Advanced Data Science Interview Preparation Guide: RAG + Vector Databases

Document Overview

This comprehensive study guide is designed for advanced data science interviews at top tech companies (Google, Meta/Facebook, Amazon, etc.) with a focus on **Retrieval-Augmented Generation (RAG)** and **Vector Databases**. The guide covers both theoretical foundations and practical implementation aspects that are crucial for senior data science positions.

1. Core Concepts of RAG

What is RAG?

Definition: Retrieval-Augmented Generation is an AI architecture that enhances Large Language Models (LLMs) by integrating external knowledge retrieval with text generation[22][25].

Key Components:

- Retriever: Searches for relevant information from external knowledge sources
- Generator: LLM that produces responses using both retrieved context and pre-trained knowledge

RAG vs Fine-tuning Trade-offs

Aspect	RAG	Fine-tuning
Cost	Lower operational cost, pay-per-query	Higher upfront training cost
Flexibility	Dynamic knowledge updates	Static knowledge at training time
Latency	Higher due to retrieval step	Lower, direct inference
Accuracy	Better for factual, up-to-date info	Better for domain-specific tasks
Maintenance	Easier knowledge base updates	Requires retraining for updates

RAG Pipeline Architecture

```
    Input Query → 2. Embedding Generation → 3. Vector DB Search
    LLM Generation ← 4. Context Retrieval
```

Interview Focus: Be prepared to discuss when you'd choose RAG over fine-tuning and vice versa[22][61].

2. Embeddings Deep Dive

Evolution of Embedding Models

• Traditional: Word2Vec, GloVe (context-independent)

• Transformer-based: BERT, Sentence-BERT (context-aware)

• Modern: OpenAI embeddings, Instructor-XL, BGE-M3[73]

Key Technical Concepts

Dimensionality Considerations

• Common dimensions: 384 (sentence-transformers), 768 (BERT-base), 1536 (OpenAl ada-002)

• Trade-offs: Higher dimensions → better semantic capture but increased storage/compute

Distance Metrics

Metric	Use Case	Formula	Pros	Cons				
Cosine Similarity	Text, normalized vectors	$cos(\theta) = A \cdot B/($		А	В)	Magnitude- invariant	Computationally expensive
Dot Product	Pre- normalized vectors	A·B	Fast computation	Sensitive to magnitude				
Euclidean Distance	Spatial relationships	√Σ(ai- bi)²	Intuitive	Curse of dimensionality				

Chunking Strategies

• Fixed-size chunking: 512-1024 tokens with 50-100 token overlap

• Semantic chunking: Split by sentences/paragraphs[73][93]

• Sliding window: Overlap-based approach for context preservation

Evaluation Techniques

• Semantic similarity: Human-annotated datasets

• Clustering quality: Silhouette score, inertia

• Visualization: UMAP, t-SNE for high-dimensional analysis

3. Vector Databases

Indexing Methods

Flat (Brute Force)

• Pros: 100% accuracy, simple implementation

• Cons: O(n) complexity, doesn't scale

HNSW (Hierarchical Navigable Small World)

• Algorithm: Graph-based approximate search[89]

• Performance: Sub-linear search time

• Use case: Balance between speed and accuracy

IVF (Inverted File Index)

• Mechanism: Clusters vectors, searches relevant clusters

• Optimization: Reduces search space significantly

Product Quantization (PQ)

• Purpose: Compression technique for memory efficiency

• Trade-off: Reduced accuracy for lower memory footprint

Popular Vector Database Tools

Database	Strengths	Use Cases	Limitations
FAISS	Open-source, flexible	Research, prototyping	Requires manual scaling
Pinecone	Managed, ultra-fast	Production RAG systems	Cost for large datasets
Chroma	Python-friendly, lightweight	Development, small datasets	Limited enterprise features
Weaviate	Hybrid search, GraphQL	Multi-modal applications	Learning curve
Milvus	Cloud-native, scalable	Enterprise deployments	Complex setup

CRUD Operations & Query Types

Vector Operations

```
# Insert
collection.insert([embedding_vector], [metadata])

# Update
collection.update(id, new_vector, new_metadata)

# Delete
collection.delete(id)

# Search
results = collection.query(
```

```
query_vector,
  top_k=10,
  filter={"category": "finance"}
)
```

Advanced Query Patterns

• kNN Search: Find k nearest neighbors

• **Hybrid Search**: BM25 + dense embeddings[89]

• Filtered Search: Metadata constraints + vector similarity

4. RAG Architectures

Naive RAG

Process: Retrieve → Concatenate → Generate

Limitations:

- No result reranking
- Context may be irrelevant
- Single-hop retrieval only

Advanced RAG Techniques

Multi-hop Retrieval

• Concept: Chain multiple retrieval steps[90][95]

• Implementation: Graph traversal, reasoning chains

• Use case: Complex questions requiring multiple sources

Hybrid Retrieval

• Sparse: BM25 for lexical matching

• Dense: Neural embeddings for semantic similarity

• Fusion: Combine scores using RRF (Reciprocal Rank Fusion)

Query Expansion & Rewriting

```
# Original query: "Python performance"
# Expanded: ["Python optimization", "Python speed", "Python benchmarking"]
```

Reranking with Cross-encoders

- Models: Cohere Reranker, ColBERT[95]
- Purpose: Fine-grained relevance scoring
- Impact: Significant accuracy improvement

Context Management

- Token limits: Handle LLM context windows (4K, 8K, 32K tokens)
- Summarization: Compress retrieved context
- · Caching: Redis for frequently accessed content

5. RAG Implementation Frameworks

LangChain

LlamaIndex

```
from llama_index import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader('data').load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
```

