R⁴H₂O:: SESSION ONE CHEAT SHEET

Arithmetic

R is meme proof (applies BODMAS)

3 - 3 * 6 + 2

Only for genius ??

3-3×6+2=?

Variables

Use meaningful variable names

diameter <- 150
nonRevWater <- 10
non_rev_water <- 20</pre>

Vectors

Create vectors:

nonRevWater <- c(1, 3, -1, 0)
day <- 1:4

Vector subsets:

nonRevWater[2]
nonRevWater[2:3]

Math Functions

sqrt(nonRevWater)

sum(nonRevWater)

prod(nonRevWater)

factorial(nonRevWater)

abs(nonRevWater)

exp(nonRevWater)

log(nonRevWater, base = 10)

Extreme outcomes can be NaN (Not a Number) or Inf (approaching infinity).

Case Study 0

Packages

Packages are libraries of functions and data files to extend R. The CRAN website lists most packages. Initiate libraries every script with the packages you need, e.g.:

library(tidyverse)

<u>Tidyverse</u> is a collection of packages. Click on the hexagonal package logos for more info.

Reading CSV Files

The **readr package** reads delimited files, such as CSV (Comma-Separated Values).

library(readr)
gormsey < read_csv("data/water_quality.csv")</pre>

Reading Excel Files

The **readxl package** imports Excel files.

Data Frames

Rectangular data (called a Tibble in Tidyverse) to store structured data.

glimpse(gormsey)

Columns: variables

gormsey\$Result
gormsey[, 6]
gormsey[, "Result"]

Rows: observations
gormsey[1:10,]
Gormsey[1:10, 4]

Counting Data

Count number of rows for each variable

length(gormsey\$Measure)
unique(gormsey\$Measure)
count(gormsey, Measure)
count(gormsey, Measure, Town)

Filtering Data

Filter extracts rows that meet logical criteria

Logical operators

== equal to ! 'or' ! not equal to & 'and'

Use stringr package for wildcards

turb_mert <- filter(gormsey, Measure == "Turbidity & Town != "Merton")

Turbidity <- filter(gormsey, str_detect(Measure, "^t")

Statistics

Grouping

Use **group_by** to create a grouped copy of a table by columns

The **summarise** function acts on each group

Finding Help

Use **help** function or ? to read internal help.

Read the detailed cheat sheets on rstudio.com/resources/cheatsheets

R⁴H₂O:: SESSION ONE CHEAT SHEET

ggplot2

Grammar of Graphics

- Theme
- Coordinates
- **Statistics**
- Facets (graph grids)
- Geometries
- **Aesthetics**
- Data

Layer 1: Data

ggplot(gormsey)

Layer 2: Aesthetics

ggplot(gormsey, aes(Measure))

Colour aesthetics (**fill** = for surfaces and **color** = for

scale_fill_brewer()

scale_color_brewer()

scale_*_manual()

Layer 3: Geometries

ggplot(gormsey, aes(Measure)) + geom_bar()

ggplot(turbidity, aes(Date, Result)) + geom_line()

ggplot(turbidity, aes(Date, Result)) + geom_boxplot()

ggplot2 website has extensive documentation on geometries.

Layer 4: Facets

facet_wrap(~Suburb)

facet_grid(Measure~Suburb)

ggplot2 continued

Layer 5: Statistics and annotations

geom smooth(method = "lm")

Add linear model to data (default is Loess)

geom_hline(aes(yintercept = 5))

Add horizontal line (indicating limits)

Layer 6: Coordinates

coords_flip()

Rotate axes

scale_*_continuous() scale_*_log10()

Define x and y scales

Layer 7: Theme

Pre-configured themes (use TAB key to explore)

theme_*()

Use **theme()** for fine-tuning the design.

Cleaning Data

Variable Types

customers <- read csv("casestudy2/customers")</pre>

Manually convert to a number:

type_convert(customers)

as.numeric()

Selecting Variables

select(customers, p01:p10)

select(customers, sarts_with("p")

rename(new_name = old_name)

Changing of Adding Variables

mutate(variable1 = formula1, variable2 = formula2)

Missing Data

Indicated with **NA**. Test for missing data with **is.na()** Use **na.rm** = **TRUE** option to ignore missing data in calculations. Check help for each function for details.

is.na(customers\$term)

mean(customers\$p01, na.rm = TRUE)

Tidy Data

pivot_longer(data, 2:3, names_to = "year", values_to = "cases")

country	1999	2000	
Α	0.7K	2K	
В	37K	80K	
С	212K	213K	

pivot_wider(data, names_from = year, values from = cases)

Joining Data

 $right_join(a, b, by = "x1")$

 $full_join(a, b, by = "x1")$

Retain all rows