Aprendizaje por refuerzo

Clase 19: Teoría

Antes de empezar...

- Dudas de
 - Tarea 4
 - Proyecto

Para el día de hoy...

- Preliminares
- Operadores de Bellman
- Análisis de
 - Programación dinámica Programación dinámica aproximada
 - Política voraz

¿Qué tipo de preguntas nos hacemos?

- ¿Convergen nuestros algoritmos?
- ¿Con que velocidad?
- ullet Si utilizo este algoritmo con N muestras, k iteraciones, que tan bueno será el resultado
- Si utilizo este algoritmo de exploración, ¿cuál es el arrepentimiento?
- Muchas otras

Tipo de suposiciones

Exploración

- El desempeño de los métodos se complica con exploración
- ¿Qué tan probable es encontrar recompensas?
- Normalmente las garantías teóricas suponen peores escenarios

Aprendizaje

• Si podemos abstraer la exploración, ¿cuántas muestras necesitamos para aprender un modelo?

¿Para qué?

- Demostrar que el algoritmo funciona siempre
 - Usualmente no es posible para métodos modernos
- Entender como se afectan los errores por los parámetros
 - ¿Funciona mejor un descuento grande o pequeño?
 - Si queremos reducir el error a la mitad, ¿Cuántas muestras necesitamos?

Algunas definiciones

- Un espacio vectorial normado
 - Espacio vectorial \mathcal{X} + una norma || \cdot || sobre los elementos de \mathcal{X}
- Las normas definen un mapeo $\mathcal{X} \to \mathbb{R}$ tal que
 - $||x|| \ge 0$, $\forall x \in \mathcal{X}$ y si ||x|| = 0 entonces x = 0
 - $||\alpha x|| = |\alpha|||x||$
 - $||x_1 + x_2|| \le ||x_1|| + ||x_2||$
- Para hoy:
 - Espacio vectorial: $\mathcal{X} = \mathbb{R}^d$
 - Normas: $||\cdot||_{\infty}$, $||\cdot||_{2}$, $||\cdot||_{p}$

Mapeo de contracción

• Sea \mathcal{X} un espacio vectorial normado con $||\cdot||$. Un mapeo $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ es una contracción α si para cualquier $x_1, x_2 \in \mathcal{X}$, $\exists \alpha \in [0,1)$ tal que

$$||\mathcal{T}x_1 - \mathcal{T}x_2|| \le \alpha ||x_1 - x_2||$$

- Si $\alpha \in [0,1]$, entonces llamamos \mathcal{T} no expandible
- Cada contracción es también Lipschitz, por lo cual también es continuo
- Si $x_n \rightarrow_{||\cdot||} x$ entonces $\mathcal{T}x_n \rightarrow_{||\cdot||} \mathcal{T}x$

Puntos fijos

- Punto fijo
 - Un vector $x \in \mathcal{X}$ es un punto fijo de un operador \mathcal{T} si $\mathcal{T}x = x$
- Teorema de punto fijo de Banach
 - Sea $\mathcal X$ un espacio vectorial normado con $||\cdot||$ y $\mathcal T\colon \mathcal X\to \mathcal X$ una contracción γ , entonces
 - \mathcal{T} tiene un punto fijo único $x \in \mathcal{X}$: $\exists x^* \in \mathcal{X}$ tal que $\mathcal{T}x^* = x^*$
 - $\forall x_0 \in \mathcal{X}$, la secuencia $x_{n+1} = \mathcal{T}x_n$ converge a x^* de forma geométrica
 - $||x_n x^*|| \le \gamma^n ||x_0 x^*||$
 - Entonces $\lim_{n\to\infty} ||x_n x^*|| \le \lim_{n\to\infty} (\gamma^n ||x_0 x^*||) = 0$

Proceso de decisión de Markov

- Un proceso de decisión de Markov es un proceso de recompensa de Markov con decisiones
- Formalmente, un proceso de decisión de Markov es una tupla $M = (S, A, P, R, \gamma)$
 - \mathcal{S} es un conjunto finito de estados
 - \mathcal{A} es un conjunto finito de acciones
 - \mathcal{P} es una matriz de transición, $\mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - \mathcal{R} es una función de recompensa, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - γ es un factor de descuento, $\gamma \in [0, 1]$
- Alternativamente
 - T(s, a, s') define las transiciones o dinámica del modelo
 - R(s, a, s')|R(s, a)|R(s')|R(s) define la función de recompensa

Funciones de valor

• Función de valor, para una política π :

• Función de acción valor, para una política π

Funciones óptimas

Funciones de valor

• Función de valor, para una política π :

$$v_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} | s_{0} = s; \pi\right]$$

• Función de acción valor, para una política π

$$q_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t+1} | s_{0} = s; a_{0} = a; \pi\right]$$

• Funciones óptimas

$$q^* = \max_{\pi} q_{\pi}$$
$$v^* = \max_{\pi} v_{\pi}$$

Ecuaciones de Bellman esperadas

• Dado un MDP $M = (S, A, p, r, \gamma)$, para cualquier política π , las función de valor obedecen

$$v_{\pi}(s) = \sum_{a} \pi(s, a) [r(s, a) + \gamma \sum_{s'} p(s'|a, s) v_{\pi}(s')]$$

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

Ecuaciones de Bellman óptimas

• Dado un MDP $M = (S, A, p, r, \gamma)$, para cualquier política π , las función de valor óptimas obedecen

$$v^{*}(s) = \max_{a} \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) v^{*}(s') \right]$$

$$q^{*}(s, a) = r(s, a) + \gamma \sum_{s'} p(s'|a, s) \max_{a' \in A} q^{*}(s', a')$$

Operador de Bellman óptimo

• Dado un MDP $M = (S, \mathcal{A}, p, r, \gamma)$, sea $\mathcal{V} \equiv \mathcal{V}_{S}$ el espacio acotado de funciones reales sobre S. Definimos, el operador de Bellman $T_{\mathcal{V}}^{*}: \mathcal{V} \to \mathcal{V}$ como

$$(T_{\mathcal{V}}^*f)(s) = \max_{a} \left[r(s,a) + \gamma \sum_{s'} p(s'|a,s)f(s') \right], \forall f \in \mathcal{V}$$

• Se suele usar $T^* \equiv T_{12}^*$

Propiedades del operador de Bellman

1. Tiene un único punto fijo v^*

$$T^*v^* = v^*$$

- 2. T^* es una contracción γ con respecto a $||\cdot||_{\infty}$ $||T^*v T^*u||_{\infty} \le \gamma ||v u||_{\infty}, \forall u, v \in \mathcal{V}$
- 3. T* es monotónico

 $\forall u, v \in \mathcal{V}$ tal que $u \leq v$ (por componentes), entonces $T^*u \leq T^*v$

Demostración: T^* es una contracción γ con respecto a $||\cdot||_{\infty}$

$$|T^*v(s) - T^*u(s)| = |\max_{a} \left[r(s, a) + \gamma \mathbb{E}_{s'|s,a} v(s') \right] - \max_{b} \left[r(s, b) + \gamma \mathbb{E}_{s''|s,b} u(s'') \right] | (6)$$

$$\leq \max_{a} |\left[r(s, a) + \gamma \mathbb{E}_{s'|s,a} v(s') \right] - \left[r(s, a) + \gamma \mathbb{E}_{s'|s,a} u(s') \right] | (7)$$

$$= \gamma \max_{a} |\mathbb{E}_{s'|s,a} \left[v(s') - u(s') \right] | (8)$$

$$\leq \gamma \max_{s'} |\left[v(s') - u(s') \right] | (9)$$

Por lo tanto

$$||T^*v - T^*u||_{\infty} \le \gamma ||v - u||_{\infty}, \forall u, v \in \mathcal{V}$$

