Lecture 16: Relations, binary relations, and their properties (Rosen 9.1-9.3)

Dave Naumann

Department of Computer Science Stevens Institute of Technology

CS 135 Discrete Structures Spring 2015

Outline of lecture

Relations

Representation of relations

Properties of relations

Operations on relations

Binary relations

```
Recall from lecture 7: a relation from T to U is a subset of
T \times U. (Here T, U are sets.)
Let users = \{wabeel, camaba, kbodzak, mbrady, acoppola\}
printers = {wombat, badger, ferret}
modes = \{ rd, wr, ex \}
files = \{/bin/diff, /Users/Nau/test1, /Home/Nau/lab8.ss\}
CanUse is a binary relation from users to printers, where
CanUse = \{(wabeel, wombat), (camaba, wombat), (wabeel, ferret)\}.
Access is a ternary relation on users \times modes \times files where
Access = \{(wabeel, rd, /Home/Nau/lab8.ss), \}
            (mbrady, wr, /Home/Nau/test1),
            (mbrady, ex, /bin/diff), ... }
```

Some relations on big sets

```
The \leq relation on N. The \leq relation on R.
R0 = \{(i, j) \mid (i, j) \in \mathbb{N} \times \mathbb{N} \land (i \mid j) \land i \neq j\} \text{ (alert: } i \text{ divides } j)
Child = \{(p, c) \mid p \text{ is the parent of } c\}, \text{ so}
Child \subseteq People \times People
 \{(u, ex, f) \mid u \in users \land f \text{ is a path with prefix /bin}\}
\cup \{(u, \mathsf{rd}, f \mid u \in \mathit{users} \land f \text{ is a path with prefix /pub}\}\
 \cup \{(u, \mathsf{wr}, f \mid u \in \mathit{users} \land f \text{ is a path with prefix /Home/u}\}\
 \cup {(root, m, f) | m \in modes \land f \in files}
(Look at lect16.ss)
```

Recall that a function f from \mathbf{Z} to \mathbf{R} is a relation, i.e., subset of $\mathbf{Z} \times \mathbf{R}$, such that $\forall i \in \mathbf{Z}$. $\exists ! r \in \mathbf{R}$. $(i, r) \in f$.

Which of the following relations are functions?

- $(i, r) \in R0$ iff i < r and r < i + 1
- $(i, r) \in R1$ iff $i \geqslant 0$ and i = r
- $(i, r) \in R2 \text{ iff } r^2 = i$

Relation as matrix

```
CanUse \subseteq users \times printers

CanUse = \{(wabeel, wombat), (camaba, wombat), (wabeel, ferret)\}
```

	wombat	badger	ferret
wabeel	✓		✓
camaba	✓		
kbodzak			
mbrady			
acoppola			

Relations and predicates

$$CanUse = \{(u, p) \mid CanUse?(u, p)\} \text{ where we define }$$
 $CanUse?(x, y) \equiv (x = wabeel \land (y = wombat \lor y = ferret))$
 $\lor (x = camaba \land y = wombat)$

$$R0 = \{(i,j) \mid i \neq j \land \exists k. \ i * k = j\}$$

Suppose P_0 is a two-argument predicate and $R_0 = \{(x, y) \mid P_0(x, y)\}$, and mutatis mutandis for P_1 and R_1 . What is $R_0 \cap R_1$? What is $R_0 \cup R_1$?

Defining sets the modern way:

$$(x,y) \in \mathit{CanUse} \equiv (x = \mathit{wabeel} \land (y = \mathit{wombat} \lor y = \mathit{ferret})) \ \lor (x = \mathit{camaba} \land y = \mathit{wombat})$$

Matrices

A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an $m \times n$ matrix. Two matrices are equal if they have the same dimensions and same entries.

Suppose R is a relation from the set $\{1, 2, ..., m\}$ to the set $\{1, 2, \ldots, n\}$. We can represent R by an $m \times n$ matrix M of 0s and 1s like this:

$$(i,j) \in R \equiv M[i,j] = 1$$

```
\begin{aligned} users &= \{\text{wabeel, camaba, kbodzak, mbrady, acoppola}\} \\ printers &= \{\text{wombat, badger, ferret}\} \\ CanUse &= \{(\text{wabeel, wombat}), (\text{camaba, wombat}), (\text{wabeel, ferret})\} \end{aligned}
```

Number the elements of *users* and *printers* in the order given.

```
Represent CanUse by this 5 \times 3 matrix: \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
```

Relations as boolean functions

Let S be a finite set $\{a_0, a_1, \ldots, a_m\}$ and T be $\{b_0, b_1, \ldots, b_n\}$. Let $R \subseteq S \times T$.

Represent R by a matrix M like this:

$$(x,y) \in R ext{ iff } M[i,j] = 1 ext{ where } x = a_i ext{ and } y = b_j$$

Represent R by a predicate P like this:

$$(x, y) \in R \text{ iff } P(x, y) \text{ is true}$$

In case S is $\{0, 1, \ldots, m\}$, i.e., $a_i = i$, and same for T, then $P(i, j) \equiv (M[i, j] = 1)$.

Essentially the same concept. Matrix works well as data structure, when the sets aren't too big. But we won't be studying arrays in Scheme.

Relations as digraphs

Rosen: "A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called *edges* (or *arcs*)."

What does "or" mean?

Draw digraphs with labelled dots as nodes and arrows for edges. Nice for humans, especially finite graphs and finite humans.

Essentially, a digraph is nothing more than a set and a relation on that set

Some properties of relations

Let R be a relation on T, i.e., $R \subseteq T \times T$.

"R is reflexive" means: $\forall x \in T \ (x, x) \in R$.

R is symmetric: $\forall x, y \ ((x, y) \in R \rightarrow (y, x) \in R)$

R is anti-symmetric: $\forall x, y \ ((x, y) \in R \land (y, x) \in R \rightarrow x = y)$

R is transitive: $\forall x, y, z \ ((x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R)$

Properties, in terms of predicates

Suppose $R = \{(x, y) | P(x, y)\}.$

Then "R is reflexive" iff $\forall x \in S \ P(x, x)$.

R is symmetric: $\forall x, y \ (P(x, y) \rightarrow P(y, x))$

R is anti-symmetric: $\forall x, y \ (P(x, y) \land P(y, x) \rightarrow x = y)$

R is *transitive*: $\forall x, y, z \ (P(x, y) \land P(y, z) \rightarrow P(x, z))$

Operations on relations

Let $R \subseteq T \times U$.

Define R^{-1} , the *inverse*, to be a subset of $U \times T$ as follows:

$$R^{-1} = \{(x, y) \mid (y, x) \in R\}.$$

That is: $(x, y) \in R^{-1}$ iff $(y, x) \in R$ (for all x, y)

What if $R^{-1} \subset R$? What if $id \subset R$?

Let $S \subseteq U \times V$.

Define the *composition* $S \circ R$ to relate T to V as follows:

$$(x,z)\in S\circ R ext{ iff } oxedsymbol{\exists} y \; ((x,y)\in R \wedge (y,z)\in S) oxedsymbol{eta}.$$

What is $parent \circ parent$? What is $CanUse^{-1} \circ CanUse$?

a note on matrix multiplication

Sum of matrices of the same size —like disjunction of relations on the same set. Works for conjunction. What R^{-1} ? What about composition of relations?

Let
$$M$$
 be $m \times n$ and N be $n \times p$.
Define MN by $(MN)[i,j] = (\sum_{k=1}^{n} M[i,k] * N[k,j])$

For boolean matrix (Rosen sect.9.3), replace * by \wedge and Σ by \exists .