(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-109147

(43)公開日 平成7年(1995)4月25日

(51) Int.Cl. ⁶		藏別記号	庁内整理番号	FΙ	技術表示箇所
C 0 3 C	4/08				
B 6 0 J	1/00	Z	7447-3D		
C 0 3 C	3/095				

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号	特願平5-258126	(71)出願人	000004008
			日本板硝子株式会社
(22)出顧日	平成5年(1993)10月15日		大阪府大阪市中央区道修町3丁目5番11号
		(72)発明者	中口 頃雄
		(1-7)27171	大阪府大阪市中央区道修町3丁目5番11月
			日本板硝子株式会社内
		(m	
		(72)発明者	内野 隆司
			大阪府大阪市中央区道修町3丁目5番11号
			日本板硝子株式会社内
		(72)発明者	年清 義一
			大阪府大阪市中央区道條町3丁目5番11号
			日本板硝子株式会社内
			P. 1 British 111- 111-111
		(74)代理人	弁理士 大野 精市

(54) 【発明の名称】 紫外線吸収灰色ガラス

(57)【要約】

【目的】 熱膨張率の小さい、紫外線吸収灰色ホウケイ 酸ガラスを提供する。

【構成】 重量%で表示して、73,29%のSi O2 , 17. 82% OB2 O3 , 2. 39% OA12 O 3 , 0. 31% oBaO, 0. 92% oLi2 O, 1. 51%oNa2 O, 2. 75%oK2 O, 0. 50%o CeO2 , 0. 50% ØEr: O3 , 0. 006% ØC o Oから成り、C光源を用いて測定した主波長が、59 5.1 nm、刺激純度が1.87%、太陽紫外線透過率 が16.3%である紫外線吸収灰色ガラス。 【効果】 熱膨張率が小さく、化学的耐久性に優れた紫

外線吸収灰色ガラスであるので、防火用窓ガラスに用い る板ガラスとして好適である。

【特許請求の範囲】

【請求項1】 重量%で表示して、71~83%のSi O2 . 10~20%0B2 O3 . 1~4%0A1

2 O: , 0~0.6% oMgO, 0~0.6% oCa O, 0~2%0BaO, 0~1%0ZnO, 0~2%0 Li2 O. 0~6%0Na2 O. 0~5%0K2 O. 0. 1~1. 0%のCeO₂ 、0~0. 4%のFe₂ O 3 . 0~0. 2%のTiO2 . 0~1. 0%のEr2 O ₃ , 0. 001~0. 02%のCoO, 0~0. 01% のNiOから成ることを特徴とする紫外線吸収灰色ガラ 10 【0007】

【請求項2】 5mm厚みに換算したガラスの、C光源 による主波長が570~615nm又は補色主波長が4 80~560nmであることを特徴とする請求項1に記 載された紫外線吸収灰色ガラス。

【請求項3】 5mm厚みに換算したガラスの、C光源 による刺激純度が3%以下であることを特徴とする請求 項1に記載された紫外線吸収灰色ガラス。

【発明の詳細な説明】

[0001]

ス.

【産業上の利用分野】本発明は建築用、車両用ガラスに 関する。詳しくは紫外線吸収に優れた灰色の建築用、車 両用ガラスに関する。

[00002]

【従来の技術】従来から用いられてきた建築用、車両用 ガラスは ほとんどが所謂ソーダ石灰シリカガラスであ り 本発明に係わるようかホウケイ酸ガラスは用いられ ていない。しかし近時、従来の網入りガラスに替わる建 築用防火ガラスとして、熱膨張率の小さい透明なホウケ ット社の考案になるDVTan、本発明者らが提案した 低膨張ガラス (特開平1-93437号公報) 等があ 3.

【0003】建築物、あるいは車両の設計デザイン面か らは着色ガラスが望まれるが、本発明者らは特開平4-28034号公報、特開平4-285026号公報にお いて、熱膨張率の小さな着色ホウケイ酸ガラスを提案し te.

