CSI 2532 Devoir 2 22/04/2021

Ali El Achkar 300037939

a. Les clés pour n = 1

α	α+	Candidat ?
A	A	Non
В	В	Non
С	CDA	Non
D	А	Non

Les clés pour n = 2

α	α+	Candidat ?
AB	ABCD	Oui
AC	ACD	Non
AD	AD	Non
BC	BCDA	Oui
BD	BDAC	Oui
CD	CDA	Non

Les clés candidates sont donc : AB, BC et BD

b. On a C -> D et D -> A qui n'appartiennent à aucune clé candidate, ce qui est une violation de BCNF pour R.

C -> D decompose BCNF en:

- R1 = (ABCD D) = ABC
- R2 = C U D = CD

On a donc: $F1 = AB \rightarrow C$ et $F2 = C \rightarrow D$.

c. D -> A n'est pas conservée dans la décomposition de BCNF.

Q2

a. NIN, contratNo -> heuresPerWeek

NIN -> eName

hotelNo -> hotelLocation

contratNo -> hotelNo

- b. Les cles candidates sont : NIN, contratNo.
- c. On a hotelLocation qui ne depend pas d'une cle candidate mais de hotelNo. On peut donc séparer R:

R1 = (NIN, contratNo, heuresPerWeek) avec K = NIN, contratNo

R2 = (hotelNo, hotelLocation) avec K = hotelNo

R3 = (NIN, eName) avec K = NIN

R4 = (contratNo, hotelNo) avec K = contratNo

Q3

- a. Π color [(σ sname = 'Albert' (S)) \bowtie r \bowtie b]
- b. Π sid (σ rating >= 8 (S)) \cup Π sid (σ bid = 103 (R))
- c. $\{t \mid \exists p \in \text{sailors (p[sname]} = t[sname] \land p[age] = t[age] \land p[rating] < 3)\}$
- d. $\{ \langle a \rangle \mid \exists p, q \langle p, a, q \rangle \in \text{Reserves } \land q = \text{``2019-04-28''} \}$
- e. $\{ <c> \mid \exists \ a, \ b, \ q < a,b,c> \in Boat \land < d,a,e> \in Reserves \land < d,f,g,h> \in Sailors \land f = "Lubber" \}$

Q4

déclaration	correspond à	déclaration
1 - Je peux utiliser une technique RAID niveau 0 car	В	A - la tolérance aux pannes est importante pour mon application et je dois protéger mes données même si deux disques tombent en panne en même temps.
2 - Je peux utiliser une technique RAID niveau 1 car	D	B - je n'inquiet pas de perdre les données. Mon objectif principal est de pouvoir lire et écrire à grande vitesse.
3 - Je peux utiliser une technique RAID niveau 5 car	С	C - j'ai 6 disques disponibles mais j'ai besoin de la capacité de 5 d'entre eux ce qui signifie que je ne peux pas gaspier l'espace qu'un seul disque pour assurer la redondance.
4 - Je peux utiliser une technique RAID niveau 6 car	А	D - je n'ai que deux disques disponibles, ce qui représente plus du double de la capacité dont j'ai besoin pour mon application et je veut être capable de récupérer les données si nécessaire.
5 - Je préfère utiliser une approche paritaire plutôt qu'une approche miroir car	E	E - la tolérance aux pannes est importante pour mon application, mais je n'ai pas beaucoup d'espace disponible.

Q6

a. Pour Brand

Brand	R0	R1	R2	R3
Opel	1	1	0	0
Peugeot	0	0	1	0
BMW	0	0	0	1

Pour Color

Color	R0	R1	R2	R3
Grey	1	0	0	0
Red	0	1	0	0
Black	0	0	1	1

b. Pour i:

Color = Red	OR	Color = Grey		Result
0100	U	1000	=	1100

Pour ii:

Brand = Opel	AND	Color = Red	AND	Risk = Medium		Result
1100	\cap	0100	\cap	0110	=	0100

Il nous suffit maintenant de compter le nombre de tuples qui satisfont les conditions, ce qui donne 1.

Q7

- a. On a:
- h(2) = 2
- h(4) = 0
- h(6) = 2
- h(12) = 0
- h(13) = 1
- h(16) = 0
- h(20) = 0
- h(24) = 0
- h(28) = 0
- h(40) = 0

Bucket 0			
4	20	40	
12	24		
16	28		

	Bucket 1	
13		

	Bucket 2	
2		
6		

Bucket 3	

b. La fonction de hachage dans cet exercice n'effectue pas une distribution uniforme des valeurs des clés de recherche dans les buckets, car nous observons que le bucket 3 est vide et que les buckets 1 et 2 ne sont pas très remplis, alors que le bucket 0 a plusieurs overflow car il doit stocker 7 valeurs de clés de recherche. Ce n'est donc pas une bonne fonction de hachage pour ces valeurs.