DMA Přednáška – Rovnice nad \mathbb{Z}

Definice.

Pojmem lineární diofantická rovnice označujeme libovolnou rovnici typu ax+by=c s neznámými x,y, kde $a, b, c \in \mathbb{Z}$ a vyžadujeme také řešení $x, y \in \mathbb{Z}$.

Věta.

Nechť $a,b,c\in\mathbb{Z}$. Lineární diofantická rovnice ax+by=c má alespoň jedno řešení právě tehdy, když c je násobkem gcd(a,b).

Definice.

Je-li dána lineární diofantická rovnice ax + by = c, pak definujeme její **přidruženou homogenní rovnici** jako ax + by = 0.

Věta.

Nechť $a,b,c\in\mathbb{Z}$. Uvažujme lineární diofantickou rovnici ax+by=c.

Nechť $(x_p,y_p)\in\mathbb{Z}^2$ je nějaké její **partikulární** řešení. Dvojice $(x_0,y_0)\in\mathbb{Z}^2$ je řešení této rovnice právě tehdy, když

existuje $(x_h, y_h) \in \mathbb{Z}^2$ takové, že $(x_0, y_0) = (x_p, y_p) + (x_h, y_h)$ a (x_h, y_h) řeší přidruženou homogenní rovnici.

Věta.

Uvažujme rovnici ax + by = 0 pro $a, b \in \mathbb{Z}$. Množina všech jejích celočíselných řešení je

$$\left\{ \left(k \frac{b}{\gcd(a,b)}, -k \frac{a}{\gcd(a,b)}\right) : k \in \mathbb{Z} \right\}.$$

Algoritmus pro nalezení všech celočíselných řešení rovnice ax + by = c.

- **0.** Například pomocí rozšířeného Euklidova algoritmu najděte gcd(a, b) = Aa + Bb.
- 1. Jestliže c není násobkem gcd(a, b), pak řešení rovnice neexistuje.
- **2.** Případ gcd(a, b) dělí c:
- a) Získanou rovnost $aA + bB = \gcd(a, b)$ vynásobte číslem $c' = \frac{c}{\gcd(a, b)} \in \mathbb{Z}$ tak, aby se zachovaly koeficienty a, b, a dostanete a(Ac') + b(Bc') = c, tudíž i jedno partikulární řešení $x_p = Ac'$, $y_p = Bc'$ neboli vektor (Ac', Bc').
- b) Přidruženou homogenní rovnici ax + by = 0 zkraťte číslem gcd(a, b) na tvar a'x + b'y = 0, což dává řešení $x_h = b'k, y_h = -a'k$ neboli dvojice (b'k, -a'k) pro $k \in \mathbb{Z}$, popřípadě $x_h = -b'k, y_h = a'k$ neboli dvojice (-b'k, a'k).
- c) Sečtením partikulárního a obecného homogenního řešení získáte množinu všech celočíselných řešení

$$\{(x_p+kb',y_p-ka'):k\in\mathbb{Z}\}$$
neboli $x=x_p+kb',\ y=x_p-ka'$ pro $k\in\mathbb{Z},$

popřípadě verzi s mínusem u y_h .

Definice.

Termínem lineární kongruence označujeme rovnice typu $ax \equiv b \pmod{n}$, kde $n \in \mathbb{N}$, $a, b \in \mathbb{Z}$ a hledáme celočíselná řešení x.

Fakt.

Nechť $n \in \mathbb{N}$. Uvažujme $a, b \in \mathbb{Z}$. Číslo $x_0 \in \mathbb{Z}$ řeší lineární kongruenci $ax \equiv b \pmod{n}$ právě tehdy, když pro nějaké $y_0 \in \mathbb{Z}$ řeší vektor (x_0, y_0) diofantickou rovnici ax + ny = b.

Věta.

Nechť $n \in \mathbb{N}$, uvažujme $a, b \in \mathbb{Z}$.

- (i) Jestliže b není násobkem $\gcd(a, n)$, tak řešení rovnice $ax \equiv b \pmod{n}$ neexistuje.
- (ii) Jestliže $\gcd(a,n)$ dělí b, tak rovnice $ax \equiv b \pmod n$ má nějaké řešení $x_p \in \mathbb{Z}$. Označme $n' = \frac{n}{\gcd(a,n)}$. Množina všech řešení lineární kongruence $ax \equiv b \pmod n$ je

$$\{x_p + kn' : k \in \mathbb{Z}\}.$$

Věta.

