Lecture 1.0

Reinforcement Learning: An Introduction

Alexey Gruzdev alexey.s.gruzdev@gmail.com HSE, Winter 2019

RL Literature

An Introduction to Reinforcement Learning, Sutton and Barto, 1998

Available free online!

last update: March 21, 2018

http://incompleteideas.net/book/bookdraft2018mar21.pdf

 Algorithms for Reinforcement Learning, Szepesvari, Morgan and Claypool, 2010

Available free online!

last update: July 8, 2017

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

Many faces of Reinforcement Learning

Branches of Machine Learning

RL Mechanics

Reinforcement Learning Peculiarities

- What makes RL domain different from other machine learning approaches?
 - There is no external supervisor, only reward signal
 - Feedback can be delayed not right now!
 - Time matters sequential, not i.i.d data
 - Agent's actions affect future data it receives

Examples of Reinforcement Learning

- Fly stunt maneuvers in a quad copter / helicopter
- Derive 'optimal' neural network architecture
- Defeat the world's champion in Go
- Manage an investment portfolio
- Make a Humanoid robot walk
- Control a power station
- Play Atari games

Helicopter Maneuvers

https://www.youtube.com/watch?v=VCdxqno fcnE

Playing Atari games

- https://www.youtube.com/watch?v=TmPfTpj tdgg
- https://www.youtube.com/watch?v=W2CAgh UiofY

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximize cumulative reward

Reinforcement Learning is based on the reward hypothesis.

The reward hypothesis:

All goals can be described by the maximization of expected cumulative reward.

Your turn - Is that correct or not?

Examples of Rewards

- Fly stunt maneuvers in a quad copter / helicopter
 - + reward for following desired trajectory
 - reward for crashing
- Derive 'optimal' neural network architecture
 - + reward for obtaining small & accurate neural network
- Defeat the world champion in Go
 - +/- reward for winning/losing a game
- Manage an investment portfolio
 - + reward for each \$ in bank
- Make a humanoid robot walk
 - + reward for forward motion
 - reward for falling over
- Control a power station
 - + reward for producing power
 - reward for exceeding safety thresholds
- Play many different Atari games better than humans
 - +/- reward for increasing/decreasing game's score

Sequential Decision Making

- Goal: select actions to maximize total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
 - A financial investment (may take months to mature)
 - Refueling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)

Agent & Environment

Agent & Environment

- At each step t the agent:
 - Executes action A_t
 - Receives observation O_t
 - Receives scalar reward R_t
- The environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits scalar reward R_{t+1}
- t increments at env. step

History and State

The history is the sequence of observations, actions, rewards

$$H_t = O_{1}, R_{1}, A_{1}, ..., A_{t-1}, O_{t}, R_{t}$$

- i.e. all observable variables up to time t
- i.e. the sensorimotor stream of a robot or embodied agent
- What happens next depends on the history:
 - The agent selects actions
 - The environment selects observations/rewards
- State is the information used to determine what happens next
- Formally, state is a function of the history:

$$S_t = f(H_t)$$

Environment State

- The environment state S_t^e is the environment's private representation
- i.e. whatever data the environment uses to pick the next observation/reward
- The environment state is not usually visible to the agent
- Even if S_t^e is visible, it may contain irrelevant information

Agent State

- The agent state S_t is the agent's internal representation
- i.e. whatever information the agent uses to pick the next action
- i.e. it is the information used by reinforcement learning algorithms
- It can be any function of history:

$$S_a = f(H_t)$$

Markov State

- An information state (a.k.a. Markov state) contains all useful information from the history.
- <u>Definition</u>: a state S_t is Markov if and only if $P[S_{t+1} | S_t] = P[S_{t+1} | S_1, ..., S_t]$
- *The future is independent of the past given the present" $H_{1:t} -> S_t -> H_{t+1:inf}$
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- The environment state S_t^e is Markov
- The history H_t is Markov

Rat Example

- What if agent state = last 3 items in sequence?
- What if agent state = counts for lights, bells?
- What if agent state = complete sequence?

Fully Observable Environments

 Full observability: agent directly observes the environment state

$$O_t = S_t^a = S_t^e$$

- Agent state = environment state = information state
- Formally, this is a Markov decision process (MDP)

Partially Observable Environments

- Partial observability: agent indirectly observes environment:
 - A robot with camera vision isn't told its absolute location
 - A trading agent only observes current prices
 - A poker playing agent only observes public cards
- Now agent state != environment state
- Formally this is a partially observable Markov decision process (POMDP)
- Agent must construct its own state representation S_t^a :
 - Complete history: $S_t^a = H_t$
 - Beliefs of environment state: $S_t^a = (P[S_t^e = s_1], ..., P[S_t^e = s_n])$
 - Recurrent neural network: $S_t^a = \sigma(S_{t-1}^a W_s + O_t W_o)$

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behavior function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
- It is a map from state to action, e.g.
- Deterministic policy: $\alpha = \pi(s)$
- Stochastic policy: $\pi(\alpha \mid s) = P[A_t = \alpha \mid S_t = s]$

Value Function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$V_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s]$$

Model

- A model predicts what the environment will do next
- P predicts the next state
- R predicts the next (immediate) reward, e.g.

$$P_{ss'}^{a} = P[S_{t+1} = s' | S_{t} = s, A_{t} = a]$$

 $R_{s}^{a} = E[R_{t+1} | S_{t} = s, A_{t} = a]$

Maze Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Example: Policy

Maze Example: Value Function

Maze Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect
- Grid layout represents transition model $P_{ss'}^a$
- Numbers represent immediate reward R_s^a from each state s (same for all a)

Classification RL Agents

- Value Based:
 - No Policy (Implicit)
 - Value Function
- Policy Based:
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Classification RL Agents

- Model Free:
 - Policy and/or Value Function
 - No Model
- Model Based:
 - Policy and/or Value Function
 - Model

RL Agents Taxonomy

Learning & Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Atari Example: Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action α from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Exploration & Exploitation

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

Exploration & Exploitation

- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
- It is usually important to explore as well as exploit

Examples:

- Bar Selection
 - Exploitation: Go to your favorite bar
 - Exploration: Try a new bar
- Online Banner Advertisements
 - Exploitation: Show the most successful advert
 - Exploration: Show a different advert
- Oil Drilling
 - Exploitation: Drill at the best known location
 - Exploration: Drill at a new location
- Game Playing
 - Exploitation: Play the move you believe is best
 - Exploration: Play an experimental move

Prediction & Control

- Prediction: evaluate the future
 - Given a policy
- Control: optimize the future
 - Find the best policy

Grid World Example: Prediction

What is the value function for random uniform policy?

Grid World Example: Control

a) gridworld

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b) v_*

c) π_*

- What is the optimal value function for all possible policies?
- What is the optimal policy?

Resume

Questions?

