Nombres dérivées : activité

Exemple 1 (Vitesse moyenne et vitesse instantanée) Des gendarmes, mal équipés, tentent de faire des contrôles de vitesse.

Ils se repartissent en groupes, situés à 1 km l'un de l'autre.

Leur but étant de déterminer la vitesse des automobilistes, en calculant combien de temps il mettent à parcourir le kilomètre séparant les deux groupes.

- 1. Un automobiliste met 2 minutes à parcourir cette distance. A quelle vitesse roule-t-il?
- **2.** Comment appelle-t-on le type de vitesse obtenue?
- **3.** Sachant que la vitesse maximale instantannée autorisée sur le parcours est de 50km/h, est-il en excès de vitesse?
- **4.** Un automobiliste voit le premier groupe de gendarmes alors que son compteur indique 80km/h, il se met debout sur les freins et ralentit tellement qu'il met également deux minutes à faire le kilomètre séparant les deux groupes de gendarmes.

A quelle vitesse les gendarmes vont-ils le contrôler? Sera-t-il sanctionné?

- **5.** En vous basant sur l'exemple précédent, proposer une solution pour que contrôle soit plus efficace.
- **6.** On appelle, pour $t \in \mathbb{R}$, d(t) la distance parcourue à l'instant t. On s'intéresse à la quantité suivante, appelée taux d'accroissement, pour $t \ge 0$:

$$\frac{d(t+\epsilon)-d(t)}{\epsilon}$$

On cherche à déterminer sa valeur quand ϵ se rapproche de 0. Si on remplace ϵ par 0, quelle opération obtient-on? A votre avis, quelle sera le résultat de cette opération?

7. On suppose maintenant que:

$$d(t) = 60t + 500$$

Calculer le taux d'accroissement en t puis déterminer la valeur de ce taux quand ε tend vers 0: on appelle cette quantité limite en 0 si jamais cette valeur existe.

Le chauffeur est-il dans ce cas en excès de vitesse à un moment donné?

Exemple 2 (Nombre dérivé et tangente) On s'intéresse à la fonction $f(x) = -x^2 + 6 - 5x$ dont la représentation graphique \mathcal{C}_f est la suivante :

- **1.** Peut-on déduire directement du dessin, les solutions de f(x) = 0?
- 2. Déterminer ces solutions.

1**G**

- 3. On appelle:
 - \implies T le point de \mathscr{C}_f d'abscisse 1.
 - $\implies T_h$ le point de \mathcal{C}_f d'abscisse 1+h où h est un nombre réel.
 - $\implies \mathcal{D}_h$ la sécante (TT_h)
 - $\implies m_h$ le coefficient directeur de \mathcal{D}_h .
- **4.** Dans le cas où h = 1, calculer les coordonnées $(x_h; y_h)$ de T_h ainsi que m_h .
- **5.** Compléter le tableau suivant :

h	1	0.5	0.1	0.01	0.001
x_h					
y_h					
m_h					

- **6.** Déterminer, par le calcul, m_h pour $h \neq 0$.
- 7. Dans la cas où h tend vers 0 :
 - \implies quelle est la limite de m_h ?
 - \implies quelle est le point vers lequel va tendre T_h ?
 - \implies quelle est la droite vers laquelle \mathcal{D}_h tend? Donner son équation réduite.