id	name	country
1	Toronto	Canada
2	Rome	Italy
3	Frankfurt	Germany

Table 1: City

code	name
1	Air Canada
2	Lufthansa

Table 2: Airline

id	firstName	surName
1	Sadia	Li
2	Sadia	Li
3	Sadia	Li

Table 3: Passenger

tailNumber	model	airline
1	Boeing 777	1
2	Boeing 777	2
3	Boeing 777	2

Table 4: Plane

id	plane	row	letter	class
1	1	1	A	Economy
2	2	2	A	Business
3	3	3	A	First

Table 5: Seat

code	name	city
YYZ	Toronto Pearson International Airport	1
FCO	Leonardo da Vinci International Airport	2
FRA	Frankfurt Airport	3

Table 6: Airport

flightNumber	airline	source	destination
AC890	1	YYZ	FCO
LH231	2	FCO	FRA
LH470	2	FRA	YYZ

Table 7: Route

id	route	plane	schedDeparture	schedArrival
1	AC890	1	2025-05-01 23:40	2025-05-02 8:05
2	LH231	2	2025-05-22 8:00	2025-05-22 10:00
3	LH470	3	2025-05-22 11:55	2025-05-22 20:20

Table 8: Flight

flight	dateTime
1	2025-05-01 23:45
2	2025-05-22 8:00
2	2025-05-22 11:55

Table 9: Departure

flight	dateTime
1	2025-05-02 8:15
2	2025-05-22 10:00
2	2025-05-22 20:20

Table 10: Arrival

flight	class	price
1	Economy	600
2	Business	950
3	First	1200

Table 11: FlightPrice

id	passenger	seat	flight	price	dateTime
1	1	1	1	600	2024-12-06 21:00
2	2	2	2	950	2025-05-09 9:00
3	3	3	3	1200	2025-05-09 9:00

Table 12: Booking

The result of the given query is:

id	passenger	seat	flight
1	1	1	1
2	2	2	2

Table 13: Part 2 answer

id	name	country
1	Toronto	Canada
2	Rome	Italy
3	Frankfurt	Germany

Table 14: City

code	name
1	Air Canada
2	Lufthansa

Table 15: Airline

id	firstName	surName
1	Sadia	Li
2	Sadia	Li
3	Sadia	Li

Table 16: Passenger

tailNumber	model	airline
1	Boeing 777	1
2	Boeing 777	2
3	Boeing 777	2

Table 17: Plane

id	plane	row	letter	class
1	1	1	A	Economy
4	1	1	В	Economy
2	2	2	A	Business
3	3	3	A	First

Table 18: Seat

code	name	city
YYZ	Toronto Pearson International Airport	1
FCO	Leonardo da Vinci International Airport	2
FRA	Frankfurt Airport	3

Table 19: Airport

flightNumber	airline	source	destination
AC890	1	YYZ	FCO
LH231	2	FCO	FRA
LH470	2	FRA	YYZ

Table 20: Route

id	route	plane	schedDeparture	schedArrival
1	AC890	1	2025-05-01 23:45	2025-05-02 8:15
2	LH231	2	2025-05-22 8:00	2025-05-22 10:00
3	LH470	3	2025-05-22 11:55	2025-05-22 20:20

Table 21: Flight

flight	dateTime
1	2025-05-01 23:50
2	2025-05-22 8:00
2	2025-05-22 11:55

Table 22: Departure

flight	dateTime	
1	2025-05-02 8:25	
2	2025-05-22 10:00	
2	2025-05-22 20:20	

Table 23: Arrival

flight	class	price
1	Economy	600
2	Business	950
3	First	1200

Table 24: FlightPrice

id	passenger	seat	flight	price	dateTime
1	1	1	1	600	2024-12-06 21:00
4	1	4	1	600	2024-12-06 21:00
2	2	2	2	950	2025-05-09 9:00
3	3	3	3	1200	2025-05-09 9:00

Table 25: Booking

- 1. Not expressable
- $\textbf{2. FlightRename}(\text{flight}, \text{tailNumber}, \text{schedDeparture}, \text{flightNumber}) := \Pi_{id,plane,schedDeparture,route}(\textbf{Flight})$

DelayedFlight(flight, tailNumber, schedDeparture,dateTime, flightNumber) :=

$$\sigma_{dateTime-schedDeparture \geq 1hour} \left(egin{align*} \mathbf{FlightRename} oxtimes \mathbf{Departure} \\ \mathbf{SchedDeparture}.year = 2024 \end{aligned}
ight)$$

