Guinot Nicolas Note: 1/20 (score total : 1/20)

+288/1/18+

QCM THLR 4

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
Guinot	
Nicolas	1 □2 □3 □4 □5 □6 □7 □8 □9
plutôt que cocher. Renseigner les champs d'identi sieurs réponses justes. Toutes les autres n'en ont q plus restrictive (par exemple s'il est demandé si 0 pas possible de corriger une erreur, mais vous pou incorrectes pénalisent; les blanches et réponses ma	i dans les éventuels cadres grisés « ». Noircir les cases té. Les questions marquées par « » peuvent avoir plu- u'une; si plusieurs réponses sont valides, sélectionner la est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est avez utiliser un crayon. Les réponses justes créditent; les ultiples valent 0. plet: les 2 entêtes sont +288/1/xx+···+288/2/xx+.
Q.2 Le langage $\{ \overset{\text{\tiny def}}{=}^n \overset{\text{\tiny def}}{=}^n \forall n \text{ premier, codable} \}$	e en binaire sur 64 bits} est
☐ rationnel ☐ fini ☐ vio	de non reconnaissable par automate
Q.3 Le langage $\{ \stackrel{\bullet}{=}^n \stackrel{\bullet}{\cong}^n \mid \forall n \in \mathbb{N} \}$ est	
🝘 rationnel 🗌 vide 🛛 n	on reconnaissable par automate 🔲 fini
Q.4 Quels langages ne vérifient pas le lemme de	pompage?
Tous les langages non reconnus par DICertains langages reconnus par DFA	FA
Q.5 Un automate fini qui a des transitions spon	tanées
\square est déterministe \square n'accepte pas $arepsilon$	$oxed{\boxtimes}$ n'est pas déterministe $oxed{\Box}$ accepte $arepsilon$
Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:	
	ont rationnels et $L_2 \subseteq L_1$ \square L_2 est rationnel est rationnel
Q.7 Si un automate de n états accepte a^n , alors	il accepte
$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p + q \le n$	
Q.8 Combien d'états au moins a un automate dé dont la n -ième lettre avant la fin est un a (i.e., $(a +$	terministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ $b+c+d$)* $a(a+b+c+d)^{n-1}$):
\Box 4 ⁿ \Box $\frac{n(n+1)(n+2)(n+3)}{4}$	\square Il n'existe pas. \boxtimes 2^n
Q.9 Déterminiser cet automate. a, b	

- Comment marche la minimisation de Brzozowski d'un automate A?

- \Box $T(Det(T(Det(\mathcal{A}))))$
- \square $Det(T(Det(T(\mathcal{A}))))$

Fin de l'épreuve.

0/2

0/2