1 Distribuição de Qui-Quadrado

Definição. Uma variável aleatória X é dita possuir distribuição de Qui-Quadrado com parâmetro k>0 se sua fdp é da forma

$$f(x) = \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} x^{k/2-1} e^{-x/2} I(x)$$

Notação: $X \sim \chi^2_{(k)}$.

Obs 1.: O parâmetro k é chamado número de graus de liberdade.

1.1 Função Densidade de Probabilidade

Devemos verificar se as condições abaixo são satisfeitas:

1. $f(x) \ge 0$

2.
$$\int_0^\infty \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} x^{k/2-1} e^{-x/2} dx = 1$$

Prova

A primeira condição é óbvia, já que para todo x > 0 todos os termos envolvidos são positivos. Para a segunda condição, seja

$$I = \int_0^\infty \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} x^{k/2-1} e^{-x/2} dx$$
$$= \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} \int_0^\infty x^{k/2-1} e^{-x/2} dx.$$

Sabemos que $\int_0^\infty x^{\alpha-1}e^{-x}dx=\Gamma(\alpha)$. Seja $u=\beta x\Rightarrow du=\beta dx,\ \beta>0$. Assim

$$\int_0^\infty x^{\alpha - 1} e^{-\beta x} dx = \frac{\Gamma(\alpha)}{\beta^{\alpha}} \tag{1}$$

fazendo $\alpha = \frac{k}{2}$ e $\beta = \frac{1}{2}$ temos que

$$\int_0^\infty x^{k/2-1} e^{-x/2} dx = \frac{\Gamma(\frac{k}{2})}{(\frac{1}{2})^{\frac{k}{2}}}$$

logo

$$\left[\frac{1}{2^{k/2}\Gamma\left(\frac{k}{2}\right)}\right]\left[2^{k/2}\Gamma\left(\frac{k}{2}\right)\right] = 1$$

Obs 2.: Como $\Gamma(\frac{1}{2}) = \sqrt{\pi},$ a fdp de X para k=1 é dada por

$$f(x) = \frac{1}{\sqrt{\pi}2^{1/2}} x^{-\frac{1}{2}} e^{-x/2} = \frac{1}{\sqrt{2\pi x}} e^{-x/2} I(x)$$

Obs 3.: A fdp de X para k = 2 é dada por

$$f(x) = \frac{1}{2}e^{-x/2} I(x)$$

logo $X \sim \chi^2_{(2)} = Exp(\lambda = \frac{1}{2}).$

Obs 4.: O gráfico da fdp de X para k=1,2,3,4 é dado pela **figura 1**. O gráfico da fdp de X para $k\geq 3$ sempre começará na origem.

Obs 5.: O gráfico da fdp de X para k = 10, 20, 30, 40 é dado pela figura 2.

1.2 Função de Distribuição

A função de distribuição (fd) de $X \sim \chi^2_{(k)}$ é definida por

$$F(x) = \int_0^x \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} t^{k/2-1} e^{-t/2} dt \ I(x)$$

Esta função, para alguns valores de k não têm forma fechada. Ela vem tabelada na maioria dos livros de Estatística.

