CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS (CIMAT). UNIDAD MONTERREY

Estadítica Multivariada Tarea 1

Marcelo Alberto Sanchez Zaragoza

1 de marzo de 2021

1. Problema 1

Demuestre la siguiente igualdad:

$$\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^t = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^t + n(\bar{x}_i - \mu)(\bar{x}_i - \mu)^t$$

donde $x_i \sim N_p(\mu, \Sigma), i = 1, ..., n.$ Solución

Partimos de la siguiente espresión:

$$\sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^t = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \mu)(x_i - \bar{x} + \bar{x} - \mu)^t$$

Donde desarrollando tenemos que:

$$\sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \mu)(x_i - \bar{x} + \bar{x} - \mu)^t$$

$$= \sum_{i=1}^{n} \left\{ [(x_i - \bar{x}) + (\bar{x} - \mu)] [(x_i - \bar{x}) + (\bar{x} - \mu)]^t \right\}$$

$$= \sum_{i=1}^{n} \left\{ [(x_i - \bar{x}) + (\bar{x} - \mu)] [(x_i - \bar{x})^t + (\bar{x} - \mu)^t] \right\}$$

Agrupamos los terminos y al hacer el producto tenemos como resultado:

$$= \sum_{i=1}^{n} \left\{ (x_i - \bar{x})(x_i - \bar{x})^t + (\bar{x} - \mu)(x_i - \bar{x})^t + (x_i - \bar{x})(\bar{x} - \mu)^t + (\bar{x} - \mu)(\bar{x} - \mu)^t \right\}$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^t + \sum_{i=1}^{n} (\bar{x} - \mu)(x_i - \bar{x})^t + \sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - \mu)^t + \sum_{i=1}^{n} (\bar{x} - \mu)(\bar{x} - \mu)^t$$

Observemos que sucede con $\sum_{i=1}^{n} (\bar{x} - \mu)(x_i - \bar{x})^t$ y $\sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - \mu)^t$.

Vamos a realizar dichas sumas:

$$\sum_{i=1}^{n} (\bar{x} - \mu)(x_i - \bar{x})^t = (\bar{x} - \mu) \left[\sum_{i=1}^{n} (x_i - \bar{x})^t \right]$$
$$= (\bar{x} - \mu) \left[\sum_{i=1}^{n} x_i - n\bar{x} \right]^t$$
$$= (\bar{x} - \mu)(n\bar{x} - n\bar{x}) = 0$$

Ahora para segunda suma:

$$\sum_{i=1}^{n} (x_i - \bar{x})(\bar{x} - \mu)^t = \left[\sum_{i=1}^{n} (\bar{x} - \mu)(x_i - \bar{x})^t\right]^t = 0$$

Regresando a nuestra expresión tenemos que nuestras 4 sumas se reducen a solo 2, por lo que finalmente vamos a tener:

$$= \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^t + \sum_{i=1}^{n} (\bar{x} - \mu)(\bar{x} - \mu)^t$$
$$= \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^t + n(\bar{x} - \mu)(\bar{x} - \mu)^t$$

2. Problema 2

Para una matriz B (pxp), simétrica y positiva definida y un escalar b > 0, se sigue que

$$\frac{1}{|\Sigma|^b}e^{-tr(\Sigma^{-1}B)/2} \leq \frac{1}{|B|^b}(2b)^{pb}e^{-pb}$$

para toda Σ positiva definida de dimensión pxp, compruebe que la igualdad se sostiene únicamente para

$$\Sigma = \frac{1}{2b}B$$

Solución

Sea $B^{-1/2}$ la raíz cuadrada de B, entonces vamos a tener que $B^{1/2}B^{1/2}=B$, $B^{1/2}B^{-1/2}=I$ y $B^{-1/2}B^{-1/2}=B^{-1}$. Entonces vamos a tener que

$$tr(\Sigma^{-1}B) = tr[(\Sigma^{-1}B^{1/2})B^{1/2}] = tr[B^{1/2}(\Sigma^{-1}B^{1/2})].$$

