Morphing mit Beier-Neely Digitale Bildverarbeitung WS2023/24

Michael Eggers, Johann Rittenschober, Kevin

31. Dezember 2023

Erklärung

Hiermit erklären wir, dass die vorliegenden Arbeit selbstständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen oder Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet wurden.

Michael Eggers, Johann Rittenschober, Kevin

München, 31. Dezember 2023

Matrikelnummer: 00322614

Studiengruppe: Master Informatik VZ/TZ

(c) 50% Kreuzblende

(d) 50% Beier-Neely Morph

Abbildung 1.: Gegenüberstellung: einfache Kreuzblende und Beier-Neely Morphing

Zusammenfassung

Der Übergang von einem Bild in ein Anderes kann durch verschiedene Effekte erreicht werden. Einer der bekanntesten ist die sogenannte Kreuzblende (engl. cross dissolve). Dabei wird jeder Pixel des Quellbildes sukzessive um $1 - \frac{i}{numIterations}$ abgeschwächt und dafür jeder Pixel des Zielbildes um $\frac{i}{numIterations}$ multipliziert (verstärkt). Das Resultat aus der Addition dieser beiden Operationen ergibt den Effekt der eben genannten Kreuzblende (1c). Der Übergang ist deutlich wahrnehmbar. Eine Verbesserung erreicht man durch die Verzerrung beider Bilder in die Form des jeweilig anderen (1a nach 1b und umgekehrt). Danach wird wie gehabt die Kreuzblende angewendet. Die Resultierende Animation kann den Eindruck erwecken als verwandle sich das Quell in das Zielbild. Beier und Neely [1] entwickelten dafür einen Feature-basierten Algorithmus um diesen Effekt zu erzielen. Er kam in dem Michael Jackson Musikvideo Black or White zum Einsatz [2].

Inhaltsverzeichnis

1.	Festlegung der Features	7
2.	Fazit und Ausblick	8
Α.	Erstellen einer Visual Studio Solution des Vulkan Rahmenprogramms	9
	A.1. Download und Installation des Vulkan SDKs	9
	A.2. Download und Verwendung von CMake	9
	A.2.1. Aktualisieren des Vulkan SDK	9
	A.3. GeForce-Treiber für RTX Extensions	9
Lit	teraturverzeichnis	10

Abbildungsverzeichnis

1.	Gegenüberstellung: einfache Kreuzblende und Beier-Neely Morphing	3
1.1.	Setzen eines Linienpaares	7
1.2.	Finale Menge an Linienpaaren	7

Tabellenverzeichnis

1. Festlegung der Features

Wie eingangs beschrieben handelt es sich um einen Feature basierten Algorithmus. Das heißt, dass die Merkmale eines Objekt im Bild, welches transformiert werden soll, zunächst erfasst werden müssen. Beier und Neely nutzen dazu eine Liste aus gerichteten Linienpaaren: Einer Linie im Quellbild wird genau eine Linie im Zielbild zugeordnet. Dabei werden die Linienpaare so platziert, sodass sie ein Merkmal in den Bildern beschreiben. Zum Beispiel werden die Haaransätze der beiden Personen in Quell- und Zielbild als Merkmale deklariert: Das Linienpaar wird dementsprechend gesetzt, siehe 1.1.

Abbildung 1.1.: Setzen eines Linienpaares

Es ist wichtig zu beachten, dass die Linienpaare gerichtet sind. Die Linien besitzen also sowohl Anfangs- als auch Endpunkt. Abbildung 1.2 zeigt die Linienpaare, welche für dass Resultat in 1d verantwortlich waren.

Abbildung 1.2.: Finale Menge an Linienpaaren

2. Warping der Bilder

Sobald die Linienpaare gesetzt wurden, kann der eigentliche Algorithmus gestartet werden. Die Pixel des Quellbildes werden in Richtung der Linienpositionen des Zielbildes verschoben. Und die Pixel des Zielbildes werden in Richtung der Linienpositionen des Quellbildes verschoben.

A. Erstellen einer Visual Studio Solution des Vulkan Rahmenprogramms

- A.1. Download und Installation des Vulkan SDKs
- A.2. Download und Verwendung von CMake
- A.2.1. Aktualisieren des Vulkan SDK
- A.3. GeForce-Treiber für RTX Extensions

Literaturverzeichnis

- [1] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. SIGGRAPH Comput. Graph., 26(2), 1992.
- [2] Ian Failes. Cartoon brew. https://www.cartoonbrew.com/vfx/oral-history-morphing-michael-jacksons-black-white-144015.html. Accessed: 11 02, 2023.