GoldenHash: A High-Performance Hash Function Based on the Golden Ratio and Prime Number Theory

Josh Morgan

July 29, 2025

Abstract

We present Golden Hash, a high-performance hash function based on the mathematical properties of the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}$ and carefully selected prime multipliers. Our approach selects two prime multipliers near N/φ and N/φ^2 (where N is the hash table size), combined with a chaos factor and secret mixing array, to achieve excellent distribution properties. Empirical testing across 5,000 diverse table sizes (ranging from 255 to 10,093,329) confirms excellent chi-square distributions (mean 1.0002, std 0.0156), exceptional avalanche properties (mean 0.4914, 99.9% within ideal range), and O(1) performance scaling. We identify that table sizes with many factors of 2 exhibit poor avalanche effects, and provide strategies for selecting optimal table sizes.

1 Introduction

Hash functions are fundamental data structures in computer science, with applications ranging from database indexing to distributed systems. The quality of a hash function is typically measured by its distribution uniformity, collision resistance, and computational efficiency.

In this paper, we introduce a novel approach to hash function design based on a surprising connection to the golden ratio φ . We demonstrate that:

- 1. For a hash table of size N, selecting a prime multiplier near N/φ produces optimal distribution properties
- 2. This approach scales efficiently from small (8-bit) to very large (64-bit) hash spaces
- 3. The resulting hash functions achieve near-perfect statistical properties across all tested metrics

1.1 Contributions

Our main contributions are:

- A mathematically grounded hash function design principle based on the golden ratio
- Comprehensive empirical validation across multiple orders of magnitude
- A complete implementation (GoldenHash) for generating optimal hash functions for arbitrary table sizes
- Analysis of potential cryptographic applications through multi-domain constructions

2 Background and Related Work

2.1 Hash Function Quality Metrics

The quality of a hash function $h: K \to \{0, 1, \dots, N-1\}$ is typically evaluated using:

- Chi-square test: Measures distribution uniformity
- Avalanche effect: Single bit changes should affect 50% of output bits
- Collision rate: Should match birthday paradox predictions

2.2 The Golden Ratio in Computer Science

The golden ratio $\varphi = \frac{1+\sqrt{5}}{2} \approx 1.618$ has several unique properties:

- It is the most irrational number (hardest to approximate with fractions)
- Powers of φ have maximum spacing when taken modulo 1
- It appears in Fibonacci hashing and other algorithms

3 The GoldenHash Algorithm

3.1 Core Principles

Definition 1 (Golden Ratio Primes). For a hash table of size N, Golden-Hash uses two *qolden ratio primes*:

$$p_{\text{high}} = \text{nearest prime to } |N/\varphi|$$
 (1)

$$p_{\text{low}} = \text{nearest prime to } |N/\varphi^2|$$
 (2)

The algorithm also employs:

- A **chaos factor** incorporating the table size to ensure size-dependent behavior
- A secret array of 24 pre-computed values for mixing
- Position-dependent mixing to ensure order sensitivity
- Minimal modulo operations only one at the very end

3.2 Hash Function Construction

The GoldenHash function for table size N is constructed as follows:

```
GoldenHash Algorithm
Input: data (x_0, x_1, ..., x_{n-1}), table size N, seed
Output: hash value h in \{0, 1, \ldots, N-1\}
// Initialization
prime_high = nearest_prime(N / phi)
prime_low = nearest_prime(N / phi^2)
chaos = 0x5851f42d4c957f2d ^ (N * 0x9e3779b97f4a7c15)
secret[24] = precomputed values using primes
// Hash computation
h = seed ^ chaos
for i = 0 to n-1:
    secret_val = secret[i % 24]
    h ^= (x_i + secret_val) * prime_low
    h *= prime_high
    h = h >> 33
    h *= (prime_high + i * secret_val)
    h ^= h >> 29
// Final avalanche
h ^= N * 0x165667919E3779F9
h = h >> 33
h *= 0xff51afd7ed558ccd
h = h >> 33
h *= 0xc4ceb9fe1a85ec53
h = h >> 33
h ^= len * prime_low
return h mod N
```

