Przykład 1. Całka

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+1)^3} = 2\pi i \operatorname{Res}_{z=i} f(z).$$

$$f(z) = \frac{1}{(z+i)^3 (z-i)^3}.$$

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \left((z-z_0)^n f(z) \right).$$

$$f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k + \frac{a_{-1}}{(z-z_0)} + \dots.$$

Jak przemnożymy przez $(x^2+1)^3$ to dostaniemy wyrażenie regularne.

$$\operatorname{Res}_{z=i} f(z) = \lim_{z \to i} \frac{1}{2!} \frac{d^2}{dz^2} \left((z-i)^3 \frac{1}{(z+i)^3 (z-i)^3} \right).$$

Ale

$$\left(\frac{1}{(z+i)^3}\right)'' = \left(-\frac{3}{(z+i)^4}\right)' = \frac{(-3)(-4)}{(z+i)^5}.$$

Dostajemy

$$\mathop{\rm Res}_{z=i} f(z) = \lim_{z \to i} \frac{1}{2!} (-3) (-4) \frac{1}{(z+i)^5} = \frac{3}{2^4} \cdot \frac{1}{i}.$$

Zatem

$$\int_{-\infty}^{+\infty} \frac{1}{(z^2+1)^3} dx = 2\pi i \frac{3}{2^4 i} = \frac{3\pi}{8}.$$

Przykład 2.

$$\int_{-\infty}^{+\infty} R(x)dx.$$

$$\begin{array}{ccc} Taka, \ \dot{z}e \ |zR(z)| \underset{|z| \to \infty}{\longrightarrow} 0 \\ np. \end{array}$$

$$\int_{-\infty}^{+\infty} \frac{x\sin(ax)}{x^2 + b^2} dx = J, \quad a > 0, \\ b > 0.$$

$$J = \int_{-\infty}^{+\infty} \frac{x \left(e^{iax} - e^{-iax}\right)}{2i(x^2 + b^2)} dx = \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{x}{x^2 + b^2} e^{iax} dx - \frac{1}{2i} \int_{-\infty}^{+\infty} \frac{x}{x^2 + b^2} e^{-iax} dx.$$

Chcemy policzyć całkę typu

$$\int_{-\infty}^{+\infty} R(x)e^{iax}dx.$$

Twierdzenie 1. (Lemat Jordana)

Niech f(z) - określona w górnej półpłaszczyźnie (rys ??) taka, że

$$\lim_{|z|\to\infty}|f(z)|\to 0.$$

W'owczas

$$\lim_{R\to +\infty}\int\limits_{C_r} f(z)e^{iaz}dz\to 0.$$

Dowód.

$$\left| \int_{C_R} f(z)e^{iaz}dz \right| = \left| \int_0^{\pi} f(Re^{i\varphi})Rie^{i\varphi} \cdot e^{iaRe^{i\varphi}}d\varphi \right|.$$

Ale

$$e^{iaRe^{i\varphi}}=e^{iaR(\cos\varphi+i\sin\varphi)}=e^{iaR\cos\varphi}\cdot e^{-aR\sin\varphi}.$$

Analiza III 3

Czyli

$$\left|\int\limits_0^\pi f(Re^{i\varphi})Rie^{i\varphi}\cdot e^{iaR\cos\varphi}\cdot e^{-aR\sin\varphi}d\varphi\right|\leqslant \sup_{\varphi\in[0,\pi]}\left|f(Re^{i\varphi})\right|R\cdot \underbrace{\int\limits_0^\pi e^{-aR\sin\varphi}d\varphi}_I.$$

Stąd

$$J = \left| 2 \int_{0}^{\frac{\pi}{2}} e^{-aR\sin\varphi} d\varphi \right| \leqslant 2 \int_{0}^{\frac{\pi}{2}} e^{-aR\frac{2}{\pi}\varphi} d\varphi = 2 \frac{-\pi}{2aR} e^{-aR\frac{2}{\pi}\varphi} \Big|_{0}^{\frac{\pi}{2}} = \frac{\pi}{aR} \left(1 - e^{-aR} \right).$$

$$\int_{0}^{\pi} e^{-aR\sin\varphi} d\varphi \leqslant \sup_{p \in [0,\pi]} \left| f(Re^{i\varphi}) \right| \frac{\pi}{aR} \left(1 - e^{-aR} \right) \underset{R \to +\infty}{\longrightarrow} 0.$$

 $y = \frac{2}{\pi}\varphi$

Rysunek 0.1: w15-2

Zachowanie funkcji wokół punktu istotnie osobliwego

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{(z - z_0)^n}.$$

Twierdzenie 2. (Lemat)

Niech f - holomorficzna i ograniczona na R(a,0,r). Wówczas możemy

przedłużyć f do funkcji holomorficznej na K(a,r). Czyli

$$f(z) = c_0 + c_1(z-a)^1 + c_2(z-a)^2 + \dots$$
, $gdzie\ c_0 = f(a)$.

