

Vandana M L

Department of Computer Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Method of Limits for comparing order of Growth

Slides courtesy of **Anany Levitin**

Vandana M L

Department of Computer Science & Engineering

Design and Analysis of Algorithms Using Limits to Compare Order of Growth

$$\lim_{n\to\infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{implies that } t(n) \text{ has a smaller order of growth than } g(n), \\ c & \text{implies that } t(n) \text{ has the same order of growth as } g(n), \\ \infty & \text{implies that } t(n) \text{ has a larger order of growth than } g(n). \end{cases}$$

Case1:
$$t(n) \in O(g(n))$$

Case2:
$$t(n) \in \Theta(g(n))$$

Case3:
$$g(n) \in O(t(n))$$

t'(n) and g'(n) are first-order derivatives of t(n) and g(n)

L'Hopital's Rule
$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \lim_{n \to \infty} \frac{t'(n)}{g'(n)}$$

Stirling's Formula
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
 for large values of n

Using Limits to Compare Order of Growth: Example 1

Compare the order of growth of f(n) and g(n) using method of limits

$$t(n) = 5n3 + 6n + 2$$
, $g(n) = n4$

$$\lim_{n \to \infty} \frac{\mathsf{t}(n)}{g(n)} = \lim_{n \to \infty} \frac{5n^3 + 6n + 2}{n^4} = \lim_{n \to \infty} \left(\frac{5}{n} + \frac{6}{n^3} + \frac{2}{n^4} \right) = 0$$

As per case1

$$t(n) = O(g(n))$$

 $5n^3 + 6n + 2 = O(n^4)$

Using Limits to Compare Order of Growth: Example 2

$$t(n) = \sqrt{5n^2 + 4n + 2}$$

using the Limits approach determine g(n) such that $f(n) = \Theta(g(n))$ Leading term in square root n2

$$g(n) = \sqrt{n^2} = n$$

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \lim_{n \to \infty} \frac{\sqrt{5n^2 + 4n + 2}}{\sqrt{n^2}}$$

$$= \lim_{n \to \infty} \sqrt{\frac{5n^2 + 4n + 2}{n^2}} = \lim_{n \to \infty} \sqrt{5 + \frac{4}{n} + \frac{2}{n^2}} = \sqrt{5}$$

non-zero constant

Hence,
$$t(n) = \Theta(g(n)) = \Theta(n)$$

Using Limits to Compare Order of Growth

$$\lim_{n \to \infty} t(n)/g(n) \neq 0, \infty \Rightarrow t(n) \in \Theta(g(n))$$

$$\lim_{n \to \infty} t(n)/g(n) \neq \infty \implies t(n) \in O(g(n))$$

$$\lim_{n \to \infty} t(n)/g(n) \neq 0 \quad \Rightarrow t(n) \in \Omega(g(n))$$

$$\lim_{n \to \infty} t(n)/g(n) = 0 \implies t(n) \in o(g(n))$$

$$\lim_{n \to \infty} t(n)/g(n) = \infty \implies t(n) \in \omega(g(n))$$

Using Limits to Compare Order of Growth: Example 3

Compare the order of growth of t(n) and g(n) using method of limits $t(n) = \log_2 n$, $g(n) = \sqrt{n}$

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2 \log_2 e \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

$$\log_2 n \in o(\sqrt{n})$$

Design and Analysis of Algorithms Orders of growth of some important functions

- \triangleright All logarithmic functions $\log_q n$ belong to the same class
 - $\Theta(\log n)$ no matter what the logarithm's base a > 1 is $\log_{10} n \in \Theta(\log_2 n)$
- All polynomials of the same degree k belong to the same class: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in \Theta(n^k)$
- Exponential functions an have different orders of growth for different a's $3^n \notin \Theta(2^n)$
- \triangleright order log n < order n^{α} (α >0) < order aⁿ < order n! < order nⁿ

How to Establish Orders of Growth of an Algorithm's Basic Operation Count

Summary

- Method 1: Using limits.
 - L' Hôpital's rule
- Method 2: Using the theorem.
- Method 3: Using the definitions of O-, Ω -, and Θ -notation.

THANK YOU

Vandana M L
Department of Computer Science & Engineering
vandanamd@pes.edu