DFSA → RE

Intuition

- ▶ Let $A = (Q, \Sigma, \delta, s, F)$ be a DFA
- Create a RE R by eliminating states and replacing transition labels by more complex REs
 - ▶ For each accepting state $q \in F$, eliminate all states except s and q to get RE R_q
 - ▶ Overall RE for A is the union ("+") of R_q for all $q \in F$

Example 2.24 (cont'd)

Example 2.24 (cont'd)

Construction of RE for $\mathcal{L}(A)$

First, eliminate q_1 (we could have started with q_2):

ightharpoonup Next, eliminate q_2 :

$$\rightarrow (q_0) \xrightarrow{00 + (1+01)(01)^*(1+00)} (q_3) \rightarrow 0, 1$$

- $R_{q_3} = (00 + (1 + 01)(01)^*(1 + 00))(0 + 1)^*$
- ▶ Since q_3 is the only accepting state of A, $R = R_{q_3}$ satisfies $\mathcal{L}(R) = \mathcal{L}(A)$

DFSA \rightarrow RE (cont'd)

In general

- ▶ To eliminate state q, consider all states that have a transition into or from q
 - Note: possible for same state to appear on both sides (as s_k and t_l)
- For every pair s_i , t_j ,
 - ▶ let S_i be the RE labelling the transition $s_i \rightarrow q$
 - ▶ let T_j be the RE labelling the transition $q \rightarrow t_j$
 - let Q be the RE labelling the loop on state q (Q = Ø if there is no such loop)
 - ▶ let $R_{i,j}$ be the RE labelling the transition $s_i \rightarrow t_j$ ($R_{i,j} = \emptyset$ if there is no such transition)
- After the elimination of state q:
 - ► Label $R_{i,j}$ is replaced by $R_{i,j} + S_iQ^*T_j$
 - if $R_{i,j} = \emptyset$, this adds new transition $s_i \xrightarrow{S_i Q^* T_j} t_j$
 - ▶ if $Q = \emptyset$, " $S_iQ^*T_j$ " simplifies to S_iT_j

DFSA \rightarrow RE (cont'd)

Putting it all together

- ▶ For accepting state $q \in F$,
 - eliminate every state except q and initial state s
 - this includes other accepting states
 - ightharpoonup if q = s is the initial state, eliminate every state except q
 - ightharpoonup result is a RE R_q
- ► If $F = \{q_1, q_2, ..., q_k\}$
 - ightharpoonup do this separately for each accepting state to obtain REs $R_{q_1}, R_{q_2}, \ldots, R_{q_k}$
 - start with the entire DFA each time
 - final result $R_A = R_{q_1} + R_{q_2} + \cdots + R_{q_k}$
 - ightharpoonup claim: $\mathcal{L}(R_A) = \mathcal{L}(A)$

RE → NFSA

In general

- Define NFA based on recursive structure of RE
- ► Basic REs:
 - ► For Ø: →
 - ▶ For ε : →○
 - ► For all $\alpha \in \Sigma$: \longrightarrow \bigcirc
- Recursive REs:
 - ► For all REs R₁, R₂, let

be NFA such that $\mathcal{L}(A_1) = \mathcal{L}(R_1)$, $\mathcal{L}(A_2) = \mathcal{L}(R_2)$

RE → NFSA (cont'd)

► Recursive constructions (cont'd):

Closure properties for Regular languages

What is "closure"?

