

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique Linéaire

Année 2019–2020

Systèmes mécaniques et automatiques

Notes de cours IngéSpé Automatique Linéaire

Filipe Manuel Vasconcelos

écrit sous IATEX, TikZ version de janvier 2020.

Ce document est mis à disposition selon les termes de la licence

Creative Commons "Attribution - Partage dans les mêmes conditions 4.0 International".

Table des matières

Table	des ma	atières	5
Avant-	-propos		11
Chapi	${ m itre} \; 1$	Systèmes linéaires, continus	13
1.	Introd	duction	. 14
2.	Défini	ition SLCI	. 15
	2.1.	Système	. 15
	2.2.	Système à temps continu	. 16
	2.3.	Système linéaire	. 16
	2.4.	Système causal	. 16
	2.5.	Système invariant	. 17
	2.6.	Système stable	. 17
	2.7.	Modélisation d'un système linéaire continu et invariant	. 17
3.	Modé	disation d'un signal	. 19
	3.1.	Propriétés générales des signaux continus (analogiques)	. 20
	3.2.	Signaux usuels rencontrés	. 22
4.	La tra	ansformée de Laplace	. 28
	4.1.	Définition	. 28
	4.2.	Propriétés	. 28
	4.3.	Transformées des signaux usuels	. 32
	4.4.	Application de la transformée de Laplace	. 34
5.	Fonct	ion de Transfert	. 39
	5.1.	Définition	. 39
	5.2.	Fonction de transfert et réponse impulsionnelle	. 39
	5.3.	Représentation de la fonction de transfert	. 39
Chapi	itre 2	Schéma fonctionnels	45
1.		duction	
2.		ents de base des schémas fonctionnels	
3.	Trans	formation des schémas fonctionnels	. 48
	3.1.	Réduction de schéma-bloc	. 48
	3.2.	Manipulation de schéma-bloc	. 51
4.		l'entrées multiples	
5.	Réduc	ction de schéma-bloc de grande taille	. 53
	5.1.	Exemple à entrée simple	. 54
	5.2.	Exemple à entrées multiples	. 56
6.	Graph	he de fluence	. 58
	6.1.	Définitions	. 58

	6.2.	Algèbre des graphes de fluences
	6.3.	Règle de Mason
Chapi	${ m tre}~3$	Modélisation des SLCI 65
1.	Intro	luction
2.	Systè	me du premier ordre
	2.1.	Définition d'un système du premier ordre
	2.2.	Fonction de transfert d'un système du premier ordre 67
	2.3.	Pôle de la fonction de transfert du premier ordre
	2.4.	Réponses temporelles d'un système du premier ordre 67
3.	Systè	me du second ordre
	3.1.	Définition d'un système du second ordre
	3.2.	Fonction de transfert d'un système du second ordre
	3.3.	Pôles de la fonction de transfert du second ordre
	3.4.	Réponses temporelles d'un système du second ordre
	3.5.	Cas particulier de l'oscillateur harmonique
4.	Autre	s modèles particuliers
	4.1.	Gain pur
	4.2.	Intégrateur pur
	4.3.	Dérivateur pur
	4.4.	Retard pur
5.	Génér	ralisation des modèles de SLCI
	5.1.	Systèmes d'ordre supérieur à 2
	5.2.	Exemple d'une fonction de transfert d'ordre 3
6.	Identi	fication d'un modèle de comportement
	6.1.	Formule de Bureau
	6.2.	Modèle de Strejc
Chapi	${ m tre}~4$	Analyse fréquentielle 95
1.	Répoi	nse harmonique
	1.1.	Exemple de réponse harmonique dans le domaine temporel 98
2.	Repré	sentation graphique de la réponse harmonique
	2.1.	Diagramme de Bode
	2.2.	Diagramme de Nyquist
	2.3.	Diagramme de Black-Nichols
3.	Analy	rse fréquentielle des modèles usuels
	3.1.	Diagrammes de Bode : méthodologie générale
	3.2.	Diagrammes de Nyquist : méthodologie générale
	3.3.	Diagrammes de Black : méthodologie générale
4.	$\operatorname{Etud}\epsilon$	e du transitoire de la réponse harmonique
	4.1.	Exemple d'un système du premier ordre
	4.2.	Exemple d'un système du second ordre
Chapi	${ m tre}~5$	Asservissements des systèmes linéaires 13
1.	Intro	<mark>luction</mark>

