CS11-711: Algorithms for NLP

Sequence labeling, POS tagging, Viterbi

Yulia Tsvetkov

Readings for today's lecture

- J&M SLP3 https://web.stanford.edu/~jurafsky/slp3/8.pdf
- Collins (2011) http://www.cs.columbia.edu/~mcollins/hmms-spring2013.pdf

Levels of linguistic knowledge

Phonetics	The study of the sounds of human language
Phonology	The study of sound systems in human language
Morphology	The study of the formation and internal structure of words
Syntax	The study of the formation and internal structure of sentences
Semantics	The study of the meaning of sentences
Pragmatics	The study of the way sentences with their semantic meanings are used for particular communicative goals

Part of speech tagging

Sequence labeling problems

Map a sequence of words to a sequence of labels

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999)
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment of parallel text (Vogel et al., 1996)
- Compression (Conroy and O'Leary, 2001)
- Acoustic models, discourse segmentation, etc.

Parts of speech

Open classes

- o nouns
- verbs
- adjectives
- adverbs

Closed classes

- prepositions
- o determiners
- o pronouns
- conjunctions
- auxiliary verbs

Parts of speech, more fine-grained classes

- Open classes
 - nouns
 - proper
 - common
 - count
 - mass
 - verbs
 - adjectives
 - adverbs
 - directional
 - degree
 - manner
 - temporal

Actually, I ran home extremely quickly yesterday

Parts of speech, closed classes

prepositions: on, under, over, near, by, at, from, to, with

particles: up, down, on, off, in, out, at, by

determiners: a, an, the

conjunctions: and, but, or, as, if, when

pronouns: she, who, I, others

auxiliary verbs: can, may, should, are

numerals: one, two, three, first, second, third

Part of speech tagsets

Penn treebank tagset (Marcus et al., 1993)

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating conjunction	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg present	eat
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/ subordin-conj	of, in, by	RBR	comparative adverb	faster	WRB	wh-adverb	how, where
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%,&	44	left quote	' or "
LS	list item marker	1, 2, One	TO	"to"	to	**	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	. ! ?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Example of POS tagging

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

There/EX are/VBP 70/CD children/NNS there/RB

Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

The Universal Dependencies

Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic dependencies) across different human languages. UD is an open community effort with over 300 contributors producing more than 150 treebanks in 90 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation guidelines.

- · Short introduction to UD
- UD annotation guidelines
- · More information on UD:
 - · How to contribute to UD
 - · Tools for working with UD
 - Discussion on UD
 - UD-related events
- · Query UD treebanks online:
 - o SETS treebank search maintained by the University of Turku
 - PML Tree Query maintained by the Charles University in Prague
 - o Kontext maintained by the Charles University in Prague
 - o Grew-match maintained by Inria in Nancy
 - INESS maintained by the University of Bergen
- Download UD treebanks

Open class words	Closed class words	Other
ADJ	ADP	PUNCT
ADV	AUX	SYM
INTJ	CCONJ	X
NOUN	DET	
PROPN	<u>NUM</u>	
VERB	PART	
	PRON	
	SCONJ	

Why POS tagging

- Goal: resolve ambiguities
- Text-to-speech
 - o record, lead, protest
- Lemmatization
 - o saw/V \rightarrow see, saw/N \rightarrow saw
- Preprocessing for harder disambiguation problems
 - syntactic parsing
 - semantic parsing

Ambiguities in POS tags

Types:		WS	SJ	Brown	
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)

Ambiguities in POS tags

Types:		WS	SJ	Brown		
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)	
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)	
Tokens:						
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)	
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)	

Most frequent class baseline

- Assigning each token to the class it occurred in most often in the training set
- Always compare a classifier against a baseline at least as good as the most frequent class baseline
- The WSJ training corpus and test on sections 22-24 of the same corpus the most-frequent-tag baseline achieves an accuracy of 92.34%.
- 97% tag accuracy achievable by most algorithms (HMMs, MEMMs, neural networks, rule-based algorithms)

