4. Modal Logic & Verification

José Proença

System Verification (CC4084) 2024/2025

CISTER - U.Porto, Porto, Portugal

https://fm-dcc.github.io/sv2425

Syllabus

- Introduction to model-checking
- CCS: a simple language for concurrency
 - Syntax
 - Semantics
 - Equivalence
 - mCRL2: modelling
- Dynamic logic
 - Syntax
 - Semantics
 - Relation with equivalence
 - mCRL2: verification

- Timed Automata
 - Syntax
 - Semantics (composition, Zeno)
 - Equivalence
 - UPPAAL: modelling
- Temporal logics (LTL/CTL)
 - Syntax
 - Semantics
 - UPPAAL: verification
- Probabilistic and stochastic systems
 - Going probabilistic
 - UPPAAL: monte-carlo

Recall: What's in a logic?

A logic

A language

i.e. a collection of well-formed expressions to which meaning can be assigned.

A semantics

describing how language expressions are interpreted as statements about something.

A deductive system

i.e. a collection of rules to derive in a purely syntactic way facts and relationships among semantic objects described in the language.

Note

- a purely syntactic approach (up to the 1940's; the sacred form)
- a model theoretic approach (A. Tarski legacy)

Semantic reasoning: models

- sentences
- models & satisfaction: $\mathcal{M} \models \phi$
- validity: $\models \phi$ (ϕ is satisfied in every possible structure)
- logical consequence: $\Phi \models \phi \ (\phi \text{ is satisfied in every model of } \Phi)$
- theory: $Th \Phi$ (set of logical consequences of a set of sentences Φ)

Syntactic reasoning: deductive systems

Deductive systems ⊢

- sequents
- Hilbert systems
- natural deduction
- tableaux systems
- resolution
-

- derivation and proof
- deductive consequence: $\Phi \vdash \phi$
- theorem: $\vdash \phi$

Soundness & completeness

• A deductive system \vdash is sound wrt a semantics \models if for all sentences ϕ

$$\vdash \phi \implies \models \phi$$

(every theorem is valid)

• · · · complete ...

$$\models \phi \implies \vdash \phi$$

(every valid sentence is a theorem)

Consistency & refutability

For logics with negation and a conjunction operator

- A sentence ϕ is refutable if $\neg \phi$ is a theorem (i.e. $\vdash \neg \phi$)
- A set of sentences Φ is refutable if some finite conjunction of elements in Φ is refutable
- ϕ or Φ is consistent if it is not refutable.

Examples

$$\mathcal{M} \models \phi$$

- Propositional logic (logic of uninterpreted assertions; models are truth assignments)
- Equational logic (formalises equational reasoning; models are algebras)
- First-order logic (logic of predicates and quatification over structures; models are relational structures)
- Modal logics
- ...

Modal Logic

Modal logic (from P. Blackburn, 2007)

Over the years modal logic has been applied in many different ways. It has been used as a tool for reasoning about time, beliefs, computational systems, necessity and possibility, and much else besides.

These applications, though diverse, have something important in common: the key ideas they employ (flows of time, relations between epistemic alternatives, transitions between computational states, networks of possible worlds) can all be represented as simple graph-like structures.

Modal logics are

- tools to talk about relational, or graph-like structures.
- fragments of classical ones, with restricted forms of quantification ...
- ... which tend to be decidable and described in a pointfree notations.

Basic Modal Logic

Syntax

$$\phi \ ::= \ \textcolor{red}{p} \ | \ \mathsf{true} \ | \ \mathsf{false} \ | \ \neg \phi \ | \ \phi_1 \wedge \phi_2 \ | \ \phi_1 \to \phi_2 \ | \ \langle \alpha \rangle \phi \ | \ [\alpha] \ \phi$$
 where $\textcolor{red}{p} \in \mathsf{PROP}$ and $\alpha \in \mathsf{ACT}$

Disjunction (\vee) and equivalence (\leftrightarrow) are defined by abbreviation.

The signature of the basic modal language is determined by sets:

- PROP of propositional symbols (typically assumed to be denumerably infinite) and
- ACT of structured actions (or programs), also called modality symbols.

