Subsidiary Recursion in Coq

- 2 Aaron Stump ☑ 🔏 📵
- 3 Computer Science Dept., The University of Iowa, USA
- 4 Alex Hubers ⊠
- 5 Computer Science, The University of Iowa, USA
- 6 Christopher Jenkins ⊠ ©
- 7 Computer Science, The University of Iowa, USA
- ⁸ Benjamin Delaware ⊠ **☆**
- 9 Computer Science, Purdue University, USA

— Abstract

33

34

35

36

37

This paper describes a functor-generic derivation in Coq of subsidiary recursion. On this recursion scheme, inner recursions may be initiated within outer ones, in such a way that outer recursive calls may be made on results from inner ones. The derivation utilizes a novel (necessarily weakened) form of positive-recursive types in Coq, dubbed retractive-positive recursive types. A corresponding form of induction is also supported. The method is demonstrated through several examples.

¹⁶ **2012 ACM Subject Classification** Software and its engineering \rightarrow Recursion; Software and its engineering \rightarrow Polymorphism

Keywords and phrases strong functional programming, recursion schemes, positive-recursive types, impredicativity

Digital Object Identifier 10.4230/LIPIcs.ITP.2022.

1 Introduction: subsidiary recursion

Central to interactive theorem provers like Coq, Agda, Isabelle/HOL, Lean and others are terminating recursive functions over user-declared inductive datatypes [5, 7, 9, 4]. Termination is usually enforced by a syntactic check for structural decrease. This structural termination is sufficient for many basic functions. For example, the well-known span function from Haskell's standard library (Data.List) takes a list and returns a pair of the maximal prefix satisfying a given predicate p, and the remaining suffix:

The sole recursive call is span p xs, and it occurs in a clause where the input list is of the form x:xs. So the input to the recursive call is a subdatum of the input, and hence this definition is structurally decreasing. In the appropriate syntax, it can be accepted without additional effort by all the mentioned provers.

This paper is about a more expressive form of terminating recursion, called **subsidiary recursion**. While performing an outer recursion on some input x, one may initiate an inner recursion on x (or possibly some of its subdata), preserving the possibility of further invocations of the outer recursive function. Let us see a simple example. The function wordsBy (from Data.List.Extra) breaks a list into its maximal sublists whose elements do not satisfy a predicate p. For example, wordsBy isSpace " good day " returns ["good", "day"]; so wordsBy isSpace has the same behavior as words (from Data.List). Code is in Figure 1.

© Aaron Stump, Alex Hubers, Christopher Jenkins, and Benjamin Delaware; licensed under Creative Commons License CC-BY 4.0 Interactive Theorem Proving 2022.

Editors: June Andronick and Leonardo da Moura; Article No.; pp.:1–:8

XX:2 Subsidiary Recursion in Coq

Figure 1 Haskell code for wordsBy, demonstrating subsidiary recursion

The first recursive call, wordsBy p t1, is structural. But in the second, we invoke wordsBy p on a value obtained from another recursion, namely span. This is not allowed under structural termination, but will be permitted by subsidiary recursion as derived below.

1.1 Summary of results

55

57

59

60

65

67

68

70

71

72

73

75

This paper presents a functor-generic derivation of terminating subsidiary recursion and induction in Coq. We should emphasize that this is a derivation of this recursion scheme within the type theory of Coq. No axioms or other modifications to Coq of any kind are required. Based on this derivation, we present several example functions like wordsBy, and prove theorems about them. For example, we prove the expected property that the sublists returned by wordsBy consist of elements satisfying not . p. For another, we give a definition of run-length encoding as a subsidiary recursion using span, and prove that encoding and then decoding returns the original list. Our approach applies to the standard datatypes in the Coq library, and does not require switching libraries or datatype definitions.

