

(11)Publication number:

2002-149190

(43)Date of publication of application: 24.05.2002

(51)Int.CI.

G10L 15/20 G10L 21/02 H04R 3/00

(21)Application number: 2000-335122

(71)Applicant: INTERNATL BUSINESS MACH CORP <IBM>

(22)Date of filing:

01.11.2000

(72)Inventor: SHIMIZU JUNYA

(54) SIGNAL SEPARATING METHOD FOR RESTORING ORIGINAL SIGNAL FROM OBSERVATION DATA, SIGNAL PROCESSOR, MOBILE TERMINAL UNIT AND STORAGE MEDIUM

PROBLEM TO BE SOLVED: To stably separate and extract an original signal from more than one signals by a few calculation steps when the signals in a mixed state are observed.

SOLUTION: A function having a monotonous increase characteristic such as an index function is introduced as an evaluating function and the signal is separated by applying an adaptive algorism for minimizing the evaluating function for a signal separation matrix. That is, a signal processor separates the original signal from an observation signal x(t) and outputs it. A non-linear function 21 works with respect to the inputted observation signal x(t) and an estimated separation matrix W(t-1) which is estimated in a preceding cycle and a differential signal e(t) is calculated (22) based on a value y(t) generated by the non-linear function 21, the estimated separation matrix W(t) and the observation signal x(t) at this time. Differential evaluation is weighted by the evaluating function having the monotonous increase characteristic based on the calculated differential signal e(t) and, then, the separation matrix W(t) at that time is updated (23).

LEGAL STATUS

[Date of request for examination]

16.07.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2002-149190

(P2002-149190A) (43)公開日 平成14年5月24日(2002.5.24)

(51) Int. Cl. 7	識別記号	FI		テーマコー	· (参考)
G10L 15/20	p.7// • n. = •	H04R 3/00	320	5D015	
21/02		G10L 3/02	301	C 5D020	
H04R 3/00	320		301	F	

審査請求 有 請求項の数23 OL (全18頁)

(21)出願番号 特願2000-335122(P2000-335122)

(22)出願日 平成12年11月1日(2000.11.1)

(71)出願人 390009531

インターナショナル・ビジネス・マシーン ズ・コーポレーション INTERNATIONAL BUSIN

ESS MASCHINES CORPO

RATION

アメリカ合衆国10504、ニューヨーク州

アーモンク (番地なし)

(74)代理人 100086243

弁理士 坂口 博 (外4名)

最終頁に続く

(54) 【発明の名称】観測データから原信号を復元する信号分離方法、信号処理装置、モバイル端末装置、および記憶媒体

(57)【要約】

【課題】 複数の信号が混合状態で観測されたときに、 少ない計算ステップ数で、その複数の信号から原信号を 安定して分離・抽出する。

【解決手段】 評価関数として指数型関数のような単調増加特性を持った関数を導入し、その評価関数を信号分離行列に関して最小にする適応アルゴリズムを適用して信号を分離する。即ち、入力された観測信号 \mathbf{x} (1)から原信号を分離して出力する信号処理装置であって、入力された観測信号 \mathbf{x} (1)および前サイクルにて推定された推定分離行列 \mathbf{w} (1-1)に対して非線形関数 2 1 を作用させ、この非線形関数 2 1 により形成された値 \mathbf{y} (1)と前サイクルにて推定された推定分離行列 \mathbf{w} (1-1)およびその時刻での観測信号 \mathbf{x} (1)とに基づいて、誤差信号 \mathbf{e} (1)の計算 2 2 を行い、算出された誤差信号 \mathbf{e} (1)に基づいて、単調増加特性を持つ評価関数により誤差評価に重みが付くようにしてその時刻の分離行列 \mathbf{w} (1)の更新 2 3 を施す。

【特許請求の範囲】

【請求項1】 複数の信号が混在して観測される観測デ ータから原信号を復元する信号分離方法であって、

前記観測データに対し、分離行列に関するH無限大ノル ムを、与えられたスカラー量以下に抑えるような適応フ ィルタによって当該分離行列を推定するステップと、

前記適応フィルタによって推定された前記分離行列を前 記観測データに乗じて前記原信号を復元するステップ と、を含むことを特徴とする信号分離方法。

【請求項2】 複数の信号が混在して観測される観測デ 10 ータから原信号を復元する信号分離方法であって、

前記観測データに対して、ゲーム理論におけるMinMax戦 略に基づいて分離行列の候補から特定の分離行列を選択

選択された前記分離行列を前記観測データに乗じて前記 原信号を復元することを特徴とする信号分離方法。

【請求項3】 原信号を含む複数の信号が混在して観測 される観測データから当該原信号を推定復元する信号分 離方法であって、

前記観測データに対して単調増加特性を有する関数に基 20 づく評価関数を導入し、

導入された前記評価関数を最適化する適応フィルタを用 いて分離行列を推定し、

推定された前記分離行列を前記観測データに乗じて前記 原信号を推定復元することを特徴とする信号分離方法。

前記分離行列の推定は、前記評価関数を 【請求項4】 分離行列に関して最小にする適応フィルタを用いること を特徴とする請求項3記載の信号分離方法。

【請求項5】 導入される評価関数は、指数型関数であ ることを特徴とする請求項3記載の信号分離方法。

【請求項6】 原信号を含む複数の信号が混在して観測 される観測信号から当該原信号を分離・抽出する信号分 離方法であって、

前記観測信号を読み込み、

読み込まれた前記観測信号の平均を減じてゼロ平均化を 施し、

ゼロ平均化が施された前記観測信号に対して白色化を施

白色化が施された前記観測信号に対して単調増加特性を 有する評価関数に基づく分離処理を施し、

分離処理が施された前記観測信号に対して後処理として 逆白色化を施すことを特徴とする信号分離方法。

【請求項7】 分離処理に用いられる前記評価関数内で 用いる非線形関数は、読み込まれた前記観測信号の尖度 に基づいて、用いる関数が切り替えられることを特徴と する請求項6記載の信号分離方法。

原信号を含む複数の信号が混在して観測 【請求項8】 される観測データを入力する入力手段と、

前記入力手段により入力される前記観測データに対し、 分離行列に関するH無限大ノルムを、与えられたスカラ 50

ー量以下に抑えるような適応フィルタリングによって当 該分離行列を推定する分離行列推定手段と、

前記分離行列推定手段によって推定された前記分離行列 を前記観測データに乗じて前記原信号を推定復元する推 定復元手段と、を備えたことを特徴とする信号処理装 置。

【請求項9】 原信号を含む複数の信号が混在して観測 される観測データを入力する入力手段と、

前記入力手段により入力される前記観測データに対し、 ゲーム理論におけるMinMax戦略に基づいて分離行列の候 補から特定の分離行列を選択する選択手段と、

前記選択手段により選択された前記分離行列を前記観測 データに乗じて前記原信号を推定復元する推定復元手段 と、を備えたことを特徴とする信号処理装置。

【請求項10】 複数の信号が混在して観測される観測 データを入力する入力手段と、

前記入力手段により入力される前記観測データに対し、 単調増加特性を持つ関数に基づく評価関数を最適化する 適応フィルタを用いて、分離行列を推定する分離行列推 定手段と、

前記分離行列推定手段により推定された前記分離行列を 前記観測データに乗じて前記原信号を推定復元する推定 復元手段と、を備えたことを特徴とする信号処理装置。

【請求項11】 前記分離行列推定手段に用いられる前 記適応フィルタは、前記評価関数を分離行列に関して最 小にするものであり、前記単調増加特性を持つ関数は、 指数型関数であることを特徴とする請求項10記載の信 号処理装置。

【請求項12】 入力された観測信号から原信号を分離 して出力する信号処理装置であって、

入力された前記観測信号および前サイクルにて推定され た推定分離行列に対して非線形関数を作用させる非線形 関数部と、

前記非線形関数部により形成された値と前サイクルにて 推定された前記推定分離行列およびその時刻での前記観 測信号とに基づいて誤差信号を算出する誤差信号算出部

前記誤差信号算出部により算出された前記誤差信号に基 づいて、その時刻の推定分離行列に対して、単調増加特 性を持つ評価関数により誤差評価に重みが付くようにし て更新を施す分離行列更新部と、を備えたことを特徴と する信号処理装置。

