

Induction, Data Types and Type Classes

Dr. Christine Rizkallah UNSW Sydney Term 2 2021 Suppose we want to prove that a property P(n) holds for all natural numbers n. Remember that the set of natural numbers \mathbb{N} can be defined as follows:

Definition of Natural Numbers

- 0 is a natural number.
- **2** For any natural number n, n+1 is also a natural number.

Recap: Induction

Therefore, to show P(n) for all n, it suffices to show:

- \bullet P(0) (the base case), and
- 2 assuming P(k) (the *inductive hypothesis*), $\Rightarrow P(k+1)$ (the *inductive case*).

Example

Induction

0000

Show that $f(n) = n^2$ for all $n \in \mathbb{N}$, where:

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 2n - 1 + f(n - 1) & \text{if } n > 0 \end{cases}$$

(done on iPad)

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

- [] is a list.
- ② For any list xs, x:xs is also a list (for any item x).

Induction on Lists

Haskell lists can be defined similarly to natural numbers.

Definition of Haskell Lists

- [] is a list.
- 2 For any list xs, x:xs is also a list (for any item x).

This means, if we want to prove that a property P(1s) holds for all lists 1s, it suffices to show:

- P([]) (the base case)
- 2 P(x:xs) for all items x, assuming the inductive hypothesis P(xs).

Induction on Lists: Example

```
sum :: [Int] -> Int
\operatorname{sum} \quad \square \quad = \quad 0 \quad \qquad -- \quad 1
sum (x:xs) = x + sum xs -- 2
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f z = z
foldr f z (x:xs) = x \hat{f} foldr f z xs --B
```

Example

Induction

0000

Prove for all 1s:

$$sum ls == foldr (+) 0 ls$$

(done on iPad)

Custom Data Types

So far, we have seen type synonyms using the type keyword. For a graphics library, we might define:

```
type Point = (Float, Float)
type Vector = (Float, Float)
type Line = (Point, Point)
type Colour = (Int, Int, Int, Int) -- RGBA
movePoint :: Point -> Vector -> Point
movePoint (x,y) (dx,dy) = (x + dx, y + dy)
```

But these definitions allow Points and Vectors to be used interchangeably, increasing the likelihood of errors.

Product Types

We can define our own compound types using the data keyword:

```
Constructor
            Constructor
Type name
                           argument types
               name
data Point = Point Float Float
           deriving (Show, Eq)
data Vector = Vector Float Float
            deriving (Show, Eq)
movePoint :: Point -> Vector -> Point
movePoint (Point x y) (Vector dx dy)
   = Point (x + dx) (y + dy)
```

Records

We could define Colour similarly:

data Colour = Colour Int Int Int Int

But this has so many parameters, it's hard to tell which is which.

Records

We could define Colour similarly:

```
data Colour = Colour Int Int Int Int
```

But this has so many parameters, it's hard to tell which is which.

Haskell lets us declare these types as *records*, which is identical to the declaration style on the previous slide, but also gives us projection functions and record syntax:

Here, the code redC (Colour 255 128 0 255) gives 255.

Enumeration Types

Similar to enums in C and Java, we can define types to have one of a set of predefined values:

Types with more than one constructor are called *sum types*.

Algebraic Data Types

Just as the Point constructor took two Float arguments, constructors for sum types can take parameters too, allowing us to model different kinds of shape:

```
data PictureObject
```

type Picture = [PictureObject]

Live Coding: Cool Graphics

Recursive and Parametric Types

Data types can also be defined with parameters, such as the well known Maybe type, defined in the standard library:

data Maybe a = Just a | Nothing

Recursive and Parametric Types

Data types can also be defined with parameters, such as the well known Maybe type, defined in the standard library:

```
data Maybe a = Just a | Nothing
```

Types can also be recursive. If lists weren't already defined in the standard library, we could define them ourselves:

```
data List a = Nil | Cons a (List a)
```

Recursive and Parametric Types

Data types can also be defined with parameters, such as the well known Maybe type, defined in the standard library:

```
data Maybe a = Just a | Nothing
```

Types can also be recursive. If lists weren't already defined in the standard library, we could define them ourselves:

```
data List a = Nil | Cons a (List a)
```

We can even define natural numbers, where 2 is encoded as Succ(Succ Zero):

```
data Natural = Zero | Succ Natural
```

Types in Design

Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that *constrain* your implementation as much as possible. Then failure scenarios are eliminated automatically.

Types in Design

Sage Advice

An old adage due to Yaron Minsky (of Jane Street) is:

Make illegal states unrepresentable.