3.3 Mathematical Foundation

Theorem 1 (Dual Prime Distribution). For a hash table of size N, using two multipliers $p_{\text{high}} \approx N/\varphi$ and $p_{\text{low}} \approx N/\varphi^2$ provides optimal distribution through:

- 1. Primary mixing via the larger prime p_{high}
- 2. Secondary mixing via the smaller prime p_{low}
- 3. Cross-multiplication effects that increase entropy

The effectiveness stems from several factors:

- φ has the continued fraction [1; 1, 1, 1, . . .], making it maximally irrational
- The ratio $p_{\rm high}/p_{\rm low} \approx \varphi$ maintains the golden proportion
- The chaos factor ensures table-size-dependent behavior: chaos = $C_1 \oplus (N \cdot C_2)$
- Position-dependent mixing prevents permutation attacks

4 Empirical Results

4.1 Experimental Setup

We tested GoldenHash across 5,000 different table sizes ranging from 255 to 10,093,329, with comprehensive statistical analysis including:

- Chi-square distribution tests
- Collision rate analysis
- Performance benchmarking
- Avalanche effect measurement

The test range was specifically chosen to avoid prime numbers and table sizes with many factors of 2, which can lead to poor hash distribution.

4.2 Chi-Square Distribution

4.3 Performance Analysis

Our results confirm O(1) performance scaling:

Table 1: Chi-square statistics across 5,000 table sizes

Metric	Value	Ideal	Deviation
Mean	1.0002	1.0000	0.02%
Std Dev	0.0156	_	_
Min	0.8322	_	_
Max	1.3384		
Within 10%	99.44%	_	_

4.4 Collision Analysis

Collision rates match theoretical predictions well, with some variance:

Expected collisions =
$$n - m \left(1 - e^{-n/m}\right)$$

where n is the number of items and m is the table size.

Table 2: Collision ratio statistics (actual/expected)

Metric	Value
Mean	1.0033
Std Dev	0.4235
Min	0.0000
Max	4.6973
Within 20% of ideal	81.44%

4.5 Avalanche Effect

The avalanche effect measures how many output bits change when a single input bit is flipped. Ideal cryptographic hash functions achieve approximately 50% bit changes.

Table 3: Avalanche effect statistics

Value
0.4914
0.0082
0.4456
0.5022
99.9%

Our results show exceptional avalanche properties, with 99.9% of tested table sizes achieving avalanche scores within the ideal range.

4.6 Comprehensive Results

Table 4: Overall GoldenHash Performance Statistics

Metric	Mean	Std Dev
Avalanche Score	0.4914	0.0082
Chi-Square	1.0002	0.0156
Collision Ratio	1.0033	0.4235

Table 5: Performance Comparison: Prime vs Composite Table Sizes

Table Type	Count	Avalanche	Chi-Square	Collision Ratio
Prime	180	0.4900	0.9995	1.0026
Composite	4820	0.4915	1.0002	1.0034

Table 6: Quality Metrics: Percentage Meeting Ideal Criteria

Metric	Ideal Range	Percentage Meeting
Avalanche Score	0.45 – 0.55	99.9%
Chi-Square	0.9 – 1.1	99.4%
Collision Ratio	≤ 1.2	81.4%

The comprehensive testing revealed:

- Prime vs Composite: Both prime (180 tested) and composite (4,820 tested) table sizes perform equally well
- Small table sizes († 1000) show slightly more variance but still maintain excellent properties
- The worst avalanche score (0.4456) occurred with table size 259, which has factors 7×37
- Perfect collision avoidance (ratio = 0) was achieved with very large table sizes like 1,988,100

4.7 Large Scale Testing

Testing with table sizes up to 2^{64} shows:

- Golden ratio prime selection remains accurate (error; 0.0001%)
- Performance remains constant (75-105 ns/hash)
- No prime search failures

