Learning Machine Learning with Kaggle Challenges

(2) Classification

Qiyang Hu UCLA IDRE October 31, 2019

Quick Recap

The Series's Github Repo

https://github.com/huqy/idre learning machine learning

Before running the colab demos in this series

- 1. Register a Kaggle account
 - a. Kaggle.com → "Register"
 - b. You can email me your kaggle username so that I can add you to a team for challenges.
- 2. Create Kaggle API token and download json file
 - a. Sign in → Your Profile → "My Account" → "Create New API Token"
- 3. Join the 2 competitions → "Join Competition"
 - a. <u>Titantic Challenge</u>
 - b. <u>Dogs-vs-Cats Challenge</u>
- 4. Get/run the colab files
 - a. Just follow the links in the github repo readme page.

Titanic Kaggle Challenge

To predict the survival or the death of a given passenger in Titanic

- Titanic Facts:
 - Survivors
 - 492 passagers
 - 214 crews
 - Victims
 - 832 passagers
 - 685 crews
 - Death causes: drowning, hypothermia, injury, suicide, ...
 - List of deaths

Workflow for a machine learning project

Step 1. Data Prep:

- The most time-consuming but the most creative job
 - Take > 80% time
 - Require experience
 - May need domain expertise
- Determines the upper limit for the goodness of ML
 - Models/Algorithms: just approach the upper limit

Survey from Forbes in 2017 (<u>Data Source</u>)

What we will do in Step 1

- Get the data
- 2. Know the data (Exploratory Data Analysis)
- 3. Feature Engineering
- 4. Feature Selection (use the feature importance property of the model)

In Kaggle's training dataset: 891 passengers, 12 columns (features)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Feature Engineering

- Transforming raw data into features with a good representation
- Techniques used in our work:
 - Imputation (almost every column)
 - One-hot encoding (embarked, cabin, pclass, ticket, etc)
 - Label binarization (sex)
 - Binning and grouping (family info)
 - Scaling: standardization and normalization (age, fare, family size)
 - Splitting the features (title from name, etc)

Workflow for a machine learning project

Regression: linear models

- Regression: model output as continuous variable(s)
 - For estimating or predicting a response
 - Real problems: predicting prices, controlling self-driving car, etc.
- Linear Regression:
 - \circ Fitting the data into a straight line $y = \sum_i w_i x_i + b_i$
 - In Scikit learn:
 - sklearn.linear model.LinearRegression
- Polynomial Regression:
 - Treated as linear regression
 - In Scikit Learn:
 - sklearn.preprocessing.PolynomialFeatures
 - sklearn.pipeline.make pipeline

Classification: linear models from logistic regression

- Classification: model output as discrete variable (class labels)
 - For identifying group membership(s)
 - Examples: handwritten recognition, spam filtering, disease diagnosis
- Logistic Regression:
 - Fitting the data linearly separable
 - Linear model + Sigmoid function

$$y=\sigma(z)=rac{1}{1+e^{-z}}=\sigma\Bigl(\sum_i w_i x_i+b\Bigr)$$

- Scikit Learn:
 - <u>sklearn.linear model.LogisticRegression</u>

- Binary classification: defining a threshold to map logistic regression
 - Logistic regression give probability

Multi-class Classification

- Multinomial logistic regression (Softmax Regression):
 - Softmax to amplify
 - Different from Sigmoid
 - Mathematically it gives the posterior probabilities that represents a categorical distribution.
 - Commonly used as the last layer in neural networks

$$y_i = rac{e^{z^{(i)}}}{\sum_{j=0}^K e^{z^{(j)}}}$$

Screenshot From the youtube clip

Other Classification methods

K Nearest Neighbor

Figure from post

Other Classification methods

Decision Tree

Support Vector Machine

Figure source

For more tutorials: annalyzin,wordpress.com

Figure source

Workflow for a machine learning project

How to measure the performance of the model?

