Graphical User Interface

Due date

April 28th, 2023 @ 11:59PM. Late projects are not considered.

Goal

To gain familiarity with the Matlab App Designer by:

• Creating a simple GUI (App) to interpolate Thermodynamics tables.

Submission guidelines

Upload your app file (extension .mlapp). In case your app is using external files such as text files or Excel files, compress these files along with the app file into a zip folder and submit the zip folder.

Key functions

callback functions properties str2double num2str loops if statements

Problem to be solved

Most of you have taken Thermodynamics at this point. Hence you will be familiar with the table shown in Figure 1.

TABLE A-17						TABLE A-17E					
Ideal-gas properties of air						Ideal-gas properties of air					
T	h		и		s°	T	h		и		s°
K	kJ/kg	P_r	kJ/kg	U_r	kJ/kg⋅K	R	Btu/lbm	P_r	Btu/lbm	U_r	Btu/lbm·R
200	199.97	0.3363	142.56	1707.0	1.29559	360	85.97	0.3363	61.29	396.6	0.50369
210	209.97	0.3987	149.69	1512.0	1.34444	380	90.75	0.4061	64.70	346.6	0.51663
220	219.97	0.4690	156.82	1346.0	1.39105	400	95.53	0.4858	68.11	305.0	0.52890
230	230.02	0.5477	164.00	1205.0	1.43557	420	100.32	0.5760	71.52	270.1	0.54058
240	240.02	0.6355	171.13	1084.0	1.47824	440	105.11	0.6776	74.93	240.6	0.55172
250	250.05	0.7329	178.28	979.0	1.51917	460	109.90	0.7913	78.36	215.33	0.56235
260	260.09	0.8405	185.45	887.8	1.55848	480	114.69	0.9182	81.77	193.65	0.57255
270	270.11	0.9590	192.60	808.0	1.59634	500	119.48	1.0590	85.20	174.90	0.58233
280	280.13	1.0889	199.75	738.0	1.63279	520	124.27	1.2147	88.62	158.58	0.59173
285	285.14	1.1584	203.33	706.1	1.65055	537	124.27	1.3593	91.53	146.34	0.59945
290	290.16	1.2311	206.91	676.1	1.66802	540	129.06	1.3860	92.04	144.32	0.60078
295	295.17	1.3068	210.49	647.9	1.68515	560	133.86	1.5742	95.47	131.78	0.60950
298	298.18	1.3543	212.64	631.9	1.69528	580	138.66	1.7800	98.90	120.70	0.61793
300	300.19	1.3860	214.07	621.2	1.70203	600	143.47	2.005	102.34	110.88	0.62607
305	305.22	1.4686	217.67	596.0	1.71865	620	148.28	2.249	102.34	102.12	0.63395
310	310.24	1.5546	221.25	572.3	1.73498	640	153.09	2.514	109.21	94.30	0.64159
315	315.27	1.6442	224.85	549.8	1.75106	660	157.92	2.801	112.67	87.27	0.64902
320	320.29	1.7375	228.42	528.6	1.76690	680	162.73	3.111	116.12	80.96	0.65621
325	325.31	1.8345	232.02	508.4	1.78249	700	167.56	3.446	119.58	75.25	0.66321
330	330.34	1.9352	235.61	489.4	1.79783	720	172.39	3.806	123.04	70.07	0.67002
340	340.42	2.149	242.82	454.1	1.82790	740	177.23	4.193	126.51	65.38	0.67665
350	350.49	2.149	250.02	422.2	1.85708	760	182.08	4.607	120.51	61.10	0.67603
360	360.49	2.626	257.24	393.4	1.88543	780	186.94	5.051	133.47	57.20	0.68942
370	370.67	2.892	264.46	367.2	1.91313	800	191.81	5.526	136.97	53.63	0.69558
380	380.77	3.176	271.69	343.4	1.94001	820	191.61	6.033	140.47	50.35	0.09338
300	300.77	3.170	2/1.09	373.4	1.77001	820	190.09	0.033	140.47	30.33	0.70100

Figure 1. Ideal-gas properties of air sorted by temperature, T, in Kelvin or Rankine. h stands for enthalpy, P_r for relative pressure and V_r is relative volume. Table on the left is SI units and table on the right is English units.

For a given temperature, we can obtain other properties such as enthalpy (h), relative pressure (P_r) or relative volume (V_r) . Similarly, given a different property, such as enthalpy, we can also obtain the other properties that go along with such enthalpy. The problem arises when we need to look up properties for a temperature (or any other property) that is not directly given in our table. For instance, if my temperature is 326.3 K, what is the value of the other properties for such temperature? Or if my relative pressure (P_r) is 1.185, what is the value of the other properties corresponding to such P_r ?

In these cases, we need to interpolate. The primary objective of your GUI will be to perform such interpolation for you given the value of one of the properties.

Interpolation equation

Let's think general. Imagine we know a variable with a value of x, which falls between values x_1 and x_2 given in the table. For such value of x, we need to find the value y of another variable. Figure 2 summarizes this idea in a graphical way.

Figure 2. General table with variables x and y.

In order to find y we can use the following formula:

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$

Feel free to use any other interpolation formula if you feel more comfortable with it, BUT do not use built-in interpolation functions such as *interp1()*, etc.

Basic design of GUI

This projects admits flexibility with the GUI design. At the very least, it should present the components shown in Figure 3.

Figure 3. Basic GUI design. It contains 4 text boxes for temperature (T), enthalpy (h), relative pressure (Pr) and relative volume (Vr). Also, a units radio button and a clear push button.

Your GUI must at least contain:

- 4 text boxes for temperature (T), enthalpy (h), relative pressure (P_r) and relative volume (V_r).
- A units radio button group/check box/toggle switch/etc. The default units will be SI units. By clicking in the radio button, the user can interpolate values in the English units table.
- A clear push button that will erase all text boxes.

NOTE: the units radio button is not a units conversion button. It does not convert units. It is simply a way to choose which table you want to work with, either the one with SI units or the one with English units.

The way the GUI should work

Once completed, the way the GUI should operate is as follows: the user types in a value for one and only one of the 4 properties (temperature, enthalpy, relative pressure or relative volume) in the respective text box and when it hits enter, the rest of the text boxes should populate with the proper interpolated values for those properties.

If the user enters a value that is out range, the GUI should display an error message alerting the user about this issue. You can display this error in many ways: an edit text box, a dialog box, etc. Once the user gets the error message, the user can clear all boxes and type in a correct value. In the case of a dialog box, you can also block program execution until the user closes the dialog box (there is a specific function you can use for this).

When the user clicks on the CLEAR button, it should erase the content of all 4 text boxes at once.

When the user wants to work with the English units table, it should select the radio button and then enter a property value in the corresponding text box.

Table range

You do not need to type in the whole A-17 and A-17E tables into Matlab. You can limit yourself to the range of values shown in Figure 1. Keep in mind the only variables required for this GUI are temperature, enthalpy, relative pressure and relative volume. You can ignore the rest.

You can either manually enter the values for such table properties in your script or import them from an external file (For example, an Excel file). You can do so by creating two matrices: one for table A-17 and another for table A-17E. You can define these matrices in the Startup function (startupFcn) of your GUI script.

Grading criteria

The project will be graded based on completeness and proper operation of the GUI interface. Additional and unique features to the basic design **will also be rewarded**, but are not required.