

International Bureau INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
G01N 33/573, C12N 9/12, C07K 14/435

A1

(11) International Publication Number:

WO 97/37224

(43) International Publication Date:

9 October 1997 (09.10.97)

(21) International Application Number:

PCT/GB97/00898

(22) International Filing Date:

1 April 1997 (01.04.97)

(30) Priority Data:

9606765.7

30 March 1996 (30.03.96)

GB

9626362.9

19 December 1996 (19.12.96) GI

(71) Applicant (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London W1N 4AL (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): COHEN, Philip [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Medical Sciences Institute, Dept. of Biochemistry, Dundee DD1 4HN (GB). COHEN, Patricia, Townsend, Wade [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Dept. of Biochemistry, Medical Sciences Institute, Dundee DD1 4HN (GB). BARFORD, David [GB/GB]; University of Oxford, Laboratory of Molecular Biophysics, Rex Richards Building, South Parks Road, Oxford OX1 3QU (GB).
- (74) Agent: BASSETT, Richard; Eric Potter Clarkson, St. Mary's Court, St. Mary's Gate, Nottingham NG1 1LE (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN PHOSPHATASE-1 CATALYTIC SUBUNIT INTERACTIONS

(57) Abstract

A method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative. A method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PPIc or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PPIc activity, or a functional equivalent thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	· · • · · · · · · · · · · · · · · · · ·	GB	United Kingdom	MC	Monaco	TD	Chad
AZ	Azerbaijan	GB	Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GH	Ghana	MG	Madagascur	TJ	Tajikistan
BB	Barbados	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GR	Greece		Republic of Macedonia	TR	Turkey
BF	Burkina Paso	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	IE.	Iroland	MN	Mongolia	UA	Ukraine
BJ	Benin		larael	MR	Mauritania	UG	Uganda
BR	Brazil	IL IS	locland	MW	Malawi	US	United States of America
BY	Belarus			MX	Mexico	UZ	Uzbekistan
CA	Canada	IT	Italy	NE.	Niger	VN	Viet Nam
CF	Central African Republic	JP	Japan		Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya	NL		zw	Zimbabwe
CH	Switzerland	KG	Kyrgyzstan	NO	Nonway	211	Zimoabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

PROTEIN PHOSPHATASE-1 CATALYTIC SUBUNIT INTERACTIONS

The present invention relates to peptides and protein-protein interactions and to the use of peptides, peptide analogues and compounds which modulate proteinprotein interactions in the control of cellular metabolism and function.

Cellular metabolism or function is controlled by a number of regulatory agents, which are affected by extracellular factors, for example the physical condition of the cell or the binding of a messenger molecule to a receptor located on the cell surface. The extracellular factor may then initiate a cascade of secondary messenger reactions within the cell itself, leading ultimately to changes in some aspects(s) of metabolism or cell function.

It is well recognised by those skilled in the art that phosphorylation or dephosphorylation reactions often play a key role in regulating the activity of the proteins affected. Dephosphorylation reactions are catalysed by phosphatase enzymes, the activity of which may themselves be controlled by phosphorylation and/or dephosphorylation events. Whilst a substantial amount of knowledge has been accumulated regarding protein phosphatases as a group, the number and variety of these enzymes is such that detailed information concerning the mode of action of a specific phosphatase is not always available. There remains a need to further elucidate and characterise particular key enzymes.

The reversible phosphorylation of proteins regulates most aspects of cell life. About a third of all mammalian proteins are now thought to contain covalently bound phosphate and, since protein kinases and phosphatases probably account for approximately 2-3% of all human gene products (Hunter, 1995), many of these enzymes must typically phosphorylate/dephosphorylate numerous proteins in vivo. However, it is becoming increasingly clear that some protein kinases

10

15

20

25

30

and phosphatases do not find their physiological substrates by simple diffusion within cells and that they are frequently directed to particular loci in the vicinity of their substrates by interaction with targeting subunits. In this way, the actions of protein kinases and phosphatases with inherently broad specificities are restricted and their properties tailored to the needs of a particular subcellular location, organelle or process (reviewed in Hubbard and Cohen, 1993; Faux and Scott, 1996).

Protein phosphatase-1 (PP1), one of the major protein serine/threonine phosphatases of eukaryotic cells, participates in the control of a variety of cellular functions that include glycogen metabolism, muscle contraction, the exit from mitosis (reviewed in [1,2]) and the splicing of mRNA [3]. However, evidence has been accumulating that different processes are regulated by distinct forms of PP1 in which the phosphatase catalytic subunit (PP1c) is complexed to specific "targeting subunits". These proteins not only direct PP1c to particular subcellular locations, but modify its specificity in unique ways and confer regulation by extracellular agonists (reviewed in [2,3]).

Several targeting subunits have been isolated and characterised, including the G_M -subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles [4,5], the G_L subunit that targets PP1c to liver glycogen [6,7], the M-complexes responsible for the association of PP1c with the myofibrils of skeletal muscle [8,9] and smooth muscle [9-12], the p53 binding protein p53BP2 [13] and nuclear proteins such as sds22 [14] and NIPP1 [15,16]. PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product [17], ribosomal protein L5 [18], a 110 kDa nuclear protein that has yet to be identified [15] and two cytosolic proteins, termed inhibitor-1 and inhibitor-2. Inhibitor-1, and its homologue termed dopamine and cyclic AMP-regulated phosphoprotein (DARPP), become potent PP1 inhibitors after phosphorylation by cyclic AMP-dependent protein kinase

(PKA). Inhibitor-1 is thought to inactivate PP1c released from glycogen particles when G_M is phosphorylated by PKA [19]. Inhibitor-2 is present as a complex with PP1 in the cytosol, and there is evidence that one of its roles is to act like a molecular chaperone to ensure that the PP1 catalytic centre is folded correctly prior to its delivery to a specific targeting subunit [20]. It seems likely that many other PP1-targeting subunits will be identified over the next few years as a result of the introduction of powerful new techniques such as microcystin Sepharose affinity chromatography [8] and the yeast "two hybrid system" [13].

10

15

20

25

30

5

The forms of PP1c isolated so far each contain a single PP1c-binding subunit, implying that the interaction of different targeting subunits with PP1c may be mutually exclusive. This, in turn, suggests that the binding sites for targeting subunits may overlap, and that the proportion of PP1 directed to any particular location may be determined by the amounts of each targeting subunit synthesised and their relative affinities for PP1. However, the different targeting subunits show surprisingly little similarity to one another. G_M and G_L are structurally related, yet display only 23% amino acid sequence identity over the first 286 residues of G_M , while G_L lacks the C-terminal 750 residues of G_M [7]. p53BP2 [13] and the M_{110} subunits from smooth muscle [10,11] and skeletal muscle [8] contain ankyrin repeats, but no other similarities have so far been detected between other PP1 targeting subunits.

The paradigm for the targeting subunit concept is protein phosphatase-1 (PP1), one of the major serine/threonine specific protein phosphatases of eukaryotic cells (Stralfors et al., 1985). This enzyme is involved in controlling diverse cellular functions including glycogen metabolism, muscle contraction, the exit from mitosis and the splicing of RNA (Cohen, 1989; Shenolikar, 1994; Wera and Hemmings, 1995). These different processes appear to be regulated by distinct PP1 holo-enzymes in which the same catalytic subunit (PP1c) is

15

20

25

30

complexed to different targeting or regulatory subunits. The latter class of subunits act to confer *in vivo* substrate specificity not only by directing PP1c to the subcellular loci of its substrates, but also by enhancing or suppressing its activity towards different substrates. In addition, the regulatory subunits allow the activity of PP1 to be modulated by reversible protein phosphorylation and second messengers in response to extracellular stimuli.

Many regulatory subunits modulate the activity of PP1 towards its substrates. In the instance of the regulatory M_{110} subunit that targets PP1c to myosin, the region on the M_{110} subunit that enhances the dephosphorylation of myosin by PP1 has now been shown to be distinct from the region involved in targetting the PP1-M holoenzyme to myosin. These observations indicate that alterations in the substrate specificity of PP1c are likely to result from conformational changes induced by interactions with the targetting subunit and not simply as a direct result of targetting PP1c to its substrate. However, in the case of the glycogen binding subunit G_M , the dephosphorylation of glycogen phosphorylase and glycogen synthase was enhanced only under conditions when both the PP1- G_M complex and its substrates were bound to glycogen (Hubbard and Cohen, 1989) suggesting that targetting alone may be sufficient to enhance specificity.

Whilst the identity of the PP1-binding site(s) on any targeting subunit is unknown, it has now been realised that the control of the substrate specificity and activity of this key regulatory enzyme and its interactions are of therapeutic importance. Disruption of PP1-targeting subunit interactions provide a way of altering selectively the state of phosphorylation, and hence the activities, of particular PP1 substrates. We have now identified relatively small peptides from the G_M and M_{110} -subunits that interact with PP1, and which either disrupt or mimic the distinctive properties of myofibrillar and glycogen-associated forms of PP1. The binding of the G-subunit and the M-subunit of PP1 has also

15

been found to be mutually exclusive.

A first aspect of the invention provides a method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

Conveniently, the PP1c or a fragment, variant or derivative or fusion thereof or a fusion of a fragment, variant or derivative is one that is produced using recombinant DNA technology. By "fragment, variant, derivative or fusion of PP1c" we mean any such fragment, variant, derivative or fusion that retains the ability to interact with a regulatory subunit or a suitable PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

- By "regulatory subunit" we mean any such regulatory subunit. Further subunits are being identified all of the time. It is preferred if the regulatory subunit contains the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe as described below.
- By "PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative" we include any such fragments, variants, derivatives and fusions which are able to bind to PP1c. Conveniently, the fragments, variants, derivatives are made using recombinant DNA technology or, in the case of peptides and peptide derivatives and analogues they may be made using peptide synthetic methods.

10

15

20

25

:

The enhancement or disruption of the interaction between the said PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and the said regulatory subunit or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative can be measured *in vitro* using methods well known in the art of biochemistry and including any methods which can be used to assess protein-protein, protein-peptide and protein-ligand interactions.

The said interaction can also be measured within a cell, for example using the yeast two-hybrid system as is well known in the art.

It should be appreciated that before the present invention the dissociation of a PP1c-regulatory subunit has not been achieved using a small molecule such as a peptide or a peptide analogue or derivative. Thus, it is preferred if the compounds screened in the method of the first aspect of the invention are small molecules and in particular that they are not intact regulatory subunits of PP1c.

By "small molecule" we include any compounds which have a molecular weight of less than 5000, preferably less than 2000 and more preferably less than 1000. Conveniently, the compounds screened are compounds which are able to enter a cell either passively *via* the cell membrane or *via* an active uptake system.

A second aspect of the invention provides a method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.

30 By "mimics the effect of a regulatory subunit of PP1c" we include the meaning

15

20

25

that the compound modifies a property of PPlc in such a way that PPlc acts, in at least one respect, like PPlc that is interacting with a regulatory subunit.

Examples of the properties of PP1c that may be modified, and examples of compounds which modify the properties of PP1c which are therefore identifiable in this method are given below.

Preferably, in the methods of the first and second aspects the said regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes, p53 BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.

More preferably, the regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes or p53BP2, and still more preferably the regulatory subunit of PP1c is M_{110} or G_M .

In relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit. Preferably the peptides are not [E2-R575] or [H100-P350].

As is described in more detail in the Examples, these peptides have been shown to bind to PP1c and it is convenient, in some circumstances, for the method to be carried out such that one of these peptide is displaced from, or the binding is enhanced to, PP1c. Suitably, the peptide may be labelled in a detectable manner to facilitate the detection of the interaction with PP1c. Conveniently, the peptide is labelled radioactively or fluorescently using methods well known in the art.

Also in relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M_{110} regulatory subunit.

As is shown in more detail in the Examples these peptides have been shown to bind to PP1c.

- Also in relation to the first aspect of the invention the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- We have found that, surprisingly, many regulatory subunits that bind to PP1c contain the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Typically, the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative is a peptide (typically 8-400 amino acid residues, preferably 8-200, more preferably 8-10 and still more preferably 8-20 amino acid residues in length which comprises the given consensus peptide sequence).
- It is preferred if the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence. Preferably, there are at least two basic residues in this position, more preferably at least three such residues.
- 30 It is also preferred wherein in the consensus peptide sequence Xaa is not Asp

30

or Glu because the negative charge is believed to interfere with binding to PP1c. Similarly, it is preferred if Xaa is not a large hydrophobic residue such as Phe, Tyr, Trp, Ile or Leu.

- It is particularly preferred if the PP1c-binding fragment is a fragment of a regulatory subunit comprising the said consensus peptide sequence and therefore the peptide sequences which flank the consensus peptide sequence are the same as in the native regulatory subunit.
- Preferably the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

Although the methods of the first and second aspects of the invention do not rely on any particular mechanism whereby the modulation or mimicking occurs, it is preferred if the compound binds to a PP1c. Alternatively, but still preferably, the compound binds to a regulatory subunit of PP1c.

A further aspect of the invention provides a compound identifiable by the method of the first or second aspects of the invention.

A further aspect of the invention provides a compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80 of G_M or functional equivalents or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit

H100-P350].

ates the interaction ially the same way. which conservative tution is intended Asn, Gln; Ser, Thr; to be a peptide with zely to enter a cell.

hich are resistant to are blocked, or both more of the peptide stantially the same is more resistant to

peptides [G63-T93], 350] or peptide 63 to bound consists of the -Y496] of M₁₁₀ or is not [E2-R575] or

hod of identifying a Plc and a regulatory subunit, the

method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide. Suitably, the peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Conveniently, the said peptide consists of residues 63 to 75 of G_M.

It is particularly preferred if the conformation of the said peptide and the conformation of the said portion of PP1c is as defined by reference to the atomic coordinates given in Table A (see also Example 2). Example 2 provides further details of the peptide - PP1c interactions.

Table A provides the atomic coordinates for the given PP1c-peptide crystal structure.

A further aspect of the invention provides a compound identifiable by the aforementioned method of the invention.

It will be appreciated that the aforementioned compounds and peptides will be useful in medicine and, accordingly, the invention includes pharmaceutical compositions of the said compounds in combination with a pharmaceutically acceptable carrier.

The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient (compound of the invention) with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers

10

15

or finely divided solid carriers or both, and then, if necessary, shaping the product.

Formulations in accordance with the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (eg povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (eg sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethylcellulose in varying proportions to provide desired release profile.

25

30

20

Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouth-washes comprising the active ingredient in a suitable liquid carrier.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of an active ingredient.

15

10

5

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.

20

25

30

A further aspect of the invention provides a method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

It will be appreciated that the said compounds are disclosed above with respect to specific compounds or with respect to methods of obtaining such compounds.

25

30

In particular, it is preferred if the compound administered to the cell is any one or more of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences or any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences. Preferably, the peptide is not [E2-R575] or [H100-P350].

In this embodiment it will be appreciated that functional equivalents include those compounds defined above as being functional equivalents, in particular, derivatives of peptides which are more readily able to enter a cell.

The compound may be administered to the cell in any suitable way, in particular in such a way that the compound will enter the cell in a suitable form to have its desired effect. Method of facilitating the entry of a compound into the cell are known in the art, for example, in relation to peptides the importins and penetrations may be used, or the peptides may be micro-injected or they may enter the cell in a suitable vehicle such as in a liposome.

20 Preferably, the cell is a cell in a mammalian body.

The aforementioned compounds of the invention or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection. The treatment may consist of a single dose or a plurality of doses over a period of time.

Whilst it is possible for a compound of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be "acceptable" in the sense of being compatible with the compound of the invention and not deleterious to

15

20

25

30

the recipients thereof. Typically, the carriers will be water or saline which will be sterile and pyrogen free.

A further aspect of the invention provides a method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

As will be apparent from what is described herein, protein phosphatase-1 (PP1) is one of the principal serine/threonine-specific protein phosphatases in human cells where it plays key roles in regulating a variety of physiological roles, including the metabolism of glycogen, the splicing of mRNA, the exit from mitosis and the contraction of smooth muscle. The different functions of PP1 are carried out by distinct species of this enzyme in which the same catalytic unit is complexed to different "targeting" subunits. The latter class of proteins direct PP1 to specific subcellular loci, tailor its properties to the needs of a particular locus and confer the ability to be regulated by extracellular signals (hormones, growth factors, neurotransmitters). Compounds as herein described that disrupt specific PP1-"targeting" subunits interactions or mimic the effect of a targeting subunit are likely to have a number of therapeutic uses as outlined below.

PP1 interacts with the M110-subunit which targets it to myosin in smooth muscle and enhances the rate at which PP1 dephosphorylates myosin. The dephosphorylation of myosin underlies the relaxation of smooth muscle. Thus compounds such as those disclosed herein which disrupt the interaction of PP1

with M110 in arterial muscle are expected to increase the phosphorylation of arterial myosin and elevate blood pressure.

The interaction of PP1 with M110 enhances the rate at which PP1 dephosphorylates myosin, but suppresses the rate at which it dephosphorylates glycogen phosphorylase. The disruption of the PP1-M110 interaction is therefore measured in a screen by looking for compounds which enhance the dephosphorylation of phosphorylase and/or suppress the dephosphorylation of the myosin P-light chain (see the Examples).

10

15

20

Compounds, such as those disclosed herein, that mimic the effect of the M110 subunit in stimulating myosin dephosphorylation are expected to be useful in lowering blood pressure. Such compounds are identified by their ability to stimulate the dephosphorylation of the myosin P-light chain by the catalytic subunit of PP1. An example of such an assay, which shows that the N-terminal 38 residues of the M110 subunit stimulate the dephosphorylation of the myosin P-light chain by PP1, is shown in the Examples.

The interaction of PP1 with G_L targets the phosphatase to liver glycogen. This interaction enhances the dephosphorylation glycogen synthase which stimulates the conversion of glucose to glycogen. A compounds, such as those disclosed herein, disrupts the interaction between PP1 and G_L is expected to be useful in treating hypoglycaemia. The interaction of G_L with PP1 strongly suppresses the rate at which PP1 dephosphorylates glycogen phosphorylase. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with G_L can be screened for very simply by its ability to increase the phosphorylase phosphatase activity of PP1 G_L . This can be carried out, for example, using rat liver glycogen pellet as described in the Examples. There is no need to use the purified enzyme.

25

10

15

20

25

30

PP1 interacts with p53 BP2 (Helps et al, 1995) a protein which is known to interact with the tumour suppressor p53. The phosphorylation of p53 is known to enhance its ability to bind to DNA and hence its ability to function as a tumour suppressor. p53BP2 may be a protein which targets PP1 to p53 stimulating the dephosphorylation and inactivation of p53. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with p53BP2 may enhance the phosphorylation of p53 and its ability to function as a tumour suppressor. Since p53BP2 suppresses the dephosphorylation of glycogen phosphorylase (Helps et al, 1995), compounds that disrupt the p53BP2-PP1 complex can be screened by measuring the increase in rate of dephosphorylation of glycogen phosphorylase.

The present invention provides peptides able to bind to the catalytic sub-unit of protein phosphatase-1 (hereinafter referred to as PP1c). Generally the peptides affect the ability of PP1c to bind to particular target(s) and/or the regulation of PP1c activity.

Peptides can be designed based on the sequences of regulatory subunits, especially in relation to the peptide consensus sequence found therein and its flanking sequences. Peptides can be synthesised by methods well known in the art. For example, peptides may be synthesised by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lu et al (1981) J. Org. Chem. 46, 3433 and references therein. Temporary N-amino group protection is afforded by the 9-fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is effected using 20% piperidine in N,N-dimethylformamide. Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case

15

20

25

of arginine). Where glutamine or asparagine are C-terminal residues, use is made of the 4,4'-dimethoxybenzhydryl group for protection of the side chain amido functionalities. The solid-phase support is based on a polydimethylacrylamide polymer constituted from the three monomers dimethylacrylamide bisacryloylethylene diamine (cross (backbone-monomer). acryloylsarcosine methyl ester (functionalising agent). The peptide-to-resin cleavable linked agent used is the acid-labile 4-hydroxymethyl-phenoxyacetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N,N-dicyclohexyl-carbodiimide/1hydroxybenzotriazole mediated coupling procedure. All coupling and deprotection reactions are monitored using ninhydrin, trinitrobenzene sulphonic acid or isotin test procedures. Upon completion of synthesis, peptides are cleaved from the resin support with concomitant removal of side-chain protecting groups by treatment with 95% trifluoroacetic acid containing a 50% scavenger mix. Scavengers commonly used are ethanedithiol, phenol, anisole and water, the exact choice depending on the constituent amino acids of the peptide being synthesised. Trifluoroacetic acid is removed by evaporation in vacuo, with subsequent trituration with diethyl ether affording the crude peptide. Any scavengers present are removed by a simple extraction procedure which on lyophilisation of the aqueous phase affords the crude peptide free of Reagents for peptide synthesis are generally available from scavengers. Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, UK. Purification may be effected by any one, or a combination of, techniques such as size exclusion chromatography, ion-exchange chromatography and (principally) reverse-phase high performance liquid chromatography. Analysis of peptides may be carried out using thin layer chromatography, reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB) mass spectrometric analysis.

10

15

30

The peptides may be derived from the targeting subunit(s) of PP1c, in particular from the subunits G_L , G_M , M_{110} and/or M_{21} . Additionally the peptides may be derived from other subunits such as different M-complexes, p53BP2, sds22, NIPP1, L5, Inhibitor-1, Inhibitor-2, DARPP or the like. Functional equivalents or portions of these peptides may also be used.

In a further aspect the present invention provides the use of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to affect cellular metabolism or function.

In a further aspect the present invention provides a method of treatment of the human or non-human (preferably mammalian) animal body, said method comprising altering the levels of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.

Aspects of cellular metabolism that may be affected include (but are not limited to) glycogen metabolism, muscle metabolism, physiology and function.

Generally the levels of peptides or their activity will be enhanced in cells and this control may be achieved by causing higher levels of expression of nucleotides sequences encoding for such peptides (optionally linked to molecules which allow them to cross a cell membrane) or through the administration of such peptides or precursors thereof. Alternatively, in some circumstances, it may be more desirable to depress the levels of certain peptides or at least to depress the level of peptides in active form.

Preferred peptides according to the present invention are derivatives of G_M , especially [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80, and derivatives of M_{110} , especially

20

25

30

[M1-E309], [M1-F38], [M1-A150], [L24-Y496]. Preferably, the peptide is not [E2-R575] or [H100-P350].

Particularly preferred peptides are those derived from amino acid nos. 63 to 93 (including 63-80 and 63-75) of G_M ; or from amino acids 1 to 309 (including from 1-150 and 1-38) of M_{110} .

The sequence of G_M is given in Chen et al (1994) Diabetes 43, 1234-1241.

In yet further aspect the present invention provides chimeric proteins containing portions of other proteins or peptides or containing additional amino acids.

Additionally the present invention provides nucleotide sequences (optionally in the form of plasmids) encoding the peptides or chimeric proteins of interest. DNA which encodes the polypeptides or peptides of the invention or chimeric proteins can be made based on a knowledge of the peptide sequences disclosed herein. The DNA is then expressed in a suitable host to produce a polypeptide comprising the compound of the invention. Thus, the DNA encoding the polypeptide constituting the compound of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed in US Patent Nos. 4,440,859 issued 3 April 1984 to Rutter et al, 4,530,901 issued 23 July 1985 to Weissman, 4,582,800 issued 15 April 1986 to Crowl, 4,677,063 issued 30 June 1987 to Mark et al, 4,678,751 issued 7 July 1987 to Goeddel, 4,704,362 issued 3 November 1987 to Itakura et al, 4,710,463 issued 1 December 1987 to Murray, 4,757,006 issued 12 July 1988 to Toole, Jr. et al, 4,766,075 issued 23 August 1988 to Goeddel et al and 4,810,648 issued 7 March 1989 to Stalker, all of which are incorporated herein by reference.

10

15

The DNA encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.

Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance. Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.

- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- 25 Many expression systems are known, including bacteria (for example E. coli and Bacillus subtilis), yeasts (for example Saccharomyces cerevisiae), filamentous fungi (for example Aspergillus), plant cells, animal cells and insect cells.
- 30 The vectors include a prokaryotic replicon, such as the ColE1 ori, for

15

20

25

30

propagation in a prokaryote, even if the vector is to be used for expression in other, non-prokaryotic, cell types. The vectors can also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as E. coli, transformed therewith.

A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

Typical prokaryotic vector plasmids are pUC18, pUC19, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA, USA) and pTrc99A and pKK223-3 available from Pharmacia, Piscataway, NJ, USA.

A typical mammalian cell vector plasmid is pSVL available from Pharmacia, Piscataway, NJ, USA. This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing cells, such as COS-1 cells.

An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1,

LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps)

A variety of methods have been developed to operably link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3'-ends with their polymerizing activities.

The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

20

25

20

25

A desirable way to modify the DNA encoding the polypeptide of the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491.

In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art. In relation to the above section on DNA expression the term "polypeptide" includes peptides and chimeric proteins.

Further the present invention provides host cells transformed with suitable expression vectors and able to express the peptides. The host cells may be prokaryotic (e.g. E. coli) or eukaryotic (e.g. yeast, mammalian cell cultures).

Bacterial cells are preferred prokaryotic host cells and typically are a strain of *E. coli* such as, for example, the *E. coli* strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, MD, USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, MD, USA (No ATCC 31343). Preferred eukaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line. Yeast host cells include YPH499, YPH500 and YPH501 which are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, and monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650.

30 Transformation of appropriate cell hosts with a DNA construct of the present

15

20

invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen et al (1972) Proc. Natl. Acad. Sci. USA 69, 2110 and Sambrook et al (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Transformation of yeast cells is described in Sherman et al (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY. The method of Beggs (1978) Nature 275, 104-109 is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, MD 20877, USA.

Electroporation is also useful for transforming cells and is well known in the art for transforming yeast cell, bacterial cells and vertebrate cells.

For example, many bacterial species may be transformed by the methods described in Luchansky et al (1988) Mol. Microbiol. 2, 637-646 incorporated herein by reference. The greatest number of transformants is consistently recovered following electroporation of the DNA-cell mixture suspended in 2.5X PEB using 6250V per cm at 25μ FD.

Methods for transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194, 182.

Successfully transformed cells, ie cells that contain a DNA construct of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern (1975) J. Mol. Biol.

5

10

15

20

25

30

98, 503 or Berent et al (1985) Biotech. 3, 208. Alternatively, the presence of the protein in the supernatant can be detected using antibodies as described below.

In addition to directly assaying for the presence of recombinant DNA, successful transformation can be confirmed by well known immunological methods when the recombinant DNA is capable of directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies.

Thus, in addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.

In another aspect the present invention provides antibodies to PP1c which act in an analogous manner to the peptides of interest. Antibodies to the peptides themselves are also provided and these may themselves be used to affect cell metabolism or function.

Peptides in which one or more of the amino acid residues are chemically modified, before or after the peptide is synthesised, may be used providing that the function of the peptide, namely the production of specific antibodies in vivo, remains substantially unchanged. Such modifications include forming salts with acids or bases, especially physiologically acceptable organic or inorganic acids and bases, forming an ester or amide of a terminal carboxyl group, and attaching amino acid protecting groups such as N-t-butoxycarbonyl. Such modifications may protect the peptide from in vivo metabolism. The peptides

10

15

20

25

may be present as single copies or as multiples, for example tandem repeats. Such tandem or multiple repeats may be sufficiently antigenic themselves to obviate the use of a carrier. It may be advantageous for the peptide to be formed as a loop, with the N-terminal and C-terminal ends joined together, or to add one or more Cys residues to an end to increase antigenicity and/or to allow disulphide bonds to be formed. If the peptide is covalently linked to a carrier, preferably a polypeptide, then the arrangement is preferably such that the peptide of the invention forms a loop.

According to current immunological theories, a carrier function should be present in any immunogenic formulation in order to stimulate, or enhance stimulation of, the immune system. It is thought that the best carriers embody (or, together with the antigen, create) a T-cell epitope. The peptides may be associated, for example by cross-linking, with a separate carrier, such as serum albumins, myoglobins, bacterial toxoids and keyhole limpet haemocyanin. More recently developed carriers which induce T-cell help in the immune response include the hepatitis-B core antigen (also called the nucleocapsid protein), presumed T-cell epitopes such as Thr-Ala-Ser-Gly-Val-Ala-Glu-Thr-Thr-Asn-Cys (SEQ ID No 1), beta-galactosidase and the 163-171 peptide of interleukin-1. The latter compound may variously be regarded as a carrier or as an adjuvant or as both. Alternatively, several copies of the same or different peptides of the invention may be cross-linked to one another; in this situation there is no separate carrier as such, but a carrier function may be provided by such cross-linking. Suitable cross-linking agents include those listed as such in the Sigma and Pierce catalogues, for example glutaraldehyde, carbodiimide and succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, the latter agent exploiting the -SH group on the C-terminal cysteine residue (if present).

If the peptide is prepared by expression of a suitable nucleotide sequence in a suitable host, then it may be advantageous to express the peptide as a fusion

product with a peptide sequence which acts as a carrier. Kabigen's "Ecosec" system is an example of such an arrangement.

The peptide of the invention may be linked to other antigens to provide a dual effect.

In a yet further aspect the present invention provides a method of diagnosis of abnormalities of cellular metabolism, said method comprising analysing the naturally occurring peptide(s) or the nucleotide sequences encoding therefore and comparing the results to the peptides described herein.

The peptides of the present invention may also be used in diagnosis and this aspect is also covered by the present invention.

The specificity of the catalytic subunit of protein phosphatase-1 (PP1c) is 15 modified by regulatory subunits that target it to particular subcellular locations. For the first time we have identified PP1c-binding domains on G_L and G_M, the subunits that target PP1c to hepatic and muscle glycogen, respectively, and on M₁₁₀, the subunit that targets PP1c to smooth muscle myosin. The peptide G_{M} -(G63-T93) interacted with PP1c and prevented G_{L} from suppressing the 20 dephosphorylation of glycogen phosphorylase, but it did not dissociate G_L from PP1c or affect other characteristic properties of the PP1_{GL} complex. These results indicate that G_L contains two PP1c-binding sites, the region which suppresses the dephosphorylation of glycogen phosphorylase being distinct from that which enhances the dephosphorylation of glycogen synthase. At higher 25 concentrations, G_M-(G63-N75) had the same effect as G_M-(G63-T93), but not if Ser67 was phosphorylated by cyclic AMP-dependent protein kinase. Thus phosphorylation of Ser67 dissociates G_M from PP1c because phosphate is inserted into the PP1c-binding domain of G_M . The fragments M_{110} -(M1-E309) and M_{110} -(M1-F38), but not M_{110} -(D39-E309), mimicked the M_{110} subunit in 30

15

20

25

stimulating dephosphorylation of the smooth muscle myosin P-light chain and heavy meromyosin *in vitro*. However, in contrast to the M_{110} subunit and M_{110} -(M1-E309), neither M_{110} -(M1-F38) nor M_{110} -(D39-E309) suppressed the PP1c-catalysed dephosphorylation of glycogen phosphorylase. These observations suggest that the region which stimulates the dephosphorylation of myosin is situated within the N-terminal 38 residues of the M_{110} subunit, while the region which suppresses the dephosphorylation of glycogen phosphorylase requires the presence of at least part of the region 39-296 which contains seven ankyrin repeats. M_{110} -(M1-F38) displaced G_L from PP1c, while G_M -(G63-T93) displaced M_{110} from PP1c *in vitro*. These observations indicate that the region(s) of PP1c that interact with G_M/G_L and M_{110} overlap, explaining why different forms of PP1c contain just a single targeting subunit.

We also disclose the structure of PP1c in complex with a portion of a targeting subunit, and show that changing key amino acid residues in the subunit disrupts its interaction with PP1c. These studies identify a critical structural motif in targeting subunits involved in the interaction with PP1c as well as the recognition site on PP1c itself. These findings will facilitate the rational design of agents such as peptides or other forms of small cell-permeant molecules that act by disrupting PP1-targeting subunit interactions. Given the structural motif and the coordinates of the atoms in the crystal structure, it is within the scope of the abilities of a skilled molecular modeller to produce small cell-permeant molecules, which can enter cells naturally, and possess either the same motif, or an analogous structure to give the same functional properties to the molecule. Thus the small cell-permeant molecule can have a precise copy of the motif, or one which is functionally equivalent. The molecule can be a peptide, but other types of molecules, which are transferred across the plasma membrane of cells, may be preferred.

30 Several mammalian PP1c targeting subunits have been isolated and

10

15

characterised, including the G_M subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles (Tang et al., 1991; Chen et al., 1994), the G_L subunit that targets PP1c to liver glycogen (Moorhead et al., 1995; Doherty et al., 1995), the M₁₁₀ subunits responsible for the association of PP1c with the myofibrils of skeletal muscle (Moorhead et al., 1994; Alessi et al., 1992) and smooth muscle (Alessi et al., 1992; Chen et al., 1994), the p53 binding protein p53BP2 (Helps et al., 1995) and the nuclear protein NIPP-1 (Jagiello et al., 1995; Van Eynde et al., 1995). PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product (Durphee et al., 1993), an RNA splicing factor (Hirano et al., 1996), ribosomal proteins L5 (Hirano et al., 1995) and RIPP-1 (Beullens et al., 1996), a 110 kDa nuclear protein yet to be identified (Jagiello et al., 1995), kinesin-like proteins and small cytosolic proteins, inhibitor-1, DARPP-32 and inhibitor-2 (Cohen, 1989; Cohen, 1992, Hubbard and Cohen, 1993). Moreover, a number of distinct PP1-regulatory subunits have been identified in yeast (reviewed by Stark, 1996). We attempted to identify which regions of the G_M and M_{110} subunits were involved in binding to PP1c. These studies led to the identification of relatively small peptides from each targeting subunit that were capable of interacting with PP1c. Peptides comprising residues 63-93, 63-80 and 63-75 of G_M bound to PP1c, dissociating it from G_L , while the N-terminal 38 residues of the M_{110} subunit ($M_{110}[1-38]$) mimicked the intact M₁₁₀ subunit in enhancing the rate at which PP1c dephosphorylated the 20 kDa myosin light chain (MLC₂₀) subunit of smooth muscle myosin (Johnson et al., 1996).

25

30

20

The present invention thus provides peptides comprising the N-terminal 38 residues of the M_{110} subunit, and those comprising residues 63-93, 63-80 and 63-75 of G_M .

Phosphorylation of Ser 67 of G_M by protein kinase A (PKA) disrupts the

interaction of G_M with PP1c (Dent et al., 1990) and a similar disruption is also observed following the phosphorylation of Ser 67 of the $G_M[63-75]$ peptide (Johnson et al., 1996). The finding that $G_M[63-93]$ disrupted the interaction between PP1c and the M_{110} subunit, and prevented M_{110} from enhancing the MLC₂₀ phosphatase activity of PP1c implies that the binding of M_{110} and G_M to PP1c are mutually exclusive.

Thus the invention contemplates the substitution or modification of an amino acid in any such peptide.

10

15

20

25

30

To understand the basis for the recognition by PP1c of regulatory subunits, and peptides derived from these subunits, we co-crystallised a complex of PP1c with the $G_M[63-75]$ peptide and determined the structure at 3.0 Å resolution. These experiments have demonstrated that residues 64 to 69 of the peptide are bound in an extended conformation to a hydrophobic channel within the C-terminal region of PP1c. The residues in $G_M[63-75]$ that interact with PP1c lie in an Arg/Lys-Val/Ile--Xaa-Phe motif common to $M_{110}[1-38]$ and almost all known mammalian PP1-binding proteins. Substituting Val or Phe by Ala in the $G_M[63-75]$ peptide, and deleting the VxF motif from the $M_{110}[1-38]$ peptide, abolished the ability of both peptides to interact with PP1c. These findings identify a recognition site on PP1c for a critical structural motif involved in the interaction of targeting subunits with PP1.

Particularly preferred peptides are derived from residues 63 to 69 of G_M and comprise the motif Arg/Lys-Val/Ile-Xaa-Phe. Peptides derived from M_{110} (or any other source) and also including the motif are also included in the scope of the invention.

Preferred peptides may also be substantially or wholly made up of hydrophobic residues.

10

15

PCT/GB97/00898

The identification of this area of PP1c necessary for binding to the various subunits allows the design of agents to specifically disrupt the interaction at this area. Such disruption may, for example, increase the phosphorylation of the protein phospholamban in cardiac muscle and thus increase the force and rate of contraction of the muscle. This provides a possible treatment for congestive heart failure. Also, the specific disruption of the complex of PP1 and p53BP2 may prevent PP1 from dephosphorylating the tumour suppressor protein p53, thus enhancing phosphorylation of p53, its ability to bind to DNA, and thus its ability to act as a tumour suppressor.

The identification of the key motif in targetting subunits that bind to PP1 also provides the means to produce targetting subunits that can no longer interact with PP1. Over-expression of these mutant targetting subunits provides a powerful new way to determine the functions of different targetting subunits in vivo.

Abbreviations

20 PP1, protein phosphatase-1

PP1c, catalytic subunit of PP1

PP1, -isoform of PP1c

PP1_G, glycogen-associated form of PP1

PP1_M, myosin-associated form of PP1

25 G_M, glycogen-binding subunit of PP1 from striated muscle

G_L, glycogen-binding subunit of PP1 from liver

NIPP1, nuclear inhibitor of PP1

DARPP, dopamine and cyclic AMP-regulated phosphoprotein

 M_{21} and M_{110} , myofibrillar-binding subunits of PP1 with molecular masses of

30 21kDa and 110 kDa respectively.

15

25

PKA, cyclic AMP-dependent protein kinase
PhMeSO₂F, phenylmethylsuphonyl fluoride
GST, glutathione-S-transferase
MLC₂₀, myosin light chain of molecular mass 20 kDa.

The invention is now described in more detail by reference to the following Examples and Figures wherein:

Figure 1 shows that the N-terminal 118 residues of human G_M interact with PP1c.

GST-G_M fusion proteins were electrophoresed on 10% SDS/polyacrylamide gels and stained with Coomassie blue (lanes 1-3) or, after transfer to nitrocellulose, probed with digoxygenin-labelled PP1γ (lanes 4-6) as in [9]. Lanes 1 and 4, GST-G_M-(E2-D118); Lanes 2 and 5, GST-G_M-(H100-P350); Lanes 3 and 6, GST. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated.

Figure 2 shows that synthetic peptides between residues 63 and 93 of rabbit G_M stimulate the phosphorylase phosphatase activity of PP1_{GL}.

Hepatic glycogen particles were diluted in assay buffer to 0.6 phosphorylase phosphatase (PhP) mU per ml, incubated for 15 minutes at 30°C with G_{M} -(G63-T93) (closed circles), G_{M} -(G63-K80) (open circles) or G_{M} -(G63-N75) (closed triangles) and assayed as described in Example 1. The open triangles show the effect of G_{M} -(G63-N75) which had been phosphorylated at Ser67 by PKA (p G_{M} -(G63-N75)). Similar results were obtained in four experiments.

Figure 3 shows that removal of the M_{21} subunit from smooth muscle $PP1_M$ does

not affect its MLC₂₀ phosphatase:phosphorylase phosphatase activity ratio.

- (A) Purified smooth muscle $PP1_M$ was electrophoresed on a 12% SDS/polyacrylamide gel, and either stained with Coomassie blue (lane 1) or immunoblotted [32] with antibodies specific for the M_{21} subunit (lane 2) or the M_{110} subunit (lane 3). The positions of the M_{110} subunit, the M_{21} subunit and PP1c are marked.
- (B) Purified PP1_M (lane 1) or PP1_M lacking the M₂₁ subunit (lane 2) were electrophoresed on a 12% SDS polyacrylamide gel, transferred to nitrocellulose and immunoblotted with mixed, affinity-purified antibodies to the M₁₁₀ and M₂₁ subunits. The M₁₁₀ and M₂₁ subunits are marked. The activity ratio, MLC₂₀ phosphatase (MP):phosphorylase phosphatase (PhP) of the two preparations is also shown. Similar results were obtained in three different experiments. The activity ratio MP:PhP of PP1c is 0.07.
 - Figure 4 shows expressed fragments of the M_{110} subunit before and after cleavage of the GST-fusion proteins with thrombin .
- electrophoresed Purified **GST-fusion** proteins were 15% 20 SDS/polyacrylamide gel and stained with Coomassie blue. Lane 1, $GST-M_{110}-(M1-A150);$ GST-M₁₁₀-(D39-E309); 3, Lane 2, GST- M_{110} -(M1-E309); Lane 4, GST- M_{110} -(L24- Y496). Lanes 5-8 are the same as Lanes 1-4 except that the fusion proteins were cleaved with thrombin. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine 25 serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), GST (26 kDa) and soybean trypsin inhibitor (20 kDa) are marked.
- Figure 5 shows the effect of M₁₁₀ subunit fragments on PP1c-catalysed dephosphorylation of MLC₂₀ and glycogen phosphorylase

A,B; Effects of M_{110} -(M1-E309) (closed circles), M_{110} -(M1-F38) (open circles) and M_{110} -(D39-E309) (open triangles) on the MLC₂₀ phosphatase (B) and phosphorylase phosphatase (B) activities of PP1c were measured after incubating PP1c for 15 minutes at 30°C with each fragment. The results are presented as a percentage of those obtained in experiments where the M_{110} fragments were omitted.

C,D; The effect of M_{110} -(M1-A150) (open circles) and M_{110} -(L24-Y496) (closed circles) on the MLC₂₀ phosphatase (C) and phosphorylase phosphatase (D) activities of PP1c were measured as in A,B.

Figure 6 shows the effect of M_{110} -(M1-F38) and M_{110} -(M1-E309) on the dephosphorylation of glycogen synthase by PP1c.

- The glycogen synthase phosphatase activity of PP1c was measured after a 15 minute incubation at 30°C with the indicated concentrations of M₁₁₀-(M1-F38) and M₁₁₀-(M1-E309). Similar results were obtained in three different experiments.
- 20 Figure 7 shows that G_M-(G63-T93) dissociates PP1_M.
- (A) The phosphorylase phosphatase (PhP) activity of PP1_M (closed circles) and its MLC₂₀ phosphatase (MLCP) activity (open circles) were assayed after preincubation for 15 minutes at 30°C with the indicated concentrations of G_M-(G63-T93). Activities are shown relative to control incubations in which G_M-(G63-T93) was omitted. Similar results were obtained in three experiments.
- (B,C) PPIM was incubated for 15 minutes at 30°C in the absence (B) and presence (C) of 10 M G_{M} -(G63-T93), then passed through a 30 x 1 cm column

PCT/GB97/00898

of Superose 12 equilibrated at ambient temperature in 50 mM Tris/HC1 pH 7.5, 0.2M NaC1, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 0.03% (by mass) Brij 35 in the absence (B) or presence (C) of 1 μ M G_M-(G63-T93). Fractions (0.25 ml) were assayed for MLC₂₀ phosphatase (MLCP) in B and for phosphorylase phosphatase (PhP) activity in C. The arrows denote the position of ferritin (450 kDa) and ovalbumin (43 kDa).

Figure 8 shows that G_M -(G63-T93) prevents M_{110} -(M1-F38) or M_{110} -(M1-E309) from modulating the substrate specificity of PP1c.

10

- (A) The MLC₂₀ phosphatase activity of PP1c was assayed after incubation for 15 minutes at 30°C in the presence or absence of 1 μ M G_M-(G63-T93) and either 0.1 μ M M₁₁₀-(M1-F38) or 0.1 nM M₁₁₀-(M1-E309).
- (B) The phosphorylase phosphatase activity of PP1c was assayed as in A in the presence or absence of 1 μM G_M-(G63-T93) and 1.0 nM M₁₁₀-(M1-E309). The results are presented (SEM for three experiments) as a percentage of the PP1c activity measured in the absence of G_M-(63-T93), M₁₁₀-(M1-F38) or M₁₁₀-(M1-E309).

20

30

Figure 9 shows the location of PP1c-binding domains on the G_M and M_{110} targeting subunits and their effects on PP1 activity.

The hatched boxes in the M_{110} subunit denote the positions of the ankyrin repeats.

Figure 10 shows a stereo view of the electron density corresponding to the peptide. A: Initial 2-fold averaged electron map. B: map calculated using 3Fo-2Fc coefficients and phases calculated from the final refined model. Displayed using TURBO-FRODO.

Figure 11 shows the structure of PP1- $G_M[63-75]$ peptide complex. A. Stereo view of a ribbons diagram of PP1c to indicate the position of the peptide binding channel at the interface of the two β -sheets of the β -sandwich. The peptide atoms are represented as ball-and-stick (MOLSCRIPT, Kraulis, 1991).

- 5
- B. View of the surface of PP1c to show the hydrophobic peptide binding channel. Residues 63' to 69' (GRRVSFA) (SEQ ID No 2) of the G_M [63 75] peptide are shown as sticks. Drawn with TURBO-FRODO.
- C. Stereo view of the G_M[63-75] peptide at the recognition site of PP1 to indicate polar interactions between peptide and protein and the formation of the β-sheet between Ser 67' Ala 69' and 14 of PP1. Drawn with TURBO-FRODO.
- D. Solvent accessible surface and surface electrostatic potential of PP1-G_M[63 75] peptide complex calculated with PP1 coordinates alone and showing the peptide as a stick representation in the vicinity of the peptide binding site. The figure was created with GRASP (Nicholls and Honig, 1991). The protein surface is coloured according to electrostatic potential from red (most negative) to blue (most positive). The figure shows pronounced negative electrostatic potential in the region surrounding the N-terminus of the peptide binding site that results from seven conserved acidic residues.
- E. Details of the structure of the peptide binding site to show hydrophobic interactions between PP1c and Val 66', Phe 68' and Ala 69' of the G_M[68-75] peptide (MOLSCRIPT, Kraulis, 1991).

Figure 12 shows a sequence alignment of PP1-regulatory subunits in the vicinity of the (R/K)(V/I) x F motif. (A) mammalian PP1-binding subunits.

30 G_M, Tang et al., 1991; GL, Docherty et al., 1995; G_L-related protein, Doherty

et al., 1996; p53BP2, Helps et al., 1995; NIPP-I, Bollen et al., 1995; splicing factor PSF, Hirano et al., 1996; M₁₁₀ subunit, Chen et al., 1994; inhibitor-I, Aitken et al., 1982; DARPP-32, Williams et al., 1986. (B) PP1-binding proteins in S. cerevisiae. GACl (Francois et al., 1992); PIG2 GIP1, GIP2, YILO45W (Tu et al., 1996); REGI, REG2 (Tu and Carlson, 1995; Frederick and Tatchell, 1996); SCD5 (Nelson et al 1996; Tu et al 1996). The region homologous to the RRVSFA (SEQ ID No 3) motif in G_M which intersects with PP1c is boxed.

Figure 13 shows the disruption of the interactions between PP1c and the G_L and M₁₁₀ subunits by a synthetic peptide from p53BP2. (A) PP1_M from chicken gizzard smooth muscle (Alessi et al., 1992) was diluted and incubated for 15 m i n 3 0 ° C with t h e GKRTNLRKTGSERIAHGMRVKFNPLALLLDSC (SEQ ID No corresponding to the sequence in p53BP2 that contains the RVxF motif. Reactions were started with either ³²P-labelled MLC₂₀ or glycogen phosphorylase and the MLC₂₀ phosphatase (open circles) and phosphorylase phosphatase (PhP, closed circles) activities were determined. The results are expressed as a percentage of the activity determined in control incubations where the p53BP2 peptide was omitted (100%). Similar results were obtained in three separate experiments. (B) same as (A) except that the peptide was incubated with diluted hepatic glycogen particles containing PP1-G₁ before measuring the PhP activity. Similar results were obtained in three separate experiments.

25

30

20

10

15

Figure 14 shows the effect of $M_{110}[M1-F38]$ and $M_{110}[M1-K35]$ on the PP1c-catalysed dephosphorylation of MLC₂₀ $M_{110}[M1-F38]$ (1-38, open circles) or $M_{110}[M1-K35]$ (1-35, closed circles) were incubated with PP1c for 15 min at 30°C and reactions started with the ³²P-labelled MLC₂₀ substrate. The results are expressed as a % of the activity determined in control incubations where

15

20

25

30

the M_{110} peptides were omitted (100%). Similar results were obtained in three separate experiments.

Figure 15 shows the effect of synthetic peptides derived from the M_{110} and G_M subunits on the phosphorylase phosphatase activity of PP1- G_L . (A) Hepatic glycogen protein particles containing PP1- G_L were diluted and incubated for 15 min at 30°C with the indicated concentrations of either $M_{110}[M1-F38]$ (open circles) or $M_{110}[M1-K35]$ (closed circles) and the phosphatase reactions were initiated by addition of ^{32}P -labelled glycogen phosphorylase. The results are expressed as a percentage of the activity determined in control incubations where the M_{110} peptides were omitted. Similar results were obtained in three separate experiments. (B) The experiment was carried out as in (A), except that the peptide $G_M[G63-N75]$ ("wild type", WT) and variants in which either Val 66 (V66A) (closed triangles) or Phe 68 (F68A) (closed circles) were changed to Ala, were used instead of the M_{110} peptides. Similar results were obtained in three separate experiments.

Figure 16 shows a stereo view of a ribbons diagram of a model of PP1-phospho-inhibitor-l complex. The side chains of Ile 10, Phe 12 and pThr 35 of phospho-inhibitor-l are shown with the main-chain atoms of residues 8 to 36 of the inhibitor indicated as a shaded ribbon. Drawn with MOLSCRIPT (Kraulis 1991).

Figure 17 shows a comparison of rat and chicken gizzard M_{110} and M_{21} subunits.

Vertical lines indicate identical residues, colons denote similar residues in the rat and chicken M_{110} sequences and deletions are shown by dots. (A) Comparison of M_{110} subunits. Underlined residues in the rat M_{110} subunit (Rat1) are deleted in some rat aorta forms and underlined residues in the

20

25

chicken M_{110} subunit (Ch1) are deleted in some chicken gizzard forms [5, 8]. Dashed lines above residues indicate amino acids deleted in the rat kidney M_{110} subunit [9]. The alternative C-terminal sequences of rat uterus M_{110} subunit are shown as Rat1 and Rat2. Leucine residues in the C-terminal leucine zipper motif are double underlined. (B). The C-terminal sequence of the M_{110} subunit is structurally related to the M_{21} subunit. The sequence of the chicken M_{21} subunit [5] is compared with the C-terminal sequences of Rat2 and Ch1 from A. Identities between Ch1 and Rat2 are shown in boldface type.

Figure 18 shows immunoprecipitation and immunoblotting of PP1_M in extracts from chicken gizzard myofibrils.

A. Antibodies specific for the M_{110} and/or M_{21} subunits immunoprecipitate most of the myosin P-light chain phosphatase activity in myofibrillar extracts. PP1_M was immunoprecipitated with either control IgG, antibody raised against the $PP1_{M}$ holoenzyme, antibody specific for the M_{110} subunit or antibody specific for the M_{21} subunit, as described under Methods in Example 3. The figure shows activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results shown are the average (± S.E.M.) for three separate experiments each assayed in duplicate. B, The M_{110} and M_{21} subunits are present in similar molar proportions in myofibrillar extracts and in purified PP1_M. 10 ng (track 1) or 3 ng (track 3) of purified PP1_M or 12 μ g (track 2) or 3.6 μ g (track 4) of myofibrillar extract was electrophoresed on a 12% SDS/polyacrylamide gel, transferred to nitrocellulose and immunoblotted with mixed affinity-purified antibodies to the M_{110} and M_{21} subunits as in [22]. The positions of the two subunits are marked. The results indicate that PP1_M comprises about 0.1% of the myofibrillar protein.

30 Figure 19 shows the identification of the region on the M₁₁₀ subunit that

15

20

25

interacts with the M₂₁ subunit.

A) PP1_M 5 μ g (track 1), 10 μ g bacterial extract containing M₁₁₀-(R714-I1004) (track 2), MBP-M₁₁₀-(R714-I1004) 1 μ g (track 3), MBP-M₁₁₀-(R714-L934) 1 μ g (track 4), MBP-M₁₁₀-(K933-I1004) 1 μ g (track 5), MBP 1 μ g (track 6), M₁₁₀-(M1-E309) 2 μ g (lane 7) and M₁₁₀-(M1-S477) 2 μ g (track 8) were run on a 12% SDS/polyacrylamide gel and stained with Coomassie Blue. B) same as A) except that 10-fold less protein was electrophoresed and after transfer to nitrocellulose the proteins were probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml).

Figure 20 shows the identification of the region of the M_{21} subunit involved in interaction with the M_{110} subunit and in dimerization.

A) GST-M₂₁ 5 μ g (track 1), M₂₁ 5 μ g (track 2), M₂₁-(M1-L146) 5 μ g (track 3), M₂₁-(M1-E110) 20 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were run on 16.5% polyacrylamide gels and stained with Coomassie Blue. The marker proteins ovalbumin (43 kDa) and carbonic anhydrase (29 kDa) are indicated.

B) GST-M₂₁ 0.5 μ g (track 1), M₂₁ 0.5 μ g (track 2), M₂₁-(M1-L146) 0.5 μ g (track 3), M₂₁-(M1-E110) 5 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were electrophoresed as in A) and after transfer to nitrocellulose the blots were probed with digoxigenin-labelled MBP-M₁₁₀-(K933-I1004) (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml).

Figure 21 shows that the M_{21} subunit and M_{21} -(M1-L146) interact with the M_{110} subunit and themselves, but not with PP1.

10

15

PP1_M (0.5 μ g) was electrophoresed on a 12% SDS/polyacrylamide gel, transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml) (track 1) or digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml) (track 2). The positions of the M₁₁₀ subunit, the M₂₁ subunit and PP1c are marked.

Figure 22 shows that removal of the M_{21} subunit from smooth muscle PP1_M does not prevent it from being pelleted with myosin.

The PP1 catalytic subunit (PP1c), PP1_M, or PP1_M lacking the M_{21} subunit, PP1_M(ΔM_{21}), each at 30 nM, were incubated for 15 min at 0°C with 1 μ M myosin and centrifuged (see Methods of Example 3). The figure shows the myosin P-light chain phosphatase activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results shown are the average (\pm S.E.M.) for three separate experiments each assayed in duplicate.

Figure 23 shows the identification of a region of the M_{110} subunit which binds to myosin.

(A); PP1_M, M₁₁₀-(M1-S477) and GST-M₁₁₀-(M377-K976), each at 30 nM were incubated for 15 min at 0°C with 1 μM myosin and centrifuged. The supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels, transferred to nitrocellulose and immunoblotted with antibodies raised against the PP1_M holoenzyme. No protein was pelleted in the absence of myosin (not shown). The positions of the marker proteins myosin heavy chain (200 kDa), glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated. (B) The experiments were carried out as in (A), except that the M₁₁₀ fragments and M₂₁ subunit were used at 100 nM, the 8.5 kDa

 M_{110} -(K933-I1004) fragment was electrophoresed on a 16.5% polyacrylamide gel and immunoblotting was carried out with affinity purified antibodies (see Methods). A small amount of M_{110} -(R714-I1004) pelleted in the absence of myosin. This was probably due to aggregation in the bacterial extract since this did not happen when it was complexed to the M_{21} subunit (data not shown). No other protein was pelleted in the absence of myosin.

Figure 24 shows that the isolated M₂₁ subunit binds to myosin.

- (A); Myosin (1 μM) was mixed with 50 μM, 20 μM or 10 μM M₂₁ subunit to give the molar ratios M₂₁:myosin dimer indicated. After 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels and stained with Coomassie blue. The positions of the myosin heavy chain (MHC) and the M₂₁ subunit are indicated. The myosin light chains migrate faster than the M₂₁ subunit and are not visible at these loadings.
- (B); Myosin (track A) was purified from chicken gizzard, and the myosin "rod" domain (track B) and light meromyosin (track C) produced by digestion 20 of myosin with papain and chymotrypsin, respectively. These three proteins, all at 1 μ M, were then mixed with M_{21} subunit (track D) to give a molar ratio M₂₁:myosin dimer of 10:1 and, after 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension 25 before centrifugation (T, total) were electrophoresed 12% SDS/polyacrylamide gels and stained with Coomassie blue. The slightly faster migrating band in the M₂₁ subunit preparation was shown by amino acid sequencing to be N-terminally truncated commencing at residue 16. (C); same as (B), except that M_{21} -(M1-L146) (track D) replaced the M_{21} subunit.

15

20

25

30

Figure 25 gives a schematic representation of the regions on the M_{110} subunit from chicken gizzard that interact with PP1c, myosin and the M_{21} subunit.

PP1c binds to the KVKF (SEQ ID No 5) motif between residue 35 and 38, just N-terminal to the seven ankyrin repeats (hatched vertical lines) that suppress the dephosphorylation of substrates other than myosin. Residues 1-38 of the M_{110} subunit enhance the dephosphorylation of myosin. The M_{21} subunit binds to the C-terminal 72 residues of the M_{110} subunit which are 43% identical in amino acid sequence to residues 87-161 of the M_{21} subunit. The dephosphorylated form of myosin binds to M_{110} -(R714-I1004) but not to M_{110} -(K933-I1004), suggesting that myosin binds N-terminal to the M_{21} subunit.

Example 1: Identification of protein phosphatase 1-binding domains on the glycogen and myofibrillar targeting subunits

MATERIALS AND METHODS

Materials.

The myosin-associated form of PP1 (PP1_M) was from chicken gizzard [9] and the glycogen-associated form of PP1 (PP1_G) from rabbit skeletal muscle [21]. The β isoform of PP1c was released from PP1_G by incubation for 2 hours in 2M LiBr, then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, U.K.) in the presence of 0.5M LiBr. Glycogen protein particles from rat liver [22] were used as the source of hepatic PP1_G. Digoxygenin-labelled PP1c (γ_1 -isoform, hereafter termed PP1) was prepared as in [9]. G_L was expressed in *E. coli* as a glutathione-S-transferase (GST) fusion protein [7], termed GST- G_L . The catalytic subunit of PP2A from bovine heart (PP2AC) was provided by Dr R. MacKintosh in this Unit. The phosphorylatable myosin light chain (MLC₂₀) and heavy meromyosin from chicken gizzard were a gift from Dr M. Ikebe (Case Western Reserve

30

University, Cleveland, USA). Thrombin and benzamidine-Agarose were purchased from Sigma (Poole, UK).

Peptide synthesis.

Peptides were synthesised on an Applied Biosystems 430A peptide synthesiser and their purity and concentration established by high performance liquid chromatography, mass spectrometry and amino acid analysis. The sequence of rabbit G_M-(G63-T93) is GRRVSFADNFGFNLVSVKEFDTWELPSVSTT (SEQ ID No 6) and the sequence of M_{110} -(M1-F38) MKMADAKQKRNEQLKRWIGSETDLEPPVVKRQKTKVKF (SEQ ID No 10 The peptide G_M-(G63-T93) was cleaved with Lys-C endoproteinase (Boehringer) and the peptide G_M-(E81-T93) thus generated was purified on a The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75), were synthesised, and the latter phosphorylated at Ser67 with the catalytic subunit of cyclic AMP-dependent protein kinase (PKA), then bound to a 1 ml C₁₈ column 15 equilibrated in 0.1% (v/v) trifluoroacetic acid, washed with 0.1% trifluoroacetic acid to remove excess ATP, eluted with 0.1% trifluoroacetic acid containing 70% acetonitrile, dried and dissolved in water. G_M-(S40-Y55) was a gift from Dr Bruce Kemp (St Vincent's Institute, 20 Australia).

Preparation of phosphorylated proteins and phosphatase assays.

³²P-labelled rabbit skeletal muscle phosphorylase a (containing 1.0 mol phosphate per mol subunit) was prepared by phosphorylation with phosphorylase kinase [23], ³²P-labelled rabbit skeletal muscle glycogen synthase (containing 1.5 mol/mol subunit in the sites 3 region) was prepared by phosphorylation with glycogen synthase kinase-3 [24]), ³²P-labelled chicken gizzard MLC₂₀ and ³²P-labelled chicken gizzard heavy meromyosin (containing 1.0 mol phosphate per mol subunit) were prepared by phosphorylation with smooth muscle myosin light chain kinase [9]. The dephosphorylation of

15

20

phosphorylase a (10 μ M), glycogen synthase (1 μ M) and MLC₂₀ (1 μ M) and heavy meromyosin (1 μ M) was carried out as in [24]. One unit of activity (U) was that amount which released 1 mole of phosphate in one minute.

Construction of vectors for the expression of N-terminal fragments of the G_M subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

 $G_{M^-}(E2-R575)$ was produced by inserting a SmaI-SmaI restriction fragment, encoding amino acids 2-575 of human G_{M} , from clone H1G11 [5] into the SmaI site of pGEX-KG (Pharmacia, Milton Keynes, U.K.). This resulted in the addition after residues 2-575 of amino acids EFPVVVVEF (SEQ ID No 8) before the stop codon. $G_{M^-}(E2-P243)$ was made by deleting an NcoI-HindIII fragment of the $G_{M^-}(E2-R575)$ construct, resulting in termination after residue 243. $G_{M^-}(E2-D118)$, encoding amino acids 2-118, with a C-terminal addition of QLNSS was produced by deleting a BgIII-HindIII fragment of the $G_{M^-}(E2-R575)$ construct. $G_{M^-}(H100-P350)$ encoding amino acids 100-350 was made by inserting an EcoRI-HindIII digested PCR fragment prepared using primers

5' GCCGAATTCACACAGAAGAATATGTTTTAGCC 3' (SEQ ID No 9) and 5' GCCGAAGCTTATGGAAAATTGACTGGATCTGTTG 3' (SEQ ID No 10) into the same sites of pGEX-KG. Restriction sites in the primers are underlined.

Construction of vectors for the expression of the chicken gizzard M_{21} subunit in E. coli.

The entire coding region (M1-K186) of the M_{21} subunit [10] was amplified by PCR using primers

- 5' CGCGCATATGTCGTCGCTGTTCACCAGG 3' (SEQ ID No 11) and
- 30 5' GGCGGATCCCTACTTGGAGAGTTTGC 3' (SEQ ID No 12), containing

restriction sites NdeI and BamH1 (underlined). After cleavage with the restriction enzymes, the PCR fragment was cloned into the same sites of the bacterial expression vector pT7-7.

5 Production of fragments of the chicken gizzard and rat aorta M_{110} subunits.

The C-terminal 291 residues M_{110} -(R714-I1004) of the chicken gizzard M_{110} subunit were amplified by PCR using a primer

5' AGGAAGAATTCGTTCCACACGAAC 3' (SEQ ID No 13) containing an EcoRI restriction site (underlined) and a KS primer in the Bluescript vector of the cDNA clone [10]. The EcoRI digested PCR fragment was subcloned into the same site of pT7-7.

Rat aorta M_{110} fragments were produced as GST-fusion proteins. M₁₁₀-(M1-A150) was amplified by PCR using primers A 15 (5' CCTAGCCCGGGGATGAAGATGGCGGAC 3') (SEQ ID No 14) and B (5' GCGGAAGCTTATGCTTCCTCCTCTGCAATATC 3') (SEQ ID No 15). containing Smal and HindIII restriction sites (underlined) and the Smal-HindIII digested PCR fragment subcloned into the same sites of pGEX-KG. M₁₁₀-(M1-E309) was produced by subcloning a Smal-HindIII digested PCR 20 fragment amplified using primers Α and CTAGAAGCTTCCATATTTGCTGTTGATTCAATC 3') (SEQ ID No 16) into the same sites of pGEX-KG. This resulted in one amino acid (A) being added after E309. M₁₁₀-(D39-E309) was produced by subcloning a Smal-HindIII 25 digested PCR fragment amplified using primers D (5" CCTAGCCCGGGGGACGATGGCGCCGTCTTCC 3') (SEQ ID No 17) and C into the same sites of pGEX-KG. An M_{110} -(L24-K976) was prepared by inserting a Xhol-Xhol restriction fragment of the entire M₁₁₀ cDNA in Bluescript into XhoI site of pGEX-KG, and M₁₁₀-(L24-Y496) expressed by deleting a Ndel-Ndel fragment of the L24-K976 construct and filling the 30

10

15

20

25

30

overhanging ends before ligating them. This resulted in the addition after Y496 of amino acids MVAD (SEQ ID No 18) before the stop codon. The sequence of all subclones produced after PCR amplification were verified using an Applied Biosystems 373A automated DNA sequencer and Taq dye terminator cycle sequencing according to the manufacturer's instructions.

Expression of proteins in E.coli.

All constructs were expressed in *E. coli* strain BL21(DE3)plysS. Cultures were grown at 37°C in Luria-Bertani medium in the presence of 100 μg/ml ampicillin and 30 μg/ml chloramphenicol to an A600 of 0.4-0.6, and induced with 50 μg/ml isopropylthiogalactoside for 8 hours at 25°C or overnight at ambient temperature. After centrifugation for 10 minutes at 7000 x g (4°C), cells from one litre of culture were resuspended in 20 ml of 50 mM Tris-HCl pH 8.0, 0.1 M NaCl, 1 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonylfluoride (PhMeSO₂F), 1 mM benzamidine (buffer A) and frozen at -80°C. After thawing, sodium deoxycholate (1 mg/ml), 8 mM MgSO4 and 10 g/ml DNAase I were added, the extract incubated until it was no longer viscous, then made 6 mM in EDTA, 1 mM in benzamidine and 0.2 mM in PhMeSO₂F and centrifuged for 10 minutes at 10,000 x g. The soluble GST-fusion proteins were then purified from the supernatant by affinity chromatography on glutathione-Sepharose (Pharmacia).

The M_{21} subunit and M_{110} -(R714-I1004) C-terminal fragment from chicken gizzard M_{110} subunit, which were used for affinity purification of the anti- M_{21} and anti- M_{110} antibodies (see below) were obtained in inclusion bodies and therefore recovered in the pellets after centrifuging E. coli extracts at 10,000 x g. M_{110} -(R714-I1004) was solubilised by resuspension in Buffer A containing 0.5% (by mass) Triton X-100 and was >95% pure. The M_{21} subunit was not solubilised by this procedure but, after washing the pellets in 0.5% Triton

15

X-100, was dissolved by sonication in 0.5% trifluoroacetic acid; its purity was about 20%.

M₁₁₀ GST-fusion proteins (1-9 mg/ml in 50 mM Tris/HCl, 2.5 mM CaCl2, 150 mM NaCl and 0.1% (by vol) 2-mercaptoethanol) were cleaved by incubation for 20 minutes at 30°C with 20 μg/ml thrombin. Benzamidine-Agarose (0.2 ml) was added and, after incubation (with rotation) for 30 minutes at ambient temperature, the benzamidine-Agarose containing the attached thrombin was removed, and the supernatant dialysed against 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 10% glycerol and stored in aliquots at -80°C. After cleavage with thrombin, all fragments of the M₁₁₀ subunit, except M₁₁₀-(L24-Y496), commenced with the sequence GSPG (SEQ ID No 19) before the initiating residue of the GST-fusion proteins. The M₁₁₀-(24-Y496) was preceded by the sequence GSPGISGGGGGILDSMGR (SEQ ID No 20).

Production of antibodies that recognise the M_{110} and M_{21} subunits of chicken gizzard $PP1_{M}$.

Polyclonal sheep antibodies to the PP1_M holoenzyme were raised in the Scottish Antibody Production Unit (Carluke, Ayrshire, U.K.). Antibodies which recognise the M₁₁₀ subunit specifically were obtained by passing the antiserum down a 4 ml affinity column comprising 40 mg of M₁₁₀-(R714-I1004) coupled covalently to 1g of dried CNBr-activated Sepharose 4B (Sigma). After washing with 10 column volumes of 50 mM Tris/HCl pH 7.5, 1% (by mass) Triton X-100, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol (Buffer B) plus 0.5 M NaCl, followed by 10 volumes of Buffer B plus 1 M LiBr, the anti-M₁₁₀ antibody was eluted with 50 mM glycine pH 2.0, neutralised immediately with 1 M Tris/HCl pH 8.0 and stored in aliquots at -80°C.

identical manner, except that the affinity column comprised about 40 mg of the expressed chicken gizzard M_{21} subunit coupled to 6 g (dry weight) of CNBr-activated Sepharose.

Removal of the M_{21} subunit from $PP1_{M}$.

PP1_M (0.01 ml, 0.4U/ml) was dissociated by incubation for 30 minutes with 500 μ M arachidonic acid [25] and then for 30 minutes with 0.08 ml of packed Protein G-Sepharose coupled to 0.08 mg of affinity purified anti-M₂₁ antibody. The Protein G-Sepharose was pelleted, and the supernatant diluted at least 15-fold to allow the M₁₁₀ subunit and PP1c to recombine. The M₁₁₀-PP1c complex was further purified by gel filtration on Superose 12 (30 x 1 cm) to ensure complete removal of any free PP1c.

RESULTS.

15

20

25

30

Identification of a PP1c-interaction domain on the G_{M} -subunit of PP1 $_{GM}$. The amino acid sequence of rat hepatic G_L is 23% identical (39% similar) to residues 1-286 of G_M from human skeletal muscle [7]. There is no homology over the first 63 residues but identity is >40% over the regions 63-86, 144-166 and 186-227 of G_M suggesting that one or more of these sequences comprise a PP1-binding domain. Fusion proteins in which GST was linked to fragments of G_M were therefore tested for their ability to bind to PP1c. GST-G_M-(E2-D118) (Fig 1) and GST-G_M-(E2-P243) (data not shown), but not GST-G_M- (H100-P350) or GST itself (Fig 1) interacted with PP1 in Far Western experiments, indicating that the first 118 residues of G_M contain a PP1c-binding domain. Moreover, a proteolytic fragment derived from GST-G_M-(E2-D118) whose molecular mass was 5 kDa less than GST-G_M-(E2-D118), but not a proteolytic fragment that was 6 kDa smaller, also interacted with PP1c (Fig 1). Taken together, the observations suggested that the region comprising residues 63-86 was likely to bind to PP1c. We therefore synthesised $G_{M^-}(G63-T93)$ and examined its effect on the enzymatic properties of $PP1_{GL}$, the form of PP1 associated with rat hepatic protein-glycogen particles.

- The interaction of PP1c with G_L suppresses the dephosphorylation of muscle 5 glycogen phosphorylase by 80% and enhances the dephosphorylation of muscle glycogen synthase by 2-3 fold [21, 26]. Disruption of the characteristic properties of hepatic PP1_{GL} can therefore be monitored very simply by changes G_{M} -(G63-T93) induced a sixfold increase in the in its specificity. phosphorylase phosphatase activity of PP1_{GL}, the concentrations required for 10 50% activation being 30 nM (Fig 2). G_M-(G63-T93) also prevented bacterially expressed GST-G_L from suppressing the phosphorylase phosphatase activity of PP1c (data not shown). However, G_M-(G63-T93) had no effect on the glycogen synthase phosphatase activity of PP1_{GL}, nor was there any alteration of the other characteristic properties of PP1_{GL}, namely allosteric inhibition of the 15 glycogen synthase phosphatase activity by phosphorylase a and binding to glycogen (data not shown). Thus the interaction of G_{M} -(G63-T93) with PP1_{GL} does not displace G_L from PP1c.
- G_{M} -(G63-T93) also increased the phosphorylase phosphatase activity of PP1c, indicating that it binds to PP1c, rather than to G_{L} . However, the maximal stimulation was only 37 + 1.4% (SEM for three experiments), establishing that far greater activation of PP1_{GL} is explained by the ability of G_{M} -(G63-T93) to overcome the suppressive effect of G_{L} on the phosphorylase phosphatase activity of PP1c. Several other peptides, including a 32 residue peptide related to the C-terminus of ribosomal protein S6([G245,G246]S6[218-249]), G_{M} -(S40-Y55) and G_{M} -(E81-T93) (data not shown), had no effect on the phosphorylase phosphatase activity of PP1_{GL} or PP1c at concentrations up to 10 μ M.

10

20

25

30

The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75) also increased the phosphorylase phosphatase activity of PP1_{GL}, but were less effective than G_{M} -(G63-T93) and higher concentrations were needed (Fig 2). G_{M} -(G63-K80) and G_{M} -(G63-N75) did not increase the phosphorylase phosphatase activity of PP1c significantly at concentrations up to 10 μ M (data not shown). The phosphorylation of G_{M} at Ser67 by cyclic AMP-dependent protein kinase (PKA) triggers the dissociation of PP1 from G_{M} in vitro and in vivo [18] and phosphorylation of the peptide G_{M} -(G63-N75) at Ser67 prevented it from increasing the phosphorylase phosphatase activity of PP1_{GL} (Fig 2A). The increase in phosphorylase phosphatase activity observed at the highest phosphopeptide concentrations (10 μ M) may be explained by trace contamination (<10%) with dephosphopeptide, resulting either from incomplete phosphorylation of Ser67 or slight dephosphorylation during the assay.

15 Identification of a PPI-interaction domain on the M_{110} subunit.

Antibodies were prepared that recognised either the M_{110} or M_{21} subunits of the myosin-associated form of PP1 (PP1_M) from chicken gizzard (Fig 3A). Removal of the M_{21} subunit using the M_{21} -specific antibody (Fig 3B and see Methods) did not affect the activity of PP1_M towards MLC_{20} or phosphorylase, the MLC_{20} phosphatase:phosphorylase phosphatase activity ratio (0.95 \pm 0.03) remaining 15-fold higher than PP1c (Fig 3B). The M_{21} subunit bound to M_{110} , but had no effect on the MLC_{20} phosphatase or phosphorylase phosphatase activity of PP1c and did not bind to PP1c (D. Johnson unpublished). Thus M_{110} is solely responsible for enhancing the dephosphorylation of MLC_{20} and suppressing the dephosphorylation of glycogen phosphorylase by PP1c [9].

In order to identify which region(s) of M_{110} modulates the specificity of PP1c, fusion proteins were constructed consisting of glutathione S-transferase (GST) followed by fragments of the M_{110} subunit. After expression in E. coli and

15

20

25

30

purification by affinity chromatography on glutathione-Sepharose, the fusion proteins were cleaved with thrombin to release GST from fragments of the M_{110} subunit (Fig 4 and see Methods). M_{110} -(M1-E309), which contains seven 33 residue ankyrin repeats located between residues 39-296, modified the specificity of PP1c in a similar manner to M_{110} itself, increasing activity towards MLC_{20} about 3-fold (Fig 5A) and suppressing activity towards glycogen phosphorylase by about 80% (Fig 5B). The concentration of M_{110} -(M1-E309) required to activate the MLC_{20} phosphatase activity maximally (0.1 nM) was similar to the PP1c concentration in the assay, indicating an extremely high affinity for PP1c. M_{110} -(M1-A150) modified the specificity of PP1 similarly, but 10-fold higher concentrations were needed compared to M_{110} -(M1-E309) (Figs 5C and 5D).

If the GST tags were not cleaved with thrombin, a 10-fold higher concentration of M_{110} -(M1-E309) was needed to modulate the substrate specificity of PP1c, while M_{110} -(M1-A150) was unable to stimulate the MLC₂₀ phosphatase activity of PP1c at all (data not shown). GST itself did not interact with PP1c (Fig 1), had no effect on either the MLC₂₀ phosphatase or phosphorylase phosphatase activity of PP1c (data not shown), and therefore was not removed from the solution after cleavage of the fusion proteins with thrombin.

In contrast to M_{110} -(M1-E309), M_{110} -(D39-E309) failed to stimulate the MLC_{20} phosphatase activity of PP1c, or to inhibit its phosphorylase phosphatase activity (Figs 5A and 5B), suggesting that the extreme N-terminus of the M_{110} subunit (i.e. before the start of the ankyrin repeats) might be important in modulating the specificity of PP1c. The peptide M_{110} -(M1-F38) was therefore synthesized and found to stimulate the MLC_{20} phosphatase activity of PP1c to the same extent as M_{110} -(M1-E309), although the concentration required for half maximal activation (10 nM) was at least 100-fold higher (Fig 5A). M_{110} -(M1-F38) stimulated the dephosphorylation of heavy meromyosin in a

20

30

similar manner to the dephosphorylation of MLC_{20} (data not shown). However, like M_{110} -(D39-E309), M_{110} -(M1-F38) did not inhibit the phosphorylase phosphatase activity of PP1c (Fig 5B). These observations suggested that residues beyond 38 were needed to suppress phosphorylase phosphatase activity. Consistent with this, M_{110} -(L24-Y496) was less effective than M_{110} -(M1-A150) or M_{110} -(M1-E309) in stimulating the MLC_{20} phosphatase activity of PP1c, but inhibited the phosphorylase phosphatase activity of PP1c in a similar manner to M_{110} -(M1-A150) (Figs 5C and 5D).

Although M₁₁₀-(D39-E309) and M₁₁₀-(M1-F38) had no effect on the phosphorylase phosphatase activity of PP1c when each peptide was included individually in the assays at concentrations up to 1 μM (Fig 5), a 39 ± 2% inhibition (SEM n=4) was observed when both peptides were both present at 1 μM. Surprisingly, M₁₁₀-(D39-E309) prevented (IC50 = 0.1 M) M₁₁₀-(M1-F38) from stimulating the MLC₂₀ phosphatase activity of PP1c (data not shown). Thus M₁₁₀-(D39-E309) plus M₁₁₀-(M1-F38) do not faithfully mimic the effect of M₁₁₀-(M1-E309).

We have reported previously that the M_{110}/M_{21} complex suppresses the dephosphorylation of glycogen synthase by PP1c [9] and, consistent with this finding, the dephosphorylation of glycogen synthase was also inhibited by M_{110} -(M1-E309) (Fig 6B). However, the dephosphorylation of glycogen synthase was greatly enhanced by M_{110} -(M1-F38) (Fig 6A).

25 The binding of G_M and the M_{110} subunit to PPIc is mutually exclusive.

In order to investigate whether G_M binds to the same region of PP1c as M_{110} , we next examined the effect of G_M -(G63-T93) on the properties of PP1_M. G_M -(G63-T93) at 10 μ M increased the phosphorylase phosphatase activity of PP1_M by about 7-fold and suppressed its MLC₂₀ phosphatase activity by 60-65%

(Fig 7A), indicating that the distinctive properties of PP1_M had been disrupted. Gel-filtration experiments confirmed that $G_{M^-}(G63-T93)$ had displaced the M_{110} subunit from PP1_M, dissociating it to PP1c (Figs 7B and 7C). $G_{M^-}(G63-T93)$ also prevented M_{110} -(M1-F38) or M_{110} -(M1-E309) from stimulating the MLC₂₀ phosphatase activity of PP1c (Fig 8A), and prevented M_{110} -(M1-E309) from suppressing the phosphorylase phosphatase activity of PP1c (Fig 8B).

Conversely, the presence of $10 \mu M M_{110}$ -(M1-F38) increased the phosphorylase phosphatase activity of PP1_{GL} by 3.5- fold. This resulted from the partial dissociation to PP1c, because the enhanced phosphorylase phosphatase activity was not associated with glycogen, but recovered in the supernatant after centrifugation of the glycogen-protein particles (not shown).

DISCUSSION.

We have identified a region on G_M that binds to PP1c (Fig 9). The peptides G_{M} -(G63-T93), G_{M} -(G63-K80) and G_{M} -(G63-N75) all prevented G_{L} from suppressing the dephosphorylation of glycogen phosphorylase by PP1c and two lines of evidence indicate that these peptides interact with PP1c and not with

 G_L

10

15

Firstly, the PP1c-catalysed dephosphorylation of glycogen phosphorylase is stimulated slightly by G_{M} -(G63-T93).

Secondly, PP1c crystallises in the presence of G_M-(G63-K80) or G_M-(G63-N75) in a different form than is observed in the absence of these peptides. PKA phosphorylates G_M at Ser67 and the introduction of a negative charge directly into the PP1c-binding domain explains why phosphorylation of Ser67 triggers the dissociation of G_M from PP1c [18]. Phosphorylation of G_M-(G63-N75) at Ser67 also prevented this peptide from interacting with PP1 in the PP1_{G1}

complex (Fig 2).

Although G_{M} (G63-T93) prevented G_{L} from suppressing the dephosphorylation of glycogen phosphorylase by PP1c, it did not dissociate G_L from PP1c, nor did it affect the other characteristic properties of PP1_{GL}. Moreover, unlike G_L, G_M-(G63-T93) did not itself suppress the phosphorylase phosphatase activity of PP1c, but actually enhanced it slightly. These observations demonstrate that another region(s) on G_L must interact with PP1c and that this other region(s) may play an important role in modulating the substrate specificity of PP1c. The presence of a second PP1c binding site in G_M/G_L would be somewhat 10 analogous to the situation found in inhibitor-1 and DARPP which also contain two PP1-binding sites, high (nM) affinity binding being generated by the conjugation of two low affinity binding sites that, individually, only interact with PP1 at μ M concentrations [28]. The second PP1c-binding site on G_M/G_L might correspond to one of the other regions where G_M and G_L show > 40% 15 identity (residues 144-166 and 186-227 of human G_M). G_M-(H100-P350) was not recognised by PP1c in Far Western experiments (Fig 1) this result is not definitive because G_M-(H100-P350) may only interact with PP1c weakly. Alternatively, G_M-(H100-P350) might not fold correctly or fail to renature after SDS/polyacrylamide gel electrophoresis. 20

However, it is also possible that residues 144-166 and 186-227 of G_M do not represent part of the second PP1c-binding domain, but part of the glycogen-binding domain. In this connection it should be recalled that residues 144-166 and 186-227 are the regions showing greatest similarity (25% identity) to GAC1, which appears to be a homologue of G_M/G_L in budding yeast [7, 27, 28]. Curiously, GAC1 does not contain a region homologous to residues 63-93 of G_M/G_L . It would clearly be of interest to compare the effect of GAC1 on the enzymatic properties of PP1c with those of G_M and G_L .

25

15

20

25

30

We have also identified a region on the M_{110} subunit that binds to PP1c. An N-terminal fragment, M100-(M1-E309), enhanced the PP1c-catalysed dephosphorylation of MLC₂₀ and suppressed the dephosphorylation of glycogen phosphorylase in a similar manner to M_{110} itself (Fig 5). However, unlike M_{110} , this fragment does not bind to myosin. Thus the region which enhances the dephosphorylation of MLC₂₀ is distinct from the myosin-binding domain.

The fragment M₁₁₀-(M1-E309) contains seven ankyrin repeats lying between residues 39 and 296. However, M₁₁₀-(D39-E309) was ineffective as an activator of the MLC₂₀ phosphatase activity of PP1c or as an inhibitor of the phosphorylase phosphatase activity, and this led to the finding that a peptide comprising the N-terminal 38 residues of the M₁₁₀ subunit enhances the dephosphorylation of MLC₂₀ to the same extent as M_{110} -(M1-E309), although with lower potency. However, M_{110} -(M1-F38) did not inhibit the dephosphorylation of glycogen phosphorylase by PP1c suggesting that residues beyond 38 are required to suppress this activity. This view was reinforced by the finding that, although neither M₁₁₀-(M1-F38) nor M₁₁₀-(D39-E309) inhibited the phosphorylase phosphatase activity of PP1c when present individually, inhibition was observed in the presence of both peptides. Moreover M_{110} -(D39-E309) actually prevented M_{110} -(M1-F38) from stimulating the dephosphorylation of MLC₂₀.

These observations suggest that M_{110} -(D39-E309) can bind to M_{110} -(M1-F38) and/or PP1c. An interaction with PP1c seems likely because it has been found that M_{110} -(D39-E309) can enhance the phosphorylase activity of PP1_{GL}. The presence of a second PP1-binding site in the ankyrin-repeat domain of the M_{110} subunit is also supported by the observation that higher concentrations of M_{110} -(M1-A150) and M_{110} -(M1-E309) are needed to inhibit the phosphorylase phosphatase activity of PP1c than are required to stimulate its MLC_{20} phosphatase activity (see Fig 5). The presence of at least two PP1-binding sites

15

may explain why the M_{110} subunit and PP1c interact at picomolar concentrations. The ankyrin repeat domain might suppress the dephosphorylation of some substrates (such as glycogen phosphorylase) by a steric mechanism, preventing them from gaining easy access to the catalytic centre. This scenario could explain why the dephosphorylation of glycogen synthase is greatly enhanced by M_{110} -(M1-F38) yet suppressed by M_{110} -(M1-E309) (Fig 6).

 $G_{M^-}(G63-T93)$ abolished the distinctive properties of PP1_M (Fig 7A), prevented $M_{110^-}(M1-F38)$ or $M_{110^-}(M1-E309)$ from modulating the substrate specificity of PP1c (Fig 8) and displaced the M_{110} subunit from PP1_M (Fig 7B). In addition, the peptide $M_{110^-}(M1-F38)$, was capable of displacing G_L from PP1_{GL}. These findings indicate that the binding site(s) on PP1c for G_M and the M_{110} subunit are likely to overlap, explaining why different forms of PP1 contain a single PP1-targeting subunit. The three-dimensional structure of PP1c isoforms have recently been solved to high resolution [29,30], and PP1c crystallises in different forms in the presence of $G_{M^-}(G63-N75)$ or $G_{M^-}(G63-K80)$ or $M_{110^-}(M1-F38)$ than in the absence of these peptides.

Consistent with the results presented here, Gailly et al [31] have recently shown that M₁₁₀-(M1-F38) or M₁₁₀(M1-E309) enhance the ability of PP1c to stimulate the relaxation of microcystin-contracted permeabilised portal vein, while G_M-(G63-T93) inhibits the ability of PP1_M to induce the relaxation of this smooth muscle. G_M-(G63-T93) also slowed the relaxation of permeabilised femoral artery, indicating that it competes with the endogenous M₁₁₀ subunit for PP1c [31]. Thus the PP1c-binding peptides described constitute useful pharmacological agents with which to explore the role and regulate the activity of PP1 in cell regulation.

