COL 352 Intro to Formal Languages and Theory of Comput, Tutorial Sheet 2

- 1. Give context-free grammars generating the following sets.
 - (a) The set of all strings of balanced parentheses, i.e, each left parenthesis has a matching right parentheses and pairs of matching parentheses are properly nested.
 - (b) The set of all strings over alphabet $\{a,b\}$ with exactly twice as many a's as b's.
 - (c) The set of all strings over alphabet $\{a,b,\cdot,+,*,(,\cdot),\in,\phi\}$ that are well-formed regular expression over alphabet $\{a,b\}$. Note that we must distinguish between ϵ as the empty string and as a symbol in the regular expression. We use ϵ in the latter case.
 - (d) The set of all strings over alphabet $\{a,b\}$ not of the form ww for some string w.
- 2. Suppose G is a CFG with m variables and no right side of production longer than l. Show that if $A \Rightarrow_G^* \epsilon$, then there is a derivation of no more than $\frac{l^m-1}{l-1}$ steps by which A derives ϵ . How close to this bound can you actually come?
- 3. Suppose G is a CFG and w, of length l, is in L(G). How long is a derivation of w in G if
 - (a) G is in CNF
 - (b) G is in GNF
- 4. Show that every CFL without ϵ is generated by a CFG all of whose productions are of the form $A \to a, A \to aB$, and $A \to aBC$.
- 5. A language L is said to have the $prefix\ property$ if no word in L is a proper prefix of another word in L. Show that L is N(M) for DPDA M, then L has the prefix property. Is the foregoing necessarily true if L is N(M) for a nondeterministic PDA M?
- 6. Show that the following are not context free languages.
 - (a) $\{a^i b^j c^k | i < j < k\}$
 - (b) $\{a^i b^j | j = i^2\}$
 - (c) $\{a^i|i \text{ is a prime }\}$
 - (d) the set of strings of a's, b's and c's with an equal number of each
 - (e) $\{a^nb^nc^m|n\leq m\leq 2n\}$
- 7. Which of the following are CFL's?
 - (a) $\{a^ib^j|i\neq j \text{ and } i\neq 2j\}$
 - (b) $(a+b)^* \{(a^nb^n)^n | n > 1\}$
 - (c) $\{ww^Rw|w \text{ is in } (\mathbf{a+b})^*\}$
 - (d) $\{b_i \# b_{i+1} | b_i \text{ is } i \text{ in binary, } i \geq 1\}$
 - (e) $\{wxw|x \text{ are in } (a+b)^*, w \text{ is in } (a+b)^+\}$
 - (f) **(a+b)*** $\{(a^nb)^n | n \ge 1\}$

8. Show that if L is a CFL over a one-symbol alphabet, then L is regular. [Hint: Let n be the pumping lemma constant for L and let $L \subseteq 0^*$. Show that for every word of length n or more, say 0^m , there are p and q no greater than n such that 0^{p+iq} is in L for all $i \ge 0$. Then show show that L consists of perhaps some words of length less than n plus a finite number of linear sets, i.e., sets of the form $\{0^{p+iq}|i\ge 0\}$ for fixed p and q, $q \le n$. You may want to bound the number of parse trees of a certain depth, call them the *base trees* so that every other larger parse tree can be obtained by pumping some portions of one of the base trees.]