Correction Exercices 9 et 13

Exercice 9.

En utilisant les méthodes de votre choix, résoudre dans $\mathbb R$ les solutions des équations suivantes :

a.
$$x^2 - 3 = 0$$

b.
$$2x^2 + 5 = 0$$

c.
$$x^2 = 3x + 1$$

d.
$$x = 3x + 1$$

e.
$$12x^2 + 12x + 3 = 0$$

f.
$$3(x+5)^2 = 48$$

q.
$$x^2 - 5x + 4 = 0$$

h.
$$x^3 - 5x^2 + 4x = 0$$

i.
$$2x^2 + 9x = 5$$

j.
$$x^2 = 2x + 3$$

k.
$$x - \frac{1}{x} = 3$$

$$1. \ \frac{2x^2 + 3x - 5}{2} = 0$$

k.
$$x - \frac{1}{x} = 3$$

l. $\frac{2x^2 + 3x - 5}{x - 1} = 0$
m. $\frac{1}{x - 1} - \frac{4}{x + 2} = -\frac{5}{3}$

Correction

h.
$$x^3 - 5x^2 + 4x = 0$$

On a du x^3 , qu'on ne sait pas gérer ; par contre, on peut factoriser par x.

$$x^3 - 5x^2 + 4x = 0$$

$$\iff x(x^2 - 5x + 4) = 0$$

$$\iff x = 0 \text{ ou } x^2 - 5x + 4 = 0$$

$$\Delta = 9$$

$$x_1 = \frac{5-9}{2} = -2$$
, $x_2 = \frac{5+9}{2} = 7$

Donc
$$S = \{-2; 0; 7\}$$

i.
$$2x^2 + 9x = 5$$

Il faut mettre l'équation sous la forme ... = 0 pour pouvoir utiliser la formule du discriminant.

$$2x^2 + 9x = 5$$

$$\iff 2x^2 + 9x - 5 = 0$$

$$\Delta = 81 + 40 = 121$$

$$x_1 = \frac{-9 - 11}{2 \times 2} = -5$$
, $x_2 = \frac{-9 + 11}{2 \times 2} = \frac{1}{2}$

Donc
$$S = \left\{-5; \frac{1}{2}\right\}$$

j.
$$x^2 = 2x + 3$$

$$\iff x^2 - 2x - 3 = 0 \text{ (ou } -x^2 + 2x + 3 = 0)$$

$$\Delta = 16$$

$$x_1 = \frac{2+4}{2} = 3$$
, et $x_2 = \frac{2-4}{2} = -1$

Donc
$$S = \{-1, 2\}$$

k.
$$x - \frac{1}{x} = 3$$

Lorsqu'on a $\frac{1}{x}$, il faut commencer par le neutraliser (souvent en multipliant par x).

$$x - \frac{1}{x} = 3$$

$$\Leftrightarrow x^2 - 1 = 3x$$
 (multiplication par x)

$$\iff x^2 - 1 - 3x = 0$$

$$\iff x^2 - 3x - 1 = 0$$

$$\Delta = 13$$

$$x_1 = \frac{3 - \sqrt{13}}{2}, \, x_2 = \frac{3 + \sqrt{13}}{2}$$

Donc
$$S = \{\frac{3 - \sqrt{13}}{2} ; \frac{3 + \sqrt{13}}{2}\}$$

$$1. \ \frac{2x^2 + 3x - 5}{x - 1} = 0$$

Rappel : $\frac{a}{b} = 0 \Longleftrightarrow a = 0$. On ne s'intéresse qu'au numérateur.

$$\frac{2x^2 + 3x - 5}{x - 1} = 0$$

$$\iff 2x^2 + 3x - 5 = 0$$

$$\Delta = 3^2 - 4 \times 2 \times (-5) = 49$$

$$x_1 = \frac{-3-7}{2 \times 2} = -\frac{5}{2}, x_2 = \frac{-3+7}{2 \times 2} = 1$$

Mais attention: x-1 (le dénominateur) est aussi égal à 0 lorsqu'on calcule pour x = 1.

Cela donne une forme "indéterminée" $: \frac{0}{0}$. Il faut enlever 1 de la liste des solutions.