An important technical novelty of our approach is a derivation of a weakened form of positive-recursive type in Coq. Coq (Agda, and Lean) restrict datatypes D to be strictly positive: in the type for any constructor of D, D cannot occur to the left of any arrows. Our derivation needs to use positive-recursive types, where D may occur to the left of an even number (only) of arrows. Coq requires strict positivity because in the presence of other features of Coq's theory, full positive-recursive types lead to a paradox [3]. We present a way to derive a weakened form of positive-recursive type that is sufficient for our examples (Section 4.1). The weakening is to require only that F μ is a retract of μ , where μ is the recursive type and F μ its one-step unfolding. Usually these types are isomorphic. Hence, we dub these **retractive-positive** recursive types. This weakening has the negative consequence of leading to a form of noncanonicity, but we will see how to work around this. Our definition of retractive-positive recursive types makes essential use of impredicate quantification, and hence cannot be soundly recapitulated in a predicative theory like Agda's.

We begin by summarizing the interface our derivation provides for subsidiary recursion (Section 2), and then see examples (Section 3). We next explain how the interface is actually implemented (Section 4), including our retractive-positive recursive types (Section 4.1). The interface for subsidiary induction is covered next (Section 5), and example proofs using it (Section 6). Related work is discussed in Section 7.

All presented derivations have been checked with Coq version 8.13.2, using command-line option -impredicative-set. The code may be found as release itp-2022 (dated prior to the ITP 2022 deadline) at https://github.com/astump/coq-subsidiary.

Interface for subsidiary recursion

This section presents the interface our Coq development provides for subsidiary recursion.

2.1 The recursion universe

87

88

90

91

100

101

102

103

104

105

106

107

108

109

110

111

Our approach is within a long line of work using ideas from universal algebra and category theory to describe inductive datatypes and their recursion principles. On this approach, one describes transformations to be performed on data as algebras, which can then be folded over data. The simplest form of algebras, namely F-algebras, are morphisms from F A to A, for carrier object A. From a programming perspective, an F-algebra is given input of type F A, and must compute a result of type A.

Algebras for our subsidiary recursion are more complex. First, for reasons we will explain further below, the carrier of the algebra will be a functor X: Set -> Set. Second, algebras have a specified *anchor type* C, which we can think of as the datatype *as viewed by a containing recursion* or else, if this is a top-level recursion, our development's version of the actual datatype (e.g., List). The algebra is presented with:

```
22 a type R : Set, which will be this recursion's view of the datatype.
```

a function reveal: R -> C, which reveals values of type R as really having the anchor type.

a function fold: FoldT Alg R, which allows one to initiate subsidiary recursions in which the anchor type is R. Note that the algebra's anchor type is C, but for subsidiary recursions the anchor type changes (to R). We will present the type FoldT Alg R below.

a function eval: R -> X R, to use for making recursive calls, on any value of type R.

and a subdata structure d: F R, where F is the signature functor for the datatype.

The algebra is then required to produce a value of type X R.

We will use Coq inductive types for the signature functors F of various datatypes, thus enabling recursions to use Coq's pattern-matching on the subdata structure d. So the style of coding against this interface retains a similar feel to structural recursions. Unlike with structural termination, though, the interface here is type-based and hence compositional. As we will see, it supports nested and higher-order recursions.

As in previous work, we dub this interface a recursion universe [10]. As in other domains using the term "universe", we have an entity (here, R) from which one cannot escape by using the available operations (for other cases: the ordinal ϵ_0 and ω^- , the physical universe and traveling at the speed of light). Staying in the recursion universe is good, because we may recurse (via eval) on any value of type R.

Some points must still be explained, particularly why X has type Set -> Set, and the definition of FoldT. Let us see these and other details next.

113 2.2 The interface in more detail

Let us consider two central files from our development.

