

Specifications – EPC9149

Specification	Value	Units
Magnetizing Inductance	≈ 2.2	μΗ
Leakage Inductance	≈ 6.4	nH
Continuous Primary Current	21	A _{RMS}
Continuous Secondary Current	42 [‡]	A _{RMS}
Primary turns	4	
Secondary turns	1	
Operating frequency	1	MHz
Construction	FR4 planar	
Series Resonant Capacitance	3.96	μF

[‡] Each half

Specifications – EPC9174

Specification	Value	Units
Magnetizing Inductance	≈ 1.8	μH
Leakage Inductance	≈ 6.4	nH
Continuous Primary Current	25	A _{RMS}
Continuous Secondary Current	50 [‡]	A _{RMS}
Primary turns	4	
Secondary turns	1	
Operating frequency	1	MHz
Construction	FR4 planar	
Series Resonant Capacitance	3.96	μF

[‡] Each half

Transformer Schematic

Connection Overview

- Minimize power path losses
 - Primary side connection
 - Secondary bottom connection

Transformer connection locations

Layer Assignment & Details

*Image courtesy of Mohamed H. Ahmed from CPES at Virgina Tech, presented at PCIM 2019

- 2 oz Copper thickness windings
- Interleaved windings for min. loss
- Low termination & via losses

Layer Stackup

6 & 12 parallel

Parallel

Winding Details - Primary

Primary winding cross-over

Opposite side resonant capacitor connection

Primary winding design

Winding Details - Secondary

- Connections (FETs) part of winding
 - Eliminates leakage inductance

Negative

Positive

Core Overview

ML91S – Proterial (fka Hitachi metals): $\mu_c = 900$

Core Drawing

	$\oplus \ominus$	Scale 3: 1	Material	Customer Part number
Ū	^{Jnit} : mm	Standard tolerances ±0.2	ML91S	Product Name U-36-4.57-12.2

Core Assembly

Estimated Loss Summary EPC9149

Operation at 1 kW

- Primary winding ≈ 2.6 W
- Secondary winding ≈ 2.1 W
- Core ≈ 1 W
- Actual losses may be higher

Exclusions:

- Proximity losses not calculated
- Fringing losses not calculated

Assumptions:

- Winding losses based on current density
- Core losses based on power loss density

Estimated Loss Summary EPC9174

Operation at 1.2 kW

- Primary winding ≈ 3.7 W
- Secondary winding ≈ 3.0 W
- Core ≈ 1.1 W
- Actual losses may be higher

Exclusions:

- Proximity losses not calculated
- Fringing losses not calculated

Assumptions:

- Winding losses based on current density
- Core losses based on power loss density

Transformer Location on PCB

Resonant Capacitor Bank

EFFICIENT POWER CONVERSION

How To GaN Video Series

3rd Edition Textbook

eGaN® FETs and ICs

epc-co.com