《数字信号处理》 实验手册

生命科学与技术学院 生物医学工程系 段君博、罗融 编

2020年10月19日

目录

1	实验	一熟	悉 MATLAB 环境 5
	1.1	实验目	的
	1.2	实验内	容
	1.3	实验报	告
	1.4	用到的	MATLAB 命令
		1.4.1	矩阵的数组运算 8
		1.4.2	plot 及图形相关命令 9
		1.4.3	基本信号序列 10
		1.4.4	filter
		1.4.5	disp
		1.4.6	conv
		1.4.7	freqz
		1.4.8	freqs
		1.4.9	impz
		1.4.10	randn
		1.4.11	rand
		1.4.12	tic,toc
		1.4.13	help,doc
		1.4.14	M 脚本文件 15
	1.5	选学内	容
•	山 弘	- ÷	広台口从六八 1 万 G
2			频信号的产生与采集 17
	2.1		的
	2.2		答
			.告
	2.4	用到的	「MATLAB 命令
		2.4.1	audiorecorder
		2.4.2	audioplayer
		243	recordblocking 18

		2.4.4	getaudiodata	 18
		2.4.5	play	 19
		2.4.6	sound	 19
		2.4.7	soundsc	 19
	2.5	选学内线	容	 19
3	实验	三用I	DFT 计算连续信号的谱	20
	3.1	实验目的	的	 20
	3.2	实验内纬	容	 20
	3.3	实验报行	告	 20
	3.4	用到的	MATLAB 命令	 21
		3.4.1	fft	 21
	3.5	选学内线	容	 21
4	实验	四 IIR	及 FIR 滤波器设计	22
	4.1	实验目的	的	 22
	4.2	实验内纬	容	 22
	4.3	思考问是	题	 22
	4.4	实验报台	告	 22
	4.5	用到的	MATLAB 命令	 23
		4.5.1	buttord	 23
		4.5.2	buttap	 24
		4.5.3	zp2tf	 24
		4.5.4	lp2lp	 25
		4.5.5	impinvar	 25
		4.5.6	sinc	 25
		4.5.7	boxcar	 25
		4.5.8	hamming	 26
		4.5.9	hanning	 26
		4.5.10	fir1	 26
	16	选学力等	交	27

5	实验	五 综/	合实验:	电话号	码计	只别						28
	5.1	实验目	的				 	 	 	 		28
	5.2	实验内	容				 	 	 	 		28
	5.3	实验报	告				 	 	 	 		28
	5.4	用到的	MATLA	B 命令			 	 	 	 		29
		5.4.1	audiorea	d			 	 	 	 		29
		5.4.2	image .				 		 	 		29
		5.4.3	imagesc				 		 	 		29
		5.4.4	goertzel				 		 	 		29
	5.5	选学内	容				 	 	 			29

1 实验一 熟悉 MATLAB 环境

1.1 实验目的

- 1. 熟悉 MATLAB 的主要操作命令;
- 2. 学会简单的矩阵输入和数据读写;
- 3. 掌握简单的绘图命令;
- 4. 学习用 MATLAB 编程。

1.2 实验内容

1. 已知位置向量同为 n=0:6 的以下三个序列:

x=[2,-1,4,7,0,-3,5];

y=[-2,8,0,-3,6,2,-4];

w=[7,0,-9,-3,4,2,-1];

请用 MATLAB 计算

- (a) u=x+y
- (b) v=x.*w
- (c) z=x-y.*w
- 2. 用 MATLAB 计算下列序列的线性卷积并作图: (可用 conv函数求卷积,用 stem函数作图)
 - (a) $x(n)=\delta(n),h(n)=R_5(n)$
 - (b) $x(n)=R_3(n),h(n)=R_4(n)$
 - (c) $x(n)=\delta(n-2),h(n)=0.5^nR_3(n)$
- 3. 设滤波器差分方程为

y(n)=x(n)+x(n-1)+1/3y(n-1)+1/4y(n-2),

请用 MATLAB 计算并作图:

- (a) 系统的频率响应 $(0 \sim \pi \pm 512 \pm$
- (b) 设抽样频率为 10kHz, 输入正弦波幅度为 5, 频率为 1kHz, 记录长度 5ms, 求系统输出。(可用 filter函数)
- 4. 一个特定的线性时不变系统,描述它的差分方程为

y(n)+0.1y(n-1)-0.06y(n-2)=x(n)-2x(n-1),

- (a) 在 $0 \le n \le 10$ 之间求得并画出系统得单位脉冲响应,从脉冲响应确定系统的稳定性。(可用 impz函数)
- (b) 如果此系统的输入为
- $x(n)=[5+3\cos(0.2\pi n)+4\sin(0.6\pi n)]u(n),0 \le n \le 20,$

