$$g = x\beta + \epsilon$$
 $g = E(g|x) = x\beta$ $\epsilon \sim (0, 6^2 E_n)$

THE LINEAR MODEL

The Statistical Model

In the case of the linear model it is assumed that the random vector

$$y: n \times 1 \sim (\eta, \sigma^2 I)$$

with

$$\Gamma(X) = P \implies \hat{b} = (X^T X)^T X^T Y \qquad E(y) = \eta = Xb$$

where $X: n \times p$ is a constant matrix (with known elements) and $b: p \times 1$ is a vector with unknown parameters. It is assumed that

$$\gamma = ?$$
 rank $(X) = r \le p \le n$.

Suppose that

$$X = (x_1, x_2, \cdots, x_p).$$

The linear model can therefore also be expressed as

where the elements of \boldsymbol{b} are arbitrary (unknown parameters). If V_r is the vector space generated by the columns of \boldsymbol{X} , then the linear model can be explicitly expressed as:

$$E(\mathbf{y}) \in V_r$$
.

Examples

1. In the previous example (p.45), y: $4 \times 1 \sim (\mu, \sigma^2 I)$ with

$$\boldsymbol{\mu} = \begin{pmatrix} \alpha \\ \alpha \\ \beta \\ \beta \end{pmatrix}.$$

The linear model can be expressed as:

$$E(\mathbf{y}) = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}. = \mathbf{M}$$

2. Suppose that $\mathbf{y}: 4 \times 1 \sim (\boldsymbol{\mu}, \sigma^2 \boldsymbol{I})$ with

$$\boldsymbol{\mu} = \begin{pmatrix} \alpha + 2\beta + \gamma \\ \alpha + 2\beta + \gamma \\ \alpha + \beta \\ \alpha + \beta \end{pmatrix}.$$

The linear model can be expressed as:

as:
$$E(y) = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}. = \bigwedge^{N}$$

3. Suppose that the elements of $y: n \times 1$ are independently (μ, σ^2) distributed. The linear model can be expressed as:

$$E(\mathbf{y}) = \begin{pmatrix} 1\\1\\...\\1 \end{pmatrix} (\mu). \quad = \begin{pmatrix} 1\\M\\1\\1 \end{pmatrix}$$

4. Suppose that $y_{11}, y_{12}, \cdots, y_{1n_1}$ is a random sample from a (μ_1, σ^2) distribution and that $y_{21}, y_{22}, \cdots, y_{2n_2}$ is an independent sample from a (μ_2, σ^2) distribution. The linear model can be expressed as:

$$\gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}$$

$$E(\mathbf{y}) = E\begin{pmatrix} y_{11} \\ y_{12} \\ \dots \\ y_{1n_1} \\ y_{21} \\ y_{22} \\ \dots \\ y_{2n_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ \dots & \dots \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ \dots & \dots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \dots \\ \mu_k \\ \mu_k \end{pmatrix}. = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \lambda_4 \\ \lambda_5 \\ \lambda_6 \\ \lambda_6 \\ \lambda_6 \\ \lambda_6 \\ \lambda_6 \\ \lambda_6 \\ \lambda_8 \\ \lambda_$$

5. Suppose that the elements of $y: n \times 1$ are independently $(\alpha + \beta x_i, \sigma^2)$ distributed. As a linear model it is expressed as:

$$E(y) = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} x_1 \\ \alpha \\ \beta \end{pmatrix}$$

M=xb $\sqrt{y=xb}$ $\sqrt{y=xb}$

Lr ={ cy : ceVr}

S = y ((cto) cty

= S1+S2

V= VE Φ Vn L= L_E Φ Lr

The Least Squares Estimators

The least squares estimates $\widehat{m{b}}$ of the parameters $m{b}$ are those values of the parameters which minimize the sum of squares

$$S^2 = (\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})$$

for a given value y of the random vector y.

Suppose that V_e is the vector space orthogonal to V_r $(rank \ (V_e) = n - r)$. \hat{b} must be chosen such

that
$$X\widehat{b}$$
 is the projection of \mathbf{y} on V_r . It then follows that
$$S^2 = \{(\mathbf{y} - X\widehat{b}) + (X\widehat{b} - X\mathbf{b})\}'\{(\mathbf{y} - X\widehat{b}) + (X\widehat{b} - X\mathbf{b})\}'$$

$$= (\mathbf{y} - X\widehat{b})'(\mathbf{y} - X\widehat{b}) + (X\widehat{b} - X\mathbf{b})'(X\widehat{b} - X\mathbf{b})$$
since $\mathbf{y} - X\widehat{b} \in V_e$ and $X\widehat{b} - X\mathbf{b} \in V_r$. S^2 is therefore a minimum if and only if $X\widehat{b}$ is the projection

of $m{y}$ on V_r . Thus $\hat{m{b}}$ is a set of least squares estimates if and only if

$$\stackrel{\wedge}{\mathcal{J}} = \chi \widehat{b} \qquad \qquad \underbrace{X'X\widehat{b} = X'y}.$$

These equations are called the normal equations.

The normal equations are also obtained by setting the partial derivatives of \mathcal{S}^2 with respect to the parameters equal to zero. It follows that:

$$S^{2} = \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} b_{j} x_{ij} \right)^{2}$$

$$\frac{\partial S^{2}}{\partial \underline{b}_{v}} = (-2) \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} b_{j} x_{ij} \right) x_{iv}$$

$$= (-2)(x'_{v} y - x'_{v} X b)$$

$$= 0 \qquad v = 1, 2, \dots, p$$

which implies the normal equations.

$$M = N_{n}(0, \sigma^{2}[n))$$

$$L(\beta) = L(\beta|X,\gamma) = L(\beta)$$

$$= \frac{1}{2r^2} (\gamma - x\beta)(\gamma - x\beta)$$

$$= \frac{1}{(2r)^n} e^{-\frac{1}{2}r^2} (\gamma - x\beta)(\gamma - x\beta)$$

$$\frac{2l(\beta)}{2\beta} = 0 => (x^{\prime}x)\beta = x^{\prime}y$$

Consequently, if y has a normal distribution with density function

$$f(\mathbf{y}) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\mathbf{b})'(\mathbf{y} - \mathbf{X}\mathbf{b})\right)$$

it follows that a set of least squares estimators of \boldsymbol{b} is also a set of maximum likelihood estimators.

The Error Space and the Error Set

The vector space V_e is defined as the error space and the linear set

$$L_e = \{ \boldsymbol{e}' \boldsymbol{y} : \boldsymbol{e} \in V_e \}$$

is defined as the error set. The sum of squares for L_e is called the sum of squares for errors, namely

$$\underline{SSE} = (y - X\widehat{b})'(y - X\widehat{b}) = y'y - \widehat{b}'X'y$$
 where \widehat{b} is any set of least squares estimators.

The expected value of any linear function e'y is

$$E(e'y) \in V_e$$

$$E(e'y) = e'Xb.$$

It follows that $E(e'y) \equiv \mathbf{0}$, independent of \mathbf{b} , if and only if $e'X = \mathbf{0}'$, that is, if and only if $e'y \in L_e$. In other words, $E(e'y) \equiv 0$ if and only if $e \in V_e$.