Ahora sea η un valor propio de $B^{1/2}\Sigma^{-1}B^{1/2}$, esta matriz es positiva definida porque $y^tB^{1/2}\Sigma^{-1}B^{1/2}y=(B^{1/2}y)^t\Sigma^{-1}(B^{1/2}y)>0$ si $B^{1/2}y\neq 0$, una forma cuadratica. Así los valores propios η_i de $B^{1/2}\Sigma^{-1}B^{1/2}$ son positivos. Entonces podemos escribir lo siguiente:

$$tr(\Sigma^{-1}B) = tr(B^{1/2}\Sigma^{-1}B^{1/2}) = \sum_{i=1}^{p} \eta_i$$

Ademas, $|B^{1/2}\Sigma^{-1}B^{1/2}| = \prod_{i=1}^p \eta_i$. Ahora vamos a utilizar las propiedades de los determinantes para escribir de diferente forma nuestra expresión:

$$|B^{1/2}\Sigma^{-1}B^{1/2}| = |B^{1/2}||\Sigma^{-1}||B^{1/2}| = |\Sigma^{-1}||B^{1/2}||B^{1/2}| = |\Sigma^{-1}||B| = \frac{1}{|\Sigma|}|B|$$

$$|B^{1/2}\Sigma^{-1}B^{1/2}| = \frac{1}{|\Sigma|}|B|$$

Despejamos de la anterior expresión y sustituimos lo que ya teniamos de $|B^{1/2}\Sigma^{-1}B^{1/2}|$:

$$\frac{1}{|\Sigma|} = \frac{|B^{1/2}\Sigma^{-1}B^{1/2}|}{|B|} = \frac{\prod_{i=1}^{p} \eta_i}{|B|}$$

Empezamos trabajando el lado izquierdo de nuestra desigualdad del principio y sustituimos lo que obtuvimos lo que hemos encontrado:

$$\frac{1}{|\Sigma|^b} e^{-tr[\Sigma^{-1}B]/2} = \frac{\left(\prod_{i=1}^p \eta_i\right)^b}{|B|^b} e^{-\sum_{i=1}^p \eta_i/2} = \frac{1}{|B|^b} \prod_{i=1}^p \eta_i^b e^{-\eta_i/2}$$

Podemos ver que la función $\eta^b e^{-\eta/2}$ tiene un máximo, si derivamos con respecto a η , donde tenemos que $(2b)^b e^{-b}$ pasa con $\eta = 2b$, por lo que esto nos ayuda a escribir lo anterior como:

$$\frac{1}{|\Sigma|^b}e^{-tr(\Sigma^{-1}B)/2} \leq \frac{1}{|B|^b}(2b)^{pb}e^{-bp}$$

Vemos que el limite superior se alcanza cuando $\Sigma = (1/2b)B$, ahora tenemos:

$$B^{1/2}\Sigma^{-1}B^{1/2}=B^{1/2}(2b)B^{-1}B^{1/2}=(2b)I_{(pxp)}$$

$$tr|\Sigma^{-1}B|=tr[B^{1/2}\Sigma^{-1}B^{1/2}]=tr[(2b)I]=2bp$$

Finalmente tenemos:

$$\frac{1}{|\Sigma|} = \frac{|B^{1/2}\Sigma^{-1}B^{1/2}|}{|B|} = \frac{|(2b)I|}{|B|} = \frac{(2b)^p}{|B|}$$

3. Problema 3

Justifique el siguiente resultado para p=2: Los contornos

$$(x-\mu)^t \Sigma^{-1}(x-\mu) = c^2$$

forman elipsoides concéntricos centrados en μ y la longitud de los ejes esta dada por $\pm c\sqrt{\lambda_i e_i}$, donde $\Sigma e_i = \lambda_i e_i$, para i=1,...,p. Solución

Para el caso de P=2, tomamos nuestra matriz de la siguiente forma:

$$\Sigma^{-1} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Ahora buscamos la descomposición espectral de la matriz Σ^{-1} , donde queda de la siguiente forma:

$$\Sigma^{-1} = \lambda_1 e_1 e_1^t + \lambda_2 e_2 e_e^t$$

Después haciendo la sustitución vamos a tener:

$$(x-\mu)^t \Sigma^{-1}(x-\mu) = (x_1 - \mu_1 \quad x_2 - \mu_2) (\lambda_1 e_1 e_1^t + \lambda_2 e_2 e_e^t) \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}$$
$$= \lambda_1 ([x_1 - \mu_1 x_2 - \mu_2] e_1)^2 + \lambda_2 ([x_1 - \mu_1 x_2 - \mu_2] e_2)^2 = c^2$$

Observamos que el centro se encuentra en $\mu=\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}$ y podemos escribir nuestra ultima expresión como:

$$\left(\frac{(x-\mu)^t e_1}{\lambda_1^{-1/2}} \right)^2 + \left(\frac{(x-\mu)^t e_2}{\lambda_2^{-1/2}} \right)^2 = c^2$$

$$\left(\frac{(x-\mu)^t e_1}{c\lambda_1^{-1/2}} \right)^2 + \left(\frac{(x-\mu)^t e_2}{c\lambda_2^{-1/2}} \right)^2 = 1$$

Como se menciono el centro es $\mu=\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}$, con valores de $a=c\lambda_1^{-1/2}$ y $b=c\lambda_2^{-1/2}$. Dado que se están encontrando los valores propios de Σ^{-1} , hay una relación con Σ por lo que cumple $\Sigma e=\lambda e$ entonces $\Sigma^{-1}e=\frac{1}{\lambda}e$, finalmente tenemos que

$$a = c\sqrt{\lambda_1}e_1$$
; $b = c\sqrt{\lambda_2}e_2$

Esto sucede ya que $[e_1e_2]$ es una matriz de rotación.

4. Problema 4

En climas nórdicos, las carreteras debe ser limpiadas de la nieve rápidamente después de una tormenta. Una de las medidas de la severidad de la tormenta es x1 = duración en horas, mientras que la efectividad de la

limpieza de la nieve se puede cuantificar por x2 = horas de trabajo para limpiar la nieve. En la tabla inferior se muestran los resultados de 25 incidentes en Wisconsin.

Solución

Inciso a)

En la siguiente figura 4.1 se realizo el diagrama de dispersión tomando en cuenta ambas variables.

Figura 4.1: Gráfico de dispersión.

Se observa que hay algunos datos lejanos del centro donde se ven más. El primer dato tiene un registro una duración de tormenta de 17.5 hrs y se tardaron 42.3 hrs en limpiar, otro dato extraño tiene una duración de la tormenta de 4.5 hrs y se tardaron en limpiar 18.7 hrs y el ultimo tiene una duración de la tormenta de 3.5 hrs y les tomo 26.1 hrs limpiar.

Figura 4.2: Gráfico de X_1 .

Figura 4.3: Gráfico de X_2 .

En las figuras $4.2~{\rm y}~4.3$ vemos que ambas variables presentan cierto sesgo hacia la izquierda. Por lo que es evidente que nuestros datos proporcionados tienen varios datos atípicos.

Inciso b)

Tomando un intervalo de [-1,1] con un paso de 0.05, obtuvimos que el valor de $\hat{\lambda}_1$ es de cero, en la siguiente figura 4.4 se logra ver que se alcanza un máximo de la expresión de Box-Cox.

Figura 4.4: Posibles valores de $\hat{\lambda}_1$.

En la figura 4.5 tenemos el respectivo Q-Q plot de nuestros datos. Se observa que los datos al hacer este ajuste si se aproximan a la recta que se pinta de color rojo por lo que tomando $\hat{\lambda}_1=0{,}05$ nos convierte los datos de x_1 aproximadamente a normales.

Figura 4.5: Q-Q Plot con $\hat{\lambda}_1$.

Inciso b)

Tomando un intervalo de [-2.5,0.5] con un paso de 0.05, obtuvimos que el valor de $\hat{\lambda}_2$ es de -0.70, en la siguiente figura 4.6 se logra ver que se alcanza un máximo de la expresión de Box-Cox.

Figura 4.6: Posibles valores de $\hat{\lambda}_2$.

En la figura 4.7 tenemos el respectivo Q-Q plot de nuestros datos. Se

observa que los datos al hacer este ajuste si se aproximan a la recta que se pinta de color rojo por lo que tomando $\hat{\lambda}_2 = -0.70$ nos convierte los datos de x_2 aproximadamente a normales.

Figura 4.7: Q-Q Plot con $\hat{\lambda}_2$.

Inciso c)

Dado que hemos encontrado que es equivalente transformar cada distribución marginal a una distribución aproximadamente normal, encontramos $\hat{\lambda}_1$ y $\hat{\lambda}_2$ donde sus respectivos valores son 0.05 y -0.70.

5. Problema 5

Para p y n fijos, genérese una muestra de tamaño N de una ley $T_2(p,n)$ de Hotelling. Para esto construya una función que tome como entradas los valores de n, p, N, y utilice un generador de números aleatorios gaussianos. Represénte los resultados mediante un histograma, y haga pruebas para diferentes valores de entrada.

Solución

Para nuestro primer caso vamos a tomar n=1000, p=2 y N=1000, en la siguiente figura tenemos:

Figura 5.1: Ejemplo 1.

En el segundo caso vamos a tomar n=1000, p=2 y N=100

Figura 5.2: Ejemplo 2.