Examenul de bacalaureat național 2018 Proba E. c) Matematică *M mate-info*

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că numărul $n = \log_3(\sqrt{7} 2) + \log_3(\sqrt{7} + 2)$ este natural.
- **5p** 2. Determinați coordonatele punctului de intersecție a graficelor funcțiilor $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 + 6x + 3$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $(x+2)^3 = (2-x)^3$.
- **5p 4.** Calculați câte numere naturale de două cifre distincte se pot forma cu elemente ale mulțimii $\{0, 2, 4, 6, 8\}$.
- **5p** | **5.** Punctele M, N și P verifică relația $2\overrightarrow{MN} + 3\overrightarrow{NP} = \overrightarrow{0}$. Calculați lungimea segmentului MP, știind că MN = 3.
- **5p** | **6.** Arătați că $\sin x + \sin(\pi x) + \sin(\pi + x) + \sin(2\pi x) = 0$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x,y) = \begin{pmatrix} x & y & 1 \\ 1 & x & y \\ x & 1 & y \end{pmatrix}$, unde x și y sunt numere reale.
- **5p** a) Arătați că $\det(A(2,3)) = 12$.
- **5p b)** Demonstrați că $\det(A(n^2, n)) \ge 0$, pentru orice număr natural n.
- **5p** c) Determinați numărul real x pentru care inversa matricei $B = A(x,0) \cdot A(x,0)$ este matricea A(x,0).
 - **2.** Se consideră polinomul $f = nX^n + X^2 nX 1$, unde *n* este număr natural, $n \ge 3$.
- **5p** a) Arătați că f(1) = 0, pentru orice număr natural $n, n \ge 3$.
- **5p b)** Arătați că, dacă n este număr natural impar, $n \ge 3$, atunci polinomul f este divizibil cu $X^2 1$.
- **5p** c) Arătați că, pentru orice număr natural $n, n \ge 5$, polinomul f nu are rădăcini în mulțimea $\mathbb{Q} \mathbb{Z}$.

SUBIECTUL al III-lea (30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan x x$.
- **5p** a) Arătați că $f'(x) = -\frac{x^2}{x^2 + 1}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că $f(x) + g(x) = \frac{\pi}{2}$, pentru orice număr real x, unde $g : \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arcctg} x + x$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$.
- **5p a)** Arătați că $\int_{0}^{1} f(\sqrt{x}) dx = \frac{e-1}{e}$.
- **5p b)** Arătați că orice primitivă a funcției f este concavă pe $(0,+\infty)$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_{\frac{1}{n}}^{1} f(x) dx$. Demonstrați că șirul
 - $(I_n)_{n\geq 1}$ este convergent.

Examenul de bacalaureat național 2018

Proba E. c) Matematică *M mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n = \log_3((\sqrt{7} - 2)(\sqrt{7} + 2)) = \log_3(7 - 4) =$	3 p
	$= \log_3 3 = 1 \in \mathbb{N}$	2p
2.	$f(x) = g(x) \Leftrightarrow 2x - 1 = x^2 + 6x + 3 \Leftrightarrow x^2 + 4x + 4 = 0$	2p
	Coordonatele sunt $x = -2$ și $y = f(-2) = -5$	3 p
3.	$(x+2)^3 = (2-x)^3 \Leftrightarrow x+2=2-x$	3p
	x = 0	2p
4.	Cifra zecilor poate fi aleasă în 4 moduri	2p
	Pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în 4 moduri, deci se pot forma $4 \cdot 4 = 16$ numere	3 p
5.	NP = 2	2p
	Punctul P aparține segmentului MN, deci $MP = MN - NP = 1$	3 p
6.	$\sin(\pi - x) = \sin x, \sin(\pi + x) = -\sin x, \sin(2\pi - x) = -\sin x$	3p
	$\sin x + \sin(\pi - x) + \sin(\pi + x) + \sin(2\pi - x) = \sin x + \sin x + (-\sin x) + (-\sin x) = 0, \text{ pentru}$ orice număr real x	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	(2 3 1) 2 3 1	
	$A(2,3) = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \Rightarrow \det(A(2,3)) = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 2 & 1 & 3 \end{vmatrix} =$	2p
	= 12 + 1 + 18 - 4 - 6 - 9 = 12	3 p
b)	$\det\left(A(n^2,n)\right) = \begin{vmatrix} n^2 & n & 1 \\ 1 & n^2 & n \\ n^2 & 1 & n \end{vmatrix} = \begin{pmatrix} n^2+n+1 \\ 1 & 1 & n \end{vmatrix} = \begin{pmatrix} n^2+n+1 \\ 1 & 1 & n \end{vmatrix} = \begin{pmatrix} n^2+n+1 \\ 0 & 1-n & n-1 \end{vmatrix} = \begin{pmatrix} n^2+n+1 \\ 0 & 1-n & n-1 \end{pmatrix}$	3 p
	$= (n^2 + n + 1)(n - 1)^2 (n + 1) \ge 0$, pentru orice număr natural n	2p
c)	$B = \begin{pmatrix} x^2 + x & 1 & x \\ 2x & x^2 & 1 \\ x^2 + 1 & x & x \end{pmatrix} \Rightarrow B \cdot A(x,0) = A(x,0) \cdot B = \begin{pmatrix} x^3 + 2x^2 + 1 & 2x & x^2 + x \\ 3x^2 + x & x^3 + 1 & 2x \\ x^3 + x^2 + 2x & x^2 + x & x^2 + 1 \end{pmatrix}$	3 p
	Inversa matricei B este matricea $A(x,0) \Leftrightarrow B \cdot A(x,0) = A(x,0) \cdot B = I_3$, deci $x = 0$	2p
2.a)	$f(1) = n \cdot 1^n + 1^2 - n \cdot 1 - 1 =$	3 p
	$= n + 1 - n - 1 = 0$, pentru orice număr natural $n, n \ge 3$	2p

