ОВИТМ

Хоружий Тимофей

16 января 2022 г.

1

Математическая модель в которой мы будем работать - это (Ω, \mathcal{F}, P) , где Ω - это пространство элементарных исходов, \mathcal{F} - это σ -алгебра событий, P - это σ -аддитивная вероятностная мера.

В этом курсе предмет нашего исследования - это случайный эксперемент.

- 1. повторяемость
- 2. отсутсвие детерминистической регулярности
- 3. статистическая устойчивость частот

Элементарный исход - это результат случайного эксперемента. (Ω)

События - это множество элементарных исходов (нам обычно интересно именно множество, например множество оценок на сессии, чтобы не упал средний балл) (\mathcal{F})

Вероятность - это частота события, если мы будем много раз повторять случайный эксперемент. Идеализация!

Не стоит воспринимать $P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$ потому что это не про жизн!

2

Опр будем называть модели дискретными, если Ω не более чем счетно.

Пример будем рассматривать модель где у нас есть мешок, в котором есть шарики (M - белых и N-M - черных)

Эксперементы могут быть с(без) возвращением(я) и с(без) учетом(а) порядка.

Тогда элементарный исход это или кортеж или множество. А возвращение влияет на мощность элементарных исходов. Комбу надо было учить!

Классическая теория вероятности занимается дискретными моделями в которых элементарные исходы равновероятны. *Замечание* классическая модель занимается только конечными моделями, так как сумма вероятностей должна равнятся 1.

3

4

5

Два события называются независимыми, если они не влияют на вероятность друг друга, то есть $P(A \cap B) = P(A)P(B)$. Если $P(B) \neq 0$, то определение эквивалентно P(A|B) = P(A)

Множесто событий называют **попарно независимыми**, если любая пара эелементов независима.

Множесто событий называют **независимо в совокупности**, если для любого подмножества выполняется $P(A_1A_2...A_n) = P(A_1)P(A_2)...P(A_n)$.

Замечание Очевидно что из независимость в совокупнсоти следует попарная независимость.

6

Опр 1 Случайная величина - это функция $\xi:\Omega\to\mathbb{R}$ если $\mathcal{F}=2^\Omega$ и Ω или конечное или счетное. $P(A)=\sum_{w\in A}P(w)$ Это не требовал Иван Генрихович в лекциях прошлого года, не понятно зачем это вообще требовать

Опр 1* Случайная величина - это функция $\xi:\Omega\to\mathbb{R}$ такая что $\forall a\in\mathbb{R}:\xi^{-1}((-\infty,a])\in\mathcal{F}$ (Измеримость функции)

Опр 2 Математическое ожидание от случайной величины - это $E\xi = \sum_{w \in \Omega} \xi(w) P(w)$

Если счетное количество $E\xi = \sum_{x \in \xi(\Omega)} P(\xi = x)$

Onp
$$2^* E \xi = \int_{x \in \Omega} \xi(w) dP$$

Опр 3 Распределение случайной величины - это значение сл. в. и вероятности $P(\xi = x_i) = p_i$ Опр 3* Распределение случайной величины (P_{ξ}) - это вероятностная мера на Ω . Такое что $P_{\xi}(B) = P(\xi \in B)$

Свойства матожидания $\xi \geqslant 0 \Rightarrow E\xi \geqslant 0$. Линейность. $\xi \geqslant \eta \Rightarrow E(\xi) \geqslant E(\eta)$. $|E\xi| <= E|\xi|$. Неравенство Коши-Бунековского $(E\xi\eta)^2 \leqslant E\xi^2 E\eta^2$ равенство $\Leftrightarrow \exists a,b \in \mathbb{R} : a\xi + b\eta = 0$ Доказательство $\forall t \in \mathbb{R}$

7

Схема испытаний Бернулли - это когда есть два исхода, и вероятность выпадения одного p, а другого 1-p.

Распределение Бренулли. $\xi \sim \mathrm{Bern}(p)$ - это $\xi = 0$ с вероятностью $1-p, \, \xi = 1$ с вероятностью p, где $p \in [0,1]$

Биномиальное распредление - это $\xi \sim \text{Bin}(n,p)$. Это если повторить количество успехов при испытании Бернулли n раз. $P(\xi=k)=C_n^kp^k(1-p)^{n-k}$

теорема Пуассона