- 1. Realizar las siguientes actividades sobre Cálculo λ .
 - (a) Da una expresión del Cálculo λ que involucre todos los constructores del lenguaje (variables, abstracciones λ y aplicaciones de función).

```
Solución. (\lambda x.x)(\lambda y.y)y
```

- (b) Para cada una de las siguientes expresiones:
 - (a) Currificar en caso de ser necesario.
 - (b) Dar una expresión que sea α -equivalente.
 - (c) Indicar las variables de ligado, ligadas y libres.
 - (d) Realizar las β -reducciones correspondientes hasta llegar a su Forma Normal o indicar por qué ésta no existe.
 - a) $(\lambda abc.cba)zz(\lambda wv.w)$

Solución.

- (a) $(\lambda a.\lambda b.\lambda c.cba)zz(\lambda w.\lambda v.w)$
- $\begin{array}{l} (\mathbf{b}) \ \ (\lambda a.\lambda b.\lambda c.cba)zz(\lambda w.\lambda v.w)[a:=x] \\ \equiv_{\alpha} \ \ (\lambda x.\lambda b.\lambda c.cbx)zz(\lambda w.\lambda v.w)[b:=y] \\ \equiv_{\alpha} \ \ (\lambda x.\lambda y.\lambda c.cyx)zz(\lambda w.\lambda v.w)[c:=z] \\ \equiv_{\alpha} \ \ (\lambda x.\lambda y.\lambda z.zyx)zz(\lambda w.\lambda v.w)[w:=m] \\ \equiv_{\alpha} \ \ (\lambda x.\lambda y.\lambda z.zyx)zz(\lambda m.\lambda v.m)[v:=n] \\ \equiv_{\alpha} \ \ (\lambda x.\lambda y.\lambda z.zyx)zz(\lambda m.\lambda v.m) \end{array}$
- (c) $(\lambda a.\lambda b.\lambda c.cba)zz(\lambda w.\lambda v.w)$
- (d) $(\lambda a.\lambda b.\lambda c.cba)zz(\lambda w.\lambda v.w) \rightarrow_{\beta} \lambda b.\lambda c.cba[a := zz(\lambda w.\lambda v.w)]$ $= \lambda b.\lambda c.cbzz(\lambda w.\lambda v.w) \rightarrow_{\beta} \lambda c.cbzz[b := (\lambda w.\lambda v.w)]$ $= \lambda c.c(\lambda w.\lambda v.w)zz \rightarrow_{\beta} c[c := (\lambda w.\lambda v.w)zz]$ $= (\lambda w.\lambda v.w)zz \rightarrow_{\beta} \lambda v.w[w := zz]$ $= \lambda v.zz$
- b) $(\lambda y.y)(\lambda x.xx)(\lambda z.zq)$

Solución.

- (a) No es necesario currificar.
- (b) $(\lambda y.y)(\lambda x.xx)(\lambda z.zq)[x := a]$ $\equiv_{\alpha} (\lambda y.y)(\lambda a.aa)(\lambda z.zq)[y := b]$ $\equiv_{\alpha} (\lambda b.b)(\lambda a.aa)(\lambda z.zq)[z := c]$ $\equiv_{\alpha} (\lambda b.b)(\lambda a.aa)(\lambda c.cq)$
- (c) $(\lambda y.y)(\lambda x.xx)(\lambda z.zq)$
- (d) $(\lambda y.y)(\lambda x.xx)(\lambda z.zq) \rightarrow_{\beta} y[y := (\lambda x.xx)(\lambda z.zq)]$ $= (\lambda x.xx)(\lambda z.zq) \rightarrow_{\beta} xx[x := (\lambda z.zq)]$ $= (\lambda z.zq)(\lambda z.zq) \rightarrow_{\beta} zq[z := (\lambda z.zq)]$ $= (\lambda z.zq)q \rightarrow_{\beta} zq[z := q]$ = qq
- c) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$

Solución.

