

Disciplina de: Computação Distribuida

Prof. Dr. Carlos Alberto

E-mail: Carlos.Silva@ufms.br

- O que se entende por Avaliação de Desempenho de Sistemas ?
- Que parâmetros são utilizados para quantifica-la e qualifica-la?
- Quais perguntas centrais deste assunto podem ser respondidas ?
- Quais são seus conceitos fundamentais ?
- Como e quando usar os conceitos da Avaliação de Desempenho de Sistemas ?
- Como a análise de casos particulares podem levar a conclusões mais amplas ?
- Quais respostas n\u00e3o se pode encontrar a partir destes conceitos ?
- Quais são suas limitações ?

- 1. Avaliação de Desempenho de Sistemas
- 2. Métricas de Avaliação de Desempenho de Sistemas
- 3. Medição
- 4. Apresentação dos Resultados

- Todo e qualquer Avaliação de Desempenho tem como objetivo principal auxiliar a tomada de decisão, devem ser capazes de fornecer informações tanto das partes (empresas) como do contexto do sistema avaliado.
 - Neste sentido, as empresas estão inseridos na sociedade, no meio ambiente e nas questões estruturais corporativas.
- Dentre os grandes sistemas atuais, os Sistemas Computacionais prestam relevantes serviços para a sociedade, entretanto eles são úteis na medida em que seus resultados e seu comportamento estão dentro das metas de desempenho e comportamento pré-definidos.
- Os **Sistemas Computacionais** não podem ser considerados onipresentes, mas seus serviços mudaram a paisagem socioeconômica de grande parte do globo.
 - Suas aplicações cotidianas se intensificam, produzindo cada vez mais um mundo interconectado, substituindo modos de trabalhar e modernizando processos.
 - São fontes de criação e renovação contínua.

- Os Sistemas Computacionais existentes precisam ser mantidos ou atualizados; os novos devem ser projetados e construídos.
 - Uma forma de fazê-lo é por meio da Avaliação de Desempenho de Sistema (ADS) que trata sistemas existentes, permitindo reprojetá-los e reconfigurá-los;
 - e também trata de sistemas inexistentes, permitindo projetá-los.
- O modelo de entrega de produtos e serviços da computação são seus projetos de hardware e/ou softwares e suas técnicas de produção.

Analise de desempenho de sistemas

Exemplo 1.1 Caracterização Geral dos Sistemas Computacionais

- Sistemas Computacionais não são entidades naturais, eles são artefatos produzidos pela Técnica Humana, são desenvolvidos com base na Ciência dos últimos 400 anos.
- Os Sistemas Computacionais são dispositivos eletrônicos (hardware) capazes de processar informações de acordo com programa (software) neles instalados.
 - O hardware pode conter várias camadas de software a depender do serviço, ou serviços, prestados por ele.
 - A união do hardware com o software permite soluções configuráveis e, integrados com a Internet, podem interagir e formar as redes mais diversas.
- Os Sistemas Computacionais são projetados para fins específicos, sendo cada funcionalidade detalhada nos manuais técnicos e datasheets, fornecidos pelo fabricante.
- Estes sistemas evoluem e novas versões se sucedem.
 - Eles também se integram cada vez mais, formando redes e redes de redes, conectando outras estruturas sociais, urbanas, nacionais e internacionais e, enfim, todo planeta.

- Cada avaliação de desempenho requer um conhecimento detalhado do sistema (real ou projetado) e uma escolha cuidadosa de metodologias, cargas e ferramentas de análise
 - Em geral, os problemas chegam ao pessoal de TI, por vezes, mal definidos e, transformá-los em enunciados tratáveis, requer mais arte do que engenharia. Para um mesmo sistema, pode-se obter diferentes avaliações, que dependendo do detalhamento do problema, da experiência, do estilo e da intuição do engenheiro.
 - Tendo em vista estes aspectos, Jain (1991) considera o processo de Avaliação de Desempenho de Sistemas também uma arte.

Analise de desempenho de sistemas

Exemplo 1.2 Análise de Desempenho de Sistemas Computacionais

- Sistemas Computacionais são constituídos por dispositivos de hardware e software.
 - O hardware corresponde às partes eletrônicas e mecânicas que possibilitam a existência do software e a interação com o usuário.
 - O software fornece as interfaces para que usuários executem seus pacotes. Estes sistemas realizam atividades humanas, ou de outros sistemas computacionais, por meio do processamento de pacotes.
 - Os Sistemas Computacionais são caracterizados, grosso modo, pelos elementos: hardware, software, usuários e pacotes.
- A importância dos Sistemas Computacionais reside no seu conjunto de capacidades e comportamentos, as quais caracterizam seu desempenho em nível operacional.
 - A Avaliação de Desempenho de Sistemas no âmbito de TI pode ser realizada tanto por medição quanto por meio da modelagem matemática.
 - A partir de um modelo matemático aceitavelmente e representativo de um sistema, pode-se aplicar técnicas matemáticas para descrever o seu comportamento e também estimar sua performance comparada a indicadores previamente estabelecidos.

Analise de desempenho de sistemas

Exemplo 1.2 Análise de Desempenho de Sistemas Computacionais

- A relevância da Avaliação do Desempenho dos Sistema Computacionais reside na sua abrangência cada vez maior.
 - A interação entre pessoas, empresas e governos, mediada pela tecnologia tanto em nível local quanto global, é um novo estímulo para mudanças sociais e econômicas, promovendo cada vez mais a produção de riqueza;
 - além de ser o suporte para a criação de conhecimento com a aplicação da Inteligência
 Artificial, Ciência dos Dados e Internet das Coisas, dentre outras áreas aplicadas.

