

GNNs to predict physical properties

Otaviano Cruz - Mestrado/CAP

Outline

- Graphs
- GNNs
- QM9
- Methodology
- Results
- Conclusions

// Graphs

Representation Problems

- Adjacency Matrix
- Invariances

// GNNs

Node A receive a message from the neighborhood around a influence area.

Neural Message Passing [1]

// GNNs

But, what we want to learn using this model?

- Structural Information (benzene rings)
- Features Properties (atom types)

Neural Message Passing [1]

// QM9

With approx. 134K molecules, the QM9 Dataset [2] provide 19 physical properties using Molecular Dynamics ab initio calculations:

- Dipole Moment.
- Isotropic polarizability.
- Band Gap.
- Internal Energy.
- ..

// Methodology

Supervised Paradigm:

- Loss Function: RMSE
- Activation Function : ReLu
- Train/Test: 70%/30%

// Methodology

Grid Search (Hyper Parameters Optimization)

Tools:

- Optuna (Instances Parallelism).
- Tensorboard (Compile all the instances).
- Torch Geometric (Modeling).

Hyperparameters Evaluation:

- Convolutional Layers: 1 4
- Hidden FC Layers: 1 3
- Hidden Nodes: 2 128
- Batch Size: 1 1024
- Learning Rate: 1e-5 1e-1

How to select the best model?

- Execution Time.
- Validation Error.
- Train Error.

Hardware:

CPU: Intel(R) Xeon(R) Gold 5118 CPU @

2.30GHz

RAM: 755GB

GPU: 4xNVIDIA Tesla V100 16GB

// Results

Tensorboard Dashboard:

- Train loss.
- Validation loss.

Obs: Gradient Vanish/Explosion problem

// Results

Best Model

- Convolutional Layers: 4
- Hidden FC Layers: 4
- Hidden Nodes: 64
- Batch Size: 128
- Learning Rate: ~0.001
- Trainable params: 186707

Metrics

- Train Loss: 3724.4
- Validation Loss: 2538
- Execution Time: 1h 53min

// Results

// Conclusions

Attention Points

- Unsatisfactory results.
- 1.800 model rateds.
- Recurrent Gradient Vanishing.
- Under and Over Fitting problems.
- Optimization problems.

Next steps

- Evaluate others architecture models.
- Include the tensorboard gradient diagrams to create a early stopping based on.
- Try to use cuGraph, cuDNN and DGL to increase the performance and optimize GPU calculations.
- Try to translate classical calculations in MD ab initio to GNN (MLFF).

Thank You

otavianocruz@id.uff.br

// References

[1] Neural Message Passing - http://arxiv.org/abs/1704.01212

[2] QM9 Dataset - https://arxiv.org/abs/1703.00564

Documentation: Pytorch / Torch Geometric / Optuna / Tensorboard