

COMP9020

Foundations of Computer Science Term 3, 2024

Lecture 6: Equivalence Relations and Partial Orders

Outline

Equivalence Relations

Partial Orders

Outline

Equivalence Relations

Partial Orders

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Equivalence relations

Equivalence relations capture a general notion of "equality". They are relations which are:

- Reflexive (R): Every object should be "equal" to itself
- Symmetric (S): If x is "equal" to y, then y should be "equal" to x
- Transitive (T): If x is "equal" to y and y is "equal" to z, then x should be "equal" to z.

Definition

A binary relation $R \subseteq S \times S$ is equivalence relation if it satisfies (R), (S), (T).

Example

Partition of $\mathbb Z$ into classes of numbers with the same remainder on division by p; it is particularly important for p prime

$$\mathbb{Z}(p) = \mathbb{Z}_p = \{0, 1, \dots, p-1\}$$

One can define all four arithmetic operations (with the usual properties) on \mathbb{Z}_p for a prime p; division has to be restricted when p is not prime.

Take Notice

 $(\mathbb{Z}_p, +, \cdot, 0, 1)$ are fundamental algebraic structures known as **rings**. These structures are very important in coding theory and cryptography.

Equivalence Classes and Partitions

Suppose $R \subseteq S \times S$ is an equivalence relation The **equivalence class** [s] (w.r.t. R) of an element $s \in S$ is

$$[s] = \{t : t \in S \text{ and } sRt\}$$

Fact

s R t if and only if [s] = [t].

Equivalence classes: Proof example

Proof

Suppose [s] = [t]. Recall $[s] = \{x \in S : (s, x) \in R\}$. We will show that $(s, t) \in R$.

Because R is reflexive, $(t, t) \in R$.

Therefore $t \in [t]$.

Because [t] = [s], it follows that $t \in [s]$.

But then $(s, t) \in R$ by the definition of [s].

Equivalence classes: Proof example

Proof

Now suppose $(s, t) \in R$. We will show [s] = [t] by showing $[s] \subseteq [t]$ and $[t] \subseteq [s]$.

Take any $x \in [s]$.

By the definition of [s], $(s,x) \in R$.

Since R is symmetric $(x, s) \in R$.

Since R is transitive and $(s, t) \in R$ we have that $(x, t) \in R$.

Since R is symmetric $(t, x) \in R$.

Therefore, $x \in [t]$.

Therefore $[s] \subseteq [t]$.

Equivalence classes: Proof example

Proof

Now suppose $(s, t) \in R$. We will show [s] = [t] by showing $[s] \subseteq [t]$ and $[t] \subseteq [s]$.

Take any $x \in [t]$.

By the definition of [t], $(t,x) \in R$.

Since R is transitive and $(s,t) \in R$ we have that $(s,x) \in R$.

Therefore $x \in [s]$.

Therefore $[t] \subseteq [s]$.

Partitions

Definition

A **partition** of a set S is a collection of sets S_1, \ldots, S_k such that

- S_i and S_j are disjoint (for $i \neq j$)
- $S = S_1 \cup S_2 \cup \cdots \cup S_k = \bigcup_{i=1}^k S_i$

The collection of all equivalence classes $\{[s]: s \in S\}$ forms a partition of S.

In the opposite direction, a partition of a set defines the equivalence relation on that set. If $S = S_1 \cup \cdots \cup S_k$, then we can define $\sim \subseteq S \times S$ as:

 $s \sim t$ exactly when s and t belong to the same S_i .

Exercises

RW: 3.6.6 (supp)

(d) Show that $m \sim n$ iff $m^2 =_{(5)} n^2$ is an equivalence on $S = \{1, \ldots, 7\}$.

Find all the equivalence classes.

Exercises

RW: 3.6.6 (supp)

(d) Show that $m \sim n$ iff $m^2 = (5) n^2$ is an equivalence on $S = \{1, \dots, 7\}$.

It just means that m = (5) n or m = (5) -n, e.g. 1 = (5) -4. This satisfies (R), (S), (T).

