Expressiveness of neural networks

Dmitry Yarotsky

D. Yarotsky 1 / 91

Feedforward neural networks

Implements a map $y = \widetilde{f}(x, W) \equiv \widetilde{f}_W(x)$

- $\mathbf{x} = (x_1, \dots, x_{\nu}) \in \mathbb{R}^{\nu}$: input vector
- W: the collection of all **network weights** (all tunable parameters)
- y: the (scalar) output
- A **neuron** in a hidden layer: $z_1, \ldots, z_d \mapsto \sigma \left(\sum_{m=1}^d w_m z_m + h \right)$
- Weights in a neuron: $\{w_m\}_{m=1}^d$, h (depend on the neuron)
- σ : a (nonlinear) activation function
- The output neuron: $z_1, \ldots, z_d \mapsto \sum_{m=1}^d w_m z_m + h$ (no activation)

D. Yarotsky

Some common activation functions

Exercise: Why does σ need to be nonlinear?

ReLU (Rectified Linear Unit)

$$\sigma(x) \equiv (x)_+ = \max(0, x)$$

Standard sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

D. Yarotsky

Piecewise linear activation functions

Exercise (equivalence of piecewise linear activation functions)

- Suppose that $f: \mathbb{R}^{\nu} \to \mathbb{R}$ is implemented by a NN with some continuous piecewise-linear activation function. Then f can also be implemented by a ReLU NN (possibly of a different architecture).
- Suppose that $f:[0,1]^{\nu}\to\mathbb{R}$ is implemented by a ReLU NN. Then, for any given continuous piecewise-linear activation function σ_1 , f can be implemented by a σ_1 -NN.

D. Yarotsky 4 / 91

Network fitting (approximation): general idea

We try to adjust the weight vector \mathbf{W} so that our network becomes close to a "ground truth" map f:

D. Yarotsky 5 / 91

The concept of expressiveness

General idea: When the weights and possibly the architecture are varied, how significantly varies \tilde{f} ? How rich is the set of \tilde{f} 's?

Refinements:

- (Regression) How efficiently can we approximate the given map $f:[0,1]^{\nu}\to\mathbb{R}$ by NN's?
- (Classification) How big is the set of Boolean maps $\widetilde{f}:X \to \{-1,+1\}$ implementable by NN's?
- (for ReLU networks) How many linear pieces can the function $\widetilde{f}(\mathbf{x})$ have?
- (Topology) How many connected components can $\widetilde{f}^{-1}(y)$ have?
- ...

Expressiveness = F(Network complexity)

D. Yarotsky 6 / 91

Approximation with one-hidden-layer networks

A good survey: A. Pinkus, Approximation theory of the MLP model in neural networks, 1999

A one-hidden-layer network:

$$\widetilde{f}(\mathbf{x}) = \sum_{n=1}^{N} c_n \sigma \left(\sum_{k=1}^{\nu} w_{nk} x_k + h_n \right) + h$$

$$\nu = 3, N = 4$$

D. Yarotsky 7 / 91

Uniform approximation on compact sets

Recall:

- A subset K of a topological space is $compact \stackrel{\text{def}}{\Longleftrightarrow}$ any open cover of K has a finite subcover
- A subset $K \subset \mathbb{R}^{\nu}$ is compact $\iff K$ is bounded and closed

Uniform (or L^{∞}) norm on C(K): $||f||_{\infty} = \sup_{\mathbf{x} \in K} |f(\mathbf{x})|$

Uniform approximation on K: given $f: K \to \mathbb{R}$, for any $\epsilon > 0$ find $\widetilde{f}: K \to \mathbb{R}$ such that $\|\widetilde{f} - f\|_{\infty} < \epsilon$

Uniform approximation on compact sets in \mathbb{R}^{ν} : given $f: \mathbb{R}^{\nu} \to \mathbb{R}$, for any compact $K \subset \mathbb{R}^{\nu}$ and $\epsilon > 0$ find \widetilde{f} such that $\|(f - \widetilde{f})|_{K}\|_{\infty} < \epsilon$

Exercise: Why might it be reasonable to consider uniform approximation on compact sets in \mathbb{R}^{ν} rather than on whole \mathbb{R}^{ν} ? Will the following theorem remain valid in this case?

D. Yarotsky 8 / 91

The universal approximation theorem

Many versions; a nice one:

Theorem (Leshno et al.'93)

Suppose that the activation function σ is continuous. Then, the following are equivalent:

- **1** Any continuous $f: \mathbb{R}^{\nu} \to \mathbb{R}$ can be uniformly approximated on compact sets by one-hidden-layer σ -NN's
- \circ σ is not a polynomial.

Exercise: $1) \Longrightarrow 2$

The nontrivial part: $2) \Longrightarrow 1$

D. Yarotsky 9 / 91

Proof of UAT: reduction to 1D case

A ridge function $f \colon f(\mathsf{x}) = g(\mathsf{x} \cdot \mathsf{q})$ for some $\mathsf{q} \in \mathbb{R}^{\nu}$ and $g : \mathbb{R} \to \mathbb{R}$

Lemma

Any continuous $f: \mathbb{R}^{\nu} \to \mathbb{R}$ can be approximated by finite linear combinations of continuous ridge functions.

By the Lemma, proving UAT is reduced to the case $\nu=1$ (it remains to approximate $g(\cdot)$ by expressions $\sum_{n=1}^{N} c_n \sigma(w_n \cdot + h_n)$)

D. Yarotsky 10 / 91

Proof of the Lemma

Approximation by trigonometric polynomials:

- Given a compact $K \subset \mathbb{R}^{\nu}$, approximate $f|_{K}$ by a smooth function f_{1} supported on some $[-a,a]^{\nu}$
- Expand f_1 in a (multi-dimensional) Fourier series, $f_1(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^p} c_{\mathbf{k}} e^{\pi i \mathbf{k} \cdot \mathbf{x}/a}$
- By smoothness of f_1 , $|c_{\bf k}| = O(|{\bf k}|^{-\alpha})$ for any α
- Hence, f_1 can be approximated on K in $\|\cdot\|_{\infty}$ by finite trigonometric polynomials
- Each trigonometric monomial is a ridge function

Exercise: Give an alternative proof using Stone-Weierstrass theorem or polynomial approximation

D. Yarotsky 11 / 91

Weierstrass and Stone-Weierstrass theorems

Theorem (Weierstrass)

For any continuous $f:[a,b]\to\mathbb{R}$ and any $\epsilon>0$ there exists a polynomial f_1 such that $\max_{x\in[a,b]}|f(x)-f_1(x)|<\epsilon$.

- A subalgebra $A \subset C(X,\mathbb{R})$: a subspace closed under multiplication
- Subset A separates points of X: for any $x_1, x_2 \in X$ there exists $f \in A$ such that $f(x_1) \neq f(x_2)$

Theorem (Stone-Weierstrass)

Let X be a compact Hausdorff space (e.g., a compact metric space). Let A be a subalgebra in $C(X,\mathbb{R})$ separating points of X and containing $f\equiv 1$. Then A is dense in $C(X,\mathbb{R})$.

Application: denseness of trigonometric polynomials in $C([-a,a]^{\nu},\mathbb{R})$

D. Yarotsky 12 / 91

UAT: proof in the 1D case

Exercise: Give a direct proof in the special case of ReLU σ , by approximating f by a linear spline \widetilde{f} and writing

$$\widetilde{f}(x) = \sum_{n=1}^{N} c_n(x - h_n)_+$$

In general:

- First prove for $\sigma \in C^{\infty}(\mathbb{R})$
- **2** Then extend to general nonpolynomial $\sigma \in C(\mathbb{R})$

D. Yarotsky 13 / 91

Proof for $\sigma \in \mathcal{C}^{\infty}(\mathbb{R})$

Exercise: It suffices to show that for any n expressions $\sum_{k=0}^{N} c_k \sigma(w_k x + h_k)$ can approximate the monomial x^n

Proof of UAT. For given n, since σ is not a polynomial, we can find $x_0 \in \mathbb{R}$ such that $\frac{d^n \sigma}{dx^n}(x_0) \neq 0$. Then, the monomial x^n can be approximated by expressions $\sum_{k=0}^n c_k \sigma(w_k x + h_k)$:

$$\sigma(x_0 + wx) = \sigma(x_0) + o(1) \qquad (w \to 0)$$

$$\frac{1}{w}(\sigma(x_0+wx)-\sigma(x_0))=\frac{d\sigma}{dx}(x_0)x+o(1) \hspace{1cm} (w\to 0)$$

$$\frac{1}{w^2}(\sigma(x_0 + 2wx) - 2\sigma(x_0 + wx) + \sigma(x_0)) = \frac{d^2\sigma}{dx^2}(x_0)x^2 + o(1) \qquad (w \to 0)$$

٠.

$$\frac{1}{w^n} \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} \sigma(x_0 + kwx) = \frac{d^n \sigma}{dx^n} (x_0) x^n + o(1) \qquad (w \to 0)$$

D. Yarotsky 14 / 91

Proof for $\sigma \in C^{\infty}(\mathbb{R})$

Exercise: Prove above claim using Taylor expansion and the identity

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} k^{s} = \begin{cases} 0, & s = 0, \dots, n-1 \\ n!, & s = n \end{cases}$$

(verify the identity by differentiating the function $(t-1)^n$).

