Introduction to Deep Learning and Tensorflow

Veerasak Kritsanapraphan Software Park Thailand Deep learning attracts lots of attention.

Google Trends

Deep learning obtains many exciting results.

This talk will focus on the technical part.

2007 2009 2011 2013 2015

Outline

Part I: Introduction of Deep Learning

Part II: Why Deep?

Part III: Tips for Training Deep Neural Network

Part IV: Neural Network with Memory

Part I: Introduction of Deep Learning

Example Application

Handwriting Digit Recognition

Handwriting Digit Recognition

Input

Ink \rightarrow 1 No ink \rightarrow 0

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

In deep learning, the function is represented by neural network

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Neural Network

Example of Neural Network

Example of Neural Network

Example of Neural Network

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix} f\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0.51 \\ 0.85 \end{bmatrix}$$

Different parameters define different function

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Softmax

Softmax layer as the output layer

Ordinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma \left(z_1 \right)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

Softmax

Probability:

Softmax layer as the output layer

Softmax Layer

How to set network parameters

 $lnk \rightarrow 1$ No ink \rightarrow 0 Set the network parameters such that

How to let the neural Input network achieve this Input:

y₂ nas tne maximum value

m value

Training Data

 Preparing training data: images and their labels

Using the training data to find the network parameters.

Cost

Given a set of network parameters, each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters is on this task

Find the network parameters that minimize this value

Gradient Descent

Assume there are only two parameters w₁ and w₂ in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point

Compute the negative gradient at

$$-\nabla C(\theta^0)$$

Times the learning rate

$$-\eta \nabla C(\theta^0)$$

Error Surface

Gradient Descent

Randomly pick a starting point

Compute the negative gradient at

$$-\nabla C(\theta^0)$$

Times the learning rate

$$-\eta \nabla C(\theta^0)$$

Local Minima

Gradient descent never guarantee global

Different initial point

Reach different minima, so different results

Who is Afraid of Non-Convex Loss Functions?
http://videolectures.net/
eml07_lecun_wia/

Besides local minima

In physical world

Momentum

Momentum

Still not guarantee reaching global minima, but give some hope

Mini-batch

Mini-batch

- Randomly initialize
- Pick the 1st batch $C = L^1 + L^{31} + \cdots$ $\theta^1 \leftarrow \theta^0 \eta \nabla C(\theta^0)$
- Pick the 2nd batch $C = L^2 + L^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 \eta \nabla C(\theta^1)$:

C is different each time when we update parameters!

Mini-batch

Original Gradient Descent

1.5 1.4 1.3 1.2 1.1 1.0 N 0.9

0.8

With Mini-batch

The colors represent the total C on all training data.

Mini-batch

Faster

Better!

Mini-batch

Randomly initialize

- Pick the 1st batch $C = C^1 + C^{31} + \cdots$ $\theta^1 \leftarrow \theta^0 - \eta \nabla C(\theta^0)$
- Pick the 2nd batch $C = C^2 + C^{16} + \cdots$ $\theta^2 \leftarrow \theta^1 - \eta \nabla C(\theta^1)$
- Until all mini-batches have been picked

one epoch

Repeat the above process 30

Backpropagation

- A network can have millions of parameters.
 - Backpropagation is the way to compute the gradients efficiently (not today)
 - Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/ index.html
- Many toolkits can compute the gradients automatically

Part II: Why Deep?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	
.o		

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given **enough** hidden neurons)

Reference for the reason: http://neuralnetworksanddeeplearning.com/chap4.html

Why "Deep" neural network not "Fat" neural network?

Fat + Short v.s. Thin + Tall

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
2.00		1 X 16k	22.1

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Why Deep?

Deep → Modularization

Why Deep?

can be trained by little data

Why Deep?

Deep Learning also works on small data set like TIMIT.

○ Deep → Modularizat → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Deep Learning

Source of image: http://www.gipsa-lab.grenoble-inp.fr/transfert/seminaire/455_Kadri2013Gipsa-lab.pdf

Hard to get the power of Deep ...

Part III: Tips for Training DNN

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

http://www.gizmodo.com.au/2015/04/the-basic-recipe-for-machine-learning-explained-in-a-single-powerpoint-slide/

Recipe for Learning

Modify the Network

New activation functions, for

Better optimization Strategy

Adaptive learning rates

Prevent Overfitting

Dropout

Only use this approach when you already obtained good results on the training data.

