Computer Architecture International University – VNU HCM Dr. Le Hai Duong & Dr. Ly Tu Nga

Laboratory Session 3

Course: IT089IU

Time: 6 hours

Date: March 2021

I. Bitwise Logic and Intro. to Procedure (70pts)

In these exercises, you can only use the following instructions:

and andinor or ori sll srl xor xori

1. Exercise 1: (35pts) Write a program that

- 1.1 Put the number 0xDEADBEEF into register \$t1 without using pseudoinstruction li. (lab3 1 1.s)
- 1.2 Redo 1.1 as follows: use **ori** to load each letter into register. (**lab3_1_2.s**)
- 1.3 Suppose that \$t1 = 0xDEADBEEF. Using only register-to-register logic and shift instructions, Reverse the order of the bytes in \$t1 so that register \$t2 get the bit pattern 0xFEEBDAED. (lab3 1 3.s)
- 1.4 Redo 1.3 using only and, or, and rotate instructions. (lab3 1 4.s)

2. Exercise 2: (15pts) Write a program that

- 2.1 Set the corresponding bit in register \$11 through \$t8. That is, in register \$11 set bit 1, register \$t2 set bit 2, and so on. (lab3 2 1.s)
- 2.2 By using **ONLY** shift instructions and register to register logic instructions (no **li** pseudoinstruction or **addi**), put the pattern 0xFFFFFFF into register \$t1. (**lab3 2 2.s**)

3. Exercise 3: (20pts) Write a program that

- 3.1 Read in **ONE** unsigned integer in the range 0 to 15. Print out that number in hexadecimal. For example, given the input 13, print out 0xD. (lab3_3_1.s)
- 3.2 Modify the previous assembly, create a procedure printHex(int num). This procedure takes in a number and print it out in hexadecimal. (lab3 3 2.s)
- 3.3 Modify the previous assembly so that it can print out hexadecimal of any 32-bit integer input. For example, read in number 546263, print out 0x855D7. (lab3 3 3.s)

II. MSP430 (30pts)

Given a sample code to control LED via pushing button in MSP430 as follows

N o.	Sample codes	Comments/Results/ Functions
1. 2	#include <msp430.h> #define Red BIT0</msp430.h>	

```
#define Green BIT6
4
     #define Button BIT3
5
6
    void main(void) {
7
8
       WDTCTL = WDTPW | WDTHOLD;
9
       P1OUT |= Red;
       P10UT \&= \simGreen;
10
       P1DIR |= Red +Green;
11
12
13
       P1DIR &= ~Button;
14
15
       P1REN |= Button;
16
       P1OUT |= Button;
17
18
       while(1)
19
       {
20
           if ((P1IN & Button)!= Button)
21
22
                  while ((P1IN & Button)!= Button)
23
24
25
26
                  P1OUT ^= Red + Green;
27
           }
28
       }
29
```

Step 1: build the sample code in CCS, check the errors.

Step 2: Not run, the values of these registers (PORT 1 2):

P1OUT: P1IN: P1DIR: P1REN:

P1IFG:

Step 3: Run, observe and collect the values of these registers in case of

	Red LED On	Green LED On
P1OUT		
P1IN	0x0F=0000111	
P1DIR		
TIBIK		
P1REN		
P1IFG		
11110		

Comment and explain the Table above:	

When running and pausing, click View and open *Disassenbly* window, write down these instructions of sample code above:

No.	C code	MIPS code
1.		
2 3		
3		
4		
4 5 6 7 8 9		
6		
7		
8		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		

Based on the Table above, please explain the process of sample code under if-then else conditional statements:		
	modify the sample code in order to when pressing two LEDs turn on and vice versa.	

Reference:

- 1. https://en.wikibooks.org/wiki/MIPS Assembly/Pseudoinstructions
- 2. https://courses.missouristate.edu/KenVollmar/MARS/Help/SyscallHelp.html
- 3. https://www.assemblylanguagetuts.com/mips-assembly-programming-tutorials/ #MIPS Data Types
- 4. https://en.wikibooks.org/wiki/MIPS_Assembly/Arithmetic_Instructions
- 5. https://gab.wallawalla.edu/~curt.nelson/cptr280/lecture/mips%20arithmetic%20instructions.pdf