CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

 Is there a language that is recognized by a DFA but not by any NFAs?

 Is there a language that is recognized by a DFA but not by any NFAs? No!

- Is there a language that is recognized by a DFA but not by any NFAs? No!
- Is there a language that is recognized by an NFA but not by any DFAs?

- Is there a language that is recognized by a DFA but not by any NFAs? No!
- Is there a language that is recognized by an NFA but not by any DFAs? No!

Main Theorem

Theorem,

A language L is regular if and only if there is an NFA N such that L(N) = L.

Main Theorem

Theorem

A language L is regular if and only if there is an NFA N such that L(N) = L.

In other words:

- For any DFA D, there is an NFA N such that L(N) = L(D), and
- for any NFA N, there is a DFA D such that L(D) = L(N).

Converting DFAs to NFAs

Proposition

For any DFA D, there is an NFA N such that L(N) = L(D).

Proof.

Is a DFA an NFA? Essentially yes! Syntactically, not quite. The formal definition of DFA has $\delta_{\text{DFA}}: Q \times \Sigma \to Q$ whereas $\delta_{\text{NFA}}: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$.

Converting DFAs to NFAs

Proposition

For any DFA D, there is an NFA N such that L(N) = L(D).

Proof.

Is a DFA an NFA? Essentially yes! Syntactically, not quite. The formal definition of DFA has $\delta_{\text{DFA}}: Q \times \Sigma \to Q$ whereas $\delta_{\text{NFA}}: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$.

For DFA $D=(Q,\Sigma,\delta_D,q_0,F)$, define an "equivalent" NFA $N=(Q,\Sigma,\delta_N,q_0,F)$ that has the exact same set of states, initial state and final states. Only difference is in the transition function.

$$\delta_N(q,a) = \{\delta_D(q,a)\}$$

for $a \in \Sigma$ and $\delta_N(q, \epsilon) = \emptyset$ for all $q \in Q$.

Simulating an NFA on Your Computer

NFA Acceptance Problem

Given an NFA N and an input string w, does N accept w?

Simulating an NFA on Your Computer

NFA Acceptance Problem

Given an NFA N and an input string w, does N accept w?

How do we write a computer program to solve the NFA Acceptance problem?

Two Views of Nondeterminsm

Guessing View

At each step, the NFA "guesses" one of the choices available; the NFA will guess an "accepting sequence of choices" if such a one exists.

Parallel View

At each step the machine "forks" threads corresponding to each of the possible next states.

Two Views of Nondeterminsm

Guessing View

At each step, the NFA "guesses" one of the choices available; the NFA will guess an "accepting sequence of choices" if such a one exists.

Very useful in reasoning about NFAs and in designing NFAs.

Parallel View

At each step the machine "forks" threads corresponding to each of the possible next states.

Two Views of Nondeterminsm

Guessing View

At each step, the NFA "guesses" one of the choices available; the NFA will guess an "accepting sequence of choices" if such a one exists.

Very useful in reasoning about NFAs and in designing NFAs.

Parallel View

At each step the machine "forks" threads corresponding to each of the possible next states.

Very useful in simulating/running NFA on inputs.

Algorithm

Keep track of the current state of each of the active threads.

Algorithm

Keep track of the current state of each of the active threads.

Example

Example NFA N

Algorithm

Keep track of the current state of each of the active threads.

Example

Example NFA N

Consider the input w = 111. The execution (listing only the states of currently active threads) is

 $\langle q_0 \rangle$

Algorithm

Keep track of the current state of each of the active threads.

Example

Example NFA N

$$\langle q_0 \rangle \stackrel{1}{\longrightarrow} \langle q_0, q_1 \rangle$$

Algorithm

Keep track of the current state of each of the active threads.

Example

Example NFA N

$$\begin{array}{c} \langle q_0 \rangle \xrightarrow{1} \langle q_0, q_1 \rangle \xrightarrow{1} \langle q_0, q_1, q_1 \rangle \\ \xrightarrow{1} \langle q_0, q_1, q_1, q_1 \rangle \end{array}$$

With optimizations

Observations

 Exponentially growing memory: more threads for longer inputs. Can we do better?

With optimizations

- Exponentially growing memory: more threads for longer inputs. Can we do better?
- Exact order of threads is not important

With optimizations

- Exponentially growing memory: more threads for longer inputs. Can we do better?
- Exact order of threads is not important
 - It is unimportant whether the 5th thread or the 1st thread is in state *q*.

