BD10LR Sterownik silników DC BLDC

Wskazówki bezpieczeństwa

Przed pierwszym uruchomieniem urządzenia, prosimy o uważne przeczytanie niniejszej instrukcji obsługi.

UWAGA!!! Każda maszyna jest potencjalnie niebezpieczna. Obrabiarki sterowane numerycznie mogą stwarzać większe zagrożenie od manualnych. Poruszające się elementy systemu narażają operatora na niebezpieczeństwo. Unikaj z nimi kontaktu oraz zachowaj bezpieczny odstęp kiedy podane jest napięcie zasilania. To użytkownik odpowiedzialny jest za finalną aplikację. Powinien On zadbać o to, aby maszyna była zrealizowana zgodnie z obowiązującymi normami.

Moduły przeznaczone do zabudowy mogą być stosowane i obsługiwane tylko wtedy, gdy zostaną umieszczone w odpowiedniej osłonie.

W miejscach, w których wystąpienie błędu w systemie automatyki może być przyczyną okaleczenia osób, uszkodzenia urządzeń lub spowodowania wysokich strat finansowych muszą być zastosowane dodatkowe środki ostrożności. Zagwarantują one bezpieczne działanie obrabiarki w przypadku wystąpienia uszkodzenia lub zakłócenia (np. niezależne wyłączniki krańcowe, blokady mechaniczne itd.). Producent oraz dystrybutorzy nie ponoszą odpowiedzialności za straty finansowe oraz doznane obrażenia wynikające z niewłaściwego i niezgodnego z przeznaczeniem eksploatowaniem urządzenia.

Opis sterownika:

BD10LR to wysokowydajny sterownik bezszczotkowego silnika prądu stałego oparty na cyfrowym procesorze sygnałowym (DSP). Dzięki w pełni cyfrowemu projektowi, sterownik oferuje elastyczne i różnorodne metody kontroli wejściowej oraz kompletne funkcje ochrony sprzętowej i programowej. Sterownik może być podłączony do komputera za pomocą interfejsu komunikacyjnego RS-485, co umożliwia regulację parametrów, takich jak parametry ochrony, parametry silnika, czas przyspieszania i zwalniania.

Funkcje:

- Ustawienie czasu przyspieszania i zwalniania
- Wybór liczby biegunów silnika
- Praca w pętli otwartej/zamkniętej
- Ustawienie maksymalnego prądu wyjściowego
- Zachowanie momentu obrotowego silnika przy zablokowaniu
- Różne wskazania alarmów
- Wbudowany potencjometr RV do regulacji prędkości
- Zewnętrzny potencjometr do regulacji prędkości
- Zewnętrzny sygnał analogowy do regulacji prędkości
- Regulacja prędkości za pomocą PWM
- Kontrola komunikacji RS-485
- Automatyczny reset i restart po alarmie

Eksploatacja sterownika

Kompletny system BLDC powinien zawierać silnik, zasilanie i sterownik BLD. Sterowanie możemy zrealizować za pomocą ręcznych przycisków i potencjometru, lub za pomocą sterownika PLC, układu przekaźnikowego lub mikrokontrolera.

Wymiary(mm):

Parametr	Minimum	Typowo	Maksimum	Jednostka	
Napięcie wejściowe	10	24	60	VDC	
Prąd wyjściowy	1	8	15	A	
Zakres prędkości silnika	100	3000	20000	RPM	
Ochrona przed niskim napięciem	9			VDC	
Ochrona przed nadmiernym napięciem			60	VDC	
Metody regulacji prędkości	 Wejście analogowe 0-5VDC Wejście PWM 0-100% (zakres częstotliwości PWM: 1KHz-20KHz) Regulacja prędkości za pomocą zewnętrznego potencjometru Ustawienia poprzez komunikację RS-485 				
Ochrona przed nadmiernym prądem	Występuje, gdy prąd przekracza ustawioną wartość prądu roboczego i trwa przez określony czas				
Ochrona przed niskim napięciem	Występuje, gdy napięcie jest niższe niż 9V				
Ochrona przed nadmiernym napięciem	Występuje, gdy napięcie przekracza 60V				
Status czujnika Halla	Sygnał z czujnika poza normą				
Ustawienie czasu hamowania i	i Czas hamowania i przyśpieszania może być ustawiony za pomocą			• •	
przyśpieszania	oprogramowania na komputerze przez parametry Modbus RS485				

Wskazania środowiskowe:

Czynnik
środowiskowy

Metoda chłodzenia
Chłodzenie naturalne lub
wymuszone
Miejsce
użytkowania
Unikać pyłu, oleju i gazów
korozyjnych

	Temperatura pracy	10°C-+50°C
	Wilgotność otoczenia	90% RH (bez kondensacji)
	Wibracje	5.7m/s²max
	Temperatura przechowywania	0℃-+50℃
Interfejs sterownika i schemat p	ołączeń:	

Interfejs sterownika

Opis złącza sygnału:

Opis ziącza Sygnał	Złącze	Opis		
	ALM	Silnik lub sterownik kontroluje wyjście sygnału błędu, które normalnie wynosi 5V, a poziom wynosi 0V, gdy występuje błąd.		
Sygnał wyjściowy	SPEED	Odpowiadająca prędkości pracy silnika jest wyjściowa częstotliwość impulsów. Przy użyciu sygnału PG, można obliczyć prędkość silnika. Wzór obliczeniowy to: N(obrotów/min) = (F/P) * 60 / 3 F: Częstotliwość wyjściowych impulsów (Hz); P: Logarytm stopnia silnika; N: Prędkość silnika		
		Na przykład: silnik 4-biegunowy F = 1 sek / 2 ms = 500 Hz N (obrotów/min) = (500/4) * 60 / 3 = 2500		
	BRK	Gdy zaciski BRK i COM są rozłączone lub wprowadzany jest sygnał wysoki, hamulec silnika zatrzymuje się. Gdy silnik jest zwarciem lub wprowadzany jest sygnał niski, silnik działa.		
	EN	Gdy zacisk EN jest rozłączony z zaciskiem GND lub wprowadzany jest sygnał wysoki, silnik powoli się zatrzymuje. Gdy wprowadzane jest zwarcie lub sygnał niski, silnik działa.		
Sygnał sterujący	F/R	Gdy zacisk F/R jest zwarciem z zaciskiem GND lub wprowadzany jest sygnał wysoki, silnik obraca się do przodu, a gdy wprowadzane jest zwarcie lub sygnał niski, silnik obraca się wstecz.		
	GND	Port wspólny (poziom odniesienia 0V)		
	SV	①zewnętrzny potencjometr prędkości ②zewnętrzny sygnał analogowy ③wejście sygnału PWM		
	+5V Zasilanie potencjometru DC5V			
	A+	Komunikacja RS485		
	B+	Komunikacja RS485		
-	VCC	Zasilanie czujnika Halla		
Sygnał Hall	HU	Hall fazy U silnika BLDC.		
11411	HV	Hall fazy V silnika BLDC.		

- 4 -

	HW	Hall fazy W silnika BLDC.
	GNC	Masa czujnika Halla
		Faza U silnika BLDC.
Podłączenie silnika	V	Faza V silnika BLDC.
Sillika	W	Faza W silnika BLDC.
Podłączenie	DC-	Wejście zasilania DC na biegun ujemny
zasilania	DC+	Wejście zasilania DC na biegun dodatni. (Zakres napięcia DC24V-DC60V)

Podłączenie sygnałów wyjściowych

Funkcja restartu po alarmie

Gdy silnik jest zablokowany, napęd zatrzyma się na 3 sekundy, a następnie napęd automatycznie się uruchomi. Po ponownym uruchomieniu, jeśli wystąpi kolejna usterka, zostanie uruchomiony alarm, aktywuje się funkcja ochrony i napęd przestanie działać.

Start i stop (EN)

Fabryczne ustawienie zacisków EN i GND to otwarcie zacisków EN i GND. Gdy zasilanie jest włączone, silnik nie działa. Wymaga podłączenia zarówno EN, jak i BRK do GND, aby działać. Podłączanie lub odłączanie zacisków EN i GND kontroluje uruchamianie i zatrzymywanie silnika. Silnik uruchamia się, gdy zacisk EN i zacisk GND są połączone. W przeciwnym razie silnik zwalnia i zatrzymuje się.

◆ Poprzez podłączenie przełącznika między EN i GND lub użycie PLC do kontroli jego włączania i wyłączania, można zrealizować przełączanie między uruchamianiem i zatrzymywaniem silnika.

Szybkie zatrzymanie (BRK)

Fabryczne ustawienie zacisku BRK i zacisku GND to otwarcie zacisków BRK i GND. Gdy zasilanie jest włączone, silnik nie działa. Wymaga podłączenia zarówno EN, jak i BRK do GND, aby działać. Podłączanie lub odłączanie zacisków BRK i GND kontroluje uruchamianie i szybkie zatrzymywanie silnika. Po odłączeniu przewodu łączącego zacisk BRK i zacisk GND, silnik szybko się zatrzymuje.

