

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

אלגברה לינארית

תרגיל מספר 8 - צירופים לינאריים ותלות לינארית, בסיס ומימד, השלמת בסיס

שאלה 1

. $v_1 = (2,4,6)$, $v_2 = (0,-3,2)$, $v_3 = (1,1,1)$, $v_4 = (2,3,4)$ נתונים הווקטורים

- . אם מקדמי את מקדמי אם כן כתבו v_1, v_3, v_4 אירוף לינארי של צירוף אוא אירוף לינארי של אורי
- . ב. האם את מקדמי אם כן כתבו אל v_2, v_3, v_4 של לינארי אירוף לינארי או v_1 האם ב
- . אם כן כתבו את מקדמי הצירוף v_1, v_2, v_3 אם לינארי של צירוף לינארי אם v_4
 - . ד. האם 0 הוא צירוף לינארי של v_1, v_2, v_3 אם כן כתבו את מקדמי הצירוף.

שאלה 2

. $p_1(x) = x$, $p_2(x) = 1 + x^2$, $p_3(x) = (1 + x)^2$, $p_4(x) = x + x^2$ נתונים הפולינומים קבעו לגבי כל אחת מהקבוצות הבאות האם היא תלויה לינארית / בלתי תלויה לינארית:

- - $\{p_1, p_3\}$
- $\{p_1, p_2, p_3, p_4\}$ (vi)

 $\{p_2, p_3\}$

 $\{p_1, p_2, p_4\}$ (v) $\{p_1, p_2, p_3\}$

$$.\,A_{_{\! 1}} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad , \quad A_{_{\! 2}} = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix} \quad , \quad A_{_{\! 3}} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \,$$
 נתונות המטריצות

- א. האם $\{A_1,A_2,A_3\}$ בתיילי
- $\{A_1,A_2,A_3\}$ ב. האם $A_4=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$ ב. האם
 - $M_{2\times 2}(\mathbb{R})$ בסיס של $\{A_1,A_2,A_3\}$ ג. האם
 - $M_{2 imes 2}(\mathbb{R})$ בסיס של $\{A_1,A_2,A_3,A_4\}$ ד. האם

שאלה 4

 $V = \left\{ A \in M_{2 imes 2}\left(\mathbb{R}
ight) | \, A^t = A
ight\}$ מרחב המטריצות הסימטריות מסדר 2 imes 2 , כלומר V

- N א. מצאו קבוצה פורשת של
 - V ב. מהו המימד של
- ג. הביעו, אם אפשר, את המטריצה $\begin{pmatrix} 2 & 3 \\ 2 & 3 \end{pmatrix}$ כצירוף לינארי של הקבוצה שמצאתם בסעיף אי.

$$P_3\left(\mathbb{R}\right)$$
 בסיס של $\left\{1+x,x+x^2,x^2+x^3,x^3+1
ight\}$ האם

המחלקה למדעי היסוד- מתמטיקה Department of Basic Sciences

שאלה 6 (מבחו)

$$\mathbb{R}^4$$
 תת מרחב וקטורי של א Span
$$\left\{ \begin{bmatrix} 1\\0\\\alpha\\1 \end{bmatrix}, \begin{bmatrix} 1\\\alpha\\\alpha\\1 \end{bmatrix}, \begin{bmatrix} \alpha\\1\\0\\\alpha \end{bmatrix} \right\}$$
יהי

- lpha א. קבעו מהו $\dim W$ בהתאם לערכים השונים של
- W-ב. עבור אילו ערכים של lpha הוקטור (1,1,1,1) שייך ל

שאלה 7

.
$$M_{2\times 2}(\mathbb{R})$$
 תת מרחב של $V=\operatorname{Span}\left\{egin{pmatrix}1&1\\1&1\end{pmatrix},egin{pmatrix}0&2\\2&0\end{pmatrix},egin{pmatrix}1&2\\2&1\end{pmatrix}\right\}$ נתון

- . V א. מצאו בסיס ומימד של
- . $M_{2 imes 2}(\mathbb{R})$ של לבסיס לבסיס בסעיף בסעיף שמצאתם את הבסיס את ב

שאלה 8

: מצאו בסיס ומימד של:
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix} \in M_{3 imes 3}(\mathbb{R})$$
 נתונה

- א. מרחב העמודות של A (זאת אומרת המרחב הנפרש עייי וקטורי העמודות).
 - ב. מרחב השורות של A (זאת אומרת המרחב הנפרש עייי וקטורי השורות).
- .(Ax=0 זאת אומרת מרחב הפתרונות של המערכת ההומוגנית A (זאת אומרת מרחב הפתרונות של המערכת ההומוגנית).
 - ד. השלימו את הבסיסים שמצאתם בסעיפים הקודמים לבסיס של המרחב הרלבנטי.

שאלה 9 (מבחן)

לכל 2 ממעלה בחב הפולינומים ממעלה 2 אתת מרחב וקטורי של $P_2\left(\mathbb{R}\right)$ מרחב הפולינומים ממעלה 3 אתת מרחב וקטורי של $W=\operatorname{Span}\left\{p_1(x),p_2(x),p_3(x)\right\}$ היותר), כאשר

$$p_1(x) = -2 + x + 3x^2$$

$$p_2(x) = 6 + 5x - x^2$$

$$p_3(x) = -1 + ax + 2x^2$$

- . $\dim W = 3$ כך ש $a \in \mathbb{R}$ א. מצאו
- dim W = 1 -ב. האם קיים $a \in \mathbb{R}$ כך ש
- $p_2(x) 1$ $p_1(x)$ אינו אירוף ליניארי של $q(x) = b + 13x + 7x^2$ באו $b \in \mathbb{R}$, כך שהפולינום
- ד. מצאו את $\dim \left(Span\left\{p_1(x),p_2(x),p_3(x),q(x)\right\}\right)=2$ כדאי להשתמש בסעיפים . מצאו את $a,b\in\mathbb{R}$. כך ש