

Matemática

Folha 14 - Derivadas de funções reais de variável real

1. Derivada de uma função num ponto

Quando existe, define-se derivada da função f no ponto de abcissa x_0 como

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 ou
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 para $h = x - x_0$. Muitas vezes por simplificação de linguagem diz-se derivada da função f no ponto x_0 em vez de

derivada de f no ponto de abcissa x_0 .

Exemplo 1 Calculemos, a partir da definição, a derivada da função definida por $f(x) = x^3 - x$ no ponto de abcissa $x_0 = 1$. Temos

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^3 - x - 0}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} x(x + 1) = 2.$$

Exemplo 2 Calculemos f'(0), sendo $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \sqrt[3]{x}$.

Temos

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x} - 0}{x} = \lim_{x \to 0} \sqrt[3]{\frac{1}{x^2}} = +\infty.$$

Se
$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=+\infty \qquad \text{ou} \qquad \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=-\infty,$$

dizemos que f tem derivada infinita no ponto x_0 e que é, respetivamente, $+\infty$ ou $-\infty$.

Se uma função tem derivada finita num ponto dizemos que é diferenciável ou derivável nesse ponto.

2. Interpretação geométrica do conceito de derivada

O declive da reta secante ao gráfico de f nos pontos de abcissas x_{0} e $x_{0}+h$ é dado por $\frac{f(x_0+h)-f(x_0)}{h}$. À medida que h tende para zero, a reta secante tende para uma posição limite que é exatamente a reta tangente à curva no ponto de abcissa x_0 . O declive m da tangente é o limite dos declives das secantes quando h tende para zero, ou seja,

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0).$$

Logo, geometricamente, a derivada de uma função num ponto de abcissa x_0 é igual ao declive da reta tangente ao gráfico da função nesse ponto. Temos, então, que a equação da reta tangente ao gráfico da função f no ponto $(x_0, f(x_0))$ é dada por

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Exemplo 3 Vamos calcular, a partir da definição, a derivada da função $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2 + 2x + 1$ no ponto P = (-3, 4) e escrever a equação da reta tangente ao gráfico de f no ponto P.

Temos m = f'(-3) = -4 porque

$$\lim_{x \to -3} \frac{f(x) - f(-3)}{x - (-3)} = \lim_{x \to -3} \frac{x^2 + 2x + 1 - 4}{x + 3} = \lim_{x \to -3} \frac{(x - 1)(x + 3)}{x + 3} = \lim_{x \to -3} (x - 1) = -4.$$

Então, uma equação da reta tangente será

$$y - 4 = -4(x - (-3)) \iff y = -4x - 8.$$

3. Derivadas laterais

Diz-se que

- f é diferenciável à esquerda de x_0 se existe $\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$ ou $\lim_{h\to 0^-} \frac{f(x_0+h)-f(x_0)}{h}$, a que se chama derivada lateral à esquerda de x_0 e se representa por $f'(x_0^-)$;
- f é diferenciável à direita de x_0 se existe $\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$ ou $\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h}$, a que se chama derivada lateral à direita de x_0 e se representa por $f'(x_0^+)$.

Conclui-se que existe a derivada da função f num ponto x_0 se e só se existirem e forem iguais as derivadas laterais no ponto x_0 . Nesse caso, $f'(x_0)$ é igual ao valor comum das derivadas laterais:

$$f'(x_0^-) = a$$
 e $f'(x_0^+) = a$ se e só se $f'(x_0) = a$, sendo a finito ou infinito.

Se as derivadas laterais no ponto x_0 existirem e forem diferentes, então não existe $f'(x_0)$.

A função representada graficamente na figura não é diferenciável em x_0 e x_1 . No ponto de abcissa x_0 a curva descrita não tem uma reta tangente mas duas semitangentes, a semirreta t_1 e a semirreta t_2 . Estas semirretas não estão no prolongamento uma da outra. O declive da semirreta t_1 é igual à derivada de f à direita de x_0 e o declive da semirreta t_2 é igual à derivada de f à direita de x_0 .

Exemplo 4 Vamos averiguar se existe q'(2), sendo q a função definida em \mathbb{R} por

$$g(x) = \begin{cases} x^2 - 2 & \text{se } x \le 2\\ 3x - 4 & \text{se } x > 2. \end{cases}$$

$$g'(2^+) = \lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^+} \frac{3x - 4 - 2}{x - 2} = \lim_{x \to 2^+} \frac{3x - 6}{x - 2} = \lim_{x \to 2^+} \frac{3(x - 2)}{x - 2} = \lim_{x \to 2^+} 3 = 3$$

$$g'(2^{-}) = \lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{x^{2} - 2 - 2}{x - 2} = \lim_{x \to 2^{-}} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2^{-}} (x + 2) = 4.$$

Como as derivadas laterais são diferentes, conclui-se que não existe derivada de g no ponto de abcissa 2.

Mas a existência de derivada de uma função num ponto pode depender apenas da existência de uma das derivadas laterais.

Exemplo 5 Seja f a função de domínio \mathbb{R}^+_0 , definida por

$$f(x) = \sqrt{x}.$$

Vamos averiguar se existe f'(0).

Como a função não está definida à esquerda de zero, não faz sentido falar em derivada à esquerda e então

$$f'(0) = f'(0^+) = \lim_{x \to 0^+} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{x \to 0^+} \frac{\sqrt{x}}{x} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty.$$

4. Função derivada e regras de derivação

A função derivada ou simplesmente derivada de uma função f é uma outra função, representada por f', cujo domínio é o conjunto de todos os pontos em que f tem derivada finita e que a cada ponto do seu domínio faz corresponder a derivada da função nesse ponto.

Exemplo 6 Consideremos a função definida em \mathbb{R} por $g(x) = x^2$.

Calculemos $g'(x_0)$, sendo x_0 um número real qualquer.

Temos, então, para $x_0 \in \mathbb{R}$,

$$g'(x_0) = \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0.$$

Podemos agora caracterizar a função g', função derivada de g.

$$g': \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \mapsto g'(x) = 2x.$

• Derivada de uma função afim

Consideremos a função real de variável real definida por f(x) = ax + b, $a, b \in \mathbb{R}$, a que chamamos função afim. Prova-se que a derivada desta função é a função constante igual a a.

$$(ax+b)'=a, \qquad \forall x \in \mathbb{R}.$$

Se a=0,

$$f(x) = b$$
 (constante) e $f'(x) = 0$, $\forall x \in \mathbb{R}$.

Se a = 0 e b = 1,

$$f(x) = x$$
 e $f'(x) = 1$, $\forall x \in \mathbb{R}$.

Ou seja, a derivada da função constante é igual a zero e a derivada da função identidade é igual a 1.

Exemplo 7 Determinemos a função derivada de cada uma das funções definidas por

$$r(x) = 3x + 5,$$
 $s(x) = 3 - \frac{1}{3}x$ e $t(x) = -5.$

Temos r'(x) = 3, $s'(x) = -\frac{1}{3}$ e t'(x) = 0.

• Derivada de uma soma

Se as funções f e g são deriváveis num ponto x_0 (têm derivada finita), então f+g é derivável em x_0 e (como se pode demonstrar) $(f+g)'(x_0) = f'(x_0) + g'(x_0)$.

Então, se f e g são deriváveis em a, b, f + g é derivável em a, b e

$$f'(x) = f'(x) + g'(x), \quad \forall x \in]a, b[.]$$

De um modo geral, dado um número n finito de funções deriváveis em $]a, b[, f_1, f_2, \dots, f_n, a$ derivada da soma das funções é igual à soma das derivadas de cada uma das funções em]a, b[.

Exemplo 8 Obtenha a derivada de g(x) = (1+x) + (3x+1).

$$g'(x) = (1+x)' + (3x+1)' = 1+3=4.$$

• Derivada de um produto

Se as funções f e g são deriváveis num ponto x_0 , então $f \cdot g$ é derivável em x_0 e (como se pode demonstrar) $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + g'(x_0) \cdot f(x_0)$.

Sendo assim, se f e g são funções deriváveis num intervalo]a,b[, $f\cdot g$ é também derivável em]a,b[e

$$f'(x) = f'(x) \cdot g(x) + g'(x) \cdot f(x), \quad \forall x \in]a, b[.$$

Se considerarmos uma das funções constantes, digamos g(x)=c (constante), obtemos o produto de uma função f por uma constante e resulta $(c \cdot f)'(x)=c \cdot f'(x), \quad \forall x \in]a,b[$, uma vez que g'(x)=0.

De um modo geral, dado um número finito n de funções deriváveis em $]a,b[,f_1,f_2,\ldots,f_n,$ a derivada do produto das funções é igual à soma dos n produtos que se obtêm mutiplicando a derivada de cada uma das funções pelas restantes.

Exemplo 9 Obtenha a derivada de $r(x) = (x-1) \cdot (x-3)$.

$$r'(x) = (x-1)' \cdot (x-3) + (x-1) \cdot (x-3)' = 1 \cdot (x-3) + (x-1) \cdot 1 = 2x - 4.$$

• Derivada de uma potência de expoente natural

Se $n \in \mathbb{N} \setminus \{1\}$ e f é uma função derivável em a, b, então f^n é derivável em a, b e

$$f(f^n)'(x) = nf^{n-1}(x)f'(x), \quad \forall x \in]a, b[.]$$

Com efeito, trata-se do caso particular da derivada do produto de n vezes a função f.

4

Podemos provar que este resultado se estende ao caso em que $n \in \mathbb{R}$.

Exemplo 10 A derivada da função definida em \mathbb{R} por $f(x) = (2x+1)^5$ é $f'(x) = 5 \cdot (2x+1)^4 \cdot (2x+1)' = 10 \cdot (2x+1)^4$.

Exemplo 11
$$(\sqrt{x-3})' = \frac{1}{2}(x-3)^{\frac{1}{2}-1}(x-3)' = \frac{1}{2\sqrt{x-3}}$$

Exemplo 12
$$\left(\sqrt[3]{x^2+1}\right)' = \frac{1}{3}(x^2+1)^{\frac{1}{3}-1}(x^2+1)' = \frac{(x^2+1)'}{3\sqrt[3]{(x^2+1)^2}} = \frac{2x}{3\sqrt[3]{(x^2+1)^2}}.$$

• Derivada de um quociente

Se as funções f e g são deriváveis num ponto x_0 e se $g(x_0) \neq 0$, então $\frac{f}{g}$ é derivável em x_0 e $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - g'(x_0) \cdot f(x_0)}{[g(x_0)]^2}.$

Então, se f e g são deriváveis em]a,b[e se $g(x)\neq 0$, $\forall x\in]a,b[$, $\frac{f}{g}$ é derivável em]a,b[e

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}, \quad \forall x \in]a, b[.$$

Exemplo 13

$$\left(\frac{x^2+3}{x^2+1}\right)' = \frac{(x^2+3)' \cdot (x^2+1) - (x^2+1)' \cdot (x^2+3)}{(x^2+1)^2} = \frac{2x \cdot (x^2+1) - 2x \cdot (x^2+3)}{(x^2+1)^2} = \frac{-4x}{(x^2+1)^2}$$

5. Derivadas sucessivas

Se determinarmos a função derivada da função f', obtemos a derivada da derivada de f, ou seja, a segunda derivada de f. Representa-se por f''. Do mesmo modo se define derivada de ordem n que se representa por $f^{(n)}$. Trata-se da n-ésima derivada de f que se determina derivado a função $f^{(n-1)}$.

Exemplo 14 As quatro primeiras derivadas da função definida em $\mathbb{R}\setminus\{0\}$ por $f(x)=rac{1}{x}$ são

$$f'(x) = \frac{0 \cdot x - 1}{x^2} = -\frac{1}{x^2}, \qquad f''(x) = -\frac{0 \cdot x^2 - 2x}{x^4} = \frac{2}{x^3}$$
$$f'''(x) = \frac{0 \cdot x^3 - 3x^2 \cdot 2}{x^6} = -\frac{6x^2}{x^6} = -\frac{6}{x^4} \quad e \quad f^{(iv)}(x) = -\frac{0 \cdot x^4 - 4x^3 \cdot 6}{x^8} = \frac{24x^3}{x^8} = \frac{24}{x^5}.$$

Exemplo 15 Vamos calcular as sucessivas derivadas da função real definida por

$$p(x) = 2x^4 - 5x^2 + 1$$
.

$$p'(x) = 8x^3 - 10x$$
 $p''(x) = 24x^2 - 10$ $p'''(x) = 48x$ $p^{(iv)}(x) = 48$ $p^{(n)}(x) = 0$, $n \ge 5$.

