Notatki do ćwiczeń

Andrzej Więckowski

4 maja 2019

1 Brakety

bra:
$$|\psi\rangle = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \vdots \end{pmatrix} = \sum_i \psi_i |i\rangle, \quad \text{baza } \{|i\rangle\}$$
: **ortonormalna:** $\langle i|j\rangle = \delta_{ij}$, **zupełna:** $\sum_i |i\rangle\langle i| = \mathbb{1}$; (1)

ket:
$$\langle \psi | = (\psi_1^* \quad \psi_2^* \quad \psi_3^* \quad \dots) = \sum_i \psi_i^* \langle i |;$$
 (2)

$$\langle \psi | \phi \rangle = \begin{pmatrix} \psi_1^* & \psi_2^* & \psi_3^* & \dots \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \\ \vdots \end{pmatrix} = \left(\sum_i \psi_i^* \langle i | \right) \left(\sum_j \phi_j | j \rangle \right) = \sum_{ij} \psi_i^* \phi_i \delta_{ij} = \sum_i \psi_i^* \phi_i \quad (3)$$

$$|\psi\rangle\langle\phi| = \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \vdots \end{pmatrix} \begin{pmatrix} \phi_{1}^{*} & \phi_{2}^{*} & \phi_{3}^{*} & \dots \end{pmatrix} = \begin{pmatrix} \psi_{1} \phi_{1}^{*} & \psi_{1} \phi_{2}^{*} & \psi_{1} \phi_{3}^{*} & \dots \\ \psi_{2} \phi_{1}^{*} & \psi_{2} \phi_{2}^{*} & \psi_{2} \phi_{3}^{*} & \dots \\ \psi_{3} \phi_{1}^{*} & \psi_{3} \phi_{2}^{*} & \psi_{3} \phi_{3}^{*} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \sum_{nm} \psi_{n} \phi_{m}^{*} |n\rangle\langle m| \quad (4)$$

2 Operatory

Element macierzowy operatora:

$$A_{nm} = \langle n|\hat{A}|m\rangle \tag{5}$$

Operator w bazie $\{|n\rangle\}$:

$$\hat{A} = \sum_{nm} \langle n|A|m \rangle |n \rangle \langle m| = \sum_{nm} A_{nm} |n \rangle \langle m| = \begin{pmatrix} \langle 1|A|1 \rangle & \langle 1|A|2 \rangle & \langle 1|A|3 \rangle & \dots \\ \langle 2|A|1 \rangle & \langle 2|A|2 \rangle & \langle 2|A|3 \rangle & \dots \\ \langle 3|A|1 \rangle & \langle 3|A|2 \rangle & \langle 3|A|3 \rangle & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$(6)$$

Działanie operatora na ket:

$$\hat{A}|\psi\rangle = \left(\sum_{nm} A_{nm}|n\rangle\langle m|\right) \left(\sum_{k} \psi_{k}|k\rangle\right) = \sum_{n} \underbrace{\sum_{m} A_{nm} \psi_{m}}_{(\hat{A}|\psi\rangle)_{n}} |m\rangle = |\psi'\rangle \tag{7}$$

Wartość oczekiwana w stanie $|\psi\rangle$:

$$\langle A \rangle_{\psi} = \langle A \rangle = \langle \psi | A | \psi \rangle = \sum_{nm} A_{nm} \langle \psi | n \rangle \langle m | \psi \rangle = \sum_{nm} \sum_{ij} A_{nm} \psi_i^* \delta_{in} \psi_j \delta_{mj} = \sum_{nm} \psi_n^* A_{nm} \psi_m$$
 (8)

Zagadnienie własne:

$$\hat{A}|a\rangle = a|a\rangle \tag{9}$$

Operator w bazie stanów własnych:

$$\hat{A} = \sum_{aa'} \langle a|\hat{A}|a'\rangle|a\rangle\langle a'| = \sum_{aa'} a\delta_{aa'}|a\rangle\langle a'| = \sum_{a} a|a\rangle\langle a|$$
(10)

3 (Anty-)komutator

Własności komutatora [A,B] = AB - BA and anty-komutatora $\{A,B\} = AB + BA$:

- 1. $[\alpha A + \beta B, C] = \alpha [A, C] + \beta [B, C]$, gdzie α, β to stałe;
- 2. $[A,B] = -[B,A], \{A,B\} = \{B,A\};$
- 3. [AB,C] = A[B,C] + [A,C]B;
- 4. $[AB,C] = A\{B,C\} \{A,C\}B$.

