

Recitation: Asymptotic notation, time complexity of code

#### **Basics**

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in O(g(n))$  if there is a constant c and a threshold natural number N such that for all  $n \geq N$ , we have

$$f(n) \le c \cdot g(n)$$

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in \Omega(g(n))$  if there is a constant c and a threshold natural number N such that for all  $n \geq N$ , we have

$$f(n) \ge c \cdot g(n)$$

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in \Theta(g(n))$  if it holds that both  $f \in O(g)$  and  $f \in \Omega(g)$  such that we can find  $c_1, c_2, N$  which would satisfy for all  $n \geq N$ 

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

**Question 1.** Briefly justify that  $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ .

**Answer:** To do so, we must determine constants  $c_1, c_2$ , and  $n_0$  greater than zero such that

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

for all  $n \ge n_0$ . Dividing by  $n^2$  yields

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

We can make the right-hand inequality hold for any value of  $n \ge 1$  by choosing any constant  $c_2 \ge 1/2$ . Likewise, we can make the left-hand inequality hold for any value of  $n \ge 7$  by choosing any constant  $c_1 \le 1/14$ . Thus, by choosing  $c_1 = 1/14$ ,  $c_2 = 1/2$ , and  $n_0 = 7$ , we can verify that  $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ . This is not a unique triple of constants. Other choices for the constants exist, but the important thing is that some choice exists.

Question 2. Next verify that  $6n^3 \neq \Theta(n^2)$ .

**Answer:** Assume for the purposes of contradiction that  $c_2$  and  $n_0$  exist such that  $6n^3 \le c_2n^2$  for all  $n \ge n_0$ . But then dividing by  $n^2$  yields  $n \le c_2/6$ , which cannot possibly hold for arbitrarily large n, since  $c_2$  is constant.

#### Limit comparison test

If the limit  $L := \lim_{x \to \infty} \frac{f(x)}{g(x)}$  exists, then:

- 1. If  $0 < L < \infty$ , then  $f(n) \in \Theta(g(n))$ .
- 2. If L=0, then  $f(n) \in O(g(n))$ , but  $f(n) \notin \Theta(g(n))$ .
- 3. If  $L = \infty$ , then  $g(n) \in O(f(n))$ , but  $g(n) \notin \Theta(f(n))$ .

Also recall L'Hôpital's rule: suppose g and f are both differentiable functions, with either

- $\lim_{x\to\infty} f(x) = 0$  and  $\lim_{x\to\infty} g(x) = 0$ ; or
- $\lim_{x\to\infty} f(x) = \pm \infty$  and  $\lim_{x\to\infty} g(x) = \pm \infty$

If  $\lim_{x\to\infty}\frac{f(x)}{g(x)}$  exists, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

**Question 3.** Order the two functions  $f(n) = n^2 + 3n + 5$ , and  $g(n) = 3^n$ .

**Answer:** The limit

$$\lim_{n\to\infty}\frac{n^2+3n+5}{3^n}$$

has the indeterminate form  $\frac{\infty}{\infty}$ . Furthermore,  $f(n) = n^2 + 3n + 5$  and  $g(n) = 3^n$  are both differentiable. In order to apply L'Hopital's rule, first establish that the following limit exists:

$$\lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \lim_{n \to \infty} \frac{2n+3}{\ln(3) \cdot 3^n}.$$

f'(n) = 2n + 3 and  $g'(n) = \ln(3) \cdot 3^n$  are differentiable functions, apply L'Hopital's rule:

$$\lim_{n \to \infty} \frac{f''(n)}{g''(n)} = \lim_{n \to \infty} \frac{2}{(\ln(3))^2 \cdot 3^n} = 0.$$

$$\lim_{n \to \infty} \frac{2n+3}{\ln(3) \cdot 3^n} = \lim_{n \to \infty} \frac{2}{(\ln(3))^2 \cdot 3^n} = 0.$$

$$\lim_{n \to \infty} \frac{n^2 + 3n + 5}{3^n} = \lim_{n \to \infty} \frac{2n+3}{\ln(3) \cdot 3^n} = \lim_{n \to \infty} \frac{2}{(\ln(3))^2 \cdot 3^n} = 0.$$

So by the limit comparison test,  $n^2 + 3n + 5 \in O(3^n)$ .

**Question 4.** (1) Show that (a)  $n^2 + 1 = \Omega(n)$ , (b)  $n^2 + 3n + 4 = \Theta(n^2)$ .

- (2) Order the two functions  $n^2 \log(n)$  and  $n(\log(n))^{10}$ .

(3) Show that  $\log_{\log 5}((\log n)^{100}) = \Theta(\log\log n)$ . **Answer:** (1) (a)  $n^2 + 1 = \Omega(n) \Leftrightarrow \lim_{n \to \infty} \frac{n^2 + 1}{n} = \infty$ , (b)  $n^2 + 3n + 4 = \Theta(n^2) \Leftrightarrow \lim_{n \to \infty} \frac{n^2 + 3n + 4}{n^2} = 0$  $\lim_{n\to\infty} \left(1 + \frac{3}{n} + \frac{4}{n^2}\right) = 1.$ (2) Compare n to  $\log(n)^k$ . Notice that

$$\lim_{n \to \infty} \frac{n}{\log(n)^k} = \lim_{n \to \infty} \frac{1}{k \log(n)^{k-1} \frac{1}{n}} = \lim_{n \to \infty} \frac{n}{k \log(n)^{k-1}}$$

Applying L'Hopital's rule k times, we find out that the limit diverges, for any constant k > 1. Thus we find that, for all k > 1,  $n \log(n)^k = O(n^2 \log(n))$ .

