```
In [ ]:
           GroupBy
           Aggregation
           .....
In [166]: %matplotlib inline
           import matplotlib
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
In [167]: tips = pd.read_csv('data/tips.csv')
           # Add tip % of total to DataFrame
In [168]:
           tips['tip_pct'] = tips['tip'] / tips['total_bill']
In [169]: | tips.head()
Out[169]:
                                                     size tip_pct
              total_bill tip
                                  smoker | day | time
                           sex
            0 16.99
                      1.01
                           Female
                                  No
                                          Sun Dinner 2
                                                          0.059447
            1 10.34
                      1.66
                           Male
                                  No
                                          Sun | Dinner | 3
                                                          0.160542
            2 21.01
                      3.50
                           Male
                                  No
                                          Sun | Dinner | 3
                                                          0.166587
             23.68
                      3.31
                           Male
                                  No
                                          Sun Dinner 2
                                                          0.139780
                                                          0.146808
              24.59
                      3.61
                           Female No
                                          Sun | Dinner | 4
In [170]: # Group dataset by sex and smoker
           grouped = tips.groupby(['sex', 'smoker'])
In [171]: grouped_pct = grouped['tip_pct']
In [172]: | grouped_pct.agg('mean')
                    smoker
Out[172]: sex
                               0.156921
           Female
                    No
                               0.182150
                    Yes
           Male
                               0.160669
                    No
                    Yes
                               0.152771
```

Name: tip_pct, dtype: float64

In [173]: # We can do multiple aggregation functions
grouped_pct.agg(['mean', 'std'])

Out[173]:

		mean	std
sex	smoker		
Famala	No	0.156921	0.036421
Female	Yes	0.182150	0.071595
Male	No	0.160669	0.041849
iviale	Yes	0.152771	0.090588

In [174]: # We can rename the columns
grouped_pct.agg([('Average', 'mean'), ('Standard Deviation', 'std')])

Out[174]:

		Average	Standard Deviation
sex	smoker		
Female	No	0.156921	0.036421
remale	Yes	0.182150	0.071595
Male	No	0.160669	0.041849
iviale	Yes	0.152771	0.090588

In [175]: # Can even do multiple functions on multiple columns
functions = ['count', 'mean', 'max']
result = grouped['tip_pct', 'total_bill'].agg(functions)

In [176]: result

Out[176]:

		tip_pc	t		total_bill			
		count	mean	max	count	mean	max	
sex	smoker							
Female	No	54	0.156921	0.252672	54	18.105185	35.83	
remale	Yes	33	0.182150	0.416667	33	17.977879	44.30	
Male	No	97	0.160669	0.291990	97	19.791237	48.33	
iviale	Yes	60	0.152771	0.710345	60	22.284500	50.81	

In [177]: # Can apply different functions to different columns grouped.agg({'tip': 'max', 'size': 'sum'})

Out[177]:

		tip	size
sex	smoker		
Female	No	5.2	140
remale	Yes	6.5	74
Male	No	9.0	263
Iviale	Yes	10.0	150

In [178]: # Applying multiple functions on some columns grouped.agg({'tip_pct': ['min', 'max', 'mean', 'std'], 'size': 'sum'})

Out[178]:

		tip_pct				size
		min	max	mean	std	sum
sex	smoker					
Female	No	0.056797	0.252672	0.156921	0.036421	140
remale	Yes	0.056433	0.416667	0.182150	0.071595	74
Male	No	0.071804	0.291990	0.160669	0.041849	263
iviale	Yes	0.035638	0.710345	0.152771	0.090588	150

In [179]: # Function to return top n rows of df by given column def top(df, n=5, column='tip_pct'): return df.sort_index(by=column, ascending=False)[:n]

In [180]: top(tips, n=6)

Out[180]:

	total_bill	tip	sex	smoker	day	time	size	tip_pct
172	7.25	5.15	Male	Yes	Sun	Dinner	2	0.710345
178	9.60	4.00	Female	Yes	Sun	Dinner	2	0.416667
67	3.07	1.00	Female	Yes	Sat	Dinner	1	0.325733
232	11.61	3.39	Male	No	Sat	Dinner	2	0.291990
183	23.17	6.50	Male	Yes	Sun	Dinner	4	0.280535
109	14.31	4.00	Female	Yes	Sat	Dinner	2	0.279525

