

Organizers: Moses Charikar, Anay Mehrotra, Charlotte Peale, Chirag Pabbaraju, Grigoris Velegkas

Stronger Notions of Generation and Comparison to Prediction

Chirag Pabbaraju

Tutorial on Language Generation in the Limit COLT 2025

Visit: LanguageGeneration.github.io

• $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

• At each time step t, algorithm generates a string z_t

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1 x_2

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 x_3

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 x_3

 z_1

 Z_2

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 χ_3

 x_4

 z_1

 Z_2

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 x_3

 x_4

 z_1

 Z_2

 Z_3

- $\mathcal{C} = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe \mathcal{X}
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z chooses L_{70}

 x_1

 x_2

 χ_3

 χ_4

 z_1 Z_2 Z_{4} Z_3

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 $\mathcal{X}_{\mathbf{4}}$

 $x_{t^{\star}}$

 z_1

 Z_2

 Z_3

 χ_3

 Z_{4}

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 χ_1

 x_2

..... $x_{t^{\star}}$

 Z_{t} *

 z_1

 Z_2

 Z_3

 χ_3

 Z_4

 χ_4

.....

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 $\mathcal{X}_{\mathbf{4}}$

 $x_{t^{\star}}$

(2)

 z_1

 Z_2

 Z_3

 χ_3

 Z_4

..... $Z_{t^{\star}}$ new, $\in L_{70}$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 χ_3

 χ_4

 $\chi_{t^{\star}}$

 x_{t^*+1}

 z_1

 Z_2

 Z_3

 Z_4

..... Z_t^\star new, $\in L_{70}$

- $\mathcal{C} = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe \mathcal{X}
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z chooses L_{70}

 x_1

 x_2

 χ_4

 $\chi_{t^{\star}}$

 χ_{t^*+1}

 z_1

 Z_2

 Z_3

 χ_3

 Z_{4}

new, $\in L_{70}$

 Z_{t^*+1}

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 x_1

 x_2

 χ_3

 $\mathcal{X}_{\mathbf{4}}$

 $\chi_{t^{\star}}$

 χ_{t^*+1}

 z_1

 Z_2

 Z_3

 Z_4

new, $\in L_{70}$

 Z_{t^*+1} new, $\in L_{70}$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 χ_1

 x_2

 χ_3

 χ_4

 x_t *

 $x_{t^{\star}+1}$

 z_1

 Z_2

 Z_3

 Z_{4}

.....

 Z_{t^*} new, $\in L_{70}$

 $Z_{t^{\star}+1}$ new, $\in L_{70}$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

• At each time step t, algorithm generates a string z_t

 t^* can depend on target L_z as well as enumeration order!

• Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

 χ_1

 χ_2

 χ_3

 χ_4

 $\chi_{t^{\star}}$ $\chi_{t^{\star}+1}$

©

 Z_1

 Z_2

 Z_3

 Z_4

 $Z_{t^{\star}}$ new, $\in L_{70}$

 Z_{t^*+1} new, $\in L_{70}$

• <u>Limitation</u>: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!

- Limitation: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!
- Example: Suppose $C = \{L_1, L_2\}$ $L_1 = \{..., -3, -2, -1, 1, 2, 3, ...\}$ $L_2 = \{0, 1, 2, 3, 4, ...\}$

- <u>Limitation</u>: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!
- Example: Suppose $C = \{L_1, L_2\}$ $L_1 = \{..., -3, -2, -1, 1, 2, 3, ...\}$ $L_2 = \{0, 1, 2, 3, 4, ...\}$
- Suppose L_2 is the target language, but adversary enumerates it as 1, 2, 3, 4, 5, 6, ...

- <u>Limitation</u>: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!
- Example: Suppose $C = \{L_1, L_2\}$ $L_1 = \{..., -3, -2, -1, 1, 2, 3, ...\}$ $L_2 = \{0, 1, 2, 3, 4, ...\}$
- Suppose L_2 is the target language, but adversary enumerates it as 1, 2, 3, 4, 5, 6, ...
- Natural algorithm: generate from first consistent language in $\mathcal C$

- <u>Limitation</u>: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!
- Example: Suppose $C = \{L_1, L_2\}$ $L_1 = \{..., -3, -2, -1, 1, 2, 3, ...\}$ $L_2 = \{0, 1, 2, 3, 4, ...\}$
- Suppose L_2 is the target language, but adversary enumerates it as 1, 2, 3, 4, 5, 6, ...
- Natural algorithm: generate from first consistent language in $\mathcal C$
- Until adversary shows 0, can keep generating negative numbers from L_1

- <u>Limitation</u>: Definition allows t^* beyond which algorithm generates validly to depend on the enumeration order!
- Example: Suppose $\mathcal{C} = \{L_1, L_2\}$ Kle $L_1 = \{..., -3, -2, -1, 1, 2, 3, ...\}$ $L_2 = \{0, 1, 2, 3, 4, ...\}$

Kleinberg-Mullainathan's algorithm also faces this issue

- Suppose L_2 is the target language, but adversary enumerates it as 1, 2, 3, 4, 5, 6, ...
- Natural algorithm: generate from first consistent language in C
- Until adversary shows 0, can keep generating negative numbers from L_1

Non-uniform Generation in the Limit

Li, Raman, Tewari '24

Non-uniform Generation in the Limit

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

• At each time step t, algorithm generates a string z_t

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(C, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 χ_1

 χ_2

 χ_3

 χ_4

 $\chi_{t^{\star}}$

 $x_{t^{\star}+1}$

 Z_1

 Z_2

 Z_3

 Z_4

..... Z_t^\star new, $\in L_{70}$

 $Z_{t^{\star}+1}$ new, $\in L_{70}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ_{4}^{\prime}

 Z_1'

 Z_2'

 Z_3'

 Z_4'

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

 $x'_{t^{\star}}$

(C)

 Z_1'

 z_2'

 Z_3'

 Z_4'

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(C, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 x_3'

 χ_4'

 χ'_{t^*}

(S)

 Z_1'

 Z_2'

 Z_3'

 Z_{4}^{\prime}

'

 $Z_{t}^{\prime}\star$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ'_{4}

 $\chi_{t^{\star}}'$

(S)

 Z_1'

 Z_2'

 Z_3'

 Z_4'

 $Z_{t^{\star}}^{\prime}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ_4'

....

 χ'_{t^*+1}

(S)

 Z_1'

 Z_2'

 Z_3'

 Z'_{4}

.....

 z'_{t^*} new, $\in L_{70}$

 $\chi_{t^{\star}}'$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ_{4}^{\prime}

.....

 χ'_{t^*+1}

 Z_1'

 Z_2'

 Z_3'

 Z_{4}^{\prime}

.....

 Z_{t}^{\prime} *
new, $\in L_{70}$

 $\chi_{t^{\star}}'$

 $Z_{t}^{'}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ_4'

....

 χ'_{t^*+1}

 Z_1'

 Z_2'

 Z_3'

 Z_4'

.....

 $Z_{t^{\star}}^{\prime}$

 $\chi_{t^{\star}}'$

 $Z_{t^{\star}+1}^{\prime}$ new, $\in L_{70}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 χ_1'

 χ_2'

 x_3'

 χ_4'

 χ'_{t^*}

 $x_{t^{\star}+1}^{\prime}$

 Z_1'

 Z_2'

 Z_3'

 Z_4'

.... Z

 Z'_{t^*+1} new, $\in L_{70}$

• Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?

• Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?

Countable language collections

• Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?

Countable language collections

• Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?

Countable language collections

- Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?
- Theorem (Charikar, P'24, Li, Raman, Tewari '24): Yes! •

Countable language collections

- Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?
- Theorem (Charikar, P'24, Li, Raman, Tewari '24): Yes! •

Countable language collections

- Question (Li, Raman, Tewari '24): Is every countable collection of languages non-uniformly generatable in the limit?
- Theorem (Charikar, P'24, Li, Raman, Tewari '24): Yes! •
- However, provably requires stronger oracles

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ_3'

 χ'_{4}

 χ_{t^*}

 κ_{t^*+1}'

 Z_1'

 Z_2'

 Z_3'

 Z'_{Λ}

.....

