CHAP 3 - NOMBRES COMPLEXES

Dans l'ensemble de ce chapitre, on se place dans le plan usuel \mathscr{P} muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

1 L'ensemble $\mathbb C$ des nombres complexes

1.1 Définition

Définition 1

On note i un nombre imaginaire.

On appelle **nombre complexe** tout nombre z qui s'écrit sous la forme z = x + iy où x et y sont des réels. Cette écriture s'appelle **forme algébrique** du nombre complexe.

x s'appelle la **partie réelle** de z; on la note x = Re(z).

y s'appelle la **partie imaginaire** de z; on la note y = Im(z).

L'ensemble des nombres complexes se note \mathbb{C} .

Remarque 1

- (a) $z = z' \Leftrightarrow (\operatorname{Re}(z) = \operatorname{Re}(z'))$ et $\operatorname{Im}(z) = \operatorname{Im}(z')$. En particulier z = 0 si, et seulement si $\operatorname{Re}(z) = \operatorname{Im}(z) = 0$.
- (b) On note \mathbb{C}^* l'ensemble \mathbb{C} privé de 0.
- (c) Si Im(z) = 0, z est un nombre réel.
- (d) Si Re(z) = 0, on dit que z est un **imaginaire pur**.

1.2 Représentation géométrique

Définition 2

L'application de \mathbb{C} dans \mathscr{P} qui au nombre complexe $z=x+\mathrm{i} y$ associe le point M de coordonnées (x,y) est une bijection.

On dit que z est l'affixe du point M et que M est l'image ponctuelle du nombre z.

L'application de \mathbb{C} dans l'ensemble des vecteurs du plan qui au nombre complexe z = x + iy associe le vecteur \vec{w} de coordonnées (x, y) est une bijection.

On dit que z est l'affixe du vecteur \vec{w} et que \vec{w} est l'image vectorielle de z.

2 Opérations sur les nombres complexes

2.1 Lois internes

On munit \mathbb{C} de deux lois internes + et · définies pour z = x + iy et z' = x' + iy' où $(x, y, x', y') \in \mathbb{R}^4$ par :

$$z + z' = (x + x') + i(y + y')$$
 et $z \cdot z' = (xx' - yy') + i(xy' + yx')$

Remarque 2

(a) La loi · permet de trouver :

$$i \cdot i = -1$$

Ainsi i est solution dans \mathbb{C} de l'équation $z^2 = -1$.

En appliquant ce résultat, on constate que les opérations dans \mathbb{C} sont compatibles avec les opérations dans \mathbb{R} et possèdent les mêmes propriétés :

- de commutativité : z + z' = z' + z et $z \cdot z' = z' \cdot z$
- d'associativité : (z+z')+z''=z+(z'+z'') et $(z\cdot z')\cdot z''=z\cdot (z'\cdot z'')$
- de distributivité : $z \cdot (z' + z'') = z \cdot z' + z \cdot z''$.

(b) Pour tout nombre complexe z = x + iy il existe un nombre complexe, noté -z, tel que z + (-z) = 0. C'est le nombre -z = -x + i(-y). On l'appelle **l'opposé** du nombre z.

Pour tous nombres complexes z et z', on notera z - z' = z + (-z').

(c) Pour tout nombre complexe non nul z = x + iy il existe un nombre complexe, noté $\frac{1}{z}$ tel que $z \cdot \frac{1}{z} = 1$. C'est le nombre $\frac{1}{z} = \frac{x - iy}{x^2 + y^2}$.

Pour tous nombres complexes z et z', si $z' \neq 0$ on notera $\frac{z}{z'} = z \cdot \frac{1}{z'}$

2.2Conjugaison

Définition 3

Soit z = x + iy un nombre complexe (x et y étant des réels). On définit le **nombre conjugué** de z par

$$\overline{z} = x - \mathrm{i} y$$

Proposition 1

Soit $(z, z') \in \mathbb{C}^2$. On a :

- $\frac{z=z}{z+z'}$ $\frac{z+z'}{z\cdot z'} = \overline{z} + \overline{z'}$ Si $z' \neq 0$, $\left(\frac{z}{z'}\right) = \frac{\overline{z}}{\overline{z'}}$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ et $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$ $z \in \mathbb{R} \Leftrightarrow z = \overline{z}$.
- Si z = x + iy (avec x et y réels), alors $z \cdot \overline{z} = x^2 + y^2$

Forme trigonométrique 3

3.1 **Définition**

Définition 4

Soient z = x + iy un nombre complexe et M son image ponctuelle.

