

Figure 51.10: Let C be the solid peach tetrahedron in \mathbb{R}^3 . The green plane H is a supporting hyperplane to the point x since $x \in H$ and $C \subseteq H_+$, i.e. H only intersects C on the edge containing x and so the tetrahedron lies in "front" of H.

x, since $\langle z, u \rangle \leq c$ for all $z \in C$ and $\langle x, u \rangle = c$, we have $\langle z - x, u \rangle \leq 0$ for all $z \in C$, which means that u is normal to C at x. This concept is illustrated by Figure 51.12.

The notion of subgradient can be motived as follows. A function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}^n$ if

$$f(x + y) = f(x) + df_x(y) + \epsilon(y) ||y||_2$$

for all $y \in \mathbb{R}^n$ in some nonempty subset containing x, where $df_x \colon \mathbb{R}^n \to \mathbb{R}$ is a linear form, and ϵ is some function such that $\lim_{\|y\| \mapsto 0} \epsilon(y) = 0$. Furthermore,

$$df_x(y) = \langle y, \nabla f_x \rangle$$
 for all $y \in \mathbb{R}^n$,

where ∇f_x is the *gradient* of f at x, so

$$f(x+y) = f(x) + \langle y, \nabla f_x \rangle + \epsilon(y) \|y\|_2.$$

If we assume that f is convex, it makes sense to replace the equality sign by the inequality sign \geq in the above equation and to drop the "error term" $\epsilon(y) \|y\|_2$, so a vector u is a subgradient of f at x if

$$f(x+y) \ge f(x) + \langle y, u \rangle$$
 for all $y \in \mathbb{R}^n$.

Thus we are led to the following definition.

Definition 51.14. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a convex function. For any $x \in \mathbb{R}^n$, a subgradient of f at x is any vector $u \in \mathbb{R}^n$ such that

$$f(z) \ge f(x) + \langle z - x, u \rangle$$
, for all $z \in \mathbb{R}^n$. (*subgrad)

The above inequality is called the *subgradient inequality*. The set of all subgradients of f at x is denoted $\partial f(x)$ and is called the *subdifferential* of f at x. If $\partial f(x) \neq \emptyset$, then we say that f is subdifferentiable at x.