- O desempenho é um critério fundamental na concepção, aquisição e utilização de sistemas computacionais.
 - Por outro lado, obter o melhor desempenho para um determinado custo é um dos objetivos da Engenharia da Computação e, para alcançá-lo, é necessário ao menos um conhecimento básico da terminologia da avaliação de desempenho, seus princípios e suas técnicas.
- A computação e demais profissionais da área de TI devem ser capazes de indicar os requisitos de desempenho dos seus sistemas e de comparar diferentes alternativas para encontrar aquela que melhor atenda as necessidades em pauta.
- Os Sistemas de Computação envolvem software e hardware e, infelizmente, são tão numerosos que não é possível ter uma medida padrão de desempenho, um ambiente de medição padrão (aplicação) ou uma técnica padrão para todos os casos.

Analise de desempenho de sistemas

Exemplo 1.3 Internet das coisas

- Internet das Coisas IdC (em inglês: Internet of Things IoT) é um conceito que se refere à interconexão digital de objetos cotidianos com a internet, conexão dos objetos mais do que das pessoas.
- A IdC é uma rede de objetos físicos (veículos e os outros dispositivos móveis, prédios, sensores e aqueles com tecnologia embarcada e conexão com a rede) capaz de reunir e de transmitir dados.
 - Ela se integra à internet na medida que estes objetos possuam capacidade de comunicação.
- A IdC, e seus objetos constituintes, requer comunicação e capacidade de processamento e armazenamento de dados.
 - Pode ser um sistema básico de coleta e transmissão de dados ou possuir grande capacidade nestes quesitos.
 - Esta rede de recursos possibilita controle e gerenciamento dos seus objetos, além de prover serviços segundo suas capacidades.

Analise de desempenho de sistemas

- A avaliação de desempenho requer métricas, técnicas e ambiente de medição.
 - A seleção destes quesitos são passos essenciais e há muitas considerações que estão envolvidas na seleção correta destes itens, elas são apresentadas a seguir.
 - As métricas de desempenho comumente utilizadas também são definidas abaixo.
 - Finalmente, uma abordagem para o problema de especificar os requisitos de desempenho é apresentada.

Sistema real ou similar Modelo do sistema Protótipos Benchmarks Coleta de dados Medição Medição

Critério	Modelagem Analítica	Simulação	Medição
Fase	qualquer	qualquer	pós-prototipação
Tempo necessário	pequeno	médio	varia
Ferramenta	analistas	programação	instrumentação
Precisão	baixo	moderado	varia
Avaliação do trade-off	fácil	moderado	difícil
Custo	médio	pequeno	alto
Negociação	média	baixa	alta

- A questão fundamental para decidir a técnica de avaliação é a fase do ciclo de vida do sistema.
 - As Medições são possíveis apenas se algo semelhante ao sistema proposto já existe, como na concepção de uma versão melhorada de um produto.
- Se for um novo conceito, a Modelagem Analítica e a Simulação são as únicas técnicas possíveis.
 - A Modelagem Analítica e Simulação também podem ser usadas nas situações em que a medição não é possível, mas, em geral, é mais convincente para as pessoas se a Modelagem Analítica ou Simulação se basearem em medidas.
- A próxima consideração é o tempo disponível para a avaliação.
 - Na maioria das situações, os resultados são necessários para ontem.
 - Se este for o caso, a Modelagem Analítica é provavelmente a opção indicada. Simulações podem levar tempo.
 - O tempo necessário para as Medições é o mais variável dentre as três técnicas.
- A próxima consideração é a **disponibilidade de ferramentas**.
 - As ferramentas incluem habilidades para modelagem, linguagens de simulação e instrumentos de medição.
 - Muitos analistas de desempenho são hábeis na modelagem e evitam trabalhar em sistemas reais.

- Outros não, são tão proficientes em **teoria das filas** que preferem medir ou simular.
 - A falta de conhecimento de linguagens e técnicas de programação faz com que muitos analistas evitem a simulação.
- O **nível de precisão** desejada é outra consideração importante.
 - Em geral, a Modelagem Analítica exige simplificações e suposições que podem levar a resultados pouco preciso.
- Simulações podem incorporar mais detalhes e exigem menos hipóteses que a Modelagem Analítica e, portanto, com mais frequência estão mais próximos da realidade.
 - As Medições, embora soem como algo real, também podem dar resultados pouco preciso, simplesmente porque muitos dos parâmetros do ambiente tais como a configuração do sistema, a carga de trabalho e o momento da medição, podem ser exclusivos para o experimento. Além disso, os parâmetros podem não representar o conjunto das variáveis encontradas no mundo real.
- → Assim, a **precisão da técnica de medição** pode variar significativamente e pode conduzir a conclusões errôneas.

- Modelos Analíticos geralmente fornecem o melhor conhecimento sobre os efeitos dos vários parâmetros e suas interações.
 - Com Simulação é possível pesquisar o espaço de valores de parâmetro para a combinação ideal mas, muitas vezes, não fica claro o trade-off destes parâmetros.
 - A Medição é a técnica menos desejável a este respeito.
 - Não é fácil dizer se o melhor desempenho é o resultado de algumas mudanças aleatórias no ambiente ou devido a uma configuração particular do parâmetro.
- Os custos do projeto também são importantes.
 - A Medição requer um equipamento real, instrumentos e tempo sendo a mais cara das três técnicas.
 - Custos, junto com a facilidade de poder alterar as configurações é, em muitos casos, a razão para que o desenvolvimento de Simulações de sistemas sejam mais baratos.
- A **negociação dos resultados** é, provavelmente, a justificativa essencial quando se consideram as despesas e o trabalho de Medições.
 - É muito mais fácil convencer os outros utilizando Medição real. A maioria das pessoas fica cética diante de resultados analíticos, simplesmente porque não entendem a técnica ou o resultado final.
 - Na verdade, as pessoas que desenvolvem novas técnicas de Modelagem Analítica muitas vezes utilizam Simulações ou Medições reais para validá-las.