La distance OM est appelée le **module** de z, noté |z|.

Si z est non nul, une mesure de l'angle $(\vec{u}, \overrightarrow{OM})$ est appelée un **argument** de z, noté $\arg(z)$.

Remarque 3

Si θ_1 et θ_2 sont deux arguments d'un nombre complexe non nul, alors $\theta_1 \equiv \theta_2$ [2 π].

Proposition 2

Soit $z \in \mathbb{C}^*$, tel que z = x + iy où x et y sont des réels. On note $\rho = |z|$ et $\theta \equiv \arg(z)$ [2π]. Alors:

$$z = \rho \left(\cos(\theta) + i\sin(\theta)\right)$$

$$\rho = \sqrt{x^2 + y^2}, \quad \cos(\theta) = \frac{x}{\rho}, \quad \sin(\theta) = \frac{y}{\rho}$$

Proposition 3

Deux nombres complexes non nuls sont égaux si, et seulement si ils ont le même module et des arguments congrus modulo 2π .

Propriétés du module

Proposition 4

Soit $(z, z') \in \mathbb{C}^2$. On a: • $z \cdot \overline{z} = |z|^2$

- $|z| = 0 \Leftrightarrow z = 0$
- $|z| = |-z| = |\overline{z}|$
- |zz'| = |z| |z'| et si $z' \neq 0, \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$

Proposition 5

Pour $(z, z') \in \mathbb{C}^2$, on a :

$$|z + z'| \le |z| + |z'|$$

Cette propriété s'appelle inégalité triangulaire.

Corollaire

Pour
$$(z, z') \in \mathbb{C}^2$$
, on a : $||z| - |z'|| \le |z - z'|$

3.3 Propriétés de l'argument

Proposition 6

Soit $(z, z') \in (\mathbb{C}^*)^2$. On a:

- $(\arg(z) \equiv 0 \ [\pi] \Leftrightarrow z \in \mathbb{R}^*)$ et $(\arg(z) \equiv \frac{\pi}{2} \ [\pi] \Leftrightarrow z$ est un imaginaire pur)
- $\arg(\overline{z}) \equiv -\arg(z) [2\pi]$
- $arg(-z) \equiv arg(z) + \pi [2\pi]$
- $\arg(z \cdot z') \equiv \arg(z) + \arg(z') [2\pi] \text{ et } \arg\left(\frac{z}{z'}\right) \equiv \arg(z) \arg(z') [2\pi]$

Notation exponentielle

Notation:

Pour $\theta \in \mathbb{R}$, on note

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Remarque 4
$$e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta' [2\pi]$$

Proposition 7

Tout nombre complexe s'écrit sous la forme $z = \rho e^{i\theta}$ où $\rho = |z|$ et θ est un argument de z. Cette écriture s'appelle forme trigonométrique d'un nombre complexe.

Proposition 8

Pour tout réel θ , on a :

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Ces formules s'appellent formules d'Euler.

Proposition 9

Pour tout $(\theta, \theta') \in \mathbb{R}^2$, on a :

•
$$e^{i(\theta+\theta')} = e^{i\theta} e^{i\theta'}$$
 et $e^{i(\theta-\theta')} = \frac{e^{i\theta}}{e^{i\theta'}}$

$$\bullet$$
 $\overline{(e^{i\theta})} = e^{-i\theta}$

•
$$\overline{(e^{i\theta})} = e^{-i\theta}$$

• $-e^{i\theta} = e^{i(\theta+\pi)}$

Proposition 10

Pour $\theta \in \mathbb{R}$ et $p \in \mathbb{Z}$, on a $\left(e^{i\theta}\right)^p = e^{ip\theta}$ ce qui donne :

$$(\cos(\theta) + i\sin(\theta))^p = \cos(p\theta) + i\sin(p\theta)$$

cette formule s'appelle la formule de Moivre

3.5 Exponentielle complexe

Définition 5

Pour tout nombre complexe z on note $e^z = e^{\operatorname{Re}(z)}e^{i\operatorname{Im}(z)}$

Proposition 11

Pour tout $(z, z') \in \mathbb{C}^2$ on a: • $e^{z+z'} = e^z e^{z'}$ • $\frac{1}{e^z} = e^{-z}$

