Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Контрольное задание

по дисциплине
«Методы оптимизаций»

Выполнили студенты

группы 3630102/80401 Мамаева Анастасия Сергеевна

Веденичев Дмитрий Александрович

Тырыкин Ярослав Алексеевич

Руководитель

Доцент, к.ф.-м.н. Родионова Елена Александровна

Санкт-Петербург 2021

СОДЕРЖАНИЕ

1	Постановка задачи	9
2	Формализация задачи	9
3	Применимость методов	4
4	Обоснование выбора алгоритмов	4
5	Решение задачи	
	5.2 Проверка опорного плана на вырожденность	
6	Проверка оптимальности решения	7

1 Постановка задачи

Известен спрос на изделие в ближайшие 4 месяца: 100, 200, 180 и 300 изделий. В каждый месяц спрос можно удовлетворить за счет:

- запасов, произведенных в прошлом месяце, сохраняющихся для реализации в будущем
- производства изделий в текущем месяце
- избытка производства в более поздние месяцы в счет невыполненных заказов

Затраты на производство изделия в текущем месяце — 4 д.е. Изделие, произведенное для более поздней реализации, влечет за собой доп.издержки на хранение — 0.5 д.е. в месяц. Изделие, выпускаемое в счёт невыполненных заказов, облагается штрафом — 0.2 д.е. в месяц. Предполагается выпуск (по месяцам) 50, 180, 280 и 270 изделий, соответственно.

Необходимо составить план, имеющий минимальную суммарную стоимость производства и хранения.

2 Формализация задачи

Исходную задачу можем свести к транспортной, обозначив вектор запасов A = (50, 180, 280, 270) и вектор потребностей B = (100, 200, 180, 300).

	B_1	B_2	B_3	B_4	
A_1					50
A_2					180
A_3					280
A_4					270
	100	200	180	300	

Составим матрицу тарифов. Производитель платит 4 д.е за условную единицу товара при поставке в месяц её производства. Таким образом по диагонали (на пересечении потребления и запаса текущего месяца) расположим в ячейках 4.

	B_1	B_2	B_3	B_4	
A_1	4				50
A_2		4			180
A_3			4		280
A_4				4	270
	100	200	180	300	

Если же товар прохранился один месяц, то производитель платит уже на 0.5 д.е больше, то есть каждый последующий месяц прибавляется данная величина. По аналогии заключаем, что за хранение в течение двух месяцев, оплата увеличится на 1 д.е, в течение трёх на 1.5.

	B_1	B_2	B_3	B_4	
A_1	4	4.5	5	5.5	50
A_2		4	4.5	5	180
A_3			4	4.5	280
A_4				4	270
	100	200	180	300	

При недопоставке и восполнении недостатка через месяц производитель тратит в сумме 4.2 д. е. на единицу продукции, через два месяца -4.4 д. е., через три -4.6.

ſ		B_1	B_2	B_3	B_4	
	A_1	4	4.5	5	5.5	50
	A_2	4.2	4	4.5	5	180
	A_3	4.4	4.2	4	4.5	280
	A_4	4.6	4.4	4.2	4	270
		100	200	180	300	

Таким образом, составили матрицу тарифов транспортной задачи

3 Применимость методов

Для того, чтобы применять методы, разработанные для решения транспортных задач, она должна быть приведена к закрытому типу. Проверим выполнение данного условия к нашей задаче.

$$\sum_{i=1}^{4} a_i = A_1 + A_2 + A_3 + A_4 = 50 + 180 + 280 + 270 = 780$$

$$\sum_{j=1}^{4} b_j = B_1 + B_2 + B_3 + B_4 = 100 + 200 + 180 + 300 = 780$$

Видим, что суммы совпадают, наша задача - закрытого типа.

4 Обоснование выбора алгоритмов

Для решения задачи можно применить метод северо-западного угла, чтобы получить начальный план за конечное число шагов, не более чем (m+n-1). После этого, если план не является оптимальным, применяя метод потенциалов и составляя цикл пересчёта, можно попытаться уменьшить

суммарные затраты. В общем случае не гарантируется, что процесс пересчёта не будет бесконечным, но на практике зацикливание происходит редко (в нашей задаче алгоритм не зацикливается). Заметим, что план после построения начального приближения и после каждого пересчёта будет содержать только целые значения, поскольку производство и потребности — целые числа.

Однако, в курсе лекций нами был пройден симплекс-метод, который тоже можно применить для решения поставленной проблемы, записав транспортную задачу как задачу линейного программирования в симметричной форме, а затем приведя к канонической форме. Но данные действия приведут к увеличению размерности: вместо матрицы 4×4 нужно будет работать с матрицей 6×8 , поэтому мы не стали его применять.

Вместо метода северо-западного угла для построения начального приближения можно было бы использовать метод минимального элемента, но интуитивно понятно, что выгодно поставлять продукт в счёт месяца, как можно более близкого к месяцу производства, поэтому метод северо-западного угла, скорее всего, составит план, близкий к оптимальному.

