Лекция 13. Предел функции по Коши; критерий Коши существования предела функции

13.1. Определение предела функции по Коши

Определение 13.1. Пусть a — предельная точка области определения функции f. Число A называется пределом функции f в точке a по K о ш и, если для каждого $\varepsilon > 0$ существует такое число $\delta = \delta(\varepsilon) > 0$, что при всех $x \neq a$, удовлетворяющих условию $|x-a| < \delta$, справедливо неравенство $|f(x) - A| < \varepsilon$, короче,

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 : \quad \forall x \quad 0 < |x - a| < \delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon.$$

В этом случае пишут $A = \lim_{x \to a} f(x)$ или $f(x) \to A$ при $x \to a$.

Графически существование предела A функции f в точке a означает следующее. По заданному положительному ε строится полоса, параллельная оси Ox, заключённая между прямыми $y = A + \varepsilon$ и $y = A - \varepsilon$. Требуется, чтобы существовало такое число $\delta > 0$, что для всех x из проколотой δ -окрестности точки a точки графика функции f(x) лежали бы в указанной полосе.

Рис. 1: Иллюстрация определения по Коши предела функции f в точке x=a .

На рис. 1 графически задана некоторая функция f(x), не определенная в точке a, являющейся предельной точкой области определения D(f). Функция f(x) имеет предел в этой точке, поскольку

$$\forall \varepsilon > 0 \quad \exists \delta = \min \{ \delta_1(\varepsilon), \delta_2(\varepsilon) \} > 0 : \quad \forall x \quad 0 < |x - a| < \delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon.$$

Пример 13.1. Доказать по определению Коши, что $\lim_{x\to 3} x^2 = 9$.

 \diamond Заметим, что точка x=3 — внутренняя точка области определения функции x^2 , значит, предельная. Для любого $\varepsilon>0$ выполняется

$$\left|x^2-9\right|=\left|(x-3)\left(x+3\right)\right|=\left|(x-3)(x-3+6)\right|=\left|(x-3)^2+6(x-3)\right|\leq |x-3|^2+6|x-3|<\varepsilon$$
 при $|x-3|<\sqrt{9+\varepsilon}-3$.

Вывод: x = 3 — предельная точка области определения функции x^2 и

$$\forall \, \varepsilon > 0 \quad \exists \, \delta(\varepsilon) = \sqrt{9 + \varepsilon} - 3 > 0 : \quad \forall \, x \quad 0 < |x - 3| < \delta \quad \Rightarrow \quad |x^2 - 9| < \varepsilon.$$

Согласно определению Коши это означает, что $\lim_{x\to 3} x^2 = 9$.

Определение 13.2. Число A не является пределом функции f(x) в точке a: $A \neq \lim_{x \to a} f(x)$, если существует $\varepsilon > 0$ такое, что для каждого число $\delta > 0$, найдется $x \neq a$, удовлетворяющее условию $|x-a| < \delta$, для которого справедливо неравенство $|f(x)-A| \geq \varepsilon$, короче, $A \neq \lim_{x \to a} f(x)$, если $\exists \, \varepsilon > 0$: $\forall \, \delta > 0$ $\exists \, x : 0 < |x-a| < \delta$, $|f(x)-A| \geq \varepsilon$.

13.2. Эквивалентность определений по Коши и по Гейне

Теорема 13.2.1. Определения предела функции в точке по Коши и по Гейне p а в н o - c u n v h w 1 .

Доказательство. Пусть A — предел функции f в точке a по Коши. Покажем, что A является пределом и по Гейне.

Возьмём произвольную последовательность $\{x_n\}$, все точки которой лежат в области определения функции $f, x_n \neq a$ при всех $n \in \mathbb{N}$ и $x_n \to a$ при $n \to \infty$. По заданному $\varepsilon > 0$ найдём $\delta > 0$ такое, что при всех x, для которых $0 < |x - a| < \delta$, выполняется условие $|f(x) - A| < \varepsilon$.

Так как $x_n \to a$, то существует число N, зависящее от этого δ , а в конечном счёте зависящее от ε , такое, что $\forall n > N$ справедлива оценка $|x_n - a| < \delta$. Тогда для этих n имеем $|f(x_n) - A| < \varepsilon$, т. е. $A = \lim_{n \to \infty} f(x_n)$. Таким образом, A является пределом функции f по Гейне.

