

Statistical Machine Learning

Lecture 10 Convolutional neural networks How to train neural networks

Niklas Wahlström

Division of Systems and Control Department of Information Technology Uppsala University

niklas.wahlstrom@it.uu.se www.it.uu.se/katalog/nikwa778

Summary of Lecture 9 (I/IV) Neural network

A neural network is a sequential construction of **several** generalized linear regression models.

Summary of Lecture 9 (I/IV) Neural network

A neural network is a sequential construction of several generalized linear regression models.

 $\hat{y} = \mathbf{W}^{(2)}\mathbf{q} + \mathbf{b}^{(2)}$

$$\left[\begin{array}{c}q_1\\\vdots\\\vdots\\q_U\end{array}\right]$$

 $\mathbf{W}^{(1)} = \begin{bmatrix} w_{11}^{(1)} & \dots & w_{1p}^{(1)} \\ \vdots & \vdots & \vdots \\ w_{r1}^{(1)} & \dots & w_{rr}^{(1)} \end{bmatrix}, \quad \mathbf{b}^{(1)} = \begin{bmatrix} b_{1}^{(1)} \\ \vdots \\ b_{rr}^{(1)} \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} q_{1} \\ \vdots \\ q_{U} \end{bmatrix} \qquad \mathbf{b}^{(2)} = \begin{bmatrix} b^{(2)} \end{bmatrix} \\ \mathbf{W}^{(2)} = \begin{bmatrix} w_{1}^{(2)} & \dots & w_{U}^{(2)} \end{bmatrix}$

Weight matrix Offset vector Hidden units

Summary of Lecture 9 (I/IV) Neural network

A neural network is a **sequential** construction of several generalized linear regression models.

$$\mathbf{q}^{(1)} = h(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$

$$\mathbf{q}^{(2)} = h(\mathbf{W}^{(2)}\mathbf{q}^{(1)} + \mathbf{b}^{(2)})$$

$$\hat{q} = \mathbf{W}^{(3)}\mathbf{q}^{(2)} + \mathbf{b}^{(3)}$$

In dense (or fully-connected) layers all input units are connected to all output units.

Summary of Lecture 9 (II/IV)

Parameters = weight matrices and offset vectors

All weight matrices and offset vectors in all layers combined are the parameters of the network

$$\boldsymbol{\theta} = \begin{bmatrix} \mathsf{vec}(\mathbf{W}^{(1)})^\mathsf{T}, & \mathbf{b}^{(1)\mathsf{T}}, & \dots, & \mathsf{vec}(\mathbf{W}^{(L)})^\mathsf{T}, & \mathbf{b}^{(L)\mathsf{T}} \end{bmatrix}^\mathsf{T},$$

which constitutes the parametric model $\hat{y} = f(\mathbf{x}; \boldsymbol{\theta})$.

Training

We train a network on training data $\{\mathbf{x}_i,y_i\}_{i=1}^n$ by considering the optimization problem

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}), \qquad J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{y}_i)$$

where
$$\hat{y}_i = f(\mathbf{x}_i; \boldsymbol{\theta})$$

Summary of Lecture 9 (III/IV) NN for classification (M > 2 classes)

For M>2 classes we want to predict the class probability for all M classes $g_m=p(y=m|\mathbf{x})$. We extend the logistic function to the **softmax activation function**

$$g_m = f_m(\mathbf{z}) = rac{e^{z_m}}{\sum_{l=1}^M e^{z_l}}, \qquad m=1,\ldots,M.$$

$$\mathsf{softmax}(\mathbf{z}) = [f_1(\mathbf{z}), \, \dots, f_M(\mathbf{z})]^\mathsf{T}$$

Summary of Lecture 9 (IV/IV) Example M=3 classes

Consider an example with three classes M=3 and where y=2.

The network is trained by minimizing the cross-entropy

$$L(\tilde{\mathbf{y}}, \mathbf{g}) = -\sum_{m=1}^{M} \tilde{y}_m \ln(g_m) = -\ln 0.95 = 0.05$$

Outline

1. Previous lecture The neural network model

- Neural network for regression
- Neural network for classification

2. This lecture

- Convolutional neural network
- How to train a neural network

Convolutional neural networks

Convolutional neural networks (CNN) are a special kind neural networks tailored for problems where the input data has a grid-like structure.

Examples

- Digital images (2D grid of pixels)
- Audio waveform data (1D grid, times series)
- Volumetric data e.g. CT scans (3D grid)

The description here will focus on images.

Data representation of images

Consider a grayscale image of 6×6 pixels.