 $\begin{aligned} \mathbf{DelayedFinal}(\text{flight, tailNumber, schedDeparture,} \text{dateTime,} \text{airline, flightNumber}) := \\ \Pi_{flight,plane,schedDeparture,dateTime,airline,flightNumber}(\mathbf{DelayedFlight} \bowtie \mathbf{Plane}) \end{aligned}$

$$\begin{aligned} \textbf{AtLeastThree}(\text{airline}) := & \Pi_{airline} \sigma_{T1.airline} = & T2.airline \\ & & T2.airline = & T3.airline \\ & & T1.flight \neq & T2.flight \\ & & T2.flight \neq & T3.flight \\ & & T1.flight \neq & T3.flight \end{aligned}$$

 ${\bf NotMostRecentFlight}({\it flight}, \, {\it airline}, \, {\it scheDeparture}, \, {\it flightNumber}) :=$

$$\left(\sigma_{T4. schedDeparture < T5. schedDeparture}^{T4. flight, airline} + \left(\rho_{T4. schedDeparture}^{T4. schedDeparture} + \rho_{T5. schedDeparture}^{T5. schedDeparture} + \rho_{T5. schedDeparture}^{T5. schedDeparture} + \rho_{T5. schedDeparture}$$

 $\mathbf{AtLeastThreeMostRecentFlights}(\mathbf{flight}, \mathbf{code}, \mathbf{flight} \mathbf{Number}) :=$

 $\Pi_{flight, airline, flightNumber} (\textbf{AtLeastThreeAllFlights} - \textbf{NotMostRecentFlight})$

 $\Pi_{code,name,flightNumber}(\mathbf{AtLeastThreeMostRecentFlights}\bowtie\mathbf{Airline})$

3. CityWithAirport_(city) := $\Pi_{city}(Airport)$

 $CityWithRouteEnding_{(city)} := \Pi_{city}(Airport \bowtie Airport.code = Route.destinationRoute)$

 ${f CityWithout Route Ending}_{(city)} := {f CityWith Airport} - {f CityWith Route Ending}$

 $\mathbf{Answer} := \Pi_{name,city}(\mathbf{CityWithoutRouteEnding} \bowtie_{CityWithoutRouteEnding.city=city.id} \mathbf{City})$

 $\textbf{4. FlightRoutePrice} := \textbf{Flight} \bowtie_{Flight.route=Route.flightNumber} \textbf{Route} \bowtie_{Flight.id=FlightPrice.flight} \textbf{FlightPrice}$

$$\mathbf{SameRoutePair} := \sigma \underset{\substack{R1.id \neq R2.id\\R1.source \neq R2.source\\R1.destination \neq R2.destination\\(R1.price < R2.price) \lor (R1.id < R2.id)}{\underset{R1.destination}{R1.id \neq R2.id}{R1}} \left(\rho_{R1}(\mathbf{FlightRoutePrice}) \times \rho_{R2}(\mathbf{FlightRoutePrice}) \right)$$

 $\mathbf{Answer} := \Pi_{R1.id,R1.flightNumber,R2.id,R2.flightNumber}(\mathbf{SameRoutePair})$

5. $\mathbf{F}_{(id,source,destination,schedDeparture,schedArrival)}$

 $:=\pi_{id,source,destination,schedDeparture,schedArrival}(\mathbf{Flight}\bowtie_{Flight.route=Route.flightNumber}, \mathbf{Route})$

 $\mathbf{AfterJune17}_{(id,source,destination,schedDeparture,schedArrival)} \coloneqq \sigma_{schedArrival > 2025-06-17} \mathbf{F}$

$$\mathbf{Direct}_{(schedDeparture, schedArrival)} := \pi_{schedDeparture, schedArrival} \Big(\sigma_{\substack{source='YYZ' \\ \land destination='LIS'}} \mathbf{AfterJune17} \Big)$$

 $\mathbf{Layover}_{(schedDeparture, schedArrival)}$

$$:= \pi_{F1.schedDeaparture}, \left(\sigma \underset{F2.schedArrival}{\underset{F1.source='YYZ'}{F1.source='YYZ'}} \left(\rho_{F1}(AfterJune17) \times \rho_{F2}(AfterJune17)\right)\right)$$

$$= \pi_{F1.schedDeaparture}, \left(\sigma \underset{F2.schedArrival}{\underset{F1.destination='LIS'}{F1.destination=F2.source}} \left(\rho_{F1}(AfterJune17) \times \rho_{F2}(AfterJune17)\right)\right)$$

