Assignment-4

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

§1. Problem 3.6

§ **Lemma** – 1

The F and G be forms of degree r and r+1 respectively with no common factors in $k[X_1, \ldots, X_n]$, then F+G is irreducible.

Proof (of Lemma). Suppose F + G is reducible then there exists nonconstant polynomials $P, Q \in k[X_1, \ldots, X_n]$ such that F + G = PQ. Now we consider the homogeneous both of these to get

$$X_{n+1}F + G = (F+G)^* = (PQ)^* = P^*Q^*.$$

But note that $X_{n+1}F + G \in k(X_1, ..., X_n)[X_{n+1}]$ is irreducible, hence one of P^* or Q^* is in $k[X_1, ..., X_n]$. Then by comparing degrees we can WLOG assume that $Q^* \in k[X_1, ..., X_n]$, and let $P = X_{n+1}R + S$, where $R, S \in k[X_1, ..., X_n]$. Then we get that

$$X_{n+1}F + G = X_{n+1}RQ^* + SQ^* \Rightarrow F = RQ^*$$
 and $G = SQ^*$

But this contradicts the fact that F and G have no common factor, hence we get that F+G is irreducible.

Now coming back to the main problem, suppose we are given tangent lines L_i with multiplicities r_i , and we want to find an irreducible curve F such that L_i is a tangent to F with multiplicity r_i . Note that $\prod_i L_i^{r_i}$ is a forms of degree $m = \sum_i r_i$. Then we can find a homogeneous polynomial F_{m+1} of degree m+1 such that F_{m+1} is not divisible by any of the L_i (such a polynomial obvious exists). But then by the previous lemma $\prod_i L_i^{r_i} + F_{m+1}$ is irreducible, and clearly $F = \prod_i L_i^{r_i} + F_{m+1}$ satisfies the necessary conditions.

§2. Problem 3.8

Part (a). We will first prove it for the case when P = Q = (0,0). In this case the polynomial map $T: \mathbb{A}^2 \to \mathbb{A}^2$ must look like (f,g) where f and g are polynomials vanishing at (0,0). In this case we can write $f = f_i + \cdots + f_t$, where $f_i \in k[x,y], i \geq 1$ is homogeneous polynomial of degree i. Similarly, we can write for g (as both of them are vanishing at (0,0)). If $m = m_P(F)$ then $F = F_m + F_{m+1} \cdots$ again F_i are homogeneous polynomial of degree m. Now $F^T = F(f,g)$'s lowest degree will come from $F_m(f,g)$ since both f,g has at-least one degree term we can say, $m_Q(F^T) \geq m_p(F)$.

Now we will use the fact proved in page (33) to prove it for any P, Q. Let, $Q \neq (0,0)$ or $Q = T(P) \neq (0,0)$. Let $T_1 : \mathbb{A}^2 \to \mathbb{A}^2$ be the affine transformation that maps (0,0) to Q

and T_2 be the affine map sends P to (0,0). Note that $T_1 \circ T \circ T_2$ is a polynomial map and it maps (0,0). So by the above calculation we can say,

$$m_P(F) \leq m_{T_1 \circ T \circ T_2(0,0)}(F^{T_1 \circ T \circ T_2})$$

$$= m_{T_1 \circ T(Q)}(F^{T_1 \circ T}) \text{ (By result of page 33)}$$

$$= m_{T(Q)}(F^T) \text{ (By result of page 33)}$$

Part (b). Again we will prove it for P = Q = (0,0). Let T = (f,g) and

$$J_{Q}T = \begin{pmatrix} \frac{\partial f}{\partial X}(Q) & \frac{\partial f}{\partial Y}(Q) \\ \frac{\partial g}{\partial X}(Q) & \frac{\partial g}{\partial Y}(Q) \end{pmatrix}.$$

