Wild BlueBerry Yield Predictions

Submissions will be evaluated using Mean Absolute Error (MAE)

```
In [1]: import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

/kaggle/input/playground-series-s3el4/sample_submission.csv
/kaggle/input/playground-series-s3el4/train.csv
/kaggle/input/playground-series-s3el4/test.csv

In [2]: import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading the dataset

```
In [3]: df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv')
  test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv')
  df.head(10)
```

Out[3]:		id	clonesize	honeybee	bumbles	andrena	osmia	MaxOfUpperTRange	MinOfUpperT
	0	0	25.0	0.50	0.25	0.75	0.50	69.7	
	1	1	25.0	0.50	0.25	0.50	0.50	69.7	
	2	2	12.5	0.25	0.25	0.63	0.63	86.0	
	3	3	12.5	0.25	0.25	0.63	0.50	77.4	
	4	4	25.0	0.50	0.25	0.63	0.63	77.4	
	5	5	25.0	0.50	0.25	0.63	0.75	94.6	
	6	6	12.5	0.25	0.38	0.50	0.63	86.0	
	7	7	12.5	0.25	0.25	0.75	0.75	86.0	
	8	8	25.0	0.50	0.38	0.38	0.75	94.6	
	9	9	25.0	0.50	0.25	0.63	0.63	94.6	

Exploratory Data Analysis

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15289 entries, 0 to 15288
Data columns (total 18 columns):

#	Column	Non-N	ull Count	Dtype
0	id	15289	non-null	int64
1	clonesize	15289	non-null	float64
2	honeybee	15289	non-null	float64
3	bumbles	15289	non-null	float64
4	andrena	15289	non-null	float64
5	osmia	15289	non-null	float64
6	Max0fUpperTRange	15289	non-null	float64
7	MinOfUpperTRange	15289	non-null	float64
8	AverageOfUpperTRange	15289	non-null	float64
9	MaxOfLowerTRange	15289	non-null	float64
10	MinOfLowerTRange	15289	non-null	float64
11	AverageOfLowerTRange	15289	non-null	float64
12	RainingDays	15289	non-null	float64
13	AverageRainingDays	15289	non-null	float64
14	fruitset	15289	non-null	float64
15	fruitmass	15289	non-null	float64
16	seeds	15289	non-null	float64
17	yield	15289	non-null	float64
من بالدام	£1+C4/17\+C4	/1\		

dtypes: float64(17), int64(1)

memory usage: 2.1 MB

In [5]: df.describe().T

ut[5]:		count	mean	std	min	25%	
	id	15289.0	7644.000000	4413.698468	0.000000	3822.000000	76
	clonesize	15289.0	19.704690	6.595211	10.000000	12.500000	
	honeybee	15289.0	0.389314	0.361643	0.000000	0.250000	
	bumbles	15289.0	0.286768	0.059917	0.000000	0.250000	
	andrena	15289.0	0.492675	0.148115	0.000000	0.380000	
	osmia	15289.0	0.592355	0.139489	0.000000	0.500000	
	MaxOfUpperTRange	15289.0	82.169887	9.146703	69.700000	77.400000	
	MinOfUpperTRange	15289.0	49.673281	5.546405	39.000000	46.800000	
	AverageOfUpperTRange	15289.0	68.656256	7.641807	58.200000	64.700000	
	MaxOfLowerTRange	15289.0	59.229538	6.610640	50.200000	55.800000	
	MinOfLowerTRange	15289.0	28.660553	3.195367	24.300000	27.000000	
	AverageOfLowerTRange	15289.0	48.568500	5.390545	41.200000	45.800000	
	RainingDays	15289.0	18.660865	11.657582	1.000000	16.000000	
	AverageRainingDays	15289.0	0.324176	0.163905	0.060000	0.260000	
	fruitset	15289.0	0.502741	0.074390	0.192732	0.458246	
	fruitmass	15289.0	0.446553	0.037035	0.311921	0.419216	
	seeds	15289.0	36.164950	4.031087	22.079199	33.232449	
	yield	15289.0	6025.193999	1337.056850	1945.530610	5128.163510	61
[6]:	<pre>df.isna().sum()</pre>						
[6]:	id	0					

In [6]:	<pre>df.isna().sum()</pre>	
Out[6]:	id	0
	clonesize	0
	honeybee	0
	bumbles	0
	andrena	0
	osmia	0
	MaxOfUpperTRange	0
	MinOfUpperTRange	0
	AverageOfUpperTRange	0
	Max0fLowerTRange	0
	MinOfLowerTRange	0
	AverageOfLowerTRange	0
	RainingDays	0
	AverageRainingDays	0
	fruitset	0
	fruitmass	0
	seeds	0
	yield	0
	dtype: int64	

