

Devi, S.
PCT/26515

PCT/26515

- Key terms

~~FILE=REGISTRY~~ ENTERED AT 10:26:25 ON 17 OCT 2002

=> e polyethylene glycol/cn 5

E1 1 POLYETHYLENE FIBERS, ETHYLENE-PROPENE/CN
E2 1 POLYETHYLENE GLCYOL METHOXYACETIC ACID ESTER FORMATE/C
N
E3 1 --> POLYETHYLENE GLYCOL/CN
E4 1 POLYETHYLENE GLYCOL (1-AZIRIDINYL)ETHYL ETHER/CN
E5 1 POLYETHYLENE GLYCOL (400) ESTERS OF COCONUT OIL FATTY
ACIDS/CN

=> s e3

L1 1 "POLYETHYLENE GLYCOL"/CN

=> e "polyethylene glycol, activated"/cn 5

E1 1 POLYETHYLENE GLYCOL UNDECYL ETHER PHOSPHATE/CN
E2 1 POLYETHYLENE GLYCOL XYLITOL ETHER/CN
E3 0 --> POLYETHYLENE GLYCOL, ACTIVATED/CN
E4 1 POLYETHYLENE GLYCOL-.ALPHA.,.ALPHA.,.ALPHA.',.ALPHA.'-
TETRAMETHYL-M-XYLYLENE DIISOCYANATE-TRIMETHYLOLPROPANE
COPOLYMER/CN
E5 1 POLYETHYLENE GLYCOL-.ALPHA.,.OMEGA.-DI(SULFOPHENYL-4-I
SOTHIOCYANATE)/CN

=> e ".alpha.-carboxymethyl, .omega.-carboxymethoxypolyoxyethylene"/cn 5

E1 1 .ALPHA.-CARBOXYLASE/CN
E2 1 .ALPHA.-CARBOXYLESTERASE/CN
E3 0 --> .ALPHA.-CARBOXYMETHYL, .OMEGA.-CARBOXYMETHOXYPOLYOXYET
HYLENE/CN
E4 1 .ALPHA.-CARBOXYPHENYLACETIC ACID/CN
E5 1 .ALPHA.-CARBOXYPHENYLACETYL CHLORIDE/CN

=> e poe/cn 5

E1 1 PODPCARPAN-16-OIC ACID, 12,13-EPOXY-/CN
E2 1 PODURAN/CN
E3 0 --> POE/CN
E4 1 POE 220/CN
E5 1 POE 68/CN

=> e "polyoxyethylene (.alpha.-carboxymethyl,
.omega.-carboxymethoxypolyoxyethylene)"/cn 5

E1 1 POLYOXYETHYLENATED POLY(OXYPROPYLENE) /CN
E2 1 POLYOXYETHYLENATED(14) 3,4-DIOCTYLPHENOL/CN
E3 0 --> POLYOXYETHYLENE (.ALPHA.-CARBOXYMETHYL, .OMEGA.-CARBOX
YMETHOXYPOLYOXYETHYLENE) /CN
E4 1 POLYOXYETHYLENE (10) LANOLIN ETHER, ACETYLATED/CN
E5 1 POLYOXYETHYLENE (13) OCTYLPHENYL ETHER/CN

=> d que 15; d kwic 1-3

L3 52030 SEA FILE=REGISTRY ABB=ON PLU=ON ?CARBOXYMETHYL?/CNS
L4 698 SEA FILE=REGISTRY ABB=ON PLU=ON ?POLYOXYETHYLENE?/CNS
L5 3 SEA FILE=REGISTRY ABB=ON PLU=ON L3(S)L4

L5 ANSWER 1 OF 3 REGISTRY COPYRIGHT 2002 ACS

OTHER NAMES:

CN N-.beta.-Hydroxylauryl-N,N-bis(polyoxyethylene)-N-
carboxymethylammonium betaine sodium salt

L5 ANSWER 2 OF 3 REGISTRY COPYRIGHT 2002 ACS

OTHER NAMES:

CN Lauroyloxyethoxyethylene carboxymethyl ether sodium salt

L5 ANSWER 3 OF 3 REGISTRY COPYRIGHT 2002 ACS

OTHER NAMES:

CN Polyoxymethylene lauryl carboxymethyl ether sodium salt

E ".ALPHA.-CARBOXYMETHYL-.OMEGA.-CARBOXYMETHOXYL POLYOXYE
 E ".ALPHA.-CARBOXYMETHYL-.OMEGA.-CARBOXYMETHOXYLPOLYOXYET
 E ".ALPHA.-CARBOXYMETHYL-.OMEGA.-CARBOXYMETHOXYPOLYOXYETH
 E ".ALPHA.-CARBOXYMETHYL-.OMEGA.-CARBOXYMETHOXY POLYOXYET

FILE 'HCAPLUS' ENTERED AT 10:50:27 ON 17 OCT 2002

L1 1 SEA FILE=REGISTRY ABB=ON PLU=ON "POLYETHYLENE GLYCOL"/C
 N
 L20 65224 SEA FILE=HCAPLUS ABB=ON PLU=ON L1 OR APEG OR ACTIVAT?(W)
) (PEG OR (POLYETHYLENE OR POLY ETHYLENE) (W) GLYCOL)
 L10 42680 SEA FILE=HCAPLUS ABB=ON PLU=ON POLYOXYETHYLENE OR
 CARBOXYMETHOXYPOLYOXYETHYLENE OR METHOXPOLYOXYETHYLENE
 OR POLY(W) (OXY ETHYLENE OR OXYETHYLENE) OR POLYOXY
 ETHYLENE
 L11 8 SEA FILE=HCAPLUS ABB=ON PLU=ON L10(10A) (ALPHA(W) (CARBOX
 YMETHYL OR CARBOXY(W) (ME OR METHYL)))
 L16 5 SEA FILE=HCAPLUS ABB=ON PLU=ON POE(S) (CARBOXY(W) (METHYL
 ? OR ME) OR CARBOXYMETHYL?)
 L17 448 SEA FILE=HCAPLUS ABB=ON PLU=ON (L6 OR L11 OR L16) AND
 (HB OR HEMOGLOBIN OR HAEMOGLOBIN)
 L18 1 SEA FILE=REGISTRY ABB=ON PLU=ON "NYLON 66"/CN
 L19 1 SEA FILE=REGISTRY ABB=ON PLU=ON POSIDYNE/CN
 L20 37 SEA FILE=HCAPLUS ABB=ON PLU=ON L17 AND (L18 OR L19 OR
 NYLON 66 OR POSIDYNE OR FILTER? OR FILTR?)

L20 ANSWER 1 OF 37 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2002:428940 HCAPLUS

DOCUMENT NUMBER: 137:2748

TITLE: Methods for the synthesis of a modified
hemoglobin solutionINVENTOR(S): Privalle, Christopher Thomas; Stacey, Cyrus
John; Talarico, Todd Lewis

PATENT ASSIGNEE(S): Apex Bioscience, Inc., USA

SOURCE: PCT Int. Appl., 45 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002044214	A1	20020606	WO 2001-US43877	20011114
W: AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE, EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD				

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH,
 CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE,
 TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN,
 TD, TG
 US 2002099175 A1 20020725 US 2001-930905 20010816
 AU 2002017823 A5 20020611 AU 2002-17823 20011114
 PRIORITY APPLN. INFO.: US 2000-253758P P 20001129
 US 2001-930905 A 20010816
 WO 2001-US43877 W 20011114

AB The invention concerns a **filtration** step during the **Hb** purifn. process that substantially decreases viral communication of a **Hb** soln. The **filtration** means can be used to sep. **Hb** and several endogenous antioxidant enzymes from red blood cell stroma and potential adventitious agents. The purified **Hb**/antioxidant compn. is then subjected to a chem. modification process. The resulting modified **Hb**/antioxidant compn. is then fractionated to remove unmodified **Hb** species and residual reactants, formulated in electrolytes and rendered sterile. The resulting modified **Hb** product is substantially free of viral contamination and contains at least one endogenous antioxidant enzyme that retains antioxidant activity.

IT 25322-68-3DP, conjugates with pyridoxalated **Hb**
 RL: BUU (Biological use, unclassified); SPN (Synthetic preparation);
 BIOL (Biological study); PREP (Preparation); USES (Uses)
 (PHP; methods for synthesis of a modified **Hb** soln.)

IT 25322-68-3
 RL: BUU (Biological use, unclassified); PRP (Properties); BIOL
 (Biological study); USES (Uses)
 (methods for synthesis of a modified **Hb** soln.)

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L20 ANSWER 2 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2001:360213 HCPLUS
 DOCUMENT NUMBER: 134:337926
 TITLE: Method using fumed metallic oxides for isolating DNA from a proteinaceous medium and kit for performing method
 INVENTOR(S): Krupey, John
 PATENT ASSIGNEE(S): Ligochem, Inc., USA
 SOURCE: PCT Int. Appl., 66 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001034844	A1	20010517	WO 2000-US31005	20001113
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU,				

TJ, TM

RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG

EP 1244811 A1 20021002 EP 2000-977161 20001113

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR

PRIORITY APPLN. INFO.: US 1999-164608P P 19991110
WO 2000-US31005 W 20001113

AB A method is described for isolating DNA from a proteinaceous medium such as whole blood, Hb-contg. urine or saliva. Also disclosed are test kits for practicing the method. Guanidine thiocyanate in sodium acetate pH 7.0 soln. contg. EDTA was added to Hb-contg. and white blood cell-contg. urine samples to disrupt the cells, dissoc. the DNA histone complex, and release free DNA into soln. Contaminating proteins were removed by treating the chaotrope-contg. urine with a water-insol. cross-linked polymeric acid, trade name ProCipitate. The DNA was captured with titanium oxide P25, the aggregate was washed, and DNA was recovered by treatment with NaOH.

IT 25322-68-3D, Polyethylene glycol, with bound fumed metal oxides

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(DNA isolation from proteinaceous medium using fumed metallic oxides and kit for performing method)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L20 ANSWER 3 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2000:260097 HCPLUS

DOCUMENT NUMBER: 132:284201

TITLE: Method for production of stroma-free hemoglobin

INVENTOR(S): Winslow, Robert M.; Vandegriff, Kim D.

PATENT ASSIGNEE(S): Sangart, Inc., USA

SOURCE: PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000021591	A1	20000420	WO 1999-US24149	19991015
W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
EP 1121165	A1	20010808	EP 1999-954950	19991015

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
PT, IE, FI
BR 9915734 A 20011002 BR 1999-15734 19991015
JP 2002527149 T2 20020827 JP 2000-575563 19991015
PRIORITY APPLN. INFO.: US 1998-104319P P 19981015
US 1999-122180P P 19990301
WO 1999-US24149 W 19991015

AB The method employs a com.-available blood cell separator comprising a computer-controlled centrifuge having a rotor into which a blood processing bag contg. donor blood is placed. Once the blood is collected, the process is performed entirely within the enclosed centrifuge bowl, preferably in situ at the donor collection site. In the first step, the blood is centrifuged to sep. the plasma from the cellular components. After isolation of the red blood cells from other blood components, the red cells are washed with normal saline or other soln. The red blood cells are then lysed by hypotonic shock to sep. the red cell membranes (stroma) and the lysate is collected in a sterile container, leaving only the stroma in the centrifuge bowl. The final product can be used as raw material for any of the Hb-based oxygen carriers currently being developed as red cell substitutes. All of the steps are performed within a processing container or blood bag in the bowl centrifuge to minimize handling and maintain sterility. A method for prepg. a modified Hb soln. incorporates the steps for producing stroma-free Hb, then adding pre-measured reagents to react with the soln. and filtering the soln.

IT 25322-68-3, PEG

RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(method for prodn. of stroma-free Hb)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L20 ANSWER 4 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1999:787313 HCPLUS

DOCUMENT NUMBER: 132:141908

TITLE: Synthesis and Physicochemical Characterization of a Series of Hemoglobin-Based Oxygen Carriers: Objective Comparison between Cellular and Acellular Types

AUTHOR(S): Sakai, Hiromi; Yuasa, Minako; Onuma, Hiroto; Takeoka, Shinji; Tsuchida, Eishun

CORPORATE SOURCE: Department of Polymer Chemistry, Advanced Research Institute for Science and Engineering Waseda University, Tokyo, 169-8555, Japan

SOURCE: Bioconjugate Chemistry (2000), 11(1), 56-64

CODEN: BCCHE; ISSN: 1043-1802

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A series of Hb (Hb)-based O₂ carriers, acellular and cellular types, were synthesized and their physicochem. characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymd. XLHb (Poly-XLHb). The cellular type is

Hb-vesicles (**HbV**) of which the surface is modified with POE (POE-HbV). Their particle diams. are 7 .+- . 2, 22 .+- . 2, 47 .+- . 17, 68 .+- . 24, and 224 .+- . 76 nm, resp., thus all the materials penetrate across membrane filters with 0.4 .mu.m pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 .mu.m pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-**Hb** ([**Hb**] = 5 g/dL) showed viscosity of 6.1 cP at 332 s-1 and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiol. conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, resp., which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-**Hb** or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular **Hbs** (P50 = 14-32 Torr) have their specific O2 affinities detd. by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amt. of an allosteric effector (e.g., P50 = 18, 32 Torr). These differences in physicochem. characteristics between the acellular and cellular types indicate the advantages of the cellular type from the physiol. points of view.

IT 25322-68-3D, **Hb** conjugates

RL: BPR (Biological process); BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); THU (Therapeutic use); BIOL (Biological study); PROC (Process); USES (Uses)

(prepn. and physicochem. properties of **Hb**-based oxygen carriers)

REFERENCE COUNT: 65 THERE ARE 65 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L20 ANSWER 5 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1999:96091 HCPLUS

DOCUMENT NUMBER: 130:165137

TITLE: Device and method for obtaining clinically significant analyte ratios

INVENTOR(S): Kuo, Hai-Hang; Miller, Carol A.; Wijesuriya, Dayaweere; Yip, Meitak Teresa; Zimmerle, Chris T.

PATENT ASSIGNEE(S): Bayer Corporation, USA

SOURCE: Eur. Pat. Appl., 18 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 895084	A2	19990203	EP 1998-112964	19980713
EP 895084	A3	20000315		

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
PT, IE, SI, LT, LV, FI, RO

US 6436721 B1 20020820 US 1997-900586 19970725

AU 9877440 A1 19990204 AU 1998-77440 19980722

AU 729380 B2 20010201

JP 11083856 A2 19990326 JP 1998-206193 19980722

PRIORITY APPLN. INFO.: US 1997-900586 A 19970725

AB Disclosed is a method for detg. the concn. of an analyte in a sample of body fluid. The method involves contacting the body fluid sample with a test strip contg. mobile, labeled, specific binding partner for the analyte. The test fluid, analyte, and any complex formed by interaction of the analyte and labeled specific binding partner flow through the strip by capillarity. The strip contains at least one zone for capture of the labeled specific binding partner and at least one sep. zone for retention of the analyte/labeled specific binding partner complex. By detg. the magnitude of the signal from the detectable label in the capture zone(s) and retention zone(s) and detg. a final response signal by correlating signals using an algorithm and no. of zones chosen in a manner that provides a final response signal best suited for the particular assay, the concn. of the analyte can be detd. with greater precision. A test strip for the detn. of creatinine and deoxypyridinoline contained six distinct areas assembled onto a polystyrene backing of 101.6 X 5.0 mm. Area 1 was a creatinine pad made from Whatman 3 mm filter paper contg. reagents for the colorimetric detn. of creatinine. Area 2 was a buffer pad for buffering the urine samples. Area 3 contained gold sol-labeled anti-deoxypyridinoline antibody. Area 4 contained 3 capture bands of immobilized deoxypyridinoline. Area 5 had an anti-IgG collection band. Area 6 was an absorbant pad. Areas 1 and 2 were dipped into test urine for 3 s and the strip was placed on the read table of a CLINITEK 50 reflectance spectrometer for anal.

IT 25322-68-3D, Polyethylene glycol, carboxyl-terminated

RL: ARU (Analytical role, unclassified); DEV (Device component use); ANST (Analytical study); USES (Uses)

(deoxypyridinoline immobilized to, in test strip for creatinine and deoxypyridinoline detn.; device and method for obtaining clin. significant analyte ratios)

L20 ANSWER 6 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1998:776340 HCPLUS

DOCUMENT NUMBER: 130:150523

TITLE: Application of hydrophilic polymers in multichannel flow electrophoresis

AUTHOR(S): Liu, Zheng; Zhao, Yin; Wang, Jin; Huang, Zheng; Ding, Fuxin; Yuan, Naiju

CORPORATE SOURCE: Department of Chemical Engineering, Tsinghua University, Beijing, 100084, Peop. Rep. China

SOURCE: Tsinghua Science and Technology (1996), 1(4), 336-340

PUBLISHER: CODEN: TSTEF7; ISSN: 1007-0214

Editorial Board of Journal of Tsinghua University

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Protein mixts. are sepd. by multichannel flow electrophoresis (MFE) in a 5-compartment electrolyzer partitioned by membranes. Polyvinyl alc. (PVA), polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidone K30 (PVP K30) were applied to the MFE as

shielding polymers to prevent protein adsorption on the polysulfone microfiltration membrane during the electrophoresis process. The effects of polymer concn. on the protein transmembrane flux were examd. It was found that PVA, PEG 4000 and PVP K30 greatly reduced protein adsorption on the membrane surface. However, their influences on protein migration in an elec. field were different. Continuous sepn. of bovine serum albumin and Hb mixt. was conducted using PEG 4000 as a shielding polymer and yielded 46.6 mg BSA and 25.7 mg Hb per h. These results show a high potential for scaling MFE up to large scale sepn. and purifn. of biomols.

IT 25322-68-3, Polyethylene glycol
 RL: ARU (Analytical role, unclassified); ANST (Analytical study)
 (application of hydrophilic polymers in multichannel flow electrophoresis)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L20 ANSWER 7 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:536067 HCPLUS
 DOCUMENT NUMBER: 127:185584
 TITLE: The impact of polyethylene glycol conjugation on bovine hemoglobin's circulatory half-life and renal effects in a rabbit top-loaded transfusion model
 Conover, Charles D.; Gilbert, Carl W.; Shum, Kwok L.; Shorr, Robert G. L.
 CORPORATE SOURCE: Research and Development, Formulations-Toxicology Department, Enzon Inc., Piscataway, NJ, 08854, USA
 SOURCE: Artificial Organs (1997), 21(8), 907-915
 CODEN: ARORD7; ISSN: 0160-564X

PUBLISHER: Blackwell
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB This study compares the effects of polyethylene glycol (PEG) modified bovine Hb on vascular half-life and renal function in rabbits to those of unmodified bovine Hb. Renal function was assessed by the measurement of the glomerular filtration rate, urinalysis, blood chemistries, Hb excretion rates, and tissue histol. The influence of infusion rates on Hb excretion rates and organ morphol. was also examd. The mean half-life of unmodified bovine Hb was 3.0 h, which was extended 14-fold to 43.2 h following PEG conjugation. The glomerular filtration rate, urinalysis, and blood chemistries were not greatly affected by either the unmodified bovine Hb or the PEG modified bovine Hb. However, unmodified bovine Hb did demonstrate significant hemoglobinuria (Hb excretion levels in excess of 1.0% of the infused dose at all infusion rates given) while PEG modified bovine Hb did not. In addn., histol. examn. by light microscopy indicated that the most severe morphol. changes occurred in animals that received unmodified bovine Hb. This data suggests that PEG modification of bovine Hb significantly reduced some of the adverse effects of bovine Hb on renal physiol. and morphol.

IT 25322-68-3, Polyethylene glycol
 RL: BSU (Biological study, unclassified); BIOL (Biological study)

(enhanced half-life and reduced kidney toxicity of polyethylene glycol-modified Hb)

L20 ANSWER 8 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:442351 HCPLUS
 DOCUMENT NUMBER: 127:173367
 TITLE: Continuous separation of proteins by hydrophilic polymer shielded multichannel flow electrophoresis
 AUTHOR(S): Liu, Zheng; Zhao, Yin; Shen, Zhongyao; Ding, Fuxin; Yuan, Naiju
 CORPORATE SOURCE: Department of Chemical Engineering, Tsinghua University, Beijing, 100084, Peop. Rep. China
 SOURCE: Chinese Journal of Chemical Engineering (1997), 5(2), 141-146
 CODEN: CJCEEB; ISSN: 1004-9541
 PUBLISHER: Chemical Industry Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Continuous sepn. of protein mixts. by multichannel flow electrophoresis (MFE) was carried out in a 5-compartment electrolyzer partitioned by membranes. Polyvinyl alc. (PVA), polyethylene glycol 4000 (PEG 4000) and polyvinylpyrrolidine K30 (PVP K30) were applied to the MFE as shielding polymers to prevent protein adsorption on the polyethersulfone microfiltration membrane, which was used to space the central compartment and the elution compartments, during the electrophoresis process. The effects of polymer concn. on protein transmembrane flux were exampd. It was found that PVA, PEG 4000 and PVP K30 greatly reduced protein adsorption on the membrane surface. Continuous sepn. of bovine serum albumin (BSA) and Hb (HBB) mixt. in the presence of PEG 4000 yielded 26.6mg BSA 40.4mg HBB per h. These results have shown a high potential of scaling up MFE for large scale sepn. and purifn. of biomols.

