Monografía

Impacto de los parámetros cosmológicos en la estructura a gran escala del universo

Camilo Andrés Rivera 200912840

Asesor: Jaime Ernesto Forero.

27 de noviembre de 2014

Camilo Andrés Rivera Monografía 27 de noviembre de 2014 1/30

Agenda

- Introducción y Justificación
- Objetivos
- Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

- Introducción y Justificación
- Objetivos
- Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- 4 Metodología y Cronograma
- 5 Trabajo Realizado
 - Resultados
- 6 Conclusiones

Figura : LSS ²

Figura: DM³

- La materia da cuenta de la estructura a gran escala del universo
- $\Omega_{\Lambda}, \Omega_{DM}, \Omega_{0}$
- A pesar de que domina la materia oscura, la energía oscura tiene un efecto sutil pero importante

²Imagen Tomada de [3]

³Imagen Tomada de [2]

Motivación

- Anisotropías en CMB medidas por Plank
- Sensibilidad y margen de error en equipos de medición
- Detección de variaciones de al menos 5 %

¿Cómo podemos medir los efectos de la energía oscura (Ω_{Λ}) ?

- Introducción y Justificación
- Objetivos
- 3 Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Objetivos

General

Cuantificar el cambio de la estructura a gran escala del universo ante escenarios con diferentes parámetros cosmológicos.

Específicos

- Obtener una serie de universos simulados ante diferentes valores de parámetros cosmológicos.
- Extraer información acerca de los diferentes universos como la abundancia de halos de materia oscura y las distribuciones de velocidad entre pares de halos.
- Realizar un análisis comparativo entre los diferentes universos simulados

- 1 Introducción y Justificación
- Objetivos
- 3 Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

- Introducción y Justificación
- Objetivos
- Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Evolución Universo

- Inflación
- Fluctuaciones cuánticas en densidad
- Observaciones
 - Expansión H₀
 - Homogeneidad e isotropía
 - Universo Plano
 - Edad del Universo, redshift, factor de dilatación
- Parámetros cosmológicos
- Soluciones a Ecuaciones de Einsten: potencial gravitacional

10 / 30

Simulación en paralelo

- Gadget-2
- N-GenIC
- Paralelización: MPI
- Octree
- TreePM
- Peano-Hilbert

Serialized Octree: 00000100 01000001 00011000 00100000

- Introducción y Justificación
- Objetivos
- Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Características de la Simulación

- Tamaño de las simulaciones
 - Cubo $\sim 500 Mpc$
 - Tiempo de evolución $\sim 13 \, Gyr$
 - Número partículas 512³
- Condiciones iniciales
 - N-Genic
 - Posiciones y velocidades
 - ρ
- Leyes de la física
- Ω_{Λ} , Ω_{0} , H_{0}

Características del Análisis

- Sobredensidad
 - CIC
- Halos
 - FoF
 - Características de CM
 - Identificación cruzada
 - Diferencias y gráficas (ipython)

14 / 30

- Introducción y Justificación
- Objetivos
- 3 Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Metodología

 ${\sf Figura}: {\sf Metodolog\'ia} \ {\sf de} \ {\sf Desarrollo}$

16 / 30

Cronograma

		Sem	anas	6													
Etapas	Tareas	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Preliminar	Lectura de Bases teóricas			•													
	Instalación y																
	entendimiento del	•	•	•													
	código																
	Simulaciones																
	preliminares y pruebas			•	•												
Desarrollo	Simulaciones definitivas																
	Análisis de Simulaciones																
Final	Redacción de Documento													•			

Figura: Cronograma Propuesto

- Introducción y Justificación
- Objetivos
- 3 Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Simulaciones preliminares

Características

Caja cúbica de 150Mpc, 128^3 partículas, tiempo inicial de *redshift* z=63 ($\sim 32,4Myr$) hasta la actualidad ($\sim 13Gyr$).

- 32 Procesadores (fiscluster)
- 50 snapshots
- $\bullet \sim 3Gb$ de almacenamiento
- 4 horas de simulación
- Variación de Sigma8 (0.9 0.7)

Simulaciones Preliminares

Figura : $\sigma_8 = 0.9$ Figura : $\sigma_8 = 0.7$

Simulaciones Definitivas

Características

Caja cúbica de 500*Mpc*, 512³ partículas.

- 32 Procesadores (KIAS)
- 5 snapshots
- ullet $\sim 3,4 \textit{Gb}$ de almacenamiento por snapshot
- 5 días de simulación
- Datos de Plank
- Variación de $\Omega_0 \pm 5\,\%$

- Introducción y Justificación
- Objetivos
- Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- Trabajo Realizado
 - Resultados
- 6 Conclusiones

Comparación de Masa

Comparación de Posición

Comparación de Velocidad

Distribuciones de cambios de velocidad y masa

26 / 30

- Introducción y Justificación
- Objetivos
- 3 Contexto del Proyecto
 - Contexto Teórico
 - Contexto Computacional
- Metodología y Cronograma
- 5 Trabajo Realizado
 - Resultados
- 6 Conclusiones

Conclusiones

- Medición de parámetros (Ω) por estimación de masas es inviable
- De los cambios observados en simulaciones sólo cambios en velocidad
- Cambios en velocidad sólo con experimentos de próxima generación (DESI)
- ullet Deben ser capaces de discernir cambios en $\Delta z \sim 3.6 imes 10^{-3}$

28 / 30

MUCHAS GRACIAS

Referencias I

- V. Springel. The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society, 364, 2005.
- Conservapedia. Dark Matter. [En línea] Disponible en: http://www.conservapedia.com/images/thumb/4/44/DarkMatterNASA1.jpg/350px-DarkMatterNASA1.jpg
- Smithsonian Astrophysical Observatory. The Cosmic Infrared Background. [En línea] Disponible en:http://www.cfa.harvard.edu/sites/www.cfa.harvard.edu/files/images/news//su201231.jpg
- HETDEX Hobby-Eberly Telescope Dark Energy Experiment http://hetdex.org/
 - A. Loeb. How did the first stars and galaxies form? Princeton University Press, Princeton, NJ, 2010. 3, 4, 7