Week 11: Network Security

Internet Technologies COMP90007

Lecturer: Muhammad Usman

Semester 2, 2020

Public Key Algorithms

- Fundamentally different to symmetric key ones
- Diffe & Hellman proposed the new model
 - Asymmetric keys
 - Two keys are used
 - Not easily derivable from each other
 - Hence addressing a fundamental issue of key sharing

Asymmetric Keys

- Diffe-Hellman key system
 - Key 1: public key, usable by anyone to encrypt
 messages to the owner of the key, this key known to all
 - Key 2: private key, required to decrypt the message and known only by the owner of this key

The Process

C = ciphertext, P = plaintext, E = encryption, D=decryption
 K1, K2 = keys

- $C = E_{K1}(P)$
 - Sender knows the public key K1 and the P
- $P = D_{K2}(C)$
 - Only receiver knows private K2 which can undo K1's effect
- $D_{K2}(E_{K1}(P)) = P$

RSA: An Asymmetric Key Algorithm

- RSA Rivest, Shamir, Adleman
- Famous and robust algorithm
- Key generation:
 - Choose two large primes, p and q
 - Compute n = p × q and z = (p − 1) × (q − 1).
 - Choose d to be relatively prime to z, i.e., no common factors
 - Find e such that
 - \Box (d x e) mod z = 1
 - Public key is (e, n), and private key is (d, n)
- Encryption:
 - Cipher = Plain^e (mod n)
- Decryption:
 - □ Plain = Cipher^d (mod n)

RSA Example

- □ Let p=3, q=11: then \mathbf{z} is $(3-1) \times (11-1) = 20$
- What is a potential d?
- □ If d = 7 then 7 and 20 has no common factors
- What is an e?
- □ If e = 3, then $(d \times e)$ is 1 in mod z
- What are the two key tuples then?
- □ Enc: 3, 33 Dec: 7, 33 (as n=3 x 11=33 and d=7 and e=3)

Plaintext (P)		Ciphertext (C)			After decryption	
Symbolic	Numeric	<u>P</u> 3	P ³ (mod 33)	<u>C</u> 7	C ⁷ (mod 33)	Symbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
Α	01	1	1	1	01	Α
N	14	2744	5	78125	14	N
N	14	2744	5	78125	14	N
E	05	125	26	8031810176	05	E

Encryption: $C = P^3 \mod 33$

Decryption: $P = C^7 \mod 33$

RSA Security

RSA's security is <u>based on the difficulty</u> involved in factoring large numbers in math theory - approx 10²⁵ years to factor a 500 digit number and RSA uses 1024 bits!

 Disadvantage: RSA is too slow for encrypting/decrypting large volumes of data

RSA Security Contd

 ...but is widely used for many other things such as <u>secure key distribution</u>

Then RSA can be used in tandem with symmetric key algorithms...

Another Use of Cryptography: Digital Signatures

- Cryptographic approaches can also be used to ensure authenticity and allow for non-repudiation
- Requirements
 - Receiver can <u>verify the claimed identity of the sender</u>
 - Sender cannot deny she created contents of the message
 - Receiver cannot have derived the message themselves

Digital Signatures

- Approaches
 - Using symmetric keys via an intermediary
 - You need a BIG BROTHER to do all the messaging, not good!
 - Using <u>public keys</u> as individuals

Using Public Keys

- Sender Alice uses <u>private key on P</u>
- Receiver Bob uses her public key to undo and get P
- RSA can do this as well, as <u>E(D(P)) = P in RSA</u>
- Alice cannot deny signing as she only knows her private key

Signatures with Message Digests

- Basic concept of a <u>message digest is to use a one-way hash</u> <u>function</u> for an arbitrary length of plaintext, so that it becomes a <u>"unique" small fixed-length bit string</u>
- Thus no need to deal with huge message text and encryption just for authentication purposes
- A message digest (MD) has four important properties:
 - 1 Given P, it is easy to compute MD(P)
 - 2 Given MD(P) it is effectively impossible to find P
 - □ 3 Given P, no one can find P' such that MD(P') = MD(P)
 - 4 A change in even a single bit of input produces a very different output

Famous Message Digest Algorithms

- MD5
- SHA-1
- Outputs
 - Given "this is a test" (text could have been longer)
 - MD5:
 - e19c1283c925b3206685522acfe3e6
 - □ SHA-1: 6476df3aac780622368173fe6e768a2edc3932c8

Public Key Management

- There is <u>specific PK infrastructure</u> to avoid compromising the security of PK's <u>during the initial</u> <u>distribution process</u>.
- Certification Authority (CA)
 - A trusted intermediary who uses non-electronic identification to identify users prior to certifying keys and certificates
- **X**.509
 - An international standard for certificate expression
- PKI (Public Key Infrastructure) is a
 - Hierarchically structured certificate authorities allow for the establishment of a chain of trust or certification path
 - Verisign was such a company

Certificate Issuing

A Certificate authority (CA) says:

I hereby certify that the public key

19836A8B03030CF83737E3837837FC3s87092827262643FFA82710382828282A

belongs to

Robert John Smith

12345 University Avenue

Berkeley, CA 94702

Birthday: July 4, 1958

Email: bob@superdupernet.com

SHA-1 hash of the above certificate signed with the CA's private key