 $\mathbf{YYZToLIS}_{(schedDeaparture, schedArrival)} := Direct \cup Layover$

```
6. BookingRename(id,flight) := \Pi_{passenger,flight}(Booking).
             \mathbf{FlightRename}(\mathbf{flight}, \mathbf{schedDeparture}) := \Pi_{id,schedDeaparture}(\mathbf{Flight}).
             PairWithDiffTirp(id1,flight1,schedDeparture1,id2,flight2,schedDeparture2):=
           \Pi_{T1.id,T1.flight,T1.schedDeparture1,T2.id,T2.flight,T2.schedDeparture1}(\sigma_{T1.flight\neq T2.flight} \left( \rho_{T_1}(\mathbf{FlightRename} \bowtie_{T1.id \geq T2.id} (\sigma_{T1.flight,T1.schedDeparture1,T2.id,T2.flight,T2.schedDeparture1} (\sigma_{T1.flight\neq T2.flight} (\sigma_{T1.flight,T1.schedDeparture1,T2.id,T2.flight,T2.schedDeparture1} (\sigma_{T1.flight\neq T2.flight} (\sigma_{T1.flight,T1.schedDeparture1,T2.id,T2.flight,T2.schedDeparture1} (\sigma_{T1.flight\neq T2.flight} (\sigma_
            BookingRename) \times \rho_{T_2}(\text{FlightRename} \bowtie \text{BookingRename})
             InvalidPairs(id1,id2):=\Pi_{id1,id2}(PairWithDiffTirp)
             \mathbf{AllPairs}(\mathrm{id1},\mathrm{id2}) \coloneqq \Pi_{id1,id2}(\rho_{T_1}(\mathbf{FlightRename} \bowtie \mathbf{BookingRename}) \times \rho_{T_2}(\mathbf{FlightRename} \bowtie \mathbf{BookingRename})
             ValidPairs(id1,id2):=\Pi_{id1,id2}(AllPairs-InvalidPairs)
           FinalPair(id1,id2) := ValidPairs \cap PairsOfSameName
             \mathbf{GetNotMostRecentTrip}(\mathrm{id1},\mathrm{id2},\mathrm{flight}) := \Pi_{T5.id1,T5.id2,T5.flight} \left(\sigma_{T5.schedDeparture} < T6.schedDeparture} \right)
                                                                                                                                                                                                                                                                                                                                                                  T5.id1 = T6.id1
                                                                                                                                                                                                                                                                                                                                                                  \bigcap_{T5.id2=T6.id2}
               \left( (\textbf{FinalPair} \bowtie_{id1=id} (\textbf{BookingRename} \bowtie \textbf{Flight})) \bowtie_{T5.id1=T6.id1} (\textbf{FinalPair} \bowtie_{id1=id} (\textbf{BookingRename} \bowtie_{T5.id2=T6.id2}) \right) \bowtie_{T5.id2=T6.id2} \left( (\textbf{FinalPair} \bowtie_{id1=id} (\textbf{BookingRename} \bowtie_{id1=id}) \right) \bowtie_{T5.id2=T6.id2} \left( (\textbf{FinalPair} \bowtie_{id1=id}) (\textbf{BookingRename} \bowtie_{id1=id}) \right) \bowtie_{T5.id2=T6.id2} \left( (\textbf{FinalPair} \bowtie_{id1=id}) (\textbf{BookingRename} \bowtie_{id1=id}) \right) 
            \mathbf{Flight})))
             \mathbf{AllTrip}(\mathrm{id1},\mathrm{id2},\mathrm{flight}) := \Pi_{T5.id1,T5.id2,flight}(\sigma_{T5.id1=T6.id1}(\mathbf{FinalPair} \bowtie_{id1=id} (\mathbf{BookingRename} \bowtie_{T5.id2=T6.id2}) \cap_{T5.id2=T6.id2} (\mathbf{FinalPair} \bowtie_{id1=id} (\mathbf{BookingRename} ))))))
             Flight)))
             MostRecentTrip(id1,id2,flight) := AllTrip - GetNotMostRecentTrip
            \Pi_{P_1.firstName,P_1.surName,P_2.firstName,P_2.surName,flight}(\sigma_{P_1.id=id1}(\mathbf{MostRecentTrip} \times \rho_{P_1}\mathbf{Passenger} \times \bigcap_{P_2.id=id2} (P_1.id=id1))
             \rho_{P_2}Passenger))
             \mathbf{PBF}_{expanded} \coloneqq \mathbf{Passenger} \bowtie_{Passenger, id=Booking, passenger} \mathbf{Booking} \bowtie_{Booking, flight=Flight. id} \mathbf{Flight}
             PBF := \prod_{id,passenger,firstname,surName,flight,schedDeparture}(PBF_{expanded})
            \mathbf{SameSurnameFlight} := \sigma_{P1.passenger \neq P2.passenger} \left( \rho_{P1}(\mathbf{PBF}) \times \rho_{P2}(\mathbf{PBF}) \right) \\ \begin{array}{c} P1.surname = P2.surname \\ P1.flight = P2.flight \end{array} \right)
```

