2. The following "simple" computation yields a good approximation to Stirling's formula. For each $m \in \mathbb{N}$, define

$$f(x) = (m+1-x)\log(m) + (x-m)\log(m+1)$$

if $m \le x \le m + 1$, and define

$$g(x) = \frac{x}{m} - 1 + \log(m)$$

if $m - \frac{1}{2} \le x < m + \frac{1}{2}$. Draw the graphs of f and g. Note that $f(x) \le \log(x) \le g(x)$ if $x \ge 1$ and that

$$\int_{1}^{n} f(x) \ dx = \log(n!) - \frac{1}{2} \log(n) > -\frac{1}{8} + \int_{1}^{n} g(x) \ dx.$$

Integrate log(x) over [1, n]. conclude that

$$\frac{7}{8} < \log(n!) - \left(n + \frac{1}{2}\right)\log(n) + n < 1$$

for $n \in \mathbb{N} - \{1\}$. (*Note:* $\log(\sqrt{2\pi}) \approx 0.918$.) Thus,

$$e^{\frac{7}{8}} < \frac{n!}{(n/e)^n \sqrt{n}} < e.$$

Solution for 2

Proof. Let $y, z \in (0, \infty)$. By the *AM-GM Inequality*, $\sqrt{yz} \le \frac{y+z}{2}$. Since $\log(u)$ is an increasing function, then $\log(\sqrt{yz}) \le \log\left(\frac{y+z}{2}\right)$. It follows that

$$-\log\left(\frac{y+z}{2}\right) \le \frac{-\log(y) - \log(z)}{2}.$$

By exercise 4.24, $-\log(u)$ is a convex function. Fix $m \in \mathbb{N}$. If we consider $F(\lambda a + (1 - \lambda)b) \leq \lambda F(a) + (1 - \lambda)F(b)$ from the definition of convexity given in exercise 4.23 and we let $F = -\log_a a = m + 1$, b = m, and $\lambda = x - m$, it follows that

$$-\log(x) \le (x - m)(-\log(m + 1)) + (m + 1 - x)(-\log(m))$$

and therefore, $f(x) \le \log(x)$. Next, consider the function $h(u) = u - 1 - \log(u)$ for $u \in (0, \infty)$. Then $h'(u) = 1 - \frac{1}{u}$. Since h'(u) < 0 on (0, 1) and h'(u) > 0 on $(1, \infty)$, then by *Theorem 5.11*, h strictly decreases on (0, 1) and strictly increases on $(1, \infty)$ meaning that $h(u) \ge h(1) = 0$. Therefore, $\log(u) \le u - 1$ for all $u \in (0, \infty)$. If we choose $u = \frac{x}{m}$, it follows that $\log(x) \le g(x)$.

Note that for $x \in [m, m+1]$, $f(x) = \left(\log(m+1) - \log(m)\right)(x-m) + \log(m)$ (the secant line that passes through the points $(m, \log(m))$ and $(m+1, \log(m+1))$) and for $x \in \left[m - \frac{1}{2}, m + \frac{1}{2}\right]$, $g(x) = \frac{1}{m}(x-m) + \log(m)$ (the line tangent to $\log(x)$ at x = m).

For $n \in \mathbb{N}$,

$$\int_{1}^{n} f(x) dx = \sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) dx$$

$$= \sum_{k=1}^{n-1} \int_{k}^{k+1} \left(\log(k+1) - \log(k) \right) (x-k) + \log(k) dx$$

$$= \sum_{k=1}^{n-1} \int_{0}^{1} \left(\log(k+1) - \log(k) \right) u + \log(k) du$$

$$= \sum_{k=1}^{n-1} \left[\frac{1}{2} \left(\log(k+1) - \log(k) \right) u^{2} + \log(k) u \right]_{0}^{1}$$

$$= \sum_{k=1}^{n-1} \left(\frac{1}{2} \left(\log(k+1) - \log(k) \right) + \log(k) \right)$$

