

Modeling and Simulation for a Quadcopter

Selmane SEKKAI
Application Engineer
MathWorks
selmane.sekkai@mathworks.fr

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Why Quadcopter modeling and control?

- Quadcopters are a popular and relatively inexpensive platform to showcase Model Based Design
- Concepts of modeling, simulation and control can be applied to a variety of systems
- System highly unstable and difficult to control
- Quadcopters are fun to fly!

Why Quadcopter modeling and control?

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Introduction to Simscape

- Enables physical modeling (acausal) of multidomain physical systems
- Eases process of modeling physical systems
 - Build models that reflect structure of physical system
 - Leverage MATLAB to create reusable models
- Used by system and control engineers to build models with the same structure as the physical system

What is SimMechanics?

- Enables multibody simulation of 3D mechanical systems
- Construct model using bodies, joints, and forces
 - Model matches structure of system
 - No need to derive and program equations
- Enables import of CAD models
- Integrates with other physical modeling libraries
- Eases the control development in Simulink

What is SimMechanics?

Common Gear Rack and Pinion Constraint Constraint

Model a simple quadcopter to verify concepts

One propeller to verify arm rotation

Two propellers to verify arm motion

 Two propeller with same speed in opposite direction to verify arm stillness

Model a simple quadcopter to verify concepts

Import CAD Data Using SimMechanics Link

- Automatically create SimMechanics models from a CAD assembly
 - Converts mass and inertia to rigid bodies
 - Converts mate definitions to joints
 - Creates STL files for use with SimMechanics visualization
- Directly connects SolidWorks,
 ProEngineer and Inventor
- Public API for other CAD tools
- Free download from www.mathworks.com

SimMechanics Link: Convert CAD Assembly to SimMechanics

Use SimMechanics plugin to export from CAD to XML

Create the SimMechanics model

What is SimElectronics?

- More than 90 component models
 - Actuators, drivers
 - Sensors
 - Semiconductors
 - Integrated circuits
- Models look like schematics
 - Easy to read and interpret

Model the quadcopter actuator : DC Motor

Model:

Problem: Model a DC motor with a PWM controller in the Simulink environment

Solution: Use SimElectronics to model the mechatronic system

Model the quadcopter actuator : DC Motor

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Speed (rpm)

1.5

0.5

-1.5

0.5

1 1.5

2 2.5 3 3.5 4

Time (s)

Problem: Simulation data does not match measured data because the parameters are incorrect

Solution: Use Simulink Design Optimization to automatically tune model parameters

R	L	J	K	В
4.03	1e-4	0.11	0.45	1.07

New Parameter New Parameter Tool in Estimation Tool in R2014b!

- Steps to Estimating Parameters
 - Import measurement data and select estimation data
 - 2. Identify parameters to be estimated and their ranges
 - 3. Perform parameter estimation
 - 4. Validate estimation

R	L	J	K	В
3	0.01	0.01	0.02	0.5

- Advantages of Simulink Design Optimization
 - Enables quick and easy comparison with measured data to ensure simulation matches reality.
 - Automatic tuning of parameters saves time
 - Optimization algorithms reveal parameter sensitivity and help improve model parameterization

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Design Control System

- Create cascaded control system on rate and position feedback
- Tune PID controllers using advanced techniques

Design Control System

For single PID loops, there is PID Tuner...

Design Control System

Since R2014a!

For everything else, there is Control System Tuner

System Identification into PID Tuner

Goal:

 Tune PID Controllers for Simulink models with discontinuities such as PWM and Stateflow logic

What?

 Compute plant transfer function from simulation input-output data when exact linearization fails

How?

- Inject a step or an impulse at the plant input
- Interactively or automatically fit the transfer function to simulation input-output data

System Identification into PID Tuner

System Identification into PID Tuner

System Level Simulation

New Simulation Data Inspector in R2014b!

Agenda

- Why quadcopter modeling and simulation?
- Model and simulate the behavior of the physical plant
- Refine model parameters using experimentation data
- Design the control system for quadcopter
- Key takeaways

Key takeaways

Model-Based Design Process

Key takeaways

- Simulink and physical modelling tools help you understand concepts and model your physical systems
- Simulink Design Optimization and Parameter Estimation tool allow refining model parameters' using experimental data
- Advanced control tools enable faster control system design within Simulink
 - "...Now it's your turn, try these tools for a better simulation experience"

Questions?