- 63 **-**

SEQUENCE LISTING

(1) GENE	RAL INFORMATION:							
(i)	APPLICANT: Levy, Gary							
(ii)	TITLE OF INVENTION: Methods of Modulating Immune Coagulation							
(iii)	NUMBER OF SEQUENCES: 4							
(iv)	CORRESPONDENCE ADDRESS: (A) ADDRESSEE: BERESKIN & PARR (B) STREET: 40 King Street West (C) CITY: Toronto (D) STATE: Ontario (E) COUNTRY: Canada (F) ZIP: M5H 3Y3							
(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30							
(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:							
(viii)	ATTORNEY/AGENT INFORMATION: (A) NAME: Gravelle, Micheline (B) REGISTRATION NUMBER: 40,261 (C) REFERENCE/DOCKET NUMBER: 9579-006							
(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (416) 364-7311 (B) TELEFAX: (416) 361-1398							
(2) INFO	RMATION FOR SEQ ID NO:1:							
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 4630 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear							
(ii)	MOLECULE TYPE: other nucleic acid							
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens							
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:1:							
GATCTAGG	GT TGGAAGCCAG GTCTCCTGAG TATGCGAGAA TAAATACAGT CATGGAAGTG 60							
TAAAGAGT	CT GCCAACATTT TGAGAATGTG AATAGGATTT GGCTAAAATT AAGGGGATAT 120							
ACAGAAAA	GT CATAGGAAAT CAGGTTAAAG ACATAAATAT GAGATAGGCT ACAGAGTGTT 180							
TTAAGTAA	TA CAATAAAACA TTTAGATTTT TGCCCATGTC AGTCATTTTG AAATTATTTT 240							
TAAAGCAA	AA AAACCCTTTT TAAACAAGAA ATCTTATGAG ATGTCAATAT GCAAAACAAA 300							

TTAAAAGGAG GTGGTTTCTC TAACTGAAGC TGTTCCTCTT TCCTGCCTTC AGCCTCTGAA 360

- 64 -

GAGAAAGTTA GAAAACTATT A	ATCATTAATG	CTACATGTTT	TGAACAAGCT	GATATACCAA	420
GTGGCCCAGA GAGCAGGTAG A	AAGAACCAGC	GTGGAGACAG	AAAGCAAGAG	GCCCGCCTGC	480
CAGGGCTACC TGCAGAAAGA A	AAGGGCAAAG	ATGCTGTAGG	CAAGAGAAGT	TCAGGACAGA	540
CACTGGCATA GCTCAAAGAT I	rcacatttga	GCAGCTGTGG	AAGATGACAG	TACAATTACC	600
AAAATGTCGA AGGGCAAAGG A	AGGCAGCTAC	TGGTTTTGAT	GAAAGACAAT	TATGTCCTTT	660
TAAATGGGTC TTAGACATTT A	AGACATTTAT	ATACACTATG	CTACGGACAA	AGGAATAGAA	720
AGTAGCACTT TTTTCTCCAC I	PAGTTTTCTT	CTCTTTTTCA	AGTAGATGAA	GCAAAAGTCA	780
ACTGCAATAG TCAGAAAGCT G	STACTTTGTT	ACACTTAGAA	ACTTCTAAAA	GTGCTTAAGA	840
TTTCACCTGA AAGTCCAACA T	TGAAGAAAAT	ACAGGCTCCC	CAATGCCCCA	TTCTAAGAAG	900
GAAAAAGGAC CATTTTCATT T	TTAGTAACGT	TTCTGTTCTA	TAGACAGTTT	GGATAACTAG	960
CTCTTACTTT TTATCTTTAA A	AACTGTTTT	TCCAGTGAAG	TTACGTATAA	TTATTTACTT	1020
CAAGCGTAGT ATACCAAATT A	ACTTTAGAAA	TGCAAGACTT	TTCTTATACT	ТСАТААААТА	1080
CATTATGAAA GTGAATCTTG T	TTGGCTGTGT	ACATTTGACT	ATAATAATTT	CAATGCATAT	1140
TATTTCTATT GAGAGTAAGT I	TACAGTTTTT	GGCAAACTGC	GTTTGATGAG	GGCTATCTCC	1200
TCTTCCTGTG CGTTTCTAAA A	ACTTGTGATG	CAAACGCTCC	CACCCTTTCC	TGGGAACACA	1260
GAAAGCCTGA CTCAGGCCAT G	GCCGCTATT	AAAGCAGCTC	CAGCCCTGCG	CACTCCCTGC	1320
TGGGGTGAGC AGCACTGTAA A	AGATGAAGCT	GGCTAACTGG	TACTGGCTGA	GCTCAGCTGT	1380
TCTTGCCACT TACGGTTTTT T	rggttgtgc	AAACAATGAA	ACAGAGGAAA	TTAAAGATGA	1440
AAGAGCAAAG GATGTCTGCC C	CAGTGAGACT	AGAAAGCAGA	GGGAAATGCG	AAGAGGCAGG	1500
GGAGTGCCCC TACCAGGTAA G	SCCTGCCCCC	CTTGACTATT	CAGCTCCCGA	AGCAATTCAG	1560
CAGGATCGAG GAGGTGTTCA A	AAGAAGTCCA	AAACCTCAAG	GAAATCGTAA	ATAGTCTAAA	1620
GAAATCTTGC CAAGACTGCA A	AGCTGCAGGC	TGATGACAAC	GGAGACCCAG	GCAGAAACGG	1680
ACTGTTGTTA CCCAGTACAG	BAGCCCCGGG	AGAGGTTGGT	GATAACAGAG	TTAGAGAATT	1740
AGAGAGTGAG GTTAACAAGC T	TGTCCTCTGA	GCTAAAGAAT	GCCAAAGAGG	AGATCAATGT	1800
ACTTCATGGT CGCCTGGAGA A	AGCTGAATCT	TGTAAATATG	AACAACATAG	AAAATTATGT	1860
TGACAGCAAA GTGGCAAATC T	PAACATTTGT	TGTCAATAGT	TTGGATGGCA	AATGTTCAAA	1920
GTGTCCCAGC CAAGAACAAA T	PACAGTCACG	TCCAGGTATG	TATAATAATG	TTTTCTTATC	1980
ATATGTTCAT AAATGTTATA C	CAGTCAGAGA	TGTATCTAAA	AGATTAACCT	GAGTCAGTAA	2040
GTTAAATAGA TGACAGATTA A	AGTCTTTTAT	TTATCAAGGT	GCACAGGAAA	TATAAATAA	2100
CTTCTCAAAT ATGACCACAT A	AAATATGACC	TAATTACAAA	ATCATAGTTA	GTTCTGTATC	2160
CACTGGAAGT CACTTTCAAT T	TTTAAGATCT	TATTTGTTAA	TGCCAGACCT	ACTTGCAAGC	2220
AGAGATTAGA GGTCCTTTCT C	GCTTTATAAC	ATTAGGTTCT	TCTTGTGAGG	CCTTAAGCAT	2280
TTACTAAACA CCTTCAAGTA A	AGTTTAGTAA	AGTTTCATTA	CTGCCATTGA	TTCAATTATC	2340

