Symbiotic Radio: Towards Spectrum and Energy Efficient Transmission

Yang Zhao

Department of Electrical and Electronic Engineering Imperial College London

Tech rewiew, December 16, 2020

Table of Contents

- Introduction to Backscatter Communication
 - Antennas: Transmitter vs Scatterer
 - Backscatter Modulation
 - Backscatter Techniques
- 2 Symbiotic Radio
 - System Model
 - Problem Formulation
 - Results
 - Limitations and Opportunities

Antennas: Transmitter vs Scatterer

Green's decomposition: the (back)scattered signal of an antenna can be decomposed into *structural mode* component and *antenna mode* component.

$$Z_{ant} = \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

(a) Transmit antenna (b) Backscatter antenna

$$E_{\text{scat}}(Z_{\text{L}}) = \underbrace{E_{\text{scat}}(Z_{\text{ant}}^*)}_{\text{structural mode, fixed}} + \underbrace{\Gamma^* E_{\text{ant}} \frac{I_{\text{m}}^*}{I_{\text{ant}}}}_{\text{antenna mode, adjustable}} \tag{1}$$

Non-Frequency Shifting Modulation

Non-Frequency Shifting (FS) modulation only changes the amplitude and phase of the incident signal. The backscattered signal can be controlled by varying the load at the reflector.

$$\Gamma^*(Z_L) = \frac{Z_{\text{ant}}^* - Z_L}{Z_{\text{ant}} + Z_L} \tag{2}$$

Key issue: design a reflection coefficient set corresponding to the signal constellation set C. For each constellation point $c_i \in C$,

$$\Gamma_i = \alpha \frac{c_i}{\max_{c \in \mathcal{C}} |c|} \tag{3}$$

where the constant $\alpha < 1$ determines the tradeoff between backscatter strength and harvestable power at the reflector.

Frequency Shifting Modulation

Frequency shifting modulation changes Γ over time to approximate a sine wave $ce^{j2\pi\Delta ft}=c\left(\cos(j2\pi\Delta ft)+j\sin(j2\pi\Delta ft)\right)^{1}$.

For a incoming signal $\cos(2\pi ft)$, the backscattered signal is

$$ce^{j2\pi\Delta ft}\cos(2\pi ft) = \frac{c}{2}\left(\underbrace{e^{j2\pi(f+\Delta f)t}}_{\text{desired}} + \underbrace{e^{j2\pi(-f+\Delta f)t}}_{\text{mirror}}\right) \tag{4}$$

Some modulation techniques (e.g. inter-technology backscatter [1], HitchHike [2]) can be used to suppress the mirror copy.

Figure: Incident and backscattered waveform [1, 3]

¹In practice, the sin/cos terms can be approximated by a convenient square wave (large amplitude at Δf , small interference at harmonics)

Ambient Backscatter Communication

Ambient Backscatter Communication (AmBC) utilizes the surrounding RF signals (e.g. TV, Wi-Fi) to enable communications between batteryless devices.

Figure: An ambient backscatter communication system [4]

The passive tag harvests energy from and modulate over the ambient RF signal.

Intelligent Reflecting Surface

Intelligent Reflecting Surface (IRS) consists of multiple individual passive reflecting elements that adjust the amplitude and phase of the incident signal.

(a) IRS architecture [5]

- outer layer: redistribute incident signals
- middle layer: avoid signal energy leakage
- inner layer: adjust reflection amplitude and phase shift

(b) Application scenario

- enhance primary transmission by constructive reflection
- null interference by destructive reflection
- enable LoS Racian fading for less outage

