lec8

Creation Date: 10/01/2020 15:34 Last modified date: 10/01/2020 18:28

Lec 8 : Deep Learning Softwares

• CPU vs GPU

Today

- CPU vs GPU
- Deep Learning Frameworks
 - Caffe / Caffe2
 - Theano / TensorFlow
 - Torch / PyTorch

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 8 4 4 University 2017

CPU vs GPU

	# Cores	Clock Speed	Memory	Price	CPU: Fewer cores,
				4000	but each core is

С

- GPU cores cant run independently whereas CPU cores can.
- Because of the large number of cores in GPU, they are prefered for parallel tasks.
- CPU have cache, but they are relatively small in size.

Example: Matrix Multiplication

AxB

BxC

_

- Each dot product in the product matrix is independent of other entries.
- Since CPUs run instructions sequentially, matrix multiplication will be slower compared to the calculation done by GPUs.
- Even Convolution operation can be parallelized on GPUs

Programming GPUs

- CUDA (NVIDIA only)
 - Mrite C-like code that runs directly on the GPLL

CPU vs GPU in practice well-optimized, a little unfair)

(CPU performance not

• Note: USE cuDNN module, because it's almost 3x faster than 'unoptimized' CUDA.

CPU / GPU Communication

• Deep Learning Frameworks

0

Recall: Computational Graphs

- The point of deep learning frameworks:
 - Easily build big computational graphs
 - Easily compute gradients in computational graphs
 - Run it all efficiently on GPU (wrap around cuDNN, cuBLAS, etc)

Computational Graphs

Numpy

С

Computational Graphs

TensorFlow

Basic computational graph import numpy as np

Ŭ

- The tf.gradients function call will compute the gradients at each node.
- We can change between CPU and GPU by tf.device call.

Computational Graphs

PyTorch 4 8 1

import torch

0

- the Variable function creates a node in PyTorch
- the backward() function compute the gradients.
- We can use .cuda() or .cpu() to switch between gpu and cpu.

TensorFlow:

```
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
```

- tf.placeholders are just locations, no memory is allocated.
- until we create a session and run(), we are just creating the computational graph, there is no data in the system.
- We create the data and assign it to 'values'.
- o in session.run() we pass the list of parameters whose value we want to compute.

TensorFlow: Distributed Version

0

0

Side Note: Theano

import theano
import theano.tensor as T

Batch size input dim hidden dim num classes

PyTorch: Three Levels of Abstraction

TensorFlow equivalent

0

• the difference between numpy array and a tensor is that the tensor runs on a GPU.

PyTorch: Autograd

import torch
from torch.autograd import Variable

PyTorch: Autograd

import torch
from torch.autograd import Variable

0

 $\circ~$ In PyTorch we create the graph everytime we do the forward pass.

PyTorch: New Autograd Functions

alass Dolli/torch sutograd Function).

PyTorch: New Autograd Functions

class ReLU(torch.autograd.Function):

0

PyTorch: nn

```
import torch
from torch.autograd import Variable

class TwoLayerNet(torch.nn.Module):
    def    init (self. D in. H. D out):
```

PyTorch: nn

```
import torch
from torch.autograd import Variable

class TwoLayerNet(torch.nn.Module):
    def    init (self, D in. H. D out):
```

o

PyTorch: DataLoaders

import torch
from torch.autograd import Variable

Aside: Torch

```
require 'torch'
require 'nn'
require 'optim'

local N, D, H, C = 64, 256, 512, 10

local model = nn.Sequential()
model:add(nn.binear(D, H))
```

o

0

Static vs Dynamic Graphs

TensorFlow: Build graph once, then

PvTorch: Fach forward pass defines

Static vs Dynamic: Optimization

Static vs Dynamic: Serialization

Static Dynamic

Static vs <u>Dynamic</u>: Conditional

TensorFlow: Special TF

Static vs <u>Dynamic</u>: Loops

 $v_{i} = (v_{i} \cdot i + x_{i}) * w$

Dynamic Graphs in TensorFlow

TensorFlow Fold make dynamic

0

Dynamic Graph Applications

- Recurrent networks

C

Dynamic Graph Applications

- Recurrent networks

0

Dynamic Graph Applications

- Recurrent networks

Dynamic Graph Applications

0

Caffe Overview

- Core written in C++
- Has Puthon and MATI AR hindings

Caffe step 1: Convert Data

■ Datal over reading from LMDR is the easiest

Caffe step 2: Define Network (prototxt)

_

Caffe step 2: Define Network (prototxt)

6747 layer { bottom: "res5c"

Caffe step 3: Define Solver (prototxt) Disable

Caffe Pros / Cons

• (+) Good for feedforward networks

Caffe2 Overview

• Very new - released a week ago =)

Google: TensorFlow

Facebook: PvTorch +Caffe2

0

My Advice:

Subtitle track: Disable

Tancar Elaw is a cofe hat for most projects. Not perfect but has