- 65 -

AAACTGCTTT	TGTACATATA	AAGAATTCTT	CAGATGCATG	GTTTCTATTA	ACAAGATCCA	2400
ATGCCTTCCT	TTTATTTCCC	CTTCAGTTCA	ACATCTAATA	TATAAAGATT	GCTCTGACTA	2460
CTACGCAATA	GGCAAAAGAA	GCAGTGAGAC	CTACAGAGTT	ACACCTGATC	CCAAAAATAG	2520
TAGCTTTGAA	GTTTACTGTG	ACATGGAGAC	CATGGGGGGA	GGCTGGACAG	TGCTGCAGGC	2580
ACGTCTCGAT	GGGAGCACCA	ACTTCACCAG	AACATGGCAA	GACTACAAAG	CAGGCTTTGG	2640
AAACCTCAGA	AGGGAATTTT	GGCTGGGGAA	CGATAAAATT	CATCTTCTGA	CCAAGAGTAA	2700
GGAAATGATT	CTGAGAATAG	ATCTTGAAGA	CTTTAATGGT	GTCGAACTAT	ATGCCTTGTA	2760
TGATCAGTTT	TATGTGGCTA	ATGAGTTTCT	CAAATATCGT	TTACACGTTG	GTAACTATAA	2820
TGGCACAGCT	GGAGATGCAT	TACGTTTCAA	CAAACATTAC	AACCACGATC	TGAAGTTTTT	2880
CACCACTCCA	GATAAAGACA	ATGATCGATA	TCCTTCTGGG	AACTGTGGGC	TGTACTACAG	2940
TTCAGGCTGG	TGGTTTGATG	CATGTCTTTC	TGCAAACTTA	AATGGCAAAT	ATTATCACCA	3000
AAAATACAGA	GGTGTCCGTA	ATGGGATTTT	CTGGGGTACC	TGGCCTGGTG	TAAGTGAGGC	3060
ACACCCTGGT	GGCTACAAGT	CCTCCTTCAA	AGAGGCTAAG	ATGATGATCA	GACCCAAGCA	3120
CTTTAAGCCA	TAAATCACTC	TGTTCATTCC	TCCAGGTATT	CGTTATCTAA	TAGGGCAATT	3180
AATTCCTTGT	TTCATATTTT	TCATAGCTAA	AAAATGATGT	CTGACGGCTA	GGTTCTTATG	3240
CTACACAGCA	TTTGAAATAA	AGCTGAAAAA	CAATGCATTT	TAAAGGAGTC	CTTTGTTGTT	3300
ATGCTGTTAT	CCAATGAACA	CTTGCAAGCA	ATTAGCAATA	TTGAGAATTA	TACATTAGAT	3360
TTACAATTCT	TTTAATTTCT	ATTGAAACTT	TTTCTATTGC	TTGTATTACT	TGCTGTATTT	3420
AAAAAATAAT	TGTTGGCTGG	GTGTGGTAGC	TCACGCCTGT	AATCCCAGCA	CTTTGGAATG	3480
TCAAGGCAGG	CAGATCACTT	GAGGTCAGGA	GTTTGAGACC	AGCCTGGCCA	AACATGTGAA	3540
ACGCTGTCTC	TATTAAAAAT	ACAAAAATTA	GCCGGGCATG	GTGGTACATG	CCTGTAATCA	3600
ACGCTGTTTA	TTAAAAATAC	AAAAATTAGC	CGGGCATGGT	GGACATGCCT	GTAATCCTAG	3660
TACTTGGGAG	GCTGAGGCAG	GAGAATCGCT	TGAACCTGAG	AGGAAGAGGT	TGCAGTGAGC	3720
CAAGAATGAG	CCACTGCACT	CCAGCATGGG	TGACAGAGAA	AACTCTGTCT	CAAACAAAAA	3780
ААТААТААА	TTTATTCAGT	AGGTGGATTC	TACACAAAGT	AATCTGTATT	TGGGCCATGA	3840
TTTAAGCACA	TCTGAAGGTA	TATCACTCTT	TTCAGGCTAT	AATTATTTGG	GTAATCTTCA	3900
TTCTGAGACA	AACTTAATCT	ATATCATTTA	CTTTGCAACA	GAACAACCCT	ACAGCATTTT	3960
GGTTCCCAGA	. CTAAGGGAAC	TAATATCTAT	ATAATTAAAC	TTGTTCATTT	ATCATTCATG	4020
AAATATAAAA	TACTTGTCAT	TTAAACCGTT	TAAAAATGTG	GTAGCATAAT	GTCACCCCAA	4080
AAAGCATTCA	GAAAGCAATG	TAACTGTGAA	GACCAGGGTT	TAAAGGTAAT	TCATTTATAG	4140
TTTATAACTC	CTTAGATGTT	TGATGTTGAA	AACTGCTTTA	ACATGAAAAT	TATCTTCCTC	4200
TGCTCTGTGT	r GAACAATAGO	TTTTAATTTA	AGATTGCTCA	CTACTGTACT	AGACTACTGG	4260
TAGGTTTTT	r TGGGGGGGG	TGGGTAGGGA	TATGTGGGTA	ATGAAGCATT	TACTTACAGG	4320

- 66 -

CTATCATACT	CTGAGGCCAA	TTTTATCTCC	AAAGCAATAA	TATCATTAAG	TGATTCACTT	4380
CATAGAAGGC	TAAGTTTCTC	TAGGACAGAT	AGAAAACATG	AATTTTGAAA	TATATAGAAC	4440
agtagttaaa	ATACTATATA	TTTCAACCCT	GGCTGGTAGA	TTGCTTATTT	TACTATCAGA	4500
AACTAAAAGA	TAGATTTTTA	CCCAAACAGA	AGTATCTGTA	ATTTTTATAA	TTCATCAATT	4560
CTGGAATGCT	ATATATAATA	TTTAAAAGAC	TTTTTAAATG	TGTTTAATTT	CATCATCGTA	4620
AAAAGGGATC						4630

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 439 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Leu Ala Asn Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr 1 5 10 15

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 65 70 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn 100 105 110

Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 120 125

Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140

Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 150 155 160

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys
165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser 180 185 190

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 215 220

- 67 -

Glu 225	Thr	Tyr	Arg	Val	Thr 230	Pro	Asp	Pro	Lys	Asn 235	Ser	Ser	Phe	Glu	Val 240
Tyr	Cys	Asp	Met	Glu 245	Thr	Met	Gly	Gly	Gly 250	Trp	Thr	Val	Leu	Gln 255	Ala
Arg	Leu	Asp	Gly 260	Ser	Thr	Asn	Phe	Thr 265	Arg	Thr	Trp	Gln	Asp 270	Tyr	Lys
Ala	Gly	Phe 275	Gly	Asn	Leu	Arg	Arg 280	Glu	Phe	Trp	Leu	Gly 285	Asn	Asp	Lys
Ile	His 290	Leu	Leu	Thr	Lys	Ser 295	Lys	Glu	Met	Ile	Leu 300	Arg	Ile	Asp	Leu
Glu 305	Asp	Phe	Asn	Gly	Val 310	Glu	Leu	Tyr	Ala	Leu 315	Tyr	Asp	Gln	Phe	Tyr 320
Val	Ala	Asn	Glu	Phe 325	Leu	Lys	Tyr	Arg	Leu 330	His	Val	Gly	Asn	Tyr 335	Asn
Gly	Thr	Ala	Gly 340	Asp	Ala	Leu	Arg	Phe 345	Asn	Lys	His	Tyr	Asn 350	His	Asp
Leu	Lys	Phe 355	Phe	Thr	Thr	Pro	Asp 360	Lys	Asp	Asn	Asp	Arg 365	Tyr	Pro	Ser
Gly	Asn 370	Cys	Gly	Leu	Tyr	Tyr 375	Ser	Ser	Gly	Trp	Trp 380	Phe	Asp	Ala	Cys
Leu 385	Ser	Ala	Asn	Leu	Asn 390	Gly	Lys	Tyr	Tyr	His 395	Gln	Lys	Tyr	Arg	Gly 400
Val	Arg	Asn	Gly	Ile 405	Phe	Trp	Gly	Thr	Trp 410	Pro	Gly	Val	Ser	Glu 415	Ala
His	Pro	Gly	Gly 420	Tyr	Lys	Ser	Ser	Phe 425	Lys	Glu	Ala	Lys	Met 430	Met	Ile
Arg	Pro	Lys 435	His	Phe	Lys	Pro									

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5403 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CATAAGGCGT	GTCTGACAAA	TTCTTCATAC	ACACATTTCC	CCTTTGCACA	TTCAGTCTGT	60
ATAGGTTATT	TCTATAGGAG	AAAAAAAA	TTCAAATTCC	TTGTGCACTG	GTAACAGGCA	120
TGAAGGCTCA	GCAAAGCCAA	TACGTGTTAT	GTCCAGTTGG	AGACAGTGCC	AGGGCCAACA	180
TTCCAGACTT	CTCAGATAGA	AAGTGCGCCT	GCCTGCCCTG	CTCTGAGAAT	TTGAAGAGAG	240
TAGTTCAGTT	AGAATTAAGA	GGCAGTAGAG	AAAAGTCTTG	GGAAATCTGG	TTAGAGATAT	300
AAATATGAGA	ACTGGACATG	GTGGTACACA	CCTGTGATCT	CTGTGTTTAG	GAGGGAGAGG	360