$$= \frac{1}{2} \sum_{k=1}^{n-1} (\log(k+1) + \log(k))$$

$$= \frac{1}{2} \sum_{k=1}^{n-1} \log(k+1) + \frac{1}{2} \sum_{k=1}^{n-1} \log(k)$$

$$= \left(\frac{1}{2} \sum_{k=1}^{n-1} \log(k+1) \right) - \frac{1}{2} \log(n) + \frac{1}{2} \log(1) + \frac{1}{2} \sum_{k=2}^{n} \log(k)$$

$$= \left(\sum_{k=2}^{n} \log(k) \right) - \frac{1}{2} \log(n)$$

$$= \log(n!) - \frac{1}{2} \log(n).$$

and

$$\begin{split} -\frac{1}{8} + \int_{1}^{n} g(x) \ dx &= -\frac{1}{8} + \int_{1}^{\frac{3}{2}} g(x) \ dx + \sum_{j=2}^{n-1} \int_{j-\frac{1}{2}}^{j+\frac{1}{2}} g(x) \ dx + \int_{n-\frac{1}{2}}^{n} g(x) \ dx \\ &= -\frac{1}{8} + \int_{1}^{\frac{3}{2}} x - 1 \ dx + \sum_{j=2}^{n-1} \int_{j-\frac{1}{2}}^{j+\frac{1}{2}} \frac{1}{j} (x - j) + \log(j) \ dx + \int_{n-\frac{1}{2}}^{n} \frac{1}{n} (x - n) + \log(n) \ dx \\ &= -\frac{1}{8} + \left[\frac{1}{2} x^{2} - x \right]_{1}^{\frac{3}{2}} + \sum_{j=2}^{n-1} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{j} u + \log(j) \ du + \int_{-\frac{1}{2}}^{0} \frac{1}{n} v + \log(n) \ dv \\ &= -\frac{1}{8} + \left[\frac{1}{2} x^{2} - x \right]_{1}^{\frac{3}{2}} + \sum_{j=2}^{n-1} \left[\frac{1}{2j} u^{2} + \log(j) u \right]_{-\frac{1}{2}}^{\frac{1}{2}} + \left[\frac{1}{2n} v^{2} + \log(n) v \right]_{-\frac{1}{2}}^{0} \\ &= -\frac{1}{8} + \left[\frac{1}{2} \left(\frac{9}{4} - 1 \right) - \frac{1}{2} \right] + \sum_{j=2}^{n-1} \left[\frac{1}{2j} \left(\frac{1}{4} - \frac{1}{4} \right) + \log(j) \left(\frac{1}{2} + \frac{1}{2} \right) \right] + \left[-\frac{1}{8n} + \frac{1}{2} \log(n) \right] \\ &= \left(\sum_{j=2}^{n-1} \log(j) \right) - \frac{1}{8n} + \frac{1}{2} \log(n) \\ &= \left(\sum_{j=2}^{n} \log(j) \right) - \frac{1}{2} \log(n) - \frac{1}{8n} \\ &= \log(n!) - \frac{1}{2} \log(n) - \frac{1}{8n} \\ &< \int_{1}^{n} f(x) \ dx. \end{split}$$

Next, note that $f(x) \ge \log(m) \ge 0$. For $x \ge 1$ and $n \in \mathbb{N} - \{1\}$,

$$0 \le f(x) \le \log(x) \le g(x) \Longrightarrow \int_1^n f(x) \ dx \le \int_1^n \log(x) \ dx \le \int_1^n g(x) \ dx < \frac{1}{8} + \int_1^n f(x) \ dx.$$

Therefore,

$$0 \le \int_1^n \log(x) \ dx - \int_1^n f(x) \ dx < \frac{1}{8}$$

$$\implies 0 \le 1 + n \log(n) - n - \left(\log(n!) - \frac{1}{2}\log(n)\right) < \frac{1}{8}$$

$$\implies -1 \le n \log(n) - n - \left(\log(n!) - \frac{1}{2}\log(n)\right) < -\frac{7}{8}$$

$$\implies e^{\frac{7}{8}} < \frac{n!}{(n/e)^n \sqrt{n}} \le e.$$