Entwicklung und Implementierung eines digitalen Funktionsgenerators in VHDL

Markus Hartlage

FH-Bielefeld

April 1, 2022

Konzept - Anforderungen

- ► Ausgabe vier verschiedener Funktionsverläufe
 - ► Konstante, Rechteck, Zick-Zack, Rampe
- Konfiguration per UART-Schnittstelle

Konzept - Aufbau

- Aufbau aus Konfigurations-, Funktions- und DAC Komponente
- zusätzliche Hardware: Uart-Interface und digital-analog Konverter

Komponenten - Konfiguration

Aufbau als state machine:

- ► Byteweises Einlesen der UART Rx Signale
- ▶ Interpretation von vier Bytes als Befehl (Befehlscode + Argumente)
- Berechnung und Speicherung der neuen Konfiguration

Komponenten - Square

- ▶ nach 64 steigenden Flanken *Counter* aktivieren
- ► Ausgang auf low wenn o_count > thresh, sonst high

Abzählen von 64 Taktzyklen

Aktivieren des Zählers

 neuer Zählstand wird mit Amplitude multipliziert und Division beginnt zu teilen

untere zwölf Bits von Q plus low ergeben y₋out

Komponenten - Zick-Zack

- ► Zählrichtung wird mit Komperatoren geregelt
- ▶ halbe Zykluszeit (*cyc_ticks* um ein Bit nach rechts geschoben)

Komponenten - Funktionsbausteine

Sources