Разработка системы Bluetooth-передатчиков

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГРУППЫ ИВТ-32 РЗАЕВ А. Э.

Цель

Получение навыков разработки программного обеспечения устройств на базе микроконтроллеров с использованием высокоуровневых языков программирования.

Разрабатываемое ПО предназначено для мониторинга температуры и влажности на территории садового участка.

Актуальность разработки

На данный момент устройства, предоставляющие схожий функционал не имеют возможности объединения их в сеть и передачи данных ведущему устройству, например, ПК или смартфону, не только напрямую от устройства с датчиком, но и по цепочке.

Требования к устройству

- Работа от автономного источника питания
- Передача данных по сети Bluetooth
- Передача данных от одного устройства к другому по цепочке
- Диапазон измерений температуры: -5°C до +35°C
- Диапазон измерений влажности: от 0 до 100 %

Выбор микроконтроллера

	Raspberry Pi 3	Arduino Nano	Arduino Uno
Цена	Высокая	Низкая	Средняя
Потребление энергии	Высокое	Низкое	Низкое
Сложность в настройке	Средняя	Высокая	Средняя

Формат сообщений

Смещение	Размер	Описание
0		Тип сообщения
1		Идентификатор отправителя
2	1	Идентификатор источника данных
3	1	Температура
4		Влажность
5		Контрольная сумма

Используемые модули

- •Микроконтроллер Arduino Uno
- •Датчик температуры и влажности DHT-22
- •Модуль Bluetooth LE MLT-BT05
- •Источник питания (солнечные панели)

Схема подключения модулей

Варианты устройства

Генератор	Осуществляет сбор данных с датчиков и передачу данных на следующее устройство. Является начальным звеном цепи.
Ретранслятор	Осуществляет прием и передачу данных с предыдущего устройства, а также передачу данных со своих датчиков.
Приемник	Осуществляет прием данных с предыдущего устройства и вывод данных через последовательный порт. Является конечным звеном цепи.

Алгоритмы функционирования

- •Алгоритм приема данных
- •Алгоритм передачи данных
- •Алгоритм проверки данных
- •Основной цикл работы генератора
- •Основной цикл работы приемника
- •Основной цикл работы ретранслятора

Схема передачи данных

Программная реализация

Константы, определенные в исходных текстах:

- •STD_MSG тип сообщения «обычный», 0х00
- •TER_MSG тип сообщения «терминальный», 0x01
- •SLEEP_INT интервал простоя, значение для различных устройств разное
- •MAX_ATTEMPTS количество попыток считывания для каждого байта, 3
- •BUFFER_SIZE длина буфера (сообщения), 6
- •RX_PIN, TX_PIN номера разъемов для подключения Bluetooth-модуля, 9 и 10
- •CUR_ID ID текущего устройства

Дальнейшее развитие

- •Добавление команд для управления системой полива
- •Использование комбинированных источников питания (солнечная панель + аккумулятор)
- •Использования сетей WiFi для передачи данных
- •Программное изменение ID устройств