Linked Product Data: Describing Multi-Functional Parametric Building Products using Semantic Web Technologies

PhD Defence, Anna Wagner M.Sc.

Further Specification

Linked Product Data Concept

- Modular
- Extensible
- Flexible
- Queryable
- Machine-readable
- Multi-lingual

The Semantic Web Basics

Graph-based data structure

- Identification via URIs, e.g. URLs
- Schema can be extended by logical axioms
 - Transitivity
 - Property Chains
- Machine-understandable

Linked Product Data Concept

- Modular
- Extensible
- Flexible
- Queryable
- Machine-readable
- Multi-lingual

Linked Building Product DataImplementation

buildingSMART Data Dictionary (bSDD)

Building Product Ontology (BPO)

Ontology for Managing Geometry (OMG)

Ontology for Parametric Systems (OPS)

Geometry Ontologies

MathML

Building Product Ontology Overview

BPO: Building Product Ontology

Scope:

Product Composition, Attributes

Perspective:

Generic

Size:

Small

Logic:

Transitivity, Property Chains

Related to:

Alignment Schema.org

Alignment SEAS

Compositional structure:

- Geometry
- Subparts
- Interconnections

Attributes:

Non-geometric information

Little domain knowledge in BPO

Domain taxonomy required!

Building Product Ontology Concepts

E: Element

A: Assembly P: Product

SE: Singular Entity

DE: Dynamic Entity

CC: Component Connection

FA: Fixed Attribute

RA: Ranged Attribute

Ontology for Managing Geometry Overview

OMG: Ontology for Managing Geometry

Scope:

Connecting / Relating Geometry Descriptions

Perspective:

Generic

Size:

Small

Logic:

Property Chains

Related to:

Alignment SEAS

Inspired OPM

Ontology for Managing Geometry Modelling Levels

Implemented in three levels to optimise complexity for individual use cases

Level 1: Direct connection

Level 2: Objectified connection

Level 3: Twice objectified connection

O: Object

GD: Geometry Description

G: Geometry Node **GS:** Geometry State

Ontology for Parametric Systems Overview

OPS: Ontology for Parametric Systems

Scope:

Defining Parametric Systems and Variables Connecting Constraints

Perspective:

Generic

Size:

Small

- Automatic placement of additional PV cells
- Recalculation of the module's efficiency
- Quality-check of results

Ontology for Parametric Systems Concepts

Solar Energy

Evaluated criteria:

• Extensive product descriptions

- Extensive product descriptions
- Modularity

- Extensive product descriptions
- Modularity
- Freedom of modelling

$$integer N_x = \frac{x_{module} - (2*gap_{module}) + spacing_{cell}}{x_{cell} + spacing_{cell}}$$

$$integer N_y = \frac{y_{module} - (2*gap_{module}) + spacing_{cell}}{y_{cell} + spacing_{cell}}$$

$$N_{cells} = N_x * N_y$$

$$(spacing_{cell} - spacing_{cell,min} + 2*(gap_{module} - gap_{module,min}) < x_{cell}$$

$$(spacing_{cell} - spacing_{cell,min} + 2 * (gap_{module} - gap_{module,min}) < y_{cell}$$

$$P_{mpp} = N_{cells} * P_{mpp,eff,cell}$$

$$\eta = \frac{P_{mpp}}{x_{module} * y_{module}} * \frac{1}{1000}$$

- Extensive product descriptions
- Modularity
- Freedom of modelling
- $P_{mpp} = N_{cells} * P_{mpp,eff,cell}$ Parametric product descriptions

- Extensive product descriptions
- Modularity
- Freedom of modelling
- Parametric product descriptions
- Uniform querying and reasoning

- ✓ All evaluated criteria could be met
 - Flexible and modular product description

- ✓ All evaluated criteria could be met
 - Flexible and modular product description
- ✓ Straight-forward integration of product data into Linked Building Data

- ✓ All evaluated criteria could be met
 - Flexible and modular product description
- ✓ Straight-forward integration of product data into Linked Building Data
- ✓ Application of Linked Data facilitates distributed data storage systems

- ✓ All evaluated criteria could be met
 - Flexible and modular product description
- ✓ Straight-forward integration of product data into Linked Building Data
- ✓ Application of Linked Data facilitates distributed data storage systems
- Dissemination of introduced ontologies in corresponding working groups

publications at international conferences and workshops

publications in international journals (incl. co-authorships)

World Wide Web Consortium (W3C): Linked Building Data Community Group

Linked Building Data Community (outside of W3C)

- ✓ All evaluated criteria could be met
 - Flexible and modular product description
- ✓ Straight-forward integration of product data into Linked Building Data
- ✓ Application of Linked Data facilitates distributed data storage systems
- ✓ Dissemination of introduced ontologies in corresponding working groups

- Full extent of benefits only show with broad applications
 - Wide acceptance requires development of processing tools
- Currently missing Linked Data taxonomy for AEC
- 5 Lacking Alignment of OMG and OPS

THANK YOU FOR YOUR ATTENTION!

