EECE 5639 Computer Vision I

Lecture 6

Filtering, Edges.

Project 2 is out.

First Midterm: February 12

Next Class

Modern Edge Detection, More features

Correlation Example

h

1	1	1
-1	2	1
-1	-1	1

2	2	2	3
2	1	3	3
2	2	1	2
1	3	2	2

0	0	0		
0	4	2	2	3
0	-2	1	3	3
	2	2	1	2
	1	3	2	2

0	0	0
0	1	0
0	0	0

Original

Original

1	0	0	0
	0	1	0
	0	0	0

Filtered (no change)

0	0	0
0	0	1
0	0	0

?

Original

Original

Efficient Implementation

Both, the BOX filter and the Gaussian filter are separable:

First convolve each row with a 1D filter.
Then convolve each column with a 1D filter.

a KxK filter: K² operations/pixel

a 1xK filter: K operations/pixel

or a Kx1 filter: K operations/pixel

Gaussian Filter is Separable

$$f(x,y) = \frac{1}{K}e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f(x,y) = \left(\frac{1}{\sqrt{K}}e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{K}}e^{-\frac{y^2}{2\sigma^2}}\right)$$

	1	2	1
16	2	4	2
	1	2	1

	1	4	6	4	1
	4	16	24	16	4
6	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

$$\frac{1}{K}$$
 1 1 \cdots 1

$$\frac{1}{4}$$
 1 2 1

$$\frac{1}{16}$$
 1 4 6 4 1

- (a) box, K = 5
- (b) bilinear

(c) "Gaussian"

How do we know a filter is separable?

By inspection

Looking at the analytic form of it

Looking at its Singular Value Decomposition (SVD)

$$F = U\Sigma V^T$$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_K \end{bmatrix} U = \begin{bmatrix} \begin{vmatrix} & & & & & & & \\ u_1 & u_2 & \dots & u_K \\ & & & & & & \\ \end{bmatrix} V = \begin{bmatrix} \begin{vmatrix} & & & & & & \\ & & & & & \\ v_1 & v_2 & \dots & v_K \\ & & & & & & \\ \end{bmatrix}$$

$$F = \sum_{i} \sigma_i u_i . v_i^T$$

one singular value is non-zero.

a b c

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15×15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Effects of increasing mask size

Cascading

Convolving twice with a Gaussian Kernel (σ), is the same as convolving once with a Gaussian Kernel ($\sqrt{2}\sigma$)

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

$$s(i,j) = \sum_{k=0}^{i} \sum_{l=0}^{j} f(k,l)$$

3	2	7	2	3
1	5	1	3	4
5	1	3	5	1
4	3	2	1	6
2	4	1	4	8

3	5	12	14	17
4	11	19	24	31
9	17	28	38	46
13	24	37	48	62
15	30	44	59	81

$$s(i,j) = s(i-1,j) + s(i,j-1) - s(i-1,j-1) + f(k,l)$$

Efficient Implementation: Integral Image

If an image is going to be repeatedly convolved with different box filters a pre-computed summed area table can save computations for future use.

Limitations of averaging

Signal frequencies shared with noise are lost, resulting in blurring.

Impulsive noise is diffused but not removed.

It spreads pixel values, resulting in blurring.

Non-linear Filtering

Replace each pixel with the MEDIAN value of all the pixels in the neighborhood.

Example:

Example:

Example:

10

Median Filter Properties

Non-linear
Does not spread the noise
Can remove spike noise
Expensive to run

Median Filter

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Image Features

Edges

What is an Image Feature?

What is an Image Feature?

What is an Image Feature?

Image Features

Local, meaningful, detectable parts of the image.

Origin of Edges

Origin of Edges

Reflectance change: appearance information, texture

Depth discontinuity: object boundary

Cast shadows

Looking locally:

Images as Functions

Edges look like steep cliffs

Edges

They happen at places where the image values exhibit sharp variation

Edge detection (1D)

Edge= sharp variation

Large first derivative

Digital Approximation

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\frac{df(x)}{dx} \cong \frac{f(x+1) - f(x-1)}{2}$$

Use mask:

Effect of Noise

Consider a single row or column of the image:

Edge detection & Image Noise

$$I(x) = \hat{I}(x) + N(x)$$
 $N(x) \sim N(0,\sigma)$ i.i.d

Taking differences:

$$I'(x) \cong \hat{I}(x+1) + N(x+1) - (\hat{I}(x-1) + N(x-1)) =$$

$$= (\hat{I}(x+1) - \hat{I}(x-1)) + (N(x+1) - N(x-1))$$

$$\hat{I}'(x)$$

Output noise: $E(N_d(x)) = 0$

$$E(N_d^2(x)) = E(N^2(x+1) + N^2(x-1) + 2N(x+1)N(x-1)) =$$

$$= \sigma^2 + \sigma^2 + 0 = 2\sigma^2$$
Increases noise !!

