Laboratorio 04

Spettroscopia Raman e SERS

L.M. in Ingegneria Biomedica – A.A. 22/23

Laboratorio di fotonica per la medicina

Prof. Marco Consales

Benedetta Masone

<u>b.masone@studenti.unimol.it</u> – mat.177470

Martina Rainone

m.rainone@studenti.unimol.it - mat.177471

Fabrizio Ravelli

<u>f.ravelli@studenti.unimol.it</u> – mat.177085

INDICE

- 1. Obiettivo
- 2. Introduzione teorica
- 3. Strumentazione utilizzata
- 4. Procedura operativa
- 5. Analisi dei risultati
- 6. Conclusioni

OBIETTIVO

Caratterizzazione e confronto tramite spettroscopia Raman e SERS di due linee cellulari differenti:

- 1) MCF7 (cellule del cancro al seno);
- 2) MAT (cellule mesenchimali umane adulte).

INTRODUZIONE TEORICA

Spettroscopia Raman è

una spettroscopia vibrazionale che permette di ottenere un fingerprint del campione in esame attraverso vibrazioni che generano energia.

La tecnica **SERS(Surface Enhanced Raman Scattering)** permette di amplificare il segnale Raman attraverso l'utilizzo di materiali nobili come l'oro e l'argento.

STRUMENTAZIONE UTILIZZATA

Tipo	Raman
Applicazioni	da laboratorio, per l'industria farmaceutica
Tecnica di osservazione	3D, confocale
Sorgente luminosa	laser
Configurazione	da banco
Risoluzione spaziale	Min.: 200 nm
	Max.: 2.200 nm

Software di controllo LabSpec 6-HORIBA Scientific

PROCEDURA OPERATIVA

- 1. Auto-calibrazione e Calibrazione sul chip di silicio con l'obbiettivo 10x, 100x e 50x
- 2. Utilizzo del laser 532 nm
- 3. Acquisizioni
- 4. Costruzione e visualizzazione delle mappe
- 5. Baseline correction
- 6. Vector Normalization

Una procedura analoga è stata replicata per la tecnica SERS utilizzando un laser 785 nm

Laser 532 nm

Laser 785 nm

ANALISI DEI RISULTATI

- 1 accumulazione
- Apertura 50%
- Laser 532 nm
- Esposizione 15 s
- Baseline correction:
 - 5th order polynomial
 - 100 points

ANALISI DEI RISULTATI

- 1 accumulazione
- Apertura 50%
- Laser 532 nm
- Esposizione 15 s
- Baseline correction:
 - 5th order polynomial
 - 100 points

ANALISI DEI RISULTATI

CONCLUSIONI