4 Kwanotwanie kanoniczne

$$[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}, \quad [\hat{x}_i, \hat{x}_j] = [\hat{p}_i, \hat{p}_j] = 0;$$
 (11)

operator położenia:
$$\hat{x}_i = x_i$$
; (12)

operator pędu:
$$\hat{p}_i = -i\hbar \frac{\partial}{\partial x_i}$$
; (13)

5 Zasada nieoznaczoności

Dla hermitowskich operatorów: $A = A^{\dagger}, B = B^{\dagger} \ (\Delta A = \sqrt{(A - \langle A \rangle)^2})$:

$$\Delta A \Delta B \ge |\langle \frac{1}{2i}[A,B]\rangle|, \qquad \Delta x \Delta p \ge \frac{\hbar}{2};$$
 (14)

6 Zmiana bazy—transformacje

Dane są dwie zupełne, ortonormalne bazy $\{|i\rangle\}|_{i=1,2,3,\dots}$ oraz $\{|\widetilde{i}\rangle\}$ oraz transformacja unitarna U:

$$U|i\rangle = |\widetilde{i}\rangle, \quad U = \sum_{j} |\widetilde{j}\rangle\langle j|$$
 (15)

Elementy macierzowe U:

$$U_{ij} = \langle i | \left(\sum_{j'} |\widetilde{j}' \rangle \langle j'| \right) | j \rangle = \langle i | \widetilde{j} \rangle$$
 (16)

Postać U w bazie $|i\rangle$

$$U = \sum_{ij} U_{ij} |i\rangle\langle j| = \sum_{ij} \langle i|\widetilde{j}\rangle|i\rangle\langle j| = \begin{pmatrix} \langle 1|\widetilde{1}\rangle & \langle 1|\widetilde{2}\rangle & \langle 1|\widetilde{3}\rangle & \dots \\ \langle 2|\widetilde{1}\rangle & \langle 2|\widetilde{2}\rangle & \langle 2|\widetilde{3}\rangle & \dots \\ \langle 3|\widetilde{1}\rangle & \langle 3|\widetilde{2}\rangle & \langle 3|\widetilde{3}\rangle & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$(17)$$

Transformacja stanu $|\psi\rangle = \sum_i \psi_i |i\rangle$:

$$|\psi\rangle = \sum_{i} \underbrace{\left(\sum_{j} |\widetilde{j}\rangle\langle\widetilde{j}|\right)}_{\mathbb{1}} \psi_{i}|i\rangle = \sum_{j} \sum_{i} \underbrace{\langle\widetilde{j}|i\rangle}_{U_{ji}^{\dagger}} \psi_{i}|\widetilde{j}\rangle = \sum_{j} \left(U^{\dagger}|\psi\rangle\right)_{j}|\widetilde{j}\rangle$$
(18)

Transformacja U jest unitarna i zachowuję normę $|\psi\rangle$:

$$UU^{\dagger} = \left(\sum_{i} |\widetilde{i}\rangle\langle i|\right) \left(\sum_{j} |j\rangle\langle\widetilde{j}|\right) = \sum_{ij} |\widetilde{i}\rangle\delta_{ij}\langle\widetilde{j}| = 1; \quad \langle\widetilde{\psi}|\widetilde{\psi}\rangle = \langle\psi|U^{\dagger}U|\psi\rangle = \langle\psi|\psi\rangle$$
 (19)