IT 25322-68-3
 RL: NUU (Other use, unclassified); USES (Uses)
 (continuous sepn. of proteins by hydrophilic polymer shielded multichannel flow electrophoresis)

L20 ANSWER 9 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:393377 HCPLUS
 DOCUMENT NUMBER: 127:86186
 TITLE: Detection of residual polyethylene glycol derivatives in pyridoxylated-hemoglobin -polyoxyethylene conjugate
 AUTHOR(S): Miles, Paul J.; Langley, Kate V.; Stacey, Cyrus J.; Talarico, Todd L.
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC, 27709, USA
 SOURCE: Artificial Cells, Blood Substitutes, and Immobilization Biotechnology (1997), 25(3), 315-326
 CODEN: ABSBE4; ISSN: 1073-1199
 PUBLISHER: Dekker
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Purified Hb solns. have been shown to cause renal toxicity in animals. Safe use of Hb based therapeutics in humans

requires modification of the **Hb** mol. to prevent this toxicity. **Hb** modification may be accomplished by crosslinking the dimers within the **Hb** tetramer or by derivatization of the .alpha. and/or .beta. subunits such that their size and/or charge prevents filtration by the glomeruli.

Pyridoxylated Hb polyoxyethylene conjugate (PHP)

consists of **Hb** mols. modified with .alpha.-

carboxymethyl, .omega.-carboxymethoxy

polyoxyethylene (POE). We have developed a high performance liq. chromatog.-based (HPLC) method which can quantitate residual POE at levels of 0.1 mg/mL or greater. The detection of POE at this level of sensitivity requires the use of an evaporative light scattering detector (ELSD). A differential refractometer may also be used for POE detection, however the limit of quantitation for this detector is approx. 10 fold greater than that obsd. for the evaporative light scattering detector, resulting in a redn. in sensitivity. The successful use of this method requires sample deproteinization using trichloroacetic acid. The reliability of the method has been demonstrated by spike recovery, precision, and reproducibility studies in PHP and buffer solns.

IT **25322-68-3**, Polyethylene glycol

RL: ANT (Analyte); ANST (Analytical study)

(detection of residual polyethylene glycol derivs. in pyridoxylated-**Hb**-polyoxyethylene conjugate)

L20 ANSWER 10 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:305709 HCPLUS

DOCUMENT NUMBER: 127:15033

TITLE: Hydrophilic polymer enhanced multichannel flow electrophoresis

AUTHOR(S): Liu, Zheng; Zhao, Yin; Shen, Zhongyao; Ding, Fuxin; Yuan, Naiju

CORPORATE SOURCE: Department of Chemical Engineering, Tsinghua University, Beijing, 100084, Peop. Rep. China

SOURCE: Separation Science and Technology (1997), 32(7), 1303-1313

CODEN: SSTEDE; ISSN: 0149-6395

PUBLISHER: Dekker

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Two kinds of polysulfone microfiltration membranes were applied to the multicompartment electrolyzer of multichannel flow electrophoresis (MFE) to increase MFE output. Liq.-membrane interface modification aimed at reducing protein adsorption on the membrane surface was studied by addn. of polyvinyl alc., polyethylene glycol 4000, and polyvinylpyrrolidone K30 in the protein soln. The exptl. results show that the presence of these polymers reduces the protein adsorption, and the electrophoretic migration speed of the charged protein in the membrane is dominated by the interaction between the protein and the membrane. Continuous sepn. of a bovine serum albumin and **Hb** mixt. in the presence of PEG 4000 was conducted in a HT Tuffrynn-and a Supor-spaced MFE electrolyzer resp., and yielded over 67 mg protein product per h. The protein product fluxes were stable throughout the running period.

IT **25322-68-3**

RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(hydrophilic polymer-enhanced multichannel flow electrophoresis)

L20 ANSWER 11 OF 37 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1997:85572 HCAPLUS
 DOCUMENT NUMBER: 126:162268
 TITLE: Method for preparing storage stable colloids
 INVENTOR(S): Quay, Steven C.
 PATENT ASSIGNEE(S): Sonus Pharmaceuticals, USA
 SOURCE: U.S., 28 pp., Cont.-in-part of U.S. Ser. No.
 8,172.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5595723	A	19970121	US 1993-148284	19931108
US 5558855	A	19960924	US 1993-8172	19930125
IN 175599	A	19950715	IN 1993-CA232	19930422
CA 2154590	AA	19940804	CA 1994-2154590	19940119
WO 9416739	A1	19940804	WO 1994-US422	19940119
W: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, UZ, VN				
RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
AU 9461624	A1	19940815	AU 1994-61624	19940119
AU 680652	B2	19970807		
EP 680341	A1	19951108	EP 1994-908587	19940119
EP 680341	B1	20010509		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE				
BR 9405667	A	19951121	BR 1994-5667	19940119
CN 1119831	A	19960403	CN 1994-191564	19940119
CN 1068230	B	20010711		
HU 72323	A2	19960429	HU 1995-2163	19940119
JP 08508977	T2	19960924	JP 1994-517084	19940119
US 5558853	A	19960924	US 1994-182024	19940119
PL 176116	B1	19990430	PL 1994-309986	19940119
PL 176870	B1	19990831	PL 1994-325737	19940119
EP 1038535	A2	20000927	EP 2000-109817	19940119
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE				
SK 281535	B6	20010409	SK 1995-930	19940119
AT 200985	E	20010515	AT 1994-908587	19940119
ES 2158892	T3	20010916	ES 1994-908587	19940119
IL 108416	A1	19981030	IL 1994-108416	19940124
ZA 9400508	A	19940905	ZA 1994-508	19940125
NO 9502819	A	19950922	NO 1995-2819	19950717
FI 9503546	A	19950922	FI 1995-3546	19950724
AU 9745091	A1	19980205	AU 1997-45091	19971110
AU 710508	B2	19990923		
PRIORITY APPLN. INFO.:			US 1993-8172	A2 19930125
			US 1993-148284	A 19931108
			EP 1994-908587	A3 19940119
			US 1994-182024	A 19940119

WO 1994-US422 W 19940119

AB Agents for enhancing the contrast in a diagnostic ultrasound procedure comprise colloidal dispersions of the liq.-in-liq. type, i.e., emulsions or microemulsions, in which the dispersed liq. phase is a high vapor pressure chem. which undergoes a phase change from a dispersed liq. to a highly echogenic dispersed gaseous foam or spherical foam following administration to an organism. The liq. state of the dispersed phase allows one to manuf. extremely stable, pharmaceutically acceptable emulsions with particle sizes typically below 1000 nm. The gaseous state at body temp. yields highly echogenic microbubbles, typically below 10,000 nm in diam., which are effective as ultrasound contrast agents. I.v., intraarterial, oral, i.p., and intrauterine dosage forms, methods of administration, and imaging techniques are described. A preferred method of prep. a storage-stable ultrasound contrast agent comprises the steps of: (a) mixing a surfactant with water to form an aq. continuous phase, (b) adding a fluorine-contg. compd. in gas form to the aq. continuous phase, wherein the compd. has a b.p. < 37 degree. and is selected from the group consisting of aliph. hydrocarbons, org. halides and ethers having six or fewer carbon atoms, and (c) forming a liq. in liq. colloidal dispersion by condensing the gas in the aq. continuous phase. A soln. contg. sucrose, Pluronic P123, and Zonyl FSO was sonicated and mixed with dodecafluoropentane. The suspension was passed through a microfluidizer and then a 0.22 .mu.m filter to give a stable colloidal dispersion.

IT 25322-68-3

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (colloidal dispersions stabilized by amphiphilic agents for enhancing contrast in diagnostic ultrasound procedure)

L20 ANSWER 12 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:69114 HCPLUS

DOCUMENT NUMBER: 126:176747

TITLE: Effect of surface-modification of hemoglobin-vesicles (HbV) with polyethyleneglycol-lipid or glycolipid

AUTHOR(S): Park, Sung Ick; Sou, Keitarou; Sakai, Hiromi; Takeoka, Shinji; Nishide, Hiroyuki; Tsuchida, Eishun

CORPORATE SOURCE: Adv. Res. Cent. Sci. Eng., Waseda Univ., Tokyo, 169, Japan

SOURCE: Jinko Ketsueki (1996), 4(1), 9-13
CODEN: JIKEFK; ISSN: 1341-1594

PUBLISHER: Nippon Ketsueki Daitaibutsu Gakkai

DOCUMENT TYPE: Journal

LANGUAGE: Japanese

AB HbV which encapsulate a purified and concd. Hb soln. with lipid bilayer membranes were studied as oxygen-carrying particles with good rheol. properties. When solns. of polyethylene glycol (PEG)-lipid or glycolipid conjugating a maltopentaose were added to the HbV suspension, the lipids were spontaneously incorporated into the outer surface of the HbV, and modified the surface with PEG chains or oligosaccharide chains. Aggregation of the unmodified HbV when suspended in an 5 wt.%-albumin soln. at the Hb concn. of 10 g/dL was suppressed by the modification with PEG. The unmodified HbV tends to aggregate in the albumin soln. and incre. the soln. viscosity esp. at low shear rates. While, the

modification effectively reduces the viscosity because of the suppression of the aggregation. Permeability of HbV through membrane filters having penetrated pores with a regulated size was examd. in relation with the degree of aggregation during a capillary flow. Both the unmodified and modified HbV have the higher permeability than blood and lower than stroma-free Hb soln. at the same Hb concn. (10 g/dL). PEG-HbV and glyco-HbV showed higher permeability than the unmodified HbV. Thus, the soln. properties of the HbV were improved by the surface modification and excellent behaviors in microcirculation would be expected.

IT 25322-68-3D, PEG, phospholipid conjugates

RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(surface modification of Hb-vesicles with polyethylene glycol-lipid or glycolipid)

L20 ANSWER 13 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:467217 HCPLUS

DOCUMENT NUMBER: 125:137244

TITLE: Gels for encapsulation of biological materials

INVENTOR(S): Hubbell, Jeffrey A.; Pathak, Chandrashekhar P.; Sawhney, Amarpreet S.; Desai, Neil P.; Hossainy, Syed F. A.

PATENT ASSIGNEE(S): University of Texas System, USA

SOURCE: U.S., 34 pp., Cont.-in-part of U.S. Ser. No. 870, 540.

CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 12

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5529914	A	19960625	US 1992-958870	19921007
US 5232984	A	19930803	US 1991-740632	19910805
US 5380536	A	19950110	US 1991-740703	19910805
WO 9316687	A1	19930902	WO 1993-US1776	19930301
			W: AU, BB, BG, BR, CA, FI, HU, JP, KP, KR, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA	
			RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE	
AU 9337809	A1	19930913	AU 1993-37809	19930301
AU 683209	B2	19971106		
EP 627912	A1	19941214	EP 1993-907078	19930301
			R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE	
JP 07506961	T2	19950803	JP 1993-515100	19930301
JP 3011767	B2	20000221		
US 5573934	A	19961112	US 1993-24657	19930301
BR 9306041	A	19971118	BR 1993-6041	19930301
CA 2117584	C	19980922	CA 1993-2117584	19930301
US 5858746	A	19990112	US 1995-377911	19950125
US 5834274	A	19981110	US 1995-467693	19950606
US 5843743	A	19981201	US 1995-467815	19950606
US 5801033	A	19980901	US 1995-480678	19950607
US 6258870	B1	20010710	US 1997-783387	19970113
US 6231892	B1	20010515	US 1997-969910	19971113

US 6465001	B1	20021015	US 1998-33871	19980303
US 2002058318	A1	20020516	US 2001-811901	20010319
PRIORITY APPLN. INFO.:			US 1990-598880	B2 19901015
			US 1991-740632	A3 19910805
			US 1991-740703	A2 19910805
			US 1992-843485	B2 19920228
			US 1992-870540	A2 19920420
			US 1992-958870	A 19921007
			US 1993-24657	A1 19930301
			WO 1993-US1776	A 19930301
			US 1994-232054	A3 19940428
			US 1994-336393	A3 19941110
			US 1995-467693	A1 19950606
			US 1995-475175	A2 19950607
			US 1995-484160	B3 19950607
			US 1997-783387	A1 19970113

AB This invention provides novel methods for the formation of biocompatible membranes around biol. materials using photopolymn. of water-sol. mols. The membranes can be used as a covering to encapsulate biol. materials or biomedical devices, as a "glue" to cause >1 biol. substance to adhere together, or as carriers for biol. active species. Several methods for forming these membranes are provided. Each of these methods utilizes a polymn. system contg. water-sol. macromers, species which are at once polymers and macromols. capable of further polymn. The macromers are polymd. by using a photoinitiator (such as a dye), optionally a cocatalyst, optionally an accelerator, and radiation in the form of visible or long-wavelength UV light. The reaction occurs either by suspension polymn. or by interfacial polymn. The polymer membrane can be formed directly on the surface of the biol. material, or it can be formed on material which is already encapsulated.

IT 25322-68-3

RL: BUU (Biological use, unclassified); NUU (Other use, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(gels for encapsulation of biol. materials)

L20 ANSWER 14 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1994:644903 HCPLUS
 DOCUMENT NUMBER: 121:244903
 TITLE: Hemoglobinuria in rats: a sensitive test of renal filtering and absorption of PEG-hemoglobin, a red blood cell substitute.
 AUTHOR(S): Gilbert, C.; Nho, K.; Johnson, M.; Linberg, R.; Shorr, R.
 CORPORATE SOURCE: Enzon, Inc., Piscataway, NJ, 08854, USA
 SOURCE: Artificial Cells, Blood Substitutes, and Immobilization Biotechnology (1994), 22(3), 535-41
 CODEN: ABSBE4; ISSN: 1073-1199
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Hemoglobinuria, defined as Hb or Hb subunits in the urine, is an easily monitored, sensitive indicator of renal handling of Hb-based blood substitutes. Hb tetramer dissociation increases filtration by the kidneys. When the rate of filtration exceeds resorption, hemoglobinuria occurs. This study investigates the renal

filtration and absorption of polyethylene glycol-modified bovine **Hb** by monitoring for hemoglobinuria in several model systems.

- IT 25322-68-3, Polyethylene glycol
 RL: BPR (Biological process); BSU (Biological study, unclassified);
 BIOL (Biological study); PROC (Process)
 (**Hbs** modified with; hemoglobinuria in rats as sensitive test of renal **filtering** and absorption of PEG-
Hb)

L20 ANSWER 15 OF 37 HCAPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1994:129046 HCAPLUS
 DOCUMENT NUMBER: 120:129046
 TITLE: Process for **hemoglobin** extraction and purification
 INVENTOR(S): Shorr, Robert G. L.; Nho, Kwang; Cho, Myung Ok P.; Lee, Chyi; Czuba, Barbara; Shankar, Hariharan
 PATENT ASSIGNEE(S): Enzon, Inc., USA
 SOURCE: U.S., 11 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5264555	A	19931123	US 1992-913138	19920714
WO 9401452	A1	19940120	WO 1993-US5789	19930617
W: AU, BR, CA, FI, HU, JP, KR, NO, NZ, PL, RO, RU, SE, SK, UA RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
AU 9346383	A1	19940131	AU 1993-46383	19930617
EP 654039	A1	19950524	EP 1993-916583	19930617
EP 654039	B1	200000920		
R: CH, DE, DK, FR, GB, IE, LI, NL				
PRIORITY APPLN. INFO.:			US 1992-913138	A 19920714
			WO 1993-US5789	A 19930617

- AB Methods are disclosed for sepg. **Hb** from erythrocytes by contacting erythrocytes with a hypotonic buffer soln. at a rate sufficient to render the release of **Hb** from said erythrocytes without significant lysis. The **Hb** is then sepd. from the erythrocytes. Methods are also disclosed for purifying **Hb** solns. of DNA, endotoxins and phospholipids by contacting the **Hb** solns. with an anion exchange medium. Thus, concd. bovine erythrocytes were prefiltered and then dild. under continuous mixing with a hypotonic buffer contg. NaCl 80, KCl 1.8, K2HPO4 1.33, and KH2PO4 5.33 mM (pH 7.3-7.5). The **Hb** was extd. from the soln. by recirculation through a hollo-fiber cartridge. The isolated **Hb** was delipidated using a column of WP-PEI or QMA-Spherosil M.

- IT 25322-68-3D, Polyethylene glycol, **Hb** conjugates
 RL: ANST (Analytical study)
 (for blood substitute, **Hb** purifn. from endotoxin and phospholipid for, anion exchange chromatog. in)

L20 ANSWER 16 OF 37 HCAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1993:420160 HCPLUS
 DOCUMENT NUMBER: 119:20160
 TITLE: Renal effects of multiple infusion of
 pyridoxalated-hemoglobin
 -polyoxyethylene conjugate (PHP) solution in
 dogs
 AUTHOR(S): Takahashi, Tsuyoshi; Iwasaki, Keiji; Malchesky,
 Paul S.; Harasaki, Hiroaki; Matsushita,
 Michiaki; Nose, Yukihiko; Rolin, Henry, III;
 Hall, Philip M.

CORPORATE SOURCE: Dep. Artif. Organs, Cleveland Clin. Found.,
 Cleveland, OH, USA

SOURCE: Artificial Organs (1993), 17(3), 153-63
 CODEN: ARORD7; ISSN: 0160-564X

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Pyridoxalated-Hb-polyoxyethylene conjugate (PHP), which is made from out-dated human red blood cells by two major chem. modifications, namely pyridoxalation and conjugation with polyoxyethylene (POE), is currently under development as a physiol. oxygen carrier. This study assessed the effects of PHP-88 soln., which contains 8% (wt/vol) each of Hb and maltose, on renal function when it was infused 3 times every other day into the intact circulation of 8 dogs (5 dogs for the PHP group and 3 for the control group; 20 mL/kg for the first infusion, and 10 mL/kg each for the second and third infusions, at the rate of 2.5 mL/h/kg). Serial detns. of glomerular filtration rate (GFR) and renal plasma flow (RPF) were carried out pre- and postinfusion for up to 3 mo along with measurements of blood and urine analyses, urine output rate, fractional excretion of sodium (FES), and free water clearance (CH2O). The results showed that plasma colloid osmotic pressure (COP) elevated at an av. of 3.3 mm Hg ($p = 0.0085$), and GFR and RPF tended to increase by 13% (NS) and 38% (NS), resp., immediately after the third infusion with PHP soln. Urine output rate increased during and after the infusion, and FES and CH2O also increased for 24 h after the infusion in both groups. Blood urea nitrogen, serum creatinine, and serum Na⁺ concns. were not affected greatly by the infusions, but hematocrit was decreased by 8% in the PHP group, indicating approx. a 42% expansion of plasma vol. These changes were obsd. to return to their preinfusion levels by 1 wk postinfusion. Renal histol. of the PHP group obtained at 2 wk postinfusion revealed vacuole formation in the proximal tubules which was not assocd. with any pathol. changes indicative of cell death or regeneration. In 4 out of 5 dogs at 3 mo postinfusion (necropsy), the vacuoles were not present. Though urinary N-acetyl .beta.-glucosaminidase (NAG) activity had significantly increased after infusion, it returned to the preinfusion level by 1 mo postinfusion. No detrimental effect of vacuoles on the assessed renal tubular functions was confirmed in the present study. The results demonstrated that multiple infusions of PHP solns. were well tolerated in normal dogs, and the obsd. effects were conceived predominantly attributable to the physiol. response of the kidneys to an oncotic load into the circulation, which produced plasma vol. expansion.

