Electronic System Design and Manufacturing Even Sem 2019

Course Outcomes

- 1) Explain EMC regulations for military and commercial standards.
- 2) Design shielding circuits to prevent capacitive and inductive coupling.
- 3) Design filtering circuits for electronic systems.
- 4) Explain EMC compliance of capacitor and conductor.
- 5) Calculate S/N ratio and noise factor for various electronic circuits.
- 6) Explain ESD protection in equipment design.
- 7) Explain procedure for PCB layout and stackup

EMC?

- ElectroMagnetic Compatibility
- Why?
 - Electronic ckts used in communication, computation, automation etc.
 - Different ckts work in close proximity to each other
 - May affect each other adversely
 - EMI is a major problem!
 - More and more ckt's are being crowded in smaller spaces
 - 2.6 Billion transistors in Core i7 of 2014 (29,000 for 8086!)
 - Increases probability of interference
 - Clock frequencies now a days are in GHz range.

EMC compliance

- Required for devices designed to work in real world-> comply with Govt. EMC regulations
- Equipment should not be affected by external EM sources
- Also it should not be a source of EM noise

Noise and Interference

Noise

- Any electrical signal present in a ckt other than the desired signal
- Def. Excludes distortion products produced "in" ckt due to non linearities
- Not considered noise unless coupled to other part of ckt.
 (although undesirable)
- A desirable signal in one part can be undesired in other part

Categories of Noise

- Intrinsic
 - Random fluctuations within physical systems
 - Thermal noise, shot noise
- Man made
 - From motors, switches, RF etc.
- Natural sources
 - From lightning and sun spots etc.

Designing for EMC

- EMC
 - It is the ability of an electronic system to
 - A) Function properly in its intended electromagnetic environment
 - B) Not to be a source of pollution to that EM environment
- EM environment is composed of both radiated and conducted energy
- Thus EMC has two aspects
 - 1. Emission
 - 2. Susceptibility

Susceptibility

- Capability of a device or ckt to respond to unwanted EM energy
- Opposite of susceptibility is immunity
- Immunity level
 - Upto which the device or ckt ca work without degradation or with defined margin or safety
 - How to define what constitutes performance degradation?
- Susceptibility can be self regulating
 - If a device is being affected by radiation, one may stop buying the product

Emission

- It is the interference causing potential of the product
- Controlling emission from one product may eliminate an interference problem for many other products
- Emission is not self regulating
 - Its own emission may not affect itself

EMC Engineering

- Design of all electronic products requires to meet EMI/EMC regulations across the world
- Two approaches to EMC engineering
 - 1. Crisis approach
 - Design first, fix later
 - Expensive add-ons
 - Band aid approach
 - 2. Systems approach
 - EMC considered throughout the design process
 - EMC problems addressed at prototype stage with testing
 - Cost effective and desirable
 - Mitigation techniques are simple at single stage or subsystem

- Problems with crisis approach
 - Difficult to find culprit in finished product
 - Solutions require additional components
 - Added engineering and testing cost
 - Added component cost, wasted time
 - Size, weight, power penalties

Engineering Documentation shortcomings

- EMC information is not included
- e.g.
 - No information as to where and how ground should be connected
 - Parasitics not shown
 - Components with ideal characteristics depicted