2.5 分布式调度架构之共享状态调度:物质

文明、精神文明多手协商抓

2022年3月2日 10:35

死居個度问题

第二层洞度器只能看到部分资源. > {①不能保证全局状态的一致性. ②不容易实现全局最优调度.

搭批な洞度

可以看出,共享状态调度架构为了提供高可用性和可扩展性,将集群状态之外的功能抽出来 作为独立的服务。具体来说就是:

- State Storage 模块(资源维护模块)负责存储和维护资源及任务状态,以便 Scheduler 查询资源状态和调度任务;
- Resource Pool 即为多个节点集群,接收并执行 Scheduler 调度的任务;
- 而 Scheduler 只包含任务调度操作,而不是像单体调度器那样还需要管理集群资源等。

与两层调度的不同

- 存在多个调度器,每个调度器都可以拥有集群全局的资源状态信息,可以根据该信息进 行任务调度;
- 共享状态调度是乐观并发调度,在执行了任务匹配算法后,调度器将其调度结果提交给 State Storage,由其决定是否进行本次调度,从而解决竞争同一种资源而引起的冲突问 题, 实现全局最优调度。而, 两层调度是悲观并发调度, 在执行任务之前避免冲突, 无 法实现全局最优匹配。

说, (oMega).

①架构设计.

这里的 Job 相当于一个事务,也就是说,当所有 Task 匹配成功后,这个事务就会被成功 Commit, 如果存在 Task 匹配不到可用资源, 那么这个事务需要执行回滚操作, Job 调度 力核心的能 失败。

③ Job并发调度、借用3DB中的MVCC思想、

三种调度方式对比。

	单体调度	两层调度	共享状态调度
调度架构	集中式结构: 一个中央 调度器	树形结构:一个中央调度 器,多个第二层调度器	分布式结构: 多个对等 调度器
调度形式	单点集中调度	Resource Offer	Transaction
调度单位	Task	Task	Task
任务调度的并发性	无并发	悲观并发调度	乐观并发调度
是否是全局最优调度	是	否	是
系统并发度	共享状态调度>两层调度>单体调度		
调度效率 (综合考虑并发度, 全局最优性,以及故 障问题等因素)	共享状态调度>两层调度>单体调度		
系统可扩展性	共享状态调度>两层调度>单体调度		
是否有具体实现源码	是	是	否
适用场景	小规模集群,适用于业 类型比较单一的场景	今 中等規模集群,适用 于同时具有多种业务 类型的场景	大规模集群,适用于同时具有多种业务类型的 场景
典型应用	Borg	Mesos, YARN	Omega