Asthama Disease Prediction using Machine Learning

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
```

In [2]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
df = pd.read_csv("asthama.csv")
```

In [4]:

df.head()

Out[4]:

	Tiredness	Dry- Cough	Difficulty- in- Breathing	Sore- Throat	None_Sympton	Pains	Nasal- Congestion	Runny- Nose	None_E
0	1	1	1	1	0	1	1	1	
1	1	1	1	1	0	1	1	1	
2	1	1	1	1	0	1	1	1	
3	1	1	1	1	0	1	1	1	
4	1	1	1	1	0	1	1	1	
4									•

In [5]:

df.tail()

Out[5]:

	Tiredness	Dry- Cough	Difficulty- in- Breathing	Sore- Throat	None_Sym	npton	Pains	Nasal- Congestion	Runny- Nose	N
316795	0	0	0	0		1	0	0	0	
316796	0	0	0	0	('0)	1	0	0	0	
316797	0	0	0	0		1	0	0	0	
316798	0	0	0	0		1	0	0	0	
316799	0	0	0	0		1	0	0	0	
4										•

In [6]:

df.shape

Out[6]:

(316800, 19)

Out[9]:

```
Tiredness
                             0
                             0
Dry-Cough
Difficulty-in-Breathing
                             0
Sore-Throat
                             0
None_Sympton
                             0
                             0
Pains
Nasal-Congestion
                             0
                             0
Runny-Nose
None_Experiencing
                             0
                             0
Age 0-9
                             0
Age_10-19
Age_20-24
                             0
Age_25-59
                             0
Age_60+
                             0
Gender_Female
                             0
Gender_Male
                             0
Severity_Mild
                             0
Severity_Moderate
                             0
Severity_None
                             0
dtype: int64
```

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 316800 entries, 0 to 316799

Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype
0	Tiredness	316800 non-null	int64
1	Dry-Cough	316800 non-null	int64
2	Difficulty-in-Breathing	316800 non-null	int64
3	Sore-Throat	316800 non-null	int64
4	None_Sympton	316800 non-null	int64
5	Pains	316800 non-null	int64
6	Nasal-Congestion	316800 non-null	int64
7	Runny-Nose	316800 non-null	int64
8	None_Experiencing	316800 non-null	int64
9	Age_0-9	316800 non-null	int64
10	Age_10-19	316800 non-null	int64
11	Age_20-24	316800 non-null	int64
12	Age_25-59	316800 non-null	int64
13	Age_60+	316800 non-null	int64
14	Gender_Female	316800 non-null	int64
15	Gender_Male	316800 non-null	int64
16	Severity_Mild	316800 non-null	int64
17	Severity_Moderate	316800 non-null	int64
18	Severity_None	316800 non-null	int64

dtypes: int64(19) memory usage: 45.9 MB

In [11]:

df.describe()

Out[11]:

	Tiredness	Dry-Cough	Difficulty-in- Breathing	Sore-Throat	None_Sympton	
count	316800.000000	316800.000000	316800.000000	316800.000000	316800.000000	316800.
mean	0.500000	0.562500	0.500000	0.312500	0.062500	0.
std	0.500001	0.496079	0.500001	0.463513	0.242062	0.4
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.
50%	0.500000	1.000000	0.500000	0.000000	0.000000	0.
75%	1.000000	1.000000	1.000000	1.000000	0.000000	1.0
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.0
4						•

In [12]:

```
df.nunique()
```

Out[12]:

Tiredness 2 Dry-Cough 2 Difficulty-in-Breathing 2 Sore-Throat 2 2 None Sympton 2 Pains 2 Nasal-Congestion 2 Runny-Nose None_Experiencing 2 Age_0-9 2 2 Age_10-19 2 Age_20-24 Age_25-59 2 2 Age_60+ Gender_Female 2 2 Gender_Male Severity_Mild 2 2 Severity_Moderate Severity_None 2 dtype: int64

In [13]:

```
for i in df.columns:
    print('Countplot for:', i)
    plt.figure(figsize=(15,6))
    sns.countplot(x = df[i], data = df, palette = 'hls')
    plt.show()
    print('\n')
```

Countplot for: Tiredness

Countplot for: Dry-Cough

In [14]:

```
for i in df.columns:
    print('Pie plot for:', i)
    plt.figure(figsize=(20, 10))
    df[i].value_counts().plot(kind='pie', autopct='%1.1f%%')
    plt.title('Distribution of ' + i)
    plt.ylabel('')
    plt.show()
    print('\n')
```