AtLeastOneMismatch

7. AtLeastFourTimes(tailNumber):= $\Pi_{plane}(\sigma_{T_1.plane=T_2.plane=T_3.plane=T_4.plane} \Big(\rho_{T_1}\mathbf{Flight} \times \rho_{T_2}\mathbf{Flight} \times \bigcap_{T_1.id \neq T_2.id \neq T_3.id \neq T_4.id} \Big(\rho_{T_1}\mathbf{Flight} \times \rho_{T_2}\mathbf{Flight} \times \bigcap_{T_1.id \neq T_2.id \neq T_3.id \neq T_4.id} \Big(\rho_{T_1}\mathbf{Flight} \times \rho_{T_2}\mathbf{Flight} \times \rho_{T_2}\mathbf{Flight} \times \rho_{T_2}\mathbf{Flight} \times \rho_{T_3}\mathbf{Flight} \times \rho_{T_4}\mathbf{Flight} \times \rho_{T_4}\mathbf{Flig$

$$\left(
ho_{T_3} \mathbf{Flight} imes
ho_{T_4} \mathbf{Flight} \right)$$

 $AllPlanes(tailNumber) := \Pi_{tailNumber}(Plane)$

 ${\bf PlanesLessThanFour}({\rm tailNumber}) := {\bf AllPlanes} - {\bf AtLeastFourTimes}$

 $\Pi_{tailNumber, airline}(PlanesLessThanFour \bowtie Plane)$

8. PassengerEverBookAtLeastTwo(id):= $\Pi_{T_1.passenger}\sigma_{T_1.passenger}=T_2.passenger$ (ρ_{T_1} Booking× ρ_{T_2} Booking)

$$\bigcap_{\substack{T_1.flight=T_2.flight\\ \bigcap\\ T_1.seat \neq T_2.seat}}$$

 $\textbf{PassengerEverBookAtLeastThree}(\text{id}) := \Pi_{T_3.passenger} \sigma_{T_3.passenger=T_4.passenger=T_5.passenger} (\rho_{T_3} \textbf{Booking} \times \rho_{T_3.passenger}) = 0$

$$\begin{array}{c} \bigcap \\ T_3.flight = T_4.flight = T_5.flight \\ \bigcap \\ T_3.seat \neq T_4.seat \neq T_5.seat \end{array}$$

 ρ_{T_4} Booking × ρ_{T_5} Booking)

 $\label{eq:passengerEverBookAtLeastTwo} \textbf{PassengerEverBookAtLeastTwo} - \textbf{PassengerEverBookAtLeastTwo} - \textbf{PassengerEverBookAtLeastThree}$

 ${\bf PassengerEverBookAtMostOne} ({\rm id}) := \Pi_{passenqer} \\ {\bf Booking - PassengerEverBookAtLeastTwo}$

 ${\bf PassengerAlwaysBookTwo}({\rm id}) := {\bf PassengerEverBookAtMostTwo} - {\bf PassengerEverBookAtMostOne}$

 $\mathbf{PassengerBookSameRow}(\mathrm{id}) \! := \Pi_{T_6.passenger} \sigma_{T_6.passenger} =_{T_7.passenger} \sigma_{T_7.passenger} =_{T_7.passenger} \sigma_{T_7.pas$

$$T_6.flight = T_7.flight$$
 $T_6.seat \neq T_7.seat$
 $T_6.row = T_7.row$

 $(\rho_{T_6} \mathbf{Booking} \bowtie_{Booking.seat = Seat.id} \mathbf{Seat}) \times \rho_{T_7} \mathbf{Booking} \bowtie_{Booking.seat = Seat.id} \mathbf{Seat})$

 ${\bf PassengerNeverBookSameRow} ({\rm id}) {:=} \Pi_{passenger} {\bf Booking - PassengerBookSameRow}$