前記分離行列更新部により更新を施さ 【請求項13】 れたその時刻の推定分離行列に対し、当該推定分離行列 のユニタリ行列化を保証するユニタリ化演算部と、を更 に備えたことを特徴とする請求項12記載の信号処理装 置。

【請求項14】 複数の音声信号が混信されて観測され る混合音声観測データを入力する入力手段と、

前記入力手段により入力される前記混合音声観測データ

30

- ・に対し、単調増加特性を持つ関数に基づく評価関数を最 適化する適応フィルタを用いて分離行列を推定する分離・行列推定手段と、
- . 前記分離行列推定手段により推定された分離行列を前記
- ・ 混合音声観測データに乗じることで、当該混合音声観測
- データから音声信号を分離・抽出する分離・抽出手段 と、を備えたことを特徴とする信号処理装置。

【請求項15】 観測生体信号からアーチファクトを分離する信号処理装置であって、

前記観測生体信号に前記アーチファクトが混入された観 10 測データを入力する入力手段と、

前記入力手段により入力される前記観測データに対し、 単調増加特性を持つ関数に基づく評価関数を最適化する 適応フィルタを用いて分離行列を推定する分離行列推定 手段と、

前記分離行列推定手段により推定された前記分離行列を 前記観測データに乗じることで、当該観測データから前 記観測生体信号を分離・抽出する分離・抽出手段と、を 備えたことを特徴とする信号処理装置。

【請求項16】 前記観測生体信号は、脳磁図(MEG)および脳波図(EEG)の少なくとも1つからなる信号であることを特徴とする請求項15記載の信号処理装置。

【請求項17】 経済統計データから観測上は埋没している変動成分を抽出する信号処理装置であって、

前記経済統計データを入力する入力手段と、

前記入力手段により入力される前記経済統計データに対し、単調増加特性を持つ関数に基づく評価関数を最適化 する適応フィルタを用いて分離行列を推定する分離行列 推定手段と、

前記分離行列推定手段により推定された前記分離行列を 前記経済統計データに乗じることで、当該経済統計デー タから前記変動成分を分離・抽出する分離・抽出手段 と、を備えたことを特徴とする信号処理装置。

【請求項18】 前記入力手段により入力される前記経済統計データは、全体のトレンドと個々のファクタとが未知の混合行列によって形成されたものであると推定できる経営データであることを特徴とする請求項17記載の信号処理装置。

【請求項19】 前記入力手段により入力される前記経 40 済統計データは、セットにして観察される株価変動デー タであり、

前記分離・抽出手段により分離・抽出される前記変動成分は、ポートフォリオ・リターン予測に適用可能な独立成分の株価トレンドであることを特徴とする請求項17 記載の信号処理装置。

【請求項20】 符号分割多元接続における基地局から他ユーザのための拡散情報を含む観測データを受信し、 受信した当該観測データから自己のユーザ信号を抽出するモバイル端末装置であって、 前記基地局から送出される前記観測データを入力する入力手段と、

前記入力手段により入力される前記観測データに対し、 単調増加特性を持つ関数に基づく評価関数を最適化する 適応フィルタを用いて分離行列を推定する分離行列推定 手段と、

前記分離行列推定手段により推定された前記分離行列を 前記観測データに乗じることで、当該観測データから前 記ユーザ信号を分離・抽出する分離・抽出手段と、を備 えたことを特徴とするモバイル端末装置。

【請求項21】 コンピュータに実行させるプログラム を当該コンピュータが読取可能に記憶した記憶媒体であって

前記プログラムは、原信号を含む複数の信号が混在して 観測される観測データに対して単調増加特性を有する関 数に基づく評価関数を導入する処理と、

導入された前記評価関数を最適化する適応フィルタを用いて分離行列を推定する処理と、

推定された前記分離行列を前記観測データに乗じて前記 20 原信号を推定復元する処理と、を前記コンピュータに実 行させることを特徴とする記憶媒体。

【請求項22】 コンピュータに実行させるプログラム を当該コンピュータが読取可能に記憶した記憶媒体であって

前記プログラムは、原信号を含む複数の信号が混在して 観測される観測データに対し、分離行列に関するH無限 大ノルムを、与えられたスカラー量以下に抑えるような 適応フィルタによって当該分離行列を推定する処理と、 前記適応フィルタによって推定された前記分離行列を前 記観測データに乗じて前記原信号を復元する処理と、を

前記コンピュータに実行させることを特徴とする記憶媒体。 【請求項23】 コンピュータに実行させるプログラム

【請求項23】 コンピュータに実行させるプログラム を当該コンピュータが読取可能に記憶した記憶媒体であって、

前記プログラムは、原信号を含む複数の信号が混在して 観測される観測データに対し、ゲーム理論におけるMinM ax戦略に基づいて分離行列の候補から特定の分離行列を 選択する処理と、

40 選択された前記分離行列を前記観測データに乗じて前記 原信号を復元する処理と、を前記コンピュータに実行さ せることを特徴とする記憶媒体。

【発明の詳細な説明】

[0001]

30

【発明の属する技術分野】本発明は、信号分離方法等に 係り、特に、複数の信号が混合状態で観測されたとき に、安定して原信号を分離する信号分離方法等に関す る。

[0002]

50 【従来の技術】複数の信号が相互に混合して複数のセン

サ等で観測されたとき、観測信号のみから混在前の信号 , を決定する技術は、従来の雑音除去方法よりも、場合に よっては強力であるため、適用分野の拡大が期待でき る。適用分野としては、例えば、音声認識時における不 要音響除去のための音声強調、QAM(Quadrature Ampl itude Modulation:直交振幅変調)などの複素信号環境 下でのディジタル通信復調、必要臓器情報抽出のための 医用信号復元、統計データ上では埋没してしまった独立 成分(要因)抽出が可能なデータ解析法などが考えられ

【0003】図1は、複数の信号が混合状態で観測され るとき、互いの信号の統計的独立性のみを仮定して原信 号を分離する信号分離問題を示した概念図である。図1 を定式化すると次のように書ける。まず、各指標 t につ いてスカラー値で相互に統計的に独立なm個の平均0の 信号 s₁(t), …, s₂(t)があると仮定する。図1では、 s, とs, の2つの信号源を例に示している。これに対 し、n個の線形荷重和 x, (t), …, x, (t)を観測する。こ れを

【式1】

$$\underline{x}(t) = \underline{A}\underline{s}(t)$$

と書き、観測装置にて観測されるものである。ここで、 【式2】

$$I(\underline{u}) = \int p_u(\underline{u}) \log \left(\frac{p_u(\underline{u})}{\prod_{i=1}^n p_i(u_i)} \right) d\underline{u}$$

相互情報量は常に負ではなく、0(零)になったときに各 信号ベクトルの要素は独立であることを示す。実際、信 30 号ベクトル要素が互いに独立であれば、信号ベクトルの 密度関数は次式で表すことができるため、上式は0にな る。

【式4】

$$p_{u}(\underline{u}) = \prod_{i=1}^{n} p_{i}(u_{i})$$

従って、「観測信号ベクトルに対して信号ベクトルの相 互情報量を最小化するような変換行列を求めれば、混合 した観測信号から原信号を復元できることになる。」と 40 いうのが信号分離手法の理論的説明の一つとして挙げら れる。

