PALOC

QUERY CONTROL FORM			RTIS U	SE ONLY
Application No. 09943199	Prepared by	M. RUSTUS	Tracking Number	05995539
Examiner-GAU NELMS-2818	Date	09-18-04	Week Date	08-16-04
	No. of queries	1	NEW	

JACKET						
a. Serial No.	f. Foreign Priority	k. Print Claim(s)	p) PTO-1449			
b. Applicant(s)	g. Disclaimer	I. Print Fig.	q. PTOL-85b			
c. Continuing Data	h. Microfiche Appendix	m. Searched Column	r. Abstract			
d. PCT	i. Title	n. PTO-270/328	s. Sheets/Figs			
e. Domestic Priority	j. Claims Allowed	o. PTO-892	t. Other			

			
SPECIFICATION	MESSAGE		
a. Page Missing			
b. Text Continuity	PID-1449: Please either		
c. Holes through Data	initial or line through		
d. Other Missing Text	initial or line through the eitations. Copies promited for reference.	2	
e. Illegible Text	for reference.		
f. Duplicate Text	7		
g. Brief Description			_
h. Sequence Listing			
i. Appendix			
j. Amendments			
k. Other			
CLAIMS			
a. Claim(s) Missing			
b. Improper Dependency			
c. Duplicate Numbers		Ther	ik you,
d. Incorrect Numbering		initials	HIR!
e. Index Disagrees	RESPONSE		
f. Punctuation		-	
g. Amendments			
h. Bracketing			
i. Missing Text			
j. Duplicate Text			
k. Other			
		initials	

Complete If Known

August 29, 2001

Kristy A. Campbell

09/943,199

2818

Approved for use through 10/31/2002.OMB 0651-0031

U. S. Petent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

U.S. Petent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

The Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Filing Date

Art Unit

Application Number

First Named Inventor

bstitute for form 1449A/PTO

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Examiner Name D. Vu 1 of 5 Attorney Docket Number M4065.0704/P704

			U.S. PA	TENT DOCUMENTS	· · · · · · · · · · · · · · · · · · ·
Examiner Initiats*	Cite No.1	Document Number Number-Kind Code ² (Il known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines, Where Relevant Passages or Relevant Figures Appear
	1101	, , , , , , , , , , , , , , , , , , , ,			rigures Appear
		10000/000000	1100000		
	AA	2002/0000666	1/3/2002	Kozicki et al.	
	AB	2002/0072188	6/13/2002	Gilton	
	AC	2002/0106849	08/08/2002	Moore	
	AD	2002/0123169	09/05/2002	Moore et al.	
	AE	2002/0123170	09/05/2002	Moore et al.	
	AF	2002/0123248		Moore et al.	
	AG	2002/0127886	09/12/2002	Moore et al.	
	AH	2002/0132417	09/09/2002	Li	
	Al	2002/0160551	10//31/2002		
	AJ	2002/0163828	11/07/2002	Krieger et al.	
	AK	2002/0168820	11/2002	Kozicki	
-	AL	2002/0168852	11/2002	Kozicki	
	AM	2002/0190289	12/19/2002	Harshfield et al.	
	AN	2002/0190350	12/19/2002	Kozicki et al.	
	AO	2003/0001229	01/02/2003	Moore et al.	
	AP	2003/0027416	02/06/2003	Moore	
	AQ	2003/0032254	02/13/2003	Gilton	
	AR	2003/0035314	02/20/2003	Kozicki	
	AS	2003/0035315	02/20/2003	Kozicki	
	AT	2003/0038301	02/27/2003	Moore	
	AU	2003/0043631	03/06/2003	Gilton et al.	
	AV	2003/0045049	3/2003	Campbell et al.	
	AW	2003/0045054	3/2003	Campbell et al.	<u> </u>
	AX	2003/0047765	03/13/2003	Campbell	
	AY	2003/0047772	03/13/2003	Li	
	AZ	2003/0047773		LI	
	AA1	2003/0048519	03/13/2003	Kozicki	
	AB1	2003/0048744	3/2003	Ovshinsky et al.	
	AC1	2003/0049912	03/13/2003	Campbell et al.	
	AD1	2003/0068861	4/2003	Li et al.	
	AE1	2003/0068862	4/2003	Li et al.	
	AF1	2003/0095426	05/22/2003	Hush et al.	
	AG1	2003/0098497	5/2003	Moore et al.	
	AH1	2003/0107105	6/2003	Kozicki	
	Al1	2003/0117831	06/26/2003	Hush	
	AJ1	2003/0128612	07/10/2003	Moore et al.	
	AK1	2003/0137869		Kozicki	
	AL1	2003/0143782	07/31/2003	Gilton et al.	
	AM1	2003/0155589	08/21/2003	Campbell et al.	
	AN1	2003/0155608	08/21/2003	Campbell et al.	
	AO1	2003/0156447		Kozicki	
	AP1	2003/0156463	08/21/2003	Casper et al.	
	AQ1	2003/0209728	11/13/2003	Kozicki et al	1

STATEMENT BY APPLICANT

SIPE 40		the Paperwork Raduction Ac	t of 199:	5, no persons are required to re:	Appr U. S. Patent and Tradem spond to a collection of inform	PTO/S8/08A (10-01) roved for use through 10/31/2002.OMB 0851-0031 ark Office: U.S. DEPARTMENT OF COMMERCE ration unless it contains a valid OMB control number.
3 9	Ö	stitute for form 1449A/PTC)			Complete if Known
	<i>≥</i> /				Application Number	09/943,199
WAY & THIOS		VFORMATION			Filing Date	August 29, 2001
	STATEMENT BY APPLICANT			APPLICANT	First Named Inventor	Kristy A. Campbell
	(use as meny sheets as necessary)				Art Unit	2818
	,				Examiner Name	D. Vu
	Sheet	2	of	5	Attorney Docket Number	M4065.0704/P704

