CS 228 : Logic in Computer Science

Krishna. S

FO without equality

Let us focus on FO without "=". Recall that "=" is always interpreted as equality.

Herbrand Theorem

Let $\Gamma = \{\varphi_1, \varphi_2, \dots\}$ be a set of equality-free sentences in Skolem Normal Form. Then Γ is satisfiable iff Γ has a Herbrand model.

If Γ has a Herbrand model, clearly Γ is satisfiable. The converse needs a proof.

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ .

- ▶ Let \mathcal{A} be a τ_H structure such that $\mathcal{A} \models \Gamma$. ($U^{\mathcal{A}}$ need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ .

- Let A be a τ_H structure such that $A \models \Gamma$. (U^A need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)
- We need to create a Herbrand model for Γ

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ .

- Let A be a τ_H structure such that $A \models \Gamma$. (U^A need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)
- We need to create a Herbrand model for Γ
- **Try** "merging" A and B to obtain a Herbrand model M for Γ.

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ.

- Let A be a τ_H structure such that $A \models \Gamma$. (U^A need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)
- We need to create a Herbrand model for Γ
- **Try** "merging" A and B to obtain a Herbrand model M for Γ.
 - ▶ Define M so that its universe is the Herbrand universe over τ_H .
 - ► Let *M* interpret functions and constants like *B* (both have the same Herbrand universe)
 - ▶ How to interpret the relations from τ_H (same as those of τ)?

Assume Γ is satisfiable. Let τ_H be the Herbrand signature for Γ.

- Let A be a τ_H structure such that $A \models \Gamma$. (U^A need not be the Herbrand universe)
- Let \mathcal{B} be a Herbrand structure over τ_H . ($U^{\mathcal{B}}$ is the Herbrand universe)
- We need to create a Herbrand model for Γ
- **Try** "merging" A and B to obtain a Herbrand model M for Γ.
 - ▶ Define M so that its universe is the Herbrand universe over τ_H .
 - ► Let *M* interpret functions and constants like *B* (both have the same Herbrand universe)
 - ▶ How to interpret the relations from τ_H (same as those of τ)?
 - Let M interpret relations like A (not obvious, their universes are not the same.)

Building the Herbrand Model *M*

- ▶ Let *R* be ant *n*-ary relation in τ_H (hence in τ).
- ► For each *n*-tuple $(t_1, ..., t_n)$ with t_i coming from the Herbrand universe $H(\Gamma)$, we must say whether $(t_1, ..., t_n) \in R^M$ or not
- ▶ Each $t_i \in H(\Gamma)$ is a ground term in τ_H (so variable free).
- Since A is a structure over τ_H , if $t \in H(\Gamma)$ is a ground term from τ_H , A interprets t as an element of U^A .
- ► For each *n*-tuple $(t_1, ..., t_n)$, $t_i \in H(\Gamma)$, we know whether $(t_1, ..., t_n) \in R^A$ or not
- ▶ Define $R^M = R^A$.
- ▶ Prove that if $\mathcal{A} \models \varphi$ for any $\varphi \in \Gamma$, then $M \models \varphi$.
- ▶ The proof is by induction on the number of quantifiers in φ . Recall that each φ is in Skolem Normal Form.

Base case : φ has 0 quantifiers

 $A \models \varphi$ iff $M \models \varphi$. Do structural induction on φ .

- Assume φ is an atomic formula. Then φ is $R(t_1, \ldots, t_n)$ where R is an n-ary relation from τ_H , and t_1, \ldots, t_n are all terms from $H(\Gamma)$.
- ▶ By the construction of M, $R^M = R^A$.
- ▶ Hence $M \models \varphi$ iff $A \models \varphi$.
- ▶ Same reasoning holds for $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$ and $\neg \varphi$.
- ▶ Hence, $A \models \varphi$ iff $M \models \varphi$.

Assume that for any $\psi \in \Gamma$ with $\leqslant k-1$ quantifiers, if $\mathcal{A} \models \psi$, then $M \models \psi$. Let $\varphi \in \Gamma$ have k quantifiers, $\varphi = \forall x_1 \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$ where ζ is quantifier free.

▶ Let $\kappa(x_1) = \forall x_2 ... \forall x_k \ \zeta(x_1, ..., x_k)$, and $\varphi = \forall x_1 \kappa(x_1)$.

- ▶ Let $\kappa(x_1) = \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$, and $\varphi = \forall x_1 \kappa(x_1)$.
- $A \models \varphi$ implies $A \models \forall x_1 \kappa(x_1)$. That is, $A \models \kappa(a)$ for any $a \in U^A$.

- ▶ Let $\kappa(x_1) = \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$, and $\varphi = \forall x_1 \kappa(x_1)$.
- $\mathcal{A} \models \varphi$ implies $\mathcal{A} \models \forall x_1 \kappa(x_1)$. That is, $\mathcal{A} \models \kappa(a)$ for any $a \in U^{\mathcal{A}}$.
- ▶ Since A is a structure over τ_H , if $t \in H(\Gamma)$ is a ground term from τ_H , A interprets t as an element of U^A .
- ▶ Thus, $\mathcal{A} \models \kappa(t)$ for any $t \in \mathcal{H}(\Gamma)$.

- ▶ Let $\kappa(x_1) = \forall x_2 \dots \forall x_k \ \zeta(x_1, \dots, x_k)$, and $\varphi = \forall x_1 \kappa(x_1)$.
- $\mathcal{A} \models \varphi$ implies $\mathcal{A} \models \forall x_1 \kappa(x_1)$. That is, $\mathcal{A} \models \kappa(a)$ for any $a \in U^{\mathcal{A}}$.
- ▶ Since A is a structure over τ_H , if $t \in H(\Gamma)$ is a ground term from τ_H , A interprets t as an element of U^A .
- ▶ Thus, $A \models \kappa(t)$ for any $t \in H(\Gamma)$.
- ▶ By induction hypothesis, $M \models \kappa(t)$ for any $t \in H(\Gamma)$.
- ▶ Since $H(\Gamma)$ is the universe of M, $M \models \forall x_1 \kappa(x_1)$. That is, $M \models \varphi$.

 $\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].$

```
\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].
```

- ▶ Herbrand universe over $\tau_H = \{c, f\}$ is $\{c, f(c), f(f(c)), ...\}$ all distinct
- ▶ Then $f(f(c)) \neq c$, and a Herbrand structure cannot satisfy φ

$$\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].$$

- ► Herbrand universe over $\tau_H = \{c, f\}$ is $\{c, f(c), f(f(c)), ...\}$ all distinct
- ▶ Then $f(f(c)) \neq c$, and a Herbrand structure cannot satisfy φ
- ▶ However, φ is satisfiable. Define a structure $\mathcal{A} = (\{0,1\}, f^{\mathcal{A}}(0) = 1, f^{\mathcal{A}}(1) = 0), \mathcal{A} \models \varphi$
- For formulae which have equality, Herbrand's Theorem does not apply directly
- If φ has equality, convert it to an equisatisfiable sentence without equality and apply Herbrand

$$\varphi = \forall x [(f(x) \neq x) \land (f(f(x)) = x)].$$

- ► Herbrand universe over $\tau_H = \{c, f\}$ is $\{c, f(c), f(f(c)), ...\}$ all distinct
- ▶ Then $f(f(c)) \neq c$, and a Herbrand structure cannot satisfy φ
- ► However, φ is satisfiable. Define a structure $\mathcal{A} = (\{0,1\}, f^{\mathcal{A}}(0) = 1, f^{\mathcal{A}}(1) = 0), \mathcal{A} \models \varphi$
- For formulae which have equality, Herbrand's Theorem does not apply directly
- If φ has equality, convert it to an equisatisfiable sentence without equality and apply Herbrand

Let φ be in Skolem normal form with equality. Then φ is satisfiable iff there is an equisatisfiable formula ψ in Skolem normal form without equality which has a Herbrand model.