Sequence labeling as text classification

$$\hat{y}_i = \operatorname*{argmax}_{y \in \mathcal{L}} s(\boldsymbol{x}, i, y)$$

Generative sequence labeling: Hidden Markov Models

Markov chain

Formally, a Markov chain is specified by the following components:

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11}a_{12} \dots a_{n1} \dots a_{nn}$	a transition probability matrix A , each a_{ij} represent-
	ing the probability of moving from state i to state j , s.t.
	$\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the

an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i. Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Markov Chain: weather

Markov Assumption:
$$P(q_i = a | q_1...q_{i-1}) = P(q_i = a | q_{i-1})$$

the future is independent of the past given the present

Markov Chain: words

$$\pi = [0.1, 0.7, 0.2]$$

the future is independent of the past given the present

Hidden Markov Models

- In real world many events are not observable
- Speech recognition: we observe acoustic features but not the phones
- POS tagging: we observe words but not the POS tags

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

Hidden Markov Models (HMMs)

$Q=q_1q_2\ldots q_N$	a set of N states
$A=a_{11}\ldots a_{ij}\ldots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state q_i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state <i>i</i> . Some states <i>i</i> may have $\pi_i = 0$.

meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMM example

Types of HMMs

Bakis = left-to-right

Ergodic = fully-connected

+ many more

HMMs in language technologies

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999) and other information extraction tasks
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment of parallel text (Vogel et al., 1996)
- Acoustic models in speech recognition (emissions are continuous)
- Discourse segmentation (labeling parts of a document)

HMM parameters

	$Q = q_1 q_2 \dots q_N$
→	$A=a_{11}a_{12}\ldots a_{n1}\ldots a_{nn}$

a set of N states

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state i

a special **start state** and **end (final) state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

HMMs: algorithms

Forward

Viterbi

Forward– Backward; Baum–Welch **Problem 1 (Likelihood):**

Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

Given an observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence Q.

Given an observation sequence *O* and the set of states in the HMM, learn the HMM parameters *A* and *B*.

HMM tagging as decoding

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1q_2q_3...q_T$.

$$\hat{t}_{1}^{n} = \underset{t_{1}^{n}}{\operatorname{argmax}} P(t_{1}^{n}|w_{1}^{n}) \approx \underset{t_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} \overbrace{P(w_{i}|t_{i})}^{n} \overbrace{P(t_{i}|t_{i-1})}^{n}$$

HMM tagging as decoding

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n \overbrace{P(w_i | t_i)}^{\text{chission transition}} \underbrace{P(t_i | t_{i-1})}$$

How many possible choices?

Part of speech tagging example

	1	suspect	the	present	forecast	is	pessimistic	
noun	•	•	•	•	•	•		
adj.		•		•	•		•	
adv.				•				
verb		•		•	•	•		
num.	•							
det.			•					
punc.								•

With this very simple tag set, $7^8 = 5.7$ million labelings. (Even restricting to the possibilities above, 288 labelings.)

Slide credit: Noah Smith


```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                        ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow \underset{}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
                                                                            Complexity?
return bestpath, bestpathprob
```


$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

5	NNP	MID	VB	JJ	ININ	KB	DI	
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026	
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025	
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041	
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231	
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036	
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068	
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479	
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017	

00028
02337

function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob

```
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                        : recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow \underset{s}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow argmax \ viterbi[s, T]; termination step
bestpath ← the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Beam search

HMMs: algorithms

Viterbi

Forward–Backward: Baum-Welch

Problem 1 (Likelihood):

Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

Given an observation sequence O and an HMM $\lambda =$ (A,B), discover the best hidden state sequence Q. Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

The Forward algorithm

sum instead of max

Viterbi

- n-best decoding
- relationship to sequence alignment

Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968)	speech processing
Needleman and Wunsch (1970)	molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science