سوال ۱

توضيح خطوط مربوط به استفاده از كتابخانهها:

- import cv2:ین خط کتابخانه OpenCV را وارد می کند که برای بینایی ماشین در زمان واقعی استفاده می شود. این شامل چندین صد الگوریتم بینایی ماشین است.
- NumPy: این خط کتابخانه NumPy را وارد می کند و به آن نام مستعار np می دهد. NumPy as np یک کتابخانه برای زبان برنامه نویسی Python است که پشتیبانی از آرایه ها و ماتریس های بزرگ چند بعدی را اضافه می کند، همراه با مجموعه ای بزرگ از توابع ریاضی سطح بالا برای عملیات روی این آرایه ها.
- import matplotlib.pyplot as plt وارد می کند: import matplotlib.pyplot as plt وارد می کند و به آن نام مستعار plt می دهد. pyplot یک کتابخانه رسم نمودار است که برای گرافیک ۲ بعدی در زبان برنامه نویسی Python استفاده می شود. می توان از آن در اسکریپت های Python، پوسته، سرورهای برنامه های وب و سایر ابزارهای رابط کاربری گرافیکی استفاده کرد.
- Python به معنای From PIL import Image را از کتابخانه Pillow به معنای Image و from PIL import Image و ارد می کند. Pillow یک کتابخانه برای زبان برنامه نویسی Python است که پشتیبانی از باز کردن، دستکاری و ذخیره سازی انواع مختلف قالب های فایل تصویر را اضافه می کند.

در ادامه کدها توضیح داده می شوند.

```
img1_path = 'images/1.jpg'
img1 = cv2.imread(img1_path, cv2.IMREAD_COLOR)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
plt.imshow(img1)
plt.axis('off')
```

در ابتدا تصویر را لود کرده و آن را از حالت دیفالت BRG به حالت RGB تبدیل می کنیم. سپس آن را نمایش می دهیم و با استفاده از خط آخر، نمودارهای x و y را حذف می کنیم.

در ادامه توابع به ترتیب توضیح داده شدهاند:

```
. .
    def RGB_to_CMYK(r, g, b, RGB_SCALE = 255, CMYK_SCALE = 100):
        Convert RGB values to CMYK values.
        Args:
            r (numpy.ndarray): Red channel values.
            g (numpy.ndarray): Green channel values.
            b (numpy.ndarray): Blue channel values.
            RGB_SCALE (int): Scale factor for RGB values. Default is 255.
            CMYK_SCALE (int): Scale factor for CMYK values. Default is 100.
        Returns:
            c (numpy.ndarray): Cyan channel values.
            m (numpy.ndarray): Magenta channel values.
            y (numpy.ndarray): Yellow channel values.
            k (numpy.ndarray): Black channel values.
        r = r.astype(np.float32) / RGB_SCALE
        g = g.astype(np.float32) / RGB_SCALE
        b = b.astype(np.float32) / RGB_SCALE
        k = 1 - np.max(np.array([r, g, b]), axis=0)
        epsilon = 1e-8
        c = (1 - k - r) / (1 - k + epsilon)
        m = (1 - k - g) / (1 - k + epsilon)
        y = (1 - k - b) / (1 - k + epsilon)
        c, m, y, k = np.array([c, m, y, k]) * CMYK_SCALE
       return c, m, y, k
```

این تابع با استفاده از کتابخانه NumPy جهت انجام عملیات روی آرایهها، مقادیر RGB را به مقادیر CMYK که برای چاپ رنگی استفاده میشود، تبدیل می کند:

- ابتدا مقادیر RGB (r, g, b) به نوع داده RGB (r, g, b) تبدیل می شوند تا محاسبات دقیق انجام شود.
 - سپس بیشترین مقدار هر کانال رنگ (R, G, B) محاسبه می شود.
- این بیشترین مقدار از ۱ کم میشود تا کمترین مقدار هر کانال رنگ به دست آید. این کار جهت اختصاص دادن کمترین مقدار موجود در کانالها به رنگ سیاه است که از استفادهٔ مجدد آن در باقی رنگها جلوگیری شود.
- سپس مکمل هر کانال رنگ با کم کردن مقدار سیاه محاسبه می شود تا مقادیر CMYK به دست آیند. این عملیات طبق روابط موجود در اسلایدها انجام می شود. تنها تفاوت، تقسیم مقادیر بر مقدار ۱ 1 است تا تمامی سه رنگ را نرمالایز کنیم.
- در نهایت، مقادیر CMYK به محدوده [0, CMYK_SCALE] مقیاس می شوند و تمام این این مقادیر به صورت یک تاپل (c, m, y, k) بر گردانده می شوند.

```
• • •
    def CMYK_to_RGB(c, m, y, k, RGB_SCALE = 255, CMYK_SCALE = 100):
        Convert CMYK values to RGB values.
        Args:
            c (numpy.ndarray): Cyan channel values.
            m (numpy.ndarray): Magenta channel values.
            y (numpy.ndarray): Yellow channel values.
            k (numpy.ndarray): Black channel values.
            RGB_SCALE (int): Scale factor for RGB values. Default is 255.
            CMYK_SCALE (int): Scale factor for CMYK values. Default is 100.
       Returns:
            r (numpy.ndarray): Red channel values.
            g (numpy.ndarray): Green channel values.
            b (numpy.ndarray): Blue channel values.
        c, m, y, k = np.array([c, m, y, k]) / CMYK_SCALE
        r = (1 - k) * (1 - c)
        g = (1 - k) * (1 - m)
        b = (1 - k) * (1 - y)
        r, g, b = np.array([r, g, b]) * RGB_SCALE
        return r, g, b
```

این بخش نیز عکس تابع قبلی است. به عنوان مثال فرمول مربوط به r به این صورت محاسبه می شود:

$$c = \frac{(1 - k - r)}{(1 - k)}$$

$$\to (1 - k)c = 1 - k - r$$

$$\to r = ck - c + 1 - k$$

$$\to r = c(k - 1) - (k - 1)$$

$$\to r = (c - 1)(k - 1)$$

به همین شکل سایر روابط نیز بدست می آیند و در پایان با استفاده از یک اسکیل کردن، تمام مقادیر بین ۰ تا ۲۵۵ قرار می گیرند.

```
def RGB_to_HSI(r, g, b):
    Convert RGB values to HSI values.
       r (numpy.ndarray): Red channel values.
        g (numpy.ndarray): Green channel values.
        b (numpy.ndarray): Blue channel values.
       h (numpy.ndarray): Hue channel values. Range[0, 360]
        s (numpy.ndarray): Saturation channel values. Range[0, 255]
       i (numpy.ndarray): Intensity channel values. Range[0, 255]
    r, g, b = r/255., g/255., b/255. # Normalize each channel
   epsilon = 1e-8
    i = np.mean(np.array([r, g, b]), axis=0)
   min_rgb = np.min(np.array([r, g, b]), axis=0)
    theta = np.arccos(((r - g) + (r - b)) / (2 * ((r - g)**2 + (r - b) * (g - b))**0.5 + epsilon))
    h = (180 / np.pi) * theta # convert rad to degr
    h[b > g] = 360 - h[b > g]
    return h, s, i
```

این تابع نیز مانند توابع پیشین، یک تصویر RGB را به عنوان ورودی می گیرد و این بار آن را به یک تصویر HSI (رنگ، اشباع، شدت) تبدیل می کند. این تابع سه پارامتر ورودی دارد: g g f که به ترتیب نمایانگر کانالهای رنگی قرمز، سبز و آبی یک تصویر RGB هستند. این تابع مقادیر رنگ (h)، اشباع (s) و شدت (i) هر پیکسل در تصویر را خروجی می دهد.

- کد با نرمالسازی هر کانال رنگی با تقسیم آن بر ۲۵۵ شروع می شود. این کار باعث می شود که مقادیر ورودی در محدوده ۰ تا ۱ قرار بگیرند. متغیر epsilon نیز به منظور جلوگیری از خطای تقسیم بر صفر اضافه شده است.
- سپس، تابع شدت (i) را با گرفتن میانگین کانالهای رنگی نرمالشده محاسبه میکند. پس از آن مقادیر شدت را به نزدیک ترین عدد صحیح بین ۰ و ۲۵۵ گرد میکند.
- اشباع (۵) با گرفتن حداقل کانالهای رنگی و تقسیم آن بر مجموع کانالهای رنگی محاسبه میشود. این کار میزان
 تفاوت هر کانال رنگی از میانگین سه کانال را مشخص می کند. سپس مقادیر اشباع به نزدیک ترین عدد صحیح بین
 و ۲۵۵ گرد می شوند.
- رنگ (h) با استفاده از زاویه بین کانالهای رنگی قرمز و آبی محاسبه میشود. از تابع arccos برای پیدا کردن زاویه بین کانالهای قرمز و آبی استفاده میشود و سپس نتیجه از رادیان به درجه تبدیل میشود. مقادیر رنگ سپس تنظیم میشوند تا در محدوده ۰ تا ۳۶۰ قرار بگیرند.
 - در نهایت، تابع مقادیر رنگ، اشباع و شدت را به صورت یک تاپل برمی گرداند.

