Introducción a la Lógica y la Computación - Examen Final 26/7/2023

Apellido y Nombre:

nota	1	2	В	4	5	6	

(1) Considere el conjunto parcialmente ordenado (D, |), donde $D = \{1, 2, 3, 6, 9, 12, 18, 36\}$, y a|bsi v sólo si a es divisor de b.

(a) De el diagrama de Hasse (Irr(L), |).

(b) Sea $F:D \to \mathcal{D}(Irr(L))$ la función definida en el Teorema de Birkhoff. Dé explícitamente F(x) para cada $x \in D$.

(c) ¿Es (D, |) un reticulado distributivo? Justifique su respuesta.

(d) ¿Es L un Álgebra de Boole? Justifique su respuesta.

(2) Sea L un reticulado. Pruebe que:

$$(x\vee y)\wedge (y\vee z)\wedge (x\vee z)\geq (x\wedge y)\vee (x\wedge z)\vee (y\wedge z)$$

(3) Obtenga una derivación para: $\vdash \neg(\varphi \rightarrow \psi) \rightarrow (\gamma \rightarrow \neg \psi)$

(4) Suponga que Γ es consistente maximal. Suponga que $(p_0 \wedge p_1 \rightarrow \neg p_1) \in \Gamma$ y que $p_1 \in \Gamma$. ¿Contiene Γ a p_0 ? Justifique su respuesta.

(5) Sea el NFA $M=(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$ donde δ viene dada por la siguiente tabla de transición:

(6) Determine si el siguiente lenguaje es regular. Justifique su respuesta.

$$L=\{a^kb^j: k,j\geq 0,\ k< j\}$$

Ejercicios para alumnos libres:

(7) Decida si el siguiente conjunto es consistente. Justifique su respuesta.

$$\{p_0, \neg p_1 \rightarrow p_0, \neg p_2 \rightarrow (p_0 \wedge p_1), \neg p_3 \rightarrow (p_0 \wedge p_1 \wedge p_2), \ldots\}.$$

- Considere el conjunto parcialmente ordenado (D, |), donde $D = \{1, 2, 3, 6, 9, 12, 18, 36\}$, y a|b si y sólo si a es divisor de b.
 - (a) De el diagrama de Hasse (Irr(L), |).
 - —(b) Sea $F: D \to \mathcal{D}(Irr(L))$ la función definida en el Teorema de Birkhoff. Dé explícitamente F(x) para cada $x \in D$.
 - (c) ¿Es (D, |) un reticulado distributivo? Justifique su respuesta.
 - (d) ¿Es L un Álgebra de Boole? Justifique su respuesta.

(2) Sea L un reticulado. Pruebe que: $(x\vee y)\wedge (y\vee z)\wedge (x\vee z)\geq (x\wedge y)\vee (x\wedge z)\vee (y\wedge z)$

Si L es un reticulado entonces existe infimo y supremo para cada par a,b en L.

$$(x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \le (x \vee y) \wedge (y \vee z) \wedge (x \vee z)$$

$$(x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \le (x \vee y)$$

- $(x \land y) \le x \le (x \lor y) \Longrightarrow (x \land y) \le (x \lor y)$
- $(x \land z) \le x \le (x \lor y) \Longrightarrow (x \land z) \le (x \lor y)$
- $(y \land z) \le y \le (x \lor y) \Longrightarrow (y \land z) \le (x \lor y)$

Dado que cada termino es \leftarrow (x v y), entonces el supremo de estos es menor a (x v y)

 $(x \wedge y) \vee (x \wedge z) \vee (y \wedge z) \leq (y \vee z)$

- $(x \land y) \le y \le (y \lor z) \Longrightarrow (x \land y) \le (y \lor z)$
- $(x \land z) \le z \le (y \lor z) \Longrightarrow (x \land z) \le (y \lor z)$
- $(y \land z) \le y \le (y \lor z) \Longrightarrow (y \land z) \le (y \lor z)$

Dado que cada termino es <= (y v z), entonces el supremo de estos es menor a (y v z)

 $(x ^ y) v (x ^ z) v (y ^ z) \le (x v z)$

- $(x \land y) \le x \le (x \lor z) \Longrightarrow (x \land y) \le (x \lor z)$
- $(x \land z) \le x \le (x \lor z) \Longrightarrow (x \land z) \le (x \lor z)$
- $(y \land z) \le z \le (x \lor z) \Longrightarrow (y \land z) \le (x \lor z)$

Dado que cada termino es \leq (x v z), entonces el supremo de estos es menor a (x v z)

Demostramos que $(x \wedge y) v (x \wedge z) v (y \wedge z)$ es menor igual a cada termino del ínfimo de la derecha, entonces se cumple que $(x \wedge y) v (x \wedge z) v (y \wedge z) <= (x v y) \wedge (y v z) \wedge (x v z)$.

Suponga que Γ es consistente maximal. Suponga que $(p_0 \wedge p_1 \to \neg p_1) \in \Gamma$ y que $p_1 \in \Gamma$. Contiene Γ a p_0 ? Justifique su respuesta.

Γ es consistente maximal.

$$(p0 \land p1 \rightarrow \neg p1) \in \Gamma$$

 $p1 \in \Gamma$

¿p0 esta en Γ?

