Matched Filter Properties

Maximum SNR Property

- Assume AWGN
- The optimally sampled output of the matched filter yields the highest signal-to-noise ratio (SNR) of any filter
- Next, show that the filter that maximizes the SNR is the matched filter

Set Up

- Suppose r(t) = s(t) + n(t), where n(t) is WGN with spectral height $N_o/2$, and s(t) is a signal with a finite duration T
- Let r(t) be the input to a filter with impulse response h(t)
- Let y(t) be the output

Signal and Noise Parts

The signal part of the output is

$$y_s(t) = \int_0^t s(u)h(t-u)du$$

The noise part of the output is

$$y_n(t) = \int_0^t n(u)h(t-u)du$$

Signal-to-noise Ratio

SNR =
$$\frac{y_s^2(t)}{E[y_n^2(t)]}$$
=
$$\frac{\left[\int_0^t s(u)h(t-u)du\right]^2}{E\left[\int_0^t n(u)h(t-u)du\right]^2}$$

Denominator

$$E[y_n^2(t)]$$

$$= E\left\{ \left[\int_0^t n(u)h(t-u)du \right] \left[\int_0^t n(v)h(t-v)dv \right] \right\}$$

$$= \int_0^t \int_0^t E\{n(u)n(v)\}h(t-u)h(t-v)dudv$$

Invoke White Noise Model

$$E[y_n^2(t)]$$

$$= \int_0^t \int_0^t \frac{N_0}{2} \delta(u - v) h(t - u) h(t - v) du dv$$

$$= \frac{N_0}{2} \int_0^t h^2(t - u) du$$

SNR So Far

• To optimize the SNR, choose h(u) to maximize the numerator

$$SNR = \frac{\left[\int_{0}^{t} s(u)h(t-u)du\right]^{2}}{\frac{N_{0}}{2}\int_{0}^{t} h^{2}(t-u)du}$$

Cauchy-Schwarz Inequality

 Say S and Q are two points in a Hilbert space, then

$$\langle S, Q \rangle^2 \le |S|^2 |Q|^2$$

with equality when Q=cS

Cauchy-Schwarz for Signals

- Let S and Q be points in the Hilbert space of square-integrable functions
- Then,

$$\left[\int_{0}^{t} s(u)q(u)du\right]^{2} \leq \int_{0}^{t} s^{2}(u)du \int_{0}^{t} q^{2}(u)du$$

• Equality is reached when cs(u) = q(u)

Apply Cauchy-Schwartz

Recall numerator of SNR

$$\left[\int_{0}^{t} s(u)h(t-u)du\right]^{2}$$

- Pick h(t-u) to be equal to cs(u)
- The resulting filter is matched to s(u)

Simplify Optimal SNR

• Substitute h(t-u)=cs(u)

SNR ^{opt} (t) =
$$\frac{\left[c \int_{0}^{t} s^{2}(u) du \right]^{2}}{\frac{N_{0}c^{2}}{2} \int_{0}^{t} s^{2}(u) du} = \frac{\int_{0}^{t} s^{2}(u) du}{\frac{N_{0}}{2}}$$

Optimize t

• If s(t) has finite duration T, then SNR is maximized by setting t = T

SNR^{opt} =
$$\frac{\int_{0}^{T} s^{2}(u)du}{\frac{N_{0}}{2}} = \frac{2\mathcal{E}_{s}}{N_{0}}$$

Max SNR Filter = Matched Filter

 Therefore, the filter that maximizes the SNR has the impulse response

$$h(T - u) = cs(u)$$
or
$$h(u) = cs(T - u)$$

Matched Filter Frequency Response

 Take Fourier Transform of the Matched Filter impulse response

$$H(f) = \int_{0}^{T} h(u)e^{-j2\pi f u} du$$
$$= c \int_{0}^{T} s(T - u)e^{-j2\pi f u} du$$

Let r=T-u

$$H(f) = c \int_{0}^{T} s(T - u)e^{-j2\pi f u} du$$

$$= c \int_{T}^{0} s(r)e^{-j2\pi f(T - r)} (-dr)$$

$$= ce^{-j2\pi f T} \int_{0}^{T} s(r)e^{j2\pi f r} dr = ce^{-j2\pi f T} [S(f)]^{*}$$

Matched in Frequency Domain

 The magnitude of the matched filter response is just a scaled version of the signal's F.T.

$$|H(f)| = c|S(f)|$$

Relation to Optimum Detection

 Recall optimum detector is the minimum distance detector

Alternative form of Minimum Distance Receiver

Expand the signal space distance between the received vector r and the noiseless signal point s_m

$$\|\mathbf{r} - \mathbf{s}_m\|^2 = \|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_m \rangle + \|\mathbf{s}_m\|^2$$

$$\hat{m}_{opt} = \arg \min_{m} \left[-2\langle \mathbf{r}, \mathbf{s}_{m} \rangle + \mathcal{E}_{m} \right]$$

If Signals are Equal Energy

 The minimum distance receiver can be implemented as a bank of matched filters

$$\hat{m}_{opt} = \arg \min_{m} \left[-2\langle \mathbf{r}, \mathbf{s}_{m} \rangle + \mathcal{E}_{m} \right]$$

$$= \arg \max_{m} \left\langle \mathbf{r}, \mathbf{s}_{m} \right\rangle$$

$$= \arg \max_{m} \int_{0}^{T} r(t) s_{m}(t) dt$$

Summary

- When the input is signal plus WGN, then the filter that maximizes the SNR is the matched filter
- The proof is an application of the Cauchy-Schwarz Inequality
- The filter "matches" (has the same shape as) the signal in magnitude in the frequency domain