5 2.2.1 Subrec.v

This file is parametrized by a signature functor F of type Set -> Set. It provides the implementation of subsidiary recursion. Two crucial values are Subrec: Set, which is the type to use for subsidiary recursion; and inn: F Subrec -> Subrec, which is to be used as

XX:4 Subsidiary Recursion in Coq

```
Inductive ListF(X : Set) : Set :=
| Nil : ListF X
| Cons : A -> X -> ListF X.

Definition inList : ListF List -> List := inn ListF.
Definition mkNil : List := inList Nil.
Definition mkCons (hd : A) (tl : List) : List := inList (Cons hd tl).
Definition toList : list A -> List.
Definition fromList : List -> list A.
```

■ Figure 2 Some basics from List.v, specializing the functor-generic derivation of subsidiary recursion to lists (List.v)

a constructor for that type. An important point, however, is that Subrec.v does not provide an induction principle based on inn. Induction is derived later (Section 5). Subrec.v makes critical use of retractive-positive recursive types, to take a fixed-point of a construction based on F. We present these recursive types in Section 4.1 below.

₃ 2.2.2 List.v

132

133

135

136

137

138

140

141

142

143

145

146

147

148

149

This file specializes the development in Subrec.v to the case of lists (parametrized by the type A of elements). In general, to use our development to get subsidiary recursion over some datatype, one will have a similar "shim" file. The file defines the signature functor ListF, shown in Figure 2. Using Subrec, we then get a type List. This is not to be confused with the type list of lists in Coq's standard library. As noted previously, our development is meant to be used in extension of existing inductive datatypes, not replacing them. The figure also shows constructors mkNil and mkCons for List, and types for conversion functions between List and list (see Section 4 for the code).

2.3 Algebras for subsidiary recursion

Subrec.v also defines the notion of algebra that is used for writing recursions. The central definitions are in Figure 3. KAlg is the kind for the type-constructor for algebras, as we see in the definition of Alg. This type-constructor Alg is a fixed-point of the type AlgF. The fixed-point is taken using MuAlg (Section 4.1), which implements our retractive-positive recursive types at kind KAlg. Using Alg will require that AlgF only uses its parameter Alg positively. We will confirm this shortly.

The type FoldT Alg C is the type for fold functions which apply algebras of type Alg to data of type C, which we have already dubbed the *anchor type* of the recursion. At the top level of code, the anchor type would just be List (for example). When one initiates a subsidiary recursion, though, the anchor type will instead by the abstract type R for the outer recursion.

The variable Alg occurs only positively (but not strictly positively) in AlgF, because it occurs negatively in FoldT Alg R which occurs negatively in AlgF Alg C X. So we can indeed take a fixed-point of AlgF to define the constant Alg.

Let us look at AlgF. As noted already, each recursion is based on an abstract type R, representing the data upon which we will recurse. This is the first argument to a value of type AlgF Alg C X. An algebra can assume nothing about R except that it supports the following operations. First there is reveal, which turns an R into a C. This reveals that the

Figure 3 The type for algebras (Subrec.v)

data of type R are really values of the anchor type of this recursion. Next we have fold, which will allow us to fold another algebra over data of type R. We will use fold to initiate subsidiary recursions. Then there is eval, for recursive calls on data of type R.

As noted already, for subsidiary recursion, algebras have a carrier X which depends (functorially) on a type. This is so that (i) inside an inner recursion we may compute a result of some type that may mention R, but (ii) outside that recursion, the result will mention the anchor type C. The eval function returns something of type X R, and so does the algebra itself; this demonstrates (i). For (ii): if we look at the definition of FoldT in the figure, we see that folding an algebra of type alg C X over a value of type C produces a result of type X C. Having a functor for the carrier of the algebra gives us the flexibility to type results inside a recursion with the abstract type R, but view those results as having the anchor type C outside the recursion.

The final definition in the figure is for fold, which allows us to fold an Alg over a value of type Subrec. We will return to the code for this, and definitions of Subrec and inn, in Section 4.

3 Examples of subsidiary recursion

Having seen now the interface for subsidiary recursion in Coq, let us consider now some examples, listed by their filename in the development.

