Tutorial Problems set-IV

Note: All these problems can be solved using the results of Chapter-4.

[0.0.1] *Exercise* A matrix $A \in \mathbb{M}_n(\mathbb{F})$ is said to be **nilpotent** if $A^k = 0_n$ for some positive integer k. Show that A is nilpotent if and only if the eigenvalues of A are 0.

Sol. We first assume that A is nilpotent. Then $A^k = 0_n$ for some positive integer k.

Let λ be an eigenvalue of A. Then λ^k is an eigenvalue of A^k . Since $A^k = 0_n$, then $\lambda^k = 0$. This implies $\lambda = 0$.

The eigenvalues of A are 0. Then the characteristic polynomial of A is x^n . Hence $A^n = 0_n$. Therefore A is nilpotent.

[0.0.2] Exercise Let A be nilpotent.

- 1. If $A \neq 0_n$, show that A is not diagonalizable.
- 2. What can you say about the minimal polynomial of A?

Sol. The eigenvalues of A are 0. Suppose A is diagonalizable. Then $P^{-1}AP = diag(0, \dots, 0)$. This implies $A = 0_n$.

We know that the minimal polynomial of A divides the annihilating ploynomial. The characteristic polynomial of A is x^n . Then minimal polynomial is x^m where $m \leq n$.

[0.0.3] Exercise Let $A, B \in \mathbb{M}_n(\mathbb{C})$ and let C = AB - BA. Show that I - C is not nilpotent.

Sol. The trace of C is zero. Then trace(I-C)=n. Hence I-C is not nilpotent.

[0.0.4] *Exercise* What is the minimal polynomial of
$$A = \begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{bmatrix}$$
?

[0.0.5] Exercise Let $C = \begin{bmatrix} A & 0_n \\ 0_n & B \end{bmatrix}$ be a block diagonal matrix where $A, B \in \mathbb{M}_n(\mathbb{C})$. Prove that the minimal polynomial of C is the L.C.M (least common multiple) of the minimal polynomial of A and B.

Sol. Let $m_C(x)$, $m_A(x)$ and $m_B(x)$ be the minimal polynomial of C, A and B, respectively. Let P(x) be the L.C.M of $m_A(x)$ and $m_B(x)$.

$$m_C(C) = \begin{bmatrix} m_C(A) & 0 \\ 0 & m_C(B) \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} m_C(A) & 0 \\ 0 & m_C(B) \end{bmatrix}.$$

 $m_C(A) = 0 = m_C(B)$. This implies $m_A(x)$ and $m_B(x)$ divides $m_C(x)$. Hence P(x) divides $m_C(x)$.

$$P(C) = \begin{bmatrix} P(A) & 0 \\ 0 & P(B) \end{bmatrix}.$$

$$P(C) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

This implies $m_C(x)$ divides P(x). Hence $m_A(x) = P(x)$.

[0.0.6] *Exercise* Let $A \in \mathbb{M}_n(\mathbb{C})$. Show that $\{I, A, A^2, \dots, A^n\}$ is a linearly dependent set in the vector space $\mathbb{M}_n(\mathbb{C})$.

Sol. If $A = 0_n$, then it is trivial. If $A \neq 0_n$, then using Cayley Hamilton theorem you can show that $\{I, A, A^2, \ldots, A^n\}$ is a linearly dependent.

[0.0.7] Exercise Let $A = uu^*$ where u is a non-zero column vector.

- 1. Show that the distinct eigenvalues of A are 0 and u^*u .
- 2. Show that u^*u is a simple eigenvalue of A.
- 3. Write down the $E_{(\lambda=0)}$ and $E_{(\lambda=u^*u)}$.
- 4. Compute the minimal polynomial of A.
- 5. Show that A is diagonalizable.

Sol. A is a Hermitian matrix. Then rank of A is the rank of u. Since u is non-zero, the rank of u is 1. Hence the rank of A is 1. Then 0 is an eigenvalue of A. The geometrix multiplicity of 0 is n - rank(A) = n - 1. Since A is Hermitian, then the algebraic multiplicity of 0 is n - 1. So it has one non-zero eigenvalue.

$$Au = uu^*u.$$

 $Au = (u^*u)u$. This implies u^*u is an eigenvalue of A corresponding eigenvector u.

$$E_{(\lambda=u^*u)}=\operatorname{LS} u \text{ and } E_{(\lambda=0)}=\{v\in\mathbb{C}^n: \langle v,u\rangle=0\}.$$

Since A is Hermitian, A is diagonalizable and the minimal polynomial is $x(x-u^*u)$.

