W11 – Kody nadmiarowe, zastosowania w transmisji danych

Henryk Maciejewski

Marek Woda

Plan wykładu

 Kody nadmiarowe w systemach transmisji cyfrowej

2. Typy kodów, własności

3. Kody blokowe

Np. Władysław Mochnacki, Kody korekcyjne i kryptografia.

Kody nadmiarowe w systemie transmisji cyfrowej

- Elementowa stopa błędów (BER bit error rate) –
 prawdopodobieństwo przekłamania bitu w czasie transmisji
 = liczba bitów odebranych błędnie / liczba bitów
 przesyłanych
- BER $\sim 10^{-2} 10^{-5}$ w typowych kanałach; wymagania na system transmisji danych BER $\sim 10^{-6} 10^{-9}$.
- Kody nadmiarowe metoda dołączania dodatkowych bitów do danych nadawanych w celu zabezpieczenia danych przed błędami transmisji

Pale Dlue Dot

Voyagor telecomunication

Typowa zależność stopy błędów (sb=BER) od S/N S – moc sygnału, N – moc szumu

- 1 kanał bez korekcji
- 2 korekcja kodem Hamminga(15,11), zdolność korekcyjna t=1
- 3 korekcja kodem BCH(127,64), zdolność korekcyjna t=10

Zastosowania kodów nadmiarowych

- ARQ Automatic Repeat Request
 - koder dodaje informację nadmiarową do bloku danych
 - dekoder sprawdza czy pakiet został przesłany poprawnie, jeśli nie – wysyłane jest żądanie ponownej transmisji bloku (kanał zwrotny)
 - kod detekcyjny np. bit parzystości dodawany do bloku o długości n

Zastosowania kodów nadmiarowych

- FEC Forward Error Correction
 - dekoder wykorzystuje informację nadmiarową do skorygowania błędów
 - kod korekcyjny np. potrajanie bitów (0 000, 1 111)
 - dekoder stosuje algorytm głosujący
- Systemy hybrydowe ARQ z FEC w celu zmniejszenia liczby retransmisji

Typy kodów nadmiarowych

Kody blokowe

- ciąg informacyjny dzielony jest na bloki k-elementowe
- do każdego bloku dołączana jest sekwencja kontrolna powstaje słowo kodowe (wektor kodowy)
- Kody splotowe (rekurencyjne) brak podziału na bloki, kodowanie z wykorzystaniem rejestru przesuwnego
- Kody systematyczne / niesystematyczne
 - Kod systematyczny pierwsze k bitów w słowie kodowym to ciąg informacyjny
- Kody liniowe suma dowolnych dwóch wektorów kodowych jest wektorem kodowym
- Kody cykliczne tworzone za pomocą pierścieni wielomianów nad ciałami skończonymi (też są kodami linowymi)

Kody blokowe

Ciąg informacyjny dzielony jest na bloki k-elementowe, Słowo kodowe n-elementowe, n > k

Kody blokowe oznaczamy symbolem (n,k)

Sprawność kodu R = k/n

Kody blokowe

Wyjście kodera: 2^k różnych wektorów kodowych

Wejście dekodera: 2^n różnych wektorów (*przestrzeń* wektorowa nad ciałem binarnym – GF(2)) GA(n) (w tym 2^k – wektorów kodowych, 2^n - 2^k – niekodowych)

Po przejściu przez kanał transmisyjny wektor kodowy może:

- 1. zostać niezmieniony (brak zakłócenia)
- 2. zostać zmieniony na wektor niekodowy
- 3. zostać zmieniony na inny wektor kodowy

Przypadek 2 – błąd transmisji wykrywalny (korygowalny? – dekoder może znaleźć wektor kodowy różniący się od odebranego najmniejszą liczbą pozycji)

Przypadek 3 – niewykrywalny błąd transmisji

Zdolność korekcyjna i detekcyjna kodu

Odległość Hamminga: d_H(u,v) pomiędzy wektorami kodowymi u,v = liczba pozycji, na których u, v różnią się.

