

手写VIO第十章大作业讲解

主讲人 啦啦啦

题目

大作业为两个代码作业, 完成时间为三周:

- 1. 更优的优化策略;:
 - a. 选用更优的 LM 策略, 使得 VINS-Mono 在 MH-05 数据集上收敛速度更快或者精度更高.
 - b. 实现 dog-leg 算法替换 LM 算法, 并测试替换后的 VINS-Mono 在 MH-05 上算法精度.

详细的实验报告,包括:对迭代时间和精度进行评估,其中精度评估可以采用 evo 工具(https://github.com/Micha elGrupp/evo) 对轨迹精度进行评估,轨迹真值在 zip 中已给出.

2. 更快的 makehessian 矩阵

可以采用任何一种或多种加速方式 (如多线程, 如sse指令集等) 对信息矩阵的拼接函数加速, 并给出详细的实验对 比报告.

纲要

- ▶第一部分: 概述
- ▶第二部分: 方法

▶第三部分:问题与挑战

作业概述

- T1: 更优的优化策略:
 - ●LM策略:
 - ●Dog-Leg代替LM策略

- T2: 更快的MakeHessian矩阵
 - ●加速信息矩阵的拼接

纲要

- ▶第一部分: 概述
- ▶第二部分:方法

▶第三部分:问题与挑战

- 改进的角度
 - LM阻尼因子更新测量
 - ●Dog-Leg
 - ●其他改进的角度
 - 限制步数
 - 残差阈值
 - 参数增量阈值

● 回顾第三章中LM阻尼因子更新策略:

- 1. $\lambda_0 = \lambda_0$; λ_0 is user-specified [8]. use eq'n (13) for \boldsymbol{h}_{lm} and eq'n (16) for ρ if $\rho_i(\boldsymbol{h}) > \epsilon_4$: $\boldsymbol{p} \leftarrow \boldsymbol{p} + \boldsymbol{h}$; $\lambda_{i+1} = \max[\lambda_i/L_{\downarrow}, 10^{-7}]$; otherwise: $\lambda_{i+1} = \min[\lambda_i L_{\uparrow}, 10^7]$;
- 2. $\lambda_0 = \lambda_0 \max \left[\operatorname{diag}[\boldsymbol{J}^\mathsf{T} \boldsymbol{W} \boldsymbol{J}] \right]; \ \lambda_0 \text{ is user-specified.}$ use eq'n (12) for $\boldsymbol{h}_{\mathsf{lm}}$ and eq'n (15) for ρ $\alpha = \left(\left(\boldsymbol{J}^\mathsf{T} \boldsymbol{W} (\boldsymbol{y} \hat{\boldsymbol{y}}(\boldsymbol{p})) \right)^\mathsf{T} \boldsymbol{h} \right) / \left(\left(\chi^2 (\boldsymbol{p} + \boldsymbol{h}) \chi^2 (\boldsymbol{p}) \right) / 2 + 2 \left(\boldsymbol{J}^\mathsf{T} \boldsymbol{W} (\boldsymbol{y} \hat{\boldsymbol{y}}(\boldsymbol{p})) \right)^\mathsf{T} \boldsymbol{h} \right);$ if $\rho_i(\alpha \boldsymbol{h}) > \epsilon_4$: $\boldsymbol{p} \leftarrow \boldsymbol{p} + \alpha \boldsymbol{h}$; $\lambda_{i+1} = \max \left[\lambda_i / (1 + \alpha), 10^{-7} \right];$ otherwise: $\lambda_{i+1} = \lambda_i + |\chi^2 (\boldsymbol{p} + \alpha \boldsymbol{h}) \chi^2 (\boldsymbol{p})| / (2\alpha);$
- 3. $\lambda_0 = \lambda_0 \max \left[\operatorname{diag}[\boldsymbol{J}^\mathsf{T} \boldsymbol{W} \boldsymbol{J}] \right]; \ \lambda_0 \text{ is user-specified [9].}$ use eq'n (12) for $\boldsymbol{h}_{\mathsf{lm}}$ and eq'n (15) for ρ if $\rho_i(\boldsymbol{h}) > \epsilon_4$: $\boldsymbol{p} \leftarrow \boldsymbol{p} + \boldsymbol{h}$; $\lambda_{i+1} = \lambda_i \max \left[1/3, 1 - (2\rho_i - 1)^3 \right]; \nu_i = 2$; otherwise: $\lambda_{i+1} = \lambda_i \nu_i$; $\nu_{i+1} = 2\nu_i$;

Gavin C H . The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems.

