TOÁN RỜI RẠC

CHƯƠNG 1: KHÁI NIỆM CƠ BẢN Lý thuyết số và hệ đếm

NỘI DUNG

- 1. Các phép toán trên số nguyên.
- Biểu diễn các số nguyên.
- 3. Định lý về số dư Trung Quốc và ứng dụng.
- 4. Các hệ đếm.

1. Các phép toán trên số nguyên (1/5)

1.1. Phép chia nguyên.

- Cho hai số nguyên n và m ta nói n chia hết cho m nếu tồn tại số nguyên k sao cho n=k.m và ký hiệu là $m\mid n$.
- Định lý 1. Cho n, m và k là các số nguyên. Khi đó a- Nếu $k \mid n$ và $k \mid m$ thì $k \mid (n + m)$.
 - b- Nếu $k \mid n$ thì $k \mid n.m$ với mọi số nguyên m .
 - c- Nếu $k \mid n$ và $n \mid m$ thì $k \mid m$.

1. Các phép toán trên số nguyên (2/5)

1.1. Phép chia nguyên (tiếp)

- Định lý 2: Mọi số nguyên dương đều có thể được viết duy nhất dưới dạng tích của các số nguyên tố.
- Định lý 3: Cho a là một số nguyên và d là số nguyên dương. Khi đó tồn tại các số q và r duy nhất, với $0 \le r < d$, sao cho a = dq + r.
- Hai số nguyên n và m gọi là nguyên tố cùng nhau nếu USCLN(n,m)=1.
- Các số nguyên a_1, a_2, \ldots, a_n được gọi là đôi một nguyên tố cùng nhau nếu USCLN(ai, aj) = 1 với mọi $1 \le i, j \le n$.

1. Các phép toán trên số nguyên (3/5)

1.1. Phép chia nguyên (tiếp)

- Định lý 4: Cho n, m là hai số nguyên dương. Khi đó mn = USCLN(n, m) BSCNN(n, m)
- Hai số nguyên n và m gọi là đồng dư theo $modulo\ k$ nếu $n\ mod\ k = m\ mod\ k$, ta ký hiệu $n\ \equiv m\ (mod\ k)$.
- Định lý 5: Nếu $n \equiv m \pmod{k}$ và $p \equiv q \pmod{k}$. Khi đó:
 - a) $n + p \equiv m + q \pmod{k}$
 - b) $n p \equiv m q \pmod{k}$
- Phần tử b được gọi là phần tử nghịch đảo của a theo modulo m nếu ab \equiv 1 (mod m) và ký hiệu là a^{-1} , khi đó $aa^{-1} \equiv 1 \pmod{m}$.

1. Các phép toán trên số nguyên (4/5)

1.2. Thuật toán Euclid.

• **Bổ đề:** Cho $a = b \times q + r$ trong đó a, b, q, r là các số nguyên dương. Khi đó

$$USCLN(a,b) = USCLN(b,r)$$

• Chứng minh: Với mọi ước số chung d của a và b khi đó

$$a - b \times q = r$$

suy ra d cũng là ước số của r, tức là d cũng là ước số chung của b và r vậy USCLN(a,b) = USCLN(b,r).

Thuật toán Euclid:

- Input: a, b ($a \ge b$) đặt $r_0 = a$ và $r_1 = b$.
- Bước 1: $r_0 = r_1 \times q_1 + r_2 \quad 0 \le r_2 < r_1$
- Bước 2: Nếu $r_2 \neq 0$ thì $r_0 = r_1$ và $r_1 = r_2$ quay lại bước 1 ngược lại sang bước 3.
- Output: r_1 .

1. Các phép toán trên số nguyên (5/5)

1.2. Thuật toán Euclid (tiếp)

- Thuật toán Euclid được dùng để tìm ước số chung lớn nhất của hai số nguyên.
- Ví dụ tìm USCLN (91,287). Trước hết lấy số lớn hơn 287 chia cho số nhỏ 91 ta được

$$287 = 91 \times 3 + 14$$

bất kỳ ước số chung nào của 287 và 91 cũng là ước số của $287 - 91 \times 3 = 14$. Và cũng như vậy, bất kỳ ước số chung nào của 91 và 14 cũng là ước số của $287 = 91 \times 3 + 14$. Do đó USCLN của 91 và 14 cũng là USCLN của 287 và 91. Từ đó có

$$USCLN(91,287) = USCLN(91,14)$$

Tương tự như vậy, vì $91 = 14 \times 6 + 7$ ta được USCLN(91,14) = USCLN(14,7) = 7

2. Biểu diễn các số nguyên (1/2)

 Định lý 6: Cho b là một số nguyên dương lớn hơn 1. Khi đó nếu n là một số nguyên dương thì nó có thể được biểu diễn một cách duy nhất dưới dạng:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0$$

Trong đó **k** là số nguyên không âm, $a_0, a_1, a_2, \ldots, a_k$ là các số nguyên không âm nhỏ hơn **b** và $a_k \neq 0$.