Np.

$$u = [1, 1, 0, 1, 0, 0, 1]$$

 $v = [1, 0, 0, 1, 0, 1, 1]$
 $d_H(u,v) = 2$

Własność: $d_H(u,v) \le d_H(u,w) + d_H(w,v)$

Waga Hamminga wektora kodowego w(u) = liczba współrzędnych niezerowych

$$d_{H}(u,v) = w(u+v)$$

 $u+v = [0,1,0,0,0,1,0]_{0}$

Zdolność korekcyjna i detekcyjna kodu

Odległość minimalna Hamminga pomiędzy wektorami kodowymi, ozn. d – decyduje o zdolności detekcyjnej i korekcyjnej kodu blokowego.

(zachodzi dla kodu liniowego: d = min waga niezerowego wektora kodowego) (dlaczego?)

Zdolność detekcyjna = d-1

(kod o parametrze d może wykryć ciągi błędów o wadze ≤ d-1)

Zdolność korekcyjna

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

Zapis macierzowy kodu liniowego

 m_{1xk} – blok danych

 $c_{x 1xn}$ – wektor kodowy

G_{kxn} – <u>macierz generująca kod</u>

$$c_X = m \cdot G$$

$$G = [I_{kxk} \mid P_{kx(n-k)}]$$

I_{kxk} – macierz jednostkowa

G – macierz o wierszach liniowo niezależnych; kod liniowy to zbiór wszystkich liniowych kombinacji wierszy macierzy G

Zapis macierzowy kodu liniowego

$$\boldsymbol{c}_{X} = \boldsymbol{m} \cdot \boldsymbol{G} = \begin{bmatrix} m_{1}, m_{2}, \dots, m_{k} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{g}_{1} \\ \boldsymbol{g}_{2} \\ \dots \\ \boldsymbol{g}_{k} \end{bmatrix} = m_{1}\boldsymbol{g}_{1} + m_{2}\boldsymbol{g}_{2} + \dots + m_{k}\boldsymbol{g}_{k}$$

Wniosek – każdy wektor kodowy jest liniową kombinacją wierszy macierzy generującej kod

Wiersze macierzy generującej kod – to zbiór <u>wektorów</u> <u>bazowych kodu</u>.

Zapis macierzowy kodu liniowego

$$\boldsymbol{c}_{X} = \boldsymbol{m} \cdot \boldsymbol{G} = \begin{bmatrix} m_{1}, m_{2}, \dots, m_{k} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{g}_{1} \\ \boldsymbol{g}_{2} \\ \dots \\ \boldsymbol{g}_{k} \end{bmatrix} = m_{1} \boldsymbol{g}_{1} + m_{2} \boldsymbol{g}_{2} + \dots + m_{k} \boldsymbol{g}_{k}$$

Przykład kodu (5,2):

$$\boldsymbol{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$[a_1,a_2] \cdot G = [a_1, a_2, a_1, a_2, a_1+a_2]$$

Zapis kodu przy pomocy <u>równań kontrolnych</u> (n-k liniowo niezależnych równań): $a_3 = a_1$

$$a_3 - a_1$$
 $a_4 = a_2$
 $a_5 = a_1 + a_2$

Macierz kontrolna (macierz parzystości)

Dla każdej macierzy generującej kod istnieje G_{kxn} istnieje macierz kontrolna $H_{(n-k)xn}$ tż. $G \cdot H^T = 0$

$$G = [I_k \mid P_{kx(n-k)}]$$

$$H = [P^{\mathsf{T}}_{(n-k)xk} | I_{n-k}]$$

Przykład kodu (5,2):

$$\boldsymbol{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}, \ \boldsymbol{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}, \ \boldsymbol{H}^T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0^{15} & 1 \end{bmatrix}$$

Macierz kontrolna – dekodowanie

c_x – wyjście kodera

 $c_y = c_x + e - wejście dekodera (e - wektor błędów)$

s – <u>syndrom błędu</u> (zależy tylko od e)

$$s = (c_X + e)H^T = c_XH^T + eH^T = mGH^T + eH^T = eH^T$$

$$\mathbf{s} = \mathbf{e}\mathbf{H}^{T} = \begin{bmatrix} e_{1} & e_{2} \dots e_{n} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{h}_{1}^{T} \\ \mathbf{h}_{2}^{T} \\ \dots \\ \mathbf{h}_{n}^{T} \end{bmatrix} = e_{1}\mathbf{h}_{1}^{T} + e_{2}\mathbf{h}_{2}^{T} + \dots + e_{n}\mathbf{h}_{n}^{T}$$

