Sapienza University of Rome

Master in Artificial Intelligence and Robotics

Machine Learning

A.Y. 2024/2025

Prof. Luca locchi

Luca locchi

7. Linear models for classification

1/59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

7. Linear models for classification

Luca locchi

Luca locchi

Overview

- Linearly separable data
- Linear models
- Least squares
- Perceptron
- Fisher's linear discriminant
- Support Vector Machines

References

- C. Bishop. Pattern Recognition and Machine Learning. Sect. 4.1, 7.1
- T. Mitchell. Machine Learning. Section 4.4

Luca locchi

7. Linear models for classification

3/59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Linear Models for Classification

Learning a function $f: X \to Y$, with ...

$$\bullet X \subset \Re^d$$

•
$$Y = \{C_1, \ldots, C_k\}$$

assuming linearly separable data.

Linearly separable data

Instances in a data set are linearly separable iff there exists a hyperplane that separates the instance space into two regions, such that differently classified instances are separated

Luca locchi

7. Linear models for classification

5 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Linear discriminant functions

Linear discriminant function

$$y: X \to \{C_1, \ldots, C_K\}$$

Two classes:

$$y(x) = w^T x + w_0$$

K-classes:

$$y_1(x) = w_1^T x + w_{10}$$

...
 $y_K(x) = w_K^T x + w_{K0}$

$$y_K(x) = \mathbf{w}_K^T \mathbf{x} + \mathbf{w}_{K0}$$

Luca locchi

7. Linear models for classification

Compact notation

Two classes:

$$y(x) = \mathbf{w}^T \mathbf{x} + w_0 = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$
, with:

$$\tilde{\mathsf{w}} = \left(\begin{array}{c} \mathsf{w}_0 \\ \mathsf{w} \end{array} \right), \tilde{\mathsf{x}} = \left(\begin{array}{c} 1 \\ \mathsf{x} \end{array} \right)$$

K classes:

$$y(x) = \begin{pmatrix} y_1(x) \\ \cdots \\ y_K(x) \end{pmatrix} = \begin{pmatrix} w_1^T x + w_{10} \\ \cdots \\ w_K^T x + w_{K0} \end{pmatrix} = \begin{pmatrix} \tilde{w}_1^T \\ \cdots \\ \tilde{w}_K^T \end{pmatrix} \tilde{x} = \tilde{W}^T \tilde{x}, \text{ with:}$$

$$ilde{\mathsf{W}}^T = \left(egin{array}{c} ilde{\mathsf{w}}_1^T \ \cdots \ ilde{\mathsf{w}}_K^T \end{array}
ight)$$
 , i.e.: $ilde{\mathsf{W}} = (ilde{\mathsf{w}}_1, \cdots, ilde{\mathsf{w}}_K)$

Luca locchi

7. Linear models for classification

7 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Linear discriminant functions

Luca locchi

Multiple classes

K-class discriminant comprising K linear functions

$$y(x) = \begin{pmatrix} y_1(x) \\ \cdots \\ y_K(x) \end{pmatrix} = \begin{pmatrix} \tilde{w}_1^T \tilde{x} \\ \cdots \\ \tilde{w}_K^T \tilde{x} \end{pmatrix} = \tilde{W}^T \tilde{x}$$

Classify x as C_k with $k = \operatorname{argmax}_{j=1,...,K} \{y_j(x)\}$

Decision boundary between C_k and C_j (hyperplane in \Re^{D-1}):

$$(\tilde{\mathbf{w}}_k - \tilde{\mathbf{w}}_j)^T \tilde{\mathbf{x}} = 0$$

Luca locchi

7. Linear models for classification

9 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Multiple classes

when we have n-dimensional apace

Example of K-class discriminant

Luca locchi

7. Linear models for classification

Learning linear discriminants

Given a multi-class classification problem and data set D with linearly separable data,

determine \tilde{W} such that $y(x) = \tilde{W}^T \tilde{x}$ is the K-class discriminant.