```
Out[7]: (15289, 18)
```

Learn some more exploratory vizualization for numerical variables

Feature selection using Correlation matrix

```
In [8]: f,ax = plt.subplots(figsize=(25,15))
sns.heatmap(df.corr(),annot=True,vmin=-1,vmax=1)
```

Out[8]: <AxesSubplot: >

There are few columns which has perfect co-linearity, Delete these columns

```
In [9]: corr_matrix = df.corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype
to_drop = [column for column in upper_tri.columns if any(upper_tri[column] >
    df_new = df.drop(df[to_drop], axis=1)
    test_new = test.drop(test[to_drop], axis=1)
df_new.head()
```

Out[9]:		id	clonesize	honeybee	bumbles	andrena	osmia	MaxOfUpperTRange	RainingDays
	0	0	25.0	0.50	0.25	0.75	0.50	69.7	24.0
	1	1	25.0	0.50	0.25	0.50	0.50	69.7	24.0
	2	2	12.5	0.25	0.25	0.63	0.63	86.0	24.0
	3	3	12.5	0.25	0.25	0.63	0.50	77.4	24.0
	4	4	25.0	0.50	0.25	0.63	0.63	77.4	24.0

Train Test Split

```
In [10]: from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(df_new.drop(['yield'],axis=
X_train.head()
```

Out[10]:		id	clonesize	honeybee	bumbles	andrena	osmia	MaxOfUpperTRange	Raini
	7794	7794	25.0	0.50	0.25	0.38	0.63	77.4	
	2444	2444	25.0	0.50	0.25	0.63	0.50	86.0	
	3931	3931	12.5	0.25	0.25	0.38	0.75	69.7	
	15264	15264	12.5	0.25	0.25	0.63	0.50	86.0	
	4323	4323	25.0	0.50	0.25	0.38	0.50	94.6	

1. Linear Regression

```
In [11]: from sklearn.linear_model import LinearRegression
    linreg = LinearRegression()
    linreg.fit(X_train,y_train)
    y_pred = linreg.predict(X_test)

In [12]: from sklearn.metrics import mean_absolute_percentage_error
    import math
    from sklearn import metrics

mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

results = pd.DataFrame([['Linear Regression', mae, mape, mse, r2, rmse]], cc
    results
```

Out[12]: Model MAE MAPE MSE R2 RMSE **0** Linear Regression 369.661843 0.06654 348539.25045 0.809118 590.372129 In [13]: ## 2. RidgeCV Regression # from sklearn.linear model import Ridge # ridreg = Ridge(random state=3) # ridreg.fit(X train,y train) # y pred = ridreg.predict(X test) # mae = metrics.mean_absolute_error(y_test, y_pred) # mape = mean absolute percentage error(y test, y pred) # mse = metrics.mean squared error(y test, y pred) # r2 = metrics.r2_score(y_test, y_pred) # rmse = math.sqrt(mse) # temp_results = pd.DataFrame([['Ridge Regression', mae, mape, mse, r2, rmse # results = pd.concat([results,temp results], ignore index=True) # results 2. RidgeCV regession In [14]: **from** sklearn.linear model **import** RidgeCV alphas = [0.1,0.3,0.5,0.7,0.9,1.0]ridregcv = RidgeCV(alphas = alphas) ridregcv.fit(X train,y train) y_pred = ridregcv.predict(X_test)

```
ridregcv = RidgeCV(alphas = alphas)
ridregcv.fit(X_train,y_train)
y_pred = ridregcv.predict(X_test)

In [15]: mae = metrics.mean_absolute_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Ridge CV Regression', mae, mape, mse, r2, rms
results = pd.concat([results,temp_results], ignore_index=True)
results
```

```
        Out[15]:
        Model
        MAE
        MAPE
        MSE
        R2
        RMSE

        0
        Linear Regression
        369.661843
        0.066540
        348539.250450
        0.809118
        590.372129

        1
        Ridge CV Regression
        369.785828
        0.066591
        348576.327256
        0.809098
        590.403529
```

3. Lasso Regression

```
In [16]: from sklearn.linear_model import LassoCV

Loading [MathJax]/extensions/Safe.js ,0.3,0.5,0.7,0.9,1.0]
```

```
lassocv.fit(X_train,y_train)
y_pred = lassocv.predict(X_test)