IT 25322-68-3D, reaction products with pyridoxylated Hb

RL: BIOL (Biological study)
 (renal effects of multiple infusion of)

L20 ANSWER 17 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1992:456653 HCPLUS
 DOCUMENT NUMBER: 117:56653
 TITLE: Theories and experiments on nonisothermal matter transport in porous membranes
 AUTHOR(S): Gaeta, F. S.; Ascolese, E.; Bencivenga, U.; Ortiz de Zarate, J. M.; Pagliuca, N.; Perna, G.; Rossi, S.; Mita, D. G.
 CORPORATE SOURCE: Int. Inst. Genet. Biophys., CNR, Naples, 80125, Italy
 SOURCE: Journal of Physical Chemistry (1992), 96(15), 6342-54
 CODEN: JPCHAX; ISSN: 0022-3654
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB The growing body of exptl. evidence on nonisothermal matter transport in artificial porous membranes until now has been interpreted alternatively within the frame of ref. of 1 of 3 independent theor. approaches. According to one, the force driving transport is due to transfer of momentum from thermal excitations to the medium; another assumes this force to be due to transported entropy balance; the third envisages distn. in vapor-filled pores as the particular transport mechanism occurring in hydrophobic membranes. Two of these approaches apply to both hydrophilic and hydrophobic membranes; the other is specific to the case of porous hydrophobic filters and to liqs. that cannot permeate them. The 2 general approaches are complementary, one constituting the thermodn. representation of a phys. process that the other describes in terms of statistical mechanics; the third is incompatible with the other 2. The predictions of the alternative models diverge in various ways. Expts. specially designed to investigate the conflicting forecasts were carried out by employing 2 polar solvents and using a new exptl. technique to investigate the behavior of solute fluxes. This article presents a preliminary report of the main exptl. results obtained so far and a discussion of their relevance to the theor. dispute among the different approaches. A preliminary report is made of the main exptl. results obtained so far and their relevance to the theor. dispute among the different approaches is discussed.

IT 25322-68-3, Polyethylene glycol
 RL: PRP (Properties)
 (transport of, in porous membranes under nonisothermal conditions)

L20 ANSWER 18 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1992:76334 HCPLUS
 DOCUMENT NUMBER: 116:76334
 TITLE: Effects of single-dose infusion of pyridoxalated-hemoglobin -polyoxyethylene conjugate solution on canine renal function
 AUTHOR(S): Takahashi, Tsuyoshi; Iwasaki, Keiji; Malchesky, Paul S.; Harasaki, Hiroaki; Emoto, Hideto; Goldcamp, James B.; Matsushita, Michiaki; Nose, Yukihiko; Rolin, Henry, III; Hall, Phillip
 CORPORATE SOURCE: Dep. Biomed. Eng. Appl. Therapeut., Cleveland Clin. Found., Cleveland, OH, 44195-5132, USA
 SOURCE: Artificial Organs (1991), 15(6), 462-73

CODEN: ARORD7; ISSN: 0160-564X

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Pyridoxalated-Hb-polyoxyethylene conjugate (PHP) is an acellular oxygen-carrying red blood cell substitute made from outdated human red blood cells. This study assessed the effect of PHP on renal function when PHP was infused with a clin. relevant dosage. The results showed an elevation of plasma colloid osmotic pressure by an av. of 4.4 mm Hg immediately postinfusion with PHP soln. An av. 23% decrease in glomerular filtration rate, without notable changes in renal plasma flow immediately postinfusion, was obsd. in the PHP group; the value returned to the preinfusion level by 1 wk postinfusion. Increases in parameters such as urine output, fractional excretion of Na, and free water clearance, which were more pronounced in the PHP group, were obsd. for 24 h after the infusion in both groups. Light microscopic examn. of kidney specimens taken at 2 wk postinfusion revealed a slight degree of vacuole formation in approx. 80% of the proximal tubules in the PHP group. The tubules were devoid of typical pathol. features of acute renal failure, and the vacuoles did not cause any observable changes in the assessed tubular functions.

IT 25322-68-3D, conjugates with pyridoxalated Hb

RL: BIOL (Biological study)

(kidney function response to single-dose infusion of)

L20 ANSWER 19 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1991:235059 HCPLUS

DOCUMENT NUMBER: 114:235059

TITLE: Very low temperature casting of controlled release microspheres

INVENTOR(S): Gombotz, Wayne R.; Healy, Michael S.; Brown, Larry R.

PATENT ASSIGNEE(S): Enzytech, Inc., USA

SOURCE: PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 9013780	A1	19901115	WO 1990-US2425	19900501
W: AU, CA, JP				
RW: AT, BE, CH, DE, DK, ES, FR, GB, IT, LU, NL, SE				
US 5019400	A	19910528	US 1989-346143	19890501
CA 2030550	AA	19901102	CA 1990-2030550	19900501
AU 9055309	A1	19901129	AU 1990-55309	19900501
AU 621751	B2	19920319		
EP 424516	A1	19910502	EP 1990-907980	19900501
EP 424516	B1	19921209		
R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, LU, NL, SE				
JP 03504389	T2	19910926	JP 1990-506874	19900501
JP 07039338	B4	19950501		
AT 83310	E	19921215	AT 1990-907980	19900501
ES 2037563	T3	19930616	ES 1990-907980	19900501
PRIORITY APPLN. INFO.:			US 1989-346143	19890501
			EP 1990-907980	19900501

WO 1990-US2425 19900501

AB Polymeric microspheres are prep'd. by (1) freezing droplets of solns. contg. polymers, biol. active agents, and solvents by atomizing the droplets into a freezing nonsolvent having a temp. below the f.p. of the soln., (2) thawing the solvent in the frozen droplets of the solns., and (3) extg. the solvent from the droplets into a liq. nonsolvent to form spherical polymeric microspheres. The polymers include both bioerodible and nonerodible polymers. The biol. active agents include proteins, polysaccharides, nucleic acids, lipids, steroids, and drugs. An advantage of this method is that surface-active agents are not required in most cases. Thus, superoxide dismutase (42 mg) was added to 3.36 mL CH₂Cl₂ soln. contg. 0.5% poly(L-lactic acid) and the mixt. was sonicated. The resulting mixt. was extruded through an ultrasonic nozzle that was placed over a frozen layer of EtOH covered by a layer of liq. N. The nozzle atomized the mixt. into droplets, which are frozen upon contacting the liq. N to form microspheres. The container was placed at -80.degree. to evap. N and melt EtOH and when the temp. reached -95.1.degree., the CH₂Cl₂ was extd. from the microspheres into the EtOH. After 3 days, the microspheres were **filtered** from the solvent and then dried in a vacuum desiccator. The obtained microspheres were round spheres having diam. of 30-50 .mu.m.

IT 25322-68-3, Polyethylene oxide

RL: BIOL (Biological study)

(pharmaceutical microspheres contg., manuf. of, low-temp. casting in)

L20 ANSWER 20 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1991:69107 HCPLUS

DOCUMENT NUMBER: 114:69107

TITLE: Preparation and use of polymer-coated affinity supports for hemoperfusion

INVENTOR(S): Mazid, Abdul M.

PATENT ASSIGNEE(S): Chembomed Ltd., Can.

SOURCE: Eur. Pat. Appl., 26 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 371636	A2	19900606	EP 1989-311540	19891108
EP 371636	A3	19900718		
R: AT, BE, CH, DE, ES, FR, GB, IT, LI, LU, NL, SE				
US 5240601	A	19930831	US 1988-270950	19881109
CA 2002310	AA	19900509	CA 1989-2002310	19891106
AU 8944510	A1	19901101	AU 1989-44510	19891108
AU 625377	B2	19920709		
JP 02257964	A2	19901018	JP 1989-292103	19891109
JP 2746291	B2	19980506		
US 5149425	A	19920922	US 1991-679801	19910403
JP 08117333	A2	19960514	JP 1995-208942	19950816
JP 3081137	B2	20000828		

PRIORITY APPLN. INFO.: US 1988-270950 A 19881109

AB A method is provided for coating chromatog. particulate supports to

give a biocompatible outer layer of synthetic membrane-type film which prevents the release of fines but permits adsorption of components to an affinity ligand. The membrane-type coating has a pore size of .gtoreq.20 .ANG.. The coating process is described. Thus, PEG-300 (pore-controlling component) was added to polystyrene in trichloroethylene, followed by addn. of a hapteneized support comprising the 8-azidocarbonyloctyl deriv. of trisaccharide A conjugated to diatomite. Following evapn. of solvent, the matrix was wetted, washed, and dried. The polystyrene-coated matrix was relatively free of fines, as compared to controls. When different amts. of PEG-300 were added, 1% PEG-300 gave results superior to those in which higher (4 and 28%) amts. were used. There was little, if any, nonspecific adsorption of essential blood components (platelets, white and red blood cells, Hb) to the matrix. In a simulated hemoperfusion, very little or no changes in concn. were found for total protein, albumin, bilirubin, cholesterol, alk. phosphatase, or lactic dehydrogenase; antibody to A1 antigen was adsorbed by the affinity ligand.

IT 25322-68-3

RL: USES (Uses)
(as pore-controller, in hemoperfusion affinity matrix support with polymer coating)

IT 32131-17-2, Nylon-66, biological studies

RL: BIOL (Biological study)
(hemoperfusion affinity support coated with)

L20 ANSWER 21 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1990:94796 HCPLUS

DOCUMENT NUMBER: 112:94796

TITLE: Chromatography based on membrane separation with vesicular packing material

AUTHOR(S): Ehwald, R.; Fuhr, G.; Olbrich, M.; Goering, H.; Knoesche, R.; Kleine, R.

CORPORATE SOURCE: Sekt. Biol., Humboldt Univ. Berlin, Berlin, 1040, Ger. Dem. Rep.

SOURCE: Chromatographia (1989), 28(11-12), 561-4
CODEN: CHRGB7; ISSN: 0009-5893

DOCUMENT TYPE: Journal

LANGUAGE: English

AB A new vesicular packing material-prepd. from plant cell clusters by purifn. of the intact cell wall framework-is suitable for chromatog., giving high performance at low pressure gradients. The sepn. is achieved by dialysis through the cell wall, which is an ultrafilter membrane with an extremely sharp size limit of sepn. Almost the whole of the stationary liq. phase is located within the vesicle (empty cell) lumina. In contrast to gel **filtration**, vesicle chromatog. gives a practically ideal sepn. of 2 size groups with an extremely short fractionation range. The size limit of sepn. was investigated by chromatog. of proteins and other polymers. Group sepn. of mols. of a polydisperse dextran std. prepns. showed that the crit. Stokes' diam. for dextran permeation into the stationary liq. phase of the vesicular packing is 5-6 nm.

IT 25322-68-3, PEG

RL: ANST (Analytical study)
(sepn. of, by vesicle chromatog., membrane sepn. with vesicular packing material in)

L20 ANSWER 22 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1989:601587 HCPLUS
 DOCUMENT NUMBER: 111:201587
 TITLE: Hemoglobin modified with poly(alkylene oxide)
 INVENTOR(S): Iwasaki, Keiji; Iwashita, Yuji; Okami, Taketoshi
 PATENT ASSIGNEE(S): Ajinomoto Co., Inc., Japan
 SOURCE: Eur. Pat. Appl., 10 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 206448	A1	19861230	EP 1986-301108	19860218
EP 206448	B1	199001114		
R: CH, DE, GB, IT, LI				
US 4670417	A	19870602	US 1986-831500	19860221
JP 62089630	A2	19870424	JP 1986-142302	19860618
JP 06076333	B4	19940928		

PRIORITY APPLN. INFO.: JP 1985-132056 19850619

AB Poly(alkylene oxide) is bonded to Hb by way of an amide group. The modified Hb has a high affinity to O and is stable. A soln. of poly(ethylene oxide) and Et 3-chloropropionate was treated with AgO and heated at 70.degree., for 24 h, followed by filtration. The filtrate was treated with Et2O and the ppt. formed was dissolved in water, followed by pH adjustment to 11 (NaOH). The soln. was kept overnight at 60.degree., adjusted to pH 5 (HCl) and subjected to solvent evapn. The residue was dissolved in CH2Cl2-Et2O (1:1), filtered and the filtrate concd. to give a ppt. The ppt. was dissolved in H2O and chromatographed on Bio-Rad AG/X2 (00.5N HCl elution). The product and N-hydroxysuccinimide were dissolved in DMF and dicyclohexylcarbodiimide was added to the soln., to give an activated poly(ethylene oxide) ester, which was treated with bovine Hb and L-lysine in 0.1M borate buffer to give the modified Hb.

IT 25322-68-3DP, Poly(ethylene oxide), Hb conjugates

RL: PREP (Preparation)
 (prepn. of, as blood substitute)

IT 25322-68-3

RL: RCT (Reactant)
 (reaction of, with Et chloropropionate)

L20 ANSWER 23 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1988:597118 HCPLUS

DOCUMENT NUMBER: 109:197118

TITLE: Preparation of virus-free pyridoxylated hemoglobin from the blood of HBV or HTLV-I healthy carriers

AUTHOR(S): Sekiguchi, S.; Ito, K.; Kobayashi, M.; Otake, N.; Kosuda, M.; Kwon, K. W.; Ikeda, H.

CORPORATE SOURCE: Res. Div., Hokkaido Red Cross Blood Cent., Sapporo, 064, Japan

SOURCE: Biomater., Artif. Cells, Artif. Organs (1988), 16(1-3), 113-21

CODEN: BACOEZ; ISSN: 0890-5533

DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB Pyridoxylated Hb (PLP-Hb), a possible substitute for red cells as an artificial oxygen carrier, was prep'd. from outdated human blood. By conjugation with polyethylene glycol (PEG), the biol. half-life was increased about 3-fold at 82% blood replacement in rats without significant side effects in vivo or in vitro. For the prepn. of virus-free PEG-PLP-Hb from HBV or HTLV-I pos. blood, a considerable amt. of HBV (Dane particles) could be removed from HBV-pos. red cells by washing, and filtration through a porous cellulose filter, BMM-30, and HBV-DNA in the filtered fractions decreased to <0.33% of the initial amt. More than 96% of blood leukocytes could be removed with a leukocyte removal filter, Sepacell R-500. The leukocytes collected from filtrated fractions of HTLV-I pos. blood did not survive beyond 3 days. Since transmission of HTLV-I occurs by cell to cell contact and is rare in cell-free condition, it is unlikely that the PLP-Hb prep'd. from HTLV-I pos. blood, which is deprived of leukocytes, transmits HTLV-I infection.
 IT 25322-68-3DP, Polyethylene glycol, conjugates with pyridoxylated Hb
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of virus-free, as blood substitutes)

L20 ANSWER 24 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1988:596976 HCPLUS
 DOCUMENT NUMBER: 109:196976
 TITLE: A new resuscitation fluid "Stabilized Hemoglobin." Preparation and characteristics
 AUTHOR(S): Iwashita, Y.; Yabuki, A.; Yamaji, K.; Iwasaki, K.; Okami, T.; Hirata, C.; Kosaka, K.
 CORPORATE SOURCE: Ajinomoto Co., Inc., Kawasaki, Japan
 SOURCE: Biomater., Artif. Cells, Artif. Organs (1988), 16(1-3), 271-80
 CODEN: BACOEZ; ISSN: 0890-5533
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB A new oxygen carrier for use as a blood substitute was prep'd. and characterized in vitro. Pyridoxalated Hb, which was obtained by the reaction of human Hb with pyridoxal-5-phosphate, was modified by .alpha.-carboxymethyl-.omega.-carboxymethoxyl polyoxyethylene (POE) of the mol. wt. 3600 daltons. To eliminate viruses and nucleic acids possibly contaminated, the Hb soln. was purified by ultrafiltration with a membrane of the nominal mol. wt. limit 300 kilodaltons. Furthermore POE conjugated pyridoxalated Hb was treated with 20% EtOH to inactivate viruses. A concn. of Hb, which is incorporated in the conjugate, of the final product was fixed at 6% to make normovolemic exchange transfusion possible. In consideration of the stability during transporting and storage, lyophilized product was selected as a final form (Stabilized Hb). Stabilized Hb could be stored in a refrigerator over 1 yr within the acceptable metHb increase (15%). Viscosity of Stabilized Hb soln. was detd. at 2.4 cP and is almost half of whole blood and therefore this will be useful not

only in resuscitation but also in improvement of microcirculation.

L20 ANSWER 25 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1988:451161 HCPLUS
 DOCUMENT NUMBER: 109:51161
 TITLE: Studies on the physical state of water in living cells and model systems. VIII. Water vapor sorption on proteins and oxygen-containing polymers at physiological vapor pressures: presenting a new method for the study of vapor sorption at close to and including saturation
 AUTHOR(S): Ling, G. N.; Hu, W. X.
 CORPORATE SOURCE: Dep. Mol. Biol., Pennsylvania Hosp., Philadelphia, PA, 19107, USA
 SOURCE: Physiol. Chem. Phys. Med. NMR (1987), 19(4), 251-69
 CODEN: PCPNR; ISSN: 0748-6642
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB An extremely simple exptl. set-up, utilizing a Mason jar, filter paper, and a weighing cup, was designed for ascertaining the rate of gain or loss of water by a polymer soln. at different vapor pressures (using the null-point method). The percentage change in sample water content, over a 5-day period, was plotted vs. the water content of each sample. The null-point method was successfully applied to detn. of equil. water sorption of polymers at very high relative humidity as well as at lower vapor pressures. Sorption isotherms of polyethylene oxide, polyethylene glycol, polyvinylpyrrolidone, polyvinylmethyl ether, and gelatin at very high vapor pressures indicated very high water uptake. Comparable studies with Hb, albumin, and .gamma.-globulin indicated a much lower water uptake. The physiol. implications were discussed.
 IT 25322-68-3, Polyethylene glycol
 RL: ANST (Analytical study)
 (water vapor sorption on, at physiol. vapor pressures, detn. of)

L20 ANSWER 26 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1986:221637 HCPLUS
 DOCUMENT NUMBER: 104:221637
 TITLE: New aspects in the use of polyvinyl alcohol in practical biochemistry
 AUTHOR(S): Tretyakov, A. V.
 CORPORATE SOURCE: Lab. Sravnitel. Biokhim. Krovi, Inst. Evol. Fiziol. Biokhim. im. Sechenova, Leningrad, USSR
 SOURCE: Lab. Delo (1986), (4), 228-9
 CODEN: LABDAZ; ISSN: 0023-6748
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 AB Poly(vinyl alc.) (I) was used for detn. of inorg. P by nephelometry and as a gel filter for desalting of Hbs. In the 1st case, I formed an insol. complex with ammonium molybdate and inorg. P (acid medium). A direct relation between inorg. P (KH_2PO_4) and turbidity was obsd. at 400 nm. The addn. of Tris or veronal (0.05M) had no substantial effect on the sensitivity. Secondly, a new gel filter was prep'd. from I and polyethylene glycol (15,000). The gel filter has a high rate of filtration (500 mL/h). The gel column was prep'd. from equal

wt. amts. of 2 polymers in pH 7.4 0.005M Tris-HCl. A good filtration rate is obsd. for 5-6 h, thereafter the rate decreases.

IT 25322-68-3

RL: ANST (Analytical study)
(as gel filter with polyvinyl alc., for Hb purifn.)

L20 ANSWER 27 OF 37 HCPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1985:483832 HCPLUS
DOCUMENT NUMBER: 103:83832
TITLE: Macromolecular conjugates to hemoglobin and their use
PATENT ASSIGNEE(S): Braun, B., Melsungen A.-G., Fed. Rep. Ger.
SOURCE: Ger. Offen., 26 pp.
CODEN: GWXXBX
DOCUMENT TYPE: Patent
LANGUAGE: German
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 3340592	A1	19850523	DE 1983-3340592	19831110
US 4698387	A	19871006	US 1984-665354	19841026
FI 8404331	A	19850511	FI 1984-4331	19841105
EP 142125	A2	19850522	EP 1984-113405	19841107
EP 142125	A3	19860528		
R: AT, BE, CH, DE, FR, GB, IT, LI, LU, NL, SE				
ES 537507	A1	19860601	ES 1984-537507	19841108
DK 8405349	A	19850511	DK 1984-5349	19841109
NO 8404494	A	19850513	NO 1984-4494	19841109
JP 60123425	A2	19850702	JP 1984-237409	19841110
PRIORITY APPLN. INFO.:			DE 1983-3340592	19831110

AB Macromol. conjugates to Hb composed of a physiol. inert polymer, an ionic ligand, and human Hb A in which the polymer is bound in a reversible and noncovalent manner to the allosteric center of Hb by the ligand are described. Thus, 1 g of lyophilized 3-bromo-2-hydroxypropyl dextran (BHP-Dextran) dissolved in a Na borate buffer was mixed with a 5 mM inositol hexaphosphate (IHP) soln. and allowed to stand at room temp. for 24 h. An aq. glycerin soln. (0.1M) was then added and the mixt. stirred for 10 h. The reaction product, IHP-BHP-Dextran, was filtered and lyophilized. An 18% Hb A soln. (pH 7.4) was deoxygenated and mixed with IHP-BHP-Dextran (1.0 g) and 5% glutardialdehyde, stirred for 30 min, and the product reduced by the addn. of NaBH4. The reaction mixt. was filtered and adjusted to a 6% Hb conc. with 0.1M phosphate buffer (pH 7.4). The half satn. pressure of this prepn. was 47.9 mbar. These macromol. Hb conjugates can be used in medicine as auxiliary agents for blood compn. materials or blood plasma dilg. agents.

