Membrane Keypad Structure

Reference Materials:

Overlay Polycarbonate Film (PC) –

Matt or Glossy surface

Thickness (mm): 0.075, 0.125, 0.175, 0.250, 0.375, 0.500 Polyester Film (PET) with UV-cured texture coating –

Matt or Glossy surface

Thickness (mm): 0.15, 0.20, 0.25

Circuit Layer: Polyester Film (PET) -

Thickness (mm): 0.075, 0.100, 0.125

Conductive: Carbon Ink, Conductive Silver Paste or Metal Domes

Spacer: Polyester Film (PET)
Adhesive: Adhesive Double Tape

Standard Specification for Membrane Keypads:

 $\begin{array}{lll} \text{Contact Resistance:} & 10 \text{ to } 500 \ \Omega \\ \text{Operation Voltage:} & < 35 \text{ V DC} \\ \text{Operation Current:} & < 100 \text{ mA} \\ \text{Open Circuit Resistance:} & > 10 \ \text{M}\Omega \\ \text{Operation Force:} & 30 \text{ g to } 500 \text{ g} \\ \text{Operation Temperature:} & -20^{\circ}\text{C to } +70^{\circ}\text{C} \\ \text{Storage Temperature:} & -20^{\circ}\text{C to } +70^{\circ}\text{C} \\ \end{array}$

Life Expectancy: 5 x 10⁵ to 10 x 10⁵ cycles

Switch Stroke (travel): 0.1mm to 0.6mm Contact Bounce: 5 to 30 mSec

Overlay/Upper Circuit • Flat or Embossed Buttons Conductive Carbon or Overlay/Upper Circuit Termination to Spacer suit Application Metal Domes or Polydome Tactile Lower Circuit and LEDs embedded **Insulation Printing** Adhesive Tape Overlay **Metal Domes** Spacer Lower Circuit Adhesive **Cross Section**

Membrane Switch Structure

Flat Type (Non-Tactile)

Tactile Type

Rubber Keypad Design

Tolerance Requirement of Silicone Rubber Key:

Dimensions:		Actuation Force:	
0 - 9 mm	± 0.10 mm	50 - 60 grams	± 15 grams
10 – 19 mm	± 0.15 mm	61 – 80 grams	± 20 grams
20 – 29 mm	± 0.20 mm	81 – 100 grams	± 25 grams
30 – 39 mm	± 0.25 mm	101 – 120 grams	± 30 grams
40 – 49 mm	± 0.30 mm	121 – 150 grams	± 35 grams
50 – 59 mm	± 0.35 mm	151 – 200 grams	± 40 grams
60 and above	± 0.6 %	201 and above	± 25 %

Mechanical and Electrical Properties of Silicone Rubber:

Non-Conductive Silicone

-55°C to +250°C Temperature for use:

Specific Gravity: 1.15 Tensile Strength: 90 Kg/cm² Tear Strength: 13 Kgf/cm

Compression Set: 10% (180°C x 22 hrs.)

350% Elongation at Break: Volume Resistivity: $8 \times 10^{14} \Omega \text{ cm}$ Insulation Breakdown: 24 Kv/mm

Colour: Colouring possible

Dielectric Constant: 4.2 (50 Hz) Dielectric Tangent: 13% (50 Hz) Depending on the size of contacts and keyboard layout.

Basic Construction Illustration:

Life Test:

- Operating life depends on:
 Soft Material ... 50 Shore is preferred.
- Low Stroke ... less than 1 mm
 Angle (as part A illustrated above) ...
 40-degree is recommended.
- Length of side-wall ... (as part B illustrated above)
- Thickness of side-wall ... (as part C illustrated above) ... determined by key structure. The thicker the web, the higher the operating force.

Force-Stroke Curve of Rubber Keypad

Force	
FP	Peak Force (Fmax)
Fυ	Max. Return Force
Fc	Contact Force
FR	Min. Return Force (Fmin)
Fм	Max. Return Force
Fb	Drop Force ($FD = FP - Fc$)
FG	Gan Force (FG = FP - FM)

Stroke S1 Peak Stroke S2 Contact Stroke

Location:

0 Original Point Ρ Peak Point С Contact Point R Return Point Max. Return Point

Travel

O-P Peak Force (FMAX) P-C Contact Force C-S Min. Return Force (FміN) S-R-M-O Gap Force (Fg = FP - FM)

Rubber Keypad Design

Typical Key Sections and Characteristics:

30 ~ 350 grams Force Range: Stroke Range: 0.5 ~ 3.0 mm Cycle Life (x103): 500 ~ 2000 Typical uses:

Telephone, Remote Control, Automotive, Radio, Tovs. Calculator, etc.

