

# Single-cell RNA-Sequencing Introduction

Mary O'Neill, Ph.D.
Director, Single Cell Genomics
ONeillMB@uw.edu
@ONeillMB1

Anh Vo, M.S. Bioinformatician athuyvo@uw.edu

#### BBI Advanced Technology Lab – Single Cell Genomics Group



Kathryn Barker
RESEARCH SCIENTIST 1



Brent Ewing
SOFTWARE ENGINEER



**Diana O'Day**RESEARCH SCIENTIST 3



Mary O'Neill
DIRECTOR, SINGLE CELL
GENOMICS



**Anh Vo**GENOMIC DATA ANALYST



Luis Gamboa
RESEARCH SCIENTIST 2

#### Disclosures

- BBI has a fee-for-service single-cell sequencing platform
  - We offer non-commercial combinatorial indexing methods
  - We work closely with the Shendure Lab who developed sci-RNA-seq and the Trapnell Lab who develop Monocle3
- In the past, some of us have worked with 10X Genomics 3' Gene Expression
  - Performed most analyses in the Bioconductor Single Cell Universe (e.g. Scater, Scran, Scuttle, DropletUtils)



## Incredible cellular diversity encoded in the genome



## Bulk methods average profiles across all cells of a sample



## Bulk methods average profiles across all cells of a sample



## But what if you are actually interested in this?



#### Single cell methods provide cellular resolution

#### e.g. scRNA-seq

|        |        |        |        | ,            | This can be hundreds to millions of cells |
|--------|--------|--------|--------|--------------|-------------------------------------------|
|        |        |        |        |              |                                           |
|        | Cell 1 | Cell 2 | Cell 3 | <br>Cell n É |                                           |
| Gene 1 | 30     | 2      | 21     | <br>20       |                                           |
| Gene 2 | 11     | 10     | 14     | <br>14       |                                           |
| Gene 3 | 12     | 35     | 6      | <br>5        |                                           |
| Gene 4 | 0      | 0      | 0      | <br>0        | A lot of zeros                            |
| Gene 5 | 0      | 0      | 0      | <br>0        |                                           |
| •••    |        |        |        | <br>         |                                           |
| Gene n | 1      | 10     | 2      | <br>2        |                                           |

#### Single cell methods provide cellular resolution



#### Single cell methods provide cellular resolution



## Timeline & throughput of scRNA-seq



## Scaling of sci-RNA-seq experiments

#### Single-cell combinatorial indexing (sci-)



#### RNA capture / sensitivity

#### What is a UMI?



#### What is a UMI?

- Unique Molecular Identifier (UMI)
- Low input material may cause amplification bias
- UMIs are sequences that correspond to one fragment
- Sequenced reads with the same UMI are from the same fragment
- Unique sequenced collapsed to a single for counting



## Single-cell vs single-nuclei

- Single-cell profiling does not always provide an unbiased view on cell types
- Some cell types are more vulnerable to the tissue dissociation process
- For example, brain. Glutamatergic neurons more sensitive, non-neuronal cells overrepresented
- Single-cell sequencing often relies on fresh tissue
- Nuclei more resistant to mechanical force, safely isolated from frozen tissue w/o dissociation enzymes



#### RNA capture / sensitivity



# Other considerations in choosing a technology

|                             | SMART-seq2                              | CEL-seq2                    | STRT-seq                             | Quartz-seg2                             | MARS-seq                    | Drop-seq               | inDrop                      | Chromium               | Sea-Well  | sci-RNA-seq                                                        | SPLiT-seq                             |
|-----------------------------|-----------------------------------------|-----------------------------|--------------------------------------|-----------------------------------------|-----------------------------|------------------------|-----------------------------|------------------------|-----------|--------------------------------------------------------------------|---------------------------------------|
|                             | Silvani sequ                            | cer sequ                    |                                      | Quarte sequ                             | munio seq                   | brop seq               | шотор                       | Cinomiani              | seq men   | ser min seq                                                        | STERT SEQ                             |
| Single-cell<br>isolation    | FACS,<br>microfluidics                  | FACS,<br>microfluidics      | FACS,<br>microfluidics,<br>nanowells | FACS                                    | FACS                        | Droplet                | Droplet                     | Droplet                | Nanowells | Not needed                                                         | Not needed                            |
| Second strand synthesis     | TSO                                     | RNase H<br>and<br>DNA pol I | TSO                                  | PolyA tailing<br>and primer<br>ligation | RNase H<br>and<br>DNA pol I | TSO                    | RNase H<br>and<br>DNA pol I | TSO                    | TSO       | RNase H<br>and<br>DNA pol I                                        | TSO                                   |
| Full-length cDNA synthesis? | Yes                                     | No                          | Yes                                  | Yes                                     | No                          | Yes                    | No                          | Yes                    | Yes       | No                                                                 | Yes                                   |
| Barcode<br>addition         | Library PCR<br>with barcoded<br>primers | Barcoded<br>RT primers      | Barcoded<br>TSOs                     | Barcoded<br>RT primers                  | Barcoded<br>RT primers      | Barcoded<br>RT primers | Barcoded<br>RT primers      | Barcoded<br>RT primers |           | Barcoded<br>RT primers and<br>library PCR with<br>barcoded primers | Ligation of<br>barcoded<br>RT primers |
| Pooling<br>before library?  | No                                      | Yes                         | Yes                                  | Yes                                     | Yes                         | Yes                    | Yes                         | Yes                    | Yes       | Yes                                                                | Yes                                   |
| Library<br>amplification    | PCR                                     | In vitro<br>transcription   | PCR                                  | PCR                                     | In vitro<br>transcription   | PCR                    | In vitro<br>transcription   | PCR                    | PCR       | PCR                                                                | PCR                                   |
| Gene<br>coverage            | Full-length                             | 3'                          | 5'                                   | 3'                                      | 3'                          | 3'                     | 3'                          | 3'                     | 3'        | 3'                                                                 | 3'                                    |
| Number of cells per assay   | 105                                     |                             |                                      |                                         |                             |                        |                             |                        |           |                                                                    |                                       |
|                             | 104                                     |                             |                                      |                                         |                             |                        |                             |                        |           |                                                                    |                                       |
|                             | 103                                     |                             |                                      | T                                       | T                           |                        | <u> </u>                    |                        |           |                                                                    |                                       |
|                             | 102                                     |                             | I                                    | I                                       | I                           |                        |                             |                        |           |                                                                    |                                       |

## Typical scRNA-seq protocol

- Tissue dissection and cell dissociating to obtain a suspension of cells.
- Optionally cells may be selected (e.g. based on membrane markers, fluorescent transgenes or staining dyes).
- Capture single cells into individual reaction containers (e.g. wells or oil droplets). Note, for combinatorial indexing methods the cell/nucleus itself serves as the reaction chamber.
- Extracting the RNA from each cell.
- Reverse-transcribing the RNA to more stable cDNA.
- Amplifying the cDNA (either by in vitro transcription or by PCR).
- Preparing the sequencing library with adequate molecular adapters.
- Sequencing, usually with paired-end Illumina protocols.
- Processing the raw data to obtain a count matrix of genes-by-cells
- Carrying-out several downstream analysis



Figure 1. A schematic overview of GEM generation and barcoding with the GEM-X chip workflow. GEMs are generated by combining barcoded Gel Beads, a master mix containing cells, and partitioning oil in a GEM-X 3' or 5' Chip. To achieve single cell resolution, cells are delivered at a limiting dilution, such that the majority (~90–99%) of generated GEMs contain no cell, while the remainder largely contain a single cell.



Figure 2. Schematic diagram of a GEM-X Single Cell 3' Gel Bead. Every Gel Bead is coated with oligos containing an Illumina TruSeq Read 1 (read 1 sequencing primer, Read 1T), 16 nt 10x Barcode, 12 nt unique molecular identifier (UMI), and 30 nt poly(dT)VN.









#### Final library



## Single-cell/nuclei combinatorial indexing

#### Abbreviated SCI, pronounced "sky"

- Novel, high throughput protocols
- In situ molecular indexing and a 'split and pool' framework
- Can profile millions of cells in a single experiment
- Scales sub-linearly with cost!



## Single-cell/nuclei combinatorial indexing



## sci-RNA-seq3



- Cells/nuclei are distributed across wells.
- Each well contains a unique barcode.
   First-strand synthesis/ reverse transcription (RT) labels all cells in the well with the barcode.
- Cells are pooled and randomly spit into wells, and a second barcode is added.

Exponentially scaled through increasing numbers of barcoding rounds!

## Recap



Modified from Itay Tirosh & Mario Suva

#### Next time: Analysis Overview



https://www.sc-best-practices.org/