【0004】他に着色ホウケイ酸ガラスは、米国特許第 4116704号に開示されているが、そこに記載され 40 ることなく、ガラスの溶解性を向上させる。B2 O2 が ているガラスは、透明な明るい原褐色のガラスであり、 本発明のガラスとは異なる色調を有するものである。さ らに米国特許第4379851号に開示されている着色 ホウケイ酸ガラスも、透明な明るい灰褐色のガラスであ り、本発明のガラスとは異なる色調を有するものであ 8.

[0005]

【発明が解決しようとする課題】さらに最近は、家具調 度品や展示品あるいは車両の内装品等を日焼けによる変 色、退色から守る、着色した紫外線吸収ガラスが望まれ 50 成分はガラスの熱膨張係数を大きくするので、その上限

ている。しかし、前述の着色ガラス (特開平4-280 34号公報、特開平4-285026号公報)は紫外線 吸収成分としてはFe2Ooを含有するのみであり、紫 外線吸収能力は大きくはなかった。鉄分を増やして無理 に紫外線吸収を大きくすると、可視光線透過率が低下 し、刺激減度が上昇するという不都合があった。

2

【0006】本発明は、上記従来の問題点を解決し、従 来存在しなかった熱膨張率の小さい紫外線吸収灰色ホウ ケイ酸ガラスを提供することを目的とする。

【課題を解決するための手段】請求項1の紫外線吸収灰 色ガラスは、重量%で表示して、71~83%のSiO 2 , 10~20%0B2 O3 , 1~4%0A12 O3 , 0~0.6%nMgO, 0~0.6%nCaO.0~2 %のBaO、0~1%のZnO、0~2%のLi2 O、 0~6%0Na2 O. 0~5%0K2 O. 0. 1~1. 0%OCeO2, 0~0. 4%OFe2 O8, 0~0. 2%のTiO₂、0~1%のEr₂O₃、0.001~ 0.02%のCoO、0~0.01%のNiOから成る 20 ことを特徴とする。

【0008】ただし、ここでFe2 Os はガラスに含有 される全ての酸化鉄をFeg Og に換算して示す。ま た、CeO2 はガラスに含有される全ての酸化セリウム をCeO₂ に換算して示してある。

【0009】該紫外線吸収灰色ガラスは好ましくは、5 mm厚みに換算したガラスのC光源による主波長が、5 70~615nm又は補色主波長が480~560nm である.

【0010】該紫外線吸収灰色ガラスは好ましくは、5 イ酸ガラスが提案されている。例えば、ドイツ国のショ 30 mm厚みに換算したガラスのC光源による刺激純度が3 %以下である。

[0011]

【作用】以下に本発明の紫外線吸収灰色ガラス組成限定 理由について説明する。

【0012】SiO2 はB2 O3、A12 O3 と共にガ ラスの骨格を形成する、SiO2が71%未満では熱影 張係教が大きく成りすぎて、耐熱性が低下する。83% を越えるとガラスの溶解性が低下する。

【 0 0 1 3 】 B₂ O₃ はガラスの熱膨張係数を大きくす 10%未満ではガラスの溶解性が低下する、B2O2が 20%を越えるとガラスの化学的耐久性が低下する。

【0014】A12 O2 はガラスの化学的耐久性を向上 させる。A 1 2 O 3 が 1 %未満ではガラスの化学的耐久 性が低下する。4%を越えるとガラスの溶解性が悪くな

【0015】MgO、CaO、BaO、ZnOは必須成 分ではないが、溶解性の向上、化学的耐久性の向上のた めに、必要に応じて用いることができる。但しこれらの

3 はMgO、CaOはO. 6%、BaOは2%、ZnOは 1%とする。又これら二価金属酸化物の合計は2%を越 えないことが望ましい。

【0016】Li: Oはガラスの高温での粘度を下げて 溶解性を向上させる。Li2 Oが2%を越えても効果の 増大はなく、原料費が増加するので2%を上限とする。 【0017】Na2 Oもガラスの溶解性を向上させる が、6%を越えるとガラスの熱膨張係数が大きくなり好 ましくない。

