Моделирование систем

Альтернативные подходы к созданию имитационных моделей

Непрерывное моделирование

Непрерывное моделирование — это моделирование системы по времени с помощью представления, в котором переменные состояния меняются непрерывно по отношению ко времени. Как правило, в непрерывных имитационных моделях используются дифференциальные уравнения, которые устанавливают отношения для скоростей изменения переменных состояния во времени.

Пример

Рассмотрим непрерывную модель соперничества между двумя популяциями. Биологические модели такого типа, именуемые моделями хищник-добыча.

Среда представлена двумя популяциями -хищников и добычи, взаимодействующими друг с другом. Добыча пассивна, но хищники зависят от ее популяции, поскольку она является для них источником. Тищи.

Пусть x(t) и y(t) обозначают численность особей в популяциях соответственно добычи и хищников в момент времени t. Допустим, популяция добычи имеет обильные запасы пищи; при отсутствии хищников темп ее прироста составит rx(t) для некоторого положительного значения r (r — естественный уровень рождаемости минус естественный уровень смертности).

Существование взаимодействия между хищниками и добычей дает основание предположить, что уровень смертности добычи в связи с этим взаимодействием пропорционален произведению численностей обоих популяций $\mathbf{x}(t)\mathbf{y}(t)$. Поэтому общий темп изменения популяции добычи dx/dt: может быть представлен как

$$\frac{dx}{dt} = rx(t) - ax(t)y(t),$$

где a — положительный коэффициент пропорциональности. Поскольку существование самих хищников зависит от популяции добычи, темп изменения популяции хищников в отсутствии добычи составляет -sy(t) для некоторого положительного s. Более того, взаимодействие между двумя популяциями приводит к росту популяции хищников, темп которого также пропорционален x(t)y(t).

Следовательно, общий темп изменения популяции хищников dy/dt составляет

$$\frac{dy}{dt} = -sy(t) - bx(t)y(t),$$

где b — положительный коэффициент пропорциональности. При начальных условиях x(0) > 0 и y(0) > 0 решение модели, определенной уравнениями, имеет интересное свойство:

$$x(t) > 0$$
 и $y(t) > 0$

для любого $t \leq 0$. Следовательно, популяция добычи никогда не будет полностью уничтожена хищниками.

Решение $\{x(t), y(t)\}$ также является периодической функцией времени. Иными словами, существует такое значение T>0, при котором x(t+nT)=x(t) и y(t+nT)=y(t) для любого положительного целого числа n.

Это объясняется тем, что по мере увеличения популяции хищников популяция добычи уменьшается. Это приводит к снижению темпа роста популяции хищников и, соответственно, вызывает уменьшение их числа, что, в свою очередь, ведет к увеличению популяции добычи и т. д.

Например. Пусть $\mathbf{r}=0.001$, $a=2\cdot 10^{-6}$; s=0.01; $b=10^{-6}$, исходные размеры популяций составляют $x(0)=12\ 000\ \mathrm{u}\ y(0)=600$. Численное решение на рисунке:

Моделирование по методу Монте-Карло

Метод Монте-Карло (метод статистического моделирования) — это способ исследования поведения вероятностных систем (экономических, технических и т. д.) в условиях, когда не известны в полной мере внутренние взаимодействия в этих системах.

Название метода Монте-Карло появилось во время второй мировой войны, когда этот подход был применен к проблемам, связанным с разработкой атомной бомбы.

Этот метод заключается в воспроизведении исследуемого физического процесса при помощи вероятностной математической модели и вычислении характеристик этого процесса. Одно такое воспроизведение функционирования системы называют реализацией или испытанием. После каждого испытания регистрируют совокупность параметров, характеризующих случайный исход реализации.

Метод основан на многократных испытаниях построенной модели с последующей статистической обработкой полученных данных с целью определения числовых характеристик рассматриваемого процесса в виде статистических оценок его параметров.

Основой метода статистического моделирования является закон больших чисел. Закон больших чисел в теории вероятностей доказывает для различных условий сходимость по вероятности средних значений результатов большого числа наблюдений к некоторым постоянным величинам.

