

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 146 642 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 27.12.2006 Bulletin 2006/52 (51) Int Cl.: H03K 5/135 (2008.01)

H03H 11/18 (2006.01)

- (21) Application number: 01107109.9
- (22) Date of filing: 21.05.1996
- (54) Phase shifter for use in a quadrature clock generator
 Phasenschieber zur Verwendung in einem Quadratur-Taktgenerator
 Circuit déphaseur pour utilisation dans un générateur de signaux d'horloge en quadrature
- (84) Designated Contracting States: DE FR GB IT
- (30) Priority: 26.05.1995 US 452074
- (43) Date of publication of application: 17.10.2001 Bulletin 2001/42
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 96920317.3 / 0 829 135
- (73) Proprietor: RAMBUS INC. Los Altos, California 94022 (US)

- (72) Inventors:
 - Donnelly, Kevin S.
 San Francisco
 CA 94131 (US)
 - Chau, Pak Shing San Jose
 CA 95124 (US)
- (74) Representative: Eisenführ, Speiser & Partner Patentanwälte Rechtsanwälte Postfach 10 60 78 28060 Bremen (DE)
- (56) References cited: EP-A- 0 523 854 US-A- 4 866 397

US-A- 4 663 594 US-A- 5 191 301

P 1 146 642 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

FIELD OF THE INVENTION

[0001] The present invention relates generally to phase shifting circuits and more particularly to a phase shifting circuit that may be used in quadrature clock generator for for providing quadrature output signals.

BACKGROUND OF THE INVENTION

[0002] A quadrature clock generator may be used in a delay locked loop (DLL) to provide two clock signals that are 90 degrees out of phase with one another. Typically, a first output clock signal (the "I" output clock signal) is in phase with the input reference clock signal, and a second output clock signal (the quadrature or "Q" output clock signal) is 90 degrees out of phase with the input reference clock signal. Both output clock signals of the quadrature clock generator have the reference frequency. The output clock signals are phase mixed to provide a desired phase difference or delay between the output clock signal of the DLL and the input reference clock.

[0003] Cyclic variations from the desired phase difference between the output clock signals of the quadrature clock generator result in "jitter." For DLL purposes, the jitter of the quadrature clock generator affects the timing margins of the DLL, increasing lock acquisition time for the DLL. Therefore, reduced jitter is desirable.

[0004] According to one prior art method, a quadrature clock generator first divides the frequency of the input reference clock signal by two and then operates on the reduced frequency signal to produce two clock signals that are 90 degrees out of phase with one another. A DLL using a frequency dividing quadrature clock generator then must double the frequency of the clock signals to produce the desired output clock signals of the original frequency.

[0005] According to an alternative prior art method, a quadrature clock generator operates "at frequency" to provide quadrature clock signals without the intermediate steps of frequency dividing and doubling. A fixed delay element is typically used to provide the desired phase relationship. When compared to frequency dividing quadrature clock generators, at frequency quadrature clock generators have the advantages of reduced circuit complexity, reduced die area, and reduced power consumption.

[0006] Generally, frequency dividing quadrature clock generators are able to maintain the desired phase relationship between the output clock signals over a wider range of input reference clock frequencies than at frequency quadrature clock generators. Furthermore, when compared to at frequency quadrature clock generators, frequency dividing quadrature clock generators are better able to maintain the desired phase relationship in view of process variations, supply variations, and temperature variations.

[0007] Wherein frequency dividing quadrature clock generators are capable of providing adequate jitter performance, a DLL that uses a frequency dividing quadrature clock generators may exhibit bi-modal jitter (and therefore worse timing margins) due to the mismatching of components used in the frequency doubling. Thus, the components of frequency dividing quadrature clock generator must be closely matched to reduce jitter, further increasing the cost of manufacturing a frequency dividing quadrature clock generator.

[0008] Other phase shifter circuits are known from US4663594 and US 4866397.

SUMMARY AND OBJECTS OF THE INVENTION

[0009] Therefore, an object of the invention is to provide an at frequency quadrature clock generator having improved jitter performance.

[0010] These and other objects are provided by a quadrature clock generator that includes an at frequency phase shifting circuit for providing the Q output clock signal and a first comparator for providing the I output clock signal. Both the phase shifting circuit and the second comparator are coupled to receive an input reference clock signal. The phase shifting circuit comprises a triangle wave generator coupled in series with a second comparator. The triangle wave generator outputs a pair of complementary triangle wave signals in response to the input reference signal. The second comparator outputs the Q output clock signal in response to a comparison between the pair of complementary triangle wave signals. To better ensure that the output clock signals of the first comparator and the phase shifting circuit are in quadrature, the first and second comparators are matched such that the propagation delays associated with the comparators are equal.

[0011] According to alternative embodiments, the phase shifting circuit may be used alone to provide a predetermined fixed delay. Further, the quadrature clock generator may be used as a component of a DLL. Specifically, the invention provides a phase shifting circuit comprising:

first and second current sources to generate respective first and second currents at respective first and second nodes:

a first current switch to steer current from the first node to a third node in response to a first state of a reference signal, and to steer current from the first node to the second node via a resistive element in response to a second logic state of the reference signal;

a second current switch to steer current from the second node to the first node via the resistive element when the reference signal is in the first state to produce a first voltage transition at the first node, and to steer current from the second node to the third node when the reference signal is in the second logic

state;

a capacitor element to siew rate limit the first voltage transition at the first node;

a third current source to sink a third current from the third node, the third current having a magnitude that is at least double that of the first current; and a comparator circuit coupled to the first and second nodes to generate an output signal having a phase shift with respect to the reference signal in response to the first voltage transition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements, and in which:

FIGURE 1 shows a delay locked loop that includes a quadrature clock generator and phase shifting circuit according to one embodiment.

