Factor Analysis

Why Factor Analysis?

Knowledgeable employees

Friendly employees

Good return policy

Customer Service

Good neighborhood

Within 10 miles of home

Near other shops I go to

Location

Regular prices

Frequency of promotions

Sale prices

Economic

The Factor Analysis Model

$$x_1 = \lambda_{11}f_1 + \lambda_{12}f_2 + \dots + \lambda_{1k}f_k + u_1,$$

$$x_2 = \lambda_{21}f_1 + \lambda_{22}f_2 + \dots + \lambda_{2k}f_k + u_2,$$

$$\vdots$$

$$x_q = \lambda_{q1}f_1 + \lambda_{q2}f_2 + \dots + \lambda_{qk}f_k + u_q.$$

More about the Factor Analysis Model

$$x_1 = \lambda_{11}f_1 + \lambda_{12}f_2 + \dots + \lambda_{1k}f_k + u_1,$$

$$x_2 = \lambda_{21}f_1 + \lambda_{22}f_2 + \dots + \lambda_{2k}f_k + u_2,$$

$$\vdots$$

$$x_q = \lambda_{q1}f_1 + \lambda_{q2}f_2 + \dots + \lambda_{qk}f_k + u_q.$$

Variances and Communalities

$$\mathsf{Var}(\mathsf{x}_i) = \sigma_i^2 = \sum_{j=1}^k \lambda_{ij}^2 + \psi_i$$

where ψ_i is the variance of the specific factor u_i

$$h_i^2 = \sum_{i=1}^k \lambda_{ij}^2$$

Covariance of Observed Variables

$$x_{1} = \lambda_{11}f_{1} + \lambda_{12}f_{2} + \cdots + \lambda_{1k}f_{k} + u_{1},$$

$$\vdots$$

$$x_{i} = \lambda_{i1}f_{1} + \lambda_{i2}f_{2} + \cdots + \lambda_{ik}f_{k} + u_{i},$$

$$\vdots$$

$$x_{j} = \lambda_{j1}f_{1} + \lambda_{j2}f_{2} + \cdots + \lambda_{jk}f_{k} + u_{j},$$

$$\vdots$$

$$x_{q} = \lambda_{q1}f_{1} + \lambda_{q2}f_{2} + \cdots + \lambda_{qk}f_{k} + u_{q}.$$

The covariance of x_i and x_j is

$$\sigma_{ij} = \sum_{l=1}^{k} \lambda_{il} \lambda_{jl}$$

Let's dive into an example!

The data set police.rda contains 15 anthropometric and physical fitness measurements for 50 white male applicants to the police department of a major metropolitan city.

We'll use factor analysis to attempt to summarize the 15 variables using a smaller number of underlying factors.

The Observed Variables

- REACT = Reaction time in seconds to a visual stimulus
- HEIGHT = Height in centimeters
- WEIGHT = Weight in kilograms
- SHLDR = Shoulder width in centimeters
- PELVIC = Pelvic width in centimeters
- CHEST = Minimum chest circumference in centimeters
- THIGH = Thigh skinfold thickness in millimeters
- PULSE = Resting pulse rate

The Observed Variables (cont'd)

- DIAST = Diastolic blood pressure
- CHNUP = Number of chin-ups the applicant was able to complete
- BREATH = Maximum breathing capacity in liters
- RECVR = Pulse rate after 5 minutes of recovery from treadmill running
- ENDUR = Treadmill endurance time in minutes
- SPEED = Maximum treadmill speed
- FAT = Total body fat measurement

Initial Examination of Correlation Matrix

as.dist(round(cor(police[,2:16]),2))

Bartlett's Test for Sphericity

 H_0 : The correlation matrix is the identity matrix H_a : The correlation matrix is not the identity matrix

```
mat <- cor(police[,2:16])</pre>
cortest.bartlett(mat.n=50)
## $chisq
## [1] 473.1958
##
## $p.value
## [1] 3.687728e-48
##
## $df
```

