Содержание

L	Определения, первые наблюдения	2
2	Простые структурные теоремы	2
3	е-преобразование и теорема Коши-Давенпорта	3

1 Определения, первые наблюдения

Обозначения:

- \bullet будем считать, что A подниножество (конечное, непустое) абелевой группы или коммутативного кольца R.
- $A + B = \{a + b \mid a \in A, b \in B\}$, аналогично произведение.

Элементарные оценки:

- $|A| \leqslant |A + A| \leqslant \frac{|A|(|A|+1)}{2}$.
- $\max\{|A|, |B|\} \le |A+B| \le |A||B|$.
- $|A| \leqslant |A + \ldots + A| \leqslant \overline{C}_{|A|}^k$.

2 Простые структурные теоремы

Пусть |A+B|=|A| в абелевой группе G. Если $0\in B$, то $A\subset A+B\Rightarrow A+B=A$. Иначе возьмём $b_0\in B$ и рассмотрим $|A+(B-b_0)|=|A+B|=|A|\Rightarrow A+B=b_0+A$.

Определим $H = Sym(A) = \{h \in G \mid h+A=A\}$. Это, очевидно, подгруппа, называется она группой симметрии A. Пусть теперь $(g+H) \cap A \neq \emptyset$ для $g \in G$. Тогда $a \in A \cap (g+H) \Rightarrow a = g+h, h \in H$. По определению $a+H \subset A$, но тогда g+h+H=g+H.

Теорема 1. Если |A + B| = |A|, $H = \{h \in G \mid h + A = A\}$, то B является подмножеством смежного класса по H, а A — объединением смежных классов по H.

В частности для $\mathbb R$ получаем, что $|A+B|=|A|\Rightarrow |B|=1.$

Для \mathbb{Z}_p точно также получаем, что либо H=0, либо $H=\mathbb{Z}_p$, отсюда $|A+B|=|A|\Rightarrow A=\mathbb{Z}_p$ или |B|=1.

Утверждение 1. Для любых подмножеств $A,B\subset\mathbb{R}$ выполнено $|A+B|\leqslant |A|+|B|-1.$

Доказательство. Запишем $A = \{a_0 < \ldots < a_{k-1}\}, B = \{b_0 < \ldots < b_{l-1}\}.$ Тогда легко предъявить цепочку элементов A + B: $a_0 + b_0 < a_0 + b_1 < a_0 + b_2 < \ldots < a_0 + b_{l-1} < a_1 + b_{l-1} < \ldots < a_{k-1} + b_{l-1}$. В ней k + l - 1 элемент.

Теорема 2. $|A+A|=2|A|-1 \Leftrightarrow A-$ арифметическая прогрессия.

Доказательство. $A = \{a_0 < \ldots < a_{k-1}\}$. Предъявим цепочку $2a_0 < a_0 + a_1 < 2a_1 < a_1 + a_2 < \ldots < 2a_{k-2} < a_{k-2} + a_{k-1} < 2a_{k-1}$, ясно, что других элементов быть не может.

С другой стороны $a_{i-1}+a_i < a_{i+1}+a_{i-1} < a_i+a_{i+1}$, значит $a_{i+1}+a_{i-1}=2a_i$, значит в самом деле это прогрессия.

Теорема 3. Пусть $A, B \subset \mathbb{R}, |A| = |B|, \mod |A+B| = |A| + |B| - 1 \Leftrightarrow A, B$ — арифметические прогрессии с одинаковой разностью.

Доказательство. Пусть для начала |A| = |B| = k. Предъявим цепочку $a_0 + b_0 < a_0 + b_1 < a_1 + b_1 < \ldots < a_{k-1} + b_{k-1}$, других элементов быть не может.

С другой стороны $a_i+b_i < a_{i+1}+b_i < a_{i+1}+b_{i+1}$, значит $a_{i+1}+b_i=a_i+b_{i+1}\Rightarrow a_{i+1}-a_i=b_{i+1}-b_i$.

Также $a_{i-1}+b_i < a_{i-1}+b_{i+1} < a_i+b_{i+1}$, значит $a_{i-1}+b_{i+1}=a_i+b_i \Rightarrow a_i-a_{i-1}=b_{i+1}-b_i$, что доказывает теорему в этом частном случае.

Пусть теперь $|A| = k \leqslant l = |B|$. Пусть $1 \leqslant t \leqslant l - k$ — произвольный параметр. Разобьём $B = B_1 \sqcup B_2 \sqcup B_3$ на три части $B_1 = \{b_0 < \ldots < b_{t-1}\}, B_2 = \{b_t < \ldots < b_{k+t-1}\}, B_3 = \{b_{k+t} < \ldots < b_{l-1}\}.$

 $A+B\subset (a_0+B_1)\sqcup (A+B_2)\sqcup (a_{k-1}+B_3)$. С другой стороны $|a_0+B_1|=t, |A+B_2|\geqslant 2k-1, |a_{k-1}+B_3|=l-k-t,$ поэтому $|A+B_2|=2k-1, |A|=|B_2|=k\Rightarrow A, B_2$ — это арифметические прогрессии с равным шагом. В силу произвольности параметра, получаем утверждение теоремы.

3 е-преобразование и теорема Коши-Давенпорта

Пусть $A,B\subset G,e\in G$, тогда определим преобразование пары множеств $A_{(e)}=A\cup (B+e), B_{(e)}=B\cap (A-e).$

Чтобы B было непустым, нужно $b \in B \Rightarrow b = a - e, a \in A \Rightarrow e = a - b \in A - B$.

Свойства:

- Пусть $a \in A_{(e)} \Rightarrow a \in A$ или $a \in B + e$. Тогда $a + B_{(e)} \subset A + B$ в том и другом случае.
- По формуле включения исключения $|A_{(e)}| = |A| + |B| |A \cap (B+e)| = |A| + |B| |B_{(e)}| + e| \Rightarrow |A_{(e)}| + |B_{(e)}| = |A| + |B|.$
- $B_{(e)} \subset B, A \subset A_{(e)}$.

Теорема 4 (Коши-Давенпорта). *Пусть* $A, B \subset \mathbb{Z}_p$, *тогда* $|A+B| \ge \min\{|A| + |B| - 1, p\}$.

Доказательство. Проведём индукцию по мощности |B|. База |B|=1 очевидна. Докажем переход $k\Rightarrow k+1$.

Пусть $e \in A-B$ — произвольный элемент и выполнено $|B_e|<|B|$, тогда по индукции $|A+B|\geqslant |A_{(e)}+B_{(e)}|\geqslant \min\{|A_{(e)}+B_{(e)}-1,p\}=\min\{|A|+|B|-1,p\}$. Осталось показать, что найдётся такое e, что $B_{(e)}\neq B$.

Пусть $B_{(e)} = B \Leftrightarrow B \subset A - e \Leftrightarrow B + e \subset A$ для всех e. Таким образом $A + B - B \subset A$. Так как $0 \in B - B$, то A + B - B = A и по структурной теореме $B - B \subset H$, где H — группа симметрии множества A. Тогда либо B - B = 0, то есть |B| = 1, либо $A = \mathbb{Z}_p$, то есть так или иначе шаг доказан.

Все наши утверждения допускают следующее обобщение.

Теорема 5 (Кнезер). Пусть G- абелева группа, A,B- её конечные непустые подмножества, H=Sym(A+B). Тогда $|A+B|\geqslant |A+H|+|B+H|-|H|$.