회귀분석팀

6팀

조수미 김민지 손재민 박윤아 조웅빈

1. 다중공선성

2. 변수선택법

3. 정규화

1

다중공선성

다중공선성

다중공선성 Multicollinearity

설명변수 X_j 간에 서로 **선형적인 상관관계**가 존재 즉 설명변수가 서로 간의 선형결합으로 표현 가능

설명변수 간 독립적이어야 한다는 가정을 위배

회귀의 기본 가정에 관한 내용은 2주차 클린업 내용 참고!

다중공선성

다중공선성 Multicollinearity

설명변수 X_j 간에 서로 **선형적인 상관관계**가 존재 즉 설명변수가 서로 간의 선형결합으로 표현 가능

설명변수 간 독립적이어야 한다는 가정을 위배

회귀의 기본 가정에 관한 내용은 2주차 클린업 내용 참고!

설명변수 X_1, X_2 는 독립

설명변수 $X_1 X_2$ 는 종속

1 다중공선성

다중공선성

다중공선성의 문제점

모델의 검정 결과를 신뢰할 수 없게 됨

전체 회귀식(F-test)은 유의한데

개별 변수 중 유의한 것이 없는 말도 안되는 상황 발생 가능

회귀계수들의 분산이 커짐에 따라 t검정통계량이 작아지기 때문

다중공선성의 문제점

모델의 문제

모델의 검정 결과를 신뢰할 수 없게 됨

전체 회귀식(F-test)은 유의한데

개별 변수 중 유의한 것이 없는 말도 안되는 상황 발생 가능

회귀계수들의 분산이 커짐에 따라 t검정통계량이 작아지기 때문

다중공선성의 문제점

개별 회귀계수 β 에 관한 해석의 어려움 발생

다중공선성이 발생하면 x_i 의 변화가 다른 설명변수를 변화시키므로 나머지 변수가 고정된 상황을 가정하기 힘들어짐

회귀계수 β_j 는 설명변수 x_j 를 제외한 변수들이 고정되어 있을 때 x_i 가 종속변수 Y 에 미치는 영향으로 해석

다중공선성의 문제점

해석의 문제

개별 회귀계수 β 에 관한 해석의 어려움 발생

다중공선성이 발생하면 x_j 의 변화가 다른 설명변수를 변화시키므로 나머지 변수가 고정된 상황을 가정하기 힘들어짐

회귀계수 β_j 는 설명변수 x_j 를 제외한 변수들이 고정되어 있을 때 x_i 가 종속변수 Y 에 미치는 영향으로 해석

다중공선성 진단 | ① 직관적 판단

F-test는 유의했지만 개별 회귀계수들에 대한 t-test에서 귀무가설을 기각하지 못할 경우

상식적으로 유의한 회귀계수가 유의하지 않다고 나올 경우

추정된 회귀계수의 부호가 상식과 다를 경우

다중공선성 진단 | ① 직관적 판단

F-test는 유의했지만 개별 회귀계수들에 대한 t-test에서 귀무가설을 기각하지 못할 경우

다른 변수가 이미 해당 변수의 영향력을 설명하고 있기 때문에 상식적으로 유의충공건경이 발생한다고 판단하고 나올 경우

추정된 회귀계수의 부호가 상식과 다를 경우

다중공선성 진단 | ② 상관계수 플랏

상관계수 플랏 Correlation Plot

상관계수 플랏을 통해 변수들 간 선형관계를 확인 가능

R의 corrplot 패키지 이용

다중공선성 진단 | ② 상관계수 플랏

상관계수 플랏 Correlation Plot

상관계수 플랏을 통해 변수들 간 선형관계를 확인 가능

R의 corrplot 패키지 이용

다중공선성 진단 | ③ VIF

VIF 분산팽창인자

$$VIF_j = \frac{1}{1 - R_j^2}, j = 1, ..., p$$

 R_j^2 : $x_j = \gamma_1 x_1 + \dots + \gamma_{j-1} x_{j-1} + \gamma_{j+1} x_{j+1} + \dots + \gamma_p x_p$ x_i 를 나머지 설명변수에 대해 적합했을 때의 결정계수