فرمولهای استفاده شده مطابق اسلایدها هستند:

$$\theta = \cos^{-1}\left(\frac{(R-G)+(R-B)}{2\sqrt{(R-G)^2+(R-B)(G-B)}}\right)$$

$$H = \begin{cases} \theta, & \text{if } B \leq G \\ 360-\theta & \text{if } B > G \end{cases}$$

$$S = 1-3\frac{\min(R,G,B)}{R+G+B}$$

$$I = \frac{R+G+B}{3}$$

کد از کتابخانه NumPy برای عملیاتهای آرایهای استفاده میکند، به ویژه از توابع np.mean و np.min. NumPy یک کتابخانه محبوب برای محاسبات عددی در Python است که توابع مختلفی برای انجام عملیاتهای روی آرایهها مانند پیدا کردن مقادیر حداقل یا میانگین ارائه میدهد.

```
def show_images(T, cols=1):
    N = len(T)
    fig = plt.figure()
    for i in range(N):
        a = fig.add_subplot(int(np.ceil(N/float(cols))), cols, i+1)
        try:
            img,title = T[i]
        except ValueError:
            img,title = T[i], "Image %d" % (i+1)
        if(img.ndim == 2):
            plt.gray()
        plt.imshow(img)
        a.set_title(title)
        plt.xticks([0,img.shape[1]]), plt.yticks([0,img.shape[0]])
        fig.set_size_inches(np.array(fig.get_size_inches()) * N)
        plt.show()
```

این کد یک تابع پایتون به نام show_images را تعریف می کند. این تابع برای نمایش یک لیست از تصاویر همراه با عناوینشان در یک طرح شبکهای طراحی شده است.

تابع show_images دو آرگومان میپذیرد: T که یک لیست از تاپلها است که هر تاپل شامل یک تصویر و عنوان مربوطه است، و cols که تعداد ستونها در طرح شبکهای را مشخص میکند (مقدار پیشفرض ۱ است).

- تعداد کل تصاویر در لیست T را محاسبه کرده و آن را به متغیر N اختصاص میدهد.
 - با استفاده از plt.figure از کتابخانه matplotlib، یک شکل جدید ایجاد می کند.
 - برای هر تصویر در طرح شبکهای، حلقه را اجرا می کند.
- درون حلقه، سعی می کند تاپل فعلی T[i] را به متغیرهای img و img و img باز کند. اگر باز کردن موفق نباشد به دلیل وجود یک ValueError (احتمالا به معنای این است که تاپل تنها شامل تصویر بدون عنوان است)، عنوان پیشفرض "تصویر (i+1) % (i+1) اختصاص می دهد.
 - اگر تصویر (img) خاکستری باشد (۲ بعدی)، با استفاده از plt.gray، نقشه رنگ را به خاکستری تنظیم می کند.
 - تصویر را با استفاده از plt.imshow نمایش می دهد و عنوان زیرنمونه را با استفاده از a.set_title تنظیم می کند.

تمرین سری چهارم کامیار مرادیان زه آب

• تیکهای x و y زیرنمونه را با استفاده از plt.xticks و plt.yticks به ابعاد تصویر تنظیم میکند. با این کار سایز تصویر مشخص می شود.

996771.4

- پس از حلقه، اندازه شکل را بر اساس تعداد تصاویر (N) با استفاده از fig.set_size_inches تنظیم می کند تا مطمئن شود تصاویر خیلی کوچک نیستند.
 - در نهایت، با استفاده از plt.show، شکل را نمایش میدهد.

کدها و نتایج مربوط به استفاده از توابع داخل نوتبوک مربوطه آورده شده است.

سوال ۲

در این سوال، از تابع show_images که در سوال اول توضیح داده شده، استفاده شده است.

در زير توابع استفاده شده و نيز الگوريتم استفاده شده توضيح داده میشوند.