- ◆ Poprzez podłączenie przełącznika między BRK i GND lub użycie PLC do kontroli jego włączania i wyłączania, można zrealizować przełączanie między uruchamianiem silnika a szybkim zatrzymaniem.. Różnica między EN i BRK oraz ich opcje użycia:
 - (1) Kontrola EN to naturalne zatrzymanie; Kontrola BRK to szybkie zatrzymanie

- (2) Kontrole EN i BRK mają ten sam stan początkowy.
- 3 Gdy wybrany jest jeden z trybów EN lub BRK do kontrolowania uruchamiania i zatrzymywania, okablowanie drugiego trybu powinno być zachowane w stanie połączonym.

Kontrola kierunku (F/R)

Fabryczne ustawienie zacisku F/R i zacisku GND to brak połączenia między zaciskiem F/R i zaciskiem GND. Gdy zasilanie jest włączone, silnik obraca się do przodu. Podłączanie lub odłączanie zacisków F/R i GND kontroluje obroty silnika do przodu i do tyłu. Po odłączeniu zacisku F/R i zacisku GND, silnik obraca się w przeciwnym kierunku. Gdy połączony jest przewód między zaciskiem F/R i zaciskiem GND, silnik obraca się do przodu. Wybór i ustawienie trybu regulacji prędkości:

Regulacja prędkości za pomocą wbudowanego potencjometru RV

Obróć wbudowany potencjometr prędkości RV zgodnie z ruchem wskazówek zegara, a silnik zacznie działać. Kontynuując obracanie zgodnie z ruchem wskazówek zegara, prędkość silnika wzrasta. Obróć wbudowany potencjometr prędkości RV przeciwnie do ruchu wskazówek zegara, aby zmniejszyć prędkość silnika; kontynuując obracanie przeciwnie do ruchu wskazówek zegara do minimalnej pozycji granicznej, w tym momencie wbudowany potencjometr regulacji prędkości RV zostaje zamknięty i silnik przestaje działać.

Użycie zewnętrznego potencjometru w celu regulacji prędkości

Podczas używania zewnętrznego potencjometru do regulacji prędkości, proszę użyć odpowiedniego potencjometru o wartości rezystancji $10~k\Omega$. Środkowy terminal potencjometru jest podłączony do terminala SV, a terminale po obu stronach są odpowiednio podłączone do terminali 5V i GND.

Gdy napięcie wejściowe wynosi około 0,2V, prędkość silnika wynosi 5% maksymalnej prędkości; gdy napięcie wejściowe wynosi około 5V, prędkość silnika jest maksymalna. Wartość maksymalnej prędkości zależy od rozmiaru silnika i napięcia zasilania.

Używanie sterowania prędkością PWM (zewnętrzne sterowanie prędkością analogową)

Kiedy konieczne jest przełączenie na tryb sterowania prędkością za pomocą zewnętrznego wejścia SV, wbudowany potencjometr RV musi być obrócony w lewo do minimalnego stanu. To znaczy, że należy obrócić wbudowany potencjometr RV w kierunku przeciwnym do wskazówek zegara do pozycji granicznej.

Sterowanie prędkością PWM lub port wejścia analogowego:, gdy cykl pracy wynosi 4%, prędkość silnika wynosi 4% maksymalnej prędkości; gdy cykl pracy wynosi 100%, prędkość silnika jest maksymalna. Wartość maksymalnej prędkości zależy od rozmiaru silnika i napięcia zasilania.

Wskaźnik statusu. Obsługa wyjątków:

Wskaźnik statusu

Gdy wystąpią takie problemy jak przeciążenie prądem, błąd wejścia Hall, zablokowanie, przegrzanie, przepięcie itp., sterownik wyśle sygnał alarmowy.

W tym czasie wyjście alarmu uszkodzenia (ALM) i wspólny terminal (COM) zostaną włączone, co spowoduje, że wyjście alarmu uszkodzenia (ALM) stanie się niskie, jednocześnie sterownik przestanie działać, a lampka alarmowa zacznie migać.

