CS2010: Data Structures and Algorithms II

Minimum Spanning Trees

Ivana.Dusparic@scss.tcd.ie

A spanning tree of *G* is a subgraph *T* that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Def. A spanning tree of *G* is a subgraph *T* that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

not connected

Def. A spanning tree of *G* is a subgraph *T* that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Def. A spanning tree of *G* is a subgraph *T* that is:

- Connected.
- Acyclic.
- Includes all of the vertices.

Minimum spanning tree

Given. Undirected graph ${\it G}$ with positive edge weights (connected).

Goal. Find a min weight spanning tree.

edge-weighted graph G

Minimum spanning tree

Given. Undirected graph *G* with positive edge weights (connected). Goal. Find a min weight spanning tree.

minimum spanning tree T (cost =
$$50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$
)

Brute force. Try all spanning trees?

Applications

- Network design (communication, electrical, hydraulic, computer, road etc)
- > Clustering
- > Approximation algorithms (eg TSP)
- Many others classification in biology, sociology, face verification, hand writing detection etc

MST question – Turning Point

- Let G be a connected, edge-weighted graph with V vertices and E edges. How many edges are in a minimum spanning tree of G?
 - V
 - -V-1
 - E
 - E-1

Algorithms

- > Greedy algorithms
 - Prim's
 - Kruskal's

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-1	0 03

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

0-2 5-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

0-2 5-7 6-2 0-7 2-3 1-7

- Start with all edges colored gray.
- Find cut with no black crossing edges; color its min-weight edge black.
- Repeat until V-1 edges are colored black.

MST edges

Greedy MST algorithm: correctness proof

Proposition. The greedy algorithm computes the MST.

Pf.

- Any edge colored black is in the MST (via cut property).
- Fewer than V-1 black edges \Rightarrow cut with no black crossing edges. (consider cut whose vertices are any one connected component)

a cut with no black crossing edges

fewer than V-1 edges colored black

- Q. What if edge weights are not all distinct?
- A. Greedy MST algorithm still correct if equal weights are present! (our correctness proof fails, but that can be fixed)

1	2	1.00
1	3	0.50
2	4	1.00
3	4	0.50

1	2	1.00
1	3	0.50
2	4	1.00
3	4	0.50

- Q. What if graph is not connected?
- A. Compute minimum spanning forest = MST of each component.

can independently compute MSTs of components

4	5	0.6
		1
4	6	0.6
		2
5	6	0.8
		8
1	5	0.1
		1
2	3	0.3
		5
0	3	0.6
1	6	0.1
		0
0	2	0.2
		2

Greedy MST algorithm: efficient implementations

Efficient implementations.

How to choose cut? How to find min-weight edge?

- Ex 1. Kruskal's algorithm.
- Ex 2. Prim's algorithm.
- Ex 3. Borüvka's algorithm.

Weighted-edge graph API, Edge API

Adjacency-lists graph representation (review): Java implementation

```
public class Graph
   private final int V;
                                                     adjacency lists
   private final Bag<Integer>[] adj;
   public Graph(int V)
                                                     create empty graph
                                                     with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
                                                     add edge v-w
   public void addEdge(int v, int w)
      adj[v].add(w);
      adj[w].add(v);
                                                     iterator for vertices
   public Iterable<Integer> adj(int v)
                                                     adjacent to v
   { return adj[v]; }
```

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
   private final int V;
                                                        same as Graph, but adjacency
   private final Bag<Edge>[] adj;
                                                        lists of Edges instead of integers
   public EdgeWeightedGraph(int V)
                                                        constructor
      this.V = V;
      adj = (Bag<Edge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Edge>();
   public void addEdge(Edge e)
      int v = e.either(), w = e.other(v);
                                                        add edge to both
      adj[v].add(e);
                                                        adjacency lists
      adj[w].add(e);
   public Iterable<Edge> adj(int v)
   { return adj[v]; }
```

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph API

public class	EdgeWeightedGraph	
	EdgeWeightedGraph(int V)	create an empty graph with V vertices
	EdgeWeightedGraph(In in)	create a graph from input stream
void	addEdge(Edge e)	add weighted edge e to this graph
Iterable <edge></edge>	adj(int v)	edges incident to v
Iterable <edge></edge>	edges()	all edges in this graph
int	V()	number of vertices
int	E()	number of edges
String	toString()	string representation

Weighted Edge API

Edge abstraction needed for weighted edges.

