Synthetic Data and Graphics Techniques in Robotics

Prabindh Sundareson, 2022

National Symposium on Trends and Developments in Intelligent Systems & Robotics (TD-ISR'22)

PES University Bangalore

Agenda

- Role/Definition of Data
- Types of Data Random, Time, 2D, 3D
- Graphics techniques Applications in Intelligent systems design
- Part 1 Synthetic data and 3D processing in Navigation
- Part 2 Synthetic data and 2D objects in Vision processing
- Challenges
- Conclusion

Role of Data in Intelligent systems

- Function (task) Learning
 - Fit a given set of data points to a function (generator)
- Feature Understanding
 - How relevant is a feature, correlations across features
- Forecasting
 - Probability of an event occurring, given some data
- And so on ...

In Machine Learning, training with more data has led to better results

What is Data?

- Simplest "Random number"
 - Also, time series, etc

- import sklearn.datasets as dt

 RANDOM_SEED = np.random.randint(2 ** 10)
- dt.make_multilabel_classification

What is Data (continued)

- Onto 2D data What processing is involved?
 - Annotated images for image classification
 - Labelled (bounding-box) images for object detection
 - Segmented (pixel-wise) images for object segmentation
- These activities require effort!
 - Currently being solved with human effort

What is Data (Continued)

- Onto 3D data What type of data?
 - LiDAR point-clouds
 - Orientation data
 - 3D Meshes ...

 As dimensions increase, the data, annotations /ground-truth generation gets more complex

Synthetic Data =

Data generated with the aid of algorithms

Why synthetic data – In summary

Cost and speed of acquisition and annotation (ground-truth – boxing/labelling, segmentation)

- Privacy issues
- Consequences are virtual
 - Ex Robots in Medical systems
- Ability to configure coarse to fine features
 - Ex, In object detection
 - ball vs non-ball (coarse), ball vs what-type-of-ball (fine features)

What if, we could solve both problems – Data generation, and Annotation, together?

Synthetic Data Vault https://sdv.dev

Data in 2D and 3D — Topics in Robotics and Graphics

Topic\Field	Robotics field	Graphics field			
Efficient 3D processing	3D points - Localisation and mapping in Robotics	Synthetic data/ conversions/generation in rendering 3D meshes			
Kinematics	Movement control in Robotics	Animation in Graphics Rendering			
Pose	Pose estimation for orientation detection in Robotics	Animation transfer to arbitrary 3D meshes			

Part 1 - Robotics Navigation and 3D processing

- How do intelligent systems navigate an unknown area?
 - On-board sensors, on-board analysis
 - Satellite connectivity, external inputs
 - Sensors on UAV/drones, combined inputs
- Onboard sensors Radar, LiDAR, ToF, Stereo cam, depth, IMU ...
 - Obtain 3D map of the environment
- Flow
 - Sensor → Data preprocessing (Ground plane, align)
- What can we do with a Point-cloud?
 - SLAM (Simultaneous Localisation and Mapping)
 - Registration, Loop closure etc ..
- What else?

What "else" can be done with a Point-Cloud?

• Learn "Geometry" via Signed Distance Field

https://www.youtube.com/watch?v=XuSnLbB1j6E

"A Volumetric Method for Building Complex Models from Range Images", Curless and Levoy, 1996

"DemoScene" in popular art sub-culture

Implicit Representations in SDF

Steps

- 1. Raymarching step by step
- 2. Surface hit ? \rightarrow Angle of ray, normals

SDF of circle (r=1) $f(x,y,z) = \operatorname{sqrt}(x2+y2+z2)-1$

Why SDF? Some commonalities

- Concepts of
 - "distance" Similar in 3D rendering and Robotics navigation
 - "operations" union, intersection etc (ex the Snail)
- Robotics Distance provided by a sensor, ex LiDAR, or learnt from RGB
- Application to Robotics "Signed Distance Fields: A Natural Representation for Both Mapping and Planning" – Oleynikova et al, 2016
- How do we generate the SDF!!