- 68 -

CAGAGAGATC AGGAGTTCAA	GGCCAGCCTG	AGCTACTTGA	GACCCAGTCT	AAATAAATAA	420
GAGATAGATT ACAGAGTGCC	TTTAACTAGT	ACAGAGAAAG	AATTTGGGTT	TATCTGTGTC	480
AGTTACGCTG AAATAATTTT	TAAGTAATAA	AATCCCTTTT	AATAAGAAAC	CTTATGAGGT	540
CAGTATGCAC AATGAACTTA	AGAGAGACCC	CCAGCTCCTG	AGCTGAGTGA	TGGGGAAGGA	600
CAGCCACTGC CTGTGATGTG	TGAGTGACGT	GCTTCCAAGT	GTTTTAACCA	CTGACGATTA	660
CATAGCCTGC ACAGTCAGGA	GAAAACAGCC	GTATTCTCTG	CCAGTTCTCT	TCCCTTTTAC	720
AAACAGATGA GAGACACACA	CAGAGAATCC	ATTTAAAGAG	CGGACCTTTG	TTCTGATTAG	780
GGGCAATTTT AAGTACTTAA	GAGTTCACAC	AAAGTCTAGC	CTTCAAAAAG	AAAACAGGTT	840
CCCAAACTAG GGAGGAAACA	GAATCATTTC	CATTTTGGTG	ACATTTAGTG	GGAAGAAGCT	900
CACAGACATT TAGACGTTCC	AACTCTTTCC	CCACTAGTGG	ACCAAGTATA	TAATATGGTA	960
TCTTTTGGGC ACTGGTATTA	CAACTGTTTT	TTAAACAAAA	GACTTTCCTT	GTGCTTTACT	1020
AAAAACCCAG ACGGTGAATC	TTGAATACAA	TGCGTGGCAC	CCACGGCAGG	CATTCTATTG	1080
TGCATAGTTT TGACTGACAG	GAGATGACAG	CATTTGGCTG	GCTGCGCTTG	CTGAGGACCC	1140
TCTCCTCCTG TGTGGCGTCT	GAGACTGTGA	TGCAAATGCG	CCCGCCCTTT	TCTGGGAACT	1200
CAGAACGCCT GAGTCAGGCG	GCGGTGGCTA	TTAAAGCGCC	TGGTCAGGCT	GGGCTGCCGC	1260
ACTGCAAGGA TGAGGCTTCC	TGGTTGGTTG	TGGCTGAGTT	CTGCCGTCCT	CGCTGCCTGC	1320
CGAGCGGTGG AGGAGCACAA	CCTGACTGAG	GGGCTGGAGG	ATGCCAGCGC	CCAGGCTGCC	1380
TGCCCCGCGA GGCTGGAGGG	CAGCGGGAGG	TGCGAGGGGA	GCCAGTGCCC	CTTCCAGCTC	1440
ACCCTGCCCA CGCTGACCAT	CCAGCTCCCG	CGGCAGCTTG	GCAGCATGGA	GGAGGTGCTC	1500
AAAGAAGTGC GGACCCTCAA	GGAAGCAGTG	GACAGTCTGA	AGAAATCCTG	CCAGGACTGT	1560
AAGTTGCAGG CTGACGACCA	TCGAGATCCC	GGCGGGAATG	GAGGGAATGG	AGCAGAGACA	1620
GCCGAGGACA GTAGAGTCCA	GGAACTGGAG	AGTCAGGTGA	ACAAGCTGTC	CTCAGAGCTG	1680
AAGAATGCAA AGGACCAGAT	CCAGGGGCTG	CAGGGGCGCC	TGGAGACGCT	CCATCTGGTA	1740
AATATGAACA ACATTGAGAA	CTACGTGGAC	AACAAAGTGG	CAAATCTAAC	CGTTGTGGTC	1800
AACAGTTTGG ATGGCAAGTG	TTCCAAGTGT	CCCAGCCAAG	AACACATGCA	GTCACAGCCG	1860
GGTAGGTGTA ATGAGGGTCA	TACAGTTTGT	TCATGAAAGC	TGTATAGCCA	GATAGTGGCC	1920
ATAAACATTA ACCCGAGGGA	GCATAAGTTA	GTCAGACTTT	CACCTGTTAA	GTTATGGCAG	1980
GAGAAACAAG TGTTTTCTCA	AATGAGACAA	CAGAAATGGT	AAATGATCCA	CGTACAAAAA	2040
TCCTATTAGT TGTACTCGTT	AGAGACCGTC	ACTTGCAAGT	CTCTAGACCT	TCCCTGCTAG	2100
GTCGACCAAC AGACGAGCAG	AAACAGATTC	CTCCCGGAAT	CTGAACACAT	ATTTGAACAC	2160
AGGACAGGTA TGGCAAGGTT	CCTGGCTCTG	CTTGCTTAGG	TCCCTGGGAA	TCAGATCTTG	2220
GGTGGCTGAT GGGCTTTATA	AGGCTTTCAC	AAACAATCTG	CTGTGCTAGG	TTCTCAAATA	2280
TCTAGTGAGA ATGGGAGATT	TTTATACATG	GAAGCATCTC	TCCTCTCTCT	CTCCTCTCTC	2340

- 69 -

СТСТСТСТТС	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	TCTCTCTCTC	2400
CTCCCTCCCT	СССТСТСТСТ	CTCTTTGTGT	GCGTGTGTGG	TGGGGATGAG	GACACGTGTA	2460
GAACTTCGGG	GGTTGAGACT	TAGTGCATAT	GCATCCTCAC	CATTCCAGTT	AGTGAATGTT	2520
AACACTATTT	AAGGTCACAG	ACCTAACAGC	CTTCTGTGTC	CGGATTCCTG	GATTCCTAGG	2580
ACCTTTGTGG	ATGGGTTGCC	ACACCCTCTG	TGTTCATCCT	GACTGTGAGG	TCGATGGGAC	2640
ATAGTAGGGA	TAACTTTCAT	TTGGAATCTC	TAGAGATGGT	AGGTCATCAT	GTCATAGAAT	2700
GTTATCACTA	ATGACCAAGA	TAGACACTCA	TGTTTAAGAG	ACATCACAAG	GTGTATATTA	2760
AATATGACAT	GGCATATAAC	TTGTAATGAC	ACAAAAATAT	TCTGTTACCT	ACTTTTCTCC	2820
TAAAAGCTTG	GGACTCTCCA	GAGTTCTAAA	TACATGCAAA	CAGATTATTG	TGTTTTACAG	2880
GAATCTTATA	TTGAACTTTC	TTTACCTGAC	TCAAATTTTA	TTAAAATTAA	CTGGGAACAA	2940
ATAGTTGGTC	TCTAATCTCT	ACAAAAACCA	CCAAATGATT	ACACTGAGCA	TAATTATAAT	3000
CACCCTGCTG	CTACGTCTAG	AAACCAAACT	GTGAAATATT	GGCTGACTGT	ATACCTTCCT	3060
AAATAATAAA	TTCAGGATAA	CATTGCCATA	TTATTGGAGA	ACCCCCCCT	CCCTTTTAAA	3120
ACTGGAATCA	TTTTATGTCA	ATCTCAGGTG	AAATACGAAT	GGGTTTCAGA	ACAGTGCTGT	3180
GCACTGAAGG	CTGACATTTA	GAACATATAT	AACGATTTCT	GTAAAGTCTG	CTGTAACAAT	3240
TGCTGATTGT	ATCCTAGGAG	ACTTGGACTC	CTCTCAACGT	TAAGGCAGAG	GAATATAATG	3300
GTTATGAGAG	TAAAACTCTC	TGTCAGGTAC	ATCTGGCTTT	CTGTCCCAGC	TCTGTCACTT	3360
AACACTTAGT	TGCGGTGGGA	AAACTCCCTG	ATCTTCCGGG	AGACTAAGTA	ACTGTATAAG	3420
CAAGCTGGCC	GTGATATCCA	CGTCGTAAGG	CTGCTGTGTG	GGTTCAGTGA	AAACTGTTAC	3480
AGTGATTGGC	AGAGTTTCTG	GAGGTCATTG	ACCCTCATTA	AACCTTGCAT	ACACTTATTC	3540
TTACTACTCT	TTGCTGTTAG	TGTTGCCACC	AGGATTGCCA	TTCAAGGCAG	TCCTGTATAC	3600
TTGATAACAC	CAGTTGGTTC	TGAGGCCTTA	GTTAGCATCT	GTTAGCCTGG	TTCAGGAGAG	3660
TGTATCAGAG	CCAGGTTCCT	CTATCACATA	AACTGTAACG	CAAGTGAATT	GTCCAATTGC	3720
TGTTGAGTCT	GAGAGTCCTT	GAGGTGCATA	GCTTTGACTA	ATAAATCCCC	ATGCTTTTAT	3780
GCTTTTCCTT	CCTCCCTCTT	CCAGTTCAAC	ATCTAATATA	CAAAGATTGT	TCCGACCACT	3840
ACGTGCTAGG	AAGGAGAAGC	AGTGGGGCCT	ACAGAGTTAC	CCCTGATCAC	AGAAACAGCA	3900
GCTTTGAGGT	CTACTGTGAC	ATGGAGACCA	TGGGTGGAGG	CTGGACGGTG	CTGCAGGCTC	3960
GCCTTGATGG	CAGCACCAAC	TTCACCAGAG	AGTGGAAAGA	CTACAAAGCC	GGCTTTGGAA	4020
ACCTTGAACG	AGAATTTTGG	TTGGGCAACG	ATAAAATTCA	TCTTCTGACC	AAGAGTAAGG	4080
AAATGATTTT	GAGAATAGAT	CTTGAAGACT	TTAATGGTCT	CACACTTTAT	GCCTTGTATG	4140
ATCAGTTTTA	TGTGGCTAAT	GAATTTCTCA	AATACCGATT	ACACATCGGT	AACTACAATG	4200
GCACGGCAGG	GGATGCCTTG	CGTTTCAGTC	GACACTACAA	CCATGACCTG	AGGTTTTTCA	4260
CAACCCCAGA	CAGAGACAAC	GATCGGTACC	CCTCTGGGAA	CTGTGGGCTC	TATTACAGCT	4320

- 70 -

CAGGCTGGTG	GTTTGATTCA	TGTCTCTCTG	CCAATTTAAA	TGGCAAATAT	TACCACCAGA	4380
AATACAAAGG	TGTCCGTAAT	GGGATTTTCT	GGGGCACCTG	GCCTGGTATA	AACCAGGCAC	4440
AGCCAGGTGG	CTACAAGTCC	TCCTTCAAAC	AGGCCAAGAT	GATGATTAGG	CCCAAGAATT	4500
TCAAGCCATA	AATTGCTAGT	GTTCATCTCT	CTGGGCACTC	ACTATCTAAG	AGGACGATGA	4560
ATTCCTTCAG	CCCTTTACCA	TATGTCTCAG	TTTATATTCC	TTTCCTATGG	CTAAACATTT	4620
CCTTTAAAGC	TTTACAGCTT	TTAGAATAAA	GCTGAAAAGA	TCTAAAAAGA	CTCCTATGTT	4680
GCTGTTATAT	GAGGAATGCT	TGAAAGCACT	GGAAATATTG	ACAATTATAC	ATTATAATTG	4740
CAAAACCTTT	CATTTTTATT	AGTTGAAAAG	TTTCCTAATA	TTTTTATTAT	TTTTATAATA	4800
AAAACTAAAT	TATTCAGCAA	GCTAGATTCT	ATATACGCAA	GTTTTATTTT	CACTAGGGCT	4860
AAATATACAC	ATTTGAGAAT	ATACCAGTCC	TTCCAGGTAC	AACTGAAAGC	CAAGAACTGT	4920
AGTATTATCT	TTCGTCTAAG	AAGAACTTAA	AGCATTTTAG	TTCTCAAGAA	GAAGGCAGG	4980
GATGGGATTG	GGGGCCAGGG	ACAATATGTA	TAGCTAAATG	TATTCATCTA	ATGCAAAATA	5040
TGGCATTAAA	ATACCTAAAA	ATGTGGTAGC	ATAATATATG	TCTCTTCCCT	CTCCAATTGA	5100
AAAATAATGT	TACCCTGTAG	ACTTTGGTTT	AGTGGTAATT	CACTTACTGT	TTATAGCCTG	5160
TTAGACCGCG	ATACAAAAGC	TGCTTTATCC	TCTCCCTCTG	CTCTCTGTGC	ACAATGGTTT	5220
GTGATGTAAG	GTGCTAGACT	ACTGTAAGGT	TTCCTTGGGG	AAAGGCATGG	TAAGGGAAAA	5280
CACACTGGTT	TATATTTTGA	AAGCCAATCC	TAATCCCAAA	GCAATACTGT	TGTCGAGGAG	5340
TCAACGTTCT	AGGAAGCTGA	CTTTTCTAGA	ACAAATGTAT	TTATTAGGAT	GAATTTGGGA	5400
ATT						5403

