Unidade 01 (Parte 2) Fundamentos de Grafos

Prof. Ricardo Moraes ricardo.moraes@ufsc.br

Conceitos Básicos

O que é um grafo?

- Estrutura de Dados utilizada para modelar uma grande variedade de problemas do mundo real.
- Formalmente um grafo é dado por G (V, A), onde:
 - □ V conjunto não-vazio: vértices ou nodos;
 - □ A conjunto de pares ordenados de elementos distintos de V: arestas
 - a=(v,w), onde v e w € V

O que é um grafo?

- G1
- V = {Maria, Pedro, Joana, Luiz}
- A = {(Maria, Pedro),(Joana, Maria),(Pedro, Luiz),(Joana, Pedro)}

Exercício 01

c)

Exercício 02

- Cinco turistas se encontram em um bar de Araranguá e começam a conversar, cada um falando de cada vez, com um só companheiro da mesa. O conhecimento de línguas dos turistas é mostrado na tabela a seguir.
- Construa um grafo que represente todas as possibilidades de cada turista dirigir a palavra a outro, sendo compreendido.

Turista	Inglês	Francês	Português	Alemão	Espanhol
1	X	X	X		X
2	X	X		X	
3		X	X	X	
4			X	X	X
5		X		X	X

Revisão

- O que é um Grafo?
- O que é uma Aresta?
- O que é um Vértice?
- Para que serve um Grafo?

Dígrafo (Grafo Orientado)

- Considere, agora, o grafo definido por:
 - □ V = {p | p é uma pessoa da família Castro}
 - $\square A = \{ (v,w) \mid < v \text{ \'e pai/mãe de } w > \}$

Dígrafo (Grafo Orientado) - Exemplo

- V = { Emerson, Isadora, Renata, Antonio, Rosane, Cecília, Alfredo }
- A = {(Isadora, Emerson), (Antonio, Renata), (Alfredo, Emerson), (Cecília, Antonio), (Alfredo, Antonio)}
- A relação definida por A não é simétrica pois se <v é pai/mãe de w>, não é o caso de <w é pai/mãe de v>.

Ordem

A ordem de um grafo G é dada pela cardinalidade do conjunto de vértices, ou seja, pelo número de vértices de G.

Ordem(G1)=4

ordem(G2)=6

Adjacência

- Em um grafo simples (a exemplo de G1) dois vértices v e w são adjacentes (ou vizinhos) se há uma aresta e=(v,w) em G.
- Esta aresta é dita ser incidente a ambos, v e w.
- É o caso dos vértices Maria e Pedro:

Adjacência

- No caso do grafo ser dirigido, a adjacência (vizinhança) é especializada em:
 - Sucessor: um vértice w é sucessor de v se há um arco que parte de v e chega em w.
 - □ Antecessor: um vértice v é antecessor de w se há um arco que parte de v e chega em w.

Adjacência

Emerson e Antonio são sucessores de Alfredo.

Alfredo e Cecília são antecessores de

Antonio.

10

Grau

O grau de um vértice é dado pelo número de arestas que lhe são incidentes. Por exemplo:

- Grau(Pedro)=3
- Grau(Maria)=2

Grau - Grafo Orientado

Grau de emissão: o grau de emissão de um vértice v corresponde ao número de arcos que partem de v.

Grau de recepção: o grau de recepção de um vértice v corresponde ao número de arcos que chegam a v.

Grau - Grafo Orientado

- GrauDeEmissão(Antonio) = 1
- GrauDeEmissao(Alfredo) = 2
- GrauDeEmissao(Renata) = 0

Grau - Grafo Orientado

- GrauDeRecepção(Antonio) = 2
- GrauDeRecepção(Alfredo) = 0
- GrauDeRecepção(Renata) = 1

Fonte

Um vértice v é uma fonte se GrauDeRecepção(v) = 0.

■ É o caso dos vértices Isadora, Alfredo e

Cecília.

.

Sumidouro

- Um vértice v é um sumidouro se GrauDeEmissão(v) = 0.
- É o caso dos vértices Renata e Emerson.

- Um laço é uma aresta ou arco do tipo e=(v,v), ou seja, que relaciona um vértice a ele próprio.
- No exemplo há três ocorrências de laços para um grafo não orientado.

Grafo Regular

- Um grafo é dito ser regular quando todos os seus vértices tem o mesmo grau.
- O G3, é dito ser um grafo regular-3 pois todos os seus vértices tem grau 3.

Grafo Completo

- Um grafo é dito ser completo quando há uma aresta entre cada par de seus vértices.
- Estes grafos são designados por Kn, onde n é a ordem do grafo.

Grafo Bipartido

Um grafo é dito ser bipartido quando seu conjunto de vértices V puder ser particionado em dois subconjuntos V1 e V2, tais que toda aresta de G une um vértice de V1 a outro de V2.

