

RelCrowd: Relational Crowdsourcing for Estimating Knowledge Graph Accuracy under Budget

Prakhar Ojha

prakhar.ojha@csa.iisc.ernet.in

Partha Talukdar

ppt@cds.iisc.ac.in

Department of Computer Science and Automation, Indian Institute of Science, Bangalore India

MOTIVATION FOR RELATIONAL CROWDSOURCING

- Knowledge Graphs (KGs) are multi-relational graphs connecting entities via relations.
- Automatic construction of KGs by reading the web and extracting facts, leads to inaccurate graphs with incorrect facts.

Importance of Accuracy

- Know strengths / weakness for targeted querying.
- Feedback helps in better construction.

How to estimate accuracy? Software Evaluation or Human Judgment

- Budget constraints of real money and human time.
- Generic crowdsourcing ignores structural information.

Idea: Exploit structural information to post fewer tasks and infer the rest.

Coupling Constraints

- Type consistency: homeStadiumOf(X,Y) -> stadium(X) ^ sportsTeam(Y)
- Horn-Clause: homeStadiumOf(X,Y) ^ playsInCity(Y,Z) -> stadiumLocatedIn(X,Z)

PROBLEM FORMALIZATION AND APPROACH

KG with *n* beliefs $\mathcal{H} = \{h_1, \dots, h_n\}$ and budget \mathbb{B} of to evaluate it. Coupling constraints $\mathcal{C} = \{(\mathcal{C}_i, \theta_i)\}$ are relationship among tasks. *Inference algorithm* uses constraints over already evaluated tasks $\mathcal{Q} \subseteq \mathcal{H}$ and deduces labels for *inferable* set $\mathcal{I}(G, \mathcal{Q}) \subseteq \mathcal{H}$.

 $\Phi(\mathcal{Q})$ calculates the average accuracy of evaluated tasks.

Maximize the size of inferable set, taking care of the budget.

$$\operatorname{arg\,max}_{\mathcal{Q}\subseteq\mathcal{H}} |\mathcal{I}(G,\mathcal{Q})|, \text{ s.t. } \sum_{h\in\mathcal{Q}} c(h) \leq \mathbb{B}$$
(1)

RelCrowd optimization is submodular and subset selection is NP-Hard.

Evaluation Coupling Graph (ECG)

- Bipartite factor graph
- Nodes for each constraint and task
- Edges between constraints and participating tasks

OVERVIEW OF CONTROL AND INFERENCE MECHANISM

 \mathcal{H} : set of tasks

G: ECG

 \mathcal{S} : seed set

 \mathcal{C} : coupling constraints

B: assigned budget

 B_r : residual budget

Q: evaluated tasks

c(h): cost function

Φ: score aggregator

Sampled node **Inferred Nodes**

METHOD

Inference Mechanism

Probabilistic Soft Logic (PSL): Distribution over labels given by

$$\mathbb{P}\bigg(l\big(\mathcal{I}(G,\mathcal{Q})\big)\bigg) = \frac{1}{Z} \exp\bigg[-\sum_{j=1}^{|\mathcal{C}|} \theta_j \psi_j\big(\mathcal{I}(G,\mathcal{Q})\big)\bigg]$$

Labels which satisfy more constraints are more probable.

Control Mechanism

Algorithm 1 KGEval: KG-Evaluation

- 1: $G = BUILDECG(\mathcal{H}, \mathcal{C})$
- $2: B_r = \mathbb{B}$
- 3: $Q_0 = S$
- 4: while $(B_r > 0)$ do
- $h^* = \arg\max_{h \in \mathcal{H}} |\mathcal{I}(G, \mathcal{Q}_{t-1} \cup \{h\})|$
- CrowdEvaluate (h^*)
- $\mathcal{Q}_t = \mathcal{I}(G, \mathcal{Q}_{t-1} \cup \{h^*\})$
- $B_r = B_r c(h^*)$
- $\mathcal{Q} = \mathcal{Q} \cup \mathcal{Q}_t$
- if $Q \equiv \mathcal{H}$ then
- EXIT 11:
- end if
- 13: end while
- 14: **return** $\frac{1}{|\mathcal{Q}|} \sum_{h \in \mathcal{Q}} l(h)$

KEY RESULTS

Datasets: NELLsports and Yago2Sample KGs

Crowdsource from Amazon Mechanical Turk

Baselines: Random, Max-Degree, Independent Cascade, and RelCrowd

NELL sports dataset (\mathcal{H}_N)				
Method	$1 - \Delta Acc_{Micro}$	$1 - \Delta Acc_{Macro}$	# Queries	
Random	0.987	0.9516	623	
Max-Degree	0.971	0.9239	1370	
Ind-Cascade	0.992	0.9026	232	
RelCrowd	0.995	0.9641	140	

- RelCrowd estimates are closest to gold accuracy and utilize minimum budget.
- Rate of coverage over Knowledge graph is fastest.

Effectiveness of Coupling Constraints:

More relational Couplings Constraints

Better performance.

Constraint Set	Iterations	$1 - \Delta Acc_{Micro}$
\mathcal{C}	87	0.993
${\cal C}-{\cal C}_{b3}$	209	0.991
${\cal C}-{\cal C}_{b3}-{\cal C}_{b2}$	285	0.989

Future directions: Minimize regret incurred in terms of budget spent.

Model aggregation methods for noisier crowd responses.