Dowód. Niech

$$H(z) = \begin{cases} (z-a)^2 f(z) & z \neq a \\ 0 & a = a \end{cases}.$$

Pokażemy, że H(z) jest holomorficzna na K(a,r). Wystarczy pokazać, że H(z) jest holomorficzna w z=a. Policzmy H'(a).

$$H'(a) = \lim_{h \to 0} \frac{H(a+h) - H(a)}{h} = \lim_{h \to 0} \frac{(a+h-a)^2 f(a+h) - 0}{h} = \lim_{h \to 0} \frac{h^2 f(a+h)}{h} = \lim_{h \to 0} h f(a+h) = \lim_{h$$

Ale skoro f - ograniczona na R(a,0,r), to $0 \le |hf(a+h)| \le hM \xrightarrow[h\to 0]{} 0$, czyli H'(a)=0, więc H(z) jest holomorficzna na K(a,r).

$$H(z) = c_0 + c_1(z-a)^1 + c_2(z-a)^2 + \dots$$

Czyli (bo $c_0 = 0$ i $c_1 = 0$, bo H'(0) = 0)

$$(z-a)^2 f(z) = c_2(z-a)^2 + c_3(z-a)^3 + \dots$$

Co oznacza, że nasz f(z) da się przedstawić w postaci

$$f(z) = c_2 + c_3(z-a)^1 + \dots$$

Jak położymy $c_2 \equiv f(a)$, to wtedy f - holomorficzna na K(a,r)

Twierdzenie 3. (Weierstrass)

Niech f - holomorficzna na R(a,0,r), i a - punkt istotnie osobliwy funkcji f. Wówczas

$$\bigvee_{r>0} f(R(a,0,r)) = \mathbb{C}.$$

Dowód. Chcemy pokazać, że f - ma w a punkt istotnie osobliwy i

$$\bigvee_{r>0} \quad \bigvee_{c \in \mathbb{C}} \quad \bigvee_{\varepsilon>0} \quad \exists \quad |z-a| < r \implies |f(z)-c| < \varepsilon.$$

Analiza III

5

Przez sprzeczność.

Wiemy, że f ma w a punkt istotnie osobliwy oraz

$$\exists_{r>0} \quad \exists_{c \in \mathbb{C}} \quad \exists_{\varepsilon>0} \quad \forall |z-a| < r, |f(z)-c| \geqslant \varepsilon.$$

Pokażemy, że wyżej wymienione zdanie jest sprzeczne z tym, że f ma w a punkt istotnie osobliwy.

Jeżeli

$$\forall |z - a| < r, |f(z) - c| \ge \varepsilon,$$

to znaczy, że funkcja $g(z) = \frac{1}{f(z)-c}$ jest ograniczona i holomorficzna na R(a,0,r). Oznacza to, że możemy przedłużyć g(z) do funkcji holomorficznej na K(a,r). Czyli możemy rozwinąć z w szereg Laurenta na K(a,r).

$$g(z) = a_0 + a_1(z - a) + a_2(z - a)^2 + \dots$$

i) Jeżeli $a_0 \neq 0$, to znaczy, że $g(a) \neq 0$, czyli

$$0 \neq a_0 = \frac{1}{f(a) - c},$$

to znaczy, że $f(a)-c=\frac{1}{a_0} \implies f(a)=c+\frac{1}{a_0}$ i sprzecznośc, bo jeżeli f ma w a konkretną wartość a na R(a,0,r) jest holomorficzna to wtedy możemy zapisać

$$f(z) = c + \frac{1}{a_0} + b_1(z - z_0) + b_2(z - z_0)^2 + \dots,$$

a skoro f ma w a punkt istotnie osobliwy, to jej rozwinięcie powinno wyglądać tak:

$$f(z) = \sum_{k=0}^{\infty} d_k (z-a)^k + \sum_{k=1}^{\infty} \frac{e_k}{(z-a)^k}.$$

i) Jeżeli $a_0 = a_1 = a_2 = \ldots = a_n = 0$, to znaczy, że

$$g(z) = (z - a)^n \left(c_0 + \underbrace{c_1(z - a) + c_2(z - a)^2 + \dots}_{\varphi(z)} \right), \quad c_0 \neq 0.$$

Zauważmy, że $\varphi(z)$ jest holomorficzna i $\varphi(a)\neq 0$, możemy więc rozwinąć $\frac{1}{\varphi(z)}$ w K(a,r), bo $\frac{1}{\varphi(z)}$ - też jest holomorficzna na K(a,r)

$$\frac{1}{\varphi(z)} = d_0 + d_1(z - a) + d_2(z - a)^2 + \dots$$

Zatem

$$\frac{1}{f(z)-c} = g(z) = (z-a)^n \varphi(z),$$

czyli

$$f(z) - c = \frac{1}{(z-a)^n} \cdot \frac{1}{\varphi(z)} = \frac{1}{(z-a)^n} \cdot (d_0 + d_1(z-a) + d_2(z-a)^2 + \ldots),$$

czyli

$$f(z) = c + \frac{d_0}{(z-a)^n} + \frac{d_1}{(z-a)^{n-1}} + \frac{d_2}{(z-a)^{n-2}} + \dots$$

i sprzeczność, bo wtedy wiemy, że f(z) miałaby w z=a biegun n-tego rzędu, a f(z) ma w z=a punkt istotnie osobliwy.