Remark: this approximation uses small weights w_k and large c_k

D. Yarotsky 15 / 91

Proof for general nonpolynomial $\sigma \in C(\mathbb{R})$

Suppose that some x^m cannot be approximated by $\sum_k c_k \sigma(w_k \cdot + h_k)$

Smoothen σ by convolving with a smooth kernel:

$$\sigma_{\phi} = \sigma * \phi, \quad \phi \in C_0^{\infty}(\mathbb{R})$$

 σ_{ϕ} can be approximated by finite linear combinations $\sum_{k} c_{k} \sigma(w_{k} \cdot + h_{k})$. Hence x^{m} cannot be approximated by $\sum_{k} c_{k} \sigma_{\phi}(w_{k} \cdot + h_{k})$.

But then, from the argument for smooth σ_{ϕ} , we get $\frac{d^{m}\sigma_{\phi}}{dx^{m}}\equiv 0$, i.e. σ_{ϕ} is a polynomial of degree < m.

Since ϕ was arbitrary, σ must also be a polynomial of degree < m.

D. Yarotsky 16 / 91

Absence of UAT: deep narrow networks

Fully-connected networks of "width" H and arbitrary depth. Example ($\nu=2$ inputs, width H=5):

Theorem (Hanin & Sellke, arXiv:1710.11278)

For given ν , width-H ReLU networks approximate any $f \in C(\mathbb{R}^{\nu})$ if and only if $H > \nu$.

D. Yarotsky 17 / 91

Proof that $H > \nu$ is necessary

Claim: $f(\mathbf{x}) = \sum_{s=1}^{\nu} x_s^2$ cannot be approximated by width- ν ReLU networks.

A *level set*: $\widetilde{f}^{-1}(a)$ for some $a \in \mathbb{R}$

Lemma

Let $S \subset \mathbb{R}^{\nu}$ be the set of input points on which all ReLU evaluations throughout the evaluation of \widetilde{f} are (strictly) positive. Then S is open and convex, \widetilde{f} is affine on S, and every bounded connected component of a level set of \widetilde{f} is contained in S.

Exercise: Prove the convexity, openness and affinity statements (easy)

Exercise: Derive the Theorem from the Lemma (easy)

D. Yarotsky 18 / 91

Proof of Lemma: bounded connected components of level sets are contained in S

Suppose $\mathbf{x} \in \widetilde{f}^{-1}(a)$ is not in S. We will show that \mathbf{x} belongs to an unbounded connected component of $\widetilde{f}^{-1}(a)$

Since $x \notin S$, when computing $\widetilde{f}(x)$, at some layer k one of the ReLU's is applied to a non-positive value. Assume k is the earliest such layer.

Let $\widetilde{f_i}$ denote the action of first j hidden layers:

$$\widetilde{f_j}(\mathsf{x}) = \mathsf{ReLU} \circ A_j \circ \cdots \mathsf{ReLU} \circ A_1(\mathsf{x}) : \mathbb{R}^{
u} o \mathbb{R}^{
u},$$

where ReLU is component-wise ReLU

Let s be the vanishing component of $\widetilde{f}_k(\mathbf{x})$, i.e. $(\widetilde{f}_k(\mathbf{x}))_s = 0$ Then $\text{ReLU}^{-1}(\widetilde{f}_k(\mathbf{x}))$ contains an infinite ray $R \ni A_k \circ \widetilde{f}_{k-1}(\mathbf{x})$:

$$R = \left\{ \mathbf{y} : y_m \left\{ \begin{array}{ll} \leq 0, & m = s \\ = (A_k \circ \widetilde{f}_{k-1}(\mathbf{x}))_m, & m \neq s \end{array} \right\} \right.$$

D. Yarotsky 19 / 91

Proof of Lemma: continued

Now observe that:

- For any $\mathbf{u} \in \mathbb{R}^{\nu}$ and linear $A : \mathbb{R}^{\nu} \to \mathbb{R}^{\nu}$, if $A\mathbf{u}$ belongs to some unbounded connected Q, then the connected component of $A^{-1}Q$ containing \mathbf{u} is unbounded¹ (Consider separately the cases of degenerate and non-degenerate A)
- The same holds if a linear transformation A is replaced by ReLU

Starting from $\mathbf{u} = \widetilde{f}_{k-1}(\mathbf{x})$ and Q = R and applying these observations for $A_k, \mathsf{ReLU}, A_{k-1}, \mathsf{ReLU}, \dots, A_1$, we see that \mathbf{x} is contained in an unbounded connected component of $A_1^{-1} \circ \dots \circ \mathsf{ReLU}^{-1} \circ A_k^{-1} \circ \mathsf{ReLU}^{-1}(\widetilde{f}_k(\mathbf{x}))$, which is in turn a subset of $\widetilde{f}^{-1}(a)$.

D. Yarotsky 20 / 91

¹Remark: this wouldn't be true with $H > \nu$.

Open (?) problems

- Give a necessary and sufficient condition for a function $f \in C(\mathbb{R}^{\nu})$ to be approximable by width- ν ReLU networks (no bounded connected components in level sets?)
- What are the minimal networks widths for other activation functions?

A sufficient condition for rather general activations: Kidger & Lyons, arXiv:1905.08539 (2019)

Exercise: Consider the family of ReLU networks that have width $H>\nu$ in every layer except for, say, layer 10, in which they have only $\nu-1$ neurons. Show that this family does not have the universal approximation property.

D. Yarotsky 21 / 91

Way forward: approximation rates

The universal approximation property: only a **qualitative** assurance of approximability

Any **quantitative** estimates of how efficiently can various functions be approximated by neural networks?

That requires us:

- to make more detailed assumptions about the class of fitted function, e.g. their smoothness (**Sobolev spaces**);
- to quantify the model complexity (Parametric approximations)

D. Yarotsky 22 / 91

L^p norms/spaces

 L^p norms of functions $f: \Omega \to \mathbb{R}, \Omega \subset \mathbb{R}^{\nu}$:

$$||f||_p = \begin{cases} \left(\int_{\Omega} |f(\mathbf{x})|^p d\mathbf{x} \right)^{1/p}, & 1 \le p < \infty \\ \operatorname{ess\,sup}_{\mathbf{x} \in \Omega} |f(\mathbf{x})|, & p = \infty \end{cases}$$

Exercise: Assuming $\int_{\Omega} d\mathbf{x} < \infty$, show that $\|f\|_{\infty} = \lim_{p \to +\infty} \|f\|_p$

L^p spaces:

$$L^{p}(\Omega) = \{ f : \Omega \to \mathbb{R} : ||f||_{p} < \infty \} / \{||f|| = 0 \}$$

Exercise*: for $p \in [1, \infty]$, $L^p(\Omega)$ is a Banach space (normed + metrically complete)

D. Yarotsky 23 / 91

Sobolev spaces: general idea

Banach spaces
$$\mathcal{W}^{d,p}(\Omega) = \{f : \Omega \to \mathbb{R} | \|f\|_{d,p} < \infty\}$$

- ullet $\Omega\subset\mathbb{R}^{
 u}$
- d: number of derivatives
- $p \in [1, \infty]$ (as in L^p)

$$||f||_{d,p} = \sum_{\mathbf{k}:|\mathbf{k}| \le d} ||D^{\mathbf{k}}f||_{p} \qquad |\mathbf{k}| = \sum_{s=1}^{r} k_{s}$$

A rigorous definition ensuring completeness?

