- Pecall: If $f: (X,d) \rightarrow (Y,\rho)$ is a function and $x_0 \in X_1$ then f is Continuous at x_0 if $\forall \varepsilon > 0 \exists \varepsilon > 0 \ s,t$. $\forall x \in X$ with $d(x,x_0) < \varepsilon$, then $p(f(x),f(x_0)) < \varepsilon$.
- Prop: Let X and Y be normed spaces and let T:X→Y be a linear operator. The following are equivalent:

 (i) T is continuous
- (1) 1 13 COMMINGOUS
- (ii) T is continuous at 0_x
- (iii) T is continuous at some xeX
- (iv) T is Lipschitz, i.e. there exists a $M \ge 0$ such that for all $x_1y \in X$, $\|T(x)-T(y)\|_Y \le \|X-y\|_X$
- (v) There exists an $M \ge 0$ such that for all $x \in X$ $||T(x)||_Y \le M ||x||_X$.
- (vi) sup II T(x) IIy < 0.
- Henceforth, a continuous linear operator will be called a bounded linear operator.
- Proof: (iv) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (iii) and (v) \Rightarrow (vi) are easy. We will show (iii) \Rightarrow (v) and (vi) \Rightarrow (iv).
- (iii) \Rightarrow (v): let $x_0 \in X$ such that T is continuous at x_0 .
- Bec. T is continuous, for E=1, there exists a 8>0 such that for all $x \in B[x_0,8]$, then $||T(x)-T(y)||_Y \le 1$.
- We will show txex, IIT(x) IIy = \frac{1}{8} ||x||x. Fix xex.
- If $x = O_X$, then $||T(x)||_Y \le \frac{1}{8} ||x||_X$ holds, if $x \ne O_X$, then

take $y = x_0 + \frac{\delta}{||x||_X} \times$ and note $||x_0 - y||_X < \delta$ which implies $||x_0||_{T(x_0)} - T(y)||_Y = ||T(x_0) - T(x_0 + \frac{\delta}{||x||_X} \times)||_Y$ $= \frac{\delta}{||x||_X} \cdot ||T(x)||_Y.$

(vi) => (iv): Assume $\sup_{x \in \mathbb{B}_X} ||T(x)||_Y = M < \infty$. We will show that $\forall x \in X$, $||T(x)||_Y \leq M ||x||_X$. If $x = O_X$, result holds.

Otherwise, if $x \neq 0x$, $||x||_{x}^{-1} \in |Bx|$ and so $||T(||x||_{x}^{-1} \cdot x)||_{Y} \leq M$.

Def: Let X and Y be a normed space and $T: X \rightarrow Y$ be a linear operator. The operator norm of T is defined as $\|T\|_{B_X} = \sup_{x \in B_X} \|T(x)\|$

Notation: We denote $Z(X,Y) = \{T: X \rightarrow Y: T \text{ is bounded } \}$ and is contained in L(X,Y).

Prop: Let X and Y be normed spaces. Then Z(X,Y) is a vector space and $||\cdot||$ is a norm on it,

Proof: For $T,S \in L(X,Y)$ we will show that $||T+S|| \le ||T|| + ||S||$, and will show $T+S \in L(X,Y)$. It suffices to show $||T+S|| \le ||T|| + ||S||$. Fix $x \in B_X$.

||(T+S)(x)|| = ||T(x)+S(x)|| < ||T(x)|| + ||S(x)|| < ||T||+||S||

Taking sup over all xe18x, 11T+s11 ≤11711+11811.

then

For $T \in \mathcal{L}(X,Y)$ and $\lambda \in \mathbb{R}$, we will show $\lambda T \in \mathcal{L}(X,Y)$ and we will show $\|\lambda T\| = |\lambda| \cdot \|T\|$.

 $\|\lambda T\| = \sup_{x \in \mathbb{B}_{x}} \|\lambda T(x)\| = \sup_{x \in \mathbb{B}_{x}} |\lambda| \cdot \|T(x)\| = |\lambda| \sup_{x \in \mathbb{B}_{x}} \|T(x)\| = |\lambda| \|T\|$ Prop: (i) If X and Y are normed space and $T \in \mathcal{I}(X,Y)$, then $\forall x \in X : ||T(x)|| \leq ||T|| \cdot ||x||_X$ (ii) If X, Y and Z are normed space, $T \in Z(X,Y)$ and SEZ(Y,Z), then STEZ(X,Z) and IISTIL = IISII·IITII. Proof of (ii): Fix xe (Bx. Then $||(ST)(x)|| = ||S(T(x))|| \le ||S|| \cdot ||T(x)|| \le ||S|| \cdot ||T||$ Taking sup over all xe 18x, 11st11 = 11s11·11t11. Prop: Let X and Y be normed spaces and $T \in L(X,Y)$. Then $||T|| = \sup_{x \in |B|^2} ||T(x)||$ (if dim(X) > 0)= sup xesx IIT(x) II = inf { M>0: \xeX, [|T(x)|| \le M||x|| }. Theorem: let X be a normed space and let Y be a Banach space, then (Z(X,Y), 11.11) is a Banach space. Proof: Let (Tn)n=1 ∈ Z(X,Y) Such that = 11Tn11 < ∞. We will prove $\exists T \in \mathcal{L}(X,Y)$ such that $\sum_{n=1}^{\infty} ||T_n|| = T$, i.e. lim | | = 0 Fix xex. Then 2 ||Tn(x)|| ≤ 2 ||Tn||·||x|| < ∞. Bec. (Tn(x)) = is absolutely summable in the Banach space Y, there exists a $T(x) \in Y$ such that $\sum_{n=1}^{\infty} T_n(x) = T(x)$. In particular, T is linear.

