東京電機大学 情報環境学部

数学科教育法 第 6 回 §2) 集合論のはなし

担当:佐藤 弘康

(前回のまとめ)

- 集合 X,Y に対し、全単射 $f:X\to Y$ が存在するとき、「X と Y は同等である ($X\approx Y$)」という.
- 有限集合 X と Y が同等ならば、2 つの集合の要素(元)の数は同じである。
- 無限を含め、「要素の数」を表すものを集合の濃度という(「無限」にも 大小がある)。

集合の濃度

「集合全体の集まりを同等関係 "≈" によって類別した各同値類を濃度という」

- 集合 *A* の濃度を |*A*| と書く.
- 有限集合 $\{b_1, b_2, \ldots, b_k\}$ ($\approx \{1, 2, \ldots, k\}$) の濃度を k とする.
- $|\emptyset| = 0$ とする.
- ullet A pprox B ならば、|A| = |B| とする。 (2 つの集合の間に全単射が存在すれば、その集合は同じ濃度を持つ)
- 濃度に大小関係を定義する; $\lceil A \subset B \rceil$ または $\lceil A \text{ for } B' \text{ } (\subset B) \text{ } と同等」ならば, <math>|A| \leq |B|$ とする.
- 無限集合の濃度は …

可算濃度

可算(可付番)の濃度 自然数の集合 🛭 と同等な集合の濃度 (💦 と書く).

可算集合(可付番集合)の例;

(自然数の集合 № からの全単射が構成可能)

- 可算集合 A に有限個の元を加えた集合 $A \cup \{b_1, b_2, \ldots, b_k\}$
- 可算集合 A, B の和 $A \cup B$
- 整数の集合 \mathbb{Z} (= {-1, -2, -3, ...} \cup {0} \cup \mathbb{N})
- 可算集合 A, B の直積 A × B
- 有理数の集合 ℚ

実数の集合 ℝ は可算集合だろうか?

ℕの濃度とℝの濃度

実数の集合 ℝ の濃度を考える;

- $\mathbb{N} \subset \mathbb{R}$ & \mathfrak{H} , $\mathfrak{H}_0 \leq |\mathbb{R}|$.
- 開区間 (0,1) と ℝ は同等である. なぜなら…
 - \circ 任意の 2 つの開区間 (a,b) と (c,d) は同等である.
 - $\circ f(x) = \tan x \ \text{により定義される写像} \ f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R} \ \text{は全単射であ}$ る. したがって、 $(-\frac{\pi}{2}, \frac{\pi}{2})$ と \mathbb{R} は同等である.

しかし,

• \mathbb{N} から開区間 (0,1) への全単射は存在しない. (したがって、 \mathbb{R} の濃度は \aleph_0 より真に大きい)

カントールの対角線論法

定理

 \mathbb{N} から開区間 (0,1) への全単射は存在しない.

証明:背理法(カントールの対角線論法)で示す。

仮に全単射 $\varphi: \mathbb{N} \to (0,1)$ が存在したとする。 $k \in \mathbb{N}$ の像 $\varphi(k)$ を

$$\varphi(k) = 0. a_{k1} a_{k2} a_{k3} \cdots$$

と小数表示する. つまり, $a_{kl} \in \{n \in \mathbb{Z} \mid 0 \le n \le 9\}$ で,

$$0. a_{k1} a_{k2} a_{k3} \cdots = 0.1 \times a_{k1} + 0.01 \times a_{k2} + 0.001 \times a_{k3} + \cdots$$

$$= \frac{a_{k1}}{10} + \frac{a_{k2}}{10^2} + \frac{a_{k3}}{10^3} + \cdots$$

$$= \sum_{l=1}^{\infty} \frac{a_{kl}}{10^l}.$$

カントールの対角線論法

$$\varphi(1) = 0$$
. a_{11} a_{12} a_{13} a_{14} a_{15} ...
$$\varphi(2) = 0$$
. a_{21} a_{22} a_{23} a_{24} a_{25} ...
$$\varphi(3) = 0$$
. a_{31} a_{32} a_{33} a_{34} a_{35} ...
$$\varphi(4) = 0$$
. a_{41} a_{42} a_{43} a_{44} a_{45} ...
$$\vdots$$

ここで, $b = 0.b_1b_2b_3b_4 \cdots \in (0,1)$ を次のように定める;

すると、 $b \notin \varphi(\mathbb{N})$ である. これは $\varphi: \mathbb{N} \to (0,1)$ が全単射であるという仮定と矛盾する. (証明終)

連続濃度

連続濃度

実数の集合 ℝ と同等な集合の濃度(Ν と書く).

- $\aleph_0 < \aleph$
- 無理数の集合の濃度は %.
 - \circ A を無限集合, $B \subset A$ をたかだか可算(有限集合か可算集合)な部分集合とする。このとき,A-B が無限集合ならば,|A|=|A-B|である。
- 平面 \mathbb{R}^2 (= $\mathbb{R} \times \mathbb{R}$) と直線 \mathbb{R} は同じ濃度を持つ.
 - $\circ \mathbb{R} \approx (0,1) \approx (0,1) \times (0,1) \approx \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$

いくつかの問題

- N₀ と ⋈ の間の濃度は存在するのか? (連続体仮説)
 (ℵ₀ < |A| < ⋈ を満たす集合 A は存在するのか?)
 - 答え:わからない!
 - 標準的な枠組み(公理系)のもとでは「正しいとも偽であるとも証明することができない」ことが証明されている。
- ※より真に大きい濃度は存在するのか?(|A| > ※を満たす集合 A は存在するのか?)
 - 答え: 冪集合

