

Brute Force Algorithms

Algorithmic Thinking Luay Nakhleh

Department of Computer Science Rice University

Brute Force Algorithms

- * A brute force algorithm is a solution that is based directly on the problem definition.
- * It is often easy to establish the correctness of a brute force algorithm.
- * This algorithmic strategy applies to almost all problems.
- * Except for a small class of problems, this algorithmic strategy produces algorithms that are prohibitively slow.

Bipartite Graphs

* A graph G is called <u>bipartite</u> if its node set V can be partitioned into two disjoint and non-empty sets V_1 and V_2 such that every edge in the graph connects a node in V_1 and a node in V_2 . When this condition holds, we call the pair (V_1, V_2) a <u>bipartition</u> of the node set V of G.

Are the following graphs bipartite?

Is a Given Graph Bipartite? A Brute Force Algorithm

Algorithm 1: IsBipartite.

10 return False;

```
Input: Undirected graph g = (V, E).
  Output: True if g is bipartite, and False otherwise.
1 foreach Non-empty subset V_1 \subset V do
      V_2 \leftarrow V \setminus V_1;
      bipartite \leftarrow True;
3
      foreach Edge \{u, v\} \in E do
           if \{u,v\} \subseteq V_1 or \{u,v\} \subseteq V_2 then
               bipartite \leftarrow False;
               Break;
7
      if bipartite = True then
8
           return True;
9
```

Graph Connectivity: Paths

- * Let k be a nonnegative integer and G a graph.
 - * A path of length k from node v_0 to node v_k in G is a sequence of k edges $e_1,e_2,...,e_k$ of G such that $e_1=\{v_0,v_1\}$, $e_2=\{v_1,v_2\}$, ..., $e_k=\{v_{k-1},v_k\}$, where $v_0,...,v_k$ are all nodes in V, and $e_1,...,e_k$ are all edges in E.
- * We usually denote such a path by its node sequence $(v_0, v_1, ..., v_k)$.
- * A path is <u>simple</u> if it does not contain the same node more than once.
- * A cycle is a simple path that begins and ends at the same node.
- * A path (not necessarily simple) that begins and ends at the same node is called a <u>circuit</u>.

Is There a Path Between i and j? A Brute Force Algorithm

Algorithm 2: IsConnected.

Input: Undirected graph g = (V, E), $|V| \ge 2$, and two nodes $u, v \in V$, such that $u \ne v$. **Output**: True if there is a path between u and v in g, and False otherwise.

```
1 Nodes \leftarrow V - \{u, v\};
2 for c \leftarrow 0 to |Nodes| do
        x_0 \leftarrow u;
3
       x_{c+1} \leftarrow v;
4
       foreach subset W \subseteq Nodes of size c do
            foreach permutation x_1, \ldots, x_c of the elements of W do
 6
                 Connected \leftarrow True;
                 for i \leftarrow 0 to c do
8
                     if \{x_i, x_{i+1}\} \notin E then
                          Connected \leftarrow False;
10
                          Break;
11
                 if Connected = True then
                     return True;
12
```

13 return False;

The Shortest Path

- * Given a graph G=(V,E), and two connected nodes i,j∈V, a <u>shortest</u> <u>path</u> between i and j is a path P that connects the two nodes and every other path that connects i and j is either longer than P or of equal length.
- * The shortest path between two nodes may not be unique.
- * The <u>distance</u> between two nodes in the length of a shortest path between them.

The Shortest Path

- How would you modify IsConnected to produce a brute-force algorithm for finding
 - * the distance between two given nodes i and j?
 - * a shortest path between two given nodes i and j?
 - * all shortest paths between two given nodes i and j?

The Clique Problem

- * **Input**: Graph G=(V,E) and positive integer k.
- * Question: Does G contain a clique of size $\ge k$, that is, a complete subgraph of size $\ge k$?
- Describe a brute-force algorithm for the problem.

The Traveling Salesman Problem

- * Input: Graph G=(V,E).
- * Output: The shortest Hamiltonian cycle of G, that is, the shortest cycle that visits all nodes of G exactly once.
- * Describe a brute-force algorithm for the problem.

- * **Input:** Two finite lists of words $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_n$ over an alphabet that has at least two letters.
- **Output:** A sequence of indices i1,i2,...,iM, where M≥1, all index values are between 1 and n, and $x_{i1}x_{i2}...x_{iM}=y_{i1}y_{i2}...y_{iM}$.

X 1	X 2	X 3	X 4	y 1	y 2	y 3	y 4
ab	bbaaba	b	bb	a	a	bbbb	ab

X 1	X 2	X 3	X 4	y 1	y 2	y 3	y 4
ab	bbaaba	b	bb	a	a	bbbb	ab

Solution: Indices 1,3,2,4,4,3

(to verify: check that $x_1x_3x_2x_4x_4x_3=y_1y_3y_2y_4y_4y_3$)

X 1	X 2	X 3	X 4	y 1	y 2	y 3	y 4
ab	bbaaba	b	bb	a	a	bbbb	ab

Solution: Indices 1,3,2,4,4,3

(to verify: check that $x_1x_3x_2x_4x_4x_3=y_1y_3y_2y_4y_4y_3$)

x ₁	X 2	X 3	X4		V 1	y 2	y 3	y 4	
ab	bbaaba	b	bb		a	a	bbbb	ab	

Solution: Indices 1,3,2,4,4,3

(to verify: check that $x_1x_3x_2x_4x_4x_3=y_1y_3y_2y_4y_4y_3$)

No Solution!

Devise a brute-force algorithm for PCP????

A Taxonomy of the Problems

- Group 1: [We ca do much better than brute force]
 - * Bipartiteness, connectivity, shortest paths, and distance
- * Group 2: [We can't do much better than brute force]
 - Clique, traveling salesman
- Group 3: [Even brute force doesn't work; there is no algorithm]
 - Post correspondence problem

- * What's wrong with the algorithms we've seen?
- Stay tuned for efficiency analysis!