Analise de desempenho de sistemas

Às vezes é útil usar duas ou mais técnicas simultaneamente.

Por exemplo, pode-se usar a **Simulação e Modelagem Analítica** em conjunto para verificar e validar os resultados de cada um. Isso nos leva às seguintes três regras de validação:

- 1. não confie nos resultados de um Modelo de Simulação **até que eles tenham sido validados por Modelos Analíticos ou de Medições**;
- 2. não confie nos resultados de um Modelo Analítico antes de terem sido validadas por um Modelo de Simulação ou de Medições;
- 3. não confie nos resultados de uma Medição até que eles tenham sido validados por Simulação ou Modelagem Analítica.

- Em particular, a necessidade da terceira regra sobre a validação dos resultados das Medições deve ser enfatizada.
 - Este é a mais comumente ignorada das três regras.
 - As medições são tão suscetíveis a erros experimentais e bugs quanto as outras duas técnicas.
- O único requisito para validação é que os resultados não devem ser contra o bom senso.
 - Este método de validação, chamado intuição do especialista ou perito, é comumente usado para Modelos de Simulação.
 - Este e outros métodos de validação podem ser utilizados para a Medição e análise dos resultados.
- Duas ou mais técnicas também podem ser usadas sequencialmente.
 - Por exemplo, um Modelo Analítico simples é usado para encontrar o intervalo adequado para os parâmetros do sistema, e uma Simulação é utilizada mais tarde para estudar o desempenho nesse intervalo.
- Reduz o número de simulação, e pode resultar em um uso mais produtivo dos recursos.

Analise de desempenho de sistemas

Métricas de Avaliação de Desempenho de Sistemas

- A medida de desempenho de um sistema de computação depende da capacidade, velocidade e compatibilidade de seus diferentes componentes.
 - Para atender a combinação destes fatores e os diferentes componentes dos sistemas de computação foram desenvolvidos vários meios de medir desempenho.
- De modo geral, as medidas de desempenho são taxas, fluxos ou medidas temporais.
 - Pode-se medir o desempenho do sistema como um todo ou de seus componentes isoladamente ou em conjuntos.
- Para cada estudo de desempenho de um sistema, um conjunto de critérios de desempenho e métricas deve ser escolhido.
 - Uma maneira de identificá-los é fazer uma lista dos serviços oferecidos pelo sistema.
 - Há vários resultados possíveis para cada solicitação de serviço feitas ao sistema.

Analise de desempenho de sistemas

 O sistema pode executar o serviço corretamente, incorretamente, ou não realizar o serviço.

Por exemplo, considerando uma rede de computadores que oferece o serviço de encaminhamento de pacotes para os destinos especificados em redes heterogêneas.

Quando ela recebe um pacote para ser enviado, o serviço pode ser executado:

- corretamente, sucesso
- incorretamente, fracasso parcial
- não ser executado, fracasso total

As métricas associadas aos três resultados são:

- 1) serviço bem-sucedido;
- 2) serviço com erro;
- 3) serviço não executado.

São também chamadas métricas de velocidade, confiabilidade e disponibilidade.

23

- A maioria dos sistemas oferece mais de um serviço e, portanto, o número de métricas cresce proporcionalmente uma vez que cada um destes serviços possui uma série de métricas de velocidade, uma série de métricas de confiabilidade e uma série de métricas de disponibilidade.
- O recurso com a maior utilização é chamado de gargalo. Melhorar o desempenho deste recurso oferece o maior retorno.
 - Conhecer a utilização dos vários recursos do sistema é uma parte importante da avaliação de desempenho.
- Um único erro ou falha pode comprometer todo o funcionamento do sistema. Para evitar essa situação, há os sistemas tolerantes a falhas, mas isso pode afetar seu tempo de serviço e dificultar seu projeto, desenvolvimento e manutenção.
 - Uma outra maneira de contornar as falhas é adicionar redundâncias com o inconveniente de aumentar o consumo de energia e a complexidade de gerenciamento.
 - Ao final, os custos associados com a confiabilidade são, em última instância, transferidos para os usuários finais.

Analise de desempenho de sistemas

Métricas de Velocidade

- Se o sistema executa o serviço corretamente, seu desempenho é medido pelo tempo necessário para executar o serviço, a taxa na qual o serviço é realizada e os recursos consumidos durante a execução do serviço.
 - Estas três medidas relacionadas ao desempenho bem-sucedido do serviço, o tempo, a taxa e os recursos utilizados, são também chamadas tempo de resposta, vazão e utilização, respectivamente.
- Por exemplo, a resposta de um gateway de rede é medida por seu tempo de resposta, o intervalo de tempo entre a chegada de um pacote e a sua entrega bem-sucedida.
 - A vazão do sistema é medida pelo número de transferências, pacotes transmitidos ou recebidos, por unidade de tempo.
 - Este valor dá uma indicação da percentagem de tempo que os recursos do gateway estão sendo usados para o nível de carga, que é a utilização.

Analise de desempenho de sistemas

Métrica: Tempo de Resposta

- O tempo de resposta (turn-around time) é definido como o intervalo entre o instante em que o pacote é submetido ao sistema e o momento em que produz a saída completa e o processo se encerra.
 - É uma métrica interessante por representar a performance do ponto de vista do usuário, que submete seu pacote e espera algum tempo até que ela seja executada.
- Os valores médios do tempo de resposta podem ser influenciados pelos seus valores extremos.
 - Pacotes com tempo de respostas pequenos e outras com tempo de resposta muito longos, podem ter seus valores médios afetados por estes valores ou muito grandes ou muito pequenos.
- O **tempo de resposta** pode ser definido como o intervalo entre o pedido do usuário e a resposta do sistema, e pode-se definir o tempo de resposta de outras formas.