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy (MSA)

mat <- cor(police[,2:16])</pre>

```
KMO(mat)
## Kaiser-Meyer-Olkin factor adequacy
  Call: KMO(r = mat)
  Overall MSA = 0.64
  MSA for each item =
##
    REACT HEIGHT WEIGHT
                          SHLDR PELVIC
                                         CHEST
                                                THIGH
                                                        PULSE.
                                                               DIAST
                                                                       CHNUP
##
     0.23
            0.76
                   0.83
                           0.64
                                  0.59
                                          0.67
                                                 0.68
                                                         0.57
                                                                0.42
                                                                        0.65
  BREATH
           R.E.CVR.
                   SPEED
                          ENDUR
                                   FAT
##
     0.71
            0.40
                   0.36
                           0.81
                                  0.65
```

MSA with REACT Removed

```
mat2 <- cor(police[,3:16]) # begin with column 3 to exclude REACT
KMO(mat2)</pre>
```

```
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = mat2)
## Overall MSA = 0.68
## MSA for each item =
## HEIGHT WEIGHT
               SHLDR PELVIC
                              CHEST
                                    THTGH
                                           PULSE.
                                                        CHNUP BREATH
                                                 DTAST
    0.79
          0.83 0.64
                        0.66 0.68
                                   0.69
                                           0.52
                                                  0.53 0.66
##
                                                                0.71
##
   R.E.CVR.
          SPEED ENDUR FAT
    0.54 0.42 0.82
##
                        0.69
```

MSA with SPEED Removed

```
police2 <- police[-14] # remove the 14th column (SPEED)
mat3 <- cor(police2[,3:15]) # note: only 15 columns now
KMO(mat3)</pre>
```

```
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = mat3)
## Overall MSA = 0.73
## MSA for each item =
## HEIGHT WEIGHT SHLDR PELVIC CHEST THIGH PULSE DIAST CHNUP BREATH
## 0.76 0.81 0.74 0.75 0.72 0.68 0.56 0.35 0.80 0.71
## RECVR ENDUR FAT
## 0.53 0.80 0.72
```

MSA with DIAST Removed

##

0.81 0.72

```
KMO (mat4)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = mat4)
## Overall MSA = 0.75
## MSA for each item =
## HEIGHT WEIGHT SHLDR PELVIC CHEST
                                     THIGH PULSE
                                                  CHNUP BREATH
                                                                RECVR.
   0.75  0.81  0.75  0.84  0.72  0.69  0.61  0.80  0.71
                                                                 0.50
##
   ENDUR. FAT
##
```

police3 <- police2[-10] # remove the 10th column (DIAST)
mat4 <- cor(police3[,3:14]) # note: only 14 columns now</pre>

How Many Factors to Extract?

We'll use principle components to get eigenvalues and make the scree plot. The R code looks like this. The plot will be on the next slide.

```
output <- princomp(police3[,3:14], cor=TRUE)
plot(output,type="lines") # scree plot
abline(h=1,lty=2) # add horizonal dotted line at 1</pre>
```

Scree Plot

Methods of Extraction

Principal Component Analysis

Common Factor Analysis

- Maximum likelihood
- Unweighted least squares
- Generalized least squares
- Principal axis factoring

Methods of Rotation

Orthogonal Methods

- Varimax
- Quartimax
- Equamax

Oblique Methods

- Direct Oblimin
- Quartimin
- Promax

Let's extract some factors!

```
fa.out <- principal(police3[,3:14],nfactors=4,rotate="varimax")
print.psych(fa.out,cut=.5,sort=TRUE)</pre>
```

Output for Factor Extraction

##	item	PC3	PC1	PC2	PC4	h2	u2	com
## HEIGH	T 1	0.87				0.79	0.214	1.1
## SHLDR	. 3	0.81				0.70	0.303	1.1
## PELVI	C 4	0.72				0.67	0.332	1.6
## BREAT	'H 9	0.68				0.55	0.452	1.4
## WEIGH	T 2	0.65	0.64			0.92	0.082	2.4
## FAT	12		0.90			0.92	0.075	1.3
## THIGH	6		0.89			0.83	0.171	1.1
## CHNUP	8		-0.84			0.74	0.262	1.1
## CHEST	5	0.52	0.57			0.70	0.301	2.6
## RECVR	10			0.86		0.75	0.248	1.0
## PULSE	7			0.82		0.70	0.299	1.1
## ENDUR	. 11				-0.94	0.96	0.037	1.2

Are 3 factors enough?

