Shreyas S | IIT Madras

(C) GitHub

shreyas Sathish shreyas.sathishkumar.07@gmail.com

+917338755758

Research Interests:

Compute-in-Memory, Neuromorphic Circuits, Energy-Efficient Neural Systems

RESEARCH EXPERIENCE

COMPUTE-IN-MEMORY GROUP @IITM | May'25 - Present

Guide: Prof. Janakiraman Viraraghavan, Dept. of EE IITM

Hybrid IMC Chip Tapeout (TSMC 28nm)

- → Designing the layout of SRAM array along with its Read/ Write peripherals and performing RC extracted simulations to characterize the cells.
- → Synthesizing and performing constrained PnR for several digital blocks.

Time-Domain Chip Testing

- → Designed a 4 layer PCB to configure a taped-out Time-Domain based macro and enable communication with an FPGA to facilitate the post-silicon testing.
- → Characterized and calibrated the analog peripherals for MAC computation.
- → Ran various neural network inferences on the macro to analyze layer-wise statistics based on output resolution limitations to maintain negligible loss in accuracy.

MODELLING THE MEMORY SUBSYSTEM | DEC'24 - APR'25

Research Project (report) under Prof. Gopalakrishnan Srinivasan, Department of CSE IITM

- → Simulated the memory traffic using SCALE-Sim, an open source systolic array simulator
- → Modified the cycle-accurate simulator for custom hybrid SNN-ANN accelerator that leverages dual-sparsity in spikes and weights.
- → Introduced Memory Banks to the simulator, potentially reducing the stall cycles by >90% in the convolution layers of RESNET-20 model.

ENGINEERING EXPERIENCE

EMBEDDED SYSTEMS ENGINEER | SEPT'23 - JUL'24

Team Avishkar Hyperloop, Centre For Innovation, IIT Madras

→ Recognized among the Top 5 Teams at European Hyperloop Week 2024, hosted by ETH Zürich, Switzerland.

On-Track Electronics Control Card

- → Designed a 4-layer Signal Conditioning PCB to drive the inverter and relay data from 25+ sensors for the Linear Synchronous booster Motor.
- → Integrated TI's C2000 Delfino DSP and MSP432 MCU boards, reducing communication latency by 2x through DSP offloading
- → Enabled seamless wireless communication between 3 nodes in a near-Faraday cage environment.

Master Control Unit

- → Developed CAN communication stack based on Ti-RTOS for the TI development board MSP432E401Y on Code Composer Studio.
- → Designed, simulated and thoroughly tested CAN architecture spanning 3 buses, 20 nodes and 500+ signals using Vector CANoe.
- → Simulated a Finite State Machine with 20+ states capturing ~100 fault cases using Matlab Stateflow.

Full Pod Integration

- → Developed an autonomous Hyperloop Pod and implemented methods to lower the communication latency at both hardware and software levels.
- → Performed end to end HIL & SIL testing to ensure reliable performance in diverse environments and conditions.

EDUCATION

INDIAN INSTITUTE OF **TECHNOLOGY MADRAS**

B.Tech in Engineering Physics M.Tech in Electrical Engineering (Dual Degree) | Chennai, India Nov 2022 - Jul 2027 (Expected) CGPA: 8.63 / 10

COURSEWORK

IC & SYSTEMS

- Systems Engineering for DL *
- Digital IC Design
- Embedded Memory Design **
- Computer Organization
- VLSI Modelling/Optimization
- Mapping Algos. to DSP Arch.
- Analog Circuits
- Analog Systems & Lab
- Digital Systems & Lab

OTHER RELEVANT CORE

- Intro to Deep Learning
- Devices for Neuromorphic Computing *
- Solid State Devices
- · Probability, Stats and Stochastic Processes
- Quantum Mechanics *ongoing | **audited

SKILLS

EDA TOOLS

Cadence Virtuoso • Genus • Innovus • Synopsys IC Compiler II • ADS • Altium Designer • KiCAD • Vivado • Vitis HLS • Electric • LTSpice