- Each pixel value represents the color. The value ranges from 0 (total absence, black) to 1 (total presence, white)
- The pixels are the input variables $x_{1,1}, x_{1,2}, \ldots, x_{6,6}$.

Image

Data representation

		•			
0.0	0.0	0.8	0.9	0.6	0.0
0.0	0.9	0.6	0.0	8.0	0.0
0.0	0.0	0.0	0.0	0.9	0.0
0.0	0.0	0.0	0.9	0.6	0.0
0.0	0.0	0.9	0.0	0.0	0.0
0.0	8.0	0.9	0.9	0.9	0.9

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

 Dense layer (previous lecture): Each hidden unit is connected with all pixels. Each pixel-hidden-unit-pair has its own unique parameter.

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

- Dense layer (previous lecture): Each hidden unit is connected with all pixels. Each pixel-hidden-unit-pair has its own unique parameter.
- Convolutional layer: Each hidden unit is connected with a region of pixels via a set of parameters, so-called filter.
 Different hidden units have the same set of parameters.

The convolutional layer

Consider a hidden layer with 6×6 hidden units.

- Dense layer (previous lecture): Each hidden unit is connected with all pixels. Each pixel-hidden-unit-pair has its own unique parameter.
- Convolutional layer: Each hidden unit is connected with a region of pixels via a set of parameters, so-called filter.
 Different hidden units have the same set of parameters.

Conv. layer uses sparse interactions and parameter sharing

- ullet One filter per layer does not give enough flexibility. \Rightarrow
- We use multiple filters (visualized with different colors).
- Each filter produces its own set of hidden units a **channel**.

 $\dim 6 \times 6 \times 1$

 $\dim 6 \times 6 \times 4$

- ullet One filter per layer does not give enough flexibility. \Rightarrow
- We use multiple filters (visualized with different colors).
- Each filter produces its own set of hidden units a channel.

- One filter per layer does not give enough flexibility. ⇒
- We use multiple filters (visualized with different colors).
- Each filter produces its own set of hidden units a **channel**.

- One filter per layer does not give enough flexibility. ⇒
- We use multiple filters (visualized with different colors).
- Each filter produces its own set of hidden units a **channel**.

- One filter per layer does not give enough flexibility. ⇒
- We use multiple filters (visualized with different colors).
- Each filter produces its own set of hidden units a **channel**.

Hidden layers are organized in **tensors** of size (rows \times columns \times channels).

What is a tensor?

A **tensor** is a generalization of scalar, vector and matrix to arbitrary order.

Scalar order 0

$$a = 3$$

Vector order 1

$$\mathbf{b} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$

$$W = \begin{vmatrix} 3 & 2 \\ -2 & 1 \\ -1 & 2 \end{vmatrix}$$

Tensor

any order (here order 3)

$$\mathbf{T}_{:,:,1}$$

$$\begin{bmatrix} 3 & 2 \\ -2 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{T}_{:,:,1} = \begin{vmatrix} 3 & 2 \\ -2 & 1 \\ -1 & 2 \end{vmatrix}, \ \mathbf{T}_{:,:,2} = \begin{vmatrix} -1 & 4 \\ 1 & 2 \\ -5 & 3 \end{vmatrix}$$

$$\begin{bmatrix}
 -1 & 4 \\
 1 & 2 \\
 -5 & 3
 \end{bmatrix}$$

Multiple filters (cont.)

- A filter operates on all channels in a hidden layer.
- ullet Each filter has the dimension (filter rows imes filter colomns imesinput channels), here $(3 \times 3 \times 4)$.
- We stack all filter parameters in a weight tensor with dimensions (filter rows \times filter columns \times input channels \times output channels), here $(3 \times 3 \times 4 \times 6)$

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the filter to every second pixel. We use a stride of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the filter to every second pixel. We use a **stride** of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

Condensing information with strides

- **Problem**: As we proceed though the network we want to condense the information.
- **Solution**: Apply the filter to every second pixel. We use a **stride** of 2 (instead of 1).

With stride 2 we get half the number of rows and columns in the hidden layer.

Full CNN architecture

- A full CNN usually consist of multiple convolutional layers (here two) and a few final dense layers (here two).
- If we have a classification problem at hand, we end with a softmax activation function to produce class probabilities.

Here we use 50 hidden units in the last hidden layer and consider a classification problem with M=10 classes.

Skin cancer – background

One result on the use of deep learning in medicine - Detecting skin

Cancer (February 2017)
Andre Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115-118, February, 2017.

Some background figures (from the US) on skin cancer:

- Melanomas represents less than 5% of all skin cancers, but accounts for 75% of all skin-cancer-related deaths.
- Early detection absolutely critical. Estimated 5-year survival rate for melanoma: Over 99% if detected in its earlier stages and 14% is detected in its later stages.

