1) i)
$$D_{NED}^{ECEF} = R_2(-\varphi) R_1(\lambda) D_{NED}^{ECEF}(\varphi_{=0}, \lambda_{=0})$$

$$C(x) = \cos(x)$$

$$s(x) = \sin(x)$$

$$D_{NED}^{ECEF}(\varphi_{=0}, \lambda_{=0}) = R_2(-\pi/2)$$

$$R_2(-\varphi) = \begin{bmatrix} c(\varphi) & 0 & s(\varphi) \\ 0 & 1 & 0 \\ -s(\varphi) & 0 & c(\varphi) \end{bmatrix} R_2(-\pi/2) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$R_{1}(\lambda) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\lambda) & s(\lambda) \\ 0 & -s(\lambda) & c(\lambda) \end{bmatrix}$$

$$R_{2}(-1)^{2} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$D_{N \in D}^{ECEF} = R_{z}(-\varphi)R_{z}(\lambda)R_{z}(-\frac{\pi}{2}) = \begin{bmatrix} c(\varphi) & 0 & s(\varphi) \\ 0 & 1 & 0 \\ -s(\varphi) & 0 & c(\varphi) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c(\lambda) & s(\lambda) \\ 0 & -s(\lambda) & c(\lambda) \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$=\begin{bmatrix}c(\varphi) & 0 & s(\varphi) \\ 0 & 1 & 0 \\ -s(\varphi) & 0 & c(\varphi)\end{bmatrix}\begin{bmatrix}0 & 0 & 1 \\ -s(\lambda) & c(\lambda) & 0 \\ -c(\lambda) & -s(\lambda) & 0\end{bmatrix}=\begin{bmatrix}-s(\varphi)c(\lambda) & -s(\varphi)s(\lambda) & c(\varphi) \\ -s(\varphi)c(\lambda) & -c(\varphi)s(\lambda) & -s(\varphi)\end{bmatrix}$$

(ii)
$$\begin{bmatrix} X \\ Y \\ Z, \end{bmatrix}_{ECEF} = R_3(-lon)R_2(lat) \begin{bmatrix} R+h \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} c(lon)c(lat) \\ s(lon)c(lat) \end{bmatrix} (R+h)$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} c(lon)c(lat) \\ s(lon)c(lat) \\ sin(lot) \end{bmatrix} (R+h)$$

$$Y/X = \tan(\log) = 2 \log = \arctan_2(Y, X)$$

$$Y^2 + X^2 = \left[c(\log)(R + \log)\right]^2 = 2 / \sqrt{Y^2 + X^2} = \tan(\log)$$

$$= 2 \log = \arctan(Z / \sqrt{Y^2 + X^2})$$

$$X^{2} + Y^{2} + Z^{2} = (R + h)^{2} \Rightarrow h = \sqrt{X^{2} + Y^{2} + Z^{2}} - R$$

