КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Фізичний факультет

Кафедра ядерної фізики

3BIT

по лабораторній роботі №2

«Вивчення RC CR 4-х полюсники»

практикум "основи радіоелектроніки", 2 курс

Виконали: студенти 5Б групи Н. Павленко А. Вишнівецька Викладач практикуму Р.В. Єрмоленко

3міст

Зміст	2
1. Теоретична частина	
2. Експериментальна частина	
Підготовка до вимірів	
Виміри на меандрі	
Виміри на синусоїді (перша схема)	6
Виміри на синусоїді (друга схема)	6
3 . Моделювання у програмі WorkBench	7
4. Висновки	8
5 Додатки	9

1. Теоретична частина

Чотирипо́люсник — електрична схема з чотирма виводами, на два з яких подається вхідний сигнал, а з двох інших знімається вихідний сигнал.

Прикладом чотириполюсника ϵ підсилювач, і будь-який прилад зі входом та виходом, призначений для передачі й переробки сигналів. Окремі функціональні блоки в радіотехнічних чи електронних схемах теж ϵ чотириполюсниками.

Сигнал, що подається на вхід чотириполюсника можна охарактеризувати вхідним струмом I_1 і напругою U_1 , а сигнал на виході характеризується вихідними струмом I_2 і напругою U_2 .

Чотириполюсники можуть мати у своєму складі як лінійні, так і нелінійні елементи.

Для чотириполюсника з лінійними елементами існує лінійний взаємозв'язок між вхідними і вихідними величинами.

В цій частині роботи ми працювали з інтегруючим чотирьохполюсником:

Перша схема:

U_{вх} – Вхідна напруга

U_{вих} – Вихідна напруга

Для синусоїдальної напруги поданої на вхід на виході отримаємо теж синусоїдальну напругу при чому в комплексному представленні

$$U_{BX}^* = K(w)^* U_{BXX}^*$$

$$K(w)=|K(w)|*e^{i*fi}$$

$$|K(w)| = \frac{1}{\sqrt{1 + (wRC)^2}}$$
 – Амплітудний коефіцієнт вихідного сигналу

fi=-arctg(wRC) – Зсув фази вихідного сигналу

Друга схема

В даному випадку:

$$|K(w)| = \frac{wRC}{\sqrt{1 + (wRC)2}}$$
 – Амплітудний коефіцієнт вихідного сигналу

2. Експериментальна частина

Підготовка до вимірів

Ми ознайомились з роботою виданої плати і мультиметру.

Використовуючи мультиметр ми підібрали параметри для нашої схеми і зібрали її. Нами було використано наступні значення

- R=20kOm
- C=95нФ

Відповідно t = RC = 1.9ms

Виміри на меандрі

Подаємо на вхід схеми меандр з частотою V=75Гц (Графік1)

Вимірюємо амплітуду вхідного і вихідного сигналу від часу.

Знявши дані з осцилографа апроксимуємо отриману періодичну криву експонентами. Наростаюча частина для 1-го періода (Графік2)

$$U \mu a p = U_0 + U(1 - e^{-(t-t1)w})$$

$$Ucna \partial = U_0 + Ue^{-(t-t2)w}$$

Знаходимо час наростання: $t\mu = 0.00391 \ s$

Сколювання $\delta = 0.72$

Час сколювання

$$W = (570 \pm 10) \, s^{-1}$$

$$RC = 1.75 \pm 0.03 \ s^{-1}$$

Виміри на синусоїді (перша схема)

Подаємо на вхід синусоїди з частотами в інтервалі від 10 до 300 гц. Вимірюємо амплітуду вхідного і вихідного сигналу від часу. Апроксимуємо отримані криві синусоїдами (Графіки 3-10)

Знайшовши відношення амплітуд K для кожної з частот будуємо графік в координатах $\sqrt{(\frac{1}{K^2}-1)}$ від w (Графік 11). За

теоретичною моделлю повинні отримати криву з коефіцієнтом нахилу RC

$$3$$
находимо $RC = (1.890 \pm 0.011) ms$

Будуємо графік К(w) (Графік 12)

Виміри на синусоїді (друга схема)

Подаємо на вхід синусоїди з частотами в інтервалі від 10 до 300 гц. Вимірюємо амплітуду вхідного і вихідного сигналу від часу. Знайшовши відношення амплітуд K для кожної з частот будуємо графік в координатах $\frac{1}{\sqrt{(\frac{1}{K^2}-1)}}$ від w (Графік 13). За

теоретичною моделлю повинні отримати криву з коефіцієнтом нахилу RC

Знаходимо
$$RC = (1.917 \pm 0.026) \ ms$$

Будуємо графік К(w) (Графік 14)

3. Моделювання у програмі WorkBench

Нами було побудовано дві схеми у даній програмі (фото 1 та 2). Ми пустили на вхід синусоїдальний сигнал а потім меандр.

За допомогою двоканального осцилографа нами були зібрані дані на вході на виході. Відповідно ми змогли отримати дані про коефіцієнт К для синусоїд тих частот які були поміряні нами безпосередньо експериментально. Аналізуючи ці дані ми отримали графік 15 та графік 16. З них також легко знайти t=RC=0.0019s (Графік17)

Також ми отримали дані на меандрі з частотою 75 Гц, на якій ми експериментували. (графіки 18-19, криві ми апроксимували експонентами). Знайшли час наростання і сколювання

$$t_H = t(0.9U_{\text{max}}) - t(0.1U_{\text{max}}) = 0.00418 \text{ s}$$

$$t_{\text{скол}} = 0.00131$$

4. Висновки

Для меандру, ми отримали результати, що не дуже гарно узгоджуються з теоретичними, це можна пояснити сильною відмінністю вхідного меандра від ідеального. Замість прямокутних імпульсів ми отримали на вході сигнал у формі трапеції (Це можна бачити на графіку 1)

Для синусоїди, експериментальні дані дуже гарно узгоджуються з теоретичними, що підтверджує застосовність використаної нами моделі послідовного з'єднання ідеального резистора і ідеального конденсатора в даному діапазоні частот.

Дані з промодельованих схем повність узгоджуються з запропонованими нами теоретичними моделями.

5 Додатки

Графік 1

Графік 2

Графік 3

Графік 4

Графік 5

Графік 6

Графік 7

Графік 8

Графік 9

Графік 10

Графік 11

Графік 12

Графік 13

Графік 14

Рисунок 1

Рисунок 2

Графік 15

Графік 16

Графік 17

Графік 18

Графік 19

