

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1974-03

The Monterey Peninsula Airport in the 1970's and 1980's: a demand forecast.

Maples, Amos Lee

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/17137

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

THE MONTEREY PENINSUAL AIRPORT IN THE 1970's AND 1980's: A DEMAND FORECAST

Amos Lee Maples

DUDLEY KNOX LIBRARY.
NAVAL POSTGRADUATE SCHOOLS
MONTEREY, CALIFORNIA SSEAU

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

THE MONTEREY PENINSULA AIRPORT
IN THE 1970's AND 1980's:
A DEMAND FORECAST

Ъу

Amos Lee Maples

Thesis Advisor:

James K. Hartman

March 1974

Approved for public release; distribution unlimited.

T159108

The Monterey Peninsula Airport In The 1970's and 1980's:

A Demand Forecast

Ъу

Amos Lee Maples
Lieutenant, United States Navy
B.S., University of California, 1966

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
March 1974

The: 3-1

ABSTRACT

The Monterey Peninsula Airport is modeled as a three component (airside, terminal, and streetside) system, and forecasts of demand and utilization for each component are developed through use of linear and log linear regression techniques. Specifically, forecasts for General Aviation Operations, Airline Passenger Emplanements and Passenger Associated Visitors, the number of automobiles utilizing the roadway during the peak hour (2 scheduled airline departures and 2 scheduled airline arrivals within the same hour), and associated parking space requirements have been made for the years 1973, 1974, 1975, 1980, and 1985.

TABLE OF CONTENTS

I.	TNTT	RODUCTION	
1.			
	Α.	PURPOSE	
	В.	OBJECTIVE	
	C.	METHO DOLOGY	
II.	MODELING THE AIRPORT AS A SYSTEM		
	Α.	CONCEPTUAL MODEL	
	в.	LIMITS OF INFLUENCE	
III.	GEN.	ERAL AVIATION OPERATIONS MODEL	
	Α.	AIRPORT ATTRIBUTES AND RELATION TO GENERAL AVIATION OPERATIONS	
	в.	DATA	
	C.	MODEL BUILDING	
	D.	FORECASTS	
	E.	SENSITIVITY OF FORECASTS	
IV.	ENPLANED PASSENGER SEAT MODEL		
	Α.	CHARACTERISTICS AND ANALYSIS OF DATA	
	В.	MODEL BUILDING	
	c.	FORECAST OF EMPLANED PASSENGERS	
	D.	SENSITIVITY OF FORECASTS	
	E.	PASSENGER ASSOCIATED VISITORS	
v.	AIR	CARGO	
	A.	HISTORICAL GROWTH	
	в.	FORECASTING	
VI.	STR	EET SIDE INTERFACE	
	Α.	DATA ANALYSIS	

ь.	FUREC	ASTS		
VII.	CONCLUSION			
	A. R	ESULTS		
	B. R	ECOMMENDATIONS		
APPENI	XX A	Regression Analysis		
APPENI	пхв	Data Summaries		
APPENI	пхс	Results of Regression Analysis, General Aviation Models		
APPENI	IX D	Results of Regression Analysis, Enplaned Passengers Models.		
APPENI	IX E	Calculations for Street Side Interface Forecasts		
APPENI	IXF	Glossary		
LIST OF REFERENCES				
INITIAL DISTRIBUTION LIST				
FORM I	DD 147	3		

LIST OF TABLES

- I. General Aviation Operations
- II. Correlation Matrix for General Aviation Operation Model Variables
- III. General Aviation Operations Models
- IV. Forecasts of General Aviation Operations
- V. Quarterly Passenger Traffic
- VI. Calendar and Fiscal Year Passenger Traffic
- VII. Correlation Matrix for Enplaning Passenger Model Variables
- VIII. Enplaning Passenger Models
- IX. Forecasts of Emplaning Passengers
- X. Revised Forecasts of Emplaning Passengers
- XI. Passenger Associated Visitors
- XII. Emplaned Revenue Tons of Air Cargo
- XIII. Traffic Study Summary, Olmstead Road
- MV. Street Side Interface Utilization Forecasts

LIST OF GRAPHS

- 1. General Aviation Operations
- 2. General Aviation Operations Forecasts
- 3. Prediction Intervals, General Aviation Operations Forecasts
- 4. Emplaning Passengers
- 5. Comparison Between Quarterly Emplaning Passengers vs. Fort Ord Quarterly Basic Trainee Output
- 6. Total Seats Available vs. Passenger Emplanements
- 7. Emplaning Passenger Forecasts
- 8. Prediction Intervals for Emplaning Passenger Forecasts
- 9. Revised Emplaning Passenger Forecasts
- 10. Airline Scheduled Arrivals/Departures
- 11. Enplaned Revenue Tons of Air Cargo

ACKNOWLEDGEMENT

The author would like to take this opportunity to express his appreciation to several individuals without whose help this research would have been much more difficult and time consuming. First, Mr. Nick Ford and his airport management staff furnished pertinent data that would have been otherwise unavailable. Both Mr. Charles Lovette and Mr. Fred Hykal, local managers of United Airlines and Hughes Airwest, respectively, interrupted their busy schedules to provide insight and subjective analysis of their organizations. Mr. John Moore of the Federal Aviation Administration contributed greatly to the author's understanding of general aviation operations at the airport. Mr. Brighton of the Army Transportation Department at Fort Ord gave invaluable information concerning the military's demand and utilization of airport facilities. Lastly, the author would like to thank his wife, Pat, for her constant encouragement and numerous sacrifices which provided the impetus for the completion of this project.

I. INTRODUCTION

A. PURPOSE

This thesis presents demand and utilization forecasts of Monterey
Peninsula Airport facilities for the years 1973, 1974, 1975, 1980, and
1985 based on trend analysis and pertinent socio-economic factors for
Monterey County. It is designed to implement and complement LT Gordon
Reed's thesis research [Ref. 1] on the development of a conceptual model
for the Monterey Airport Master Plan.

An attempt has been made to find relatively simple forecasting models which can be easily calculated and updated yearly by the Monterey Airport District without resorting to complex computer programs. However, the data used for formulating the models was suitable for computer input, and the Naval Postgraduate School's IBM 360/67 computer was utilized for time savings. Since forecasts for 1973 are given in the following models, a comparison of the forecast and actual results may be used as validation for the models. If the results are significantly accurate, it is hoped that the models will be included in a future Airport Master Plan or at least serve as a basis for further study.

B. OBJECTIVE

The objective was to forecast demand and utilization of airport facilities in four major areas.

The first area was aircraft operations (An operation is defined as a take-off or a landing.). In this area, only operations pertaining to General Aviation with the exclusion of commercial or military operations were considered. Commercial airline operations are first highly dependent

upon passenger seat demand and second upon the type of aircraft utilized on a particular scheduled flight which is, in turn, an airline management decision. It was felt therefore that forecasts for commercial operations were inappropriate. The Navy Auxillary Landing Field at Monterey closed in 1972 and since that time military operations at the airport have been reduced to a numerically insignificant portion of the total operations at the airport.

The second and third major areas were passenger seat demand and air cargo demand.

The fourth and last major area was airport access traffic and its influence on parking and roadway utilization.

C. METHODOLOGY

In order to accomplish the above objectives, historical data in the four major areas was collected from airport records, Federal Aviation Administration (FAA) records, and from the control tower records at the airport. Next, historical data of pertinent socio-economic characteristics of the airport's area of influence was gathered from the United States Bureau of Census, the California Department of Finance and California Statistical Abstracts.

Interviews were held with airport officials, the managers of the commercial airlines serving Monterey, planning commissions for various governmental entities in Monterey County, Salinas Monterey Area Transportation Study (SMATS) officials, and the Monterey Peninsula Chamber of Commerce to gain additional insight on the data collected and possible future planned conditions which might modify some of the results obtained by the models.

A least square regression model was fitted to the data collected and forecasts were made for the various years of interest. Appendix A gives a short discussion on this methodology.

In areas where no pertinent data was available, the results of similar studies done at other airports in a specific area were applied to Monterey to give some indication of possible airport facility requirements and utilization.

II. MODELING THE AIRPORT AS A SYSTEM

A. CONCEPTUAL MODEL

In order to ensure that the four major areas to be forecast did in fact represent the most pertinent ones for future airport master planning, the following conceptual model was made.

The Airside Interface of the airport system is composed of air traffic patterns, runways, ramp areas, and taxiways. The utilization and capacity of these areas are directly influenced by both aircraft operations and the mix of aircraft using the areas. As before, aircraft operations are broken into three separate categories; 1) scheduled commercial, 2) general aviation, and 3) military operations.

Scheduled commercial operations are not only influenced by deplaning/enplaning passengers but also by the size of aircraft employed. The size of aircraft employed by the airlines at Monterey is restricted due to the length and bearing capacity of the runway. For example, the runway is too short [Ref. 2] and the bearing capacity of the runway [Ref. 3] may be insufficient to allow the use of either the Lockheed L-1011 or McDonnell-Douglas DC-10 aircraft at the airport. This fact minimizes the probability of reducing the number of scheduled flights into Monterey while either keeping the number of available passenger seats the same or greater than currently available. Another important factor is the ground time for

these jets would be greater than for the present fleet being employed since either of the newer jets would have to be towed away from the terminal area before starting engines because the thrust of the jets is sufficient to blow out windows, according to FAA tower personnel.

General Aviation operations influence air traffic patterns and, indirectly, runway capacity due to their differing performance characteristics. The services offered by the Fixed Base Operators (FBO) at Monterey are an attraction for the private aviation community. The repair and maintenance services offered directly influence the number of aircraft coming to Monterey to avail themselves of this service and thus affect ramp area parking for short periods of time. Instruction for various pilot ratings is also given by the FBO's and therefore affects General Aviation operations to some degree.

Military operations at Monterey have been reduced to an insignificant level and have very little influence on the airside interface. At the present time, the operations consist of occasional medical flights and some landing and instrument approach practice.

The Terminal Area Interface of the airport system is composed of areas designated for aircraft boarding, automobile rental, business offices, baggage, cargo, gift shop, restaurant and snack bar, sky-jacking search, airline tickets, and waiting. The primary usage of all these areas is directly related to emplaning and deplaning passengers and the associated visitors accompanying the passengers. No study has to date been done at Monterey which reflects the proportion of people using the airport terminal area (air passengers, passenger related visitors, employees, and casual visitors).

Utilization of the terminal area facilities is not only affected by the passengers served but when and in what numbers they arrive. The

scheduling of commercial flights and size of aircraft employed will greatly influence the degree of utilization per day. Because of this reason, a daily figure for airline passengers and passenger related visitors will be calculated from the models on emplaning passengers in Chapter IV of the thesis.

The Street Side Interface of the airport system consists of the road-ways leading to and from the airport (Olmstead Road and Henderson Way) and the parking areas, either in designated lots or at the airport, auto-mobile rental agencies, and FBO customers. Chapter VI of the thesis goes into detail on the calculations used to forecast the utilization of street side facilities.

The most important of the major areas to be forecast from the above discussion on the airport as a system is emplaning passengers since it alone influences each of the three interfaces.

B. LIMITS OF INFLUENCE

After defining a conceptual model of the airport, the next important step is to define what geographical areas have influence on airside interface operations. By looking at the scheduled commercial operations and general aviations operations separately, it is apparent that the respective geographical areas which influence the airside interface are different.

Scheduled commercial operations are most directly influenced by demand for passenger seats. Presently, and for the near future, Monterey Peninsula Airport is and will be the only airport in the county to have scheduled airline service (interviews with both airline managers supported this statement). The nearest commercial airport to Monterey is San Jose which is an approximate ninety minute drive from Monterey. Based on 1970 U.S. Bureau of Census tracts, greater than 90% of the population of Monterey

Airport. The Hollister and Watsonville areas are, in addition, closer to the Monterey Peninsula Airport than the San Jose Airport and do contribute to passenger seat demand. Therefore, the geographical area of influence for passenger seat demand would probably include the entire county north and east of the airport including the Hollister and Watsonville areas and south to the San Ardo census tract. Both airline managers tended to agree with these limits, but felt that the greatest proportion of the demand originated from the Monterey Peninsula-Salinas area.

General Aviation operations have their biggest impact on two areas of the airside interface; first in operations associated with the runway and second in the ramp areas including hanger spaces and tie-down facilities used for basing aircraft. Of these two areas, basing of aircraft would be the one most directly dependent on a geographical area for influencing basing demand and utilization. The FBO's and airport manager all tended to agree that aircraft which are owned by people who lived away from the Monterey Bay Area based their aircraft at one of the eleven other paved and dirt airports/airstrips in Monterey County. The consensus was that owners of aircraft would base them primarily at airports which involved short travel times from their homes. This fact was supported by a survey conducted for the Statewide Master Plan of Aviation Ref. 4. Table 8.1 which indicated that 95% of all aircraft in California are based within 15 miles or 25 minutes of their owner's residence. Therefore, the geographical area of influence for general aviation aircraft basing for the airport would probably include the area north to Marina, south to Carmel, and east to Laureles Grade. For information purposes only, Appendix B.5 shows the basing and mix of aircraft at Monterey

Peninsula Airport from 1963 to 1972. Appendix B.19 shows the basing and mix of aircraft in Monterey County from 1963 to 1972.

III. GENERAL AVIATION OPERATIONS MODEL

A. AIRPORT ATTRIBUTES AND RELATION TO GENERAL AVIATION OPERATIONS

The Monterey Peninsula Airport has the very good fortune of having excellent year round weather conditions which are conducive to aviation operations. The region has a Mediterranean climate which is typical of most of coastal California. August is the worst month of the year for operations since, on the average, the airport is below 500 feet ceiling and one mile of horizontal visibility 21.0% of the time as compared to an annual figure of 7.6%, and below 200 feet ceiling and one half mile of horizontal visibility 6.4% of the time as compared to an annual figure of 2.9% [Ref. 5, p. 20]. During these periods of time the airport is restricted to Instrument Flight Rules [IFR] and the capacity of the traffic patterns are greatly reduced due to required traffic separation for safety.

Because of the generally excellent weather conditions, Monterey is a popular airport with general aviation for practicing approaches and landings and use as a stopover for pleasure flying. During the winter months when much of California is fogged over and airports have weather conditions which are less than satisfactory for operations, Monterey is more heavily utilized. According to the FAA tower personnel, weekend operations especially during these periods are greatly increased with many non-local aircraft and aviators using Monterey's facilities.

Another characteristic of the airport which helps to increase its popularity is its location. The airport is away from high density air traffic facilities (for example, the San Francisco Bay Area and Los

Angeles Area and their associated terminal control areas). As a result of this, the possibility of mid-air collisions with other aircraft is greatly reduced.

The physical equipment of the airport also contributes to its popularity. First, a manned 24 hour a day FAA tower is available for positive aircraft control while flying in the airport traffic control area. Second, the availability of FBO's who sell aircraft and aviation fuel and related equipment, provide maintenance service and flight instruction, supply aircraft for rental and lastly have charter service readily available provides an added inducement to use the airport. Lastly, the terminal area with its restaurant and car rental agencies provides desirable services for stop-overs for aviators on long distance trips or weekend vacations.

B. DATA

Ideally, general aviation operations may be divided into various categories according to flight purpose (i.e., recreational, instructional, or business flying) for analysis and then each separate flight purpose forecast. However, no detailed records which could be used for this type of a break-down could be located at either the Monterey Peninsula Airport District Offices or the FBO's. Therefore, only aggregated totals of general aviation operations were used.

Appendix B.1 gives the data on a monthly basis for itinerant and local operations (see Appendix F for definitions) for years 1963 through 1970 as kept by the Monterey Peninsula Airport District. Appendix B.2 is the monthly air traffic record for Monterey Peninsula Airport from 1962 thru May of 1973 as kept by the FAA tower personnel. Appendix B.3 is a record of monthly commercial aircraft landings from 1970 to July of 1973

which was obtained from landing fee receipts kept by the Monterey Peninsula Airport District. The data in Appendices B.2 and B.3 were combined to determine general aviation operations from 1971 through 1973 in the following manner:

General Aviation Operations = Total Operations - Commercial Operations

Table I summarizes this data into quarterly, biyearly and yearly

blocks for years 1963-1973. Graph 1 displays the same information.

