Deep multi-view representation learning of brain responses to natural stimuli

Leila Wehbe*, Anwar Nunez-Elizalde*, Alex Huth, Fatma Imamoglu, Natalia Bilenko, Jack Gallant

UC Berkeley

How does the human brain represent information?

Machine Learning

Non-invasive imaging, e.g. fMRI

generate time series of functional volumes

time

- Typically:
 - Isolate a specific
 - Two or a few conditions
 - Find regions that differ in activity

- Typically:
 - Isolate a specific
 - Two or a few conditions
 - Find regions that differ in activity

- Problems:
 - Hard to generalize
 - Infinite number of binary comparisons

- Make subjects do a real life complex task:
 - Watch movies
 - Listen / read stories

REST

Video by James Gao and Anwar Nunez-Elizalde

Leila Wehbe

No clear classes

- No clear classes
 - Classification techniques are not useful/interesting here

- No clear classes
 - Classification techniques are not useful/interesting here
- Highly complex input varying along multiple levels

- No clear classes
 - Classification techniques are not useful/interesting here
- Highly complex input varying along multiple levels
 - Model it!

- Stories have acoustic and semantic properties:
 - phonemes: Count of the occurrence of 39 phonemes

- Stories have acoustic and semantic properties:
 - word2vec: Bag of words model of the words occurring at each 2s

- Movies have visual and semantic properties:
 - word2vec: Bag of words model of the objects occurring at each 2s

word2vec

Movies have visual and semantic properties:

motion energy filters: spatio-temporal

Gabor pyramids

- Movies have visual and semantic properties:
 - motion energy: spatio-temporal Gabor pyramids

- Data from 4 subjects for both experiments
 - Story Listening (Huth et al. 2016)
 - Natural Movies (Nishimoto et al. 2011)
- Each subject has 30-50 thousand voxels
 - And ~ 3600 time points per experiment

- Data from 4 subjects for both experiments
 - Story Listening (Huth et al. 2016)
 - Natural Movies (Nishimoto et al. 2011)
- Each subject has 30-50 thousand voxels
 - And ~ 3600 time points per experiment

- Data from 4 subjects for both experiments
 - Story Listening (Huth et al. 2016)
 - Natural Movies (Nishimoto et al. 2011)
- Each subject has 30-50 thousand voxels
 - And ~ 3600 time points per experiment

Small data / complex brains

Small data / complex brains

- Small data scenario!
 - ... and low SNR

Small data / complex brains

- Small data scenario!
 - ... and low SNR
- We want to generalize:
 - Across subjects
 - Across feature spaces
 - And across experiments and cognitive domains

Predict data from features

- Predict data from features
- Predict features from data (decoding)

- Predict data from features
- Predict features from data (decoding)
- Combine data across subjects

- Predict data from features
- Predict features from data (decoding)
- Combine data across subjects
- Predict one subject from another

Cognitive Space Multi-view Autoencoder

Cognitive Event

E.g., perception of:

E.g., perception of:

E.g., perception of:

Encoders

E.g., perception of:

E.g., perception of:

E.g., perception of:

 $\lq\lq$... was running away as fast as he could ... \lq

E.g., perception of:

Subject 1, Subject 2, ... Subject n

Subject 1, Subject 2, ... Subject n

Subject 1, Subject 2, ... Subject n

Subject 1, Subject 2, ... Subject n

Multimodal representations

- We saw this in the school already
- Bimodal / split auto encoder (Ngiam et al. 2011)
- DCCA, DCCAE (Wang et al. 2015)

Multimodal representations

- We saw this in the school already
- Bimodal / split auto encoder (Ngiam et al. 2011)
- DCCA, DCCAE (Wang et al. 2015)

Multimodal fusion of brain structural and functional imaging with a deep neural machine translation approach

Md Faijul Amin*, Sergey M. Plis*, Eswar Damaraju*, Devon Hjelm*, KyungHyun Cho[†], Vince D. Calhoun*[‡]

*The Mind Research Network, 1101 Yale Blvd, Albuquerque, NM 87106, USA

[†]Courant Institute & Center for Data Science, New York University, New York, NY 10012, USA

[‡]Department of ECE, University of New Mexico, Albuquerque, NM 87106, USA

Input = word2vec Output = story data

Input = phonemes
Output = story data

Input = motion energy Output = movie data

Input = word2vec Output = movie data

Input = S2 Output = movie data (S1)

Results: predicting brain activity

Input = S1 Output = movie data (S2)

For experiments, subjects and feature spaces

- For experiments, subjects and feature spaces
- Enables standard neuroimaging tasks
 - Good performance

- For experiments, subjects and feature spaces
- Enables standard neuroimaging tasks
 - Good performance

 Also learns an embedding space for brain responses / stimulus features

Top-n similar: mammals mammal marine mammals primates organisms microorganisms humans microbial animal microbes reptiles creatures species Recons. Subject 1 Recons. Recons. Subject 2 word2vec word2vec phonemes motion energy non-specific

Use spatial information

Use spatial information

Use temporal information

Use spatial information

Use temporal information

 Learn allocation of feature spaces automatically, not as hyper parameter

Thank you

