Домашни по ТМ

Мартин Георгиев

$$\setminus \{u \cup u\}/$$

Задача 1. (ZF) Функция f се нарича двуместна, ако Rel(Dom(f)). Както обикновено, f(x,y) означава $f(\langle x,y \rangle)$. Множество M се нарича затворено относно двуместна функция f, ако всеки път, когато $x_1, x_2 \in M$, следва $f(x_1, x_2) \in M$. Нека W е непразно множество и $f: \mathcal{P}(\bigcup W) \times \mathcal{P}(\bigcup W) \to \mathcal{P}(\bigcup W)$.

1. Да се докаже, че съществува единствено множество V със свойствата: $W \subseteq V$, V е затворено относно f и всеки път, когато $W \subseteq V'$ и V' е затворено относно f, следва $V \subseteq V'$. Това множество V ще наричаме *породено* от W и f; означаваме го с W_f .

Решение:

Нека разгледаме множеството $A \subseteq \mathcal{P}(\mathcal{P}(\bigcup W))$ от затворени относно f надмножества на W:

$$A = \{x \mid x \in \mathcal{P}(\mathcal{P}(\bigcup W)) \& W \subseteq x \& \forall y \forall z [y \in x \& z \in x \Rightarrow f(y, z) \in x]\}$$

Твърдим, че $\bigcap A$ е точно множеството V от условието.

Доказателство:

Нека първо забележим, че A не е празно, понеже $\mathcal{P}(\bigcup W) \in A$. Оттук следва, че и $\bigcap A$ не е празно. Твърдим, че също така е изпълнено $W \subseteq \bigcap A$.

Доказателство:

Нека $x \in W$. От това, че W е подмножество на всеки елемент на A, можем да заключим, че $\forall y [y \in A \Rightarrow x \in y]$, тоест $x \in \bigcap A$.

Твърдим, че освен това $\bigcap A$ е затворено относно f.

Доказателство:

Нека допуснем, че това не е така, тоест съществуват $x_1, x_2 \in \bigcap A$, за които $f(x_1, x_2) \notin \bigcap A$. Нека $x_3 = f(x_1, x_2)$ и нека B е такова, че $B \in A \& x_3 \notin B$. Тъй като $\bigcap A \subseteq B$, то $x_1, x_2 \in B$, откъдето B няма да е затровено, понеже $f(x_1, x_2) = x_3 \notin B$. Щом B не е затворено то със сигурност не принадлежи на A. Така получихме, че B едновременно принадлежи и не принадлежи на A, което е противоречие.

Накрая остава да съобразим, че тъй като всяко затворено относно f надмножество V' на W е надмножество на $\bigcap A$, V е минимално по включване.

2. Да се докаже, че $X \in W_{\cup}$ точно тогава, когато съществува такова крайно и непразно $W_0 \subseteq W$, че $X = \bigcup W_0$.

Решение:

 (\Rightarrow) Нека C е множеството от тези X, за които горното е изпълнено:

$$C = \{x \mid x \in W_{\cup} \&$$
 съществува крайно и непразно множество $W_0 \subseteq W$, такова, че $x = \bigcup W_0 \}$

Лесно се забелязва, че W е подмножество на C, тъй като $\forall x \in W : x = \bigcup \{x\}$.

Твърдим, че освен това C е затворено относно \cup .

Да допуснем, че C не е затворено. Нека $x_1, x_2 \in C$ и $x_1 \cup x_2 \notin C$. Нека $x_3 = x_1 \cup x_2$. Лесно се забелязва, че щом W_{\cup} е затворено, то $x_3 \in W_{\cup}$. От друга страна $x_1, x_2 \in C$, откъдето $x_1 = \bigcup W_1$ & $x_2 = \bigcup W_2$ за някакви крайни непразни подмножеста W_1, W_2 на W.

Нека сега разгледаме множеството $W_0 = W_1 \cup W_2$. Ясно е, че то е крайно и непразно подмножество на W. Остава да забележим, че x_3 е точно множеството $\bigcup W_0$, тоест $x_3 \in C$, което е в противоречие с изведеното $x_3 \notin C$.

И така, получихме, че C е затворено относно \cup подмножество на W_{\cup} . Тъй като W_{\cup} е породено от W и \cup и $W \subseteq C$, последното влече, че $C = W_{\cup}$.

 (\Leftarrow) Ще докажем обратната посока, с индукция по мощността на W_0 :

База: $\overline{\overline{W_0}} = 1$

Нека w е такова, че $W_0 = \{w\}$. Тогава $X = \bigcup W_0 = w$, откъдето $X \in W_{\cup}$, понеже $w \in W_0 \subseteq W \subseteq W_{\cup}$.

Индукционна стъпка: $\overline{\overline{W_0}} = k+1$

Нека W' е произволно непразно строго подмножество на W_0 . По индукционно предположение и, тъй като $\overline{\overline{W'}} < k+1$ и $\overline{\overline{W_0 \setminus W'}} < k+1$, то $\bigcup W' \in W_{\cup}$ и $\bigcup (W_0 \setminus W') \in W_{\cup}$ откъдето от затвореността на W_{\cup} следва, че:

$$X = \bigcup W_0 = \bigcup W' \cup \bigcup (W_0 \setminus W') \in W_{\cup}$$

3. Да се докаже, че $W_{\cup \cap} = W_{\cap \cup}$.

Решение:

Нека първо забележим, че $X \in W_{\cap}$ точно тогава, когато съществува такова крайно и непразно $W_0 \subseteq W$, такова че $X = \bigcap W_0$. Доказателството на това твърдение е аналогично на доказателството в предната подточка. В сила е следното:

$$X \in W_{\cup \cap} \iff X = (x_1 \cap x_2 \cap \dots \cap x_k) \text{ as } x_1, x_2, \dots x_k \in W_{\cup} \& k \neq 0.$$

$$Y \in W_{\cup} \iff Y = (y_1 \cup y_2 \cup \dots \cup y_l) \text{ as } y_1, y_2, \dots y_l \in W \& l \neq 0.$$

$$\Rightarrow X \in W_{\cup \cap} \iff X = ((y_{1,1} \cup y_{1,2} \cup \dots \cup y_{1,l_1}) \cap \dots \cap (y_{k,1} \cup y_{k,2} \cup \dots \cup y_{k,l_k})) \text{ as } y_{i,j} \in W, k \neq 0, l_i \neq 0.$$

И следното:

$$X \in W_{\cap \cup} \iff X = (x_1 \cup x_2 \cup \dots \cup x_k) \text{ sa } x_1, x_2, \dots x_k \in W_{\cap} \& k \neq 0.$$

$$Y \in W_{\cap} \iff Y = (y_1 \cap y_2 \cap \dots \cap y_l) \text{ sa } y_1, y_2, \dots y_l \in W \& l \neq 0.$$

$$\Rightarrow X \in W_{\cap \cup} \iff X = ((y_{1,1} \cap y_{1,2} \cap \dots \cap y_{1,l_1}) \cup \dots \cup (y_{k,1} \cap y_{k,2} \cap \dots \cap y_{k,l_k})) \text{ sa } y_{i,j} \in W, k \neq 0, l_i \neq 0.$$

Накрая остава да забележим, че новополучените условия за принадлежност към $W_{\cup \cap}$ и $W_{\cap \cup}$ са еквивалентии, заради дистрибутивния закон над операциите \cap и \cup . По точно, всяко множество от вида:

$$(y_{1,1} \cup y_{1,2} \cup \cdots \cup y_{1,l_1}) \cap \cdots \cap (y_{k,1} \cup y_{k,2} \cup \cdots \cup y_{k,l_k})$$

може да се представи в алтернативен вид:

$$(y_{1,1} \cap y_{2,1} \cap \cdots \cap y_{k,1}) \cup \cdots \cup (y_{1,l_1} \cap y_{2,l_2} \cap \cdots \cap y_{k,l_k})$$

и обратно.

Задача 2. (ZF) Нека I и J са непразни множества, $\{I_j\}_{j\in J}$ е J-индексирана фамилия от непразни множества, като $I=\bigcup_{j\in J}I_j$. Нека

$$K = \{L \mid L \in \mathcal{P}(I) \& (\forall j \in J)(L \cap I_j \neq \varnothing)\}\$$

Да се докаже, че за всяка I-индексирана фамилия от множества $\{A_i\}_{i\in I}$ са в сила равенствата:

$$\bigcup_{j \in J} \bigcap_{i \in I_j} A_i = \bigcap_{L \in K} \bigcup_{i \in L} A_i,$$

$$\bigcap_{j \in J} \bigcup_{i \in I_j} A_i = \bigcup_{L \in K} \bigcap_{i \in L} A_i$$

Решение:

Първо ще докажем, че:

$$\bigcup_{j \in J} \bigcap_{i \in I_j} A_i \subseteq \bigcap_{L \in K} \bigcup_{i \in L} A_i$$

Доказателство:

Нека $x\in\bigcup_{j\in J}\bigcap_{i\in I_j}A_i$ и нека вземем $k\in J,$ такова че $x\in\bigcap_{i\in I_k}A_i.$ Тогава:

$$\forall i \in I_k \ [x \in A_i] \tag{1}$$

Нека L е произволен елемент на K и нека $y \in L \cap I_k$. От (1) $x \in A_y$. Освен това знаем, че $y \in L$, откъдето $x \in \bigcup A_i$.

Щом $x \in \bigcup_{i \in L} A_i$ за произволно $L \in K$, то $x \in \bigcap_{L \in K} \bigcup_{i \in L} A_i$.

В обратната посока, ще докажем, че:

$$\bigcup_{j \in J} \bigcap_{i \in I_j} A_i \supseteq \bigcap_{L \in K} \bigcup_{i \in L} A_i$$

Доказателство:

Нека $x \in \bigcap_{L \in K} \bigcup_{i \in L} A_i$. Да допуснем, че $x \notin \bigcup_{j \in J} \bigcap_{i \in I_j} A_i$ тоест $\forall j \in J \ [x \notin \bigcap_{i \in I_j} A_i]$ тоест $\forall j \in J \ \exists k \in I_j \ [x \notin A_k]$.

