§15. Hranol, Válec

Def: Hranol Mějme v prostoru rovinu ρ , v ní konvexní mnohoúhelník $A_1A_2A_3\dots A_n$ a nechť A_1' je bod, který v rovině ρ neleží. Nechť $T:E_3\to E_3$ je takové posunutí, že $A_1'=T(A_1)$. Při tomto zobrazení se rovina ρ zobrazí na rovinu ρ' , tyto dvě roviny jsou rovnoběžné. Množinu všech bodů X, všech úseček BB' takových, že $B\subset A_1A_2A_3\dots A_n$ a B' je obraz bodu B v posunutí T, nazýváme hranolem. Mnohoúhelníky $A_1A_2A_3\dots A_n$ a $A_1'A_2'A_3'\dots A_n'$ nazýváme podstavami, rovnoběžníky $A_iA_{i+1}A_{i+1}'A_i'$, kde ($i\in\{1,2,\dots,n\},n+1\to1$). nazýváme bočními stěnami hranolu. Všechny boční stěny tvoří plášť hranolu. Podstavy spolu s bočními stěnami tvoří stěny hranolu. Úsečky A_iA_i' (respektive A_iA_{i+1} a $A_i'A_{i+1}'$) se nazývají boční (respektive podstavné) hrany hranolu. Body A_1,A_2,A_3,\dots,A_n a $A_1',A_2',A_3',\dots,A_n'$ se nazývají vrcholy.

Pozn: Podle hodnoty n rozlišujeme hranoly na trojboký, čtyřboký, …a n-boký hranol.

Def: Je-li směr posunutí kolmý k rovině podstavy, mluvíme o hranolu kolmém, jinak jde o hranol kosý. Kolmý hranol, jehož podstavami jsou pravidelné n-úhelníky, se nazývá pravidelný n - boký hranol. Hranol, jehož podstavy jsou rovnoběžníky, se nazývá rovnoběžnostěn. Rovnoběžnostěn, jehož všechny stěny jsou pravoúhelníky (resp. čtverce), nazýváme kvádr (respektive krychle).

Pozn: Čtyři zřejmé vlastnosti objemu V(T) tělesa T:

- 1. Dvě shodná tělesa mají tentýž objem.
- 2. Skládá-li se těleso T z nepřekrývajících se těles T_1, T_2 , je objem tělesa T součtem objemů těles $T_1, T_2 : V(T) = V(T_1) + V(T_2)$.
- 3. Za jednotku objemu bereme objem krychle o hraně délky 1.
- 4. Cavalieriho princip: Nechť tělesa T_1,T_2 leží mezi dvěma rovnoběžnými rovinami α_1 , α_2 a každá rovina ρ rovnoběžná s rovinami ρ_1,ρ_2 protne tělesa T_1,T_2 v konvexních rovinných útvarech s obsahy P_1,P_2 . Jestliže pro každou rovinu ρ platí, že $P_1=P_2$, mají tělesa T_1,T_2 stejný objem. Jestliže pro každou rovinu ρ , platí, že $P_1=m\cdot P_2$, kde m je pevné číslo, nezávislé na volbě roviny ρ , je objem tělesa T_1 -násobkem objemu tělesa T_2 : $V(T_1)=m\cdot V(T_2)$