2022-23 First Semester MATH1063 Linear Algebra II (1003)

Assignment 2

Due Date: 10/Mar/2023 (Friday), 09:00 in tutorial class.

- Write down your **CHN** name and **student number**. Write neatly on **A4-sized** paper (*staple if necessary*) and **show your steps**.
- Late submissions or answers without steps won't be graded.
- 1. Let $L: P_3 \to P_3$ be the linear transformation defined by

$$L[p(x)] = p(2x - 1).$$

- (a) Find the matrix representing L with respect to the standard basis $\alpha = \{1, x, x^2\}$.
- (b) Find the matrix representing L with respect to the basis $\beta = \{1, x 1, (x 1)^2\}$.
- (c) (Optional!) Find the matrix representing L^k with respect to the basis $\alpha = \{1, x, x^2\}$.
- 2. Let A and B be similar matrices and let λ be any scalar. Show that
 - (a) $A \lambda I$ and $B \lambda I$ are similar.
 - (b) $det(A \lambda I) = det(B \lambda I)$.
- 3. Consider an $n \times k$ matrix A and a $k \times m$ matrix B
 - (a) What is the relationship between ker(AB) and ker(B)? (Always equal? One is always contained in the other?)
 - (b) What is the relationship between the image of A and image of AB?
- 4. (a) Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be linearly independent vectors in \mathbb{R}^n . Let A be an $n \times n$ nonsingular matrix. Show that $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_k$ are linearly independent.
 - (b) Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be linearly independent vectors in \mathbb{R}^n . Let A be an $m \times n$ matrix (m > n), rank(A) = n. Show that $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_k$ are linearly independent.
 - (c) (Optional!) Let $L: V \to W$ be a linear transformation with dim V = n and dim W = m ($m \ge n$). Let $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ be linearly independent vectors in V. Under what condition, $\{L(\mathbf{v}_1), L(\mathbf{v}_2), \cdots, L(\mathbf{v}_k)\}$ is linearly independent? Make a conjecture based on part (a) and (b), then prove your conjecture.
- 5. Consider the vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$,

$$\mathbf{v} = (1, 1, \dots, 1)^T, \quad \mathbf{w} = (1, 0, \dots, 0)^T.$$

Express the angle θ between \mathbf{v} and \mathbf{w} in terms of n; then find the limit of θ as $n \to \infty$.

6. Find the vector projection of \mathbf{y} onto \mathbf{x}

(a).
$$\mathbf{x} = (4,1)^T$$
, $\mathbf{y} = (3,2)^T$. (b). $\mathbf{x} = (-2,3,1)^T$, $\mathbf{y} = (1,2,4)^T$.