```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from scipy import stats
```

Analyzing the average heights of NBA Players

```
df2 = pd.read_csv('players.csv')
df2.head()
```

	Name	Games Played	MIN	PTS	FGM	FGA	FG%	3PM	3PA	3P%	• • •	Age	Birth_Place	Birthdate
0	AJ Price	26	324	133	51	137	37.2	15	57	26.3		29.0	us	October 7 1986
1	Aaron Brooks	82	1885	954	344	817	42.1	121	313	38.7		30.0	us	January 14, 1985
2	Aaron Gordon	47	797	243	93	208	44.7	13	48	27.1		20.0	us	Septembe 16, 1995
3	Adreian Payne	32	740	213	91	220	41.4	1	9	11.1		24.0	us	February 19, 1991
4	Al Horford	j	2318	1156	519	965	53.8	11	36	30.6		29.0	do	June 3 1986

df2.shape

(490, 34)

Hypothesis Testing

One Sample Significance Test for Mean is extremely similar to that for Proportion. We will go through almost an identical process.

The hypotheses are defined as follows:

197.44075829383885

- **Null Hypothesis**: The average height of an NBA player is 200.66 cm.
- Alternate Hypothesis: The average height of an NBA player is not 200.66 cm.

Significance Level, α is at 0.05. Assuming Null Hypothesis to be true.

```
h0_mean = 200.66  #google search

h1_mean = df2['Height'].mean()  #z=(x-mu)/sig/sqrt(n)
h1_mean  #z=(x-mu)/sigma
```

df2.head()

	Name	Games Played	MIN	PTS	FGM	FGA	FG%	3PM	3PA	3P%	• • •	Age	Birth_Place	Birthdate
0	AJ Price	26	324	133	51	137	37.2	15	57	26.3		29.0	us	October 7 1986
1	Aaron Brooks	82	1885	954	344	817	42.1	121	313	38.7		30.0	us	January 14, 1985
2	Aaron Gordon	47	797	243	93	208	44.7	13	48	27.1		20.0	us	Septembe 16, 1995
3	Adreian Payne	32	740	213	91	220	41.4	1	9	11.1		24.0	us	February 19, 1991
4	Al Horford	76	2318	1156	519	965	53.8	11	36	30.6		29.0	do	June 3 1986

The p value obtained is much lesser than the significance level α . We therefore reject the null hypothesis and accept the alternate hypothesis (the negation). We can therefore arrive at the following conclusion from this analysis:

The average height of NBA Players is NOT 6'7".

sigma = df2['Height'].std()/np.sqrt(len(df2))

```
(464.05470862910346, 0.0)
```

Using Python libraries.

Since the p-value is extremly small, we reject the null hypothesis that the average height of players is 200.66

Analyzing DEPRESSION in India by Gender

Are men as likely to commit suicide as women?

This is the question we will attempt at answering in this section. To answer this question, we will use suicide statistics shared by the National Crime Records Bureau (NCRB), Govt of India. To perform this analysis, we need to know the sex ratio in India. The Census 2011 report states that there are 940 females for every 1000 males in India.

Let p denote the fraction of women in India.

H0:MEN AND WOMEN ARE EQUALLY LIKELY TO DEPRESS (NULL) H1:MEN AND WOMEN ARE NOT EQUALLY LIKELY TO DEPRESS (ALTERNATE)

df.head()

	State	Year	Type_code	Туре	Gender	Age_group	Total
0	A & N Islands	2001	Causes	Illness (Aids/STD)	Female	0-14	0
1	A & N Islands	2001	Causes	Bankruptcy or Sudden change in Economic	Female	0-14	0
2	A & N Islands	2001	Causes	Cancellation/Non-Settlement of Marriage	Female	0-14	0
_	A & N	2224	^			^	^

df.shape

(237519, 7)

df['Gender'].value_counts()

Male 118879 Female 118640

Name: Gender, dtype: int64

Step 2: Decide on the Statsitical Test

We will be using the One Sample Z-Test here.

Step 3: Compute the p-value

p-value > z-value, we accept the null hypothesis.

Analyzing Literacy Rates

df['Gender'].value_counts()['Male ']

Two Sample test

df3 = pd.read_csv('cities.csv')
df3.head()

	7

,		name_of_city	state_code	state_name	dist_code	population_total	population_male	pop
	0	Abohar	3	PUNJAB	9	145238	76840	
	1	Achalpur	27	MAHARASHTRA	7	112293	58256	
	2	Adilabad	28	ANDHRA PRADESH	1	117388	59232	
	3	Adityapur	20	JHARKHAND	24	173988	91495	
	4	Adoni	28	ANDHRA PRADESH	21	166537	82743	

5 rows × 22 columns

df3['state_name'].value_counts()

UTTAR PRADESH	63
WEST BENGAL	61
MAHARASHTRA	43
ANDHRA PRADESH	42
MADHYA PRADESH	32
TAMIL NADU	32
GUJARAT	29
RAJASTHAN	29

```
PUNJAB
                                 16
    NCT OF DELHI
                                 15
    ORISSA
                                 10
    JHARKHAND
                                 10
    CHHATTISGARH
                                  9
                                  7
    KERALA
    UTTARAKHAND
                                  6
                                  4
    ASSAM
    JAMMU & KASHMIR
                                  3
                                  2
    PUDUCHERRY
                                  1
    MANIPUR
    MEGHALAYA
    ANDAMAN & NICOBAR ISLANDS
                                  1
    CHANDIGARH
                                  1
    NAGALAND
                                  1
    TRIPURA
                                  1
    MIZORAM
                                  1
    HIMACHAL PRADESH
    Name: state name, dtype: int64
punjab = df3[df3['state_name'] == 'PUNJAB']['effective_literacy_rate_total']
delhi = df3[df3['state_name'] == 'NCT OF DELHI']['effective_literacy_rate_total']
punjab_mean = punjab.mean()
punjab_std = punjab.std()
punjab mean, punjab std
     (83.4406249999998, 5.381935796408821)
delhi mean = delhi.mean()
delhi std = delhi.std()
delhi mean, delhi std
     (83.658, 4.6569551671206195)
```

26

26

20

From the above calculations, it can be seen that the mean and the standard deviations of Punjab and Delhi literacy rates differ slightly. The next step is to determine if this difference is a statistically significant one.

For hypothesis testing, the following are defined:

BIHAR

KARNATAKA

HARYANA

- **Null Hypothesis:** The true mean literacy rate for Punjab and Delhi are the same.
- Alternate Hypothesis: The true mean literacy rate for Punjab and Delhi are not the same.

The threshold value of α is assumed to be 0.05. Assuming Null Hypothesis is true.

Since we are dealing with sample sizes less than 30, using the t-statistic will be more appropriate. To use student's t though, we need to calculate the degree of freedom. This is done as follows:

The value of p obtained here is much higher than the significance level α . Therefore, we cannot reject the null hypothesis. It stands.

The true mean literacy rate for Punjab and Delhi are the same.

Using Python library

p-value greater than the alpha value, we accept the null hypothesis.

