Leer detenidamente este documento.

1.0 Control y versión de este documento.

Este documento ha sido diseñado para ser un caso de estudio donde los estudiantes puedan aplicar el conocimiento adquirido en el curso de bases de datos en el año 2019. El problema a resolver en este ejercicio, está basado en un proyecto real. Se han omitido los nombres y referencias a entidades, clientes, miembros del equipo de investigación real. Este documento solo pretende ser una herramienta didáctica.

Título	Caso de estudio final del curso de base de datos.					
Descripción	Proyecto de materia con nota	Proyecto de materia con nota equivalente al 20% de la nota final.				
Autor	Erick Varela.	Erick Varela.				
Responsable	Erick Varela.					
Contacto	evarela@uca.edu.sv, varela.dev@gmail.com					
Organización	Universidad Centroamericana José Simeón Cañas.					
Categoría	Documentación didáctica.					
Versión	1.0	Fecha	31 de mayo de 2019.			

Historial de versiones:

Fecha	Versión	Descripción	Autor
31/05/2019	1.0	Versión inicial.	Erick Varela.

2.0 Objetivo.

Que el estudiante:

- A. Ponga en práctica el contenido desarrollado en el curso de bases de datos en el ciclo I de 2019, utilizando como contexto, un extracto adecuado de una situación y problemática real, que al proponer y crear una solución favorece de manera proactiva a la realidad nacional.
- B. Tenga la experiencia de aplicar el conocimiento adquirido en curso de bases de datos a una problemática real.
- C. Comprenda la importancia de la etapa previa al desarrollo de software en un proyecto: en análisis de la problemática a resolver y el diseño de distribución de los datos.

3.0 Definición y contextualización de la problemática a resolver.

La unidad de cuidados intensivos neonatales (UCIN) es un lugar donde médicos altamente capacitados brindan a bebés cuidados durante las 24 horas, en el caso de que haya nacido prematuramente, con un defecto de nacimiento u otra complicación. El proyecto pretende verificar in-situ dos variables globales:

- La condición de operación de la tecnología biomédica, que incluye cunas e incubadoras neonatales, monitores de signos vitales, ventiladores mecánicos, entre otros.
- Las características técnicas del área, incluyendo su flujo hospitalario y en donde se atienden
 a los pacientes con dichas tecnologías, midiendo una serie de parámetros técnicos
 ambientales y eléctricos que pueden incidir en la atención y recuperación del paciente.

El fin del proyecto es verificar el cumplimiento de los estándares internacionales de estas variables en las UCIN tomadas como objetivo.

Su grupo de trabajo ha sido designado para realizar la etapa de análisis y diseño de la solución a implementar.

Para lograr el objetivo se ha definido una lista de parámetros, estándares y variables a verificar, para luego realizar el análisis de los datos. Las variables se listan a continuación:

- 1. Iluminación ambiental
- 2. Ruido
- 3. Temperatura
- 4. Humedad
- 5. Estado de los receptáculos eléctricos.
- 6. Inspección estandarizada de seguridad eléctrica.

Para realizar las inspecciones se han diseñado tres herramientas (**Ver anexos A, B y C**) que funcionan de una manera típica: elementos a papel que se llenan en el lugar, luego, se digitalizan y finalmente se guardan los datos en una plataforma para su posterior análisis. Este proceso tiene dos problemas importantes:

- 1. El proceso de llenado, digitalización y guardado de información es lento.
- 2. El proceso de digitalización de la información aumenta la posibilidad de cometer algún error en los datos.

Por lo que el equipo ha optado por diseñar una aplicación compatible con dispositivos móviles para que las mediciones se puedan registrar de manera digital en el momento y al finalizar la inspección se pueda sincronizar fácilmente con un servidor central.

El desarrollo deberá basarse en el uso del patrón modelo vista controlador (MVC), que es un patrón estructural que permite separar la información, la parte visual de la aplicación y la lógica que gestiona las relaciones y eventos del sistema. Para este proyecto, la capa de enfoque será la capa modelo, que está definida por el administrador de bases de datos y para el caso, se seleccionó como gestor SQL Server utilizando como modelo, el modelo relacional.