Пусть теперь, наоборот, A — предел функции f в точке a по Гейне. Нужно показать, что A — предел по Коши. Будем рассуждать от противного: предположим, что A не является пределом по Коши.

Значит, существует такое число $\varepsilon > 0$, что для любого $\delta > 0$ найдётся точка x_{δ} , для которой $0 < |x_{\delta} - a| < \delta$ и $|f(x_{\delta}) - A| \ge \varepsilon$.

Будем брать в качестве δ числа 1/n, $n \in \mathbb{N}$. Тогда для каждого n получим точку $x_n \neq a$, в которой функция f определена, $|x_n - a| < 1/n$ и $|f(x_n) - A| \ge \varepsilon$. Эта последовательность $\{x_n\}$ относится к числу тех, какие рассматриваются в определении предела по Гейне, но для неё $|f(x_n) - A| \ge \varepsilon$, что противоречит условию, что A — предел функции f по Гейне. Теорема доказана.

Эта теорема позволяет говорить о пределе функции в точке, не указывая, в каком смысле понимается предел, а каждый раз пользоваться тем вариантом определения, который в этом случае более удобен.

13.3. Критерий Коши существования предела функции

Определение 13.3. Функция f удовлетворяет в точке a, являющейся предельной точкой области определения D(f), у с л о в и ю K о ш и, если для каждого $\varepsilon > 0$ существует такое число $\delta(\varepsilon) > 0$, что для любой пары точек x' и x'' из проколотой δ -окрестности точки a выполняется неравенство $|f(x') - f(x'')| < \varepsilon$, короче,

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0: \quad \forall x', x'' \ 0 < |x' - a| < \delta, \ 0 < |x'' - a| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Теорема 13.3.1. (Критерий Коши). Для того чтобы функция f имела в некоторой предельной точке области определения конечный предел, необходимо и достаточно, чтобы f в этой точке удовлетворяла условию Коши.

Доказательство. Необходимость. Пусть существует $\lim_{x\to a} f(x)$, т. е. a — предельная точка области определения функции f и

$$\exists \, A: \quad \forall \, \varepsilon > 0 \quad \exists \, \delta(\varepsilon) > 0: \quad \forall \, x \quad 0 < |x - a| < \delta \quad \Rightarrow \quad |f(x) - A| < \frac{\varepsilon}{2}.$$

 $^{^1}A$ равносильно B означает: «A верно тогда и только тогда, когда B верно». В этом случае можно также сказать, что утверждения A и B эквивалентны

Взяв произвольные точки x' и x'' из проколотой δ -окрестности точки a, находим

$$|f(x') - f(x'')| = |f(x') - A + A - f(x'')| \le |f(x') - A| + |A - f(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Таким образом, необходимость условия Коши установлена.

Достаточность. Пусть теперь выполнено условие Коши:

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0: \quad \forall x', x'' \ 0 < |x' - a| < \delta, \ 0 < |x'' - a| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Рассмотрим произвольную последовательность точек $\{x_n\}$ из области определения функции f такую, что $x_n \to a$ при $n \to \infty$ и $x_n \ne a$ для всех n. Тогда существует число N, зависящее от δ , а в конечном счёте зависящее от ε , такое, что при всех n > N для точек x_n справедливо неравенство $|x_n - a| < \delta$.

Значит, если натуральные числа n и m превосходят N, то $|f(x_n) - f(x_m)| < \varepsilon$ и для последовательности $\{f(x_n)\}$ выполняется условие Коши $(\{f(x_n)\} - \varphi$ ундаментальная).

Итак, для любой такой последовательности точек $\{x_n\}$ существует конечный предел последовательности $\{f(x_n)\}$. Это означает², что функция f имеет предел в точке a. Теорема доказана.

Пример 13.2. Доказать, используя критерий Коши, что существует $\lim_{x\to 0} f(x)$, если

$$f(x) = |\operatorname{sgn} x| = \begin{cases} 1, & \text{если } x \neq 0; \\ 0, & \text{если } x = 0. \end{cases}$$

 \diamond Заметим, что x=0 — предельная точка D(f). Очевидно, что для каждого $\varepsilon>0$ и любых x', x'' из проколотой окрестности точки x=0 выполняется f(x')=1, f(x'')=1 и $|f(x')-f(x'')|=0<\varepsilon$. Таким образом, функция f удовлетворяет условию Коши в точке x=0, следовательно, имеет конечный предел в этой точке.