 R_j^2 가 크다면, 설명변수 x_j 가

나머지 변수들의 선형결합으로 충분히 표현됨을 의미

다중공선성 진단 | ③ VIF

VIF 분산팽창인자

$$VIF_j = \frac{1}{1 - R_j^2}, j = 1, ..., p$$

$$R_j^2: x_j = \gamma_1 x_1 + \dots + \gamma_{j-1} x_{j-1} + \gamma_{j+1} x_{j+1} + \dots + \gamma_p x_p$$
 다중선형회귀모델을 적합했을 때의 결정계수

일반적으로 VIF_j **값이 10이상인 경우** ($R_j^2 \ge 0.9$) 심각한 다중공선성이 존재한다고 판단 가능

다중공선성 진단 | ③ VIF

VIF 분산팽창인자

$$VIF_j = \frac{1}{1 - R_j^2}, j = 1, ..., p$$

$$R_j^2: x_j = \gamma_1 x_1 + \dots + \gamma_{j-1} x_{j-1} + \gamma_{j+1} x_{j+1} + \dots + \gamma_p x_p$$
 다중선형회귀모델을 적합했을 때의 결정계수

반대로, 다중공선성이 적을수록

VIF 값은 1에 가까워짐 ($VIF \rightarrow 1 \ as \ R_i^2 \rightarrow 0$)

다중공선성 해결

variable Selection

Normalization

Dimension Reduction

Filtering

다중공선성 해결

variable Selection

Normalization

Dimension Reduction

Filtering

2

변수선택법

변수선택법

변수선택법 variable Selection

수 많은 변수들 중 <mark>적절한 변수 조합</mark>을 찾아내는 방법 서로 상관이 있는 독립변수들을 일부 제거하여 **다중공선성을 해결**

변수선택법을 통해 다중공선성을 완벽하게 제거할 수 없음

그러나 **최종 모델에 대한 확신**을 얻을 수 있음

변수선택법

변수선택법 variable Selection

수 많은 변수들 중 **적절한 변수 조합**을 찾아내는 방법 서로 상관이 있는 독립변수들을 일부 제거하여 **다중공선성을 해결**

변수선택법을 통해 다중공선성을 완벽하게 제거할 수 없음 그러나 **최종 모델에 대한 확신**을 얻을 수 있음

그러나 **최종 모델에 대한 확신**을 얻을 수 있음

변수선택지표 | ① Partial F-test

Partial F-test

유의하지 않은 변수들을 없애는 방식으로 변수 선택

Full Model(FM)과 Reduced Model(RM)이

서로 내포 관계에 있어야 한다는 단점이 있음

즉 RM에 있는 모든 변수가 FM에 있어야 함

변수선택지표 | ① Partial F-test

Partial F-test

유의하지 않은 변수들을 없애는 방식으로 변수 선택

Full Model(FM)과 Reduced Model(RM)이

서로 내포 관계에 있어야 한다는 단점이 있음

즉 RM에 있는 모든 변수가 FM에 있어야 함

변수선택지표 | ① Partial F-test

Partial F-test

비교하는 두 모델이 Nested되어 있을 때만 사용 가능

유의하지 않은 변수들을 없애는 방식으로 변수 선택

Model A

Model B

Nested 0
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Nested
$$x$$
 $y = \beta_0 + \beta_1 x_1 + \beta_4 x_4$ $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

변수선택지표 | ① Partial F-test

Partial F-test

비교하는 두 모델이 Nested되어 있을 때만 사용 가능

유의하지 않은 변수들을 없애는 방식으로 변수 선택

Model A

Model B

Nested 0
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Nested
$$x$$
 $y = \beta_0 + \beta_1 x_1 + \beta_4 x_4$ $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Model A ⊂ Model B 처럼 변수들 집합의 포함관계 성립

변수선택지표 | ① Partial F-test

Partial F-test

비교하는 두 모델이 Nested되어 있을 때만 사용 가능

유의하지 않은 변수들을 **개세는 방식으로** 변수 선택

포함관계와 무관하게 일반적인 상황에서

모델 간의 비교를 가능하게 해주는 기준이 필요!

