Digital Logic Design

Sung-Soo Lim

https://youtu.be/cNN_tTXABUA

The ARM Architecture

Circuit Logic: Historical Perspective

Boole 에 의해 디지털 논리의 기초가 만들어짐 Shannon이 실제 회로에 Boole의 이론을 적용함

Logic Circuit Introduction

inputs

Logic Circuit의 구성

- Inputs
- Outputs
- Functional specification
- Timing specification
- Nodes
 - Inputs: A, B, C
 - Outputs: Y, Z
 - Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit

functional spec

timing spec

outputs

Types of Logic Circuits

- 조합논리회로 (Combinational Logic)
 - Memoryless
 - 출력은 현재 입력값에 의해서 정해짐
- 순차논리회로 (Sequential Logic)
 - Has memory
 - 출력은 현재 입력과 이전 입력(상태)에 의해 정해짐

조합논리회로의 특징

- 모든 구성요소가 조합논리회로이다
- 각 노드는 하나의 입력이 되거나 오직 하나의 출력에 연결된다
- 순환(Cycle)이 존재하지 않는다
- Example:

Boolean Logic

- 논리 함수의 기능을 입력 변수의 식으로 정의
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$\begin{array}{c|c}
A & & \\
B & & \\
C_{\text{in}} & & \\
\end{array}$$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Some Definitions

- Complement: 변수의 NOT을 적용한 형태 A, B, C
- Literal: 변수 혹은 변수의 NOT 형태 A, A, B, B, C, C
- Implicant: literal의 곱 형태 ABC, AC, BC
- Minterm: 모든 변수가 한번씩 쓰인 곱의 형태 (변수 혹은 변수의 NOT)_

ABC, ABC, ABC

• Maxterm: 모든 변수가 한번씩 쓰인 합의 형태

$$(A+B+C)$$
, $(A+B+C)$, $(\overline{A}+B+\overline{C})$

Combinational Logic Design

- 일상 행동을 논리식으로 변환:
 - I'll (i) go to lunch if Mary (m) goes OR John (j) goes,
 AND Sally (s) does not go.

Which answer correctly represents the statement above:

A)
$$j = (i + m) \cdot (s)$$

B)
$$i = (j) \cdot (m + !s)$$

C)
$$i = (m + j) \cdot (!s)$$

looks a lot like the circuits we were previously building

Combinational Logic Design

- 일상 행동을 논리식으로 변화:
 - I'll (i) go to lunch if Mary (m) goes OR John (j) goes, AND Sally (s) does not go.

evaluation process is also the same

m	j	s	i
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (E)
 - If it's not open (O) or
 - If they only serve corndogs (C)
- (E)에 대한 진리표.

0	С	E
0	0	0
0	1	0
1	0	1
1	1	0

Sum-of-Products (SOP) Form

- 모든 식은 SOP form 으로 표현 가능하다
- 각 행은 minterm이다
- 각 minterm은 literal의 곱 (AND) 으로 표현된다
- 각 열에 표현된 minterm은 TRUE이다
- 각 행에 표현된 minterm을 모두 OR하면 TRUE이다
- 그래서, a sum (OR) of products (AND terms) 이라 부른다

				minterm
A	B	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	$\overline{A}\;B$	m_1°
1	0	0	\overline{AB}	m_2
1	1	1	АВ	m_3^2

$$Y = F(A, B) =$$

Sum-of-Products (SOP) Form

- 모든 식은 SOP form 으로 표현 가능하다
- 각 행은 minterm이다
- 각 minterm은 literal의 곱 (AND) 으로 표현된다
- 각 열에 표현된 minterm은 TRUE이다
- 각 행에 표현된 minterm을 모두 OR하면 TRUE이다
- 그래서, a sum (OR) of products (AND terms) 이라 부른다

				minterm
 A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	$\overline{A}\;B$	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) =$$

Sum-of-Products (SOP) Form

- 모든 식은 SOP form 으로 표현 가능하다
- 각 행은 minterm이다
- 각 minterm은 literal의 곱 (AND) 으로 표현된다
- 각 열에 표현된 minterm은 TRUE이다
- 각 행에 표현된 minterm을 모두 OR하면 TRUE이다
- 그래서, a sum (OR) of products (AND terms) 이라 부른다

				minterm
 A	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = F(A, B) = \overline{AB} + AB = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- 모든 Boolean 논리식은 POS form으로 표현할 수 있다
- 각 행은 maxterm으로 이루어진다
- maxterm은 literal의 합(OR)으로 구성된다
- 각 행에 표현된 maxterm은 그 행에서 FALSE 이다
- 모든 행의 maxterm을 곱(AND)한 식 역시 FALSE이다
- 그래서, a product (AND) of sums (OR terms) 이라 부 른다

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_{0}
0	1	1	$A + \overline{B}$	M_1
(1)	0	0	<u>A</u> + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

