# ECE 321 Software Requirements Engineering

Lecture 10: Finite state machines

# Mid-term course and instruction feedback

- Thanks for giving it! Will try to address everything
- Main things I will try to improve for this year:
  - Make the lectures as interactive as possible
  - Make content less dry/boring
- Main things I will improve for next year:
  - 2x50 mins lecture instead of 1x110
  - Change first two reading assignments

### Last week: descriptive specification

- Algebraic specification
- Set of values and their operations
- Axioms to define the relations between the operations

# **Substring specification (version 1)**

For Substring("student", 3) == "dent":

```
Substring(Create, i) = "";
Substring(Add(s, c), i) =
  if(i >= Length(s)) then "";
  else Add(Substring(s, i), c);
```

# **Substring specification (version 2)**

For Substring("student", 3) == "stu":

```
Substring(Create, i) = "";
Substring(Add(s, c), i) =
  if(Length(s) < i) then
   Add(Substring(s, i), c);
else Substring(s, i);</pre>
```

# This week: operational specification

- Describe the system in terms of control aspects (not data)
- Many formalisms exist:
  - Entity-Relationship Diagrams (semi-formal)
  - Finite State Machines (formal)
  - Data Flow Diagrams (semi-formal)
  - Petri-Nets (formal)

# Finite State Machines (FSMs)

- $M = \{Q, I, T\}$ , where
  - Q is a finite set of *states*
  - *I* is a finite set of *inputs*
  - T is a transition function
    - Defines what is the next state for an input and a state
    - T: Q x I -> Q
    - T can be a partial function

### What are FSMs suitable for?

- Describing systems
  - That have a finite set of states
  - That can go from one state to another as a consequence of some event (input)
- Notes:
  - FSMs with more than 7 nodes are hard to read
  - We need tools to analyze larger FSMs
    - e.g. SPIN model checker

# An example FSM

- States  $Q = \{q_1, q_2, q_3\}$
- Inputs  $I = \{i_1, i_2, i_3, i_4\}$
- Transition function *T*:

|          | i <sub>1</sub> | i <sub>2</sub> | i <sub>3</sub> | i <sub>4</sub> |
|----------|----------------|----------------|----------------|----------------|
| $q_{_1}$ | $q_2$          |                |                | $q_{_1}$       |
| $q_2$    |                | $q_{_1}$       | $q_3$          |                |
| $d^3$    |                | $d^3$          | $q_{_1}$       |                |

### Interpreting the transition function

- Very simple to understand execution model
  - Machine is in some state
  - Input causes state change according to T

|          | i <sub>1</sub> | $i_2$    | i <sub>3</sub> | i <sub>4</sub> |
|----------|----------------|----------|----------------|----------------|
| $q_{_1}$ | $q_2$          |          |                | $q_{_1}$       |
| $q_2$    |                | $q_{_1}$ | $q_3$          |                |
| $d^3$    |                | $d^3$    | $q_{_1}$       |                |

### We can also show an FSM as a graph

- Nodes represent states
- Edges are directed and labeled with inputs
  - Edge labeled i goes from state  $q_1$  to state  $q_2$ 
    - Iff (if and only if)  $T(q_1, i) = q_2$

# Drawing our example FSM



|          | i <sub>1</sub> | i <sub>2</sub> | i <sub>3</sub> | i <sub>4</sub> |
|----------|----------------|----------------|----------------|----------------|
| $q_{_1}$ | q <sub>2</sub> |                |                | $q_{_1}$       |
| $q_2$    |                | $q_{_1}$       | $q_3$          |                |
| $d^3$    |                | $d^3$          | $q_{_1}$       |                |

#### Partial transition functions

- Some (state, input) pairs are undefined
- If we try to execute them
  - They are ignored or generate error
  - System does not change the state

|          | i <sub>1</sub> | i <sub>2</sub> | i <sub>3</sub> | i <sub>4</sub> |
|----------|----------------|----------------|----------------|----------------|
| $q_{_1}$ | $q_2$          |                |                | $q_{_1}$       |
| $q_2$    |                | $q_{_1}$       | $q_3$          |                |
| $q_3$    |                | $q_3$          | $q_{_1}$       |                |

