Supplementary Material to: Direct Sparse Stereo Visual-Inertial Global Odometry

Ziqiang Wang, Dingkun Zhou, Ziqiang Zhen

Starts on September 2018

Ziqiang Wang is an engineer of UISEE Technologies Shanghai Co., Ltd and was a postgraduate student with the college of Electronics and Information Engineering of Tongji Universty, Shanghai, China.(e-mail: ziqiang.wang@ uisee.com).

I

Content

ChapterO Evaluation results	3
Chapter1 Visual-inertial Preliminaries	5
Chapter2 IMU Error Factors	7
2.1 Time-closest measurements selection strategy	7
2.2 Errors and covariance calculation pseudo code	7
2.3 Jacobian derivation	10
Chapter3 Photo Error Factors	11
3.1 Construction residual errors	11
3.2 Jacobian derivation	
3.2.1 Dynamic Parameter	12
3.2.2 Static Parameter	15
References	16

Chapter 0 Evaluation results

Next figures show our trajectory estimates for all training sequences of KITTI and their comparisons to the ground truth. To show the improvements over state-of-the-art methods, the results of the VINS-Fusion are shown in the right middle. The the results of all method are mapped with APE error.

Chapter1 Visual-inertial Preliminaries

In our main paper [IV], The term $J_r(\xi)$ and its inverse are the right jacobian of SE(3). In [6], authors have given the formula derivation of left Jacobian. We follow them and give derivation of right jacobian in (1.1) and (1.2).

$$\operatorname{Exp}(\boldsymbol{\xi}^{\wedge}) = \mathbf{T} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1 \end{pmatrix}_{4\times4}, \operatorname{Exp}(\delta\boldsymbol{\xi}^{\wedge}) = \begin{pmatrix} \delta\boldsymbol{\phi}^{\wedge} & \delta\boldsymbol{\rho} \\ \mathbf{0}^{T} & 1 \end{pmatrix}_{4\times4}, \mathbf{p} \in \mathbb{R}^{3}$$

$$\frac{\partial(\mathbf{T}\mathbf{p})}{\partial\delta\boldsymbol{\xi}} = \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\operatorname{Exp}(\boldsymbol{\xi}^{\wedge})\operatorname{Exp}(\delta\boldsymbol{\xi}^{\wedge})\mathbf{p} - \operatorname{Exp}(\boldsymbol{\xi}^{\wedge})\mathbf{p}}{\delta\boldsymbol{\xi}}$$

$$\approx \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\operatorname{Exp}(\boldsymbol{\xi}^{\wedge})(\mathbf{I} + \delta\boldsymbol{\xi}^{\wedge})\mathbf{p} - \operatorname{Exp}(\boldsymbol{\xi}^{\wedge})\mathbf{p}}{\delta\boldsymbol{\xi}} = \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\operatorname{Exp}(\boldsymbol{\xi}^{\wedge})\delta\boldsymbol{\xi}^{\wedge}\mathbf{p}}{\delta\boldsymbol{\xi}}$$

$$= \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} \delta\boldsymbol{\phi}^{\wedge}\mathbf{p} + \delta\boldsymbol{\rho} \\ 1 \end{pmatrix}}{\delta\boldsymbol{\xi}} = \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\begin{pmatrix} \mathbf{R}\delta\boldsymbol{\phi}^{\wedge}\mathbf{p} + \mathbf{R}\delta\boldsymbol{\rho} + \mathbf{t} \\ 1 \end{pmatrix}}{\delta\boldsymbol{\xi}}$$

$$= \lim_{\delta\boldsymbol{\xi}\to\mathbf{0}} \frac{\begin{pmatrix} -\mathbf{R}\mathbf{p}^{\wedge}\delta\boldsymbol{\phi} + \mathbf{R}\delta\boldsymbol{\rho} + \mathbf{t} \\ 1 \end{pmatrix}}{\begin{pmatrix} \delta\boldsymbol{\rho} \\ \delta\boldsymbol{\phi} \end{pmatrix}} = \begin{pmatrix} \mathbf{R} & -\mathbf{R}\mathbf{p}^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix}_{4\times6}$$
(1.1)

$$\frac{\partial (\mathbf{T}^{-1}\mathbf{p})}{\partial \delta \boldsymbol{\xi}} = \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\operatorname{Exp}(\boldsymbol{\xi}^{\wedge}) \operatorname{Exp}(\delta \boldsymbol{\xi}^{\wedge}))^{-1} \mathbf{p} - \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p}}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\operatorname{Exp}(\delta \boldsymbol{\xi}^{\wedge}))^{-1} (\operatorname{Exp}(\boldsymbol{\xi}^{\wedge}))^{-1} \mathbf{p} - \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p}}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{\operatorname{Exp}(-\delta \boldsymbol{\xi}^{\wedge}) \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p} - \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p}}{\delta \boldsymbol{\xi}} \\
\approx \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\mathbf{I} - \delta \boldsymbol{\xi}^{\wedge}) \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p} - \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p}}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\mathbf{I} - \delta \boldsymbol{\xi}^{\wedge}) \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p} - \operatorname{Exp}(-\boldsymbol{\xi}^{\wedge}) \mathbf{p}}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\delta \boldsymbol{\phi}^{\wedge} \delta \boldsymbol{\rho}) \left(\mathbf{R}^{-1} - \mathbf{R}^{-1} \mathbf{t} \right) \left(\mathbf{p} \right)}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\delta \boldsymbol{\phi}^{\wedge} \delta \boldsymbol{\rho}) \left(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t} \right)}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\delta \boldsymbol{\phi}^{\wedge} \delta \boldsymbol{\rho}) \left(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t} \right)}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(\delta \boldsymbol{\phi}^{\wedge} (\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t}) + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\xi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}} \\
= \lim_{\delta \boldsymbol{\xi} \to \mathbf{0}} \frac{(-(\mathbf{R}^{-1} \mathbf{p} - \mathbf{R}^{-1} \mathbf{t})^{\wedge} \delta \boldsymbol{\phi} + \delta \boldsymbol{\rho})}{\delta \boldsymbol{\phi}}$$