latitude | lot | R=Roid | cattitude | harm

 $\begin{bmatrix} X \\ Y \\ Z_1 \end{bmatrix} = \begin{bmatrix} c(lan)c(lat) \\ s(lan)c(lat) \end{bmatrix} (R+h) \begin{cases} R = 6378164 \text{ m} \\ h = 1221 \text{ m} \\ lat = -15,98901466 \end{cases}$ $\begin{cases} langle = 48,0448584 \end{cases}$ $\begin{bmatrix} X \\ Y \\ z \\ -4560618 \\ -1757221 \end{bmatrix} = \begin{bmatrix} 1099938 \\ -1757221 \end{bmatrix}$ P=posição do satélite velativa à sala [P] = Decep [P] ECEF Tsala = posição da sala relativa ao certra da Terro = DECEP [Pod - Toola] ECEF Fant = posção do satélite relativa $\begin{bmatrix} \vec{F}_{\text{sof}} \\ -13087191 \\ -20360055 \end{bmatrix}, \begin{bmatrix} \vec{F}_{\text{sof}} \\ \vec{F}_{\text{sof}} \end{bmatrix}_{\text{ECEF}} = \begin{bmatrix} 4099938 \\ -4560618 \\ -1757221 \end{bmatrix}$ [v] = vetar v representato $D_{NED}^{CCEF} = \begin{bmatrix} -s(\Psi)_{C}(\lambda) & -s(\Psi)_{S}(\lambda) & c(\Psi) \\ -s(\Psi) & c(\lambda) & 0 \\ -c(\lambda)c(\Psi) & -c(\Psi)s(\lambda) & -s(\Psi) \end{bmatrix} \qquad \psi = -15$ $[\vec{P}]_{NED} = \begin{bmatrix} -14869285 \\ -582859,46 \end{bmatrix}_{m}$ azimute = $\alpha = \arctan_{2}(E,N)$ elevação = $\Lambda = \arctan_{2}(-D)/N^{2}+E^{2}$ $\alpha = -177,75521831^{\circ}$ $\Lambda = 46,42969827^{\circ}$ DECEF = R, (-4) R2 () DECEF $D_{ENU}^{ECEF} = \begin{cases} \hat{E} = \hat{Y} \\ \hat{N} = \hat{Z} \end{cases} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ $R_{1}(-\varphi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\varphi) & -s(\varphi) \\ 0 & s(\varphi) & c(\varphi) \end{bmatrix} \qquad R_{2}(\lambda) = \begin{bmatrix} c(\lambda) & 0 & -s(\lambda) \\ 0 & 1 & 0 \\ s(\lambda) & 0 & c(\lambda) \end{bmatrix}$ $D_{ENU}^{eceF} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\varphi) & -s(\varphi) \\ 0 & s(\varphi) & c(\varphi) \end{bmatrix} \begin{bmatrix} c(\lambda) & 0 & -s(\lambda) \\ 0 & 1 & 0 \\ s(\lambda) & 0 & c(\lambda) \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c(\varphi) & -s(\varphi) \\ 0 & s(\varphi) & c(\varphi) \end{bmatrix} \begin{bmatrix} -s(\lambda) & c(\lambda) & 0 \\ 0 & 0 & 1 \\ c(\lambda) & s(\lambda) & 0 \end{bmatrix}$ $=\begin{bmatrix} -s(\lambda) & c(\lambda) & O \\ -s(\varphi)c(\lambda) & -s(\varphi)s(\lambda) & c(\varphi) \\ c(\varphi)c(\lambda) & c(\varphi)s(\lambda) & s(\varphi) \end{bmatrix}, \quad D_{\text{ECEF}}^{\text{ENU}} = \begin{bmatrix} -s(\lambda) & -s(\varphi)c(\lambda) \\ c(\lambda) & -s(\varphi)s(\lambda) \\ O & c(\varphi) \end{bmatrix}$ Prova I Mec Van

1. If
$$|\nabla u| = |\nabla u|$$

$$a_{b}^{i} = \begin{bmatrix} \dot{\mathbf{v}} \\ \dot{\mathbf{v}} \\ \dot{\mathbf{v}} \end{bmatrix} + \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{k} \end{bmatrix} \times \begin{bmatrix} \mathbf{q} \\ \mathbf{$$

$$= \begin{bmatrix} \dot{V} \\ \dot{V} \\ \dot{V} \end{bmatrix} + \begin{bmatrix} \dot{Q}_{C} - \dot{R}_{b} \\ \dot{R}_{U} - PW \\ \dot{P}_{V} - QU \end{bmatrix} + \begin{bmatrix} \dot{\dot{Q}}_{c} - \dot{\dot{R}}_{b} \\ \dot{\dot{R}}_{u} - \dot{\dot{P}}_{c} \\ \dot{\dot{P}}_{b} - \dot{\dot{Q}}_{u} \end{bmatrix} + \begin{bmatrix} \dot{P}(Q_{b} + R_{c}) - (P^{z} + R^{z})_{b} \\ \dot{Q}(P_{a} + R_{c}) - (P^{z} + R^{z})_{b} \\ \dot{R}(P_{a} + Q_{b}) - (P^{z} + Q^{z})_{c} \end{bmatrix} - \begin{bmatrix} -s(\theta) \\ s(\phi)c(\theta) \\ c(\phi)c(\theta) \end{bmatrix} g_{0}$$

$$= \begin{bmatrix} \dot{V} + QW - RV + \dot{Q}_{c} - \dot{R}_{b} + P(Q_{b} + R_{c}) - (Q^{z} + R^{z})_{a} + g_{s}(\theta) \\ \dot{V} + RV - PW + \dot{R}_{a} - \dot{P}_{c} + Q(P_{a} + R_{c}) - (P^{z} + R^{z})_{b} - g_{s}(\phi)c(\theta) \\ \dot{W} + PV - QU + \dot{P}_{b} - \dot{Q}_{a} + R(P_{a} + Q_{b}) - (P^{z} + Q^{z})_{c} - g_{c}c(\phi)s(\theta) \end{bmatrix}$$

$$D_{i}^{AB} = R_{3}(-\theta)$$
, $D_{AB}^{BC} = R_{2}(-\phi)$, $D_{BC}^{CD} = R_{3}(-v)$, $D_{CD}^{Place} = R_{2}(-\psi)$

