DLHLP HW 4 - 3

GitHub ID: PengWenChen 學號:R08942085 系級:電信丙 姓名:陳芃彣 學號:R08942086 系級:電信丙 姓名:趙達軒 學號:R07942091 系級:電信丙 姓名:許博閔 學號:R08945002 系級:生醫電資 姓名:陳玠妏

1. (2%) Please give some examples predicted correctly and incorrectly respectively. At least one for each case is required. Screenshot recommended.

回答正確:

'id': '5645-11-2', 'question': '中華民國與日軍簽定了哪一個協議以停戰熱河戰役?'

|5645-11-2,《塘沽協定》

回答錯誤:

'id': '1190-17-2', 'question': '東德從什麼時候成為歷史?' 1190-17-2,1961年到1970年柏林圍牆的修建減少了逃亡行為

- 2. (3%) Which hyperparameter(s) should be modified in order to reach better performance? (e.g. learning_rate, batch_size, warmup_steps, layer_norm_eps, attention_probs_dropout_prob)
 - → 一開始使用助教的sample code, 只改了下面幾個參數。

```
--per_gpu_train_batch_size 4 \
--per_gpu_eval_batch_size 5 \
--fp16 \
```

- → 嘗試把attention_probs_dropout_prob和hidden_dropout_prob從 0.1調到0.2. 結果變差。
- → 嘗試把pooler_num_fc_layers從3調到5,結果不變。
- → 嘗試把warmup steps調大,結果變差。

- → 嘗試用<u>https://github.com/wptoux/albert-chinese-large-webqa</u>, Kaggle的Public score破0.8。
- → 嘗試用

3. (2%) Bonus - Different models compare bert-base-chinese:

這次使用的是ALBERT chinese xlarge的pretrained model: https://github.com/huggingface/transformers/tree/master/model_cards/voidful/albert_chinese_xlarge

在ALBERT: A LITE BERT FOR SELF-SUPERVISED LEARNING OF LANGUAGE REPRESENTATIONS這篇paper中指出, ALBERT在SQuAD和RACE測試上創造了新的SOTA, 並在比賽中以+14.5%的優勢擊敗BERT。

ALBERT主要對BERT做了3點改進,縮小了整體的參數量,加快了訓練速度,增加了模型效果。

第一點,Factorized embedding parameterization,也就是嵌入分解參數化。ALBERT的作者注意到,對於BERT、XLNet和RoBERTa,WordPiece Embedding的大小(E)直接與隱含層大小(H)聯繫在一起。然而,ALBERT的作者指出,WordPiece Embedding是用來學習上下文獨立表示的。隱含層嵌入是為了學習上下文依賴表示的。因此,綁定在不同目的下工作的兩個項目意味著低效的參數。所以作者使用了小一些的E(64、128、256、768),訓練一個獨立於上下文的embedding(VxE),之後計算時再投影到隱層的空間(乘上一個ExH的矩陣),相當於做了一個因式分解。

Model		Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
ALBERT	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

第二點, Cross-layer parameter sharing跨層數共享, ALBERT通過跨

層共享所有參數進一步提高了參數效率。這意味著前饋網絡參數和注 意力參數都是共享的。

因此,與BERT相比,ALBERT從一層到另一層的轉換更平滑,作者發現到這種權值共享有助於穩定網絡參數。

最後,SENTENCE ORDER PREDICTION (SOP),ALBERT認為,NSP(下一個句子預測)將話題預測和連貫預測混為一談。ALBERT的作者認為句子間的連貫是真正需要關注的任務/損失,而不是主題預測,因此SOP使用了兩個句子,都來自同一個文檔。正樣本測試用例是這兩句話的順序是正確的;負樣本是兩個句子的順序顛倒。有別於NSP的正樣本匹配是第二個句子來自同一個文檔,負樣本匹配是第二個句子來自另一個文檔。ALBERT避免了主題預測的問題,並幫助其學習更好的學習句子間的銜接。