3.1 Actividades a realizar por cada miembro del equipo.

 Cada uno de los miembros del equipo de trabajo deberá realizar las actividades que se indican a continuación, sin perjuicio de aquellas que, de acuerdo al avance del trabajo, el director del proyecto (papel desarrollado por el docente) consideren necesarias para el

- logro de los objetivos establecidos en estos términos de referencia y los objetivos de la investigación en general.
- Asistir a reuniones con el equipo de trabajo encargado de la etapa de análisis y diseño de la solución a implementar. Deberá mantener comunicación frecuente con el equipo del proyecto, con el fin de reportar avances al director del proyecto.
- La solución debe incluir la implementación de cada una de las herramientas vistas en el curso de base de datos.

4.0 Productos esperados.

- 1. Diagrama entidad-relación de base de datos. (Nombre del archivo: "1-diagramaER")
- 2. Diagrama relacional de la base de datos. (Nombre: "2-diagramaR")
- 3. Diagrama relacional normalizado de la base de datos. (Nombre: "3-diagramaRN")
- 4. Script de la base de datos, incluyendo tablas y relaciones. (Nombre: "4-script")
- 5. Banco de datos de prueba compatible con la base de datos. (Nombre: "5-datos")
- 6. Script de 4 funciones o procedimientos almacenados (Nombre: "6-tsql")
- 7. Script de 5 vistas (Nombre: "7-vistas")
- 8. Archivo de texto con los integrantes. (Nombre: "8-Integrantes")

4.1 Notas sobre los productos esperados.

Sobre el formato:

- 1. El formato esperado para los productos 1,2,3 debe ser cualquiera de los siguientes: .jpg, .jpeg, .png
- 2. El formato esperado para los productos 4,5,6,7 debe ser: .sql
- 3. El formato esperado para los productos 8 debe ser: .txt

Sobre el diseño y orden:

El diseño gráfico de los diagramas es importante por lo que este aspecto tendrá una ponderación en la nota del producto.

Sobre funciones, procedimientos almacenados y vistas:

Cada función, procedimiento almacenado o vista deberá estar debidamente documentada, describiendo la forma de utilización y descripción del objeto.

Las tareas a realizar por las vistas, funciones o procedimientos almacenados deberán ser decididas por el grupo, la utilidad real de la tarea del elemento será evaluado. No es lo mismo crear una vista que me muestra una tabla a crear una vista que muestro una medición analizada, o no tiene la misma magnitud una función que retorne una fecha a una función que calcule el porcentaje de cumplimiento del estándar de una inspección.

Sobre los scripts:

Los scripts deben ser compatibles con SQL SERVER y entregarse en dos formatos: archivos .sql separados para poder ser.

No respetar el nombre de los archivos o el formato indicado, implica la no evaluación y calificación de estos.

5.0 Plazo y formato de entrega.

- 1. Enviar a <u>evarela@uca.edu.sv</u> la lista de integrantes: nombre completo, sección y carnet. (- 1.0 en la nota final si no se sigue esta indicación).
- 2. Última fecha de consultas sobre el proyecto: lunes 17 de junio de 2019.
- 3. Fecha de entrega: lunes 24 de junio de 2019.
- 4. Hora de entrega: 9:00am-10:00am (NO SE RECIBIRÁN MAS PROYECTOS PASADO ESTE RANGO DE TIEMPO, bajo ninguna excusa o argumento, si hay inconvenientes, pueden apoyarse entre todos los integrantes del equipo).
- 5. Lugar de entrega: Edificio Jon de Cortina, Departamento de electrónica e informática, oficina 9.
- 6. Formato de entrega: llevar al lugar de entrega, una USB o disco externo con los archivos indicados en el literal 4. El dispositivo no se quedará en el lugar. En el momento se copiaran los archivos y el dispositivo será devuelto al grupo.
- 7. Grupos: 4 integrantes. (No es posible realizar el proyecto de manera individual, tampoco en grupos de 2 o 3 integrantes, si tiene problemas para completar su grupo contacte al docente encargado, tampoco es posible realizar el proyecto combinando estudiantes de la sección 1 con la sección 2).

ANEXO I. Verificación de parámetros ambientales.

