

Todays Goal

- Pulley system
- Equilibrium.

KPP - 16

vedio sol uploaded

Tension fra

- It act away from the body towards the string.

Q

$$T_A = 100$$
 $T_B = T_{mid} = (10 + 10) \times 3 = 200$
 $T_C = (20 + 10) = 300$

(7)

TA = 200 N TB = 300 N $T_c = 400 N$ $T_0 = 500 \,\mathrm{N}$ E = 500 N TF = 500 N

Pulley system Atwood machine

Ideal Pulley (NLM)

- massless
- there is no friction blue pulley a string.
- T1=T2

$$T_3 - \left(T_1 + mpg + T_2\right) = mq$$

Q If in following que all masses are in equilibrium. Find Unknown

m2 = 10 Kg

-

All marses are in equilibrium T=50 T=mg

T= m298in 30

 $50 = m_2 \times 10 \times \frac{1}{2}$

M2=10K

2T=m, g Sn = 10 Kg

PULLEY SYSTEM / ATWOOD MACHINE

Real Pulley

- Revise notes

#