*https://www.youtube.com/watch?v=bMhR-UYIKqU - 3D Surface Reconstruction Using a Generalized Distance Function, 2016, Microsoft Research

- * Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes Towaki et al 2021
- * DeepSDF Learning Continuous Signed Distance Functions for Shape Representation, Jeong Park et al, 2019
- * On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes Thomas Davies et al, ICML 2021 (https://github.com/u2ni/ICML2021)
- * Neural-Pull, Ma et al, ICML 2021 https://github.com/mabaorui/NeuralPull-Pytorch, learns directly from 2D-images, does not require ground truth SDF

^{*} Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision – Niemeyer et al, CVPR 2020

(a) SDFs from LiDAR (using neural networks)

- Learn SDFs directly from LiDAR point clouds
- "Learning Deep SDF Maps Online for Robot Navigation and Exploration" Camps et al, 2022
 - Neural network to regress SDF (per-frame) from LiDAR data
 - Hausdorff distance between successive SDFs used to determine mapping changes
 - Optimization steps applied for generating navigation stages

(b) SDFs from RGB images/Silhoutte (using neural networks)

"SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images", Lin et al, 2020 Overview Approach **Question:** What data is needed for neural networks 2D distance transform map 3D representation: SDF to learn 3D object reconstruction? 2D pixel coordinates (signed distance functions) 2D distance transform $f(\mathbf{x}) = 0$ 3D shape image dense pixel-wise geometric supervision 0 (shape from silhouettes) ✓ dense continuous surfaces arbitrary shape topologies We derive lower bounds on the SDF value of a free-space 3D point from the corresponding 2D pixel. 3D SDF 3D CAD models ower bound A valid 3D SDF should satisfy $f(z\bar{\mathbf{u}}) \geq b(z;\mathbf{u})$ everywhere! $b(z; \mathbf{u})$ 3D annotation is expensive and unscalable! We might not even know what the 3D ground truth is! $zar{\mathbf{u}}$ homogeneous coordinates image plane depth (z = 1)We predict RGB colors of each pixel with differentiable ray-marching from SRN[1]. camera Rendering the RGB colors help resolve center shape ambiguities even from single views!

Annotating 2D silhouettes is more scalable!

Tool - Differentiable Rendering for training

- "Differentiable rendering can be used to optimize the underlying 3D properties, like geometry and lighting, by backpropagating gradients from the loss in the image space"
 - "Learning to Estimate 3D Object Pose from Synthetic Data", Zakharov, 2020
- Tools:
 - Kaolin A Pytorch Library for Accelerating 3D Deep Learning Research
 - Ex Fit a 3D bounding box around a 2D image
 - Example Kaolin link
 - Ex Classification using point-cloud directly
 - https://colab.research.google.com/drive/1DoBIEt0G

Part 2 - Synthetic Datasets from 3D Games

- Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception – Hurl et al, 2019
 - From Grand Theft Auto V (game)
 - By scanning the "depth" buffer
 - 50k+ HD images with
 - full resolution depth information,
 - semantic segmentation (images),
 - point-wise segmentation (point clouds), ground point labels (point clouds), and detailed annotations for all vehicles and people
 - Improvement of up to 5% average precision on the KITTI 3D Object Detection
- Others https://paralleldomain.com/

Don.riccobene

Synthetic 2D Datasets by Augmentation

- Augmentation = Add data by applying operations on existing images
- Augmentation can improve accuracy / robustness on Vision tasks

