PARISHRAM 2025

Mathematics

DPP: 4

Relations and Functions

- Q1 Let set A has 7 elements and set B has 8 elements, then number of one-one mapping that can be defined from **A** to **B** is
 - (A) 56
- (B) 5760
- (C) 40320
- (D) 192
- **Q2** A function f(x) is said to be one-one if
 - (A) $f(x_1) = f(x_2) \Rightarrow -x_1 = x_2$
 - (B) $f(-x_1) = f(-x_2) \Rightarrow -x_1 = x_2$
 - (C) $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
 - (D) None of these
- Q3 The function $f: N \rightarrow N: f(x) = 2x$ is
 - (A) one-one and onto
 - (B) one-one and into
 - (C) many-one and onto
 - (D) many-one and into
- **Q4** The function $f: \mathbf{N} \rightarrow \mathbf{N}: f(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x} + 1$ is
 - (A) one-one and onto
 - (B) one-one and into
 - (C) many-one and onto
 - (D) many-one and into
- **Q5** The function $f: R \rightarrow R: f(x) = x^3$ is
 - (A) one-one and onto
 - (B) one-one and into
 - (C) many-one and onto
 - (D) many-one and into
- **Q6** The function $f: R \rightarrow R: f(x) = \cos x$ is
 - (A) one-one and into
 - (B) one-one and onto
 - (C) many-one and into
 - (D) many-one and onto
- **Q7** Let $\mathbf{A} = \{1, 2, 3\}$, $\mathbf{B} = \{4, 5, 6, 7\}$ and let $\mathbf{f} = \{(1, 4), (2, 4), ($ 5), (3.6)} be a function from **A** to **B**. Function **f** is (A) one-one and onto

- (B) many-one and onto
- (C) many-one and into
- (D) one-one and into
- **Q8** The function

$$f:R o R:f\left(x
ight) \ = egin{cases} 1, ext{ if } x ext{ is rational} \ -1, ext{ if } x ext{ is irrational} \end{cases}$$
 is

- (A) one-one and into
- (B) one-one and onto
- (C) many-one and into
- (D) many-one and onto
- **Q9** The function $f:N o N:f(x)=x^2$ is
 - (A) one-one and into
 - (B) one-one and onto
 - (C) many-one and into
 - (D) many-one and onto
- **Q10** The function $f:R \to R: f(x) = |x|$ is
 - (A) one-one and into
 - (B) one-one and onto
 - (C) many-one and into
 - (D) many-one and onto
- Q11 Show that function the $f:R o R:\,f(x)=x^4$ is many-one and into.
- Q12 Show $f:R
 ightarrow R:f\left(x
 ight) =x^{5}$ is one-one and onto.
- **Q13** Let \mathbf{R}_0 be the set of all non zero real numbers. Then. show that the function $f:\ R_0 o R_0:\ f(x)=rac{1}{x}$ is one-one and
- **Q14** Show that the signum function $f: R \rightarrow R$, defined by

$$f\left(x
ight) = \left\{egin{array}{ll} 1, & if & x>0 \ 0, & if & x=0 \ -1, & if & x<0 \end{array}
ight.$$

is neither one-one nor onto.

Q15 Let
$$A = R - \{3\}$$
 and $B = R - \{1\}$.

Let $\mathbf{f}: \mathbf{A} \to \mathbf{B}: \mathbf{f}(\mathbf{x}) = \frac{x-2}{x-3}$ for all values of $\mathbf{x} \in \mathbf{A}$. Show that \mathbf{f} is one-one and onto.

Answer Key

Q1	(C)	Q9	(A)
Q2	(C)	Q10	(C)
Q3	(B)	Q11	Check the solution
Q4	(B)	Q12	Check the solution
Q5	(A)	Q13	Check the solution
Q6	(C)	Q14	Check the solution
Q7	(D)	Q15	Check the solution
Q8	(C)		

Android App | iOS App | PW Website