Recall: let X (nodq) be a real Dirichlet character and X + Iq If $L(1, x) \neq 0$, then Dirichlet's Theorem is valid.

In this class, we will introduce some fundamental results for real Dirichlet characters.

In this class, we always assume that X is nonprincipal.

Observation: suppose that $\chi(mod q)$ is an imprimitive character.

Then we can find a primitive character $\chi' \pmod{q'}$ s.t.

$$q' \mid q$$
 and $\chi = \chi' \cdot Iq$.

In this case, we have:

Mis case, we have:
$$L(s, \chi) = L(s, \chi') \cdot \prod_{p \neq q'} \left(\frac{1 - \chi'(p)}{ps} \right)$$
implies:

This implies:

s implies:

$$L(1, X) \neq 0$$
 if and only if $L(1, X') \neq 0$

Therefore, our goal becomes:

(non principal), L(1,x) +0. for any real primitive character X

Question: How to construct real primitive characters? Ans: Using the quadratic symbols! Définition: Let n,9 be tuo intégers. We say: 1, n is a quadrottic residue mod q (QR) if $\chi^2 \equiv n \pmod{9}$ has a solution in $(2/92)^{x}$ (2) n is a quadratic nonresidue mod q (NR) if $\chi^2 \equiv n \pmod{q}$ has no solution in $(2/92)^2$ Fout: Fix the modulous P, an odd prime, in (2/p2) QR. QR= QR, QR. NR= NR, NR. NR= QR. Observation: QR behaves like "+1"
NR behaves like "-1" Definition: Let p be an odd prime. We define the <u>Legendre</u> symbol; for n ∈ Z $\left(\frac{\eta}{P}\right) = \begin{cases} 1 & \text{if } n \text{ is a } QR. \\ -1 & \text{if } n \text{ is a } NR. \\ 0 & \text{if } (n,p) > 1. \end{cases}$

$$\left(\frac{mn}{P}\right) = \left(\frac{m}{P}\right) \cdot \left(\frac{n}{P}\right)$$
 for any $m, n \in \mathbb{Z}$.

Theorem (Quadratic Reciprocity Law) Let ple on odd prino.

$$(1) \quad \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

(2)
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1 & \text{if } p \equiv 1, 7 \pmod{8} \\ -1 & \text{if } p \equiv 3, 5 \pmod{8} \end{cases}$$

(3) Let
$$P, q$$
 be two odd prines,
$$\left(\frac{P}{q}\right)\left(\frac{q}{P}\right) = (-1)^{\frac{P-1}{2} \cdot \frac{q+1}{2}}$$

$$\left(\begin{array}{c} \left(\frac{P}{q}\right) \cdot \left(\frac{q}{P}\right) = -1 & \text{iff} & P \equiv 3 \pmod{4} \text{ and } q \equiv 3 \pmod{4} \right).$$

This can help to calculate $(\frac{n}{p})$ for any $n \in \mathbb{Z}$.

Finally, it is easy to check, for any $n \in \mathbb{Z}$ $\left(\begin{array}{c} n+p \\ P \end{array}\right) = \left(\begin{array}{c} n \\ P \end{array}\right).$

This shows: Prop: Let P>3 be an odd prime. Then $\chi_{P}(v) = \left(\frac{v}{P}\right)$ défines a real character. Moreover, this is primitive. Fout: Let $p \ge 3$ be an odd prime and X is a real primitive character (mod p?). Then n=1 and $x=x_p$. Question: How about real primitive characters (mod 2")? Ans/faut: There are 3 real prinitive character (mod 21): $\chi_{-4}(n) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4} \\ -1 & \text{if } n \equiv 3 \pmod{4} \end{cases}$ χ_{-4} (mod 4) $\chi_{8}(n) = \begin{cases} 1 & \text{if } n \equiv 1,7 \pmod{8} \\ -1 & \text{if } n \equiv 3,5 \pmod{8} \end{cases}$ $\chi_{8} \pmod{8}$ $\chi_{-8} \pmod{8}$ $\chi_{-8} = \chi_{-4}\chi_{8}$