Analise de desempenho de sistemas

Métrica: Tempo de Resposta

- O tempo de resposta de um sistema geralmente aumenta à medida que a carga do sistema aumenta.
 - A proporção de tempo de resposta para uma determinada carga e a carga mínima do sistema é chamada fator de carga (stretch factor).

Analise de desempenho de sistemas

Métrica: Vazão

- Vazão ou throughput é definida como a taxa temporal em que os pacotes são atendidos pelo sistema.
 - Em geral, cada sistema de computação tem sua unidade de vazão.
 - Para o processamento em lotes a vazão é medida em pacotes por segundo.
- Para sistemas interativos a vazão é medida em solicitações por segundo.
- Para CPU, a vazão é medida em milhões de instruções por segundo (MIPS), ou milhões de operações de ponto flutuante por segundo (MFLOPS).
- Para as redes, a vazão ou rendimento é medida em pacotes por segundo (pps) ou bits por segundo (bps).
- Para sistemas de processamento de transações, a vazão é medida em transações por segundo (TPS).

Analise de desempenho de sistemas

Capacidade de um sistema de computação

Analise de desempenho de sistemas

Capacidade de um sistema de computação

- Em muitas aplicações, o **ponto de inflexão da curva de tempo de resposta** é considerado o ponto de funcionamento ótimo, este é o ponto além do qual o tempo de resposta aumenta rapidamente em função da carga, mas o ganho em vazão é pequeno.
- Antes do ponto de inflexão, o tempo de resposta não aumenta significativamente, mas a vazão aumenta com o aumento da carga.
 - A taxa correspondente ao ponto de inflexão é chamada capacidade de inflexão do sistema (knee capacity).
- A relação entre taxa máxima alcançável (capacidade utilizável) e a capacidade nominal é chamada eficiência (efficiency).
- Por exemplo, se a taxa de transferência máxima de uma LAN (Local Area Network) é igual a 100 Mbps e sua capacidade utilizável é de apenas 85 Mbps, sua eficiência é de 85%.

Analise de desempenho de sistemas

Métrica Utilização

- A **utilização** (**utilization**) de um recurso é medida como a fração do tempo utilizado pelo recurso (tempo ocupado) e tempo total durante um determinado período.
 - O período durante o qual o recurso não está sendo utilizado é chamado de tempo ocioso (idle time).
- Os gestores de sistemas devem buscar equilibrar a carga de modo que não se utilize um recurso mais que outros, nem sempre isso é possível.
 - Alguns recursos, como processadores, estão sempre ocupados ou inativos, por isso a sua utilização em termos de percentagem de tempo ocupado e o tempo total faz sentido.
 - Para outros recursos, como memória, apenas uma fração dos recursos podem ser utilizados em um determinado momento, a sua utilização é medido como a fração média utilizada durante um intervalo.

Analise de desempenho de sistemas

Métricas de Confiabilidade

- Se o sistema executa o serviço incorretamente, é dito ter ocorrido um erro (neste contexto erro, falha e defeito são considerados equivalentes).
 - Neste caso, a confiabilidade é uma medida do número de interrupções críticas durante o tempo em que um sistema está em funcionamento.
 - É útil classificar os erros e determinar as probabilidades para cada classe de erros.
- Por exemplo, no caso da internet pode-se buscar encontrar a probabilidade de erros de um único bit, os erros de dois bits, e assim por diante.
 - Pode-se também querer encontrar a probabilidade de um pacote ser entregue parcialmente (fragmento).
- A confiabilidade (reliability) de um sistema geralmente é medida pela probabilidade de erros ou o tempo médio entre erros.
 - Este último é frequentemente especificado como segundos sem erros (error-free seconds).

Analise de desempenho de sistemas

Métricas de Disponibilidade

- A disponibilidade (availability) de um sistema é definida como a fração do tempo que o sistema está disponível para atender às solicitações dos usuários.
- Se o sistema não executa o serviço, ele pode estar falhando ou indisponível.
 - Mais uma vez, é útil classificar os modos de falha e determinar as probabilidades destas ocorrências.
- **Por exemplo,** um site pode não estar disponível em 0,01% do tempo devido a uma falha local e em 0,03% devido a uma falha na rede.

Analise de desempenho de sistemas

Outras Métricas

- Em muitos sistemas, serviços requerem o envio de mensagens através de uma rede de interconexão.
- A latência é o tempo necessário para enviar mensagem através de uma rede de interconexão, inclui o tempo de empacotar e desempacotar dados além do tempo de envio propriamente dito.

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

- Para muitas métricas, o valor médio é o mais importante. No entanto, não se deve negligenciar o efeito da variabilidade.
 - Por exemplo, um tempo de resposta alto, de um sistema de tempo compartilhado, assim como uma alta variabilidade do tempo de resposta, pode degradar significativamente a produtividade.
 - Se este for o caso, é necessário estudar essas duas métricas.
- Nos sistemas de computação compartilhada por muitos usuários, dois tipos de métricas de desempenho devem ser considerados: individual e global.
 - As métricas individuais refletem o uso de cada usuário, enquanto a métrica global reflete o uso de todo o sistema.
 - A utilização dos recursos, confiabilidade e disponibilidade são as métricas globais, enquanto o tempo de resposta e throughput pode ser medida para cada indivíduo, bem como a nível global para o sistema.
- → Há casos em que a decisão que otimiza as métricas do indivíduo é diferente da que otimiza o sistema global.

