The Treasury Industry Model

Macroeconomic Analysis and Policy Division Macroeconomic Group, Australian Treasury

23 February 2022

Context

- The production side of economy is complex
- Treasury's objectives imply we should be able to provide advice on policy where production complexity needs to be considered
- Treasury needs to harness approaches consistent with mainstream macroeconomic theory

The TIM project

- Treasury has developed a multi-sector dynamic general equilibrium model, called the Treasury Industry Model (TIM)
- TIM provides insight into the effects of industry policy on:
 - Economic activity, government budget, welfare
 - Short, medium and long-run effects of policy
- Based on mainstream macroeconomic theory (neoclassical growth model)
 - But with an increased amount of detail along the firm/industry dimension

${f TIM~Overview-Agents}$

Households

- Single infinitely-lived representative household
- Forward looking decisions on consumption, leisure/labor, and saving to maximize lifetime utility

Firms

- Each industry is modelled as a representative firm
- Produce using intermediate inputs, labor, capital, and land
- Forward looking decision on investment, output, and production inputs to maximize shareholder value

TIM Overview – Agents

Government

- Levies taxes
- Exogenous spending
- No debt (in any period)

Rest of the World (ROW)

- Perfect capital mobility foreign investor is the marginal investor
- Differentiated exports and imports

TIM Overview

- A lot of detail, e.g., able to capture price of intermediates inputs by commodity and industry
- Calibrated to Australian data, primarily ABS IO tables
 - 11 margin goods
 - Foreign ownership by industry
 - Sales, excise, duties, production, and capital/labor income taxes
 - Industry specific investment goods
- Captures responses to anticipated policy changes
- Internally consistent welfare measure

Equilibrium conditions

- Have discussed optimal behaviour of agents in model
 - Now need to define equilibrium conditions in the model

Within each time period

- All markets (e.g., goods, labor, capital) clear
- All accounting identities and optimisation conditions hold
- Government has balanced budget

Across time periods

- Intertemporal Euler equation is satisfied
- No incentives for firms to change investment and labor

Solving for an equilibrium

- Guess a set of variables, and verify if all conditions are satisfied
 - If not, update guess and try again
 - Modelling/computational theory help optimise (quicker to solve)
- In TIM, have guesses for:
 - wages labor market clears
 - prices and quantities all goods markets clear
 - government transfers govt. budget constraint balances
 - utility household's Euler equation is satisfied
 - capital marginal product condition holds (incl. adjustment costs), and real rate of return must equal to world
 - labor adjustment costs firm's balancing marginal cost/benefit of changing input mix

Graphical view of TIM solution

Two-step approach for solving model

- Distinguish between intertemporal variables and intratemporal variables
- Conditional on a set of intertemporal variables, solve each period separately for a set of intratemporal variables
- Then use the resulting set of intratemporal variables to update the intertemporal inputs

 \bullet Let $\mathbf{X^{INTER}}$ and $\mathbf{X^{INTRA}}$ denote the set of intertemporal and intratemporal variables respectively, where

$$\mathbf{X}^{\mathbf{INTER}} = \{U, K_i, LAC_i, MLAC_i\}_t$$

and

$$\mathbf{X}^{\mathbf{INTRA}} = \{p_c^y, y_i, w, G^{TRANS}\}_t$$

• X^{INTER} contains 343 variables (except at time 1) and X^{INTRA} contains 230 variables, per time period

Notation:

- *U*: utility
- K: capital
- \bullet LAC: labor adjustment cost
- *MLAC*: marginal LAC

- p_c^y : domestic price of commodity c
- y_i : output of industry i
- w: wage rate
- G^{TRANS} : value of govt. transfer

• Essentially solving a large root finding problem with $\sim 86,000$ variables (assuming 150 time periods)

$$f(X^{INTER}, X^{INTRA}) = 0$$

- **f** is a vector function stacking all general equilibrium conditions (market clearing, intertemporal optimization, balanced constraints) for all time periods
- Could *theoretically* solve all at once using a root-finding algorithm, but *practically* infeasible
- Instead, split up solving into an intertemporal and intratemporal problem

• Beginning with a guess of X^{INTER} , and conditional on the guess, solve each time period separately for values of X^{INTRA}

$$g_1(X_1^{INTRA} \mid \mathbf{X^{INTER}}) = 0$$

$$g_{150}(X_{150}^{INTRA} \mid \mathbf{X^{INTER}}) = 0$$

• Only requires inverting a 230×230 matrix (easy!)

- Using the solution for $\mathbf{X}^{\mathbf{INTRA}}$ (plus some additional information from the intratemporal solutions), evaluate the *implied* values for the time paths of U, r_i , LAC_i , and $MLAC_i$
- Use these paths to evaluate how far off the guess of X^{INTER} was from solving $f(X^{INTER}, X^{INTRA}) = 0$
- Update the guess of X^{INTER} and try again
 - Updating guess is difficult time periods are linked in this part of the problem
 - Would require inverting a matrix with $\sim 51,000$ variables

- Split up the problem yet again
- Three independent Jacobians for updating $\mathbf{X}^{\mathbf{INTER}}$
 - Capital by industry, 149×149 (one for each industry)
 - Marginal labor adjustment cost, 150×150 (one for each industry)
 - Utility and aggregate capital, 299×299
- With an update for $\mathbf{X^{INTER}}$, repeat the process until we find $\mathbf{f}(\mathbf{X^{INTER}}) = \mathbf{0}$

Conclusion

- TIM is a powerful tool for analysis of policy questions
 - Consistent with mainstream macroeconomic approaches
 - Captures a lot of Australian industry detail
 - Forward looking model useful for considering dynamic aspects of policy
 - Part of Treasury's model development program
- Model is fast, but could be more efficient
 - More ambitious modelling developments may be more computationally intensive