Basic Modal Logic

Syntax

$$\phi \ ::= \ p \ | \ \mathsf{true} \ | \ \mathsf{false} \ | \ \neg \phi \ | \ \phi_1 \wedge \phi_2 \ | \ \phi_1 \to \phi_2 \ | \ \langle \alpha \rangle \phi \ | \ [\alpha] \phi$$
 where $p \in \mathsf{PROP}$ and $\alpha \in \mathsf{ACT}$

Ex. 4.1: Interpreting formulas

- \(drinkCoffee\)\)\)\)\)\)\)\ energetic: I will now \(\drink\)\ coffee and will be in an energetic state
- [drink] ¬thirsty: If I drink anything now, I will not be in a thirsty state

Basic Modal Logic

Syntax

$$\phi \,::=\, \textcolor{red}{p} \,\mid\, \mathsf{true} \,\mid\, \mathsf{false} \,\mid\, \neg \phi \,\mid\, \phi_1 \wedge \phi_2 \,\mid\, \phi_1 \rightarrow \phi_2 \,\mid\, \langle \alpha \rangle \, \phi \,\mid\, [\alpha] \, \phi$$
 where $\textcolor{red}{p} \in \mathsf{PROP}$ and $\alpha \in \mathsf{ACT}$

Ex. 4.1: Interpreting formulas

- \(drinkCoffee\)\)\)\)\)\)\ energetic: I will now \(\frac{drink coffee}{drink coffee}\)\)\ and will be in an energetic state
- [drink] ¬thirsty: If I drink anything now, I will not be in a thirsty state
- [something*] [pressCoffee] \(\getCoffee \) true:
 If do something any number of times, and then
 I press the coffee button, then
 I will get my coffee and that's it.

The language

Notes

- if there is only one modality in the signature (i.e., ACT is a singleton), write simply $\Diamond \phi$ and $\Box \phi$
- the language has some redundancy: in particular modal connectives are dual (as quantifiers are in first-order logic): $[\alpha] \phi$ is equivalent to $\neg \langle \alpha \rangle \neg \phi$

Example

Models as LTSs over Act.

```
ACT = Act (sets of actions)
```

 $\langle a \rangle \phi$ can be read as "it must observe a, and ϕ must hold after that."

[a] ϕ can be read as "if it observes a, then ϕ must hold after that."

Semantics

$$\mathcal{M}, s \models \phi$$
 - what does it mean?

Model definition

A model for the language is a pair $\mathcal{M} = \langle \mathcal{L}, V \rangle$, where

- $\mathcal{L} = \langle S, \mathsf{ACT}, \longrightarrow \rangle$ is an LTS:
 - *S* is a non-empty set of states (or points)
 - ACT are the labels consisting of (structured) action symbols (or modality symbols)
 - $\longrightarrow \subseteq S \times ACT \times S$ is the transition relation
- $V : \mathsf{PROP} \longrightarrow \mathcal{P}(S)$ is a valuation.

When ACT = 1

- $\Diamond \phi$ and $\Box \phi$ instead of $\langle \cdot \rangle \phi$ and $[\cdot] \phi$
- $\mathcal{L} = \langle S, \longrightarrow \rangle$ instead of $\mathcal{L} = \langle S, \mathsf{ACT}, \longrightarrow \rangle$
- $\longrightarrow \subseteq S \times S \text{ instead of}$ $\longrightarrow \subseteq S \times ACT \times S$

Semantics

Safistaction: for a model $\mathcal M$ and a state s

$$\mathcal{M}, s \models \mathsf{true}$$

$$\mathcal{M}, s \not\models \mathsf{false}$$

$$\mathcal{M}, s \models p$$

$$\mathcal{M}, s \models \neg \phi$$

$$\mathcal{M}, s \models \phi_1 \wedge \phi_2$$

$$\mathcal{M}, s \models \phi_1 \rightarrow \phi_2$$

$$\mathcal{M}, s \models \langle \alpha \rangle \phi$$

$$\mathcal{M}, s \models [\alpha] \phi$$

iff
$$s \in V(p)$$

iff
$$\mathcal{M}, s \not\models \phi$$

iff
$$\mathcal{M}, s \models \phi_1$$
 and $\mathcal{M}, s \models \phi_2$

iff
$$\mathcal{M}, s \not\models \phi_1$$
 or $\mathcal{M}, s \models \phi_2$

iff there exists
$$v \in S$$
 st $s \xrightarrow{\alpha} v$ and $\mathcal{M}, v \models \phi$

iff for all
$$v \in S$$
 st $s \xrightarrow{\alpha} v$ and $\mathcal{M}, v \models \phi$