Part III: Tips for Training DNN

New Activation Function

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases
- 4. Vanishing gradient problem

Vanishing Gradient Problem

based on random!?

Vanishing Gradient Problem

Smaller gradients

Intuitive way to compute the gradient ...

$$\frac{\partial C}{\partial w} = ? \frac{\Delta C}{\Delta w}$$

ReLU

A Thinner linear network

Maxout

ReLU is a special cases of Maxout

Learnable activation function [lan J. Goodfellow,

You can have more than 2 elements in a group.

Maxout

ReLU is a special cases of Maxout

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function

Part III: Tips for Training DNN

Adaptive Learning Rate

Learning Rate

Set the learning rate η carefully

Learning Rate

Can we give different parameters different learning rates?

Adagrad

Original Gradient Descent

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Each parameter w are considered separately

$$w^{t+1} \leftarrow w^t - \eta_w g^t \qquad \qquad g^t = \frac{\partial C(\theta^t)}{\partial w}$$

Parameter dependent learning rate

$$\eta_{w} = \frac{\eta}{\sqrt{\sum_{i=0}^{i} \left(g^{i}\right)^{2}}}$$

constant

Summation of the square of the previous derivatives

Adagrad

 w_1 g^0 0.1

 w_2 g^0 20.0

Learning rate:

$$\frac{\eta}{\sqrt{0.1^2}} = \frac{\eta}{0.1}$$

$$\frac{\eta}{0.1}$$
 $\frac{\eta}{0.22}$

Learning rate:

$$\frac{\eta}{\sqrt{20^2}} = \frac{\eta}{20}$$

$$\frac{\eta}{\sqrt{20^2 + 10^2}} = \frac{\eta}{22}$$

- Observation:

 1. Learning rate is smaller and smaller for all parameters
 - 2. Smaller derivatives, larger le rate, and vice versa

2. Smaller derivatives, larger le rate, and vice versa

Not the whole story

- Adagrad [John Duchi, JMLR'11]
- RMSprop
 - https://www.youtube.com/watch?v=O3sxAc4hxZU
- OAdadelta [Matthew D. Zeiler, arXiv'12]
- OAdam [Diederik P. Kingma, ICLR'15]
- OAdaSecant [Caglar Gulcehre, arXiv'14]
- "No more pesky learning rates" [Tom Schaul, arXiv'12]

Part III: Tips for Training DNN

Dropout

Pick a mini-batch

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the gradients
 - Each neuron has p% to dropout

Pick a mini-batch

Dropout

$$\theta^t \leftarrow \theta^{t-1} - \eta \nabla C(\theta^{t-1})$$

Training:

- > Each time before computing the
 - **प्रकार** neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

Dropout

Testing:

> No dropout

- If the dropout rate at training is p%, all the weights times (1-p)%
- Assume that the dropout rate is 50%.
 If a weight by training, set for testing.

Dropout - Intuitive Reason

- > When teams up, if everyone expect the partner will do the work, nothing will be done finally.
- However, if you know your partner will dropout, you will do better.
- When testing, no one dropout actually, so obtaining good results eventually.

Dropout - Intuitive Reason

Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- Some parameters in the network are shared

More about dropout

- More reference for dropout [Nitish Srivastava, JMLR'14] [Pierre Baldi, NIPS'13][Geoffrey E. Hinton, arXiv'12]
- Dropout works better with Maxout [Ian J. Goodfellow, ICML'13]
- Dropconnect [Li Wan, ICML'13]
 - Dropout delete neurons
 - Dropconnect deletes the connection between neurons
- Annealed dropout [S.J. Rennie, SLT'14]
 - Dropout rate decreases by epochs
- Standout [J. Ba, NISP'13]
 - Each neural has different dropout rate

Part IV: Neural Network with Memory

Neural Network needs Memory

- Name Entity Recognition
 - Detecting named entities like name of people, locations, organization, etc. in a sentence.

Neural Network needs Memory

Name Entity Recognition

Detecting named entities like name of

DNN needs memory!