Нека разгледаме множество L от такива индекси k:

$$L = \{k \mid k \in I \& x \notin A_k\}$$

Наблюдение 1: $x \notin \bigcup A_i$

Наблюдение 2: $L \in K$. Наистина, $L \in \mathcal{P}(I)$ по дефиниция и освен това за произволно $j \in J$ е изпълнено, че $L \cap I_j \neq \emptyset$, понеже по допускане I_j съдържа елемент k, такъв че $x \notin A_k$.

Щом $L \in K$ и $x \notin \bigcup_{i \in L} A_i$, то $x \notin \bigcap_{L \in K} \bigcup_{i \in L} A_i$. Но това противоречи на избора на x, следователно допускането ни е грешно и $\bigcup_{j \in J} \bigcap_{i \in I_j} A_i \supseteq \bigcap_{L \in K} \bigcup_{i \in L} A_i$.

ни е грешно и
$$\bigcup_{i \in I} \bigcap_{i \in I_i} A_i \supseteq \bigcap_{L \in K} \bigcup_{i \in L} A_i$$
.

Нека сега разгледаме второто равенство:

$$\bigcap_{j \in J} \bigcup_{i \in I_j} A_i = \bigcup_{L \in K} \bigcap_{i \in L} A_i,$$

Първо ще докажем, че:

$$\bigcap_{j \in J} \bigcup_{i \in I_j} A_i \subseteq \bigcup_{L \in K} \bigcap_{i \in L} A_i$$

Нека
$$x \in \bigcap_{j \in J} \bigcup_{i \in I_j} A_i$$
. Тогава:

$$\forall j \in J \ \exists k \in I_j \ [x \in A_k] \tag{2}$$

Нека разгледаме множество L от такива индекси k:

$$L = \{k \mid k \in I \& x \in A_k\}$$

Наблюдение 1: $x \in \bigcap A_i$

Наблюдение 2: $L \in K$. Наистина, $L \in \mathcal{P}(I)$ по дефиниция и освен това, като следствие от (2), за произволно $j \in J$ е изпълнено, че $L \cap I_j \neq \varnothing$.

Щом
$$L \in K$$
 и $x \in \bigcap_{i \in L} A_i$, то $x \in \bigcup_{L \in K} \bigcap_{i \in L} A_i$.

В обратната посока, ще докажем, че:

$$\bigcap_{j \in J} \bigcup_{i \in I_j} A_i \supseteq \bigcup_{L \in K} \bigcap_{i \in L} A_i$$

Доказателство:

Нека $x\in\bigcup_{L\in K}\bigcap_{i\in L}A_i$ и нека вземем $L\in K$, такова че $x\in\bigcap_{i\in L}A_i$. Нека k е произволен елемент на J. Твърдим, че $x\in\bigcup_{i\in K}A_i$. Като свидетел за това можем да вземем множество A_y , където $y\in I_k\cap L$.

Щом $x \in \bigcup_{i \in I_k} A_i$ за произволно $k \in J$, то $x \in \bigcap_{j \in J} \bigcup_{i \in I_i} A_i$.

Задача 3. (ZF) Нека $I \neq \varnothing$ и $\{A_i\}_{i \in I}$ е I-индексирана фамилия от множества. Нека $\{I_j\}_{j \in J}$ е J-индексирана фамилия от взаимно чужди и непразни подмножества на I, като $\bigcup_{j\in J} I_j = I$. Да се докаже, че множествата $\prod_{i\in I} A_i$ и $\prod_{j\in J} (\prod_{i\in I_i} A_i)$ са равномощни.

Решение:

Нека функцията $r:\prod_{i\in I}A_i\to\prod_{j\in J}(\prod_{i\in I_i}A_i)$ е дефинирана по следния начин:

$$r(f) = s$$
 за $s(j) = t$ за $t(i) = f(i)$

Ще покажем, че r е инекция:

Доказателство:

Нека $r(f_1)=r(f_2)$ и нека i е произволен елемент на I. Нека вземем $j\in J$ такова, че $i\in I_j$. Ясно е, че тъй като $r(f_1) = r(f_2)$, то $r(f_1)(j) = r(f_2)(j)$. Накрая остава да съобразим, че от дефиницията на $r, f_1(i) = r(f_1)(j)(i) = r(f_2)(j)$ $r(f_2)(j)(i) = f_2(i)$. Така получихме, че за произволно $i \in I$ е в сила $f_1(i) = f_2(i)$, откъдето $f_1 = f_2$.

Ще покажем, че r е сюрекция:

Доказателство:

Нека $s \in \prod_{i \in I} (\prod_{i \in I_i} A_i)$. Дефинираме $f \in \prod_{i \in I} A_i$ по следния начин:

$$f(i) = s(j)(i)$$
 за j такова, че $i \in I_j$

Твъдим, че r(f)=s. Нека j е произволен елемент на J. Тогава $\forall i\in I_j\ [r(f)(j)(i)=f(i)=s(j)(i)],$ тоест r(f)(j)=s(j). Така получихме, че за произволно $j\in J$ е в сила r(f)(j)=s(j), откъдето r(f)=s.

Щом r е инекция и сюрекция, то r е биекция, откъдето $\overline{\prod_{i\in I}A_i}=\overline{\prod_{j\in J}(\prod_{i\in I_j}A_i)}.$

Задача 4. (ZF) Нека $I \neq \emptyset$ и $\{A_i\}_{i \in I}$ е I-индексирана фамилия от взаимно чужди множества. Да се докаже, че множествата $\prod_{i \in I} \binom{A_i}{B}$ и $\binom{\bigcup_{i \in I} A_i}{B}$ са равномощни.

Решение:

Нека функцията $r:\prod_{i\in I}(^{A_i}B)\to {}^{(\bigcup_{i\in I}A_i)}B$ е дефинирана по следния начин:

$$r(f)=s$$
 за $s(a)=f(i)(a)$ за i такова, че $a\in A_i$

Ше покажем, че r е инекция:

Доказателство:

Нека $r(f_1) = r(f_2)$ и нека i е произволен елемент на I. Тогава от равенството на $r(f_1)$ и $r(f_2)$ и от дефиницията на r в сила ще бъде: $\forall a \in A_i \ [f_1(i)(a) = r(f_1)(a) = r(f_2)(a) = f_2(i)(a)]$, откъдето $f_1(i) = f_2(i)$. Така получихме, че за произволно $i \in I$ е в сила $f_1(i) = f_2(i)$, откъдето $f_1 = f_2$.

Ще покажем, че r е сюрекция:

Доказателство:

Нека $s \in {}^{(\bigcup_{i \in I} A_i)}B$. Дефинираме $f \in \prod_{i \in I} (^{A_i}B)$ по следния начин:

$$f(i) = g$$
 за $g(a) = s(a)$

Твъдим, че r(f) = s. Нека a е произволен елемент на $\bigcup_{i \in I} A_i$ и нека i е такова, че $a \in A_i$. Тогава от дефинициите на r и f ще бъде изпълнено, че r(f)(a) = f(i)(a) = g(a) = s(a). Така получихме, че за произволно $a \in \bigcup_{i \in I} A_i$ е в сила r(f)(a) = s(a), откъдето r(f) = s.

Щом r е инекция и сюрекция, то r е биекция, откъдето $\overline{\prod_{i\in I}(^{A_i}B)}=\overline{(\bigcup_{i\in I}A_i)}B$

Задача 5. (ZF) Да се докаже, че за произволно множество A са в сила следните:

1.
$$\overline{\overline{A}} = \overline{\overline{A \cup \{A\}}} \Rightarrow \overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A) \cup \{\mathcal{P}(A)\}}}$$

2.
$$\overline{\overline{A}} = \overline{\overline{A \cup \{A\}}} \Rightarrow \overline{\overline{\mathcal{P}(\mathcal{P}(A))}} = \overline{\mathcal{P}(\mathcal{P}(A)) \times \mathcal{P}(\mathcal{P}(A))}$$

Решение:

Първо ще докажем 1). Нека $\overline{\overline{A}} = \overline{A \cup \{A\}}$ и нека $f: A \to A \cup \{A\}$ е произволна биекция. Дефинираме функция $g: \mathcal{P}(A) \to \mathcal{P}(A) \cup \{\mathcal{P}(A)\}$ по следния начин:

$$g(x) = \begin{cases} \mathcal{P}(A) & \text{, ако } \exists y \; [x = \{y\} \; \& \; f(y) = A] \\ \{f(\bigcup x)\} & \text{, иначе, ако } \exists y \; [x = \{y\}] \\ x & \text{, иначе} \end{cases}$$

Ще докажем, че g е инекция:

Доказателство:

Нека $g(x_1) = g(x_2)$. Разглеждаме четири случая:

- 1 сл. $g(x_1) = \mathcal{P}(A) = g(x_2)$. Тогава $\exists y_1 \ [x_1 = \{y_1\} \ \& \ f(y_1) = A] \ \& \ \exists y_2 \ [x_2 = \{y_2\} \ \& \ f(y_2) = A]$. Тъй като f е инекция, последното влече, че $y_1 = y_2$, откъдето $x_1 = x_2$.
- 2 сл. $g(x_1) \neq \mathcal{P}(A) \neq g(x_2)$ & $\exists y_1 \ [x_1 = \{y_1\}]$ & $\exists y_2 \ [x_2 = \{y_2\}]$. Тогава $g(x_1) = \{f(y_1)\}$ и $g(x_2) = \{f(y_2)\}$. Тъй като $g(x_1) = g(x_2)$, последното влече, че $f(y_1) = f(y_2)$, откъдето $y_1 = y_2$ и $x_1 = \{y_1\} = \{y_2\} = x_2$
- 3 сл. $\exists y_1 \ [x_1 = \{y_1\}] \oplus \exists y_2 \ [x_2 = \{y_2\}]$. Но това влече, че $\overline{g(x_1)} \neq \overline{g(x_2)}$, което е невъзможно.
- 4 сл. $\neg \exists y_1 [x_1 = \{y_1\}] \& \neg \exists y_2 [x_2 = \{y_2\}]$. Тогава $x_1 = g(x_1) = g(x_2) = x_2$.