Find all the equivalence classes.

We have

$$[1] = \{1, 4, 6\}$$

$$[2] = \{2, 3, 7\}$$

$$[5] = \{5\}$$

Outline

Equivalence Relations

Partial Orders

Partial Order

A partial order \leq on S satisfies (R), (AS), (T). We call (S, \leq) a **poset** — partially ordered set

Examples

Posets:

- (\mathbb{Z}, \leq)
- $(Pow(X), \subseteq)$ for some set X
- (N, |)

Not posets:

- \bullet $(\mathbb{Z},<)$
- \bullet $(\mathbb{Z}, |)$

Hasse diagram

Every finite poset (S, \leq) can be represented with a **Hasse** diagram:

- Nodes are elements of S
- An edge is drawn *upward* from x to y if $x \prec y$ and there is no z such that $x \prec z \prec y$

Example

Hasse diagram for positive divisors of 24 ordered by |:

Ordering Concepts

Definition

Let (S, \preceq) be a poset.

- **Minimal** element: x such that there is no $y \neq x$ with $y \leq x$
- Maximal element: x such that there is no $y \neq x$ with $x \leq y$
- Minimum (least) element: x such that $x \leq y$ for all $y \in S$
- Maximum (greatest) element: x such that $y \leq x$ for all $y \in S$

Take Notice

- There may be multiple minimal/maximal elements.
- Minimum/maximum elements are the unique minimal/maximal elements if they exist.
- Minimal/maximal elements always exist in finite posets, but not necessarily in infinite posets.

Examples

Examples

- Pow($\{a, b, c\}$) with the order \subseteq \emptyset is minimum; $\{a, b, c\}$ is maximum
- Pow($\{a, b, c\}$) \ $\{\{a, b, c\}\}$ (proper subsets of $\{a, b, c\}$) Each two-element subset $\{a, b\}, \{a, c\}, \{b, c\}$ is maximal.
 - But there is no maximum

Ordering Concepts

Definition

Let (S, \leq) be a poset.

- x is an **upper bound** for A if $a \leq x$ for all $a \in A$
- x is a **lower bound** for A if $x \leq a$ for all $a \in A$
- The **set of upper bounds** for A is defined as $ub(A) = \{x : a \leq x \text{ for all } a \in A\}$
- The **set of lower bounds** for A is defined as $lb(A) = \{x : x \leq a \text{ for all } a \in A\}$
- The least upper bound of A, lub(A), is the minimum of ub(A) (if it exists)
- The greatest lower bound of A, glb(A) is the maximum of lb(A) (if it exists)

glb and lub

To show x is glb(A) you need to show:

- x is a lower bound: $x \prec a$ for all $a \in A$.
- x is the greatest of all lower bounds: If $y \leq a$ for all $a \in A$ then $y \leq x$.

Example

Pow(X) ordered by \subseteq .

- $glb(A, B) = A \cap B$
- $lub(A, B) = A \cup B$

Ordering Concepts

Definition

Let (S, \leq) be a poset.

- (S, \preceq) is a **lattice** if lub(x, y) and glb(x, y) exist for every pair of elements $x, y \in S$.
- (S, \preceq) is a **complete lattice** if lub(A) and glb(A) exist for every subset $A \subseteq S$.

Take Notice

A finite lattice is always a complete lattice.

Examples

Examples

- $\{1,2,3,4,6,8,12,24\}$ partially ordered by divisibility is a lattice
 - e.g. $lub({4,6}) = 12$; $glb({4,6}) = 2$
- \bullet $\{1,2,3\}$ partially ordered by divisibility is not a lattice
 - {2,3} has no lub
- {2,3,6} partially ordered by divisibility
 - {2,3} has no glb
- $\{1, 2, 3, 12, 18, 36\}$ partially ordered by divisibility
 - {2,3} has no lub (12,18 are minimal upper bounds)

Take Notice

An infinite lattice need not have a lub (or no glb) for an arbitrary infinite subset of its elements, in particular no such bound may exist for all its elements.

Examples

- (\mathbb{Z}, \leq) : neither $lub(\mathbb{Z})$ nor $glb(\mathbb{Z})$ exist
- $(\mathcal{F}(\mathbb{N}), \subseteq)$ [all finite subsets of \mathbb{N}]: lub exists for pairs of elements but not generally for (infinite) sets of elements. glb exists for any set of elements: intersection of a set of finite sets is finite.
- $(\mathcal{I}(\mathbb{N}),\subseteq)$ [all infinite subsets of \mathbb{N}]: glb does not exist for some pairs of elements (e.g. odds and evens). lub exists for any set of elements: union of a set of infinite sets is always infinite.

Exercises

RW: 11.1.5 Consider poset (\mathbb{R}, \leq)

- (a) Is this a lattice?
- (b) Give an example of a non-empty subset of $\mathbb R$ that has no upper bound.
- (c) Find lub($\{x \in \mathbb{R} : x < 73\}$)
- (d) Find lub($\{x \in \mathbb{R} : x \leq 73\}$)
- (e) Find lub($\{x: x^2 < 73\}$)
- (f) Find glb($\{x: x^2 < 73\}$)

Exercises

=Act closs				
(b)	Give an example of a non-empty subset of $\ensuremath{\mathbb{R}}$ that has no upper bound.	$\{ r \in \mathbb{R} : r > 0 \}$ $= (0, \infty)$		
(c)	Find lub($\{x \in \mathbb{R} : x < 73\}$)	73		
(d)	Find lub($\{x \in \mathbb{R} : x \le 73\}$)	73		
(e)	Find lub($\{x: x^2 < 73\}$)	$\sqrt{73}$		
(f)	Find glb($\{ x : x^2 < 73 \}$)	$-\sqrt{73}$		

Total orders

Definition

A total order is a partial order that also satisfies:

(L) Linearity (any two elements are comparable):

For all x, y either: $x \le y$ or $y \le x$ (or both if x = y)

Take Notice

On a finite set all total orders are "isomorphic" On an infinite set there is quite a variety of possibilities.

Examples

Examples

- ℤ with ≤: (no minimum/maximum element)
- \mathbb{Z} with $\{(x,y): (xy \leq 0 \text{ and } x \leq y) \text{ or } (xy > 0 \text{ and } |x| \leq |y|)\}$: (no maximum element, minimum element is -1)
- \mathbb{Z} with $\{(x,y): (xy \le 0 \text{ and } x \ge y) \text{ or } (xy > 0 \text{ and } x \le y)\}$: (minimum element 1, maximum element -1)

Ordering of a Poset — Topological Sort

Definition

For a poset (S, \leq) any total order \leq that is consistent with \leq (if $a \leq b$ then $a \leq b$) is called a **topological sort**.

Example

Consider

The following all are topological sorts:

$$a \le b \le e \le c \le f \le d$$

$$a \le e \le b \le f \le c \le d$$

$$a \le e \le f \le b \le c \le d$$

Well-Ordered Sets

Definition

A **well-ordered set** is a poset where every subset has a least element.

Take Notice

The greatest element is not required.

Examples

- $\mathbb{N} = \{0, 1, \ldots\}$
- Disjoint union of copies of \mathbb{N} :

$$\mathbb{N}_1 \dot{\cup} \mathbb{N}_2 \dot{\cup} \mathbb{N}_3 \dot{\cup} \dots$$

where each $\mathbb{N}_i \simeq \mathbb{N}$ and $\mathbb{N}_1 < \mathbb{N}_2 < \mathbb{N}_3 \cdots$

Take Notice

Well-ordered sets are an important mathematical tool to prove termination of programs.

There are several practical ways of combining orders:

• **Product order**: Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \preceq (s',t')$$
 if $s \preceq_S s'$ and $t \preceq_T t'$

- No implicit weighting.
- No bias toward any component.
- In general, it is only a partial order, even if combining total orders.

There are several practical ways of combining orders:

• **Product order**: Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq (s',t')$$
 if $s \leq_S s'$ and $t \leq_T t'$

• Lexicographic order Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq_{\mathsf{lex}} (s',t')$$
 if $s \preceq_S s'$ or $(s=s')$ and $t \preceq_T t'$

- No implicit weighting.
- Gives total order when combining total orders.
- Can be sensibly extended to words.

There are several practical ways of combining orders:

• **Product order**: Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq (s',t')$$
 if $s \leq_S s'$ and $t \leq_T t'$

• Lexicographic order Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq_{\mathsf{lex}} (s',t')$$
 if $s \preceq_{S} s'$ or $(s=s')$ and $t \preceq_{T} t'$

Extension to words: $\lambda \leq_{lex} w$ for all words

- No implicit weighting.
- Gives total order when combining total orders.
- Can be sensibly extended to words.
- Not ideal for enumeration.

There are several practical ways of combining orders:

• **Product order**: Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq (s',t')$$
 if $s \leq_S s'$ and $t \leq_T t'$

• Lexicographic order Given posets (S, \leq_S) and (T, \leq_T) , define:

$$(s,t) \leq_{\mathsf{lex}} (s',t')$$
 if $s \preceq_S s'$ or $(s=s')$ and $t \preceq_T t'$

Extension to words: $\lambda \leq_{\text{lex}} w$ for all words

• Lenlex order: Lexicographic ordering, but order by length first.

- Only applicable for languages (subsets of Σ^*).
- Gives total order when Σ is totally ordered.
- Gives an enumeration of Σ^* .

Example

Example

RW: 11.2.5 Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the (a) Lexicographic order

(b) Lenlex order

RW: 11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same?

Example

Example

RW: 11.2.5 Let $\mathbb{B}=\{0,1\}$ with the usual order 0<1. List the elements 101,010,11,000,10,0010,1000 of \mathbb{B}^* in the

- (a) Lexicographic order 000, 0010, 010, 10, 10, 1000, 101, 11
- (b) Lenlex order 10, 11, 000, 010, 101, 0010, 1000

RW: 11.2.8 When are the lexicographic order and *lenlex* on Σ^* the same? Only when $|\Sigma|=1$.

Exercises

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram.
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Exercises

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex True order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram.
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Exercises

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex True order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram.
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Exercises

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex True order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram. True
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Exercises

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex True order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram. True
- (d) Every finite poset has a topological sorting. True
- (e) Every finite poset has a minimum element.
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

Exercises

RW: 11.6.6	True or false	?
------------	---------------	---

- (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.
- (b) If a set Σ is totally ordered, then the corresponding lenlex True order on Σ^* also must be totally ordered.
- (c) Every finite poset has a Hasse diagram. True
- (d) Every finite poset has a topological sorting.
- (e) Every finite poset has a minimum element. False
- (f) Every finite totally ordered set has a maximum element.
- (g) An infinite poset cannot have a maximum element.

True

Exercises RW: 11.6.6 True or false? (a) If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ* also must be totally ordered. (b) If a set Σ is totally ordered, then the corresponding lenlex True

order on Σ^* also must be totally ordered.

- (c) Every finite poset has a Hasse diagram. True
- (d) Every finite poset has a topological sorting. True
- (e) Every finite poset has a minimum element. False
- (f) Every finite totally ordered set has a maximum element. True
- (g) An infinite poset cannot have a maximum element.

(c)

(d)

(e)

(f)

(g)

Exerc	ises	
RW: 1	1.6.6 True or false?	
(a)	If a set Σ is totally ordered, then the corresponding lexicographic partial order on Σ^* also must be totally ordered.	True
(b)	If a set Σ is totally ordered, then the corresponding lenlex order on Σ^* also must be totally ordered.	True

Every finite totally ordered set has a maximum element.

An infinite poset cannot have a maximum element.

Every finite poset has a Hasse diagram.

Every finite poset has a topological sorting.

Every finite poset has a minimum element.

True

True

False

True

False