CONSTRAINT-BASED REGULARIZATION OF

NEURAL NETWORKS

{b.leimkuhler, timothee.pouchon, tiffany.vlaar, a.storkey}@ed.ac.uk

GOAL

Provide a mathematical framework for the regularization of deep neural networks by incorporating constraints into stochastic gradient Langevin dynamics.

CONSTRAINTS FOR NEURAL NETWORKS

We verify that the **gradient of the loss function** $L_X(\theta)$ is proportional to

Slack variables $\xi \in \mathbb{R}^{n^{\xi}}$; Training variable $q = (\theta, \xi) \in \mathbb{R}^d$, $d = |n| + n^{\xi}$.

$$\nabla_{\theta^L}^T p_{\theta}(x) = F_x^L P_x^L, \quad \nabla_{\theta^\ell}^T p_{\theta}(x) = F_x^L W^L \cdots F_x^{\ell+1} W^{\ell+1} F_x^\ell P_x^\ell \quad \ell \leqslant L - 1,$$

where F_x^j is a sparse matrix evaluated from $\nabla \varphi^j$, and P_x^j is also sparse. To control the above expressions, we may impose constraints on the parameter space: for a field $g: \mathbb{R}^d \to \mathbb{R}^m$, the **constraint manifold** is defined as

$$\Sigma = \{ q \in \mathbb{R}^d \mid g(q) = 0 \}.$$

Circle constraints: restrict each constrained parameter as $|\theta_i^c| \le r_i$, where $r_i >$ 0 is a given hyperparameter:

$$g_i(q) = |\theta_i^c|^2 + |\xi_i|^2 - r_i^2 \qquad 1 \le i \le m.$$

Orthogonality constraints: for a specific layer ℓ , we define

$$g(q) = \begin{cases} \left(W^{\ell}\right)^T W^{\ell} - I_{d^{\ell-1}} & \text{if } d^{\ell-1} \leqslant d^{\ell}, \\ W^{\ell} \left(W^{\ell}\right)^T - I_{d^{\ell}} & \text{otherwise.} \end{cases}$$

CONSTRAINED SDES

We define the potential $V(q) = L_X(\theta)$ and consider the constrained overdamped Langevin system

$$dq_t = -\nabla V(q_t) dt + \sqrt{2\beta^{-1}} dW_t - \nabla_q g(q_t) d\lambda_t$$

$$0 = g(q_t)$$
(CoLA-od)

whose invariant measure is $d\nu_{\Sigma} = Z^{-1}e^{-\beta V(q)} d\sigma_{\Sigma}$, where σ_{Σ} is the surface measure of Σ and Z is the normalization constant.

Theorem (Exponential convergence to equilibrium). Assume that there exists $\rho > 0$ such that

$$\operatorname{Ric}_{\mathfrak{g}} + \beta \nabla_{\mathfrak{q}}^2 V \geqslant \rho \mathfrak{g}$$
. (\mathfrak{g} Riemannian metric, $\operatorname{Ric}_{\mathfrak{g}}$ Ricci curvature, $\nabla_{\mathfrak{q}}^2 V$ Hessian)

Then there exists R > 0 such that $\langle \phi \rangle_{\nu_{\Sigma}} = \int_{\Sigma} \phi \, d\nu_{\Sigma}$

$$\int_{\Sigma} \left| \mathbb{E}(\phi(q_t) \mid q_0) - \langle \phi \rangle_{\nu_{\Sigma}} \right|^2 d\nu_{\Sigma}(q_0) \leqslant C(\phi) e^{-2R\beta^{-1}t} \qquad \forall \phi \in H^1(\nu_{\Sigma}),$$

where $C(\phi)$ depends only on ϕ .

An alternative to (CoLA-od) is the second order dynamics given by the constrained underdamped Langevin system:

$$dq_t = p_t dt$$

$$dp_t = \left(-\nabla_q V(q_t) - \gamma p_t \right) dt + \sqrt{2\gamma \beta^{-1}} dW_t - \nabla_q g(q_t) d\lambda_t \quad \text{(CoLA-ud)}$$

$$0 = g(q_t)$$

whose invariant measure is closely related to ν_{Σ} .

EXAMPLE OF DISCRETIZATION

Discretization of CoLA-od with orthgonality constraint (o-CoLA-od):

$$Q^{(0)} = Q_n - h\nabla_Q V(Q_n) + \sqrt{2\tau h} R_n, \qquad (\tau = \beta^{-1})$$
for $k = 0$ to $K - 1$:
$$Q^{(k+1)} = Q^{(k)} - \frac{1}{2} Q_n ((Q^{(k)})^T Q^{(k)} - I_s),$$

$$Q_{n+1} = Q^{(K)}.$$

NUMERICAL EXPERIMENTS

Spiral dataset: points in \mathbb{R}^2 ; 500 training points, 1000 test points.

Model: MLPs with variable depth, 100-nodes ReLU in each hidden layers. Training: SGD with standard initialization (left), SGD with orthogonal initialization (middle) and o-CoLA-od with $\tau = 0$ (right).

Hyperparameters: for all methods, h = 0.1, 5% subsampling.

Results are averaged over 10 runs.

Fashion-MNIST dataset: 28×28 images; # training images reduced to 10K,

60K test images.

Model: 1000-node SHLP.

Training: SGD-m vs. c-CoLA-ud with $\tau = 0$.

Hyperparameters: batchsize 128; for c-CoLA-ud, $h=0.3, \tau=0, \gamma=1,$

 $r_0 = 0.05, r_1 = 0.1.$

Results are averaged over 5 runs.

CIFAR-10 dataset: 32×32 images; 50K training images, 5K test images.

Model: ResNet-34 with BatchNorm.

Training: SGD-m vs. o-CoLA-ud with $\tau = 0$.

Hyperparameters: batchsize 128, lr-decay by a factor 10 every 50 epochs; for SGD-m, h = 0.1, mom. = 0.9; for o-CoLA-ud $\gamma = 0.5$, learning rate was rescaled to match the parameters of SGD-m.

Results are averaged over 5 runs.

REFERENCE