Ще докажем, че g е сюрекция:

Доказателство:

Нека $y \in \mathcal{P}(A) \cup \{\mathcal{P}(A)\}$. Разглеждаме три случая:

1 сл. $y = \mathcal{P}(A)$. Тогава можем да вземем като първообраз на y множество $x \in \mathcal{P}(A)$ от вида $x = \{z\}$, където $z \in A \ \& \ f(z) = \{A\}$.

2 сл. $y \in \mathcal{P}(A)$ & $\exists z \ [y = \{z\}]$ Нека $s = f^{-1}(z)$. Тогава $g(\{s\}) = \{f(\lfloor J\{s\})\} = \{f(s)\} = \{z\} = y$.

3 сл. $y \in \mathcal{P}(A)$ & $\neg \exists z \ [y = \{z\}]$. Тогава g(y) = y.

Щом g е инекция и сюрекция, то g е биекция, откъдето $\overline{\overline{\mathcal{P}(A)}} = \overline{\overline{\mathcal{P}(A)} \cup \{\mathcal{P}(A)\}}$.

Сега ще докажем 2). Нека $c=f^{-1}(A)$. Дефинираме функция $h:\mathcal{P}(\mathcal{P}(A))\to\mathcal{P}(\mathcal{P}(A))\times\mathcal{P}(\mathcal{P}(A))$ по следния начин:

$$h(x)=\langle y,z\rangle$$
 за $y=\{f[a]\mid a\in x\ \&\ c\notin a\}\ \&\ z=\{f[a\setminus\{c\}]\mid a\in x\ \&\ c\in a\}$

Ше докажем, че h е инекция:

Доказателство:

Нека $h(x_1) = \langle y, z \rangle = h(x_2)$. Тогава:

$$\{f[a] \mid a \in x_1 \& c \notin a\} = y = \{f[a] \mid a \in x_2 \& c \notin a\}$$

$$\{f[a \setminus \{c\}] \mid a \in x_1 \& c \in a\} = z = \{f[a \setminus \{c\}] \mid a \in x_2 \& c \in a\}$$

Нека b е произволно множество. Разглеждаме два случая:

1 сл. $c \notin b$. Тогава:

$$b \in x_1 \iff f[b] \in y \iff b \in x_2$$

2 сл. $c \in b$. Тогава:

$$b \in x_1 \iff f[b \setminus \{c\}] \in z \iff b \in x_2$$

Така от аксиомата за обемност $x_1 = x_2$.

Ще докажем, че h е сюрекция:

Нека $\langle y,z\rangle\in\mathcal{P}(\mathcal{P}(A))\times\mathcal{P}(\mathcal{P}(A)).$ Дефинираме множество първообраз x по следния начин:

$$x = \underbrace{\{f^{-1}[b] \mid b \in y\}}_{M} \uplus \underbrace{\{f^{-1}[b] \cup \{c\} \mid b \in z\}}_{N}$$

Отсега отбелязваме, че M и N са чужди множества, тъй като $\forall x \ [x \in M \Rightarrow c \notin x] \ \& \ [x \in N \Rightarrow c \in x]$. Нека $h(x) = \langle y', z' \rangle$. В сила е следното:

По същия начин:

$$b\in z\iff f^{-1}[b]\cup\{c\}\in x$$
 // от $f^{-1}[b]\cup\{c\}\notin M$ и дефиницията на x $\iff f[(f^{-1}[b]\cup\{c\})\setminus\{c\}]\in z'$ // от $c\in f^{-1}[b]\cup\{c\}$ и дефиницията на h $\iff f[f^{-1}[b]]\in z'$ // от $c\notin f^{-1}[b]$ $\iff b\in z'$

Така получихме, че $h(x) = \langle y, z \rangle$, откъдето $\forall \langle y, z \rangle \exists x \ [h(x) = \langle y, z \rangle].$

Щом h е инекция и сюрекция, то h е биекция, откъдето $\overline{\overline{\mathcal{P}(\mathcal{P}(A))}} = \overline{\overline{\mathcal{P}(\mathcal{P}(A)) \times \mathcal{P}(\mathcal{P}(A))}}$.

Задача 6. (**ZF**) Нека A е множество, за което е в сила $\overline{\overline{A}} = \overline{\overline{A \cup \{A\}}}$. Да се докаже, че всеки път, когато B е множество и $f: \mathcal{P}(A) \cup B \rightarrowtail \mathcal{P}(\mathcal{P}(A))$ множествата B и $\mathcal{P}(\mathcal{P}(A))$ са равномощни.

Решение:

Нека първо съобразим, че щом f е биекция от $\mathcal{P}(A) \cup B$ към $\mathcal{P}(\mathcal{P}(A))$, то рестрикцията $f \upharpoonright_B$ е инекция от B към $\mathcal{P}(\mathcal{P}(A))$. Ще покажем, че съществува инекция и в обратната посока.

Нека $h: \mathcal{P}(\mathcal{P}(A)) \times \mathcal{P}(\mathcal{P}(A)) \rightarrow \mathcal{P}(A) \cup B$ е произволна биекция[†] и нека Y е следното множество:

$$Y = \{ y \mid y \in \mathcal{P}(\mathcal{P}(A)) \& \forall x \in \mathcal{P}(\mathcal{P}(A)) [h(x, y) \notin \mathcal{P}(A)] \}$$

Ще докажем, че $Y \neq \emptyset$:

[†]Знаем, че такава биекция съществува, понеже $\overline{\overline{\mathcal{P}(\mathcal{P}(A))} \times \mathcal{P}(\mathcal{P}(A))} = \overline{\overline{\mathcal{P}(\mathcal{P}(A))}}$ от 5-та задача и $\overline{\overline{\mathcal{P}(\mathcal{P}(A))}} = \overline{\overline{\mathcal{P}(A)} \cup B}$ от условието.

Нека допуснем, че $Y = \emptyset$. Тогава:

$$\forall y \,\exists x \, [h(x,y) \in \mathcal{P}(A)] \tag{3}$$

Ще покажем, че последното е невъзможно, като построим сюрективна фунцкия от $\mathcal{P}(A)$ към $\mathcal{P}(\mathcal{P}(A))$. Нека $r:\mathcal{P}(A)\to\mathcal{P}(\mathcal{P}(A))$ е дефинирана по следния начин:

$$r(z) = y$$
 за $h(x, y) = z$

Твърдим, че r е сюрекция.

Локазателство:

Нека допуснем противното и нека вземем $y \in \mathcal{P}(\mathcal{P}(A))$ такова, че:

$$\forall z \in \mathcal{P}(A) \ [r(z) \neq y]. \tag{4}$$

От (3) съществува $x \in \mathcal{P}(\mathcal{P}(A))$ такова, че $h(x,y) \in \mathcal{P}(A)$. Нека вземем z = h(x,y). Така, от дефиницията на r, r(z) = y, което е противоречие с (4).

Получихме, че съществува сюрекция от $\mathcal{P}(A) \to \mathcal{P}(\mathcal{P}(A))$, което противоречи с теоремата на Кантор. Така първоначалното ни допускане е грешно, тоест $Y \neq \varnothing$.

Нека сега вземем y да е произволен елемент на Y. Дефинираме функция $s: \mathcal{P}(\mathcal{P}(A)) \to B$ по следния начин:

$$s(x) = h(x, y)$$

Да забележим, че s е добре-дефинирана, тъй като от $y \in Y$ следва, че $\forall x \in \mathcal{P}(\mathcal{P}(A))$ $[h(x,y) \in B]$. Освен това s е инекция поради инективността на h.

Накрая остава да съобразим, че щом съществува инекция от B към $\mathcal{P}(\mathcal{P}(A))$ и щом съществува инекция от $\mathcal{P}(\mathcal{P}(A))$ към B, то от теоремата на Кантор-Шрьодер-Бернщайн, B и $\mathcal{P}(\mathcal{P}(A))$ са равномощни.

Задача 7. (**ZF**) А. Линейно наредено множество $\mathcal{A} = \langle A, \leq \rangle$ е представено като сума на I-индексираната фамилия $\{A_i\}_{i \in I}$, ако:

- $(\forall i \in I)(A_i \neq \varnothing)$
- $(\forall i \in I)(\forall j \in I)(i \neq j \Rightarrow A_i \cap A_j = \varnothing)$
- $\bigcup_{i \in I} A_i = A$
- $(\forall i \in I)(\forall j \in I)(i \neq j \Rightarrow (\forall x \in A_i)(\forall y \in A_i)(x < y) \lor (\forall x \in A_i)(\forall y \in A_i)(y < x))$
- 1. Нека $\mathcal{A} = \langle A, \leq \rangle$ е линейно наредено множество, представено като сума на I-индексирана фамилия $\{A_i\}_{i \in I}$. Бинарната релация \prec е дефинирана с равенството:

Да се докаже, че $\langle I, \preceq \rangle$ е линейно наредено множество. За тази наредба \preceq се казва, че е породена от представянето на A като сума на I-индексираната фамилия $\{A_i\}_{i\in I}$.

