

Test report No. Page

Issued date

: 10105410H-B : 1 of 33

FCC ID

: November 29, 2013 : VIYARC0557

# **RADIO TEST REPORT**

Test Report No.: 10105410H-B

**Applicant** 

**Hosiden Corporation** 

**Type of Equipment** 

Bluetooth module

Model No.

: ARC0557

**FCC ID** 

: VIYARC0557

**Test regulation** 

FCC Part 15 Subpart C: 2013

**Test Result** 

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

November 19 and 23, 2013

Representative test engineer:

Takumi Shimada Engineer of WiSE Japan, UL Verification Service

Approved by:

Masanori Mishiyama Manager of WiSE Japan, UL Verification Service



NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. \*As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8999

Facsimile

: +81 596 24 8124

Test report No. : 10105410H-B Page : 2 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

# **REVISION HISTORY**

Original Test Report No.: 10105410H-B

| Revision        | Test report No. | Date              | Page<br>revised | Contents |
|-----------------|-----------------|-------------------|-----------------|----------|
| -<br>(Original) | 10105410H-B     | November 29, 2013 | -               | -        |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |
|                 |                 |                   |                 |          |

Test report No. Page

: 3 of 33

: 10105410H-B

: November 29, 2013 Issued date FCC ID : VIYARC0557

| CONTENTS                                                   | PAGE |
|------------------------------------------------------------|------|
| SECTION 1: Customer information                            | 4    |
| SECTION 2: Equipment under test (E.U.T.)                   |      |
| SECTION 3: Test specification, procedures & results        |      |
| SECTION 4: Operation of E.U.T. during testing              |      |
| SECTION 5: Radiated Spurious Emission                      |      |
| SECTION 6: Antenna Terminal Conducted Tests                |      |
| APPENDIX 1: Data of EMI test                               | 12   |
| 20dB Bandwidth and Carrier Frequency Separation            | 12   |
| Number of Hopping Frequency                                |      |
| Dwell time                                                 |      |
| Maximum Peak Output Power                                  |      |
| Radiated Spurious Emission                                 |      |
| Conducted Spurious Emission                                |      |
| Conducted Emission Band Edge compliance                    | 28   |
| 99%Occupied Bandwidth                                      |      |
| APPENDIX 2: Test instruments                               |      |
| APPENDIX 3: Photographs of test setup                      | 32   |
| Radiated Spurious Emission                                 |      |
| Worst Case Position (Horizontal: X-axis/ Vertical: Z-axis) | 33   |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No. : 10105410H-B Page : 4 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **SECTION 1: Customer information**

Company Name : Hosiden Corporation

Address : 1-4-33, Kitakyuhoji, Yao, Osaka, 5810071, Japan

Telephone Number : +81-72-924-1195 Facsimile Number : +81-72-993-0724 Contact Person : Keiji Mine

#### **SECTION 2:** Equipment under test (E.U.T.)

#### 2.1 Identification of E.U.T.

Type of Equipment : Bluetooth module

Model No. : ARC0557

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 2.0 to DC 3.0V Receipt Date of Sample : November 14, 2013

Country of Mass-production : China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

#### 2.2 Product Description

#### **General Specification**

Clock frequency(ies) in the system : 16MHz

#### **Radio Specification**

#### [Bluetooth (Ver. 3.0 without EDR function)]

Radio Type : Transceiver
Frequency of Operation : 2402-2480MHz
Modulation : FHSS, GFSK
Power Supply (radio part input) : DC 1.8V

Antenna type :  $\lambda$ 4 meander antenna (printed on the PWB)

Antenna Gain : -3.0 dBi max

# UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 5 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **SECTION 3: Test specification, procedures & results**

#### 3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2013, final revised on September 30, 2013 and effective

October 30, 2013

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

\* The EUT complies with FCC Part 15 Subpart B: 2013, final revised on September 30, 2013 and effective October 30, 2013.

#### 3.2 Procedures and results

| Item                                              | Test Procedure                                                                         | Specification                                      | Worst Margin                     | Results  | Remarks                |
|---------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|----------|------------------------|
| Conducted<br>Emission                             | FCC: ANSI C63.4:2003 7. AC powerline conducted emission measurements IC: RSS-Gen 7.2.4 | FCC: Section 15.207 IC: RSS-Gen 7.2.4              | N/A *1)                          | N/A      | -                      |
| Carrier<br>Frequency<br>Separation                | FCC: FCC Public Notice<br>DA 00-705                                                    | FCC: Section15.247(a)(1) IC: RSS-210 A8.1 (b)      |                                  | Complied | Conducted              |
| 20dB<br>Bandwidth                                 | FCC: FCC Public Notice<br>DA 00-705                                                    | FCC: Section15.247(a)(1)  IC: RSS-210 A8.1 (a)     |                                  | Complied | Conducted              |
| Number of<br>Hopping<br>Frequency                 | FCC: FCC Public Notice<br>DA 00-705<br>IC: -                                           | FCC: Section15.247(a)(1)(iii) IC: RSS-210 A8.1 (d) | See data.                        | Complied | Conducted              |
| Dwell time                                        | FCC: FCC Public Notice<br>DA 00-705<br>IC: -                                           | FCC: Section15.247(a)(1)(iii) IC: RSS-210 A8.1 (d) |                                  | Complied | Conducted              |
| Maximum Peak<br>Output Power                      | FCC: FCC Public Notice<br>DA 00-705<br>IC: RSS-Gen 4.8                                 | FCC: Section15.247(a)(b)(1) IC: RSS-210 A8.4 (2)   |                                  | Complied | Conducted              |
| Spurious<br>Emission &<br>Band Edge<br>Compliance | FCC: FCC Public Notice<br>DA 00-705<br>IC: RSS-Gen 4.9                                 | FCC: Section15.247(d)  IC: RSS-210 A8.5            | 10.6dB<br>2354.011MHz, AV, Vert. | Complied | Conducted/<br>Radiated |

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

### UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*1)</sup> The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

<sup>\*</sup> In case any questions arise about test procedure, ANSI C63.4: 2003 is also referred.