13.4. Предел функции на бесконечности

Пусть функция f определена при всех |x| > L, где L > 0.

Определение 13.4. Число A называется пределом функции f при $x \to \infty$ по K онши, если для каждого $\varepsilon > 0$ существует такое число $\Delta(\varepsilon) > 0$, что при всех $|x| > \Delta$ выполняется неравенство $|f(x) - A| < \varepsilon$.

На рис. 2 графически задана некоторая функция f(x), определенная при всех |x|>L, имеющая равный числу A предел при $x\to\infty$, поскольку

$$\forall \varepsilon > 0 \quad \exists \Delta = \max\{\Delta_1(\varepsilon), \Delta_2(\varepsilon)\} > 0: \quad \forall x \quad |x| > \Delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon.$$

Для функции f определенной при всех x>L (или x<-L), где L>0, аналогично формулируется определение предела при $x\to+\infty$ (или $x\to-\infty$).

Определение 13.5. Число A называется пределом функции f при $x \to +\infty$ $(x \to -\infty)$ п о K о M и, если для каждого $\varepsilon > 0$ существует такое число $\Delta(\varepsilon) > 0$, что при $\mathrm{Bcex}\ x > \Delta$ $(x < -\Delta)$ выполняется неравенство $|f(x) - A| < \varepsilon$.

 $^{^{2}}$ Функция имеет предел в точке a тогда и только тогда, когда на любой последовательности точек $\{x_{n}\}$ из ее области определения, сходящихся к a и отличных от a, последовательность соответствующих значений функции $\{f(x_{n})\}$ сходится.

Рис. 2: Иллюстрация определения по Коши предела функции f на бесконечности.

 $\mathcal{A}/3$: Эквивалентность определений по Гейне³ и по Коши при $x \to \infty$ доказывается аналогично теореме 13.2.1; критерий Коши существования предела функции на бесконечности формулируется и доказывается аналогично тому, как это было сделано в пункте 13.3. Проделать все это самостоятельно.

13.5. Бесконечный предел

Дадим определения случаям, когда пределом является не число, а бесконечность.

Определение 13.6. Пусть a — предельная точка области определения функции f. Говорят, что предел функции f в точке a равен бесконечности, и пишут

$$\lim_{x \to a} f(x) = \infty,$$

если для каждого E > 0 существует такое число $\delta(\varepsilon) > 0$, что при всех x, удовлетворяющих условию $0 < |x - a| < \delta$, выполняется неравенство |f(x)| > E.

Рис. 3: Иллюстрация определения по Коши бесконечного предела функции f в точке a.

На рис. 3 графически задана некоторая функция f(x), не определенная в точке a, являющейся предельной точкой области определения D(f), но имеющая в этой точке бесконечный предел, поскольку

$$\forall E > 0 \quad \exists \delta = \min\{\delta_1(\varepsilon), \delta_2(\varepsilon)\} > 0: \quad \forall x \quad 0 < |x - a| < \delta \quad \Rightarrow \quad |f(x)| > E.$$

³Определения по Гейне сформулированы ранее в практике.

Определение 13.7. Пусть функция f определена при всех |x| > L, L > 0. Говорят, что предел функции f при $x \to \infty$ равен бесконечности, и пишут

$$\lim_{x \to \infty} f(x) = \infty,$$

если для каждого E>0 существует такое число $\Delta(\varepsilon)>0$, что при всех x, удовлетворяющих условию $|x|>\Delta$, выполняется неравенство |f(x)|>E.

Д/З: Подобным образом можно говорить о случаях, когда

$$\lim_{x \to a} f(x) = +\infty \quad (\text{или } -\infty),$$

а также об определениях, когда в качестве a берется $+\infty$ или $-\infty$. Сформулировать их самостоятельно. Также сформулировать определения бесконечных пределов по Гейне.

Как и для пределов последовательностей, будем говорить, что функция имеет предел, если этот предел конечен. А если предел может быть и бесконечным, это будет специально отмечаться.