Skin cancer – task

Image copyright Nature (doi:10.1038/nature21056)

Skin cancer – solution (ultrabrief)

In the paper they used the following network architecture

Image copyright Nature doi:10.1038/nature21056)

- Initialize all parameters from a neural network trained on 1.28 million images (transfer learning).
- From this initialization we learn new model parameters using $129\,450$ clinical images (~ 100 times more images than any previous study).
- Use the model to predict class based on unseen data.

Skin cancer – indication of the results

$$\mathsf{sensitivity} = \frac{\mathsf{true} \; \mathsf{positive}}{\mathsf{positive}}$$

$$specificity = \frac{true\ negative}{negative}$$

Image copyright Nature (doi:10.1038/nature21056)

Unconstrained numerical optimization

We train a network by considering the optimization problem

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}), \qquad J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta})$$

We solve the optimization problem by

- ... making an initial guess of θ ...
- ... and updating θ iteratively.

Iterative solution (gradient descent) -Example 2D

$$\boldsymbol{\theta} = [b, \ w]^{\mathsf{T}} \in \mathbb{R}^2$$

- 1. Pick a $\boldsymbol{\theta}^{(0)}$
- 2. while(not converged)
 - Update $\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} \gamma \mathbf{d}^{(t)}$, where $\mathbf{d}^{(t)} = \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

• Update t := t + 1

We call $\gamma \in \mathbb{R}$ the step length or learning rate.

Computational challenge 1 - $\dim(\theta)$ is big

At each optimization step we need to compute the gradient

$$\mathbf{d}^{(t)} = \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}^{(t)}).$$

Computational challenge 1 - $dim(\theta)$ big: A neural network contains a lot of parameters. Computing the gradient is costly.

Solution: A NN is a composition of multiple layers. Hence, each term $\nabla_{\theta} L(\mathbf{x}_i, \mathbf{y}_i, \theta)$ can be computed efficiently by repeatedly applying the chain rule. This is called the **back-propagation** algorithm. Not part of the course.

Computational challenge 2 - n is big

At each optimization step we need to compute the gradient

$$\mathbf{d}^{(t)} = \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}^{(t)}).$$

Computational challenge 2 - n **big**: We typically use a lot of training data n for training the neural netowork. Computing the gradient is costly.

Solution: For each iteration, we only use a small part of the data set to compute the gradient $\mathbf{d}^{(t)}$. This is called the **stochastic** gradient descent.

Stochastic gradient descent

A big data set is often redundant = many data points are similar.

									_^										
\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8	\mathbf{x}_9	\mathbf{x}_{10}	\mathbf{x}_{11}	\mathbf{x}_{12}	\mathbf{x}_{13}	\mathbf{x}_{14}	\mathbf{x}_{15}	\mathbf{x}_{16}	\mathbf{x}_{17}	\mathbf{x}_{18}	\mathbf{x}_{19}	\mathbf{x}_{20}
\mathbf{y}_1	\mathbf{y}_{2}^{-}	\mathbf{y}_3	\mathbf{y}_4	\mathbf{y}_5	\mathbf{y}_6	\mathbf{y}_7	\mathbf{y}_8	\mathbf{y}_9	\mathbf{y}_{10}	\mathbf{y}_{11}	\mathbf{y}_{12}	\mathbf{y}_{13}	\mathbf{y}_{14}	\mathbf{y}_{15}	\mathbf{y}_{16}	\mathbf{y}_{17}	\mathbf{y}_{18}	\mathbf{y}_{19}	\mathbf{y}_{20}

If the training data is big

$$egin{aligned} oldsymbol{
abla}_{ heta}J(oldsymbol{ heta}) &pprox \sum_{i=1}^{rac{n}{2}} oldsymbol{
abla}_{ heta}L(\mathbf{x}_i,\mathbf{y}_i,oldsymbol{ heta}) & ext{and} \ oldsymbol{
abla}_{ heta}J(oldsymbol{ heta}) &pprox \sum_{i=rac{n}{2}+1}^{n} oldsymbol{
abla}_{ heta}L(\mathbf{x}_i,\mathbf{y}_i,oldsymbol{ heta}). \end{aligned}$$

We can do the update with only half the computation cost!

$$\begin{aligned} \boldsymbol{\theta}^{(t+1)} &= \boldsymbol{\theta}^{(t)} - \gamma \frac{1}{n/2} \sum_{i=1}^{\frac{7}{2}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}^{(t)}), \\ \boldsymbol{\theta}^{(t+2)} &= \boldsymbol{\theta}^{(t+1)} - \gamma \frac{1}{n/2} \sum_{i=\frac{n}{2}+1}^{n} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}^{(t+1)}). \end{aligned}$$

Stochastic gradient descent

Mini-batch

$$\boldsymbol{\theta}^{(3)} = \boldsymbol{\theta}^{(2)} - \gamma \frac{1}{5} \sum_{i=11}^{15} \boldsymbol{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}^{(2)})$$

- The extreme version of this strategy is to use only one data point at each training step (called **online learning**)
- We typically do something in between (not one data point, and not all data). We use a smaller set called mini-batch.
- One pass through the training data is called an epoch.

