Lecturer: Andrew Parkes http://www.cs.nott.ac.uk/~pszajp/

G52ACE 2017-18 Minimum Spanning Trees

Spanning Tree

Input: connected, undirected graph

 Output: a tree which connects all vertices in the graph using only the edges present in the graph

Minimum Spanning Tree

- Input: connected, undirected, weighted graph
- Output: a spanning tree
 - (connects all vertices in the graph using only the edges present in the graph)
 - and is minimum in the sense that the sum of weights of the edges is the smallest possible for any spanning tree

Example: graph

Example: a MST (cost 23)

Note: An MST is NOT a path here!!!!

Example: another MST (cost 23)

Note: An MST can (sometimes) be a path, but it is still not necessarily the shortest path between the endpoints

Example: not MST (cost 28)

Note: The above is a "spanning tree", but it is not "minimum"

Why MST is a tree

- We really want a minimum spanning sub-graph
 - that is, a subset of the edges that is connected and that contains every node
- (Assuming all weights are non-negative)
 If the graph has a cycle then we can remove an edge of the cycle, and the graph will still be connected, and will have a smaller weight
- If a graph is connected and acyclic then it is a tree

An MST is (generally) a TREE

- Do not confuse a minimum TREE with a "minimum" (shortest) PATH
 - Finding the shortest path that goes through all the nodes is a different problem (roughly "TSP" / "Hamiltonian cycle") from the MST (and much harder)
 - It is also different from shortest path between two nodes
- (Many have people confused these on many exams).

Prim's algorithm

To construct an MST:

- Start by picking any vertex M
- Choose the shortest edge from M to any other vertex N
- Add edge (M,N) to the MST
- Loop:
 - Continue to add at every step a shortest edge from a vertex in MST to a vertex outside, until all vertices are in MST
 - (If there are multiple shortest edges, then can take any arbitrary one)

Why is this optimal!?

- GoTa. Proposition 13.25 (Section 13.7)
- "Let G be a weighted connected graph, and
 - let V1 and V2 be a partition of the vertices of G into two disjoint non-empty sets.
 - Furthermore, let e be an edge with minimum weight from among those with one endpoint in V1 and the other in V2.
 - There is an MST that has e as one of its edges."

Why is this optimal!?

Justification of Prop. 13.25

- Argument by contradiction.
- Suppose that some minimum spanning tree T that is better than all trees containing e.
- Then can add edge e to T and remove some other edge between V1 and V2 and obtain a better MST

Justification of Prop. 13.25

Remove f and replace with e:

- Still gives a spanning tree.
- Gives a better spanning.

Prop 13.25 and Prims

- At each stage:
 - V1 = vertices within the current MST
 - V2 = "the rest" (vertices not in the MST)
 - The algorithm adds a minimum weight edge between V1 and V2, and so this edge must be part of some MST
 - Hence, the construction cannot make a "fatal mistake" – at no point can it add an edge not part of an MST

Greedy algorithm

- Prim's algorithm for constructing a Minimal Spanning Tree is a *greedy* algorithm:
 - it just adds a minimum weight edge
 - without worrying about the overall structure, without looking ahead.
 - It makes a locally optimal choice at each step.

Minimal Expectations

- Clearly know, understand and be able to use
 - Definition of a MST
 - The algorithm to create one
 - Why it gives an optimal (minimum weight) spanning tree