 $Y = F(A, B) = (A + B)(\overline{A} + B) = \Pi(0, 2)$

SOP & POS Form

SOP – sum-of-products

0	С	E	minterm
0	0	0	\overline{O} \overline{C}
0	1	0	C
1	0	1	O $\overline{\mathbb{C}}$
1	1	0	O C

$$E = O\overline{C}$$
$$= \Sigma(2)$$

POS – product-of-sums

0	С	Ε	maxterm
0	0	0	0 + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
$\overline{1}$	1	0	$\overline{O} + \overline{C}$

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$
$$= \Pi(0, 1, 3)$$

How to do Logic Mathematically Axioms

Theorems

Properties

Mathematical Induction

Algebraic Manipulations

Boolean Algebra

- Axioms과 theorems은 Boolean 논리식을 간단화 (simplify)하기 위해 사용한다
- 변수는 오직 0과 1 중 하나의 값을 가진다
- Duality in axioms and theorems:
 - ANDs 와 ORs, 0's 과 1's 을 서로 바꿀 수 있다

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1'	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Vars

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
T8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8'	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
T9	$B \bullet (B + C) = B$	T9'	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10'	$(B + C) \bullet (B + \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11'	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$B_0 \bullet B_1 \bullet B_2$	T12'	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

Boolean Algebra: Axioms

• Boolean Algebra의 가장 기초적인 원칙

Boolean Algebra: Theorems

AND

AND

OR			
а	X	F	
0	0	0	
0	1	1	
1	0	1	

	x		
0	0	0 0 0 1	
0	1	0	V
1	0	0	******
1	1	1	

5a.	$x \cdot 0 = 0$	(Null Elements)
5b.	x + 1 = 1	

6a.
$$x \cdot 1 = x$$
 (Identity)

6b.
$$x + 0 = x$$

7a.
$$x \cdot x = x$$
 (*Idempotent*)

7b.
$$x + x = x$$

8a.
$$x \cdot x' = 0$$
 (Complement)

8b.
$$x + x' = 1$$

9.
$$x'' = x$$
 (Involution)

AND

а	x	F
0	0	0
0	1	0
1	0	0
1	1	1

x is a variable

Boolean Algebra: Duality

- Principle of duality
 - 주어진 논리식에 대해 모든 AND를 OR연산으로(혹은 그 반대), 모든 1을 0으로(혹은 그 반대) 바꾼 논리식을 Dual이라고 한다
 - TRUE인 논리식의 Dual식은 역시 TRUE이다

1a.
$$0 \cdot 0 = 0$$

1b.
$$1 + 1 = 1$$

2a.
$$1 \cdot 1 = 1$$

$$2b. 0 + 0 = 0$$

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

3b.
$$0 + 1 = 1 + 0 = 1$$

4a. If
$$x = 0$$
, then $x' = 1$

4b. If
$$x = 1$$
, then $x' = 0$

5a.
$$x \cdot 0 = 0$$

5b.
$$x + 1 = 1$$

6a.
$$x \cdot 1 = x$$

6b.
$$x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot x' = 0$$

8b.
$$x + x' = 1$$

9.
$$x'' = x$$

Boolean Algebra: Properties

주요 Properties

10a.
$$x \cdot y = y \cdot x$$
 (Commutative)
10b. $x + y = y + x$
11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (Associative)
11b. $x + (y + z) = (x + y) + z$
12a. $x \cdot (y + z) = x \cdot y + x \cdot z$ (Distributive)
12b. $x + (y \cdot z) = (x + y) \cdot (x + z)$ this one is tricky!
13a. $x + x \cdot y = x$ (Absorption)
13b. $x \cdot (x + y) = x$
14a. $x \cdot y + x \cdot y' = x$ (Combining)
14b. $(x + y) \cdot (x + y') = x$
15a. $(x \cdot y)' = x' + y'$ (DeMorgan's Theorem)
15b. $(x + y)' = x' \cdot y'$
16a. $x + x' \cdot y = x + y$
16b. $x \cdot (x' + y) = x \cdot y$

KESI

Kookmin Univ. Embedded Systems Lab

Boolean Algebra: Induction

- Property들을 증명하는 방법
 - Truth table
 - Algebraic Manipulation
- DeMorgan's Theorem 을 진리표로 증명하기

$$-(x\cdot y)'=x'+y'$$

	Н	S
		•

RHS

Χ	У	(x . λ)	(x · y)'	_ x′	y'	x' + y'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Truth tables produce same result – functions are equivalent!

• (x1 + x3) · (x1' + x3') = x1 · x3' + x1' · x3 을 algebraic manipulation으로 증명하기

LHS =
$$(x1 + x3) \cdot (x1' + x3')$$

Use Distribuitve property 12a -
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

LHS =
$$(x1 + x3) \cdot x1' + (x1 + x3) \cdot x3'$$

Use Distribuitve property again

LHS =
$$(x1 \cdot x1') + (x3 \cdot x1') + (x1 \cdot x3') + (x3 \cdot x3')$$

Use complement property $8a - x \cdot x' = 0$

LHS =
$$0 + (x3 \cdot x1') + (x1 \cdot x3') + 0$$

Use Identity
$$6b - x + 0 = x$$

LHS =
$$(x3 \cdot x1') + (x1 \cdot x3')$$

Use commutative property
$$10a - x \cdot y = y \cdot x$$

and $10b - x + y = y + x$

LHS =
$$(x1 \cdot x3') + (x1' \cdot x3)$$

LHS matches RHS of the inital equation

• $(a \cdot b \cdot c) + (a \cdot b \cdot c') = a \cdot b$?