- (a) No es necesario currificar.
- (b) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)[z := a]$ $\equiv_{\alpha} (\lambda a.a)(\lambda a.aa)(\lambda a.ay)$
- (c) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy)$

$$\begin{array}{l} (\mathrm{d}) \ \ (\lambda z.z)(\lambda z.zz)(\lambda z.zy) \rightarrow_{\beta} z[z:=(\lambda z.zz)(\lambda z.zy)] \\ = \ \ (\lambda z.zz)(\lambda z.zy) \rightarrow_{\beta} zz[z:=(\lambda z.zy)] \\ = \ \ (\lambda z.zy)(\lambda z.zy) \rightarrow_{\beta} zy[z:=(\lambda z.zy)] \\ = \ \ (\lambda z.zy)y \rightarrow_{\beta} zy[z:=y] \\ = \ \ yy \end{array}$$

d) $(\lambda a.aa)(\lambda b.ba)c$

Solución.

- (a) No es necesario currificar.
- (b) $(\lambda a.aa)(\lambda b.ba)c$ [a := x] $\equiv_{\alpha} (\lambda x.xx)(\lambda b.bx)c$ [b := y] $\equiv_{\alpha} (\lambda x.xx)(\lambda y.yx)c$
- (c) $(\lambda a.aa)(\lambda b.ba)c$
- (d) $(\lambda a.aa)(\lambda b.ba)c \rightarrow_{\beta} aa[a := (\lambda b.ba)c]$ = $(\lambda b.ba)c(\lambda b.ba)c \rightarrow_{\beta} ba[b := c(\lambda b.ba)c]$ = $c(\lambda b.ba)ca \rightarrow_{\beta} ba[b := ca]$ = ccaca
- 2. De acuerdo a la representación de números (Numerales de Church) y representación de booleanos en el Cálculo λ .
 - (a) Definir la función \neq que decide si un número es distinto a otro. **Solución.** $\neq =_{def} \lambda xy.if \ x == y \ Then \ \lambda t.\lambda f.t \ else \ \lambda t.\lambda f.f$
 - (b) Definir la función \rightarrow (implicación) sobre booleanos. **Solución.** $\rightarrow =_{def.} \lambda ab.if$ a Then b else $\lambda t.\lambda f.t$
 - (c) Definir la función nor sobre booleanos.

Solución. $nor =_{def.} \lambda p.\lambda q.pqq$ Veamos el ejemplo $nor\ True\ False.$ Dado que $True =_{def.} \lambda t.\lambda f.t\ y\ False =_{def.} \lambda t.\lambda f.f$ entonces. $nor\ True\ False = (\lambda p.\lambda q.pqq)(\lambda t.\lambda f.t)(\lambda t.\lambda f.f)$ $= (\lambda t.\lambda f.t)(\lambda t.\lambda f.f)(\lambda t.\lambda f.f)$ $= \lambda t.\lambda f.f \equiv False.$

3. Explica por qué el algoritmo de sustitución visto en clase es de $O(n^2)$. Solución. Es de tal complejidad ya que tenemos expresiones anidadas con n variables, es decir, de forma general si tenemos n variables, tenemos lo siguiente.

$$n + (n-1) + (n-2) + \ldots + 3 + 2 + 1 = \tfrac{n(n-1)}{2}$$

Razón por la cual tenemos complejidad $O(n^2)$.

- 4. Evalúa las siguientes expresiones usando:
 - (a) Sustitución.
 - (b) Ambientes con alcance dinámico.
 - (c) Ambientes con alcance estático.