● 不同方法对比:

方法	初始化	求解方程	λ变换比例
1	与 Hessian 矩阵无关	Hessian 对角线元素加上λ *Hessian 对角线元素	固定
2	与 Hessian 矩阵有关	Hessian 对角线加上λ	与α 有关
3	与 Hessian 矩阵有关	Hessian 对角线加上λ	与ρ 有关

Dog-Leg:

可以参考下方的两篇论文 ,代码实现方式可以按照第二 篇中的来。

Figure 2. Dog leg approximation of the curved optimal trajectory (shown dashed). The case with the Cauchy point and the Gauss-Newton step being respectively inside and outside the trust region is illustrated.

^{25 [1].} Is Levenberg-Marquardt the Most Efficient Optimization Algorithm for Implementing Bundle Adjustment?

- Dog-Leg:
- · 属于信赖域(Trust Region)类优化算法
- · 在以当前点为中心,半径Δ的区域(信赖域)内,将目标函数做二阶近似
- · 分别计算最速下降法和高斯牛顿法的最优增量 h_{sd} 、 h_{gn} ,根据信赖域大小选择合适的增量 h_{dl}

- Dog-Leg:
- 1. 计算最速下降法和高斯牛顿法的最优增量 h_{sd} 、 h_{gn}
- 2. 选取合适的狗腿法增量 h_{dl}
- 3. 计算增益比 ρ ,根据增益比计算信赖区域的半径 Δ .

Dog-Leg:

1. 计算最速下降法和高斯牛顿法的最优增量 h_{sd} . h_{gn}

$$(J(x)^T J(x))h_{on} = -J(x)^T f(x)$$
 自行加入协方差等考量

$$h_{sd} = -g = -J(x)^T f(x) \qquad \qquad \alpha = -\frac{\mathbf{h}_{sd}^\top \mathbf{J}(\mathbf{x})^\top \mathbf{f}(\mathbf{x})}{\|\mathbf{J}(\mathbf{x})\mathbf{h}_{sd}\|^2} = \frac{\|\mathbf{g}\|^2}{\|\mathbf{J}(\mathbf{x})\mathbf{g}\|^2}.$$

α推导看论文2

Dog-Leg:

2. 选取合适的增量 h_{dl}

$$\begin{split} & \textbf{if} \ \|\mathbf{h}_{gn}\| \leq \Delta \\ & \mathbf{h}_{dl} := \mathbf{h}_{gn} \\ & \textbf{elseif} \ \|\alpha \mathbf{h}_{sd}\| \geq \Delta \\ & \mathbf{h}_{dl} := (\Delta/\|\mathbf{h}_{sd}\|) \mathbf{h}_{sd} \\ & \textbf{else} \end{split}$$

若 $\|\boldsymbol{\delta}_{gn}\| \le \Delta$, $\|\boldsymbol{\delta}_{sd}\| \in R$ $\boldsymbol{\delta}_{dl} = \boldsymbol{\delta}_{gn}$

若 $\left\|oldsymbol{\delta}_{
m gn}
ight\| > \Delta$, $\left\|oldsymbol{\delta}_{
m sd}
ight\| > \Delta$ $oldsymbol{\delta}_{
m dl} = rac{oldsymbol{\delta}_{
m sd}}{\left\|oldsymbol{\delta}_{
m sd}
ight\|} \Delta$

若 $\|\boldsymbol{\delta}_{\mathrm{gn}}\| > \Delta$, $\|\boldsymbol{\delta}_{\mathrm{sd}}\| \le \Delta$ $\boldsymbol{\delta}_{\mathrm{dl}} = \boldsymbol{\delta}_{\mathrm{sd}} + \alpha(\boldsymbol{\delta}_{\mathrm{gn}} - \boldsymbol{\delta}_{\mathrm{sd}})$