0.1%	10.828	13.816	16.266	18.467	20.515	22.458	24.322	26.125	27.877	29.588	31.264	32.910	34.528	36.123	37.697	39.252	40.790	42.312	43.820	45.315	46.797	48.268	49.728	51.179	52.620	54.052	55.476	56.892	58.301	59.703
0.2%	9.550	12.429	14.796	16.924	18.907	20.791	22.601	24.352	26.056	27.722	29.354	30.957	32.535	34.091	35.628	37.146	38.648	40.136	41.610	43.072	44.522	45.962	47.392	48.812	50.223	51.627	53.023	54.411	55.792	57.167
1%	6.635	9.210	11.345	13.277	15.086	16.812	18.475	20.090	21.666	23.209	24.725	26.217	27.688	29.141	30.578	32.000	33.409	34.805	36.191	37.566	38.932	40.289	41.638	42.980	44.314	45.642	46.963	48.278	49.588	50.892
2%	5.412	7.824	9.837	11.668	13.388	15.033	16.622	18.168	19.679	21.161	22.618	24.054	25.471	26.873	28.259	29.633	30.995	32.346	33.687	35.020	36.343	37.660	38.968	40.270	41.566	42.856	44.140	45.419	46.693	47.962
2,5%	5.024	7.378	9.348	11.143	12.832	14.449	16.013	17.535	19.023	20.483	21.920	23.337	24.736	26.119	27.488	28.845	30.191	31.526	32.852	34.170	35.479	36.781	38.076	39.364	40.647	41.923	43.194	44.461	45.722	46.979
4%	4.218	6.438	8.311	10.025	11.644	13.198	14.703	16.171	17.608	19.021	20.412	21.785	23.142	24.485	25.816	27.136	28.445	29.745	31.037	32.321	33.597	34.867	36.131	37.389	38.642	39.889	41.132	42.370	43.604	44.834
2%	3.841	5.992	7.815	9.488	11.070	12.592	14.067	15.507	16.919	18.307	19.675	21.026	22.362	23.685	24.996	26.296	27.587	28.869	30.143	31.410	32.671	33.924	35.172	36.415	37.653	38.885	40.113	41.337	42.557	43.773
10%	2.705	4.605	6.251	7.779	9.236	10.645	12.017	13.362	14.684	15.987	17.275	18.549	19.812	21.064	22.307	23.542	24.769	25.989	27.204	28.412	29.615	30.813	32.007	33.196	34.382	35.563	36.741	37.916	39.087	40.256
20%	1.642	3.219	4.642	5.989	7.289	8.558	9.803	11.030	12.242	13.442	14.631	15.812	16.985	18.151	19.311	20.465	21.615	22.759	23.900	25.038	26.171	27.302	28.429	29.553	30.675	31.795	32.912	34.027	35.139	36.250
30%	1.074	2.408	3.665	4.878	6.064	7.231	8.383	9.524	10.656	11.781	12.899	14.011	15.119	16.222	17.322	18.418	19.511	20.601	21.689	22.774	23.858	24.939	26.018	27.096	28.172	29.246	30.319	31.391	32.461	33.530
20%	0.455	1.386	2.366	3.357	4.351	5.348	6.346	7.344	8.343	9.342	10.341	11.340	12.340	13.339	14.339	15.338	16.338	17.338	18.338	19.337	20.337	21.337	22.337	23.337	24.337	25.337	26.336	27.336	28.336	29.336
20%	0.148	0.713	1.424	2.195	3.000	3.828	4.671	5.527	6.393	7.267	8.148	9.034	9.926	10.822	11.721	12.624	13.531	14.440	15.352	16.266	17.182	18.101	19.021	19.943	20.867	21.792	22.719	23.648	24.577	25.508
%08	0.064	0.446	1.005	1.649	2.342	3.070	3.822	4.594	5.380	6.179	6.989	7.807	8.634	9.467	10.307	11.152	12.002	12.857	13.716	14.578	15.445	16.314	17.186	18.062	18.940	19.820	20.703	21.588	22.475	23.364
%06	0.016	0.211	0.584	1.064	1.610	2.204	2.833	3.490	4.168	4.865	5.578	6.304	7.042	7.790	8.547	9.312	10.085	10.865	11.651	12.443	13.240	14.041	14.848	15.659	16.473	17.292	18.114	18.939	19.768	20.599
95%	0.004	0.103	0.352	0.711	1.145	1.635	2.167	2.733	3.325	3.940	4.575	5.226	5.892	6.571	7.261	7.962	8.672	9.390	10.117	10.851	11.591	12.338	13.091	13.848	14.611	15.379	16.151	16.928	17.708	18.493
97,5%	0.001	0.051	0.216	0.484	0.831	1.237	1.690	2.180	2.700	3.247	3.816	4.404	5.009	5.629	6.262	806.9	7.564	8.231	8.906	9.591	10.283	10.982	11.689	12.401	13.120	13.844	14.573	15.308	16.047	16.791
%86	0.001	0.040	0.185	0.429	0.752	1.134	1.564	2.033	2.532	3.059	3.609	4.178	4.765	5.368	5.985	6.614	7.255	2.906	8.567	9.237	9.915	10.600	11.293	11.992	12.697	13.409	14.125	14.848	15.575	16.306
%66	0.000	0.020	0.115	0.297	0.554	0.872	1.239	1.647	2.088	2.558	3.054	3.571	4.107	4.660	5.229	5.812	6.408	7.015	7.633	8.260	8.897	9.543	10.196	10.856	11.524	12.198	12.879	13.565	14.257	14.954
G.L.	П	2	3	4	v	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