IT 25322-68-3DP, anionic ligand-Hb conjugates

RL: SPN (Synthetic preparation); PREP (Preparation)
(prepn. and medicinal uses of)

L20 ANSWER 28 OF 37 HCPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1985:200738 HCPLUS

DOCUMENT NUMBER: 102:200738
 TITLE: Agent for use in detecting a substance in a body fluid
 INVENTOR(S): Kaminagayoshi, S.
 PATENT ASSIGNEE(S): Terumo Corp., Japan
 SOURCE: Belg., 21 pp.
 CODEN: BEXXAL
 DOCUMENT TYPE: Patent
 LANGUAGE: French
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
BE 900774	A1	19850201	BE 1984-213797	19841008
JP 60086467	A2	19850516	JP 1983-194937	19831018
JP 04029360	B4	19920518		
EP 141244	A1	19850515	EP 1984-111426	19840925
EP 141244	B1	19881207		

R: DE, FR, IT

PRIORITY APPLN. INFO.: JP 1983-194937 19831018

AB Color reagents are described to detect, with the aid of the reaction of a peroxidase or peroxidatively active substance, a hydroperoxide, H₂O₂, and other peroxides or to detect a peroxidase or peroxidatively active compd. itself. The reagents comprise a chromogen (e.g., benzidine deriv., phenol, etc.) that can be oxidized and change color as a result of O₂, the reaction of, e.g., a hydroperoxide, peroxidase, or a peroxidatively active substance as well as a chem. effective amt. of .gtoreq.1 oxidant such as NaIO₄, HIO₄, or metal salt. The reagents, which may be impregnated into filter paper or used in soln., are esp. useful for the detection of glucose or occult blood. Thus, for the detection of glucose in urine with a color test strip, filter paper was impregnated with a citrate buffer soln. contg. glucose oxidase, peroxidase, NaIO₄, and Na alginate, dried, then impregnated with a soln. contg. o-tolidine in Me₂CO, and dried. Glucose in urine (150 mg/dL) caused a color change in the paper even in the presence of ascorbic acid (50 mg). HIO₄ and CuSO₄ also could be used as oxidant.

IT 25322-68-3

RL: ANST (Analytical study)
 (color test strip contg., for occult blood detection)

L20 ANSWER 29 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1984:625804 HCPLUS
 DOCUMENT NUMBER: 101:225804
 TITLE: Peroxidase activity detection composition
 INVENTOR(S): Wells, Henry John
 PATENT ASSIGNEE(S): Warner-Lambert Co., USA
 SOURCE: Eur. Pat. Appl., 23 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

EP 121317	A1	19841010	EP 1984-301219	19840224
EP 121317	B1	19880120		
EP 121317	B2	19911127		
R: BE, DE, FR, GB, NL, SE				
ZA 8401078	A	19840926	ZA 1984-1078	19840214
CA 1216215	A1	19870106	CA 1984-447379	19840214
AU 8424710	A1	19840906	AU 1984-24710	19840217
AU 557784	B2	19870108		
BR 8400932	A	19841009	BR 1984-932	19840228
NO 8400767	A	19840903	NO 1984-767	19840229
NO 164202	B	19900528		
NO 164202	C	19900905		
JP 59166865	A2	19840920	JP 1984-36363	19840229
US 1983-471372 19830301				

PRIORITY APPLN. INFO.:

AB A stable diagnostic compn. for detecting peroxidase (I) activity in various specimens is described; the mixt. which is composed of a sol. indicator material, an org. solvent, an oxidizing agent, and a buffer, can be used to detect I activity in fecal occult blood, H_b, and biol. fluids. Thus, 1 g of guaiac powder was dissolved in 100 mL of MeOH, and the soln. was filtered to remove undissolved particles. This soln. (50 mL) was mixed with 4.5 mL of 30% H₂O₂ followed by the addn. of 15 mL of 0.1M citrate buffer to adjust the pH to 5.0. H₂O (10 mL) and MeOH (25 mL) were successively added. The resultant soln. (100 mL) had a slight amber color. A drop of this compn. was applied to previously prep'd. H_b specimens (drops of dild. blood samples on Whatman no. 1 filter paper), and a distinct change of color from colorless to blue was obsd. The H_b test procedure was repeated with the aforementioned soln. which had been stored at elevated temp. (45.degree.) for 6 wks. No appreciable loss of reactivity was obsd. Various org. solvents, H₂O-sol. indicators, and thickening agents may be used in the compn.

IT 25322-68-3

RL: BIOL (Biological study)
(in peroxidase detection in biol. fluids of human)

L20 ANSWER 30 OF 37 HCPLUS COPYRIGHT 2002 ACS
ACCESSION NUMBER: 1984:598230 HCPLUS
DOCUMENT NUMBER: 101:198230
TITLE: Polyalkylene glycol-bound hemoglobins
as blood substitutes
PATENT ASSIGNEE(S): Ajinomoto Co., Inc., Japan; Fujirebio, Inc.
SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 59104323	A2	19840616	JP 1982-214508	19821207

AB Blood substitutes are prep'd. by binding H_b to polyalkylene glycols in the absence of O₂. The H_b may be modified with pyridoxal derivs. prior to binding. Thus, 4 mL 10.9% human H_b soln. was dissolved in 18 mL 0.122 M Tris buffer (pH 6.8), and Ar gas was passed through the soln. throughout the process. Pyridoxal 5'-phosphate (6.6 mg) was then added, followed

by 657 mg monomethoxypolyethylene glycol mono(succimidyl succinate) (av. mol. wt. 5000). The soln. was **filtered** to obtain 8.2 mL **Hb** complexes as blood substitutes.

IT 25322-68-3D, **Hb** complexes
RL: BIOL (Biological study)
(as blood substitutes)

L20 ANSWER 31 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1984:486866 HCPLUS

DOCUMENT NUMBER: 101:86866

TITLE: Calmodulin-binding proteins: visualization by 125I-calmodulin overlay on blots quenched with Tween 20 or bovine serum albumin and poly(ethylene oxide)

AUTHOR(S): Flanagan, Steven D.; Yost, Beverly

CORPORATE SOURCE: Div. Neurosci., Beckman Res. Inst. of the City of Hope, Duarte, CA, 91010, USA

SOURCE: Anal. Biochem. (1984), 140(2), 510-19
CODEN: ANBCA2; ISSN: 0003-2697

DOCUMENT TYPE: Journal

LANGUAGE: English

AB To streamline detection of calmodulin-binding proteins, blotting techniques for the electrophoretic transfer of proteins onto nitrocellulose **filters** followed by overlay with 125I-calmodulin was adapted. Autoradiog. of the 125I-calmodulin-labeled blots allows the identification and quantitation of proteins that possess affinity for calmodulin. Five protocols for suppressing nonspecific binding and for enhancing specific interactions of 125I-calmodulin with electrophoretically sepd. proteins were investigated. Tween 20 and bovine serum albumin alone, as well as combinations of bovine serum albumin and poly(ethylene oxide) or **Hb** and gelatin, were evaluated as quenching and enhancing agents. Tween 20 proved highly effective for quenching nonspecific binding and for enhancing specific 125I-calmodulin binding of a 61,000-Mr rat brain protein, which was only faintly obsd. on blots quenched with proteins alone. However, Tween 20 dissocd. 50% of 68,000-Mr proteins and 80% of 21,000-Mr 125I-labeled protein stds. from the nitrocellulose **filter**. An alternative, the combination of bovine serum albumin followed by incubation with 15,000-20,000-Mr pcly(ethylene oxide), proved satisfactory for the recovery of 61,000-Mr calmodulin-binding activity and for the detection of calmodulin-binding peptides (50,000-14,000 Mr) produced by limited proteolysis of rat brain 51,000-Mr calmodulin-binding protein. These blotting procedures for detection of calmodulin-binding proteins are compatible with a variety of 1-dimensional and 2-dimensional electrophoresis systems, including a 2-dimensional electrophoresis system utilizing urea and SDS in the 1st dimension and nonurea SDS electrophoresis in the 2nd, a system which proved useful for resolving calmodulin-binding proteins displaying anomalous electrophoretic migration in the presence of urea.

IT 25322-68-3

RL: ANST (Analytical study)
(in detn. of calmodulin-binding proteins on gel blots)

L20 ANSWER 32 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1983:166880 HCPLUS

DOCUMENT NUMBER: 98:166880

Devi, S.
PCT/26515

PCT/26515

17oct02 10:33:53 User219783 Session D1877.1

SYSTEM:OS -DIALOG OneSearch
File 35:Dissertation Abs Online 1861-2002/Sep
(c) 2002 ProQuest Info&Learning
File 65:Inside Conferences 1993-2002/Oct W2
(c) 2002 BLDSC all rts. reserv.
File 144:Pascal 1973-2002/Oct W2
(c) 2002 INIST/CNRS
File 266:FEDRIP 2002/Jul
Comp & dist by NTIS, Intl Copyright All Rights Res
File 440:Current Contents Search(R) 1990-2002/Oct 16
(c) 2002 Inst for Sci Info
*File 440: Daily alerts are now available.
File 348:EUROPEAN PATENTS 1978-2002/Oct W01
(c) 2002 European Patent Office
File 357:Derwent Biotech Res. 1982-2002/Jul W1
(c) 2002 Thomson Derwent & ISI
*File 357: File enhancements now online. See HELP NEWS 357.
Alert feature enhanced for multiple files, etc. See HELP ALERT.
File 113:European R&D Database 1997
(c)1997 Reed-Elsevier(UK)Ltd All rts reserv
*File 113: This file is closed (no updates)

Set	Items	Description
S1	174	APEG OR ACTIVAT?(W) (PEG OR POLYETHYLENE OR POLY(W)ETHYLENE-) (W)GLYCOL
S2	86	ALPHA(W) (CARBOXYMETHYL OR .CARBOXY(W) (ME OR METHYL))
S3	8	S2(10N) (POLYOXYETHYLENE OR POLYOXY(W)ETHYLENE OR POLY(W)(O- XYETHYLENE OR OXY(W)ETHYLENE) OR CARBOXYMETHOXYPOLYOXYETHYLENE OR METHOXYPOLYOXYETHYLENE)
S4	21	POE(S) (CARBOXYMETHYL? OR CARBOXY(W) (METHYL? OR ME))
S5	15	(S1 OR S3 OR S4) AND (HB OR HEMOGLOBIN OR HAEMOGLOBIN)
S6	13	RD (unique items)

>>>No matching display code(s) found in file(s): 65, 113

-key term

6/3,AB/1 (Item 1 from file: 35)
DIALOG(R)File 35:Dissertation Abs Online
(c) 2002 ProQuest Info&Learning. All rts. reserv.

732824 AAD8028393
B-CELL RESPONSES IN AUTOIMMUNE MICE: ANTIBODY PRODUCTION AND POLYCLONAL
ACTIVATION
Author: WOLOSCHAK, GAYLE E.
Degree: PH.D.
Year: 1980
Corporate Source/Institution: MEDICAL COLLEGE OF OHIO AT TOLEDO (0539)
Source: VOLUME 41/06-B OF DISSERTATION ABSTRACTS INTERNATIONAL.
PAGE 2117. 214 PAGES

Previous work has demonstrated the multifactorial nature of the autoimmune disease of NZB mice. Virologic, genetic, and immunologic components each contribute to this disease process. Recently, evidence has accumulated supporting a role for spontaneous polyclonal B-cell activation in self-reactivity. This study provides further evidence in support of B-cell activation as a factor contributing to the NZB autoimmune

manifestations.

NZB mice spontaneously produce autoantibodies to four erythrycyte (RBC) membrane antigens (X, HOL, *HB*, and I). Furthermore, recently developed autoimmune mouse strains, MRL and BXSB, have been shown by others to produce anti-X antibodies. This work extends those initial reports to include antibodies to HOL as well. HOL antigen could be detected on the surface of all mouse RBC tested including those from normal mouse strains. Exhaustive adsorption of NZB sera with RBC at either 25(DEGREES)C or 37(DEGREES)C totally eliminated anti-HOL antibody fluorescent staining. Erythrocytes were treated with the enzymes trypsin, hyaluronidase, collagenase, bromelain, and neuraminidase, and tested for the ability to bind to anti-HOL and anti-X antibodies. Collagenase could obliterate anti-HOL antibody binding to RBC without affecting anti-X antibody, suggesting that these are separate and distinct antigens, detectable by differing assay systems.

Another series of experiments was designed to determine whether B-cell activation of control strains of mice with lipopolysaccharide (LPS) could induce the same anti-erythrocyte antibody responses observed spontaneously in the NZB strain. When BALB/c and DBA/2 mice were injected intraperitoneally with 100 (μ g of LPS, antibodies to X, HOL, and *HB* antigens could be detected two weeks later at levels comparable to those found spontaneously in NZB mice. Injection of C3H/HeJ mice, non-responders to LPS, resulted in no detectable anti-erythrocyte antibody responses. When NZB mice were treated with LPS in this way, serum levels of anti-RBC antibodies increased. A measure of the percent hemolysis induced by sera from these animals in the presence of an exogenous complement source revealed a higher incidence and hemolytic titer in LPS-injected BALB/c and DBA/2 strains than in PBS-injected mice. In addition, injection of LPS induced the appearance of erythrocyte-bound IgM and IgG in BALB/c, DBA/2, and NZB mice.

A cell fusion assay system was then devised as a means of measuring cell *activation*. *Polyethylene* *glycol* (PEG) was used to induce fusion between spleen cells of various mouse strains and the BW5147 thymoma cell line. A fusion index (FI) was calculated by determining the ratio of the number of nuclei in fused cells to the number of nuclei in all cells and multiplying by 100 (the FI could range from 0 to 100). Spleen cells from young and old BALB/c and NZB mice were compared in PEG-induced fusion assays. Results revealed low FI in BALB/c mice and high FI in NZB mice. BALB/c spleen cells stimulated with phytohemagglutinin, leucoagglutinin, concanavalin A, and LPS showed FI two to three fold higher than those found in unstimulated cultures, indicating that stimulated cells fuse at much higher rates. This response is mitogen dose-dependent. Treatment of NZB spleen cells with LPS, either *in vivo* by intraperitoneal injection or *in vitro* by culturing for five days, did not enhance FI when compared to untreated NZB splenocytes. This high FI of NZB spleen cells was insensitive to treatment with monoclonal anti-Thy-1.2 serum and complement, but was abrogated by treatment with anti-mouse immunoglobulin serum and complement. In addition, this spontaneously occurring high FI in NZB mice could be detected in animals as young as twelve days, but not in BALB/c animals of the same age. These experiments provide additional evidence in support of the hypothesis that polyclonal B-cell activation occurs spontaneously in NZB mice.

6/3,AB/2 (Item 1 from file: 144)
 DIALOG(R) File 144:Pascal
 (c) 2002 INIST/CNRS. All rts. reserv.

13046815 PASCAL No.: 97-0336475

Detection of residual polyethylene glycol derivatives in pyridoxylated-hemoglobin-polyoxyethylene conjugate

MILES P J; LANGLEY K V; STACEY C J; TALARICO T L

Apex Bioscience, Inc., P.O. Box 12847, Research Triangle Park, NC 27709, United States

Journal: Artificial cells, blood substitutes, and immobilization biotechnology, 1997, 25 (3) 315-326

Language: English

Purified *hemoglobin* solutions have been shown to cause renal toxicity in animals. Safe use of *hemoglobin* based therapeutics in humans requires modification of the *hemoglobin* molecule to prevent this toxicity. *Hemoglobin* modification may be accomplished by crosslinking the dimers within the *hemoglobin* tetramer or by derivatization of the alpha and/or beta subunits such that their size and/or charge prevents filtration by the glomeruli. Pyridoxylated *hemoglobin* *polyoxyethylene* conjugate (PHP) consists of *hemoglobin* molecules modified with *alpha*-carboxymethyl*, omega-carboxymethoxy *polyoxyethylene* (*POE*). We have developed a high performance liquid chromatography-based (HPLC) method which can quantitate residual *POE* at levels of 0.1 mg/ml or greater. The detection of *POE* at this level of sensitivity requires the use of an evaporative light scattering detector (ELSD). A differential refractometer may also be used for *POE* detection, however the limit of quantitation for this detector is approximately 10 fold greater than that observed for the evaporative light scattering detector, resulting in a reduction in sensitivity. The successful use of this method requires sample deproteinization using trichloroacetic acid. The reliability of the method has been demonstrated by spike recovery, precision, and reproducibility studies in PHP and buffer solutions.

Copyright (c) 1997 INIST-CNRS. All rights reserved.

6/3,AB/3 (Item 1 from file: 440)
DIALOG(R)File 440:Current Contents Search(R)
(c) 2002 Inst for Sci Info. All rts. reserv.

03978128 References: 5

TITLE: RELATIONSHIP BETWEEN CHEMICAL PROPERTIES AND BIOLOGICAL PROPERTIES OF PYRIDOXALATED *HEMOGLOBIN*-POLYOXYETHYLENE

AUTHOR(S): IWASHITA Y

CORPORATE SOURCE: AJINOMOTO CO INC,CENT RES LABS,1-1

SUZUKICHO/KAWASAKI/KANAGAWA 210/JAPAN/ (Reprint)

PUBLICATION: BIOMATERIALS ARTIFICIAL CELLS AND IMMOBILIZATION BIOTECHNOLOGY , 1992, V20, N2-4, P299-307

GENUINE ARTICLE#: JM745

ISSN: 1055-7172

LANGUAGE: ENGLISH DOCUMENT TYPE: ARTICLE

ABSTRACT: Pyridoxalated *hemoglobin*-polyoxyethylene* (PHP) is a conjugate of human *hemoglobin* with *alpha*-carboxymethyl*, omega-carboxymethoxy *polyoxyethylene* (*POE*). This conjugate is selected as an oxygen carrier for blood substitute because it can survive for a long time in the circulation and also it can transport the same amount of oxygen as red cell. Optimization of PHP has been done by changing the degree of the modification and reaction procedures in order to adjust viscosity and colloid osmotic pressure to physiological values.

The oxygen carrying capacity was physically evaluated by oxygen equilibrium curves and biologically by an ATP content in perfused isolated liver. Structural relationship of PHP to the binding properties to haptoglobin was studied and the effect of the POE modification on the binding properties was observed when the number of POE per one *hemoglobin* molecule is over six.

Based on the comparative study of solubility of met-PHP and met-SFH, the POE modification was suggested to reduce the toxicity of *hemoglobin* against organs.

Finally physical properties of PHP at low temperature was discussed in relation to organ preservation.

6/3,AB/4 (Item 1 from file: 348)
DIALOG(R) File 348:EUROPEAN PATENTS
(c) 2002 European Patent Office. All rts. reserv.

