EXERCICE 1.

Décomposer en éléments simples sur $\mathbb{C}(X)$ les fractions rationnelles suivantes :

1.
$$\frac{1}{X^n - 1}$$

2.
$$\frac{X^{n-1}}{X^n-1}$$

2.
$$\frac{X^{n-1}}{X^n-1}$$
 3. $\frac{1}{(X-1)(X^n-1)}$

EXERCICE 2.

Décomposer en éléments simples sur $\mathbb{C}(X)$ la fraction rationnelle $F = \frac{1}{X^n(1-X)^n}$.

EXERCICE 3.

Décomposer en éléments simples sur $\mathbb{C}(X)$:

1.
$$F = \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
. **3.** $F = \frac{1}{X(X - 1)^3}$. **5.** $F = \frac{1}{X^2 + X + 1}$.

3.
$$F = \frac{1}{X(X-1)^3}$$

5.
$$F = \frac{1}{X^2 + X + 1}$$
.

$$2. F = \frac{4}{(X^2 + 1)^2}$$

4.
$$F = \frac{2X}{X^2 + 1}$$

2.
$$F = \frac{4}{(X^2 + 1)^2}$$
. **4.** $F = \frac{2X}{X^2 + 1}$. **6.** $F = \frac{X}{(X^2 - 1)^3}$.

Exercice 4.

Soit $P \in \mathbb{R}[X]$ dont les racines sont réelles et simples. Montrer que le polynôme $Q = P'^2 -$ PP" n'a pas de racines réelles.

EXERCICE 5.

- **1.** Soit $n \in \mathbb{N}$. Montrer qu'il existe un unique polynôme $T_n \in \mathbb{R}[X]$ tel que $T_n(\cos \theta) =$ $\cos n\theta$ pour tout $\theta \in \mathbb{R}$. Quel est son degré?
- **2.** Soit $n \in \mathbb{N}^*$. Quelles sont les racines de T_n ?
- 3. Déterminer la décomposition en éléments simples de $\frac{1}{T_{..}}$

EXERCICE 6.

- **1.** Montrer qu'il existe un unique polynôme $A_n \in \mathbb{C}[X]$ tel que $A_n\left(X + \frac{1}{X}\right) = X^n + \frac{1}{X}$ $\frac{1}{\chi n}$
- 2. Soit $n \in \mathbb{N}^*$. Montrer que les racines de A_n sont les $x_k = 2\cos\frac{(2k+1)\pi}{2n}$ pour $0 \le k \le n-1$.
- 3. Décomposer $\frac{1}{A_n}$ en éléments simples.

Exercice 7.

Soient $n \in \mathbb{N}$ un entier naturel supérieur ou égal à 2 et $P_n = \prod_{k=0}^{n} (X - k)$.

- **1.** En considérant $f_n = \frac{P'_n}{P_n}$, montrer que P'_n admet une unique racine x_n dans]0, 1[.
- **2.** Montrer que (x_n) converge vers 0.
- 3. Montrer que $x_n \sim \frac{1}{\ln n}$.

EXERCICE 8.

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que P' divise P.

EXERCICE 9.

Calculer les limites des suites suivantes :

1.
$$u_n = \sum_{k=1}^n \frac{1}{k^2 + k}$$

3.
$$w_n = \sum_{k=2}^n \frac{1}{k^2 - 1}$$

2.
$$v_n = \sum_{k=1}^n \frac{1}{4k^2 - 1}$$

4.
$$z_n = \sum_{k=1}^n \frac{k-2}{k^3 + 3k^2 + 2k}$$

EXERCICE 10.

Soit F =
$$\frac{X^2 + 1}{(X - 1)(X + 1)^6}$$
.

- 1. Déterminer la partie polaire de F relative au pôle 1.
- **2.** On pose $G = (X + 1)^6 F$. Ecrire un développement limité de G(x) à l'ordre S en -1.
- 3. En déduire la décomposition en éléments simples de F.

Exercice 11.

Décomposer en éléments simple sur $\mathbb{R}(X)$ les fractions rationnelles suivantes.

1.
$$F = \frac{X+1}{(X^2+1)(X^2-X+1)}$$
.

3.
$$F = \frac{X^2 + 1}{X(X^2 + X + 1)^2}.$$

2.
$$F = \frac{1}{X^2(X^2 + 1)^2}.$$

4.
$$F = \frac{2X+3}{X(X^2+X+3)^2}.$$

EXERCICE 12.

