Geometria Diferencial Global. Um estudo sobre a rigidez da esfera

Rafael Sergio Sampaio Emidio

XXX Seminário de Iniciação Científica 2019 Bolsa PIBIC/PRODOUTOR Instituto de Ciências Exatas e Naturais Orientador: Adam Oliveira da Silva

30 de Setembro de 2019

Introdução

O objetivo deste trabalho é mostrar que a esfera é uma superfície rígida através de relações entre propriedades locais e globais de curvas e superfícies da Geometria Diferencial. Iremos verificar que se uma superfície regular S conexa e compacta possui curvatura gaussiana K constante, então S é uma esfera.

Palavras-chave: superfícies regulares, esfera, curvaturas.

Superfície regular

Uma superfície regular S é um subconjunto do espaço tal que para todo ponto p, existe uma aplicação $X:U\to V\cap S$, onde U é um aberto em R^2 , V uma vizinhança de p e X satisfaz as seguintes condições:

- X é diferenciável;
- X é homeomorfismo;
- **3** A diferencial $dX_q: R^2 \to R^3$ é injetiva.

Superfície regular

Neste caso, chamamos X de um parametrização de S. Assim, dado $(u, v) \in U$ temos X(u, v) = (x(u, v), y(u, v), z(u, v)).

Aplicação de Gauss

Dada uma parametrização $X:U\subset R^2\to S$ de uma superfície regular S em um ponto $p\in S$. Desde que $\{X_u,\,X_v\}$ constitui uma base para T_qS , podemos definir para cada ponto $q\in X(U)$, um vetor normal unitário da seguinte maneira:

$$N(q) = \frac{X_u \wedge X_v}{|X_u \wedge X_v|}, \qquad q \in X(q)$$

Se a superfície S possui uma orientação N, podemos garantir a existência da aplicação $N:S\to R^3$ que toma seus valores em uma esfera unitária

A aplicação $N:S\to S^2$ é chamada de aplicação normal de Gauss de S. Podemos verificar que a diferencial $dN_p:T_pS\to T_pS$ é uma aplicação linear auto-adjunta.

Portanto, para cada ponto $p \in S$ existe uma base ortonormal $\{e_1, e_2\}$ de T_pS , tal que

$$dN_p(e_1) = -k_1e_1$$

$$dN_p(e_2) = -k_2e_2$$

Onde k_1 e k_2 são respectivamente, o máximo e o mínimo da segunda forma fundamental $\coprod_p(v)=-< dN_p(v), v>$, ou seja, são os valores extremos da curvatura normal em p, tal que $k_1\geq k_2$. Os autovalores k_1 e k_2 são chamados de curvaturas principais e os autovetores e_1 e e_2 são chamados de direções principais.

• Curvatura gaussiana (K): É o determinante da diferencial dN_p de S em p

$$K = k_1 k_2$$
.

 Curvatura média (H): É o negativo do traço da diferencial dN_p de S em p:

$$H=\frac{1}{2}(k_1+k_2)$$

Um ponto de uma superfície regular S é chamado de:

- Elíptico se K > 0;
- ② Hiperbólico se K < 0;
- 3 Parabólico se K = 0, com $dN_p \neq 0$;
- Planar se $dN_p = 0$.

Obs1: Se $k_1(p) = k_2(p)$ então dizemos que p é um ponto umbílico de S.

Obs2: Se todos os pontos de uma superfície S são umbílicos, então S está contida em um plano ou em uma esfera.

Aplicação de Gauss em coordenadas locais

Através do estudo da aplicação de Gauss em coordenadas locais, obtemos as seguintes equações para a curvatura Gaussiana K e a curvatura média H:

$$K = \frac{eg - f^2}{EG - F^2} \qquad H = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}$$

Onde:

- E, F e G são os coeficientes da primeira forma fundamental $I_p(w) = \langle w, w \rangle = |w|^2$;
- e, f e g são os coeficientes da segunda forma fundamental $\coprod(v)=-< dN_p(v), v>.$

Equações de compatibilidade

As equações de compatibalidade são dadas pelas fórmulas de Gauss e pelas equações de Mainardi-Codazzi.

• Os coeficientes Γ_{ij}^k , i,j,k=1,2 são chamados de símbolos de Christoffel, obtidos nas derivadas dos vetores X_u , X_v e N.

Feitas várias demonstrações, foram encontradas as quatro equações de compatibilidade:

$$(\Gamma_{12}^2)_u - (\Gamma_{11}^2)_v + \Gamma_{12}^1\Gamma_{11}^2 + \Gamma_{12}^2\Gamma_{12}^2 - \Gamma_{11}^2\Gamma_{22}^2 - \Gamma_{11}^1\Gamma_{12}^2 = -\textit{EK} \ (1)$$

$$(\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^2 \Gamma_{12}^1 - \Gamma_{11}^2 \Gamma_{22}^1 = FK$$
 (2)

$$e_v - f_u = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2$$
 (3)

$$f_{\nu} - g_{u} = e\Gamma_{22}^{1} + f(\Gamma_{22}^{2} - \Gamma_{12}^{1}) - g\Gamma_{12}^{2}$$
 (4)

Obs3: Equações de compatibilidade quando as curvas coordenadas são linhas de curvaturas (F=f=0)

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left(\frac{E_{\nu}}{\sqrt{EG}} \right)_{\nu} + \left(\frac{G_{u}}{\sqrt{EG}} \right)_{u} \right\} \tag{1}$$

$$e_{\nu} = \frac{E_{\nu}}{2} \left(\frac{e}{E} + \frac{g}{G} \right) \tag{3}$$

$$g_u = \frac{G_u}{2} \left(\frac{e}{E} + \frac{g}{G} \right) \tag{4}$$

Rigidez da esfera

Teorema 1

Seja S uma superfície conexa e compacta com curvatura gaussiana K constante. Então S é uma esfera.