 $PassengerNeverBookSameRow \cap PassengerAlwaysBookTwo$

- 9. Not expressable
- 10. PassengerPaidEqualOrMore(id):= $\Pi_{Passenger}\sigma_{Booking.price} \ge FlightPrice$ ((Booking $\bowtie_{FlightPrice.flight=Booking.flight}$ FlightPrice) $\bowtie_{Booking.seat=Seat.id}$ Seat) FlightPrice.class = Seat.class

 $\Pi_{passenger}$ Booking - PassengerPaidEqualOrMore

 $\textbf{11.} \ \ \mathbf{B}_{(bookId,seat,flight,paidPrice)} := \rho_{B_{(bookid,seat,flight,paidPrice)}} \Big(\pi_{id,seat,flight,price} \mathbf{Booking} \Big)$

$$\mathbf{F}_{(flightId,route)} := \rho_{F_{(flightId,route)}} \Big(\pi_{id,seat,flight,price} \mathbf{Flight} \Big)$$

$$\mathbf{R}_{(routeId, airline)} := \rho_{R_{(routeId, airline)}} \Big(\pi_{flightNumber, airline} \mathbf{Route} \Big)$$

$$\mathbf{S}_{(seatId,class)} := \rho_{S_{(seatId,class)}} \bigg(\pi_{id,class} \mathbf{Seat} \bigg)$$

$$\mathbf{P}_{(flight, class, price)} := \rho_{S_{(flight, class, price)}} \mathbf{FlightPrice}$$

 $\mathbf{RoutesDetail}_{(bookId,routeId,price,paidPrice,airline)}$

$$:= \pi \underset{\substack{R. book Id, \\ R. route Id, \\ P. price, \\ B. paid Price, \\ R. airline}} \left(\mathbf{B} \bowtie_{\substack{B. flight \\ =F. flight Id}} \mathbf{F} \bowtie_{\substack{F. route \\ =R. route Id}} \mathbf{R} \bowtie_{\substack{B. seat \\ =S. seat Id}} \mathbf{S} \bowtie_{\substack{F. flight Id =P. flight \\ \land S. class =P. class}} \mathbf{P} \right)$$

 $\textbf{UnpopularRoutes}_{(routeId, airline)} := \pi_{routeId, airline} \Big(\sigma_{paidPrice \leq price/2} \textbf{RoutesDetail} \Big)$

 $\mathbf{AllRoutes}_{(routeId, airline)} := \rho_{tmp_{(routeId, airline)}}(\pi_{flightNumber, airline} \mathbf{RoutesDetail})$

 $\mathbf{PopularRoutes}_{(routeId, airline)} := \mathbf{AllRoutes} - \mathbf{UnpopularRoutes}$

 $\mathbf{AirlinesOperatedPopularRoute} := \pi_{airlines} \mathbf{RoutesDetail} - \mathbf{PopularRoutes}$

1.

Cannot be expressed.

2.

$$\sigma_{Booking.dateTime \geq Flight.schedDeparture} \Big(\textbf{Booking} \bowtie_{Booking.flight} = Flight.id \ \textbf{Flight} \Big) = \varnothing$$

$$\sigma_{Departure.dateTime < Flight.schedDeparture} \Big(\textbf{Departure} \bowtie_{Departure.flight} = Flight.id \ \textbf{Flight} \Big) = \varnothing$$

$$\sigma_{Arrival.dateTime \leq Departure.dateTime} \Big(\textbf{Departure} \bowtie_{Departure.flight} = Arrival.flight \ \textbf{Arrival} \Big) = \varnothing$$

3.

Cannot be expressed.

4.

Cannot be expressed.

5.

$$\begin{aligned} &\textbf{AllClassForAllFlight}_{(flight,class)} := \pi_{Flight.id,Seat.class} \Big(\sigma_{Flight.plane=Seat.plnae} \big(\textbf{Flight} \times \textbf{Seat} \big) \Big) \\ &\textbf{AllFlightClassInFlightPrice}_{(flight,class)} := \pi_{flight,class} \textbf{FlightPrice} \\ &\textbf{AllClassForAllFlight} - \textbf{AllFlightClassInFlightPrice} = \varnothing \\ &\textbf{AllFlightClassInFlightPrice} - \textbf{AllClassForAllFlight} = \varnothing \end{aligned}$$

6.

 $FourOrMore = \emptyset$

$$\begin{array}{lll} \textbf{FR} & id, & := \pi & \textit{Flight.id}, & \textit{Flight.plane}, & \textit{Fl$$