Test report No. : 10105410H-B Page : 6 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

#### FCC 15.31 (e)

This EUT provides stable voltage (DC1.8V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

#### FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

#### 3.3 Addition to standard

| Item         | Test Procedure    | Specification     | Worst margin | Results | Remarks   |
|--------------|-------------------|-------------------|--------------|---------|-----------|
| 99% Occupied | IC: RSS-Gen 4.6.1 | IC: RSS-Gen 4.6.1 | N/A          | -       | Conducted |
| Bandwidth    |                   |                   |              |         |           |

Other than above, no addition, exclusion nor deviation has been made from the standard.

#### 3.4 Uncertainty

#### **EMI**

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

| Test room         | Radiated emission |                  |                 |                |                 |                   |                           |
|-------------------|-------------------|------------------|-----------------|----------------|-----------------|-------------------|---------------------------|
| (semi-            |                   | (3m*)            | ( <u>+</u> dB)  |                | (1m*)           | )( <u>+</u> dB)   | $(0.5\text{m}^*)(\pm dB)$ |
| anechoic chamber) | 9kHz<br>-30MHz    | 30MHz<br>-300MHz | 300MHz<br>-1GHz | 1GHz<br>-10GHz | 10GHz<br>-18GHz | 18GHz<br>-26.5GHz | 26.5GHz<br>-40GHz         |
| No.1              | 4.0dB             | 5.1dB            | 5.0dB           | 5.1dB          | 6.0dB           | 4.9dB             | 4.3dB                     |
| No.2              | 3.9dB             | 5.2dB            | 5.0dB           | 4.9dB          | 5.9dB           | 4.7dB             | 4.2dB                     |
| No.3              | 4.3dB             | 5.1dB            | 5.2dB           | 5.2dB          | 6.0dB           | 4.8dB             | 4.2dB                     |
| No.4              | 4.6dB             | 5.2dB            | 5.0dB           | 5.2dB          | 6.0dB           | 5.7dB             | 4.2dB                     |

<sup>\*3</sup>m/1m/0.5m = Measurement distance

| Power meter ( <u>+</u> dB) |            |  |  |
|----------------------------|------------|--|--|
| Below 1GHz                 | Above 1GHz |  |  |
| 0.7dB                      | 1.5dB      |  |  |

| Antenna terminal conducted emission |                 |              | Antenna terminal | Channel power |                |
|-------------------------------------|-----------------|--------------|------------------|---------------|----------------|
| and                                 | Power density ( | <u>+</u> dB) | ( <u>+</u> dB)   |               | ( <u>+</u> dB) |
| Below 1GHz                          | 1GHz-3GHz       | 3GHz-18GHz   | 18GHz-26.5GHz    | 26.5GHz-40GHz |                |
| 1.5dB                               | 1.7dB           | 2.8dB        | 2.8dB            | 2.9dB         | 2.6dB          |

### Radiated emission test(3m)

The data listed in this test report has enough margin, more than the site margin.

# UL Japan, Inc.

#### **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 7 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

#### 3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. \*NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

|                            | FCC          | IC Registration | Width x Depth x    | Size of                      | Other       |
|----------------------------|--------------|-----------------|--------------------|------------------------------|-------------|
|                            | Registration | Number          | Height (m)         | reference ground plane (m) / | rooms       |
|                            | Number       |                 |                    | horizontal conducting plane  |             |
| No.1 semi-anechoic         | 313583       | 2973C-1         | 19.2 x 11.2 x 7.7m | 7.0 x 6.0m                   | No.1 Power  |
| chamber                    |              |                 |                    |                              | source room |
| No.2 semi-anechoic chamber | 655103       | 2973C-2         | 7.5 x 5.8 x 5.2m   | 4.0 x 4.0m                   | -           |
| No.3 semi-anechoic         | 148738       | 2973C-3         | 12.0 x 8.5 x 5.9m  | 6.8 x 5.75m                  | No.3        |
| chamber                    |              |                 |                    |                              | Preparation |
|                            |              |                 |                    |                              | room        |
| No.3 shielded room         | -            | -               | 4.0 x 6.0 x 2.7m   | N/A                          | -           |
| No.4 semi-anechoic         | 134570       | 2973C-4         | 12.0 x 8.5 x 5.9m  | 6.8 x 5.75m                  | No.4        |
| chamber                    |              |                 |                    |                              | Preparation |
|                            |              |                 |                    |                              | room        |
| No.4 shielded room         | -            | -               | 4.0 x 6.0 x 2.7m   | N/A                          | -           |
| No.5 semi-anechoic chamber | -            | -               | 6.0 x 6.0 x 3.9m   | 6.0 x 6.0m                   | -           |
| No.6 shielded room         | -            | -               | 4.0 x 4.5 x 2.7m   | 4.0 x 4.5 m                  | -           |
| No.6 measurement room      | -            | -               | 4.75 x 5.4 x 3.0m  | 4.75 x 4.15 m                | -           |
| No.7 shielded room         | -            | -               | 4.7 x 7.5 x 2.7m   | 4.7 x 7.5m                   | -           |
| No.8 measurement           | -            | -               | 3.1 x 5.0 x 2.7m   | N/A                          | -           |
| No.9 measurement           | -            | -               | 8.0 x 4.6 x 2.8m   | 2.4 x 2.4m                   | -           |
| No.11 measurement room     | -            | -               | 6.2 x 4.7 x 3.0m   | 2.4 x 3.4m                   | -           |