D. Yarotsky 24 / 91

Sobolev spaces: rigorous definitions

Approach 1: first take functions $f \in C^{\infty}(\Omega)$ with finite norm $||f||_{d,p}$, then define $\mathcal{W}^{d,p}(\Omega)$ as their $||\cdot||_{d,p}$ -completion

Approach 2: define $\mathcal{W}^{d,p}(\Omega)$ as the space of all f's having weak derivatives up to degree d in L^p

(A weak derivative
$$(\frac{\partial f}{\partial x_s})_w$$
: $\int_{\Omega} (\frac{\partial f}{\partial x_s})_w(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x} = -\int_{\Omega} f(\mathbf{x}) \frac{\partial \phi}{\partial x_s}(\mathbf{x}) d\mathbf{x}$ for any $\phi \in C_0^{\infty}(\Omega)$)

The two approaches are equivalent for $p < \infty$ (Meyers-Serrin theorem), but not for $p = \infty$ (Def.2 gives a larger space)

Exercise: Let f(x) = |x|. Then $f \in \mathcal{W}^{1,\infty}([-1,1])$ in the sense of Def.2, but not Def.1.

D. Yarotsky 25 / 91

Sobolev spaces: further properties

Exercise: Describe the values d, p, ν for which $f \in \mathcal{W}^{d,p}(\mathbb{R}^{\nu})$ may have a singularity $\sim |\mathbf{x}|^{\alpha}$ with $\alpha < 0$.

Exercise: (With Def.2) For $d \ge 1$, $\mathcal{W}^{d,\infty}$ consists of functions that are globally Lipschitz along with their derivatives up to degree d-1.

(**Def**: f is Lipschitz (with Lipschitz constant L) if $|f(\mathbf{x}) - f(\mathbf{y})| \le L ||\mathbf{x} - \mathbf{y}||$ for all \mathbf{x}, \mathbf{y})

D. Yarotsky 26 / 91

Parametric approximation

Suppose approximation has the form $f_W = M_W(P_W(f))$, where

- ullet $f \in K$, where K is the set of functions that we want to approximate
- ullet $\mathcal{K}\subset\mathcal{F}$, where \mathcal{F} is a normed functional space (e.g. $\mathcal{F}=\mathcal{C}([0,1]))$
- W : number of parameters
- $P_W: K \to \mathbb{R}^W$: parameter assignment map $(f \mapsto \mathbf{W})$
- $M_W : \mathbb{R}^W \mapsto \mathcal{F}$: reconstruction map $(\mathbf{W} \mapsto \widetilde{f})$

E.g., in the case of ANNs, P_W corresponds to fitting the weights using some fixed architecture

D. Yarotsky 27 / 91

Isn't this framework too general?

The class of general parametric approximations is too wide!

Exercise: Let K be compact. Then, for W=1, there is a smooth maps M_W such that $K \subset \overline{M_W(\mathbb{R})}$.

(https://en.wikipedia.org/wiki/Space-filling_curve)

Linear M_W : a good class of approximations, but the linearity constraint is too restrictive

A reasonable framework admitting nonlinear M_W , but avoiding unnatural examples?

D. Yarotsky 28 / 91

Continuous parametric approximations

Key requirement: parameter assignment P_W is **continuous** (Remark: no assumption on the reconstruction map $M_W!$)

Exercise: Why does this requirement exclude "Peano curve" constructions?

D. Yarotsky 29 / 91

Optimal approximation

Optimal approximation (a.k.a. continuous nonlinear W-width):

$$h_W = \inf_{P_W \text{ cont.}, M_W} \sup_{f \in K} \|f - M_W(P_W(f))\|$$

Key result: Let K be a ball in $\mathcal{W}^{d,p}([0,1]^{\nu})$ and $\mathcal{F}=L^p([0,1]^{\nu})$. Then

$$h_W \simeq W^{-d/\nu}$$

Remark: $\frac{\nu}{d}$ can be interpreted as a "complexity" of the ball K

Remark: Typically, in "classical" linear approximation methods (e.g., Fourier series expansion or wavelets), the approximation rate agrees with the optimal continuous rate: $\|\widetilde{f}_W - f\|_{\infty} = \widetilde{O}(W^{-d/\nu})$

D. Yarotsky 30 / 91

The lower bound

Theorem (DeVore, Howard, Micchelli 1989)

Let $K = B_{d,p,\nu}$ be the unit ball in $W^{d,p}([0,1]^{\nu})$, and $\mathcal{F} = L^p([0,1]^{\nu})$. Then $h_W > CW^{-d/\nu}$ for some constant $C(d,p,\nu)$.

D. Yarotsky 31 / 91

Sketch of proof for $p = \infty$ – beginning

Fix some $\phi \in C^{\infty}(\mathbb{R}^{\nu})$ such that $\phi(\mathbf{x}) = 0$ if $|\mathbf{x}| > \frac{1}{2}$.

For a given $N \in \mathbb{N}$, consider the grid $G_N = \{\frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}\}^{\nu} \subset [0, 1]^{\nu}$. Note that $|G_N| = N^{\nu}$.

Consider the map $\Phi_N: [-1,1]^{G_N} \to \mathcal{W}^{d,p}([0,1]^{\nu})$ that places rescaled, shifted and weighted functions ϕ ("spikes") at the grid points:

$$\Phi_N(\{c_{\mathbf{n}}\}_{\mathbf{n}\in G_N}) = CN^{-d} \sum_{\mathbf{n}\in G_N} c_{\mathbf{n}} \phi(N(\cdot - \mathbf{n}))$$
(In this example, $c_{\mathbf{n}}$

(In this example, $c_n \in \{0, 1\}$)

If C is small enough, then $\Phi_N([-1,1]^{G_N}) \subset B_{d,\infty,\nu}$ for any N

D. Yarotsky 32 / 91

Sketch of proof – continued

Lemma (Borsuk-Ulam antipodality theorem)

Suppose that g maps continuously the n-dimensional sphere S^n to \mathbb{R}^n . Then there exist $x \in S^n$ such that g(x) = g(-x).

Exercise: prove for n = 1.

D. Yarotsky 33 / 91

Sketch of proof – end

Let
$$\mathcal{D} = \partial([-1,1]^{G_N})$$
, then $\mathcal{D} \cong S^{N^{\nu}-1}$.

Consider the map $g=P_W\circ\Phi_N$ on $\mathcal{D}.$ By Borsuk-Ulam, if $W\leq N^\nu-1$, then there exists $\mathbf{x}\in\mathcal{D}$ such that $P_W(\Phi_N(\mathbf{x}))=P_W(\Phi_N(-\mathbf{x})).$

Then,

$$\begin{split} \sup_{f \in K} \|f - M_W(P_W(f))\|_{\infty} & \geq \max \left(\|\Phi_N(\mathbf{x}) - M_W(P_W(\Phi_N(\mathbf{x})))\|_{\infty}, \\ \|\Phi_N(-\mathbf{x}) - M_W(P_W(\Phi_N(-\mathbf{x})))\|_{\infty} \right) \\ & \geq \frac{1}{2} \|\Phi_N(\mathbf{x}) - \Phi_N(-\mathbf{x})\|_{\infty} \\ & = CN^{-d} \|\phi\|_{\infty}. \end{split}$$

Taking $N \sim W^{1/\nu}$, we get $\sup_{f \in K} \|f - M_W(P_W(f))\| \ge CW^{-d/\nu}$.

D. Yarotsky 34 / 91

The upper bound

Proposition

- Let $K = B_{d,\infty,\nu}$ be the unit ball in $\mathcal{W}^{d,\infty}([0,1]^{\nu})$. Then $h_W \leq CW^{-d/\nu}$.
- The bound can be attained with linear maps P_W, M_W.

Proof.