Model A Model B

Nested 0
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

Nested
$$x$$
 $y = \beta_0 + \beta_1 x_1 + \beta_4 x_4$ $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$

변수선택지표 | ② 수정결정계수

수정결정계수 adjusted R-squared

설명력을 담당하는 <mark>결정계수</mark>와 **변수 개수 패널티**가 수정결정계수를 구하는 식에 들어감

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

변수선택지표 | ② 수정결정계수

수정결정계수 adjusted R-squared

설명력을 담당하는 **결정계수**와 **변수 개수 패널티**가 수정결정계수를 구하는 식에 들어감

$$R_{adj}^2 = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

변수선택지표 | ② 수정결정계수

변수선택지표

AIC Akaike Information Criterion

$$AIC = -2\log(Likelihood) + 2k$$

변수선택지표

AIC Akaike Information Criterion

$$AIC = -2\log(Likelihood) + 2k$$

k는 모델의 모수 개수로, **변수 개수에 따른 패널티**를 부과한 것

변수선택지표

AIC Akaike Information Criterion

$$AIC = -2\log(Likelihood) + 2k$$

Likelihood는 값이 커질수록 모델이 데이터를 잘 설명함 likelihood가 커지면 AIC는 작아지는데 AIC가 낮을수록 더 좋은 모형

변수선택지표

BIC Bayesian Information Criterion

$$BIC = -2\log(Likelihood) + klog(n)$$

변수선택지표

BIC Bayesian Information Criterion

$$BIC = -2\log(Likelihood) + klog(n)$$

AIC와 다르게 데이터의 개수를 모수의 개수에 곱함으로써 AIC보다 더 큰 패널티를 부과 BIC 역시 낮을수록 더 좋은 모형

변수선택지표

BIC Bayesian Information Criterion

 BIC
 = -2log(Likelihood) + klog(n)

 BIC는 AIC보다 변수 증가에 더 민감하므로
 변수의 개수가 작은 것이 우선순위라면

 AIC보다 BIC를 참고하는 게 좋음
 AIC와 다르게 데이터의 개수를 모수의 개수에 곱함으로써

AIC보다 더 큰 패널티를 부과 BIC 역시 낮을수록 더 좋은 모형

변수선택지표

BIC Bayesian Information Criterion

BIC = 200g (Likelihood) 보고 사이고 (n) 고차원 데이터에서는 정확성이 떨어질 수 있고, (n)

AIC와 BIC 모두 각각 문제 발생

A/따라서 둘을 종합적으로 고려해서 모형을 선택해야 함시

-AIC보다 다 큰 패널터를 부과

BIC 역시 낮을수록 더 좋은 모형

변수선택법

Best Subset Selection

Backward Selection

Forward Selection

Stepwise Selection

변수선택법 | ① Best Subset Selection

Best Subset Selection

가능한 모든 변수들의 조합을 다 고려하는 방법

All Possible Regression

변수의 개수가 p개라면, 2^p 개의 모형을 모두 적합하고 비교

모든 조합을 다 고려해서 결과를 내기 때문에

Best Model에 대한 더 신뢰할 수 있는 결과를 산출

변수선택법 | ① Best Subset Selection

Best Subset Selection

가능한 모든 변수들의 조합을 다 고려하는 방법

All Possible Regression

변수의 개수가 p개라면, 2^p 개의 모형을 모두 적합하고 비교

모든 조합을 다 고려해서 결과를 내기 때문에

Best Model에 대한 더 신뢰할 수 있는 결과를 산출

변수선택법 | ① Best Subset Selection

Best Subset Selection

가능한 모든 변수들의 조합을 다 고려하는 방법

All Possible Regression

Best Subset Selection Algorithm

- 1) M_1, \dots, M_p 개의 모형 적합
- 2) $(M_1 \sim M_p)$ p개의 모형 중 AIC 또는 BIC가 가장 작은 모형 선택
- 3) 만약 AIC/BIC가 가장 작은 모형이 서로 다를 경우 다른 근거에 의해 선택