- $e^z = e^{z'} \Leftrightarrow z z' \in 2\pi i \mathbb{Z}$

Proposition 12

Pour tout $(\theta, \theta') \in \mathbb{R}^2$, on a les factorisations suivantes dites **technique de l'angle moitié**:

$$1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}, \qquad 1 - e^{i\theta} = -2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$$
$$e^{i\theta} + e^{i\theta'} = 2\cos\left(\frac{\theta - \theta'}{2}\right)e^{i\frac{\theta + \theta'}{2}} \qquad e^{i\theta} - e^{i\theta'} = 2i\sin\left(\frac{\theta - \theta'}{2}\right)e^{i\frac{\theta + \theta'}{2}}$$

Propriétés algébriques 4

Egalités dans \mathbb{C} 4.1

Proposition 13

Si z est un nombre complexe différent de 1, on a pour tout entier naturel n:

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}$$

Proposition 14 Forumule du binôme dans $\mathbb C$

Pour tout $(a,b) \in \mathbb{C}^2$, et $n \in \mathbb{N}^*$ on a :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Applications:

• En appliquant la formule de Moivre et la formule du binôme de Newton, on obtient :

$$\cos(nx) + i\sin(nx) = (\cos(x) + i\sin(x))^n = \sum_{k=0}^n \binom{n}{k} \cos^{n-k}(x) \sin^k(x) i^k$$

Par identification des parties réelles et imaginaires, on obtient :

$$\cos(nx) = \sum_{0 \le 2k \le n} (-1)^k \binom{n}{2k} \cos^{n-2k}(x) \sin^{2k}(x)$$

$$\sin(nx) = \sum_{0 \le 2k+1 \le n} (-1)^k \binom{n}{2k+1} \cos^{n-2k-1}(x) \sin^{2k+1}(x)$$

On appelle cette technique le **développement** de $\cos(nx)$ et $\sin(nx)$.

• En appliquant les formules d'Euler et la formule du binôme de Newton, on obtient :

$$\cos^{n}(x) = \left(\frac{1}{2} \left(e^{ix} + e^{-ix}\right)\right)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} {n \choose k} e^{(2k-n)ix}$$

$$\sin^{n}(x) = \left(\frac{1}{2i} \left(e^{ix} - e^{-ix}\right)\right)^{n} = \frac{1}{(2i)^{n}} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} e^{(2k-n)ix}$$

Dans chacune des sommes ci-dessus, les termes se regroupent pour donner, grâce aux formules d'Euler, une somme de cosinus ou de sinus.

On appelle cette technique la linéarisation des puissances de cosinus et sinus.

Fonctions polynômiales

Définition 6

Soit $n \in \mathbb{N}$. L'application P définie sur \mathbb{C} par $P(z) = \sum_{k=0}^{n} a_k z^k$ où pour tout $k \in [0, n], a_k \in \mathbb{C}$ avec $a_n \neq 0$ est appelée fonction polynômiale de degré n.

Tout nombre complexe a qui vérifie P(a) = 0 est appelé **racine** de P.

Proposition 15

Soit P est une fonction polynômiale de degré $n \in \mathbb{N}^*$. Si a est une racine de P alors il existe une fonction polynômiale Q de degré n-1 telle que pour tout $z \in \mathbb{C}$, P(z) = (z-a)Q(z).

Proposition 16

Soit $P: z \mapsto az^2 + bz + c$ une fonction polynômiale de degré 2, à coefficients complexes $(a, b, c \in \mathbb{C})$. On note $\Delta = b^2 - 4ac$ le **discriminant** de l'équation P(x) = 0, et $\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta$.

$$\rightarrow$$
 Si $\Delta \neq 0$, P admet deux racines : $\frac{-b \pm \delta}{2a}$
 \rightarrow Si $\Delta = 0$, P admet une seule racine : $\frac{-b}{2a}$

$$\rightsquigarrow$$
 Si $\Delta = 0$, P admet une seule racine : $\frac{-b}{2a}$

Remarque 5

Si les coefficients de P sont réels, on retrouve les résultats connus lorsque $\Delta \geq 0$ et si $\Delta < 0$, P admet deux racines complexes conjuguées : $\frac{-b \pm i \sqrt{-\Delta}}{2a}$

Remarque 6

Soit a + ib un nombre complexe (a, b r'eels). On a :

$$(x + iy)^2 = a + ib \Leftrightarrow \begin{cases} x^2 - y^2 = a \\ 2xy = b \\ x^2 + y^2 = \sqrt{a^2 + b^2} \end{cases}$$

Cela permet de déterminer LES racines carrées d'un nombre complexe.