Под законом больших чисел понимают ряд теорем. Например, одна из теорем П.Л. Чебышева формулируется так: «При неограниченном увеличении числа независимых испытаний n среднее арифметическое свободных от систематических ошибок и равноточных результатов наблюдений ξ_i случайной величины ξ , имеющей конечную дисперсию $D(\xi)$, сходится по вероятности к математическому ожиданию $M(\xi)$ этой случайной величины». Это можно записать в следующем виде:

$$\lim_{n\to\infty} P\left\{ \left| \frac{\sum_{i=1}^n \xi_i}{n} - M(\xi) \right| < \varepsilon \right\} = 1,$$

где ε — сколь угодно малая положительная величина.

Теорема Бернулли формулируется так: «При неограниченном увеличении числа независимых испытаний в одних и тех же условиях частота $P^*(A)$ наступления случайного события A сходится по вероятности к его вероятности P», т.е.

$$\lim_{n\to\infty} P\left\{ \left| \frac{m_i^*}{n} - P \right| < \varepsilon \right\} = 1.$$

Согласно данной теореме, для получения вероятности какоголибо события, например вероятности состояний некоторой системы $P_i(t), i=0,1,...,k$, вычисляют частоты $P_i^*=\frac{m_i^*}{n}$ для одной реализации (испытания), далее проводят подобные вычисления для числа реализаций, равного n.

Результаты усредняют и этим самым с некоторым приближением, получают искомые вероятности состояний системы.

На основании вычисленных вероятностей определяют другие характеристики системы.

Hanpumep. Предположим, что требуется найти неизвестную величину m. Подберем такую случайную величину ξ , чтобы $M(\xi) = m$ и $D(\xi) = b^2$.

Рассмотрим n случайных величин $\xi_1, \xi_2, ..., \xi_n$, распределение которых совпадает с распределением ξ .

Если n достаточно велико, то согласно центральной предельной теореме распределение суммы $\rho_n=\xi_1+\xi_2+...+\xi_n$ будет приближенно нормальным с параметрами $a=n\cdot m;\;\sigma^2=n\cdot b^2$. Из правила «трёх сигм»

$$P{a - 3\sigma < \xi < a + 3\sigma} = 0.997$$

следует, что

$$P\{n \cdot m - 3b\sqrt{n} < \rho_n < n \cdot m + 3b\sqrt{n}\} = 0.997,$$

или

$$P\left\{m-rac{3b}{\sqrt{n}}<rac{
ho_n}{n}< m+rac{3b}{\sqrt{n}}
ight\}=0,997$$
, и окончательно $P\left\{\left|rac{\sum_{i=1}^n \xi_i}{n}-m
ight|<rac{3b}{\sqrt{n}}
ight\}=0,997.$

Последнее соотношение определяет метод расчета m и оценку погрешности.

Решение любой задачи методом статистического моделирования состоит в:

- разработке и построении структурной схемы процесса, выявлении основных взаимосвязей;
- формальном описании процесса;
- моделировании случайных явлений (случайных событий, случайных величин, случайных функций), сопровождающих функционирование исследуемой системы;
- моделировании (с использованием данных, полученных на предыдущем этапе) функционирования системы – воспроизведении процесса в соответствии с разработанной структурной схемой и формальным описанием;
- накоплении результатов моделирования, их статистической обработке, анализе и обобщении.

Моделирование систем массового обслуживания с использованием метода Монте-Карло

Рассмотренные аналитические методы анализа СМО исходят из предположения, что входящие и исходящие потоки требований являются простейшими.

Зависимости, используемые в этих методах для определения показателей качества обслуживания, справедливы лишь для установившегося режима функционирования СМО.

Однако в реальных условиях функционирования СМО имеются переходные режимы, а входящие и исходящие потоки требований являются далеко не простейшими.

В этих условиях для оценки качества функционирования систем обслуживания широко используют метод статистических испытаний (метод Монте-Карло).

Основой решения задачи исследования функционирования СМО в реальных условиях является статистическое моделирование входящего потока требований и процесса их обслуживания исходящего потока требований).

Для решения задачи статистического моделирования функционирования СМО должны быть заданы следующие исходные данные:

- описание СМО (тип, параметры, критерии эффективности работы системы);
- параметры закона распределения периодичности поступлений требований в систему;
- параметры закона распределения времени пребывания требования в очереди (для СМО с ожиданием);
- параметры закона распределения времени обслуживания требований в системе.

Решение задачи статистического моделирования функционирования СМО складывается из следующих этапов.