Assume J_QT is invertible. Since J_QT is invertible, we can't have both $\frac{\partial f}{\partial X}(Q) = 0$ and $\frac{\partial f}{\partial Y}(Q) = 0$ or both $\frac{\partial g}{\partial X}(Q) = 0$ and $\frac{\partial g}{\partial Y}(Q) = 0$. Again by similar computation of part (a) we have, since Q = (0,0), this implies that the decomposition of f and g into homogeneous polynomials are $f = f_1 + \cdots + f_m$ and $g = g_1 + \cdots + g_n$. Thus,

$$F^T = F(f,g) = F_m(f,g) + F_{m+1}(f,g) + \dots$$

Since the lowest degree forms of f and g are of degree 1, we have that T does not decrease the degree of the form $F_m(f,g)$. Similarly, T does not decrease the degree of $F_{m+1}(f,g), \cdots$. Therefore we have that $m_{(0,0)}(F^T) = m_{(0,0)}(F)$. Now assume that either $Q = (a_1,b_1) \neq (0,0)$ or $P = (a_2,b_2) \neq (0,0)$. Assume that J_QT is invertible. Let T_1 be the translation that takes (0,0) to Q and T_2 be the translation that takes P to (0,0). Then we have

$$d(T_1 \circ T \circ T_2) = d(T_1) \circ d(T) \circ d(T_2)$$

is also invertible. By the previous case $m_P(F) = m_{(0,0)}(F^{T_1 \circ T \circ T_2})$ and the similar computation of multiplicities we can say $m_P(F^T) = m_Q(F)$. And hence our proof is complete.

Part (c). If $F = Y - X^2$ and $T = (X^2, Y)$, P = Q = (0, 0) we can see $m_P(F^T) = m_P(Y - X^4) = m_Q(F) = m_Q(Y - X^2)$. But the jacobian of T is not invertible at (0, 0), as it is given by the matrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

§3. Problem 3.13

WLOG assume P = (0,0), then we know that

$$\dim_k \left(\mathscr{O}/\mathfrak{m}^n \right) = \dim_k \left(k[X,Y]/(F,I^n) \right)$$

where $I = (X, Y) \subseteq k[X, Y]$. Now as multiplicity of F is $m_p(F)$, we have $F \in I^{m_P(F)}$ and hence we get that for $n \leq m_p(F)$, $F \in I^n$, thus $(F, I^n) = I^n$. But then we get that

$$\dim_k \left(k[X,Y]/(F,I^n) \right) = \dim_k \left(k[X,Y]/I^n \right) = \binom{n+1}{2}$$

Now from the exact sequence

$$0 \to \mathfrak{m}^n/\mathfrak{m}^{n+1} \to \mathscr{O}/\mathfrak{m}^{n+1} \to \mathscr{O}/\mathfrak{m}^n \to 0$$

we get that for $n \leq m_p(F)$.

$$\dim_k \left(\mathfrak{m}^n / \mathfrak{m}^{n+1} \right) = \dim_k \left(\mathscr{O} / \mathfrak{m}^{n+1} \right) - \dim_k \left(\mathscr{O} / \mathfrak{m}^n \right)$$
$$= \binom{n+2}{2} - \binom{n+1}{2}$$
$$= n+1$$

In the proof of **Theorem 2**, page 35 (Algebraic Curves, Fulton), we have already seen that

$$\dim_k (k[X,Y]/(F,I^n)) = nm - \frac{m(m-1)}{2},$$

where $m = m_P(F)$, hence we get that

$$\dim_k \left(\mathfrak{m}^n / \mathfrak{m}^{n+1} \right) = m$$

if $n \geq m_p(F)$. Now suppose P is not a simple point, then $m_P(F) \geq 2$, and hence $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 2$. Hence $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$ implies P is a simple point. Now if P is a simple point then $m_P(F) = 1$, and hence we get that $\dim_k \mathfrak{m}/\mathfrak{m}^2 = m - \frac{m(m-1)}{2} = 1$, since m = 1. Thus we have shown that P is simple if and only if $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$, and otherwise we have $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 2$.

§4. Problem 3.15

Part (a). With out loss of generality let, P = (0,0) and the corresponding maximal ideal in k[x,y] is $\mathfrak{m}_p = (x,y)$ and extension it's image in $\mathscr{O}_p(\mathbb{A}^2)$ is $\mathfrak{m}_p(\mathbb{A}^2)$. Now we know,

$$k[x,y]/\mathfrak{m}_p^n \simeq k[x,y]_{\mathfrak{m}_p}/\mathfrak{m}_p^n k[x,y]_{\mathfrak{m}_p} \simeq \mathscr{O}_p/\mathfrak{m}_p(\mathbb{A}^2)^n$$