C. MODEL BUILDING

The dependent variable chosen for the regression equation and, consequently to be forecast was General Aviation Operations including both local and itinerant operations. Both types of operations were combined since this was more compatible with the data collected and the ultimate affect on usage of the airside interface would be the same, especially in the area of the traffic patterns and runway utilization.

The explanatory variables chosen to possibly be used in the regression models were U. S. registered pilots, California registered pilots, and Monterey based aircraft. Appendices B.4 and B.5 are a summation of the data obtained for registered pilots and based aircraft, respectively, from the FAA. Table II shows the high degree of correlation between the independent variables and the dependent variables.

Registered pilots in the U.S. and California were chosen as possible explanatory variables for the following reasons. First, both sets of pilots have data which is readily available from the FAA and, in the case of California registered pilots, from the State Department of Finance. Second, the FAA does yearly projections for the future numbers of U.S. registered pilots and these projections represent a source which may be used in the forecasting models of general aviation operations at Monterey.

TABLE I

OPERATIONS - GENERAL AVIATION QUARTERLY, BI-YEAR, YEAR

	1st _	2nd	6 mos.	3rd	4th	12 mos ending Dec 31
1961						40,000
1962						42,700
1963	12,190	14,169	26,359	14,695	12,508	53,562
1964	15,421	16,275	31,696	16,367	14,787	62,850
1965	16,540	16,081	32,621	18,638	17,749	69,008
1966	21,457	23,441	44,898	23,838	16,913	85,649
1967	20,778	20,217	40,995	21,700	21,590	84,285
19 68	21,348	21,863	43,211	20,754	17,153	81,118
1969	19,788	25,372	45,160	27,209	24,362	96,731
1970	23,944	23,571	47,515	22,638	20,153	90,306
1971	*	*		*	*	91,133
1972	24,643	24,667	49,310	24,369	20,708	94,387
1973	21,299					

^{*} No known data available for the operations of Golden West Airlines on a monthly period basis for this year, therefore general aviation operations could not be separated.

TABLE II

CORRELATION MATRIX FOR GENERAL AVIATION OPERATION MODEL VARIABLES

	GENERAL AVIATION OPS	MONTEREY BASED AIRCRAFT	CALIFORNIA REGISTERED PILOTS	u.s. recistered Pilots
GENERAL AVIATION OPS	1.000	0.965	0.939	0.937
MONTEREY BASED AIRCRAFT	0.965	1.000	0.982	0.981
CALIFORNIA REGISTERED PILOTS	0.939	0.982	1.000	0.999
U. S. REGISTERED PILOTS	0.937	0.981	0.999	1.000

Lastly, California registered pilots may provide a better explanatory variable than the Monterey County registered pilots since Monterey Peninsula Airport is a public airport and, from discussions with the FAA tower personnel, there are many non-based aviators using Monterey's facilities. Incidentally, there is no data available on the number of registered pilots residing in Monterey County.

Monterey based aircraft was used as an explanatory variable because of an intuitively appealing assumption: the more aircraft based at the airport, the more general aviation operations would be conducted at the airport. One of the FBO's estimated that 80% of the instruction he does for private pilot licenses occurs at the airport. Unfortunately, he had no complete record of the number of students he had trained during the previous years.

Table III shows the models which were estimated from the available data and, also the statistical results. Models 1-5 represent an attempt to determine what type of growth general aviation operations have been experiencing at Monterey. From the results obtained, a linear expression best explains the growth of operations since 1961. Models 6-8 and 9-11 represent an attempt to determine what type of model best represents the data when general aviation operations are a function of California Pilots and U.S. Pilots. A Logarithmic model in each case is better (but only by a small margin) than the linear model. Models 12-16, lastly, represent an attempt to relate the number of based aircraft at Monterey to general aviation operations and to see if any significant improvement can be made in the fit of the model to the data with the addition of another explanatory variable.

The comparison of model 12 with the remaining models shows that the fit to the data is not significantly improved by the addition of another

TABLE III

GENERAL AVIATION OPERATIONS MODELS AND STATISTICAL RESULTS

MODEL	R ²	STANDARD ERROR	COMPUTED FOR \$1	t VALUE FOR β2
$1) 0 = \beta_0 + \beta_1 Y + \epsilon$.8846	7.202	8.31	
2) $\ln 0 = \beta_0 + \beta_1 \ln Y + \epsilon$.8619	0.1224	7.49	
3) $0 = \beta_0 + \beta_1 Y^{\frac{1}{2}} + \varepsilon$.1702	19.31	1.36	
4) $0 = \beta_0 + \beta_1 Y^2 + \epsilon$.6957	11.70	-4.53	
5) $0 = \beta_0 + \beta_1 Y^{3/2} + \epsilon$	•7795	9.96	-5.64	
6) $0 = \beta_0 + \beta_1(CP) + \epsilon$.8822	7.275	8.211	
7) $\ln 0 = \beta_0 + \beta_1 \ln(CP) + \epsilon$.8968	0.1058	8.84	
8) $0 = \beta_0 + \beta_1 (CP)^2 + \epsilon$.8282	8.787	6.59	
9) $0 = \beta_0 + \beta_1(UP) + \epsilon$.8773	7.426	8.02	
$10) \ln 0 = \beta_0 + \beta_1 \ln(UP) + \varepsilon$.8841	0.1121	8.29	
11) $0 = \beta_0 + \beta_1 (UP)^2 + \epsilon$.8304	8.731	6.64	
12) $0 = \beta_0 + \beta_1(MAC) + \epsilon$.9317	5.542	11.08	
13) $0 = \beta_0 + \beta_1(CP) + \beta_2(MAC) + \epsilon$.9338	5.788	-0.50	2.49
14) $0 = \beta_0 + \beta_1(UP) + \beta_2(MAC) + \epsilon$.9348	5.743	-0.61	2.65
15) $\ln 0 = \beta_0 + \beta_1 \ln(CP) + \beta_2 \ln(MAC) + \epsilon$.9340	0.0898	-0.05	2.12
16) $\ln 0 = \beta_0 + \beta_1 \ln(UP) + \beta_2 \ln(MAC) + \epsilon$.9348	0.0892	-0.32	2.49

O = GENERAL AVIATION OPERATIONS

Y = YEAR

CP = CALIFORNIA PILOTS

. UP = UNITED STATES PILOTS

MAC = MONTEREY BASED AIRCRAFT

REFER TO APPENDIX C FOR VALUES OF COEFFICIENTS

variable or by changing the structure of the model. It is also worthwhile to point out that the values for the coefficients of the registered pilot variables in models 13-16 is not significantly different from zero as indicated by the "t" statistic. The critical t value for nine degrees of freedom 90% confidence level is 1.383. An explanation of this is the high degree of correlation between the explanatory variables as shown in Table II.

Summarizing the results, all three explanatory variables do an excellent job of relating to general aviation operations. Of the three, Monterey based aircraft is the best by a small margin. Finally, no significance is gained by adding either of the registered pilots variables to based aircraft.

The following three models were selected to be used as the means of .

forecasting general aviation operations at Monterey:

Model I

General Aviation Operations =
$$\beta_0 + \beta_1(Year) + \epsilon$$

 $0 = -303.98 + 5.70(Year)$
(0.6867)

Model II

General Aviation Operations =
$$\beta_0$$
 + β_1 (U.S. Pilots) + ϵ
0 = 6.12 + 0.12 (U.S. Pilots)
(0.0150)

Model III

ln General Aviation Operations =
$$\beta_0$$
 + β_1 ln(U.S. Pilots) + ϵ
ln 0 = -1.9885 + 0.99 ln(U.S. Pilots)
(0.1199)

The reasons for selecting these particular models were many and are discussed in the following paragraphs.

Even though based aircraft best explained general aviation operations, several items precluded the use of that particular model. The first item to be considered is the space which is allocated for parking of aircraft. From Appendix B.5 it can be noted that the rate of change in the number of aircraft based at the airport, while positive, has not been constant, and for the years 1969 through 1972, there has been no reported change in the number of based aircraft. One possible explanation of this fact may be due to the lack of available hanger space. One of the FBO's felt that if more hanger space was made available it could be filled in a short time. However, tie-down space, the only other means of basing an aircraft, is not as desirable a method for storing an aircraft and would require a longer period of time to fill. Therefore, it may be concluded that available hanger space may be an important factor for basing aircraft at Monterey. Secondly, the Board of Directors may make decisions on how many and what type aircraft will be based at Monterey in the future in response to public opinion. Finally, without prior knowledge of future plans for the type and/or number of aircraft basing facilities at the airport, it is not feasible to make a forecast using this model.

Another reason for selecting the three models was the fact that all had nearly equal values for coefficient of determination and the standard errors were also nearly equal.

It was further decided to use U.S. registered pilots in place of California registered pilots since FAA projections were readily available as discussed earlier and there was only a slight sacrifice in fit of the models; compare the respective coefficient of determinations and standard errors. Also the percentage of U.S. pilots which are registered in California has been relatively stable for the past 15 years, increasing approximately .1%/year.

Lastly, the models chosen were consistant with the purposes of the thesis as discussed in Chapter I.

D. FORECASTS

Table IV shows the forecasts and prediction intervals associated with a 90% confidence interval for general aviation operations for Monterey Peninsula Airport for the years 1973, 1974, 1975, 1980, and 1985. The figures used for U.S. registered pilots came from FAA predictions shown in Appendix B.4.

The results show that Model I consistantly gave the highest forecast while Model II consistantly gave the lowest. Model III gave the smallest prediction intervals and Model I gave the largest.

Graphs 2 and 3 depict the forecasts and prediction intervals of the models respectively, and in addition FAA forecasts and United Airlines (UAL) forecasts are drawn on Graph 2 for comparative purposes only [Refer to Appendices B.6 and B.7 for FAA and UAL forecasts].

The FAA [Ref. 6, p. 7] describes its methodology for forecasting general aviation operations in the following manner:

"General Aviation Operations forecasts are projections of past trends modified by known considerations such as airport capacity, available reliever airports, and official-attitudes toward general aviation activity at the subject airport."

The methodology which UAL used to forecast general aviation operations was not delineated. It is interesting to note that Models II and III agreed very closely with UAL's forecasts.

E. SENSITIVITY OF FORECASTS

The basic premise upon which these forecasts are based is that all externalities which influenced general aviation operations in the past will continue in the same manner in the future. Any change in these

TABLE IV

FORECAST OF GENERAL AVIATION OPERATIONS MONTEREY PENINSULA AIRPORT

MODEL I

GENERAL AVIATION OPERATIONS = $\beta_0 + \beta_1(YEAR) + \epsilon$

MODEL II

GENERAL AVIATION OPERATIONS = $\beta_0 + \beta_1(u.s. pilots) + \epsilon$

MODEL III LN GENERAL AVIATION OPERATIONS = $\beta_0 + \beta_1 LN(u.s. PILOTS) + \epsilon$

VEAD	MODEL I		MOI	EL II	MODEL II		
YEAR	FORECAST	PREDICTION INTERVAL ±	FORECAST	PREDICTION INTERVAL ±	FORECAST	PREDICTION INTERVAL ±	
1973	112,400	16,900	103,800	16,500	106,200	12,700	
1974	118,100	17,600	108,600	17,000	111,900	12,800	
1975	123,800	18 , <i>5</i> 00	113,300	17,600	116,400	12,900	
1980	152,300	23,100	137,100	21,200	140,600	13,200	
1985	180,900	28,500	161,400	25,600	168,200	13,500	

factors may accordingly change the forecasts. The following discussion enumerates several of the possible areas which might influence operations either positively or negatively.

The Federal Aviation Regulations Part 61 were changed early in 1973 to require more flight time for pilots to maintain current ratings and licenses. Reference 7 summarizes and reviews these changes and compares both sets of regulations. The effects of these changes locally has been a reduction in the number of pilots utilizing the rental aircraft available at the FBO's and the club aircraft at the Navy Flying Club. In both cases, however, the pilots who were withdrawing from active flying were felt to be marginally active and therefore contributing little to overall operations. One FBO felt that his charter business may actually increase due to the possibility of transporting some of the previous marginal pilots who now elect not to fly themselves. Whether a reduction in operations caused by marginally active pilots becoming inactive will be offset by increasing operations caused by pilots maintaining currency is an issue which will require a longer period for study than was available for this thesis.

The cost of obtaining pilot licenses and ratings has been increasing at a very fast rate. A popular manner of obtaining the instruction necessary to obtain the licenses and ratings is to use the benefits granted veterans under the G.I. bill. One of the FBO's estimated that approximately 80% of the students he has and is training have paid the cost of instruction using the G.I. bill. Current events show a tendency to decrease the size of the armed services in general and, thus, a distinct possibility of reduction in flight instruction, licensed pilots, and consequently, general aviation operations does exist.

Reference 8 states the following, "Cessna Aircraft Company estimates that 200,000 persons must begin learn-to-fly programs during 1976 for the general aviation industry to grow at an acceptable rate. The company expects 1972 starts to total about 128,000 of which only 39,000 will earn private pilot licenses." One of the basic inferred premises of the models was that as the number of registered pilots increased there would be a corresponding increase in the number of general aviation operations.

Costs of maintaining and flying of aircraft were of concern to aircraft owners and renters as indicated by interviews. Though the source of the rumor was not given, there is supposedly some talk of increasing the cost of aviation fuels as much as 100% due to an increase in fuel tax to a level where the tax is equivalent to the cost of the fuel alone.

Another increase in taxes or licensing fees is in the form of a users tax on the nation's airways. Commercial airlines are objecting to the cost they have to bear for using the nations airways and feel that private aviation should carry more of the burden than at present. Lastly, there is supposedly discussion underway to enact legislation which would require more avionics to be carried on all aircraft which operate outside a radius of 50 miles from where they are based or operate at night. All of these rumors, if they become fact, may decrease general aviation operations by forcing out of active aviation those who cannot afford to bear the additional costs.

Reference 9 details some of Cessna's production and marketing philosophy for 1973 and 1974. In summary, to expand the market for aircraft Cessna has increased production of all their aircraft models, added special packages for increased performance at nominal costs, and maintained the cost of the total at a value equal to their 1972 model costs. They intend to ship their product to their dealers at a rate faster than the

dealers request to achieve two things. They first want to fill their dealers flight lines so they will be willing to make more sales with smaller profit margins in order to move the aircraft. Second, they want their dealers to take in more trade-in aircraft so a larger market of good used aircraft will be available as an inducement to get more people in the market. Reference 10 in general summarizes the optimistic views held by most of the general aviation aircraft manufactures for increased aircraft demand. If these views and philosophies are in fact true, general aviation operations should be increasing in the future.

The last item to be mentioned is the effect of the "Energy Crisis" on the forecasts. If in fact this problem is a long term factor, the effect may most probably be a reduction in general aviation operations. If the "Energy Crisis" is a short term factor, then the length of time before all factors return to their pre-crisis levels, or if they ever return, is open to subjective arguments and cannot at the present be qualified.

IV. ENPLANED PASSENGER SEAT MODEL

A. CHARACTERISTICS AND ANALYSIS OF DATA

The Monterey Peninsula Airport ranks as the ninety-sixth busiest commercial airport (in terms of passenger enplanements) in the United States, Puerto Rico, and Guam [Ref. 11]. Statewide, the airport ranks eighth for community passenger service [Ref. 11] and serves as a major feeder into the state and national air transportation system.

As discussed in Chapter 2, airline passengers are the single most important variable for utilization of airport facilities since they effect to some degree all three interfaces of the airport system. An ideal approach to forecasting the passenger seat demand at Monterey Peninsula Airport would be to isolate various passenger categories (tourist, military, and business for example), obtain historical data on each, forecast future demand for each, and then combine the results to determine total future demand. Part of the ensuing discussion lists some of the results of such an attempt. Unfortunately, this approach was not feasible due to insufficient data, and therefore an alternate approach using only total enplanements and certain socio-economic characteristics of the county was undertaken.

Tables V and VI summarize quarterly, calendar, and fiscal year totals of airlines passengers using the airport for the years 1962-1973. It should be noted that the number of enplaning and deplaning passengers over the same period of time have been nearly equivalent. Appendix B.8 contains the monthly figures kept by the Monterey Peninsula Airport District from 1965 to June 1973. Appendix B.9 lists the calendar and fiscal year totals for 1962 through 1965 as reported by the FAA.

