

	$R_{XX}(\tau) = 4 + e^{-\frac{ \tau }{10}}$. Find the mean of $S = \int_{0}^{1} X(t)dt$ and Variance	
	of $X(t)$	
9	If $\{X(t), t \in T\}$ is a WSS process with auto correlation	
	function $R_{XX}(\tau)$ and if $Y(t) = X(t+a) - X(t-a)$,	
	Show that $R_{yy}(\tau) = 2R_{xx}(\tau) - R_{xx}(\tau + 2a) - R_{xx}(\tau - 2a)$	
10	If $S = \int_{0}^{10} X(t)dt$ with $E(X(t)) = 8$ and $R_{XX}(\tau) = 64 + 10e^{-2 \tau }$. Find	(i) $E(S) = 80$ (ii) $V(S) = 5 (19 + e^{-20})$
	the mean $\&$ variance of S .	