در ابتدا نیاز است که تصاویر را بخوانیم. از آنجا که فرمت دو تصویر با یکدیگر تفاوت دارد، پس نیاز است که تصویر بزرگتر را Resize کرد تا به اندازهٔ تصویر دیگر شود. برای عملیات درون یابی از RTER_AREA استفاده شده است، که طبق آنچه که در این وبسایت آمده، بهترین روش برای Resize کردن تصویر به تصویری کوچکتر است:

```
• • •

1 img2 = cv2.resize(img2, (img3.shape[1], img3.shape[0]), interpolation = cv2.INTER_AREA)
```

کد تابع اصلی نیز در زیر آورده شده است:

```
def diff(image1, image2):
    """

Find the differences between two images.

Args:
    image1 (numpy.ndarray): First image.
    image2 (numpy.ndarray): Second image.

Returns:
    result (numpy.ndarray): Image showing the differences between the two input images.

"""

gray_img2 = cv2.cvtColor(image1, cv2.Colon_RGB2GRAY)

gray_img3 = cv2.cvtColor(image2, cv2.Colon_RGB2GRAY)

result = np.zeros_like(image2)

result[; ; , 0] = gray_img3[; ;]

result[; ; , 1] = gray_img3[; ;]

result[; ; , 2] = gray_img3[; ;]

result[; ; , 2] = gray_img3[; ;]

result[; ; , 2] = gray_img3[; ;]
```

روشی که در کلاس تدریس شده است، در حوزهٔ رنگهای خاکستری عمل می کند. برای این منظور در ابتدا هر دو تصویر ورودی را به محدودهٔ رنگهای خاکستری میبریم. برای این کار از دستور cv2.cvtColor استفاده می کنیم با آر گومان image2 است. بعد از این یک خروجی درست می کنیم که ساختار آن دقیقاً مطابق با cv2.COLOR_RGB2GRAY است. بعد از این نیز کانال اول که مربوط به رنگ قرمز است را با مقادیر موجود در تصویر اول در حوزهٔ خاکستری پر می کنیم. همینکار را برای کانالهای سبز و آبی انجام می دهیم اما با استفاده از مقادیر مربوط به تصویر دوم.

با استفاده از این روش، در صورتی که تفاوتی بین دو نقطه وجود نداشته باشد، هر سه کانال مقادیر یکسان خواهند گرفت و در تصویر نهایی سیاه و سفید خواهند بود. در غیر این صورت، اگر هر یک از تصاویر جزئیات متفاوتی نسبت به تصویر دیگر داشته باشد، رنگ آبی فیروزهای و یا قرمز بر روی تصویر نقش میبندد. همچنین این که چه رنگی توسط الگوریتم برای تغییرات انتخاب شود، بستگی به میزان روشنایی دو تصویر در ناحیهٔ تحت بررسی دارد.

در پایان نیز تصویر خاکستریای که تفاوتهای موجود در آن به صورت رنگی است را به عنوان خروجی بازمی گردانیم.

نتایج نهایی به صورت زیر است:

همانطور که مشخص است، الگوریتم به خوبی توانسته است که تفاوتها را شناسایی کند.

کدها و نتایج مربوط به استفاده از توابع داخل نوتبوک مربوطه آورده شده است.

سوال ۳:

بخش الف)

	رة ال سو
: بساره ما از رابعهٔ درج العام الم المعادم على المعادم المعاد	Shringer Colo (coll Girs
$M = \sum_{n,j}^{e} 3 \omega(n,j) \begin{bmatrix} I_{n}^{2} & I_{n}I_{j} \\ I_{n}I_{j} & I_{j}^{2} \end{bmatrix}$	
: س) را به صدر از برای ار بین مین ۲۷۲۷ تعریف وی لیم:	برای ماری مامیس خان ها
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
المحرين كريسور ومن وسق ممين تحاي كرسم وسيدله ك	مارد این سرای برست ۱ ورد
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\frac{1^{2}}{3} = (3)^{2} + (2)^{2} + (0)^{2} + (3)^{2} + (4)^{2} + (2)^{2}$	1 ² + (1) ² + (3) ² + (2) ²
$= \frac{56}{1}$ $= \frac{1^{2}}{3} = (3)^{2} + (2)^{2} + (-1)^{2} + (4)^$	$(1)^{2} + (0)^{2} + (3)^{2} + (2)^{2}$
-> Inly = 3×3 + 2×2 + 0×(-1) + 3×4 + 4×4 +	2×1 + 1×0+ 3×3+ 2×2
M = 56 56	بنابراین حامریس هرس برای نبرد

```
Subject:

R = \det(M) - k \left[ \operatorname{trace}(M) \right]^{2}
\det(M) = 56 \times 60 - 56 \times 56 = 56 \times (4) = 224
\operatorname{trace}(M) = \left( 56 + 60 \right)^{2} = 13456
\Rightarrow R = 224 - 0.04 \times 13456 = -314.24
```