Luca locchi

7. Linear models for classification

11 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Approaches to learn linear discriminants

- Least squares
- Perceptron
- Fisher's linear discriminant
- Support Vector Machines

Luca locchi

7. Linear models for classification

Least squares

Given $D = \{(x_n, t_n)_{n=1}^N\}$, find the linear discriminant

$$y(x) = \tilde{W}^T \tilde{x}$$

 $\text{1-of-K coding scheme for } t : x \in C_k \to t_k = 1, t_j = 0 \text{ for all } j \neq k. \\ \text{E.g., } t_n = (0,\ldots,1,\ldots,0)^T$

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^T \\ \cdots \\ \tilde{x}_N^T \end{pmatrix} \qquad T = \begin{pmatrix} t_1^T \\ \cdots \\ t_N^T \end{pmatrix}$$

$$L_{\text{omplete nepnenentation}}$$
of detailed

Luca locchi

7. Linear models for classification

13 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Least squares

Minimize sum-of-squares error function

$$E(\tilde{\mathsf{W}}) = \frac{1}{2} \operatorname{Tr} \left\{ (\tilde{\mathsf{X}} \tilde{\mathsf{W}} - \mathsf{T})^{\mathsf{T}} (\tilde{\mathsf{X}} \tilde{\mathsf{W}} - \mathsf{T}) \right\}$$

Closed-form solution:

notetimminim to notholo can be mritten in close $\tilde{\mathbf{W}} = \underbrace{(\tilde{\mathbf{X}}^T \tilde{\mathbf{X}})^{-1} \tilde{\mathbf{X}}^T}_{\tilde{\mathbf{X}}^{\dagger}} \mathbf{T}$

Learned model:

$$y(X) = \tilde{W}^T \, \tilde{X} = T^T (\tilde{X}^\dagger)^T \tilde{X}$$

Luca locchi

7. Linear models for classification

Least squares

Classification of new instance $x' \notin D$

Use learnt \tilde{W} to compute:

$$y(x') = \tilde{W}^T \tilde{x}' = \begin{pmatrix} y_1(x') \\ \cdots \\ y_K(x') \end{pmatrix}$$

Predict C_k with:

$$k = \underset{j \in \{1, \dots, K\}}{\operatorname{argmax}} \{y_j(x')\}$$

Luca locchi

7. Linear models for classification

15 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Issues with least squares

Assume Gaussian conditional distributions. Not robust to outliers!

Luca locchi

7. Linear models for classification

Perceptron

Learning $f: \Re^d \to \{-1, +1\}$

$$o(x_1,\ldots,x_d) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_dx_d > 0 \\ -1 & \text{otherwise.} \end{cases}$$

$$o(x) = \begin{cases} 1 & \text{if } w^T x > 0 \\ -1 & \text{otherwise.} \end{cases} = sign(w^T x)$$

Luca locchi

7. Linear models for classification

17 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron training rule

Consider the unthresholded linear unit, where

$$o = w_0 + w_1 x_1 + \cdots + w_d x_d = \mathbf{w}^T \mathbf{x}$$

Let's learn w_i from training examples $D = \{(x_n, t_n)_{n=1}^N\}$ that minimize the squared error (loss function)

$$E(\mathbf{w}) \equiv \frac{1}{2} \sum_{n=1}^{N} (t_n - o_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2$$
o when model medict
excity the label of altanet

Luca locchi

7. Linear models for classification

Perceptron training rule

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{n=1}^{N} (t_n - w_n^T x_n)^2 = \frac{1}{2} \sum_{n=1}^{N} \frac{\partial}{\partial w_i} (t_n - w^T x_n)^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} 2(t_n - w^T x_n) \frac{\partial}{\partial w_i} (t_n - w^T x_n)$$

$$= \sum_{n=1}^{N} (t_n - w^T x_n) \frac{\partial}{\partial w_i} (t_n - w^T x_n)$$

$$= \sum_{n=1}^{N} (t_n - w^T x_n) (-x_{i,n})$$

Luca locchi

7. Linear models for classification

19 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron training rule

Unthresholded unit:

Update of weights w

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} = \eta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n) \mathbf{x}_{i,n}$$

 η is a small constant (e.g., 0.05) called *learning rate*

Luca locchi

7. Linear models for classification

Perceptron training rule

Thresholded unit:

Update of weights w

$$w_{i} \leftarrow w_{i} + \Delta w_{i}$$

$$\Delta w_{i} = -\eta \frac{\partial E}{\partial w_{i}} = \eta \sum_{n=1}^{N} (t_{n} - sign(\mathbf{w}^{T} \mathbf{x}_{n})) x_{i,n}$$

Luca locchi

7. Linear models for classification

21 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron algorithm

Given perceptron model $o(x) = sign(w^T x)$ and data set D, determine weights w.