Решение:

Първо да забележим, че \leq е рефлексивна в I поради факта, че \leq е рефлексивно затваряне на \prec . За да докажем, че $\langle I, \preceq \rangle$ е силно антисиметрична и транзитивна ще използваме следното наблюдение:

Наблюдение 1:

$$(\forall i, j \in I)[i \leq j \& i \neq j \iff (\forall x \in A_i)(\forall y \in A_j)(x < y) \& i \neq j]$$

Нека $i, j \in I$. Тогава:

```
i\preceq j\ \&\ i\neq j\ \Longleftrightarrow (\exists x\in A_i)(\exists y\in A_j)(x< y)\ \&\ i\neq j // от дефиницията на \prec \Longleftrightarrow (\exists x\in A_i)(\exists y\in A_j)(x< y))\ \&\ i\neq j\ \& ((\forall x\in A_i)(\forall y\in A_j)(x< y) ∨ (\forall x\in A_i)(\forall y\in A_j)(y< x)) // от A - представено като сума на // I-индексирана фамилия \{A_i\}_{i\in I} \Longleftrightarrow (\forall x\in A_i)(\forall y\in A_j)(x< y)) \&\ i\neq j // от A_i\neq\varnothing\neq A_j
```

Ще докажем, че ≤ е силно антисиметрична:

Доказателство:

Нека $i, j \in I$. Тогава:

```
i\preceq j\ \&\ i\neq j\ \iff (\forall x\in A_i)(\forall y\in A_j)(x< y)\ \&\ i\neq j\ // от Наблюдение 1 \iff \neg(\exists x\in A_j)(\exists y\in A_i)(x< y)\ \&\ i\neq j\ // от дефиницията на \prec
```

Ще докажем, че ≤ е транзитивна.

Доказателство:

Нека $i,j,k\in I$ са такива, че $i\leq j$ & $j\leq k$. Ако i=j, то имаме, че $i=j\leq k$. По подобен начин, ако j=k, то $i\leq j=k$. Ако i=k, то от рефлексивността на \leq ще бъде изпълнено $i\leq i=k$. В случая, когато $i\neq j\neq k\neq i$ по **Наблюдение 1** ще бъдат в сила:

- $(\forall x \in A_i)(\forall y \in A_i)(x < y)$
- $(\forall y \in A_i)(\forall z \in A_k)(y < z)$

От транзитивна на релацията < и $A_j \neq \emptyset$ горните две влекат $(\forall x \in A_i)(\forall z \in A_k)(x < z)$, откъдето отново от **Наблюдение 1** следва, че $i \leq k$.

Щом \leq е рефлексивна, силно антисиметрична и транзитивна, то \leq е линейна наредба и $\langle I, \leq \rangle$ е линейно наредено множество.

Б. Нека $C = \langle C, \leq \rangle$ е линейно наредено множество.

 ${\cal C}$ се нарича гъсто, ако има поне два различни елемента и:

$$(\forall x \in C)(\forall y \in C)(x < y \Rightarrow (\exists z \in C)(x < z \& z < y))$$

 $\mathcal C$ се нарича разредено, ако всеки път, когато $B\subseteq C, \langle B, \leq \cap (B\times B) \rangle$ не е гъсто.

2. Да се докаже, че всяко линейно наредено множество $\mathcal{A} = \langle A, \leq \rangle$ е разредено или може да се представи като сума на такава I-индексирана фамилия $\{A_i\}_{i\in I}$, така че всяко едно от множествата $\langle A_i, \leq \cap (A_i \times A_i) \rangle$ е разредено и $\langle I, \leq \rangle$ е гъсто, където \leq е породената от това представяне наредба.

Решение:

Нека $\mathcal{A} = \langle A, \leq \rangle$ е произволно неразредено линейно наредено множество. Ще докажем, че \mathcal{A} може да се представи като сума на I-индексирана фамилия $\{A_i\}_{i\in I}$, така че всяко едно от множествата $\langle A_i, \leq \cap (A_i \times A_i) \rangle$ е разредено и $\langle I, \preceq \rangle$ е гъсто, където \preceq е породената от това представяне наредба.

Първо нека си дефинираме няколко помощни множества и нотации:

$$\operatorname{interval}(x,y) \coloneqq \{z \mid z \in A \ \& \ (x \le z \le y \ \lor \ y \le z \le x)\}$$

$$\operatorname{dense}(B) \iff \overline{\overline{B}} \ge 2 \ \& \ (\forall x \in B)(\forall y \in B)(x < y \Rightarrow (\exists z \in B)(x < z < y))$$

$$\operatorname{diluted}(B) \iff (\forall D \subseteq B)(\neg \operatorname{dense}(D))$$
$$\sim := \{\langle x, y \rangle \in A^2 \mid \operatorname{diluted}(\operatorname{interval}(x, y))\}$$

Твърдим, че ~ е релация на еквивалентност.

Ще докажем, че ∼ е рефлексивна.

Доказателство:

Нека $x \in A$. Не е трудно да се съборази, че interval $(x,x) = \{x\}$, откъдето diluted(interval(x,x)) и $\langle x,x \rangle \in \sim$.

Ще докажем, че ∼ е симетрична.

Доказателство:

Нека $\langle x,y\rangle\in\sim$. Тогава diluted(interval(x,y)), и, тъй като interval(x,y) = interval(y,x), то в сила ще бъде и diluted(interval(y,x)), откъдето $\langle y,x\rangle\in\sim$.

За да докажем, че ~ е транзитивна, ще ползваме следните наблюдения:

Наблюдение 2:

 $(\forall x, y, z \in A)[interval(x, z) \subseteq interval(x, y) \cup interval(y, z)]$

Доказателство:

Нека $x,y,z\in A,\ a\in \mathrm{interval}(x,z)$ и нека БОО x< z. Тогава $x\leq a\leq z$. Разглеждаме два случая:

1 сл. $a \leq y$. Тогава $x \leq a \leq y$, откъдето $a \in \operatorname{interval}(x,y) \subseteq \operatorname{interval}(x,y) \cup \operatorname{interval}(y,z)$.

2 сл. a>y. Тогава $y\leq a\leq z$, откъдето $a\in \mathrm{interval}(y,z)\subseteq \mathrm{interval}(x,y)\cup \mathrm{interval}(y,z)$.

Наблюдение 3:

 $(\forall x \subseteq A)[\mathrm{diluted}(x) \Rightarrow (\forall y \subseteq x)[\mathrm{diluted}(y)]$

Доказателство:

Нека $x \subseteq A$, diluted(x), $y \subseteq x$ и нека $a \subseteq y$. Тогава $a \subseteq x$, откъдето \neg dense(a).

Сега ще докажем, че \sim е транзитивна.

Доказателство:

Нека $x,y,z\in A$ са такива, че $\langle x,y\rangle,\langle y,z\rangle\in \sim$. Тогава diluted(interval(x,y)) и diluted(interval(y,z)). Ще докажем, че diluted(interval $(x,y)\cup$ interval $(x,y)\cup$ interval $(x,y)\cup$ interval $(x,y)\cup$ interval $(x,y)\cup$ interval $(x,y)\cup$ dense $(x,y)\cup$ dense $(x,y)\cup$ interval $(x,y)\cup$ dense $(x,y)\cup$

$$(\forall v \in a \cap \text{interval}(x,y))(\forall u \in a \cap \text{interval}(x,y))(v < u \Rightarrow (\exists w \in a \cap \text{interval}(x,y)^{\delta})(v < w < u))$$

откъдето dense $(a \cap \text{interval}(x,y))$. Но ние знаем, че $a \cap \text{interval}(x,y) \subseteq \text{interval}(x,y)$, противоречие с diluted(interval(x,y)).

Така показахме, че diluted(interval(x,y) \cup interval(y,z)). Щом това е изпълнено, то от **Наблюдения 2 и 3** diluted(interval(x,z)), откъдето $\langle x,z\rangle$ \in \sim .

Щом \sim е рефлексивна, симетрична и транзитивна, то \sim е релация на еквивалентност.

Нека сега вземем I да е множеството от класовете на еквивалентност на \sim и нека за $i \in I$ дефинираме A_i като елементите на класа i:

$$A_i := \{x \mid x \in i\}$$

 $^{^{}a}$ Лесно може да се съобрази, че всяко гъсто множество има поне 3 елемента, откъдето сечението на a с един от интервалите трябва да съдържа поне 2 елемента.

 $^{^{6}}w \in a \text{ or dense}(a), a w \in \operatorname{interval}(x,y) \text{ (of } x \leq v < w < u \leq y)$

Твърдим, че с текущите дефиниции, \mathcal{A} е представено като сума на I-индексираната фамилия $\{A_i\}_{i\in I}$. Лесно се вижда, че първите три условия за това са изпълнени, понеже $\{A_i\}_{i\in I}$ е разбиране на A (от \sim - ралция на еквивалентност). Ще докажем, че последното условие:

$$(\forall i \in I)(\forall j \in I)(i \neq j \Rightarrow (\forall x \in A_i)(\forall y \in A_j)(x < y) \lor (\forall x \in A_i)(\forall y \in A_j)(y < x))$$

също е в сила.

Доказателство:

Нека допуснем противното, тоест нека:

$$(\exists i \in I)(\exists j \in I)(i \neq j \& ((\exists x \in A_i)(\exists y \in A_j)(x \leq y) \& (\exists x' \in A_i)(\exists y' \in A_j)(y' \leq x')))$$

Нека вземем $i,j\in I,\ x,x'\in A_i$ и $y,y'\in A_j$ такива, че $i\neq j$ и $x\leq y\ \&\ x'\geq y'.$ Разглеждаме два случая:

1 сл. $x' \ge y$. Тогава interval $(x,y) \subseteq \operatorname{interval}(x,x')$. От **Наблюдение 3** това влече, че $y \in A_i$, откъдето i=j, противоречие.

2 сл. x' < y. Тогава interval $(x', y) \subseteq \text{interval}(y, y')$. От **Наблюдение 3** това влече, че $x' \in A_j$, откъдето i = j, противоречие.

Ще покажем, че също така $\forall i \in I \text{ (diluted}(A_i)).$

Доказателство:

Да допуснем противното. Нека $i \in I$ и $C \subseteq A_i$ са такива, че dense(C) и нека x и y са два различни елемента на C. Тогава dense $(interval(x,y) \cap C)$, но в същото време diluted(interval(x,y)) от $x,y \in A_i$. Противоречие.

Накрая ще покажем, че $\langle I, \preceq \rangle$ е гъсто.

