装

线

东北林业大学

2017-2018 学年第一学期期末考试试题 B

考试科目:	概率论与数理统计
汚 枫科日:	燃

试卷总分: 100 分

考试时间: 120 分钟

占总评比例: 40%

题号	1	1 1	111	四	卷面分
得分					
评卷 教师					

得分

一、选择题 (每个小题四个备选答案中只有一个正确答案) (本大题共 5小题,每小题3分,总计15分)

- 1、设随机变量 $X \sim N(-1,1)$,则使 P(X > a) = P(X < a)成立的 a =;
- (A) 0
- (B) 1
- (C) 2
- (D) -1
- 2、某人向同一目标独立重复射击,每次击中目标的概率为 $\frac{1}{4}$,则此人第 3 次射击恰好是 第2次命中目标的概率为
 - (A) $\frac{3}{32}$ (B) $\frac{3}{8}$ (C) $\frac{3}{64}$ (D) $\frac{3}{16}$

- 3、设 (X_1, X_2, \dots, X_n) 是来自总体 $X \sim U(0, \lambda)$ 的样本 $(\lambda 未知)$,则_____;
- (A) $\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{\lambda}{2}$ 是一个统计量 (B) $\frac{1}{n}\sum_{i=1}^{n}X_{i}-EX$ 是一个统计量
- (C) $X_1 + X_2$ 是一个统计量

- (D) $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-DX$ 是一个统计量
- 4、设 (X_1, X_2, \cdots, X_n) 是来自正态总体的一个简单随机样本, \overline{X} 为样本平均值,则下列 结论中错误的是;
- (A) \overline{X} 与 $\sum_{i=1}^{n} (X_i \overline{X})^2$ 独立
- (B) $X_i \ni X_j$ 独立(当 $i \neq j$)

(C)
$$\sum_{i=1}^{n} X_i 与 \sum_{i=1}^{n} X_i^2$$
 独立

(D)
$$X_i + X_j^2$$
独立 (当 $i \neq j$)

- 5、设随机变量 X 与 Y 满足 $E(XY) = EX \cdot EY$,则下列不正确的是_____;
- (A) Cov(X,Y) = 0
- (B) X 与 Y 相互独立
- (C) $\rho_{xy} = 0$

(D) D(2X - Y) = 4DX + DY

得分 二、填空题(本大题共5小题,每小题3分,总计15分)

- 1、设随机变量 X 的全部可能取值为 0 、 1 、 2 ,已知 $P(\xi = 1) = 0.3$, $P(\xi = 2) = 0.1$, $F(x) \, \text{是} \, \xi \, \text{的分布函数,则当} \, 0 \leq x < 1 \, \text{时,} \, F(x) = \qquad \qquad ;$
- 2、已知连续型二维随机变量 (X,Y) 的联合分布函数为 F(x,y) ,则其联合概率密度函数 f(x,y) =________;
- 3、设 (X_1, \cdots, X_9) 是来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, S^2 是样本方差,则 $DS^2 = \underline{\hspace{1cm}};$
- 4、设总体 X 服从标准正态分布, (X_1,X_2,\cdots,X_n) 为取自 X 的样本,则

$$\frac{\left(\frac{n}{3}-1\right)\sum_{i=1}^{3}X_{i}^{2}}{\sum_{i=4}^{n}X_{i}^{2}} \sim \underline{\hspace{1cm}};$$

- 5、从一批零件中随机抽取10个,测得其直径与标准尺寸间的偏差(单位:毫米)分别为2,
- 1, -2, 3, 2, 4, -2, 5, 3, 4, 记零件直径尺寸的偏差为X,且 $X \sim N(\mu, \sigma^2)$,则直径均值 μ 的置信度为 0.95 的置信区间为_____。(题目用到的分位数在试卷的第 6 页)

东北林业大学 2017-2018 学年第一学期期末考试试题 B

得分

三、计算题(每问7分,共63分)

1、设某种电子管的使用寿命服从正态分布,从中随机抽取 15 个进行检验,平均使用寿命为 195 小时,标准差 S 为 300 小时,求整批电子管使用寿命的方差 σ^2 的置信度为 95%的置信区间。 (题目用到的分位数在试卷的第 6 页)

订

装

2、比较成年男女红细胞数的差别,抽查正常男子 36 名,女子 26 名,测得男性的样本均值和样本方差是 465. 13 及 54.80^2 ;女性的样本均值和样本方差是 422. 16 及 49.30^2 (单位:万 $/mm^3$)。假定血液中细胞数服从正态分布,问:(1)男女红细胞数目的不均匀性是否一致,即问两个正态总体的方差是否相同?(2)性别对红细胞数有无影响,即问两个正态总体的均值是否相同?($\alpha=0.05$)(题目用到的分位数在试卷的第 6 页)

线

开课学院: 理学院

3、设总体
$$X$$
 的分布函数为 $F(x) =$
$$\begin{cases} 0, & x \le -1 \\ \frac{1}{2} + \frac{1}{\pi} \arcsin x, & -1 < x < 1, \ (X_1, X_2, ..., X_n) \end{pmatrix} \\ 1, & x \ge 1 \end{cases}$$

来自该总体的简单随机样本,令 $Y = \min\{X_1, X_2, ..., X_n\}$,求: (1)X 的概率密度函数; (2)Y 的概率密度函数。

4、设离散型二维随机变量(X, Y)的分布律为:

XY	-1	0	1
0	0.1	0.2	а
1	0.2	0.1	b

且 EX = 0.4,求: (1) 常数 $a \cdot b$; (2) 协方差 cov(X,Y)。

装

订

线

东北林业大学

2017-2018 学年第一学期期末考试试题 B

5、设总体X的概率密度函数为:

$$f(x,\theta) = \begin{cases} \frac{\theta^k}{(k-1)!} x^{k-1} e^{-\theta x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

其中k为已知的正整数。 (X_1,X_2,\cdots,X_n) 为取自X的样本,求未知参数 θ 的矩估计量与最大似然估计量。

得分

四、证明题(本题共7分)

设 $(X_1,X_2,...,X_n)$ 为来自总体 $N(\mu,\mu)$ 的一个样本,其中未知参数 $\mu>0$, \overline{X} 是样本均值, S^2 是样本方差,证明:对于任一 $\alpha(0\leq\alpha\leq1)$, $\alpha\overline{X}+(1-\alpha)S^2$ 是 μ 的无偏估计量和一致估计量。

附表: $t_{0.025}(9) = 2.262$, $t_{0.025}(60) = 1.96$, $\chi^2_{0.975}(14) = 5.629$, $\chi^2_{0.975}(15) = 6.262$, $\chi^2_{0.025}(14) = 26.119$, $\chi^2_{0.025}(15) = 27.488$, $F_{0.025}(25,35) = 2.07$, $F_{0.025}(35,25) = 2.18$