Noise cleaning and Edge Detection

Combine Linear Filters

Dealing with Noise

Smooth first with a Gaussian, then take derivative:

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h*f) = \left(\frac{\partial f}{\partial x}\right)*f = h*\left(\frac{\partial f}{\partial x}\right)$$

It saves one operation!

Edge Detection (2D)

$$\frac{dl(x)}{dx}$$

$$\frac{dl(x)}{dx} > Th$$

$$\nabla I(x,y) = [\partial I(x,y)/\partial x \ \partial I(x,y)/\partial y]^{t} = [I_{x}(x,y) \ I_{y}(x,y)]^{t}$$

$$|\nabla I(x,y)| = (I_x^2(x,y) + I_y^2(x,y))^{1/2} > Th$$

 $\tan \theta = I_x(x,y) / I_y(x,y)$

Edge Detection (2D)

Vertical Edges:

Convolve with:

-I O I

Horizontal Edges:

Convolve with:

0 I

Noise Smoothing & Edge Detection

This mask is called the (vertical) Prewitt Edge Detector

Noise Smoothing & Edge Detection

This mask is called the (horizontal) Prewitt Edge Detector

Sobel Edge Detector

Convolve with:

-1	0	
-2	0	2
-1	0	-

and

-1	-2	-1
0	0	0
1	2	ı

Gives more weight to the 4-neighbors

Example

	0	0	0	0	0			0	0	0	0	0
	0	0	0	0	0	_ I	_	0	50	100	150	150
	0	0	50	50	50	1_{X}		0	50	100	150	150
	0	0	50	50	50			0	0	0	0	0
	0	0	50	50	50			0	0	0	0	0
							•					
7	0	0	0	0	0				_	1 -	.1	-1
$I_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	0	50	50	0	0				0			0
-1 0 1	0	100	100	0	0				Ш		Ш	
-1 0 1	0	150	150	0	0							
	0	150	150	0	0							

Example

0	0	0	0	0
0	50	100	150	150
0	50	100	150	150
0	0	0	0	0
0	0	0	0	0

$$\nabla I =$$

0	0	0	0	0
0	50	50	0	0
0	100	100	0	0
0	150	150	0	0
0	150	150	0	0

$$\tan(\theta) = \begin{bmatrix} x & x & x & x \\ X & I & I/2 & 0 & 0 \\ X & 2 & I & 0 & 0 \\ X & \infty & \infty & X & X \\ X & \infty & \infty & X & X \end{bmatrix}$$

Formal Design of an Optimal Edge Detector

Edge detection involves 3 steps:

Noise smoothing

Edge enhancement

Edge localization

J. Canny formalized these steps to design an optimal edge detector

Canny Edge Detector

Experiments consistently show that it performs very well Probably, the most used by C.V. practitioners

Canny Edge Detector

Uses a mathematical model of the edge and the noise Formalizes a performance criteria

Synthesizes the best filter

Edge Model (1D)

An ideal edge can be modeled as an step

Noise Model (1D)

Additive, White Gaussian Noise RMS noise amplitude/unit length n_o²

Performance Criteria (1)

Good detection

The filter must have a stronger response at the edge location (x=0) than to noise

Performance Criteria (2)

Good Localization

The filter response must be maximum very close to x=0

Performance Criteria (3)

Low False Positives

There should be only one maximum in a reasonable neighborhood of x=0

Canny Edge Detector

Canny found a linear, continuous filter that maximized the three given criteria. There is no close-form solution for the optimal filter.

However, it looks VERY SIMILAR to the derivative of a Gaussian.

1D Gaussian

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

First Derivative of a Gaussian

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$
Positive

Negative

As a mask, it is also computing a difference (derivative)

Another interpretation:

Canny Edge Detector 2D

First derivative

Gradient vector

$$E(x) = \frac{d(I(x) * G(x))}{dx} \longrightarrow E(x, y) = \nabla(I(x, y) * G(x, y))$$

$$E(x,y) = \nabla (I(x,y) * G(x,y))$$

Absolute value

Magnitude

$$|E(x)| \ge Th$$

$$||E(x,y)|| \ge Th$$

Algorithm CANNY_ENHANCER

The input is image I; G is a zero mean Gaussian filter (std = σ)

- 1. J = I * G (smoothing)
- For each pixel (i,j): (edge enhancement)
 Compute the image gradient
 ∇J(i,j) = (J_x(i,j),J_y(i,j))'
 - 1. Estimate edge strength
 - 1. $e_s(i,j) = (J_x^2(i,j) + J_y^2(i,j))^{1/2}$

Estimate edge orientation

$$e_o(i,j) = arctan(J_x(i,j)/J_y(i,j))$$

The output are images E_s and E_o

Efficiency Considerations

1D

$$E(x) = \frac{d(I(x) * G(x))}{dx}$$

$$= I(x) * \frac{dG(x)}{dx}$$

$$E(x,y) = \nabla (I(x,y) * G(x,y))$$

$$= I(x, y) * \nabla G(x, y)$$

Efficiency Considerations

We can also use Gaussian separability:

$$E(x,y) = \nabla(I(x,y) * G(x,y))$$

$$= I(x,y) * \nabla G(x,y)$$

$$= \nabla G(y) * (\nabla G(x) * I(x,y))$$

CANNY_ENHANCER

The output image E_s has the magnitudes of the smoothed gradient.

Sigma determines the amount of smoothing.

E_s has large values at edges

How do we "detect" edges?

E_s has large values at edges:

Find local maxima

... but it also may have wide ridges around the local maxima (large values around the edges)

NONMAX_SUPRESSION

```
The inputs are E_s & E_o (outputs of CANNY_ENHANCER)
Consider 4 directions D=\{0,45,90,135\} wrt x
```

For each pixel (i,j) do:

- 1. Find the direction $d \in D$ s.t. $d = E_o(i,j)$ (normal to the edge) If $\{E_s(i,j) \text{ is smaller than at least one of its neigh. along d}\}$
 - 1. $I_N(i,j)=0$ Otherwise, $I_N(i,j)=E_s(i,j)$

The output is the thinned edge image IN

Graphical Interpretation

Thresholding

Edges are found by thresholding the output of NONMAX_SUPRESSION If the threshold is too high:

Very few (none) edges
High MISDETECTIONS, many gaps

If the threshold is too low:

Too many (all pixels) edges
High FALSE POSITIVES, many extra edges

SOLUTION: Hysteresis Thresholding

Strong edges reinforce adjacent weak edges

HYSTERESIS_THRESH

Inputs:

```
I_N (output of NONMAX_SUPRESSION), E_o (output of CANNY_ENHANCER), thresholds L and H. For all pixels in I_N and scanning in a fixed order:
```

Locate the next unvisited pixel s.t. $I_N(i,j)>H$

Starting from $I_N(i,j)$, follow the chains of connected local maxima, in both directions perpendicular to the edge normal, as long as $I_N>L$.

Mark all visited points, and save the location of the contour points.

Output: a set of lists describing the contours.

Hysteresis Thresholding

Other Edge Detectors

(2nd order derivative filters)

First-order derivative filters (1D)

Sharp changes in gray level of the input image correspond to "peaks" of the first-derivative of the input signal.

Second-order derivative filters (1D)

Peaks of the first-derivative of the input signal, correspond to "zero-crossings" of the second-derivative of the input signal.

NOTE:

F''(x)=0 is not enough! F'(x)=c has F''(x)=0, but there is no edge

The second-derivative must change sign, -- i.e. from (+) to (-) or from (-) to (+)

The sign transition depends on the intensity change of the image – i.e. from dark to bright or vice versa.

Edge Detection (2D)

$$\frac{d^2I(x)}{dx^2} = 0$$

$$|\nabla I(x,y)| = (I_x^2(x,y) + I_y^2(x,y))^{1/2} > Th$$

 $\tan \theta = I_x(x,y)/I_y(x,y)$

$$\nabla^{2}I(x,y) = I_{x \times}(x,y) + I_{yy}(x,y) = 0$$
Laplacian

Notes about the Laplacian:

$\nabla^2 I(x,y)$ is a SCALAR

- † Can be found using a SINGLE mask
- Orientation information is lost

∇²I(x,y) is the sum of SECOND-order derivatives But taking derivatives increases noise Very noise sensitive!

It is always combined with a smoothing operation

LOG Filter

```
First smooth (Gaussian filter),

Then, find zero-crossings (Laplacian filter):

O(x,y) = \nabla^2(I(x,y) * G(x,y))

Using linearity:

O(x,y) = \nabla^2G(x,y) * I(x,y)

This filter is called: "Laplacian of the Gaussian" (LOG)
```

1D Gaussian

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

First Derivative of a Gaussian

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$
Positive

Positive

Negative

As a mask, it is also computing a difference (derivative)

Second Derivative of a Gaussian

$$g''(x) = (\frac{x^2}{\sigma^3} - \frac{1}{\sigma})e^{-\frac{x^2}{2\sigma^2}}$$

"Mexican Hat"