2.	Orga	nisation d'un asservissement
	2.1.	Schémas fonctionnels associés aux systèmes asservis
	2.2.	Présence d'une perturbation : la régulation
	2.3.	Schéma fonctionnel complet
	2.4.	Fonctions de transferts associées à un système asservi
3.	Asse	rvissement des SLCI modèles
	3.1.	Asservissement d'un intégrateur
	3.2.	Asservissement d'un système du premier ordre
	3.3.	Asservissement d'un système du second ordre
Chapi	tre 6	Performances des systèmes asservis 143
1.	Intro	duction
2.	Préci	<mark>ision</mark>
	2.1.	Précision en boucle ouverte
	2.2.	Précision en boucle fermée
	2.3.	Effet d'une perturbation
3.	Rapi	<u>dité</u>
	3.1.	Réponse temporelle
	3.2.	Réponse harmonique
	3.3.	Influence des pôles dominants
Chapi	tre 7	Stabilité des systèmes asservis 161
1.	Cont	exte et critère de stabilité fondamentale
2.	$\operatorname{Crit} olimits$	ere algébrique de Routh
	2.1.	Tableau de Routh
	2.2.	Exemple d'application du critère de Routh-Hurwitz 167
3.	$\operatorname{Crit} \grave{\epsilon}$	ere graphique du revers
	3.1.	Critère du revers dans le plan de Nyquist
	3.2.	Critère du revers dans le plan de Black
	3.3.	Critère du revers dans le plan de Bode
4.	$\operatorname{Crit} \grave{\epsilon}$	ere de Nyquist
Chapi		Correction des systèmes asservis 181
1.		ssité de la correction
2.	Corr	ecteur P, I et D
3.		ecteur PI et PD
4.	Corr	ecteur PID
Chapi		Initiation à la représentation d'état 183
Annex		187
Annex		Alphabet Grec 187
Annex		Unités du Système International 189
Annex		Pierre-Simon de Laplace 191
Annex		Transformation de Laplace 193
1.		nitions
2.	_	riétés
3.	Table	e des transformées de Laplace

Annex	$\mathbf{e} \; \mathbf{E}$	Rappel sur les nombres complexes	197
Annex	$\mathbf{e} \; \mathbf{F}$	Équations différentielles à coefficients constants	203
1.	Réso	olution équation différentielle du premier ordre	. 203
	1.1.	Sans second membre	. 203
Annex	$\mathbf{e} \; \mathbf{G}$	Décomposition en éléments simples	207
1.	Cont	texte	. 207
2.	Frac	tions rationnelles rencontrées en automatique	. 207
3.	Déco	omposition en éléments simples	. 208
4.	Déte	ermination des coefficients de la DES	. 209
	4.1.	Par identification	. 209
Annex	е Н	Systèmes du second ordre	211
1.	Aba	ques de la réponse temporelle	. 212
2.	Anal	lyse fréquentielle	. 217
Annex	e I	Initiation à Scilab	217
1.	Prés	entation générale	. 217
2.	Synt	axe : console	. 218
3.	Poly	nômes et fractions rationnelles	. 219
4.	Vect	eurs et matrices	. 221
5.	Trac	er de figures	. 225
6.	Prog	grammation	. 226
7.	SLCI	ı avec Scilab	. 228
	7.1.	Définition d'un système linéaire	. 228
	7.2.	Simulation temporelle d'un système linéaire	. 229
	7.3.	Système du premier ordre	
	7.4.	Carte des pôles et zéros	
	7.5.	Asservissement	. 233
8.	Scila	ıb-Xcos	. 234
	8.1.	Lancer Xcos	. 234
	8.2.	Diagramme simple	. 234
	8.3.	Simulation	. 234
	8.4.	Blocs « To Workspace » ou « From Workspace »	. 235
Annex	e J	Échelle logarithmique et le décibel	237
1.		pel sur le logarithme décimal	. 237
2.		elle logarithmique décimale	
3.		écibel	
4.	Diag	gramme de Bode	. 239
5.		vé d'un diagramme de Bode avec Scilab	
Annex		Transformée de Laplace inverse	243
1.		texte	. 243
2.		hode de Gaver-Stehfest	
3.		hode de Talbot fixe	
Référe			245
Acrons			249

	MATIERES

Glossaire	251
Liste des Symboles	253

Avant-propos

Programme

Ce cours est une introduction à l'automatique pour des étudiants de deuxième année de classe préparatoire scientifique.

L'objectif principal de l'automatique est de permettre le contrôle des **systèmes dynamiques** de toutes natures que ce soient : mécanique, chimique, électronique, optique, thermique, acoustique.... Tout en respectant certaines contraintes de performances (rapidité, précision, stabilité...).