Доказателство:

Нека $i, j \in I$ са такива, че $i \prec j$ и $i \neq j$ и нека a е произволен елемент на A_i и b е произволен елемент на A_j , като БОО нека a < b. Тъй като $i \neq j$, то \neg diluted(interval(a, b)), тоест:

$$(\exists C \subseteq \text{interval}(a, b))(\text{dense}(C))$$

Нека c е произволен некраен елемент на C и нека $k \in I$ е такова, че $c \in A_k$. Тогава $i \prec k$ & $i \neq k$. Наистина, като свидетели за $i \prec k$ можем да вземем a и c, понеже a < c, а $i \neq k$, тъй като \neg diluted(interval(a, c)).

По подобен начин може да се покаже, че $k \prec j$ & $k \neq j$.

Така $k \in I$ е такова, че $i \prec k \prec j$ и $i \neq k \neq j$, откъдето $\langle I, \preceq \rangle$ е гъсто.

Задача 8. (**ZF**) Нека S е непразно подмножество на $\mathcal{P}(A)$, което има следните две свойства:

- 1. $A \in \mathcal{S}$
- 2. S е затворено относно произволни непразни сечения, т.е. всеки път, когато $X \neq \emptyset$ и $X \subseteq S$, е в сила $\bigcap X \in S$, и $A \in S$. Да се докаже, че всяка монотонна функция $h : S \to S$ има неподвижна точка.

Решение:

Ще имитираме теоремата на Тарски. Нека си дефинираме X да е следното множество:

$$X = \{x \mid x \in \mathcal{S} \& h(x) \subseteq x\}$$

Да забележим, че $A \in \mathcal{S}$ & $h(A) \subseteq A$, откъдето $A \in X$, тоест X не е празно.

Нека сега разгледаме множеството $X' = \bigcap X$. От второто свойство на множеството S, то е в S.

Твърдим, че освен това X' е неподвижна точка на h.

Първо ще докажем, че $h(X') \subseteq X'$.

Доказателство:

Нека Y е произволен елемент на X. Тогава от h-монотонна и от $X' = \bigcap X \subseteq Y$ ще бъде в сила следното:

$$h(X') \subseteq h(Y) \subseteq Y$$

Така полуаваме, че h(X') е подмножество на всеки елемент на X, откъдето h(X') е подмножество на $\bigcap X = X'$.

Сега ще докажем, че $X' \subseteq h(X')$.

Доказателство:

Тъй като $h(X')\subseteq X'$, то от h-монотонна имаме, че: $h(h(X'))\subseteq h(X')$, откъдето $h(X')\in X$. Но $X'=\bigcap X$, следователно $X'\subseteq h(X')$.

Щом $h(X')\subseteq X'$ и $X'\subseteq h(X')$, то X'=h(X'), откъдето X' е неподвижна точка на h.

За 9-та и 10-та задача ще използваме следните три леми:

Лема 1

За всяко линейно наредено множество $\langle A, \leq \rangle$ е в сила:

 $\forall a,b \in A \ [seg(a) \subseteq seg(b) \ \lor \ seg(b) \subseteq seg(a)]$

Доказателство:

Нека a и b са произволни елементи на A. Тогава:

$$\forall c \in seg(a) \ [c < a]$$

$$\forall c \in seg(b) \ [c < b]$$

Разглеждаме два случая:

1 сл. a < b. Тогава $\forall c \in seg(a) \ [c < a \& a < b]$, тоест $\forall c \in seg(a) \ [c < b]$, откъдето $seg(a) \subseteq seg(b)$.

2 сл. b < a. Тогава $\forall c \in seg(b) \ [c < b \ \& \ b < a],$ тоест $\forall c \in seg(b) \ [c < a],$ откъдето $seg(b) \subseteq seg(a).$

Лема 2

Нека (A, \leq) е непразно линейно наредено множество и нека X е такова, че:

- \bullet $X \neq \varnothing$
- $(\forall y \in X)(\exists x \in A)(y = seg(x))$
- $(\exists x)(\bigcap X = seg(x))$

Тогава $\bigcap X \in X$.

Да допуснем противното. Нека X е множество изпълняващо условията на лемата, нека x е такова, че X = seg(x) и нека $\bigcap X \notin X$. Разглеждаме два случая:

1 сл. $\forall a \in X \ [seg(x) \subsetneq a]$. Тогава $\forall a \in X \ [x \in a]$, тоест $x \in \bigcap X = seg(x)$. Противоречие.

2 сл. $\exists a \in X \ [a \subsetneq seg(x)]$. Тогава $a \subsetneq seg(x) = \bigcap X \subseteq a$. Противоречие.

От **Лема 1** тези 2 случая са изчерпателни. Така допускането ни се оказа грешно, откъдето $\bigcap X \in X$.

Лема 3

Нека $\langle A, \leq \rangle$ е непразно линейно наредено множество, нека y е непразно подмножество на A нека X е следното множество:

$$X = \{a \mid a \in \mathcal{P}(A) \& \exists b \ [b \in y \& a = seg(b)]\}$$

и нека $\bigcap X = seg(x) \in X$. Тогава y има най-малък елемент x.

Доказателство:

Да допуснем противното. Нека $x' \in y$ е такова, че x' < x. Тогава $x' \in seg(x) = \bigcap X \subseteq seg(x')$. Противоречие с $x' \notin seg(x')$.

Задача 9. (**ZF**) Нека $\langle A, \leq \rangle$ е линейно наредено множество. Нека функцията $\pi : \mathcal{P}(A) \to \mathcal{P}(A)$ е определена чрез: $\pi(X) = \{y \in A \mid seg(y) \subseteq X\}$

Покажете, че π е монотонна и, че ако A^* е най-малката неподвижна точка на π , то за всяко $x \in A$

 $x \in A^* \iff \langle seg(x), \leq \cap (seg(x) \times seg(x)) \rangle$ е добре наредено множество.

Решение:

Първо ще направим няколко наблюдения.

Наблюдение 1: За всяко подмножество X на A, $\pi(X)$ е начален сегмент на A.

Доказателство:

Нека $X \in \mathcal{P}(A), \ a \in \pi(X)$ и нека $b \in A$ е такова, че b < a. Тогава $seg(a) \subseteq X$ и $b \in seg(a)$, откъдето $seg(b) \subseteq seg(a) \subseteq X$, следователно $b \in \pi(X)$.

Наблюдение 2: $\forall x \in A \ [A^* \neq seg(x)].$

Доказателство:

Да допуснем, че същесвува $x \in A$ такова, че $A^* = seg(x)$ и нека фиксираме това x. Тогава от дефиницията на $\pi, x \in \pi(A^*) = A^* = seg(x)$. Противоречие.

Наблюдение 3: За всеки собствен начален сегмент X на A^* е изпълнено $\exists x \in A \ [X = seq(x)].$

Доказателство:

Да допуснем противното. Нека X е собствен начален сегмент на A^* , за който $\forall x \in A \ [X \neq seg(x)]$. Тогава $\pi(X) = X$.

Доказателство:

 (\Rightarrow) Нека $x\in\pi(X).$ Тогава $seg(x)\subseteq X.$ Тъй като Xе начален сегмент и $X\neq seg(x),$ последното влече, че $x\in\pi(X).$

 (\Leftarrow) Нека сега $x \in X$. От това, че X е начален сегмент имаме, че $seg(x) \subseteq X$, откъдето $x \in \pi(X)$.

Така получихме, че $X \subsetneq A^*$ е неподвижна точка. Противоречие с дефиницията на A^* .

 (\Rightarrow) Нека сега вземем x да е произволен елемент на A^* и нека вземем y да е произволно непразно подмножество на seg(x). Ще докажем, че y има най-малък елемент относно \leq . За целта си дефинираме следното множество:

$$X = \{a \mid a \in \mathcal{P}(seg(x)) \& \exists b \ [b \in y \& a = seg(b)]\}\$$

Тъй като X е множество от собствени начални сегменти на A^* , то $\bigcap X$ е собствен начален сегмент на A^* , откъдето по **Наблюдение 3** ($\exists a \in A$)($\bigcap X = seg(a)$). Така по **Лема 2** и **Лема 3** y има най-малък елемент a.

 (\Leftarrow) Нека сега $\langle seg(x), \leq \cap (seg(x) \times seg(x)) \rangle$ е добре наредено множество. Да допуснем, че $x \notin A^*$. Така от A^* - начален сегмент, следва че $A^* \subsetneq seg(x)$.

Нека сега разгледаме множеството $seg(x) \setminus A^* \subseteq seg(x)$. Тъй като $\langle seg(x), \leq \cap (seg(x) \times seg(x)) \rangle$ е добре наредено множество, то $seg(x) \setminus A^*$ има нак-малък елемент z. Това обаче би означавало, че $A^* = seg(z)$, противоречие с Наблюдение 2.

Така допускането ни се оказа грешно, откъдето $x \in A^*$.

Задача 10. (**ZF**) Нека $\langle A, R \rangle$ е линейно наредено множество. Нека всеки път, когато ω е начален сегмент на $\langle A, R \rangle$, е в сила $\omega = A$ или ($\exists x \in A$)($\omega = seg(x)$). Докажете, че $\langle A, R \rangle$ е добре наредено множество.

Решение:

Нека вземем y да е произволно непразно подмножество на A. Ще докажем, че y има най-малък елемент относно R. За целта си дефинираме следното множество:

$$X = \{ a \mid a \in \mathcal{P}(A) \& \exists b \ [b \in y \& a = seg(b)] \}$$

Да забележим, че X не е празно, тъй като за произволен елемент b на y е изпълнено, че $seg(b) \in X$. Освен това $\bigcap X$ е начален сегмент на A, тъй като сечението на начални сегменти е начален сегмент.

Щом $\bigcap X$ е начален сегмент на A, то от условието на задачата имаме две възможности:

1 сл. $\bigcap X = A$. Този случай е невъзможен, тъй като $\forall x \in A \ [A \not\subseteq seg(x)]$.