FIGURE 2 shows a quadrature clock generator as including a phase shifting circuit according to one embodiment.

FIGURE 3 shows a triangle wave generator of the phase shifting circuit according in more detail.

FIGURE 4 illustrates the operation of a quadrature clock generator and phase shifting circuit according to one embodiment.

FIGURE 5 shows a quadrature clock generator as including a phase shifting circuit with duty cycle error correction.

FIGURE 6 shows a duty cycle error correction circuit of one embodiment.

FIGURE 7 shows a filter according to one embodiment.

DETAILED DESCRIPTION

[0013] A phase shifting circuit that operates at frequency and may be incorporated as part of a quadrature clock generator is described herein. The phase shifting circuit generally comprises a triangle wave generator coupled in series with a comparator. The triangle wave generator receives a periodic input signal and outputs two complementary triangle wave signals. The comparator compares the value of the first triangle wave to the value of the second triangle wave, outputting a logic high value when the first triangle wave is greater than the second triangle wave and a logic low value when the first triangle wave is less than the second triangle wave.

[0014] The output of the comparator transitions between logic high and logic low values when the first and second triangle waves are equal. Assuming that the input signal has a 50% duty cycle, the output signal of the comparator transitions approximately 90 degrees out of phase with the transitions of the input signal. The phase shift circuit may be used to provide the Q output clock

signal of a quadrature clock generator, wherein a second comparator having approximately the same delay as the comparator of the phase shift circuit is coupled to the input signal for providing the I output clock signal of the quadrature clock generator.

[0015] Figure 1 is a simplified block diagram of delay locked loop (DLL) 100 that includes quadrature clock generator 105, variable delay 110, clock buffers 115, phase detector 120, and charge pump 125. A reference clock signal having a 50% duty cycle is provided as an input to the quadrature clock generator 105. Quadrature clock generator 105 uses the input reference clock signal to generate a first output clock signal "I" that is in phase with the input reference clock signal and a second output clock signal "Q" that is 90 degrees out of phase with the I output clock signal. The I and Q output clock signals are said to be in quadrature with one another.

[0016] Variable delay 110 receives the quadrature signals from quadrature clock generator 105 and phase mixes the quadrature signals to produce a variable delay in order to generate a DLL clock output signal having the desired phase relationship to the input reference clock signal. Clock buffers 115 receive the output of variable delay 110 and buffer it to drive the large wiring capacitance load at the output of DLL 100.

[0017] As shown, the output signal of DLL 100 is fed back to phase detector 120, which also receives the input reference clock signal. Phase detector 120 compares the input reference clock signal to the output signal of the DLL and outputs a control signal that causes phase shifter 110 to adjust the relative phase of the output signal of DLL 100 by adjusting the phase mixing of the I output clock signal and the Q output clock signal. The control signal may be an analog voltage or a digital signal such as a control digital word.

[0018] Figure 2 shows a quadrature clock generator according to one embodiment. Quadrature clock generator 105 is shown as generally including a phase shift circuit 200 and a comparator 210 wherein phase shift circuit 200 provides the Q output signal and comparator 210 outputs the I output signal. The input reference clock signal is labeled "CLK" and is provided to the inputs of phase shift circuit 200 and comparator 210 along with a complementary reference clock signal "CLKB." The I output signal of quadrature clock generator 105 is approximately in phase with the input clock signal CLK, and the Q output signal is 90 degrees out of phase with the I output signal.

[0019] Phase shift circuit 200 is shown as including triangle wave generator 201 and comparator 205. Triangle wave generator 201 outputs a first triangle wave signal VOUT to the positive input of comparator 205 and a second complementary triangle wave signal VOUTB to the negative input of comparator 205. The complementary triangle wave signals are output in response to the complementary input reference clock signals. According to one embodiment, VOUT is the integral of input reference clock signal CLK, and VOUTB is the integral of com-

plementary input reference clock signal CLKB.

[0020] Comparator 205 outputs a square wave signal that transitions between logic high and logic low values at zero differential crossing points wherein the values of signals VOUT and VOUTB are equal. The zero differential crossing points are approximately 90 degrees out of phase with transitions in the input reference clock signals. The delay of comparator 205 results in additional phase difference, and comparator 210 is selected to have a matching delay such that the I and Q output signals are in quadrature with one another. Thus, the delay of comparator 210 causes the I output signal to be slightly out of phase with the input reference clock signal CLK, exactly canceling the phase difference caused by the delay of comparator 205.

[0021] According to one embodiment, triangle wave generator 201 comprises a current switch 202 and a filter 203. Current switch 202 includes a pair of inputs coupled to receive CLK and CLKB and a pair of output terminals A and B for outputting an output current Iout. Filter 203 is coupled across the output terminals of current switch 202. Current switch 202 changes the direction of flow for output current lout in response to complementary input clock signals CLK and CLKB. For example, wherein input clock signal CLK is logic high, the output current lout flows from output terminal A, through filter 203, and into output terminal B such that VOUT increases and VOUTB decreases. Wherein CLK is logic low, the output current lout flows from the B output terminal, through filter 203, and into output terminal A such that VOUTB increases and 30 VOUT decreases.

