Analytical Geometry and Linear Algebra I, Class #11

Innopolis University, October 2022

1. Linear transformation of a real axis is given by f(x) = ax + b. (a) Find all fixed points of this transformation. (b) Find the transformation that is inverse for f.

Answer. (a) If $a \neq 1$ then there is one fixed point $x = \frac{b}{1-a}$; if a = 1 and b = 0 then all points are fixed; if a = 1 and $b \neq 0$ then there are no fixed points. (b) It exists only if $a \neq 0$: $f^{-1}(y) = \frac{y-b}{a}$.

2. Two linear transformations of a real axis f and g are given by f(x) = ax + b, g(x) = cx + d. Find compositions of transformations fg and gf. What are the necessary and sufficient conditions for fg to be equal to gf?

Answer.
$$(fg)(x) = acx + ad + b$$
; $(gf)(x) = acx + bc + d$; $fg = gf \Leftrightarrow d(a-1) = b(c-1)$.

- 3. Transformation of a plane is given by $x^* = x^2 y^2$, $y^* = 2xy$. Is this transformation an (a) injection; (b) surjection; (c) bijection? (d) Find the preimage of point $(x^*; y^*)$ by this transformation.
- 4. Find the image of an arbitrary point M which has position vector \mathbf{r} by the following transformations:
 - (a) homothety with center $M_0(\mathbf{r}_0)$ and ratio $\lambda \neq 0$;
 - (b) reflection across point $M_0(\mathbf{r}_0)$;
 - (c) translation by vector **a**;
 - (d) orthogonal projection onto the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$;
 - (e) reflection across the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$;
 - (f) dilation of factor $\lambda > 0$ from the line $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$.

Answer. (a)
$$\mathbf{r} * = \mathbf{r}_0 + \lambda(\mathbf{r} - \mathbf{r}_0)$$
; (b) $\mathbf{r} * = -\mathbf{r} + 2\mathbf{r}_0$; (c) $\mathbf{r} * = \mathbf{r} + \mathbf{a}$; (d) $\mathbf{r} * = \mathbf{r}_0 + \frac{(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}$; (e) $\mathbf{r} * = 2\mathbf{r}_0 - \mathbf{r} + 2\frac{(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}$; (f) $\mathbf{r} * = \lambda \mathbf{r} + (1 - \lambda)\mathbf{r}_0 + (1 - \lambda)\frac{(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{a}}{|\mathbf{a}|^2} \mathbf{a}$.

5. Images of vertices A, B, C of a triangle ABC by some affine transformation are midpoints K, L, M of their opposite sides. Find the images by this transformation of points K, L, M and centroid O of triangle ABC. What type of transformation is it?

Answer. Homothety with center O and ratio -0.5.

- 6. Prove that:
 - (a) if A and B are two fixed points of an affine transformation then all points of line AB are fixed;
 - (b) if an affine transformation has a single fixed point then all invariant lines of this transformation pass through this point;
 - (c) intersection point of two invariant lines of an affine transformation is a fixed point.

- 7. Prove that two lines tangent to the ellipse are parallel if and only if the touching points and the center of the ellipse are collinear.
- 8. An ellipse is inscribed into a parallelogram ABCD and it touches its side AD at its midpoint M. Prove that this ellipse touches the other sides of a parallelogram in their midpoints.
- 9. An ellipse with center O is inscribed into a quadrilateral ABCD. Prove that $A_{\triangle OAB} + A_{\triangle OCD} = A_{\triangle OBC} + A_{\triangle OAD}$.
- 10. An affine transformation is given by x* = 3x + 2y 6, y* = 4x 3y + 1. Find the images of (a) point M(-1; 5); (b) line 2x + 3y = 7.

Answer. (a) (1;-18); (b) 18x - 5y - 6 = 0.

11. An affine transformation is given by x* = 2x + 3y - 1, y* = -3x - 4y + 2. Find the preimages of (a) point M(4; -5); (b) line x + y = 1.

Answer. (a) (1; 1); (b) x + y = 0.

- 12. Find formulas for an affine mapping that transforms
 - (a) points $A(\frac{3}{7}; 1)$, $B(1; \frac{1}{4})$, C(2; -1) into points A * (-4; 2), B * (-1; 6), C * (4; 13) respectively;
 - (b) points A(0; 0), B(-1; 2), C(1; -2) into points A*(-1; -1), B*(0; 0), C*(1; 1) respectively;
 - (c) points A(2; 0), B(3; -1), C(4; -2) into points A*(2; 1), B*(-2; -1), C*(-6; -3) respectively;
 - (d) points A(-2; 0), B(2; -1), C(0; 4) into points A * (-2; 1), B * (2; 1), C * (0; 1) respectively.

Answer. (a) x* = -4y, y* = 7x - 1; (b) no solutions; (c) x* = px + (p + 4)y + 2 - 2p, y* = qx + (q + 2)y + 1 - 2q, where p and q are any real numbers; (d) no solutions (there exists a linear transformation that is not affine).

- 13. Find all fixed point of an affine transformation given by
 - (a) x* = 2x y + 3, y* = -2x + 2y 6;
 - (b) x = 4x + 3y 1, y = -3x 2y + 1.

Answer. (a) (-3; 0); (b) all points that belong to a line 3x + 3y - 1 = 0.

- 14. Find all invariant lines of an affine transformation given by
 - (a) x* = y, y* = 1 x;
 - (b) x* = 2x + y 3, y* = -3x y;
 - (c) x* = 5x + 3y + 1, y* = -3x y.

Answer. (a) no solutions; (b) x + y - 3 = 0, 2x - y + p = 0, where p can be any real number; (c) x + y + 1 = 0.

 $^{^{1}}A$ means area.

15. Find formulas for an affine mapping that transforms lines x-y+1=0 and x+y-1=0 into lines 3x+2y-3=0 and 2x+3y+1=0 respectively and point A(1; 1) into point B(-1; -2).

Answer.
$$x* = -\frac{16}{5}x + \frac{44}{5}y - \frac{33}{5}, y* = -\frac{1}{5}x - \frac{41}{5}y + \frac{32}{5}.$$

16. Find formulas for an affine transformation such that hyperbola $\frac{x^2}{5} - \frac{y^2}{4} = 1$ is invariant under this transformation and image of A(5;4) is $B(\sqrt{5};0)$.

Answer.
$$x* = \sqrt{5}(x - y), y* = \pm \sqrt{5}(\frac{4x}{5} - y).$$

- 17. Find formulas for the following affine transformations:
 - (a) orthogonal projection onto line x 3y + 1 = 0;
 - (b) reflection across line 3x + 4y 1 = 0;
 - (c) dilation from line x + y 2 = 0 of factor $\frac{1}{3}$;
 - (d) dilation from line 2x y + 5 = 0 of factor 2.

Answer. (a)
$$x* = \frac{9x+3y-1}{10}$$
, $y* = \frac{3x+y+3}{10}$; (b) $x* = \frac{7x-24y+6}{25}$, $y* = -24x - 7y + 825$; (c) $x* = \frac{2x-y+2}{3}$, $y* = \frac{-x+2y+2}{3}$; (d) $x* = \frac{9x-2y+10}{5}$, $y* = \frac{-2x+6y-5}{5}$.