In [83]:

import pandas as pd
import matplotlib.pyplot as mlt
import numpy as np

In [5]:

data=pd.read_csv('E:\\bigmart_data.csv')
data

Out[5]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outl
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	

8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	
8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	
8520	NCJ29	10.600	Low Fat	0.035186	Hea l th and Hygiene	85.1224	
8521	FDN46	7,210	Regular	0.145221	Snack Foods	103.1332	
8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	

8523 rows × 12 columns

•

```
In [11]:
```

```
data.isnull().sum()
```

Out[11]:

```
Item_Identifier
                                 0
Item_Weight
                              1463
Item_Fat_Content
                                 0
Item_Visibility
                                 0
Item_Type
                                 0
Item MRP
                                 0
Outlet Identifier
                                 0
Outlet Establishment Year
                                 0
Outlet_Size
                              2410
Outlet_Location_Type
                                 0
Outlet_Type
                                 0
Item_Outlet_Sales
                                 0
dtype: int64
```

In [13]:

```
data.shape
```

Out[13]:

(8523, 12)

data.info()

In [16]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

Non-Null Count Dtype # Column ___ _____ -----____ Item_Identifier 0 8523 non-null object 1 Item_Weight 7060 non-null float64 2 8523 non-null object Item_Fat_Content 3 Item_Visibility 8523 non-null float64 4 Item_Type 8523 non-null object 5 Item_MRP 8523 non-null float64 8523 non-null 6 Outlet Identifier object 7 Outlet_Establishment_Year 8523 non-null int64 Outlet_Size 8 6113 non-null object Outlet_Location_Type 9 8523 non-null object Outlet Type 8523 non-null object 8523 non-null Item_Outlet_Sales float64

dtypes: float64(4), int64(1), object(7)

memory usage: 566.0+ KB

In [17]:

data.describe()

Out[17]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In [19]:

data.fillna(0)

Out[19]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outl
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	
8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	
8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	
8520	NCJ29	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	
8521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	
8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	

8523 rows × 12 columns

In [26]:

```
data.plot('Outlet_Size','Item_Outlet_Sales')
```

Out[26]:

<AxesSubplot:xlabel='Outlet_Size'>

In [31]:

```
mlt.plot([1,2,3,4])
```

Out[31]:

[<matplotlib.lines.Line2D at 0x6772100>]

In [32]:

mlt.plot([4,3,2,1])

Out[32]:

[<matplotlib.lines.Line2D at 0x63c7ac0>]

In [36]:

```
mlt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
mlt.axis([0, 6, 0, 20])
mlt.show()
```


In [41]:

mlt.scatter(data['Outlet_Establishment_Year'],data['Item_Outlet_Sales'])

Out[41]:

<matplotlib.collections.PathCollection at 0x66dc970>


```
In [42]:
```

data

Out[42]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outl
0	FDA15	9.300	Low Fat	0.016047	Dairy	249.8092	
1	DRC01	5.920	Regular	0.019278	Soft Drinks	48.2692	
2	FDN15	17.500	Low Fat	0.016760	Meat	141.6180	
3	FDX07	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	
4	NCD19	8.930	Low Fat	0.000000	Household	53.8614	
•••							
8518	FDF22	6.865	Low Fat	0.056783	Snack Foods	214.5218	
8519	FDS36	8.380	Regular	0.046982	Baking Goods	108.1570	
8520	NCJ29	10.600	Low Fat	0.035186	Hea l th and Hygiene	85.1224	
8521	FDN46	7.210	Regular	0.145221	Snack Foods	103.1332	
8522	DRG01	14.800	Low Fat	0.044878	Soft Drinks	75.4670	

8523 rows × 12 columns

```
← →
```

In [46]:

```
data['Outlet_Location_Type'].isnull().sum()
```

Out[46]:

0

In [47]:

```
def outlet_loc(x):
    if x=='Tier 1':
        data['Outlet_Location_Type']=1
    elif x=='Tier 2':
        data['Outlet_Location_Type']=2
    else:
        data['Outlet_Location_Type']=3
```

In [52]:

```
data['Outlet_Location_Type'].apply(lambda x:outlet_loc(x))
```

Out[52]:

0	None	
1	None	
2	None	
3	None	
4	None	
	•••	
8518	None	
8519	None	
8520	None	
8521	None	
8522	None	
Name:	: Outlet_Location_Type, Length: 8523, dtype: c	object

In [56]:

```
mlt.scatter(data['Item_Visibility'].head(10),data['Item_MRP'].head(10))
```

Out[56]:

<matplotlib.collections.PathCollection at 0x7d6e1d8>

In [59]:

mlt.bar(data['Outlet_Location_Type'].head(3),data['Item_Outlet_Sales'].head(3))

Out[59]:

<BarContainer object of 3 artists>

In [5]:

```
data=[1,2,3,4]
data1=[3,4,1,2]
mlt.plot(data)
```

Out[5]:

[<matplotlib.lines.Line2D at 0x65f4a48>]

In [6]:

mlt.scatter(data,data1)

Out[6]:

<matplotlib.collections.PathCollection at 0x66325b0>

In [28]:

```
data2=[60,50,70,30]
data3=['Apple','Banana','Orange','Greps']
mlt.pie(data2,labels=data3)
```

Out[28]:

In [135]:

```
mlt.bar(data3,data2)
mlt.legend()
```

No handles with labels found to put in legend.