Homogeneous camera calibration matrices are denoted by K as (1.3). and homogeneous 2D image coordinate point p is represented by its image coordinate and inverse depth as (1.3) relative to its host keyframe i^L . Corresponding homogeneous 3D camera coordinate point p_C is denoted as (1.3). Π_K are used to denote camera projection functions. The jacobian of I_i^L , Π_K is denoted as (1.3)

$$\mathbf{K} = \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \mathbf{K}^{-1} = \begin{pmatrix} f_{x}^{-1} & 0 & -f_{x}^{-1}c_{x} & 0 \\ 0 & f_{y}^{-1} & -f_{y}^{-1}c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}} \end{pmatrix}, \mathbf{p}_{\mathbf{c}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}} = z^{-1}, \mathbf{p} = d_{\mathbf{p}}\mathbf{K}\mathbf{p}_{\mathbf{c}} = \Pi_{\mathbf{K}}(\mathbf{p}_{\mathbf{c}})$$

$$\frac{\partial (\mathbf{I}_{i}^{L}(\mathbf{p}))}{\partial \mathbf{p}} = (g_{x}, g_{y}, 0, 0), \frac{\partial \mathbf{p}}{\partial \mathbf{p}_{\mathbf{c}}} = \frac{\partial \Pi_{\mathbf{K}}(\mathbf{p}_{\mathbf{c}})}{\partial \mathbf{p}_{\mathbf{c}}} = \begin{pmatrix} f_{x}z^{-1} & 0 & -xf_{x}z^{-2} & 0 \\ 0 & f_{y}z^{-1} & -yf_{y}z^{-2} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -z^{-2} & 0 \end{pmatrix}$$
(1.3)

Chapter 2 IMU Error Factors

2.1 Time-closest measurements selection strategy

Because of asynchronous but same frequency for accelerometer and gyroscope data, there will be different quantity samples of these two sensors between two consecutive keyframes. We select time-closest gyroscope measurement for one accelerometer measurement according to (Alg.1)

```
Algorithm 1 Time-closest measurements selection
Input: gyro_list,acc_list[s](an element in acc_list)
Output: qyro_measure(time closest element in gyro_list)
 1: function TIME_CLOSEST_SELECT(qyro_list, i)
 2:
        t \leftarrow acc\_list[s].timestamp, i \leftarrow s
 3:
        while true do
            if i >= qyro\_list.size then
 4:
                return gyro_list.back
 5:
            else
 6:
                t_{now} \leftarrow gyro\_list[i].timestamp
 7:
                t_{next} \leftarrow gyro\_list[i+1].timestamp
 8:
                if t_{now} < t then
 9:
10:
                    if t_{next} > t then
11:
                        t_{front} \leftarrow abs(t_{now} - t), t_{back} \leftarrow abs(t_{next} - t)
12:
                        return t_{front} > t_{back}?gyro\_list[i+1]: gyro\_list[i]
                    else
13:
                        i = i + 1
14:
                    end if
15:
                else if t_{now} > t then
16:
                    i = i - 1
17:
18:
                else
19:
                    return gyro\_list[i]
20:
                end if
            end if
21:
22:
        end while
23: end function
```

2.2 Errors and covariance calculation pseudo code

In our main paper [Fig. 2], we can get gyroscope, accelerometer data lists whose size is m, n. We have 8 error items to define:

 $\Delta \bar{\mathbf{R}}_{ij}, \frac{\partial \Delta \bar{\mathbf{R}}_{ij}}{\partial \mathbf{b}^{a}}, \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^{a}}, \frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^{a}}$ are pure rotation values and aren't related to accelerometer data.

 $\Delta \bar{\mathbf{v}}_{ij}, \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^g}, \Delta \bar{\mathbf{p}}_{ij}, \frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^g}$ are rotation "plus" translation values and are related to both gyroscope and accelerometer data.

We calculate these error items by recursion. As an example, the recurrence of $\Delta \bar{\mathbf{R}}_{ij}$, $\frac{\partial \Delta \bar{\mathbf{R}}_{ij}}{\partial \mathbf{b}^g}$ are presented here in (2.1), (2.2).

$$\Delta \mathbf{R}_{ij}, \quad \overline{\partial \mathbf{b}^{g}} \quad \text{are presented here in } (2.1), (2.2).$$

$$\Delta \mathbf{\bar{R}}_{ik} = \begin{cases}
\mathbf{I}_{3\times3}, & k = i \\
\prod_{m=i}^{k-1} \mathbf{Exp}((\tilde{\omega}_{m} - \bar{\mathbf{b}}_{i}^{g})\Delta t), & k > i
\end{cases}$$

$$e.g. \quad k: 0 \to 44, i = 0$$

$$\Delta \mathbf{\bar{R}}_{00} = \mathbf{I}_{3\times3}$$

$$\Delta \mathbf{\bar{R}}_{01} = \mathbf{Exp}((\tilde{\omega}_{0} - \bar{\mathbf{b}}_{0}^{g})\Delta t)$$

$$\Delta \mathbf{\bar{R}}_{02} = \mathbf{Exp}((\tilde{\omega}_{0} - \bar{\mathbf{b}}_{0}^{g})\Delta t)\mathbf{Exp}((\tilde{\omega}_{1} - \bar{\mathbf{b}}_{0}^{g})\Delta t)$$

$$\vdots$$

$$\Delta \mathbf{\bar{R}}_{0(44)} = \mathbf{Exp}((\tilde{\omega}_{0} - \bar{\mathbf{b}}_{0}^{g})\Delta t)\mathbf{Exp}((\tilde{\omega}_{1} - \bar{\mathbf{b}}_{0}^{g})\Delta t) \cdots \mathbf{Exp}((\tilde{\omega}_{43} - \bar{\mathbf{b}}_{0}^{g})\Delta t)$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{ik}}{\partial \mathbf{b}^g} = \begin{cases} \mathbf{0}_{3\times3}, & k = i \\ \sum_{m=i}^{k-1} -\Delta \bar{\mathbf{R}}_{m+1k}^T \mathbf{J}_r^m \Delta t, & k > i \end{cases}$$