Syndrom – liniowa kombinacja wierszy macierzy H^T

Macierz kontrolna – dekodowanie

Przykład kodu (5,2):

$$c_{Y} = [1,1,0,1,0]$$

$$H^{T} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$s = c_{Y}H^{T} = \begin{bmatrix} 11010 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 101 \end{bmatrix} + \begin{bmatrix} 011 \end{bmatrix} + \begin{bmatrix} 010 \end{bmatrix} = \begin{bmatrix} 100 \end{bmatrix}$$

stąd e =
$$[0,0,1,0,0]$$
 (bo $s=eH^T$)
więc wektor skorygowany:
 $c_Y + e = [1,1,0,1,0] + [0,0,1,0,0] = [1,1,1,1,0]$

Kody Hamminga

Kody $(n,k) = (2^m-1, 2^m-m-1),$ m – liczba pozycji kontrolnych

np.

m	2	3	4	5	6
(n, k)	(3,1)	(7,4)	(15,11)	(31,26)	(63,57)

d = 3 → korygują pojedyncze błędy(zdolność detekcyjna = 2)

Wykorzystywane np. w pamięciach komputerowych

Kody Hamminga

Przykład kodu Hamminga (7,4)

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$[a_1, a_2, a_3, a_4] \cdot G = [a_1, a_2, a_3, a_4, a_5, a_6, a_7]$$

 $a_5 = a_1 + a_2 + a_3$
 $a_6 = a_2 + a_3 + a_4$
 $a_7 = a_1 + a_2 + a_4$

Prosta realizacja sprzętowa

Przykład kodu Hamminga (7,4)

$$[a_1, a_2, a_3, a_4] \cdot G = [a_1, a_2, a_3, a_4, a_5, a_6, a_7]$$

$$a_5 = a_1 + a_2 + a_3$$

$$a_6 = a_2 + a_3 + a_4$$

$$a_7 = a_1 + a_2 + a_4$$

Kody cykliczne

Kody spełniające własność:

Jeśli c = $[a_{n-1}, a_{n-2}, ..., a_1, a_0]$ jest wektorem kodowym, to każde przesunięcie cykliczne c jest również wektorem kodowym.

Np.

 $c_1 = [a_{n-2}, ..., a_1, a_0, a_{n-1}]$ - jest wektorem kodowym

Istnieją efektywne metody generacji kodów – za pomocą reprezentacji ciągów informacyjnych i wektorów kodowych za pomocą wielomianów

Realizacja koderów / dekoderów za pomocą rejestrów przesuwnych – stosunkowo prosta

Kody cykliczne

Ciągi informacyjne / kodowe zapisujemy w postaci wielomianów nad ciałem GF(2) (współczynniki ze zbioru {0,1}, dodawanie modulo 2):

c =
$$[a_{n-1}, a_{n-2}, ..., a_1, a_0]$$

c(x) = $a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1x + a_0$

Przykład:

$$c = 1011$$

$$c(x) = x^3 + x + 1$$

Kody cykliczne

Własność przesunięcia cyklicznego dla postaci wielomianowej definiuje się następująco:

c(x) – wielomian stopnia n-1

Wówczas reszta z dzielenia xⁱc(x) przez xⁿ-1 jest również wektorem kodowym (dowód – Mochnacki str. 83-84)

$$c = [a_{n-1}, a_{n-2}, ..., a_1, a_0] c_1 = [a_{n-2}, ..., a_1, a_0, a_{n-1}]$$

$$c(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1x + a_0$$

$$c_1(x) = a_{n-2}x^{n-1} + a_{n-3}x^{n-2} + ... + a_0x + a_{n-1}$$

$$c_1(x) = xc(x) \pmod{x^n+1}$$
 (dowód – Mochnacki str. 83-84)
$$c_i(x) = x^i c(x) \pmod{x^n+1}$$

Kody cykliczne – wielomian generujący

g(x) - <u>wielomian generujący</u> kod cykliczny stopień = n-k = liczba elementów kontrolnych w wektorze kodowym

np. dla kodu cyklicznego Hamminga (7,4) $g(x) = x^3 + x^2 + 1$ (podzielnik wielomianu x^7+1)

g(x) pozwala wyznaczyć wektor kodowy dla kodu (n,k)

Algorytm kodowania – kod (n,k)

g(x) - wielomian generujący kod cykliczny stopnia n-k
 m(x) – wielomian odpowiadający ciągowi informacyjnemu