【0005】しかしながら、実際には原信号の確率分布 が不明であるため、直接に相互情報量を最小化の操作対 象とすることはできない。そこで、それと等価なあるい は近似的に等価な評価量を最適化することで信号分離が 行われることが多い。例えば、文献 1(International J

$$\underline{\underline{x}}(t) = \left[\underline{x}_1(t)\,\underline{x}_2(t)\,\cdots\,\underline{x}_n(t)\,\right]^T$$

$$\underline{s}(t) = [s_1(t) s_2(t) \cdots s_m(t)]^T$$

であり、n≧mと仮定する。また、n×mの混合行列を Aとし、フルランク行列(m×m行列A"Aの逆行列が存 在する行列)とする。以下の記述では、下線付き小文字 10 でベクトルを表し、下線付き大文字で行列を表し、添字 Tで転置を表し、添字Hでエルミート共役(共役転置)を 表す。この観測信号x(t)から分離信号y(t)を得るため の分離行列Wを推定する問題が信号分離問題である。即 ち、図1に示す観測装置によって観測された観測信号x (t)から、信号分離装置によって分離信号y(t)=W^E X x(t)を得る際に、分離行列Wの推定が問題となる。 【0004】次に、分離行列Wを推定するための考え方 について概略を述べる。今、観測信号x(t)である信号 ベクトルの多変数確率密度関数を p』(u)とし、ベクトル 20 の各要素に関する確率密度関数を p; (u;)とすれば、観

測ベクトルの相互情報量は次式のカルバック・ライブラ ー・ダイバージェンス(Kullback-Leibler divergence) で表せる。

【式3】

ournal of Neural Systems, Vol. 8, Nos. 5 & 6, pp. 661 -678, October/December 1997.)には、上記の背景か ら、観測信号が同符号の尖度(Kurtosis)を持ち、共分散 行列が有界であり、白色化がなされており、かつ、分離 行列Wがユニタリ行列(W[#]W= I (単位行列))である条 件下で、各原信号についての0時間遅れの4次のキュム ラントの和を最適化(尖度が正のときは最大化、尖度が 負のときは最小化)するような変換行列Wを求めれば、 相互情報量は最小化できることが、述べられている。こ こで、尖度とは、観測信号 ui に対して下記の計算で求 まる数値を指す。

【式5】

$$E\{u_i^4\} - 3[E\{u_i^2\}]^2$$

E[·]は期待値演算を表す。また、白色化とは、信号べ クトルを互いに無相関化して分散を1にすることであ り、4次のキュムラントとは、次式で表される統計量を 指している。

[16]

 $c_{4}(k_{1},k_{2},k_{3}) = E\{u_{i}(t)u_{i}(t+k_{1})u_{i}(t+k_{2})u_{i}(t+k_{3})\}$ $-E\{u_{i}(t)u_{i}(t+k_{1})\}E\{u_{i}(t+k_{2})u_{i}(t+k_{3})\}$ $-E\{u_{i}(t)u_{i}(t+k_{2})\}E\{u_{i}(t+k_{1})u_{i}(t+k_{3})\}$

前述した0時間遅れとは、上式でk, k, k, m 0 であることを指している。

【0006】しかし、一般にキュムラントなどの高次統計量を計算する際には、計算負荷が大きいことから、相互情報量と等価な別の情報量を計算・近似したり、4次のキュムラントを近似できる非線形関数を導入して、キュムラントの和を最適化することと等価な評価関数を最小化するなどの手法が取られている。米国特許第5,706,402号公報では、相互情報量の最小化の代わりに、出力エントロピーを最適化する教師無し学習アルゴリズムによって、分離行列を勾配法により求める方法が開示されている。

【0007】また、文献2(Signal Processing, Vol.24, No.1, pp.1-10, July 1991.)では、相互情報量やキュムラントが明示されているわけではないが、それと似たアプローチを用いて、観測信号から推定信号の線形和を滅じた残差の2乗値を評価関数とし、それが最小になるよう分離フィルタを勾配法によって求める方法が開示されている。更に、特開2000-97758号公報では、上記の方法の更新量を正規化することで収束の改善を図る方法が開示されている。

【0008】文献3(IEEE Transactions on Signal Processing, Vol.44, No.12, pp.3017-3030, December 199 30 6.)では、4次のキュムラントを近似的に求める非線形関数を導入し、それに基づく評価関数を最適化するための適応アルゴリズムにおける更新量として相対勾配(Relative gradient)に基づく推定法が提案されている。この手法は、従来、評価関数の勾配を更新量とする適応アルゴリズムの収束速度を改善するものであり、情報幾何学的考察から導入できる自然勾配(Natural gradient)と等価なものである。

【0009】また、定常過程ではない信号を復元する場合など分離行列の収束過程の安定性が重要となる。実際、上記一連の勾配法では、収束速度と安定性は反比例の関係となる場合が多い。そこで、米国特許第5,999,956号公報では、安定した収束を行うために、信号推定モジュールと分離係数推定モジュールの他に、推定信号間に大きなパワーの変化がある場合でも推定プロセスへの影響を少なくし、安定な結果を出力させるためのモジュールを追加する方法が採用されている。

【0010】更に、文献4(International Journal of Neural Systems, Vol.8, Nos.5 & 6, pp.601-612, Octo ber/December 1997.)では、非線形関数を導入した評価 関数を最適化するときに、勾配法ではなく最小2乗法に基づいて適応アルゴリズムを導出している。このアプローチを採用すれば、勾配法のようにステップ量をユーザが決定するのではなく、最適なものが自動的に決定されるので、収束速度を速くすることができ、一定条件下では安定性も得られる。

[0011]

 $-E[u_{i}(t)u_{i}(t+k_{2})]E[u_{i}(t+k_{1})u_{i}(t+k_{2})]$

【発明が解決しようとする課題】上述した文献4の手法のように、最小2乗法の枠組みであれば、ステップ量は、その評価関数の下で最適なものが計算されるため、速くて適切な収束が得られることが多いとされてきた。しかしながら、そもそも、信号分離が必要とされる状況20 と、勾配法も含む上述の従来技術が採用してきた評価関数の形式とは、必ずしも整合性があるものとは言えず、最小2乗法の枠組みを使ったとしても最善とは言えない場合がある。

【0012】例えば、携帯情報機器などにおいて、信号観測装置の配置面積を大きく取れずに近接している場合を考える。このとき、原信号は各観測装置で、似た比率で混合されることが容易に想定でき、この時の混合比を行列の要素として表すと、その各列(あるいは各行)の成分はほぼ同じ値を有している。こうした場合は、混合行列の条件数が大きくなり、分離行列の推定途中で受ける推定値への摂動が大きく反映されてしまう。ここで、条件数とは、行列Zに対する何らかのノルム $\|\cdot\|$ を用いて、 $\|Z\|\cdot\|Z^{-1}\|$ で定義される量のことである。ここで Z^{-1} は行列Zの逆行列を表す。

【0013】したがって、従来の評価関数の形式では、 摂動が大きい場合に、正常な推定値を得るために多くの 時間を要し、これが問題となる可能性が高い。また、条 件数が大きくなくても、推定途中で誤差がまだ残ってい る段階での収束速度が、従来の評価関数では遅くなって しまうことも問題となる。

【0014】本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、複数の信号が混合状態で観測されたときに、少ない計算ステップ数で、その複数の信号から原信号を安定して抽出することにある。また他の目的は、信号分離に際し、推定値への摂動が大きい場合には、その変化を然るべき重み付けによって反映する評価関数に基づいて、収束が速い最小2乗型計算法を提案することにある。

[0015]

50

【課題を解決するための手段】かかる目的を達成するた

(6)

めに、本発明は、観測信号の相互情報量を最小にするこ とと等価な効果が得られる、評価関数として指数型関数 のような単調増加特性を持った関数を導入し、その評価 関数を信号分離行列に関して最小に(最適化)する適応ア ルゴリズムを適用している。この指数型関数の最適化 は、H無限大ノルムの最適化、並びに、ゲーム理論にお ける2人0和ゲームの解、いわゆるMinMax戦略による最 適化と等価な結果を得るので、H無限大ノルムとMinMax 戦略からの適応アルゴリズムによって信号分離行列を推 定することもできる。即ち、本発明は、複数の信号が混 10 在して観測される観測データ(観測信号)から原信号を復 元する信号分離方法であって、この観測データに対し、 分離行列に関するH無限大ノルムを、与えられたスカラ ー量以下に抑えるような適応フィルタによって分離行列 を推定するステップと、推定された分離行列を観測デー 夕に乗じて原信号を復元するステップとを含むことを特 徴としている。