[0022] Filter 203 is shown as comprising resistor 215 and capacitor 220, each of which are coupled across the output terminals of current switch 202. The values of resistor 215 and capacitor 220 are selected such that the RC time constant of filter 203 limits the slew rate of the voltages VOUT and VOUTB, preventing VOUT and VOUTB from achieving the supply voltages VCC and VSS and resulting in complementary triangle wave signals. The values of resistor 215 and capacitor 220 are also selected such that the amplitude of the triangle wave signals is as large as possible. Wherein CLK has a frequency of 250 MHz, exemplary values of resistor 215 and capacitor 220 are 4 kΩ and 0.4 pF, respectively. Resistor 215 of filter 203 may be provided by two halfvalue resistors and two double-value capacitors coupled in a manner such as that shown by Figure 7.

[0023] Figure 3 shows a current switch 202 of one embodiment as generally comprising a differential pair of matched NMOS transistors 302 and 304 and current sources 305, 306, and 308. Transistor 302 has its gate coupled to receive the CLK signal and its drain coupled to the supply voltage VCC via current source 306. Similarly, transistor 304 has its gate coupled to receive the CLKB signal and its drain coupled to VCC via current source 308. The sources of transistors 302 and 304 are commonly coupled to system ground VSS via current source 305. Current sources 306 and 308 each source

a current I_1 , and current source 305 sinks a current having twice the value of I_1 .

[0024] As shown, output terminal A of current switch 202 is coupled to the drain of transistor 304, and output terminal B is coupled to the drain of transistor 302. Therefore, the drains of transistor 302 and 304 are coupled to one another via filter 203 such that filter 203 provides a conducting path to system ground VSS. Wherein transistor 302 is switched off and transistor 304 is switched on, the current provided by current source 306 is diverted through filter 203 and transistor 304 to system ground VSS such that the voltage VOUTB at output terminal B increases relative to the voltage VOUT at output terminal A. Similarly, wherein transistor 302 is switched on and transistor 304 is switched off, the current provided by current source 308 is diverted through filter 203 and transistor 302 to system ground VSS such that the voltage VOUT increases relative to the voltage VOUTB. Because NMOS transistors 302 and 304 are matched and current sources 306 and 308 are matched, the amplitudes of VOUT and VOUTB are equal.

[0025] Figure 4 shows several waveforms that illustrate the operation of current switch 202 and quadrature clock generator 105. Specifically, Figure 4 shows complementary input reference clock signals CLK and CLKB, complementary triangle wave signals VOUT and VOUTB, and quadrature output signals Q and I.

[0026] At time T0, CLK transitions from a logic low value to a logic high value, complementary clock signal CLKB transitions from a logic high value to a logic low value, and voltages VOUTB and VOUT are at their maximum and minimum values, respectively. While CLK is logic high and CLKB is logic low, transistor 302 is switched on and transistor 304 is switched off such that current source 308 provides a current I₁ that flows from output terminal A, through filter 203, and to system ground VSS via output terminal B and transistor 302. Thus, at time T0, VOUT begins to increase, and VOUTB begins to decrease.

[0027] Because the components of current switch generator 202 are matched, the time rate of change for VOUT and VOUTB are of equal magnitude and opposite polarity. Further, the RC time constant of filter 203 limits the slew rate of VOUT and VOUTB such that both signals are triangle wave signals that swing between a maximum value, V_{max}, that is less than VCC and a minimum value, V_{min}, that is greater than VSS. For these reasons, the values of VOUT and VOUTB are equal half way between times T0 and T1, when CLK transitions from high to low. Thus, the differential crossing points of the triangle wave signals VOUT and VOUTB occur 90 degrees out of phase with transitions of input reference clock signal CLK.

[0028] Comparator 205 (shown in Figure 2) detects the differential crossing point and causes the Q output signal to transition from logic low to logic high. The transition time of comparator 205 introduces a delay T_D in the Q output signal of quadrature clock generator 200 such that the Q output signal is actually $(90 + \emptyset)$ degrees

out of phase with CLK, wherein \emptyset is the phase difference corresponding to the delay T_D . The delay of comparator 210 is selected such that the I output signal also includes a delay T_D . Thus, the Q output signal is exactly 90 degrees out of phase with the I output signal.

[0029] At time T1, CLK transitions from high to low, CLKB transitions from low to high, and voltages VOUT and VOUTB are at their maximum and minimum values, respectively. While CLK is logic low and CLKB is logic high, transistor 304 is switched on and transistor 302 is switched off such that current source 306 provides a current I₁ that flows from output terminal B, through filter 203, and to system ground VSS via output terminal A and transistor 304. Thus, at time T1, VOUTB begins to increase, and VOUT begins to decrease. Another zero differential crossing point occurs halfway between times T1 and T2. Comparator 205 detects the zero differential crossing point and causes the Q output signal to transition from logic high to logic low. At time T2, CLK transitions from low to high.

[0030] Thus far, it has been assumed that the Q output signal has a 50% duty cycle. If the input reference clock signal CLK does not have a 50% duty cycle, or if there are component mismatches, the rising and falling edges of the triangle waves may not be centered around the same voltage, and the Q output signal therefore may not have a 50% duty cycle. For the purposes of DLL 100, it is desirable that the Q output signal have a 50% duty cycle. Therefore, the quadrature clock generator 105 shown in Figure 5 includes additional circuitry for correcting duty cycle errors.