Faut: Let X (modq) be a primitive character. Suppose that $9 = 9, 9_2$ and $(9, 9_2) = 1$. Then we can find primitive characters X, (mod 9,) and $\chi_2 \pmod{q_2}$ such that $\chi = \chi_1 \chi_2$. This implies: Theorem: Every real primitive character is a produt of. $\chi_4, \chi_8, \chi_p, (p \ge 3, prime)$ Next, we want to find a "better" notation for real primitive characters. positive Definition: Let $M = P_1^{\alpha_1} \dots P_r^{\alpha_r}$ be an odd integer and $N \in \mathbb{Z}$ We define the <u>Jacobi symbol</u>: $\left(\frac{n}{m}\right) = \left(\frac{n}{p_1}\right)^{\alpha_1} \cdots \left(\frac{n}{p_r}\right)^{\alpha_r}$ Check: (1) $\left(\frac{ab}{m}\right) = \left(\frac{a}{m}\right)\left(\frac{b}{m}\right)$ $(2) \quad \left(\frac{a}{mn}\right) = \left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$ $(3) \quad \left(\frac{\alpha+m}{m}\right) = \left(\frac{\alpha}{m}\right)$

Theorem (Quadratic Reciprocity Law): Let m be an odd integer.

$$(1) \quad \left(\frac{-1}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1 \pmod{4} \\ -1 & \text{if } m \equiv 3 \pmod{4} \end{cases}$$

(2)
$$\left(\frac{2}{m}\right) = \begin{cases} 1 & \text{if } m \equiv 1,7 \pmod{8} \\ -1 & \text{if } m \equiv 3,5 \pmod{8} \end{cases}$$

Finally, we define the <u>Knonecher symbol</u>: for $u=\pm 1$ for $m=u\cdot 2^e\cdot p_1^e$. Per and $n\in\mathbb{Z}$ $\left(\frac{n}{m}\right)=\left(\frac{n}{u}\right)\cdot\left(\frac{n}{2}\right)^e\cdot\left(\frac{n}{p_1^e}\cdot p_1^e\right)$

Here in $\left(\frac{n}{1}\right) = 1$

$$\binom{2}{n} \left(\frac{n}{-1}\right) = \begin{cases} -1 & \text{if } n < 0 \\ 1 & \text{if } n > 0 \end{cases}$$

(3)
$$\left(\frac{\eta}{2}\right) = \begin{cases} 0 & \text{if } \eta \text{ is even} \\ 1 & \text{if } \eta \equiv 1,7 \pmod{\delta} \\ -1 & \text{if } \eta \equiv 3,7 \pmod{\delta} \end{cases}$$

We set
$$\left(\frac{n}{0}\right) = \begin{cases} 1 & \text{if } n = \pm 1 \\ 0 & \text{otherwise.} \end{cases}$$

Warning: The property of the Kronecher symbol is not as good as that of previous symbols. Please be careful when you try to use it!

Definition: An integer D is a fundamental discriminant if (1) $D = 1 \pmod{4}$ and D is squarefree. or (2) D = 4d, $d = 2,3 \pmod{4}$ and d is squarefree.

Theorem: Let X be a real primitive character.

Then we can find a findamental discriminant D such that:

$$\chi(n) = \left(\frac{D}{n}\right) \neq \text{Kronecher symbol}.$$

Lotter, we will use the notation X_D for it.

The conductor of X_D is |D|.

Remark: When n is an odd positive integer.

The Kronecker symbol $(\frac{D}{n})$ and the Jawbi symbol $(\frac{D}{n})$ are the same.

Theorem: Let X be a real primitive character mod D

Then $D = \chi(-1) \cdot |D|$ is a fundamental discriminate and for any odd integer n,

$$\chi(n) = \left(\frac{D}{N}\right) \leftarrow Jaubi symbol.$$