```
public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

int compareTo(Edge that) compare this edge to that edge

double weight() the weight

String toString() string representation
```


Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
   private final int v, w;
   private final double weight;
   public Edge(int v, int w, double weight)
                                                                  constructor
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int either()
                                                                  either endpoint
   { return v; }
   public int other(int vertex)
      if (vertex == v) return w;
                                                                  other endpoint
      else return v;
   public int compareTo(Edge that)
              (this.weight < that.weight) return -1;</pre>
                                                                  compare edges by weight
      else if (this.weight > that.weight) return +1;
      else
                                            return 0;
```

MST API

Minimum spanning tree API

Q. How to represent the MST?

% java MST tinyEWG.txt 0-7 0.16 1-7 0.19 0-2 0.26 2-3 0.17 5-7 0.28 4-5 0.35 6-2 0.40 1.81

Minimum spanning tree API

Q. How to represent the MST?

```
public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST
```

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

```
% java MST tinyEWG.txt

0-7 0.16

1-7 0.19

0-2 0.26

2-3 0.17

5-7 0.28

4-5 0.35

6-2 0.40

1.81
```

Kruskal's algorithm

Consider edges in ascending order of weight.

• Add next edge to tree *T* unless doing so would create a cycle.

graph edges sorted by weight

an edge-weighted graph

	↓
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Consider edges in ascending order of weight.

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Kruskal's progression visualisation

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal's algorithm colors the edge e = v-w black.
- Cut = set of vertices connected to v in tree T.
- No crossing edge is black.
- No crossing edge has lower weight

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult?

- E+V
- V run DFS from v, check if w is reachable (T has at most V 1 edges)
- $\log V$
- $\log^* V$ — use the union-find data structure!
- 1

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v-w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in *T*.
- If v and w are in same set, then adding v–w would create a cycle.
- To add v–w to T, merge sets containing v and w.

Case 2: add v-w to T and merge sets containing v and w

Kruskal implementation

- > So what other data structures do we need?
 - Maintain the list of edges, ordered by weight, removing the lowest-weight edge when we add it to MST
 - List od edges and their weights added to the MST, to represent the MST (we'll need to iterate through them, and sum up their weight – to provide API required by MST)

Kruskal's algorithm: Java implementation

```
public class KruskalMST
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                   build priority queue
                                                                   (or sort)
      MinPQ<Edge> pg = new MinPQ<Edge>(G.edges());
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)</pre>
         Edge e = pq.delMin();
                                                                   greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                                                   edge v-w does not create cycle
             uf.union(v, w);
                                                                   merge sets
             mst.enqueue(e);
                                                                   add edge to MST
   public Iterable<Edge> edges()
      return mst; }
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log E$
union	V	$\log^* V^\dagger$
connected	E	$\log^* V^\dagger$

[†] amortized bound using weighted quick union with path compression

recall: log* V ≤ 5 in this universe

Remark. If edges are already sorted, order of growth is $E \log^* V$.

Kruskal's exercise

- Apply Kruskal's algorithm to find an MST of the following graph
- Provide trace of order in which edges are considered and added/discarded from being added to an MST

V	W	Weight	Added to MST?
2	6	1	yes

Kruskal's algorithm exercise solution

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree *T*.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Prim's algorithm visualisation

Prim implementation

- > So what other data structures do we need?
 - Maintain the list of edges, ordered by weight, removing the lowest-weight edge when we add it to MST
 - > This list will be used slightly differently than in Kruskal not list of all edges, just those with exactly one end-point in current MST
 - > Lazy vs Eager implementation
 - List od edges and their weights added to the MST, to represent the MST (we'll need to iterate through them, and sum up their weight – to provide API required by MST)

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v-w to add to T.
- Disregard if both endpoints *v* and *w* are marked (both in *T*).
- Otherwise, let w be the unmarked vertex (not in T):
 - add to PQ any edge incident to w (assuming other endpoint not in T)
 - add e to T and mark w

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