Trouver une primitive de la fonction

$$\varphi: \mathbb{R}\setminus\{-1,1\} \longrightarrow \mathbb{R}, \ x \longmapsto \frac{4x}{x^4-1}.$$

Exercice 13.

Démontrer qu'il n'existe pas de fraction rationnelle $R \in \mathbb{K}(X)$ telle que $R' = \frac{1}{X}$.

Exercice 14.

Calculer
$$\int_{0}^{\pi} \frac{\sin t \, dt}{4 - \cos^2 t}.$$

EXERCICE 15.

Calculer les intégrales de fractions rationnelles suivantes.

$$1. \int_0^1 \frac{\mathrm{d}x}{x^2 + 2}.$$

$$2. \int_{-1/2}^{1/2} \frac{\mathrm{d}x}{1-x^2}.$$

3.
$$\int_{2}^{3} \frac{2x+1}{x^2+x-3} \, \mathrm{d}x.$$

4.
$$\int_0^2 \frac{x \, dx}{x^4 + 16}$$
.

5.
$$\int_0^3 \frac{x^4 + 6x^3 - 5x^2 + 3x - 7}{(x - 4)^3} dx.$$

$$6. \int_{-2}^{0} \frac{\mathrm{d}x}{x^3 - 7x + 6}.$$

7.
$$\int_{-1}^{1} \frac{2x^4 + 3x^3 + 5x^2 + 17x + 30}{x^3 + 8} dx.$$

8.
$$\int_{2}^{3} \frac{4x^{2}}{x^{4} - 1} dx.$$

9.
$$\int_{-1}^{0} \frac{x^3 + 2x + 1}{x^3 - 3x + 2} \, dx.$$

10.
$$\int_{1}^{2} \frac{2x^8 + 5x^6 - 12x^5 + 30x^4 + 36x^2 + 24}{x^4(x^2 + 2)^3} dx.$$

11.
$$\int_0^\alpha \frac{-2x^2 + 6x + 7}{x^4 + 5x^2 + 4} dx \text{ pour } \alpha \in \mathbb{R}. \text{ Y a-t-il une limite quand } \alpha \to +\infty?$$

12.
$$\int_0^2 \frac{dx}{x^4 + 1}.$$

Exercice 16.

Calculer

1.
$$\int_0^{\pi} \frac{\sin t \, dt}{4 - \cos^2 t} \text{ en posant } u = \cos t;$$

2.
$$\int_{\frac{\pi}{2}}^{x} \frac{dt}{\sin t} \text{ pour } x \in]0, \pi[\text{ en posant } u = \cos t;$$

3.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dt}{\cos^3 t} \text{ en posant } u = \sin t;$$

4.
$$\int_0^{\frac{\pi}{2}} \frac{dt}{\sin t + \cos t} \text{ en posant } u = \tan \frac{t}{2}.$$

Exercice 17.

Le but est de déterminer l'ensemble \mathcal{A} de toutes les suites réelles (\mathfrak{u}_n) vérifiant :

$$\forall n \in \mathbb{N}, u_{n+2} - u_n = n - 1$$

- 1. Trouver une suite réelle vérifiant cette relation de récurrence.
- **2.** Montrer que \mathcal{A} est un sous-espace affine de $\mathbb{R}^{\mathbb{N}}$. On précisera la direction de \mathcal{A} et on en donnera une base.

EXERCICE 18.

Montrer que $\mathcal{F}=\left\{P\in\mathbb{R}[X]\;\middle|\;X^2P''-3XP'+4P=4-X\right\}$ est un sous-espace affine de $\mathbb{R}[X]$ et déterminer sa direction.

Exercice 19.

Soit E l'ensemble des fonctions continues de $\mathbb R$ dans $\mathbb R$ telles que

$$\forall x \in \mathbb{R}, f(x+1) - f(x) = x^2$$

- 1. Déterminer une fonction polynomiale P élément de E.
- **2.** Montrer que E est un sous-espace affine de $\mathcal{C}(\mathbb{R})$ et donner sa direction.

Exercice 20.

Soient \mathcal{F} et \mathcal{G} deux sous-espaces affines de E de direction respectives F et G.

- **1.** Montrer que si E = F + G, alors $\mathcal{F} \cap \mathcal{G} \neq \emptyset$.
- **2.** Montrer que si $E = F \oplus G$, alors $\mathcal{F} \cap \mathcal{G}$ est un singleton.