PHYS 509 - Problem Set 3

Tobias Faehndrich

October 24, 2025

Contents

1	Problem 1: Least Squares Fit of Exponential Decay (1000 Events) 1.1 Solution	2
2	Problem 2: Maximum Likelihood Fit of Exponential Decay (1000 Events) 2.1 Solution	3
3	Problem 3: Fits with Small Sample (30 Events) 3.1 Solution	3
4	Problem 4: Convolution of Exponential with Gaussian 4.1 Solution	3 4
5	Problem 5: ML Fit with Gaussian Smearing 5.1 Solution	4
6	Problem 6: ML Fit with Signal and Background 6.1 Solution	4
7	Problem 7: Gaussian Signal with Flat Background 7.1 Solution	5
	Problem 8: Measuring Gravitational Acceleration	6 7

1 Problem 1: Least Squares Fit of Exponential Decay (1000 Events)

File exp1000.txt contains a simulated list of decay times from an experiment.

- (a) Perform a least squares fit to this distribution for the lifetime τ , to find the best estimate and also its uncertainty. Plot your fit results on your histogram of the data.
- **(b)** Plot a scan of the χ^2 about the minimum over a range that shows at least the $\pm 3\sigma$ region with lines indicating the 1, 2 and 3σ levels on the χ^2 plot. Make a table with the symmetric and asymmetric confidence intervals for 1, 2 and 3σ limits.

Tutor's Hint:

- For least squares fitting of histogram data, use $\chi^2 = \sum_i \frac{(n_i \mu_i)^2}{\sigma_i^2}$ where n_i is the observed count in bin i, and μ_i is the expected count.
- For Poisson statistics (counting), $\sigma_i^2 = n_i$ (variance equals mean).
- The exponential decay PDF is $p(t|\tau) = \frac{1}{\tau}e^{-t/\tau}$ for $t \ge 0$.
- Expected count in bin *i* with edges $[t_{i-1}, t_i]$: $\mu_i = N \int_{t_{i-1}}^{t_i} p(t|\tau) dt = N(e^{-t_{i-1}/\tau} e^{-t_i/\tau})$.
- Minimize χ^2 to find best τ . Uncertainty from $\Delta \chi^2 = 1$ (1 parameter).
- For confidence intervals: $\Delta \chi^2 = 1,4,9$ for 1, 2, 3σ levels.

1.1 Solution

2 Problem 2: Maximum Likelihood Fit of Exponential Decay (1000 Events)

Use the same file as above, but perform a maximum likelihood fit for τ .

- (a) Perform a likelihood fit to this distribution for the lifetime τ , to find the best estimate and also its uncertainty. Plot your fit result on a histogram of the data.
- **(b)** Plot a scan of the likelihood L about the minimum over a range that shows at least the $\pm 3\sigma$ region with lines indicating the 1, 2 and 3σ levels on the plot. Make a table with the symmetric and asymmetric confidence intervals for 1, 2 and 3σ limits.

- For unbinned maximum likelihood, the likelihood function is $L(\tau) = \prod_{i=1}^{N} p(t_i|\tau)$ where t_i are the individual measurements.
- It's easier to work with log-likelihood: $\ln L = \sum_{i=1}^N \ln p(t_i|\tau) = -N \ln \tau \frac{1}{\tau} \sum_{i=1}^N t_i$.
- Maximize $\ln L$ (or minimize $-\ln L$) to find best τ .

- The ML estimator for exponential lifetime: $\hat{\tau} = \bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$ (sample mean).
- Uncertainty from $\Delta(-\ln L) = 0.5$ for 1 parameter (equivalent to $\Delta \chi^2 = 1$).
- For confidence intervals: $\Delta(-\ln L) = 0.5, 2, 4.5$ for 1, 2, 3σ levels.

3 Problem 3: Fits with Small Sample (30 Events)

Do the same fits as above, but with the file exp30.txt, which only has 30 entries.

- (a) Do the least squares fit on this file, with the same plots as above. Explain your histogram binning, how you determined it, and any other special treatment you had to make.
- **(b)** Do the ML fit, again with the same plots as above.

Tutor's Hint:

- With only 30 events, histogram binning becomes critical. Too many bins → empty bins, too few → loss of information.
- Rule of thumb: $N_{\text{bins}} \approx \sqrt{N} \approx 5 6$ bins for N = 30.
- For Poisson statistics with small counts, use $\sigma_i^2 = n_i$ but be careful with empty bins $(n_i = 0)$.
- Some options for handling empty bins: exclude from χ^2 , use $\sigma_i^2 = 1$, or use expected count μ_i .
- ML fit doesn't require binning works directly with unbinned data. Should be more reliable for small samples.
- Compare results: Which method gives tighter uncertainties? Which is more stable?