```
public class LazyPrimMST
   private boolean[] marked; // MST
                                      vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
public LazyPrimMST(WeightedGraph G)
         pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
                                                                       assume G is connected
        visit(G, 0);
        while (!pq.isEmpty() && mst.size() < G.V() - 1)</pre>
                                                                       repeatedly delete the
            Edge e = pq.delMin();
                                                                       min weight edge e = v-w from PQ
            int v = e.either(), w = e.other(v);
                                                                       ignore if both endpoints in T
            if (marked[v] && marked[w]) continue;
                                                                       add edge e to tree
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
                                                                       add v or w to tree
            if (!marked[w]) visit(G, w);
```

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{    return mst; }
add v to T

for each edge e = v-w, add to
PQ if w not already in T
```

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap	
delete min	E	$\log E$	
insert	E	$\log E$	

Challenge. Find min weight edge with exactly one endpoint in T.

pq has at most one entry per vertex

53

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v-x incident to v
 - ignore if *x* is already in *T*
 - add x to PQ if not already on it
 - decrease priority of x if v-x becomes shortest edge connecting x to T

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

Indexed priority queue

Associate an index between 0 and N-1 with each key in a priority queue.

- Supports insert and delete-the-minimum.
- Supports decrease-key given the index of the key.

public class IndexMinPQ<Key extends Comparable<Key>>

```
create indexed
           IndexMinPQ(int N)
                                                            priority queue with
                                                            indices 0, 1, ..., N –
   void insert(int i, Key key)
                                                         associate key with index i
   void decreaseKey(int i, Key key)
                                                  decrease the key associated with index i
boolean contains(int i)
                                                     is i an index on the priority queue?
                                                      remove a minimal key and
          delMin()
     int
                                                                  return its
                                                                  associated index
boolean isEmpty()
                                                        is the priority queue empty?
     int size()
                                                    number of keys in the priority queue
```

Indexed priority queue implementation

Binary heap implementation. [see Section 2.4 of textbook]

- Start with same code as MinPQ.
- Maintain parallel arrays keys[], pq[], and qp[] so that:
 - keys[i] is the priority of i
 - pq[i] is the index of the key in heap position i
 - qp[i] is the heap position of the key with index i
- Use swim(qp[i]) to implement decreaseKey(i, key).

Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	1	V	1	V^2
binary heap	$\log V$	$\log V$	$\log V$	$E \log V$
d-way heap	$\log_d V$	$d \log_d V$	$\log_d V$	$E \log_{E/V} V$
Fibonacci heap	1 †	$\log V^\dagger$	1†	$E + V \log V$

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Prim's algorithm exercise- Turning Point

- > Starting from root (0)
- show order in which edges are added to MST
- Status of edgeTo and distance values

MST for Digraphs?

> Equivalent for digraphs is "minimum spanning arborescence" which will produce a tree where every vertex can be reached from a single vertex (panning arborescence of minimum weight, optimum branching)

Greedy Algorithms

- > Applicable to optimisation problems
- > Constructs a solution through a sequence of steps, each expanding on the partially constructed solution obtained so far, until a complete solution is built
- > On each step, a choice is made which is:
 - 1. Feasible has to satisfy problem constraints
 - 2. Locally optimal it has to be the best local choice among all feasible choices
 - 3. Irrevocable once made, it cannot be changed on subsequent steps of the algorithm
- Greedily takes the best current option, in the hope it will add up to the overall best option
 - in some problems it does, in some it doesn't, but approximation might be good enough
- > Dijsktra's shortest path algorithm is also greedy