Recurrence Relations

Recurrence Relations

You have two main choices when it comes to solving recurrence relations:

- ☐ The tree method (my favorite)
- □ The Master Theorem
 - If $T(n) = aT(\lceil n/b \rceil) + O(n^d)$ for $a > 0, b > 1, d \ge 0$ then:
 - $T(n) = O(n^d)$ if $d > \log_b a$
 - $T(n) = O(n^d \log n) \text{ if } d = \log_b a$
 - $T(n) = O(n^{\log_b a}) \text{ if } d < \log_b a$

Recurrence Relations - Binary Search

$$T(n) = T(n/2) + O(1)$$

$$= O(1+1+\cdots+1) = O(\log_2(n))$$

Recurrence Relations - Merge Sort

$$T(n) = 2T(n/2) + O(n)$$

$$= O(n+n+n+\cdots+n) = O(n\log_2(n))$$

Recurrence Relations - More Practice

$$T(n) = 2T(n/2) + O(n^2)$$

$$= O(n^2 + n^2/2 + n^2/4 + n^2/8 \cdots + n^2/n) \le O(2n^2) = O(n^2)$$

Recurrence Relations - More Practice

$$T(n) = 2T(n/2) + O(1)$$

$$= O(1 + 2 + 4 + \dots + n) = O(n + n/2 + n/4 + n/8 + \dots + n/2^{\log_2 n}) \le O(2n) = O(n)$$

Recurrence Relations - Reduce by One

Recurrence Relations - Reduce by One