N f . f . f	Chattattaa	without	with Augmentation			
Metrics	Statistics	Augmentation	One-Shot	Two Shot		
	Mean	78.62	99.07	99.34		
A course ov (9/)	Min	63.59	97.35	98.87		
Accuracy (%)	Max	91.16	99.7	99.80		
	STD	7.89	0.72	0.34		
	Mean	81.06	98.85	99.35		
Precision (%)	Min	72.61	95.45	98.66		
	Max	90.31	99.77	99.66		
	STD	6.29	1.40	0.33		
	Mean	91.85	99.71	99.74		
Decall (9/)	Min	78.28	99.09	99.43		
Recall (%)	Max	99.32	100	100		
	STD	7.57	0.36	hot Two Shot 7 99.34 5 98.87 99.80 0.34 5 99.35 5 98.66 7 99.66 0.33 1 99.74 99.43 100 0.25 8 99.54 7 99.83		
	Mean	85.91	99.28	99.54		
E1 Capro (9/)	Min	75.34	97.67	99.21		
F1-Score (%)	Max	94.03	99.77	99.83		
	STD	5.28	0.66	0.23		

Robertas Damaševičius et al, 2021

(a) 2D Image Augmentation in Frameworks

Examples from TensorFlow

https://www.tensorflow.org/api_docs/python/tf/image

PyTorch

random_crop = torchvision.transforms.RandomCrop(size)
fivecrop = torchvision.transforms.FiveCrop(size)
horizontal_flip = torchvision.transforms.RandomHorizontalFlip()
vertical_flip = torchvision.transforms.RandomVerticalFlip()
random_persp = torchvision.transforms.RandomPerspective()
random_jitter = torchvision.transforms.ColorJitter()
normalize = torchvision.transforms.Normalize([0, 0, 0], [1, 1, 1])
https://pytorch.org/vision/main/transforms.html

Tools in industry:

Roboflow, CVEDIA (Synthetic data) ...

Optimal 2D augmentation for object detection

- 1. Small original set of n-class representative images = input
- 2. Perform augmentation on original n-class images at runtime
- 3. 2D rectangle packing into larger canvas at runtime (dynamically)
- 1. Multiple augmentation-packing steps results in combined canvas images
- 6. Multiple-classes in one image reduces storage requirements significantly

Augmented + multi-class combined-canvas image

```
▼<annotation>
 ▼<obiect>
    <difficult>0</difficult>
    <name>1</name>
   ▼ <bndbox>
      <xmin>5</xmin>
      <ymin>5
      <xmax>55</xmax>
      <ymax>37</ymax>
    </bndbox>
   </object>
 ▼ <object>
    <difficult>0</difficult>
    <name>0</name>
   ▼ <bndbox>
      <xmin>70</xmin>
      <ymin>5</ymin>
      <xmax>120</xmax>
      <ymax>34</ymax>
    </bndbox>
   </object>
 ▼<object>
    <difficult>0</difficult>
    <name>2</name>
   ▼ <bndbox>
      <xmin>5</xmin>
      <ymin>49
      <xmax>30</xmax>
      <ymax>77</ymax>
    </bndbox>
  </object>
   <filename>"C:\Users\psundareson\Downl
 ▼<size>
    <width>416</width>
    <height>416</height>
    <depth>3</depth>
   </size>
 </annotation>
```

Example multi-object augmented output (Pascal VOC format)

(b) Synthetic Data for Recognition – from 3D

- "An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object Instance Detection." –
 - Hinterstoisser et al, Google Al, 2019 (Generate 2D images from 3D)

Synthetic Data – for Drone Flight Controls

- AirSim works as a flight simulator for drones
- Built as Unreal Engine plugin
- Allows drone producers to train their machines to work in risky and dangerous places.
- Roadmap to Autonomous driving
- "Aerial Informatics and Robotics Platform", Microsoft Research, https://www.microsoft.com/en-us/research/project/aerial-informatics-robotics-platform/

Challenges in Synthetic Data (Object detection)

- Appearance gap
 - Pixel differences, lighting, shadows, textures, ...
- Content gap
 - Missing/ new objects

- Domain Randomization from Synthetic data to real world data
 - https://www.youtube.com/watch?v=O6KEKI3abl0&t=11s
 - "Evaluation of Domain Randomization Techniques for Transfer Learning" – Grun et al, 2019
 - Brings results close to real-world datasets

