PHYSIK

UNTERRICHT - ABITUR 2025

Inhaltsverzeichnes

Wellen 1
1.1 2024-06-06 - Interferenz Gitter Versuch
1.1.1 Beobachtung
1.1.2 Auswertung
1.1.3 Aufgaben 1
1.1.3.1 1
1.1.4 Versuch Wiederholung
1.1.5 Worauf muss man achten:
1.1.6 Links
1.1.6.1 a 1
1.1.7 Zweite Runde
1.1.7.1 Messung der verschiedenen Wellen / LED's
Rot
1.1.8 Bedeutung der einzelnen Bestandteile
1.2 2024-08-14 - Überlagerung von Wellen
1.3 2024-09-04 - Interferenze Auswerten
Formeln 5
Bibliographie 6

Wellen

1.1 2024-06-06 - Interferenz Gitter Versuch

1.1.1 Beobachtung

Abstand zum Schirm: 27cm Abstand der Maxima: 12cm

1.1.2 Auswertung

1.1.3 Aufgaben

1.1.3.1 1.

Algemein sind folgende Formeln bekannt:

$$\sin \alpha = \frac{\lambda}{q}$$
 und $\tan \alpha = \frac{a}{l}$

Wobei λ die Wellenlaenge ist.

Gitter: 500 Spalten pro Millimeter

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

•
$$2a_1 = 0, 12m;$$
 $a_1 = 0, 06m;$ $l = 27cm = 0, 27m$

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0, 12}{0, 27}))$$

$$= 434 \cdot 10^{-9} m$$

1.1.4 Versuch Wiederholung

$$2a_2 = 0.127m;$$
 $a_2 = 0.635m;$ $l = 0.38m$

Berechnung der Wellenlaenge λ :

$$\lambda = g \cdot \sin(\tan^{-1}(\frac{a}{l}))$$

$$= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0,07}{0,38}))$$

$$= 6,34 \cdot 10^{-7} m = 634 nm$$

1.1.5 Worauf muss man achten:

Wir sollen naechstes Jahr den Versuch den anderen erklaeren

1.1.6 Links

1.1.6.1 a

2aist zwischen den Maxima der Ordnung
 n. Also von einem Maxima bis zur mitte ist nu
ra

1.1.7 Zweite Runde

• 2024-06-18

1.1.7.1 Messung der verschiedenen Wellen / LED's

LED	Wellenlaenge in nm	Abstand 1. Ordnung in cm ¹	A. 2. Ordnung
Rot	632	10,3	-
Grün	514	8,5	18,8
Blau	463	7,5	15,7

$$g = \frac{1 \cdot 10^{-3} m}{500} = 2 \cdot 10^{-6} m$$

Rot

1. Ordnung

$$2a = 0.103m; \quad a = 0.0515m; \quad l = 0.15m$$

Berechnung der Wellenlaenge λ :

$$\begin{split} \lambda &= \frac{g}{n} \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \\ &= (2 \cdot 10^{-6}) \cdot \sin(\tan^{-1}(\frac{0,0515}{0,15})) \\ &= 6,49 \cdot 10^{-7} m \end{split}$$

1.1.8 Bedeutung der einzelnen Bestandteile

1.2~2024-08-14 - Überlagerung von Wellen

Abbildung 1.1 Überlagerung zwei exakt gleicher Wellen

Abbildung 1.2 Überlagerung zwei unterschiedlicher Wellen

 $^{^{1}}$ Abstand 1. Ordnung zur 1. Ordnung

Im ersten Beispiel² wird die Amplitude *verdoppelt*, im zweiten Beispiel³ gleichen sich die beiden Wellen zu *keiner* Welle aus.

Hier betrachten wir immer 2 gleichartige Wellen und interesieren uns für die Wällenlänge: λ

Abbildung 1.3 Überlagerung von Wellen durch ein Gitter

Abstand zwischen 2 Maxima gleicher Ordnung messen und durch zwei Dividieren.

1.3 2024-09-04 - Interferenze Auswerten

- S. 171 A5
- Mit Tabelle

$$2a_1 = 1.90cm$$

$$2a_2 = 3.85cm$$

$$2a_3 = 5.80cm$$

$$a_1 \approx 3.27 cm = 3.27 \cdot 10^{-2} m$$

$$a_2 \approx 6.64cm = 6.64 \cdot 10^{-2}m$$

$$a_3 = 10cm = 10 \cdot 10^{-2}m$$

$$\lambda = \frac{g \cdot \sin(\tan^{-1}(\frac{a_n}{l}))}{n} \quad | \cdot n$$

$$n\lambda = g \cdot \sin(\tan^{-1}(\frac{a_n}{l})) \quad | \div \sin(\tan^{-1}(\frac{a_n}{l}))$$

$$\frac{n\lambda}{\sin(\tan^{-1}(\frac{a_n}{l}))} = g$$

^{2 &}lt;fig:waves_no_offset>

^{3 &}lt;fig:waves_offset>

Dabei ist:

- l = 2.6m• $6.35 \cdot 10^{-7}m$
- 1. Ordnung $g_1 \approx 5.05 \cdot 10^{-5} m$
- 2. Ordnung $g_2 \approx 4.97 \cdot 10^{-5} m$
- 3. Ordnung $g_3 \approx 4.96 \cdot 10^{-5} m$

$$\overline{x} = \frac{g_1 + g_2 + g_3}{3} \approx 4.99 \cdot 10^{-5} m$$

Formeln

Bibliographie