Lycée Buffon MPSI

DM 9 Année 2020-2021

Devoir à rendre le 8/02/2021

Exercice 1 : Sous-groupes de $\mathbb R$

L'objectif de cet exercice est de démontrer que si (G,+) est un sous-groupe de $(\mathbb{R},+)$ alors

- soit G est dense (i.e. $\forall (x, y) \in \mathbb{R}^2$, $\exists z \in G : x < z < y$)
- soit G est de la forme $a\mathbb{Z}$ avec a > 0.

Soit (G, +) un sous-groupes de $(\mathbb{R}, +)$ non réduit à 0. On considère

$$G^+ = G \cap \mathbb{R}^{+*}$$

- 1. Montrer que G^+ admet une borne inférieure appartenant à \mathbb{R}^+ notée a.
- 2. Montrer que si a > 0 alors $a \in G$ puis que $G = a\mathbb{Z}$.
- 3. Montrer que si a = 0 alors G est dense.
- 4. Application : soient a et b deux réels non nuls.
 - (a) Montrer que $G_{a,b} = \{an + bm, (n,m) \in \mathbb{Z}^2\}$ est un sous-groupe de $(\mathbb{R}, +)$
 - (b) Prouver que si $G_{a,b}$ n'est pas dense alors a/b est rationnel.
 - (c) Conclure.

Exercice 2 : Fonction de répartition de la loi normale centrée réduite \int_{-x}^{x}

I Calcul de l'intégrale $I = \lim_{x \to +\infty} \int_0^x e^{-t^2} dt$:

On considère pour cela la fonction $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \int_0^1 \frac{e^{-(1+t^2)x}}{1+t^2} \mathrm{d}t$

- 1. Calculez f(0).
- 2. Soit $x \ge 0$. Montrer que $\frac{\pi}{4}e^{-2x} \le f(x) \le \frac{\pi}{4}e^{-x}$.
- 3. En déduire la limite de f en $+\infty$.
- 4. Prouver que $\lim_{x \to -\infty} f(x) = +\infty$.
- 5. Soit $u \in \mathbb{R}$. Montrer que $0 \le e^u 1 u \le \frac{1}{2}e^{|u|}u^2$.

6. Soit $x \in \mathbb{R}$ et $h \in [-1, 1]$. En déduire que

$$\left| f(x+h) - f(x) + h \int_0^1 e^{-(1+t^2)x} dt \right| \le \frac{2h^2}{3} e^{2|1-x|}$$

- 7. En déduire que f est dérivable sur $\mathbb R$ et donner l'expression de f' sous forme d'intégrale.
- 8. Prouver que la fonction $g: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x^2) + \left(\int_0^x e^{-t^2} dt\right)^2$ est dérivable sur \mathbb{R} et déterminer sa dérivée.
- 9. En déduire l'existence et la valeur de I.
- 10. En déduire la valeur de $\lim_{x\to +\infty} \int_0^x e^{-t^2/2} dt$ et $\lim_{x\to +\infty} \int_{-x}^0 e^{-t^2} dt$.

II Étude de la fonction $F: \mathbb{R} \to \mathbb{R}, \ x \mapsto \lim_{A \to +\infty} \frac{1}{\sqrt{2\pi}} \int_{-A}^{x} e^{-t^2/2} dt$:

- 1. Montrer que la fonction $F: \mathbb{R} \to \mathbb{R}, \ x \mapsto \lim_{A \to +\infty} \frac{1}{\sqrt{2\pi}} \int_{-A}^{x} e^{-t^2/2} dt$ est bien définie sur \mathbb{R} .
- 2. Calculer F(0).
- 3. Montrer que F réalise une bijection de \mathbb{R} dans]0,1[. On notera G sa réciproque.
- 4. Soit $x \in \mathbb{R}$. Exprimer F(-x) en fonction de F(x).
- 5. Soit $y \in]0,1[$. Exprimer G(1-y) en fonction de G(y).
- 6. Tracer le graphe de F et G.
- 7. Soit x < 0. Montrer que $\forall u \in]-\infty, x]$, on a $\left(1-\frac{1}{x^2}\right)h'(u) \le e^{-u^2/2} \le h'(u)$ où $h: \mathbb{R}^{-*} \to \mathbb{R}, \ x \mapsto -\frac{1}{x}e^{-x^2/2}$.
- 8. En déduire que, pour tout x < 0, on a

$$-\left(1 - \frac{1}{x^2}\right) \frac{e^{-x^2/2}}{x\sqrt{2\pi}} \le F(x) \le -\frac{e^{-x^2/2}}{x\sqrt{2\pi}}$$

- 9. En déduire un équivalent de F en $-\infty$ puis de 1-F en $+\infty$.
- 10. Trouver un équivalent de $\ln F$ en $-\infty$.
- 11. Donnez un équivalent de G en 0 et en 1.