With optimizations

- Exponentially growing memory: more threads for longer inputs. Can we do better?
- Exact order of threads is not important
 - It is unimportant whether the 5^{th} thread or the 1^{st} thread is in state q.
- If two threads are in the same state, then we can ignore one of the threads

With optimizations

- Exponentially growing memory: more threads for longer inputs. Can we do better?
- Exact order of threads is not important
 - It is unimportant whether the 5th thread or the 1st thread is in state q.
- If two threads are in the same state, then we can ignore one of the threads
 - Threads in the same state will "behave" identically; either one
 of the descendent threads of both will reach a final state, or
 none of the descendent threads of both will reach a final state

Example

Example NFA N

Example

Example NFA N

Consider the input w=111. The execution (listing only the states of currently active threads) is

 $\{q_0\}$

Example

Example NFA N

$$\{q_0\} \stackrel{1}{\longrightarrow} \{q_0, q_1\}$$

Example

Example NFA N

$$\{q_0\} \stackrel{1}{\longrightarrow} \{q_0,q_1\} \stackrel{1}{\longrightarrow} \{q_0,q_1\}$$

Example

Example NFA N

$$\begin{cases} q_0 \end{cases} \xrightarrow{1} \left\{ q_0, q_1 \right\} \xrightarrow{1} \left\{ q_0, q_1 \right\}$$
$$\xrightarrow{1} \left\{ q_0, q_1 \right\}$$

Revisiting NFA Simulation Algorithm

- Need to keep track of the states of the active threads
 - Unordered: Without worrying about exactly which thread is in what state
 - No Duplicates: Keeping only one copy if there are multiple threads in same state

Revisiting NFA Simulation Algorithm

- Need to keep track of the states of the active threads
 - Unordered: Without worrying about exactly which thread is in what state
 - No Duplicates: Keeping only one copy if there are multiple threads in same state
- How much memory is needed?

Revisiting NFA Simulation Algorithm

- Need to keep track of the states of the active threads
 - Unordered: Without worrying about exactly which thread is in what state
 - No Duplicates: Keeping only one copy if there are multiple threads in same state
- How much memory is needed?
 - If Q is the set of states of the NFA N, then we need to keep a subset of Q!
 - Can be done in |Q| bits of memory (i.e., $2^{|Q|}$ states), which is finite!!

The DFA runs the simulation algorithm

- The DFA runs the simulation algorithm
- DFA remembers the current states of active threads without duplicates, i.e., maintains a subset of states of the NFA

- The DFA runs the simulation algorithm
- DFA remembers the current states of active threads without duplicates, i.e., maintains a subset of states of the NFA
- When a new symbol is read, it updates the states of the active threads

- The DFA runs the simulation algorithm
- DFA remembers the current states of active threads without duplicates, i.e., maintains a subset of states of the NFA
- When a new symbol is read, it updates the states of the active threads
- Accepts whenever one of the threads is in a final state

Example of Equivalent DFA

Example NFA $\it N$

Example of Equivalent DFA

Example NFA N

DFA D equivalent to N

Recall ...

Definition

For an NFA $M=(Q,\Sigma,\delta,q_0,F)$, string w, and state $q_1\in Q$, we say $\hat{\Delta}(q_1,w)$ to denote states of all the active threads of computation on input w from q_1 .

Recall ...

Definition

For an NFA $M=(Q,\Sigma,\delta,q_0,F)$, string w, and state $q_1\in Q$, we say $\hat{\Delta}(q_1,w)$ to denote states of all the active threads of computation on input w from q_1 . Formally,

$$\hat{\Delta}(q_1, w) = \{q \in Q \mid q_1 \stackrel{w}{\longrightarrow}_M q\}$$

- Q' =
- $q_0' =$
- F' =

- $Q' = \mathcal{P}(Q)$
- $q_0' =$
- *F*′ =

- $Q' = \mathcal{P}(Q)$
- $q_0' = \hat{\Delta}(q_0, \epsilon)$
- F' =

- $Q' = \mathcal{P}(Q)$
- $ullet q_0' = \hat{\Delta}(q_0,\epsilon)$
- $F' = \{A \subseteq Q \mid A \cap F \neq \emptyset\}$

- $Q' = \mathcal{P}(Q)$
- $q_0' = \hat{\Delta}(q_0, \epsilon)$
- $F' = \{A \subseteq Q \mid A \cap F \neq \emptyset\}$
- $\bullet \ \delta'(\{q_1,q_2,\ldots q_k\},a) = \hat{\Delta}(q_1,a) \cup \hat{\Delta}(q_2,a) \cup \cdots \cup \hat{\Delta}(q_k,a)$

- $Q' = \mathcal{P}(Q)$
- $q_0' = \hat{\Delta}(q_0, \epsilon)$
- $F' = \{A \subseteq Q \mid A \cap F \neq \emptyset\}$
- $\bullet \ \delta'(\{q_1,q_2,\ldots q_k\},a) = \hat{\Delta}(q_1,a) \cup \hat{\Delta}(q_2,a) \cup \cdots \cup \hat{\Delta}(q_k,a)$

- $Q' = \mathcal{P}(Q)$
- $\bullet \ \ q_0' = \hat{\Delta}(q_0,\epsilon)$
- $F' = \{A \subseteq Q \mid A \cap F \neq \emptyset\}$
- $\delta'(\{q_1,q_2,\ldots q_k\},a)=\hat{\Delta}(q_1,a)\cup\hat{\Delta}(q_2,a)\cup\cdots\cup\hat{\Delta}(q_k,a)$ or more concisely,

$$\delta'(A,a) = \bigcup_{q \in A} \hat{\Delta}(q,a)$$

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Proof Idea

Need to show

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Proof Idea

Need to show

 $\forall w \in \Sigma^*$. det(N) accepts w iff N accepts w

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Proof Idea

Need to show

$$\forall w \in \Sigma^*$$
. $\det(N)$ accepts w iff N accepts w $\forall w \in \Sigma^*$. $\hat{\delta}(q'_0, w) \in F'$ iff $\hat{\Delta}(q_0, w) \cap F \neq \emptyset$

