Curso de

Sistemas Operacionais

Escalonamento de Processos

Prof. Robson Siscoutto

e-mail: robson@unoeste.br

Sistemas Operacionais

Escalonamento de Processos

- Introdução;
- Modelos do processo;
- Estados e mudanças do processo;
- Tipos de processos;
- Threads
- Comunicação entre processos;
- Escalonamento de Processos;
- Concorrência entre Processos
 - Problemas de sincronização;
 - Soluções de hardware e software;
- Deadlock
- Threads

Escalonamento de Processos Escalonamento de Processos - Objetivos

Todos os Sistemas

- Justiça dar a cada processo um porção justa da CPU;
- Aplicação da Política verificar se a política estabelecida é cumprida;
- Equilíbrio manter ocupada todas as partes do sistema

Sistema em Lote

- Vazão (throughput) maximizar o numero de jobs/hora
- Tempo de retorno minimizar o tempo entre a submissão e o término
- Utilização da CPU manter a CPU ocupada todo o tempo;

Escalonamento de Processos Objetivos

Sistemas Interativos

- Tempo de resposta responder rapidamente as requisições
- Proporcionalidade satisfazer as expectativas dos usuários

Sistema Tempo real

- Cumprimento dos Prazos evitar perdas dos dados
- Previsibilidade evitar a degradação da qualidade em sistemas multimídia

Escalonamento de Processos Tipos

Dois tipos de Escalonamentos:

- Escalonamento Não-preemptivo
 - (Sistema em Lote);

- Escalonamento Preemptivo
 - (Sistema Interativo);

Escalonamento de Processos

Escalonamento Não-preemptivo ou Escalonamento em Sistemas em Lote

- Escalonamento Não-preemptivo:
 - Primeiros sistemas multiprogramáveis
 - (processamento Batch);
 - Processador dedicado a um processo por vez;
 - Não existe mudança de contexto;
 - Exemplos de escalonamento:
 - FIFO (First-in First-out) ou FCFS (First Come, First Served)
 - SJF (Shortest Job First) Job mais curto primeiro

- Escalonamento Não-preemptivo: FIFO (First-in First-out)
 - Processo que chegar primeiro é o primeiro a ser executado;
 - Utiliza-se apenas uma fila, onde os processos no estado de pronto são inseridos no final;
 - Os processos no inicio da fila são escalonados primeiro;
 - Problema:
 - Impossível prever quando um processo terá sua execução iniciada, devido a função de tempo de execução dos processos que se encontram na sua frente;

First-in First-out – FIFO ou FCFS

<u>Processo</u>	Tempo Chegada
P_{1}	24
P_2	3
P_3	3

- Suponha que os esses processos cheguem na seguinte ordem:
 - P_1, P_2, P_3

Tempo de Espera.

Tempo que o processo permanece na fila de prontos.

É a soma dos períodos utilizados pelo processo no estado de Pronto.

First-in First-out - FIFO (2)

- Tempo de Espera para cada processo:
 - Tempo Espera: $P_1 = 0$; $P_2 = 24$; $P_3 = 27$

- Tempo Médio de Espera:
 - *Tempo médio de Espera*: (0 + 24 + 27)/3 = 17 10

First-in First-out - FIFO (3)

- Suponha que os mesmos processos cheguem agora na seguinte ordem:
 - P_2, P_3, P_1
- Tempo de espera de cada processo:
 - *Tempo Espera:* $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Tempo médio de espera:
 - *Tempo Médio de Espera*: (6 + 0 + 3)/3 = 3

- Escalonamento Não-preemptivo: sjf (Shortest Job First)
 - Associa a cada processo o seu tempo de execução;
 - Se o processador estiver livre, o processo que tiver o menor tempo de execução é selecionado para executar;
 - Este tipo de escalonamento favorece os processos pequenos com tempos curtos;
 - Problema:
 - Determinar, exatamente, quanto tempo de CPU cada processo necessita para terminar seu processamento;

Shortest Job First - SJF (1)

Abordagem 1:

 Processo com menor expectativa de tempo de processamento é selecionado para execução.

Abordagem 2:

- Associado com cada processo está o tamanho do seu próximo tempo de CPU (cpu burst).
- Esse tamanho é usado como critério de escalonamento, sendo selecionado o processo de menor próximo tempo de CPU (cpu burst).

Shortest Job First - SJF (2)

- Dois esquemas:
 - Não-preemptivo uma vez a CPU alocada a um processo ela não pode ser dada a um outro antes do término do tempo de CPU corrente.

