

Spectral Subspace Analysis for Automatic Assessment of Pathological Speech Intelligibility

Parvaneh Janbakhshi^{1,2}, Ina Kodrasi¹, Hervé Bourlard^{1,2}

¹Idiap Research Institute, Speech and Audio Processing Group, Martigny, Switzerland ²École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland {parvaneh.janbakhshi, ina.kodrasi, herve.bourlard}@idiap.ch

Motivation

- Descrive pathological speech intelligibility assessment is crucial for the management of speech disorders
- ► P-ESTOI (our previously proposed technique) was shown to be a successful objective intelligibility measure for pathological speech
- ► P-ESTOI requires time-alignment using Dynamic Time Warping (DTW)
 - ► High computational complexity
 - ► Inapplicable to text-independent scenarios

Aim

Automatic pathological speech intelligibility measure, which

- ► is reliable and efficient
- ► does not require time-alignment or large amounts of training data
- ➤ is applicable to text-independent scenarios

Hypothesis

 \blacktriangleright Difference in spectral patterns of intelligible and pathological speech \Rightarrow Intelligibility

Proposed method

- 1 Computing intelligible spectral bases from healthy speakers' utterances
- 2 Computing pathological spectral bases from pathological test utterance
- 3 Automatic selection of the number of dominant spectral bases
- 4 Computing a distance measure between the spectral subspaces

Computing spectral bases

- Principal Component Analysis (PCA)
- ► Approximate Joint Diagonalization (AJD)

Automatic selection of the number of spectral bases B

L-curve method

Computing a distance measure between spectral bases

► Grassman distance measure

$$d_{CF} = 2\sqrt{\sum_{i=1}^{B} sin^2(\theta_i/2)}$$

Evaluation

Database

➤ 15 English-speaking Cerebral Palsy (CP) patients and 13 healthy speakers

Considered scenarios

- i) Word-level analysis
- ii) Text-level analysis
- iii) Text-independent analysis with several common words across healthy and pathological speakers
- iv) Text-independent analysis without any common words across healthy and pathological speakers

Criteria

Pearson (R) and Spearman rank (R_s) correlation coefficients between estimated scores and the subjective intelligibility scores (along with p-values)

Comparison

> State-of-the-art reference-based measures, i.e., P- ESTOI and iVector-based regression method

Results

Measures	R	p	R_S	\overline{p}
i) Word-level				
P-ESTOI	0.94	2.5e - 7	0.94	9.3e - 7
iVector	0.74			
AJD	-0.82	1.7e - 4	-0.88	1.8e - 5
PCA	-0.83	1e-4	-0.88	$1.8e{-5}$
ii) Text-level				
P-ESTOI	0.93	9e-7	0.95	3e-7
AJD	-0.80	3.9e - 4	-0.78	5.7e - 4
PCA	-0.81	$2.4e{-4}$	-0.83	1.2e-4
iii) Text-level with several common words				
AJD	-0.79	6e-4	-0.78	9.5e-4
PCA	-0.78	0.008	-0.76	0.019
iv) Text-level without any common words				
AJD	-0.78	9.5e - 4	-0.77	0.001
PCA	-0.7	0.009	-0.65	0.047

- ▶ P-ESTOI gives the highest correlations values while being computationally more expensive than the proposed measure and cannot be used in text-independent scenarios
- ➤ Proposed subspace-based intelligibility measure (PCA or AJD) achieves high and significant correlations in all considered scenarios.

Conclusion

➤ Proposed measure can be used as a reliable and efficient objective intelligibility measure for pathological speech without imposing any constraints on the speech material