- 1 Initialize ŵ (e.g. small random values)
- Repeat until termination condition

•
$$\hat{w}_i \leftarrow \hat{w}_i + \Delta w_i$$

Output ŵ

Luca locchi

7. Linear models for classification

Perceptron algorithm

Batch mode: Consider all dataset D

$$\Delta w_i = \eta \sum_{(\mathsf{x},t) \in D} (t-o(\mathsf{x})) x_i \Rightarrow \mathsf{nigh} \; \mathsf{compositional}$$

Mini-Batch mode: Choose a small subset $S \subset D$ => ben enoice

$$\Delta w_i = \eta \sum_{(x,t)\in S} (t - o(x)) x_i$$

Incremental mode: Choose one sample $(x, t) \in D \implies night vanion a.$

$$\Delta w_i = \eta (t - o(x)) x_i$$

 $o(x) = w^T x$ for unthresholded, $o(x) = sign(w^T x)$ for thresholded Incremental and mini-batch modes speed up convergence and are less sensitive to local minima.

Luca locchi

7. Linear models for classification

23 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron algorithm

Termination conditions

- Predefined number of iterations
- Threshold on changes in the loss function E(w)

Luca locchi

7. Linear models for classification

Perceptron training rule

Example:

$$\eta = 0.1$$
, $x_i = 0.8$

- ullet if t=1 and o=-1 then $\Delta w_i=0.16$
- if t=-1 and o=1 then $\Delta w_i=-0.16$

Luca locchi

7. Linear models for classification

25 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron training rule

Luca locchi

Perceptron training rule

Can prove it will converge:

- if training data is linearly separable
- ullet and η sufficiently small

Small $\eta \to \text{slow convergence}$.

Luca locchi

7. Linear models for classification

27 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Perceptron: Prediction

Classification of new instance $x' \notin D$:

Predict C_k , with $k = sign(\mathbf{w}^T \mathbf{x}')$, using learnt \mathbf{w}

Luca locchi

Consider two classes case.

Determine $y = \mathbf{w}^T \mathbf{x}$ and classify $\mathbf{x} \in C_1$ if $y \ge -w_0$, $\mathbf{x} \in C_2$ otherwise.

Corresponding to the projection on a line determined by w.

Luca locchi

7. Linear models for classification

29 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Fisher's linear discriminant

Adjusting w to find a direction that maximizes class separation.

Consider a data set with N_1 points in C_1 and N_2 points in C_2

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n$$
 $m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$

Choose w that maximizes $J(w) = w^{T}(m_2 - m_1)$, subject to ||w|| = 1.

Luca locchi

7. Linear models for classification

Luca locchi

7. Linear models for classification

31 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Fisher's linear discriminant

Fisher criterion

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

with

$$S_B = (m_2 - m_1)(m_2 - m_1)^T$$

Between class scatter

$$S_W = \sum_{n \in C_1} (x_n - m_1)(x_n - m_1)^T + \sum_{n \in C_2} (x_n - m_2)(x_n - m_2)^T$$

Within class scatter

Choose w that maximizes J(w).

Luca locchi

7. Linear models for classification

Find w that maximizes

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

by solving

$$\frac{d}{dw}J(w)=0$$

$$\Rightarrow \mathsf{w}^* \propto \mathsf{S}_{\mathit{W}}^{-1}(\mathsf{m}_2 - \mathsf{m}_1)$$

Luca locchi

7. Linear models for classification

33 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Fisher's linear discriminant

Luca locchi

Summarizing, given a two classes classification problem, Fisher's linear discriminant is given by the function $y = w^T x$ and the classification of new instances is given by $y \ge -w_0$ where

$$w = S_W^{-1}(m_2 - m_1)$$

$$w_0 = \mathbf{w}^T \mathbf{m}$$

m is the global mean of all the data set.

Luca locchi

7. Linear models for classification

35 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Fisher's linear discriminant

Multiple classes.

$$y = W^T x$$

Maximizing

$$J(\mathsf{W}) = Tr\left\{ (\mathsf{W}\mathsf{S}_W\mathsf{W}^T)^{-1} (\mathsf{W}\mathsf{S}_B\mathsf{W}^T) \right\}$$

. . .

Luca locchi

7. Linear models for classification

- DODING TO OUTLIEDS THE VALUE WILL BE =0

Support Vector Machines (SVM) for Classification aims at maximum margin providing for better accuracy.