1.3 Momentos, assimetria e excesso de curtose

O r-ésimo momento em relação à origem de $X \sim \chi^2_{(k)}$ é dado por

$$\mu_r' = \mathbb{E}(X^r) = \frac{2^r \Gamma(r + \frac{k}{2})}{\Gamma(\frac{k}{2})}.$$

Prova

$$E(X^r) = \frac{1}{2^{k/2}\Gamma(\frac{k}{2})} \int_0^\infty x^r x^{k/2-1} e^{-x/2} dx
= \left[\frac{2^{r+k/2}\Gamma(r+k/2)}{2^{k/2}\Gamma(\frac{k}{2})} \right]
= \frac{2^r\Gamma(r+k/2)}{\Gamma(k/2)}$$

Assim

$$I\!\!E(X) = \mu = \frac{2\Gamma(1+k/2)}{\Gamma(k/2)} = \frac{2k}{2} = k$$

$$I\!\!E(X^2) = \frac{2^2 \Gamma(2+k/2)}{\Gamma(k/2)} = 4 \left(1 + \frac{k}{2}\right) \frac{k}{2} = 2k \left(1 + \frac{k}{2}\right)$$

$$IE(X^3) = \frac{2^3\Gamma(3+k/2)}{\Gamma(k/2)} = 4k\left(2+\frac{k}{2}\right)\left(1+\frac{k}{2}\right)$$

$$I\!\!E(X^4) = \frac{2^4\Gamma(4+k/2)}{\Gamma(k/2)} = 8k\left(3 + \frac{k}{2}\right)\left(2 + \frac{k}{2}\right)\left(1 + \frac{k}{2}\right)$$

A variância de $X \sim \chi^2_{(k)}$ é dada por

$$Var(X) = \sigma^2 = 2k$$

Prova

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}^2(X)$$
$$= 2k\left(1 + \frac{k}{2}\right) - k^2$$
$$= 2k + k^2 - k^2$$
$$= 2k$$

A assimetria de $X \sim \chi^2_{(k)}$ é dada por

$$\alpha_3 = \sqrt{\frac{8}{k}}$$

Prova

Sabemos que

$$\alpha_3 = \frac{\mu_3}{\sigma^3}$$

em que $\mu_3 = \mathbb{E}[(X - \mu)^3]$. Calculando μ_3 temos

$$\mu_{3} = \mathbb{E}(X^{3}) - 3\mathbb{E}(X^{2})\mu + 3\mathbb{E}(X)\mu^{2} - \mu^{3}$$

$$= 4k\left(2 + \frac{k}{2}\right)\left(1 + \frac{k}{2}\right) - 3k\left[2k\left(1 + \frac{k}{2}\right)\right] + 3k^{3} - k^{3}$$

$$= 4k\left(2 + \frac{3k}{2} + \frac{k^{2}}{4}\right) - 6k^{2} - 3k^{3} + 2k^{3}$$