[0031] Specifically, the embodiment of quadrature clock generator 105 shown in Figure 5 includes a duty cycle error measurement circuit 515 coupled in series with a duty cycle correction circuit 520. Duty cycle error measurement circuit 515 and duty cycle correction circuit 520 are coupled in a feedback configuration between the output of comparator 505 of phase shift circuit 200 and the output of current switch 202 of triangle wave generator 201.

[0032] As shown, comparator 505 includes a complementary output that outputs a QB output signal that is 180 degrees out of phase with the Q output signal. The Q and QB output signals are provided as inputs to duty cycle error measurement circuit 515, which may be manufactured in accordance with the disclosure of the following patent application, which is hereby incorporated by reference: U.S. application serial no. 08/196,711, entitled "Amplifier With Active Duty Cycle Correction", and commonly assigned to Rambus, Inc. of Mountain View, California.

[0033] Duty cycle error measurement circuit 515 outputs differential error voltages $V_{\Delta+}$ and $V_{\Delta-}$ In response to detecting a difference between the duty cycle of the Q output signal and a 50% duty cycle. Duty cycle error measurement circuit 515 includes a filter (not shown) that results in error voltage V_{Δ} being a slowly changing, near DC voltage having a magnitude that is proportional to the

magnitude of the error in duty cycle. In order to ensure the stability of this second-order feedback loop, the pole of the filter for the duty cycle measurement circuit 515 is selected to be the dominant pole of the duty cycle correction feedback loop.

[0034] Duty cycle correction circuit 520 receives the differential error voltage V_{Λ} and provides a correction current I_{Λ} via output terminals C and D in response to the differential error voltage VA such that the Q output signal has a 50% duty cycle. As shown, output terminals C and D are coupled to output terminals A and B of current switch 202, respectively. The direction in which the correction current IA flows depends on whether the duty cycle of the Q output signal is less than or more than 50%. The correction current I_{Λ} flows from output terminal C when the Q output signal has a duty cycle that is less than 50%. The correction current I, (as shown in parentheses) flows from output terminal D when the Q output signal has a duty cycle that is more than 50%. The correction current IA is summed with the output current I aut of current switch 202 before being fed into filter 203. The correction current therefore causes one of the triangle wave signals to increase in voltage wherein the other triangle wave signal decreases in voltage such that the zero differential crossing points occur halfway between the rising and falling edges of the input reference clock signal CLK.

[0035] According to one embodiment, duty cycle correction circuit 520 is a current switch that switches the correction current IA. Figure 6 shows duty cycle correction circuit 520 as being a current switch that generally comprises a differential pair of matched NMOS transistors 602 and 604 and current sources 605, 606, and 608. Transistor 602 has its gate coupled to receive the $V_{\Delta+}$ error voltage and its drain coupled to the supply voltage VCC via current source 606. Similarly, transistor 604 has its gate coupled to receive the VA- error voltage and its drain coupled to VCC via current source 608. The sources of transistors 602 and 604 are commonly coupled to system ground VSS via current source 605. Current sources 606 and 608 each source a current l2, and current source 605 sinks a current of 212. The current 12 is chosen to be much less than the current I1 used in current switch 202.

of filter 203 according to one embodiment. Resistor 215 is shown as including a first half-value resistor 705 coupled between output terminal A of current switch 202 and a common mode voltage V_{CM}, and a second half-value resistor 710 coupled between a common mode voltage V_{CM} and output terminal B of current switch 202. Capacitor 220 is shown as including a first double-value capacitor 715 coupled between output terminal A of current switch 202 and system ground VSS, and a second double-value capacitor 720 and system ground VSS, and a second double-value capacitor 720 coupled between output terminal B and VSS.

[0037] In the foregoing specification the invention has been described with reference to specific exemplary em-

bodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.

[0038] It follows a list of further, not claimed, embodiments of the invention:

Embodiment 1. A phase shirting circuit comprising:

a triangle wave generator coupled to receive an input reference signal, the triangle wave generator including a pair of complementary outputs that output a pair of complementary triangle wave signals in response to the input reference signal; and

a comparator having a pair of inputs coupled to receive the pair of complementary triangle wave signals, the comparator outputting an output signal having a predetermined phase relationship with the input reference signal in response to a comparison between the pair of complementary triangle wave signals.

Embodiment 2. A phase shifting circuit according to with the features of embodiment, wherein the triangle wave generator comprises:

a filter coupled across the complementary out- 30 puts; and

a current switch coupled to receive the input reference signal, the current switch providing an output current at the complementary outputs, wherein the current switch reverses a direction of flow for the output current in response to the input reference signal, the filter integrating the output current to result in complementary triangle wave signals.

Embodiment 3. A phase shifting circuit according to with the features of embodiment wherein the triangle wave generator comprises:

a differential amplifier including a first input coupled to the input reference signal, a second input coupled to a complementary input reference signal, and the pair of complementary outputs; and a filter coupled across the complementary outputs, the filter causing the complementary outputs of the differential amplifier to output complementary triangle wave signals.