Stochastic gradient descent

\mathbf{x}_7	$\mathbf{x}_{10} \mathbf{x}$	$\mathbf{x}_3 \mid \mathbf{x}_{20}$	$ {\bf x}_{16} $	\mathbf{x}_2	\mathbf{x}_1	\mathbf{x}_{18}	\mathbf{x}_{19}	\mathbf{x}_{12}	\mathbf{x}_6	\mathbf{x}_{11}	\mathbf{x}_{17}	\mathbf{x}_{15}	\mathbf{x}_5	\mathbf{x}_{14}	\mathbf{x}_4	\mathbf{x}_9	\mathbf{x}_{13}	\mathbf{x}_8
\mathbf{y}_7	$ \mathbf{y}_{10} \mathbf{y}$	$\mathbf{y}_3 \mid \mathbf{y}_{20}$	$ {\bf y}_{16} $	\mathbf{y}_2	\mathbf{y}_1	\mathbf{y}_{18}	\mathbf{y}_{19}	$ \mathbf{y}_{12} $	\mathbf{y}_6	\mathbf{y}_{11}	$\overline{\mathbf{y}}_{17}$	\mathbf{y}_{15}	\mathbf{y}_5	\mathbf{y}_{14}	\mathbf{y}_4	\mathbf{y}_9	\mathbf{y}_{13}	\mathbf{y}_8

Iteration: 3 Epoch: 1

- If we pick the mini-batches in order, they might be unbalanced and not representative for the whole data set.
- Therefore, we pick data points at random from the training data to form a mini-batch.
- One implementation is to randomly reshuffle the data before dividing it into mini-batches.
- After each epoch we do another reshuffling and another pass through the data set.

Mini-batch gradient descent

The full **stochastic gradient descent** algorithm (a.k.a. mini-batch gradient descent) is as follows

- 1. Initialize $\theta^{(0)}$, set $t \leftarrow 1$, choose batch size n_b and number of epochs E.
- 2. For i=1 to E
 - (a) Randomly shuffle the training data $\{\mathbf x_i, \mathbf y_i\}_{i=1}^n$. (b) For j=1 to $\frac{n}{n}$.
 - - (i) Approximate the gradient of the loss function using the mini-batch $\{\mathbf{x}_i, \mathbf{y}_i\}_{i=(i-1)n_b+1}^{jn_b}$

$$\hat{\mathbf{d}}^{(t)} = \frac{1}{n_b} \sum_{i=(j-1)n_b+1}^{jn_b} \nabla_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \bigg|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}.$$

- (ii) Do a gradient step $oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} \gamma \hat{f d}^{(t)}$
- (iii) Update the iteration index $t \leftarrow t + 1$.

At each time we get a stochastic approximation of the true gradient $\hat{\mathbf{d}}^{(t)} \approx \frac{1}{n} \sum_{i=1}^{n} \mathbf{\nabla}_{\boldsymbol{\theta}} L(\mathbf{x}_i, \mathbf{y}_i, \boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}$, hence the name.

Summary

- 1. Previous lecture The neural network model
 - Neural network for regression
 - Neural network for classification
- 2. This lecture
 - Convolutional neural network
 - How to train a neural network

A few concepts to summarize lecture 9

Convolutional neural network (CNN): A NN with a particular structure tailored for input data with a grid-like structure, like for example images.

Filter: (a.k.a kernel) A set of parameters that is convolved with a hidden layer. Each filter produces a new channel.

Channel: A set of hidden units produced by the same filter. Each hidden layer consists of one or more channels.

Stride: A positive integer deciding how many steps to move the filter during the convolution

Tensor: A generalization of matrices to arbitrary order.

Gradient descent: An iterative optimization algorithm where we at iteration take a step proportional to the negative gradient.

Learning rate: (a.k.a step length). A scalar tuning parameter deciding the length of each gradient step in gradient descent.

Stochastic gradient descent (SGD): A version of gradient descent where we at each iteration only use a small part of the training data (a mini-batch).

Mini-batch: The group of training data that we use at each iteration in SG

Batch size: The number of data points in one mini-batch