β 的推导见论文

Dog-Leg:

3.. 计算增益比 ρ ,根据增益比计算信赖区域的半径 Δ .

$$\begin{split} \varrho &:= (F(\mathbf{x}) - F(\mathbf{x}_{new})) / (L(\mathbf{0}) - L(\mathbf{h}_{dl})) \\ &\mathbf{if} \ \ \varrho > 0 \\ &\mathbf{x} := \mathbf{x}_{new}; \quad \mathbf{g} := \mathbf{J}(\mathbf{x})^{\top} \mathbf{f}(\mathbf{x}) \\ & \textit{found} := (\|\mathbf{f}(\mathbf{x})\|_{\infty} \leq \varepsilon_3) \ \mathbf{or} \ (\|\mathbf{g}\|_{\infty} \leq \varepsilon_1) \\ &\mathbf{if} \ \ \varrho > 0.75 \\ & \Delta := \max\{\Delta, 3*\|\mathbf{h}_{dl}\|\} \\ & \mathbf{elseif} \ \ \varrho < 0.25 \\ & \Delta := \Delta/2; \quad \textit{found} := (\Delta \leq \varepsilon_2(\|\mathbf{x}\| + \varepsilon_2)) \end{split}$$

$$L(0)-L(h_{dl})$$

计算见论文

● 不同方法对比: (仅供参考)

采用evo评估的时候,加-a:进行了旋转和平移操作之后的结果; 下面是不加-a

方法	max	mean	min	rmse	SolveTime	makeHessian
LM策略1	0. 440049	0. 232501	0. 020539	0. 245661	99. 80546353	47. 44816584
LM策略2	0. 542719	0. 231354	0. 035542	0. 249445	97. 08440933	48. 42180261
LM策略3	0. 491357	0. 230415	0. 028529	0. 246916	101. 3129709	51. 52715858
Dogleg论文	0. 411051	0. 253034	0. 087332	0. 260495	80. 96875938	42. 82796472
1.165 m/z 1 12.405015 5.2771.c0 2.075024 5.012155 00.0054.c252 47.4401.c504						
LM策略1	12.405815	5.377169	2.075034	5.913155	99.80546353	47.44816584
LM策略2	12.718008	5.490765	2.021340	6.047247	97.08440933	48.42180261
LM策略3	12.671308	5.482706	2.015552	6.035682	101.3129709	51.52715858
Dogleg论文	12.687119	5.488934	2.037965	6.042022	80.96875938	42.82796472

- 不同方法对比: (仅供参考)(evo 加-a)
 - LM策略1 Pose_tum_1

 - LM策略3 Pose tum 3
- 其他: Pose_tum_4
- LM策略2 Pose_tum_2 Dogleg论文: Pose_tum_6

12

10

estimate = Pose_tum-1.txt

estimate = Pose tum-2.txt

- 不同方法对比: (仅供参考)
 - 1. 精度方面:均值几乎都一样,所以差不太多。 速度方面: 4,6 > 1,2 > 3.
 - 2. Dogleg在速度方面是优于LM三种更新策略的。 精度方面,大家都差不多。
 - 其他改进的角度:
 - ◆ 限制步数
 - ◆ 残差阈值
 - ◆ 参数增量阈值
 - ◆ 利用滑动窗口算法的性质, marginalize一帧后增加一帧,问题结构变化不大。因此可利用上一次求解的结果优化当前问题,比如上一次的结果作为当前的初值

第二题: 更快的 Make Hessian

- Hessian矩阵的拼接过程非常适合并行计算
- ◆ OpenMP最便捷,资料较多:

http://supercomputingblog.com/openmp/openmp-tutorial-the-basics/

◆ SSE Instruction Set: Intel公司有效增强CPU浮点运算的能力的指令集:

http://supercomputingblog.com/optimization/getting-started-with-sse-programming/

◆ Nvidia CUDA 较复杂,可参考CUDA官方文档:

https://cuda-tutorial.readthedocs.io/en/latest/tutorials/tutorial01/

在线问答

感谢各位聆听

Thanks for Listening

