

管理类联考数学 必修课

第一章 实数、比例、绝对值

- 1 实数的概念和性质
- 2 比、比例
- 3 绝对值及其性质
- 4 平均值及运算

第三节:绝对值

1.3.4 绝对值的运算法则

(1)
$$|a| \le b \ (b > 0) \leftrightarrow -b \le a \le b \ |x| \le 5, -5 \le x \le 5$$

$$|x| \le 5$$
, $-5 \le x \le 5$

(2)
$$|a| \ge b$$
 (b > 0) $\leftrightarrow a \ge b$ 就 $a \le -b$ $|x| \ge 5$, $x \ge 5$ 就 $x \le -5$

(3)
$$|a \cdot b| = |a||b|$$

$$|2\cdot3| = |2|\cdot|3|$$

$$(4) \left| \frac{a}{b} \right| = \frac{|a|}{|b|} (b \neq 0)$$

$$\left| \frac{2}{-3} \right| = \frac{|2|}{|-3|} = \frac{2}{3}$$

注意:考试要求掌握等号成立条件的判断

第三节: 绝对值

1.3.4 绝对值的运算法则

|a-b|≤|a|+|b| (ab≤0时等号成立)

注意:考试要求掌握等号成立条件的判断

练习题 (2004年1月)

【**例**1】x, y是实数, |x|+|y|=|x-y|

- (1) x > 0, y < 0
- (2) x < 0, y > 0

思路:

方法1:根据条件(1)(2)中的x,y与0的关系去绝对值,可以得出都充分,答案选D

方法2: 利用刚刚学习的绝对值三角不等式定理, 等号成立时是异号

|a-b|≤|a|+|b| (ab≤0时等号成立)

条件(1)	条件(2)	选项	
$\sqrt{}$	×	Α	
×	√	В	
×	×		
(1)+(2) √		(combine)	
V	√	D (double)	
×	×	E	
(1)+(2) ×		(error)	

进阶练习题 (2021年1月)

【**例**2】设a, b为实数,则能确定 |a|+|b| 的值

- (1) 已知 |a+b|的值。
- (2) 已知 |a-b|的值。

【考点】不等式-三角不等式

条件1: |a+b|≤ |a|+|b|, 要想 "=" 成立, 还需要ab≥0, 单看条件1不充分;

条件2: |a-b|≤ |a|+|b|, 要想 "=" 成立, 还需要ab≤0, 单看条件2不充分;

条件1: 举反例,令|a+b|=1,当a=-3,b=2时,|a|+|b|=5;

当a=1, b=-2时, |a|+|b|=3, |a|+|b|的值不唯一, 不充分;

条件2: 举反例,令|a-b|=1,当a=3,b=2,|a|+|b|=5, 当a=4,b=3,|a|+|b|=7,|a|+|b|**的值不唯一**,不充分;

条件(2)	选项	
×	Α	
V	В	
× × (1)+(2) √		
√	D (double)	
×	E (error)	
	× √ ×	

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

$$(1) |x-a| + |x-b|$$

$$(2) |x-a| - |x-b|$$

(3)
$$|x-a| + |x-b| + |x-c|$$

方法1: 数形结合法 (绝对值的几何含义)

方法2: 常规方法 (零点分段讨论法)

终极秘法:直接代入零点 第一步:求零点

第二步: 求零点对应的y值

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

(1) |x-a|+ |x-b|的几何意义:

表示在数轴上x点分别到a点与b点的距离值之和

这里x的位置有3种情况: a的左侧; a和b之间; b的右侧(详情见下页)。

如y=|x+2|+ |x-4|表示x分别到-2与4的距离之和

第三节: 绝对值

1.3.5 绝对值的最值

(1) 数形结合法:根据绝对值的几何含义进行判断

$$y=|x-a|+|x-b|$$

观察最大值和最小值

知识点12:绝对值的最值

绝对值的最值

(1) 数形结合法:根据绝对值的几何含义进行判断

|x-2| |x-4|

$$y=|x-a|+|x-b|$$

此时: y 可以无穷大

当x=2时, y=2

无最大值

此时: y=2

有最小值, 为|a-b|=|2-4|=2

此时: y 可以无穷大 当x=4时, y=2

第三节:绝对值

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

(2) 常规方法 (零点分段讨论法): 分段讨论法去绝对值符号,根据图像判断最值。

令
$$|x-2|=0$$
; $|x+2|=0$, 所以 $x_1=2$, $x_2=-2$

$$|x-2|+|x+2|=-(x-2)+[-(x+2)]=-2x$$

$$2 - 2 < x < 2$$
, $|x-2| + |x+2| = -(x-2) + (x+2) = 4$

$$|x-2|+|x+2|=(x-2)+(x+2)=2x$$

此时有最小值,为|a - b|=|2- (- 2)|=4

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

此时有最小值,为|a-b|

形如y= |x-a|+ |b-x| 此时有最小值,为|a-b|

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

(2) |x-a|-|x-b|的几何意义:表示在数轴上x点到a点与b点的距离值之差

X的位置有3种情况:a的左侧;a和b之间;b的右侧。

如y=|x+2|-|x-4|表示x到 -2与4的距离之差

第三节: 绝对值

1.3.5 绝对值的最值

(1) 数形结合法: 根据绝对值的几何含义进行判断

$$y=|x-a|-|x-b|$$

观察最大值和最小值

1.3.5 绝对值的最值

(1) 数形结合法:根据绝对值的几何含义进行判断

绝对值的几何含义 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

(2) 常规方法(零点分段讨论法):分段讨论法去绝对值符号,根据图像判断最值。

例:设 y=|x-3|-|x+1|,则下列结论正确的是()

$$|x-3|=0$$
; $|x+1|=0$, 所以 $x_1=3$, $x_2=-1$

$$(1)x < -1$$
, $|x-3|-|x+1|=-(x-3)-[-(x+1)]=4$

$$2-1 \le x \le 3$$
, $|x-3|-|x+1|=-(x-3)-(x+1)=-2x+2$

$$3x > 3$$
, $|x-3|-|x+1|=(x-3)-(x+1)=-4$

此时有最小值,为-|a-b|=-|3-(-1)|=-4 此时有最大值,为|a-b|=|3-(-1)|=4

3

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

此时有最小值,为|a-b|

练习题 (2008年10月)

【例3】 f(x) 有最小值2.

