Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2024-2025 Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir surveillé N°1 Durée 2h00 2-BAC Section des sciences expérimentales: Option de sciences physiques

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
50%	25%	25%

III tableau de spécification

Niveau d'habileté		Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Les Ondes 53%	Les Ondes mécaniques progressives	6,5% 1Q - 0,5pts	3,25% 1Q - 1pt	3,25%	53% 13pts
	Les Ondes	10%	5%	5%	14Q
	périodiques	1Q - 0,5pts	1Q - 1pt	2Q - 1pt	65min
	Les Ondes	10%	5%	5%	
	lumineuse	4Q - $3pts$	5Q - 4pt	1Q - 2pt	
	lentes				
Les	et	4%	2%	1%	47%
Transformations	rapides	3Q - 2.5pts			7pts
d'un système chimique 47%	Suivi temporel	20% 1Q - 0,5pts	10% 1Q - 0,5pts	10% 2Q - 1,25pts	12Q 55min
_		50% 13Q - 11pts	25% 6Q - 4,5pts	25% 8Q - 4,5pts	

Devoir surveillé $N^{\circ}1$ Semestre I

	Chimie				(7pts)			
Suivi t	Suivi temporel d'une transformation chimique							
$N^{\circ}\mathbf{Q}$.			Réponse					Note
1.			s de matière ini					1,50
1.	n_0	$(CaCO_{3(s)}) = 3$	$3.10^{-3} mol \text{ et } n_0$	$(H_3O^+_{(aq)}) = 5.$	$10^{-3} mol$	ļ,		$\parallel 1pts$
		le tableau	d'avancement d	e cette réactio	n.			
	Equation de l	la réaction	$2H_3O^+ + 0$	$CaCO_3 \rightarrow Ca^2$	$C^{+} + CC$	$O_2 + 3E_1$	I_2O	
	états	avancement	qua	antité de Matie	ère en m	ol		
2.	Etat initial	0	0,04	0,01	0	0	0	0.5pts
	Etat de	<i>m</i>	0,04-2x	0.01 %	- m	· ·		
	transformation	x	0,04-2x	0,01-x	x	x		
	Etat final	x_{max}	$0,04-2x_{max}$	$0,01-x_{max}$	$2x_{max}$	x_{max}	x_{max}	
3	$x_{max} = 10^{-3} mol$ et le réactif limitant H_3O^+ .				1pts			
4	Montrer que $V(CO_2) = 2,44.10^{-2}.x$				0.5pt			
5	Montrer que $V(CO_2)_{t1/2} = 25mL$ et $t_{1/2} = 75s$				0,75pt			
6	6 la vitesse volumique de la réaction à l'instant de date $t = 0$ $V(t = 0) = 0,24mol/L.s$			0,5pts				
7	La valeur du temps de demi- réaction est inférieure à la valeur précédente			0,5pt				
Partie 2 : Mesure de conductivité								
$N^{\circ}\mathbf{Q}$	Q Réponse			Note				
1	conductivité du mélange réactionnel à l'état initial.			$\begin{bmatrix} 0,75pt \end{bmatrix}$				
1	$\sigma_i = \lambda_{H_3O^+}[H_3O^+] + \lambda_{Cl^-}[Cl^-] = 0,8526S/m$			0, ropi				
2	Montrer que l'avancement : $\sigma = -580.x(t) + \sigma_i$			0,5pt				
3	Montrer que la vitesse volumique $v(t) = -17, 2.\frac{d\sigma(t)}{dt}$			1pt				

	Physique (13pts)	
Partie	1 : le mouvement des vagues	(3pts)	
$N^{\circ}\mathbf{Q}$.	Réponse		
1	L'onde étudiée est transversale	0,5pt	
2	la courbe représentant l'élongation du point M. courbe 1	0,5pt	
3	Par exploitation des courbes précédentes, : $\tau = 8.10^{-2} s \text{ et } t_1 = 24.10^{-2} s;$ $d = 26.10^{-2} m \text{ car } v = \frac{80.10^{-2}}{24.10^{-2}} = 3,33 m/s$	2pt	
3	$Y_s(t)$ $ \begin{array}{c} Y_s(t) \\ \hline \end{array} $ $ \begin{array}{c} T/2 \\ \hline \end{array} $ $ \begin{array}{c} T \\ \end{array} $	0,5pt	
1	Montrer que $\lambda' = \sqrt{2}.\lambda$	0,5pt	
Partie			
1	Nom du phénomène observé diffraction la nature de la lumière monochromatique	(5pts) $ 1pt$	
2	a l'aide de la figure 1 $\theta = \frac{L}{2D}$	0,5pt	
3	En utilisant les résultats des mesures $\theta = 3, 15.10^{-3} rad$	0,5pt	
4	la relation qui lie les grandeurs $\theta = \frac{\lambda}{a}$		
5	la valeur de la longueur d'onde $\lambda = 0,63m$ elle appartient au domaine visible	$\begin{array}{ c c c }\hline 0,5pt \\\hline 0,5pt \\\hline \end{array}$	
6	-on remplace la lumière émise par le LASER (lumière rouge) par une lumière bleue L diminue -n diminue la largeur de la fente a L augmente -différencier expérimentalement une lumière monochromatique d'une lumière polychromatique par un prisme	2pt	