بخش ج) همانطور که محاسبه شد مقدار بدست آمده برای R منفی است. طبق آنچه که در اسلایدها آورده شده است این مقدار مشخص کنندهٔ لبه است. علت اینکه برای لبهها مقدار R منفی بدست می آید آن است که برای این نقاط اگر چه مقدار دترمینان که به صورت ضرب دو مقدار ویژه است بزرگ بدست می آید، اما مجذور حاصل جمع دو مقدار ویژهٔ یک ماتریس از آن بزرگتر است که این خود مشخص کنندهٔ آن است که شعاع بیضی فیت شده به نمودار گرادیان در دو جهت x و y به صورتی است که یک طرف بزرگتر و طرف دیگر کوچکتر است.

این موضوع نیز در شکل زیر واضح است:

همچنین نمودار مربوط به این ماتریس نیز میتواند به صورت زیر میباشد:

سوال چهارم

برای ربان مشکی از یک ذوزنقه استفاده می کنیم. به این صورت که یک ذوزنقهٔ مشکی را با استفاده از تابع Polygon به یک گوشه از تصویر مربوط به پدربزرگ اضافه می کنیم. برای بدست آوردن مختصات نقاط مربوط به چهار گوشهٔ این ذوزنقه مقادیر مختلف را امتحان کرده و در نهایت بهترین را انتخاب می کنیم.

برای تصویر اصلی نیز در ابتدا مقادیر مختلف را امتحان می کنیم و بر روی تصویر نقطه می گذاریم تا چهار گوشهٔ مورد نظر را پیدا کنیم. در نهایت این چهار گوشه بدست می آیند.

حال که این نقاط را بدست آوردیم، میتوانیم باری دیگر از تابع polygon استفاده کنیم تا یک ذوزنقهٔ مشکی را بر روی این بخش از تصویر قرار دهیم.

در ادامه و با استفاده از Perspective تصویر مربوط به پدربزرگ را تبدیل می کنیم و تصویر زیر را بدست می آوریم:

در پایان تصویر محیط را با این تصویر بدست آمده جمع می کنیم تا ناحیهٔ مرتبط با تابلو که مشکی شده است، کاملاً با این تصویر مربوط به پدربزرگ جایگذاری شود.

سوال پنجم

بخش الف)

	سؤال ينحم
: Esaffine chi cio (Co	
	اا صحب
$\begin{bmatrix} \alpha_{12} \\ \beta_{2} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \epsilon_{11} \\ \alpha_{21} & \alpha_{22} & \epsilon_{11} \end{bmatrix} \begin{bmatrix} \alpha_{11} \\ \beta_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{12} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} & \epsilon_{11} \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \beta_{11} & \beta_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \epsilon_{11} \\ \alpha_{21} & \alpha_{22} & \epsilon_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \epsilon_{11} \\ \alpha_{21} & \alpha_{22} & \epsilon_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \epsilon_{11} \\ \alpha_{21} & \alpha_{22} & \epsilon_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \epsilon_{11} \\ \alpha_{21} & \alpha_{22} & \epsilon_{21} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{12} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{11} & \epsilon_{11} \\ \beta_{11} & \beta_{11} \end{bmatrix} \begin{bmatrix} \alpha_{11} & \epsilon_{11} \\ \beta_{11} & \beta_{$	
م وعود ٣ باراس ومرسم ازادی فرم از (6) فرم از اوی ماری می برادی می می از اوی در سرم در	باتوج
A : (0,0) , B : (1,0) D: (1,2)	۵ و
A' = (3,2), $B' = (4,1)$, $D' = (1,2)$	
$\Rightarrow A') : \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & t_{9A} \\ \alpha_{21} & \alpha_{22} & t_{9} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} t_{9A} \\ t_{9} \end{bmatrix} \Rightarrow t_{9A} = 3, t_{9} = 2$	حاريم.
$\Rightarrow B'): \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & t_{\alpha_1} \\ \alpha_{21} & \alpha_{22} & t_{y} \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & 3 \\ \alpha_{21} & \alpha_{122} & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	
$\Rightarrow \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} \alpha_{11} + 3 \\ \alpha_{21} + 2 \end{bmatrix} \Rightarrow \begin{cases} \alpha_{11} = 1 \textcircled{1} \\ \alpha_{21} = -1 \textcircled{1} \end{cases}$	150
$\Rightarrow D') : \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & t_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \alpha_{11} + 2\alpha_{12} + 3 \\ \alpha_{21} + 2\alpha_{22} + 2 \end{bmatrix}$	
⇒ \ \ \alpha_{11} + 2a_{2} = -2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$\Rightarrow \begin{cases} \alpha_{11} + 2\alpha_{2} = -2 & \text{(1)} \\ \alpha_{21} + 2\alpha_{22} = 0 & \text{(2)} \end{cases}$	

