2. Using Pinned Memory

- OS uses virtual memory
 - Memory is segmented into "pages"
 - Can be "swapped out" to disk
 - Disk is significantly slower than memory (several orders of magnitude)

2. Using Pinned Memory

Before data transfer to GPU, buffers must first be copied to non-pageable memory

Pageable Data Transfer

2. Using Pinned Memory

Memory pinning: forcing a buffer to stay resident in host memory.

Pageable Data Transfer

Pinned Data Transfer

How?

- Instead of malloc()ing host buffers, use
 cudaMallocHost()
- Instead of free(), use
 cudaFree()

2. Using Pinned Memory - Results

Approach	Throughput (MFLOPS)	Improvement
CPU	504	
0. Initial Approach	1911	1407
1. Global Memory Coalescing	1978	67
2. Using Pinned Memory	2687	709

- Since transfers occupy such a high percentage of our execution time, speeding them up makes a *big* difference
- Transfer time still outweighs kernel time though...

3. Streams

© Stream: a queue containing pending CUDA calls

Creating Streams

We can create additional streams...

```
cudaStream_t stream0;
status = cudaCreateStream(&stream0);
```

Using Streams

...and issue our CUDA calls into them

kernelB<<
oblocks, bsize, 0, stream0>>>();

Stream to use (if omitted, default stream is used)

Concurrent Execution

- © GPU scheduler examines items at front of all stream queues
 - and tries to run them concurrently if possible
- Kernels can be run simultaneously if there are enough resources (Eg. SMs)

Concurrent Execution

kernelB must wait until the transfer completes because it uses the dest buffer

Default Stream	kernelA()		kernelB(dest)	Ø
Stream 0	cudaMemcpy Async (dest, src,)			• • •

- Data transfers and kernels can run concurrently if the kernel doesn't use the data being transferred
 - Note: cudaMemcpy() is blocking
 - Use cudaMemcpyAsync() instead

cudaMemcpyAsync(dest, src, size, cudaMemCpyHostToDevice, stream0);

Pointer to stream

Our Situation

We're transferring data, then calling reduce() repeatedly:

Default Stream cudaMemcpy() reduce() reduce() ...

Data Dependency

Problem: We can create another stream, but we can't overlap memcpy() and reduce()

(kernel args) are transferred!

Idea: Partition the Transfer

Instead of one big transfer:

13

Adjusting the chunk size

Instead of using only two chunks:

Scaling up the Number of Streams

3. Using Streams - Results

Approach	Throughput (MFLOPS)	Improvement
CPU	504	
0. Initial Approach	1911	1407
1. Global Memory Coalescing	1978	67
2. Using Pinned Memory	2687	709
3. Using Streams	2898	211

Note: We are not reducing transfer time; we are overlapping the transfer with computation

4. Using Shared Memory

Right now, We're using Global Memory:

O Lots of global memory accesses!

Idea

- Shared Mem doesn't stick around between kernel launches
 - copy back partial results after each host iteration

4. Using Shared Memory - Results

Approach	Throughput (MFLOPS)	Improvement
CPU	504	
0. Initial Approach	1911	1407
1. Global Memory Coalescing	1978	67
2. Using Pinned Memory	2687	709
3. Using Streams	2898	211
4. Using Shared Memory	2917	19

Small improvement!

if we were doing more shared memory accesses after the
 copy, we'd see a greater benefit here

Optimization Summary

Note: We could keep going...

Final Thoughts

- Computers are "towers of abstraction layers"
 - As programmers we often tend to ignore anything below (or above) our level (software)
 - But as we've seen, knowing about hardware makes a difference!

- 2. Parallel computing deals with the *interaction between* these layers of abstraction
 - Parallel Programmers can benefit from the
 ability to move between layers

More information

- Nvidia's CUDA-C Programming Guide, esp. "Performance Guidelines" section
- Nvidia Developer Blogs (lots of applications of GPGPU)
- Course materials made available by various universities