<sup>\*</sup> Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

#### 3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 8 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **SECTION 4: Operation of E.U.T. during testing**

#### **4.1** Operating Mode(s)

Bluetooth (BT): Transmitting (Tx), Payload: PRBS9

Details of Operating Mode(s)

| Test Item                               | Mode                 | Tested frequency |
|-----------------------------------------|----------------------|------------------|
| Spurious Emission (Conducted/Radiated), | Tx (Hopping off) DH5 | 2402MHz          |
| 20dB Bandwidth,                         |                      | 2441MHz          |
| Maximum Peak Output Power               |                      | 2480MHz          |
| Carrier Frequency Separation            | Tx (Hopping on) DH5  | 2402MHz          |
|                                         |                      | 2441MHz          |
|                                         |                      | 2480MHz          |
| Number of Hopping Frequency             | Tx (Hopping on) DH5  | -                |
| Dwell time                              | Tx (Hopping on),     | -                |
|                                         | -DH1, DH3, DH5       |                  |
| Band Edge Compliance                    | Tx DH5               | 2402MHz          |
| (Conducted)                             | -Hopping on          | 2480MHz          |
|                                         | -Hopping off         |                  |
| 99% Occupied Bandwidth                  | Tx DH5               | 2402MHz          |
|                                         | -Hopping on          | 2441MHz          |
|                                         | -Hopping off         | 2480MHz          |

<sup>\*</sup>As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

Power settings: 58

Software: Airoha AB1100 Family LAB Test Tool-Version 1.4.1.0

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>EUT has the power settings by the software as follows;

<sup>\*</sup>This setting of software is the worst case.

Test report No. : 10105410H-B Page : 9 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### 4.2 Configuration and peripherals



<sup>\*</sup> Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

**Description of EUT** 

| No. | Item              | Model number | Serial number        | Manufacturer        | Remarks |
|-----|-------------------|--------------|----------------------|---------------------|---------|
| Α   | 3D active glasses | AN-3DG40     | 2                    | Hosiden Corporation | -       |
| В   | Bluetooth module  | ARC0557      | 1 for AT<br>4 for RE | Hosiden Corporation | EUT     |

RE: Radiated Spurious Emission test AT: Antenna Terminal Conducted tests

List of cables used

| No. | Name     | Length (m) | Shi        | eld        | Remarks |
|-----|----------|------------|------------|------------|---------|
|     |          |            | Cable      | Connector  |         |
| 1   | DC Cable | 2.0        | Unshielded | Unshielded | -       |

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 10 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

#### **SECTION 5: Radiated Spurious Emission**

#### **Test Procedure**

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

#### Test Antennas are used as below;

| Frequency    | 30MHz to 300MHz | 300MHz to 1GHz | Above 1GHz |
|--------------|-----------------|----------------|------------|
| Antenna Type | Biconical       | Logperiodic    | Horn       |

In any 100kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20dBc was applied to the frequency over the limit of FCC 15.209 / Table 5 of RSS-Gen 7.2.5 (IC) and outside the restricted band of FCC15.205 / Table 3 of RSS-Gen 7.2.2 (IC).

| iic i con ictea baila oi | Reced band of 1 CC15:205 / Table 5 of Rbb Gen / 222 (1C). |                                         |                                          |                                  |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------|--|--|--|--|--|--|
| Frequency                | Below 1GHz                                                | Above 1GHz                              |                                          | 20dBc                            |  |  |  |  |  |  |
| Instrument used          | Test Receiver                                             | Spectrum Analyzer                       | Spectrum Analyzer                        |                                  |  |  |  |  |  |  |
| Detector                 | QP                                                        | PK                                      | AV                                       | PK                               |  |  |  |  |  |  |
| IF Bandwidth             | BW 120kHz(T/R)                                            | RBW: 1MHz<br>VBW: 3MHz                  | RBW: 1MHz<br>VBW: 10Hz *1)               | RBW: 100kHz<br>VBW: 300kHz (S/A) |  |  |  |  |  |  |
| Test Distance            | 3m                                                        | 3m (below 10GHz),<br>1m*2) (above 10GHz | 3m (below 10GHz),<br>1m*2) (above 10GHz) |                                  |  |  |  |  |  |  |

<sup>\*1)</sup> Although 00-705 accepts VBW=10Hz for AV measurements, it was confirmed that superfluous smoothing was not performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30M-25GHz
Test data : APPENDIX
Test result : Pass

### UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*2)</sup> Distance Factor:  $20 \times \log (3.0 \text{m}/1.0 \text{m}) = 9.5 \text{dB}$ 

<sup>-</sup> The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test report No. : 10105410H-B Page : 11 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **SECTION 6: Antenna Terminal Conducted Tests**

#### **Test Procedure**

The tests were made with below setting connected to the antenna port.