بخش ب)

-	
	\square , \square , \square , \square \Rightarrow $\bigcirc \alpha_{12} = -1.5$
-	0.5
	ينامراس مربعل مای رست ره مع عمورت رس است:
	$\begin{bmatrix} q_1 q_2 \\ \sigma_2 \end{bmatrix} = \begin{bmatrix} 1 & -1.5 & 3 \end{bmatrix} \begin{bmatrix} q_1 \\ \sigma_1 \end{bmatrix}$
-	رهم عن محصات اوليم 2 برابريا (1و2) است. تعب بشيل بالا دام م
)	$ = \begin{bmatrix} 1 & -1.5 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 & 0.5 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 + (-1.5) + 3 \\ (-2) + (0.5) + 2 \end{bmatrix} = \begin{bmatrix} 3.5 \\ 0.5 \end{bmatrix} \xrightarrow{\text{CM}} \begin{bmatrix} \text{CM} \\ \text{CM} \end{bmatrix} $
)	محات المام عبد الساك بالساك بالساك بالمام المام الم
	$E' = \begin{bmatrix} 1 & -1.5 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 + (-1.5) + 3 \\ 0 + (0.5) + 2 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix} \rightarrow \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix} \rightarrow \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix}$
-	

سوال ششم

تصویری	Affine	شباهت	Rigid	انتقال	نوع تبديل
غلط	غلط	غلط	صحيح	صحيح	فاصله جفت نقاط ثابت میماند
غلط	غلط	صحيح	صحيح	صحيح	زاویه بین جفت خط ثابت میماند
صحيح	صحيح	صحيح	صحيح	صحيح	خط ها، خط باقی مانند
غلط	غلط	غلط	غلط	صحيح	زاویه بین هر خط و محور ایکس ثابت میماند
صحيح	صحيح	صحيح	صحيح	صحيح	چهار ضلعی ها، چهار ضلعی باقی میمانند
غلط	صحيح	صحيح	صحيح	صحيح	خطوط موازی، موازی باقی میمانند
غلط	غلط	صحيح	صحيح	صحيح	دایره ها، دایره باقی میمانند
غلط	صحيح	صحيح	صحيح	صحيح	نسبت بین مساحت دو شکل ثابت باقی میماند

سوال هفتم

pject:
منوال هودة
012 - h11 h12 h13 027 31
[1] [h3, h22 h33] [1]
$S_2 = S_2$
S2 = h3,91 + h329, + h33 :
$\frac{y_2'}{z} = \frac{h_{21}}{21} + \frac{h_{22}}{22} + \frac{h_{33}}{23}$
(0,0) = H(-(0,0)) (2) hgg = 1 (1) , perla (jeje giv
$\begin{bmatrix} 0 & h_{11} & h_{12} & h_{23} & 0 \\ h_{21} & h_{22} & h_{23} & 1 \end{bmatrix}$
$\begin{cases} 0 & - 0 & - 0 & - h_{13} = 0 \\ 0 & - 0 & - h_{13} = 0 \end{cases}$
$ \begin{bmatrix} 0 & - & 0 & h_{13} & h_{23} & & 0 \\ 1 & & & h_{23} & & h_{23} & & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{13} & = > h_{13} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \\ 0 & - & 0 & 0 & h_{23} & = > h_{23} & = 0 \end{bmatrix} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(1) = (h21 h22 h23 0 1) (1) = (h31 h22 h23 1) (0 = 0 = 0 = h13 => h13 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
الم الم المولاي الم المولاي الم المولاي الم المولاي ا
(1) = (h21 h22 h23 1) (0 = 0 = 0 = h13 => h13 = 0 (0 = 0 = 0 = h23 => h23 = 0 (0 = 0 = 0 = h23 =>