【0018】K2 Oもガラスの溶解性を向上させるが、 同時にNa₂O、Li₂Oとの組み合わせによりガラス の化学的耐久性を向上させる。しかし5%を越えるとガ ラスの粘度が増大すると共に、ガラスの熱膨張係数を増 大させるので好ましくない。

【0019】CeO』はガラスに存在する全ての酸化セ リウムを、CeO2 に換算した数値として示している。 CeO2 は紫外線を吸収する成分であるが、0.1%以 下では紫外線吸収の効果が低く、1.0%を越えるとガ ラスの着色が強くなりすぎて好ましくない。

鉄をFe』〇』に換算した数値を示している。Fe』〇 3 は紫外線を吸収する成分であるが、同時にガラスを着 色する。Fe2 O3 が0.4%を越えると着色が強くな りすぎるので、0、4%を上限とする。

【0021】TiO2 は紫外線吸収成分であるが、Ce O2 及び、或いはFe2 O3 と共存するとガラスを強く 着色するので0.2%を上限とする。

【0022】Erz Os はCeOz . Fez Os による 着色に赤味を与えるのに用いる。Er2 O3 が1%を越 えるとガラスが赤くなりすぎるので好ましくない。 【0023】CoOはガラスを青くすると共に、CeO 2 、Fe2 O3 による着色の刺激純度を下げる作用があ るが、0.001%未満では効果が少なく、0.02% を越えるとガラスの可視光線透過率が低下して好ましく ない。

4

【0024】NiOはガラスにオレンジ色を与える効果 があるが、0.01%を越えるとオレンジ色が強くなり すぎて好ましくない。

10 【0025】以上の成分の他に、本発明の主旨を損なわ ない範囲で、清澄剤(例えばAs2Oo、Sb2 Oo、 SOs 、C1、F等)を含んでもよい。 [0026]

【実施例】以下に、本発明を表を参照して詳細に説明す

【0027】表1、表2、表3の組成となるようにガラ ス原料を調合し、容量が約250m1の90Pt-10 Rhの坩堝にバッチを投入して、電気炉中で1550℃ -20時間の溶融を行った。溶融したガラスを、子熱し 【0020】Fe2Os はガラスに存在する全ての酸化 20 たステンレス鉄板上に流し出した後、700℃に保持さ れた電気炉に30分間保持して徐冷した。徐冷されたガ ラスを切断、研磨して光学特性測定用の試料とした。表 1に示す光学特性は、5mm厚みの試料をC光源を用い て測定した結果を示す。尚、太陽紫外線透過率は、エア マスが2の時の太陽放射エネルギーの分光透過率を用い て求めた.

> [0028] 【表1】

(4)	特開平7-109147
	6

			施	691	
		~	#IS		
(重量%)	1	2	3	4	5
SiO ₂	73.29	71.98	73.48	74.35	74.05
ВгОз	17.82	18.85	17.62	17.70	17.82
Al ₂ O ₃	2.39	3.40	2.39	2.40	2.39
MgO	0	0.31	0	0	0
CaO	0	0	0	0.81	0
ВаО	0.31	0	0	0	0
ZnO	0	0	0.31	0	0
Li ₂ O	0.92	0.92	0.92	0.84	0.84
N a 2 O	1.51	0.51	1.11	1.39	1.89
K ₂ O	2.75	3.52	3.15	2.50	2.50
C e O 2	0.50	0.50	0.50	0.50	0.50
Fe ₂ O ₃	0	0	0	0	0
TiO2	0	0	0	0	0
Er ₂ O ₃	0.50	0	0.50	0	0.50
CoO	0.008	0.007	0.009	0.006	0.012
NiO	0	0.005	0,010	0	0
Y (%)	80.4	80.5	75.7	82.4	73.7
λ _d (nm)	595.1	572.0	588.2	570.8	
λ _c (nm)					553.0
P. (%)	1.87	2.75	2.86	1.98	2.50
T a (%)	84.7	84.1	81.9	85.3	82.2
Τυν (%)	16.3	1 7 .1	15.7	17.5	16.2