Force Range: 30 ~ 250 grams Stroke Range: 0.7 ~ 2.5 mm Cycle Life (x103): 500 ~ 2000

Typical uses: Telephone, Remote Control,

Toys, Games, Calculator, etc.

Force Range: Stroke Range: Cycle Life (x103):

Force Range:

Stroke Range:

Typical uses:

Cycle Life (x103):

30 ~ 200 grams 1.0 ~ 2.5 mm 500 ~ 3000 Typical uses:

Telephone, Typrewriter,

Test Instruments, etc.

30 ~ 80 grams

 $2.0 \sim 4.0 \ mm$

5000 ~ 20000

Computer, Typewriter etc.

Force Range: 30 ~ 150 grams Stroke Range: 0.5 ~ 3.0 mm Cycle Life (x103): 1000 ~ 3000 Typical uses:

Telephone, Remote Control, Toys, Measuring Instruments,

Office Machine

Force Range: 20 ~ 80 grams Stroke Range: 0.2 ~ 1.0 mm Cycle Life (x103): 500 ~ 10000 Typical uses:

Typewriter, Household Appliances, Computer, etc.

Some Special Design Illustrations:

1. Different shorehardnesses in the basic keypad and key

2. Push or pull thru to anchor keypad to PCB

6. Control of travel distance

4. Squared key top design with LED

light pipe

Special Design for Construction Ideas:

- 1. Typical outside radius is 1.0 to 1.5 mm.
- 2. Minimum radius is 0.3 mm.
- 3. Minimum inside radius is 0.2 mm.
- 4. Spacing between the edges of a rubber dome and a guide hole is 1.0 mm or more.
- 5. Guide holes are min. 1.0 mm in diameter.
- 6. The width of a rubber dome base is typically 2.0 mm more than a.
- 7. The minimum radius for the side edges of key top is 0.25 mm.
- 8. The minimum radius for the top edges of key top is 0.2 mm.

Rubber Keypad Design

Guideline for Assembly Design:

the corner radius of plastic

the corner radius of rubber

A & B: dimensions of plastic a & b: dimensions rubber

 $A-a \ge 0.5 \text{ mm}, B-b > 0.5 \text{ mm}$

of plastic rubber B b

P: diameter of post t: the gap between post & conductive pill

D-d = 1.5 to 2.0 mm

P = 1.0 mm is better $t = 0.1 \sim 0.15 \text{ mm}$ is better

Fc: click force

Fc: F1-F2 > 25 g is better

1 mm \leq R \leq 1.25 mm, 0.75 mm \leq r \leq 1 mm is better

H: the dimension of key tops & plastic
S: the stroke of key pad

 $H-S \le 1.5 \text{ mm}$

R:

Guideline for Printing Artwork Design:

Patterns of Conductive Designs:

 Items:
 Standard Sizes of Conductive Pill

 Circle:
 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10

Square/Ellipse: Recommended size of conductive ink

printing contact is flexible.

Conductive Pill Resistance: Less than 150 ohms, with 125 grams

loading

Mechanical Life: minimum 10 million operations
Print type Resistance: Less than 500 ohms, with 125 grams

loading

Mechanical Life: 1 x 10⁶ max. operations

Colour/Printing: Suitable Key Surface for Legend Printing:

The commonly used colour for the underlay is medium-grey. Customers should provide us with the Pantone code or a colour specimen for both the key button and the legend.

Keypads Inquiry Form

Company	
Department	
Attention	
Address	
	Postcode
Phone	Fax
Email	Web
Membrane I	Requirements
Graphic Layer	LEDs
Overall size	Are embedded LEDs required
What finish is required (matt, gloss or selective texture)	Number and colour
	Will a separate tail be required
Are windows required	
Size	Tail position and length
Position	Position of tail – exit from side and rear
Do they need to be tinted	
Is embossing required	Type of connector (if required)
Pillow or rim	
Number of colours	If ZIF connector being used, get type for ref.
Switches	
Number	Any special features required
Tactile or non-tactile	Insert legends
If tactile: polydome or metal dome	Luminescent inks
	Other

Please complete this questionnaire and return to us with your sketch overleaf (See back page for address details)

Estimated project volume

Metal means higher unit cost, lower tool cost. Polydome means lower unit cost, higher tool cost.

Detail of switch matrix