求响应 y(n) 并将 x(n) 与 y(n) 作图。(可用 stem 函数作图)

- 5. 噪声信号的产生: 试生成两个 10000 点的噪声信号 $b_1(n), b_2(n), b_1(n)$ 服从期望为 1、方差为 4 的正态分布, $b_2(n)$ 服从 (-3,3) 区间上的均匀分布。
- 6. MATLAB 是按列优先,因此按列操作可提升运行速度。另外,如果可以使用向量及矩阵运算,应尽量避免 for 循环。比较如下五种求和方法的运行时间:

```
toc;
tic;
for j=1:N
    for i=1:N
        z(i,j) = x(i,j) + y(i,j);
   end
end
toc;
tic;
for i=1:N
 z(i,:)=x(i,:)+y(i,:);
end
toc;
tic;
for j=1:N
z(:,j)=x(:,j)+y(:,j);
end
toc;
tic;
z=x+y;
toc;
```

1.3 实验报告

要求报告格式如下:

课

专业班级

1	当女父进入子	大:	沙切	一百		
				成绩		
程_	数字信号处理	第	页	共	页	
别	生物医学工程	实	验日	期	年	月

交报告日期 年 月

E

姓名 报告退发(订正、重做)

西户六海上兴京队报上

学 号______ 同组人 教师审批签字

报告内容应包含实验名称、实验目的、实验内容、程序及结果、实验结果分析与讨论等。

1.4 用到的 **MATLAB** 命令

1.4.1 矩阵的数组运算

数组运算指元素对元素的算术运算,与通常意义上的由符号表示的线性代数矩阵运算不同。a、b 两数组必须有相同的行和列。

数组加减 (.+, .-)

a.+b: 元素对元素的相加。(与矩阵加法等效)

a.-b: 元素对元素的相减。(与矩阵减法等效)

数组乘法 (.*)

a.*b: 元素对元素的相乘。(与矩阵乘法不等效)

a=[1 2 3; 4 5 6; 7 8 9];

b=[2 4 6;1 3 5;7 9 10];

a.*b

ans =

数组除法(./,.\)

a./b=b./a: a 的元素被 b 的对应元素除。 a./b=b./a: b 的元素被 a 的对应元素除。

数组乘方(.^)

a. b: 元素对元素的幂。

1.4.2 plot 及图形相关命令

功能:最基本的二维图形指令。该命令可以自动打开一个图形窗口,用直线连接相邻两数据点来绘制图形,根据图形坐标大小自动缩扩坐标轴,将数据标尺及单位标注自动加到两个坐标轴上,可自定坐标轴,可把x,y轴用对数坐标表示。

格式:

plot(x)

plot(x,y)

plot(x1,y1,x2,y2)

plot(x) 是缺省自变量绘图格式, x 为向量, 以 x 元素值为纵坐标, 以相应元素下标为横坐标绘图。

plot(x,y) 是基本格式,以 y(x) 的函数关系作出直角坐标图,如果 y 为 $n \times m$ 的矩阵,则以 x 为自变量,作出 m 条曲线。

plot(x1,y1,x2,y2) 是多条曲线绘图格式。

其他图形相关命令:

subplot(m,n,p)可将图形窗口分割成 m 行 n 列,并设 p 所指定的子窗口为当前窗口。子窗口按行由左至右,由上至下进行编号。

axis用行向量中给出的值,设置坐标轴的最大和最小值,对于二维图形,该向量中含有元素: $[x_{min}, x_{max}, y_{min}, y_{max}]$ 。

title(txt)在图形窗口顶端的中间位置输出字符串 txt 作为标题。

xlabel(txt)在 x 轴下的中间位置输出字符串 txt 作为标注。

ylabel(txt)在 y 轴边上的中间位置输出字符串 txt 作为标注。

1.4.3 基本信号序列

单位抽样序列:

$$\delta(n) = \begin{cases} 1, & n = 0; \\ 0, & n \neq 0. \end{cases}$$

这一序列可用 MATLAB 中的函数实现:

x=[1 zeros(1,n-1)];