2) random camera

3) random grasp box

Future of Synthetic Data

- Definite improvements in performance in current use-cases
- Much of the data today is encoded for the "man-in-the-middle"
 - Ex, Traffic signs
- Possible to generate and train on synthetic data
 - That may be more efficient for Robotics
 - Ex, glyphs that encode much more data than human-readable-signs
 - More efficient for storage (or even no-storage, if metadata is stored)
- Synthetic Data could become the "real" data for Intelligent systems of the future

Conclusion

- Synthetic Data is valuable, not just for augmentation purpose, but also increases the overall robustness of recognition systems
- New techniques like online-SDF learning (using differentiable rendering) can increase the capabilities of robotics systems to learn from surroundings
- Possibility of machine learning without intermediate human involvement or "interpretation" step

Backup - Resources for Vision/Compute/Data

- OpenCV
- VPI Vision Programming Interface (VPI)
 - https://developer.nvidia.com/embedded/vpi
- Robotics Simulators Gazebo, Webots, Isaac (ROS adaptation)
- SDF Datasets FAMOUS, ABC
- 3D Model datasets ModelNet10, 40
- SDFs introduction
 - https://www.youtube.com/watch?v=8--5LwHRhjk
 - https://jasmcole.com/2019/10/03/signed-distance-fields/
 - http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
 - http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/04 Surface Reconstruction.pdf
- Raymarching Procedural generation of images
 - Introduction https://www.youtube.com/watch?v=PGtv-dBi2wE
 - https://iquilezles.org/articles/raymarchingdf/
 - https://www.shadertoy.com/view/WsSBzh
 - https://www.shadertoy.com/view/3lsSzf
- "Neural RGB-D Surface Reconstruction" Azinovic et al, CVPR 2022

Neural Radiance Fields

- Radiance a differential opacity controlling how much radiance is accumulated by a ray passing through (x, y, z)
- Utilises Differentiable volume rendering, ray marching
- "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", MildenHall et al, ECCV 2020 (https://github.com/bmild/nerf)
 - Represent a continuous scene as a 5D vector-valued function whose input is a 3D location x = (x, y, z) and 2D viewing direction (θ, ϕ) , and whose output is an emitted color c = (r, g, b) and volume density σ

Instant NeRF - network

- Network configuration ?
- Uses Huber Loss
- Requires camera position

 NeRF networks with joint optimization for camera position ie operating only on image frames also emerging

Instant NeRF training

• 2 seconds!

COLMAP steps

- 1. Feature detection and extraction
- 2. Feature matching and geometric verification
- 3. Structure and motion reconstruction
 - up vector was [-0.90487011 0.10419316 0.41273947]
 - computing center of attention...
 - [-12.27771833 1.27148092 -0.09314177]
 - avg camera distance from origin 12.701290776903985
 - 55 frames
 - writing transforms.json

Adoption of feature-encoding layers

- As applicable to "Coordinate networks"
- "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains" – Tancik et al, 2020
 - Concept of Neural Tangent Kernels (NTK)
- Faster convergence
- Examples
- https://colab.research.google.com/github/ndahlquist/pytorch-fourier-feature-networks/blob/master/demo.ipynb

Differentiable Volume Rendering

- Makes a mesh "learnable" from the sensor data
 - LiDAR data
- Eikonal Equation

Learns a SDF

Animation - Thaumatrope

Core Techniques 3 - Inverse Kinematics

- Find valid orientations for intermediate joints, given an end position
- Gradient Descent (cyclic coordinate descent(CCD))

• Deep Reinforcement Learning (DDPG) approaches

Image courtesy IIITH

Armature and Bones

Blender – Armature (Skeleton) controls the character movement (rigging)

TABLE 1. Feature comparison between popular robotics simulators.

