

Bresenham's line algorithm

By

Prof. Vaibhav P. Vasani

Assistant Professor

Department of Computer Engineering

K. J. Somaiya College of Engineering

Somaiya Vidyavihar University

Bresenham's line algorithm

• It is a line drawing algorithm that determines the points of an n-dimensional raster that should be selected in order to form a close approximation to a straight line between two points.

Bresenham's line Algorithm

Step 1: Start.

Step 2: Now, we consider Starting point as (x_1, y_1) and endingpoint (x_2, y_2)

y₂).

Step 3: Now, we have to calculate $\triangle x$ and $\triangle y$.

$$\triangle x = x_2-x_1$$

 $\triangle y = y_2-y_1$
 $m = \triangle y/\triangle x$

Step 4: Now, we will calculate the decision parameter $\mathbf{p_k}$ with following formula.

$$p_k = 2 \triangle y - \triangle x$$

Step 5: Theinitial coordinates of the line are (x_k, y_k) , and the next coordinates are (x_{k+1}, y_{k+1}) . Now, we are going to calculate two cases for decision parameter p_k

Case 1: If

$$p_k < 0$$

Then

$$p_{k+1} = p_k + 2 \triangle y$$

$$X_{k+1} = X_k + 1$$

$$y_{k+1} = y_k$$

Case 2: If

$$p_k >= 0$$

Then

$$p_{k+1} = p_k + 2 \triangle y - 2 \triangle x$$

$$X_{k+1} = X_k + 1$$

$$y_{k+1} = y_k + 1$$

Step 6: We will repeat step 5 until we found the ending point of the line and the total number of iterations = $\triangle x-1$.

Step 7: Stop.

Example: A line has a starting point (9,18) and ending point (14,22). Apply the Bresenham's Line Drawing algorithm to plot a line.

Starting Point =
$$(x_1, y_1) = (9,18)$$

Ending Point =
$$(x_2, y_2) = (14,22)$$

Step 1: First, we calculate $\triangle x$, $\triangle y$.

$$\triangle x = x_2 - x_1 = 14-9 = 5$$

$$\triangle y = y_2 - y_1 = 22-18 = 4$$

Step 2: Now, we are going to calculate the decision parameter (p_k)

$$p_k = 2 \triangle y - \triangle x$$

$$= 2 \times 4 - 5 = 3$$

The value of $p_k = 3$

Step 3: Now, we will check both the cases.

lf

$$p_k >= 0$$

Then

Case 2 is satisfied. Thus

$$p_{k+1} = p_k + 2 \triangle y - 2 \triangle x = 3 + {}_{(2} x 4) - (2 x 5) = 1$$

$$x_{k+1} = x_k + 1 = 9 + 1 = 10$$

$$y_{k+1} = y_k + 1 = 18 + 1 = 19$$

Step 4: Now move to next step. We will calculate the coordinates until we reach the end point of the line.

$$\triangle x - 1 = 5 - 1 = 4$$

p _k	p _{k+1}	X _{k+1}	У _{к+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

Advantages of Bresenham's Line Drawing Algorithm

- It is simple to implement because it only contains integers.
- It is quick and incremental
- It is fast to apply but not faster than the Digital Differential Analyzer (DDA) algorithm.
- The pointing accuracy is higher than the DDA algorithm.

Disadvantages of Bresenham's Line Drawing Algorithm

- The Bresenham's Line drawing algorithm only helps to draw the basic line.
- The resulted draw line is not smooth.

Self Learning topic

Mid-Point Line Drawing Algorithm in Computer Graphics

Thank you