Luca locchi

7. Linear models for classification

37 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Let's consider binary classification $f: X \to \{+1, -1\}$ with data set $D = \{(x_n, t_n)_{n=1}^N\}$, $t_n \in \{+1, -1\}$ and a linear model

$$y(x) = w^T x + w_0$$

Assume D is linearly separable

$$\exists w, w_0 \text{ s.t.} \quad \begin{aligned} y(x_n) &> 0, \text{ if } t_n = +1 \\ y(x_n) &< 0, \text{ if } t_n = -1 \end{aligned}$$

FORMULA
$$\Rightarrow$$
 $t_n \, y(\mathsf{x}_n) > 0 \; orall n = 1, \dots N$

Luca locchi

7. Linear models for classification

Let x_k be the closest point of the data set D to the hyperplane $h: w^T x + w_0 = 0$

the margin (smallest distance between x_k and h) is $\frac{|y(x_k)|}{||w||}$

Given data set D and hyperplane h, the margin is computed as

$$\min_{n=1,...,N} \frac{|y(x_n)|}{||w||} = \cdots = \frac{1}{||w||} \min_{n=1,...,N} [t_n(w^T x_n + w_0)]$$

using the property $|y(x_n)| = t_n y(x_n)$

Luca locchi

7. Linear models for classification

39 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Given data set D, the hyperplane $h^*: w^*^T x + w_0^* = 0$ with maximum margin is computed as

$$\mathbf{w}^*, \mathbf{w_0}^* = \underset{\mathbf{w}, \mathbf{w_0}}{\operatorname{argmax}} \frac{1}{||\mathbf{w}||} \underset{n=1, \dots, N}{\min} [t_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{w_0})]$$

Luca locchi

7. Linear models for classification

Rescaling all the points does not affect the solution.

Rescale in such a way that for the closet point x_k we have

$$t_k(\mathbf{w}^T\mathbf{x}_k+w_0)=1$$

Canonical representation:

$$t_n(\mathbf{w}^T\mathbf{x}_n+w_0)\geq 1 \ \ \forall n=1,\ldots,N$$
 is only =1 for the manyin

Luca locchi

7. Linear models for classification

41 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

When the maximum margin hyperplane w^* , w_0^* is found, there will be at least 2 closest points x_k^{\oplus} and x_k^{\ominus} (one for each class).

$$w^{*T}x_{k}^{\oplus} + w_{0}^{*} = +1$$
 $w^{*T}x_{k}^{\ominus} + w_{0}^{*} = -1$

In the canonical representation of the problem the maximum margin hyperplane can be found by solving the optimization problem

$$w^*, w_0^* = \operatorname{argmax} \frac{1}{||w||} = \operatorname{argmin} \frac{1}{2} ||w||^2$$

subject to

$$t_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{w}_0) \geq 1 \ \forall n = 1, \dots, N$$

Quadratic programming problem solved with Lagrangian method.

Luca locchi

7. Linear models for classification

43 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Solution

$$w^* = \sum_{n=1}^N a_n^* t_n x_n$$

 a_i^* (Lagrange multipliers): results of the Lagrangian optimization problem

$$\tilde{L}(a) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m x_n^T x_m$$

subject to

$$a_n \geq 0 \ \forall n = 1, \dots, N$$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Luca locchi

7. Linear models for classification

Note:

samples x_n for which $a_n^* = 0$ do not contribute to the solution

Karush-Kuhn-Tucker (KKT) condition:

for each $x_n \in D$, either $a_n^* = 0$ or $t_n y(x_n) = 1$

thus $t_n y(x_n) > 1$ implies $a_n^* = 0$

Support vectors: x_k such that $t_k y(x_k) = 1$ and $a_k^* > 0$

$$SV \equiv \{x_k \in D \mid t_k y(x_k) = 1\}$$

Luca locchi

7. Linear models for classification

45 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Hyperplanes expressed with support vectors

$$y(x) = \sum_{x_j \in SV} a_j^* t_j x^T x_j + w_0^* = 0$$

Note: other vectors $x_n \notin SV$ do not contribute $(a_n^* = 0)$

Luca locchi

7. Linear models for classification

To compute w_0^* :

Support vector $x_k \in SV$ satisfies $t_k y(x_k) = 1$

$$t_k \left(\sum_{\mathsf{x}_j \in SV} a_j^* t_j \mathsf{x}_k^T \mathsf{x}_j + w_0^*
ight) = 1$$

