

Johannes Bjerva — <u>j.bjerva@rug.nl</u> — 08/12/2016

Semantic Analysis with Deep Neural Networks

/ university of groningen

Deep Learning Overview

Why Deep Learning?

What is Machine Learning?

"[Machine Learning] gives computers the ability to learn without being explicitly programmed"

— Arthur Samuel, 1959

Annotated data:

Task:

What is Machine Learning?

- * Task: Part-of-Speech tagging
- * Performance: e.g. accuracy
- * Data: Annotated corpus

Demo!

What does the computer learn from?

Features!

- Hand-coded
 - * Time consuming
 - Not necessarily effective
- Word and character n-grams
- * Relevant linguistic properties (e.g. affixes, capitalisation, root form)

What is a neural network?

- * Biologically inspired
- 1. Take an input
- 2. Learn feature representations
- 3.Predict output
- 4. Self-correct if output is wrong
- 5. Repeat!

What is Deep Learning?

- Deep Neural Networks
- * Automatically combine simple features into complex features
- * Deeper is (often) better

<u>Demo</u>

playground.tensorflow.org

What can Deep Learning do?

- * Make psychedelic images!
- * Google QuickDraw: https://quickdraw.withgoogle.com
- Text-to-speech:

 https://deepmind.com/blog/
 wavenet-generative-model-raw-audio/
- Generate hand-writing: http://www.cs.toronto.edu/~graves/
 handwriting.cgi
- * Currently the most successful approach to many NLP problems

Deep Learning for everything?

- Not a silver bullet
- * Simple problems do not require fancy methods

Deep Learning and the Human Brain

- * In Computational Linguistics:
 Not an attempt to model the brain
- * Some inspiration is useful (ReLU)

Why are neural networks back?

- * More computational power (GPUs)
- More data
- * Better algorithms/architectures

Semantic Analysis with Deep Neural Networks

Semantic Analysis

- Parallel Meaning Bank
 http://pmb.let.rug.nl/
 explorer/explore.php
- * English, Dutch, German, Italian
- Goal:

 Parallel corpus with Discourse
 Representation Structures for all languages
- About 11 million tokens

Chapter I: Semantic Tagging

- * Multilingual Semantic Parsing
- * Experimenting with different Neural Network architectures

Semantic Tags — Motivation

- * POS tags: insufficient and irrelevant information
- * Insufficient:
 - * every (DT / univ. quant.)
 - * no (DT / neg.)
 - * some (DT / exist. quant.)
- * Irrelevant:
 - * walks (VBZ / pres. simpl.)
 - * walk (VBP / pres. simpl.)

Semantic Tags — Example

Tokens: These cats live in that house .

Sem-tags: PRX CON ENS REL DST CON NIL

UD-POS: DET NOUN VERB ADP DET NOUN PUNCT

Semantic Tags — Overview

- About 75 tags
- Abstract over POS and NE tags
- * Includes categories for negation, modality and quantification
- * Generalises over languages (en, de, nl, it)

Auxiliary tasks

- * Giving the NN more work to do
- Informing the NN of what additional task might be helpful to learn
- Word frequencies for POS tagging
- This work:Semantic tags for POS tagging

Results

	BASELINES				BASIC CNN				RESNET	
	MFC	TNT	BI-LSTM	BI-GRU	$ \vec{c} $	$ec{c} \wedge ec{w}$	+AUX	$ \vec{c} $	$\vec{c} \wedge \vec{w}$	+AUX
Semtag Silver	84.64	92.09	94.98	94.26	91.39	94.63	94.53	94.3	95.14	94.23
Semtag Gold	77.39	80.73	82.96	80.26	69.21	76.83	80.73	76.89	83.64	74.84

Table 1: Experiment results on semtag (ST) test sets (% accuracy). MFC indicates the per-word most frequent class baseline, TNT indicates the TNT tagger, and BI-LSTM indicates the system by Plank et al. (2016). BI-GRU indicates the \vec{w} only baseline. \vec{w} indicates usage of word representations, \vec{c} indicates usage of character representations. The +AUX column indicates the usage of an auxiliary loss.

		BASELINES			I	BASIC CNN			RESNET	
	MFC	TNT	BI-LSTM	BI-GRU	$ \vec{c} $	$\vec{c} \wedge \vec{w}$	+aux	$ec{c}$	$\vec{c} \wedge \vec{w}$	+AUX
UD v1.2	85.06	92.66	95.17	94.39	77.63	94.68	95.19	92.65	94.92	95.71
UD v1.3	85.07	92.69	95.04	94.32	77.51	94.89	95.34	92.63	94.88	95.67

Table 2: Experiment results on Universal Dependencies (UD) test sets (% accuracy).

Chapter II: Multitask Learning

When and why does Multitask Learning help?

When does MTL help?

- * "[...] when the label distribution is compact and uniform"
- * —> High entropy, few labels

Is 'high entropy' sufficient?

Tokens: These cats live in that house .

Sem-tags: PRX CON ENS REL DST CON NIL

UD-POS: DET NOUN VERB ADP DET NOUN PUNCT

Is 'high entropy' sufficient?

Tokens: These cats live in that house .

Sem-tags: CON NIL DST PRX ENS REL CON

UD-POS: DET NOUN VERB ADP DET NOUN PUNCT

Tagset correlations

Information-theoretic Measures

- * Calculating tagset correlations:
 - Conditional Entropy
 - * Mutual Information

Correlation with Auxiliary Task Effectivity

Conditional Entropy and Mutual Information both correlate far better than entropy!

Auxiliary task	$\rho(\Delta_{acc}, H(Y))$	$\rho(\Delta_{acc}, H(Y X))$	$\rho(\Delta_{acc}, I(X;Y))$
Supertagging (Identity) Supertagging (Overlap) Supertagging (Disjunct)	-0.06 (p=0.214)	0.12 (p=0.013)	0.08 (p=0.114)
	0.07 (p=0.127)	0.27 (p<0.001)	$0.43 (p\ll 0.001)$
	0.08 (p=0.101)	0.25 (p<0.001)	$0.41 (p\ll 0.001)$

Change in accuracy (x) vs. Entropy (y)

Change in accuracy (x) vs. Mutual Information (y)

Remaining chapters

- * Chapter III: Multilingual Learning
- * Chapter IV: Semantic Similarity between Words and Sentences (SemEval Shared Tasks)
- Chapter V: Dataset Augmentation