Компьютерная графика и визуализация в реальном времени

Основы моделей освещения

Алексей Романов

Физика освещения

- Эманация (испускание) света
- Взаимодействие света с объектами сцены
 - Поглощение
 - Рассеяние
 - Отражение
- Поглощение света сенсором

Типы источников света

- ► Направленные / directional Бесконечно-удаленные
 - Солнце
 - Луна
 - Сигнальная ракета
 - **)** ...
- Точечные и пространственные / point & area
- ▶ Конические / spot

Точечные источники света

Конические источники света

Локальная модель освещения

- Рассмотрим модель освещения Фонга
 - Простейшая модель освещения
 - Эффективна с вычислительной точки зрения
- Входные данные:
 - р точка на поверхности объекта
 - n нормаль к объекту
 - lacktriangleright l направление на источник света
 - > Характеристики материала
 - Цвет
 - Глянцевость/Шероховатость
- Выходные интенсивность отраженного света
- Будем строить модель освещения итеративно

0: emission

Излучение объекта

- $I = k_e$
- $ightarrow k_e$ собственное излучение

1:ambient

Учет вторичных лучей освещения

- $I = k_e + k_a I_a$
- k_a отражающая способность объекта
- $ightharpoonup I_a$ усредненная фоновая интенсивность

Облученность/Irradiance

- Плотность мощности излучения, падающего на поверхность, ${\rm BT}\cdot {\rm M}^{\text{-2}} \quad E = \frac{d\Phi}{dS}$
- $m{ ilde{L}}_{m{l}}$ на поверхность, нормальной к $m{l}$
- $m{E} = E_{m{l}} \cdot \max(m{n} \cdot m{l}, 0)$ на поверхность с нормалью $m{n}$

Энергетическая светимость / Exitance

- lacktriangle Измерение выходящего из материала освещения M
- Взаимодействие света и материала линейно $M = f(E), f(\alpha E) = \alpha(fE)$
- $ightharpoonup rac{M}{E}$ характеристика материала
 - ▶ Для не испускающих свет материалов $\frac{M}{E} \subset [0; 1]$
 - Может варьироваться для разных длин волн, записывается $(R,G,B)=c,\,c_{diff},\,c_{spec}$
 - ▶ Также обозначается, как albedo отражающая способность материала

Свойства материала

- $ightharpoonup k_{e}, k_{a}$, I_{a} функции длины волны
- $I(\lambda) = k_e(\lambda) + k_a(\lambda)I_a(\lambda)$
- ▶ Используем цветовой базис rgb:
 - $I_R = k_{e_R} + k_{a_R} I_{a_R}$
 - $I_G = k_{e_G} + k_{a_G} I_{a_G}$
 - $I_B = k_{e_B} + k_{a_B} I_{a_B}$

2:diffuse Рассеянный свет

- Тусклые, матовые поверхности
- Свет отражается равномерно во все стороны
- Можно представить, что освещаемая поверхность:
 - ▶ Состоит из случайно ориентированных микрофасетов
 - Состоит из небольших частиц
- Микрофасеты и частицы равномерно рассеивают свет

2:diffuse

- Отраженный свет не зависит от положения наблюдателя
- Зависит только от направления источника света и нормали к поверхности

 $I = k_e + k_a I_a + k_d I_l(nl)_+$

2: пример diffuse

3:specular

- Имитирует блик на поверхности объекта
- Используется для таких материалов, как:
 - Металл
 - Пластик
 - Кожа
- Свойства:
 - Зависимость от направления на наблюдателя v
 - Цвет, как правило, не меняется

3: Коэффициент зеркальности

3: итоговое уравнение

$$I = k_e + k_a I_a + k_d I_l (nl)_+ + k_s I_l (rv)_+^m$$

Модель Блинн-Фонга

- lacktriangleright Вместо отраженного вектора r используется вектор h
- $h = \widetilde{v + l}$
- $I = k_{S}I_{l}(hn)^{m}$
- Преимущество модели Блинн-Фонга по сравнению с обычной моделью Фонга?

$$(\forall p \; l_p = l \; \land v_p = v) \Rightarrow h_p = const \Rightarrow$$
вычисляется один раз

Модели Фонга и Блинна-Фонга

Затухание

- ▶ Точечные источники света $I(d) \sim \frac{1}{d^2}$
- Конический источник света точечный + затухание по углу

4: Множественные источники света

- Свет аддитивен
- Суперпозиция множественных источников света

$$I = k_e + k_a I_a + \sum_{j} I_{l_j} (k_d (nl_j)_+ + k_s (r_j v)_+^m)$$

Интерполяция нормалей и типы закраски

- lerp
- nlerp
- slerp

Типы закрасок

- Плоская / Flat
 Расчет освещения для фасетов
- ► Гуро / Gouraud
 Расчет освещения для вершин
- Фонг / PhongРасчет освещения для фрагментов

Глобальное освещение

▶ Cornell box, только локальное освещение

• Cornell box, глобальное освещение за счёт учета вторичных лучей

Модели глобального освещения

• Фоновое освещение / ambient

Константная добавка в формулу освещения,

$$L_o(v) = \sum_{k=1}^n (K_a + \overline{\cos \theta_k \theta} K_d + \overline{\cos \theta_{h_k}}^m K_s) * B_k$$

• Построение карты освещенности небосвода

Voxel tracing

Ambient occlusion

Учет геометрии в окрестности освещаемой точки

AO

SSAO – screen space ambient occlusion – приближение AO в экране через буфер глубины

Вопросы