2 сл. $\bigcap X = seg(x)$ за някакво $x \in A$. Тогава директно по **Лема 2** и **Лема 3**, x е най-малкият елемент на y относно R.

Показахме, че произволно подмножество на A има най-малък елемент относно R, следователно $\langle A,R \rangle$ е добре наредено множество.

Задача 11. (ZF) Нека $A \neq \emptyset$ и $f : \mathcal{P}(A) \setminus \{\emptyset\} \to A$ е функция на избора за A. Да се докаже, че следните две условия са еквивалентни:

- 1. $\forall x \forall y (x, y \in \text{Dom}(f) \Rightarrow f(x \cup y) = f(\{f(x), f(y)\}))$
- 2. съществува такава добра наредба \leq в A, че за всяко непразно подмножество y на A е в сила $f(y) = min_{\leq}y$.

Решение:

 (\Rightarrow) Нека първо приемем, че $\forall x \forall y (x, y \in \text{Dom}(f) \Rightarrow f(x \cup y) = f(\{f(x), f(y)\}))$ Дефинираме си релацията \leq по следния начин:

$$\leq := \{(a,b) \mid (a,b) \in A^2 \& f(\{a,b\}) = a\}$$

Ясно е, че \leq е рефлексивна, тъй като ($\forall a \in A$) $(f(\{a,a\}) = f(\{a\}) = a)$. Ще докажем, че \leq е силно антисиметрична:

Доказателство:

Нека $a, b \in A$. Тогава:

$$a < b \ \& \ a \neq b \iff f(\{a,b\}) = a \ \& \ a \neq b$$
 // от дефиницията на <
$$\iff f(\{a,b\}) \neq b \ \& \ a \neq b$$
 // от f - функция на избора
$$\iff b \not< a \ \& \ a \neq b$$
 // от дефиницията на <

Ще докажем, че ≤ е транзитивна:

Нека $a,b,c\in A$ са такива, че $a\leq b$ и $b\leq c$. Тогава $f(\{a,b\})=a$ и $f(\{b,c\})=b$, откъдето по 1. $f(\{a,b,c\})=f(\{a,b\}\cup\{b,c\})=f(\{a,b\}),f(\{b,c\})\}=f(\{a,b\})=a$. Същевременно $f(\{a,b,c\})=f(\{a,c\}\cup\{b\})=f(\{f(\{a,c\}),f(\{b\})\})=f(\{f(\{a,c\}),b\})$ Така $a=f(\{f(a,c),b\})$. От f-функция на избора, последното влече, че $a\in\{f(\{a,c\}),b\}$, откъдето $f(\{a,c\})=a$ и $a\leq c$.

Щом \leq е рефлексивна, силно антисиметрична и транзитивна, то \leq е линейна наредба

Ще докажем, че освен това ≤ е добра наредба.

Нека y е произволно непразно подмножество на A. Твърдим, че y има най-малък елемент f(y).

Доказателство:

Да забележим, че от f - функция на избора следва, че $f(y) \in y$. Нека сега допуснем, че f(y) не е най-малък елемент на y. Тогава $\exists z \in y \ [z < f(y)]$. Нека си фиксираме такова z. От z < f(y) ще бъде изпълнено, че $f(\{z, f(y)\}) = z$. Но тогава от 1. $f(y) = f(y \cup \{z\}) = f(\{f(y), f(\{z\})\}) = f(\{f(y), z\}) = z$. Противоречие с z < f(y).

 (\Leftarrow) Нека сега съществува такава добра наредба \leq в A, че за всяко непразно подмножество y на A е в сила $f(y) = min_{\leq} y$ и нека фиксираме тази наредба. Ще докажем, че:

$$\forall x \forall y (x, y \in \text{Dom}(f) \Rightarrow f(x \cup y) = f(\{f(x), f(y)\}))$$

Доказателство:

Нека $x,y\in \mathrm{Dom}(f)$. От 2. $f(x)=\min_{\leq} x$ и $f(y)=\min_{\leq} y$. Нека също така забележим, че минимумът на $x\cup y$ може да е само f(x) или f(y). БОО нека минимумът е f(x). Тогава $f(x\cup y)=\min_{\leq} (x\cup y)=f(x)=f(\{f(x),f(y)\})$.

Задача 12. (**ZF**) Нека $\langle A, \leq \rangle$ е добре наредено множество. В $A \times A$ дефинираме бинарната релация \leq^{can} така: За произволни a_1, a_2, b_1 и b_2 от $A, \langle \langle a_1, b_1 \rangle, \langle a_2, b_2 \rangle \rangle \in \leq^{can}$ точно тогава, когато:

$$\max_{\leq}\{a_1,b_1\}<\max_{\leq}\{a_2,b_2\}$$
или
$$\max_{\leq}\{a_1,b_1\}=\max_{\leq}\{a_2,b_2\}\ \&\ a_1< a_2$$
или
$$\max_{\leq}\{a_1,b_1\}=\max_{\leq}\{a_2,b_2\}\ \&\ a_1=a_2\ \&\ b_1\leq b_2$$

Да се докаже, че $\langle A \times A, \leq^{can} \rangle$ е добре наредено множество.

Решение:

Нека X е непразно подмножество на $A \times A$. Ще докажем, че X има най-малък елемент относно дефинираната в условието релация. За целта ще използваме шест функции: max, fst, snd: $A \times A \to A$; $f, g, h : \mathcal{P}(X) \to \mathcal{P}(X)$, дефинирани по следните начини:

```
\begin{aligned} \max(a,b) &= \max_{\leq} \{a,b\} \\ \text{fst}(a,b) &= a \\ \text{snd}(a,b) &= b \\ f(B) &= \{b \mid b \in B \ \& \ \max(b) = \min_{\leq} (\max[B])\} \\ g(B) &= \{b \mid b \in B \ \& \ \text{fst}(b) = \min_{\leq} (\text{fst}[B])\} \\ h(B) &= \{b \mid b \in B \ \& \ \text{snd}(b) = \min_{\leq} (\text{snd}[B])\} \end{aligned}
```

Нека сега разгледаме множеството $C \coloneqq h(g(f(X)))$. Да забележим, че от дефинициите на f,g и h и от $X \neq \emptyset$ следва, че то не е празно. Нека тогава $c = \langle c_1, c_2 \rangle$ е произволен елемент на C. Твърдим, че c е най-малкият елемент на X.

Нека $a = \langle a_1, a_2 \rangle \in X$. Да допуснем, че a < c Тогава е изпълнено едно от трите:

- 1 сл. $\max_{\leq}\{a_1,a_2\}<\max_{\leq}\{c_1,c_2\}$. Тогава $c\notin f(X)$, откъдето $c\notin g(f(X))$ и $c\notin h(g(f(X)))=C$. Противоречие с $c\in C$.
- 2 сл. $\max_{\leq}\{a_1,a_2\}=\max_{\leq}\{c_1,c_2\}$ & $a_1 < c_1$. Тогава $c \notin g(f(X))$, откъдето $c \notin h(g(f(X)))=C$. Противоречие с $c \in C$.
- 3 сл. $\max_{\leq}\{a_1,a_2\}=\max_{\leq}\{c_1,c_2\}$ & $a_1=c_1$ & $a_2\leq c_2$. Ако $a_2< c_2$, то $c\notin h(g(f(X)))=C$. Противоречие с $c\in C$. Така $a_2=c_2$, откъдето a=c. Противоречие с a< c.

Така допускането ни се оказа грешно, откъдето $c \le a$.

Показахме, че произволно подмножество на $A \times A$ има най-малък елемент. Така $A \times A$ е добре наредено.

Задача 13. Нека $\mathcal{A} = \langle A, \leq \rangle$ е линейно наредено множество.

1. (**ZF**) Да се докаже, че ако A е добре наредено множество, то няма функция $f: \omega \to A$, такава че за всяко естествено число n да е в сила f(n+1) < f(n).

Решение:

Нека допуснем противното и нека фиксираме една фунцкия $f:\omega\to A$ такава, че $\forall n\in\omega$ [f(n+1)< f(n)]. Нека също така a е най-малкият елемент на $\mathrm{Rng}(f)$ (тъй като $\mathrm{Rng}(f)\subseteq A$, то от добрата нареденост на \mathcal{A} , ще следва, че такъв елемент същесвува). и нека $b\in\omega$ е такова, че f(b)=a. Тогава $f(b+1)\in\mathrm{Rng}(f)$ и f(b+1)< f(b)=a. Противоречие с избора на a.

2. **(ZF)**+**(DC)** Да се докаже, че ако няма функция $f: \omega \to A$ удовлетворяваща условието $(\forall n \in \omega)(f(n+1) < f(n))$, то \mathcal{A} е добре наредено множество.

Забележка. (DC) е така наречената *аксиома за зависимия избор*, която следва от аксиомата за избора в (**ZF**):

Всеки път, когато B е непразно множество и R е бинарна релация със свойството $(\forall x \in B)(\exists y \in B)(xRy)$, за произволно $b_0 \in B$ има такава функция $g: \omega \to B$, че $g(0) = b_0$ и $(\forall n \in \omega)(g(n)Rg(n+1))$.

Решение:

Нека няма функция $f:\omega\to A$ удовлетворяваща условието $(\forall n\in\omega)(f(n+1)< f(n))$. Да допуснем, че $\mathcal A$ не е добре наредено множество. Тогава съществува непразно подмножество на A, което няма най-малък елемент. Нека $B\subseteq A$ е едно такова множество. Тогава:

$$(\forall x \in B)(\exists y \in B)(x > y)$$

От аксиомата за зависимия избор, последното влече, че за произволно $b_0 \in B$ има такава функция $g: \omega \to B$, че $g(0) = b_0$ и $(\forall n \in \omega)(g(n) > g(n+1))$. Разширявайки кодомейна на g до A, получаваме функция $g': \omega \to A$, за която $(\forall n \in \omega)(g'(n+1) < g'(n))$. Противоречие.

Така допускането ни се оказа грешно, откъдето \mathcal{A} е добре наредено множество.