Biểu diễn n trong định lý trên được gọi là triển khai cơ số
 b của n.

2. Biểu diễn các số nguyên (2/2)

Ví dụ:

• Ví dụ: Cho n = 165, b = 8 ta được

$$165 = 2 \times 8^2 + 4 \times 8^1 + 5$$

Trong ví dụ này ta có thể biểu diễn như sau (245)₈ gọi là cách biểu diễn theo hệ bát phân.

• Ví dụ: Cho n = 351, b = 2 ta được

$$351 = 1 \times 2^8 + 0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

ta nhận được dãy $\{a_k\}$ sau $(1010111111)_2$ gọi là biểu diễn nhị phân của số 351.

3. Định lý về số dư Trung Quốc và ứng dụng (1/13)

Số dư Trung Quốc:

Định lý về số dư Trung Quốc:

• Giả sử $m_1, m_2, ..., m_n$ là các số nguyên dương, nguyên tố cùng nhau từng đôi một và $a_1, a_2, ..., a_n$ là các số nguyên. Khi đó hệ n phương trình đồng dư $\mathbf{x} \equiv \mathbf{a_i} \pmod{\mathbf{m_i}}$ với $1 \le i \le n$ sẽ có một nghiệm duy nhất theo modulo $\mathbf{M} = \mathbf{m_1} \times \mathbf{m_2} \times \cdots \times \mathbf{m_n}$ được cho theo công thức sau:

$$x = \sum_{i=1}^{n} a_i M_i y_i \mod M$$

• Trong đó $M_i = \frac{M}{m_i}$ và $y_i = M_i^{-1} \mod m_i$ với $1 \le i \le n$.

3. Định lý về số dư Trung Quốc và ứng dụng (2/13)

Ứng dụng

- Giả sử $m_1, m_2, ..., m_n$ là các số nguyên tố cùng nhau từng đôi một, hay $USCLN \left(m_i, m_j \right) = 1$ với mọi $i \neq j$.
- Giả sử rằng a_1, a_2, \dots, a_n là các số nguyên, xét hệ các phương trình đồng dư sau:

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$
... (1)

 $x \equiv a_n \pmod{m_n}$

• Khi đó định lý về số dư Trung Quốc khẳng định rằng hệ này có nghiệm duy nhất theo modulo $M=m_1\times m_2\times \cdots \times m_n$.

3. Định lý về số dư Trung Quốc và ứng dụng (3/13)

Chứng minh định lý:

- Ta cần chứng minh, tồn tại nghiệm và duy nhất theo modulo M.
- Ta có: $x=\sum_{i=1}^n a_i M_i y_i \mod M$ và $M_i\equiv 0 (mod\ m_k)$ với $i\neq k$
- Mặt khác: $M_i y_i \equiv 1 \pmod{m_i}$ với $i = 1 \div n$
- Vậy: $x \equiv a_i M_i y_i \equiv a_i \pmod{m_i}$ với $i = 1 \div n$
- Do đó, x là nghiệm của hệ đồng dư.

3. Định lý về số dư Trung Quốc và ứng dụng (4/13)

Chứng minh định lý (tiếp):

- Ta chứng minh tính duy nhất.
- Giả sử, tồn tại x và y (x ≠ y) theo modulo M cùng là nghiệm của hệ đồng dư.
- Do m_i và m_j nguyên tố cùng nhau, nên với p^r là phân tích thừa số nguyên tốt m_i hay $p^r|m_i$ thì $p^r\nmid m_i$.
- Mặt khác $\mathbf{x} \equiv \mathbf{a_i}$ (mod $\mathbf{m_i}$) và $\mathbf{y} \equiv \mathbf{a_i}$ (mod $\mathbf{m_i}$). Nên ta có $p^r | x y$. Vậy $m_1 m_2 \dots m_n | x y$ hay M | x y.
- Theo giả thiết $x \neq y$, điều này vô lý (theo modulo M).
- Vậy, ta có ĐPCM.

3. Định lý về số dư Trung Quốc và ứng dụng (8/13)

Thuật toán Euclid mở rộng: Giải thuật sau chỉ thực hiện với các số nguyên m>a>0, biểu diễn bằng giã mã:

Procedure Euclid_Extended (a,m)

```
int y_0=0, y_1:=1, y:=1;
While a>0 do
\{ r := m \mod a \}
 if r=0 then Break
 q:= m div a
 y := y_0 - y_1 * q
 m:=a
 a:=r
 y_0 := y_1
 y_1:=y
If a>1 Then Return "A không khả nghịch theo mođun m"
else Return " Nghịch đảo modulo m của a là y"
```

3. Định lý về số dư Trung Quốc và ứng dụng (9/13)

Ví dụ về tìm nghịch đảo theo Modulo:

- Cho a=143, m=7, tìm nghịch đảo của a.
- Giải:
 - Vì 143 mod 7 = 3, nên cần tìm nghịch đảo của 3 modulo 7.