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 432 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala 1 5 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30

Ser Ala Gln Ala Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys 35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 50 55

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 55 70 75 80

- 71 -

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln. Asp

Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro

SEQUENCE LISTING

600

660

<110>	Levy,	Gary
	' ' ' '	J 2

<120> Methods of Modulating Immune Coagulation

<130> 9579-37

<140>

<141>

<150> US 09/442,143

<151> 1999-11-15

<160> 53

<170> PatentIn version 3.1

<210> 1

<211> 4630

<212> DNA

<400> 1

<213> Homo sapiens

taaagagtct gccaacattt tgagaatgtg aataggattt ggctaaaatt aaggggatat 120 acagaaaagt cataggaaat caggttaaag acataaatat gagataggct acagagtgtt 180 ttaagtaata caataaaaca tttagatttt tgcccatgtc agtcattttg aaattatttt 240 taaagcaaaa aaaccctttt taaacaagaa atcttatgag atgtcaatat gcaaaacaaa 300 ttaaaaggag gtggtttctc taactgaagc tgttcctctt tcctgccttc agcctctgaa 360 gagaaagtta gaaaactatt atcattaatg ctacatgttt tgaacaagct gatataccaa 420 gtggcccaga gagcaggtag aagaaccagc gtggagacag aaagcaagag gcccgcctgc 480 cagggctacc tgcagaaaga aagggcaaag atgctgtagg caagagaagt tcaggacaga 540

cactggcata gctcaaagat tcacatttga gcagctgtgg aagatgacag tacaattacc

aaaatgtcga agggcaaagg aggcagctac tggttttgat gaaagacaat tatgtccttt

gatctagggt tggaagccag gtctcctgag tatgcgagaa taaatacagt catggaagtg

taaatgggtc ttagacattt agacatttat atacactatg ctacggacaa aggaatagaa 720 agtagcactt ttttctccac tagttttctt ctctttttca agtagatgaa gcaaaagtca 780 actgcaatag tcagaaagct gtactttgtt acacttagaa acttctaaaa gtgcttaaga 840 tttcacctga aagtccaaca tgaagaaaat acaggctccc caatgcccca ttctaagaag 900 gaaaaaggac cattttcatt ttagtaacgt ttctgttcta tagacagttt ggataactag 960 ctcttacttt ttatctttaa aaactgtttt tccagtgaag ttacgtataa ttatttactt 1020 caagcgtagt ataccaaatt actttagaaa tgcaagactt ttcttatact tcataaaata 1080 cattatgaaa gtgaatcttg ttggctgtgt acatttgact ataataattt caatgcatat 1140 tatttctatt gagagtaagt tacagttttt ggcaaactgc gtttgatgag ggctatctcc 1200 tcttcctgtg cgtttctaaa acttgtgatg caaacgctcc caccctttcc tgggaacaca 1260 gaaagcctga ctcaggccat ggccgctatt aaagcagctc cagccctgcg cactccctgc 1320 tggggtgagc agcactgtaa agatgaagct ggctaactgg tactggctga gctcagctgt 1380 tcttgccact tacggttttt tggttgtggc aaacaatgaa acagaggaaa ttaaagatga 1440 aagagcaaag gatgtctgcc cagtgagact agaaagcaga gggaaatgcg aagaggcagg 1500 ggagtgcccc taccaggtaa gcctgccccc cttgactatt cagctcccga agcaattcag 1560 caggatcgag gaggtgttca aagaagtcca aaacctcaag gaaatcgtaa atagtctaaa 1620 gaaatettge caagaetgea agetgeagge tgatgaeaae ggagaeeeag geagaaaegg 1680 actgttgtta cccagtacag gagccccggg agaggttggt gataacagag ttagagaatt 1740 agagagtgag gttaacaagc tgtcctctga gctaaagaat gccaaagagg agatcaatgt 1800 acttcatggt cgcctggaga agctgaatct tgtaaatatg aacaacatag aaaattatgt 1860 tgacagcaaa gtggcaaatc taacatttgt tgtcaatagt ttggatggca aatgttcaaa 1920 gtgtcccagc caagaacaaa tacagtcacg tccaggtatg tataataatg ttttcttatc 1980 atatgttcat aaatgttata cagtcagaga tgtatctaaa agattaacct gagtcagtaa 2040 gttaaataga tgacagatta agtcttttat ttatcaaggt gcacaggaaa aaataaatat 2100 cttctcaaat atgaccacat aaatatgacc taattacaaa atcatagtta gttctgtatc 2160 cactggaagt cactttcaat tttaagatct tatttgttaa tgccagacct acttgcaagc 2220 agagattaga ggtcctttct gctttataac attaggttct tcttgtgagg ccttaagcat 2280 ttactaaaca ccttcaagta agtttagtaa agtttcatta ctgccattga ttcaattatc 2340 aaactgcttt tgtacatata aagaattctt cagatgcatg gtttctatta acaagatcca 2400 atgccttcct tttatttccc cttcagttca acatctaata tataaagatt gctctgacta 2460 ctacgcaata ggcaaaagaa gcagtgagac ctacagagtt acacctgatc ccaaaaatag 2520 tagctttgaa gtttactgtg acatggagac catgggggga ggctggacag tgctgcaggc 2580

2640 acgtctcgat gggagcacca acttcaccag aacatggcaa gactacaaag caggctttgg 2700 aaacctcaga agggaatttt ggctggggaa cgataaaatt catcttctga ccaagagtaa 2760 ggaaatgatt ctgagaatag atcttgaaga ctttaatggt gtcgaactat atgccttgta tgatcagttt tatgtggcta atgagtttct caaatatcgt ttacacgttg gtaactataa 2820 2880 tggcacagct ggagatgcat tacgtttcaa caaacattac aaccacgatc tgaagttttt 2940 caccactcca gataaagaca atgatcgata tccttctggg aactgtgggc tgtactacag 3000 ttcaggctgg tggtttgatg catgtctttc tgcaaactta aatggcaaat attatcacca 3060 aaaatacaga ggtgtccgta atgggatttt ctggggtacc tggcctggtg taagtgaggc 3120 acaccctggt ggctacaagt cctccttcaa agaggctaag atgatgatca gacccaagca 3180 ctttaagcca taaatcactc tgttcattcc tccaggtatt cgttatctaa tagggcaatt 3240 aattccttgt ttcatatttt tcatagctaa aaaatgatgt ctgacggcta ggttcttatg 3300 ctacacagca tttgaaataa agctgaaaaa caatgcattt taaaggagtc ctttgttgtt 3360 atgctgttat ccaatgaaca cttgcaagca attagcaata ttgagaatta tacattagat 3420 ttacaattct tttaatttct attgaaactt tttctattgc ttgtattact tgctgtattt 3480 aaaaaataat tgttggctgg gtgtggtagc tcacgcctgt aatcccagca ctttggaatg 3540 tcaaggcagg cagatcactt gaggtcagga gtttgagacc agcctggcca aacatgtgaa 3600 acgctgtctc tattaaaaat acaaaaatta gccgggcatg gtggtacatg cctgtaatca 3660 acgctgttta ttaaaaatac aaaaattagc cgggcatggt ggacatgcct gtaatcctag 3720 tacttgggag gctgaggcag gagaatcgct tgaacctgag aggaagaggt tgcagtgagc caagaatgag ccactgcact ccagcatggg tgacagagaa aactctgtct caaacaaaaa 3780 aataataaaa tttattcagt aggtggattc tacacaaagt aatctgtatt tgggccatga 3840 tttaagcaca tctgaaggta tatcactctt ttcaggctat aattatttgg gtaatcttca 3900 3960 ttctgagaca aacttaatct atatcattta ctttgcaaca gaacaaccct acagcatttt ggttcccaga ctaagggaac taatatctat ataattaaac ttgttcattt atcattcatg 4020 aaatataaaa tacttgtcat ttaaaccgtt taaaaatgtg gtagcataat gtcacccaa 4080 aaagcattca gaaagcaatg taactgtgaa gaccagggtt taaaggtaat tcatttatag 4140 4200 tttataactc cttagatgtt tgatgttgaa aactgcttta acatgaaaat tatcttcctc tgctctgtgt gaacaatagc ttttaattta agattgctca ctactgtact agactactgg 4260 taggtttttt tggggggggg tgggtaggga tatgtgggta atgaagcatt tacttacagg 4320 ctatcatact ctgaggccaa ttttatctcc aaagcaataa tatcattaag tgattcactt 4380 catagaaggc taagtttctc taggacagat agaaaacatg aattttgaaa tatatagaac 4440

agtagttaaa atactatata tttcaaccct ggctggtaga ttgcttattt tactatcaga 4500
aactaaaaga tagatttta cccaaacaga agtatctgta atttttataa ttcatcaatt 4560
ctggaatgct atatataata tttaaaagac tttttaaatg tgtttaattt catcatcgta 4620
aaaagggatc 4630