Take $\phi \in C_0(\mathbb{R}^{\nu}), 0 \le \phi \le 1$, such that the spikes $\{\phi(N(\cdot - \mathbf{n}))\}_{\mathbf{n} \in G_N}$ form a partition of unity:

$$\sum_{\mathbf{n}\in\mathcal{G}_N}\phi(N(\mathbf{x}-\mathbf{n}))\equiv 1,\quad \mathbf{x}\in[0,1]^{
u}.$$

Let:

$$P_{W}(f) = \{D^{\mathbf{k}}f(\mathbf{n})\}_{\mathbf{n} \in G_{N}, |\mathbf{k}| \leq d-1} \in \mathbb{R}^{cN^{\nu}}$$

$$M_{W}(\{w_{\mathbf{k}}(\mathbf{n})\}_{\mathbf{n} \in G_{N}, |\mathbf{k}| \leq d-1}) = \sum_{\mathbf{n} \in G_{N}} \phi(N(\mathbf{x} - \mathbf{n})) \sum_{|\mathbf{k}| \leq d-1} \frac{w_{\mathbf{k}}(\mathbf{n})}{\mathbf{k}!} (\mathbf{x} - \mathbf{n})^{\mathbf{k}}$$

D. Yarotsky 35 / 91

The upper bound – continued

Exercise: P_W is continuous on K

Claim:
$$||f - M_W(P_W(f))||_{\infty} \leq CN^{-d}$$

$$|f(\mathbf{x}) - M_W(P_W(f))| = \Big| \sum_{\mathbf{n} \in G_N} \phi(N(\mathbf{x} - \mathbf{n})) \Big[f(\mathbf{x}) - \sum_{|\mathbf{k}| \le d - 1} \frac{D^{\mathbf{k}} f(\mathbf{n})}{\mathbf{k}!} (\mathbf{x} - \mathbf{n})^{\mathbf{k}} \Big] \Big|$$

$$\leq \sum_{\substack{\text{finitely many } \mathbf{n} \in G_N: \\ |\mathbf{n} - \mathbf{x}|_{\infty} < c/N}} \Big| f(\mathbf{x}) - \sum_{|\mathbf{k}| \le d - 1} \frac{D^{\mathbf{k}} f(\mathbf{n})}{\mathbf{k}!} (\mathbf{x} - \mathbf{n})^{\mathbf{k}} \Big|$$

$$\leq CN^{-d}$$

(by a Taylor remainder bound)

Since
$$W=cN^{\nu}$$
, we get $\|f-M_W(P_W(f))\|_{\infty}\leq CW^{-d/\nu}$

D. Yarotsky 36 / 91

Example: Fourier series approximation

$$f(\mathbf{x}) \sim \sum_{\mathbf{n} \in \mathbb{Z}^{\nu}} c_{\mathbf{n}} e^{2\pi i \mathbf{n} \cdot \mathbf{x}}, \qquad \mathbf{x} \in [0, 1]^{\nu}$$

(= a shallow NN with fixed hidden layer weights and activation sin)

Linear parameter assignment P_W and reconstruction M_W :

$$c_{\mathbf{n}} = \int_{[0,1]^{\nu}} f(\mathbf{x}) e^{-2\pi i \mathbf{n} \cdot \mathbf{x}} d\mathbf{x}, \qquad \widetilde{f}_{W}(\mathbf{x}) = \sum_{\mathbf{n} \in \mathbb{Z}^{\nu} : |\mathbf{n}| \leq N} c_{\mathbf{n}} e^{2\pi i \mathbf{n} \cdot \mathbf{x}}, \quad N \sim W^{1/\nu}$$

Using the abstract theory we expect:

$$\|\widetilde{f}_W - f\|_{\infty} \gtrsim W^{-d/\nu} \sim N^{-d}$$

• Compare with classical Jackson theorem for $\nu=1$:

$$\|\widetilde{f}_W - f\|_{\infty} \le C \frac{\ln N}{N^d} \omega(\frac{1}{N}),$$

37 / 91

where ω is the modulus of continuity of $\frac{d^df}{dx^d}$

D. Yarotsky

Do neural networks achieve optimal approximation rates?

For ReLU networks, we'll show:

- Yes for deep networks
- No for shallow networks

D. Yarotsky 38 / 91

Efficient approximation by deep ReLU networks

Consider increasingly complex f's:

$$f(x) = x^{2}$$

$$xy = \frac{1}{4}((x+y)^{2} - (x-y)^{2})$$
General **polynomial** f

$$| \text{local Taylor expansion}$$
General **smooth** f

D. Yarotsky 39 / 91

The sawtooth functions (Telgarsky, arXiv:1602.04485)

The "tooth" function

$$g(x) = \begin{cases} 2x, & x < \frac{1}{2} \\ 2(1-x), & x \ge \frac{1}{2} \end{cases}$$
$$= 2(x)_{+} - 4(x-0.5)_{+} + 2(x-1)_{+}$$

Iterated "sawtooth" functions with 2^{m-1} "teeth":

$$g_m(x) = \underbrace{g \circ g \circ \cdots \circ g}_{m}(x)$$

D. Yarotsky 40 / 91

Efficient implementation of $f(x) = x^2$ (arxiv:1610.01145)

Let

$$\widetilde{f}_m(x) = x - \sum_{k=1}^m \frac{g_k(x)}{2^{2k}}$$

Then

$$\|\widetilde{f}_m(x) - x^2\|_{C[0,1]} = \frac{1}{2^{2m+2}}$$

D. Yarotsky 41 / 91

Extension to polynomials

Multiplication reduces to squaring thanks to polarization identity:

$$xy = \frac{1}{4}((x+y)^2 - (x-y)^2)$$

Exercise: A fixed polynomial on a bounded domain can be implemented with accuracy ϵ using a ReLU network with $O(\log(1/\epsilon))$ layers, neurons and connections.

D. Yarotsky 42 / 91

Extension to Sobolev balls

Let $K = B_{d,p=\infty,\nu}$ (the Sobolev unit ball).

We look for P_W , M_W such that

$$\sup_{f \in K} \|f - M_W(P_W(f))\|_{\infty} < \epsilon \tag{1}$$

Theorem

Eq.(1) can be fulfilled with linear maps P_W , M_W , where M_W is implemented by a ReLU network with $W = O(\epsilon^{-\nu/d} \log(1/\epsilon))$ weights and $O(\log(1/\epsilon))$ layers.

Sketch of proof: follow the proof of the upper bound $h_W = O(W^{-d/\nu})$; approximate Taylor polynomials by ReLU subnetworks.

D. Yarotsky 43 / 91

Extension to analytic functions

Let f be (real) analytic in a neighborhood of $[a, b] \subset \mathbb{R}$.

Exercise (cf. Liang & Srikant, arxiv:1610.04161) $||f - \widetilde{f}||_{C[a,b]} < \epsilon$ can be achieved with \widetilde{f} implemented by a ReLU network with $O(\log^2(1/\epsilon))$ layers and connections.

D. Yarotsky 44 / 91

Counting linear pieces in \widetilde{f}

Let $\widetilde{f}:[0,1]\to\mathbb{R}$ be implemented by a ReLU network with L hidden layers and U neurons. Then \widetilde{f} is piecewise linear on [a,b]. Let M denote the number of pieces.

Lemma (Telgarsky, arXiv:1602.04485)

$$M \leq (2U)^L$$

Proof. By induction. For $n \leq L$, suppose that [0,1] can be divided into N_n intervals $[a_{n,k},b_{n,k}]_{k=1}^{N_n}$ such that the outputs of all neurons of all layers < n are affine functions (without breakpoints) on these intervals. In particular, $N_1 = 1$ and $[a_{1,1},b_{1,1}] = [0,1]$.

Consider the action of the n'th layer on one $[a_{n,k},b_{n,k}]$. Each neuron in this layer can create at most one breakpoint in this interval. Therefore, $N_{n+1} \leq (U_n+1)N_n$, where U_n is the number of neurons in the n'th layer. So, $N_{l+1} \leq (U_l+1)(U_l+1) \cdots (U_l+1) \leq (2U)^L$.

D. Yarotsky 45 / 91

Fixed-depth ReLU nets: approximation of $f(x) = x^2$ is slow

Proposition

To approximate $f(x) = x^2$ on [0,1] with uniform accuracy ϵ , a ReLU network with L hidden layers requires at least $\frac{1}{2}(8\epsilon)^{-1/(2L)}$ computation units and weights.

Proof. If \widetilde{f} is linear on [a, b], then $\max_{x \in [a,b]} |\widetilde{f}(x) - x^2| \ge \frac{(b-a)^2}{8}$.

By counting lemma, if the network has U neurons, then we can find such an interval of linearity with $b-a \geq (2U)^{-L}$. Therefore $\epsilon \geq \frac{(2U)^{-2L}}{8}$, and then $U \geq \frac{1}{2}(8\epsilon)^{-1/(2L)}$.