【0016】また、本発明の信号分離方法は、観測デー タに対して、ゲーム理論におけるMinMax戦略に基づいて 分離行列の候補から特定の分離行列を選択し、選択され 20 た分離行列を観測データに乗じて原信号を復元すること を特徴とすることができる。言い換えると、本発明の信 号分離方法は、ゲーム理論におけるMinMax戦略によっ て、様々な分離行列に対して出力される誤差の最大値候 補の中から、最小のものを出力する分離行列を解とする 戦略で最適化を行う方法と言える。

【0017】また、本発明は、原信号を含む複数の信号 が混在して観測される観測データからこの原信号を推定 復元する信号分離方法であって、観測データに対して単 調増加特性を有する関数に基づく評価関数を導入し、導 30 入された評価関数を最適化する適応フィルタを用いて分 離行列を推定し、推定された分離行列を観測データに乗 じて原信号を推定復元することを特徴とすることができ る。

【0018】ここで、この分離行列の推定は、評価関数 を分離行列に関して最小にする適応フィルタを用いるこ とを特徴とすることができ、また、導入される評価関数 は、指数型関数であることを特徴とすることができる。 これらによれば、分離行列の推定途中で受ける推定値へ の摂動が大きい場合であっても、正常な推定値を得るた 40 めの時間を短縮することが可能となる。

【0019】また、本発明の信号分離方法は、観測信号 を読み込み、読み込まれた観測信号の平均を減じてゼロ 平均化を施し、ゼロ平均化が施された観測信号に対して 白色化を施し、白色化が施された観測信号に対して単調 増加特性を有する評価関数に基づく分離処理を施し、分 離処理が施された観測信号に対して後処理として逆白色 化を施すことを特徴とすることができる。また、この分 離処理に用いられる評価関数内で用いる非線形関数は、 読み込まれた観測信号の尖度に基づいて、用いる関数が 50 推定する分離行列推定手段と、推定された分離行列を混

切り替えられることを特徴とすることができる。

【0020】一方、本発明が適用される信号処理装置 は、原信号を含む複数の信号が混在して観測される観測 データを入力する入力手段と、入力される観測データに 対し、分離行列に関するH無限大ノルムを、与えられた スカラー量以下に抑えるような適応フィルタリングによ って分離行列を推定する分離行列推定手段と、推定され た分離行列を観測データに乗じて原信号を推定復元する 推定復元手段とを備えたことを特徴としている。

【0021】また、本発明が適用される信号処理装置 は、原信号を含む複数の信号が混在して観測される観測 データを入力する入力手段と、入力される観測データに 対し、ゲーム理論におけるMinMax戦略に基づいて、分離 行列の候補から、例えば、分離行列から出てくる誤差の 最大候補の中から最小のものを出す分離行列等、特定の 分離行列を選択する選択手段と、選択された分離行列を 観測データに乗じて原信号を推定復元する推定復元手段 とを備えたことを特徴としている。

【0022】更に、本発明が適用される信号処理装置 は、入力される観測データに対し、指数型関数に代表さ れる単調増加特性を持つ関数に基づく評価関数を、例え ば、評価関数を分離行列に関して最小にする等、最適化 する適応フィルタを用いて、分離行列を推定する分離行 列推定手段と、推定された分離行列を観測データに乗じ て原信号を推定復元する推定復元手段とを備えたことを 特徴としている。

【0023】他の観点から把えると、本発明は、入力さ れた観測信号から原信号を分離して出力する信号処理装 置であって、入力された観測信号および前サイクルにて 推定された推定分離行列に対して非線形関数を作用させ る非線形関数部と、この非線形関数部により形成された 値と前サイクルにて推定された推定分離行列およびその 時刻での観測信号とに基づいて、誤差信号を算出する誤 差信号算出部と、算出された誤差信号に基づいて、その 時刻の推定分離行列に対して、単調増加特性を持つ評価 関数により誤差評価に重みが付くようにして更新を施す 分離行列更新部とを備えたことを特徴としている。ここ で、分離行列更新部により更新を施されたその時刻の推 定分離行列に対し、推定分離行列のユニタリ行列化(実 数信号の場合は直交行列化)を保証するユニタリ化演算 部(実数信号の場合は直交化演算部)とを更に備えたこと を特徴とすれば、精度をより向上させることができる点 で好ましい。

【0024】本発明は、例えば、複数話者が一度に発声 した時などのように複数の音声信号が混信されて観測さ れたものを分離する信号処理装置であって、この混合音 声観測データを入力する入力手段と、入力される混合音 声観測データに対し、単調増加特性を持つ関数に基づく 評価関数を最適化する適応フィルタを用いて分離行列を 10

合音声観測データに乗じることで、この混合音声観測デ ータから混信された音声信号を分離・抽出する分離・抽 出手段とを備えたことを特徴としている。この発明によ れば、目的とする話者の音声のみを、混合信号が他話者 の音声や環境雑音等によらず、正確に抽出することが期 待でき、音声認識等の前処理に有効となる。

【0025】本発明は、例えば、脳磁図(MEG) およ び脳波図(EEG)の少なくとも1つからなる信号である 観測生体信号から電位変化の混信等のアーチファクトを 分離する信号処理装置であって、この観測生体信号にア ーチファクトが混入された観測データを入力する入力手 段と、入力される観測データに対し、単調増加特性を持 つ関数に基づく評価関数を最適化する適応フィルタを用 いて分離行列を推定する分離行列推定手段と、推定され た分離行列を観測データに乗じることで、この観測デー 夕から観測生体信号を分離・抽出する分離・抽出手段と を備えたことを特徴としている。これらの発明によれ ば、本来の脳波等を除去することなく、混信過程が未知 であっても、正確な脳活動電位信号の抽出を期待するこ とができる。

【0026】また、本発明を他の分野に適用すると、本 発明は、経済統計データから観測上は埋没している変動 成分を抽出する信号処理装置であって、経済統計データ を入力する入力手段と、入力される経済統計データに対 し、単調増加特性を持つ関数に基づく評価関数を最適化 する適応フィルタを用いて分離行列を推定する分離行列 推定手段と、推定された分離行列を経済統計データに乗 じることで、この経済統計データから変動成分を分離・ 抽出する分離・抽出手段とを備えたことを特徴とするこ とができる。

【0027】ここで、この入力手段により入力される経 済統計データは、全体のトレンドと個々のファクタとが 未知の混合行列によって形成されたものであると推定で きる経営データであることを特徴とすることができる。 これによれば、例えば、キャッシュフローに及ぼす主要 ファクタの抽出等に応用することが可能である。また、 この経済統計データは、セットにして観察される株価変 動データであり、この分離・抽出手段により分離・抽出 される変動成分は、ポートフォリオ・リターン予測に適 用可能な独立成分の株価トレンドであることを特徴とす 40 ることができる。これによれば、金融ビジネスにおいて 行われる投資配分の決定等において、株価変動の主要因 の分析精度を向上させると共に、主要因の推定に要する 時間を大幅に削減することが可能となる。

【0028】本発明は、符号分割多元接続における基地 局から他ユーザのための拡散情報を含む観測データを受 信し、受信した観測データから自己のユーザ信号を抽出 するモバイル端末装置であって、基地局から送出される 観測データを入力する入力手段と、入力される観測デー タに対し、単調増加特性を持つ関数に基づく評価関数を 50

最適化する適応フィルタを用いて分離行列を推定する分 離行列推定手段と、推定された分離行列を観測データに 乗じることで、観測データからユーザ信号を分離・抽出 する分離・抽出手段とを備えたことを特徴とすることが できる。この発明によれば、フェージングや、拡散符号 が未知である他ユーザのための信号からの影響を、混合 行列の係数としてモデル化し、受信した観測データのみ からユーザ信号を分離することができる。