10

15

20

25

Example 2: Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1

MATERIALS AND METHODS

Crystallisation and Data Collection

The catalytic subunit of PP1 1 was overproduced in Escherischia coli and purified as described previously (Alessi et al., 1993; Barford and Keller, 1994). The $G_M[G63-N75]$ peptide, variants of this peptide in which Val 66' or Phe 68' were changed to Phe, and the peptides $M_{110}[1-38]$ and $M_{110}[1-35]$ were synthesised on an Applied Biosystems 430A peptide synthesiser and purified by chromatography on a C18 column (Johnson et al., 1996) by Mr F.B. Caudwell at Dundee. A three-fold molar excess of G_M[G63-N75] was added to the protein solution (8 mg/ml), which had been previously dialysed against 10 mM Tris-HC1 (pH 7.8), 0.3 M NaCl, 0.4 mM MnCl, and 2 mM DTT. The complex was crystallised at 20°C using the hanging drop vapour diffusion method, by mixing 2 ml of the protein-peptide solution and 2 ml of the precipitant solution containing 2.0 M ammonium sulphate, 2% (w/v) polyethylene glycol 400,100 mM HEPES (pH 7.5) and 2 mM DTT. These conditions are very much in contrast to the relatively low ionic strength conditions from which the monoclinic PP1c crystals grew (Barford and Keller, 1994; Egloff et al., 1995). Crystals appeared after 3 months as a cluster. Individual crystals removed from the cluster had dimensions of $\sim 25 \mu m \times 25$ μ m x 5 μ m. Crystals were frozen in a 100 K nitrogen gas stream and stored. Prior to freezing, crystals were incubated in a cryoprotectant solution consisting of an equilibration buffer; 2.0 M ammonium sulphate, 2% (w/v) PEG 400, 100 mM HEPES (pH 7.5) with increasing amounts of glycerol in steps of 7%, 15%, 22% and 30% (v/v).

A partial data set to 3.0 Å was collected on Beam Line PX 9.6, SRS,

10

15

Daresbury, using a 30 cm diameter Mar Research image plate system. Data were processed and scaled using DENZO and SCALEPACK (Otwinowski, 1993). The crystal system is tetragonal with point group symmetry P422 and unit cell dimensions a = b = 62.50 Å, c = 361.30 Å. Systematic absences indicate a 21 screw axis along b. The Matthews coefficient was 2.38 Å₃ per Dalton, assuming 2 molecules per asymmetric unit. A second data-set was collected on BL4 at the ESRF, Grenoble. Substantial radiation damage was observed during data collection requiring that three crystals were used in total. Data collected from four crystal at Daresbury and the ESRF were merged together in SCALEPACK. Details of the data collection and processing statistics are given in Table 1.

Structure determination

The structure of the PP1- $G_M[63-75]$ complex was solved by molecular replacement using as a model the protein atoms coordinates of the 2.5Å refined structure of the catalytic subunit of PP1 γ 1 determined by MAD methods (Egloff *et al.*, 1995). Rotation and translation functions searches were performed with AMORE (Navaza, 1992). Using data between 8 and 3 Å resolution, the peak in the rotation search was 6.7 standard deviations (SD) above the mean. The translation search was best performed using data between 8 and 3.5 Å, giving a maximal peak at 13.8 SD above the mean for the space group P41212. After the first rigid body refinement performed in AMORE, the R-factor was 0.494 and the correlation factor 0.30.

25

30

20

Crystallographic Refinement

The solution from molecular replacement was optimized by 20 cycles of rigid body refinement performed with X-PLOR version 3.1 (Brunger, 1992), using data between 8.0 Å and 3.0 Å resolution. After a round of conjugate gradient

15

20

25

positional refinement and simulated annealing molecular dynamics to 2000 K, followed by 25 cycles of grouped B-factor refinement (2 B-factor groups for each residue), the R factor (respectively free-R) was 0.295 (0.367). Fourier difference maps (Fo-Fc) and (3Fo-2Fc) revealed the presence of three strong peaks at (over three-times the sigma level of the map) at the catalytic site of PP1c. From the previously refined PP1c-structure, we identified two as manganese and iron ions. The third one, occupying the position of the tungstate ion in the PP1c-WO4 complex, was identified as sulphate. The initial difference Fourier maps also revealed strong electron density near the N-terminus of β 14. The maps were improved by applying non-crystallographic symmetry 2-fold averaging using PHASES (Furey and Swaminathan, 1990). As shown in Fig. 1A, residues Val 66', Ser 67' and Phe 68' of the $G_M[63-75]$ peptide were identified in the averaged map. These 3 residues, as well as the 2 metal and sulphate ions were built in each molecule, using the program TURBO-FRODO (Roussel and Cambillau, 1992). Refinement of this structure was performed by repeated rounds of manual rebuilding followed by conjugate gradient positional refinement and grouped B-factor refinement using X-PLOR. The final model contains protein residues Lys 6 to Ala 299 and peptide residues Arg 65' to Ala 69' in molecule 1, and protein residues Asn 8 to Lys 297 and peptide residues Gly 63' to Ala 69' in molecule 2. A few well defined water molecules were also observed in both initial (3Fo-2Fc) and (Fo-Fc) electron density maps. Eventually, 14 water molecules that were above 3 sigma in the (Fo-Fc) difference map, within hydrogen bond of the PP1-peptide complex or another solvent molecule and present in both molecules, were included in the model. The crystallographic and refinement data are summarized in Table 1. Representative electron density from the peptide before and after refinement is shown in Figure 10A and 10B, respectively. Solvent accessible surface areas were calculated using the method of Lee and Richards (1974).

Purification and assay of PP1.

PP1c was isolated from the rabbit skeletal muscle PP1-G_M complex as described previously (Johnson *et al*, 1996). Glycogen particles isolated from rat liver (Schelling *et al*, 1988) served as the source of PP1-G_L. The dephosphorylation of glycogen phosphorylase (10 μM) and the isolated MLC₂₀ of smooth muscle myosin (l μM) by PP1c was carried out as described previously (Cohen *et al.*, 1988; Alessi *et al.*, 1992).

10 Table 1. Crystallographic data and refinement statistics

Crystallographic data:	
Space group	P4 ₁ 2 ₁ 2
Unit cell parameters (Å)	a = b = 62.50; c = 361.30
Number of molecules per asymmetric unit	2
Temperature (K)	100
Total measured reflections	290671
Number of unique reflections	15509
Mean I/s(I)	7.5
Completeness (%)	87
Overall R-merge (%)	14.7
Refinement statistics:	
Number of reflections used for refinement	13078
Resolution range (Å)	8.0-3.0
R-work	0.223
R-free	0.308
Number of residues	protein peptide

15

20

Molecule 1	294 (Lys 6 to 6 (ARVSFA) (SEQ ID No 21) Ala 299) 6 (RRVSFA) SEQ ID No 3)
Molecule 2	290 (Asn 8 to Lys 297)
R.m.s.d. from ideal bond lengths (Å)	0.012
R.m.s.d. from ideal angles (°)	1.863
Number of water molecules	
Molecule 1	7
Molecule 2	7

10 Table 2. PP1-peptide polar interactions

	Peptide atom	Protein atom	Water molecule	Distance (Å)
Molecule 1	Arg 65' O	-	7W	3.2
	Val 66' N	Asp 242OD2 (**)		3.0
	Ser 67' N	Leu 289 O		3.3
	Ser 67' OG		7W	2.7
	Ser 67' O	Cys 291 N (*)		3.2
	Ala 69' N	Cys 291 O (*)		2.8
Molecule 2	Arg 64' NH1	Glu 287 O		2.6
		(**)		
	Arg 65' O		7W	2.8
	Val 66' N	Asp 242 OD2 (**)		3.2
	Ser 67' N	Leu 289 O (*)		3.1
	Ser 67' OG		7W	2.6
	Ser 67'	Cys 291 N (*)		3.0

10

20

25

	Ala 69' N	Cys 291 O (*)	3.3
Table 2.	PP1-peptide hy	drophobic interactions	
	Peptide residues	Protein residues	
	Val 66'	Ile 169 (*), Leu 243 (*), D242 (**), Leu 289 (*), Cys 291 (*)	
	Phe 68'	Phe 257 (*), Cys 291 (*), Phe 293 (*)	
	Ala 69'	Met290 (**)	

The star (*) indicates residues absolutely conserved in all protein phosphatase 1 sequences available so far, the double start (**) the residues mostly conserved (from sequence alignment from Barton et al, 1994).

RESULTS AND DISCUSSION

Structure Determination.

Crystallographic data to 3.0 Å were measured at the ESRF beam-line BLA at Grenoble and at PX9.6, Daresbury (Table 1). The relatively high merging R-factors and low I/(I values of the crystallographic data results from the weak diffraction observed from the PP1- $G_M[63-73]$ crystals. This is attributable to both the small crystal size ($\sim 25~\mu m$ by $25~\mu m$ by $5~\mu m$) and long c-axis of the unit cell. In addition, the high x-ray photon dose required to obtain usable diffraction images resulted in x-ray radiation damage to the crystals, despite being maintained at a temperature of 100 K during the course of the experiment. The structure was solve by the molecular replacement method using as a search model the 2.5 Å refined coordinates of PP1c (Egloff et al., 1995). Phases obtained from a single cycle of simulated annealing refinement

20

25

30

of the protein coordinates alone using X-PLOR Brunger, 1992), and improved by 2-fold non-crystallographic symmetry averaging and solvent flattening, were used to calculate an electron density map. This map revealed clear density corresponding to residues Val 66', Ser 67' and Phe 68' (where 'denotes residues of the peptide) of the G_M peptide and provided a starting point for further refinement of the PP1- G_M peptide complex (Fig. 10A). The final model of the complex was refined at 3.0 Å resolution with a crystallographic R-factor of 0.22 and R-free of 0.31 (Fig. 10B). The two molecules of PP1c within the asymmetric unit are similar with a root mean square deviation between main chain atoms of 0.6 Å. Residues 6 to 299 and 8 to 297 from molecules 1 and 2 respectively, are visible in the electron density map. Similar to the structures of native $PP_{\gamma 1}$ (Egloff et al., 1995) and $PP1\alpha$ in complex with microcystin LR (Goldberg et al., 1995), residues C-terminal to 299 are disordered.

15 Overall Structure of PP1

The conformation of PP1c in the PP1- G_M complex is virtually identical to that of native PP1c in complex with tungstate (Egloff et al., 1995) with a root mean square deviation between equivalent main-chain atoms of 1.0 Å. PP1c is folded into a single elliptical domain consisting of a central β -sandwich of two mixed β -sheets surrounded on one side by 7α -helices and on the other by a sub-domain consisting of 3α -helices and a 3 stranded mixed α -sheet (Fig. 2A, B). The interface of the three β -sheets at the top of the β -sandwich creates a shallow catalytic site channel. Three loops connecting β -strands with α -helices within a β - α - β - α - β motif in sheet 1 (strand order β 4- β 3- β 2- β 13- β 14) together with loops emanating from the opposite β -sheet (sheet 2; strand order, β 1- β 5- β 6- β 10- β 12- β 11) provide the catalytic site residues. The catalytic site of PP1 contains a binuclear metal site consisting of Mn²⁺ and Fe²⁺ (Egloff et al., 1995) and, in the PP1- G_M complex, oxygen atoms of a sulphate ion of crystallisation coordinate both metal ions, similar to that seen in the PP1-tungstate (Egloff et al., 1995) and PP2B-phosphate complexes (Griffith et

15

20

30

al, 1995).

$PP1c-G_{M}[63-75]$ Peptide Interactions

Six residues of the $G_M[63-75]$ peptide (Arg 64' to Ala 69') are clearly visible in the electron density map of the complex of molecule 2, the remaining residues are not visible and assumed to be disordered (Fig. 10B). Density is not visible for Arg 64' of the peptide bound to molecule 1, otherwise equivalent residues of the peptide are similar within the two complexes. The six residues (RRVSFA) (SEQ ID No 3) of the $G_M[63-75]$ peptide in complex 2 adopt an extended conformation and bind to a hydrophobic channel on the protein surface with dimensions 25 Å by 10 Å that is formed at the interface of the two β -sheets of the β -sandwich opposite to the catalytic site channel and therefore remote from the catalytic site (Fig. 11A). The residues that form this channel occur on three regions of PP1c, namely (i) the N-terminus of 5 and $\beta 5/\beta 6$ loop of sheet 2; (ii) the three edge β -strands of sheet 2: β 10, β 12, β 11 and (iii) β 13, the $\beta 13/\beta 14$ loop and $\beta 14$ of the edge of sheet 1 (Fig. 11A). The total solvent accessible surface area buried on formation of the complex is 980 A2. Three residues of the peptide (Ser 67' to Ala 69') form a β -strand which is incorporated into β -sheet 1 of PP1c as a sixth β -strand parallel to the N-terminus of the edge β -strand, β 14 (residues Leu 289 to Leu 296) (Fig. Main-chain atoms of Ser 67' and Ala 69' form H-bonds to the main-chain atoms of residues of β 14. In addition, the main-chain nitrogen of Val 66' forms a H-bond with the side-chain of Asp 242. interactions include the guanidinium group of Arg 64' with the mainchain carbonyl of Glu 287 and a salt bridge to Asp 166. Both Asp 166 and Asp 242 A water molecule bridges the are invariant in mammalian PP1 genes. main-chain carbonyl of Arg 65' and side-chain hydroxyl of Ser 67' with the main-chain carbonyl of Thr 288 of PP1c (Fig. 11C). A notable feature of the peptide binding site is the presence of a negatively charged region created by seven acidic residues (with one Lys residue) surrounding the hydrophobic channel at the N-terminus of the peptide in the vicinity of Arg 64' and Arg 65' that includes Asp 166 and Asp 242 (Fig. 11D). This would suggest a favourable electrostatic environment for the side chains of Arg 64' and Arg 65'.

5

15

20

The predominant interactions between the peptide and PP1c involve hydrophobic contacts between the side chains of Val 66' and Phe 68' and solvent exposed, invariant, hydrophobic residues of PP1c that form the hydrophobic channel (Fig. 11C, E). In particular, the binding site for the side chain of Val 66' is formed from the side chains of Ile 169, Leu 243, Leu 289 and Cys 291, whereas that for the side chain of Phe 68' is formed from the side chains of Phe 257, Cys 291 and Phe 293. Details of peptide-PP1c contacts are given in Table 2. The structure of the $G_M[63-75]$ peptide binding site is likely to be conserved in other forms of PP1 from diverse species. Each hydrophobic residue of PP1c that interacts with the Val 66' and Phe 68' residues of the $G_M[63-75]$ peptide are invariant and the acidic residues that surround the N-terminus of the peptide binding site are highly conserved amongst all isoforms of PP1 from species as diverse as yeast, Drosophila, mammals and higher plants (Barton et al., 1994). However, since these residues are not conserved within the PP2A and PP2B sequences, these proteins will not recognise PP1-regulatory subunits.

Presence of an (R/K) (V/I) x F Motif in other PP1c Regulatory Proteins

Over a dozen regulatory subunits of PP1c are now known which appear to bind

to PP1c in a mutually exclusive manner that suggests either an overlapping

binding site or sites. Sequence comparisons of these subunits reveals little

similarity except for the motif (R/K) (V/I) x F, that is not only present in

G_M[63-75] but also in G_M, G_L, M₁₁₀, NIPP-1, p53BP2, and an RNA splicing

factor (Fig. 12A). Moreover, a 38 residue peptide from the 110kDa M₁₁₀

subunit that binds to PP1c contain this motif (Johnson et al, 1996), as do

15

20

25

30

fragments of NIPP-1 (Beullens et al., 1992; Van Eynde et al., 1995), an RNA splicing factor (Hirano et al., 1996) and p53BP2 (Helps et al., 1995). A 32 residue peptide from p53BP2, which contains this motif, disrupted the interaction of the M_{110} subunit with PP1c, as shown by a decrease in the rate of dephosphorylation of the MLC₂₀ subunit of smooth muscle myosin and by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13A). This peptide also disrupted the interaction of the G_L subunit with PP1c, as shown by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13B). Peptides comprising the motif (R/K) (V/I) x F are thus encompassed within the scope of the invention.

In further support of the notion of a common PP1c recognition motif present within PP1-binding proteins, previous studies had revealed that the sequence KIOF (SEQ ID No 22) (similar to the R/KVxF motif) at the N-terminus of inhibitor 1 and its homologue DARPP-32 (Fig. 12A) is necessary for mediating the inhibitory effects of these proteins. Loss of Ile 10 of the KIQF (SEQ ID No 22) motif of inhibitor 1 disrupts the inhibitory effects on PP1c by phospho-inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and the binding of either dephospho-inhibitor-1 or phospho-inhibitor-1 to PP1c (Endo et al., 1996). A similar result was found on disrupting the equivalent residue (Ile 9) of DARPP-32 (Hemmings et al., 1990; Desdouits et al., 1995). These results were interpreted to indicate that inhibitor-1 and DARPP-32 bind to PP1 through two low affinity binding sites, one that encompasses the sequence KIOF (SEO ID No 22) and another which includes the phosphorylated Thr residue (35 in I-1, 34 in DARPP-32) and which presumably binds at the catalytic site. Analysis of the PP1- $G_M[63-75]$ complex structure suggests that an isoleucine residue could be readily accommodated within the peptide binding site in place of Val 66' such that the additional methyl group on Ile compared to Val would contribute to favourable van der Waals interactions between the peptide and Leu 243 and Cys 291 of PP1. More bulky hydrophobic residues

15

20

25

30

such as Leu, Met and Phe cannot be accommodated, however. It is interesting to note that as well as the (R/K) (V/I) x F motif shared by PP1-regulatory subunits, the four residues N-terminal to this motif contain an abundance of basic residues. These residues may provide further favourable interactions with the negative electrostatic surface potential at the N-terminus of the $G_M(63-75)$ peptide binding site of PP1c (Fig. 11D).

Mutagenesis of the R/K) (V/I) x F motif

The structural studies presented here suggest a dominant role for Val 66' and Phe 68' in stabilising the interaction between $G_M[63-75]$ and PP1c and this notion is further reinforced by the finding that other PP1-regulatory subunit sequences contain an (R/K)(V/I) x F motif yet share little overall sequence similarity. To test the hypothesis that Val 66' and Phe 68' are required for the interaction of $G_M[63-75]$ with PP1c and also that the KVKF (SEQ ID No 5) sequence present within the $M_{110}[M1-F38)$ peptide is important in mediating its interaction with PP1c, we synthesised variations of the G_M and M_{110} peptides where the R/KVxF motif was disrupted. The two variants of the G_M peptide were Val 66' and Phe 68' to Ala substitutions. In order to disrupt the (R/K)(V/I) x F present within the M_{110} peptide, a peptide corresponding to residues Met 1 to Lys 35 was synthesised which no longer contains the sequence VKF of the VxF motif, which is present at residues 36-38.

The results for the $M_{110}[1-38]$ and $M_{110}[1-35]$ peptides (Figs. 14, 15) are unequivocal. Whereas $M_{110}[1-38]$ stimulates the myosin light chain phosphatase activity of PP1c with a half-maximal effect at 10 nM reaching maximal (3-fold) activation at a peptide concentration of 1 μ M as reported previously (Johnson et al, 1996), the $M_{110}[1-35]$ peptide was at least 104-fold less effective at activating PP1c (Fig. 14). Unlike $M_{110}[1-38]$, the $M_{110}[1-35]$ peptide was also unable to activate the phosphorylase phosphatase activity of liver PP1- G_L . This latter result suggests two conclusions. Firstly, that although $M_{110}[1-38]$ is able

10

15

20

to bind to PP1c and disrupt the interactions between PP1c and the G_L -subunit, hence reversing the inhibitory effects of G_L on the ability of PP1c to dephosphorylate phosphorylase, loss of the VKF sequence in the $M_{110}[1-38]$ peptide abolishes the ability of the peptide to disrupt this interaction. Secondly, the recognition site on PP1c for the VKF sequence of the $M_{110}[1-38]$ peptide must overlap with the binding site for the G_L subunit, suggesting that the VKF sequence binds to the same site as the VSF sequence of G_L that is identical with that present in the $G_M[63-75]$ peptide. Similar conclusions may be reached from the results obtained from disrupting the VxF motif within the $G_M[63-75]$ peptide (Fig. 16B). Substitution of Phe 68' for Ala abolishes completely the ability of $G_M[63-75]$ to disrupt the PP1- G_L complex, whereas replacement of Val 66' with Ala reduced the effectiveness of the disruption 100-fold.

Thus preferred peptides may comprise analogues of G_M with substitutions at Val 66' and Phe 68' to some other amino acid such as Ala, so that binding of the PP1c to G_M does not occur and the PP1c is not suitably directed or controlled. Alternatively, suitable peptides could comprise peptides suitable to compete for the binding site(s) of Val 66' and Phe 68' on PP1c. Such peptides can be added in sufficient quantities to compete for the Phe 68' and Val 66' binding site(s) on the PP1c, thereby disrupting the interaction of PP1c and natural G_M . Such peptides could comprise structural analogues of G_M with Phe 68' and Val 66' in the same positions as G_M . Alternatively, other amino acids capable of mimicking the binding of Phe 68' and Val 66' could be used in these locations.

25

30

Regulation of the PP1- G_M Complex by Phosphorylation of Ser 67'

Phosphorylation of Ser 67', corresponding to x of the VxF motif, by PKA promotes dissociation of both G_M and G_M [63-75] from PP1c. In vivo, this provides a mechanism of inhibiting PP1c during stimulation of skeletal muscle

• • • • •

by adrenalin (Dent et al., 1990). The sequence of G_M surrounding Ser 67' (RRVSFA) (SEQ ID No 3) conforms to a consensus PKA recognition sequence. Interestingly, the conformation of the peptide is similar to that of residues 18 to 23 corresponding to the pseudo-substrate sequence of PKI bound to the catalytic site of PKA (Knighton et al., 1990). Although the side chain of Ser 67' is exposed within the PP1c-peptide complex, overall the G_M peptide is buried, and it is unlikely that Ser 67' would be a substrate for PKA when the peptide is bound to PP1c. This would suggest that PKA phosphorylates Ser 67' when G_M is not associated with PP1c and that this phosphorylation prevents the re-association of PP1c with G_M. Since phosphorylation of Ser 67' promotes the dissociation of the PP1-G_M complex both in vivo and in vitro, it is most likely that PKA phosphorylates Ser 67' of G_M by competing with PP1c for the RRVSFA (SEQ ID No 3) sequence. This is consistent with a notion that the PP1-G_M complex exists in dynamic equilibrium with free PP1c and G_M subunits and that phosphorylation occurs on the regulatory subunit during transient dissociation from PP1c. In the PP1c-peptide complex, thè side-chain of Ser 67' adopts the most favourable rotamer conformation. Analysis of the PP1c peptide complex structure suggests that incorporation of a phosphate group onto the side chain of Ser 67' with the same side-chain rotomer conformation would cause steric hindrance between the peptide and Met 290 of PP1 and also introduce a phosphate group into a region of negative charge at the PP1c surface (Fig. 11C, D). This may explain how phosphorylation of Ser 67' prevents peptide association with PP1c, although it should be noted that rotation of the side-chain of Ser 67' would relieve this steric clash.

25

30

20

10

15

A similar mechanism of control may also operate for other PP1-regulatory subunits. For example, NIPP-1 a nuclear inhibitor of PP1, inhibits PP1 with an inhibitory constant of 1 pM (Beullens et al., 1992). Phosphorylation of NIPP-1 by PKA and/or casein kinase 2 in vitro abolishes this inhibition (Beullens et al., 1993; Van Eynde et al., 1994). Although the sites of

phosphorylation on NIPP-1 that mediate these effects are not yet fully characterised it is known that these sites occur within the central ~120 residues of NIPP-1 that incorporates the (R/K)(V/I) x F motif (Van Eynde et al., 1995). Interestingly, a consensus phosphorylation site for PKA (RKNS) (SEQ ID No 23) occurs immediately N-terminal to this motif whereas one casein kinase 2 consensus phosphorylation site occurs between the Val and Phe of the motif and another occurs immediately C-terminal to the Phe residue (TFSEDDE) (SEQ ID No 24) (Van Eynde et al., 1995) (Fig. 12A). It is possible that PKA, casein kinase II or other kinases with similar specificity, release PP1c from inhibition by NIPP-1 by phosphorylating NIPP-1 at sites that block its interaction with the (R/K)(V/I) x F motif recognition site on PP1c.

Model of the PPIc-Phospho-Inhibitor 1 Complex

Our model for the interaction of a (R/K)(V/I) x F motif with PP1c, together 15 with previous kinetic data suggesting that the sequence KIQF (SEQ ID No 22) of inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and DARPP-32 (Hemmings et al., 1990; Desdouits et al, 1995) interacts with PP1c, allowed us to construct a plausible model of a complex of PP1c with phospho-inhibitor 1. The major assumptions of this model were (1) the KIQF (SEQ ID No 22) 20 sequence of inhibitor-1 binds to the same site as RVSF (SEQ ID No 25) of the G_w[63-75] sequence and (2) that the phosphothreonine residue 35 of phospho-inhibitor 1 binds at the phosphate binding site of the PP1c-catalytic site. Secondary structure predictions of inhibitor 1 (Rost and Sander, 1993; Rost, 1996) suggested that residues 9 to 14 and 23 to 31 adopt β -strand and 25 α -helical conformations, respectively. The prediction of the sequence KIQF (SEO ID No 22) as a β -strand is consistent with our assumption that this region of inhibitor-1 adopts the same conformation as RVSF (SEQ ID No 25) of the G_M peptide when bound to the VxF recognition site of PP1c. We have positioned the residues RRPpTP (SEQ ID No 26) encompassing the pThr 35 30

15

20

25

30

site within the catalytic site channel in an extended conformation, with the phosphate group of the pThr 35 occupying the phosphate binding site of the catalytic site and the Oy-atom of Thr 35 equivalent to the solvent exposed oxygen of a dianion that forms a H-bond to the side-chain of the putative general acid His 125 (Egloff et al., 1995; Griffith et al., 1995). The four consecutive Arg residues N-terminal to pThr 35 interact with Asp and Glu residues within an acidic groove of PP1c formed from the $\beta7/\beta8$ loop on one side and the $\beta 10/\beta 11$ loop and $\beta 11$ strand on the other, similar to that proposed by Goldberg et al., (1995) for their model of DARPP-32 bound to PP1c. We propose that residues 20 to 30 of inhibitor-1 form an amphipathic helix which folds around the edge of the β -sandwich of PP1c. The N-terminus of this helix is disrupted by prolines at residues 19 and 23. Pro 19 and Pro 15 are probably responsible for introducing turns into the polypeptide chain that allows the β -strand encompassing the KIQF (SEQ ID No 22) sequence (residues 9 to 14) to connect with the α helix. The model of the phospho-inhibitor 1-PP1c complex is shown in Fig. 16.

Prediction of PP1 Recognition Motifs in Yeast PP1-Binding Proteins

The residues in mammalian PP1c that interact with the sequence RRVSFA (SEQ ID No 3) are conserved in S. cerevisiae PP1 suggesting that the proteins in S. cerevisiae known to interact with PP1 (reviewed by Stark, 1996) probably bind to a similar hydrophobic groove on the surface of the enzyme. Examination of their amino acid sequences revealed that a number of PP1-binding proteins in S. cerevisiae contained putative PP1-binding motifs that were similar to those present in mammalian PP1-binding proteins (Fig. 12A, B). The S. cerevisiae PP1-binding proteins not only contain a V/I x F motif, but also a basic residue equivalent to Arg 64' of G_MV the residue that contacts Asp 166, Leu 289 and the main-chain carbonyl of Glu 287 of PP1c. Several of the S. cerevisiae proteins also contain a further basic residue (His or Lys) at the position equivalent to Arg 65' of G_M . Another striking feature of the

putative PP1-binding sequences in S. cerevisiae is the presence of a basic amino acid between the Val/Ile and Phe residues, as is also found in two mammalian PP1-regulatory subunits, the M_{110} subunit and the p53BP2 (Fig. 12A).

5

10

15

20

25

30

The S. cerevisiae proteins GAC1 and PIG2 show some homology to residues 140-230 of mammalian G_MV and there is genetic and biochemical evidence that they may function to regulate glycogen metabolism in budding yeast (Francois et al., 1992). GIP2 also shares sequence similarity with residues 140-230 of mammalian G_M, while YIL045W is an open reading frame in the S. cerevisiae genome whose predicted amino acid sequence shows 41% sequence identity to GIP2. YIL045W contains two putative PP1-binding motifs and site directed mutagenesis will be needed to establish which (if either) of these sequences binds to PP1c. REG1 and REG2 are PP1-binding proteins that play a role in cell growth and, in the case of REG1, glucose repression (Tu and Carlson, 1995; Tu et al., 1996; Frederick and Tatchell, 1996). GIP1, which also contains two putative PP1-binding motifs, is expressed specifically during meiosis, affects the transcription of late meiotic genes and is essential for sporulation (Tu and Carlson, 1996). SCD5 is a PP1-interacting protein (Tu et al., 1996) that was first isolated as a multicopy suppressor of the inviability of clathrin heavy chain-deficient yeast (Nelson et al., 1996).

The findings herein demonstrate that the short peptide sequence, the (R/K)(V/I)XF motif, is critical for PP1c to interact with its regulatory subunits. PP1c (when complexed to its targeting subunits) plays key roles in the control of many cellular processed and it is reasonable to predict that over 100 pp1-binding proteins may exist in mammalian cells. Protein sequence data-base searching has revealed that the (R/K)(V/I)XF motifs are found in 10% of proteins. Thus if ~100 PP1-binding proteins occur in mammalian cells, only 1% of proteins with the (R/K)(V/I)XF motif will be PP1-binding proteins. The

10

15

reasons why only a few proteins with the (R/K)(V/I)XF motif bind to PP1 are numerous. For example, not every residue may be tolerated at position X or immediately N-terminal or C-terminal to this motif. This study has shown that phosphoserine is not tolerated at position X and it is therefore likely that Asp or Glu will not be tolerated either. The structure of the PP1- G_M [63-75] complex suggests that large hydrophobic residues will also be excluded from position X. Moreover, the Val (or Ile) and Phe residues in many (R/K)(V/I)XF motifs will be buried in the hydrophobic core of the protein and hence be unable to interact with PP1, since this motif is predicted to form an amphipathic β -strand conformation. Thirdly, many of the (R/K)(V/I)XF motifs will be in extracellular proteins or extracelluar domains of transmembrane proteins and hence be unable to bind to PP1. Particular feature so the tertiary structure of PP1-binding proteins may allow exposure of this motif on the surface to allow interaction with PP1. Finally, there is evidence that a second PP1-binding site exists on the G_M and M₁₁₀ subunits (Johnson et al., 1996) and the high affinity interaction of PP1c with protein inhibitor-1 is generated by the binding of PP1c to two low affinity sites (Desdouits et al., 1995), one of which is the KIQF sequence belonging to the (R/K)(V/I)XF motif.

The question of how regulatory subunits modulate the substrate specificity of PP1c requires the co-crystallisation of PP1c with a diverse array of regulatory subunits and substrates and is beyond the scope of this paper. However, two models to account for this property of regulatory subunits are that these subunits either alter the conformation of PP1c or simply target PP1 to its substrates. Both mechanisms may operate *in vivo* depending on the regulatory subunits and substrates. For example, evidence for the former model has recently been reported for the enhancement of myosin dephosphorylation by a complex of PP1c and the M₁₁₀ subunit (Johnson *et al.*, 1996, 1997), whereas the enhancement of the dephosphorylation of glycogen phosphorylase and glycogen synthase by the PP1-G_M complex is more consistent with the second

10

15

20

25

30

model (Hubbard and Cohen, 1989).

The identification of the (R/K)(V/I)XF motif also suggests a new approach for determining the physiological roles of PP1-targeting subunits whose functions are unknown. Thus mutation of the (R/K)(I/V)XF motif should disrupt the interaction of many targeting subunits with PP1c without affecting their binding to the target locus. Expression of these mutated proteins under an inducible promoter should lead to displacement of the normal targeting subunit (complexed to PP1c) from its target locus, without disrupting the functions of any other PP1c-targeting subunit complex. Finally, the structural information described here will also facilitate the rational design of drugs that act by disrupting PP1-targeting subunit interactions.

Example 3: Identification of the regions on the M_{110} subunit of protein phosphatase 1M that interact with the M_{21} subunit and with myosin

Abbreviations:- PP1_M, myofibril-associated form of protein phosphatase 1; PP1c, catalytic subunit of protein phosphatase-1; M₁₁₀ and M₂₁, 110 kDa and 21 kDa regulatory subunits of PP1_M; MBP, maltose-binding protein; GST, glutathione-S-transferase.

SUMMARY

We have previously isolated a form of protein phosphatase-1 (PP1_M) from avian smooth muscle myofibrils which is composed of the catalytic subunit of PP1 (PP1c) bound to an M-complex consisting of 110 kDa (M₁₁₀) and 21 kDa (M₂₁) subunits. The interaction of PP1c with an N-terminal region of the M₁₁₀ subunit enhances the dephosphorylation of myosin and suppresses the dephosphorylation of other substrates [Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem 210, 1023-1035;

15

20

Chen, Y.H., Chen, M.X., Alessi, D.R., Campbell, D.G., Shanahan, C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56; Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325]. In this Example we establish that PP1_M accounts for nearly all the myosin phosphatase activity in myofibrils, that the M_{110} and M_{21} subunits are present at similar concentrations in the myofibrillar fraction and that these subunits are entirely bound to PP1. We demonstrate that the M21 subunit does not interact with PP1c, but with the C-terminal 72 residues of the M₁₁₀ subunit, a region which is 43% identical to residues 87-161 of the M_{21} subunit. A fragment of the M_{21} subunit, M_{21} -(M1-L146), lacking the C-terminal leucine zipper, also bound to the M_{110} subunit, but two other fragments M_{21} -(M1-E110) and M_{21} -(E110-K186) did not. The M_{110} and M_{21} subunits were both found to be myosin-binding proteins. C-terminal 291 residues of the M₁₁₀ subunit, but not the C-terminal 72 residues, bound to myosin, but the N-terminal fragments M_{110} -(M1-E309) and M_{110} -(M1-S477) did not. Thus the region of the M_{110} subunit which stimulates the dephosphorylation of myosin by PP1c is distinct from the region which targets PP1_M to myosin. Remarkably, each myosin dimer was capable of binding about 20 moles of M_{21} subunit and many of the M_{21} -binding sites were located in the myosin "rod domain". The potential significance of this observation is discussed.

Introduction

25 Protein phosphatase-1 (PP1), one of the major serine/threonine-specific protein phosphatases in eukaryotic cells, is regulated by targetting subunits that direct it to particular subcellular loci, modify its substrate specificity and confer the ability to be regulated by extracellular signals (reviewed in [1, 2]). A significant proportion of the PP1 in vertebrate muscle extracts is associated with myofibrils and has enhanced activity towards the P-light chain of myosin and

10

15

20

reduced activity towards other substrates, such as glycogen phosphorylase [3, 4]. When isolated from avian (chicken gizzard) [4, 5] or mammalian (pig bladder) [6] smooth muscle, this form of PP1 (PP1_M) was found to be composed of three subunits, namely the catalytic subunit of PP1 (PP1c) and two other proteins with molecular masses of 110 kDa and 21 kDa, termed the M_{110} and M_{21} subunits, respectively [4, 5]. The M_{110} subunit is complexed to both PP1c and the M_{21} subunit [4], and is the component which modulates the substrate specificity of PP1c because selective removal of the M_{21} subunit from PP1_M does not affect the rate at which either myosin or glycogen phosphorylase are dephosphorylated [7].

The M_{110} subunit has been cloned from rat aorta [5], chicken gizzard [8] and rat kidney [9] cDNA libraries. The N-terminus of the M_{110} subunit contains seven ankyrin repeats (residues 39-296 of the rat aorta protein), while alternative splicing in rat uterus [5] gives rise to two different C-termini (Fig 17A), termed Rat1 and Rat2. The C-terminus of Rat1 is virtually identical to the C-terminus of the M_{110} subunit from chicken gizzard (Fig 17A). The sequence of the M_{21} subunit from chicken gizzard is structurally related to the C-terminal region of the M_{110} subunit, the most striking similarities occurring from residues 76-141 of the M_{21} subunit and residues 921-984 of the chicken gizzard M_{110} subunit (54% identity, Fig 17B). However, the C-terminal 53 residues of the M_{21} subunit from chicken gizzard are strikingly similar (83% identity) to the C-terminal 53 residues of the rat aorta sequence, both terminating in a leucine zipper (Fig 17B, [5]).

25

30

Residues 1-309 of the M_{110} subunit from rat aorta, M_{110} -(M1-E309), mimic the intact M_{110} subunit in stimulating the dephosphorylation of myosin and in suppressing the dephosphorylation of glycogen phosphorylase by PP1c, but a slightly shorter construct M_{110} -(D39-E309) (which still contains the seven ankyrin repeats) is unable to modulate the specificity of PP1c [7]. This

10

15

20

25

30

observation led to the finding that the N-terminal 38 residues, M_{110} -(M1-F38), bind to PP1c and enhance the dephosphorylation of myosin. However, M_{110} -(M1-F38) does not suppress the dephosphorylation of glycogen phosphorylase, suggesting that the ankyrin repeats either contain a second PP1c-binding site or prevent glycogen phosphorylase from binding to the active site of PP1c, perhaps by steric hindrance [7].

A 13 residue peptide $G_{M^-}(G63-N75)$ from the subunit (G_M) which targets PP1c to glycogen and the sarcoplasmic reticulum in striated muscle, has been co-crystallised with PP1c and the structure of the complex solved to 3\AA resolution [2]. These studies showed that a hexapeptide sequence in $G_{M^-}(G63-N75)$ (Arg-Arg-Val-Ser-Phe-Ala) (SEQ ID No 3) binds to a small hydrophobic groove on the surface of PP1c forming a β -sheet which runs parallel to another β -sheet in PP1c. Moreover, inspection of other mammalian PP1c-binding proteins reveals that almost all contain an Arg/Lys-Val/Ile-Xaa-Phe motif that is likely to be critical for interaction with PP1c [2]. For example, a Lys-Val-Lys-Phe (SEQ ID No 5) motif is present between residues 35 and 38 of the M_{110} subunit and the deletion of residues 36-38 from M_{110} -(M1-F38) prevents this peptide from stimulating the dephosphorylation of myosin, and from disrupting the interaction of PP1c with other targetting subunits [2].

The finding that a region near the N-terminus of the M_{110} subunit binds to PP1c and modulates its specificity raised the question of which region on the M_{110} subunit interacted with the M_{21} subunit, and how the PP1_M complex is targeted to the myofibrils. In this Example we identify regions near the C-terminus of the M_{110} subunit that interact with the M_{21} subunit and with myosin, and demonstrate that the M_{21} subunit is also a myosin-binding protein. These findings indicate that the domain of the M_{110} subunit which enhances the dephosphorylation of the myosin P-light chain is distinct from the region which targets PP1c to the contractile apparatus.

MATERIALS AND METHODS

Materials

20

25

- PP1_M [4] and the dephosphorylated form of myosin [10] were isolated from chicken gizzard, and the rod-domain and light meromyosin were obtained by subdigestion of chicken gizzard myosin with papain and chymotrypsin, respectively [11]. PP1_G was purified from rabbit skeletal muscle by Dr G. Moorhead in this laboratory [12] and PP1c dissociated from the glycogen-binding subunit by incubation for 2 h in 2 M LiBr and then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, UK) in the presence of LiBr (0.5 M). All other chemicals were from BDH Chemicals (Poole, UK) or Sigma (Poole, UK).
- 15 Construction of vectors for the expression of fragments of the M_{110} subunit from rat aorta (rat2 sequence in Fig 17A) as glutathione-S-transferase (GST) fusion proteins in E. coli.
 - A construct pGEX-M₁₁₀-(M1-E309) for the expression of GST-M₁₁₀-(M1-E309) from rat aorta was produced as described previously [7]. A construct for the expression of GST-M₁₁₀-(M1-S477) was prepared by subcloning a *Xhol-Hind*III fragment (encoding L24-S477) of pKS-M₁₁₀-(M1-S477) described in [5] into the same sites of pGEX-M₁₁₀-(M1-E309). The resulting construct expressed a GST-M₁₁₀-(M1-S477) fusion protein with the additional amino acids SAANSISSLIHRD* (SEQ ID No 27) after S477. An expression construct for GST-M₁₁₀-(M377-K976) was produced by deleting a *Ncol-Ncol* fragment of the construct pGEX-M₁₁₀-(L24-K976) [7].
- Construction of vectors for the expression of C-terminal fragments of the M_{110} subunit from chicken gizzard (Ch1 sequence in Fig 17A, [5]) as maltose binding

15

20

protein (MBP) fusion proteins in E. coli.

A pT7.7 vector for the expression of the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, pT7-M₁₁₀-(R714-I1004) was described previously [7]. A construct for the expression of MBP-M₁₁₀-(R714-I1004) was produced by cloning an *NdeI-Bam*HI fragment of pT7-M₁₁₀-(R714-I1004) into the pMAL-HA vector (New England Biolabs). Removal of a *HindIII-HindIII* restriction fragment from pMBP-M₁₁₀-(R714-I1004) allowed expression of MBP-M₁₁₀-(R714-L934) with the sequence GTGRRFTTS (SEQ ID No 28) added to its C-terminus. Removal of a *NdeI-HindIII* restriction fragment from pMBP-M₁₁₀-(R714-I1004), followed by filling in the overhanging ends and religating them, allowed expression of MBP-M₁₁₀-(K933-I1004).

Construction of vectors for the expression in E. coli. of the M_{21} subunit from chicken gizzard [5], with and without the C-terminal leucine zipper domain.

A pT7.7 vector for the expression of the entire coding region (M1-K186) of the M_{21} subunit was described previously [7]. The leucine zipper motif of the M_{21} subunit was deleted by removing a SacI-BamHI restriction fragment from pT7.7 M_{21} , filling in the overhanging ends and religating them. The construct expressed M_{21} -(M1-R144) with an extra I and L after residue 144. The M_{21} -(M1-R144) protein was insoluble when expressed and was purified as described for the expressed M_{21} subunit [7].

Construction of vectors for the expression of the M_{21} subunit from chicken gizzard [5] and fragments of the M_{21} subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

A construct expressing GST-M₂₁ was produced by inserting a *NdeI-HindIII* fragment of pT7.7 M₂₁ encoding M1-K186 into the same sites of the pGEX

vector modified to include an *NdeI* site. A construct expressing GST-M₂₁-(M1-E110) plus an additional Ala residue at the C-terminus was constructed by deleting a *XhoI-HindIII* fragment of pGEX-M₂₁, filling in the overhanging ends and religating them. In order to express GST-M₂₁-(E110-K186), a *NdeI-XhoI* restriction fragment of pGEX-M₂₁ was deleted and the overhanging ends filled in and religated.

Expression of proteins in E. coli.

This was carried out essentially as described in [7], except that, after freezing the cells at -80°C and thawing, the lysates were not treated with DNAase but sonicated for 4 min on ice (ensuring that the temperature remained below 4°C) until the suspension was no longer viscous. The soluble GST-fusion proteins and MBP-fusion proteins were purified from the supernatant by affinity chromatography on glutathione-Sepharose (Sigma) and amylose resin (New England Biolabs), respectively, according to the instructions of the manufacturers. After expression in *E. coli* M₁₁₀-(R714-I1004) was the major soluble protein and all experiments with this fragment were performed using the bacterial extracts.

20

25

30

10

15

The chicken gizzard M₂₁ subunit was isolated from *E. coli* extracts as described [7]. M₂₁ subunit lacking the leucine zipper domain, M₂₁-(M1-L146), like the M₂₁ subunit itself, was obtained in inclusion bodies and therefore recovered in the pellet obtained after centrifugation of the bacterial lysates for 30 min at 28 000 x g. The inclusion bodies were washed three times in 50 mM Tris/HCl pH 7.5, 0.1M NaCl, 10 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 1 mM benzamidine, 0.2 mM phenylmethylsulphonyl fluoride and 0.5% (by mass) Triton X-100, then resuspended in 50 mM Tris/HCl pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol. An aliquot (containing 3 mg protein) was made 0.5% (by vol) in trifluoroacetic

15

20

acid, sonicated, centrifuged for 2 min at 13,000 x g and the supernatant (containing the solubilised M_{21} subunit) loaded on to a Vydac C18 column (Separations Group, Hesperia, CA, USA) equilibrated in 0.1% (by vol) trifluoroacetic acid. The column was developed with a linear acetonitrile gradient at a flow rate of 1.0 ml/min with an increase in acetonitrile concentration of 1% per min. Homogeneous M_{21} subunit, which eluted at 42% acetonitrile, and M_{21} -(M1-L146) which eluted at 40% acetonitrile were dried in a vacuum concentrator redissolved in water, redried and then dissolved in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol.

Removal of GST and MBP tags from fusion proteins.

GST- M_{110} -(1-477) was cleaved with thrombin and the proteinase removed using benzamidine agarose [7]. GST- M_{21} -(E110-K186) (1mg/ml) was cleaved by incubation for 1 h at 30°C with 10 μ g/ml thrombin, while GST- M_{21} -(M1-E110) (1mg/ml) was cleaved by incubation for 3 h at 30°C with 1 μ g/ml thrombin, because it was more susceptible to degradation by thrombin. MBP- M_{110} (K933-I1004) (1 mg/ml) was cleaved by incubation for 8 h at 23°C with Factor Xa (10 μ g/ml). Other conditions and removal of Factor Xa were carried out as described for thrombin [7].

Preparation of phosphorylated myosin P-light chain and phosphatase assays.

32P-labelled myosin P-light chains containing 1.0 mol phosphate per mol subunit was prepared by phosphorylation with smooth muscle myosin light chain kinase [4]. The dephosphorylation of myosin P-light chain (1 μM) was carried out as in [4] and one unit of activity (U) was that amount which catalysed the release of 1 μmole of phosphate in one min. When assaying
 30 PP1_M in immunoprecipitates from the myofibrillar extracts, the tubes were

shaken continuously and 3 nM okadaic acid was included to inhibit any PP2A present.

Immunoprecipitation of PP1_M from myofibrillar extracts.

5

10

15

20

Antibodies raised against the PP1_M holoenzyme (1 μ g), which recognise both the M_{110} and M_{21} subunits, but not PP1c, affinity purified antibodies specific for either the M_{110} subunit or M_{21} subunit (5 μ g) [7], and control IgG (5 μ g) were conjugated separately to 10 µl of pelleted protein G-Sepharose. After incubation for 30 min at 4°C, the Protein G-Sepharose-antibody conjugate was washed three times with 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.3M NaCl, 0.1% (by vol) 2-mercaptoethanol before addition of a 100 μ l of myofibrillar extract (prepared as in [4]) which had been diluted 10-fold in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine, 10 μg/ml leupeptin containing 1 mg/ml bovine serum albumin. After incubation for 1 h at 4°C, with shaking, a 10 µl aliquot of the suspension was removed to measure the total activity. The remaining 90 µl was centrifuged for 1 min at 13,000 x g, the supernatant was removed, and the pellet washed twice in dilution buffer containing 0.2 M NaCl and 0.03% (by mass) Brij-35 (but no bovine serum albumin), once in dilution buffer and then resuspended in 90 μ l of dilution buffer. Myosin P-light chain phosphatase activity was then measured in the supernatant and the resuspended pellet at a further 30-fold final dilution.

25

30

Myosin binding assays. Myosin $(0.5 \text{ mg/ml}, 1 \mu\text{M} \text{ in terms of myosin heavy chains})$ in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol, was mixed with PP1_M, M₂₁ subunit, or fragments of the M₁₁₀ and M₂₁ subunits, at the concentrations indicated in figure legends. After incubation for 15 min at 0°C, the solutions were centrifuged for 2 min at

15

25

13,000 x g, the supernatants removed, and the pellets washed twice in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol before resuspension in 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.6 M NaCl, 0.1% (by vol) 2-mercaptoethanol. Aliquots of the supernatant, the resuspended pellet and the suspension before centrifugation were either assayed for myosin P-light chain phosphatase activity or denatured in SDS and analysed by SDS/polyacrylamide gel electrophoresis.

Preparation of a complex between GST- M_{21} and M_{110} -(R714-I1004).

GST- M_{21} (10 μ g) was mixed with 80 μ l of bacterial extract expressing M_{110} -(R714-I1004). After incubation for 15 min at ambient temperature the solution was added to 20 μ l (packed volume) of glutathione-Sepharose equilibrated in 50 mM Tris HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine and 0.15 M NaCl. After incubation for 30 min at 4°C with shaking, the Sepharose was washed three times in the same buffer before eluting the complex with buffer containing 20 mM glutathione pH 8.0.

20 Other procedures.

Proteins were labelled with digoxigenin and Far Western analyses carried out as described [4], except that the digoxigenin-labelled probe was used at a concentration of 0.2 μ g/ml instead of 2 μ g/ml. SDS/polyacrylamide gel electrophoresis was carried out on 7.5-15% gels according to Laemmli [13] and on 16.5% gels according to Schagger and von Jagow [14]. Protein was estimated according to Bradford [15].

10

15

20

Results

 $PP1_{M}$ accounts for nearly all the myosin phosphatase activity in extracts prepared from chicken gizzard myofibrils.

80-90% of the myosin phosphatase activity present in chicken gizzard homogenates is recovered in the myofibrils [4]. In the present study, we used antibodies that recognise the M_{110} and/or the M_{21} subunits of chicken gizzard PP1_M [7] to immunoprecipitate the myosin P-light chain phosphatase activity from the myofibrillar extracts. About 90% of the activity was immunoprecipitated by antibodies raised against the PP1_M holoenzyme (Fig 18A) which recognise both the M_{110} and M_{21} subunits in immunoblotting experiments, but not PP1c. Similarly, about 80% of the myosin P-light chain phosphatase activity in the myofibrillar extracts was immunoprecipitated by either the anti- M_{110} antibody or by the anti- M_{21} antibody (Fig 18A). Thus, most of the myosin P-light chain phosphatase activity in myofibrillar extracts is catalysed by PP1c present as a complex containing both the M_{110} and the M_{21} subunits.

Immunoblotting experiments demonstrated that the ratio M_{110} : M_{21} in myofibrillar extracts was identical to the ratio of these subunits in purified PP1_M (Fig 18B), which is 1:1 [4]. These immunoblotting experiments also demonstrated that PP1_M comprises 0.1% of the protein in the myofibrillar extract (see legend to Fig 18B), identical to the proportion estimated from the fold-purification needed to obtain pure PP1_M from this fraction (see Table 1 in Ref 4). These experiments imply that PP1_M accounts for virtually all the myosin phosphatase activity associated with myofibrils, and that neither the M_{110} nor the M_{21} subunit is present in a significant molar excess over PP1c in the myofibrils.

25

15

20

Identification of a region on the M_{110} subunit that binds to the M_{21} subunit.

PP1_M and several fragments of the M₁₁₀ subunit, were subjected to SDS/polyacrylamide gel electrophoresis (Fig 19A) and, after transfer to nitrocellulose, the blots were probed with digoxigenin-labelled M₂₁ subunit (Fig 19B). These experiments showed that the M₂₁ subunit recognised the full length M₁₁₀ subunit (Fig 19B, track 1), M₁₁₀-(R714-I1004) (Fig 19B, tracks 2 and 3) and M₁₁₀-(K933-I1004) (Fig 19B, track 5), but not M₁₁₀-(R714-L934) (Fig 19B, track 4), M₁₁₀-(M1-E309) (Fig 19B, track 7) or M₁₁₀-(M1-S477) (Fig 19B, track 8). Thus, the M₂₁ subunit binds to the C-terminal 72 residues of the M₁₁₀ subunit. The specificity of this interaction was indicated by the observation that digoxigenin-labelled M₂₁ subunit recognised only M₁₁₀-(R714-I1004) and no other protein in the *E. coli* extract (track 2 in Figs 19A and 19B), nor did it recognise the MBP or GST tags, PP1c (Figs 19A and 19B) or any of the molecular mass markers (data not shown).

Consistent with the results in Fig 19, digoxigenin-labelled MBP- M_{110} -(R714-I1004) (data not shown) and MBP- M_{110} -(K933-I1004) (Fig 20B), but not digoxigenin-labelled MBP- M_{110} -(R714-L934) (data not shown), recognised the full length M_{21} subunit and M_{21} (M1-L146) in Far Western blotting experiments.

The region of the M_{21} subunit that interacts with the M_{110} subunit.

Digoxigenin-labelled M₂₁-(M1-L146) recognised the same fragments of the M₁₁₀ subunit as the full length M₂₁ protein (Fig 19C), demonstrating that the C-terminal leucine zipper of the M₂₁ subunit is not required for interaction with the M₁₁₀ subunit. However, neither digoxigenin-labelled GST-M₂₁-(M1-E110) nor digoxigenin-labelled GST-M₂₁-(E110-K186) recognised M₁₁₀-(K933-I1004) in Far Western blotting experiments (data not shown). Consistent with these findings, digoxigenin-labelled M₁₁₀-(K933-I1004) recognised the full length M₂₁

10

15

20

25

protein and M_{21} -(M1-L146), but not M_{21} -(M1-E110) or M_{21} -(E110-K186) in Far Western blotting experiments (Figs 20A and B). However, digoxigenin-labelled M_{110} -(K933-I1004) did recognise a proteolytic fragment of the M_{21} subunit with an apparent molecular mass only slightly larger than M_{21} -(M1-E110) (Fig 20B, track 2 and compare tracks 2 and 4 in Fig 20A). These results are considered further under Discussion.

The isolated M_{21} subunit dimerizes and the region involved in dimerization is identical to that which interacts with the M_{110} subunit.

Although the M_{110} subunit binds to both PP1c and the M_{21} subunit [4], and removal of the M_{21} subunit does not alter the specificity of the PP1_M complex [7], an interaction between the M_{21} subunit and PP1c had not been excluded. In order to examine this point, PP1c and the M_{21} subunit were mixed together and subjected to gel filtration on Superose 12. The M_{21} subunit eluted just before the 37 kDa PP1c protein, demonstrating that they do not form a high affinity complex and suggesting that the isolated M_{21} subunit dimerizes (data not shown). These results were supported by the finding that digoxigenin-labelled full length M_{21} subunit recognised the M_{21} subunit as well as the M_{110} subunit, but not PP1c, in Far Western blotting experiments (Fig 21, track 1). Similar results were obtained with M_{21} -(M1-L146) (Fig 21, track 2). Digoxigenin-labelled M_{21} subunit, like digoxigenin-labelled M_{110} -(K933-I1004), recognised a fragment of the M_{21} subunit that migrated slightly more slowly than M_{21} -(M1-E110), but did not recognise M_{21} -(M1-E110) or M_{21} -(E110-K186) (Tracks 2, 4 and 5 in Figs 20B and 20C).

Identification of a region on the M_{110} subunit that binds to myosin.

When PP1_M (30 nM) was mixed with chicken gizzard myosin (1 μ M) and centrifuged to pellet the myosin, 85% of the myosin P-light chain phosphatase

10

15

20

25

was recovered in the pellet (Figs 22 and 23A). In contrast, neither PP1c (Fig 22) nor bovine serum albumin (data not shown) bound to myosin under these conditions. After removal of the M_{21} subunit from PP1_M [7], the M_{110} -PP1c complex (PP1_M(ΔM_{21}) still pelleted with myosin in a similar manner to PP1_M itself (Fig 22), indicating that the M_{110} subunit is a myosin-binding protein.

In order to identify the myosin-binding domain(s), several fragments of the M_{110} subunit were expressed and purified from $E.\ coli$ extracts and their binding to myosin was studied. GST- M_{110} -(M1-S477), like GST- M_{110} -(M1-E309) [7], stimulated the PP1c-catalysed dephosphorylation of the myosin P-light chain and inhibited the dephosphorylation of glycogen phosphorylase in a similar manner to the full length M_{110} subunit (data not shown). However, neither GST- M_{110} -(M1-S477) nor GST- M_{110} -(M1-E309) bound to myosin (data not shown), even after removal of the GST-tag from GST- M_{110} -(M1-S477) (Fig 23A).

A fragment comprising GST- M_{110} -(M377-K976) from rat aorta migrated as multiple bands on SDS/polyacrylamide gels after purification on glutathione-Sepharose (Fig 23A), indicating cleavage at multiple sites within the M_{110} subunit. Only the largest fragment, with an apparent molecular mass corresponding to undegraded GST- M_{110} -(M377-K976) bound to myosin (Fig 23A), suggesting that the myosin binding site(s) was located towards the C-terminus of the M_{110} subunit. Consistent with this finding, M_{110} -(R714-I1004) from chicken gizzard also bound to myosin (Fig 23B). However, M_{110} -(K933-I1004), which bound to the M_{21} subunit (Fig 20B), did not bind to myosin in these experiments (Fig 23B).

10

15

20

The M_{21} subunit, and a complex between M_{21} and M_{110} (R714-I1004) bind to myosin.

After purification on glutathione-Sepharose, GST-M₂₁ migrated as four protein staining bands (track 1 in Fig 20A), the two species of highest apparent molecular mass being recognised by the anti-M₂₁ antibody (Fig 23B). The apparent molecular mass of the slowest migrating band (47 kDa) corresponds to undegraded GST-M₂₁ and this species bound to myosin (Fig 23B). The next most slowly migrating band had an apparent molecular mass of 38 kDa, slightly less than that of GST-M₂₁-(M1-E110) (data not shown) indicating that it corresponds to GST fused to about the first 100 residues of the M₂₁ subunit; this fragment hardly bound to myosin (Fig 23B).

Bacterial extracts expressing M_{110} -(R714-I1004) were mixed with GST- M_{21} and the resulting complex was purified on glutathione-Sepharose. This complex bound quantitatively to myosin (Fig 23B). In contrast, the GST- M_{21} fragment of apparent molecular mass 38 kDa was not complexed to M_{110} -(R714-I1004) and did not bind to myosin (Fig 23B). The C-terminal fragment of the M_{21} subunit, M_{21} -(E110-K186) also did not bind to myosin under these conditions (data not shown).

Multiple binding sites for the M_{21} subunit on the myosin molecule.

The molar ratio myosin:PP1_M in chicken gizzard is about 80:1 in vivo [4] and the myosin binding experiments described above were therefore carried out using a large (ten fold) molar excess of myosin over either the M₂₁ or the M₁₁₀ subunit. However, further experiments carried out with the M₂₁ subunit in excess revealed that, remarkably, 20 or more moles of M₂₁ subunit could be bound to each myosin dimer (Fig 24A). Many of the binding sites were located in the region of myosin involved in filament formation, because the M₂₁

15

20

25

subunit was pelleted with the myosin "rod" domain even when the molar ratio M_{21} : myosin dimer was 10:1 (Fig 24B). A shorter portion of the rod, termed light meromyosin, also bound the M_{21} subunit avidly. However, a fragment of the M_{21} subunit lacking the first 15 residues from the N-terminus, which was a contaminant in this preparation, did not bind to light meromyosin (Fig 24B), although it bound to the longer myosin rod (Fig 24B). The M_{21} subunit lacking the C-terminal leucine zipper, M_{21} -(M1-L146), bound to both myosin and the rod domain, but fewer moles of M_{21} -(M1-L146) could be bound and this C-terminally truncated species did not bind to light meromyosin under the conditions studied (Fig 24C).

Multiple forms of the M₁₁₀ subunit

Comparison of two different clones encoding the M_{110} subunit from chicken gizzard revealed a 123 bp (41 amino acid) deletion/insertion after Asn-511 (Fig. 17, [8]). Since the rat aorta sequence [5] showed considerable variation from the chicken sequences in this region, compared to the high degree of sequence similarity throughout most of the rest of the molecule (Fig 17), it seemed probable that forms of the rat M₁₁₀ subunit also existed that varied in this middle section of the protein. PCR of the "variable region" of several rat aorta clones gave fragments of either 608 bp or 776 bp. Direct sequencing of these fragments showed an in frame insertion of 168bp (56 amino acids) after Ser-552 (Fig. 1); i.e. a slightly different position from the deletion reported for the chicken gizzard M₁₁₀ subunit (Fig 17). Furthermore, a different 62 amino acid deletion/insertion in this section is apparent by comparison of the rat aorta sequences with that of the M_{110} protein from rat kidney (Fig. 1) [9]. While it is likely that most of these variations arise by alternative splicing of the mRNA, Southern blotting of rat genomic DNA revealed the presence of two closely related genes (data not shown).

10

15

20

25

30

Discussion

The contraction of smooth muscle is triggered by phosphorylation of the P-light chain of myosin catalysed by myosin light chain kinase. However, the identity of the myosin P-light chain phosphatase remained unclear for many years. In 1992 we reported that 80-90% of the myosin phosphatase activity in chicken gizzard homogenates was associated with myofibrils and purified a myosin phosphatase to homogeneity from this fraction [4]. This enzyme, termed PP1_M, was found to be composed of the β -isoform of PP1c (termed the δ -isoform in [16]) and an "M-complex" consisting of two other subunits [4] whose molecular masses were 21 kDa (M_{21}) [5] and 110 kDa (M_{110}) [5, 8], respectively. Further evidence that a form of PP1 was the major myosin phosphatase in smooth muscle was indicated by the finding that tautomycin (a much more potent inhibitor of PP1 than PP2A [17]) stimulated the contraction of permeabilised mammalian smooth muscle fibres at much lower concentrations than okadaic acid [18] (a much more potent inhibitor of PP2A than PP1 [19]).

Two further pieces of evidence presented in this Example establish that $PP1_M$ accounts for most, if not all, of the myosin phosphatase activity associated with chicken gizzard myofibrils, reinforcing the view that it is likely to be the major myosin P-light chain phosphatase in vivo. Firstly, nearly all the myosin P-light chain phosphatase activity was immunoprecipitated by antibodies that recognise either the M_{110} or the M_{21} subunit specifically (Fig 18A). Secondly, $PP1_M$ was found to represent 0.1% of the protein in the myofibrillar extracts whether its concentration was calculated from the increase in specific activity needed for purification to homogeneity [4] or from immunoblotting experiments with the anti- M_{110} and anti- M_{21} antibodies (Fig 18B). Had another enzyme been the major myosin phosphatase in the myofibrillar extracts the enrichment estimated by immunoblotting with anti- M_{110} and anti- M_{21} antibodies would have been

15

20

much higher.

The experiments presented in Fig 18 also demonstrate that the M_{110} and M_{21} subunits are not present in myofibrillar extracts in a significant molar excess over PP1c and that all the M_{110} subunits are complexed to M_{21} subunit and vice versa. The M₂₁ subunit was found to bind to the C-terminal 72 residues of the chicken gizzard M₁₁₀ subunit (Figs 19 and 25), a region whose amino acid sequence is 43% identical to residues 87-161 of the M₂₁ subunit (Fig 17B). The C-terminal leucine zipper of the M₂₁ subunit (residues 145-186) is not required for interaction with the M_{110} subunit, and the site on the M_{21} subunit which interacts with the M₁₁₀ subunit lies within about the N-terminal 120 residues (Fig 20B). Interestingly, the same region is essential for the dimerisation of the M₂₁ subunit (compare Figs 20B and 20C), suggesting that the region(s) involved in interaction is probably located between residues 60 and 120 of the M_{21} subunit and 906-965 of the M_{110} subunit from chicken gizzard; i.e. the regions with greatest amino acid identity between these two proteins (Fig 17). More digoxigenin-labelled M21 subunit bound to the M110 subunit than to the M_{21} subunit in Far Western blotting experiments (Fig 21), consistent with the observation that M_{110}/M_{21} heterodimers form in vivo, but not M_{21}/M_{21} homodimers. The finding that the C-terminus of the M_{110} subunit interacts with the M₂₁ subunit explains why preparations of PP1_M comprising PP1c complexed to N-terminal fragments of the M₁₁₀ subunit do not contain the M_{21} subunit [8, 20].

PP1_M binds to the dephosphorylated form of myosin and our data demonstrate that the M₁₁₀ subunit (Fig 22) and the M₂₁ subunit (Fig 23B and Fig 24) are both myosin-binding proteins. The C-terminal 600 residues of the M₁₁₀ subunit from rat aorta, M₁₁₀-(M377-K976) (Fig 23A) and the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, M₁₁₀-(R714-I1004), bound to myosin, but the C-terminal 72 residues of the M₁₁₀ subunit, M₁₁₀-(K933-1004), did not

15

20

25

30

(Fig 23B), indicating that a myosin-binding domain is likely to be situated in the M_{110} subunit just N-terminal to the M_{21} -binding domain (Fig 25). In contrast, two N-terminal fragments of the M_{110} subunit M_{110} -(M1-S477) (Fig 23A) and M_{110} -(M1-E309) (data not shown) did not bind to myosin under the conditions studied. Since M_{110} -(M1-E309) [7] and M_{110} -(M1-S477) (data not shown) stimulate the dephosphorylation of myosin and inhibit the dephosphorylation of glycogen phosphorylase by PP1c, and in a similar manner to full length M_{110} subunit, these results show that the region of the M_{110} subunit which stimulates the dephosphorylation of the myosin P-light chain is distinct from that which binds the dephosphorylated form of myosin and

thereby targets $PP1_{M}$ to the contractile apparatus.

Digestion of chicken gizzard $PP1_M$ with chymotrypsin cleaves the M_{110} subunit to a fragment with an apparent molecular mass of 58 kDa and a form of PP1, termed here PP1_M*, can then be isolated by gel-filtration which appears to comprise just the 58 kDa fragment and PP1c in a 1:1 molar ratio [8]. The 58 kDa fragment, like the M₁₁₀ subunit, has a blocked N-terminus and seven tryptic peptides isolated were located between residues 286 and 467, suggesting that the 58 kDa fragment corresponds to the N-terminal portion of the M₁₁₀ subunit [8]. PP1_M* was reported to bind to myosin, albeit less effectively than PP1_M [8], suggesting the presence of a myosin-binding domain within the 58 kDa fragment. This result is in apparent conflict with the present study, migrates which also fragment M_{110} -(M1-S477), the SDS/polyacrylamide gels with an apparent molecular mass of 58 kDa, did not bind to dephosphorylated myosin under conditions where 80-90% of the $PP1_M$ and M_{110} -(R714-I1004) was pelleted with myosin (Fig 23A). One possible explanation for this discrepancy is that PP1_M* also contains small myosinbinding fragments from the C-terminus of the M₁₁₀ subunit which still interact with the N-terminal 58 kDa fragment, but are too small to be detected by SDS/polyacrylamide gel electrophoresis. In a separate study heavy meromyosin (50 μ g) was found to bind partially to 2 mg of M₁₁₀-(1-633) coupled to Affigel 15, at very low ionic strength but not at 150-200 mM NaCl [21]. The significance of this observation is unclear because of the extremely high concentration of the M₁₁₀-(1-633) used in these experiments. The average intracellular concentration of PP1_M in chicken gizzard is about 1 μ M, 100-fold lower than the concentration of myosin. In the present study, we analysed the binding of the M₁₁₀ subunit and its subfragments (30-100 nM) to myosin (1 μ M) using low concentrations of these proteins to try and ensure that only high affinity binding sites were identified.

10

15

The isolated M_{21} subunit also bound to myosin and up to 20 moles of M_{21} subunit could be bound to each myosin dimer (Fig 24). These observations indicate that each myosin molecule contains multiple binding sites for the M_{21} subunit, many of which are located within the "rod domain" (Figs 24B and 24C). In vivo, the molar ratio PP1_M: myosin is about 1:80 and yet, during muscle relaxation, all the myosin P-light chains can be dephosphorylated by PP1_M within seconds. This implies that PP1_M must be highly mobile within the myofibrils and move extremely rapidly from one myosin molecule to another. The "off rates" for binding of PP1_M to myosin must therefore be very fast as well as the "on rates". It is tempting to speculate that the presence of multiple binding sites on myosin for the M_{21} subunit (and perhaps for the M_{110} subunit as well) allows PP1_M to "slide" rapidly from one myosin molecule to another.

Example 4: Design of small molecules to modulate the properties of PP1

25

30

20

Table A is a print-out of the atomic coordinates of the protein phosphatase-1 peptide coordinates as deduced in Example 2. The format is Protein Data Bank. The structure of the protein phosphatase-1 catalytic subunit (PP1c) in complex with a 13-residue peptide (G_M peptide) corresponding to a site of interaction between PP1c and the glycogen targeting subunit provides a frame-

15

20

25

30

work for the rational design of small molecules to modulate the functions and properties of PP1 in vivo. Knowledge of the structural nature of the interactions between the G_M peptide and PP1c allows the design of inhibitors that mimic these interactions. These inhibitors may be designed for increased potency, cell permeability and with improved pharmokinetic properties.

Computer graphics systems may be used to design such inhibitors in conjunction with computer graphics modelling software such as SYBIL available from: Tripos Inc, 16995 S Hanley Road, St Louis, Missouri 63144-2913, USA and LUDI available from: Molecular Simulations Inc, 9685 Scranton Road, San Diego, CA 92121-3752, USA, and in conjunction with the atomic coordinates shown in Table A.

Example 5: Effect of peptide derived from p53BP2 binding site to PP1 in vivo

The function of p53BP2 is ascertained by examining the *in vivo* effect of peptides based on the sequence of the p53BP2 binding site to PP1. This may be done by reference to the consensus peptide sequence described in the previous Examples and by reference to the crystal structure in Example 2. The peptide is introduced into cultured cells using penetratin available from Appligene. Other importins may also be used. Alternatively cDNA specifying p53BP2 proteins mutant in the p53BP2 binding site to PP1 are transfected in cultured cells. The effect of these agents on the cell cycle and apoptosis are assessed by a number of methods, for example WAF1 ELISA and Nuclear Matrix Protein ELISA assays (Amersham).

The effect of the p53BP2 peptide is to modulate the interaction between PP1 and p53BP2 in vivo and affect cell regulation and apoptosis. The p53BP2 peptide may also be micro-injected into the cell.

					Table A				
	•		LYS	6	Table A -10.263	46.372	91.126	1.00 53.07	0
ATOM ATOM	1 3	СУ И	LYS	6	-9.182	46.177	90.159	1.00 53.07	0
MOTA	4	CB	LYS	6	-9.220	47.277	89.092 88.015	1.00 45.20 1.00 45.20	0
MOTA	5	CG	LYS	6 6	-10.284 -9.809	47.095 46.200	86.868	1.00 45.20	ŏ
ATOM	6 7	CE	LYS LYS	6	-8.832	46.919	85.927	1.00 45.20	Ŏ
MOTA MOTA	é	NZ	LYS	ĕ	-7.498	47.216	86.540	1.00 45.20	0
MOTA	12	c	LYS	6	-7.814	46.179	90.835	1.00 53.07	0
ATOM	13	0	LYS	6	-6.854	45.624	90.303 92.005	1.00 45.20 1.00 42.33	0
MOTA	14	N	LEU	7 7	-7.746 -6.527	46.816	92.800	1.00 43.14	ŏ
ATOM	16 17	CA CB	LEU	7	-6.840	47.599	94.141	1.00 24.45	ō
MOTA MOTA	18	CG	LEU	ż	-5.670	47.782	95.106	1.00 18.34	0
ATOM	19	CD1		7	-4.775	48.881	94.589	1.00 25.09	0
ATOM	20	CD2		7	-6.186	48.121	96.496	1.00 22.21	0
MOTA	21	C	LEU	7	-5.892	45.594 44.723	93.063 93.675	1.00 42.81 1.00 23.55	0
ATOM	22	0	Leu Asn	7 B	-6. 4 97 -4.656	45.424	92.627	1.00 17.03	ŏ
MOTA MOTA	23 25	N CA	ASN	8	-4.000	44.156	92.846	1.00 11.65	Ō
ATOM	26	CB	ASN	8 -	-3.204	43.744	91.610	1.00 18.54	0
MOTA	27	ČĞ	ASN	8	-3.486	42.312	91.193	1.00 15.30	0
ATOM	28	OD1		8	-4.643	41.903	91.068 90.993	1.00 14.53 1.00 7.61	0
MOTA	29	ND2		8	-2.429 -3.110	41.538	94.079	1.00 11.35	ŏ
MOTA	32	CO	asn asn	8 8	-1.906	44.515	93.985	1.00 12.23	ŏ
MOTA MOTA	33 34	Ŋ	ILE	ğ	-3.716	43.900	95.232	1.00 12.56	0
ATOM	36	CA	ILE	9	-3.018	43.894	96.523	1.00 14.41	0
MOTA	37	CB	ILE	9	-3.955	43.439	97.690 98.812	1.00 2.00 1.00 2.00	0
MOTA	38	CG2	ILE	9	-3.155 -4.7 4 2	42.828 44.634	98.244	1.00 2.00	Ö
ATOM	39	CG1	ILE	9 9	-3.865	45.837	98.581	1.00 2.00	ŏ
MOTA MOTA	40 41	CD1 C	ILE	9	-1.796	42.996	96.501	1.00 10.07	0
ATOM	42	ŏ	ILE	9	-0.759	43.351	97.045	1.00 2.00	0
ATOM	43	N	ASP	10	-1.916	41.845	95.849	1.00 2.00 1.00 2.00	0
MOTA	45	CA	ASP	10	-0.822	40.887 39.562	95.782 95.208	1.00 45.77	ŏ
MOTA	46	CB	ASP ASP	10 10	-1.336 -2.234	38.801	96.191	1.00 46.34	ō
MOTA MOTA	47 48	CG OD1		10	-3.054	39.444	96.879	1.00 50.94	0
ATOM	49	OD2	ASP	10	-2.123	37.558	96.281	1.00 55.84	ō
ATOM	50	C	ASP	10	0.426	41.369	95.036	1.00 2.00 1.00 43.44	0
MOTA	51	0	ASP	10	1.540 0.245	41.181	95.516 93.874	1.00 2.00	ŏ
ATOM	52 54	N CA	SER	11 11	1.387	42.494	93.112	1.00 2.00	0
MOTA MOTA	55	CB	SER	11	0.987	42.834	91.678	1.00 24.54	0
ATOM	56	ŌĞ	SER	11	-0.025	43.819	91.653	1.00 26.40	0
MOTA	58	С	SER	11	1.964	43.727	93.804 93.702	1.00 2.00 1.00 23.86	0
MOTA	59	0	SER	11	3. 16 8 1.099	44.010	94.493	1.00 19.26	ŏ
MOTA	60 62	N CA	ILE	12 12	1.536	45.641	95.226	1.00 19.26	0
MOTA MOTA	63	CB	ILE	12	0.345	46.351	95.878	1.00 2.00	0
MOTA	64	CG2	ILE	12	0.831	47.364	96.909	1.00 2.00	0
MOTA	65	CG1	ILE	12	-0. 49 9	46.986	94.775 95.245	1.00 2.00 1.00 2.00	ŏ
MOTA	66	CD1	ILE	12	-1.722 2.501	47.687 45.112	96.275	1.00 19.26	ŏ
MOTA	67 68	C O	ILE	12 12	3.684	45.445	96.264	1.00 2.00	0
MOTA MOTA	69	Ŋ	ILE	13	1.987	44.246	97.141	1.00 2.00	0
ATOM	71	CA	ILE	13	2.764	43.605	98.199	1.00 2.00	0
MOTA	72	CB	ILE	13	1.899	42.504	98.897 99.810	1.00 2.00 1.00 2.00	0
ATOM	73	CG2	ILE	13	2. 74 7 0.764	41.645	99.691	1.00 2.00	Ö
MOTA	74 75	CG1 CD1	ILE	13 13	-0.213	42.167	100.331	1.00 2.00	0
MOTA MOTA	76	CDI	ILE	13	4.039	42.960	97.602	1.00 2.00	0
MOTA	77	Õ	ILE	13	5.142	43.099	98.158	1.00 2.00	0
MOTA	78	N	GLN	14	3.B64	42.278	96.462	1.00 2.00 1.00 2.00	0
MOTA	В0	CA	GLN	14	4.937	41.582	95.740 94.391	1.00 21.13	0
MOTA	81	CB	GLN	14 14	4 . 4 1 5 5 . 4 6 7	40.470	93.454	1.00 32.43	Ö
MOTA MOTA	82 83	CG CD	GLN GLN	14	5.655	41.284	92.171	1.00 28.89	0
A 1 OF	6.0		J	-					

				4.726	41.428 91.363	1.00 30.84	0
MOTA MOTA		E1 GLN E2 GLN	14 14	6.861	41.818 91.977	1.00 29.15	ō
ATOM	88 C		14	6.088	42.519 95.515	1.00 2.00	0
ATOM	89 O	GLN	14	7.206	42.249 95.934 43.625 94.848	1.00 24.80 1.00 15.16	0
MOTA	90 N		15 15	5.789 6.776	43.625 94.848 44.638 94.552	1.00 15.16	Ö
MOTA MOTA		A ARG	15	6.122	45.812 93.846	1.00 8.83	0
MOTA		G ARG	15	6.530	45.981 92.388	1.00 8.83	0
ATOM		D ARG	15	5.543	46.882 91.684	1.00 8.83 1.00 8.83	0
MOTA		E ARG	15	4.195 3.094	46.322 91.761 46.998 91.465	1.00 8.83 1.00 8.83	ŏ
MOTA		Z ARG H1 ARG	15 15	3.178	48.261 91.073	1.00 9.33	ŏ
MOTA MOTA		H2 ARG	15	1.907	46.413 91.567	1.00 8.83	0
ATOM	105 C		15	7.405	45.106 95.841	1.00 15.16	0
MOTA	106 0		15	8.622 6.575	45.124 95.952 45.462 96.820	1.00 13.09 1.00 2.00	0
MOTA	107 N	LEU LA LEU	16 16	7.049	45.924 98.124	1.00 2.00	ō
MOTA MOTA		B LEU	16	5.853	46.215 99.033	1.00 2.00	0
ATOM		G LEU	16	4.982	47.420 98.662	1.00 2.00	0
ATOM	112 C	D1 LEU	16	3.630	47.302 99.324 48.707 99.056	1.00 2.00 1.00 2.00	0
MOTA		D2 LEU	16	5. 664 8. 014	48.707 99.056 44.942 98.809	1.00 2.00	ŏ
MOTA	114 C		16 16	9.031	45.354 99.361	1.00 2.00	0
ATOM ATOM	116 N		1 7	7.712	43.650 98.770	1.00 12.70	0
MOTA		A LEU	17	8.590	42.652 99.395	1.00 4.33 1.00 4.50	0
MOTA		B LEU	17	7. 812 6.7 4 0	41.387 99.780 41.515 100.838	1.00 4.52	ŏ
MOTA		CO LEU	17 17	6.338	40.159 101.302	1.00 11.14	Õ
MOTA MOTA		D2 LEU	17	7.285	42.318 101.997	1.00 6.93	0
ATOM	123		17	9.796	42.225 98.548	1.00 7.39	0
ATOM	124 0		17	10.751	41.652 99.086 42.492 97.238	1.00 15.30 1.00 65.13	Ö
MOTA	125 N		18 18	9.758 10.8 4 7	42.492 97.238 42.104 96.329	1.00 70.48	ō
MOTA MOTA		CA GLU CB GLU	18	10.505	42.471 94.883	1.00 89.02	0
ATOM		C GLU	18	10.769	43.929 94.547	1.00 97.06	0
MOTA	130 0	ern ern	18	10.677	44.239 93.069 43.351 92.256	1.00 39.46 1.00 39.46	0
ATOM		DE1 GLU	18 18	11.030 10.265	43.351 92.256 45.375 92.727	1.00 39.46	ŏ
MOTA ATOM		DE2 GLU	18	12.199	42.724 96.687	1.00 70.82	0
ATOM		GLU	18	13.244	42.249 96.240	1.00 88.34	0
MOTA		VAL	19	12.172	43.793 97.480 44.470 97.891	1.00 28.97 1.00 28.97	Ö
ATOM		CA VAL	19 19	13.394 13.139	44.470 97.891 45.968 98.207	1.00 6.66	Ō
ATOM		CB VAL	19	12.746	46,702 96.942	1.00 6.86	0
ATOM ATOM		CG2 VAL	19	12.044	46.117 99.231	1.00 4.03	0
ATOM		C VAL	19	14.079	43.805 99.081 44.258 99.514	1.00-28.97 1.00 13.23	0
MOTA		O VAL	19 20	15. 134 13. 4 90	44.258 99.514 42.736 99.615	1.00 2.00	ō
MOTA MOTA		n Airg Cai Airg	20	14.093	42.016 100.748	1.00 2.00	0
ATOM		CB ARG	20	13.242	40.812 101.142	1.00 17.66	0
MOTA	147	CG ARG	20	12.043	41.138 101.990 39.899 102.195	1.00 16.46 1.00 21.30	ő
MOTA		CD ARG	20 20	11. 192 12.006	38.733 102.532	1.00 18.45	0
MOTA MOTA		NE ARG CZ ARG	20	11.559	37.481 102.546	1.00 23.19	0
ATOM	152	NH1 ARG	20	10.288	37.232 102.249	1.00 28.11 1.00 21.96	0
ATOM	155	NH2 ARG	20	12.383	36.477 102.836 41.521 100.333	1.00 21.90	Ö
MOTA		C ARG	2 0	15. 48 0 15. 6 09	41.521 100.333 40.778 99.353	1.00 20.52	0
MOTA MOTA		O ARG N GLY	20 21	16.514	41.956 101.047	1.00 61.97	0
ATOM		CA GLY	21	17.863	41.527 100.718	1.00 65 49	0
ATOM	163	C GLY	21	18.702	42.522 99.930 42.409 99.889	1.00 66.05 1.00 13.74	0
MOTA		O GLY	21	19.933 18.055	42.409 99.889 43.490 99.290	1.00 19.66	ŏ
MOTA		N SER CA SER	22 22	18.055	44.491 98.523	1.00 17.08	0
MOTA MOTA		CA SER CB SER	22	17.874	45.159 97.481	1.00 26.61	0
MOTA	169	OG SER	22	16.821	45.908 98.074 45.538 99.466	1.00 32.17 1.00 17.54	0
MOTA	171	C SER	22	19.371 19.0 4 7	45.538 99.466 45.558 100.657	1.00 17.54	Ö
MOTA	172	O SER	22	17.04/	43.000 = 00.000	-	

ATOM	173	N	LYS	23	20.222	46.409	98.935	1.00 53.24	0
MOTA	175	CA	LYS	23	20.828	47.458	99.740 98.852	1.00 49.50 1.00 94.25	0
MOTA	176	CB	LYS	23	21.565	48.471	98.085	1.00 59.71	Ö
MOTA	177	CG	LYS	23 23	20.639 21.3 4 1	50.716	97.688	1.00 94.25	Ö
MOTA	178	CD	LYS	23 23	20.346	51.775	97.214	1.00 59.77	ŏ
MOTA	179 180	NZ	LYS	23	19.448	52.240	98.306	1.00 59.94	0
ATOM ATOM	184	C	LYS	23	19.739		100.528	1.00 49.47	0
MOTA	185	ŏ	LYS	23	18.659	48.488	99.998	1.00 59.94	0
ATOM	186	N	PRO	24	19.990		101.813	1.00 37.72 1.00 2.00	0
MOTA	187	CD	PRO	24	21.185		102.614 102.613	1.00 2.00 1.00 36.73	0
MOTA	188	CA	PRO	24	18.987 19.618		104.004	1.00 2.00	ŏ
MOTA	189	CB	PRO PRO	24 24	21.109		103.704	1.00 2.00	ŏ
MOTA	190 191	CG	PRO	24	18.798	50.551	102.019	1.00 33.26	0
ATOM ATOM	192	ō	PRO	24	19.752	51.325	101.938	1.00 2.00	0
ATOM	193	Ň	GLY	25	17.579	50.835	101.575	1.00 22.79	0
ATOM	195	CA	GLY	25	17.275	52.119	100.981	1.00 22.84	0
MOTA	196	С	GLY	25	16.653	51.904 52.827	99.624 99.037	1.00 18.00 1.00 28.24	0
ATOM	197	0	GLY	25 26	16.098 16.750	50.679	99.116	1.00 2.00	ŏ
MOTA	198	N	LYS LYS	26 26	16.174	50.351	97.817	1.00 2.00	ŏ
ATOM	200 201	CA CB	LYS	26	16.469	48.892	97.45B	1.00 45.45	0
MOTA MOTA	202	œ	LYS	26	15.931	48.437	96.110	1.00 55.13	0
ATOM	203	CD	LYS	26	16.209	49.435	94.979	1.00 59.31	0
ATOM	204	CE	LYS	26	17.694	49.644	94.691	1.00 60.93	0
MOTA	205	NZ	LYS	26	17.883	50.619	93.569	1.00 68.30 1.00 2.00	0
MOTA	209	C	LYS	26	14.674 13.916	50.624 49.964	97.856 98.566	1.00 42.74	ŏ
MOTA	210	0	LYS	26 27	14.278	51.648	97.111	1.00 2.00	ŏ
MOTA	211 213	N CA	asn asn	27	12.894	52.086	97.027	1.00 2.00	0
MOTA MOTA	214	CB	ASN	27	12.836	53.526	96.517	1.00 50.37	0
MOTA	215	CG	ASN	27	13.257	54.525	97.563	1.00 56.29	0
MOTA	216		ASN	27	12.929	54.381	98.740	1.00 61.45	0
ATOM	217	ND2	asn	27	13.982	55.551	97.142	1.00 59.50 1.00 2.00	0
MOTA	220	C	ASN	27	11.964	51.219 50.256	96.183 95.540	1.00 54.11	ő
ATOM	221	0	asn	27 28	12.384 10.689	51.590	96.209	1.00 12.34	ŏ
MOTA	222 224	N CA	VAL VAL	28	9.646	50.910	95.473	1.00 12.71	0
MOTA MOTA	225	CB	VAL	28	9.126	49.693	96.283	1.00 2.00	0
MOTA	226	CG1		28	8.777	50.111	97.684	1.00 2.00	0
ATOM	227	CG2	VAL	28	7.932	49.053	95.599	1.00 2.00	0
MOTA	228	С	VAL	28	8.549	51.935 52.363	95.145 96.000	1.00 19.22 1.00 2.00	Ö
MOTA	229	0	VAL	28	7.757 8.5 4 8	52.372	93.892	1.00 26.36	ŏ
ATOM	230	N	GLN	29 29	7.586	53.365	93.424	1.00 27.97	0
MOTA MOTA	232 233	CA CB	GLN	29	8.203	54.239	92.325	1.00 11.00	0
ATOM	234	CG	GLN	29	7.479	55.543	92.080	1.00 8.47	0
MOTA	235	CD	GLN	29	7.684	56.541	93.201	1.00 11.72 1.00 13.39	0
ATOM	236		GLN	29	7.097	57.619	93.198 94.159	1.00 13.39	ŏ
MOTA	237	NE2		29	8. 52 5 6.3 4 7	56.195 52.688	92.887	1.00 27.73	ō
MOTA	240 241	0	GLN GLN	29 29	6.401	51.934	91.926	1.00 8.22	0
MOTA MOTA	242	N	LEU	30	5.229	52.941	93.531	1.00 2.00	0
MOTA	244	CA	LEU	30	3.978	52.359	93.087	1.00 2.00	0
ATOM	245	CB	LEU	30	3.157	51.859	94.279	1.00 18.06	0
MOTA	246	CG	LEU	30	3.381	50.416	94.729	1.00 18.06 1.00 18.06	0
MOTA	247		LEU	30	4.857	50.152 50.171	94.928 96.009	1.00 18.06	Ö
ATOM	248		LEU	30	2.603 3. 22 3	53.441	92.348	1.00 2.00	Ö
MOTA	249	C	LEU	30 30	3.363	54.621	92.664	1.00 18.06	0
MOTA MOTA	250 251	и	GLN	31	2.441	53.050	91.355	1.00 75.78	0
ATOM	253	CA	GLN	31	1.679	54.026	90.599	1.00 80.15	0
ATOM	254	CB	GLN	31	0.782	53.336	89.593	1.00 2.00	0
MOTA	255	CG	GLN	31	1.448	52.204	88.883 87.976	1.00 2.00 1.00 2.00	0
MOTA	256	CD	GLN	31	0.498	51.469 50. 69 4	87.122	1.00 2.00	0
MOTA	257	OE1		31 31	0.93 3 -0.809	51.698	88.150	1.00 2.00	Ö
ATOM	258	NEZ	GLN	۱ د	0.007		'		

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	261 262 2667 2677 2777 2777 2777 2777 27	OE2 CONCACEGOD1 ND2 CONCACEGOD1 CONCACEGO CONCACEGO CONCACEGO CONCACEGO		31122222222333333333333333333333333333	0.819 0.276 0.716 -0.074 -0.236 -1.652 -2.596 -1.059 -1.449 -1.875 -2.134 -3.291 -2.592 -3.445 -4.134 -3.291 -2.592 -3.445 -4.134 -3.291 -2.592 -3.445 -4.134 -2.592 -3.445 -2.322 -1.005 -1.203 -0.1203 -0.1203 -0.1203 -0.1203 -1.083 0.045 0.013 1.354 -2.368 -2.368 -2.985 -4.795 -4.795 -4.795 -6.059	54.187 56.097 56.097 56.097 56.097 56.3476 66.3476 66.3741 55.2229 53.226 66.3741 55.2229 53.226	91.585 92.512 91.3288 92.1816 92.1270 92.1827 91.5270 92.5697 91.714 99.3641 89.412 89.810 89.810 99.810	1.00 79.69 1.00 2.00 1.00 2.00 1.00 57.69 1.00 62.36 1.00 60.46 1.00 59.61 1.00 62.85 1.00 7.45 1.00 30.19 1.00 30.49 1.00 32.73 1.00 33.00 1.00 10.76 1.00 27.56 1.00 24.54 1.00 23.45 1.00 20.55 1.00 14.94 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	309 311	NE CZ	ARG ARG	36 36	-6.465 -7.726	59.029 59.383	94.267 94.491	1.00 14.43 1.00 22.93	0
MOTA	312	NH1	ARG	36	-8.729 -7.987	58.618 60.518	94.064 95.134	1.00 22.80 1.00 19.87	0
MOTA MOTA	315 318	NH2 C	ARG ARG	36 36	-5.394	55.005	96.657	1.00 2.00	0
MOTA	319	0	ARG	36	-6. 41 5 -5.2 4 0	55.305 53.828	97.279 96.059	1.00 2.00 1.00 2.00	0
MOTA MOTA	320 322	N CA	GLY GLY	37 37	-6.264	52.814	96.177	1.00 2.00	0
MOTA	323	C	GLY	37	-6.118 -7.106	52.251 52.030	97.575 98. 28 9	1.00 2.00 1.00 2.00	0
MOTA MOTA	324 325	O N	GLY LEU	37 38	-4.864	52.039	97.975	1.00 8.88	0
MOTA	327	CA	LEU	38	-4.558	51.515	99.288 99.559	1.00 8.88 1.00 2.00	0
MOTA MOTA	328 329	CB CG	LEU	38 38	-3.061 -2.202	51.550 50.559	98.784	1.00 2.00	0
MOTA	330	CD1	LEU	38	-0.765	50.804	99.171 99.063	1.00 2.00 1.00 2.00	0
MOTA MOTA	331 332	CD2 C	LEU	38 38	-2.614 -5.278	49.106 52.406	100.258	1.00 8.88	Ö
ATOM	333	ŏ	LEU	38	-6.130		101.002	1.00 2.00	0
ATOM	334	N	CYS	39 39	-4.976 -5.613		100.216 101.099	1.00 2.00 1.00 2.00	0
MOTA MOTA	336 337	CA CB	CYS	39	-5.339	56.096	100.607	1.00 2.00	0
ATOM	338	SG	CYS	39	-3.719 -7.140		100.830	1.00 2.00 1.00 2.00	0
ATOM ATOM	339 340	0	CYS	39 39	-7.708	54.580	102.296	1.00 2.00	0
MOTA	341	N	LEU	40	-7.793	54.412	100.053	1.00 2.00 1.00 2.00	0 0
MOTA	343	CA	LEU LEU	4 0 4 0	-9. 233 -9. 73 5	54.330 54.704	99 .9 99 98.599	1.00 2.00	0
MOTA	344	CB	LEU	4. U	7.133	J	-		

PCT/GB97/00898

(جنن ٦

40 345 CG LEU MOTA 346 347 CD1 40 LEU MOTA 40 CD2 LEU MOTA 40 348 LEU MOTA 40 349 0 LEU MOTA 350 LYS 41 N MOTA 41 CA LYS 352 MOTA 41 353 CB LYS MOTA LYS 41 CG MOTA 354 41 LYS 355 CDMOTA 41 356 CE LYS MOTA LYS 41 357 NZ MOTA 41 LYS MOTA 361 С 41 LYS 362 0 MOTA 42 SER N MOTA 363 42 CA SER 365 MOTA 42 CB SER 366 MOTA 42 OG SER 367 MOTA 42 SER 369 С MOTA 42 -SER 370 0 MOTA ARG 43 371 N MOTA 43 ARG 373 CA MOTA 43 CB ARG 374 MOTA 43 ARG MOTA 375 ÇG 43 **⊼**RG 376 CD MOTA ARG 43 377 NE MOTA 43 ARG 379 CZ MOTA 43 380 NH1 ARG MOTA ARG 43 383 NH2 MOTA ARG 43 MOTA 386 С ARG 43 387 MOTA 44 388 N GLU MOTA 44 GLU 390 CA MOTA 44 391 GLU CB MOTA 44 GLU MOTA 392 CG 44 MOTA 393 CD GLU 44 394 GLU OE1 MOTA 44 395 OE2 GLU MOTA 44 396 C GLU MOTA 44 397 GLU 0 MOTA 45 N ILE 398 MOTA 45 MOTA 400 CA ILE 45 ILE MOTA 401 CB CG2 ILE 45 402 MOTA 45 403 CG1 ILE MOTA 45 404 CD1 ILE MOTA 45 ILE MOTA 405 C 45 406 0 ILE MOTA PHE 46 407 N MOTA 0 46 PHB 409 MOTA CA 46 410 CB PHE MOTA 411 CG PHE 46 MOTA CD1 PHE 46 MOTA 412 46 MOTA 413 CD2 PHE CE1 PHE 414 46 MOTA CE2 PHE 46 415 MOTA 46 MOTA 416 CZPHE 417 PHE 46 C MOTA O 46 MOTA PHE 418 0 0 47 MOTA 419 N LEU 52.807 109.277 53.705 108.190 0 1.00 -14.441 LEU 47 CA 421 MOTA 1.00 0 2.00 -15.04347 LEU 422 CB MOTA 1.00 2.00 55.181 108.110 -14.641 LEU 47 423 CG MOTA 55.641 109.462 -14.094 1.00 2.00 47 CD1 LEU 424 MOTA 55.397 107.030 1.00 2.00 -13.619 47 ATOM 425 CD2 LEU 1.00 2.00 0 51.677 109.578 -15.424 LEU 47 426 C MOTA 51.905 110.243 1.00 2.00 0

-16.432

-15.145

50.469 109.091

1.00

2.00

47

48

ATOM

ATOM

427

428

0

LEU

SER

								_
ATOM	430	CA	SER	4.8	-16.037	49.339 109.305	1.00 2.00	0
MOTA	431	CB	SER	48	-16.121	48.483 108.039 48.045 107.622	1.00 23.35	0
MOTA	432	OG	SER	48 48	-14.844 -15.624	48.045 107.622 48.473 110.482	1.00 30.63 1.00 2.00	0
MOTA	434 435	0	SER SER	48	-16.184	47.390 110.700	1.00 28.70	ŏ
ATOM ATOM	436	N	GLN	49	-14.627	48.922 111.225	1.00 61.72	Ö
ATOM	438	ČA	GLN	49	-14.175	48.193 112.394	1.00 63.25	ŏ
MOTA	439	СВ	GLN	49	-12.763	47.645 112.173	1.00 13.32	ŏ
ATOM	440	ĊĠ	GLN	49	-12.668	46.511 111.146	1.00 7.00	0
MOTA	441	CD	GLN	49	-11.246	45.952 110.995	1.00 8.8B	0
MOTA	442	OE1	GLN	49	-10.251	46.640 111.258	1.00 9.23	0
MOTA	443	NE2	GLN	49	-11.151	44.700 110.573	1.00 7.45	0
MOTA	446	C	GLN	49	-14.210	49.205 113.540 50.373 113.357	1.00 63.04 1.00 14.61	0
ATOM	447	0	GLN	4 9 50	-13.864 -14.645	48.778 114.734	1.00 14.51	ő
MOTA MOTA	448 449	N CD	PRO PRO	50	-14.967	47.399 115.118	1.00 4.85	ŏ
MOTA	450	CA	PRO	50	-14.728	49.657 115.901	1.00 34.58	ō
ATOM	451	СВ	PRO	50	-15.037	48.678 117.032	1.00 2.00	0
ATOM	452	œ	PRO	50	-14.496	47.365 116.531	1.00 2.00	0
ATOM	453	Ç	PRO	50	-13.459	50.468 116.164	1.00 34.58	0
MOTA	454	0	PRO	50	-12.356	50.002 115.884	1.00 2.95	0
MOTA	455	N	ILE	51	-13.626	51.673 116.708	1.00 2.00	0
MOTA	457	CA	ILE	51	-12.499	52.550 117.015 53.975 117.318	1.00 2.00 1.00 2.00	0
ATOM	458	CB	ILE	51 51	-13.001 -13.642	53.975 117.318 54.035 118.673	1.00 2.00	ŏ
MOTA	459	CG2	ILE	51 51	-11.850	54.958 117.295	1.00 2.00	ŏ
MOTA MOTA	460 461	CG1 CD1	ILE	51	-12.32B	56.370 117.351	1.00 2.00	ō
ATOM	462	CDI	ILE	51	-11.650	51.996 118.172	1.00 2.00	0
ATOM	463	ŏ	ILE	51	-10.456	52.303 118.283	1.00 2.00	0
ATOM	464	Ň	LEU	52	~12.284	51.187 119.028	1.00 2.00	0
ATOM	466	CA	LEU	52	-11.622	50.522 120.159	1.00 2.00	0
MOTA	467	CB	LEU	52	-12.391	50.746 121.473 50.518 122.808	1.00 2.00 1.00 2.00	0
MOTA	468	CG	LEU	52 53	-11.655 -12.559	50.518 122.808 50.899 123.944	1.00 2.00	ŏ
ATOM	469		LEU LEU	52 52	-12.333	49.085 122.973		ŏ
atom Atom	470 471	CD2	LEU	52	-11.660	49.033 119.770	1.00 2.00	0
ATOM	472	ŏ	LEU	52	-12.652	48.331 120.006	1.00 2.00	0
ATOM	473	Ň	LEU	53	-10.584	48.576 119.136	1.00 2.00	0
MOTA	475	CA	LEU	53	-10.464	47.204 118.667	1.00 2.00	0
MOTA	476	CB	LEU	53	-9.066	46.982 118.069	1.00 2.00 1.00 2.00	0
MOTA	477	CG	LEU	53	-8.802	47.038 116.555 47.889 115.810	1.00 2.00 1.00 2.00	ŏ
MOTA	478		LEU	53	-9.835 -7. 4 01	47.550 116.353	1.00 2.00	ŏ
MOTA	479	CD2	PEA PEA	53 53	-10.686	46.230 119.792	1.00 2.00	ō
ATOM ATOM	480 481	CO	LEU	รีรั	-10.365	46.522 120.937	1.00 2.00	0
ATOM	482	Ŋ	GLU	54	-11.251	45.076 119.472	1.00 19.77	0
ATOM	484	CA	GLU	54	-11.465	44.049 120.474	1.00 20.13	0
ATOM	485	CB	GLU	54	-12.955	43.809 120.714	1.00 56.32	0
ATOM	486	ÇG	GLU	54	-13.244	43.362 122.135	1.00 66.19 1.00 69.64	0
MOTA	487	CD	GLU	54	-14.668 -15.613	42.873 122.346 43.627 122.024	1.00 78.06	õ
MOTA	488		GLU	54 54	-15.613	41.734 122.848	1.00 73.27	ō
MOTA	489 490	OE2	GLU	54 54	-10.798	42.820 119.882	1.00 19.77	0
MOTA MOTA	491	C O	GLU	54	-11.451	41.949 119.313	1.00 48.57	O
ATOM	492	Ŋ	LEU	5 5	-9.473	42.800 119.974	1.00 2.00	0
ATOM	494	CA	LEU	5 5	-8.666	41.712 119.452	1.00 2.00	0
ATOM	495	CB	LEU	5 5	-7.245	42.188 119.176	1.00 2.00	0
MOTA	496	CG	LEU	55	-7.148	43.458 118.336 43.728 117.961	1.00 2.00 1.00 2.00	Ö
MOTA	497		LEU	5 5	-5.695	43.728 117.961 43.298 117.108	1.00 2.00	ŏ
MOTA	498		LEU	5 5	-8.024 -8.624	40.586 120.456	1.00 2.00	Ō
MOTA	499	C	LEU	5 5 5 5	-8.724	40.807 121.664	1.00 10.45	0
MOTA MOTA	500 501	0 N	GLU	56	-8.448	39.374 119.961	1.00 2.00	0
MOTA	503	CA	GLU	56	-8.407	38.224 120.826	1.00 2.00	0
ATOM	504	CB	GLU	56	-9.741	37.467 120.729	1.00 18.79	0
MOTA	505	CG	GLU	56	-10.989	38.283 121.171 38.677 122.658	1.00 30.34	0
MOTA	506	CD	GLU	56	-11.012	38.677 122.658 37.789 123.526	1.00 44.70	Ö
ATOM	507	OEl	GLU	56	-11.188	J,.,U, 125.520	2.22.24.70	-

. .

PCT/GB97/00898

ATON	508	OE2	GLU	56	-10.872	39.882	122.955	1.00 4		0
MOTA	509	C	GLU	56	-7.244	37.343	120.393		2.00 3.40	0
MOTA	510	0	GLU	56 57	-6.292 -7.312	37.839 36.062	119.800 120.765		5.90	ŏ
ATOM ATOM	511 513	N CA	ALA ALA	57	-6.336		120.405	1.00 6	2.88	Õ
MOTA	514	СВ	ALA	57	-6.750	34.434	119.039		6.61	0
ATOM	515	С	ALA	57	-4.867	35.474	120.387 120.932			0
MOTA	516	0	ALA PRO	57 58	-4.543 -3.951	36.519 34.632	119.857			Ö
ATOM ATOM	517 518	N CD	PRO	58	-4.109	33.203	119.533	1.00	9.23	0
ATOM	519	CA	PRO	58	-2.526	34.988	119.782			0
ATOM	520	CB	PRO	58	-1.852 -2.881	33.645 32.926	119.501 118.711			0
ATOM ATOM	521 522	CG C	PRO PRO	58 58	-2.176		118.672			ŏ
ATOM	523	ŏ	PRO	58	-2.688	35.901	117.540		2.29	0
MOTA	524	N	LEU	59	-1.284	36.947				0
MOTA	526	CA	LEU	59 50	-0.856 -1.862	37.944 39.100	117.989 117.895			0
ATOM ATOM	527 528	CB CG	LEU	59 59	-1.842	40.166	118.993			ŏ
ATOM	529		LEU	59	-2.880	41.252	118.706		2.00	0
ATOM	530	CD2	LEU	59	-2.117		120.339			0
ATOM	531	C	LEU	59 50	0.510 1.030	38.501	118.351 119.429			0
ATOM ATOM	532 533	O N	LEU LYS	59 60	1.103	39.259	117.438	1.00 2		ŏ
ATOM	53 5	CA	LYS	60	2.3 9 9	39.872	117.688			0
ATOM	536	CB	LYS	60	3.358	39.655	116.513	1.00 1		0
MOTA	537	CCG	LYS	60 60	3.185 3.556	38.327	115.768 116.608			0
MOTA MOTA	538 539	CD	LYS LYS	60	5.034	36.783	116.544			Õ
ATOM	540	NZ	LYS	60	5.824	37.927	117.066	1.00		0
MOTA	544	С	LYS	60	2.063	41.353	117.804	1.00 2		0
ATOM	545	0	LYS	60 61	1.142 2.757	41.832	117.128 118.680	1.00 1 1.00 2		0
MOTA MOTA	546 548	N CA	ILE	61	2. 49 9	43.496	118.822	1.00 2		Ŏ
ATOM	549	CB	ILE	61	2.032	43.859	120.240			0
MOTA	550	CG2	ILE	61	1.485	45.288	120.239			0
MOTA	551	CG1	ILE	61 61	0.940 0.019	42.881 43.422	120.702 121.783			Ö
ATOM ATOM	552 553	CD1 C	ILE	61	3.791	44.220	118.494		3.52	0
MOTA	554	ō	ILE	61	4.862		118.868			0
MOTA	555	N	CYS	62	3.698	45.341	117.787 117.393			0
ATOM ATOM	557 558	CA CB	CYS CYS	62 62	4.874 5.147	45.925	115.895			Ö
ATOM	559	SG	CYS	62	5.439	44.252	115.266	1.00 1	1.47	0
MOTA	560	С	CYS	62	4.607	47.560	117.658			0
MOTA	561	0	CYS -		3. 45 1 5.662	47.957 48.367	117.751 117.739			0
MOTA MOTA	562 564	N CA	GLY GLY	63 63	5.507	49.789	117.971		2.00	Ö
ATOM	565	C	GLY	63	6.548	50.610	117.222			0
MOTA	566	0	GLY	63	7.624		116.897	1.00 1	1.39 2.00	0
MOTA	567 569	N CA	ASP ASP	64 64	6.216 7.068		116.959 116.255		3.88	Ö
MOTA MOTA	570	CB	ASP	64	7.805	53.721	117.245	1.00	6.62	0
MOTA	571	CG	ASP	64	6.873	54.589	118.025		6.62	0
MOTA	572		ASP	64	5.996	54.019	118.708 117.946		2.70 2.70	0
MOTA MOTA	573 574	OD2 C	ASP ASP	64 64	7.003 8.064	52.362	115.221		4.37	Ö
ATOM	575	Õ	ASP	64	9.221	52.080	115.557	1.00	8.57	0
MOTA	576	N	ILE	65	7.619	52.326	113.963		5.19	0
ATOM	578	CA	ILE	65 65	8. 47 1 7.663	51.924	112.849 111.672		3.07 2.00	0
MOTA MOTA	579 580	CB CG2	ILE	65 65	8.609	50.903	110.535		2.00	Ö
ATOM	581	CG1		65	6.871	50.095	112.151	1.00	2.00	0
MOTA	582	CD1	ILE	65	7.723	49.023	112.763		2.00	0
MOTA	583	C	ILE	65 65	9.185 10.379	53.177	112.357 112.101		2.24	0
ATOM ATOM	584 585	N	ILE HIS	65 66	8.451	54.276	112.101		2.00	Ö
ATOM	587	CA	HIS	66	9.022	55.536	111.776		2.00	0

ATOM	588	С	HIS	66	9.847	55.525 110.502	1.00 2.00	0
ATOM	589	Ō	HIS	66	11.042	55.818 110.539	1.00 12.38	0
ATOM	590	CB	HIS	66	9.846	56.182 112.881	1.00 8.25	0
ATOM	591	CG	HIS	66	9.040	57.046 113.782	1.00 8.25	0
ATOM	592	ND1		66	8.104	57.949 113.337	1.00 8.25	0
ATOM	594		HIS	66	9.001	57.109 115.133	1.00 8.25	0
ATOM	595		HIS	66	8.042	58.043 115.526	1.00 8.25	0
ATOM	596	CE1		66	7.536	58,516 114.399	1.00 8.25	0
	597	N	GLY	67	9.197	55.195 109.385	1.00 11.52	0
ATOM	599	CA	GLY	67	9.835	55.174 108.078	1.00 11.52	0
MOTA			GLY	67	11.029	54,266 107.868	1.00 11.52	0
ATOM	600	C	GLY	67	11.782	54.462 106.915	1.00 81.94	Ó
ATOM	601	0	GIN	6 8	11.214	53.272 108.730	1.00 18.96	0
MOTA	602	И		68	12.353	52.364 108.602	1.00 20.32	0
MOTA	604	CA	GLN GLN	68	13.007	52.139 109.957	1.00 6.39	0
MOTA	605	CB	GLN	68	13.261	53.407 110.711	1.00 4.06	O
ATOM	606	CC		68	14.315	53.239 111.757	1.00 7.01	Ō
MOTA	607	CD	GLN	68	15.013	54.197 112.111	1.00 8.21	Õ
MOTA	608		GLN		14.453	52.020 112.270	1.00 5.84	ŏ
MOTA	609	NE2	GLN	68	11.916	51.039 108.010	1.00 18.72	ŏ
MOTA	612	C	GLN	68 68	12.018	49.975 108.634	1.00 10.73	ŏ
MOTA	613	0	GLW	68	11.450	51.119 106.777	1.00 5.70	ŏ
MOTA	614	N	TYR	69		49.970 106.054	1.00 5.52	ŏ
MOTA	616	CA	TYR	69	10.959		1.00 2.00	ŏ
MOTA	617	CB	TYR	69	10.807		1.00 2.00	ŏ
MOTA	618	CG	TYR	69	9.988	49.322 103.841	1.00 2.00	ŏ
MOTA	619		TYR	69	8.658	49.099 104.187	1.00 2.00	ŏ
ATOM	620	CE1	TYR	69	7.873	48.194 103.477		ŏ
ATOM	621	CD2	TYR	69	10.526	48.611 102.762	1.00 2.00 1.00 2.00	ŏ
ATOM	622	CE2	TYR	69	9.751	47.701 102.038		
ATOM	623	CZ	TYR	69	8.431	47.506 102.408		0
ATOM	624	OH	TYR	69	7.656	46.632 101.715	1.00 2.00 1.00 8.52	
ATOM	626	C	TYR	69	.11.815	48.730 106.188		0
MOTA	627	0	TYR	69	11.284	47.641 106.393	1.00 2.00	ŏ
ATOM	628	N	TYR	70	13.132	48.877 106.093	1.00 2.00	Ö
ATOM	630	CA	TYR	70	13.992	47.703 106.186	1.00 2.00	
ATOM	631	CB	TYR	70	15.420	48.031 105.741	1.00 64.80	0
ATOM	632	CG	TYR	70	15.533	47.964 104.231	1.00 70.91	0
ATOM	633	CD1	TYR	70	15.026	48.993 103.431	1.00 73.06	0
ATOM	634	CE1	TYR	70	15.082	48.924 102.041	1.00 68.38	0
ATOM	635	CD2	TYR	70	16.107	46.857 103.597	1.00 73.86	0
ATOM	636		TYR	70	16.171	46.780 102.200	1.00 70.94	0
ATOM	637	CZ	TYR	70	15.654	47.820 101.433	1.00 72.52	0
ATOM	638	ОН	TYR	70	15.712	47.779 100.062	1.00 70.35	0
ATOM	640	C.	TYR	70	13.943	47.007 107.538	1.00 2.00	0
ATOM	641	ŏ	TYR	70	13.967	45.771 107.610	1.00 64.08	0
ATOM	642	N	ASP	71	13.821	47.789 108.608	1.00 7.87	0
MOTA	644	CA	ASP	71	13.728	47.203 109.927	1.00 6.73	0
MOTA	645	CB	ASP	71	14.030	48.242 110.998	1.00 14.88	0
ATOM	646	CG	ASP	71	15.514	48.600 111.054	1.00 25.87	0
ATOM	647	OD1		71	15.826	49.778 111.293	1.00 24.58	0
MOTA	648	002	ASP	71	16.375	47.714 110.861	1.00 21.52	0
ATOM	649	C	ASP	71	12.331	46.622 110.051	1.00 6.73	0
ATOM	650	Õ	ASP	71	12.116	45.697 110.826	1.00 14.14	0
ATOM	651	N	LEU	72	11.399	47.148 109.250	1.00 2.00	0
MOTA	653	CA	LEU	72	10.015	46.654 109.208	1.00 2.00	0
MOTA	654	CB	LEU	72	9.094	47.613 108.456	1.00 2.00	0
	655	CG	LEU	72	7.771	46.946 108.067	1.00 2.00	0
MOTA			LEU	72	7.025	46.562 109.342	1.00 2.00	0
ATOM	c c c				6.935	47.867 107.20B	1.00 2.00	0
	656			72	0.733			_
MOTA	657	CD2	LEU	72 72		45.320 108.476	1.00 2.00	0
MOTA	657 658	CD2 C	LEU LEU	72	10.014	45.320 108.476 44.401 108.814	1.00 2.00	0
MOTA MOTA	657 658 659	CD2 C	LEU LEU	72 72	10.014 9.259	45.320 108.476 44.401 108.814 45.231 107.449	1.00 2.00 1.00 44.35	0
MOTA MOTA MOTA	657 658 659 660	CD2 C O N	LEU LEU LEU	72 72 73	10.014	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693	1.00 2.00 1.00 44.35 1.00 42.59	0 0 0
ATOM ATOM ATOM ATOM	657 658 659 660 662	CD2 C O N CA	LEU LEU LEU LEU	72 72 73 73	10.014 9.259 10.848 10.968	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693 44.218 105.460	1.00 2.00 1.00 44.35 1.00 42.59 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA MOTA	657 658 659 660 662 663	CD2 C O N CA CB	LEU LEU LEU LEU LEU	72 72 73 73 73	10.014 9.259 10.848 10.968 11.846	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693 44.218 105.460 44.759 104.160	1.00 2.00 1.00 44.35 1.00 42.59 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	657 658 659 660 662 663 664	CD2 C O N CA CB	LEU LEU LEU LEU LEU LEU	72 72 73 73 73 73	10.014 9.259 10.848 10.968	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693 44.218 105.460 44.759 104.160 44.728 103.101	1.00 2.00 1.00 44.35 1.00 42.59 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	657 658 659 660 662 663 664 665	CD2 C O N CA CB CC	LEU LEU LEU LEU LEU LEU LEU LEU	72 72 73 73 73 73 73	10.014 9.259 10.848 10.968 11.846 11.248 12.324	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693 44.218 105.460 44.759 104.160 44.728 103.101 43.920 103.725	1.00 2.00 1.00 44.35 1.00 42.59 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	657 658 659 660 662 663 664	CD2 C O N CA CB CC	LEU LEU LEU LEU LEU LEU	72 72 73 73 73 73	10.014 9.259 10.848 10.968 11.846 11.248	45.320 108.476 44.401 108.814 45.231 107.449 44.005 106.693 44.218 105.460 44.759 104.160	1.00 2.00 1.00 44.35 1.00 42.59 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0

MOTA	668	0	LEU	73	11.059	41.890 107.817	1.00 2.00	0
ATOM	669	N	ARG	74	12.729	43.354 108.241	1.00 2.00	0
MOTA	671	CA	ARG	74	13.462	42.494 109.179	1.00 2.00	0
MOTA	672	CB	ARG	74	14.591	43.285 109.840	1.00 31.22	0
MOTA	673	CG	ARG	74	15.809	43.478 108.958	1.00 31.18	0
ATOM	674	CD	λRG	74	16.944	44.146 109.710	1.00 37.63	0
MOTA	675	NE	ARG	74	17.250	43.459 110.960	1.00 37.44	0
MOTA	677	$\mathbf{C}\mathbf{Z}$	ARG	74	17.210	44.041 112.157	1.00 41.10	0
MOTA	678	NH1	ARG	74	16.888	45.327 112.265	1.00 39.99	0
MOTA	681	NH2	ARG	74	17.476	43.339 113.254	1.00 39.22	0
MOTA	684	С	ARG	74	12.569	41.896 110.259	1.00 2.00	0
MOTA	685	0	ARG	74	12.621	40.703 110.544	1.00 29.18	0
MOTA	686	N	LEU	75	11.747	42.742 110.853	1.00 2.00	0
MOTA	688	CA	PEA	75	10.818	42.331 111.901	1.00 2.00 1.00 3.53	0
MOTA	689	CB	LEU	75	10.069	43.580 112.407	1.00 3.53 1.00 3.53	0
MOTA	690	CG	LEU	75	B.704	43.654 113.091	1.00 3.53	0
ATOM	691		LEU	75	8.554	45.074 113.606		0
MOTA	692	CD2	LEU	75	7.561	43.337 112.138 41.279 111.384	1.00 3.53 1.00 2.00	0
MOTA	693	Ç	LEU	75	9.850	41.279 111.384 40.284 112.043	1.00 2.00	ŏ
MOTA	694	0	LEU	75	9.594	41.514 110.190	1.00 2.00	Ö
ATOM	695	N	PHE	76	9.325	40.604 109.573	1.00 2.00	Ö
MOTA	697	CA	PHE	76	8.382		1.00 2.00	Ö
ATOM	698	CB	PHE	76	7.883	41.173 108.255 41.966 108.382	1.00 2.00	Ö
ATOM	699	CG.	PHE	76 76	6.626	43.124 107.642	1.00 2.00	ŏ
ATOM	700	CD1	PHE	76 76	6. 44 7 5.616	41.550 109.240	1.00 2.00	ŏ
MOTA	701	CD2	PHE	76	5.277	43.852 107.753	1.00 2.00	ŏ
MOTA	702	CE1	PHE	76	4.447	42.270 109.358	1.00 2.00	ō
MOTA	703 704	CE2	PHE	76 76	4.272	43.423 108.615	1.00 2.00	Õ
MOTA MOTA	705	C	PHE	76	9.016	39.271 109.322	1.00 2.00	Ō
ATOM	706	ō	PHE	76	8.339	38.260 109.363	1.00 2.00	0
ATOM	707	N	GLU	77	10.316	39.283 109.043	1.00 2.00	0
ATOM	709	CA	GLU	77	11.080	38.065 108.789	1.00 2.00	0
MOTA	710	CB	GLU	77	12.436	38.409 108.191	1.00 84.85	0
MOTA	711	CG	GLU	77	12.331	39.117 106.861.	1.00 89.26	0
ATOM	712	CD	GLU	77	13.651	39.690 106.391	1.00 98.60	0
MOTA	713	OE1	GLU	77	13.627	40.493 105.434	1.00 98.04	0
MOTA	714	OE2	GLU	77	14.709	39.345 106.973	1.00 0.97	0
MOTA	715	C	GLU	77	11.262	37.316 110.100	1.00 2.00	0
MOTA	716	0	GLU	77	11.469	36.103 110.099	1.00 80.75	0
MOTA	717	N	TYR	78	11.182"	38.045 111.216	1.00 15.29 1.00 15.29	0
MOTA	719	CA	TYR	78	11.325	37.449 112.538		Ö
MOTA	720	CB	TYR	78	11.945	38.455 113.514 37.828 114.796	1.00 67.13 1.00 69.14	ŏ
MOTA	721	CG	TYR	78	12.459	36.717 115.368	1.00 05.14	ŏ
ATOM	722	CD1	TYR	78	11.822 12.278	36.142 116.548	1.00 77.96	ŏ
MOTA	723	CE1	TYR	78	13.577	38.346 115.446	1.00 75.81	ŏ
MOTA	724	CD2	TYR	78 78	14.044	37.775 116.638	1.00 77.77	ō
MOTA	725 726	CE2 CZ	TYR TYR	78 78	13.387	36.673 117.181	1.00 77.18	0
MOTA MOTA	727	OH	TYR	78	13.826	36.115 118.365	1.00 87.14	0
MOTA	729	C	TYR	78	9.967	36.964 113.053	1.00 15.29	0
ATOM	730	õ	TYR	78	9.811	35.796 113.403	1.00 62.78	0
ATOM	731	Ň	GLY	79	8.992	37.863 113.117	1.00 2.00	0
ATOM	733	CA	GLY	79	7.675	37.485 113.582	1.00 2.00	0
ATOM	734	C	GLY	79	6.977	36.532 112.629	1.00 2.00	0
ATOM	735	Ó	GLY	79	6.226	35.649 113.052	1.00 34.11	0
MOTA	736	N	GLY	80	7.237	36.699 111.338	1.00 49.23	0
MOTA	738	CA	GLY	80	6.601	35.870 110.330	1.00 48.34	0
MOTA	739	С	GLY	80	5.699	36.782 109.520	1.00 47.91	0
MOTA	740	0	GLY	80	4.955	37.572 110.097	1.00 15.83	0
MOTA	741	N	PHE	81	5.759	36.692 108.193	1.00 2.00	0
MOTA	743	CA	PHE	81	4.948	37.558 107.343	1.00 2.00	0
MOTA	744	CB	PHE	81	5,386	37.403 105.880	1.00 2.00	0
MOTA	745	CG	PHE	81	6.673 7.899	38.134 105.556 37.506 105.685	1.00 2.00 1.00 2.00	0
MOTA								_
	746	CD1		81				Ω
ATOM	747	CD2	PHE	81	6.652	39.467 105.139	1.00 2.00	0
		CD2 CE1						0 0

750

751 752 753

754

755 756 757

758 759

760

761 762 **763**

764

765 766

772 773

MOTA

MOTA

MOTA MOTA

MOTA

MOTA MOTA MOTA

MOTA MOTA

MOTA

MOTA ATOM MOTA

MOTA

MOTA MOTA MOTA MOTA

MOTA ATOM ATOM

MOTA

MOTA MOTA MOTA MOTA

MOTA MOTA MOTA MOTA

MOTA MOTA MOTA

MOTA MOTA

MOTA MOTA

MOTA

ATOM MOTA MOTA

MOTA

MOTA

MOTA

MOTA MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA MOTA

MOTA

MOTA

MOTA MOTA

MOTA

MOTA MOTA MOTA

MOTA MOTA

MOTA

MOTA

	81	9.044 39.517 104.992	1.00 2.00 0
750 CZ PHE 751 C PHE 752 O PHE 752 O PHE 753 N PRO 754 CD PRO 755 CA PRO 756 CB PRO 757 CG PRO 758 C PRO 759 O PRO 760 N PRO 761 CD PRO 762 CA PRO 763 CB PRO 763 CB PRO 765 C PRO 766 N GLU 771 CG GLU 772 CD GLU 773 OE1 GLU 773 OE2 GLU 774 OE2 GLU 775 C SER 781 C GLU 777 N SER 781 C SER 782 CB ASN 787 CA ASN 787 CA ASN 787 CA ASN 788 CB ASN 789 CG ASN 780 CB TYR 780 CG TYR 791 CC TYR 792 CB TYR 800 CC TYR 800 CC TYR 800 CC TYR 801 CC TYR 802 CC TYR 803 CC TYR 804 CC TYR 805 CC TYR 806 C TYR 8079 CB TYR 8079 CB TYR 8079 CB TYR 808 C TYR 809 CC TYR 809 CC TYR 800 CC TYR 800 CC TYR 801 CC TYR 802 CC TYR 803 CC TYR 804 CC TYR 805 CC TYR 806 C TYR 8079 CB TYR 8079 CB TYR 8079 CB TYR 808 CC TYR 809 CC TYR 809 CC TYR 800 CC TYR 800 CC TYR 801 CC TYR 802 CC TYR 803 CC TYR 804 CC TYR 805 CC TYR 806 C TYR 8079 CB TYR 8079 CB TYR 8079 CB TYR 808 CC TYR 809 CC TYR 809 CC TYR 800 CC TYR 800 CC TYR 801 CC TYR 802 CC TYR 803 CC TYR 804 CC TYR 805 CC TYR 806 C TYR 8079 CC TYR 8079 CC TYR 8079 CC TYR 808 CC TYR 809 CC TYR 809 CC TYR 800 CC TYR 800 CC TYR 800 CC TYR 801 CC TYR 802 CC TYR 803 CC TYR 804 CC TYR 805 CC TYR 806 C TYR 8079 CC TYR 8079 CC TYR 8079 CC TYR 8070 C	87 88 88 88 88 88 88 88 89 99 99 88	3.428 37.380 107.548 2.918 36.257 107.636 2.694 38.505 107.618 3.317 39.807 107.337 1.261 38.702 107.820 0.996 39.979 107.079 2.144 40.765 107.502 0.273 37.623 107.490 -0.761 37.529 108.161 0.501 36.841 106.201 0.501 36.841 106.201 0.089 34.958 105.290 -0.514 35.812 106.201 0.089 34.958 105.083 1.550 35.427 104.971 -0.791 34.990 107.460 0.190 33.665 109.268 1.448 32.797 109.382 1.194 31.402 109.975 0.401 30.452 109.056 1.015 29.508 108.504 -0.832 30.635 108.893 -0.066 34.394 110.588 -1.194 34.406 111.085 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.984 34.978 111.163 0.985 37.146 113.412 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.785 37.146 113.413 -0.363 39.229 114.42 -1.183 40.703 113.72 -0.337 41.830 114.08 0.529 42.253 112.87 -0.364 39.467 113.91 -0.363 39.229 114.42 -1.183 40.703 113.72 -0.337 41.830 114.08 0.529 42.253 112.87 -0.364 42.253 112.87 -1.802 41.448 112.68 1.879 40.421 111.74 3.039 39.689 111.59 -2.930 41.714 113.45 4.080 40.991 113.31 4.127 39.986 112.38 5.280 39.281 112.25 -1.104 43.029 114.58 -2.264 43.238 114.21 -0.440 43.810 115.43 -1.183 40.703 113.72 -0.337 41.830 114.68 -1.1802 41.448 112.68 1.879 40.421 111.74 -2.364 45.917 118.06 -2.365 46.225 117.34 -2.675 45.551 119.45 -2.364 48.599 114.06 -2.365 48.599 114.06 -2.365 48.599 114.06 -2.365 48.599 114.06 -2.305 47.563 113.22	1.00
821 CA PHE 822 CB PHE	89 89 89 89 89 89	1.567 48.599 114.0	1.00 2.00 0 21 1.00 2.00 0 78 1.00 2.00 0 59 1.00 2.00 0 85 1.00 2.00

ATOM 829 C PHE 89 -0.664 49.615 115.985 ATOM 830 O PHE 89 -0.664 49.615 115.985 ATOM 831 N LEU 90 1.271 49.797 117.124 ATOM 833 CA LEU 90 0.810 50.856 118.014 ATOM 834 CB LEU 90 1.519 50.702 119.370 ATOM 835 CG LEU 90 1.516 49.291 119.991 ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 2.00 1.00 2.00 1.00 4.99 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 4.99 1.00 4.99 1.00 2.00	00000000
ATOM 830 O PHE 89 -0.664 49.615 115.985 ATOM 831 N LEU 90 1.271 49.797 117.124 ATOM 833 CA LEU 90 0.810 50.856 118.014 ATOM 834 CB LEU 90 1.519 50.702 119.370 ATOM 835 CG LEU 90 1.516 49.291 119.991 ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 4.99 1.00 4.99 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 4.99	0 0 0 0
ATOM 831 N LEU 90 1.271 49.797 117.124 ATOM 833 CA LEU 90 0.810 50.856 118.014 ATOM 834 CB LEU 90 1.519 50.702 119.370 ATOM 835 CG LEU 90 1.516 49.291 119.991 ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 4.99 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 4.99	0 0 0
ATOM 833 CA LEU 90 0.810 50.856 118.014 ATOM 834 CB LEU 90 1.519 50.702 119.370 ATOM 835 CG LEU 90 1.516 49.291 119.991 ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 4.99	0
ATOM 834 CB LEU 90 1.516 49.291 119.991 ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 2.00 1.00 2.00 1.00 2.00 1.00 4.99	0
ATOM 836 CD1 LEU 90 2.488 49.246 121.147	1.00 2.00 1.00 2.00 1.00 4.99	0
ATOM KIN LUL DEU JO	1.00 2.00 1.00 4.99	-
	1.00 4.99	v
ATOM 837 CD2 LEG 90 1 000 52.275 117.463	1.00 2.00	0
ATOM 838 C 122 60 1 382 53 196 118 200		0
0.734 52.459 116.175	1.00 14.03	0
ATOM 842 CA GLY 91 0.884 53.774 115.588	1.00 14.03	0
170M 843 C GLY 91 2.307 54.139 115.209	1.00 14.03	0
ATOM 844 O GLY 91 3.220 53.312 115.267	1.00 32.27 1.00 2.00	0
ATOM 845 N ASP 92 2.4/1 33.400 114.820	1.00 2.00	ŏ
ATOM 847 CA ASE 32 4 670 56 170 115 576	1.00 2.00	ŏ
ATUM 040 CD ADD 02 A 105 57 739 116 525	1.00 2.00	Õ
ATOM 049 CG 100 03 3 449 58 145 116.063	1.00 2.00	0
ATOM 650 ODI AGE 62 4 541 57 177 117 725	1.00 2.00	0
ATOM 852 C ASP 92 4.427 55.205 113.259	1.00 2.00	0
ATOM 853 0 ASP 92 5.515 54.631 113.422	1.00 2.00	0
ATOM 854 N TYR 93 3.792 55.234 112.096	1.00 2.00 1.00 2.00	0
ATOM 856 CA TYR 93 4.301 54.523 110.331	1.00 2.00 1.00 2.00	Ö
2 122 53 226 111 029	1.00 2.00	ŏ
0 075 53 801 111 227	1.00 2.00	Õ
A10M 033 03 0 006 53 176 112 004	1.00 2.00	0
2 390 52 002 111 628	1.00 2.00	0
NOM 862 CE2 TYR 93 1.445 51.362 112.405	1.00 2.00	0
NTOM 863 CZ TYR 93 0.204 51.951 112.593	1.00 2.00	0
ATOM 864 OH TYR 93 -0.736 51.315 113.379	1.00 2.00 1.00 2.00	0
ATOM 866 C TYR 93 5.088 55.399 109.992	1.00 2.00 1.00 2.00	ŏ
ATOM 867 0 11R 34 4 710 56 667 109 904	1.00 2.00	ŏ
ATOM 668 N VAL 5 380 57 607 109.004	1.00 2.00	0
ATOM 870 CA VAL 04 4 322 58 340 108 112	1.00 2.00	0
ATOM 871 CB VAL 94 3.365 57.315 107.523	1.00 2.00	0
amon 973 CG2 VAT. 94 3.551 59.396 108.903	1.00 2.00	0
ATOM 874 C VAL 94 6.253 58.614 109.780	1.00 2.00	0
ATOM 875 O VAL 94 6.447 58.457 110.985	1.00 2.00 1.00 8.40	ő
ATOM 876 N ASP 95 6.774 59.629 109.094 ATOM 878 N ASP 95 7.641 60.648 109.689	1.00 2.00	ŏ
ATOM 0/0 CA ADE 05 C 067 61 356 110 868	1.00 39.32	Õ
A10m 075 CD RDF 05 E 075 62 433 110 449	1.00 45.35	0
ATOM 880 CG ASP 35 6 227 63 167 109 471	1.00 44.75	0
200 002 ASP 95 4.937 62.561 111.127	1.00 53.79	0
NTON 883 C ASP 95 8.975 60.074 110.155	1.00 2.71	0
ATOM 884 0 ASP 95 9.092 58.877 110.421	1.00 37.69 1.00 21.97	ő
ATOM 885 N ARG 96 9.972 60.949 110.252 ATOM 887 CA ARG 96 11.322 60.589 110.685	1.00 27.39	Ö
ATOM 007 CH. 1205 ED 000 112 000	1.00 18.63	0
12 027 60 016 113 128	1.00 24.81	0
MON 890 CD APC 96 11.255 62.052 113.581	1.00 32.64	0
ATOM 891 NE ARG 96 10.551 61.833 114.850	1.00 39.46	0
1mov 992 C7 APC 96 9.890 62.774 115.525	1.00 39.86 1.00 40.95	0
ATOM 894 NH1 ARG 96 9.824 64.018 115.006	1.00 40.55	ő
ATOM 897 NH2 ARG 96 9.290 62.4/1 116.6/0	1.00 24.24	Ö
ATOM 900 C ARG 96 12.109 59.659 109.732	1.00 13.09	ō
ATOM 301 0 ANO 07 11 660 50 411 109 592	1.00 19.94	0
ATOM 902 R GIV 97 12.359 57.480 108.716	1.00 20.45	0
ATOM 905 C GLY 97 12.412 57.920 107.269	1.00 23.76	0
11.516 58.617 106.773	1.00 84.64	0
ATOM 907 N LYS 98 13.460 57.469 106.584	1.00 47 .57 1.00 46 .79	0
ATOM 909 CA LYS 98 13.698 57.806 105.182	1.00 46.79	0
ATOM 910 CB LYS 98 15.147 57.462 104.832	2.00 04.40	•

MOTA	911	CG	LYS	98	16.169	58.397 105.487	1.00 30.73	0
MOTA	912	CD	LYS	98	17.606	58.061 105.087 59.089 105.627	1.00 32.79 1.00 30.08	0
MOTA	913	CE	LYS	98	18.605 20.036	59.089 105.627 58.743 105.315	1.00 30.00	ő
MOTA	914	NZ	LYS	98 98	12.741	57.196 104.146	1.00 44.78	ŏ
MOTA	918 919	CO	LYS LYS	98	12.613	57.707 103.040	1.00 31.43	ō
MOTA MOTA	920	N	GLN	99	12.059	56.120 104.517	1.00 2.00	0
ATOM	922	CA	GLN	99	11.132	55.430 103.639	1.00 2.00	0
MOTA	923	CB	GLN	99	11.654	54.023 103.337	1.00 11.21	0
MOTA	924	CG	GLN	99	12.945	53.993 102.552	1.00 6.66	0
MOTA	925	CD	GLN	99	13.361	52.586 102.177 51.805 103.031	1.00 11.01 1.00 10.44	0
MOTA	926	OE1	GLN	99	13.802 13.229	52.247 100.895	1.00 8.18	Ö
MOTA	927	NE2	GLN	99 99	9.741	55.328 104.245	1.00 2.00	Õ
MOTA	930 931	C	GLN GLN	99	9,177	54.238 104.317	1.00 6.66	0
MOTA MOTA	932	N	SER	100	9.178	56.460 104.657	1.00 24.01	0
ATOM	934	CA	SER	100	7.839	56.475 105.257	1.00 24.01	0
MOTA	935	CB	SER	100	7.481	57.897 105.739	1.00 2.00	0
ATOM	936	OG	SER	100	8.479	58.490 106.556	1.00 2.00	0
MOTA	938	С	SER	100	6.749	55.987 104.272 55.463 104.680	1.00 24.01 1.00 2.00	0
ATOM	939	0	SER	100	5.703 7.015	55.463 104.680 56.153 102.977	1.00 27.83	ŏ
ATOM	940	N	LEU	101 101	6.084	55.786 101.913	1.00 27.83	ŏ
MOTA	942	CA CB	LEU	101	6.551	56.416 100.599	1.00 3.66	Ö
ATOM ATOM	943 944	CG	LEU	101	5.593	57.224 99.721	1.00 3.66	0
ATOM	945	CD1	LEU	101	4.209	56.591 99.749	1.00 3.66	0
ATOM	946	CD2	LEU	101	5 .5 32	58.653 100.208	1.00 3.66	0
ATOM	947	C	LEU	101	5.852	54.284 101.689	1.00 27.83	0
MOTA	948	0	LEU	101	4.731	53.851 101.467 53.480 101.725	1.00 3.66 1.00 2.00	ő
MOTA	949	N	GLU	102	6. 901 6. 71 3	52.055 101.490	1.00 2.00	ŏ
ATOM	951	CA	GLU	102 102	7.976	51.470 100.870	1.00 13.98	0
ATOM	952 953	CB CG	GLU GLU	102	9.211	52.208 101.294	1.00 13.98	0
MOTA MOTA	954	CD	GLU	102	10.116	52.539 100.136	1.00 13.98	0
ATOM	955	OE1		102	10.181	53.727 99.737	1.00 13.98	0
ATOM	956	OE2	GLU	102	10.772	51.599 99.643	1.00 13.98 1.00 2.00	0
MOTA	957	С	GLU	102	6.307	51.324 102.763 50.263 102.729	1.00 13.98	ŏ
MOTA	958	0	GLU	102	5.686 6.664	51.901 103.897	1.00 2.00	ō
MOTA	959	N	THR	103 103	6.293	51.330 105.173	1.00 2.00	0
MOTA	961 962	CA CB	THR THR	103	6,923	52.098 106.309	1.00 2.00	0
MOTA MOTA	963	OG1	THR	103	8.313	52.297 106.028	1.00 2.00	0
ATOM	965	CG2	THR	103	6.758	51.329 107.599	1.00 2.00	0
ATOM	966	С	THR	103	4.775	51.440 105.296	1.00 2.00 1.00 2.00	ő
MOTA	967	0	THR	103	4.081	50.428 105.394 52.667 105.257	1.00 2.00	ŏ
MOTA	968	N	ILE	104	4.256 2.824	52.873 105.363	1.00 2.00	Ŏ
MOTA	970	CA	ILE	104 104	2.486	54.389 105.300	1.00 12.72	0
MOTA MOTA	971 972	CB CG2		104	2.856	54.965 103.956	1.00 12.35	0
MOTA	973	CG1		104	0.996	54.618 105.548	1.00 13.84	0
MOTA	974		ILE	104	0.459	53.940 106.787 52.062 104.294	1.00 12.35 1.00 2.00	0
MOTA	975	C	ILE	104	2.074	52.062 104.294 51.581 104.544	1.00 18.28	ŏ
MOTA	976	0	ILE	104	0.975 2.690	51.868 103.127	1.00 23.45	0
MOTA	977	N	CYS CYS	105 105	2.080	51.092 102.042	1.00 21.74	0
MOTA MOTA	979 9 8 0	CA CB	CYS	105	2.722	51.458 100.708	1.00 20.76	0
ATOM	981	SG	CYS	105	2.010	52.958 99.957	1.00 18.03	0
ATOM	982	c	CYS	105	2.061	49.563 102.214	1.00 17.08 1.00 20.76	0
MOTA	983	Ō	CYS	105	1.114	48.915 101.781 48.982 102.833	1.00 20.76 1.00 2.00	0
MOTA	984	N	LEU	106	3.089	47.526 103.073	1.00 2.00	ŏ
MOTA	986	CA	LEU	106	3.124 4.519	47.042 103.495	1.00 2.00	ō
MOTA	987	CB	LEU	106 106	4.680	45.544 103.802	1.00 2.00	0
MOTA MOTA	988 989	CG	LEU LEU	106	4.200	44.694 102.639	1.00 2.00	0
ATOM	990		LEU	106	6.133	45.247 104.053	1.00 2.00	0
ATOM	991	C	LEU	106	2.154	47.179 104.178	1.00 2.00	0
ATOM	992	ō	LEU	106	1.589	46.088 104.192 48.107 105.116	1.00 2.00 1.00 2.00	0
ATOM	993	N	LEU	107	1.992	48.10/ 105.116	2.00 2.00	J

MOTA

1076

ОН

TYR

 $\langle \tilde{\cdot} \cdot \rangle$

	1070	o myn	114	-6.729	41.417 107.155	1.00 9.78	0
ATON ATOM	1078 1079	C TYR	114 114	-6.058	41.638 108.169	1.00 12.47	ŏ
ATOM	1080	N PRO	115	-7.928	41.985 106.968	1.00 34.30	0
MOTA	1081	CD PRO	115	-8.843	41.845 105.826 42.912 107.944	1.00 24.86 1.00 34.30	0
ATOM	1082	CA PRO	115 115	-8.488 -9.862	43.227 107.365	1.00 24.86	Õ
ATOM ATOM	1083 1084	CB PRO	115	-9.640	43.117 105.921	1.00 24.86	ŏ
ATOM	1085	C PRO	115	-8.586	42.310 109.335	1.00 34.30	0
ATOM	1086	O PRO	115	-8.017	42.837 110.285	1.00 24.86 1.00 2.00	0
MOTA	1087	N GLU	116	-9.275 -9.477	41.181 109.445 40.538 110.742	1.00 2.00 1.00 2.00	0
ATON ATOM	1089 1090	CA GLU	116 116	-10.577	39.469 110.637	1.00 35.30	ŏ
ATOM	1091	CC GLU	116	-11.673	39.726 109.593	1.00 37.08	0
MOTA	1092	CD GLU	116	-12.739	40.728 110.027	1.00 43.38	0
MOTA	1093	OE1 GLU	116	-13.060 -13.274	41.641 109.235 40.599 111.147	1.00 47.93 1.00 48.80	0
MOTA	1094	OE2 GLU	116 116	-8.213	39.902 111.358	1.00 2.00	ŏ
MOTA MOTA	1095 1096	o GIN	116	-8.296	39.287 112.424	1.00 32.95	0
ATON	1097	N ASN	117	-7.054	40.067 110.712	1.00 2.00	0
ATOM	1099	CA ASN	117	-5.820	39.455 111.211 38.220 110.375	1.00 2.00 1.00 6.12	0
ATON	1100	CB ASN	117 117	-5. 4 57 -6.552	38.220 110.375 37.174 110.353	1.00 8.10	ŏ
MOTA	1101 1102	CG ASN OD1 ASN	117	-7.584	37.351 109.700	1.00 17.57	Ö
MOTA MOTA	1103	ND2 ASN	117	-6.328	36.071 111.048	1.00 14.33	0
MOTA	1106	C ASN	117	-4.613	40.372 111.211	1.00 2.00 1.00 8.94	0
MOTA	1107	O ASN	117	-3.496	39.952 111.506 41.620 110.862	1.00 8.94 1.00 2.00	Ö
MOTA	1108	N PHE	118 118	-4.821 -3.715	42.559 110.815	1.00 2.00	ō
ATOM ATOM	1110 1111	CB PHE	118	-3.135	42.617 109.395	1.00 2.00	0
MOTA	1112	CG PHE	118	-1.902	43.471 109.256	1.00 2.00 1.00 2.00	0
MOTA	1113	CD1 PHE	118	-0.647	42.886 109.155 44.857 109.177	1.00 2.00 1.00 2.00	0
ATOM	1114	CD2 PHE	118 118	-1.995 0.503	43.680 108.972	1.00 2.00	ŏ
MOTA MOTA	1115 1116	CE1 PHE	118	-0.857	45.647 108.997	1.00 2.00	0
ATOM	1117	CZ PHE	118	0.393	45.060 108.894	1.00 2.00	0
ATOM	1118	C PHE	118	-4.392	43.854 111.194 44.259 110.576	1.00 2.00 1.00 2.00	0
MOTA	1119	O PHE	118 119	-5.384 -3.874	44.483 112.240	1.00 12.11	ŏ
MOTA MOTA	1120 1122	N PHE	119	-4.467	45.700 112.721	1.00 12.11	0
ATOM	1123	CB PHE	119	-5.174	45.400 114.022	1.00 2.00	0
MOTA	1124	CG PHE	119	-6.229	44.355 113.889 43.008 113.975	1.00 2.00 1.00 2.00	ő
MOTA	1125	CD1 PHE	119 119	-5.903 -7.556	44.716 113.655	1.00 2.00	Ō
MOTA MOTA	1126 1127	CD2 PHE		-6.881	42.035 113.829	1.00 2.00	0
ATOM	1128	CE2 PHE	119	-8.546	43.753 113.506	1.00 2.00 1.00 2.00	0
MOTA	1129	CZ PHE	119	-8.209	42.410 113.592 46.806 112.905	1.00 2.00 1.00 12.11	Õ
MOTA	1130	C PHE	119 119	-3.472 -2.342	46.577 113.346	1.00 2.00	0
MOTA MOTA	1131 1132	O PHE		-3.893	48.008 112.537	1.00 2.00	0
ATOM	1134	CA LEU	120	-3.043	49.179 112.672	1.00 2.00 1.00 2.00	0
MOTA	1135	CB LEU		-2.770 -2.127	49.809 111.303 48.910 110.259	1.00 2.00 1.00 2.00	ŏ
ATOM	1136	CG LEU		-2.127	49.623 108.924	1.00 2.00	0
MOTA MOTA	1137 1138	CD2 LEU		-0.731	48.539 110.685	1.00 2.00	0
MOTA	1139	C LEU	120	-3.766	50.176 113.559	1.00 2.00 1.00 2.00	0
MOTA	1140	o LEU		-4.963	50.401 113.375 50.730 114.542	1.00 2.00	ŏ
MOTA	1141	N LEU		-3.069 -3.670	51.714 115.415	1.00 2.00	0
MOTA MOTA	1143 1144	CA LEU		-3.351	51.428 116.890	1.00 2.00	0
ATOM	1145	CG LEU	121	-4.142	50.320 117.598	1.00 2.00	0
MOTA	1146	CD1 LBU	121	-3.648	50.150 119.012	1.00 2.00 1.00 2.00	0 0
ATOM	1147	CD3 TBC		-5.609 -3.106	50.657 117.581 53.060 115.004	1.00 2.00	Ö
MOTA MOTA	1148 1149	C LEU		-2.213	53.148 114.166	1.00 2.00	0
ATOM	1150	N ARC		-3.631	54.118 115.592	1.00 2.00	0
MOTA	1152	CA ARC	122	-3.162	55.434 115.251	1.00 2.00 1.00 2.00	0
MOTA	1153	CB ARC		-4.336 -4.047	56.404 115.224 57.765 114.619	1.00 2.00	0
MOTA	1154	CG ARC	122	-4.04/	5, 114.015		**

- . . .

> mon/	1155	C D	ARG	122	-5.298	58 565	114.683	1.00	2.00	0
MOTA MOTA	1156	CD NE	ARG	122	-5.207		114.014	1.00	2.00	ŏ
MOTA	1158	CZ	ARG	122	-6.274		113.685	1.00	2.00	Ō
MOTA	1159	-	ARG	122	-7.512		113.956	1.00	2.00	0
MOTA	1162		ARG	122	-6.104	61.762	113.102	1.00	2.00	0
ATOM	1165	C	ARG	122	-2.104	55.942	116.208	1.00	2.00	0
MOTA	1166	ŏ	ARG	122	-2.163		117.423	1.00	2.00	0
MOTA	1167	N	GLY	123	-1.135	56.635	115.631	1.00	2.00	0
MOTA	1169	CA	GLY	123	-0.073	57.235	116.399	1.00	2.00	0
ATOM	1170	C	GLY	123	-0.205	58.730	116.198	1.00	2.00	0
MOTA	1171	0	GLY	123	-0.865		115.262	1.00		0
MOTA	1172	N	asn	124	0.437	59.508	117.058	1.00	2.00	0
MOTA	1174	CA	asn	124	0.390		116.958	1.00	2.00	0
MOTA	1175	CB	asn	124	1.003		118.199	1.00	4.11	0
MOTA	1176	CC	asn	124	2.477	61.333	118.313	1.00	8.88	0
MOTA	1177		asn	124	2.940		118.486	1.00	8.54	0
MOTA	1178		ASN	124	3.240	62.400	118.236	1.00	6.38	0
MOTA	1181	Ċ	asn	124	1.103		115.708	1.00	2.00	0
MOTA	1182	0	ASN	124	1.143		115.430	1.00	5.53	0
MOTA	1183	N	HIS	125	1.678		114.963 113.723	1.00		0
MOTA	1185	CA	HIS	125	2.3 7 2 3.759	60.815	113.744	1.00		0
MOTA	1186	CB	HIS	125 125	4.790		114.362	1.00		ŏ
MOTA	1187	CG	HIS	125	4.765		115.493	1.00	8.85	ő
MOTA	1188 1189		HIS HIS	125	6.006		113.772	1.00		ŏ
MOTA MOTA	1191		HIS	125	6.686		114.503	1.00		ŏ
ATOM	1192		HIS	125	5.954		115.554	1.00		ŏ
ATOM	1194	C	HIS	125	1.555		112.523	1.00	16.39	ō
ATOM	1195	ŏ	HIS	125	2.090		111.513	1.00		Õ
ATOM	1196	Ň	GLU	126	0.241		112.686	1.00	2.00	Ó
ATOM	1198	CA	GLU	126	-0.731		111.664	1.00	2.00	0
ATOM	1199	CB	GLU	126	-1.462	58.725	112.050	1.00	2.00	0
ATOM	1200	CG	GLU	126	-0.783	57.443	111.570	1.00	2.00	0
ATOM	1201	CD	GLU	126	0.578	57.217	112.190	1.00	2.00	0
MOTA	1202	OE1	GLU	126	1.615		111.504		2.00	0
MOTA	1203	OE2	GLU	126	0.610		113.385	1.00	2.00	0
ATOM	1204	С	GLU	126	-1.683		111.705	1.00	2.00	0
MOTA	1205	0	GLU	126	-2.903		111.837	1.00	2.00	0
MOTA	1206	N	CYS	127	-1.097		111.578	1.00	2.00	0
MOTA	1208	CA	CYS	127	-1.860		111.681	1.00	2.00	0
ATOM	1209	CB	CYS	127	-2.037		113.167		26.08 39.49	0
ATOM	1210	SG	CYS	127	-3.052		113.546 110.976	1.00	2.00	Ö
ATOM	1211	C	CYS	127	-1.142 0.048		111.204		23.46	ŏ
ATOM	1212 1213	0	CYS	127 128	-1.912	65 421	110.142	1.00	2.00	ŏ
MOTA	1215	N CA	ALA ALA	128	-1:489		109.335	1.00	2.00	ŏ
MOTA MOTA	1215	CB	ALA	128	-2.686	67.412	109.031	1.00	2.00	ŏ
ATOM	1217	C	ALA	128	-0.385	67.413	109.910	1.00	2.00	ō
MOTA	1218	ŏ	ALA	128	0.690		109.346	1.00	2.00	0
ATOM	1219	Ñ	SER	129	-0.649	68.097	111.021	1.00	2.00	0
ATOM	1221	CA	SER	129	0.331	68.981	111.675	1.00	2.00	0
ATOM	1222	CB	SER	129	-0.288		112.937	1.00	28.29	0
MOTA		CD				69.580	*****	1.00		
	1223	oG	SER	129	-0.836	68.562	113.760	1.00	32.64	Ō
MOTA					-0.836 1.671	68.562 68.344	113.760 112.042	1.00	32.64	0
atom Atom	1223 1225 1226	OC	SER	129 129 129	-0.836 1.671 2.669	68.562 68.344 69.048	113.760 112.042 112.186	1.00 1.00 1.00	32.64 2.00 24.43	0
ATOM ATOM	1223 1225 1226 1227	0G C N	SER SER SER ILE	129 129 129 130	-0.836 1.671 2.669 1.687	68.562 68.344 69.048 67.027	113.760 112.042 112.186 112.226	1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00	0 0 0
MOTA MOTA MOTA	1223 1225 1226 1227 1229	OG C O	SER SER SER ILE ILE	129 129 129 130 130	-0.836 1.671 2.669 1.687 2.920	68.562 68.344 69.048 67.027 66.343	113.760 112.042 112.186 112.226 112.572	1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00	0 0 0
ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230	OG C O N CA CB	SER SER SER ILE ILE ILE	129 129 129 130 130	-0.836 1.671 2.669 1.687 2.920 2.671	68.562 68.344 69.048 67.027 66.343 65.177	113.760 112.042 112.186 112.226 112.572 113.588	1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00	0 0 0
ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231	OG C O N CA CB CG2	SER SER SER ILE ILE ILE ILE	129 129 130 130 130	-0.836 1.671 2.669 1.687 2.920 2.671 3.999	68.562 68.344 69.048 67.027 66.343 65.177 64.584	113.760 112.042 112.186 112.226 112.572 113.588 114.058	1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232	OG C O N CA CB CG2 CG1	SER SER SER ILE ILE ILE ILE	129 129 130 130 130 130	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854	1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00	0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233	OG C O N CA CB CG2 CG1 CD1	SER SER SER ILE ILE ILE ILE ILE	129 129 129 130 130 130 130 130	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554	1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00	0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234	OG C O N CA CB CG2 CG1 CD1	SER SER SER ILE ILE ILE ILE ILE ILE	129 129 130 130 130 130 130 130	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820 65.829	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234 1235	OG C O N CA CB CG2 CG1 CD1 C	SER SER SER ILE ILE ILE ILE ILE ILE	129 129 130 130 130 130 130 130 130	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563 4.776	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820 65.829 65.962	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289 111.113	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234 1235 1236	OG C O N CA CB CG2 CG1 CD1 C	SER SER SER ILE ILE ILE ILE ILE ILE ILE	129 129 130 130 130 130 130 130 130 131	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563 4.776 2.751	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820 65.829 65.962 65.253	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289 111.113 110.397	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234 1235 1236 1238	OG C O N CA CB CG2 CG1 CD1 C O N	SER SER SER ILE ILE ILE ILE ILE ILE ILE ASN ASN	129 129 130 130 130 130 130 130 130 131	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563 4.776 2.751 3.209	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820 65.829 65.962 65.253 64.747	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289 111.113 110.397	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234 1235 1236 1238 1239	OG C O N CA CB CG2 CG1 CD1 C O N CA CB	SER SER ILE ILE ILE ILE ILE ILE ILE ASN ASN	129 129 130 130 130 130 130 130 130 131 131	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563 4.776 2.751 3.209 2.027	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.829 65.829 65.962 65.962 64.747 64.290	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289 111.113 110.397 109.091	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1223 1225 1226 1227 1229 1230 1231 1232 1233 1234 1235 1236 1238	OG C O N CA CB CG2 CG1 CD1 C O N	SER SER ILE ILE ILE ILE ILE ILE ASN ASN	129 129 130 130 130 130 130 130 130 131	-0.836 1.671 2.669 1.687 2.920 2.671 3.999 2.012 2.828 3.563 4.776 2.751 3.209	68.562 68.344 69.048 67.027 66.343 65.177 64.584 65.717 66.820 65.829 65.962 65.253 64.747 64.290 62.929	113.760 112.042 112.186 112.226 112.572 113.588 114.058 114.854 115.554 111.289 111.113 110.397	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	32.64 2.00 24.43 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	0 0 0 0 0 0 0 0 0 0 0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1242 1245 1246 1247 1250 1251 1252 1253 1255 1256 1266 1267 1268 1268 1269	ND2 ASN C ASN O ASN N ARG CA ARG CB ARG CB ARG CC ARG CC ARG NE ARG CZ ARG NH1 ARG NH2 ARG C ARG O ARG N ILE CA ILE CG1 ILE CG1 ILE CC1 ILE	131 131 132 132 132 132 132 132 132 132	3.849 6. 5.001 6 3.051 6 3.386 6 2.327 6 2.505 7 2.505 7 3.849 7 4.080 7 4.080 7 4.080 7 4.080 6 5.359 6 5.314 6 6.652 6 6.652 6 6.215 7 5.761 6	2.313 107.718 5.914 108.374 5.854 107.951 6.971 108.255 8.234 107.627 9.269 108.006 0.673 107.477 0.734 105.962 0.533 105.434 1.479 104.852 2.697 104.711 1.211 104.424 8.731 107.990 9.477 107.225 8.324 109.127 8.801 109.457 9.644 110.746 1.055 110.441 8.999 111.800 9.792 113.065	1.00 2.00 1.00 28.24 1.00 2.00 1.00 2.00 1.00 2.00 1.00 22.25 1.00 26.48 1.00 27.28 1.00 36.02 1.00 34.03 1.00 30.29 1.00 37.77 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 20.12 1.00 19.34 1.00 22.74	000000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA	1270 1271 1272 1273 1275 1276	C ILE O ILE N TYR CA TYR CB TYR	133 133 134 134 134	7.794 6 8.915 6 7.521 6 8.571 6 8.330 6	7.779 109.553 8.073 109.127 6.583 110.080 5.567 110.270 4.766 111.561	1.00 2.00 1.00 21.74 1.00 2.00 1.00 2.00 1.00 27.01	00000
MTOM ATOM ATOM ATOM ATOM	1277 1278 1279 1280 1281	CG TYR CD1 TYR CE1 TYR CD2 TYR CE2 TYR	134 134 134 134 134	7.092 6 7.016 6 9.380 6 9.312 6	5.648 112.767 5.789 113.486 6.651 114.557 6.392 113.160 7.254 114.228 7.384 114.925	1.00 19.94 1.00 23.86 1.00 24.86 1.00 24.55 1.00 23.33 1.00 28.93	00000
ATOM ATOM ATOM ATOM ATOM	1282 1283 1285 1286 1287	CZ TYR OH TYR C TYR O TYR N GLY	134 134 134 134	8.043 6 8.823 6 8.986 6 8.847 6	77.384 114.925 88.259 115.984 64.606 109.139 53.404 109.368 55.127 107.922 54.275 106.787	1.00 27.73 1.00 2.00 1.00 24.62 1.00 11.68 1.00 10.40	0000
MOTA MOTA MOTA MOTA	1289 1290 1291 1292 1294	CA GLY C GLY O GLY N PHE CA PHE	135 135 135 136 136	8.028 6 8.010 6 7.110 6 6.062 6	53.772 105.882 54.127 104.713 52.963 106.393 52.412 105.549 51.757 106.347	1.00 9.03 1.00 20.70 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	1295 1296 1297 1298 1299	CB PHE CG PHE CD1 PHE CD2 PHE CE1 PHE CE2 PHE	136 136 136 136 136	4.091 6 4.664 5 2.713 6 3.882 5	50.831 105.524 59.734 104.870 61.036 105.424 58.846 104.131 60.155 104.688	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1300 1301 1302 1303 1304 1306	CE2 PHE CZ PHE C PHE O PHE N TYR CA TYR	136 136 136 137 137	2.507 5.421 5.121 5.199 4.606	59.050 104.037 63.358 104.563 62.926 103.445 64.616 104.940 65.530 103.977	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000
MOTA MOTA MOTA MOTA MOTA	1307 1308 1309 1310	CB TYR CG TYR CD1 TYR CE1 TYR CD2 TYR	137 137 137 137 137	3.886 2.550 2.228 4.893	66.859 104.598 67.921 103.564 68.203 103.257 69.196 102.327 68.666 102.901	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1312 1313 1314 1316 1317 1318 1320 1321 1322	CE2 TYR CZ TYR OH TYR C TYR O TYR N ASP CA ASP CB ASP CG ASP	137 137 137 137 137 138 138 138	3.247 2.920 5.566 5.187 6.802	69.644 101.985 69.903 101.707 70.893 100.823 65.785 102.822 65.669 101.646 66.153 103.155 66.439 102.147 66.971 102.810 68.173 103.705 69.327 103.255	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 28.59 1.00 31.85 1.00 34.04	000000000
MOTA MOTA MOTA	1323 1324 1325	OD2 ASP	138 138 138	8.999 8.432 8.118	67.963 104.867 65.203 101.308	1.00 31.26 1.00 2.00	0

0

65.309 100.102 1.00 27.39 ASP 8.322 138 1326 0 MOTA 1.00 31.40 8.097 64.030 101.926 0 139 1327 **GLU** MOTA N 62.797 101.200 1.00 28.32 8.366 GLU 139 1329 CA MOTA 1.00 2.00 61.608 102.149 139 8.380 GLU CB MOTA 1330 8.965 60.361 101.526 1.00 4.78 1331 CG GLU 139 MOTA 59.231 102.525 1.00 3.01 0 139 9.167 CD GLU 1332 MOTA 58.050 102.087 1.00 2.00 0 OE1 GLU 139 9.135 1333 MOTA 9.372 59.518 103.738 62.572 100.117 1.00 4.61 0 139 OE2 GLU MOTA 1334 1.00 30.47 0 139 GLU С MOTA 1335 1.00 2.00 62.419 98.941 62.553 100.511 62.355 99.553 O 139 7.660 GLU MOTA 1336 0 6.055 1.00 12.32 0 140 1337 CYS N MOTA 3.99 1.00 0 CYS 140 4.981 CA 1339 MOTA 62.543 100.221 61.308 101.477 63.346 98.416 1.00 18.56 140 3.625 0 CYS MOTA 1340 CB 3.313 5.128 5.117 1.00 23.54 1.00 12.32 0 1341 CYS 140 SG MOTA 140 140 0 С CYS MOTA 1342 97.257 98.763 97.786 62.961 1.00 21.26 0 1343 0 CYS MOTA 1.00 41.55 1.00 40.86 64.616 0 5.305 LYS 141 1344 N ATOM 141 5.446 65.696 0 LYS MOTA 1346 CA 5.655 67.023 98.531 1.00 38.66 0 MOTA CB LYS 141 1347 5.853 5.886 1.00 32.19 1.00 35.28 68.246 69.522 0 97.646 CG LYS 141 1348 MOTA 98.468 97.584 0 141 ATOM 1349 CD LYS 70.750 1.00 36.09 141 141 0 5.895 CE LYS 1350 MOTA 5.552 6.586 98.380 1.00 40.44 0 LYS 71.948 NZ MOTA 1351 96.791 95.582 65.467 65.642 1.00 40.27 0 MOTA 141 1355 LYS С 1.00 28.60 141 142 6.431 7.731 0 MOTA LYS 1356 0 1.00 23.84 1.00 23.84 1.00 22.75 65.073 97.319 0 ATOM 1357 N ARG 96.512 97.444 64.834 64.566 0 8.912 ARG 142 1359 CA ATOM 10.097 11.368 0 ARG 142 CB MOTA 1360 64.101 96.778 1.00 24.10 0 MOTA 142 CG ARG 1361 1.00 33.58 1.00 37.62 142 142 12.474 12.099 97.799 0 64.073 CD ARG 1362 ATOM 63.283 62.018 98.963 0 ARG MOTA 1363 NE 99.150 1.00 46.30 0 12.464 62.010 61.404 98.245 61.363 100.234 7 689 95.519 CZ ARG NH1 ARG 142 MOTA 1365 1.00 44.23 1.00 42.22 142 142 0 13.224 MOTA 1366 12.060 0 1369 NH2 ARG MOTA 8.732 8.995 1.00 23.84 0 142 142 MOTA 1372 ARG С 0 63.838 94.330 1.00 24.93 MOTA 1373 0 ARG 95.999 95.125 8.268 62.550 1.00 2.00 0 ARG 143 MOTA 1374 N 2.00 0 ARG 1.00 143 8.104 61.413 CA 1376 MOTA 2.86 0 8.267 60.134 95.941 1.00 143 1377 CB ARG MOTA 96.455 97.530 9.686 59.941 1.00 2.86 0 1378 ARG 143 MOTA CG 1.00 8.64 0 CD 143 143 9.792 58.874 ARG MOTA 1379 4.03 0 9.490 57.527 97.049 1.00 ARG MOTA 1380 NE 56.439 97.816 1.00 6.91 0 9.492 1382 ARG 143 MOTA CZ1.00 7.13 0 99.115 NH1 ARG 143 9.782 56.527 MOTA 1383 0 9.203 55.257 97.287 1.00 12.97 143 MOTA 1386 NH2 ARG 1.00 6.796 6.707 5.791 2.00 0 61.411 94.367 143 1389 С ARG MOTA 1.00 12.04 0 60.818 93.295 ARG 143 MOTA 1390 0 2.00 62.097 94.897 1.00 0 TYR 144 MOTA 1391 N 94.274 2.00 0 1.00 144 4.459 62.120 CA TYR 1393 MOTA 61.150 59.689 0 3.509 95.021 1.00 2.00 TYR 144 MOTA 1394 CB 94.953 1.00 2.00 0 3.902 144 MOTA 1395 CG TYR 2.00 0 95.716 1.00 4.946 CD1 TYR 144 59.203 1396 MOTA 1.00 0 5.336 57.885 95.635 2.00 144 MOTA 1397 CE1 TYR 2.00 94.102 1.00 144 3.248 58.804 MOTA 1398 CD2 TYR 0 2.00 CE2 TYR 144 3.633 57.483 94.017 1.00 MOTA 1399 1.00 94.786 94.703 2.00 0 4.683 57.034 1400 144 MOTA CZ TYR 0 5.113 3.789 2.00 OH TYR 144 55.738 1.00 MOTA 1401 0 63.502 94.169 1.00 2.00 MOTA 1403 С TYR 144 93.297 95.058 1.00 0 2.00 144 4.129 64.316 1404 0 TYR MOTA 0 145 2.827 63.750 1.00 2.00 ASN MOTA 1405 N asn Asn 95.083 1.00 2.00 65.000 145 2.081 MOTA 1407 CA 1.159 93.867 1.00 7.57 0 145 65.078 ASN CB MOTA 1408 93.748 0.255 63.861 1.00 5.76 0 1409 CG ASN 145 MOTA 9.42 0 94.329 1.00 63.B26 145 -0.823 ATOM 1410 OD1 ASN 0 145 0.702 62.851 93.007 1.00 5.88 MOTA 1411 ND2 ASN 65.137 96.354 1.00 2.00 0 1.229 ASN 145 ATOM 1414 С 1.00 96.938 0 0.760 64.143 11.61 ASN 145 0 MOTA 1415 1.001 66.391 96.737 1.00 2.00 1416 N ILE 146 MOTA

ATOM	1418	CA :	ILE	146		0.217	66.745	97.901	1.00	2.00	0
ATOM	1419	CB	ILE	146		0.168	68.278 68.690	98.048 99.278	1.00	2.00 2.00	0
MOTA			ILE ILE	146 146	•	-0.607 1.591	68.798	98.201	1.00	2.00	Ō
MOTA MOTA			ILE	146		1.679	70.270	98.360	1.00	2.00	0
MOTA			ILE	146		-1.181	66.143	97.851 98.881	1.00	2.00 2.00	0
MOTA		-	ILE	146		-1.805 -1.680	65.927 65.839	96.668	1.00	2.00	0
MOTA			LYS LYS	147 147		-3.000	65.241	96.594	1.00	2.00	Ō
MOTA MOTA			LYS	147		-3.412	65.007	95.131		15.32	0
ATOM			LYS	147		-4.880	64.643	94.902 94.280		21.64 29.48	0
MOTA	1430		LYS	147		-5.024 -4.704	63.248 62.128	95.300		25.79	ŏ
MOTA	1431 1432		LYS LYS	147 147		-4.388	60.777	94.716		22.31	0
MOTA MOTA	1436		LYS	147		-2.864	63.928	97.345	1.00	2.00 8.30	0
MOTA	1437	-	LYS	147		-3.652 -1.815	63.630 63.180	98.233 97.023	1.00	9.36	Ö
MOTA	1438		LEU	148 148		-1.582	61.892	97.651	1.00	9.36	Ō
MOTA MOTA	1440 1441		Leu Leu	148		-0.360	61.202	97.037	1.00	2.00	0
ATOM	1442	CG	LEU	148		-0.207	59.721	97. 4 15 96.924	1.00	2.00 2.00	0
ATOM	1443	CD1		148		-1.398 1.078	58.910 59.168	96.835	1.00	2.00	ŏ
ATOM	1444	CD2 C	LEU	148 148		-1.423	62.040	99.157	1.00	9.36	0
MOTA MOTA	1445 1446	0	LEU	148		-2.097	61.351	99.899	1.00	2.00	0
ATOM	1447	N	TRP	149		-0.555	62.943	99.611 101.042	1.00	2.00 2.00	Ö
MOTA	1449	CA	TRP	149 149		-0.360 0.559	64.359	101.276	1.00	9.48	Ŏ
MOTA	1450 1451	CB CG	TRP TRP	149		0.690	64.767	102.748		13.35	0
MOTA MOTA	1452		TRP	149		0.095	65.915	103.387 104.725	1.00	9.36 12.67	0
MOTA	1453	CE2	TRP	149		0.512 -0.751	65.907 66.946	102.951	1.00	9.36	Ō
MOTA	1454 1455	CE3	TRP TRP	149 149		1.415	64.135	103.713	1.00	12.84	0
MOTA MOTA	1456	NE1	TRP	149		1.315	64.811	104.895	1.00	14.40 10.82	0
MOTA	1458	CZ2	TRP	149		0.119 -1.138	67.912	105.632 103.858	1.00	10.25	Ö
MOTA	1459	CZ3 CH2	TRP TRP	149 149		-0.702	67.B70	105.182	1.00	21.34	0
MOTA MOTA	1460 1461	C	TRP	149		-1.712	63.427		1.00	2.00 9.36	0
ATOM	1462	0	TRP	149		-2.095	62.726 64.434	102.647 101.216	1.00	2.00	ŏ
MOTA	1463	N CA	LYS LYS	150 150		-3.756	64.777	101.725	1.00	2.00	0
MOTA MOTA	1465 1466	CB	LYS	150		-4.392	65.810		1.00	25.82 27.78	0
MOTA	1467	CG	LYS	150		-3.695 -4.145	67.135 67.981		1.00	24.78	Ö
MOTA	1468	CD	LYS LYS	150 150		-4.236	69.442	100.053	1.00	28.33	0
MOTA MOTA	1 46 9 1 47 0	CE NZ	LYS	150		-5.243	69.673	101.132	1.00	35.49 2.00	0
ATON	1474	C	LYS	150		-4.661	63.536 63.397		1.00	28.71	ŏ
MOTA	1475	0	LYS Thr	150 151		-5.468 -4.525		**	1.00	2.00	0
MOTA MOTA	1476 1478	N CA	THR	151		-5.315	61.403		1.00	2.00 18.71	0
MOTA	1479	CB	THR	151		-5.111	60.670	99.408	1.00	21.97	0
MOTA	1480		THR THR	151 151		-5.491 -5.964		99.332	1.00	19.85	0
MOTA MOTA	1482 1483	CG2 C	THR	151		-4.920	60.487	101.925	1.00		0
ATOM	1484	Ö	THR	151		-5.760			1.00		0
MOTA	1485	N	PHE	152 152		-3.645 -3.161		103.398	1.00	2.00	0
MOTA MOTA	1487 1488	CA CB	PHE PHE	152		-1.638	59.759	103.502	1.00	13.78	0 0
ATOM	1489	CG	PHE	152		-0.956				13.78 13.78	ŏ
MOTA	1490	CD1		152		0.034			1.00	13.78	0
MOTA	1491	CD2		152 152		0.679	57.71	7 101.260	1.00	13.78	0
MOTA MOTA	1492 1493	CE1		152		-0.64	56.19	4 102.578	1.00		0 0
ATOM	1494	CZ	PHE	152		0.349 -3.76			1.00		0
MOTA	1495	C	PHE	152 152		-4.38		0 105.397	1.00	13.78	0
MOTA	1496 1497	N 0	PHE THR	153		-3.65	7 61.54		1.00		0
MOTA MOTA	1499	CA	THR	153		-4.21					Ö
ATOM	1500	CB	THR	153		-4.16	טס.נס ס	. 130.310			

ATOM 1529 CE1 PHE 156 -1.309 57.130 107.710 1.00 2.00 ATOM 1530 CE2 PHE 156 -0.518 59.400 107.662 1.00 2.00 ATOM 1531 CZ PHE 156 -0.295 58.039 107.439 1.00 2.00 ATOM 1532 C PHE 156 -6.287 58.743 109.931 1.00 2.00 ATOM 1533 O PHE 156 -6.463 58.119 110.974 1.00 2.00 ATOM 1534 N ASN 157 -7.055 59.758 109.572 1.00 2.00 ATOM 1536 CA ASN 157 -8.144 60.233 110.405 1.00 2.00 ATOM 1537 CB ASN 157 -8.811 61.475 109.779 1.00 2.00 ATOM 1538 CG ASN 157 -7.861 62.661 109.577 1.00 2.00 ATOM 1539 OD1 ASN 157 -7.861 62.661 109.577 1.00 2.00 ATOM 1540 ND2 ASN 157 -8.226 63.629 108.922 1.00 2.00 ATOM 1540 ND2 ASN 157 -6.669 62.601 110.143 1.00 2.00 ATOM 1543 C ASN 157 -9.230 59.179 110.631 1.00 2.00 ATOM 1545 N CYS 158 -9.242 59.489 111.240 1.00 2.00 ATOM 1547 CA CYS 158 -10.074 56.914 110.304 1.00 2.00 ATOM 1548 CB CYS 158 -10.075 56.567 108.970 1.00 2.00 ATOM 1549 SG CYS 158 -10.075 56.567 108.970 1.00 2.00 ATOM 1550 C CYS 158 -10.751 56.567 108.970 1.00 2.00 ATOM 1551 O CYS 158 -11.898 57.864 108.331 1.00 2.00 ATOM 1552 N LEU 159 -8.216 55.772 111.304 1.00 2.00 ATOM 1555 CB LEU 159 -7.433 54.714 111.945 1.00 2.00 ATOM 1555 CB LEU 159 -7.433 54.714 111.945 1.00 2.00 ATOM 1555 CB LEU 159 -5.985 55.219 112.037 1.00 2.00	0
ATOM 1537 CB ASN 157 -8.811 61.475 109.779 1.00 2.00 ATOM 1538 CG ASN 157 -7.861 62.661 109.577 1.00 2.00 ATOM 1539 OD1 ASN 157 -8.226 63.629 108.922 1.00 2.00 ATOM 1540 ND2 ASN 157 -6.669 62.601 110.143 1.00 2.00 ATOM 1543 C ASN 157 -9.230 59.179 110.631 1.00 2.00 ATOM 1544 O ASN 157 -9.230 59.179 110.631 1.00 2.00 ATOM 1545 N CYS 158 -9.064 57.962 110.120 1.00 2.00 ATOM 1547 CA CYS 158 -9.064 57.962 110.120 1.00 2.00 ATOM 1548 CB CYS 158 -10.751 56.567 108.970 1.00 2.00 ATOM 1549 SG CYS 158 -10.751 56.567 108.970 1.00 2.00 ATOM 1550 C CYS 158 -9.482 55.665 110.924 1.00 2.00 ATOM 1551 O CYS 158 -9.482 55.665 110.924 1.00 2.00 ATOM 1552 N LEU 159 -8.216 55.772 111.304 1.00 2.00 ATOM 1555 CR LEU 159 -7.433 54.714 111.945 1.00 2.00 ATOM 1555 CR LEU 159 -7.433 54.714 111.945 1.00 2.00	00000
ATOM 1547 CA CYS 158 -10.074 56.914 110.304 1.00 2.00 ATOM 1548 CB CYS 158 -10.751 56.567 108.970 1.00 2.00 ATOM 1549 SG CYS 158 -11.898 57.864 108.331 1.00 2.00 ATOM 1550 C CYS 158 -9.482 55.665 110.924 1.00 2.00 ATOM 1551 O CYS 158 -10.148 54.648 111.049 1.00 2.00 ATOM 1552 N LEU 159 -8.216 55.772 111.304 1.00 2.00 ATOM 1554 CA LEU 159 -7.433 54.714 111.945 1.00 2.00 ATOM 1555 CB LEU 159 -5.985 55.219 112.037 1.00 2.00	0000000
ATOM 1554 CA LEU 159 -7.433 54.714 111.945 1.00 2.00	000000
ATOM 1556 CG LEU 159 -4.747 54.363 111.781 1.00 2.00 ATOM 1557 CD1 LEU 159 -4.993 53.449 110.617 1.00 2.00 ATOM 1558 CD2 LEU 159 -3.536 55.269 111.503 1.00 2.00 ATOM 1550 CD LEU 159 -8.010 54.454 113.361 1.00 2.00	000000
ATOM 1560 O LEU 159 -8.548 55.367 113.980 1.00 2.00 ATOM 1561 N PRO 160 -7.951 53.209 113.871 1.00 2.00 ATOM 1562 CD PRO 160 -7.504 51.978 113.208 1.00 2.00 ATOM 1563 CA PRO 160 -8.473 52.896 115.209 1.00 2.00 ATOM 1564 CB PRO 160 -8.398 51.375 115.269 1.00 2.00 ATOM 1565 CG PRO 160 -8.416 50.956 113.838 1.00 2.00	000000
ATOM 1566 C PRO 160 -7.535 53.516 116.228 1.00 2.00 ATOM 1567 O PRO 160 -6.329 53.463 116.031 1.00 2.00 ATOM 1568 N ILE 161 -8.062 54.073 117.315 1.00 10.42 ATOM 1570 CA ILE 161 -7.206 54.717 118.312 1.00 10.42 ATOM 1571 CB ILE 161 -7.862 55.995 118.918 1.00 2.00 ATOM 1572 CG2 ILE 161 -8.493 56.837 117.823 1.00 2.00 ATOM 1573 CG1 ILE 161 -8.899 55.612 119.987 1.00 2.00 ATOM 1574 CD1 ILE 161 -9.428 56.766 120.775 1.00 2.00 ATOM 1575 C ILE 161 -9.428 56.766 120.775 1.00 2.00 ATOM 1576 O ILE 161 -6.741 53.859 119.492 1.00 10.42 ATOM 1576 O ILE 161 -5.808 54.254 120.193 1.00 2.00 ATOM 1577 N ALA 162 -7.387 52.712 119.720 1.00 16.67 ATOM 1579 CF ALA 162 -7.036 51.832 120.837 1.00 16.67	00000000000