Fecha de Verificacion:

II. IDENTIFICA	ACION DEL AF	REA DE ESTUDIO)			
Nombre del Hospital:						
Servicio Hosp	oitalario anali	zado:				
A 1 (1)						
Area de análi	SIS					
Responsible	del area:					
Teléfono y ex	ctensión de c	ontacto:				
III. IDENTIFIC	ACION DEL E	QUIPO DE MEDI	CION			
Nombre d	el equipo	Marca	Modelo	No. Serie	Fecha de	calibración
IV. RESULTAD	OOS DE LAS M	1EDICIONES REA	LIZADAS			
Parametro de medicion	Puntos de medición	Resultados de medicion	Valor Promedio	Valor estandar	Cumple/ No cumple	Observaciones (Declarar cumplimiento con la especificacion)
	P1					. ,
	P2			C00 I		
Iluminacion ambiental	Р3			600 Lux Max.		
	P4					
	P5					
Ruido ambiental	P6		N/A	65 dB Max.		
Temperatura	P7			22°C a 26°C		
Ambiental	P8			22 C a 20 C		
Humedad Relativa	Р9			30 % a 60%		
Ambiental	P10			2 7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
Conclusiones	generales:					

Repons	sable de las mediciones
Nombre:	
Firma:	

ANEXO II. Verificación de receptáculos eléctricos.

Fecha de Verificacion:

GUIA DE INSPECCION DE SEGURIDAD EN LAS INSTALACIONES ELECTRICAS Y CONDICIONES AMBIENTALES EN HOSPITALES

II. IDENTIFICACION D	DEL AREA DE E	STUDIO				
Nombre del Hospital:						
					1	
Dirección:					Municipio:	
Servicio Hospitalario	analizado:					
Area de analisis						
Responsable del área:						
Telefono y extensior	n de					
contacto:						
III. IDENTIFICACION	DEL EQUIPO D	E MEDICION				
Nombre del equipo	Marca	Modelo	No. Serie	Fecha de calibracion	No. Inventario	Accesorios
	•		•			

IV. RESULTADOS DE VERIFICACIÓN DE SEGURIDAD ELÉCTRICA DE LAS INSTALACIONES

Parametro de medición	Resultados de la prueba		Cumple/ No cumple	Valor Estándar	Observaciones (Declarar cumplimiento con la especificacion)	
		Polaridad			Vfase-	
	R1	Vfase-Neutro			Neutro = 120 VAC	
		Vneutro- tierra				
Seguridad en		Vfase-Tierra			Aprox. Polaridad:	
el receptáculo	Vfase R2 Vne	Polaridad			si o no Vneutro- tierra = Menor a	
		Vfase-Neutro				
		Vneutro- tierra				
		Vfase-Tierra				
	R3	Polaridad			1VAC	

				_	
		Vfase-Neutro		Vfase-	
		Vneutro-		Tierra=	
		tierra		120 VAC	
		Vfase-Tierra		Aprox.	
		Polaridad		'	
		Vfase-Neutro			
	R4	Vneutro-			
		tierra			
		Vfase-Tierra			
		Polaridad			
		Vfase-Neutro			
	R5	Vneutro-			
		tierra			
		Vfase-Tierra			
Conclusiones g	eneral	es:			
			1		
Reponsable o	de las r	nediciones			

NOTAS:

Nombre: Firma:

En el documento solo se muestra una lista de hasta 5 receptáculos pero en realidad pueden ser más.

La columna llamada valor estándar, solo es utilizada para representar los datos esperados y saber si la medición tomada cumple o no con el estándar.

ANEXO III. Formato de verificación de seguridad eléctrica.

Fecha de	
Verificación:	

GUÍA DE INSPECCIÓN DE SEGURIDAD ELÉCTRICA

Nombre de la Institución:	
Unidad:	
Jefe del área:	
Jefe de mantenimiento:	
Nombre de la/s persona/s que ejecuta/n la prueba:	
Fecha y Hora de la prueba:	
Nombre del dispositivo médico o verificar:	
Marca:	
Modelo:	
Número de serie:	
No. de Inventario:	
Lista de partes y accesorios:	
Nombre del Equipo de medición:	
Marca:	
Modelo:	
Número de serie:	
No. Certificado de calibración:	

INSPECCIÓN VISUAL	
Descripción	Cumple/ No Cumple
Condiciones del chasis (presencia de quiebres, rajaduras, daños)	
Los fusibles accesibles desde el exterior son acorde a lo que establece el fabricante (corriente nominal, características).	
Los símbolos de seguridad y las etiquetas son legibles y están completos.	
Integridad de las partes mecánicas (por ejemplo: obstrucción de partes móviles)	
Presencia de daño o contaminación	
Evaluación de los accesorios relevantes al equipo biomédico (por ejemplo: cables/circuito de paciente, cables de poder, transductores, etc).	
Estado de los enchufes, cables y conectores, conexiones correctas.	
Documentación actualizada del equipo biomédico.	
Observaciones:	•

