20 Feb 2018	Prelin 1	. review
Thurs, 2/21	, Statler Au	ditorium (Not Statler 196)
7:30 -	-9:00.	closed book, closed notes. oring a pen (pencil (+ spare)
Topics. Cl	nepters 1,4,6. Boruvka &	(Not RNA, not recurrences) Floyd-Warshall in lectures, not book. not on prelim!
Algorithms no	tzught	
Stable Greedy		Gale - Shapley Earliest Finish Time (int've sched) Boruska > MST Rim Huffman (prefix coding)
Dynamic	Magramming	Weighted interval scheduling Knepsack Bellman-Ford Floyd-Warshell RNA Secondary Structure (* read about CYK some time!) ("Lut not for Relim 1)
Types of question - Straight E.g.	recall facts Running time a graph with (A) O (m.	From your memory" of Bellman-Ford on n vortices, on edges is: (5) 0 (mm) log n) (D) 0 (13)

- Run a "noved algorthm" on a sample input. - We present an incorrect algorithm. You find - We present a correct algorithm. You figure out its running time. - We give you a simple fact that we want Ex 4. Prone or disprove. If G is algraph in one edge.

with distinct edge costs, the minimum Cost

edge beings to every Min Sp Tree.

(B) Prove

Prost 1. IC and 1. Proof 1. If e=(u,v) is the non cost edge.

then e is the min cost edge crossing.

the cut from $\{v\}$ to $V-\{v\}$.

By cut property, $e\in MST$. Proof 2. By catradiction. Assume ext.

Let e' be any other edge
in the cycle that C Forms

with I.

Then T-22305e3 16 a

Spanning fore and its cost is less than that of T. Roof 3. Kruskal's Algorithm works. It always selects the min-cost edge. Hence that edge belongs to one MST. That is the only MST because a has distinct costs. Uniqueness? When a has distinct edge costs, the MCT to always unique.

- Design & onalyze an algorithm. Use if you want.
Prelim won't require it. (Gredy) Oyn Pros Reductio -) Bellmon-tord is a great terget for reductions. (Problem 6.? From X&T) String of words. W, wz, ..., wn. character counts: C, Cz, --, Cn. Print text in a format with & Comx characters for line.

(with 1 space both adj words on a line).

Avoid ragged right edge".

Line of text with Compracters in penalized by (Comax Cotot)? Minimire sum of line penalties.
Keep words in some order, just insert line breaks. Greedy: peop inserting line breaks at latest possible time until you no out of words. ALGORITHMS ARE COOL. $c_1 = 10$ $c_2 = 3$ $c_3 = 4$ Cmax = 14. 02 ALCORITHS ARE/ COOL ALGORITHANS // 42
ARE COOL 62 ARE COOL