IV Introduction

Ce document présente une analyse détaillée des résultats obtenus par les élèves lors du Devoir Surveillé N°1 en sciences physiques. L'examen, d'une durée de 2 heures, était divisé en deux parties principales : la chimie (7 points) et la physique (13 points). Cette analyse vise à identifier les forces et les faiblesses des élèves, ainsi qu'à proposer des stratégies d'amélioration pour les prochaines séquences d'apprentissage.

V Analyse Statistique des Résultats

V.1 Distribution des Notes

L'analyse porte sur un effectif de 36 élèves ayant passé l'examen. Voici les principales statistiques concernant les résultats obtenus :

Statistique	Valeur
Note minimale	1,00 /20
Note maximale	16,50 /20
Moyenne de la classe	7,81 /20
Médiane	8,25 /20
Écart-type	4,48

V.2 Visualisation de la Distribution

Figure 1: Distribution des notes des élèves

V.3 Répartition des Notes par Intervalles

Intervalle de notes	Nombre d'élèves	Pourcentage
[0 - 5[11	$30,\!56\%$
[5 - 10[12	33,33%
[10 - 15[10	27,78%
[15 - 20]	3	$8,\!33\%$

Figure 2: Répartition des notes par intervalles

V.4 Taux de Réussite

- Taux de réussite (note $\geq 10/20$) : 36,11% (13 élèves)
- Taux d'échec (note < 10/20) : 63,89% (23 élèves)

Figure 3: Répartition réussite/échec

VI Analyse par Partie du Devoir

VI.1 Performance Comparative Chimie/Physique

En normalisant les résultats sur une base de 10 points pour faciliter la comparaison :

Partie	Moyenne /10	Taux de réussite
Chimie (7 pts)	3,91 /10	32,14%
Physique (13 pts)	4,25 /10	38,89%

Figure 4: Comparaison des moyennes par partie

VI.2 Analyse par Compétence

Niveau d'habileté	Performance moyenne	
Restitution des Connaissances	52,43%	
Application des Connaissances	$39{,}67\%$	
Situation Problème	$31,\!25\%$	

Figure 5: Performance par niveau d'habileté

VII Identification des Difficultés Principales

VII.1 En Chimie

VII.1.1 Points forts

- Calcul des quantités de matière initiales
- Identification du réactif limitant

VII.1.2 Difficultés majeures

- Établissement de la relation entre conductivité et avancement
- Expression de la vitesse volumique en fonction de la conductivité
- Interprétation de l'influence de la température sur la cinétique

VII.2 En Physique

VII.2.1 Points forts

- Identification des ondes transversales
- Calcul de l'angle de diffraction

VII.2.2 Difficultés majeures

- Exploitation des graphiques pour déterminer les paramètres d'une onde
- Calcul de l'indice de réfraction du prisme
- Analyse des phénomènes de dispersion de la lumière

VIII Recommandations Pédagogiques

VIII.1 Remédiation Immédiate

- Organiser une séance de correction détaillée du devoir avec explication des erreurs fréquentes
- Fournir des exercices supplémentaires ciblant les points faibles identifiés

VIII.2 Ajustements pour l'Enseignement Futur

VIII.2.1 En Chimie

- Renforcer les activités pratiques sur la cinétique chimique
- Travailler davantage sur l'interprétation physique des équations et des relations
- Proposer des exercices combinant plusieurs méthodes de suivi (conductimétrie, pH-métrie, etc.)

VIII.2.2 En Physique

- Accentuer le travail sur l'interprétation graphique des phénomènes ondulatoires
- Proposer des activités expérimentales sur la diffraction et la dispersion
- Renforcer l'exploitation mathématique des résultats d'expérience

VIII.3 Différenciation Pédagogique

- Former des groupes de travail mixtes (élèves en difficulté avec élèves plus avancés)
- Proposer des exercices à difficulté progressive pour chaque niveau d'habileté
- Offrir des séances de soutien ciblées pour les élèves ayant obtenu moins de 5/20

IX Conclusion

L'analyse des résultats du Devoir Surveillé N°1 révèle un taux de réussite globalement insuffisant (36,11%), avec une moyenne de classe de 7,81/20. Les difficultés les plus importantes concernent les situations-problèmes et l'application des connaissances, particulièrement dans les domaines de la cinétique chimique et des phénomènes ondulatoires complexes.

Il est recommandé de renforcer l'approche expérimentale et de multiplier les situations d'application concrète des concepts théoriques. La mise en place d'une pédagogie différenciée et d'un suivi plus personnalisé des élèves en difficulté devrait permettre d'améliorer les résultats lors des prochaines évaluations.