Transformacja operatora $A = \sum_{nm} A_{nm} |n\rangle\langle m|$:

$$A = \sum_{nm} A_{nm} \underbrace{\left(\sum_{i} |\widetilde{i}\rangle\langle\widetilde{i}|\right)}_{\mathbb{I}} |n\rangle\langle m| \underbrace{\left(\sum_{j} |\widetilde{j}\rangle\langle\widetilde{j}|\right)}_{\mathbb{I}} = \sum_{nmij} A_{nm} |\widetilde{i}\rangle\langle\widetilde{j}| \underbrace{\langle\widetilde{i}|n\rangle}_{U_{in}} \underbrace{\langle m|\widetilde{j}\rangle}_{U_{mj}} = \sum_{ij} \underbrace{\left(\sum_{nm} U_{in}^{\dagger} A_{nm} U_{mj}\right)}_{(U^{\dagger}AU)_{ij}} |\widetilde{i}\rangle\langle\widetilde{j}|$$
(20)

7 Reprezentacja położeniowa

Zagadnienie własne operatora położenia:

$$\hat{x}|x\rangle = x|x\rangle \tag{21}$$

Elementy macierzowe operatora \hat{x} :

$$\hat{x}_{xy} = \langle x | \hat{x} | y \rangle = x \delta(x - y), \quad \hat{x}_{yy}^n = x^n \delta(x - y)$$
 (22)

Stany $|x\rangle$ stanowią ortogonalną zupełną ciągłą bazę:

$$\int dx |x\rangle\langle x| = 1, \quad \langle x|y\rangle = \delta(x-y)$$
(23)

Funkcja falowa (definicja):

$$\psi(x) = \langle x | \psi \rangle \tag{24}$$

Iloczyn skalarny:

$$\langle \psi | \phi \rangle = \langle \psi | \underbrace{\left(\int dx | x \rangle \langle x | \right)}_{1} | \phi \rangle = \int dx \langle \psi | x \rangle \langle x | \phi \rangle = \int dx \, \psi^{*}(x) \phi(x) \tag{25}$$

Działanie operatora $\hat{\mathcal{O}}$ na funkcję falową $\psi(x)$ —definicja:

$$\hat{\mathcal{O}}\psi(x) = \langle x | \hat{\mathcal{O}} | \psi \rangle = \langle x | \psi' \rangle = \psi'(x) \tag{26}$$

Elementy macierzowe operatora pędu \hat{p} w reprezentacji położeniowej:

$$\hat{p}_{xy} = \langle x | \hat{p} | y \rangle = -i\hbar \frac{\partial}{\partial x} \delta(x - y), \quad \hat{p}_{xy}^{n} = \langle x | \hat{p}^{n} | y \rangle = (-i\hbar)^{n} \frac{\partial^{n}}{\partial x^{n}} \delta(x - y)$$
 (27)

Wartość oczekiwana operatora:

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \langle \psi | \underbrace{\left(\int dx | x \rangle \langle x | \right)}_{\mathbb{I}} A \underbrace{\left(\int dy | y \rangle \langle y | \right)}_{\mathbb{I}} | \psi \rangle = \int \int dx dy \, \psi^*(x) A_{xy} \psi(y) \tag{28}$$

Wzór (28), kiedy A jest funkcją \hat{x} upraszcza się:

$$\langle A(\hat{x}) \rangle = \int \int dx dy \, \psi^*(x) A(x) \underbrace{\langle x|y \rangle}_{\delta(x-y)} \psi(x) = \int dx \, \psi^*(x) A(x) \psi(x)$$
(29)

Wzór (28), analogicznie kiedy A jest funkcją \hat{p} upraszcza się:

$$\langle A(\hat{p}) \rangle = \int \int dx \, dy \, \psi^*(x) \left(\sum_{n=0}^{\infty} \frac{1}{n!} \frac{\partial^n A(p)}{\partial p^n} \Big|_{p=0} \hat{p}_{xy}^n \right) \psi(y) = \int dx \, \psi^*(x) A(p) \psi(x)$$
(30)

W ogólności dla dowolnej obserwabli:

$$\langle A \rangle = \int dx \, \psi^*(x) A \psi(x) \tag{31}$$