Multiplying by t_k and using $t_k^2 = 1$

$$w_0^* = t_k - \sum_{\mathsf{x}_i \in SV} a_j^* t_j \mathsf{x}_k^T \mathsf{x}_j$$

Luca locchi

7. Linear models for classification

47 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Instead of using one particular support vector x_k to determine w_0

$$w_0^* = t_k - \sum_{\mathsf{x}_i \in SV} a_j^* t_j \mathsf{x}_k^T \mathsf{x}_j$$

a more stable solution is obtained by averaging over all the support vectors

$$w_0^* = \frac{1}{|SV|} \sum_{\mathsf{x}_k \in SV} \left(t_k - \sum_{\mathsf{x}_j \in S} a_j^* t_j \mathsf{x}_k^\mathsf{T} \mathsf{x}_j \right)$$

Luca locchi 7. Linear models for classification

Given the maximum margin hyperplane determined by a_k^* , w_0^*

Classification of a new instance x'

$$y(x') = sign\left(\sum_{x_k \in SV} a_k^* t_k x'^T x_k + w_0^*\right)$$

Luca locchi

7. Linear models for classification

49 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines

Optimization problem for determining w, w_0 (dimension d+1, with $X=\Re^d$) transformed in an optimization problem for determining a (dimension |D|)

Efficient when $d \ll |D|$ (most of a_i will be zero). Very useful when d is large or infinite.

Luca locchi

7. Linear models for classification

Support Vector Machines with soft margin constraints

What if data are "almost" linearly separable (e.g., a few points are on the "wrong side")

Let us introduce slack variables $\xi_n \geq 0$ $n = 1, \dots, N$

Luca locchi

7. Linear models for classification

51 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines with soft margin constraints

- $\xi_n = 0$ if point on or inside the correct margin boundary
- $0 < \xi_n \le 1$ if point inside the margin but correct side
- $\xi_n > 1$ if point on wrong side of boundary

when $\xi_n = 1$, the sample lies on the decision boundary $y(x_n) = 0$ when $\xi_n > 1$, the sample will be mis-classified

Luca locchi

Support Vector Machines with soft margin constraints

Soft margin constraint

$$t_n y(\mathbf{x}_n) \geq 1 - \xi_n, \quad n = 1, \dots, N$$

Optimization problem with soft margin constraints

$$\mathbf{w}^*, \mathbf{w}_0^* = \operatorname{argmin} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^{N} \xi_n$$

subject to

$$t_n y(x_n) \ge 1 - \xi_n, \quad n = 1, ..., N$$

 $\xi_n \ge 0, \quad n = 1, ..., N$

C is a constant (inverse of a regularization coefficient)

Luca locchi

7. Linear models for classification

53 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Support Vector Machines with soft margin constraints

Solution similar to the case of linearly separable data.

$$\mathbf{w}^* = \sum_{n=1}^N a_n^* \, t_n \, \mathbf{x}_n$$

$$w_0^* =$$

with a_n^* computed as solution of a Lagrangian optimization problem.

Luca locchi

7. Linear models for classification

Basis functions

So far we considered models working directly on x.

All the results hold if we consider a non-linear transformation of the inputs $\phi(x)$ (basis functions).

Decision boundaries will be linear in the feature space ϕ and non-linear in the original space \mathbf{x}

Classes that are linearly separable in the feature space ϕ may not be separable in the input space x.

Luca locchi

7. Linear models for classification

55 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Basis functions example

Luca locchi

7. Linear models for classification

Basis functions examples

- Linear
- Polynomial
- Radial Basis Function (RBF)
- Sigmoid
- ...

Luca locchi

7. Linear models for classification

57 / 59

Sapienza University of Rome, Italy - Machine Learning (2024/2025)

Linear models for non-linear functions

Learning non-linear function

$$f: X \to \{C_1, \ldots, C_K\}$$

from data set *D* non-linearly separable.

Find a non-linear transformation ϕ and learn a linear model

$$y(x) = w^T \phi(x) + w_0$$
 (two classes)

$$y_k(x) = w_k^T \phi(x) + w_{k0}$$
 (multiple classes)

Luca locchi

7. Linear models for classification

Summary

- Basic methods for learning linear classification functions
- Based on solution of an optimization problem
- Closed form vs. iterative solutions
- Sensitivity to outliers
- Learning non-linear functions with linear models using basis functions
- Further developed as kernel methods

Luca locchi

7. Linear models for classification