01322386

Primers for synthesizing full length cDNA clones and their use
Primer zur Synthese von vollständigen cDNA Klonen und ihre Verwendung
Amorces pour la synthèse de cADN de pleine longueur et leur utilisation
PATENT ASSIGNEE:

Helix Research Institute, (2656450), 1532-3 Yana, Kisarazu-shi, Chiba
292-0812, (JP), (Applicant designated States: all)

INVENTOR:

Ota, Toshio, 1-2-7-105, Tsujido Shinmachi, Fujisawa-shi, Kanagawa
251-0042, (JP)

Nishikawa, Tetsuo, 27-3-403, Hikawa-cho, Itabashi-ku, Tokyo 173-0013,
(JP)

Isogai, Takao, 511-12, Ohmuro, Ami-machi, Inashiki-gun, Ibaraki 300-0303,
(JP)

Hayashi, Koji, 1-9-446, Yushudai Nishi, Ichihara-shi, Chiba 299-0125,
(JP)

Ishii, Shizuko, 4508-19-202, Yana, Kisarazu-shi, Chiba 292-0812, (JP)

Kawai, Yuri, 4508-19-201, Yana, Kisarazu-shi, Chiba 292-0812, (JP)

Wakamatsu, Ai, 1473-4-202, Takayanagi, Kisarazu-shi, Chiba 292-0014, (JP)

Sugiyama, Tomoyasu, 2-6-23-102, Kiyomidai, Kisarazu-shi, Chiba 292-0045,
(JP)

Nagai, Keiichi, 3-44-14-9-204, Sakuragaoka, Higashiyamato-shi, Tokyo
207-0022, (JP)

Kojima, Shinichi, 2-7-10-202, Gion, Kisarazu-shi, Chiba 292-0052, (JP)

Otsuki, Tetsuji, 3-1-10-B102, Asahi, Kisarazu-shi, Chiba 292-0055, (JP)

Koga, Hisashi, 2-4-15, Asahi, Kisarazu-shi, Chiba 292-0055, (JP)

LEGAL REPRESENTATIVE:

VOSSIUS & PARTNER (100314), Siebertstrasse 4, 81675 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 1130094 A2 010905 (Basic)

EP 1130094 A3 011121

APPLICATION (CC, No, Date): EP 2000114089 000707;

PRIORITY (CC, No, Date): JP 99194486 990708; JP 2000118774 000111; JP
2000183765 000502

DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;
LU; MC; NL; PT; SE

EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI

INTERNATIONAL PATENT CLASS: C12N-015/12; C12N-015/11; C12N-015/10;
C12N-015/70; C12N-015/85; C12N-005/10; C12N-001/21; C07K-014/47;
C07K-016/18; C12Q-001/68

ABSTRACT EP 1130094 A2

Primers for synthesizing full length cDNAs and their use are provided. 830 cDNA encoding a human protein has been isolated and nucleotide sequences of 5'-, and 3'-ends of the cDNA have been determined. Furthermore, primers for synthesizing the full length cDNA have been provided to clarify the function of the protein encoded by the cDNA. The full length cDNA of the present invention containing the translation start site provides information useful for analyzing the functions of the protein.

ABSTRACT WORD COUNT: 79

NOTE:

Figure number on first page: 1

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	200136	709
SPEC A	(English)	200136	97667
Total word count - document A			98376
Total word count - document B			0
Total word count - documents A + B			98376

6/3, AB/5 (Item 2 from file: 348)

DIALOG(R) File 348: EUROPEAN PATENTS

(c) 2002 European Patent Office. All rts. reserv.

01066190

IMPROVED INTERFERON POLYMER CONJUGATES

VERBESSERTE INTERFERON-POLYMER KONJUGATE

CONJUGUES AMELIORES D'INTERFERON-POLYMERES

PATENT ASSIGNEE:

ENZON, INC., (1304434), 20 Kingsbridge Road, Piscataway, NJ 08854-3998,
(US), (Proprietor designated states: all)

INVENTOR:

GILBERT, Carl, W., 4655 Oakleigh Manor Drive, Powder Springs, GA 30127,
(US)

PARK-CHO, Myung-Ok, 1-207 Dong, A Apt., Chang-dong, Tobong-gu, Seoul,
(KR)

LEGAL REPRESENTATIVE:

Ottevangers, Sietse Ulbe et al (20841), Vereenigde, Postbus 87930, 2508
DH Den Haag, (NL)

PATENT (CC, No, Kind, Date): EP 1039922 A1 001004 (Basic)
EP 1039922 B1 020612
WO 9932139 990701

APPLICATION (CC, No, Date): EP 98963947 981216; WO 98US26677 981216

PRIORITY (CC, No, Date): US 994622 971219

DESIGNATED STATES: AT; BE; CH; CY; DE; DK; ES; FI; FR; GB; GR; IE; IT; LI;
LU; MC; NL; PT; SE

EXTENDED DESIGNATED STATES: AL; LT; LV; MK; RO; SI

INTERNATIONAL PATENT CLASS: A61K-038/21; C07K-001/113; C07K-014/56;
A61P-035/00; A61P-031/12

NOTE:

No A-document published by EPO

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
----------------	----------	--------	------------

PCT/26515

CLAIMS B	(English)	200224	873
CLAIMS B	(German)	200224	803
CLAIMS B	(French)	200224	1061
SPEC B	(English)	200224	7778
Total word count - document A			0
Total word count - document B			10515
Total word count - documents A + B			10515

6/3,AB/6 (Item 3 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2002 European Patent Office. All rts. reserv.

00778408

CONJUGATES OF BDNF AND NT-3 WITH A WATER-SOLUBLE POLYMER
KONJUGATE BDNF UND NT-3 MIT EINEM WASSERLOSLICHEN POLYMER
CONJUGUES DU BDNF ET DU NT-3 ET D'UN POLYMERÉ HYDROSOLUBLE
PATENT ASSIGNEE:

AMGEN INC., (923233), Amgen Center, 1840 Dehavilland Drive, Thousand Oaks, CA 91320-1789, (US), (applicant designated states:
AT;BE;CH;DE;DK;ES;FR;GB;GR;IE;IT;LI;LU;MC;NL;PT;SE)

INVENTOR:

KINSTLER, Olaf, F., 887 S. Charles Drive 21, Thousand Oaks, CA 91360,
(US)

YAN, Qiao, 1848 Marview Drive, Thousand Oaks, CA 91362, (US)

LEGAL REPRESENTATIVE:

Brown, John David et al (28811), FORRESTER & BOEHMERT
Franz-Joseph-Strasse 38, 80801 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 792288 A1 970903 (Basic)
EP 792288 B1 990120
WO 9615146 960523

APPLICATION (CC, No, Date): EP 95939123 951113; WO 95US14658 951113

PRIORITY (CC, No, Date): US 340131 941114

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT; LI; LU; MC;
NL; PT; SE

INTERNATIONAL PATENT CLASS: C07K-014/475; A61K-038/18;

NOTE:

No A-document published by EPO

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS B	(English)	9903	495
CLAIMS B	(German)	9903	471
CLAIMS B	(French)	9903	514
SPEC B	(English)	9903	7237
Total word count - document A			0
Total word count - document B			8717
Total word count - documents A + B			8717

6/3,AB/7 (Item 4 from file: 348)
DIALOG(R)File 348:EUROPEAN PATENTS
(c) 2002 European Patent Office. All rts. reserv.

00703327

IMPROVED INTERFERON POLYMER CONJUGATES
VERBESSERTE INTERFERON-POLYMERKONJUGATE
PRODUITS DE CONJUGAISON AMELIORES D'UN INTERFERON AVEC UN POLYMERÉ

PATENT ASSIGNEE:

ENZON, INC., (1304433), 40 Kingsbridge Road, Piscataway, NJ 08854-3998,
(US), (Proprietor designated states: all)

INVENTOR:

GILBERT, Carl W., 26 Hampton Court, Basking Ridge, NJ 07920, (US)
CHO, Myung-Ok, 166A Cedar Lane, Highland Park, NJ 08901, (US)

LEGAL REPRESENTATIVE:

Smulders, Theodorus A.H.J., Ir. et al (21191), Vereenigde Postbus 87930,
2508 DH Den Haag, (NL)

PATENT (CC, No, Kind, Date): EP 730470 A1 960911 (Basic)
EP 730470 B1 020327
WO 9513090 950518

APPLICATION (CC, No, Date): EP 95902571 941110; WO 94US13207 941110

PRIORITY (CC, No, Date): US 150643 931110

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT; LI; LU; MC;
NL; PT; SE

INTERNATIONAL PATENT CLASS: A61K-038/21; C07K-001/08; C07K-001/10

NOTE:

No A-document published by EPO

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS B	(English)	200213	506
CLAIMS B	(German)	200213	462
CLAIMS B	(French)	200213	596
SPEC B	(English)	200213	3676
Total word count - document A			0
Total word count - document B			5240
Total word count - documents A + B			5240

6/3,AB/8 (Item 5 from file: 348)

DIALOG(R)File 348:EUROPEAN PATENTS

(c) 2002 European Patent Office. All rts. reserv.

00686989

Glycosaminoglycan-synthetic polymer conjugates.

Glukosominoglukan-synthetische-Polymer-Konjugaten.

Conjugues de glycosaminoglucanes et de polymeres synthetiques.

PATENT ASSIGNEE:

COLLAGEN CORPORATION, (255151), 2500 Faber Place, Palo Alto, California
94303, (US), (applicant designated states:
AT;BE;CH;DE;DK;ES;FR;GB;IT;LI;NL;SE)

INVENTOR:

Rhee, Woonza M., 3845 La Donna Ave., Palo Alto, CA 94306, (US)
Berg, Richard A., 660 South Springer Road, Los Altos, CA 94024, (US)

LEGAL REPRESENTATIVE:

Schwan, Gerhard, Dipl.-Ing. (10931), Elfenstrasse 32, D-81739 Munchen,
(DE)

PATENT (CC, No, Kind, Date): EP 656215 A1 950607 (Basic)

APPLICATION (CC, No, Date): EP 94117227 941101;

PRIORITY (CC, No, Date): US 146843 931103

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: A61K-047/48; A61L-027/00; A61L-031/00;

ABSTRACT EP 656215 A1

Pharmaceutically acceptable, nonimmunogenic compositions are formed by
covalently binding glycosaminoglycans or derivatives thereof, to

hydrophilic synthetic polymers via specific types of chemical bonds to provide biocompatible conjugates. Useful glycosaminoglycans include hyaluronic acid, the chondroitin sulfates, keratan sulfate, chitin and heparin, each of which is chemically derivatized to react with a hydrophilic synthetic polymer. The conjugate comprising a glycosaminoglycan covalently bound to a hydrophilic synthetic polymer may be further bound to collagen to form a three component conjugate having different properties. The hydrophilic synthetic polymer may be polyethylene glycol and derivatives thereof having an average molecular weight over a range of from about 100 to about 100,000. The compositions may include other components such as fluid, pharmaceutically acceptable carriers to form injectable formulations, and/or biologically active proteins such as growth factors or cytokines.

ABSTRACT WORD COUNT: 134

LANGUAGE (Publication, Procedural, Application): English; English; English
FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	EPAB95	1084
SPEC A	(English)	EPAB95	9832
Total word count - document A			10916
Total word count - document B			0
Total word count - documents A + B			10916

6/3,AB/9 (Item 6 from file: 348)
DIALOG(R) File 348:EUROPEAN PATENTS
(c) 2002 European Patent Office. All rts. reserv.

00686988

Clear, chemically-modified collagensynthetic polymer conjugates for ophthalmic applications.

Klare chemisch-modifizierte Kollagenpolymerkonjugate und ihre ophthalmologischen Anwendungen.

Polymeres synthétiques et conjugués, claires du collagène chimiquement modifiées et leur application ophthalmologiques.

PATENT ASSIGNEE:

COLLAGEN CORPORATION, (255151), 2500 Faber Place, Palo Alto, California 94303, (US), (applicant designated states:
AT;BE;CH;DE;DK;ES;FR;GB;IT;LI;NL;SE)

INVENTOR:

Rhee, Woonza M., 3845 LaDonna Ave., Palo Alto, CA 94306, (US)
Rao, Prema R., 106 Sebastian Court, Los Gatos, CA 95032, (US)
Chu, George H., 10530 Mira Vista Ave., Cupertino, CA 95014, (US)
DeLustro, Frank A., 2517 Kekoven Ave., Belmont, CA 94002, (US)

LEGAL REPRESENTATIVE:

Schwan, Gerhard, Dipl.-Ing. (10931), Elfenstrasse 32, D-81739 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 656214 A1 950607 (Basic)

APPLICATION (CC, No, Date): EP 94117226 941101;

PRIORITY (CC, No, Date): US 147227 931103

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: A61K-047/48; A61L-027/00; A61L-031/00;

ABSTRACT EP 656214 A1

Various forms of chemically modified collagen are covalently crosslinked with activated synthetic hydrophilic polymers to form optically clear biocompatible conjugates useful in a variety of medical

applications, particularly in ophthalmic devices. The chemically modified collagen is in substantially nonfibrillar form at pH 7 and is preferably succinylated or methylated collagen. The synthetic hydrophilic polymer is preferably an activated polymeric glycol, most preferably, a di- or multifunctionally *activated* *polyethylene* *glycol*. Materials and devices formed with the chemically modified collagen-synthetic polymer conjugates have good optical clarity, mechanical strength, and moldability. (see image in original document)

ABSTRACT WORD COUNT: 94

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	EPAB95	542
SPEC A	(English)	EPAB95	9592
Total word count - document A			10134
Total word count - document B			0
Total word count - documents A + B			10134

6/3,AB/10 (Item 7 from file: 348)

DIALOG(R) File 348:EUROPEAN PATENTS

(c) 2002 European Patent Office. All rts. reserv.

00527344

Process for the preparation of siloxane-oxyalkylene copolymers

Verfahren zur Herstellung von Siloxanoxyalkylen-copolymeren

Procede de preparation de copolymeres siloxane-oxyalcoylene

PATENT ASSIGNEE:

OSI Specialties, Inc., (1824161), 777 Old Saw Mill River Road Route 100C,
Silicones Building, Tarrytown, NY 10591-6728, (US), (applicant
designated states: AT;BE;CH;DE;ES;FR;GB;IT;LI;NL)

INVENTOR:

McMullen, Anne Kathryn, Rt. 8, Box 331, Marietta, Ohio 45750, (US)
Furbee, Harold Dean, Rt. 1, Box 135, Friendly, West Virginia 26146, (US)
Austin, Paul Edwin, 90 Kittle Street, Williamstown, West Virginia 26187,
(US)

LEGAL REPRESENTATIVE:

von Hellfeld, Axel, Dr. Dipl.-Phys. et al (53042), Wuesthoff & Wuesthoff
Patent- und Rechtsanwalte Schweigerstrasse 2, 81541 Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 535589 A1 930407 (Basic)
EP 535589 B1 970507

APPLICATION (CC, No, Date): EP 92116635 920929;

PRIORITY (CC, No, Date): US 767825 910930

DESIGNATED STATES: AT; BE; CH; DE; ES; FR; GB; IT; LI; NL

INTERNATIONAL PATENT CLASS: C08G-077/46;

ABSTRACT EP 535589 A1

The invention provides an improved solventless hydrosilation process for preparing a siloxane-oxyalkylene copolymers, the improvement comprising conducting the reaction in the presence of at least one sodium metal phosphate.

ABSTRACT WORD COUNT: 31

LANGUAGE (Publication, Procedural, Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	EPABF1	390

CLAIMS B (English)	EPAB97	372
CLAIMS B (German)	EPAB97	347
CLAIMS B (French)	EPAB97	381
SPEC A (English)	EPABF1	3298
SPEC B (English)	EPAB97	3417
Total word count - document A		3688
Total word count - document B		4517
Total word count - documents A + B		8205

6/3, AB/11 (Item 8 from file: 348)
DIALOG(R) File 348:EUROPEAN PATENTS
(c) 2002 European Patent Office. All rts. reserv.

00393651

Process for preparing polyethylene glycol derivatives and modified protein.
Verfahren fur die Herstellung von Polyethylenglykolderivate und
modifizierte Proteine.

Procede pour la preparation de derives de polyethylene glycol et proteine
modifiee.

PATENT ASSIGNEE:

SUMITOMO PHARMACEUTICALS COMPANY, LIMITED, (653534), 2-8, Doshomachi
2-chome, Chuo-ku, Osaka-shi Osaka-fu, (JP), (applicant designated
states: AT;BE;CH;DE;DK;ES;FR;GB;GR;IT;LI;LU;NL;SE)

SEIKAGAKU CORPORATION, (1236450), 1-5, Nihonbashi-honcho 2-chome,
Chuo-ku, Tokyo 103, (JP), (applicant designated states:
AT;BE;CH;DE;DK;ES;FR;GB;GR;IT;LI;LU;NL;SE)

INVENTOR:

Ono, Keiichi, 10-4, Momoyamadai-3-cho, Sakai-shi, (JP)

Kai, Yoshiyuki, 14-4, Higashishirakawadai-3-chome, Suma-ku, Kobe-shi,
(JP)

Ikeda, Yoshiharu, 4-1-206, Ryodocho, Nishinomiya-shi, (JP)

Maeda, Hiroo, 9-35, Miyanocho, Takatsuki-shi, (JP)

Sakurai, Katsukiyo, 527-6, Zoshiki-2-chome, Higashiyamato-shi, (JP)

Tanaka, Yoshikatsu, Sanikopo 403, 411-4, Kamikitadai-3-chome,
Higashiyamato-shi, (JP)

Kubota, Michio, 341-1, Konakano, Itsukaichimachi, Nishitama-gun, Tokyo,
(JP)

Kashimoto, Kazuhisa, Shato Fujino 301, 28-1, Gakuen-1-chome,
Musashimurayama-shi, (JP)

LEGAL REPRESENTATIVE:

Henkel, Feiler, Hanzel & Partner (100401), Mohlstrasse 37, D-81675
Munchen, (DE)

PATENT (CC, No, Kind, Date): EP 400472 A2 901205 (Basic)
EP 400472 A3 910626
EP 400472 B1 960403

APPLICATION (CC, No, Date): EP 90109806 900523;

PRIORITY (CC, No, Date): JP 89134191 890527; JP 89134192 890527

DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IT; LI; LU; NL; SE

INTERNATIONAL PATENT CLASS: C08G-065/32; C07K-001/00; A61K-047/48;

ABSTRACT EP 400472 A2

High purity polyethylene glycol derivatives of formula (I) are useful
as protein modifiers of interferons, t-PA, EGF, various hormones, etc.
The thus modified protein has minimized antigenicity, prolonged plasma
half life, or improved transfer to tissue. A novel process for preparing
high purity polyethylene glycol derivatives is also disclosed.

ABSTRACT WORD COUNT: 53

LANGUAGE (Publication,Procedural,Application): English; English; English
 FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	EPABF1	534
CLAIMS B	(English)	EPAB96	305
CLAIMS B	(German)	EPAB96	248
CLAIMS B	(French)	EPAB96	335
SPEC A	(English)	EPABF1	18791
SPEC B	(English)	EPAB96	18765
Total word count - document A			19328
Total word count - document B			19653
Total word count - documents A + B			38981

6/3,AB/12 (Item 9 from file: 348)
 DIALOG(R) File 348:EUROPEAN PATENTS
 (c) 2002 European Patent Office. All rts. reserv.

00382662

CONJUGATION OF POLYMER TO COLONY STIMULATING FACTOR-1.
 KONJUGATION DER POLYMERE AN KOLONIEN STIMULIERENDEN FAKTOR.
 CONJUGAISON D'UN POLYMER AVEC LA PROTEINE CSF-1.

PATENT ASSIGNEE:

CETUS ONCOLOGY CORPORATION, (229563), 1400 Fifty-Third Street, Emeryville California 94608, (US), (applicant designated states:
 AT;BE;CH;DE;FR;GB;IT;LI;LU;NL;SE)

INVENTOR:

SHADLE, Paula, J., 5110 MacDonald Avenue, Richmond, CA 94805, (US)
 KOTHS, Kirston, E., 2646 Mira Vista Drive, El Cerrito, CA 94530, (US)
 MORELAND, Margaret, 1320 Evelyn Avenue, Berkeley, CA 94702, (US)
 KATRE, Nandini, 6107 Jordan Avenue, El Cerrito, CA 94530, (US)
 LAIRD, Walter, J., 2660 Lassen Way, Pinole, CA 94564, (US)
 ALDWIN, Lois, 179 Lakeshore Drive, San Mateo, CA 94402, (US)
 NITECKI, Danute, E., 2296 Virginia Street, Berkeley, CA 94709, (US)
 YOUNG, John, D., 1430 Piedra Drive, Walnut Creek, CA 94596, (US)

LEGAL REPRESENTATIVE:

Bizley, Richard Edward et al (28353), HEPWORTH, LAWRENCE BRYER & BIZLEY
 2nd Floor Gate House South West Gate, Harlow Essex CM20 1JN, (GB)

PATENT (CC, No, Kind, Date): EP 402378 A1 901219 (Basic)
 EP 402378 B1 940302
 WO 8906546 890727

APPLICATION (CC, No, Date): EP 89902670 890123; WO 89US270 890123

PRIORITY (CC, No, Date): US 146275 880120

DESIGNATED STATES: AT; BE; CH; DE; FR; GB; IT; LI; LU; NL; SE

INTERNATIONAL PATENT CLASS: A61K-047/00; A61K-037/02;

NOTE:

No A-document published by EPO

LANGUAGE (Publication,Procedural,Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS B	(English)	EPBBF1	1119
CLAIMS B	(German)	EPBBF1	1078
CLAIMS B	(French)	EPBBF1	1211
SPEC B	(English)	EPBBF1	15788
Total word count - document A			0
Total word count - document B			19196
Total word count - documents A + B			19196

6/3,AB/13 (Item 10 from file: 348)
 DIALOG(R)File 348:EUROPEAN PATENTS
 (c) 2002 European Patent Office. All rts. reserv.