<210> 2

<211> 439

<212> PRT

<213> Homo sapiens fgl2

<400> 2

Met Lys Leu Ala Asn Trp Tyr Trp Leu Ser Ser Ala Val Leu Ala Thr 1 5 10 15

Tyr Gly Phe Leu Val Val Ala Asn Asn Glu Thr Glu Glu Ile Lys Asp 20 25 30

Glu Arg Ala Lys Asp Val Cys Pro Val Arg Leu Glu Ser Arg Gly Lys 35 40 45

Cys Glu Glu Ala Gly Glu Cys Pro Tyr Gln Val Ser Leu Pro Pro Leu 50 55 60

Thr Ile Gln Leu Pro Lys Gln Phe Ser Arg Ile Glu Glu Val Phe Lys 70 75 80

Glu Val Gln Asn Leu Lys Glu Ile Val Asn Ser Leu Lys Lys Ser Cys 85 90 95

Gln Asp Cys Lys Leu Gln Ala Asp Asp Asn Gly Asp Pro Gly Arg Asn 100 105 110

Gly Leu Leu Pro Ser Thr Gly Ala Pro Gly Glu Val Gly Asp Asn 115 120 125

Arg Val Arg Glu Leu Glu Ser Glu Val Asn Lys Leu Ser Ser Glu Leu 130 135 140

Lys Asn Ala Lys Glu Glu Ile Asn Val Leu His Gly Arg Leu Glu Lys 145 150 150

Leu Asn Leu Val Asn Met Asn Asn Ile Glu Asn Tyr Val Asp Ser Lys
165 170 175

Val Ala Asn Leu Thr Phe Val Val Asn Ser Leu Asp Gly Lys Cys Ser 180 185 190

Lys Cys Pro Ser Gln Glu Gln Ile Gln Ser Arg Pro Val Gln His Leu 195 200 205

Ile Tyr Lys Asp Cys Ser Asp Tyr Tyr Ala Ile Gly Lys Arg Ser Ser 210 220

Glu Thr Tyr Arg Val Thr Pro Asp Pro Lys Asn Ser Ser Phe Glu Val 225 230 235 240

Tyr Cys Asp Met Glu Thr Met Gly Gly Gly Trp Thr Val Leu Gln Ala 245 250 255

Arg Leu Asp Gly Ser Thr Asn Phe Thr Arg Thr Trp Gln Asp Tyr Lys 260 265 270

Ala Gly Phe Gly Asn Leu Arg Arg Glu Phe Trp Leu Gly Asn Asp Lys 275 280 285

Ile His Leu Leu Thr Lys Ser Lys Glu Met Ile Leu Arg Ile Asp Leu 290 295 300

Glu Asp Phe Asn Gly Val Glu Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr 305 310 315 320

Val Ala Asn Glu Phe Leu Lys Tyr Arg Leu His Val Gly Asn Tyr Asn 325 330 335

Gly Thr Ala Gly Asp Ala Leu Arg Phe Asn Lys His Tyr Asn His Asp 340 345 350

Leu Lys Phe Phe Thr Thr Pro Asp Lys Asp Asn Asp Arg Tyr Pro Ser 355 360 365

Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly Trp Trp Phe Asp Ala Cys 370 375 380

Leu Ser Ala Asn Leu Asn Gly Lys Tyr Tyr His Gln Lys Tyr Arg Gly 385 390 395 400

Val Arg Asn Gly Ile Phe Trp Gly Thr Trp Pro Gly Val Ser Glu Ala 405 410 415

His Pro Gly Gly Tyr Lys Ser Ser Phe Lys Glu Ala Lys Met Met Ile

Arg Pro Lys His Phe Lys Pro 435

<210> 3

<211> 5403

<212> DNA

<213> Murine

<400> 3 cataaggcgt gtctgacaaa ttcttcatac acacatttcc cctttgcaca ttcagtctgt 60 ataggttatt tctataggag aaaaaaata ttcaaattcc ttgtgcactg gtaacaggca 120 tgaaggctca gcaaagccaa tacgtgttat gtccagttgg agacagtgcc agggccaaca 180 ttccagactt ctcagataga aagtgcgcct gcctgccctg ctctgagaat ttgaagagag 240 tagttcagtt agaattaaga ggcagtagag aaaagtcttg ggaaatctgg ttagagatat 300 360 aaatatgaga actggacatg gtggtacaca cctgtgatct ctgtgtttag gagggagagg cagagagatc aggagttcaa ggccagcctg agctacttga gacccagtct aaataaataa 420 gagatagatt acagagtgcc tttaactagt acagagaaag aatttgggtt tatctgtgtc 480 540 agttacgctg aaataatttt taagtaataa aatccctttt aataagaaac cttatgaggt cagtatgcac aatgaactta agagagaccc ccagctcctg agctgagtga tggggaagga 600 660 cagccactgc ctgtgatgtg tgagtgacgt gcttccaagt gttttaacca ctgacgatta 720 catagcctgc acagtcagga gaaaacagcc gtattctctg ccagttctct tcccttttac aaacagatga gagacacaca cagagaatcc atttaaagag cggacctttg ttctgattag 780 840 gggcaatttt aagtacttaa gagttcacac aaagtctagc cttcaaaaag aaaacaggtt 900 cccaaactag ggaggaaaca gaatcatttc cattttggtg acatttagtg ggaagaagct 960 cacagacatt tagacgttcc aactctttcc ccactagtgg accaagtata taatatggta tcttttgggc actggtatta caactgtttt ttaaacaaaa gactttcctt gtgctttact 1020 aaaaacccag acggtgaatc ttgaatacaa tgcgtggcac ccacggcagg cattctattg 1080 tgcatagttt tgactgacag gagatgacag catttggctg gctgcgcttg ctgaggaccc 1140 tctcctcctg tgtggcgtct gagactgtga tgcaaatgcg cccgcccttt tctgggaact 1200 cagaacgcct gagtcaggcg gcggtggcta ttaaagcgcc tggtcaggct gggctgccgc 1260 actgcaagga tgaggcttcc tggttggttg tggctgagtt ctgccgtcct cgctgcctgc 1320 cgagcggtgg aggagcacaa cctgactgag gggctggagg atgccagcgc ccaggctgcc 1380 tgccccgcga ggctggaggg cagcgggagg tgcgagggga gccagtgccc cttccagctc 1440 1500 accetgecea egetgaceat ecageteceg eggeagettg geageatgga ggaggtgete aaagaagtgc ggaccctcaa ggaagcagtg gacagtctga agaaatcctg ccaggactgt 1560 aagttgcagg ctgacgacca tcgagatccc ggcgggaatg gagggaatgg agcagagaca 1620 gccgaggaca gtagagtcca ggaactggag agtcaggtga acaagctgtc ctcagagctg 1680 1740 aagaatgcaa aggaccagat ccaggggctg caggggcgcc tggagacgct ccatctggta aatatgaaca acattgagaa ctacgtggac aacaaagtgg caaatctaac cgttgtggtc 1800 aacagtttgg atggcaagtg ttccaagtgt cccagccaag aacacatgca gtcacagccg 1860 1920 ggtaggtgta atgagggtca tacagtttgt tcatgaaagc tgtatagcca gatagtggcc ataaacatta acccgaggga gcataagtta gtcagacttt cacctgttaa gttatggcag 1980 gagaaacaag tgttttctca aatgagacaa cagaaatggt aaatgatcca cgtacaaaaa 2040 tcctattagt tgtactcgtt agagaccgtc acttgcaagt ctctagacct tccctgctag 2100 gtcgaccaac agacgagcag aaacagattc ctcccggaat ctgaacacat atttgaacac 2160 aggacaggta tggcaaggtt cctggctctg cttgcttagg tccctgggaa tcagatcttg 2220 ggtggctgat gggctttata aggctttcac aaacaatctg ctgtgctagg ttctcaaata 2280 tctagtgaga atgggagatt tttatacatg gaagcatctc tcctctctc ctcctctctc 2340 ctctctctc tctctctc tctctctc tctctctc tctctctc 2400 ctccctccct ccctctctct ctctttgtgt gcgtgtgtgg tggggatgag gacacgtgta 2460 gaacttcggg ggttgagact tagtgcatat gcatcctcac cattccagtt agtgaatgtt 2520 aacactattt aaggtcacag acctaacagc cttctgtgtc cggattcctg gattcctagg 2580 acctttgtgg atgggttgcc acaccctctg tgttcatcct gactgtgagg tcgatgggac 2640 atagtaggga taactttcat ttggaatctc tagagatggt aggtcatcat gtcatagaat 2700 gttatcacta atgaccaaga tagacactca tgtttaagag acatcacaag gtgtatatta 2760 aatatgacat ggcatataac ttgtaatgac acaaaaatat tctgttacct acttttctcc 2820 taaaagcttg ggactctcca gagttctaaa tacatgcaaa cagattattg tgttttacag 2880 gaatcttata ttgaactttc tttacctgac tcaaatttta ttaaaattaa ctgggaacaa 2940 atagttggtc tctaatctct acaaaaacca ccaaatgatt acactgagca taattataat 3000 caccetgetg ctacgtetag aaaccaaact gtgaaatatt ggetgaetgt atacetteet 3060 aaataataaa ttcaggataa cattgccata ttattggaga accccccct cccttttaaa 3120 actggaatca ttttatgtca atctcaggtg aaatacgaat gggtttcaga acagtgctgt 3180 gcactgaagg ctgacattta gaacatatat aacgatttct gtaaagtctg ctgtaacaat 3240 tgctgattgt atcctaggag acttggactc ctctcaacgt taaggcagag gaatataatg 3300 gttatgagag taaaactctc tgtcaggtac atctggcttt ctgtcccagc tctgtcactt 3360 3420 aacacttagt tgcggtggga aaactccctg atcttccggg agactaagta actgtataag caagctggcc gtgatatcca cgtcgtaagg ctgctgtgtg ggttcagtga aaactgttac 3480 agtgattggc agagtttctg gaggtcattg accctcatta aaccttgcat acacttattc 3540 ttactactct ttgctgttag tgttgccacc aggattgcca ttcaaggcag tcctgtatac 3600 3660 ttgataacac cagttggttc tgaggcctta gttagcatct gttagcctgg ttcaggagag tgtatcagag ccaggttcct ctatcacata aactgtaacg caagtgaatt gtccaattgc 3720 3780 tgttgagtct gagagtcctt gaggtgcata gctttgacta ataaatcccc atgcttttat gcttttcctt cctcctctt ccagttcaac atctaatata caaagattgt tccgaccact 3840 acgtgctagg aaggagaagc agtggggcct acagagttac ccctgatcac agaaacagca 3900 gctttgaggt ctactgtgac atggagacca tgggtggagg ctggacggtg ctgcaggctc 3960 4020 gccttgatgg cagcaccaac ttcaccagag agtggaaaga ctacaaagcc ggctttggaa accttgaacg agaattttgg ttgggcaacg ataaaattca tcttctgacc aagagtaagg 4080 aaatgatttt gagaatagat cttgaagact ttaatggtct cacactttat gccttgtatg 4140 atcagtttta tgtggctaat gaatttctca aataccgatt acacatcggt aactacaatg 4200 gcacggcagg ggatgccttg cgtttcagtc gacactacaa ccatgacctg aggtttttca 4260 caaccccaga cagagacaac gatcggtacc cctctgggaa ctgtgggctc tattacagct 4320 caggctggtg gtttgattca tgtctctctg ccaatttaaa tggcaaatat taccaccaga 4380 aatacaaagg tgtccgtaat gggattttct ggggcacctg gcctggtata aaccaggcac 4440 4500 agccaggtgg ctacaagtcc tccttcaaac aggccaagat gatgattagg cccaagaatt tcaagccata aattgctagt gttcatctct ctgggcactc actatctaag aggacgatga 4560 attccttcag ccctttacca tatgtctcag tttatattcc tttcctatgg ctaaacattt 4620 cctttaaagc tttacagctt ttagaataaa gctgaaaaga tctaaaaaga ctcctatgtt 4680 gctgttatat gaggaatgct tgaaagcact ggaaatattg acaattatac attataattg 4740 caaaaccttt catttttatt agttgaaaag tttcctaata tttttattat ttttataata 4800 aaaactaaat tattcagcaa gctagattct atatacgcaa gttttatttt cactagggct 4860 aaatatacac atttgagaat ataccagtcc ttccaggtac aactgaaagc caagaactgt 4920 agtattatct ttcgtctaag aagaacttaa agcattttag ttctcaagaa gaagggcagg 4980 gatgggattg ggggccaggg acaatatgta tagctaaatg tattcatcta atgcaaaata 5040 tggcattaaa atacctaaaa atgtggtagc ataatatatg tctcttccct ctccaattga 5100 aaaataatgt taccctgtag actttggttt agtggtaatt cacttactgt ttatagcctg 5160 ttagaccgcg atacaaaagc tgctttatcc tctccctctg ctctctgtgc acaatggttt 5220 gtgatgtaag gtgctagact actgtaaggt ttccttgggg aaaggcatgg taagggaaaa 5280 cacactggtt tatattttga aagccaatcc taatcccaaa gcaatactgt tgtcgaggag 5340 tcaacgttct aggaagctga cttttctaga acaaatgtat ttattaggat gaatttggga 5400 att

