Round 2: contributing teams

Modelling teams were asked to give a short description of their methods, among other metadata.

Team	Model	Methods
ECDC	ECDC- CM_ONE	Discrete-time, deterministic, mean-field SEIR-type compartmental model on metapopulation level. Population divided by age, vaccination status, and previous recovery; incl. seasonality, BA2 & behavior.
Dutch National Institute of Public Health and the Environment (RIVM)	RIVM- vacamole	Deterministic, age-structured SEIR model, accounting for differences in susceptibility/infectiousness by age, seasonality, contact patterns, modes of vaccine protection, and waning immunity.
SIMID	SIMID- SCM	Stochastic age-structured discrete time extended compartmental model
Universidad Carlos III de Madrid	UC3M- EpiGraph	Agent-based parallel simulator that models individual interactions extracted from social networks and demographical data.
University of Southern California	USC- SlkJalpha	Uses SIKJalpha which models temporally varying infection, death, and hospitalization rates. Learning is performed by reducing the problem to multiple simple linear regression problems.

See also:

- Full model metadata, at: https://github.com/covid19-forecast-hub-europe/covid19-scenario-hub-europe/tree/main/model-metadata (https://github.com/covid19-forecast-hub-europe/covid19-scenario-hub-europe/tree/main/model-metadata)
- Information about each model's assumptions for Round 2, at: https://github.com/covid19-forecast-hub-europe/covid19-scenario-hub-europe/tree/main/model-abstracts/2022-07-24
 (https://github.com/covid19-forecast-hub-europe/covid19-scenario-hub-europe/tree/main/model-abstracts/2022-07-24)