QUARTER PASSENGER TRAFFIC MONTEREY PENINSULA AIRPORT

TABLE V

YEAR	FIRST QUARTER	SECOND QUARTER	THIRD QUARTER	FOURTH QUARTER	
1965 ON OFF TOTAL	16779 <u>16707</u> 33486	20499 21107 41606	24201 26722 50923	23433 24514 47947	
1966 ON OFF TOTAL	23493 26440 49933	29484 29876 59360	23431 241 <u>38</u> 47569	3170 <i>5</i> 28270 5997 <i>5</i>	
1967 ON OFF TOTAL	23431 23964 47395	3070 <i>5</i> 28270 5897 <i>5</i>	31882 33326 65208	37631 36798 74429	
1968 ON OFF TOTAL	40820 37708 78528	36681 <u>34895</u> 71 <i>5</i> 76	33524 35470 68994	44310 40653 84963	
1969 ON OFF TOTAL	40248 26212* 66460*	55562 <u>37976*</u> 93538*	53627 <u>37384*</u> 91011*	52863 34494* 87357*	*ESTIMATED VALUES SINCE DATA FOR PACIFIC AIR LINES
1970 ON OFF TOTAL	46480 43474 89954	54060 <u>50930</u> 104990	59661 <u>57573</u> 117234	51418 <u>47901</u> 99319	DEPLANING PASSEN- GERS WAS NOT AVAILABLE
1971 ON OFF TOTAL	441 <i>5</i> 7 4208 <i>5</i> 86242	49881 48850 98731	53794 <u>55651</u> 109445	45344 49090 94434	
1972 ON OFF TOTAL	39312 41370 80682	540 53 56003 1100 56	58914 61160 120074	52950 53634 106584	
1973 ON OFF TOTAL	47963 <u>51443</u> 99406	57064 <u>56971</u> 114035			

TABLE VI

CALENDAR AND FISCAL YEAR PASSENGER TRAFFIC MONTEREY PENINSULA AIRPORT

YEAR	ENPLANING PASSENGERS	DEPLANING PASSENGER	TOTAL
1962 ENDING 30 JUI	v 61434	N/A	N/A
1963 ENDING 31 DEX	66358	n/A	N/A
1964 ENDING 30 JUN ENDING 31 DEX		N/A N/A	N/A N/A
1965 ENDING 30 JUI ENDING 31 DEX		N/A 89,0 <i>5</i> 0	N/A 173,962

TABLE VI

CALENDAR AND FISCAL YEAR PASSENGER TRAFFIC MONTEREY PENINSULA AIRPORT

	CALENDAR YEAR	FISCAL YEAR TOTAL
YEAR	TOTAL	IOIAD
1965 ON	84,912	78,196 N/A
OFF TOTAL	89,050 173,962	N/A N/A
1966 ON OFF	108,113	100,611 107,552
TOTAL	108,724 216,837	208,163
1967 ON OFF	123,649	109,272 104,642
TOTAL	122,358 246,007	213,914
·1968 ON OFF	155,335	147,014 142,727
TOTAL	148,726 304,061	289,741
1969 ON	202,300	173,644
OFF TOTAL	<u>191,066</u> 393,366	165,666 339,310
1970 ON	211,619	207,030
OFF TOTAL	199,878 411,497	<u>195,927</u> 402,957
1971 ON	193,176	205,117
OFF TOTAL	195,676 388,852	<u>196,409</u> 401,526
1972 ON OFF	205,229	192 , 503
TOTAL	212,167 417,396	<u>202,114</u> 394,617
1973 ON OFF		216,891 223,208
TOTAL		440,099

Graph 4 was plotted using quarterly and fiscal year totals and illustrates the increasing trend of passenger enplanements.

Inspection of Graph 4 shows that the third quarter for years 1970, 1971, and 1972 was the busiest of the year. This period coincidently corresponds to the peak period since 1965 for tourist spending in the Monterey Peninsula Area as determined by the Monterey Chamber of Commerce. Reference 12 also noted that tourism as reflected in trade and service industries is the largest contributor to the economy of the Monterey Area and that the peak tourist time is from July to September. It was felt by both commercial airline managers that tourist travel is especially predominant during this period, but neither had any real data base in this area.

Although not reflected in the data, interviews with the airline managers determined that Friday and Sunday are the busiest days of the week. During these two days the demand for passenger seats often exceeds the supply for a particular flight and passengers often have to wait for the next flight in order to travel. The average load factor [see Appendix F for definition] during this three day week-end period is in excess of 90% during this summer period. The two largest contributors to this traffic were felt to be military personnel and tourists. The second busiest period in addition to the summer periods was felt to be the Crosby Golf Tournament weekend. It is UAL's policy during this occasion to try to schedule as many stretch Boeing 727's as possible to handle the increased demand.

'In an attempt to isolate the military market and its effect on the enplaning passenger seat demand, interviews were held and data collected at Fort Ord [Fort Ord handles all Army transportation requests including those of the Defense Language Institute] and the Naval Postgraduate School.

At Fort Ord it was found that all enlisted personnel graduating from their eight week basic training course and being transferred elsewhere were being sent via commercial airlines on the Friday or Saturday following their Thursday graduation. The Army no longer uses rail or bus service with the exception of chartered bus service to transport large groups of graduates to specially chartered flights departing from one of the San Francisco Bay Area airports. Since travel time is unproductive time, the Army desired to minimize it as much as possible. By utilizing air service they feel they accomplish this goal and additionally gain two benefits. First, they do not have to arrange for mass purchase of meals for their personnel enroute. Second, they are able to have their personnel check into a new post and, without loss of continuity, continue their training on the Monday following their Thursday graduation. It should be emphasized that all trainees who are being transferred follow this procedure and that trainees are the largest group of personnel who are regularly transferred to other posts using airline services. It should also be noted that trainees are not authorized to have private automobiles with them during their basic training phase. It was felt by the transportation department at Fort Ord that October and November were their busiest months normally for transferring personnel due to the Christmas leave periods in December and the associated closing of the training facilities for about 3 weeks.

Appendix B.10 shows the number of Army personnel being sent via commercial airlines from various airports as determined from all the transportation requests for 1972 at Fort Ord. Appendix B.11 shows the data on trainees being sent via commercial airlines from Monterey for only a few months in 1971 and from January to July 1973. The number of trainee air enplanements was not recorded for the Monterey Peninsula Airport

until September 1971. Previously, the numbers were kept only for commercial air, bus, and train seats used. The numbers of basic trainee graduates for the years 1967 through 31 August 1973 are shown on a quarterly basis in Appendix B.12.

An attempt was made to correlate the number of trainees completed per month against the number of trainees transferred via commercial airline. The results were inconclusive. Another attempt was made to correlate quarterly enplaning passengers and trainee output as a means of isolating part of the military demand and possibly estimating part of the future enplanement demand. It was apparent from Graph 5 that there was little or no correlation. The decrease in total trainee output from 1968 to 1973 was related to the diminishing requirements for Southeast Asia.

Hughes Air West conducted a survey during the period from July 16 to July 21, 1972, to identify passenger/destination characteristics of the Monterey Peninsula Airport. The survey had a sample size of 1,157 out of a possible 4,750 passengers traveling on both airlines. Local travelers, defined as those whose trip terminated at either San Francisco or Los Angeles; beyond travelers [825], defined as those whose destination was beyond either San Francisco or Los Angeles; and military travelers were the categories sampled. The assumption was made at the conclusion of the survey that the results obtained accurately portrayed the total market. The data obtained from the Transportation Department at Fort Ord when applied to the results of Hughes Air West's survey, however, implied the possibility of unintentional bias introduced in the survey.

The following excerpt was taken from Reference 13:

[&]quot;6. Of the total sample, 47% of the respondants were associated with the military. With respect to just the beyond travelers, 53% were military. The local market was even more striking. Only 32% of the local traffic was associated with the military.

^{7.} The total military traffic was equally divided between pleasure and

GRAPH 5
COMPARISON BETWEEN QUARTERLY ENPLANING PASSENGERS vs. FORT ORD QUARTERLY BASIC TRAINEE OUTPUT.

business as the purpose of their trip. Of the local military traffic, 84% were traveling for leave or other pleasure related reasons. The military traffic traveling beyond the San Francisco or Los Angeles gateways is only 40% pleasure-related..."

The data in Appendix B.10 for the corresponding month was approximately uniformly distributed on a weekly basis. Also, most of the transportation requests were for destinations beyond San Francisco or Los Angeles, and by quick calculation, there should have been approximately 260 Army personnel on official business traveling beyond either San Francisco or Los Angeles.

Interpreting the survey results, 1796 [3388 x .53] were classified as military beyond passengers. Of these 1796, 1078 [1796 x .6] of the military passengers would be on official business. A comparison of the Army data and the Hughes Air West survey results show a large discrepancy. It should be noted that neither military traffic from the Naval Postgraduate School [Appendix B.13] nor military visitors from other commands were included in the above total of 260 due to a lack of pertinent data. It should also be pointed out that the week that the Hughes Survey was undertaken, the Postgraduate School had classes in session and probably contributed very few passengers to the survey.

The inferred conclusion of the foregoing discussion is that the survey may not accurately reflect the total Monterey market. The contributions of the military to the overall market was probably something less than 47% or 28% [.47 x .6] for official military business as reported by the Hughes Survey but probably more than the approximate 6% yearly average official military business enplanements that the Army data would suggest. The actual but unknown percentage probably lies somewhere inbetween.

The last point to be discussed in this section is load factor. As was pointed out earlier, the average three day week-end period load factor

during the third quarter was running in excess of 90%. This figure should be compared to the yearly average load factor of 80% for both airlines. However, load factor should not be construed to conclude that 80% of the passengers on departing aircraft boarded at Monterey. With the exception of two morning flights by UAL, all flights departing from Monterey originate at either San Francisco or Los Angeles, and Monterey is used only as a stopover to deplane or enplane passengers. Many in the 80% load factor do not board at Monterey.

The number and types of aircraft used for airline operations were obtained from FAA records [Appendix B.14] and Monterey Peninsula Airport landing fee receipts [Appendix B.3]. With this information plus the passenger seat capacity of each aircraft as published in Reference 2, the total number of seats available during the year was calculated [Appendix B.14]. Graph 6 shows the total number of seats available per year and plots the passenger enplanements at Monterey. The results show that passengers boarding at Monterey have accounted for 37 to 47% of the capacity of the aircraft for the past five years.

B. MODEL BUILDING

The dependent variable chosen for the regression equation was enplaning passengers. The socio-economic characteristics of Monterey County chosen to be independent variables for the regression equation were population and income. These two variables were selected because of the completeness of the data available and because estimates or procedures to be followed to calculate estimates were also available. These two variables were also chosen to be used for forecasting local, state, and national enplanements by at least three other studies [Refs. 14, 15, and 6].

* Data unavailable for 1963 and 1969

Income for the county of Monterey was modified in the following manner:

Adjusted Income = (Income)
$$(\frac{1}{\text{California}})$$

Price Index

California Price Index 1967 = 100

The purpose of this variable was to have all the years income compared on the same basis.

A second manner of utilizing income was to calculate the income per capita. The following method was used:

Adjusted Income Per Capita = (Adjusted Income) $(\frac{1}{Population})$

This variable reflects the income per person in the county in constant 1967 dollars. One reason this particular variable was selected was the intuitively appealing argument that as a person's real income is increased the greater the probability of his eventual usage of air transportation.

Appendix B.15 lists the data for adjusted income, adjusted income per capita, and population. An examination of the overall growth trend of each of the variables will give an idea of how well they will correlate with emplaning passengers. First, note that emplaned passengers have consistently increased in every year except for 1971 and 1972 (refer to Graph 5). The trend of population in the county has been increasing; however, there are periods (notably 1961, 1965, 1968, and 1970) of decreasing population corresponding to some of the larger increases in enplaning passengers. These occurrences will cause a decrease in the correlation coefficient when compared to the results obtained with adjusted income and adjusted income per capita which show fewer periods of decreasing values (1969 and 1970 for adjusted income and 1969 only for adjusted income per capita).

Table VII gives the correlation coefficients and does reflect the above discussion. The high degree of correlation among the variables should also be noted.

Table VIII shows the models that were attempted and the statistical results. Models 1-10 were an attempt to approximate mathematically the average growth rate for enplaning passengers at the airport. Nearly all the models gave good results, however much of this was due to the high degree of correlation between enplaning passengers and years. As a result, only the following two models were chosen for further analysis:

Emplaning Passengers = $\beta_0 + \beta_1(YEAR) + \epsilon$

$$\mathbf{\hat{EP}} = -1113.34 + 18.61(YEAR) + \varepsilon$$
(1.7858)

ln Fnplaning Passengers = $\beta_0 + \beta_1 ln(YEAR) + \epsilon$

$$\ln \hat{EP} = -5.1878 + 0.15(YEAR) + \varepsilon$$
 (0.9430)

Models 11-13 were an attempt to relate the first of the socio-economic variables population to emplaned passengers. The coefficients of determination for these models were the lowest of all those attempted. Two models were chosen for further analysis:

Emplaning Passengers = β_0 + β_1 (POPULATION) + ϵ

$$\mathbf{EP} = -555.72 + 2.85(POPULATION) + \varepsilon$$
(0.6961)

ln Enplaning Passengers = β_0 + β_1 ln(POPULATION) + ϵ

$$\ln EP = -26.2772 + 5.67 \ln (POPULATION) + \epsilon$$
(1.0721)

TABLE VII

CORRELATION MATRIX FOR ENPLANING PASSENGER MODEL VARIABLES

DATE AMED	ENPLANED PASSENGERS	YEAR	ADJUSTED INCOME PER CAPITA	ADJUSTED	POPULATION
ENPLANED PASSENGERS	1.000	•969	•934	•915	. 840
YEAR	•969	1.000	•972	•945	.858
ADJUSTED INCOME PER CAPITA	•934	•972	1.000	•990	•932
ADJUSTED INCOME	•915	•945	•990	1.000	•973
POPULATION	. 840	.858	•932	•973	1.000

PASSENGERS
ENPLANING
FOR
MODELS
REGRESSION

REGI	REGRESSION MODELS FOR ENPLANING PASSENGERS	NING PASSENGERS	
MODEL	H ²	STANDARD ERROR	COMPUTED t VALUE β_1
1) $\mathbb{E} = \beta_0 + \beta_1 Y + \varepsilon$	4686.	13,833	10.42
2) $lnEP = \beta_0 + \beta_1 lnY + \varepsilon$	•9392	0,1104	10.40
3) lnEP = $\beta_0 + \beta_1 Y + \epsilon$.9537	0*0963	12.01
$\psi) \mathbf{EP} = \beta_0 + \beta_1 \mathbf{Y}^{\frac{1}{2}} + \varepsilon.$.1549	51.70	1.13
5) $\text{EP} = \beta_0 + \beta_1 X^3/2 + \varepsilon$	• 9392	13.86	10.39
6) $EP = \beta_0 + \beta_1 Y^2 + \varepsilon$.9390	13.90	10.38
7) $EP = \beta_0 + \beta_1(\frac{1}{Y})^5 + \epsilon$	7986*	14.20	-10.15
8) EP = $\beta_0 + \beta_1(\frac{1}{Y}) + \epsilon$.9370	$1\dot{\psi}_{ullet}10$	-10.20
9) EP = $\beta_0 + \beta_1(\frac{1}{Y})^{3/2} + \epsilon$.9373	14.10	-10.23
10) $\mathbf{E} = \beta_0 + \beta_1(\frac{1}{Y})^2 + \varepsilon$	• 9366	14.10	-10.17
11) $\mathbb{P} = \beta_0 + \beta_1 \mathbb{P} + \varepsilon$.7059	30.48	4.10
12) lnep = $\beta_0 + \beta_1 \ln P + \epsilon$	8662.	0.2003	5.29
13) $\text{EP} = \beta_0 + \beta_1 \text{P}^2 + \epsilon$.7070	30.42	4.11
14) EP = $\beta_0 + \beta_1 AI + \epsilon$.	.8379	22.63	6.01
15) $lnEP = \beta_0 + \beta_1 lnAI + \varepsilon$.9073	0.1363	8.28

MODEL	² ²⁴	STANDARD ERROR	COMPUTED t VALUE β_2	ν
16) $\mathbb{E} = \beta_0 + \beta_1 A I^2 + \varepsilon$. 8525	21.58	6.36	
17) $EP = \beta_0 + \beta_1 AIC + \varepsilon$.8714	20.15	6.89	
18) $\ln EP = \beta_0 + \beta_1 \ln AIC + \varepsilon$.9320	0.1168	62.6	
19) $\text{EP} = \beta_0 + \beta_1 \text{AIC}^2 + \varepsilon$. 8800	19.50	7.17	
20) $\mathbb{E} = \beta_0 + \beta_1 \mathbb{P} + \beta_2 AI + \varepsilon$.8872	20.39	-1.62 3.	3.11
21) $lnEP = \beta_0 + \beta_1 lnP + \beta_2 lnAI + \varepsilon$.9318	0.1263	-1.47 3.	3.41
22) $\mathbb{E} = \beta_0 + \beta_1 P^2 + \beta_2 A I^2 + \varepsilon$	0768	19.77	-1.53 3.	
23) $\mathbb{E} = \beta_0 + \beta_1 P + \beta_2 AIC + \varepsilon$.8783	21.18	-0.58 2.	2,92
24) $\ln EP = \beta_0 + \beta_1 \ln P + \beta_2 \ln AIC + \epsilon$.	.9323	0.1259	-0.16 3.43	643

AI = ADJUSTED INCOME PER CAPITA EP = ENPLANING PASSENGERS
Y = YEAR
P = POPULATION

3.03

-0.47

20.65

.8843

25) $EP = \beta_0 + \beta_1 P^2 + \beta_2 AIC^2 + \epsilon$

REFER TO APPENDIX D FOR VALUES OF COEFFICIENTS

Models 14-16 related adjusted income to enplaned passengers. The results obtained for the coefficient of determination were the second lowest of the four groups of models, but were still highly significant.