Choose types that *constrain* your implementation as much as possible. Then failure scenarios are eliminated automatically.

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A partial function is a function not defined for all possible inputs.

Examples: head, tail, (!!), division

Partial functions are to be avoided, because they cause your program to crash if undefined cases are encountered.

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A *partial function* is a function not defined for all possible inputs.

```
Examples: head, tail, (!!), division
```

Partial functions are to be avoided, because they cause your program to crash if undefined cases are encountered.

To eliminate partiality, we must either:

• enlarge the codomain, usually with a Maybe type:

```
safeHead :: [a] -> Maybe a -- Q: How is this safer?
safeHead (x:xs) = Just x
safeHead [] = Nothing
```

Partial Functions

Failure to follow Yaron's excellent advice leads to partial functions.

Definition

A *partial function* is a function not defined for all possible inputs.

```
Examples: head, tail, (!!), division
```

Partial functions are to be avoided, because they cause your program to crash if undefined cases are encountered.

To eliminate partiality, we must either:

• enlarge the codomain, usually with a Maybe type:

```
safeHead :: [a] -> Maybe a -- Q: How is this safer?
safeHead (x:xs) = Just x
safeHead [] = Nothing
```

• Or we must constrain the domain to be more specific:

```
safeHead' :: NonEmpty a -> a -- Q: How to define?
```

Type Classes

You have already seen functions such as:

- compare
- (==)
- (+)
- show

that work on multiple types, and their corresponding constraints on type variables Ord, Eq, Num and Show.

Type Classes

You have already seen functions such as:

- compare
- (==)
- (+)
- show

that work on multiple types, and their corresponding constraints on type variables Ord, Eq, Num and Show.

These constraints are called *type classes*, and can be thought of as a set of types for which certain operations are implemented.

Show

The Show type class is a set of types that can be converted to strings. It is defined like:

```
class Show a where -- nothing to do with OOP
  show :: a -> String
```

Show

The Show type class is a set of types that can be converted to strings. It is defined like:

```
class Show a where -- nothing to do with OOP
  show :: a -> String
```

Types are added to the type class as an *instance* like so:

```
instance Show Bool where
  show True = "True"
  show False = "False"
```

Show

Type Classes

000000000

The Show type class is a set of types that can be converted to strings. It is defined like:

```
class Show a where -- nothing to do with OOP
 show :: a -> String
```

Types are added to the type class as an *instance* like so:

```
instance Show Bool where
 show True = "True"
 show False = "False"
```

We can also define instances that depend on other instances:

```
instance Show a => Show (Maybe a) where
 show (Just x) = "Just " ++ show x
 show Nothing = "Nothing"
```

Fortunately for us, Haskell supports automatically deriving instances for some classes, including Show.

Type classes can also overload based on the type returned, unlike similar features like Java's interfaces:

```
class Read a where
  read :: String -> a
Some examples:
  • read "34" :: Int
```

Type classes can also overload based on the type returned, unlike similar features like Java's interfaces:

```
class Read a where
  read :: String -> a
Some examples:
    read "34" :: Int
```

• read "22" :: Char

Type classes can also overload based on the type returned, unlike similar features like Java's interfaces:

```
class Read a where
  read :: String -> a
Some examples:
    read "34" :: Int
    read "22" :: Char Runtime error!
    show (read "34") :: String
```

Type classes can also overload based on the type returned, unlike similar features like Java's interfaces:

```
class Read a where
  read :: String -> a
Some examples:
    read "34" :: Int
    read "22" :: Char Runtime error!
    show (read "34") :: String Type error!
```

Semigroup

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation

• is associative.

Semigroup

Semigroups

A *semigroup* is a pair of a set S and an operation $\bullet: S \to S \to S$ where the operation $\bullet: s$ associative.

Associativity is defined as, for all a, b, c:

$$(a \bullet (b \bullet c)) = ((a \bullet b) \bullet c)$$

Haskell has a type class for semigroups! The associativity law is enforced only by programmer discipline:

class Semigroup s where

(<>) :: s -> s -> s
-- Law: (<>) must be associative.

What instances can you think of?

Semigroup

Type Classes

0000000000

Lets implement additive colour mixing:

Monoid

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity element* z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

Monoid

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity element* z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

```
class (Semigroup a) => Monoid a where
  mempty :: a
```

Monoid

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity element* z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

```
class (Semigroup a) => Monoid a where
  mempty :: a
```

For colours, the identity element is transparent black:

```
instance Monoid Colour where
  mempty = Colour 0 0 0 0
```

For each of the semigroups discussed previously:

- Are they monoids?
- If so, what is the identity element?