Semantics

Satisfaction

A formula ϕ is

- satisfiable in a model $\mathcal M$ if it is satisfied at some point of $\mathcal M$
- globally satisfied in \mathcal{M} ($\mathcal{M} \models \phi$) if it is satisfied at all points in \mathcal{M}
- valid ($\models \phi$) if it is globally satisfied in all models
- a semantic consequence of a set of formulas Γ ($\Gamma \models \phi$) if for all models $\mathcal M$ and all points s, if $\mathcal M, s \models \Gamma$ then $\mathcal M, s \models \phi$

Specific modal logic: Process logic

Process logic (Hennessy-Milner logic)

- PROP = \emptyset (hence $V = \emptyset$)
- $S = \mathcal{P}$ is a set states in a labelled transition system, typically process terms
- structured actions are built by the grammar $K := a \in Act \mid K + K$
- the underlying LTS is given by $\mathcal{L} = \langle \mathcal{P}, Act, \{\langle p, a, p' \rangle \mid a \in Act \} \rangle$

Satisfaction is abbreviated as

$$\begin{split} p &\models \langle K \rangle \, \phi & \quad \text{iff} \quad \exists_{q \in \{p' \mid p \xrightarrow{s} p' \, \land \, a \in K\}} \, . \, q \models \phi \\ p &\models [K] \, \phi & \quad \text{iff} \quad \forall_{q \in \{p' \mid p \xrightarrow{s} p' \, \land \, a \in K\}} \, . \, q \models \phi \end{split}$$

Specific modal logic: Process logic

Process Logic Syntax (Hennessy-Milner Logic)

$$\phi \, ::= \, \mathsf{true} \, \mid \, \mathsf{false} \, \mid \, \neg \phi \, \mid \, \phi_1 \wedge \phi_2 \, \mid \, \phi_1 \rightarrow \phi_2 \, \mid \, \langle {\color{red} {\it K}} \rangle \, \phi \, \mid \, [{\color{red} {\it K}}] \, \phi$$

where
$$K := a \in Act \mid K + K$$

Ex. 4.2: Prove:

- 1. $S_1 \models [a+b+c](\langle b+c \rangle \text{ true})$
- 2. $S_2 \models [a] (\langle b \rangle \operatorname{true} \wedge \langle c \rangle \operatorname{true})$
- 3. $S_1 \not\models [a] (\langle b \rangle \text{ true} \land \langle c \rangle \text{ true})$
- 4. $S_2 \models [b][c](\langle a \rangle \text{ true} \lor \langle b \rangle \text{ true})$
- 5. $S_1 \models [b][c](\langle a \rangle \text{ true} \lor \langle b \rangle \text{ true})$
- 6. $S_1 \models [a+b] \langle b+c \rangle (\langle a \rangle \text{ true})$

Examples II

(P, <) a strict partial order with infimum 0

l.e., $P = \{0, a, b, c, \ldots\}$, $a \rightarrow b$ means a < b, a < b and b < c implies a < c 0 < x, for any $x \neq 0$ there are no loops some elements may not be comparable

- $P, x \models \Box$ false if x is a maximal element of P
- $P, 0 \models \Diamond \square \text{ false } \text{iff } ...$
- $P, 0 \models \Box \Diamond \Box$ false iff ...

Examples III

Temporal logic

- $\langle T, < \rangle$ where T is a set of time points (instants, execution states , ...) and < is the earlier than relation on T.
- $\qquad \text{Thus, } \Box \varphi \text{ (respectively, } \Diamond \varphi \text{) means that } \varphi \text{ holds in all (respectively, some) time points.}$

Examples IV

Epistemic logic (J. Hintikka, 1962)

- W is a set of agents
- $\alpha \models [K_i] \phi$ means that agent *i* always knows that ϕ is true.
- $\alpha \models \langle K_i \rangle$ ϕ means that agent i can reach a state where he knows ϕ .
- $\alpha \models (\neg [K_i] \ \phi) \land (\neg [K_i] \ \neg \phi)$ means that agent i does not know whether ϕ is true or not.

Many variations exist, modelling knowledge and believes, knowledge of who knows what, distributed knowledge, etc.

