CSE 556: Natural Language Processing Assignment 1

Sanskar Ranjan 2021096 Saumil Lakra 2021097 Jeremiah Malsawmkima Rokhum 2021533

Vishal Singh 2021575

1. Evaluation for Task 1

1.1. Explanation for Task 1:

Helper functions:

- pair_count_gen: generates the pairwise count of words from the corpus
- merge: merges the hyphen separated words
- word_hyphen: inserts hyphen between the words and \$ at the end

class Tokeniser:

- word_dict_formation: creates a dictionary of word_hyphen and their count
- learn_vocabulary: generates vocabulary, merge rules and combines the words depending on the frequent characters.
- tokenise: tokenises the input string using the merge rules

Merge rules are writtes in merge_rules.txt and vocabulary is in tokens.txt

2. Evaluation for Task 2

2.1. Top 5 Bigrams:

1. **Before Smoothing:**

```
Top 5 Bigrams from bgModel:
href http: 1.0
tychelle to: 1.0
hang out: 1.0
nonexistent social: 1.0
alex and: 1.0
```

Figure 1. Before Smoothing

2. After Laplace Smoothing:

```
Top 5 Bigrams from LSmoothbgModel:
i feel: 0.11043610327619874
feel like: 0.0350976507217662
i am: 0.03189412019960946
that i: 0.02650602409638554
and i: 0.023103748910200523
```

Figure 2. After Laplace Smoothing

3. After Kneser-Ney smoothing:

```
Top 5 Bigrams from KnModel:
href http: 0.9720022917007693
don t: 0.9712058618709266
didn t: 0.9611429402884634
sort of: 0.9594385814564818
supposed to: 0.9239059857041524
```

Figure 3. After Kneser–Ney smoothing

2.2. Reasoning for method used for including emotion component

1. Formula used for generating modified bigram probabilities:

$$P(w_i|w_{i-1})_{emotion} = (count(w_i)/count(w_{i-1})) + \beta$$
$$\beta = emotion_score["emotion"]$$

2. Explanation for the formula:

The Beta which corresponds to the emotional score of the bigram helps us generating emotion oriented samples . It helps us create 6 bigram models each corresponding to an emotion.

3. Generation of the samples: We save the bigram probability in such a way for each unigram word w_i we can get all the

$$((count(w_i)/count(w_{i-1})) + \beta)$$

values from the dictionaries , we then normallise these values to calculate a probability space of words , from where we can choose the next word with random library and probability as the weights .

2.3. Two Generated Samples for each emotion

All of these samples have been taken from the gen_{emotion}.txt generated. It's present in the github link.

1. **Anger:** I smoke that were second chance to smother me up what i seems.

I i is gone forever along those cracks by changing but seriously enough.

2. **Fear:** I sometimes it by being scared puff it scares me doubt that is.

I the intensity of sharing my fears gotta stop caring in australia though.

3. **Joy:** I that keeps me feeling genuinely looking out or pleased but thank him.

I the optimism of miles upon the optimism of bringing their creativity or.

4. **Love:** I that keeps me feeling genuinely looking out or pleased but thank him.

I beautiful long outing yesterday that love hanging with great all the supporting.

5. **Sadness:** I have depression is damaged because it accelerated out books resonate with regret.

I a tragic accident where going to hurt so unhappy with me morbid.

6. **Surprise:** I about saying im amazed seeing your suffering surely a portrayal of salt.

I by the unexpected long and obstacles and curiosity is weird to witness.

2.4. Accuracy and macro F1 scores obtained from extrinsic evaluation

Emotion	Accuracy	F1-Score
Joy	0.46	0.63
Sadness	0.62	0.76
Anger	0.38	0.55
Fear	0.38	0.55
Surprise	0.72	0.83
Overall	0.51	0.53

Table 1. Accuracies and Macro F1 Scores

2.5. Reason for generation according to corresponding emotions

- Anger: Instance: I smoke that were second chance to smother me up what i seems.
 Reason: There is a keyword "smother". This keyword makes the sentence more likely to contain an angry emotion.
- Fear: Instance: I sometimes it by being scared puff it scares me doubt that is.
 Reason: There are keyword "scared" and "scares".
 These keywords makes the sentence more likely to contain an emotion which depicts fear.
- 3. **Joy:** Instance: I the optimism of miles upon the optimism of bringing their creativity or. **Reason**: There are keywords "optimism" and "creativity". These keywords makes the sentence more likely to contain a joyful emotion.
- 4. Love: Instance: I beautiful long outing yesterday that love hanging with great all the supporting. Reason: There are keywords "beautiful", "love" and "supporting". These keywords makes the sentence more likely to contain an emotion of love.
- Sadness: Instance: I have depression is damaged because it accelerated out books resonate with regret.
 Reason: There are keywords "depression", "regret". These

keywords makes the sentence more likely to contain an emotion of sadness.

6. Surprise: Instance: I about saying im amazed seeing your suffering surely a portrayal of salt. Reason: There are keywords "amazed". This keyword makes the sentence more likely to contain emotions of surprise.

2.6. Credit Statement

Our contribution towards this assignment was fairly equal because, we discussed whenever each one of us faced issues and while proceeding with an idea.

1. Saumil Lakra: Task 1

2. Jeremiah Rokhum: Task 2: Q1 and Q2

3. Sanskar Ranjan: Task 2: Q3

4. Vishal Singh: Task 2: Q4