1. Notation

(1)
$$b := \text{number of components in the basket}$$
(2) $X := (X_0, \dots, X_{b-1})$
(3) $e := (e_0, \dots, e_{b-1})$
(4) $N := \text{a positive integer}$
(5) $K = \{(k_0, \dots, k_{b-1}) : k_j \in \{0, \dots, N-1\}\}$
(6) $k \in K$
(7) $I(\alpha) := (\alpha, \dots, \alpha) \quad (b \text{ times})$
(8) $u(k) := \Delta(k - I(N/2)) + ie$
(9) $\Phi := \text{characteristic function of spread/basket payoff}$
(10) $\widehat{P} := \text{Fourier transform of spread/basket payoff}$
(11) $F(k) = \Phi(u(k))\widehat{P}(u(k))$
(12) $\Delta := \text{some real number, maybe } 1/4$
(13) $\lambda = \frac{2\pi}{N\Delta}$
(14) $X(k) = X + \lambda k$
(15) $f = -e\Delta - I\left(i\frac{\Delta N}{2}\right)$
(16) $\ell \in K$

2. Idea

Consider the following: whilst the function Φ is identical for both spread and basket options, we have

(19)
$$\widehat{P}(\xi) = \frac{\prod_{j=1}^{b} \Gamma(-i\xi_j)}{\Gamma(-i(\sum_{j=1}^{b} \xi_j) + 2)}, \quad \text{basket}$$

 $v(\ell) = X + \frac{2\pi}{N\Delta} \ell$

 $V(\boldsymbol{\ell}) = \boldsymbol{f} \cdot \boldsymbol{v}(\boldsymbol{\ell})$

(17)

(18)

(20)
$$\widehat{P}(\xi) = \frac{\Gamma(i(\xi_1 + \xi_2) - 1)\Gamma(-i\xi_2)}{\Gamma(i\xi_1 + 1)}, \quad \text{spread}$$

(21)
$$D := \frac{e^{-rT}\Delta^b}{(2\pi)^b} \sum_{\mathbf{k} \in K} e^{i(\Delta(\mathbf{k} + i\mathbf{e}) \cdot \mathbf{X} - \Delta N\mathbf{X}/2)} F(\mathbf{k})$$

(22)
$$= \frac{e^{-rT}\Delta^b}{(2\pi)^b} e^{V(\boldsymbol{\ell})} \sum_{\boldsymbol{k} \in K} e^{i\frac{2\pi}{N}(\boldsymbol{k} \cdot \boldsymbol{\ell})} e^{i\Delta(\boldsymbol{k} \cdot \boldsymbol{X})} F(\boldsymbol{k})$$

(23)
$$= \frac{e^{-rT}\Delta^b}{(2\pi)^b} e^{V(\ell)} \sum_{\mathbf{k} \in K} e^{i\frac{2\pi}{N}(\mathbf{k} \cdot \ell)} A_{\mathbf{k}}$$

with

(24)
$$A_{\mathbf{k}} := e^{i\Delta(\mathbf{k} \cdot \mathbf{X})} F(\mathbf{k})$$

$$(25) A_{\mathbf{k}} \xrightarrow{FFT} B_{\ell}$$

and the call option price for the share values $X(\ell)$ is

(26)
$$C_{\ell} = \frac{e^{-rT}\Delta^b}{(2\pi)^b} e^{V(\ell)} B_{\ell}$$

3. Implementation

- The set K is created by TupleFactory::generate_tuples_mod_N().
- We have $\#K = N^b$.
- All b-vectors are created using the LinAlgSys class.
- \bullet Currently the entire implementation is in Basket::basketpricingFFT()