Unde electromagnetice

este:

1. Structura undei electromagnetice liniar polarizate care se propagă pe direcții paralele la axa Oz

a)
$$E_z \neq 0$$
, $E_y = 0$, $E_x \neq 0$; $H_{x,y,z} \neq 0$; $\vec{K} = 0$.

b)
$$E_x \neq 0$$
; $H_y \neq 0$; $\vec{K} = K \cdot \vec{k}$; $E_{y,z} = 0, H_{x,z} = 0$.

c)
$$\vec{E} = \vec{j}E_v$$
, $\vec{H} = \vec{i}H_x$, $\vec{K} = \vec{k} \cdot K$;

d)
$$E_z \neq 0$$
, $H_z \neq 0$, $K_z \neq 0$; $E_{x,y} = 0$, $H_{x,y} = 0$, $K_{x,y} = 0$;

- e) \vec{E} este diferit de zero pe toate direcțiile perpendiculare la direcția de propagare;
- f) \vec{H} este diferit de zero pe toate direcțiile perpendiculare la direcția de propagare.

2. În unda electromagnetică:

a) componenta electrică a energiei este egală cu componenta magnetică a energiei;

b)
$$w = \varepsilon E^2$$
; c) $w = \mu H^2$; d) $w = \mu E^2$; e) $w = \varepsilon H^2$; f) $I = |\vec{S}|$.

3. La distanță mare de antena de emisie, intensitatea câmpului electric este dată de legea:

$$\vec{E}(\vec{r},t) = (2\vec{i} + E_{0y}\vec{j} + 0.3\vec{k})\exp[\omega t - 0.12x + 0.18y]i$$

unde \vec{i} , \vec{j} , \vec{k} sunt versori iar $i = \sqrt{-1}$.

Să se determine:

- 1) lungimea de undă λ și frecvența undei v;
- intensitatea câmpului magnetic;
- 3) intensitatea undei.

Rezolvare:

Dependența $\vec{E}(\vec{r}, \vec{t})$ este de forma $\vec{E}(\vec{r}, \vec{t}) = \vec{E}_0 e^{i(\omega t - \vec{K} \cdot \vec{r})}$

- E_O este amplitudinea câmpului electric • k este numărul de undă
 - ω este frecvenţa
 - x este coordonata spațială

$$E_{0} = 2 i + E_{0} + 0, 3 k$$

$$= 0 + 10, 3 k$$

$$= 0 + 10, 12 + 0, 12 + 0, 18 k$$

$$= 0 + 0, 12 + 0, 18 k$$

$$= 0, 12$$

$$= 0, 12$$

$$= 0, 12$$

$$= 0, 12$$

$$= 0, 12$$

$$= 0, 12$$

$$= 0, 12$$

├── Lungime de unda

-viteza luminii in vid = 3 * 10 ^ 8 m/s

$$\lambda = \frac{2\pi}{k} = 29,04 \text{ m}$$

$$J = \frac{C}{\pi} = 1,03 \cdot 10^{\frac{1}{2}}$$

Lungimea de undă este distanța dintre două maxime consecutive ale câmpului electric.

Frecvența este numărul de oscilații complete ale câmpului electric pe secundă.

O antenă de mici dimensiuni emite unde electromagnetice monocromatice liniar polarizate care se propagă în sensul negativ al axei Ox (figura 1). Frecvența de emisie este v = 620 MHz iar amplitudinea câmpului electric este $E_0 = 620 \text{ mV/m}$.

Pentru punctele îndepărtate de antenă, să se calculeze intensitatea câmpului electric la distanța x = -2 km.

În cazul punctelor îndepărtate de antenă, · unda electromagnetică poate fi considerată o undă plană.

Care este expresia și valoarea vectorului de undă?

1) Care este expresia câmpului electric și care este valoarea sa în punctul

$$x = -2 \text{ km?}$$

$$=>$$
 $\times = -2.10^3 \text{ nw}$

 $E_0 \cos(\omega t - Kx)$, unde: x < 0;

5. O lamă cu fețele plan paralele are grosimea l=4 mm. Pe fața superioară indicele de refracție al lamei este $n_1=1,62$ iar pe fața inferioară este $n_2=1,31$. Între cele două fețe, prin lamă indicele de refracție variază cu distanța x, măsurată față de fața superioară, după legea $n=a \cdot e^{-bx}$.

Să se calculeze durata în care o undă electromagnetică străbate prin lamă la incidență normală. $(c = 3.10^8 \,\text{m/s})$.

$$L = 4.10^{-3} \text{ m}$$

$$C \text{ este viteza luminii în vid}$$

$$n \text{ este indicele de refracție al mediului}$$

$$M = \frac{C}{4}$$

$$M = \frac{C}{4}$$

$$M_1 = A = 1,62$$

$$M_2 = A = A$$

$$M_3 = A = A$$

$$M_4 = A = A$$

$$M_5 = A = A$$

$$M_6 = A = A$$

$$M_7 = A = A = A$$

$$M_8 = A = A$$

$$A = A$$

$$A = A = A$$

$$A = A$$

• Durata în care unda străbate lama o determinăm astfel: perpendicular la direcția de propagare a luminii delimităm un strat de grosime dx și scriem $dt = \frac{dx}{v} = \frac{n}{c}dx$;

$$\Delta t = \int_{0}^{t_{2}} dt = \frac{a}{c} \int_{0}^{l} e^{-bx} dx = -\frac{a}{bc} e^{-bx} \Big|_{0}^{l} = \frac{a}{bc} (1 - e^{-bl});$$

Figura 2 Lama cu fețe plan paralele.

