TD4: Produit semi-direct

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star \star$: plus difficiles.

Exercice 1: *

Soient N et H des groupes et soit $\phi: H \to \operatorname{Aut}(N)$ un morphisme de groupes. Notons $N \rtimes H$ l'ensemble $N \times H$ muni de la loi de composition définie par $(n_1, h_1) \rtimes_{\phi} (n_2, h_2) = (n_1 \phi(h_1)(n_2), h_1 h_2)$.

- a) Montrer que $N \rtimes_{\phi} H$ est un groupe, appelé produit semi-direct de H par N relativement à ϕ .
- b) Montrer que $N \times \{e_H\} \triangleleft N \underset{\phi}{\rtimes} H$ et $\{e_N\} \times H < N \underset{\phi}{\rtimes} H$.
- c) Identifier le quotient de $N \underset{\phi}{\rtimes} H$ par $N \times \{e_H\}$.

Exercice $2: \star$

Soit G un groupe et soient N et H des sous-groupes de G tels que $N \cap H = \{e\}$, NH = G et $N \triangleleft G$. Montrer que :

- a) l'application $i: H \to \operatorname{Aut}(N)$ définie par $h \mapsto i_h$, où $i_h(n) = hnh^{-1}$, est un morphisme de groupes.
- b) l'application

$$\begin{array}{ccc} f: N \underset{i}{\rtimes} H & \rightarrow & G \\ & (n,h) & \mapsto & nh \end{array}$$

est un isomorphisme de groupes.

On dit alors que G est le produit semi-direct de H par N.

Exercice 3: *

Montrer que le produit semi-direct $N \rtimes H$ est direct si et seulement si ϕ est le morphisme trivial si et seulement si $\{e_N\} \times H \lhd N \rtimes H$.

Exercice $4: \star\star$

Une suite de morphismes ... $\rightarrow A \xrightarrow{u} B \xrightarrow{v} C \rightarrow ...$ est dit exacte en B si Im(u) = Ker(v), et elle est dite exacte si elle est exacte en tous ses termes. Soit

$$1 \longrightarrow N \stackrel{i}{\longrightarrow} G \stackrel{p}{\longrightarrow} H \longrightarrow 1$$

une suite exacte (courte). On dit alors que G est une extension de H par N.

- a) Montrer que, si G est le produit direct de H et N ou bien un produit semi-direct de H par N, alors on a une telle suite exacte.
- b) Réciproquement soit une telle suite exacte. Si p possède une section, c'est-à-dire s'il existe un morphisme de groupes $s: H \to G$ tel que $p \circ s = \mathrm{id}_H$, montrer que G est le produit semi-direct de H par N pour l'opération $h \cdot n = s(h)ns(h)^{-1}$.
- c) Donner un exemple de suite exacte courte qui n'est pas un produit semi-direct.

Exercice $5: \star\star$

- a) Montrer que l'on peut écrire \mathfrak{S}_n comme un produit semi-direct naturel.
- b) Montrer que l'on peut écrire le groupe diédral D_n comme un produit semi-direct naturel.
- c) Montrer que l'on peut écrire $GL_n(k)$ comme un produit semi-direct naturel (k est un corps).
- d) Ces produits semi-directs sont-ils directs?

Exercice 6:

Soit $G = N \rtimes H$ et soit K un sous-groupe de G contenant N. Montrer que l'on a $K = N \rtimes (K \cap H)$.

Exercice 7:

Montrer que tout groupe d'ordre 255 est cyclique.

Exercice 8: **

Soient H et N des groupes et soient ϕ et $\psi: H \to \operatorname{Aut}(N)$ des morphismes. On veut trouver des conditions nécessaires et suffisantes pour que $N \rtimes_{\phi} H$ et $N \rtimes_{\psi} H$ soient isomorphes.

- a) S'il existe un automorphisme α de H tel que $\psi = \phi \circ \alpha$, montrer que l'on a la conclusion attendue.
- b) S'il existe un automorphisme u de N tel que

$$\forall h \in H \qquad \phi(h) = u\psi(h)u^{-1},$$

montrer que la conclusion attendue vaut encore.

c) Si H est cyclique et que ϕ et $\psi: H \to \operatorname{Aut}(N)$ sont tels que $\phi(H) = \psi(H)$, montrer que $N \rtimes_{\phi} H$ et $N \rtimes_{\psi} H$ sont isomorphes.

Exercice 9: **

Soient p < q des nombres premiers.

- a) Déterminer à isomorphisme près tous les groupes de cardinal pq.
- b) Si $q \geq 3$, en déduire que tout groupe de cardinal 2q est isomorphe à $\mathbb{Z}/2q\mathbb{Z}$ ou au groupe diédral D_q .

Exercice $10: \star \star \star$

a) Montrer qu'un groupe d'ordre 8 est isomorphe à l'un des groupes suivants :

$$\mathbb{Z}/8\mathbb{Z}$$
, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^3$, D_4 , \mathbf{H}_8 .

Justifier que \mathbf{H}_8 n'est pas un produit semi-direct et que les cinq groupes cités sont deux-à-deux non isomorphes.

- b) Montrer que $SL_2(\mathbb{Z}/3\mathbb{Z})$ possède un unique 2-Sylow que l'on identifiera.
- c) Donner la liste des classes d'isomorphisme de groupes finis de cardinal ≤ 15 .

Exercice 11: $\star\star\star$

Soit p un nombre premier impair.

- a) Déterminer les p-Sylow de $GL_2(\mathbb{Z}/p\mathbb{Z})$.
- b) Soient ϕ et ψ des morphismes non triviaux de $\mathbb{Z}/p\mathbb{Z}$ dans $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$. En notant pour tout entier k, ϕ_k le morphisme défini par $\phi_k(x) = \phi(kx)$, montrer qu'il existe un entier k et une matrice $P \in \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ tels que $\psi = P\phi_k P^{-1}$.
- c) En déduire qu'il existe, à isomorphisme près, un unique produit semi-direct non trivial $(\mathbb{Z}/p\mathbb{Z})^2 \rtimes \mathbb{Z}/p\mathbb{Z}$.
- d) Montrer que le centre de ce dernier groupe est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.
- e) Soit G un groupe d'ordre p^3 non cyclique, contenant un élément x d'ordre p^2 . Monter que $\langle x \rangle$ est distingué dans G et que G est un produit semi-direct de $\mathbb{Z}/p\mathbb{Z}$ par $\langle x \rangle \cong \mathbb{Z}/p^2\mathbb{Z}$.
- f) Décrire les classes d'isomorphisme de groupes de cardinal p^3 : on raisonnera par exemple suivant l'ordre maximal d'un élément du groupe.

Exercice 12: $\star\star\star$

Soient $p \neq q$ deux nombres premiers. Classifier les groupes d'ordre p^2q .