Homework 3 – Controller design

Yi Chen 3/1/2020

Overview

- PPC
 - System setup
 - System response
 - Frequency response
- LQG
- MRC

PPC - setup

PPC – P1 – System response

Pole = 10 times to the left from open loop pole \rightarrow

When assigned desired pole \rightarrow

PPC – P1 – Frequency response

• With K designed having pole = -.1+0.69805i & -.1-0.69805i

PPC – P2 – System response

PPC – P2 – Frequency response

• Bandwidth of O.L. = 7.5408

LQG – P1 – system setup

• Sampling time: 0.005 s, Q = R = 1 for lqr, Q = R = 0.1 for Kalman.

LQG – P1 – system response

LQG – P1 – Frequency response

Desired bandwidth: 1 rad/s

LQG – P2 – system response

LQG – P2 – Frequency response

• Bandwidth of O.L. = 7.5408

MRC – system setup

MRC – P1 – System response

MRC – P1 – Frequency response

Desired bandwidth: 1 rad/s

MRC – P2 – System response

MRC – P2 – Frequency response

• Bandwidth of O.L. = 7.5408

Summary

- LS parameter convergence is somewhat stable for output, but not for parameters
- Real time calculation is starting to get expensive as the time to finish each time step is longer.
- PPC is relatively harder to obtain a desired response, since we'd need to calculate the desired pole first for the desired system performance.