Exemplo:

- □ Sejam os conjuntos
 - H={h | h é um homem} e
 - M={m | h é um mulher}

Grafo Bipartido

Grafo G(V,A) onde:

V = H U M

 $A = \{(v,w) \mid (v \in H e w \in M)\}$ ou $(v \in M e w \in H) e$ <v foi namorado de w>}

Um grafo G(V,A) é dito ser rotulado em vértices (ou arestas) quando a cada vértice (ou aresta) estiver associado um

Maria

rótulo.

Joana

Pedro

Carla

Grafo Valorado

Um grafo G(V,A) é dito ser valorado quando existe uma ou mais funções relacionando V e/ou A com um conjunto de números.

Grafo Valorado

- V = {v | v é uma cidade com aeroporto}
- A = {(v,w,t) | <há linha aérea ligando v a w, sendo t o tempo esperado de voo>}

Multigrafo

Um grafo G(V,A) é dito ser um multigrafo quando existem múltiplas arestas entre pares de vértices de G.

G8 = há duas arestas entre os vértices A e C e entre os vértices A e B, caracterizando-o como um multigrafo.

Subgrafo

■ Um grafo Gs(Vs, Es) é dito ser subgrafo de um grafo G(V,E) quando Vs⊂V e As ⊂ A.

OG9 é subrafo de G8.

Exercício 03

- O grafo a seguir representa as respostas colhidas em uma turma de crianças de escola na faixa de 7 anos, face à pergunta: "Quais são os colegas de quem você mais gosta?"
- Expresse, usando a notação conveniente, os seguintes fenômenos observáveis no grafo:
 - a) posições de liderança;
 - b) amizades recíprocas;
 - c) criança com problemas de relacionamento;
 - d) criança arredia.

Exercício 03 (cont)

Matrizes

- É a representação numérica de um grafo.
- Para fins de cálculo, associa-se ao grafo 3 tipos de matrizes, as quais são mais habitualmente usadas:
 - Matriz de Adjacência
 - Matriz Latina
 - Matriz de Incidência

Matriz de Adjacência

- Ou Matriz Quadrada (n X n)
- É a matriz mais comumente usada

$$a_{ij} = 1 \Leftrightarrow \exists (x_i, x_j)$$

$$a_{ij} = 0 \Leftrightarrow \not\exists (x_i, x_j)$$

Matriz de Adjacência

	X1	X2	X3
X1	0	1	1
X2	0	0	1
X3	0	0	1

.

Matriz Latina

- É uma matriz figurativa onde os elementos são conjuntos de vértices;
- Utilizada em problemas de enumeração de caminhos.

Matriz Latina

M

Matriz Latina

- O trabalho computacional com matrizes latinas exige o uso de cadeias de caracteres, portanto, a linguagem a ser utilizada deve fornecer facilidades neste tratamento.
- Por outro lado, ao contrário das matrizes de adjacência onde vértices sem arco eram representados por zero, em matrizes latinas são representadas por um caractere nulo.

Matriz de Incidência

- Matriz n X m, onde
 - □ n é o número de vértices do grafos (linhas).
 - □m é o número de arestas do grafo (colunas).
- Definida por:

$$b_{ij} = +1 \Leftrightarrow \exists (x_i, x_j) = u_j, x_i \neq x_k$$

 $b_{ij} = -1 \Leftrightarrow \exists (x_k, x_i) = u_j, x_k \neq x_i$
 $b_{ij} = 0$ em todos outros casos

Matriz de Incidência

	u1	u2	u3	u4
x1	+1	+1	0	0
x2	0	-1	+1	0
х3	-1	0	-1	0

Matriz de Incidência – Contruir!!

Matriz de Incidência

	u1	u2	u3	u4	u5
x1	+1	+1	0	0	0
x2	-1	0	+1	0	-1
х3	0	0	-1	+1	0
х4	0	-1	0	-1	+1

v

Matriz de Incidência

 A relação definida na matriz de incidência apenas especifica se determinado vértice é extremidade inicial ou final de um arco uj.

Por utilizar mais espaço de memória (dada a maior quantidade de elementos a representar), a matriz de incidência é menos utilizada, no entanto, muito útil quando o problema a ser resolvido possui poucos vértices e arcos a considerar.

- Dado o grafo, construa:
 - a) matriz de adjacência
 - b) matriz latina
 - c) matriz de incidência

Exercício 05

Dada a matriz de adjacência abaixo, construa o grafo que ela representa.

	a	b	c	d	e
a	0	1	0	1	0
b	0	0	0	1	1
c	0	1	0	0	1
d	0	0	1	0	0
e	1	0	1	0	0