AS1 2003/02196971 11/13/2003 Kozicki et al					
AS1 2003/0210564 11/13/2003 Coshinsky et al. AT1 2003/0212725 11/2003 Ovshinsky et al. AU1 2003/0212725 11/2003 Ovshinsky et al. AV1 2004/0035401 2/2004 Ramachandran et al. AW1 RE 37,259E 7/2001 Ovshinsky AX1 3,271,591 9f1966 Ovshinsky AX1 3,271,591 9f1966 Ovshinsky AX1 3,961,317 6f1976 Klose et al. AZ1 3,963,317 6f1976 Wacks et al. AZ2 3,983,542 11/1976 Ovshinsky AZ2 4,777,474 12/1979 Ovshinsky AZ2 4,177,474 12/1979 Ovshinsky AZ2 4,267,281 5f1981 Hallman et al. AZ2 4,316,346 11/1982 Masters, et al. AZ2 4,316,346 11/1982 Masters, et al. AZ2 4,376,368 AT1982 Masters, et al. AZ2 4,508,298 B1986 Keem et al. AZ2 4,604,399 Sf1987 Ovshinsky et al. AZ2 4,664,339 Sf1987 Ovshinsky et al. AZ2 4,664,339 Sf1987 Ovshinsky et al. AZ2 4,670,763 6f1987 Ovshinsky et al. AZ2 4,670,6783 6f1987 Ovshinsky et al. AZ2 4,671,618 Ob6/99/1987 Wu et al. AZ2 4,671,618 Ob6/99/1987 Ovshinsky et al. AZ2 4,688,758 9f1987 Ovshinsky et al. AZ2 4,674,678 Ovshinsky et al. AZ2 4,674,678 Ovshinsky et al. AZ2 4,673,397 6f1987 Ovshinsky et al. AZ2 4,673,397 6f1987 Ovshinsky et al. AZ2 4,673,679 7f1987 Ovshinsky et al. AZ2 4,678,679 7f1987 Ovshinsky et al. AZ2 4,737,379 4f1988 Hudgens et al. AZ2 4,738,346 3f1988 Bareriee et al. AZ2 4,738,346 3f1988 Bareriee et al. AZ2 4,738,346 3f1988 Bareriee et al. AZ2 4,738,397 6f1988 Ovshinsky et al. AZ2 4,738,397 6f1988 Ovshinsky et al. AZ2 4,738,393 11/1988 Ovshinsky et al. AZ2 4,738,393 11/1988 Ovshinsky et al. AZ2 4,738,393 11/1998 Ovshinsky et al. AZ2 4,738,393 11/1998 Ovshinsky et al. AZ2 4,809,334 11/1998 Ovshinsky et al. AZ2 4,809,334 11/1998 Ovshinsky et al. AZ2 4,809,334 11/1998 Ovshinsky et al. AZ3 4,738,394 11/1998 Ovshinsky et al. AZ3 4,738,394 11/1998 Ovshinsky et al. AZ3 5,345,747 3f1999 Ovshinsky et al. AZ3 5,355,219 3f1994 Ovshins	AR1	2003/0209971	11/13/2003	Kozicki et al	
AT1 2003/0212725 11/2003 Ovshinsky et al. AU1 2003/0212725 11/2003 Ovshinsky et al. AV1 2004/0035401 2/2004 Ramachandran et al. AV1 RS 37,259E 7/2001 Ovshinsky AX1 (RS 3,271,591 91/986 Ovshinsky AX1 (RS 3,983,342 11/1976 Ovshinsky AX2 (RS 3,983,742 11/1976 Ovshinsky AX2 (RS 3,983,742 11/1976 Ovshinsky AX2 (RS 4,177,474 12/1979 Ovshinsky AX2 (RS 4,177,474 12/1979 Ovshinsky AX2 (RS 4,27,261 5/1981 Hallman et al. AX2 (RS 4,316,946 11/1982 Masters, et al. AX2 (RS 4,597,162 7/1986 Johnson et al. AX2 (RS 4,597,162 7/1986 Johnson et al. AX2 (RS 4,682,88 8/1986 Keem et al. AX2 (RS 4,683,985 11/1987 Ovshinsky et al. AX2 (RS 4,684,266 2/1987 Ovshinsky et al. AX2 (RS 8,988 5/1987 Ovshinsky et al. AX2 (RS 8,988 9/1987 Ovshinsky et al. AX2 (RS 8,978 9/1987 Ovshinsky et al. AX2 (RS 8,988 9/1987 Ovshinsky et al. AX2 (RS 8,948 11/1988 Ovshinsky et al. AX2 (RS 8,948 11/1988 Ovshinsky et al. AX2 (RS 8,948 11/1988 Ovshinsky et al. AX2 (RS 8,948 11/1989 Ovshinsky et al. AX3 (RS 8,948 11/1989 Ovshinsky et al. AX4 (RS 8,948 11/1989 Ovshinsky et al. AX3 (RS 8,948 11/1989 Ovshinsky et al. AX4 (RS 8,948 11/1989 Ovshinsky et al. AX5 (RS 8,948 11/1989 Ovshinsky et al. AX5 (RS 8,948 11/1989 Ovshinsky et al. AX3 (RS 8,948 11/1989 Ovshinsky		<u> </u>		 	
AU1 2003/0212725 11/2003 Ovshinsky et al.					
AV1 2004/0035401 2/2004 Ramachandran et al.					
AW1 RE 37,259E 7/2001 Ovehinsky AX1 3,271,591 9/986 Ovshinsky AY1 3,961,314 6/1976 Klose et al. AZ1 3,986,317 6/1976 Wacks et al. AZ2 3,983,542 11/1976 Ovshinsky AB2 3,983,542 11/1976 Ovshinsky AB2 3,983,720 10/1976 Ovshinsky AC2 4,177,474 12/1979 Ovshinsky AC2 4,177,474 12/1979 Ovshinsky AC2 4,516,946 1/1982 Masters, et al. AE2 4,316,946 1/1982 Masters, et al. AE2 4,316,946 1/1982 Masters, et al. AE2 4,597,162 7/1986 Johnson et al. Keem et al. AE2 4,597,162 7/1986 Ovshinsky et al. AE2 4,604,939 5/1987 Ovshinsky et al. AI2 4,646,266 2/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,671,618 06/09/1987 Wu et al. AI2 4,671,618 06/09/1987 Wu et al. AI2 4,671,618 06/09/1987 Ovshinsky et al. AI2 4,671,689 9/1987 Ovshinsky et al. AI2 4,671,689 9/1987 Ovshinsky et al. AI2 4,673,3957 0/19887 Ovshinsky et al. AI2 4,671,689 9/1987 Ovshinsky et al. AI2 4,674,689,679 7/1987 Ovshinsky et al. AI2 4,674,689,679 7/1987 Ovshinsky et al. AI2 4,674,689,234 10/1987 Ovshinsky et al. AI2 4,710,899 12/1967 Vovshinsky et al. AI2 4,713,379 4/1988 Banerjee et al. AI2 4,713,379 4/1988 Ovshinsky et al. AI2 4,769,338 9/1988 Ovshinsky et al. AI2 4,769,338 9/1988 Ovshinsky et al. AI2 4,788,594 11/1988 Ovshinsky et al. AI2 4,788,594 11/1989 Ovshinsky et al. AI2 4,800,526 01/24/1989 Pryor et al. AI3 4,845,533 7/1989 Pryor et al. AI3 4,845,533 7/1989 Pryor et al. AI3 5,286,716 3/1989 Ovshinsky et al. AI3 5,287,759 1/1989 Pryor et al. AI3 5,287,759 1/1989 Ovshinsky et al. AI3 5,287,759 1/1989 Ovshinsky et al. AI3 5,287,759 1/1989 Ovshinsky et al. AI3 5,280,716 3/1994 Ovshinsky et al.					
AX1 3,271,591 9/1966 Ovshinsky					
AY1 3,961,314 6/1976 Klose et al.					
A21 3,986,317 6/1976 Wacks et al. AA2 3,983,542 11/1976 Ovshinsky AB2 3,988,720 10/1976 Ovshinsky AC2 4,177,474 12/1979 Ovshinsky AC2 4,177,474 12/1979 Ovshinsky AD2 4,267,261 5/1981 Hallman et al. AE2 4,316,946 11/1982 Masters, et al. AE2 4,597,162 7/1986 Johnson et al. AE2 4,597,162 7/1986 Johnson et al. AG2 4,608,298 8/1986 Keem et al. AH2 4,637,895 11/1987 Ovshinsky et al. AI2 4,664,266 2/1987 Ovshinsky et al. AI2 4,664,399 5/1987 Ovshinsky et al. AI2 4,664,399 5/1987 Ovshinsky et al. AI2 4,664,1618 Os/09/1987 Wu et al. AI2 4,670,763 8/1987 Ovshinsky et al. AI2 4,673,957 6/1987 Ovshinsky et al. AI2 4,673,957 Ovshinsky et al. AI2 4,678,679 7/1987 Ovshinsky et al. AI2 4,678,679 7/1987 Ovshinsky et al. AI2 4,698,234 10/1987 Ovshinsky et al. AI2 4,698,758 9/1987 Ovshinsky et al. AI2 4,708,899 12/1987 Voung et al. AI2 4,708,399 12/1987 Voung et al. AI2 4,766,471 8/1988 Dvshinsky et al. AI2 4,776,425 10/1988 Ovshinsky et al. AI2 4,776,425 10/1988 Ovshinsky et al. AI2 4,778,594 11/1988 Ovshinsky et al. AI2 4,788,594 11/1988 Ovshinsky et al. AI2 4,788,594 11/1988 Ovshinsky et al. AI3 4,845,533 7/1989 Pryor et al. AI3 4,845,533 7/1989 Pryor et al. AI3 4,845,533 7/1989 Pryor et al. AI3 5,286,716 3/1989 Ovshinsky et al. AI3 5,286,716 3/1999 Ovshinsky et al. AI3 5,286,716 3/1994 Ovshinsky et al. AI3 5,286,716 3/1994 Ovshinsky et al. AI3 5,351,1772 5/24/1994 Ovshinsky et al. AI3 5,351,1772 5/24/1994 Ovshinsky et al.					
AA2 3,983,542					-
AB2 3,988,720					
AC2					
AD2					
AE2 4,316,946 1/1982 Masters, et al. AF2 4,597,162 7/1986 Johnson et al. AG2 4,608,298 8/1986 Keem et al. AH2 4,637,895 1/1987 Ovshinsky et al. AI2 4,646,266 2/1987 Ovshinsky et al. AI2 4,646,266 2/1987 Ovshinsky et al. AI2 4,664,393 5/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,670,763 8/1987 Ovshinsky et al. AI2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,678,679 7/1987 Ovshinsky et al. AQ2 4,698,758 9/1987 Ovshinsky et al. AQ2 4,698,758 9/1987 Ovshinsky et al. AQ2 4,598,234 10/1987 Ovshinsky et al. AQ2 4,710,899 12/1987 Young et al. AR2 4,710,899 12/1987 Young et al. AR2 4,773,379 4/1988 Hudgens et al. AI2 4,764,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,788,594 11/1988 Ovshinsky et al. AV2 4,788,594 11/1988 Ovshinsky et al. AV2 4,800,526 01/24/1989 Jewis AY2 4,800,526 01/24/1989 Pryor et al. AX3 4,818,717 4/1989 Johnson et al. AX3 4,818,717 4/1989 Pryor et al. AX3 4,843,443 6/1989 Ovshinsky et al. AX3 4,853,785 B/1989 Ovshinsky et al. AX4 4,85,533 7/1989 Pryor et al. AX5 4,891,330 1/1990 Ovshinsky et al. AX6 4,891,330 1/1990 Ovshinsky et al. AX7 5,225,595 1/22/1999 Ovshinsky et al. AX8 5,345,272,359 1/22/1/1990 Ovshinsky et al. AX3 5,314,772 5/24/1994 Ovshinsky et al. AX4 5,335,219 8/1994 Ovshinsky et al. AX3 5,341,328 8/1994 Ovshinsky et al.					· · · · · · · · · · · · · · · · · · ·
AF2 4,597,162 7/1986 Johnson et al. AG2 4,608,296 8/1986 Keem et al. AH2 4,608,296 2/1987 Ovshinsky et al. AI2 4,646,266 2/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,664,939 5/1987 Ovshinsky et al. AI2 4,670,763 8/1987 Ovshinsky et al. AI2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,678,679 7/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky et al. AO2 4,698,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Voung et al. AR2 4,710,899 12/1987 Young et al. AI2 4,737,379 4/1988 Banerjee et al. AI2 4,766,471 B/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,788,594 11/1988 Guha et al. AX2 4,788,594 11/1988 Lewis AX2 4,809,044 2/1989 Pryor et al. AX3 4,818,717 4/1989 Lewis AZ4 4,809,044 2/1989 Pryor et al. AR3 4,843,443 6/1989 Ovshinsky et al. AR3 4,843,443 6/1989 Ovshinsky et al. AR3 4,845,533 7/1999 Pryor et al. AR3 4,891,330 1/1990 Ovshinsky et al. AR3 5,5128,099 7/1992 Ovshinsky et al. AR3 5,166,758 11/1992 Ovshinsky et al. AR3 5,314,772 5/24/1994 Ovshinsky et al. AX3 5,335,219 8/1994 Ovshinsky et al. AX4 5,341,328 8/1994 Ovshinsky et al.				· · · · · · · · · · · · · · · · · · ·	
AG2					
AH2 4,637,895 1/1987 Ovshinsky et al. AI2 4,646,266 2/1987 Ovshinsky et al. AJ2 4,664,939 5/1987 Ovshinsky AK2 4,668,968 5/1987 Ovshinsky et al. AL2 4,670,763 6/1987 Ovshinsky et al. AL2 4,670,7618 06/09/1987 Wu et al. AN2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,673,957 7/1987 Ovshinsky AP2 4,696,758 9/1987 Ovshinsky et al. AQ2 4,698,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Young et al. AR2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AI2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,768,594 11/1988 Ovshinsky et al. AX2 4,786,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Pryor et al. AY2 4,809,044 2/1989 Pryor et al. AX3 4,818,717 4/1989 Johnson et al. AX3 4,843,443 6/1989 Ovshinsky et al. AX3 4,843,443 6/1989 Ovshinsky et al. AX3 4,843,433 7/1989 Pryor et al. AX3 4,843,785 8/1989 Ovshinsky et al. AX3 4,813,717 4/1989 Pryor et al. AX3 4,813,735 8/1989 Ovshinsky et al. AX3 4,813,735 8/1989 Ovshinsky et al. AX3 4,813,735 8/1989 Ovshinsky et al. AX3 5,189,661 10/1992 Ovshinsky et al. AX3 5,147,72 5/24/1994 Kozlcki AX3 5,335,219 8/1994 Ovshinsky et al.				· · · · · · · · · · · · · · · · · · ·	