• **Preemptivo** – se chega um novo processo com tempo de CPU **menor que o tempo remanescente** do processo corrente ocorre a preempção. Esse esquema é conhecido como *Shortest-Remaining-Time-First (SRTF)*.

Exemplo de SJF Não-Preemptivo

<u>Processo</u>	Tempo Chegada	Time de	<u>CPU</u>
P_{1}	0.0	7	Escolhe P1 por
P_2	2.0	4	ter chegado no tempo 0.0.
$P_{\it 3}$	4.0	1	Quando P1
P_{4}	5.0	4	terminar todos os
$ \begin{array}{c c} & P_1 \\ \hline & + & + \\ 0 & 3 \end{array} $	P P × 3× 2 × 12	P 4 > 16 8-2	outros já chegaram, ai escolhe o de menor tempo. (Inicio-Chegada)

• Tempo Médio de Espera = (0 + 6 + 3 + 7)/4 = 4

Escalonamento Preemptivo ou

Escalonamento em Sistemas Interativos

Escalonamento Preemptivo:

- Quando o sistema pode interromper um processo em execução, para que outro processo utilize o processador;
- Este tipo de escalonamento é utilizado em sistemas de tempo compartilhado;
- Permite tratar processos de maior prioridades;

- Escalonamento Preemptivo Exemplos de Políticas:
 - Circular (Round Robin);
 - por Prioridades;
 - Próximo Processo mais Curto
 - Garantido
 - Por Loteria
 - Por Fração Justa (fair-share)

- Escalonamento Preemptivo: Escalonamento Circular
 - Utiliza o conceito de Fatia de tempo de processador;

- O processo no inicio da fila é escalonado primeiro;
- Quando ocorre a preempção o processo é retirado da CPU e colocado no final da fila;
- A fila de processo no estado de prontos é tratada como uma fila circular;

Escalonamento Preemptivo: Escalonamento Circular

- Lista de processos prontos
- Lista de processos prontos depois de B usar sua fatia de tempo

- Escalonamento Preemptivo: Escalonamento Circular
 - Quantum ideal:
 - Quantum muito curto:
 - Causa muita alternância de processo e reduz a eficiência da CPU
 - gera muito overhead devido às trocas de contexto
 - Quantum muito longo
 - Pode gerar uma resposta pobre às requisições interativas curtas;
 - tende a FIFO
 - Quantum razoável: em torno de 10 a 100 ms.

Escalonamento Round Robin (1)

<u>Processo</u>	Tempo de CPU		
P_{1}	14		
P_2	3		
P_3	3		

Tempo de Fatia - Quantum

4

Não considerar Tempo de chegada

Cuidado: processos que rodam mais do uma vez desconsiderar tempos intermediários que ficou parado

Tempo Médio de Retorno =
$$(14 + 7+10)/3 = 31/3 = 10,3$$
ms

Tempo de retorno (Turnaround time).

Tempo transcorrido desde que se lança um processo (entra na fila de prontos) até que finalize sua execução. É a soma do tempo de espera para ir para a memória, tempo de espera na fila dos prontos, tempo em execução na CPU e o tempo de espera por recursos.

Escalonamento Round Robin (1)

<u>Processo</u>	Tempo de CPU	<u>Chegada</u>	Quantum
P_{1}	8	0	4
P_2	4	1	
P_3	9	/ 2	Considerar
P_4	5	3	Tempo de chegada
P1 P2	P3 P4 P1 P3 F	P4 P3	
0 4 8	12 16 20 24	25 26	

Tempo Médio de Espera =
$$((16-4)+(4-1)+(8-2+20-12+25-24)$$

+ $(12-3+24-16))/4 = 47/4=11,75$ ms

Tempo Médio de Retorno = ((20-0)+(8-1)+(26-2)+(25-3))/4 = 73/4 = 18,25ms

- Escalonamento Preemptivo: Próximo Processo mais Curto (SPN)
 - Baseado no SJF
 - Realiza uma estimativa com base no comportamento passado;
 - Menor tempo executa
 - Soma ponderada tb conhecido como aging

•
$$\alpha T_0 + (1 - \alpha)T_1$$

- Exemplo: $\alpha = \frac{1}{2}$
 - T0, t0/2 + T1/2, T0/4 + T1/4

- O parâmetro α controla o peso relativo do histórico recente e passado na fórmula.
 - Se $\alpha = 0$
 - $\mathbf{T}_{n+1} = \mathbf{T}_n$
 - Histórico recente não é considerado relevante.
 - Se $\alpha = 1$
 - $\tau_{n+1} = t_n$
 - Apenas o último tempo de CPU é levado em conta.

