Практика 11. Числовые ряды. Часть 2

Знакопеременные ряды. Абсолютная и условная сходимость.

Знакопеременный числовой ряд: $u_1 + u_2 + ... + u_n + ... = \sum_{n=1}^{\infty} u_n$, где $\exists n : u_n > 0$ и $\exists n : u_n < 0$

Знакочередующийся числовой ряд: $u_1-u_2+u_3-u_4+...+\left(-1\right)^{n+1}u_n+...=\sum_{n=1}^{\infty}\left(-1\right)^{n+1}u_n$, где $u_n>0$

Признак Лейбница (сходимости знакочередующегося ряда).

Знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ сходится, если выполнены условия:

1.
$$u_1 > u_2 > u_3 > u_4 > \dots > u_n > \dots$$
 2. $\lim_{n \to \infty} u_n = 0$.

Теорема. Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ сходится, если сходится ряд $\sum_{n=1}^{\infty} |u_n|$.

Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |u_n|$.

Знакопеременный ряд $\sum_{n=1}^{\infty} u_n$ называется *условно сходящимся*, если ряд $\sum_{n=1}^{\infty} u_n$ сходится, а ряд $\sum_{n=1}^{\infty} |u_n|$ расходится.

$$\sum_{n=1}^{\infty} |u_n| \cos$$
дится $\Rightarrow \sum_{n=1}^{\infty} u_n \cos$ дится абсолютно.

$$\sum_{n=1}^{\infty} u_n$$
 сходится, $\sum_{n=1}^{\infty} |u_n|$ расходится $\Rightarrow \sum_{n=1}^{\infty} u_n$ сходится условно.

Варианты исследования на сходимость знакопеременного ряда

Варианты исследования на сходимость знакочередующегося ряда

Задания

Исследуйте ряд на сходимость (1-6)

1.
$$1 - \frac{1}{3} + ... + (-1)^{n+1} \frac{1}{(2n-1)} +$$

2.
$$\sin \alpha + \frac{\sin 2\alpha}{4} + ... + \frac{\sin n\alpha}{n^2} + ...$$

3.
$$2 - \frac{3}{2} + \dots + (-1)^{n+1} \frac{n+1}{n} + \dots$$

4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln n}$$
. **5.** $\sum_{n=1}^{\infty} \frac{\sin \alpha n}{n!}$. **6.** $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)a^{2n}}$.

7. Проверьте, что данный знакочередующийся ряд сходится, и вычислите приближенное значение его суммы с точностью до 0,01:

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n(n+1)(n+2)}.$$

Исследуйте сходимость ряда (8, 9)

8.
$$\sum_{n=1}^{\infty} \frac{(n+1)\cos 2n}{\sqrt[3]{n^7 + 3n + 4}}$$

8.
$$\sum_{n=1}^{\infty} \frac{(n+1)\cos 2n}{\sqrt[3]{n^7 + 3n + 4}} \cdot \qquad 9. \sum_{n=1}^{\infty} \frac{(-1)^n}{\ln^2(n+1)} \left(1 - \cos \frac{1}{\sqrt{n}}\right) \cdot$$

10. Проверьте, что данный знакочередующийся ряд сходится, и вычислите приближенное значение его суммы с точностью до 0,01:

$$1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} + \dots$$