Two models were also taken from this group for further analysis:

Enplaning Passengers =
$$\beta_0$$
 + β_1 (Adjusted Income) + ϵ

$$\hat{EP} = -182.70 + 0.38(Adjusted Income) + \epsilon$$

$$(0.0630)$$

In Emplaning Passengers =
$$\beta_0$$
 + β_1 ln(Adjusted Income) + ϵ

ln $\hat{E}P$ = -11.8637 + 2.48ln(Adjusted Income) + ϵ
(0.3001)

Models 17-19 related adjusted income per capita to enplaning passengers. The results of the coefficient of determination were the second best of the group and were very close to the results using years as the variable. Here again, two models were selected for further evaluation:

Emplaning Passengers = β_0 + β_1 (Adjusted Income per Capita) + ϵ

lnEnplaning Passengers = β_0 + β_1 (Adjusted Income per Capita) + ϵ

ln
$$\overrightarrow{EP} = -0.2946 + 4.15ln(Adjusted Income per Capita) + ε (0.4242)$$

Models 20-22 and 23-25 were an attempt to combine either adjusted income or adjusted income per capita with population and improve the results of the regression equations. The results did show an increase in the coefficient of determination. However it was only a slight improvement over using either adjusted income or adjusted income per capita alone. The statistical results showed that the values for the coefficients of the

variable population were not significantly different from zero. For the added complexity and the multicolinearity effects due to the high correlation between all the variables, the addition of the second variable did little to improve the forecasts. Therefore, none of the models 20-25 were used for further analysis.

C. FORECAST OF ENPLANED PASSENGERS

The forecasts for enplaned passengers were made using the eight models selected above and Appendix B.16 summarizes the data used for the explanatory variables.

The forecasted population data came from three sources. Reference 16 was the first source. All the forecasts for the required years were low due to the exclusion of military personnel in the county. Because of the classified nature of personnel stationed in Monterey County, only estimates of this population have been found; they range from 40,000 [Ref. 17, p. 9-10] in 1967 to 25,000 in 1972. This latter figure is probably a good figure to add to all the figures to find total population due to probability of the military population remaining constant in size. The second source of population forecast was the simple regression model

$$Ln(Population) = \beta_0 + \beta_1 Ln(Year) + \epsilon$$

where
$$\beta_0 = -234.0$$

$$\beta_1 = 34.8$$

The coefficient of determination for this model was 0.93. This particular model fitted the population data available reasonably well and gave results which were somewhat lower than those given in Reference 18 which has tended to over estimate consistently population forecasts for the country. The last source of population data was based on information

gained through interviews with DMJM and the Monterey County Planning Commission personnel and from data found in Reference 12, chapter 3.

The forecasted adjusted income and adjusted income per capita data were arrived at by a methodology suggested by the Monterey County Planning Commission in reply to a SMATS survey for 1995 forecasts. According to the commission, the real growth in income has been averaging 3.3% per annum and should continue in the future. The 3.3% per annum figure was applied to the adjusted income and also the adjusted income per capita. The results of the latter method were comparable to the results obtained in Reference 14, p. 9. The adjusted income per capita results were multiplied by population forecasted by both the regression model and the interview results to obtain additional adjusted income figures.

Table IX shows the results of forecasting emplaning passengers using the forecasted values for population, adjusted income, and adjusted income per capita. Models II, IV, VII, and VIII were dropped from further analysis due to the rather large forecasts they gave for years 1980 and 1985. The percentage increases from 1972 to 1985 averaged approximately 335% and based on historical increases this large increase seemed unreasonable. A cause for such a large increase in growth for the natural logarithmic models was due to the fact that only ten years of data was used for model building and a forecast for a time period of fourteen years was made. The forecast time period was probably well beyond the reliable period of the model.

Models I, III (b), V (a), V (b), and VI were used to plot Graphs 7 and 8. For comparative purposes only, UAL (Appendix B.7) and FAA (Appendix B.6) were included.

In order to reduce the number of forecasts even further to a most likely case, two procedures were used to modify the results of the models'

FORECAST OF ENPLANED PASSENGERS
MONTEREY PENINSULA AIRPORT

	1	0	10		0	0	T	ABL	EI	X	0	-	0		0	0	10
1985	P.I.+	006,99	15,900		106,800	225,800	126,100	30,900 ABT		104,300	217,400	165,400	131,000		16,000	20,300	17,500
19	FORECAST	468,200	1,815,000		323,100	002,009	402,900	2,353,000		431,600	807,700	638,300	586,300		662,900	2,398,700	1,719,800
1980	P.I.+	52,000	14,400		75,600	142,400	112,300	22,300		79,200	130,400	113,800	93,900		14,900	17,100	15,600
19	FORECAST P.I.+	375,200	861,500		230,400	411,800	337,300	857,400		339,600	521,800	009,794	441,100		442,900	931,500	877,000
75	P.I.+	38,700	13,100		61,300	83,600	78,200	17,800		009,09	74,200	71,600	006'179		14,000	14,700	14,100
19	FORECAST	282,100	408,300		148,700	257,100	239,500	312,700		261,300	321,500	309,600	317,500		295,900	403,700	13,800 447,200
1974	P.I.+	36,400	12,900			74,400	71,600	16,100		57,700	000,99	004,49	000,09		13,900	14,300	13,800
19	FORECAST	263,500	351,700		*	225,800	214,600	255,100		247,100	285,600	279,000	295,100		272,900	337,800	390,300
1973	P.I.+	34,300	12,700			006,79	67,800	15,600		55,100	59,200	59,100	55,800		13,800	14,000	13,600
19	FORECAST	244,900	344,700		*	198,100	197,500	208,200		233,400	254,600	254,300	273,500		251,700	284,900	341,200
FIGURE	MODEL	I	II	III	(a)	(a)	(°)	IV	Λ	(a)	(a)	(c)	IV	VII	(a)	(p)	VIII

FORECAST OF ENPLANED PASSENGERS MONTEREY PENINSULA AIRPORT

MODEL

NATURAL LOG ENPLANED PASSENGERS = β_0 + β_1 (YEAR) + ϵ ENPLANED PASSENGERS = β_0 + β_1 (POPULATION) + ϵ ENPLANED PASSENGERS = β_0 + β_1 (YEAR) + ϵ

- (a) CIVILIAN POPULATION ONLY FROM CALIFORNIA COUNTY FACT BOOK 1972
- (b) POPULATION FROM RECRESSION EQUATION SEE APPENDIX D.5
- (c) POPULATION FORECAST BASED ON INTERVIEW
- NATURAL LOG ENPLANED PASSENGERS = β_0 + β_1 (ADJUSTED INCOME) + ϵ_- ENPLANED PASSENGERS = β_0 + β_1 (ADJUSTED INCOME) + ϵ ΔI
 - (a) ADJUSTED INCOME BASED ON 3.3% YEARLY INCREASE
- (b) ADJUSTED INCOME = [3.3% YEARLY INCREASE ADJUSTED INCOME PER CAPITA] * RECRESSION POPULATION]
- (c) ADJUSTED INCOME = [3.3% YEARLY INCREASE ADJUSTED INCOME PER CAPITA] INTERVIEW POPULATION] ENPLANED PASSENGERS = β_0 + β_1 (ADJUSTED INCOME PER CAPITA) + ε K
 - NATURAL LOG ENPLANED PASSENGERS = β_0 + β_1 (NATURAL LOG ADJUSTED INCOME) + ϵ (a) ADJUSTED INCOME DETERMINED AS IN V(a) MI
- (b) ADJUSTED INCOME DETERMINED AS IN V(b)
- NATURAL LOG ENPLANED PASSENGERS = β_0 + β_1 (NATURAL LOG ADJUSTED INCOME PER CAPITA) + ϵ

* POPULATION DATA UNAVAILABLE

forecasts. In order not to lose any information which may be contributed by each model, the first procedure used the coefficient of determination (R²) as a measure of efficiency. Each model contributed to the overall results in the following manner: all five values for R² were summed and then each model's value of R² was divided by the summed value to determine the proportion or weighted average of its forecast which would be contributed to the most likely forecast case. The results are shown in Table X for both forecasts and their ranges.

The second method for forecasts was based on an interpretation of Graph 8. Each model was assumed to give equally probable results. Therefore, the common interval which was spanned by the Prediction Interval's of each model was assumed to have the most probable forecast. The high and low values of these intervals for the forecast years was determined and a most probable forecast was calculated by the following procedure

Table X shows the results for the forecasts and their ranges. It should also be observed from Table X that the results for enplaning passengers is nearly the same regardless what method is chosen.

Graph 9 compares UAL, FAA, and both of the above forecasts. Although the mean forecasts produced by the above methods are slightly less than the FAA result and approximately 20% less than UAL forecast, it is significant to note that the last available forecast made by UAL was in 1969 and it showed a 20% reduction in the forecast made one and a half years earlier. Also, it can be observed that both the FAA and UAL results are

REVISED FORECAST OF ENPLANING PASSENGERS MONTEREY PENINSULA AIRPORT

	RANGE +	117,400	27,600		
1985	FORECAST F	508,500 11	500,500		
1980	RANGE +	88,600	32,500		
15	FORECAST	393,900	386,300		
1975	RANGE	61,700	32,600		
19	FORECAST	283,600	285,200		
1974	RANGE	57,100	25,600		
19	FORECAST	261,700	260,700		
73	RANGE +	53,500	27,400		
1973	FORECAST	242,500	238,000		
	MODEL	R ² WEIGHTED AVERAGES	AVERAGE BASED ON PREDICTION INTERVAL		

within the prediction interval of the mean forecast found by the weighted average method above. Reference 19 is an article based on the first quarter results of 1973 for airline revenue passenger miles which gives credibility for possible lower forecasts in the future.

D. SENSITIVITY OF FORECASTS

The basic premise upon which the forecasts of the regression equation are based is that all externalities which influenced the variables in the past will continue in the same manner in the future. This fact is especially true when doing trend analysis based solely on years as the independent variable.

County population growth may be dependent in the future on the available water supply. Presently there are only three reservoirs and countless wells in the county furnishing water. The reservoirs do not store enough water to furnish the county water needs during the dry summer nor is the water table completely adequate; water from the wells in Castroville area has been known to get brackish during the latter months of summer. Carmel Valley and the City of Monterey during the month of August 1973 were seriously considering a moratorium on all residential construction until more sources of water could be found. One proposal was a dam on the Carmel River in upper Carmel Valley.

A large change in the composition of the population would, besides effecting adjusted income and adjusted income per capita, effect annual passenger growth. There have been discussions and attempts to bring the home offices of large business firms to the Monterey Peninsula Area. The reasons sighted included the beauty and serenity of the area. A large increase in professional people brought here by these businesses would certainly increase the probability of greater airport passenger growth

more than a correspondingly large influx of farm workers during the harvesting seasons.

The attractiveness of the Monterey Peninsula area has been one of the primary attractions for bringing in tourists. The Monterey Peninsula Chamber of Commerce has reported that the third quarter each year motel and hotel occupancy rates average nearly 95% weekly and 100% during the weekend. During the winter months or first quarter each year this occupancy rate has dropped to approximately 50%. Reference 12 reported the same results and added another point. There has been no great overbuilding of rooms in the area and any additional building would not be an overburden but may generate its own demand. The proposed Monterey Convention Center and Hotel Complex would be an example of this type building when combined with the Monterey Peninsula Visitors and Convention Bureau's philosophy of trying to promote more conventions during the slower winter months. New construction may have a final overall effect of markedly increasing air travel to the area.

The military establishment size in the county is a volatile force and has a definite effect on air passenger travel as suggested in Chapter two. Fort Ord is the largest yearly contributor to air travel of all the military establishments in the area even though it has been decreasing in numbers since the end of operations in Southeast Asia. At the present time it is the only basic training center on the West Coast and will probably remain at its current manning level during the foreseeable future according to interviews with officials. Only great changes in foreign or national policy were given as reasons for the possible changes from the present size. The Naval Postgraduate School and Defense Language Institute are not programmed to have major changes in size, and their contribution to airport passengers will probably remain at the current level.

The effects of the "fuel crisis" should also be mentioned as a possible means of changing passenger growth. Because of the reduction of aviation fuel available and its increased costs, the airlines will be reducing some of their schedules and mothballing some of their aircraft. Both airline managers felt that they had secure schedules due to their high margin over company computed break-even points.

Automobile speeds have been reduced by state legislative action and the price of gasoline is constantly being raised. The results of these two actions may make an airline trip for business and/or pleasure more attractive. This could be especially true for the Monterey Area since there is no longer any train service and bus service may be time consuming considering the location of Monterey. The end effect may be an increase in passenger service.

Lastly, Monterey Peninsula Airport serves as a feeder airport to both Los Angeles and San Francisco. At either of these two airports, a passenger must change aircraft to reach ultimate destinations. UAL is currently planning a possible flight which originates in Monterey and flies directly to Denver and then on to Chicago. If there is sufficient interest in such a market, the service may be inaugurated sometime in 1974. The added convenience of not having to change planes in San Francisco and reducing the possible associated inconvenient layovers plus the possibility of not having to pay for a trip to San Francisco may increase future passenger enplanements at the airport.

E. PASSENGER ASSOCIATED VISITORS

As was mentioned in Chapter II, there have not been any studies conducted at the airport to determine the passenger associated visitors who use the terminal and street side interface. These visitors probably are

the second largest contributors to utilization of the airport facilities during the periods before and after a scheduled airline flight. Graph 10 shows the airline scheduled arrivals and departures. It can be observed that the time period between 1400 and 1500 represents the potentially largest influx of people at the airport.

Because the airport has a large military and tourist market and associated with them relatively few airport visitors, it was assumed that the relation between passengers and passenger related visitors would probably be four passengers for every three passenger related visitors. It was further assumed that the number of scheduled flights into Monterey will not change, and the mix of aircraft utilized is similar to the mix used for the year ending 30 June 1971 (Appendix B.14). Both of these assumptions are probably very weak since as demand becomes heavier there would probably be a change in number of flights and/or mix and type of aircraft. Lastly, it was assumed that the number of enplaning passengers is equivalent to the number of deplaning passengers.

Combining the capacity of the mix of aircraft and the forecasted enplaning passengers (Table X), a per cent utilization may be calculated and a figure for average enplaning passengers per flight may be calculated. The results of these calculations are shown in Table XI.

The calculations are a suggested method to predict the number of passenger related visitors. Any of the assumptions may be changed or modified to reflect new information. The results may be utilized later for capacity studies, for example, to determine the adequacy or inadequacy of present terminal area facilities, the need for remodeling to increase passenger processing rates, the possible need for remote site passenger processing service, or the need for some type of airport ground transit system.