$$= \begin{cases} \mathbf{0}_{3\times3}, & k = i \\ \mathbf{J}_r^D \Delta t, & k = i+1 \end{cases}$$

$$\Delta \bar{\mathbf{R}}_{(k-1)k}^T \frac{\partial \Delta \bar{\mathbf{R}}_{i(k-1)}}{\partial \mathbf{b}^g} + \mathbf{J}_r^{k-1} \Delta t, & k > i+1 \end{cases}$$

$$e.g. \quad i = 0, \quad k: 0 \to 45$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{00}}{\partial \bar{\mathbf{b}}^g} = \mathbf{0}_{3\times3}$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{01}}{\partial \bar{\mathbf{b}}^g} = \sum_{m=0}^{0} \Delta \bar{\mathbf{R}}_{(m+1)1}^T \mathbf{J}_r^m \Delta t = \Delta \bar{\mathbf{R}}_{11}^T \mathbf{J}_r^0 \Delta t = \mathbf{J}_r^0 \Delta t$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{02}}{\partial \bar{\mathbf{b}}^g} = \sum_{m=0}^{1} \Delta \bar{\mathbf{R}}_{(m+1)2}^T \mathbf{J}_r^m \Delta t = \Delta \bar{\mathbf{R}}_{12}^T \mathbf{J}_r^0 \Delta t + \Delta \bar{\mathbf{R}}_{22}^T \mathbf{J}_r^1 \Delta t = \Delta \bar{\mathbf{R}}_{12}^T \frac{\partial \Delta \bar{\mathbf{R}}_{01}}{\partial \bar{\mathbf{b}}^g} + \mathbf{J}_r^1 \Delta t$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{03}}{\partial \bar{\mathbf{b}}^g} = \sum_{m=0}^{2} \Delta \bar{\mathbf{R}}_{(m+1)2}^T \mathbf{J}_r^m \Delta t = \Delta \bar{\mathbf{R}}_{12}^T \mathbf{J}_r^0 \Delta t + \Delta \bar{\mathbf{R}}_{23}^T \mathbf{J}_r^1 \Delta t + \Delta \bar{\mathbf{R}}_{33}^T \mathbf{J}_r^2 \Delta t \\ = (\Delta \bar{\mathbf{R}}_{12} \Delta \bar{\mathbf{R}}_{23})^T \mathbf{J}_r^0 \Delta t + \Delta \bar{\mathbf{R}}_{23}^T \mathbf{J}_r^1 \Delta t + \mathbf{J}_r^2 \Delta t \\ = \Delta \bar{\mathbf{R}}_{23}^T \Delta \bar{\mathbf{R}}_{12}^T \mathbf{J}_r^0 \Delta t + \Delta \bar{\mathbf{R}}_{23}^T \mathbf{J}_r^1 \Delta t + \mathbf{J}_r^2 \Delta t \\ = \Delta \bar{\mathbf{R}}_{23}^T \frac{\partial \Delta \bar{\mathbf{R}}_{02}}{\partial \mathbf{b}^g} + \mathbf{J}_r^2 \Delta t$$

$$\vdots$$

$$\frac{\partial \Delta \bar{\mathbf{R}}_{0(44)}}{\partial \Delta \bar{\mathbf{R}}_{0(44)}} = \frac{\lambda^2}{2^2} \mathbf{J}_r^2 \Delta t = \lambda^2 \mathbf{J}_r^2 \Delta t = \lambda^2 \mathbf{J}_r^2 \Delta t$$

$$\begin{split} \frac{\partial \Delta \bar{\mathbf{R}}_{0(44)}}{\partial \bar{\mathbf{b}}^g} &= \sum_{m=0}^{43} \Delta \bar{\mathbf{R}}_{(m+1)44}^T \mathbf{J}_r^m \Delta t \\ &= \Delta \bar{\mathbf{R}}_{1(44)}^T \mathbf{J}_r^0 \Delta t + \Delta \bar{\mathbf{R}}_{2(44)}^T \mathbf{J}_r^1 \Delta t + \dots + \Delta \bar{\mathbf{R}}_{43(44)}^T \mathbf{J}_r^{42} \Delta t + \Delta \bar{\mathbf{R}}_{44(44)}^T \mathbf{J}_r^{43} \Delta t \\ &= \Delta \bar{\mathbf{R}}_{43(44)}^T \frac{\partial \Delta \bar{\mathbf{R}}_{0(43)}}{\partial \bar{\mathbf{b}}^g} + \mathbf{J}_r^{43} \Delta t \\ \frac{\partial \Delta \bar{\mathbf{R}}_{0(45)}}{\partial \bar{\mathbf{b}}^g} &= \sum_{m=0}^{44} \Delta \bar{\mathbf{R}}_{(m+1)45}^T \mathbf{J}_r^m \Delta t \\ &= \Delta \bar{\mathbf{R}}_{44(45)}^T \frac{\partial \Delta \bar{\mathbf{R}}_{0(44)}}{\partial \bar{\mathbf{b}}^g} + \mathbf{J}_r^{44} \Delta t \end{split}$$

Furthermore, in order to calculate conveniently, we introduce a *rotate_list* to store all pure rotation values. All error items can be seen in (Alg.2).