# **Describing execution**

 We can use sequences of states or inputs

|       | i <sub>1</sub> | i <sub>2</sub> | i <sub>3</sub> | i <sub>4</sub> |
|-------|----------------|----------------|----------------|----------------|
| $q_1$ | $q_2$          |                |                | $q_1$          |
| $q_2$ |                | $q_{_1}$       | $q_3$          |                |
| $q_3$ |                | $q_3$          | $q_{_1}$       |                |

- $q_1 q_2 q_1 q_1 q_2 q_3 \dots$ 
  - Or i<sub>1</sub> i<sub>2</sub> i<sub>4</sub> i<sub>1</sub> i<sub>3</sub>

# Initial states and stop states

- Initial state q<sub>1</sub>
  - Indicate with black dot and arrow
- Stop state q<sub>3</sub>
  - Denoted by double circled node



# Initial states and stop states

- Are these executions accepted?
- i<sub>1</sub> i<sub>3</sub> i<sub>3</sub> i<sub>4</sub> i<sub>4</sub> i<sub>1</sub> i<sub>3</sub>
  - Yes
- i<sub>1</sub> i<sub>3</sub> i<sub>3</sub>
  - No
- i<sub>1</sub> i<sub>1</sub> i<sub>3</sub> i<sub>1</sub>
  - Yes/no (depending on whether we error or ignore undefined inputs)



# State machines can be used to accept strings in a language

- e.g., The language of binary strings that start with '0'
  - Accepted: 0, 0001, 010101, 01111 etc.
  - Not accepted: 1, 1110, 1000, etc.
- How would such a FSM look?

### FSM that accepts strings that start with 0



# Another example FSM: Turnstile

States  $Q = \{locked, unlocked\}$ Inputs  $I = \{insert \ coin, \ push\}$ Initial state = locked



# Another example FSM: Turnstile

States  $Q = \{locked, unlocked\}$ Inputs  $I = \{insert \ coin, \ push\}$ Initial state = locked

|          | coin     | push   |
|----------|----------|--------|
| locked   | unlocked | locked |
| unlocked | unlocked | locked |



# Another example application of an FSM: GUI design

- Represent windows and their states as nodes, user inputs as edges
- Allows to analyze the design and correct flaws
  - Are some windows hard to reach?
  - Does the flow of interaction make sense?

#### **Another example FSM: Test execution**

Model software testing procedure using FSM



#### Possible test executions

- ABBCDDE
  - OK
- ABBCDDDE
  - One test case done twice
- ABBCDE
  - One test case skipped



#### Possible test executions

- We want to have the same number of B and D
  - This model cannot guard against this
- How can we fix that?



# Making sure all defined tests are executed



- Create separate states for each creation and execution of a test case
- What is wrong with this approach?
  - Fixes the number of test cases
  - State space explosion effect

### Demonstrating state space explosion

- Example: producer-consumer system
  - Producer **p** produces messages and puts them into a 2-slot buffer
  - Consumer c reads messages and removes them from the same buffer
  - If the buffer is full producer waits until consumer removes something
  - If the buffer is empty consumer waits until producer inserts a message

# FSM for each of the objects



 $c_1$  read  $c_2$ 

**Producer** 

Consumer



**Buffer** 

# **Creating a combined FSM**

- The three FSMs are pieces of a single synchronized system
- How many states do we have in the combined FSM?
  - Cartesian product of the component state sets:
    - $2 \times 2 \times 3 = 12 \text{ states}$
  - Leads to state explosion (and this is a trivial system)

### Let's create the combined FSM



consume c<sub>2</sub>

**Producer** 

Consumer



**Buffer** 

### Step 1: identifying the states and input

- States Q
  - All combinations of states

```
\{<0, p_1, c_1>, <0, p_1, c_2>, <0, p_2, c_1>, <0, p_2, c_2>, ...\}
```

