Assignment 2

Rushi Shah

April 17, 2018

Problem 1

Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions whose analytical expressions are given below. In each case, determine the domain and compute a formula for $f \circ g$ and $g \circ f$

a)
$$f(x)=2x+1 \ and \ g(x)=e^x$$

$$f\circ g=f(g(x))=2(e^x)+1$$

$$Dom(f\circ g)=\{x|x\in Dom(g),g(x)\in Dom(f)\}=\mathbb{R}$$

$$g\circ f=g(f(x))=e^{2x+1}$$

$$Dom(g\circ f)=\{x|x\in Dom(f),f(x)\in Dom(g)\}=\mathbb{R}$$

$$f(x) = 4 - x^2$$
 and $g(x) = \ln x$

$$f \circ g = f(g(x)) = 4 - (\ln x)^{2}$$

$$Dom(f \circ g) = \{x | x \in Dom(g), g(x) \in Dom(f)\} = (0, \infty)$$

$$g \circ f = g(f(x)) = \ln (4 - x^{2})$$

$$Dom(g \circ f) = \{x | x \in Dom(f), f(x) \in Dom(g)\}$$

$$f(x) \in Dom(g)$$

$$(4 - x^{2}) \in (0, \infty)$$

$$4 - x^{2} > 0$$

$$4 > x^{2}$$

$$x \in (-2, 2)$$

so
$$Dom(g \circ f) = (-2, 2)$$

Problem 2

Each of the following functions has domain $Dom(f) = \{x \in \mathbb{R} | x \neq 0\}$. For each, determine the range of the function and whether it is injective and surjective as a function $f: Dom(f) \mapsto \mathbb{R}$:

a)

 $f(x) = \frac{1}{x}$

Range is $(-\infty,0) \cup (0,\infty)$. Function is injective, but not surjective.

b)

 $f(x) = \ln |x|$

Range is \mathbb{R} . Function is not injective, but it is surjective.

 \mathbf{c}

 $f(x) = \frac{1}{x^2}$

Range is positive real numbers. Not injective, not surjective.

Problem 3

Let X be the set of all students on the campus of UT Austin. Define the binary relation \sim as follows. For any two students x and y, we say $x \sim y$ if x and y have the same birthday. Show that \sim is an equivalence relation on X.

An equivalence relation must satisfy three axioms: reflexivity, symmetry, and transitivity.

Reflexivity: $x \sim x$. $\forall x \in X$: Obviously any student has the same birthday as themselves.

Symmetry: $x \sim y \to y \sim \overline{x}$. $\forall x, y \in X$: If student x has the same birthday as student y, then obviously student y has the same birthday as student x.

Transitivity: $x \sim y, y \sim z \rightarrow x \sim z$. $\forall x, y, z \in X$: If student x has the same birthday as y, and y has the same birthday as z, then obviously x has the same birthday as z.

Problem 4

Let $X = \mathbb{R}$ be the set of real numbers. Define the "square" relation $R = \{(x,y)|x^2 = y^2\}$. Show that R is an equivalence relation.

Define \sim as the binary relation R. An equivalence relation must satisfy three axioms: reflexivity, symmetry, and transitivity.

Reflexivity: $x \sim x$. $\forall x \in X$: Given some $(x,x) \in R$, we can see that $x \sim x$ because $x^2 = x^2$ by the reflexivity of equality over real numbers.

Symmetry: $x \sim y \to y \sim x$. $\forall x, y \in X$: Given some $(x, y) \in R$, we can see that $y^2 = x^2 \to y \sim x$ when $x \sim y$ because of the symmetry of equality over real numbers.

Transitivity: $x \sim y, y \sim z \rightarrow x \sim z$. $\forall x, y, z \in X$: $x \sim y \rightarrow x^2 = y^2$ and $y \sim z \rightarrow y^2 = z^2$. Thus by the transitivity of equality over the real numbers we can see that $x^2 = y^2 = z^2 \to x \sim z$.

Problem 5

Let X be the set of fractions: $X=\{\frac{p}{q}|p,q\in\mathbb{Z},q\neq0\}$. Define a binary relation R on X by: $\frac{a}{b}R\frac{c}{d}$ iff ad=bc. Show that R is an equivalence relation.

Define \sim as a relation R. An equivalence relation must satisfy: reflexivity, symmetry, and transitivity.

Reflexivity: $x \sim x$. $\forall x \in X$: Given some $x = \frac{p}{q} \in X$ we can see that $pq = pq \to \frac{p}{q}R\frac{p}{q}$, so $x \sim x$. Symmetry: $x \sim y \to y \sim x$. $\forall x, y \in X$: Given some $\frac{a}{b} \sim \frac{c}{d}$ we know that ab = bc and $ab, bc \in \mathbb{R}$. Due to the symmetry of equality of real numbers we can see that $bc = ab \to \frac{c}{d} \sim \frac{a}{b}$.

Transitivity: $x \sim y, y \sim z \to x \sim z$. $\forall x, y, z \in X$: Given some $\frac{a}{b} \sim \frac{c}{d}, \frac{c}{d} \sim \frac{e}{f}$ we can see that $ad = bc, cf = \frac{c}{d}$.

de. Since $b \neq 0, d \neq 0, f \neq 0$ we know that $ad = bc \rightarrow a = \frac{bc}{d}$ and $cf = de \rightarrow e = \frac{cf}{d}$. Thus:

$$af = \frac{bc}{d}f = b\frac{cf}{d} = be \quad \Box$$