Escolhe P1 por ter chegado no tempo 0.0. Se chegar outro processo com tempo menor do que o tempo restante daquele que esta executando, este é trocado. CONSIDERAR O MENOR TEMPO CPU PARA TROCAR DE PROCESSO

Exemplo de SJF Preemptivo (Algoritmo SRTF)

Processo	Tempo Chegada	Time de	<u>CPU</u>
P_{1}	0.0	7	
P_2	2.0	4	
P_{3}	4.0	1	P1 = (11 - 2 - 0) = 9 (INICIO
P_{4}	5.0	4	0 E CHEGADA 0) $P2 = (5 - 4 - 0) = 1 (INICIO 2 E$
P ₁ P ₂ P ₃	P ₂ P ₄	P ₁	CHEGADA 2) P3 = (4 - 4) = 0 (INICIO 4 E CHEGADA 4)
 0 2 4 Tempo Médio 	$5 \qquad 7 \qquad 11$ $0 \text{ de Espera} = (9+1+1)$	$16 \\ 0 + 2)/4 = 7$	P4 = (7 – 5) = 2 (INICIO 7 E CHEGADA 5)

P1 P2 P3 P4

Exemplo de SJF Preemptivo (Algoritmo SRTF)

<u>Processo</u>	<u>Temp</u>	o Chega	<u>da</u> <u>Tin</u>	ne de CPU
P_{1}		0.0		8
P_2		1.0		4
P_{3}	,	2.0		9
P_{4}	•	3.0		5
P ₁ P ₂	P ₄	P ₁	P ₃	
0 1	5	 10 1	7	26

Tempo Médio de Espera = ((10-1) + (1-1) + (17-2) + (5-3))/4 = 26/4 = 6,5P1 P2 P3 P4

Exemplo de SJF Preemptivo (Algoritmo SRTF)

<u>Processo</u>	<u>Temp</u>	o Chegad	<u>la Tim</u>	ne de CPU
P_{I}	(0.0		6
P_2	-	1.0		3
P_{3}	4	2.0		1
P_4		3.0		4
P_1 P_2 P_3 P_2	P ₄		P ₁	
0 1 2 3 5	S)		14

Tempo de Retorno = ((14-0) + (5-1) + (3-2) + (9-3))/4 = 25/4 = 6,2

Tempo de Retorno (Turnaround): tempo total – tempo chegada

- Escalonamento Preemptivo: Escalonamento por Prioridades
 - A cada processo é associado uma prioridade;
 - Os processos de maior prioridade são escalonados primeiro;
 - Um processo de menor prioridade deve ceder a CPU para um de maior prioridade;
 - Problema: "starvation"
 - Processos de baixa prioridade podem nunca executar
 - Solução: "Aging"
 - Prioridade aumenta com o passar do tempo.

- Escalonamento Preemptivo: Escalonamento por Prioridades
 - A prioridade pode ser atribuída a processos de forma:
 - Estática:
 - Não é modificada durante a existência do processo;
 - Dinâmica:
 - Ajustada de acordo com o tipo de processamento realizado pelo processo e/ou carga do sistema;
 - Pelo usuário: comando <u>nice</u> do UNIX (diminui a prioridade);
 - Pelo sistema, levando em consideração por exemplo:
 - Operações de E/S,

Escalonamento Preemptivo: Escalonamento por Prioridades

Um algoritmo de escalonamento com 4 classes de prioridades;

Escalonamento por Prioridade (1)

<u>Processo</u>	Tempo de	e CPU Prioridade				
P_{1}	10	3				
P_2	1	1 - maior				
P_{3}	2	4				
P_{4}	1	5 - menor				
P_5	5	2				
P2 P	5	P1		P3	P4	!
0 1	6		16		18	19

Escalonamento por Prioridade (2)

<u>Processo</u>	Tempo de CPU	<u>Prioridade</u>		
P_{I} background	10	1		
P_2 Interativo	1	0		
P_3 Interativo	2	0		
P_4 Interativo	1	0		
P ₅ background	5	1		
P2 P3 P4	P1		P5	
0 1 3 4		14		19

- Escalonamento Preemptivo: Garantido
 - Se hover n usuários conectados, cada um receberá 1/n de CPU.
 - O sistema deve manter o controle da quantidade de CPU que cada processo recebe desde a sua criação:
 - Calcula a taxa entre o tempo consumido e o tempo realmente destinado ao processo;
 - Baseado na diferença decide se vai ou nãoexecutar o processo mais vezes que outros para se igualar ao seu tempo real;