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

- Por exemplo, em redes de computadores, o desempenho é medido pela taxa de transferência (pacotes por segundo).
 - Em um sistema onde o número total de pacotes permitidos na rede é mantido constante, aumentando o número de pacotes de uma fonte pode levar ao aumento do seu rendimento, mas também pode diminuir a taxa de transferência de outra pessoa.
- Assim, tanto o rendimento de todo o sistema e sua distribuição entre usuários individuais deve ser estudado.
 - Utilizando apenas o throughput do sistema ou a transferência individual pode conduzir a situações injustas.
- Por exemplo, um subconjunto de métricas de desempenho, elas devem se completar com baixa variabilidade e evitando redundância.

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

Critérios para selecionar métricas de desempenho de sistemas computacionais:

- Baixa variabilidade: ajuda a reduzir o número de repetições necessárias para obter um determinado nível de confiança estatística.
 - Métricas que utilizam duas variáveis geralmente possuem uma maior variabilidade do que qualquer das duas tomadas individualmente e devem ser evitadas, se possível.
- Evitar redundância: se duas métricas estimam essencialmente a mesma informação, é menos confuso para o estudo utilizar apenas uma;
- **Completude:** o conjunto de métricas incluídas no estudo deve ser completo.
 - Todos os resultados importantes devem ser refletidos no conjunto de métricas de desempenho.
- A classe de utilidade de uma métrica é útil para apresentação de dados.
 - Dependendo da função de utilidade de uma métrica de desempenho, ela pode ser classificada em três classes de métricas.

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

Classes de métricas de desempenho de sistemas computacionais:

- a) Menor é melhor: os usuários do sistema e administradores de sistemas preferem os menores valores de tais métricas. O tempo de resposta é um exemplo de uma métrica LB (lower is better).
- b) Nominal é melhor: ambos os valores altos e baixos são indesejáveis. Um valor intermediário entre os extremos é considerado o melhor. A utilização é um exemplo de uma métrica NB (nominal is best).
- c) Maior é melhor: os usuários do sistema e administradores de sistemas preferem os maiores valores de tais métricas. Vazão do sistema é um exemplo de uma métrica HB (higher is better).

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

- As métricas de desempenho também devem ser específicas, mensuráveis, viáveis e possuir eficácia.
 - Em conjunto, as métricas de desempenho devem possuir tanto características quantitativas quanto qualitativas.

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

Características desejáveis das métricas de desempenho de sistemas computacionais

- **Especificidade**: impede o uso de palavras como baixa probabilidade
- Mensurabilidade: exige a verificação de que um determinado sistema atenda aos requisitos;
- Factibilidade ou aceitabilidade: demandam limites de exigências de configuração ou decisões de arquitetura alto o suficiente para ser aceitável e baixo o suficiente para ser viável;
- **Eficácia**: estabelece que as exigências devem ser definidas para todos os resultados possíveis incluindo seus modos de falha.

As **qualidades das métricas de desempenho** podem ser resumidas em uma palavra: *SMART*, ou seja, os requisitos devem ser específicos, mensuráveis, aceitáveis, realizáveis e eficazes (*Specific, Measurable, Acceptable, Realizable and Thorough Specificity*).

Analise de desempenho de sistemas

Caracterização das Métricas de Desempenho

- A maioria dos problemas de desempenho é único.
- As métricas, a carga de trabalho e as técnicas de avaliação usadas para um problema geralmente não podem ser usadas para o próximo problema.
- No entanto, existem alguns passos comuns a todos os projetos de avaliação de desempenho que ajudam a evitar os erros comuns:
 - 1. Definição do Sistema e Objetivos
 - 2. Lista de Serviços e Resultados
 - 3. Seleção das Métricas
 - 4. Lista de Parâmetros
 - 5. Fatores Selecionados para Estudo
 - 6. Seleção da Técnica de Avaliação
 - 7. Seleção da Carga de Trabalho
 - 8. Design dos Experimentos
 - 9. Analisar e Interpretação dos Dados
 - 10. Apresentação dos Resultados

Analise de desempenho de sistemas

Metricas de desempenho

Analise de desempenho de sistemas

Medição

- Sistemas de computação estão se tornando cada vez mais onipresentes na nossa vida cotidiana.
 - As pessoas confiam cada vez mais nestes sistemas para resolver a maioria dos seus problemas como, por exemplo, saúde, educação, entretenimento e finanças.
 - A maioria das pessoas precisam interagir com os sistemas de apoio automatizados ou semiautomatizados e esperam respostas imediatas. O número de pessoas com acesso a serviços de comunicação está aumentando a taxas exponenciais.

Analise de desempenho de sistemas

Técnicas e Ferramentas de Medição

- Medições de desempenho de sistemas de computação envolve monitorá-lo enquanto ele está sendo submetido a uma carga de trabalho particular.
 - A fim de realizar medições significativas, a carga de trabalho deve ser cuidadosamente selecionada e, para atingir esse objetivo, o analista de desempenho precisa entender e responder as seguintes perguntas, antes de realizar medições:
 - Quais são os diferentes tipos de cargas de trabalho ?
 - Que cargas de trabalho s\u00e3o comumente usadas por outros analistas ?
 - Os tipos de carga de trabalho selecionados são adequados ?
 - Como os dados medidos da carga de trabalho serão sumarizadas ?
 - Como é o desempenho do sistema monitorado?
 - Como colocar a carga de trabalho desejada no sistema de modo controlado ?
 - Como os resultados da avaliação serão apresentados ?

Analise de desempenho de sistemas

Seleção e Caracterização de Carga

- A termo carga de trabalho de teste denota qualquer carga de trabalho utilizada em estudos de desempenho.
 - A carga de trabalho de teste pode ser real ou sintética.
- A carga de trabalho real é aquela observada em um sistema durante sua operação.
 - Sua medição não pode ser repetida e, portanto, geralmente não é adequado para uso como uma carga de trabalho de teste.

