Feuille de TD n.2 de IPD 2022-2023, Ensimag 2A IF

H. Guiol

Exercice 2.1 Propriétés du MBS

Soit $(B_t)_{t>0}$ un mouvement brownien standard. Montrer les résultats suivants.

1. Symétrie du mouvement brownien :

Le processus $(-B_t)_{t>0}$ est un mouvement brownien standard.

2. Invariance par translation du temps :

Pour tout $s \ge 0$ fixé, le processus $(B_{t+s} - B_s)_{t \ge 0}$ est un mouvement brownien standard.

3. Renversement du temps :

Soit $T \in \mathbb{R}^+$ fixé: le processus définit par $W_t := B_T - B_{T-t}$, est un MBS sur [0; T]

4. Changement d'échelle :

Pour tout $c \neq 0$, le processus $(cB_{t/c^2})_{t\geq 0}$ est un mouvement brownien standard.

5. Inversion du temps :

Le processus X défini par $X_0=0$ et $X_t=tB_{1/t}$ pour tout t>0 est un mouvement brownien standard (on établira plus tard dans le cours que $\lim_{t\to+\infty} B_t/t=0$ p.s., on pourra utiliser librement ce résultat ici).

Exercice 2.2 Comparaison de convergences.

1. Soit $(X_n)_{n>0}$ une suite de v.a., montrer que si $\forall \varepsilon > 0$

$$\sum_{n=0}^{+\infty} \mathbb{P}(|X_n| > \varepsilon) < +\infty$$

alors X_n converge presque sûrement vers 0.

- 2. Soit $(X_n)_{n\geq 0}$ une suite de v.a. indépendantes de lois respectives $\mathcal{E}xp(\log(n))$.
 - [2.1] Montrer que X_n converge vers 0 en probabilité.
 - [2.2] Montrer que $\mathbb{P}(|X_n| > 1) = 1/n$ et en déduire que X_n ne converge pas p.s.

Exercice 2.3 Tribus asymptotiques.

Soient $A_1, A_2, ...$ une collection d'événements et $\mathcal{A} = \sigma(A_1, A_2, ...)$ la tribu engendrée par ces évènements. Un résultat standard de la théorie de la mesure montre que si $A \in \mathcal{A}$ alors il existe une suite d'événements $C_1, C_2, ...$ tels que

$$\forall n \geq 1, C_n \in \mathcal{A}_n \text{ et } \lim_{n \to +\infty} \mathbb{P}(A\Delta C_n) = 0$$

où $A_n = \sigma(A_1, ..., A_n)$ la tribu engendrée par $A_1, ..., A_n$.

- 1. Montrer que si $A \in \mathcal{A}$ est indépendant de \mathcal{A}_n pour tout n alors $\mathbb{P}(A) = 0$ ou $\mathbb{P}(A) = 1$.
- 2. Soient $X_1, X_2, ...$ une suite de v.a. on note

$$\mathcal{H}_n = \sigma(X_{n+1}, X_{n+2}, \dots)$$

la tribu engendrée par la suite à partir de X_{n+1} et on pose $\mathcal{H}_{\infty} = \bigcap_n \mathcal{H}_n$ que l'on appelle la tribu queue. Montrer que si X_1, X_2, \dots sont indépendants alors pour tout $H \in \mathcal{H}_{\infty}$ on a $\mathbb{P}(H) = 0$ ou $\mathbb{P}(H) = 1$.

Exercice 2.4 Comportement trajectoriel du mouvement brownien.

Soit $(B_t)_{t>0}$ un mouvement brownien standard.

1. Pour tous $k \in \mathbb{N}$ on considère la v.a. quotient décalé en temps

$$R_k = \limsup_{n \to +\infty} \frac{B_{n+k} - B_k}{\sqrt{n}}.$$

Montrer qu'elle est indépendante de $A_k = \sigma(B_u, u \leq k)$.

- 2. Soit $R = \limsup_{n \to +\infty} \frac{B_n}{\sqrt{n}}$, montrer que pour tous k on a $R = R_k$ en loi et en déduire qu'en loi $R = R_\infty$ la limite des R_k qui existe et est indépendante de A_k pour tous k.
- 3. Déduire des questions précédentes que $\mathbb{P}(R = +\infty) = 1$.
- 4. Montrer que $\liminf_{n\to+\infty} \frac{B_n}{\sqrt{n}} = -\infty$.