Departamento de Matemática

1º Semestre

Lic. em Ciências da Computação

Análise Numérica

Ficha de exercícios nº 5 - Integração numérica

- 1. a) Usa a regra do ponto médio para calcular o valor de $\int_0^2 (3x+2) dx$. Compara com o valor exacto.
 - **b)** No mesmo gráfico, esboça as rectas y = p(x) e $y = p\left(\frac{a+b}{2}\right)$, com a = 0, b = 2 e p(x) = 3x + 2, e interpreta a igualdade verificada na alínea anterior.
 - c) Com p(x) = mx + r, mostra que se tem, quaisquer que sejam os limites de integração a e b e os coeficientes m e r,

$$\int_{a}^{b} p(x) dx = (b - a) \cdot p\left(\frac{a + b}{2}\right)$$

ou seja, a regra do ponto médio é exacta para todos os polinómios de grau não superior a 1 (isto é, o grau de exactidão desta regra é um).

2. A regra (simples) dos trapézios baseia-se na interpolação da função nos nós que são os limites de integração, isto é, para aproximar o valor do integral $\int_a^b f(x) dx$ substitui-se a função integranda f pelo polinómio de grau não superior a um que passa pelos pontos (a, f(a)) e (b, f(b)). Resulta

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} [f(a) + f(b)] + E_{T}$$

onde E_T representa o erro cometido na aproximação.

- a) Calcula $I = \int_0^1 \exp(-x) dx$ pela regra descrita anteriormente e compare com o valor exacto.
- b) Calcula $I = \int_0^{1/2} \exp(-x) dx + \int_{1/2}^1 \exp(-x) dx$ usando a regra dos trapézios para cada um dos integrais. Compare com o valor exacto.
- c) Calcula $I = \int_0^{1/4} \exp(-x) dx + \int_{1/4}^{1/2} \exp(-x) dx + \int_{1/2}^{3/4} \exp(-x) dx + \int_{3/4}^1 \exp(-x) dx$ usando a regra dos trapézios para cada um dos integrais. Compare com o valor exacto.
- 3. Sendo f uma função de classe C^2 no intervalo [a,b], tem-se, com h=(b-a)/n e $x_i=a+ih$, para $i=0,1,\ldots,n$

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left[f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b) \right] - \frac{h^2}{12} (b - a) f''(\eta)$$

onde $\eta \in (a, b)$. No Matlab escreve uma função **T=trapezios** (**f**,**a**,**b**,**n**) para calcular uma aproximação para o valor do integral $I = \int_a^b f(x)dx$, usando a regra dos trapézios composta (n é o número de subintervalos de igual amplitude em que se divide o intervalo de integração).

4. Sendo f uma função de classe C^4 no intervalo [a,b], tem-se, com h=(b-a)/n e $x_i=a+ih$, para $i=0,1,\ldots,n$, e m=n/2 (n tem de ser par):

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left[f(a) + 4 \sum_{i=1}^{m} f(x_{2i-1}) + 2 \sum_{i=1}^{m-1} f(x_{2i}) + f(b) \right] - \frac{h^{4}}{180} (b-a) f^{(iv)}(\eta)$$

onde $\eta \in (a, b)$. No Matlab escreve uma função $\mathbf{S} = \mathbf{simpson}(\mathbf{f}, \mathbf{a}, \mathbf{b}, \mathbf{n})$ para calcular uma aproximação para o valor do integral $I = \int_a^b f(x) dx$, usando a regra de Simpson composta.

- 5. Considera o integral $I = \int_0^1 \frac{4}{1+x^2} dx$.
 - a) Usa a função **trapezios** para calcular, para cada $k = 1, \dots, 8$, o valor de T(k) que é a aproximação obtida com $n = 2^k$. Verifique que a sequência T(k) das aproximações converge para o valor exacto que é π .
 - b) Repete o exercício com a função simpson para calcular $S(1), \dots, S(8)$. No Matlab execute

$$>> [T'-pi \ S'-pi]$$

para comparar os erros obtidos com as regras.

- 6. Repete o exercício anterior para calcular $I = \int_0^1 x^{1/2} dx$ pelas regras dos trapézios e de Simpson. Compare os resultados obtidos com o valor exacto.
- 7. Para se saber a quantidade M de massa radioactiva que entra ou sai de um reactor durante um certo período de tempo (entre os instantes t_1 e t_2) pode ser usada a fórmula

$$M = \int_{t_1}^{t_2} (Q \times c) \, dt$$

onde c representa a concentração e Q representa o fluxo. Se o fluxo for constante e igual a $5m^3/min$ e os valores da concentração medidos à saída do reactor forem os que se encontram na tabela seguinte

t, min	0	5	10	15	20	25	30
$c, mg/m^3$	10.00	21.62	35.00	52.16	44.59	37.07	32.91

usa a regra de Simpson, com h = 5, para calcular a quantidade de massa radioactiva que sai do reactor entre os instantes t = 0 e t = 30.

8. Uma cobertura de material ondulado vai ser construída usando uma máquina de pressão a partir de uma folha plana de alumínio e o perfil da folha ondulada tem a forma de uma onda sinusoidal. A cobertura deve ter o comprimento de 3.7 m e pretende-se que cada onda tenha 10 cm de altura e um período de aproximadamente 2π dm. O comprimento da folha plana que vai ser usada é dado pelo comprimento do arco da curva $f(x) = \sin(x)$ desde x = 0 até x = 37 (dm), ou seja, pelo integral

$$\int_{0}^{37} \sqrt{1 + [f'(x)]^2} \, dx,$$

- a) Determina as aproximações T20, T40, S20 e S40 para o comprimento da folha plana, usando as funções **trapezios** e **simpson** com n = 20 e n = 40, respectivamente.
- b) Compara as aproximações obtidas com o valor dado pela função **quad** do Matlab (esta função usa a regra de Simpson de forma "adaptativa", quer dizer, usa mais pontos nas regiões de [a,b] onde tal é necessário para garantir a precisão desejada).