Bước	m	а	r	q	y_0	y ₁	у
0	7	3	1	2	0	1	-2
1	3	1	0				

Kết quả tính toán trong bảng cho ta -2. Lấy số đối của 2 theo modulo 7 được 5. Vậy: 3^{-1} mod 7 = 5

3. Định lý về số dư Trung Quốc và ứng dụng (10/13)

Ví dụ về tìm nghịch đảo theo Modulo:

- Cho a=30, m=101, tìm nghịch đảo của a.
- Giải:

Bước	m	a	r	q	y ₀	y ₁	у
0	101	30	11	3	0	1	-3
1	30	11	8	2	1	-3	7
2	11	8	3	1	-3	7	-10
3	8	3	2	2	7	-10	27
4	3	2	1	1	-10	27	-37
5	2	1	0		••		

Kết quả tính toán trong bảng cho ta – 37. Lấy số đối của 37 theo modulo 101 được 64. Vậy: 30⁻¹ mod 101 = 64

3. Định lý về số dư Trung Quốc và ứng dụng (11/13)

Ví dụ về hệ phương trình đồng dư:

Cho hệ phương trình đồng dư:

$$x \equiv 5 \pmod{7}$$
$$x \equiv 3 \pmod{11}$$
$$x \equiv 10 \pmod{13}$$

3. Định lý về số dư Trung Quốc và ứng dụng (12/13)

Ví dụ về hệ phương trình đồng dư (tiếp):

- Tính:
 - $M = 7 \times 11 \times 13 = 1001$,
 - $M_1 = 11 \times 13 = 143$,
 - $M_2 = 7 \times 13 = 91$,
 - $M_3 = 7 \times 11 = 77$,
 - $y_1 = 143^{-1} \mod 7 = 5$ theo Euclid mở rộng
 - $y_2 = 91^{-1} \mod 11 = 4$ theo Euclid mở rộng
 - và $y_3 = 77^{-1} \mod 13 = 12$ theo Euclid mở rộng

3. Định lý về số dư Trung Quốc và ứng dụng (13/13)

Ví dụ về hệ phương trình đồng dư (tiếp):

Khi đó với a₁ = 5 , a₂ = 3 và a₃ = 10 nghiệm của hệ phương trình là:

$$X = (5 \times 143 \times 5 + 3 \times 91 \times 4 + 10 \times 77 \times 12) \mod 1001$$

- $= (3575 + 1092 + 9240) \mod 1001$
- $= 13907 \mod 1001$
- $= 894 \mod 1001 = 894$

4. Các hệ đếm (1/5)

Xem xét một số hệ đếm:

- Hệ đếm thập phân.
- 2. Hệ đếm nhị phân.
- 3. Hệ đếm bát phân (Octal).
- 4. hệ đếm thập lục phân (Hexa).

4. Các hệ đếm (2/5)

- Hệ đếm thập phân.
 - Biểu diễn số n bất kỳ trong hệ thập phân theo công thức:

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \ldots + a_1 10^1 + a_0 10^0$$

trong đó $0 \le a_i \le 9$, $i = 1, 2, 3, \ldots k$

4. Các hệ đếm (3/5)

- 2. Hệ đếm nhị phân.
 - Biểu diễn số n bất kỳ trong hệ nhị phân theo công thức:

$$n = a_k 2^k + a_{k-1} 2^{k-1} + \ldots + a_1 2^1 + a_0 2^0$$

trong đó $0 \le a_i \le 1$, $i = 1, 2, 3, \ldots k$

4. Các hệ đếm (4/5)

- Hệ đếm bát phân (Octal).
 - Số n bất kỳ được biểu diễn trong hệ bát phân theo công thức:

$$n = a_k 8^k + a_{k-1} 8^{k-1} + \dots + a_1 8^1 + a_0 8^0$$

trong đó $0 \le a_i \le 7$, $i = 1, 2, 3, \dots k$

4. Các hệ đếm (5/5)

- Hệ đếm thập lục phân (Octal).
 - Số n bất kỳ được biểu diễn trong thập lục phân theo công thức:

```
\begin{split} n &= a_k 16^k + a_{k-1} 16^{k-1} + \ldots + a_1 16^1 + a_0 16^0 \\ &\quad \text{trong $d\'o$ } 0 \leq a_i \leq \ 15, \ i = 1, \, 2, \, 3, \, \ldots \, k \\ &\quad \text{tức là $a_i \in \{0, \, 1, \, 2, \, \ldots, \, A, \, B, \, \ldots, F\}} \end{split}
```