Nechť $n \in \mathbb{N}$, uvažujme kongruenci $ax \equiv b \pmod{n}$ pro nějaká $a,b \in \mathbb{Z}$. Nechť x_p je nějaké její partikulární řešení. Definujme čísla $x_i = x_p + \frac{n}{\gcd(a,n)}i$ pro $i = 0,1,\ldots,\gcd(a,b)-1$. Množina všech řešení dané kongruence je sjednocením množin $\{x_i + kn : k \in \mathbb{Z}\}$ pro $i = 0,1,\ldots,\gcd(a,b)-1$, tyto množiny jsou navzájem disjunktní.

Věta.

Nechť $n \in \mathbb{N}$. Uvažujme kongruenci $ax \equiv b \pmod n$ pro nějaká $a,b \in \mathbb{Z}$, nechť x_p je nějaké její řešení. Číslo $x_0 \in \mathbb{Z}$ je řešením kongruence $ax \equiv b \pmod n$ právě tehdy, když existuje $x_h \in \mathbb{Z}$, které splňuje $x_0 = x_p + x_h$ a je řešením přidružené homogenní rovnice $ax \equiv 0 \pmod n$.

• Množinu všech řešení rovnice $a \odot x = b$ v \mathbb{Z}_n získáme tak, že v množině všech řešení kongruence $ax \equiv b$ (m	od n
nahradíme všechna čísla jejich zbytky po dělení n neboli jejich kongruentními zástupci z množiny \mathbb{Z}_n .	

Věta.

Nechť $n \in \mathbb{N}$, uvažujme rovnici ax = b v \mathbb{Z}_n pro nějaká $a, b \in \mathbb{Z}_n$.

- (i) Jestliže $\gcd(a,n)$ nedělí b, pak řešení neexistuje.
- (ii) Předpokládejme, že $\gcd(a,n)$ dělí b. Nechť $x_p \in \mathbb{Z}$ řeší kongruenci $ax \equiv \pmod{n}$, označme $n' = \frac{n}{\gcd(a,n)}$. Nechť $x_0 = \min\{x_p + kn' : k \in \mathbb{Z} \text{ a } x_p + kn' \geq 0\}$. Pak množina všech řešení rovnice ax = b v \mathbb{Z}_n je

$${x_0 + in' : i = 0, 1, \dots, \gcd(a, n) - 1}.$$

Jde o gcd(a, n) různých čísel.

```
Soustavy lineárních kongruencí:
```

Jsou dány moduly $n_1, \ldots, n_m \in \mathbb{N}$ a pravé strany $b_1, \ldots, b_m \in \mathbb{Z}$. Hledáme celá čísla x taková, že

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Věta.

Uvažujme moduly $n_1, n_2, \ldots, n_m \in \mathbb{N}$ a čísla $b_1, b_2, \ldots, b_m \in \mathbb{Z}$.

Nechť x_p je nějaké řešení soustavy kongruencí

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Číslo x_0 je také řešením této soustavy právě tehdy, pokud existuje číslo x_h takové, že $x_0 = x_p + x_h$ a x_h je řešením přidružené homogenní soustavy kongruencí

```
x \equiv 0 \pmod{n_1}
x \equiv 0 \pmod{n_2}
\vdots
x \equiv 0 \pmod{n_m}.
```

Věta. (Čínská věta o zbytcích)

Nechť $n_1, n_2, \ldots, n_m \in \mathbb{N}, b_1, b_2, \ldots, b_m \in \mathbb{Z}$. Uvažujme soustavu rovnic

```
x \equiv b_1 \pmod{n_1}
x \equiv b_2 \pmod{n_2}
\vdots
x \equiv b_m \pmod{n_m}.
```

Jestliže jsou všechna čísla n_i po dvou nesoudělná, pak má tato soustava řešení $x_0 \in \mathbb{Z}$. Množina všech řešení je $\{x_0 + kn : k \in \mathbb{Z}\}$, kde $n = n_1 n_2 \cdots n_m$.

Algoritmus pro řešení soustavy kongruencí $x \equiv b_1 \pmod{n_1}, x \equiv b_2 \pmod{n_2}, \dots, x \equiv b_m \pmod{n_m}$ pro případ, že jsou všechna čísla n_i po dvou nesoudělná.

- 1. Označte $n=n_1n_2\cdots n_m$ a $N_i=\frac{n}{n_i}$ pro všechna i.2. Pro každé i najděte inverzní číslo k N_i vzhledem k násobení modulo $n_i.$
- **3.** Nechť $x_p = \sum_{i=1}^m b_i N_i x_i$. Množina všech řešení soustavy je $\{x_p + kn : k \in \mathbb{Z}\}$.