Aula 04 - Classificação

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Tópicos

- Discussão Inicial
- Modelos de Classificação
 - K-NN, Logistic Regression, Decision Trees Naïve Bayes, SVM and MLP
- Métricas de Avaliação
 - Accuracy, Precision, Recall and F1-Score
- Practice

Visão Computacional (Workflow)

PATTERN RECOGNITION SYSTEM

Até agora temos discutido como extrair características

• Quão discriminante são as características?

Input Space

Como computar a fronteira de decisão?

- Hiperplano
 - 2-D, 3-D ... N-D (or N-Features)

Classificação Binária vs Multi-Class

Classificação Binária

Modelos de Classificação KNN

- Computa a similaridade no espaço de característica (Distância Euclidiana, Manhattan....)
- K-Vizinhos mais próximos determinam a classe (Votação)
- Não tem etapa de treinamento. Computa as distâncias para cada amostra de teste

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Visão Computacional - Prof. André Hochuli

Modelos de Classificação K-Means

- Calcula a distância entre a amostra de teste e os k-centroides
- Os clusters são definidos na etapa de treinamento

Modelos de Classificação Naïve Bayes

- Teorema de Bayes
- Probabilidades: A priori vs Posteriori

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Modelos de Classificação Logistic Regression (LR)

Linear vs Logistic

Modelos de Classificação Logistic Regression (LR)

Logistic Boundary

Modelos de Classificação Logistic Regression (LR)

Logistic Boundary

Modelos de Classificação Decision Tree

Determina regras de decisão

Decision surface of a decision tree using paired features

Modelos de Classificação Decision Tree

Fronteiras de decisão são baseadas em vetores de suporte

• Fronteiras de decisão são baseadas em vetores de suporte

Kernels

Kernel Trick

Modelos de Classificação Multi-Layer Perceptron

Perceptron

Modelos de Classificação Multi-Layer Perceptron

Multi-Layer Perceptron (MLP)

Métricas de Desempenho

- Accuracy:
 - Instâncias corretamente classificadas sobre o total de instâncias

$$Accuracy = \frac{TN + TP}{TN + FP + TP + FN}$$

• (55 + 30)/(55 + 5 + 30 + 10) = 0.850

- Qual o problema com Accuracy?
 - Dados desbalanceados

• Acc: 90% (90/100)

• Error TP: 100% (10/10)

Métricas de Desempenho

- Precisão:
 - Instâncias positivas classificadas corretamente sobre o total de instâncias classificadas como positivas

$$Precision = \frac{TP}{TP + FP}$$

• 30/(30+5) = 0.857

PREDICTED LABEL

- Recall
 - Instâncias positivas classificadas corretamente sobre o total de instâncias positivas (A.K.A Sensitivity or TP Rate)

$$Recall = \frac{TP}{TP + FN}$$

• 30/(30+10) = 0.750

PREDICTED LABEL

Visão Computacional - Prof. André Hochuli

Métricas de Desempenho

• F1-SCORE:

• Média Harmonica^(*) entre precisão e recall

$$F1\ Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

• 2*(0.857*0.75)/(0.857+0.75) = 0.799

PREDICTED LABEL

	NEGATIVE	POSITIVE
NEGATIVE	55 TRUE NEGATIVE	5 FALSE POSITIVE
POSITIVE	10 FALSE NEGATIVE	30 TRUE POSITIVE

Discussão

Accuracy: 0.850

• F1-Score: 0.799

Precision: 0.857

• Recall: 0.750

^(*) The harmonic mean is a method that gives less weightage to larger single values and more weightage to smaller values

Codificação

Siga o [LINK]