Performance of Conventional Backscatter Systems

	Minimum Power	Maximum Bit Rate		Range		Deployment	
Name		Bit Rate	Distance	Transmitter to Tag	Tag to Receiver	Transmitter	Receiver
BackFi [6]	N/A	5 megabit/s	1 m	7 m	7 m	Ambient Wi-Fi	Software-defined radio
Ambient backscatter [7]	0.79 μW	10 kilobit/s	0.4 m	N/A	2.5 m	Ambient TV	Customized hardware
Wi-Fi backscatter [8]	9.65 μW	1 kilobit/s	N/A	N/A	2.1 m	Commodity Wi-Fi	Commodity Wi-Fi
Passive Wi-Fi [9]	14.5 μW (IC)	11 megabit/s	N/A	3.7 m	16.8 m	Customized hardware	Commodity Wi-Fi
HitchHike [10]	33 μW (IC)	300 kilobit/s	34 m	1 m	54 m	Commodity Wi-Fi	Commodity Wi-Fi
LoRea [11]	70 μW	197 kilobit/s	175 m	1 m	3.4 km	Patched commodity	Customized hardware
Interscatter [12]	28 μW (IC)	11 megabit/s	N/A	0.9 m	27.4 m	Commodity BLE	Commodity Wi-Fi/Zigbee
Battery-free cell phone [13]	3.48 μW	N/A	N/A	15.2 m	15.2 m	Customized hardware	Customized hardware
LoRa backscatter [14]	9.25 μW (IC)	37.5 kilobit/s	N/A	5 m	2.8 km	Customized hardware	Commodity LoRa
FM backscatter [15]	11.07 μW (IC)	3.2 kilobit/s	4.9 m	N/A	18.3 m	Ambient FM	Commodity FM

Figure: A performance comparison of promising backscatter systems [6]

Conventional backscatter systems cannot be spectrum and energy efficient at the same time:

- Non-FS modulation creates and is subject to interference
- FS modulation needs extra bandwidth

Symbiotic Radio

- In a Symbiotic Radio (SR) system, the non-FS backscatter device
 - enables a secondary transmission over the primary transmission (like AmBC)
 - can be used to assist the primary transmission (like IRS)

Table: Backscatter Technologies

Technology	RFID	IRS	AmBC	SR
Coexist links	1	1	≥ 2	≥ 2
Role/relationship	Dedicated	Auxiliary	Interf	Interf or collab
Spectrum sharing	_	_	Yes	Yes
Energy sharing	_	_	Yes	Yes
Joint transceiver design	Yes	Yes	No	Yes
Relative range	Short	Long	Short	Short

With fully passive backscatter devices, SR is spectrum efficient (non-FS) and energy efficient (reuse existing signals).

System Model
Problem Formulation
Results
Limitations and Opportuni

Table of Contents

- Introduction to Backscatter Communication
 - Antennas: Transmitter vs Scatterer
 - Backscatter Modulation
 - Backscatter Techniques
- Symbiotic Radio
 - System Model
 - Problem Formulation
 - Results
 - Limitations and Opportunities

System Architecture

Consider a M-antenna transmitter, a single antenna backscatter device and a single antenna receiver. Denote the primary message as s(n).

Figure: Architecture of an symbiotic radio network [7]

Assume a block-fading channel model, denote

• PT-PR channel: $\mathbf{h}_1^H \in \mathbb{C}^{1 \times M}$

• PT-BD channel: $\mathbf{h}_2^H \in \mathbb{C}^{1 \times M}$

• BD-PR channel: $g \in \mathbb{C}$

System Model

Denote T_s and T_c as the the symbol duration of primary and secondary transmission. Let $T_c = NT_s, N \in \mathbb{R}_{++}$. Two types of SR depending on N:

- Parasitic SR (PSR) (N = 1): treat backscattered signal as interference.
- Commensal SR (CSR) ($N\gg 1$): treat backscattered signal as multipath component.

Figure: CSR transmission frame $(N \gg 1)$ [7]

System Model: Parasitic Symbiotic Radio

PSR treats the backscattered signal as interference and use SIC to decode. In PSR, $T_C = T_S$ and the backscatter message is c(n).

Received signal:

$$y(n) = \underbrace{\boldsymbol{h}_{1}^{H} \boldsymbol{w} s(n)}_{\text{direct signal}} + \underbrace{\sqrt{\alpha} g \, \boldsymbol{h}_{2}^{H} \boldsymbol{w} s(n) c(n)}_{\text{backscattered signal}} + z(n)$$
 (5)

Intermediate signal (assume perfect cancellation):

$$y_b(n) = \underbrace{\sqrt{\alpha} g \, \mathbf{h}_2^H \mathbf{w} s(n)}_{\text{equivalent channel } h_c} c(n) + z(n)$$
 (6)

System Model: Parasitic Symbiotic Radio

Primary achievable rate:

$$R_s^{\mathsf{PSR}} = \log_2 \left(1 + \frac{|\boldsymbol{h}_1^H \boldsymbol{w}|^2}{\alpha |g|^2 |\boldsymbol{h}_2^H \boldsymbol{w}|^2 + \sigma^2} \right) \tag{7}$$