##	item	PC1	PC3	PC2	h2	u2	com
## FAT	12	0.92			0.92	0.075	1.2
## THI	GH 6	0.90			0.82	0.176	1.0
## CHN	UP 8	-0.81			0.67	0.328	1.1
## WEI	GHT 2	0.66	0.65		0.92	0.084	2.2
## CHE	ST 5	0.60	0.53		0.70	0.302	2.3
## END	UR 11				0.28	0.718	2.3
## HEI	GHT 1		0.85		0.75	0.251	1.1
## SHL	DR 3		0.81		0.69	0.315	1.1
## PEL	VIC 4		0.73		0.67	0.333	1.5
## BRE	ATH 9		0.69		0.55	0.452	1.3
## REC	VR 10			0.85	0.73	0.266	1.0
## PUL	SE 7			0.82	0.70	0.301	1.1

Proportion of Variation Explained by the First 3 Factors

```
fa.out <- principal(police3[,3:14],nfactors=3,rotation="varimax")
print(fa.out,cutoff=.4,sort=TRUE)</pre>
```

```
## SS loadings 3.40 3.29 1.71 ## Proportion Var 0.28 0.27 0.14 ## Cumulative Var 0.28 0.56 0.70 ## Proportion Explained 0.40 0.39 0.20 ## Cumulative Proportion 0.40 0.80 1.00
```

Interpreting the Loadings

##		item	PC1	PC3	PC2	h2	u2	com
##	FAT	12	0.92			0.92	0.075	1.2
##	THIGH	6	0.90			0.82	0.176	1.0
##	CHNUP	8	-0.81			0.67	0.328	1.1
##	WEIGHT	2	0.66	0.65		0.92	0.084	2.2
##	CHEST	5	0.60	0.53		0.70	0.302	2.3
##	ENDUR	11				0.28	0.718	2.3
##	HEIGHT	1		0.85		0.75	0.251	1.1
##	SHLDR	3		0.81		0.69	0.315	1.1
##	PELVIC	4		0.73		0.67	0.333	1.5
##	BREATH	9		0.69		0.55	0.452	1.3
##	RECVR	10			0.85	0.73	0.266	1.0
##	PULSE	7			0.82	0.70	0.301	1.1

Interpreting the Factors

Factor 1	Factor 3	Factor 2
FAT	HEIGHT	RECVR
THIGH	SHLDR	PULSE
CHNUP	PELVIC	
WEIGHT	BREATH	
CHEST		

Using the Factors

- Factor Scores
- Summated Scales

Factor Scores

```
fa.out <- principal(police3[,3:14],nfactors=3,rotation="varimax")
fa.out$scores</pre>
```

```
## PC1 PC3 PC2
## [1,] 0.267981940 -0.70965505 -0.68020292
## [2,] -2.075318208 -0.29562490 0.08638193
## [3,] 0.768003363 -1.50720795 0.99501873
## [4,] 0.914634982 -0.01148425 -0.03442862
## [5,] -0.881854997 -0.01334092 0.74038681
## [6,] 1.246213536 1.02548745 -2.00869275
```

Maximum Likelihood Extraction

```
fa.out2 <- factanal(police3[,3:14],factors=3,rotation="varimax")
print(fa.out2,cut=.5,sort=TRUE)</pre>
```

```
## Test of the hypothesis that 3 factors are sufficient. ## The chi square statistic is 43.9 on 33 degrees of freedom. ## The p-value is 0.0972
```

Maximum Likelihood Extraction

```
## Loadings:
##
          Factor1 Factor2 Factor3
  WEIGHT
           0.668
                            0.545
## THIGH
           0.915
## CHNUP
          -0.700
## FAT
           0.940
## HEIGHT
                   0.844
## SHLDR
                   0.650
## PELVIC
                   0.554
## BREATH
                   0.547
## CHEST
           0.592
                            0.716
## PULSE
## RECVR
## ENDUR
```

Summary

- Much more to Factor Analysis
- Subjectivity in the process
- Describing the factors