5 Решение задачи

5.1 Метод северо-западного угла

По алгоритму, изложенному во второй лабораторнию работе, построим начальный план для исходной задачи.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2					180
A_3					280
A_4					270
	100	200	180	300	

В клетку (1, 1) запишем $min\{50, 100\} = 50$. Закроем оставшиеся клетки строки прочерками.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50				180
A_3	-				280
A_4	-				270
	100	200	180	300	

В клетку (2, 1) запишем $min\{50, 180\} = 50$. Закроем оставшиеся клетки столбца прочерками.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50	130	-	-	180
A_3	-				280
A_4	-				270
	100	200	180	300	

В клетку (2, 2) запишем $min\{130, 200\} = 130$. Закроем оставшиеся клетки строки прочерками.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50	130	-	-	180
A_3	-	70			280
A_4	-	-			270
	100	200	180	300	

В клетку (3, 2) запишем $min\{70, 280\} = 70$. Закроем оставшиеся клетки столбца прочерками.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50	130	-	-	180
A_3	-	70	180		280
A_4	-	-	-		270
	100	200	180	300	

В клетку (3, 3) запишем $min\{180, 210\} = 180$. Закроем оставшиеся клетки столбца прочерками.

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50	130	-	-	180
A_3	-	70	180	30	280
A_4	-	_	-		270
	100	200	180	300	

В клетку (3, 4) запишем $min\{30,300\}=30.$ Тогда получаем начальный план, равный:

	B_1	B_2	B_3	B_4	
A_1	50	-	-	-	50
A_2	50	130	-	-	180
A_3	-	70	180	30	280
A_4	-	-	-	270	270
	100	200	180	300	

То есть в первый месяц заказчику доставлено 50 единиц продукции, во второй 50 единиц оставшейся с прошлого месяца + 130 новой и так далее по аналогии.

Суммарные издержки производителя $\sum = 50 \cdot 4 + 50 \cdot 4.2 + 130 \cdot 4 + 70 \cdot 4.2 + 180 \cdot 4 + 30 \cdot 4.5 + 270 \cdot 4 = 3159.$

5.2 Проверка опорного плана на вырожденность

Система

$$\begin{cases} \sum_{j=1}^{m} x_{ij} = a_i, & 1 \le i \le n \\ \sum_{i=1}^{n} x_{ij} = b_j, & 1 \le j \le m \\ x_{ij} \ge 0 \end{cases}$$

имеет m+n уравнений относительно x_{ij} . Условие закрытого типа (наличие равенств) позволяет выразить явно одну переменную через другие. Значит базисная система будет состоять из n+m-1 уравнений.

Следовательно первым делом, как получили начальное приближение, мы должны проверить, сколько заполненых клеток в таблице. В нашем случае m=4, n=4, значит должно быть занято 4+4-1=7 ячеек. Видим, что ровно столько ячеек и заполнено \Rightarrow опорный план – невырожденный.

6 Проверка оптимальности решения

Потенциалы производителя по месяцам u = (-4, -4.2, -4.4, -3.9), потребителя v = (0, -0.2, -0.4, 0.1). Необходимым и достаточным условием оптимальности найденного плана является:

$$v_j - u_i = c_{ij}, \ x_{ij} > 0$$

$$v_j - u_i \le c_{ij}, \ x_{ij} = 0$$

Проверяем:

$$v_1 - u_1 = 0 - (-4) = 4 = c_{11}, \ x_{11} > 0$$

$$v_1 - u_2 = 0 - (-4.2) = 4.2 = c_{21}, \ x_{21} > 0$$

$$v_1 - u_3 = 0 - (-4.4) = 4.4 \le 4.4 = c_{31}, \ x_{31} = 0$$

$$v_1 - u_4 = 0 - (-3.9) = 3.9 \le 4.6 = c_{41}, \ x_{41} = 0$$

$$v_2 - u_1 = -0.2 - (-4) = 3.8 \le 4.5 = c_{12}, \ x_{12} = 0$$

$$v_2 - u_2 = -0.2 - (-4.2) = 4 = c_{22}, \ x_{22} > 0$$

$$v_2 - u_3 = -0.2 - (-4.4) = 4.2 = c_{32}, \ x_{32} > 0$$

$$v_2 - u_4 = -0.2 - (-3.9) = 3.7 \le 4.4 = c_{42}, \ x_{42} = 0$$

$$v_3 - u_1 = -0.4 - (-4) = 3.6 \le 5 = c_{13}, \ x_{13} = 0$$

$$v_3 - u_2 = -0.4 - (-4.2) = 3.8 \le 4.5 = c_{23}, \ x_{23} = 0$$

$$v_3 - u_3 = -0.4 - (-4.4) = 4 = c_{33}, \ x_{33} > 0$$

$$v_3 - u_4 = -0.4 - (-3.9) = 3.5 \le 4.2 = c_{43}, \ x_{43} = 0$$

$$v_4 - u_1 = 0.1 - (-4) = 4.1 \le 5.5 = c_{14}, \ x_{14} = 0$$

$$v_4 - u_2 = 0.1 - (-4.2) = 4.3 \le 5 = c_{24}, \ x_{24} = 0$$

$$v_4 - u_3 = 0.1 - (-4.4) = 4.5 = c_{34}, \ x_{34} > 0$$

$$v_4 - u_4 = 0.1 - (-3.9) = 4 = c_{44}, \ x_{44} > 0$$

Как видно, требуемые условия оптимальности найденного плана выполняются для каждой разности компонент векторов производителя и потребителя.