Para provar o Teorema 1, serão necessários alguns resultados. Estes resultados serão demonstrados através de 2 lemas.

Lema 1

Seja S uma superfície regular e $p \in S$ satisfazendo as seguintes condições:

- K(p) > 0; isto é, a curvatura gaussiana em p é positiva.
- ② p é ao mesmo tempo um ponto de máximo local da função k_1 e um ponto de mínimo local da função $k_2(k_1 \ge k_2)$.

Então p é um ponto umbílico de S.

<u>Demonstração</u>: Vamos supor que p não é um ponto umbílico e obter uma contradição.

Se p não é um ponto umbílico de S, podemos parametrizar uma vizinhança coordenada de p por coordenadas (u,v) tais que as curvas coordenas são linhas de curvaturas. Então vamos ter que F=f=0. Logo as curvaturas principais k_1 e k_2 serão dadas por

$$k_1 = \frac{e}{E}, \qquad k_2 = \frac{g}{G}. \tag{5}$$

Nestas condições as equações (3) e (4) de Mainardi-Codazzi são escritas como

$$e_{v} = \frac{E_{v}}{2}(k_{1} + k_{2}) \tag{6}$$

$$g_u = \frac{G_u}{2}(k_1 + k_2) \tag{7}$$

Derivando a primeira equação de (5) com relação a v e usando (6), obtemos

$$E(k_1)_{\nu} = \frac{E_{\nu}}{2}(-k_1 + k_2) \tag{8}$$

Analogamente, derivando a segunda equação de (5) com relação u e usando (7), obtemos

$$E(k_2)_u = \frac{G_u}{2}(k_1 - k_2) \tag{9}$$

Por outro lado, quando F=0, a formula de Gauss (1) para K se reduz

$$K = -\frac{1}{2\sqrt{EG}} \left\{ \left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right\}$$

Logo,

$$-2KEG = E_{vv} + G_{uu} + ME_v + NG_u \tag{10}$$

A partir de (8) e (9), obtemos expressões para Ev e Gu que depois de derivadas, introduzimos na equação (10) obtendo

$$-2KEG = -\frac{2E}{k_1 - k_2}(k_1)_{vv} + \frac{2G}{k_1 - k_2}(k_2)_{uu} + \bar{M}(k_1)_v + \bar{N}(k_2)_u$$

Donde,

$$-2(k_1-k_2)KEG = -2E(k_1)_{vv} + 2G(k_2)_{uu} + \tilde{M}(k_1)_v + \tilde{N}(k_2)_u$$
(11)

Como k_1 atinge um máximo local em p e k_2 atinge um mínimo local em p, temos

$$(k_1)_{\nu} = 0$$
, $(k_2)_{u} = 0$, $(k_1)_{\nu\nu} \leq 0$, $(k_2)_{uu} \geq 0$

em p. No entanto, isto implica que o segundo membro da equação (11) é positivo ou nulo, o que é uma contradição, logo o ponto p é um ponto umbílico de S.

Lema 2

Uma superfície regular compacta $S \subset R^3$ tem pelo menos, um ponto elíptico.

Demonstração: Como S é compacta, S é limitada. Portanto S está contida em alguma esfera em R^3 , consideremos uma esfera Σ . Através de sucessivas diminuições do raio da esfera Σ , obtemos um ponto onde a mesma irá tocar em S, chamaremos de ponto p. Portanto, Σ e S são tangentes em p.

Observando as sessões normais em p, notamos que qualquer curvatura normal de S em p é maior ou igual que a curvatura normal de Σ em p. Logo concluímos que $K_{S(p)} \geq K_{\Sigma(p)} > 0$, portanto p é um ponto elíptico desejado.

Demonstração do teorema 1: Como S é compacta, ela possui um ponto elíptico pelo Lema 2. Como K é constante, devemos ter K>0 em S. Como $K=k_1k_2$ é uma constante positiva, p é ao mesmo tempo o máximo local da função k_1 e o mínimo local da função k_2 . Pelo lema 1 p é um ponto umbílico de S, isto é, $k_1(p)=k_2(p)$. Agora seja um ponto $q\in S$, tal que $k_1(q)\geq k_2(q)$ temos

$$k_1(p) \geq k_1(q) \geq k_2(q) \geq k_2(p) = k_1(p).$$

Portanto $k_1(q)=k_2(q)$ para todo $q\in S$. Podemos concluir de uma maneira definitiva que todos os pontos de S são umbílicos. Como K>0, S está contida em uma esfera Σ pela observação Σ . Por compacidade, S é fechada em Σ , e como S é uma superfície regular, S é aberta em Σ . Como Σ é conexa e S é aberta e fechada em Σ , teremos que $S=\Sigma$. Portanto S é uma esfera.

Bibliografia

DO CARMO, M. **Differential Geometry of curves and surfaces**. Pretince-Hall (1976)

TENEBLAT, K. Introdução à geometria diferencial. Editora Blücher (2008)

ARAÚJO, P. **Geometria Diferencial**. Coleção Matemática Universitária – IMPA (2004)

Obrigado pela atenção!