Al2 4,662,66 2/1987 Ovshinsky et al. AJ2 4,664,939 5/1987 Ovshinsky et al. AJ2 4,668,968 5/1987 Ovshinsky et al. AL2 4,670,763 6/1987 Ovshinsky et al. AL2 4,670,763 6/1987 Ovshinsky et al. AM2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,673,957 6/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky et al. AO2 4,698,758 9/1987 Ovshinsky et al. AO2 4,698,758 10/1987 Ovshinsky et al. AO2 4,698,234 10/1987 Ovshinsky et al. AC2 4,710,899 12/1987 Young et al. AS2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,775,425 10/1988 Guha et al. AX2 4,778,594 11/1988 Ovshinsky et al. AX2 4,788,594 11/1988 Ovshinsky et al. AX2 4,809,044 2/1989 Pryor et al. AX3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AD3 4,853,785 8/1989 Ovshinsky et al. AD3 5,128,099 7/1992 Strand et al. AD4 5,566,758 11/1992 Ovshinsky et al. AD3 5,127,359 12/21/1993 Nagasubramanian et al. AD4 5,341,328 8/1994 Ovshinsky et al. AD4 5,341,328 8/1994 Ovshinsky et al.					-
AJ2 4,664,939 5/1987 Ovshinsky AI2 4,668,968 5/1987 Ovshinsky et al. AI2 4,670,763 6/1987 Ovshinsky et al. AM2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,678,679 7/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky et al. AO2 4,698,758 9/1987 Ovshinsky et al. AO2 4,698,234 10/1987 Ovshinsky et al. AO2 4,698,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Young et al. AS2 4,726,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Gvshinsky et al. AV2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AV2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AA3 4,818,717 4/1989 Ovshinsky et al. AA3 4,843,443 6/1989 Ovshinsky et al. AA3 4,845,533 7/1989 Pryor et al. AA3 4,845,533 7/1989 Pryor et al. AA3 4,818,717 4/1989 Ovshinsky et al. AA3 4,818,717 4/1989 Ovshinsky et al. AA3 4,818,717 4/1989 Ovshinsky et al. AA3 5,128,099 7/1992 Strand et al. AA5 1,128,099 7/1992 Strand et al. AA6 3,5128,099 7/1992 Ovshinsky et al. AA7 1,1990 Ovshinsky et al. AA8 5,147,72 5/24/1994 Ovshinsky et al. AA9 5,341,328 8/1994 Ovshinsky et al.					
AK2 4,668,968 5/1987 Ovshinsky et al. AL2 4,670,763 6/1987 Ovshinsky et al. AM2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AN2 4,673,957 6/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky et al. AO2 4,696,758 9/1987 Ovshinsky et al. AC2 4,696,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Voung et al. AR2 4,710,899 12/1987 Woung et al. AS2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Guha et al. AV2 4,788,594 11/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AX2 4,800,526 01/24/1989 Lewis AZ2 4,800,526 01/24/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,891,330 1/1990 Guha et al. AC3 4,891,330 1/1990 Guha et al. AC3 5,128,099 7/1992 Strand et al. AC3 5,526,716 3/1994 Ovshinsky et al. AC3 5,341,328 B/1994 Ovshinsky et al.					
ALZ 4,670,763					
AM2 4,671,618 06/09/1987 Wu et al. AN2 4,673,957 6/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky et al. AP2 4,698,758 9/1987 Ovshinsky et al. AQ2 4,698,234 10/1987 Ovshinsky et al. AQ2 4,698,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Young et al. AS2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AA3 4,848,717 4/1989 Johnson et al. AB3 4,843,443 6/1999 Ovshinsky et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AE3 4,891,330 1/1990 Guha et al. AE3 5,159,661 10/1992 Ovshinsky et al. AB3 5,159,661 10/1992 Ovshinsky et al. AB3 5,272,359 12/21/1993 Nagasubramanian et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AI3 5,335,219 8/1994 Ovshinsky et al. AK3 5,334,722 8/1994 Ovshinsky et al. AK3 5,341,328 8/1994 Ovshinsky et al.					
AN2 4,673,957 6/1987 Ovshinsky et al. AO2 4,678,679 7/1987 Ovshinsky AP2 4,698,758 9/1987 Ovshinsky et al. AO2 4,698,234 10/1987 Ovshinsky et al. AR2 4,710,899 12/1987 Young et al. AS2 4,728,406 3/1988 Banerjee et al. AS2 4,728,406 3/1988 Hudgens et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AX2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Ovshinsky et al. AA3 4,818,717 4/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,845,533 7/1989 Ovshinsky et al. AC3 4,891,330 1/1990 Guha et al. AC3 4,891,330 1/1990 Guha et al. AC3 5,128,099 7/1992 Strand et al. AC3 5,128,099 7/1992 Strand et al. AC3 5,128,099 7/1992 Ovshinsky et al. AC3 5,159,661 10/1992 Ovshinsky et al. AC3 5,159,661 10/1992 Ovshinsky et al. AC3 5,159,661 10/1992 Ovshinsky et al. AC3 5,314,772 5/24/1994 Vozkinsky et al. AC3 5,335,219 8/1994 Ovshinsky et al. AC3 5,341,328 8/1994 Ovshinsky et al.					
AO2					
AP2 4,696,758					
AQ2					
AR2 4,710,899 12/1987 Young et al. AS2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AW2 4,775,425 10/1988 Guha et al. AX2 4,88,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,845,533 7/1989 Ovshinsky et al. AC3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,272,359 12/21/1993 Nagasubramanian et al. AK3 5,314,772 5/24/1994 Ovshinsky et al. AK3 5,341,328 8/1994 Ovshinsky et al.					
AS2 4,728,406 3/1988 Banerjee et al. AT2 4,737,379 4/1988 Hudgens et al. AU2 4,766,471 8/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AW2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,845,533 7/1989 Pryor et al. AC3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AH3 5,272,359 12/21/1993 Nagasubramanian et al. AK3 5,314,772 5/24/1994 Kozicki AK3 5,335,219 8/1994 Ovshinsky et al.					
AT2 4,737,379					
AU2 4,766,471 B/1988 Ovshinsky et al. AV2 4,769,338 9/1988 Ovshinsky et al. AW2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 B/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AF3 5,159,661 10/1992 Ovshinsky et al. AB3 5,272,359 11/21/1993 Nagasubramanian et al. AI3 5,272,359 12/21/1994 Kozicki AL3 5,335,219 B/1994 Ovshinsky et al. AM3 5,341,328 B/1994 Ovshinsky et al.					
AV2 4,769,338 9/1988 Ovshinsky et al. AW2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AB3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AB3 5,166,758 11/1992 Ovshinsky et al. AB3 5,272,359 12/21/1993 Nagasubramanian et al. AX3 5,314,772 5/24/1994 Kozicki AX3 5,341,328 8/1994 Ovshinsky et al.				<u> </u>	
AW2 4,775,425 10/1988 Guha et al. AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AH3 5,272,359 12/21/1993 Nagasubramanian et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.		· · · · · · · · · · · · · · · · · · ·			
AX2 4,788,594 11/1988 Ovshinsky et al. AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AB3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AH3 5,272,359 12/21/1993 Nagasubramanian et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.					·
AY2 4,800,526 01/24/1989 Lewis AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AJ3 5,272,359 12/21/1993 Nagasubramanian et al. AL3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.	AW2	4,775,425	10/1988		
AZ2 4,809,044 2/1989 Pryor et al. AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AJ3 5,272,359 12/21/1993 Nagasubramanian et al. AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.	AX2	4,788,594	11/1988	Ovshinsky et al.	
AA3 4,818,717 4/1989 Johnson et al. AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AI3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			01/24/1989		
AB3 4,843,443 6/1989 Ovshinsky et al. AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AI3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.					
AC3 4,845,533 7/1989 Pryor et al. AD3 4,853,785 8/1989 Ovshinsky et al. AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.					
AD3 4,853,785	AB3	4,843,443		Ovshinsky et al.	
AE3 4,891,330 1/1990 Guha et al. AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AL3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.					
AF3 5,128,099 7/1992 Strand et al. AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.	AD3	4,853,785	8/1989	Ovshinsky et al.	
AG3 5,159,661 10/1992 Ovshinsky et al. AH3 5,166,758 11/1992 Ovshinsky et al. AI3 5,272,359 12/21/1993 Nagasubramanian et al. AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			1/1990	Guha et al.	
AH3 5,166,758 11/1992 Ovshinsky et al. Al3 5,272,359 12/21/1993 Nagasubramanian et al. AL3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			7/1992		
AH3 5,166,758 11/1992 Ovshinsky et al. Al3 5,272,359 12/21/1993 Nagasubramanian et al. AL3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.				Ovshinsky et al.	
AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.	AH3	5,166,758	11/1992	Ovshinsky et al.	
AJ3 5,296,716 3/1994 Ovshinsky et al. AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			12/21/1993		
AK3 5,314,772 5/24/1994 Kozicki AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			3/1994	Ovshinsky et al.	
AL3 5,335,219 8/1994 Ovshinsky et al. AM3 5,341,328 8/1994 Ovshinsky et al.			5/24/1994	Kozicki	
AM3 5,341,328 8/1994 Ovshinsky et al.			8/1994		
			8/1994	Ovshinsky et al.	
[[ANJ [0,309,200 10/1994 OVSRINSKY	AN3	5,359,205	10/1994	Ovshinsky	