- Escalonamento Preemptivo: Por Loteria
 - A cada processo é dado bilhetes de loteria
 - A CPU faz sorteio e quem tiver o bilhete ganha direito a CPU;
 - Novos processos vão sempre concorrer ao sorteio;
 - Processo parceiros podem trocar bilhetes;

- Escalonamento Preemptivo: Por Fração Justa (fair-share)
 - Evitar que mais processo de 1 usuário obtenha mais CPU que 1 processo de 1 usuário;
 - Para cada usuário (não processo) é alocado uma fração da CPU e o escalonador escolhe os processos de forma a garantir essa fração;
 - Exemplo: usuário 1 processos A, B, C e D usuário 2 – processo E

Solução com fila circular:

Escalonamento em Tempo Real

Escalonamento em Tempo Real

Sistema de Tempo Real escalonável:

- Dado
 - m eventos periódicos
 - Evento i ocorre com periodo P_i e requer C_i segundos.
- Então, carrega-o se:

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

- Escalonamento em Tempo Real
 - Algoritmos de Escolonamento em tempo real:
 - Estáticos
 - Toman decisões de escalonamento antes do sistema começar a executar;
 - Só funciona se há prévia informação perfeita disponível sobre o trabalho necessário a ser feito e os prazos que devem ser cumpridos;

- Escalonamento em Tempo Real
 - Algoritmos de Escolonamento em tempo real:
 - Dinâmicos
 - Tomam decisões em tempo de execução;
 - Não apresentam restrições, pois a informações são adquiridas durante a execução do processo.

Escalonamento em Tempo Real (1)

ProcessoPerídos de EventosTempo de CPU
$$P_I$$
100, 200 e 50050, 30 e 100

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1 = (50/100) + (30/200) + (100/500) = 0,5 + 0,15 + 0,2 \le 1$$

Exemplo (2) = Acrescentar um 4° evento com 1 seg (1000 ms).

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1 = (50/100) + (30/200) + (100/500) + (x/1000) \le 1$$

$$(x/1000) \le 1 - 0.85$$

$$x \le 0.15 * 1000$$

$$x \le 150 \text{ ms}$$

Escalonamento Multinível (1)

- A idéia base é dividir os processos em diferentes grupos, com diferentes requisitos de tempos de resposta.
- A cada grupo é
 associada uma fila de
 prioridade, conforme a
 sua importância.

Escalonamento Multinível (2)

- Por exemplo, a fila de prontos pode dividida em duas filas separadas:
 - foreground (p/ processos interativos)
 - background (p/ processamento batch)

- Cada fila apresenta o seu próprio algoritmo de escalonamento:
 - foreground − RR
 - background FCFS

Escalonamento Multinível (3)

- Escalonamento deve ser feito entre as filas:
 - Prioridades fixas atende primeiro aos processos da fila foreground e somente depois aos da fila background.
 - Time slice cada fila recebe uma quantidade de tempo de CPU para escalonamento entre os seus processos. Ex: 80% para *foreground* em RR e 20% para background em FCFS.

Escalonamento Multinível (4)

Escalonamento Multinível com Feedback

- O processo pode se mover entre as várias filas. Deste modo, a estratégia de *aging* pode ser implementada.
- O escalonador trabalha com base nos seguintes parâmetros:
 - Número de filas;
 - Algoritmo de escalonamento de cada fila;
 - Método usado para determinar quando aumentar e quando reduzir a prioridade do processo;
 - Método usado para se determinar em que fila o processo será inserido.

Escalonamento Multinível (5)

- Suponha a existência de 3 filas:
 - Q_0 time quantum 8 milliseconds
 - Q_1 time quantum 16 milliseconds
 - $Q_2 FCFS$

Escalonamento:

- Um job novo entra na fila Q_0 , que é servida segundo a estratégia RR. Quando ele ganha a CPU ele recebe 8 ms. Se não terminar em 8 ms, o job é movido para a fila Q_1 .
- Em Q_1 o job é novamente servido RR e recebe 16 ms adicionais. Se ainda não completar, ele é interrompido e movido para a fila Q_2 .
- Em Q2, FCFS

Exemplo (1)

Escalonamento de Processos

Escalonamento de Multinível

Escalonamento Multinível (6)

Exemplo (2)

Escalonamento de Processos

• Referências Utilizadas:

- Livro do Tanenbaum
 - Sistemas Operacionais Modernos
 - www.cs.vu.nl/~ast
- Livro do Silberschatz
 - Operating System Concepts
 - www.bell-labs.com/topic/books/aos-book/
- Livro do Machado e Maia
 - Arquitetura de Sistemas Operacionais.