İşaret ve Sistemler

Ders 1: Giriş

Ders 1 Genel Bakış

- > Haberleşme sistemlerinde temel kavramlar
 - ➤İşaretin tanımı ve çeşitleri
- Spektral Analiz
 - Fazörlerin frekans düzleminde gösterilmesi.
 - Periyodik işaretlerin frekans düzleminde gösterilmesi.(Fourier Serisi açılımı)
 - Periyodik olmayan işaretlerin frekans düzleminde gösterilmesi (Fourier Dönüşümü), spektrumu
 - > Fourier dönüşümünün özellikleri
 - Konvolüsyon (Katlama)
 - ➤ Periyodik işaretlerin spektrumu.

Ders 1 Genel Bakış

- İşaretin Güç ve Enerji Spektral yoğunluğunun bulunması.
 - Periyodik işaretlerin Güç spektral yoğunluğu
 - Periyodik olmayan işaretlerin Enerji spektral yoğunluğu.
- > Sistem
 - ➤ Sistemin Impuls cevabı (impulse response)
 - ➤ Sistemin transfer fonksiyonu
 - Lineer sistemin sinüzoidal cevabı
 - Lineer sistemlerde distorsiyon

Ders 1 Genel Bakış

- > Temel ve ideal Filtrelerin impuls cevabı ve transfer fonksiyonları.
 - ➤ Alçak geçiren filtre (Low pass Filters=LPF)
 - ➤ Band geçiren filtre (Band pass Filters=BPF)
 - ➤ Yüksek geçiren filtre (High pass Filters=HPF)
- > Ayrık zaman sistemleri
 - > z transfer dönüşümü
 - Ayrık fourier dönüşümü

İşaret nedir?

Genellikle fiziksel bir sistemin davranışına ya da durumuna ilişkin bilgi taşıyan her şey işaret olarak tanımlanır. İşaret bir, iki veya N bağımsız değişkenin fonksiyonu olabilir. Konuşma, sıcaklık bir değişkenin (zamanın) fonksiyonudur.

İşaretin Türleri

İşaretleri zamana göre iki grupta toplamak mümkündür.

Sürekli-zamanlı işaretler: İşaret zamanın sürekli bir fonksiyonudur.

Ayrık (discrete) zamanlı işaretler: İşaret zamanın sadece belirli anlarında tanımlanmış fonksiyonlardır.

İşaretin Türleri

İşaretleri genliklerine göre de iki gruba ayırmak mümkündür.

Sürekli genlikli işaretler: İşaretin genliği herhangi bir değeri alabilen işaretlere denir.

Ayrık genlikli işaretler. İşaretin genliği belirli değerleri alabilen değerlere denir.

Tanım

- Analog İşaretler: Hem zamana hem de genliğe göre sürekli olan işaretlere denir. Yani, sürekli zamanlı işaret sürekli bir aralık içinde herhangi bir değeri alabilir.
- Sayısal İşaretler: Hem zamana hem de genliğe göre belli değerleri alan işaretlere denir. Başka bir ifadeyle, ayrık zamanlı işaretin genliği de ayrık ise bu işaret sayısal bir işarettir. Pratikte bu ayrık değerler (simgeler, çizgiler) noktalardan veya eşdeğer olarak 0 ve 1'lerden oluşmuştur.

Tanım

• Deterministik işaret: Bir işaret genellikle zamanın bir fonksiyonu olarak tanımlanır. Bu fonksiyon ya analitik yada bir diferansiyel denklemin çözümüdür. Böyle işaretler <u>deterministik işaret</u> olarak adlandırılır. Örneğin $v(t)=A.Sin(wt+\theta)$ işareti deterministik bir işarettir. Bu tür işaretlerin herhangi bir anda alacağı değer önceden belirlidir. Bu işaretler gerçek işaretlerin gösterilmesinde yetersiz kalabilir. Bu nedenle gerçek işaretlerin gösterilmesinde genellikle rasgele işaretler kullanılır.

Tanım

• Rasgele işaretler: Herhangi bir t anında, işaretin genlik değerlerinin belirli iki değer arasında kalma olasılığı biliniyorsa, bu işaretlere <u>rasgele işaretler</u> denir.

$$p(x,t) = \lim_{\Delta x \to 0} \frac{olasilik\{x\langle s(t)\langle x + \Delta x\}\}}{\Delta x}$$

1. $v(t)=A.\cos 2\pi t$ $\omega = 2\pi f = 2\pi \Rightarrow f = 1Hz$

2. $v(t)=A.\sin 2\pi t$

$$v(t)$$
=A.Sin2 π t =A.Cos(2 π t- π /2)= A.Cos2 π (t-1/4)=A.Cos2 π t.Cos π /2+A.Sin2 π t.Sin π /2= A.Sin2 π t

v(t)=A.u(t)

3. Basamak işareti

$$v(t) = a.u(t) = \begin{cases} 0 & |t| < 0 \\ A & |t| \ge 0 \end{cases}$$

4. $v(t) = A.\sin 2\pi t.u(t-1)$

5. Darbe işareti

$$v(t) = A \cdot \prod \left(\frac{t}{\tau}\right) = \begin{cases} 0 & |t| > \tau/2 \\ A & |t| \le \tau/2 \end{cases} = A \cdot \left\{u[t + \tau/2)] - u[t - \tau/2)\right\}$$

