

Trivial source character table of $G \cong C70$ at p = 7:

Normalisers N_i

p-subgroups of G up to conjugacy in \mathfrak{c} Representatives $n_j \in N$ $x_{11} + 0 + x_{12} + 0 + x_{13} + 0 + x_{14} + 0 + x_{15} + 0 + x_{$ $\chi_{56} + 0 \cdot \chi_{56} + 0 \cdot \chi_{$ $7 \times E(5)^{2} - 7 \times$ $7 \times E(5)^{2} - 7 \times E(5)^{4} - 7 \times$ $7 \times E(5)^{2} - 7 \times E(5)^{4} - 7 \times$ $7 \times E(5)^{3} + 0 \times \chi_{35} + 0$ $\left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_{51} + 0 \cdot \chi_{52} + 0 \cdot \chi_{53} + 1 \cdot \chi_{54} + 0 \cdot \chi_{55} + 0 \cdot \chi_{56} + 0 \cdot \chi_{57} + 0 \cdot \chi_{58} + 0 \cdot \chi_{57} + 0$ $0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_{45} + 0 \cdot \chi_{4$ $\chi_{35} + 0 \cdot \chi_{36} + 0 \cdot \chi_{$ $0 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{1} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{$ -1 | 1 1 -1 1 -1 1 -1 1 -1E(5) 1 $E(5)^4$ $E(5)^{3}$ $E(5)^{2}$ E(5) | 1 $E(5)^4$ 1 $E(5)^3$ $E(5)^4$ $E(5)^2$ $E(5)^3$ E(5) $E(5)^2$ E(5) $E(5) \quad C_{33} + O_{13} + O_{$ $E(5)^4$ 1 E(5) $E(5)^{2}$ $E(5)^{3}$ $E(5)^4$ | 1 E(5) 1 $E(5)^2$ E(5) $E(5)^3$ $E(5)^2$ $E(5)^4$ $E(5)^3$ E(5) $E(5)^2 \\ + (1)^2 \\ + (2)^2 \\ + (3)^2 \\ + (3)^2 \\ + (3)^2 \\ + (3)^2 \\ + (3)^2 \\ + (4)$ $E(5)^{4}$ $E(5)^3$ 1 $E(5)^2$ E(5)E(5) $E(5)^2$ 1 $E(5)^3$ E(5) $E(5)^{4}$ $E(5)^4 \\ E(5)^4 \\ E$ E(5) -1 $-E(5)^4$ $-E(5)^{3}$ $-E(5)^2$ -E(5) | 1 $E(5)^4$ -1 $E(5)^3$ $-E(5)^4$ $E(5)^2$ $-E(5)^3$ E(5) $-E(5)^2$ -E(5) $E(5)^{2} - E(5)^{3} - E(5)^{4} - E(5)^{3} - E(5)^{4} - E(5)^{4}$

 $E(5)^{2} - E(5)^{4} - E(5)^{4}$

-E(5) $-E(5)^4$

 $-E(5)^2$ | 1 $E(5)^3$ -1 E(5) $-E(5)^3$ $E(5)^4$ -E(5) $E(5)^2$ $-E(5)^4$ -E(5)

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(8, 9, 10, 11, 12, 13, 14)]) \cong C7$

 $N_1 = Group([(1, 2), (3, 4, 5, 6, 7), (8, 9, 10, 11, 12, 13, 14)]) \cong C70$ $N_2 = Group([(1, 2), (3, 4, 5, 6, 7), (8, 9, 10, 11, 12, 13, 14)]) \cong C70$