Algorithm 1 On-Manifold Preintegeration for IMU

```
Input: gyro\_list, acc\_list, m, n, rotate\_list
Output: (\Delta \bar{\mathbf{R}}_{ij}, \frac{\partial \Delta \bar{\mathbf{R}}_{ij}}{\partial \mathbf{b}^g}, \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^a}, \frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^a}), (\Delta \bar{\mathbf{v}}_{ij}, \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^g}, \Delta \bar{\mathbf{p}}_{ij}, \frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^g}), \Sigma_{ij}
1: function IMU_Preintegeration(gyro\_list, acc\_list, m, n, rotate\_list)
     2:
                                     for all gyro\_list[i], i: 0 \rightarrow m do
                                                       last\_r \leftarrow rotate\_list[i-1]
     3:
                                                       rot.timestamp \leftarrow gyro\_list[i].timestamp
      4:
                                                       rot.\omega \leftarrow gyro\_list[i].\omega - \mathbf{b}_i^g
      5:
                                                       rot.\Delta\mathbf{R}_{ik} \leftarrow last\_r.\Delta\mathbf{R}_{ik} * \mathsf{Exp}(rot.\omega * \Delta t)
      6:
                                                       rot.\Delta \bar{\mathbf{R}}_{(k-1)k} \leftarrow \operatorname{Exp}(rot.\omega * \Delta t)
      7:
                                                    rot. \frac{\partial \Delta \bar{\mathbf{R}}_{ik}}{\partial \mathbf{b}^{g}} \leftarrow \Delta \bar{\mathbf{R}}_{(k-1)k}^{T} * last_{-r}. \frac{\partial \Delta \bar{\mathbf{R}}_{ik}}{\partial \mathbf{b}^{g}} - \mathbf{J}_{r}(rot.\omega * \Delta t) * \Delta t
rot. \frac{\partial \Delta \bar{\mathbf{v}}_{ik}}{\partial \mathbf{b}^{a}} \leftarrow last_{-r}. \frac{\partial \Delta \bar{\mathbf{v}}_{ik}}{\partial \mathbf{b}^{a}} - last_{-r}.\Delta \bar{\mathbf{R}}_{ik} * \Delta t
rot. \frac{\partial \Delta \bar{\mathbf{p}}_{ik}}{\partial \mathbf{b}^{a}} \leftarrow last_{-r}. \frac{\partial \Delta \bar{\mathbf{p}}_{ik}}{\partial \mathbf{b}^{a}} + last_{-r}.\frac{\partial \Delta \bar{\mathbf{v}}_{ik}}{\partial \mathbf{b}^{a}} * \Delta t - \frac{1}{2}last_{-r}.\Delta \bar{\mathbf{R}}_{ik} * \Delta t^{2}
     8:
     9:
  10:
                                                       rotate\_list.push(rot)
  11:
                                     end for
  12:
                                     \Delta \mathbf{R}_{ij} = rotate\_list.end.\Delta \mathbf{R}_{ik}
  13:
                                     \begin{array}{l} \frac{\partial \Delta \bar{\mathbf{h}}_{ij}^{ij}}{\partial \mathbf{b}^g} = rotate\_list.end. \frac{\partial \Delta \bar{\mathbf{h}}_{ik}^{ij}}{\partial \mathbf{b}^g} \\ \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^a} = rotate\_list.end. \frac{\partial \Delta \bar{\mathbf{v}}_{ik}}{\partial \mathbf{b}^a} \\ \frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^a} = rotate\_list.end. \frac{\partial \Delta \bar{\mathbf{p}}_{ik}}{\partial \mathbf{b}^a} \end{array}
  14:
  15:
  16:
                                     for all acc\_list[i], i: 0 \rightarrow n do
  17:
                                                       cls\_r \leftarrow time\_closest\_select(rotate\_list, acc\_list[i])
  18:
                                                       acc \leftarrow acc\_list[i] - \mathbf{b}_i^a
  19:
                                                       \Delta \bar{\mathbf{v}}_{ij} + = cls r. \Delta \bar{\mathbf{R}}_{ik} * acc * \Delta t
  20:
                                                       \begin{array}{l} \frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^g} - = cls\_r.\Delta \bar{\mathbf{R}}_{ik} * acc^{\wedge} * cls\_r.\frac{\partial \Delta \bar{\mathbf{R}}_{ik}}{\partial \mathbf{b}^g} * \Delta t \\ \Delta \bar{\mathbf{p}}_{ij} + = \Delta \bar{\mathbf{v}}_{ij} * \Delta t + \frac{1}{2}cls\_r.\Delta \bar{\mathbf{R}}_{ik} * acc * \Delta t^2 \end{array}
  21:
  22:

\Delta \mathbf{p}_{ij} + = \Delta \mathbf{v}_{ij} * \Delta t + \frac{1}{2}cts \cdot I \cdot \Delta \mathbf{R}_{ik} * acc * \Delta t

\frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^g} + = cls \cdot I \cdot \frac{\partial \Delta \bar{\mathbf{v}}_{ik}}{\partial \mathbf{b}^g} \Delta t - \frac{1}{2}cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{ik} * acc^{\wedge} * cls \cdot I \cdot \frac{\partial \Delta \bar{\mathbf{R}}_{ik}}{\partial \mathbf{b}^g} * \Delta t^{2}

A = \begin{pmatrix} cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{(k-1)k}^{T} & \mathbf{0} & \mathbf{0} \\ -cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{ik} * acc^{\wedge} * \Delta t & \mathbf{I} & \mathbf{0} \\ -\frac{1}{2}cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{ik} * acc^{\wedge} * \Delta t^{2} & \Delta t \mathbf{I} & \mathbf{I} \end{pmatrix}

B = \begin{pmatrix} \mathbf{J}_r(rot \cdot \omega * \Delta t) * \Delta t & \mathbf{0} \\ \mathbf{0} & cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{ik} * \Delta t \\ \mathbf{0} & \frac{1}{2}cls \cdot I \cdot \Delta \bar{\mathbf{R}}_{ik} * \Delta t^{2} \end{pmatrix}

  23:
  24:
  25:
                                                       \Sigma_{ij} = A * \Sigma_{ij} * A^T + B * \Sigma_{\eta} * B^T
  26:
                                     end for
  27:
 28: end function
```

2.3 Jacobian derivation

The derivation of the Jacobians of $\mathbf{r}_{\Delta \mathbf{R}_{ij}}, \mathbf{r}_{\Delta \mathbf{v}_{ij}}, \mathbf{r}_{\Delta \mathbf{p}_{ij}}$ likes (2.3), (2.4), (2.5).