Proposition 17

Soit $P: z \mapsto az^2 + bz + c$ une fonction polynômiale de degré 2. z_1 et z_2 sont les racines de P (distinctes ou non) si, et seulement si $z_1 + z_2 = -\frac{b}{a}$ et $z_1 z_2 = \frac{c}{a}$.

4.3 Racines n-ème de l'unité

Définition 7

On note $\mathbb U$ l'ensemble des nombres complexes de module 1.

Remarque 7

- (1) $z \in \mathbb{U} \Leftrightarrow \exists \theta \in \mathbb{R}, z = e^{i\theta}$
- (2) U est l'ensemble des affixes des points du cercle trigonométrique.

Théorème 1

Pour $n \in \mathbb{N}^*$, l'équation $z^n = 1$ admet n solutions complexes appelées **racines** n-ème de l'unité.

Leur ensemble est:

$$\mathbb{U}_n = \left\{ \omega_k = e^{\frac{2ik\pi}{n}}, k \in [0, n-1] \right\}$$

Remarque 8

Les images des racines n-èmes de l'unité sont les sommets d'un polygone régulier inscrit dans le cercle trigonométrique.

Proposition 18

Pour tout entier $n \geq 2$ la somme des n racines n-èmes de l'unité est nulle.

5 Interprétation géométrique des nombres complexes

5.1 Différence

Proposition 19

Soient A un point du plan d'affixe a et B un point d'affixe b.

Le vecteur \overrightarrow{AB} a pour affixe b-a, et si $a \neq b$ et on a :

$$|b - a| = AB$$
 et $\arg(b - a) = (\vec{u}, \overrightarrow{AB})$ $[2\pi]$

Proposition 20

Soit $(a,r) \in \mathbb{C} \times \mathbb{R}_+^*$

- L'ensemble $\mathscr{C}=\{z\in\mathbb{C}, |z-a|=r\}$ est le cercle de centre A et de rayon r.
- L'ensemble $\mathscr{D}=\{z\in\mathbb{C}, |z-a|\leq r\}$ est le disque fermé de centre A et de rayon r.

5.2 Quotient

Proposition 21

Soient A, B, C et D des points distincts d'affixes respectives a, b, c et d.

$$\left| \frac{d-c}{b-a} \right| = \frac{CD}{AB}$$
 et $\arg \left(\frac{d-c}{b-a} \right) = \left(\overrightarrow{AB}, \overrightarrow{CD} \right) [2\pi]$

Proposition 22

Sous les mêmes hypothèses,

$$(AB)//(CD) \Leftrightarrow \arg\left(\frac{d-c}{b-a}\right) \equiv 0 \left[\pi\right]$$

$$(AB) \perp (CD) \Leftrightarrow \arg\left(\frac{d-c}{b-a}\right) \equiv \frac{\pi}{2} [\pi]$$

Proposition 23

Soient A, B et C trois points distincts, d'affixes respectives a, b et c.

 \bullet Le triangle ABC est rectangle isocèle en A si, et seulement si

$$\frac{c-a}{b-a} = \pm i$$

 \bullet Le triangle ABC est équilatéral si, et seulement si

$$\frac{c-a}{b-a} = e^{\pm i\frac{\pi}{3}}$$

5.3 Applications du plan

Proposition 24

Soit $b \in \mathbb{C}$. L'application du plan qui au point d'affixe z associe le point d'affixe z+b est la translation de vecteur d'affixe b.

Proposition 25

L'application du plan qui au point d'affixe z associe le point d'affixe \overline{z} est la symétrie d'axe (O, \vec{u}) .

Définition 8

Soit $a \in \mathbb{R} \setminus \{0,1\}$. L'application du plan qui au point d'affixe z associe le point d'affixe az est une **homothétie** de centre O et de rapport a.

Proposition 26

M' est l'image de M par une homothétie de centre O et de rapport a si, et seulement si :

$$\overrightarrow{OM'} = a \overrightarrow{OM}$$

Définition 9

Soit $\theta \in \mathbb{R}$. L'application du plan qui au point d'affixe z associe le point d'affixe $e^{i\theta}z$ est une **rotation** de centre O et d'angle θ .

Proposition 27

M' est l'image de M par la rotation de centre O et d'angle θ si, et seulement si :

$$OM' = OM$$
 et $\left(\overrightarrow{OM}, \overrightarrow{OM'}\right) = \theta [2\pi]$