

University of Applied Sciences

AN INTRODUCTION TO

Statistics

Author:
Thomas Haslwanter

 $email: \\ {\it thomas.haslwanter@fh-linz.at}$

Version: 1.7 July 3, 2013

Contents

1	\mathbf{Intr}	Introduction				
	1.1	Why Statistics?				
	1.2	Population and samples				
	1.3	Projects				
		1.3.1 Project 1				
	1.4	Programming Matters				
		1.4.1 Python				
		1.4.2 Pandas				
		1.4.3 Statsmodels				
		1.4.4 General Routines				
2	Bas	ic Principles				
	2.1	Datatypes				
		2.1.1 Categorical				
		2.1.2 Numerical				
		2.1.3 Continuous				
	2.2	Data Display				
		2.2.1 Scatter Plots				
		2.2.2 Histograms				
		2.2.3 Cumulative Frequencies				
		2.2.4 Box Plots				
		2.2.5 Programs: Data Display				
	2.3	Study Design				
		2.3.1 Types of Studies				
		2.3.2 Design of Experiments				
		2.3.3 Structure of Experiments				
		2.3.4 Data Management				
		2.3.5 Clinical Investigation Plan				
3	Dist	tributions of one Variable 27				
	3.1	Characterizing a Distribution				
		3.1.1 Distribution Center				
		3.1.2 Quantifying Variability				
		3.1.3 Parameters Describing a Distribution				
		3.1.4 Central Limit Theorem				
	3.2	Distribution Functions				
		3.2.1 Probability and Samples				
		3.2.2 Normal Distribution				
		3.2.3 Other Continuous Distributions				
		3.2.4 Discrete Distributions				
	3.3	Data Analysis				

4 CONTENTS

		3.3.1 Data Screening
		3.3.2 Normality Check
		3.3.3 Transformation
		3.3.4 Confidence Intervals
	3.4	Exercises
		3.4.1 Numpy
		3.4.2 Distributions
		3.4.3 Reading and Writing of Datafiles
		3.4.4 Continuous Distributions
4	Stat	sistical Tests 51
	4.1	Hypothesis tests
		4.1.1 Types of Error
		4.1.2 Sample Size
	4.2	Sensitivity and Specificity
	4.3	ROC Curve
	4.4	Large Sample Tests
5	Test	of Means of Continuous Data 59
	5.1	Distribution of a Sample Mean
		5.1.1 One sample t-test for a mean value
		5.1.2 Wilcoxon signed rank sum test 61
	5.2	Comparison of Two Groups
		5.2.1 Non-parametric Comparison of Two Groups: Mann-Whitney Test 62
	5.3	Comparison of More Groups
		5.3.1 Analysis of Variance - ANOVA
		5.3.2 Multiple Comparisons
		5.3.3 Kruskal-Wallis test
	5.4	Exercises
		5.4.1 One or Two Groups
		5.4.2 Multiple Groups
6	Test	on Discrete Data 73
	6.1	Tests on Ordinal Data
	6.2	Binomial Test
7		s on Categorical Data 75
	7.1	One Proportion
	7.2	Frequency Tables
		7.2.1 Chi-square Test
		7.2.2 Fisher's Exact Test
		7.2.3 McNemar's Test
	7.3	Analysis Programs
0	ъ.	
8		ation Between Two Continuous Variables 83
	8.1	Correlation
		8.1.1 Correlation Coefficient
		8.1.2 Coefficient of determination
		8.1.3 Rank Correlation
	8.2	Regression
		8.2.1 Introduction
		8.2.2 Assumptions

CONTENTS 5

	8.3	Exercises
9	Rela	ation Between Several Variables 95
	9.1	Two-way ANOVA
	9.2	Multilinear Regression
10	Sta	tistical Models 99
	10.1	Model language
		10.1.1 Design Matrix
		10.1.2 Example: Program Effectiveness
	10.2	Assumptions
		10.2.1 Interpretation
	10.3	Evaluation of for Linear Regression Models
		10.3.1 Definitions for Regression with Intercept
		10.3.2 The R^2 Value
		10.3.3 The F-test
		10.3.4 Log-Likelihood Function
		10.3.5 Information Content of Statistical Models
	10.4	Bootstrapping
11	Ana	lysis of Survival Times 111
	11.1	Survival Probabilities
		11.1.1 Kaplan-Meier survival curve
	11.2	Comparing Survival Curves in Two Groups
\mathbf{A}	App	pendix 115
	A.1	Lecture Schedule
		To Do
	Inde	x Topics
	Pyth	non Programs

6 CONTENTS

Chapter 1

Introduction

"Statistics ist the explanation of variance in the light of what remains unexplained."