$$= 8k + 6k^{2} + k^{3} - 6k^{2} - k^{3}$$

$$= 8k$$

logo

$$\alpha_3 = \frac{8k}{\sqrt{2k^3}}$$

$$= \frac{8k}{2k\sqrt{2k}}$$

$$= \frac{\sqrt{16}}{\sqrt{2k}}$$

$$= \sqrt{\frac{8}{k}}$$

O excesso de curtose de $X \sim \chi^2_{(k)}$ é dada por

$$\alpha_4 = \frac{12}{k}$$

Prova

Sabemos que

$$\alpha_4 = \frac{\mu_4}{\sigma^4} - 3$$

em que $\mu_4 = \mathbb{E}[(X - \mu)^4]$. Calculando μ_4 temos

$$\begin{array}{rcl} \mu_4 & = & I\!\!E(X^4) - 4I\!\!E(X^3)\mu + 6I\!\!E(X^2)\mu^2 - 4I\!\!E(X)\mu^3 - \mu^4 \\ & = & 8k\bigg(3 + \frac{k}{2}\bigg)\bigg(2 + \frac{3k}{2} + \frac{k^2}{4}\bigg) - \bigg[16k^2\bigg(2 + \frac{3k}{2} + \frac{k^2}{4}\bigg)\bigg] + 12k^3\bigg(1 + \frac{k}{2}\bigg) - 3k^4 \\ & = & 48k + 12k^2 \end{array}$$

logo

$$\alpha_4 = \frac{48k + 12k^2}{4k^2} - 3$$

$$= \frac{48k + 12k^2 - 12k^2}{4k^2}$$

$$= \frac{48k}{4k^2}$$

$$= \frac{12}{k}$$

1.4 Moda "M_o"

A moda de $X \sim \chi^2_{(k)}$ é dada por

$$M_o = k - 2, \ k \ge 3$$

para k=1 não existe moda e k=2 a moda é o ponto zero.

Prova

$$f(x) = \frac{1}{2^{k/2}\Gamma(\frac{k}{2})}x^{k/2-1}e^{-x/2}$$

fazendo $g(x) = \ln f(x)$, tem-se:

$$g(x) = -\frac{k}{2} \ln 2 - \ln \Gamma(k/2) + \left(\frac{k}{2} - 1\right) \ln x - \frac{x}{2}$$

$$g'(x) = \frac{k-2}{2x} - \frac{1}{2}$$

$$g''(x) = -\frac{k-2}{2x^2}$$

$$g''(x) < 0, \text{ se } k > 2$$

Assim, $g'(M_o) = 0$

$$\frac{k-2}{2M_0} = \frac{1}{2}$$

Portanto,

$$M_0 = k - 2, \ k > 2$$

Para k=2 tem-se a distribuição exponencial de parâmetro 1/2, cuja função densidade é sempre descrescente e portanto o máximo ocorre quando x=0. Assim

$$M_o = k - 2, \ k \ge 2$$

1.5 Função Geradora de Momentos

A função geradora de momentos de $X \sim \chi^2_{(k)}$ é definida por

$$M_X(t) = \left(\frac{1}{1-2t}\right)^{k/2}, \ t < \frac{1}{2}$$

Prova

$$\begin{split} M_X(t) &= E(e^{tX}) = \int_0^\infty e^{tx} \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} x^{k/2-1} e^{-x/2} dx \\ &= \frac{1}{2^{k/2} \Gamma(\frac{k}{2})} \int_0^\infty x^{k/2-1} e^{-x[1/2-t]} dx \quad \text{desde que } 1/2 - t > 0 \\ &= \left(\frac{1}{2^{k/2} \Gamma(\frac{k}{2})}\right) \left(\frac{\Gamma(k/2)}{(1/2 - t)^{k/2}}\right) \\ &= \left(\frac{1}{1 - 2t}\right)^{k/2}, \ t < \frac{1}{2} \end{split}$$

1.6 Função geradora de cumulantes

A função geradora de momentos de $X \sim \chi^2_{(k)}$ é definida por

$$K_X(t) = -\frac{k}{2}\ln(1-2t), \ t < \frac{1}{2}$$
 (2)

Prova

Sabemos que

$$K_X(t) = \ln M_X(t)$$

assim

$$K_X(t) = \ln(1-2t)^{-k/2}$$

= $-\frac{k}{2}\ln(1-2t)$.

