Given arr[N], find the no. of subsets with sum = K. Array elements 10 & K > 0 $arr[8]: \{7, 4, 9, 6, 10, 13, 11, 143, K = 22$ ₹7,4,113 ₹9,135 ₹7,9,63 I'deas: - Generate all possible subsets & check if sum == K. bit Masking \Rightarrow TC: $O(N \cdot 2^N)$ → Backtracking → TC: O(2N) 965 (0-7,22) Jeans Pick 4th Sbs (0-6,22)

Sbs (0-6,8)

Seauce Pick 6th

Sth.

Sth.

Sth. Sbs(0-5,22) = Sbs(0-5,11) Sbs(0-5,8) Sbs(0-5,-3) $\frac{2\pi}{1}$ $\frac{1}{1}$ $\frac{1$ 6 elements, 8=25 € * * * * > 20 6 clements, 8=25 × ~ × ~ ✓ ⇒ 20

*
$$dp(i,j) = \begin{cases} denue ith & pick ith \\ dp(i-1,j) + dp(i-1,j-ali) \end{cases}$$

$$j-alij >= 0$$

$$j = alij$$

No. of subsets using elements from [0 to N-1] with Sum =
$$\frac{K}{}$$
 ans: $dp[N-1][K]$

$$dp(i,j) = dp(i-1,j) + dp(i-1,j-Alij)$$

$$\rightarrow$$
 $i=0$: Base case

dp[4][8]

	D	1	2	3	4	5	6	Ŧ
0	H	0	0	0	1	0	0	Q
1								
2								
3					زن			

dp[0][0]: 1

No. ef Rubsets using indices [0-0]

with 8 um = 0.

{43 \ \frac{13}{43}}

1= [0][0] =1 if (Alo) (= K) { dp[o][A[o]] = 1 }

dp[1][0]: No. ef Subsets using
$$\Rightarrow$$
 64,23 with $8 \text{um} = 0$. $\frac{3}{2} \Rightarrow 8 \text{um} = 0$

No. of subsets with sum = $0 \Rightarrow 2$. $\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\}$

(०५ ८०५

* Space Optimization

dp[2][k]: TC: O(N·K), Sc: O(K)

Si Given N array elements, find the length of 8m allest subset with 8um = K.

 $arr[8]: \{7, 4, 9, 6, 10, 13, 11, 143 \} K = 22$ $\Rightarrow \{18, 93 \Rightarrow 2$

dpli,j): length of smallest subset with sun=j
using the elements from [0-i]

dp[i,j]: nuin dp[i-1,j], dp[i-1][j-A[i]]+1

teaue ith pick ith

j>=Alij

* PP table.

dp[N][K+1]

* Base Case: = 0

2m Al4]: (4 3 2 6 3 K=4 dp[4][8]

	D	1	2	3	4	5	6	Ŧ
O	0	6	L 50	വ	7	[5	(5)	Ŋ
1								2
2								
3								

Length of the smallest

Subset with sum = 0

from (0-0).

(43 - (3) len = 0.

$$dp[+][+] = min(dp[0][+], dp[0][+-3]++)$$

$$dp[1][+] = min(5,6) = 5$$

$$(j=0; j(=K; j++))$$

$$dp[0][j] = N+1; \rightarrow No subset.$$

for (j=0; j(=K; j++)) dp[0][0] = 0 | 1 | 2 mpty 8 wbsetif (a[i] (=K) | i | 2 mpty | 3 mpty |

TC: 0(N·K)

D. Check if there exist a subset with sum=K.

dp[i][j]: If there is a subset miter sum = j using elements (0-i).

dplistjs: dpli-1][j] | dpli-1][j-A[i]]

j>= A[i]

DP Table: dp[N][K+1]

base case (==0.

A14]: {4 3 2 6 } K=7

dp[4][8]

	D	1	2	3	4	5	6	7
O	7	Ţ	Ţ	77	T	4	4	t
1	T							
2	٢							
3	۲							