Analise de desempenho de sistemas

Seleção e Caracterização de Carga

- A carga de trabalho sintética é desenvolvida e usada para estudos, possui características semelhantes aos da carga de trabalho real, mas pode ser aplicadas várias vezes de maneira controlada.
 - A principal razão para a utilização de uma carga de trabalho sintética é que ela é uma representação ou modelo da carga de trabalho real.
 - Outras razões para a utilização de uma carga de trabalho sintética é:
 - não conter dados do mundo real
 - não são grandes
 - não conter dados sensíveis
 - pode ser facilmente modificada sem afetar a operação
 - pode ser facilmente portada para sistemas diferentes
 - podem ser incorporadas como funções internas de medição

Analise de desempenho de sistemas

Seleção e Caracterização de Carga

Os **principais tipos de cargas de trabalho de teste** que tem sido utilizadas para comparar sistemas de computação, as cargas de trabalho de teste utilizada para comparar sistemas de computação:

- Instruções mistas: simulam a demanda de utilização dos recursos de um sistema por meio de um conjunto de instruções do seu processador;
- **Kernel**: um programa kernel é uma mistura de instruções que compõem um programa ou parte de um programa e o seu tempo de execução é determinado com base nos tempos de instrução fornecidos pelo fabricante;
- Programas sintéticos: simulam a demanda de utilização dos recursos do sistema de maneira requerida pela carga, são usados no sistema como carga-piloto reproduzível;
- **Benchmarks**: é um conjunto de programas selecionados de maneira a construir uma composição representativa de carga de uma instalação que são processados no sistema que se deseja avaliar.

Analise de desempenho de sistemas

Seleção e Caracterização de Carga

- A carga de trabalho é a parte mais importante de qualquer projeto de avaliação de desempenho.
 - A adequação da carga de trabalho é uma etapa crítica para que as conclusões de um estudo sejam aceitáveis.
- Como outros aspectos da avaliação de desempenho, a seleção adequada de cargas de trabalho requer muitas considerações e julgamentos pelo analista, que é uma parte da arte da avaliação de desempenho que vem com a experiência.

Analise de desempenho de sistemas

Seleção e Caracterização de Carga

- Os quatro principais considerações na seleção da carga de trabalho são:
 - ✓ serviços executados por ela
 - ✓ seu nível de detalhe
 - ✓ sua representatividade
 - ✓ oportunidade
- A melhor maneira de iniciar a seleção de carga de trabalho é ver o sistema como um fornecedor de serviços.
 - Cada sistema oferece uma série de serviços e fazer uma lista destes serviços é um dos primeiros passos de um estudo sistemático de avaliação de desempenho.

49

Analise de desempenho de sistemas

Seleção e Caracterização de Carga (Ciclo de vida do software)

Analise de desempenho de sistemas

Monitores

- Um **monitor** é uma ferramenta utilizada para observar as atividades em um sistema.
 - Em geral, os monitores são usados para observar o desempenho dos sistemas, coletar estatísticas de desempenho, analisar os dados e exibir os resultados. Alguns também identificam áreas problemáticas e propõem soluções.
- Monitores podem ser entendidos também como um middleware pois conectam o sistema monitorado e seus recursos, indicando sua utilização.

Analise de desempenho de sistemas

Monitores

Exemplo 3.1 Google Analytics

- O Google Analytics (GA) é um sistema para monitoramento de tráfego em sítios (web), uma das principais funções de qualquer atividade online, indispensável para a gestão de negócios neste segmento.
- O **GA** é gratuito e pode ser instalado em qualquer sítio, é uma ferramenta de gerenciamento de decisões na Web. As principais informações que ele fornece são:
 - ✓ Número total de visitantes visitante único e visitantes que retornam ao site
 - ✓ Comportamento dos visitantes do site enquanto navegam nele
 - ✓ Origens de tráfego de onde estão vindo os acessos que chegam ao site
 - ✓ Metas quais metas traçadas foram atingidas
 - ✓ Taxa de conversão das ações de marketing executadas
 - ✓ Marketing quais as campanhas de marketing que proporcionam melhor resultado
 - ✓ Mídias Sociais quais de suas ações em redes sociais lhe trazem maior acesso
 - ✓ Resultados de e-commerce como anda o desempenha da sua loja virtual

O objetivo principal do GA é informar o comportamento dos usuários ao navegar pelas diversas páginas e seções do site no qual foi instalado.

Analise de desempenho de sistemas

Monitores

Terminologia para Monitor

Os **termos relacionados a monitoramento** e que são usados com frequência para os monitores de desempenho e suas descrições:

- Evento: a mudança de estado do sistema é chamado de evento. Exemplos de eventos são processo de mudança de contexto, início de busca em um disco e a chegada de um pacote:
- Trace: um traço é um log de eventos em geral, incluindo o tempo do evento, o tipo de evento e outros parâmetros importantes associados a ele;
- Overhead: a maioria dos monitores perturbam ligeiramente a operação do sistema.
 - Eles podem consumir recursos do sistema, como CPU ou armazenamento. Por exemplo, os dados coletados pelo monitor podem ser gravadas no armazenamento secundário.
 - Este consumo de recursos do sistema é chamado de overhead (sobrecarga).
 - Um dos objetivos do projeto de monitorar é a de **minimizar a sobrecarga**;

Analise de desempenho de sistemas

Monitores

Terminologia para Monitor

Os termos relacionados a monitoramento e que são usados com frequência para os monitores de desempenho e suas descrições:

- Domínio: o conjunto de atividades observáveis pelo monitor é o seu domínio. Por exemplo, a contabilidade registra informações sobre registro de tempo de CPU, número de discos, terminais, redes e paginação E/S, o número de caracteres transferidos entre os discos, terminais, redes e dispositivo de paginação e o tempo de resposta para cada sessão do usuário. Estes constituem o domínio dos logs de contabilidade
- Taxa de entrada: a frequência máxima de eventos que um monitor pode observar corretamente é chamada de taxa de entrada. Geralmente, duas taxas de entrada são especificados: modo burst e sustentada. A taxa de modo burst especifica a taxa em que um evento pode ocorrer por um período curto. É maior do que a taxa sustentada, que o monitor pode tolerar por longos períodos;

Analise de desempenho de sistemas

Monitores

Terminologia para Monitor (continuação)

Os termos relacionados a monitoramento e que são usados com frequência para os monitores de desempenho e suas descrições:

- Resolução: a granulação da informação observada é chamado de resolução. Por exemplo, um monitor pode ser capaz de registrar o tempo apenas em unidades de 16 milissegundos. Da mesma forma, o tamanho das classes utilizadas em um histograma pode determinar a resolução do histograma;
- Largura de entrada: o número de bits de informações gravadas em um evento é chamado de largura de entrada. Isto, junto com a taxa de entrada, determina o armazenamento necessário para registrar os eventos.

Analise de desempenho de sistemas

Monitores

Classificação de Monitores

- Dependendo do nível em que um monitor é implementado, ele é classificado como um monitor em software, em hardware, em firmware ou monitor híbrido.
 - O monitor híbrido é uma combinação de hardware, firmware ou software. Esta é a classificação mais comum.
- **Dependendo do mecanismo** que desencadeia a ação do monitor, um monitor pode ser classificado como orientado a evento ou temporizado (monitor para amostragem).
 - Um monitor orientado a eventos é ativado somente pela ocorrência de determinados eventos.
 - Assim, não há sobrecarga de monitoramento se o evento é raro. Mas se o evento é frequente, pode causar muita sobrecarga. O monitor de amostragem é ativada em intervalos de tempo fixo por interrupções do relógio.

Tipos de monitores:

- Monitores em Software
- Monitores em Hardware
- Firmware e Monitores Híbridos

Analise de desempenho de sistemas

Monitores

Analise de desempenho de sistemas

Benchmarking

- É o processo de comparar dois sistemas que utilizam o padrão bem conhecido benchmarks.
- O processo nem sempre é realizado de forma justa.

Benchmarks Populares

- Na área comercial, o termo benchmark é quase sempre usado como sinônimo de carga de trabalho, Kernels, programas sintéticoss e cargas de trabalho em nível de aplicativo, por exemplo, são todos chamados benchmarks.
 - Embora o mix de instruções é um tipo de carga de trabalho, eles não são chamados benchmarks.
 - Softwares de benchmarks:
 - Whetstone
 - Linpack
 - Dhrystone

Analise de desempenho de sistemas

Benchmarking

GROWTH RATES HAVE COOLED

Analise de desempenho de sistemas

Apresentação dos Resultados

- Os resultados de medições e simulações podem ser diferentes a cada repetição do experimento.
 - A variação nos resultados de simulações é inerente ao processo devido ao uso de números aleatórios.
 - Ao passo que a variação em medições se deve ao processo experimental.
 - Ao comparar alternativas é necessário considerar a variabilidade dos resultados.
 - A simples comparação de médias pode levar a resultados insatisfatórios.
- A análise de dados produz resultados e sua interpretação é a base para o processo de tomada de decisão.
- Um dos passos importantes em todos os estudos de avaliação de desempenho é a apresentação dos resultados finais.
 - O objetivo final da análise de desempenho é ajudar na tomada de decisões.
 - Uma análise, cujos resultados não podem ser compreendidos por tomadores de decisão é de pouca valia.
 - É da responsabilidade do analista garantir que os resultados da análise sejam encaminhados para os tomadores de decisão tão clara e simples quanto possível.
 - Isto requer o uso prudente de palavras, imagens e gráficos para explicar os resultados e a análise.

Analise de desempenho de sistemas

Apresentação dos Resultados

Sumarização

- Na forma mais condensada, um único número pode ser apresentado para dar a característica fundamental de um conjunto de dados.
 - Este único número é chamado a média geral dos dados. Para ser significativo, ele deve ser representativo de uma grande parte do conjunto de dados
- Três alternativas populares para resumir uma amostra são especificar sua média, mediana e moda.
 - Estas medidas são o que os estatísticos chamam de índices de tendência central.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo a Variabilidade

- Dado um conjunto de dados, resumi-lo por um único número raramente é suficiente.
- É importante incluir a variabilidade no resumo dos dados.
- Isto porque dado dois sistemas com o mesmo desempenho médio, um pode variar muito em torno de sua média e outro pouco.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo a Variabilidade

- Histogramas de tempos de resposta de dois sistemas: ambos têm o mesmo tempo de resposta médio de 2 s.
- No caso (a), o tempo de resposta está sempre próximo do seu valor médio, enquanto que, no caso (b),

o tempo de resposta pode variar de 1 s a 1 minuto, por exemplo.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo a Variabilidade

- Variabilidade é especificado por meio de uma das seguintes medidas, que são chamados de índices de dispersão:
 - ✓ Alcance diferença entre os valores máximo e mínimo observados
 - ✓ Desvio padrão ou Variância
 - ✓ Percentis 10-90
 - ✓ Alcance entre interquartil
 - ✓ Desvio médio absoluto
- O intervalo de valores pode ser facilmente calculado, por meio dos valores mínimo e máximo.
- A **variabilidade** é medida pela diferença entre os valores máximo e o mínimo. Quanto maior a diferença, maior é a variabilidade.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo a Variabilidade