Conclusion: To approximate $f(x) = x^2$, fixed-depth ReLU networks require a faster complexity growth $(\gtrsim \epsilon^{-1/(2L)})$ than arbitrary-depth ones $(O(\log(1/\epsilon)))$

D. Yarotsky 46 / 91

Vapnik-Chervonenkis (VC) dimension: overview

VC-dimension: characterizes expressiveness of classifiers

Our goal: examine VC-dimension of networks and related models

Sources:

- (main) M. Anthony, P. Bartlett, Neural Network Learning: Theoretical Foundations, 1999. Chapters 3, 6 – 8
- M. Raginsky, Vapnik-Chervonenkis classes

D. Yarotsky 47 / 91

The growth function

H: some family of maps $X \to \{0,1\}$ (e.g., all neural networks of given architecture with thresholded output)

 $H|_{S}$: restrictions of maps $f \in H$ to a subset $S \subset X$

The growth function:

$$\Pi_H(m) = \sup_{S \subset X, |S| = m} |H|_S|$$

Exercise: Compute the growth function $(X = \mathbb{R})$:

- **1** $H = \{f_{a,b}\}_{a,b \in \mathbb{R}}; f_{a,b}(x) = \operatorname{sgn}(ax + b) \text{ (where } \operatorname{sgn}(x) := \mathbf{1}_{(0,+\infty)}(x)\text{)}$
- $H = \{f_a\}_{a \in \mathbb{R}}; f_a(x) = \operatorname{sgn}(\sin(ax))$

D. Yarotsky 48 / 91

VC-dimension

$$S \subset X$$
 is shattered by $H: H|_S$ implements all possible $2^{|S|}$ maps $S \to \{0,1\}$

VC-dimension:

VCdim(H) = sup{m :
$$|S| = m$$
 and S is shattered by H}
= sup{m : $\Pi_H(m) = 2^m$ }

Exercise: $\Pi_H(m) = 2^m$ for all $m \leq VCdim(H)$

Exercise: Compute VCdim for families H from the previous exercise. Show that VCdim($\{sgn(sin(ax))\}$) = ∞ .

D. Yarotsky 49 / 91

The Sauer-Shelah lemma (good exposion: Wikipedia)

By definition, the growth function Π_H determines VCdim(H)

Conversely, VCdim(H) restricts Π_H :

Theorem (Sauer-Shelah)

$$\Pi_H(m) \leq \sum_{k=0}^{\mathsf{VCdim}(H)} \binom{m}{k}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} := \begin{cases} \frac{a!}{b!(a-b)!}, & a \ge b \\ 0, & a < b \end{cases}$$

Theorem (Pajor)

H shatters at least $|H|_S|$ subsets of S (including \emptyset).

Exercise: Pajor \Longrightarrow Sauer-Shelah (use that S has $\sum_{k=0}^{d} {|S| \choose k}$ subsets of size $\leq d$ and then there must be at least one large shattered subset)

D. Yarotsky 50 / 91

Proof of Pajor theorem

Let $\mathcal{F} = H|_{\mathcal{S}}$. Proof by induction on $|\mathcal{F}|$. The base of induction: $|\mathcal{F}| = 1$, then H shatters \emptyset .

Let us prove theorem for given \mathcal{F} assuming it holds for smaller sizes. Take some $\mathbf{x} \in S$ such that both $\mathcal{F}_0 = \{f \in \mathcal{F} : f(\mathbf{x}) = 0\}$ and $\mathcal{F}_1 = \{f \in \mathcal{F} : f(\mathbf{x}) = 1\}$ are nonempty.

We have $\mathcal{F}=\mathcal{F}_0\sqcup\mathcal{F}_1, |\mathcal{F}|=|\mathcal{F}_0|+|\mathcal{F}_1|$. By induction assumption, theorem holds for \mathcal{F}_0 and \mathcal{F}_1 . Let

$$A_k = \{Q \subset S : Q \text{ is shattered by } \mathcal{F}_k\}, \quad k = 0, 1,$$

then $|A_0|+|A_1|\geq |\mathcal{F}_0|+|\mathcal{F}_1|=|\mathcal{F}|$. Note that if $Q\in A_0$ or $Q\in A_1$, then $\mathbf{x}\notin Q$.

Let

$$A = (A_0 \cup A_1) \cup \{Q \cup \{x\} : Q \in A_0 \cap A_1\}$$

Then $|A| = |A_0| + |A_1|$, and any $Q \in A$ is shattered by \mathcal{F} .

A more convenient bound on the growth function

Lemma

For $m \ge d \ge 1$,

$$\sum_{k=0}^{d} \binom{m}{k} \le \left(\frac{em}{d}\right)^{d}$$

Proof:

$$\sum_{k=0}^{d} \binom{m}{k} \le \left(\frac{m}{d}\right)^{d} \sum_{k=0}^{d} \binom{m}{k} \left(\frac{d}{m}\right)^{k} \le \left(\frac{m}{d}\right)^{d} \left(1 + \frac{d}{m}\right)^{m} \le \left(\frac{em}{d}\right)^{d}$$

Corollary: If VCdim(H) = d, then

$$\Pi_{H}(m) \begin{cases} = 2^{m}, & m \leq d \\ \leq \left(\frac{em}{d}\right)^{d}, & m > d \end{cases}$$

In particular, $\Pi_H(m)$ grows exponentially for $m \leq d$, but polynomially for m > d.

D. Yarotsky 52 / 91

The simple perceptron model

Simple perceptron: $X = \mathbb{R}^{\nu}$, $H = \{ sgn(f_{\mathbf{w},h}) \}_{\mathbf{w} \in \mathbb{R}^{\nu}, h \in \mathbb{R}}$, where $f_{\mathbf{w},h}(\mathbf{x}) = \mathbf{w}^t \mathbf{x} - h$, i.e.

$$\operatorname{sgn}(f_{\mathbf{w},h}(\mathbf{x})) = \begin{cases} 1, & \mathbf{w}^t \mathbf{x} - h > 0 \\ 0, & \operatorname{otherwise} \end{cases}$$

Theorem

- **2** $VCdim(H) = \nu + 1$

Exercise: $1) \Longrightarrow 2$

D. Yarotsky 53 / 91

Proof: step 1 - Topological reduction

CC(A): number of connected components in the set A

Lemma

Let $S = \{x_1, \dots, x_m\} \subset \mathbb{R}^{\nu+1}$. Define

$$P_i = \{(\mathbf{w}, h) \in \mathbb{R}^{\nu} : f_{\mathbf{w}, h}(\mathbf{x}_i) = 0\}$$
$$= \{(\mathbf{w}, h) \in \mathbb{R}^{\nu+1} : \mathbf{w}^t \mathbf{x}_i - h = 0\}$$

Then

$$|H|_{\mathcal{S}}|=\mathsf{CC}(\mathbb{R}^{\nu+1}\setminus \cup_{i=1}^m P_i)$$

Sketch of proof. Each connected component corresponds to an element of $H|_S$, so $|H|_S| \leq CC(\mathbb{R}^{\nu+1} \setminus \bigcup_{i=1}^m P_i)$.

Moreover, an element of $H|_S$ corresponds to only one connected component since the sets $\{(\mathbf{w},h)\in\mathbb{R}^{\nu+1}:\pm f_{\mathbf{w},h}(\mathbf{x}_i)>0\}$ are convex and have a convex intersection.

Proof: step 2 – Combinatorics

Let $\widetilde{\mathbf{x}} = (\mathbf{x}, -1)$ and $\widetilde{\mathbf{w}} = (\mathbf{w}, h)$, then we can write

$$P_i = \{\widetilde{\mathbf{w}} \in \mathbb{R}^{\nu+1} : \widetilde{\mathbf{w}}^t \widetilde{\mathbf{x}}_i = 0\}$$

Assume $\{\widetilde{\mathbf{x}_i}\}_{i=1}^m$ are in general position, i.e. any subset of up to $\nu+1$ points are linearly independent.

Define
$$C(m, \nu) := \mathsf{CC}(\mathbb{R}^{\nu+1} \setminus \cup_{i=1}^m P_i)$$

Lemma

$$C(m+1,\nu) = C(m,\nu) + C(m,\nu-1)$$

Proof: When we add a new hyperplane P_{m+1} , the number of CC in $\mathbb{R}^{\nu+1}\setminus \bigcup_{i=1}^m P_i$ is increased by the number of CC in $P_{m+1}\setminus \bigcup_{i=1}^m P_i$.