Nous limiterons notre étude aux systèmes linéaires continus et invariants. La modélisation de ces systèmes passe par la mise en équation du comportement physique des systèmes sous forme d'équations différentielles. Cette étape ne fait pas à proprement parler partie d'un cours d'automatique, en effet chacunes des disciplines construisent cette modélisation en se basant sur les principes et les hypothèses les plus adaptés à un problème donné. La modélisation permet une étude systématique des équations différentielles en proposant des modèles généraux et ce quelque soit la nature du procédé.

L'analyse nous permettra de caractériser et d'identifier ces modèles à partir des réponses aux sollicitations et de leurs performances.

Le **contrôle** est un concept très générale permettant de regrouper toutes les méthodes et techniques permettant de commander un système dynamique. Dans ce cours nous présenterons que les principes d'asservissement et de régulation. Nous verrons comment il est possible d'élaborer une commande adaptée (corrigée) pour un procédé quelconque, notamment lorsque ceux-ci présenterons des défauts de performance.

Organisation du document

Les chapitres suivent un découpage classique autour des trois pilliers discutés précedemment que sont la **modélisation**, l'analyse et le **contrôle**. (c.f Figure A).

Le lecteur pourra s'appuyer sur un grand nombre d'annexes qui ont pour objectifs de rappeler et de détailler des notions prérequises ou encore approfondir quelques aspects hors programme pour une deuxième lecture.

 ${\bf Figure} \ {\bf A.} - {\bf Organisation} \ {\bf du} \ {\bf document}.$

A. Alphabet Grec

Nom	Minuscule	Majuscule	Correspondance latine	Usages courants
alpha	α	A	a	angles
bêta	β	В	b	angles
gamma	γ	Γ	g	angles
delta	δ	Δ	d	variations
epsilon	$\epsilon,arepsilon$	${f E}$	e	petite quantité
zéta	ζ	Z	${f z}$	-
êta	η	Н	é (long)	rendement
thêta	θ, ϑ	Θ	h	angles
iota	ι	I	i	-
kappa	$\kappa,~arkappa$	K	k	-
lambda	λ	Λ	1	longueur, densité linéique
mu	μ	M	m	masse réduite
nu	u	N	n	fréquence
ksi	ξ	Ξ	ks	coefficient sans dimension
omicron	O	O	O	-
pi	π, ϖ	П	p	Π :plan
rhô	ho,~arrho	P	r	densité volumique
sigma	σ,ς	Σ	S	σ : densité surfacique, $\Sigma: {\rm Syst\`eme}$
tau	au	${f T}$	\mathbf{t}	temps, durée relative
upsilon	v	Y	u	-
phi	$\phi,arphi$	Φ	$_{\mathrm{f,ph}}$	angles
khi	χ	X	kh	coefficients
psi	ψ	Ψ	ps	fonction d'onde
oméga	ω	Ω	ô	vitesse angulaire, angle solide

Tableau A.1. – Lettres de l'alphabet Grec et leurs usages courants en physique (non exhaustifs)

H. Systèmes du second ordre

Nous regroupons dans cette annexe les différents résultats obtenus lors de l'étude des système linéaires du second ordre. Ces ré

1. Abaques de la réponse temporelle

Dépassement

Temps de réponse à 5%

Tableau H.1. – Réponses temporelles d'un système du 2nd ordre pour les différents régimes.

Paramètres : (pour tous) $K=1, E_0=1$ (apériodique) $\xi=2, \omega_0=1$ (i.e $\tau_1=3.73$ et $\tau_2=0.26$) (critique) $\xi=1, \omega_0=1$ (i.e $\tau=1$) (pseudo-périodique) $\xi=0.3$ et $\omega_0=1$