Vamos encontrar o valor esperado e variância a partir dessa função. Derivando a função (2) em relação à t obtemos

$$K_X'(t) = -\frac{k}{2} \cdot \frac{-2}{1-2t} = \frac{k}{1-2t}, \ t < \frac{1}{2}$$

sabemos que $K'_X(0) = \mathbb{E}(X)$. Assim

$$I\!E(X) = K_X'(0) = \frac{k}{1 - 0} = k$$

Conhecemos que $K_X''(0) = Var(X)$. Assim

$$K_X''(t) = \frac{2k}{(1-2t)^2}, \ t < \frac{1}{2}$$

e

$$Var(X) = K_X''(0) = \frac{2k}{(1-0)^2} = 2k$$

1.7 Distribuição Qui-quadrado no R

No software gratuito conhecido como R, disponível para download no endereço www.r-project.org, temos que, em cada distribuição de probabilidade é possível usar algumas operações representadas por uma única letra em seguida a simbologia da distribuição estudada, dentre essas operações destacamos:

d calcula a densidade de probabilidade f(x) no ponto. O primeiro termo é o valor que x assume da densidade, o segundo é o número de graus de liberdade

```
dchisq(x, df, ncp=0, log = FALSE)
```

p calcula a função de probabilidade acumulada F(x) = P(X < x) no ponto. O primeiro termo é o valor de x que representa o quantil e o terceiro, se for dado como verdade, argumento calcula $P(X \le x)$, caso contrário, P(X > x);

```
pchisq(q, df, ncp=0, lower.tail = TRUE)
```

q calcula o quantil de uma distribuição em relação a uma dada probabilidade, ou seja, calcula o valor de c em que P(X < c) = p. É a operação inversa da proposta acima, em que o primeiro termo indica a probabilidade que a função assume;

```
qchisq(p, df, ncp=0, lower.tail = TRUE)
```

r gera amostra da distribuição. O primeiro argumento representa o número de observações na amostra gerada.

```
rchisq(n, df, ncp=0)
```

Obs 14: Há outros argumentos dessas funções, tais como ncp que indica o parâmetro de não-centralidade e por log ou log.p se utilizado como verdade substitui o valor das probabilidade p por ln p, resolvemos omitir porque não objeto do nosso estudo.

1.7.1 Comandos básicos

Para mais informações, e exemplos basta utilizar a função help.

> help(dchisq)

Vamos ver alguns exemplos.

```
> dchisq(4,df=3)
[1] 0.1079819
que de forma análoga
> fx=1/(2^(3/2)*gamma(3/2))*(4)^((3/2)-1)*exp(-4/2);fx
[1] 0.1079819
> pchisq(4,3)
[1] 0.7385359
> qchisq(0.95,12)
[1] 21.02607
```

```
> rchisq(10,1)
[1] 0.016289145 0.574638864 0.034978639 0.211442672 2.149133465 0.031807597
[7] 1.408106132 0.009895398 0.910755996 0.605715045
```

Obs 10.: Notamos que a cada geração de uma amostra aleatória obtemos valores diferentes, pois o R muda a "semestre" da geração. Se quisermos uma amostra igual em todas as gerações devemos utilizar o comando seed(.) por exemplo

```
> set.seed(945)
> rchisq(7,4)
[1] 5.298402 4.248953 2.296971 2.783382 9.483237 1.903036 8.307755
> rchisq(7,4)
[1] 2.133257 4.228787 5.189371 7.715549 2.464150 3.985626 1.139770
> set.seed(945)
> rchisq(7,4)
[1] 5.298402 4.248953 2.296971 2.783382 9.483237 1.903036 8.307755
```

Vamos agora ver alguns gráficos gerados pelo R a partir do comando plot . Podemos gerar gráficos tanto da função densidade f(x) como da função acumulada F(x). Abaixo usamos a distribuição com 6 graus de liberdade

```
plot(function(x) dchisq(x, 6), 0,20)
plot(function(x) pchisq(x, 6), 0,20)
```

Faça como exercício o gráfico com k=1,2,3 e comente o resultado.

Os gráficos do R possuem várias opções, como mudar o título do gráfico e dos eixos. Podemos também definir os limites dos eixos, colocar legendas, alterar tamanho da fonte, entre outras opções (ver figura 4)

Figura 4: Gráfico da função densidade de $X \sim \chi^2_{(15)}$ com área hachurada representando P(X < 12)

O comando para a figura 4 é dado por

```
 \begin{array}{l} x = seq(0,36,l=150) \\ fx = dchisq(x,15) \\ plot(x,fx,type="l", main="Distribuição Qui-quadrado com 15 g.l.",ylab="f(x)") \\ ax = c(0,0,x[x<12],12,12) \\ ay = c(0,dchisq(c(0,x[x<12],12),15),0) \\ polygon(ax,ay,dens=10) \end{array}
```

1.7.2 Relações entre distribuições de probabilidade

Um recurso importante no R é construir várias simulações para fazer inferências sobre as distribuições amostrais nas características que temos interesse. A utilização das simulações é importante quando desejamos obter resultados teóricos que não são conhecidos. Um dos resultados que podemos explanar é a aproximação entre a distribuição normal e a quiquadrado visto nas secções anteriores. Vamos mostrar para o caso, se $X \sim N(0,1)$ então $Y = X^2 \sim \chi^2_{(1)}$.

```
x=rnorm(10000)
hist(x,prob=T)
curve(dnorm(x),add=T)
```

usamos o argumento prob=T assim obtemos o valor das frequências relativa, podendo assim comparar com as curva teórica. Fazendo agora o gráfico da qui-quadrado.

```
hist(x^2,prob=T)
curve(dchisq(x,1),0,10,add=T)
```

Na **figura 5** temos os histogramas a partir da amostra gerada dos gráficos da distribuição normal padrão e da distribuição qui-quadrado com k = 1.

Figura 5

1.7.3 Distribuição amostral

Vamos ilustrar uma simulação na qual $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$, com $S^2 = \sum_{i=1}^n \frac{x_i - \bar{x}}{n-1}$ sendo a variância amostral. Vamos executar os seguintes passos

- i) Escolha os parâmetros de uma distribuição normal;
- ii) Escolha o tamanho da amostra n e á quantidade de simulações N;
- iii) Agora simule N amostras de tamanho n;
- iv) Para cada valor da amostra calcule $V = \frac{(n-1)S^2}{\sigma^2}$
- v) reproduza um histograma com os valores de V e compare com a curva da distribuição $\chi^2_{(n-1)}.$

Um exemplo para a simulação acima é

```
n=20
N=1000

y=matrix(rnorm(n*N,100,6),nc=N);y
S2=apply(y,2, function(x) {(n-1)*sum((x-mean(x))^2)/(n-1)/36});S2
mean(S2)
var(S2)
hist(S2,prob=T,main="Histograma de V",ylab="f(v)",xlab="v")
curve(dchisq(x,n-1),0,50,add=T)
```

1.8 Transformações importantes

A distribuição qui-quadrado têm várias aplicações em inferência estatística tanto em teste de hipóteses e intervalos de confiança quanto em estimação de variâncias. Um exemplo são os problemas envolvendo a análise de variância, através da distribuição F de Snedecor que é a razão entre duas distribuições qui-quadrados independentes divididas por seus respectivos graus de liberdade. Vamos tratar de algumas relações de transformações de variáveis

Se X_1, X_2, \dots, X_n são variáveis aleatórias independentes e identicamente distribuídas com distribuição Normal com média μ_i e variância σ_i^2 , então

$$V = \sum_{i=1}^{k} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2 \tag{3}$$

têm distribuição Qui-Quadrado com k graus de liberdade.

Obs 6.: Uma relação importante é se $X \sim \chi^2_{(1)}$ e $Y = \sum_{i=1}^k X_i$ obteremos que $Y \sim \chi^2_{(k)}$.