表 1

【0029】 * *【表2】

5

		実	施	<i>(9</i>)	
(重量%)	6	7	8	8	1 0
SiO2	73.10	79.32	73.60	73.39	78.56
ВгОв	17.82	13.00	17.82	17.82	18.00
AlzOs	2.39	2.22	2.39	2.39	2.22
MgO	0	0	0	0	0
CaO	0	0	0	0	0
ВаО	0	0	0	0	0
ZnO	0	0	0	0	0
L i 2 O	0.92	0	0.92	0.92	0
Na ₂ O	1.51	4.18	1.51	1.51	4.18
K ₂ O	2.75	0.02	2.75	2.75	0.02
CeO2	0.50	0.48	0.80	0.80	0.80
Fe ₂ O ₃	0	0.16	0.20	0.20	0.20
TiO2	0	0.18	0	0	0
Er ₂ O ₃	1.0	0.45	0	0.20	1.00
CoO	0.005	0.011	0.014	0.014	0.018
NiO	0	0	0	0.005	0
Y (%)	80.1	69.7	70.2	70.0	58.2
λ_d (nm)	608.3	577.5	575.1	581.2	
λ _c (nm)					493.5
P. (%)	2.51	1.38	2.70	2.94	1.84
T. (%)	84.6	79.5	80.1	80.1	74.6
T uv (%)	15.4	18.8	14.5	14.1	12.1

【0030】 * *【表3】

	実	施	691	比(坟 柳
(重量%)	1 1	1 2	1 3	1	2
SiO ₂	79.94	79.87	79.08	78.95	79.58
В2Оз	13.00	13.00	13.00	17.82	13.00
Al ₂ O ₃	2.22	2.22	2.22	2.39	2.22
МвО	0	0	0	0	0
СаО	0	0	0	0	c
ВаО	0	0	0	0	0
ZnO	0	0	0	0	0
Li ₂ O	0	0	0	0.92	0
Na ₂ O	4.18	4.18	4.18	1.51	4.18
K ₂ O	0.02	0.02	0.02	2.75	0.02
CeOz	0.63	0.80	0.80	0	0.80
Fe ₂ O ₃	0	0.10	0.10	0.25	0.20
TiOz	0	0	0.10	0	0
E r 2 O 3	0	0	0.50	0.38	0
CoO	0.008	0.013	0.020	0.035	0
NiO	0	0	0	0	0
Y (%)	70.0	82.7	52.7	70.7	79.3
λ _d (nm)	573.4	570.2	581.3	591.4	
λ _c (nm)					576.6
P. (%)	2.78	2.78	1.41	2.59	12.98
Ta (%)	79.4	75.9	71.2	76.6	83.5
Tuv (%)	15.3	12.1	7.3	28.5	13.0
	1	1	ı	ı	ı

透過率を、Aaは主波長を、Aaは補色主波長を、Pa は刺激純度を、Toは太陽放射透過率を、Tovは太陽紫 外線透過率をそれぞれ表す。

^{【0032】}本発明による実施例のガラスは、CeO2 の紫外線吸収能力が高いために、いずれも紫外線透過率 が20%以下である。これに対して比較例1は、紫外線*50 【発明の効果】本発明による紫外線吸収灰色ガラスは、

^{【0031】}表1、表2、表3において、Yは可視光線 *吸収成分がFe2 Os であるため、紫外線透過率が28 %と大きく好ましくない。また、比較例2はCeO2 が 含有されているため、紫外線透過率は13%と小さい が、CoOが含まれていないために、刺激純度が12. 98%と大きく、灰色ガラスとしては好ましくない。 [0033]

12

1.1

熱膨張係数が小さく、化学的耐久性に優れ、紫外線吸収 スとして好適である。 が大きいので、特に高層ビルの窓ガラスに用いる板ガラ