Out[135]:

<matplotlib.legend.Legend at 0xfa4b970>

In [19]:

mlt.plot(data,'ro')

Out[19]:

[<matplotlib.lines.Line2D at 0xcac9bc8>]

In [20]:

data1

Out[20]:

[3, 4, 1, 2]

In [21]:

data

Out[21]:

[1, 2, 3, 4]

In [32]:

mlt.plot(data1,data2)

Out[32]:

[<matplotlib.lines.Line2D at 0xcbecef8>]

In [33]:

mlt.plot(data1,data2,marker='o')

Out[33]:

[<matplotlib.lines.Line2D at 0xcc45e38>]

In [35]:

mlt.plot(data1,data2,marker='o',linestyle='dotted')

Out[35]:

[<matplotlib.lines.Line2D at 0xcd2a658>]

In [36]:

mlt.plot(data1,data2,marker='o',linestyle='dashed')

Out[36]:

[<matplotlib.lines.Line2D at 0xcd65478>]

In [39]:

mlt.plot(data1,data2,ls=':')#indicates doted

Out[39]:

[<matplotlib.lines.Line2D at 0xcdde088>]

In [40]:

mlt.plot(data1,data2,marker='o',ls='--')

Out[40]:

[<matplotlib.lines.Line2D at 0xce09e80>]

In [41]:

mlt.plot(data1,data2,marker='o',ls='-.')

Out[41]:

[<matplotlib.lines.Line2D at 0xcc6e568>]

In [42]:

mlt.plot(data1,data2,marker='o',ls=' ')

Out[42]:

[<matplotlib.lines.Line2D at 0xcdf01f0>]

In [47]:

```
mlt.scatter(data3,data1,label=['fruits','quantity'])
```

Out[47]:

<matplotlib.collections.PathCollection at 0xdf15700>

In [51]:

```
mlt.xlabel('fruit')
mlt.ylabel('quantity')
mlt.scatter(data3,data1)
mlt.title('fruit vs quantity')
mlt.grid()
```


In [53]:

```
mlt.xlabel('fruit')
mlt.ylabel('quantity')
mlt.scatter(data3,data1)
mlt.title('fruit vs quantity')
mlt.grid(axis='x')
```


In [65]:

```
mlt.xlabel('fruit')
mlt.ylabel('quantity')
mlt.scatter(data3,data1)
mlt.title('fruit vs quantity')
mlt.grid(color='Green',linestyle='--')
```


In [78]:

```
datax=[1,2,3]
mlt.subplot(1,2,1)
mlt.plot(data1)
mlt.subplot(1,2,2)
mlt.plot(data)
mlt.subplot(2,2,1)
mlt.plot(data2)
```

Out[78]:

[<matplotlib.lines.Line2D at 0xe147388>]

In [134]:

```
color=np.array(['red','black','blue','green','voilet'])
mlt.scatter(data1,data,c='red',cmap='viridis')
mlt.colorbar()
mlt.legend()
```

No handles with labels found to put in legend.

Out[134]:

<matplotlib.legend.Legend at 0xfa1adf0>

In [93]:

```
import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])

plt.scatter(x, y, c=colors, cmap='viridis')
plt.colorbar()
plt.show()
```


In [133]:

```
import matplotlib.pyplot as plt
import numpy as np

x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
sizes = np.array([20,50,100,200,500,1000,60,90,10,300,600,800,75])
plt.scatter(x, y, c=colors, cmap='viridis',s=sizes)

plt.colorbar()
plt.legend()
plt.show()
```

No handles with labels found to put in legend.

In [102]:

```
mlt.barh(data,data2,color='pink')
```

Out[102]:

<BarContainer object of 4 artists>

In [108]:

```
mlt.figure(figsize=[10,10])
mlt.bar(data2,data,color='Pink',width=0.20)
```

Out[108]:

<BarContainer object of 4 artists>

In [131]:

```
mlt.hist(data1)
mlt.legend()
```

No handles with labels found to put in legend.

Out[131]:

<matplotlib.legend.Legend at 0xe5e8e98>

In [113]:

data

Out[113]:

[1, 2, 3, 4]

In [121]:

```
data2=[60,50,70,30]
data3=['Apple','Banana','Orange','Greps']
mlt.pie(data2,labels=data3)
```

Out[121]:

In [130]:

```
data2=[60,50,70,30]
data3=['Apple','Banana','Orange','Greps']
mlt.pie(data2,labels=data3,explode=[0.2,1,0.3,0])
mlt.legend()
```

Out[130]:

<matplotlib.legend.Legend at 0xe3b5ac0>