(1)
$$f(x)=|x-\frac{5}{12}|+|x-\frac{1}{12}|$$

(2) f(x)=|x-2|+|4-x|

做题思路: |x-a|+|x-b|的最小值是|a-b|

条件1: 最小值为 $\left|\frac{5}{12} - \frac{1}{12}\right| = \frac{1}{3}$

条件2: 最小值为|2 - 4|=2

条件(1)	条件(2)	选项
√ ×		Α
×	V	В
×	×	С
(1)+(2) √		(combine)
√	$\sqrt{}$	D (double)
×	×	E
(1)+(2) ×		(error)

B

练习题 (2010年前真题)

【例4】 已知 |x+2|+|1-x|=9-|y-5|-|1+y|,则x+y的最大值和最小值分别为m,n。

(1) m=5, n=-4

B

(2) m=6, n=-3

做题思路: |x+2|+|1-x|+|y-5|+|1+y|=9

 $|x+2|+|1-x|\ge 3$, $|y-5|+|1+y|\ge 6$, 题干相加要等于9,

- |x+2|+|1-x|=3, |y-5|+|1+y|=6,
- $-2 \le x \le 1$, $-1 \le y \le 5$

$$m=5+1=6$$

$$n=-2+(-1)=-3$$

练习题 (模拟题)

【练习5】已知|x-a|+|x+2|的最小值是5,则a的值是()

A. 3 B. -3 C. 7 D. -7

E. 3或-7

思路: |x-a|+|x+2|的最小值|a-(-2)|=|a+2|=5

当a+2≥0时, a+2=5, a=3

第三节: 绝对值

绝对值的几何含义 绝对值 绝对值的性质 绝对值最值

1.3.5 绝对值的最值

(2) 常规方法 (零点分段讨论法): 分段讨论法去绝对值符号,根据图像判断最值。

假设a < b < c,当x=b时,有最小值|c-a|=c-a

根据这个讨论可以得出右边的图像(注意形状即可,不必在意具体数字)

强化 练习题(2009年10月)

零点: a 20 a+20

【**例**6】设y=|x-a|+|x-20|+|x-a-20|,其中0 < a < 20,则对于满足a≤x ≤20的x值,y的最小值是()

A. 10 B. 15

D. 25

E. 30

$$y=|x-a|+|x-20|+|x-(a+20)|$$

假设a < b < c,当x=b时,有最小值|c-a|=c-a

当
$$x=a$$
时, $y=|x-a|+|x-20|+|x-(a+20)|=0+20-a+20=40-a$

当
$$x=20$$
时, $y=|x-a|+|x-20|+|x-(a+20)|=20-a+0+a=20$

当
$$x=20+a$$
时, $y=|x-a|+|x-20|+|x-(a+20)|=20+a+0=20+a$

练习题 (2006年10月)

【自行练习7】 |b-a|+ |c-b|- |c|=a A

(1) 实数a,b,c在数轴上的位置为

(2) 实数a,b,c在数轴上的位置为

思路:根据a、b、c在数轴上的位置,去绝对值

条件1: |b-a|+|c-b|-|c|=-(b-a)+[-(c-b)]-(-c)=a-b+b-c+c=a, 充分

条件2: |b-a|+ |c-b|-|c|= b-a+c-b-c=-a, 不充分

条件(1)	条件(2)	选项	
$\sqrt{}$	×	Α	
×	V	В	
×	×		
(1)+(2) √		(combine)	
V	V	D (double)	
×	×	E	
(1)+(2) ×		(error)	

练习题 (模拟题)

【**自行练习8**】函数 y=2|x+1|+|x-2|-5|x-1|+|x-3|的最大值是()

做题思路:

求零点: |x+1|=0; |x−2|=0; |x−1|=0; |x−3|=0

零点: x=−1; x=2; x=1; x=3

零点	-1	1	2	3
对应的y值	-3	7	2	-1

终极秘法: 代入零点!

第一步: 求零点

第二步: 求零点对应的y值

绝对值的最值总结

- (1) |x-a| + |x-b|
- (2) |x-a|- |x-b|
- (3) |x-a| + |x-b| + |x-c|

方法1:数形结合法(绝对值的几何含义)

方法2:常规方法(零点分段讨论法)

终极大法:直接代入零点!!!

平底锅图形

形如y= |x-a|+ |x-b|或y= |x-a|+ |b-x| 此时有最小值,为|a-b|

Z图形

形如y= |x-a| - |x-b|或y= |x-a| - |b-x| 此时有最小值,为-|a-b| 此时有最大值,为|a-b|

绝对值的最值总结

平底锅图形

形如y= |x-a|+ |x-b| 此时有最小值,为|a-b|

Z图形

形如y= |x-a|- |x-b| 此时有最小值,为-|a-b| 此时有最大值,为|a-b|

铅笔头图形

形如y=|x-a|+|x-b|+|x-c| 假设a < b < c, 当x=b时, 有最小值|c-a|=c-a

END • Thanks for listening