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{p}_{i}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \phi_{i}} = -\mathbf{J}_{r}^{-1}(\mathbf{r}_{\Delta \mathbf{R}_{ij}})\mathbf{R}_{j}^{T}\mathbf{R}_{i}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{v}_{i}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{p}_{j}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \phi_{j}} = \mathbf{J}_{r}^{-1}(\mathbf{r}_{\Delta \mathbf{R}_{ij}})$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{v}_{j}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{v}_{j}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{b}_{i}^{a}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{b}_{i}^{a}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{R}_{ij}}}{\partial \delta \mathbf{b}_{i}^{g}} = -\mathbf{J}_{r}^{-1}(\mathbf{r}_{\Delta \mathbf{R}_{ij}})\mathbf{Exp}(\mathbf{r}_{\Delta \mathbf{R}_{ij}})^{T}\mathbf{J}_{r}(\frac{\partial \Delta \mathbf{\bar{R}}_{ij}}{\partial \mathbf{b}^{g}}\delta \mathbf{b}_{i}^{g})\frac{\partial \Delta \mathbf{\bar{R}}_{ij}}{\partial \mathbf{b}^{g}}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{p}_{i}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \phi_{i}} = (\mathbf{R}_{i}^{T}(\mathbf{v}_{j} - \mathbf{v}_{i} - \mathbf{g}\Delta t_{ij}))^{\wedge}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{v}_{i}} = -\mathbf{R}_{i}^{T}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{p}_{j}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \phi_{j}} = \mathbf{0}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{v}_{j}} = \mathbf{R}_{i}^{T}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{v}_{j}} = \mathbf{R}_{i}^{T}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{b}_{i}^{a}} = -\frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^{a}}$$

$$\frac{\partial \mathbf{r}_{\Delta \mathbf{v}_{ij}}}{\partial \delta \mathbf{b}_{j}^{a}} = -\frac{\partial \Delta \bar{\mathbf{v}}_{ij}}{\partial \mathbf{b}^{a}}$$

$$\begin{split} \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{p}_{i}} &= -\mathbf{I} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \phi_{i}} &= (\mathbf{R}_{i}^{T}(\mathbf{p}_{j} - \mathbf{p}_{i} - \mathbf{v}_{i} \Delta t_{ij} - \frac{1}{2} \mathbf{g} \Delta t_{ij}^{2}))^{\wedge} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{v}_{i}} &= -\mathbf{R}_{i}^{T} \Delta t_{ij} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{p}_{j}} &= \mathbf{R}_{i}^{T} \mathbf{R}_{j} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \phi_{j}} &= \mathbf{0} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{v}_{i}} &= \mathbf{0} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{b}_{i}^{a}} &= -\frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^{a}} \\ \frac{\partial \mathbf{r}_{\Delta \mathbf{p}_{ij}}}{\partial \delta \mathbf{b}_{i}^{g}} &= -\frac{\partial \Delta \bar{\mathbf{p}}_{ij}}{\partial \mathbf{b}^{g}} \end{split}$$

Chapter3 Photo Error Factors

3.1 Construction residual errors

Fig.1

Here, we take [Fig.1] as factor graph to illustrate photometric error optimaztion. According to our main paper [V.B], The parameters we want to optimize are enclosed in (3.1).

$$\chi = \begin{pmatrix}
(\phi_{1}, \dots, \phi_{4})^{T} \\
(\mathbf{p}_{1}^{T}, \dots, \mathbf{p}_{4}^{T})^{T} \\
(\mathbf{v}_{1}^{T}, \dots, \mathbf{v}_{4}^{T})^{T} \\
(\mathbf{b}_{1}^{T}, \dots, \mathbf{b}_{4}^{T})^{T} \\
(d_{\mathbf{p}_{1}}, \dots, d_{\mathbf{p}_{5}})^{T} \\
(a_{1}^{L}, a_{1}^{R}, b_{1}^{L}, b_{1}^{R})^{T} \\
\vdots \\
(a_{4}^{L}, a_{4}^{R}, b_{4}^{L}, b_{4}^{R})^{T}
\end{pmatrix}$$

$$\xi_{i} = (\phi_{i}^{T}, \mathbf{p}_{i}^{T})^{T}$$

$$\xi_{i} = (\phi_{i}^{T}, \mathbf{p}_{i}^{T})^{T}$$
(3.1)

In this example, there are 7 dynamic residuals and 3 static residuals, Factor graph of the residuals function is in (3.2)

$$E(\chi) = \frac{E_{1L2L}^{\mathbf{p}_{1}} + E_{2L1L}^{\mathbf{p}_{2}} + E_{2L3L}^{\mathbf{p}_{2}} + E_{3L1L}^{\mathbf{p}_{3}} + E_{3L1L}^{\mathbf{p}_{4}} + E_{3L2L}^{\mathbf{p}_{5}} + E_{4L3L}^{\mathbf{p}_{5}}}{+ E_{1L1R}^{\mathbf{p}_{1}} + E_{2L2R}^{\mathbf{p}_{2}} + E_{4L4R}^{\mathbf{p}_{5}}} = E_{d}(\chi) + E_{s}(\chi)$$

$$E_{d}(\chi) = \begin{pmatrix} (r_{\mathbf{p}_{1}}^{d})_{12} \\ (r_{\mathbf{p}_{1}}^{d})_{21} \\ \vdots \\ (r_{\mathbf{p}_{5}}^{d})_{43} \end{pmatrix}^{T} \begin{pmatrix} w_{\mathbf{p}_{1}} & 0 & \dots & 0 \\ 0 & w_{\mathbf{p}_{1}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{\mathbf{p}_{5}} \end{pmatrix} \begin{pmatrix} (r_{\mathbf{p}_{1}}^{d})_{12} \\ (r_{\mathbf{p}_{1}}^{d})_{21} \\ \vdots \\ (r_{\mathbf{p}_{5}}^{d})_{43} \end{pmatrix} = (\mathbf{r}^{d})^{T} \mathbf{W}^{d} \mathbf{r}^{d}$$