GRAPH 10

AIRLINE SCHEDULED ARRIVALS / DEPARTURES MONTEREY PENINSULA AIRPORT

•				
Arrivals .		Time 00	-	Departures
		02		
		04		
	•	06	:	
	•	08	•	
•	· •	10	• • •	
		12	O	
• 0.	•	14	:	
	:	16	ó	
	•	18	ó	
·	:	20	•	
	•	22		

• = Valley Airlines

24

TABLE XI

PASSENGER ASSOCIATED VISITORS MONTEREY PENINSULA AIRPORT

ATED RS/YR	(8)→1	00	00	00	00	00
ASSOCIATED VISITORS/YR	(2)×3/	181,900	196,300	212,700	295,400	381,400
ASSOCIATED VISITORS 1400 TO 1500	$(2) = 1/(2 \times (9))$	192	506	727	311	401
TOTAL TOTAL ASSOCIATED ENPLANING PASSENGERS 1400 TO 1500 1400 TO 1500	(3)x(4)=(5) $(5)x2=(6)$ $(6)x3/4=(7)$ $(2)x3/4=(8)$	254	274	298	414	534
TOTAL ENPLANING PASSENGERS	(3)x(4)=(5)	127	137	149	202	267
CAPACITY OF B-727-222 AND TOTAL DC-9-30 ENPLAN (170 + 115) PASSEN	(4)	285	285	285	285	285
PER CENT B-727-22 UTILIZATION OF DC-9-30 AIRGRAFT (170 + 1	$(2)\div(1)=(3)$	2.44	7.84	52.3	72.7	93.8
PASSENGER FORECAST PER CENT CAPACITY OF ENPLANING UTILIZATI AIRCRAFT/YR PASSENGERS AIRCRAFT	(2)	242,500	261,700	283,600	393,900	508,500
YEAR CAPACITY OF ENPLANING AIRCRAFT/YR PASSENGER	(1)	542,200	542,200	542,200	542,200	542,200
YEAR		1973	1974	1975	1980	1985

V. AIR CARGO

A. HISTORICAL GROWTH

Table XII shows the enplaned revenue tons of freight, express, and mail at Monterey Peninsula Airport for calendar and fiscal years starting with 30 June 1962 and ending 30 June 1972. Graph 11 also presents the same data for the fiscal years only.

During the fiscal years from 1962 to 1967, the growth of freight and express was low, averaging an approximate 13% growth rate per year. This small increase can be partially explained by the airlines use of propeller aircraft with small cargo areas.

During the period from July 1967, to June 1969, the airlines serving Monterey transitioned from their all propeller fleet of aircraft to a nearly complete fleet of jet aircraft (the Fairchild Industries' F-27 is the only propeller aircraft still utilized). As observed from Graph 11, this period showed a very large increase in the growth of enplaned revenue tons of cargo due primarily to the increased cargo capacity of the jet aircraft.

The fiscal year 1970 was the first period when all scheduled flights were composed of the new fleet. During this period, the first reduction in the high air cargo growth rates of the transition period occurred. This reduction may be the beginning of a trend toward lower growth rates similar to the ones of the early 1960's when most of an aircraft's cargo capacity was utilized.

Mail has been a constantly decreasing portion of the total air cargo enplaned at the airport. From the data in Table XII, mail was approximately 60% of the total enplaned cargo from 1962 until 1967, and then it

	TOTAL FREIGHT & EXPRESS & MAIL	217.13	229,63	255.91	263,19	246.25	260.57	302,58	320.47	351.54	396.63
ENPLANED REVENUE TONS	TOTAL FREIGHT & EXPRESS	40.68	88,53	. 104.47	104.3	91.33	91.53	103,49	106.95	122.4	167.34
	TOTAL	100.04	98.95 42.15	87.24 64.15	87.24 64.20	88.84	93.82 61.10	99.79	102.14 96.95	119.47 94.05	150.44
	U.S. MAIL NONPRIORITY										
	PRIORITY	61.71 27.35	67.82 33.30	57.81 47.80	52.03 57.80	57.85 53.80	72.53 55.10	79.15 80.85	97.29 83.65	124.76 68.55	103.50 86.60
	EXPRESS	3.79	15.86 23.15	14.57 25.75	3.63	1.84 23.20	2.22 20.10	1.71 19.05	2.98	3.15	1.24
	FREIGHT	6.34	2.39	2.81 61.34	3.87	3.89	3.26 65.95	3.03	3.87 84.85	13.85 84.85	13.85
	AIRLINE CARRI ER	PC	PC	PC	PC	PC	P.C.	PC	PC	PC	PC
	MONTH/YR	JUN 62	DEC 63	JUN 64	DEC 64	JUN 65	DEC 65	30N 66	DEC 66	JUN 67	DEC 67

	TOTAL FREIGHT & EXPRESS & MAIL	550.37	602,49	653.18	704.59
	TOTAL FREIGHT & EXPRESS	295.11	403.42	543.65	638.89
	TOTAL	85.16 170.10	48.52 150.55	23.71 5.07 80.75	37.81 27.89
ENPLANED REVENUE TONS	U.S. MAIL NONPRIORITY				5.26 6.83
ENPLANEI	PRIORITY	55.03 134.95	19.55 109.65	3.24 .00	32.55 21.06
	EXPRESS	1.21	3.21 23.10	.31 .21 38.45	1.40
	FREIGHT	32.05 242.25	45.91 331.20	37.70 33.38 433.60	128.37 467.76 2.00
	AIRLINE CARRI ER	PC	PC	PC UL	RW UL WA
	MONTH/YR	DEC 68	99 NDC	JUN 70	JUN 71

SOURCE: FAA AIRPORT ACTIVITY STATISTICS

began to decrease until, in 1971, it only represented approximately 10% of the total enplaned cargo. This decrease was partially explained by the continuing consolidation of mail at the Salinas Post Office for forwarding to San Francisco International Airport.

Appendix B.17 gives the total yearly cargo carrying capacity of the fleet of aircraft serving the airport from 1962 to 1973. This is the maximum possible cargo carrying capacity since the actual cargo capacity available is a balance among various factors. Depending on the lift capabilities or performance characteristics of the aircraft and on airport characteristics such as runway and taxiway bearing capacities and runway length, a trade-off in the number of passengers, amount of cargo, and amount of fuel to be carried must be made. The average total cargo carrying capacity of the propeller fleet during the years 1962 to 1966 was 5,580 tons, and the average total cargo carrying capacity of the jet fleet during the years 1970 to 1973 was 38,570 tons. This amounts to an approximate 600% increase in capacity between the two periods. This percentage increase by coincidence is nearly matched by the 650% increase in enplaned cargo at the airport (89 tons carried in 1962 increasing to 639 tons in 1971) suggesting that the airlines are perhaps utilizing the available cargo capacity.

The composition of the air cargo carried by the airlines was determined through interviews with the airline managers. The cargo included high value items like art works, high priority machine parts for the few industries in the county (Firestone Company in Salinas for example), and highly perishable items, such as flower cuttings, seeds and bull semen, which are used in the agri-business of the county. Some bulky items like household effects and books (McGraw-Hill is one of the primary contributors) are also shipped.

B. FORECASTING

There were no attempts made to forecast future air cargo enplanements using regression techniques after analyzing the available data. By dividing the data into three separate time periods as above, it was apparent that the last period consisting of a single data point was insufficient to make reasonable forecasts with any degree of confidence.

Once again using interviews with airline managers, it was determined that air cargo operations were only of secondary importance. Passenger service was their primary interest and only if the county became more industrialized would greater emphasis probably be placed on air cargo operations. It was also felt that if the number of flights increase or larger aircraft introduced into service to Monterey, any increase in air cargo operations could be adequately handled.

It was felt by UAL that night flights are the most desirable for an all freight operation due to the possible greater utilization of equipment. However, two factors tend to discourage their usage of night operations at Monterey. First and most obvious is the fact that the airport closes at 11 o'clock nightly. Second, due to the small market, the fixed and variable costs would probably not be covered (there is a pay differential for flight and ground crews working nights). One final factor pointed out was the possible loss of part of their present market. Short delivery time is one of the major attributes of air delivery. If an all freight scheduled service were initiated, the possibility exists that it would not be scheduled daily due to the small market and other modes of transportation at cheaper costs would be more attractive than air delivery.

For informational purposes only UAL forecasts for air cargo are shown in Appendix B.7.

VI. STREET SIDE INTERFACE

A. DATA ANALYSIS

As noted in Chapter II, the Street Side Interface of the airport is composed of roadway and parking areas. Olmstead Road, between Garden Road and the airport parking lots, and Henderson Way serve as the sole arteries for access and egress traffic to the airport. Only one traffic survey, which was conducted by SMATS from 7-21 October 1970, was available for this particular area [Ref. Appendix B.20]. The only other traffic survey available was made by the city of Monterey during the period from 22-24 February 1971, but it was located to record a traffic count on Olmstead Road between Garden Road and Route 68. The site however recorded only a portion of airport traffic and also included traffic whose ultimate destination was not associated with the airport (i.e., commuter traffic going into either Salinas or Monterey). Table XIII shows the average peak hour traffic counts for both studies.

The results of the two studies are not surprising considering airline scheduling philosophy and the normal working hours of the majority of people. Airlines normally have reserved block times for departing aircraft from large airports. Since Monterey is considered a feeder airport, flights departing Monterey must arrive at either San Francisco or Los Angeles prior to a block time in order for passengers to make connecting flights. The peak times for the traffic studies do correspond to local block times according to the airline managers. The peak traffic times also correspond to normal commuter traffic hours which is also logical considering the number of businesses operating in the airport industrial park area and the proximity of the main Salinas-Monterey traffic artery.

TABLE XIII

TRAFFIC STUDY SUMMARY OLMSTEAD ROAD

	SMATS	CITY O	CITY OF MONTEREY		
7 OCT TO	21 OCT 1970	22 FEB T	0 24 FEB 1971		
PEAK HOURS	AVERAGE TRAFFIC	PEAK HOURS	AVERAGE TRAFFIC		
	CARS/HR		CARS/HR		
07 00-0800	· 140	0700-0800	273		
1300-1400	240	1300-1400	256		
1500-1600	265	1600-1700	283		
1700-1800	265	1900-2000	122		

An unfortunate situation arises when trying to correlate the number of enplaning/deplaning passengers with the traffic data. Neither airline manager could furnish either flight schedules or enplaning/deplaning passenger counts for the time periods of the traffic surveys.

Because of the above situation, the same procedure as in Table XI of Chapter IV was used to estimate total passengers deplaning and enplaning four scheduled flights at Monterey between the hours of 1500-1600. The result using annual enplaning passengers equal to 205,117, total capacity of the aircraft for the fiscal year 1971 equal to 536,845, and passenger capacity of two aircraft (a B 737-200 and a DC-9-30) equal to 234 was 178 passengers. This result when combined with one half the vehicle count for the same time gave a value of .97 passengers per vehicle.

A survey made for the Santa Barbara Airport by the South Coast Transportation Study (SCOTS) in November 1968 showed the average number of airline passengers per vehicle was approximately 0.75 [Ref. Appendix B.18]. At the time of the survey, the only means of conveyance to and from the airport were limousine and cab service and private automobiles. This is a situation quite comparable to Monterey.

Due to the procedures used to obtain a figure for passengers per vehicle and in light of no contradictory evidence, a figure of 0.90 passengers per vehicle was used for further calculations.

Two studies conducted by the U.S. Department of Transportation emphasized the extent to which the automobile is utilized as the primary means of conveyance to airports. Reference 20, pg. 81 stated,

"Airport access today is predominately by automobile. Over 90% of the ground access to airports in this country is by automobile."

Reference 21, pg. 5-12 also stated,

"A recent survey of auto traffic at JFK, LA, SF, and Washington National revealed that 73-85% of the people arriving at and departing from these airports do so by private car and taxi."

In a further effort to define the composition of the traffic the origin-destination study of Reference 22 indicated that for the 213,800 weekly person-trips to and from the Cleveland-Hopkins airport, 36% were air passengers, 46.5% were passenger related visitors, 13.9% were employees and 3.3% were casual visitors.

In light of the above surveys, it was felt that the result to be used for forecasting passengers per vehicle was not unreasonable.

B. FORECASTS

The two objectives of this section are to present a possible methodology for making Street Side Interface forecasts and to show the results obtained from using the methodology. The time period chosen is for a one hour period during which two scheduled arrivals and departures occur. This is not an uncommon occurrence as shown in Graph 10 Chapter IV.

The number of automobiles utilizing the roadway can be calculated by combining the results of Table XI and the above factor of 0.90 passengers per vehicle. Another part of the Street Side Interface, the number of parking spaces utilized will depend on the length of time a space is occupied.

Assume that an enplaning passenger must check-in thirty minutes prior to scheduled departure in order to be processed. Also assume that a visitor accompanying the passenger will wait for approximately ten minutes after a scheduled flight's take-off before departing the airport. Therefore, the total time that a parking space may be occupied is forty minutes. A further assumption was made concerning the percentage of passenger related visitors which remain for this period. Sixty percent was the arbitrary proportion selected.

Deplaning passengers were assumed to spend thirty minutes after landing waiting to pick up baggage and depart the airport. Their associated visitors were assumed to be at the airport ten minutes prior to arrival times. Once again the total time for an occupied parking space if forty minutes. Of the total automobiles that would be associated with the deplaning passengers, only 85% were assumed to occupy parking spaces.

Appendix E shows the calculations and Table XIV summarizes the results of the calculations.

TABLE XIV

STREET SIDE INTERFACE UTILIZATION FORECASTS

YEAR	AUTOS UTILIZING ROADWAY PER PEAK HOUR	MAXIMUM PARKING SPACES REQUIRED
1973	282	205
1974	304	220
1975	332	240
1980	460	334
1985	594	430 .

VII. CONCLUSION

A. RESULTS

Forecasts for General Aviation Operations, Passenger Enplanements,
Passenger Associated Visitors, the number of automobiles utilizing the
roadway during the peak hour (2 scheduled airline departures and 2 scheduled arrivals within the same hour), and parking spaces required at the
peak interval during a peak hour have been made for specific years up to
1985. In the case of general aviation operations and passenger enplanements, simple models were used with independent variables whose forecasted values were readily available from Federal, State, and/or County
agencies. It must be noted that the accuracy and reliability of the governmental agencies' forecast will have a direct influence on the accuracy
of the forecasts calculated by the models presented. The models were
also designed so that yearly revisions of the model's coefficients could
be accomplished as new data becomes available. In time, more accurate
forecasts should become available if this procedure is followed.

Because commercial airlines are capable of changing operations in such a manner as to have a direct influence on future airport growth, close liaison with airline officials is required in order to maintain reliable forecasts. A direct comparison of forecasts calculated by the models presented and those of the commercial airlines (UAL for example) will enable airport officials to make better and more timely decisions for future airport development.

B. RECOMMENDATIONS

There currently exists a definite lack of data in certain areas and surveys need to be established to determine at least three items.

- 1. The proportion of various passenger categories (i.e., military, tourist, and business) should be established on a seasonal or periodic basis. Emplaning passengers as shown on Graph 4 may be establishing cyclic trends with one type of traveler more prevalent during one time period than another. Separate forecasting models for each category could be made and the results summed to give final results. Spot surveys over the entire year vice only one survey per year are needed to accomplish this goal.
- 2. The modes of ground transportation and the numbers of passengers utilizing these modes needs to be established. Presently, this type of data is not available for Monterey Peninsula Airport and, as a result, the calculations in Chapter VI are unsubstantiated and are only a rough estimate of the actual situation. A coordinated study with SMATS and the City of Monterey over several time periods within a year would be mutually beneficial for future local public transportation and roadway access developments.
- 3. Lastly, a spot survey to determine the number and length of time parking spaces are occupied with relation to airline passengers needs to be made.

After the above surveys are completed or when more accurate or pertinent data is made available, a capacity study on the various types of operations as described in this thesis should be made. The results of the two studies when combined would determine which airport operations and/or facilities would become inadequate first. This information could then be used to establish priorities for projects by the Airport Board of Directors.

APPENDIX A

REGRESSION ANALYSIS

Simple Linear Regression

When no particular functional form is suspected, a simple (two-variable) linear model is frequently used to describe the relationship between two variables. In this case, the equation of the model is

$$y = a + bx (1)$$

Least-Squares Estimating

Given equation (1), the basic problem in the first phase of the regression analysis is to derive estimates of the parameters a and b. The values of a and b are determined by the requirement that the sum of the squares of the deviations of the sample observations from the estimated line will be a minimum. Symbolically:

$$\min_{i=1}^{n} \left(y_i - \hat{y}_i\right)^2 \tag{2}$$

where y_i is the ith observation and \hat{y}_i is the value of y_i estimated from the equation

$$\hat{y}_{i} = \hat{a} + \hat{b}x_{i} \tag{3}$$

The carets over a and b indicate that a and b are least-squares estimates of the true but unknown values of a and b.