| Test                                                   | Span                                      | RBW                | VBW                | Sweep time                                                           | Detector | Trace           | Instrument used                   |
|--------------------------------------------------------|-------------------------------------------|--------------------|--------------------|----------------------------------------------------------------------|----------|-----------------|-----------------------------------|
| 20dB Bandwidth                                         | 3MHz                                      | 30kHz              | 100kHz             | Auto                                                                 | Peak     | Max Hold        | Spectrum Analyzer                 |
| 99% Occupied<br>Bandwidth                              | Enough width to display 20dB Bandwidth    | 1 to 3%<br>of Span | Three times of RBW | Auto                                                                 | Peak     | Max Hold<br>*1) | Spectrum Analyzer                 |
| Maximum Peak<br>Output Power                           | -                                         | -                  | 1                  | Auto                                                                 | Peak     | =               | Power Meter<br>(Sensor: 50MHz BW) |
| Carrier Frequency<br>Separation                        | 3MHz                                      | 30kHz              | 100kHz             | Auto                                                                 | Peak     | Max Hold        | Spectrum Analyzer                 |
| Number of Hopping<br>Frequency                         | 30MHz                                     | 300kHz             | 1MHz               | Auto                                                                 | Peak     | Max Hold        | Spectrum Analyzer                 |
| Dwell Time                                             | Zero Span                                 | 100kHz,<br>1MHz    | 300kHz,<br>3MHz    | As necessary capture<br>the entire dwell time<br>per hopping channel | Peak     | Max Hold        | Spectrum Analyzer                 |
| Conducted Spurious                                     | 9kHz to 150kHz                            | 200Hz              | 620Hz              | Auto                                                                 | Peak     | Max Hold        | Spectrum Analyzer                 |
| Emission *2)                                           | 150kHz to 30MHz                           | 9.1kHz             | 27kHz              |                                                                      |          |                 |                                   |
|                                                        | 30MHz to 25GHz<br>(Less or equal to 5GHz) | 100kHz             | 300kHz             |                                                                      |          |                 |                                   |
| Conducted Spurious<br>Emission Band Edge<br>compliance | 10MHz                                     | 100kHz             | 300kHz             | Auto                                                                 | Peak     | Max Hold        | Spectrum Analyzer                 |

<sup>\*1)</sup> The measurement was performed with Max Hold since the duty cycle was not 100%.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

### UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*2)</sup> In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.(9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=9.1kHz).

Test report No. : 10105410H-B Page : 12 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **APPENDIX 1: Data of EMI test**

### **20dB Bandwidth and Carrier Frequency Separation**

Test place Head Office EMC Lab. No.11 Measurement Room

 Report No.
 10105410H

 Date
 11/23/2013

 Temperature/ Humidity
 25 deg. C / 54% RH

Engineer Takumi Shimada
Mode Tx (Hopping on) DH5

| Mode | Freq.  | 20dB Bandwidth | Carrier Frequency | Limit for Carrier    |
|------|--------|----------------|-------------------|----------------------|
|      |        |                | Separation        | Frequency separation |
|      | [MHz]  | [MHz]          | [MHz]             | [MHz]                |
| DH5  | 2402.0 | 0.941          | 1.000             | >= 0.627             |
| DH5  | 2441.0 | 0.942          | 1.000             | >= 0.628             |
| DH5  | 2480.0 | 0.943          | 1.000             | >= 0.629             |

Limit: Two-thirds of 20dB Bandwidth or 25kHz (whichever is greater).

No limit applies to 20dB Bandwidth.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B
Page : 13 of 33

Legged data : Newport and 20

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **20dB Bandwidth and Carrier Frequency Separation**



# UL Japan, Inc.

#### **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 14 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Number of Hopping Frequency**

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 10105410H
Date 11/23/2013
Temperature/ Humidity 25 deg. C / 54% RH
Engineer Takumi Shimada
Mode Tx (Hopping on) DH5

| Mode | Number of channel | Limit   |
|------|-------------------|---------|
|      | [times]           | [times] |
| DH5  | 79                | >= 15   |

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 15 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Number of Hopping Frequency**



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 16 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

#### **Dwell time**

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 10105410H Date 11/23/2013

Temperature/ Humidity
Engineer
Takumi Shimada
Mode
Tx (Hopping on) DH5

| Mode |              | Number of t    | ransmission         | Length of         | Result | Limit  |     |
|------|--------------|----------------|---------------------|-------------------|--------|--------|-----|
|      |              | in a 31.6(79 H | (lopping x 0.4)     | transmission time |        |        |     |
|      | / 12         | .8(32 Hopping  | x 0.4)second period | [msec]            | [msec] | [msec] |     |
| DH1  | 51.0 times / | 5 sec. x       | 31.6 sec. =         | 323 times         | 0.440  | 142    | 400 |
| DH3  | 26.0 times / | 5 sec. x       | 31.6 sec. =         | 1.701             | 281    | 400    |     |
| DH5  | 16.0 times / | 5 sec. x       | 31.6 sec. =         | 2.957             | 302    | 400    |     |

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4s, where N is the number of channels being used in the hopping sequence ( $20 \le N \le 79$ ), is always less than 0.4s regardless of packet size. This is confirmed in the test report for N=79.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 17 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Dwell time**



### UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 18 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

#### **Maximum Peak Output Power**

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 10105410H
Date 11/23/2013
Temperature/ Humidity 25 deg. C / 54% RH
Engineer Takumi Shimada
Mode Tx (Hopping off) DH5

| Mode | Freq.  | Reading | Cable | Atten. | Result |      | Limit |      | Margin |
|------|--------|---------|-------|--------|--------|------|-------|------|--------|
|      |        |         | Loss  |        |        |      |       |      |        |
|      | [MHz]  | [dBm]   | [dB]  | [dB]   | [dBm]  | [mW] | [dBm] | [mW] | [dB]   |
| DH5  | 2402.0 | -12.58  | 2.56  | 9.97   | -0.05  | 0.99 | 20.96 | 125  | 21.01  |
| DH5  | 2441.0 | -12.14  | 2.57  | 9.97   | 0.40   | 1.10 | 20.96 | 125  | 20.56  |
| DH5  | 2480.0 | -12.17  | 2.58  | 9.97   | 0.38   | 1.09 | 20.96 | 125  | 20.58  |

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied)+ Attenuator

Test was not performed at AFH mode, because the decrease of number of channel (min: 20ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

However, the limit level 125mW of AFH mode was used for the test.

