

Train Schedule

In a train schedule, the route of trains is described by a sequence of bits (1 - if the train stops at a station, 0 - if not).

Write a program that gives the sequence of bits in which only those bits are 1 where all the trains stop.

Input

The first line of the standard input contains the count of trains $(1 \le T \le 100)$ and the count of stations $(1 \le S \le 100)$. The next T lines contain the sequences representing the routes of each train: S bits separated by spaces, where 1 means the train (row) stops at the given station (column), and 0 means the train does not stop.

Output

The first line of the standard output should contain a sequence of S bits separated by spaces, where 1 means all the trains stop, 0 means not all the trains stop.

Example

Input							
6	8						
1	1	1	1	1	1	0	1
1	0	0	0	1	1	0	1
1	0	0	0	1	0	0	0
1	1	1	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	a	1	a	a	1

Output 1 0 0 0 1 0 0 0