$$E_{s}(\chi) = \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \end{pmatrix}^{T} \begin{pmatrix} \lambda w_{\mathbf{p}_{1}} & 0 & 0 \\ 0 & \lambda w_{\mathbf{p}_{2}} & 0 \\ 0 & 0 & \lambda w_{\mathbf{p}_{5}} \end{pmatrix} \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

$$E_{s}(\chi) = \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \end{pmatrix}^{T} \begin{pmatrix} \lambda w_{\mathbf{p}_{1}} & 0 & 0 \\ 0 & \lambda w_{\mathbf{p}_{2}} & 0 \\ 0 & 0 & \lambda w_{\mathbf{p}_{5}} \end{pmatrix} \begin{pmatrix} r_{\mathbf{p}_{1}}^{s} \\ r_{\mathbf{p}_{2}}^{s} \end{pmatrix} = (\mathbf{r}^{s})^{T} \mathbf{W}^{s} \mathbf{r}^{s}$$

We first note that $(\mathbf{v}_1^T, \dots, \mathbf{v}_4^T)^T, (\mathbf{b}_1^T, \dots, \mathbf{b}_4^T)^T$ do not appear in the expression of $E_d(\boldsymbol{\chi}), E_s(\boldsymbol{\chi})$, hence the corresponding Jacobians are zero, we omit them for writing simplely. The remaining Jacobians can be computed as follows (3.3):

$$\mathbf{J}_{s} = \begin{pmatrix} \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \delta \xi_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial \delta \xi_{4}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial d\mathbf{p}_{1}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial a_{\mathbf{p}_{1}}^{s}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial a_{\mathbf{p}_{1}}^{s}} & \frac{\partial r_{\mathbf{p}_{1}}^{s}}{\partial b_{\mathbf{p}_{1}}^{s}} \\ \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial \delta \xi_{1}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial \delta \xi_{4}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial d\mathbf{p}_{1}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial d\mathbf{p}_{5}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial a_{\mathbf{p}_{1}}^{s}} & \frac{\partial r_{\mathbf{p}_{2}}^{s}}{\partial b_{\mathbf{p}_{3}}^{s}} \\ \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial \delta \xi_{1}} & \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial \delta \xi_{4}} & \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial d\mathbf{p}_{1}} & \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial d\mathbf{p}_{5}} & \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial a_{\mathbf{p}_{3}}^{s}} & \frac{\partial r_{\mathbf{p}_{3}}^{s}}{\partial a_{\mathbf{p}_{4}}^{s}} \\ \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \delta \xi_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial \delta \xi_{4}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d\mathbf{p}_{1}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial d\mathbf{p}_{5}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}}^{s}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}} & \frac{\partial (r_{\mathbf{p}_{1}}^{d})_{12}}{\partial a_{\mathbf{p}_{5}^{s}}} & \frac{\partial (r_{\mathbf{p}_{1}^{d})_{12}}{\partial a_{\mathbf{$$

Iteration $\delta \chi$ can be calculated by (3.4):

$$(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{J}_{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{J}_{d})\delta\boldsymbol{\chi} = -(\mathbf{J}_{s}^{T}\lambda\mathbf{W}^{s}\mathbf{r}^{s} + \mathbf{J}_{d}^{T}\mathbf{W}^{d}\mathbf{r}^{d})$$

$$\mathbf{J}_{s} \in \mathbb{R}^{3\times49}, \mathbf{W}^{s} \in \mathbb{R}^{3\times3}, \mathbf{J}_{s} \in \mathbb{R}^{7\times49}, \mathbf{W}^{s} \in \mathbb{R}^{7\times7}$$

$$(3.4)$$

3.2 Jacobian derivation

3.2.1 Dynamic Parameter

Firstly, if **p** is neither observed by frame m^L , m^R nor hosted by n^L , n^R , corresponding jacobians are zero as (3.6):

$$\frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \delta \boldsymbol{\xi}_m} = \frac{\partial (r_{\mathbf{p}}^d)_{ij}}{\partial \delta \boldsymbol{\xi}_n} = \mathbf{0}^T, so \quad \frac{\partial (r_{\mathbf{p}_1}^d)_{12}}{\partial \delta \boldsymbol{\xi}_3} = \frac{\partial (r_{\mathbf{p}_1}^d)_{12}}{\partial \delta \boldsymbol{\xi}_4} = \dots = \mathbf{0}^T,$$
(3.6)

Otherwise, assuming the hostframe of 2D image coordinate point \mathbf{p} is i^L , and corresponding homogeneous 3D camera coordinate point is $\mathbf{p}_{\mathtt{C}}$ in (3.7), body coordinate is $\mathbf{p}_{\mathtt{B}} = \mathbf{T}_{\mathtt{BC}}\mathbf{p}_{\mathtt{C}}$. We transform $\mathbf{p}_{\mathtt{C}}$ from frame i^L to j^L by $\mathbf{p}_{\mathtt{B}}' = \mathbf{T}_{j}^{-1}\mathbf{T}_i\mathbf{p}_{\mathtt{B}}$, then transform $\mathbf{p}_{\mathtt{B}}'$ to camera coordinate point $\mathbf{p}_{\mathtt{C}}' = \mathbf{T}_{\mathtt{BC}}^{-1}\mathbf{p}_{\mathtt{B}}'$. At last, $\mathbf{p}_{\mathtt{C}}'$ is projected to 2D image coordinate point with \mathbf{p}' .