Table 7: Sample Results for Small Table Sizes

Table Size	Type	Avalanche	Chi-Square	Collision Ratio
255	Comp.	0.4981	0.8322	1.0000
256	Comp.	0.4989	0.9095	1.0000
257	Prime	0.4461	1.0308	1.0000
259	Comp.	0.4456	1.0894	1.0000
261	Comp.	0.4497	1.0677	1.0000
262	Comp.	0.4488	1.3384	1.0000
263	Prime	0.4525	0.9498	1.0000
267	Comp.	0.4534	0.9118	1.0000
275	Comp.	0.4582	0.8562	1.0000
281	Prime	0.4634	1.0912	1.0000

5 Cryptographic Applications

While GoldenHash is designed for hash tables, its properties suggest potential cryptographic applications:

5.1 Multi-Domain Hash Commitments

By combining multiple GoldenHash instances with coprime table sizes:

$$H(x) = (\text{GoldenHash}_{N_1}(x), \text{GoldenHash}_{N_2}(x), \dots, \text{GoldenHash}_{N_k}(x))$$

The security relies on the difficulty of finding inputs satisfying specific collision patterns across domains.

5.2 Key Derivation Functions

A cascading construction could provide statistical hardness:

$$K_i = \text{GoldenHash}_{N_i}(K_{i-1}||\text{context})$$

6 Discussion

6.1 Why Does This Work?

The effectiveness of GoldenHash stems from:

- 1. **Dual prime architecture**: Using both N/φ and N/φ^2 provides two levels of mixing
- 2. Chaos factor: Table-size-dependent initialization prevents generic attacks

- 3. **Secret array**: Pre-computed values add unpredictability without runtime cost
- 4. **Minimal modulo operations**: Only one modulo at the end improves performance
- 5. Golden ratio properties: Maximum irrationality ensures optimal distribution

6.2 Limitations and Considerations

- Not designed for cryptographic security
- Table sizes with many factors of 2 (trailing zeros in binary) exhibit suboptimal properties
- Prime table sizes require special handling (using N+1 as working modulus)
- Predictable collision patterns for adversarial inputs

6.3 Table Size Selection Guidelines

Based on our empirical findings, we recommend:

- 1. Avoid prime numbers as table sizes
- 2. Avoid table sizes with many factors of 2 (e.g., $2^k \cdot m$ where k is large)
- 3. Prefer composite numbers with diverse prime factors
- 4. For cryptographic applications, use multiple coprime table sizes

7 Future Work

- 1. Formal mathematical proof of optimality
- 2. Integration with existing hash table implementations
- 3. Exploration of other irrational constants
- 4. Cryptographic hardness analysis for multi-domain constructions

8 Conclusion

We have presented GoldenHash, a high-performance hash function based on the golden ratio and dual prime multipliers. Our empirical results across 5,000 diverse table sizes demonstrate exceptional distribution properties (chi-square mean 1.0002), excellent avalanche behavior (99.9% within ideal range), and O(1) performance scaling. The use of two primes near N/φ and N/φ^2 , combined with chaos factors and minimal modulo operations, creates a robust and efficient hash function suitable for modern applications.

A Additional Results

Figure 1: Comprehensive performance analysis across all tested table sizes. Top left: Avalanche scores showing consistent performance near ideal value of 0.5. Top right: Chi-square distribution centered around ideal value of 1.0. Bottom left: Sorted avalanche scores demonstrating that both prime (red) and composite (blue) table sizes perform equally well. Bottom right: Collision ratio distribution showing most values near the ideal of 1.0 with 81.4% meeting the good threshold.

B Implementation Details

B.1 Key Optimizations

The GoldenHash implementation includes several important optimizations:

- 1. **Prime Caching**: The nearest prime calculation is performed once during initialization
- 2. **Secret Array Precomputation**: The 24-element mixing array is computed once and reused
- 3. **Minimal Branching**: The main hash loop contains no conditional branches
- 4. **Single Modulo**: Only one modulo operation at the very end, improving performance
- 5. **128-bit Multiplication**: Uses compiler intrinsics for efficient wide multiplication

B.2 Platform Considerations

- The code is optimized for 64-bit architectures
- Uses standard C++20 features for portability
- Tested on Linux, macOS, and Windows
- Compiler optimizations: -03 -march=native recommended

B.3 Memory Layout

The GoldenHash class has a compact memory footprint: