Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix

Matrix Project

EE1390: Intro to Al and ML

Tejas Meshram¹ Abhishek K. Singh²

¹ME17BTECH11046

²FP17BTFCH11020

February 16, 2019

Problem Solving Strategy

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computatior Using Matrix

- 1 Graphical Verification
 - Using Python

- 2 Theoretical Computation
 - Using Matrix

Matrix problem in coordinate geometry From JEE Main 2018

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computation Using Matrix If β is one of the angles between the normals of the ellipse $\mathbf{X}^T V \mathbf{X} = 9$ at the points $\begin{pmatrix} 3\cos\theta\\\sqrt{3}\sin\theta \end{pmatrix}$, $\begin{pmatrix} -3\sin\theta\\\sqrt{3}\cos\theta \end{pmatrix}$; $\theta \in (0,\frac{\pi}{2})$, $V = \begin{bmatrix} 1&0\\0&3 \end{bmatrix}$; then $\frac{2\cot}{\sin 2\theta}$ is equal to..

Analysis

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Pythor

Theoretical Computatior Using Matrix

- 1 Graphical Verification
 - Using Python

- 2 Theoretical Computation
 - Using Matrix

Graphical Analysis

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verificatio

Using Python

Theoretical Computation Using Matrix Using python libraries, the following graphs are plotted

- 1. Normal to ellipse at point A and B intersecting at N
- 2. Polar graph of β for given value of θ
- 3.Graph of $2\cot\beta$ Vs $\sin2\theta$ ref: https://github.com/tejasmeshram99/EE1390

Figure 1

Matrix Project

Tejas Meshram, Abhishek K. Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix At $\theta = \frac{\pi}{4}$

Figure 2

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computation Using Matrix

270°

Figure 3

Matrix Project

Tejas Meshram, Abhishek K. Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix

Graphical Analysis

Matrix Project

Tejas Meshram, Abhishek K. Singh

Graphical Verificatio

Using Python

Theoretical Computation Using Matrix

Results

For different values of $\theta \in (0, \pi/2)$, the slope of $2 \cot \beta$ vs $\sin 2\theta$ turns out to be $\frac{2}{\sqrt{3}}$ or 1.155, which is independent of θ and β .

Analysis

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computation Using Matrix

- 1 Graphical Verification
 - Using Python

- 2 Theoretical Computation
 - Using Matrix

Solution

Matrix Project

Tejas Meshram, Abhishek K. Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix • We've equation of the ellipse $\mathbf{X}^T V \mathbf{X} = 9$ and two points

A and **B**. Where,
$$V = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$
, $\mathbf{A} = \begin{pmatrix} 3\cos\theta \\ \sqrt{3}\sin\theta \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -3\sin\theta \\ \sqrt{3}\cos\theta \end{pmatrix}$.

Solution

Matrix Project

Tejas Meshram, Abhishek K. Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix We've equation of the ellipse $\mathbf{X}^T V \mathbf{X} = 9$ and two points \mathbf{A} and \mathbf{B} . Where, $V = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, $\mathbf{A} = \begin{pmatrix} 3\cos\theta \\ \sqrt{3}\sin\theta \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -3\sin\theta \\ \sqrt{3}\cos\theta \end{pmatrix}$.

■ Equation of tangents at points **A** and **B** can be written as
$$\mathbf{A}^T V \mathbf{X} = 9 \implies \mathbf{n}_1^T \mathbf{X} = 9$$
 where, $\mathbf{n}_1^T = \mathbf{A}^T V = \begin{bmatrix} 3\cos\theta & 3\sqrt{3}\sin\theta \end{bmatrix}$

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix We've equation of the ellipse $\mathbf{X}^T V \mathbf{X} = 9$ and two points \mathbf{A} and \mathbf{B} . Where, $V = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, $\mathbf{A} = \begin{pmatrix} 3\cos\theta \\ \sqrt{3}\sin\theta \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -3\sin\theta \\ \sqrt{3}\cos\theta \end{pmatrix}$.

- Equation of tangents at points **A** and **B** can be written as $\mathbf{A}^T V \mathbf{X} = 9 \implies \mathbf{n}_1^T \mathbf{X} = 9$ where, $\mathbf{n}_1^T = \mathbf{A}^T V = \begin{bmatrix} 3\cos\theta & 3\sqrt{3}\sin\theta \end{bmatrix}$
- $\mathbf{B}^T V \mathbf{X} = 9 \implies \mathbf{n}_2^T \mathbf{X} = 9$ where, $\mathbf{n}_2^T = \mathbf{B}^T V = \begin{bmatrix} -3\sin\theta & 3\sqrt{3}\cos\theta \end{bmatrix}$

Solution(Cont'd)

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Pythor

Theoretical Computation Using Matrix ■ The angle between normal vectors n_1, n_2 is β , $0 \le \beta \le \pi$ $\cos \beta = \frac{n_1^T n_2}{\|n_1\| \|n_2\|}$;

Solution(Cont'd)

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computation Using Matrix The angle between normal vectors n_1, n_2 is β , $0 \le \beta \le \pi$ $\cos \beta = \frac{n_1^T n_2}{\|n_1\| \|n_2\|}$;

$$\cot \beta = \frac{n_1^T n_2}{\sqrt{(\|n_1\| \|n_2\|)^2 - (n_1^T n_2)^2}} = \frac{\sin 2\theta}{\sqrt{3}}$$

Solution(Cont'd)

Matrix Project

Tejas Meshram, Abhishek K Singh

Graphical Verification

Using Python

Theoretical Computation Using Matrix The angle between normal vectors n_1 , n_2 is β , $0 \le \beta \le \pi$ $\cos \beta = \frac{n_1^T n_2}{\|n_1\| \|n_2\|}$;

$$\cot \beta = \frac{n_1^T n_2}{\sqrt{(\|n_1\| \|n_2\|)^2 - (n_1^T n_2)^2}} = \frac{\sin 2\theta}{\sqrt{3}}$$

■ Therefore,
$$\frac{2 \cot \beta}{\sin 2\theta} = \frac{2}{\sqrt{3}}$$
.

Matrix Project

Tejas Meshram, Abhishek K. Singh

Reference

References I

Matrix Project

Tejas Meshram, Abhishek K Singh

Appendix Reference

G. V. V. Sharma.

EE1390

Introduction to AI and ML, Spring, 2019. github.com/gadepall/school/tree/master/linalg

Latex Beamer

https://www.overleaf.com/learn/latex/Beamer http://detexify.kirelabs.org/classify.html

Matrix Project

Tejas Meshram Abhishek P Singh

Appendix Reference

Thanks!!

Mail IDs : Abhishek, Tejas.