In [181]: # We can apply this function on groups too tips.groupby('smoker').apply(top)

Out[181]:

		total_bill	tip	sex	smoker	day	time	size	tip_pct
smoker									
	232	11.61	3.39	Male	No	Sat	Dinner	2	0.291990
	149	7.51	2.00	Male	No	Thur	Lunch	2	0.266312
No	51	10.29	2.60	Female	No	Sun	Dinner	2	0.252672
	185	20.69	5.00	Male	No	Sun	Dinner	5	0.241663
	88	24.71	5.85	Male	No	Thur	Lunch	2	0.236746
	172	7.25	5.15	Male	Yes	Sun	Dinner	2	0.710345
	178	9.60	4.00	Female	Yes	Sun	Dinner	2	0.416667
Yes	67	3.07	1.00	Female	Yes	Sat	Dinner	1	0.325733
	183	23.17	6.50	Male	Yes	Sun	Dinner	4	0.280535
	109	14.31	4.00	Female	Yes	Sat	Dinner	2	0.279525

In [182]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')

Out[182]:

			total_bill	tip	sex	smoker	day	time	size	tip_pct
smoker	day									
	Fri	94	22.75	3.25	Female	No	Fri	Dinner	2	0.142857
No	Sat	212	48.33	9.00	Male	No	Sat	Dinner	4	0.186220
INO	Sun	156	48.17	5.00	Male	No	Sun	Dinner	6	0.103799
	Thur	142	41.19	5.00	Male	No	Thur	Lunch	5	0.121389
	Fri	95	40.17	4.73	Male	Yes	Fri	Dinner	4	0.117750
Yes	Sat	170	50.81	10.00	Male	Yes	Sat	Dinner	3	0.196812
169	Sun	182	45.35	3.50	Male	Yes	Sun	Dinner	3	0.077178
	Thur	197	43.11	5.00	Female	Yes	Thur	Lunch	4	0.115982

In [183]: # PIVOT TABLES

Aggregate a dataframe by one or more keys, arranging data with some of the tips.pivot_table(index=['sex', 'smoker'])

Out[183]:

		size	tip	tip_pct	total_bill
sex	smoker				
Fomolo	No	2.592593	2.773519	0.156921	18.105185
Female	Yes	2.242424	2.931515	0.182150	17.977879
Male	No	2.711340	3.113402	0.160669	19.791237
iviale	Yes	2.500000	3.051167	0.152771	22.284500

In [184]: tips.pivot_table(['tip_pct', 'size'], index=['sex', 'day'], columns='smoker'

Out[184]:

		tip_pct			size		
	smoker	No	Yes	All	No	Yes	All
sex	day						
	Fri	0.165296	0.209129	0.199388	2.500000	2.000000	2.111111
Female	Sat	0.147993	0.163817	0.156470	2.307692	2.200000	2.250000
l'emale	Sun	0.165710	0.237075	0.181569	3.071429	2.500000	2.944444
	Thur	0.155971	0.163073	0.157525	2.480000	2.428571	2.468750
	Fri	0.138005	0.144730	0.143385	2.000000	2.125000	2.100000
Male	Sat	0.162132	0.139067	0.151577	2.656250	2.629630	2.644068
Iviale	Sun	0.158291	0.173964	0.162344	2.883721	2.600000	2.810345
	Thur	0.165706	0.164417	0.165276	2.500000	2.300000	2.433333
All		0.159328	0.163196	0.160803	2.668874	2.408602	2.569672

In [185]: # We can pass a different agg function
This gets number of guests by sex, smoker, and day
tips.pivot_table(['size'], index=['sex', 'smoker'], columns='day', aggfunc=':

Out[185]:

		size						
	day	Fri	Sat	Sun	Thur	All		
sex	smoker							
Female	No	5	30	43	62	140		
remale	Yes	14	33	10	17	74		
Male	No	4	85	124	50	263		
iviale	Yes	17	71	39	23	150		
All		40	219	216	152	627		