Wskaźnik statusu	Opis statusu	Wskazania diody LED
Czerwona lampka miga 2 razy	Za wysokie napięcie	0N 1S 5S
Czerwona lampka miga 3 razy	Zasilanie – przekroczenie prądu	0N 1S 5S
Czerwona lampka miga 4 razy	Za wysoki prąd	0N 1S 5S
Czerwona lampka miga 5 razy	Zbyt niskie napięcie	0N 1S 5S
Czerwona lampka miga 6 razy	Błąd czujnika Halla	0N 1S 5S
Czerwona lampka miga 7 razy	Zablokowanie silnika	0N 1S 5S
Czerwona lampka miga 8 razy	Dwa lub więcej alarmów	0N 1S 5S 0FF 1S

Obsługa wyjątków

Wskaźnik statusu	Opis statusu	Rozwiązanie
Czerwona lampka miga 2 razy	Za wysokie napięcie	Proszę sprawdzić napięcie magistrali.
Czerwona lampka miga 3 razy	Zasilanie – przekroczenie prądu	Określ, czy model jest poprawny.
Czerwona lampka miga 4 razy	Za wysoki prąd	Sprawdź ustawienia P-sv oraz parametry silnika. Możesz również zwiększyć czas przyspieszenia.
Czerwona lampka miga 5 razy	Zbyt niskie napięcie	Sprawdź napięcie zasilania i upewnij się, że moc zasilania spełnia warunek 1,5-krotności mocy silnika.
Czerwona lampka miga 6 razy	Błąd czujnika Halla	Proszę sprawdzić, czy połączenia przewodów silnika są pewne.
Czerwona lampka miga 7 razy	Zablokowanie silnika	Proszę ustalić, czy silnik jest przeciążony.
R Czerwona lampka miga8 razy	Dwa lub więcej alarmów	Typowe warunki dotyczą jedynie alarmu Halla i alarmu zatrzymania. Jeśli silnik nie może być dostrojony, proszę dostroić wartość P-sv do maksymalnej wartości.

Komunikacja MODBUS RS485:

Seria sterowników firmy zapewnia użytkownikom standardowy interfejs komunikacyjny RS485 w sterowaniu przemysłowym. Protokół komunikacyjny przyjmuje standardowy protokół komunikacyjny MODBUS. Sterownik może być używany, jako urządzenie podrzędne do komunikacyj z komputerem nadrzędnym (np. sterownik PLC i komputer PC), który ma ten sam interfejs komunikacyjny i przyjmuje ten sam protokół komunikacyjny, aby realizować scentralizowane monitorowanie sterownika. Funkcja adresowania rozgłoszeniowego może być użyta do realizacji połączenia wielu maszyn i synchronicznego działania sterownika. Protokół komunikacyjny MODBUS tego sterownika pracuje w trybie RTU. Poniżej znajduje się szczegółowy opis protokołu komunikacyjnego tego sterownika.

Parametr	Wartość			
Liczba maszyn podrzędnych	255			
szybkość transmisji	9600bps			
Metoda wymiany danych	Asynchroniczny port szeregowy, półdupleks			
Protokół	Protokół komunikacyjny MODBUS RTU			
bity danych	8 bitów			
bit stopu	1 bit			
Kontrola parzystości	brak			
Metoda sprawdzania błędów	Kontrola CRC16			
Długość ramki danych	Stała 8 bajtów			

8.1: Tryb protokołu komunikacyjnego

- Napęd jest urządzeniem podrzędnym, a komunikacja jest typu master-slave punkt-punkt.
- Napęd jest urządzeniem podrzędnym, a master kontroluje komunikację z wieloma urządzeniami podrzędnymi.
- Gdy master używa adresu rozgłoszeniowego do wysyłania poleceń, wiele urządzeń podrzędnych działa synchronicznie.
- Gdy master używa adresu rozgłoszeniowego do wysyłania poleceń, urządzenia podrzędne nie odpowiadają.
- Protokół komunikacyjny MODBUS jest w trybie RTU.

8.2: Opis zapisu danych Tryb transmisji jest asynchroniczny szeregowy, w trybie półdupleksu. W danym czasie tylko jedno z urządzeń, nadrzędne lub podrzędne, może wysyłać dane, a drugie może tylko odbierać dane. W procesie komunikacji szeregowej asynchronicznej, dane są wysyłane ramka po ramce w formie wiadomości.

Na przykład: Adres urządzenia podrzędnego 1.

Step 1: Wyślij włączenie 485: 010600B60001A9EC Odpowiedź urządzenia podrzędnego: 010600B60001A9EC Włączenie 485 może być wysłane tylko raz po włączeniu zasilania, a opóźnienie może wynosić więcej niż 150ms.