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1581 1582 1583 1585 1586 1587 1588 1589 1591 1592 1593 1594 1595 1596	CB ALA C ALA O ALA O ALA CA ALA CB ALA C ALA O ALA O ALA O ALA O ALA O ILE CB ILE CB ILE CB ILE CGI ILE CO ILE O ILE O ILE O ILE O VAL CG VAL CG VAL CG VAL	162 162 163 163 163 163 164 164 164 164 165 165 165 165	-7.580 52.409 122.120 1.00 2.00 0 -7.567 50.414 120.637 1.00 16.67 0 -8.494 50.203 119.861 1.00 2.00 0 -6.984 49.455 121.356 1.00 2.00 0 -7.379 48.052 121.267 1.00 2.00 0 -6.559 47.374 120.197 1.00 14.80 0 -7.232 47.283 122.604 1.00 2.00 0 -6.373 47.620 123.425 1.00 8.24 0 -8.069 46.263 122.813 1.00 8.09 0 -8.036 45.424 124.018 1.00 8.09 0 -9.323 45.590 124.860 1.00 10.56 0 -9.200 44.830 126.150 1.00 10.56 0 -9.566 47.055 125.187 1.00 10.56 0 -9.566 47.285 125.837 1.00 10.56 0 -7.910 43.938 123.623 1.00 8.09 0 -8.866 43.328 123.127 1.00 10.56 0 -8.866 43.328 123.503 1.00 2.00 0 -6.739 43.353 123.856 1.00 20.53 0 -6.510 41.958 123.503 1.00 2.00 0 -4.905 40.241 122.717 1.00 2.00 0 -4.460 42.686 122.273 1.00 2.00 0 -4.460 42.686 122.273 1.00 2.00 0 -6.546 41.064 125.728 1.00 2.00 0
MOTA MOTA MOTA	1606 1608 1609 1610	N ASP CA ASP CB ASP CG ASP	166 166 166 166	-8.401 39.057 125.046 1.00 16.73 0 -7.348 37.980 125.337 1.00 24.26 0 -7.245 36.914 124.212 1.00 24.02 0 -7.258 36.914 124.212 1.00 22.19 0
MOTA	1611 1612	OD1 ASP OD2 ASP	166 166	-6.145 36.776 123.611 1.00 26.91 0
MOTA MOTA	1613	C ASP	166	-8.963 39.074 120.336 1.00 12.89 0
MOTA MOTA	1614 1615	O ASP N GLU	166 167	-9.262 40.967 126.231 1.00 2.00 0
ATOM	1617	CA GLU	167	11 290 41 394 127.555 1.00 83.32 0
MOTA	1618 1619	CB GLU	167 167	-12.129 41.397 126.273 1.00 2.00 0
MOTA MOTA	1620	CD GLU	167	-11 133 42.398 124.242 1.00 2.00 0
MOTA	1621 1622	OE1 GLU OE2 GLU	167 167	-12.268 43.750 125.622 1.00 2.00 0
MOTA MOTA	1623	C GLU	167	9.056 41.981 128.383 1.00 74.79 0
MOTA	1624 1625	O GLU N LYS	167 168	-7.733 41.984 128.460 1.00 22.77 U
MOTA MOTA	1627	CA LYS	168	-6.829 42.154 129.569 1.00 21.81 0
MOTA	1628	CB LYS	168 168	-6.956 39.798 130.600 1.00 17.49 0
MOTA MOTA	1629 1630	CD LYS	168	-7.677 40.404 131.602 1.00 26.28 0
MOTA	1631	CE- LYS	168 168	-9.658 40.080 133.373 1.00 29.04 0
MOTA MOTA	1632 1636	NZ LYS C LYS	168	-5.811 43.225 129.237 1.00 17.06
MOTA	1637	O LYS	168 169	5 109 43 015 128.131 1.00 2.00 0
MOTA MOTA	1638 1640	N ILE	169	-4.093 43.950 127.663 1.00 2.00 0
MOTA	1641	CB ILE	169 169	-3.151 43.207 126.302 1.00 2.00 0
MOTA MOTA	1642 1643	CG2 ILE	169	-2.632 41.952 127.215 1.00 2.00 0
MOTA	1644	CD1 ILE	169 169	-1.691 41.213 126.964 1.00 2.00 0
MOTA MOTA	1645 1646	C ILE	169	-5.393 44.973 125.938 1.00 2.00 0 -5.393 125.938 1.00 17.81 0
MOTA	1647	N PHE	170	-4.572 40.535 126.877 1.00 19.78 0
MOTA MOTA	1649 1650		170 170	-5.486 48.610 127.885 1.00 2.00 0
MOTA	1651	CG PHE	170	7 095 50 028 126.538 1.00 2.00 0
ATOM			170 170	-5.092 51.056 127.390 1.00 2.00 0
MOTA MOTA	1654	CE1 PHE	170	-7.493 51.248 125.836 1.00 2.00 C
MOTA	1655	CE2 PHE	400	-6.680 52.377 126.127 1.00 2.00 C
ATOM ATOM		7 C PHE	170	-3.943 47.992 126.038 1.00 23.45 C -2.809 47.983 126.518 1.00 2.00 C
MOTA			170	-2.007

				171	-4.208	48.375 124.790	1.00 2.00	0
MOTA	1659	N	CYS	171 171	-3.158	48.836 123.898	1.00 2.00	Ö
MOTA MOTA	1661 1662	CA CB	CYS	171	-2.952	47.843 122.766	1.00 26.14	0
ATOM	1663	SG	CYS	171	-2.524	46.203 123.305	1.00 16.13	0
ATOM	1664	Č	CYS	171	-3.499	50.189 123.310	1.00 2.00	0
MOTA	1665	0	CYS	171	-4.652	50.453 122.943	1.00 26.14	0
MOTA	1666	N	CYS	172	-2.495	51.058 123.265	1.00 2.00 1.00 2.00	0
MOTA	1668	CA	CYS	172	-2.635 -3.403	52.378 122.668 53.356 123.597	1.00 14.54	Ö
MOTA	1669	CB	CYS	172 172	-2.593	53.995 125.094	1.00 15.67	ŏ
MOTA	1670 1671	SG C	CYS	172	-1.231	52.890 122.287	1.00 2.00	ŏ
MOTA	1672	0	CYS	172	-0.227	52.277 122.657	1.00 7.48	0
MOTA MOTA	1673	Ň	HIS	173	-1.154	53.951 121.488	1.00 2.00	0
MOTA	1675	CA	HIS	173	0.146	54.461 121.112	1.00 2.00	0
ATOM	1676	C	HIS	173	0.815	55.130 122.297	1.00 2.00	0
MOTA	1677	0	HIS	173	1.893	54.707 122.722 55.457 119.944	1.00 2.00 1.00 2.00	0
MOTA	1678	CB	HIS	173	0.056 1.377	56.074 119.588	1.00 2.00	ő
MOTA	1679	CG	HIS	173 173	2.487	55.347 119.234	1.00 2.00	ő
ATOM	1680 1682		HIS HIS	173 -	1.774	57.372 119.585	1.00 2.00	Ŏ
MOTA MOTA	1683	NE2	HIS	173	3.123	57.441 119.241	1.00 2.00	0
ATOM	1684			173	3.492	56.189 119.045	1.00 2.00	0
MOTA	1685	N	GLY	174	0.168	56.172 122.817	1.00 2.00	0
MOTA	1687	CA	GLY	174	0.711	56.933 123.935	1.00 2.00	0
MOTA	1688	С	GLY	174	0.568	56.450 125.386 56.111 126.041	1.00 2.00 1.00 2.00	0
MOTA	16B9	0	GLY	174	1.556 -0.648	56.453 125.913	1.00 16.98	ŏ
MOTA	1690	N	GLY	175 175	-0.830	56.028 127.283	1.00 16.98	Ö
ATOM	1692	CA	GLY	175	-2.227	56.343 127.763	1.00 16.98	ō
ATOM ATOM	1693 1694	C O	GLY	175	-3.190	56.231 126.999	1.00 66.77	0
ATOM	1695	N	LEU	176	-2.341	56.764 129.021	1.00 11.28	0
ATOM	1697	ĊA	LEU	176	-3.637	57.063 129.604	1.00 11.28	0
MOTA	1698	CB	LEU	176	-3.740	56.427 130.976	1.00 2.00	0
MOTA	1699	CG	LEU	176	-3.443	54.934 130.966	1.00 2.00 1.00 2.00	0
ATOM	1700		LEU	176	-3.469	54.407 132.374 54.218 130.121	1.00 2.00 1.00 2.00	ŏ
ATOM	1701	CD2		176 176	-4.463 -3.876	58.545 129.692	1.00 11.28	ŏ
MOTA	1702	CO	LEU	176	-2.943	59.329 129.645	1.00 2.00	0
MOTA MOTA	1703 1704	N	SER	177	-5.138	58.913 129.850	1.00 6.18	0
MOTA	1706	CA	SER	177	-5.567	60.304 129.918	1.00 6.86	0
ATOM	1707	CB	SER	177	-6.476	60.587 128.718	1.00 12.19	0
ATOM	1708	OG	SER	177	-7.189	61.804 128.835	1.00 12.19 1.00 7.79	0
MOTA	1710	C	SER	177	-6.356	60.573 131.193 59.749 131.606	1.00 7.73	ŏ
MOTA	1711	0	SER	177	-7.170 -6.150	61.736 131.824	1.00 2.00	ŏ
ATOM	1712	И	PRO	178 178	-5.223	62.827 131.505	1.00 29.89	0
MOTA MOTA	1713 1714	CD CA	PRO	178	-6.895	62.054 133.041	1.00 2.00	0
ATOM	1715	CB	PRO	178	-6.231	63.337 133.518	1.00 25.57	0
ATOM	1716	CG	PRO	178	-5.842	63.973 132.274	1.00 21.36	0
MOTA	1717	С	PRO	178	-8.394	62.266 132.757	1.00 2.00 1.00 24.04	Ö
MOTA	1718	0	PRO	178	-9.140 -8.821	62.740 133.617 61.933 131.543	1.00 38.94	ő
MOTA	1719	N	ASP	179 179	-10.206	62.078 131.129	1.00 37.05	0
MOTA	1721 1722	CA CB	ASP ASP	179	-10.264	62.870 129.837	1.00 33.34	0
MOTA MOTA	1723	CG	ASP	179	-9.964	64.320 130.048	1.00 30.55	0
ATOM	1724	OD1		179	-10.923	65.045 130.386	1.00 31.71	0
MOTA	1725	OD2	ASP	179	-8.786	64.728 129.889	1.00 32.17	0
MOTA	1726	C	ASP	179	-10.871	60.735 130.923	1.00 40.05 1.00 34.46	Ö
MOTA	1727	0	ASP	179	-12.096	60.638 130.873 59.699 130.791	1.00 34.40	ő
MOTA	1728	N	LEU	180	-10.057 -10.570	58.362 130.590	1.00 12.98	ŏ
MOTA	1730	CA	LEU	180 180	-10.570 -9.446	57.467 130.058	1.00 2.00	ō
MOTA MOTA	1731 1732	CB CG	LEU	180	-9.867	56.186 129.338	1.00 2.00	0
MOTA	1733		LEU	180	-10.706	56.511 128.110	1.00 2.00	0
MOTA	1734		LEU	180	-8.633	55.413 128.953	1.00 2.00	0
ATOM	1735	C	LEU	180	-11.157	57.806 131.902	1.00 14.43	0
ATOM	1736	0	LEU	180	-10.470	57.709 132.931 57.492 131.862	1.00 2.00 1.00 5.88	0
ATOM	1737	N	GLN	181	-12.448	1,492 IJI.002	1.00 5.00	J

									_
MOTA	1739	CA	GLN	181	-13.184	56.917	132.992	1.00 5.88	0
MOTA	1740	CB	GLN	181	-14.379		133.375	1.00 32.99	0
MOTA	1741	CC	GLN	181	-14.002		133.900 133.676	1.00 36.07 1.00 38.35	Ö
MOTA	1742	CD	GLN	181	-15.101 -16.285		133.877	1.00 41.53	ŏ
MOTA	1743		GLN	181 181	-14.717		133.242	1.00 38.39	Ö
MOTA	1744	NE2	GLN	181	-13.672		132.500	1.00 5.88	ō
MOTA	1747	C	GLN GLN	181	-13.572		133.205	1.00 24.31	Ŏ
MOTA	1748 1749	N O	SBR	182	-14.188		131.274	1.00 2.20	0
MOTA MOTA	1751	CA	SER	182	-14.651	54.310	130.664	1.00 9.71	0
ATOM	1752	CB	SER	182	-16.174		130.614	1.00 15.80	0
ATOM	1753	ŌĞ	SBR	182	-16.668		129.433	1.00 17.25	0
MOTA	1755	Ċ	SER	182	-14.112	54.177	129.248	1.00 3.77	0
ATOM	1756	0	SER	182	-13.359		128.751	1.00 15.80	0
ATOM	1757	N	MET	183	-14.526		128.615	1.00 2.00	0
MOTA	1759	CA	MET	183	-14.156		127.251 127.064	1.00 2.00 1.00 2.00	0
MOTA	1760	CB	MET	183	-14.100 -13.171		128.048	1.00 2.00	ŏ
MOTA	1761	CG	MET	183	-11.620		128.022	1.00 2.00	Õ
MOTA	1762	SD	MET	183 183	-10.520		127.900	1.00 2.00	ō
MOTA	1763	CE	met	183	-15.204		126.326	1.00 2.00	Ō
MOTA	1764	C	MET	183	-14.959		125.129	1.00 2.00	0
MOTA	1765 1766	N	GLU	184	-16.370	53.700	126.882	1.00 2.00	0
MOTA MOTA	1768	CA	GLU	184	-17.432	54.280	126.082	1.00 2.00	0
MOTA	1769	CB	GLU	184	-18.668	54.531	126.910	1.00 6.25	0
ATOM	1770	ČĞ	GLU	184	-19.830		126.073	1.00 8.82	0
ATOM	1771	CD	GLU	184	-20.273		125.068	1.00 13.01	0
ATOM	1772	OE1	GLU	184	-19.846		125.181	1.00 14.09	0
MOTA	1773	OE2	GLU	184	-21.064		124.164	1.00 20.29 1.00 2.00	Ö
MOTA	1774	С	GLU	184	-16.978		125.481 124.392	1.00 23.33	ŏ
MOTA	1775	0	GLU	184	-17.3 9 9 -16.117		126.198	1.00 12.32	ŏ
MOTA	1776	N	GLN	185 185	-15.599		125.714	1.00 14.30	0
MOTA	1778	CA	gln gln	185	-14.697	58.190	126.758	1.00 43.49	0
MOTA	1779 1780	CB CG	GLN	185	-15.454		127.990	.1.00 47.40	0
ATOM ATOM	1781	CD	GLN	185	-14.537		129.139	1.00 49.32	0
ATOM	1782		GLN	185	-13.994		129.753	1.00 56.49	0
ATOM	1783	NE2	GLN	185	-14.350		129.437	1.00 49.76 1.00 16.93	0
MOTA	1786	С	GLN	185	-14.834	57.307	124.432 123.461	1.00 16.93 1.00 43.79	Ö
MOTA	1787	0	GLN	185	-14.973	58.053 56.238	124.420	1.00 5.67	ő
MOTA	1788	N	ILE	186	-14.044 -13.280		123.235	1.00 5.67	0
MOTA	1790	CA	ILE	186 186	-12.436	54.613	123.470	1.00 16.18	0
MOTA	1791	CB CG2	ILE	186	-11.675	54.243	122.208	1.00 11.85	0
MOTA MOTA	1792 1793	CG1	ILE	186	-11.489	54.825	124.642	1.00 13.18	0
ATOM	1794	CDI	ILE	186	-10.545	55.954	124.459	1.00 17.92	0
ATOM	1795	C	ILE	186	-14.294	55.566	122.143	1.00 5.67	0
ATOM	1796	ō	ILE	186	-14.260		121.060	1.00 19.35	0
ATOM	1797	N	ARG	187	-15.207		122.471	1.00 17.59 1.00 16.33	0
MOTA	1799	CA	ARG	187	-16.243	54.205	121.561 122.237	1.00 20.41	ŏ
MOTA	1800	CB	ARG	187	-17.141 -16.468	51.900	122.723	1.00 29.32	Ō
ATOM	1801	CG	ARG	187 187	-17.497	51.006	123.447	1.00 31.43	0
MOTA	1802	CD	ARG ARG	187	-16.888	49.888	124.165	1.00 38.34	0
MOTA	1803 1805	NE CZ	ARG	187	-16.311	48.838	123.580	1.00 34.30	0
MOTA MOTA	1806		ARG	187	-16.256	48.747	122.252	1.00 41.37	0
MOTA	1809		ARG	187	-15.783	47.873	124.322	1.00 34.50	0
ATOM	1812	C	ARG	187	-17.148	55.302	121.011	1.00 15.89	0
ATOM	1813	ŏ	ARG	187	-17.937	55.032	120.108	1.00 20.82	0
MOTA	1814	N	ARG	188	-17.071	56.524	121.529	1.00 2.00 1.00 2.00	Ö
MOTA	1816	CA	ARG	188	-17.964	57.557	121.012 122.106	1.00 2.00	õ
MOTA	1817	CB	ARG	188	-18.878 -18.184	58.105 58.827		1.00 29.44	ŏ
MOTA	1818	CG	ARG	188	-18.184	59.586	124.034	1.00 31.32	0
ATOM	1819	CD	ARG	188 188	-20.410		124.237	1.00 33.18	0
MOTA	1820	NE CZ	ARG ARG	188	-21.637	59.285	124.112	1.00 29.63	0
ATOM	1822 1823	CZ NH1		188	-21.827	60.561	123.777	1.00 36.26	0
MOTA MOTA	1825		ARG	188	-22.671	58.484	124.332	1.00 32.06	0
NI OU	1020								

 E_{i}^{+}

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

ATOM

MOTA

ATOM

MOTA

ATOM

MOTA

MOTA

MOTA

MOTA

MOTA

1906

1908

1909

N

CA

CB

ASP

ASP

ASP

197

197

-4.058

-3.605

69.377 121.005

70.789 120.612

1.00

38.76

1.00 78.93

0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	191123457890122567901211111111111111111111111111111111111	CG ASP OD1 ASP OD2 ASP OD3 ASP OD ASP OD ASP OD ASP OD ASP OD CONCERNING GLIN NOT CONC	111111998888899999900000000111111112222222222	-4.7216 -5.2167-6.1216-7.5.216861-7.5.216861-7.5.216861-7.5.318861-7.5.318861-7.5.318861-7.5.318861-7.5.318861-7.5.318861-7.5.318861-7.5.318861-7.3	63.891 122.484 65.306 123.024 65.850 123.209 63.076 123.394 62.715 123.036 62.798 124.584 62.057 125.611 62.142 126.931 63.538 127.497 64.315 127.162 63.861 128.271 60.615 125.262 60.155 125.492 59.902 124.695 58.509 124.332 57.912 123.717 57.606 124.695 58.509 124.332 57.912 123.717 57.606 124.695 58.347 123.361 57.352 123.392 59.336 122.501 59.301 121.525 59.933 120.219 59.463 119.551 60.238 118.259 57.954 119.269	1.00 84.50 1.00 83.41 1.00 90.03 1.00 41.84 1.00 85.35 1.00 2.00 1.00 2.00 1.00 29.42 1.00 29.42 1.00 29.42 1.00 15.56 1.00 15.56 1.00 13.32 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA MOTA MOTA	1978 1979 1980	CB LEU CG LEU CD1 LEU	205 205 205	-2.161 -3.459 -3.595	59.933 120.219 59.463 119.551 60.238 118.259 57.954 119.269	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0

MOTA MOTA	1989 1990	CD2 TRE	206	1.532 1.105 2.854	64.535	121.420 120.148 121.813	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA	1991	CE3 TRI		-0.616	63.541	121.162	1.00 2.00	0
MOTA	1992 1993	NEI TRI		-0.212	64.178	120.017	1.00 2.00	0
MOTA MOTA	1995	CZ2 TRI		1.950	65.207	119.263	1.00 2.00	0
MOTA	1996	CZ3 TRI		3.697		120.932	1.00 2.00 1.00 2.00	0
MOTA	1997	CH2 TRI		3.238	65.443	119.669 124.955	1.00 2.00 1.00 10.02	0
ATOM	1998	C TRI		1.246	61.330 61.639		1.00 2.00	Ö
MOTA	1999	O TRI		2.419 0.418	60 867	125.886	1.00 2.00	ŏ
MOTA	2000	N SEI		0.830	60.690	127.267	1.00 2.00	0
MOTA	2002	CA SEI	-	-0.363	60,273	128.121	1.00 29.76	0
MOTA	2003 2004	CB SEI		-0.482	61.120	129.256	1.00 35.73	0
MOTA MOTA	2006	C SEI	_	1.951	59.699		1.00 2.00	0
ATOM	2007	O SE		2.075	58.743		1.00 31.05	0
MOTA	2008	N AS		2.777	59.943	128.462 128.764	1.00 2.00 1.00 2.00	Ö
MOTA	2010	CA AS		3.899 5.257	59.036	128.505	1.00 42.39	ŏ
MOTA	2011	CB AS		5.296		127.256	1.00 46.59	ŏ
MOTA	2012	CG AS		5.695		127.362	1.00 48.93	0
MOTA	2013	OD1 AS		4.959	60.008	126.180	1.00 44.70	0
MOTA MOTA	2014 2015	C AS		3.903	58.705	130.231	1.00 2.00	0
ATOM	2016	O AS		3.580	59.537	131.072	1.00 45.54	0
ATOM	2017	N PR	209	4.244	57.457	130.559	1.00 10.98	0
ATOM	2018	CD PR		4.509	56.316	129.673 131.957	1.00 2.00 1.00 10.98	Ö
MOTA	2019	CA PR		4.299 4.407	55.522	131.845	1.00 2.00	ŏ
MOTA	2020	CB PR		5.197	55.356	130.604	1.00 2.00	Ŏ
MOTA	2021	CG PR		5.584	57.675	132.507	1.00 10.98	0
MOTA	2022 2023	C PR		6.448	58.078	131.712	1.00 2.00	0
MOTA MOTA	2023	n as		5.724	57.774		1.00 2.00	0
ATOM	2026	CA AS		6.931	58.360	134.413	1.00 2.00	0
ATOM	2027	CB AS	P 210	6.755	59.863	134.614 134.990	1.00 31.00 1.00 36.69	0
ATOM	2028	CG AS		8.050	60.570	134.990	1.00 33.32	ŏ
MOTA	2029	OD1 AS		9.132 7.989	61.756		1.00 38.93	Ö
MOTA	2030	OD2 AS	P 210 P 210	7.304	57.734		1.00 2.00	0
MOTA	2031	C AS		6.448	57.320	136.496	1.00 28.60	0
MOTA MOTA	2032 2033	O AS N LY		8.608		135.966	1.00 4.23	0
ATOM	2035	CA LY		9.170	57.136		1.00 9.37	0
MOTA	2036	CB LY	S 211	10.647	56.760	137.024	1.00 17.66 1.00 29.60	Ö
MOTA	2037	CC LY		10.941	55.441 55.184		1.00 32.82	ŏ
MOTA	2038	CD LY		12.451 12.852	53.831		1.00 42.70	Õ
MOTA	2039	CE LY		14.336	53.616		1.00 41.45	0
ATOM	2040	NZ LY		9.100	58.157		1.00 7.69	0
MOTA MOTA	2044 2045	C LY		8.746	57.B03		1.00 18.85	0
ATOM	2046	N AS		9.456	59.414		1.00 2.00 1.00 2.00	0
MOTA	2048	CA AS		9.468		139.101	1.00 39.78	ő
MOTA	2049	CB AS		10.322 11.483	61 254	138.624 137.754	1.00 46.31	0
MOTA	2050	CG AS		11.823	62.030	136.834	1.00 41.85	0
MOTA	2051	OD1 AS		12.051	60.166	137.987	1.00 46.28	0
MOTA MOTA	2052 2053	C AS		8.074	61.033	139.412	1.00 2.00	0
MOTA	2054	0 AS		7.943	62.164	139.903	1.00 41.82	0
ATOM	2055	N V		7.040	60.250	139.124	1.00 2.00 1.00 2.00	Ö
ATOM	2057	CA VA		5.669	60.690	139.340	1.00 2.00 1.00 2.00	Õ
ATOM	205B	CB V		5.137	61.247	138.050	1.00 2.00	ŏ
MOTA	2059	CG1 VA		3.652 5.505	62 R26	138.076	1.00 2.00	0
ATOM	2060	CG2 V		4.767	59.526		1.00 2.00	0
MOTA	2061	C V		5.007	58.356	139.390	1.00 2.00	0
MOTA MOTA	2062 2063	O V		3.748	59.844	140.564	1.00 21.53	0
MOTA	2065	CA LE		2.815	58.830	141.022	1.00 19.34	0
ATOM	2066	CB LE	U 214	2.742	58.809	142.543	1.00 14.66 1.00 15.86	0
ATOM	2067	CG LI		2.371		3 143.097 7 142.816	1.00 13.86	Ö
MOTA	2068	CD1 L	EU 214	3.507	JU.4//	1,2.010		-

MOTA	2069	CD2		214 214	2.109 1. 43 3		144.588 140.439	1.00 17.44 1.00 19.87	0
MOTA MOTA	2070 2071	C 0	LEU	214	0.757		140.033	1.00 9.54	ŏ
MOTA	2072	N	GLY	215	1.003		140.411	1.00 16.98	0
MOTA	2074	CA	GLY	215	-0.299		139.852 138.487	1.00 11.19 1.00 12.07	0
MOTA	2075	C	GLY GLY	215 215	-0.081 0.772		137.739	1.00 10.02	Ö
MOTA MOTA	2076 2077	O N	TRP	216	-0.824		138.167	1.00 2.00	Ö
ATOM	2079	CA	TRP	216	-0.684		136.890	1.00 2.00	0
ATOM	2080	CB	TRP	216	-2.030		136.458	1.00 2.00 1.00 2.00	0
ATOM	2081	CC	TRP	216 216	-2.903 -2.8 4 0		136.050 134.804	1.00 2.00 1.00 2.00	0
MOTA	2082 2083	CD2 CE2	TRP TRP	216	-3.806		134.865	1.00 2.00	ō
MOTA MOTA	2084	CE3	TRP	216	-2.050	61.865	133.648	1.00 2.00	0
ATOM	2085	CD1	TRP	216	-3.879		136.789	1.00 2.00	0
MOTA	2086	NE1	TRP	216	-4.425		136.087 133.809	1.00 2.00 1.00 2.00	0
MOTA	2088	CZ2	TRP TRP	216 216	-4.005 -2.251		132.605	1.00 2.00	Ö
ATON	2089 2090	CZ3 CH2	TRP	216	-3.217		132.695	1.00 2.00	Ō
ATOM ATOM	2091	C	TRP	216	0.310	64.101	136.985	1.00 2.00	0
MOTA	2092	Ö	TRP	216	0.261		137.926	1.00 2.00	0
MOTA	2093	N	GLY	217	1.213 2.199		136.021 136.028	1.00 12.63 1.00 15.52	0
MOTA	2095	CA	GLY GLY	217 217	2.312	65.928	134.675	1.00 10.15	ŏ
ATOM ATOM	2096 2097	C O	GLY	217	1.627	65.559	133.720	1.00 26.84	0
ATOM	2098	Ň	GLU	218	3.189	66.923	134.594	1.00 23.86	0
MOTA	2100	CA	GLU	218	3.434	67.686	133.364 133.729	1.00 22.47 1.00 65.82	0
MOTA	2101	CB	GLU	218 218	4.198 5.082	69 595	132.641	1.00 67.96	ŏ
MOTA	2102 2103	CG CD	GLU GLU	218	6.577	69.562	132.987	1.00 67.00	0
MOTA MOTA	2103	OE1	GLU	218	7.056	70.519	133.631	1.00 68.41	0
ATOM	2105	OE2	GLU	218	7.276	68.589	132.616	1.00 63.29 1.00 25.48	0
MOTA	2106	C	GLU	218	4.232 4.808	66.841	132.371 132.750	1.00 23.48	ŏ
ATOM	2107	0	GLU ASN	218 219	4.253	67.245	131.103	1.00 21.19	0
ATOM	2108	N	V-21/			• • • • • •	- :	4 00 01 10	
MOTE	2110		ASN	219	5.039	66.510	130.108	1.00 21.18	0
ATOM ATON	2110 2111	CA CB	asn Asn	219 219	4.140	65.888	129.048	1.00 10.60	0
ATOM MOTA	2111 2112	CA CB CG	asn asn	219 219	4.140	65.888 64.791	129.048 128.282	1.00 10.60 1.00 14.78	0
MOTA MOTA MOTA	2111 2112 2113	CA CB CG OD1	asn asn asn	219 219 219	4.140 4.832 6.052	65.888 64.791 64.646	129.048 128.282 128.341	1.00 10.60	0
ATOM MOTA MOTA	2111 2112 2113 2114	CA CB CG OD1 ND2	asn asn asn asn	219 219 219 219	4.140	65.888 64.791 64.646 64.003 67.411	129.048 128.282 128.341 127.560 129.425	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70	0 0 0 0
MOTA MOTA MOTA	2111 2112 2113	CA CB CG OD1	asn asn asn	219 219 219 219 219 219	4.140 4.832 6.052 4.057 6.058 5.776	65.888 64.791 64.646 64.003 67.411 68.576	129.048 128.282 128.341 127.560 129.425 129.151	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA	2111 2112 2113 2114 2117 2118 2119	CA CB CG OD1 ND2 C O	ASN ASN ASN ASN ASN ASN ASP	219 219 219 219 219 219 219 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246	65.888 64.791 64.646 64.003 67.411 68.576 66.886	129.048 128.282 128.341 127.560 129.425 129.151 129.151	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2111 2112 2113 2114 2117 2118 2119 2121	CA CB CG OD1 ND2 C O N CA	ASN ASN ASN ASN ASN ASP ASP	219 219 219 219 219 219 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52	0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122	CA CB CG OD1 ND2 C O N CA CB	ASN ASN ASN ASN ASN ASP ASP ASP	219 219 219 219 219 219 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690	129.048 128.282 128.341 127.560 129.425 129.151 129.151	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123	CA CB CG OD1 ND2 C O N CA CB CG	ASN ASN ASN ASN ASN ASP ASP	219 219 219 219 219 219 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584	129.048 128.282 128.341 127.560 129.425 129.151 129.151 129.151 128.485 128.358 127.447 127.938	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43	0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125	CA CB CG OD1 ND2 C O N CA CB CG OD1	ASN ASN ASN ASN ASN ASP ASP ASP ASP ASP	219 219 219 219 219 219 220 220 220 220 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.469 9.083 9.778	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 66.900 65.673 64.584 65.797	129.048 128.282 128.341 127.560 129.425 129.151 129.151 129.358 127.447 127.938 126.237	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09	0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2123 2124 2125 2126	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C	ASN ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP	219 219 219 219 219 219 220 220 220 220 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148	129.048 128.282 128.341 127.560 129.425 129.151 128.485 128.358 127.447 127.938 126.237 127.100	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43	0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C	ASN ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 220 220 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.262	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 219 220 220 220 220 220 220	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.986 6.427	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.262 67.287 67.552	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444 125.127	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C	ASN ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 220 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.427 5.578	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.262 67.287 67.552	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.6444 125.127 124.672	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00	00000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132	CA CB CG OD1 ND2 C O CA CB CG OD1 OD2 C O N CA CB CG OD1	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.986 6.427 5.578 6.251	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.267 67.287 67.287 66.382 65.056	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.6444 125.127 124.672 124.739	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C O N CA CB CG OD1	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.585 9.469 9.585 9.469 9.778 7.763 8.045 6.986 6.986 6.251	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.262 67.287 67.552 66.382 63.981	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.6444 125.127 124.672	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 200 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C O N CA CB CG OD1	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.986 6.427 5.578 6.251	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 69.267 67.287 67.287 66.382 65.056	129.048 128.282 128.341 127.560 129.425 129.151 128.485 128.358 127.447 127.938 126.237 126.661 126.661 126.444 125.127 124.672 124.739 124.739 124.590 123.811	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 92.38 1.00 92.38 1.00 92.09 1.00 22.98 1.00 22.98 1.00 22.98 1.00 200 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136	CA CB CG OD1 ND2 C O N CA CB CG OD1 OD2 C O N CA CB CG OD1	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.7763 8.045 6.986 6.427 5.578 6.251 5.241 5.241 5.255	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.1262 67.287 67.552 66.382 65.056 63.968 62.154 62.866	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444 125.127 124.672 124.739 124.739 124.739 124.739 124.7390	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140	CA CB CG OD1 CO NCA CB CG OD1 OC ON CA CB CG ON CA CB CG NCA CB CG NCA CB CG NCA CB CG NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.427 5.578 6.251 5.241 5.241 5.241 5.241 5.255 7.285	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 67.287 67	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444 125.127 124.672 124.739 124.421 124.590 123.811 122.790 124.064	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143	CA CB CG OD1 NC O N CA CB CG OD1 OC N CA CB CG N CB CG N N CA CB CG N N CA CB CG N N N N N N N N N N N N N N N N N N	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.427 5.578 6.427 5.241 5.8285 7.285 5.546	65.888 64.791 64.646 64.003 67.411 68.586 67.690 65.673 64.584 65.797 68.146 67.287 67.552 66.386 63.981 62.658 62.156 60.947 68.776	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444 125.127 124.672 124.672 124.739 124.421 124.590 123.811 122.790 124.064 125.109	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143 2144	CA CB CG OD1 CO NCA CB CG OD1 OC ON CB CCD CC NCZ NH1 NH2 CO	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 221 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.776 7.246 8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.427 5.578 6.251 5.241 5.241 5.241 5.241 5.255 7.285	65.888 64.791 64.646 64.003 67.411 68.586 67.690 65.673 64.584 65.797 68.148 69.267 67.255 663.981 62.658 62.154 62.866 60.977 68.7289 69.280	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 124.672 124.672 124.672 124.739 124.672 124.739 124.052 124.052 125.127	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2131 2132 2133 2134 2136 2137 2140 2143 2144 2145	CA CB CG OD1 NC O N CA CB CG OD1 OC N CA CB CG N CB CG N N CA CB CG N N CA CB CG N N N N N N N N N N N N N N N N N N	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 221 221 221 221 221 221	4.140 4.832 6.057 6.057 6.058 5.776 8.246 9.585 9.469 9.763 8.045 6.427 8.982 6.428 5.2241 5.2828 6.725 5.2846 5.285 7.285 5.285 5.188 5.188 5.188 5.285 5.188 5.188 5.285 5.2	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.587 68.148 69.262 67.287 67.552 65.058 62.658 62.658 62.154 62.866 60.947 68.776 69.280 70.447	129.048 128.282 128.341 127.560 129.425 129.151 129.151 128.485 127.447 127.938 126.661 126.661 126.661 126.444 125.127 124.672 124.739 124.739 124.739 124.064 125.100 126.280 126.280 126.343	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143 2144	CA CB CG OD1 CO NCA CB CG OD2 CO NCA CB CCD NCZ NH1 NH2 CO NH1	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 6.057 6.057 6.057 6.246 9.585 9.469 9.763 8.045 6.427 5.254 6.427 5.254 5.254 5.254 5.254 5.254 6.255 7.285 5.266 9.255	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.148 67.287 67.287 67.287 67.287 67.287 67.287 67.486 62.154 62.866 60.947 68.776 69.238 70.447 70.103	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.444 125.127 124.672 124.739 124.4590 124.4590 124.064 125.109 124.052 126.2843 125.844	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143 2144 2145 2144 2145 2144 2145 2148 2149	CA CB CG 12 CO N CA CB CGD 12 CO N CA CB CGD 1 CO N CA CB CGD N CA CB CCD N CA CC CD N CA CC CO CO CO N CA CC CO	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 6.057 6.057 6.058 5.763 8.266 9.469 9.7783 8.045 6.986 6.427 5.521 5.241	65.888 64.791 64.646 64.003 67.411 68.576 66.886 67.690 65.673 64.584 65.797 68.1262 67.287 67.552 66.386 63.987 62.154 62.866 69.239 69.239 70.447 70.103 70.988	129.048 128.282 128.341 127.560 129.425 129.151 128.485 128.358 127.447 127.938 126.661 126.661 126.661 126.661 126.444 125.127 124.672 124.739 124.739 124.739 124.064 125.109 124.064 125.109 124.059 124.059 124.059 124.059 124.059 125.844 125.844 125.844	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143 2144 2145 2147 2148 2149 2149	CA CB CG 12 CON CA CB CG CON CA CB CG CON CA CB CG CON CA CB CG CON	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 6.057 6.057 6.057 6.246 9.585 9.469 9.763 8.045 6.427 5.254 6.427 5.254 5.254 5.254 5.254 5.254 6.255 7.285 5.266 9.255	65.888 64.791 64.646 64.003 67.411 68.586 66.990 65.673 64.584 65.797 68.148 69.287 67.552 65.0581 62.658 62.156 63.947 69.280 70.447 70.103 70.988 68.313	129.048 128.282 128.341 127.560 129.425 129.151 128.485 127.447 127.938 126.237 127.100 126.661 126.661 126.444 125.127 124.672 124.672 124.739 124.064 125.109 124.052 126.280 126.343 125.804 125.80	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2111 2112 2113 2114 2117 2118 2119 2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132 2133 2134 2136 2137 2140 2143 2144 2145 2144 2145 2144 2145 2148 2149	CA CB CG 12 CO N CA CB CGD 12 CO N CA CB CGD 1 CO N CA CB CGD N CA CB CCD N CA CC CD N CA CC CO CO CO N CA CC CO	ASN ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	219 219 219 219 219 220 220 220 220 220 221 221 221 221 221	4.140 4.832 6.052 4.057 6.058 5.7246 8.266 9.585 9.469 9.083 9.7783 8.986 6.427 5.251 5.241 5.241 5.241 5.241 5.241 5.241 5.255 5.241 5.245 5.241 5.245 5.241 5.24	65.888 64.791 64.646 64.003 67.411 68.586 66.990 65.673 64.584 65.797 68.148 69.287 67.552 65.0581 62.658 62.156 63.947 69.280 70.447 70.103 70.988 68.313	129.048 128.282 128.341 127.560 129.425 129.151 128.485 128.358 127.447 127.938 126.237 126.661 126.444 125.127 124.672 124.672 124.739 124.421 124.739 124.064 125.109 126.280 126.343 125.509 125.776	1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32 1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00	

MOTA MOTA MOTA MOTA MOTA	2154 2155 2156 2157 2158	C	VAL VAL VAL VAL SER	223 223 223 223 224	-0.063 2.258 1.071 2.004 -0.205	67.888 123.280 68.762 123.004 67.125 126.250 66.431 126.656 66.897 126.550	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 12.21	0 0 0 0
ATON	2160	CA	SER	224	-0.661 -0.609	65.825 127.440 64.453 126.759	1.00 15.55 1.00 6.64	0
MOTA MOTA	2161 2162	CB OG	SER SER	224 224	0.713	64.003 126.546	1.00 10.80	0
ATOM	2164	C	SER	224	0.077 0.814	65.779 128.787 66.706 129.153	1.00 20.53 1.00 8.42	0
MOTA	2165 2166	0 N	SER PHE	224 225	-0.124	64.700 129.533	1.00 6.68	Ö
MOTA ATOM	2168	CA	PHE	225	0.484	64.586 130.839	1.00 6.68 1.00 14.03	0
MOTA	2169	CB	PHE	225 225	-0.625 -1.670	64.489 131.890 65.552 131.758	1.00 14.03	Ö
MOTA MOTA	2170 2171	CG CD1	PHE	225	-2.925	65.248 131.239	1.00 11.66	0
MOTA	2172	CD2	PHE	225	-1.396	66.869 132.131 66.241 131.086	1.00 11.41 1.00 11.76	0
ATOM	2173	CE1	PHE PHE	225 225	-3.899 -2.363	67.869 131.983	1.00 14.72	ŏ
ATOM ATOM	2174 2175	CZ	PHE	225	-3.618	67.553 131. 4 58	1.00 16.73	0
MOTA	2176	C	PHE	225	1.405 1.902	63.392 130.957 62.850 129.966	1.00 6.68 1.00 15.31	0
MOTA MOTA	2177 2178	о И	PHE THR	225 226	1.663	63.022 132.203	1.00 2.00	0
ATOM	2180	CA	THR	226	2.473	61.872 132.509	1.00 2.00 1.00 13.51	0
MOTA	2181	CB	THR	226 226	3.898 4.607	62.226 132.853 61.012 133.094	1.00 13.51	Ö
ATOM ATOM	2182 2184	OG1 CG2	THR THR	226	3.961	63.081 134.086	1.00 13.51	0
ATOM	2185	C	THR	226	1.809	61.217 133.686 61.861 134.394	1.00 2.00 1.00 13.51	0
MOTA	2186	O N	THR PHE	226 227	1.039 2.086	59.938 133.883	1.00 2.00	ŏ
MOTA MOTA	2187 2189	CA	PHE	227	1.466	59.191 134.957	1.00 2.00	0
MOTA	2190	CB	PHE	227	0.206 0.3 6 2	58.448 134.472 57.793 133.131	1.00 18.74 1.00 21.51	0
MOTA MOTA	2191 2192	CG	PHE PHE	227 227	0.717	56.453 133.034	1.00 18.55	0
MOTA	2193	CD2	PHE	227	0.188	58.532 131.954 55.857 131.787	1.00 20.45 1.00 19.97	0
MOTA	2194	CE1	PHE	227 227	0.902 0.371	55.857 131.787 57.948 130.698	1.00 14.44	ŏ
MOTA MOTA	2195 2196	CZ	PHE	227	0.729	56.612 130.612	1.00 17.09	0
MOTA	2197	С	PHE	227	2.427 3.282	58.224 135.562 57.668 134.888	1.00 2.00 1.00 20.11	Ö
MOTA MOTA	2198 2199	O N	PHE GLY	227 228	2.294	58.066 136.867	1.00 21.90	0
ATOM	2201	CA	GLY	228	3.143	57.165 137.607 55.859 137.815	1.00 20.86 1.00 24.57	0
MOTA	2202	C	GLY	228 228	2. 424 1.3 6 5	55.615 137.223	1.00 2.00	Ŏ
MOTA MOTA	2203 2204	N	ALA	229	2.974	55.041 138.704	1.00 2.00	0
MOTA	2206	CA	ALA	229	2.422 3.372	53.722 138.971 52.924 139.835	1.00 2.00 1.00 2.00	ő
MOTA MOTA	2207 2208	CB C	ALA	229 229	1.055	53.706 139.576	1.00 2.00	0
MOTA	2209	0	ALA	229	0.359 0.6 6 6	52.705 139.460 54.802 140.220	1.00 2.00 1.00 2.00	0
MOTA MOTA	2210 2212	N CA	GLU GLU	230 230	-0.648	54.881 140.875	1.00 2.00	0
ATOM	2213	CB	GLU	230	-0.787	56.193 141.647	1.00 66.07 1.00 71.18	0
MOTA	2214	CG	GLU	230 230	-1.123 -2.376	56.014 143.111 55.175 143.337	1.00 2.00	ő
MOTA MOTA	2215 2216	CD OE1	GLU GLU	230	-2.275	53.918 143.199	1.00 2.00	0
MOTA	2217	OE2	GLU	230	-3.448	55.773 143.663 54.777 139.862	1.00 2.00 1.00 2.00	0
MOTA	2218 2219	C O	GLU	230 230	-1.769 -2.6 4 9	53.922 139.966	1.00 60.28	0
MOTA MOTA	2220	N	VAL	231	-1.684	55.652 138.861	1.00 12.41	0
MOTA	2222	CA	VAL	231	-2.649 -2.186	55.749 137.772 56.789 136.717	1.00 9.72 1.00 2.00	0
MOTA MOTA	2223 2224	CB CG1	VAL VAL	231 231	-3.304	57.063 135.718	1.00 2.00	0
MOTA	2225	CG2	VAL	231	-1.728	58.077 137.396 54.393 137.102	1.00 2.00 1.00 11.88	0
MOTA	2226 2227	C	VAL VAL	231 231	-2.816 -3.937	53.966 136.849	1.00 2.00	0
MOTA MOTA	2228	N	VAL	232	-1.69 5	53.723 136.832	1.00 2.00	0
MOTA	2230	CA	VAL	232	-1.678 -0.2 4 5	52.397 136.203 51.817 136.151	1.00 2.00 1.00 2.00	0
MOTA MOTA	2231 2232	CB CG1	VAL VAL	232 232	-0.264	50.442 135.548	1.00 2.00	0
A 1 011	220	·. O 1						

» mow	2233	CG2	WAT.	232	0.664	52.724 135.376	1.00 2.00	0
MOTA MOTA	2234	C	VAL	232	-2.533	51.413 136.992	1.00 2.00	0
MOTA	2235	ō	VAL	232	-3.449	50.787 136.454	1.00 2.00	0
MOTA	2236	N	ALA	233	-2.217	51.292 138.275	1.00 38.57 1.00 38.57	Ö
MOTA	2238	CA	ALA	233	-2.920	50.395 139.173 50.487 140.542	1.00 13.20	ŏ
MOTA	2239	CB	ALA	233 233	-2.297 -4.426	50.681 139.245	1.00 38.57	ŏ
MOTA	2240	C	ALA ALA	233 233	-5.255	49.763 139.166	1.00 9.05	Ō
MOTA	2241	O N	LYS	234	-4.780	51.954 139.397	1.00 2.00	0
MOTA MOTA	22 4 2 22 4 4	CA	LYS	234	-6.177	52.355 139.477	1.00 2.00	0
ATOM	2245	CB	LYS	234	-6.270	53.843 139.803	1.00 22.96	0
MOTA	2246	CG	LYS	234	-5.776	54.160 141.205	1.00 31.42	0
MOTA	2247	CD	LYS	234	-6.667	53.499 142.257 53.151 143.543	1.00 42.09 1.00 40.07	0
MOTA	2248	CB	LYS	234	-5.916 -5.104	51.892 143.444	1.00 41.59	ŏ
MOTA	2249	NZ	LYS	234 234	-6.920	52.036 138.183	1.00 2.00	ŏ
MOTA	2253	C	LYS LYS	234	-7.936	51.319 138.206	1.00 20.45	0
ATOM ATOM	2254 2255	N	PHE	235	-6.389	52.532 137.061	1.00 14.37	0
ATOM	2257	ČA	PHE	235	-6.973	52.319 135.733	1.00 14.37	0
ATOM	2258	CB	PHE	235	-6.055	52.880 134.640	1.00 2.00	Ŏ
ATOM	2259	CG	PHE	235	-6.438	52.452 133.249	1.00 2.00	0
ATON	2260		PHE	235	-7.352	53.199 132.502 51.270 132.706	1.00 2.00 1.00 2.00	ŏ
ATON	2261		PHE	235	-5.924 -7.760	52.777 131.236	1.00 2.00	Ö
MOTA	2262		PHE	235 235	-6.316	50.834 131.452	1.00 2.00	Ō
MOTA	2263		PHE	235	-7.242	51.588 130.710	1.00 2.00	0
MOTA	2264 2265	CZ C	PHE	235	-7.229	50.849 135.444	1.00 14.37	0
ATOM	2266	Ö	PHE	235	-8.312	50.471 134.977	1.00 2.00	0
ATOM	2267	N	LEU	236	-6.217	50.029 135.690	1.00 3.08 1.00 5.72	0
ATOM	2269	CA	LEU	236	-6.339	48.606 135.447	1.00 5.72 1.00 2.00	Ö
ATOM	2270	CB	LEU	236	-5.018 -3.915	47.900 135.731 48.136 134.710	1.00 2.00	ŏ
MOTA	2271	CG	LEU	236 236	-3.915 -2.6 9 9	47.332 135.096	1.00 2.00	Ō
ATOM	2272		LEU	236	-4.405	47.737 133.321	1.00 2.00	0
MOTA	2273 2274	CDZ	LEU	236	-7.452	47.978 136.278	1.00 10.30	0
MOTA MOTA	2275	ŏ	LEU	236	-8.389	47.398 135.712	1.00 2.00	0
ATOM	2276	Ň	HIS	237	-7.368	48.118 137.606	1.00 8.44 1.00 8.44	0
ATOM	2278	CA	HIS	237	-8.368	47.540 138.504 47.885 139.980	1.00 38.56	ŏ
MOTA	2279	CB	HIS	237	-8.088 -9.141	47.380 140.935	1.00 46.82	Ō
MOTA	2280	CG	HIS	237 237	-10.323	47.916 141.329	1.00 46.01	0
MOTA	2281 2282		HIS HIS	237	-9.035	46.173 141.599	1.00 46.38	0
MOTA MOTA	2284		HIS	237	-10.103	45.989 142.355	1.00 50.85	0
ATOM	2285		HIS	237	-10.900	47.031 142.210	1.00 49.26 1.00 8.44	Ö
ATOM	2287	С	HIS	237	-9.747	48.033 138.138 47.232 138.027	1.00 35.43	Ö
ATOM	2288	0	HIS	237	-10.672 -9.882	47.232 138.027 49.346 137.947	1.00 2.00	Ō
MOTA	2289	N	LYS	238 238	-11.183	49.923 137.607	1.00 2.00	0
MOTA	2291	CA CB	LYS LYS	238	-11.071	51.424 137.327	1.00 28.00	0
MOTA MOTA	2292 2293	CG	LYS	238	-12.427	52.103 137.104	1.00 29.80	0
MOTA	2294	CD	LYS	238	-12.322	53.628 136.829	1.00 36.02 1.00 32.99	ő
MOTA	2295	CE	LYS	238	-11.917	54.444 138.083 55.925 137.845	1.00 30.09	Õ
MOTA	2296	NZ	LYS	238	-11.833	55.925 137.845 49.215 136.403	1.00 2.00	0
MOTA	2300	C	LYS	238	-11.776 -12.991	49.205 136.234		. 0
MOTA	2301	0	LYS HIS	238 239	-10.913	48.607 135.584	1.00 2.00	0
MOTA	2302 2304	N CA	HIS	239	-11.340	47.897 134.384	1.00 2.00	0
MOTA MOTA	2305	CB	HIS	239	-10.784	48.603 133.148	1.00 2.00	0
MOTA	2306	CG	HIS	239	-11.125	50.056 133.091	1.00 2.00 1.00 2.00	ő
MOTA	2307		HIS	239	-12.282	50.689 132.785 51.046 133.397		Ö
MOTA	2308	ND:	HIS	239	-10.217	51.046 133.397 52.225 133.284		ŏ
MOTA	2310		HIS	239	-10.797 -12.052	52.225 133.204		0
MOTA	2311		HIS	239	-12.052 -10.946	46 417 134.352	1.00 2.00	0
ATOM	2313	С	HIS	239 239	-10.938	45.798 133.295	1.00 2.00	0
MOTA	2314 2315	0 N	HIS ASP	240	-10.642	45.838 135.50	1.00 37.96	0
MOTA MOTA	2317	CA	ASP	240	-10.251	44.433 135.564	1.00 37.83	0
MOTA	2318	CB	ASP	240	-11.482	43.512 135.73	1.00 33.01	J

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2319 2320 2321 2322 2323 2324 2326 2327 2328 2329 2330 2331 2332 2333 2335 2335	CG OD1 OD2 C O N CA CB CCD1 CD2 C O N CA CCB CCC O N CA CCB CCC O N CA CCB CCC CCC CCC CCC CCC CCC CCC CCC	ASP ASP LEU LEU LEU LEU LEU	240 240 240 241 241 241 241 241 241 242 242 242 242	-12.676 -12.687 -13.610 -9.393 -9.626 -8.417 -7.462 -7.086 -8.185 -7.795 -8.435 -6.225 -6.157 -5.235 -4.046 -3.974 -4.683	43.985 134 42.933 133 44.823 134 44.551 132 45.858 132 46.590 131 48.047 131 45.899 130 43.925 133 43.832 134 43.534 132 42.895 133 41.455 132 40.511 133	.666 .396 .385 .797 .040 .955 .429 .224 .087 .601 .818 .817 .380 .915 .822	1.00 5 1.00 4 1.00 3 1.00 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7.76 0 0.81 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0	
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2338 2339 2340 2341 2344 2345 2346 2347 2348 2349 2350 2351	OD1 OD2 C O N CA CB CG	ASP ASP ASP LEU LEU LEU LEU LEU LEU LEU LEU LEU	242 242 242 243 243 243 243 243 243 243	-5.751 -4.149 -2.711 -1.702 -2.689 -1.440 -0.644 0.698 0.410 1.526 -1.804 -2.960 -0.834 -1.070	40.853 134 39.404 133 43.506 133 44.317 131 44.317 131 43.799 130 43.831 130 43.690 128 45.058 130 46.013 130 46.149 130 47.919 129	.976 .033 .671 .994 .539 .822 .097 .660 .397 .590 .183	1.00 2 1.00 2 1.00 1 1.00 1 1.00 1 1.00 1	5.37 0 2.00 0 5.69 0 3.97 0 8.84 0 2.00 0 2.00 0 2.00 0 2.00 0 2.00 0 4.04 0	
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2354 2355 2356 2357 2358 2359 2360 2362 2363 2364 2365 2366	CB CG2 CG1 CD1 C O N CA CB SG C	ILE ILE ILE ILE CYS CYS CYS CYS CYS	244 244 244 244 244 245 245 245 245 245	-1.164 -1.235 -2.395 -2.607 0.069 1.234 -0.286 0.675 0.403 1.849 0.668 -0.362 1.829	49.269 130 50.405 129 49.255 130 50.530 131 47.902 128 47.715 128 48.063 127 48.074 126 46.930 125 45.913 124 49.389 125 49.389 125 450.014 125	.067 .026 .994 .803 .369 .755 .096 .019 .077 .986 .275	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.00 0 2.00 0 2.00 0 2.00 0 5.54 0 2.00 0 2.00 0 2.00 0 7.03 0)))))))))
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2367 2369 2370 2371 2372 2375 2376 2379 2382 2388 23884 2387		ARG ARG ARG ARG ARG ARG ARG ARG ARG ALA ALA	246 246 246 246 246 246 246 246 247 247	1.987 1.763 2.658 3.969 3.714 4.610 5.842 4.263 3.374 4.216 3.605 4.791	51.277 124 52.438 125 52.453 126 53.245 126 54.656 126 55.622 126 55.334 126 56.881 126 51.342 123 50.471 124 52.345 123 52.489 122 52.272 120	.562 .541 .783 .623 .383 .519 .895 .289 .168 .108 .484	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.00 0 2.00 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2388 2389 2390 2392 2393 2394 2395 2396 2397 2398 2399	C O N CA C O CB CG ND1 CE1	ALA ALA HIS HIS HIS HIS HIS HIS	247 247 248 248 248 248 248 248 248 248 248 248	5.351 5.806 5.187 5.512 6.959 7.507 4.539 4.255 5.262 4.677 3.074	53.902 122 54.172 123 54.801 121 56.193 122 56.579 122 57.453 121 56.793 123 58.246 122 59.147 122 60.327 122 58.906 122	.819 .922 .870 .042 .361 .672 .054 .837 .594	1.00 1.00 6 1.00 1.00 1.00 1.00 1.00 1.0	2.00 0	

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2492	CB PHE CG PHE CD1 PHE CD2 PHE CE1 PHE CE2 PHE C PHE C PHE N PHE CA PHE	257 257 257 257 257 257 257 257 257 258 258	8.578 8.222 9.187 6.906 8.849 6.560 7.533 8.257 9.215 7.104 6.884	46.139 132.661 44.865 131.978 43.926 131.694 44.594 131.649 42.740 131.101 43.417 131.058 42.481 130.781 48.593 132.671 49.360 132.782 48.777 133.286 49.916 134.147 51.086 133.299	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 25.02 1.00 25.02	000000000000
MOTA MOTA MOTA MOTA	2493 2494 2495 2496 2497	CB PHE CG PHE CD1 PHE CD2 PHE CE1 PHE	258 258 258 258 258	6.417 5.831 6.625 4.468 6.070 3.900	52.237 134.072 53.325 134.431 52.271 134.369 54.439 135.070 53.369 135.003	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000
MOTA MOTA MOTA MOTA MOTA	2498 2499 2500 2501 2502	CE2 PHE CZ PHE C PHE O PHE N ALA	258 258 258 258 259 259	4.698 5.837	54.461 135.356 49.508 135.160 48.675 134.859 50.063 136.368 49.775 137.457	1.00 2.00 1.00 25.02 1.00 2.00 1.00 13.61	0000
MOTA MOTA MOTA MOTA MOTA MOTA	2504 2505 2506 2507 2508 2510	CA ALA C ALA O ALA N LYS CA LYS	259 259 259 259 260 260	3.626 4.951 3.876 6.091 6.140	50.318 137.122 48.286 137.729 47.718 137.660 47.657 138.016 46.214 138.304	1.00 2.00 1.00 12.73 1.00 2.00 1.00 2.00 1.00 9.39	0 0 0 0
ATOM ATOM ATOM ATOM ATOM	2511 2512 2513 2514 2515	CB LYS CG LYS CD LYS CE LYS NZ LYS	260 260 260 260 260	5.594 6.589 6.797 7.615 - 6.919	45.925 139.704 46.151 140.844 47.622 141.177 47.765 142.449 47.158 143.633	1.00 28.17 1.00 36.91 1.00 36.02 1.00 29.33	0 0 0
ATOM ATOM ATOM ATOM ATOM	2519 2520 2521 2523 2524	C LYS O LYS N ARG CA ARG CB ARG	260 260 261 261 261	5.370 4.443 5.764 5.173 5.410	45.375 137.279 44.633 137.641 45.531 136.004 44.843 134.851 43.335 134.964	1.00 15.95 1.00 2.00 1.00 2.00 1.00 21.35	00000
ATOM ATOM ATOM ATOM	2525 2526 2527 2529 2530	CG ARG CD ARG NE ARG CZ ARG NH1 ARG	261 261 261 261 261 261	6.881 7.088 8.408 8.801 7.976 10.018	42.969 134.928 41.473 134.970 41.097 134.460 39.842 134.222 38.820 134.462 39.603 133.729	1.00 9.03 1.00 14.18 1.00 14.38 1.00 16.12	0 0 0
MOTA MOTA MOTA MOTA MOTA	2533 2536 2537 2538 2540 2541	NH2 ARG C ARG O ARG N GLN CA GLN CB GLN	261 261 262 262 262 262	3.692 3.009 3.215 1.821 1.379	45.136 134.592 44.343 133.933 46.283 135.092 46.727 134.927 47.620 136.100	1.00 2.00 1.00 21.35 2 4.00 7.73 7 1.00 7.73 1.00 2.00	0 0 0
ATOM ATOM ATOM ATOM MOTA MOTA	2542 2543 2544 2545 2548	CG GLN CD GLN OE1 GLN NE2 GLN C GLN	262 262 262 262 262	1.106 0.859 -0.277 1.922 1.635	46.888 137.434 47.840 138.603 48.137 138.930 48.304 139.237 47.495 133.628	1.00 2.00 1.00 2.00 7 1.00 2.00 8 1.00 7.73	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA	2549 2550 2552 2553 2554	O GLN N LEU CA LEU CB LEU CG LEU	262 263 263 263 263	0.526 2.730 2.723 2.754 3.070	47.650 133.154 47.996 133.078 48.726 131.819 50.244 132.069 51.201 130.890 52.532 131.133	3 1.00 2.00 3 1.00 2.00 5 1.00 2.00 5 1.00 2.00 5 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	2555 2556 2557 2558 2559 2561	CD1 LEU CD2 LEU C LEU O LEU N VAL CA VAL	263 263 263 263 264 264	2.404 4.575 3.991 5.018 3.932 5.105	51.408 130.679 48.305 131.089 48.082 131.730 48.207 129.759 47.850 128.949	9 1.00 2.00 9 1.00 2.00 5 1.00 2.00 9 1.00 42.92 9 1.00 41.59	0 0 0 0 0
ATOM ATOM ATOM ATOM	2562 2563 2564 2565	CB VAL CG1 VAL CG2 VAL C VAL	264 264 264 264	5.014 3.952 6.349 5.193	46.373 128.433 46.242 127.373 45.908 127.929 48.840 127.773	2 1.00 2.00 9 1.00 2.00	0 0 0

A FOOM	2566	_	****	264	4.164	49 261	127.242	1.00	2.00	0
ATOM ATOM	2566 2567	O N	VAL THR	265	6.409		127.400	1.00	2.00	Ö
ATOM	2569	CA	THR	265	6.639		126.292	1.00	2.00	Ö
MOTA	2570	CB	THR	265	7.420		126.789	1.00	2.00	Ö
MOTA	2571		THR	265	6.534	52.253		1.00	2.00	ő
MOTA	2573	CG2	THR	265	8.021		125.648	1.00	2.00	ŏ
MOTA	2574	C	THR	265	7.405		125.132	1.00	2.00	ō
MOTA	2575	ŏ	THR	265	8.612		125.246	1.00	2.00	Ŏ
MOTA	2576	N	LEU	266	6.712	49.280	124.019	1.00	7.19	Ō
MOTA	2578	CA	LEU	266	7.330		122.857	1.00	7.19	Ō
MOTA	2579	CB	LEU	266	6.338	47.721	122.176	1.00	2.00	0
MOTA	2580	CG	LEU	266	5.815		122.948	1.00	2.00	0
MOTA	2581		LEU	266	4.859		122.057	1.00	2.00	0
MOTA	2582	CD2	LEU	266	6.955		123.368	1.00	2.00	0
MOTA	2583	C	LEU	266	7.898		121.819	1.00	7.19	0
MOTA	2584	0	LEU	266	7.329	50.675	121.537	1.00	2.00	0
MOTA	2585	N	PHE	267	9.033		121.247	1.00	2.00	0
MOTA	2587	CA	PHE	267	9.665		120.222	1.00	2.00	0
ATOM	2588	CB	PHE	267	10.763		120.821	1.00	2.00	0
MOTA	2589	CG	PHE	267	10.937		120.091	1.00	2.00	0
MOTA	2590	CD1	PHE	267	9.985		120.206	1.00	2.00	0
MOTA	2591	CD2	PHE	267	12.021		119.255	1.00	2.00	0
MOTA	2592	CE1		267	10.108		119.493	1.00	2.00	0
ATOM	2593		PHE	267	12.146		118.540	1.00	2.00	0
ATOM	2594	CZ	PHE	267	11.187		118.661	1.00	2.00	0
ATOM	2595	С	PHE	267	10.246		119.227	1.00	2.00	0
ATOM	2596	0	PHE	267	11.418		119.321	1.00	2.00	0
MOTA	2597	N	SER	268	9.387		118.302		12.94	0
MOTA	2599	CA	SER	268	9.707		117.267		12.94	0
ATOM	2600	CB	SER	268	8.420	47.043	116.723		11.11	0
MOTA	2601	0G	SER	268	7.593		117.771		11.11 12.94	0
ATOM	2603	C	SER	268	10.450 10.150		116.103 115.711		11.11	ŏ
MOTA	2604	0	SER	268	11.391	47.344		1.00		ŏ
ATOM	2605	N	ALA	269	12.222		114.378		71.72	ő
MOTA	2607	CA	ALA ALA	269 269	11.383		113.295		82.00	ŏ
MOTA	2608	CB	ALA	269	13.585		114.543		74.82	ŏ
MOTA MOTA	2609 2610	С 0	ALA	269	14.609		114.186		91.21	ō
ATOM	2611	N	PRO	270	13.619		115.076		28.82	Ŏ
ATOM	2612	CD	PRO	270	12.436		115.513	1.00	2.00	0
ATOM	2613	CA	PRO	270	14.788		115.316	1.00	31.86	0
MOTA	2614	CB	PRO	270	14.340	51.374	116.502	1.00	2.00	0
MOTA	2615	ČĞ	PRO	270	13.034	51.783	116.023	1.00	2.00	0
MOTA	2616	C	PRO	270	16.254		115.428		29.52	0
ATOM	2617	0	PRO	270	16.716		115.272	1.00	2.00	0
ATOM	2618	N	ASN	271	16.92 8		115. 59 3	1.00	2.00	0
ATOM	2620	CA	ASN	271	18.346		115.754	1.00	2.00	0
ATOM	2621	CB	ASN	271	19.168		114.663		35.96	0
MOTA	2622	CG	ASN	271	18.483		113.300		61.96	0
MOTA	2623	OD1	ASN	271	17.605		113.034	1.00	36.11	0
ATOM	2624	ND2	asn	271	18.872	50.015	112.432		36.31	0
MOTA	2627	C	asn	271	18.199	53.143	115.475	1.00	2.00	0
ATOM	2628	0	asn	271	19.072	53.807	114.915		61.69	0
MOTA	2629	N	TYR	272	17.039		115.930	1.00	2.00	ŏ
ATOM	2631	CA	TYR	272	16.489		115.793	1.00	2.00	ŏ
MOTA	2632	CB	TYR	272	15.772	22.328	117.090		17.33 10.41	ő
ATOM	2633	CG	TYR	272	14.528	56.208	116.897			0
MOTA	2634	CD1		272	13.458		116.105 115.917		11.86 14.32	ő
ATOM	2635	CE1	TYR	272	12.313 14.421		117.493		10.66	ő
MOTA	2636	CD2		272	14.421		117.312		15.43	ő
MOTA	2637	CE2	TYR	272	12.243		116.529	1.00	9.40	ŏ
MOTA	2638	CZ	TYR	272 272	11.143	58 636	116.375		17.38	ŏ
ATOM	2639	ОН	TYR TYR	272	17.332		115.299	1.00	2.00	Ö
MOTA	2641	C		272	18.356		115.888		29.84	Ŏ
MOTA	2642	0	TYR	273	16.860		114.201	1.00	7.24	Ö
MOTA	2643	N N	CYS CYS	273 273	17.490		113.553	1.00	6.82	ŏ
MOTA MOTA	2645 2646	CA CB	CYS	273	17.203	59.167	114.331		11.61	Ö
A I OF	2040	CB	C 1 .7	~						

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2647 2648 2648 2655 2655 2655 2665 2666 2666 2666 266	CD2 CE1 CE2 CZ CO N CA CB CG OD1	CYSS GLYY GLUU GLUU GLUU GLUU GLUU GLUU GLUU	273 273 2774 2774 2774 2774 2775 2775 2775 2775	15.496 19.010 19.738 19.498 20.934 21.710 22.817 21.120 21.479 19.994 19.730 18.951 20.276 21.137 20.868 20.303 18.774 18.280 17.522 18.572 17.067 18.123 17.367 20.463 21.213 21.638 22.884 23.163 23.576 20.560 20.761	57.724 58.717 56.503 57.502 57.5185 57.764 59.658 61.713 61.786 57.264 57.265 61.786 57.264 57.265 57.265 57.265 57.265 57.276 57.2776 57.2776 57.276 57.	115.326 116.467 116.340 116.224 116.060 116.868 115.125 117.794 118.716 117.901 119.134 119.125 119.652 118.849 120.949 120.949 121.434 120.621 119.597 120.772 118.712 119.093 120.018 120.716 121.964 120.036 119.742 119.918	1.00 10.42 1.00 8.43 1.00 9.04 1.00 13.82 1.00 13.82 1.00 39.65 1.00 92.80 1.00 91.32 1.00 31.82 1.00 31.82 1.00 33.82 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 37.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20 1.00 39.20	000000000000000000000000000000000000000
MOTA MOTA	2686 2688 2689	N CA CB	asn asn asn	278 278 278	19.428 18.344 17.142	51.491 50.758 51.676	120.101 120.722 120.920	1.00 2.00 1.00 2.00 1.00 2.00	0 0
MOTA	2690	CG	asn	278 278	16.394 16.867	51.930	119.639 118.765	1.00 2.00 1.00 2.00	0
MOTA MOTA	2691 2692	OD1 ND2	ASN	278	15.225	51.324	119.510	1.00 2.00 1.00 2.00	0
MOTA MOTA	2695 2696	0	asn Asn	278 278	17.938 17.970	49.602	119.829 118.600	1.00 2.00	0
MOTA	2697	N	ALA	279	17.603 17.133	48.487 47.320	120.454 119.734	1.00 14.31	0
MOTA MOTA	2699 2700	CA CB	ALA ALA	279 279	17.281	46.081	120.594	1.00 2.00	0
MOTA	2701	C	ALA ALA	279 279	15.655 15.155	47.631 48.645	119.498 119.996	1.00 14.31 1.00 2.00	0
MOTA MOTA	2702 2703	N O	GLY	280	14.959	46.788	118.743	1.00 2.00 1.00 2.00	0
MOTA	2705 2706	CA C	GLY GLY	280 280	13.549 12.864	45.783	118.484 118.992	1.00 2.00	0
MOTA MOTA	2707	Õ	GLY	280	13.381	44.69B	118.799	1.00 9.35 1.00 2.00	0
MOTA	2708 2710	N CA	ALA ALA	281 281	11.725 11.082		119.643 120.167	1.00 2.00	0
MOTA MOTA	2711	CB	ALA	281	10.799	44.850	121.658	1.00 2.00 1.00 2.00	0
MOTA	2712 2713	C	ALA ALA	281 281	9.815 9.451	44.345	119.437 118.473	1.00 2.00 1.00 2.00	0
MOTA MOTA	2714	N	MET	282	9.140	43.312	119.918	1.00 14.19	0
MOTA	2716	CA	MET	282 282	7.907 8.232	42.833	119.315 117.995	1.00 14.19 1.00 25.98	ő
MOTA MOTA	2717 2718	CB CG	MET MET	282	7.056	41.885	117.060	1.00 24.91 1.00 25.45	0
MOTA	2719	SD	MET	282 282	7.304 9.044	40.449	115.980 115.525	1.00 23.43	0
MOTA MOTA	2720 2721	C E C	MET MET	282	7.397	41.851	120.363	1.00 14.19	0
MOTA	2722	0	MET	282	8.142 6.148	40.972	120.790 120.788	1.00 24.98 1.00 2.00	0
MOTA MOTA	2723 2725	CY N	MET MET	283 283	5.592	41.143	121.825	1.00 2.00	0
MOTA	2726	CB	MET	283	4.940	41.991	122.925	1.00 19.29	0

ATOM	2727	CG	MET	283	4.481	41.205 1	24.142	1.00 19.76	0
ATOM	2728	SD	MET	283	3.228	42.077 1	25.116	1.00 20.92	0
MOTA	2729	CE	MET	283	4.204	43.235 1 40.125 1	25.966	1.00 17.38 1.00 2.00	0
MOTA	2730 2731	C	MET MET	283 283	4.592 3.456	40.470 1	21.036	1.00 16.17	Ö
MOTA MOTA	2732	N	SER	284	5.012	38.871 1	21.291	1.00 2.00	0
ATOM	2734	CA	SER	284	4.148	37.777 1		1.00 2.00	0
MOTA	2735	CB	SER	284	4.991		20.220	1.00 20.90 1.00 23.67	0
MOTA	2736	OG	SER	284 284	6.376 3.2 7 5		20.528	1.00 23.87	0
MOTA MOTA	2738 2739	0	Ser Ser	284	3.777		22.978	1.00 26.24	ŏ
ATOM	2740	N	VAL	285	1.967	37.402 1	21.894	1.00 2.00	0
MOTA	2742	CA	VAL	285	0.979		.22.859	1.00 2.00	0
MOTA	2743	СВ	VAL	285	-0.091 -0.952	38.026 1 37.714 1	23.056	1.00 2.00 1.00 2.00	0
ATOM	2744	CG1	VAL	285 285	0.572		23.171	1.00 2.00	ŏ
MOTA MOTA	27 4 5 27 4 6	C	VAL	285	0.274	35.644 1		1.00 2.00	Ō
ATOM	2747	ŏ	VAL	285	-0.572		.21.532	1.00 2.00	0
ATOM	2748	N	ASP	286	0.609		.23.026	1.00 2.00	0
MOTA	2750	CA	ASP	286	-0.056	33.258 1 32.019 1	.22.663	1.00 2.00 1.00 22.05	0
MOTA	2751	CB	ASP ASP	286 286	0.771 1.192		24.531	1.00 24.93	ŏ
MOTA MOTA	2752 2753	CG OD1	ASP	286	0.578		25.344	1.00 32.49	0
MOTA	2754		ASP	286	2.152	31.285 1	24.866	1.00 28.80	0
MOTA	2755	c	ASP	286	-1.494	33.141 1		1.00 2.00	0
MOTA	2756	0	ASP	286	-1.993	34.023 1 32.036 1	23.881	1.00 12.72 1.00 28.94	0
MOTA	2757	N	GLU	287 287	-2.144 -3.543	31.744 1	23.153	1.00 28.07	Ö
ATOM ATOM	2759 27 6 0	CA CB	GLU GLU	287	-3.912	30.340 1	22.657	1.00 59.96	0
ATOM	2761	CG	GLU	287	-3.610		21.177	1.00 66.13	0
MOTA	2762	CD	GLU	287	-2.139		20.890	1.00 70.85	0
MOTA	2763		GLU	287	-1.712 -1.412		.19.723 .21.822	1.00 75.38 1.00 73.00	Ö
MOTA	2764	OE2	GLU	287				1.00 30.16	Ö
		\sim	OT II	797	-3.876	- 11.X36 I	24.030	77.00 30.10	U
ATOM	2765 2766	C	GLU	287 287	-3. 87 6 -5. 01 7		.24.638 .25.029	1.00 62.37	0
MOTA	2766	0	GLU GLU THR	287 287 288		32.074 1 31.654 1	.25.029 .25.455	1.00 62.37 1.00 41.83	0
			GLU	287 288 288	-5.017 -2.852 -2.995	32.074 1 31.654 1 31.665 1	.25.029 .25.455 .26.894	1.00 62.37 1.00 41.83 1.00 36.69	0 0 0
MOTA MOTA MOTA	2766 2767 2769 2770	O N CA CB	GLU THR THR THR	287 288 288 288	-5.017 -2.852 -2.995 -2.269	32.074 1 31.654 1 31.665 1 30.449 1	25.029 25.455 26.894 27.457	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26	0
MOTA MOTA MOTA MOTA	2766 2767 2769 2770 2771	O N CA CB OG1	GLU THR THR THR	287 288 288 288 288	-5.017 -2.852 -2.995 -2.269 -0.865	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1	25.029 25.455 26.894 27.457	1.00 62.37 1.00 41.83 1.00 36.69	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	2766 2767 2769 2770 2771 2773	O N CA CB OG1 CG2	GLU THR THR THR THR THR	287 288 288 288	-5.017 -2.852 -2.995 -2.269	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1	25.029 25.455 26.894 27.457 27.171 26.800	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73	000000
MOTA MOTA MOTA MOTA	2766 2767 2769 2770 2771 2773 2774 2775	O N CA CB OG1	GLU THR THR THR THR THR THR	287 288 288 288 288 288 288 288	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1	.25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83	000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776	O N CA CB OG1 CG2 C	GLU THR THR THR THR THR THR THR THR	287 288 288 288 288 288 288 288 288 288	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1	.25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675 .26.776	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34	000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778	O N CA CB OG1 CG2 C O N CA	GLU THR THR THR THR THR THR THR LEU LEU	287 288 288 288 288 288 288 288 288 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 32.947 1 32.948 1 34.034 1 35.334 1	.25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778 2779	O N CA CB OG1 CG2 C O N CA CB	THR THR THR THR THR THR THR LEU LEU LEU	287 288 288 288 288 288 288 288 288 288	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 35.334 1 35.334 1 36.465 1	25.029 25.455 26.894 27.457 27.171 26.800 127.533 128.675 127.232 128.155 127.346	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00	00000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778	O N CA CG2 C O N CA CB CG	GLU THR THR THR THR THR THR THR LEU LEU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.390	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.334 1 36.465 1 36.973 1	25.029 25.455 26.894 27.457 27.171 26.800 27.533 28.675 126.776 127.232 128.155 127.346 128.263	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778 2779 2780 2781 2782	O N CA CB OG1 CG2 C O N CA CB CG1 CD2	GLU THR THR THR THR THR THR THR LBU LBU LBU LBU LBU LBU LBU LBU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.390 -3.817	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.346 1 36.465 1 36.465 1 37.593 1	25.029 25.455 26.894 27.171 26.800 27.533 28.675 26.776 27.232 128.155 128.263 128.263	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778 2779 2780 2781 2782 2783	O N CA CB OG1 CCA CB CG1 CD2 C	GLU THR THR THR THR THR THR LBU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 37.593 1 35.454 1	25.029 25.455 26.894 27.171 26.800 27.533 28.675 26.776 27.232 28.155 27.346 27.346 27.346 27.346	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778 2779 2780 2781 2782 2783 2784	O N CA CB OG1 CG2 C O N CA CB CG CD1 CD2 C O O	GLU THR THR THR THR THR THR LEU LEU LEU LEU LEU LEU LEU LEU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.390 -3.817	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 37.593 1 37.593 1 37.593 1 37.593 1	25.029 25.455 26.894 27.457 27.171 26.800 227.533 28.675 227.232 28.155 27.346 28.263 228.412 127.826	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 13.65 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	00000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2774 2775 2776 2778 2779 2780 2781 2782 2783	O N CA CB OG1 CCA CB CG1 CD2 C	GLU THR THR THR THR THR THR LBU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.390 -3.817 -0.615 -0.244 1.619	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 35.334 1 35.334 1 35.334 1 35.946 1 36.465 1 36.465 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1	25.029 25.455 26.894 27.457 27.171 26.800 27.533 28.675 227.232 28.155 227.346 228.263 227.346 228.263 227.826 228.456 228.456 228.456	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2771 2773 2774 2775 2776 2778 2778 2781 2782 2783 2784 2785 2787 2788	O N CA CB CG1 CD2 C O N CA CB CCD1 CD2 C O N CA CB CCD1 CD2 C O N CA CB	GLU THR THR THR THR THR THR LEU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.461 -2.027 -3.081 -4.282 -5.390 -3.817 -0.615 -0.244 1.619 2.238	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.948 1 32.948 1 35.334 1 35.334 1 35.946 1 36.465 1 36.465 1 36.465 1 36.445 1 34.475 1 34.548 1 33.156 1	25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675 .27.232 .28.155 .27.346 .28.263 .26.412 .27.826 .27.826 .27.826 .27.826 .27.826 .27.826 .28.493 .28.	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	0000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2771 2773 2774 2775 2776 2778 2778 2781 2782 2783 2784 2785 2788 2788 2788 2788 2788 2788 2788	O N CA CB CG1 CD2 C O N CA CB CG CD1 CC C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LEU LEU LEU LEU LEU LEU MET MET MET	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.390 -3.817 -0.615 -0.299 0.244 1.619 2.238 3.717	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 36.465 1 36.445 1 36.445 1 34.475 1 34.548 1 33.156 1 33.200 1	25.029 25.455 26.894 27.457 27.171 26.800 27.533 28.675 27.232 28.155 27.346 128.263 126.412 127.826 128.493 127.566 128.263 128.493 127.566 128.263	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2775 2776 2778 2778 2781 2782 2783 2784 2785 2788 2788 2788 2788 2788 2788 2788	O N CAB CGG12 C O N CAB CGG12 C O N CAB CGG12 C O N CAB CGG C C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LEU LEU LEU LEU LEU MET MET MET MET	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615 -0.299 0.244 1.619 2.238 3.717 4.726	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 36.465 1 36.465 1 37.593 1 35.454 1 36.445 1 34.475 1 34.548 1 33.156 1 33.156 1 33.156 1 33.156 1 33.156 1 33.156 1	25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675 .27.232 .28.155 .27.346 .28.263 .26.412 .27.826 .27.826 .27.826 .27.826 .27.826 .27.826 .28.493 .28.	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2771 2773 2774 2775 2776 2778 2778 2781 2782 2783 2784 2785 2788 2788 2788 2788 2788 2788 2788	O N CA CB CG1 CD2 C O N CA CB CG CD1 CC C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LEU LEU LEU LEU LEU LEU MET MET MET	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.334 1 35.946 1 36.465 1 36.465 1 36.465 1 36.465 1 36.455 1 36.	25.029 .25.455 .26.894 .27.457 .27.171 .26.800 .27.533 .28.675 .27.232 .28.155 .27.346 .27.346 .28.263 .27.566 .28.493 .27.566 .28.212 .28.623 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .27.	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 2773 2775 2776 2778 2778 2781 2783 2784 2785 2787 2788 2789 2789 2791 2792 2793	O N CAB CGG12 C C C C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LBU	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 32.947 1 32.948 1 34.034 1 35.334 1 35.334 1 35.454 1 36.465 1 36.465 1 36.465 1 37.593 1	25.029 25.455 26.894 27.457 27.171 26.800 227.533 28.675 227.232 228.155 227.346 228.412 127.826 128.493 127.566 128.212 128.623 127.935 127.935 127.935	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 2769 2770 2771 27773 27776 27776 2778 2778 2788 2788 2788 27	O N CAB CGG CCC C O N CAB CGC C C O N CAB CGC C O N CAB CGC C C O N CAB CCC C C C O N CAB CCC C C O N CAB CCC C C O N CAB CCC C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LEU LEU LEU LEU MET MET MET MET MET MET CYS	287 288 288 288 288 288 288 288 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.973 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 36.455 1 34.970 1 34.548 1 33.156 1 34.548 1 33.156 1 34.548 1 33.156 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1	25.029 25.455 26.894 27.457 27.171 26.800 227.533 228.575 227.232 228.155 227.346 228.263 127.346 128.263 127.566 128.623 127.935 128.623 127.935 127.935 127.935 127.935	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27771 27773 27776 27776 27778 27789 27781 27782 2783 2788 2788 2788 2788 2788 278	O N CAB CGC C O N CAB CG C C O N CAB CG C C O N CAB CG C C C C O N CAB CG C C C O N CAB CG C C C C O N CAB CG C C C C C C C C C C C C C C C C C C	GLU THR THR THR THR THR THR LEU LEU LEU LEU MET MET MET MET MET CYS CYS	287 288 288 288 288 288 288 288 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.867 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003 3.797	32.074 1 31.654 1 31.665 1 30.449 1 30.552 1 29.171 1 32.948 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 36.475 1 34.548 1 34.475 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1 34.548 1	25.029 25.455 26.894 27.457 27.171 26.800 227.533 228.575 227.232 228.155 227.346 228.493 127.566 128.493 127.566 128.623 127.935 127.935 127.935 127.858 127.858	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27771 27773 27775 27776 27776 27780 27780 27780 2781 2782 2783 2788 2789 2789 27991 27991 27991 27997	ONCABGIOCONCABGOCONCABCONCAB	THR THR THR THR THR LEU LEU LEU LEU LEU LEU LEU LEU LEU CYS CYS	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 37.593 1 35.454 1 36.455 1 34.548 1 33.156 1	25.029 .25.455 .26.894 .27.171 .26.800 .27.533 .28.675 .26.776 .27.325 .28.155 .27.346 .27.346 .27.346 .27.346 .28.493 .27.566 .28.493 .27.566 .28.212 .28.310 .27.935 .27.935 .27.935 .27.935 .27.935 .27.404	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 29.16 1.00 29.26 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 17.87 1.00 13.14	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27771 27773 27776 27778 27780 27781 27782 2783 2788 27788 27788 27789 27799 27799 27798 27798	ON CAB CGG12 CCC ON CAB CCCC CON CAB CCCCC ON CAB CCCCCC CON CCCCCCCCCCCCCCCCCCCCCCCCCCC	GLU THR THR THR THR THR THR LEU LEU LEU LEU MET MET MET MET MET CYS CYS	287 288 288 288 288 288 289 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.827 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615 -0.299 0.244 1.619 2.238 3.772 4.726 5.196 2.430 2.545 3.003 3.797 3.624 1.913 5.293	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 1 32.947 1 32.948 1 34.034 1 35.334 1 35.346 1 36.465 1 36.465 1 37.593 1 35.454 1 36.455 1 34.548 1 33.156 1	25.029 .25.455 .26.894 .27.171 .26.800 .27.533 .28.675 .26.776 .27.232 .28.155 .27.346 .27.346 .27.346 .27.346 .28.493 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.566 .28.212 .27.649 .27.449 .27.404 .27.404 .27.404	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 29.26 1.00 29.26 1.00 2.00 1.00 17.87 1.00 13.14 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27771 27773 27775 27776 27776 27780 27780 27780 2781 2782 2783 2788 2789 2789 27991 27991 27991 27997	ONCABGIOCONCABGOCONCABCONCAB	THR THR THR THR THR LEU LEU LEU LEU LEU MET MET MET MET MET MET MET MET MET MET	287 288 288 288 288 288 289 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.615 -0.299 0.244 1.619 2.238 3.772 4.726 5.196 2.430 2.545 3.003 3.797 3.624 1.913 5.293	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 32.947 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 36.465 1 36.465 1 36.455 1 36.455 1 36.455 1 36.455 1 36.455 1 37.593 1 36.454 1 33.156 1 33.200 1 31.867 1 32.555 1 35.332 34.910 1 36.454 1 37.336 33.200 1 36.454 1	25.029 .25.455 .26.894 .27.171 .26.800 .27.533 .28.675 .26.776 .27.232 .28.155 .27.346 .27.346 .28.493 .27.566 .28.623 .27.566 .28.623 .27.566 .28.623 .27.649 .27.649 .27.649 .27.649 .27.649 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449 .27.6449	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 29.26 1.00 29.26 1.00 29.26 1.00 2.00 1.00 17.87 1.00 13.14 1.00 2.00 1.00 23.09	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27773 27775 27778 27778 27789 27881 27882 27889 27892 27992 27992 27993 27990 27990 2801	ON CABCCCON ABGCCCON CABCCON C	THR THR THR THR LEU LEU LEU LEU LEU LEU CYSS CYSS CYSS CYSS CYSS SER	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003 3.797 3.624 1.913 5.293 5.958	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 32.947 1 32.947 1 32.948 1 35.334 1 35.346 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.451 1 36.451 1 36.451 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.694 1 37.694 1 37.694 1 37.694 1	25.029 .25.455 .26.894 .27.457 .27.171 .26.833 .28.675 .27.232 .28.155 .27.346 .28.263 .27.346 .28.412 .28.63 .27.566 .28.63 .27.566 .28.623 .27.935 .27.935 .27.935 .27.449 .27.404 .27.404 .27.404 .27.404 .27.404	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27773 27775 27778 27778 27789 27881 27883 27889 27892 27993 27996 27997 27996 27997 27998 27988 27998 27988 27988 27988 27988 27988 27988 27988 27988 27988 27988 27988 2798 279	ONCABGIOCONABGCONABGCONABGCONAA	THR THR THR THR LEU LEU LEU LEU LEU LEU CYSS CYSS CYSS SER	287 288 288 288 288 288 289 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.817 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003 3.797 3.624 1.913 5.2958 5.808 7.223	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 32.947 1 32.948 1 34.034 1 35.334 1 35.946 1 36.465 1 37.593 1 37.793 1 37.793 1 37.799 1 37.799 1	25.029 25.455 26.894 27.171 26.890 27.533 28.676 27.232 28.676 228.155 128.346 128.346 128.493 127.566 128.623 127.566 128.623 127.935 126.412 128.623 127.935 127.404 127.404 127.404 127.248 127.248 127.248 127.248	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 29.26 1.00 29.26 1.00 29.26 1.00 2.00 1.00 17.87 1.00 13.14 1.00 2.00 1.00 23.09	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2766 2767 27769 27773 27775 27778 27778 27789 27881 27882 27889 27892 27992 27992 27993 27990 27990 2801	ON CABCCCON ABGCCCON CABCCON C	THR THR THR THR LEU LEU LEU LEU LEU LEU CYSS CYSS CYSS CYSS CYSS SER	287 288 288 288 288 288 288 289 289 289 289	-5.017 -2.852 -2.995 -2.269 -0.865 -2.461 -2.015 -2.492 -2.027 -3.081 -4.282 -5.3817 -0.299 0.244 1.619 2.238 3.717 4.726 5.196 2.430 2.545 3.003 3.797 3.624 1.913 5.293 5.958	32.074 1 31.654 1 31.655 1 30.449 1 30.552 1 29.171 32.947 1 32.947 1 32.948 1 35.334 1 35.346 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.465 1 36.451 1 36.451 1 36.451 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 36.451 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.593 1 37.694 1 37.694 1 37.694 1 37.694 1	25.029 25.455 26.894 27.171 26.890 27.533 28.676 27.232 28.676 228.155 128.346 128.346 128.493 127.566 128.623 127.566 128.623 127.935 126.412 128.623 127.935 127.404 127.404 127.404 127.248 127.248 127.248 127.248	1.00 62.37 1.00 41.83 1.00 36.69 1.00 11.26 1.00 11.65 1.00 11.00 1.00 36.73 1.00 18.83 1.00 6.34 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 23.75 1.00 24.81 1.00 23.46 1.00 26.75 1.00 29.26 1.00 29.26 1.00 2.00 1.00 17.87 1.00 13.14 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	

ATOM 2807 C SER 292 6.867 38.867 123.485 1.00 14.24 0 ATOM 2808 O SER 292 6.867 38.867 123.485 1.00 2.00 0 ATOM 2809 N PHE 293 8.993 38.487 124.128 1.00 2.00 0 ATOM 2811 CA PHE 293 9.526 39.623 123.385 1.00 2.00 0 ATOM 2812 CB PHE 293 10.077 40.676 124.337 1.00 17.01 0 ATOM 2813 CG PHE 293 9.063 41.244 125.270 1.00 19.48 0 ATOM 2814 CD1 PHE 293 8.772 40.611 126.466 1.00 23.05 0 ATOM 2815 CD2 PHE 293 8.414 42.426 124.967 1.00 21.44 0 ATOM 2815 CD2 PHE 293 8.414 42.426 124.967 1.00 21.44 0							30 105	124 112	1.00 4.04	0
ATOM 2808 O SER 2992 6.867 38.867 124.868 1.00 2.00 O O O ATOM 2811 C A PHE 293 S.993 38.427 321 185 1.00 2.00 O O ATOM 2811 C C PHE 293 S.923 38.427 321 185 1.00 2.00 O O ATOM 2812 C C PHE 293 S.923 38.427 321 185 1.00 2.00 O O ATOM 2814 CD1 PHE 293 S.712 O O O O O O O O ATOM 2814 CD1 PHE 293 S.712 O O O O O O O O O	MOTA	2807	С	SER	292		38.132	144.113		
AROM 2809 PHE 293		2808	0	SER	292		38.867	123.405		
AROM 2811 CA PHE 293 9.526 313.623 123.885 1.00 4.00 0 AROM 2812 CB PHE 293 9.663 AI.244 123.875 1.00 17.01 0 AROM 2813 CG PHE 293 8.772 40.651 124.337 1.00 17.00 10 AROM 2815 CD2 PHE 293 8.772 40.611 126.466 1.00 21.05 0 AROM 2815 CD2 PHE 293 8.772 40.611 126.467 1.00 27.05 0 AROM 2815 CD2 PHE 293 7.852 41.466 127.567 1.00 27.05 0 AROM 2816 CE1 PHE 293 7.852 41.466 127.567 1.00 20.24 0 AROM 2817 CE2 PHE 293 7.852 41.466 127.567 1.00 20.24 0 AROM 2818 CZ PHE 293 7.494 42.561 125.045 1.00 20.24 0 AROM 2819 C PHE 293 10.641 32.5127 0.044 1.00 2.00 0 AROM 2820 O PHE 293 11.15 38.829 122.812 1.00 17.14 0 AROM 2821 N GLN 294 11.049 39.418 121.104 1.00 2.00 0 AROM 2821 N GLN 294 11.044 39.162 120.00 0 1.00 17.14 0 AROM 2822 CB GLN 294 11.044 39.162 120.00 0 1.00 2.05 AROM 2825 CG GLN 294 10.074 37.383 118.798 1.00 12.67 0 AROM 2825 CG GLN 294 10.074 37.383 118.798 1.00 22.67 0 AROM 2825 CG GLN 294 10.074 37.383 118.798 1.00 22.67 0 AROM 2826 CG GLN 294 10.074 37.383 118.798 1.00 22.67 0 AROM 2826 CG GLN 294 11.568 41.36.456 117.258 1.00 27.17 AROM 2827 OEI GLN 294 11.57 41.528 117.688 1.00 27.17 AROM 2826 CG GLN 294 11.57 41.528 119.660 1.00 2.00 6.30 AROM 2831 C GLN 294 11.587 41.528 119.660 1.00 2.00 6.30 AROM 2832 CG GLN 294 11.587 41.528 119.660 1.00 2.00 6.30 AROM 2833 CG HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2835 CG HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.886 1.00 10.45 0 AROM 2836 CB HLE 295 13.507 42.875 120.				PHE	293	8. 99 3				
ATOM 2812 CB PHE 293 10.077 40.676 124.337 1.00 17.01 4.08 0 ATOM 2813 CG PHE 293 9.063 41.244 125.270 1.00 19.48 0 ATOM 2814 CD1 PHE 293 8.772 40.611 126.466 1.00 23.04 0 ATOM 2815 CD2 PHE 293 7.652 41.146 127.956 1.00 21.04 0 ATOM 2816 CE1 PHE 293 7.694 42.956 11.557 1.00 20.04 42 0 ATOM 2817 CE2 PHE 293 7.694 42.956 11.557 1.00 20.04 42 0 ATOM 2818 CZ PHE 293 7.694 42.956 11.557 1.00 20.04 42 0 ATOM 2819 C PHE 293 7.211 42.146 11.955 11.00 20.04 42 0 ATOM 2819 C PHE 293 7.214 42.456 11.00 21.00 0 ATOM 2820 O PHE 293 110.613 38.899 122.853 1.00 17.14 0 ATOM 2821 N GLN 294 11.059 39.418 121.104 1.00 2.00 0 ATOM 2822 CG CLN 294 10.074 37.383 118.798 1.00 14.58 0 ATOM 2825 CG CLN 294 8.684 37.387 118.179 1.00 24.62 0 ATOM 2826 CG CLN 294 8.684 37.387 118.179 1.00 24.62 0 ATOM 2827 CG CLN 294 8.684 37.387 118.179 1.00 22.00 0 ATOM 2828 NEZ CLN 294 11.557 41.528 119.660 1.00 2.00 0 ATOM 2828 NEZ CLN 294 11.557 41.528 119.660 1.00 2.00 0 ATOM 2828 NEZ CLN 294 11.557 41.528 119.660 1.00 2.00 0 ATOM 2828 NEZ CLN 294 11.557 41.528 119.660 1.00 2.00 0 ATOM 2830 NEZ CLN 294 11.557 40.379 119.893 1.00 11.23 0 ATOM 2831 N LL 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2833 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2836 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2837 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2838 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2838 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2836 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2837 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2838 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2836 CG LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2840 C LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2841 O LLE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2856 CD LEU 296 15.696 12.00 10.00 10.45 0 ATOM 2864 C C LEU 295 11.567 40.379 119.893 1.00 11.23 0 ATOM 2865 CR LEU 296 11.567 11.568 11.00 10.45 0 ATOM 2866 CR LEU 296 11.568 11.569 11.00 10.45 0 ATOM 2867 CR PRO 298 11.567 11.568 11.571 1.00 10.00 0 ATO						9.526				
ARDON 2813 CG PHE 293 9.063 41.244 125.270 1.00 19.48 0 RRYND 2815 CD2 PHE 293 8.772 40.611 126.466 1.00 23.45 0 RRYND 2815 CD2 PHE 293 7.852 41.146 127.352 1.00 24.82 0 RRYND 2816 CE1 PHE 293 7.852 41.146 127.352 1.00 24.82 0 RRYND 2817 CE2 PHE 293 7.494 22.958 125.845 1.00 20.24 0 RRYND 2818 CZ PHE 293 7.494 22.958 125.845 1.00 20.24 0 RRYND 2819 C PHE 293 10.641 39.259 122.813 1.00 17.14 0 RRYND 2821 N GLN 294 10.990 39.418 121.00 1.00 10.2.00 0 RRYND 2821 N GLN 294 10.990 39.418 121.00 1.00 10.58 0 RRYND 2822 CG GLN 294 10.074 37.883 18.762 11.00 1.00 12.58 0 RRYND 2825 CG GLN 294 10.074 37.883 18.762 11.00 1.00 12.58 0 RRYND 2826 CD GLN 294 8.684 37.807 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 294 10.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 295 11.507 0.074 37.883 118.793 1.00 27.717 0 RRYND 2828 NEZ GLN 295 11.507 0.074 37.883 11.00 2.00 0 RRYND 2828 NEZ GLN 295 11.507 0.074 37.883 11.00 2.00 0 RRYND 2828 NEZ GLN 295 11.507 0.074 37.883 11.00 17.71 0.00 0.00 0.00 0.00 0.00 0.						10.077	40.676	124.337		
ATOM 2814 CD1 PHE 293							41.244	125.270		_
ATOM 2815 CD2 PHE 293							40.611	126.466	1.00 23.05	0
AROM 2813 CCE2 PIBE 293 7.852 41.146 127.352 1.00 24.82 4 0 AROM 2817 CCE2 PIBE 293 7.852 41.146 127.352 1.00 20.24 0 AROM 2818 CZ PIBE 293 7.213 42.325 127.044 1.00 22.00 0 AROM 2819 C PIBE 293 10.641 39.259 122.412 1.00 2.00 0 AROM 2821 N CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2821 N CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2821 N CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2821 CA CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2821 CA CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2821 CA CHIE 293 11.715 38.839 122.853 1.00 17.14 0 AROM 2824 CB CHI 294 10.799 39.418 121.104 1.00 2.00 0 AROM 2825 CG CHI 294 10.799 39.418 121.104 1.00 2.00 0 AROM 2826 CD CHIE 293 18.643 18.738 118.179 1.00 24.62 0 AROM 2826 CD CHI 294 18.644 19.738 118.179 1.00 24.62 0 AROM 2827 0 CH CHI 294 18.644 136.456 117.258 1.00 27.17 0 AROM 2828 NEZ CHI 294 11.587 41.528 117.258 1.00 27.17 0 AROM 2831 C CHI 294 11.587 41.528 117.258 1.00 25.84 0 AROM 2832 O CHI 294 11.587 41.528 119.660 1.00 20.03 0 AROM 2832 O CHI 294 11.587 41.528 119.660 1.00 20.03 0 AROM 2833 N LIE 2955 14.356 41.559 119.772 1.00 12.32 0 AROM 2835 CA LIE 295 14.356 41.559 119.772 1.00 12.32 0 AROM 2836 CB LIE 2955 14.356 41.559 119.772 1.00 12.32 0 AROM 2836 CB LIE 2955 14.356 41.559 119.772 1.00 12.32 0 AROM 2836 CB LIE 2955 14.356 41.559 119.772 1.00 12.32 0 AROM 2836 CB LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2837 CG2 LIE 295 14.576 41.528 119.6760 1.00 10.45 0 AROM 2836 CB LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2836 CG LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2836 CG LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2846 C LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2846 C LIE 2955 15.400 41.624 120.958 1.00 10.45 0 AROM 2846 C LIE 2955 15.500 18.80 18.80 19.90 1	MOTA		_				42 426	124.967	1.00 21.44	0
ATOM 2817 CE2 PHE 293 7.494 42.968 125.845 1.00 20.24 0 ATOM 2818 CZ PHE 293 7.213 42.325 127.044 1.00 22.28 0 ATOM 2819 C PHE 293 10.641 39.259 122.412 1.00 2.00 0 ATOM 2820 O PHE 293 11.715 38.839 122.853 1.00 17.14 0 ATOM 2821 N GLN 294 10.90 39.418 121.104 1.00 2.00 0 ATOM 2821 CB GLN 294 11.404 39.162 120.060 1.00 2.00 0 ATOM 2822 CB GLN 294 11.404 39.162 120.060 1.00 2.00 0 ATOM 2823 CB GLN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2824 CB GLN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2825 CD GLN 294 37.387 118.179 1.00 24.62 0 ATOM 2825 CD GLN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2828 NEZ GLN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2828 NEZ GLN 294 11.587 40.664 119.855 1.00 25.84 0 ATOM 2821 C GLN 294 11.587 41.528 119.660 1.00 2.00 0 ATOM 2821 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2832 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2832 C GLN 295 11.587 40.379 119.893 1.00 11.23 0 ATOM 2832 C GLN 295 11.587 40.379 119.893 1.00 11.23 0 ATOM 2833 CA ILE 295 15.466 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILB 295 15.600 41.624 120.968 1.00 10.45 0 ATOM 2839 CDI ILE 295 15.763 42.807 122.580 1.00 10.45 0 ATOM 2830 CDI ILE 295 15.763 42.807 122.580 1.00 10.45 0 ATOM 2841 C GLEU 296 15.824 43.235 116.658 1.00 10.45 0 ATOM 2846 CB LEU 296 15.824 43.235 116.658 1.00 10.45 0 ATOM 2847 CDI LEU 296 15.824 43.235 116.658 1.00 10.45 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.977 1.00 12.32 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.00 10.45 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.977 1.00 10.45 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.977 1.00 10.45 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.977 1.00 10.45 0 ATOM 2848 CDZ LEU 296 15.824 43.235 117.977 1.00 10.45 0 ATOM 2850 C G GLN 298 11.587 11.588 11.797 1.00 10.45 0 ATOM 2850 C G GLN 298 11.587 11.588 11.797 1.00 10.45 0 ATOM 2860 C BEU 296 15.824 43.235 11.00 10.45 10.00 0 ATOM 2860 C A PRO 298 11.589 11.597 11.500 11.71 1.00 10.45 0 ATOM 2860 C A PRO 298 11.597 11.597 11.00 12.1	MOTA							127.352	1.00 24.82	0
AROM 2818 CZ PHE 293 10.641 39.255 122.412 1.00 22.28 0 AROM 2819 C PHE 293 10.641 39.255 122.412 1.00 2.00 0 AROM 2820 O PHE 293 10.641 39.255 122.412 1.00 17.14 0 AROM 2821 N GIN 294 10.390 39.481 211.104 1.00 2.00 0 AROM 2823 CA GIN 294 11.404 39.162 120.060 1.00 2.00 0 AROM 2824 CB GIN 294 11.404 39.162 120.060 1.00 2.00 0 AROM 2825 CG GIN 294 11.404 39.162 120.060 1.00 2.00 0 AROM 2826 CD GIN 294 10.748 38.742 118.743 1.00 14.58 0 AROM 2826 CD GIN 294 10.748 38.742 118.743 1.00 12.67 0 AROM 2826 CD GIN 294 7.831 38.206 118.535 1.00 27.17 0 AROM 2827 ORI GIN 294 7.831 38.206 118.535 1.00 27.17 0 AROM 2828 NEZ GIN 294 7.831 38.206 118.535 1.00 27.17 0 AROM 2828 NEZ GIN 294 12.182 40.645 119.855 1.00 20.63 0 AROM 2831 C GIN 294 11.587 41.581 19.853 1.00 12.32 0 AROM 2832 O GIN 294 11.587 41.581 19.853 1.00 12.32 0 AROM 2833 N ILE 295 13.506 41.569 119.757 1.00 12.32 0 AROM 2836 CB ILE 295 13.506 41.569 119.757 1.00 12.32 0 AROM 2836 CB ILE 295 15.400 41.568 119.258 1.00 20.63 0 AROM 2837 CG2 ILE 295 15.600 41.569 119.772 1.00 12.32 0 AROM 2838 CG1 ILE 295 15.600 41.569 119.772 1.00 12.32 0 AROM 2839 CD1 ILE 295 15.500 41.569 119.772 1.00 12.32 0 AROM 2839 CD1 ILE 295 15.783 41.507 122.324 1.00 10.45 0 AROM 2840 C ILE 295 15.783 41.507 122.324 1.00 10.45 0 AROM 2841 O ILE 295 15.783 41.507 122.324 1.00 10.45 0 AROM 2841 O ILE 295 15.783 41.507 122.324 1.00 10.45 0 AROM 2844 CA LEU 296 15.884 41.507 122.326 1.00 10.45 0 AROM 2846 CB LEU 296 15.884 41.597 142.797 1.00 10.45 0 AROM 2847 CD1 LEU 296 15.884 41.597 141.797 1.00 10.45 0 AROM 2848 CG2 LEU 296 15.884 41.597 141.797 1.00 10.45 0 AROM 2848 CG2 LEU 296 15.884 41.797 141.79 17.00 10.45 0 AROM 2848 CG2 LEU 296 15.884 41.797 141.79 1.00 10.45 0 AROM 2848 CG2 LEU 296 15.885 41.507 122.324 1.00 10.45 0 AROM 2857 CC LEU 296 15.884 61.507 122.324 1.00 10.45 0 AROM 2858 CG REU 296 15.885 61.507 122.324 1.00 10.45 0 AROM 2858 CG REU 296 15.884 61.507 122.324 1.00 10.45 0 AROM 2858 CG REU 296 15.884 61.507 122.324 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MOTA	2816								
ATOM 2819 C PHE 293 10.641 33.259 122.412 1.00 2.00 0 ATOM 2820 O PHE 293 11.715 38.839 122.853 1.00 17.14 ATOM 2821 N GLN 294 10.390 39.481 21.104 1.00 2.00 0 ATOM 2823 CA GLN 294 11.404 39.162 120.060 1.00 2.00 0 ATOM 2823 CA GLN 294 10.48 38.742 118.743 1.00 14.58 0 ATOM 2824 CB GLN 294 10.074 37.383 118.798 1.00 22.67 0 ATOM 2825 CG GLN 294 10.074 37.383 118.798 1.00 22.67 0 ATOM 2826 CD GLN 294 8.648 37.387 118.179 1.00 24.62 0 ATOM 2827 OE1 GLN 294 8.41 36.456 117.258 1.00 27.17 0 ATOM 2827 OE1 GLN 294 8.41 36.456 117.258 1.00 27.17 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 2.00 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 2.00 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 2.06 30 0 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 16.677 42.875 120.886 1.00 12.32 0 ATOM 2836 CE ILE 295 16.674 41.607 122.324 1.00 10.45 0 ATOM 2837 OC2 ILE 295 15.400 41.624 119.855 1.00 12.32 0 ATOM 2838 CGI ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2839 CDI ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2830 CI ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2840 C ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2841 O ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2842 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2843 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2846 CG LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2847 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2848 CD LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2849 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2840 N LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2841 O LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 N LEU 296 13.895 9.00 10.85 1.00 10.45 0 ATOM 2846 CD LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2847 N LEU 296 15.824 43.300 115.862 1.00 10.45 0 ATOM 2848 CD LEU 296 13.895 9.00 18.84 1.00 10.00 0 ATOM 2850 C RES N R R R R R R R R R R R R R R R R R R	MOTA	2817	CE2	PHE						
ATOM 2810 C PHE 293 11.715 38.839 122.853 1.00 17.14 0 ATOM 2821 N GLN 294 11.404 39.162 120.060 1.00 2.00 0 ATOM 2823 CA GLN 294 11.404 39.162 120.060 1.00 2.00 0 ATOM 2824 CB GLN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2825 CG GLN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2826 CD GLN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2826 CD GLN 294 10.74 37.383 118.798 1.00 22.67 0 ATOM 2826 CD GLN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2827 021 GLN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2828 NEZ GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2832 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2833 CA LLE 295 114.356 41.569 119.772 1.00 12.32 0 ATOM 2835 CA LLE 295 15.00 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 LLE 295 15.60 41.659 119.772 1.00 12.32 0 ATOM 2838 CG1 LLE 295 15.60 41.674 11.670 122.324 1.00 10.45 0 ATOM 2838 CG1 LLE 295 15.627 42.875 120.886 1.00 10.45 0 ATOM 2841 O ILE 295 15.752 40.711 17.974 1.00 10.45 0 ATOM 2840 C LEU 296 15.824 43.235 1.00 21.717 1.00 12.32 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2844 CA LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2844 CA LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2845 CB LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2840 C LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2841 C LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2855 CG LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2856 CB LEU 296 15.824 13.313 7.32 1.00 11.71 1.00 12.46 0 ATOM 2857 CE LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2858 NZ LYS 297 13.31 4.94 1.95 1.00 12.32 0 ATOM 2857 CE LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2858 NZ LYS 297 13.31 4.95 1.00 13.33 0 ATOM 2859 CD LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2857 CE LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2858 CD LEU 296 15.824 43.235 1.00 10.45 0 ATOM 2857 CE LEU 296 15.824 1.00 10.00 0 ATOM 2858 NZ LYS 297 20.224 4.00 11.85 00 0 ATOM 2857 CB LEU 296 11.89 0.00 0.00 0.00 0.00		2818	CZ	PHE						-
ATOM 2821 N GIAN 294 10.390 39.418 121.104 1.00 2.00 0 0 0 0 0 0 0 0 0		2819	С	PHE			39.259	122.412		
ATOM 2823 CA GIN 294 11.404 39.418.743 1.00 14.58 0 ATOM 2824 CB GIN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2825 CG GIN 294 10.748 38.742 118.743 1.00 22.67 0 ATOM 2826 CD GIN 294 8.684 37.387 118.779 1.00 22.67 0 ATOM 2827 OEI GIN 294 8.684 37.387 118.179 1.00 22.67 0 ATOM 2828 NEZ GIN 294 8.441 36.456 117.258 1.00 27.17 0 ATOM 2828 NEZ GIN 294 11.587 41.528 119.660 1.00 20.00 0 ATOM 2831 C GIN 294 11.587 41.528 119.660 1.00 20.00 0 ATOM 2832 O GIN 294 11.587 41.528 119.660 1.00 20.00 0 ATOM 2833 N ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2833 N ILE 295 16.077 42.875 120.886 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.677 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2845 CB LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2846 CG LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2847 CD1 LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2848 CD2 LEU 296 16.785 44.000 117.783 1.00 11.71 0 ATOM 2848 CD2 LEU 296 16.785 44.000 117.783 1.00 11.71 0 ATOM 2848 CD2 LEU 296 16.785 44.000 117.783 1.00 11.71 0 ATOM 2847 CD1 LEU 296 16.785 44.000 117.783 1.00 11.71 0 ATOM 2848 CD2 LEU 296 16.785 44.000 117.781 1.00 12.46 0 ATOM 2850 N LEU 296 16.785 44.000 117.781 1.00 12.40 0 ATOM 2851 N LYS 297 18.135 43.467 114.946 1.00 22.89 0 ATOM 2853 CD LEU 296 16.785 45.260 117.485 1.00 13.38 0 ATOM 2856 CD LEU 296 16.785 44.000 117.79 1.00 12.00 0 ATOM 2857 CB LYS 297 22.254 42.991 117.881 1.00 2.00 0 ATOM 2858 CD LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2850 N LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 12.254 40.00 117.74 1.00 10.67.76 0 ATOM 2857 CB LYS 297 22.254 43.991 118.7997 1.00 2.00 0 ATOM 2858 CD LYS 297 22.254 49.991 119.700 2.00 0 ATOM 2858 CD SAN SOB 39.902 30.150 90.896 1.00 40.41 0 ATOM 2877 N AND 2886 CD AND 39.891 119.991 1				PHE	293		38.839	122.853		
ATOM 2823 CA GIAN 294 11.404 39.162 120.060 1.00 0.4558 0 ATOM 2824 CB GIAN 294 10.074 37.383 118.798 1.00 24.62 0 ATOM 2825 CC GIAN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2827 OEI GIAN 294 8.461 36.456 117.258 1.00 25.84 0 ATOM 2828 NEZ GIAN 294 12.182 40.464 119.855 1.00 20.63 0 ATOM 2831 C GIAN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2832 O GIAN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CGI ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CDI ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CDI ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2840 C ILE 296 15.824 43.235 116.658 1.00 11.77 9 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 11.77 9 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 11.77 9 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.12 0 ATOM 2847 CDI LEU 296 13.835 43.467 114.946 1.00 22.12 0 ATOM 2848 CDI LEU 296 13.499 44.331 113.732 1.00 11.71 0 ATOM 2848 CDI LEU 296 13.499 44.331 113.732 1.00 11.71 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.12 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.12 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.70 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2848 CDI LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2849 C LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2840 C LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2850 C LEU 296 16.785 45.260 117.485 1.00 12.10 0 ATOM 2865 CD LYS 297 21.2564 43.051 11.00 11.73 1.00 11.71 0 ATOM 2866 CD LYS 297 21.2564 43.051 11.00 11					294		39.418	121.104		
ATOM 2824 CB GIN 294 10.748 38.742 118.743 1.00 14.58 0 ATOM 2825 CG GIN 294 8.684 37.387 118.179 1.00 22.67 0 ATOM 2827 OEL GIN 294 7.835 38.206 118.555 1.00 27.17 0 ATOM 2828 NEZ GIN 294 12.182 40.464 119.855 1.00 27.17 0 ATOM 2831 C GIN 294 12.182 40.464 119.855 1.00 27.00 0 ATOM 2832 O GIN 294 11.587 11.588 119.660 1.00 20.63 0 ATOM 2833 N ILE 295 14.356 41.528 119.660 1.00 20.63 0 ATOM 2835 CB ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2840 C ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2841 O ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 10.45 0 ATOM 2842 N LEU 296 15.824 43.235 116.658 1.00 10.45 0 ATOM 2843 CB LEU 296 15.824 43.235 116.658 1.00 10.33 0 ATOM 2846 CB LEU 296 13.855 43.467 114.946 1.00 22.89 0 ATOM 2848 CD2 LEU 296 13.499 44.301 115.862 1.00 22.89 0 ATOM 2848 CD2 LEU 296 16.965 44.070 117.224 1.00 13.33 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2840 C LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2841 N LYS 297 18.135 43.467 114.946 1.00 22.289 0 ATOM 2850 C LEU 296 16.965 45.260 117.85 1.00 17.71 0 ATOM 2848 CD2 LEU 296 16.965 45.260 117.85 1.00 17.72 0 ATOM 2850 C LEU 296 16.965 45.260 117.85 1.00 17.72 1.00 24.16 0 ATOM 2851 N LYS 297 18.135 43.467 114.97 1.00 24.26 0 ATOM 2853 C A LYS 297 20.259 45.149 117.391 1.00 13.73 0 ATOM 2856 CD LYS 297 21.254 40.94 117.991 1.00 20.00 0 ATOM 2857 C E LYS 297 20.259 45.149 117.391 1.00 10.76.76 0 ATOM 2866 C RPRO 298 11.999 41.979 117.915 1.00 40.11 0 ATOM 2867 C B RPRO 298 11.999 41.991 117.971 1.00 24.00 0 ATOM 2867 C B RPRO 298 11.999 21.894 41.999 11.999 11.00 40.11 0 ATOM 2868 C C LYS 297 21.254 48.878 11.5574 1.00 2.00 0 ATOM 2873 C A						11.404	39.162	120.060		
ATOM 2825 CG GLN 294 10.074 37.383 118.798 1.00 22.67 0 ATOM 2826 CD GLN 294 7.835 38.206 118.535 1.00 27.17 0 ATOM 2828 NE2 GLN 294 8.441 36.456 117.258 1.00 25.84 0 ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2832 O GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2842 N LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2845 CB LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2846 CB LEU 296 15.824 43.235 116.658 1.00 11.71 0 ATOM 2847 CD1 LEU 296 12.626 43.340 115.862 1.00 22.89 0 ATOM 2849 C LEU 296 12.626 43.340 115.862 1.00 22.89 0 ATOM 2849 C LEU 296 12.626 43.340 115.862 1.00 22.89 0 ATOM 2845 CB LEU 296 16.985 44.070 117.224 1.00 19.71 0 ATOM 2845 CB LEU 296 16.985 44.070 117.224 1.00 19.71 0 ATOM 2846 CG LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2847 CD1 LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2848 CD2 LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2849 C LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2857 CE LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2864 CG LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2865 CD LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2865 CB LEU 296 16.985 44.070 117.224 1.00 13.73 0 ATOM 2866 C RES 297 22.244 42.971 118.527 1.00 79.65 0 ATOM 2857 CE LEU 296 16.985 44.070 117.232 1.00 68.76 0 ATOM 2858 NZ LYS 297 20.2294 42.971 118.527 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.897 117.915 1.00 79.65 0 ATOM 2866 C RES 297 22.244 42.971 118.527 1.00 61.74 0 ATOM 2866 C A PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 C A PRO 298 19.995 45.666 116.151 1.00 40.01 0 ATOM 2866 C A PRO 298 19.995 45.66	ATOM						38.742	118.743		0
ATOM 2826 CD GLN 294							37.383	118.798	1.00 22.67	0
ATOM 2827 NE2 GLN 294							37.387	118.179	1.00 24.62	0
ATOM 2828 NE2 GLN 294 12.182 40.464 119.855 1.00 2.00 0 ATOM 2831 C GLN 294 12.182 40.464 119.855 1.00 2.00 0 ATOM 2832 O GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 15.400 41.569 119.772 1.00 12.35 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.674 41.607 122.324 1.00 10.45 0 ATOM 2838 CG1 ILE 295 14.674 41.607 122.324 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2840 C ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2841 O ILE 295 15.126 41.703 118.453 1.00 10.45 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 10.45 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2846 CB LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2848 CD2 LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2849 C LEU 296 16.785 44.070 117.224 1.00 13.82 0 ATOM 2850 C LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.457 117.997 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2856 CD LYS 297 20.224 42.991 118.527 1.00 13.82 0 ATOM 2856 CD LYS 297 21.898 41.887 117.915 1.00 76.76 0 ATOM 2856 CD LYS 297 21.898 41.887 117.375 1.00 17.01 0 ATOM 2856 CD LYS 297 22.543 40.430 117.479 1.00 2.00 0 ATOM 2856 CD LYS 297 22.544 42.991 118.527 1.00 76.76 0 ATOM 2856 CD LYS 297 22.544 42.991 118.527 1.00 79.20 0 ATOM 2857 CE LYS 297 22.543 40.430 117.491 1.00 2.00 0 ATOM 2858 O PRO 298 19.995 46.658 117.514 1.00 2.00 0 ATOM 2857 C B LYS 297 21.858 41.887 117.995 1.00 76.76 0 ATOM 2867 CB PRO 298 21.044 48.056 117.514 1.00 2.00 0 ATOM 2867 CB PRO 298 21.044 48.056 117.514 1.00 2.00 0 ATOM 2867 CB PRO 298 21.044 1.06 1.00 2.00 0 ATOM 2868 C A PRO 298 21.044 1.06 1.00 2.00 0 ATOM 2867 CB PRO 298 21.044 1.06 1.00 2.00 0 ATOM 2868 C A RAN 508 39.902 30.150 0.00 48.97 0 ATOM 2870 C A ASN 508 39.902 30.150 0.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.15	MOTA						38 206	118.535	1.00 27.17	0
ATOM 2831 C GLN 294 11.587 41.528 119.650 1.00 20.63 0 ATOM 2832 C GLN 294 11.587 41.528 119.660 1.00 20.63 0 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.426 0 ATOM 2847 CD1 LEU 296 13.835 43.467 114.946 1.00 22.12 0 ATOM 2848 CD2 LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2850 O LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2850 C LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2855 CG LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.997 1.00 2.00 0 ATOM 2857 CE LYS 297 22.594 118.555 1.00 11.00 0.00 0 ATOM 2858 NZ LYS 297 22.594 11.80.60 13.73 1.00 19.71 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0	MOTA						36 456	117 258		
ATOM 2831 C GLN 294 11.587 41.528 119.660 1.00 20.63 O ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 O ATOM 2836 CB ILE 295 15.400 41.524 120.968 1.00 10.45 O ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 O ATOM 2838 CG1 ILE 295 16.674 41.607 122.324 1.00 10.45 O ATOM 2839 CD1 ILE 295 13.756 42.807 122.580 1.00 10.45 O ATOM 2839 CD1 ILE 295 15.126 41.703 118.453 1.00 10.45 O ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 O ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 O ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 O ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 O ATOM 2846 CG LEU 296 15.824 43.235 116.658 1.00 13.33 O ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.12 O ATOM 2847 CD1 LEU 296 13.499 44.331 113.732 1.00 17.71 O 24.46 O ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 19.71 O 24.70 O ATOM 2850 C LEU 296 16.785 40.701 17.224 1.00 13.82 O ATOM 2850 C LEU 296 16.785 40.701 17.224 1.00 13.82 O ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 O ATOM 2853 C A LYS 297 19.319 44.087 117.997 1.00 2.00 O ATOM 2856 CD LYS 297 20.224 42.971 118.527 1.00 79.65 O ATOM 2856 CD LYS 297 21.898 41.87 117.915 1.00 79.65 O ATOM 2856 CD LYS 297 22.543 40.430 117.419 1.00 79.65 O ATOM 2856 CD LYS 297 22.543 40.430 117.373 1.00 19.70 O ATOM 2856 CD LYS 297 22.543 40.430 117.373 1.00 19.70 O ATOM 2856 CD LYS 297 22.543 40.300 116.762 1.00 70.76.76 O ATOM 2856 CD LYS 297 22.543 40.300 116.762 1.00 70.76.76 O ATOM 2857 CE LYS 297 22.543 40.300 116.762 1.00 70.76.76 O ATOM 2856 CD LYS 297 22.543 40.300 116.762 1.00 70.76.76 O ATOM 2856 CD LYS 297 22.543 40.300 116.762 1.00 0.00 O ATOM 2857 CE LYS 297 22.544 48.878 115.553 1.00 40.11 O ATOM 2866 CD PRO 298 19.570 45.700 113.886 1.00 2.00 O ATOM 2867 CB PRO 298 19.570 45.700 113.886 1.00 2.00 O ATOM 2867 CB PRO 298 19.570 45.700 113.886 1.00 2.00 O ATOM 2867 CB PRO 298 19.570 45.700 113.886 1.00 2.00 O ATOM 2867 CB PRO 298 19.570 45.700 113.889 1.00 61.74 O ATOM 2879 CA	MOTA	2828	NE2				40 454	110 955		
ATOM 2833 N ILE 295 13.507 40.379 119.893 1.00 11.23 0 ATOM 2835 CA ILE 295 14.356 41.569 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 14.674 41.607 122.324 1.00 10.45 0 ATOM 2840 C ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.215 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 15.824 43.215 116.658 1.00 13.33 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 12.626 43.340 115.862 1.00 22.89 0 ATOM 2848 CD2 LEU 296 13.695 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.785 45.260 117.485 1.00 22.12 0 ATOM 2849 C LEU 296 16.785 45.260 117.485 1.00 22.12 0 ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2856 CD LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2857 CE LYS 297 20.224 42.971 118.527 1.00 2.00 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2866 C LYS 297 22.543 40.430 116.762 1.00 70.70.66 0 ATOM 2867 CE LYS 297 22.543 40.430 116.762 1.00 70.07.66 0 ATOM 2868 CG PRO 298 18.995 45.656 116.152 1.00 40.11 0 ATOM 2868 CG PRO 298 20.900 46.658 115.557 1.00 2.00 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2875 C B ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2870 C PRO 298 21.264 47.935 116.31 1.00 40.11 0 ATOM 2870 C PRO 298 21.264 47.935 116.937 1.00 61.74 0 ATOM 2870 C ALA 299 22.373 51.193 114.973 1.0	MOTA	2831	С				40.404	119.650		
ATOM 2835 CA ILE 295 13.307 40.379 119.772 1.00 12.32 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CG1 ILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.087 42.900 117.873 1.00 11.71 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.087 44.102 115.717 1.00 24.46 0 ATOM 2845 CB LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 15.763 40.771 117.224 1.00 19.71 0 ATOM 2848 CD2 LEU 296 16.965 44.070 117.224 1.00 19.71 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 13.82 0 ATOM 2851 N LYS 297 18.135 43.454 117.915 1.00 2.00 0 ATOM 2853 CA LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2854 CB LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.991 117.915 1.00 76.76 0 ATOM 2856 CD LYS 297 22.543 40.430 117.232 1.00 68.76 0 ATOM 2856 CD LYS 297 22.543 40.430 117.372 1.00 68.76 0 ATOM 2857 CE LYS 297 22.543 40.430 117.373 1.00 76.76 0 ATOM 2858 NZ LYS 297 22.543 40.430 117.373 1.00 76.76 0 ATOM 2856 CD PRO 298 18.942 45.297 11.18.527 1.00 79.20 0 ATOM 2857 CE LYS 297 22.543 40.430 117.373 1.00 0.0 6.76.76 0 ATOM 2867 CB PRO 298 18.942 45.297 11.51.88 1.00 2.00 0 ATOM 2867 CB PRO 298 18.942 45.297 11.51.88 1.00 2.00 0 ATOM 2867 CB PRO 298 18.942 45.297 11.51.88 1.00 2.00 0 ATOM 2867 CB PRO 298 18.944 48.056 117.514 1.00 61.74 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 110.00 0.74 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 0.74 0 ATOM 2881 CG ASN 508 39.90		2832	0	GLN			41.528	119.000		
ATOM 2835 CA ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2836 CB ILE 295 15.400 41.624 120.968 1.00 10.45 0 ATOM 2838 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2840 C ILE 295 15.126 41.703 118.453 1.00 7.79 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 13.835 43.467 114.946 1.00 22.489 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.489 0 ATOM 2847 CD1 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 13.73 0 ATOM 2850 O LEU 296 16.785 44.070 117.224 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2855 CB LYS 297 20.224 42.971 118.527 1.00 2.00 0 ATOM 2855 CB LYS 297 20.792 42.094 117.419 1.00 79.20 0 ATOM 2856 CD LYS 297 21.898 41.187 117.995 1.00 79.20 0 ATOM 2857 CE LYS 297 22.543 40.430 115.736 1.00 79.20 0 ATOM 2858 NZ LYS 297 22.543 40.430 115.736 1.00 79.20 0 ATOM 2856 CD LYS 297 22.543 40.430 115.00 110.00 70.676 0 ATOM 2857 CE LYS 297 20.792 42.094 117.419 1.00 79.20 0 ATOM 2858 NZ LYS 297 20.792 42.094 117.419 1.00 79.20 0 ATOM 2856 CD LYS 297 21.898 41.187 117.975 1.00 2.00 0 ATOM 2857 CB LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2867 CB PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2867 CB PRO 298 29.20 46.981 114.427 1.00 2.00 0 ATOM 2867 CB PRO 298 29.22 37.64 47.935 116.312 1.00 61.74 0 ATOM 2867 CB PRO 298 21.894 45.297 115.188 110.00 2.00 0 ATOM 2867 CB PRO 298 21.894 45.297 115.188 110.00 2.00 0 ATOM 2867 CB PRO 298 21.894 45.297 115.188 110.00 2.00 0 ATOM 2867 CB PRO 298 21.894 49.91 115.00 110.00 11.70 0 ATOM 2867 CB PRO 298 21.894 49.91 115.00 110.00 61.74 0 ATOM 2877 N ASN 508 39.902 20.373 51.193 114.973 1.00 61.74 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 0.74 0 ATOM 2887 C ALM 299 2		2833	N	ILE	295		40.379	119.893		
ATOM 2837 CG2 ILE 295 15.400 41.624 120.988 1.00 10.45 0 ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.973 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.973 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 13.33 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2846 CG LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2847 CD1 LEU 296 12.626 43.340 115.862 1.00 13.82 0 ATOM 2848 CD2 LEU 296 16.985 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.985 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 1.073 0 ATOM 2851 N LYS 297 18.135 43.454 117.915 1.00 2.00 0 ATOM 2853 CA LYS 297 20.224 42.991 118.527 1.00 79.20 0 ATOM 2854 CB LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 79.20 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 79.20 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 79.20 0 ATOM 2855 CD LYS 297 22.543 40.430 116.762 1.00 79.20 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 70.01 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 70.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 70.01 0 ATOM 2859 CD LYS 297 22.544 43.9543 117.232 1.00 68.76 0 ATOM 2867 CB PRO 298 18.942 45.297 115.1588 1.00 2.00 0 ATOM 2867 CB PRO 298 18.942 45.297 115.1588 1.00 2.00 0 ATOM 2868 CD ARN 508 39.902 30.150 90.896 110.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.191 1.00 40.11 0 ATOM 2868 CD ARN 508 39.902 30.150 90.896 110.00 40.11 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 110.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 110.00 0.74 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 110.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2880 CB ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2880 CB ASN 508 37.666 31.0				ILE	295	14.356				
ATOM 2837 CG2 ILE 295 16.277 42.875 120.886 1.00 10.45 0 ATOM 2838 CG1 ILE 295 13.756 42.807 122.324 1.00 10.45 0 ATOM 2839 CD1 ILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.203 117.873 1.00 11.71 0 ATOM 2845 CB LEU 296 14.987 44.102 115.717 1.00 24.46 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.289 0 ATOM 2848 CD2 LEU 296 13.835 43.467 114.946 1.00 22.289 0 ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2849 C LEU 296 16.965 44.070 117.248 1.00 13.82 0 ATOM 2851 N LYS 297 18.135 43.464 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2854 CB LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2855 CD LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 79.65 0 ATOM 2858 NZ LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2868 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2858 NZ LYS 297 20.225 45.501 118.013 1.00 94.11 0 ATOM 2868 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2868 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2867 CB PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2867 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 61.74 0 ATOM 2877 N ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2877 N ASN 508 39.901 30.831 91.887 1.00 1.00 2.00 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2887 CB ALA 299 22.373 51.193 114.973 1.00 0.744 0 ATOM 2887 CB ALA 299 22.373 51.193 114.973 1.00 0.744 0 ATOM 2887 CB ALA 299 22.373 51.193 114.973 1.00 0.744 0 ATOM 2887 CB ALA 299 22.373 51.193 114.973 1.00 0.744 0 ATOM 2888 CD ASN 508 39.901 30.831 91.500 1.00 48.97 0 ATOM 2888 CD ASN 508 37.666 31.359 91.203 1.00 0.744 0 ATOM 2888 CD ASN 508 39.908 30.8	MOTO				295	15.40 0				
ATOM 2839 CD1 ILE 295 13.756 42.807 122.524 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 O ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.824 41.703 118.453 1.00 11.71 0 ATOM 2845 CB LEU 296 15.824 41.235 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 15.824 41.235 116.658 1.00 13.33 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2848 CD2 LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2853 CA LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CG LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CD LYS 297 22.543 40.430 116.762 1.00 79.20 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 79.65 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2864 N R CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2864 N R CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2865 CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2866 CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2866 CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2866 CD LYS 297 22.543 40.430 116.762 1.00 76.76 0 ATOM 2866 CD PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2866 CD PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2866 CD PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2867 CB PRO 298 20.200 46.981 114.227 1.00 2.00 0 ATOM 2867 CB PRO 298 20.200 46.981 114.227 1.00 2.00 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2887 CB ALA 299 22.373 51.193 115.105 1.00 2.00 0 0 ATOM 2887 CB ALA 299 22.373 51.193 115.105 1.00 2.00 0 0 ATOM 2887 CB ALA 299 22.373 51						16. 27 7	42.875	120.886		
ATOM 2839 CD1 IILE 295 13.756 42.807 122.580 1.00 10.45 0 ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 0 ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 13.33 0 ATOM 2845 CB LEU 296 14.987 44.102 115.717 1.00 24.46 0 ATOM 2846 CG LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2848 CD2 LEU 296 13.835 43.467 114.946 1.00 22.12 0 ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 1971 0 ATOM 2849 C LEU 296 16.965 44.070 117.24 1.00 13.82 0 ATOM 2849 C LEU 296 16.965 44.070 117.24 1.00 13.82 0 ATOM 2850 C LEU 296 16.785 44.087 117.997 1.00 20.00 0 ATOM 2851 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CG LYS 297 20.224 42.971 118.527 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 79.65 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 71.01 0 ATOM 2868 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2868 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2864 N NC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2867 CB PRO 298 20.220 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.220 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 21.854 48.878 115.574 1.00 61.74 0 ATOM 2877 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2877 N ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2886 CG ANN 508 38.951 30.831 91.807 1.00 0.74 0 ATOM 2887 CB ANN 508 38.951 30.831 91.807 1.00 0.74 0 ATOM 2886 CG ANN 508 38.951 30.831 91.807 1.00 0.74 0 ATOM 2887 N ASN 508 38.951 30.831 91.500 0.74 0 0.74 0 ATOM 2887 CB ANN 508 38.951 30.831 91.500 0.74 0 0.74 0 ATOM 2888 CG ANN 508 38.951 30.831 91.500 0.74 0 0.74 0 ATOM 2887 N ANN 508 38.951 30.831 91.500 0.	ATOM					14.674	41.607	122.324	1.00 10.45	
ATOM 2840 C ILE 295 15.723 40.741 117.974 1.00 10.45 0 ATOM 2841 N LEU 296 15.723 40.741 117.974 1.00 10.45 0 ATOM 2842 N LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.235 116.655 1.00 13.33 0 ATOM 2846 CB LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2848 CD LEU 296 13.835 44.331 113.732 1.00 19.71 0 ATOM 2848 CD LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.73 0 ATOM 2850 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CB LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CB LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2858 NZ LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2864 N PRO 298 19.995 45.561 116.752 1.00 71.01 0 ATOM 2864 N PRO 298 19.995 45.561 116.152 1.00 40.11 0 ATOM 2866 CD PRO 298 19.995 45.561 116.152 1.00 40.11 0 ATOM 2866 CD PRO 298 19.995 45.561 116.152 1.00 40.11 0 ATOM 2866 CD PRO 298 19.995 45.561 116.152 1.00 40.11 0 ATOM 2866 CD PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CD PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.188 1.00 2.00 0 ATOM 2867 CB PRO 298 21.264 47.935 115.188 1.00 2.00 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 115.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 115.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 110.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 110.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 115.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 115.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 110.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 115.189 110.00 40.11 0 ATOM 2877 N AND 2880 CB ANN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CB ANN							42.807	122.580	1.00 10.45	0
ATOM 2841 O ILE 295								118.453		0
ATOM 2844 CA LEU 296 15.087 42.900 117.873 1.00 11.71 0 ATOM 2844 CA LEU 296 15.824 43.235 116.658 1.00 24.46 0 ATOM 2846 CB LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2846 CD LEU 296 13.835 43.467 114.946 1.00 22.89 0 ATOM 2847 CD1 LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2848 CD2 LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2849 C LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2855 CG LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2862 C LYS 297 22.554 40.430 116.762 1.00 71.01 0 ATOM 2865 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2865 CD LYS 297 22.554 40.430 116.762 1.00 71.01 0 ATOM 2865 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2866 CA PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2867 CB PRO 298 19.995 45.656 116.155 1.00 40.11 0 ATOM 2867 CB PRO 298 19.957 45.500 118.013 1.00 94.11 0 ATOM 2867 CB PRO 298 19.957 45.500 118.013 1.00 40.11 0 ATOM 2867 CB PRO 298 19.957 45.500 118.013 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.254 48.878 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.266 498 114.973 1.00 61.74 0 ATOM 2880 CB ANN 508 39.902 30.150 90									1.00 10.45	0
ATOM 2844 CA LEU 296	MOTA					_	42 900	117 873		0
ATOM 2844 CB LEU 296	MOTA	2842					42.300	116 658		
ATOM 2845 CB LEU 296	ATOM	2844	CA				43.233	115 717		
ATOM 2846 CD LEU 296 12.626 43.340 115.862 1.00 22.12 0 ATOM 2848 CD2 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2851 CLYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2854 CB LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2855 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2862 C LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2866 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CB PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2867 CB PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2877 N ALA 299 21.893 52.319 115.574 1.00 62.00 0 ATOM 2877 N ASN 508 33.9902 30.150 90.896 1.00 48.97 0 ATOM 2878 CA ALA 299 22.373 51.193 114.973 1.00 64.74 0 ATOM 2877 N ASN 508 33.9902 30.150 90.896 1.00 48.97 0 ATOM 2878 CA ALA 299 22.373 51.193 114.973 1.00 64.974 0 ATOM 2878 CA ALA 299 21.893 52.319 115.500 1.00 48.97 0 ATOM 2880 CB ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2887 CA ASN 508 37.453 32.668 97.98 1.00 0.74 0 ATOM 2887 CA ASN 508 37.453 32.668 99.798 1.00 0.74 0 ATOM 28887 C ASN 508 40.274 32.266 89.798 1.00 0.74 0	MOTA	2845	CB	LEU						
ATOM 2847 CD1 LEU 296 13.499 44.331 113.732 1.00 19.71 0 ATOM 2849 C LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CG LYS 297 20.224 42.991 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FIG. 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2866 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 2.00 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2877 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2878 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2878 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2887 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2888 CB ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 89.798 10.00 0.74 0 ATOM 2888 C ASN 508 37.666 89.798 10.00 0.74 0 ATOM 2888 C CB ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 81.048 89.687 1.00 48.97 0		2846	CG	LEU	296				1 00 22.03	
ATOM 2848 CD2 LEU 296 16.965 44.070 117.224 1.00 13.82 0 ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 79.20 0 ATOM 2855 CB LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2862 C LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2865 CD PRO 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 CA PRO 298 18.942 45.297 115.188 1.00 2.00 ATOM 2866 CA PRO 298 20.200 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 20.200 46.981 114.227 1.00 2.00 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.854 48.878 115.574 1.00 61.74 0 ATOM 2877 N ASN 508 31.867 50.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2880 CB ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2881 CG ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2881 CG ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2887 C ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2887 C ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2887 C ASN 508 37.453 32.668 91.290 1.00 0.74 0 ATOM 2887 C ASN 50	-	2847	CD1	LEU	296		43.340	115.862		
ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 13.73 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2855 CG LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 ATOM 2858 NZ LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2858 NZ LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.200 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 2.00 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2873 CA ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2877 N ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.45					296		44.331	113.732		
ATOM 2850 O LEU 296 16.785 45.260 117.485 1.00 2.00 0 ATOM 2851 N LYS 297 18.135 43.454 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 76.76 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.391 1.00 2.00 0 ATOM 2858 NZ LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.864 47.935 116.312 1.00 40.11 0 ATOM 2873 CA ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.379 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.379 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.379 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.379 91.203 1.00 0.74 0 ATOM 2887 C					296	16. 96 5	44.070	117.224	1.00 13.82	
ATOM 2851 N LYS 297 19.319 44.087 117.381 1.00 2.00 0 ATOM 2853 CA LYS 297 20.224 42.971 118.527 1.00 79.20 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2863 0 LYS 297 21.255 45.149 117.376 1.00 2.00 0 ATOM 2863 0 LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CG PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 2.00 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2875 C ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2877 N ASN 508 31.992 30.150 90.896 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 28879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2888 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2888 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2888 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2888 C ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.666 31.349 91.203 1.00 0.74 0 ATOM 2888 C ASN 508 37.666 31.349 91.203 1.00 0.74 0 ATOM 2887 C ASN 508 37.6						16.7 8 5	45.260	117.485		
ATOM 2853 CA LYS 297 19.319 44.087 117.997 1.00 2.00 0 ATOM 2854 CB LYS 297 20.792 42.094 117.419 1.00 79.65 0 ATOM 2855 CG LYS 297 20.792 42.094 117.419 1.00 76.76 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2863 O LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.200 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2866 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2867 CB PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.666 39.798 1.00 0.74 0 ATOM 2887 CA ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2887 CA ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0						18.135	43.454	117.381		
ATOM 2853 CB LYS 297							44.087	117.997		
ATOM 2855 CG LYS 297 21.898 41.187 117.915 1.00 79.65 0 ATOM 2856 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2862 C LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2876 O ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0									1.00 79.20	0
ATOM 2855 CD LYS 297 21.898 41.187 117.915 1.00 76.76 0 ATOM 2857 CE LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2862 C LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 2.00 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2873 CA ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 30.587 90.592 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0									1.00 79.65	0
ATOM 2856 CD LYS 297 22.543 40.430 116.762 1.00 71.01 0 ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2862 C LYS 297 20.259 45.149 117.376 1.00 2.00 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2865 CD PRO 298 20.200 46.658 115.553 1.00 40.11 0 ATOM 2865 CB PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CA PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 ATOM 2879 CA ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.290 1.00 0.74 0 ATOM 2881 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1									1.00 76.76	0
ATOM 2858 NZ LYS 297 23.644 39.543 117.232 1.00 68.76 0 ATOM 2862 C LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2866 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CA PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2866 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2868 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 2.00 0 ATOM 2873 CA ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 0 ASN 508 37.453 32.682						22.63				0
ATOM 2862 C LYS 297 20.259 45.149 117.376 1.00 2.00 0 ATOM 2863 O LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FRC 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2874 CB ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2877 N ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 39.902 30.150 90.896 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 28883 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 28883 ND2 ASN 508 40.274 32.266 89.798 1.00 0.74 0 ATOM 28887 0 ASN 508 40.274 32.266 89.798 1.00 0.74 0	MOTA								1 00 68.76	0
ATOM 2862 C LYS 297 21.255 45.501 118.013 1.00 94.11 0 ATOM 2864 N FIRE 298 19.995 45.656 116.152 1.00 40.11 0 ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2866 CB PRO 298 20.220 46.981 114.227 1.00 2.00 0 ATOM 2868 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.041 48.056 117.514 1.00 2.00 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2873 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2879 CA ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.041 89.687 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.662 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.668 97.798 1.00 0.74 0 ATOM 2888 ND2	MOTA	2858	NZ							
ATOM 2863 O LYS 297 21.253 1.00 40.11 O ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 O ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 O ATOM 2866 CA PRO 298 20.220 46.981 114.227 1.00 2.00 O ATOM 2868 CG PRO 298 20.220 46.981 114.227 1.00 2.00 O ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 O ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 O ATOM 2871 N ALA 299 21.854 48.056 117.514 1.00 2.00 O ATOM 2873 CA ALA 299 21.854 48.878 115.574 1.00 61.74 O ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 O ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 O ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 O ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 O ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 O ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 O ATOM 2881 CG ASN 508 38.951 30.831 91.887 1.00 0.74 O ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 O ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00 0.74 O ATOM 2888 CC ASN 508 40.096 31.041 89.687 1.00	MOTA	2862	С	LYS						
ATOM 2864 N FRC 298 18.942 45.656 116.152 1.00 40.11 0 2866 CD PRO 298 20.900 46.658 115.553 1.00 40.11 0 2867 CB PRO 298 20.220 46.981 114.227 1.00 2.00 0 2.00 ATOM 2866 CG PRO 298 21.264 47.935 116.312 1.00 40.11 0 2870 0 PRO 298 21.264 47.935 116.312 1.00 40.11 0 2870 0 PRO 298 21.264 47.935 116.312 1.00 40.11 0 2.00 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 2870 CB ALA 299 22.276 50.176 116.101 1.00 61.74 0 2874 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 2874 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 2875 C ALA 299 21.893 52.319 115.105 1.00 2.00 0 2.00 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 2.00 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 2870 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 2882 OD1 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CC ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 37.453 32.666 89.798 1.00 0.74 0 ATOM 2888 ND2 ASN 508 ATOM 28.666 89.798 1.000 0.74 0 AT	MOTA	2863	0	LYS						
ATOM 2865 CD PRO 298 18.942 45.297 115.188 1.00 2.00 0 ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 2.00 ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.041 48.056 117.514 1.00 2.00 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32		2864	N	PRO	298					
ATOM 2866 CA PRO 298 20.900 46.658 115.553 1.00 40.11 0 ATOM 2867 CB PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 CG ASN 508 37.453 32.682 91			CD	PRO	298		45.297	115.188		
ATOM 2867 CB PRO 298				PRO	298	20. 90 0	46.658	115.553	1.00 40.11	
ATOM 2868 CG PRO 298 19.570 45.700 113.886 1.00 2.00 0 ATOM 2870 O PRO 298 21.264 47.935 116.312 1.00 40.11 0 0 2.00 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 O ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 O ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 O ATOM 2875 C ALA 299 23.627 50.063 116.799 1.00 2.00 O ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 O ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 O ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 O ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 O ATOM 2881 CG ASN 508 38.951 30.831 91.887 1.00 0.74 O ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 O ATOM 2882 OD1 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 O ATOM 2880 O ATOM 2880 O ATOM 2880 O ATO					298	20.220	46.981	114.227		
ATOM 2869 C PRO 298 21.264 47.935 116.312 1.00 40.11 0 ATOM 2870 O PRO 298 21.041 48.056 117.514 1.00 2.00 0 ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2888 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2880 O ATOM 2880 O ATOM 2880 O ATOM 2						19.570	45.700	113.886		
ATOM 2870 O PRO 298 21.041 48.056 117.514 1.00 2.00 O ATOM 2871 N ALA 299 22.276 50.176 116.101 1.00 61.74 O ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 O ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 O ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 O ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 O ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 O ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 O ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 O ATOM 2882 OD1 ASN 508 37.666 31.359 91.203 1.00 0.74 O ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2888 C ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2880 O						21.264	47.935	116.312		
ATOM 2871 N ALA 299 21.854 48.878 115.574 1.00 61.74 0 ATOM 2873 CA ALA 299 22.276 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2881 CG ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2883 ND2 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0										
ATOM 2873 CA ALA 299 23.627 50.176 116.101 1.00 61.74 0 ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 38.951 30.831 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97									1.00 61.74	
ATOM 2874 CB ALA 299 23.627 50.063 116.799 1.00 2.00 0 ATOM 2875 C ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0									1.00 61.74	0
ATOM 2874 CB ALA 299 22.373 51.193 114.973 1.00 61.74 0 ATOM 2876 O ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0										0
ATOM 2875 C ALA 299 21.893 52.319 115.105 1.00 2.00 0 ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 33.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.096 33.266 89.798 1.00 0.74 0 ATOM 2887 O ATOM 2887 O ASN 508 40.096 33.266 89.798 1.00 0.74 0 ATOM 2887 O										
ATOM 2876 O ALA 299 21.090 1.00 48.97 O ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 O ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 O ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 O ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 O ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 O ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 O ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 32.266 89.798 1.00 0.74 O ATOM 2887 O ASN 508 40.096 30.387 88.533 1.00 17.27 O										
ATOM 2877 N ASN 508 41.191 29.848 91.500 1.00 48.97 0 ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0	MOTA	2876	0		_					
ATOM 2879 CA ASN 508 39.902 30.150 90.896 1.00 48.97 0 1.00 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0.00 0.74 0.00 0.00		2877	N	ASN						
ATOM 2880 CB ASN 508 38.951 30.831 91.887 1.00 0.74 0 ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0				ASN	508					
ATOM 2881 CG ASN 508 37.666 31.359 91.203 1.00 0.74 0 ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0					508	38.951				
ATOM 2882 OD1 ASN 508 36.879 30.587 90.592 1.00 0.74 0 ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0						37.666				
ATOM 2883 ND2 ASN 508 37.453 32.682 91.290 1.00 0.74 0 ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0							30.587	90.592		
ATOM 2886 C ASN 508 40.096 31.041 89.687 1.00 48.97 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0 ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 17.27 0								91.290		
ATOM 2887 O ASN 508 40.274 32.266 89.798 1.00 0.74 0								89.687	1.00 48.97	0
ATOM 2887 C ASN 500 40.004 30.387 88.533 1.00 17.27 0										0
ATOM 2888 N ILE 509 40.000 50.55.										
	MOTA	2888	N	ILE	509	40.000	50,50,	00.333		

ATOM	2890	CA	ILE	509	40.188	30.983	87.224	1.00 18.75	0
MOTA	2891	СВ	ILE	509	40.088	29.889	86.127	1.00 44.37	0
ATOM	2892	CG2	ILE	509	38.650	29.700	85.673	1.00 52.59	0
ATOM	2893	CG1	ILE	509	41.013	30.238	84.966	1.00 44.31	0
MOTA	2894			509	42.489	30.093	85.305	1.00 44.07	Ō
ATOM	2895	C	ILE	509	39.196	32.089	86.957	1.00 18.83	Ö
ATOM	2896	ŏ	ILE	509	39.463	32.956	86.131	1.00 44.94	ŏ
ATOM	2897	N	ASP	510	38.070	32.071	87.670	1.00 2.00	ő
		CA	ASP	510	37.048	33.088	87.485	1.00 2.00	ŏ
ATOM	2899		ASP	510	35.711	32.605	88.031	1.00 52.76	Ö
ATOM	2900	CB		510	35.029	31.634	87.089	1.00 54.58	ő
MOTA	2901	CG	ASP					1.00 54.54	
MOTA	2902	OD1		510	34.008	32.015	86.483		0
MOTA	2903	OD2		510	35.521	30.497	86.944	1.00 58.16	0
MOTA	2904	C	ASP	510	37.403	34.442	88.056	1.00 2.00	0
MOTA	2905	0	ASP	510	37.016	35.464	87.490	1.00 52.34	0
MOTA	2906	N	SER	511	38.143	34.471	89.160	1.00 2.00	0
ATOM	2908	CA	SER	511	38.548	35.763	89.739	1.00 2.00	0
MOTA	2909	CB	SER	511	39.372	35.570	91.015	1.00 53.95	0
MOTA	2910	OG	SER	511	38.631	34.907	92.020	1.00 50.17	0
ATOM	2912	С	SER	511	39.447	36.379	88.690	1.00 2.00	0
ATOM	2913	0	SER	511	39.228	37.488	88.203	1.00 59.62	0
MOTA	2914	N	ILE	512	40.453	35.584	88.349	1.00 45.56	0
MOTA	2916	CA	ILE	512	41.462	35.892	87.361	1.00 40.32	0
ATOM	2917	CB	ILE	512	42.224	34.598	87.035	1.00 2.00	0
ATOM	2918	CG2	ILE	512	43.250	34.842	85.943	1.00 2.00	0
MOTA	2919	CG1	ILE	512	42.897	34.092	88.316	1.00 2.00	0
ATOM	2920	CD1		512	43.635	32.772	88.174	1.00 2.00	0
MOTA	2921	C	ILE	512	40.843	36.514	86.105	1.00 41.22	0
ATOM	2922	ŏ	ILE	512	41.051	37.70 0	85.848	1.00 2.00	0
ATOM	2923	Ň	ILE	513	40.061	35.728	85.358	1.00 2.00	0
MOTA	2925	CA	ILE	513	39.408	36.195	84.136	1.00 2.00	0
ATOM	2926	CB	ILE	513	38.435	35.123	83.529	1.00 2.00	0
ATOM	2927	CG2	ILE	513	37.560	35.757	82.455	1.00 2.00	0
ATON	2928	CG1		513	39.227	33.963	82.890	1.00 2.00	0
ATOM	2929	CD1		513	38.365	32.796	82.367	1.00 2.00	0
	2930	CDI	ILE	513	38.640	37.493	84.335	1.00 2.00	0
ATOM	2931		ILE	513	38.764	38.403	83.519	1.00 2.00	Ō
ATOM		0	GLN	514	37.858	37.611	85.402	1.00 12.46	Ō
MOTA	2932	N		514	37.117	38.853	85.581	1.00 12.46	ŏ
ATOM	2934	CA	GLN	514	35.985	38.678	86.591	1.00 26.62	ō
MOTA	2935	CB	GLN	514	36.384	38.251	87.972	1.00 26.62	ŏ
MOTA	2936	CG	GLN	514	35.195	38.279	88.929	1.00 26.62	ŏ
MOTA	2937	CD	GLN		34.582	39.337	89.140	1.00 26.62	Ŏ
MOTA	2938	OE1		514	34.851	37.116	89.502	1.00 26.62	ō
MOTA	2939			514		40.055	85.936	1.00 12.46	ő
MOTA	2942	C	GLN	514	38.009	41.205	85.613	1.00 26.62	ŏ
MOTA	2943	0	GLN	514	37. 6 86	39.773	86.564	1.00 6.50	Ö
MOTA	2944	N	ARG	515	39.147	40.810	86.937	1.00 7.53	Ö
MOTA	2946	CA	ARG	515	40.090		B7.917	1.00 8.04	Ö
MOTA	2947	CB	ARG	515	41.125	40.251	89.362	1.00 8.04	Ö
MOTA	2948	CG	ARG	515	40.626	40.257		1.00 8.04	Ö
MOTA	2949	CD	ARG	515	41.182	39.117	90.212	1.00 8.04	ő
MOTA	2950	NE	ARG	515	42.609	39.250	90.490		Ö
MOTA	2952	CZ	ARG	51 5	43.355	38.276	90.998		Ö
MOTA	295 3	NH1		515	42.805	37.103	91.275	1.00 8.04	õ
MOTA	2956	NH2	ARG	5 1 5	44.646	38.478	91.228	1.00 8.04	Ö
MOTA	2 9 59	C	ARG	515	40.745	41.325	85.669	1.00 12.92	Ö
MOTA	2960	0	ARG	515	40.840	42.537	85.464	1.00 8.04	
MOTA	2961	N	LEU	516	41.167	40.398	84.810	1.00 8.93	0
ATOM	2963	CA	LEU	516	41.788	40.727	83.525	1.00 6.71	0
MOTA	2964	CB	LEU	516	42.172	39.431	82.786	1.00 2.00	0
MOTA	2965	CG	LEU	516	43.298	38.561	83.385	1.00 2.00	0
MOTA	2966		LEU	516	43.057	37.096	83.083	1.00 2.00	0
ATOM	2967		LEU	516	44.650	38.986	82.8 4 3	1.00 2.00	0
ATOM	2968	c	LEU	516	40.809	41.562	82.675	1.00 5.82	0
ATOM	2969	ò	LEU	516	41.187	42.516	82.002	1.00 2.00	0
ATOM	2970	N	LEU	517	39.534	41.228	82.755	1.00 2.00	0
MOTA	2972	CA	LEU	517	38.519	41.928	81.993	1.00 2.73	0
ATOM	2973	CB	LEU	517	37.336	40.993	81.752	1.00 7.08	C

(F.)

ATOM	3059	NZ	LYS	526	45.166	51.143	87.348	1.00 28.16	0
ATOM	3063	C	LYS	526	46.461	48.602	82.479	1.00 41.81	ŏ
MOTA	3064	ō	LYS	526	45.984	47.727	81.760	1.00 0.75	0
MOTA	3065	N	asn	527	47.372	48.337	83.412	1.00 6.60	0
MOTA	3067	CA	ASN	527	47.861	46.972 46.977	83.639 84.381	1.00 6.60 1.00 20.38	0
MOTA	3068	CB	ASN	527	49.208 50.300	47.733	83.645	1.00 20.38	Ď
MOTA	3069	CG	asn asn	527 527	50.695	48.820	84.068	1.00 29.99	Ö
MOTA	3070 3071	OD1 ND2	ASN	527	50.818	47.148	82.561	1.00 30.17	ŏ
MOTA MOTA	3074	C	ASN	527	46.895	46.135	84.463	1.00 6.60	ō
MOTA	3075	Õ	ASN	527	45.866	46.628	84.924	1.00 23.47	0
MOTA	3076	N	VAL	528	47.271	44.866	84.647	1.00 26.67	0
ATOM	3078	CA	VAL	528	46.541	43.874	85.443	1.00 26.67	0
MOTA	3079	CB	VAL	528	45.575	43.004	84.603	1.00 33.44 1.00 33.01	0
MOTA	3080	CG1		528	44.909 44.524	41.956 43.858	85. 4 88 83.956	1.00 35.61	Ö
ATOM	3081	CG2	VAL	528 528	47.607	42.940	86.018	1.00 26.67	ŏ
MOTA	3082	C	VAL VAL	528	48.054	42.003	85.348	1.00 36.85	ŏ
MOTA MOTA	3083 3084	N	GLN	529	48.048	43.231	87.239	1.00 2.00	0
ATOM	3086	CA	GLN	529	49.061	42.407	87.920	1.00 2.00	0
ATOM	3087	CB	GLN	529	49.968	43.297	88.787	1.00 30.41	0
ATOM	3088	CG	GLN	529	51.142	42.569	89.428	1.00 32.34	0
MOTA	3089	CD	GLN	529	52.380	42.558	88.558	1.00 31.37 1.00 35.47	0
MOTA	3090	-	GLN	529	53.436	43.035	88.962 87.361	1.00 35.47 1.00 30.69	Ö
ATOM	3091	NE2	GLN	529	52.259 48.350	42.014 41.347	88.792	1.00 2.00	ŏ
ATOM	3094	C	GLN	529 529	47.545	41.689	89.663	1.00 32.29	ŏ
MOTA	3095 3096	O N	GLN LEU	530	48.624	40.072	88.536	1.00 2.00	0
ATOM ATOM	3098	CA	LEU	530	47.994	39.002	89.303	1.00 2.00	0
ATOM	3099	CB	LEU	530	47.462	37.911	88.381	1.00 12.99	0
ATOM	3100	ĊĠ	LEU	530	46.535	38.302	87.248	1.00 12.99	0
ATOM	3101	CD1	LEU	530	47.297	38.159	85.956	1.00 12.99 1.00 12.99	0
ATOM	3102	CD2	LEU	530	45.313	37.403	87.243 90.236	1.00 12.99 1.00 2.00	ŏ
MOTA	3103	C	LEU	530	49.002 50.207	38.365 38. 54 3	90.067	1.00 12.99	ŏ
ATOM	3104	0	LEU	530 531	48.516	37.622	91.221	1.00 2.00	Ŏ
MOTA	3105 3107	N CA	gln Gln	531	49.418	36.932	92.117	1.00 2.00	0
MOTA MOTA	3107	CB	GLN	531	48.634	36.051	93.090	1.00 61.54	0
MOTA	3109	CG	GLN	531	48.376	36.639	94.465	1.00 62.91	0
MOTA	3110	CD	GLN	531	47.221	37.603	94.487	1.00 63.71 1.00 59.60	0
MOTA	3111	OE1	GLN	531	47.322	38.684 37.219	95.053 93.876	1.00 61.96	ŏ
ATOM	3112	NE2	GLN	531	46.111 50.337	36.040	91.266	1.00 2.00	Ŏ
MOTA	3115	C	GLN GLN	531 531	49.859	35.276	90.422	1.00 67.15	0
MOTA MOTA	3116 3117	O N	GLU	532	51.647	36.153	91.480	1.00 2.00	0
ATOM	3119	CA	GLU	532	52.655	35.349	90.766	1.00 2.00	0
ATOM	3120	CB	GLU	53 2	54.056	35.623	91.336	1.00 19.01 1.00 22.74	0
ATOM	3121	CG	GLU	532	55.176	34.623	90.966 91.746	1.00 25.50	ő
MOTA	3122	CD	GLU	532	56.496 56.845	34.871 36.042	92.058	1.00 20.16	Ō
MOTA	3123	OE1		532 532	57.195	33.879	92.051	1.00 20.82	0
MOTA MOTA	3124 3125	OE2 C	GLU	532	52.345	33.866	90.900	1.00 2.00	0
ATOM	3126	Ö	GLU	532	52.833	33.059	90.116	1.00 17.28	0
ATOM	3127	N	ASN	53 3	51.568	33.509	91.918	1.00 26.78	0
MOTA	31.29	CA	ASN	53 3	51.181	32.120	92.127	1.00 27.69 1.00 42.65	ŏ
MOTA	3130	CB	asn	53 3	50.751	31.857 32.944	93.587 94.154	1.00 49.17	ŏ
MOTA	3131	CG	ASN	53 3	49.834 50.274	34.070	94.392	1.00 50.06	0
MOTA	3132	OD1		533 533	48.568	32.605	94.387	1.00 50.92	0
MOTA	3133	ND2	NSA NSA	53 3	50.053	31.770	91.165	1.00 26.24	0
MOTA MOTA	3136 3137	C	ASN	533	49.918	30.615	90.747	1.00 41.80	0
MOTA	3138	Й	GLU	534	49.253	32.777	90.815	1.00 24.76	0
ATOM	3140	CA	GLU	534	48.146	32.592	89.893	1.00 19.83 1.00 17.15	0
ATOM	3141	СВ	GLU	534	47.228	33.801	89.918	1.00 17.15	ő
MOTA	3747								
	3142	CG	GLU	534	46.509	33.924	91.239	1.00 25.22	ō
MOTA	3142 3143	CG CD	GLU GLU	534	45.598	35.132	91.323	1.00 25.22 1.00 24.06	
MOTA MOTA MOTA	3142	CG	GLU GLU					1.00 25.22	0

ATOM	3146	С	GLU	534	48.712	32.365	88.510	1.00 21.1	
MOTA	3147	0	GLU	534	48.235	31.500 33.122	87.779 88.156	1.00 14.1 1.00 2.0	_
ATOM	3148	N	ILE	535 535	49.747 50.389	32.942	86.859	1.00 2.0	
MOTA	3150 3151	CA CB	ILE	535	51.442	34.023	86.570	1.00 2.0	_
ATOM ATOM	3152	CG2	ILE	535	52.050	33.784	85.190	1.00 2.0	-
ATOM	3153		ILE	535	50.793	35.411	86.641	1.00 2.0	
MOTA	3154		ILE	535	51.537	36.488	85.849	1.00 2.0	
ATOM	3155	С	ILE	535	51.060	31.565	86.797	1.00 2.0	
ATOM	3156	0	ILE	535	50.788	30.780	85.8 76 87.7 78	1.00 2.0 1.00 2.0	_
MOTA	3157	N	ARG	536	51.914	31.256 29.951	87.793	1.00 2.0 1.00 2.0	-
MOTA	3159	CA	ARG	536	52.583 53.495	29.931	89.011	1.00 39.1	_
MOTA	3160	CB	ARG	536 53 6	52.808	29.604	90.341	1.00 45.4	-
MOTA	3161 3162	CG CD	ARG ARG	536	53.839	29.648	91.474	1.00 49.2	
MOTA MOTA	3163	NE	ARG	536	55.059	28.910	91.132	1.00 56.0	4 0
ATOM	3165	cz	ARG	536	55.110	27.603	90.876	1.00 55.2	
ATOM	3166		ARG	536	54.011	26.860	90.920	1.00 53.9	
ATOM	3169	NH2	ARG	536	56.267	27.032	90.576	1.00 44.4	
MOTA	3172	С	ARG	536	51.562	28.811	87.742	1.00 2.0 1.00 37.0	
MOTA	3173	0	ARG	536	51.806	27.778 29.033	87.126 88.363	1.00 37.0	
ATOM	3174	N	GLY	53 <i>7</i>	50.406 49.345	28.046	88.340	1.00 2.0	
ATOM	3176	CA	GLY GLY	537 537	48.690	28.000	86.970	1.00 2.0	
MOTA	3177 3178	C	GLY	53 <i>7</i> 537	48.292	26.924	86.512	1.00 2.0	
MOTA MOTA	3179	N	LEU	538	48.574	29.164	86.319	1.00 9.5	
MOTA	3181	CA	LEU	538	47.979	29.276	84.977	1.00 7.6	
ATOM	3182	CB	LEU	538	47.930	30.736	84.513	1.00 2.0	
MOTA	3183	CG	LEU	53 8	46.654	31.524	B4.772	1.00 2.0	
MOTA	3184		LEU	538	46.865	32.966	84.408	1.00 2.0 1.00 2.0	
MOTA	3185		LEU	538	45.531	30.940 28.472	83.972 84.000	1.00 2.0 1.00 12.7	
MOTA	3186	Ċ	LEU	538	48.816 48.295	27.635	83.271	1.00 2.0	
MOTA	3187	0	LEU CYS	538 539	50.120	28.724	84.000	1.00 2.0	
MOTA MOTA	3188 31 9 0	CA N	CYS	539	51.036	28,001	83.132	1.00 2.0	0 0
ATOM	3191	CB	CYS	539	52.473	28.494	83.337	1.00 20.5	
ATOM	3192	SG	CYS	539	52.713	30.280	83.567	1.00 19.4	_
MOTA	3193	С	CYS	539	50.957	26.501	83.474	1.00 2.0	
MOTA	3194	0	CYS	539	50.854	25.658	82.588 84.769	1.00 29.6 1.00 26.6	-
MOTA	3195	N	LEU	540	50. 984 50. 91 9	26.191 24.819	85.265	1.00 26.6	-
MOTA	3197	CA	LEU	540 540	51.106	24.818	86.786	1.00 2.0	
MOTA MOTA	3198 3199	CB CG	LEU	540	52.539	24.770	87.339	1.00 2.0	0 0
ATOM	3200		LEU	540	53.001	23.360	87.385	1.00 2.0	
MOTA	3201		LEU	540	53.492	25. 57 7	86.497	1.00 2.0	
ATOM	3202	C	LEU	540	49.635	24.061	84.899	1.00 26.6	
MOTA	3203	0	LEU	540	49.677	22.856	84.619	1.00 2.0 1.00 13.8	
MOTA	3204	N	LYS	541	48.500	24.756 24.126	84.901 84.561	1.00 13.8 1.00 17.4	
MOTA	3206	CA	LYS	541	47.219 46.046	24.126	85.108	1.00 14.6	
MOTA	3207		LYS LYS	541 541	45.844	24.880	86.624	1.00 22.5	
MOTA MOTA	3208 3209	CG CD	LYS	541	44.709	25.777	87.150	1.00 31.6	4 0
ATOM	3210	CE	LYS	541	45.175	27.201	87.517	1.00 37.1	5 0
MOTA	3211	NZ	LYS	541	44.147	28.010	88.284	1.00 27.9	
MOTA	3215	C	LYS	541	47.047	23.891	83.046	1.00 16.9 1.00 8.9	
MOTA	3216	0	LYS	541	46.862	22.745	82.608		-
MOTA	3217	И	SER	542	47.131	24.963 24.877	82.253 80.791	1.00 2.0 1.00 2.0	
ATOM	3219	CA	SER	542 542	46.975 47.165	26.256	80.751	1.00 2.0	-
MOTA	3220	CB	SER SER	542 542	48.499	26.703	80.298	1.00 2.0	-
MOTA MOTA	3221 3223	OG C	SER	542	47.915	23.870	80.107	1.00 2.0	_
ATOM	3223	Ö	SER	542	47.450	22.991	79.377	1.00 2.0	_
MOTA	3225	N	ARG	543	49.223	24.016	80.338	1.00 8.6	
ATOM	3227	CA	ARG	543	50.244	23.128	79.772	1.00 8.6	_
MOTA	3228	CB	ARG	543	51.607	23.381	80.434	1.00 2.0	_
ATOM	3229	CG	ARG	543	52. 67 6	22.339 22.313	80.116 81.173	1.00 4.4	
MOTA	3230	CD	ARG	54 3	53.757 54.989	22.313	80.708	1.00 2.0	
ATOM	3231	NE	ARG	54 3	74.703	22.009	J		-

ATOM	3233	cz	ARG	543	55.326	20.395	80.952	1.00 2.00	0
MOTA	3234		ARG	543	54.523	19.606	81.656	1.00 3.99	0
MOTA	3237		ARG	543	56.483 49.873	19.915	80.508	1.00 2.00 1.00 8.64	0
MOTA	3240	C	ARG ARG	543 543	50.187	21.660 20.806	79.981 79.148	1.00 5.52	0
MOTA MOTA	32 4 1 32 4 2	N O	GLU	544	49.227	21.352	81.098	1.00 42.94	ŏ
ATOM	3244	CA	GLU	544	48.834	19.978	81.355	1.00 44.22	ŏ
MOTA	3245	CB	GLU	544	48.308	19.841	82.778	1.00 37.01	0
MOTA	3246	CG	GLU	544	48.175	18.415	83.249	1.00 41.48	0
MOTA	3247	CD	GLU	544	47.561	18.341	84.626	1.00 46.37	0
MOTA	3248		GLU	544	46.433	18.858	84.791	1.00 53.09	0
MOTA	3249		GLU	544	48.202 47.763	17.777	85.543	1.00 47.19	0
MOTA	3250	C	GLU	544 544	47.742	19.584 18.450	80.339 79.867	1.00 40.49 1.00 34.80	Ö
MOTA	3251 3252	O N	GLU	545	46.898	20.538	79.994	1.00 2.00	ŏ
MOTA MOTA	3254	CA	ILE	545	45.823	20.315	79.017	1.00 2.00	ŏ
ATON	3255	СВ	ILE	545	44.805	21.487	78.959	1.00 11.87	0
ATOM	3256	CG2	ILE	545	43.645	21.102	78.064	1.00 6.53	0
MOTA	3257	CG1	ILE	545	44.288	21.836	80.353	1.00 16.65	0
MOTA	3258	CD1		545	43.267	22.955	80.361	1.00 13.01	0
MOTA	3259	C	ILE	545	46.377	20.149	77.605 76.868	1.00 2.00	0
ATOM	3260	0	ILE	545	45.960 47.302	19.267 21.018	77.227	1.00 9.05 1.00 2.00	0
MOTA	3261	N	PHE	546 546	47.895	20.945	75.918	1.00 2.00	ő
MOTA MOTA	3263 3264	CA CB	PHE	546	49.058	21.906	75.816	1.00 2.00	ŏ
ATOM	3265	œ	PHE	546	48.653	23.335	75.875	1.00 2.00	0
ATOM	3266		PHE	546	49.512	24.293	76.399	1.00 2.00	0
ATOM	3267		PHE	546	47.411	23.730	75.426	1.00 2.00	0
ATOM	3268	CE1	PHE	546	49.127	25.630	76.473	1.00 2.00	0
MOTA	3269		PHE	546	47.023	25.050	75.496	1.00 2.00 1.00 2.00	0
MOTA	3270	CZ	PHE	546 546	47.881 48.374	26.006 19.538	76.020 75.658	1.00 2.00	Ö
ATOM	3271	C	PHE	546 546	48.141	18.990	74 596	1.00 2.00	ŏ
MOTA MOTA	3272 3273	N O	PHE LEU	547	49.012	18.935	76.647	1.00 2.00	Ö
ATOM	3275	CA	LEU	547	49.527	17.582	76.506	1.00 2.00	0
MOTA	3276	CB	LEU	547	50.499	17.289	77.654	1.00 6.91	0
MOTA	3277	CG	LEU	547	51.754	18.159	77.582	1.00 8.40	0
MOTA	3278		LEU	547	52.096	18.701	78.934	1.00 16.17 1.00 11.72	0
MOTA	3279		LEU	547	52.905	17.363	77.029 76. 4 34	1.00 11.72	Ö
ATOM	3280	C	LEU	547 547	48.422 48.642	16.526 15.414	75.946	1.00 2.00	Ö
MOTA	3281 3282	O N	Leu Ser	. 548	47.230	16.881	76.903	1.00 5.34	Ō
MOTA MOTA	3284	CA	SER	548	46.091	15.964	76.898	1.00 5.34	0
ATOM	3285	CB	SBR	548	45.099	16.356	77.99 3	1.00 36.19	0
ATOM	3286	ŌĞ	SBR	548	45.611	17.389	78.821	1.00 39.64	0
MOTA	3288	C	SBR	548	45.374	15.975	75.552	1.00 5.34 1.00 36.66	0
MOTA	3289	0	SER	548	44.299	15.381 16.649	75.406 74.569	1.00 38.88	Ö
MOTA	3290	N	GLN	549	45.968 45.384	16.754	73.242	1.00 23.94	ŏ
MOTA	3292	CA CB	GLN GLN	549 549		18.128	73.084	1.00 46.80	Ō
MOTA MOTA	3293 3294	CG	GLN	549	43.567	18.354	73.990	1.00 38.43	0
ATOM	3295	CD	GLN	549	43.180	19.800	74.054	1.00 38.53	0
MOTA	3296		GLN	54 9	43.934	20.672	73.624	1.00 46.42	0
MOTA	3297	NE2	GLN	549	42.002	20.074	74.595	1.00 39.54 1.00 25.87	0
MOTA	3300	C	GLN	549	46.456	16.547	72.182 72.451	1.00 42.01	Ö
MOTA	3301	0	GLN	54 9 55 0	47.634 46.068	16.766 16.105	70.963	1.00 2.00	Ō
MOTA	3302 3303	N CD	PRO PRO	55 0	44.729	15.738	70.469	1.00 36.68	0
MOTA	3304		PRO	550	47.075	15.894	69.921	1.00 2.00	0
MOTA MOTA	3304	CA CB	PRO	550	46.253	15.350	68.750	1.00 36.68	0
MOTA	3306	CG	PRO	550	44.886	15.915	68.988	1.00 36.68	0
MOTA	3307	Č	PRO	550	47.816	17.184	69.580	1.00 2.00	0
MOTA	3308	0	PRO	550	47.318	18.280	69.840	1.00 36.68	0
MOTA	3309	N	ILE	551	49.013	17.046	69.015 68.626	1.00 2.00 1.00 2.00	0
MOTA	3311	CA	ILE	551 551	49.824 51.293	18.198 17.788	68.510	1.00 2.00	Ö
ATOM	3312	CB	ILE	551 551	51.490	16.914	67.292	1.00 2.00	Ö
ATOM	3313 3314	CG2 CG1	ILE	551	52.182	19.021	68.475	1 00 2.00	0
MOTA	4 1 د د	Ç (J 1							

									^
MOTA	3315	CD1	ILE	551	53.648 49.295	18.701 18.705	68.46B 67.281	1.00 2.00 1.00 2.00	0
MOTA	3316	C O	ILE	551 551	49.596	19.807	66.840	1.00 2.00	0
MOTA MOTA	3317 3318	N	LEU	552	48.514	17.863	66.627	1.00 2.00	0
ATOM	3320	CA	LEU	552	47.896	18.202	65.369	1.00 2.00 1.00 2.00	0
MOTA	3321	CB	LEU	552	48.287 47.809	17.148 17.215	64.320 62.867	1.00 2.00 1.00 2.00	0
MOTA	3322	CG	LEU	552 552	48.082	18.532	62.209	1.00 2.00	ŏ
ATOM	3323 3324	CD1	PEO	552 552	48.544	16.174	62.131	1.00 2.00	Ö
MOTA MOTA	3325	CD2	LEU	552	46.397	18.180	65.728	1.00 2.00	0
ATOM	3326	Ö	LEU	552	45.753	17.124	65.734 66.100	1.00 2.00 1.00 20.15	0
MOTA	3327	N	LEU	553	45.881 44.485	19.352 19.512	66.517	1.00 20.15	ő
MOTA	3329	CA	LEU	553 553	44.240	20.926	67.055	1.00 2.00	ō
ATOM ATOM	3330 3331	CB CG	LEU	553	44.374	21.262	68.543	1.00 2.00	0
ATOM	3332		LEU	553	45.224	20.282	69.290	1.00 2.00	ō
MOTA	3333		LEU	553	44.942	22.639	68.638 65. 41 0	1.00 2.00 1.00 20.15	0
MOTA	3334	C	LEU	553 553	43.495 43.604	19.229 19.780	64.309	1.00 2.00	ő
MOTA	3335	O N	LEU GLU	553 554	42.524	18.375	65.724	1.00 14.62	ŏ
MOTA MOTA	3336 3338	CA	GLU	554	41.476	17.983	64.786	1.00 13.80	0
ATOM	3339	CB	GLU	554	41.135	16.492	64.956	1.00 57.31	0
MOTA	3340	CG	GLU	554	42.326	15.550 15.310	65.177 63.927	1.00 69.83 1.00 73.58	0
MOTA	3341	CD	GLU	554 554	43.168 42.918	15.957	62.887	1.00 82.45	ŏ
ATOM	3342 3343	OE1 OE2	GLU	554 554	44.090	14.465	63.988	1.00 79.54	Ō
MOTA MOTA	3344	C	GLU	554	40.241	18.823	65.105	1.00 12.33	0
ATOM	3345	ŏ	GLU	554	39.253	18.311	65.638	1.00 51.99 1.00 2.00	0
MOTA	3346	N	LEU	555	40.296 39.176	20.112 21.007	64.792 65.077	1.00 2.00	ŏ
ATOM	3348	CA CB	LEU	555 555	39.628	22.456	64.911	1.00 2.00	ō
MOTA MOTA	33 4 9 3350	œ	LEU	555	40.660	22.840	65.972	1.00 2.00	0
MOTA	3351		LEU	555	41.274	24.194	65.697	1.00 2.00	0
MOTA	3352		LEU	555	39.959	22.839 20.734	67.294 64.237	1.00 2.00 1.00 2.00	ŏ
MOTA	3353	C	LEU	555 555	37.932 37.862	19.731	63.537	1.00 2.00	ŏ
MOTA MOTA	3354 3355	N O	GLU	556	36.933	21.603	64.345	1.00 2.00	0
ATOM	3357	CA	GLU	556	35.716	21.460	63.569	1.00 2.00	0
MOTA	3358	CB	GLU	556	35.028	20.115	63.846 65.100	1.00 32.90 1.00 48.42	ŏ
MOTA	3359	CG	GLU	556 556	34.175 32.935	20.063 19. 1 76	64.941	1.00 58.49	ŏ
MOTA	3360 3361	CD OE1	GLU	556	32.792	18.188	65.711	1.00 60.59	0
MOTA MOTA	3362	OE2		556	32.101	19.477	64.047	1.00 59.64	0
MOTA	3363	C	GLU	556	34.736	22.583	63.826	1.00 2.00 1.00 16.83	0 0
ATOM	3364	0	GLU	556	35.067 33.544	23.580 22.423	64.446 63.257	1.00 2.00	ő
MOTA	3365 3367	N CA	ALA	557 557	32.398	23.330	63.427	1.00 2.00	0
MOTA MOTA	3368	CB	ALA	557	31.747	23.013	64.788	1.00 47.62	0
ATOM	3369	Ċ_	ALA	557	32.701	24.826	63.286	1.00 2.00	0
MOTA	3370	0	ALA	557	33.711	25.191 25.711	62.671 63.802	1.00 40.85 1.00 2.00	-
MOTA	3371	И	PRO PRO	558 558	31.811 30.459	25.558	64.353	1.00 2.44	0
MOTA MOTA	3372 3373	CD CA	PRO	558	32.123	27.139	63.658	1.00 2.00	
MOTA	3374	CB	PRO	558	30.786	27.826	63.951	1.00 2.53	0
MOTA	3375	CG	PRO	558	29.798	26.759	63.843 64.627	1.00 2.44	_
MOTA	3376	C	PRO	558	33.190 32.975	27.648 27.616	65.844	1.00 7.53	ō
MOTA	3377 3378	0 N	PRO LEU	558 5 5 9	34.325	28.119	64.112	1.00 2.00	
MOTA MOTA	3380	CA	LEU	559	35. 34 9	28.689	64.982	1.00 2.00	_
MOTA	3381	CB	LEU	559	36.568	27.769	65.148	1.00 2.00	
ATOM	3382	CG	LEU	559	37.592	27.571	64.050	1.00 2.00 1.00 2.00	
MOTA	3383		LEU	559 559	38.620 36.885	26.563 27.083	64.476 62.830	1.00 2.00	
MOTA	3384 3385	CD2	LEU LEU	559 559	35.769	30.038	64.435	1.00 2.00	0
MOTA MOTA	3386	Ö	LEU	559	35.444	30.389	63.311	1.00 2.00	
MOTA	3387	N	LYS	560	36.461	30.804	65.260	1.00 2.00	
MOTA	3389	CA	LYS	560	36.932	32.115 33.143	6 4 .8 8 9 65.843	1.00 2.00	0
ATOM	3390	CB	LYS	560	36.359	ر ۱۹ ۵. د د	03.043	1.00 20.44	Ü

MOTA MOTA	3391 3392	CG CD	LYS LYS	560 560	36.612 35.574	34.562 35.512	65.427 66.018	1.00 20.44 1.00 20.44	0
ATOM	3393	CE	LYS	560	34.253	35.452	65.278	1.00 20.44	0
MOTA	3394	NZ	LYS LYS	560	33.706	34.083	65.225	1.00 20.44	0
MOTA MOTA	3398 33 9 9	C O	LYS	560 560	38.426 38.908	31.990 31.624	65.052 66.117	1.00 2.00 1.00 20.44	0
ATOM	3400	N	ILE	561	39.164	32.244	63.986	1.00 2.00	ŏ
ATOM	3402	CA	ILE	561	40.606	32.106	64.017	1.00 2.00	0
MOTA MOTA	3403 3404	CB CG2	ILE ILE	561 561	41.095 42.566	31.318 30.913	62.750 62.891	1.00 2.00 1.00 2.00	0
MOTA	3405	CG1	ILE	561	40.204	30.076	62.558	1.00 2.00	0
MOTA	3406	CD1	ILE	561	40.806	28.940	61.761	1.00 2.00	0
MOTA MOTA	3407 3408	C	ILE ILE	561 561	41.247 40.703	33.488 34.450	64.102 63.543	1.00 2.00 1.00 2.00	0
ATOM	3409	N	CYS	562	42.365	33.586	64.833	1.00 2.00	0
MOTA	3411	CA	CYS	562	43.124	34.829	65.001	1.00 2.00	0
MOTA MOTA	3412 3413	CB SG	CYS CYS	562 562	42.793 41.073	35.464 35.733	66.339 66.574	1.00 13.31	0
ATOM	3414	C	CYS	562	44.642	34.589	64.928	1.00 13.31 1.00 2.00	0
ATOM	3415	ŏ	CYS	562	45.151	33.551	65.373	1.00 13.31	ŏ
ATOM	3416	N	GLY	563	45.362	35.540	64.348	1.00 2.00	0
MOTA MOTA	3418 3419	Cy C	GLY GLY	563 563	46.805 47.546	35.424 36.260	64.252 65.291	1.00 2.00 1.00 2.00	0
ATOM	3420	ō	GLY	563	46.997	36.556	66.351	1.00 5.66	ŏ
MOTA	3421	N	ASP	564	48.780	36.649	64.958	1.00 2.00	0
MOTA MOTA	3423 3424	CA CB	ASP ASP	564 564	49.657 50.705	37.452 38.191	65.811 64.964	1.00 2.00 1.00 2.00	0
MOTA	3425	CG	ASP	564	51.724	37.270	64.321	1.00 2.00	ŏ
MOTA	3426		ASP	564	51.390	36.585	63.334	1.00 2.00	0
MOTA MOTA	3427 3428	OD2 C	ASP ASP	564 564	52.876 48.981	37.249 38.497	64.786 66.693	1.00 2.00 1.00 2.00	0
ATOM	3429	Ö	ASP	564	48.395	39.442	66.189	1.00 2.00	Ö
ATOM	3430	N	ILE	565	49.094	38.327	68.009	1.00 31.53	0
MOTA	3432	CA	ILE	565 565	48.537 47.810	39.294 38.612	68.953 70.135	1.00 35.54 1.00 9.39	0
MOTA MOTA	3433 3434	CB CG2	ILE ILE	56 5	47.139	39.664	70.133	1.00 9.39	ŏ
ATOM	3435	CG1	ILE	56 5	46.710	37.685	69.622	1.00 9.39	0
MOTA	3436	CD1		565	45.611 49.681	38.424 40.168	68.906 69.48 9	1.00 9.39 1.00 32.16	0
MOTA MOTA	3437 3438	0	ILE	56 5 56 5	49.491	41.356	69.756	1.00 32.16 1.00 9.39	0
MOTA	3439	N	HIS	566	50.859	39.560	69.637	1.00 14.33	0
MOTA	3441	CA	HIS	566	52.082	40.219 41.227	70.111 71.245	1.00 15.67	0
MOTA MOTA	3442 3443	0	HIS HIS	566 566	51.958 52.427	42.359	71.127	1.00 16.54 1.00 15.89	0
ATOM	3444	СВ	HIS	566	52.811	40.882	68.943	1.00 9.53	0
MOTA	3445	CG	HIS	566	53.652	39.936	68.153	1.00 9.53	0
MOTA MOTA	3446 3448	ND1	HIS	566 566	54.829 53.470	39.391 39.432	68.605 66.910	1.00 9.53 1.00 9.53	0
MOTA	3449	NE2		566	54.525	38.582	66.589	1.00 9.53	0
MOTA	3450	CEl		566	55.312	38.600	67.652	1.00 9.53	0
MOTA	3451 3453	N CA	GLY GLY	567 567	51.337 51.170	40.808 41.686	72.345 73.490	1.00 2.00 1.00 2.00	0
ATOM	3454	C	GLY	567	50.249	42.894	73.375	1.00 2.00	ŏ
MOTA	3455	0	GLY	567	50.269	43.764	74.254	1.00 3.59	0
MOTA MOTA	3456 3458	N	GLN GLN	568 568	49.455 48.527	42.973 44.086	72.314 72.141	1.00 36.66 1.00 34.60	0
MOTA	3459	CA CB	GLN	568	48.164	44.236	70.667	1.00 2.50	ŏ
MOTA	3460	CG	GLN	568	49.345	44.164	69.715	1.00 3.37	0
MOTA	3461	CD	GLN	568 568	49.768 50.958	45.507 45.769	69.144 68.974	1.00 3.10 1.00 4.87	0
MOTA MOTA	3462 3463	NE2	GLN GLN	568	48.800	46.349	68.813	1.00 18.91	ŏ
MOTA	3466	C	GLN	568	47.280	43.730	72.950	1.00 34.26	0
MOTA	3467	0	GLN	568 560	46.253	43.365	72.380	1.00 7.33 1.00 2.00	0
MOTA MOTA	3468 3470	N CA	TYR TYR	569 569	47.363 46.263	43.864 43.485	74.272 75.161	1.00 2.00	0
MOTA	3471	CB	TYR	569	46.664	43.687	76.626	1.00 26.93	0
MOTA	3472	CC	TYR	56 9	45.692 45.401	43.048 41.684	77.60 0 77.526	1.00 27.02 1.00 22.43	0
ATOM	34 73	CD1	TYR	569	43.401	41.004	, , , J&U	1.00 22.43	U

wo 9

ATOM 3631 N SER 585 31.737 32.381 71.406 1.00 12.28 C ATOM 3634 CB SER 585 32.394 31.779 70.245 1.00 8.77 ATOM 3634 CB SER 585 32.394 31.779 70.245 1.00 8.77 ATOM 3635 CC SER 585 31.556 33.556 68.809 1.00 27.38 C ATOM 3637 C SER 585 31.558 33.556 68.809 1.00 27.38 C ATOM 3638 O SER 585 31.558 33.556 68.809 71.502 1.00 35.35 O ATOM 3638 O SER 585 34.882 31.258 71.502 1.00 35.35 O ATOM 3639 N ASN 586 33.347 30.037 69.664 1.00 2.00 O ATOM 3640 C ASN 586 35.366 29.197 69.748 1.00 2.00 O ATOM 3640 C ASN 586 35.366 29.197 69.748 1.00 2.00 O ATOM 3640 C ASN 586 35.366 29.197 69.748 1.00 2.07 ATOM 3640 N ASN 586 33.482 31.258 71.502 1.00 10.37 ATOM 3640 N ASN 586 33.482 31.258 71.502 1.00 10.37 ATOM 3645 N N Z ASN 586 33.478 29.7107 69.265 1.00 10.37 ATOM 3645 N N Z ASN 586 36.215 29.937 69.205 1.00 10.287 O ATOM 3640 O ASN 586 36.017 30.574 68.007 1.00 2.87 O ATOM 3650 N TYR 587 38.571 30.554 68.966 1.00 13.99 O ATOM 3655 C A TYR 587 38.571 30.554 69.865 1.00 13.99 O ATOM 3655 C C A TYR 587 38.571 30.554 69.866 1.00 13.99 O ATOM 3655 C C A TYR 587 38.571 30.554 69.865 1.00 12.00 O ATOM 3655 C C A TYR 587 38.571 30.554 69.865 1.00 2.00 O ATOM 3655 C C A TYR 587 38.571 30.554 69.865 1.00 2.00 O ATOM 3656 C C TYR 587 38.571 30.554 69.865 1.00 2.00 O ATOM 3656 C C TYR 587 38.571 30.554 69.865 1.00 2.00 O ATOM 3657 C C C TYR 587 38.571 30.554 69.865 1.00 2.00 O ATOM 3658 C C TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3658 C C TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3658 C C TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3658 C C TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3668 C C E TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3669 C C TYR 587 38.571 30.505 69.865 1.00 2.00 O ATOM 3669 C C E E E E E E E E E E E E E E E E E											
ATOM 3633 CA SER 585 32.736 31.779 70.245 1.00 8.77 8 ATOM 3634 CB SER 585 32.726 32.857 69.209 1.00 31.98 6 ATOM 3635 OG SER 585 31.558 33.556 68.809 1.00 27.38 6 ATOM 3637 C SER 585 31.558 30.995 70.539 1.00 9.84 6 ATOM 3638 O SER 585 31.558 30.995 70.539 1.00 9.84 6 ATOM 3638 O SER 585 31.558 30.995 70.539 1.00 9.84 6 ATOM 3639 N ASN 586 31.586 70.595 70.539 1.00 9.84 6 ATOM 3641 CA ASN 586 31.546 90.995 70.539 1.00 2.00 0 ATOM 3641 CA ASN 586 33.546 90.995 70.539 1.00 2.00 0 ATOM 3641 CA ASN 586 33.546 69.664 1.00 2.00 0 ATOM 3642 CB ASN 586 33.728 27.107 69.625 1.00 10.37 0 ATOM 3643 NDA SER 68 33.728 27.107 69.625 1.00 10.37 0 ATOM 3645 NDA SER 68 33.728 27.107 69.625 1.00 10.37 0 ATOM 3648 C ASN 586 33.728 27.107 69.229 1.00 2.00 0 ATOM 3648 C ASN 586 33.728 27.107 69.229 1.00 2.00 0 ATOM 3649 O ASN 586 33.728 27.107 69.229 1.00 2.00 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3651 CE TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3652 CA TYR 587 38.571 30.554 69.876 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 31.00 4.00 10.00 2.00 0 ATOM 3656 CD1 TYR 587 36.998 31.00 4.00 10.00 2.00 0 ATOM 3657 CD2 TYR 587 38.519 34.061 69.878 1.00 2.00 0 ATOM 3658 CC2 TYR 587 37.458 29.869 69.654 1.00 13.99 0 ATOM 3656 CD1 TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3657 CD2 TYR 587 37.01 35.205 69.865 1.00 2.00 0 ATOM 3657 CD2 TYR 587 37.03 35.40 69.875 1.00 2.00 0 ATOM 3658 CC2 TYR 587 39.72 29.876 69.875 1.00 2.00 0 ATOM 3668 C C TYR 588 42.809 30.375 69.988 1.00 2.00 0 ATOM 3667 C D EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3667 C D EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3669 C C TYR 587 35.743 36.352 69.888 1.00 2.00 0 ATOM 3670 C D EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3671 C C EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3689 C C EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3689 C C EU 588 42.809 30.375 69.985 1.00 2.00 0 ATOM 3689 C C EU 589 44.804 30.382 65.459 1.00 2.00 0 ATOM 3689 C C EU 589 44.804 30.382 65.459 1.00 2.00 0	MOTA	3631	N	SER	585	31.737	32.381	71.406	1.00	12.28	0
ATOM 3634 CB SER 585 32,720 32,887 69,209 1.00 31,98 6.700 31,98 6.700 31,38 6.700 3635 OC SER 585 31,585 33,585 68,809 1.00 27,38 0.700 3638 O SER 585 31,369 30,995 70,539 1.00 9,84 0.700 3638 O SER 585 31,369 30,995 71,502 1.00 35,35 0.700 3638 O SER 585 31,369 30,995 71,502 1.00 35,35 0.700 3638 O SER 585 31,369 30,995 71,502 1.00 35,35 0.700 3641 CA ASN 586 33,947 30,037 69,664 1.00 2.00 0.700 3641 CA ASN 586 33,947 30,037 69,664 1.00 2.00 0.700 3641 CA ASN 586 33,947 30,037 69,664 1.00 2.87 0.700 3644 ODJ ASN 586 33,947 32,997 69,749 1.00 2.00 0.700 3644 ODJ ASN 586 33,947 32,997 69,749 1.00 2.00 0.700 3644 ODJ ASN 586 33,947 32,997 69,749 1.00 2.00 0.700 3644 ODJ ASN 586 33,947 22,996 59,644 1.00 1,37 0.700 3644 ODJ ASN 586 33,947 22,996 59,645 1.00 11,13 0.700 3644 ODJ ASN 586 32,867 27,745 70,506 1.00 4.44 0.700 3648 ODJ ASN 586 32,867 27,745 70,506 1.00 4.44 0.700 3648 ODJ ASN 586 32,867 27,745 70,506 1.00 4.44 0.700 3650 ODJ ASN 586 36,251 29,337 68,029 1.00 2.00 0.700 37,000 37	MOTA	3633	CA	SER	585					8 77	
ATOM 3635 OC SER 585 33.558 68.809 1.00 27.38 67.00 ATOM 3638 O SER 585 33.659 30.959 70.539 1.00 27.38 67.00 ATOM 3638 O SER 585 34.382 31.258 71.502 1.00 35.35 0.00 ATOM 3639 N ASN 586 33.947 30.037 69.664 1.00 2.00 0.00 ATOM 3641 CA ASN 586 35.136 29.197 69.749 1.00 2.00 0.00 ATOM 3642 CB ASN 586 35.136 29.197 69.749 1.00 2.00 0.00 ATOM 3642 CB ASN 586 35.136 29.197 69.749 1.00 2.00 0.00 ATOM 3642 CB ASN 586 34.909 27.854 69.068 1.00 2.87 0.00 ATOM 3644 ODI ASN 586 33.728 27.107 69.625 1.00 11.13 0.00 ATOM 3644 ODI ASN 586 33.728 27.107 69.625 1.00 11.13 0.00 ATOM 3645 ND2 ASN 586 36.027 27.745 70.506 1.00 4.44 0.00 ATOM 3645 ND2 ASN 586 36.027 27.745 70.506 1.00 4.44 0.00 ATOM 3645 ND2 ASN 586 36.017 30.574 68.007 1.00 2.87 0.00 ATOM 3645 ND2 ASN 586 36.017 30.574 68.007 1.00 2.87 0.00 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 11.99 0.00 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 11.99 0.00 ATOM 3650 N TYR 587 39.049 31.706 69.876 1.00 2.00 0.00 ATOM 3655 CB TYR 587 39.049 31.706 69.876 1.00 2.00 0.00 ATOM 3655 CB TYR 587 39.049 31.706 69.876 1.00 2.00 0.00 ATOM 3656 CB TYR 587 36.177 34.138 70.624 1.00 12.00 0.00 ATOM 3656 CB TYR 587 36.177 34.138 70.624 1.00 12.00 0.00 ATOM 3656 CB TYR 587 36.177 34.138 70.624 1.00 12.00 0.00 ATOM 3656 CB TYR 587 36.177 34.138 70.624 1.00 2.00 0.00 ATOM 3656 CB TYR 587 38.517 30.504 69.876 1.00 2.00 0.00 ATOM 3656 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3656 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 587 39.721 29.608 68.745 1.00 2.00 0.00 ATOM 3660 CB TYR 589 44.279 33.064 69.652 1.00 2.00 0.00 ATOM 3660 CB TYR 589 44.279 33.064 69.652 1.00 2.00 0.00 ATOM 3660 CB TYR 589 44.289 39.77 67.301 1.00 2.00 0.00 ATOM 3660 CB TYR 589 44.289 32.013 69.201 1.00 2.00 0.00 ATOM 3670 CB TYR 589 44.299 30.375 67.001 1.00											
ATOM 3637 C SER 585 33.669 30.995 70.539 1.00 3.84 70 ATOM 3638 N SER 585 34.382 31.258 71.502 1.00 35.35 0 ATOM 3638 N ASN 586 33.947 30.037 69.664 1.00 2.00 0 ATOM 3641 CA ASN 586 33.947 30.037 69.664 1.00 2.00 0 ATOM 3641 CA ASN 586 33.947 30.037 69.664 1.00 2.00 0 ATOM 3642 CB ASN 586 33.929 27.854 69.068 1.00 10.37 0 ATOM 3643 CG ASN 586 33.929 27.854 69.068 1.00 10.37 0 ATOM 3644 CD ASN 586 33.929 27.854 69.068 1.00 10.37 0 ATOM 3645 ND ASN 586 32.9567 27.745 70.506 1.00 14.44 0 ATOM 3645 ND ASN 586 32.957 27.745 70.506 1.00 14.44 0 ATOM 3648 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3640 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3640 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3650 N TTR 587 38.571 30.554 68.966 1.00 11.99 0 ATOM 3650 C TTR 587 38.971 30.554 68.966 1.00 11.99 0 ATOM 3650 C TTR 587 38.971 30.554 68.966 1.00 11.99 0 ATOM 3655 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3655 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3655 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3655 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3656 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3656 C CE TTR 587 38.978 32.046 67.632 1.00 2.00 0 ATOM 3656 C CE TTR 587 38.978 32.046 67.052 1.00 2.00 0 ATOM 3657 C CE TTR 587 38.978 32.046 67.052 1.00 2.00 0 ATOM 3658 C CE TTR 587 38.918 32.046 67.632 1.00 2.00 0 ATOM 3657 C CE TTR 587 38.918 32.046 67.632 1.00 2.00 0 ATOM 3658 C CE TTR 587 38.918 32.046 67.052 1.00 2.00 0 ATOM 3660 C											
ATOM 3638 O SER 585 34.382 31.258 71.502 1.00 35.35 00 ATOM 3639 N ASN 586 33.947 30.037 69.664 1.00 2.00 0 ATOM 3641 CA ASN 586 35.136 29.197 69.749 1.00 2.00 0 ATOM 3642 CB ASN 586 35.136 29.197 69.749 1.00 2.00 10 ATOM 3643 CG ASN 586 33.728 27.107 69.625 1.00 11.13 0 ATOM 3643 CG ASN 586 33.728 27.107 69.625 1.00 11.13 0 ATOM 3645 ND2 ASN 586 33.728 27.107 69.625 1.00 11.13 0 ATOM 3645 ND2 ASN 586 33.97 25.960 69.265 1.00 11.13 0 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 0 ATOM 3645 ND2 ASN 586 36.017 30.574 68.007 1.00 2.87 0 ATOM 3640 ND ASN 586 36.017 30.574 68.007 1.00 2.87 0 ATOM 3650 N TTR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3650 N TTR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3651 CB TTR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3655 CD TTR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3655 CD TTR 587 36.177 34.138 70.624 1.00 13.99 0 ATOM 3655 CD TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3655 CD TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3655 CD TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3656 CE TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3656 CE TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3658 CD TTR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3658 CD TTR 587 36.177 37.01 36.01 2.00 0 ATOM 3660 CT TTR 587 36.187 37.701 35.205 69.655 1.00 2.00 0 ATOM 3660 CT TTR 587 36.187 37.701 35.205 69.651 1.00 2.00 0 ATOM 3660 CT TTR 587 36.187 37.701 35.205 69.651 1.00 2.00 0 ATOM 3660 CT TTR 587 36.187 37.701 35.205 69.651 1.00 2.00 0 ATOM 3667 CB LEU 588 40.812 29.592 76.00 1.00 2.00 0 ATOM 3667 CB LEU 588 40.812 29.592 76.00 1.00 2.00 0 ATOM 3667 CB LEU 588 40.812 29.592 76.00 1.00 2.00 0 ATOM 3667 CB LEU 588 40.912 29.602 68.795 1.00 1.00 2.00 0 ATOM 3670 CB LEU 588 40.912 29.00 69.200 1.00 2.00 0 ATOM 3670 CB LEU 588 42.912 27.079 64.533 1.00 1.00 2.00 0 ATOM 3670 CB LEU 588 42.912 27.079 64.533 1.00 1.00 2.00 0 ATOM 3680 CB LEU 588 42.912 27.079 64.533 1.00 1.00 2.00 0 ATOM 3680 CB LEU 588 42.912 29.00 0 0.00 0 0.00 0 ATOM 3680 CB LEU 589 44.289 30.313 69.200 1.00 2.00 0 0 ATOM											
ATOM 3639 N ASN 586 33.947 30.037 69.664 1.00 2.00 0 ATOM 3641 CA ASN 586 33.136 29.197 69.749 1.00 2.00 0 ATOM 3642 CB ASN 586 34.999 27.854 69.068 1.00 10.37 0 ATOM 3644 OD1 ASN 586 33.28 27.107 69.69.65 1.00 10.37 0 ATOM 3644 OD1 ASN 586 33.28 27.107 69.69.65 1.00 10.37 0 ATOM 3645 ND2 ASN 586 33.497 25.960 69.265 1.00 10.37 0 ATOM 3648 C ASN 586 33.497 25.960 69.265 1.00 10.37 0 ATOM 3648 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3649 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3650 CB TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3651 CB TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3655 CD1 TYR 587 38.571 30.554 69.876 1.00 2.00 0 ATOM 3656 CD1 TYR 587 38.519 34.061 69.888 1.00 2.00 0 ATOM 3656 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3656 CD2 TYR 587 36.532 35.231 69.088 1.00 2.00 0 ATOM 3658 CD2 TYR 587 36.532 35.231 69.808 1.00 2.00 0 ATOM 3660 DH TYR 587 39.721 29.608 68.745 1.00 2.00 0 ATOM 3660 DH TYR 587 39.812 28.562 69.364 1.00 13.99 0 ATOM 3661 CD TYR 587 39.812 28.562 69.398 1.00 2.00 0 ATOM 3662 C TYR 587 39.912 28.562 69.939 1.00 2.00 0 ATOM 3663 CD EBU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3664 N LEU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3668 CG LEU 588 42.912 27.079 66.912 1.00 2.00 0 ATOM 3667 CB LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3668 CG LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3669 CD LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3669 CD LEU 588 42.912 27.079 66.920 1.00 2.00 0 ATOM 3669 CD LEU 588 42.912 27.079 66.912 1.00 2.00 0 ATOM 3669 CD LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3669 CD LEU 588 42.912 27.079 66.912 1.00 2.00 0 ATOM 3669 CD LEU 588 42.912 27.079 66.912 1.00 2.00 0 ATOM 3669 CD LEU 589 44.913 31.929 67.071 1.00 2.00 0 ATOM 3690 CD LEU 589 44.913 31.929 67.071 1.00 2.00 0 ATOM 3690 CD LEU 589 44.913 31.922 67.071 1.00 2.00 0 ATOM 3690 CD LEU 589 44.913 31.9											_
ATOM 3641 CA ASN 586 35.136 29.197 69.749 1.00 2.00 07 ATOM 3642 CB ASN 586 33.728 27.107 69.625 1.00 10.37 ATOM 3643 CG ASN 586 33.728 27.107 69.625 1.00 10.37 ATOM 3644 OD1 ASN 586 33.728 27.107 69.625 1.00 10.37 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3649 CA ASN 586 36.017 30.574 68.007 1.00 2.87 ATOM 3650 NTTR 587 37.588 29.858 69.564 1.00 13.99 ATOM 3650 NTTR 587 37.588 29.858 69.564 1.00 13.99 ATOM 3650 NTTR 587 38.571 30.554 68.966 1.00 13.99 ATOM 3653 CB TYR 587 39.049 31.706 69.876 1.00 2.00 ATOM 3655 CD TYR 587 39.049 31.706 69.876 1.00 2.00 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 13.99 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 13.99 ATOM 3656 CE1 TYR 587 38.517 30.554 68.966 1.00 2.00 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 2.00 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 2.00 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 2.00 ATOM 3655 CD TYR 587 38.517 30.554 68.966 1.00 2.00 ATOM 3656 CE1 TYR 587 36.177 34.138 70.624 1.00 2.00 ATOM 3656 CE2 TYR 587 36.177 34.138 70.624 1.00 2.00 ATOM 3657 CD2 TYR 587 38.519 34.066 69.088 1.00 2.00 ATOM 3658 CE2 TYR 587 39.712 29.608 68.745 1.00 2.00 ATOM 3660 OH TYR 587 39.712 29.608 68.745 1.00 13.99 ATOM 3660 CD TYR 587 39.712 29.608 68.745 1.00 13.99 ATOM 3660 CD TYR 587 39.712 29.608 68.745 1.00 13.99 ATOM 3660 CD TYR 587 39.712 29.608 68.745 1.00 10.99 ATOM 3660 CD LEU 588 40.584 29.997 67.809 1.00 2.00 ATOM 3660 CD LEU 588 40.584 29.997 67.809 1.00 2.00 ATOM 3667 CB LEU 588 40.584 29.997 67.809 1.00 2.00 ATOM 3667 CB LEU 588 41.681 28.482 66.195 1.00 10.69 ATOM 3670 CD LEU 588 42.990 30.375 67.301 1.00 2.00 ATOM 3670 CD LEU 588 42.990 30.375 67.301 1.00 2.00 ATOM 3670 CD LEU 588 42.990 30.375 67.301 1.00 2.00 ATOM 3670 CD LEU 588 42.990 30.375 67.301 1.00 2.00 ATOM 3680 CD LEU 589 44.291 33.068 69.551 1.00 10.69 0 ATOM 3670 CD LEU 589 44.291 33.304 69.993 1.00 2.00 0 ATOM 3680 CD LEU 590 44.273 33.026 69.655 1.00	ATOM		0		_						0
ATOM 3641 CA ASN 586 35.136 29.197 69.749 1.00 2.00 0 ATOM 3642 CB ASN 586 33.728 27.107 69.625 1.00 10.37 0 ATOM 3643 ND2 ASN 586 33.728 27.107 69.625 1.00 10.37 0 ATOM 3644 OD1 ASN 586 32.967 27.745 70.506 1.00 4.44 0 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 0 ATOM 3648 C ASN 586 36.017 30.574 68.007 1.00 2.87 0 ATOM 3649 O ASN 586 36.017 30.574 68.007 1.00 2.87 0 ATOM 3650 N TYR 587 37.588 29.585 69.564 1.00 13.99 0 ATOM 3650 N TYR 587 37.588 29.585 69.564 1.00 13.99 0 ATOM 3651 C TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3653 C TYR 587 38.571 30.554 68.966 1.00 2.00 0 ATOM 3655 CD TYR 587 38.571 30.554 68.966 1.00 2.00 0 ATOM 3655 CD TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3655 CD TYR 587 36.988 33.004 70.638 1.00 2.00 0 ATOM 3656 CE1 TYR 587 36.988 33.004 70.638 1.00 2.00 0 ATOM 3657 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3650 OH TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 OH TYR 587 39.812 28.562 69.952 1.00 2.00 0 ATOM 3660 OH TYR 587 39.812 28.562 69.992 1.00 2.00 0 ATOM 3660 C A LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3660 C A LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3660 C A LEU 588 41.803 29.261 70.433 1.00 2.00 0 ATOM 3660 C A LEU 588 41.803 29.261 70.433 1.00 2.00 0 ATOM 3660 C D LEU 588 42.989 70.7809 1.00 2.00 0 ATOM 3660 C D LEU 588 42.980 70.7809 70.00 2.00 0 ATOM 3670 C D LEU 588 42.991 70.797 66.532 1.00 10.69 0 ATOM 3670 C D LEU 588 42.991 70.797 66.932 1.00 10.69 0 ATOM 3670 C D LEU 588 42.991 70.797 66.931 1.00 2.00 0 ATOM 3670 C D LEU 588 42.991 70.797 67.931 1.00 2.00 0 ATOM 3670 C D LEU 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3670 C D LEU 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3670 C D LEU 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3670 C D LEU 590 46.672 31.303 68.026 1.00 2.00 0 ATOM 3680 C D LEU 590 46.672 31.303 69.900 1.00 2.00 0 ATOM 3681 C E LEU 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 C D LEU 590 46.672 31.303 68.026 1.00 2.00 0 ATOM 3680 C D LEU 590 46.672 31.303 68.026 1.00 2.00 0 ATOM 3680 C D LEU 590 46.673 31.00	MOTA	3639	N	ASN	586	33.947	30.037	69.664	1.00	2.00	0
ATOM 3643 CR ASN 586 33.909 27.854 69.068 1.00 2.87 107 107 107 107 107 107 107 107 107 10	MOTA	3641	CA	ASN	586	35.136	29.197	69.749	1.00	2.00	
ATOM 3644 OD ASN 586 33.728 27.107 69.625 1.00 10.37 70 70 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3645 ND2 ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3648 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3650 N TYR 587 37.458 29.858 69.661 1.00 13.99 0 ATOM 3652 CA TYR 587 39.049 31.706 69.8676 1.00 2.87 ATOM 3653 C TYR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3655 CD1 TYR 587 38.571 30.954 69.876 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.571 30.949 31.706 69.873 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.571 30.04 70.638 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.579 34.061 69.881 1.00 2.00 0 ATOM 3656 CE1 TYR 587 38.519 34.061 69.881 1.00 2.00 0 ATOM 3656 CE2 TYR 587 38.519 34.061 69.881 1.00 2.00 0 ATOM 3659 CZ TYR 587 38.519 34.061 69.881 1.00 2.00 0 ATOM 3660 ON TYR 587 36.52 35.211 69.884 1.00 2.00 0 ATOM 3660 C TYR 587 39.812 28.562 69.838 1.00 2.00 0 ATOM 3660 C TYR 587 39.812 28.562 69.838 1.00 2.00 0 ATOM 3666 C C TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 C C TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 C C TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 C A LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 C C LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.659 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.553 70.0 10.0		3642	CB	ASN	586	34.909					
ATOM 3644 OD1 ASN 586 33.497 25.960 69.265 1.00 11.13 O ATOM 3648 C ASN 586 36.251 29.937 69.029 1.00 2.00 ATOM 3648 O ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 O ATOM 3650 N TYR 587 38.511 30.554 68.966 1.00 13.99 O ATOM 3651 CD TYR 587 38.511 30.554 68.966 1.00 13.99 O ATOM 3653 CD TYR 587 38.511 30.554 68.967 1.00 2.00 O ATOM 3655 CD TYR 587 38.511 30.554 68.967 1.00 2.00 O ATOM 3655 CD TYR 587 38.511 30.554 68.967 1.00 2.00 O ATOM 3655 CD TYR 587 38.519 30.049 31.706 69.876 1.00 2.00 O ATOM 3655 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3655 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3655 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3656 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3656 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3658 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3650 CD TYR 587 38.519 34.061 69.088 1.00 2.00 O ATOM 3660 O TYR 587 35.743 36.532 69.840 1.00 2.00 O ATOM 3660 O TYR 587 39.721 29.608 68.745 1.00 13.99 O ATOM 3663 O TYR 587 39.721 29.608 68.745 1.00 13.99 O ATOM 3666 C D TYR 587 39.721 29.608 68.745 1.00 13.99 O ATOM 3666 C D TYR 587 39.721 29.608 68.745 1.00 13.99 O ATOM 3666 C D TYR 588 40.584 29.987 67.809 1.00 2.00 O ATOM 3666 C D TYR 588 40.584 29.987 67.809 1.00 2.00 O ATOM 3667 CD LEU 588 40.584 29.987 67.809 1.00 2.00 O ATOM 3668 C D LEU 588 40.584 29.987 67.809 1.00 2.00 O ATOM 3668 C D LEU 588 42.992 27.073 66.591 1.00 10.69 O ATOM 3670 CD2 LEU 588 42.992 27.073 66.591 1.00 10.69 O ATOM 3670 CD2 LEU 588 42.992 27.073 66.591 1.00 10.69 O ATOM 3670 CD2 LEU 588 42.992 27.073 66.591 1.00 10.69 O ATOM 3670 CD2 LEU 588 42.992 30.375 67.301 1.00 2.00 O ATOM 3670 CD2 LEU 588 42.992 30.375 67.301 1.00 2.00 O ATOM 3670 CD2 LEU 588 42.992 30.375 67.301 1.00 2.00 O ATOM 3670 CD2 LEU 588 42.992 30.375 67.301 1.00 2.00 O ATOM 3670 CD2 PHE 589 44.293 31.303 68.026 1.00 2.00 O ATOM 3670 CD2 PHE 589 44.293 31.306 60.65 29.00 O ATOM 3670 CD2 PHE 589 44.299 31.306 60.026 1.00 2.00 O ATOM 3680 C LEU 590 46.602											
ATOM 3648 C ASN 586 32.967 27.745 70.506 1.00 4.44 ATOM 3649 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3649 C ASN 586 36.017 30.574 68.007 1.00 2.87 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 11.99 0 ATOM 3652 CA TYR 587 37.458 29.858 69.564 1.00 11.99 0 ATOM 3652 CA TYR 587 39.099 31.706 69.876 1.00 2.00 0 ATOM 3653 CE TYR 587 39.099 31.706 69.876 1.00 2.00 0 ATOM 3655 CDI TYR 587 38.571 30.554 68.966 1.00 11.99 ATOM 3655 CDI TYR 587 38.571 30.044 70.638 1.00 2.00 0 ATOM 3655 CDI TYR 587 36.598 33.004 70.638 1.00 2.00 0 ATOM 3656 CEI TYR 587 36.598 33.004 70.638 1.00 2.00 0 ATOM 3657 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.592 35.231 69.864 1.00 12.00 0 ATOM 3659 CZ TYR 587 36.592 35.231 69.864 1.00 12.00 0 ATOM 3666 CD TYR 587 35.743 36.552 69.883 1.00 2.00 0 ATOM 3666 CD TYR 587 35.743 36.552 69.883 1.00 2.00 0 ATOM 3666 CD TYR 587 35.743 36.552 69.883 1.00 2.00 0 ATOM 3666 CD TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 CD TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 CD LEU 588 41.681 28.482 66.195 1.00 2.00 0 ATOM 3666 CD LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3667 CD LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 CD PHE 589 44.293 31.301 66.532 1.00 10.69 0 ATOM 3678 CD PHE 589 44.293 31.303 68.026 1.00 2.00 0 ATOM 3680 CE PHE 589 44.293 31.303 66.592 1.00 2.00 0 ATOM 3680 CE PHE 589 44.293 31.303 66.026 1.00 2.00 0 ATOM 3680 CE PHE 589 44.293 31.303 66.592 1.00 2.00 0 ATOM 3680 CE PHE 589 44.293 31.303 66.592 1.00 2.00 0 ATOM 3680 CE PHE 589 45.289 32.013 69.200 1.00 2.00 0 ATOM 3680 CE PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3680 CE PHE 589 46.675 31.303 68.026 1.00 2.00 0 ATOM 3680 CE PHE 589 46.532 29.610 67.621 1.00 2.00 0 ATOM 3680 CE PHE 589 46.675 31.303 68.026 1.0											
ATOM 3648 C ASN 586 36.251 29.937 69.029 1.00 2.00 0 ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3650 C TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3653 CB TYR 587 38.571 30.554 68.967 1.00 2.00 0 ATOM 3655 CD TYR 587 38.571 30.554 68.967 1.00 2.00 0 ATOM 3655 CD TYR 587 38.177 32.946 69.876 1.00 2.00 0 ATOM 3655 CD TYR 587 38.177 32.946 69.876 1.00 2.00 0 ATOM 3655 CD TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3656 CD TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3657 CD TYR 587 36.577 34.138 70.624 1.00 2.00 0 ATOM 3658 CE TYR 587 36.593 34.061 69.088 1.00 2.00 0 ATOM 3658 CE TYR 587 36.573 35.205 69.065 1.00 2.00 0 ATOM 3650 CD TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3660 OF TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 OF TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3664 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C D TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C D TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C D TYR 587 39.721 29.968 68.745 1.00 10.69 0 ATOM 3666 C D TYR 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 C D TYR 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 C D LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3667 C B LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3668 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3667 C B LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 C D LEU 588 42.809 30.375 67.301 1.00 10.09 0 ATOM 3670 C D LEU 588 42.809 67.301 68.301 1.00 1.00 0 ATOM 3670											
ATOM 3659 N TYR 587 38.511 30.574 68.007 1.00 2.87 0 ATOM 3650 N TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3652 CA TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3653 CB TYR 587 38.571 30.554 68.966 1.00 2.00 0 ATOM 3654 CG TYR 587 38.571 30.554 68.966 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.177 32.946 69.873 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3655 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3655 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3659 CZ TYR 587 36.512 35.231 69.840 1.00 2.00 0 ATOM 3659 CZ TYR 587 36.512 35.231 69.840 1.00 2.00 0 ATOM 3660 CD TYR 587 39.721 29.666 88.745 1.00 12.00 0 ATOM 3664 CA LEU 588 41.803 29.887 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CB LEU 588 41.681 28.482 66.195 1.00 10.09 0 ATOM 3667 CD LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.808 30.392 67.693 1.00 2.00 0 ATOM 3670 CD2 PHE 589 45.893 1.00 2.00 0 ATOM 3670 CD2 PHE 589 45.894 67.899 1.00 2.00 0 ATOM 3670 CD2 PHE 589 42.8											0
ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 O ATOM 3653 CB TYR 587 38.571 30.554 68.965 1.00 13.99 O ATOM 3653 CB TYR 587 38.571 30.554 68.965 1.00 2.00 O ATOM 3655 CD1 TYR 587 38.177 32.946 69.873 1.00 2.00 O ATOM 3655 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 O ATOM 3655 CD2 TYR 587 36.998 33.004 70.638 1.00 2.00 O ATOM 3655 CD2 TYR 587 36.977 34.138 70.624 1.00 2.00 O ATOM 3655 CD2 TYR 587 36.572 37.701 35.205 69.065 1.00 2.00 O ATOM 3655 CD2 TYR 587 36.532 35.231 69.088 1.00 2.00 O ATOM 3659 C TYR 587 36.532 35.231 69.840 1.00 2.00 O ATOM 3650 CD TYR 587 36.532 35.231 69.840 1.00 2.00 O ATOM 3660 OH TYR 587 35.743 36.352 69.838 1.00 2.00 O ATOM 3660 CD TYR 587 39.812 28.562 69.392 1.00 2.00 O ATOM 3660 CD TYR 587 39.812 28.562 69.392 1.00 2.00 O ATOM 3660 CD TYR 587 39.812 28.562 69.392 1.00 2.00 O ATOM 3666 CD LEU 588 41.803 29.261 67.493 1.00 2.00 O ATOM 3666 CD LEU 588 41.803 29.261 67.493 1.00 2.00 O ATOM 3669 CD LEU 588 41.803 29.261 67.493 1.00 2.00 O ATOM 3669 CD LEU 588 43.568 27.073 66.912 1.00 10.699 O ATOM 3669 CD LEU 588 43.568 27.073 66.912 1.00 10.699 O ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.699 O ATOM 3671 C LEU 588 42.912 27.079 64.533 1.00 10.699 O ATOM 3673 N PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3673 N PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3676 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3677 CG PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3678 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3679 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.363 67.865 1.00 2.00 O ATOM 3670 CD PHE 589 44.938 31.362 67.865 1.00 2.00 O ATOM 3680 CD PHE 589 44.938 31.362 67.865 1.00 2.00 O ATOM 3680 CD PHE 589 44.938 31.362 67.865 1.00 2.00 O ATOM 3680 CD PHE 589 44.938 31.362 67.865 1.00 2.00 O ATOM 3680 CD PHE 589 44.938 3			С						1.00	2.00	0
ATOM 3650 N TYR 587 37.458 29.858 69.564 1.00 13.99 0 ATOM 3653 CB TYR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3653 CB TYR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3655 CD1 TYR 587 39.049 31.706 69.878 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3656 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3657 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.552 35.205 69.065 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.552 35.205 69.065 1.00 2.00 0 ATOM 3660 OH TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 C TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.547 31.301 66.532- 1.00 10.09 0 ATOM 3673 N PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.938 31.365 67.865 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.938 31.365 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.365 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.365 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 65.322 1.00 10.00 2.00 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.366 67.865 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.929 67.609 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.929 67.609 1.00 2.00 0 ATOM 3680 CP PHE 589 44.938 31.929 67.609 1.00 2.00 0 ATOM 3680 CP PHE 589 42.948 30.356 67.899 1.00 2.00 0 ATOM 3680 CP PHE 589 42.948 30.	MOTA	3649	0	ASN	586	36.017	30.574	68.007	1.00	2.87	0
ATOM 3652 CA TYR 587 38.571 30.554 68.966 1.00 13.99 0 ATOM 3653 CB TYR 587 39.049 31.706 69.873 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.177 32.946 69.873 1.00 2.00 0 ATOM 3655 CD1 TYR 587 38.177 32.946 69.873 1.00 2.00 0 ATOM 3655 CD2 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3655 CD2 TYR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3655 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3655 CD2 TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3659 CZ TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3650 CT TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 C TYR 587 39.721 29.608 68.745 1.00 12.00 ATOM 3664 CA LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3668 CG LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3669 CD1 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3670 CD2 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3675 CR PHE 589 44.938 31.363 67.865 1.00 10.69 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 10.69 0 ATOM 3677 CG PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE2 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.939 67.00 1.00 2.00 0 ATOM 3680 CE2 PHE 589 44.938 31.939 67.00 1.00 2.00 0 ATOM 3680 CE2 PHE 589 4	MOTA	3650	N	TYR	587	37.458	29.858	69.564	1.00	13.99	
ATOM 3653 CB TYR 587 39.049 31.706 69.876 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.046 70.638 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.046 70.638 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.046 70.638 1.00 2.00 0 ATOM 3655 CD2 TYR 587 36.998 33.046 70.638 1.00 2.00 0 ATOM 3656 CD2 TYR 587 36.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CD2 TYR 587 36.532 35.231 69.650 1.00 2.00 0 ATOM 3650 CZ TYR 587 36.532 35.231 69.650 1.00 2.00 0 ATOM 3650 CZ TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 CT TYR 587 39.812 28.562 69.088 1.00 2.00 0 ATOM 3660 CD TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3669 CD1 LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.699 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3673 N PHE 589 44.938 31.353 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3678 CD PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3680 CE PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3680 CE PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3680 CE PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CE PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3680 CB PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3690 CD PHE 589 42.903 33.026 69.652 1.00 2.00 0 ATOM 3690 CD PHE 589 42.903 33.026 69	MOTA	3652	CA	TYR	587			68 966			
ATOM 3655 CD TYR 587 38.177 32.946 69.873 1.00 2.00 0 ATOM 3655 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3655 CD2 TYR 587 36.917 34.138 70.624 1.00 2.00 0 ATOM 3656 CE2 TYR 587 36.917 34.138 70.624 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.917 34.138 70.624 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.932 35.231 69.840 1.00 2.00 0 ATOM 3659 CT TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 CH TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3660 CD TYR 587 39.912 28.562 69.392 1.00 2.00 0 ATOM 3661 CD TYR 587 39.912 28.562 69.392 1.00 2.00 0 ATOM 3666 CA LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CD LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3669 CD1 LEU 588 43.558 27.907 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 66.5721 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 66.5731 1.00 10.69 0 ATOM 3673 N PHE 589 42.912 7.099 64.533 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 66.512 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 66.512 1.00 10.69 0 ATOM 3672 C PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 C PHE 589 44.2547 31.301 66.532 1.00 10.69 0 ATOM 3677 C PHE 589 44.2547 31.301 66.532 1.00 10.69 0 ATOM 3678 C PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 C PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3681 C PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 C PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 46.540 31.303 66.925 1.00 2.00 0 ATOM 3680 C PHE 589 46.540 31.303 66.926 1.00 2.00 0 ATOM 3680 C PHE 589 47.955 31.00 66.911 1.00 2.00 0 ATOM 3680 C PHE 589 47.955 31.00 66.907 1.00 2.00 0 ATOM 3680 C PHE 589 47.955 31.00 66.907 1.00 2.00 0 ATOM 3680 C PHE 589 47.950 31.300 66.908 1.00 2.00											
ATOM 3655 CD1 TYR 587 36.998 33.004 70.638 1.00 2.00 0 ATOM 3656 CD2 TYR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3657 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CE2 TYR 587 37.701 35.205 69.065 1.00 2.00 0 ATOM 3659 CZ TYR 587 35.743 36.352 69.840 1.00 2.00 0 ATOM 3660 OH TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3661 C TYR 587 39.912 28.562 69.392 1.00 2.00 0 ATOM 3663 O TYR 587 39.912 28.562 69.392 1.00 2.00 0 ATOM 3666 CA LEU 588 41.861 28.482 66.195 1.00 10.69 0 ATOM 3666 CA LEU 588 41.861 28.482 66.195 1.00 10.69 0 ATOM 3667 CD LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.558 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 66.511 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 66.511 1.00 10.69 0 ATOM 3676 CB PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 CB PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 CB PHE 589 44.293 31.363 66.532 1.00 10.69 0 ATOM 3676 CB PHE 589 44.293 33.026 69.652 1.00 2.00 0 ATOM 3677 CG PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3678 CD PHE 589 43.932 31.363 67.865 1.00 2.00 0 ATOM 3679 CD PHE 589 43.542 35.321 69.529 1.00 2.00 0 ATOM 3679 CD PHE 589 43.542 35.321 69.529 1.00 2.00 0 ATOM 3680 CEI PHE 589 43.542 35.321 69.520 1.00 2.00 0 ATOM 3681 CE PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3682 CD PHE 589 42.408 31.363 69.200 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.363 69.388 1.00 9.73 0 ATOM 3680 CEI PHE 589 42.408 31.918 70.463 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.918 70.463 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.918 70.463 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.918 70.463 1.00 2.00 0 ATOM 3680 CEI PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 42.408 31.928 67.602 1.00 2.00 0 ATOM 3680 C PHE 589 42.408 3										_	
ATOM 3655 CEL TYR 587 36.177 34.138 70.624 1.00 2.00 0 ATOM 3657 CD2 TYR 587 37.701 35.205 69.065 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 CH TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 CH TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 O TYR 587 39.912 28.562 69.392 1.00 2.00 0 ATOM 3664 N LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CB LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3667 CD LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3667 CD LEU 588 42.507 66.553 1.00 10.69 0 ATOM 3673 N PHE 589 43.924 30.337 66.352 1.00 10.69 0 ATOM 3673 N PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CDI PHE 589 43.368 32.013 69.206 1.00 2.00 0 ATOM 3678 CDI PHE 589 43.36 69.32 1.00 10.69 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CEI PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3688 CD LEU 590 47.650 31.313 63.988 1.00 2.00 0 ATOM 3688 CD LEU 590 47.650 31.313 63.988 1.00 2.00 0 ATOM 3689 C CP PHE 589 42.508 32.913 65.296 1.00 2.00 0 ATOM 3689 C CP PHE 589 42.508 32.913 69.939 1.00 2.00 0 ATOM 3689 C CP PHE 589 42.508 32.913 69.939 1.00 2.00 0 ATOM 3689 C CP PHE 589 42.508 32.913 65.296 1.00 2.00 0 ATOM 3689 C C LEU 590 47.650 31.333 63.988 1.00 9.73 0 ATOM 3699 N GLY 591 50.263 30.856 67.965 1.00 2.00 0 ATOM 3699 N GLY 591 50.263 30.856 67.965 1.00 2.00 0 ATOM 3699 C DLEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3690 C DLEU 590 46.562 31.00 6.870 1.00 2.00 0 ATOM 3690 C DLEU 590 46.562 31.303 60.866 1.00 2.00 0 ATOM 3690 N GLY 591 50.369 31.500 66.505 1.00 2.00 0 ATOM 3690 C DLEU 590 46.562 31.303 66.66.666 1.00 1.00 12.61 0 ATOM 3690 N GLY 591 50.369 31.500 66.505 1.00 2.00 0 ATOM 3690 N GLY 591 50.369 31.500 66.666 1.00 1.00 12.61 0 ATOM 3700 O ASP 592 51.813 35.999 67.											
ATOM 3655 CD2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CS2 TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3658 CS TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3660 OH TYR 587 35.743 36.352 69.838 1.00 2.00 0 ATOM 3662 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 O TYR 587 39.812 28.562 69.838 1.00 2.00 0 ATOM 3664 N LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.987 67.809 1.00 2.00 0 ATOM 3667 CB LEU 588 41.803 29.987 66.912 1.00 10.69 0 ATOM 3669 CD LEU 588 43.932 27.907 65.781 1.00 10.69 0 ATOM 3669 CD LEU 588 42.912 27.079 66.512 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 CB PHE 589 44.279 33.026 69.552 1.00 2.00 0 ATOM 3677 CG PHE 589 43.938 31.363 67.865 1.00 2.00 0 ATOM 3679 CD2 PHE 589 43.542 932 01.369 69.502 1.00 2.00 0 ATOM 3680 CE1 PHE 589 43.542 932 01.369 69.502 1.00 2.00 0 ATOM 3681 CE2 PHE 589 43.542 932 01.369 69.502 1.00 2.00 0 ATOM 3680 CE1 PHE 589 43.542 932 01.369 09.500 1.00 2.00 0 ATOM 3681 CE2 PHE 589 46.532 932 01.00 2.00 0 ATOM 3682 CZ PHE 589 46.532 932 01.00 2.00 0 ATOM 3683 C PHE 589 46.532 99.83 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 CG LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3689 CG LEU 590 46.575 31.303 68.988 1.00 9.73 0 ATOM 3699 N GLY 591 50.369 31.929 67.071 1.00 2.00 0 ATOM 3699 N GLY 591 50.263 30.856 65.296 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.424 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 53.633 35.000 68.707 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 55.000 69.591 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.300 66.652 1.00 1.00 12.61 0											0
ATOM 3655 CE2 TYR 587 38.519 34.061 69.088 1.00 2.00 0 ATOM 3658 CE2 TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3665 C TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3666 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 C TYR 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 C TYR 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 C TYR 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3668 C TYR 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3669 C TYR 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3669 C TYR 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3670 C TYR 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3673 N PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3675 C PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 C PHE 589 44.293 33.026 69.552 1.00 10.69 0 ATOM 3677 C PHE 589 44.293 33.026 69.655 1.00 2.00 0 ATOM 3678 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3679 C P PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3680 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3681 C PHE 589 44.279 33.026 69.655 1.00 2.00 0 ATOM 3682 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3688 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3688 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3688 C PHE 589 43.543 33.026 69.552 1.00 2.00 0 ATOM 3688 C PHE 589 43.540 33.356 70.332 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3690 C PHE 589 46.532 30.856 67.963 1.00 2.00 0 ATOM 3698 C PHE 589 46.532 29.610 67.609 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 5							34.138	70.624	1.0 0	2.00	0
ATOM 3658 CE2 TYR 587 37.701 35.205 69.065 1.00 2.00 0 ATOM 3660 OH TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3666 OH TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3666 OF TYR 587 39.721 29.608 68.745 1.00 13.99 ATOM 3666 CA LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CB LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3668 CG LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.547 31.301 66.532 1.00 10.69 0 ATOM 3673 N PHE 589 44.938 31.303 68.026 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD PHE 589 44.279 33.026 69.732 1.00 2.00 0 ATOM 3678 CD PHE 589 44.279 33.026 69.732 1.00 2.00 0 ATOM 3678 CD PHE 589 44.279 33.026 69.752 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.003 33.567 70.732 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3685 N LEU 590 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 CB LEU 590 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 CG LEU 590 46.673 31.022 63.356 1.00 2.00 0 ATOM 3689 CG LEU 590 46.733 31.022 63.356 1.00 2.00 0 ATOM 3699 N GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N SLY 591 50.369 34.620 67.769 1.00 2.00	ATOM	3657		TYR	587	38.519	34.061	69.088	1.00	2.00	
ATOM 3659 CZ TYR 587 36.532 35.231 69.840 1.00 2.00 0 ATOM 3662 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 O TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3664 N LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 10.69 0 ATOM 3668 CG LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3673 N PHE 589 44.2547 31.301 66.532 1.00 10.69 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3683 C PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3683 C PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3688 CE PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3681 CE2 PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3682 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3688 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3689 C PHE 589 46.273 31.411 66.235 1.00 2.00 0 ATOM 3689 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3699 C PHE 589 46.532 29.610 67.002 1.00 2.00 0 ATOM 3699 C PHE 589 46.500 PHE 589 46.500 PHE 589 1.00 2.00 0 ATOM 3690 C PHE 589 46.500 PHE 589 1.0	ATOM	3658	CE2	TYR	587	37.701	35.205	69.065	1.00		
ATOM 36660 OH TYR 587 35.743 36.352 69.838 1.00 2.00 0 ATOM 3663 O TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 O TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3666 CA LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CG LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3673 N PHE 589 42.547 31.301 66.532 1.00 10.69 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.408 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.316 69.391 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 39.610 67.602 1.00 2.00 0 ATOM 3689 C D LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3689 C D LEU 590 46.515 31.411 66.235 1.00 2.00 0 ATOM 3698 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 50.263 31.303 66.52.96 1.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516 31.00 2.00 0 ATOM 3699 C D LEU 590 46.516	ATOM	3659	CZ	TYR	587	36.532	35,231	69.840			
ATOM 3662 C TYR 587 39.721 29.608 68.745 1.00 13.99 0 ATOM 3663 O TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 N LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 10.69 0 ATOM 3668 CG LEU 588 43.632 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.686 27.073 66.912 1.00 10.69 0 ATOM 36670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.927 33.026 69.655 1.00 2.00 0 ATOM 3677 C PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3680 CE1 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3683 C PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3684 C PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3685 N LEU 590 46.140 30.717 67.219 1.00 2.00 0 ATOM 3688 CB LEU 590 46.140 30.717 67.219 1.00 2.00 0 ATOM 3688 CB LEU 590 46.616 31.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.616 31.02 6.311 1.00 9.73 0 ATOM 3689 CG LEU 590 46.623 31.02 69.650 1.00 2.00 0 ATOM 3689 CG LEU 590 46.626 29.529 63.211 1.00 9.73 0 ATOM 3699 CD LEU 590 46.626 31.02 60.00 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 CA GLEU 590 50.263 30.856 65.296 1.00 2.00 0 ATOM 3700 CB ASP 592 51.813 36.995 69.211 1.00 2.00 0 ATOM 3701 CA ASP 592 51.813 36.995 69.211 1.00 2.00 0 ATOM 370											
ATOM 3663 O TYR 587 39.812 28.562 69.392 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.809 1.00 2.00 0 CATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 CATOM 3668 CG LEU 588 41.803 29.261 67.493 1.00 10.69 0 CATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 CATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 CATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 2.00 0 CATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 CATOM 3673 CC LEU 588 42.809 30.375 67.301 1.00 2.00 0 CATOM 3673 CC B PHE 589 44.938 31.363 67.865 1.00 10.69 0 CATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 CATOM 3676 CD PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3680 CE1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3681 CE2 PHE 589 44.279 33.026 69.652 1.00 2.00 0 CATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 CATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 CATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 CATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 CATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 CATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 CATOM 3688 CD LEU 590 46.140 30.717 67.219 1.00 2.00 0 CATOM 3688 CD LEU 590 46.140 30.717 67.219 1.00 2.00 0 CATOM 3689 CD LEU 590 46.6765 29.529 63.211 1.00 2.00 0 CATOM 3689 CD LEU 590 46.676 29.529 63.211 1.00 2.00 0 CATOM 3699 CD LEU 590 46.676 29.529 63.211 1.00 2.00 0 CATOM 3699 CD LEU 590 46.676 29.529 63.211 1.00 9.73 0 CATOM 3699 CD LEU 590 46.562 31.002 60.00 9.73 0 CATOM 3699 CD LEU 590 46.562 31.002 60.00 9.73 0 CATOM 3699 CD LEU 590 46.562 31.002 60.00 9.73 0 CATOM 3699 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 CATOM 3699 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 CATOM 3699 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 CATOM 3699 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 CATOM 3699 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 CATOM 3699 CD LEU						39 721					
ATOM 3664 N LEU 588 40.584 29.987 67.809 1.00 2.00 0 ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3668 CG LEU 588 41.803 29.261 67.493 1.00 10.69 0 ATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 10.69 0 ATOM 3672 O LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.229 32.013 69.200 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3683 C PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3684 O PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3688 CB LEU 590 46.575 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 46.575 31.411 66.235 1.00 2.00 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3699 CD1 LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3699 C DL LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3699 C DL LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3699 C DL LEU 590 46.273 31.022 63.356 1.00 2.00 0 ATOM 3699 C DL LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3699 C DL EU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3699 C DL EU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C DL EU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C DL EU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C C ASP 592 53.494 33.3949 67.114 1.00 18.80 0 ATOM 3703 C ASP 592 53.424 35.571 66.666 1.00 1.01.71 0 ATOM 3704 OD1 ASP 592 54.595 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 54.943 35.970 70.800 1.00 12.61 0											
ATOM 3666 CA LEU 588 41.803 29.261 67.493 1.00 2.00 0 ATOM 3667 CB LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3672 O LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3675 CA PHE 589 43.924 30.333 68.026 1.00 10.69 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3677 CG PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.408 34.918 70.463 10.0 2.00 0 ATOM 3681 CP PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.733 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3689 C LEU 590 46.6715 31.411 66.235 1.00 2.00 0 ATOM 3689 C LEU 590 46.6723 31.002 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.662 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.666 65.95 1.00 2.00 0 ATOM 3699 N ASP 592 50.263 30.856 65.296 1.00 2.00 0 ATOM 3699 N ASP 592 51.132 33.648 67.923 1.00 2.00 0 ATOM 3699 C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C LEU 590 50.263 30.856 65.996 1.00 9.73 0 ATOM 3699 C LEU 590 50.263 30.856 65.996 1.00 9.73 0 ATOM 3699 C LEU 590 50.263 30.856 65.996 1.00 9.73 0 ATOM 3699 C LEU 590 50.263 30.856 65.996 1.00 9.73 0 ATOM 3698 C A GLY 591 50.369 33.648 67.923 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.68 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.68 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.677 1.00 11.71 0 ATOM 3705 OD2 ASP											
ATOM 3667 CB LEU 588 41.681 28.482 66.195 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3670 CD2 LEU 588 43.568 27.073 66.912 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3672 O LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3673 N PHE 589 43.924 30.335 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CC PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 CB LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 46.755 31.303 63.988 1.00 2.00 0 ATOM 3689 CG LEU 590 46.755 31.303 63.988 1.00 2.00 0 ATOM 3689 CG LEU 590 46.675 31.303 63.988 1.00 2.00 0 ATOM 3689 CG LEU 590 46.675 31.303 63.988 1.00 2.00 0 ATOM 3689 CG LEU 590 46.755 31.303 63.988 1.00 2.00 0 ATOM 3689 CG LEU 590 46.656 29.529 62.014 1.00 9.73 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 9.73 0 ATOM 3699 N GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 C C LEU 590 46.656 29.529 62.014 1.00 9.73 0 ATOM 3699 N ASP 592 53.424 35.321 66.666 1.00 0.00 0 ATOM 3699 N ASP 592 53.438 31.00 66.668 1.00 0.00 0 ATOM 3699 N ASP 592 53.424 35.350 66.666 1.00 0.00 0 ATOM 3699 N ASP 592 53.438 31.00 66.666 1.00 0.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3707 O ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 10.01 12.61 0											
ATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 42.912 27.079 66.912 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 66.931 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 66.533 1.00 10.69 0 ATOM 3672 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 66.532 1.00 10.69 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CEI PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.723 31.022 63.356 1.00 2.00 0 ATOM 3691 CD2 LEU 590 46.623 31.702 62.014 1.00 9.73 0 ATOM 3699 CD LEU 590 46.623 31.702 63.356 1.00 9.73 0 ATOM 3699 CD LEU 590 46.623 31.702 63.356 1.00 9.73 0 ATOM 3699 CD LEU 590 46.623 31.702 63.356 1.00 9.73 0 ATOM 3699 CD LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3699 CD LEU 590 46.056 29.529 67.071 1.00 2.00 0 ATOM 3699 CD LEU 590 46.056 29.529 67.071 1.00 2.00 0 ATOM 3699 CD LEU 590 50.263 30.886 65.296 1.00 9.73 0 ATOM 3699 CD LEU 590 50.263 30.886 65.996 1.00 9.73 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.424 35.746 67.448 1.00 9.73 0 ATOM 3699 N ASP 592 53.424 35.746 67.448 1.00 6.18 0 ATOM 3703 CA ASP 592 53.424 35.746 67.448 1.00 6.68 0 ATOM 3703 CA ASP 592 53.424 35.746 67.448 1.00 6.68 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 53.424 35.746 67.448 1.00 6.68 0 ATOM 3707 O ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 10.											
ATOM 3668 CG LEU 588 43.032 27.907 65.781 1.00 10.69 0 ATOM 3669 CD1 LEU 588 43.588 27.073 66.781 1.00 10.69 0 ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3672 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 CB LEU 590 46.1140 30.717 67.219 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 68.356 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 68.358 1.00 2.00 0 ATOM 3689 CG LEU 590 46.615 31.411 66.235 1.00 2.00 0 ATOM 3689 CG LEU 590 46.616 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.616 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.616 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.616 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.623 30.886 65.498 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.656 29.529 63.211 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.623 30.886 65.498 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.626 30.886 65.996 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.626 30.886 65.996 1.00 9.73 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3701 CA ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 C ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.953 35.606 67.488 1.00 2.00 0 ATOM 3707 O ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 11.00 12.61 0		3667	CB			41.681		66.195	1.00	10.69	0
ATOM 3669 CD1 LEU 588	MOTA	3668	CG	LEU	588	43.032	27.907	65.781	1.00	10.69	
ATOM 3670 CD2 LEU 588 42.912 27.079 64.533 1.00 10.69 0 ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3673 N PHE 589 42.547 31.301 66.532 1.00 10.69 0 ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.552 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.552 1.00 2.00 0 ATOM 3679 CD1 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.326 1.00 2.00 0 ATOM 3680 CE1 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3681 CE2 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.532 29.610 67.602 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.6273 31.02 63.356 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.6273 31.02 63.356 1.00 9.73 0 ATOM 3698 CG LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3699 CD LEU 590 46.066 29.529 63.211 1.00 9.73 0 ATOM 3697 C GLY 591 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C CLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C CLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3698 CB LEU 590 50.263 30.856 66.296 1.00 9.73 0 ATOM 3699 C GLEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C GLEU 590 50.263 30.856 66.296 1.00 9.73 0 ATOM 3699 C GLEU 590 50.263 30.856 66.296 1.00 9.73 0 ATOM 3699 C GLEU 590 50.263 30.856 66.296 1.00 9.73 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 C GLEU 590 50.263 30.856 66.296 1.00 9.73 0 ATOM 3699 C GLEU 590 50.369 32.223 67.626 1.00 2.00 0 ATOM 3701 CA ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 52.887 33.741 68.858 1.00 2.00 0 ATOM 3704 OD1 ASP 592 52.887 33.741 68.858 1.00 2.00 0 ATOM 3707 O ASP 592 52.181 33.695 69.211 1.00 1.01 1.71 0 ATOM 3708 N TYR 593 51.27 36.036 71.822 1.00 12.61 0	MOTA	3669	CD1	LEU	588	43.568	27.073	66.912	1.00	10.69	
ATOM 3671 C LEU 588 42.809 30.375 67.301 1.00 2.00 0 ATOM 3675 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.552 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD2 PHE 589 44.279 33.026 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.140 30.717 67.219 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3693 C LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3693 C LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3695 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3697 C GLU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3697 C GLU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3697 C GLU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3697 C GLU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3699 C C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3699 C C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3699 C G GLY 591 50.369 34.620 67.626 1.00 9.73 0 ATOM 3699 C G GLY 591 50.369 34.620 67.626 1.00 9.73 0 ATOM 3699 C G GLY 591 50.369 34.620 67.626 1.00 2.00 0 ATOM 3699 C A GLY 591 50.369 34.620 67.626 1.00 2.00 0 ATOM 3699 C A GLY 591 50.369 34.620 67.666 1.00 2.00 0 ATOM 3703 C ASP 592 53.033 35.006 68.707 1.00 2.00 0 ATOM 3703 C ASP 592 53.438 33.949 67.114 1.00 18.80 0 ATOM 3704 OLA ASP 592 53.438 33.949 67.114 1.00 18.80 0 ATOM 3705 OD2 ASP 592 54.521 35.066 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00	MOTA	3670				42.912					
ATOM 3672 O LEU 588 42.547 31.301 66.532 1.00 10.69 0 ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 44.293 32.013 69.200 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.7326 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3687 CA LEU 590 47.855 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 46.6273 31.002 65.459 1.00 2.00 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3693 C LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3693 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3696 C A GLY 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3699 C C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 C A GLY 591 50.703 32.223 67.071 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 66.868 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 52.387 33.949 67.114 1.00 18.80 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3707 O ASP 592 52.1813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.127 36.006 67.680 1.00 12.61 0 ATOM 3708 N TYR 593 51.127 35.606 67.800 1.00 12.61 0 ATOM 3701 CA TYR 593 51.127 35.606 67.800 1.00 12.61 0								67 301			
ATOM 3673 N PHE 589 43.924 30.333 68.026 1.00 2.00 0 ATOM 3675 CB PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 45.289 32.013 69.200 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3678 CD1 PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3688 CB LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.263 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.263 31.702 62.014 1.00 9.73 0 ATOM 3690 CD LEU 590 46.263 31.702 62.014 1.00 9.73 0 ATOM 3690 CD LEU 590 46.263 31.702 62.014 1.00 9.73 0 ATOM 3690 CD LEU 590 46.263 31.702 63.356 1.00 9.73 0 ATOM 3690 CD LEU 590 46.263 31.702 62.014 1.00 9.73 0 ATOM 3690 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3690 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3690 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3703 CG ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 52.387 33.741 69.598 1.00 2.00 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 12.61 0 ATOM 3708 N TYR 593 51.127 36.036 71.822 1.00 12.61 0											Š
ATOM 3675 CA PHE 589 44.938 31.363 67.865 1.00 2.00 0 ATOM 3676 CB PHE 589 45.289 32.013 69.200 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.566 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3685 N LEU 590 47.650 31.303 63.988 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3694 N GLY 591 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 C C LEU 590 49.389 31.922 67.626 1.00 9.73 0 ATOM 3690 CD1 LEU 590 60.056 67.602 1.00 9.73 0 ATOM 3691 CD2 LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3694 N GLY 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3695 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 1.00 9.73 0 ATOM 3690 C LEU 590 60.056 67.606 67.606 1.00 1.00 1.00 1.00 1.00 1.00 1.00											
ATOM 3677 CG PHE 589 45.289 32.013 69.200 1.00 2.00 0 ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3679 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3685 N LEU 590 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3685 CA LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 9.73 0 ATOM 3690 CD1 LEU 590 49.277 31.221 65.947 1.00 9.73 0 ATOM 3690 CD1 LEU 590 49.277 31.221 65.947 1.00 9.73 0 ATOM 3690 CD LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3697 C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 N ASP 592 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 N ASP 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 C C ASP 592 53.037 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 C C ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3707 O ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3707 O ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3707 O ASP 592 54.955 35.606 65.6											
ATOM 3677 CG PHE 589 44.279 33.026 69.652 1.00 2.00 0 ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3678 CD2 PHE 589 44.471 34.376 69.391 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3683 C PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3689 CG LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.765 31.303 63.988 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3699 N ASP 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3698 O GLY 591 50.369 34.620 67.923 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 53.342 35.501 66.686 1.00 10.84 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.501 66.686 1.00 16.84 0 ATOM 3706 C ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3706 C ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3706 C ASP 592 54.955 35.606 67.959 1.00 2.00 0 ATOM 3706 C ASP 592 54.955 35.340 97.680 0 1.00 12.61 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3678 CD1 PHE 589 43.136 32.633 70.326 1.00 2.00 0 ATOM 3680 CE1 PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3681 CP PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.622 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.622 31.702 62.014 1.00 9.73 0 ATOM 3693 C PLEU 590 46.622 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.622 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.623 30.892 65.459 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.623 31.702 62.014 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.6273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3690 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 C LEU 590 46.273 31.922 63.356 1.00 9.73 0 ATOM 3693 C LEU 590 46.263 30.856 65.296 1.00 9.73 0 ATOM 3693 C LEU 590 46.263 30.856 65.296 1.00 9.73 0 ATOM 3693 C LEU 590 46.263 30.856 65.296 1.00 9.73 0 ATOM 3693 C LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3696 CA GLY 591 50.369 34.620 67.761 1.00 2.00 0 ATOM 3696 CA GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3698 C GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3698 C GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 53.873 33.741 68.358 1.00 2.00 0 ATOM 3703 CG ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3704 OD1 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3700 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3683 C PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3685 N LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3699 N ASP 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 67.656 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.953 33.648 69.598 1.00 2.00 0 ATOM 3705 OD2 ASP 592 54.953 35.606 67.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.953 35.606 67.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.953 35.606 67.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.953 35.606 67.657 1.00 11.71 0 ATOM 3706 C ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0			CG	PHE	589	44.279	33.026	69.652	1.00	2.00	0
ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3699 N ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.333 35.000 68.707 1.00 2.00 0 ATOM 3701 CA ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.953 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.953 35.606 65.657 1.00 11.71 0 ATOM 3705 C ASP 592 54.953 35.606 65.657 1.00 11.71 0 ATOM 3708 N TYR 593 51.927 36.036 71.822 1.00 12.61 0	MOTA		CD1	PHE	589	43.136	32.633	70.326	1.00	2.00	0
ATOM 3680 CE1 PHE 589 42.203 33.567 70.732 1.00 2.00 0 ATOM 3681 CE2 PHE 589 43.542 35.321 69.793 1.00 2.00 0 ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3687 CA LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.953 35.666 65.657 1.00 11.71 0 ATOM 3705 CD ASP 592 54.953 35.606 65.657 1.00 11.71 0 ATOM 3705 CD ASP 592 54.953 35.606 67.666 1.00 16.84 0 ATOM 3705 CD ASP 592 54.953 35.606 67.666 1.00 16.84 0 ATOM 3705 CD ASP 592 54.953 35.887 69.598 1.00 2.00 0 ATOM 3706 C ASP 592 54.953 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0	ATOM	3679	CD2	PHE	589	44.471	34.376	69.391	1.00	2.00	0
ATOM 3681 CE2 PHE 589	MOTA	3680	CE1	PHE	589	42.203			1.00		
ATOM 3682 CZ PHE 589 42.408 34.918 70.463 1.00 2.00 0 ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3687 CA LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3689 CG LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3699 N ASP 592 53.33 35.00 68.707 1.00 2.00 0 ATOM 3699 N ASP 592 53.033 35.00 68.707 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.00 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.00 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.521 35.051 66.666 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.666 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3708 N TYR 593 51.127 36.036 71.822 1.00 12.61 0	MOTA	3681									
ATOM 3683 C PHE 589 46.140 30.717 67.219 1.00 2.00 0 ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3687 CA LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3698 O GLY 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3698 O GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3699 N ASP 592 50.703 32.223 67.626 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0											
ATOM 3684 O PHE 589 46.532 29.610 67.602 1.00 2.00 0 ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3688 CA LEU 590 47.845 30.892 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 9.73 0 ATOM 3698 O GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 6.15 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0											
ATOM 3685 N LEU 590 46.715 31.411 66.235 1.00 2.00 0 ATOM 3687 CA LEU 590 47.650 31.303 65.459 1.00 2.00 0 ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3693 O LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0											
ATOM 3687 CA LEU 590											
ATOM 3688 CB LEU 590 47.650 31.303 63.988 1.00 9.73 0 ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.333 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.333 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 52.194 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.194 33.949 67.114 1.00 18.80 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0									1.00		
ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0									1.00		
ATOM 3689 CG LEU 590 46.273 31.022 63.356 1.00 9.73 0 ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.127 36.036 71.822 1.00 12.61	ATOM	3688	CB	LEU	590	47.650	31.303	63.988	1.00	9.73	0
ATOM 3690 CD1 LEU 590 46.162 31.702 62.014 1.00 9.73 0 ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0	MOTA	3689	CG	LEU	590	46.273	31.022		1.00	9.73	0
ATOM 3691 CD2 LEU 590 46.056 29.529 63.211 1.00 9.73 0 ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0	ATOM	3690	CD1	LEU	590	46.162				9 73	
ATOM 3692 C LEU 590 49.277 31.221 65.947 1.00 2.00 0 ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0			CDS	LEU							
ATOM 3693 O LEU 590 50.263 30.856 65.296 1.00 9.73 0 ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3698 O GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0							23.323				
ATOM 3694 N GLY 591 49.389 31.929 67.071 1.00 2.00 0 ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.1813 36.995 69.211 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0											
ATOM 3696 CA GLY 591 50.703 32.223 67.626 1.00 2.00 0 ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3703 CG ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3704 OD1 ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3705 OD2 ASP 592 54.953 35.606 65.657 1.00 11.71 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3707 O ASP 592 52.1813 36.995 69.211 1.00 2.00 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3708 N TYR 593 51.127 36.036 71.822 1.00 12.61											
ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61							31.929		1.00	2.00	
ATOM 3697 C GLY 591 51.132 33.648 67.923 1.00 2.00 0 ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61			CA	GLY	591	50.70 3	32.223	67.626	1.00	2.00	0
ATOM 3698 O GLY 591 50.369 34.620 67.769 1.00 2.00 0 ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61	ATOM	3697	С	GLY	591	51.132				2.00	0
ATOM 3699 N ASP 592 52.387 33.741 68.358 1.00 2.00 0 ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61	ATOM	3698									
ATOM 3701 CA ASP 592 53.033 35.000 68.707 1.00 2.00 0 ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61											
ATOM 3702 CB ASP 592 53.424 35.746 67.448 1.00 6.15 0 ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3703 CG ASP 592 54.521 35.051 66.686 1.00 16.84 0 ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3704 OD1 ASP 592 54.955 35.606 65.657 1.00 11.71 0 ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3705 OD2 ASP 592 54.943 33.949 67.114 1.00 18.80 0 ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											
ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0											0
ATOM 3706 C ASP 592 52.194 35.887 69.598 1.00 2.00 0 ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0			OD2	ASP							0
ATOM 3707 O ASP 592 51.813 36.995 69.211 1.00 6.68 0 ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0	ATOM	3706	С.	ASP	59 2	52.194	35.887	69.598	1.00	2.00	
ATOM 3708 N TYR 593 51.927 35.370 70.800 1.00 12.61 0 ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0	ATOM	3707	0 .	ASP	59 2						
ATOM 3710 CA TYR 593 51.127 36.036 71.822 1.00 12.61 0	ATOM	3708									
									1.00 1	2.61	
11 21 12 22											
		- 				22.22				5 0	J

ATOM	3878	CD2	TYR	610	38.108	32.933	78.589	1.00 2.00	0
MOTA	3879	CE2	TYR	610	37.367	34.091	78.841	1.00 2.00	Ō
MOTA	3880	CZ	TYR	610	37.797	35.298	78.319	1.00 2.00	0
ATOM	3881	ОН	TYR	610	37.086	36.452	78.533	1.00 2.00	ŏ
MOTA	3883	c .	TYR	610	40.431	29.342	78.205	1.00 2.00	Õ
			TYR	610	39.481	28.575	78.006	1.00 2.00	
MOTA	3884	0							0
MOTA	3885	N	LYS	611	41.703	28.991	78.017	1.00 2.00	0
MOTA	3887	CA	LYS	611	42.063	27.648	77.600	1.00 2.00	0
MOTA	3888	CB	LYS	611	43.551	27.532	77.308	1.00 3.53	0
MOTA	3889	CG	LYS	611	43.926	26.136	76.803	1.00 3.53	0
ATOM	3890	CD	LYS	611	43.240	25.83 7	75.467	1.00 3.53	0
ATOM	3891	CE	LYS	611	43.476	24.412	74.980	1.00 3.53	0
ATOM	3892	NZ	LYS	611	42.391	23.502	75.421	1.00 3.53	0
ATOM	3896	C	LYS	611	41.717	26.666	78.700	1.00 2.00	Ō
ATOM	3897	ŏ	LYS	611	41.142	25.618	78.431	1.00 3.53	Ŏ
ATOM	3898	Ň	ILE	612	42.084	26.990	79.938	1.00 26.02	ŏ
	3900	CA	ILE	612	41.780	26.115	81.069	1.00 26.02	ŏ
ATOM				612	42.543	26.535	82.336	1.00 2.00	ŏ
ATOM	3901	CB	ILE				83.475	1.00 2.00	
MOTA	3902		ILE	612	42.232	25.576			0
MOTA	3903		ILE	612	44.041	26.511	82.063	1.00 2.00	0
MOTA	3904	CD1	ILE	612	44.860	27.144	83.135	1.00 2.00	0
ATOM	3905	С	ILE	612	40.284	26.149	81.365	1.00 26.02	0
MOTA	3906	0	ILE	612	39.698	25.131	81.739	1.00 2.00	0
MOTA	3907	N	LYS	613	39.683	27.326	81.181	1.00 2.00	0
ATOM	3909	CA	LYS	613	38.257	27.556	81.414	1.00 2.00	0
MOTA	3910	CB	LYS	613	37.966	29.058	81.402	1.00 10.53	Ó
MOTA	3911	CG	LYS	613	36.528	29.437	81.650	1.00 10.53	Ó
			LYS	613	36.070	29.072	83.035	1.00 10.53	ŏ
MOTA	3912	CD		613	34.717	29.693	83.364	1.00 10.53	ŏ
ATOM	3913	CE	LYS			29.182	82.523	1.00 10.53	ŏ
MOTA	3914	NZ	LYS	613	33.611				
MOTA	3918	С	LYS	613	37.379	26.847	80.384	1.00 2.00	0
MOTA	3919	0	LYS	613	36.335	26.293	80.739	1.00 10.53	0
MOTA	3920	N	TYR	614	37.819	26.842	79.121	1.00 24.09	0
MOTA	3922	CA	TYR	614	37.079	26.214	78.016	1.00 27.84	0
ATOM	3923	CB	TYR	614	36. 47 3	27.301	77.125	1.00 2.00	0
ATOM	3924	CG	TYR	614	35.679	28.363	77.855	1.00 2.00	0
ATOM	3925		TYR	614	36.123	29.689	77.892	1.00 2.00	0
MOTA	3926		TYR	614	35.409	30.671	78.567	1.00 2.00	0
ATOM	3927	CD2	TYR	614	34.490	28.048	78.516	1.00 2.00	0
		CE2	TYR	614	33.766	29.020	79.199	1.00 2.00	0
MOTA	3928			614	34.232	30.330	79.227	1.00 2.00	0
MOTA	3929	CZ	TYR	614	33.560	31.293	79.960	1.00 2.00	Ō
MOTA	3930	ОН	TYR		37.976	25.317	77.146	1.00 25.93	ō
MOTA	3932	C	TYR	614		25.474	75.935	1.00 2.00	ŏ
MOTA	3933	0	TYR	614	38.012		77.733	1.00 21.49	ŏ
MOTA	3934	N	PRO	615	38.641	24.310			ŏ
MOTA	3935	CD	PRO	615	38.494	23.854	79.123		
ATOM	3936	CA	PRO	615	39.541	23.406	76.995	1.00 22.47	0
ATOM	3937	CB	PRO	615	39. 95 0	22.384	78.055	1.00 11.83	0
ATOM	3938	CG	PRO	615	38.773	22.382	78.995	1.00 11.83	0
ATOM	3939	C	PRO	615	39.078	22.714		1.00 20.23	0
MOTA	3940	0	PRO	615	39.873	22.026	75.074	1.00 11.83	0
MOTA	3941	N	GLU	616	37.813	22.879	75.350	1.00 15.62	0
ATOM	3943	CA	GLU	616	37.296	22.213	74.159	1.00 16.61	0
		CB	GLU	616	36.240	21.179	74.566	1.00 26.75	0
MOTA	3944				36.644	20.253	75.695	1.00 30.68	0
MOTA	3945	CG	GLU	616		19.416	75.382	1.00 40.71	0
MOTA	3946	CD	GLU	616	37.872	19.416	76.273	1.00 39.65	ō
MOTA	3947		GLU	616	38.747		74.256	1.00 39.29	ŏ
MOTA	3948	OE2	GLU	616	37.960	18.874			ő
MOTA	3949	C	GLU	616	36.681	23.175	73.140	1.00 13.01	
MOTA	3950	0	GLU	616	36.276	22.765	72.046	1.00 20.06	0
MOTA	3951	N	ASN	617	36.620	24.453	73.499	1.00 2.00	0
MOTA	3953	CA	ASN	61 7	36.027	25.467	72.636	1.00 2.00	0
ATOM	3954	CB	ASN	617	34.678	25.89 6	73.218	1.00 42.63	0
ATOM	3955	CG	ASN	617	33.743	24.720	73.456	1.00 47.29	0
MOTA	3956		ASN	617	33.800	24.064	74.500	1.00 50.83	0
			ASN	617	32.883	24.443	72.485	1.00 53.65	0
MOTA	3957			617	36.941	26.686	72.476	1.00 2.00	0
MOTA	3960	C	ASN		36.505	27.747	72.032	1.00 45.01	Ö
MOTA	3961	0	ASN	617	JU. JUS	21.747		· - ·	-
A10									

									<i>c</i>
MOTA	3962	N	PHE	618	38.215	26.517 27.596	72.812 72.736	1.00 14. 1.00 14.	
MOTA	3964	CA	PHE	618	39.192 39.146	28.387	74.044		00 0
MOTA	3965	CB CG	PHE PHE	618 618	40.042	29.585	74.073		00 0
MOTA	3966 3967	CD1	PHE	61B	39.501	30.871	74.058		00 0
MOTA MOTA	3968		PHE	618	41.422	29.441	74.147	1.00 2.	00 0
ATOM	3969	CE1	PHE	618	40.322	32.007	74.119	1.00 2.	00 0
ATOM	3970	CE2	PHE	618	42.254	30.562	74.209		00 0
MOTA	3971	CZ	PHE	618	41.696	31.854	74.195	1.00 2.	00 0
ATOM	3972	Č	PHE	618	40.540	26.907	72.570	1.00 14.	
MOTA	3973	Ō	PHE	618	40.893	26.066	73.394		00 0
MOTA	3974	N	PHE	619	41.285	27.239	71.514		00 0
MOTA	3976	CA	PHE	619	42.583	26.599	71.271		00 0
MOTA	3977	CB	PHE	619	42.468	25.622	70.111 70.311		00 0
MOTA	3978	CG.	PHE	619	41.404	24.595 24.936	70.311		00 0
MOTA	3979		PHE	619 619	40.063 41.738	23.291	70.678		00 0
ATOM	3980	CD2	PHE	619	39.068	23.997	70.370		00 0
MOTA	3981		PHE PHE	619	40.750	22.337	70.892		00 0
MOTA	3982	CE2	PHE	619	39.408	22.689	70.738		00 0
MOTA MOTA	3983 3984	C	PHE	619	43.719	27.566	71.005		00 0
ATOM	3985	ŏ	PHE	619	43.501	28.698	70.564		00 0
ATOM	3986	Ň	LEU	620	44.936	27.115	71.282	1.00 2.	00 0
MOTA	3988	CA	LEU	620	46.118	27.933	71.073		00 0
ATOM	3989	CB,	LEU	620	46.647	28.507	72.393		00 0
MOTA	3990	CG	LEU	620	45.826	29.389	73.321		00 0
MOTA	3991	CD1	LEU	620	46.741	29.868	74.437		00 0
MOTA	3992	CD2	LEU	620	45.247	30.563	72.565		00 0
MOTA	3993	C	LEU	620	47.225	27.093	70.438		00 0
MOTA	3994	0	LEU	620	47.548	25.987	70. 91 0 69.376		00 0
MOTA	3995	N	LEU	621	47.805 48.880	27.634 26.971	68.669		00 0
MOTA	3997	CA	LEU	621 621	48.577	26.929	67.162		00 0
MOTA	3998	CB	LEU	621 621	47.256	26.280	66.739		00 0
MOTA	3999 400 0	CC	LEU	621	47.021	26.511	65.253		00 0
ATOM ATOM	4001		LEU	621	47.281	24.813	67.062		00 0
MOTA	4002	C	LEU	621	50.162	27.756	68.943		00 0
MOTA	4003	ō	LEU	621	50.121	28.937	69.285		00 0
ATOM	4004	N	ARG	622	51.296	27.092	68.774		00 0
MOTA	4006	CA	ARG	622		27.690	69.013		00 0
MOTA	4007	CB	ARG	622	53.620	26.578	69.231		18 0 18 0
MOTA	4008	CG	ARG	622	54.967	27.052	69.716		18 0 18 0
ATOM	4009	CD	ARG	622	55.802	25.891 26.357	70.196 70.941		18 0
MOTA	4010	NE	ARG	622	56. 96 9 57.83 0	25.553	71.557		18 0
ATOM	4012	CZ	ARG	622 622	57.659	24.240	71.525		18 0
MOTA	4013 4016	NH1 NH2	ARG ARG	622	58.870	26.056	72.199		18 0
ATOM ATOM	4019	C	ARG	622	53.070	28.615	67.894		00 0
ATOM	4020	Ö	ARG	622	53.032	28.270	66.702	1.00 16.	
ATOM	4021	N	GLY	623	53.508	29.805	68.286	1.00 19.	04 0
ATOM	4023	CA	GLY	623	54.043	30. 749	67.328	1.00 20.	78 0
ATOM	4024	C	GLY	623	55.551	30.573	67.390	1.00 18.	
MOTA	4025	0	GLY	623	56.069	29.805	68.212	1.00 2.	
MOTA	4026	N	ASN	624	56.281	31.266	66.530	1.00 32.	•
MOTA	4028	CA	ASN	624	57.728	31.144	66.566 65.220	1.00 32.	
MOTA	4029	CB	ASN	624	58.345	31.543 33.002	64.857		84 0
ATOM	4030	CG	ASN	624 624	58.120 57.381	33.754	65.538		47 0
MOTA	4031		ASN	624	58.721	33.411	63.757		50 0
MOTA	4032	ND2	asn asn	624	58.260	31.988	67.721	1.00 32.	
MOTA MOTA	4035 4036	C	ASN	624	59.442	31.926	68.066		81 0
ATOM	4036	Ŋ	HIS	625	57.359	32.757	68.335		73 0
ATOM	4039	CA	HIS	625	57.687	33.614	69.477	1.00 8.	83 0
MOTA	4040	CB	HIS	625	57.030	34.987	69.320		0 00
ATOM	4041	CG	HIS	625	57. 9 09	35.998	68.656		00 0
ATOM	4042	CD2	HIS	625	59.042	35.854	67.933		00 0
MOTA	4043	ND1	HIS	625	57.668	37.351	68.721		00 0
MOTA	4045	CEI	HIS	62 5	58. 61 8	37.999	68.069	1.00 2.	00 0

ATOM 4046 NEZ HIS 625 57.278 32.980 70.807 1.00 2.00 0 ATOM 4049 0 HIS 625 57.278 32.980 70.807 1.00 8.94 0 ATOM 4050 N GUI 626 55.984 31.691 70.765 1.00 2.00 0 ATOM 4051 CR GLU 626 55.629 30.914 71.945 1.00 2.00 0 ATOM 4052 CA GLU 626 55.629 30.914 71.945 1.00 2.00 0 ATOM 4053 CB GLU 626 55.404 30.026 71.666 1.00 2.00 0 ATOM 4054 CG GLU 626 55.404 30.026 71.666 1.00 2.00 0 ATOM 4055 CD GLU 626 55.404 31.691 70.765 1.00 2.00 0 ATOM 4055 CD GLU 626 55.404 31.002 77.1.666 1.00 2.00 0 ATOM 4056 OEI GLU 626 53.911 31.627 71.217 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.										
AROM 408	MOTA	4046	NE2	HIS	625			67.582	1.00 2.00	
ATOM 4050 N	MOTA	4048	С	HIS						
ATOM 4052 CA GUU 626 55.629 30.914 71.945 1.00 2.00 0 ATOM 4053 CB GUU 626 55.629 30.914 71.945 1.00 12.00 0 ATOM 4054 CB GUU 626 55.4051 30.627 72.039 1.00 18.70 0 ATOM 4054 CB GUU 626 55.8161 30.627 72.039 1.00 18.70 0 ATOM 4055 CB GUU 626 53.916 72.922 72.217 1.00 20.31 0 ATOM 4056 OEI GUU 626 53.916 72.922 72.217 1.00 20.31 0 ATOM 4058 CB GUU 626 53.916 72.922 72.217 1.00 20.31 0 ATOM 4058 CB GUU 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4058 CB GUU 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4058 CB GUU 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4060 N CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4061 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4062 CA CYS 627 60.832 29.957 70.789 1.00 19.89 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 63.903 30.607 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.903 31.662 77.208 1.00 19.49 0 ATOM 4072 O ALA 628 63.903 31.662 77.208 1.00 19.49 0 ATOM 4075 CA SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4076 CB SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4070 CB ALA 628 63.903 31.662 77.1355 1.00 12.00 0 ATOM 4070 CB ALA 628 63.903 31.662 77.1355 1.00 12.00 0 ATOM 4070 CB ALA 628 63.903 31.662 77.208 0 ATOM 4070 CB ALA 628 63.903 31.602 17.3.291 1.00 10.460 0 ATOM 4080 O SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 O SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 O SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 66.6057		-	0							
ATOM 4053 CD GUJ 626 55.404 30.026 71.666 1.00 23.06 0 ATOM 4054 CD GUJ 626 54.051 30.627 72.039 1.00 12.00 18.700 0 ATOM 4055 CD GUJ 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4056 CD GUJ 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4057 OE2 GUJ 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4058 CD GUJ 626 57.881 30.068 72.029 1.00 2.00 0 ATOM 4058 CD GUJ 626 57.881 30.068 72.029 1.00 2.00 0 ATOM 4058 CD GUJ 626 57.881 30.068 72.029 1.00 2.00 0 ATOM 4059 OG GUJ 626 57.851 28.841 71.921 1.00 23.50 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4061 CR CYS 627 60.832 29.957 70.789 1.00 12.00 0 ATOM 4062 CA CYS 627 60.832 29.957 70.789 1.00 19.90 0 ATOM 4064 SG CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4065 CC CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 73.908 1.00 19.49 0 ATOM 4071 C ALA 628 63.980 31.665 74.466 1.00 19.49 0 ATOM 4071 C ALA 628 63.990 31.665 74.466 1.00 19.49 0 ATOM 4075 CA SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4075 CB SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4076 CB SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4076 CB SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4076 CB SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4076 CB SER 629 65.077 30.877 71.355 1.00 19.49 0 ATOM 4080 N SER 629 65.869 31.833 72.71 71.955 1.00 19.49 0 ATOM 4080 CS SER 629 65.869 31.833 77.156 1.00 19.49 0 ATOM 4080 CS SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4080 N SER 629 65.869 31.833 77.156 1.00 19.40 0 ATOM 4090 N SER 629 66.869 71.833 71.835 71.00 19.40 0 ATOM 4090 N SER										
ATOM 4051 CG GUJ 626 53.916 30.627 72.039 1.00 18.70 0 ATOM 4055 CG GUJ 626 53.916 32.922 72.217 1.00 20.31 0 ATOM 4056 OEI GUJ 626 53.916 32.922 72.217 1.00 20.31 0 ATOM 4058 C GUJ 626 53.911 32.165 70.214 1.00 23.03 0 ATOM 4058 C GUJ 626 53.911 32.165 70.214 1.00 23.03 0 ATOM 4058 C GUJ 626 53.911 32.165 70.214 1.00 23.05 0 ATOM 4058 C GUJ 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4059 N CLYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4060 N CLYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4061 CB CLYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CLYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CLYS 627 60.832 29.957 70.7899 1.00 7.85 0 ATOM 4066 N CLYS 627 62.235 28.843 70.575 1.00 19.90 0 ATOM 4066 C CLYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.9343 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.921 32.059 74.4206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 31.05 1.00 12.00 0 ATOM 4075 CA SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 10.03 0 ATOM 4077 OG SER 629 65.637 31.813 72.478 1.00 10.03 0 ATOM 4070 CB ALA 628 63.921 33.131 71.899 1.00 19.49 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 N SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 N SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 N SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 N SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 C SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 C SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 C SER 629 65.637 31.813 72.478 1.00 10.400 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.400 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.400 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.400 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.400 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.400 0 ATOM 4080 C SER 629 65.637										
ATOM 4055 CD GUJ 606 53.812 31.997 71.445 1.00 17.00 0 ATOM 4056 CD GUJ 606 53.911 32.165 70.214 1.00 23.26 0 ATOM 4057 OE2 GUJ 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4059 O GUJ 626 57.851 28.841 71.921 1.00 23.50 0 ATOM 4059 O GUJ 626 57.851 28.841 71.921 1.00 23.50 0 ATOM 4059 O GUJ 626 57.851 28.841 71.921 1.00 23.50 0 ATOM 4060 O C GUJ 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4062 CA CYS 627 60.829 30.067 72.218 1.00 2.00 0 ATOM 4063 CR CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 CC CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 CC CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 CC CYS 627 61.250 30.842 73.105 1.00 19.49 0 ATOM 4067 O ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4071 C ALA 628 63.904 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.904 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.904 29.601 75.567 1.00 2.00 0 ATOM 4075 CA SER 629 66.607 31.813 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 66.607 31.813 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 65.5119 31.313 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 65.519 31.313 72.478 1.00 14.60 0 ATOM 4070 CB SER 629 65.519 31.313 72.478 1.00 14.60 0 ATOM 4070 CB SER 629 65.519 31.313 72.478 1.00 14.60 0 ATOM 4080 CB LLE 630 62.964 29.522 71.762 1.00 2.00 0 ATOM 4080 CB LLE 630 62.964 29.522 71.762 1.00 2.00 0 ATOM 4080 CB LLE 630 63.963 34.087 71.355 1.00 15.99 0 ATOM 4080 CB LLE 630 63.963 34.087 71.355 1.00 15.99 0 ATOM 4080 CB LLE 630 63.963 34.087 71.355 1.00 19.16 0 ATOM 4080 CB LLE 630 63.963 34.087 71.355 1.00 19.16 0 ATOM 4080 CB LLE 630 63.664 33.598 68.800 1.00 2.00 0 ATOM 4080 CB LLE 630 63.963 34.087 71.722 1.00 2.00 0 ATOM 4080 CB LLE 630 63.963 34.087 71.722 1.00 2.00 0 ATOM 4090 CB ASN 631 631 652.866 36.483 77.722 1.00 2.00 0 ATOM 4090 CB ASN 631 631 63.963 34.987 71.722 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.										
ATOM 4055 CD GUL 626 53.516 32.922 72.217 1.00 2.0 31 0 ATOM 4058 C GUL 626 53.516 32.922 72.217 1.00 23.26 0 ATOM 4058 C GUL 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4050 N CUS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4060 N CUS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4061 C C C C C C C C C C C C C C C C C C C										
## 4057 OB2 GLU										
ATOM ADSB C			_					70.214	1.00 23.26	0
ATOM 4060 N CYS 627 59.015 30.748 72.181 1.00 23.50 0 ATOM 4060 N CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 CCYS 627 61.260 30.827 73.075 1.00 19.90 0 ATOM 4066 C CYS 627 61.260 30.827 73.088 1.00 8.12 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4070 CS SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4070 CS SER 629 65.867 31.813 72.478 1.00 14.60 0 ATOM 4070 CS SER 629 65.819 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.819 33.131 71.899 1.00 19.16 0 ATOM 4080 N ILE 630 63.846 29.522 71.766 1.00 2.00 0 ATOM 4081 N ILE 630 63.844 33.67 71.566 1.00 2.00 0 ATOM 4080 CS ILE 630 62.066 33.987 71.555 1.00 15.99 0 ATOM 4080 CS ILE 630 62.066 33.993 77.578 1.00 19.16 0 ATOM 4080 CS ILE 630 62.066 33.993 77.578 1.00 19.16 0 ATOM 4080 CS ILE 630 62.666 36.492 72.00 0 ATOM 4080 CS ILE 630 62.666 36.492 72.00 10 0.00 0 ATOM 4080 CS ILE 630 62.666 36.492 72.00 10 0.00 0 ATOM 4080 CS ILE 630 62.666 36.492 73.00 0.00 0.00 0 ATOM 4080 CS ILE 630 62.666 36.492 73.00 0.00 0.00 0.00 0 ATOM 4080 CS ILE 630 62.666 36.492 73.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0							30.068			
ATOM 4062 CA CYS 627 60.290 30.067 72.184 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.184 1.00 2.00 0 ATOM 4064 SG CYS 627 60.232 29.957 70.789 1.00 7.85 0 ATOM 4065 C CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 C CYS 627 61.250 30.842 73.105 1.00 19.90 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.943 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.900 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.800 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.484 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4076 CB SER 629 65.537 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.537 31.813 72.478 1.00 14.60 0 ATOM 4077 OG SER 629 65.537 31.813 72.478 1.00 14.60 0 ATOM 4079 C SER 629 65.537 31.813 71.755 1.00 15.99 0 ATOM 4079 C SER 629 65.5846 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4081 N ILE 630 63.198 34.315 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.865 34 0.85 71.759 1.00 13.43 0 ATOM 4081 C ILE 630 63.198 34.354 71.052 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.052 1.00 2.00 0 ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4088 C ILE 630 62.676 33.973 70.017 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4089 C ALS SER 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4089 C ALS SER 631 62.966 36.492 72.068 1.00 2.00 0 ATOM 4080 C C ASS SER 631 62.966 36.492 77.759 1.00 13.43 0 ATOM 4080 C C ASS SER 631 62.966 36.492 77.068 1.00 2.00 0 ATOM 4080 C C ASS SER 631 62.966 36.492 77.068 1.00 2.00 0 ATOM 4080 C C ASS SER 631 62.967 33.973 70.017 1.00 2.00 0 ATOM 4080 C C ASS SER 631 63.93 38.898 71.755 3.499 1.00 18.67 0 ATOM 4080 C C ASS SER 632 67.003 37.798 88.890 1.00 2.00 0 ATOM 4080 C C ASS SER 632 66.366 35.281 71.755 3.994 1.00 18.60 0 ATOM 4080 C C ASS SER 632 67.003 37.598 88.890 1.00 2.00 0 ATOM 4080 C C ASS SER 632 67.003 38.898						57.851				
ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.832 29.957 70.785 1.00 19.90 0 ATOM 4065 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 0 CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 0 CYS 627 61.355 32.066 73.088 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.970 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.980 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.980 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.57 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.57 31.813 77.1355 1.00 15.99 0 ATOM 4077 OG SER 629 65.57 31.813 77.1355 1.00 15.99 0 ATOM 4079 C SER 629 65.51 33.311 71.899 1.00 19.16 0 ATOM 4079 C SER 629 65.51 33.31 31.7899 1.00 19.16 0 ATOM 4080 O SER 629 65.51 33.31 31.78 99 1.00 19.16 0 ATOM 4081 N ILE 630 63.844 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4086 CG2 ILE 630 63.644 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 63.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C A SN 631 61.350 35.504 74.727 1.00 10.29 0 ATOM 4090 N ASN 631 61.350 35.504 77.751 1.00 13.43 0 ATOM 4091 C B ASN 631 61.350 35.504 77.918 1.00 11.02 1.00 2.00 0 ATOM 4092 C A SN 631 63.993 31.486 77.751 1.00 13.43 0 ATOM 4093 C B ASN 631 63.993 31.386 77.751 1.00 10.29 0 ATOM 4094 C B ASN 631 63.993 31.386 77.751 1.00 10.29 0 ATOM 4095 D DIA SN 631 63.993 31.386 77.751 1.00 10.29 0 ATOM 4090 N ASN 631 63.993 31.386 77.751 1.00 10.29 0 ATOM 4091 C B ASN 631 63.993 31.386 77.751 1.00 10.29 0 ATOM 4092 C A SN 631 632 63.893 31.405 77.991 1.00 19.29 0 ATOM 4094 C B ASN 631 632 63.893 31.405 77.991 1.00 19.29 0 ATOM 4094 C B ASN					627		-			
ATOM 4064 SG CYS 627 61.280 38.243 70.575 1.00 19.90 0 ATOM 4065 C CYS 627 61.280 38.242 73.105 1.00 2.00 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.921 32.859 74.884 1.00 2.00 0 ATOM 4072 O ALA 628 63.921 32.859 74.884 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.63 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 11.69 0 ATOM 4077 OG SER 629 65.637 31.813 72.478 1.00 11.69 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 N SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 N SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4082 C ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.990 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 33.598 68.990 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.604 33.598 68.990 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.990 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 33.598 68.990 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 77.349 1.00 10.29 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 17.37 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 17.37 0 ATOM 4090 C ASN 631 63.266 36.492 72.088 1.00 2.00 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 17.37 0 ATOM 4090 C ASN 631 63.266 36.492 72.088 1.00 2.00 0 ATOM 4091 C ASN 631 63.555 35.810 75.189 1.00 2.00 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 2.00 0 ATOM 4090 C ASN 631 63.266 36.492 72.889 1.00 2.00 0 ATOM 4091 C ASN 631 63.266 36.492 72.889 1.00 2.00 0 ATOM 4091 C ASN 631 63.266 36.492 72.889 1.00 2.00 0 ATOM 4091 C ASN 631 63.266 36.492 77.889 1.00 8.61 0 ATOM 4101 C ARG 632 64.962 37.781 77.917 1.00 13.50 0 ATOM 4103 C ARG 632 64.962 37.781 77.918 1.00 11.75 0 AT		4062	CA							
ATOM 4065 C CYS 627 61.355 32.066 73.008 1.00 2.00 0 ATOM 4066 O CYS 627 61.355 32.066 73.008 1.00 19.49 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4077 OG SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4079 C SER 629 65.866 29.522 71.762 1.00 20.03 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILE 630 63.894 33.167 71.556 1.00 2.00 0 ATOM 4081 N ILE 630 63.894 33.167 71.556 1.00 2.00 0 ATOM 4084 CB ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.644 33.598 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.973 70.017 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4090 N ASN 631 631 69.22 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 631 69.22 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 63.93 39.93 7.486 75.488 1.00 2.00 0 ATOM 4090 C ASN 631 63.93 39.93 88.88 74.881 1.00 10.29 0 ATOM 4090 C ASN 631 63.93 39.93 77.486 75.488 1.00 2.00 0 ATOM 4090 C ASN 631 63.555 35.810 75.947 79.97 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 63.264 37.788 77.997 1.00 1.00 2.00 0 ATOM 4091 C ASN 631 63.93 39.93 77.90 1.00 10.29 0 ATOM 4090 C ASN 631 63.93 39.93 77.88 77.90 1.00 13.75 0 ATOM 4091 C ASR 632 66.863 39.93 77.88 77.90 1.00 13.75 0 ATOM 4091 C ASR 632 66.863 39.93 77.88 77.90 1.00 13.75 0 ATOM 4091 C ASR 632 66.863 67.99 77.99 1.00 13.75 0 ATOM 4091 C ASR 632 66.863 67.99 77.99 1.00 13.75 0 ATOM 4091 C ASR 632 66.93 66.90 77.88 77.90 1.00 13.75 0 ATOM 4091 C ASR 632 66.93 39.93 77.90 77.90 1.00 13.75 0 ATOM 4	MOTA	4063	CB		-					
ATOM 4066 C CYS 627 61.385 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.884 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4075 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4077 OG SER 629 65.637 31.813 72.478 1.00 19.16 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4081 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.076 33.973 70.01 71.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.890 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.604 32.998 68.890 1.00 2.00 0 ATOM 4088 C ILE 630 62.604 32.998 68.890 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.800 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 33.598 68.800 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 33.598 68.800 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 19.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 19.29 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 2.00 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 2.00 0 ATOM 4090 C ASN 631 63.555 35.810 75.189 1.00 2.00 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 632 66.364 37.799 77.3137 1.00 19.29 0 ATOM 4091 C ASG 632 64.962 37.781 7.00 1.00 2.00 0 ATOM 4091 C ASG 632 64.962 37.781 7.781 1.00 19.86 0 ATOM 4091 C ASG 632 64.962 37.781 7.781 1.00 19.86 0 ATOM 4091 C ASG 632 64.962 37.781 7.781 1.00 19.86 0 ATOM 4091 C ASG 632 64.962 37.781 7.781 1.00 19.86 0 ATOM 4094 CG ASG 632 64.963 38.887 77.907 1.00 13.75 0 ATOM 4094 CG ASG 632 64.962 37.781 7.781 1.00 13.50 0 ATOM 4094 CG ASG 632 64.962 37.781 7.781 1.00 13.50 0 ATOM 4094 CG ASG 632 64.962 37.781 7.781 1.00 13.98 0	MOTA									
ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.981 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.981 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 14.60 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4077 OC SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.849 33.131 71.899 1.00 19.16 0 ATOM 4081 N ILLE 630 63.188 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.188 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.189 34.354 71.022 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4090 N ASN 631 631 63.35 2.81 72.311 1.00 2.00 0 ATOM 4090 N ASN 631 63.35 2.81 72.311 1.00 2.00 0 ATOM 4090 C ASN 631 631 59.189 33.896 73.722 1.00 9.61 0 ATOM 4090 C ASN 631 63.35 55.54 74.272 1.00 9.61 0 ATOM 4090 C ASN 631 63.266 37.790 77.839 1.00 15.25 0 ATOM 4090 C ASN 631 63.266 37.790 77.839 1.00 15.25 0 ATOM 4091 C ASG 632 66.863 63.4729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 63.55 55.54 77.970 1.00 13.36 0 ATOM 4091 C ASG 632 66.863 63.4729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 632 66.863 63.790 77.839 1.00 10.29 0 ATOM 4091 C ASG 632 66.863 63.865 77.990 1.00 13.50 0 ATOM 4091 C ASG 632 66.863 63.865 77.990 1.00 13.50 0 ATOM 4094 CG ASG 632 66.863 63.865 77.990 1.00 13.36 0 ATOM 4100 C ASG 632 66.863 63.865 77.991 1.00 1.00 2.00 0 ATOM 4101 C ASG 632 66.863 63.866 77.91										
ATOM 4050 CB ALA 628 63.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 65.637 31.813 772.478 1.00 10.83 0 ATOM 4073 N SER 629 65.637 31.813 772.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 772.478 1.00 15.99 0 ATOM 4076 CB SER 629 65.637 31.813 772.478 1.00 15.99 0 ATOM 4077 OG SER 629 65.868 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 15.99 0 ATOM 4080 D SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 D SER 629 65.889 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG] ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CDI ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4089 C A SER 631 63.963 64.92 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 C A SEN 631 59.555 33.868 73.722 1.00 2.00 0 ATOM 4090 C A SEN 631 59.555 33.868 73.722 1.00 2.00 0 ATOM 4090 C A SEN 631 59.555 33.868 73.722 1.00 2.00 0 ATOM 4090 C A SEN 631 59.555 33.868 77.790 1.00 10.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 17.37 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 17.37 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 11.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 11.29 0 ATOM 4091 C A SEN 631 58.926 33.124 75.815 1.00 12.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 12.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 12.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 12.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 12.29 0 ATOM 4090 C A SEN 631 58.926 33.124 75.815 1.00 12.10 0 ATOM 4091 C A SEN 631 632 66.364 33.124 75.815 1.00 12.90 0 ATOM 4091 C A SEN 631 632 66.365 63.30 77.90 1.00 1.00 1.360 0 AT										0
ATOM 4071 C ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.891 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OC SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4070 C SER 629 65.846 99.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4080 O SER 629 65.119 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.119 33.131 71.899 1.00 19.49 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.666 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4095 ODJ ASN 631 63.955.504 74.272 1.00 9.667 0 ATOM 4095 ODJ ASN 631 63.555 35.807 77.917 1.00 2.00 0 ATOM 4096 C ASN 631 63.555 35.807 77.917 1.00 2.00 0 ATOM 4090 N ASN 631 63.555 35.807 77.917 1.00 2.00 0 ATOM 4090 C ASN 631 63.264 77.918 1.00 1.00 1.75 0 ATOM 4090 C ASN 631 63.2667 77.918 1.00 1.00 1.75 0 ATOM 4091 C ARG 632 66.861 63.759 77.918 1.00 1.00 1.75 0 ATOM 4090 C ASN 631 63.266 77.436 35.294 77.916 1.00 2.00 0 ATOM 4091 C B ASN 631 63.266 77.478 67.7907 1.00 13.36 0 ATOM 4101 C B ARG 632 67.837 37.887 77.917 1.00 1.00 13.50 0 ATOM 4100 C ARG 632 66.861 88.33 8.365 77.917 1.00 1.00 13.50 0 ATOM 4101 N ARG 632 66.861 88.33 8.365 77.917 1.00 1.00 13.50 0 ATOM 4102 C ARG 632 66.863 88.788 73.004 1.00 1.00 18.51 0 ATOM 4103 C ARG 632 66.863 88.788 73.004 1.00 18.51 0 ATOM 41									1.00 19.49	0
ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.484 1.00 2.00 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.866 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.131 71.7566 1.00 2.00 0 ATOM 4082 CI LE 630 63.834 33.167 71.0562 1.00 2.00 0 ATOM 4083 CA ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4089 O ILE 630 62.666 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 6.492 72.068 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 6.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4091 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 63.350 31.888 74.891 1.00 12.99 61 0 ATOM 4096 CD ASN 631 59.555 33.888 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.888 74.791 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 74.791 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 74.791 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 74.791 1.00 15.255 0 ATOM 4096 CD ASN 631 59.555 33.888 77.918 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 77.918 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 77.918 1.00 17.37 0 ATOM 4096 CD ASN 631 59.555 33.888 77.918 1.00 17.37 0 ATOM 4097 CD ASN 631 632 66.893 37.886 75.488 1.00 2.00 0 ATOM 4101 N ARG 632 66.266 36.355 87.3 85.594 77.918 1.00 17.37 0 ATOM 4104 CB ARG 632 66.893 38.865 75.795 1.00 21.90 0 ATOM 4105 CD ASN 631 632 67.372 39.883 78.001 1.00 15.25 0 ATOM 4104 CB ARG 632 67.837 38.848 77.918 1.00 13.56 0 ATOM 4105 CD ARG 632 67.837 38.848 77.918 1.00 13.56 0 ATOM 4107 N ARG 632 67.837 38.848 77.918 1.00 13.36 0 ATOM 4108 C								75.567	1.00 2.00	
ATOM 4072					-		31.662			
ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4077 OG SER 629 65.6869 31.101 73.291 1.00 19.16 0 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 O SER 629 65.819 33.131 71.899 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.588 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.588 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 61.932 34.759 75.349 1.00 8.67 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 2.100 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 2.100 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 15.25 0 ATOM 4096 ND2 ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4091 CB ASG 632 66.361 35.244 75.815 1.00 15.25 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 632 66.361 35.247 77.811 1.00 1.3.36 0 ATOM 4101 N - ARG 632 66.363 36.492 77.887 1.00 11.75 0 ATOM 4102 CB ARG 632 66.363 37.781 75.148 1.00 1.00 13.36 0 ATOM 4101 N - ARG 632 66.363 66.085 38.388 77.997 1.00 13.360 0 ATOM 4101 N - ARG 632 66.363 66.085 38.388 77.997 1.00 13.360 0 ATOM 4101 CB ARG 632 66.363 66.085 38.388 77.997 1.00 13.360 0 ATOM 4101 CB ARG 632 66.363 66.085 38.388 77.997 1.00 13.360 0 ATOM 4101 CB ARG 632 66.364 67.787 38.852 1.00 21.20 0 ATOM 4102 CB ARG 632 66.364 67.787 37.887 1.00 10.00 32.61 0 ATOM 4102 CB ARG 632 66.										
ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.864 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4080 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 100 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 100 10.29 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 DD1 ASN 631 59.159 33.896 73.722 1.00 9.61 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4099 C ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4090 N ASN 631 62.367 36.370 75.349 1.00 8.67 0 ATOM 4090 N ASN 631 62.367 36.370 75.349 1.00 8.67 0 ATOM 4091 CB ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4090 N ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4091 CB ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4090 C ASN 631 59.555 35.810 75.189 1.00 2.00 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 66.367 37.22 77.839 1.00 8.81 0 ATOM 4101 N - ARG 632 66.367 37.22 77.839 1.00 8.831 0 ATOM 4102 CB ARG 632 66.363 36.492 77.839 1.00 8.831 0 ATOM 4103 CB ARG 632 66.363 37.781 75.148 1.00 12.20 0 ATOM 4104 CB ARG 632 66.363 36.492 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.033 37.598 77.918 1.00 11.75 0 ATOM 4107 NE ARG 632 67.033 37.698 77.918 1.00 11.75 0 ATOM 4107 NE ARG 632 66.363 66.366 72.815 1.00 21.20 0 ATOM 4112 CB ILE 633 66.267 837 38.635 77.907 1.00 13.560 0 ATOM 4120 CA ILE 633 66.366 67.28					629					-
ATOM 4077 OG SER 629 65.846 29.527 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.846 29.527 71.7899 1.00 19.16 0 ATOM 4080 O SER 629 65.849 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4089 C ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4080 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 60.759 34.597 78.349 1.00 10.29 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 12.90 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 2.1.10 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 1.737 0 ATOM 4096 ND2 ASN 631 59.555 33.848 77.503 1.00 6.75 0 ATOM 4090 C ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 66.361 35.244 77.316 1.00 11.75 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 18.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.31 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.31 0 ATOM 4107 NE ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4108 NI ARG 632 66.366 33.6492 75.907 1.00 13.36 0 ATOM 4101 NI ARG 632 66.366 35.244 77.316 1.00 12.49 0 ATOM 4102 CA ARG 632 66.366 35.244 77.316 1.00 13.36 0 ATOM 4103 CB ARG 632 66.366 35.244 77.316 1.00 13.36 0 ATOM 4107 NE ARG 632 66.366 35.244 77.316 1.00 13.36 0 ATOM 4107 NE ARG 632 66.366 33.5595 77.907 1.00 13.36 0 ATOM 4107 NE ARG 632 66.366 33.6492 77.889 1.00 2.00 0 ATOM 4107 NE ARG 632 66.366 33.6492 77.899 1.00 6.06 0 ATOM 4126 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4127 N TYR 634 66.356 66.36					629					_
ATOM 4079 C SER 629 65.119 33.131 71.899 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N IILE 630 63.884 33.167 71.559 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 35.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.604 33.598 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 C ILE 630 62.866 36.492 72.088 1.00 2.00 0 ATOM 4090 N ASN 631 61.952 34.729 73.137 1.00 10.29 0 ATOM 4091 CG ASN 631 61.952 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.952 34.729 73.137 1.00 10.29 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4099 C ASN 631 59.989 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 37.868 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 37.868 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 37.868 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 37.868 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 37.868 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 63.266 63.36 370 77.907 1.00 2.00 0 ATOM 4100 O ASN 631 62.059 37.486 75.489 1.00 2.00 0 ATOM 4100 N - ARG 632 66.361 35.244 77.316 1.00 1.3.50 0 ATOM 4100 CG ARG 632 66.361 35.244 77.316 1.00 13.50 0 ATOM 4101 N - ARG 632 67.436 36.492 77.918 1.00 13.50 0 ATOM 4102 CG ARG 632 66.361 37.781 75.189 1.00 13.50 0 ATOM 4103 CA ARG 632 66.361 37.781 75.189 1.00 13.50 0 ATOM 4104 CB ARG 632 66.361 37.781 75.189 1.00 13.50 0 ATOM 4105 CG ARG 632 66.361 37.781 75.189 1.00 2.00 0 ATOM 4108 CC ARG 632 67.436 38.635 77.907 1.00 13.50 0 ATOM 4104 CB ARG 632 67.436 38.635 77.907 1.00 13.36 0 ATOM 4105 CG ARG 632 67.436 38.635 77.907 1.00 13.50 0 ATOM 4106 CC ARG 632 67.436 38.635 77.907 1.00 13.50 0 ATOM 4107 NE ARG 632 67.436 38.308 71.610 1.00 13.50 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 13.50 0 ATOM 4121 CB ILE 633 66.086 38.3		4076	CB	SER						
ATOM 4080 O SER 629 65.865 34.085 71.759 1.00 13.43 O ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 O ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 O ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 O ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 O ATOM 4086 CGI ILE 630 62.664 32.998 68.980 1.00 2.00 O ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 2.00 O ATOM 4088 C ILE 630 62.664 33.598 68.080 1.00 2.00 O ATOM 4089 O ILE 630 62.664 33.598 68.080 1.00 2.00 O ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 O ATOM 4099 N ASN 631 61.350 35.504 74.272 1.00 9.61 O ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 O ATOM 4092 CB ASN 631 61.350 35.504 74.272 1.00 9.61 O ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 O ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 O ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 O ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 O ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4096 ND2 ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4096 ND2 ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4096 CG ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4104 CB ARG 632 64.635 36.492 75.867 1.00 2.00 O ATOM 4104 CB ARG 632 64.635 36.492 77.819 1.00 8.20 O ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 13.50 O ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 13.50 O ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 13.50 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4105 CB ARG 632 67.436 36.202 77.839 1.00 13.50 O ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 13.50 O ATOM 4106 CD ARG 632 67.639 38.805 77.907	MOTA	4077								
ATOM 4081 N ILE 630 63.883 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4099 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4099 C ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4094 CG ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 12.10 0 ATOM 4099 C ASN 631 59.555 33.848 77.907 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 67.03 37.598 77.907 1.00 13.36 0 ATOM 4106 CD ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4107 NE ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4108 CE ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.835 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.835 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.835 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.835 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.835 77.907 1.00 13.36 0 ATOM 4126 CD ILE 633 66.085 38.308 71.610 1.00 2.00 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 22.19 0 ATOM 4128 CD ILE 633 66.886 41.900 37.716 71.700 1.00 28.84 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0	MOTA				-					
ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4099 C ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 0.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 66.635 36.492 77.816 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.033 77.598 77.997 1.00 13.36 0 ATOM 4107 NE ARG 632 67.033 77.598 77.997 1.00 13.50 0 ATOM 4107 NE ARG 632 67.937 38.865 75.745 1.00 13.50 0 ATOM 4101 N h1 ARG 632 67.937 38.865 75.745 1.00 13.50 0 ATOM 4101 N H1 ARG 632 67.937 38.865 75.745 1.00 13.50 0 ATOM 4101 N H1 ARG 632 67.937 38.865 75.745 1.00 13.50 0 ATOM 4113 NH2 ARG 632 66.085 38.308 71.610 1.00 32.61 0 ATOM 4120 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.62 0 ATOM 4124 CD1 ILE 633 66.085 38.308 71.610 1.00 32.62 0 ATOM 4125 C ILE 633 66.860 38.788 73.014 1.00 19.86 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0										_
ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4089 C ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 60.759 34.597 75.349 1.00 9.61 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 17.37 0 ATOM 4099 C ASN 631 62.059 37.486 75.438 1.00 6.75 0 ATOM 4090 C ASN 631 62.059 37.486 75.438 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.31 0 ATOM 4105 CG ARG 632 66.361 35.244 77.916 1.00 8.31 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4106 CD ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4107 NE ARG 632 67.837 38.635 77.917 1.00 13.50 0 ATOM 4108 ARG 632 67.837 38.848 77.918 1.00 1.75 0 ATOM 4107 NE ARG 632 67.837 38.849 77.918 1.00 17.35 0 ATOM 4108 CR ARG 632 67.837 38.838 77.911 1.00 13.50 0 ATOM 4107 NE ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4108 CR ARG 632 67.837 38.849 77.918 1.00 12.70 0 ATOM 4107 NE ARG 632 67.837 39.883 78.001 1.00 18.51 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 41110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4124 CD1 ILE 633 66.085 38.308 77.916 1.00 32.61 0 ATOM 4125 C ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4126 CR ARG 632 64.930 38.8655 77.957 1.00 32.61 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4128 N ILE 633 64.864 41.053 72.878 1.00 32.61 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0										
ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080. 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4099 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 N ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.837 35.595 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.50 0 ATOM 4110 NH1 ARG 632 64.962 37.7811 1.00 18.51 0 ATOM 4110 CA ILE 633 66.985 38.308 71.610 0.02.00 0 ATOM 4110 CB ILE 633 66.985 38.308 71.610 1.00 32.61 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.848 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.878 1.00 32.40 0 ATOM 4124 CD1 ILE 633 66.085 73.781 72.588 1.00 32.40 0 ATOM 4125 C ILE 6										
ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4103 CA ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 8.31 0 ATOM 4105 CG ARG 632 67.436 36.202 77.918 1.00 11.75 0 ATOM 4106 CD ARG 632 67.033 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4101 NH1 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4110 NH1 ARG 632 66.32 67.372 39.883 78.001 1.00 18.51 0 ATOM 4111 NH2 ARG 632 66.32 67.372 39.883 78.001 1.00 18.51 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 2.00 0 ATOM 4113 N ILE 633 65.608 38.788 73.852 1.00 22.00 0 ATOM 4120 CA ILE 633 66.085 38.788 73.852 1.00 22.00 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 66.564 41.053 72.878 1.00 32.62 1 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 32.61 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0							35.174			
ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4009 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.889 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.889 1.00 8.31 0 ATOM 4100 NH1 ARG 632 67.436 36.202 77.889 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.436 36.202 77.887 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.372 39.883 78.001 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.372 39.883 78.001 1.00 13.36 0 ATOM 4110 NH1 ARG 632 66.93 38.865 75.745 1.00 12.20 0 ATOM 4111 NH2 ARG 632 66.93 38.865 75.745 1.00 12.29 0 ATOM 4112 CB ILE 633 66.085 38.388 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.388 71.610 1.00 19.86 0 ATOM 4122 CG2 ILE 633 66.085 38.388 71.610 1.00 19.86 0 ATOM 4124 CD1 ILE 633 66.085 38.398 71.610 1.00 22.19 0 ATOM 4124 CD1 ILE 633 66.524 64.550 39.866 72.815 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 664.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0										
ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4093 CB ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.837 38.635 77.918 1.00 13.50 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.918 1.00 13.50 0 ATOM 4101 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.918 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH1 ARG 632 66.962 37.781 75.148 1.00 12.49 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 12.49 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 22.01 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.608 38.788 73.014 1.00 19.86 0 ATOM 4122 CG2 ILE 633 66.4550 39.866 72.815 1.00 22.120 0 ATOM 4124 CD1 ILE 633 66.6550 39.866 72.815 1.00 22.19 0 ATOM 4125 C ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 30.46 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 30.46 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 30.46 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 CB ILE 633 64.864 41.053 72.878 1.00 30.46 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0										
ATOM 4089 O ILE 630 62.866 36.492 72.088 1.00 10.29 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.033 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4111 NH2 ARG 632 64.962 37.781 1.00 13.50 0 ATOM 4118 N ILE 633 66.085 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4122 CG2 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4122 CG2 ILE 633 64.550 39.866 72.594 1.00 22.19 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.594 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 64.864 41.053 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 64.864										
ATOM 4092 CA ASN 631 60.759 34.597 73.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH1 ARG 632 67.837 38.635 77.907 1.00 13.50 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 35.23 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 35.23 0 ATOM 4124 CD1 ILE 633 66.085 38.308 71.610 1.00 35.23 0 ATOM 4125 C ILE 633 66.085 38.308 71.610 1.00 35.23 0 ATOM 4126 O ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4127 N TYR 634 64.550 39.866 72.594 1.00 35.23 0 ATOM 4129 CA TYR 634 64.550 39.866 72.594 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.875 1.00 22.19 0 ATOM 4129 CA TYR 634 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.395 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.395 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.395 66.395 69.941 1.00 13.98 0		4089	0							
ATOM 4092 CA ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N - ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4103 CA ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.003 37.598 77.918 1.00 11.356 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.843 77.811 1.00 13.55 0 ATOM 4110 NH1 ARG 632 64.962 37.781 75.148 1.00 13.56 0 ATOM 4111 NH2 ARG 632 64.962 37.781 75.148 1.00 13.56 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 66.962 37.781 75.148 1.00 21.249 0 ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 18.51 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 29.80 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 22.12 0 ATOM 4123 CG1 ILE 633 66.085 38.308 71.610 1.00 22.12 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 22.19 0 ATOM 4127 N TYR 634 63.864 41.053 72.878 1.00 22.19 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.386 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.386 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.386 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 66.395 66.395 75.755 69.941 1.00 13.98 0	MOTA									
ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.585 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 41110 NH1 ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 12.49 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4122 CG2 ILE 633 664.550 39.866 72.815 1.00 22.19 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 39.866 72.815 1.00 22.19 0 ATOM 4125 C ILE 633 64.864 41.053 72.588 1.00 32.62 0 ATOM 4126 O ILE 633 64.864 41.053 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4129 CA TYR 634 64.864 41.053 72.588 1.00 32.62 0						61.350				0
ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH2 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 12.49 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 12.49 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 22.19 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 22.19 0 ATOM 4125 C ILE 633 64.550 39.866 72.594 1.00 32.61 0 ATOM 4127 N TYR 634 63.303 39.471 70.625 1.00 29.80 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 31.19 0				_					1.00 17.37	
ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 2.00 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.608 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.98 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.98 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0								73.722	1.00 21.10	
ATOM 4100 O ASN 631 62.367 36.370 73.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.350 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4116 C ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 31.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 2.00 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.038 38.7865 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0						62.367				
ATOM 4101 N - ARG 632 63.555 35.810 75.183 1.00 2.00 0 ATOM 4103 CA ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4109 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.99 0					631					
ATOM 4103 CA ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.31 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 66.085 38.308 71.610 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0		4101	N ·	ARG						
ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.873 38.635 77.907 1.00 13.35 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 32.62 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0	MOTA	4103								
ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 0 ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 12.49 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.99 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.99 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.99 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.99 0 ATOM 4130 CB TYR										0
ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							36.202			
ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 0 ARG 632 64.962 37.781 75.148 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 0 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0							37.598		1.00 11.75	
ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.30 0 1 1.00 18.51 0 1 1.00 13.30 0 1 1.00 18.51 0 1 1.00 13.30 0 1 1.00 18.51 0 1 1.00 13.30 0 1 1 1.00 13.30 0 1 1 1.00 13.30 0 1 1 1.00 13.30 0 1 1 1.00 13.30 0 1 1 1.00 13.30 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							38.635		1.00 13.36	
ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.31 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						69.144			1.00 13.50	
ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 12.49 0 ATOM 4117 O ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0									1.00 18.31	
ATOM 4117 O ARG 632 64.930 38.803 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0			С	ARG					1.00 2.00	
ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0	MOTA	4117	0						1.00 21.20	
ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0									1.00 19.86	0
ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4122 CG2 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4123 CG1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0									1.00 32.61	
ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0									1.00 29.80	
ATOM 4124 CD1 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 30.44 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 62.273 39.755 69.941 1.00 19.07 0								71.700		
ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 19.07 0										
ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 62.271 39.755 69.941 1.00 19.07 0						64.550				
ATOM 4127 N TYR 634 63.303 39.473 72.336 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 67.331 39.755 69.941 1.00 19.07 0					633					
ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.13 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0 62.731 39.755 69.941 1.00 19.07 0										
ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 19.07 0			CA							
ATOM 4131 CG TYR 634 62.231 33.733		4130						69.941		
	MOTA	4131	CG	TYR	634	62.231	ر ر ر ر ر ر	U - 1 - 1		

				63.4	62.652	40.805	69.147	1.00 17.28	0
MOTA	4132		TYR	634	63.498	40.587	68.074	1.00 16.13	ŏ
MOTA	4133	CE1	TYR	634 634	62.668	38.474	69.639	1.00 15.20	Ō
ATOM	4134 4135	CD2 CE2	TYR TYR	634	63.515	38.236	68.571	1.00 18.14	0
ATOM ATOM	4136	CZ	TYR	634	63.935	39.296	67.786	1.00 21.41	0
ATOM	4137	ОН	TYR	634	64.789	39.069	66.720	1.00 20.11	0
ATOM	4139	Ċ	TYR	634	61.430	41.025	73.446	1.00 28.63	0
ATOM	4140	ō	TYR	634	60.380	41.637	73.188	1.00 19.20	0
ATOM	4141	N	GLY	635	61.B51	40.807	74.690	1.00 38.67	0
ATOM	4143	CA	GLY	635	61.114	41.407	75.786	1.00 39.39	0
MOTA	4144	C	GLY	635	60.270	40.658	76.780 77.892	1.00 41.31 1.00 69.69	0
MOTA	4145	0	GLY	635	60.103 59.725	41.155 39.502	76.431	1.00 54.49	ő
ATOM	4146	N	PHE	636 636	58.905	38.786	77.404	1.00 56.26	ŏ
MOTA	4148	CX	PHE PHE	636	58.386	37.461	76.831	1.00 2.00	ŏ
MOTA	4149 4150	CB CG	PHE	636	57.275	36.845	77.639	1.00 2.00	0
ATOM ATOM	4151		PHE	636	56.293	37.638	78.208	1.00 2.00	0
ATOM	4152	CD2	PHE	636	57.214	35.478	77.824	1.00 2.00	0
ATOM	4153	CE1	PHE	636	55.276	37.076	78.942	1.00 2.00	0
ATOM	4154	CE2	PHE	636	56.210	34.919	78.549	1.00 2.00	0
MOTA	4155	CZ	PHE	636	55.238	35.716	79.111	1.00 2.00	0
ATOM	4156	С	PHE	636	59.761	38.522	78.646	1.00 55.84 1.00 2.00	0
MOTA	4157	0	PHE	636	59.321	38.728 38.114	79.791 78.415	1.00 2.00	Ö
MOTA	4158	N	TYR	637	61.005 61.918	37.836	79.506	1.00 2.00	ŏ
ATOM	4160	CA	TYR TYR	637 637	63.266	37.419	78.947	1.00 18.03	ŏ
MOTA	4161 4162	CB CG	TYR	637	64.345	37.308	79.986	1.00 13.39	0
ATOM ATOM	4163	CD1	TYR	637	64.560	36.116	80.668	1.00 15.45	0
MOTA	4164	CEI	TYR	637	65.563	36.007	81.603	1.00 14.13	0
ATOM	4165	CD2	TYR	637	65.163	38.390	80.273	1.00 14.83	0
ATOM	4166	CE2	TYR	637	66.163	38.292	81.200	1.00 13.98	0
ATOM	4167	CZ	TYR	637	66.363	37.101	81.863	1.00 14.88 1.00 13.10	0
ATOM	4168	OH	TYR	637	67.379	37.015 39.056	82.784 80.411	1.00 2.00	ő
MOTA	4170	C	TYR	637	62.091 62.362	38.920	81.605	1.00 20.03	ŏ
ATOM	4171	0	TYR	637 638	61.919	40.240	79.833	1.00 2.00	Ô
MOTA	4172 4174	N CA	ASP ASP	638	62.086	41.484	80.554	1.00 2.00	0
MOTA MOTA	4175	CB	ASP	638	62.701	42.522	79.614	1.00 57.25	0
MOTA	4176	CG	ASP	638	64.049	42.053	79.046	1.00 66.80	0
MOTA	4177		ASP	638	64.078	41.539	77.905	1.00 65.06	0
ATOM	4178	OD2	ASP	638	65.077	42.175	79.750	1.00 69.12	0
MOTA	4179	С	ASP	638	60.816	41.961	81.245	1.00 2.00 1.00 55.83	ő
MOTA	4180	0	ASP	638	60.884 59.656	42.531 41.724	82.331 80.644	1.00 2.00	Ö
ATOM	4181	N	GLU	639 639	58.405	42.074	81.317	1.00 2.00	Ō
MOTA	4183	CA	GLU GLU	63 9	57.210	41.774	80.419	1.00 64.74	0
MOTA MOTA	4184 4185	CB CG	GLU	639	57.051	42.726	79.261	1.00 71.70	0
ATOM	4186	CD	GLU	639	55.900	42.349	78. 35 5	1.00 66.55	0
ATOM	4187		GLU	639	54.748	42.718	78.667	1.00 65.31	0
MOTA	4188	OE2	GLU	639	56.152	41.684		1.00 72.66 1.00 2.00	0
MOTA	4189	С	GLU	639	58.372	41.145	82.547	1.00 2.00 1.00 65.95	ŏ
MOTA	4190	0	GLU	639	58. 0 09 58. 78 7	41.550 39.895	83.654 82.314	1.00 15.74	ő
MOTA	4191	N	CYS	640	58.787	38.843	83.323	1.00 15.74	Ō
MOTA	4193	CA	CYS	640 640	59.187	37.504	82.684	1.00 4.35	0
MOTA	4194	CB SG	CYS CYS	640	57.734	36.587	82.208	1.00 13.44	0
MOTA	4195 4196	C	CYS	640	59.859	39.081	84.426	1.00 15.74	0
MOTA MOTA	4197	0	CYS	640	59.590	38.723	85.564	1.00 11.73	0
MOTA	4198	N	LYS	641	61.028	39.631	84.110	1.00 2.00	0
ATOM	4200	CA	LYS	641	62.009	39.890	85.153	1.00 2.00	0
ATOM	4201	CB	LYS	641	63.425	39.454	84.721	1.00 32.33	0
ATOM	4202	CG	LYS	641	64.225	40.436	83.869	1.00 32.55 1.00 38.99	0
MOTA	4203	CD	LYS	641	65.735	40.154	83.954		
ATOM				<i>-</i> 4 1	<i>(())))))))))) </i>	40 100		1 . ()() 4 ! 14	U
	4204	CE	LYS	641	66.281	40.198	85.386 86.007	1.00 41.14 1.00 38.23	0
ATOM	4204 4205	NZ	LYS	641	66.228	41.554	86.007	1.00 41.14 1.00 38.23 1.00 2.00	
MOTA MOTA	4204 4205 4209	NZ C	LYS LYS	641 641	66.228 61.950			1.00 38.23	0
ATOM	4204 4205	NZ	LYS	641	66.228	41.554 41.371	86.007 85.568	1.00 38.23 1.00 2.00	0

MOTA	4213	CA	ARG	642	60.502	43.168	86.384	1.00 17.38	0
MOTA	4214	CB	ARG	642	60.341	44.131	85.204	1.00 14.00	ŏ
ATOM	4215	ÇG	ARG	642	61.636	44.613	84.561	1.00 23.15	Ō
ATOM	4216	CD	ARG	642	61.463	46.016	83.940	1.00 25.43	0
ATOM	4217	NE	ARG	642	60.488	46.077	82.846	1.00 33.87	0
ATOM	4219	CZ	ARG	642	60.816	46.208	81.560	1.00 39.9B	0
ATOM	4220		ARG	642	62.097	46.291	81.199	1.00 44.40	0
MOTA	4223		ARG	642	59.867	46.253	80.631	1.00 41.77	0
ATOM	4226	C	ARG	642	59.200	43.098	87.126	1.00 17.38	0
MOTA	4227	0	ARG	642	59.114	43.455	88.288	1.00 26.01	0
ATOM	4228	N	ARG	643	58.180	42.630	86.427	1.00 11.54	0
MOTA	4230	CA	ARG	643	56.869	42.500	87.018	1.00 11.54	0
MOTA	4231	CB	ARG	643	55.804	42.392	85.924	1.00 8.38	0
MOTA	4232	CG	ARG	643	55.526	43.749	85.304	1.00 8.38	0
ATOM	4233	CD	ARG	64 3	54.377	43.745	84.341	1.00 8.38	0
MOTA	4234	NE	ARG	64 3	53.121	43.351	84.949	1.00 8.38	0
ATOM	4236	CZ	ARG	643	51.939	43.569	84.390	1.00 8.38	0
MOTA	4237	NH1	ARG	643	51.869	44.187	83.218	1.00 B.38	0
MOTA	4240	NH2	ARG	64 3	50.825	43.157	84.985	1.00 8.38	0
ATOM	4243	С	ARG	643	56.841	41.304	87.939	1.00 11.54	0
MOTA	4244	0	ARG	643	56.156	41.309	88.969	1.00 8.38	0
MOTA	4245	N	TYR	644	57.606	40.285	87.565	1.00 2.00	0
MOTA	4247	CA	TYR	644	57.703	39.052	88.333	1.00 2.00	0
MOTA	4248	CB	TYR	644	56.784	37.972	87.741	1.00 14.67	0
MOTA	4249	CG	TYR	644	55.338	38.378	87.740	1.00 14.67	0
ATOM	4250	CD1	TYR	644	54.695	38.723	86.554	1.00 14.67	0
ATOM	4251	CE1		644	53.359	39.140	86.548	1.00 14.67	0
ATOM	4252	CD2		644	54.617	38.453	88.922	1.00 14.67 1.00 14.67	0
MOTA	4253	CE2	TYR	644	53.289	38.866	88.929		0
MOTA	4254	CZ	TYR	644	52.665	39.209	87.739	1.00 14.67 1.00 14.67	0
MOTA	4255	ОН	TYR	644	51.349	39.629	87.741 88.330	1.00 14.07	Ö
atom	4257	Ç	TYR	644	59.160	38.598	88.575	1.00 2.00	ŏ
ATOM	4258	0	TYR	644	60.062	39.412	88.028	1.00 2.00	ŏ
ATOM	4259	N	asn	645	59.399	37.321	88.021	1.00 2.00	ŏ
ATOM	4261	CA	ASN	645	60.753	36.794	89.379	1.00 16.19	ŏ
ATOM	4262	CB	asn	645	61.103 60.081	36.147 35.097	89.846	1.00 16.19	ŏ
ATOM	4263	CG	asn	645	59.466	34.378	89.054	1.00 16.19	ŏ
ATOM	4264		ASN	645	59.916	35.009	91.150	1.00 16.19	ŏ
ATOM	4265	-	ASN	645	61.051	35.809	86.927	1.00 2.00	ō
ATOM	4268	C	ASN	645 645	60.156	35.217	86.333	1.00 16.19	ō
MOTA	4269	0	ASN ILE	646	62.342	35.648	86.678	1.00 2.00	0
MOTA	4270	N CA	ILE	646	62.856	34.716	85.689	1.00 2.00	0
MOTA	4272 4273	CB	ILE	646	64.390	34.593	85.830	1.00 2.81	0
MOTA	4274	CG2	ILE	646	64.917	33.316	85.196	1.00 2.59	0
ATOM ATOM	4275	CG1	ILE	646	65.054	35.814	85.221	1.00 2.59	0
ATOM	4276	CDI		646	66.492	35.955	85.666	1.00 8.72	0
MOTA	4277	C	ILE	646	62.214	33.339	85.886	1.00 2.00	0
MOTA	4278	õ	ILE	646	61.875	32.675	84.915	1.00 6.42	0
MOTA	4279	N	LYS	647	62.031	32. 91 8	87.137	1.00 2.00	0
MOTA	4281	CA	LYS	647	61.441	31.614	87.411	1.00 2.00	0
MOTA	4282	CB	LYS	647	61.347	31.387	88.920	1.00 79.29	0
ATOM	4283	CG	LYS	647	62.714	31.450	89.594	1.00 84.06	0
ATOM	4284	CD	LYS	647	63.727	30.622	88.804	1.00 88.57	0
MOTA	4285	CE	LYS	647	65.157	31.090	89.028	1.00 86.67	0
MOTA	4286	NZ	LYS	647	66.029	30.668	87.886	1.00 91.44	0
ATOM	4290	C	LYS	647	60.083	31.478	86.738	1.00 2.00	0
MOTA	4291	ŏ	LYS	647	59.751	30.426	86.187	1.00 74.01	0
ATOM		N	LEU	648	59.322	32.563	86.763	1.00 25.02	0
	4292				58.012	32.599	86.136	1.00 23.81	0
ATOM	4294	CA	LEU	64 8	30.012				
MOTA MOTA			LEU LEU	648 648	57.300	33.918	86.460	1.00 2.00	0
	4294	CA			57.300 55.802	33. 91 8 33. 92 9	86.460 86.178	1.00 2.00 1.00 2.00	0
MOTA	4294 4295	CA CB CG CD1	LEU LEU LEU	648	57.300 55.802 5 5. 14 5	33.918 33.929 32.777	86.460 86.178 86.951	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM ATOM	4294 4295 4296	CA CB CG CD1	LEU LEU	648 648 648	57.300 55.802 55.145 55.206	33.918 33.929 32.777 35.262	86.460 86.178 86.951 86.574	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	4294 4295 4296 4297	CA CB CG CD1	LEU LEU LEU	648 648 648 648	57.300 55.802 55.145 55.206 58.245	33.918 33.929 32.777 35.262 32.495	86.460 86.178 86.951 86.574 84.637	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 28.16	0 0 0 0
ATOM ATOM ATOM ATOM	4294 4295 4296 4297 4298	CA CB CG CD1 CD2	LEU LEU LEU	648 648 648 648 648	57.300 55.802 55.145 55.206 58.245 57.562	33.918 33.929 32.777 35.262 32.495 31.751	86.460 86.178 86.951 86.574 84.637 83.934	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 28.16 1.00 2.00	0 0 0 0 0
MOTA MOTA MOTA MOTA	4294 4295 4296 4297 4298 4299	CA CB CG CD1 CD2 C	LEU LEU LEU LEU	648 648 648 648	57.300 55.802 55.145 55.206 58.245	33.918 33.929 32.777 35.262 32.495	86.460 86.178 86.951 86.574 84.637	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 28.16	0 0 0 0

MOTA MOTA	4304 4305	CB CG	TRP TRP	649 649	60.719 61.206	34.161 34.051	82.465 81.081	1.00 11.77 1.00 14.98 1.00 14.05	0 0 0
ATOM	4306	CD2		649	62.393	33.394	80.653	1.00 12.39	Ö
ATOM	4307	CE2	TRP	649	62.460	33.527 32.703	79.246 81.320	1.00 25.06	ŏ
MOTA	4308		TRP	64 9	63. 41 2 60.607	34.546	79.951	1.00 17.81	ō
ATOM	4309	CD1		649	61.356	34.232	78.846	1.00 15.30	0
MOTA	4310	NE1	TRP	6 4 9 6 4 9	63.510	32.995	78.495	1.00 13.58	0
MOTA	4312	CZ2	TRP TRP	649	64.456	32,174	80.576	1.00 15.93	0
MOTA	4313 4314	CZ3 CH2	TRP	649	64.497	32.323	79.175	1.00 16.10	0
MOTA MOTA	4315	C	TRP	649	59.900	31.802	82.292	1.00 40.42	0
ATOM	4316	ō	TRP	649	59.392	31.315	81.285	1.00 12.84 1.00 2.00	0
ATOM	4317	N	LYS	650	60.748	31.138	83.069 82.796	1.00 2.00	Ö
MOTA	4319	CA	LYS	650	61.179 62.257	29.776 29.371	83.795	1.00 19.18	ŏ
MOTA	4320	CB	LYS	650 650	63.420	30.343	83.820	1.00 4.52	0
MOTA	4321	CG	LYS LYS	650	64.541	29.898	84.718	1.00 3.83	0
MOTA	4322 4323	CD	LYS	650	65.148	28.593	84.221	1.00 11.09	0
MOTA	4324	NZ	LYS	650	66.096	27.974	85.202	1.00 11.03	0
ATOM ATOM	4328	C	LYS	650	59.976	28.851	82.892	1.00 2.00	0
ATOM	4329	ŏ	LYS	650	59.926	27.805	82.239	1.00 5.16 1.00 10.53	0
ATOM	4330	N	THR	651	58.997	29.234	83.702 83.838	1.00 10.53 1.00 14.10	0
MOTA	4332	CA	THR	651	57.792	28.422 28.882	85.038	1.00 23.55	ŏ
MOTA	4333	CB	THR	651	56.915 57.613	28.622	86.268	1.00 23.26	õ
MOTA	4334	OG1		651 651	55.582	28.150	85.047	1.00 24.53	0
ATOM	4336 4337	CG2 C	THR THR	651	57.012	28.543	82.539	1.00 14.03	0
ATOM ATOM	4338	Ö	THR	651	56.599	27.534	81.951	1.00 23.01	0
MOTA	4339	Ň	PHE	652	56.837	29.779	82.082	1.00 2.00	0
MOTA	4341	CA	PHE	652	56.127	30.032	80.840 80.440	1.00 2.00 1.00 2.00	ő
MOTA	4342	CB	PHE	652	56.225	31.511 32.320	80.821	1.00 2.00	ŏ
MOTA	4343	CG	PHE	652	55.027 55.164	33.486	81.536	1.00 2.00	Ŏ
MOTA	4344		PHE	652 652	53.753	31.919	80.459	1.00 2.00	0
ATOM	4345	CD2 CE1		652	54.039	34.245	81.884	1.00 2.00	0
MOTA	4346 4347	CE2		652	52.630	32.678	80.808	1.00 2.00	0
MOTA MOTA	4348	CZ	PHE	652	52.775	33.832	81.515	1.00 2.00	0
MOTA	4349	Ċ	PHE	652	56.717	29.160	79.743	1.00 2.00 1.00 2.00	0
ATOM	4350	0	PHE	652	55.981	28.456	79.067 79.608	1.00 2.00	Ö
MOTA	4351	N	THR	653	58.039.	29.143 28.344	78.552	1.00 2.00	ŏ
MOTA	4353	CA	THR	653	58.631 60.126	28.538	78.429	1.00 2.14	0
MOTA	4354	CB	THR THR	653 653	60.804	27.592	79,255	1.00 2.14	0
MOTA	4355 4357	CG2		653	60.499	29.945	78.787	1.00 2.14	Õ
MOTA MOTA	4358	C	THR	653	58.371	26.846	78.588	1.00 2.00	0
ATOM	4359	ŏ	THR	653	58.452	26.196	77.555	1.00 4.20 1.00 2.00	0
ATOM	4360	N	ASP	654	58.064	26.271	79.743 79.749	1.00 2.00 1.00 2.00	Ö
MOTA	4362	CA	ASP	654	57.803 58.083	24.839 24.225	81.119	1.00 25.83	ō
MOTA	4363	CB	ASP	654 654	58.607	22.794	81.018	1.00 26.00	0
MOTA	4364	CG	ASP ASP	654	59.163	22.420	79.960	1.00 29.22	0
MOTA MOTA	4365 4366		ASP	654	58.472	22.043	82.006	1.00 28.12	0
MOTA	4367	C	ASP	654	56.367	24.603	79.332	1.00 2.00	0
ATOM	4368	O	ASP	654	56.014	23.518	78.874	1.00 18.75 1.00 27.58	Õ
MOTA	4369	N	CYS	655	55.537	25.625 25.546	79.503 79.095	1.00 27.58	ŏ
MOTA	4371	CA	CYS	655	54.146	26.675	79.722	1.00 8.45	0
MOTA	4372	CB	CYS	655	53.333 51.756	26.978	78.901	1.00 8.45	0
MOTA	4373	SG	CYS	655 655	54.162	25.683	77. 5 75	1.00.27.58	0
MOTA	4374 4375	C	CYS	655	53.565	24.863	76.865	1.00 8.45	0
MOTA MOTA	4375	Ŋ	PHE	656	54.871	26.709	77.088	1.00 7.64	0
MOTA	4378	CA	PHE	656	55.018	26.966	75.653	1.00 7.64	0
MOTA	4379	CB	PHE	656	55.967	28.145	75.402	1.00 12.44	0
ATOM	4380	CG	PHE	656	55.384	29.483 29.591	75.747 76.242	1.00 12.44	Ö
MOTA	4381	CD:		656	54.073 56.144	30.641	75.594	1.00 12.44	Ŏ
ATOM	4382	CD:		656 656	53.525	30.840	76.585	1.00 12.44	0
MOTA	4383	CE		656	55.614	31.891	75.929	1.00 12.44	0
MOTA	4384	CE	c FRC	0.50					

ATOM	4385	CZ	PHE	656	54.296	31.990	76.430	1.00 12.44	0
ATOM	4386	C	PHE	656	55.564	25.705	74.961	1.00 7.64	0
MOTA	4387	0	PHE	656	55.033	25.274	73.940	1.00 12.44	0
ATOM	4388	N	ASN	657	56.595	25.099	75.543	1.00 2.00	0
MOTA	4390	CA	ASN	657	57.198	23.896 23.425	75.006 75.892	1.00 2.00 1.00 12.64	0
MOTA MOTA	4391 4392	CB	asn asn	657 657	58.353 59.614	24.233	75.690	1.00 12.64	0
ATOM	4393	CG OD1	ASN	657	59.564	25.404	75.350	1.00 12.64	Ö
ATOM	4394	ND2	ASN	657	60.757	23.607	75.896	1.00 12.64	ő
ATOM	4397	C	ASN	657	56.202	22.772	74.881	1.00 2.00	ō
ATOM	4398	ŏ	ASN	657	56.585	21.668	74.532	1.00 12.64	0
ATOM	4399	N	CYS	658	54.934	23.017	75. 19 6	1.00 2.00	0
MOTA	4401	CA	CYS	658	53.930	21.964	75.080	1.00 2.00	0
ATOM	4402	CB	CYS	658	53.543	21.468	76.475	1.00 10.87	0
ATOM	4403	SG	CYS	658	55.004	20.919	77.397	1.00 10.87	0
MOTA	4404	C	CYS	658 658	52.708 51.726	22.390 21.659	74.258 74.162	1.00 2.00 1.00 10.87	0
MOTA	4405 4406	0	CYS	658 659	52.799	23.560	73.634	1.00 10.07	Ö
MOTA MOTA	4408	N CA	LEU	659	51.739	24.085	72.781	1.00 11.17	ŏ
ATOM	4409	CB	LEU	659	51.998	25.569	72.470	1.00 2.00	ŏ
ATOM	4410	œ	LEU	659	51.757	26.629	73.542	1.00 2.00	ŏ
ATOM	4411		LEU	659	52.286	27.965	73.123	1.00 2.00	0
MOTA	4412	CD2	LEU	659	50.307	26.759	73.767	1.00 2.00	0
MOTA	4413	С	LEU	659	51.651	23.298	71.450	1.00 11.17	0
MOTA	4414	0	LEU	659	52.681	22.845	70.900	1.00 2.00	0
MOTA	4415	N	PRO	660	50.415	23.109	70.931	1.00 14.96	0
MOTA	4416	CD	PRO	660	49.134	23.535	71.523 69.680	1.00 2.00 1.00 14.96	0
MOTA	4417	CA	PRO	660	50.166 48.640	22.398 22.381	69.590	1.00 14.90	ŏ
MOTA	4418 4419	CB	PRO PRO	660 660	48.194	22.472	71.028	1.00 2.00	ŏ
ATOM ATOM	4420	CG	PRO	660	50.796	23.248	68.579	1.00 14.96	ŏ
MOTA	4421	ŏ	PRO	660	50.888	24.474	68.709	1.00 2.00	0
MOTA	4422	Ň	ILE	661	51.195	22.603	67.488	1.00 28.66	0
ATOM	4424	CA	ILE	661	51.880	23.279		1.00 30.55	0
MOTA	4425	CB	ILE	661	53.126	22.480	66.036	1.00 19.83	0
MOTA	4426	CG2	ILE	661	54.064	22.432	67.228	1.00 22.82	0
MOTA	4427	CG1	ILE	661	52.728	21.050	65.669	1.00 24.89 1.00 29.65	0
MOTA	4428	CD1	ILE	661	53.896 51.074	20.161 23.577	65.299 65.132	1.00 29.65 1.00 29.24	Ö
MOTA	4429	C	ILE	661 661	51.428,	24.493	64.372	1.00 20.63	ŏ
MOTA MOTA	4430 4431	N O	ILE	662	50.004	22.810	64.915	1.00 22.79	Ŏ
ATOM	4433	CA	ALA	662	49.112	22.970	63.751	1.00 22.79	0
ATOM	4434	CB	ALA	662	49.652	22.187	62.529	1.00 2.00	0
MOTA	4435	C	ALA	662	47.683	22.507	64.086	1.00 22.79	0
MOTA	4436	0	λΓΥ	662	47.439	21.887	65.139	1.00 2.00	0
MOTA	4437	N	ALA	663	46.739	22.816	63.205	1.00 2.00 1.00 2.00	0
MOTA	4439	CA	ALA	663	45.347	22.438	63.410 64.124	1.00 2.00 1.00 18.31	Ö
MOTA	4440	СВ	ALA ALA	663 663	44.599 44.748	23.535 22.223	62.053	1.00 2.00	ŏ
MOTA MOTA	4441 4442	O C	ALA	663	45.323	22.623	61.041	1.00 22.14	Ó
ATOM	4443	N	ILE	664	43.600	21.565	62.028	1.00 16.69	0
ATOM	4445	CA	ILE	664	42.892	21.300	60.788	1.00 16.69	0
ATOM	4446	CB	ILE	664	43.240	19.885	60.208	1.00 9.81	0
MOTA	4447	CG2	ILE	664	42.396	19.597	58.976	1.00 9.81	0
MOTA	4448		ILE	664	44.724	19.810	59.819	1.00 9.81	0
MOTA	4449		ILE	664	45.161	18.450	59.316	1.00 9.81	0
ATOM	4450	C	ILE	664	41.408	21.397	61.118	1.00 16.69 1.00 9.81	Ö
MOTA	4451	0	ILE	664 665	40.880 40.754	20.603 22.408	61.899 60.561	1.00 14.09	Ö
ATOM ATOM	4452 4454	N CA	VAL VAL	665 665	39.332	22.408	60.777	1.00 14.09	ŏ
MOTA	4455	CB	VAL	665	38.954	24.091	60.742	1.00 2.00	0
ATOM	4456	CG1		665	37.450	24.239	60.710	1.00 2.00	0
ATOM	4457	CG2		665	39.500	24.788	61.950	1.00 2.00	0
MOTA									
ATOM	4458	C	VAL	665	38.509	21.873	59.729	1.00 14.09	0
	4459	С О	VAL	665	38.768	21.9 72	58.524	1.00 2.00	. 0
MOTA	445 9 446 0	N	VAL ASP	665 666	38.768 37.517	21.972 21.137	58.524 60.219	1.00 2.00 1.00 2.00	. 0
	4459	0	VAL	665	38.768	21.9 72	58.524	1.00 2.00	. 0

MOTA	4464	CG	ASP	666	34.545	21.675	60.081	1.00 73.26	0
MOTA	4465	OD1	ASP	666	33.763	20.838	60.578	1.00 71.65	0
ATOM	4466	OD2	ASP	666	34.623 37.234	22.851 19.577	60. 49 3 58.235	1.00 75.52 1.00 2.00	0
MOTA	4467	C	ASP ASP	666 666	36.648	19.467	57.158	1.00 57.66	ŏ
MOTA MOTA	4468 4469	N O	GLU	667	38.439	19.048	58.472	1.00 17.20	ŏ
ATOM	4471	CA	GLU	667	39.203	18.270	57.489	1.00 17.69	ŏ
ATOM	4472	CB	GLU	667	38.455	16.981	57.138	1.00 42.87	0
MOTA	4473	CG	GLU	667	38.170	16.101	58.345	1.00 52.20	0
MOTA	4474	CD	GLU	667	37.457	14.806	57.988	1.00 53.85	0
MOTA	4475	OE1	GLU	6 6 7 6 6 7	36.222 38.139	14.717 13.877	58.211 57.494	1.00 51.15 1.00 55.67	0
MOTA MOTA	4476 4477	OE2 C	GLU	667	39.584	19.015	56.207	1.00 17.24	ŏ
MOTA	4478	Ö	GLU	667	40.146	18.421	55.286	1.00 34.30	ŏ
ATOM	4479	N	LYS	668	39.314	20.319	56.172	1.00 26.53	0
MOTA	4481	CA	LYS	668	39.615	21.133	55.002	1.00 20.22	0
MOTA	4482	CB	LYS	668	38.318	21.709	54.410	1.00 13.48	0
MOTA	4483	CG	LYS	668	37.383 38.119	20.628 19.779	53.859 52.819	1.00 13.48 1.00 13.48	0
MOTA MOTA	4484 4485	CD	LYS LYS	668 668	37.341	18.551	52.398	1.00 16.60	ŏ
ATOM	4486	NZ	LYS	668	38.247	17.564	51.739	1.00 18.66	ŏ
ATOM	4490	Ċ	LYS	668	40.636	22.244	55.240	1.00 19.61	0
MOTA	4491	0	LYS	668	41.676	22.264	54.584	1.00 13.48	0
MOTA	4492	N	ILE	669	40.356	23.166	56.158	1.00 2.00	0
MOTA	4494	CA	ILE ILE	669	41.295 40.617	24.263 25.456	56.424 57.183	1.00 2.00 1.00 2.00	0
MOTA MOTA	4495 4496	CB CG2	ILE	669 669	41.521	26.680	57.166	1.00 2.00	ŏ
ATOM	4497		ILE	669	39.298	25,839	56.518	1.00 2.00	ŏ
MOTA	4498		ILE	669	38.581	26.960	57.189	1.00 2.00	0
MOTA	4499	Ċ	ILE	669	42.439	23.721	57.279	1.00 2.00	0
MOTA	4500	0	ILE	669 .	42.201	23.034	58.269	1.00 2.00	0
MOTA	4501	N	PHE	670	43.673	24.010 23.551	56.892 57.641	1.00 2.00 1.00 2.00	0
MOTA MOTA	4503 4504	CA CB	PHE PHE	670 670	44.841 45.804	22.801	56.718	1.00 2.00	ŏ
ATOM	4505	CG	PHE	670	47.182	22.614	57.291	1.00 2.00	ŏ
ATOM	4506	CD1		670	47.503	21.473	58.007	1.00 2.00	0
MOTA	4507		PHE	670	48.163	23.569	57.093	1.00 2.00	0
MOTA	4508	CE1	PHE	670	48.769	21.288	58.506	1.00 2.00	0
MOTA	4509	CE2	PHE	670	49.436	23.384	57.596	1.00 2.00 1.00 2.00	0
MOTA	4510	CZ	PHE	670 670	49.737 ¹ 45.528	22.241 24.780	58.302 58.190	1.00 2.00 1.00 2.00	Ö
MOTA ATOM	4511 4512	C	PHE PHE	670	45.901	25.652	57.421	1.00 2.00	ŏ
ATOM	4513	N	CYS	671	45.725	24.839	59.501	1.00 2.00	0
MOTA	4515	CA	CYS	671	46.353	25.992	60.120	1.00 2.00	0
MOTA	4516	CB	CYS	671	45.395	26.596	61.136	1.00 14.45	0
MOTA	4517	5G	CYS	671	43.708	26.779 25.701	60.568 60.816	1.00 25.33 1.00 2.00	0
MOTA	4518 4519	0	CYS CYS	671 671	47.685 47.921	24.589	61.310	1.00 8.01	ő
MOTA MOTA	4520	N	CYS	672	48.546	26.714	60.845	1.00 2.00	ŏ
ATOM	4522	CA	CYS	672		26.666	61.515	1.00 2.00	0
ATOM	4523	CB	CYS	67 2	50.826	25.741	60.792	1.00 9.00	0
MOTA	4524	SG	CYS	672	51.494	26.372	59.265	1.00 11.24	0
ATOM	4525	C	CYS	672	50.336	28.122	61.525 60.850	1.00 2.00 1.00 9.00	0
MOTA MOTA	4526 4527	0	CYS HIS	672 673	49.751 51.369	28.963 28.440	62.300	1.00 17.94	Ö
ATOM	4529	N CA	HIS	673	51.855	29.817	62.360	1.00 17.94	ō
ATOM	4530	C	HIS	67 3	52.456	30.359	61.065	1.00 17.94	0
MOTA	4531	0	HIS	673	51.960	31.349	60.514	1.00 2.00	О
MOTA	4532	CB	HIS	67 3	52.894	29.965	63.459	1.00 2.00	0
MOTA	4533	CG	HIS	673	53.283	31.3B3	63.724	1.00 2.00	0
ATOM	4534	ND1		67 3 67 3	52.388 54.503	32.377 31.975	64.033 63.718	1.00 2.00 1.00 2.00	0
ATOM ATOM	4536 4537	CD2 NE2		67 3	54.371	33.330	64.019	1.00 2.00	Õ
ATOM	4538	CEI		67 3	53.072	33.512	64.199	1.00 2.00	ō
ATOM	4539	N	GLY	674	53.545	29.721	60.626	1.00 2.00	0
ATOM	4541	CA	GLY	674	54.260	30.101	59.417	1.00 2.00	0
MOTA	4542	C	GLY	674	53.773	29.407	58.163	1.00 2.00	0
ATOM	4543	O	GLY	674	53.410	30.063	57.203	1.00 11.62	0

MOTA	4544	N	GLY	675	53.759	28.087	58.136	1.00 6.25	0
ATOM	4546	CA	GLY	675	53.286	27.440	56.931	1.00 6.25	ō
ATOM	4547	C	GLY	675	53.823	26,061	56.604	1.00 6.25	Ō
MOTA	4548	0	GLY	675	53.867	25.173	57.452	1.00 28.15	0
MOTA	4549	N	LEU	676	54.241	25.883	55.356	1.00 2.00	0
MOTA	4551	CA	LEU	676	54.723	24.591	54.886	1.00 2.00	0
MOTA	4552	CB	LEU	6 76	54.336	24.409	53.418	1.00 2.00	0
MOTA	4553	CG	LEU	676	52.827	24.625	53.244	1.00 2.00	0
ATOM	4554	CD1	LEU	676	52.412	24.556	51.777	1.00 2.00	0
MOTA	4555	CD2	LEU	676	52.100	23.575	54.075	1.00 2.00	0
MOTA	4556	С	LEU	676	56.207	24.333	55.095	1.00 2.00	0
MOTA	4557	0	LEU	676	56.981	25.248	55.381	1.00 2.00	0
MOTA	4558	N	SER	677	56.582	23.069	54.945	1.00 12.63	0
ATOM	4560	CA	SER	677	57.946	22.617	55.141	1.00 12.63	0
MOTA	4561	CB	SER	677	58.083	21.985	56.539	1.00 2.43	0
MOTA	4562	OG	SER	677	59.248	21.192	56.649	1.00 2.03	0
MOTA	4564	Ċ	SER	677	58.247	21.556	54.095	1.00 12.63	0
ATOM	4565	0	SER	677	57.405	20.684	53.838	1.00 10.72	0
MOTA	4566	N	PRO	678	59.449	21.605	53.484	1.00 2.00	0
MOTA	4567	CD	PRO	678	60.474	22.638	53.681	1.00 15.59	0
MOTA	4568	CA	PRO	678 678	59.887	20.647	52.469	1.00 2.00	0
MOTA	4569	CB	PRO	678	61.329	21.076	52.184 52.416	1.00 15.59 1.00 15.59	0
MOTA	4570	CC	PRO	678	61.299	22.517	53.032	1.00 15.59 1.00 2.00	0
ATOM	4571	C	PRO	678 678	59.859 59.990	19.234 18.269	52.293	1.00 2.00	Ö
MOTA	4572	0	PRO	678 678	59.685	19.112	54.342	1.00 13.33	Ö
MOTA	4573	N	ASP	679 679	59.687	17.813	54.992	1.00 2.00	ŏ
MOTA	4575 4576	CA	ASP ASP	679	60.510	17.926	56.271	1.00 26.28	ŏ
MOTA	4577	CB CG	ASP	679	61.766	18.758	56.073	1.00 24.05	ŏ
MOTA MOTA	4578		ASP	679	62.687	18.269	55.383	1.00 32.92	ŏ
ATOM	4579		ASP	679	61.826	19.902	56.586	1.00 28.53	Ŏ
ATOM	4580	C	ASP	679	58.303	17.278	55.314	1.00 2.00	Ō
ATOM	4581	ŏ	ASP	679	58.129	16.094	55.576	1.00 24.04	Ō
MOTA	4582	N	LEU	680	57.315	18.149	55.279	1.00 2.00	0
ATOM	4584	CA	LEU	680	55.970	17.747	55.622	1.00 2.00	0
ATOM	4585	CB	LEU	680	55.147	19.000	55.916	1.00 4.45	0
MOTA	4586	CG	LEU	680	53.683	18.788	56.262	1.00 2.86	0
ATOM	4587	CD1	LEU	680	53.540	17.791	57.398	1.00 2.86	0
ATOM	4588	CD2	LEU	680	53.085	20.134	56.582	1.00 2.86	0
MOTA	4589	С	LEU	680	55.262	16.862	54.588	1.00 2.00	0
MOTA	4590	0	LEU	680	54.421	17.331	53.814	1.00 15.95	0
ATOM	4591	N	GLN	681	55.588	15.578	54.561	1.00 2.00	0
MOTA	459 3	CA	GLN	681	54.922	14.686	53.611	1.00 2.00	0
MOTA	4594	CB	GLN	681	55.719	13.410	53.385	1.00 36.99	0
MOTA	4595	CG	GLN	681	57.097	13.620	52.863	1.00 36.99	0
MOTA	4596	CD	GLN	681	57.716	12.321	52.468	1.00 36.99	0
MOTA	4597	OE1	GLN	681	57.589	11.894	51.326	1.00 36.99 1.00 36.99	0
MOTA	4598	NE2	GLN	681	58.377	11.663	53.409 54.159	1.00 2.00	Ö
ATOM	4601	Ċ	GLN	681	53.551	14.319		1.00 11.55	ő
ATOM	4602	0	GLN	681	52.547	14.392 13.923	53.445 55.423	1.00 39.00	Ö
MOTA	4603	N	SER	682	53.505 52.238	13.566	56.027	1.00 42.03	Ö
MOTA	4605	CA	SER	682	52.236	12.048	56.224	1.00 2.00	Ō
ATOM	4606	CB	SER	682	53.198	11.507	56.993	1.00 2.00	Ō
MOTA	4607	OG C	SER	682 682	52.003	14.284	57.343	1.00 38.75	0
MOTA MOTA	4609 4610	0	ser Ser	682	52.941	14.742	58.009	1.00 2.00	0
MOTA	4611	N	MET	683	50.730	14.397	57.698	1.00 15.16	0
ATOM	4613	CA	MET	683	50.338	15.029	58.938	1.00 15.16	0
MOTA	4614	CB	MET	683	48.820	15.069	59.044	1.00 11.68	O
ATOM	4615	CG	MET	683	48.099	15.565	57.799	1.00 12.75	0
MOTA	4616	SD	MET	683	48.197	17.328	57.477	1.00 11.68	0
ATOM	4617	CE	MET	683	49.486	17.429	56.200	1.00 12.61	0
ATOM	4618	C	MET	683	50.906	14.131	60.024	1.00 15.16	0
ATOM	4619	Ö	MET	683	51.215	14.585	61.116	1.00 15.01	0
ATOM	4620	N	GLU	684	51.050	12.848	59.705	1.00 40.22	0
ATOM	4622	CA	GLU	684	51.597	11.881	60.644	1.00 41.85	0
ATOM	4623	CB	GLU	684	52.007	10.594	59.937	1.00 63.04	0
ATOM	4624	CG	GLU	684	52. 8 50	9.689	60.823	1.00 72.94	O