### <u>Average Output Power</u> (Reference data for SAR testing)

Test place Head Office EMC Lab. No.11 Measurement Room

Report No. 10105410H
Date 11/23/2013
Temperature/ Humidity 25 deg. C / 54% RH
Engineer Takumi Shimada
Mode Tx (Hopping on) DH5

| Mode | Freq.  | Reading | Cable | Atten. | Result |      |
|------|--------|---------|-------|--------|--------|------|
|      |        |         | Loss  |        |        |      |
|      | [MHz]  | [dBm]   | [dB]  | [dB]   | [dBm]  | [mW] |
| DH5  | 2402.0 | -14.11  | 2.56  | 9.97   | -1.58  | 0.70 |
| DH5  | 2441.0 | -13.66  | 2.57  | 9.97   | -1.12  | 0.77 |
| DH5  | 2480.0 | -13.65  | 2.58  | 9.97   | -1.10  | 0.78 |

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied)+ Attenuator

UL Japan, Inc.

**Head Office EMC Lab.** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 19 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Radiated Spurious Emission**

Test place Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No. 10105410H

Date 11/19/2013 11/19/2013
Temperature/ Humidity 24deg.C / 48% RH
Engineer Keisuke Kawamura Katsunori Okai
Below 1GHz Above 1GHz

Mode Tx, DH5 2402MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 67.811    | QP       | 22.8    | 6.8      | 7.2  | 28.6 | 8.2      | 40.0     | 31.8   |        |
| Hori     | 167.999   | QP       | 29.3    | 15.6     | 8.0  | 28.1 | 24.8     | 43.5     | 18.7   |        |
| Hori     | 216.001   | QP       | 32.2    | 16.8     | 8.3  | 27.8 | 29.5     | 46.0     | 16.5   |        |
| Hori     | 287.995   | QP       | 31.0    | 19.0     | 8.7  | 27.7 | 31.0     | 46.0     | 15.0   |        |
| Hori     | 383.999   | QP       | 31.0    | 16.8     | 9.2  | 28.2 | 28.8     | 46.0     | 17.2   |        |
| Hori     | 504.005   | QP       | 31.6    | 18.2     | 9.8  | 28.8 | 30.8     | 46.0     | 15.2   |        |
| Hori     | 2354.014  | PK       | 53.3    | 26.8     | 2.6  | 35.7 | 47.0     | 73.9     | 26.9   |        |
| Hori     | 2390.000  | PK       | 47.7    | 26.8     | 2.6  | 35.7 | 41.4     | 73.9     | 32.5   |        |
| Hori     | 4804.000  | PK       | 47.9    | 30.6     | 4.4  | 34.9 | 48.0     | 73.9     | 25.9   |        |
| Hori     | 7206.000  | PK       | 42.9    | 35.5     | 5.3  | 34.9 | 48.8     | 73.9     | 25.1   |        |
| Hori     | 9608.000  | PK       | 43.1    | 38.2     | 6.1  | 35.4 | 52.0     | 73.9     | 21.9   |        |
| Hori     | 2354.014  | AV       | 47.6    | 26.8     | 2.6  | 35.7 | 41.3     | 53.9     | 12.6   |        |
| Hori     | 2390.000  | AV       | 36.9    | 26.8     | 2.6  | 35.7 | 30.6     | 53.9     | 23.3   |        |
| Hori     | 4804.000  | AV       | 42.0    | 30.6     | 4.4  | 34.9 | 42.1     | 53.9     | 11.8   |        |
| Hori     | 7206.000  | AV       | 31.0    | 35.5     | 5.3  | 34.9 | 36.9     | 53.9     | 17.0   |        |
| Hori     | 9608.000  | AV       | 30.9    | 38.2     | 6.1  | 35.4 | 39.8     | 53.9     | 14.1   |        |
| Vert     | 65.871    | QP       | 32.3    | 7.0      | 7.2  | 28.6 | 17.9     | 40.0     | 22.1   |        |
| Vert     | 167.999   | QP       | 30.9    | 15.6     | 8.0  | 28.1 | 26.4     | 43.5     | 17.1   |        |
| Vert     | 216.001   | QP       | 30.9    | 16.8     | 8.3  | 27.8 | 28.2     | 46.0     | 17.8   |        |
| Vert     | 287.995   | QP       | 30.6    | 19.0     | 8.7  | 27.7 | 30.6     | 46.0     | 15.4   |        |
| Vert     | 383.999   | QP       | 34.3    | 16.8     | 9.2  | 28.2 | 32.1     | 46.0     | 13.9   |        |
| Vert     | 504.005   | QP       | 30.2    | 18.2     | 9.8  | 28.8 | 29.4     | 46.0     | 16.6   |        |
| Vert     | 2354.011  | PK       | 55.1    | 26.8     | 2.6  | 35.7 | 48.8     | 73.9     | 25.1   |        |
| Vert     | 2390.000  | PK       | 48.9    | 26.8     | 2.6  | 35.7 | 42.6     | 73.9     | 31.3   |        |
| Vert     | 4804.000  | PK       | 48.1    | 30.6     | 4.4  | 34.9 | 48.2     | 73.9     | 25.7   |        |
| Vert     | 7206.000  | PK       | 43.2    | 35.5     | 5.3  | 34.9 | 49.1     | 73.9     | 24.8   |        |
| Vert     | 9608.000  | PK       | 43.3    | 38.2     | 6.1  | 35.4 | 52.2     | 73.9     | 21.7   |        |
| Vert     | 2354.011  | AV       | 49.6    | 26.8     | 2.6  | 35.7 | 43.3     | 53.9     | 10.6   |        |
| Vert     | 2390.000  | AV       | 38.4    | 26.8     | 2.6  | 35.7 | 32.1     | 53.9     | 21.8   |        |
| Vert     | 4804.000  | AV       | 41.8    | 30.6     | 4.4  | 34.9 | 41.9     | 53.9     | 12.0   |        |
| Vert     | 7206.000  | AV       | 31.0    | 35.5     | 5.3  | 34.9 | 36.9     | 53.9     | 17.0   |        |
| Vert     | 9608.000  | AV       | 31.0    | 38.2     | 6.1  | 35.4 | 39.9     | 53.9     | 14.0   |        |

