/ / <u>(</u>

4.6 -	N	udanca	de	bases
		Y		

pag 217-222

Problema da mudanca de base: Se [V]B for um vetor em relação à uma base B, num espaço veto vial V, e [V]B' for um vetor em relação à uma base B', qual é a relação entre os vetores [V]B e [V]B'?

B- fuj 42 8		B'= { u', u'; }
[V]	>	Tylo!
1 8		8

Para simplificar, vamos resolver esse problema em R2. A solução para Rn é análoga.

Seja um vetor [V]_B = [K1] em relação a base B. Isto é:

 $[V]_B = K_1 U_1 + K_2 U_2$

I

Excrevendo [us] gi= [b] e [uz] gi= [d] em relação à base B', temos:

u2 = cu'1 + du'2

1

Substituindo I en I, temos:

 $[V-B] = K_1(au_1 + bu_2) + K_2(cu_1 + du_2)$

= a K1 u'1 + b K1 u'2 + c K2 u'1 + d K2 u'a

= (a K1 + C K2) U'1 + (b K1 + d K2) U'2 [u1] B1 [u2] B1

Ou seja: $[V]_{g} = \begin{bmatrix} ak_1 + ck_2 \\ bk_1 + dk_2 \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} V \end{bmatrix} \begin{bmatrix} \text{tilibra} \\ \text{tilibra} \end{bmatrix}$

Oy anda: [V]B' = PR-DBI [V]B onde: PB-B' = [u1] [u2]B' Ex: Sejam as bases B= {u1, u2} e B= {u1, u2} em R2, onde: $u_1 = (1,0), u_2 = (0,1), u'_1 = (1,1), u'_2 = (2,1).$ Encontre a matriz de transição PB DB! de Bpora B'. [V]B' = PB-DB' [V]B Excrevendo os vetores da base velha B em re La ção a nova base B'. · 41 = au1+ bu2 · uz = aux + buz $(1,0) = \alpha(1,1) + b(2,1)$ $(0,1) = \alpha(1,1) + b(2,1)$ (1,0) = (a,a) + (2b,b)(0,1) = (a,a) + (2b,b)(0,1)=(a+2b,a+b)(1,0) = (a+2b, a+b)a+2b = 0 a + 2b = 1a+b=0 a+b=1 Podemos resplyer ambos sistemas de uma so VEZ: u1 11/2 1/1 1/2 2 1 1 0 7 1 2 1 0 0 -1 -1 1 = - 12 0 1 1 -1 +11 1 1 0 1 = -11+62

B' B \log_{0} : $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{bmatrix}$

Teorena: Se P for a matriz de transição de uma base B para uma base B' de um espaço vetorial V de dimensão finita. Então P é invertível e P-ª é a matriz de transição de B' para B.

Um procedimento para calcular PB >B1

Passo1: Montamos a matriz [B'18]

Parso2: transformanos a matriz [B'|B] na matriz [IIPB > B'] por escalonamento.

Ou reja:

[B'|B] operações

| J | PB -> B']

bare bare

mova yelha

Exercicio 8 (pag 223): Considere as bases $B = \{u_1, u_2, u_3\}$ e $B' = \{u'_1, u'_2, u'_3\}$ de R^3 , em que:

 $u_1 = (-3, 0, -3)$, $u_2 = (-3, 2, -1)$, $u_3 = (1, 6, -1)$ $u'_1 = (-6, -6, 0)$, $u'_2 = (-2, -6, 4)$, $u'_3 = (-2, -3, 7)$

a) Encontre a matriz de transição de B para B!

	B'		\mathcal{B}									
	(-6) -2	-2	-3 -3	1	7=-1/1	1	1/3	1/3	1/2	1/2	-1/6	
-	-6-6	- 3	0 2	6	1 6	-6	-6	-3	0	2	6	=6-1+-2
	10 4	7	1-3 -1	-1		10	4	7	-3	-1	-1	

$$\begin{bmatrix} 1 & 1/3 & 1/3 & 1/2 & 1/2 & -1/6 \\ 0 & -4 & -1 & 3 & 5 & 5 \\ 0 & 4 & 7 & -3 & -1 & -1 \end{bmatrix} = -\frac{1}{4} L_2 \qquad \begin{bmatrix} 1 & 1/3 & 1/3 & 1/2 & 1/2 & -1/6 \\ 0 & 1 & 1/4 & -3/4 & -5/4 & -5/4 \\ 0 & 4 & 7 & -3 & -1 & -1 \end{bmatrix} = -\frac{1}{4} L_2 + L_3$$

	123+-1
1 1/3 1/3 1/2 1/2 -1/6	1 1/3 1/3 1/2 1/2 -1/6 = 31 /3+62
0 1 1/4 -3/4-5/4-5/4	0 1 1/4 -3/4-5/4 = 4
006044]=1-63	0 0 1 0 2/2 2/2 tilibra
6	5 Commence of the Commence of

b) la cule o vetor de coordenados [W]BI, amogiado ao vetor [W]B = (-5, 8, -5).

[W]B' = PB-DB' [W]B

Tw70 -	3/4 3/4 1/12	-5	S actions	11/6]	
7 38	-314 -13/2 -13/2	8		-1/2	:_
	[0 2/3 2/3]	-5	The state of the s	2	//

(tilibra)