Simulator	RGBD + LiDAR	Force Sensor	Linear + Cable Acutator	Multi-Body Import	Soft-Body Contacts	DEM Simulation	Fluid Mechanics	Headless Mode	ROS Support	HITL	Teleoperation	Realistic Rendering	Inverse Kinematics
Airsim	✓	×	×	×	×	×	×	✓	✓	✓	✓	√, unreal	×
CARLA	✓	×	×	X	×	×	×	\checkmark	✓	×	✓	√, unreal	×
CoppeliaSim	√	✓	Linear only	✓	×	✓	×	✓	✓	✓	✓	×	✓
Gazebo	✓	✓	Linear only	✓	×	Through Fluidix	Through Fluidix	✓	✓	✓	✓	×	✓
MuJoCo	√	✓	✓	✓	✓	✓	Limited	✓	×	HAPTIX only	HAPTIX only	×	×
PyBullet	✓	✓	Linear only	✓	✓	✓	×	✓	×	×	✓	×	✓
SOFA	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	√, Unity	×
UWSim	RGBD only	✓	×	✓	×	×	×	✓	✓	✓	✓	√, custom	×
Chrono	✓	✓	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	X	×	\checkmark	\checkmark , offline	\checkmark
Webots	√	✓	linear	\checkmark	×	×	Limited	✓	✓	X	\checkmark	×	×

A Review of Physics Simulators for Robotic Applications – Collins et al, 2021

Intelligence for Autonomous Agents

- Ex Minecraft
 - Survival
 - Harvest
 - Combat
- Training with 750,000 Minecraft YouTube videos, scraping from Minecraft Wiki, ...
- Tasks
 - Programmatic tasks
 - Creative tasks.
- https://github.com/MineDojo/MineDojo

2D-3D

- EG3D: Efficient Geometry-aware 3D Generative Adversarial Networks
 - Chan et al, 2022
- Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs

Topic 2 - Pose

- Important for gripping in Robotics
- PVN3D 3D keypoint estimator from 2D images
- Trained via Synthetic data, won 2nd in OCTOC challenge

Pose in Graphics Animation

- 2D video to 3D avatars
 - Translate pose in 2D to any 3D object

Steps

- Body-pose estimation (2D)
 - Similar techniques as in Robotics, applied to human body landmarks
- 2D to 3D mapping
- Map to synthetic object's keypoints
 - Mapping can be innovative and depends on the use-case

SDF from point clouds (Traditional)

- (CSCI 621: Digital Geometry Processing), 2019
- Construct SDF from point samples Distance to points is not enough
 - Need inside/outside information
 - Requires normal vectors
 - Examine local neighborhood for each point
 - • Compute best approximating tangent plane, covariance, MST tree construction,...
- Implicit Reconstruction Estimate signed distance function (SDF)
 Extract Zero isosurface by Marching Cubes
 Approximation of input points
 Result is closed two-manifold surface

Does data change?

• Early stage research vs productization challenges

- Conditions for data
 - Sufficiency and relevancy
- Data needs to be relevant to the task
- Some data = static datasets
- Production goals demand new data, continuous training

Types of Synthetic Data

- Time-series (Movement, Distance, Sensory, ..)
- Visual data
 - Augmented Natural Data
 - Rotated, Resized, color ranges, Blurred, Lit, ...
 - Synthetic Data
 - Generated by simulations (ex Robotic movements)
 - Generated by Graphics API (ex Synthetic face/body, animation)
 - Combined
 - Generated by human in a virtual environment
 - ex Flight simulators

Synthetic data generation

- "Act against Multiplication" 1404 Law, outlawing "synthetic creation" of gold and silver, Britain
- Today, we can realistically generate any data (almost)
 - Sensor Data (Gazebo, Webots.. simulators)
 - Visual Data (Unity, UE, Omniverse, ..)
 - Columnar Data (numpy, SDV, Gretel ..)
- Synthetic != Fake, has to match the use-case

DALL-E-2

LiDAR vs Depth

- LiDAR more accurate, but object segregation difficult
- A fusion of depth, RGB required for good results in both navigation and detection use-cases