Python Final Project:

"Single nucleotide polymorphisms (SNP's) extraction tool"

1. Introduction

Single Nucleotide Polymorphism (SNP) is a variation at a single position in DNA sequence (>1% population).

SNP's are related with several diseases like sickle-cell anemia, β-thalassemia and cystic fibrosis.

1. Introduction

Script name: "get_snps_tool.py"

• **Python version:** Python 3.5

• **OS:** Ubuntu 16.04

2. Program workflow

SNP:

["dbSNP:rs1735011", "129", "P", "L"]

["P30953",...]

Sequence:

"MMGQNQTSIS..."

- Rows: SNP's

- Columns: information about them.

Index	UniProt	SNP	Original_aa	Changed_aa	Position	Sequence	
0	Q8NHA8	NA	NA	NA	NA	MEGKNQTNISE	
1	043749	dbSNP:rs183	F	S	75	MSGTNQSSVSE	
2	043749	dbSNP:rs804	V	I	305	MSGTNQSSVSE	
3	P30953	dbSNP:rs173	Р	L	129	MMGQNQTSISD	
4	P30953	dbSNP:rs150	Α	Т	143	MMGQNQTSISD	
5	P30953	dbSNP:rs379	I	V	221	MMGQNQTSISD	
6	Q8NGI9	dbSNP:rs171	F	L	103	MAVGRNNTIVT	
7	Q8NGI9	dbSNP:rs145	P	L	172	MAVGRNNTIVT	
8	Q9Y585	dbSNP:rs560	L	F	244	MKKENQSFNLD	
9	Q9Y585	dbSNP:rs224	G	С	256	MKKENQSFNLD	
10	Q9Y585	dbSNP:rs246	R	С	260	MKKENQSFNLD	
11	Q9Y585	dbSNP:rs121	W	С	293	MKKENQSFNLD	
12	P47881	dbSNP:rs169	S	G	78	MQPESGANGTV	
13	P47881	dbSNP:rs703	Α	D	120	MQPESGANGTV	

Load from .xlsx file


```
import os
import pandas as pd
import urllib
```

3 imported modules 3 created functions


```
get_snps_info(code):
This function needs an UniProt code as input (variable code). Then, the function give as ouput a lists of lists with all
the related SNP's, following this structure: [SNP name, Initial aa, Chaged aa, Position].
Author: Ramon Cierco Jiménez
Contact: ramoncierco7@gmail.com
data = str(urllib.request.urlopen("http://www.uniprot.org/uniprot/" + code + ".txt").read())
if data.find('VARIANT ')!=-1:
    p1 = data.find('VARIANT')
    data = data[p1:]
   p2 = data.find('SEQUENCE')
data = data[:p2]  #between p1 and p2 we have all the information about SNP's, so now we will convert from str format to list
    data = data.split() #to filter the information
    pos_variant = []
    #here you add the intial position for each SNP using the position that matches with the string object 'VARIANT
    for x in range(0, len(data)):
        tar = data[x]
        if tar.find('VARIANT')!=-1:
            pos variant.append(x)
         del(x) ;del(tar)
    raw data list = []
    for y in range(0,len(pos_variant)): #Here we are storing the information about each SNP (noise included)
         if y!=len(pos_variant)-1:
             tar_data = data[pos_variant[y]:pos_variant[y+1]]
            raw_data_list.append(tar_data)
        if y==len(pos_variant)-1:
             tar data = data[pos variant[y]:]
             raw_data_list.append(tar_data)
    raw_data_list; del(y); del(tar_data)
    final list_snp = [] #Now we will keep the information we need to use: aminoacid change, their position and the SNP datbase name
    for z in range(0,len(raw_data_list)):
        tar_list = raw_data_list[z]
        tar_cor_list = []
         for b in range(0,len(tar list)):
             if b<len(tar_list)-1 and tar_list[b]==tar_list[b+1]: # The aa change position is repeated twice in the HTML code
                 POS = tar list[b]
            if tar list[b]=='->':
                 AA1 = tar_list[b-1]
                 AA2 = tar_list[b+1]
             if tar list[b].find('dbSNP')!=-1:
                                                                     # Where you find the dbSNP string you can asume that is the SNP db name
        SNP = tar_list[b].replace(').\\nFT', '')
# Finally you append the list of the target SNP to the final list and obtain the desired list of lists
tar_cor_list.append(SNP);tar_cor_list.append(AA1);tar_cor_list.append(AA2);tar_cor_list.append(POS)
        final_list_snp.append(tar_cor_list); del(b); del(POS); del(AA1); del(AA2); del(SNP); del(tar_cor_list); del(tar_list)
    return(final_list_snp)
    return("NA") # some UniProt proteins have no SNP's, when it's the case the function will return the 'NA'
```

3. Program structure

get_sequences(code): This function needs an UniProt code as input (variable code). Then, the function give as output the sequence of the target protein. Author: Ramon Cierco Jiménez Contact: ramoncierco7@gmail.com data = str(urllib.request.urlopen("http://www.uniprot.org/uniprot/" + code + ".txt").read()) data = data[data.find('SEQUENCE '):] seq_length = data[:data.find('AA;')].split()[-1] # We create this variable to control that the annotated sequence is well extracted data = data[data.find('\\n '):] data = data.replace('\\n',''); data = data.replace('/\n',''); data = data.replace(' ','')
data = data.replace('/',',''); data = data.replace("'",'') if int(len(data))==int(seq length): # Here we use the control variable that we created previously return(data) print("Something wrong, check if the UniProt code is correct or internet connection works properly") create dataframe(dicc of snps. dicc of segs): This function needs two dictionaries that we should create with the functions 'get snps info()' and 'get sequences()'. Then, the function is able to create a data frame object that contains information about the SNP's of the proteins that we targeted in the previous functions. The data frame follows this structure: SNP's as rows and Information as columns: UniProt SNP Original aa Changed aa Position Sequence 09Y585 dbSNP:rs12150427 W MKKENOSFNLDFILLGVTSO... 293.0 Author: Ramon Cierco Jiménez Contact: ramoncierco7@gmail.com dicc keys = list(dicc of snps.keys()) list_of_rows = [] # The pandas df function needs a list of tuples as the rows of the data frame for key in range(0, len(dicc_keys)): #This loop will select all the SNP's for each Protein target key = dicc keys[key] target snps = dicc of snps[target kev] target seg = dicc of segs[target kev] if type(target_snps)==str and target_snps == 'NA': # In this case there are no SNP's
row = (target_key, 'NA', 'NA', 'NA', 'NA', target_seq) # each row is a tuple list_of_rows.append(row) row = ()if type(target_snps)==list: # In this case there are at least one SNP for pos in range(0, len(target_snps)): target snp = target snps[pos] row = (target_key, target_snp[0], target_snp[1], target_snp[2], target_snp[3], target_seq) # each row is a tuple list_of_rows.append(row) row = () del(pos); del(key); del(target_key); del(target_snps); del(target_snp); del(row); del(target_seq)
list_of_labels = ['UniProt', 'SNP', 'Original_aa', 'Changed_aa', 'Position', 'Sequence'] #column labels dataframe = pd.DataFrame.from records(list of rows. columns = list of labels) return(dataframe)

3. Program structure

4. Example

Random UniProt codes:

Q8NHA8, P30953, P47881, Q8NGI9, Q9Y585, O43749, P30953

Index	UniProt	SNP	Original_aa	Changed_aa	Position	Sequence
Θ	Q8NHA8	NA	NA	NA	NA	MEGKNQTNISEFLLLGFSSWQ
1	043749	dbSNP:rs1834026	F	S	75	MSGTNQSSVSEFLLLGLSRQP
2	043749	dbSNP:rs8045183	V	I	305	MSGTNQSSVSEFLLLGLSRQP
3	P30953	dbSNP:rs1735011	Р	L	129	MMGQNQTSISDFLLLGLPIQP
4	P30953	dbSNP:rs150989	A	Т	143	MMGQNQTSISDFLLLGLPIQP
5	P30953	dbSNP:rs379856	I	V	221	MMGQNQTSISDFLLLGLPIQP
6	Q8NGI9	dbSNP:rs17153691	F	L	103	MAVGRNNTIVTKFILLGLSDH
7	Q8NGI9	dbSNP:rs1453547	Р	L	172	MAVGRNNTIVTKFILLGLSDH
8	Q9Y585	dbSNP:rs56058341	L	F	244	MKKENQSFNLDFILLGVTSQQ
9	Q9Y585	dbSNP:rs2241091	G	С	256	MKKENQSFNLDFILLGVTSQQ
10	Q9Y585	dbSNP:rs2469791	R	С	260	MKKENQSFNLDFILLGVTSQQ
11	Q9Y585	dbSNP:rs12150427	W	С	293	MKKENQSFNLDFILLGVTSQQ
12	P47881	dbSNP:rs16952828	S	G	78	MQPESGANGTVIAEFILLGLL
13	P47881	dbSNP:rs703903	A	D	120	MQPESGANGTVIAEFILLGLL

	Α	В	С	D	Е	F	G	Н
1		UniProt	SNP	Original_aa	Changed_aa	Position	Sequence	
2	0	Q8NHA8	NA	NA	NA	NA	MEGKNQTN	SEFLLLGFSS
3	1	043749	dbSNP:rs1834026	Ę	S	75	MSGTNQSS\	/SEFLLLGLSR
4	2	043749	dbSNP:rs8045183	V	ļ	305	MSGTNQSS\	/SEFLLLGLSR
5	3	P30953	dbSNP:rs1735011	P	Ĺ	129	MMGQNQT	ISDFLLLGLP
6	4	P30953	dbSNP:rs150989	A	Ĭ	143	MMGQNQT	ISDFLLLGLP
7	5	P30953	dbSNP:rs379856	ļ	V	221	MMGQNQT	SISDFLLLGLP
8	6	Q8NGI9	dbSNP:rs17153691	F	Ļ	103	MAVGRNNT	IVTKFILLGLS
9	7	Q8NGI9	dbSNP:rs1453547	P	Ļ	172	MAVGRNNT	IVTKFILLGLS
10	8	Q9Y585	dbSNP:rs56058341	Ļ	Ę	244	MKKENQSFI	VLDFILLGVTS
11	9	Q9Y585	dbSNP:rs2241091	G	Ç	256	MKKENQSFI	VLDFILLGVTS
12	10	Q9Y585	dbSNP:rs2469791	R	č	260	MKKENQSFI	VLDFILLGVTS
13	11	Q9Y585	dbSNP:rs12150427	W	č	293	MKKENQSFI	VLDFILLGVTS
14	12	P47881	dbSNP:rs16952828	S	Ģ	78	MQPESGAN	GTVIAEFILLC
15	13	P47881	dbSNP:rs703903	A	D	120	MQPESGAN	GTVIAEFILLO

Data frame

Excel table

5. Difficulties

Extracting information from UniProt using "urllib".

Merge all the functions inputs/outputs together.

Thanks for your attention!!

Ramon Cierco Jiménez