 $M_k(k = 1, 2, ..., p)$ 란 변수의 개수를 k 개로 적합했을 때 적합한 회귀식 중 MSE 가 제일 작은 식

변수선택법 | ① Best Subset Selection

Best Subset Selection

가능한 모든 변수들의 조합을 다 고려하는 방법

All Possible Regression

Best Subset Selection Algorithm

- 1) M_1, \dots, M_p 개의 모형 적합
- 2) $(M_1 \sim M_p)$ p개의 모형 중 AIC 또는 BIC가 가장 작은 모형 선택
- 3) 만약 AIC/BIC가 가장 작은 모형이 서로 다를 경우 다른 근거에 의해 선택

변수선택법 | ① Best Subset Selection

Best Subset Selection

가능한 모든 변수들의 조합을 다 고려하는 방법

All Possible Regression

Best Subset Selection Algorithm

- 1) M_1, \dots, M_p 개의 모형 적합
- 2) $(M_1 \sim M_p)$ p개의 모형 중 AIC 또는 BIC가 가장 작은 모형 선택
- 3) 만약 AIC/BIC가 가장 작은 모형이 서로 다를 경우 다른 근거에 의해 선택

변수선택법 | ① Best Subset Selection

변수선택법 | ② 전진선택법

전진선택법 Forward Selection

Null Model($y = \beta_0$)에서 시작해 변수를 하나씩 추가하는 방법

Forward Selection Algorithm

1) Null Model에서 시작해 X_1 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수를 선택해 추가

2) 만약 X_1 이 선택되면 $y = \beta_0 + \beta_1 x_1$ 의 식에서 X_2 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수 추가

3) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ② 전진선택법

전진선택법 Forward Selection

Null Model($y = \beta_0$)에서 시작해 변수를 하나씩 추가하는 방법

Forward Selection Algorithm

1) Null Model에서 시작해 X_1 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수를 선택해 추가

2) 만약 X_1 이 선택되면 $y = \beta_0 + \beta_1 x_1$ 의 식에서 X_2 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수 추가

3) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ② 전진선택법

전진선택법 Forward Selection

Null Model($y = \beta_0$)에서 시작해 변수를 하나씩 추가하는 방법

Forward Selection Algorithm

1) Null Model에서 시작해 X_1 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수를 선택해 추가

2) 만약 X_1 이 선택되면 $y = \beta_0 + \beta_1 x_1$ 의 식에서 X_2 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수 추가

3) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ② 전진선택법

전진선택법 Forward Selection

Null Model($y = \beta_0$)에서 시작해 변수를 하나씩 추가하는 방법

Forward Selection Algorithm

- 1) Null Model에서 시작해 X_1 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수를 선택해 추가
- 2) 만약 X_1 이 선택되면 $y = \beta_0 + \beta_1 x_1$ 의 식에서 X_2 부터 X_p 까지의 변수들 중 AIC와 BIC를 낮추는 변수 추가
- 3) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ② 전진선택법

장점

- 1) Best Subset Selection에 비해 계산이 매우 빠름
- 2) 변수의 개수가 관측치보다 많은 경우에도 사용 가능

단점

선택된 모형이

최적의 모형이라고 할 수 없음

(가능한 모든 변수 조합을 고려X)

변수선택법 | ③ 후진제거법

후진제거법 Backward Elimination

Forward selection의 발대

Full Model
$$(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$
 에서 시작해 변수를 하나씩 제거하는 방법

Backward Selection Algorithm

- 1) Full Model에서 시작해 X_1 부터 X_p 까지의 변수 중 가장 AIC와 BIC를 낮추는 변수를 선택해 제거
- 2) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ③ 후진제거법

후진제거법 Backward Elimination

Forward selection의 발대

Full Model
$$(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$
 에서 시작해 변수를 하나씩 제거하는 방법

Backward Selection Algorithm

- 1) Full Model에서 시작해 X_1 부터 X_p 까지의 변수 중 가장 AIC와 BIC를 낮추는 변수를 선택해 제거
- 2) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ③ 후진제거법

후진제거법 Backward Elimination

Forward selection의 발대

Full Model
$$(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)$$
 에서 시작해 변수를 하나씩 제거하는 방법

