

Visual Object Tracking

Robotic Vision

Blob detection algorithms / processes

Blob detection pipeline

Area

Thresholds
(color)

Circularity
(4*π*Area)/(perimeter*perimeter)

Inertia
(elongation)

Convexity
Area of the Blob/ Area of convex hull

OpenCV SimpleBlobDetector filters

OpenCV blob detection

OpenCV blob finder

cv_bridge package to convert between ROS Image Message and OpenCV frames

OpenCV blob finder

keypoint.x outside search_window keypoint.size 30 <= s <= 80 SERACHING_STEER OpenCV/Python WebCam Actuator Camera chase_the /control/ find_ball cmd_vel _ball Stream K_LAT_DIST_TO_STEER Move Capture the image \$ roslaunch yocs_cmd_vel_mux test_actions.launch **Encoder?**

OpenCV KeyPoint steering

10

KeyPoint detection in 3D

KeyPoint detection in 3D

L4

Camera calibrations

15

16

 $\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_u & 0 & c_x \\ 0 & f_v & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{21} & r_{31} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$ $= \begin{bmatrix} f_u & 0 & c_x \\ 0 & f_v & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & t \\ 0_{1\times 3} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$ $= \begin{bmatrix} f_u & 0 & c_x \\ 0 & f_v & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} R & t \\ 0_{1\times 3} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$ $(f_x, f_y) \text{ camera focal length } (c_x, c_y) \text{ camera optical center}$

Camera calibrations

Velocity Multiplexing

17

Problem of cmd_vel from multiple tasks

ROS mux package

Nodes connect to other nodes directly; the Master only provides lookup information, much like a DNS server. Nodes that subscribe to a topic will request connections from nodes that publish that topic, and will establish that connection over an agreed upon connection protocol. The most common protocol used in a ROS is called TCPROS, which uses standard TCP/IP sockets.

Any communications between them can use the zero copy roscpp publish call with a boost shared pointer.

ROS nodelet

ROS remap

<remap from="/turtle1/cmd_vel" to="/yocs_cmd_vel_mux/output/cmd_vel" />
<remap from="/turtle1/cmd_vel" to="/yocs_cmd_vel_mux/input/keyop" />

ROS remap