In [17]: mae = metrics.mean_absolute_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Lasso Regression', mae, mape, mse, r2, rmse]]
results = pd.concat([results,temp_results], ignore_index=True)
results
Out[17]: Model MAE MAPE MSE R2 RMSE
```

lassocv = LassoCV(alphas=alphas,cv=10,random state=3,)

Out[17]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	348539.250450	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	348576.327256	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	348717.957516	0.809020	590.523461

4. Elastic Net Regression

```
In [18]: from sklearn.linear_model import ElasticNetCV
    ela_reg = ElasticNetCV(cv =10,random_state =3)
    ela_reg.fit(X_train,y_train)
    y_pred = ela_reg.predict(X_test)

In [19]: mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['ElasticNetCV Regression', mae, mape, mse, r2, results = pd.concat([results,temp_results], ignore_index=True)
    results
```

:	Model	MAE	MAPE	MSE	R2	RMSE
0	Linear Regression	369.661843	0.066540	348539.250450	0.809118	590.372129
1	Ridge CV Regression	369.785828	0.066591	348576.327256	0.809098	590.403529
2	Lasso Regression	369.814016	0.066591	348717.957516	0.809020	590.523461
3	ElasticNetCV Regression	724.442793	0.140578	876815.066589	0.519801	936.384038

5. Support Vector Regression

```
In [20]: from sklearn.svm import SVR

svr_reg = SVR()
svr_reg.fit(X_train,y_train)
y_pred = svr_reg.predict(X_test)

In [21]: mae = metrics.mean_absolute_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Support Vector Regression', mae, mape, mse, r
results = pd.concat([results,temp_results], ignore_index=True)
results
```

Out[21]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
	3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
	4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187

6. Decision Tree Regression

```
In [22]: from sklearn.tree import DecisionTreeRegressor
    dt_reg = DecisionTreeRegressor(random_state=3)
    dt_reg.fit(X_train,y_train)
    y_pred = dt_reg.predict(X_test)

In [23]: mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Decision Tree Regression', mae, mape, mse, r2
    results = pd.concat([results,temp_results], ignore_index=True)
    results
```

Out[23]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
	3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
	4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
	5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594

7. Random Forest Regression

```
In [24]: from sklearn.ensemble import RandomForestRegressor
    ranfor_reg = RandomForestRegressor(max_depth=2, random_state=3)
    ranfor_reg.fit(X_train,y_train)
    y_pred = ranfor_reg.predict(X_test)

In [25]: mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Random Forest Regression', mae, mape, mse, r2 results = pd.concat([results,temp_results], ignore_index=True)
    results
```

Out[25]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
	3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
	4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
	5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594
	6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.922238

8. Xgboost Regressor

```
In [26]: import xgboost as xgb
    xbg_reg = xgb.XGBRegressor()
    xbg_reg.fit(X_train,y_train)
    y_pred = xbg_reg.predict(X_test)

In [27]: mae = metrics.mean_absolute_error(y_test, y_pred)
    mape = mean_absolute_percentage_error(y_test, y_pred)
    mse = metrics.mean_squared_error(y_test, y_pred)
    r2 = metrics.r2_score(y_test, y_pred)
    rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['XGB Regression', mae, mape, mse, r2, rmse]],
    results = pd.concat([results,temp_results], ignore_index=True)
    results
```

Out[27]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
	3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
	4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
	5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594
	6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.922238

366.258016 0.065761 3.400084e+05 0.813790

583.102404

9. LightGBM Regression

XGB Regression

	Model	MAE	MAPE	MSE	R2	RMSE
0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594
6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.922238
7	XGB Regression	366.258016	0.065761	3.400084e+05	0.813790	583.102404
8	LGBM Regressor	352.459321	0.063037	3.237303e+05	0.822705	568.973006

10. CatBoost Regression

```
In [30]: import catboost as cb
cb_reg = cb.CatBoostRegressor()
cb_reg.fit(X_train,y_train,verbose=False)
y_pred = cb_reg.predict(X_test)

In [31]: mae = metrics.mean_absolute_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['CatBoost Regressor', mae, mape, mse, r2, rmse
results = pd.concat([results,temp_results], ignore_index=True)
results
```

Out[29]:

Out[31]:		Model	MAE	MAPE	MSE	R2	RMSE
	0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
	1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
	2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
	3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
	4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
	5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594
	6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.922238
	7	XGB Regression	366.258016	0.065761	3.400084e+05	0.813790	583.102404
	8	LGBM Regressor	352.459321	0.063037	3.237303e+05	0.822705	568.973006
	9	CatBoost Regressor	352.250722	0.063093	3.229476e+05	0.823134	568.284748

11. Decision Tree Regressor with GridSearchCV