[0.0.8] Exercise The characteristic polynomial of a matrix $A \in M_5(\mathbb{R})$ is given by $x^5 + \alpha x^4 + \beta x^3$, where α and β are non-zero real numbers. What are the possible values of the rank of A?

Sol. $x^5 + \alpha x^4 + \beta x^3 = x^3(x^2 + \alpha x + \beta)$. Since $\beta \neq 0$, then 0 is not the root of $(x^2 + \alpha x + \beta)$. Then 0 is an eigenvalue of A with algebraic multiplicity 3. So geometric multiplicity of 0 is at most 3.

We know that rank(A) = n - gm(0). So the possible values of the rank of A are n - 1, n - 2 and n - 3.

[0.0.9] Exercise Write down all the eigenvalues (along with their multiplicities) of the matrix $A = (a_{ij}) \in M_n(\mathbb{R})$ where $a_{ij} = 1$ for all $1 \leq i, j \leq n$.

Sol. $A = xx^*$ where $x = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$. Using Exercise 0.0.7, 0 and $x^*x = n$ are distinct eigenvalues with algebraic multiplicities n-1 and 1, respectively.

[0.0.10] *Exercise* Let $A \in \mathbb{M}_3(\mathbb{C})$ be a matrix such that $A^2 = A$ (idempotent matrix). Then prove that A is diagonalizable.

Sol. Since $A^2 = I$, then $x^2 - x$ is an annihilating polynomial of A. We know that the minimal polynomial of A divides $x^2 - 1$. Then all the possibilities of the minimal polynomial of A are following.

- i) x.
- ii) x 1.
- iii) x(x-1).

If x is the minimal polynomial of A, then $A = 0_n$. Hence A is diagonalizable.

If x-1 is the minimal polynomial of A, then A=I. Hence A is diagonalizable.

If x(x-1) is the minimal polynomial of A, A is diagonalizable because x(x-1) is the product distinct linear factors.

[0.0.11] *Exercise* Let $A \in M_3(\mathbb{C})$ be a matrix such that $A^3 = I$. Then prove that A is diagonalizable.

Sol. Since $A^3 = I$, then $x^3 - 1$ is an annihilating polynomial of A. Then $x^3 - 1 = (x - 1)(x - \alpha)(x - \alpha^2)$.

We know that the minimal polynomial of A divides $x^3 - 1$. Then all the possibilities of the minimal polynomial of A are following.

- i) x 1.
- ii) $x \alpha$.
- iii) $(x \alpha^2)$.
- iv) $(x-1)(x-\alpha)$.
- v) $(x-1)(x-\alpha^2)$.
- vi) $(x \alpha)(x \alpha^2)$.
- vii) $(x 1)(x \alpha)(x \alpha^2)$.

For each case, you can show that A is diagonalizable.

[0.0.12] *Exercise* Let $A \in M_3(\mathbb{C})$ be a matrix such that $A^2 = I$ (involutory matrix). Then prove that A is diagonalizable.

Sol. Since $A^2 = I$, then $x^2 - 1$ is an annihilating polynomial of A. We know that the minimal polynomial of A divides $x^2 - 1$. Then all the possibilities of the minimal polynomial of A are following.

- i) x 1.
- ii) x + 1.
- iii) (x-1)(x+1).

If x-1 is the minimal polynomial of A, then A=I. Hence A is diagonalizable.

If x + 1 is the minimal polynomial of A, then A = -I. Hence A is diagonalizable.

If (x-1)(x+1) is the minimal polynomial of A, A is diagonalizable because (x-1)(x+1) is the product distinct linear factors.

[0.0.13] *Exercise* Find the minimal polynomial of the following matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$.

[0.0.14] Exercise Let $A \in \mathbb{M}_n(\mathbb{C})$. Then show that the following are equivalent.

- 1. A is diagonalizable.
- 2. P(A) is nilpotent $\implies P(A) = 0_n$ for any polynomial P with complex co-efficient.

Sol.

(1) \Longrightarrow (2). We first assume that A is diagonalizable. To prove P(A) is nilpotent \Longrightarrow $P(A) = 0_n$ for any polynomial P with complex co-efficient.

Let P(x) be a polynomial such that P(A) is nilpotent. To show that $P(A) = 0_n$. Since A is diagonalizable, we have a non-singular matrix S such that $S^{-1}AS = D$. Then $P(S^{-1}AS) = P(D)$ this implies $S^{-1}P(A)S = P(D)$. Here P(D) is a diagonal matrix. This says that P(A) is diagonalizable.