6. Geciktirilmiş darbe işareti

$$v(t) = A \cdot \prod \left(\frac{t - t_o}{\tau} \right) = \begin{cases} 0 & |t - t_o| > \tau/2 \\ A & |t - t_o| \le \tau/2 \end{cases} = A \left\{ u[t - (t_o - \tau/2)] - u[t - (t_o + \tau/2)] \right\}$$

7.
$$v(t) = A.Sin2\pi t. \prod \left(\frac{t}{2}\right) = \begin{cases} 0 & |t| > 1 \\ A.Sin2\pi t & |t| \le 1 \end{cases}$$

8. Üçgen darbe işareti

$$v(t) = A \cdot q \left(\frac{t}{\tau}\right) = \begin{cases} 0 & |t| > \tau/2 \\ A \left(1 - \frac{2 \cdot |t|}{\tau}\right) & |t| \le \tau/2 \end{cases}$$

9. Dirak (İmpuls) işareti

$$v(t) = A \frac{d}{dt} u(t) = A \delta(t) = \begin{cases} 0 & t \neq 0 \\ A & t = 0 \end{cases}$$

$$\int_{-\infty}^{\infty} A.\delta(t).dt = A$$

$$v(t)=m(t).\delta(t-a)=m(a).\delta(t-a)$$
 veya
$$v(t)=m(t).\delta(t-a) \Rightarrow v(a)=m(a)$$

$$\begin{split} &m(t) \!\!=\!\! A.Sin2000\pi t \Rightarrow v(t) \!\!=\!\! m(t). \; \delta(t\text{-}1/4000) \\ &v(t) \!\!=\!\! A.Sin2000\pi t. \; \delta(t\text{-}1/4000) \!\!=\!\! A.Sin2000\pi. \frac{1}{4000} \; .\delta(t\text{-}1/4000) \end{split}$$

$$=A.\sin\frac{\pi}{2}.\delta(t-1/4000)$$

$$= A.\delta(t-1/4000)$$

10. Sinc işareti (Örnekleme işareti)

$$v(x)=A.\underline{Sincx}=A.\frac{Sin\pi x}{\pi x}$$

Sinüs ifadesi k bir tamsayı sabit olmak üzere $k\pi$ değerlerinde sıfırdır.

Şekildeki işaretin matematiksel ifadesini yazınız.

$$v(t)=v_1(t)+v_2(t)=t.u(t)+(-t+5).u(t-5)$$

veya işaretten

$$v(t) = t \cdot \prod \left(\frac{t - 2.5}{5} \right) + 5.u(t-5)$$

Ancak ilk ifade matematiksel açıdan işlem kolaylığı sağlar. Bu nedenle işaretleri en basit şekilde ifade etmek her zaman kolaylık sağlayabilir.

İşaret işlemleri

Zamanda Kaydırma işlemi:

İşaret işlemleri

Zamanda Ölçekleme işlemi:

$$f(t) = \begin{cases} 2\\ 2e^{-t/2}\\ 0 \end{cases}$$

$$f(3t) = \begin{cases} 2 \\ 2e^{-3t/2} \\ 0 \end{cases}$$

$$f\left(\frac{t}{2}\right) = \begin{cases} 2\\ 2e^{-t/4}\\ 0 \end{cases}$$

$$-1.5 \le t < 0$$

 $0 \le t < 3$
otherwise

$$-1.5 \le 3t < 0$$
 or $-0.5 \le t < 0$
 $0 \le 3t < 3$ or $0 \le t < 1$
otherwise

$$-1.5 \le \frac{t}{2} < 0$$
 or $-3 \le t < 0$ $0 \le \frac{t}{2} < 3$ or $0 \le t < 6$ otherwise

İşaret işlemleri

Zamanda Tersini alma işlemi:

$$f(t) = \begin{cases} e^{t/2} & -1 \ge t > -5 \\ 0 & \text{otherwise} \end{cases}$$

$$f(-t) = \begin{cases} e^{-t/2} & -1 \ge -t > -5 & \text{or} \quad 1 \le t < 5 \\ 0 & \text{otherwise} \end{cases}$$

Ders değerlendirmesi

Kısa Sınavlar

- Her iki haftada bir ders başlangıcı veya ders sonunda kısa sınavlar yapılacaktır.
- Kısa sınavların kesinlikle mazereti olmayacaktır.
- Kısa sınavda bir önceki haftalarda anlatılan konulardan sorulacaktır.

Ara ve Final Sınavları

- Sınavlar defter, kitap kapalı yapılacaktır.
- Sınavlarda en son işlenen konular sınava dahil olacaktır.

Kaynaklar

- Signals and Systems, Alan V. Oppenhein, Alan S. Willsky, Ian T. Young Prentice Hall Signal Processing Series (1983)
- Principles of Communication Systems, Taub-Schilling Mc Graw-Hill Serisi (1980)
- Modern Electrical Communications, Analog, Digital and Optical Systems, Henry Stark, Franz B. Tuteur, John B. Anderson – Prentice Hall International
- Analog Haberleşme + Sayısal Haberleşme + İşaret İşleme, Prof. Dr. Ahmet H.Kayran (İTÜ)
- Sinyaller ve Sistemler, Yrd.Doç.Dr. Orhan Gazi, Seçkin Yayıncılık