 Z_{t^*+1} new, $\in L_{70}$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{70}

 x_1'

 χ_2'

 χ'_{z}

 χ'_{4}

 χ'_{t^*}

 $oldsymbol{\chi_t'}_{oldsymbol{t}}$

Can we further

get t* to depend

only on \mathcal{C} ?

 Z_1'

 Z_2'

 $Z_{\mathbf{3}}'$

 Z'_{Λ}

.....

 $Z_{\underline{t}}^{\prime}*$ new, $\in L_{70}$

 $Z_{\underline{t}}^{\prime}$ *+1 mew, $\in L_{70}$

Li, Raman, Tewari '24

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

• At each time step t, algorithm generates a string z_t

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{70}

 χ_1

 χ_2

 χ_3

 χ_4

 $\chi_{t^{\star}}$

 $x_{t^{\star}+1}$

 Z_1

 Z_2

 Z_3

 Z_4

 Z_t^* new, $\in L_{70}$

 Z_{t^*+1} mew, $\in L_{70}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ'_{λ}

.....

 Z_1'

 Z_2'

 Z_3'

 Z_4'

Li, Raman, Tewari '24

- $\mathcal{C} = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe \mathcal{X}
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings, all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_3'

 z_2'

 Z_3'

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 x_1'

 χ_2'

 χ_3'

 χ_4'

 χ'_{t^*}

 Z_1'

 Z_2'

 Z_3'

 Z_4'

.....

 $Z_{t}^{\prime}\star$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

 x'_{t^*}

 Z_1'

 Z_2'

 Z_3'

 Z_4'

.....

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

.....

 $\chi'_{t^{\star}+}$

 Z_1'

 Z_2'

 Z_3'

 Z_4'

 z_t'

new, $\in L_{80}$

 $\chi_{t^{\star}}'$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

 χ'_{t^*+1}

 Z_1'

 Z_2'

 Z_3'

 Z_4'

.....

 $Z_{t^{\star}}'$ new, $\in L_{80}$

 $\chi_{t^{\star}}'$

 $t't^*+1$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1$$
, x_2 , x_3 , x_4 , x_5 ,.....

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

..

 x'_{t^*+1}

 Z_1'

 Z_2'

 Z_3'

 Z'_{4}

ł

 $Z_{t^{\star}}^{\prime}$

 $\chi_{t^{\star}}'$

 Z'_{t^*+1} new, $\in L_{80}$

Li, Raman, Tewari '24

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

$$x_1, x_2, x_3, x_4, x_5, \dots$$

- At each time step t, algorithm generates a string z_t
- Uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C})$ distinct strings , all strings generated thereafter are new and in L_z

chooses L_{80}

 χ_1'

 χ_2'

 χ_3'

 χ_4'

 χ'_{t^*}

 $\chi'_{t^{\star}+1}$

(T)

 Z_1'

 Z_2'

 Z_3'

 Z_4'

 Z_t^{\prime} * new, $\in L_{80}$

 Z'_{t^*+1} new, $\in L_{80}$

Countable language collections

Countable language collections

• $O = \{-1, -3, -5, \dots\}$

- $0 = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$

- $0 = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection \mathcal{C} that contains:

- $0 = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection *C* that contains:

$$O_1 = O \cup \{1\}, E_1 = E \cup \{1\}$$

- $O = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection C that contains:

$$O_1 = O \cup \{1\}, E_1 = E \cup \{1\}$$

 $O_2 = O \cup \{1, 2\}, E_2 = E \cup \{1, 2\}$

- $O = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection *C* that contains:

$$O_1 = O \cup \{1\}, E_1 = E \cup \{1\}$$
 $O_2 = O \cup \{1, 2\}, E_2 = E \cup \{1, 2\}$
 \vdots