Embodiment 4. The phase shifting circuit of with the features of embodiment, wherein the differential amplifier comprises:

a first field effect transistor (FET) including a

gate coupled as the first input of the differential amplifier, a first terminal coupled as a first one of the complementary outputs of the differential amplifier, and a second terminal coupled to a first node;

a first current source coupled between a first supply rail and the first terminal of the first FET; a second FET including a gate coupled as the second input of the differential amplifier, a first terminal coupled as a second one of the complementary outputs of the differential amplifier, and a second terminal coupled to the first node; a second current source coupled between a first supply rail and the first terminal of the second FET; and

a third current source coupled between the first node and a second supply rail.

Embodiment 5. The phase shifting circuit of with the features of embodiment, wherein the first and second current sources each source approximately *I* amperes of current, and the third current source sinks approximately *2I* amperes of current.

Embodiment 6. The phase shifting circuit of with the features of embodiment, wherein the phase shifting circuit is implemented as a CMOS circuit.

Embodiment 7. The phase shifting circuit of with the features of embodiment, wherein the phase shifting circuit is implemented on a single semiconductor substrate.

Embodiment 8. The phase shifting circuit of with the features of embodiment, further comprising:

a duty cycle error measurement circuit coupled to the output of the comparator, the duty cycle error measurement circuit outputting an error signal in response to the output signal of the comparator deviating from a 50% duty cycle; a second differential amplifier including an input coupled to the error signal and a pair of outputs coupled to the complementary outputs of the differential amplifier, the second differential amplifier outputting a correction current such that the output of the comparator has a 50% duty cycle.

Embodiment 9. A quadrature clock generator circuit for outputting a first output signal and a second output signal that is approximately 90 degrees out of phase with the first output signal, the clock generator circuit comprising:

a first comparator having an input coupled to an input reference signal, the first comparator outputting the first output signal in response the complementary input signals;

a phase shifting circuit coupled to the input signal, the phase shifting circuit comprising:

a triangle wave generator coupled to receive the input reference signal, the triangle wave generator including a pair of complementary outputs that output a pair of complementary triangle wave signals in response to the input signal; and a second comparator having a pair of inputs coupled to receive the pair of complementary triangle wave signals, the comparator outputting the second output signal in response to a comparison between the pair of complementary triangle wave signals.

Embodiment 10. The quadrature clock generator of with the features of embodiment, wherein the triangle wave generator comprises:

a filter coupled across the complementary outputs; and

a current switch coupled to receive the input reference signal, the current switch providing an output current at the complementary outputs, wherein the current switch reverses a direction of flow for the output current in response to the input reference signal, the filter integrating the output current to result in complementary triangle wave signals.

Embodiment 11. The quadrature clock generator of with the features of embodiment, wherein the triangle wave generator comprises:

a differential amplifier including a first input coupled to the input reference signal, a second input coupled to a complementary input reference signal, and the pair of complementary outputs; and a filter coupled across the complementary outputs, the filter causing the complementary outputs of the differential amplifier to output complementary triangle wave signals.

Embodiment 12. The quadrature clock generator of with the features of embodiment, wherein the differential amplifier comprises:

a first field effect transistor (FET) including a gate coupled as the first input of the differential amplifier, a first terminal coupled as a first one of the complementary outputs of the differential amplifier, and a second terminal coupled to a first node;

a first current source coupled between a first supply rail and the first terminal of the first FET; a second FET including a gate coupled as the second input of the differential amplifier, a first

terminal coupled as a second one of the complementary outputs of the differential amplifier, and a second terminal coupled to the first node; a second current source coupled between a first supply rail and the first terminal of the second FET; and

a third current source coupled between the first node and a second supply rail.

Embodiment 13. The quadrature clock generator of with the features of embodiment, wherein the first and second current sources each source approximately *I* amperes of current, and the third current source sinks approximately *2I* amperes of current.

Embodiment 14. The quadrature clock generator of with the features of embodiment, wherein the quadrature clock generator is implemented as a CMOS circuit.

Embodiment 15. The quadrature clock generator of with the features of embodiment, wherein the quadrature clock generator is implemented on a single semiconductor substrate.

Embodiment 16. The quadrature clock generator of with the features of embodiment, further comprising:

a duty cycle error measurement circuit coupled to the output of the comparator, the duty cycle error measurement circuit outputting an error signal in response to the output signal of the comparator deviating from a 50% duty cycle;

a second differential amplifier including an input coupled to the error signal and a pair of outputs coupled to the complementary outputs of the differential amplifier, the second differential amplifier outputting a correction current such that the output of the comparator has a 50% duty cycle...

Embodiment 17. A delay-locked loop (DLL) comprising:

a quadrature clock generator circuit for outputting a first output signal and a second output signal that is approximately 90 degrees out of phase with the first output signal, the clock generator circuit comprising:

a first comparator having an input coupled to an input reference signal, the first comparator outputting the first output signal in response the input reference signal;

a phase shifting circuit coupled to the input signal, the phase shifting circuit comprising:

atriangle wave generator coupled to re-

35

ceive the input reference signal, the triangle wave generator including a pair of complementary outputs that output a pair of complementary triangle wave signals in response to the input reference signal; and

a second comparator having a pair of inputs coupled to receive the pair of complementary triangle wave signals, the comparator outputting the second output signal in response to a comparison between the pair of complementary triangle wave signals;

a variable delay circuit coupled to receive the first and second output signals, the variabe delay circuit outputting a delayed signal in response to a control signal;

a clock buffer circuit coupled to receive and buffer the delayed circuit, the clock buffer circuit outputting an output signal of the DLL; and a phase detector coupled to the input reference signal and the output signal of the DLL, the phase comparator generating the control signal in response to a comparison between the input and output signals.