b)	Pentru n număr natural impar, $n \ge 3$, $f(-1) = n \cdot (-1)^n + (-1)^2 - n \cdot (-1) - 1 = 0$, deci polinomul f este divizibil cu $X + 1$	2p
	$f(1) = 0 \Rightarrow f$ este divizibil cu $X - 1$, deci polinomul f este divizibil cu $X^2 - 1$	3 p
c)	Dacă $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$ este o rădăcină a polinomului f care are coeficienții întregi, atunci $\alpha = \frac{1}{d}$,	1p
	unde $d \in \mathbb{Z}^* \setminus \{\pm 1\}$ este un divizor al lui n	
	$f(\alpha) = 0 \Rightarrow \frac{n}{d^n} + \frac{1}{d^2} - \frac{n}{d} - 1 = 0 \Rightarrow d^{n-2} \left(d^2 + nd - 1 \right) = n \Rightarrow d^{n-2} / n, \operatorname{deci} \left d \right ^{n-2} \le n$	2p
	Cum $ d ^{n-2} \ge 2^{n-2} > n$ pentru orice număr natural n , $n \ge 5$, obținem o contradicție, deci polinomul f nu are rădăcini în mulțimea $\mathbb{Q} - \mathbb{Z}$	2p

SUBIECTUL al III-lea (30 de puncte)

	(So de punc	
1.a)	$f'(x) = (\operatorname{arctg} x)' - (x)' = \frac{1}{x^2 + 1} - 1 =$	2p
	$= \frac{1 - x^2 - 1}{x^2 + 1} = -\frac{x^2}{x^2 + 1}, \ x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{\arctan x}{x} - 1 \right) = -1$	2p
	$\lim_{x \to +\infty} (f(x) + x) = \lim_{x \to +\infty} (\arctan x - x + x) = \frac{\pi}{2}, \text{ deci dreapta de ecuație } y = -x + \frac{\pi}{2} \text{ este asimptotă oblică spre } +\infty \text{ la graficul funcției } f$	3 p
c)	$f(x) + g(x) = \operatorname{arctg} x + \operatorname{arcctg} x, \ x \in \mathbb{R} \Rightarrow (f(x) + g(x))' = \frac{1}{x^2 + 1} + \frac{-1}{x^2 + 1} = 0, \text{ pentru orice}$ $\text{număr real } x$	3p
	Cum $f(0) + g(0) = \frac{\pi}{2}$, obținem că $f(x) + g(x) = \frac{\pi}{2}$, pentru orice număr real x	2p
2.a)	$\int_{0}^{1} f(\sqrt{x}) dx = \int_{0}^{1} e^{-x} dx = -e^{-x} \Big _{0}^{1} =$	3p
	$= -\frac{1}{e} + 1 = \frac{e - 1}{e}$	2p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x)$, $x \in \mathbb{R}$	2p
	$F''(x) = -2xe^{-x^2} < 0$ pentru orice $x \in (0, +\infty)$, deci funcția F este concavă pe $(0, +\infty)$	3 p
c)	$I_{n+1}-I_n=\int\limits_{\frac{1}{n+1}}^1f(x)dx-\int\limits_{\frac{1}{n}}^1f(x)dx=\int\limits_{\frac{1}{n+1}}^1f(x)dx\geq 0\ ,\ \ \mathrm{deci}\ \ I_{n+1}\geq I_n\ ,\ \ \mathrm{pentru}\ \ \mathrm{orice}\ \ \mathrm{număr}$ natural nenul n	1p
	$0 \le I_n = \int_{\frac{1}{n}}^{1} e^{-x^2} dx \le \int_{\frac{1}{n}}^{1} 1 dx = 1 - \frac{1}{n} < 1, \text{ pentru orice număr natural nenul } n$	3 p
	Şirul $(I_n)_{n\geq 1}$ este monoton şi mărginit, deci şirul $(I_n)_{n\geq 1}$ este convergent	1p