【0029】一方、本発明は、コンピュータに実行させ るプログラムをこのコンピュータが読取可能に記憶した 記憶媒体であって、このプログラムは、原信号を含む複 数の信号が混在して観測される観測データに対して単調 増加特性を有する関数に基づく評価関数を導入する処理 と、導入された評価関数を最適化する適応フィルタを用 いて分離行列を推定する処理と、推定された分離行列を 観測データに乗じて原信号を推定復元する処理とをコン ピュータに実行させることを特徴としている。また、こ のプログラムは、原信号を含む複数の信号が混在して観 測される観測データに対し、分離行列に関するH無限大 ノルムを、与えられたスカラー量以下に抑えるような適 20 応フィルタによって分離行列を推定する処理と、推定さ れた分離行列を観測データに乗じて原信号を復元する処 理とをコンピュータに実行させることを特徴としてい る。更に、このプログラムは、原信号を含む複数の信号 が混在して観測される観測データに対し、ゲーム理論に おけるMinMax戦略に基づいて分離行列の候補から特定の 分離行列を選択する処理と、選択された分離行列を観測 データに乗じて原信号を復元する処理とをコンピュータ に実行させることを特徴とすることができる。これらの 記憶媒体としては、例えばCD-ROM媒体等が該当 し、コンピュータ装置におけるCD-ROM読取装置に よってプログラムが読み取られ、例えば、コンピュータ 装置におけるハードディスクにこのプログラムが格納さ れ、実行される形態が考えられる。

[0030]

【発明の実施の形態】以下、添付図面に基づいて、本発 明の実施の形態について詳細に説明する。本実施の形態 における信号分離方法は、MEG(magnetoencephalogra phy:脳磁図)、EEG(electroencephalography:脳波 図)などによる観測生体信号からのアーチファクト(arti fact)除去の分野に適用することができる。また、音声 認識時における不要音響除去のための音声強調、QAM (Quadrature Amplitude Modulation: 直交振幅変調)な どディジタル通信における信号分離・干渉除去への適用 も考えられる。更には、CDMA(Code Division Multi ple Access:符号分割多元接続)における基地局から各 モバイル端末へのリンクであるダウンリンク信号の干渉 除去やモバイル端末ユーザ信号の抽出に、また更には、 株価変動など経済統計データから観測上は埋没してしま った重要な変動成分(要因)抽出を行うデータ解析法や ・金融ビジネスにおけるポートフォリオ・マネージメントでの使用などが考えられる。即ち、本実施の形態における信号分離方法は、ディジタル観測信号やアナログ観測信号の状態を問わず、また複素信号や実信号を問わずで、一般の1次元信号系列が混合状態で観測された信号のみから、原信号系列を分離することが必要な問題に広く適用できるものであり、上記の応用例に限らず、広くその派生形の応用を導くことが可能である。尚、これらの分野において、本実施の形態における信号分離技術は、各種メモリや制御装置、表示装置等を有するコンピュータ装置に用いられて動作する場合の他、専門の装置や端末等に用いられて実行させることが可能である。

【0031】次に、本実施の形態における信号分離方法 について、その内容を詳述する。まず、4次のキュムラ ントを近似できる非線形関数を評価関数に導入し、その 最小化によって相互情報量を最小化することと等価な意 味を持たせることで、

【式7】

分離行列 \widehat{W}

を推定する方式を考える。従来、このような方式で用いられてきた評価関数は、次式の形式が用いられてきた。 【式8】

$$E\left\{\left\|\underline{x}-\widehat{\underline{W}}\,\underline{f}\left(\widehat{\underline{W}}^{H}\underline{x}\right)\right\|^{2}\right\}$$

ここで、 \underline{f} (・)はtanh(・)などの非線形関数を要素とするベクトルである。

【0032】本実施の形態では次の形の評価関数を上述の分離行列について最小にする信号分離方法を提案する。即ち、

【式9】

$$\overline{J_{1}(\widehat{\underline{W}})} = \gamma^{2} \ln E \left\{ \exp \left(\gamma^{-2} \left\| \underline{x} - \widehat{\underline{W}} f \left(\widehat{\underline{W}}^{H} \underline{x} \right) \right\|^{2} \right) \right\}$$

である。このとき、分離行列の初期真値と推定初期値の差分、推定過程で生じる雑音はゼロ平均・無相関で、推 20 定雑音が単位分散を持つ白色ランダム変数と仮定する。ここで、白色ランダム変数とは、その変数系列[v,]において、任意のiとj(iはjに等しくない)に対する v,とv,が独立な確率変数になることを意味する。尚、以下の記述では、真値と推定値の区別が必要とならない限

り、分離行列の推定値を示すハット記号を付ける代わり に指標(t)を付けることもある。

【0033】上記の評価関数を最小にするということは、対数関数 ln(・)が単調増加であることを考慮すると、

【式10】

$E\left\{\exp\left(\left.\mathcal{T}^{-2}\right\|\underline{x}-\widehat{\underline{W}}f\left(\left.\widehat{\underline{W}}^{H}\underline{x}\right.\right)\right\|^{2}\right)\right\}$

の最小化を意味する。さらに評価関数内で、どのような非線形関数を用いるかは様々な提案がなされているが、通常では、観測信号の尖度が正か負かで、用いる関数を切り替える閾値処理を利用し、適切な高次キュムラントの近似が可能となる関数を選択することによって対応することができる。尚、その他の多様な形態を想起することも可能である。用いる非線形関数としては、入力信号uに対して、例えば、tanh(u)、u³、あるいは、u-t

anh(u)などが用いられる。例えば、尖度が正のときにu-tanh(u)を用い、尖度が負のときにtanh(u)を用いることが好ましい。

【0034】図2は、評価関数を最小にする分離行列を 求めるための第1のアルゴリズムを示したブロック図で ある。この図2に示されるアルゴリズムは以下のように 表わすことができる。

【式11】

$$\underline{y}(t) = \underline{f}(\underline{W}^{H}(t-1)\underline{x}(t))$$

$$\underline{h}(t) = \underline{P}(t-1)\underline{y}(t)$$

$$\underline{g}(t) = \underline{h}(t) / \left[\beta + \underline{y}^{H}(t)\underline{h}(t)\right]$$

$$a = 1 - \gamma^{-2}$$

$$\xi = \left\{\beta + \underline{y}^{H}(t)\underline{h}(t)\right\} / \left\{\beta + a\underline{y}^{H}(t)\underline{h}(t)\right\}$$

$$\underline{P}(t) = \frac{1}{\beta} \left\{\underline{P}(t-1) - a \xi \underline{g}(t)\underline{h}^{H}(t)\right\}$$

$$\underline{e}(t) = \underline{x}(t) - \underline{W}(t-1)\underline{y}(t)$$

$$\underline{W}(t) = \underline{W}(t-1) + \underline{e}(t)\underline{g}^{H}(t)$$

50

【0035】図2では、メインのアルゴリズムの流れを 非線形関数21、誤差信号e(t)の計算22、W(t)の更 新23、およびユニタリ化演算24で示し、このメイン のアルゴリズムにおいて必要な諸量の算出を、h(t)の 計算25、g(t)と f の計算26、およびP(t)の計算2 7の各ユニットにて実行している。また、z~! はタイミ ング合わせのための遅延部である。図2および上記のア ルゴリズムに示すように、まず、観測信号x(t)が入力 され、尖度が正か負かによって決定される非線形関数2 1によってy(t)が求められる。この非線形関数21 は、前の時刻(前サイクル)に推定された推定分離行列W (t-1)と現在時刻の観測信号x(t)の積をとったものに 対して非線形関数21を作用させるように構成されてい る。その後、 \underline{y} (t)は誤差信号 \underline{e} (t)の計算22に入り、 その時刻での観測信号x(t)から、前の時刻(前サイク ル)の推定分離行列 $\underline{W}(t-1)$ と求めた $\underline{y}(t)$ との積の差が 取られる。次に、その時刻の分離行列であるW(t)の更 新23が実行される。このW(t)の更新23では、前の 時刻(前サイクル)に推定したものに、誤差信号e(t)と 後述するg"(t)を掛け合わせたものによってW(t)が更 新される。ユニタリ化演算24は、W(t)の更新後にW (1)のユニタリ行列化を保証するステップであり、精度 を上げるためにはかかる演算が実行されることが好まし 40 い。これは、以下の式のように表される。

【式12】

$$\underline{W}(t) = \underline{W}(t) \left\{ \left(\underline{W}(t)^H \underline{W}(t) \right)^{-1} \right\}^{1/2}$$