 $c_x(x)$ – wielomian odpowiadający wektorowi kodowemu

$$c_{x}(x) = x^{n-k}m(x) + r(x)$$

Gdzie r(x) jest resztą z dzielenia $x^{n-k}m(x)$ przez g(x): $x^{n-k}m(x) = q(x) g(x) + r(x)$

stąd – każdy wektor kodowy jest podzielny przez g(x)

Algorytm kodowania – kod (n,k)

- 1. Przesuń ciąg informacyjny n-k pozycje w lewo: x^{n-k}m(x)
- 2. Wyznacz resztę z dzielenia $x^{n-k}m(x)$ przez g(x):

$$r(x) = r_{n-k-1}x^{n-k-1} + ... + r_1x + r_0$$

3. Dopisz resztę r(x) na n-k najmłodszych pozycjach ciągu $x^{n-k}m(x)$:

$$c_{x}(x) = x^{n-k}m(x) + r(x)$$

Dekodowanie – kod (n,k)

Otrzymany ciąg:

$$c_{Y}(x) = c_{X}(x) + e(x)$$

e(x) – wielomian odpowiadający wektorowi błędów

Korzystamy w własności, że każdy wektor kodowy jest podzielny przez g(x)

```
Wyznaczamy resztę z dzielenia c_{\gamma}(x) przez g(x): c_{\gamma}(x) = m(x)g(x) + r(x) jeśli r(x) = 0 – brak błędu jeśli r(x) \neq 0 – wystąpiły błędy (algorytm korekcji – patrz np. Mochnacki)
```

Przykładowe kody cykliczne Standardy CRC – np.

CRC-8 (WCDMA): $x^8+x^7+x^4+x^3+x^2+1$

CRC-16 (CCITT): $x^{16}+x^{12}+x^5+1$

CRC-40 (GSM): $(x^{23}+1)(x^{17}+x^3+1)$

CRC-64

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Kody Bose-Chaudhuri-Hocquenghema (BCH)

Parametry:

- długość wektora kodowego $n = 2^m 1$
- liczba pozycji kontrolnych n-k ≤ mt
- min. odległość Hamminga d ≥ 2t + 1

Kod koryguje do t błędów i ma nie więcej niż mt elementów kontrolnych

Kody Hamminga są podzbiorem kodów BCH (BCH z t=1 jest kodem Hamminga)

Kody BCH - parametry

m	n	k	t	m	n	k	t	m	n	k	t	m	n	k	t
3	7	4	1	6	63	10	13	7	127	15	27	8	255	123	19
4	15	11	1			7	15			8	31			115	21
		7	2	7	127	120	1	8	255	247	1			107	22
		5	3			113	2			239	2			99	23
5	31	26	1			106	3			231	3			91	25
		21	2			99	4			223	4			87	26
		16	3			92	5			215	5			79	27
		11	5			85	6			207	6			71	29
		6	7			78	7			199	7			63	30
6	63	57	1			71	9			191	8			55	31
		51	2			64	10			187	9			47	42
		45	3			57	11			179	10			45	43
		39	4			50	13			171	11			37	45
		36	5			43	14			163	12			29	47
		30	6			36	15			155	13			21	55
		24	7			29	21			147	14			13	59
		18	10			22	23			139	15			9	63
		16	11							131	18				

p. W. Mochnacki – Kody korekcyjne ...

Kody Reeda-Solomona

Podklasa kodów BCH niebinarnych, nad GF(q) – ciałem rozszerzonym

```
np. GF(8) – rozszerzenie 3-stopnia nad GF(2)
```

ogólnie: q=2^m rozszerzenie m-tego stopnia nad GF(2)

Kod RS(n,k) nad ciałem GF(q) ma własności:

n=q-1 długość wektora kodowego

r=n-k pozycji kontrolnych

d=r+1 odległość minimalna

Kody Reeda-Solomona

Kody RS służą do korygowania błędów grupowych

Idea

- Każdy element GF(q) jest ciągiem m-elementowym nad GF(2)
- Kod RS(q-1, q-1-2t) koryguje t błędów, które pojawią się w bloku m-elementowym (czyli najprawdopodobniej błąd grupowy)

Ciało binarne GF(2)

tabliczka dodawania i mnożenia

+	0	1
0	0	1
1	1	0

٠	0	1		
0	0	0		
1	0	1		