

## MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

| N   | a | m | ρ | • |
|-----|---|---|---|---|
| 1 1 | u |   | L | ٠ |

Paul Seungyest Ko

## **UB Person Number:**

| 5 0 / 3 9 3 6 3<br>0 0 0 0 0 0 0 0 0<br>1 1 1 1 1 1 1<br>2 2 2 2 2 2 2 2<br>3 3 3 8 3 8 3 8 3<br>4 4 4 4 4 4 4 4<br>6 5 5 5 5 5 5 5 5<br>6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                 |                                                        |                 |                 |                               | V               |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------|--------------------------------------------------------|-----------------|-----------------|-------------------------------|-----------------|-----------------|
| ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ①       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ②       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ③       ⑤       ⑤       ⑤       ⑤       ⑤       ⑤       ⑥       ⑥       ⑥ | 5             | 0                               | 1                                                      | 3               | 9               | 3                             | 6               | 3               |
| 8     8     8     8     8     8     8       9     9     9     9     9     9     9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ① ② ③ ④ ⑤ ⑦ ⑧ | 2<br>3<br>4<br>5<br>6<br>7<br>8 | (a) (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ | ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ | 1 2 <b>3</b> 4 <b>5 6 7 8</b> | ① ② ③ ④ ⑤ ⑥ ⑦ ③ | 1 2 8 4 5 6 7 8 |

## Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
   You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

| 1 . | 2 | 3 | 4 | 5 | 6 | 7 | TOTAL | GRADE |
|-----|---|---|---|---|---|---|-------|-------|
|     |   |   |   |   |   |   |       |       |
|     |   |   |   |   |   |   |       |       |

|   |   |   |   |   |   |   | 0     | nan   |
|---|---|---|---|---|---|---|-------|-------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | TOTAL | GRADE |



1. (20 points) Consider the following vectors in  $\mathbb{R}^3$ :

$$\mathbf{v}_1 = \left[ \begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[ \begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[ \begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[ \begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that  $w \in \text{Span}(v_1, v_2, v_3)$ .
- b) Is the set  $\{v_1,v_2,v_3\}$  linearly independent? Justify your answer.

Aug rod

Aug rod

$$\begin{bmatrix}
1 & -1 & 1 & | & -2 \\
0 & 1 & 2 & | & 2
\end{bmatrix}$$
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}
0 & 1 & 2 & | & 2
\end{bmatrix}$ 
 $\begin{bmatrix}$ 



## 2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute 
$$A^{-1}$$
.  $A \setminus \underline{I}$ 

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 6 & 72 - 0 & | & -1 & 2 & | & 1 & 0 & 0 \\
1 & 0 & | & 0 & | & 0 & | & -1 & | & -1 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & 0 & | & | & 0 & 2 & -1 & | & 0 & 0 & | & 1
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$



3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Find a matrix C such that  $A^TC = B$  (where  $A^T$  is the transpose of A).

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_1 & C_8 & C_9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 1 & 2 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

n.1

1 -1 : 5



4. (20 points) Let  $T: \mathbb{R}^2 \to \mathbb{R}^3$  be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- **b)** Find all vectors **u** satisfying  $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$ .

(a) 
$$A\begin{bmatrix} y_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \\ a_{31}x_1 + a_{32}x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

$$A_{11} = A_{12} = -2 \quad A_{21} = A_{22} = A_{31} = A_{32} = -3$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix}$$

(b) 
$$T_{cus} = Au = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 - 2u_2 \\ u_1 + u_2 \\ u_1 - 3u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & | & 1 \\ 1 & | & 10 \\ | & -3 & | & -2 \end{bmatrix}$$
 row red 
$$\begin{bmatrix} 1 & 0 & | & 7 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$M_1 = 1$$
 $M_2 = 3$ 
 $M_3 = 1$ 
 $M_4 = 1$ 



5. (20 points) For each matrix A given below determine if the matrix transformation  $T_A : \mathbb{R}^3 \to \mathbb{R}^3$  given by  $T_A(\mathbf{v}) = A\mathbf{v}$  is one-to one or not. If  $T_A$  is not one-to-one, find two vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  such that  $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$ .

vectors 
$$\mathbf{v}_{1}$$
 and  $\mathbf{v}_{2}$  such that  $T_{A}(\mathbf{v}_{1}) = T_{A}(\mathbf{v}_{2})$ .

a)  $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ 

b)  $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 

(a)  $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$ 

b)  $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 

Since but  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

Since but  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

A is one to one

(b)  $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ 

$$V_1 = \begin{bmatrix} 2 \\ -2 \end{bmatrix} \quad V_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad T_A(V_1) = 0$$

$$T_A(V_2) = 0$$



- **6. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in  $\mathbb{R}^3$  such that  $w + u \in Span(u, v)$  then  $w \in Span(u, v)$ .

b) If u, v, w are vectors in  $\mathbb{R}^3$  such that the set  $\{u,v,w\}$  is linearly independent then the set  $\{u,v\}$  must be linearly independent.

Trace

if 
$$v = \begin{bmatrix} 0 \\ 0 \end{bmatrix} v = \begin{bmatrix} 0 \\ 0 \end{bmatrix} w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\{u, v\}$  housto be  $\lim_{n \to \infty} \inf_{n \to \infty} \{u, v, w\}$  to be  $\lim_{n \to \infty} \inf_{n \to \infty} \{u, v, w\}$ 



- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a  $2 \times 2$  matrix and u, v are vectors in  $\mathbb{R}^2$  such that Au, Av are linearly dependent then u, v also must be linearly dependent.

(1) True set of vectors have to be linearly dependent for Au, Au to be linearly dependent

b) If  $T: \mathbb{R}^2 \to \mathbb{R}^2$  is a linear transformation and  $u, v, w \in \mathbb{R}^2$  are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

CIV + CZW = GU

Since linear trans  $T(C_1V) + T(C_2W) = T(U) \Rightarrow C_1T(V) + C_2T(W) = T(W)$ Thus  $T(U) \in Span (T(V), T(W))$