 $[0\ 0\ 3\ 6]$ \underline{h} (t) の計算 $2\ 5$ では、前の時刻(前サイクル) の \underline{P} (t-1) と \underline{y} (t) とで \underline{h} (t) が算出される。 \underline{g} (t) と \underline{s} の計算 $2\ 6$ では、各々の値が忘却係数 $\underline{\beta}$ を用いて算出される。この忘却係数 $\underline{\beta}$ は、 $0<\underline{\beta} \le 1$ の定数であり、通常は 1 で良いが、推定すべき行列 \underline{W} が時間的に変化してしまう場合には、この忘却係数 $\underline{\beta}$ を 0.99 や 0.98

として、1 より小さい値にすることで、これに対する追従を可能としている。 $\underline{P}(t)$ の計算2 7 では、 $\underline{h}(t)$ の計算2 5 によって算出された $\underline{h}(t)$ 、入力される α 、忘却係数 β 、 $\underline{g}(t)$ と ξ の計算2 6 によって算出された $\underline{g}(t)$ と ξ によって、 $\underline{y}(t)$ の共分散行列の逆行列である $\underline{P}(t)$ が算出される。尚、これらのアルゴリズムで、初期値 $\underline{P}(t)$ と $\underline{W}(0)$ は任意に選ぶこととしている。

【0037】ここで、観測信号x(t)は、上記の分離行列推定処理をする前に、平均0の信号に変換して、白色化する前処理が施されているものとする。この処理は観測信号x(t)に対して課すものであって、原信号の情報は必要としない。また、ここで白色化とは、観測信号ベクトルの各要素を無相関化して分散を1にすることであり、その手法は固有値分解や主成分分析などを使えば可能であり、特定する必要はない。

[0038] このように、本実施の形態による信号分離 方法では、指数関数に基づく評価関数 J₁ を分離行列に 関して最適化することに基づいている。したがって、こ の観点からすれば、他のアルゴリズムを用いても同様の 結果を得ることができる。図3および図4は、第2のア ルゴリズムの構成を示した図である。図3は第2のアル ゴリズムの全体構成を示しており、図4はw_i(t)の推定 フィルタリングを示している。ここでは、図2に示した 第1のアルゴリズムを減次(deflation)によって変形し たものである。この第2のアルゴリズムでは、図3に示 すように、列ベクトルを1つ1つ推定していき、次数を 順々に減じていくことで最適化を図っている。例えば、 観測信号 $\mathbf{x}_{+}(t)$ に対して $\mathbf{w}_{t}(t)$ の推定フィルタリング3 $1 \cdot x_1(t)$ に対して $w_1(t)$ の推定フィルタリング32、 このようにして、x (t)に対してw(t)の推定フィルタ リング33を施し、これらによって、推定分離行列W (1)を求めている。即ち、この第2のアルゴリズムで は、

【式13】

17

 $\mathbf{x}_{1}(t) = \mathbf{x}(t)$;

各 i = 1, …mに対して図4に示すアルゴリズムの演算 が繰り返される。

$$y_{i}(t) = f(\underline{w_{i}}^{H}(t-1)\underline{x_{i}}(t))$$

$$a = 1 - \gamma^{-2}$$

$$\underline{e_{i}}(t) = \underline{x_{i}}(t) - \underline{w_{i}}(t-1)y_{i}(t)$$

$$\xi = \frac{\beta d_{i}(t-1) + y_{i}(t)^{*}y_{i}(t)}{\beta d_{i}(t-1) + ay_{i}(t)^{*}y_{i}(t)}$$

$$\frac{1}{d_{i}(t)} = \frac{1}{\beta} \left\{ \frac{1}{d_{i}(t-1)} - a \xi \frac{y_{i}(t)^{*}y_{i}(t)}{d_{i}(t-1) + y_{i}(t)^{*}y_{i}(t)} \right\}$$

$$\underline{w_{i}}(t) = \underline{w_{i}}(t-1) + \underline{e_{i}}(t) \left[y_{i}(t)^{*} / \left\{ \beta d_{i}(t-1) + y_{i}(t)y_{i}(t)^{*} \right\} \right]$$

$$x_{i+1}(t) = x_{i}(t) - w_{i}(t)y_{i}(t)$$

ここで、d; (0) は任意の初期値であり、添字*は共役を 表す。 f(・)はtanh(・) などの非線形関数を表す。図 20 4では、メインのアルゴリズムの流れを非線形関数4 1、誤差信号e_i(t)の計算42、w_i(t)の更新43、x ,,,(t)の更新45で示し、このメインのアルゴリズムに おいて必要な諸量の算出を、 ξ の計算46、 d_i (t)の計 算47の各ユニットにて実行している。また、 z゚゚はタ イミング合わせのための遅延部である。また、各wi(1) が求まった時点、あるいはすべてのw_i(t)が求まった時 点でユニタリ化演算を行えば、より精度が向上する。例 えば、実数ベクトルの場合、グラム・シュミットの直交 化法などを施せばよく、特に方法を限定する必要はな

【0040】図5は、本実施の形態におけるデータ読み 込みから出力までの処理の流れを示した図である。ま ず、観測信号x(t)のデータを読み込み(ステップ10 1)、アルゴリズム中で用いる非線形関数を既定のもの を用いるか、尖度によって関数を切り替えるかの場合分 けが行われる(ステップ102~ステップ104)。即 ち、既定関数を使うか否かの判断がなされ(ステップ1 02)、既定関数を使う場合には、既定関数の設定をし 度判定による関数の設定がなされる(ステップ104)。 次に、観測信号x(t)のゼロ平均化、即ち、観測信号x (i)の平均を減じて、平均ゼロにした後(ステップ10 5)、観測データの白色化を行う(ステップ106)。そ して、データの最初から最後まで、あるいは最初から既 定のデータポイントまで、本実施の形態における評価関 数である指数関数型評価関数に基づく分離処理を繰り返 し実行し(ステップ107)、後処理として逆白色化を行 って(ステップ108)、出力結果が得られる(ステップ 109)。この中で分離処理については図2に示した第

1のアルゴリズムによる構成や、図3および図4に示し た第2のアルゴリズムによる構成などを用いれば良い。 【0041】次に、本実施の形態における信号分離方法 について、更に詳述する。既に記述したように、従来用

【0039】図4に示すアルゴリズムは、以下のように

【式14】

いられてきた評価関数は、

$$J_{2}(\widehat{\underline{W}}) = E\left\{ \left\| \underline{x} - \widehat{\underline{W}}_{\underline{f}}(\widehat{\underline{W}}^{\underline{H}}\underline{x}) \right\|^{2} \right\}$$

のような形を持つH'ノルムに基づくものであった。こ のような形の評価関数だと、推定ベクトル

30 【式15】

$$\underline{\widehat{\mathbf{x}}} = \widehat{\underline{W}}\underline{f} \ (\widehat{\underline{W}}^H\underline{\mathbf{x}})$$

に推定誤差などの何らかの摂動が加わった時や、収束に 達している時も、同程度の重みで分離行列の推定を行う ことを意味する。一方、本実施の形態に示すように、指 数関数型評価関数に基づけば、誤差が大きくなればなる ほど評価に関与する重みが大きくなると言えるので、収 束途中では収束を加速し、収束に達しつつあるときは、 (ステップ103)、既定関数を使用しない場合には、尖 40 更新の加速を不必要に加速することがないように、加速 を抑えるような安定した推定を行うことが期待できる。 【0042】図6は、評価関数における誤差の考慮の度 合いを示す概念図である。横軸は、誤差の値を示し、縦 軸は考慮の度合いを示している。図でほぼ直線で示され るものが従来の方式によるものであり、下に凸となる曲 線で描かれているのが、本実施の形態における方式(本 方式)を示している。本方式では、推定誤差が大きい推 定初期には最適な更新量で大きな更新を行い、推定が進 んだ段階では適切な微調整更新を安定して行うので、結 50 果として少ないステップ数で精度の良い推定結果を得る ことができる。

