

Open Source at OctoML

TVM Meetup 11/8/2019 Jared Roesch OctoML is a new company building DL deployment solutions using the Apache (incubating) TVM project.

A goal is to nurture the TVM community and contribute new infrastructure and features.

octoml.ai @octoml

Founding Team - The Octonauts

Luis Ceze
Co-founder, CEO
PhD in Computer Architecture
and Compilers
Professor at UW-CSE
Venture Partner, Madrona Ventures
Previously: IBM Research, consulting
for Microsoft, Apple, Qualcomm

Jason Knight
Co-founder, CPO
PhD in Computational
Biology and Machine
Learning
Previously: HLI,
Nervana, Intel

Tianqi Chen Co-founder, CTO PhD in Machine Learning Professor at CMU-CS

Thierry Moreau Co-founder, Architect PhD in Computer Architecture

Jared Roesch Co-founder, Architect (soon) PhD in Programming Languages

40+ years of combined experience in computer systems design and machine learning

Open Source at OctoML

- We are big believers in the power of open source
 - Sponsoring multiple employees to contribute to TVM.
- Today we'll touch on a few of those contribution areas:
 - Core Infrastructure Improvements to TVM
 - uTVM: support for microcontrollers in TVM
 - Virtual Machine and dynamic NNs support (w/ AWS folks)
 - Improved NLP support, with focus on transformers

Core Infrastructure Refactors

- New Integer Analysis Infrastructure
 - Supports the ability to handle nested division and modulus
 - Improves the ability to reason about and optimize loops
- Support for different integer division modes, floor division and truncating division.
- Unified Object and Node system for TVM runtime
 - Lays groundwork for improved multi-language support for exposing runtime, and IRs.

Unified Object Protocol

Easy to introduce new runtime objects (trees, graphs)

Direct access from other languages

μTVM Overview

AutoTVM on µTVM

Optimize TVM operators on microcontrollers by making use of AutoTVM

https://github.com/apache/incubator-tvm/pull/4274

Coming Soon to µTVM (Self-Hosted Models)

Transformer Improvements

Transformer based models such as BERT have recently become very popular and require first class support in TVM.

• What we've done:

- Extend the relay ONNX frontend to support all opset versions of BERT.
 - This enables importing of native ONNX models and those converted from Tensorflow.
- Improve scheduling of batch matrix multiplies.
 - Early autotuning templates improve performance by ~20%

What we're working on:

- BERT has many reshape operations, which are currently implemented using copy.
- This prevents most compute layers from being fused.
- Reshape could be implemented as a non-copying view instead.
- We want to add this form of view as a relay intrinsic to enable highly fused and optimized transformer models.

Virtual Machine

- Many improvements from contributors at UW, AWS, and OctoML.
- Initial implementation is quickly moving towards production quality.
 - VM compiler
 - VM runtime
 - VM serialization
 - Dynamic Shape Support
 - Dynamic Shape Allocation
 - Dynamic Shape Code generation
- Looking for more contributions in this part of the system!
- Haichen and I will discuss more details at TVMConf.

VM Memory Planning

- Recently shipped a first version of dynamic memory planning
 - https://github.com/apache/i ncubator-tvm/pull/3560
- Enables future optimizations and end-to-end dynamic memory planning, storage coalescing, memory re-use for loops, and offloading dynamic allocation to devices.

```
fn @main() -> Tensor[(k,), f32] {
   let t1: Tensor[(10,), f32] = ...;
   let t2: Tensor[(10,), f32] = ...;
   // Implicitly allocates
   add(t1, t2)
fn @main() -> Tensor[(k,), f32] {
   let t1 = ...;
   let t2 = ...;
   let s = alloc_storage(40, 64, f32);
   let out1 = alloc_tensor(s, (10,), f32);
   invoke_tvm_op(add, (t1, t2), (out1,));
   out1
```


VM Memory Abstractions

Acknowledgments

- The Apache(incubating) community members.
- ASF Mentors and PMC members who make this awesome project possible!
- AWS for hosting the first Bay Area meetup

Annual TVM Conference 2019

Organized and participated by community members

Thursday, December 5th Seattle WA

Register Today!

	•
9:00	Keynote and Community Update
10:00	TVM @ AWS – Yida Wang, Amazon
10:40	TVM @ FB – Andrew Tulloch and Bram Wasti, Facebook
11:10	break
11:40	Al Compilers at Alibaba – Yangqing Jia, Alibaba
12:10	Dynamic Execution and Virtual Machine, Jared Roesch and Haichen Shen, UW and AWS
12:30	Lunch (boxed lunches will be provided), contributors meetup
13:30	Building FPGA-Targeted Accelerators with HeteroCL – Zhiru Zhang, Cornell
14:00	TVM @ Microsoft – Jon Soifer and Minjia Zhang
14:20	TVM @ ARM
14:40	TVM @ Xilinx – Eliott Delaye
15:00	break
15:30	TVM @ OctoML – Jason Knight
15:50	TVM @ Qualcomm
16:10	Talk by Nilesh Jain, Intel Labs
16:30	Talk by Zhihao Jia, Stanford
17:00	Lightning talks session
	TensorCore and Tensorization – Siyuan Feng, SJTU
	uTVM: TVM on bare-metal devices – Logan Weber, UW
	TVM for ads ranking stack, opportunities and challenges – Hao Lu and Ansha Yu, Facebook
	TVM for edge computing platforms – Morita Kazutaka, NTT
	Efficient quantized inference on CUDA with TVM – Wuwei Lin, CMU
	Supporting TVM on RISC-V Architectures – Jenq-Kuen Lee, NTHU
	Integrating model pre-processing functionality into TVM – Abelardo Lopez-Lagunas, Latent Al
	Talk by Josh Fromm, OctoML
	More talks to be added
18:15 to 20:00	Social (drinks, food)

Questions?

We are hiring see octoml.ai for more details!