Modele log-liniowe chierachicznie uporządkowane

Aleksandra Palka

28 stycznia 2024

1 Wstęp

Projekt oparty jest na modelach log-liniowych chierarchicznie uporządkowanych. Będziemy pracować na danych zawierających odpowiedzi na pytania pewnej ankiety. Zawierała ona trzy pytania, które dotyczyły jakości snu (odpowiedź 1 oznaczała, że student sypia dobrze, 0, że źle), czy regularnie biega (1 – tak, 0 – nie) oraz czy posiada psa (1 – tak, 0 – nie). Zmienną sen oznaczymy przez 1, Bieganie-2 oraz Pies-3.

2 Zadanie 1 - modele log-liniowe hierarchicznie uporządkowane

Podamy interpretacje następującyh modeli log-liniowych hierarchicznie uporządkowych w oparciu o dane z *Ankieta.csv* i zapiszemy je w parametryzacji ANOVA.

2.1 model [1 3]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_k^{(3)}$$

Zmienne Sen(1) i Pies(3) są niezależne i mają dowolny rozkład. Zmienna Bieganie(2) ma równomierny rozkład i jest niezależna od zmiennych 1 i 3.

2.2 model [13]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_k^{(3)} + \lambda_{ik}^{(13)}$$

Zmienne Sen(1) i Pies(3) są nie są niezależne i mają dowolny rozkład. Zmienna Bieganie(2) ma równomierny rozkład i jest niezależna od zmiennych 1 i 3.

2.3 model [1 2 3]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)}$$

Zmienne Sen(1) i Bieganie(2) Pies(3) są między sobą niezależne.

2.4 model [12 3]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{ij}^{(12)}$$

Zmienne Sen(1) i Bieganie(2) są nie są niezależne. Zmienna Bieganie(2) jest niezależna od zmiennych 1 i 3.

2.5 model [12 13]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{ij}^{(12)} + \lambda_{ik}^{(13)}$$

Zmienne Pies(2) i Bieganie(2) są warunkowo niezależne(czyli są niezależne przy ustalonej zmiennej Sen(1)).

2.6 model [1 23]

$$l_{ijk} = \lambda + \lambda_i^{(1)} + \lambda_j^{(2)} + \lambda_k^{(3)} + \lambda_{ij}^{(12)}$$

Zmienne Pies(3) i Bieganie(2) są nie są niezależne. Zmienna Sen(1) jest niezależna od zmiennych 2 i 3.

3 Zadanie 2 - szacowanie prawdopodobieństw zdarzeń

Oszacujemy pewne prawdopodobieństwa warunkowe na podstawie danych z Ankieta.csv. Do tego przyjmiemy model [12 3] i porównami z wynikami uzyskamy przy przyjęciu modelu [12 23]. Modele będziemy dopasowywać za pomocą funkcji glm.

Porównanie liczności z danych i uzyskanych za pomocą modelu:

```
>cbind(model1$data, fitted(model1),fitted(model2))
  SEN BIEGANIE PIES Freq fitted(model1) fitted(model2)
1
   0
            0
                 0
                      6
                                 3.400
                                            4.8888889
2
            0
                 0
                      5
                                 4.250
                                            6.1111111
   1
3
  0
                                 1.275
                                            0.8181818
            1
                 0
                      1
  1
            1 0
                      5
                                 8.075
                                            5.1818182
  0
            0 1
                      2
                                 4.600
                                            3.1111111
                      5
                                 5.750
                                            3.8888889
                      2
                                 1.725
                                            2.1818182
                                10.925
                                           13.8181818
```

3.1 Prawdopodobieństwo dobrej jakości snu studenta, który regularnie biega

Chcemy oszacować:

$$P(S=1|B=1) = \frac{P(S=1 \land B=1)}{P(B=1)}$$

W tabeli 1 przedstawione są wartości oszacowanego prawdopodobieństwa. Dla każdego sprawdzanego modelu są one równe prawdopodobieństwu wyliczonemu z danych, ponieważ oba te modele uwzględniają zależności między sprawdzanymi zmiennymi Pies i Bieganie (występują w nich efekty $\lambda^{(12)}$).

	P(S=1 B=1)
model [12 3]	0.8636364
model [12 23]	0.8636364
z danych	0.8636364

Tabela 1: Oszacowane prawdopodobieństwa dla 2.1

3.2 Prawdopodobieństwo tego, że student biega regularnie, gdy posiada psa.

Chcemy oszacować:

$$P(B=1|P=1) = \frac{P(B=1 \land P=1)}{P(P=1)}$$

	P(B=1 P=1)
model [12 3]	0.55
model [12 23]	0.6956522
z danych	0.6956522

Tabela 2: Oszacowane prawdopodobieństwa dla 2.2

Wyniki obliczeń widoczne są w tabeli 2. Badamy zależnośc zmiennych Bieganie i Pies i z modelu, który ją uwzględnia([12 23]) otrzymaliśmy takie samo prawdopodobieństwo jak z danych. Dla modelu [12 3], który zakłada niezależność zmiennej Pies od pozostałych oszacowany wynik wyraźnie się rózni.

