Software Científico: ATLAS

LUIS BALDERAS RUIZ

Índice

- ¿QUÉ ES EL CERN?
 - Historia
 - LHC
 - Infraestructura
 - Proyectos
- ATLAS
 - Dedicación
 - Procesos
 - Framework

- Siglas: Organización Europea para la Investigación Nuclear
- Fundada en 1952 por 12 países miembro: Alemania, Bélgica, Dinamarca, Francia, Grecia, Italia,
 Noruega, Países Bajos, Reino Unido, Suecia, Suiza y Yugoslavia.
- España se une en 1961.
- Actualmente: 21 países miembro y 7 observadores.

- Centro de investigación especializado en física fundamental (en los últimos años, de partículas).
- Entre sus mayores logros, LHC:
 - Acelerador de partículas.
 - Descubrimientos importantes: Bosón de Higgs

- Tim Berners-Lee inventa la World Wide Web en 1989.
- Hoy día, esa red ha evolucionado hasta Worldwide LHC (WLHC).
- Dividida en 4 capas:
 - Software específico de física: ROOT, POOL (almacenamiento) y otros de modelado.
 - Middleware -> Soporte distribuído European Middleware Initiative (ARC, gLite, UNICORE, Globus Toolkit...).
 - Hardware: Quattor (automatización de tareas de actualización), dCache, CASTOR (acceso a datos)
 - Networking: Fibra óptica de 10Gbps (LHC Optical Private Network)

- Multitud de proyectos. Los 4 más representativos son:
 - ALICE: Detecta el plasma de quarks-gluones (estado de la materia momentos anteriores al Big Bang).
 - ATLAS
 - CMS: Busca partículas elementales, dimensiones extras y materia oscura.
 - LHCb: Estudia diferencias entre la materia y la antimateria a través del quark b (beauty).

ATLAS

- Estudio de partículas elementales mediante colisión de haces de protones (hadrones).
- 6 subsistemas de detección para reconocer el recorrido, el momento y la energía de las partículas.
- 46 metros de largo, 25 metros de ancho y alto. 7000 toneladas

http://virtual-tours.web.cern.ch/virtual-tours/vtours/ATLAS/ATLAS.html

ATLAS. PROCESOS:

1. COLISIÓN

- Una colisión cada 50 nanosegundos.
- Paso de 20 millones a cerca de 500 por segundo.
- Por cada colisión, se escribe 1MB en disco => 1PB al año

ATLAS: PROCESOS

2. RECONSTRUCCIÓN

- El sistema reconstruye al menos 100 partículas a partir de su tipo, energía y dirección.
- En la práctica, 200 algoritmos, 20s en un core y 2GB RAM
- 6000 computadores alrededor del planeta (GRID).
- Resultado: Los físicos analizan los eventos en menos de una semana.

ATLAS: PROCESOS

3. SIMULACIÓN

- Absolutamente realista: Mismo número de simulaciones que de eventos reales.
- Muy costosa.
- Computación intensiva (1 segundo por evento).

ATLAS: PROCESOS

4. ANÁLISIS

- Input de datos: 1PB de información real y simulada.
- Necesidades: flexibilidad y rendimiento:.

Conjuntos de datos intermedios de 1TB (computables en una noche)

FRAMEWORK DE ATLAS

- Excepto la primera fase de reconstrucción, los procesos se realizan en los clusters.
- 100 centros de computación.
- Software de ATLAS preinstalado.
- Arquitectura basada en pizarra.
- Implementada en C++.
- PROCESO:
 - Carga en memoria (se leen de la pizarra los eventos)..
 - Ejecución secuencial.
 - Se escriben las colecciones de eventos en el disco.
 - Se carga el siguiente evento.
- Sistema operativo Linux.
- Capa de configuración en Python.

FRAMEWORK DE ATLAS