Como vumos expressar vossa rotação da base [i,j,k], vomos utilizar o sistema AB (isto é, após 1 rotação do inercial) WPlace = OK + Oj + vm + Vn

$$\omega^{\text{place}} = \theta K + \phi j + v m + \psi \hat{n}$$

$$\left[\widetilde{\omega}^{\text{place}}\right]_{ijk} = \dot{\theta} D_{AB}[\hat{K}] + \dot{\phi} \hat{j} + \dot{v} D_{AB}^{\text{BC}}[\hat{m}]_{cD} + \dot{\psi} D_{AB}^{\text{CD}}[\hat{n}]_{cD}$$

$$\left[c(\phi) \circ s(\phi)\right]$$

$$D_{AB} = D_{AB}[K] + \phi + D_{AB}[m] + \psi D_{AB}[n]_{CD}$$

$$D_{AB} = [D_{AB}^{AB}]^{T}, D_{AB}^{BC} = \begin{bmatrix} c(\phi) & 0 & s(\phi) \\ 0 & 1 & 0 \\ -s(\phi) & 0 & c(\phi) \end{bmatrix}, D_{AB}^{CD} = D_{AB}^{BC}D_{BC}^{CD} = \begin{bmatrix} c(\psi)c(\phi) & -c(\phi)s(\psi) \\ s(\psi) & c(\psi) \\ -c(\psi)s(\phi) & s(\psi)s(\phi) \end{bmatrix}$$

$$\begin{bmatrix} \vec{\omega}^{\text{price}} \end{bmatrix}_{ijk} = \begin{bmatrix} 0 \\ 0 \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ \dot{\phi} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} \dot{v}_{s}(\phi) \\ 0 \\ \dot{v}_{c}(\phi) \end{bmatrix} + \begin{bmatrix} \dot{v}_{s}(v)_{c}(\phi) \\ \dot{v}_{c}(v) \\ \dot{v}_{s}(v)_{s}(\phi) \end{bmatrix}$$

$$\vec{\omega}^{\text{price}} = \begin{bmatrix} 0 + 0 + \dot{v}_{s}(\phi) - \dot{v}_{s}(v)_{c}(\phi) \\ 0 + \dot{\phi} + 0 + \dot{v}_{c}(v) \\ \dot{\theta} + 0 + \dot{v}_{c}(\phi) + \dot{v}_{s}(v)_{s}(\phi) \end{bmatrix} \cdot \begin{bmatrix} \hat{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

$$\frac{d\vec{\omega}^{place}}{dt} = \begin{bmatrix} \vec{v} \not \bullet \mathbf{c}(\phi) - \vec{\psi} (\vec{v} c(v) c(\phi) + \vec{\phi} s(v) s(\phi)) \\ -\vec{\psi} \dot{v} s(v) \\ -\vec{\phi} \dot{v} s(\phi) + \vec{\psi} (\vec{\phi} s(v) c(\phi) + \vec{v} s(\phi) c(v)) \end{bmatrix} \begin{bmatrix} \vec{v} \\ \vec{y} \end{bmatrix}$$

$$\begin{bmatrix} \vec{\omega}^{AB,I} \times \vec{\omega}^{place} \end{bmatrix}_{i,j,k} = \begin{bmatrix} O \\ O \\ \dot{\theta} \end{bmatrix} \times \begin{bmatrix} \vec{v} s(\phi) - \vec{v} s(v) c(\phi) \\ \vec{\phi} + \vec{v} c(v) \\ \dot{\theta} + \vec{v} c(\phi) + \vec{v} s(v) s(\phi) \end{bmatrix} = \begin{bmatrix} -\vec{\theta} \vec{\phi} - \vec{\theta} \vec{v} c(v) \\ \dot{\theta} \dot{v} s(\phi) - \dot{\theta} \dot{v} s(v) c(\phi) \end{bmatrix}$$