Backward Selection Algorithm

- 1) Full Model에서 시작해 X_1 부터 X_p 까지의 변수 중 가장 AIC와 BIC를 낮추는 변수를 선택해 제거
- 2) 위 과정을 반복하며 AIC와 BIC가 더 이상 낮아지지 않으면 중단

변수선택법 | ③ 후진제거법

변수선택법 | ④ 단계적 선택법

단계적 선택법 Stepwise Selection

Forward Selection과 Backward Elimination 과정을 섞은 방법

Stepwise Selection Algorithm

- 1) Forward selection 과정을 통해 가장 유의한 변수들을 모델에 추가
 - 2) 나머지 변수들에 대해 Backward Elimination을 적용
 - 3) 제거된 변수는 다시 모형에 포함되지 않으며,

모형에 유의하지 않은 설명변수가 존재하지 않을 때까지 1)번과 2)번 과정을 반복

변수선택법 | ④ 단계적 선택법

단계적 선택법 Stepwise Selection

Forward Selection과 Backward Elimination 과정을 섞은 방법

Stepwise Selection Algorithm

- 1) Forward selection 과정을 통해 가장 유의한 변수들을 모델에 추가
 - 2) 나머지 변수들에 대해 Backward Elimination을 적용
 - 3) 제거된 변수는 다시 모형에 포함되지 않으며,

모형에 유의하지 않은 설명변수가 존재하지 않을 때까지 1)번과 2)번 과정을 반복

변수선택법 | ④ 단계적 선택법

단계적 선택법 Stepwise Selection

Forward Selection과 Backward Elimination 과정을 섞은 방법

Stepwise Selection Algorithm

- 1) Forward selection 과정을 통해 가장 유의한 변수들을 모델에 추가
 - 2) 나머지 변수들에 대해 Backward Elimination을 적용
 - 3) 제거된 변수는 다시 모형에 포함되지 않으며,

모형에 유의하지 않은 설명변수가 존재하지 않을 때까지 1)번과 2)번 과정을 반복

변수선택법 | ④ 단계적 선택법

단계적 선택법 Stepwise Selection

Forward Selection과 Backward Elimination 과정을 섞은 방법

Stepwise Selection Algorithm

- 1) Forward selection 과정을 통해 가장 유의한 변수들을 모델에 추가
 - 2) 나머지 변수들에 대해 Backward Elimination을 적용
- 3) 제거된 변수는 다시 모형에 포함되지 않으며, 모형에 유의하지 않은 설명변수가 존재하지 않을 때까지 1)번과 2)번 과정을 반복

변수선택법 | ④ 단계적 선택법

변수선택법 | ④ 단계적 선택법

변수선택법 | ④ 단계적 선택법

3

정규화

정규화

정규화 Regularization

회귀계수가 가질 수 있는 값에 <mark>제약 조건</mark>을 부여함으로써 계수들을 작게 만들거나 0으로 만드는 방법

다중공선성은 OLS 추정량의 분산을 크게 증가시킴 정규화는 OLS 추정량의 **불편성 포기** But **분산을 줄이는 효과**가 있음

정규화

정규화 Regularization

회귀계수가 가질 수 있는 값에 <mark>제약 조건</mark>을 부여함으로써 계수들을 작게 만들거나 0으로 만드는 방법

다중공선성은 OLS 추정량의 분산을 크게 증가시킴 정규화는 OLS 추정량의 <mark>불편성 포기</mark> But **분산을 줄이는 효과**가 있음

정규화

정규화

정규화

정규화

Bias-variance trade off

정규화

Bias-variance trade off

정규화

Ridge

Ridge 12 Regularization

SSE를 최소화하면서 회귀계수 β 에 제약 조건을 거는 방법 제약 조건식 L2-norm 형태 \rightarrow L2 Regularization

L2-norm은 선형대수학 2주차 클린업 참고!

목적함수

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} \beta_j^2 \le s$$

$$\Leftrightarrow \hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge

Ridge L2 Regularization

SSE를 최소화하면서 회귀계수 β 에 제약 조건을 거는 방법

제약 조건식 L2-norm 형태 → L2 Regularization

L2-norm은 선형대수학 2주차 클린업 참고!