单位阶跃序列

$$u(n) = \begin{cases} 1, & n \ge 0; \\ 0, & n < 0. \end{cases}$$

这一序列可用 MATLAB 中的函数实现:

x=ones(1,N);

其他相关命令:

ones(n)可建立一个 $n \times n$ 的1矩阵。

ones(m,n,...,p) 可建立一个 m×n×...×p 的 1 矩阵。

ones(size(A)) 可建立一个和矩阵 A 同样大小的 1 矩阵。

zeros(n)可建立一个 n×n 的 0 矩阵。

zeros(m,n,...,p) 可建立一个 m×n×...×p 的 0 矩阵。

zeros(size(A)) 可建立一个和矩阵 A 同样大小的 0 矩阵。

1.4.4 filter

一般数字滤波器输出 y(n) 的 z 变换形式 Y(z) 与输入 x(n) 的 z 变换形式 X(z) 之间的关系如下:

$$Y(z) = H(z)X(z) = \frac{b(1) + b(2)z^{-1} + \dots + b(n_b + 1)z^{-n_b}}{a(1) + a(2)z^{-1} + \dots + a(n_a + 1)z^{-n_a}}X(z)$$

这里 H(z) 就是线性系统建模中提到过的传递函数。常数 b(i) 和 a(i) 是滤波器系数, $max(n_a, n_b)$ 为滤波器阶数。

注意:滤波器系数不是从 0 开始的,而是从 1 开始的,这就反映出 MATLAB 中向量的标准索引方案。

在 MATLAB 中,把系数保存在两个向量中,一个保存分子系数,另一个保存分母系数。为方便起见,MATLAB 采用行向量保存滤波器系数。

从上边的 z 变换关系可以很容易得出滤波器的差分方程表示形式。假定 a(1)=1,把分母移到等号左边,进行 z 反变换,可得:

 $y(n)+a(2)y(n-1)+...+a(n_a+1)y(n-n_a)=b(1)x(n)+b(2)x(n-1)+...+b(n_b+1)x(n-n_b)$ y(n) 用输入和输出的延时来表示:

$$y(n)=b(1)x(n)+b(2)x(n-1)+...+b(n_b+1)x(n-n_b)-a(2)y(n-1)-...-a(n_a+1)y(n-n_a)$$

上式为数字滤波器的标准时域表示方法。假设零初始状态,从计算 y(i) 开始。这一过程表示为:

y(1)=b(1)x(1)

y(2)=b(1)x(2)+b(2)x(1)-a(2)y(1)

$$y(3)=b(1)x(3)+b(2)x(2)+b(3)x(1)-a(2)y(2)-a(3)y(1)$$

一个这种形式表示的滤波器可以很容易用 filter 函数实现。例如,一单极点低通滤波器是:

b=1; a=[1-0.9];

这里向量 a, b 表示传递函数形式的滤波器的分子系数和分母系数。应用该滤波器对数据进行滤波:

y=filter(b,a,x);

filter 函数的输出抽样点数与输入的抽样点数相同,即 y 的长度与 x 的长度相同。对于 a(1) 不等于 1 的情况,filter 函数先在等号两边都除以 a(1),再进行差分方程计算。

1.4.5 disp

功能:输出文字或者数据。

格式:

disp('Hello!')

disp(x)

1.4.6 conv

功能: 求卷积。

格式: c=conv(a,b)

说明: c=conv(a,b) 用于求向量 a 和 b 的卷积,即

$$c(n+1) = \sum_{k=0}^{N-1} a(k+1)b(n-k)$$

其中N为向量a和b的最大长度。

举例: 求向量 a=[123] 和 b=[456] 的卷积。

c=conv(a,b)

C =

4 13 28 27 18

1.4.7 freqz

功能:数字滤波器的频率响应。

格式:

[h,w]=freqz(b,a,n)

[h,f]=freqz(b,a,n,Fs)

[h,w]=freqz(b,a,n,'whole')

[h,w]=freqz(b,a,n,'whole',Fs)

h=freqz(b,a,w)

h=freqz(b,a,f,Fs)

freqz(b,a)

说明: freqz 用于计算向量 a 和 b 构成的数字滤波器的复频响应 $H(e^{jw})$ 。 [h,w]=freqz(b,a,n) 可得到数字滤波器的 n 点的复频响应,这 n 个点均匀地分布在上半单位圆(即 $0 \sim \pi$,并将这 n 点频率记录在 w 中,相应的频率响应记录在 h 中。n 的默认值为 512。