Obs 7.: É importante ressaltar que se $X_1, X_2, \cdots, X_n \sim N(\mu, \sigma^2)$ e fazendo $V = \sum_{i=1}^k \left(\frac{X_i - \mu}{\sigma}\right)^2$, isto é, as médias e variâncias são iguais em todas as variáveis aleatórias, também obteremos que $V \sim \chi^2_{(k)}$.

Obs 8.: Se $X \sim N(\mu_i, 1)$ com médias diferentes de zero temos que se $V = \sum_{i=1}^k X_i^2$ então V tem distribuição qui-quadrado não-central.

Teorema 1. Se Z_1, Z_2, \dots, Z_k é uma amostra aleatória com distribuição normal padrão, então:

- a) $\bar{Z} \sim N(0, 1/k)$;
- b) \bar{Z} e $\sum_{i=1}^{k} (Z_i \bar{Z})^2$ são independentes;
- c) $\sum_{i=1}^{k} (Z_i \bar{Z})^2 \sim \chi_{(k)}^2$

Corolário. Se $X \sim N(\mu, \sigma^2)$ e X_1, \cdots, X_k é uma amostra aleatória de X, então $S^2 = \frac{\sum_{i=1}^k (X_i - \bar{X})^2}{k-1}$ é chamada de variância amostral. Com base no teorema concluímos que

$$\frac{(k-1)S^2}{\sigma^2} \sim \chi^2_{(k-1)}$$

Teorema 2. Vamos supor que $X \sim \chi^2_{(k)}$ e se k for suficientemente grande temos que $U = \sqrt{2X}$ tem aproximadamente distribuição normal com média $\sqrt{2k-1}$ e variância 1.

Obs 9: Uma outra aproximação importante é se $X \sim \chi^2_{(k)}$ então $\sqrt[3]{X/k}$ tem aproximadamente distribuição normal com média $1 - \frac{2}{9k}$ e variância $\frac{2}{9k}$.

Obs 10: Seja $X_1 \sim \chi_{k_1}^2$ e $X_2 \sim \chi_{k_2}^2$ variáveis aleatórias independentes. Fazendo $Y=\frac{X_1/k_1}{X_2/k_2}$ temos que $Y\sim F_{(k_1,k_2)}$

Obs 11: Seja $\mathbf{Z}^{\top} = (Z_1, Z_2, \dots, Z_n)$, em que os Z_i 's são variáveis aleatórias independentes e $Z_i \sim N(0, \sigma^2)$ ou $\mathbf{Z} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I})$, em que a média $\mathbf{0}$ é uma matriz de zeros de ordem n, \mathbf{I} é a matriz indentidade de ordem n e seja \mathbf{A} é uma matriz quadrada $n \times n$ idempotente e com posto n - k e então a forma quadrática $\frac{\mathbf{z}^{\top} \mathbf{A} \mathbf{z}}{\sigma^2} \sim \chi^2_{(n-k)}$

Obs 12: Seja F(x|k) a função de distribuição de $X \sim \chi^2_{(k)},$ então:

a)
$$F(x|k) = \frac{1}{\Gamma(k/2)} \sum_{i=0}^{\infty} \frac{(-1)^i (x/2)^{k/2+i}}{i! \Gamma(k/2+i)};$$

b)
$$F(x|k+2) = F(x|k) - \frac{(x/2)^{k/2}e^{-x/2}}{\Gamma(k/2+1)};$$

c)
$$F(x|2k) = 1 - 2\sum_{i=1}^{k} f(x|2i);$$

d)
$$F(x|2k+1) = 2\Phi(\sqrt{x}) - 1 - 2\sum_{i=1}^{k} f(x|2i+1).$$

em que f(x|k) é a função densidade de probabilidade de $X \sim \chi^2_{(k)}$ e Φ representa a função acumulada da normal padrão.