Monoid

Monoids

A *monoid* is a semigroup (S, \bullet) equipped with a special *identity element* z : S such that $x \bullet z = x$ and $z \bullet y = y$ for all x, y.

```
class (Semigroup a) => Monoid a where
  mempty :: a
```

For colours, the identity element is transparent black:

```
instance Monoid Colour where
  mempty = Colour 0 0 0 0
```

For each of the semigroups discussed previously:

- Are they monoids?
- If so, what is the identity element?

Are there any semigroups that are not monoids?

Monoid

Type Classes 0000000000

Monoids

A monoid is a semigroup (S, \bullet) equipped with a special identity element z: S such that $x \bullet z = x$ and $z \bullet v = v$ for all x, v.

```
class (Semigroup a) => Monoid a where
 mempty :: a
```

For colours, the identity element is transparent black:

```
instance Monoid Colour where
 mempty = Colour 0 0 0 0
```

For each of the semigroups discussed previously:

- Are they monoids?
- If so, what is the identity element?

Are there any semigroups that are not monoids?

There are multiple possible monoid instances for numeric types like Integer:

- The operation (+) is associative, with identity element 0
- The operation (*) is associative, with identity element 1

There are multiple possible monoid instances for numeric types like Integer:

- The operation (+) is associative, with identity element 0
- The operation (*) is associative, with identity element 1

Haskell doesn't use any of these, because there can be only one instance per type per class in the entire program (including all dependencies and libraries used).

A common technique is to define a separate type that is represented identically to the original type, but can have its own, different type class instances.

There are multiple possible monoid instances for numeric types like Integer:

- The operation (+) is associative, with identity element 0
- The operation (*) is associative, with identity element 1

Haskell doesn't use any of these, because there can be only one instance per type per class in the entire program (including all dependencies and libraries used).

A common technique is to define a separate type that is represented identically to the original type, but can have its own, different type class instances.

In Haskell, this is done with the newtype keyword.

A newtype declaration is much like a data declaration except that there can be only one constructor and it must take exactly one argument:

```
newtype Score = S Integer
```

```
instance Semigroup Score where
S x \ll S y = S (x + y)
```

```
instance Monoid Score where
  mempty = S 0
```

Here, Score is represented identically to Integer, and thus no performance penalty is incurred to convert between them.

In general, newtypes are a great way to prevent mistakes. Use them frequently!

Ord is a type class for inequality comparison:

class Ord a where

What laws should instances satisfy?

Ord is a type class for inequality comparison:

class Ord a where

What laws should instances satisfy?

For all x, y, and z:

• Reflexivity: x <= x.

Ord is a type class for inequality comparison:

class Ord a where

What laws should instances satisfy?

- Reflexivity: $x \le x$.
- 2 Transitivity: If $x \le y$ and $y \le z$ then $x \le z$.

Ord is a type class for inequality comparison:

class Ord a where

What laws should instances satisfy?

- Reflexivity: $x \le x$.
- 2 Transitivity: If $x \le y$ and $y \le z$ then $x \le z$.
- **3** Antisymmetry: If $x \le y$ and $y \le x$ then x == y.

Ord is a type class for inequality comparison:

```
class Ord a where
```

What laws should instances satisfy?

- Reflexivity: $x \le x$.
- 2 Transitivity: If $x \le y$ and $y \le z$ then $x \le z$.
- **3** Antisymmetry: If $x \le y$ and $y \le x$ then x == y.
- **1** Totality: Either $x \le y$ or $y \le x$

Ord is a type class for inequality comparison:

```
class Ord a where
  (<=) :: a -> a -> Bool
```

What laws should instances satisfy?

For all x, y, and z:

- Reflexivity: $x \le x$.
- 2 Transitivity: If $x \le y$ and $y \le z$ then $x \le z$.
- **3** Antisymmetry: If $x \le y$ and $y \le x$ then x == y.
- **1** Totality: Either $x \le y$ or $y \le x$

Relations that satisfy these four properties are called *total orders*. Without the fourth (totality), they are called *partial orders*.

Eq is a type class for equality or equivalence:

class $\mathbf{E}\mathbf{q}$ a where

What laws should instances satisfy?

Eq is a type class for equality or equivalence:

class Eq a where

What laws should instances satisfy?

For all x, y, and z:

• Reflexivity: x == x.

Eq is a type class for equality or equivalence:

class Eq a where

What laws should instances satisfy?

- Reflexivity: x == x.
- 2 Transitivity: If x == y and y == z then x == z.

