片的表面上
 - 旋转圆盘时产生的空气压力足以使箔片上升到盘片表面上方

硬磁盘存储器: 读写机制

- 在读或写操作期间,**磁头静止**,而**盘片在其下方旋转**
- 磁头的数量

• 单磁头:读写公用同一个磁头(软盘、早期硬盘)

• 双磁头: 使用一个单独的磁头进行读取 (当代硬盘)

硬磁盘存储器:读写机制(续)

・写入机制

- 电流脉冲被发送到写入磁头
- 变化的电流激发出磁场
- 产生的磁性图案被记录在下面的盘片表面上
- 反转电流方向,则记录介质上的磁化方向也会反转

硬磁盘存储器:读写机制(续)

・读取机制

- 读取磁头是由一个部分屏蔽的磁阻 (MR) 敏感器组成,其电阻取决于在 其下移动的介质的磁化方向
- 恒定电流通过MR敏感器时,通过电压信号检测其**电阻变化**
- MR敏感器允许更高频率的操作,实现更高的存储密度和更快的操作速度

硬磁盘存储器:数据组织

- 盘片上的数据组织呈现为一组同心圆环,称为磁道 (track)
- 数据以扇区 (sector) 的形式传输到磁盘或从传出磁盘
 - 默认值为512B
- 相邻磁道之间有**间隙(gap)**,相邻的扇区之间也留有间隙,否则磁场容易相互影响
- 磁道编号从外往里递增 (0~N) , 磁头静止时停在磁道0外侧

硬磁盘存储器:数据组织(续)

・扇区划分

- 恒定角速度 (Constant angular velocity, CAV)
 - 增大记录在盘片区域上的信息位的间隔, 使得磁盘能够以恒定的速度扫描信息, 即恒定的数据传输率
 - **优点**: 能以磁道号和扇区号直接寻址各 个数据块
 - **缺点**:磁盘存储容量受到了最内层磁道 所能实现的最大记录密度的限制

硬磁盘存储器:数据组织(续)

- ・扇区划分(续)
 - 多带式记录 / 多重区域记录 (Multiple zone recording)
 - 将盘面划分为多个同心圆区域,每个区域中各磁道的扇区数量是相同的,距离中心较远的分区包含的扇区数多于距离中心较近的分区

· 优点: 提升存储容量

• 缺点:需要更复杂的电路

a) 恒定角速度

这不是一个磁道,而是包含多个磁道的区域

硬磁盘存储器:数据组织(续)

· 所有盘片上处于相同的相对位置的一组磁道被称为柱面(cylinder)

硬磁盘存储器: 格式化

- 磁道必须有一些起始点和辨别每个扇区起点及终点的方法
- 格式化时,会附有一些仅被磁盘驱动器使用而不被用户存取的额外数据

硬磁盘存储器: 格式化类型

- 低级格式化/物理格式化: 创建硬盘扇区 (sector) 使硬盘具备存储能力的操作
 - 清除数据(如果硬盘分过区,所有区都会被清除)
 - 有损: 是一种损伤性操作, 它对硬盘寿命有影响
 - 建议场景: 硬盘受到外部强磁体、强磁场的影响而受到物理性损伤的情况
- **高级格式化/逻辑格式化**:根据用户选定的文件系统(如FAT12、FAT16、FAT32、exFAT、NTFS、EXT2、EXT3等),在磁盘的特定区域写入特定数据,以达到初始化磁盘或磁盘分区、清除原磁盘或磁盘分区中所有文件的一个操作
 - **快速格式化**:会删除目标磁盘上原有的文件分配表和根目录,不检测坏道,不备份数据,它格式化的速度很快,但不是很稳定。
 - **一般/完全格式化**: 会清除目标磁盘上的所有的数据(非物理的)。重新生成引导信息、初始化文件分配表、标注逻辑坏道,一样不备份数据。

硬磁盘存储器: 格式化类型

快速

Disk	V.\PhysicalDrive12: Partition 0, M: [246.00MB NTFS]							
	Jump to	Search	Tags	Disk Info	Data Decode			
	0.0		08		0123456789ABCD	EF		
0x071AA7		0000000000000	0000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEA		00000000000	000000000					
0x06DEEA		000000000000	000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
0x06DEEE		00000000000000	0000000000					
0x06DEEE		0000000000000	0000000000					
ONUODEED		0000000000000	0000000000					