Examples V

Deontic logic (G.H. von Wright, 1951)

- Obligations and permissions: must and can do.
- $\alpha \models \Box \phi$ means ϕ is obligatory.
- $\alpha \models \Diamond \phi$ means ϕ is a possibility.

Each logic accepts a different set of *principles* or *rules* (with variations), that makes their interpretation different.

Exercise

Ex. 4.3: Express the properties in Process Logic

- inevitability of *a*:
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 4.4: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-] true

Recall syntax

$$\phi \ :: = \ \mathsf{true}$$

$$\mid \ \mathsf{false}$$

$$\mid \ \neg \phi$$

$$\mid \ \phi_1 \wedge \phi_2$$

$$\mid \ \phi_1 \to \phi_2$$

$$\mid \ \langle K \rangle \ \phi$$

$$\mid \ [K] \ \phi$$

where
$$K := a \mid K + K$$

[&]quot;-" stands for $\sum_{a \in Act} a$, and "-x" abbreviates $\sum_{a \notin Act} a$

Exercise

Ex. 4.3: Express the properties in Process Logic

- inevitability of $a: \langle \rangle$ true $\wedge [-a]$ false
- progress (can always act):
- deadlock or termination (is stuck):

Ex. 4.4: What does this mean?

- 1. $\langle \rangle$ false
- 2. [-] true

Recall syntax

$$\phi \ \ ::= \ \ \, \text{true}$$

$$\mid \ \ \, \text{false}$$

$$\mid \ \ \, \neg \phi$$

$$\mid \ \ \, \phi_1 \wedge \phi_2$$

$$\mid \ \ \, \phi_1 \rightarrow \phi_2$$

$$\mid \ \ \, \langle K \rangle \, \phi$$

$$\mid \ \ \, [K] \, \phi$$

where
$$K := a \mid K + K$$

[&]quot;-" stands for $\sum_{a \in Act} a$, and "-x" abbreviates $\sum_{a \notin Act} a$

Express the following using Process Logic

Ex. 4.5: Coffee-machine

- 1. The user can have tea or coffee.
- 2. The user can have tea but not coffee.
- 3. The user can have tea after having 2 consecutive coffees.

Ex. 4.6: a's and b's

- 1. It is possible to do a after 3 b's, but not more than 1 a.
- 2. It must be possible to do a after [doing a and then b].
- 3. After doing a and then b, it is not possible to do a.

Express the following using Process Logic

Ex. 4.7: Taxi network

- $\phi_0 = In$ a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_1 =$ This applies only to cars already on-service
- $\phi_2 =$ If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_3 = On$ detecting an emergency the taxi becomes inactive
- $\phi_4 = A$ car on-service is not inactive

Process Logic + regular expressions

Process Logic with regular expressions

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi_1 \wedge \phi_2 \mid \phi_1 \rightarrow \phi_2 \mid \langle \alpha \rangle \phi \mid [\alpha] \phi$$

where $\alpha \in ACT$ are structured actions over a set Act:

$$\alpha := \mathbf{a} \in \mathsf{Act} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

More expressive than Process Logic. Used by mCRL2.

Process Logic + regular expressions

Process Logic with regular expressions

$$\phi ::= \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \rightarrow \phi_2 \mid \langle \alpha \rangle \phi \mid [\alpha] \phi$$

where $\alpha \in ACT$ are structured actions over a set Act:

$$\alpha := \mathbf{a} \in \mathsf{Act} \mid \alpha; \alpha \mid \alpha + \alpha \mid \alpha^*$$

Examples

- " $\langle a.b.c \rangle$ true" means " $\langle a \rangle \langle b \rangle \langle c \rangle$ true"
- "[a.b.c] false" means "[a][b][c] false"
- " $\langle a^*.b \rangle$ true" means that b can be taken after some number of a's.
- " $\langle -*.a \rangle$ true" means that a can eventually be taken
- "[-*](a+b) true" means it is always possible to do a or b

Exercises

Ex. 4.8: What does this mean?