【0043】例えば、従来との差が顕著となる例とし て、携帯情報機器などの信号観測装置の占める面積を大 きく取れない場合がある。この時、混合行列Aの各行ま たは各列の成分はほぼ同じ値を持つようになり、混合行 列Aの条件数が大きくなる。条件数が大きくなれば、推 定誤差などの摂動によって大きく影響を受けることにな り、従来方式では、わずかの摂動が生じたときにも収束 させるために余計な計算ステップを必要とする可能性が 髙い。一方、本方式では、摂動を受けてもその変化によ り評価関数における考慮の重みが大きくなるために、修 正量が大きく取られることと等価な効果をアルゴリズム 中の更新式に持たせることができる。その結果、本方式 によれば、従来方式よりも収束を速くすることが期待で きる。勿論、条件数が大きくない場合であっても、上記 の考察からわかるように、本方式によれば従来方式より も収束が加速され、より速く精度の良い分離行列の推定 が可能となることが期待できる。即ち、本方式は、でき るだけ推定誤差を小さく抑えようとする更新量が、従来

方式のものより適切な評価関数のもとで改善されてい る。また、上記に導出したアルゴリズム例から解るよう に、本方式は適応フィルタリングの構造を持つと考えら れるため、観測途中に混合状態が変化するといったよう に混合行列Aが時変性のものであっても、それに追随し た信号分離が可能となる。

【0044】さて、上記説明では指数関数型評価関数を 使い、その計算法は評価関数 J, を最適化するものであ れば、上の形式に限定されるものではないことは既に述 べた。指数関数を多項式展開した近似式に基づく評価関 数や、同様の単調増加特性を持つ関数に基づく評価関数 からも同様のアルゴリズムの導出は可能である。ここで はさらに、指数関数型評価関数と同じ意味を持つ評価関 数についても述べる。即ち、次に挙げる2つの評価関数 に基づいて分離行列の推定アルゴリズムを導出すれば、 図2や図3および図4に示したアルゴリズムと同様なア ルゴリズムを導くことが可能となる。

【式16】

$$J_{11}(\widehat{\underline{W}}) = \sup_{\underline{x}} \frac{E \left[\left\| \underline{\underline{W}} \underline{f} (\underline{\underline{W}}^H \underline{x}) - \widehat{\underline{W}} \underline{f} (\widehat{\underline{W}}^H \underline{x}) \right\|^2 \right]}{(\underline{W}_0 - \widehat{\underline{W}}_0)^H \underline{\Pi}_0^{-1} (\underline{W}_0 - \widehat{\underline{W}}_0) + E \left[\left\| \underline{x} - \underline{\underline{W}} \underline{f} (\underline{W}^H \underline{x}) \right\|^2 \right]} < \tau^2$$

$$J_{12}(\widehat{\underline{W}}) = \min_{\underline{x}} \max_{\underline{x}} \left[E \left[\left\| \underline{\underline{W}} \underline{f} (\underline{\underline{W}}^H \underline{x}) - \widehat{\underline{W}} \underline{f} (\widehat{\underline{W}}^H \underline{x}) \right\|^2 \right] - \tau^2 \left\{ (\underline{W}_0 - \widehat{\underline{W}}_0)^H \underline{\Pi}_0^{-1} (\underline{W}_0 - \widehat{\underline{W}}_0) + E \left[\left\| \underline{x} - \underline{\underline{W}} \underline{f} (\underline{\underline{W}}^H \underline{x}) \right\|^2 \right] \right]$$

30

ここで、Π。は初期値W。に対する不確かさの度合いを表 す正定行列である。また、Wは分離行列の真値を表す。 正定行列とは、すべての非ゼロベクトルvに対し、v[®] Mvが正となる行列Mのことを言う。

【0045】ここで、JiiはH無限大ノルムであり、こ の評価関数の形式が意味することは、どんなに大きな推 定誤差がある場合でも推定誤差のH'ノルムの上界が既 定のスカラー量以下となるような分離行列を推定する方 法を導出できるということである。」、、の評価関数が意 味することは、ゲーム理論におけるMinMax定理によっ て、いろいろな分離行列に対して出てくる誤差の最大値 候補の中から、最小のものを出す分離行列を解とする戦 略において、最適化を行う方法を導出できるということ である。これらの評価関数の意味するところは、上記の 指数関数型評価関数から導かれる信号分離法の特徴と一 致している。

【0046】次に、本実施の形態における信号分離方法 を適用した実験結果について説明する。ここでは、ま ず、3種類の人工信号を用意して、その分離実験を行っ た。人工信号は下記の3種類である。

【式17】

 $r_1 = \sin(2 \pi 60t)$

 $r_2 = \operatorname{sign}(\sin(2\pi 500t))$

r。: [0,1]区間の一様乱数

ここで、サンプリング周波数は10kHzとした。sign (・)は(・)内の符号を出力する関数を表す。比較対象 として前述の文献3と文献4の方法を用いた。文献3の 方法は、勾配法の中では収束が速いとされる相対勾配に 基づく方法であり、文献4の方法は従来の最小2乗型ア ルゴリズムである。比較対象として、図2に示した本実 施の形態のアルゴリズムを採用している。混合行列は [0,1]区間に一様分布する乱数から生成することと し、条件数は2000以上になるようにした。

【0047】図7は、この分離実験において、独立試行 を10回行い、その平均を取ったときの収束の様子を示 した図である。横軸は繰り返し回数を示し、縦軸は収束 の指標値を示しており、ここでは、文献3の手法、文献 4の手法、および、本実施の形態の手法を用いた際の、 人工信号による収束特性を示している。このときの収束 性は文献4で使われている次の指標を用いており、0に

50 近づくほど推定精度が高いことを示している。

【式18】

$$C = \sqrt{\sum_{i} \left(\sum_{j} \frac{|p_{ij}|^{2}}{\max_{k} |p_{ik}|^{2}} - 1 \right) + \sum_{j} \left(\sum_{i} \frac{|p_{ij}|^{2}}{\max_{k} |p_{kj}|^{2}} - 1 \right)}$$

ここで、pijは推定分離行列と混合行列Aの積で得られ る行列の(i,j)要素を表わしている。文献3の手法は 更新ステップをユーザが決定してやらなければならず、 ここでは本実施の形態と同程度の安定性を持って収束す るステップ量のうちで最も速く収束するものを用いてい 10 る。しかし、図7から理解できるように、文献3の手法 の収束速度は本実施の形態の手法よりも遅い。一方、文 献4の手法や本実施の形態の手法はステップ量を最適な ものに自動設定できるものであるが、本実施の形態によ れば文献4の手法よりも速く収束していることが解る。 【0048】上記の実験におけるそれぞれの手法におい て、1秒間に処理できる浮動小数点演算命令であるFLOP S(Floating Operations Per Second)数を調べてみる と、本実施の形態と文献4の1ステップのFLOPS数はほ ば同じであることが解った。従って、収束までの総FLOP S数は本実施の形態における手法の方が少ないことがわ かる。一方、文献3と本実施の形態とでは、1ステップ に要するFLOPS数は文献3の手法の方が少ないが、十分 な収束に要するまでに必要な総FLOPS数は、本実施の形 態によれば2/3以下に削減できることをシミュレーシ ョンで確認した。尚、図3および図4に示したアルゴリ ズムを用いても同程度の結果が得られる。また、混合行 列Aの条件数を本シミュレーションのように悪条件にし なくても同様の結果が得られる。

【0049】図8~図10は、実信号分離の実現の一例 30として、音声信号分離結果を説明するための図である。図8(a)~(d)は実音声の原信号を示している。図9(a)~(d)は混合された音声信号を示し、図8(a)~(d)を一様乱数により生成した混合行列にて混合された音声信号を示している。図10(a)~(d)は本実施の形態による分離結果を示している。それぞれ横軸はサンプル数であり、縦軸は振幅である。図8(a)では、/n/、/i/、/N,g/、/e/、/N/、/t/、/o/、/h/、/a/(人間とは)の実音声を示している。図10(a)は、混合された音声信号の分離結果であり、図8(a)と同様な信号が得られ、本方式によって複数の信号を原信号に安定して分離されたことが理解できる。

