Five

Describing Numerical Data

5.1 Introduction

There are two major ways of describing numerical data:

- Numerical descriptive measures
 - Location
 - Variability
 - Other measures
- Graphical methods
 - Histogram
 - Boxplot, Stem and leaf plot
 - Scatter plot for bivariate data

5.2 EXPLORING NUMERICAL DATA

- The number of observations in the data set.
- The "center" of the data
 - Mean
 - Median
 - Mode
- The "variability" of the data
 - Variance or standard deviation
 - Range
 - Interquartile range between the first and third quartile
 - Coefficient of Variation

- Other measures
 - Minimum and maximum
 - First quartile (25th percentile) and third quartile (75th percentile)
 - Percentiles
 - Skewness Standardised Third Moment
 - Kurtosis Standardised Fourth Moment

EXAMPLE 5.1 The data below describes the percentage returns achieved by 76 average-risk funds:

```
21.88 59.82 33.28 20.23 15.78 13.59 32.98 11.31 21.46 14.45 25.43 10.67 12.11 17.69 56.87 4.43 24.95 20.13 8.75 12.45 19.89 37.71 49.97 19.67 55.4 27.16 39.44 19.45 15.42 55.9 28.25 31.03 31.15 41.86 49.76 24.89 11.37 18.19 32.5 7.57 29.18 31.7 67.69 10.09 61.88 24.08 7.97 24.22 18.17 24.21 31.96 45.39 56.63 14.36 10 45.37 27.16 -2.7 11.38 12.67 12.41 91.15 8.4 30.52 20.26 4.08 26.09 12.21 67.45 43.31 19.21 18.49 21.31 25.18 26.85 18.89
```

What can we say about the returns of these funds?

- Almost all the funds have a positive return.
- The spread of the returns ranges from -2.7% to 91.15%.
- There appears to be one very high return, 91.15%.

5.3 DESCRIPTIVE STATISTICS

We will now look at how we can obtain descriptive statistics using SAS, R and SPSS.

Descriptive statistics using SAS

We first look at how we can do so using SAS.

SAS: Proc Univariate

```
data ex5_lar;
  infile "c:\ST2137\data\ex5_lar.txt" firstobs=2;
  input preturn;
proc univariate data=ex5_lar;
  title "Simple Descriptive Statistics";
  var preturn;
run;
```

Output from Proc Univariate

Simple Descriptive Statistics

1

The UNIVARIATE Procedure

Variable: preturn

Moments

N	76	Sum Weights	76
Mean	27.0007895	Sum Observations	2052.06
Std Deviation	17.6647519	Variance	312.043458
Skewness	1.21608091	Kurtosis	1.54518833
Uncorrected SS	78810.4994	Corrected SS	23403.2594
Coeff Variation	65.4230939	Std Error Mean	2.02628601

Basic Statistical Measures

	Location		Variability
Mean	27.00079	Std Deviation	17.66475
Median	22.98000	Variance	312.04346
Mode	27.16000	Range	93.85000

Tests for Location: Mu0=0

Test	-St	tatistic-	p Va	alue
Student's t	t	13.32526	Pr > t	<.0001
Sign	M	37	Pr >= M	<.0001
Signed Rank	S	1462	Pr >= S	<.0001

Quantiles (Definition 5)

Quantile	Estimate
100% Max	91.150
99%	91.150
95%	61.880
90%	55.900
75% Q3	32.740
50% Median	22.980
25% Q1	13.975

10%	10.000
5%	7.570
1%	-2.700
ጋ% Min	-2.700

Extreme Observations

Lowest		Highest	-
Value	Obs	Value Obs	S
-2.70	58	59.82	2
4.08	66	61.88	45
4.43	16	67.45	69
7.57	40	67.69	43
7.97	47	91.15	62

SAS: Proc Mean

```
proc means data=ex5_lar n mean std min max stderr maxdec=4;
  title "Procedure Means";
  var preturn;
run;
```