PTO/SB/08A (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to re

ubstitute for form 1449A/PTO

Sheet

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

of

5

Complete if Known					
Application Number	09/943,199				
Filing Date	August 29, 2001				
First Named inventor	Kristy A. Campbell				
Art Unit	2818				
Examiner Name	D. Vu				
Altomay Docket Number	M4065 0704/P704				

AO3 5,406,509 4/1995 Ovshinsky et al.	Sileet		<u> </u>	loi l			Attorney Docket Number	M4000.07	04/12/04
AP3 5,414,271 5/1995 Ovshinsky et al.	Γ	AO3	5.406.509		4/1995	Ovst	insky et al.		
AG3 5,534,711 7/1996 Ovshinsky et al.								=	
AR3 5,534,712 7/1996 Ovshinsky et al.									
AS3 5,556,947 7/1996 Klersy et al. AT3 5,543,737 8/1996 Ovshinsky AU3 5,591,501 1/1997 Ovshinsky et al. AV3 5,596,522 1/1/1997 Ovshinsky et al. AV3 5,686,522 1/1/1997 Ovshinsky et al. AV3 5,684,054 1/2/1997 Ovshinsky et al. AX3 5,684,054 1/2/1998 Ovshinsky et al. AX3 5,684,054 1/2/1998 Ovshinsky et al. AX3 5,614,527 9/29/1998 Wolstenholme et al AX4 5,816,749 1/0/6/1998 Czubatyj et al. AX4 5,816,749 1/0/6/1998 Czubatyj et al. AX4 5,816,842 1/2/22/1998 Harshfield AX4 5,815,882 1/2/22/1998 Harshfield AX4 5,815,882 1/2/22/1998 Harshfield AX4 5,833,385 8/1999 Ovshinsky et al. AX4 5,933,385 8/1999 Ovshinsky et al. AX4 6,011,757 1/2000 Ovshinsky AX4 6,031,267 2/29/2000 Harshfield AX4 6,031,267 1/2/000 Ovshinsky AX4 6,037,674 7/2000 Ovshinsky et al. AX4 6,039,544 1/2002 Chlang et al. AX4 6,339,544 1/2002 Chlang et al. AX4 6,437,383 8/2002 Xu AX4 6,437,383 8/2002 Xu AX4 6,480,483 1/2/2002 Harshfield AX4 6,480,837 8/2/2002 Wicker AX4 6,480,383 8/2/2002 Xu AX4 6,480,383 1/2/2002 Harshfield AX4 6,480,383 8/2/2002 Xu AX4 6,480,383 8/2/2002 Xu AX4 6,480,383 1/2/2002 Harshfield AX4 6,480,383 1/2/2002 Harshfield AX4 6,487,106 1/1/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2									
AT3 5,543,737 8/1996 Ovshinsky						-			
AU3 5,591,501 1/1997 Ovshinsky et al.									
AW3 5,586,522 1/1997 Ovshinsky et al.							·····		
AW3 5,687,112 11/1997 Ovshinsky						•			
AX3 5,694,054 12/1997 Ovshinsky et al.									
AY3 5,714,768 2/1998 Ovshinsky et al.						-			
AZ3 5,814,527 9/29/1998 Wolstenholme et al									
AAA					9/29/1998				
AB4 5,825,046 10/1998 Czubatyj et al. AC4 5,851,882 12/22/1998 Harshfield AD4 5,869,843 2/9/1999 Ovshinsky et al. AE4 5,912,839 6/1999 Ovshinsky et al. AF4 5,933,365 8/1999 Klersy et al. AG4 6,011,757 11/2000 Ovshinsky AH4 6,031,287 2/29/2000 Jacobson et al. AJ4 6,087,674 77/2000 Ovshinsky et al. AJ4 6,339,544 11/2002 Chlang et al. AJ4 6,404,665 6/2002 Lowery et al. AJ4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 8,473,332 10/2002 Xu et al. AR4 8,473,332 10/2002 Xu et al. AR4 8,481,113 11/2002 Park et al. AX4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 8,507,061 11/26/2002 Kozicki AV4 8,501,111 12/2002 Lowery et al. AV4 8,501,111 12/2002 Lowery AV4 8,501,111 12/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AX5 6,514,805 2/2003 Xu et al. AX6 6,514,805 2/2003 Lowery et al. AX7 6,516,867 1/2003 Dennison AC5 6,534,781 3/2003 Chlang AE5 6,555,860 4/2003 Lowery et al. AI5 6,566,700 5/2003 Lowery et al. AI5 6,567,293 5/2003 Lowery et al.									
AC4 5,851,882 12/22/1998 Harshfield		\rightarrow							_
AD4 5,869,843 279/1999 Harshfield									
AE4 5,912,839 6/1999 Ovshinsky et al.									
AF4 5,933,365 8/1999 Klersy et al.	'				6/1999	Ovst	ninsky et al.		
AG4 6,011,757 1/2000 Ovshinsky AH4 6,031,287 2/29/2000 Harshfield AI4 6,072,716 O6/06/2000 Jacobson et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AJ4 6,087,674 7/2000 Ovshinsky et al. AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AV4 6,511,862 1/2003 Lowery et al. AV4 6,511,867 1/2003 Lowery et al. AV4 6,511,867 1/2003 Lowery et al. AV4 6,513,373 3/2003 Sill et al. AV4 6,513,373 3/2003 Chiang AP5 6,545,287 4/2003 Lowery et al. AP5 6,545,907 4/2003 Lowery et al. AP5 6,565,283 5/2003 Lowery et al. AP5 6,567,293 5/2003 Lowery et al. AP5									
Al4 6,072,716 06/06/2000 Jacobson et al.					1/2000				
Al4 6,072,716 06/06/2000 Jacobson et al.		AH4	6,031,287		2/29/2000	Hars	hfield		
AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lowery et al. AZ4 6,514,805 2/2003 Xu et al. AZ5 6,534,781 3/2003 Dennison AD5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AJ5 6,567,293 5/2003 Xu et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al. AJ5 6,569,7						Jaco	bson et al.		
AK4 6,141,241 10/2000 Ovshinsky et al. AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lowery et al. AZ4 6,514,805 2/2003 Xu et al. AZ5 6,534,781 3/2003 Dennison AD5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AJ5 6,567,293 5/2003 Xu et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al. AJ5 6,569,7		AJ4	6,087,674		7/2000	Ovst	insky et al.		
AL4 6,339,544 1/2002 Chiang et al. AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,333 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 11/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AX4 6,511,867 1/2003 Lai AX5 6,514,805 2/2003 Xu et al. AX6 6,514,805 2/2003 Xu et al. AX7 AX8 6,514,805 2/2003 Chiang AX9 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AX9 6,555,860 4/2003 Lowery et al. AX9 6,558,860 4/2003 Lowery et al. AX9 6,569,705 5/2003 Xu et al. AX9 6,569,705 5/2003 Lowery et al.					10/2000	+			
AM4 6,404,665 6/2002 Lowery et al. AN4 6,429,064 8/2002 Wicker AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AR4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 11/2003 Lowery AW4 6,507,061 11/2003 Lowery et al. AX4 6,511,862 1/2003 Lowery et al. AX4 6,511,867 1/2003 Lowery et al. AX4 6,512,241 1/2003 Lai AA5 6,514,805 2/2003 Xu et al. AA5 6,534,781 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AF5 6,553,164 5/2003 Lowery et al. AA5 6,567,000 S/2003 Lowery et al. AA5 6,567,293 5/2003 Lowery et al.				-	1/2002	Chia	ng et al.		
AO4 6,437,383 8/2002 Xu AP4 6,440,837 8/27/2002 Harshfield AQ4 6,462,984 10/2002 Xu et al. AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AX4 6,511,867 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lowery et al. AZ5 6,514,805 2/2003 Xu et al. AZ6 6,531,373 3/2003 Gill et al. AC7 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AZ6 6,545,287 4/2003 Lowery et al. AZ7 6,555,860 4/2003 Lowery et al. AZ8 6,555,860 4/2003 Lowery et al. AZ9 6,566,700 5/2003 Xu et al. AZ9 6,567,293 5/2003 Lowery et al. AZ9 6,569,705 5/2003 Lowery et al.		AM4	6,404,665		6/2002				
AP4 6,440,837		AN4	6,429,064		8/2002	Wick	er		
AQ4 6,462,984 10/2002 Xu et al.		AO4	6,437,383		8/2002	Xu			
AR4 6,473,332 10/2002 Ignatiev et al. AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AZ5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Lowery et al. AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AF5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.		AP4	6,440,837		8/27/2002	Hars	hfield		
AS4 6,480,438 11/2002 Park AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AZ5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Chiang AE5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AG5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AQ4	6,462,984		10/2002	Xu e	t al.		
AT4 6,487,106 11/26/2002 Kozicki AU4 6,487,113 11/2002 Park et al. AV4 8,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 8,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD6 8,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,631,164 5/2003 Lowery et al. AG5 6,567,293 Lowery et al. AH5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.						Ignat	iev et al.		
AU4 6,487,113 11/2002 Park et al. AV4 8,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Lowery et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 8,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD6 8,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG6 6,563,164 5/2003 Lowery et al. AG7 6,567,293 5/2003 Lowery et al. AH5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al.					11/2002	Park			
AV4 6,501,111 12/2002 Lowery AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC6 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,63,164 5/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AT4	6,487,106		11/26/2002	Kozio	:ki		
AW4 6,507,061 1/2003 Hudgens et al. AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AU4	6,487,113		11/2002	Park	et al.		
AX4 6,511,862 1/2003 Hudgens et al. AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lai AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.					12/2002				
AY4 6,511,867 1/2003 Lowery et al. AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.		AW4	6,507,061		1/2003	Hudg	ens et al.		
AZ4 6,512,241 1/2003 Lal AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.						Hudg	ens et al.		
AA5 6,514,805 2/2003 Xu et al. AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.						Lowe	ry et al.		
AB5 6,531,373 3/2003 Gill et al. AC5 6,534,781 3/2003 Dennison AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AC5 6,534,781 3/2003 Dennison AD5 8,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AD5 6,545,287 4/2003 Chiang AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.	L								
AE5 6,545,907 4/2003 Lowery et al. AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.									
AF5 6,555,860 4/2003 Lowery et al. AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.							<u> </u>		
AG5 6,563,164 5/2003 Lowery et al. AH5 6,566,700 5/2003 Xu AI5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al. Chiang et al.									
AH5 6,566,700 5/2003 Xu Al5 6,567,293 5/2003 Lowery et al. AJ5 6,569,705 5/2003 Chiang et al.	<u></u>								
Al5 6,567,293 5/2003 Lowery et al.	L						ry et al.		
AJ5 6,569,705 5/2003 Chiang et al.	<u> </u>								
	<u> </u>								
[AK5 6,570,784 5/2003 Lowery									
		JAK5	6,570,784		5/2003	Lowe	iry		

Approved for use through 10/31/2002 OMB 0651-0031
U. S. Petent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid CMB control number.

