Université Mohamed Khider, Biskra

Faculté des Sc. Exactes et Sc. de la Nature et la Vie

Département de Mathématiques

Master 1: 2021/2022

Interrogation 1 (modèle linéaire)

Soit X la matrice centrée des données ayant les colonnes X_1, X_2, X_3, X_4 et les lignes e_1, e_2, e_3 . On note par V la matrice de variance covariance associée à X. Supposons que les valeurs propres de V sont $\lambda_4 = 3$, $\lambda_3 = 2$, $\lambda_2 = 1$, $\lambda_1 = 0$.

- 1. Donner la formule théorique de V. (1pt)
- 2. Dans le cadre de l'ACP, que représente λ_4 , λ_3 , λ_2 , λ_1 ? (1pt)
- 3. Déterminer le centre de gravité de $\{e_1, e_2, e_3\}$, noté g. (1pt)

On note par E_1, E_2, E_3, E_4 les axes principaux.

- 4. Déterminer le sous-espace orthogonal de E_1 noté E_1^{\perp} . (1pt)
- 5. Déterminer la distance au carré entre e_1 et E_1^{\perp} . Que représente cette distance?(1pt)
- 6. Déterminer la moyenne des distances (au carré) entre g et tout les e_i . Que représente cette distance?(1pt)
- 7. Déterminer l'inertie par rapport à l'orthogonal de E_4 . Discuter cette inertie.(1pt) Soit X'_1, X'_2, X'_3, X'_4 les colonnes de la matrice X dans la nouvelles base $\{u_1, u_2, u_3, u_4\}$ associée aux axes principaux.
 - 8. Que représentent les vecteurs X'_1, X'_2, X'_3, X'_4 ? (1pt)
 - 9. Déterminer la somme des variances des X'_i . Que représente cette somme?(1pt)
- 10. La somme des cosinus (au carré) des angles formées par $\{X_1, X_1'\}$ et $\{X_1, X_2'\}$ vaut 1. Que peut-on conclure? $\{1pt\}$

Solution

- 1. $V = \frac{1}{3}X^tX$.
- 2. Les valeurs propres $\lambda_1^* = 3$, $\lambda_2^* = 2$, $\lambda_3^* = 1$ et $\lambda_4^* = 0$, représentent les inerties par rapport $E_1^{\perp}, E_2^{\perp}, E_3^{\perp}$ et E_4^{\perp} respectivement (ou les inerties expliquées par les axes principaux E_1, E_2, E_3 et E_4).
- 3. Comme la matrice X est centrée (c'est à dire les colonnes sont centrés) alors le centre de gravité est $g = 0_{\mathbb{R}^4}$.
- 4. $E_1^{\perp} = E_2 \oplus E_3 \oplus E_4$.
- 5. $d^2(e_1, E_1^{\perp})$ est l'abcisse (au carré) du vecteur e_1 dans le sous-espace $E_1 \oplus E_2$ qui représente la projection (au carré) de e_1 sur l'axe E_1 .
- 6. $\lambda_1^* + \lambda_2^* + \lambda_3^* + \lambda_4^* = 6$ qui représente l'inertie totale I_T .
- 7. $I_{E_4^{\perp}}=\lambda_4^*=0$. Le nuage de points $\{e_1,e_2,e_3\}$ est représenté en totalité dans le sous-espace vectoriel $E_1\oplus E_2\oplus E_3$.

1

- 8. Les composantes principales.
- 9. $\lambda_1^* + \lambda_2^* + \lambda_3^* + \lambda_4^* = 6$ qui représente l'inertie totale $I_T.$
- 10. X_1 a une forte corrélation avec les deux composantes principales X_1' et X_2' et n'est pas corréllé ni avec X_3' ni avec X_4' . En d'autres termes, X_1 a une parfaite représentation dans le cercle de corrélation.

.