

3. Recurrence Relation

Dr. Swati Agarwal

Agenda

- 1 Types of Algorithm
- 2 Recurrence Relation
- 3 Solving Recurrence
 - Substitution Method
 - Recursion-Tree Method
 - Master's Theorem Method

Types of Algorithm

- Iterative
 - Function with a loop
 - Uses frequency count method to analyze time function
- Recursive
 - Function calling itself
 - · Uses recursive equations to analyze time function
- Not recursive or iterative
 - No dependency of running time on input size.
 - Time will be constant.

Recurrence Relation

- An equation that defines function in terms of its values on smaller input
- An equation which is defined in terms of itself (breaking into smaller inputs)

Example: Recurrence Relation

- function A(n)if condition then return A(n/2) + A(n/2)Time to analyze the algorithm T(n) = c + 2T(n/2)
- function A(n)if n > 1 then return A(n-1)

Time to analyze the algorithm T(n) = c + T(n-1)

1. Substitution Method

2. Recursion-Tree Method

3. Master's Theorem Method

1. Substitution Method

- Guess a bound (or the behavior of the function)
- Use mathematical induction method to prove the guess correct.

2. Recursion-Tree Method

3. Master's Theorem Method

1. Substitution Method

- Guess a bound (or the behavior of the function)
- Use mathematical induction method to prove the guess correct.

2. Recursion-Tree Method

- Convert the recurrence equation into a tree where nodes represent the cost incurred at various levels of recursion
- Summation of all the costs (till last level- stability condition) to solve the recurrence

3. Master's Theorem Method

1. Substitution Method

- Guess a bound (or the behavior of the function)
- Use mathematical induction method to prove the guess correct.

2. Recursion-Tree Method

- Convert the recurrence equation into a tree where nodes represent the cost incurred at various levels of recursion
- Summation of all the costs (till last level- stability condition) to solve the recurrence

3. Master's Theorem Method

 provides a cook-book or bounds to solve recurrence of the following form:

$$T(n) = aT(n/b) + f(n)$$

Substitution Method

- Substitute the guessed answer when mathematical induction hypothesis is applied to smaller values.
- Powerful method but slow.
- It can be applied only when it is easy to guess the form of the solution/function.
 - unfortunately, there is no general way to guess the correct form/solution. It takes experience, practice and creativity.
- Function is represented as T(n) instead of f(n). (Time taken by the algorithm for input size n)

Example: Substitution Method

```
function A(n)

if (n > 0) then

print a statement //1

return A(n-1)
```

Time taken by the algorithm A

$$T(n) = \begin{cases} 1 + T(n-1) & \text{if } n \ge 1\\ 1 & \text{if } n = 0 \end{cases}$$

$$T(n) = T(n-1) + 1 \tag{1}$$

$$T(n) = T(n-1) + 1 \tag{1}$$

Divide the task further.

$$T(n-1) = T(n-2) + 1 (2)$$

$$T(n) = T(n-1) + 1 \tag{1}$$

Divide the task further.

$$T(n-1) = T(n-2) + 1 (2)$$

$$T(n-2) = T(n-3) + 1 (3)$$

$$T(n) = T(n-1) + 1 (1)$$

Divide the task further.

$$T(n-1) = T(n-2) + 1 (2)$$

$$T(n-2) = T(n-3) + 1 (3)$$

Substitute Eq 2 in Eq 1

$$T(n) = T(n-2) + 2 \tag{4}$$

$$T(n) = T(n-1) + 1 (1)$$

Divide the task further.

$$T(n-1) = T(n-2) + 1 (2)$$

$$T(n-2) = T(n-3) + 1 (3)$$

Substitute Eq 2 in Eq 1

$$T(n) = T(n-2) + 2 \tag{4}$$

Substitute Eq 3 in Eq 4

$$T(n) = T(n-3) + 3$$
 (5)

January 14, 2020 Dr. Swati Agarwal

3. Recurrence Relation

9/21

after some more iterations

$$T(n) = T(n-k) + k \tag{6}$$

after some more iterations

$$T(n) = T(n-k) + k \tag{6}$$

Termination/Stability condition $(n - k) = 0 \implies n = k$

after some more iterations

$$T(n) = T(n-k) + k \tag{6}$$

Termination/Stability condition $(n - k) = 0 \implies n = k$

$$T(n) = 1 + n \tag{7}$$

$$T(n) = \mathcal{O}(n)$$

Exercise: Substitution Method

1.