Embodiment 18. The DLL of with the features of embodiment, wherein the triangle wave generator comprises:

a filter coupled across the complementary outputs; and

a current switch coupled to receive the input reference signal, the current switch providing an output current at the complementary outputs, wherein the current switch reverses a direction of flow for the output current in response to the input reference signal, the filter integrating the output current to result in complementary triangle wave signals.

Embodiment 19. The DLL of with the features of embodiment, wherein the triangle wave generator comprises:

a differential amplifier including a first input coupled to the input reference signal, a second input coupled to a complementary input reference signal, and the pair of complementary outputs; and a filter coupled across the complementary outputs, the filter causing the complementary outputs of the differential amplifier to output complementary triangle wave signals.

Embodiment 20. A method for providing a phase shift of approximately 90 degrees between an output signal and an input reference signal, the method com-

prising:

generating a pair of complementary triangle wave signals; and

outputting the output signal, wherein the output signal transistions between a first state and a second state in response to the complementary triangle wave signals being equal.

Claims

1. A phase shifting circuit comprising:

first and second current sources (306,308) to generate respective first and second currents at respective first and second nodes (A,B V_{OUT}, V_{OUTP}):

a first current switch (302) to steer current from the first node to a third node in response to a first state of a reference signal (CLK, CLKB), and to steer current from the first node to the second node via a resistive element (215) in response to a second logic state of the reference signal;

a second current switch (304) to steer current from the second node to the first node via the resistive element when the reference signal is in the first state to produce a first voltage transition at the first node, and to steer current from the second node to the third node when the reference signal is in the second logic state;

a capacitor element (220) to slew rate limit the first voltage transition at the first node;

a third current source (305) to sink a third current from the third node, the third current having a magnitude that is at least double that of the first current; and

a comparator circuit (205,505) coupled to the first and second nodes to generate an output signal having a phase shift with respect to the reference signal in response to the first voltage transition.

- The phase shifting circuit of claim 1 wherein the first and second current switches comprise respective first and second transistors receiving the reference signal and a complement thereof at respective gate inputs.
 - The phase shifting circuit of claim 1 wherein the resistive element is coupled between the first and second nodes, and capacitor element is coupled between the first and second nodes.
 - 4. The phase shifting circuit of claim 1 wherein the resistive element comprises a first resistor coupled between a second supply potential and the first node,

Ω

and a second resistor coupled between the second supply potential and the second node.

- 5. The phase shifting circuit of claim 1 wherein the first and second currents produce a second voltage transition at the second node when the reference signal is in the first state.
- The phase shifting circuit of claim 5 wherein the comparator comprises a first input coupled to the first node, and a second input coupled the second node.
- 7. The phase shifting circuit of claim 1 wherein the third current source sources the third current to a ground potential node.
- 8. A method of operation in a phase shifting circuit, the method comprising:

generating first and second currents using re- 20 spective first and second current sources that source current from a supply potential to respective first and second nodes; steering current from the first node to a third node in response to a first state of a reference signal, and from the first node to the second node via a resistive element in response to a second state of the reference signal;

steering second current from the second node to the first node via a resistive element in response to the first state of the reference signal, and from the second node to the third node in response to the second state of the reference signal, a first voltage transition being produced at the first node and a second voltage transition being produced at the second node when the reference signal is in the first state;

slew rate limiting the first and second voltage transitions:

sinking a third current from the third node, the third current being at least the sum of the first and second currents;

reversing a direction of current flow through the resistive element when the reference signal changes states; and

generating an output signal by detecting crossing points of the first and second voltage transitions, the output signal having a phase shift with respect to the reference signal.

- The method of claim 8 wherein the first and second voltage transitions are complementary.
- 10. The method of claim 8 wherein during the second state of the reference signal, a third voltage transition is produced at the first node, and a fourth voltage transition is produced at the second node, the third voltage transition being complementary to the first

voltage transition.

- 11. The method of claim 8 generating the output signal comprises comparing the first and second voltage transitions to detect the crossing points thereof.
- 12. The method of claim 8 wherein the current steered from the second node is steered in response to a signal that is complementary to the reference signal.
- 13. The method of claim 8 wherein the third current is sunk from the third node to a ground potential node.
- 14. The method of claim 8 wherein the phase shift is at 15 least ninety degrees.
 - 15. The method of claim 8 wherein slew rate limiting the first voltage transition at the first node is performed using a capacitor.