$\mathbf{3.1}$ Span.v

152

153

154

155

157

158

162

163

165

4 Derivation of subsidiary recursion

4.1 Retractive-positive recursive types

As we have seen, our definitions require a form of positive-recursive types, to allow algebras to accept fold functions that themselves require algebras, and also for the definition of Subrec. But as recalled already, full positive-recursive types are incompatible with Coq's

179

180

181

186

191

192

195

197

198

200

201

```
Inductive Mu : Set :=
    mu : forall (R : Set), (R -> Mu) -> F R -> Mu.
  Definition inMu(d : F Mu) : Mu :=
    mu Mu (fun x \Rightarrow x) d.
  Definition outMu(m : Mu) : F Mu :=
    match m with
    | mu A r d => fmap r d
    end.
  Lemma outIn(d : F Mu) : outMu (inMu d) = d.
Figure 4 Derivation of retractive-positive recursive types
```

type theory [3]. It is worth noting that one can impose some restrictions on large eliminations 175 which then allow positive-recursive types [2]. This approach would require changing the 176 underlying theory. To avoid this, we here take a different approach, exploiting Coq's 177 impredicative polymorphism. 178

This is done in a file Mu.v, whose central definitions are in Figure 4. The development is parametrized by F: Set -> Set which is assumed to have an fmap function (morphism part of the functor) of type

```
forall A B : Set, (A -> B) -> F A -> F B
182
```

which satisfies the identity-preservation law for functors: 183

```
fmapId : forall (A : Set)(d : F A), fmap (fun x \Rightarrow x) d = d
184
```

Let us consider the code in Figure 4. The critical idea is embodied in the definition of Mu. Ideally, we would like to have a definition like

```
Inductive Mu' : Set := mu' : F Mu' -> Mu'.
187
```

This is exactly what is used in approaches to modular datatypes in functional programming, like Swierstra's [11]. But this definition is (rightly) rejected by Coq, as instantiations of F 189 that are not strictly positive would be unsound. 190

Instead, the definition of Mu in Figure 4 weakens this ideal definition to a strictly positive approximation:

```
Inductive Mu : Set :=
193
       mu : forall (R : Set), (R -> Mu) -> F R -> Mu.
194
```

Instead of taking in F Mu, constructor mu accepts an input of type F R, for some type R for which we have a function of type R -> Mu. The impredicative quantification of R is essential here: we instantiate it with Mu itself in the definition of inMu (Figure 4). So this approach would not work in a predicative theory like Agda's. The quantification of R can be seen as applying a technique due to Mendler, of introducing universally quantified variables for problematic type occurrences, to a datatype constructor. We will review this in Section 7.

Returning to Figure 4, we have functions inMu and outMu, which make F Mu a retraction (outIn) of Mu: the composition of outMu and inMu is (extensionally) the identity on F Mu. But the reverse composition cannot be proved to be the identity, because of the basic problem of **noncanonicity** that arises with this definition.

For a simple example of noncanonicity, suppose we instantiate F with ListF (of Figure 2). Please note that as Mu is used in our derivation of subsidiary recursion, we will not instantiate this F with the signature functor of a datatype directly; but this will show the issue in a simple form. Let us temporarily define List A as Mu (ListF A) (again, for subsidiary recursion we use a different functor than just ListF directly). The canonical way to define the empty list would be, implicitly instantiating F to ListF A,

```
Definition mkNil := mu (List A) (fun x => x) (Nilf A)
211
```

But given this, there are infinitely many other equivalent definitions. For any Q: Set, we 212 could take 213

```
Definition mkNil' := mu Q (fun x => mkNil) (NilF A)
214
```

Since fmap f (NilF A) equals just NilF B for f : A -> B, if we apply outMu (of Figure 4) 215 to mkNil' or mkNil, we will get NilF (List A). But critically, mkNil and mkNil' are not 216 equal, neither definitionally nor provably. One can define a function that puts Mu values in normal form by folding inMu over them. Then mkNil and mkNil' will have the same normal 218 form, and be equivalent in that sense. But the fact that they are not provably equal is what we term noncanonicity. 220

Noncanonicity leads to some issues, as we turn next to the problem of inductive reasoning about subsidiary recursions. With some care, however, we can avoid pitfalls, leaving us with a form of positive-recursive type that enables our definitions to go through.