4 Zadanie 3 - testowanie modeli

Będziemy weryfikować hipotezy testując określone modele log-liniowe przeciw modelowi pełnemu([123]) oraz innemy wybranemu nadmodelowi na poziomie istotności $\alpha = 0.05$. Statystyką testową jest G^2 :

$$G^2 = 2\sum_{i=1}^{I} Y_i \ln{(Y_i/n\hat{p_i})},$$

gdzie I-liczba komórek w tablicy liczności, Y_i -liczności w tej tabeli, a $\hat{p_i}$ to estymowane prawdopodobieństwa na podstawie modelu. Wartość G^2 uzyskujemy z funkcji anova. P-wartośc tego testu wyznaczamy ze wzoru:

$$p = 1 - F_{\chi_{I-q-1}^2}(G^2),$$

gdzie q-liczba estymowanych parametrów $\mathcal{M}^0,\,F_{\chi^2_{I-q-1}}$ jest dystrybuantą rozkładu χ^2 z I-q-1 stopniami swobody.

4.1 Zmienne losowe Sen, Bieganie i Pies są wzajemnie niezależne.

Niezależność wszystkich trzech zmiennych odpowiada modelowi [1 2 3].

$$H_0: \mathcal{M}^0 = [1 \ 2 \ 3]$$

 $H_1: \mathcal{M} = [123]$
 $H_1: \mathcal{M} = [12 \ 23 \ 31]$

H_1	p-wartość
[123]	0.02932791
$[12\ 23\ 31]$	0.01438801

Tabela 3: P-wartości dla 3.1

Otrzymane p-wartości (tabela 3) dla obu testowanych hipotez alternatywnych są mniejsze od przyjętego poziomu istotności. Zatem odrzucamy hipotezę zerową-model [1 2 3] nie jest dobrym dopasowaniem- zmienne Sen, Bieganie i Pies nie są wzajemnie niezależne. Modele [123] i [12 23 31] lepiej opisują dane.

4.2 Zmienna losowa Pies jest niezależna od pary zmiennych Sen i Bieganie.

Będziemy testować model [12 3].

$$H_0: \mathcal{M}^0 = [12 \ 3]$$

 $H_1: \mathcal{M} = [123]$
 $H_1: \mathcal{M} = [12 \ 23 \ 31]$

H_1	p-wartość
[123]	0.1131637
$[12\ 23\ 31]$	0.05618272

Tabela 4: P-wartości dla 3.2

Dla testów przeciwko obu modelom w hipotezach alternatywnych p-wartość (tabela 4) jest większa od 0.05. Na tym poziomie istotności nie mamy podstaw do odrzucenia hipotezy zerowej o niezależności zmiennej Pies od zmiennych Sen i Bieganie.

4.3 Zmienna losowa Sen jest niezależna od zmiennej Pies, przy ustalonej zmiennej Bieganie.

Przetestujemy model [12 23].

$$H_0: \mathcal{M}' = [12\ 23]$$

$$H_1: \mathcal{M} = [123] \ i \ \mathcal{M} \neq [12 \ 23]$$

 $H_1: \mathcal{M} = [12 \ 23 \ 31] \ i \ \mathcal{M} \neq [12 \ 23]$

Przy takiej postaci hipotezy alternatywnej:

$$G^{(\mathcal{M}^0|\mathcal{M})} = (\mathcal{M}^0|\mathcal{M}_d) - (\mathcal{M}^0|\mathcal{M}_d),$$

gdzie \mathcal{M}_d jest modelem pełnym. Wtedy

$$p = 1 - F_{\chi^2_{r-s}}(G^2(\mathcal{M}^0|\mathcal{M})),$$

gdzie r-liczba stopni swobody w teście \mathcal{M}^0 przeciwko \mathcal{M}_d , a s-liczba stopni swobody w teście \mathcal{M} przeciwko \mathcal{M}_d .

H_1	p-wartość
[123]	0.5329187
[12 23 31]	0.3057874

Tabela 5: P-wartości dla 3.3

W tabeli 5 p-wartości są większe od zadanego poziomu istotności. Nie mamy podstaw do odrzucenia hipotezy zerowej, przy ustalonej zmiennej Bieganie, zmienna Sen jest niezależna od zmiennej Pies.