

PROGRAMACIÓN tics 100

FACULTAD DE INGENIERÍA Y CIENCIAS. UNIVERSIDAD ADOLFO IBAÑEZ

Segundo semestre 2020

Pandas (I)

 El análisis de datos es el proceso de evaluar datos utilizando herramientas analíticas y estadísticas para descubrir información útil y ayudar en la toma de decisiones de negocios.

Pandas

Pandas es un módulo (de código abierto) que proporciona:

- estructuras de datos de alto rendimiento y
- herramientas de análisis de datos para el lenguaje de programación Python.

#importar pandas
import pandas as pd

Pandas

Pandas está basado en otros módulos, tales como Numpy, y usa principalmente dos estructuras de datos:

- Series
- DataFrames

Nos enfocaremos en el último. Un DataFrame es una matriz (arreglo bidimensional) etiquetada con columnas de tipos potencialmente diferentes.

NAME A	GE DESIGNATION
1 a	20 VP
2 b	27 CEO
3 c	35 CFO
4 d	55 VP
5 e	18 VP
6 f	21 CEO
7 g	35 MD

Un dataframe nos permite:

- Cargar datos de otra fuente de datos (como un CSV)
- Mantener datos en forma ordenada
- Acceder por nombre o por índice (posición)
- Realizar operaciones sobre datos (como Numpy)
- Entre otras posibilidades

UNIVERSIDAD ADOLFO IBÁÑEZ

Ejemplo

- Para aprender Pandas de forma más práctica, iremos paso a paso usando datos de los juegos olímpicos obtenidos de https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results
 - Una copia de los datos se encuentra en webcursos para que los bajen
- Lo que haremos es:
 - Cargar los datos
 - Analizar un dataframe
 - Acceder a datos
 - Realizar filtros
 - Obtener estadísticas

import pandas as pd

print(df.head(10)) head(n) nos muestra los primeros n registros

		count mean		Age 261642.000000 25.556898	
ID	Name Sex	Sport		Event Medal	
0 1	A Dijiang M	Basketball	Basketball Mer	s Basketball NaN	
1 2	A Lamusi M	Judo	Judo Men's Extr	a-Lightweight NaN	
2 3	Gunnar Nielsen Aaby M	Football	Football M	len's Football NaN	
3 4	Edgar Lindenau Aabye M	Tug-Of-War	Tug-Of-War Men	's Tug-Of-War Gold	
4 5	Christine Jacoba Aaftink F	Speed Skating	Speed Skating Women	's 500 metres NaN	

[5 rows x 15 columns]


```
import pandas as pd
```

```
df = pd.read_csv('athlete_events.csv')
```

print(df.iloc[0])

Muestra el primer registro del listado de atletas

print(df.iloc[0,1]) <</pre>

Muestra el campo 2 del primer registro (A Dijiang)

ID	1
Name	A Dijiang
Sex	M
Age	24
Height	180
Weight	80
Team	China
NOC	CHN
Games	1992 Summer
Year	1992
Season	Summer
City	Barcelona
Sport	Basketball
Event	Basketball Men's Basketball
Medal	NaN
Name: 0,	dtype: object

Acceso a Datos

0	A Dijiang
1	A Lamusi
2	Gunnar Nielsen Aaby
3	Edgar Lindenau Aabye
4	Christine Jacoba Aaftink
5	Christine Jacoba Aaftink
6	Christine Jacoba Aaftink
7	Christine Jacoba Aaftink
···	

Acceso a Datos

Name A Dijiang Team China

Name: 0, dtype: object

Nota

¿Por qué cuando realizamos la consulta de 1 columna pudimos ir al primer registro haciendo [0] directamente, en cambio en la consulta con 2 columnas tuvimos que usar .iloc[0]?

- Cuando consultamos por I columna obtenemos una serie, el equivalente a un arreglo de I dimensión ☐ funciona como una lista
- En cambio, al usar 2 o más columnas, obtenemos un dataframe □ debemos usarlo como dataframe ⊙

Estadísticas simples


```
import pandas as pd
df = pd.read_csv('athlete_events.csv')
print(df.shape[0])
                                   shape() nos permite conocer las dimensiones...; igual que en
                                   Numpy!
unique athletes = df['Name'].unique()
                                             unique() nos permite eliminar los elementos
                                             duplicados
print(list(unique_athletes))
                                          Para mostrar todos los datos en una colección
                                           una dimension podemos usar list()
print(len(unique_athletes)) 
                                          Al igual que Numpy, podemos usar len() para
                                           contar elementos en una colección de una
                                           dimensión
```

Filtros

Filtros


```
import pandas as pd
df = pd.read_csv('athlete_events.csv')
medal_winners = df[(df['Medal'] == 'Gold') | (df['Medal'] ==
'Silver') | (df['Medal'] == 'Bronze')]
           Podemos colocar multiples condiciones usando &
               (and), | (or) y separando con paréntesis las condiciones
unique_medal_winners = medal_winners['Name'].unique()
print(unique_medal_winners)
```

Filtros


```
import pandas as pd
df = pd.read_csv('athlete_events.csv')
medal_winners = df[df['Medal'].fillna('None') != 'None']
Podemos usar la función fillna() para darle un valor a
los que no tienen medulla y luego comparar contra ese
valor
unique_medal_winners = medal_winners['Name'].unique()
print(unique_medal_winners)
```



```
import pandas as pd
df = pd.read_csv('athlete_events.csv')
opcion_1 = df[df['Medal'].fillna('None') != 'None']
opcion_2 = df[(df['Medal'] == 'Gold') | (df['Medal'] ==
'Silver') | (df['Medal'] == 'Bronze')]
print(opcion_1.equals(opcion_2))
                      La función equals() permite ver si 2 dataframes tienen
```

los mismos datos

Ejercicio

Tiempo: 20 minutos

Los datos de los juegos olímpicos contiene las siguientes columnas:

- ID ID único para cada atleta
- Name El nombre del atleta
- Sex Género (F o M)
- Age Edad del atleta al momento de los juegos
- Height Altura en centímetros
- Weight Peso en kilogramos
- Team Equipo
- NOC National Olympic Committee código de 3 letras
- Games Año y temporada
- Year Año
- Season Temporada (Summer o Winter)
- City Ciudad anfitriona
- Sport Deporte
- Event Evento
- Medal Medalla obtenida (Gold, Silver, Bronze, o NA si no obtuvo)

Muestre los nombres (sin repetir) de los atletas para cada una de las condiciones siguientes:

- 1. Atletas de género femenino que hayan participado en los juegos de verano
- 2. Atletas de más de 190 centímetros o 90 kilos de peso

Ejercicio

Tiempo: 20 minutos

```
import pandas as pd

df = pd.read_csv('athlete_events.csv')

women_summer = df[(df['Sex']=='F') & (df['Season'] == 'Summer')]
unique_women_summer = women_summer['Name'].unique()
print(unique_women_summer)

big_athletes = df[(df['Weight']>=90.0) | (df['Height'] >= 190)]
unique_big_athletes = big_athletes['Name'].unique()
print(unique_big_athletes)
```

Ejercicio

Tiempo: 20 minutos

Más consultas

- 1. Muestre los nombres y deporte de los atletas de Chile que hayan participado en los juegos de 1996
- 2. Muestre los deportes que se han practicado en los juegos olímpicos de invierno desde 1980