

Cross-Modal Generalization: Learning in Low Resource Modalities via Meta-Alignment

Paul Pu Liang, Peter Wu, Liu Ziyin, Louis-Philippe Morency, Ruslan Salakhutdinov

pliang@cs.cmu.edu

Larnegie University

Cross-modal Generalization

MACHINE LEARNING

DEPARTMENT

Cross-modal Generalization

How can we learn in low-resource target modalities?

A DDD O A CILIEC	(META-)TRAIN			
APPROACHES	Modality	Data	Labels	
Transfer learning [3]	Target	Many	None	
Unsupervised pre-training [12]	Target	Many	None	
Unsupervised meta-learning [26]	Target	Many	None	
Domain adaptation [59]	Target	Many	Many	
Few-shot learning [17]	Target	Many	Many	
Within modality + cross-modal	Source	Many	None	
learning [14, 56, 58, 64, 66]	Target	Many	Many	
Cross model concrelization (ours)	Source	Many	Many	
Cross-modal generalization (ours)	Target	Few	None	

Requires only a few samples and no labels in the target modality beyond those used for few-shot fine tuning.

Cross-modal supervision is required under partial observability across modalities and tasks.

CroMA: Cross-modal Meta Alignment

Using Strong and Weak Cross-modal Pairs

Algorithm 1 CROMA: Cross-modal Meta-Alignment

Initialize meta-alignment encoders e_s^{meta} and e_t^{meta} , meta-classifier ϕ^{meta} . for iteration = $1, 2, \dots$ do Sample alignment task \mathcal{T}_a with train $\mathcal{D}_{\text{train}}^{\mathcal{T}_a}$ and test data $\mathcal{D}_{\text{test}}^{\mathcal{T}_a}$ of pairs $\{x_s, x_t\}$. Initialize $e_s := e_s^{\text{meta}}, e_t := e_t^{\text{meta}}$ and compute alignment loss (2) on train data $\mathcal{D}_{\text{train}}^{\mathcal{T}_a}$. Compute \tilde{e}_s and \tilde{e}_t after gradient updates using alignment loss wrt e_s and e_t . Update meta-alignment encoders $e_s^{\text{meta}} \leftarrow e_s^{\text{meta}} + \epsilon(\widetilde{e}_s - e_s^{\text{meta}}), e_t^{\text{meta}} \leftarrow e_t^{\text{meta}} + \epsilon(\widetilde{e}_t - e_t^{\text{meta}}).$ Sample source modality task \mathcal{T}_s with train $\mathcal{D}_{\text{train}}^{\mathcal{T}_s}$ and test data $\mathcal{D}_{\text{test}}^{\mathcal{T}_s}$ of pairs $\{x_s, y_s\}$. Initialize $\phi := \phi^{\text{meta}}$ and compute classification loss on train data $\mathcal{D}_{\text{train}}^{\tau_s}$. Compute $\widetilde{\phi}$ after gradient updates using classification loss wrt ϕ . Update meta-classifier $\phi^{\text{meta}} \leftarrow \phi^{\text{meta}} + \epsilon (\widetilde{\phi} - \phi^{\text{meta}})$.

Results on Cross-modal Generalization

TASK	Түре	APPROACH	1-Ѕнот	5-Ѕнот	10-Ѕнот	#TARGET (LABELS)
Text (Yummly) ↓ Image (Yummly)	Unimodal	Pre-training [3, 12]	33.1 ± 2.8	36.4 ± 3.5	49.0 ± 3.8	0(0)
		Unsup. meta-learning [26] (reconstruct)	37.4 ± 0.6	41.7 ± 3.7	49.0 ± 1.0	5131(0)
	Cross-modal	Align + Classify [10, 24, 50, 59, 62]	37.1 ± 3.0	40.0 ± 2.7	47.8 ± 6.6	5131(0)
		Align + Meta Classify [53]	39.4 ± 2.5	40.0 ± 2.3	48.8 ± 7.8	5131(0)
		CROMA (ours)	39.7 ± 1.3	47.1 ± 3.3	51.1 ± 2.1	5131(0)
	Oracle	Within modality generalization [17, 45]	38.9 ± 2.1	42.1 ± 1.4	47.9 ± 5.6	5131(5131)

Few-shot Cross-modal Retrieval

	* *		_			
K	EXPERIMENT	R @1 ↑	R@5 ↑	R @10↑	Rank↓	Cos. ↓
5	No align	1.0%	2.0%	5.5%	101	0.428
	Align	2.0%	5.5%	8.5%	103	0.272
	CROMA	4.0 %	19.5 %	39.0 %	13	0.003
10	No align	0.5%	3.0%	4.5%	101	0.399
	Align	1.5%	11.0%	18.5%	52	0.222
	CROMA	3.5%	$\boldsymbol{17.5\%}$	35.0 %	15	0.004

Meta-alignment is able to perform cross-modal retrieval at fine granularities.

Noisy Target Labels

More robust to noisy labels in the low-resource target modality.

A Simple Analysis: Alignment vs Supervision

- 1. More alignment pairs help, but at most by the performance of the high-resource source task. 2. Quality of alignment matters less noise in alignment data is better.
- 3. Even weak alignment is preferable to supervised learning with enough weakly paired data.