2. Analyse fréquentielle

Diagramme de Bode

Phénomène de résonance

Références

- [1] Régulation automatique (analogique) (REG). http://php.iai.heig-vd.ch/~mee/.
- [2] http://www.demosciences.fr/projets/scilab-xcos/-utilisation/premiers-pas.
- [3] Xcos pour les vrais debutants. https://scilab.developpez.com/tutoriels/debuter/apprendre-xcos-debutant/.
- [4] Denis Arzelier. Représentation et analyse des systèmes lineaires (pc7bis), 2005.
- [5] B. Bayle and J. Gangloff. Systèmes et asservissements à temps continu, 2009.
- [6] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah. *Modeling and Simulation in Scilab/Scicos*. Springer, 2006.
- [7] H. Garnier. http://w3.cran.univ-lorraine.fr/hugues.garnier/?q=content/teaching.
- [8] Y. Granjon. Automatique : systèmes linéaires, non linéaires, à temps continu, à temps discret, représentation d'état, événements discrets. Dunod, Paris, 2015.
- [9] E. Laroche and H. Halalchi. Asservissement des systèmes lineaires à temps continu. http://eavr.u-strasbg.fr/~laroche/student.
- [10] O. Le Gallo. Automatique des systèmes mécaniques : Cours, travaux pratiques et exercices corrigés. Sciences de l'ingénieur. Dunod, 2009.
- [11] Joe Mabel. Régulateur à boules au Georgetown PowerPlant Museum à Seattle. CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5694146.
- [12] B. Marx. Outils Mathématiques pour l'ingénieur Traitement du Signal. http://w3.cran.univ-lorraine.fr/perso/benoit.marx/enseignement.html.
- [13] B. Marx. Contrôle des systèmes linéaires. http://w3.cran.univ-lorraine.fr/perso/-benoit.marx/enseignement.html.
- [14] F. Orieux. Automatique : Systèmes linéaires et asservissements. Notes de Cours, Master 2 Outils et systèmes de l'astronomie et de l'Espace, 20017-1018.
- [15] E. Ostertag. Systèmes et asservissements continus : Modélisation, analyse, synthèse des lois de commande. Ellipses Marketing, 2004.
- [16] R. Papanicola. Schéma-blocs avec PGF/TIKZ. https://sciences-indus-cpge.papanicola.info/IMG/pdf/schema-bloc.pdf.
- [17] R. Papanicola. Sciences industrielles PCSI: Mécanique et automatique. Ellipses Marketing, 2003.

246 RÉFÉRENCES

[18] R. Papanicola. Sciences industrielles PSI: Mécanique et automatique. Ellipses Marketing, 2010.

- [19] Marsyas-Travail personnel. Clepsydre athénienne reconstituée, Musée de l'Agora antique d'Athènes. CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=476174.
- [20] Consortium Scilab. Introduction to Scilab. www.scilab.org/content/download/ 247/1702/file/introscilab.pdf.
- [21] S. Steer and Y. Degré. Scilab: De la théorie à la pratique II. Modéliser et simuler avec Xcos. Éditions D-BookeR, 2014.
- [22] C. Sueur, P. Vanheeghe, and P. Borne. Automatique des systèmes continus. Editions Technip.
- [23] E. Thomas. TP Scilab. http://cpgeptljg.free.fr/scenari/TP_INFO/TP_info_12_ordre/co/module_TP_1_2_ordre_5.html.

Acronymes

DES Décomposition en Éléments Simples

FTBF Fonction de Transfert en Boucle Fermée

FTBO Fonction de Transfert en Boucle Ouverte

FTCD Fonction de Transfert de la Chaîne Directe

FTCR Fonction de Transfert de la Chaîne de Retour

MEI Matière-Énergie-Information

MIMO Multiple Input Multiple Output

SISO Single Input Single Output

SLCI Système Linéaire Continu et Invariant

TL Transformée de Laplace

Glossaire

Asservissement L'asservissment consiste à contrôler un système dynamique pour que

sa réponse temporelle suive une consigne variable au cours du temps.

Régulation La régulation est un particulier d'asservissement consistant à garder

une consigne constante en présence de perturbation.

Liste des Symboles

t	Variable temporelle
p	Indéterminée de polynôme
s(t)	Fonction/Signal dans le domaine temporel
S(p)	Fonction/Signal dans le domaine de Laplace de la fonction $\boldsymbol{s}(t)$
u(t)	Fonction échelon unité ou de Heaviside
$\delta(t)$	Distribution de Dirac
r(t)	Fonction rampe unité
$\mathscr{L}\left\{ f(t)\right\}$	Transformation de Laplace de la fonction $f(t)$
$\mathscr{L}^{-1}\left\{ F(p)\right\}$	Transformation de Laplace inverse de la fonction $\mathcal{F}(p)$
H(p)	Fonction de transfert
N(p)	Polynôme du numérateur d'une fraction rationnelle
D(p)	Polynôme du dénominateur d'une fraction rationnelle
ω	Pulsation
$H(j\omega)$	Nombre complexe associé à la fonction de transfert $H(p)$
E_0	Paramètre dimensionnelle d'amplitude de l'entrée
K	Gain statique
ω_0	Pulsation propre
${\rm Im}[H(j\omega)]$	Partie imaginaire du nombre complexe $H(j\omega)$
${\rm Re}[H(j\omega)]$	Partie réelle du nombre complexe $H(j\omega)$
ξ	Coefficient d'amortissement

$G(\omega)$	Gain naturel de la réponse harmonique en fonction de la pulsation
$G_{dB}(\omega)$	Gain en dB de la réponse harmonique en fonction de la pulsation
$\phi(\omega)$	Déphasage de la réponse harmonique en fonction de la pulsation
D_k	k-ème dépassement
$t_{5\%}$	Temps de réponse à 5%