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter-Distance factor(above 10GHz)) - Gain(Amplifier)

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

#### 20dBc Data Sheet

| 200DC Du | 20tible Data Silect |          |         |        |      |      |          |          |        |         |  |  |
|----------|---------------------|----------|---------|--------|------|------|----------|----------|--------|---------|--|--|
| Polarity | Frequency           | Detector | Reading | Ant    | Loss | Gain | Result   | Limit    | Margin | Remark  |  |  |
|          |                     |          |         | Factor |      |      |          |          |        |         |  |  |
|          | [MHz]               |          | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |         |  |  |
| Hori     | 2402.000            | PK       | 102.7   | 26.8   | 2.6  | 35.7 | 96.4     | -        | -      | Carrier |  |  |
| Hori     | 2400.000            | PK       | 57.8    | 26.8   | 2.6  | 35.7 | 51.5     | 76.4     | 24.9   |         |  |  |
| Vert     | 2402.000            | PK       | 103.6   | 26.8   | 2.6  | 35.7 | 97.3     | -        | -      | Carrier |  |  |
| Vert     | 2400.000            | PK       | 59.9    | 26.8   | 2.6  | 35.7 | 53.6     | 77.3     | 23.7   |         |  |  |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10 GHz)) - Gain (Amprifier)$ 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10105410H-B Page : 20 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Radiated Spurious Emission**

Test place Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No. 10105410H

Date11/19/201311/19/2013Temperature/ Humidity24deg.C / 48% RH24deg.C / 48% RHEngineerKeisuke KawamuraKatsunori Okai

Below 1GHz Above 1GHz

Mode Tx, DH5 2441MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
| -        | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 67.811    | QP       | 22.8    | 6.8      | 7.2  | 28.6 | 8.2      | 40.0     | 31.8   |        |
| Hori     | 167.999   | QP       | 29.3    | 15.6     | 8.0  | 28.1 | 24.8     | 43.5     | 18.7   |        |
| Hori     | 216.001   | QP       | 32.2    | 16.8     | 8.3  | 27.8 | 29.5     | 46.0     | 16.5   |        |
| Hori     | 287.995   | QP       | 31.0    | 19.0     | 8.7  | 27.7 | 31.0     | 46.0     | 15.0   |        |
| Hori     | 383.999   | QP       | 31.0    | 16.8     | 9.2  | 28.2 | 28.8     | 46.0     | 17.2   |        |
| Hori     | 504.005   | QP       | 31.6    | 18.2     | 9.8  | 28.8 | 30.8     | 46.0     | 15.2   |        |
| Hori     | 2393.003  | PK       | 54.3    | 26.8     | 2.6  | 35.7 | 48.0     | 73.9     | 25.9   |        |
| Hori     | 4882.000  | PK       | 47.8    | 30.9     | 4.4  | 34.9 | 48.2     | 73.9     | 25.7   |        |
| Hori     | 7323.000  | PK       | 42.9    | 35.7     | 5.3  | 34.9 | 49.0     | 73.9     | 24.9   |        |
| Hori     | 9764.000  | PK       | 42.4    | 38.4     | 6.1  | 35.4 | 51.5     | 73.9     | 22.4   |        |
| Hori     | 2393.003  | AV       | 49.5    | 26.8     | 2.6  | 35.7 | 43.2     | 53.9     | 10.7   |        |
| Hori     | 4882.000  | AV       | 41.7    | 30.9     | 4.4  | 34.9 | 42.1     | 53.9     | 11.8   |        |
| Hori     | 7323.000  | AV       | 30.9    | 35.7     | 5.3  | 34.9 | 37.0     | 53.9     | 16.9   |        |
| Hori     | 9764.000  | AV       | 30.8    | 38.4     | 6.1  | 35.4 | 39.9     | 53.9     | 14.0   |        |
| Vert     | 65.871    | QP       | 32.3    | 7.0      | 7.2  | 28.6 | 17.9     | 40.0     | 22.1   |        |
| Vert     | 167.999   | QP       | 30.9    | 15.6     | 8.0  | 28.1 | 26.4     | 43.5     | 17.1   |        |
| Vert     | 216.001   | QP       | 30.9    | 16.8     | 8.3  | 27.8 | 28.2     | 46.0     | 17.8   |        |
| Vert     | 287.995   | QP       | 30.6    | 19.0     | 8.7  | 27.7 | 30.6     | 46.0     | 15.4   |        |
| Vert     | 383.999   | QP       | 34.2    | 16.8     | 9.2  | 28.2 | 32.0     | 46.0     | 14.0   |        |
| Vert     | 504.005   | QP       | 30.2    | 18.2     | 9.8  | 28.8 | 29.4     | 46.0     | 16.6   |        |
| Vert     | 2393.001  | PK       | 53.0    | 26.8     | 2.6  | 35.7 | 46.7     | 73.9     | 27.2   |        |
| Vert     | 4882.000  | PK       | 47.4    | 30.9     | 4.4  | 34.9 | 47.8     | 73.9     | 26.1   |        |
| Vert     | 7323.000  | PK       | 42.6    | 35.7     | 5.3  | 34.9 | 48.7     | 73.9     | 25.2   |        |
| Vert     | 9764.000  | PK       | 42.6    | 38.4     | 6.1  | 35.4 | 51.7     | 73.9     | 22.2   |        |
| Vert     | 2393.001  | AV       | 48.0    | 26.8     | 2.6  | 35.7 | 41.7     | 53.9     | 12.2   |        |
| Vert     | 4882.000  | AV       | 41.1    | 30.9     | 4.4  | 34.9 | 41.5     | 53.9     | 12.4   |        |
| Vert     | 7323.000  | AV       | 30.9    | 35.7     | 5.3  | 34.9 | 37.0     | 53.9     | 16.9   |        |
| Vert     | 9764.000  | AV       | 30.8    | 38.4     | 6.1  | 35.4 | 39.9     | 53.9     | 14.0   |        |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amplifier)$ 

