DigiPen Institute of Technology Singapore

IBF- Exam Vector Calculus

Instructor: Yilin Wu

Feb 2 2020

Name: _		

This quiz contains 7 pages (including this cover page) and 10 questions. Total of points is 100. Good luck and Happy reading work!

Distribution of Marks

Question:	1	2	3	4	5	6
Points:	10	10	10	10	10	10
Score:						
Question:	7	8	9	10		Total
Points:	10	10	10	10		100
Score:						

1. (10 points) Please give an example of one application of Calculus in Machine Learning (including Deep Learning). What's the advantage of using such technology.

- 2. (10 points) Find the derivative of the single variable functions below and list all the rules that are applied here.
 - 1. $y = g(x)^3 \sqrt[3]{f(x)}$
 - 2. $y = e^{g(f(x))}$

3. (10 points) Find the derivative of the single variable functions below and show all your work.

1.
$$y = \frac{e^{\cos^2(x)}}{\ln(x) + \sin x}$$

$$2. \ y = e^{\tan^3 x \cos^2 x}$$

4. (10 points) Find the Taylor polynomial of degree 4 for

$$f(x) = \ln(3+4x)$$
 about $x = 0$

5. (10 points) Consider the quadratic function defined by $Q(x,y,z)=x^2+5y^2+4xy-2yz$. Compute the Hessian matrix.

6. (10 points) Describe the Backropagation algorithm, how does it work?

7. (10 points) Find all the 1st order partial derivatives for

$$f(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^n}$$

- 8. (10 points) Let $f(x,y) = e^{xy}$, with $x = r \cos \theta$ and $y = r \sin \theta$. Compute the partial derivatives $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ in two ways:
 - 1. Use the chain rule on $f = f(x(r, \theta), y(r, \theta));$
 - 2. Eliminate x and y in favor of r and θ and compute the partial derivative directly.

9. (10 points) Let $f(x) = \sqrt{1+2x}$ and use the linearization to approximate f(4.01) and f(3.99).

10. (10 points) Find the linearization L(x,y) for the function defined by

$$f(x,y) = \frac{x}{x^2 + y^2}$$

at the point (1,2). Then use the linearization to estimate the value of f(0.8,2.3)

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.