3.1 Solution

4 Problem 4: Convolution of Exponential with Gaussian

Derive an expression for the **convolution** of an exponential decay with lifetime τ , with a Gaussian resolution function. Assume the Gaussian is centered at 0, with variance σ^2 . You should be able to express this function using an exponential and an erfc function.

- Convolution of two PDFs f(t) and g(t): $(f * g)(t) = \int_{-\infty}^{\infty} f(t')g(t-t')dt'$.
- Exponential: $f(t) = \frac{1}{\tau}e^{-t/\tau}$ for $t \ge 0$, zero otherwise.
- Gaussian: $g(t) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-t^2/(2\sigma^2)}$.

- The convolution integral: $h(t) = \int_0^\infty \frac{1}{\tau} e^{-t'/\tau} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(t-t')^2/(2\sigma^2)} dt'$.
- Trick: Complete the square in the exponent to get a Gaussian integral.
- Result involves $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-u^2} du$ (complementary error function).
- Expected form: $h(t) = \frac{A}{\tau}e^{a+bt} \cdot \operatorname{erfc}(c+dt)$ where you need to find A, a, b, c, d.

5 Problem 5: ML Fit with Gaussian Smearing

Download the file exp_smeared.txt, which contains a set of simulated data from an experiment measuring the lifetime of a particle, but with Gaussian smearing due to detector resolution. Perform a ML fit to the data to extract the lifetime τ and detector resolution σ , along with the full covariance matrix of these estimators. Use the Kolmogorov-Smirnov test to determine the goodness of fit for this model.

Plot your fit result on top of a histogram of your data.

Tutor's Hint:

- The PDF is now the convolution result from Problem 4: $h(t|\tau,\sigma)$.
- Two parameters to fit: τ and σ . Use unbinned ML.
- Log-likelihood: $\ln L(\tau, \sigma) = \sum_{i=1}^{N} \ln h(t_i | \tau, \sigma)$.
- Covariance matrix from inverse Hessian: $V = H^{-1}$ where $H_{jk} = -\frac{\partial^2 \ln L}{\partial \theta_j \partial \theta_k}$.
- Diagonal elements $V_{jj} = \sigma_j^2$ (variances), off-diagonal V_{jk} are covariances.
- Correlation: $\rho_{jk} = V_{jk}/(\sigma_j \sigma_k)$.
- Kolmogorov-Smirnov test: Compare empirical CDF with fitted CDF. $D = \max |F_{\text{data}}(t) F_{\text{fit}}(t)|$.
- KS p-value tells you goodness of fit. p > 0.05 usually means acceptable fit.

5.1 Solution

6 Problem 6: ML Fit with Signal and Background

Download the file exp_smear_bckgnd.txt, which contains data from a signal which is a smeared exponential similar to the one above, but also with a background of random events with uniform probability over the experiment's region of operation, which is from t=-3 to t=10 seconds.

The detector's time resolution is determined elsewhere to be a Gaussian $\mathcal{N}(0,\sigma^2)$ with $\sigma=0.2$ s.

Perform a ML fit to the data to extract the lifetime τ , fraction of the sample that is signal, along with the full covariance matrix of these estimators.

Plot your fit result on a histogram of the data, and also on the same plot show the fitted background and (smeared) signal fits.

Tutor's Hint:

- Combined PDF: $p(t|\tau, f) = f \cdot h(t|\tau, \sigma) + (1 f) \cdot p_{\text{bkg}}(t)$ where f is signal fraction.
- Background PDF: $p_{\text{bkg}}(t) = \frac{1}{13}$ for $t \in [-3, 10]$, zero otherwise (uniform).
- Signal PDF: $h(t|\tau,\sigma)$ from Problem 4, with $\sigma = 0.2$ s (fixed).
- Two parameters: τ and f. Use unbinned ML.
- For plotting: $N_{\text{sig}} = f \cdot N_{\text{total}}$, $N_{\text{bkg}} = (1 f) \cdot N_{\text{total}}$.
- Signal component: $f \cdot h(t|\tau,\sigma) \cdot N_{\text{total}} \cdot \Delta t$ (for histogram).
- Background component: $(1 f) \cdot p_{\text{bkg}}(t) \cdot N_{\text{total}} \cdot \Delta t$.
- Total fit: sum of signal and background components.

6.1 Solution

7 Problem 7: Gaussian Signal with Flat Background

File gauss_bckgnd.txt contains the counts from an experiment with a Gaussian signal of unknown mean and sigma, along with a flat background. There are 50 bins, with edges listed in the file.