- Na maioria dos casos, o alcance não é muito útil.
 - O mínimo muitas vezes chega a ser zero e o máximo chega a ser um outlier, longe de valores típicos.
 - A menos que haja uma razão para a variável ser delimitada entre dois valores, o valor máximo aumenta com o aumento do número de observações, o mínimo continua a diminuir com o número de observações, e não há nenhum ponto estável que dá uma boa indicação do alcance real.
- A conclusão é que o intervalo é útil se, e somente se, existe uma razão para acreditar que a variável é limitada.
 - O alcance dá a melhor estimativa desses limites.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo Dados por Meio de Gráficos

- Gráficos como gráficos de linhas, de barras, de setores e histogramas são comumente usados para apresentar resultados de desempenho.
 - Há uma série de gráficos que foram desenvolvidos especificamente para a análise de desempenho de sistemas de computador, estes são gráficos de Gantt, gráficos Kiviat e gráfico Schumacher.
- Há uma série de razões pelas quais um gráfico pode ser usado para apresentação de dados no lugar de uma explicação textual.
 - Primeiro de tudo, uma imagem vale mais que mil palavras.
 - Um gráfico economiza tempo dos leitores e apresenta a mesma informação de forma mais concisa.
 - Também pode ser usado para o interesse do leitor.
 - A maioria dos leitores acha mais fácil ver os gráficos para captar rapidamente os principais pontos do estudo e ler o texto apenas para obter mais detalhes.
 - Um gráfico também é uma boa maneira de enfatizar ou esclarecer um ponto, para reforçar uma conclusão e para resumir os resultados de um estudo.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo Dados por Meio de Gráficos

- Uma lista de verificação para tornar mais fácil verificar o emprego adequado de gráficos.
 - A lista é organizada de modo que um "sim" como resposta para cada questão, em geral, leva a um gráfico melhor.
 - No entanto, em alguns casos, um analista pode conscientemente decide não seguir uma sugestão se isso ajuda em transmitir a mensagem pretendida.
- Na prática, é necessário fazer várias tentativas antes de chegar ao gráfico final.
- Várias faixas de escala diferentes e pares de variável {x,y} devem ser julgados, e o gráfico que apresenta a mensagem mais precisamente, simplesmente, de maneira concisa e logicamente deve ser escolhido.

Analise de desempenho de sistemas

Apresentação dos Resultados

Resumindo Dados por Meio de Gráficos

Checklist para bons gráficos

- 1. Os dois eixos de coordenadas são mostrados e rotulados ?
- As escalas e divisões são mostradas em ambos os eixos ?
- 3. Há curva que pode ser removida sem reduzir as informações?
- 4. Todos os símbolos no gráfico estão acompanhados de explicações textuais?
- 5. As unidades de medida estão indicadas?
- 6. A figura como um todo tornam as informações disponíveis para o leitor?
- 7. Se o eixo vertical representa uma quantidade aleatória, são mostrados os intervalos de confiança ?
- 8. O título do gráfico é autoexplicativo e conciso ?
- O gráfico claramente comunica a mensagem pretendida ?
- 10. A figura é referenciada e discutida no texto do relatório?

Analise de desempenho de sistemas

Apresentação dos Resultados

Modelos de Regressão

- Entre os modelos estatísticos utilizados por analistas, os modelos de regressão são os mais comuns.
 - Um modelo de regressão permite estimar ou prever uma variável aleatória como uma função de várias outras variáveis.
 - A variável estimada é chamado a variável resposta e as variáveis utilizadas para prever a resposta são chamados de variáveis de previsão, os preditores ou fatores.
- A análise de regressão assume que todas as variáveis de previsão são quantitativos para que as operações aritméticas, como adição e multiplicação sejam significativas.
 - Embora as técnicas de regressão possam ser utilizada para desenvolver uma variedade de modelos lineares e não lineares, o seu uso mais comum é para encontrar o melhor modelo linear.
 - Tais modelos são chamados de modelos de regressão linear.
 - Para simplificar o problema, inicialmente, limitamos nossa discussão para o caso de uma única variável de previsão.
 - Devido à sua simplicidade, tais modelos são chamados de modelos de regressão linear simples.

Analise de desempenho de sistemas

Apresentação dos Resultados

Modelos de Regressão

- O primeiro problema no desenvolvimento de um modelo de regressão é definir o que se entende por um bom modelo e um modelo ruim.
- Os modelos de regressão tentam minimizar a distância medida na vertical entre o ponto de observação e a linha do modelo (ou curva).
 - O comprimento do segmento de linha é a diferença entre a resposta observada e a resposta prevista. Isto é chamado de erro residual da modelagem, ou simplesmente erro.
 - Os termos resíduo e erro são utilizados alternadamente.

Histogramas de tempos de resposta de dois sistemas.

Analise de desempenho de sistemas

Apresentação dos Resultados

Modelos de Regressão

- Alguns dos erros são positivos, porque a resposta estimada é menor do que a resposta observada enquanto que outros são negativos.
- Uma exigência óbvia seria ter erro global zero, isto é, os erros positivos e negativos se anularem.
- O **Método dos Mínimos Quadrados** e é utilizado para obter o melhor modelo, utiliza o critério de escolher a linha que minimiza a soma dos quadrados dos erros.

Virtualização

Lista 14, entregar no AVA.

1. Descreva as métricas para:

Para System down (failure)

- 1.1.1 Mean Time To Failures (MTTF)
- 1.1.2 Mean Time Between Failures (MTBF)
- 1.1.3 Mean Time Between Recovery (MTTRc)
- 1.1.4 Mean Time Between Repare (MTTRp)
- 1.1.5 Mean To System Availability (MTSA)

Para System down (maintenance)

- 1.2.1 Duration of the Preventive Maintenance (DPM)
- 1.2.2 Duration of the Corrective Maintenance (DCM)
- 1.2.3 Mean Time Between Maintenance (MTBM)

Duvidas ???