Patentansprüche

Phasenschieberschaltung mit:

ersten und zweiten Stromquellen (306, 308), um jeweilige erste und zweite Ströme an jeweiligen ersten und zweiten Knotenpunkten (A, B, V_{OUT}, Voutb) zu erzeugen;

einem ersten Stromschalter (302), um Strom von dem ersten Knotenpunkt zu einem dritten Knotenpunkt als Antwort auf einen ersten Zustand eines Referenzsignals (CLK, CLKB) zu leiten und um Strom von dem ersten Knotenpunkt zu dem zweiten Knotenpunkt über ein Widerstandselement (215) als Antwort auf einen zweiten Logikzustand des Referenzsignals zu

einem zweiten Stromschalter (304), um Strom von dem zweiten Knotenpunkt zu dem ersten Knotenpunkt über das Widerstandselement zu leiten, wenn das Referenzsignal in dem ersten Zustand ist, um einen ersten Spannungsübergang an dem ersten Knotenpunkt zu erzeugen, und um Strom von dem zweiten Knotenpunkt zu dem dritten Knotenpunkt zu leiten, wenn das Referenzsignal in dem zweiten Logikzustand ist; einem Kondensatorelement (220), um die Anstiegsrate des ersten Spannungsübergangs an dem ersten Knotenpunkt zu begrenzen:

einer dritten Stromquelle (305), um einen dritten Strom von dem dritten Knotenpunkt aufzunehmen, wobei der dritte Strom einen Betrag aufweist, der zumindest gleich dem Doppelten des ersten Stroms ist; und

einer Komparatorschaltung (205, 505), die mit den ersten und zweiten Knotenpunkten verbunden ist, um ein Ausgangssignal, das eine Pha-

senverschiebung bezüglich des Referenzsignals aufweist, als Antwort auf den ersten Spannungsübergang zu erzeugen.

- Phasenschieberschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die ersten und zweiten Stromschalter jeweilige erste und zweite Transistoren aufweisen, die das Referenzsignal und ein komplementäres Signal desselben an jeweiligen Gate-Eingängen empfangen.
- Phasenschieberschaltung nach Anspruch 1, dadurch gekennzeichnet, dass das Widerstandselement zwischen den ersten und zweiten Knotenpunkten gekoppelt ist und dass das Kondensatorelement zwischen den ersten und zweiten Knotenpunkten gekoppelt ist.
- 4. Phasenschieberschaltung nach Anspruch 1,
 dadurch gekennzeichnet, dass das Widerstandselement einen ersten Widerstand, der zwischen einem zweiten Quellenpotential und dem ersten Knotenpunkt gekoppelt ist, und einen zweiten Widerstand aufweist, der zwischen dem zweiten Quellenpotential und den zweiten Knotenpunkt gekoppelt
 ist
- Phasenschieberschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die ersten und zweiten Ströme einen zweiten Spannungsübergang an dem zweiten Knotenpunkt erzeugen, wenn das Referenzsignal in dem ersten Zustand ist.
- 6. Phasenschieberschaltung nach Anspruch 5, dadurch gekennzeichnet, dass der Komparator 35 einen ersten mit dem ersten Knotenpunkt verbundenen Eingang und einen zweiten mit dem zweiten Knotenpunkt verbundenen Eingang aufweist.
- Phasenschieberschaltung nach Anspruch 1, dadurch gekennzeichnet, dass die dritte Stromquelle den dritten Strom an einen Massepotential-Knotenpunkt liefert.
- Verfahren zum Betreiben in einer Phasenschieberschaltung, wobei das Verfahren folgende Schritte aufweist:

Erzeugen von ersten und zweiten Strömen unter Verwendung jeweiliger erster und zweiter Stromquellen, die Strom von einem Quellenpotential zu jeweiligen ersten und zweiten Knotenpunkten liefem;

Leiten von Strom von dem ersten Knotenpunkt zu einem dritten Knotenpunkt als Antwort auf einen ersten Zustand eines Referenzsignals und von dem ersten Knotenpunkt zu dem zweiten Knotenpunkt über ein Widerstandselement als Antwort auf einen zweiten Zustand des Referenzsignals:

Leiten des zweiten Stroms von dem zweiten Knotenpunkt zu dem ersten Knotenpunkt über ein Widerstandselement als Antwort auf den ersten Zustand des Referenzsignals und von dem zweiten Knotenpunkt zu dem dritten Knotenpunkt als Antwort auf den zweiten Zustand des Referenzsignals, wobei ein erster Spannungsübergang an dem ersten Knotenpunkt und ein zweiter Spannungsübergang an dem zweiten Knotenpunkt erzeugt wird, wenn das Referenzsignal in dem ersten Zustand ist;

Begrenzen der Anstiegsrate der ersten und zweiten Spannungsübergänge;

Aufnehmen eines dritten Stromes von dem dritten Knotenpunkt, wobei der dritte Strom zumindest die Summe der ersten und zweiten Ströme ist.

Umkehren einer Stromströmungsrichtung durch das Widerstandselement, wenn das Referenzsignal Zustände ändert; und

Erzeugen eines Ausgangssignals durch Detektieren von Schnittpunkten der ersten und zweiten Spannungsübergänge, wobei das Ausgangssignal eine Phasenverschiebung bezüglich des Referenzsignals aufweist.

- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die ersten und zweiten Spannungsübergänge komplementär sind.
- 10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass während des zweiten Zustands des Referenzsignals ein dritter Spannungsübergang an dem ersten Knotenpunkt und ein vierter Spannungsübergang an dem zweiten Knotenpunkt erzeugt werden, wobei der dritte Spannungsübergang zu dem ersten Spannungsübergang komplementär ist.
- 11. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Schritt des Erzeugens des Ausgangssignals ein Vergleichen der ersten und zweiten Spannungsübergänge aufweist, um die Schnittpunkte derselben zu detektieren.
- 12. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Strom, der von dem zweiten Knotenpunkt weggeleitet wird, als Antwort auf ein Signal geleitet wird, das zu dem Referenzsignal komplementär ist.
- 13. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der dritte Strom ausgehend von dem dritten Knotenpunkt von einem Massepotential-Knotenpunkt aufgenommen wird.