- General name: objective function
- Measure the misfit of the model as a function of parameters
 - Criterion is to *minimize* the error functions
 - Loss Function: for a single training example
 - Cost Function: over the entire or mini-batch training set
- Evaluate the probability of generating training set
 - Criterion is to *maximize* the distribution likelihood as a function of parameters
 - o Maximum (log)-likelihood estimation
- Regression losses and classification losses

Common loss functions

Regression Loss

- \circ Mean Square Error / Quadratic Loss / L2 Loss: $L_{MSE} = rac{\sum_{i=1}^{n}(y_i \hat{y}_i)^2}{n}$
- Mean Absolute Error / L1 Loss: $L_{MAE} = rac{\sum_{i=1}^{n} |y_i \hat{y}_i|}{n}$

Classification Loss

- \circ Hinge Loss / Multi class SVM Loss: $L_{Hinge} = \Sigma_{j
 eq y_i} \max(0, 1 + s_j s_{y_i})$
- Cross Entropy Loss / Log Loss / Negative Log Likelihood:

$$L_{CEL} = -[y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i)]$$

ML Optimization Algorithm

- Gradient Descent (a 1st-order approach) $\theta \leftarrow \theta \alpha \nabla J(\theta)$
 - Most popular algorithm
 - Pros: simple and fast
 - Cons: sometimes hard to tune

Source Link

Many Gradient Descent Variations

- Stochastic GD / Mini-Batch GD
- Classical Momentum (CM)
- Nesterov's Accelerated Gradient (NAG)
- AdaGrad
- AdaDelta
- RMSprop (animation <u>source</u>) →
- ADAM (as default in many libs)
- AdaBound/AmsBound (ICLR 2019)

Higher Order Optimization Algorithm

Newton-like methods (2nd-order methods)

$$heta \longleftarrow heta - rac{\ell'(heta)}{\ell''(heta)}$$

- o Prons:
 - Fewer iterations (quadratic convergence)
 - Fewer hyperparameters
- Cons:
 - Much more costly in each iteration
 - Need more storing
- o BFGS/L-BFGS: a quasi-newton one
 - Good for low dimensional models
- CG (Conjugate gradient)
 - moderately high dimensional models

Figure from Wikipedia

Workflow for a machine learning project

Underfitting and Overfitting

- Underfitting: model too simple:
 - O Diagnose:
 - cannot even fit the training data
 - training error ~ testing error
 - Ignore the variance in training data
 - Higher prediction bias
- Overfitting: model too complex
 - Diagnose:
 - well-fit for training data
 - large error for testing data
 - Over-interpret training data
 - More deviation from new data

How to prevent underfitting?

- Redesign the model
- Increase model's complexity
- Add more features as input
- Training longer
- More data will <u>not</u> help

How to prevent overfitting?

- Get more data
 - Collect more data
 - Data augmentation
- Reduce the model's complexity
- Regularization
 - Weight Regularization to make the model smoother (L1, L2, Elastic net)

$$\hat{L}(x,y) = L(x,y) + \lambda \sum_{i=1}^n heta_i^2$$

- Dropout
- Early stopping

Model Selection: K-fold Cross Validation

Errors/scores in practice

			Public		Private	
Training Set	Validation Set		Testing Set		Testing Set	
Error:	$oldsymbol{E}^{val}$	<	E^{Pub}	<	E^{Pri}	
Score:	S^{val}	>	S^{Pub}	>	S^{Pri}	

Ensemble Methods: wisdom of crowd

- Bagging (bootstrap aggregating)
 - To decrease the bias to avoid <u>overfitting</u> for "strong" models
 - Decision tree -> Random Forest
 - o Partitioning the data randomly to have *parallel* ensemble: each model is built independently
 - Out-of-Bag evaluation for validation
- Boosting (hypothesis boosting)
 - To decrease the bias to avoid <u>underfitting</u> for "weak" models
 - Sequential ensemble: try to add new models that do well where previous models lack
 - o 3 major methods:
 - AdaBoost, Gradient Boost, XGBoost
- Stacking
 - Add a higher-level of classifier to decide weights between strong and weak models

Don't forget to

- Sign in your info to the class
 - To get the email notifications
- Email me your Kaggle username
 - For joining the IDRE_LML team
- Contact me for questions or discussions
 - huqy@idre.ucla.edu
 - Office: Math Sci #3330
 - o Phone: 310-825-2011

- Fill out the survey for comments:
 - https://forms.gle/t3f8CztFQpeFFksy6