Now we show T is bounded. Fix $x \in \mathbb{B}_{x}$. Then $||T(x)|| = ||\sum_{n=1}^{\infty} T_n(x)|| \leq \sum_{n=1}^{\infty} ||T_n(x)|| \leq (\sum_{n=1}^{\infty} ||T_n(1)||) ||x||$ \Rightarrow T is bounded and $||T|| \le \sum_{n=1}^{\infty} ||T_n||$. Lastly, we show $\lim_{N\to\infty} \left\| \frac{N}{N-1} + T_N - T_N \right\| = 0$. Fix $x \in X$ and NEIN. Then $\left\|\left(\frac{N}{N-1}T_N-T\right)(x)\right\| = \left\|\frac{N}{N-1}T_N(x)-\frac{\infty}{N-1}T_N(x)\right\| = \left\|\frac{\infty}{N-1}T_N(x)\right\|$ $\leq \frac{\infty}{2} \|T_n(x)\| \leq \left(\frac{\infty}{n=N+1} \|T_n\|\right) \|x\| \leq \frac{\infty}{n=N+1} \|T_n\|$ =) || = Tn-T || ≤ = || ITn || → 0 as N → 0. Specifically, I(X, R) is always a Banach space. Theorem: Let X and Y be normed spaces and Z be a dense subspace of X. If $T:Z\to Y$ is a bounded linear operator, then there exists a unique bounded linear operator $T: X \rightarrow Y$ such that $T|_{z} = T$. Furthermore, ||T|| = ||T||Proof: Claim 1: $\forall x \in X$ and $(2n)^{\infty}_{n=1}$ in Z s.t. $(2n) \rightarrow X$, then lim T(Zn) exists in Y Bec. $(2n) \rightarrow X$, (2n) is Cauchy so limsup (limsup 11 T(zn) - T(zm) 11) \[
\left\) \left\| \left\| \text{limsup} \left\| \left\| \text{limsup} \left\| \left\| \text{lon-2mll} \right\|
\text{m-300} \left\| \text{m-300} \left\| \text{lon-2mll} \right\|
\]
\[
\left\| \text{m-300} \left\| \text{m-300} \left\| \text{lon-2mll} \right\|
\]
\[
\text{m-300} \left\| \text{m-300} \left\| \text{m-300} \left\| \text{lon-2mll} \right\|
\]
\[
\text{m-300} \left\| \text{m-300} \left\| \text{m-300} \left\| \text{m-300} \left\| \text{m-300} \right\|
\]
\[
\text{m-300} \left\| \text{m-300} \left\| \text{m-300} \right\| \text{m-300} \right\|
\text{m-300} \left\| \text{m-300} \right\|
\text{m-300} \left\| \text{m-300} \right\|
\text{m-300} \right\| \text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300} \right\|
\text{m-300}

Bec. Y is a Banach space, lim(T(zn)) exists.

= 11711 limsup (limsup ||Zn-Zmll) = 0

- $T|_z = T$, if $z \in Z$, take $z_n = z + V_{n \in IV}$. Then $T(z) = \lim_{n \to \infty} |T(z_n)| = T(z_n)$.
- J ||T||=||T||. Show ||T||≥||T||₂||=||T||. Finally, if X ∈|Bx then (2n) ∈ Z with $\lim_{n\to\infty} (2n) = X$. ||T(x)|| = $\lim_{n\to\infty} ||T(2n)|| \le ||T||$,

Isomorphisms of a Normed Space.

Def: Let X and Y be normed spaces.

- (i) A linear operator $T: X \rightarrow Y$ such that for all $x \in X$, ||T(x)|| = ||x|| is called a linear isometry
- (ii) A linear isometry T: X→Y that is onto, is called an isometrical isomorphism.

If an isometrical isomorphism $T: X \to Y$ exists, we say that X and Y are isometrically isometric and write $X \equiv Y$.

Remark: Let X,Y be normed spaces (i) If $T:X \to Y$ is a linear isometry, then ||T|| = 1. (ii) If $T: X \rightarrow Y$ is a linear isometry, then $\forall x, y \in X$ ||T(x)-T(y)|| = ||T(x-y)|| = ||x-y||

In particular, if $x \neq y$, $T(x) \neq T(y) \Rightarrow T$ is one—to—one. (iii) If $T: X \to Y$ is a surjective linear isometry, then $T^{-1}: Y \to X$ is a surjective linear isometry.

(iv) Compositions of linear isometries is a linear isometry.

Example: $(|R^2, || \cdot ||_1) = (|R^2, || \cdot ||_{\infty})$

Take $T: (\mathbb{R}^3, \|\cdot\|_1) \to (\mathbb{R}^2, \|\cdot\|_2)$ with $T(e_1) = e_1 + e_2$, $T(e_2) = -e_1 + e_2$

Def: Let X and Y be normed spaces and $T: X \rightarrow Y$ is called an isomorphism if

(i) T is a bijection

(ii) T is bounded

(iii') T⁻¹is bounded

If I an isomorphism, we say X and 4 are isomorphic

we write $X \sim Y$.

Remark: Let $T: X \to Y$ be an isomorphism. Then $T^{-1}: Y \to X$ is an isomorphism, and compositions of isomorphisms are isomorphisms.

Example: $\forall n \in [N, id : (|R^n, || \cdot ||_i) \rightarrow (|R^n, || \cdot ||_{\infty})$ is an isomorphism.

Remark: Isomorphisms => equivalence relation.