$$\mathbf{p}_{\mathbf{C}} = \begin{pmatrix} f_{x}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (u^{i} - c_{x}) \\ f_{y}^{-1} (d_{\mathbf{p}}^{iL})^{-1} (v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix}, \mathbf{p}_{\mathbf{C}}' \doteq \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix}$$

$$\mathbf{p}' = d_{\mathbf{p}}^{jL} \mathbf{K} (\mathbf{T}_{BC}^{-1} \mathbf{T}_{j}^{-1} \mathbf{T}_{i} ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{T}_{BC} \mathbf{K}^{-1} \mathbf{p})) = d_{\mathbf{p}}^{jL} \mathbf{K} \mathbf{p}_{\mathbf{C}}'$$

$$(3.7)$$

3.2.1.1 Jacobian of Affine Brightness Parameters

It is convenient to give jacobian of affine brightness parameters in (3.8).

$$(r_{\mathbf{p}}^{d})_{ij} = I_{j}^{L}(\mathbf{p}') - b_{j}^{L} - \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}(I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{i}^{L}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}(I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial a_{j}^{L}} = -\frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}(I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{i}^{L}} = \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}}, \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial b_{j}^{L}} = -1$$

$$(3.8)$$

3.2.1.2 Right Jacobian of Pose

According to (1.1), we can use the chain rule to get jacobian of ξ_i in (3.9):

$$(r_{\mathbf{p}}^{d})_{ij} = I_{j}^{L}(\mathbf{p}') - b_{j}^{L} - \frac{e^{a_{j}^{L}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial \delta \boldsymbol{\xi}_{i}} = \frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'}{\partial \mathbf{p}'_{c}} \frac{\partial \mathbf{p}'_{c}}{\partial \delta \boldsymbol{\xi}_{i}}$$

$$\frac{\partial (I_{j}^{L}(\mathbf{p}'))}{\partial \mathbf{p}'} = (g_{x}', g_{y}', 0, 0)^{T}$$

$$\frac{\partial \mathbf{p}'}{\partial \mathbf{p}'_{c}} = \begin{pmatrix} f_{x}(z')^{-1} & 0 & -x'f_{x}(z')^{-2} & 0\\ 0 & f_{y}(z')^{-1} & -y'f_{y}(z')^{-2} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & (z')^{-2} & 0 \end{pmatrix}$$

$$\frac{\partial \mathbf{p}'_{c}}{\partial \delta \boldsymbol{\xi}_{i}} = \frac{\partial (\mathbf{T}_{BC}^{-1}\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p}_{B})}{\partial \delta \boldsymbol{\xi}_{i}} = \mathbf{T}_{BC}^{-1}\mathbf{T}_{j}^{-1} \frac{\partial (\mathbf{T}_{i}\mathbf{p}_{B})}{\partial \delta \boldsymbol{\xi}_{i}}$$

$$= \mathbf{T}_{BC}^{-1}\mathbf{T}_{j}^{-1} \begin{pmatrix} \mathbf{R}_{i} & -\mathbf{R}_{i}\mathbf{p}_{B}^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix}$$

According to (1.2), the jacobian of ξ_j is enclosed in (3.10):

$$\mathbf{T}_{i}\mathbf{p}_{B} \stackrel{\cdot}{=} {}_{i}\mathbf{p}_{B}
\frac{\partial \mathbf{p}_{C}'}{\partial \delta \boldsymbol{\xi}_{j}} = \frac{\partial (\mathbf{T}_{BC}^{-1}\mathbf{T}_{j}^{-1}\mathbf{T}_{i}\mathbf{p}_{B})}{\partial \delta \boldsymbol{\xi}_{j}} = \mathbf{T}_{BC}^{-1}\frac{\partial (\mathbf{T}_{j}^{-1}{}_{i}\mathbf{p}_{B})}{\partial \delta \boldsymbol{\xi}_{j}}
= \mathbf{T}_{BC}^{-1}\begin{pmatrix} -\mathbf{I}_{3} & (\mathbf{R}_{j}^{-1}{}_{i}\mathbf{p}_{B} - \mathbf{R}_{j}^{-1}\mathbf{t}_{j})^{\wedge} \\ \mathbf{0}^{T} & \mathbf{0}^{T} \end{pmatrix}$$
(3.10)

3.2.1.3 Jacobian of inverse Depth

The inverse depth of \mathbf{p} is $d_{\mathbf{p}}^{i^L}$ in 3D camera coordinate of i^L . The jacobian of $d_{\mathbf{p}}^{i^L}$ is enclosed in (3.11):

$$\mathbf{p}' = d_{\mathbf{p}}^{j^{L}} \mathbf{K} (\mathbf{T}_{\mathsf{BC}}^{-1} \mathbf{T}_{j}^{-1} \mathbf{T}_{i} ((d_{\mathbf{p}}^{i^{L}})^{-1} \mathbf{T}_{\mathsf{BC}} \mathbf{K}^{-1} \mathbf{p}))$$

$$= d_{\mathbf{p}}^{j^{L}} \mathbf{K} (\mathbf{T}_{\mathsf{BC}}^{-1} \mathbf{T}_{j}^{-1} \mathbf{T}_{i} \mathbf{T}_{\mathsf{BC}}) \mathbf{p}_{\mathsf{C}}$$

$$\mathbf{T}_{\mathsf{BC}}^{-1} \mathbf{T}_{j}^{-1} \mathbf{T}_{i} \mathbf{T}_{\mathsf{BC}} \doteq \mathbf{T}^{\spadesuit}, \mathbf{p}_{\mathsf{C}}' \doteq \mathbf{T}^{\spadesuit} \mathbf{p}_{\mathsf{C}}$$