Step 2: Wyślij polecenie obrotu w przód: 010600660001A815 Odpowiedź urządzenie podrzędnego: 010600660001A815 Ustaw silnik do obrotu w przód z opóźnieniem większym niż 150ms.

Step 3: Wyślij polecenie prędkości: 0106005603E86964 Odpowiedź urządzenie podrzędnego: 0106005603E86964 Ustaw prędkość na 1000 obr./min i opóźnij więcej niż 150ms.

Dla innych funkcji proszę zapoznać się z poniższą tabelą zapisu danych dla ustawień kontrolnych.

Poniżej znajduje się adres urządzenia podrzędnego 1, kod funkcji i kod kontrolny podczas zapisu. Jeśli wartość się zmieni, kod kontrolny CRC należy przeliczyć zgodnie z RTU.

8.3: Instrukcje dotyczące odczytu danych

Na przykład: adres podrzędny, 1 jako przykład.

Wyślij polecenie odczytu prędkości: 0103005F0001B418 Odpowiedź urządzenia podrzędnego: 01030203E8XXXX Odczytaj prędkość obrotową silnika wynoszącą 1000 obr./min, sprawdzenie CRC spowoduje opóźnienie większe niż 150ms w zależności od zmiany prędkości odczytu.

Adres urządzenia podrzędnego (1 bajt)	Kod funkcji (1 bajt)	Adres dostępu (2 bajty)	Dane dostępowe (2 bajty)	Kontrola CRC (2 bajty)	Opis funkcji
0X01	0X06 (zapis danych)	0X00B6	0X0001	OXA9EC	Efektywne sterowanie RS-485
0X01	0X06 (zapis danych)	0X00B6	0X0002	OXE9ED	RS-485 nieprawidłowy
0X01	0X06 (zapis danych)	0X0089	0X0000	0X5820	Ustaw na sterowanie w otwartej pętli
0X01	0X06 (zapis danych)	0X0089	0X0001	0X99E0	Ustaw na sterowanie w pętli zamkniętej
0X01	0X06 (zapis danych)	0X00A6	0X0001	OXA829	Adres RS-485 jest ustawiony na 1
0X01	0X06 (zapis danych)	0X0056	OX03E8	0X6964	Ustaw prędkość silnika na 1000 obr./min
0X01	0X06 (zapis danych)	0X0066	0X0000	0X69D5	Silnik zatrzymuje się
0X01	0X06 (zapis danych)	0X0066	0X0001	0XA815	Silnik do przodu
0X01	0X06 (zapis danych)	0X0066	0X0002	0XE814	Rewers silnika
0X01	0X06 (zapis danych)	0X0066	0X0003	0X29D4	Hamulec silnika zatrzymuje się
0X01	0X06 (zapis danych)	0X0090	0X0708	0X8A11	Ustaw limit prądu 5A(5*360)=0X0708
0X01	0X06 (zapis danych)	0X0086	0X0004	0X69E0	Liczba par biegunów magnetycznych silnika jest ustawiona na 4 pary biegunów.
0X01	0X06 (zapis danych)	0X0088	0X0001	0XC820	Ustawienie czasu zabezpieczenia nadprądowego 1S
0X01	0X06 (zapis danych)	0X0093	0X00C8	0X7871	Ustaw czas przyspieszania na 200ms
0X01	0X06 (zapis danych)	0X0094	0X00C8	OXC9BO	Ustaw czas hamowania na 200ms

Wyślij polecenie odczytu prądu: 010300C600016437 Odpowiedź urządzenia podrzędnego: 01030203E8XXXX Odczytaj parametr prądu (1000/100)=10A Odczytaj prąd 10A z opóźnieniem większym niż 150ms.

Adres urządzenia podrzędnego (1 bajt)	Kod funkcji (1 bajt)	Adres dostępu (2 bajty)	Dane dostępowe (2 bajty)	Kontrola CRC (2 bajty)	Opis funkcji
0X01	0X03 (odczyt danych)	0X005F	0X0001	0XB418	Odczytaj rzeczywistą prędkość silnika
0X01	0X03 (odczyt danych)	0X0076	0X0001	0X65D0	Przeczytaj kod alarmu
0X01	0X03 (odczyt danych)	0X00C6	0X0001	0X6137	Odczytaj rzeczywistą wartość prądu/100
0X01	0X06 (zapis danych)	0X00C8	0X0001	0X05F4	Odczytać wartość napięcia zasilania/10