TP TS 6

Montages électroniques à portes logiques

L'objectif de ce tp est d'utiliser et de combiner des portes logiques : réalisation d'une porte non, et mesure de ses caractéristiques, vérification de la table de vérité de la porte non-et et de la ou, puis modélisation d'un carrefour routier.

I. Étude de portes logiques

L'objectif de cette section est la réalisation de la porte non afin d'en déterminer ses caractéristiques (et vérifier les données de la *datasheet*). On commence par réaliser une porte non à l'aide des portes non-et du composant cd4011. On réalise donc le circuit ci-dessous.

Figure 1 – Circuit de la porte non réalisé à l'aide de la porte non-et

On choisit une tension d'entrée u de forme triangulaire. On règle la période du signal u de telle sorte qu'elle soit très grande devant le temps de basculement de la porte (ici, moins d'une dizaine de kilohertz). Ainsi, si $u_{\rm b}$ est la tension de basculement de la porte logique, alors quand $u>u_{\rm b}$, on s'attend à ce que v change brutalement passant du niveau haut, au niveau bas. On mesure donc la tension v à l'oscilloscope, comme montré dans la figure ci-dessous. On note donc la tension à laquelle la porte change brutalement d'état : $u_{\rm b}=2,75~{\rm V}$.

On parle de porte "Non" car elle inverse l'état de son entrée : si l'entrée est à l'état haut, alors la sortie est à l'état bas; et, si l'entrée est à l'état bas, alors la sortie est à l'état haut.

Figure 2 – Mesure de la tension v à l'oscilloscope (signal vert)

On peut remarquer sur la figure précédente que la porte ne passe pas instantanément de l'état bas à l'état haut. Mesurons ces temps. On commence par changer la forme du signal u à un créneau, mais on conserve la même fréquence. En regardant le front montant et le front descendant du signal v, on mesure le temps de transition : le temps nécessaire à ce que la porte change complètement d'état (plus précisément, de passer d'une tension de $10\,\%$ à $90\,\%$ et inversement pour le front descendant). De même, on mesure le temps de propagation : la durée entre $50\,\%$ de la transition d'entrée et $50\,\%$ de la transition de sortie (et inversement pour le front descendant). On a donc

$$\begin{split} t_{\text{\tiny THL}} &= 52 \; \text{ns} \; ; \qquad t_{\text{\tiny TLH}} = 38 \; \text{ns} \; ; \\ t_{\text{\tiny PHL}} &= 37 \; \text{ns} \; ; \qquad t_{\text{\tiny PLH}} = 36 \; \text{ns}. \end{split}$$

Figure 3 – Acquisition des temps de transition et de propagation

II. Vérification de la table de vérité d'une porte logique

L'objectif de cette section est de vérifier la table de vérité de la porte logique non-et puis celle de la porte ou. On représente les entrées des portes par des boutons, et la sortie par l'état (allumée ou éteinte) de la del.

Figure 4 – Circuit permettant de vérifier la table de vérité de la porte non-et

On réalise le circuit ci-dessus. Les boutons représentent ici les variables a et b, et l'état de la del représente $\overline{a \cdot b}$. Par exemple, lorsqu'on actionne le bouton a, mais pas le bouton b, la del s'allume bien, ce qui correspond à la table de vérité de la porte non-et $(\overline{0 \cdot 1} = \overline{0} = 1)$. Ainsi, en actionnant ou non les boutons, on vérifie bien « visuellement » la table de vérité de la porte non-et ci-dessous.

a	b	$a \cdot b$
0	0	1
0	1	1
1	0	1
1	1	0

Table 1 – Table de vérité de la porte non-et

De même, pour vérifier la table de vérité de la porte ou (table 2), on réalise le circuit ci-dessous.

Figure 5 – Circuit permettant de vérifier la table de vérité de la porte ou

En effet, à l'aide des portes non-et du composant, on peut réaliser la porte ou (comme montré dans la figure de la section I.1.a du sujet). De même, en actionnant ou non les entrées a et b, on observe l'état de la DEL et on compare cet état à la table de vérité ci-dessous.

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

Table 2 – Table de vérité de la porte ou

III. Modélisation d'un carrefour

L'objectif de cette section est la modélisation d'un carrefour routier (comme montré cidessous) contenant 3 feux : $F_A,\,F_C$ et F_D ; et un bouton « piétons » B. Si le bouton B est actionné, les feux F_C et F_D passent au rouge permettant au piéton de passer.

Figure 6 – Modélisation d'un carrefour

On peut remarquer que les feux de circulations F_C et F_D ont un fonctionnement identique. De plus, le feu F_A fonctionne à *l'opposé* des feux F_C et F_D : c'est à dire que lorsque F_A est rouge, les feux F_C et F_D sont au vert, et inversement.

Également, le feu F_A passe au vert lorsque le bouton B est actionné, ou périodiquement toutes les 5 secondes. Si on note s le signal TTL du GBF de période 5 s, b l'état du bouton B, et v_A la variable représentant le feu F_A au vert, on a donc

$$v_{\mathbf{A}} = b + s$$
.

Ainsi, en notant $v_{\rm C}$ et $v_{\rm D}$ les variables représentant les feux ${\bf F}_{\rm C}$ et ${\bf F}_{\rm D}$ au vert similairement à $v_{\rm A}$; et $r_{\rm A}=\bar{v}_{\rm A},\,r_{\rm C}=\bar{v}_{\rm C}$ et $r_{\rm D}=\bar{v}_{\rm D}$ les états « rouges » des feux ${\bf F}_{\rm A},\,{\bf F}_{\rm C}$ et ${\bf F}_{\rm D}$, on en déduit, à l'aide des

remarques précédentes, que

$$v_{\rm C} = v_{\rm D} = r_{\rm A} = \bar{b} \cdot \bar{s}$$

et

$$r_{\rm C} = r_{\rm D} = v_{\rm A} = b + s.$$

On représente donc le circuit réalisé dans la figure ci-dessous où le " $5\,\mathrm{V}$ " représente une tension continue de $5\,\mathrm{V}$.

Figure 7 – Circuit réalisé pour la modélisation du carrefour

Le "•" représente ici une porte ou réalisée sans l'utilisation du composant. En effet, la simple connection de deux fils à une même sortie réalise bien l'opération logique ou.

Également, la porte non de ce diagramme peut-être réalisée à l'aide des portes nand du composant cD4001 de la même manière que dans la section I.