Заметим, что если функция имеет бесконечный предел в точке (или на бесконечности), то она не удовлетворяет условию Коши в этой точке (или на бесконечности).

13.6. Односторонние пределы

Пусть a — предельная точка области определения функции f.

Определение 13.8. Число A называют пределом функции f в точке a справа, если для каждого $\varepsilon > 0$ существует такое число $\delta = \delta(\varepsilon) > 0$, что при всех x, удовлетворяющих условию $a < x < a + \delta$, справедливо неравенство $|f(x) - A| < \varepsilon$, короче,

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 : \quad \forall x \quad a < x < a + \delta \quad \Rightarrow \quad |f(x) - A| < \varepsilon.$$

В этом случае пишут $A = \lim_{x \to a+0} f(x) = f(a+0) = f(a+1)$.

Определение 13.9. Число A называют пределом функции f в точке a слева, если для каждого $\varepsilon > 0$ существует такое число $\delta = \delta(\varepsilon) > 0$, что при всех x, удовлетворяющих условию $a - \delta < x < a$, справедливо неравенство $|f(x) - A| < \varepsilon$, короче,

$$\forall \varepsilon > 0 \quad \exists \, \delta(\varepsilon) > 0 : \quad \forall \, x \quad a - \delta < x < a \quad \Rightarrow \quad |f(x) - A| < \varepsilon.$$

В этом случае пишут $A = \lim_{x \to a-0} f(x) = f(a-0) = f(a-)$.

Правый и левый пределы в точке 0 обозначают

$$\lim_{x \to +0} f(x) = f(+0), \quad \lim_{x \to -0} f(x) = f(-0).$$

Д/3:

- Сформулировать определения бесконечных односторонних пределов в точке.
- Дать определения односторонних пределов по Гейне и доказать их эквивалентность определениям по Коши.
- Сформулировать и доказать критерий Коши существования одностороннего предела функции в точке.

Заметим, что если существует предел $\lim_{x\to a} f(x)$, то существуют односторонние пределы $\lim_{x\to a+0} f(x)$ и $\lim_{x\to a-0} f(x)$, причем $\lim_{x\to a+0} f(x) = \lim_{x\to a-0} f(x)$.

Пример 13.3. Доказать, что $\lim_{x\to 0}\cos x=1, \lim_{x\to +0}\cos x=1, \lim_{x\to -0}\cos x=1.$

 \Diamond Для любого $\varepsilon > 0$ справедливы неравенства

$$|\cos x - 1| = 2\sin^2\frac{x}{2} \le 2\left(\frac{x}{2}\right)^2 < \varepsilon$$

при $|x|<\sqrt{2\varepsilon}$, т. е. $\forall \varepsilon>0$ $\exists \delta(\varepsilon)=\sqrt{2\varepsilon}: \forall x \ |x|<\delta \Rightarrow |\cos x-1|<\varepsilon$ и $\lim_{x\to 0}\cos x=1$. При этом, естественно, выполняется следующее:

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) = \sqrt{2\varepsilon} : \quad \forall x \quad 0 < x < \delta \quad \Rightarrow \quad |\cos x - 1| < \varepsilon;$$

$$\forall \varepsilon > 0 \quad \exists \delta(\varepsilon) = \sqrt{2\varepsilon} : \quad \forall x \quad -\delta < x < 0 \quad \Rightarrow \quad |\cos x - 1| < \varepsilon;$$

Следовательно, $\lim_{x\to+0}\cos x=1$; $\lim_{x\to-0}\cos x=1$.

Если же односторонние пределы $\lim_{x\to a+0} f(x)$ и $\lim_{x\to a-0} f(x)$ существуют, то предел $\lim_{x\to a} f(x)$ может не существовать.

Например, функция $f(x)=\operatorname{sgn} x$ имеет в точке 0 односторонние пределы $\lim_{x\to +0}\operatorname{sgn} x=1,$ $\lim_{x\to -0}\operatorname{sgn} x=-1,$ в то время как $\lim_{x\to 0}\operatorname{sgn} x$ не существует.

----Отсюда следует очевидный критерий существования предела функции в точке.

Теорема 13.6.1. Функция имеет в точке предел (в том числе может быть $+\infty$ или $-\infty$) тогда и только тогда, когда в этой точке существуют односторонние пределы (может быть бесконечные), равные друг другу.