- 1. Вырабатывают равномерно распределенное случайное число ξ_i .
- 2. Равномерно распределенные случайные числа преобразуют в величины с заданным законом распределения:
- ightarrow интервал времени между поступлениями требований в систему $(\Delta t_{Ti});$

- ✓ время ухода заявки из очереди (для СМО с ограниченной длиной очереди);
- \checkmark длительность времени обслуживания требования каналами (Δt_{Oi}) .
- 3. Определяют моменты наступления событий:
- поступление требования на обслуживание;
- уход требования из очереди;
- > окончание обслуживания требования в каналах системы.
- 4. Моделируют функционирование СМО в целом и накапливают статистические данные о процессе обслуживания.
- 5. Устанавливают новый момент поступления требования в систему, и вычислительная процедура повторяется в соответствии с изложенным.
- 6. Определяют показатели качества функционирования СМО путем обработки результатов моделирования методами математической статистики.

Методику решения задачи рассмотрим на примере моделирования СМО с отказами.

Пусть система имеет два однотипных канала, работающих с отказами, причем моменты времени окончания обслуживания на первом канале обозначим через t_{1i} , на втором канале — через t_{2i} . Закон распределения интервала времени между смежными поступающими требованиями задан плотностью распределения $f_1(t_T)$. Продолжительность обслуживания также является случайной величиной с плотностью распределения $f_2(t_0)$.

Процедура решения задачи будет выглядеть следующим образом:

- 1. Генерируют равномерно распределенное случайное число ξ_i .
- 2. Равномерно распределенное случайное число преобразуют в величины с заданным законом распределения. Определяют реализацию случайного интервала времени Δt_{Ti} между поступлениями требований в систему.
- 3. Вычисляют момент поступления заявки на обслуживание:

$$t_i = t_{i-1} + \Delta t_{\mathrm{T}i}.$$

4. Сравнивают моменты окончания обслуживания предшествующих заявок на первом $t_{1(i-1)}$ и втором $t_{2(i-1)}$ каналах.

5. Сравнивают момент поступления заявки t_i с минимальным моментом окончания обслуживания .

Допустим, что $t_{1(i-1)} < t_{2(i-1)}$:

- а) если $\left[t_i t_{1(i-1)}\right] < 0$, то заявка получает отказ и генерируют новый момент поступления заявки описанным способом;
- б) если $[t_i t_{1(i-1)}] \ge 0$, то происходит обслуживание.
- 6. При выполнении условия 5б) определяют время обслуживания i-й заявки на первом канале Δt_{1i} , путем преобразования случайной величины ξ_i в величину (время обслуживания i-й заявки) с заданным законом распределения.
- 7. Вычисляют момент окончания обслуживания і-й заявки на первом канале $t_{1i} = [t_{1(i-1)} + \Delta t_{1i}].$
- 8. Устанавливают новый момент поступления заявки, и вычислительная процедура повторяется в соответствии с изложенным.

- 9. В ходе моделирования СМО накапливаются статистические данные о процессе обслуживания.
- 10. Определяют показатели качества функционирования системы путем обработки накопленных результатов моделирования методами математической статистики.

Преобразование равномерно распределённой величина в любое другое основано на обратном преобразовании, т.е. с использованием обратной функции распределения

Экспоненциальное распределение имеет функцию

$$y = F(x) = 1 - e^{-\lambda x},$$

которая принимает значения от 0 до 1.

Обратная функция экспоненциального распределения имеет вид

$$F^{-1}(y) = -\frac{1}{\lambda} \ln(1-y)$$
.

Равномерно распределённая случайная величина принимает значения от 0 до 1, и, если сгенерировать её значение U и подставить в обратную функцию, то получим сгенерированное значение случайной величины X с экспоненциальным распределением:

$$X = -\frac{1}{\lambda} \ln(1 - U).$$

Генерация случайной величины с нормальным законом распределения:

$$X = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}} \left(x + \frac{x^3}{3} + \frac{x^5}{3 \cdot 5} + \dots + \frac{x^{2n+1}}{(2n+1)!!} \right),$$

где !! – означает двойной факториал. Если n=2, то погрешность $\epsilon \leq 0.01$. При n=3 $\epsilon \leq 0.001$; n=4 $\epsilon \leq 0.0001$.