

Experimental and model-based investigation of twin screw granulation

Ashish Kumar

Kuopio Summer School, 19 October, 2015

LABORATORY OF PHARMACEUTICAL PROCESS ANALYTICAL TECHNOLOGY

FACULTY OF PHARMACEUTICAL SCIENCES

BIOMATH, DEPARTMENT OF MATHEMATICAL MODELLING, STATISTICS AND BIOINFORMATICS

FACULTY OF BIOSCIENCE ENGINEERING

Continuous manufacturing line

twin-screw granulator

Fluid bed dryer

2

At appropriate time-scales and conditions, granulation is in steady state

Two key implications

- 1. Fluxes are roughly constant (Dynamics are transient)
- 2. If feed is constant, product quality is consistent!

Twin-Screw Granulator applies High Shear Wet Granulation

Twin-screw granulation process development

Areas under study:

- Granulation time and mixing.
- Aggregation and breakage rates.

Twin-screw granulation process development

Residence time distribution to know the granulation time and mixing

Parameters under study

Screw Configuration

- Number of kneading discs
- Stagger angle

Process settings

- Material throughput
- Screw speed

Tracer concentration in granules produced was measured using NIR chemical imaging

API Map was used to measure RTD

Conceptual modelling for detailed understanding of RTD

Tank-in-Series model

Conceptual model to include three main components of RTD

b. Tank-In-Series with plug-flow fraction

c. Tank-In-Series with plug-flow and dead volume fractions

Tank-In-Series Tankan Series Tankan Nation and dead volume fractions

Parameters estimated by the model used for system analysis

Parameters estimated by the model used for system analysis

Plug flow component of the RTD

Plug flow fraction decreases with increase in screw speed

Mixed flow component of the RTD

Material throughput controls mixing regime, increase in screw speed increases mixing

Dead-volume component of the RTD

Dead zone increases with screw speed, and reduces with increase in kneading discs and

Summary and Outlook

Along with experimental study, an improved insight can be obtained by model-based analysis.

A balance between conveying rate and throughput force is required for good axial mixing.

Kneading block primarily act as plug-flow zones so it also prevent excessive back mixing in the granulator.

Together with a granule size distribution study it will be confirmed which mixing regime is most desirable.

Aknowledgements

Thomas De Beer Ingmar Nopens Krist V. Gernaey

Maunu Toiviainen Panouillot Pierre-Emmanuel Mikko Juuti

Kris Schoeters

