第三讲 初等数论

本讲提要

□ 同余(续)

1剩余类和完全剩余系(续)

定理1(威尔逊定理)设p是一个素数, 则 $(p-1)!+1 \equiv 0 \pmod{p}$ 。 定理1证明. p=2,3时,同余式成立。 设p > 3是奇素数, $S = \{2,3,..., p-2\}$,a ∈ S。 因为(a, p) = 1所以有 $ma + np = 1 \Rightarrow am \equiv 1 \pmod{p}$, 设 $b \equiv m \pmod{p}$, 0 < b < p, 知 $b \neq 1$, $b \neq p-1$, 故 $b \in S$, 且 $ab \equiv 1 \pmod{p}$,这里 $a \neq b$,否则 $b^2 \equiv 1 \pmod{p}$ ⇒ $(b-1)(b+1) \equiv 0 \pmod{p}$, 面 $b \neq 1$, $b \neq p-1$, 故不成立。

1剩余类和完全剩余系(续)

定理1证明.(续)

现取 $a' \in S$, $a' \neq a$, $a' \neq b$,则类似有 $b' \in S$ 使 $a'b' \equiv 1 \pmod{p}$, 且 $b' \neq a'$, $b' \neq a$, 这是因为若b' = a, 则

$$a'b' \equiv a'a \equiv 1 \pmod{p}$$

$$ab \equiv 1 \pmod{p}$$

$$\Rightarrow a(a'-b) \equiv 0 \pmod{p} \Rightarrow a' \equiv b \pmod{p},$$

故不可能。

同理*b*′≠*b*。

如此下去知S中数可成为 $\frac{p-3}{2}$ 对,且每对a,b满足 $ab \equiv 1 \pmod{p}$,故 $2 \cdot 3 \cdot \dots \cdot (p-2) \equiv 1 \pmod{p}$,即得 $(p-1)! + 1 \equiv 0 \pmod{p}$ 。

2 缩系

定义 1 如果一个模m的剩余类里的数与m互素(显然一个互素全部互素),就把它叫做一个与模m互素的剩余类,在其中各取一个数组成的集叫模m的一组缩系。

定义 2 欧拉函数 $\varphi(n)$ 是一个定义在整数上的函数, $\varphi(n)$ 的值为序列0,1,…,n-1中与n互素的数的个数。显然p是素数时 $\varphi(p)=p-1$ 。

定理 2 模m的一组缩系含有 $\varphi(m)$ 个数。显然。

定理 3 若 a_1 ,…, $a_{\varphi(m)}$ 是 $\varphi(m)$ 个与m互素的整数,则 a_1 ,…, $a_{\varphi(m)}$ 为缩系的充要条件为它们两两模m不同余。 显然。

定理 $4 \, \Xi(a,m) = 1$,x是通过模m的缩系则 ax也是模m的缩系。

定理4证明.

显然ax有 $\varphi(m)$ 个整数。

因为(a,m) = 1,(x,m) = 1,

所以(ax, m) = 1。

若x中存在 x_1 , x_2 有 $ax_1 \equiv ax_2 \pmod{m}$, 由于(a,m) = 1, 可得 $x_1 \equiv x_2 \pmod{m}$, 这与x是通过模m的缩系矛盾。故ax也为通过模m的缩系。

定理5 (欧拉定理)设m > 1,(a, m) = 1,则 $a^{\varphi(m)} \equiv 1 \pmod{m}$ 。

定理5证明.

设 r_1 , r_2 ,…, $r_{\varphi(m)}$ 为模m的一组缩系,由定理4知 ar_1 , ar_2 ,…, $ar_{\varphi(m)}$ 亦是模m的缩系。

因此, $(ar_1)(ar_2)\cdots(ar_{\varphi(m)})\equiv r_1r_2\cdots r_{\varphi(m)}\pmod{m}$,

 $\exists \exists a^{\varphi(m)} r_1 r_2 \cdots r_{\varphi(m)} \equiv r_1 r_2 \cdots r_{\varphi(m)} \pmod{m}_{\circ}$

因为 r_1 , r_2 ,…, $r_{\varphi(m)}$ 为模m的一组缩系,所以 $(r_1r_2\cdots r_{\varphi(m)},m)=1$ 。

由上讲定理 8知 $a^{\varphi(m)} \equiv 1 \pmod{m}$ 。

2.1 同余定义与概念(续)

定理8 如果 $ac \equiv bc \pmod{m}$,且若(m,c) = d,则

$$a \equiv b \left(\bmod \frac{m}{d} \right) \circ$$

定理8证明.

由定理6知
$$m \mid ac - bc = c(a - b) \Rightarrow \frac{m}{d} \mid \frac{c}{d}(a - b),$$

$$\therefore a \equiv b \left(\bmod \frac{m}{d} \right) \circ$$

由定理5立刻可得:

定理6 (费马小定理) 若p是素数,则 $a^p \equiv a \pmod{p}$ 。

定理 7 设 $m_1 > 0$, $m_2 > 0$, $(m_1, m_2) = 1$, 而 x_1 , x_2 分别通过模 m_1 , m_2 的缩系,则 $m_2x_1 + m_1x_2$ 通过模 m_1m_2 的缩系。

定理7证明.

首先,由上一讲定理13知 $m_2x_1 + m_1x_2$ 两两不同余。 其次,证明 $(m_2x_1+m_1x_2,m_2m_1)=1$,否则存在素数 $p|m_2x_1+m_1x_2$, $p \mid m_1 m_2$ 。如果 $p \mid m_1$,则 $p \mid m_2 x_1$,又 $p \mid x_1$,故 $p \mid m_2$,这与 $(m_1, m_2) = 1$ 矛盾。如果 $p \mid m_2$,可证同样矛盾。这样两个缩系 通过 $m_1x_1 + m_1x_2$ 形成与 m_1m_2 互素的 $\varphi(m_1)\varphi(m_2)$ 个数。 最后,证明凡与 m_1m_2 互素的a有: $a \equiv m_2x_1 + m_1x_2 \pmod{m_1m_2}$, 且 $(x_1, m_1) = (x_2, m_2) = 1$ 。由上一讲定理13知有上式的表示形式, 只需要证当 $(a, m_1 m_2) = 1$ 时有 $(x_1, m_1) = (x_2, m_2) = 1$ 。如果 $(x_1, m_1) > 1$, 有素数q, $q \mid x_1$, $q \mid m_1$, 由此 $q \mid a$, 这与 $(a, m_1 m_2) = 1$ 矛盾, 故 $(x_1, m_1) = 1$ 。 同理 $(x_2, m_2) = 1$ 。

2剩余类和完全剩余系(续)

定理13 设 $m_1 > 0$, $m_2 > 0$,(m_1, m_2) = 1,而 x_1 , x_2 分别通过模 m_1 , m_2 的完系,则 $m_2x_1 + m_1x_2$ 通过模 m_1m_2 的完系。 定理13证明.

 x_1 , x_2 分别有 m_1 , m_2 个整数,因此, m_2 x₁+ m_1 x₂有 m_1 m₂个 整数。剩下只需要证明它们对模 m_1m_2 两两不同余即可。 假定: $m_2x_1' + m_1x_2' \equiv m_2x_1'' + m_1x_2'' \pmod{m_1m_2}$, 则 $m_1 x_1' \equiv m_2 x_1'' \pmod{m_1}$, $m_1 x_2' \equiv m_1 x_2'' \pmod{m_2}$ 。 $\boxplus \exists (m_1, m_2) = 1$, ∴ $x_1' \equiv x_1'' \pmod{m_1}$, $x_2' \equiv x_2'' \pmod{m_2}$. 又由于 x_1' , x_1' 同取自模 m_1 的完全剩余系,由此可得: $x_1' = x_1''$ 。同理 $x_2' = x_2''$ 。因此,若 (x_1', x_2') 与 (x_1'', x_2'') 不同, 则(5)式不能成立。

由定理7立得:

推论1 若
$$(m_1, m_2) = 1$$
,则 $\varphi(m_1 m_2) = \varphi(m_1)\varphi(m_2)$ 。

定理8 设n的标准分解 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$,则

$$\varphi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \cdots \left(1 - \frac{1}{p_k} \right).$$

定理8证明.

$$\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\cdots\varphi(p_k^{\alpha_k}), \quad \overrightarrow{\text{mi}} \triangleq \varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} + \overrightarrow{\text{mi}}, \\
\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1-1})(p_2^{\alpha_2} - p_2^{\alpha_2-1})\cdots(p_k^{\alpha_k} - p_k^{\alpha_k-1}) \\
= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_k}\right).$$

3一次同余式

定义3 设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, 其中n > 0, $a_i (i = 0,1,\dots, n)$ 是整数,又设m > 0,则 $f(x) \equiv 0 \pmod{m}$

叫模m的同余式。若 $a_n \neq 0 \pmod{m}$,则n叫次数。如果 x_0 满足 $f(x_0) \equiv 0 \pmod{m}$,则 $x \equiv x_0 \pmod{m}$ 叫同余式的解。不同的解是指互不同余的解。

例子1用验算的方法知同余式

$$x^5 + 2x^4 + x^3 + 2x^2 - 2x + 3 \equiv 0 \pmod{7}$$

仅有解 $x \equiv 1,5,6 \pmod{7}$ 。

3一次同余式(续)

例子 2 用同余式

$$x^4 - 1 \equiv 0 \pmod{16}$$

有8个解 $x \equiv 1, 3, 5, 7, 9, 11, 13, 15 \pmod{16}$ 。

例子 3 用同余式

$$x^2 + 3 \equiv 0 \pmod{5}$$

无解。

3一次同余式(续)

定理 9 设(a,m)=1, m>0, 则同余式 $ax \equiv b \pmod{m}$

恰有一个解,这个解就 是 $x \equiv ba^{\varphi(m)-1} \pmod{m}$ 。特别地,我们将 $ax \equiv 1 \pmod{m}$ 的解 $a^{\varphi(m)-1}$ 称为a的逆元,记为 a^{-1} 。定理 9证明.

1,2,..., m为模m的完系。因为(a,m)=1,所以a,a2,..., am,由上一讲定理12知am也是完系,故有且仅有一个 $aj \equiv b \pmod{m}$,因此, $x \equiv j \pmod{m}$ 为一次同余唯一解。由定理5可得解为 $x \equiv ba^{\varphi(m)-1} \pmod{m}$ 。

2剩余类和完全剩余系(续)

定理12 设(k,m)=1,而 a_0 , a_1 ,…, a_{m-1} 是模m的一组完系则 ka_0 , ka_1 ,…, ka_{m-1} 也是模m的一组完系。定理12证明.

如果不是完系,则由定理11存在

 $ka_i \equiv ka_j \pmod{m}, \quad 0 \le i < j \le m - 1_\circ$

则 $m \mid k(a_i - a_j)$ 。又(k, m) = 1,由上一讲定理 5,知 $m \mid a_i - a_j$ 。矛盾。

3一次同余式(续)

定理10 设(a,m) = d, m > 0, 则同余式 $ax \equiv b \pmod{m}$

有解的充分必要条件是d|b。

定理10证明.

 \rightarrow : $m \mid ax - b$, $\therefore d \mid ax - b$, $\boxplus d \mid a$, $\therefore d \mid b$.

$$\leftarrow \because \left(\frac{a}{d}, \frac{m}{d}\right) = 1 \perp d \mid b,$$

∴同余式
$$\frac{a}{d}x \equiv \frac{b}{d} \left(\text{mod } \frac{m}{d} \right)$$
有解(定理9)。即 $ax \equiv b \pmod{m}$ 有解。

3一次同余式(续)

定理11 设(a,m) = d, m > 0, $d \mid b$, 则同余式 $ax \equiv b \pmod{m}$

有d个解。

定理11证明.

如果某整数是 $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$ 的解,则同样为 $ax \equiv b \pmod{m}$ 的解,反之亦然。

$$\frac{a}{d}x \equiv \frac{b}{d} \left(\text{mod } \frac{m}{d} \right)$$
有唯一解,假定是 t 。则全体整数 $t + k \frac{m}{d}$, $k = 0, \pm 1, \pm 2, \cdots$

是 $ax \equiv b \pmod{m}$ 的解。对模 m而言,恰有 t, $t + \frac{m}{d}$, $t + 2\frac{m}{d}$ …, $t + (d-1)\frac{m}{d}$ 个互

不同余的整数解。这是 因为对于 $t+k\frac{m}{d}$,设 k=qd+r, $0 \le r < d$,代入得

$$t + k\frac{m}{d} \equiv t + qm + r\frac{m}{d} \equiv t + r\frac{m}{d} \pmod{m}$$
。 又若 $0 \le e < d, 0 \le f < d$,则

$$t+e\frac{m}{d} \equiv t+f\frac{m}{d} \pmod{m}$$
,有 $f=e$,说明 t , $t+\frac{m}{d}$, $t+2\frac{m}{d}$ …, $t+(d-1)\frac{m}{d}$ 模 m 互不同余。

4 模是素数的同余式

定理12(拉格朗日定理)设p是素数, $f(x) = a_n x^n + a_{n-1} x^{n-1}$ +…+ $a_1 x + a_0$,n > 0, $a_n \neq 0 \pmod{p}$,是一个整系数多项式,则同余式

$$f(x) \equiv 0 \pmod{p}$$

最多有n个解。

定理12证明.

归纳法。

当n=1时, $a_1x+a_0\equiv 0\pmod{p}$, $p\nmid a_1$,恰有一解。 假定n-1时为真,即最多有n-1个解,需证明n时最多只有n个解。如果 $n\geq p$ 结论立即成立。

4 模是素数的同余式(续)

定理12证明.(续)

否则(反证法),即在 $n \le p-1$ 至少有 n+1个解为: $x_0, x_1, \dots, x_n, x_i \not\equiv x_i \pmod{p}, 0 \le i < j \le n$ 。

做
$$f(x) - f(x_0) = \sum_{k=1}^{n} a_k(x^k - x_0^k) = (x - x_0)g(x)$$
,这里

g(x)是首项系数为 a_n 的n-1次整系数多项式。由于 当 k > 0时 $x_k - x_0 \neq 0 \pmod{p}$,而 $f(x_k) - f(x_0) \equiv (x_k - x_0)g(x_k)$ $\equiv 0 \pmod{p}$,说明g(x)有n个解。这与其有 n-1个解矛盾。

4 模是素数的同余式(续)

定理13 设同余式

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$ 的解的个数大于 n,这里p是素数, a_i 是整数 $(i = 0,1,\dots,n)$,则 $p|a_i(i = 0,1,\dots,n)$ 。 定理13证明.

如果某些系数不能被p整除,设这些系数的脚标最大为k。k次同余式

 $a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p}$, $p \nmid a_k$ 的解的个数大于 k, 这与定理12矛盾。

4 模是素数的同余式(续)

定理14 对于任意给的素数p,多项式

$$f(x) = (x-1)(x-2)\cdots(x-p+1)-x^{p-1}+1$$

的所有系数被p整除。

定理14证明.

令 $g(x) = (x-1)(x-2)\cdots(x-p+1)$,则1,2,…,p-1是 $g(x) \equiv 0 \pmod{p}$ 的p-1个解。由费马小定理,1,2,…,p-1 也是 $h(x) \equiv x^{p-1} - 1 \equiv 0 \pmod{p}$ 的p-1个解,故同余式 $f(x) \equiv g(x) - h(x) \pmod{p}$ 有p-1个解,而考察f(x)为p-2次多项式。由定理13知其系数均能被p整除。这里常数项是 $(-1)^{p-1}(p-1)!+1$,为定理1(威尔逊定理)的结论。

谢谢!