Proval Mec V60

$$\begin{bmatrix} \vec{\alpha}^{\text{Phos}} \end{bmatrix}_{ijk} = \begin{bmatrix} \vec{v} \phi c(\phi) - \vec{V} \dot{v} c(v) c(\phi) + \vec{V} \phi s(v) s(\phi) \\ - \vec{V} \dot{v} s(v) \\ - \dot{\phi} \dot{v} s(\phi) + \vec{V} \dot{\phi} s(v) c(\phi) + \dot{v} \dot{V} s(\phi) c(v) \end{bmatrix} + \begin{bmatrix} - \dot{\phi} \phi - \dot{\phi} \dot{V} c(v) \\ \dot{\theta} \dot{v} s(\phi) - \dot{\phi} \dot{V} s(v) c(\phi) \\ 0 \end{bmatrix}$$

$$\vec{Q}^{\text{plane}} = \begin{bmatrix} \dot{v} \left(\dot{\phi} c(\phi) - \dot{\psi} c(v) c(v) + \dot{\psi} \dot{\phi} s(\phi) s(v) - \dot{\psi} \dot{\theta} c(v) - \dot{\phi} \dot{\theta} \\ \dot{v} \left(\dot{\theta} s(\phi) - \dot{\psi} s(v) \right) - \dot{\psi} \dot{\theta} c(\phi) s(v) \\ \dot{\psi} \dot{v} c(v) s(\phi) + \dot{\psi} \dot{\phi} c(\phi) s(v) - \dot{\phi} \dot{v} s(\phi) \end{bmatrix} \begin{bmatrix} \vec{i} \\ \hat{j} \\ \hat{k} \end{bmatrix}$$

i

Diedro positivo aumenta a estabilidade relativa a rolagem, diedro negativo diminui a estabilidade relativa a rolagem. Esse aumento e diminuição de estabilidade implicam, respectivamente, em diminuição e aumento da manobrabilidade da aeronave relativa a rolagem.

A escolha do diedro então deve levar em consideração os outros fatores que afetam a estabilidade de rolagem e o equilíbrio desejado entre estabilidade/manobrabilidade da aeronave.

ii

Enflechamento positivo aumenta a estabilidade relativa a guinada, enflechamento negativo diminui a estabilidade relativa a guinada. Esse aumento e diminuição de estabilidade implicam, respectivamente, em diminuição e aumento da manobrabilidade da aeronave relativa a guinada. Além disso, o enflechamento pode causar momento adverso de rolagem quando em manobra de rolagem.

A escolha do enflechamento então deve levar em consideração os outros fatores que afetam a estabilidade de guinada e o equilíbrio desejado entre estabilidade/manobrabilidade da aeronave.

iii

Maior alongamento implica em melhor performance de sustentação da aeronave, diminuindo perdas de ponta de asa. Entretanto, alongamento maior também causa maiores momentos fletores na asa (devido a braço de alavanca maior), e menor manobrabilidade (devido a maior momento de inércia).

A escolha do alongamento, então, deve levar em conta as velocidades de operação do projeto, a performance desejada, e o equilíbrio desejado entre estabilidade e manobrabilidade.

5

É provável que a colocação dos equipamentos, no corpo level da aeronave, tenha movido o CG da aeronave além do seu envelope de estabilidade estática. Como a instabilidade começa com pequenas ativações do profundor, é provável que o coeficiente de momento de arfagem da aeronave tenha se tornado positivo sob condições de operação. Assim, quando um pequeno momento de arfagem pica a aeronave, a mudança de ângulo de ataque aumenta o momento de arfagem, que consequentemente pica a aeronave ainda mais, até a aeronave entrar em stall. Picar a aeronave causa efeito parecido no sentido oposto.

Uma possível solução para esse problema seria mover o centro de massa da aeronave mais à frente, com o objetivo de deixá-lo à frente do centro aerodinâmico. Exagerar essa correção pode causar instabilidade dinâmica (apesar da estabilidade estática), onde o momento inverso gerado pela variação de ângulo de ataque faria a aeronave corrigir para um ângulo de sinal oposto, mas magnitude maior.