Recurrent Neural Network (RNN)

RNN

The same network is used again and again.
Output yi depends on x1, x2, xi

RNN How to train? target target target V^2 **V**3 W٥ Wh **W**h Wi **X**3 **x**² χ^1

Find the network parameters to minimize the total cost:

Backpropagation through time (BPTT)

Of course it can be deep ...

Bidirectional RNN xt+2 X^{t+1} \mathbf{X}^{t} yt+1 yt+2 yt xt+2 X^{t+1} \mathbf{X}^{t}

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the</u> output is shorter.
 - E.g. Speech Recognition

Output: "好棒" (character sequence)

Problem?

Why can't it be "好棒棒"

Many to Many (Output is shorter)

- Both input and output are both sequences, <u>but the</u><u>output is shorter.</u>
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

- Both input and output are both sequences <u>with</u>
 <u>different lengths</u>. → <u>Sequence to sequence</u>
 <u>learning</u>
 - E.g. <u>Machine Translation</u> (machine learning→機器 學習)

■ Both input and output are both sequences <u>with</u>
 <u>different lengths</u>. → <u>Sequence to sequence</u>
 <u>learning</u>


```
06/12 10:39
                                          06/12 10:40
推
                                          06/12 10:41
          tion:
                                          06/12 10:47
          host:
                                          06/12 10:59
          403:
                                          06/12 11:11
                                          06/12 11:13
推
                                          06/12 11:17
                                          06/12 11:32
                                          06/12 12:15
推 tlkagk:
```

Ref:http://zh.pttpedia.wikia.com/wiki/%E6%8E%A5%E9%BE%8D%E6%8E%A8%E6%96%87 (鄉民百秋)

■ Both input and output are both sequences <u>with</u>
 <u>different lengths</u>. → <u>Sequence to sequence</u>
 <u>learning</u>

Unfortunately

 RNN-based network is not always easy to learneal experiments on Language modeling

The error surface is rough.

Why?

Helpful Techniques

- Nesterov's Accelerated Gradient (NAG):
 - Advance momentum method
- RMS Prop
 - Advanced approach to give each parameter different learning rates
 - Considering the change of Second derivatives
- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)

Long Short-term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

Extension: "peephole"

Other Simpler Alternatives

Gated Recurrent Unit (GRU)

Structurally Constrained Recurrent Network (SCRN)

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

What is the next wave?

Already applied on speech recognition, caption generation, QA, visual QA

What is the next wave?

- Attention-based Model
- End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. arXiv Pre-Print, 2015.
- Neural Turing Machines. Alex Graves, Greg Wayne, Ivo Danihelka. arXiv Pre-Print, 2014
- Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. Kumar et al. arXiv Pre-Print, 2015
- Neural Machine Translation by Jointly Learning to Align and Translate. D. Bahdanau, K. Cho, Y. Bengio; International Conference on Representation Learning 2015.
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Kelvin Xu et. al.. arXiv Pre-Print, 2015.
- Attention-Based Models for Speech Recognition. Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio. arXiv Pre-Print, 2015.
- Recurrent models of visual attention. V. Mnih, N. Hees, A. Graves and K. Kavukcuoglu. In NIPS, 2014.
- A Neural Attention Model for Abstractive Sentence Summarization. A. M. Rush, S. Chopra and J. Weston. EMNLP 2015.

Concluding Remarks

Concluding Remarks

- Introduction of deep learning
- Discussing some reasons using deep learning
- New techniques for deep learning
 - ReLU, Maxout
 - Giving all the parameters different learning rates
 - Dropout
- Network with memory
 - Recurrent neural network
 - Long short-term memory (LSTM)

Reading Materials

- "Neural Networks and Deep Learning"
 - written by Michael Nielsen
 - http://
 neuralnetworksanddeeplearning.com/
- "Deep Learning" (not finished yet)
 - Written by Yoshua Bengio, Ian J.
 Goodfellow and Aaron Courville
 - http://www.iro.umontreal.ca/~bengioy/
 dlbook/

Thank you!

Appendix

Matrix Operation

Why Deep? - Logic Circuits

- A two levels of basic logic gates can represent any Boolean function.
- However, no one uses two levels of logic gates to build computers
- Using multiple layers of logic gates to build some functions are much simpler (less gates needed).