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10105410H-B Page : 21 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Radiated Spurious Emission**

Test place Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No. 10105410H

Date11/19/201311/19/2013Temperature/ Humidity24deg.C / 48% RH24deg.C / 48% RHEngineerKeisuke KawamuraKatsunori Okai

Below 1GHz Above 1GHz

Mode Tx, DH5 2480MHz

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori     | 67.811    | QP       | 22.8    | 6.8      | 7.2  | 28.6 | 8.2      | 40.0     | 31.8   |        |
| Hori     | 167.999   | QP       | 29.3    | 15.6     | 8.0  | 28.1 | 24.8     | 43.5     | 18.7   |        |
| Hori     | 216.001   | QP       | 32.2    | 16.8     | 8.3  | 27.8 | 29.5     | 46.0     | 16.5   |        |
| Hori     | 287.995   | QP       | 31.0    | 19.0     | 8.7  | 27.7 | 31.0     | 46.0     | 15.0   |        |
| Hori     | 383.999   | QP       | 31.0    | 16.8     | 9.2  | 28.2 | 28.8     | 46.0     | 17.2   |        |
| Hori     | 504.005   | QP       | 31.6    | 18.2     | 9.8  | 28.8 | 30.8     | 46.0     | 15.2   |        |
| Hori     | 2483.500  | PK       | 61.3    | 26.7     | 2.7  | 35.7 | 55.0     | 73.9     | 18.9   |        |
| Hori     | 4960.000  | PK       | 45.5    | 31.1     | 4.5  | 34.9 | 46.2     | 73.9     | 27.7   |        |
| Hori     | 7440.000  | PK       | 42.8    | 35.9     | 5.4  | 34.9 | 49.2     | 73.9     | 24.7   |        |
| Hori     | 9920.000  | PK       | 43.0    | 38.7     | 6.2  | 35.4 | 52.5     | 73.9     | 21.4   |        |
| Hori     | 2483.500  | AV       | 45.9    | 26.7     | 2.7  | 35.7 | 39.6     | 53.9     | 14.3   |        |
| Hori     | 4960.000  | AV       | 37.3    | 31.1     | 4.5  | 34.9 | 38.0     | 53.9     | 15.9   |        |
| Hori     | 7440.000  | AV       | 31.1    | 35.9     | 5.4  | 34.9 | 37.5     | 53.9     | 16.4   |        |
| Hori     | 9920.000  | AV       | 31.2    | 38.7     | 6.2  | 35.4 | 40.7     | 53.9     | 13.2   |        |
| Vert     | 65.871    | QP       | 32.3    | 7.0      | 7.2  | 28.6 | 17.9     | 40.0     | 22.1   |        |
| Vert     | 167.999   | QP       | 30.9    | 15.6     | 8.0  | 28.1 | 26.4     | 43.5     | 17.1   |        |
| Vert     | 216.001   | QP       | 30.9    | 16.8     | 8.3  | 27.8 | 28.2     | 46.0     | 17.8   |        |
| Vert     | 287.995   | QP       | 30.6    | 19.0     | 8.7  | 27.7 | 30.6     | 46.0     | 15.4   |        |
| Vert     | 383.999   | QP       | 34.0    | 16.8     | 9.2  | 28.2 | 31.8     | 46.0     | 14.2   |        |
| Vert     | 504.005   | QP       | 30.2    | 18.2     | 9.8  | 28.8 | 29.4     | 46.0     | 16.6   |        |
| Vert     | 2483.500  | PK       | 63.6    | 26.7     | 2.7  | 35.7 | 57.3     | 73.9     | 16.6   |        |
| Vert     | 4960.000  | PK       | 46.9    | 31.1     | 4.5  | 34.9 | 47.6     | 73.9     | 26.3   |        |
| Vert     | 7440.000  | PK       | 42.9    | 35.9     | 5.4  | 34.9 | 49.3     | 73.9     | 24.6   |        |
| Vert     | 9920.000  | PK       | 43.2    | 38.7     | 6.2  | 35.4 | 52.7     | 73.9     | 21.2   |        |
| Vert     | 2483.500  | AV       | 47.7    | 26.7     | 2.7  | 35.7 | 41.4     | 53.9     | 12.5   |        |
| Vert     | 4960.000  | AV       | 39.4    | 31.1     | 4.5  | 34.9 | 40.1     | 53.9     | 13.8   |        |
| Vert     | 7440.000  | AV       | 30.9    | 35.9     | 5.4  | 34.9 | 37.3     | 53.9     | 16.6   |        |
| Vert     | 9920.000  | AV       | 31.2    | 38.7     | 6.2  | 35.4 | 40.7     | 53.9     | 13.2   |        |

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter-Distance\ factor (above\ 10GHz)) - Gain (Amplifier)$ 

Distance factor: 10GHz-26.5GHz 20log(3.0m/1.0m)= 9.5dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Test report No. : 10105410H-B Page : 22 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### Tx DH5 2402MHz



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 23 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### Tx DH5 2402MHz



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 24 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### **Tx DH5 2441MHz**



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 25 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### **Tx DH5 2441MHz**



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 26 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### **Tx DH5 2480MHz**



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 27 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Spurious Emission**

### **Tx DH5 2480MHz**



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 28 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **Conducted Emission Band Edge compliance**

Tx DH5, Hopping off



Tx DH5, Hopping on



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 10105410H-B Test report No. Page : 29 of 33

**Issued date** : November 29, 2013 FCC ID : VIYARC0557

### 99%Occupied Bandwidth





### UL Japan, Inc. **Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 30 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

## 99%Occupied Bandwidth



4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10105410H-B Page : 31 of 33

Issued date : November 29, 2013 FCC ID : VIYARC0557

### **APPENDIX 2: Test instruments**

**EMI** test equipment

| Control No. | Instrument                           | Manufacturer     | Model No                    | Serial No      | Test Item | Calibration Date * Interval(month) |
|-------------|--------------------------------------|------------------|-----------------------------|----------------|-----------|------------------------------------|
| MAEC-02     | Semi Anechoic<br>Chamber(NSA)        | TDK              | Semi Anechoic<br>Chamber 3m | DA-06902       | RE        | 2013/06/30 * 12                    |
| MOS-22      | Thermo-Hygrometer                    | Custom           | CTH-201                     | 0003           | RE        | 2013/02/26 * 12                    |
| MJM-14      | Measure                              | KOMELON          | KMC-36                      | -              | RE        | -                                  |
| COTS-MEMI   | EMI measurement program              | TSJ              | TEPTO-DV                    | -              | RE        | -                                  |
| MSA-03      | Spectrum Analyzer                    | Agilent          | E4448A                      | MY44020357     | RE        | 2013/11/15 * 12                    |
| MTR-03      | Test Receiver                        | Rohde & Schwarz  | ESCI                        | 100300         | RE        | 2013/06/11 * 12                    |
| MBA-02      | Biconical Antenna                    | Schwarzbeck      | BBA9106                     | VHA91032008    | RE        | 2013/10/13 * 12                    |
| MLA-02      | Logperiodic Antenna                  | Schwarzbeck      | USLP9143                    | 201            | RE        | 2013/10/13 * 12                    |
| MCC-12      | Coaxial Cable                        | Fujikura/Agilent | _                           | -              | RE        | 2013/02/06 * 12                    |
| MAT-07      | Attenuator(6dB)                      | Weinschel Corp   | 2                           | BK7970         | RE        | 2012/11/06 * 12                    |
| MPA-09      | Pre Amplifier                        | Agilent          | 8447D                       | 2944A10845     | RE        | 2013/09/12 * 12                    |
| MRENT-112   | Spectrum Analyzer                    | Agilent          | E4440A                      | MY48250080     | RE        | 2013/10/04 * 12                    |
| MHA-06      | Horn Antenna 1-18GHz                 | Schwarzbeck      | BBHA9120D                   | 254            | RE        | 2013/02/15 * 12                    |
| MPA-10      | Pre Amplifier                        | Agilent          | 8449B                       | 3008A02142     | RE        | 2013/01/10 * 12                    |
| MHA-02      | Horn Antenna 18-<br>26.5GHz          | EMCO             | 3160-09                     | 1265           | RE        | 2013/02/15 * 12                    |
| MCC-141     | Microwave Cable                      | Junkosha         | MWX221                      | 1305S002R(1m)  | RE        | 2013/05/28 * 12                    |
|             |                                      |                  |                             | / 1204S062(5m) |           |                                    |
| MHF-06      | High Pass Filter 3.5-<br>24GHz       | TOKIMEC          | TF323DCA                    | 601            | RE        | 2013/05/30 * 12                    |
| MPM-09      | Power Meter                          | Anritsu          | ML2495A                     | 6K00003348     | AT        | 2013/10/21 * 12                    |
| MPSE-12     | Power sensor                         | Anritsu          | MA2411B                     | 011598         | AT        | 2013/10/21 * 12                    |
| MRENT-112   | Spectrum Analyzer                    | Agilent          | E4440A                      | MY48250080     | AT        | 2013/10/04 * 12                    |
| MCC-137     | Microwave cable                      | HUBER+SUHNER     | SUCOFLEX 102                | 37954/2        | AT        | 2013/10/18 * 12                    |
| MAT-24      | Attenuator(10dB)(above Agilent 1GHz) |                  | 8493C                       | 71389          | AT        | 2013/06/05 * 12                    |
| MOS-19      | Thermo-Hygrometer                    | Custom           | CTH-201                     | 0001           | AT        | 2012/12/25 * 12                    |

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission

**AT: Antenna Terminal Conducted test** 

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN