Metacommunities, assembly, α and γ

February 15, 2015

Species distribution across multiple localities

Questions

- ▶ How do mammal species traits effect co-occurrence patterns?
- What is the expected proportion of the mammal metacommunity pool present at a single locality?
- Have these relationships changed over the Cenozoic?

Analysis framework

System

- Record
 - North American Cenozoic
 - 2 My bins
- Units
 - mammal species occurrence
 - 2x2 Lat-Long equal area grid cells
- Covariates
 - taxa: diet, locomotor, body size
 - ▶ localities: ??
- Hierarchical effects
 - spatial relation
 - phylogeny

- Relations to community assembly
 - (e.g. requirements)
- Covariate hypotheses
 - carnivore greatest diet co-occur
 - ground dwelling > scansorial > arboreal
 - body size: positive
- Hierarchical effect interpretations
 - spatial effect: structured vs random
 - phylogeny: attract vs repel

Bipartite network

One-mode network

Modeling co-occurrence

Assumption and setup

 y_i : # co-occurring species with species i per # of localities (offset).

Any species is equally likely to co-occur with any other species.

Consequence, node degree follows Poisson distribution (Erdos-Renyi random graph).

Modeling phylogenetic effect

Definition

Assuming Brownian motion, effect drawn from multivariate normal distribution.

$$h \sim \mathcal{N}(0, \sigma_p^2 \mathbf{V_p})$$

- ▶ Covariance known up to constant, σ_p .
- $ightharpoonup V_p$ phylogenetic covariance matrix (shared branch lengths).

Follows Lynch 1991 Evolution, Housworth et al. 2004 Am. Nat.

Species co-occurrence model

 $y_i \sim \text{Poisson}(\lambda)$ $h_i \sim \text{MultiNormal}(0, \Sigma_p)$ $\Sigma_p = \sigma_p^2 V_{phy}$ $\sigma_p \sim \text{half-Cauchy}(2.5)$ $\beta \sim \text{Normal}(0, 10)$

Modeling co-occurrence

Improvement

Poisson assumption $\frac{Var[y]}{E[y]} = 1$.

Relax assumption by modeling overdispersion ϕ .

Species co-occurrence model redux

 $y_i \sim \text{NegBinom}(\mu, \phi)$ $\phi \sim \text{half-Cauchy}(2.5)$ $h_i \sim \text{MultiNormal}(0, \Sigma_p)$ $\Sigma_p = \sigma_p^2 V_{phy}$ $\sigma_p \sim \text{half-Cauchy}(2.5)$ $\beta \sim \text{Normal}(0, 10)$

Model adequacy

Forward prediction

Mass effect

Diet effect

Locomotor effect

Phylogeny

Overdispersion

Modeling locality diversity

Assumption and setup

 y_i : # species at locality i per # of species (offset).

 y_i drawn from Poisson (or Negative Binomial) distribution.

Localities are from non-uniform lattice (areal units).

Spatial effect

Definition

Autoregressive prior; spatial effect drawn from multivariate normal.

$$s \sim \mathcal{N}(0, \sigma_s^2 (D - pA)^{-1})$$

- σ_s is variance of spatial effect (size).
- ▶ *D* is diagonal matrix of neighbor count.
- A is adjacency matrix of localities.
- p is "strength" of spatial effect.

Assorted problems regarding propriety. See Banerjee et al. 2004 book.

Locality diversity model

 $y_i \sim \text{NegBinom}(\mu, \phi)$ $\phi \sim \text{half-Cauchy}(2.5)$ $\alpha \sim \text{Normal}(0, 10)$ $\eta_i \quad \text{MultiNormal}(\vec{0}, \Sigma)$ $\Sigma = \sigma^2 (D - pA)^{-1}$ $\sigma \sim \text{half-Cauchy}(2.5)$