Lista 4

Victor Sena Molero - 8941317

March 30, 2016

Ex 16. Provar (nos moldes da prova vista em aula para o algoritmo de Kruskal) que o algoritmo descrito a seguir constói uma árvore geradora de custo mínimo.

Prova. Seja G um grafo conexo, com custos c_a em cada aresta $a \in A(G)$. Seja também a função custo c de um grafo H definida como a soma dos custos de todas as arestas de H, ou seja, $c(H) = \sum_{a \in A(H)} c_a$. Queremos provar que o algoritmo DESAPEGADO devolve uma árvore geradora mínima T do grafo G. Além disso, m = |A(G)| e n = |V(G)|.

O algoritmo opera removendo as arestas G que não desconectam o grafo atual em ordem não-crescente de custo. Vamos indexar as arestas em ordem não-crescente também, ou seja, $c_i \geq c_{i+1}$. Podemos definir então o conjunto R_i que define todas as arestas que foram removidas até o momento em que a i-ésima aresta é processada pelo algoritmo (incluindo a própria aresta i, se ela for removida). Ou seja, $T = G \setminus R_m$.

Queremos provar que o algoritmo, de fato, retoran uma árvore geradora mínima T de G. Para isso, escolhemos uma árvore geradora mínima T^* de G tal que para qualquer S árvore geradora mínima de G, $|A(T) \cap A(T^*)| \ge |A(T) \cap A(S)|$. Seja R^* o conjunto de arestas que foram removidas de T^* , ou seja $R^* = G \setminus T^*$. Vamos supor, por absurdo, que $T^* \ne T$. Então existe pelo menos uma aresta que foi removida de T e não foi removida de T^* , ou seja, uma aresta α tal que $\alpha \in R_m$ e $\alpha \notin R^*$. Escolhemos α como a de índice mínimo (uma das de custo máximo) que respeita esta restrição. Agora escolhemos a aresta β análoga em R^* , ou seja, a aresta de índice mínimo que foi removida de T^* , mas não de T. Vamos provar que α (portando β) não existe, atingindo um absurdo. Primeiro, sabemos que $G \setminus R_{i-1} - \beta$ é conexo, já que $R_i + \beta \subseteq R^*$ e $G \setminus R^*$ é conexo. Portanto $c_\beta \le c_\alpha$ ($\beta > \alpha$), se não fosse, β seria escolhido, não α . Podemos definir dois conjuntos de vértices, o J com os vértices alcançáveis, em T^* , por uma das pontas de α sem passar por α e o K com os vértices alcançáveis, em T^* , pela outra ponta de α sem passar por α . Em T, α é a única conexão entre J e K, já que T^* é uma árvore. Remover α de T^* desconecta o grafo, mas existe uma outra aresta γ em T^* e não em T^* que conecta K e J, essa aresta tem custo menor ou igual a α , pois ela pertence a R^* , mas não pertence a R_i (está no final de R^*). Se removessemos α e adicionassemos γ a T^* geraríamos uma árvore S de custo menor ou igual ao de T^* que é geradora e tal que $|A(T) \cap A(T^*)| < |A(T) \cap A(S)|$, por definição de T^* , isso é um absurdo.

Logo, $T^* = T$, então T é uma árvore geradora mínima.