Homework 3

Matthew Nickols

2024-03-17

Problem 1

(a)

```
#Smoothing list of ages by bin mean with a bin depth of three
import numpy as np
#Copy over list
age = [13, 15, 16, 16, 19, 20, 20,
21, 22, 22, 25, 25, 25, 25, 30, 33,
33, 35, 35, 35, 36, 40, 45, 46,
52, 70]
#Create list for bins
bins = []
#Loop through age counting by 3
for i in range(0, len(age), 3):
  #Take 3 ages and calculate mean
 mean = sum(age[i: i+2]) / 3
  #round mean to 2 decimal places to make it neater
  mean = round(mean, 2)
  #Create bin
  bin = [mean, mean, mean]
  #Place bin in list of bins
  bins.append(bin)
#Output bins
for bin in bins:
 print(bin)
```

```
## [9.33, 9.33, 9.33]

## [11.67, 11.67, 11.67]

## [13.67, 13.67, 13.67]

## [15.67, 15.67, 15.67]

## [16.67, 16.67, 16.67]

## [22.0, 22.0, 22.0]

## [23.33, 23.33, 23.33]

## [25.33, 25.33, 25.33]

## [32.67, 32.67, 32.67]
```

(b)

```
#Calculating IQR with Q1 and Q3 to find outliers
Q1 = np.percentile(age, 25)
Q3 = np.percentile(age, 75)
IQR = Q3 - Q1
#Calculate upper and lower limits using IQR
lowlim = Q1 - 1.5 * IQR
upperlim = Q3 + 1.5 * IQR
#Output
print('Q1 equals ', Q1, '\nQ3 equals ', Q3, '\nIQR equals ', IQR,
      '\nBounds for outliers are: (', lowlim, ' ', upperlim, ')')
## Q1 equals 20.5
## Q3 equals 35.0
## IQR equals 14.5
## Bounds for outliers are: ( -1.25
#Iterate through age checking each value against outlier limits
for i in age:
  if((i > upperlim) or (i < lowlim)):</pre>
   print(i, ' is an outlier in age data')
## 70 is an outlier in age data
(c)
#Use min-max normalization to transform 35 onto the range [0.0, 1.0]
#Min-max normalization
small = min(age)
big = max(age)
normalized = (35 - small) * (1 - 0) / (big - small + (0))
print('35 transformed onto the range [0.0, 1.0] using min-max normalization equals: ', normalized)
## 35 transformed onto the range [0.0, 1.0] using min-max normalization equals: 0.38596491228070173
(d)
#Use z-score normalization to transform 35 for age
avg = sum(age) / len(age)
stdev = np.std(age)
normalized = (35 - avg) / stdev
print('35 transformed using z-score normalization equals: ', normalized)
```

35 transformed using z-score normalization equals: 0.3966110348537352

(e)

```
#Use normalization by decimal scaling to transform the value 35 for age
normalized = 35 / 10**2
print('35 transformed using decimal scaling equals: ', normalized)
```

35 transformed using decimal scaling equals: 0.35

Problem 2

```
##Write function to normalize data to new min and max
##Define normalize function
def normalize (list, new_min, new_max):
  #printing old data that was given
  print('old data: ')
  for i in list:
   print(i)
  #Creating empty list for normalized values
  normalized_data = []
  #Defining old min and max values
  old_min = min(list)
  old_max = max(list)
  #iterating through the list and normalizing each value
  for i in list:
   normal = (i-old_min) * (new_max - new_min) / (old_max - old_min +
              new_min)
    #Rounding to 2 decimal places for neatness
   normal = round(normal, 2)
    #appending normalized value to list or normalized data
   normalized_data.append(normal)
  #printing new normalized data
  print('Normalized data: ')
  for i in normalized_data:
   print(i)
#Calling the normalize function on the age list from problem 1.
#Using 0 and 1 as example range, could be changed to any 2 values
normalize(age, 0, 1)
```

```
## old data:
## 13
## 15
```

^{## 16}

```
## 16
## 19
## 20
## 20
## 21
## 22
## 22
## 25
## 25
## 25
## 25
## 30
## 33
## 33
## 35
## 35
## 35
## 35
## 36
## 40
## 45
## 46
## 52
## 70
## Normalized data:
## 0.0
## 0.04
## 0.05
## 0.05
## 0.11
## 0.12
## 0.12
## 0.14
## 0.16
## 0.16
## 0.21
## 0.21
## 0.21
## 0.21
## 0.3
## 0.35
## 0.35
## 0.39
## 0.39
## 0.39
## 0.39
## 0.4
## 0.47
## 0.56
```

0.58 ## 0.68 ## 1.0

Problem 3

Decision Tree calculations were made in Excel Notebook. Excel file is Information GainCalc.xlsx

	Α	В	С	D	E	F	G	Н
1	First layer calcs		_	_				
2	department		senior				Info(D)	0.89903
3	sales	80	30	110	0.845350937			
4	systems	23	8	31	0.823811633			
5	marketing	4	10	14	0.863120569			
6	secretary	6	4	10	0.970950594			
7	Total	113	52	165	Info(department)D	0.850423985		
8					Gain	0.048606786		
9	age	junior	senior					
10	21_25	20	0	20	0			
11	26_30	49	0	49	0			
12	31_35	44	35	79	0.990617497			
13	36_40	0	10	10	0			
14	41_45	0	3	3	0			
15	46_50	0	4	4	0			
16	Total	113	52	165	Info(age)D	0.47429565		
17					Gain	0.424735121		
18	Salary	Junior	Senior					
19	26k_30k	46	0	46	0			
20	31k_35k	40	0	40	0			
21	36k_40k	0	4	4	0			
22	41k_45k	4	0	4	0			
	46k_50k	23	40	63	0.946818832			
24	66k_70k	0	8	8	0			
25	Total	113		165	Info(Salary)D	0.361512645		
26					Gain	0.537518126		
27					- Cana	0.007.020220		
28	Second layer calcs	(betwe	en 35 an	nd 66k	salarv)		Info(D)	0.95824
29	department		Senior		Satary,		(2)	0.0002
30	sales	0	30	30	0			
31	systems	23	0	23	0			
32	-	4	10	14	0.863120569			
	_	0			0.003120309			
	secretary Total	27			_	0.170192788		
35	Total	21	44	/1	Info(department)D Gain	0.78804794		
		lumina	Camian	Tatal	Gain	0.70004794		
	age		Senior	10tat 20	0			
	21_25	20		3	0			
	26_30	3						
	31_35	4		34				
	36_40	0	10	10	0			
	46_50	0		4	0			
	Total	27	44	71	Info(age)D	0.2502397		
43					Gain	0.708001028		
44								
	Third Layer							
	age	junior	senior					
47	31_35	4			0			
40	36_40	0	10		0			

Problem 4

Generate If-Then rules for decision tree

Rules:

R1: IF salary < 35k THEN status = Junior

R2: IF salary > 66k THEN status = Senior

R3: IF 35k < salary < 66k AND Department = Systems THEN status = Junior

R4: IF 35k < salary < 66k AND Department = Sales THEN status = Senior

R5: IF 35k < salary < 66k AND Department = Secretary THEN status = Senior

R6: IF 35k < salary < 66k AND Department = Marketing AND age = 31 - 35 THEN status = Junior

R7: IF 35k < salary < 66k AND Department = Marketing AND age = 36 - 40 THEN status = Senior