Generative Models for Classification

In the case of <u>Logistic Regression</u> we directly model Pr(Y = k | X = x) using the <u>Sigmoid Function</u> (Logistic Function) its a simple conditional probability approach **Predicting** Y **given** X.

Considering the alternative Probability of the the predictors X given a class Y which is the logic behind **Bayes Theorem**, When the distribution of X is normal the model turn to be very similar to Logistic Regression.

Why its needed?

- If There is a substantial separation between the two classes the **parameter estimates** for logistic regression model will be unstable
- If the predictors X are normally distributed and the sample size n is small Using **Generative Models** will be more accurate than Logistic Regression

Suppose that we want to classify an observation into on of the K classes where $K \geq 2$, means the Response Y can take K possible classes.

- Let π_k be the **Prior Probability** that the a random <u>Observation</u> comes from the kth class
- Let $f_k(X) = \Pr(X|Y=k)$ is the **Density Function** of X
 - $f_k(x)$ will be large if there is **high probability** of that observation being in the kth class

$$\Pr(Y=k|X=x) = rac{\pi_k f_k(x)}{\sum^K \pi_i f_i(x)}$$

- This is just the <u>Bayes' theorem</u> Formula
- Let $p_k(x) = \Pr(Y = k | X = x)$ and will also be called the **Posterior** probability
- So our goal is to know the probability of the Observation being in the kth class Given the class k aka Response Y

Linear Discriminant Analysis Vs Logistic Regression

First before diving into **LDA**, Lets establish a clear difference between What <u>Logistic Regression</u> Does and What **LDA Does**, cause at the end they both Classify a new observation into a class.

What Logistic Regression Does

It tries to directly model the posterior probability

$$P(Y=k|X=x)=rac{e^{ec{X}ec{eta}}}{1+e^{ec{X}ec{eta}}}$$

- You just want to separate the classes, Its Discriminative just making distinctions
- ullet We don't care how the data X looks like inside each class, We just wanna class each observation
- We also don't care about how the data was generated

What LDA Does

- Its a generative, it models how the data X looks within each class
- With the assumption of the data X taking a normal distribution form

$$P(X|Y=k) = \mathcal{N}\left(\mu_k, \sum
ight)$$

• Then use <u>Bayes' theorem</u> to compute

$$P(Y=k|X=x)=rac{P(X|Y=k)P(Y=k)}{P(X)}$$

- Then classify x by choosing the class with the highest **posterior** P(Y = k | X = x)
- Simply its saying This new point looks most like the kind of data that class k generates