Key Framework Components

- Document Loaders: PDF, CSV, web scrapers
- Text Splitters: Recursive, semantic, custom
- Memory Management: Conversation buffers, entity memory
- Chains vs Agents: Sequential processing vs autonomous decision-making

6. Evaluation of RAG Systems

Why RAG Evaluation is Complex

- Retrieval quality != Generation quality
- Context relevance vs Answer faithfulness
- Subjective judgment in many domains[75]

Key Metrics

Retrieval Metrics

- Precision@k: Relevant docs in top-k results
- Recall@k: Coverage of relevant documents
- MRR (Mean Reciprocal Rank): Position of first relevant result
- nDCG: Normalized discounted cumulative gain

Generation Metrics

- Faithfulness: Answer grounded in retrieved context
- Answer Relevancy: Response addresses the question
- Hallucination Rate: Factual errors not in context

End-to-End Evaluation

- RAGAS Framework: Automated RAG evaluation[73]
- Human Evaluation: Gold standard for complex domains
- BLEU/ROUGE: Limited applicability for open-ended generation

Benchmark Datasets

- Natural Questions: Real Google search queries
- HotpotQA: Multi-hop reasoning questions
- FiQA: Financial domain Q&A
- MS MARCO: Web search relevance

7. Scaling & Optimization

Performance Optimization Strategies

Indexing at Scale

- **Distributed indexing**: Partition large document collections
- Incremental updates: Add/remove documents without full reindex
- Async processing: Background indexing operations

Latency Optimization

```
# Batching queries
batch_queries = [query1, query2, query3]
batch_results = vector_db.batch_search(batch_queries)

# Approximate search settings
search_params = {
    "ef": 64, # HNSW parameter
    "nprobe": 16 # IVF parameter
}
```

Infrastructure Scaling

• Sharding: Distribute data across multiple nodes

• Replication: Ensure high availability

• Load balancing: Distribute query load

· Caching layers: Redis for hot data

Cost Optimization

• Embedding generation: Batch API calls, deduplicate documents

• Storage: Compress vectors, use appropriate precision (float16 vs float32)

• Compute: Auto-scaling based on traffic patterns

8. Enterprise Use Cases (Finance/Risk/Banking)

Real-World Applications

Compliance Document QA

```
Query: "What are the KYC requirements for corporate accounts?"
Retrieved Context: Banking regulations, internal policies
Generated Response: Specific compliance steps with citations
```

Fraud Investigation Support

• Use case: Query historical fraud cases for patterns

Implementation: Hybrid search (structured + unstructured data)

• Output: Similar cases + risk indicators

Credit Scoring Explainability

- Challenge: Regulatory requirements for decision transparency
- RAG Solution: Retrieve similar profiles + model explanations
- Benefit: Auditable Al decisions

Customer Support Automation

- Data sources: FAQs, chat logs, product manuals
- Advanced features: Intent classification, escalation rules
- Metrics: Resolution rate, customer satisfaction

9. Hands-On Portfolio Projects

Project 1: Financial PDF QA Bot

Tech Stack: LangChain + Chroma + OpenAl **Features**:

- PDF parsing (PyMuPDF)
- Chunk optimization for financial documents
- · Citation tracking
- Regulatory compliance checks

```
# Example implementation snippet
from langchain.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

loader = PyMuPDFLoader("credit_policy.pdf")
documents = loader.load()

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200,
    separators=["\n\n", "\n", ". "]
)
```

Project 2: Multi-Modal Fraud Detection RAG

Challenge: Combine transaction data + case notes + images **Architecture**:

- Structured data → SQL queries
- Unstructured text → Vector search
- Images → Vision embeddings

Fusion: Weighted scoring across modalities

Project 3: Multi-Hop Financial Analysis

Scenario: "How did recent Fed policy changes affect regional bank performance?" **Implementation**:

- 1. Retrieve Fed policy documents
- 2. Find affected banks using entity extraction
- 3. Retrieve performance data
- 4. Generate synthesized analysis

Project 4: Real-time Market Intelligence

Features:

- News ingestion pipeline
- · Sentiment analysis integration
- Entity linking (companies, sectors)
- Alert generation for portfolio positions

Interview Preparation Tips

Technical Deep-Dive Questions

- 1. Architecture Design: "Design a RAG system for 10M documents with sub-second latency"
- 2. Trade-off Analysis: "When would you choose RAG vs fine-tuning for a chatbot?"
- 3. Evaluation Strategy: "How would you measure hallucinations in a financial RAG system?"
- 4. **Scaling Challenges**: "Your vector database queries are taking 5+ seconds. Debug and optimize."

Implementation Questions

- Code a basic RAG pipeline from scratch
- Optimize chunking strategy for legal documents
- Design evaluation metrics for domain-specific RAG
- Handle multilingual retrieval challenges

Business Impact Questions

- ROI calculation for RAG vs traditional search
- Risk assessment for AI-generated financial advice
- Compliance considerations for regulated industries
- · Change management for RAG deployment

Additional Resources

Papers & Research

- "Retrieval-Augmented Generation for Large Language Models: A Survey"
- "Dense Passage Retrieval for Open-Domain Question Answering"
- "FiD: Leveraging Passage Retrieval with Generative Models"

Practical Tools

• Evaluation: RAGAS, TruLens, Phoenix

• Vector DBs: Pinecone, Weaviate, Chroma, FAISS

• Frameworks: LangChain, LlamaIndex, Haystack

• Monitoring: Weights & Biases, MLflow

Enterprise Considerations

• Security: Data encryption, access controls, audit logs

• Governance: Model versioning, data lineage, approval workflows

• Compliance: GDPR, CCPA, financial regulations

• Integration: API design, microservices, monitoring

This document serves as a comprehensive foundation for advanced data science interviews focusing on RAG and vector databases. Practice implementing these concepts through hands-on projects and stay updated with the latest research developments.