IFT 2505 Programmation Linéaire Stratégies de points intérieurs

Fabian Bastin DIRO Université de Montréal

Stratégies de solution en points intérieurs

Trois grandes approches, suivant les différences dans les définitions du chemin central :

- 1. barrière primale, méthode de poursuite de chemin,
- 2. méthode primale-duale de poursuite de chemin,
- 3. méthode primale-duale de réduction de potentiel.

Caractéristiques

	R-P	R-D	Saut nul
simplexe primal	Х		X
simplexe dual		X	Χ
barrière primale	Χ		
poursuite de chemin primale-duale	Χ	Χ	
réduction de potentiel primale-duale	X	X	
R : réalisabilité, P : primal, D : dual	ı		

Nous partons du problème primal barrière

$$\min_{x} c^{T}x - \mu \sum_{j=1}^{n} \log x_{j}$$
s.à. $Ax = b$
 $x > 0$.

Nous voudrions le résoudre pour μ petit.

Par exemple, $\mu=\epsilon/n$ permet d'obtenir un saut de dualité inférieur à ϵ .

Souci : difficile de résoudre pour μ proche de 0.

Une stratégie générale est de commencer avec μ modérément large (p.e. $\mu=100$) et de résoudre le problème approximativement.

La solution correspondante est approximativement sur le chemin central primal, mais probablement assez loin du point correspondant à $\mu \to 0$.

Ce point ne servira que de point de départ pour le problème avec un μ plus petit.

Typiquement, on mettra à jour μ de l'itération k à l'itération k+1 comme

$$\mu_{k+1} = \gamma \mu_k,$$

pour 0 < $\gamma < 1$ fixé.

Si on commence avec une valeur μ_0 , à l'itération k,

$$\mu_k = \gamma^k \mu_0,$$

Dès, réduire μ_k/μ_0 sous ϵ requiert

$$k = \left\lceil \frac{\log \epsilon}{\log \gamma} \right\rceil.$$

Souvent, une variante de la méthode de Newton est utilisée pour résoudre les sous-problèmes ainsi construits :

$$egin{aligned} oldsymbol{x} \circ oldsymbol{s} &= \mu oldsymbol{1} \ oldsymbol{A} oldsymbol{x} &= oldsymbol{b} \ oldsymbol{A}^{ au} oldsymbol{y} + oldsymbol{s} &= oldsymbol{c} \end{aligned}$$

Système d'équation non linéaires : méthode de Newton

Considérons le système d'équations non linéaires

$$F(\mathbf{x}) = 0$$

avec $F: \mathbb{R}^n \to \mathbb{R}^m$.

En partant d'un point x_0 , la méthode de Newton construit une suite d'itérés à partir de la récurrence

$$\mathbf{x}_{k+1} = \mathbf{x}_k - J^{-1}(\mathbf{x}_k)F(\mathbf{x}_k)$$

où $J(x_k)$ est le Jacobien de f :

$$J(\mathbf{x}) = \begin{pmatrix} \nabla_{\mathbf{x}}^T f_1(\mathbf{x}) \\ \nabla_{\mathbf{x}}^T f_2(\mathbf{x}) \\ \vdots \\ \nabla_{\mathbf{x}}^T f_n(\mathbf{x}) \end{pmatrix}$$

La méthode converge si on est suffisamment proche du zéro de la fonction.

Etant donné un point $x \in \mathring{\mathcal{F}}_P$, la méthode de Newton consistera à chercher des direction \mathbf{d}_x , \mathbf{d}_y et \mathbf{d}_s à partir du système

$$\mu \mathbf{X}^{-2} \mathbf{d}_x + \mathbf{d}_s = \mu \mathbf{X}^{-1} \mathbf{1} - \mathbf{c}$$

$$\mathbf{A} \mathbf{d}_x = \mathbf{0}$$

$$-\mathbf{A}^T \mathbf{d}_y + \mathbf{d}_s = 0$$

On construit le nouveau point comme

$$x^+ = x + d_x$$
.

Si $\mathbf{x} \circ \mathbf{s} = \mu \mathbf{1}$ pour un certain $\mathbf{s} = \mathbf{c} - \mathbf{A}^T \mathbf{y}$, alors $\mathbf{d} \equiv (\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_s) = 0$.

Si une composante de $\mathbf{x} \circ \mathbf{s}$ est plus petite que μ , l'approche tendera à augmenter cette composante, et inversément si la composante est plus grande que μ .

La méthode marche relativement bien si μ est modérément grand, ou si l'algorithme est démarré avec un point proche de la la solution.

Pour trouver $(\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_s)$, prémultiplions les deux côtés de la première égalité du système de Newton par \mathbf{X}^2 :

$$\mu \mathbf{d}_{\mathsf{X}} + \mathbf{X}^2 \mathbf{d}_{\mathsf{s}} = \mu \mathbf{X} \mathbf{1} - \mathbf{X}^2 \mathbf{c}.$$

En prémultipliant par \boldsymbol{A} et en utilisant $\boldsymbol{A}d_x = \boldsymbol{0}$, nous avons

$$\mathbf{A}\mathbf{X}^2\mathbf{d}_s = \mu\mathbf{A}\mathbf{X}\mathbf{1} - \mathbf{A}\mathbf{X}^2\mathbf{c}.$$

Comme $\boldsymbol{d}_s = \boldsymbol{A}^T \boldsymbol{d}_y$, nous avons

$$\mathbf{A}\mathbf{X}^2\mathbf{A}^T\mathbf{d}_y = \mu \mathbf{A}\mathbf{X}\mathbf{1} - \mathbf{A}\mathbf{X}^2\mathbf{c}.$$

On en tire d_y , et de là, d_s puis d_x .

Algorithme général

Etape 1 Choisir μ_0 et un point de départ (x_0, y_0, s_0) , tel que

$$Ax_0 = b$$
$$A^T y_0 + s_0 = c^T$$

et $y_0, s_0 \ge 0$, $x_0 > 0$. Poser k = 0, et choisir mu_0 , ϵ .

Etape 2 Projeter x_k sur le chemin central avec la méthode de Newton : calculer le vecteur (d_x, d_y, d_s) et poser

$$x_{k+1} = x_k + d_x$$

$$y_{k+1} = y_k + d_y$$

$$s_{k+1} = s_k + d_s$$

Si $\mu_k < \epsilon$, arrête. Sinon, définir $\mu_{k+1} = \gamma \mu_k$, poser k := k+1, et retourner au début de l'étape 2.