

Discrete Mathematics MH1812

Topic 1.1 - Elementary Number Theory Dr. Gary Greaves

Your Learning Roadmap

What's in store...

By the end of this lesson, you should be able to...

- Identify the different types of numbers.
- Use Euclidean division to find the remainder.
- Determine which integers are congruent modulo a positive integer.
- Determine whether particular sets of numbers are closed under a given operator.

Numbers: Integer and Real Numbers

Natural Numbers

 \mathbb{N}

- Counting numbers: 1, 2, 3, etc,.
- Sometimes 0 is also included (whole numbers)

Integer Numbers

Natural numbers including zero and their negatives:

Real Numbers

 \mathbb{R}

Any value on the continuous line (e.g.,

$$0.31, -4, \pi, 2)$$

Numbers: Ir(rational) Numbers

Rational Numbers

Real numbers that can be represented in the form a/b, where a and b are integers, and $b\neq 0$ (e.g., 3/7, 0.999 = 999/1000).

Irrational Numbers

Real numbers that cannot be represented in the form a/b for any integers a and b (e.g., π , e, $2^{1/2}$).

Numbers: In a nutshell...

Real Numbers

Numbers: Mathematicians

Pythagoras (Πυθαγόρας) c. 570 BC - c. 495 BC

Hippasus (Ἵππασος)
of Metapontum
5th century BC

Georg Ferdinand Ludwig Philipp Cantor 1845 - 1918

Georg Cantor under WikiCommons (PD-US)

Hippasus by Boccanera G under WikiCommons (PD-US)

Kapitolinischer Pythagoras by Galilea at German Wikipedia

Numbers: Computer Science

- Real numbers need approximation
- Rational numbers = pair of integers
- Type of numbers (e.g., in C)

```
gap>
gap>
gap>
10/3;
10/3
gap> 10.0/3;
3.33333
gap>
```

```
frederique@frederique-desktop:~$ gcc frac.c -o frac
frederique@frederique-desktop:~$ ./frac
3.000000
3.333333
frederique@frederique-desktop:~$
```

```
frac.c 🗱
#include <stdio.h>
void main()
    float a:
    a=10/3;
    printf("%f\n",a)
    a=(float)10/3;
    printf("%f\n",a)
```


Euclidean Division: Definition

Take any integer n, n > 0, and any integer m. There exist unique integers q and r such that:

$$m = qn + r, \, 0 \le r < n$$

- When r = 0, then:
 - -n divides m, or
 - -m is divisible by n
 - -Notation: *n* | *m*

Euclid (Εὐκλείδης) 300 BC

Euclidean Division: Examples

Take any integer n, n > 0, and any integer m. There exist unique integers q and r such that:

$$m = qn + r, \, 0 \le r < n$$

n = 7			
m = 17	q = 2	r = 3	
m = 35	q = 5	r = 0	
m = -5	q = -1	r = 2	

Euclidean Division: Prime, Even and Odd Numbers

Prime Numbers

Natural numbers p, that have only two factors, p and 1 (i.e., not divisible by any other integer):

- For it to have two factors, it has to be larger than 1.
- 2, 3, 5, 7, 11, 13, ...

Even Numbers

Integers divisible by 2.

Odd Numbers

Integers not divisible by 2.

Euclidean Division: Modulo n

For a positive integer n, two integers a and b are said to be congruent modulo n, if a - b is an integer multiple of n.

We write:

$$a \equiv b \pmod{n}$$

If $a \equiv b \pmod{n}$, then a - b = qn and a = qn + b.

Euclidean Division: Modulo n (Examples)

$$a \equiv b \pmod{n} \iff a = qn + b$$

Example

- $-8 \equiv 2 \equiv 7 \pmod{5}$
- $17 \equiv 2 \equiv 12 \pmod{5}$
- Likewise $17 \equiv 22 \pmod{5}$

Euclidean Division: Modular Arithmetic

$$a \equiv b \pmod{n} \iff a = qn + b$$

Integers mod n can be represented as elements between 0 and n - 1: (0, 1, 2, ..., n - 1)

Addition mod *n*

 $(a \bmod n) + (b \bmod n) \equiv (a + b) \bmod n$

Multiplication mod *n*

 $(a \bmod n) * (b \bmod n) \equiv (a * b) \bmod n$

Euclidean Division: Modular Arithmetic

• $(17 \mod 5) + (-8 \mod 5) \equiv 4 \mod 5$

• $(12 \mod 5) * (-3 \mod 5) \equiv 4 \mod 5$

Euclidean Division: Integers Mod 2

Bits are integer modulo 2.

Addition Table

+	0	1
0	0	1
1	1	0

Multiplication Table

*	0	1
0	0	0
1	0	1

There are 10 kinds of people in the world.

Those who understand binary, and those who don't.

Operator Closure: Definition

Consider a set S with an operator Δ .

Then S is closed under Δ if the result of the operation Δ on any two elements of S results in an element of S.

This is known as the closure property.

- $S = \mathbb{R} = \{\text{real numbers}\}\ \text{is closed under } \Delta = + \text{ (and } \Delta = *)$
- $S = \mathbb{Z} = \{\text{integer numbers}\}\$ is not closed under $\Delta = \text{division}$
- $S = \{ \text{integers mod } n \} \text{ is closed under } \Delta = \text{addition mod } n \}$

Let's recap...

- Recognise different types of numbers (natural, integer, real, rational, irrational, prime, even, modulo n).
- Use Euclidean division to find the remainder.
- Determine which integers are congruent modulo a positive integer.
- Decide whether particular sets of numbers are closed under a given operator.