Complete If Known Substitute for form 1449A/PTO Application Number 09/943,199 INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date August 29, 2001 First Named Inventor Kristy A. Campbell Art Unit 2818 (use as many sheets as necessary) D. Vu Examiner Name of 5 M4065.0704/P704 Sheet 4 Attorney Docket Number AL5 6,576,921 6/2003 Lowery AM5 6,586,761 7/2003 Lowery AN5 6.589,714 7/2003 Malmon et al. AO5 : 6,590,807 7/2003 Lowery AP5' 6,593,176 7/2003 Dennison AQ5 6,597,009 7/2003 Wicker 8/2003 Dennison et al. AR5 6,605,527 AS5 6,613,604 9/2003 Maimon et al. AT5 6,621,095 9/2003 Chiang et al. AU5 6,625,054 9/2003 Lowery et al. AV5 6,642,102 11/2003 Χu AW5 6,646,297 Dennison 11/2003 AX5 6,649,928 11/2003 Dennison AY5 6,667,900 12/2003 Lowery et al. AZ5 6,671,710 12/2003 Ovshinsky et al. AA6 6,673,648 1/2004 Lowrey AB6 6,673,700 1/2004 Dennison et al. AC6 6,674,115 1/2004 Hudgens et al. AD6 6,687,153 2/2004 Lowery AE6 6,687,427 2/2004 Ramalingam et al. AF6 6,690,026 2/2004 Peterson AG6 6,696,355 2/2004 Dennison

	FOREIGN PATENT DOCUMENTS								
Examiner Cite		Foreign Palent Document	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	П			
initials*	No.1	Country Code ³ -Number ⁴ -Kind Code ⁸ (if known)		Applicant of Cited Document	Passages or Relevant Figures Appear	70			
	BA	56126916	10/19981	Akira et al.		П			
	88	WO 97/48032	12/18/1997	Kozicki et al.		П			
	BC	WO 99/28914	06/10/1999	Kozicki et al.		\Box			
	BD	WO 00/48196	08/17/2000	Kozicki et al.	1	П			
	BE	WO 02/21542		Kozicki et al.		П			

Lowery

Ovshinsky et al.

3/2004

3/2004

Examiner		Date	
	•	10000	
Signature I	•	Considered	
Orginaturo		TOO ISIUGIEU	

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Oraw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

The PTO did not receive the following listed Items(s) FOR - FROM - BA to BE

1819879 v1; 1308701LDOC

AH6 6,707,712

Al6 6,714,954

¹ Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at <u>www.uspto.gov</u> or MPEP 901.04. ³ Enter Office that issued the document, by the two-latter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁸ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁹ Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/088 (10-01)
Approved for use through 10/31/2002.CMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Control of Information unless it contains a valid CMB control number.

Complete if Known Substitute for form 1449B/PTO Application Number 09/943,199 INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date August 29, 2001 First Named Inventor Kristy A. Campbell 2818 Group Art Unit (use as many sheets as necessary) Examiner Name D. Vu 5 of 5 Attorney Docket Number M4065.0704/P704

OTHER PRIOR ART – NON PATENT LITERATURE DOCUMENTS								
Examiner Initials	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²					
	CA	Kawamoto, Y., Nishida, M., Ionic Condition in As2S3—Ag2S, GeS2—GeS—Ag2S and P2S5-Ag2S Glasses, J. Non-Cryst Solids 20(1976) 393-404.						
	СВ	Kozicki et al., Silver incorporation in thin films of selenium rich Ge-Se glasses, International Congress on Glass, Volume 2, Extended Abstracts, July 2001, pgs. 8-9.						
	CC	Michael N. Kozicki, 1. Programmable Metallization Cell Technology Description, February 18, 2000						
	CD	Michael N. Kozicki, Axon Technologies Corp. and Arizona State University, Presentation to Micron Technology, Inc., April 6, 2000						
	CE	Kozicki et al., Applications of Programmable Resistance Changes In Metal-Doped Chalcogenides, Electrochemical Society Proceedings, Volume 99-13, 1999, pgs. 298-309.						
	CF	Kozicki et al., Nanoscale effects in devices based on chalcogenide solid solutions, Superlattices and Microstructures, Vol. 27, No. 516, 2000, pgs. 485-488.						
	CG	Kozicki et al., Nanoscale phase separation in Ag-Ge-Se glasses, Microelectronic Engineering 63 (2002) pgs 155-159.						
	СН	Mitkova, M.; Wang, Y.; Boolchand, P., Dual chemical role of Ag as an additive in chalcogenide glasses, Phys. Rev. Lett. 83 (1999) 3848-3851.						
	CI	Miyatani, Sy., Electrical properties of Ag2Se, J. Phys. Soc. Japan 13 (1958) 317.	П					

Examiner	Date	
Signature	 Considered	

[&]quot;EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08A (10-01)

Approved for use through 10/31/2002.OMB 0651-0031 U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449A/PTO Application Number 09/943,199 INFORMATION DISCLOSURE Filing Date August 29, 2001 STATEMENT BY APPLICANT First Named Inventor Kristy A. Campbell, et al. Act 1 Init 2818 (use as many sheets as necessary) **Examiner Name** David Vu 8 M4065.0704/P704 of Attorney Docket Number Sheet 1

Examiner Initials*	Cite No.'	Document Number Number-Kind Code ² (if known)	Publication Date MM-DD-YYYY	Name of Patentee or Applicant of Cited Document	Pages, Columns, Lines Where Relevant Passages or Relevant Figures Appear
	AE	6,388,324	05/14/2002	Kozicki et al.	
	AF	US 2002/0000666	01/03/2002	Kozicki et al.	
	AG	5.500,532	03/19/1996	Kozicki et al.	
	AH	6,614,049	07/09/2002	Kozicki et al.	
	Al	5,751,012	05/12/1998	Welstenholme et al.	
	İ				
					

		FORE	GN PATENT	DOCUMENTS		
Examiner Initials*	Cita	Foreign Patent Oocument	Publication Date	Name of Patentee or	Pages, Columns, Lines, Where Relevant	Γ
	Cite No.1	Country Code ³ -Number ⁸ -Kind Code ⁵ (if known)	MM-DD-YYYY	Applicant of Cited Document	Passages or Relevant Figures Appear	
	BA	WO 97/488032	12/18/1997	Kozicki et al.		
	BB	WO 99/28914	06/10/1999	Kozicki et al.		Π

Examiner	Date
Signature	Considered

^{*}EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant

RECEIVED NOV 2 6 2002 **GROUP 3600**

¹Applicant's unique citation designation number (optional). ² See attached Kinds Codes of USPTO Patent Documents at www.usplo.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WiPO Standard ST.3) ⁴ For Japanese patent documents, the indication of the year of the reign of the Emperor must precede the application number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁶ Applicant is to place a check mark here if English language Translation is attached.

PTO/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

e,	abstitute for form 1449B/PTO	,		Complete if Known			
1 3	103010101011111111111111111111111111111			Application Number			
Νп	NFORMATION	I DI	SCLOSURE	Filing Date			
	STATEMENT B	3Y /	APPLICANT	First Named Inventor			
7		- , •		Group Art Unit			
	(use as many she	eets as	necessary)	Examiner Name			
Sheet	2	of	8	Attorney Docket Number			

_		OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS	
Examiner nitials	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc), date, page(s), volume-issue number(s), publisher, city and/or country where published.	τ2
	ÇA	Abdel-All, A.; Elshafie,A.; Elhawary, M.M., DC electric-field effect in bulk and thin-film Ge5As38Te57 chalcogenide glass, Vacuum 59 (2000) 845-853.	
	СВ	Adler, D.; Moss, S.C., Amorphous memories and bistable switches, J. Vac. Sci. Technol. 9 (1972) 1182-1189.	Γ
	cc	Adler, D.; Henisch, H.K.; Mott, S.N., The mechanism of threshold switching in amorphous alloys, Rev. Mod. Phys. 50 (1978) 209-220.	
	CD	Afifi, M.A.; Labib, H.H.; El-Fazary, M.H.; Fadel, M., Electrical and thermal properties of chalcogenide glass system Se75Ge25-xSbx, Appl. Phys. A 55 (1992) 167-169.	İ
	CE	Affi, M.A.; Labib, H.H.; Fouad, S.S.; El-Shazly, A.A., Electrical & thermal conductivity of the amorphous semiconductor GexSe1-x, Egypt, J. Phys. 17 (1986) 335-342.	T
	CF	Alekperova, Sh.M.; Gadzhieva, G.S., Current-Voltage characteristics of Ag2Se single crystal near the phase transition, Inorganic Materials 23 (1987) 137-139.	
	CG	Aleksiejunas, A.; Cesnys, A., Switching phenomenon and memory effect in thin-film heterojunction of polycrystalline selenium-silver selenide, Phys. Stat. Sol. (a) 19 (1973) K169-K171.	
	СН	Angell, C.A., Mobile ions in amorphous solids, Annu. Rev. Phys. Chem. 43 (1992) 693-717.	L
	CI	Aniya, M., Average electronegativity, medium-range-order, and ionic conductivity in superionic glasses, Solid state Ionics 136-137 (2000) 1085-1089.	
	C1	Asahara, Y.; Izumitani, T., Voltage controlled switching in Cu-As-Se compositions, J. Non-Cryst. Solids 11 (1972) 97-104.	
	СК	Asokan, S.; Prasad, M.V.N.; Parthasarathy, G.; Gopal, E.S.R., Mechanical and chemical thresholds in IV-VI chalcogenide glasses, Phys. Rev. Lett. 62 (1989) 808-810	
	CL	Baranovskii, S.D.; Cordes, H., On the conduction mechanism in ionic glasses, J. Chem. Phys. 111 (1999) 7546-7557.	
	СМ	Belin, R.; Taillades, G.; Pradel, A.; Ribes, M., Ion dynamics in superionic chalcogenide glasses: complete conductivity spectra, Solid state lonics 136-137 (2000) 1025-1029.	
_	CN	Belin, R.; Zerouale, A.; Pradel, A.; Ribes, M., Ion dynamics in the argyrodite compound Ag7GeSe5I: non-Arrhenius behavior and complete conductivity spectra, Solid State Ionics 143 (2001) 445-455.	
	СО	Benmore, C.J.; Salmon, P.S., Structure of fast ion conducting and semiconducting glassy chalcogenide alloys, Phys. Rev. Lett. 73 (1994) 264-267.	
_	СР	Bernede, J.C., Influence du metal des electrodes sur les caracteristiques courant-tension des structures M-Ag2Se-M, Thin solid films 70 (1980) L1-L4.	
	ca	Bernede, J.C., Polarized memory switching in MIS thin films, Thin Solid Films 81 (1981) 155-160.	
	CR	Bernede, J.C., Switching and silver movements in Ag2Se thin films, Phys. Stat. Sol. (a) 57 (1980) K101-K104.	
	cs	Bernede, J.C.; Abachi, T., Differential negative resistance in metal/insulator/metal structures with an upper bilayer electrode, Thin solid films 131 (1985) L61-L64.	
	СТ	Bernede, J.C.; Conan, A.; Fousenan't, E.; El Bouchairi, B.; Goureaux, G., Polarized memory switching effects in Ag2Se/Se/M thin film sandwiches, Thin solid films 97 (1982) 165-171.	
	CU	Bernede, J.C.; Khelil, A.; Kettaf, M.; Conan, A., Transition from S- to N-type differential negative resistance in Al-Al2O3-Ag2-xSe1+x thin film structures, Phys. Stat. Sol. (a) 74 (1982) 217-224.	
	CV	Bondarev, V.N.; Pikhitsa, P.V., A dendrite model of current instability in RbAg415, Solid State Ionics 70/71 (1994) 72-76.	
	cw	Boolchand, P., The maximum in glass transition temperature (Tg) near x=1/3 in GexSe1-x	T