- $O = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection *C* that contains:

$$O_1 = O \cup \{1\}, E_1 = E \cup \{1\}$$
 $O_2 = O \cup \{1, 2\}, E_2 = E \cup \{1, 2\}$
 \vdots

$$O_n = O \cup \{1, 2, ..., n\}, E_n = E \cup \{1, 2, ..., n\}$$

- $O = \{-1, -3, -5, \dots\}$
- $E = \{-2, -4, -6, \dots\}$
- Consider collection *C* that contains:

$$O_1 = O \cup \{1\}, E_1 = E \cup \{1\}$$

$$O_2 = O \cup \{1, 2\}, E_2 = E \cup \{1, 2\}$$

•

$$O_n = O \cup \{1, 2, ..., n\}, E_n = E \cup \{1, 2, ..., n\}$$

 O_n

 E_n

• Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(C)$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(C)$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

$$Z_{t^{\star}}$$

- Suppose algorithm claims a uniform time bound of $t^* = t^*(\mathcal{C})$
- Adversary enumerates $\{1, 2, ..., t^*\}$

• If $z_{t^*} \in E$, adversary continues enumerating 0

- Suppose algorithm claims a uniform time bound of $t^* = t^*(C)$
- Adversary enumerates $\{1, 2, ..., t^*\}$

• If $z_{t^*} \in E$, adversary continues enumerating 0

• Issue: Arbitrarily large finite intersections

• Issue: Arbitrarily large finite intersections

- Issue: Arbitrarily large finite intersections
- <u>Definition</u>: Largest finite intersection := "closure dimension"

• Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded

- Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded
- $t^*(\mathcal{C}) = \text{closure dimension}$

- Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded
- $t^*(\mathcal{C}) = \text{closure dimension}$

Countable language collections

- Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded
- $t^*(\mathcal{C}) = \text{closure dimension}$

Countable language collections

- Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded
- $t^*(\mathcal{C}) = \text{closure dimension}$

Countable language collections

- Theorem (Kleinberg, Mullainathan '24, Li, Raman, Tewari '24): Uniformly generatable if and only closure dimension is bounded
- $t^*(\mathcal{C}) = \text{closure dimension}$

Countable language collections

Associate every language with its indicator function

Associate every language with its indicator function

$$C = \{L_1, L_2, L_3, \dots\}$$

$$L_1 = \{x_1, x_2, x_5, \dots\}$$

$$L_2 = \{x_4, x_5, \dots\}$$

$$L_3 = \{x_1, x_3, x_4, \dots\}$$
:

Associate every language with its indicator function

$$C = \{L_1, L_2, L_3, \dots\}$$

$$L_1 = \{x_1, x_2, x_5, \dots\}$$

$$L_2 = \{x_4, x_5, \dots\}$$

$$L_3 = \{x_1, x_3, x_4, \dots\}$$

$$\vdots$$

\mathcal{X} \mathcal{H}	x_1	x_2	x_3	x_4	x_5	
h_1	1	1	0	0	1	
h_2	0	0	0	1	1	
h_3	1	0	1	1	0	
•						

Associate every language with its indicator function

$$C = \{L_1, L_2, L_3, \dots\}$$

$$L_1 = \{x_1, x_2, x_5, \dots\}$$

$$L_2 = \{x_4, x_5, \dots\}$$

$$L_3 = \{x_1, x_3, x_4, \dots\}$$

$$\vdots$$

\mathcal{X} \mathcal{H}	x_1	x_2	x_3	x_4	x_5	
h_1	1	1	0	0	1	
h_2	0	0	0	1	1	
h_3	1	0	1	1	0	
•						

Can then ask standard learning theory questions for this concept class

- Saw earlier that this is not uniformly generatable
- Not too hard to see that VC dimension is some small constant ⇒ PAC learnable
- Restriction on positive integers corresponds to thresholds ⇒ Not online learnable