(3) 
$$\log_{\log 5}((\log n)^{100}) = \Theta(\log_{\log 5}((\log n)) = \Theta(\log\log n).$$
 (Why?)

**Question 5.** Analyze the time complexity:

- 1: procedure Search(Array A[1, . . , n], key) found ← false 2:
- 4:
- found ← true 5:

return found

- Line 2, single assignment statement. So Line 2 takes 1 step.
- Initializing the loop at Line 3 takes a single assignment, so 1 step.
- The loop itself takes n iterations. At each iteration we have:
  - The comparison that  $i \leq \text{len}(A)$ , which takes 1 step.
- The variable update  $i \leftarrow i+1$ , which takes 2 steps: one step for the i+1 computation, and one step for the assignment.
- In the body of the loop, we have the comparison at Line 4, which takes 2 steps: one for the array access and one for the comparison.
  - At Line 5, we have a single assignment, which takes 1 step.

Thus, the loop starting at Line 3 has time complexity:

$$\sum_{i=1}^{n} (1+2+2+1) = \sum_{i=1}^{n} 6 = 6n.$$

- We have the return statement after Line 5, which takes 1 step. As we have an iterative algorithm, we add up the costs to obtain:

$$T(n) = 1 + 1 + 6n + 1$$
  
=  $6n + 3$ .

Thus,  $T(n) \in \Theta(n)$ .



Recitation: Asymptotic notation, time complexity of code

### **Basics**

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in O(g(n))$  if there is a constant c and a threshold natural number N such that for all  $n \geq N$ , we have

$$f(n) \le c \cdot g(n)$$

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in \Omega(g(n))$  if there is a constant c and a threshold natural number N such that for all  $n \geq N$ , we have

$$f(n) \ge c \cdot g(n)$$

Let  $f, g : \mathbb{N} \to \mathbb{R}$  be sequences of real numbers. We say that  $f(n) \in \Theta(g(n))$  if it holds that both  $f \in O(g)$  and  $f \in \Omega(g)$  such that we can find  $c_1, c_2, N$  which would satisfy for all  $n \geq N$ 

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$

**Question 1.** Briefly justify that  $\frac{1}{2}n^2 - 3n = \Theta(n^2)$ .

**Question 2.** Next verify that  $6n^3 \neq \Theta(n^2)$ .

# Limit comparison test

If the limit  $L:=\lim_{x\to\infty}\frac{f(x)}{g(x)}$  exists, then:

- 1. If  $0 < L < \infty$ , then  $f(n) \in \Theta(g(n))$ .
- 2. If L = 0, then  $f(n) \in O(g(n))$ , but  $f(n) \notin \Theta(g(n))$ .
- 3. If  $L = \infty$ , then  $g(n) \in O(f(n))$ , but  $g(n) \notin \Theta(f(n))$ .

Also recall L'Hôpital's rule: suppose g and f are both differentiable functions, with either

- $\lim_{x\to\infty} f(x) = 0$  and  $\lim_{x\to\infty} g(x) = 0$ ; or
- $\lim_{x\to\infty} f(x) = \pm \infty$  and  $\lim_{x\to\infty} g(x) = \pm \infty$

If  $\lim_{x\to\infty} \frac{f(x)}{g(x)}$  exists, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

**Question 3.** Order the two functions  $f(n) = n^2 + 3n + 5$ , and  $g(n) = 3^n$ .

```
Question 4. (1) Show that (a) n^2 + 1 = \Omega(n), (b) n^2 + 3n + 4 = \Theta(n^2). (2) Order the two functions n^2 \log(n) and n(\log(n))^{10}. (3) Show that \log_{\log 5}((\log n)^{100}) = \Theta(\log\log n).
```

## Question 5. Analyze the time complexity:

```
1: procedure Search(Array A[1, . . . , n], key)
2:    found false
3:    for i f 1;i | len(A);i f i + 1 do
4:        if A[i] == key then
5:        found f true
    return found
```

```
1: procedure foo_d(integer n):
2:    for i = 1, i <= n
3:         i = i + 2
4:         print 'outer'
5:         for j = 1, j <= i
6:               j = j + 3
7:               print 'inner'</pre>
```

```
1: procedure foo_d(integer n):
2:    for i = 1, i <= n
3:         i = i + 2
4:         print 'outer'
5:         for j = 1, j <= i
6:               j = j + 3
7:               print 'inner'</pre>
```

```
1: procedure foo_i(integer n):
2:    for i = 1, i <= n
3:        i = 2 * i
4:        print 'outer'
5:        for j = 1, j <= n
6:             j = 3 * j
7:        print 'inner'</pre>
```

logarithm computation rules.

1. 
$$lg_{b}(mn) = lg_{b}(m) + lg_{b}(n)$$

2. 
$$lg_b(\frac{m}{n}) = lg_b(m) - lg_b(n)$$

4. 
$$lg_b(h) = \frac{lg_p(h)}{log_p(b)}$$

5. 
$$log_b(n) = log_b(P) log_p n$$

$$b$$
.  $a^{\log_a b} = b^{\log_a a}$ 

we can prove rule b

Differential rules.

1. 
$$\frac{d}{dx} lg_{\alpha} \chi = \frac{1}{\chi ln(a)}$$

2. 
$$\frac{d}{dx} \alpha^{x} = \alpha^{x} \ln (\alpha)$$
.