Задача 14. Нека A и B са множества. Ще казваме, че $A \leq B$, ако съществува инекция $f: A \mapsto B$. Ще казваме, че $A \leq^* B$, ако съществува сюрекция $f: B \twoheadrightarrow A$. Докажете, че:

1. (**ZF**) За произволни множества $A \neq \emptyset$ и B е в сила: $A \leq B \Rightarrow A \leq^* B$.

Решение:

Нека $f:A \rightarrow B$ е произволна инекция и нека a е произволен елемент на A. Дефинираме функцията $g:B \rightarrow A$ по следния начин:

$$g(b) = \begin{cases} f^{-1}(b) & \text{, ако } b \in \operatorname{Rng}(f) \\ a & \text{, иначе} \end{cases}$$

Твърдим, че g е сюрекция.

Доказателство:

Нека $c\in A$. Тогава $g(f(c))=f^{-1}(f(c))=c$, тъй като $f(c)\in \mathrm{Rng}(\mathrm{f}).$

2. (**ZF**) За произволни множества A и B е в сила: $A \leq^* B \Rightarrow \mathcal{P}(A) \leq \mathcal{P}(B)$.

Решение:

Нека f: B woheadrightarrow A е произволна сюрекция. Дефинираме функцията $g: \mathcal{P}(A) o \mathcal{P}(B)$ по следния начин:

$$g(X) = \{b \mid b \in B \& f(b) \in X\}$$

Твърдим, че g е инекция.

Доказателство:

Нека $X, X' \in \mathcal{P}(A)$ са такива, че g(X) = g(X'). Да допуснем, че $X \neq X'$. Нека БОО вземем $a \in A$ такова, че $a \in X$ & $a \notin X'$ и нека b е такова, че f(b) = a. Тогава $b \in g(X)$ & $b \notin g(X')$, откъдето $g(X) \neq g(X')$. Противоречие.

Така допускането ни се оказа грешно, следователно X = X'.

3. (**ZF**) За произволни множества A и B, ако B е добре наредимо, то е в сила: $A \leq^* B \Rightarrow A \leq B$.

Решение:

Нека $f:B \twoheadrightarrow A$ е произволна сюрекция и нека $\langle B,\leq \rangle$ е произволна добра наредба. Дефинираме функцията $g:A \to B$ по следния начин:

$$g(a) = min_{<}(\{c \mid c \in B \& f(c) = a\})$$

Твърдим, че g е инекция.

Доказателство:

Нека $a, a' \in A$ са такива, че g(a) = g(a'). Тогава от дефиницията на g имаме, че:

$$a = f(g(a)) = f(g(a')) = a'$$

4. (**ZFC**) За произволни множества A и B е в сила: $A \leq^* B \Rightarrow A \leq B$.

Решение:

Нека f: B woheadrightarrow A е произволна сюрекция и нека $h: \mathcal{P}(B) \setminus \varnothing \to B$ е произволна функция на избора за B. Дефинираме функцията $g: A \to B$ по следния начин:

$$g(a) = h(\{c \mid c \in B \& f(c) = a\})$$

Твърдим, че g е инекция.

Доказателство:

Нека $a, a' \in A$ са такива, че g(a) = g(a'). Тогава от дефиницията на g имаме, че:

$$a = f(g(a)) = f(g(a')) = a'$$

Задача 15. (**ZF**) Нека $B \subseteq A$ и $\langle A, \leq \rangle$ е добре наредено множество. Да се докаже, че е в сила точно една от следните две възможности:

- 1. $\langle B, \leq \cap (B \times B) \rangle \cong \langle A, \leq \rangle$.
- 2. $\langle B, \leq \cap (B \times B) \rangle$ е изоморфно със собствен начален сегмент на $\langle A, \leq \rangle$.

Решение:

Първо ще докажем, че 1. и 2. не може да бъдат изпълнени едновременно.

Доказателство:

Да допуснем, че $\langle B, \leq \cap (B \times B) \rangle$ е едновременно изоморфно на $\langle A, \leq \rangle$ и на собствен начален сегмент на $\langle A, \leq \rangle$. Тогава от транзитивността на \cong ще бъде вярно, че $\langle A, \leq \rangle$ е изоморфно на собствен начален сегмент на $\langle A, \leq \rangle$. Нека тогава вземем такова $x \in A$, че φ е изоморфизъм между A и seg(x). Тъй като φ е биекция между A и подмножество на A, то φ е инекция между A и A, откъдето следва, че φ е разширяваща (expansive) функция, тоест $\forall x \in A \ [x \leq \varphi(x)]$. В същото време $\varphi(x) \in seg(x)$, тоест $\varphi(x) < x$. Противоречие.

 a Тъй като $\langle A, \leq \rangle$ е добре наредено множество, то всички собствени начални сегменти на A са от вида seg(x) за $x \in A$.

Сега ще докажем, че винаги е изпълнено 1. или 2. За целта нека разгледаме релацията $f \subseteq B \times A$ дефинирана по следния начин:

$$f = \{ \langle b, a \rangle \mid \langle b, a \rangle \in B \times A \& \langle seg_B(b), \leq \cap (seg_B(b) \times seg_B(b)) \rangle \cong \langle seg_A(a), \leq \cap (seg_A(a) \times seg_A(a)) \rangle \}$$

Tвърдим, че f е функционална релация.

Доказателство:

Нека $\langle b, a_1 \rangle, \langle b, a_2 \rangle \in f$. Тогава от транзитивността на \cong ще е изпълнено:

$$\langle seg_A(a_1), \leq \cap (seg_A(a_1) \times seg_A(a_1)) \rangle \cong \langle seg_A(a_2), \leq \cap (seg_A(a_2) \times seg_A(a_2)) \rangle$$

Нека допуснем, че $a_1 < a_2$. Тогава $seg_A(a_1) \subsetneq seg_A(a_2)$, откъдето съществува изоморфизъм между добре наредено множество и негов собствен начален сегмент. Но ние вече доказахме, че това е невъзможно. Така $a_1 \not< a_2$. По същия начин можем да покажем, че $a_1 \not> a_2$, откъдето $a_1 = a_2$ Така:

$$\forall b \in \mathrm{Dom}(f) \ \exists ! a \in A \ [\langle seg_B(b), \leq \cap (seg_B(b) \times seg_B(b)) \rangle \cong \langle seg_A(a), \leq \cap (seg_A(a) \times seg_A(a)) \rangle]$$

откъдето f е функционална релация.

Твърдим, че освен това f запазва наредбата и Dom(f) е начален сегмент на B.

Доказателство:

Нека $b \in \mathrm{Dom}(f)$ и $b' \in B$ са такива, че b' < b и нека f(b) = a. Така от дефиницията на f съществува изоморфизъм φ между $seg_B(b)$ и $seg_A(a)$. Тогава $\varphi \upharpoonright seg_B(b')$ е изоморфизъм между $seg_B(b')$ и някакво подмножество на $seg_A(a)$. Твърдим, че това подмножество е собствен начален сегмент на $seg_A(a)$.

Доказателство

Да допуснем противното. Нека $a_1, a_2 \in seg_A(a)$ са такива, че $b_1 = \varphi^{-1}(a_1), b_2 = \varphi^{-1}(a_2), a_1 > a_2, a_1 \in \text{Rng}(\varphi \upharpoonright seg_B(b'))$ и $a_2 \notin \text{Rng}(\varphi \upharpoonright seg_B(b'))$. Тогава $b_2 \geq b' > b_1$. Противоречие с факта, че като изоморфно изображение, φ запазва наредбата.

Така получихме, че $\varphi \upharpoonright seg_B(b)$ е изоморфизъм между $seg_B(b')$ и собствен начален сегмент на $seg_A(a)$, откъдето $b' \in \text{Dom}(f)$ и f(b') < a.

По аналогичен начин може да се докаже, че f^{-1} е запазваща наредбата функционална релация с домейн начален сегмент на A. Взимайки предвид тези съображения, следните четири случая са изчерпателни:

- 1 сл. Dom(f) = B & Rng(f) = A. Тогава f е свидетел за $\langle B, \leq \cap (B \times B) \rangle \cong \langle A, \leq \rangle$.
- 2 сл. $\mathrm{Dom}(f)=B$ & $\mathrm{Rng}(f)=seg_A(a)$ за $a\in A$. Тогава f е изоморфизъм между $\langle B,\leq \cap (B\times B)\rangle$ и собствен начален сегмент на $\langle A,\leq \rangle$.
- 3 сл. $\mathrm{Dom}(f) = seg_B(b)$ & $\mathrm{Rng}(f) = A$ за $b \in B$. Тогава f^{-1} е запазваща наредбата инекция между A и A, което влече, че f^{-1} е разширяваща тоест $\forall x \in A \ [x \leq f^{-1}(x)]$. В същото време $f^{-1}(b) \in seg_B(b)$, тоест $f^{-1}(b) < b$. Противоречие.
- 4 сл. $\operatorname{Dom}(f) = seg_B(b)$ & $\operatorname{Rng}(f) = seg_A(a)$ за $a \in A$ и $b \in B$. Тогава f е изоморфизъм между $\langle seg_B(b), \leq \cap (seg_B(b) \times seg_B(b)) \rangle$ и $\langle seg_A(a), \leq \cap (seg_A(a) \times seg_A(a)) \rangle$, откъдето $\langle b, a \rangle \in f$. Противоречие с $\operatorname{Dom}(f) = seg_B(b)$.

Задача 16. (**ZF**) Нека x е множество. Тогава x е ординал точно тогава, когато всяко транзитивно собствено подмножество на x е елемент на x.

Решение:

 (\Rightarrow) В едната посока нека x е ординал и нека A е транзитивно собствено подмножество на x. Да разгледаме множеството $A'=x\setminus A$. Тъй като A е собствено подмножество на x, то $A'\neq\varnothing$, откъдето от добрата наредба на x следва, че съществува елемент $y\in A'$, такъв че $y\cap A'=\varnothing$. Нека фиксираме такъв елемент y. Твърдим, че y=A.