硬磁盘存储器: 格式化类型

硬盘存储数据的最小单位是**扇区**, 它的大小是出厂确定的

操作系统存储数据的最小单位是块, 块的大小可以通过格式化确定

1	KB		

硬磁盘存储器: I/O访问时间

- 寻道时间 (seek time): 磁头定位到所需移动到的磁道所花费的时间
 - 初始启动时间, 跨越若干磁道所用的时间
- · 旋转延迟 (rotational delay) :等待响应扇区的起始处到达磁头所需的时间
 - 通常是磁道旋转半周所需的时间
- 传送时间 (transfer time) : 数据传输所需的时间

$$T = \frac{b}{rN}$$
 $T = 传送时间$ $b = 传送的字节数$ $N = 每磁道的字节数$ $r = 旋转速率,单位是转/秒$

硬磁盘存储器: I/O访问时间 (续)

・平均访问时间

取平均时间 取实际时间

$$T_a = T_s + \frac{1}{2r} + \frac{b}{rN}$$

Ts是平均寻道时间

- 当连续访问多个相邻的磁道时, 跨越磁道:
 - 对于每个磁道都需要考虑旋转延迟
 - **通常**只需要考虑<mark>第一个</mark>磁道的<mark>寻道时间</mark>,但在明确知道跨越每个磁道 需要的时间时需要考虑

磁道非常多,顺序移到下一个磁道的耗时是非常少的

硬磁盘存储器: I/O访问时间 (示例)

- 假设某个硬盘的平均寻道时间为4ms,转速为15000rpm,每磁道500扇区, 每扇区512B,现读取一个由2500个扇区组成的文件
- 情况 1: **顺序组织**
 - 该文件占据相邻5个磁道的全部扇区 (5 磁道 × 500 扇区/道 = 2500 扇区)
- 情况 2: 随机存取
 - 该文件随机分布在磁盘上的各个扇区

硬磁盘存储器: I/O访问时间 (示例)

・ 情况 1: 顺序组织

平均寻道 4 ms 平均旋转延迟 2 ms 读500个扇区 4 ms 10 ms

访问后续磁道不计寻道时间,因此访问每一个后续磁道的用时为2+4=6 ms

访问时间

第1个磁道 余下4个磁道 访问时间

硬磁盘存储器: I/O访问时间 (示例)

・情况 2: 随机存取

平均寻道4 ms平均旋转延迟2 ms读1个扇区0.008 ms6.008 ms

总时间 = 2500* 6.008 = 15020 ms = 15.02 s

磁盘整理: 将数据散落在磁盘多个位置的一个文件,读到内存,然后写到一个连续的磁盘区域中

- · 目标: 当有多个访问磁盘任务时, 使得平均寻道时间最小
- 常见的磁头寻道/磁盘**调度算法**
 - 先来先服务 (First Come First Service, FCFS)
 - 最短寻道时间优先 (Shortest Seek Time First, SSTF)
 - 扫描/电梯 (SCAN)
 - LOOK
 - 循环扫描 (C-SCAN)
 - C-LOOK

- ・ 先来先服务 (FCFS)
 - · 按照请求访问磁盘的先后次序进行处理
 - · 优点: 公平简单
 - **缺点**:如果有大量访问磁盘的任务,且请求访问的磁道很分散,则性能上很差,寻道时间长
 - **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

磁头总共移动的磁道个数:

• 平均寻道长度: 498/9=55.3个磁道

- ・ 最短寻道时间优先 (SSTF)
 - · 优先处理起始位置与当前磁头位置最接近的读写任务
 - 优点: 每次的寻道时间最短 (局部最优) , 平均寻道时间缩短
 - 缺点:可能产生饥饿现象,尤其是位于两端的磁道请求
 - **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

- 磁头总共移动了 (100-18) + (184-18) =248个磁道
- 平均寻道长度为248/9=**27.5个磁道**

- ・扫描/电梯 (SCAN)
 - · 总是按照一个方向进行磁盘调度,直到该方向上的边缘,然后改变方向
 - 优点: 性能较好, 平均寻道时间短, 不会产生饥饿现象
 - **缺点**:只有到最边上的磁道才能改变磁头的移动方向,对于各个位置磁道响应频率不平均
 - **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

- 磁头总共移动了 (200-100) + (200-18) =282个磁道
- 平均寻道长度为282/9=**31.3个磁道**

- ・循环扫描 (C-SCAN)
 - ・ 只有磁头朝某个方向移动时才会响应请求,移动到边缘后立即让磁头返回起点,返回途中不做任何处理
 - 优点: 与SCAN算法相比, 对于各位置磁道的响应频率平均
 - 缺点: 与SCAN算法相比, 平均寻道时间更长
 - **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