The minimum value for this sum is satisfied by substituting Eq. (3) in Eq. (2), taking the partial derivatives of Eq. (2) with respect to a and b, and setting the results equal to zero. The next step is to solve for a and b using the following two equations

$$\sum_{i=1}^{n} y_i = na + b \sum_{i=1}^{n} x$$
(4)

$$\sum xy = \hat{a} \sum x + \hat{b} \sum x^2$$
 (5)

The measure of the dispersion about the regression line is called the standard error of estimate (SE) of the equation. The standard error of estimate is calculated by

$$SE = \frac{\sum_{i=1}^{n} (y_i - y_i)^2}{n-2}$$
 (6)

One measure of dispersion in a collection of data points is called the variance. The variance is defined as the sum of the square distances to each of the data points from a central reference point divided by the degrees of freedom (df), which equal the number of independent bits of information contained in the sample.

In least-squares procedures, the central point of reference for calculating the variance of each variable is its simple mean, which causes the least-squares line to have the property of passing through the means of the variables used to estimate the line. The simple mean of either the dependent or independent variable may be calculated as follows:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} \qquad (7)$$

The total variance of y is calculated total variance of

$$y = \sum_{i=1}^{n} \frac{(y_i - \overline{y})^2}{n-1}$$
 (8)

The explained variance of y is calculated

Explained variance of
$$y = \sum_{i=1}^{n} \frac{(\hat{y}_i - \overline{y})^2}{n-2}$$
 (9)

The unexplained variance of y is calculated

Unexplained variance of
$$y = \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{n-2}$$
 (10)

A measure of dispersion is defined by the proportion of total variance accounted for by the estimating relationship

$$R^2$$
 = Coefficient of determination = $\frac{\text{Explained Variance}}{\text{Total Variance}}$
= $-\frac{\text{Unexplained Variance}}{\text{Total Variance}}$ (11)

When all the observed points in a sample are on the least-squares line, the coefficient of determination equals 1 and there is no unexplained or residual variance. As the proportion of total variance that remains unexplained increases, the coefficient of determination approaches zero.

Statistical inference may be used to answer two questions that arise in connection with the problem of reliability. To decide whether x and y are actually related, test for statistical significance; to evaluate predictions, establish a prediction interval for the regression line.

The method of testing the significance of the relationship between x and y involves establishing the null hypothesis that x and y are not related (i.e., that b = 0), and testing to determine whether the hypothesis should be rejected. The test that is commonly used for this purpose is known as the t-test because it uses the t-ratio, or ratio of a coefficient to its standard error. For this simple regression, the ratio is expressed as $t_b = \frac{\hat{b}}{S_b}$ (12)

where
$$S_b$$
 = the standard error of b
$$S_b = \frac{SE}{n}$$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$
(13)

If the calculated value t_b falls below the appropriate value of t selected from this table, the null hypothesis that b=0 would be accepted, and it would be concluded that b is, in fact, not significantly different from zero.

The procedure for calculating the prediction interval for a simple regression is as follows. The prediction interval puts a boundary around \hat{y} : $\hat{y} \pm A \epsilon/2$ (14)

There is a certain level of confidence $(1-\epsilon)$ that the cost of a set weighing x will be in that interval.

Values for $\xi/2$ rather than ε are used since y is to be bounded on both sides. The values of ε can be divided by two since under the assumptions, the probability distribution about y is normal and therefore is symmetrical. A two-tailed t distribution for constructing the intervals is used.

where

$$A_{\epsilon/2} = (SE) \pm t_{\epsilon/2} \sqrt{\frac{n+1}{n} + \frac{(x-\overline{x})^2}{n}}$$

$$\sum_{i=1}^{\Sigma} (x_i - \overline{x})$$
(15)

DEC

			, ,,	44111411		.,,,,,,	14(1)-3
	NOV	1255 25549 3506 887	2352 2172 2735 951	2173 3338 2949 1068	1798 3194 2068 853	2852 4070 956 606	1398 3859 1919 919
	100	1494 3087 4094 949	222 3228 32788 973 48	2334 42394 10389 1038	2278 4491 2715 896	2819 5249 1641 745	1854 2153 823
	SEP	1930 3294 3372 901	1742 2558 3334 938	2530 3910 2792 1042	2026 4432 2267 883	2322 4525 1579 702	1856 4766 1674 805
NT CRAT	AUG	1232 3182 3401 90.7	98 98 98 98 98 98 98	2514 4120 2824 1110	3314 4803 2301 687	2492 4537 1792 860	152 152 156 156 156 156 156 156 156 156 156 156
MOVEME A A I RP	JUL	1750 33307 9350 9350	2468 3701 2832 963	2080 3484 2177 1065	3531 1832 668	2805 5020 1617 868	. 1897 4682 1989 1058
CRAFT	NO S	2048 3317 1918 913	1822 2421 2421 26084 8084	2254 3307 2213 1048	2950 5085 1610 1020	2232 3514 1147 839	200 100 140 140 100 100 100 100 100 100 1
RY AIR REY PE	MAY	220 328 8529 8529	2252 33378 2992 951	2056 3704 2570 1050	3132 4467 1950 1092	2564 5227 1949 790	1972 5226 1896 199
SUMMA	APR	1420 2561 4439 838	. 2154 3311 4008 900	1638 3022 3166 935	3124 4613 2882 1018	2658 4022 1920 789	2412 4874 1823 998
	MAR	1694 2965 3892 862	2148 2915 3900 959	2316 3228 3005 897	2918 4398 2981 1071	2962 2235 837	2912 5120 1693 897
	FEB,	1538 3339 796	20096 41594 889	2067 3246 3165 837	2689 3897 3185 1012	2972 4678 2647 719	2806 3799 1439. 814
	NAS	1269 2473 3187 904	1774 2954 3604 933	2218 3465 3440 913	3434 4114 3287 1118	2006 23975 845	2578 4133 1341 809
		Δ3009 0 1 1 6 0 1 2 6	964 CCI MIL AC	AZCIL S AZIL S ACIL	A	0000 000 000 000 000 000 000 000 000 0	A 3000 0 L 8 0 L 8

2500	2178
5927	3932
1784	1951
1160	1039
7558	222
4282	2386
1738	1386
1234	103
3018	2334
6077	20433
1939	1048
1030	1048
3180 5714 1788 1074	1255 1255 1250 1250 1250 1250
2732	1936
6898	4987
1791	1868
841	1117
1663 1563 8525 854	1240 1240 1240 1240 1240 1240 1240 1240
2756	2108
5687	44829
1663	1740
847	1075
2370 6403 1789 475	2833 2383 1097
2018 6138 2015 613	2000 10465 10465 10465 10465
2401	2603
6259	6372
1924	2197
816	1169
1.742	2466
3660	55576
1866	1877
793	1045
1826	22266
3893	4656
1824	1380
843	1175
PACOCA PACOCA CILLA	1970 CCL CCI MIL AC

SOURCE: MONTEREY PENINSULA AIRPORT DISTRICT OFFICE

CL...CIVILIAN LOCAL OPERATIONS CI....CIVILIAN ITINERANT OPERATIONS MIL...MILITARY OPERATIONS AC...AIR CARRIER OPERATIONS

				MOMOM	REY PE	MONTEREY PENINSULA AIRPORT	RECOR!	JRT				
	NAU	FEB	MAR	APR	MAY	NOC	JUL	AUG	SEP	DC T	NOV	DEC
1962	6200	48:79	6447	6677	6453	5595	5648	6575	6144	7216	8086	6382
1963	7833	7924	9413	9258	9004	8196	9386	9222	1656	9624	8192	9068
1964	9265	9265 10718	9922	10373	9573	8308	4966	9891	8982	9731	9210	6634
1965	10036	9315	9446	8761	9400	8922	8806	10568	10274	10001	9528	9615
1966	11923	11923 10780	11358	10638	10671	10856	11217	11045	10208	9774	7883	7573
1961	9203	9203 110I6	10219	6385	10530	7732	10369	6896	81128	10454	8484	8043
1968	8861	8858	10622	10107	9797	1615	9616	10296	9101	9190	8087	8012
1969	8386	7461	11409	10984	11037	10953	11025	12302	11736	12304	11271	9809
1970	6477	9417 10946	12296	11571	12100	9752	10473	8066	11879	10679	1986	9100
1971	11412	11214	11528	12801	11760	10829	10461	11989	12215	11340	1995	8154
1972	8738	8097	9154	9848	8882	8081	8667	9202	8664	7826	8175	7171
1973	7838	7793	8114	8858	0442							

SOURCE: FAA CONTROL TOWER RECORDS MONTEREY. PENINSULA AIRPORT

DEC		61 127	7 00 143		106	225
>0N		34 147	1 9 9 9 9		118 58 0	0 54 110
DCT		81 128	59 101		144 33 0	123 123
SEP		79 38 114	80 04 7		141 45 0	480 115
AUG		85 34 115	711 0 8 8		150 62 0	48 118
JUL		87 37 111	\$ 5 \$340		152 100 59	140 115
₹ 0 0		1 0 0 0 0 0	8 4000		17 828 0989	0 47 120
MAY		78 121	1 71 96		852 000 000	113 113
APR					1136	755 757
MAR					60 126 0	104
FE B			• .		5.6 110 0	90 57 70
JAN					134 1184 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	02	UNITED 727-222 B 727 B 727	HUGHES AIRWEST F-27 F-27A DC-9-10 DC-9-30	71 HNTTED	9 727-222 B 727 B 737 DC-8	HUGHES AIRWEST DC-9-10 DC-9-30
	1970			1971		

2	
~	
9	
_	

7	104	74				
145	104	54				
126 58 0	170	52				
1126	157	5 6				
105 105 0	168					٠.
121 112 60	163			4404		
112 516 52	16850			ობდ 40m4	982 125	
123	172			27 63 0	27 77 91	
60 60 60 60 60	125			13.9 13.5 1	103 67	57
809 0090	1 29 76			148 37 0	109	41
&wn 4180	***			1380 338 2	69 482	47
885 922 1	* * *			15.2 36.13 36.13	110 66	58
UNITED 727-222 B 727 B 737 B 737 DC-8	HUGHES AIRWEST F-27 DC-9-10 DC-9+30	VALLEY	1973	UNITED 727-222 B 727 B 737 B 737 BC-8	HUGHES AIRWEST F-27 DC-9-10 DC-9-30	VALLEY

SOURCE: MONTEREY PENINSULA AIRPORT DISTRICT OFFICE LANDING FEE RECEIPTS

* HUGHES AIRWEST EMPLOYEES ON STRIKE

	PILOT LICENSES	· ·
YEAR	CALIFORNIA	UNITED STATES
1959	49,665	359,875
1960	47,211	348,062
1961	48,272	352,860
1962	50,519	365,971
1963	53,073	378,700
1964	62,031	431,041
1965	69,501	479,770
1966	79,918	548,757
1967	91,116	617,931
1968	101,610	691,695
1969		720,028
1970		732,729
1971		741,009
1972		762,000 *
1973		811,200 *
1974		850,5C0 *
1975		889,800 *
1980		1,087,700 *
1985		1,289,200 *
•		

*FAA FORECAST

SOURCE: AVIATION FORECASTS, FISCAL YEARS 1972-1985

GENERAL AVIATION BASED AIRCRAFT AT MONTEREY

	SINGLE ENGINE/ 4 PLACE OR GREATER	MULTIENGIN	HELC'S	TOTAL
1951	**	**	**	34
1952	**	**	**	34
1957	33/00	2	0	35
1960	54/35	4	0	58
1961	47/28	7	0	54
1962	· 47/ 28	. 7	. 0	54
1963	56/37	.7	1	64
1964	58/39	8	1	67
1965	68/49	15	1	84
1965*	73/51	17	0	90
1966	73/51	17	0	90
1967	73/51	. 17	0	90
1968	81/56	20	0	101
1969	88/60	· 25	0	113
1970	88/60	25	0	113
1971	88/60	25	0	113
1972	88/60	25	0	113

^{*} FISCAL YEAR DATA

SCURCE: FAA FORM 5010-1 AIRPORT MASTER RECORD COMPLETE FILE KEPT AT: FAA REGIONAL OFFICE MITTEN ROAD BURLINGAME, CALIF.

^{**} TOTAL DATA UNAVILABLE

MONTEREY PENINSULA AIRPORT OPERATIONS FORECAST

FISCAL YEAR FORECASTS ENPLANED PASSENGERS (000) AIR CARRIER OPNS (000) TOTAL ITINERANT OPNS (000) TOTAL OPERATIONS INSTRUMENT OPERATIONS INSTRUMENT APPROACHES 12 132 220 166 5804 97 137 33 3379 75 5319 DATA BASE: OCTOBER 1972 ENPLANED PASSENGERS (000) AIR CARRIER OPNS (000) TOTAL ITINERANT OPNS (000) TOTAL OPERATIONS INSTRUMENT OPERATIONS INSTRUMENT APPROACHES 112 130 254 DATA BASE: DECEMBER 1971 ENPLANED PASSENGERS (000) AIR CARRIER OPNS (000) TOTAL ITINERANT OPNS (000) TOTAL OPERATIONS INSTRUMENT OPERATIONS 143 80 265 296 76 87 38

DATA BASE: MAY 1971

TERMINAL AREA FORECASTS, DEPARTMENT OF TRANSPORTATION, FAA, OFFICE OF AVIATION ECONOMICS, AVIATION FORECAST DIVISION SOURCE:

FORECAST ACTIVITIES MONTEREY PENINSULA AIRPORT

INDUSTRY TRAFFIC

YEAR	BOARDING REV PASSENGE		CARGO TONS-ON AND OFF AVERAGE MONTH
	ANNUAL TOTAL	ANNUAL GROWTH RATE	
1975	308,600	10.3%	290
1980	438,200	7.2%	400
1985	616,100	7.1%	555

INDUSTRY AIRCRAFT MOVEMENTS DEPARTURES + ARRIVALS

TOTAL ANNUAL MOVEMENTS

YEAR	SCHEDULED	GENERAL	TOTAL
1975	16,800	116,000	132,800
1980	20,400	141,000	161,400
1985	25,600	166,000	191,600

SOURCE: UNITED AIR LINES FORECASTS

S	
-	
٠.,	
~	
ш	
Σ,	۰
ш	d
>	C
0	$\tilde{}$
ç	-
2.	Ľ
	-
C	4
<u></u>	
SER MOVEMENTS	٠.
9	4
4	
w	
S	S
S	-
75	5
4	
O.	4
	ш
NE PASSENGER	۵.
\overline{z}	
-	
_	
	u
α	α
\vdash	ш
1	
-	-
IARY AIRLINE F	=
>	u
JMMARY	Σ
d	
5	
=	
=	

DEC	44 32201 33001 861 861	5021 4782 4912 3572	7647 7367 6182 5802	7921 8209 7900 5861	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11749 9756 41169 4120 417
NG V	4122 4784 3286 3238	4211 4102 5400 4750	ბისი გოსი 0110 გისი	7948 7654 6442 5691	10 28 8 70 10 28 8 70 10 20 8 8 70 10 8 8 8 70 10 8 8 70 10 8 8 70 10 10 10 10 10 10 10 10 10 10 10 10 10	112011 11021 12027 4814 407 413
0CT	547 5066 3054 1034 17	6806 5906 1555	6610 6406 5902	7200 7398 6899 5840	5042 12567 110542 10942 676	1133 114318 52140 5585 592
SEP	94461 94281 3726	6075 6407 4808 4120	679 679 5909 5909	55 4000 51 2000 51 2000	108 % % % % % % % % % % % % % % % % % % %	13443 12055 12055 5709 673
AUG	4469 5281 4061 3720	5310 5615 1420 1374	5379 5620 4177 4442	5875 5659 5384	1000 * 8	1151 1251 55450 6547 616
700	4000 0000 0000 0040 0000 0000	4754 5446 1064 1174	4729 6147 4892 4729	51158 5468 6439	4 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	114 0500 05000 05000 06000 06000
NOS	3552 4256 3765 3070	5441 5333 4692 692	5021 4782 3912 5572	5269 5429 5429 5429	4915 112318 117818 7341 7341 8932 818	11 4047 40044 40044 7004 70000 70000 70000 70000 7000 7000 7000
MAY	3596 4422 3003 2792	5521 47521 5752 5752 5752	4211 4102 5400 4750	6086 6768 6288 6288	4603 123215 5577 5537 5237 526	11 21 20 20 20 20 20 20 20 20 20 20
APR	3504 3793 2793 2794	4954 4224 4101	45000 1550 1550 1550 1550	5784 5691 6053	5041 11787 10279 4490 875 374	106474 94474 50532 4334 476
MAR	3104 3249 2879 2313	4671 5206 3856 3822	6075 6407 4808 3946	6086 5768 6985 6238	100 400 74 74 74 74 74 74 74 74 74 74 74 74 74	101 54016 546746 225551898 56761898
FEB	2858 3001 2274 1913	3824 335162 339162 505	5310 5615 1374 1374	8001 7322 6342 5700	38 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	98837 621661 621865 11830 1733
JAN	3000 3618 2654 2613	442 342 552 552 745 552 745 562 562 562 562 562 562 562 562 562 56	4754 5448 1064 1174	7552 7253 5854 5429	38 82 7 39 2 7 28 92 1 37 58 1 1 50	11 010 010 1100* 4840 484 6860 484 6860
	OVADO ONT NT N	0.4422 8.01.01 8.01.01 9.01	0.4440 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.000000000000000000000000000000000000	0)