Para (a) y (b) es necesario que muestres el ambiente de evaluación en forma de pila.

```
(a) (let (a 2)
      (let (b 3)
         (let (foo (lambda (x) (- (+ a b) x)))
            (let (a -2)
               (let (b - 3)
                   (let (foo (lambda (x) (+ (-ab) x)))
                      (foo -10)))))))
```

```
Solución.
  a) Sustitución.
      (\text{let (a 2) } [\text{a:=2}])
          (let (b 3) [a:=2]
              (\text{let (foo (lambda (x) (+ (- a[a:=2] b) x))) [a:=2]})
                  (\text{let (b -3) } [\text{a} = 2])
                      (\text{let (foo (lambda (x) (+ (- a[a:=2] b) x))) [a:=2]}
                          (\text{foo -10})))))) [a:=2]
      (let (a 2)
          (let (b 3) [b:=3]
              (\text{let (foo (lambda (x) (+ (- 2 b[b:=3]) x))) [b:=3]}
                  (\text{let (b -3) } [\text{b:=3}])
                      (\text{let (foo (lambda (x) (+ (- 2 b[b:=3]) x))) [b:=3]}
                          (\text{foo -10}))))))) [b:=3]
      (let (a 2)
          (let (b 3)
              (\text{let (foo (lambda (x) (+ (-2 3) x))) [foo:=(+ (-2 3) x)]}
                  (\text{let (b -3) [foo:=(+ (- 2 3) x)]})
                      (let (foo (lambda (x) (+ (-2 3) x))) [foo:=(+ (-2 3) x)]
                          (\text{foo -10}))))))) [foo:=(+ (- 2 3) x)]
      (let (a 2)
          (let (b 3)
              (let (+ -1 x) x)) [foo := (+ (- 2 3) x)]
                  (\text{let (b -3) } [\text{foo:=}(+ (-2 3) x)]
                      (\text{let (foo (lambda (x) (+ (-2 3) x))) [foo:=(+ (-2 3) x)]})
                          ((+ (-2 3) x) -10)))) [foo:=(+ (-2 3) x)]
      (let (a 2)
          (let (b 3)
```

b) Dinámico.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

X	-10
b	-3
a	-2
foo	((lambda (x) (- (+ a b) x)) -10)
b	3
a	2

A continuación tomamos la función que está en medio de la expresión.

$$\rightarrow$$
 (foo -10)

$$\rightarrow$$
 ((lambda (x) (- (+ a b) x)) -10)

Trabajamos ahora sobre el cuerpo de la función.

$$\rightarrow$$
 (- (+ a b) x)

$$\rightarrow (-(+(-2)(-3))-10)$$

$$\rightarrow$$
 (- -5 -10)

$$\rightarrow 5$$

Por lo tanto, la evaluación de la expresión en ambiente dinámico es 5.

c) Estático.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

	10
X	-10
b	-3
a	-2
foo	((lambda (x) (- (+ a b) x)) -10)
b	3
a	2

A continuación tomamos la función que está en medio de la expresión y hacemos la cerradura.

$$\rightarrow$$
 (foo -10)
 \rightarrow (-10)
Trabajamos ahora sobre el cuerpo de la cerradura.
 \rightarrow (- (+ a b) x)
 \rightarrow (- (+ 2 3) -10)
 \rightarrow (- 5 -10)
 \rightarrow 15

Por lo tanto, la evaluación de la expresión en ambiente estático es 15.

Solución.

a) Sustitución.

b) Dinámico.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

A continuación tomamos la función que está en medio de la expresión.

 \rightarrow (foo 10)

$$\rightarrow$$
 ((lambda (x) (+ x (foo (- x 1)))) 10)

Trabajamos ahora sobre el cuerpo de la función.

```
\rightarrow (+ x (foo (- x 1)))

\rightarrow (+ 10 (foo (- 10 1)))

\rightarrow (+ 10 (foo 9)))
```

Como la función tiene otra aparición dentro, entonces la función que está adentro se va a ciclar provocando que no se le pueda dar algún valor.

c) Estático.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

A continuación tomamos la función que está en medio de la expresión y hacemos la cerradura.

Como la función tiene otra aparición dentro, entonces la función que está adentro se va a ciclar provocando que no se le pueda dar algún valor.

```
(c) (let (x 2)
	(let (foo (lambda (a) (+ x 2)))
	(let (y 3)
	(let (foo (lambda (b) (- y b)))
	(let (x 4)
	(let (goo (lambda (b) (+ (foo x) (foo y)))))
	(goo 3))))))
```

Solución.

a) Sustitución.

(let (x 2) [x:=2]

(let (foo (lambda (a) (+ x[x:=2] 2))) [x:=2]

(let (y 3) [x:=2]

(let (foo (lambda (b) (- y b))) [x:=2]

(let (x 4) [x:=2]

(let (goo (lambda (b) (+ (foo x) (foo y))))) [x:=2]

(goo 3)))))) [x:=2]

(let (x 2)

(let (x 2)

(let (y 3) [foo:=(+ 2 2)]