(it follows from the fact, residue field/ localization commutes with quotienting). Enough to calculate $\dim_k k[x,y]/\mathfrak{m}_p^n$. Now, $\mathfrak{m}_p^n=(x^n,x^{n-1}y,x^{n-2}y^2,\cdots,y^n)$. The basis of $k[x,y]/\mathfrak{m}_p^n$ must be the standard i forms, with i< n. For each i there are such i+1 forms. And hence,

$$\chi(n) = \dim_k \mathscr{O}_p/\mathfrak{m}_p(\mathbb{A}^2)^n = \dim_k k[x,y]/\mathfrak{m}_p^n = \frac{n(n+1)}{2}$$

Part (b). Let, $\mathscr{O} = \mathscr{O}_p(\mathbb{A}^r)$ and $\mathfrak{m} = \mathfrak{m}_p(\mathbb{A}^r)$. Again let, $P = (0, \dots, 0)$ and $\mathfrak{m}_p = (x_1, \dots, x_r)$. Just by the similar past as above it is enough to calculate $\dim_k k[x_1, \dots, x_r]/\mathfrak{m}_p^n$. Now, \mathfrak{m}_p is generated by all standard forms of degree n. Thus,the basis of $k[x_1, \dots, x_2]/\mathfrak{m}_p^n$ must be the standard i forms, with i < n. Thus the basis set can be written as,

$$\mathcal{B} = \left\{ x_1^{i_1} \cdots x_r^{i_r} : i_1 + \dots + i_r \le n - 1 \right\}$$

Now cardinality of the set is,

$$|\mathcal{B}| = \left| \left\{ x_1^{i_1} \cdots x_r^{i_r} : i_1 + \dots + i_r \le n - 1 \right\} \right|$$

$$= \left| \left\{ 1^{i_0} x_1^{i_1} \cdots x_r^{i_r} : i_0 + i_1 + \dots + i_r = n - 1 \right\} \right|$$

$$= \binom{n+r-1}{r}$$

So we must have,

$$\chi(n) = \dim_k \mathscr{O}/\mathfrak{m}^n = \dim_k k[x_1, \cdots, x_r]/\mathfrak{m}_p^n = \binom{n+r-1}{r} = \frac{n(n+1)\cdots(n+r-1)}{r!}$$

Thus the leading coefficient is 1/r!.

§5. Problem 3.16

In this problem we will try to trace the path of 'Theorem 2' in 'page 35'. Let, $\mathcal{O} = \mathcal{O}_P(V(F))$ and $P = (0, 0, \cdots)$ and $\mathfrak{m} = \mathfrak{m}_p(V(F))$. Consider the maximal ideal $\mathfrak{m}_p = (x_1, \cdots, x_r)$ corresponding to the point P. Let, $R = k[x_1, \cdots, x_r]$. Let, $m_P(F) = m$ (multiplicity of P w.r.t F). Then we have the follows SES(short exact sequence)

$$0 \longrightarrow R/\mathfrak{m}_p^{n-m} \stackrel{i}{\longrightarrow} R/\mathfrak{m}_p^n \stackrel{\pi}{\longrightarrow} R/(F,\mathfrak{m}_p^n) \longrightarrow 0$$

where i is the map $i(\bar{G}) = \overline{FG}$ and π the natural projection map. It's an exact sequence. Thus by the previous problem we have,

$$\dim_k R/(F,\mathfrak{m}_p^n) = \dim_k R/\mathfrak{m}_p^n - \dim_k R/\mathfrak{m}_p^{n-m} = \binom{n+r-1}{r} - \binom{n+r-m-1}{r}$$

If we expand the above binomal coefficients it's not hard to see the above is polynomial over n, which has degree r-1 and leading coefficient is m/r!. Now from a rsult stated in class * it follows,

$$R/(\mathfrak{m}_p^n, F) \simeq \mathscr{O}/\mathfrak{m}^n$$

Thus $\chi(n) = \dim_k \mathscr{O}/\mathfrak{m}^n$ is a polynomial of n of degree (r-1) and leading coefficient is m/r! as desired.

§6. Problem 3.19

From the definition of intersection number we can say, $I(P, F \cap G) \ge m_P(F)m_P(G)$ and the equality occurs if and only if F and G don't have common tangent at the point P. If L is a tangent line to F we can say, $m_p(L) = 1$ and hence, $I(P, F \cap L) > m_p(F)$. Conversely, if L is a line that intersects F with $I(P, F \cap L) > m_p(F).m_P(L) = m_p(F)$, we can say L and F have tangent line in common at P and hence L has to be tangent to F at P.

§7. Problem 3.23

§8. 3.24

§Exercises in chapter 2 needed for proving theorems in chapter 3

- **2.22** We know given a map $f: V \to W$ between affine varieties, it extends to a ring homomorphism $f^*: \mathscr{O}_{f(P)}(W) \to \mathscr{O}_{P}(V)$. Now if we have an affine transformation $T: \mathbb{A}^n \to \mathbb{A}^n$ it will have inverse affine map T^{-1} . By the functoriality of pullback we can say they will induce T^* and T^{-1^*} in the corresponding local ring of regular functions. We can also note $T^* \circ T^{-1^*}$ and $T^{-1^*} \circ T^*$ is identity and hence T^* is isomorphism. Thus $T^*: \mathscr{O}_{T(P)}(\mathbb{A}^n) \to \mathscr{O}_n(\mathbb{A}^n)$ is an isomorphism. If we restrict T to $V \subset \mathbb{A}^k$ on that case T will map V to an isomorphic (as subvariety) copy $V^T \subset \mathbb{A}^n$. Again by the same computuation we can say, $\mathscr{O}_P(V) \simeq \mathscr{O}_{T(P)}(V^T)$ are isomorphic.
- **2.34** In this case if F + G was reducible then we could write F + G = fg. Now if we homogenize the polynomial we will get,

$$(F+G)^* = x_{n+1}F + G = f^*g^*$$

here treat $(F+G)^*$ as linear a polynomial over the ring $k[x_1, \dots, x_n]$, which is UFD and hence by Gauss lemma $k[x_1, \dots, x_n][x_{n+1}]$ is also UFD. But it can't have any non-constant factor over $k[x_1, \dots, x_n][x_{n+1}]$. So, F+G is irreducible.

- 2.35(c),2.36 is done in the computation step of 3.15 part (b). So not doing it again.
- **2.44*** (* marked in previous section) At first we will define a map $\psi : \mathscr{O}_P(\mathbb{A}^n) \to \mathscr{O}_P(V)/J'\mathscr{O}_P(V)$. Firtly, we have the map $\mathscr{O}_P(\mathbb{A}^n) \to \mathscr{O}_P(V)$, which takes f/g (such that $g(P) \neq 0$) to \bar{f}/\bar{g} where \bar{f}, \bar{g} are f, g modulo I = I(V). It's not hard to see $g \notin I$ so $\bar{g}(P) \neq 0$. Thus the map is well defined. J is an ideal containing I and J' is the image in local ring, then there is a natural projection map $\mathscr{O}_P(V)/J'\mathscr{O}_p(V)$. Compositioon of this two map will be ψ .

Now it's not hard to see ψ is a surjective homomorphism. We will compute the kernal of it ker ψ . Let, $f/g \in \mathscr{O}_p(\mathbb{A}^n)$ such that $\bar{f}/\bar{g} \in J'\mathscr{O}_p(V)$. We can write

$$\bar{f}/\bar{g} = \sum \frac{j_i}{g_i'}$$

where $j_i \in J'$ and g_i' are polynomial corresponding g_i (that don't vanish at P), i.e $g_i' = g_i$ (mod I). So, $\bar{f} \times (\prod g_i') \in J'\mathcal{O}_p(V)$. Thus we can say, $f \times (\prod g_i) \in J\mathcal{O}_p(\mathbb{A}^n)$. Since g_i are invertible we can say $f \in J\mathcal{O}_p(\mathbb{A}^n)$. So, $\ker \psi \subseteq J\mathcal{O}_p(\mathbb{A}^n)$. It's not hard to see $J\mathcal{O}_p(\mathbb{A}^n) \subseteq \ker \psi$ thus we get, $\ker \psi = J\mathcal{O}_p(\mathbb{A}^n)$. And thus we have a natural isomorphism

$$\bar{\psi}: \mathscr{O}_p(\mathbb{A}^n)/J\mathscr{O}_p(\mathbb{A}^n) \to \mathscr{O}_p(V)/J'\mathscr{O}_p(V)$$

If J = I then the right side is just $\mathscr{O}_p(V)$ and thus $\mathscr{O}_p(V) \simeq \mathscr{O}_p(\mathbb{A}^n)/I\mathscr{O}_p(\mathbb{A}^n)$.