177	115-125-125-125-125-125-125-125-125-125-	12525	6			
000	100 100 100 100 100 100 100 100 100 100	11 867 12123	77			
900	1122 1222 1222 1222 1222 1222 1222 122	13103	ο ο			
212	2417 2407 3467 3869 3869 3869					
007	11 7483 7450 7467 767 767 767 767 767 767 767 767 76	14551 14685 6031	30F			
מ	14 14477 149774 2004404 2004408	13477	747			
000	11 0140 020044 002004 008067	13463	4 >-4 (-4	ì	15641 14831 5320 6786	
1 60	11 19 19 19 19 19 19 19 19 19 19 19 19 1	12447	727		117999 117999 5660 11666	(1)
717	100830 74330 6777 777	12424 12580 4017	0 Ω ΩΩΩ	0	1258 1258 1258 1258 1108 1108 1108	1 0
770	100 32012 40012 4012 4012 4012	12417 11996 1902	7000 7000	(),	12021 12022 12022 12022 12022 12022 12022 12022	104
5	4 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	12065 12369	29.5	0	10489 10489 10489 10489 10489	
045	11 25776 457	12071	223 178	,	11 1822 1822 1923 1932 1932 1932 1932 1932 1932 19	
_		~		m		

のりり4400

(FORMERLY PACIFIC AIRLINES) ABBREVIATIONS
AN...HUGHES AIRWEST ENPLANING
AN...HUGHES AIRWEST DEPLANING
UNITED AIRLINES ENPLANING
UF...UNITED AIRLINES ENPLANING
UF...UNITED AIRLINES ENPLANING
GN...GOLDEN WEST AIRLINES ENPLANING
GF...GOLDEN WEST AIRLINES DEPLANING
CN...CAL STATE AIRLINES ENPLANING
VF...VALLEY AIRLINES DEPLANING
VF...VALLEY AIRLINES DEPLANING
**...DATA UNAVAILABLE

PENINSULA DISTRICT OFFICE

MONTEREY

SOURCE:

ひりり々々〉〉

ENPLANED PASSENGERS MONTEREY PENINSULA AIRPORT

YEAR	CALENDAR	FISCAL
1962		
PACIFIC AIRLINES		38090
UNITED AIRLINES		23344
1963		
PACIFIC AIRLINES	36349	
UNITED AIRLINES	30009	
1964		
PACIFIC AIRLINES	42692	41318
UNITED AIRLINES	36821	33829
1965		,
PACIFIC AIRLINES		41316
UNITED AIRLINES		36880

SOURCE: FAA, AIRPORT ACTIVITIES STATISTICS OF CERTIFIED ROUTE AIR
CARRIERS

FORT ORD THANSPORTATION REQUESTS FOR PERSONNEL DEPARTING VARIOUS AIRPORTS
YEAR 1972

	ar .				A)	PPEN	DIX	B.1	.0							
PERSONNE	STHE THE	8	+	2	†	0	7	6		7	2	2	9	3		
	SFO OTHER	13	17	2	16	50		179	12	2	11	13	63	285		_
MANENT PO		10	15	15	13	2	10	15	14	11	ω	6	→	131	\ }	
DEP ENDENTS & PERMANENT POST		257	342	339	253	.162	318	437	262	316	253	1 89	199	3852	<u> </u>	
OTH RR		1	↔	0	9	7	↤	٠	α.	6	0	0	0			
AN TOSE	CHARTER	0	0	176	181	285	0	116	310	761	658	.0047	431	334B	01//	
		546	144	0	0	0	0	0	0	0	980	752	418	25/13	C+(3)	
SEE	ARTER COMMERCIAL CHARTER	0	0	82	0	0	0	0	0	0	0	0	0	c	2	
TRAINEES	CHARTER	282	210	7445	0	333	165	0	148	0	0	0	0		1,580	
	COMMERCIAL	9	367	36	103	38	9247	355	254	298	616	511	32	9	3042	
	CHARTER	205	328	66	160	77	273	0	71	0	457	382	· 主		2194	
	COMMERCIAL CHARTER COMMERCIAL CH INDIVIDUAL SEATS	245	386	705	651	477	629	598	649	838	626	1230	386		7520	
MONTH		TAN	E E E E E E E E E E E E E E E E E E E	MAR	APR	MAY	JUN	JUL	AUG	SS SS	OCT	NON	DEC	TOTAL	FOR	YEAR

SOURCE: TRANSPORTATION DEPARTMENT, FORT ORD, MR. BRIGHTON

YEAR/MONTH	TRAINEES DEPARTING FORT ORD VIA COMMERCIAL AIR
4084	V211 00121-021-20 1-211
1971	
SEP	255
OCT	769
NOV	536
DEC	284
1973	· ·
JAN	<i>55</i> 6
FEB	902
MAR	786
APR	970
MAY	545
JUN	953

SOURCE: TRANSPORTATION DEPARTMENT, FORT ORD

APPENDIX B.12

TRAINEE DATA AT FORT ORD

CALENDAR Y	EAR MONTH	ENDING	CUMULATIVE TRAINEES	#/QUARTER
1973	31	AUG	30,289	
	30	JUN	28,231	9,781
	31	MAR	18,450	18,450
. 1972	31	DEC	55,475	19,134
	30	SEP	. 36,341	12,537
	30	JUN	23,804	12,352
	31	MAR	11,452	11,452
1971	31	DEC	<i>5</i> 7,030	11,307
	30	SEP	45,723	14,911
	30	JUN	30,812	13 ,5 06
	31	MAR	17,306	17,306
1970	31	DEC	71,568	17,068
	30	SEP	54,500	20,121
	30	JUN	, 34,379	16,768
	31	MAR	17,611	17,611
1969	31	DEC	79,367	20,608
	30	SEP	58 , 759	21,764
	30	JUN	36,995	21,447
	31	MAR	15,5 48	15,548
1968	. 31	DEC	84,465	20,741
	30	SEP	63,724	23,502
	30	JUN	40,222	21,519
	31	MAR	18,703	18,703
1967	31	DEC	62,643	16,492
	30	SEP	46,151	11,748
	30	JUN	34,403	15,700
	31	MAR	18,703	18,703

SOURCE: GENERAL DIVISION, TRAINEE BRANCH, BCT SECTION, FORT ORD, CALIFORNIA

INTERVIEW RESULTS AT THE NAVY POSTGRADUATE SCHOOL FOR AIRLINE TRANSPORTATION REQUESTS

- 1. Transportation requests for airline travel may be handled by two methods
 - a. Request a TR before travel is commenced, or
 - b. Request reimbursement for airline travel upon return
- 2. For the Fiscal Year 1972, there were 982 TR's issued.

 For the Fiscal Year 1973, there were 936 TR's issued.
- 3. The man personally charged with making out the TR's and reimbursements felt strongly there was a 1-1 relationship between methods a and b.

 Therefore, the direct input for enplaning passengers at Monterey for the Navy Postgraduate School would be

 $982 \times 2 = 1964$ for Fiscal Year 1972

936 x 2 = 1872 for Fiscal Year 1973

DEPARTURES	A AIRPORT
AIRCRAFT	PENINSULA
YEARLY TYPE	MONTEREY

	TOTAL YEARLY SEATS AVAILABLE			268,824			209,396			221,712		227,260
RES	SEATS AVAILABLE			110,132 · 6,624 48,576		89,408 792 924	62,788 14,256 41,228		94,732	67,584 1,008 56,804	93,544	81,532
RAFT DEPARTUNSULA AIRPOR	PASSENGER SEAT S CAPACITY		4.60 4.00	-4m4 -404		400 400	494 494		49 9	4 % 4 4 % 4	4 99	5
LY TYPE AIRCRIONTEREY PENIN	DEPARTURES PERFORMED ALL SERVICES		2340	2503 184 1104		2032 12 14	1427 396 937		2153 12 12	1536 28 1291	2126 14 24.	1853
YEARI	AIRCRAFT		V340/ C-6-5	MH-207 M-207 M-200 M-4004		CV340/440 DC-6 DC-6B	F-27 M-202 M-404		CV340/440 DC-6 DC-68	F-27 M-202 M-404	CV340/440 DC-6 DC-68	F-27 M-404
	CARRIER		UNITED	PACIFIC		UNI TED	PACIFIC		UNITED	PACIFIC	UNITED	PACIFIG
	YEAR	1962	30 JUN		1963	31 DEC		1964	30 JUN		31 DEC	

	233,970	246,228		297,598		293,276			297,666
93,852 2,178 2,376 97,856	7,70 2,70 2,10 2,17	103,884	93,852 1,980 1,518	155,100	68,068 23,694 4,554	151,272		38,632 60,522 11,880	140,116 39,292 7,040
4499 4499 44		44 44	24499 6449	777	499 499	. 444		66449 66649	744 744 744
2133 33 36 224	85 16 34	2361 962	2133 30 23	3525 1024	1547 359 69	3438 1007		878 717 180	1523 897 160
CV340/440 DC-6 DC-6B	4 1200	F-27 M-404	8-727 * CV340/440 DC-6 DC-68	F-27 M-404	CV340/440 DC-6 DC-6B	B-727 * F-27 M-404		B-727 * CV340/440 DC-6 DC-68	B-727 * F-27 * M-404
UNI TED PACIFIC	UNITED	PACIFIC	UNI TED	PACIFIC	UNI TED	PACIFIC		UNI TED	PACIFIC
VOF OE	31 DEC	1066	NOT DE		31 DEC		1967	30 oc	

	313,286			303,243			367,824
33,176 81,474 11,220	161,000 24,816 968		35 65 65 65 65 65 65 65 65 65 65 65 65 65	76,000 19,440 18,285 44,396		12,1100 12,1286 93,2265 97,410 97,410	14,900 41,670 44,965 43,164
131 444 666 666	100 * * * 444		111300 44000 440504 440504 44050	100***		1100 * ** 11100 * 666 .	1000 # 444 644
754 1234 170	1610 564 22		. 2502 1007032 24352	760 216 159 1009		138 174 174 179 179 179 179 179 179 179 179 179 179	34646 33933 1
8727/100 872720 CV340/440 DC-6 DC-6	B727/100 F-27 M-404		8727/100 8727/200 8727/200 8737/200 67340/440 00000000000000000000000000000000	8727/100 0C+9-10 0C-9-30 F-27		8727/100 8727/20 8727/200 8737 0C-6	8727/100 0C-9-10 0C-9-30 F-27 PA-31
UNITED	PACIFIC		UNITED	PACIFIC		UNITED	PACIFIC
31 DEC		896	31 DEC		696	30 JUN	

466.704		536,845	489,128
81,900 194,851 193,775 7,740	0000 0H0 0000 0H0 0000 0H0	111	193,630 193,630 86,037 1,584 135,125
1130 1131 1150 115 115			100 * * * 170 * * * 170 * * * 170 * * * * 170 * * * * * * * * * * * * * * * * * * *
819 121 1685 1685 720	こて ひもして	400 NNV	11399 11399 1239 11755
8727/100 87270C 8727/200 8737/200 0C-9-10	1 0000 110	100 0777 77	8727/100 8727/222 8737/222 8737/200 DC-8 ** DC-9-10 DC-9-30
UNITED PACIFIC/ HUGHES		WESTERN UNITED AIRWEST	UNITED
Z D O E	.971 30 JUN	31 DEC	.972 30 JUN

	443,586			466,194
112,300 66,980 83,538 1,408	26,190 152,950 220		150,300 26,350 71,995 2,112	70,650 141,795 2,992
100*** 170 119 176	90 115 44		100*** 170 119 176	90 115 44
1123 394 702 8	291 1330 5		1 150 60053 125553	785 1233 68
8727/222 8727/222 8737/200 0C-8 **	DC-9-10 DC-9-30 F-27		8727/100 8727/222 8737/200 0C-8 **	DC-9-10 DC-9-30 F-27
31 DEC UNITED	AIRWEST		30 JUN UNITED	AIRWEST
31 DEC		1973	30 JUN	

* 8727 MAY HAVE BETWEEN 70-114 SEATS INSTALLED, CONFIGURATION UNKNOWN THEREFORE USED AVERAGE

** DC-8 MAY HAVE FROM 116-176 SEATS INSTALLED, 176 SEATS USED DUE TO FLIGHTS BEING USED AS CHARTERS.

*** 8-727-100 MAY HAVE BETWEEN 70-131 SEATS INSTALLED, CGNFIGURATION UNKNOWN THEREFGRE USED AVERAGE.

SEATING CAPACITY BASED ON AVIATION WEEK AND SPACE TECHNOLOGY'S SPECIFICATIONS MARCH 19,1973 PG.126

SOCIO-ECONOMIC FACTORS MONTEREY COUNTY

year ¹	POPULATION ²	INCOME ³ \$ x 1000	CALIFORNIA CONSUMER ⁴ PRICE INDEX	ADJUSTED INCOME (1967=100)	ADJUSTED INCOME PER CAPITA IN \$
1960	198,351+	481,897	88.2	546,368	2,755
1961	198,200	497,873	89.3	557,528	2,813
1962	204,300	530,517	90.5	586,207	2,867
1963	215,900	577,367	91.9	628,256	2,910
1964	224,700	639,403	93.5	683,853	3,043
1965	224,400	682,317	95.4	. 715,217	3,187
1966	243,800	803,569	97•3	825,867	3,387
1967	253,700	887 ,5 06	100	889,506	3 , 506
1968	253,400	976,800	104.1	938,329	3,703
1969	2 <i>5</i> 6 , <i>5</i> 00	1,022,607	109.3	935,597	3,648
1970	248,846	1,062,233	114.9	924,485	3,715
1971	252,100	1,152,219	119.2	1,029,500	4,095

¹As of 1 JUL SOURCE: CALIFORNIA STATISTICAL ABSTRACT 1971

²SOURCE: CALIFORNIA STATISTICAL ABSTRACT 1971

³SOURCE: CALIFORNIA STATISTICAL ABSTRACT 1971

⁴SOURCE: CALIFORNIA STATISTICAL ABSTRACT 1971

		POPULATION		AI	ADJUSTED INCOME x (000)	(000)	ADJUSTED INCOME
EAR	CALIF FACT BOOK 1972	YEAR CALIF FACT REGRESSION BOOK 1972 EQUATION	INTERVIEWS	3.3% GROWTH PER YEAR	INTERVIEWS 3.3% GROWTH ADJUSTED INCOME ADJUSTED INCOME PER CAPITA X PER CAPITA X REGRESSION EQ. INTERVIEW POPULATION POPULATION	ADJUSTED INCOME PER CAPITA X INTERVIEW POPULATION	PER CAPITA 3.3% GROWTH PER YEAR
1973		264,200	264,000	1,098,600	1,154,600	1,153,700	4370
1974		273,900	270,000	1,134,800	1,236,400	1,218,800	4514
276	1975 246,900(1	1 284,900	278,700	1,172,200	1,328,500	1,299,600	14663
980	1980 275,500	339,100	313,000	1,378,900	1,860,000	1,716,800	5485
985	1985 308,000	405,300	336,000	1,621,900	2,614,600	2,167,500	6451

(1Civilian population only; estimates for military population range from high of 40,000 to low of 25,000.