PTO/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Substitute for form 14498/PTO

Complete i	if Known
Application Number	
Filing Date	6
First Named Inventor	80 7: -
Group Art Unit	8 S F
Examiner Name	300
Attorney Docket Number	₩

			,,,,, 63	necessary)	Examiner Name	72	
heet		3	of	8	Attorney Docket Number	7	_
	Τ	Glasses As	sian Jo	ournal of Physics (2	2000) 9, 709-72.	3 3	Ţ.
	cx	Boolchand	P B	esser W.J. Mobile	e silver ions and class for	nation in solid electrostes.	卞
	0.0) 1070-1073.	glace ion	-	
	CY				dman, B., Discovery of the	e Intermediate Phase in	1
	1				ronics and Advanced Mate		1
	CZ					esser, W.J., Onset of rigidity in	T
	-					Amorphous Materials, M.F.	
		Thorne and	Tichy	. L. (eds.) Kluwer A	Academic Publishers, the	Netherlands, 2001, pp. 97-132.	ı
	CA1					ring of evaporated amorphous	T
						and Defect Data Vol. 53-54	
		(1987) 415-		,	,		П
	CB1	Boolchand.	P.: G	rothaus, J.: Bresse	r. W.J.: Suranvi. P., Struct	tural origin of broken chemical	T
	-				B 25 (1982) 2975-2978.		
	CC1					der and phase separation in	T
	100.				n. 45 (1983) 183-185.		
	CD1	Boolchand	P R	esser W.I. Comp	ositional trends in class tr	ansition temperature (Tg),	t
	100.	network cor	necti	ity and nanoscale	chemical phase separatio	in in chalcogenides, Dept. of	
					8, 1999) 45221-0030.		
	CE1	Boolchand	P · G	othaus J Molecul	ar Structure of Melt-Queni	ched GeSe2 and GeS2 glasses	t
	100.	compared,	Proc.	Int. Conf. Phys. Se	micond. (Eds. Chadi and I	Harrison) 17th (1985) 833-36.	1
	CF1	Bresser W	Bool	chand P Suranvi	P Rigidity percolation a	nd molecular clustering in	T
	0, ,	network dia	SSAS	Phys Rev Lett 56	(1986) 2493-2496.	na morossiar siestoring in	ı
	CG1	Bresser W	J Bo	olchand P Suran	vi P de Neufville J P In	trinsically broken chalcogen	t
	100.					42 (1981) C4-193-C4-196.	ļ
<u> </u>	CH1					lolecular phase separation and	Ť
					ne Interactions 27 (1986):		ı
	CI1	Cahen D:	Gilet	1-M : Schmitz C :	Chernyak L.: Gartsman	K.; Jakubowicz, A., Room-	t
	5					in CulnSe2 Crystals, Science	
		258 (1992)				ar our con or your of our cross	l
	CJ1	Chatteriee	R: As	okan S.: Titus S.:	S.K., Current-controlled ne	egative-resistance behavior and	T
	100.					Phys. 27 (1994) 2624-2627.	-
	CK1					ping in glassy GexSe1-x films,	Ť
	0			37 (1980) 1075-10		,pg g.cco, conco	ı
	CL1	Chen G · C	heno	J. Role of nitrone	n in the crystallization of s	ilicon nitride-doned	t
	00.	chalcogenic	le ola:	ses J Am Ceran	n. Soc. 82 (1999) 2934-29	36.	1
	CM1	Chen G : C	henn	J. Chen W. Effe	ct of Si3N4 on chemical di	urability of chalcogenide glass,	†-
	0			ds 220 (1997) 249		oreamy or entiresgemen green,	
	CN1					ious semiconductor memory	Τ
	0			yst. Solids 8-10 (19		,	
	CO1	Croitoru N	1 272	rescu M : Ponesci	C. Telnic M. and Vesc	can, L., Ohmic and non-ohmic	Ť
	00.	conduction	in son	ne amorphous sem	iconductors J. Non-Cryst	. Solids 8-10 (1972) 781-786.	l
	CP1					eta-Ag2Se from 4.2 to 300K, J.	t
	0			967) 753-756.		, . 	
	CQ1				t form, Search 1 (1970) 15	52-155	Ť
	CR1	Dearnaley	GS	nneham A M · Moi	roan D.V. Electrical phen	nomena in amorphous oxide	t
	10,71			Phys. 33 (1970) 11		and the anti-photo onico	
	CS1	Deius R I	Suga	an S · Volin K 1	Montague D.G. Price D	.L., Structure of Vitreous Ag-Ge-	t
	031	So I Nos	Cnieł	Solids 143 (1992)	162-180	, Discours of Finous rigido-	
	CT1	den Poor V	V Th	pehold switching in	hydrogenated amombou	is silicon, Appl. Phys. Lett. 40	t
	1511	(1982) 812-		caroid awithing is	yorogenaco amorpilo		
	CU1				bunde, F., The hydrogena		٠

PTO/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0851-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 14498/PTO **Application Number** INFORMATION DISCLOSURE Filing Date STATEMENT BY APPLICANT First Named Inventor Group Art Unit (use as many sheets as necessary) **Examiner Name** Sheet of Attorney Docket Number

311001		
		silicon/nanodisperse metal (SIMAL) system-Films of unique electronic properties, J. Non-Cryst. Solids 198-200 (1996) 829-832.
	CV1	El Bouchairi, B.; Bernede, J.C.; Burgaud, P., Properties of Ag2-xSe1+x/n-Si diodes, Thin Solid Films 110 (1983) 107-113.
	CW1	El Gharras, Z.; Bourahla, A.; Vautier, C., Role of photoinduced defects in amorphous GexSe1-x photoconductivity, J. Non-Cryst. Solids 155 (1993) 171-179.
	CX1	El Ghrandi, R.; Calas, J.; Galibert, G.; Averous, M., Silver photodissolution in amorphous chalcogenide thin films, Thin Solid Films 218 (1992)259-273.
	CY1	El Ghrandi, R.; Calas, J.; Galibert, G., Ag dissolution kinetics in amorphous GeSe5.5 thin films from "in-situ" resistance measurements vs time, Phys. Stat. Sol. (a) 123 (1991) 451-460.
	CZ1	El-kady, Y.L., The threshold switching in semiconducting glass Ge21Se17Te62, Indian J. Phys. 70A (1996) 507-516.
	CA2	Elliott, S.R., A unified mechanism for metal photodissolution in amorphous chalcogenide materials, J. Non-Cryst. Solids 130 (1991) 85-97.
	CB2	Elliott, S.R., Photodissolution of metals in chalcogenide glasses: A unified mechanism, J. Non-Cryst. Solids 137-138 (1991) 1031-1034.
	CC2	Elsamanoudy, M.M.; Hegab, N.A.; Fadel, M., Conduction mechanism in the pre-switching state of thin films containing Te As Ge Si, Vacuum 46 (1995) 701-707.
	CD2	El-Zahed, H.; El-Korashy, A., Influence of composition on the electrical and optical properties of Ge20BixSe80-x films, Thin Solid Films 376 (2000) 236-240.
	CE2	Fadel, M., Switching phenomenon in evaporated Se-Ge-As thin films of amorphous chalcogenide glass, Vacuum 44 (1993) 851-855.
	CF2	Fadel, M.; El-Shair, H.T., Electrical, thermal and optical properties of Se75Ge7Sb18, Vacuum 43 (1992) 253-257.
į	CG2	Feng, X.; Bresser, W.J.; Boolchand, P., Direct evidence for stiffness threshold in Chalcogenide glasses, Phys. Rev. Lett. 78 (1997) 4422-4425.
	CH2	Feng, X.; Bresser, W.J.; Zhang, M.; Goodman, B.; Boolchand, P., Role of network connectivity on the elastic, plastic and thermal behavior of covalent glasses, J. Non-Cryst. Solids 222 (1997) 137-143.
	CI2	Fischer-Colbrie, A.; Bienenstock, A.; Fuoss, P.H.; Marcus, M.A., Structure and bonding in photodiffused amorphous Ag-GeSe2 thin films, Phys. Rev. B 38 (1988) 12388-12403.
	CJ2	Fleury, G.; Hamou, A.; Viger, C.; Vautier, C., Conductivity and crystallization of amorphous selenium, Phys. Stat. Sol. (a) 64 (1981) 311-316.
	CK2	Fritzsche, H, Optical and electrical energy gaps in amorphous semiconductors, J. Non-Cryst. Solids 6 (1971) 49-71.
	CL2	Fritzsche, H., Electronic phenomena in amorphous semiconductors, Annual Review of Materials Science 2 (1972) 697-744.
	CM2	Gates, B.; Wu, Y.; Yin, Y.; Yang, P.; Xia, Y., Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se, J. Am. Chem. Soc. (2001) currently ASAP.
	CN2	Gosain, D.P.; Nakamura, M.; Shimizu, T.; Suzuki, M.; Okano, S., Nonvolatile memory based on reversible phase transition phenomena in telluride glasses, Jap. J. Appl. Phys. 28 (1989) 1013-1018.
	CO2	Guin, JP.; Rouxel, T.; Keryvin, V.; Sangleboeuf, JC.; Serre, I.; Lucas, J., Indentation creep of Ge-Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow, J. Non-Cryst. Solids 298 (2002) 260-269.
	CP2	Guin, JP.; Rouxel, T.; Sangleboeuf, JC; Melscoet, I.; Lucas, J., Hardness, toughness, and scratchability of germanium-selenium chalcogenide glasses, J. Am. Ceram. Soc. 85 (2002) 1545-52.
	CQ2	Gupta, Y.P., On electrical switching and memory effects in amorphous chalcogenides, J. Non-Cryst. Sol. 3 (1970) 148-154.