00270434

Magnetic material-physiologically active substance conjugate.
 Konjugat von physiologisch aktivem Stoff und magnetischem Material.
 Conjugat de substance physiologiquement active et de materiau magnetique.
 PATENT ASSIGNEE:

Belle Corporation, (626250), 1-10, Nihonbashi Kayabacho, Chuo-ku Tokyo,
 (JP), (applicant designated states: BE;CH;DE;ES;FR;GB;IT;LI;NL;SE)

INVENTOR:

Inada, Yuji 1-808, Tamagawa Haimu, 24-10, Shimomaruko 2-chome, Ota-ku
 Tokyo, (JP)
 Tamaura, Yutaka, 13-105, 11, Hino 6-chome Konan-ku, Yokohama-shi
 Kanagawa-ken, (JP)
 Takahashi, Katsunobu, 308 Shinkoiwa Sky Mansion 56-10, Shinkoiwa 1-chome,
 Katsushika-ku Tokyo, (JP)

LEGAL REPRESENTATIVE:

Ablewhite, Alan James et al , MARKS & CLERK 57/60 Lincoln's Inn Fields,
 London WC2A 3LS, (GB)

PATENT (CC, No, Kind, Date): EP 260098 A2 880316 (Basic)
 EP 260098 A3 880727

APPLICATION (CC, No, Date): EP 87307898 870907;

PRIORITY (CC, No, Date): JP 86209982 860906; JP 86252479 861023

DESIGNATED STATES: BE; CH; DE; ES; FR; GB; IT; LI; NL; SE

INTERNATIONAL PATENT CLASS: C07K-017/08; C12N-011/08;

ABSTRACT EP 260098 A2

Disclosed is a conjugate comprising a magnetic material and a physiologically active substance bound to each other through a polyethylene glycol derivative, and a conjugate comprising a magnetic material and a polyethylene glycol derivative bound to each other.

According to the present invention, a bioreactor enabling application to or recovery of physiologically active substances under liquid state by utilizing the magnetic properties is provided.

ABSTRACT WORD COUNT: 68

LANGUAGE (Publication,Procedural,Application): English; English; English

FULLTEXT AVAILABILITY:

Available Text	Language	Update	Word Count
CLAIMS A	(English)	EPABF1	359
SPEC A	(English)	EPABF1	9766
Total word count - document A			10125
Total word count - document B			0
Total word count - documents A + B			10125

Set	Items	Description	- Author(s)
S7	51	AU=(TALARICO, T? OR TALARICO T?)	
S8	82	AU=(STACEY, C? OR STACEY C?)	
S9	5	S7 AND S8	
S10	2	(S7 OR S8) AND (S1 OR S3 OR S4)	
S11	3	(S9 OR S10) NOT S5	
S12	1	RD (unique items)	

>>>No matching display code(s) found in file(s): 65, 113

12/3,AB/1 (Item 1 from file: 440)
DIALOG(R)File 440:Current Contents Search(R)
(c) 2002 Inst for Sci Info. All rts. reserv.

11225349 References: 50

TITLE: Chemical characterization of pyridoxalated hemoglobin
polyoxyethylene conjugate

AUTHOR(S): *Talarico TL (REPRINT)*; Guise KJ; *Stacey CJ*

AUTHOR(S) E-MAIL: talarico@mindspring.com

CORPORATE SOURCE: Apex Biosci Inc, POB 12847/Res Triangle Pk//NC/27709
(REPRINT); Apex Biosci Inc, /Res Triangle Pk//NC/27709

PUBLICATION TYPE: JOURNAL

PUBLICATION: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR
ENZYMOLOGY, 2000, V1476, N1 (JAN 3), P53-65

GENUINE ARTICLE#: 271FD

PUBLISHER: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

ISSN: 0167-4838

LANGUAGE: English DOCUMENT TYPE: ARTICLE

ABSTRACT: Pyridoxalated hemoglobin polyoxyethylene conjugate (PHP) was developed in the 1980s as an oxygen carrier and is now under development for treatment of nitric oxide-dependent, volume refractory shock. PHP is made by derivatizing human stroma-free hemoglobin with pyridoxal-5-phosphate and polyoxyethylene (POE). A unique aspect of using POE for modification is that unlike its mono-methoxy polyethylene glycol (PEC) relatives, POE is bifunctional. The result of derivatization of stroma-free hemoglobin is a complex mixture of modified hemoglobin and other red cell proteins. The molecular weight profile, based on size exclusion chromatography, is bimodal and has a number average molecular weight of approximately 105 000 and a weight average molecular weight of approximately 187 000. The mixture of hemoglobin molecules has on average 3.3 pyridoxal and 5.0 polyoxyethylene units per tetramer. A portion of the tetramers are linked by POE crosslinks. The hemoglobin tetramers retain their ability to dissociate into dimer pairs and only a small percentage of the dimer pairs are not modified with POE. The SDS-PAGE profile exhibits the ladder-like appearance commonly associated with polyethylene glycol-modified proteins. The isoelectric focusing profile is broad, demonstrating a pH range of 5.0-6.5. The hydrodynamic size of PHP was determined to be approximately 7.2 nm by dynamic light scattering. Soluble red blood cell proteins, such as catalase, superoxide dismutase, and carbonic anhydrase, are present in PHP and are also modified by POE. (C) 2000 Elsevier Science B.V. All rights reserved.

? log y

17oct02 10:41:11 User219783 Session D1877.2

TITLE: Oxygen carrier for blood substitutes
 INVENTOR(S): Iwashita, Yuji; Iwasaki, Keiji; Ajisaka, Katsumi
 PATENT ASSIGNEE(S): Ajinomoto Co., Inc., Japan
 SOURCE: Eur. Pat. Appl., 15 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 67029	A2	19821215	EP 1982-302826	19820602
EP 67029	A3	19830803		
EP 67029	B1	19860430		
R: DE, FR, GB				
JP 57206622	A2	19821218	JP 1981-89315	19810610
JP 02006337	B4	19900208		
US 4412989	A	19831101	US 1982-384606	19820603

PRIORITY APPLN. INFO.: JP 1981-89315 19810610

AB An O carrier is prep'd. by introducing at least 1 CO₂H group into a polyalkylene glycol or polyether and covalently bonding the polymer to an NH₂ group of a Hb or a Hb deriv. by amidation. Thus, monomethoxy polyethylene glycol succinate [79934-70-6] was stirred overnight at room temp. with N-hydroxysuccinimide in DMF in the presence of dicyclohexylcarbodiimide, the dicyclohexylurea ppt. was sepd. by filtration, and Et₂O was added to the filtrate to obtain monomethoxy polyethylene glycol mono(succinimidyl succinate) [78274-32-5], which was filtered and added at 0.degree. to a pH 8.5 soln. of the pyridoxal 5-phosphate deriv. of Hb. The product was purified by ultrafiltration, and freeze-dried to give a modified Hb with a degree of substitution of 6.0 and a mol. wt. of 95,000. The half-lives of the Hb-polyether complexes in the circulatory system of rats were 4-7-fold those of Hb, and the complexes showed good ability to deliver O to the tissues.

IT 25322-68-3

RL: RCT (Reactant)
 (esterification of, with succinic anhydride)

L20 ANSWER 33 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1982:62768 HCPLUS
 DOCUMENT NUMBER: 96:62768
 TITLE: Renal toxicity of hemoglobin derivatives as blood substitute
 AUTHOR(S): Iwashita, Yuji; Ajisaka, Katsumi
 CORPORATE SOURCE: Cent. Res. Lab., Ajinomoto Co., Inc., Kawasaki, Japan
 SOURCE: Organ-Directed Toxic.: Chem. Indices Mech., Proc. Symp. (1981), 97-101. Editor(s): Brown, Stanley S.; Davies, Donald Selwyn. Pergamon: Oxford, Engl.
 CODEN: 46XDAG
 DOCUMENT TYPE: Conference
 LANGUAGE: English
 AB The relation between the clearance rate of infused Hb derivs. in the circulation of rats and their physicochem. properties

was studied. When the mol. wt. of the **Hb** derivs. was .apprx.20,000, half of the infused deriv. disappeared in .apprx.30 min. When the mol. wt. was .apprx.40,000, the half-disappearance time was .apprx.50 min. In these cases, gross hemoglobinuria appeared. Infusion of a series of polyethylene glycol-substituted **Hbs** revealed a close correlation between the retention vol. on gel chromatog. and the half-disappearance time. Apparently, the glomerular filtration of the **Hb** derivs. is analogous to the permeation through polysaccharide gel.

IT **25322-68-3D, Hb** derivs.

RL: BIOL (Biological study)
(kidney clearance and physicochem. properties of, as blood substitutes, kidney toxicity in relation to)

L20 ANSWER 34 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1981:420810 HCPLUS

DOCUMENT NUMBER: 95:20810

TITLE: Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores. Function of chemical valve.

I

AUTHOR(S): Osada, Yoshihito; Takeuchi, Yohsuke

CORPORATE SOURCE: Dep. Chem., Ibaraki Univ., Mito, 310, Japan

SOURCE: J. Polym. Sci., Polym. Lett. Ed. (1981), 19(6), 303-8

CODEN: JPYBAN; ISSN: 0360-6384

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Increased H₂O permeation and protein flow rates were obsd. in poly(methacrylic acid) membranes with PEG. H₂O permeability was dependent on PEG mol. wt. The performance of protein sepn. by the membranes was improved 240 fold for albumin and 55 fold for **Hb** with PEG treatment. The membranes are suggested for ultrafiltration.

IT **25322-68-3**

RL: ANST (Analytical study)
(protein and water permeation through polymethacrylate membranes response to)

L20 ANSWER 35 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1979:571234 HCPLUS

DOCUMENT NUMBER: 91:171234

TITLE: Artificial feces for use as controls in analysis of fecal matter

PATENT ASSIGNEE(S): Roehm G.m.b.H., Fed. Rep. Ger.

SOURCE: Fr. Demande, 18 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent

LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
FR 2393309	A1	19781229	FR 1978-16092	19780530
FR 2393309	B1	19821231		
DE 2724438	C2	19790510	DE 1977-2724438	19770531
DE 2819284	A1	19791115	DE 1978-2819284	19780502

DE 2819284	C2	19851219		
AT 7803515	A	19800615	AT 1978-3515	19780516
AT 360660	B	19810126		
GB 1579102	A	19801112	GB 1978-21978	19780524
SE 7806291	A	19781201	SE 1978-6291	19780530
SE 443239	B	19860217		
SE 443239	C	19860529		
US 4394452	A	19830719	US 1978-910285	19780530
JP 54017794	A2	19790209	JP 1978-65593	19780531
JP 62036180	B4	19870805		
CA 1119922	A1	19820316	CA 1978-304546	19780531
CH 636965	A	19830630	CH 1978-5960	19780531
PRIORITY APPLN. INFO.:			DE 1977-2724438	19770531
			DE 1978-2819284	19780502

AB Artificial feces for use as std. controls in the detection of occult blood in fecal samples via detection of **Hb** peroxidase by a color reaction is described. The std. consists of a polymeric matrix contg. an acid, a coloring material that produces a coloration similar to feces, water and(or) lubricants, drying agents, and preservatives. For example, 5.5 g Tylose MH 20 was placed in suspension in 8.9 g EtOH, 540 g H₂O was added, and the mixt. was stirred for 15 min. Sephadex G 25 (10 g) was added, followed by Na benzoate (14.5 g) and glycerol (73.1 g). The mixt. was shaken for 3 h. Avicel 333, brown Fe oxide 9.0, and yellow Fe oxide 6.0 g were mixed to the dry state and added to the previous mixt. and then kneaded. Blood is then added at .apprx.1.5% by wt. to the mixt., giving a std. with a blood content in the range of normal fecal samples.

IT 25322-68-3 32131-17-2, biological studies

RL: BIOL (Biological study)
(in feces std.)

L20 ANSWER 36 OF 37 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1979:182779 HCPLUS
 DOCUMENT NUMBER: 90:182779
 TITLE: Apparatus for production of control solutions
 INVENTOR(S): Rapkin, Myron C.
 PATENT ASSIGNEE(S): Miles Laboratories, Inc., USA
 SOURCE: Ger. Offen., 22 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2835296	A1	19790301	DE 1978-2835296	19780811
FR 2400708	A1	19790316	FR 1978-23246	19780807
GB 2002516	A	19790221	GB 1978-33097	19780811
SE 7808620	A	19790216	SE 1978-8620	19780814
JP 54032382	A2	19790309	JP 1978-98282	19780814
BR 7805219	A	19790424	BR 1978-5219	19780814

PRIORITY APPLN. INFO.: US 1977-824399 19770815

AB The components of std. solns. are impregnated into **filter** paper strips and lyophilized, and the dried strips are added to appropriate solvents to form the std. solns. for anal. Thus, a 8.9 .times. 53.3 cm strip of **filter** paper was soaked in 50 mL

of a soln. contg. 25 g glucose/dL and 0.5 g Yellow 5 and then dried and cut into 0.5 times. 0.5-cm pieces. A soln. simulating diabetic urine was produced by soaking a piece in water for 20 min with intermittent stirring. Std. soln. preps. also are described for the detection of nitrite, proteins, blood, urobilinogens, ketone bodies, and bilirubin in urine, for the detn. of Cl and alky. in swimming pool water, for the detn. of corrosion inhibitors and capacity of antifreezes, and for the detn. of acidity in fruit juices.

IT 25322-68-3

RL: ANST (Analytical study)
(std. soln. contg., filter paper carrier for, for
antifreeze capacity detn.)

L20 ANSWER 37 OF 37 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1965:476534 HCPLUS

DOCUMENT NUMBER: 63:76534

ORIGINAL REFERENCE NO.: 63:14096g-h

TITLE: Behavior of polyethylene glycol on dialysis and gel filtration

AUTHOR(S): Ryle, A. P.

CORPORATE SOURCE: Univ. Edinburgh, UK

SOURCE: Nature (1965), 206(4990), 1256

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Polyethylene glycol (I) was dialyzed against 100 ml. of distd. H₂O in a sack of 24/32 in. "Visking" tubing until the sack was apparently empty. The contents of the sack was rinsed with distd. H₂O and a residue of 27 mg. was obtained by freeze-drying. Elution curves from gel filtration of unfractionated I, residue from the dialysis, hemoglobin and pepsin C indicate that gel filtration is not a suitable means of sepg. I from proteins of moderate mol. wt. Columns of diethylaminoethyl or carboxymethyl cellulose did not retard the flow of I.

IT 25322-68-3, Glycols, polyethylene
(dialysis and gel filtration of)

(FILE 'MEDLINE, BIOSIS, EMBASE, WPIDS, JICST-EPLUS, JAPIO, PHIC,
PHIN, TÖXCENTER' ENTERED AT 10:53:46 ON 17 OCT 2002)

L21
19 S L20

L22
~~12-DUP-REM-L21-(7-DUPLICATES REMOVED)~~

L22 ANSWER 1 OF 12 EMBASE COPYRIGHT 2002 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 2001070158 EMBASE

TITLE: Purification and characterization of superoxide dismutase from chicken liver.

AUTHOR: Ozturk-Urek R.; Tarhan L.

CORPORATE SOURCE: L. Tarhan, Department of Chemistry, Faculty of Art and Science, University of Dokuz Eylul, 35150 Buca, Izmir, Turkey. leman.tarhan@deu.edu.tr

SOURCE: Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, (2001) 128/2 (205-212).

Refs: 28

ISSN: 1096-4959 CODEN: CBPBB8

PUBLISHER IDENT.: S 1096-4959(00)00300-6

COUNTRY: United States

DOCUMENT TYPE: Journal; Article

FILE SEGMENT: 029 Clinical Biochemistry

LANGUAGE: English

SUMMARY LANGUAGE: English

AB Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme has been isolated, purified and partially characterized from chicken liver. The following steps were carried out in order to purify chicken liver SOD. Initially, the liver was homogenized and **hemoglobin** was removed. Subsequently protein precipitation was effected with (NH₄)₂SO₄, methanol, (NH₄)₂SO₄-methanol and polyethylene glycol methods. The product from polyethylene glycol-3350 precipitation was found to have the highest SOD activity. Polyethylene glycol was removed by chromatography using a PD-10 column. After passing through an ultrafilter, the superoxide dismutase was fractionated by DEAE-ion chromatography and then Sephadex G-75 gel **filtration** chromatography. During this purification procedure, a specific activity of 4818.2 IU/mg was reached, corresponding to 285.8-fold purification. The purified enzyme, which was characterized as cyanide-sensitive SOD, contained two subunits having Cu and Zn elements with a molecular weight of 16000 .+- . 500 for each. The optimum pH of purified CuZnSOD was determined to be 8.9. The enzyme was found to have good pH stability in the pH range 6.0-7.5 at 25.degree.C over a 2-h incubation period and displayed good thermal stability up to 45.degree.C at pH 7.4 over a 1-h incubation period. The SOD enzyme was not inhibited by DTT and .beta.-mercaptoethanol, but inhibited by CN(-) and H₂O₂. In the presence of 2 mM iodoacetamide, the enzyme showed an approximately 40% activity loss. Finally, the inhibitory effect of ionic strength on SOD was also investigated. .COPYRGT. 2001 Elsevier Science Inc.

L22 ANSWER 2 OF 12 WPIDS (C) 2002 THOMSON DERWENT

ACCESSION NUMBER: 2000-317863 [27] WPIDS

DOC. NO. NON-CPI: N2000-238553

DOC. NO. CPI: C2000-096229

TITLE: Production of a **hemoglobin** solution from a solution containing red blood cells using a centrifuge, useful as an inexpensive blood substitute during transfusions.

DERWENT CLASS: A96 B04 D16 P34

INVENTOR(S): VANDEGRIFF, K D; WINSLOW, R M

PATENT ASSIGNEE(S): (SANG-N) SANGART INC

COUNTRY COUNT: 91

PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
<hr/>					
WO 2000021591	A1	20000420	(200027)*	EN	23
RW:	AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ TZ UG ZW				
W:	AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW				
AU 2000011170	A	20000501	(200036)		
EP 1121165	A1	20010808	(200146)	EN	
BR 9915734	A	20011002	(200167)		

KR 2001099700 A 20011109 (200229)
 CN 1332646 A 20020123 (200231)

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2000021591	A1	WO 1999-US24149	19991015
AU 2000011170	A	AU 2000-11170	19991015
EP 1121165	A1	EP 1999-954950	19991015
		WO 1999-US24149	19991015
BR 9915734	A	BR 1999-15734	19991015
		WO 1999-US24149	19991015
KR 2001099700	A	KR 2001-704781	20010416
CN 1332646	A	CN 1999-813429	19991015

FILING DETAILS:

PATENT NO	KIND	PATENT NO
AU 2000011170	A Based on	WO 200021591
EP 1121165	A1 Based on	WO 200021591
BR 9915734	A Based on	WO 200021591

PRIORITY APPLN. INFO: US 1999-122180P 19990301; US 1998-104319P
 19981015

AN 2000-317863 [27] WPIDS

AB WO 200021591 A UPAB: 20000606

NOVELTY - A method (M1) for producing **hemoglobin** solution from a solution containing red blood cells (RBCs) using a centrifuge, is new.

DETAILED DESCRIPTION - A method (M1) for producing **hemoglobin** solution from a solution containing RBCs using a centrifuge comprises:

- (a) isolating the RBCs in the solution;
- (b) removing the supernatant produced during the step of isolating followed by washing the RBCs;
- (c) lysing the RBCs to produce a hemolysate; and
- (d) separating stromata of the RBCs from the hemolysate.

INDEPENDENT CLAIMS are also included for the following:
 (1) a method (M2) for producing **hemoglobin** from a

solution containing RBCs and plasma comprising:

- (a) collecting the solution in a sterile processing set comprising a processing bag and a tube harness, where the processing bag is disposed within a centrifuge in the cell processing apparatus;

- (b) separating the RBCs from the plasma by rotating the processing bag within the centrifuge;

- (c) expressing the plasma from the processing bag;

- (d) introducing a washing solution into the processing bag;

- (e) lysing the RBCs by introducing distilled water into the processing bag to liberate **hemoglobin**;

- (f) separating RBC membranes from the **hemoglobin**

solution by rotating the processing bag in the centrifuge; and

- (g) removing the **hemoglobin** solution through a

sterile port in the processing bag; and

- (2) a method (M3) for preparing a modified **hemoglobin** solution comprising isolating the **hemoglobin** solution as

in M1 and reacting with reagents adapted for chemical modification of the solution.

USE - The method is useful for producing high-quality **hemoglobin** solution which can be used as a blood substitute for transfusions.

