Xiaoying Li CS-225: Discrete Structures in CS Homework Assignment 5, Part 2 Exercise Set 5.4: Question # 2, 3 Problem provided on Canvas

● Set 5.4 – Q#2

For the given statement, to prove it using strong mathematical induction, let the property P(n) be the sentence " b_n is divisible by 4 for all integers $n \ge 1$ ".

BASIS STEP – show that P(1) and P(2) are true:

P(1) is the sentence " b_1 is divisible by 4". And $b_1 = 4 = 4 \times 1$, thus P(1) is true. P(2) is the sentence " b_2 is divisible by 4". And $b_2 = 12 = 4 \times 3$, thus P(2) is true.

INDUCTIVE STEP – show that for any integer $k \ge 2$, if P(i) is true for all integers i with $1 \le i \le k$, then P(k+1) is true:

Let $k \ge 2$ be any integer, and suppose b_i is divisible by 4 for all integers i with $1 \le i \le k$. [This is the inductive hypothesis.] We must show that b_{k+1} is divisible by 4. We know that $b_{k+1} = b_{k+1-2} + b_{k+1-1} = b_{k-1} + b_k$ by definition of b_1, b_2, b_3, \cdots . Moreover, k-1 < k, and $k-1 \ge 1$, because $k \ge 2$. Thus, by inductive hypothesis, b_{k-1} is divisible by 4. Also, b_k is divisible by 4 because $1 < k \le k$. So $b_{k-1} = 4r, b_k = 4s$ for some integers r and s. By substitution, $b_{k+1} = b_{k-1} + b_k = 4r + 4s = 4(r+s)$. And r+s is an integer because sum of integers is integer. Hence, by definition of divisibility, b_{k+1} is divisible by 4, the property is true for n=k+1.

This shows that if the inductive hypothesis is true, then P(k+1) must also be true, which complete the inductive argument.

We have completed the basis step and the inductive step, so by strong mathematical induction P(n) is true for all integers $n \ge 1$. This shows that the given statement is true.

• Set 5.4 – Q#3

For the given statement, to prove it using strong mathematical induction, let the property P(n) be the sentence " c_n is even for all integers $n \ge 0$ ".

BASIS STEP – show that P(0), P(1) and P(2) are true:

P(0) is the sentence " c_0 is even". P(1) is the sentence " c_1 is even". P(2) is the sentence " c_2 is even". And observe that $c_0 = 2$, $c_1 = 2$, $c_2 = 6$ are all even. Thus P(0), P(1) and P(2) are true.

INDUCTIVE STEP – show that for any integer $k \ge 2$, if P(i) is true for all integers i with $0 \le i \le k$, then P(k+1) is true:

Let $k \geq 2$ be any integer, and suppose c_i is even for all integers i with $0 \leq i \leq k$. [This is the inductive hypothesis.] We must show that c_{k+1} is even. We know that $c_{k+1} = 3c_{k+1-3} = 3c_{k-2}$ by definition of c_0, c_1, c_3, \cdots . Moreover, k-2 < k, and $k-2 \geq 0$, because $k \geq 2$. Thus, by inductive hypothesis, c_{k-2} is even. By definition of even, $c_{k-2} = 2r$ for some integer r. By substitution, $c_{k+1} = 3c_{k-2} = 3 \cdot 2r = 2 \cdot 3r$. And 3r is

an integer because product of integers is integer. Hence, by definition of even, c_{k+1} is even, the property is true for n=k+1.

This shows that if the inductive hypothesis is true, then P(k+1) must also be true, which complete the inductive argument.

We have completed the basis step and the inductive step, so by strong mathematical induction P(n) is true for all integers $n \ge 0$. This shows that the given statement is true.

Problem Provided on Canvas

(a)

BASIS STEP – show that P(8), P(9) and P(10) are true:

P(8) is the statement "a postage of 8 cents can be formed using just 3-cent and 5-cent stamps". And $8 = 3 \times 1 + 5 \times 1$, thus 8 cents can be formed using just 1 3-cent stamp and 1 5-cent stamp. So P(8) is true.

P(9) is the statement "a postage of 9 cents can be formed using just 3-cent and 5-cent stamps". And $9 = 3 \times 3 + 5 \times 0$, thus 9 cents can be formed using just 3 3-cent stamps and 0 5-cent stamp. So P(9) is true.

P(10) is the statement "a postage of 10 cents can be formed using just 3-cent and 5-cent stamps". And $10 = 3 \times 0 + 5 \times 2$, thus 10 cents can be formed using just 0 3-cent stamp and 2 5-cent stamps. So P(10) is true.

(b)

Inductive hypothesis: Let $k \ge 10$ be any integer, and suppose a postage of i cents can be formed using just 3-cent and 5-cent stamps for all integers i with $8 \le i \le k$.

(c)

We must prove that for any integer $k \ge 10$, if P(i) is true for all integers i with $8 \le i \le k$, then P(k+1) is true, that is, we must show that a postage of k+1 cents can be formed using just 3-cent and 5-cent stamps.

(d)

INDUCTIVE STEP – show that for any integer $k \ge 10$, if P(i) is true for all integers i with $8 \le i \le k$, then P(k+1) is true:

Let $k \ge 10$ be any integer, and suppose a postage of i cents can be formed using just 3-cent and 5-cent stamps for all integers i with $8 \le i \le k$. [This is the inductive hypothesis.] We must show that a postage of k+1 cents can be formed using just 3-cent and 5-cent stamps. We know that k+1=(k-2)+3. Moreover, $8 \le k-2 < k$ because $k \ge 10$. Thus, by inductive hypothesis, a postage of k-2 cents can be formed using just 3-cent and 5-cent stamps, which means k-2=3r+5s for some non-negative integers s and r. By substitution, k+1=(k-2)+3=3r+5s+3=3(r+1)+5s. And r+1 is an integer because sum of integers is integer. Hence, a postage of k+1 cents can be formed using just r+1 3-cent and s 5-cent stamps, the statement is true for n=k+1.

This shows that if the inductive hypothesis is true, then P(k+1) must also be true, which complete the inductive argument.

We have completed the basis step and the inductive step, so by strong mathematical induction P(n) is true for all integers $n \ge 8$. This shows that the given statement is true.