Pie plot for: Tiredness

Distribution of Tiredness

In [15]:

Tiredness

In [16]:

```
for i in df.columns:
    print('Pie plot for:', i)
    fig = px.pie(df, names=i, title='Distribution of ' + i)
    fig.show()
    print('\n')
```

Distribution of Tiredness

Pie plot for: Tiredness


```
In [17]:
df = df.drop(['Severity_None'], axis = 1)
In [18]:
df['Asthma_Severity'] = df[['Severity_Mild', 'Severity_Moderate']].idxmax(axis=1)
In [19]:
severity_mapping = {
    'Severity_Mild': 'Mild',
    'Severity_Moderate': 'Moderate'
}
In [20]:
df['Asthma_Severity'] = df['Asthma_Severity'].map(severity_mapping)
In [21]:
df['Asthma_Severity']
Out[21]:
              Mild
0
              Mild
1
2
              Mild
          Moderate
3
          Moderate
316795
              Mild
316796
              Mild
316797
              Mild
              Mild
316798
316799
              Mild
Name: Asthma_Severity, Length: 316800, dtype: object
In [22]:
severity_mapping = {
    'Mild': 0,
    'Moderate': 1
}
In [23]:
df['Asthma_Severity'] = df['Asthma_Severity'].map(severity_mapping)
```

```
In [24]:
```

```
df['Asthma_Severity'].value_counts()
```

Out[24]:

0 2376001 79200

Name: Asthma_Severity, dtype: int64

In [25]:

```
print('Countplot for:', 'Asthma_Severity')
plt.figure(figsize=(15,6))
sns.countplot(x = df['Asthma_Severity'], data = df, palette = 'hls')
plt.show()
```

Countplot for: Asthma_Severity

In [26]:

```
print('Pie plot for:', 'Asthma_Severity')
plt.figure(figsize=(20, 10))
df['Asthma_Severity'].value_counts().plot(kind='pie', autopct='%1.1f%%')
plt.ylabel('')
plt.show()
```

Pie plot for: Asthma_Severity

In [27]:

Asthma_Severity

In [28]:

```
print('Pie plot for:', 'Asthma_Severity')
fig = px.pie(df, names='Asthma_Severity')
fig.show()
```

Pie plot for: Asthma_Severity

In [29]:

```
df.columns
```

Out[29]:

```
In [30]:
severity_levels = ['Severity_Mild', 'Severity_Moderate']
severity_distribution = df[severity_levels].sum()
In [31]:
severity_distribution
Out[31]:
Severity_Mild
                      79200
                     79200
Severity_Moderate
dtype: int64
In [32]:
df = df.drop(['Severity_Mild', 'Severity_Moderate'], axis = 1)
In [33]:
symptoms = ['Tiredness', 'Dry-Cough', 'Difficulty-in-Breathing', 'Sore-Throat', 'Pains',
symptom_counts = df[symptoms].sum()
In [34]:
symptom_counts
Out[34]:
Tiredness
                            158400
Dry-Cough
                            178200
Difficulty-in-Breathing
                            158400
Sore-Throat
                             99000
Pains
                            115200
Nasal-Congestion
                            172800
Runny-Nose
                            172800
dtype: int64
In [35]:
```

age_groups = ['Age_0-9', 'Age_10-19', 'Age_20-24', 'Age_25-59', 'Age_60+']

age_distribution = df[age_groups].sum()

```
In [36]:
```

```
age_distribution
```

Out[36]:

```
Age_0-9 63360
Age_10-19 63360
Age_20-24 63360
Age_25-59 63360
Age_60+ 63360
dtype: int64
```

In [37]:

```
gender_groups = ['Gender_Female', 'Gender_Male']
gender_distribution = df[gender_groups].sum()
```

In [38]:

gender_distribution

Out[38]:

Gender_Female 105600 Gender_Male 105600

dtype: int64

In [39]:

In [40]:

Frequency of Symptoms

In [41]:

Frequency of Symptoms

In [42]:

Frequency of Symptoms

In [43]:

In [44]:

Frequency of Age Distribution

Age_20-24

In [45]:

Frequency of Age Distribution

In [46]:

Frequency of Age Distribution

In [47]:

In [48]:

Frequency of Gender Distribution

In [49]:

Frequency of Gender Distribution

In [50]:

Frequency of Gender Distribution

In [51]:

```
corr = df[symptoms].corr()
```

In [52]:

corr

Out[52]:

	Tiredness	Dry-Cough	Difficulty-in- Breathing	Sore-Throat	Pains	N Conge
Tiredness	1.000000e+00	3.779645e-01	4.629153e-17	-1.348400e- 01	2.612420e-17	-6.526
Dry-Cough	3.779645e-01	1.000000e+00	3.779645e-01	5.096472e-02	4.519459e-18	-5.180
Difficulty- in- Breathing	4.629153e-17	3.779645e-01	1.000000e+00	4.045199e-01	-9.663757e- 19	1.07676
Sore- Throat	-1.348400e- 01	5.096472e-02	4.045199e-01	1.000000e+00	-1.063529e- 17	3.70577
Pains	2.612420e-17	4.519459e-18	-9.663757e- 19	-1.063529e- 17	1.000000e+00	3.10529
Nasal- Congestion	-6.526807e- 17	-5.180861e- 17	1.076763e-17	3.705775e-17	3.105295e-01	1.000000
Runny- Nose	-1.561936e- 16	-9.767619e- 17	-1.091121e- 17	2.844633e-17	-6.900656e- 02	2.66666
4						>

In [53]:

```
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr, annot=True, cmap='coolwarm', center=0, ax=ax)
ax.set_title('Correlation Matrix for Symptoms')
plt.tight_layout()
plt.show()
```


In [54]:

severity_symptom_means = df.groupby(by=[col for col in df.columns if "Asthma_Severity" i

In [55]:

severity_symptom_means

Out[55]:

	Tiredness	Dry- Cough	Difficulty- in- Breathing	Sore- Throat	Pains	Nasal- Congestion	Runny- Nose	
Asthma_Severity								
0	0.5	0.5625	0.5	0.3125	0.363636	0.545455	0.545455	
1	0.5	0.5625	0.5	0.3125	0.363636	0.545455	0.545455	

```
In [56]:
```

```
severity_symptom_means = severity_symptom_means.transpose()
```

In [57]:

```
severity_symptom_means
```

Out[57]:

Asthma_Severity	0	1
Tiredness	0.500000	0.500000
Dry-Cough	0.562500	0.562500
Difficulty-in-Breathing	0.500000	0.500000
Sore-Throat	0.312500	0.312500
Pains	0.363636	0.363636
Nasal-Congestion	0.545455	0.545455
Runny-Nose	0.545455	0.545455

In [58]:

```
data = {
    'Asthma_Severity': [0, 1, 2],
    'Tiredness': [0.500000, 0.5000000],
    'Dry-Cough': [0.562500, 0.562500],
    'Difficulty-in-Breathing': [0.500000, 0.5000000, 0.5000000],
    'Sore-Throat': [0.312500, 0.312500, 0.312500],
    'Pains': [0.363636, 0.363636],
    'Nasal-Congestion': [0.545455, 0.545455],
    'Runny-Nose': [0.545455, 0.545455]
}
```

In [59]:

```
df1 = pd.DataFrame(data)
```

In [60]:

```
df1.set_index('Asthma_Severity', inplace=True)
```

In [61]:

```
fig, axes = plt.subplots(nrows=4, ncols=2, figsize=(12, 10))
symptoms = ['Tiredness', 'Dry-Cough', 'Difficulty-in-Breathing', 'Sore-Throat', 'Pains',
for i, symptom in enumerate(symptoms):
     row, col = divmod(i, 2)
     df1[symptom].plot(kind='bar', ax=axes[row, col], color='skyblue', edgecolor='black')
     axes[row, col].set_title(symptom)
     axes[row, col].set_xlabel('Asthma Severity')
     axes[row, col].set_ylabel('Frequency')
if len(symptoms) < len(axes.flat):</pre>
     for i in range(len(symptoms), len(axes.flat)):
          fig.delaxes(axes.flatten()[i])
plt.tight_layout()
plt.show()
                                                                                                                •
                                                                       Dry-Cough
                       Tiredness
  0.5
                                                  0.5
  0.4
                                                 0.4
0.3
0.2
0.3
0.2
  0.1
                                                  0.1
                                                                      Asthma Severity
                     Asthma Severity
                   Difficulty-in-Breathing
                                                                       Sore-Throat
  0.5
                                                  0.3
  0.4
Frequency
0.2
                                                 Frequency
0.1
  0.1
  0.0
                                                  0.0
                     Asthma Severity
                                                                      Asthma Severity
                                                                    Nasal-Congestion
                        Pains
                                                  0.5
  0.3
                                                  0.4
Freduency
0.2
                                                  0.3
                                                  0.2
  0.1
                                                  0.1
                                                  0.0
  0.0
                                                                      Asthma Severity
                     Asthma Severity
                      Runny-Nose
  0.5
0.4
0.3
0.2
  0.1
                     Asthma Severity
```

```
In [62]:
```

