

DEPTO. DE PROTECCION y COMUNICACIÓN

Coordinación de Pruebas y Mediciones

Pruebas al Transformador T-3

Subestación: Llano Sánchez

Fecha de Prueba: 13-Noviembre-2015

Prueba Realizada por: Ing's. Ruiz / Martínez

XL18-12-15

Informe Realizado por: Ing. Julio Ruíz C.

Fecha: 17-Dic-2015

Capacitancia y FP del Tanque

Número de prueba LLST3-1-15

Fecha

13-dic-15

Llano Sanchez

Equipo

Fabricante

Subestación

ILJIN

T3

Año de Fabricacion 2011

Realizado por

Julio Ruíz

Clima

Soleado

Temp. Ambiente

34°C

Humedad Relativa

48%

Temp Aceite

47°C

FC a 20°C

0.83

Voltaje de Prueba

10kV

Prueba	Descripcion del Circuito	Corriente (mA)	Perdidas (W)	FP Medido	FP Corregido a 20°C	Capacitancia (pF)	Evaluación
CH+CHL	GST-GND	50.171	1.133	0.230	0.192	13308	Aceptable
СН	GST-GRD	24.186	0.686	0.280	0.234	6415.3	Aceptable
CHL	UST	25.973	0.478	0.180	0.150	6889.4	Aceptable
CL+CHL	GST-GND	55.363	1.051	0.190	0.159	14685.5	Aceptable
CL	GST-GRD	29.374	0.608	0.210	0.175	7791.7	Aceptable

Resultado de la Prueba

- Prueba buena
- O Prueba regular
- O Prueba deficiente

TANQUE NUCLEO

Según la norma IEEE Std 62-1995 establece que : Para transformadores nuevos el FP debe ser menor de 0.5 % Para transformadores de 15 años el FP debe ser menor de 1.5 %

Equipo de prueba

M4100 DOBLE

Observación Valores aceptables y parecidos a los del 2014, no existe variación significativa.

Capacitancia y Factor de Potencia de los Bushings (C1)

Número de Prueba LLST3-2-15

Clima

Soleado

Fecha

13-dic-15

Llano Sanchez

Temp. Ambiente Humedad

34°C 48%

Subestación Equipo

T3

Temp. Aceite

47°C

Realizada por

Julio Ruíz

Temp. Promedio

40°C

Bushing	Serie	Fabricante	Tipo	FP C1 (%)	Cap C1 (pF)
НО	1ZUA 1000031151	ABB	O+C II	0.240	335.00
H1	11 FO269-03 AEP	TRENCH LIMITED	COTA 900	0.320	533.00
H2	11 F0269-04 AEP	TRENCH LIMITED	COTA 900	0.300	530.00
Н3	11 F0269-08 AEP	TRENCH LIMITED	COTA 900	0.320	533.00
X1	11 F0256-55AEP	TRENCH LIMITED	COTA 550	0.270	514.00
X2	11 FO256-47AEP	TRENCH LIMITED	COTA 550	0.270	517.00
Х3	11 F0256-50AEP	TRENCH LIMITED	COTA 550	0.310	512.00
Y1	1ZUA 1000031147	ABB	O+C II	0.230	335.00
Y11	1ZUA 1000031149	ABB	O+C II	0.230	335.00

Bushing	Corriente (mA)	Pérdidas (W)	FP (%)	Cap (pF)	Factor	FP a 20°C	Evaluación FP	Evalación Capacitancia
H1	1.972	0.048	0.24	523.1	1.21	0.290	Aceptable	Aceptable
H2	1.993	0.057	0.29	528.6	1.21	0.351	Aceptable	Aceptable
Н3	2.007	0.058	0.29	532.3	1.21	0.351	Aceptable	Aceptable
НО	1.251	0.026	0.21	331.9	1.08	0.227	Aceptable	Aceptable
X1	1.936	0.049	0.25	513.5	1.21	0.303	Aceptable	Aceptable
X2	1.946	0.048	0.25	516.1	1.21	0.303	Aceptable	Aceptable
Х3	1.929	0.047	0.24	511.6	1.21	0.290	Aceptable	Aceptable
Y1	1.254	0.027	0.22	332.5	1.08	0.238	Aceptable	Aceptable
Y11	1.251	0.028	0.22	331.7	1.08	0.238	Aceptable	Aceptable

Equipo utilizado M4100 DOBLE

Resultado de	e la prue	ba
--------------	-----------	----

- Prueba buena
- O Prueba regular
- O Prueba deficiente

Observaciones

Todos los valores están en el rango de aceptable, no hay variaciones significativas.

Capacitancia y FP de los Bushings (C2)

Número de Prueba LLST3-3-15

Clima

Soleado

Fecha

13-dic-15

Temp. Aceite

47°C

Subestación

Llano Sanchez

Temp. Promedio

Equipo

T3

Temp. Ambiente

34°C

Realizada por

Julio Ruíz

Humedad

48%

/alores de	Placa				
Bushing	Serie	Fabricante	Tipo	Cap C2 (pF)	FP C2 (%)
H0	1ZUA 1000031151	ABB	O+C II	650	0.11
H1	11 FO269-03 AEP	TRENCH LIMITED	COTA 900	10597	0.28
H2	11 F0269-04 AEP	TRENCH LIMITED	COTA 900	10534	0.28
Н3	11 F0269-08 AEP	TRENCH LIMITED	COTA 900	10597	0.25
X1	11 F0256-55AEP	TRENCH LIMITED	COTA 550	5804	0.28
X2	11 FO256-47AEP	TRENCH LIMITED	COTA 550	5892	0.32
Х3	11 F0256-50AEP	TRENCH LIMITED	COTA 550	5846	0.25
Y1	1ZUA 1000031147	ABB	O+C II	625	0.12
Y11	1ZUA 1000031149	ABB	O+C II	622	0.12

Bushing	Corriente (mA)	Pérdidas (W)	FP C2 (%)	Cap C2 (pF)	Evaluación FP	Evaluación Capacitancia
H1	39.560	1.036	0.26	10493.7	Aceptable	Aceptable
H2	39.799	1.132	0.28	10556.8	Aceptable	Aceptable
НЗ	40.007	1.029	0.26	10611.9	Aceptable	Aceptable
НО	2.525	0.080	0.32	669.7	Aceptable	Aceptable
X1	22.067	0.560	0.25	5853.4	Aceptable	Aceptable
X2	22.307	0.550	0.25	5917.1	Aceptable	Aceptable
Х3	22.135	0.556	0.25	5871.4	Aceptable	Aceptable
Y1	2.399	0.062	0.26	636.4	Aceptable	Aceptable
Y11	2.393	0.068	0.28	634.9	Aceptable	Aceptable

Equipo utilizado M4100 DOBLE

🗆 Resultado de la prueba 📑	Observaciones
Prueba buena Prueba regular Prueba deficiente	Todos los valores son aceptables, capacitancias ligeramente arriba de los valores del 2014, nada de cuidado por el momento, darle seguimiento.

Prueba de Resistencia de Aislamiento

Número de Prueba LLST3-5-15

Pruebas.Fecha

13-dic-15

Subestación

Llano Sanchez

NombreEquipo

T3

Realizado por

Julio Ruíz

Temp. Ambiente

34°C

Humedad Relativa

51%

Temp. Aceite

46°C

Factor de Corrección 5.989

Tipo

Conservador

Voltaje de prueba

5000VDC

	Va	lores de can (GΩ)	npo	Valores corregidos a 20°C (GΩ)			
Tiempo (min)	HX VS Y	H VS T	Y VS T	HX VS Y	H VS T	Y VS T	
0.5	44.90	30.90	29.10	268.89	185.05	174.27	
1	60.80	34.20	46.80	364.11	204.81	280.27	
2	80.80	36.00	76.10	483.89	215.59	455.74	
3	92.50	39.50	80.80	553.95	236.55	483.89	
4	98.70	39.10	73.20	591.08	234.16	438.37	
5	103.20	39.10	85.20	618.03	234.16	510.24	
6	106.90	42.00	93.80	640.19	251.53	561.74	
7	109.70	42.70	92.80	656.96	255.72	555.75	
8	111.60	43.20	94.10	668.34	258.71	563.54	
9	114.50	42.50	95.90	685.71	254.52	574.32	
10	116.60	42.10	95.60	698.28	252.12	572.52	
Resultado	de la prueba		I.P	1.92	1.23	2.04	
O Prueba buena			I.A.	1.35	1.11	1.61	
Prueba regular			Evaluación	Regular	Cuestionable	Bueno	

O Prueba deficiente

Referencia segu ANSI/IEEE C57-	
I.P.	Evaluación
Menos de 1.0	Malo
de 1.0 a 1.1	Pobre
de 1.1 a 1.25	Cuestionable
de 1.25 a 2.0	Regular
arriba de 2.0	Bueno

Equipo de prueba MIT 1025 Megger

Observación

La Resistencia de Aislamiento sale mejor en las pruebas HX vs Y y

El índice de Polarización disminuyó notablemente en la prueba HX vs Y, podría deberse a humedad, investigar y darle seguimiento.

TRANSFORMER POLARIZATION INDEX (PI) TEST

							Congresse de Branemi	mign Classron S.A.
OWNER					DATE 12/13/2	2015	PAGE 1	
T ====							10000000000000000000000000000000000000	
					NT TEMP. <u>34</u>		JOB #	_
SUBSTATION LL.	ANO SANCHEZ				HUMIDITY 51	<u>%</u> ASS	SET IDT-	3
POSITION Z2				TEST	STATUS		Pass	
FOURMENT LOCATIO	N PROVINCIAS CI	ENTRALES					300	
EQUI MENT ECONTIC	THO THE OF		The second second					
PRIMARY: 230 SECOND: 115 COMMENTS: TEST VOLTAGE:	9 COOLANT OIL BIL YI GE (kV) MVA RATED I 100 251.02 66.395 100 502.04	# NOMINA # NOMINA # TAPS NOMINA 5 4 1 1	AL CHANGER S DETC	GAL °C % nny ONSER TAP SETTING			.0W TO GND5	KVDC
	ATURE °	C En	iter TCF Manually: 🔽	TEMP. COR	R. FACTOR TO 20°C	C, TCF5.988	87	
Use Instrument PI / DA	AR Value:			TRANC	FORMER			1
		High to Low (Low Grounded)		High Grounded)	High + L	_ow to Ground	ł
	MINUTES	READING	CORR. VALUE	READING	CORR. VALUE	READING	CORR. VALUE	
		(megohms)	(megohms)	(megohms)	(megohms)	(megohms)	(megohms)	
	0.25	17,250.00	103,305.0	15,180.00	90,908.46	12,910.00	77,314.12	
	0.50	44,900.00 54,100.00	268,892.6 323,988.6	30,900.00	185,050.8 204,214.6	29,100.00	174,271.1 231,762.6	1
	1.00	60.800.00	364,112.9	34,200.00	204,813.5	46,800.00	280,271.1	-
	2.00	80,800.00	483,886.9	36,000.00	215,593.1	76,100.00	455,740.0	
	3.00	92,500.00	553,954.7	39,500.00	236,553.6	80,800.00	483,886.9	(P)
	4.00	98,700.00	591,084.6	39,100.00	234,158.1	73,200.00	438,372.8	(2) V
	5.00	103,200.0	618,033.8	39,100.00	234,158.1	85,200.00	510,237.2	
	6.00	106,900.0	640,192.0	42,000.00	251,525.4	93,800.00	561,740.0]
	7.00	109,700.0	656,960.3	42,700.00	255,717.4	92,800.00	555,751.3]
	8.00	111,600.0	668,338.9	43,200.00	258,711.8	94,100.00	563,536.6	
	9.00	114,500.0	685,706.1	42,500.00	254,519.7	95,900.00	574,316.3	
	10.00	116,600.0	698,282.4	42,100.00	252,124.2	95,600.00	572,519.7	
	P. I.		.92		.23		2.04	1
INSULATION CONDITION DANGEROUS POOR QUESTIONABLE FAIR GOOD	 < 1.0 Polariz 1.0 to 1.1 1.1 to 1.25 The pole the pole (e.g. number) 	s: les from IEEE C57.152 ation Index should not I power transformers (IE larization index for insu arization index for trans	-2013 be used to assess insulat	tion se to 1. Therefore, tivity liquids	INSULATION CONDITION QUESTIONABLE GOOD EXCELLENT	DAR 60/30 SEC E 1.0 - 1.25 1.4 to 1.6 > 1.6	NOTES: DAR ranges from A Stitch In Time (Megi	considered subject

TRANSFORMER POLARIZATION INDEX (PI) TEST

 DATE
 12/13/2015
 TEMPERATURE
 34 °C
 HUMIDITY
 51 %
 EQPT. LOCATION
 PROVINCIAS CENTRALES

 SUBSTATION
 LLANO SANCHEZ
 POSITION
 Z2

POLARIZATION CURVE

High to Low (Low Grounded) : Red Square

POLARIZATION CURVE Low to High (High Grounded) : Blue Circle

POLARIZATION CURVE

High + Low to Ground : Green Triangle

COMMENTS:	
DEFICIENCIES:	

Prueba de Corriente de Excitación

Número de Prueba

LLST3-4-15

Temp. Aceite

40°C

Pruebas.Fecha

13-dic-15

Humedad Relativa

48%

Subestación

Llano Sanchez

Temp. Ambiente

34°C

Equipo

T3

Clima

Soleado

Realizado por

Julio Ruíz

Tap fijo 4
Tap móvil N/A

Prueba	Descripción del Circuito	Voltaje (kV)	Corriente (mA)	Pérdidas (W)
H1-H0	UST-R	10.03	15.161	151.150
H2-H0	UST-R	10.03	10.153	97.976
H3-H0	UST-R	10.03	15.079	150.450

Criterio de Evaluación: Comparación entre las 2 corrientes mas altas.

Para corrientes de exitación menores de 50mA:

La diferencia entre ambas corrientes debe ser menor de 10%.

Para corrientes de exitación mayores a 50mA:

La diferencia entre ambas corrientes deberá ser menor de 5%

"Transformer Diagnostics" Vol. 3-31 Facilities Instructions, Standards, and

Prueba deficiente "Transformer Techniques."

Equipo utilizado	M4100	DOBLE
------------------	-------	--------------

Resultado de la prueba

Prueba buena

O Prueba regular

Observaciones

Valores parecidos a los del 2014, además cumplen con lo establecido en el recuadro superior.

Prueba de Resistencia DC del Devanado

51%

32°C

46°C

Número de prueba LLST3-6-15

Fecha de prueba

13-dic-15

Subestación

Llano Sanchez

Equipo

T3

Realizado por

Josué Martínez

Temperatura Devanado H

49°C

Tap móvil N/A Tap fijo

Humedad Relativa

Temp. Ambiente

Temp. Aceite

51°C

51°C

Temperatura Devanado Y Temp. de Referencia

Temperatura Devanado X

○ 20ºC ● 75ºC ○ 85ºC

Posición (Bobinas)	Lectura (Ω)	Corrección	Referencia (Ω)	Variación
H1-H0	0.695	0.759	0.767	-1.09%
H2-H0	0.695	0.759	0.767	-1.09%
H3-H0	0.695	0.759	0.768	-1.22%
X1-X0	0.355	0.385	0.393	-2.12%
X2-X0	0.354	0.384	0.392	-2.15%
X3-X0	0.352	0.382	0.390	-2.20%
Y1-Y11	0.524	0.568	0.580	-2.10%

Resultado de la Prueba

- O Prueba buena
- O Prueba regular
- Prueba deficiente

Según la norma IEEE Std 62-1995 se recomienda la comparación con otras fases, otros transf. iguales o con mediciones anteriores bajo condiciones de campo.

La variación bajo condiciones de campo no debe exceder el 5%. Según la Compañía DOBLE, debido a la inestabilidad de obtener lecturas precisas debido a la temperatura, se permite una desviación del 2% entre la prueba de campo y de fábrica.

Equipo de prueba **ACCUTRANS VANGUARD**

Observacion

A pesar de que se usó un equipo que no se ha calibrado en más de 5 años la prueba salió bastante satisfactoria.

Esperamos contar con un buen equipo de prueba el año que viene.

Relación de Vueltas (TTR) 17 pasos

Número de prueba LLST3-7-15

Fecha de prueba

13-dic-15

Subestación

Llano Sanchez

Equipo

T3

Realizado por

Julio Ruíz

Tap Primario

Voltaje (V)

115000

-		
Cor	ntigu	ración

О ∆-ү

Voltaje	Тар	Teórico	±0.	5%	H1H0/X1X0	Error	H2H0/X2X0	Error	H3H0/X3X0	Error
241500	1	2.100	2.090	2.111						
238630	2	2.075	2.065	2.085						100000000000000000000000000000000000000
235750	3	2.050	2.040	2.060						
232880	4	2.025	2.015	2.035						
230000	5	2.000	1.990	2.010						// ***
227130	6	1.975	1.965	1.985						
224250	7	1.950	1.940	1.960	1.950	0.01%	1.950	0.00%	1.950	0.01%
221380	8	1.925	1.915	1.935						
218500	9	1.900	1.891	1.910						
215630	10	1.875	1.866	1.884						
212750	11	1.850	1.841	1.859						
209880	12	1.825	1.816	1.834						
207000	13	1.800	1.791	1.809						
204130	14	1.775	1.766	1.784						
201250	15	1.750	1.741	1.759						
198380	16	1.725	1.716	1.734						
195500	17	1.700	1.692	1.709						

Resu	ltad	o de	la	prue	oa
------	------	------	----	------	----

- Prueba buena
- O Prueba regular
- O Prueba deficiente

Valores dentro ±0.5% de error son aceptables según la norma IEEE Std 62-1995.

Equipo de prueba ATRT-03A VANGUARD

Observaciones

Prueba buena, todos los valores están dentro de lo establecido por la norma IEEE.

Test Results - Page #1 of 3

Date: 12/13/15 Time: 13:39:27 Device Type: Transformer Company: ETESA

Location: LLANO SANCHEZ

Circuit: T3 Operator: RUIZ Comment:

MFR: ILJIN

Type: Y to Y Model: CONSERVADOR

Rating: 100 MVA Serial #: 11TI009001 Max Deviation %: 0.5 Test Voltage: 40V File Name: test018

TEST.	PHASE	H VOLT	н тар	x volt	X TAP	CALC. RATIO	MEAS. RATIO	DEV. %	P/F	мÃ	PHASE
ì	A H1-H0/X1-X0	224250	:	115000	• • •	1.9500	+ 1.9500	0.00	P	0001.0	359.821
	в н2-н0/х2-х0	224250	!	115000	t : :	1 1 1	+ 1.9500	0.00	P	0001.0	000.000
	с нз-но/хз-хо	224250	: :	115000	! {		+ 1.9 500	0.00	₽	0001.0	000.179
2	А Н1-Н0/Х1-Х0	224250		115000	† <u>**</u> , ** *** -** ! !	1.9500	+ 1.9501	0.01	P	0001.0	000.179
-	в н2-н0/х2-х0	224250	: :	115000	; i !	: ! !	+ 1.9500	000	P	0001.0	000.179
	с нз-но/хз-хо	224250	; :	115000	; ; ;	: !	+ 1.9501	0.01	: • •	0001.0	000.000
-3	А н1-н0/х1-х0		(†		ele era una ren ur ur ur ur ur ur ur ur. E		: :		* * * * * * * * * * * * * * * * * * *
	в н2-н0/х2-х0) 1	 	! !	! ! !	; >		! ! !	 	£
	с нз-но/хз-хо		7 1	i i	: : :	1 3 1	: ; ;	•	! ! !		3 2 1
4	а н1-н0/х1-х0		* · · · · · · · · · · · · · · · · · · ·	ine et en	*	From the last too too the last too too.	*				
	в н2-н0/х2-х0	} ! :	: !	} L	 	I : ?	2 2 2		; : !		; ; †
	с нз-но/хз-хо		: 4 2		: } !	; ; ;	- · · · · · · · · · · · · · · · · · · ·	: :	! ! !	i i	; ; ;
5.	A H1-H0/X1-X0	; ; ! !	1	,		1	:			 !	; ; ;
	в н2-н0/х2-х0		1 ! !		! ! :	; [1 1 1		! ! !	 - -	6 2 5
	с нз-но/хз-хо			; } \$		5 8	; {	· · ·	! !		- - -
6	A H1-H0/X1-X0	· · · · · · · · · · · · · · · · · · ·	i !	· · · · · · · · · · · · · · · · · · ·	;	,	:		r	;	; ;
	в н2-н0/х2-х0		! ! !	, ,	: ! !	\$ 2	!		: ! i		: : :
	с нз-но/хз-хо	: ; :	i > }	, ; !	1 2 1	• •	 	: :	: !	<u>;</u> ;	j
7	A HI-HO/X1-X0)		₹ { 	1 :.	:		; ;		; ;
	в н2-н0/х2-х0		τ : ;	! ! !	i 1	i I I	1 1 1			; ; ;	: : :
	С н3-н0/х3-х0	v ; } 	(; ; ;	: : :	j: 	: : :	: ! !-	\$ { 	! ; •	! ! !
8	A H1-H0/X1-X0	; ;) i	· - - -	 ! !		t 1		: :		
	в н2-н0/х2-х0	: { !	t 1	: 	; 	! !	t :	: :	; t	\ : i	! ! !
<u> </u>	с нз-но/хз-хо] 	, 1 ; d.v. o. n. n	: - - 	: : :	i 1 1 1 paratras arran de arran escritor) 	! : a ~ ~ ~ ~ ~ ~ ~ ~	1 ; ;	r E Hannan av av av av en en en	1 1 1 2
9	A H1-H0/X1-X0		1	! !	!	i !	1) ;		
	B H2-H0/X2-X0	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	\	: : :	! ! !	: : :	; ; ;	: !	(; ;	;	: : :
	С Н3-Н0/Х3-Х0	· ·		: :	, ! !	i !	:	L	? f		! !

Prueba de Alarmas y Disparos

Número de prueba LLST3-8-15

Clima

Soleado

Fecha

13-dic-15

Temp. Ambiente 32°C

Subestación

Llano Sanchez

Humedad Relativa 51%

Equipo

T3

Realizada por

Josué Martínez

VALORES DE AJUSTE ENCONTRADOS PARA LAS ALARMAS Y DISPAROS (°C)									
Termómetro	Etapa 1	Etapa 2	Bomba	Alarma	Disparo	Observaciones			
Aceite				95	105	no tiene arranque de abanicos			
Bobina de Alta	75	85		95	105				
Bobina de Media	75	85		95	105				
Bobina de Baja									

VALORES DE PRUEBA PARA LAS ALARMAS Y DISPAROS (°C)								
Termómetro Etapa 1 Etapa 2 Bomba Alarma Disparo Observaciones								
Aceite				96	108	En gabinete Tx / int's bloqueados CC		
Bobina de Alta	77	88		98	106	En gabinete Tx / int's bloqueados CC		
Bobina de Media	76	86		98	108	En gabinete Tx / int's bloqueados CC		
Bobina de Baja								

Protección	Alarma	Disparo	Observaciones		
Sobrepresión repentina en el transformador	✓	✓	En gabinete y CC, bloqueo de int´s		
Buchholz del transformador	✓	1	alarma y disparo en	gab y CC	
Bajo nivel de aceite	✓	✓	alarma y disparo en	gab y CC / int's bloq	
Alto nivel de aceite			N/A		
Bajo nivel de aceite en el Tap Changer			N/A		
Valvula de seguridad de presión	•	✓	sale en gab y CC alivio de pres / int's bloq		
Falta AC	•		en Gab sale (ver en observaciones)		
Falta DC					
Bulbo y foso de sonda	Se revisar	on y tenían	aceite		
Protecciones del Tap Changer	Fas	e A	Fase B	Fase C	
	Alarma	Disparo	Alarma Disparo	Alarma Disparo	
Sobrepresión repentina del Tap Changer					

Observaciones

Resultado de la Prueba

Flujo inverso del Tap Changer (Buccholz)

- O Prueba buena
- Prueba regular
- O Prueba deficiente

Ninguna alarma se ve en CC, el disparo solo se ve si cae el bloqueo de los interruptores asociados.

Falta AC -Breather main error, fan group1/2 motor fault. En gabinete sobrepresión repentina = sudden pressure relay válvula de seguridad = pressure relief device alarma = wind temp high H2 y X2 cuando es disparo sale high