- Saw earlier that this is not uniformly generatable
- Not too hard to see that VC dimension is some small constant ⇒ PAC learnable
- Restriction on positive integers corresponds to thresholds ⇒ Not online learnable

• Every language contains *0*

- Every language contains *0*
- Uniformly generatable: $t^*(\mathcal{C}) = 1$

- Every language contains *0*
- Uniformly generatable: $t^*(\mathcal{C}) = 1$
- Not too hard to see that VC dimension is some small constant \Rightarrow PAC learnable

- Every language contains *0*
- Uniformly generatable: $t^*(\mathcal{C}) = 1$
- Not too hard to see that VC dimension is some small constant \Rightarrow PAC learnable
- Restriction on positive integers corresponds to thresholds ⇒ Not online learnable

- Every language contains *0*
- Uniformly generatable: $t^*(\mathcal{C}) = 1$
- Not too hard to see that VC dimension is some small constant \Rightarrow PAC learnable
- Restriction on positive integers corresponds to thresholds ⇒ Not online learnable

- Every language contains *0*
- Uniformly generatable: $t^*(\mathcal{C}) = 1$
- Not too hard to see that VC dimension is some small constant \Rightarrow PAC learnable
- Restriction on positive integers corresponds to thresholds ⇒ Not online learnable

recent work by Hanneke, Karbasi, Mehrotra, Velegkas '25 shows that generatability not even closed under finite unions!

• $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , but instead of enumerating it in a *worst-case order*, chooses a <u>distribution</u> \mathcal{D} supported on L_z

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , but instead of enumerating it in a *worst-case order*, chooses a <u>distribution</u> \mathcal{D} supported on L_z
- Generator G is shown a sequence of <u>i.i.d samples</u> from D, and wishes to control

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , but instead of enumerating it in a *worst-case order*, chooses a <u>distribution</u> \mathcal{D} supported on L_z
- Generator G is shown a sequence of <u>i.i.d samples</u> from D, and wishes to control

$$\Pr_{x_1,\dots,x_t\sim\mathcal{D}}[\mathcal{G}(x_1,\dots,x_t)\notin L_Z\setminus\{x_1,\dots,x_t\}]$$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , but instead of enumerating it in a *worst-case order*, chooses a <u>distribution</u> \mathcal{D} supported on L_z
- Generator G is shown a sequence of <u>i.i.d samples</u> from D, and wishes to control valid, and not a repeat

$$\Pr_{x_1,\dots,x_t\sim\mathcal{D}}[\mathcal{G}(x_1,\dots,x_t)\notin L_Z\setminus\{x_1,\dots,x_t\}]$$

- $C = \{L_1, L_2, L_3, ...\}$, each L_i countably infinite subset of universe X
- Adversary chooses some target language L_z , but instead of enumerating it in a *worst-case order*, chooses a <u>distribution</u> \mathcal{D} supported on L_z
- Generator G is shown a sequence of <u>i.i.d samples</u> from D, and wishes to control valid, and not a repeat

$$\Pr_{x_1,\dots,x_t\sim\mathcal{D}}[\mathcal{G}(x_1,\dots,x_t)\notin L_Z\setminus\{x_1,\dots,x_t\}]$$

• Kalavasis, Mehrotra, Velegkas '24 show that for the Kleinberg, Mullainathan '24 algorithm, this is bounded as $C \cdot \exp(-c \cdot t)$ for all countable collections!

• Non-uniform / uniform generation in the limit : stronger requirements than vanilla generation

- Non-uniform / uniform generation in the limit : stronger requirements than vanilla generation
- Generation incomparable to prediction

- Non-uniform / uniform generation in the limit : stronger requirements than vanilla generation
- Generation incomparable to prediction
- Open: complete characterization for generation in the limit

- Non-uniform / uniform generation in the limit : stronger requirements than vanilla generation
- Generation incomparable to prediction
- Open: complete characterization for generation in the limit
- Open: black-box transforming algorithm that generates in the limit ⇒ exponential rate