ATOM	4715	NH2	ARG	691	50.482	16.273	73.046	1.00 2.00	0
ATOM	4718	С	ARG	691	56.930	18.632	73.458	1.00 64.88	0
MOTA	4719	0	ARG	691	57.176	19.794	73.100 74.693	1.00 2.00	0
MOTA	4720	N	PRO	692	57.265 56.930	18.151 16.947	75.482	1.00 0.89 1.00 19.88	0
MOTA MOTA	4721 4722	CD CA	PRO PRO	692 692	58.060	19.115	75.500	1.00 0.77	Ö
ATOM	4723	CB	PRO	692	58.305	18.357	76.811	1.00 21.87	ŏ
MOTA	4724	CG	PRO	692	5 7.071	17.462	76.911	1.00 19.02	0
ATOM	4725	С	PRO	692	59.327	19.317	74.643	1.00 0.10	0
MOTA	4726	0	PRO	692	60.258	18.502	74.690 73.811	1.00 22.15 1.00 2.00	0
MOTA	4727	N	THR THR	693 693	59.310 60.395	20.362 20.605	72.896	1.00 2.00	0
ATOM ATOM	4729 4730	CA CB	THR	693	60.153	19.842	71.569	1.00 39.91	ŏ
ATOM	4731	OG1		693	61.310	19.947	70.728	1.00 47.46	0
MOTA	4733	CG2	THR	693	58.944	20.419	70.830	1.00 46.31	0
MOTA	4734	C	THR	693	60.567	22.057 22.848	72.560 72.678	1.00 2.00 1.00 41.07	0
MOTA	4735	0	THR	693 694	59.640 61.782	22.399	72.154	1.00 4.51	Ö
ATOM	4736 4738	N CA	ASP ASP	694	62.075	23.747	71.736	1.00 4.51	ŏ
atom atom	4739	СВ	ASP	694	63.429	24.203	72.283	1.00 83.74	0
ATOM	4740	CG	ASP	694	63.337	25.520	73.041	1.00 83.74	0
MOTA	4741		ASP	694	63.231	25.484	74.285	1.00 83.74 1.00 83.74	0
MOTA	4742		ASP	694	63.366 62.101	26.594 23.682	72. 40 0 70.201	1.00 83.74	Ö
MOTA	4743	C	ASP	694 694	62.403	22.632	69.629	1.00 83.74	ŏ
MOTA MOTA	4744 4745	0 N	ASP VAL	695	61.743	24.784	69.546	1.00 31.71	0
ATOM	4747	CA	VAL	695	61.760	24.864	68.087	1.00 37.86	0
MOTA	4748	CB	VAL	695	61.212	26.224	67.623	1.00 72.52	0
ATOM	4749	_	VAL	695	61.120	26.268	66.113 68.253	1.00 68.63 1.00 68.27	0
MOTA	4750	CG2		695	59.863 63.242	26.474 24.744	67.687	1.00 34.22	ŏ
ATOM	4751 4752	0	VAL VAL	695 695	- 64.070	25.548	68.123	1.00 75.22	Ö
MOTA MOTA	4753	N	PRO	696	63.599	23.730	66.873	1.00 2.00	0
ATOM	4754	CD	PRO	696	62.777	22.616	66.373	1.00 5.25	0
ATOM	4755	CA	PRO	.696	64.998	23.549	66.462 \ 65.803	1.00 2.00 1.00 5.25	0
ATOM	4756	CB	PRO	696	64.997 63.76B	22.163 21.486	66.381	1.00 5.25	ŏ
ATOM	4757	CC	PRO PRO	696 696	65.570	24.612	65.536	1.00 2.00	Ö
MOTA MOTA	4758 4759	C O	PRO	696	64.878	25.556	65.137	1.00 5.25	0
ATOM	4760	Ň	ASP	697	66.85Q	24.431	65.214	1.00 34.70	0
MOTA	4762	CA	ASP	697	67.598	25.311	64.321	1.00 35.10 1.00 81.36	Ö
MOTA	4763	CB	ASP	697	69.098 69.630	24.951 24.774	64.376 65.825	1.00 81.80	ŏ
ATOM	4764	CG	ASP ASP	697 697	69.612	23.613	66.347	1.00 0.89	0
MOTA MOTA	4765 4766	OD1 OD2		697	70.075	25.792	66.436	1.00 0.05	0
MOTA	4767	C	ASP	697	67.037	25.099	62.894	1.00 36.63	0
MOTA	4768	0	ASP	697	67.014	26.022 23.877	62.069 62.620	1.00 0.75 1.00 8.48	ő
MOTA	4769	N	GLN	698	66.576 65.997	23.510	61.335	1.00 2.00	0
MOTA MOTA	4771 4772	CA CB	GLN GLN	698 698	67.089	23.346	60.285	1.00 43.65	0
MOTA	4773	CG	GLN	698	68.191	22.376	60.649	1.00 44.93	0
MOTA	4774	CD	GLN	698	69.158	22.169	59.501	1.00 43.25 1.00 45.90	0
MOTA	4775	OE1		698	68.781	22.242 21.911	58.327 59.830	1.00 44.14	ŏ
MOTA	4776	NE2		698	70. 41 1 65.211	22.216	61.482	1.00 2.32	0
ATOM	4779 4780	0	GLN GLN	698 698	65.396	21.486	62.452	1.00 42.62	0
MOTA MOTA	4781	N	GLY	699	64.324	21.939	60.530	1.00 2.00	0
MOTA	4783	CA	GLY	699	63.510	20.728	60.576	1.00 2.00 1.00 2.00	0
MOTA	4784	С	GLY	699	62.046	21.059	60.346 60.013	1.00 2.00 1.00 2.00	Ö
MOTA	4785	0	GLY	699	61.726 61.153	22.204 20.090	60.545	1.00 2.00	ŏ
MOTA	4786	N	LEU	70 0 70 0	59.700	20.297	60.352	1.00 2.00	0
MOTA MOTA	4788 4789	CA CB	LEU	700	58.941	18.962	60.555	1.00 4.64	0
MOTA	4790	CG	LEU	700	57.436	18.836	60.273	1.00 8.84	0
MOTA	4791		LEU	70 0	57.219	18.881	58.793 60.803	1.00 8.28 1.00 5.23	0
MOTA	4700	CD.	1 121 1	700	56.879	17.536			
	4792		LEU			21 400	61 247	1.00 2.00	С
MOTA MOTA	4792 4793 4794	CD2	LEU	700 700	5 9.08 6 58.365	21.400 22.261	61. 247 60.763	1.00 2.00 1.00 8.77	0

MOTA	4873	CA	PRO	709	55.029	32.078	51.214	1.00 2.00	
MOTA	4874	CB	PRO	709	53.507	32.036	51.283	1.00 2.00	_
ATOM	4875	CG	PRO	709	53.169	32.316	52.728	1.00 2.00	_
ATOM	4876	C	PRO	709	55.475	33.269	50.406	1.00 2.00	
MOTA	4877	0	PRO	709	55.071	34.393	50.712	1.00 2.00	0
ATOM	4878	N	ASP	710	56.306	33.046 34.155	49.393	1.00 2.57	_
MOTA	4880	CA	ASP	710	56.769 58.297	34.155	48.576 48.537	1.00 4.76	0
MOTA	4881	CB	ASP	710 710	58.824	35.631	48.303	1.00 18.70 1.00 26.43	0
ATOM	4882 4883	CG	ASP ASP	710	58.070	36.497	47.793	1.00 26.58	0
MOTA	4884		ASP	710	60.002	35.884	48.635	1.00 30.90	0
MOTA MOTA	4885	C	ASP	710	56.211	34.045	47.168	1.00 5.37	0
MOTA	4886	ŏ	ASP	710	56.454	33.056	46.467	1.00 15.67	ŏ
ATOM	4887	Ň	LYS	711	55.449	35.074	46.789	1.00 10.56	ŏ
ATOM	4889	CA	LYS	711	54.802	35.217	45.480	1.00 16.19	ŏ
ATOM	4890	CB	LYS	711	54.266	36.661	45.368	1.00 35.75	Ó
ATOM	4891	CG	LYS	711	53.743	37.109	44.007	1.00 43.76	0
MOTA	4892	CD	LYS	711	54.843	37.750	43.146	1.00 49.83	0
ATOM	4893	CE	LYS	711	55.459	38.976	43.819	1.00 54.70	0
ATOM	4B94	NZ	LYS	711	56.632	39.514	43.064	1.00 58.93	0
MOTA	4898	С	LYS	711	55.753	34.877	44.331	1.00 16.03	0
ATOM	4899	0	LYS	711	55.459	34.001	43.518	1.00 37.96	0
ATOM	4900	N	ASP	712	56.894	35.560	44.282	1.00 2.00	0
MOTA	4902	CA	ASP	712	57.890	35.330	43.252	1.00 2.00	0
MOTA	4903	CB	ASP	712	58.655	36.629	42.927	1.00 75.12	0
ATOM	4904	CG	ASP	712	59.362	37.231	44.134	1.00 75.41	0
MOTA	4905		ASP	712	58.723	38.013	44.866	1.00 77.74	0
ATOM	4906			712	60.561	36.937	44.341 43.597	1.00 84.37 1.00 2.00	0
MOTA	4907	C	ASP	712	58.863	34.189	43.607	1.00 2.00 1.00 77.12	Ö
MOTA	4908	0	ASP	712	60.083 58.298	34.366 33.016	43.866	1.00 77.12	Ö
MOTA	4909	И	VAL	713 713	59.057	31.811	44.188	1.00 17.74	Ö
MOTA	4911	CA	VAL VAL	713	59.166	31.579	45.727	1.00 2.00	ŏ
MOTA	4912 4913	CB CC1	VAL	713	59.124	30.098		1.00 2.00	ŏ
MOTA MOTA	4914		VAL	713	60.481	32.120	46.224	1.00 2.00	Õ
ATOM	4915	C	VAL	713	58.319	30.653	43.538	1.00 21.93	0
ATOM	4916	Ö	VAL	713	57.092	30.567	43.593	1.00 2.00	0
ATOM	4917	N	LEU	714	59.063	29.766	42.903	1.00 15.32	0
ATOM	4919	CA	LEU	714	58.434	28.642	42.249	1.00 10.30	0
ATOM	4920	CB	LEU	714	59.285°	28.147	41.078	1.00 48.90	0
ATOM	4921	CG	LEU	714	58.662	27.005	40.272	1.00 42.23	0
MOTA	4922	CD1	LEU	714	57.229	27.357	39.909	1.00 43.72	0
MOTA	4923	CD2	LEU	714	59.478	26.753	39.025	1.00 42.86	0
MOTA	4924	С	LEU	714	58.224	27.530	43.235 43.445	1.00 13.23 1.00 44.72	Ö
MOTA	4925	0	TEA	714	57.096	27.099 27.075	43.834	1.00 76.36	Ö
MOTA	4926	N	GLY	715	59.322 59 .26 3	25.995	44.800	1.00 76.36	ŏ
MOTA	4928	CA	GLY	715 715	59.630	26.420	46.206	1.00 76.36	Õ
ATOM	4929	C	GLY	715	58.814	26.974	46.929	1.00 19.62	Ō
MOTA	4930	0	GLY	716	60.875	26.183	46.583	1.00 4.87	0
ATOM	4931 4933	N CA	TRP	716	61.365	26.503	47.918	1.00 4.87	0
MOTA MOTA	4934	CB	TRP	716	61.944	25.241	48.554	1.00 2.00	0
ATOM	4935	CG	TRP	716	60.884	24.317	48.932	1.00 2.00	0
ATOM	4936	CD2		716	59.936	24.529	49.962	1.00 2.00	0
MOTA	4937	CE2		716	59.050	23.439	49.943	1.00 2.00	0
ATOM	4938		TRP	716	59.750	25.541	50.909	1.00 2.00	0
ATOM	4939		TRP	716	60.562	23.134	48.343	1.00 2.00	0
ATOM	4940	NE1	TRP	716	59. 454	22.597	48.940	1.00 2.00	0
ATOM	4942	CZ2	TRP	716	57.994	23.334	50.830	1.00 2.00	0
ATOM	4943	CZ3	TRP	716	58.715	25.438	51.783	1.00 2.00	0
MOTA	4944	CH2		716	57.843	24.343	51.743	1.00 2.00	0
ATOM	4945	C	TRP	716	62.406	27.594	47.954	1.00 4.87 1.00 2.00	0 0
MOTA	4946	0	TRP	716	63.596	27.315	47.871	1.00 2.00	0
ATOM	4947	N	GLY	717	61.968	28.837 29.937	48.067 48.124	1.00 2.00	Ö
MOTA	4949	CA	GLY	717	62.911	30.031	49.414	1.00 2.00	Ö
MOTA	4950	Č	GLY	717	63.725	29.343	50.404	1.00 2.00	ő
MOTA	4951	0	GLY	717	63. 44 3 64.752	30.880	49.387	1.00 4.99	ő
MOTA	4952	11	GLU	718	04./52	50.000			Ü

MOTA	5039	С	THR	726	59.450	29.866	50.382	1.00 34.20	0
ATOM	5040	ŏ	THR	726	60.201	29.208	49.684	1.00 2.00	ō
MOTA	5041	N	PHE	727	58.144	29.685	50.375	1.00 2.00	0
ATOM	5043	CA	PHE	727	57. 55 5	28.712	49.483	1.00 2.00	0
MOTA	5044	CB	PHE	727	56.852	27.612	50.275	1.00 9.97	0
ATOM	5045	CG	PHE	727	55.698	28.096	51.105	1.00 15.33	0
ATOM	5046	CD1	PHE	72 7	54.394	27.922	50.666	1.00 9.89	0
ATOM	5047	CD2	PHE	727	55.916	28.726	52.323	1.00 15.65	0
ATOM	5048	CE1	PHE	727	53.338	28.360	51.418	1.00 11.89	0
MOTA	5049	CE2	PHE	727	54.852	29.171	53.087	1.00 6.87	0
MOTA	5050	CZ	PHE	727	53.563	28.986	52.631	1.00 11.72	0
MOTA	5051	C	PHE	727	56.580	29.398	48.553	1.00 2.00	0
MOTA	5052	0	PHE	727	55.848 56. 5 76	30.312 28.956	48.982 47.289	1.00 18.77 1.00 13.14	0
MOTA	5053	N	GLY	728 728	55.709	29.542	46.277	1.00 13.14	Ö
MOTA	5055	CA	GLY GLY	728 728	54.348	28.894	46.174	1.00 13.69	ŏ
MOTA	5056 5057	C	GLY	728	54.062	27.913	46.862	1.00 2.00	ŏ
MOTA	5058	O N	ALA	7 2 9	53.513	29.436	45.292	1.00 33.39	ŏ
MOTA MOTA	5060	CA	ALA	729	52.161	28.916	45.080	1.00 33.11	ō
ATOM	5061	CB	ALA	729	51.375	29.862	44.200	1.00 16.31	Ō
ATOM	5062	c	ALA	729	52.139	27.507	44.485	1.00 31.34	0
ATOM	5063	ŏ	ALA	729	51.143	26.796	44.600	1.00 16.31	0
ATOM	5064	N	GLU	730	53.221	27.105	43.831	1.00 22.53	0
ATOM	5066	CA	GLU	730	53.284	25.761	43.281	1.00 26.87	0
MOTA	5067	CB	GLU	730	54.622	25.551	42.570	1.00 59.75	0
ATOM	5068	CG	GLU	730	54.893	24.117	42.142	1.00 62.63	0
MOTA	5069	CD	GLU	730	56.138	23.984	41.283	1.00 68.00	0
MOTA	5070	OE1	GLU	730	57.213	23.624	41.822	1.00 74.97	0
MOTA	5071	OE2		730	56.034	24.238	40.063	1.00 67.31	0
MOTA	5072	Ç	GLU	730	53.140	24.781	44.446 44.425	1.00 24.85 1.00 58.27	0
MOTA	5073	0	GLU	730	52.285	23.899 24.989	45.477	1.00 38.27	Ö
MOTA	5074	N	VAL	731	53.958 53.985	24.157	46.679	1.00 19.42	ő
MOTA	5076	CA	VAL	731 731	55.079	24.628	47.645	1.00 19.11	ŏ
MOTA	5077 5078	CB CG1	VAL	731 731	55.159	23.699	48.824	1.00 19.11	ŏ
MOTA	5078 5079	CG2		731	56.412	24.691	46.942	1.00 19.11	0
MOTA MOTA	5080	CGZ	VAL	731	52.659	24.165	47.423	1.00 16.89	0
ATOM	5081	ŏ	VAL	731	52.210	23.128	47.900	1.00 19.11	0
ATOM	5082	N	VAL	732	52.035	25.332	47.525	1.00 15.54	0
ATOM	5084	CA	VAL	732	50.750	25.449	48.209	1.00 15.54	0
ATOM	5085	CB	VAL	732	50.254	26. 89 8	48.240	1.00 20.17	0
MOTA	5086	CG1	VAL	73 2	48.907	26.985	48.962	1.00 20.17	0
ATOM	5087	CG2	VAL	732	51.272	27.764	48.902	1.00 20.17	0
MOTA	5088	С	VAL	732	49.653	24.609	47.554	1.00 15.54	0
MOTA	5089	0	VAL	732	49.011	23.791	48.222	1.00 20.17 1.00 16.29	0
MOTA	5090	N	ALA	73 3	49.437	24.822	46.253 45.501	1.00 16.29	ő
MOTA	5092	CA	ALA	73 3	48.408	24.109 24.717	44.131	1.00 17.33	ŏ
MOTA	5093	CB	ALA	73 3	48.260 48.703	22.618	45.390	1.00 16.29	ŏ
MOTA	5094	C	ALA	73 3	47.776	21.795	45.349	1.00 17.78	ō
MOTA	5095	0	ALA LYS	733 734	49.996	22.287	45.348	1.00 2.00	0
MOTA MOTA	5096 5098	N CA	LYS	734	50.499	20.905	45.259	1.00 2.00	0
ATOM	5099	CB	LYS	734	52.012	20.936	45.015	1.00 23.03	0
ATOM	5100	CG	LYS	734	52.507	20.244	43.759	1.00 25.55	0
ATOM	5101	CD	LYS	734	52.696	21.212	42.594	1.00 35.13	0
ATOM	5102	CE	LYS	734	53.613	20.608	41.521	1.00 40.96	0
MOTA	5103	NZ	LYS	734	55.006	20.311	42.001	1.00 46.09	0
MOTA	5107	С	LYS	734	50.222	20.146	46.578	1.00 2.00	0
MOTA	5108	0	LYS	734	49.995	18.926	46.591	1.00 16.68	0
MOTA	5109	N	PHE	73 5	50.263	20.915	47.670	1.00 36.96	0
MOTA	5111	CA	PHE	735	50.036	20.478	49.047	1.00 33.73	0
MOTA	5112	CB	PHE	735	50.606	21.554	49.991	1.00 8.60 1.00 8.60	0
MOTA	5113	CG	PHE	73 5	50.320	21.323	51.465 52.169	1.00 8.60	0
MOTA	5114	CDI		735	50.955	20.298 22.135	52.142	1.00 8.60	ő
MOTA	5115	CD2	PHE	73 5	49.412	20.086	53.512	1.00 8.60	Ö
ATOM	5116	CE1		735 735	50.690 49.143	21.929	53.483	1.00 8.60	Ö
MOTA	5117	CE2		73 5 735	49.784	20.900	54.168	1.00 8.60	Ö
ATOM	5118	CZ	PHE	, , ,	77.704	20.700			-

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	90134567890234568912345678901234567891233456790123456 11213456789023345689123135133344444567890123456790123456	PHE O PHE O PHE LEU O PHE LEU O PHE LEU O PHE LEU O LEU C LEU	77777777777777777777777777777777777777	48.5451 48.738997445.74867745.593145.745.93145.745.93145.745.93145.446.74746.467.466.74146.746.467.466.74146.746.467.466.74146.746.467.467.467.467.467.467.467.467.4	20.216.181 21.228.21.24.881 22.451.22.451 22.458.22.460 24.8843.20.215.99.818 19.7869.17.7869 17.7869.17.7869 17.012.15.2509.18.3657 17.460.16.315.15.2509.13.66.315.15.2509.13.66.319.13.932.1	51.432 51.045 51.764 52.415 53.388 53.859 54.519 50.818 49.611 51.385 50.607 50.909 50.433 49.622 50.887 49.970 52.149	1.00 34.15 1.00 8.60 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 25.73 1.00 69.97 1.00 68.65 1.00 76.45 1.00 76.45 1.00 76.45 1.00 11.88 1.00 10.83 1.00 10.15 1.00 13.96 1.00 13.96 1.00 16.98 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 16.32 1.00 2.00 1.00 3.85 1.00 16.50 1.00 3.85 1.00 45.58 1.00 45.58 1.00 45.42 1.00 41.93 1.00 2.00 1.00 37.08 1.00 45.58 1.00 45.42 1.00 41.93 1.00 2.00	
MOTA	5195	O ASP	742	42.064	25.698	49.970	1.00 14.77	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5202 5203 5204 5205 5207 5208 5209 5210 5211 5212 5213 5214 5216 5217 5218 5219 5220	CD2 LEU C LEU O LEU N ILE CA ILE CB ILE CG1 ILE CG1 ILE CD1 ILE C ILE O ILE N CYS CA CYS CB CYS CG CYS C CYS	743 7443 7444 7444 7444 7445 745 745 745	43.051 43.919 43.973 44.837 45.916 47.338 48.360 47.637 49.117 45.770 45.830 45.557 45.426 44.204 43.454 46.700 47.093	29.469 26.152 25.091 27.104 27.031 27.214 25.602 28.330 29.423 28.226 29.418 29.301 30.878 29.572 28.667	53.053 53.483 54.088 53.599 54.574 53.968 55.089 52.856 54.788 56.655 57.462 58.363 58.281 59.017	1.00 2.00 1.00 5.78 1.00 2.00 1.00 71.57 1.00 66.70 1.00 17.55 1.00 23.65 1.00 69.12 1.00 21.37	0000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5223 5222 5222 5222 5222 5223 5223 5223	CA ARG CB ARG CC ARG NE ARG CZ ARG NH1 ARG NH2 ARG C ARG O ARG O ALA CB ALA C ALA C ALA C HIS C	746 7466 7446 7446 7446 7447 77448 77448 77448 77448 77448 77448 77448 77448 77448	48.594 49.810 49.860 50.792 52.220 53.222 54.468 48.597 47.739 49.635 49.635 49.635 49.635 49.635 49.635 49.635 51.073 51.073 51.073 51.073 51.073 51.073 51.073 51.073	30.982 30.672 31.394 32.619 32.293 33.184 34.479 32.778 32.439 33.220 34.185 34.268 34.268 34.268 34.658 34.854 35.168 36.462 37.004 34.028 33.916 33.803 33.548	58.837 57.944 56.609 56.617 56.626 56.526 56.738 59.271 58.847 60.149 60.599 60.748 60.939 60.748 60.1429 60.429 61.694 61.526	1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5252 5253 5253 52558 52560 5260 5261 5262 5263 5263 52667 52772 52772 52773 52774 52778 52778 5278 52788 5288 5288	CEI HIS CD2 HIS NE2 HIS N GLN CB GLN CG GLN CD GLN NE2 GLN C VAL C VAL C VAL C C VAL C C VAL C C C VAL C C C C C C C C C C C C C C C C C C C	748 7488 7449 7449 7449 7449 7450 7550 7551 7551 7551 7551 7552	56.493 57.634 53.116 53.556 53.964 55.257 55.586 56.4228 52.556 51.388 52.193 52.1968 54.183 52.0572 52.471 50.343 49.685 48.617 47.570 48.966 48.966 48.820 48.219	33.737 33.500 36.962 38.197 37.940 37.222 36.915	59.527 60.237 59.302 58.677 57.249 57.143 55.720	1.00 2.00 1.00 2.00 1.00 2.00 1.00 27.13 1.00 28.03 1.00 30.37 1.00 30.92 1.00 30.08 1.00 25.39 1.00 6.34 1.00 12.20 1.00 12.20 1.00 12.20 1.00 25.10 1.00 25.10 1.00 25.10 1.00 2.00 1.00 25.10 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000

ATOM 5351 CE1 PRE 758 51.796 31.398 47.858 1.00 11.57 CE1 PRE 758 52.741 32.272 47.347 1.00 10.83 CE1 PRE 758 47.725 32.786 47.636 1.00 2.00 CE1 PRE 758 46.826 32.034 48.042 1.00 13.46 CE1 PRE 758 46.826 32.034 48.042 1.00 17.88 CE1 PRE 758 4
--

MOTA MOTA	5364 5365	CA CB	LYS LYS	760 760	44.699 44.639	32.076 31.068	44.341 43.184	1.00 3.38 1.00 64.10	0
MOTA	5366	CG	LYS	760	45.654	31.316	42.062	1.00 64.10	0
MOTA	5367	CD	LYS	760	45.843	30.068	41.205	1.00 64.10	0
MOTA	5368	CE	LYS	760 760	44.506	29.540	40.699	1.00 64.10	0
MOTA MOTA	5369 5373	NZ C	LYS LYS	760 760	44.621 43.715	28.293 31.659	39.896 45.432	1.00 64.10 1.00 3.38	0
MOTA	5374	0	LYS	760	42.953	30.702	45.256	1.00 64.10	0
ATOM	5375	Ŋ	ARG	761	43.751	32.376	46.557	1.00 16.83	ŏ
ATOM	5377	CA	ARG	761	42.869	32.139	47.721	1.00 16.83	0
MOTA	5378	CB	ARG	761	41.399	32.154	47.274	1.00 38.86	0
MOTA	5379 5380	CG	ARG	761 761	41.012 40.550	33.375 3 4.49 3	46.458 47.334	1.00 38.86 1.00 38.86	0
MOTA MOTA	5381	CD NE	ARG ARG	761	40.635	35.785	46.669	1.00 38.86	ő
ATOM	5383	CZ	ARG	761	39.799	36.793	46.898	1.00 38.86	Ŏ
MOTA	5384	NH1	ARG	761	3 8.79 8	36.642	47.767	1.00 38.86	0
MOTA	5387	NH2		761	39.988	37.963	46.291	1.00 38.86	0
ATOM	5390	c	ARG	761	43.145	30.844	48.508	1.00 16.83	0
ATOM	5391	0	ARG	761 762	42.596 44.021	30.639 30.002	49.585 47.971	1.00 38.86 1.00 24.54	0
MOTA MOTA	5392 5394	N CA	GLN GLN	762	44.359	28.718	48.559	1.00 24.54	Ö
ATOM	5395	CB	GLN	762	45.167	27.908	47.553	1.00 19.81	ŏ
MOTA	5396	ČĞ	GLN	762	44.502	27.794	46.173	1.00 19.81	0
MOTA	5397	CD	GLN	762	45.309	26.959	45.196	1.00 19.81	0
MOTA	5398	OE1	GLN	762	45.111	25.745	45.097	1.00 19.81	0
MOTA	5399	NE2	GLN	762 762	46.230 45.126	27.596 28.856	44.476 49.857	1.00 19.81 1.00 24.54	0
MOTA MOTA	5402 5403	CO	GLN GLN	762 762	45.278	27.893	50.599	1.00 19.81	ŏ
ATOM	5404	N	LEU	763	45.631	30.053	50.119	1.00 2.00	ŏ
ATOM	5406	CA	LEU	763	46.354	3 0.32 6	51.353	1.00 2.00	0
ATOM	5407	CB	LEU	763	47.882	30.319	51.127	1.00 13.68	0
MOTA	5408	CG.	LEU	763	48.847	30.427	52.335 52.066	1.00 13.68 1.00 13.68	0
MOTA	5409 5410		LEU	763 763	50.117 49.200	29.641 31.871	52.633	1.00 13.68	ő
ATOM ATOM	5411	CD2	LEU	763	45.893	31.705	51.809	1.00 2.00	ŏ
ATOM	5412	ŏ	LEU	763	45.654	32.595	50.981	1.00 13.68	0
ATOM	5413	N	VAL	764	45.741	31.869	53.118	1.00 13.21	0
MOTA	5415	CA	VAL	764	45.340	33.140	53.680	1.00 13.65	0
MOTA	5416	CB	VAL	764	43.825 43.452	33.165 32.097	53.953 54.933	1.00 2.00 1.00 2.00	0
MOTA MOTA	5417 5418	CG2	VAL VAL	764 764	43.404	34.521	54.434	1.00 2.00	ŏ
ATOM	5419	C	VAL	764	46.159	33.363	54.955	1.00 18.12	0
MOTA	5420	Ö	VAL	764	46.396	32.437	55.737	1.00 2.00	0
MOTA	5421	N	THR	765	46.646	34.587	55.111	1.00 2.00 1.00 2.00	0
MOTA	5423	CA	THR	765 765	47.453 48.731	34.992 35.660	56.254 55.798	1.00 2.00 1.00 2.00	Ö
MOTA MOTA	5424 5425	CB OG1	THR THR	7 65 765	49.474	34.740	54.991	1.00 2.00	Ö
ATOM	5427	CG2	THR	765	49.542	36.119	56.973	1.00 2.00	0
ATOM	5428	C	THR	765	46.675	36.024	57.030	1.00 2.00	0
ATOM	5429	0	THR	765	46.201		56.454	1.00 2.00	0
ATOM	5430	N	LEU	766	46.549	35.797	58.333 59.205	1.00 5.65 1.00 5.65	0
MOTA	5432	CA	LEU	766 766	45.832 44.848	36.717 35.943	60.059	1.00 2.00	Ö
MOTA MOTA	5433 5434	CB CG	Leu Leu	766	43.964	34.922	59.372	1.00 2.00	0
ATOM	5435		LEU	766	43.703	33.794	60.327	1.00 2.00	0
MOTA	5436		LEU	766	42.672	35.581	58.943	1.00 2.00	0
MOTA	5437	Ċ	LEU	766	46.826	37.382	60.142	1.00 5.65 1.00 2.00	0
MOTA	5438	0	LEU	766 767	47.8 64 46.520	36. 79 0 3 8.60 5	60.47B 60.554	1.00 2.00	ŏ
MOTA MOTA	5439 5441	N CA	PHE PHE	767	47.342	39.320	61.530	1.00 2.00	Ō
MOTA	5442	CB	PHE	767	48.259	40.328	60.864	1.00 2.00	0
MOTA	5443	CG	PHE	7 67	49.494	40.612	61.649	1.00 2.00	0
MOTA	5444	CD1	PHE	767	50.523	39.678	61.695	1.00 2.00	0
MOTA	5445		PHE	767	49.647	41.811 39.935	62.317 62.389	1.00 2.00 1.00 2.00	0
ATOM	5446		PHE PHE	767 767	51.689 50.813	42.078	63.018	1.00 2.00	Ö
ATOM ATOM	5447 5448	CZ	PHE	767	51.838	41.134	63.050	1.00 2.00	Ö
ATOM	5449	C	PHE	767	46.325	40.033	62.418	1.00 2.00	0
		~							

MOTA	5530	0	PHE	776	50.979	50.601	59.346	1.00 9.78 1.00 47.34	0
MOTA	5531	N	ASP	777	50. 7 57 4 9. 42 7	50.720 51.322	61.584 61.532	1.00 47.34	0
MOTA MOTA	5533 5534	CA CB	ASP ASP	77 7 77 7	49.526	52.790	61.071	1.00 36.82	ō
ATOM	5535	œ	ASP	777	50.299	53.677	62.059	1.00 86.03	0
ATOM	5536	OD1		77 7	51.519	53.464	62.246	1.00 85.84	0
MOTA	5537	OD2		777	49.685	54.595	62.644	1.00 85.92 1.00 47.70	0
ATOM	553B	C	ASP	777	48.456 47.458	50.547 51.095	60.632 60.164	1.00 47.70	0
ATOM	5539	0	ASP	777 778	48.756	49.268	60.419	1.00 12.97	ŏ
MOTA	5540 5542	N CA	asn asn	778	47.948	48.373	59.584	1.00 3.97	ŏ
MOTA MOTA	5543	CB	ASN	778	48.760	47.123	59.221	1.00 17.34	0
MOTA	5544	CG	ASN	778	49.081	46.258	60.435	1.00 11.19	0
MOTA	5545	OD1		778	49.928	46.613 45.120	61.275 60. 5 38	1.00 10.18 1.00 7.69	0
MOTA	5546	ND2		778 778	48.404	47.945	60.296	1.00 4.32	ŏ
ATOM	5549	C	asn asn	778 778	46.497	48.227	61.481	1.00 21.92	ō
MOTA	5550 5551	O N	ALA	779	45.783	47.267	59.578	1.00 6.26	0
MOTA MOTA	5553	CA	ALA	779	44.537	46.799	60.168	1.00 6.26	0
ATOM	5554	CB	ALA	779	43.404	46.923	59.174	1.00 78.54	0
ATOM	5555	С	ALA	779	44.727	45.344	60.580 59.988	1.00 6.26 1.00 86.19	0
MOTA	5556	0	ALA	779	45. 5 37 43.998	44.626 44.925	61.606	1.00 2.00	ŏ
MOTA	5557	N	GLY	780 780	44.091	43.560	62.077	1.00 2.00	Ō
MOTA	5559 5560	CA C	GLY GLY	780	42.800	42.848	61.747	1.00 2.00	0
MOTA MOTA	5561	Ö	GLY	780	41.725	43.433	61.869	1.00 21.77	ō
ATOM	5562	N	ALA	781	42.880	41.587	61.345	1.00 2.00 1.00 2.00	0
ATOM	5564	CA	ALA	781	41.670	40.870 40.567	60.984 59.492	1.00 2.00 1.00 14.58	ő
MOTA	5565	CB	ALA	781	41.671 41.474	39.587	61.763	1.00 2.00	ŏ
ATOM	5566	C	ALA ALA	781 781	42.396	39.076	62.398	1.00 14.58	0
ATON ATON	5567 5568	O N	MET	782	40.263	39.061	61.660	1.00 2.00	0
ATOM	5570	CA	MET	782	39.857	37.833	62.319	1.00 2.00	0
ATOM	5571	CB	MET	782	39.037	38.204	63.554	1.00 2.00 1.00 2.00	Ö
ATOM	5572	CG	MET	782	38.736	37.067 37.608	64.502 65.912	1.00 2.00	ŏ
MOTA	5573	SD	MET	782 782	37.743 37.595	39.370	65.621	1.00 2.00	0
ATOM	5574	CE	MET MET	782	39.010	37.029	61.306	1.00 2.00	0
MOTA MOTA	5575 5576	Ö	MET	782	38.090	37.570	60.688	1.00 2.00	0
ATOM	5577	N	MET	783	39.325	35.752	61.116	1.00 2.00 1.00 2.00	0
ATOM	5579	CA	MET	783	38.570	34.955 34.182	60.165 59.209	1.00 2.00 1.00 16.43	ŏ
MOTA	5580	CB	MET	783	39. 48 2 38. 68 8	33.363	58.165	1.00 19.34	0
MOTA	5581	CG	met Met	783 783	39.689	32.337	57.060	1.00 18.69	0
MOTA MOTA	5582 5 58 3	SD CE	MET	783	39.780	30.793	57.975	1.00 21.53	0
MOTA	5584	č	MET	783	37.608	33.976	60.794	1.00 2.00 1.00 10.33	Ö
ATOM	5585	0	MET	783	38.004	33.010 34.221	61.447 60.542	1.00 2.00	Ö
MOTA	5586	N	SER	784 784	36.335 35.276	33.374	61.034	1.00 2.00	0
MOTA	5588	CA	SER SER	784	34.033	34.220	61.308	1.00 16.25	0
MOTA MOTA	55 89 5590	CB OG	SER	784	34.385	35.392	62.020	1.00 16.25	0
MOTA	5592	c	SER	784	34.953	32.301	59.990	1.00 2.00 1.00 19.28	ŏ
MOTA	5593	0	SER	784	34.672	32.611	58.839 60.401	1.00 10.88	ŏ
MOTA	5594	N	VAL	785	35.033 34.706	31.045 29.907	59.557	1.00 16.53	0
MOTA	5596	CA	VAL	785 785	35.649	28.739	59.792	1.00 11.43	0
MOTA	5597	CB CG1	VAL VAL	785	35.183	27.538	58.975	1.00 11.43	0
MOTA MOTA	5598 5599	CG2		785	37.082	29.153	59.477	1.00 11.43 1.00 12.38	0
MOTA	5600	C	VAL	78 5	33.357	29.465	60.083	1.00 12.38	0
ATOM	5601	Ō	VAL	785	33.254	28.998 29.613	59.291	1.00 2.00	Ö
MOTA	5602	N	ASP	786	32.307 31.024	29.013	59.807	1.00 2.00	0
MOTA	5604	CA	ASP	786 786	29.874	30.008	59.171	1.00 24.90	0
MOTA	5605 5606	CB CG	ASP ASP	786	29.403	29.458	57.842	1.00 30.71	0
MOTA MOTA	5607	OD:		786	28.245	29.765	57.474	1.00 33.80	0
MOTA	5608	OD		786	30.165	28.737	57.163 59.656	1.00 32.56 1.00 2.00	0
MOTA	5609	C	ASP	786	30. 86 0 31.677	27.699 27.025	59.031	1.00 23.30	Õ
				786	110//	21.023			
MOTA	5610	0	ASP	150	31.0				

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	134567890133455789023345678912334565555555555555555555555555555555555	CONCEGGO NA CEGGO NA CEGO NA CEGGO NA CEGGO NA CEGO NA CE	GLUUCHRRATHR LEUU LEUU LEUU LEUU LEUU LEUU LEUU LEU	777777788888888888888888889999900000001111122222223333337799779933333333333333	29.847 27.983 27.983 27.384 26.075 29.4616 29.4616 28.310 29.4616 28.310 30.751 30.751 31.946 33.458 33.658 33.31.946 33.658 33.658 34.698 34.883 34.698 34.883 34.698 34.883 34.698 34.883 34.698 34.883 34.698 34.883 34.698 34.883 34.698 36.6165 37.744 36.698 37.744 36.698 37.744 36.698 37.744 36.698 37.744 36.698 37.744	27.195 25.782 25.633 27.3519 28.815 29.819 29.819 20.81	60.268 60.2796 60.2796 60.7473 62.965 62.9954 63.9994 63.9994 63.9994 63.9994 63.9994 63.7755 55.4683 55.776 55.4683 55.7755 55.4683 55.776 56.776 56.776 57	1.00 7.48 1.00 13.41 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 11.86 1.00 56.74 1.00 52.70 1.00 6.46 1.00 10.40 1.00 11.86 1.00 12.46 1.00 1	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5658 5659 5662 5662 5665 5666 5667 5667 5671 5671 5671	CB OG C O N CA CB CCD1 CCD2 CE1 CZ CZ	SER SER SER PHE PHE PHE PHE PHE PHE PHE PHE PHE	792 792 792 792 793 793 793 793 793 793 793 793 793	33.073 32.887 35.539 36.290 35.609 36.617 37.765 38.531 38.055 39.741	36.221 35.867 36.518 35.826 37.842 38.558 39.025 37.913 37.314 37.474 36.295	56.903 58.256 57.303 57.994 57.270 58.039 57.129 56.469 57.002 54.680	1.00 3.41 1.00 2.00 1.00 2.56 1.00 2.00 1.00 38.05 1.00 24.74 1.00 28.08 1.00 26.11 1.00 27.84	0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5675 5677 5678 5679 5680 5680 5685 5685 5689 5690 5691		GLN	794 794 794 794 794 794 794 795 795 795	36.488 35.608 34.294 34.506 34.622 34.575 37.471 38.486 37.498 38.732 39.084 40.115	41.064 40.713 39.954 38.455 37.858 37.838 41.760 41.132 43.045 43.790 44.483 45.589	60.837 62.238 62.289 62.252 61.179 63.425 60.958 61.272 60.658 60.748 59.392 59.608	1.00 63.52 1.00 31.74 1.00 36.03 1.00 39.99 1.00 39.14 1.00 65.96 1.00 37.24 1.00 53.07 1.00 54.05 1.00 26.19 1.00 28.70	000000000000000000000000000000000000000

							0 300	1.00 30.47	0
ATOM	5692	CG1	ILE	795	39.643		8.390		
ATOM	5693	CD1	ILE	795	38.659		7.906	1.00 28.83	0
ATOM	5694	C	ILE	795	38.543		1.817	1.00 53.94	0
		Õ	ILE	795	37.476	45.452 6	1.903	1.00 27.08	0
MOTA	5695			796	39.544	45.008 6	2.674	1.00 30.60	0
MOTA	5696		LEU		39.521		3.686	1.00 34.91	0
MOTA	5698		LEU	796			5.089	1.00 41.88	Ŏ
ATOM	5699	CB	LEU	796	39.839				
MOTA	5700	CG	LEU	796	40.368		5.308	1.00 41.67	0
ATOM	5701		LEU	796	40.976		6.702	1.00 39.26	0
	5702		LEU	796	39.242		5.119	1.00 42.51	0
ATOM			LEU	796	40.637	46.977 6	3.206	1.00 33.78	0
MOTA	5703	C		-	41.649		2.667	1.00 34.59	0
ATOM	5704	0	LEU	796			3.356	1.00 37.84	0
MOTA	5705	N	LYS	797	40.454		2.902	1.00 40.12	Õ
MOTA	5707	CA	LYS	797	41.475			1.00 0.26	ŏ
ATOM	5708	CB	LYS	797	40.805		2.154		
ATOM	5709	CG	LYS	797	39.959		0.932	1.00 0.34	0
	5710	CD	LYS	797	39.456		50.151	1.00 0.65	0
MOTA			LYS	797	39.134	50.875 5	8.662	1.00 0.12	0
MOTA	5711	CE		797	38.852		7.851	1.00 0.70	0
ATOM	5712	NZ	LYS		42.356		4.053	1.00 50.42	0
ATOM	5716	С	LYS	797	42.961		3.985	1.00 0.89	0
MOTA	5717	0	LYS	797		33,628 13	1 460	1.00 75.56	0
ATOM	5718	N	ALA	400	-8.399	33.020 13	1.407		Ö
MOTA	5720	CA	ALA	400	-6.981	33.565 13	31.818		
	5721	CB	ALA	400	-6.134	33.160 13	30.576	1.00 21.27	0
MOTA	5722	C	ALA	400	-6.530	34.922 13	32.352	1.00 75.56	0
MOTA			ALA	400	-7.350	35.762 13	32.744	1.00 21.27	0
MOTA	5723	0		401	-5.218	35.116 13	32.374	1.00 2.00	0
MOTA	5724	N	ARG		-4.619	36.351 13	32.833	1.00 2.00	0
ATOM	5726	CA	ARG	401	-4.586	36.395 13	34.359	1.00 2.00	0
ATOM	5727	CB	ARG	401		37.360 13	34.956	1.00 2.00	0
ATOM	5728	CG	ARG	401	-5. 63 8		36.471	1.00 2.00	0
ATOM	5729	CD	ARG	401	-5.639			1.00 2.00	Ŏ
ATOM	5730	NE	ARG	401	-6.285		37.058		ŏ
	5732	cz	ARG	401	-5.730	39.260 1	38.022		
MOTA		NH1	ARG	401	-6.338	40.369 13	38.457、	1.00 2.00	0
MOTA	5733	NH2		401	-4.527		38.511	1.00 2.00	0
MOTA	5736			401	-3.216	36.446 13	32.267	1.00 2.00	0
atom	5739	C	ARG		-2.505	35.443 1	32.150	1.00 2.00	0
ATOM	5740	0	ARG	401	-2.822	37.655 1	31.898	1.00 2.00	0
MOTA	5741	N	VAL	402		37.882 1	31.311	1.00 2.00	0
ATOM	5743	ÇA	VAL	402	-1.516	39.379 1	31.042	1.00 2.00	0
ATOM	5744	CB	VAL	402	-1.331		30.283	1.00 2.00	0
ATOM	5745	CG1	VAL	402	-0.063			1.00 2.00	0
ATOM	5746	CG2	_	402	-2.503		30.282	1.00 2.00	ŏ
ATOM	5747	c	VAL	402	-0.398		32.223		Ö
	5748	Õ	VAL	402	-0.548		33.444		ŏ
ATOM			SER	403	0.701	36.920 1	31.625	1.00 19.26	
MOTA	5749	N		403	1.882	36.461 1	32.361	1.00 23.92	0
MOTA	5751	CA	SER		1.894	34.942 1	32.528	1.00 22.54	0
MOTA	5752	CB	SER	403	1.503		31.333	1.00 14.30	0
MOLV	5 75 3	OG	SER	403			31.514	1.00 21.44	0
MOTA	575 5	C	SER	403	3.070	37.720 1		1.00 23.72	0
MOTA	5756	0	SER	403	2.890	36.415 1	31 793	1.00 13.47	0
MOTA	5757	N	PHE	404	4.271	36.413 1	31.013	1.00 13.06	0
MOTA	5759	CA	PHE	404	5.439		31.647	1.00 2.00	Ō
ATOM				404	6.101	38.060 1	.JI.04/		0
AION		CB	PHE	44.04				4 00 3 00	
N CVOM	576 0	CB	PHE	404 404	5.228	39.270 1	31.627	1.00 2.00	
MOTA	5760 5761	CG	PHE	404		39.270 1 39.574 1	31.627	1.00 2.00	0
MOTA	5760 5761 5762	CD:	PHE PHE	404 404	4.421	39.270 1 39.574 1	31.627	1.00 2.00 1.00 2.00	0
MOTA MOTA	5760 5761 5762 5763	CD: CD:	PHE PHE PHE	404 404 404	4.421 5.171	39.270 1 39.574 1 40.080 1	31.627	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA	5760 5761 5762 5763 5764	CG CD: CD: CE:	PHE PHE PHE PHE	404 404 404 404	4.421 5.171 3.560	39.270 1 39.574 1 40.080 1 40.668 1	31.627 32.711 30.505 132.677	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA	5760 5761 5762 5763 5764 5765	CG CD: CE: CE:	PHE PHE PHE PHE PHE	404 404 404 404	4.421 5.171 3.560 4.313	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1	.31.627 .32.711 .30.505 .32.677 .30.463	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA	5760 5761 5762 5763 5764	CG CD: CD: CE:	PHE 1 PHE 2 PHE 1 PHE 2 PHE PHE	404 404 404 404 404	4.421 5.171 3.560 4.313 3.507	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1	.31.627 .32.711 .30.505 .32.677 .30.463	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766	CG CD: CE: CE:	PHE PHE PHE PHE PHE	404 404 404 404	4.421 5.171 3.560 4.313 3.507 6.476	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 1	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54	0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766	CG CD: CE: CE: CZ C	PHE 1 PHE 2 PHE 1 PHE 2 PHE PHE	404 404 404 404 404	4.421 5.171 3.560 4.313 3.507 6.476 6.472	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 3 35.735 3 34.720 1	31.627 32.711 30.505 32.677 130.463 131.549 130.791	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54 1.00 2.00	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766 5767	CG CD: CE: CE: CZ C	PHE PHE PHE PHE PHE PHE PHE	404 404 404 404 404 404	4.421 5.171 3.560 4.313 3.507 6.476 6.472 7.341	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 3 35.735 3 34.720 3 35.960 1	31.627 32.711 30.505 32.677 130.463 131.549 130.791 131.489	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766 5767 5768	CG CD: CE: CE: CZ CO N	PHE PHE PHE PHE PHE PHE PHE ALA	404 404 404 404 404 404 404 405	4.421 5.171 3.560 4.313 3.507 6.472 7.341 8.420	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 3 34.720 3 35.960 3	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .30.791 .31.489 .30.802	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766 5766 5768 5769	CG CD: CE: CE: CZ CO N CA	PHE PHE PHE PHE PHE PHE PHE ALA ALA	404 404 404 404 404 404 404 405 405	4.421 5.171 3.560 4.313 3.507 6.476 6.472 7.341	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 3 35.735 3 34.720 3 35.960 3 35.054 3 35.742	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .130.791 .131.489 .129.802	1.00 2.00 1.00 85.03	0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766 5767 5768 5771	CG CD: CE: CE: CZ C O N CA CB	PHE PHE PHE PHE PHE PHE ALA ALA	404 404 404 404 404 404 405 405 405	4.421 5.171 3.560 4.313 3.507 6.472 7.341 8.420 9.762	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 3 34.720 3 35.960 3 35.964 3 35.742 3 33.682	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .30.791 .31.489 .802 .129.414 .129.619	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54 1.00 2.00 1.00 2.00 1.00 2.00 1.00 85.03 1.00 2.00	0 0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5765 5767 5768 5776 5771 5772	CG CD: CE: CE: CZ C O N CA CB	PHE PHE PHE PHE PHE PHE ALA ALA ALA	404 404 404 404 404 404 405 405 405 405	4.421 5.171 3.560 4.313 3.507 6.476 6.472 7.341 8.420 9.762 8.434	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 1 35.960 1 35.960 1 35.742 1 33.682	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .30.791 .31.489 .129.802 .29.414 .29.619 .30.078	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54 1.00 2.00 1.00 2.00 1.00 2.00 1.00 85.03 1.00 85.03	000000000000000000000000000000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5766 5767 5769 5771 5772 5773	CG CD: CE: CE: CZ C O N CA CB	PHE PHE PHE PHE PHE PHE PHE ALA ALA ALA	404 404 404 404 404 404 405 405 405 405	4.421 5.171 3.560 4.313 3.507 6.476 6.472 7.341 8.420 9.762 8.434 8.380	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 1 34.720 1 35.960 1 35.960 1 35.742 1 35.742 1 3682 32.654 1	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .30.791 .31.489 .129.802 .129.414 .129.619 .130.078 .130.078	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 85.03 1.00 85.03 1.00 85.03 1.00 85.03	0000000000000
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5760 5761 5762 5763 5764 5765 5765 5767 5768 5776 5771 5772	CG CD: CE: CZ CO N CA CB CO N	PHE PHE PHE PHE PHE PHE ALA ALA ALA GLY	404 404 404 404 404 404 405 405 405 405	4.421 5.171 3.560 4.313 3.507 6.476 6.472 7.341 8.420 9.762 8.434	39.270 1 39.574 1 40.080 1 40.668 1 41.178 1 41.472 1 35.735 1 34.720 1 35.960 1 35.964 1 35.742 1 33.682 1 32.654 17.226	.31.627 .32.711 .30.505 .32.677 .30.463 .31.549 .30.791 .31.489 .129.802 .29.414 .29.619 .30.078	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 16.54 1.00 2.00 1.00 2.00 1.00 2.00 1.00 85.03 1.00 85.03	000000000000000000000000000000000000000

		_	OT Y	000	31.215	18.274	51.038	1.00 95.94	0
MOTA	5778	Č	GLY	899	30.022	18.368	51.338	1.00 32.75	ō
MOTA	5779	0	GLY ARG	899 900	32.090	19.260	51.193	1.00 42.23	ŏ
MOTA	5780 5782	N CA	ARG	900	31.732	20.569	51.722	1.00 42.23	Ō
MOTA	5783	CB	ARG	900	31.110	20.432	53.110	1.00 22.01	0
MOTA MOTA	5784	ÇG	ARG	900	30.578	21.718	53.694	1.00 22.01	0
ATOM	5785	CD	ARG	900	30.080	21.488	55.120	1.00 22.01	0
ATOM	5786	NE	ARG	900	31.005	20.664	55.909	1.00 22.01	0
ATOM	5788	CZ	ARG	900	31.111	20.691	57.237	1.00 22.01	0
MOTA	5789	NH1		900	30.361	21.512	57.963	1.00 22.01	0
ATOM	5792	NH2		900	31.957	19.865	57.839	1.00 22.01	0
ATOM	5795	С	ARG	900	33.034	21.365	51.774	1.00 42.23	0
MOTA	5796	0	ARG	900	33.795	21.309	52.735	1.00 22.01	0
ATOM	5797	N	ARG	901	33.284	22.091	50.697	1.00 8.39	0
ATOM	5799	CA	ARG	901	34.490	22.880	50.542	1.00 8.39	0
MOTA	5800	CB	ARG	901	34.793	23.036	49.045	1.00 2.00	0
MOTA	5801	CG	ARG	901	34.504	21.810	48.186	1.00 2.00	0
ATOM	5802	CD	ARG	901	34.584	22.175	46.699	1.00 2.00	0
MOTA	5803	NE	ARG	901	34.278	21.012	45.863	1.00 2.00 1.00 2.00	0
MOTA	5805	CZ	ARG	901	35.190	20.195	45.327	1.00 2.00 1.00 2.00	0
ATOM	5806	NH1	ARG	901	36.498 34.791	20.416	45.509 44.649	1.00 2.00	Ö
MOTA	5809	NH2		901	34.327	24.259	51.158	1.00 8.39	Ö
ATOM	5812	C	ARG	901	33.241	24.629	51.607	1.00 2.00	ŏ
ATOM	5813	0	ARG	901 902	35.393	25.005	51.149	1.00 2.00	ŏ
MOTA	5814	N	VAL	902	35.425	26.384	51.650	1.00 2.00	ŏ
MOTA	5816	CA	VAL	902	36.880	26.814	51.869	1.00 12.90	ō
ATOM	5817	CB CG1	VAL	902	37.039	28.332	51.992	1.00 12.90	ŏ
MOTA	5818	CG2	VAL	902	37.492	26.219	53.139	1.00 12.90	Ŏ
ATOM	5819 5820	CGZ	VAL	902	34.782	27.324	50.627	1.00 2.00	Ō
ATOM ATOM	5821	Ö	VAL	902	34.737	27.031	49.435	1.00 12.90	0
MOTA	5822	N	SER	903	34.288	28.438	51.120	1.00 2.00	0
ATOM	5824	CA	SER	903	33.673	29.487	50.271	1.00 2.00	0
ATOM	5825	CB	SER	903	32.173	29.205	50.008	1.00 2.00	0
ATOM	5826	OG	SER	903	31.477	28.917	51.209	1.00 2.00	0
ATOM	5828	c	SER	903	33.871	30.814	50.991	1.00 2.00	0
MOTA	5829	ō	SER	903	34.386	30.866	52.115	1.00 2.00	0
ATOM	5830	N	PHE	904	33.482	31.903	50.376	1.00 2.00	0
MOTA	5832	CA	PHE	904	33.683	33.188	51.034	1.00 2.00	Ō
ATOM	5833	CB	PHE	904	34.894	33.898	50.455	1.00 17.14	0
MOTA	5834	CG	PHE	904	36.184	33.109	50.672	1.00 17.14	0
ATOM	5835		PHE	904	36.511	32.067	49.805	1.00 17.14 1.00 17.14	Ö
ATOM	5836		PHE	904	37.034	33.426	51.738 49.994	1.00 17.14	Ö
ATOM	5837		PHE	904	37.690 38.216	31.343 32.704	51.927	1.00 17.14	Ö
MOTA	5838		PHE	904	38.544	31.662	51.054		Ö
ATOM	5839	CZ	PHE	904	32.491	34.080	50.894	1.00 2.00	ŏ
MOTA	5840	C	PHE	904 904	31.716	33.994	49.926	1.00 17.14	Ö
ATOM	5841	O	PHE ALA	905	32.386	34.912	51.874	1.00 70.83	0
MOTA	5842 5844	N CA	ALA	905		35.857		1.00 69.99	0
MOTA	5845	CB	ALA	905	30.042	35.128	52.370	1.00 2.00	0
ATOM	5846	C	ALA	905	31.646	36.940	52.962	1.00 69.85	0
ATOM ATOM	5847	Õ	ALA	905	30.981	37.068	53.99 3	1.00 2.00	0
ATOM	5848	Ň	ALA	907	37.374	34.312	47.285	1.00 23.39	0
MOTA	5850	CA	ALA	907	36.215	33.651	46.695	1.00 23.39	0
ATOM	5851	CB	ALA	907	35.317	34.681	46.008	1.00 41.64	0
ATOM	5852	Č	ALA	907	36.637	32.568	45.699	1.00 23.39	0
ATOM	5853	ō	ALA	907	3 5.85 0	31.680	45.370	1.00 41.64	0
ATOM	5854	N	ALA	908	37.875	32.643	45.215	1.00 83.90	0
ATOM	5856	CA	ALA	90B	38.378	31.663	44.253	1.00 83.90	0
ATOM	5857	CB	ALA	908	39.439	32.296	43.337	1.00 22.84	0
ATOM	5858	C	ALA	90B	38.961	30.466	44.992	1.00 83.90	0
MOTA	5859	Ō	ALA	908	38.459	30.074	46.046	1.00 22.84	0
MOTA	5860	OW	TAW	1	62.869	37.982	63.341	1.00 20.00	0
MOTA	5863	OW	TAW	103	57.039	39.062	61.228	1.00 20.00	0
ATOM	5 86 6	OW	WAT	101	7.257		118.365	1.00 20.00	0
MOTA	5869	OW	TAW	2	12.341	60.209	123.464	1.00 20.00 1.00 20.00	0
MOTA	5872	OW	TAW	3	10.655	60.748	120.833	1.00 20.00	J

	5875	OW	WAT	104	55. 43 2	36.306	63.901	1.00 20.00	0
ATOM		OM	WAT	102	56.782	40.457	58.333	1.00 20.00	0
MOTA	5878				5.787	57.856	118.686	1.00 20.00	Ō
MOTA	5881	OW	WAT	4		-	63.734	1.00 20.00	ŏ
MOTA	5884	OW	WAT	105	54.382	39.155			
MOTA	5887	OW	WAT	5	8.964	57.595	118.151	1.00 20.00	0
ATOM	5890	OW	WAT	106	38.5 6 5	47.423	74.959	1.00 20.00	0
MOTA	5893	OW	WAT	6	16.086	42.169	105.289	1.00 20.00	0
	5896	OW	WAT	107	31.158	26.414	51.913	1.00 20.00	0
ATOM		OW	WAT	7	-0.781	32.787	131.574	1.00 20.00	0
MOTA	5899			430	4.422	59.061	119.360	1.00 15.61	0
MOTA	5902	MN	MN2		7.458	57.875	117.661	1.00 16.53	ŏ
ATOM	5903	MN	MN2	431		34.500	63.727	1.00 16.67	ŏ
MOTA	5904	MIN	MN2	930	56.038				
MOTA	5905	MN	MN2	931	54.402	37.798	64.756	1.00 15.40	0
ATOM	5906	S	SO4	801	57.551	37.278	64.009	1.00 37.87	0
ATOM	5907	01	SO4	801	57.600	35.852	63.897	1.00 42.46	0
-	5908	02	SO4	801	58.690	37.740	64.722	1.00 42.01	0
ATOM	-		504	801	56.355	37.648	64.705	1.00 45.08	0
MOTA	5909	03		801	57.520	37.854	62.725	1.00 41.40	0
MOTA	5910	04	S04				118.643	1.00 37.87	ō
MOTA	5911	S	S04	800	6.866			1.00 42.46	ŏ
MOTA	5912	01	S04	800	7.710		119.773		
ATOM	5913	02	S04	800	7.044		118.053	1.00 42.01	0
ATOM	5914	03	S04	800	5.496	60.612	119.046	1.00 45.08	0
		04	SO4	800	7.194	59.728	117.703	1.00 41.40	0
MOTA	5915	04	304	550					

20

References for Example 3

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T., W., Cohen,
 P. and Barford, D., (1997) EMBO J. in press.
- 3. Dent, P., MacDougall, L.K., MacKintosh, C., Campbell, D.G. and Cohen, P. (1992) Eur. J. Biochem. 210, 1037-1044.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
- Chen, Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan,
 C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.P., Somlyo,
 A.V. and Haystead, T.A.J. (1994) J. Biol. Chem. 269, 31598-31606.
- 7. Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325.
 - 8. Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269, 30407-30411.
 - 9. Haystead, C.M.M., Gailly, P., Somlyo, A.P. and Somlyo, A.V. and Haystead, T.A.J. (1995) FEBS Lett 377, 123-127.
 - 10. Ikebe, M. and Hartshorne, D.J. (1985) J. Biol. Chem. 260, 13146-13153.
 - 11. Margossian, S.S. and Lowey, S. (1982) Methods Enzymol. 85, 55-71.
 - 12. Hubbard, M.J. and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- 25 13. Laemmli, U.K. (1970) Nature 227, 680-685.
 - 14. Schagger H. and von Jagow, G. (1987) Anal. Biochem 166, 368-379.
 - 15. Bradford, M.M. (1976) Anal. Biochem 72, 248-254.
 - Sasaki, K., Shima, H., Kitagawa, Y., Irino, S., Sugimura, T. and
 Nagao, M. (1990) Jap. J. Cancer Res. 81, 1272-1280.
- Takai, A., Sasaki, K., K., Nagai. H., Mieskes, G., Isobe, M., Isono,

- K. and Yasumoto, T. (1995) Biochem. J. 306, 657-665.
- Gong, M.C., Cohen, P., Kitazawa, T., Ikebe, M., Masuo, M., Somlyo,
 A.P. and Somlyo, A.V. (1992) J. Biol. Chem. 267, 14662-14668.
- 19. Cohen, P., Klumpp, S. and Schelling, D.L. (1989) FEBS Lett 250, 596-600.
 - 20. Pato, M.D. and Kerc, E. (1985) J. Biol. Chem. 260, 12359-12366.
 - 21. Ichikawa, K., Hirano, K., Tanaka, J., Nakano, T. and Hartshorne, D.J. (1996) Biochemistry 35, 6313-6320.
- 22. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) Oncogene 8, 3175-3181.

References (other than those numbered in square brackets or otherwise given in full):

- Aitken, A., Cohen, P. (1982) FEBS. Lett. 147, 54-58.
 Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 126, 235-246.
 - Alessi D.R., McDougall, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem. 210, 1023-1035.
- 20 Alessi, D.R., Street, A.J., Cohen, P. and Cohen, P.T.W. (1993) Eur. J. Biochem. 213, 1055-1066.
 - Barford, D. and Keller, J.C. (1994) J. Mol. Biol. 235, 763-766.

 Barton, G.J., Cohen, P.T.W. and Barford, D. (1994) Eur. J. Biochem. 220, 225-237.
- Brunger, A.T. (1992) X-PLOR: Yale University Press, New Haven, CT.
 Beullens, M., Van Eynde, A., Stalmans, W. and Bollen, M. (1992) J. Biol.
 Chem., 267, 16538-16544.
 Beullens, M., Van Eynde, A., Bollen, M., Stalmans, W. (1993) J. Biol.
- Beullens, M., Stalmans, W., Bollen, M. (1996) Eur. J. Biochem., 239,

Chem., 268, 13172-13177.

183-189.

Chen, Y.H., Chen M.X., Alessi, D.R., Campbell, D.G., Shanahan, C.,

Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett. 356, 51-55.

Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and

Tung, H.Y.L. (1988) Methods Enzymol 159, 390-408.

Cohen, P. (1989) ANN. Rev. Biochem., 58, 453-508.

Cohen, P. (1992) Trends Biochem. Sci., 17, 408-413.

Dent, P., Lavoinne, A., Nakielny, S., Caudwell, F.B., Watt, P. and Cohen, P. (1990) *Nature* 348, 302-307.

Desdouits, F., Cheetham, J.J., Huang, H.B., Jwon, Y.G., de Cruz e Silba, E.F., Denefle, P., Ehrlich, P., Nairn, A.C., Greengard, P., Girault, J.A. (1995) Biochem. Biophys. Res. Comm., 206, 653-658.

Derrick, J.P. and Wigley, D.B. (1992) Nature 359, 752-754.

Doherty, M.J., Moorhead G., Morrice, N., Cohen, P. and Cohen, P.T.W.

15 (1995) FEBS Lett. 375, 294-298.

Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., MacKinnon, R., (1996) Cell 85, 1067-1076.

Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., Elledge, S.J. (1993) Genes and Development, 7, 555-569.

20 Endo, S., Zhou, X., Connor, J., Wang, B., Shnolikar, S. (1996)

Biochemistry, 35, 5220-5228.

Faux, M.C., Scott, J.D. (1996) Trends Biochem, Sci., 21, 312-315.

Francois, J.M., Thompson-Jaeger, S., Skroch, J., Zellenka, U., Spevak, W., Tatchell, K. (1992) *EMBO J.*, 11, 87-89.

Frederick, D.L., Tatchell, K. (1996) Mol Cell Biol. 16, 2922-2931. The REG2 gene.

Furey, W. and Swaminathan, S. (1990) Am. Cryst. Acco. Meeting Summ. 18, 73.

Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T.W. (1995) FEBS Lett.

30 **377**, 295-300.

Hemmings, Jr., Nairn, A.C., Elliot, J.R., Greengard, P. (1990) J. Biol. Chem., 265, 20369-20376.

Hirano, K., Ito, M., Hartshorne, D.J. (1995) J. Biol. Chem., 270, 19786-19790.

5 Hirano, K., Erdodi, F., Patton, J.G. and Hartshorne, D.J. (1996) FEBS Lett. 389, 191-194.

Hubbard, M.J., Cohen, P. (1993) Trends Biochem. Sci., 18, 172-177. Hunter, T. (1995) Cell, 80, 225-236.

Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan,

10 J. (1995) Nature, 376, 745-753.

Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., Fleming, M.A., Caron, P.R., Hsiao, K. and Navia, M.A. (1995) *Cell*, 82, 507-522.

Jagiello, I., Beullens, M., Stalmans, W., Bollen, M. (1995) J. Biol. Chem.,

15 **270**, 17257-17263.

Kissinger C.R., Parge, H.E., Knighton, D.R., Lewis, C.T., Pelletier, L.A., Tempczyk, A., Kalish, V.J., Tucker, K.D., Showalter, R.E., Moomaw, E.W., Gastinel, L.N., Habuka, N., Chen, X., Maldonado, F., Barker, J.E., Bacquet, R. and Villafranca, J.E. (1995) *Nature*, 378, 641-644.

- Kraulis, P. (1991) J. Appl. Cryst., 24, 946-950.
 Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H.,
 Chen, M.X., Cohen, P.T.W. (1996) Eur. J. Biochem., 239, 317-325.
 Knighton D.R., Zheng, J., Ten Eyck, L.F., Xuong, N.H., Taylor, S.S.,
 Sowadski, J.M., (1991) Science, 414-420.
- Kraulis, P.J. (1991) J. Appl. cryst. 24, 946-950.
 Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T. and Hultgren, S.J. (1993) Science, 262, 1234-1241.
 Merrit, E.A., Murphy M.E.P., (1994) Acta. Cryst. D50, 869-873.
 Moorhead, G., MacKintosh, W., Morrice, N., Gallagher, T., MacKintosh, C.
 (1994) FEBS Lett., 356, 46-50.

Moorhead, G., MacKintosh, C., Morrice, N., Cohen, P. (1995) FEBS Lett., 362, 101-105.

Nassar, N., Horn, G., Herrman, C., Scherer, A., McCormick, F. and Wittinghofer, A. (1995) Nature, 375, 554-560.

Navaza, J. (1992). AMoRe: In proceedings of the CCP4 Study Weekend. (Dodson, E.J et al) pp87-91, SERC, Daresbury Laboratory, Warrington, U.K. Nelson, K.K., Holmes, M., Lemmon, S.K. (1996) Mol. Biol. Cell 7, 245-260. Nicholls, A. And Honig, B. (1991) Comput. Chem. 12, 435-445.

Otwinowski, Z. (1993) Denzo. In Data Collection and Processing. (Sawyer,

L., Isaacs, N. and Bailey, S. eds), pp. 56-62, SERC Daresbury Laboratory, Warrington, UK.

Rost, B., Sander, C. (1993) J. Mol. Biol., 232, 584-599.

Rost, B. (1996) Meth. in Enzym. 266, 525-539.

Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988) Biochim.

15 Biophys. Acta 927, 221-231.

Shenolikar, S. (1994) A M Rev. Cell. Biol., 10, 56-86.

Stralfors, P., Hiraga, A. and Cohen, P. (1986) Eur. J. Biochem, 149, 295-303.

Tang, P.M., Bondor, J.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.

20 Tu, J., Carlson, M. (1996) EMBO J., 14, 5939-5946.

Tu, J. Song, W., Carlson, M. (1996) Mol. Cell. Biol. 16, 4199-4206.

Van Eynde, A., Beullens, M., Stalmans, W., Bollen, M. (1994) *Biochem. J.*, 297, 447-449.

Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven, F.,

25 Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.

Wera, S. and Hemmings, B.A. (1995) Biochem. J., 311, 17-29.

Williams, K.R., Hemmings, H.C., LoPresti, M.B., Konigsberg, W.H. and Greengard, P. (1986) J. Biol. Chem. 261, 1890-1903.

Zhou, M.M. et al., Fesik, S.W. (1995) Nature 378, 584-592.

25

References (given as numbers in square brackets, except in Example 3)

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- 2. Bollen, M. and Stalmans, W. (1992) Crit. Rev. Biochem. Mol. Biol. 27, 227-281.
 - Mermoud, J.E., Cohen, P. and Lamond, A.I. (1992) Nuc. Acids, Res.
 20, 5263-5269.
 - 4. Tang, P.M., Bondor, H.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.
- Chen, Y.H., Hansen, L., Chen, M.X., Bjorbaek, C., Vestergaard, H., Hansen, T., Cohen, P.T.W. and Pedersen, O. (1994) Diabetes 43, 1234-1241.
 - 6. Moorhead, G., MacKintosh, C., Morrice, N. and Cohen, P. (1995) *FEBS Lett* 362, 101-105.
- 7. Doherty, M.J., Moorhead, G., Morrice, N., Cohen, P. and Cohen, P.T.W. (1995) FEBS Lett 375, 294-298.
 - 8. Moorhead, G., MacKintosh, R.W., Morrice, N., Gallagher, T. and MacKintosh, C. (1994) FEBS Lett. 356, 46-50.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
 - Chen. Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan,
 C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - 11. Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269-30407-30411.
 - 12. Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.V. and Haystead, T.A.J. (1994) J. Biol. Chem. 269, 31598-31606.
 - 13. Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T., W. (1995) FEBS Lett 377, 295-300.
- 30 14. Ohkura, H. and Yanagida, M. (1991) Cell 64, 149-157.

20

30

- Jagiello, I., Buellens, M., Stalmans, W. and Bollen, M. (1995) J. Biol.
 Chem. 270, 17257-17263.
- Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven,
 F., Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.
- Durphee, T., Becherer, K., Chen, P-L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H. and Elledge, S.J. (1993) Genes and Development 7, 555-569.
- 18. Hirano, K., Ito, M. and Hartshorne, D.J. (1995) J. Biol. Chem. 270, 19786-19790.
 - 19. Cohen, P. (1992) Trends Biochem. Sci. 17, 408-413.
 - Alessi, D.R., Street, A.J., Cohen, P., and Cohen, P.T.W. (1993) Eur.
 J. Biochem 213, 1055-1066.
 - 21. Hubbard, M.J., and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988)

 Biochem. Biophys. Acta 927, 221-231.
 - 23. Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and Tung, H.Y.L. (1988) Methods Enzymol. 159, 390-408.
 - Stewart, A.A., Hemmings, B.A., Cohen, P., Goris, J. and Merlevede,
 W. (1991) Eur. J. Biochem 115, 197-205.
 - Gong, M.C., Fuglsang, A., Alessi, D.R., Kobayashi, S., Cohen, P.,
 Somlyo, A.V. and Somlyo, A.P. (1992) J. Biol. Chem. 267, 21492-21498.
- Alemany, S., Pelech, S. and Brierley, C.H. and Cohen, P. (1986) Eur.
 J. Biochem. 156, 101-110.
 - Stuart, J.S., Frederick, D.L., Varner, C.M. and Tatchell, K. (1994)
 Mol. Cell. Biol. 14, 896-905.
 - 28. Desdouits, F., Cheetham, J.J., Huang, H-B., Kwon, Y.G., da Cruz e Silva, E.F., Denefle, P., Ehrlich, M.E., Nairn, A.C., Greengard, P. and Girault, J.A. (1995) Biochem. Biophys. Res. Commun. 206, 652-

658.

- 29. Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan, J. (1995) *Nature* 376, 745-753.
- 30. Egloff, M-P., Cohen, P.T.W. and Renemer, P. and Barford, D. (1995)

 J. Mol. Biol. 254, 942-959.
 - 31. Gailly, P., Somlyo, A.P. and Somlyo, A. (1996) submitted.
 - 32. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) Oncogene 8, 3175-3181.

CLAIMS

- 1. A method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.
 - 2. A method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.
- A method according to Claim 1 or 2 wherein said regulatory subunit of PP1c is any one of M₁₁₀, G_L, G_M, M-complexes, p53 BP2, sds22,
 NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.
 - 4. A method according to Claim 3 wherein the regulatory subunit of PP1c is any one of M₁₁₀, G_L, G_M, M-complexes or p53BP2.
- 25 5. A method according to Claim 4 wherein the regulatory subunit of PP1c is M_{110} or G_M .
- 6. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or

30

functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit.

- 7. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M₁₁₀ regulatory subunit.
- A method according to Claim 1 wherein the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- A method according to Claim 8 wherein the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence.
- 20 10. A method according to Claim 8 wherein in the consensus peptide sequence Xaa is not Asp or Glu or a large hydrophobic residue.
 - 11. A method according to Claim 8 wherein the PP1c-binding fragment is a fragment of a regulatory subunit comprising the said consensus peptide sequence.
 - A method according to Claim 10 wherein the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

PCT/GB97/00898

- 13. A method according to any one of the preceding claims wherein the compound binds to a PP1c.
- 14. A method according to Claim 1 wherein the compound binds to a regulatory subunit of PP1c.
 - 15. A compound identifiable by the method of any one of Claims 1 to 14.
- 16. A compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63 to 80 of G_M or functional equivalents or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit of PP1c.
- 17. A compound according to Claim 16 consisting of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], or peptide 63 to 80 of G_M or functional equivalents thereof or consisting of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof.
 - 18. A peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 19. A method of identifying a compound which modulates the interaction

5

10

20

30

PCT/GB97/00898

between a PP1c and a regulatory subunit thereof, or binds PP1c or mimics the effect of a regulatory subunit, the method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide.

- 20. A method according to Claim 19 wherein said peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
 - A method according to Claim 20 wherein said peptide consists of 21. residues 63 to 75 of $G_{\rm M}$.
- 22. A method according to Claim 21 wherein the conformation of the said 15 peptide and the conformation of the said portion of PP1c is as defined by reference to the coordinates in Table A.
 - A compound identifiable by the method of any one of Claims 19 to 22. 23.
 - A compound according to any one of Claims 15 to 18 or 23 for use in 24. medicine.
- A pharmaceutical composition comprising a compound according to any 25. one of Claims 15 to 18 or 23 and a pharmaceutically acceptable carrier. 25
 - A method of affecting cellular metabolism or function, the method 26. comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or

PCT/GB97/00898

20

- A method according to Claim 26 wherein any one or more of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- 10 28. A method according to Claim 26 wherein any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- 15 29. A method according to Claim 26 wherein a compound according to any one of Claims 15 to 18 or 23 are administered to the cell.
 - 30. A method according to any one of Claims 26 to 29 wherein the cell is in a mammalian body.
 - 31. A method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 32. Use of peptides derived from targeting subunits of PP1c, functional

5

10

equivalents or portions thereof to affect cellular metabolism.

- 33. A method of treatment of a mammal said method comprising altering levels of peptides derived from a targeting subunit of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.
- 34. A PP1c-regulating subunit that is modified so that it cannot interact with PP1c.
- 35. A PP1c-regulator subunit according to Claim 34 wherein the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe is missing or modified.

Fig. 1

Fig. 2

Fig. 3A

MP:PhP 0-92 0-97

Fig. 3*B*

Fig. 4

0.001 0.01 0.1

1

M₁₁₀ fragment (nM)

10

100

Fig. 5C

Fig. 5D

Fig. 6

Fig. 7A

Fig. 7*B*

Fig. 7*C*

Effect of fragment on $PP1G_L$ and/or PP1M activity

and/or PP1M by fragment Dissociation of-PP1G_L

prevents G_L from suppressing the

G63 🗆 T93

 $\mathbf{g}_{\mathbf{N}}$

Ξ

G63[] N75

dephosphorylation of phosphorylase dephosphorylation of phosphorylase prevents G_L from suppressing the

does not dissociate G_L from PP1G_L displaces M₁₁₀ from PP1M

displaces G_L from PP1G_L

stimulates dephosphorylation of

MLC₂₀ and suppresses

MICHARINI DAN ESHO

MIL NEWS BASE

M₁₁₀

MI BESS A 150

M1 | F38

dephosphorylation of phosphorylase dephosphorylation of phosphorylase dephosphorylation of phosphorylase MLC20 but does not suppress the stimulates dephosphorylation of stimulates dephosphorylation of MLC₂₀ and suppresses

displaces G_L from PP1G_L

no effect on PP1C activity

D39 KKKK KKKU F.309

Fig. 10A

Fig. 10B

Fig. 11A

Fig. 11B

Fig. 11C

Fig. 11E

protein	putative PP1-binding motif	residues
	, , , , , , , , , , , , , , , , , , ,	
GAC1	SPEKNVRFAIE	66-76
PIG2	S S G K S V R F A A H	50-60
GIP2	IRSKSVHFDQA	217-227
YIL045W	QRS KSVHF DRV	193-203
YIL045W	V F V K N I Y F S N A	412-422
REG1	TKNRHIHFNDR	461-471
REG2	PRERHIKFNDN	164-174
SCD5	FKSKKVRFSEH	270-280
GIP1	LSEKFIPFNNL	180-190
GIP1	KKK R CVNF RNK	441-451
SHP1	KVTREITFWKE	232-242

Fig. 12A

RECTIFIED SHEET (RULE 91) ISA/EP

protein	Puc	at	iv	e	PР	1-	bi.	nd	in	g i	mot	if	residue	s
GAC1	s	P	Ε	K	N	v	R	F	A	Ī	Ε		66-76	
PIG2	S	s	G	K	s	v	R	F	A	A	H		50-60	
GIP2	I	R	s	ĸ	s	v	H	F	D	Q	A		217-22	7
YIL045W	Q	R	s	ĸ	s	v	H	F	D	R	v		193-203	3
YIL045W	v	F	V	ĸ	N	I	Y	F	s	N	A		412-422	2
PEG1	Ŧ	K	N	R	H	I	Ħ	F	N	D	R		461-471	•
REG2	P	₽.	Ξ	R	Ħ	I	ĸ	F	N	ם	N		164-174	
SCD5	F	ĸ	s	ĸ	ĸ	ν	R	F	s	E	Ħ		270-280	
GIP1	W	N	L	ጆ	F	I	Þ	F	И	N	L		180-190	
GIP1	K	K	K [R I	<u> </u>	V	N :	F	R	N	K		441-451	

Fig. 12B

Fig. 13A

Fig. 13B

Fig. 14

Fig. 15A

Fig. 15B

Fig. 16

24/34

Rat	MKHADAKQKRWEQLKRNIGBETDLEPPVVKRQKTEVKYDDGAVFLAACSS		Fig.	17
Rat Ch	CDTDEVLKLLERGADI NYANYDGLTALEQACI DDNVDNVKFLVENGANIN : :		- 3.	
Rat	OPDHEGWIPLEARASCGYLDIAEFLIGQGREV GRYNSEGDTPLDIREETA			
Ch Rat	HEELLOWEVEROGVDIEARKEEERIHLRDAR QWLWSGWISDVREAKSGG			
Ch	HEELLQHEVHRQGVDI EAARKEEERINLRDAR QWLHSGEINDVREAKSGG TALEVAAARGTTEVLKLLIQAGTDVNIKDTDG WTPLEAAASWGKEEACRI	200 250		
Ch Ch	TALEVALARGITEVILLIQARIDOWIKDIDGWIPLEALARWGEREACRI	250		
Rat Ch	Lydnlcdmetverygqtafdvadedilgtlee lqkxqmllesexrdkxsp : Lyenlcdmerymrygqtafdvadedilgtlee lqkxqmllesexrekxsp	300		
Rat Ch	LIESTAMMENUOPORTPENKETLIIRPEKNAS RIESLEQEKADEEREGKK :: :	350 350	•	
Rat	DESSCSSEEDEEDDSE SEAETDETEPHASYTH AETASTQAAPAAVTTPTL	400		
Ch Rat	DESSCHEEREDDDSE SEAETDRAKTLA MARTTSTQSASMTAPSV SENGGTPTSPVKKFPTSTTKISPKEZERKDZS PASWRLGLRKTGSTGALA	395 450		
Ch	AGGGGTPTSPLEXPPTSTTXVSPREEZERDES PASWRLGLEKTGSTGALA	445		
Rat Ch	PITASKEAQKEKDTAGVIRSASSPRLSSSLDM KEKERDHKGTRLATVAPT	500 495		
Rat	IPRRLGSTSDIEEKEMRESSMLRTSSSYTRRWEDDLKKMSSIMEGET	548		
Ch Rat	İPÄRLASTSÖİDEREM <u>RDESASSIRSGSSYAR RENEZDYKEN. SLAEGPT</u> YERSCSYGRRODDLISCSYPSTTSTPT YTSAAGLOKSFLSSTSTT	544 552/593)	
C.F	SLHTSTOREGEFGRRQDDLVESHVPSTASTVTSSAGLQXTLPASASTT	592		
RAE Ch	AKTPPGSSPAGTOSST SERLWAEDSTEKENDS APTANTILVAPTVVŠAAA : :	587/643 642	1	
Rat	SSTTÄLTTTÄGTLÄSTSEVRERRRSYLTPVR DEESESQREARSRQARQS	637/693	•	
Ch Rat	. TTTANTTATSGTVÄÄTÄÄYÄÄÄÄÄÄTLTPVÄ DEESESQÄÄÄÄSROAROS RRSTQGVTLTDLQEAEKTIGRSRSTRTREQEN EERDÄERKEKQDKEKQEE	691 687/743	l	
CP.	RESTOGYTLTDLQEARKTIONSRSTRTREQEMERREERERERERERER	741		
Rat	KKESKYSREDETKORTSETTDETTARTRPVST SSSSTPSSSSLSTLGSSL ::: : : : : : KKESK.TKDDDYRGRISHTVEEFTRETRPTST.STSTSSTSSLSTSSL	737/793 789	l	
Rat	YASSQLURPUSLUGITSAISRGLTEDUEREGE EKERHERGEDESQPESIR	787/843	•	
Ch. Rat	sssequerphsuiditsatsrsotkestatoo kketeke. Edksqpksik Erraprekrastovspwtqdsdemeqerqsdt edgsskrdtqtdsvseyd			
CP CP	ZRRAPREKRASTOVSPWTQDSDEWEQEEGSDS EEGTHERETQSDSLEATD	•••		
Rat	###################################	885/941 938		
Ch Rat1/3		935/991		
Ch	LASMENLEAQLEDTHMELTDLELQLERATORO ERPADESLLEMERRYTGR	988		
Rat1/3 Rat2	LERKISTHETELKHLPD <u>LKADHQRL</u> KDTHGA <u>L</u> IRVIST <u>L</u> EK SQYLLGGTKSSRKHI	976/103 951	2	
CP	SQYLLOGKESERKEDI	1004		

RECTIFIED SHEET (RULE 91)
ISA/EP

Fig. 18A

Fig. 18B

B

Fig. 19

Fig. 20

Fig. 21

Fig. 22

31/34

Α

B

Fig. 23

A

Fig. 24A

33/34

В

Fig. 24C

Fig. 25

INTERNATIONAL SEARCH REPORT

int honal	Application No
GB	97/00898

		GB 9	7/00098
A. CLASSI	FIGURE OF SUBJECT MATTER G01N33/573 C12N9/12 C07K14/4	435	
According t	o International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
Minimum d IPC 6	ocumentation as withed (classification system followed by classification GOIN CIZN CO7K	tion symbols)	
Documental	tion searched other than minimum documentation to the extent that	such documents are included in the fields	searched
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Calegory *	Citation of document, with indication, where appropriate, of the r	cievant passages	Relevant to claum No.
A	TRENDS IN BIOCHEMICAL SCIENCE, vol. 18, 1 May 1993, OXFORD UK, pages 172-177, XP002037474 M.J. HUBBARD ET AL.: "On target new mechanism for the regulation protein phosphorylation" cited in the application see the whole document		1-35
Α	JOURNAL OF MOLECULAR BIOLOGY, vol. 254, 1995, NEW YORK NY USA, pages 942-959, XP002037475 M.P. EGLOFF ET AL.: "Crystal stithe catalytic subinit of human prophosphatase 1 and its complex wittingstate." see the whole document	rotein	1-35
X Furt	her documents are listed in the continuation of box C.	Patent family members are listed	in annex.
'A' docume conside 'E' cartier filing of 'L' docume which catabor 'O' docume other n 'P' docume later th	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral discionure, use, exhibition or	"T" later document published after the in or priority date and not in conflict winderstand the principle or invention." "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the difference of particular relevance; the cannot be considered to involve an indocument of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "A" document member of the same patern Date of mailing of the international significant in the second sec	nth the application but heory underlying the claimed invention to be considered to countries to taken alone claimed invention the horizontal processor other such docu-
13	3 August 1997	21-00-1331	
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2230 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni, Fax (+ 31-70) 340-3016	Authorized officer Van Bohemen, C	

Form PCT/ISA/218 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int attend Application No P 97/00898

		3 97/00898
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 27, no. 3, 1992, BOCA RATON FL USA, pages 227-281, XP002037649 M. BOLLEN ET AL.: "The structure and role and regulation of type 1 protein phosphatase." cited in the application see the whole document	1-35
Γ	EMBO JOURNAL, vol. 16, no. 8, 1997, HEIDELBERG FRG, pages 1876-1887, XP002037247 M.P. EGLOFF ET AL.: "Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1." see page 1876, column 2, line 10 - line 49	1-35
:		