<210> 4

<211> 432

<212> PRT

<213> Murine fgl2

<400> 4

Met Arg Leu Pro Gly Trp Leu Trp Leu Ser Ser Ala Val Leu Ala Ala 1 5 10 15

Cys Arg Ala Val Glu Glu His Asn Leu Thr Glu Gly Leu Glu Asp Ala 20 25 30

Ser Ala Gln Ala Cys Pro Ala Arg Leu Glu Gly Ser Gly Arg Cys 35 40 45

Glu Gly Ser Gln Cys Pro Phe Gln Leu Thr Leu Pro Thr Leu Thr Ile 50 55 60

Gln Leu Pro Arg Gln Leu Gly Ser Met Glu Glu Val Leu Lys Glu Val 65 70 75 80

Arg Thr Leu Lys Glu Ala Val Asp Ser Leu Lys Lys Ser Cys Gln Asp 85 90 95

Cys Lys Leu Gln Ala Asp Asp His Arg Asp Pro Gly Gly Asn Gly Gly 100 105 110

Asn Gly Ala Glu Thr Ala Glu Asp Ser Arg Val Gln Glu Leu Glu Ser 115 120 125

Gln Val Asn Lys Leu Ser Ser Glu Leu Lys Asn Ala Lys Asp Gln Ile 130 135 140

Gln Gly Leu Gln Gly Arg Leu Glu Thr Leu His Leu Val Asn Met Asn 145 150 150

Asn Ile Glu Asn Tyr Val Asp Asn Lys Val Ala Asn Leu Thr Val Val 165 170 175

Val Asn Ser Leu Asp Gly Lys Cys Ser Lys Cys Pro Ser Gln Glu His 180 185 190

Met Gln Ser Gln Pro Val Gln His Leu Ile Tyr Lys Asp Cys Ser Asp 195 200 205

His Tyr Val Leu Gly Arg Arg Ser Ser Gly Ala Tyr Arg Val Thr Pro 210 215 220

Asp His Arg Asn Ser Ser Phe Glu Val Tyr Cys Asp Met Glu Thr Met 225 230 235 240

Gly Gly Gly Trp Thr Val Leu Gln Ala Arg Leu Asp Gly Ser Thr Asn 245 250 255

Phe Thr Arg Glu Trp Lys Asp Tyr Lys Ala Gly Phe Gly Asn Leu Glu 260 265 270

Arg Glu Phe Trp Leu Gly Asn Asp Lys Ile His Leu Leu Thr Lys Ser 275 280 285

Lys Glu Met Ile Leu Arg Ile Asp Leu Glu Asp Phe Asn Gly Leu Thr 290 295 300

Leu Tyr Ala Leu Tyr Asp Gln Phe Tyr Val Ala Asn Glu Phe Leu Lys 305 310 310 320

Tyr Arg Leu His Ile Gly Asn Tyr Asn Gly Thr Ala Gly Asp Ala Leu 325 330 335

Arg Phe Ser Arg His Tyr Asn His Asp Leu Arg Phe Phe Thr Thr Pro 340 345 350

Asp Arg Asp Asn Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr 355 360 365

Ser Ser Gly Trp Trp Phe Asp Ser Cys Leu Ser Ala Asn Leu Asn Gly 370 380

Lys Tyr Tyr His Gln Lys Tyr Lys Gly Val Arg Asn Gly Ile Phe Trp 385 390 395 400

Gly Thr Trp Pro Gly Ile Asn Gln Ala Gln Pro Gly Gly Tyr Lys Ser 405 410 415

Ser Phe Lys Gln Ala Lys Met Met Ile Arg Pro Lys Asn Phe Lys Pro 420 425 430

<210> 5

<211> 592

<212> DNA

<213> Murine

<400> 5 atgaggette	ctggttggtt	gtggctgagt	tetgeegtee	tcgctgcctg	ccgagcggtg	60
gaggagcaca	acctgactga	ggggctggag	gatgccagcg	cccaggctgc	ctgccccgcg	120
aggctggagg	gcagcgggag	gtgcgagggg	agccagtgcc	ccttccagct	caccctgccc	180
acgctgacca	tccagctccc	gcggcagctt	ggcagcatgg	aggaggtgct	caaagaagtg	240
cggaccctca	aggaagcagt	ggacagtctg	aagaaatcct	gccaggactg	taagttgcag	300
gctgacgacc	atcgagatcc	cggcgggaat	ggagggaatg	gagcagagac	agccgaggac	360
agtagagtcc	aggaactgga	gagtcaggtg	aacaagctgt	cctcagagct	gaagaatgca	420
aaggaccaga	tccaggggct	gcaggggcgc	ctggagacgc	tccatctggt	aaatatgaac	480
aacattgaga	actacgtgga	caacaaagtg	gcaaatctaa	ccgttgtggt	caacagtttg	540
gatggcaagt	gttccaagtg	tcccagccaa	gaacacatgc	agtcacagcc	āā	592