• Los pasos (6) y (7) usan

$$\max_{a} f(a) - \max_{b} g(b) \le \max_{a} |f(a) - g(a)|$$

Demostración: T^* es monotónico

• Dado
$$v(s) \le u(s), \forall s \to r(s,a) + \mathbb{E}_{\left(s'|s,a\right)}v(s') \le r(s,a) + \mathbb{E}_{\left(s'|s,a\right)}u(s')$$

$$T^*v(s) - T^*u(s) = \max_{a} \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} v(s') \right] - \max_{b} \left[r(s,b) + \gamma \mathbb{E}_{s''|s,b} u(s'') \right]$$
(10)
$$\leq \max_{a} \left(\left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} v(s') \right] - \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a} u(s') \right] \right)$$
(11)
$$\leq 0, \forall s.$$
(12)

Por lo cual

$$T^*v(s) \leq T^*u(s), \forall s \in \mathcal{S}$$

Iteración de valor desde la perspectiva del operador de Bellman

- Algoritmo
 - Iniciar con v_0
 - Actualizar: $v_{k+1} = T^*v_k$
- Nótese que $k \to \infty$, $v_k \to_{||\cdot||_\infty} v^*$

$$||v_{k} - v^{*}||_{\infty} = ||T^{*}v_{k-1} - v^{*}||_{\infty}$$

$$= ||T^{*}v_{k-1} - T^{*}v^{*}||_{\infty}$$

$$\leq \gamma ||v_{k-1} - v^{*}||_{\infty}$$

$$\leq \gamma^{k}||v_{0} - v^{*}||_{\infty}$$

Operador de Bellman esperado

• Dado un MDP $M = (S, \mathcal{A}, p, r, \gamma)$, sea $\mathcal{V} \equiv \mathcal{V}_{S}$ el espacio acotado de funciones reales sobre S. Para cualquier política $\pi: S \times \mathcal{A} \to [0,1]$, definimos, el operador de Bellman esperado $T_{\mathcal{V}}^*: \mathcal{V} \to \mathcal{V}$ como

$$(T_{\mathcal{V}}^{\pi}f)(s) = \sum_{a} \pi(s, a) \left[r(s, a) + \gamma \sum_{s'} p(s'|a, s) f(s') \right], \forall f \in \mathcal{V}$$

• Se suele usar $T^{\pi} \equiv T^{\pi}_{\mathcal{V}}$

Propiedades del operador de Bellman

- 1. Tiene un único punto fijo v_{π} $T^{\pi}v_{\pi}=v_{\pi}$
- 2. T^{π} es una contracción γ con respecto a $||\cdot||_{\infty}$ $||T^{\pi}v T^{\pi}u||_{\infty} \leq \gamma ||v u||_{\infty}, \forall u, v \in \mathcal{V}$
- 3. T^{π} es monotónico

$$\forall u, v \in \mathcal{V}$$
 tal que $u \leq v$ (por componentes), entonces $T^{\pi}u \leq T^{\pi}v$

Demostración: T^* es una contracción γ con respecto a $||\cdot||_{\infty}$

$$T^{\pi}v(s) - T^{\pi}u(s) = \sum_{s} \pi(a|s) \left[r(s,a) + \gamma \mathbb{E}_{s'|s,a}v(s') - r(s,a) - \gamma \mathbb{E}_{s'|s,a}u(s') \right]$$

$$= \gamma \sum_{s} \pi(a|s) \mathbb{E}_{s'|s,a} \left[v(s') - u(s') \right]$$

$$\Rightarrow |T^{\pi}v(s) - T^{\pi}u(s)| \leq \gamma \max_{s'} |\left[v(s') - u(s') \right]|$$

$$(14)$$

Por lo tanto

$$||T^{\pi}v - T^{\pi}u||_{\infty} \le \gamma ||v - u||_{\infty}, \forall u, v \in \mathcal{V}$$

• Por (14) también se demuestra la monotonicidad de T^{π}

Evaluación de política

- Algoritmo
 - Iniciar con v_0
 - Actualizar: $v_{k+1} = T^{\pi}v_k$
- Nótese que $k \to \infty$, $v_k \to_{||\cdot||_{\infty}} v_{\pi}$ (directa aplicación del teorema de punto fijo de Banach)

En resumen

Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = T^*v_k$.

Policy Iteration

- ▶ Start with π_0 .
- ► Iterate:
 - Policy Evaluation: v_{π_i}
 - lacktriangle (E.g. For instance, by iterating T^π : $v_k = T^{\pi_i} v_{k-1} \Rightarrow v_k \to v^{\pi_i}$ as $k \to \infty$)
 - ▶ Greedy Improvement: $\pi_{i+1} = \arg \max_a q_{\pi_i}(s, a)$

Programación dinámica aproximada

- Hasta ahora hemos supuesto conocimiento perfecto del MDP así como de las funciones de valor
- De forma realista,
 - No conocemos el MDP
 - No podemos representar la función de valor exactamente
- Objetivo
 - Bajo estas condiciones encontrar una política π óptima (o casi)

Iteración de valor aproximada

Approximate Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = AT^*v_k$.

$$(v_{k+1} \approx T^* v_k)$$

- $k \to \infty, v_k \to ||\cdot||_{\infty} v^*$?
- En general, no

Aproximación de la función de valor

- Utilizar una función de aproximación $v_{\theta}(s)$ con parámetros $\theta \in \mathbb{R}^m$
- La función de valor estimada en la iteración k es $v_k = v_{ heta_k}$
- Utilizar programación dinámica para calcular $v_{\theta_{k+1}}$ desde v_{θ_k} $T^*v_k(s) = \max_a \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s]$
- Ajustar θ_{k+1} tal que $v_{\theta_{k+1}} \approx T^* v_k(s)$. Por ejemplo

$$\theta_{k+1} = \arg\min_{\theta_k+1} \sum_{s} \left(v_{\theta_{k+1}}(s) - T^* v_k(s) \right)^2$$

Iteración de valor aproximada

Approximate Value Iteration

- ightharpoonup Start with v_0 .
- ▶ Update values: $v_{k+1} = AT^*v_k$.

$$(v_{k+1} \approx T^* v_k)$$

- $\xi k \to \infty, v_k \to ||\cdot||_{\infty} v^*$?
- En general, no
- ¿Entonces?
 - Las versiones de muestreo convergen bajo ciertas condiciones
 - Para el caso de funciones de aproximación, aunque puede divergir, rara vez sucede en la práctica
 - Existen muchas funciones de valor que inducen la política óptima

Desempeño de una política voraz

• Considere un MDP M. Sea $q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ una función arbitraria y sea π una política voraz asociada con q entonces

•
$$||q^* - q^{\pi}||_{\infty} \le \frac{2\gamma}{1-\gamma} ||q^* - q||_{\infty}$$

• Donde q^* es la función de valor óptima asociada con M

Demostración $||q^* - q^\pi||_{\infty} \le \frac{2\gamma}{1-\gamma} ||q^* - q||_{\infty}$

$$||q^{*} - q^{\pi}||_{\infty} = ||q^{*} - T^{\pi}q + T^{\pi}q - q^{\pi}||_{\infty}$$

$$\leq ||q^{*} - T^{\pi}q||_{\infty} + ||T^{\pi}q - q^{\pi}||_{\infty}$$

$$= ||T^{*}q^{*} - T^{*}q||_{\infty} + ||T^{\pi}q - T^{\pi}q^{\pi}||_{\infty}$$

$$\leq \gamma ||q^{*} - q||_{\infty} + \gamma \qquad ||q - q^{\pi}||_{\infty}$$

$$\leq ||q - q^{*}||_{\infty} + ||q^{*} - q^{\pi}||_{\infty}$$

$$\leq 2\gamma ||q^{*} - q||_{\infty} + \gamma ||q^{*} - q^{\pi}||_{\infty}$$

$$\leq 2\gamma ||q^{*} - q||_{\infty} + \gamma ||q^{*} - q^{\pi}||_{\infty}$$

$$(15)$$

Reacomodando los términos

$$(1 - \gamma)||q^* - q^{\pi}||_{\infty} \le 2\gamma||q^* - q||_{\infty}$$

Una perspectiva

Para la otra vez...

• Algunas aplicaciones