$$T(n) = \begin{cases} T(n-1) + 2n + 1^* & \text{if } n > 0 \\ 1 & \text{if } n = 0 \end{cases}$$

2.

$$T(n) = \begin{cases} T(n-1) + n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

3.

$$T(n) = \begin{cases} 2T(n/2) + c & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

 $\mathcal{O}(n)$

 $\mathcal{O}(n^2)$

 $\mathcal{O}(n^2)$

*hint: you can ignore the constants here

January 14, 2020 Dr. Swati Agarwal

3. Recurrence Relation

11/21

Exercise: Substitution Method

4.

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

 $\mathcal{O}(n \log n)$

$$T(n) = \begin{cases} T(n/2) + 1 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

 $\mathcal{O}(\log n)$

Recursion-Tree Method

- Addresses the challenge of substitution method- guessing the correct solution
- Each node represents the amount of work/cost/time to solve single sub-problem.
- The total cost of solving the problem is the sum of cost at all the levels (sum of the cost at all sibling nodes defines the cost within a level)

Example: Recursion Tree

$$T(n) = \begin{cases} 2T(n/2) + C & \text{if } n > 1 \\ C & \text{if } n = 1 \end{cases}$$

refer to class notes.

Example: Recursion Tree

January 14, 2020

Dr. Swati Agarwal

3. Recurrence Relation

15/21

Exercise: Recursion Tree

All examples used for substitution method (good for practice and comparison of solution)

1.

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

 $\mathcal{O}(n \log n)$

2.

$$T(n) = \begin{cases} T(n/2) + 1 & \text{if } n > 1 \\ 1 & \text{if } n = 1 \end{cases}$$

 $\mathcal{O}(\log n)$

Master's Theorem Method

Before we study Master's Theorem, we need to become more familiar with comparison of Functions.

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < ... 2^n < 3^n < n^n$$

Comparison of Functions

- Substitute values and see the results (for very large value of input)
- 2. Cancel common terms. Repeat Step 1.
- 3. Take a log of both the functions. Repeat Step 2.

Exercise: Comparison of Functions[†]

1.
$$f(n) = n^2$$
, $g(n) = n^3$

2.
$$f(n) = n^2$$
, $g(n) = 2^n$

3.
$$f(n) = 3^n$$
, $g(n) = n^3$

4.
$$f(n) = n^2$$
, $g(n) = n \log n$

5.
$$f(n) = n$$
, $g(n) = (\log n)^{100}$

6.
$$f(n) = n^{\log n}$$
, $g(n) = n \log n$

7.
$$f(n) = \sqrt{\log n}$$
, $g(n) = \log \log n$

8.
$$f(n) = n^{\sqrt{n}}, \qquad g(n) = n^{\log n}$$

9.
$$f_1(n) = 2^n$$
, $f_2(n) = n^{3/2}$, $f_3(n) = n \log n$, $f_4(n) = n^{\log n}$

[†]refer to the class notes for solutions. Dr. Swati Agarwal

Exercise: Comparison of Functions

Functions behaving differently for different input size[†]

1.

$$f(n) = \begin{cases} n^3 & \text{if } 0 < n < 10,000\\ n^2 & \text{if } n \ge 10,000 \end{cases}$$
$$g(n) = \begin{cases} n & \text{if } 0 < n < 100\\ n^3 & \text{if } n > 100 \end{cases}$$

Master's Theorem Method

$$T(n) = aT(n/b) + f(n)$$

- If $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ then Solution: $T(n) = \Theta(n^{\log_b a})$
- If $f(n) = \Theta(n^{\log_b a})$ then Solution: $T(n) = \Theta(n^{\log_b a} \log n)$
- If $f(n) = \Omega(n^{\log_b a + \epsilon})$ AND $af(n/b) \le cf(n)$ then Solution: $T(n) = \Theta(f(n))$ if the equation lies in case 3 but regularity condition does not meet then Master's theorem fails and we have to use some other method (substitution or recursion tree) to solve the equation.

Examples:

1.
$$T(n) = 9T(n/3) + n$$

2.
$$T(n) = T(2n/3) + 1$$

3.
$$T(n) = 2T(n/2) + n^4$$

4.
$$T(n) = 3T(n/4) + n \log n$$

check the tutorial sheet for more examples/equations on Recurrence Relation.