Actuarial Statistics

Prof. R. L. Shinde

May 31, 2023

$$P[x < X < x + n] = S(x) - S(x + n)$$

Hence we get,

$$n d_x = E[n \mathcal{D}_x] = l_0[S(x) - S(x+n)]$$
$$n d_x = l_x - l_{x+n}$$

when n=1,we omit the prefixes on $_n\mathcal{D}_x$ and $_nd_x$ $_1\mathcal{D}_x$ is equivalent to \mathcal{D}_x and $_1d_x$ is equivalent to d_x

0.1 Relation between u_x and l_x

we have,

$$l_x = l_0 S(x)$$

$$log(l_x) = log(l_0) + log(S(x))$$

note that as S(x) is differentiable function of x and hence l_x is also differentiable function of x

$$\frac{-d}{dx}log(l_x) = \frac{-d}{dx}log(S(x))$$

$$\frac{-1}{l_x}\frac{d}{dx}l_x = \frac{-1}{S(x)}\frac{d}{dx}S(x) = \frac{-S'(x)}{S(x)} = u_x$$

$$\frac{-d}{dx}l_x = u_x l_x$$

$$-dl_x = l_x u_x d_x$$

the factor $l_x u_x$ can be interpreted as the expected density of deaths in the age interval $(x,x+d_x)$

$$l_x = l_0 S(x) = l_0 e^{-\int_0^x u_y dy}$$
$$l_{x+n} = l_{xn} p_x$$
$$l_{x+n} = l_x e^{-\int_x^{x+n} u_y dy}$$

Also as,

$$\frac{-d}{dy}l_y = u_y l_y$$

$$\int_x^{x+n} \left(\frac{-d}{dy}l_y\right) dy = \int_x^{x+n} l_y u_y dy$$

$$l_x - l_{x+n} = \int_x^{x+n} l_y u_y dy$$

$$n d_x = l_x - l_{x+n} = \int_x^{x+n} l_y u_y dy$$

for convenience of reference,we call this concept of l_0 newborns, each with survival function S(x) a random survivorship group In the following we have an example of life table.

Table 1: Life Table for the total population: US(1979-81)

Age Interval		l_x	$\frac{d}{dx}$	\mathcal{L}_{x}	T_x	E(T(x))
	$_{t}q_{x}$	ı _x	tu_x	$t \mathcal{L} \chi$	1 x	L(I(A))
days						
0-1	0.00463	100,000	463	273	7387758	73.88
1-7	0.00246	99537	245	1635	7387485	74.22
7-28	0.00139	99292	138	5708	7385850	74.38
28-365	0.00418	99154	414	91357	7380142	74.43
years						
0-1	0.01260	100000	1260	98973	7387758	73.88
1-2	0.00093	98740	92	98694	7288785	73.82
2-3	0.00065	98648	64	98617	7190091	72.89
3-4	0.00050	98584	49	98560	7091474	71.93
:	:	:	:	:	:	:
:	:	:	:	 :	:	:
108-109	0.35453	51	18	42	115	2.24
109-110	0.35988	33	12	27	73	2.2

Table 2: Following table provides values of q_x from some National Life tables

37	Australian		Eng	glish	US		
(years)	2000-02		1990	0-92	2002-04		
	Male	Female	Male	Female	Male	Female	
0	0.00567	0.00466	0.00814	0.00632	0.00764	0.00627	
1	0.00044	0.00043	0.00062	0.00055	0.00053	0.00042	
2	0.00031	0.00019	0.00038	0.00030	0.00037	0.00028	
10	0.00013	0.00008	0.00018	0.00013	0.00018	0.00013	
20	0.00096	0.00036	0.00084	0.00031	0.00139	0.00045	
40	0.00159	0.00088	0.00172	0.00107	0.00266	0.00149	
90	0.15934	0.12579	0.20465	0.15550	0.16805	0.13328	
100	0.24479	0.23863	0.38705	0.32489	-	-	

The Actuarial present value for this insurance is,

$$(DA)|_{x:\overline{n}|} = \sum_{k=0}^{n-1} (n-k) v^{k+1}{}_k p_x q_{x+k}$$

consider,

$$(DA)|_{x:\overline{n}|} = \sum_{k=0}^{n-1} (n-k) v^{k+1}{}_k p_x q_{x+k}$$

$$= \sum_{k=0}^{n-1} (n-k)_{k|} A_{|_{x:\overline{1}|}}$$

as by defination of actuarial present value of a unit benefit in an m-year deferred n year term insurance

$$_{m|}A_{|x:\overline{n}|} = \sum_{k=m}^{m+n-1} v^{k+1}{}_{k}p_{x}q_{x+k}$$

with m=k and n=1 , we get $_{k|}A_{\mid_{x:\overline{1}\mid}} = v^{k+1}{}_{k}p_{x}q_{x+k}$ so we have,

$$(DA)|_{x:\overline{n}|} = \sum_{k=0}^{n-1} (n-k)_{k|} A_{|_{x:\overline{1}|}} = \sum_{k=0}^{n-1} (n-1)_{k|} A_x$$

Also in above expression if we substitute,

$$n - k = \sum_{j=0}^{n-k-1} (1)$$

we get,

$$(DA)|_{x:\overline{n}|} = \sum_{k=0}^{n-1} \sum_{j=0}^{n-k-1} (1) v^{k+1}{}_k p_x q_{x+k}$$

By interchanging the order of summation we obtain,

$$\sum_{k=0}^{n-1} \sum_{j=0}^{n-k-1} (1) v^{k+1}{}_k p_x q_{x+k} = \sum_{j=0}^{n-1} A_{|x:\overline{n-j}|} = A_{|x:\overline{n-j}|}$$

This is Actuarial present value of (n - j) year term insurance when benefit of 1 unit is payable at the end of death year.

Hence we obtain, one more expression for $(DA)|_{x:\overline{n}|}$ as,

$$(DA)|_{x:\overline{n}|} = \sum_{j=0}^{n-1} A_{|x:\overline{n-j}|}$$

In the following we give the summary of different insurances under which benefit amount is payable at the end of year of death.we also provide the summary of the recursion relations for their actuarial present values(NSPs)

Table 3: Summary of insurances payable at the end of year of death

(1)	(2)	-	(3)		(4)		(5)		
Insurance	benefit function b_{k+1}		Discount function		present value function		APV		
Name			v_{k+1}		z_{k+1}				
whole life	1		v^{k+1}		v^{k+1}		A_{x}	(*)	
n year term	1	k=0,1,,n-1	v^{k+1}		v^{k+1}	k=0,1,,n-1	$A_{ _{X:\overline{n} }}$ (*	(*)	
	0	k=n,n+1,			0	k=n,n+1,		()	
n year endowment	1		v^{k+1}	k=0,1,,n-1	v^{k+1}	k=0,1,,n-1	$A_{x:\overline{n} }$	(*)	
	1		v^n	k=n,n+1,	v^n	k=n,n+1,		(*)	
m year deferred n year term	1	k=mm+n-1			v^{k+1}	k=mm+n-1			
	0	k=0,m-1	v^{k+1}		0	k=0,m-1	$m nA_x$	(*)	
		k=m+n,m+n+1,				k=m+n,			
n year term	k+1	k=0,1,n-1	v^{k+1}		$(k+1)v^{k+1}$	k=0,1,n-1	(1.4)		
increasing annuity	0	k=n,n+1,			0	k=n,n+1,		$(IA) _{x:\overline{n} }$	
n year term	n-k	k=0,1,n-1	v^{k+1}		$(n-k)v^{k+1}$	k=0,1,n-1	$(DA) _{x:}$		
decreasing annuity	0	k=n,n+1,			0	k=n,n+1,	$(DA) _{j}$	$x:\overline{n}$	
whole life	k+1	k+1 k=0,1,			$(k+1)v^{k+1}, k=0,1,$		$(IA)_x$		
increasing annuity	K+1 K=U,1,	N-U,1,	v^{k+1}		(K+1) V	, K-U,1,	$(IA)_{\chi}$		

(*):Rule of moments holds,thus, $v(Z)=2A-A^2$