

Departamento de Matemáticas 1º Bachillerato

4 - Polinomios

1. p
012e03 - Dados los polinomios $A(x) = 2x^3 - 5x^2 + 6$, $B(x) = -\frac{1}{2}x^5 - x^4 + 6x$ halla:

(a)
$$A(x) + B(x)$$

Sol:
$$-\frac{x^5}{2} - x^4 + 2x^3 - 5x^2 + 6x + 6$$

(b)
$$A(x) - B(x)$$

Sol:
$$\frac{x^5}{2} + x^4 + 2x^3 - 5x^2 - 6x + 6$$

2. p012e04 - Dados los polinomios $A(x) = 3x^3 - 6x^2 + 2x - 1$, $B(x) = -x^4 + x^3 + x - 6$, $C(x) = x^4 - x^2 + x + \frac{1}{2}$ halla:

(a)
$$A(x) \cdot B(x)$$

Sol:
$$-3x^7 + 9x^6 - 8x^5 + 6x^4 - 25x^3 + 38x^2 - 13x + 6$$

(b)
$$A(x) - 3B(x) + 5C(x)$$
 (c) $x^2 \cdot A(x) + 3x \cdot B(x)$

Sol:
$$8x^4 - 11x^2 + 4x +$$

Sol:
$$-3x^4 + 2x^3 + 2x^2 - 18x$$

3. p012e07 - Halla el cociente y el resto de:

(a)
$$(5x^4 - 7x^2 + 6x + 1) : (3x^2)$$

Sol:
$$\left(\frac{5x^2}{3} - \frac{7}{3}, 6x + 1\right)$$

(b)
$$(7x^4 - 3x^2 + 6x - 1) : (x^2 - x + 3)$$

Sol:
$$(7x^2 + 7x - 17, -32x + 50)$$

(c)
$$(x^6-5):(x^2-x)$$

Sol:
$$(x^4 + x^3 + x^2 + x + 1, x - 5)$$

(d)
$$(8x^6 - 5x^4 + 6) : (2x^2 - 1)$$

Sol:
$$\left(4x^4 - \frac{x^2}{2} - \frac{1}{4}, \frac{23}{4}\right)$$

(e)
$$(3x^5 - 6x^2 + 9) : (x^2 + 1)$$

Sol:
$$(3x^3 - 3x - 6, 3x + 15)$$

(f)
$$(x^9 - 7x + 1) : (x^3 + x)$$

Sol:
$$(x^6 - x^4 + x^2 - 1, -6x + 1)$$

4. p012e08 - Dados $A(x) = -x^3 + 2x^2 + 5$, $B(x) = 2x^4 + 3x + 6$ halla el valor numérico de ambos polinomios en:

5. p012e09 - Halla, para cada uno de los siguientes polinomios, sus raíces:

6. p
012e10 - ¿Tiene el polinomio $A(x) = x^4 + 3$ alguna raíz real?

(a)
$$x^4 + 3$$

$$\mathbf{Sol:} \left\{ -\frac{\sqrt{2}\sqrt[4]{3}}{2} - \frac{\sqrt{2}\sqrt[4]{3}i}{2}, -\frac{\sqrt{2}\sqrt[4]{3}i}{2} + \frac{\sqrt{2}\sqrt[4]{3}i}{2}, \frac{\sqrt{2}\sqrt[4]{3}i}{2} - \frac{\sqrt{2}\sqrt[4]{3}i}{2}, \frac{\sqrt{2}\sqrt[4]{3}i}{2} + \frac{\sqrt{2}\sqrt[4]{3}i}{2} \right\}$$

7. p013e11 - Aplica la regla de Ruffini para hallar el cociente y el resto de las siguientes divisiones:

(a)
$$(x^2 - 3x + 6) : (x + 2)$$

Sol: $(x - 5, 16)$

(b) $(2x^6 - 7x^4 + 6x - 9) : (x + 3)$

Sol:
$$(2x^5 - 6x^4 + 11x^3 - 33x^2 + 99x - 291, 864)$$

(c)
$$(7x^3 - 4x - 3) : (x - 1)$$

Sol: $(7x^2 + 7x + 3, 0)$

(d)
$$(x^2 - 1) : (x + 1)$$
 Sol: $(x - 1, 0)$

8. p013e12 - Aplica el teorema del resto para calcular el resto de las siguientes divisiones:

(a)
$$(7x^3 - 4x + 9) : (x+1)$$

Sol: 0

Sol: 0

(b)
$$(7x^3 - 4x - 3) : (x - 1)$$

- (c) $(x^2-1):(x+1)$
- 9. p013e17-18 Descomponer en factores
 - (a) $x^2 81$

Sol:
$$(x-9)(x+9)$$

(b) $x^2 - 2$

Sol:
$$(x - \sqrt{2})(x + \sqrt{2})$$

(c) $4x^2 - 9$

Sol:
$$4\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)$$

(d) $x^3 - x$

Sol:
$$x(x-1)(x+1)$$

(e) $x^2 - 3x$

Sol:
$$x(x-3)$$

(f) $x^2 - 2x + 1$

Sol:
$$(x-1)^2$$

(g) $x^5 - 3x^4 + 2x^3$

Sol:
$$x^3(x-2)(x-1)$$

(h) $x^2 - x - 30$

Sol:
$$(x-6)(x+5)$$

(i) $x^2 + 2x + 1$

Sol:
$$(x+1)^2$$

(j) $x^3 - x^2 - x + 1$

Sol:
$$(x-1)^2(x+1)$$

(k) $x^3 - 2x^2 - 5x + 6$

Sol:
$$(x-3)(x-1)(x+2)$$

(1) $x^5 + 4x^4 + x^3 - 10x^2 - 4x + 8$

Sol:
$$(x-1)^2(x+2)^3$$

(m) $x^3 + 3x^2 - 2x - 6$

Sol:
$$(x+3)(x-\sqrt{2})(x+\sqrt{2})$$

(n) $x^3 - 3x^2 - 13x + 15$

Sol:
$$(x-5)(x-1)(x+3)$$

 (\tilde{n}) $x^3 + x^2 - 6x$

Sol:
$$x(x-2)(x+3)$$

(o) $3x^3 + x^2 - 12x - 4$

Sol:
$$3(x-2)(x+\frac{1}{3})(x+2)$$

(p) $x^4 + 2x^3 - x^2 - 2x$

Sol:
$$x(x-1)(x+1)(x+2)$$

(q) $x^4 - 2x^3 + 2x^2 - 2x + 1$

Sol:
$$(x-1)^2 (x^2+1)$$

(r)
$$x^4 + 2x^3 - 3x^2 - 4x + 4$$

Sol:
$$(x-1)^2 (x+2)^2$$

Sol:
$$(x-1)(x+2)(x+3)$$

(s) $x^3 + 4x^2 + x - 6$

(t)
$$x^5 - 4x^3 - x^2 + 4$$

Sol:
$$(x-2)(x-1)(x+2)(x^2+x+1)$$

Página 5 of 5

10. p
013e21 - Halla el valor numérico del polinomio $x^4 - 2x^3 - x^2 + 3$, para los valores:

(a) x = 0

Sol: 1

Sol: -1

Sol: 3

(c) x = 2

(d) $x = \frac{2}{3}$

(b) x = 1

Sol: $\frac{175}{81}$