【0050】図8(b)では、/b/、/i/、/my/、/o,u/、/d/、/e/、/f,u/、/k/、/u/、/z/、/a/、/ts/(微妙で複雑)の実音声を示している。図10(b)は混合された音声信号の分離結果であり、図8(b)の実音声が分離されている。また、図8(c)では、/i/、/k/、/i/、/m/、/o/、/n/、/o/、/d/、/e/、/a/、/r/、/u/(生き物である)、図8(d)では、/f,u/、/k/、/u/、/z/、/a/、/ts/、/u/、/n

/、/a/、/i/、/k/、/i/、/m/、/o/、/n/、/o/ (複雑な生き物)の実音声が示されている。図10(c)、図10(d)には、本実施の形態により分離された音声信号が示されており、図8(c),図8(d)と同様な振幅が得られていることが理解できる。このように、実音声信号に対して複数の音声信号(他の音声信号等)が混在した場合であっても、本実施の形態の信号分離方法を採用することで、実音声信号を安定して分離することが可能となる。

【0051】次に、本実施の形態における信号分離方法の他の分野への応用例(1)~(3)について説明する。

(1) 脳磁図(MEG)、脳波図(EEG)などによる観測 生体信号からのアーチファクト除去について

本実施の形態における信号分離方法は、独立成分解析の 一種であり、MEGやEEGにおいて脳活動信号とアー チファクトを分離するための方法として用いることが期 待できる。アーチファクトとしては、心電、瞬き、眼球 の動き、あるいは筋肉の動き(筋電)によって発生する電 位変化の混信や、周囲環境からの電気的・磁気的擾乱、 さらに、センサの不調等が挙げられる。これらは脳活動 を示す信号波形と分離されるべきであるが、頭部表皮に 貼り付けた多チャネルの電極等を用いて生体信号を観測 した場合、脳活動を示す信号と上記のアーチファクトは 同時に観測されてしまう。従来、アーチファクトに対し て時間的・周波数的な仮定を置くことで、ある程度の除 去は実行されてきたが、本来の脳波までも除去されるこ とが多かった。本実施の形態では、混信過程が未知であ っても原信号を比較的少ない観測時間から分離・抽出す ることが可能となり、より正確な脳活動電位信号の抽出 が期待できる。

【0052】(2)符号分割多元接続(CDMA)における基地局から各モバイル端末へのリンクであるダウンリンク信号の干渉除去について

CDMAは、スペクトル拡散に基づく多元接続技術である。ここでは、各ユーザが異なる符号を使って情報スペクトルを拡散し、複数のユーザが同じ周波数帯域を使って通信を行っている。そのために、他のユーザのための拡散情報は、各ユーザ自身にとっては干渉雑音になる。また、マルチパスによるフェージングの影響などもある。こうした劣化要因からの影響を低減するためには、伝送符号の時間遅れの検知・推定が重要とされ、従来の受信技術も整合フィルタや最尤法(maximum likelihood method)による時間遅れの検知が含まれていた。基地局のように充分な信号処理設備を持てる側に対しては、従来の考え方の効率化で今後も対応可能である。しかしな

・がら、ますます小型化・消費電力の低減化が要求される ・モバイル端末側には、従来手法の精度を上げていく方向 ・での複雑な信号処理装置の実装は難しくなるものと予想 ・される。そこで、フェージングや、拡散符号が未知であ っる他ユーザのための信号からの影響を、混合行列の係数 としてモデル化して、受信信号のみから各ユーザ自身の ・信号を分離する手法として本実施の形態を用いれば、従 来手法よりも精度のよい受信を可能とすることができ る。尚、本実施の形態が適用されるモバイル端末装置と しては、通信手段、制御手段、表示手段等、一般の携帯 電話やPDA(Personal Digital Assistants)に用いら れる各種機能を備える必要があるが、ここでは、その詳 細な内容説明については省略する。

【0053】(3) 株価変動など経済統計データから観測上は埋没してしまった重要な変動成分(要因)抽出を行うデータ解析法や金融ビジネスにおけるポートフォリオ・マネージメントへの使用について

経営データの例として、チェーン店全体での利益予測を 考える。各店の日時別売上データは、チェーン店全体の 売上に作用するようなトレンドと個々の店における売上 20 要因から形成されているとも考えられる。例えば、各店 の売上に影響を及ぼすものとしては、マスコミを通した 宣伝効果などに起因する地域消費者の購買意欲の変化、 また、個々の店の宣伝・売り方などが挙げられる。しか しながら、経営データ解析上からは、こうした様々な要 素とは独立した、チェーン店全体で見たときのキャッシ ュフローに及ぼす主要ファクターを抽出することが重要 となる。そこで、全体のトレンドと個々のファクター が、未知の混合行列によって形成されたものがチェーン 店の各売上データとすれば、本実施の形態による信号分 30 離法、すなわち独立成分解析法の一種を有効に用いるこ とができ、従来手法よりも速く、精度の良い経営分析が 可能になるものと考えられる。

【0054】また、金融ビジネスについても同様に考えることができる。金融工学で開発される様々なポートフォリオ商品の場合、いくつかの証券銘柄を1セットにしてポートフォリオ・リターン予測を行い、投資配分が決定される。このとき、セットにして観察している株価を駆動している主要素を特定できれば、有効な金融工学商品の提供が可能になる。ここで、各株価はいくつかの独立成分の和によってモデル化できると仮定すれば、本実施の形態における信号分離方法を使って、対象セットを駆動している独立成分を求めることが可能となる。そして、影響の大きな独立成分のトレンドを読み取り、推定した混合行列で推定株価を合成すれば、より効果的なポートフォリオ・リターン予測が可能になるものと考えら

れる。また、この考えを基本にしてモデル化を高度にしていった場合でも、独立成分解析法の精度や収束の速い方法の必要性は失われることはない。これは、独立成分解析は、高次の統計量を考慮した評価関数と関連付けられることから解るように、従来の主成分分析など2次の統計量までを考慮した手法で抽出した主成分の組み合わせよりも精度が上がることが期待できる。更には、本実施の形態では、分離行列を推定するために要する時間が短いので、少ない観測データからでも精度の良い分離行列が推定でき、素早い判断が可能となる。かかる点からも経営・金融データ解析法としても有効に活用することができると言える。

[0055]

【発明の効果】以上説明したように、本発明によれば、 複数の信号が混合状態で観測されたときに、少ない計算 ステップ数で、その複数の信号から原信号を安定して分 離・抽出することが可能となる。

【図面の簡単な説明】

【図1】 信号分離問題を示す概念図である。

【図2】 評価関数を最小にする分離行列を求めるため の第1のアルゴリズムを示したブロック図である。

【図3】 第2のアルゴリズムの全体構成を示した図である。

【図4】 第2のアルゴリズムにおける w_i (t)の推定フィルタリングを示した図である。

【図5】 本実施の形態におけるデータ読み込みから出力までの処理の流れを示した図である。

【図6】 評価関数における誤差の考慮の度合いを示す概念図である。

【図7】 分離実験において、独立試行を10回行い、 その平均を取ったときの収束の様子を示した図である。

【図8】 $(a)\sim(d)$ は実音声の原信号を示した図である。

【図9】 (a)~(d)は混合された音声信号を示した図である。

【図10】 (a) \sim (d)は本実施の形態による分離結果を示した図である。

【符号の説明】

2 1 …非線形関数、2 2 …誤差信号e(t)の計算、2 3 …W(t)の更新、2 4 …ユニタリ化演算、2 5 …h(t)の計算、2 6 …g(t)ともの計算、2 7 …P(t)の計算、3 1 …w,(t)の推定フィルタリング、3 2 …w,(t)の推定フィルタリング、4 1 …非線形関数、4 2 …誤差信号e,(t)の計算、4 3 …w,(t)の更新、4 5 …x,(t)の更新、4 6 …をの計算、4 7 …d,(t)の計算

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

BEST AVAILABLE COPY

【図9】

フロントページの続き

(72)発明者 清水 淳也 神奈川県大和市下鶴間1623番地14 日本ア イ・ビー・エム株式会社 東京基礎研究所 内 Fターム(参考) 5D015 EE04 5D020 BB04 BB07