冪集合

- \bullet A の冪集合とは、A のすべての部分集合の集合のこと $(2^A$ と書く).
 - \circ 例: $A = \{a, b, c\}$ の冪集合 2^A は \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$ (=A) の 8 $(=2^3)$ 個
- 冪集合は A から {0,1} への写像の全体と同一視できる.

$$2^{A} \approx \{\varphi \mid \varphi : A \to \{0, 1\}\}$$
 $(\varphi : A \to \{0, 1\} \text{ に対し, } \{x \in A \mid \varphi(x) = 1\} \subset A)$ \circ 例:上の例の $\{a, c\} \subset A$ は写像 $\varphi : A \to \{0, 1\}$;

$$\varphi(a) = 1$$
, $\varphi(b) = 0$, $\varphi(c) = 1$

と対応する.

冪集合

定理

任意の集合 A に対して、 $|A| < |2^A|$ が成り立つ.

<u>証明</u>: A から 2^A への単射は存在する $(x \mapsto \{x\})$. A から 2^A への全射が存在しないことを背理法で示す.

全射 $g: X \to 2^X$ が存在したとする.

$$A = \{x \mid x \notin g(x)\}$$

とおくと $A \in 2^X$ だから、g の全射性より g(a) = A となる $a \in X$ が存在する.

- $a \in A$ ならば、 $a \notin g(a) (= A)$: 矛盾!
- $a \notin A$ ならば、 $a \in g(a) (= A)$: 矛盾! (証明終)

冪集合

定理

任意の集合 A に対して、 $|A| < |2^A|$ が成り立つ.

- 上の定理から、「いくらでも大きい濃度をもつ集合が存在する」
- 2^N の濃度は?
 - \circ \aleph_0 よりは真に大きい。では $|2^{\mathbb{N}}| = \aleph$?
 - \circ 全単射 $f: 2^{\mathbb{N}} \to (0,1)$ が存在する.

集合論におけるパラドクス

ラッセルのパラドクス -

- 自分自身を要素として含まない集合を A-集合
- 自分自身を要素として含む集合を B-集合

とよぶ. このとき、A-集合の全体 S は A-集合でも B-集合でもない.

- S が A-集合であるとする.
 - A 集合の定義から S ∉ S.
 - $\circ S$ の定義から $S \in S$.
- S が B-集合であるとする.
 - \circ B-集合の定義から $S \in S$ (これは S が A-集合の全体の集合であることと矛盾)

集合論におけるパラドクス

床屋のパラドックス(ラッセルのパラドクスの喩え話)

ある村でたった一人の床屋は,自分で髭を剃らない人全員の髭を剃り,そ れ以外の人の髭は剃らない.では,床屋自身の髭は誰が剃るのだろうか?

- 床屋が自分の髭を剃らなければ、彼は規則に従って髭を自分で剃らなくてはいけなくなり、矛盾。
- 床屋が自分の髭を剃るならば、「自分で髭を剃らない人の髭を剃る」という規則に矛盾。

集合論におけるパラドクス

カントールのパラドクス -

すべての「集合」の集合をYとする。このとき、Y の冪集合 2^Y は「集合」ではない。

教科書 p.22 を参照.

素朴集合論

公理を特定せずに議論を進める.

公理的集合論

公理を定めて厳密に議論を展開(パラドクスを回避).

公理的集合論

ZF 公理系 : ツェルメロが作ったものをフレンケルとスコーレムが改良

- 外延性の公理: $A \in B$ が全く同じ要素を持つのなら $A \in B$ は等しい.
- 空集合の公理:要素を持たない集合が存在する。
- 対の公理:任意の集合 x,y に対して,x と y のみを要素とする集合が存在する.
- 和集合の公理:任意の集合 X に対して、X の要素の要素全体からなる集合が存在する。
- ullet 無限公理:空集合を要素とし,任意の要素 x に対して $x \cup \{x\}$ を要素に持つ集合が存在する.
- 事集合の公理:任意の集合 X に対して X の部分集合全体の集合が存在する.
- 置換公理:"関数クラス"による集合の像は集合である.
- 正則性公理(基礎の公理);空でない集合は必ず自分自身と交わらない要素を持つ。

公理的集合論

ZFC 公理系 | = ZF 公理系+選択公理

選択公理

X が互いに交わらないような空でない集合 A_{λ} ($\lambda \in \Lambda$) の集合であるとする. つまり,

$$X = \{A_{\lambda} \mid A_{\lambda} \cap A_{\lambda'} = \emptyset \ (\lambda \neq \lambda')\}$$

このとき、X の各要素 A_{λ} から一つずつ要素をとってきたような集合(選択集合)が存在する

公理的集合論

- ●「すべての集合に濃度が定義できる」ためには選択公理が必要。
- ラッセルのパラドクスにある「集合 S」は ZFC 公理系では構成不可能.
- ZF 公理系が無矛盾ならば、ZFC 公理系も無矛盾.
- ZFC 公理系が無矛盾ならば、ZFC に連続体仮説を付け加えた公理系も 無矛盾。
- ZFC 公理系が無矛盾ならば、ZFC に連続体仮説の否定を付け加えた公理系も無矛盾.

(つまり、ZFC 公理系では連続体仮説が真とも偽とも言えない)

参考文献

- ●「集合・位相入門」 松坂和夫 著(岩波書店)
- 「選択公理と数学」田中尚夫著(遊星社)
- ●「岩波数学辞典第4版」日本数学会編集(岩波書店)
- Wikipedia:集合,濃度,他