PTC/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Complete if Known Substitute for form 14498/PTO **Application Number** INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filing Date First Named Inventor Group Art Unit (use as many sheets as necessary) Evaminer Name

	(0	se as many sneets	as necessary)		Examiner Name	Ä	\sim	
heet	•••••	5 of	8		Attorney Docket Number	7	\sim	_
	CR2	amorphous ser	miconductors, J. N	Ion-Crys	t. Solids 8-10 (1972)	-controlled switching rect		Ē
	CS2	and electrical p	properties of As-Se	-Cu gla	sses, J. Apply. Phys.	of composition on the structure 54 (1983) 1950-1954.		
	CT2	effects in meta	Va-Si:H/metal devi	ices, Int	. J. Electronics 73 (19			L
	CU2	Si:H/metal roor (2000) 1058-10	m temperature qua 061.	antised i	resistance devices, J.	measurements on metal/a- Non-Cryst. Solids 266-269		
	CV2	resistance effe (1996) 825-828	cts in metal-a-Si:H 3.	I-metal t	hin film structures, J.	n temperature quantized Non-Cryst. Solids 198-200		
	CW2	Hajto, J.; Ower ballistic electro 369.	n, A.E.; Snell, A.J.; n effects in metal-	; Le Con amorph	nber, P.G.; Rose, M.J ous silicon structures,	., Analogue memory and , Phil. Mag. B 63 (1991) 34	9-	
	CX2	Japan, J. Appl.	Phys. 13 (1974) 1	1163-11	64.	switching in amorphous Se	film,	
	CY2	Hegab, N.A.; F	adel, M.; Sedeek, semiconductors, V	K., Men	nory switching phenoi 15 (1994) 459-462.			
	CA3	Hong, K.S.; Sp	eyer, R.F., Switch Solids 116 (1990) 1	ing beha	avior in II-IV-V2 amor	phous semiconductor syste	ms,	T
	СВЗ	Hosokawa, S.,	Atomic and electro	onic str	ictures of glassy Gex	Se1-x around the stiffness rais 3 (2001) 199-214.		Ī
	ССЗ	Hu, J.; Snell, A devices, J. Nor	.J.; Hajto, J.; Owe n-Cryst. Solids 227	n, A.E., 7-230 (1	Constant current form 998) 1187-1191.	ning in Cr/p+a-/Si:H/V thin f		
	CD3	Hu, J.; Hajto, J non-metal trans (1996) 37-50.	.; Snell, A.J.; Owe sition in Cr-hydrog	n, A.E.; jenated	Rose, M.J., Capacita amorphous Si-V thin-	nce anomaly near the meta film devices, Phil. Mag. B. 7	74	
	CE3	Hu, J.; Snell, A	.J.; Hajto, J.; Owe Mag. B 80 (2000) 2	n, A.E., 29-43.	Current-induced insta	ability in Cr-p+a-Si:H-V thin	film	
	CF3	lizima, S.; Sugi	i, M.; Kikuchi, M.;	Tanaka,	K., Electrical and the State Comm. 8 (1976)			
	CG3	Ishikawa, R.; K	likuchi, M., Photov	roltaic st		anced diffusion of Ag in		
	СНЗ	lyetomi, H.; Va	shishta, P.; Kalia, g atoms, J. Non-Ci	R.K., In	cipient phase separatids 262 (2000) 135-14	ion in Ag/Ge/Se glasses: 42.		Ī
	CI3	Jones, G.; Coll	ins, R.A., Switchin (1977) L15-L18.	g prope	rties of thin selenium	films under pulsed bias, Th	in	Ī
	CJ3	Joullie, A.M.; M switching, Phys	farucchi, J., On the s. Stat. Sol. (a) 13	(1972)	K105-K109.	amorphous As2Se7 before		
	СКЗ	Joullie, A.M.; N Bull. 8 (1973) 4	larucchi, J., Electr 133-442.	ical prop	perties of the amorpho	ous alloy As2Se5, Mat. Res		
	CL3	Solids 8-10 (19	72) 538-543.			emiconductors, J. Non-Cry	st.	
	СМЗ	Kawaguchi, T.; amorphous Ag	Maruno, S.; Elliot -Ge-S and Ag-Ge-	Se films		d structural properties of shotoinduced and thermally 9096-9104.		
	CN3	Kawaguchi, T.;	Masui, K., Analys	is of cha , Japn.	ange in optical transm J. Appl. Phys. 26 (198	nission spectra resulting from 15-21.		
	CO3	Kawasaki, M.;	Kawamura, J.; Na	kamura,	Y.; Aniya, M., Ionic o s 123 (1999) 259-269	conductivity of Agx(GeSe3)	1-x	I

PTO/SB/08B (10-01)
Approved for use through 10/31/2002 OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number

Substitute for form 1449B/PTO INFORMATION DISCLOSURE STATEMENT BY ACCUSE

Application Number Filing Date First Named Inventor

(use as many sheets as necessary)

of

Group Art Unit Examiner Name

Complete if Known

	СРЗ	Kluge, G.; Thomas, A.; Klabes, R.; Grotzschel, R., Silver photodiffusion in amorphous GexSe100-x, J. Non-Cryst. Solids 124 (1990) 186-193.
	CQ3	Kolobov, A.V., On the origin of p-type conductivity in amorphous chalcogenides, J. Non-Cryst. Solids 198-200 (1996) 728-731.
	CR3	Kolobov, A.V., Lateral diffusion of silver in vitreous chalcogenide films, J. Non-Cryst. Solids 137-138 (1991) 1027-1030.
	CS3	Korkinova, Ts.N.; Andreichin,R.E., Chalcogenide glass polarization and the type of contacts, J. Non-Cryst. Solids 194 (1996) 256-259.
	СТЗ	Kotkata, M.F.; Afif, M.A.; Labib, H.H.; Hegab, N.A.; Abdel-Aziz, M.M., Memory switching in amorphous GeSeTI chalcogenide semiconductor films, Thin Solid Films 240 (1994) 143-146.
	CU3	Lakshminarayan, K.N.; Srivastava, K.K.; Panwar, O.S.; Dumar, A., Amorphous semiconductor devices: memory and switching mechanism, J. Instn Electronics & Telecom. Engrs 27 (1981) 16-19.
	CV3	Lal, M.; Goyal, N., Chemical bond approach to study the memory and threshold switching chalcogenide glasses, Indian Journal of pure & appl. phys. 29 (1991) 303-304.
	CW3	Leimer, F.; Stotzel, H.; Kottwitz, A., Isothermal electrical polarisation of amorphous GeSe films with blocking Al contacts influenced by Poole-Frenkel conduction, Phys. Stat. Sol. (a) 29 (1975) K129-K132.
	СХЗ	Leung, W.; Cheung, N.; Neureuther, A.R., Photoinduced diffusion of Ag in GexSe1-x glass, Appl. Phys. Lett. 46 (1985) 543-545.
-	CY3	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on Se-SnO2 system, Jap. J. Appl. Phys. 11 (1972) 1657-1662.
	CZ3	Matsushita, T.; Yamagami, T.; Okuda, M., Polarized memory effect observed on amorphous selenium thin films, Jpn. J. Appl. Phys. 11 (1972) 606.
	CA4	Mazuner, F.; Levy, M.; Souquet, J.L., Reversible and irreversible electrical switching in TeO2- V2O5 based glasses, Journal de Physique IV 2 (1992) C2-185 - C2-188.
	CB4	Messoussi, R.; Bernede, J.C.; Benhida, S.; Abachl, T.; Latef, A., Electrical characterization of M/Se structures (M=Ni,Bi), Mat. Chem. And Phys. 28 (1991) 253-258.
	CC4	Mitkova, M.; Boolchand, P., Microscopic origin of the glass forming tendency in chalcogenides and constraint theory, J. Non-Cryst. Solids 240 (1998) 1-21.
*	CD4	Mitkova, M.; Kozicki, M.N., Silver incorporation in Ge-Se glasses used in programmable metallization cell devices, J. Non-Cryst. Solids 299-302 (2002) 1023-1027.
	CF4	Miyatani, Sy., Electronic and ionic conduction in (AgxCu1-x)2Se, J. Phys. Soc. Japan 34 (1973) 423-432.
	CH4	Miyatani, Sy., Ionic conduction in beta-Ag2Te and beta-Ag2Se, Journal Phys. Soc. Japan 14 (1959) 996-1002.
	Cl4	Mott, N.F., Conduction in glasses containing transition metal ions, J. Non-Cryst. Solids 1 (1968) 1-17.
	CJ4	Nakayama, K.; Kitagawa, T.; Ohmura, M.; Suzuki, M., Nonvolatile memory based on phase transitions in chalcogenide thin films, Jpn. J. Appl. Phys. 32 (1993) 564-569.
	CK4	Nakayama, K.; Kojima, K.; Hayakawa, F.; Imai, Y.; Kitagawa, A.; Suzuki, M., Submicron nonvolatile memory cell based on reversible phase transition in chalcogenide glasses, Jpn. J. Appl. Phys. 39 (2000) 6157-6161.
	CL4	Nang, T.T.; Okuda, M.; Matsushita, T.; Yokota, S.; Suzuki, A., Electrical and optical parameters of GexSe1-x amorphous thin films, Jap. J. App. Phys. 15 (1976) 849-853.
	CM4	Narayanan, R.A.; Asokan, S.; Kumar, A., Evidence concerning the effect of topology on electrical switching in chalcogenide network glasses, Phys. Rev. B 54 (1996) 4413-4415.
	CN4	Neale, R.G.; Aseltine, J.A., The application of amorphous materials to computer memories, IEEE transactions on electron dev. Ed-20 (1973) 195-209.
	CO4	Ovshinsky S.R.; Fritzsche, H., Reversible structural transformations in amorphous semiconductors for memory and logic, Mettalurgical transactions 2 (1971) 641-645.