df

Out[62]:

	Tiredness	Dry- Cough	Difficulty- in- Breathing	Sore- Throat	None_Sympton	Pains	Nasal- Congestion	Runny- Nose N
0	1	1	1	1	0	1	1	1
1	1	1	1	1	0	1	1	1
2	1	1	1	1	0	1	1	1
3	1	1	1	1	0	1	1	1
4	1	1	1	1	0	1	1	1
316795	0	0	0	0	1	0	0	0
316796	0	0	0	0	1	0	0	0
316797	0	0	0	0	1	0	0	0
316798	0	0	0	0	1	0	0	0
316799	0	0	0	0	1	0	0	0

316800 rows × 17 columns

In [63]:

```
X = df.drop(['Asthma_Severity'], axis = 1)
y = df['Asthma_Severity']
```

In [64]:

from sklearn.ensemble import RandomForestClassifier

In [65]:

```
clf = RandomForestClassifier(n_estimators=100, random_state=42)
```

In [66]:

```
clf.fit(X, y)
```

Out[66]:

```
RandomForestClassifier
RandomForestClassifier(random_state=42)
```

```
In [67]:
```

```
feature_importances = clf.feature_importances_
```

In [68]:

```
feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': feature_import
```

In [69]:

```
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=Fal
```

In [70]:

```
plt.figure(figsize=(10, 6))
plt.barh(feature_importance_df['Feature'], feature_importance_df['Importance'], color='s
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.title('Feature Importance')
plt.gca().invert_yaxis()
```


In [71]:

```
X = df[symptoms + gender_groups]
```

In [72]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
```

```
In [73]:
X_train,X_test,y_train,y_test=train_test_split(X,
                                                test_size=0.2,
                                                stratify = y,
                                                random_state=42)
In [74]:
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
In [75]:
lr = LogisticRegression(random_state=42)
In [76]:
lr.fit(X_train, y_train)
Out[76]:
          LogisticRegression
LogisticRegression(random_state=42)
In [77]:
y_pred_lr = lr.predict(X_test)
In [78]:
accuracy = accuracy_score(y_test, y_pred_lr)
print(f'Accuracy: {accuracy:.2f}')
Accuracy: 0.75
In [79]:
dt = DecisionTreeClassifier()
In [80]:
model_dt = dt.fit(X_train, y_train)
In [81]:
y_pred_dt = model_dt.predict(X_test)
```

```
In [82]:
accuracy = accuracy_score(y_test, y_pred_dt)
print(f'Accuracy: {accuracy:.2f}')
Accuracy: 0.75
In [83]:
import xgboost as xgb
In [84]:
clf = xgb.XGBClassifier(
    objective='multi:softmax',
    num_class=len(pd.unique(y)),
    eval_metric='mlogloss',
    use_label_encoder=False
)
In [85]:
clf.fit(X_train, y_train)
Out[85]:
                                XGBClassifier
XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None,
               colsample_bylevel=1, colsample_bynode=1, colsample_bytre
e=1,
               early_stopping_rounds=None, enable_categorical=False,
               eval_metric='mlogloss', gamma=0, gpu_id=-1,
               grow_policy='depthwise', importance_type=None,
               interaction_constraints='', learning_rate=0.300000012,
               max_bin=256, max_cat_tolorehot=4, max_delta_step=0, max_
depth=6,
               max_leaves=0, min_child_weight=1, missing=nan,
In [86]:
y_pred_xgb = clf.predict(X_test)
In [87]:
accuracy = accuracy_score(y_test, y_pred_xgb)
print(f'Accuracy: {accuracy:.2f}')
```

Accuracy: 0.75

Thanks !!!