APPENDIX B.17

ONE YEAR PERIOD ENDING	TOTAL CARGO CAPACITY * (TONS)
30 JUN 1962	6 , 025
31 DEC 1963	5 , 344
30 JUN 1964	5,63 8
31 DEC 1964	5,670
30 JUN 1965	5, 788
31 DEC 1965	5,839
30 JUN 1 966	5,690
31 DEC 1966	4,654
30 JUN 1967	13,552
31 DEC 1967	13,766
31 DEC 1968	15,919
30 JUN 1969	25,993
30 JUN 1970	31,833
30 JUN 1971	42,223
30 JUN 1972	39,128
30 JUN 1973	41,085

^{*} Total cargo capacity was computed by multiplying specific type aircraft departures performed all services (Appendix B.14) times each specific type aircraft's cargo capacity and then totaling each year period.

Cargo capacity used for each specific type aircraft:

AIRCRAFT	CAPACITY (TONS)
PROP _{CV-340/440}	2.572
DC-6	0
DC-6B	8.39
DC-7/7B	7.1
F-27	212 cu. ft
M-202	280 cu. ft
M-404	316 cu. ft

JET	
B-727-100	6.42
B-727QC/100	23.0
B-727-200	10.5
B-737	5/2
B-737-200	6.57
B-720B	10.25
DC-8	10.43
DC-9-10	11.93
DC-9-30	13.28

APPENDIX B.18

SCOTS

South Coast Transportation Study Road Commissioner's Office, Court House Santa Barbara, California 93102

4 December 1968

DAILY RATIO OF TRIPS/PASSENGERS

DAY	PASS	CARS	VEH/PASS	PASS/VEH
MON	<i>5</i> 70 ·	780	1.32	.76
TUES	435	840	1.93	. 56
WED	547	770	1.41	.71
THURS	609	820	1.35	.74
FRI	787	10 <i>5</i> 0	1.33	•75
SAT	539	820	1.52	.6 6
SUN	777	10 <i>5</i> 0	1.35	.74

<u> </u>	OTAL	2	8	8	9	6	6	8			
E ENGIN	% OF T	58.7	51.3	58.3	748.6	45.9	45.9	51.3			
FIXED WING SINGLE ENGINE 4-PLACE & OVER	COUNTY MONTEREY A/P % OF TOTAL	37	39	64	51	51	95	09	99	09	
FIXI	_	63	92	†8	105	111	122	117			
ENGINE	% OF TOTAL	63.6	9*99	83.3	85.0	73.9	83.3	9.08			
FIXED WING MULTIENGINE	COUNTY MONTEREY A/P % OF TOTAL	2	ω	15	17	17	0%	25	25	25	
FIX	COUNTY	11	12	18	8	23	ħ Z	31			
BASED AT MONTEREY	NUMBER % OF TOTAL	4.54	43.5	7.94	43.9	7.04	39.6	6.94			
BAS	NUMBER	179	29	178	8	6	101	113	113	113	
TOTAL	AIRCRAFT	135	154	182	205	223	255	241			307
31 DEC		1963	1964	1965	1966	1967	1968	1969	1970	1971	1972

SOURCE: CENSUS OF U.S. CIVIL A/C
FAA REGIONAL OFFICE
MITTEN ROAD
BURLINGAME, CALIFORNIA

COMBINED ACCESS/EGRESS TRAFFIC COUNT OLMSTEAD ROAD AND HENDERSON WAY SMATS STUDY 9-20 OCTOBER 1970

	AVE	140	175	210	240	265	265	165
	ର	160	140	200	260	370	0047	140
	19	160	210	210	210	230	200	160
	18	8	140	210	210	270	210	190
	17 ·	110	180	260	290	200	230	160.
	16	150	160	270	250	340	340	210
	15	130	190	220	220	250	250	210
	14	140	190	200	210	220	230	150
	13	130	160	170	200	190	210	150
	12	170	190	170	190	230	280	120
	11	80	150	180	250	240	260	170
	10	120	210	230	320	560	210	120
	6				230	370	370	280
DATE	ONE HOUR PERIOD BECINNING	0000	1000	1100	1300	1500	1700	1900

RESULTS OF REGRESSION ANALYSIS GENERAL AVIATION MODELS

				n.	LOW	DT 11							_		
l×2												8.27	8.27	2.07	2.07
× ₁	66.00	#E*#	*	*	24.08	9046.4	7045.50	550.95	6.2729	325788.	8.27	8.05	55.09	2.04	3.97
⁴												2.49	2.65	2,12	2.49
t ₁	8.31	. 1.36	-4.53	-5.64	8,21	₹8,84	6.59	8,02	8.29	79.9	11,08	-0.50	-0.61	-0.05	-0.32
R ²	.8846	.1702	.6957	.7795	.8822	8968	.8282	.8773	. 8841	*830	.9317	.9338	.9348	.9340	.9348
SE	7,202	19.31	11.70	96.6	7.275	0.1058	8.787	7.426	0.1121	8.731	5.542	5.788	5.743	0.0898	0.0892
DEGREES OF FREEDOM	6	\	6	6	6	6	6	6	6	6	6	&	ω	ω	8
u	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
_p 2												10.03	10.41	0.98	1.10
b ₁	5.70	96.32	*	*	0.75	06.0	0.0045	0.12	0.99	0.00011	8.05	- 1.94	- 0.37	- 0.02	- 0.15
Oq	- 303.98	-4198.11	4491.17	6665.45	11.81	0.3233	40.59	6.12	- 1. 9885	37.89	45°5	5.14	6.81	2.25	2.56
MODEL	1 (I)	2 m	7	5	9	2	8	(11) 6	10 (III)	11	12	13	14	15	16

RESULTS OF REGRESSION ANALYSIS ENPLANED PASSENGERS MODELS

l× ²					834.19 6.7154 710273	3.44 1.23 11.91
ι×Τ	67.00 4.2039 67.00 44.35 548.72 4495.66 0.12 0.015 0.002	241.48 5.4849 58527.0	834.19 6.7154 710223.	3.437 1.2305 11.91	241.48 5.4849 58526	241.48 5.48 58526
⁴					3.11 3.41 3.25	2.92 3.43 3.03
₽,	10.42 10.40 12.01 1.13 10.40 10.38 -10.15 -10.20	4.10 5.29 4.11	6.01 8.28 6.36	6.89 9.79 7.17	- 1.62 - 1.47 - 1.53	- 0.583 - 0.16 - 0.47
R ²	9394 9392 1549 9392 9390 9364 9373	.7059 .7998 .7070	.8379 .9073 .8525	.8714 .9320 .8800	.8872 .9318 .8940	.8783 .9323 .8843
Ω Ξ	13.833 · 0.1104 0.0963 51.700 13.860 14.200 14.100 14.100	30.480 0.2003 30.420	22.630 0.1363 21.580	20.150 0.1168 19.500	20.39 0.1263 19.77	21.18 0.1259 20.65
DECREES OF FREEDOM	~~~~~~~	222	2	2	9	999
r r	0000000000	999	999	999	999	000
202					0.77 4.28 0.0004	184.74 4.34 26.11
b ₁	18.61 9.81 0.15 270.33 1.515 * *	2.85 5.67 0.006	0.38 2.48 0.0002	150.31 4.15 22.39	- 3.29 - 4.49 - 0.00 <i>5</i> 7	- 0.78 - 0.29 - 0.001
o ₀	- 1113.34 - 36.4073 - 5.1878 -11856.22 - 698.11 - 490.73 2616.07 1375.35 961.64 754.32	- 555.72 - 26.2772 - 219.55	- 182.70 - 11.8637 - 35.81	- 383.35 - 0.2946 - 133.31	286.85 0.6559 157.64	- 313.58 1.0710 - 106.70
MODEL	1 (I) 3 (II) 6 7 8 9 10	11 (III) 12 (IV) 13	14 (V) 15 (VII) 16	17 (VI) 18 (VIII) 19	20 21 22	23 24 25

CALCULATIONS FOR STREET SIDE INTERFACE

FORECASTS

TOTAL	VEHICLES PARKING $(2)+(5)=(7)$ $(3)+(6)=(8)$	205	220	240	334	n30
TOT		282	304	332	0947	• 465
	PARKING REQUIRED (5)x.85=(6)	120	129	141	196	252
	VEHICLES REQUIRED (4)÷.9=(5)	141	152	166	230	297
	DEPLANING PASSENGERS (4)	127	137	149	202	267
	PARKING REQUIRED (2)x.6=(3)	85	91	66	138	. 178
	VEHICLES REQUIRED (1)÷.9=(2)	141	152	166	230	297
	ENPLANING PASSENGERS (1)	127	137	149	202	267
	YEAR	1973	1974	1975	1980	1985

APPENDIX F

GLOSSARY

- Air Cargo: All revenue air traffic other than passengers; includes freight express, mail and passenger baggage in excess of free allowance.
- Air Carrier: Aircraft operators certified by the Federal Aviation Administration to transport persons, property and mail by air.
- Aircraft Operation: An aircraft arrival or departure from an airport with FAA airport traffic control service. There are two types of operations, local and itinerant.
 - 1. Local operations are performed by aircraft which:
 - a. Operate in the local traffic pattern or within sight of the tower.
 - b. Are known to be departing for, or arriving from, flight in local practice areas located within a 20 mile radius of the control tower.
 - c. Execute simulated instrument approaches or low passes at the airport.
 - 2. Itinerant operations: All aircraft arrivals and departures other than local operations.
- Air Taxi Operator: One of a class of air carriers operating aircraft having a maximum gross takeoff weight of 12,500 pounds or less and engaging in a wide variety of nonscheduled and scheduled passenger and cargo transportation services.
- Available Seats: The number of seats installed in an aircraft (including seats in the lounges) exclusive of any seats not offered for sale to the public by the carrier.
- Commuter Airlines: Air taxi operators who perform, pursuant to published schedules, at least five round trips a week between two or more points.
- DMJM: Daniel, Mann, Johnson, and Mendenhall Associates, Consulting Engineers.
- Emplaned Passengers: Passengers boarding an aircraft including originating, stopover and transfer passengers, for scheduled service.
- FAA: Federal Aviation Administration
- Flight: The operation of an aircraft from take off to landing.

- General Aviation Aircraft: All civil aircraft except those classified as air carriers.
- Load Factor: The percentage of seats actually occupied prior to take-off of a scheduled flight.
- Scheduled Service: Transport service operated over an air carriers certificated routes based on published flight schedules, including extra sections and related non revenue flights.

UAL: United Air Lines.

LIST OF REFERENCES

- 1. Reed, G.T., <u>Preliminary Airport Master Planning for the Monterey</u>
 <u>Peninsula Airport District</u>, Masters Thesis, Naval Postgraduate
 <u>School</u>, Monterey, 1973.
- 2. Aviation Week and Space Technology, v. 98, p. 126, 19 March 1973.
- 3. <u>IFR Supplement</u>, DOD Flight Information Publication (Enroute), 24 May 1973.
- 4. Daniel, Mann, Johnson, and Mendenhall Associates, Progress Report No. 6, California Master Plan of Aviation, July 1972.
- 5. United Air Lines in Conjunction with other Airlines Serving the Monterey Peninsula, Monterey Master Plan. Summary Report, 15 August 1968, Revised 9 June 1969.
- 6. Department of Transportation, Federal Aviation Administration, <u>Large</u> and <u>Medium Hub Aviation Activity Forecast</u>, <u>Air Carrier Airports</u>, 1967-1983, p. 7, April 1972.
- 7. Collins, R.L., "On Top, the Part About the Pilot," Flying Magazine, p. 12, June 1973.
- 8. Industry Observer, <u>Aviation Week and Space Technology</u>, v. 97, p. 9, 2 October 1972.
- 9. Collins, R.L., "Buy in the Sky Cessna's Skyhawk for 1974," Flying Magazine, p. 58, September 1973.
- 10. Bulban, E.J., "Business Flying, General Aviation Soars to Sales Record," Aviation Week and Space Technology, v. 98, p. 85, 19 March 1973.
- 11. Department of Transportation, Federal Aviation Administration, Airport Ranking, Air Carrier Passenger Emplaning, Fiscal 1972, February 1973.
- 12. Richard Raymond Associates, An Economic Analysis of the Monterey Area, p. 12-16, May 1969.
- 13. Hughes Airwest, F. Hykal, Subject: Results of the Monterey Survey of July 15-21, by S. Clemens, 25 August 1972.
- 14. Daniel, Mann, Johnson, and Mendenhall Associates, Progress Report No. 7, California Master Plan of Aviation, p. 5, June 1973.
- 15. Simat, Helliesen, Eichner, Inc., "Forecast of Air Traffic Demand and Activity Levels to the Year 2000," The Long Range Needs of Aviation; Technical Annex to the Report of the Aviation Advisory Commission, v. II, January 1973.

- 16. California County Government Education Foundation, California County Fact Book 1972.
- 17. Bank of America, Focus on Monterey County: An Economic Study of the Salinas-Monterey Metropolitan Area, September 1967.
- 18. Hartnell College, <u>Planning and Development of the Hartnell Joint</u>
 College District 1966 to 1985, A Report to the Governing Board,
 p. 96, May 1967.
- 19. Doty, L., "Air Transport: Problems Shaking Traffic Forecasts,"
 Aviation Week and Space Technology, v. 98, p. 53-61, 19 March 1973.
- 20. Program of Policy Studies in Science and Technology of the George Washington University, Joint DOT-NASA Civil Aviation R&D Policy Study Contractor Report, Social Impacts of Civil Aviation & Implications for R&D Policy.
- 21. Department of Transportation & National Aeronautics and Space Administration, Joint DOT-NASA Civil Aviation Research and Development Policy Study Report, p. 5-12, March 1971.
- 22. Department of Transportation & National Aeronautics and Space Administration, Joint DOT-NASA Civil Aviation Research and Development Policy Study Supporting Papers, p. 6-44, March 1971.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Department of OR/AS (Code 55) Naval Postgraduate School Monterey, California 93940	1
4.	Chief of Naval Personnel (Pers 11b) Department of the Navy Washington, D.C. 20370	. 1
5•	Asst. Prof. J.K. Hartman (Code 55Hh) Department of OR/AS Naval Postgraduate School Monterey, California 93940	1
6.	LT A.L. Maples VQ-1, FPO San Francisco, California	1
7.	Assoc. Prof. M.G. Sovereign (Code 55Zo) Department of OR/AS Naval Postgraduate School Monterey, California 93940	1
8.		1
9.	Prof. L.V. Schmidt (Code 57Sx) Department of Aeronautical Engineering Naval Postgraduate School Monterey, California 93940	1
10.	Mr. Richard Tourangeau	1
	6th Avenue & Dolores Carmel, California 93921	

SECURITY CLASSIFICATION OF THIS PAGE (When Deta En		
REPORT DOCUMENTATION P	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
The Monterey Peninsula Airport in t	the 1970's and	S. TYPE OF REPORT & PERIOD COVERED Master's Thesis; March 1974
1980's: A Demand Forecast	•	6. PERFORMING ORG. REPORT NUMBER
Amos Lee Maples		8. CONTRACT OR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School		March 1974
Monterey, California 93940		13. NUMBER OF PAGES 121
Naval Postgraduate School Monterey, California 93940	Irom Controlling Office)	Unclassified Isa. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		****

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Airport

Forecast

Monterey

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Monterey Peninsula Airport is modeled as a three component (airside, terminal, and streetside) system, and forecasts of demand and utilization for each component are developed through use of linear and log linear regression techniques. Specifically, forecasts for General Aviation Operations, Airline Passenger Emplanements and Passenger Associated Visitors, the number of automobiles utilizing the roadway during the peak hour (2 scheduled airline departures and 2 scheduled airline arrivals within the

Thesis
M3354 Maples
c.1
The Monterey Peninsulas
Airport in the 1970's
and 1980's: a demand
14 Autorecast
Pacific Grove Library

30 Junyo
15 Junyo
15 Junyo
16 Junyo
17 Junyo
18 Junyo
1

Thesis

149185

M3354 Maples c.1 The

The Monterey Peninsula Airport in the 1970's and 1980's: a demand forecast.

thesM3354
The Monterey Peninsula Airport in the 19
3 2768 001 01196 8
DUDLEY KNOX LIBRARY