- Interface for subsidiary induction
- **Examples of subsidiary induction**
- Related Work

204

205

207

208

210

217

219

221

223

230

231

232

233

234

235

237

241

7.1 Termination

In some tools, like Coq, Agda, and Lean, termination is checked statically, based on structural decrease at recursive calls. Others, like Isabelle/HOL, allow one to write recursions first, and prove (possibly with automated help) their termination afterwards [6].

It has not escaped the notice of designers of ITPs that structural recursion is not the only form of terminating recursion. All the mentioned tools provide support for well-founded recursion, where for recursive calls, one must show that the parameter of recursion has decreased in some well-founded order.

Subsidiary recursion can be seen as a generalization of nested recursion, which allows recursive calls of the form f (f x). In subsidiary recursion, these are generalized to the form f (g x), where g could be f or another recursively defined function.

7.2 Mendler encoding

Mendler introduced the basic idea of using universal abstraction to support compositional termination checking; an accessible source is [8]. This recursor has type 240

$$\forall X. (\forall R. (R \to X) \to F R \to X) \to \mu F \to X$$

XX:8 Subsidiary Recursion in Coq

We have adopted this idea to the constructor of the type Mu (Section 4.1). Previous work explored the categorical perspective on Mendler-style recursion [12]. Others have explored the possibility of using it with negative type schemes [1].

References

245

- Ki Yung Ahn and Tim Sheard. A hierarchy of mendler style recursion combinators: Taming inductive datatypes with negative occurrences. In *Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming*, ICFP '11, pages 234–246, New York, NY, USA, 2011. ACM.
- ²⁵⁰ 2 Frédéric Blanqui. Inductive types in the calculus of algebraic constructions. Fundam. Informaticae, 65(1-2):61-86, 2005. URL: http://content.iospress.com/articles/fundamenta-informaticae/fi65-1-2-04.
- Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-Löf and Grigori Mints, editors, COLOG-88, International Conference on Computer Logic, Tallinn, USSR, December 1988, Proceedings, volume 417 of Lecture Notes in Computer Science, pages 50–66. Springer, 1988. URL: https://doi.org/10.1007/3-540-52335-9_47, doi:10.1007/3-540-52335-9\47.
- Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction CADE 28 28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021, Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 625-635. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79876-5_37, doi: 10.1007/978-3-030-79876-5_37.
- The Agda development team. Agda, 2021. Version 2.6.2.1. URL: https://agda.readthedocs.io/en/v2.6.2.1/.
- Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. URL: https://isabelle.in.tum.de/doc/functions.pdf.
- The Coq development team. *The Coq proof assistant reference manual.* LogiCal Project, 2021. Version 8.13.2. URL: http://coq.inria.fr.
- N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus.

 Annals of Pure and Applied Logic, 51(1):159 172, 1991.
- Wolfgang Naraschewski and Tobias Nipkow. Isabelle/hol, 2020. URL: http://www.cl.cam.ac.uk/research/hvg/Isabelle/.
- Aaron Stump, Christopher Jenkins, Stephan Spahn, and Colin McDonald. Strong functional pearl: Harper's regular-expression matcher in cedille. *Proc. ACM Program. Lang.*, 4(ICFP):122:1–122:25, 2020. URL: https://doi.org/10.1145/3409004, doi:10.1145/3409004.
- Wouter Swierstra. Data types à la carte. *J. Funct. Program.*, 18(4):423–436, 2008. URL: https://doi.org/10.1017/S0956796808006758, doi:10.1017/S0956796808006758.
- Tarmo Uustalu and Varmo Vene. Mendler-style inductive types, categorically. *Nordic J. of Computing*, 6(3):343–361, September 1999.