```
In [32]: from sklearn.tree import DecisionTreeRegressor
         from sklearn.model selection import GridSearchCV
         dtree = DecisionTreeRegressor()
         param grid = {
             'max_depth': [2, 4, 6, 8],
             'min_samples_split': [2, 4, 6, 8],
             'min_samples_leaf': [1, 2, 3, 4],
             'max_features': ['auto', 'sqrt', 'log2'],
             'random state': [0, 42]
         grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_square
         grid_search.fit(X_train, y_train)
Out[32]: ► GridSearchCV
          ▶ estimator: DecisionTreeRegressor
               ▶ DecisionTreeRegressor
In [33]: y_pred = grid_search.predict(X_test)
         mae = metrics.mean absolute error(y test, y pred)
         mape = mean_absolute_percentage_error(y_test, y_pred)
         mse = metrics.mean squared error(y test, y pred)
```

Loading [MathJax]/extensions/Safe.js r2_score(y_test, y_pred)

```
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Decision Tree Regressor CV', mae, mape, mse,
results = pd.concat([results,temp_results], ignore_index=True)
results
```

Out[33]:

	Model	MAE	MAPE	MSE	R2	RMSE
0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.372129
1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.403529
2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.523461
3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.384038
4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.079187
5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.978594
6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.922238
7	XGB Regression	366.258016	0.065761	3.400084e+05	0.813790	583.102404
8	LGBM Regressor	352.459321	0.063037	3.237303e+05	0.822705	568.973006
9	CatBoost Regressor	352.250722	0.063093	3.229476e+05	0.823134	568.284748
10	Decision Tree Regressor CV	366.877558	0.065821	3.457081e+05	0.810669	587.969481

SO,, after applying 10 Regression base models on our dataset, we can see that **LGBM Regressor** has performed the best, followed closely by **CatBoost Regressor**, and Linear Regression, Ridge Regression, Lasso Regression & XGB Regression also have fairly low score. So let's Tune Hyperparameters for all these regressions and find the best model

Hyper Parameter Tuning

CatBoost Regressor

```
In []: from catboost import CatBoostRegressor
    from sklearn.model_selection import GridSearchCV

params = {
      'learning_rate': [0.01, 0.05, 0.1],
      'depth': [3, 5, 7],
      'l2_leaf_reg': [1, 3, 5],
      'iterations': [100, 200]
}
Loading [MathJax]/extensions/Safe.js
```

```
model = CatBoostRegressor()
grid = GridSearchCV(estimator=model,param_grid=params,scoring='neg_mean_squa

# Set up the cross-validation scheme
cv = 5

# Train and evaluate the model with each combination of hyperparameters
grid.fit(X_train, y_train)

# Get the best hyperparameters from grid search and use them to train a fina
best_params = grid.best_params_
best_catboost = CatBoostRegressor(**best_params)
best_catboost.fit(X_train, y_train)
```

In [35]: y_pred = best_catboost.predict(X_test)
mae = metrics.mean_absolute_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test, y_pred)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
rmse = math.sqrt(mse)

temp_results = pd.DataFrame([['Best CatBoost Regression', mae, mape, mse, r2 results = pd.concat([results,temp_results], ignore_index=True)
results

MAPE

MSE

RMSE

568.273597

R2

MAE

Model

Regressor CV

Best CatBoost

Regression

0	Linear Regression	369.661843	0.066540	3.485393e+05	0.809118	590.37212
1	Ridge CV Regression	369.785828	0.066591	3.485763e+05	0.809098	590.40352
2	Lasso Regression	369.814016	0.066591	3.487180e+05	0.809020	590.52346
3	ElasticNetCV Regression	724.442793	0.140578	8.768151e+05	0.519801	936.38403
4	Support Vector Regression	1101.513076	0.216331	1.844379e+06	-0.010097	1358.07918
5	Decision Tree Regression	531.537727	0.093867	7.005332e+05	0.616344	836.97859
6	Random Forest Regression	476.724418	0.088170	4.650179e+05	0.745327	681.92223
7	XGB Regression	366.258016	0.065761	3.400084e+05	0.813790	583.10240
8	LGBM Regressor	352.459321	0.063037	3.237303e+05	0.822705	568.97300
9	CatBoost Regressor	352.250722	0.063093	3.229476e+05	0.823134	568.28474
10	Decision Tree	366.877558	0.065821	3.457081e+05	0.810669	587.96948

351.511129 0.062874 3.229349e+05 0.823141

11

Out[35]:

Final Model

Catboost Regression

```
In [36]: predictions = best_catboost.predict(test_new)

output = pd.DataFrame({'id': test.id, 'yield': predictions})
output.to_csv('submission.csv', index=False)
print("Your submission was successfully saved!")
```

Your submission was successfully saved!