6. Derivada, monotonia e extremos de uma função

Dada uma função f, o estudo do sinal de f' permite conhecer os intervalos de monotonia e os extremos de f.

Assim, dado um intervalo $]a,b[\subseteq D_f]$

- Se $f'(x) > 0, \forall x \in]a, b[$, então f é estritamente crescente em]a, b[;
- Se f'(x) < 0, $\forall x \in]a, b[$, então f é estritamente decrescente em]a, b[;
- Se $f'(x) = 0, \forall x \in]a, b[$, então f é constante em]a, b[.

Verifica-se ainda que, se para um dado $x_0 \in D_f$, se verificar simultaneamente que

- -f é contínua em x_0 ,
- $f'(x_0) = 0 e,$
- -f' muda de sinal em x_0 (isto é, numa vizinhança de x_0 , o sinal de f' é diferente à esquerda e à direita de x_0);

Então, $f(x_0)$ é um extremo relativo de f e x_0 é um extremante de f.

Quando uma função tem pontos de descontinuidade é ainda necessário estudá-los caso a caso, atendendo à definição de extremos.

Exemplo 16 A função real de variável real definida por $g(x) = x^4 - 6x^2 - 8$ é contínua em \mathbb{R} .

$$g'(x) = 4x^3 - 12x$$

Os zeros de g' são $\pm\sqrt{3}$ e 0 e $g(-\sqrt{3})=g(\sqrt{3})=-17$ e g(0)=-8

x	$-\infty$		$-\sqrt{3}$		0		$\sqrt{3}$		$+\infty$
x		_		_	0	+		+	
$4x^2 - 12$		+	0	_		_	0	+	
g'		_	0	+	0	_	0	+	
g		V	-17	7	-8	×	-17	7	

g é estritamente crescente em] $-\sqrt{3}$, 0[e em] $\sqrt{3}$, $+\infty$ [; g é estritamente decrescente em] $-\infty$, $-\sqrt{3}$ [e em]0, $\sqrt{3}$ [.

7. Segunda Derivada, concavidades e pontos de inflexão

Dada uma função f, o estudo do sinal de f'' permite conhecer os intervalos em que não se altera a curvatura (**sentido da concavidade**) e os pontos de inflexão do gráfico de f.

Assim, dado um intervalo $]a,b[\subseteq D_f,$ Se $f''(x)>0, \forall x\in]a,b[$, então a concavidade do gráfico de f é "voltada para cima" em]a,b[; Se $f''(x)<0, \forall x\in]a,b[$, então a concavidade do gráfico de f é "voltada para baixo" em]a,b[;

Verifica-se ainda que, se para um dado $x_0 \in D_f$, se verificar simultaneamente que

- f é contínua em x_0 ,
- $f''(x_0) = 0 e,$
- -f'' muda de sinal em x_0 (isto é, numa vizinhança de x_0 , o sinal de f'' é diferente à esquerda e à direita de x_0);

6

Então, $P(x_0, f(x_0))$ é um ponto de inflexão do gráfico de f.

Quando uma função tem pontos de descontinuidade é ainda necessário estudá-los caso a caso, atendendo à definição de pontos de inflexão.

Exemplo 17 Retomando a função do exemplo anterior, definida por $g(x) = x^4 - 6x^2 - 8$.

$$g'(x) = 4x^3 - 12x$$
 $g''(x) = 12x^2 - 12$

Se existirem, os pontos de inflexão do gráfico de g têm por abcissa zeros de g''.

$$g''(x) = 0 \iff 12x^2 - 12 = 0 \iff x = -1 \lor x = 1$$

$$g(-1) = g(1) = 13$$

	x	$-\infty$		-1		1	$+\infty$
ĺ	g''		+	0	_	0	+
ĺ	g		U	-13	\cap	-13	U

Assim, os pontos (-1, -13) e (1, -13) são pontos de inflexão do gráfico de g.

Nos intervalos $]-\infty,-1[$ e $]1,+\infty[$, o gráfico de g tem a concavidade voltada para cima. No intervalo]-1,1[, o gráfico de g tem a concavidade voltada para baixo.

Se associarmos a estas informações outros dados como os pontos de interseção com os eixos coordenados, o facto de se tratar de uma função par (entre outros), estaremos capazes de construir um esboço do gráfico da função:

Função	Derivada	Exemplo
a (constante)	0	y = -2 $y' = 0$
$ax + b$ $(a, b \in \mathbb{R})$	a	$y = -3x + 2 \qquad y' = -3$
$ax^p \qquad (a, b \in \mathbb{R})$	apx^{p-1}	$y = 5x^4 \qquad y' = 20x^3$
$\operatorname{sen} f$	$f'\cos f$	$y = \operatorname{sen}(x^2) y' = 2x \cos(x^2)$
$\cos f$	$-f'\operatorname{sen} f$	$y = \cos(x^2) y' = -2x \operatorname{sen}(x^2)$
$\operatorname{tg} f$	$\frac{f'}{\cos^2 f}$	$y = \operatorname{tg}(3x) y' = \frac{3}{\cos^2(3x)}$
e^f	$f'e^f$	$y = e^{-\frac{x}{5}}$ $y' = -\frac{1}{5}e^{-\frac{x}{5}}$
$a^f \qquad (a \in \mathbb{R}^+ \setminus \{1\})$	$f'a^f \ln a$	$y = 3^{2x}$ $y' = 2 \cdot 3^{2x} \cdot \ln 3$
$\ln f$	$\frac{f'}{f}$	$y = \ln(x^2)$ $y' = \frac{2x}{x^2} = \frac{2}{x}$
$ \log_a f \qquad (a \in \mathbb{R}^+ \setminus \{1\}) $	$\frac{f'}{f \ln a}$	$y = \log_3(2x)$ $y' = \frac{2}{2x \ln 3} = \frac{1}{x \ln 3}$

Tabela 1: Quadro resumo das derivadas de funções

Exercícios Propostos

 $f(x) = \begin{cases} 2x^2 - 3 & \text{se } x \le 1 \\ 4x - 5 & \text{se } x > 1 \end{cases}$ e ave-Considere a função f definida em $\mathbb R$ por Exercício 1 rigue se existe f'(1).

Exercício 2 Calcule y', sendo:

a)
$$y = 3x^2 + 2x + 1$$
; b) $y = x^{100} \cdot (1 + 4x)$; c) $y = (x^4 - x^2 + 5)^{10}$; d) $y = \frac{x^2 + 1}{x - 3}$;

e)
$$y = \sqrt[3]{x}$$
; f) $y = \frac{1}{x^2}$; g) $y = e^{2x} - x$; h) $y = \ln(x+2)$

e)
$$y = \sqrt[3]{x}$$
; f) $y = \frac{1}{x^2}$; g) $y = e^{2x} - x$; h) $y = \ln(x+2)$; j) $y = \sqrt{x^2 + 1}$; j) $y = x \ln(x^2 + x + 1)$; k) $y = \frac{e^x}{x+1}$; l) $y = \sin x + 3\cos x^2$;

Mostre que a tangente ao gráfico da função definida por $h(x) = x^3 - 3x + 3$ Exercício 3 no ponto de abcissa 1 é uma reta horizontal.

Exercício 4 Considere a função $f(x) = 1 - e^x$.

- a) Determine as coordenadas do ponto de intersecção do gráfico da função com o eixo Ox.
- b) Determine uma equação da reta tangente ao gráfico de f no ponto de abcissa 1.

Exercício 5 Determine, para cada uma das funções que se seguem, os intervalos de monotonia e os extremos relativos:

a)
$$f(x) = x^2 - 6x + 9$$

b)
$$f(x) = x^3 - 9x^2 + 3$$
;

c)
$$g(x) = \frac{2}{x-1}$$
;

d)
$$h(x) = x + \frac{4}{x}$$
;

e)
$$i(x) = e^x(x-1)$$
.