PTC/SB/08B (10-01)
Approved for use through 10/31/2002.OMB 0651-0031
U. S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Complete if Known Substitute for form 1449B/PTO **Application Number** INFORMATION DISCLOSURE STATEMENT BY APPLICANT Filling Date First Named Inventor

	(use as many sheets as necessary)				Group Art Unit	H 7	<u>`</u>
· · · · ·		se as many sneets as necessary)			Examiner Name	A -	
Sheet		7 (of	8	Attorney Docket Number	20d2 1 RD	
	CP4	Ovshinsky, S.	R., Rever	sible electric	al switching phenomena in	n disordered structure Phys.	٦
		Rev. Lett. 21	<u>(1968) 14</u>	50-1453.			<u> </u>
	CQ4	Owen, A.E.; L	.eComber	, P.G.; Sarra	bayrouse, G.; Spear, W.E le switching device, IEE Pi	., New amorphous-silicon	
	CR4	Owen A F : F	inh AP	Ewen P.I.S	S Photo-induced structure	al and physico-chemical changes	Н
	0,1,4	in amorphous	chalcoge	nide semico	nductors, Phil. Mag. B 52	(1985) 347-362.	
	CS4	Owen, A.E.; L	e Combe	r, P.G.; Hajto	o, J.; Rose, M.J.; Snell, A.J	J., Switching in amorphous	
	074	devices, Int. J	. Electron	ics 73 (1992	() 897-906.	nducting glass diodes, App.	-
	CT4	Phys. Lett. 14			italy conduction in Semicor	iducang glass diodes, App.	ĺ
	CU4	Pinto, R.; Rar	nanathan	K.V., Electr	ic field induced memory sv	vitching in thin films of the	Γ
		chalcogenide	system G	e-As-Se, Ap	pl. Phys. Lett. 19 (1971) 2	21-223.	L
	CV4					witching and high field behavior	ĺ
	CW4	of structures	Control	ogenide glas	ises, Solid-state electronic	nal instability to the switching	-
	CVV				8-10 (1972) 531-537.	ia instability to the ownering	
	CX4	Popov, A.I.; C	eller, I.Ki	1.; Shemetov	va, V.K., Memory and thres	shold switching effects in	Γ
	<u> </u>	amorphous se	elenium, F	hys. Stat. S	ol. (a) 44 (1977) K71-K73.		ļ
	CY4	Prakash, S.;	Asokan, S	.; Ghare, D.f	B., Easily reversible memo	ry switching in Ge-As-Te	
	CZ4	glasses, J. Pr	iys. D: Al	Sactor C 5	(1996) 2004-2008.	Bi-Se-Te glasses, Mat. Sci. and	-
	C24	Eng. 812 (19			riectional switching in Ge-	DI-Se- le glasses, wat. Sc. and	
	CA5	Ramesh, K.:	Asokan, S	.: Sangunni,	K.S.; Gopal, E.S.R., Elect	rical Switching in germanium	Г
		telluride glass	es doped	with Cu and	I Ag, Appl. Phys. A 69 (199	99) 421-425.	_
	CB5	Rose,M.J.;Ha	jto,J.;Lec	omber,P.G.;	Gage,S.M.;Choi,W.K.;Snel	I,A.J.;Owen,A.E., Amorphous	l
	CC5				I. Non-Cryst. Solids 115 (1	Owen,A.E., Aspects of non-	\vdash
	CCS	volatility in a	Si:H men	norv devices.	Mat. Res. Soc. Symp. Pro	oc. V 258, 1992, 1075-1080.	
	CD5	Schuocker, D	.; Rieder,	G., On the re	eliability of amorphous cha	alcogenide switching devices, J.	Γ
	CE5	Non-Cryst. Sc	· Singh B	Flectrical o	conductivity measurements	s of evaporated selenium films in	-
	CES	vacuum, Prod	. Indian N	latn. Sci. Aca	ad. 46, A, (1980) 362-368.		L
	CF5	Sharma, P., S	Structural,	electrical an	d optical properties of silve	er selenide films, Ind. J. Of pure	
_		and applied p	hys. 35 (1	997) 424-42	7.	Ochores II Assissus	-
	CG5	Snell, A.J.; Le	ecomper, l	P.G.; Hajio, . Na-Si·H/met	J.; Rose, M.J.; Owen, A.E.	n-Cryst. Solids 137-138 (1991)	
		1257-1262.	as ar mete	18/4-01.1 01110t	at memory devices, c. rion	, or you could not not not in	
	CH5	Snell, A.J.; Ha	ajto, J.;Ro	se, M.J.; Os	bome, L.S.; Holmes, A.; O	wen, A.E.; Gibson, R.A.G.,	Г
					a-Si:H/metal thin film struct	lures, Mat. Res. Soc. Symp.	
	015	Proc. V 297,			mombous chalassanida n	nemory devices, J. Phys. D:	H
	CI5	Appl. Phys. 8			amorphous chalcogerilde i	nemory devices, v. Fnys. D.	
	CJ5	Steventon, A.	G., The s	witching med	chanisms in amorphous ch	alcogenide memory devices, J.	Г
		Non-Cryst. So	olids 21 (1	976) 319-32	.		\vdash
	CK5	Stocker, H.J.,	Bulk and	thin film swi	tching and memory effects	in semiconducting chalcogenide	
	CL5	glasses, App.	rnys. Le	u. 15 (1969)	tions in Ag photodoning n	rocess, Mod. Phys. Lett B 4	\vdash
	CLS	(1990) 1373-	1377.				L
	CM5	Tanaka, K.; li	zima, S.;	Sugi, M.; Ok	ada, Y.; Kikuchi, M., Thern	nal effects on switching	Г
		phenomenon	in chalco	genide amor	phous semiconductors, So	olid State Comm. 8 (1970) 387-	
		389.					ட

PTC/SB/088 (10-01)
Approved for use through 10/31/2002.OM8 0851-0031
U. S. Patent and Trademark Office. U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

	Substitute for f	orm 14498/PTO	_		Complete if Known					
7	Substitute for the	JAN 144307 10				Application Number		- 1		
NOTE OF	INFOR	MATION I	DIS	CLOSURE		Filing Date				
S				PPLICANT		First Named Inventor	70			
7	•					Group Art Unit	2			
	(U	se as many sheets	as ne	icessary)		Examiner Name	800			
She	et	8 0	of	8		Attorney Docket Number	¥ 2			
	CN5	(1973) 3-15.	D., M				alcogenide, J. Elect. Mat: 2	UBALE		
	CP5	Thomburg, D. in amorphous	D.; W arser	nic triselenide, Joi	uma	l(??) (1972) 4609-461				
	CQ5			, Remark on the g s 261 (2000) 277-			xSe1-x and AsxSe1-x systems,			
	CR5	glasses, Phys	. Rev	. B 48 (1993) 146	550-1	14652.	nd short-range order in As-Te			
	CS5	glasses Ag-G relations in fa	e-Se: st ion	lonic conduction	and	nk,A.M.;Dexpert,H.;Lagarde,J.P., Silver chalcogenide and exafs structural investigation, Transport-structure are Proceedings of the 6th Riso International				
	CT5	Tregouet, Y.; effects. Thin S	Berne Solid F	ede, J.C., Silver m Films 57 (1979) 4	9-54		ilms: switching and memory			
	CU5	Uemura, O.; h	Came	da, Y.; Kokai, S.;	Sato	ow, T., Thermally indu 8 (1990) 219-221.	ced crystallization of amorphous			
	CV5	Uttecht, R.; Si	even:	son, H.; Sie, C.H. n As-Te-Ge glass	.; Gri	ener, J.D.; Raghavan Non-Cryst. Solids 2 (1	, K.S., Electric field induced 970) 358-370.	ì		
	CD5	Viger, C.; Left Non-Cryst. Sc	ancoi lids 3	is, G.; Fleury, G., 33 (1976) 267-272	Ano 2.	malous behaviour of	amorphous selenium films, J.			
	CX5	Vodenicharov M system, Ma	, C.; F	Parvanov,S.; Petk em. And Phys. 21	(0v,F	89) 447-454.	urrents in the thin-film M-GeSe-			
	CY5	Metal/silicide	antifu	se, IEEE electron	dev	. Lett. 13 (1992)471-4	H.L., High-performance 172.			
	CZ5	Weirauch, D.f App. Phys. Le	., Th	reshold switching (1970) 72-73.	and	thermal filaments in	amorphous semiconductors,			
	CC6	Zhang, M.; Ma Tg, with avera	ancini 1ge co e slop	i, S.; Bresser, W.; pordination number pe dTg/d <m> at t</m>	er, <	m>, in network glasse	of glass transition temperature, es: evidence of a threshold eshold (<m>=2.4), J. Non-Cryst.</m>			

Examiner	Date
Signature	Considered

RECEIVED
NOV 2 6 2002
GROUP 3600

^{*}EXAMINER. Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

^{&#}x27;Applicant's unique citation designation number (optional). 'Applicant is to place a check mark here if English language Translation is attached.