In [186]: # Verify pivot table above
 tips[(tips['day'] == 'Fri') & (tips['sex'] == 'Female') & (tips['smoker'] ==

Out[186]:

		total_bill	tip	sex	smoker	day	time	size	tip_pct
	94	22.75	3.25	Female	No	Fri	Dinner	2	0.142857
	223	15.98	3.00	Female	No	Fri	Lunch	3	0.187735

In [187]: # Get number of bills by sex, smoker, and day.
pd.crosstab([tips.sex, tips.smoker], tips.day, margins=True)

Out[187]:

	day	Fri	Sat	Sun	Thur	All
sex	smoker					
Female	No	2	13	14	25	54
	Yes	7	15	4	7	33
Male	No	2	32	43	20	97
	Yes	8	27	15	10	60
All		19	87	76	62	244

In [188]: # Cross-Tabulation is a special case of a pivot table that computes group from # This gets number of bills by time, day and smoker. pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)

Out[188]:

	smoker	No	Yes	All
time	day			
Dinner	Fri	3	9	12
	Sat	45	42	87
	Sun	57	19	76
	Thur	1	0	1
Lunch	Fri	1	6	7
Lulicii	Thur	44	17	61
All		151	93	244

In [191]: # Get cross-tab by day and party size party_counts = pd.crosstab(tips['day'], tips['size']) party_counts

Out[191]:

size	1	2	3	4	5	6
day						
Fri	1	16	1	1	0	0
Sat	2	53	18	13	1	0
Sun	0	39	15	18	3	1
Thur	1	48	4	5	1	3

In [81]: # Filter out parties of 1 and 6 since so few party_counts = party_counts.ix[:, 2:5]

In [82]: party_counts

Out[82]:

size	2	3	4	5
day				
Fri	16	1	1	0
Sat	53	18	13	1
Sun	39	15	18	3
Thur	48	4	5	1

```
In [84]: # BAR CHART
party_counts.plot(kind='bar')
```

Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x113cec050>

In [86]: party_pcts

Out[86]:

size	2	3	4	5
day				
Fri	0.888889	0.055556	0.055556	0.000000
Sat	0.623529	0.211765	0.152941	0.011765
Sun	0.520000	0.200000	0.240000	0.040000
Thur	0.827586	0.068966	0.086207	0.017241

```
In [95]: # NORMALIZED BAR CHART
party_pcts.plot(kind='bar', stacked=True, figsize=(15, 9))
```

Out[95]: <matplotlib.axes._subplots.AxesSubplot at 0x11477c710>


```
In [89]: # Add % tip column
tips['tip_pct'] = tips['tip'] / tips['total_bill']
```

```
In [92]: # HISTOGRAM
tips['tip_pct'].hist(bins=50, figsize=(15, 9))
```

Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0x113d09850>


```
In [100]: # DENSITY PLOT (KERNEL DENSITY ESTIMATE)
tips['tip_pct'].plot(kind='kde', figsize=(15, 5))
```

Out[100]: <matplotlib.axes._subplots.AxesSubplot at 0x116d118d0>

In [193]: # Tipping density for smokers/non-smokers
tips['tip_pct'].groupby(tips.smoker).plot(kind='kde', figsize=(15, 5), legence

Out[193]: smoker

No Axes(0.125,0.125;0.775x0.775) Yes Axes(0.125,0.125;0.775x0.775)

dtype: object


```
In [192]: # Density plot of two normally distributed draws
    draw_1 = np.random.normal(0, 1, size=200)
    draw_2 = np.random.normal(10, 2, size=200) # 2^2 = 4

    values = pd.Series(np.concatenate([draw_1, draw_2]))
    values.hist(bins=100, alpha=0.3, color='k', normed=True, figsize=(15,9))
    values.plot(kind='kde', style='k--', figsize=(15,9))
```

Out[192]: <matplotlib.axes._subplots.AxesSubplot at 0x1185ca850>

In []: