ECUACIONES DIFERENCIALES CON VALORES INICIALES

Prof. Ing. Mauro Grioni

ECUACIÓN DIFERENCIAL

¿Qué es una ecuación diferencial?

Es una ecuación en la que aparecen funciones, sus derivadas, una o más variables independientes y una o más variables dependientes.

Las ecuaciones diferenciales se dividen en dos grupos:

<u>Ecuaciones Diferenciales Ordinarias:</u> (EDO) en las que aparece sólo una variable independiente x´.

<u>Ecuaciones Diferenciales Parciales:</u> (EDP) en las que aparecen más de una variable independiente.

EDO de primer orden.

$$y' = f(x, y)$$

$$y(x_0) = y_0$$

$$\begin{cases} \frac{dy}{dx} = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$$

ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN

SOLUCIÓN NUMÉRCIA DE ECUACIONES DIFERENCIALES ORDINARIAS

Se busca obtener una solución aproximada en forma discreta

Clasificación de EDO

Primer orden

Siempre son de valor inicial

$$\frac{du(t)}{dt} + A \cdot u(t) = 0, \qquad A \in \mathbb{R},$$

$$u(t_0) = U_0,$$

La solución discreta es tal que aproxima a la solución exacta del problema

$$U_{\mathbf{k}} \cong u(t_{\mathbf{k}})$$

ECUACIÓN DIFERENCIAL ORDINARIA DE ORDEN SUPERIOR

SOLUCIÓN NUMÉRCIA DE ECUACIONES DIFERENCIALES ORDINARIAS

Se busca obtener una solución aproximada en forma discreta

Orden Superior

Pueden ser

de valores iniciales

$$\frac{d^2u(t)}{dt^2} + \frac{g}{L} \cdot u(t) = 0,$$

$$u(t_0) = u_0,$$

$$\frac{du(t)}{dt}\bigg|_{t_0} = v_0$$

de valores de contorno

$$-\frac{d^{2}u(x)}{dx^{2}} + u(x) - x = 0 \quad en \quad \Omega = \{x \in R : 0 \le x \le 1\}$$

$$u(0) = 0 \quad u(1) = 0$$

La solución discreta es tal que aproxima a la solución exacta del problema

$$U_{\mathbf{k}} \cong u(t_{\mathbf{k}})$$

$$U_{\mathbf{k}} \cong u(x_{\mathbf{k}})$$

ECUACIÓN DIFERENCIAL A DERIVADAS PARCIALES

DISCRETIZACIÓN DE ECUACIONES DIFERENCIALES A DERIVADAS PARCIALES

Se busca u(x,t) solución de

$$-12\frac{\partial^{2}u(x,t)}{\partial x^{2}} + x^{2}\frac{\partial^{2}u(x,t)}{\partial t^{2}} = 0 \quad en \quad \Omega = \left\{x \in R : 0 \le x \le 1\right\}$$

$$u(0,t) = 0 \qquad \qquad u(x,0) = \sin(\pi \cdot x)$$

$$u(1,t) = 0 \qquad \qquad \frac{\partial u}{\partial t}(x,0) = 3$$

Se plantea encontrar una solución aproximada en forma de función discreta en la variable x, aunque continua en la variable t. Se pretende encontrar las funciones $U_k(t)=u(X_k,t)$ con k=0,N, en N+1 puntos elegidos del dominio x, identificados con su abscisa X_k .

Cuando se consideran derivadas parciales respecto a la variable x, para t constante, la función a derivar es una *función discreta* y se puede hacer *derivadas numéricas*.

Cuando se consideran derivadas parciales respecto a la variable t, para x constante, la función a derivar es una *función continua* y se puede hacer *derivadas analíticas*.

EDO DE PRIMER ORDEN-MÉTODO DE EULER

Resolver la EDO dada por

$$y' = f(x, y) \quad \text{con } y(x_0) = y_0$$

Entonces para el punto \mathbf{x}_m si conocemos la ordenada \mathbf{y}_m podemos evaluar la pendiente de la recta tangente en dicho punto

$$Y_m' = f(x_m, y_m)$$

Entonces puedo escribir la ecuación de la recta Ll

$$Y = Y_m + (Y_m')(x - x_m)$$

Evaluando el valor de la ordenada entonces puedo escribir la ecuación de la recta Ll $x_{m+1} - x_m = h$

$$Y_{m+1} = Y_m + hf(x_m, y_m)$$

Error de truncamiento local es: $ET_L = \frac{h^2}{2!}y_{(n)}^{"}$

Ejemplo:
$$\frac{dy(x)}{dx} - 2ty(x)^2 = 4$$
$$\frac{dy(x)}{dx} = 4 + 2ty(x)^2$$

Error de truncamiento local relativamente grande y en general es inestable

EDO DE PRIMER ORDEN-MÉTODO DE EULER

Resolver la EDO dada por

$$u' = f(t, u) \quad \text{con } u(t_0) = u_0$$

Métodos basados en Derivación Numérica

EULER Adelante considera que

$$\frac{du(t)}{dt}\Big|_{t_n} = \frac{1}{\Delta t}(u_{n+1} - u_n) + O(\Delta t)$$

$$\frac{du(t)}{dt}\Big|_{t} = f(t_n, u_n)$$

$$u(t)$$

$$u_{n+1} = u_n + \Delta t \cdot f(t_n, u_n) + O(\Delta t^2)$$

$$t_{n+1} = t_n + \Delta t$$

EXPLÍCITO

EDO DE PRIMER ORDEN-MÉTODO DE EULER MEJORADO

Teniendo en cuenta que

$$y' = f(x, y)$$

Entonces podemos determinar las pendientes en el punto $\mathbf{x}_{\mathrm{m}} \ \mathbf{y} \ \mathbf{x}_{\mathrm{m}}$ +h

Pendiente L₁:
$$Y'_m = f(x_m, Y_m)$$
 Y_{m+1}

Pendiente L₂:
$$Y'_{m+1} = f(x_m + h, Y_m + hY'_m)$$

Pendiente
$$L_p: \emptyset(x_m, Y_m, h) = \frac{1}{2} [f(x_m, Y_m) + f(x_m + h, Y_m + hY'_m)]$$

Evaluando el valor de la ordenada entonces puedo escribir la ecuación de la recta $x_{m+1} - x_m = h$

$$Y_{m+1} = Y_m + h\emptyset(x_m, Y_m, h)$$

El orden de error es: $0(h^3)$

EDO DE PRIMER ORDEN-MÉTODO DE EULER MODIFICADO

Teniendo en cuenta que

$$y' = f(x, y)$$

Entonces podemos determinar las pendientes en el punto $x_m y x_m + h/2$

Pendiente L₁:
$$Y'_m = f(x_m, y_m)$$
 Y_c

Pendiente
$$\mathbf{L}_1$$
: $Y_m' = f(x_m, y_m) \frac{Y_c}{Y_c}$
Pendiente \mathbf{L}_c : $Y_c' = f\left(x_m + \frac{h}{2}, Y_m + \frac{h}{2}Y_m'\right)$

Pendiente
$$L_c$$
: $\emptyset(x_m, Y_m, h) = f\left((x_m + \frac{h}{2}), (Y_m + \frac{h}{2}Y_m')\right)$

Evaluando el valor de la ordenada entonces puedo escribir la ecuación de la recta $x_{m+1} = x_m + h$

$$Y_{m+1} = Y_m + h\emptyset(x_m, Y_m, h)$$

El orden de error es:

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE EULER


```
Ejemplo \frac{dy}{dx} - 2y = -2x - 1 \quad con \quad y(0) = 2
```

$$\frac{dy}{dx} = 2y - 2x - 1$$
$$f(x, y)$$

```
function euler
        % valor de x para la condición inicial
 x_0=0:
 v0=2; % Condicion inicial
 dx=0.1; % paso h
 x=x0:dx:1; % discretización de la variable independiente
 Nd=length(x) % cantidad de puntos
 y=zeros(Nd,1);
 y(1)=y0; % asignación de la condición inicial al vector solución
 yexac(1) = exp(2*x(1)) + x(1) + 1; %Solución exacta para comparación
% Método de Euler
 for i=1:Nd-1
   fxm=2*y(i)-2*x(i)-1; % calculo de la pendiente
   v(i+1)=v(i)+dx*(fxm); % calculo de v aproximado
   yexac(i+1) = exp(2*x(i+1)) + x(i+1) + 1; % calculo de v exacto
 endfor
 v(Nd)
 yexac(Nd)
 % Gráfico de la solución aproximada por EULER y la solución exacta
 plot (x,y,'LineWidth',2, '--r', x,yexac, 'LineWidth',2) %
 legend('Sol. EULER', 'Sol. Exacta')
endfunction
```

$$y_{exacto} = e^{2x} + x + 1$$

$$Y_{m+1} = Y_m + hf(x_m, y_m)$$

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE EULER

$$\frac{dy}{dx} - 2y = -2x - 1$$
 con $y(0) = 2$

$$\frac{dy}{dx} = 2y - 2x - 1$$

$$f(x, y)$$

```
function euler
x0=0; % v
```

endfunction

```
x0=0; % valor de x para la condición inicial
v0=2; % Condicion inicial
dx=0.1; % paso h
x=x0:dx:1; % discretización de la variable independiente
Nd=length(x) % cantidad de puntos
y=zeros(Nd,1);
y(1)=y0; % asignación de la condición inicial al vector solución
yexac(1) = exp(2*x(1)) + x(1) + 1; %Solución exacta para comparación
% Método de Euler
for i=1:Nd-1
  fxm=2*y(i)-2*x(i)-1; % calculo de la pendiente
  v(i+1)=v(i)+dx*(fxm); % calculo de v aproximado
  yexac(i+1) = exp(2*x(i+1)) + x(i+1) + 1; % calculo de y exacto
endfor
v(Nd)
yexac(Nd)
% Gráfico de la solución aproximada por EULER y la solución exacta
plot (x,y,'LineWidth',2, '--r', x,yexac, 'LineWidth',2) %
legend('Sol. EULER', 'Sol. Exacta')
```