Statistics was originally invented - as so many other things - by the famous mathematician C.F. Gauss, who said about his own work "Ich habe fleissig sein müssen; wer es gleichfalls ist, wird eben so weit kommen". Even if your aspirations are not that high, you can get a lot out of statistics. In fact, if your work with real data, you probably won't be able to avoid it. Statistics can

- Describe variation.
- Make quantitative statements about populations.
- Make predictions.

Books: There are a number of good books about statistics. My favorite is [Altman(1999)]: it does not talk a lot about computers and modeling, but gives you a terrific introduction into the field. Many formulations and examples in this manuscript have been taken from that book. A more modern book, which is more voluminous and in my opionion a bit harder to read, is [Riffenburgh(2012)]. If you are interested in a simple introduction to modern regression modeling, check out [Kaplan(2009)].

WWW: On the web, you find good very extensive statistics information in English under *http://www.statsref.com/*. A good German webpage on statistics and regulatory issues is *http://www.reiter1.com/*.

Exercises: Many examples are already solved in the text. For the use in lectures (or for self-test), additional exercises are provided at the end of most chapters. For lecturers, solutions to these exercises can be provided on demand. Please contact me directly for that via email.

1.1 Why Statistics?

Statistics will help you to

- Clarify the question.
- Identify the variable and the measure of that variable that will answer that question.
- Determine the required sample size.
- Find the correct analysis for your data.
- Make predictions based on your data.

1.2 Population and samples

While the whole *population* of a group has certain characteristics, we can typically never measure all of them. Instead, we have to confine ourselves to investigate a representative *sample* of this group, and estimate the properties of the population. Great care should be used to make the sample representative for the population you study.

1.3 Projects

For this course, you will choose a partner, and analyze one of the five projects described below. You will have to

- 1. Read up on the problem.
- 2. Design the study:
 - (a) Determine the parameter to analyze.
 - (b) Decide on the requirements of the sample population.
 - (c) Plan the randomization.
 - (d) Decide which test you want to use for the analysis.
- 3. Present your study design at the Intermediate Presentation
- 4. Analyze dummy data provided by me.
- 5. Generate the appropriate graphs.
- 6. Present the results at the Final Presentation.

You can choose from one of the following projects:

- 1. Project 1
- 2. Project 2
- 3. ...

1.3.1 Project 1

Researcher John Doe

Topic Short description...

Task Longer description...

1.4 Programming Matters

1.4.1 Python

There are three reasons why I have decided to use Python for this lecture.

- 1. It is the most elegant programming language that I know.
- 2. It is free.
- 3. It is powerful.

http://scipy-lectures.github.com/	Python Scientific Lecture Notes. Pretty comprehensive.
http://www.scipy.org/NumPy_for_Matlab_Users	NumPy for Matlab Users Start here if you have Matlab experience.
http://jrjohansson.github.com/	Lectures on scientific computing with Python. Great ipython note-
	books!
http://docs.python.org/2/tutorial/	The Python tutorial. The official introduction.
http://www.greenteapress.com/thinkpython/	ThinkPython A free book on Python.

Table 1.1: Python on the WWW

I have not seen many books on Python that I really liked. My favorite introductory book is [Harms and McDonald(2010)].

In general, I suggest that you start out by installing a Python distribution which includes the most important libraries. My favorites here are [Python(xy)(2013)] and [WinPython(2013)], which are very good starting points when you are using Windows. The former one has the advantage that most available documentation and help files also get installed locally. Mac and Unix users should check out the installations tips from Johansson (see Table 1.1).

There are also many tutorials available on the internet (Table 1.1). Personally, most of the time I just google; thereby I stick primarily a) to the official pages, and b) to http://stackoverflow.com/. Also, I have found user groups surprisingly active and helpful!