ADVANTAGE - The method allows the preparation of high-quality blood substitutes with reduced cost, complexity and risk of contamination.

Dwg.0/4

L22 ANSWER 3 OF 12 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

DUPLICATE 1

ACCESSION NUMBER: 1997:408801 BIOSIS

DOCUMENT NUMBER: PREV199799715004

TITLE: The impact of polyethylene glycol conjugation on bovine **hemoglobin**'s circulatory half-life and renal effects in a rabbit top-loaded transfusion model.

AUTHOR(S): Conover, Charles D. (1); Gilbert, Carl W.; Shum, Kwok L.; Shorr, Robert G. L.

CORPORATE SOURCE: (1) Res. Dev. Formulations-Toxicol. Dep., Enzon Inc., 20 Kingsbridge Rd., Piscataway, NJ 08854 USA

SOURCE: Artificial Organs, (1997) Vol. 21, No. 8, pp. 907-915.

ISSN: 0160-564X.

DOCUMENT TYPE: Article

LANGUAGE: English

AB This study compares the effects of polyethylene glycol (PEG) modified bovine **hemoglobin** on vascular half-life and renal function in rabbits to those of unmodified bovine **hemoglobin**. Renal function was assessed by the measurement of the glomerular filtration rate, urinalysis, blood chemistries, **hemoglobin** (Hb) excretion rates, and tissue histology. The influence of infusion rates on **hemoglobin** excretion rates and organ morphology was also examined. The mean half-life of unmodified bovine **hemoglobin** was 3.0 +- 0.1 (mean +- SEM) h, which was extended 14-fold to 43.2 +- 1.7 h following PEG conjugation. The glomerular filtration rate, urinalysis, and blood chemistries were not greatly affected by either the unmodified bovine **hemoglobin** or the PEG modified bovine **hemoglobin**. However, unmodified bovine **hemoglobin** did demonstrate significant hemoglobinuria (Hb excretion levels in excess of 1.0% of the infused dose (p < 0.05)) at all infusion rates given while PEG modified bovine **hemoglobin** did not. In addition, histological examination by light microscopy indicated that the most severe morphological changes occurred in animals that received unmodified bovine **hemoglobin**. This data suggests that PEG modification of bovine **hemoglobin** significantly reduced some of the adverse effects of bovine **hemoglobin** on renal physiology and morphology.

L22 ANSWER 4 OF 12 MEDLINE

DUPLICATE 2

ACCESSION NUMBER: 97310947 MEDLINE

DOCUMENT NUMBER: 97310947 PubMed ID: 9167846

TITLE: Detection of residual polyethylene glycol derivatives in pyridoxylated-**hemoglobin**-polyoxyethylene conjugate.

AUTHOR: Miles P J; Langley K V; Stacey C J; Talarico T L
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC
 27709, USA.
 SOURCE: ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND
 IMMOBILIZATION BIOTECHNOLOGY, (1997 May) 25 (3)
 315-26.
 Journal code: 9431307. ISSN: 1073-1199.
 PUB. COUNTRY: United States
 DOCUMENT TYPE: Journal; Article; (JOURNAL ARTICLE)
 LANGUAGE: English
 FILE SEGMENT: Priority Journals
 ENTRY MONTH: 199707
 ENTRY DATE: Entered STN: 19970805
 Last Updated on STN: 19970805
 Entered Medline: 19970721

AB Purified **hemoglobin** solutions have been shown to cause renal toxicity in animals. Safe use of **hemoglobin** based therapeutics in humans requires modification of the **hemoglobin** molecule to prevent this toxicity. **Hemoglobin** modification may be accomplished by crosslinking the dimers within the **hemoglobin** tetramer or by derivatization of the alpha and/or beta subunits such that their size and/or charge prevents filtration by the glomeruli. Pyridoxylated **hemoglobin** polyoxyethylene conjugate (PHP) consists of **hemoglobin** molecules modified with alpha-carboxymethyl, omega-carboxymethoxy polyoxyethylene (POE). We have developed a high performance liquid chromatography-based (HPLC) method which can quantitate residual POE at levels of 0.1 mg/ml or greater. The detection of POE at this level of sensitivity requires the use of an evaporative light scattering detector (ELSD). A differential refractometer may also be used for POE detection, however the limit of quantitation for this detector is approximately 10 fold greater than that observed for the evaporative light scattering detector, resulting in a reduction in sensitivity. The successful use of this method requires sample deproteination using trichloroacetic acid. The reliability of the method has been demonstrated by spike recovery, precision, and reproducibility studies in PHP and buffer solutions.

L22 ANSWER 5 OF 12 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
 ACCESSION NUMBER: 1997:106004 BIOSIS
 DOCUMENT NUMBER: PREV199799405207
 TITLE: Surface modification of **hemoglobin** vesicles with poly(ethylene glycol) and effects on aggregation, viscosity, and blood flow during 90 percent exchange transfusion in anesthetized rats.
 AUTHOR(S): Sakai, Hiromi; Takeoka, Shinji; Park, Sung Ick; Kose, Takehiro; Nishide, Hiroyuki; Izumi, Yotaro; Yoshizu, Akira; Kobayashi, Koichi; Tsuchida, Eishun (1)
 CORPORATE SOURCE: (1) Dep. Polymer Chem., Advanced Res. Inst. Sci. Eng., Waseda Univ., Tokyo 169 Japan
 SOURCE: Bioconjugate Chemistry, (1997) Vol. 8, No. 1, pp. 23-30.
 ISSN: 1043-1802.
 DOCUMENT TYPE: Article
 LANGUAGE: English
 AB Poly(ethylene glycol) (PEG-5000)-conjugated phosphatidylethanolamine

was introduced onto the surface of **hemoglobin vesicles** (HbV); phospholipid vesicles encapsulating concentrated **Hb** ($d = 0.257 \pm 0.087 \text{ } \mu\text{-m}$; $P-50 = 32 \text{ Torr}$). The obtained PEG-modified HbV (HbV-PEG) was studied for use as a red cell substitute from the viewpoint of rheology, surface properties, and hemodynamics. The viscosity of the unmodified HbV suspended in saline ((**Hb**) = 10 g/dL) was 2.6 cP (shear rate = 358 s-1, 37 degree C), less than that of human blood (4 cP). However, when suspended in a 5 g/dL albumin solution (HbV/albumin), it increased to 8 cP due to the molecular interaction between albumin and vesicles, and the viscosity increased with decreasing shear rate, e.g., 37 cP at 0.58 s-1. As for the HbV-PEG/albumin, on the other hand, the viscosity was 3.5 cP at 358 s-1 and was comparable with that of human blood. Optical microscopy showed formless flocculated aggregates of the unmodified HbV, while no aggregates were confirmed for the HbV-PEG. The steric hindrance of PEG chains seemed to be effective in capillaries, the suspensions were allowed to penetrate through isopore membrane filters (pore size = 0.4-8 $\mu\text{-m}$, cf. capillary diameter = 4-10 $\mu\text{-m}$). The penetration rate of the HbV-PEG/albumin was higher than that of the unmodified HbV/albumin due to the suppression of aggregation, whereas both of them were significantly higher than that of human blood due to the smaller size of vesicles than RBC. Ninety percent exchange transfusion was performed with the HbV-PEG/albumin or HbV/albumin in anesthetized Wistar rats ($n = 6$). The blood flow in the abdominal aorta increased 1.5 times, and the total peripheral resistance decreased in the HbV-PEG/albumin-administered group in comparison with the HbV/albumin group. As for the blood gas parameters, the base excess and pH remained at higher levels in the HbV-PEG/albumin group, and the O-2 tension in mixed venous blood for the HbV-PEG/albumin group tended to be maintained at a higher level than that for the HbV/albumin group. Thus, the PEG modification of HbV reduced the viscosity by the suppression of aggregation and resulted in prompt blood circulation *in vivo*.

L22 ANSWER 6 OF 12 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1995:288270 BIOSIS

DOCUMENT NUMBER: PREV199598302570

TITLE: PEG-**hemoglobin**: Effect on renal function in various laboratory animal models.

AUTHOR(S): Conover, C. D.; Sedlatschek, L.; Shum, K.; Shorr, R.

CORPORATE SOURCE: Enzon Inc., Piscataway, NJ USA

SOURCE: Journal of Investigative Medicine, (1995) Vol. 43, No. SUPPL. 2, pp. 352A.

Meeting Info.: Clinical Research Meeting San Diego, California, USA May 5-8, 1995

DOCUMENT TYPE: Conference

LANGUAGE: English

L22 ANSWER 7 OF 12 EMBASE COPYRIGHT 2002 ELSEVIER SCI. B.V.

ACCESSION NUMBER: 94263225 EMBASE

DOCUMENT NUMBER: 1994263225

TITLE: Characteristics of Neo Red Cells, their function and safety: *In vivo* studies.

AUTHOR: Ogata Y.; Goto H.; Sakaguchi K.; Suzuki M.; Obsaki K.; Suzuki K.; Saniabadi A.P.; Kamitani T.; Takahashi A.

CORPORATE SOURCE: R and D Center TERUMO Corp, 1500 Inokuchi, Nakai-

SOURCE: machi, Kanagawa 259-01, Japan
 Artificial Cells, Blood Substitutes, and
 Immobilization Biotechnology, (1994) 22/3 (875-881).
 ISSN: 1073-1199 CODEN: ABSBE4

COUNTRY: United States
 DOCUMENT TYPE: Journal; Conference Article
 FILE SEGMENT: 025 Hematology
 027 Biophysics, Bioengineering and Medical
 Instrumentation

LANGUAGE: English
 SUMMARY LANGUAGE: English

AB A new type of artificial oxygen carriers, the Neo Red Cells (NRCs) have been developed and investigated for oxygen transporting efficiency and safety in experimental animals. Stroma free **hemoglobin** from outdated human red blood cells together with inositol hexaphosphate as an allosteric effector under sterile, pyrogen free condition were encapsulated in liposomes and then were coated with polyethylene glycol bond to hydrogenated soy phosphatidylethanolamine as a surface modifier to prevent aggregation of NRCs in plasma. The efficiency of the NRCs in tissue oxygenation was studied in rabbits which were made severely anemic by drawing 85% of their blood and immediately replacing it with NRC solution. The animals, all recovered to pre-anemic conditions within 6-8 hr and lived normally until being sacrificed, 6 months after the exchange transfusion. The circulation half-life and tissue distribution of NRCs were studied using radiolabeled NRCs. Within the circulation, the halflife of NRCs was 21 hr and extravascularly, they were distributed mainly in and metabolized by the reticuloendothelial system within 7 days. Our observations suggest that the NRCs prepared and investigated in this study are efficient oxygen carriers without causing serious adverse reactions and can be prepared free from pathogenic micro-organisms by special **filtration** technique before encapsulation of **Hb**. Currently, experiments are ongoing to control auto-oxidation of oxyHb to metHb which is higher in NRCs than in native red cells at physiological conditions.

L22 ANSWER 8 OF 12 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
 DUPLICATE 3
 ACCESSION NUMBER: 1994:431494 BIOSIS
 DOCUMENT NUMBER: PREV199497444494
 TITLE: Hemoglobinuria in rats: A sensitive test of renal **filtering** and absorption of PEG-
hemoglobin, a red blood cell substitute.
 AUTHOR(S): Gilbert, C.; Nho, K.; Johnson, M.; Linberg, R.;
 Shorr, R.
 CORPORATE SOURCE: Enzon, Inc., Piscataway, NJ 08854 USA
 SOURCE: Artificial Cells Blood Substitutes and Immobilization
 Biotechnology, (1994) Vol. 22, No. 3, pp. 535-541.

DOCUMENT TYPE: Article
 LANGUAGE: English

AB Hemoglobinuria, defined as **hemoglobin** or **hemoglobin** subunits in the urine, is an easily monitored, sensitive indicator of renal handling of **hemoglobin**-based blood substitutes. **Hemoglobin** tetramer dissociation increases **filtration** by the kidneys. When the rate of **filtration** exceeds reabsorption, hemoglobinuria occurs. This study investigates the renal **filtration** and absorption of

polyethylene glycol-modified bovine **hemoglobin** by monitoring for hemoglobinuria in several model systems.

L22 ANSWER 9 OF 12 TOXCENTER COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1993:151155 TOXCENTER
 COPYRIGHT: Copyright 2002 ACS
 DOCUMENT NUMBER: CA11903020160F
 TITLE: Renal effects of multiple infusion of pyridoxalated-
hemoglobin-polyoxyethylene conjugate (PHP)
 solution in dogs
 AUTHOR(S): Takahashi, Tsuyoshi; Iwasaki, Keiji; Malchesky, Paul
 S.; Harasaki, Hiroaki; Matsushita, Michiaki; Nose,
 Yukihiko; Rolin, Henry, III; Hall, Philip M.
 CORPORATE SOURCE: Dep. Artif. Organs, Cleveland Clin. Found.,
 Cleveland, OH, USA.
 SOURCE: Artificial Organs, (1993) Vol. 17, No. 3, pp.
 153-63.
 CODEN: ARORD7. ISSN: 0160-564X.
 COUNTRY: UNITED STATES
 DOCUMENT TYPE: Journal
 FILE SEGMENT: CAPLUS
 OTHER SOURCE: CAPLUS 1993:420160
 LANGUAGE: English
 ENTRY DATE: Entered STN: 20011116
 Last Updated on STN: 20020917

AB Pyridoxalated-**Hb**-polyoxyethylene conjugate (PHP), which is made from out-dated human red blood cells by two major chem. modifications, namely pyridoxalation and conjugation with polyoxyethylene (POE), is currently under development as a physiol. oxygen carrier. This study assessed the effects of PHP-88 soln., which contains 8% (wt/vol) each of **Hb** and maltose, on renal function when it was infused 3 times every other day into the intact circulation of 8 dogs (5 dogs for the PHP group and 3 for the control group; 20 mL/kg for the first infusion, and 10 mL/kg each for the second and third infusions, at the rate of 2.5 mL/h/kg). Serial detns. of glomerular filtration rate (GFR) and renal plasma flow (RPF) were carried out pre- and postinfusion for up to 3 mo along with measurements of blood and urine analyses, urine output rate, fractional excretion of sodium (FES), and free water clearance (CH2O). The results showed that plasma colloid osmotic pressure (COP) elevated at an av. of 3.3 mm Hg ($p = 0.0085$), and GFR and RPF tended to increase by 13% (NS) and 38% (NS), resp., immediately after the third infusion with PHP soln. Urine output rate increased during and after the infusion, and FES and CH2O also increased for 24 h after the infusion in both groups. Blood urea nitrogen, serum creatinine, and serum Na⁺ concns. were not affected greatly by the infusions, but hematocrit was decreased by 8% in the PHP group, indicating approx. a 42% expansion of plasma vol. These changes were obsd. to return to their preinfusion levels by 1 wk postinfusion. Renal histol. of the PHP group obtained at 2 wk postinfusion revealed vacuole formation in the proximal tubules which was not assocd. with any pathol. changes indicative of cell death or regeneration. In 4 out of 5 dogs at 3 mo postinfusion (necropsy), the vacuoles were not present. Though urinary N-acetyl .beta.-glucosaminidase (NAG) activity had significantly increased after infusion, it returned to the preinfusion level by 1 mo postinfusion. No detrimental effect of vacuoles on the assessed renal tubular functions was confirmed in the present study. The

results demonstrated that multiple infusions of PHP solns. were well tolerated in normal dogs, and the obsd. effects were conceived predominantly attributable to the physiol. response of the kidneys to an oncotic load into the circulation, which produced plasma vol. expansion.

L22 ANSWER 10 OF 12 TOXCENTER COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1991:118489 TOXCENTER
 COPYRIGHT: Copyright 2002 ACS
 DOCUMENT NUMBER: CA11408069107E
 TITLE: Preparation and use of polymer-coated affinity supports for hemoperfusion
 AUTHOR(S): Mazid, Abdul M.
 CORPORATE SOURCE: ASSIGNEE: Chembimed Ltd.
 PATENT INFORMATION: EP 371636 A2 6 Jun 1990
 SOURCE: (1990) Eur. Pat. Appl., 26 pp.
 CODEN: EPXXDW.
 COUNTRY: CANADA
 DOCUMENT TYPE: Patent
 FILE SEGMENT: CAPLUS
 OTHER SOURCE: CAPLUS 1991:69107
 LANGUAGE: English
 ENTRY DATE: Entered STN: 20011116
 Last Updated on STN: 20021015

AB A method is provided for coating chromatog. particulate supports to give a biocompatible outer layer of synthetic membrane-type film which prevents the release of fines but permits adsorption of components to an affinity ligand. The membrane-type coating has a pore size of .gt;req.20 .ANG.. The coating process is described. Thus, PEG-300 (pore-controlling component) was added to polystyrene in trichloroethylene, followed by addn. of a haptensed support comprising the 8-azidocarbonyloctyl deriv. of trisaccharide A conjugated to diatomite. Following evapn. of solvent, the matrix was wetted, washed, and dried. The polystyrene-coated matrix was relatively free of fines, as compared to controls. When different amts. of PEG-300 were added, 1% PEG-300 gave results superior to those in which higher (4 and 28%) amts. were used. There was little, if any, nonspecific adsorption of essential blood components (platelets, white and red blood cells, Hb) to the matrix. In a simulated hemoperfusion, very little or no changes in concn. were found for total protein, albumin, bilirubin, cholesterol, alk. phosphatase, or lactic dehydrogenase; antibody to A1 antigen was adsorbed by the affinity ligand.

L22 ANSWER 11 OF 12 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.
 ACCESSION NUMBER: 1984:352482 BIOSIS
 DOCUMENT NUMBER: BA78:88962
 TITLE: CALMODULIN BINDING PROTEINS VISUALIZATION BY IODINE-125 LABELED CALMODULIN OVERLAY ON BLOTS QUENCHED WITH TWEEN 20 OR BOVINE SERUM ALBUMIN AND POLY ETHYLENE OXIDE.
 AUTHOR(S): FLANAGAN S D; YOST B
 CORPORATE SOURCE: MEMBRANE NEUROCHEM. SECT., DIV. NEUROSCIENCES,
 BECKMAN RES. INST. CITY HOPE, 1450 EAST DUARTE ROAD,
 DUARTE, CALIF. 91010.
 SOURCE: ANAL BIOCHEM, (1984) 140 (2), 510-519.
 CODEN: ANBCA2. ISSN: 0003-2697.
 FILE SEGMENT: BA; OLD

LANGUAGE: English

AB To streamline detection of calmodulin-binding proteins, blotting techniques for the electrophoretic transfer of proteins onto nitrocellulose filters, followed by overlay with ¹²⁵I-calmodulin, were adapted. Autoradiography of the ¹²⁵I-calmodulin-labeled blots allows the identification and quantitation of proteins that possess affinity for calmodulin. Five protocols for suppressing nonspecific binding and for enhancing specific interactions of ¹²⁵I-calmodulin with electrophoretically separated proteins were investigated. Tween 20 and bovine serum albumin alone, as well as combinations of bovine serum albumin and poly(ethylene oxide) or Hb and gelatin, were evaluated as quenching and enhancing agents. Tween 20 proved highly effective for quenching nonspecific binding and for enhancing specific ¹²⁵I-calmodulin binding of a 61,000-MW rat brain protein, which was only faintly observed on blots quenched with proteins alone. However, Tween 20 dissociated 50% of 68,000-MW proteins and 80% of 21,000-MW ¹²⁵I-labeled protein standards from the nitrocellulose filter. An alternative, the combination of bovine serum albumin followed by incubation with 15,000- to 20,000-MW poly(ethylene oxide), proved satisfactory for the recovery of 61,000-MW calmodulin-binding activity and for the detection of calmodulin-binding peptides (50,000 to 14,000 MW) produced by limited proteolysis of rat brain 51,000-MW calmodulin-binding protein. These blotting procedures for detection of calmodulin-binding proteins are compatible with a variety of 1- and 2-dimensional electrophoresis systems, including a 2-dimensional electrophoresis system utilizing urea and sodium dodecyl sulfate in the 1st dimension and nonurea sodium dodecyl sulfate electrophoresis in the 2nd, a system which proved useful for resolving calmodulin-binding proteins displaying anomalous electrophoretic migration in the presence of urea.

L22 ANSWER 12 OF 12 TOXCENTER COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1982:91005 TOXCENTER

COPYRIGHT: Copyright 2002 ACS

DOCUMENT NUMBER: CA09609062768X

TITLE: Renal toxicity of hemoglobin derivatives
as blood substitute

AUTHOR(S): Iwashita, Yuji; Ajisaka, Katsumi

CORPORATE SOURCE: Cent. Res. Lab., Ajinomoto Co., Inc., Kawasaki,
Japan.SOURCE: Organ-Directed Toxic.: Chem. Indices Mech., Proc.
Symp., (1981) pp. 97-101.
CODEN: 46XDAG.