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Proof Idea

Need to show

 $\forall w \in \Sigma^*. \ \det(N) \ \text{accepts} \ w \ \text{iff} \ N \ \text{accepts} \ w \\ \forall w \in \Sigma^*. \hat{\delta}(q_0', w) \in F' \ \text{iff} \ \hat{\Delta}(q_0, w) \cap F \neq \emptyset \\ \forall w \in \Sigma^*. \ \text{for} \ A = \hat{\delta}(q_0', w), \ A \cap F \neq \emptyset \ \text{iff} \ \hat{\Delta}(q_0, w) \cap F \neq \emptyset$

Lemma

For any NFA N, the DFA $\det(N)$ is equivalent to it, i.e., $L(N) = L(\det(N))$.

Proof Idea

Need to show

$$\forall w \in \Sigma^*. \ \det(N) \ \text{accepts} \ w \ \text{iff} \ N \ \text{accepts} \ w \\ \forall w \in \Sigma^*. \hat{\delta}(q_0', w) \in F' \ \text{iff} \ \hat{\Delta}(q_0, w) \cap F \neq \emptyset \\ \forall w \in \Sigma^*. \ \text{for} \ A = \hat{\delta}(q_0', w), \ A \cap F \neq \emptyset \ \text{iff} \ \hat{\Delta}(q_0, w) \cap F \neq \emptyset$$

We will instead prove the stronger claim $\forall w \in \Sigma^*$. $\hat{\delta}(q'_0, w) = A$ iff $\hat{\Delta}(q_0, w) = A$.

Lemma

$$\forall w \in \Sigma^*$$
. $\hat{\delta}(q'_0, w) = A$ iff $\hat{\Delta}(q_0, w) = A$.

Proof.

By induction on |w|

• Base Case |w| = 0: Then $w = \epsilon$. Now

$$\hat{\delta}(q_0',\epsilon)=q_0'$$

defn. of $\hat{\delta}$

• Induction Hypothesis: Assume inductively that the statement holds $\forall w$. |w| = n $\cdots \rightarrow$

Lemma

$$\forall w \in \Sigma^*$$
. $\hat{\delta}(q'_0, w) = A$ iff $\hat{\Delta}(q_0, w) = A$.

Proof.

By induction on |w|

• Base Case |w| = 0: Then $w = \epsilon$. Now

$$\hat{\delta}(q_0',\epsilon)=q_0'$$
 defn. of $\hat{\delta}$
$$=\hat{\Delta}(q_0,\epsilon)$$
 defn. of q_0'

• Induction Hypothesis: Assume inductively that the statement holds $\forall w$. |w| = n $\cdots \rightarrow$

Induction Step

Proof (contd).

• Induction Step: If |w| = n + 1 then w = ua with |u| = n and $a \in \Sigma$.

$$\hat{\delta}(q_0', ua) = \delta(\hat{\delta}(q_0', u), a)$$

defn. of $\hat{\delta}$

Induction Step

Proof (contd).

• Induction Step: If |w| = n + 1 then w = ua with |u| = n and $a \in \Sigma$.

$$\hat{\delta}(q_0',ua) = \delta(\hat{\delta}(q_0',u),a)$$
 defn. of $\hat{\delta}$ $= \delta(\hat{\Delta}(q_0,u),a)$ ind. hyp.

Induction Step

Proof (contd).

• Induction Step: If |w| = n + 1 then w = ua with |u| = n and $a \in \Sigma$.

$$\hat{\delta}(q_0',ua) = \delta(\hat{\delta}(q_0',u),a)$$
 defn. of $\hat{\delta}$
$$= \delta(\hat{\Delta}(q_0,u),a)$$
 ind. hyp.
$$= \bigcup_{q \in \hat{\Delta}(q_0,u)} \hat{\Delta}(q,a)$$
 defn. of δ

Induction Step

Proof (contd).

• Induction Step: If |w| = n + 1 then w = ua with |u| = n and $a \in \Sigma$.

$$\hat{\delta}(q_0',ua) = \delta(\hat{\delta}(q_0',u),a)$$
 defn. of $\hat{\delta}$
$$= \delta(\hat{\Delta}(q_0,u),a)$$
 ind. hyp.
$$= \bigcup_{q \in \hat{\Delta}(q_0,u)} \hat{\Delta}(q,a)$$
 defn. of δ
$$= \hat{\Delta}(q_0,ua)$$
 prop. about $\hat{\Delta}$

Another Example

Example NFA N_{ϵ}

DFA D'_{ϵ} for N_{ϵ} (only relevant states)