Deep Learning

Maxout

ReLU is a special cases of Maxout

Maxout

ReLU is a special cases of Maxout

Getting Started

import tensorflow as tf

Graphs and Sessions

TensorFlow separates definition of computations from their execution

Graph from TensorFlow for Machine Intelligence

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the ---

Graph from TensorFlow for Machine Intelligence

Phase 1: assemble a graph

Phase 2: use a session to execute operations in the ---

Graph from TensorFlow for Machine Intelligence

What's a tensor?

What's a tensor?

An n-dimensional array

o-d tensor: scalar (number)

1-d tensor: vector

2-d tensor: matrix

and so on

import tensorflow as tf
a = tf.add(3, 5) Visualized by TensorBoard

Why x, y?

TF automatically names the nodes when you don't explicitly name them.

$$X = 3$$

$$y = 5$$

import tensorflow as tf
a = tf.add(3, 5) Interpreted?

Nodes: operators, variables, and constants

Edges: tensors

Nodes: operators, variables, and constants

Edges: tensors

Tensors are data.

TensorFlow = tensor + flow = data + flow


```
import tensorflow as tf
a = tf.add(3, 5)
print(a)
```

```
>> Tensor("Add:0", shape=(),
dtype=int32)
(Not 8)
```

Add

Create a **session**, assign it to variable sess so we can call it later

Create a **session**, assign it to variable sess so we can call it later

Create a **session**, assign it to variable sess so we can call it later

Create a **session**, assign it to variable sess so we can call it later

```
import tensorflow as tf
a = tf.add(3, 5)
sess = tf.Session()
with tf.Session() as sess:
        print(sess.run(a))
sess.close()
```

tf.Session()

A Session object encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

tf.Session()

A Session object encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

Session will also allocate memory to store the current values of variables.

More graph

Visualized by TensorBoard

Subgraphs

```
x = 2
y = 3
                                       Mul_1
                                                         Pow
add op = tf.add(x, y)
                                       useless
                                                        pow_o
mul_op = tf.multiply(x, y)
useless = tf.multiply(x, add_op)
                                                        p
pow_op = tf.pow(add_op, mul_op)
with tf.Session() as sess:
        z = sess.run(pow_op)
                                                                    Mul
                                         Add
                                        add_o
                                                                    mul_o
```

Subgraphs

```
x = 2
y = 3
add_op = tf.add(x, y)
mul_op = tf.multiply(x, y)
useless = tf.multiply(x, add_op)
pow_op = tf.pow(add_op, mul_op)
with tf.Session() as sess:
    z, not_useless = sess.run
```


Subgraphs

Possible to break graphs into several chunks and run them parallelly across multiple CPUs, GPUs, TPUs, or other devices

Example: AlexNet

Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow

Distributed Computation

To put part of a graph on a specific CPU or GPU:

```
# Creates a graph.
with tf.device('/gpu:2'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')
  c = tf.multiply(a, b)
# Creates a session with log_device_placement set to True.
sess =
tf.Session(config=tf.ConfigProto(log device placement=True))
# Runs the op.
print(sess.run(c))
```

create a graph:

to add operators to a graph, set it as default:

To handle the default graph:

Do not mix default graph and user created graphs

Do not mix default graph and user created graphs

Install Tensorflow

Install Tensorflow

To install the library we will create an environment in Anaconda with **python 3.5** we name it **tensorflow**. However, you may choose your own desired name for it. Open command prompt (or terminal) and type:

conda create --name tensorflow python=3.5

Once the environment is created, we can activate the environment:

(for Windows):

activate tensorflow

(for Linux & Mac):

source activate tensorflow

(for Windows):

(CPU version):

pip install --upgrade tensorflow

(GPU version):

pip install --upgrade tensorflow-gpu

For Mac - CPU

pip install --ignore-installed --upgrade https://storage.googleapis.com/ tensorflow/mac/cpu/tensorflow-1.10.0-py3-none-any.whl

For Linux - CPU

pip install --ignore-installed --upgrade https://storage.googleapis.com/ tensorflow/linux/cpu/tensorflow-1.10.0-cp35-cp35m-linux_x86_64.whl

For Linux - GPU

pip install --ignore-installed --upgrade https://storage.googleapis.com/ tensorflow/linux/gpu/tensorflow_gpu-1.10.0-cp35-cp35m-linux_x86_64.whl

Install Jupiter

conda install jupyter

CNN (Convolution Neural Networks)

See Jupiter Notebook

Thank you