Eq is a type class for equality or equivalence:

class Eq a where

What laws should instances satisfy?

- Reflexivity: x == x.
- 2 Transitivity: If x == y and y == z then x == z.
- **3** Symmetry: If x == y then y == x.

Eq is a type class for equality or equivalence:

class **Eq a** where

What laws should instances satisfy?

For all x, y, and z:

- Reflexivity: x == x.
- 2 Transitivity: If x == y and y == z then x == z.
- **3** Symmetry: If x == y then y == x.

Relations that satisfy these are called *equivalence relations*.

Eq is a type class for equality or equivalence:

class Eq a where

What laws should instances satisfy?

For all x, y, and z:

- Reflexivity: x == x.
- 2 Transitivity: If x == y and y == z then x == z.
- **3** Symmetry: If x == y then y == x.

Relations that satisfy these are called equivalence relations.

Some argue that the Eq class should be only for *equality*, requiring stricter laws like:

If x == y then f x == f y for all functions f

But this is debated

Types and Values

Haskell is actually comprised of two languages.

• The *value-level* language, consisting of expressions such as if, let, 3 etc.

Types and Values

Haskell is actually comprised of two languages.

- The *value-level* language, consisting of expressions such as if, let, 3 etc.
- The *type-level* language, consisting of types Int, Bool, synonyms like String, and type *constructors* like Maybe, (->), [] etc.

Types and Values

Haskell is actually comprised of two languages.

- The *value-level* language, consisting of expressions such as if, let, 3 etc.
- The *type-level* language, consisting of types Int, Bool, synonyms like String, and type *constructors* like Maybe, (->), [] etc.

This type level language itself has a type system!

Kinds

Just as terms in the value level language are given types, terms in the type level language are given *kinds*.

The most basic kind is written as *.

- Types such as Int and Bool have kind *.
- Seeing as Maybe is parameterised by one argument, Maybe has kind * -> *: given a type (e.g. Int), it will return a type (Maybe Int).

Lists

Suppose we have a function:

```
toString :: Int -> String
```

And we also have a function to give us some numbers:

```
getNumbers :: Seed -> [Int]
```

How can I compose toString with getNumbers to get a function f of type Seed -> [String]?

Lists

Suppose we have a function:

```
toString :: Int -> String
```

And we also have a function to give us some numbers:

```
getNumbers :: Seed -> [Int]
```

How can I compose toString with getNumbers to get a function f of type Seed -> [String]?

```
Answer: we use map:
```

```
f = map toString . getNumbers
```

Maybe

Suppose we have a function:

```
toString :: Int -> String
```

And we also have a function that may give us a number:

```
tryNumber :: Seed -> Maybe Int
```

How can I compose toString with tryNumber to get a function f of type Seed -> Maybe String?

Maybe

Suppose we have a function:

```
toString :: Int -> String
```

And we also have a function that may give us a number:

```
tryNumber :: Seed -> Maybe Int
```

How can I compose to String with tryNumber to get a function f of type Seed -> Maybe String?

We want a map function but for the Maybe type:

```
f = maybeMap toString . tryNumber
```

Let's implement it.

Functor

All of these functions are in the interface of a single type class, called Functor.

class Functor f where
 fmap :: (a -> b) -> f a -> f b

Functor

All of these functions are in the interface of a single type class, called Functor.

```
class Functor f where
fmap :: (a -> b) -> f a -> f b
```

Unlike previous type classes we've seen like Ord and Semigroup, Functor is over types of kind * -> *.

Functor

All of these functions are in the interface of a single type class, called Functor.

```
class Functor f where
fmap :: (a -> b) -> f a -> f b
```

Unlike previous type classes we've seen like Ord and Semigroup, Functor is over types of kind $* \rightarrow *$.

Instances for:

- Lists
- Maybe
- Tuples (how?)
- Functions (how?)

Demonstrate in live-coding

Functor Laws

The functor type class must obey two laws:

Functor Laws

- fmap id == id
- 2 fmap f . fmap g == fmap (f . g)

Functor Laws

The functor type class must obey two laws:

Functor Laws

- fmap id == id
- 2 fmap f . fmap g == fmap (f . g)

In Haskell's type system it's impossible to make a total fmap function that satisfies the first law but violates the second.

This is due to *parametricity*, a property we will return to in Week 8 or 9

Homework

- Do the first programming exercise, and ask us on Piazza if you get stuck. It will be due in exactly 1 week from the start of the Friday lecture.
- Last week's quiz is due this Friday. Make sure you submit your answers.
- This week's quiz is also up, due next Friday (the Friday after this one).