목적함수

$$\begin{split} \hat{\beta}^{ridge} &= \operatorname{argmin} \, \beta \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j \, x_i \right)^2 \text{ subject to } \sum_{j=1}^p \beta_j^2 \leq s \\ \Leftrightarrow \hat{\beta}^{ridge} &= \operatorname{argmin} \, \beta \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j \, x_i \right)^2 + \lambda \sum_{j=1}^p \beta_j^2 \end{split}$$

Ridge

목적함수

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} \beta_j^2 \le s$$

목적함수

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} \beta_j^2 \le s$$

제약조건 원과 SSE 타원과의 접점이 Ridge Estimation

제약조건 원과 SSE 타원과의 접점이 Ridge Estimation

목적함수 | 라그랑지안 승수법

Lagrangian

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

목적함수 | 라그랑지안 승수법

Lagrangian

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

오차제곱합(SSE) 최소화

목적함수 | 라그랑지안 승수법

regularization term을 통해 회귀계수 크기 조정

$$\hat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

오차제곱합(SSE) 최소화

▍목적함수│라그랑지안 승수법

regularization term을 통해 회귀계수 크기 조정

Lagrangian $\widehat{\beta}^{ridge} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$

오차제곱합(SSE) 최소화

음수가 아닌 튜닝 파라미터

최적의 모델을 찾는 과정에서 직접 CV를 통해 조정해주는 모수 제약조건의 크기를 결정 (s와는 반대 관계)

목적함수 | 라그랑지안 승수법

목적함수 | 라그랑지안 승수법

특징

Scaling

회귀계수는 변수 단위에 큰 영향을 받음 단위의 영향을 제거, 순수 영향력만 사용 주로 standard scaling 사용

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 높은 예측 성능 보임 다중공선성이 존재할 경우

Cost

regularization term 덕분에 미분 가능 λ를 바꾸며 미분과 함께 행렬 연산

variable Selection

영향력을 줄일 뿐 변수 잔존 다중공선성을 일으키는 변수 제거 불가 Ridge를 통한 해석력 증가는 어려움 3

정규화

특징

Scaling

회귀계수는 변수 단위에 큰 영향을 받음 단위의 영향을 제거, 순수 영향력만 사용 주로 standard scaling 사용

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 높은 예측 성능 보임 다중공선성이 존재할 경우

Cost

regularization term 덕분에 미분 가능 자를 바꾸며 미분과 함께 행렬 연산

variable Selection

영향력을 줄일 뿐 변수 잔존 다중공선성을 일으키는 변수 제거 불가 Ridge를 통한 해석력 증가는 어려움 3

정규화

특징

Scaling

회귀계수는 변수 단위에 큰 영향을 받음 단위의 영향을 제거, 순수 영향력만 사용 주로 standard scaling 사용

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 높은 예측 성능 보임 다중공선성이 존재할 경우

Cost

regularization term 덕분에 미분 가능 자를 바꾸며 미분과 함께 행렬 연산

variable Selection

영향력을 줄일 뿐 변수 잔존 다중공선성을 일으키는 변수 제거 불가 Ridge를 통한 해석력 증가는 어려움 3

정규화

특징

Scaling

회귀계수는 변수 단위에 큰 영향을 받음 단위의 영향을 제거, 순수 영향력만 사용 주로 standard scaling 사용

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 높은 예측 성능 보임 다중공선성이 존재할 경우

Cost

regularization term 덕분에 미분 가능 자를 바꾸며 미분과 함께 행렬 연산

variable Selection

영향력을 줄일 뿐 변수 잔존 다중공선성을 일으키는 변수 제거 불가 Ridge를 통한 해석력 증가는 어려움

Lasso

Lasso 1.1 Regularization

SSE를 최소화하면서 회귀계수 β 에 제약 조건을 거는 방법 제약 조건식 L1-norm 형태 \rightarrow L1 Regularization

L1-norm은 선형대수학 1주차 클린업 참고!