- ▶ The property of a set to be closed under certain operations
- ► In this case what *language* operations can we apply to regular languages, to create new languages that are still regular?
- ► Set operations (union, intersection, complement)? Yes
- ► Concatenation, Kleene star, exponentiation (for **fixed** exponents)? Yes

Example 2.25

▶ Suppose $L \subseteq \{0, 1, 2\}^*$ is regular, show that L' is also regular, where

$$L' = \{ w \in \{0, 1, 2\}^* : w = 1x \text{ for some } x \in L, \text{ or } w = 0x \text{ for some } x \in \overline{L} \}$$

► Can be argued based on FSA (i.e., DFA or NFA) or based on REs

Example 2.25 (cont'd)

FSA-based argument

- ▶ By definition, there exists a DFA $A_1 = (Q_1, \{0, 1, 2\}, \delta_1, s_1, F_1)$ such that $\mathcal{L}(A_1) = L$
- Since L is regular, so is \overline{L} , so there also exists a DFA $A_2 = (Q_2, \{0, 1, 2\}, \delta_2, s_2, F_2)$ such that $\mathcal{L}(A_2) = \overline{L}$
- ► Create a DFA $A = (Q, \{0, 1, 2\}, \delta, q_0, F)$ as follows:
 - ► $Q = \{q_0\} \cup Q_1 \cup Q_2$ (relabel states in Q_1 and Q_2 if necessary, so $q_0 \notin Q_1 \cup Q_2$ and $Q_1 \cap Q_2 = \emptyset$)
 - ▶ $\delta(q_0, 1) = s_1$, $\delta(q_0, 0) = s_2$, $\delta(q, \alpha) = \delta_1(q, \alpha)$ for all $q \in Q_1$, $\alpha \in \{0, 1, 2\}$, $\delta(q, \alpha) = \delta_2(q, \alpha)$ for all $q \in Q_2$, $\alpha \in \{0, 1, 2\}$
 - $ightharpoonup F = F_1 \cup F_2$
- ▶ Then, A accepts w iff
 - \blacktriangleright w = 1x for some string x accepted by A_1 , or
 - w = 0x for some string x accepted by A_2
- ▶ In other words, $\mathcal{L}(A) = L'$

Example 2.25 (cont'd)

RE-based argument

- ▶ By definition, there exists a RE R_1 over $\{0, 1, 2\}$ such that $\mathcal{L}(R_1) = L$
- ▶ Since *L* is regular, so is \overline{L} , so there also exists a RE R_2 such that $\mathcal{L}(R_2) = \overline{L}$
- ► Then, $R' = 1R_1 + 0R_2$ is also a RE over $\{0, 1, 2\}$ and

$$\mathcal{L}(R'') = \mathcal{L}(1R_1) \cup \mathcal{L}(0R_2)$$

$$= (1 \cdot \mathcal{L}(R_1)) \cup (0 \cdot \mathcal{L}(R_2))$$

$$= (1 \cdot \mathcal{L}) \cup (0 \cdot \overline{\mathcal{L}})$$

$$= \mathcal{L}'$$

Does this mean **every** language is regular?...

Example 2.26: Is $L_0 = \{a^n b^n : n \in \mathbb{N}\}$ regular?

Explore

- Q: Why does $\mathcal{L}(a^*b^*) \neq L_0$? A: a^*b^* allows non-equal numbers of a's and b's
- lssue: using a fixed number of states to keep track of an arbitrary number of α 's
- ► Conjecture: *L*₀ is not regular
- ► How do we prove this?
- ▶ Idea: prove no DFA recognizes exactly L_0 , i.e., for all DFA A, $\mathcal{L}(A) \neq L_0$
- ▶ In other words, every DFA "makes a mistake": either some string in L_0 is rejected by the DFA, or some string not in L_0 is accepted by the DFA
- ightharpoonup Logically equivalent to proving every DFA that accepts all strings in L_0 also accepts some string not in L_0

Example 2.26 (cont'd)

Proof

- Let $A = (Q, \Sigma, \delta, s, F)$ be an arbitrary DFA
- ▶ Assume A accepts every string in L_0 ($L_0 \subseteq \mathcal{L}(A)$)
 - Note: assumption says nothing about the strings rejected by A
- Let K = |Q| (number of states of A)
- ► Consider computation of A on input $w = a^{K+1}b^{K+1}$
- ▶ Because w contains more a's than number of states in A, computation must go through at least one state twice while processing only a's
- ▶ In other words, there is some state $q \in Q$ and some $1 \le i \le K$ such that $\delta^*(q, \alpha^i) = q$
- ▶ When *A* is in state *q*, it has no way to know how many times it has been through this state before
- ► Since A accepts w (by assumption), A must also accept $w' = a^{K+1+i}b^{K+1}$ by repeating the loop from state q back to itself one more time
- ► Since $i \ge 1$, $a^{K+1+i}b^{K+1} \notin L_0$, so $\mathcal{L}(A) \ne L_0$

Observations on Regular Languages

In general

- ▶ If $L \subseteq \Sigma^*$ is regular, then $L = \mathcal{L}(A)$ for some DFA A
 - ightharpoonup A accepts every $w \in L$
 - ► A rejects every $w \in \overline{L} = \Sigma^* L$
 - ▶ Note: A is fixed—the same A makes the correct decision for every input w
- let p be the number of states of A
- ▶ let $w \in L$ be a string with |w| > p
 - Q: does such a string always exist?
 - A: not necessarily: L could be finite
- What happens when A processes w?
 - at least one state is repeated at least once
 - in other words, the path taken by A contains a loop
 - ▶ let x be the part of w processed before the loop, y the part processed during the loop, and z the part processed after the loop
 - ▶ then A accepts not only w = xyz, but also xz (do not take the loop), xy^2z (take the loop twice), xy^3z (take the loop three times), . . .

The Pumping Lemma

Theorem 2.27: Pumping Lemma

- ► For all regular languages $L \subseteq \Sigma^*$,
- ▶ there exists a positive integer $p \in \mathbb{Z}^+$ such that
- ▶ for every string $w \in L$ with $|w| \ge p$
- ▶ there are sub-strings $x, y, z \in \Sigma^*$ such that
 - \triangleright w = xyz,
 - ► $|xy| \leq p$,
 - $|y| \ge 1$, and
 - $ightharpoonup xy^iz \in L \text{ for all } i \in \mathbb{N}.$

Discussion

- Preceding slide contains high-level proof idea
- Imposes a condition on the structure of all "long enough" strings in L
- What if L does not contain such strings?
 - Can only happen if L is finite
 - Lemma is still true for p larger than the length of a longest string in L

How does this help?

Pumping Lemma: applies to **all** regular languages

- ▶ For all regular languages $L \subseteq \Sigma^*$,
- ▶ there exists $p \in \mathbb{Z}^+$ such that
- ▶ for every string $w \in L$ with $|w| \ge p$
- ▶ there are $x, y, z \in \Sigma^*$ such that
 - \triangleright w = xyz and
 - $|xy| \leq p$ and
 - $|y| \ge 1$ and
- ► $xy^iz \in L$ for all $i \in \mathbb{N}$.

Application: proving language L non-regular (by contradiction)

- ► Assume $L \subseteq \Sigma^*$ is regular
- ▶ let $p \in \mathbb{Z}^+$ (arbitrary)
- ▶ choose $w \in L$ with $|w| \ge p$
- ▶ let $x, y, z \in \Sigma^*$ (arbitrary) such that
 - \blacktriangleright w = xyz and
 - ► $|xy| \le p$ and
 - $|y| \ge 1$, then
- ▶ choose $i \in \mathbb{N}$ such that $xy^iz \notin L$.

Example 2.28: $L_0 = \{0^n 1^n : n \in \mathbb{N}\}$

Proof

- Assume L₀ is regular
- ▶ Let $p \in \mathbb{Z}^+$
- Let $x, y, z \in \{0, 1\}^*$ such that
 - \triangleright w = xyz,
 - ► $|xy| \leq p$,
 - |y| ≥ 1
- ► Then xy consists entirely of 0's so $y = 0^k$ for some k > 0
- ► This implies $xy^2z = 0^{p+k}1^p \notin L_0$