Worksheet 1: A Bit More Probability

Name: Due September 19, 2022

- 1. (Practice with Principles) Let $\mathcal{X}=\mathbb{R}$ and define $\mathbb{P}_{\mathcal{X}}(S)=\sum_{j=1}^{\infty}\frac{1}{2^{j}}\mathbb{1}_{r_{j}\in S}$ for $S\subset\mathbb{R}$, where $\{r_{j}\}_{j=1}^{\infty}=\mathbb{Q}$ is an enumeration of the rational numbers. Show that $\mathbb{P}_{\mathcal{X}}$ defines a probability measure. (You may want to recall rearrangement.)
- 2. (Function of Random Variable) Let $\mathcal{X}^2 = [0,1]^2$ with independent uniform measure $\mathbb{P}_{\mathcal{X}^2}([a,b] \times [c,d]) = (d-c)(b-a)$ for $a < b, c < d \in [0,1]$. Consider random variable $+: \mathcal{X}^2 \to \mathbb{R}$ defined by $(x_1,x_2) \mapsto x_1 + x_2$ (see fig. 1, here n=2). Express both $\mathbb{P}_{\mathcal{X}^2}(x_1+x_2 \geq t)$ as well as the pdf (you may draw a picture).
- 3. (Loose Concentration) Let $(\mathcal{X} = \{0,1\}, \mathbb{P}_{\mathcal{X}}(\{1\}) = p)$ be Bernoulli p. Show that you may estimate p to precision $\varepsilon > 0$ with probability at least 1δ by taking at least $m \geq \frac{p(1-p)}{\delta \varepsilon^2}$ samples x_1, \ldots, x_m . (Define random variable $s_m : \mathcal{X}^m \to \mathbb{R}$ by $(x_1, \ldots, x_m) \mapsto \frac{1}{m} \sum_{j=1}^m x_j$, the empirical mean, and be sure to define your measure $\mathbb{P}_{\mathcal{X}^m}$.)
- 4. (How fat can tails be?) For probability space $(\mathcal{X} = \mathbb{R}, \mathbb{P}_{\mathcal{X}})$ with mean 0 and unit variance, prove the following tail probability bound

$$\mathbb{P}_{\mathcal{X}}(|x| > k) \le \frac{1}{k^2}.\tag{1}$$

Construct a measure/random variable for which $\mathbb{P}_{\mathcal{X}}(x>t)>\frac{1}{t^p}\cdot\mathbb{1}_{t>1}$ for $p\in(1,2)$, and justify why this bound does not contradict the one in (1).

5. (GLLN) Let $\mathcal{X}=[0,1]$ with uniform measure $\mathbb{P}_{\mathcal{X}}([a,b])=b-a$ for $0\leq a\leq b\leq 1$, and $\mathbb{P}_{\mathcal{X}^m}=\prod_{j=1}^m\mathbb{P}_{\mathcal{X}}$ be independent. Using geometric reasoning from class (again, c.f. fig. 1, here n=m), directly verify this instance of the Law of Large Numbers, namely that

$$\mathbb{P}_{\mathcal{X}^m}\left(\left|\frac{1}{m}\sum_{j=1}^mx_j-\frac{1}{2}\right|>\epsilon\right)\xrightarrow{m\to\infty}0,$$

Figure 1: Geometry of LLN

give a bound on the rate of convergence, and shade in the figure region of probability concentration.

6. (Strong Concentration: Boosting) Let $\mathcal{X}=\{0,1\}$ with $\mathbb{P}_{\mathcal{X}}(\{1\})=1/2+\epsilon$ ("slightly biased coin"), and define random variable $M_m:\mathcal{X}^m\to\mathbb{R}$ by $M_m(x_1,\ldots,x_m):=\mathbb{1}_{S_m\geq 1/2}$, where $S_m:=\frac{1}{m}\sum_{i=1}^m x_i$ denotes the empirical mean. Show that we may guarantee $M_m=1$ with probability at least $1-\delta$ as long as $m>\frac{1}{2\epsilon^2}\log\left(\frac{1}{\delta}\right)$. Don't forget to define your measure. (Notice that dependence on $1/\delta$ is a logarithmic relation, rather than linear as in problem #3; you will use a different concentration inequality in this problem.)

7. (Joint Measures: Conditioning and Marginalization) Consider joint probability space $\mathcal{X} \times \mathcal{Y} = \mathbb{R} \times \{0,1\}$ with measure

$$\mathbb{P}_{\mathcal{X}\times\mathcal{Y}}\big((a,b)\times\{j\}\big)=\alpha_j\cdot\int_a^bf_j(x)dx,$$

where $\alpha_0+\alpha_1=1$, both nonnegative, and $f_j(x)=(p_j-1)x^{-p_j}\mathbb{1}_{x\geq 1}$ with $p_j>1$ (in particular, the support of each f_j is $[1,\infty)$). Express both marginals $\mathbb{P}_{\mathcal{X}}\big((a,b)\big)$ and $\mathbb{P}_{\mathcal{Y}}(y=j)$. For threshold function $\hat{y}_t:\mathcal{X}\to\mathcal{Y}$ defined by $\hat{y}_t(x):=\mathbb{1}_{x\geq t}=\left\{\begin{array}{cc} 1 & \text{if } x\geq t\\ 0 & \text{else,} \end{array}\right.$ express both the true positive rate and precision of \hat{y}_t defined as

$$tpr(t) := \mathbb{P}_{\mathcal{X}|\mathcal{Y}}(\hat{y}_t = 1|y = 1), \text{ and } prec(t) := \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = 1|\hat{y}_t = 1).$$

For $p_0 = 5$, and $p_1 = 2$, find threshold t_o for which $tpr(t_o) = 0.8$ and report what the corresponding $prec(t_o)$ is. Comment on, and interpret, how precision would change if you varied (individually) α_i or p_i .