D. Yarotsky 55 / 91

 \neg

Proof: step 2 – Combinatorics (cont-d)

Exercise: $C(m,0) \equiv C(1,\nu) \equiv 2$

$$C(m,\nu) = C(m-1,\nu) + C(m-1,\nu-1)$$

$$= C(m-2,\nu) + 2C(m-2,\nu-1) + C(m-2,\nu-2)$$

$$= ...$$

$$= C(1,\nu) + {m-1 \choose 1}C(1,\nu-1) + {m-1 \choose 2}C(1,\nu-2) + \dots + {m-1 \choose \nu}C(1,0)$$

$$= 2\sum_{k=0}^{\nu} {m-1 \choose k}$$

D. Yarotsky 56 / 91

Computation of VCdim(Perceptron): Summary

- **1** (topology) Reduce computation of the growth function Π_H to computation of $CC(\mathbb{R}^{\nu+1}\setminus \bigcup_{i=1}^m P_i)$
- \bigcirc (combinatorics) Compute $CC(\mathbb{R}^{\nu+1} \setminus \bigcup_{i=1}^m P_i)$
- **3** Compute VCdim via Π_H

D. Yarotsky 57 / 91

An alternative computation

Exercise: Give an alternative proof that $VCdim(Perceptron) = \nu + 1$:

- Show that the perceptron shatters the set $\{{\bf 0},{\bf e}_1,\ldots,{\bf e}_\nu\}$ and hence VCdim $\geq \nu+1$
- Show that VCdim $\leq \nu+1$ as follows. Suppose that $|S|>\nu+1$, then the vectors $\widetilde{\mathbf{x}}_i$ are linearly dependent and some $\widetilde{\mathbf{x}}_k$ can be linearly expressed through the others, e.g. $\widetilde{\mathbf{x}}_{|S|}=\sum_{i=1}^{|S|-1}a_i\widetilde{\mathbf{x}}_i$. Then, if

$$\operatorname{sgn}(f_{\widetilde{\mathbf{w}}}(\mathbf{x}_i)) = \begin{cases} 1, & a_i > 0 \\ 0, & a_i \leq 0 \end{cases}$$

for $i=1,\ldots,|S|-1$, then $\operatorname{sgn}(f_{\widetilde{\mathbf{w}}}(\mathbf{x}_{|S|}))=1$, i.e. S is not shattered.

D. Yarotsky 58 / 91

Dependence of VCdim on the number of parameters?

Perceptron: VCdim equals the number of degrees of freedom in the perceptron (i.e., $\nu+1$)

Deep nets: VCdim scales as the product of the number of parameters and depth

D. Yarotsky 59 / 91

Deep networks

Existing results for deep ReLU and piecewise linear networks²:

$$cWL \log(W/L) \le VCdim(W, L) \le CWL \log W$$
,

where

- W: total weights; L: depth; c, C: global constants
- VCdim(W, L): largest VC-dimension of a piecewise linear network with W parameters and L layers

Proofs:

- Upper bound: bounding the growth function Π_H
- Lower bound: an explicit construction ("bit-extraction technique")

The methods extend to more general models (piecewise polynomial activations, general arithmetic networks, etc.) 3

D. Yarotsky 60 / 91

 $^{^2\}text{P.}$ Bartlett et al., Nearly-tight VC-dimension bounds for piecewise linear neural networks, arXiv:1703.02930

³Anthony-Bartlett, Ch.8

Proof of the upper bound: main ideas

- (topology) Π_H can be upper bounded by counting connected components in various intersections of level sets of f, where $H = \{ sgn(f) \}$
- (combinatorics) For ReLU and piecewise polynomial networks, the weight space \mathbb{R}^W can be split into subsets corresponding to polynomial computational branches
- (algebraic geometry) In a polynomial branch, apply bounds on the number of CC in algebraic sets.

D. Yarotsky 61 / 91

Polynomial dependence on the weights

Exercise: Consider a neural network $y = f(\mathbf{x}, \mathbf{w})$ of depth L, where the activation function is piecewise polynomial with degree at most d. Then, in each smooth computational branch, $f(\mathbf{x}, \cdot)$ for fixed \mathbf{x} is a polynomial in \mathbf{w} of degree not greater than:

$$egin{cases} L, & d=1 ext{ (e.g., ReLU)} \ (d+1)^L, & d\geq 1 \end{cases}$$

Algebraic sets: $\bigcap_{k=1}^{N} \{ \mathbf{w} : f_k(\mathbf{w}) = 0 \}$ with polynomial f_k

Semi-algebraic sets: $\bigcap_{k=1}^{N} \{ \mathbf{w} : f_k(\mathbf{w}) (= \text{ or } >) 0 \}$ with polynomial f_k

D. Yarotsky 62 / 91

Algebraic geometry

Theorem (Oleinik-Petrovsky, Milnor, Thom,...)

Let $f: \mathbb{R}^W \to \mathbb{R}$ be a polynomial of degree I. Then the number of connected components of $\{\mathbf{w} \in \mathbb{R}^W : f(\mathbf{w}) = 0\}$ is no more than $I^{W-1}(I+2)$.

Exercise: Let $f(\mathbf{w}) = \sum_{k=1}^{W} (w_k - 1)^2 (w_k - 2)^2 \cdots (w_k - I/2)^2$. How many CC's does the set $\{\mathbf{w} : f(\mathbf{w}) = 0\}$ have?

Related, but simpler results:

Proposition (from main theorem of algebra)

Let $f : \mathbb{R} \to \mathbb{R}$ be a polynomial of degree I. Then the number of roots $\{w \in \mathbb{R} : f(w) = 0\}$ is no more than I.

Theorem (Bézout)

Consider two algebraic curves in \mathbb{R}^2 defined as the zero sets of polynomials $f,g:\mathbb{R}^2\to\mathbb{R}$. Then they intersect at no more than $\deg(f)\cdot\deg(g)$ points.

The bit extraction technique (Bartlett-Maiorov-Meir '98)

Given a number $a=0.b_1b_2...$, the bits $b_1,b_2,... \in \{0,1\}$ can be extracted by a deep ReLU network:

D. Yarotsky 64 / 91

Proof of the lower bound

A ReLU network with W weights and L layers that has VCdim $\geq cWL$ (i.e., asymptotically almost maximally expressive):

- Use bit expansion of real numbers: $a = 0.b_1b_2...b_N$ with $b_n \in \{0,1\}$
- Construct a finite network that maps $0.b_1b_2... \mapsto (b_1, 0.b_2b_3...)$ (i.e., $a \mapsto (|2a|, 2a |2a|)$)
- By stacking, construct a depth-O(N) network extracting all bits: $a \mapsto (b_1, b_2, \dots, b_N)$
- Extend this to a network \mathcal{N}_1 with M inputs that computes $a = \sum_{m=1}^{M} w_m x_m$ in the first layer, and then extracts the digits of a

D. Yarotsky 65 / 91

Proof continued

- Construct a finite network multiplying numbers from the set $\{0,1\}$
- Construct the final network \mathcal{N} by adding to \mathcal{N}_1 a subnetwork with N binary inputs z_1, \ldots, z_N that computes $y = \sum_{n=1}^N b_n z_n$.⁴
- Observe: when $\mathbf{x} = \mathbf{e}_m$ and $\mathbf{z} = \mathbf{e}_n$, \mathcal{N} computes the n'th bit of w_m
- \mathcal{N} shatters the set $\{(\mathbf{x},\mathbf{z})=(\mathbf{e}_m,\mathbf{e}_n)\}_{m,n=1}^{M,N}$ of size MN (by choosing arbitrary bit expansions of the weights w_1,\ldots,w_M)
- $\mathcal N$ has size O(N+M) and depth O(N); choose $M\sim N$ to get VCdim > cWL

D. Yarotsky 66 / 91

⁴If we want connections to be only between neighboring layers, then we can ensure the size of \mathcal{N}_1 is increased only by O(N) if we compress $z = \sum_{n=1}^{N} 2^{-n} z_n$ and then reconstruct z_1, z_2, \ldots from z as before.