Supongamos que p $0 \in \Gamma$. Como Γ consistente maximal y p0 esta, entonces $\neg p0$ no debe estar en Γ . Como un conjunto consistente maximal es cerrado por derivaciones, tenemos que, si $\Gamma \vdash \varphi => \varphi \in \Gamma$, su contrarrecíproca nos dice que si $\varphi /\in \Gamma => \Gamma /\vdash \varphi$.

Luego como p0 y p1 ambos están en Γ , por introducción de la conjunción p0 ^ p1 también es derivable por Γ , en particular ¬p1, pues p0 ^ p1 junto a (p0 ^ p1 -> ¬p1) \in Γ , por eliminación del implica deriva a ¬p1. Esto es absurdo pues p1 \in Γ . Si p1 \in Γ entonces ¬p1 \in Γ por maximalidad.

Sea el NFA $M=(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$ donde δ viene dada por la siguiente tabla de transición:

$$\begin{array}{c|ccccc} & 0 & 1 & \epsilon \\ \hline q_0 & \{q_1\} & \emptyset & \emptyset \\ q_1 & \{q_2\} & \emptyset & \{q_0\} \\ q_2 & \emptyset & \{q_0\} & \{q_1\} \end{array}$$

- (a) Hacer el diagrama de transición de M.
- (b) Hallar una expresión que denote el mismo lenguaje que M. (Use el algoritmo del teorema de Kleene.)

b) Eliminamos transiciones vacías y obtenemos el AFN: Calculamos la clausura de cada estado;

 $M' := (L, \{0,1\}, \triangle, q0, \{q2\})$

$$[q0] = \{q0\}$$

$$[q1] = \{q0,q1\}$$

$$[q2] = \{q1,q2\}$$

△ esta definida como:

$$\triangle(q0, 0) = \triangle^{(q0)}, 0) = \triangle^{(q0)}, 0) = \{q1\}$$

$$\triangle(q0, 1) = \triangle^{(q0)}, 1) = \triangle^{(q0)}, 1) = ...$$

$$\triangle(q1, 0) = \triangle^{(q1, 0)} = \triangle^{(q0,q1)}, 0 = \{q1,q2\}$$

$$\triangle(q1, 1) = \triangle^{(q1)}, 1) = \triangle^{(q0,q1)}, 1) = ...$$

$$\triangle(q2, 0) = \triangle^{(q2)}, 0) = \triangle^{(q1,q2)}, 0) = \{q2\}$$

$$\triangle(q2, 1) = \triangle^{(q2)}, 1) = \triangle^{(q1,q2)}, 1) = \{q0\}$$

La ecuación resultante es:

X0 = 0X1

X1 = 0X1 + 0X2

X2 = 0X2 + 1X0 + e

Por lema de Arden X2 tiene solución:

X2 = 0*(1X0 + e)

Reemplazando en X1 obtenemos:

X1 = 0X1 + 0(0*(1X0 + e)) = 0X1 + 0(0*1X0 + 0*)) = 0X1 + 00*1X0 + 00*

Por lema de Arden esto tiene solución:

X1 = 0*(00*1X0 + 00*) = 0*00*1X0 + 0*00*

Reemplazando en X0 obtenemos:

X0 = 0(0*00*1X0 + 0*00*) = 00*00*1X0 + 00*00*

Por lema de Arden esto tiene solución:

X0 = (00*00*1)*(00*00*)

Esta ultima solución es la expresión regular que denota el lenguaje aceptado por el autómata M:

L(M) = (00*00*1)*(00*00*)

(6) Determine si el siguiente lenguaje es regular. Justifique su respuesta.

$$L=\{a^kb^j: k, j \geq 0,\ k < j\}$$

 $L = \{a^k \cdot b^j : k,j \ge 0, k < j\}$

Supongamos que L pertenece a los lenguajes regulares. Tomemos la cadena y sea n la cte de bombeo de L.

Tomamos $\alpha = a^{(n-1)}$. b^n , luego $|\alpha| = n + (n - 1) > n$ Por pumping lemma:

$$\alpha = \alpha 1 \alpha 2 \alpha 3$$

donde

$$\alpha 1 = a^r, r >= 0$$

$$\alpha 2 = a^s, s >= 1$$

$$\alpha 3 = a^{(n-1)} - (s+r)b^n$$

Para i = 2 tenemos que:

 $\alpha = \alpha 1(\alpha 2)^2 = a^r \cdot (a^s)^2 \cdot a^n - (s+r)b^n$ = $a^r \cdot a^2 \cdot a^n - 1 - s - r)b^n$

$$= a^{(r + 2s + n - 1 - s - r)} \cdot b^{n}$$

 $= a^{n} - 1 + s$. b^{n}

Absurdo, pues como s \geq 1, no se cumple que n - 1 + s < n, por lo cual L no es un lenguaje regular.

Ejercicios para alumnos libres:

(7) Decida si el siguiente conjunto es consistente. Justifique su respuesta. $\{p_0, \neg p_1 \to p_0, \neg p_2 \to (p_0 \land p_1), \neg p_3 \to (p_0 \land p_1 \land p_2), \ldots\}.$

Por existencia de modelos si: $\Box \not\vdash \bot = b \exists \lor : \Box \Box = 1$