Formatif: Probabilités conditionnelles et types d'événements

1. On lance un dé à 12 faces numérotées de 1 à 12. Voici différents événements.

A: obtenir un nombre impair

B: obtenir un multiple de 3

C: obtenir un nombre impair supérieur à 9

D: obtenir un nombre pair

E: obtenir un diviseur de 12

F: obtenir un nombre premier

G: obtenir un nombre composé

Cochez toutes les bonnes réponses : Les paires d'événements suivantes sont...

10	

	mutuellement exclusifs	non mutuellement exclusifs	Complémentaires
A et B		×	
A et D	×		X
B et C	×		
B et E		\times	
F et G	×		

a)

2. Soit le diagramme de Venn ci-dessous. Déterminez les probabilités suivantes.

$$P(A) = \frac{21/54}{54} = \frac{7}{18}$$

b)
$$P(A \cap B) = \frac{5/54}{}$$

c)
$$P(C) = \frac{17/54}{}$$

d)
$$P(A|B) = \frac{5}{6}$$

$$P(C') = \frac{37/54}{}$$

f)
$$P(B \cup C') = \frac{41}{54}$$

g)
$$P(C'|A) = \frac{4}{21} = \frac{2}{3}$$

h)
$$P(\overline{A \cap B \cap C}) = \frac{53}{54}$$

i)
$$P(A \cap (B \cup C)) = \frac{11/54}{}$$

$$j) \quad P((B \cup C)|A) = \frac{1}{21}$$

k)
$$P(C|(A \cap B) =$$

3. Dans chaque cas, hachurez dans un diagramme de Venn la région associée à l'expression donnée.

a) *A* ∩ *B*

b) $A \cap B \cap C$

c) $(A \cap B) \cup C$

d) $A' \cap B'$

4. Une expérience consiste à tirer au hasard une carte dans un jeu de 52 cartes. Voici 4 événements possibles :

A : obtenir une figure

B : obtenir un roi

C : obtenir une carte rouge

D : obtenir une carte de cœur

/ pt par

Calculez: $P(B|A) = \frac{4}{12} = \frac{1}{3}$

b)
$$P(B|(A \cap C) = \frac{2}{6} = \frac{1}{3}$$

c)
$$P((A \cap D)|C) = \frac{3}{26}$$

d)
$$P(D|C) = \frac{13}{26} = \frac{1}{2}$$

e)
$$P((A \cup D) \cap B) = \frac{4}{52} = \frac{1}{13}$$

Valises des passagers

5. Dans un avion, 132 passagers possèdent chacun une valise. Le tableau fournit des renseignements sur certaines d'entre elles. Si on choisit au hasard une valise parmi les valises de tous les passagers, quelle est la probabilité d'obtenir:

Fini Couleur	Uni	À motifs	Total
Noire	48	4	52
Bleue	37	7	44
Autre	20	16	36
Total	105	27	132

- a) une valise bleue sachant qu'elle a des motifs?
- b) une valise unie sachant qu'elle est noire? $\frac{43}{52} = \frac{12}{13}$
- c) une valise noire à motifs ? $\frac{4/(32)}{33}$
- e) une valise qui n'est pas bleue ? $\frac{89}{132} = \frac{2}{3}$
- f) une valise qui n'est pas noire ou qui n'est pas à motifs ? $\frac{123}{132} = \frac{32}{33}$
- g) une valise unie ou à motifs ? ________
- h) une valise noire et bleue ? ______
- 6. Sachant que P(A) = 0.5, P(B) = 0.6 et $P(A \cup B) = 0.9$, calculez :

a)
$$P(A \cap B) = 0.2$$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

 $O_19 = O_1S + O_16 - P(A \cap B)$

b)
$$P(\overline{A}) = 0.5$$

c)
$$P(\overline{A} \cap B) = \bigcirc \square$$

d)
$$P(\overline{A \cup B}) = \bigcirc$$

e)
$$P(\overline{A \cap B}) = 0.8$$