$$y_{exacto} = e^{2x} + x + 1$$

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE EULER MEJORADO

```
\frac{dy}{dx} - 2y = -2x - 1 con y(0) = 2
  Ejemplo
       \frac{dy}{dx} = 2y - 2x - 1
                   f(x,y)
function euler mejorado
            % valor de x para la condición inicial
  x0=0;
        % Condicion inicial
 v0=2;
 dx=0.1; % paso h
 x=x0:dx:1; % discretización de la variable independiente
 Nd=length(x) % cantidad de puntos
   v=zeros(Nd,1); %se crea el vectos solución con todos ceros
           % asignación de la condición inicial al vector solución
 yexac(1)=exp(2*x(1))+x(1)+1; % calculo de y exacto para el x inicial
  % Método de Euler Mejorado
  for i=1:Nd-1
   fxm=2*v(i)-2*x(i)-1; % calculo de la pendiente 1
   fxmh=2*(y(i)+dx*fxm)-2*x(i+1)-1; % calculo de la pendiente 2
   v(i+1)=v(i)+dx*0.5*(fxm+fxmh); % calculo del v aproximado a partir del promedio de la pendiente 1 v 2
   yexac(i+1) = exp(2*x(i+1)) + x(i+1) + 1; % calculo de y exacto
 endfor
   y (Nd)
 yexac (Nd)
 plot (x,y,'LineWidth',2, '--r', x,yexac, 'LineWidth',2) %
  legend('Sol. EULER Mejorado', 'Sol. Exacta')
```

endfunction

$$y_{exacto} = e^{2x} + x + 1$$

$$Y_{m+1} = Y_m + h\emptyset(x_m, Y_m, h)$$

$$\emptyset(x_m, Y_m, h) = \frac{1}{2} [f(x_m, Y_m) + f(x_m + h, Y_m + hY_m')]$$

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE EULER MEJORADO


```
Ejemplo \frac{dy}{dx} - 2y =
```

y (Nd) vexac (Nd)

endfunction

$$\frac{dy}{dx} - 2y = -2x - 1$$
 $con \quad y(0) = 2$

$$\frac{dy}{dx} = 2y - 2x - 1$$
$$f(x, y)$$

```
function euler mejorado
         % valor de x para la condición inicial
 x_0=0:
        % Condicion inicial
 v0=2;
 dx=0.1; % paso h
 x=x0:dx:1; % discretización de la variable independiente
 Nd=length(x) % cantidad de puntos
   v=zeros(Nd,1); %se crea el vectos solución con todos ceros
 v(1)=v0; % asignación de la condición inicial al vector solución
 yexac(1) = exp(2*x(1)) + x(1) + 1; % calculo de y exacto para el x inicial
  % Método de Euler Mejorado
  for i=1:Nd-1
   fxm=2*v(i)-2*x(i)-1; % calculo de la pendiente 1
   fxmh=2*(y(i)+dx*fxm)-2*x(i+1)-1; % calculo de la pendiente 2
   v(i+1)=v(i)+dx*0.5*(fxm+fxmh); % calculo del v aproximado a partir del promedio de la pendiente 1 v 2
   yexac(i+1) = exp(2*x(i+1)) + x(i+1) + 1; % calculo de y exacto
  endfor
```

plot (x,y,'LineWidth',2, '--r', x,yexac, 'LineWidth',2) %

legend('Sol. EULER Mejorado', 'Sol. Exacta')

EDO DE PRIMER ORDEN-MÉTODO DE RUNGE-KUTTA

Utilizando la información de los dos últimos métodos vemos que ambos están dados por una expresión de la forma

$$Y_{m+1} = Y_m + h\emptyset(x_m, Y_m, h)$$

$$\emptyset(x_m, Y_m, h) = a_1 f(x_m, Y_m) + a_2 f(x_m + b_1 h, Y_m + b_2 h Y_m')$$