[h,f]=freqz(b,a,n,Fs) 允许指定抽样频率 Fs 以 Hz 为单位,也即在 $0\sim$ Fs/2 频率范围内选取 n 个频率点(记录在 f 中),并计算相应的频率响应 h。

[h,w]=freqz(b,a,n,'whole') 表示在 $0 \sim 2\pi$ 之间均匀选取 n 个点计算频率响应。

[h,f]=freqz(b,a,n,'whole',Fs) 则表示在 $0\sim Fs$ 之间均匀选取 n 个点计算频率响应。

h=freqz(b,a,w) 计算在向量 w 中指定的频率处的频率响应,但必须注意,指定的频率必须介于 $0\sim 2\pi$ 之间。

h=freqz(b,a,f,Fs) 计算在向量 f 中指定的频率处的频率响应,但必须注意,指定的频率必须介于 $0\sim Fs$ 之间。

不带输出变量的 freqz 函数可在当前图形窗口中绘制出幅频和相频特性曲线。

1.4.8 freqs

功能:模拟滤波器的复频响应。

格式:

h=freqs(b,a,w)

[h,w]=freqs(b,a)

[h,w]=freqs(b,a,n)

freqs(b,a)

说明: h=freqs(b,a,w) 用于计算模拟滤波器的复频响应, 其中实向量 w 用于指定频率值, 即 freqs 沿虚轴计算频率响应。

[h,w]=freqs(b,a) 自动设定 200 个频率点来计算频率响应, 这 200 个频率 值记录在 w 中。

[h,w] = freqs(b,a,n) 设定 n 个频率点计算频率响应。

不带输出变量的 freqs 函数,将在当前图形窗口中绘制出幅频和相频曲线。

1.4.9 impz

功能:数字滤波器的冲激响应。

格式:

[h,t]=impz(b,a)

[h,t]=impz(b,a,n)

[h,t]=impz(b,a,n,Fs)

impz(b,a)

说明:由向量 a 和 b 构成数字滤波器,即 [h,t]=impz(b,a) 计算出滤波器的冲激响应 h,抽样点数 n 由 impz 函数自动选取,并记录在向量 t 中。

[h,t]=impz(b,a,n) 可由用户指定抽样点或抽样时刻。当 n 为标量时,t=[0:n-1]",即在 $0\sim n-1$ 时刻计算冲激响应,0 时刻表示滤波器的起始点;当 n 为向量(其值应为整数),则表示 t=n,即在这些指定的时刻计算冲激响应。

[h,t]=impz(b,a,n,Fs) 表示抽样间隔为 1/Fs, Fs 的默认值为 1。

不带输出变量的 impz 将在当前图形窗口中利用 stem(t,h) 函数绘出冲激响应。

举例: 见如下代码 b = [0.2 0.1 0.4 0.2 0.3]; a = [1 -1.2 1.4 -0.8 0.4]; impz(b,a,50);

1.4.10 randn

功能: 生成服从标准正态分布的伪随机数矩阵。

格式:

x = randn(M,N)

说明: 生成尺寸为 $\mathbf{M} \times \mathbf{N}$ 的伪随机数矩阵,每个元素服从标准正态分布 $\mathcal{N}(0,1)$ 。

1.4.11 rand

功能: 生成服从均匀分布的伪随机数矩阵。

格式:

x=rand(M,N)

说明: 生成尺寸为 $M \times N$ 的伪随机数矩阵,每个元素服从区间 (0,1) 上的均匀分布。

1.4.12 tic,toc

功能: 查看某段代码的运行时间。

格式:

tic

代码

toc

1.4.13 help,doc

功能: 查看某命令的使用说明。

格式:

help 命令

doc 命令

1.4.14 M 脚本文件

对于一些比较简单的问题,从指令窗中直接输入指令进行计算是十分轻松简单的事。但随指令数的增加或随控制流复杂度的增加,以及重复计算的要求,直接从指令窗进行计算就显得繁琐。此时,脚本文件最为适宜。脚本本身反映这样一个事实: MATLAB 只是按文件所写的指令执行。这种文件的构成比较简单,其特点是:

- 它只是一串按用户意图排列而成的(包括控制流向指令在内的) MAT-LAB 指令集合。
- 脚本文件运行后,所产生的所有变量都贮留在 MATLAB 基本工作空间 (Base workspace) 中。只要用户不使用 clear 指令加以清除,且 MATLAB 指令窗不关闭,这些变量将一直保存在基本工作空间中。基本空间随 MATLAB 的启动而产生;只有关闭 MATLAB 时,该基本空间才被删除。

1.5 选学内容

《Experiments with MATLAB》第一章。 https://www.mathworks.com/moler/exm.html

2 实验二 音频信号的产生与采集

2.1 实验目的

- 1. 学习用 MATLAB 产生及采集音频信号;
- 2. 了解模拟信号与数字信号的关系,数字信号的采样与存储,以及双音 多频信号。

2.2 实验内容

1. 电话拨号音的合成。

电话拨号音使用双音多频信号 (Dual-Tone Multi-Frequency, DTMF), 即用两个特定的单音频率信号的组合来代表电话上的一个按键, 如下表所示:

(Hz)	1209	1336	1477			
697	1	2	3			
770	4	5	6			
852	7	8	9			
941	*	0	#			

编写程序, 能够仿真电话拨号信号, 并由耳机输出。

2. 使用 MATLAB 通过话筒录制一段音频信号,并画出时域波形。

2.3 实验报告

实验报告格式同实验一。

报告内容应包含实验名称、实验目的、实验内容、程序及结果、实验结果分析与讨论等。

2.4 用到的 MATLAB 命令

2.4.1 audiorecorder

功能: 生成一个音频录制对象。

格式:

recorder = audiorecorder

recorder = audiorecorder(Fs,nBits,nChannels)

说明: Fs 是采样频率,大多数声卡支持的典型值是 8000,11025,22050,44100,48000,及 96000 Hz,默认值是 8000。nBits 是采样精度,即每个采样点的比特数,大多数声卡支持的典型值是 8、16 及 24 bit,默认值是 8。nChannels 是声道数,1表示单声,2表示立体声,默认值是 1。

注意:某些情况下nBits设置为8会导致采样信号幅度异常小,这时需要增大该值。

2.4.2 audioplayer

功能: 生成一个音频播放对象。

格式:

player = audioplayer(Y,Fs,nBits)

说明: Y 是需要播放的音频信号。

2.4.3 recordblocking

功能: 录制音频到音频录制对象, 阻塞直到录制完成。

格式: recordblocking(recorder, length)

说明:录制长度为 length 秒的音频到 recorder 对象。

2.4.4 getaudiodata

功能:从音频录制对象提取数据。 格式:Y=getaudiodata(recorder)

2.4.5 play

功能:播放音频对象。Play audio from audioplayer objectexpand all in page Syntax

格式: play(player)

说明:播放 player 对象。

2.4.6 sound

功能:将信号作为音频播放。

格式: sound(y,Fs,nBits)

说明:播放信号 y。

2.4.7 soundsc

功能:类似于 sound 命令,但会对信号进行归一化。

格式: soundsc(y,Fs,nBits)

说明:归一化信号y(-1到+1)并播放。

2.5 选学内容

《Experiments with MATLAB》第二十章。

3 实验三 用 DFT 计算连续信号的谱

3.1 实验目的

- 1. 学习用 MATLAB 计算信号的 DFT:
- 2. 了解用 DFT 对连续周期信号进行谱分析可能产生的误差;
- 3. 理解重叠相加法。

3.2 实验内容

- 1. 有一单频信号 $x(t) = sin(2\pi ft)$, 若 (1)f = 15Hz, (2)f = 2Hz, 分别用 DFT 求 x(t) 的谱。要求:
 - (a) 抽样频率 fs 以不发生混叠为宜;
 - (b) 记录长度 tp 应取整数周期;
 - (c) 用 stem 语句绘出幅度谱, 横坐标为模拟频率 f。用 plot 画出时域波形。
- 2. 有一复频信号 $x(t)=\sin(2\pi f_1 t)+\sin(2\pi f_2 t)$,其中 $f_1=15$ Hz, $f_2=2$ Hz,当 T=0.01s 时,求:
 - (a) N=100 时 x(t) 的幅度谱并图示: (用 stem 语句绘出幅度谱)
 - (b) N=50 时 x(t) 的幅度谱并图示。(用 stem 语句绘出幅度谱) 请分别预测(a) 与(b) 是否逼近真实的谱?如有误差,请分析原因。
- 3. 根据重叠相加法的原理编写程序,并仿真数据进行测试(信号为 randn(1000,1), 滤波器为 randn(10,1), 分段长度 100, 与 conv 结果对比)。

3.3 实验报告

实验报告格式同实验一。

报告内容应包含实验名称、实验目的、实验内容、程序及结果、实验结果分析与讨论等。

3.4 用到的 MATLAB 命令

3.4.1 fft

功能:一维快速傅里叶变换

格式:

y = fft(x)

y = fft(x,n)

说明: fft 函数用于计算向量或矩阵的离散傅里叶变换, 这可通过

$$X(k+1) = \sum_{n=0}^{N-1} x(n+1)W_N^{kn}$$
 (1)

实现, 其中 N = length(x), $W_N = e^{-j2\pi/N}$ 。

y=fft(x) 利用 FFT 算法计算向量 x 的离散傅里叶变换,当 x 为矩阵时,y 为矩阵 x 每一列的 FFT。当 x 的长度为 2 的幂次方时,则 fft 函数采用基 2 的算法,否则采用稍慢的混合基算法。

x=fft(x,n)采用 n 点 FFT。当 x 的长度小于 n 时,fft 数在 x 的尾部补零,以构成 n 点数据;当 x 的长度大于 n 时,fft 函数会截断序列 x。当 x 为矩阵时,fft 函数按类似的方式处理列长度。

3.5 选学内容

《Experiments with MATLAB》第三章。

4 实验四 IIR及FIR滤波器设计

4.1 实验目的

- 1. 学习用 MATLAB 完成 IIR 及 FIR 数字滤波器的设计。
- 2. 了解 IIR 及 FIR 数字滤波器的设计方法;

4.2 实验内容

- 1. 用冲激响应不变法设计 Butterworth IIR 数字低通滤波器。其中通带边界频率 fp=1000Hz,阻带边界频率 fst=4000Hz,通带最大波动 Rp=3dB,阻带最小衰减 As=15dB,抽样频率 fs=20kHz,求 H(z) 及频率响应 $H(e^{j\omega})$ 并画出幅频曲线。
- 2. 已知输入信号 $x=\sin(2\pi 20t)+\sin(2\pi 5000t)$, 抽样频率 $f_s=20kHz$, 请用步骤 1 设计的滤波器过滤该信号,要求画出输入与输出信号的时域波形并求它们的谱。
- 3. 用窗函数法设计 FIR 数字低通滤波器。设通带边界频率 fp=50Hz,阻带边界频率 fs=100Hz,抽样频率 fs=400Hz,阻带最小衰减 As=40dB。请选择合适的窗函数及阶数 n 进行设计,求出 h(n) 与 H(z) 及频率响应 $H(e^{j\omega})$ 并画出幅频曲线。

4.3 思考问题

- 1. 步骤 1 设计的数字滤波器有无混叠? 为什么?
- 2. 步骤 2 中,为使谱分析不产生泄漏,信号时域截取长度应为多少才合适?

4.4 实验报告

实验报告格式同实验一。

报告内容应包含实验名称、实验目的、实验内容、程序及结果、实验结果分析与讨论等,并回答思考题。

4.5 用到的 **MATLAB** 命令

4.5.1 buttord

功能:函数 buttord 可在给定滤波器性能情况下,选择模拟或数字 Butterworth 滤波器最小的阶数。

格式:

[n,Wn]=buttord(Wp,Ws,Rp,Rs)

[n,Wn]=buttord(Wp,Ws,Rp,Rs,'s')

说明:其中Wp和Ws分别是通带和阻带的截止频率,Rp和Rs分别是通带和阻带内的波纹系数。

数字域

[n,Wn]=buttord(Wp,Ws,Rp,Rs) 可得到数字 Butterworth 滤波器的最小阶数 n, 并使在通带 (0,Wp) 内波纹系数小于 Rp, 在阻带 (Ws,1) 内衰减减系数大于 Rs。 $0 \le Wp$ (或 Ws) ≤ 1 ,当其值为 1 时,表示 0.5Fs。Buttord 还得到截止频率 Wn,这样再利用 Butterworth 滤波器设计函数就可产生满足指定性能的滤波器。

模拟域

[n,Wn]=buttord(Wp,Ws,Rp,Rs,'s') 可得到满足指定性能的模拟滤波器的阶数和截止频率,从而可以利用 Butterworth 滤波器设计函数设计滤波器。

请同学注意:

根据 Matlab 说明文档,模拟域 (加's') Wp/Ws 应为模拟角频率 Ω_p, Ω_s , 而数字域 Wp,Ws 应为 ω_p, ω_s 除以 π 。但经如下例子测试:

```
wp=0.2*pi;ws=0.3*pi;fs=1e4;Wp=wp*fs;Ws=ws*fs;Rp=1;
As=15;
n=buttord(Ws,Wp,Rp,As,'s')
n =
6
```

n=buttord(wp/pi,ws/pi,Rp,As)

```
n =
6
n=buttord(wp/pi/2,ws/pi/2,Rp,As)
n =
6
As=150;
n=buttord(Ws,Wp,Rp,As,'s')
n =
45
n=buttord(wp/pi,ws/pi,Rp,As)
n =
40
n=buttord(wp/pi/2,ws/pi/2,Rp,As)
n =
44
```

可以看到, 阶数 n 较小时无差别; 但阶数大时, 除以 2π 的结果更为准确。

4.5.2 buttap

功能:设计低通模拟 Butterworth 滤波器。

格式: [z,p,k]=buttap(n)

说明:返回一个n阶 Butterworth 滤波器的零点、极点和增益。

4.5.3 zp2tf

功能:零极点增益模型转换为传递函数模型。

格式: [b,a]=zp2tf(z,p,k)

说明:将零极点增益模型 (z,p,k) 转换为传递函数模型 (b,a), z、p、k 分别表示零点向量、极点向量和增益系数。

4.5.4 lp2lp

功能:可将截止频率为 1rad/s 的模拟低通滤波器原型变换成截止频率 为 Wn 的低通滤波器。

格式: [bt,at]=lp2lp(b,a,Wn)

说明:可将传递函数表示的模拟低通滤波器原型转换成低通滤波器,其截止频率为 Wn,模拟低通滤波器原型可表示成

$$H(s) = \frac{B(s)}{A(s)} = \frac{b(1)s^{n_b} + b(2)s^{n_b-1} + \dots + b(n_b+1)}{a(1)s^{n_a} + a(2)s^{n_a-1} + \dots + a(n_a+1)}$$

4.5.5 impinvar

功能:采用冲激响应不变法来实现模拟滤波器到数字滤波器的转换。

格式: [bz,az]=impinvar(b,a,Fs)

说明:可将模拟滤波器 (b,a) 变换成数字滤波器 (bz,az),两者的冲激响应不变,即模拟滤波器的冲激响应按 Fs 抽样后等同于数字滤波器的冲激响应。当缺少参数 Fs 时,抽样频率 Fs 取缺省值 1Hz。

4.5.6 sinc

功能:产生 sinc 函数波形。

格式: y = sinc(x)

说明: y = sinc(x) 用于计算 sinc 函数,即

$$sinc(t) = \begin{cases} 1, & t = 0; \\ \frac{sin(\pi t)}{\pi t}, & t \neq 0. \end{cases}$$

sinc 函数之所以重要,是因为它的傅里叶变换正好是幅值为1的矩形脉冲。

4.5.7 boxcar

功能:矩形窗。

格式: w = boxcar(n)

说明: boxcar(n) 函数可产生长度为n的矩形窗函数。

4.5.8 hamming

功能:海明窗。

格式: w = hamming(n)

说明: hamming(n) 可产生 n 点的海明窗。

4.5.9 hanning

功能: 汉宁窗。

格式: w = hanning(n)

说明: hanning(n) 可产生 n 点的汉宁窗。

4.5.10 fir1

功能:基于窗函数的FIR滤波器设计。

格式:

b=fir1(n,Wn)

b=fir1(n,Wn,'ftype')

b=fir1(n,Wn,window)

b=fir1(n,Wn,'ftype',window)

说明: fir1 函数以经典方法实现加窗线性相位 FIR 数字滤波器的设计, 它可设计出标准的低通、高通、带通和带阻滤波器(具有任意频率响应的多 带加窗滤波器由 fir2函数设计)。

b=fir1(n,Wn) 可得到 n 阶低通 FIR 滤波器,滤波器系数包含在 b 中,这可表示为

$$B(z) = b(1) + b(2)z^{-1} + \dots + b(n+1)z^{-n}$$

这是个截止频率为 Wn 的加海明窗的线性相位 FIR 滤波器, $0 \le Wn \le 1$, Wn=1 对应于抽样频率的二分之一,即 Nyquist 频率。

当 [Wn]=[W1,W2] 时,fir1 函数可得到带通滤波器,其通带为 W1< ω <W2。

b=fir1(n,Wn,'ftype') 可设计高通和带阻滤波器,由 ftype 决定:

当 ftype = high 时,表明设计高通 FIR 滤波器;

当 ftype = stop 时,表明设计带阻 FIR 滤波器。

在设计高通和带阻滤波器时, fir1 函数总是使用阶次为偶数的结构, 因此当输入的阶次为奇数时, fir1 函数会自动将阶次加 1。这是因为对奇次阶的滤波器, 其在 Nyquist 频率处的频率响应为零, 因此不适合用于设计高通和带阻滤波器。

b=fir1(n,Wn,window) 利用列向量 window 中指定的窗函数进行滤波器设计,window 的长度应为 n+1。如果不指定 window 参数,则 fir1 函数使用海明窗。

b=fir1(n,Wn,'ftype',window) 的用法为以上两种类型的结合,用于设计定制窗函数的高通和带阻滤波器的设计。

4.6 选学内容

《Experiments with MATLAB》第四章。

5 实验五 综合实验: 电话号码识别

5.1 实验目的

- 1. 学习用 MATLAB 解决实际的信号处理问题:
- 2. 了解时间-频率分析及短时傅里叶变换的基本概念及原理。

5.2 实验内容

根据实验二的内容,电话拨号音使用双音多频信号,因此可以使用 DFT 分析拨号音的频谱分量,从而根据频谱的峰值及编码识别所拨出的电话号码。本实验要求识别音频文件 phone_number.mp3 中的电话号码。

由于这个信号是一个时变信号,即频率分量随着时间而变化,因此需要分析该信号的时间-频率特性,即频谱的时间函数。由于无法准确确定每次按键的起止时刻,因此可以考虑先将信号分割成若干段,然后单独分析每段信号,最后综合分析以识别。这正是短时傅里叶变换(short time Fourier transform, STFT)的基本思想。针对本实验的信号,需要满足如下条件:

- 1. 信号段的长度应足够短(小于每次按键的持续时间)以保证对于每次 按键,至少有一段信号只包含该按键而不包含相邻的按键;
- 2. 同时信号段的长度应足够长以保证 DFT 具有足够高的分辨率。综合考虑,建议每次分析 0.2 秒的信号。

5.3 实验报告

实验报告格式同实验一。

报告内容应包含实验名称、实验目的、实验内容、程序及结果、实验结果分析与讨论等。

5.4 用到的 MATLAB 命令

5.4.1 audioread

功能: 读取音频文件。

格式: [y,Fs] = audioread(filename)

说明:从文件 filename 中读取音频数据,返回采样数据 y 及采样频率

Fs。

5.4.2 image

功能:将矩阵数据以图像方式显示。

格式: image(C)

说明:以图像方式显示矩阵 C, C 中每个元素对应图像中一个矩形,矩形的颜色由元素值的大小决定,颜色与元素值的映射关系由 colormap 决定。

5.4.3 imagesc

功能:与image命令类似,但会对矩阵数据进行归一化。

格式: imagesc(C)

说明:对C进行归一化(0到255),并以图像方式显示。

5.4.4 goertzel

功能:使用二阶 Goertzel 算法计算 DFT。

格式: dft = goertzel(data,indices)

说明: 计算给定频点 indices 的 DFT。

5.5 选学内容

《Experiments with MATLAB》第五章。

索引

audioplayer, 18	lp2lp, 25				
audioread, 29	10				
audiorecorder, 18	ones, 10				
axis, 10	play, 18				
1 25	plot, 9				
boxcar, 25					
buttap, 24	rand, 15				
buttord, 23	randn, 14				
conv, 5, 12	recordblocking, 18				
dien 12	sinc, 25				
disp, 12	sound, 19				
doc, 15	soundsc, 19				
fft, 21	stem, 5, 6				
filter, 6, 11	subplot, 10				
fir1, 26					
fir2, 26	tic,toc, 15				
freqs, 13	title, 10				
freqz, 6, 12	xlabel, 10				
getaudiodata, 18	ylabel, 10				
goertzel, 29	•				
	zeros, 11				
hamming, 26	zp2tf, 24				
hanning, 26					
help, 15					
image, 29					
imagesc, 29					
impinvar, 25					
impz, 6, 14					
•					