- Inputs I
  - All possible inputs in the FSMs {produce, write, consume, read}

### **Step 2: identifying the transitions**

|                                                          | produce | write | consume | read |
|----------------------------------------------------------|---------|-------|---------|------|
| <b>0</b> , <b>p</b> <sub>1</sub> , <b>c</b> <sub>1</sub> |         |       |         |      |
| 0, p <sub>1</sub> , c <sub>2</sub>                       | -       |       |         |      |
| 0, p <sub>2</sub> , c <sub>1</sub>                       |         |       |         |      |
| 0, p <sub>2</sub> , c <sub>2</sub>                       |         |       |         |      |
| 1, p <sub>1</sub> , c <sub>1</sub>                       |         |       |         |      |
| 1, p <sub>1</sub> , c <sub>2</sub>                       |         |       |         |      |
| 1, p <sub>2</sub> , c <sub>1</sub>                       | +       |       |         |      |
| 1, p <sub>2</sub> , c <sub>2</sub>                       |         |       |         |      |
|                                                          |         |       |         |      |

### **Step 2: identifying the transitions**

|                                    | produce                            | write                              | consume                            | read                               |
|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 0, p <sub>1</sub> , c <sub>1</sub> | 0, p <sub>2</sub> , c <sub>1</sub> | -                                  | -                                  | -                                  |
| 0, p <sub>1</sub> , c <sub>2</sub> | 0, p <sub>2</sub> , c <sub>2</sub> | -                                  | 0, p <sub>1</sub> , c <sub>1</sub> | -                                  |
| 0, p <sub>2</sub> , c <sub>1</sub> | -                                  | 1, p <sub>1</sub> , c <sub>1</sub> | -                                  | -                                  |
| 0, p <sub>2</sub> , c <sub>2</sub> | -                                  | 1, p <sub>1</sub> , c <sub>2</sub> | 0, p <sub>2</sub> , c <sub>1</sub> | -                                  |
| 1, p <sub>1</sub> , c <sub>1</sub> | 1, p <sub>2</sub> , c <sub>1</sub> | -                                  | -                                  | 0, p <sub>1</sub> , c <sub>2</sub> |
| 1, p <sub>1</sub> , c <sub>2</sub> | 1, p <sub>2</sub> , c <sub>2</sub> | -                                  | 1, p <sub>1</sub> , c <sub>1</sub> | -                                  |
| 1, p <sub>2</sub> , c <sub>1</sub> | -                                  | 2, p <sub>1</sub> , c <sub>1</sub> | -                                  | 0, p <sub>2</sub> , c <sub>2</sub> |
| 1, p <sub>2</sub> , c <sub>2</sub> | -                                  | 0, p <sub>1</sub> , c <sub>2</sub> | 1, p <sub>2</sub> , c <sub>1</sub> | -                                  |
|                                    |                                    |                                    |                                    |                                    |

# **Step 3: Drawing the FSM**

• ... a great exercise for at home :)

- For example, use GraphViz
  - https://www.graphviz.org/
  - Open source tool for drawing graphs

# **Advantages of FSMs**

- Simple and intuitive model
  - Especially the graphical representation
- Support tools exist for FSM models
  - https://en.wikipedia.org/wiki/List\_of\_model\_checking\_tools
  - Transformers: generate code from a model
  - Analyzers: analyze system using FSM model

### Which questions can analyzers answer?

- Starting in q<sub>1</sub> can I reach q<sub>3</sub>?
- Am I guaranteed to reach  $q_3$  from  $q_1$ ?
- Can I have two i<sub>2</sub> actions in a row?



# Disadvantages of FSMs 1/3

- Limited computational power
  - FSM has no 'memory'
    - Remember the test case example?
  - Other options
    - Push-Down Automata (FSM + stack (memory))
    - Linear Bounded Automata (constrained size memory)
    - Turing Machine (unlimited memory)

# More disadvantages of FSMs 2/3

- State space explosion
  - For larger problems
    - Complete description of a system requires many states
  - For composed/combined FSMs
    - Require number of states that is a multiplication of the number of states in the component FSMs

### Even more disadvantages of FSMs 3/3

- Inherently synchronous
  - FSM has a single, global state
  - We cannot express a situation when consumer and producer perform operations at the same time