Output from Proc Mean

The MEANS Procedure

Analysis Variable : preturn

N	Mean	Std Dev	Minimum	Maximum	Std Error
76	27.0008	17.6648	-2.7000	91.1500	2.0263

Descriptive statistics using R

```
> ex5.1ar <- read.table("c:/ST2137/data/ex5_1ar.txt", header=T)</pre>
> attach(ex5.1ar)
> summary(preturn)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
 -2.70 14.17 22.98 27.00 32.62 91.15
> mean(preturn)
[1] 27.00079
> median(preturn)
[1] 22.98
> min(preturn)
[1] -2.7
> max(preturn)
[1] 91.15
> range(preturn)
[1] -2.70 91.15
```

```
> quantile(preturn)
     0% 25% 50% 75% 100%
-2.7000 14.1675 22.9800 32.6200 91.1500
> var(preturn)
[1] 312.0435
> sd(preturn)
[1] 17.66475
> IQR(preturn) # Interquartile range
[1] 18.4525
> preturn[order(preturn)[1:5]] # The smallest 5 observations
[1] -2.70 4.08 4.43 7.57 7.97
> nar <- length(preturn)</pre>
> preturn[order(preturn)[(nar-4):nar]] # The biggest 5 observations
[1] 59.82 61.88 67.45 67.69 91.15
> cv <- function(x) sd(x)/mean(x) # Compute coeff of variation
> cv(preturn)
[1] 0.6542309
```

Calculating sample skewness using R

Unbiased estimator of skewness is given by

$$\frac{\sqrt{n(n-1)}}{n-2}\left(\frac{m_3}{m_2^{3/2}}\right),\,$$

where m_i is the *i*th central moment.

```
> skew <- function(x) {
+    n <- length(x)
+    m3 <- mean((x-mean(x))^3)
+    m2 <- mean((x-mean(x))^2)
+    sk=m3/m2^(3/2)*sqrt(n*(n-1))/(n-2)
+    return(sk)
+ }
> skew(preturn)
[1] 1.216081
```

Calculating sample kurtosis using R

Unbiased estimator of kurtosis is given by

$$\frac{n-1}{(n-2)(n-3)}\left(\frac{(n+1)m_4}{m_2^2}-3(n-1)\right).$$

```
> kurt <- function(x) {
+    n <- length(x)
+    m4 <- mean((x-mean(x))^4)
+    m2 <- mean((x-mean(x))^2)
+    kurt = (n-1)/((n-2)*(n-3))*((n+1)*m4/m2^2-3*(n-1))
+    return(kurt)
+ }
> kurt(preturn)
[1] 1.545188
```

Descriptive Statistics using SPSS

- Open the SPSS data file ex5.1ar.sav.
- "Analyze" \rightarrow "Descriptive Statistics" \rightarrow "Frequencies ...".
- Move "preturn" to the variable panel.

• Click "Statistics...".

- Choose the statistics you want.
- Click "Continue" \rightarrow "OK".
- The output is show below:

Statistics

preturn

N	Valid	76
	Missing	0
Mean		27.0008
Median		22.9800
Mode		27.16
Std. Dev	iation	17.66475
Variance	312.043	
Skewne	SS	1.216
Std. Erro	r of Skewness	.276
Kurtosis		1.545
Std. Erro	r of Kurtosis	.545
Minimum		-2.70
Maximum		91.15
Percenti	les 25	13.7825
	50	22.9800
	75	32.8600

5.4 Graphical Methods

Now we look at obtaining graphical summaries using those software.

Graphical Methods using SAS

- Box plot
- "Distribution Plot"
- Histogram
- QQ plot

Plot in Proc Univariate: SAS

```
/* Boxplot, distribution plot, and qqplot */
proc univariate data=ex5_lar plot;
  var preturn;
run;
```

Output from Plot

Histogram: SAS

Output : histogram in SAS

Graphical Methods in R

R has very good graphical capabilities which we will explore here.

Histogram: R

```
> hist (preturn, freq=FALSE,
                                             paste: join different string
   main = paste("Histogram of return"),
+ xlab = "return", ylab="density")
> # Normal curve imposed on the histogram
> xpt <- seq(-10,100,0.1)
> vpt <- dnorm (seq(-10,100,0.1), mean(preturn), sd(preturn))
> lines(xpt, ypt) dnorn: value of the density curve
> # To get frequency histogram version
                                              the line is close to x-axis
                                              since the y scare is too
> hist(preturn, freq=TRUE,
+ main = paste("Histogram of return"),
+ xlab = "return", ylab="frequency")
> # Normal curve imposed on the histogram
> aypt <- ypt*length(preturn)*10</pre>
> # length(preturn) *10 is the area of the histogram
> lines(xpt,aypt)
```

Output: histogram in R

The shape of the histogram does not fit well with the normal curve.

QQplot: R

- > # qqplot of normal distribution
- > qqnorm(preturn)
- > qqline(preturn)

qqline(preturn,,probe=c(0.01,0.99) myqq=qqnorm(preturn) abline(lm(myqq\$y+myqq\$x))

Stem and leaf plot: R sideway histogram

```
> stem(preturn)
  The decimal point is 1 digit(s) to the right of the |
  -0
     1 3 -3
       448889
       00111122223444568888999
     | 000001124445555677789
     | 1112233389
       2355
       005677
   6
     0278 60,62,67,68
   8
     | 1
```

The stem size is in the form of 10^x .

Boxplot: R

> boxplot (preturn)

Plots using SPSS

- Open the SPSS data file ex5.1ar.sav.
- "Analyze" \rightarrow "Descriptive Statistics" \rightarrow "Explore ...".
- Move "preturn" to the variable panel.
- Click "Plots...".

• Choose the plots you want (e.g. Stem-and-leaf, Histogram and Normality plot with tests).

• Click "Continue" \rightarrow "OK".

Output: Histogram in SPSS

Output: Stem & Leaf Plot in SPSS

```
Return Stem-and-Leaf Plot
Frequency Stem & Leaf
   1.00
             -0 . 2
   6.00 0 . 447788
   25.00
           1 . 0001112222234455788889999
   19.00 2 . 0001114444455667789
             3 . 0111122379
   10.00
   6.00
        4 . 135599
   5.00 5.55669
   4.00 Extremes (>=62)
Stem width: 10.00
Each leaf: 1 case(s)
```

Normal Q-Q Plot of return

Output: Boxplot in SPSS

Alternative way to get histogram with normal curve in SPSS

- Open the SPSS data file ex5.1ar.sav.
- "Graphs" \rightarrow "Legacy Dialogs" \rightarrow "Histogram ...".
- Move the variable "preturn" from the left panel to the right panel under "Variable".

• Choose "Display normal curve", then click "OK".

Alternative way to get QQplot in SPSS

- Open the SPSS data file ex5.1ar.sav.
- "Analyze" \rightarrow "Descriptive Statistics" \rightarrow "QQ Plots ...".
- Move the variable "preturn" from the left panel to the right panel under "Variable".

• Choose "Normal" in the "Test Distribution", then click "OK".

Alternative way to get Boxplot in SPSS

• Open the SPSS data file ex5.1ar.sav.

• "Graphs" \rightarrow "Legacy Dialogs" \rightarrow "Box plot ...".

• Choose "Simple" and "Summaries in separate variables", then click "Define".

- Move the variable "return" from the left panel to the right panel under "Variable".
- Click "OK".

EXAMPLE 5.2 In addition to the percentage returns of the 76 average-risk funds, we have the following percentage returns achieved by 47 high-risk funds:

24.47	8.76	58.71	35.07	-22.82
15.67	37.47	13.4	49.02	-3.16
43.97	13.91	23.84	-2.89	39.64
29.72	17.91	-10.55	47.38	68.58
86.13	-12.57	-0.33	-5.32	4
0.14	45.97	23.87	38.23	63.79
26.6	6.62	6.72	36.02	29.51
22.56	1.62	29.33	28.91	29.32
42.91	8.87	54.43	28.31	30.76
49.67	1.98			

Solution:

(a) **Preparing the dataset**

For a given fund, there are two variables:

- Return: Percentage return of the fund and
- Risk: 1 for average-risk fund and 2 for high-risk fund.

Notice that the variable "Risk" is a classification (categorical) variable.

(b) How to enter the data

• Two columns with the first column representing the return percentage while the second column identifies the type of funds.

```
Return Risk
21.88 1
59.89 1
....
1.98 2
```

• There are 123 data in both columns.

(c) Descriptive statistics by groups: SAS

```
proc format;
  value $risk '1' = 'Average Risk'
                                      $表示把data当成string read in,如果
               '2' = 'High Risk';
                                      要把data当作integer read in,要把所
data ex5 2;
  infile "c:\ST2137\data\ex5 2.txt" firstobs=2;
  input preturn risk $;
  label preturn = 'Return Percentage';
  format risk $risk.;
proc univariate data=ex5 2;
  histogram preturn/midpoints= -30 to 90 by 15 normal;
               这样就会根据这个class画两个图
  class risk;
  qqplot preturn; /* you can also call qqplot this way,
                   / allowing you to do side by side comparison */
run;
```

Output by groups: SAS

(d) Boxplot by groups: SAS

```
proc boxplot data=ex5_2;
  plot preturn*risk;
run;
```


(e) Descriptive statistics by groups: R

```
> ex5.2 <- read.table("c:/ST2137/data/ex5_2.txt", header=T)</pre>
> attach (ex5.2)
> ex5.2ar <- ex5.2[risk==1, "preturn"]</pre>
> ex5.2hr <- ex5.2[risk==2, "preturn"]</pre>
> summary(ex5.2hr)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
 -22.82 6.67 26.60 24.81 38.94 86.13
> stem(ex5.2hr)
  The decimal point is 1 digit(s) to the right of the |
  -2 \mid 3
  -0 \mid 315330
   0 | 022477993468
   2 | 3444789990015678
   4 | 034679049
   6 | 49
   8 | 6
```

(f) Boxplot by groups: R

> boxplot(preturn~risk)

boxplot(ex5.2ar,ex5.2hr)

(g) Histogram by groups: R

```
# To specify that 2 graphs in one column in one page
par (mfrow=c(2,1)) want plotting device to have 2
                   rows and 1 column(split plotting
                   device to two parts)
#Histogram for the return of the average risk funds
hist(ex5.2ar, include.lowest = TRUE, freq=TRUE, col="grey",
main = paste("Histogram of Return"), sub=paste ("Average Risk Funds"),
xlab = "return", vlab="frequency", axes = TRUE)
#Histogram for the return of the high risk funds
hist(ex5.2hr, include.lowest = TRUE, freq=TRUE, col="grey",
main = paste("Histogram of Return"), sub=paste ("High Risk Funds"),
xlab = "return", ylab="frequency", axes = TRUE)
#To get back to 1 graph in one page.
par(mfrow=c(1,1))
```

Histogram of return

Histogram of return

(h) Descriptive statistics by groups: SPSS

- Import ex5.2.txt into the SPSS and call it ex5.2.sav.
- "Analyze" \rightarrow "Descriptive Statistics" \rightarrow "Explore...".
- Move "preturn" from the left panel to the Dependent List panel.

- Move "risk" from the left panel to the Factor List panel.
- Click "Plots".
- Choose the plots that you want.

• Click "Continue" \rightarrow "OK".

Plotting Bivariate Data

We now look at how we can handle bivariate data.

Plot of bivariate data: SAS

```
data htwt1;
  infile "c:/ST2137/data/htwt1.txt" firstobs=2;
  input id gender $ height weight siblings;
proc gplot data=htwt1;
  title "Scatter Plot of WEIGHT by HEIGHT";
  plot weight*height;
  symbol value = dot color = black;
run;
```

Scatter Plot of WEIGHT by HEIGHT

Plot of bivariate data for groups using different symbols : SAS

```
proc gplot data=htwt1;
  title "Using gender to generate the plotting symbols";
  plot weight*height=gender;
    symbol1 value = circle color=red;
    symbol2 value = square color = black;
run;
```

Using gender to generate the plotting symbols

Separate plots by "gender": SAS

```
proc sort data=htwt1;
  by gender;
proc gplot data=htwt1;
  title "Separate Plots by GENDER";
  by gender;
  plot weight*height;
run;
```

Separate Plots by GENDER gender=F

Separate Plots by GENDER

weight 90 o height

Plot of bivariate data: R

```
> htwt1 <- read.table("c:/ST2137/data/htwt1.txt",header=T)
> attach(htwt1)
> plot(height, weight, main="Plot of Weight by Height")
```

Plot of Weight by Height

Plot of bivariate data for groups : R

```
> plot(height[gender=="M"], weight[gender=="M"],
+ main="Use Gender to generate the plotting symbol",
+ ylab="Weight", xlab="Height",
+ xlim=c(150,190), ylim=c(40,80))
> par(new=T)
> plot (height[gender=="F"], weight[gender=="F"],
                                           skip the names
+ main="", xlab="", ylab="",
                                           since they were
+ xlim=c(150,190), ylim=c(40,80),
                                           described before
+ axes=F, pch=0, col=2)
# try points() for a more elegant solution!
  plot(height[gender=="M"],weight[gender=="M"],
  + main="Use Gender to generate the plotting symbol",
  + ylab="Weight",xlab="Height",
  + xlim=c(150,190),ylim=c(40,80))
  points(height[gender=="F"],weight[gender=="F"],pch=0,col=2)
```

Use Gender to generate the plotting symbol

Separate plots by "gender": R

```
> par(mfrow=c(2,1))
> plot(height[gender=="M"], weight[gender=="M"],
+ main="Plot of Weight by Height for Male",
+ ylab="Weight", xlab="Height",
+ xlim=c(160,190), ylim=c(40,80))
>
> plot(height[gender=="F"], weight[gender=="F"],
+ main="Plot of Weight by Height for Female",
+ ylab="Weight", xlab="Height",
+ xlim=c(140,180), ylim=c(40,80))
> par(mfrow=c(1,1))
```

Plot of Weight by Height for Male

Plot of Weight by Height for Female

Plot of bivariate data: SPSS

- Open the data set htwt1.sav.
- "Graphs" \rightarrow "Chart Builder".
- Highlight "Scatter/Dot" in the "Choose from" panel.

- Double click the simple scatter plot in the (1,1) position.
- Drag height in Variable panel to the "X-axis?" box in the chart preview.

• Drag weight in Variable panel to the "Y-axis?" box in the chart preview.

• Click "OK".

Plot of bivariate data for groups : SPSS

- "Graphs" \rightarrow "Chart Builder".
- Highlight "Scatter/Dot" in the "Choose from" panel.

• Double click the simple scatter plot in the (1,2) position.

• Drag height in Variable panel to the "X-axis?" box in the chart preview.

- Drag weight in Variable panel to the "Y-axis?" box in the chart preview.
- Drag gender in Variables panel to the "Set color" box.

• Click "OK".

Separate plots by "gender": SPSS

- "Graphs" → "Legacy Dialogs" → "Scatter/Dot".
- Choose "Simple Scatter".

- Click "Define".
- Drag the variable height on the left panel to "X-axis:" box.
- Drag the variable weight on the left panel to "Y-axis:" box.
- Drag the variable gender on the left panel to "Rows:" box in the "Panel by".

• Click "OK".