Доказателство:

- (\Rightarrow) В едната посока, ще докажем, че всеки елемент на y е елемент на A. Нека $a \in y$. От trans(x) това влече, че $a \in x$, Но, тъй като $y \cap A' = \varnothing$, то $a \notin A'$, откъдето $a \in A$.
- (\Leftarrow) В обратната посока, ще докажем, че всеки елемент на A е елемент на y. Нека $a \in A$. Тогава като следствие от добрата нареденост на x има три възможности: $a \in y, y \in a$ или a = y. Ако $y \in a$, то $y \in A$ от trans(A). Но $y \in A'$, откъдето този случай е невъзможен. Ако a = y, то отново y е едновременно в A и A', което е невъзможно. Така единственият възможен случай е $a \in y$.

Показахме, че $y\subseteq A$ и $A\subseteq y$, следователно y=A.

Накрая остава да съобразим, че $A = y \in A' \subseteq x$, откъдето $A \in x$.

- (\Leftarrow) В обратната посока. Нека всяко транзитивно подмножество на x е елемент на x и нека α е най-малкият ординал, който не е елемент на x. Тъй като всеки елемент β на α е ординал, който е по-малък от α , то x ще съдържа всеки елемент на α , тоест $\alpha \subseteq x$. Разглеждаме два случая:
 - 1. $\alpha \subsetneq x$ Тогава α е транзитивно подмножество на x, откъдето от условието $\alpha \in x$. Противоречие с избора на α .
 - 2. $\alpha = x$. Тогава x е ординал.

Задача 17. (ZFC) Нека $\langle A, \leq \rangle$ е линейно наредено множество, което няма най-голям елемент. За едно множество $X \subseteq A$, се казва, че е кофинално с A, ако:

$$(\forall a \in A)(\exists x \in X)(a \le x)$$

Докажете, че съществува $B \subseteq A$, което е кофинално с A и $\langle B, \leq \rangle$ е добре наредено множество.

Решение

Нека $h: \mathcal{P}(A) \setminus \varnothing \to A$ е произволна функция на избора, нека * е такова множество, че $* \notin A$, нека $r: \mathcal{P}(A) \to A \cup \{*\}$ е дефинирана като $r:=h \cup \langle \varnothing, * \rangle$ и нека G е операцията определена от следното свойство:

$$\varphi(x,y) := y = r(\{b \mid b \in A \& \forall c \in \operatorname{Rng}(x) \cap A [c < b]\})$$

Тогава от теоремата за трансфинитна рекурсия, съществува определима операция F такава, че:

$$(\forall \alpha)[F(\alpha) = G(F \upharpoonright \alpha)]$$

Нека α е произволен ординал.

Твърдим, че ако $* \notin \operatorname{Rng}(F \upharpoonright \alpha)$ (тоест, ако $\operatorname{Rng}(F \upharpoonright \alpha) \subseteq A$), то $(F \upharpoonright \alpha)$ е инективна.

Доказателство:

Нека $x_1, x_2 \in \alpha$ са такива, че $f(x_1) = f(x_2)$. Да допуснем, че $x_1 < x_2$. Тогава:

$$f(x_2) = G(F \upharpoonright x_2) \qquad // \text{ от дефиницията на } F$$

$$= r(\{b \mid b \in A \& \forall c \in \operatorname{Rng}(F \upharpoonright x_2) \cap A \ [c < b]\}) \qquad // \text{ от дефиницията на } G$$

$$= r(\{b \mid b \in A \& \forall c \in \operatorname{Rng}(F \upharpoonright x_2) \ [c < b]\}) \qquad // \text{ от } \operatorname{Rng}(F \upharpoonright x_2) \subseteq \operatorname{Rng}(F \upharpoonright \alpha) \subseteq A$$

$$= h(\{b \mid b \in A \& \forall c \in \operatorname{Rng}(F \upharpoonright x_2) \ [c < b]\}) \qquad // \text{ от } f(x_2) \in \operatorname{Rng}(f) \not\ni *$$

Тъй като $f(x_1) \in \operatorname{Rng}(F \upharpoonright x_2)$ и $\forall c \in \operatorname{Rng}(F \upharpoonright x_2)$ $[f(x_2) > c]$, то $f(x_1) < f(x_2)$. Противоречие с $f(x_1) = f(x_2)$. Така $x_1 \not< x_2$. По аналогичен начин може да се докаже, че $x_1 \not> x_2$, откъдето $x_1 = x_2$.

Щом за произволни $x_1, x_2 \in \alpha, f(x_1) = f(x_2)$ влече, че $x_1 = x_2$, то f е инекция.

19

Твърдим, че освен това ако $* \notin \operatorname{Rng}(F \upharpoonright \alpha)$, то $(F \upharpoonright \alpha)$ запазва наредбата на α .

Доказателство:

В доказателството на предишното твърдение изведохме, че за произволни $x_1, x_2 \in \alpha, x_1 < x_2$ влече, че $f(x_1) < f(x_2).$

Твърдим, че също така съществува ординал α , за който $F(\alpha) = *$.

Доказателство:

Нека β е произволен ординал, за който $\overline{\overline{\beta}} > \overline{\overline{A}}$. Ако допуснем, че * не е образ на никой ординал, то от първото твърдение, $F \upharpoonright \beta$ ще е инективна функция от β в A. Така $\overline{\overline{\beta}} > \overline{\overline{A}}$ & $\overline{\overline{\beta}} \le \overline{\overline{A}}$. Противоречие.

Нека сега вземем α да е най-малкият ординал, за който $F(\alpha) = *$. Така от свойствата на ординалите ще бъде изпълнено, че:

$$(\forall \beta)(F(\beta) = * \iff \beta \ge \alpha)$$

Нека $B\coloneqq \mathrm{Rng}(F\upharpoonright \alpha)$. Да забележим, че B е подмножество на A, тъй като $*\notin \mathrm{Rng}(F\upharpoonright \alpha)$. Твърдим, че освен това B е кофинално с A.

Доказателство:

Да допуснем противното. Нека $a \in A$ е такова, че $\forall b \in B \ (a > b)$. Тогава $\{b \mid b \in A \ \& \ \forall c \in B \ [c < b]\} \neq \varnothing$, откъдето $r(\{b \mid b \in A \ \& \ \forall c \in B \ [c < b]\}) = h(\{b \mid b \in A \ \& \ \forall c \in B \ [c < b]\}) \neq *$. Но тогава $F(\alpha) \neq *$. Противоречие.

Накрая остава да съобразим, че тъй като $F \upharpoonright \alpha$ е запазваща наредбата биекция между α и B, и тъй като като ординал α е добре наредено множество, то B също е добре наредено множество.

П

Задача 18. (**ZF**) За произволно множество A от реални числа и за произволно реално число r с r+A означаваме множеството

$$\{x \mid x \in \mathbb{R} \& (\exists y \in A)(x = r + y)\}.$$

Нека A е най-много изброимо множество от реални числа. Да се докаже, че има такова реално число r, че $A \cap (r+A) = \varnothing$.

Решение:

Нека фиксираме една инекция от f от A в ω . Ще извършим няколко наблюдения:

Наблюдение 1: *А* е добре наредимо множество.

Доказателство:

Нека \leq е релация над A дефинирана по следния начин:

$$\leq = \{ \langle a, b \rangle \mid \langle a, b \rangle \in A \times A \& f(a) \leq f(b) \}$$

С тази дефиниция добрата нареденост на (A, \leq) следва директно от добрата нареденост на ω .

Отсега нататък нека си фиксираме една добра наредба \leq_A над A.

Наблюдение 2: $A \times A$ е най-много изброимо.

Доказателство:

Тъй като ω^2 е изброимо, ще бъде достатъчно да покажем съществуването на инекция от $A \times A$ в ω^2 . Дефинираме $g: A \times A \to \omega^2$ по следния начин:

$$g(a,b) = \langle f(a), f(b) \rangle$$

Инективността на g следва директно от инективността на f.

Наблюдение 3: $A \times A$ е добре наредимо множество. (директно следствие от **Задача 12**).

Отсега нататък нека си фиксираме една добре наредба $\leq_{A\times A}$ над $A\times A$.

Да разгледаме множеството S от разликите на елементи в A:

$$S = \{r \mid r \in \mathbb{R} \& \exists \langle s, t \rangle \in A \times A \ [s - t = r] \}$$

Твърдим, че също като $A \times A$, S е най-много изброимо.

Доказателство:

Нека функцията $h:S \to A \times A$ е дефинирана по следния начин:

$$h(r) = \langle a, b \rangle$$
 за $\langle a, b \rangle = min_{<} \{ \langle c, d \rangle \mid \langle c, d \rangle \in A \times A \& |c - d| = r \}$

Ще докажем, че h е инекция:

Доказателство:

Нека $\langle a_1,b_1\rangle=h(r_1)=h(r_2)=\langle a_2,b_2\rangle$. Ако $r_1\neq r_2$, то от дефиницията на h имаме, че $a_1-b_1=r_1\neq r_2=a_2-b_2$, откъдето $\langle a_1,b_1\rangle\neq\langle a_2,b_2\rangle$. Противоречие. Така $r_1=r_2$.

Накрая, от транзитивността на \leq , щом $\overline{\overline{S}} \leq \overline{\overline{A \times A}}$ и $\overline{\overline{A \times A}} \leq \overline{\overline{\omega}}$, то $\overline{\overline{S}} \leq \overline{\overline{\omega}}$

Щом S е най-много изброимо множество от реални числа, то съществува реално число, което не е в S. Нека r е едно такова число. Твъдим, че $A \cap (r+A) = \emptyset$.

Доказателство:

Да допуснем противното. Нека $s \in A \cap (r+A)$. От дефиницията на r+A последното влече, че $(s-r) \in A$. Тогава за $\langle s, s-r \rangle \in A \times A$ е изпълнено, че s-(s-r)=r, откъдето $r \in S$. Противоречие с $r \notin S$.