$$\Rightarrow \frac{\partial (r_{\mathbf{p}}^{d})_{ij}}{\partial d_{\mathbf{p}}^{iL}} = \frac{\partial (I_{j}^{L} (\mathbf{p}'))}{\partial d_{\mathbf{p}}^{iL}} = \frac{\partial (I_{j}^{L} (\mathbf{p}'))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'}{\partial \mathbf{p}'_{\mathsf{C}}} \frac{\partial \mathbf{p}'_{\mathsf{C}}}{\partial d_{\mathbf{p}}^{iL}}$$

$$\frac{\partial \mathbf{p}'_{\mathsf{C}}}{\partial d_{\mathbf{p}}^{iL}} = \mathbf{T}^{\spadesuit} \frac{\partial \mathbf{p}_{\mathsf{C}}}{\partial d_{\mathbf{p}}^{iL}} = \mathbf{T}^{\spadesuit} \mathbf{K}^{-1} \frac{\nabla ((d_{\mathbf{p}}^{iL})^{-1} \mathbf{p})}{\nabla d_{\mathbf{p}}^{iL}} = \mathbf{T}^{\spadesuit} \mathbf{K}^{-1} \begin{pmatrix} -u^{i}/(d_{\mathbf{p}}^{iL})^{2} \\ -v^{i}/(d_{\mathbf{p}}^{iL})^{2} \\ -1/(d_{\mathbf{p}}^{iL})^{2} \end{pmatrix}$$

$$0$$

$$(3.11)$$

3.2.2 Static Parameter

Firstly, ξ_i, ξ_j do not appear in the expression of r_p^s as (3.12), the corresponding jacobians are zero.

$$r_{\mathbf{p}}^{s} := I_{i}^{R}(\mathbf{p}') - b_{i}^{R} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$
(3.12)

Secondly, we can follow chapter 3.2.1.3 to calculate jacobians of inverse depth. But some strategies can be used to reduce computation. For a pair of stereo frame i^L, i^R : inverse depth $d_{\mathbf{p}}^{i^L} \approx d_{\mathbf{p}}^{i^R}$, and \mathbf{T}_{RL} is only related to baseline of stereo cameras. Left

frame i^L pixel **p** is projected to right frame i^R with \mathbf{p}' as (3.13):

$$\mathbf{p} = \begin{pmatrix} u^{i} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{iL} \end{pmatrix}, \mathbf{p}_{\mathbf{c}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}, d_{\mathbf{p}}^{iL} = z^{-1}, \mathbf{p}_{\mathbf{c}} = (d_{\mathbf{p}}^{iL})^{-1} \mathbf{K}^{-1} \mathbf{p}$$

$$= \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix}, \mathbf{T}_{RL} = \begin{pmatrix} 1 & 0 & 0 & t_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{p}' = d_{\mathbf{p}}^{iR} \mathbf{K}(\mathbf{T}_{RL} \mathbf{p}_{\mathbf{c}})$$

$$= d_{\mathbf{p}}^{iL} \begin{pmatrix} f_{x} & 0 & c_{x} & 0 \\ 0 & f_{y} & c_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} f_{x}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(u^{i} - c_{x}) + t_{1} \\ f_{y}^{-1}(d_{\mathbf{p}}^{iL})^{-1}(v^{i} - c_{y}) \\ (d_{\mathbf{p}}^{iL})^{-1} \end{pmatrix} = \begin{pmatrix} u^{i} + t_{1}f_{x}d_{\mathbf{p}}^{iL} \\ v^{i} \\ 1 \\ d_{\mathbf{p}}^{iL} \end{pmatrix}$$

$$\frac{\partial r_{\mathbf{p}}^{s}}{\partial d_{\mathbf{p}}^{iL}} = \frac{\partial (I_{i}^{R}(\mathbf{p}')) - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}}(I_{i}^{L}(\mathbf{p}))}{\partial d_{\mathbf{p}}^{iL}} = (\frac{\partial (I_{i}^{R}(\mathbf{p}'))}{\partial \mathbf{p}'} - \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} \frac{\partial (I_{i}^{L}(\mathbf{p}))}{\partial \mathbf{p}'} \frac{\partial \mathbf{p}'}{\partial d_{\mathbf{p}}^{iL}}$$

$$= [(g_{x}^{iR}, g_{y}^{iR}, 0, 0) - \mathbf{0}^{T}] \begin{pmatrix} t_{1}f_{x} \\ 0 \\ 0 \\ 1 \end{pmatrix} = g_{x}^{iR} t_{1}f_{x}$$

$$(3.13)$$

At last, we give jacobian of affine brightness parameters in (3.14).

$$\frac{\partial(r_{\mathbf{p}}^{s})_{ij}}{\partial a_{i}^{L}} = \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L}), \frac{\partial(r_{\mathbf{p}}^{s})_{ij}}{\partial a_{i}^{R}} = -\frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}} (I_{i}^{L}(\mathbf{p}) - b_{i}^{L})$$

$$\frac{\partial(r_{\mathbf{p}}^{s})_{ij}}{\partial b_{i}^{L}} = \frac{e^{a_{i}^{R}}}{e^{a_{i}^{L}}}, \qquad \frac{\partial(r_{\mathbf{p}}^{s})_{ij}}{\partial b_{i}^{R}} = -1$$
(3.14)

REFERENCES

- [1] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.Achtelik, and R. Siegwart, "The euroc micro aerial vehicle datasets," The International Journal of Robotics Research, vol. 35, no. 10, pp.1157–1163, 2016.
- [2] R. Mur-Artal and J. D. Tardos, "Visual-inertial monocular slam with map reuse," IEEE Robot. and Autom. Lett., vol. 2, no. 2, 2017.
- [3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale, "Keyframe-based visual-inertial odometry using nonlinear optimization," The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334, 2015.
- [4] L. von Stumberg, V. Usenko and D. Cremers, "Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization", In International Conference on Robotics and Automation (ICRA), 2018.
- [5] T. Qin , L. Peiliang , and S. Shaojie . "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator." IEEE Transactions on Robotics (2018):1-17.
- [6] T.barfoot, "State estimation for robotics", Cambridge University Press, pp. 245-254, 2017.