목적함수

$$\hat{\beta}^{Lasso} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le s$$

$$\Leftrightarrow \hat{\beta}^{Lasso} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Lasso

Lasso 1.1 Regularization

SSE를 최소화하면서 회귀계수 β 에 제약 조건을 거는 방법 제약 조건식 L1-norm 형태 \rightarrow L1 Regularization

L1-norm은 선형대수학 1주차 클린업 참고!

목적함수

$$\begin{split} \widehat{\beta}^{Lasso} &= \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j \, x_i \right)^2 \text{subject to } \sum_{j=1}^{p} \left| \beta_j \right| \leq s \\ \Leftrightarrow \widehat{\beta}^{Lasso} &= \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j \, x_i \right)^2 + \lambda \sum_{j=1}^{p} \left| \beta_j \right| \end{split}$$

Lasso

목적함수

$$\hat{\beta}^{Lasso} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le s$$

목적함수

$$\hat{\beta}^{Lasso} = \operatorname{argmin} \beta \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 \text{ subject to } \sum_{j=1}^{p} |\beta_j| \le s$$

제약조건 마름모와 SSE 타원과의 접점이 Lasso Estimation

제약조건 마름모와 SSE 타원과의 접점이 Lasso Estimation

목적함수 | 라그랑지안 승수법

regularization term을 통해 회귀계수 크기 조정

Lagrangian
$$\hat{\beta}^{Lasso} = \mathop{\rm argmin}\nolimits \beta \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j \, x_i \right)^2 + \lambda \sum_{j=1}^p |\beta_j|$$
 오차제곱합(SSE) 최소화 튜닝 파라미터

최적의 모델을 찾는 과정에서 직접 CV를 통해 조정해주는 모수 제약조건의 크기를 결정 (s와는 반대 관계)

목적함수 | 라그랑지안 승수법

목적함수 | 라그랑지안 승수법

목적함수 | 라그랑지안 승수법

최적의 모델을 찾는 과정에서 직접 CV를 통해 조정해주는 모수 제약조건의 크기를 결정 (s와는 반대 관계)

목적함수

큰λ값	작은 λ 값
적은 변수	많은 변수
간단한 모델	복잡한 모델
해석 쉬움	해석 어려움
높은 학습 오차	낮은 학습 오차
underfitting 위험 증가	overfitting 위험 증가

특징

Scaling

개별 변수에 대한 scaling 변수 단위에 의한 영향력 제거 주로 standard scaling 사용 하지만 변수 간 상관관계가 높으면 변수 선택 성능이 떨어짐 0 이 되는 계수의 존재로 인해 sparsity(희박성)을 지님

variable Selection

Ridge와 달리 紀값이 0이 되는 회귀계수가 존재하므로 변수 선택 가능 변수 해석 가능성 증가

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 예측에 유의미한 변수들을 0으로 만들 수 있음 : Ridge에 비해 상대적으로 예측 성능 떨어짐 다중공선성이 존재할 경우

특징

Scaling

개별 변수에 대한 scaling 변수 단위에 의한 영향력 제거 주로 standard scaling 사용 *하지만 변수 간 상관관계가 높으면 변수 선택 성능이 떨어짐* 0*이 되는 계수의 존재로 인해 sparsity(희박성)을 지님*

variable Selection

Ridge와 달리 **1**값이 0이 되는 회귀계수가 존재하므로 변수 선택 가능 변수 해석 가능성 증가

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 예측에 유의미한 변수들을 0으로 만들 수 있음 : Ridge에 비해 상대적으로 예측 성능 떨어짐 다중공선성이 존재할 경우

특징

Scaling

개별 변수에 대한 scaling 변수 단위에 의한 영향력 제거 주로 standard scaling 사용 하지만 변수 간 상관관계가 높으면 변수 선택 성능이 떨어짐 0이 되는 계수의 존재로 인해 sparsity(희박성)을 지님

variable Selection

Ridge와 달리 **1**값이 0이 되는 회귀계수가 존재하므로 변수 선택 가능 변수 해석 가능성 증가

Prediction

상관관계가 높은 변수들이 모델에 존재할 경우 예측에 유의미한 변수들을 0으로 만들 수 있음

∴ Ridge에 비해 상대적으로 예측 성능 떨어짐

다중공선성이 존재할 경우

Elastic-Net

Elastic-Net

상관성이 있는 변수를 모두 제거하거나 선택하여 성능 보완(Grouping Effect)