PROGRAMMING LAN-**GUAGES / FRAMEWORKS**

Python • PyTorch • C • C++ • Verilog • x86 Assembly • Mathematica • Simulink • Stateflow • Vector CANoe

GENERAL

Git/Github • LATEX • LINUX • Vim

COURSE PROJECTS

EMBEDDED MEMORY DESIGN | FEB'25 - APR'25

Instructor: Prof. Janakiraman Viraraghavan, Dept. of EE IITM

Compute-In-Memory Engine Design

- → Designed an SRAM-based CIM array to run inferences on the MNIST dataset with <1% accuracy drop from the software baseline.
- → Performed Monte Carlo simulations to verify the functionality over thermal noise and ensure appropriate transistor scaling to preserve accuracy.

DEVICES & TECH FOR AI AND NEUROMORPHIC COMPUTING | JUL'25 - Nov'25 Instructor: Prof. Bhaswar Chakrabarty, Dept. of EE IITM

NVM-based Compute In-Memory Engine

- → Designing a 2-layer feedforward neural network using CMOS neurons and NVM (RRAMs and FeFETs) synaptic arrays.
- → Implementing sigmoid and tanh activation functions using MOS transistors as part of the MAC computing array for alphabet classification.

MODELLING & OPTIMIZATION IN VLSI | JAN' 25 - MAY' 25

Instructors: Prof. Janakiraman & Prof. Ramprasath, Dept. of EE IITM

Objective-Constrained Gate Sizing Optimization

- → Developed a Geometric Programming based continuous gate sizing framework using STA for timing-aware area minimization on ISCAS-85 benchmark circuits.
- → Discretized the continuous solution through Multi-Moves Heuristics to map to standard cell sizes.
- → Achieved <4% area overhead while maintaining delays within <1.5% positive slack.</p>

DIGITAL IC DESIGN | JULY' 24 - DEC' 24

Instructor: Prof. Ramprasath, Department of EE IITM

8-bit Carry Save Multiplier

- → Designed a transistor-level schematic and layout of an 8-bit Carry Save Multiplier on Electric software.
- → Implemented Dadda-Tree Adder for partial products reduction and Kogge-Stone Carry Lookahead Adder for efficient Vector merging.
- → Achieved ~1.3x delay reduction over an Array Multiplier

SYSTEMS ENGINEERING FOR DEEP LEARNING | Jul'25 - Nov'25

Course Project under Prof. Gopalakrishnan Srinivasan, Department of CSE IITM

- → Proposing a pruning strategy over vision neural network models like RESNET 18, VGG 16 and RESNET 20 tailored for analog IMC hardware.
- → Validating the model compression and speed up through a cycle-accurate IMC simulator.

ANALOG SYSTEMS AND LAB | JAN' 24 - MAY' 24

Instructor: Prof. Saurabh Saxena, Dept. of EE IITM

- → Built and analyzed closed-loop analog systems including a DC-DC regulator, peak detector, and sPWM generator using through-hole OpAmp ICs, MOSFETs and BJTs.
- → Simulated circuits in LTSpice and performed loop-stability verification to validate accuracy and control performance.

TEACHING ASSISTANT

COMPUTER ORGANISATION

- → Summer, 2025 (Online BS ES, IITM)
- → Fall, 2025 (B.Tech IITM)
- Reviewed the lecture material and created animations
- Set questions for assignments
- Led the TA activity for a group of 15 TAs

DIGITAL SYSTEMS LAB

- → Spring, 2025 (B.Tech IITM)
- Helped students with implementing a Traffic-Signal Controller project

C PROGRAMMING AND ASSEMBLY LANGUAGE

- → Fall, 2025 (NPTEL)
- Set the weekly assignments and recorded solution videos
- Helped with student's doubts over the NPTEL forum.

VOLUNTEERING

AVANTI FELLOWS

Mentored and guided class 11, 12 students for competitive exams like JEE, KVPY and olympiads

SAATHI

Guided college freshmen with academic and nonacademic issues through their first year