(let (foo (lambda (b) (- y b))) [foo:=(+ 2 2)]

```
(\text{let } (x \ 4) \ [\text{foo} := (+ \ 2 \ 2)]
                   (let (goo (lambda (b) (+ (foo x) (foo y))))) [foo:=(+ 2 2)]
                       (goo 3)))))) [foo:=(+ 2 2)]
(let (x 2)
   (let (a 4)
       (\text{let } (y 3) [y:=3]
           (\text{let (foo (lambda (b) (- y[y:=3] b))) [y:=3]})
               (\text{let } (x \ 4) \ [y:=3]
                   (let (goo (lambda (b) (+ (foo x) (foo y))))) [y:=3]
                       (goo 3)))))))[y:=3]
(let (x 2))
   (let (a 4)
       (let (y 3))
           (let (foo (lambda (b) (- 3 b))) [foo:=(- 3 b)]
               (\text{let } (x \ 4) \ [\text{foo} := (-3 \ b)]
                   (\text{let (goo (lambda (b) (+ (foo x) (foo y))))) [foo:=(-3 b)]}
                       (goo 3)))))) [foo:=(- 3 b)]
(let (x 2))
   (let (a 4)
       (let (y 3)
           (let (b - 3))
               (\text{let } (x \ 4) \ [x:=4]
                   (let (goo (lambda (b) (+ (foo x) (foo y))))) [x:=4]
                       (goo 3))))))) [x:=4]
(let (x 2))
   (let (a 4)
       (let (y 3)
           (let (b -3)
               (let (x 4)
                   (let (goo (lambda (b) (+ (foo x) (foo y))))) [goo := (+ (foo x) (foo y))]
                       (goo 3)))))) [goo:=(+ (foo x) (foo y))]
(let (x 2))
   (let (a 4)
        (let (y 3)
           (let (b -3)
               (let (x 4)
                   (\text{let }(+ (\text{foo } x) (\text{foo } y)))))
                       ((+ (foo x) (foo y)) 3))))
```

b) Dinámico.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

x	3
goo	(lambda (b) (+ (foo x) (foo y)))
X	4
foo	(lambda (b) (- y b))
У	3
foo	(lambda (a) (+ x 2))
X	2

A continuación tomamos la primera función de la expresión.

```
\rightarrow (goo 3)

\rightarrow ((lambda (b) (+ (foo x) (foo y))) 3)

Trabajamos ahora sobre el cuerpo de la función.

\rightarrow (+ (foo x) (foo y))

\rightarrow (+ ((lambda (a) (+ x 2)) x) ((lambda (a) (+ x 2)) y))

\rightarrow (+ ((lambda (a) (+ 3 2)) 3) ((lambda (a) (+ 3 2)) 3))

\rightarrow (+ ((lambda (a) 5) 3) ((lambda (a) 5) 3))

\rightarrow (+ ((lambda (a) 5) 3) ((lambda (a) 5) 3))

\rightarrow (+ 3 3)

\rightarrow 6
```

Por lo tanto, la evaluación de la expresión en ambiente dinámico es 6.

c) Estático.

Primero hacemos la pila con los valores establecidos en los let quedando de la siguiente manera.

X	3
goo	(lambda (b) (+ (foo x) (foo y)))
X	4
foo	(lambda (b) (- y b))
У	3
foo	(lambda (a) (+ x 2))
X	2

A continuación tomamos la primera función de la pila y hacemos la cerradura.

```
\rightarrow (goo 3)
```

$$\rightarrow$$
 (-10)

Trabajamos ahora sobre el cuerpo de la cerradura.

$$\rightarrow$$
 (+ (foo x) (foo y))

$$\rightarrow$$
 (+ ((lambda (b) (- y b)) x) ((lambda (b) (- y b)) y))

$$\rightarrow$$
 (+ ((lambda (b) (- 3 b)) 2) ((lambda (b) (- 3 b)) 3))

$$\rightarrow$$
 (+ 2 3)

$$\rightarrow 5$$

Por lo tanto, la evaluación de la expresión en ambiente estático es 5.

5. ¿Por qué fue necesario introducir *cerraduras* para evaluar expresiones con alcance estático en nuestras reglas semánticas?

Solución. Porque en la cerradura almacenaremos el parámetro, cuerpo y ambiente en donde la expresión fue definida, de tal forma que al evaluar la función, en vez de que simplemente se regrese, se regresa una cerradura la cual encierra a la función con el ambiente actual.