LHS =
$$(a \cdot b \cdot c) + (a \cdot b \cdot c')$$

Distribuitve property $12a - x \cdot (y + z) = x \cdot y + x \cdot z$
 $(a \cdot b \cdot c) + (a \cdot b \cdot c') = (a \cdot b) \cdot (c + c')$
 $x \cdot y + x \cdot z \quad x \cdot (y + z)$

LHS = $(a \cdot b) \cdot (c + c')$

Complement property $8b - x + x' = 1$

LHS = $(a \cdot b) \cdot (1)$

Identity property $6a - x \cdot 1 = x$

LHS = $a \cdot b$

• $x + (x' \cdot z)$ is equivalent to x + z?

LHS =
$$x + (x' \cdot z)$$

Distributive property $12b \cdot x + (y \cdot z) = (x + y) \cdot (x + z)$

LHS = $(x + x') \cdot (x + z)$

Complement proprety $8b \cdot x + x' = 1$

LHS = $(1) \cdot (x + z)$

Identity property $6a \cdot x \cdot 1 = x$

LHS = $(x + z)$

• $(x \cdot x') + (x \cdot y) \cdot (x' + y')$ 는 항상 1일까요?

LHS =
$$(x \cdot x') + (x \cdot y) \cdot (x' + y')$$

Complement proprety $8a - x \cdot x' = 0$

Identity property $6a - x + 0 = x$

LHS = $(x \cdot y) \cdot (x' + y')$

Distributive property $12a - x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

LHS = $(x \cdot y \cdot x') + (x \cdot y \cdot y')$

Use complement property $8a - x \cdot x' = 0$

LHS = $(y \cdot 0) + (x \cdot 0)$

Use Null Elements $5a - x \cdot 0 = 0$

LHS = $0 + 0$

Kookmin Univ. Embedded Systems Lab

Venn Diagram

- 논리식을 증명하기 위해 사용 가능한 것들
 - Truth tables (perfect induction)
 - Algebraic manipulation
- 그래픽 표현 방법을 이용한 방법: Venn Diagram
 - Universe represented by a square
 - Boolean algebra has only two values
 - Universe B = {0, 1}
 - Elements of a set are enclosed by a contour
 - Square, circle, ellipse, ...

Constant 1

Constant 0

Variable x

Venn Diagram: 두 변수 표현

- 두 변수 x와 y의 표현
 - 겹치는 영역은 x = y = 1

x . A

also referred to as intersection of x and y

х	У	F
0	0	0
0	1	0
1	0	0
1	1	1

x + y

also referred to as **union** of x and y

х	У	F
0	0	0
0	1	1
1	0	1
1	1	1

х • у′

х	У	F
0	0	. 0
0	1	0
1	0	1
1	1	0

ded Systems Lab

Venn Diagram: 세 변수 표현

 $x \cdot y + z$

intersection of x and y, then union of that intersection with z

Venn Diagram: Equivalence of Logic Expressions

• Distribution property $x \cdot (y + z) = x \cdot y + x \cdot z$

Venn Diagram: Equivalence of Logic **Expressions**

•
$$x \cdot y + x' \cdot z + y \cdot z = x \cdot y + x' \cdot z$$

х . А

 $x \cdot y + x' \cdot z + y \cdot z$

RHS

 $x \cdot y$

 $x' \cdot z$

 $x \cdot y + \overline{x' \cdot z}$

Precedence of Operations

Symbol	Name	Description
()	Parentheses	Evaluate expression nested in parentheses first
,	NOT	Evaluate from left to right
	AND	Evaluate from left to right
+	OR	Evaluate from left to right

Synthesis Using AND, OR, and NOT Gates

- 논리 표현식의 예- R = (a · b') · (b + c')
- 진리표에서 논리회로를 도출하는 방법?

Synthesis Using AND, OR, and NOT Gates

- 다음 기능을 수행하는 논리식을 논리회로로 구성
 - Two inputs x1 and x2
 - Produce output =1 if x1 = 0/x2 = 0, or x1 = 0/x2 = 1, or x1 = 1/x2 = 1
 - Produce output = 0 if x1 = 1/x2 = 0

x1	x2	F	F = x1'x2' + x1'x2 + x1x2
0	0	' 1	
0	1	1	
1	0	0	
1	1	1	

Synthesis Using AND, OR, and NOT Gates

- 논리 회로 도출의 대원칙
 - 더 최적화 가능한 논리식 도출이 가능한지 확인한다
- 더 간단한 논리회로는 더 작은 비용으로 구현 가능하다 (대부분의 경우 더 빠르다)