Secondary achievable rate:

$$R_c^{\mathsf{PSR}} = \mathbb{E}_s \left[\log_2 \left(1 + \frac{\alpha |g|^2 |\boldsymbol{h}_2^H \boldsymbol{w}|^2 |s(n)|^2}{\sigma^2} \right) \right] = -e^{1/\gamma_c^{\mathsf{PSR}}} \mathrm{Ei}(-\frac{1}{\gamma_c^{\mathsf{PSR}}}) \log_2 e$$
where $\gamma_c^{\mathsf{PSR}} = \alpha |g|^2 |\boldsymbol{h}_2^H \boldsymbol{w}|^2 / \sigma^2$ and $\mathrm{Ei}(x) \triangleq \int_{-\infty}^{\infty} (1/u) e^u \, \mathrm{d}x$. (8)

PSR characteristics:

- enables high-rate low-SNR secondary transmission
- creates interference to primary transmission
- need to synchronize the primary and backscatter messages

System Model: Commensal Symbiotic Radio

CSR treats the backscattered signal as a multipath component and use **SIC to decode.** In CSR, $N \gg 1$ and the backscatter message is c within a channel block

Received signal:

$$y(n) = \underbrace{\mathbf{h}_{1}^{H} \mathbf{w} s(n)}_{\text{direct signal}} + \underbrace{\sqrt{\alpha} g \, \mathbf{h}_{2}^{H} \mathbf{w} s(n) c}_{\text{backscattered signal}} + z(n) \tag{9}$$

$$= \underbrace{\left(\mathbf{h}_{1}^{H} + \sqrt{\alpha}g\mathbf{h}_{2}^{H}c\right)}_{\text{equivalent channel }\mathbf{h}_{2}^{H}(c)} \mathbf{w}\mathbf{s}(n) + \mathbf{z}(n) \tag{10}$$

Intermediate signal (assume perfect cancellation):

$$y_b(n) = \sqrt{\alpha} g \, \boldsymbol{h}_2^H \boldsymbol{w} \underbrace{s(n)}_{\text{spreading code}} c + z(n) \tag{11}$$

System Model: Commensal Symbiotic Radio

Primary achievable rate (c is unknown, noncoherent, N sufficiently large):

$$R_s^{\text{CSR}} = \mathbb{E}_c \left[\log_2 \left(1 + \gamma_s^{\text{CSR}}(c) \right) \right] \overset{\gamma_s^{\text{CSR}}(c) \to +\infty}{\approx} \underbrace{ \log_2 \lambda}_{\text{without SR}} \underbrace{ - \text{Ei} \left(-\frac{\lambda}{2\Sigma} \right) \log_2 e}_{\geq 0, \text{ primary rate gain by multipath}}$$

$$\text{(12)}$$
where $\gamma_s^{\text{CSR}}(c) = |\boldsymbol{h}_s^H(c) \boldsymbol{w}|^2 / \sigma^2, \ \lambda = |\boldsymbol{h}_1 \boldsymbol{w}|^2 / \sigma^2, \ \Sigma = \alpha |\boldsymbol{g}|^2 |\boldsymbol{h}_2 \boldsymbol{w}|^2 / 2\sigma^2.$

Secondary achievable rate (assume perfect cancellation):

$$R_c^{\mathsf{CSR}} = \frac{1}{N} \log_2 \left(1 + \frac{N\alpha |g|^2 |\mathbf{h}_2^H \mathbf{w}|^2}{\sigma^2} \right) \tag{13}$$

CSR characteristics:

- ullet compared with PSR, symbol rate decreased by 1/N but SNR increased by N
- enhances the primary link by additional multipath component
- synchronization is much relaxed (every N symbols)
- suitable for slow-fading channels (large coherence time)

Transmit Beamforming: WSRM and TPM

Weighted Sum-Rate Maximization (WSRM) through transmit beamforming:

$$\max_{\mathbf{W}} \quad \rho R_{s}^{\mathsf{PSR/CSR}} + (1 - \rho) R_{c}^{\mathsf{PSR/CSR}} \tag{14a}$$

$$0 \le \rho \le 1 \tag{14c}$$

Transmit Power Minimization (TPM) through transmit beamforming:

$$\min_{\mathbf{w}, P} P \tag{15a}$$

s.t.
$$R_s^{\mathsf{PSR/CSR}} \ge \epsilon_s$$
, (15b)

$$R_c^{\mathsf{PSR}/\mathsf{CSR}} \ge \epsilon_c,$$
 (15c)

$$\|\boldsymbol{w}\|^2 \le P \tag{15d}$$

Problem 14 can be solved by the Semidefinite Relaxation (SDR) technique together with a 1-D exhaustive search. Problem 15 can be solved by SDR.