<210> 6

<211> 613

<212> DNA

<213> Homo sapiens

<400> 6
atgaagctgg ctaactggta ctggctgagc tcagctgttc ttgccactta cggttttttg 60
gttgtggcaa acaatgaaac agaggaaatt aaagatgaaa gagcaaagga tgtctgcca 120
gtgagactag aaagcagagg gaaatgcgaa gaggcagggg agtgccccta ccaggtaagc 180
ctgccccct tgactattca gctcccgaag caattcagca ggatcgagga ggtgttcaaa 240
gaagtccaaa acctcaagga aatcgtaaat agtctaaaga aatcttgcca agactgcaag 300
ctgcaggctg atgacaacgg agacccaggc agaaacggac tgttgttacc cagtacagga 360
gccccgggag aggttggtga taacaggtt agagaattag agagtgaggt taacaagctg 420

tcctctgagc	taaagaatgc	caaagaggag	atcaatgtac	ttcatggtcg	cctggagaag	480
ctgaatcttg	taaatatgaa	caacatagaa	aattatgttg	acagcaaagt	ggcaaatcta	540
acatttgttg	tcaatagttt	ggatggcaaa	tgttcaaagt	gtcccagcca	agaacaaata	600
cagtcacgtc	cag					613
<210> 7						
<211> 707						
<212> DNA						
<213> Muri	ne					
<400> 7 ttcaacatct	aatatacaaa	gattgttccg	accactacgt	gctaggaagg	agaagcagtg	60
gggcctacag	agttacccct	gatcacagaa	acagcagctt	tgaggtctac	tgtgacatgg	120
agaccatggg	tggaggctgg	acggtgctgc	aggctcgcct	tgatggcagc	accaacttca	180
ccagagagtg	gaaagactac	aaagccggct	ttggaaacct	tgaacgagaa	ttttggttgg	240
gcaacgataa	aattcatctt	ctgaccaaga	gtaaggaaat	gattttgaga	atagatcttg	300
aagactttaa	tggtctcaca	ctttatgcct	tgtatgatca	gttttatgtg	gctaatgaat	360
ttctcaaata	ccgattacac	atcggtaact	acaatggcac	ggcaggggat	gccttgcgtt	420
tcagtcgaca	ctacaaccat	gacctgaggt	ttttcacaac	cccagacaga	gacaacgatc	480
ggtacccctc	tgggaactgt	gggctctatt	acagctcagg	ctggtggttt	gattcatgtc	540
tctctgccaa	cttaaatggc	aaatattacc	accagaaata	caaaggtgtc	cgtaatggga	600
ttttctgggg	cacctggcct	ggtataaacc	aggcacagcc	aggtggctac	aagtcctcct	660
tcaaacaggc	caagatgatg	attaggccca	agaatttcaa	gccataa		707
<210> 8						
<211> 707						
<212> DNA						
<213> Homo	sapiens					
<400> 8 ttcaacatct	aatatataaa	gattgctctg	actactacgc	aataggcaaa	agaagcagtg	60
agacctacag	agttacacct	gatcccaaaa	atagtagctt	tgaagtttac	tgtgacatgg	120
agaccatggg	gggaggctgg	acagtgctgc	aggcacgtct	cgatgggagc	accaacttca	180
ccagaacatg	gcaagactac	aaagcaggct	ttggaaacct	cagaagggaa	ttttggctgg	240

ggaacgataa aattcatctt ctgaccaaga gtaaggaaat gattctgaga atagatcttg 300 360 aagactttaa tggtgtcgaa ctatatgcct tgtatgatca gttttatgtg gctaatgagt 420 ttctcaaata tcgtttacac gttggtaact ataatggcac agctggagat gcattacgtt 480 tcaacaaca ttacaaccac gatctgaagt ttttcaccac tccagataaa gacaatgatc 540 gatatccttc tgggaactgt gggctgtact acagttcagg ctggtggttt gatgcatgtc 600 tttctgcaaa cttaaatggc aaatattatc accaaaaata cagaggtgtc cgtaatggga 660 ttttctgggg tacctggcct ggtgtaagtg aggcacaccc tggtggctac aagtcctcct 707 tcaaagaggc taagatgatg atcagaccca agcactttaa gccataa

<210> 9

<211> 1052

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (384)..(384)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (468)..(468)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (470)..(470)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (505)..(505)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (524)..(524)

<223> n is any nucleic acid

<220>

<221> misc_feature

<222> (668)..(668)

<223> n is any nucleic acid

<400> 9 60 atcactctgt tcattcctcc aggtattcgt tatctaatag ggcaattaat tccttcagca ctttagaata tgccttgttt catatttttc atagctaaaa aatgccttgt ttcatatttt 120 180 tcatagctaa aaaatgatgt ctgacggcta ggttcttatg ctacacagca tttgaaataa agctgaaaaa caatgcattt taaaggagtc ctttgttgtt atgctgttat ccaatgaaca 240 300 cttgcaagca attagcaata ttgagaatta tacattagat ttacaattct tttaatttct attgaaactt tttctattgc ttgtattact tgctgtattt aaaaaataat tgttggctgg 360 gtgtggtagc tcacgcctgt aatnccagca ctttggaatg tcaaggcagg cagatcactt 420 gaggtcagga gtttgagacc agcctggcca aacatgtgaa acgctgtntn tattaaaaat 480 540 acaaaaatta gccgggcatg gtggnacatg cctgtaatcc tagntacttg ggaggctgag 600 gcaggagaat cgcttgaacc tgagaggaag aggttgcagt gagccaagaa tgagccactg cactccagca tgggtgacag agaaaactct gtctcaaaca aaaaaataat aaaatttatt 660 cagtaggntg gattctacac aaagtaatct gtatttgggc catgatttaa gcacatctga 720 aggtatatca ctcttttcag gctataatta tttgggtaat cttcattctg agacaaactt 780 840 aatctatatc atttactttg caacagaaca accctacagc attttggttc ccagactaag ggaactaata tctatataat taaacttgtt catttatcat tcatgaaata taaaatactt 900 gtcatttaaa ccgtttaaaa atgtggtagc ataatgtcac cccaaaaagc attcagaaag 960 1020 caatgtaact gtgaagacca gggtttaaag gtaattcatt tatagtttat aactccttag atgtttgatg ttgaaaactg ctttaacatg aa 1052 <210> 10

<211> 1339

<212> DNA

<213> Murine

<400> 10 60 tcggtttgga tatcatggga tggaatgaga agggaaagta ggagcccgag agtgcggtaa gacaaggcat aaggcgtgtc tgacaaattc ttcatacaca catttcccct ttgcacattc 120 agtctgtata ggttatttct ataggagaaa aaaaatattc aaattccttg tgcactggta 180 acaggcatga aggctcagca aagccaatac gtgttatgtc cagttggaga cagtgccagg 240 gccaacattc cagacttctc agatagaaag tgcgcctgcc tgccctgctc tgagaatttg 300 aagagagtag ttcagttaga attaagaggc agtagagaaa agtcttggga aatctggtta 360 420 gagatataaa tatgagaact ggacatggtg gtacacacct gtgatctctg tgtttaggag ggagaggcag agagatcagg agttcaaggc cagcctgagc tacttgagac ccagtctaaa 480 540 taaataagag atagattaca gagtgccttt aactagtaca gagaaagaat ttgggtttat ctgtgtcagt tacgctgaaa taatttttaa gtaataaaat cccttttaat aagaaacctt 600 660 atgaggtcag tatgcacaat gaacttaaga gagaccccca gctcctgagc tgagtgatgg 720 ggaaggacag ccactgcctg tgatgtgta gtgacgtgct tccaagtgtt ttaaccactg 780 acgattacat agcctgcaca gtcaggagaa aacagccgta ttctctgcca gttctcttcc 840 cttttacaaa cagatgagag acacacacag agaatccatt taaagagcgg acctttgttc tgattagggg caattttaag tacttaagag ttcacacaaa gtctagcctt caaaaagaaa 900 acaggttccc aaactaggga ggaaacagaa tcatttccat tttggtgaca tttagtggga 960 agaagctcac agacatttag acgttccaac tctttcccca ctagtggacc aagtatataa 1020 tatggtatct tttgggcact ggtattacaa ctgtttttta aacaaaagac tttccttgtg 1080 ctttactaaa aacccagacg gtgaatcttg aatacaatgc gtggcaccca cggcaggcat 1140 tctattgtgc atagttttga ctgacaggag atgacagcat ttggctggct gcgcttgctg 1200 aggaccctct cctcctgtgt ggcgtctgag actgtgatgc aaatgcgccc gcccttttct 1260 gggaactcag aacgcctgag tcaggcggcg gtggctatta aagcgcctgg tcaggctggg 1320 1339 ctgccgcact gcaaggatg

