Update on the search for contact interactions using the inclusive jet p_T spectrum

Greg Myers¹, Harrison Prosper¹, Suman Beri², Supriya Jain³

¹Florida State University

²Panjab University

³SUNY, Buffalo

17 October, 2013

Goal: Look for deviations in the observed inclusive jet p_T at 8 TeV, in the phase space (|y| < 0.5) × (507 < $p_T < 2500$) GeV, from the predicted spectrum at next-to-leading order (NLO) and interpret any deviation in terms of NLO contact interaction (CI) models.

- QCD spectra computed using fastNLO (v2.1.0-1360 + fn13323y0.tab)
- ► CI spectra computed using CIJET (v1.0, argXiv:1301.7263)

Today:

▶ Discuss the smearing of QCD and CI assuming 4% uncertainty in Jet Energy Scale (JES), and 10% uncertainty in Jet Energy Resolution (JER). The deviation from QCD in the i^{th} p_T bin due to CI is calculated as follows:

$$\sigma_i^{CI} = \frac{1}{\Lambda^2} \left[B_i + B_i' \ln \left(\Lambda \right) - B_i' \ln \left(\mu_{0i} \right) \right] + \frac{1}{\Lambda^4} \left[A_i + A_i' \ln \left(\Lambda \right) - A_i' \ln \left(\mu_{0i} \right) \right]$$

- A,B coefficients come from CIJET by J. Gao.
- \blacktriangleright μ_{0i} is the central value of the i^{th} p_T bin.
- Λ is the energy scale of the CI interactions.

Review of PDF Uncertaintiy

- Following the procedure outlined here: https://mstwpdf.hepforge.org/random/
- ▶ The variance in an observable, F, is computed as follows:

$$\Delta F = \frac{1}{2} \sum_{k=1}^{n} |F(S_k^+) - F(S_k^-)| R_k$$

where R_k is a random number generated from a Gaussian distribution with a mean of 0 and σ of 1,

 S_k^{\pm} are the \pm variations in the kth free parameter,

and n is the number of non-central members in the PDF set (n = 26 for CT10nlo, n = 20 for MSTW2008nlo68cl). The same set of n random numbers is used for all bins, all models.

Smearing A,B coefficients with JES, and JER uncertainty

$$A_{\text{obs}} = \int_{p_T \text{bin}} \int_0^\infty R(p_T | xz, y\sigma_z(z)) \frac{dA(z)}{dz} dz dp_T$$

- \triangleright z integral over true p_T
- $R(p_T|xz,y\sigma_z) = Gaussian(p_T,xz,y\sigma_z(z))$
- N = 5.886, S = 1.136, C = 0.032 (SMP-12-012)
- ightharpoonup x represents the JES uncertainty. x is a random number taken from a Gaussian with mean of 1 and $\sigma=0.04$
- y represents the JER uncertainty. y is a random number taken from a Gaussian with mean of 1 and $\sigma = 0.10$
- ▶ In practice we approximate the semi-infinite z integral by integrating from $p_T 5\sigma_z(p_T)$ to $p_T + 5\sigma_z(p_T)$

Central Coefficients (LL model)

Only SamplingUncertainty

Jet Smearing and PDF Uncertainty

Only Sampling Uncertainty

Jet Smearing and PDF Uncertainty

CI withPDF Uncertainty

CI with PDF and Smearing Uncertainty

To Do:

- Sort out CI smearing issues
- ► Include PDF+Smearing Uncertainties on signal
- Compute limits on Λ for each PDF and CI model
- ▶ Pool results from CT10nlo, MSTW2008nlo68cl, and NNPDF21 100 PDF sets
- Currently drafting an analysis note