Low-Complexity Solution

The optimal beamformer of WSRM or TPM is a *linear combination* of scaled channel vectors:

$$\mathbf{w}^{\star} = \alpha_1 \tilde{\mathbf{h}}_1 + \alpha_2 \tilde{\mathbf{h}}_2 = \mathbf{H} \alpha \tag{16}$$

where $|\alpha_1|^2 + |\alpha_2|^2 = 1$, $\boldsymbol{H} = [\tilde{\boldsymbol{h}}_1, \tilde{\boldsymbol{h}}_2] \in \mathbb{C}^{M \times 2}$, $\boldsymbol{\alpha} = [\alpha_1, \alpha_2]^T \in \mathbb{C}^{2 \times 1}$. The SDR problems are now related to $\boldsymbol{A} = \alpha \alpha^H \in \mathbb{C}^{2 \times 2}$ only.

An intuition is that the optimal beamformer of PT-PR (traditional MISO) and PT-BD-PR (traditional BackCom) are the MRT of the corresponding links. SR is basically a combination of both.

WSRM: Rate Region

Figure: Rate region of PSR [7]

TPM: Transmit Power

Figure: Minimum transmit power P vs backscatter rate constraint ϵ_c

TPM: Rate Tradeoff

(a) PSR: primary rate $R_s^{\rm PSR}$ vs backscatter rate constraint ϵ_c

(c) CSR: primary rate R_s^{CSR} vs backscatter rate

(d) CSR: secondary rate R_c^{CSR} vs primary rate

(b) PSR: secondary rate R_c^{PSR} vs primary rate constraint ϵ_s

Limitations and Opportunities

Limitations:

- Channel model: double fading may not cover backscatter channel properties as rank deficiency and channel correlation.
- Channel estimation: need carefully designed pilots and low complexity algorithms.
- Synchronization: traditional solution requires power-consuming oscillators at the backscatter device.
- Security: the secondary transmission relies heavily on the primary transmission.

Opportunities:

- Integrate the IRS reflection coefficient ϕ and the backscatter message c for multi-antenna backscatter?
- Design SR in broadcasting and multiple access systems?
- Suppress the backscatter signal at other frequencies?

V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith, "Inter-technology backscatter: Towards internet connectivity for implanted devices," in *SIGCOMM 2016 - Proceedings of the 2016 ACM Conference on Special Interest Group on Data Communication*, 2016, pp. 356–369.

P. Zhang, D. Bharadia, K. Joshi, and S. Katti, "HitchHike: Practical backscatter using commodity WiFi," in *Proceedings of the 14th ACM Conference on Embedded Networked Sensor Systems, SenSys 2016*, 2016, pp. 259–271.

B. Kellogg, V. Talla, S. Gollakota, J. R. Smith, I. Nsdi, and S. Gollakot, "Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions This paper is included in the Proceedings of the," *Getmobile Mobile Computing & Communications*, vol. 20, no. 3, pp. 38–41, 2016.

W. Zhao, G. Wang, F. Gao, Y. Zou, and S. Atapattu, "Channel capacity and lower bound for ambient backscatter communication systems," 2017 9th International Conference on Wireless Communications and Signal Processing, WCSP 2017 - Proceedings, vol. 2017-Janua, pp. 1–6, 2017.

Q. Wu and R. Zhang, "Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network," *IEEE Communications Magazine*, vol. 58, no. 1, pp. 106–112, 2020.

C. Xu, L. Yang, and P. Zhang, "Practical Backscatter Communication Systems for Battery-Free Internet of Things: A Tutorial and Survey of Recent Research," *IEEE Signal Processing Magazine*, vol. 35, no. 5, pp. 16–27, 2018.

R. Long, Y.-C. Liang, H. Guo, G. Yang, and R. Zhang, "Symbiotic Radio: A New Communication Paradigm for Passive Internet-of-Things," *IEEE Internet of Things Journal*, pp. 1–1, 2019.