Introduction to Computer Architecture

CISC 3310 Principles of Computer Architecture Lab Activity

Data Representation - Exercises

Signed Numbers

- CB, Chapter 2, Exercise 24 Using a "word" of 3 bits, list all the possible signed binary numbers and their decimal equivalents that are representable in:
 - a) Signed magnitude
 - b) One's complement
 - c) Two's complement
- CB, Chapter 2, Exercise 25 repeat the previous question using a "word" of 4 bits
- CB, Chapter 2, Exercise 26 From the results of the previous two questions, generalize the range of values (in decimal) that can be represented in any given x number of bits the three number representations.

Example: Using IEEE 754 Floating Point Standard half-precision binary floating point

- IEEE 754 half-precision binary floating point (or binary16 for short) uses 5 bits for exponents => we get a 15 bias
 - O Can represent any exponent between -15 and 16
- Uses 10 bits for the binary fraction

Example: Using IEEE 754 Floating Point Standard half-precision binary floating point

- IEEE 754 half-precision binary floating point (or binary16 for short) uses 5 bits for exponents => we get a 15 bias
 - O Can represent any exponent between -15 and 16
- Uses 10 bits for the binary fraction
- Floating Number X calculation:

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

Floating Point Numbers

- Convert 100.25₁₀ to IEEE 754 half-precision binary floating point
- Convert 1010011010000000 in IEEE 754 half-precision binary floating point representation to a decimal number

* CRC Code

- Generate the CRC code for the number 10111011
 - Using the divisor 1011

Hamming Code

- The **(7,4)** binary Hamming block encoder:
 - o accepts blocks of **4**-bit of information
 - o adds **3** parity bits to each such block and produces **7**-bits wide Hamming coded blocks
- Construct a (7, 4) binary Hamming code, using the following equations to generate the parity bits:

$$P_1 = D_1 \oplus D_2 \oplus D_3$$

$$P_2 = D_2 \oplus D_3 \oplus D_4$$

$$P_3 = D_1 \oplus D_3 \oplus D_4$$

*	lamming Code
•	Generate all the po

- ossible codewords
 - For each possible message, generate a codeword
- What is the minimum distance between the code words?

m	c
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
	I

Message | Codeword

Questions?