Sketch of network layout

D. Yarotsky 67 / 91

VCdim: application in Statistical Learning Theory⁵

Ground truth: $y_* = y_*(\mathbf{x}) \in \{-1, 1\}$, where $\mathbf{x} \in X$ and has a particular probability distribution

A classifier: $g: X \to \{-1, 1\}$, belong to a family H

Risk of a classifier: $R(g) = \mathbb{E}(g(x) \neq y_*(x))$

Empirical risk: $R_n(g) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{g_n(\mathbf{x}_k) \neq y_*(\mathbf{x}_k)}$, where \mathbf{x}_k are randomly and independently sampled

Theorem (V.-C.). For any δ , with probability at least $1 - \delta$,

$$R(g) \leq R_n(g) + 2\sqrt{2\frac{\log \Pi_H(2n) + \log \frac{2}{\delta}}{n}}, \quad \forall g \in H$$

Corollary: For n > VCdim(H)/2,

$$R(g) \leq R_n(g) + 2\sqrt{2 \frac{\mathsf{VCdim}(H)\log \frac{2en}{\mathsf{VCdim}(H)} + \log \frac{2}{\delta}}{n}}, \quad \forall g \in H$$

D. Yarotsky 68 / 91

⁵http://www.econ.upf.edu/~lugosi/mlss_slt.pdf

The Kolmogorov(-Arnold) superposition theorem

Theorem (Kolmogorov '57)

There exist d(2d+1) univariate functions $\phi_{ii} \in C[0,1]$ such that any $f \in C([0,1]^d)$ can be represented in the form

$$f(x_1,...,x_d) = \sum_{i=1}^{2d+1} \chi_i \left(\sum_{j=1}^d \phi_{ij}(x_j) \right)$$

with some $\chi_i \in C[0,1]$ depending on f.

- "Every multivariate continuous operation reduces to univariate ones and sums"
- Exact representation, not approximation
- The internal functions ϕ_{ii} are very complex "activations"
- Valid only for continuous functions no analog for smooth functions

69 / 91

Hilbert's 13'th problem

K(-A)ST resolves the "continuous" variant of Hilbert's 13th problem:

Problem: Is it possible to express the roots of general 7th-degree univariate polynomial using continuous (variant: algebraic) functions of two variables?

- The algebraic variant of the problem is still open
- Algebraic function: expressible as a root of a polynomial equation
- 7th-degree equation is known to be solvable by algebraic functions of three variables (by reduction to equation $x^7 + ax^3 + bx^2 + cx + 1 = 0$)

D. Yarotsky 70 / 91

K(-A)ST: proof idea

A clever hierarchical replacement of *d*-dimensional connectedness by one-dimensional one

(From Dror Bar-Natan, https://www.math.toronto.edu/~drorbn/Talks/Fields-0911/Hilbert13th.html)

D. Yarotsky 71 / 91

Relevance to conventional neural networks?

Girosi-Poggio '89: "Representation properties of networks: **Kolmogorov's theorem is irrelevant**"// Neural Computation, 1(4), 465-469.

Kůrková '91: "Kolmogorov's theorem is relevant"// Neural Computation 3(4), 617-622

D. Yarotsky 72 / 91

Relevance to conventional neural networks?

Maiorov-Pinkus '99: There exists an analytic, sigmoidal and strictly increasing activation function σ such that any $f \in C([0,1]^d)$ can be approximated with *arbitrary accuracy* by two hidden layer networks

$$\widetilde{f}(\mathbf{x}) = \sum_{i=1}^{6d+3} a_i \sigma \left(\sum_{j=1}^{3d} c_{ij} \sigma(\mathbf{w}^{ij} \cdot \mathbf{x} + \theta_{ij}) + \gamma_i \right)$$

Note: finitely many neurons, but a very complex activation function σ

arXiv:2102.10911: a similar result for a finite network with activations sin, arcsin. The complexity is hidden in the weights.

D. Yarotsky 73 / 91

A $\{\sin, \arcsin\}$ -superexpressive architecture for d=2 inputs

Any function $f \in C([0,1]^2)$ can be approximated with arbitrary accuracy by this fixed-size network:

D. Yarotsky 74 / 91

Model complexity: the information theory approach⁶

Let F be a set in a metric space.

Covering number $\mathcal{N}_{\epsilon}(F)$: the smallest number of ϵ -balls covering F

Packing number $\mathcal{M}_{\epsilon}(F)$: the largest cardinality of a subset of F with elements separated by distance $\geq \epsilon$

Exercise: For any F,

$$\mathcal{M}_{2\epsilon}(F) \leq \mathcal{N}_{\epsilon}(F) \leq \mathcal{M}_{\epsilon}(F)$$

D. Yarotsky 75 / 91

⁶A. Kolmogorov, V. Tikhomirov, ϵ -Entropy and ϵ -Capacity of Sets In Functional Spaces (or in Russian)

Entropy and capacity

 ϵ -entropy of F in a metric space:

$$\mathcal{H}_{\epsilon}(F) = \log_2 \mathcal{N}_{\epsilon}(F)$$

 ϵ -capacity of F in a metric space:

$$C_{\epsilon}(F) = \log_2 \mathcal{M}_{\epsilon}(F)$$

Remark: By previous exercise, $C_{2\epsilon}(F) \leq \mathcal{H}_{\epsilon}(F) \leq C_{\epsilon}(F)$

Exercise: Show that $\frac{\mathcal{H}_{\epsilon}([0,1]^{\nu})}{\log_2(1/\epsilon)}$ and $\frac{\mathcal{C}_{\epsilon}([0,1]^{\nu})}{\log_2(1/\epsilon)}$ have finite limits as $\epsilon \to 0$, and find these limits.

D. Yarotsky 76 / 91

Model expressiveness vs. stored information

General principle: Suppose we have a parametric model approximating the elements of F. Then, to be able to achieve the accuracy ϵ for each $f \in F$, the model must contain at least $\mathcal{H}_{\epsilon}(F)$ bits of information. If the model is implemented as a Boolean circuit, it must contain at least $\mathcal{H}_{\epsilon}(F) - 1$ elementary unary or binary logical operations.

Corollary⁷: Suppose F is approximated by a neural network with a fixed architecture and a fixed bitwise representation of the weights. Then, to approximate each $f \in F$ with accuracy ϵ , the total number of bits in all the weights must be not less than $\mathcal{H}_{\epsilon}(F)$.

D. Yarotsky 77 / 91

⁷Petersen-Voigtlaender '18, '19

Information in Sobolev balls

Kolmogorov-Tikhomirov '59: Let $F = B_{\nu,d,\infty}$ be a Sobolev ball in $\mathcal{W}^{d,\infty}([0,1]^{\nu})$. Consider $B_{\nu,d,\infty}$ with the distance defined by the norm $\|\cdot\|_{\infty}$. Then

$$\mathcal{H}_{\epsilon}(B_{\nu,d,\infty}) \asymp \epsilon^{-\nu/d} \quad (\epsilon \to 0),$$

where $f \approx g$ means that $cf \leq g \leq Cf$, for some constants c, C > 0.

Corollary: Any model providing uniform approximation accuracy ϵ on $B_{\nu,d,\infty}$ must contain at least $\asymp \epsilon^{-\nu/d}$ bits of information. If the model is implemented as a Boolean circuit, it must contain $\gtrsim \epsilon^{-\nu/d}$ elementary logical operations.

D. Yarotsky 78 / 91

Proof of the lower bound

Use the grid of spike functions (again)

Fix some $\phi \in C^{\infty}(\mathbb{R}^{\nu})$ such that $\phi(\mathbf{x}) = 0$ if $|\mathbf{x}| > \frac{1}{2}$, and $\phi(0) = 0$. Consider the grid $G_N = \{\frac{1}{N}, \frac{2}{N}, \dots, \frac{N}{N}\}^{\nu} \subset [0, 1]^{\nu}$, with $|G_N| = N^{\nu}$. For any assignment $\mathbf{c} : G_N \to \{0, 1\}, \mathbf{c} = \{c_{\mathbf{n}}\}_{\mathbf{n} \in G_N}$, set

$$f_{\mathbf{c}} = CN^{-d} \sum_{\mathbf{n} \in G_N} c_{\mathbf{n}} \phi(N(\cdot - \mathbf{n}))$$

If C is small enough, then $f_{\mathbf{c}} \in B_{\nu,d,\infty}$ for all N and c, and for $\mathbf{c} \neq \mathbf{c}'$ we have $||f_{\mathbf{c}} - f_{\mathbf{c}'}||_{\infty} \geq CN^{-d}$. Then, with $\epsilon = CN^{-d}$, capacity

$$C_{\epsilon}(B_{\nu,d,\infty}) \ge \log_2(2^{N^{\nu}}) = N^{\nu} = C' \epsilon^{-\nu/d}$$

D. Yarotsky 79 / 91

The upper bound: sketch of proof for $\nu = d = 1$

$$B_{
u=1,d=1,p=\infty}$$
 : Lipschitz functions $(|f| \le 1,|f'| \le 1)$

Approximate f using a piecewise linear \widetilde{f} with N nodes, with slopes ± 1

- Number of approximations: $O(N2^N)$
- Accuracy: $\epsilon \sim \frac{1}{N}$
- Hence $\mathcal{H}_{\epsilon}(B_{1,1,\infty}) \lesssim \log_2(N2^N) \sim N \sim \epsilon^{-1}$

For a higher smoothness d: use a smoother, Taylor-expansion-based approximation

D. Yarotsky 80 / 91

Summary: Boolean vs. arithmetic complexity

Network size complexity of implementing ϵ -approximation of $f \in B_{\nu,d,\infty}$:

- As a Boolean circuit: $\geq \epsilon^{-\nu/d}$
- As a ReLU neural network in a "classical mode": $O(\epsilon^{-\nu/d} \log 1/\epsilon)$
- As a neural network with special, complex activation function: O(1)

D. Yarotsky 81 / 91

Non-polynomial activations: Pfaffian functions

Challenge: How to estimate expressiveness of networks with non-(piecewise)-polynomial activations (e.g., logistic $x \mapsto e^x/(1 + e^x)$)?