Therefore P(A) is nilpotent and diagonalizable implies $P(A) = 0_n$.

(2) \Longrightarrow (1). P(A) is nilpotent \Longrightarrow $P(A) = 0_n$ for any polynomial P with complex co-efficient. To prove A is diagonalizable.

Let Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicity m_1, \ldots, m_k , respectively.

Let $m = \max\{m_1, \dots, m_k\}$. Let $P(x) = \prod_{i=1}^k (x - \lambda_i)$. Then $P(x)^m = P_A(x)q(x)$. Therefore $(P(A))^k = P_A(A)q(A)$. We know that $P_A(A) = 0_n$. Then $(P(A))^m = 0_n$. Therefore P(A) is nilpotent and this implies P(A) = 0.

Hence P(x) is the minimal polynomial of A which product of distinct linear factors. Then A is diagonalizable.

[0.0.15] Exercise Let $A, B \in \mathbb{M}_n(\mathbb{C})$.

- 1. If $AX XB = 0_n$, then show that $P(A)X XP(B) = 0_n$ for any polynomial P.
- 2. If A and B do not have common eigenvalues, then show that $AX XB = 0_n \implies X = 0_n$.

Sol.

1. Let
$$P(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0$$
. We have

$$AX - XB = 0_n$$

$$AX = XB$$

$$A^2X = AXB$$
 (multiplying both side by A)

$$A^2X = XBB$$
 (use $AX = XB$)

$$A^2X = XB^2$$

Continuing this process we $A^kX = XB^k$ for each positive integer k.

$$P(A) = a_k A^k + a_{k-1} A^{k-1} + \dots + a_0 I.$$

$$P(A)X = (a_k A^k + a_{k-1} A^{k-1} + \dots + a_0 I)X.$$

$$P(A)X = a_k A^k X + a_{k-1} A^{k-1} X + \dots + a_0 I X.$$

$$P(A)X = Xa_kB^k + Xa_{k-1}B^{k-1} + \dots + Xa_0I.$$

$$P(A)X = XP(B).$$

2. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicity m_1, \ldots, m_k , respectively. Then $P_A(x) = \prod_{i=1}^k (x - \lambda_i)^{m_i}$.

Using above result we have $P_A(A)X = XP_A(B)$. Using Cayley Hamilton theorem we have $P_A(A) = 0_n$. Then $XP_A(B) = 0_n$. We mow show that $P_A(B)$ is non-singular. $P_A(B) = \prod_{i=1}^k (B - \lambda_i I)^{m_i}$.

Take $(B - \lambda I)^{m_i}$, the determinant of $\text{DET}(B - \lambda_i I) \neq 0$, otherwise λ_i is an eigenvalue of A which is not possible. Hence $\text{DET}(P_A(B)) = \prod_{i=1}^k (\text{DET}(B - \lambda_i I))^{m_i}$. We have seen that $\text{DET}(B - \lambda_i I) \neq 0$ for $i = 1, \ldots, k$. Then $\text{DET}(P_A(B)) \neq 0$. This implies $P_A(B)$ is invertible.

$$XP_A(B) = 0_n$$

 $X = 0_n$ (multiplying both side by the inverse of $P_A(B)$).

[0.0.16] Exercise Let $A, B \in \mathbb{M}_n(\mathbb{C})$ such that A = AB - BA. Let v be an eigenvector of B with eigenvalue λ

1. Prove that either Av is zero or an eigenvector of B.

2. Prove that there exists a natural k such that $A^k v = 0_n$.

Sol.

1.
$$A = AB - BA$$
.

Av = ABv - BAv (multiplying both side by v)

$$Av = \lambda Av - BAv \ (Bv = \lambda v)$$

 $BAv = (\lambda - 1)Av$. This implies either Av = 0 or Av is an eigenvector of B corresponding to the eigenvalue $\lambda - 1$.

$$2. Av = \lambda Av - BAv$$

 $A^2v = \lambda A^2v - ABAv$ (multiplying both side by A)

$$A^2v = \lambda A^2v - (A + BA)Av$$
 (replace AB with $A + BA$)

$$A^2v = \lambda A^2v - A^2v - BA^2v.$$

 $BA^2v=(\lambda-2)A^2v$. This implies either $A^2v=0$ or A^2v is an eigenvector of B corresponding to the eigenvalue $\lambda-2$.

Continuing same process we have $BA^mv = (\lambda - k)A^mv$ where k is any positive integers. Since B is a matrix of size n, B has exactly n eigenvalue. Then there exists k such that A^kv is not an eigenvector of B. Hence $A^kv = 0$.