- 14. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Phasenverschiebung zumindest 90° beträgt.
- 15. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Begrenzen der Anstiegsrate des ersten Spannungsübergangs an dem ersten Knotenpunkt mit einem Kondensator durchgeführt wird.

Revendications

1. Circuit de déphasage comprenant :

des première et deuxième sources (306, 308) de courant pour générer des premier et deuxième courants respectifs aux premier et deuxième noeuds respectifs (A, B, V_{out}, V_{outB}); un commutateur (302) d'un premier courant pour orienter le courant du premier noeud au troisième noeud en réponse à un premier état d'un signal de référence (CLK, CLKB), et pour orienter le courant du premier noeud vers le deuxième noeud via un élément résistif (215) en réponse à un deuxième état logique du signal de référence :

un commutateur (304) d'un deuxième courant pour orienter le courant du deuxième noeud vers le premier noeud via l'élément résistif lorsque le signal de référence est dans le premier état pour produire une transition de première tension au premier noeud, et pour orienter le courant du deuxième noeud vers le troisième noeud lorsque le signal de référence est dans le deuxième état logique;

un élément condensateur (220) pour limiter la vitesse de balayage de la transition de la première tension au premier noeud;

une source (305) d'un troisième courant pour absorber un troisième courant du troisième noeud, le troisième courant ayant une amplitude qui est au moins le double de celle du premier courant; et

un circuit comparateur (205, 505) couplé aux premier et deuxième noeuds pour générer un signal de sortie ayant un déphasage par rapport au signal de référence en réponse à la transition de la première tension.

2. Circuit de déphasage selon la revendication 1 dans lequel les premier et deuxième commutateurs de courant comprennent respectivement des premier et deuxième transistors recevant le signal de référence et un complément de celul-ci aux entrées de grille respectives.

- Circuit de déphasage selon la revendication 1 dans lequel l'élément résistif est couplé entre les premier et deuxième noeuds, et l'élément condensateur est couplé entre les premier et deuxième noeuds.
- 4. Circuit de déphasage selon la revendication 1 dans lequel l'élément résistif comprend une première résistance couplée entre un deuxième potentiel d'alimentation et le premier noeud, et dans lequel une deuxième résistance est couplée entre le deuxième potentiel d'alimentation et le deuxième noeud.
- 5. Circuit de déphasage selon la revendication 1 dans lequel les premier et deuxième courants produisent une transition de deuxième tension au niveau du deuxième noeud lorsque le signal de référence est dans le premier état.
 - Circuit de déphasage selon la revendication 5, dans lequel le comparateur comprend-une première entrée couplée au premier noeud, et une deuxième entrée couplée au deuxième noeud.
 - Circuit de déphasage selon la revendication 1 dans lequel la source du troisième courant alimente le troisième courant vers un noeud de potentiel de masse.
- 8. Procédé de fonctionnement d'un circuit de déphasage, le procédé comprenant :

la génération de premier et deuxième courants utilisant des première et deuxième sources de courant respectives qui alimentent le courant depuis un potentiel d'alimentation vers des premier et deuxième noeuds respectifs;

l'orientation du courant du premier noeud au troisième noeud en réponse à un premier état d'un signal de référence, et du premier noeud au deuxième noeud via un élément résistif en réponse à un deuxième état du signal de référence;

l'orientation du deuxième courant du deuxième noeud au premier noeud via un élément résistif en réponse au premier état du signal de référence, et du deuxième noeud au troisième noeud en réponse au deuxième état du signal de référence, une transition de la première tension étant produite au premier noeud et une transition de la deuxième tension étant produite au deuxième noeud lorsque le signal de référence est dans le premier état;

une limitation de la vitesse de balayage des transitions de la première et deuxième tensions; l'absorption d'un troisième courant du troisième noeud, le troisième courant étant au moins la somme des premier et deuxième courants; l'inversion d'une direction de flux de courant à travers l'élément résistif lorsque le signal de référence change d'état; et la génération d'un signal de sortie en détectant les points de croisement des transitions des première et deuxième tensions, le signal de sortie ayant un déphasage par rapport au signal de référence.

- Procédé selon la revendication 8 dans lequel les transitions des première et deuxième tensions sont complémentaires.
- 10. Procédé selon la revendication 8 dans lequel pendant le deuxième état du signal de référence, une transition de troisième tension est produite au premier noeud, et une transition de quatrième tension est produite au deuxième noeud, la transition de troisième tension étant complémentaire de la transition de la première tension.
- 11. Procédé selon la revendication 8 de génération du signal de sortie comprenant la comparaison des transitions des première et deuxième tensions pour détecter les points de croisement de ces dernières.
 25
- 12. Procédé selon la revendication 8 dans lequel le courant orienté à partir du deuxième noeud est orienté en réponse à un signal qui est complémentaire du signal de référence.
- 13. Procédé selon la revendication 8 dans lequel le troisième courant est absorbé du troisième noeud vers un noeud de potentiel de masse.
- Procédé selon la revendication 8 dans lequel le déphasage est au moins de quatre-vingt dix degrés.
- 15. Procédé selon la revendication 8 dans lequel la limitation de vitesse de balayage de la transition de la première tension au premier noeud est réalisée à l'aide d'un condensateur.

FIG.

FIG. 7