<210> 11

<211> 1338

<212> DNA

<213> Homo sapiens

<400> 11 tagggttgg	a agccaggtct	cctgagtatg	cgagaataaa	tacagtcatg	gaagtgtaaa	60
gagtctgcc	a acattttgag	aatgtgaata	ggatttggct	aaaattaagg	ggatatacag	120
aaaagtcat	a ggaaatcagg	ttaaagacat	aaatatgaga	taggctacag	agtgttttaa	180
gtaatacaa	at aaaacattta	gatttttgcc	catgtcagtc	attttgaaat	tatttttaaa	240
gcaaaaaaa	ac cctttttaaa	caagaaatct	tatgagatgt	caatatgcaa	aacaaattaa	300
aaggaggtg	gg tttctctaac	tgaagctgtt	cctctttcct	gccttcagcc	tctgaagaga	360
aagttagaa	aa actattatca	ttaatgctac	atgttttgaa	caagctgata	taccaagtgg	420
cccagagag	gc aggtagaaga	accagcgtgg	agacagaaag	caagaggccc	gcctgccagg	480
gctacctgo	ca gaaagaaagg	gcaaagatgc	tgtaggcaag	agaagttcag	gacagacact	540
ggcatagct	cc aaagattcac	atttgagcag	ctgtggaaga	tgacagtaca	ataccaaaat	600
gtcgaagg	gc aaaggaggca	gctactggtt	ttgatgaaag	acaattatgt	ccttttaaat	660
gggtcttag	ga catttagaca	tttatataca	ctatgctacg	gacaaaggaa	tagaaagtag	720
cactttttt	c tecaetagtt	ttcttctctt	tttcaagtag	atgaagcaaa	agtcaactgc	780
aatagtcag	ga aagctgtact	ttgttacact	tagaaacttc	taaaagtgct	taagatttca	840
cctgaaag	tc caacatgaag	aaaatacagg	ctccccaatg	ccccattcta	agaagaaaaa	900
ggaccatt	tt cattttagta	acgtttctgt	tctatagaca	gtttggataa	ctagctctta	960
ctttttat	ct ttaaaaactg	tttttccagt	gaagttacgt	ataattattt	acttcaagcg	1020
tagtatac	ca aattacttta	gaaatgcaag	acttttctta	tacttcataa	aatacattat	1080
gaaagtga	at cttgttggct	gtgtacattt	gactataata	atttcaatgc	atattatttc	1140
tattgagag	gt aagttacagt	ttttggcaaa	ctgcgtttga	tgagggctat	ctcctcttcc	1200
tgtgcgtt	tc taaaacttgt	gatgcaaacg	ctcccaccct	ttcctgggaa	cacagaaagc	1260
ctgactca	gg ccatggccgc	tattaaagca	gctccagccc	tgcgcactcc	ctgctgggtg	1320
agcagcac	tg taaagatg					1338

<210> 12

<211> 1339

<212> DNA

<213> Homo sapiens

<400> 12 60 tagggttgga agccaggtct cctgagtatg cgagaataaa tacagtcatg gaagtgtaaa 120 gagtctgcca acattttgag aatgtgaata ggatttggct aaaattaagg ggatatacag 180 aaaagtcata ggaaatcagg ttaaagacat aaatatgaga taggctacag agtgttttaa 240 gtaatacaat aaaacattta gatttttgcc catgtcagtc attttgaaat tatttttaaa gcaaaaaaac cctttttaaa caagaaatct tatgagatgt caatatgcaa aacaaattaa 300 aaggaggtgg tttctctaac tgaagctgtt cctctttcct gccttcagcc tctgaagaga 360 aagttagaaa actattatca ttaatgctac atgttttgaa caagctgata taccaagtgg 420 cccagagagc aggtagaaga accagcgtgg agacagaaag caagaggccc gcctgccagg 480 gctacctgca gaaagaaagg gcaaagatgc tgtaggcaag agaagttcag gacagacact 540 ggcatagctc aaagattcac atttgagcag ctgtggaaga tgacagtaca attaccaaaa 600 tgtcgaaggg caaaggaggc agctactggt tttgatgaaa gacaattatg tccttttaaa 660 tgggtcttag acatttagac atttatatac actatgctac ggacaaagga atagaaagta 720 gcactttttt ctccactagt tttcttctct ttttcaagta gatgaagcaa aagtcaactg 780 ccaatagtca gaaagctgta ctttgttaca cttagaaact tctaaaagtg cttaagattt 840 cacctgaaac gccaacatga agaaaataca ggctccccaa tgccccattc taagaagaaa 900 960 aaggaccatt ttcattttag taacgtttct gttctataga cagtttggat aactagctct tactttttat ctttaaaaac tgtttttcca gtgaagttac gtataattat ttacttcaag 1020 cgtagtatac caaattactt tagaaatgca agacttttct tatacttcat aaaatacatt 1080 atgaaagtga atcttgttgg ctgtgtacat ttgactataa taatttcaat gcatattatt 1140 1200 tctattgaga gtaagttaca gtttttggca aactgcgttt gatgagggct atctcctctt 1260 cctgtgcgtt tctaaaactt gtgatgcaaa cgctcccacc ctttcctggg aacacagaaa cgctactcag gcacgtgccg gtattaaagc agctccagcc ctgcgcactc cctgctgggt 1320 1339 gagcagcact gtaaagatg

<210> 13

<211> 328

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (265)..(265)

<223> n is any nucleic acid

<213> Artificial Sequence

<400>	13						
		aatatggtat	cttttgggca	ctggtattac	aactgttttt	taaacaaaag	60
actttc	cttg	tgctttacta	aaaacccaga	cggtgaatct	tgaatacaat	gcgtggcacc	120
cacggca	aggc	attctattgt	gcatagtttt	gactgacagg	agatgacagc	atttggctgc	180
gtgcgct	tgc	tgaggaccct	ctcctcctgt	gtggcgtctg	agactgtgat	gcaaatgcgc	240
ccgccct	ttt	ctgggaactc	agaangcctg	agtcaggcgg	cggtggctat	taaagcgcct	300
ggtcagg	gctg	ggctgccgca	ctccaagg				328
<210>	14						
<211>	23						
<212>	DNA						
<213>	Arti	ificial Sequ	ience				
<220>							
<223>	Prin	ner					
<400>		agtgagaggt	202				23
caaaaya	agc	agtgagacct	aca				25
<210>	15						
<211>	23						
<212>	DNA						
<213>	Arti	ificial Sequ	uence				
<220>							
<223>	Prin	mer					
<400>		taataaaaa	att				23
ttatete	yyay	tggtgaaaaa					23
<210>	16						
<211>	22						
<212>	DNA						

```
<220>
<223>
     Primer
<400> 16
                                                                     22
gcaaacaatg aaacagagga aa
<210>
      17
<211>
      24
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 17
                                                                     24
attgccctat tagataacga atac
<210> 18
<211>
      15
<212>
      PRT
<213> Homo sapiens
<400> 18
Asp Arg Tyr Pro Ser Gly Asn Cys Gly Leu Tyr Tyr Ser Ser Gly
                                                       15
                                   10
                5
<210> 19
<211> 7
<212> DNA
<213> Artificial Sequence
<220>
<223> API motif
<220>
<221> misc_feature
<222> (4)..(4)
```

<223> n is G or C

<400> tgantca		7
<210>	20	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gaaata	20 caaa aaccgcagaa gg	22
<210>	21	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> tcttgg	21 gaaa tctggttaga g	21
<210>	22	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gagctg	22 agtg atggggaagg a	21

<210>	23	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gggcac	23 tggt attacaactg t	21
<210>	24	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ctcctc	24 ctgt gtggcgtctg a	21
<210>	25	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ggataa	25 Iggag ggcagggtga a	21
<210>	26	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Primer	
<400> acagtt	26 gtaa taccagtgcc c	21
<210>	27	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> aacgga	27 gacc caggcagaaa c	21
<210>	28	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> cttcgg	28 gagc tgaatagtca a	21
<210>	29	
<211>	21	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
	29 aaag tggcaaatct a	21

<210>	30	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	30 Itgaa gttggtgctc c	21
cccgg	regaa geeggegeee e	21
<210>	31	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> caaaag	31 aagc agtgagacct aca	23
<210>	32	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Primer	
<400> tgacca	32 agag taaggaaatg a	21
<210>	33	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	

<220>		
<223>	Primer	
<400> tgactg	33 tatt tgttcttggc tg	22
<210>	34	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttctgg	34 gaac tgtgggctgt a	21
<210>	35	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ccagct	35 tcat ctttacagt	19
<210>	36	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	36 tetg tteatteete e	21

<210>	37	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	37 atat gcattgaaa	19
gaaaca	acac gcaccgaaa	13
<210>	38	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	38 cagg aagaggaga	19
aaogca	cagg aagagga	1)
<210>	39	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	39 tcct ttgagatat	19
oogaca		17
<210>	40	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	

Primer	
	17
gcacc ggggagc	Τ./
41	
19	
DNA	
Artificial Sequence	
Primer	
	19
	13
42	
20	
DNA	
Artificial Sequence	
Primer	
	20
43	
19	
DNA	
Artificial Sequence	
Primer	
	19
	Primer 41 tetec tetteetgt 42 20 DNA Artificial Sequence Primer 42 tatge cagtgtetgt 43 19 DNA Artificial Sequence

<210>	44	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	44 ggaa agaggaac	18
aaggca	ggaa agaggaac	10
<210>	45	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gacaaa	45 ggaa tagaaagtag c	21
<210>	46	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	46 aaaa atctaaatg	19
<210>	47	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	

ł

<220>		
<223>	Primer	
<400> gcccag	47 agag caggtagaa	19
<210>	48	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>		4.0
ccagcc	aggg ttgaaata	18
<210>	49	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	49 tcag tcattttg	18
geeeeg	codg coddcodg	1.0
<210>	50	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	50 Etac cagtagtct	19

<210>	51	
<211>	17	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> ttgggg	51 tgac attatgc	17
<210>	52	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> tgagca	52 gcac tgtaaagatg	20
<210>	53	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400> gtggct	53 taaa gtgcttgggt	20