- 磁头总共移动了(200-100)+(200-0)+(90-0)=390个磁道
- 平均寻道长度为390/9=43.3个磁道

时间短

LOOK

- **SCAN算法的升级**,只要磁头移动方向上不再有请求就立即改变磁头的 方向
- **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

- 磁头总共移动了(184-100)+(184-18)=250个磁道
- 平均寻道长度为250/9=**27.8个磁道**

C-LOOK

- C-SCAN算法的改进,只要在磁头移动方向上不再有请求,就立即让磁头返回起点
- **示例**: 假设磁头的初始位置是100号磁道,有多个任务先后陆续的请求 访问55,58,39,18,90,160,150,38,184号磁道

- 磁头总共移动了(184-100)+(184-18)+(90-18)=322个磁道
- 平均寻道长度为322/9=**35.8个磁道**

光存储器

・光存储器产品

- 光盘 (Compact disk, CD)
- 光盘只读存储器 (CD read-only memory, CD-ROM)
- 可刻录光盘 (CD recordable, CD-R)
- 可重写光盘 (CD rewritable, CD-RW)
- 数字多功能光盘 (digital versatile disk, DVD)
- 可刻录DVD (DVD recordable, DVD-R)
- 可重写DVD (DVD rewritable, DVD-RW)
- 高清晰视频光盘 (High definition video disk, Blu-Ray DVD)

名 称	描 述 存储数字音频信息的不可擦除盘。标准系统使用 12 厘米的盘,能够记录可连续播放 60 分钟以上的信息			
CD (compact disk, 光盘)				
CD-ROM (compact disk read-only memory, 光盘只读存储器)	用于存储计算机数据的不可擦除盘。标准系统使用 12 厘米的盘,能够存储 650MB 以上的信息			
CD-R (CD recordable, 可刻录光盘)	类似于 CD-ROM, 用户只能向盘写人一次			
CD-RW (CD rewritable, 可重写光盘)	类似于 CD-ROM, 用户能多次擦除和重写盘			
DVD(digital versatile disk,数字多功能光盘)	一种制作数字化的压缩的视频信息以及其他大容量数字数据的技术。使用直径为8或12厘米的盘,双面容量高达17GB。基本的DVD是只读的(DVD-ROM)			
DVD-R (DVD recordable,可刻录 DVD)	类似于 DVD-ROM,用户只能向盘写人一次,只有一面盘能使用			
DVD-RW (DVD rewritable,可重写 DVD)	类似于 DVD-ROM,用户能多次擦除和重写盘,只有一面盘能使用			
Blu-Ray DVD (High definition video disk, 高清晰视频光盘)	使用 405nm (蓝-紫色) 的激光,提供比 DVD 大得多 的数据存储密度,单面单层能存储 25GB 的信息			

光存储器 (示例)

CD, 单面单层, 0.7GB

DVD-5, 单面单层, 4.7GB

DVD-9, 单面双层8.5GB

BD25 Blu-ray , 单面单层 , 25GB

BD50 Blu-ray , 单面双层, 50GB

Ultra HD Blu-ray, 单面三层, 100GB

CD和CD-ROM

- CD和CD-ROM采用类似的技术,但CD-ROM更加耐用且有纠错功能
- 制造方法
 - 用精密聚焦的高强度激光束制造一个母盘
 - 以母盘作为模板压印出聚碳酸酯的复制品
 - 在凹坑表面上镀上一层高反射材料(一般采用铝,HQCD采用银合金)
 - 使用丙烯酸树脂保护高反射材料
 - 在丙烯酸树脂层上用丝网印刷术印制标签

CD和CD-ROM: 读取

- 通过安装在光盘播放器或驱动装置内的低强度激光束从CD或CD-ROM处读取信息
 - 如果激光束照在凹坑 (pit) 上,由于凹坑表面有些不平,因此光被散射,反射回低强度的激光
 - 如果激光束照在台/面 (land) 上,台的表面光滑平坦,反射回来的是高强度的激光
 - 光电传感器检测凹坑和台之间的变化,<mark>凹坑的起点或终点</mark>代表"1", 没有高度变化则记为"0"。
- 盘片上包含一条单螺旋的轨道,轨道上的所有扇区长度相同
 - 从内向外扫描,角速度逐渐变小
 - 凹坑被激光以恒定线速度读出

图 6-11 CD-ROM 块格式

CD和CD-ROM: 读取的补充

The information on a CD is encoded in a much more subtle way that uses complex and clever data encoding techniques, including eight-to-fourteen modulation (EFM) and non-return to zero inverted (NRZI) coding.

https://www.explainthatstuff.com/cdplayers.html

Sign in to download full-size image

Figure 1.60. Schematic diagram showing major components of a CD player. The bottom-most figure shows construction of a CD disc media including pits (raised bumps) and lands (flat area between pits) [133].