COUNTRY: JAPAN

DOCUMENT TYPE: Conference

FILE SEGMENT: CAPLUS

OTHER SOURCE: CAPLUS 1982:62768

LANGUAGE: English

ENTRY DATE: Entered STN: 20011116
Last Updated on STN: 20011116

AB The relation between the clearance rate of infused Hb derivs. in the circulation of rats and their physicochem. properties was studied. When the mol. wt. of the Hb derivs. was .apprx.20,000, half of the infused deriv. disappeared in .apprx.30 min. When the mol. wt. was .apprx.40,000, the half-disappearance time was .apprx.50 min. In these cases, gross hemoglobinuria

appeared. Infusion of a series of polyethylene glycol-substituted Hbs revealed a close correlation between the retention vol. on gel chromatog. and the half-disappearance time. Apparently, the glomerular filtration of the Hb derivs. is analogous to the permeation through polysaccharide gel.

FILE 'REGISTRY' ENTERED AT 11:01:53 ON 17 OCT 2002

L23 4 S (ETHANOL OR METHANOL OR ACETONITRILE OR DIMETHYLSULFOXI
E DIMETHYLSULFOXIDE/CN 5
E DIMETHYLSULPHOXIDE/CN 5
E DIMETHYL SULFOXIDE/CN 5

L24 1 S E3

L25 5 S L23 OR L24

*- claim 3*FILE 'HCAPLUS' ENTERED AT 11:02:54 ON 17 OCT 2002

L1 1 SEA FILE=REGISTRY ABB=ON PLU=ON "POLYETHYLENE GLYCOL"/C
N

L6 65224 SEA FILE=HCAPLUS ABB=ON PLU=ON L1 OR APEG OR ACTIVAT?(W)
(PEG OR (POLYETHYLENE OR POLY ETHYLENE) (W) GLYCOL)

L10 42680 SEA FILE=HCAPLUS ABB=ON PLU=ON POLYOXYETHYLENE OR
CARBOXYMETHOXYPOLYOXYETHYLENE OR METHOXPOLYOXYETHYLENE
OR POLY(W) (OXY ETHYLENE OR OXYETHYLENE) OR POLYOXY
ETHYLENE

L11 8 SEA FILE=HCAPLUS ABB=ON PLU=ON L10(10A) (ALPHA(W) (CARBOX
YMETHYL OR CARBOXY(W) (ME OR METHYL)))

L16 5 SEA FILE=HCAPLUS ABB=ON PLU=ON POE(S) (CARBOXY(W) (METHYL
? OR ME) OR CARBOXYMETHYL?)

L18 1 SEA FILE=REGISTRY ABB=ON PLU=ON "NYLON 66"/CN

L19 1 SEA FILE=REGISTRY ABB=ON PLU=ON POSIDYNE/CN

L23 4 SEA FILE=REGISTRY ABB=ON PLU=ON (ETHANOL OR METHANOL
OR ACETONITRILE OR DIMETHYLSULFOXIDE OR TETRAHYDROFURAN) /
CN

L24 1 SEA FILE=REGISTRY ABB=ON PLU=ON "DIMETHYL SULFOXIDE"/CN

L25 5 SEA FILE=REGISTRY ABB=ON PLU=ON L23 OR L24

L26 5157 SEA FILE=HCAPLUS ABB=ON PLU=ON (L6 OR L11 OR L16) AND
(L25 OR ETHANOL OR (ETHYL OR METHYL OR ME OR ET) (W) (ALCOH
OL OR ALC) OR METHANOL OR ACETONITRILE OR ACETO NITRILE
OR TETRAHYDROFURAN OR TETRA(W) (HYDROFURAN OR HYDRO
FURAN) OR TETRAHYDRO FURAN)

L27 826 SEA FILE=HCAPLUS ABB=ON PLU=ON (L6 OR L11 OR L16) AND
(DMSO OR DIMETHYLSULFOXIDE OR DI(W) (METHYLSULFOXIDE OR
(ME OR METHYL) (W) (SULFOXIDE OR SULPHOXIDE) OR METHYLSULPH
OXIDE) OR DIMETHYL(W) (SULFOXIDE OR SULPHOXIDE))

L28 38 SEA FILE=HCAPLUS ABB=ON PLU=ON (L26 OR L27) AND (HB OR
HEMOGLOBIN OR HAEMOGLOBIN)

L29 2 SEA FILE=HCAPLUS ABB=ON PLU=ON L28 AND (L18 OR L19 OR
NYLON 66 OR POSIDYNE OR FILTER? OR FILTR?)

L30 0 L29 NOT L20

(FILE 'MEDLINE, BIOSIS, EMBASE, WPIDS, JICST-EPLUS, JAPIO, PHIC,
PHIN, TOXCENTER' ENTERED AT 11:08:31 ON 17 OCT 2002)

L31 1 S L29

L32 0 S L31 NOT L21

(FILE 'HCAPLUS, MEDLINE, BIOSIS, EMBASE, WPIDS, JICST-EPLUS, JAPIO,
PHIC, PHIN, TOXCENTER' ENTERED AT 11:21:22 ON 17 OCT 2002)

L33 79 S "TALARICO T"?/AU
 L34 143 S "STACEY C"?/AU
 L35 11 S L33 AND L34
 L36 15 S (L33 OR L34) AND L17
 L37 18 S L35 OR L36
 L38 8 DUP REM L37 (10 DUPLICATES REMOVED)

L38 ANSWER 1 OF 8 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 2002:428940 HCPLUS
 DOCUMENT NUMBER: 137:2748
 TITLE: Methods for the synthesis of a modified hemoglobin solution
 INVENTOR(S): Privalle, Christopher Thomas; Stacey, Cyrus John; Talarico, Todd Lewis
 PATENT ASSIGNEE(S): Apex Bioscience, Inc., USA
 SOURCE: PCT Int. Appl., 45 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002044214	A1	20020606	WO 2001-US43877	20011114
W: AE, AG, AL, AM, AT, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, CZ, DE, DE, DK, DK, DM, DZ, EC, EE, EE, ES, FI, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
US 2002099175	A1	20020725	US 2001-930905	20010816
AU 2002017823	A5	20020611	AU 2002-17823	20011114
PRIORITY APPLN. INFO.:			US 2000-253758P P	20001129
			US 2001-930905 A	20010816
			WO 2001-US43877 W	20011114

AB The invention concerns a filtration step during the **Hb** purifn. process that substantially decreases viral contamination of a **Hb** soln. The filtration means can be used to sep. **Hb** and several endogenous antioxidant enzymes from red blood cell stroma and potential adventitious agents. The purified **Hb**/antioxidant compn. is then subjected to a chem. modification process. The resulting modified **Hb** /antioxidant compn. is then fractionated to remove unmodified **Hb** species and residual reactants, formulated in electrolytes and rendered sterile. The resulting modified **Hb** product is substantially free of viral contamination and contains at least one endogenous antioxidant enzyme that retains antioxidant activity.

REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 2 OF 8 HCAPLUS COPYRIGHT 2002 ACS DUPLICATE 1
 ACCESSION NUMBER: 2000:531386 HCAPLUS
 DOCUMENT NUMBER: 133:246677
 TITLE: Pyridoxalated hemoglobin
 polyoxyethylene: a nitric oxide scavenger with
 antioxidant activity for the treatment of nitric
 oxide-induced shock
 AUTHOR(S): Privalle, C.; Talarico, T.; Keng, T.;
 DeAngelo, J.
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park,
 NC, USA
 SOURCE: Free Radical Biology & Medicine (2000), 28(10),
 1507-1517
 CODEN: FRBMEH; ISSN: 0891-5849
 PUBLISHER: Elsevier Science Inc.
 DOCUMENT TYPE: Journal; General Review
 LANGUAGE: English

AB A review with 97 refs. Hbs modified for therapeutic use as either Hb-based oxygen carriers or scavengers of nitric oxide are currently being evaluated in clin. trials. One such product, pyridoxalated Hb polyoxyethylene conjugate (PHP), is a human-derived and chem. modified Hb that has yielded promising results in Phase II clin. trials, and is entering a pivotal Phase III clin. trial for the treatment of shock assocd. with systemic inflammatory response syndrome (SIRS). Shock assocd. with SIRS is a NO-induced shock. PHP, a new mechanism-based therapy, has been demonstrated in clin. trials to have the expected hemodynamic activity of raising blood pressure and reducing catecholamine use, consistent with its mechanism of action as a NO scavenger. PHP is conjugated with polyoxyethylene, which results in a surface-decorated mol. with enhanced circulation time and stability as well as in attachment of sol. red blood cell enzymes, including catalase and superoxide dismutase. PHP thus contains an antioxidant profile similar to the intact red blood cell and is therefore resistant to both initial oxidative modification by oxidants such as hydrogen peroxide and subsequent ferrylHb formation. These studies suggest both that the redox activity of modified Hbs can be attenuated and that modified Hbs contg. endogenous antioxidants, such as PHP, may have reduced pro-oxidant potential. These antioxidant properties, in addn. to the NO-scavenging properties, may allow the use of PHP in other indications in which excess NO, superoxide, or hydrogen peroxide is involved, including ischemia-reperfusion injury and hemorrhagic shock.

REFERENCE COUNT: 97 THERE ARE 97 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 3 OF 8 HCAPLUS COPYRIGHT 2002 ACS DUPLICATE 2
 ACCESSION NUMBER: 2000:405435 HCAPLUS
 DOCUMENT NUMBER: 133:276101
 TITLE: Comparison of various hemoglobin
 polyoxyethylene conjugate solutions as
 resuscitative fluids after hemorrhagic shock
 Glasgow, Sean C.; Shah, Ashish S.; Noone, Robert
 B., Jr.; Gottfried, Marcia R.; Eachempati,
 Soumitra R.; Talarico, Todd L.;
 Vaslef, Steven N.

CORPORATE SOURCE: Department of Surgery, Wilford Hall Medical Center, Lackland AFB, TX, USA

SOURCE: Journal of Trauma: Injury, Infection, and Critical Care (2000), 48(5), 884-893
CODEN: JOTRFA; ISSN: 1079-6061

PUBLISHER: Lippincott Williams & Wilkins

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Background: Previous research suggested that splanchnic hypoperfusion occurs after resuscitation with certain acellular Hb solns. We exmd. the influence of maltose content and oxygen affinity on resuscitation with various Hb polyoxyethylene conjugate solns. after hemorrhage. Methods: Fifteen swine underwent hemorrhage and equal vol. resuscitation with pyridoxalated Hb polyoxyethylene conjugate contg. 0% or 8% maltose, or low P50 conjugate, which also contained 8% maltose. Five control animals were monitored but not bled. Regional blood flow was detd. by using radioactive microspheres, gastric mucosal perfusion was estd. with tonometry, and gut histopathol. was evaluated. Results: All Hb solns. produced vasoconstriction, manifested by elevated mean systemic and pulmonary artery pressures without a significant decrease in cardiac index compared with the sham group. Resuscitation with maltose-contg. solns. elevated arterial and regional PCO₂ and depressed arterial pH and gastric pHi (p < 0.05 for all). Splanchnic and renal blood flows were reduced in the low P50 + 8% maltose group (p < 0.05 vs. sham and baseline for renal blood flow), possibly indicating greater regional vasoconstriction in this group. Ileal mucosal damage was more severe in the maltose-contg. groups and correlated with decreased pHi. Conclusion: Vasoconstriction occurred in all groups but was more severe in the low P50 + 8% maltose group. Maltose-contg. solns. caused respiratory acidosis, decreased pHi, and histol. evidence of mucosal injury. Pyridoxalated Hb polyoxyethylene conjugate without maltose was a superior resuscitation soln. in this swine model.

REFERENCE COUNT: 41 THERE ARE 41 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 4 OF 8 HCPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 2001:597438 HCPLUS

DOCUMENT NUMBER: 136:289016

TITLE: Pyridoxalated hemoglobin polyoxyethylene conjugate (PHP): a nitric oxide scavenger containing SOD and catalase which reduces hemoprotein-mediated redox reactivity following oxidant challenge

AUTHOR(S): Privalle, Christopher; Keng, Teresa; DeAngelo, Joseph; Talarico, Todd

CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC, 27709-2847, USA

SOURCE: Portland Press Proceedings (2000), 16(Biology of Nitric Oxide, Part 7), 146
CODEN: POPPEF; ISSN: 0966-4068

PUBLISHER: Portland Press Ltd.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The relative susceptibility of pyridoxalated Hb

polyoxyethylene to hydrogen peroxide-mediated oxidns. was studied and compared to other **Hb** (**Hb**) derivs., including human **Hb** (**HbA**), and .alpha..alpha. XL. Exogenous catalase, added to a level typically found in PHP, prevented oxidative modification of **HbA**, which suggested that the resistance to hydrogen peroxide was due to the inherent catalase activity assocd. with PHP. Polyoxyethylene-**HbA**, a PHP deriv. lacking catalase activities, was susceptible to hydrogen peroxide oxidn. Spectral changes demonstrated differences among the various **Hb** derivs., with a rank order: .alpha..alpha.XL>**HbA**, POE-**HbA**>>PHP. PHP was resistant to hydrogen peroxide-mediated iron release, with only 2% of the total iron released by a level of hydrogen peroxide which released 50% of the iron in unmodified **HbA**. These results showed that PHP can reduce the prooxidant potential of **Hb** and suggested that specific modifications may reduce the potential toxicity of **Hb**-based therapeutics. PHP may also provide addnl. clin. benefits in specific applications, such as ischemia reperfusion injury treatment, a component of organ preservation media, and other **Hb**-based oxygen carrier/nitric oxide scavenger-dependent applications.

REFERENCE COUNT: 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 5 OF 8 HCPLUS COPYRIGHT 2002 ACS DUPLICATE 3
 ACCESSION NUMBER: 1999:793451 HCPLUS
 DOCUMENT NUMBER: 132:162551
 TITLE: Chemical characterization of pyridoxalated hemoglobin polyoxyethylene conjugate
 AUTHOR(S): Talarico, T. L.; Guise, K. J.; Stacey, C. J.
 CORPORATE SOURCE: Apex Bioscience Inc., Research Triangle Park, NC, USA
 SOURCE: Biochimica et Biophysica Acta (2000), 1476(1), 53-65
 CODEN: BBACAO; ISSN: 0006-3002
 PUBLISHER: Elsevier Science B.V.
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Pyridoxalated **Hb** polyoxyethylene conjugate (PHP) was developed in the 1980s as an oxygen carrier and is now under development for treatment of nitric oxide-dependent, vol. refractory shock. PHP is made by derivatizing human stroma-free **Hb** with pyridoxal-5-phosphate and polyoxyethylene (POE). A unique aspect of using POE for modification is that unlike its mono-methoxy polyethylene glycol (PEG) relatives, POE is bifunctional. The result of derivatization of stroma-free **Hb** is a complex mixt. of modified **Hb** and other red cell proteins. The mol. wt. profile, based on size exclusion chromatog., is bimodal and has av. mol. wt. of approx. 105,000 and 187,000. The mixt. of **Hb** mols. has on av. 3.3 pyridoxal and 5.0 polyoxyethylene units per tetramer. A portion of the tetramers are linked by POE crosslinks. The **Hb** tetramers retain their ability to dissoc. into dimer pairs and only a small percentage of the dimer pairs are not modified with POE. The SDS-PAGE profile exhibits the ladder-like appearance commonly assocd. with polyethylene glycol-modified proteins. The isoelec. focusing profile is broad, demonstrating a pI range of 5.0-6.5. The hydrodynamic size of PHP

was detd. to be approx. 7.2 nm by dynamic light scattering. Sol. red blood cell proteins, such as catalase, superoxide dismutase, and carbonic anhydrase, are present in PHP and are also modified by POE.

REFERENCE COUNT: 50 THERE ARE 50 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 6 OF 8 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1998:628530 HCPLUS
 DOCUMENT NUMBER: 130:325
 TITLE: Autoxidation of pyridoxalated hemoglobin polyoxyethylene conjugate
 AUTHOR(S): Talarico, Todd; Swank, Adam; Privalle, Chris
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC, USA
 SOURCE: Biochemical and Biophysical Research Communications (1998), 250(2), 354-358
 CODEN: BBRCA9; ISSN: 0006-291X
 PUBLISHER: Academic Press
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Hb-based therapeutics are currently in clin. trials in the United States and abroad as blood replacement solns., nitric oxide scavengers, and radiation sensitizers. The potency of the therapeutics may be influenced by the oxidn. state of the iron in the heme moiety. The oxidn. state is dependent upon the phys. environment of the mol. and is influenced by parameters such as the chem. nature of the Hb therapeutic and its formulation. Pyridoxalated Hb polyoxyethylene conjugate (PHP) is one such compd. currently in clin. trials in the U.S. for treatment of nitric oxide-dependent, vol. refractory shock. The autoxidn. rates for PHP have been detd. over a range of temps. The oxidn. events were shown to be biphasic and were similar to those obsd. for purified human Hb (HbAo). The initial fast oxidn. events were modeled with first order rate consts. at 37 and detd. to be 0.022 h⁻¹ and 0.025 h⁻¹ for PHP and HbAo, resp. The autoxidn. of PHP was shown to be independent of concn. from approx. 5 to 100 mg/mL. (c) 1998 Academic Press.

REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L38 ANSWER 7 OF 8 HCPLUS COPYRIGHT 2002 ACS
 ACCESSION NUMBER: 1998:367271 HCPLUS
 DOCUMENT NUMBER: 129:159633
 TITLE: Interactions of nitric oxide and peroxynitrite with hemoglobin and PHP
 AUTHOR(S): Privalle, C. T.; Talarico, T. L.; Deangelo, J.; Keng, T.
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC, 27709, USA
 SOURCE: Portland Press Proceedings (1998), 15(Biology of Nitric Oxide, Part 6), 302
 CODEN: POPPEF; ISSN: 0966-4068
 PUBLISHER: Portland Press Ltd.
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Effect of NO on metHb and oxyHb levels was studied in HbA vs. pyridoxalated Hb polyoxyethylene (PHP). NO induced loss of oxyHb and a concomitant increase of metHb as a function of NO concn. The NO-induced loss of oxyHb and increase of metHb were similar for HbA and PHP. The possible use of PHP as NO scavenger is discussed.

L38 ANSWER 8 OF 8 HCPLUS COPYRIGHT 2002 ACS DUPLICATE 4
 ACCESSION NUMBER: 1997:393377 HCPLUS
 DOCUMENT NUMBER: 127:86186
 TITLE: Detection of residual polyethylene glycol derivatives in pyridoxylated-hemoglobin -polyoxyethylene conjugate
 AUTHOR(S): Miles, Paul J.; Langley, Kate V.; Stacey, Cyrus J.; Talarico, Todd L.
 CORPORATE SOURCE: Apex Bioscience, Inc., Research Triangle Park, NC, 27709, USA
 SOURCE: Artificial Cells, Blood Substitutes, and Immobilization Biotechnology (1997), 25(3), 315-326
 CODEN: ABSBE4; ISSN: 1073-1199
 PUBLISHER: Dekker
 DOCUMENT TYPE: Journal
 LANGUAGE: English

AB Purified Hb solns. have been shown to cause renal toxicity in animals. Safe use of Hb based therapeutics in humans requires modification of the Hb mol. to prevent this toxicity. Hb modification may be accomplished by crosslinking the dimers within the Hb tetramer or by derivatization of the .alpha. and/or .beta. subunits such that their size and/or charge prevents filtration by the glomeruli. Pyridoxylated Hb polyoxyethylene conjugate (PHP) consists of Hb mols. modified with .alpha.-carboxymethyl, .omega.-carboxymethoxy polyoxyethylene (POE). We have developed a high performance liq. chromatog.-based (HPLC) method which can quantitate residual POE at levels of 0.1 mg/mL or greater. The detection of POE at this level of sensitivity requires the use of an evaporative light scattering detector (ELSD). A differential refractometer may also be used for POE detection, however the limit of quantitation for this detector is approx. 10 fold greater than that obsd. for the evaporative light scattering detector, resulting in a redn. in sensitivity. The successful use of this method requires sample deproteinization using trichloroacetic acid. The reliability of the method has been demonstrated by spike recovery, precision, and reproducibility studies in PHP and buffer solns.

FILE 'HOME' ENTERED AT 11:26:35 ON 17 OCT 2002