Resistencia de puesta a tierra de protección - Equipos biomédicos Clase I	
Descripción	Medición
a. La resistencia medida entre el conector de tierra de protección del enchufe de la red y las partes conductivas accesibles protegidas a tierra, no debe exceder de 300 m Ω para equipos biomédicos que cuentan con un cable de poder fijo al equipo.	
b. La resistencia medida entre el conector de tierra del conector de entrada de red al equipo y las partes conductivas accesibles protegidas a tierra, no debe de exceder de 200 m Ω para equipos con cable de poder desmontable.	
c. En equipos permanentemente instalados: La resistencia medida entre el terminal de tierra de protección del equipo biomédico y las partes conductivas accesibles protegidas a tierra, no deberá exceder de 300 m Ω . Durante esta prueba no se desconecta el conductor de tierra de protección.	
d. En sistemas con múltiples salidas eléctricas, la resistencia entre el conector de tierra de protección del enchufe de la red de las múltiples salidas eléctricas y todas las partes conductivas accesibles protegidas a tierra, no deberán exceder 500 m Ω .	

CORRIENTES DE FUGA				
Descripción	ESTANDAR	Medición de corriente de fuga		
		Tipo B	Tipo BF	Tipo CF
Corriente de fuga del equipo - método alternativo:				
Corriente de fuga del equipo para partes conductivas				
accesibles de equipos biomédicos clase I conectados o	1000 uA			
no conectados al conductor de tierra de protección.	máximo			
	500 uA			
Corriente de fuga del equipo para equipos biomédicos.	máximo			
Corriente de fuga del equipo -método directo o diferencial:				
Corriente de fuga del equipo para partes conductivas				
accesibles de equipos biomédicos clase I conectados o	500 uA			
no conectados al conductor de tierra de protección	máximo			
	100 uA			
Corriente de fuga del equipo para equipos biomédicos	máximo			
Corriente de fuga de la parte aplicada en contacto con el paciente - método alternativo				

Corriente de fuga de la parte aplicada en contacto con el paciente	5000 uA tipo BF; 50 uA tipo CF;	No aplica	
Corriente de fuga de la parte en contacto con el pacient	e - método dir	ecto	
Corrientes de fuga de la parte en contacto con el paciente (voltaje de red en la parte en contacto con el paciente)	5000 uA para tipo BF; 50 uA para tipo CF;	No aplica	
Observaciones:			

RESISTENCIA DEL AISLAMIENTO				
				No
Descripción	Estándar	Medición	Cumple	cumple
	Clase I: ≥2			
Medición de la resistencia del aislamiento entre	ΜΩ			
tensión de alimentación y protección de puesta a	cualquier			
tierra	tipo.			
	Clase I y II:			
Medición de la resistencia del aislamiento entre	≥7 MΩ			
tensión de alimentación y partes conductivas sin	cualquier			
puesta a tierra	tipo.			
	Clase I: ≥70			
	ΜΩ			
Medición de la resistencia del aislamiento entre	cualquier			
partes aplicadas y protección de puesta a tierra	tipo			
	Clase I y II:			
Medición de la resistencia del aislamiento entre	≥70 MΩ			
partes aplicadas y partes conductivas sin puesta a	cualquier			
tierra	tipo			

Medición de la resistencia del aislamiento entre tensión de alimentación y partes aplicadas	Clase I: ≥ 2 $M\Omega$ Tipo B; ≥ 70 $M\Omega$ BF y CF. Clase II: $\geq 7M\Omega$ tipo B; ≥ 70 $M\Omega$ tipo BF y CF
Observaciones:	

Notas:

Los equipos médicos se pueden categorizar a partir de una clase y un tipo según su seguridad eléctrica definido por el estándar IEC62353. Por lo que cualquier equipo médico con funcionamiento eléctrico debe de estar clasificado y tipificado para tener conformidad del estándar. Siendo definidas las clases y tipos de la siguiente manera

Clases de equipo médico:

- Clase I
- Clase II

Tipos de equipo médico según sus partes aplicadas:

- Tipo B
- Tipo BF
- Tipo CF

Por lo que, un equipo siempre tendrá una clase y un tipo, como por ejemplo una incubadora neonatal la cual se puede categoriza clase I y tipo BF. Un equipo puede ser:

- Clase I, tipo B.
- Clase I, tipo BF.
- Clase I, tipo CF.
- Clase II, tipo B.
- Clase II, tipo BF.
- Clase II, tipo CF.