Optical Media Type	Example
Pre-recorded	CD, CD-ROM, DVD, HD-DVD, BD-ROM
Recordable	CD-R, DVD-R, BD-R
Re-writable	CD-RW, DVD-RW, DVD-RAM, BD-RE

https://www.sciencedirect.com/topics/engineering/laser-recording

CD和CD-ROM: 优缺点

・优点

- 存储有信息的光盘可以廉价地进行大规模复制
- 光盘更换方便
- 寿命长

・缺点

- 它是只读的,不能更改
- 其存取时间比磁盘存储器慢得多

CD-R和CD-RW

・ CD-R (写一次)

- 包含了一个染色层,用于改变反射率,并且由高强度激光激活
- 生成的盘既能在 CD-R 驱动器上也能在 CD-ROM 驱动器上读出

・ CD-RW (写多次)

- 使用了一种在两种不同相位状态下有两种显著不同反射率的材料,激光束 能改变这种材料的相位状态
- 材料老化最终会永久失去相位可变的特性,当前的材料可用于50万次到 100万次的擦除

数字多功能光盘 (DVD)

- DVD vs. CD
 - DVD 上的位组装更紧密:光道间隙,凹坑间距 (容量达到4.7GB)
 - DVD 采用双层结构:设有半反射层,可以通过调整焦距读取每一层(容量达到8.5GB)
 - DVD-ROM 可以用两面记录数据(容量达到17GB)
 - DVD的激光束更细,所以能读DVD的设备可以读CD,但反过来不行
- DVD-R和DVD-RW

高清晰光盘

• 通过使用更短波长的激光(在蓝-紫光范围),可以实现更高的位密度(数据

凹坑相对更小)

Low Enrergy

Blue Light

高清晰光盘

• 格式的战争 (2003~2008) : HD-DVD vs Blu-Ray

TOSHIBA

405nm, 15GB

SON Walmart 沃尔玛

405nm, 20GI

• 使用与磁盘类似的记录和读取技术

・记录

• 介质是柔韧的聚酯薄膜带, 外涂磁性材料

读取

- 磁带: 顺序读取 (sequential-access)
- 磁盘: 直接读取 (direct-access)
- 并行记录 vs. 串行记录 (蛇形记录)
- 并行+串行

一个大"磁道"包含多个小磁道

磁带: 示例

- 便宜
 - 全新4TB硬盘,899元,224.75元/TB
 - Lto6磁带,2.5TB,180元,**72元/TB**
- 寿命长
 - 硬盘寿命大约十年
 - 磁带寿命数十年

回顾: 快闪存储器

Flash Memory

- 1984年日本电气工程科学家Fujio Masuoka发明了NOR Flash (Flash EEPROM),可随机寻址,即可用于内部存储。
- 1987年Fujio Masuoka又发明了NAND Flash (用于外部存储器)

・特性

- 电可擦除:与EEPROM原理类似,优于EPROM
- 可以在块级擦除,不能在字节级擦除:优于EPROM,不如EEPROM
- 需要先擦除再写入

・分类

- NOR Flash:数据线和地址线分开,可以读任意字节
- NAND Flash:数据线和地址线共用,只能按页读取

U盘和固态硬盘

- U盘 (USB flash disk)
 - 采用了快闪存储器,属于非易失性半导体存储器
 - 相比于软盘和光盘: 体积小,容量大,携带方便,寿命长达数年

- ・ 固态硬盘 (Solid State Disk/Drive)
 - 与U盘没有本质区别: 容量更大, 存储性能更好
 - 与硬磁盘存储器相比: 抗振性好, 无噪声, 能耗低, 发热量低

总结

- 磁盘存储器
 - 软盘
 - 硬盘:结构,读写机制,数据组织,格式化,I/O访问时间,磁头寻道
- 光存储器
 - CD, CD-ROM, CD-R, CD-RW
 - DVD, DVD-R, DVD-RW
 - Blu-ray
- 磁带
- U盘和固态硬盘

谢谢

bohanliu@nju.edu.cn