- $\langle -^*; serve! \rangle$ true
- [-*; (addChoc + addMilk); serve!] false
- $[-*; addCoffee] \langle serve! \rangle$ true
- ⟨−⟩ true
- $[-^*]\langle \rangle$ true
- $[-*.a] \langle b \rangle$ true
- $[-*.send] \langle (-send)^*.recv \rangle$ true

Exercises

Ex. 4.9: Express using logic

- 1. The user can only have coffee after the coffee button is pressed.
- The used must have coffee after the coffee button is pressed.
- 3. It is always possible to turn off the coffee machine.
- 4. It is always possible to reach a state where the coffee machine can be turned off.
- 5. It is never possible to add chocolate right after pressing the *latte button*.

mCRL2 Tools

Slides 3:

https://fm-dcc.github.io/sv2425/slides/3-mcrl2.pdf

Bisimulation and modal equivalence

Bisimulation (of models)

Definition

Given two models $\mathcal{M}=\langle\mathcal{L},V\rangle$ and $\mathcal{M}'=\langle\mathcal{L}',V'\rangle$, a bisimulation of \mathcal{L} and \mathcal{L}' is also a bisimulation of \mathcal{M} and \mathcal{M}' if,

whenever
$$s R s'$$
, then $V(s) = V'(s')$

Invariance and definability

Lemma (invariance: bisimulation implies modal equivalence)

Given two models \mathcal{M} and \mathcal{M}' , and a bisimulation R between their states:

if two states s, s' are related by R (i.e. sRs'), then s, s' satisfy the same basic modal formulas.

(i.e., for all
$$\phi$$
: $\mathcal{M}, s \models \phi \Leftrightarrow \mathcal{M}', s' \models \phi$)

Hence

Given 2 models \mathcal{M} and \mathcal{M}' , if you can find ϕ such that

$$\mathcal{M} \models \phi \text{ and } \mathcal{M}' \not\models \phi$$

(or vice-versa) then they are NOT bisimilar.

Ex. 4.10: Bisimilarity and modal equivalence

Consider the following transition systems:

Give a modal formula that can be satisfied at point 1 but not at 3.

Ex. 4.11: Find distinguishing modal formula

1)
$$\longrightarrow p_0$$
 p_1 $\longrightarrow q_0$ tea q coffee coffee

$$2) \qquad \longrightarrow p_0 \xrightarrow{a \qquad p_1 \qquad b \qquad p_2} \qquad \longrightarrow q_0 \xrightarrow{a \qquad q_1 \qquad b \qquad q_2}$$

3)
$$\rightarrow p_0 \xrightarrow{a \rightarrow p_1 \rightarrow b \rightarrow p_2} \rightarrow q_0 \xrightarrow{a \rightarrow q_1 \rightarrow q_2} \rightarrow q_0 \xrightarrow{a \rightarrow q_1 \rightarrow q_2} \rightarrow q_1 \xrightarrow{b \rightarrow q_3} \rightarrow q_2 \xrightarrow{b \rightarrow q_3} \rightarrow q_1 \xrightarrow{b \rightarrow q_3} \rightarrow q_2 \xrightarrow{b \rightarrow q_3} \rightarrow q_3 \xrightarrow{b \rightarrow q_3} \rightarrow q_3 \xrightarrow{b \rightarrow q_3} \rightarrow q_4$$

Richer modal logics

Richer modal logics

can be obtained in different ways, e.g.

- axiomatic extensions
- introducing more complex satisfaction relations
- support novel semantic capabilities
- ...

Examples

- richer temporal logics
- hybrid logic
- modal μ -calculus

Temporal Logics with $\mathcal U$ and $\mathcal S$

Until and Since

$$\mathcal{M}, s \models \phi \mathcal{U} \psi$$
 iff there exists r st $s \leq r$ and $\mathcal{M}, r \models \psi$, and for all t st $s \leq t < r$, one has $\mathcal{M}, t \models \phi$
$$\mathcal{M}, s \models \phi \mathcal{S} \psi$$
 iff there exists r st $r \leq s$ and $\mathcal{M}, r \models \psi$, and for all t st $r < t \leq s$, one has $\mathcal{M}, t \models \phi$

- Defined for temporal frames $\langle T, < \rangle$ (transitive, asymmetric).
- note the $\exists \forall$ qualification pattern: these operators are neither diamonds nor boxes.
- More general definition for other frames it becomes more expressive than modal logics.

