Kapacitativni problem usmjeravanja vozila iz višebrojnih skladišta

Krešimir Baksa, Mihael Šafarić i Matija Šantl

Heurističke metode optimizacije Fakultet elektrotehnike i računarstva

Zagreb, siječanj 2015.

Ovou

Zadano:

- usmjereni težinski graf
- skladišta, njihov položaj, kapacitet i pripadajući troškovi otvaranja skladišta
- korisnici, njihov položaj i potražnja
- početni trošak i kapacitet vozila

Varijable:

- broj skladišta
- broj vozila
- obilasci vozila

Optimizacijski kriteriji:

 minimizirati ukupni trošak otvaranja skladišta i ruta te ukupni trošak odabranih ruta

Pohlepni algoritam

Pohlepni algoritam nakon učitavanja podataka razvrstava korisnike po skladištima na način da u trenutnom koraku minimizira trošak trenutnog korisnika do njemu najbližeg iz skladište u koje ga pokušava staviti uz dodatak troška povratka od tog korisnika do skladišta. Ako skladište u tom trenutku nema ni jednog korisnika, cijeni se dodaje trošak otvaranja skladišta.

To radi tako dugo dok ne razvrsta sve korisnike.

Mutacija

Nakon dobivanja početnog rješenja, napravi se POPULACIJA broj kopija tog rješenja, te se nad svakim od njih radi se mutacija. Za slučajno odabrana skladišta X i Y, slučajnim odabirom uzmi korisnika Z iz skladišta X te ga probaj staviti u skladište Y ako time ne narušavamo kapacitet skladišta Y.

Ukoliko je mutirano rješenje bolje od trenutnog, ono se zamjenjuje u populaciji.

Taj se postupak ponavlja ITERACIJA broj puta.

Lokalna pretraga

Nakon što smo dobili *POPULACIJA* broj mutiranih rješenja, nad svakim od njih se pokreće postupak lokalne pretrage.

Postupak lokalne pretrage, odabire par korisnika X i Y, te zamjenjuje njihova skladišta. Ako je rješenje ne narušava kapacitet ni jednog skladišta, spremamo ga u red te nastavljamo lokalnu pretragu sa sljedećim rješenjem iz reda.

Postupak radimo tako dugo dok ima rješenja u redu ili napravimo *limit* broj iteracija.

Početno rješenje

```
dok ima nereazvrstanih korisnika X:
2
3
4
5
6
7
8
9
10
11
12
13
     za svako skladiste Y:
       za svakog korisnika Z u skladistu Y:
         cijena = udaljenost(X, Z) + udaljenost(X, Y)
         ako je skladiste Y prazno:
            cijena += cijena otvaranja skladista Y
         ako je cijena najmanja do sad:
           W = Y
         stavi korisnika X u skladiste W
```

Mutacija

```
ponovi ITERACIJA broj puta:
    za svako rjesenje R iz populacije:
    slucajno odaberi skladiste X
    slucajno odaberi skladiste Y
    slucajno odaberi korisnika A iz skladista X

ako prebacivanje A iz X u Y narusava ogranicenja:
    ponovi odabir skladista i korisinka
    inace:
    prebaci korisnika A iz X u Y
    spremi izmjenjeno rjesenje
```

Lokalna pretraga

```
dodaj rjesenje X u red Q
2
3
4
5
6
   ponovi LIMIT broj puta ili dok ne konvergira:
     rjesenje R = prvo rjesenje iz reda Q
     za svaki par korisnika (A, B):
       ako zamjenom skladista korisnika A i B u R ne
           narusavao ogranicenja:
7
8
9
10
11
12
13
         R' = zamjeni skladista korisnika A i B
         ako je R' bolje od X:
           X = R'
         ako je trenutno R' bolje R:
            dodai R' u Q
```

Fitness

```
fitness = 0

za svako skladiste X:

ako ima korisnika u X:

fitness += cijena otvaranja skladista X

pohlepnim algoritmom napravi potrebne rute R[] za

sve korisnike iz X

za svaku rutu R':

grubom silom izracunaj najkraci Hamiltonov ciklus

, C

cijena += obilazak ciklusa C

cijena += cijena automobila * broj ruta
```

Rješenje

Ostvareno rješenje

Najbolje ostvareno rješenje iznosi 315983.