 1 1	2 you tolier of you ble a H drew chel
و لعما ا	$ \begin{bmatrix} 912 \\ 32 \\ 0 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & 0 \\ h_{21} & h_{22} & 0 \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 10 \\ 1 \end{bmatrix} $
***	5hz, 410 hzz 4 1 = 0 (1)
: تعلم،ٰ © خ	
(T) (T) -	=> 20 hz = 2 => hz = 0.7 => hz = 0
. Thu	hiz 07
F1 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	h22 0
(H(≠0 ≈>	$h_{11} \times (h_{22} - 0) + h_{12} \times (h_{21}) + 0 \times ('-0.1 \times h_{21}) + 0$ $h_{11} h_{22} + h_{12} h_{21} + 0$ $h_{11} h_{22} \neq h_{12} h_{21}$
=>	

سوال هشتم

Subject:	
1 1 1	يىنوالىھىتىم
	سون مسر
1 01 11 11 1	/1
en Scaling Postor il chab inter	ده دی سای ارای اسال می در در اسال می مع
(07	عصر احد بردام X است ، استاه جي ليم ، رمي طريع
$X = 2$ \Rightarrow $S=1 \Rightarrow X = 2$	1 - ()
9 2/1	
2/1] [2]
	: معلى ساك معالم معاملة من المالي المالي المالي المالي
Γ5 <u>-14</u> 9	17769
X - 1/2 PX -	2
1 -10 -5 -10	2
10 2 -11	19 [1]
[5 x 0 + 2 x (-14)) + 2×2 + x17]
	x2 q(-10) x2 q 50 x2
074-1010 4 (-5)1	X2 4 (-10) X2 4 DU X 4
10 × 0 + 2×2 +	(-11) x2 4 19x1
[-7]	J. /
20 -> 11	Chal class
1	
	2.1
Soul Sound person Soul	ing factor pacoulité apparent
[-Z] [-7]	1 21
→ X = - - - -	
20 - 20	¥
	يمنى بدا معالمة مالدس داعلى دورس.
- [P 0 en] :	in us is a south of the local is in
M = O Cu	- '
0 0 1	DEN Ladio Cla & , & in who who
11.	Jen v o v o v o v o v o v o v o v o v o v

Subject:
$M = \begin{bmatrix} 5 & 0 & 500 \\ 0.02 & 500 \\ 0 & 0.02 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 250 & 0 & 500 \\ 0.50 & 500 \\ 0 & 0 & 1 \end{bmatrix}$
مان مامر ما مرب (2,0,0) مربس مرب مرب مرب مرب مرب مرب مرب کرد و مرب کرد مرب کرد مرب کرد
$ \begin{bmatrix} R \mid E \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{3 \times 3} & \frac{3}{3} \times 1 \\ \frac{1}{1 \times 3} & \frac{1}{1 \times 9} \end{bmatrix} $
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
M = \begin{pmatrix} 250 & 600 & 0 \\ 0 & 250 & 500 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}
$\begin{bmatrix} u \\ v \\ g \end{bmatrix} = M. \begin{bmatrix} RIL \\ 1 \end{bmatrix} \xrightarrow{\times} X = \begin{bmatrix} 100 \\ 150 \\ 800 \end{bmatrix}$
$M. [RIt] = \begin{bmatrix} 250 & 0 & 500 & 0 \\ 0 & 250 & 500 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 250 & 0 & 500 & 0 \\ 0 & 250 & 500 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
TDEA

M [RIE] [$\begin{bmatrix} 250 & 0 & 500 & 0 \\ 0 & 250 & 500 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 100 \\ 150 \\ 800 \\ 1 \end{bmatrix}$
	= 9x100 + 0x150 + 500x800 + 0x1 = 9x100 + 250x150 + 500x800 + 0x1 0x100 + 9x150 + 1x800 + 0x1
*, ₁	$\frac{77500}{200} \rightarrow u = 65000, v = 77500, s = 300$
ع = ۱۵ خ اورم ، ب ی ۱	= 650\$\delta \delta \de
	25] = 81 , y = [96.875] - 96