Donc
$$S = \left\{-\frac{5}{2}\right\}$$

m.
$$\frac{1}{x-1} - \frac{4}{x+2} = -\frac{5}{3}$$

On note que 1 et -2 ne peuvent pas faire partie des solutions (divison par zéro). Il faut ensuite "arranger" la forme de l'équation.

$$\iff \frac{1(x+2)}{(x-1)(x+2)} - \frac{4(x-1)}{(x+2)(x-1)} = -\frac{5}{3}$$

$$\iff \frac{1(x+2)-4(x-1)}{(x+2)(x-1)} = -\frac{5}{3}$$

$$\Longleftrightarrow \frac{x+2-4x+4}{(x+2)(x-1)} = -\frac{5}{3}$$

$$\iff \frac{-3x+6}{(x+2)(x-1)} = \frac{-5}{3}$$

$$\iff (-3x+6) \times 3 = -5(x-1)(x+2)$$

$$\iff$$
 $-9x + 18 = -5(x^2 + x - 2)$

$$\iff$$
 $-9x + 18 = -5x^2 - 5x + 10$

$$\iff$$
 $5x^2 - 4x + 8 = 0$

$$\Delta = 16 - 4 \times 5 \times 8 < 0$$

L'équation n'a pas de solutions.

Donc
$$S = \emptyset$$

Exercice 13 . Résoudre dans $\mathbb R$ les inéquations suivantes :

$$a. x^2 - 3x + 1 < 0$$

$$-3x+1<0$$

b.
$$2x^2 + 5x - 7 \ge 0$$

Bonus. $(5x^2 + 3x - 2)(x + 1) > 0$

c.
$$9x^2 + 12x + 4 > 0$$

d.
$$3x^2 - x \le -1$$

e.
$$-x^2 + 5x - 7 \le 0$$

f.
$$-4x^2 + 20x \ge 25$$

Correction

d.
$$3x^2 - x \le -1$$

Il faut toujours revenir à 0, ce qui permet d'étudier le signe.

$$3x^2 - x \le -1 \Longleftrightarrow 3x^2 - x + 1 \le 0$$

Résolvons :
$$3x^2 - x + 1 = 0$$

$$\Delta = -11 < 0$$

L'équation n'a pas de solutions.

De plus, a > 0: $3x^2 - x + 1$ est strictement positif pour tout $x \in \mathbb{R}$.

Donc l'inéquation n'a pas de solutions : $S = \emptyset$.

e. $-x^2 + 5x - 7 \le 0$

Résolvons
$$-x^2 + 5x - 7 = 0$$

 $\Delta = 25 - 28 < 0$

L'équation n'a pas de solutions.

De plus, a = -1 < 0, doi $-x^2 + 5x - 7 < 0$ pour tout $x \in \mathbb{R}$

Donc $S = \mathbb{R} =]-\infty; +\infty[$.

f. $-4x^2 + 20x \ge 25$

$$-4x^2 + 20x \ge 25 \iff -4x^2 + 20x - 25 \ge 0$$

Résolvons $-4x^2 + 20x - 25 = 0$

 $\Lambda = 0$

L'équation a une solution : $\frac{-20}{2 \times (-4)} = \frac{5}{2}$

De plus, a < 0. Donc $-4x^2 + 20x - 25$ est négatif, sauf en $\frac{5}{2}$.

Donc $S = \left\{ \frac{5}{2} \right\}$.

$(5x^2 + 3x - 2)(x+1) > 0$

On fait un tableau de signes. Pour remplir la ligne $5x^2 + 3x - 2$, on passe par une factorisation, ou par Δ :

$$\Delta = 3^2 - 4 \times 5 \times (-2) = 9 + 40 = 49$$

Donc les racines de
$$5x^2 + 3x - 2$$
 sont $\frac{-3 - 7}{2 \times 5} = -1$ et $\frac{-3 + 7}{2 \times 5} = \frac{4}{10}$

De plus, a = 5 > 0, donc $5x^2 + 3x - 2$ est positif, sauf entre ses racines $(-1 \text{ et } \frac{4}{10})$.

x	$-\infty$		-1		$\frac{4}{10}$		+∞
$5x^2 + 3x - 2$		+	0	_	0	+	
x + 1		_	0		+		
$(5x^2 + 3x - 2)(x+1)$		_	0	_	0	+	

Donc l'ensemble des solutions de $(5x^2 + 3x - 2)(x + 1) > 0$ est $\left] \frac{4}{10}; +\infty \right[$