For VCdim bounds, how to bound the number of CC's?

A related question: Given an elementary function f(x), can we bound the number of its roots (where f(x) = 0) based on some "complexity" of the description of f (like we did it for polynomials)?

Answer: the theory of Pfaffian functions⁸

D. Yarotsky 82 / 91

⁸A. Khovansky, Fewnomials (Малочлены), 1991

Pfaffian functions: definition

A **Pfaffian chain** of analytic functions $f_1, \ldots, f_l : U \subset \mathbb{R}^n \to \mathbb{R}$:

$$\frac{\partial f_i}{\partial x_j}(\mathbf{x}) = P_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_i(\mathbf{x})), \quad 1 \leq i \leq I,$$

where P_{ij} are polynomials of degree $\leq \alpha$.

A Pfaffian function:

$$f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \dots, f_l(\mathbf{x})),$$

where P is a polynomial of degree β .

Pfaffian complexity: (α, β, I) .

Important fact: all elementary function are Pfaffian on sutable domains

D. Yarotsky 83 / 91

Elementary examples

Exercise: The following functions are Pfaffian:

- polynomials on $U = \mathbb{R}^d$
- e^x on \mathbb{R}
- $\ln x$ on \mathbb{R}_+
- $\arcsin x$ on (-1,1)

The function $\cos x$ is **not** Pfaffian on \mathbb{R} , but it is Pfaffian on any bounded interval (A, B), with complexity depending on B - A

Exercise: $\cos x$ is Pfaffian on $(-\pi, \pi)$ via the chain

$$\tan\frac{x}{2} \longrightarrow \cos^2\frac{x}{2} \longrightarrow \cos x$$

D. Yarotsky 84 / 91

Operations with Pfaffian functions

Exercise:

- Sums and products of Pfaffian functions f, g with a common domain U are Pfaffian
- If the domain of a Pfaffian function f includes the range of a Pfaffian function g, then the composition $f \circ g$ is Pfaffian on the domain of g

The complexity of the resulting functions f + g, fg, $f \circ g$ is determined by the complexity of the functions f, g.

D. Yarotsky 85 / 91

Standard activations as (piecewise-)Pfaffian functions

Call a function $\sigma: \mathbb{R} \to \mathbb{R}$ piecewise Pfaffian if its domain can be divided into finitely many intervals on which σ is Pfaffian.

Most practical activations are Pfaffian or piecewise Pfaffian on \mathbb{R} , e.g.:

•
$$\sigma(x) = \tanh x$$

•
$$\sigma(x) = (1 + e^{-x})^{-1}$$
 (standard sigmoid)

•
$$\sigma(x) = \max(0, x)$$
 (ReLU)

•
$$\sigma(x) = \max(ax, x)$$
 (leaky ReLU)

•
$$\sigma(x) = e^{-x^2}$$
 (Gaussian)

•
$$\sigma(x) = \ln(1 + e^x)$$
 (softplus)

D. Yarotsky 86 / 91

Main result

We call a solution $\mathbf{x} \in \mathbb{R}^d$ of a system $f_1(\mathbf{x}) = \ldots = f_d(\mathbf{x}) = 0$ nondegenerate if the respective Jacobi matrix $\frac{\partial f_i}{\partial x_i}(\mathbf{x})$ is nondegenerate.

Theorem (Khovanskii). Let f_1, \ldots, f_d be Pfaffian d-variable functions on a domain $U \subset \mathbb{R}^d$ with a common Pfaffian chain of length I and respective degrees (α, β_i) . Then the number of nondegenerate solutions of the system $f_1(\mathbf{x}) = \ldots = f_d(\mathbf{x}) = 0$ is bounded by

$$2^{l(l-1)/2}\beta_1\cdots\beta_d\Big(\min(d,l)\alpha+\sum_{i=1}^d\beta_i-d+1\Big)^l.$$

Proof idea: use a generalized Rolle's lemma and bound the number of common zeros of the functions f_k by the number of common zeros of suitable polynomials (in a larger number of variables). The latter number can then be upper bounded using the classical Bézout theorem.

D. Yarotsky 87 / 91

Some implications

Fixed-size networks with (piecewise-)Pfaffian activations:

- have a finite VC dimension (in contrast to, e.g., sin(ax))
- cannot approximate arbitrary continuous functions with arbitrary accuracy

D. Yarotsky 88 / 91

Pfaffian functions and Betti numbers

Betti numbers $b_k(S)$, k = 0, 1, ... of a topological space S: numbers of "topological defects/holes" in S

 $b_0(S)$: number of connected components in S

$$b_0(S) \leq B(S) := \sum_k b_k(S)$$
 ("total number of defects")

Pfaffian set: $\bigcap_k \{ \mathbf{x} \in U : f_k(\mathbf{x}) = 0 \}$ with Pfaffian f_k Semi-Pfaffian set: $\bigcap_k \{ \mathbf{x} \in U : f_k(\mathbf{x}) (= \text{ or } >) 0 \}$ with Pfaffian f_k

Theorem (Zell '99)

Let S be a compact semi-Pfaffian set in $U \subset \mathbb{R}^n$, given on a compact Pfaffian set of dimension n', defined by s sign conditions on Pfaffian functions. If all the functions defining S have complexity at most (α, β, I) , then

$$B(S) \le s^{n'} 2^{l(l-1)/2} O((n\beta + \min(n, l)\alpha)^{n+l})$$

D. Yarotsky 89 / 91

Topological expressiveness of neural networks⁹

$$S_{\mathcal{N}}: \{\mathbf{x} \in \mathbb{R}^n : f_{\mathcal{N}}(\mathbf{x}) > 0\}$$

UPPER AND LOWER BOUNDS ON THE GROWTH OF $B(S_{\mathcal{N}})$ FOR NETWORKS WITH h HIDDEN UNITS, n INPUTS, AND l HIDDEN LAYERS. THE BOUND IN THE FIRST ROW IS A WELL-KNOWN RESULT AVAILABLE IN [26]

Inputs	Layers	Activation function	Bound
Upper bounds			
n	3	threshold	$O(h^n)$
n	3	arctan	$O((n+h)^{n+2})$
n	3	polynomial, degree r	$\frac{1}{2}(2+r)(1+r)^{n-1}$
1	3	arctan	h
n	any	arctan	$2^{h(2h-1)}O((nl+n)^{n+2h})$
n	any	tanh	$2^{(h(h-1))/2}O((nl+n)^{n+h})$
n	any	polynomial, degree r	$\frac{1}{2}(2+r^l)(1+r^l)^{n-1}$
Lower bounds			
n	3	any sigmoid	$(\frac{h-1}{n})^n$
n	any	any sigmoid	2^{l-1}
n	any	polynomial, deg. $r \geq 2$	2^{l-1}

⁹M. Bianchini, F. Scarselli, On the Complexity of Neural Network Classifiers: A Comparison Between Shallow and Deep Architectures, 2014

D. Yarotsky 90 / 91

Expressiveness: future directions?

Practical neural networks work with complex multi-dimensional data

Existing abstract approaches (VC dimension, approximation theory, etc.) do not quite fit these applications

The challenges:

- Describe relevant and mathematically natural spaces of dependencies?
- Explore the limits (infinitely deep/wide networks, infinite domain resolution, etc.)
- Explore particular structures (convnets, hierarchical models, etc.)

D. Yarotsky 91 / 91