Obs 13: Indentidade de Haff: Seja f e h valores reais de uma função, e seja $X \sim \chi^2_{(k)},$ então

$$\mathbb{E}[f(X)h(X)] = \mathbb{E}\left[f(X)\frac{\partial h(X)}{\partial X}\right] + \mathbb{E}\left[\frac{\partial f(X)}{\partial X}h(X)\right] + (n-2)\mathbb{E}\left[\frac{f(X)h(X)}{X}\right]$$

1.9 Geração de números aleatórios

Como visto nas subseções anteriores temos que a soma de k variáveis aleatórias com distribuição normal padrão ao quadrado resulta em uma distribuição qui-quadrado com k graus de liberdade. Podemos usar esse resultado na construção de técnicas de geração de números pseudoaleatórios da distribuição qui-quadrado. Seja a transformação na qual são dados dois números pseudoaleatórios, γ_1 e γ_2 , com distribuição uniforme padrão a partir da transformação

$$z_1 = \sqrt{-2\ln\gamma_1}\cos 2\pi\gamma_2$$

е

$$z_2 = \sqrt{-2\ln\gamma_1} \mathrm{sen} 2\pi\gamma_2$$

em que z_1 e z_2 , são dois números pseudoaleatórios com distribuição normal padrão. Adicionando k números pseudoaleatórios temos que

$$x_{2k} = -2\ln(\gamma_1, \cdots, \gamma_k)$$

е

$$z_{2k+1} = -2\ln(\gamma_1, \dots, \gamma_k) - 2\ln\gamma_{k+1}\cos^2 2\pi\gamma_{k+2}$$

para k um número inteiro positivo teremos uam distribuição de qui-quadrado com grau de liberdade par ou ímpar. Com esse procedimento muitas operações são evitadas. Também sabemos que a distribuição qui-quadrado é um caso particular da distribuição Gama e podemos conseguir geração de números aleatórios a partir dessa distribuição.

1.10 Intervalos de confiança para a variância

Se X_1, \dots, X_n são variáveis aleatórias de $X \sim N(\mu, \sigma^2)$ e vimos que $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$. Um intervalo de confiança para a variância com nível de confiança $1 - \alpha$ é dado por

$$\frac{(n-1)s^2}{\chi^2_{(1-\alpha/2,n-1)}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{(\alpha/2,n-1)}}$$

em que $\chi^2_{(\alpha;n)}$ o quantil de ordem $1-\alpha$ da distribuição qui-quadrado com n graus de liberdade.

1.11 Testes de hipóteses

Seja uma amostra aleatória, X_1, \dots, X_n de $X \sim N(\mu.\sigma^2)$. Para testar a hipótese H_0 : $\sigma^2 = \sigma_0^2$ contra $H_1: \sigma^2 \neq \sigma_0^2$ com nível de significância α , rejeitaremos H_0 se $\frac{(n-1)s^2}{\sigma_0^2} \sim \chi^2_{(n-1)}$ for menor que $\chi^2_{\alpha/2,n-1}$ ou maior que $\chi^2_{1-\alpha/2,n-1}$.

1.12 Exercícios

- 1. Seja $\chi^2_{(\alpha;k)}$ representando a expressão $P(\chi^2_{(k)} > \chi^2_{(\alpha;k)}) = \alpha$, em que $\chi^2_{(\alpha;k)}$ é quantil de ordem $(1-\alpha)$ da distribuição $\chi^2_{(k)}$. Calcule as probabilidades usando a tabela e compare os valores no R
 - a) $\chi^2_{(0.05:16)}$;
 - b) $\chi^2_{(0,01;7)}$;
 - c) $\chi^2_{(0,975;22)}$;
 - d) $1 \chi^2_{(0,8;1)}$;
 - e) $P(\chi^2_{(23)} > 20);$
 - f) $P(\chi^2_{(11)} \le 20,412);$
 - g) $P(9,39 < \chi^2_{(18)} < 32,346)$.
 - h) Ache o valor de a tal que $P(4 < \chi^2_{(11)} < a) = 0, 9$.
- **2.** Calcule a distribuição de S^2 .
- 3. Demosntre a igualdade da equação (3).
- 4. Seja as variáveis aleatórias X, Y e Z com distribuições normais padrão. Gere valores aleatórios no R e mostre, graficamente, que a variável $U = X^2 + Y^2 + Z^2$ tem distribuição Qui-Quadrado(3).