변수 간 상관관계가 존재할 때

LASSO의 성능이 떨어지는 한계를 보완하기 위한 방법

목적함수

$$\hat{\beta}^{elastic} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 s.t. \ t_1 \sum_{j=1}^{p} |\beta_j| + t_1 \sum_{j=1}^{p} \beta_j^2 \le s$$

ASSO.

RIDGE

Elastic-Net

Elastic-Net

상관성이 있는 변수를 모두 제거하거나 선택하여 성능 보완(Grouping Effect)

변수 간 상관관계가 존재할 때

LASSO의 성능이 떨어지는 한계를 보완하기 위한 방법

목적함수

$$\hat{\beta}^{elastic} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 s. t. \ t_1 \sum_{j=1}^{p} |\beta_j| + t_1 \sum_{j=1}^{p} \beta_j^2 \le s$$

$$\text{LASSO} \qquad \text{RIDGE}$$

Elastic-Net

Elastic-Net

상관성이 있는 변수를 모두 제거하거나 선택하여 성능 보완(Grouping Effect)

변수 간 상관관계가 존재할 때

LASSO의 성능이 떨어지는 한계를 보완하기 위한 방법

목적함수

$$\hat{\beta}^{elastic} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 s. t. \ t_1 \sum_{j=1}^{p} |\beta_j| + t_1 \sum_{j=1}^{p} \beta_j^2 \le s$$

$$\text{LASSO} \qquad \text{RIDGE}$$

Elastic-Net

Elastic-Net

제약조건이 변함에 따라 추정량이 만들어지는 <mark>공간이 변화</mark> <u>제약식에 RIDGE의 L2 term과 LASSO의 L1 ter</u>m이 모두 반영된 모형

Elastic-Net

Elastic-Net

거하거나 선택하여 성능 보완(Grouping Effect) 변수 간 성

방법

$$t_1 \sum_{j=1}^p \beta_j^2 \le s$$

그리드 서치 벙법를 통해 error가 최소화되는 l_1 , l_2 조합을 선정

Fused Lasso

Fused Lasso

변수들 사이의 물리적 거리가 존재한다는

사전지식을 활용한 모델

목적함수

$$\hat{\beta}^{FL} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} |\beta_j - \beta_{j-1}|$$

LASSO

New term

. **인접한 변수**들의 회귀 계수를 **비슷하게 추정**하도록 만드는 역할

Fused Lasso

Fused Lasso

변수들 사이의 물리적 거리가 존재한다는

사전지식을 활용한 모델

목적함수

$$\hat{\beta}^{FL} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} |\beta_j - \beta_{j-1}|$$
LASSO

New term

인접한 변수들의 회귀 계수를 **비슷하게 추정**하도록 만드는 역할

Fused Lasso

Fused Lasso

변수들 사이의 물리적 거리가 존재한다는

사전지식을 활용한 모델

목적함수

$$\hat{\beta}^{FL} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_i \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p} |\beta_j - \beta_{j-1}|$$

LASSO

New term /

인접한 변수들의 회귀 계수를 **비슷하게 추정**하도록 만드는 역할

Fused Lasso

Fused Lasso

변수<u>들 사이의 물물을 가 존재한다</u>는

$$\hat{\beta}^{FL} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\right)$$

$$\lambda_2 \sum_{j=1}^p |\beta_j - \beta_{j-1}|$$

New term /

변수들의 차이에 관한 제약으로 인접한 변수의 값을 비슷하게 추정

인접한 변수들의 회귀 계수를 **비슷하게 추정**하도록 만드는 역할

Fused Lasso

Lasso의 경우 인접한 변수들의 값에 차이가 발생

Fused Lasso의 경우

인접한 변수들의 회귀 계수를 비슷하게 추정하도록 마드는 역한 비슷하게 추정

감사합니다