- (a) Do a least squares fit on the data for the amplitude, mean, and sigma of the signal (S, μ_0, σ_0) , and the background level μ_B . The **significance** of your signal is defined as S/σ_S , where σ_S^2 is the variance of S returned by your fit.
- **(b)** Plot the histogram of the data along with the total fit result, the signal component and the background.
- (c) Choose the bins that you consider contain the bulk of the signal based upon the fit. How many background events B do you estimate are in this region, and what would you estimate is the statistical uncertainty σ_B on this number. Explain your reasoning.
- (d) Given the number of signal events S you obtained from your fit, what would the uncertainty σ_S on this be if the data were background free? Compare this to what you actually obtained in the fit.
- **(e)** Considering all the bins you chose in your signal region, what is your estimate of the uncertainty on the size of statistical fluctuations in this region, expressed in terms of *S* and *B*? What is your expected signal significance, then, and how does it compare with your fitted value?

- Model for bin counts: $\mu_i = S \cdot g_i(\mu_0, \sigma_0) + \mu_B$ where $g_i = \int_{x_{i-1}}^{x_i} \mathcal{N}(\mu_0, \sigma_0^2) dx$.
- Four parameters: S (total signal events), μ_0 (signal mean), σ_0 (signal width), μ_B (background per bin).
- $\chi^2 = \sum_i \frac{(n_i \mu_i)^2}{n_i}$ where n_i is observed count in bin i.
- Signal significance from fit: S/σ_S where σ_S comes from covariance matrix.
- For signal region (e.g., $[\mu_0 3\sigma_0, \mu_0 + 3\sigma_0]$): count bins in this range.
- Background in region: $B = \mu_B \cdot N_{\text{bins}}$, uncertainty $\sigma_B = \sqrt{\mu_B \cdot N_{\text{bins}}}$ (Poisson).
- If background-free: $\sigma_S = \sqrt{S}$ (Poisson).
- With background: total counts in region N = S + B, so $\sigma_N = \sqrt{N} = \sqrt{S + B}$.
- Signal significance: $\frac{S}{\sqrt{S+B}}$ (approximation when background is known).

8 Problem 8: Measuring Gravitational Acceleration

In an undergraduate lab, students perform an experiment to measure g, by dropping a long clear plastic plate with a dark line marked every 10 cm over a 1 m length. The lines are sensed by a photosensor, and the time t that each passes the sensor is recorded. The clock of the timer starts when the first line is sensed, so there are 11 measurements, starting with t=0 for the line at 0 cm. The plate is held by hand some point above the photosensor before releasing.

The file gmeasure.txt contains the times for the 11 markings, each with an uncertainty of 5 ms.

- (a) What is the equation for the position of the plate z(t), where z = vertical position of the 0 cm line marking wrt the photosensor position? (For uniformity, let's take z increasing the downward direction.)
- **(b)** Since your experimentally measured variable is t, invert this so t is the dependent variable and then fit for g. Plot the data, with errorbars, along with your fit result.
- (c) Instead, treat z as the dependent variable, and fit for g using the original equation you had. You will need to convert the uncertainty on t to an approximate uncertainty on z at each point that will change as your fit parameters change. Plot the data, with errorbars, along with your fit result. Compare with the previous results.

- Free fall from rest at initial position z_0 above sensor: $z(t) = z_0 + \frac{1}{2}gt^2$.
- At t = 0, the 0 cm line is at the sensor, so $z(0) = 0 \Rightarrow z_0 = 0$.
- Actually, the plate was held above and released. When does the 0 cm line reach the sensor?

- More carefully: If released at height h above sensor at t_{release} , then at sensor crossing: $0 = -h + \frac{1}{2}g(t_0)^2$.
- Redefine clock: t=0 when 0 cm line passes sensor. Then for subsequent lines: $z_i=\frac{1}{2}gt_i^2+v_0t_i$ where v_0 is velocity at t=0.
- Simplification: If we take z as position of each line wrt 0 cm line, then $z_i = i \cdot 10$ cm for line i = 0, 1, 2, ..., 10.
- For part (b): $t = \sqrt{\frac{2z}{g}}$ (if starting from rest). Fit t vs z data.
- For part (c): $z = \frac{1}{2}gt^2$. Error propagation: $\sigma_z = \left|\frac{dz}{dt}\right| \sigma_t = gt \cdot \sigma_t$.
- Note: uncertainty on *z* depends on *g* (the parameter you're fitting!). Iterate: fit, recalculate errors, refit.