Para el método de Euler Mejorado:

$$a_1 = a_2 = \frac{1}{2}$$

 $b_1 = b_2 = 1$

Para el método de Euler Modificado:

$$a_1 = 0$$
 ; $a_2 = 1$
 $b_1 = b_2 = \frac{1}{2}$

Se llega a la expresión más general del método de Runge-Kutta de 2° orden

$$Y_{m+1} = Y_m + h \left\{ (1 - \omega) f(x_m, Y_m) + \omega f\left[\left(x_m + \frac{h}{2\omega} \right), \left(Y_m + \frac{h}{2\omega} f(x_m, Y_m) \right) \right] \right\} + O(h^3)$$

EDO DE PRIMER ORDEN-MÉTODO DE RUNGE-KUTTA

Una forma tradicional de expresar el método de Runge-Kutta se presenta a continuación

Dados x_m e y_m y teniendo definido el paso h entonces se calcula

$$k_1 = h \, f(x_m, y_m)$$

$$\omega = 1/2 \quad \text{entonces obtenemos el método de Euler Mejorado}$$

$$\omega = 1/2 \quad \text{entonces obtenemos el método de Euler Modificado}$$

$$\omega = 1 \quad \text{entonces obtenemos el método de Euler Modificado}$$

$$\omega = 1 \quad \text{entonces obtenemos el método de Euler Modificado}$$

$$k_2 = h f\left(x_m + \frac{h}{2\omega}, y_m + \frac{h}{2\omega}f(x_m, y_m)\right) = h f\left(x_m + \frac{h}{2\omega}, y_m + \frac{k_1}{2\omega}\right) \quad entonces$$

$$k_2 = h f(x_G, y_G)$$

$$Y_{m+1} = Y_m + (1 - \omega)k_1 + \omega k_2$$
 $x_{m+1} = x_m$

$$x_{m+1} = x_m + h$$

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE RUNGE-KUTTA

EJERCICIO:

Obtener una solución aproximada para la siguiente ecuación diferencial para el intervalo [0,10] por el método de Runge-Kutta con un paso h=0.1.

$$\frac{dy}{dt} + 0.5y = 0.5t \quad con \quad y(0) = 4$$

$$y_{exacto} = 6e^{-(t/2)} - 2 + t$$

EJEMPLO EDO DE PRIMER ORDEN-MÉTODO DE RUNGE-KUTTA

EJERCICIO: Obtener una solución aproximada para la siguiente ecuación diferencial para el intervalo [0,10] por el método de Runge-Kutta con un paso h=0.1.

$$\frac{dy}{dt} + 0.5y = 0.5t \quad con \quad y(0) = 4$$

```
% valor de t para la condición inicial
t0=0:
y0=4; % Condicion inicial
w=0.5; % Método de Euler Mejorado
dt=0.1; % Paso de tiempo
t=t0:dt:10; %discretización temporal
Ndt=length(t); % Cantidad de puntos
y=zeros(Ndt,1); % vector para solución y(t)
% Inicialización del primer estado solución
y(1) = y0;
yexac(1)=6*exp(-t(1)/2)-2+t(1); % Solución exacta para la condición inicial
  for i=1:Ndt-1
     k1=dt*(0.5*t(i)-0.5*v(i));
     tg=t(i)+dt/(2*w);
     yg=y(i)+k1/(2*w);
     k2=dt*(0.5*tg-0.5*yg);
     y(i+1)=y(i)+(1-w)*k1+w*k2;
     yexac(i+1)=6*exp(-t(i+1)/2)-2+t(i+1);
  endfor
% Gráficos de la solución aproximada y exacta
plot (t, yexac, 'LineWidth', 2, t, y, 'LineWidth', 2, '--r') %
```

function RK 2orden

legend('Sol. Exacta', 'Sol. R-K')

endfunction

$$y_{exacto} = 6e^{-(t/2)} - 2 + t$$

REPASO-INTEGRACIÓN

EJERCICIO 1: La siguiente función discreta, y=f(x) de R en R es una muestra discreta de una función continua. Los valores de la función discreta vienen dados en la siguiente tabla.

×	0	0.1	0.2	0.3	0.4
У	1	7	4	3	5

Calcular la integral de la función discreta, y=f(x) entre x=0 y x=0,4 usando la Regla de Simpson Compuesta, con el menor paso posible y entre las siguientes opciones elija el valor que resulta.

- a) 1.79
- b) 1.80
- c) 1.81
- d) 1.82

REPASO-DERIVACIÓN

EJERCICIO 2: Dada una cuerda de longitud L=3 cuyo desplazamiento "u" se muestra en la siguiente tabla:

x	0	0.5	1	1.5	2	2.5	3
u	167	176	201	249	291	347	400

Cual sería el valor de la derivada primera para el punto inicial (x=0), para el punto central (x=1,5) y para el punto final (x=3) si aplicamos reglas de derivación con el mismo orden de error con un paso h=0.5

- a) 2;90 y 103
- b) 0;75 y 400
- c) 18;90 y 106
- d) -2; 75 y -400