Temporal logics - rewrite using $\ensuremath{\mathcal{U}}$

- $\diamond \psi =$
- $\blacksquare \psi =$

Temporal logics - rewrite using $\ensuremath{\mathcal{U}}$

- $\Diamond \psi = \operatorname{tt} \mathcal{U} \psi$
- $\blacksquare \psi =$

Temporal logics - rewrite using $\ensuremath{\mathcal{U}}$

- $\Diamond \psi = \mathsf{tt} \, \mathcal{U} \, \psi$

Linear temporal logic (LTL)

$$\phi := \mathsf{true} \mid p \mid \phi_1 \land \phi_2 \mid \neg \phi \mid \bigcirc \phi \mid \phi_1 \, \mathcal{U} \, \phi_2$$

- First temporal logic to reason about reactive systems [Pnueli, 1977]
- Formulas are interpreted over execution paths
- Express linear-time properties

Computational tree logic (CTL, CTL*)

state formulas to express properties of a state:

$$\Phi := \mathsf{true} \mid \Phi \wedge \Phi \mid \neg \Phi \mid \exists \psi \mid \forall \psi$$

path formulas to express properties of a path:

$$\psi := \bigcirc \Phi \mid \Phi \mathcal{U} \Psi$$

mutual exclusion	$\forall \Box (\neg c_1 \lor \neg c_2)$
liveness	$\forall \Box \forall \Diamond c_1 \land \forall \Box \forall \Diamond c_2$
order	$\forall \Box (c_1 \lor \forall \bigcirc c_2)$

- Branching time structure encode transitive, irreflexive but not necessarily linear flows of time
- flows are trees: past linear; branching future

Motivation

Add the possibility of naming points and reason about their identity

Compare:

$$\Diamond(r \wedge p) \ \wedge \ \Diamond(r \wedge q) \ \rightarrow \ \Diamond(p \wedge q)$$

with

$$\Diamond(i \wedge p) \wedge \Diamond(i \wedge q) \rightarrow \Diamond(p \wedge q)$$

for $i \in NOM$ (a nominal)

Syntax

$$\phi ::= \dots \mid p \mid \langle \alpha \rangle \phi \mid [\alpha] \phi \mid i \mid \bigcirc_i \phi$$

where $p \in PROP$ and $\alpha \in ACT$ and $i \in NOM$

Nominals i

- Are special propositional symbols that hold exactly on one state (the state they name)
- In a model the valuation V is extended from

$$V: \mathsf{PROP} \longrightarrow \mathcal{P}(S)$$

to

$$V: \mathsf{PROP} \longrightarrow \mathcal{P}(S)$$
 and $V: \mathsf{NOM} \longrightarrow S$

where NOM is the set of nominals in the model

Satisfaction:

$$\mathcal{M}, s \models i$$
 iff $s = V(i)$

The $@_i$ operator

$$\mathcal{M}, s \models \mathsf{true}$$
 $\mathcal{M}, s \not\models \mathsf{false}$
 $\mathcal{M}, s \models p$
 $\mathcal{M}, s \models \neg \phi$

$$\mathcal{M}, s \models \phi_1 \wedge \phi_2$$

$$\mathcal{M}, s \models \phi_1 \rightarrow \phi_2$$

$$\mathcal{M}, s \models \langle \alpha \rangle \phi$$

$$\mathcal{M}, s \models [\alpha] \phi$$

$$\mathcal{M}, s \models \mathbf{0}_i \phi$$

iff
$$s \in V(p)$$

iff
$$\mathcal{M}, s \not\models \phi$$

iff
$$\mathcal{M}, s \models \phi_1$$
 and $\mathcal{M}, s \models \phi_2$

iff
$$\mathcal{M}, s \not\models \phi_1$$
 or $\mathcal{M}, s \models \phi_2$

iff there exists
$$v \in S$$
 st $s \xrightarrow{\alpha} v$ and $\mathcal{M}, v \models \phi$

Richer modal logics

iff for all
$$v \in S$$
 st $s \xrightarrow{\alpha} v$ and $\mathcal{M}, v \models \phi$

iff
$$\mathcal{M}, u \models \phi \text{ and } u = V(i)$$

[u is the state denoted by i]

Summing up

- basic hybrid logic is a simple notation for capturing the bisimulation-invariant fragment of first-order logic with constants and equality, i.e., a mechanism for equality reasoning in propositional modal logic.
- comes cheap: up to a polynomial, the complexity of the resulting decision problem is no worse than for the basic modal language