If you decide to install things manually, you need the following modules in addition to the Python standard library:

- *ipython* ... For interactive work.
- numpy ... For working with vectors and arrays.
- scipy ... All the essential scientific algorithms, including those for statistics.
- matplotlib ... The de-facto standard module for plotting and visualization.
- pandas ... Adds DataFrames (imagine powerful spreadsheets) to Python.
- statsmodels ... This one is only required if you want to look more into statistical modeling.

Ipython

Make sure that you have a good programming environment! Currently, my favorite way of programming is similar to my old Matlab style: I first get the individual steps worked out interactively in [IPython(2013)]. Ipython provides interactive computing with Python, similar to the commandline in Matlab. It comes with a command history, interactive data visualization, command completion, and a lot of features that make it quick and easy to try out code. When ipython is started in *pylab mode* (which is the typical configuration), it automatically loads numpy and matplotlib.pyplot into the active workspace, and provides a very convenient, Matlab-like programing environment. A very helpful new addition is the browser-based *ipython notebook*, with support for code, text, mathematical expressions, inline plots and other rich media. Please check out the links to the ipython notebooks in this statistics introduction. I believe that it will help you to get up to speed with python much more quickly.

And to write a program, I then go to either *Spyder* (which is free) or *Wing* (which is very good, but commercial).

The flexibility of Python has the "disadvantage" that it can come in different flavors or coding styles. When you know the different approaches, they are great to use. But when you get started, it can be a bit confusing. The following section from the Matplotlib documentation may help to clarify these things:

Matplotlib, pylab, and pyplot: how are they related?

Matplotlib is the whole package; *pylab* is a module in matplotlib that gets installed alongside matplotlib; and *matplotlib.pyplot* is a module in matplotlib.

Pyplot provides the state-machine interface to the underlying plotting library in matplotlib. This means that figures and axes are implicitly and automatically created to achieve the desired plot. For example, calling plot from pyplot will automatically create the necessary figure and axes to achieve the desired plot. Setting a title will then automatically set that title to the current axes object:

```
import matplotlib.pyplot as plt
plt.plot(range(10), range(10))
plt.title("Simple Plot")
plt.show()
```

Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for working with arrays) in a single namespace, making that namespace (or environment) even more MATLAB-like. For example, one can call the sin and cos functions just like you could in MATLAB, as well as having all the features of pyplot.

The pyplot interface is generally preferred for non-interactive plotting (i.e., scripting). The pylab interface is convenient for interactive calculations and plotting, as it minimizes typing. Note that this is what you get if you use the ipython shell with the -pylab option, which imports everything from pylab and makes plotting fully interactive.

Coding Styles in Python

In Python you will find different coding styles and usage patterns. These styles are perfectly valid and have their pros and cons. Just about all of the examples can be converted into another style and achieve the same results. The only caveat is to avoid mixing the coding styles for your own code.

Of the different styles, there are two that are officially supported. Therefore, these are the preferred ways to use matplotlib.

For the preferred pyplot style, the imports at the top of your scripts will typically be:

```
import matplotlib.pyplot as plt
import numpy as np
```

Then one calls, for example, np.arange, np.zeros, np.pi, plt.figure, plt.plot, plt.show, etc. So, a simple example in this style would be:

```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
plt.plot(x, y)
plt.show()
```

Note that this example used pyplot's state-machine to automatically and implicitly create a figure and an axes. For full control of your plots and more advanced usage, use the pyplot interface for creating figures, and then use the object methods for the rest:

```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig = plt.figure()
ax = fig.add_subplot(111)
```

```
ax.plot(x, y)
plt.show()
```

Next, the same example using a pure MATLAB-style:

```
from pylab import *
x = arange(0, 10, 0.2)
y = sin(x)
plot(x, y)
show()
```

So, why all the extra typing as one moves away from the pure MATLAB-style? For very simple things like this example, the only advantage is academic: the wordier styles are more explicit, more clear as to where things come from and what is going on. For more complicated applications, this explicitness and clarity becomes increasingly valuable, and the richer and more complete object-oriented interface will likely make the program easier to write and maintain.

Here an example, to get you started with Python. For interactive work, it is simplest to use the *pylab mode*, as shown in the example below. The corresponding ipython notebook http://nbviewer.ipython.org/url/work.thaslwanter.at/CSS/Code/getting_started.ipynb) shows how numpy and matplotlib can be addressed directly. (This is common practice when writing functions.)

Example-Session

Listing 1.1: gettingStarted_ipy.py

```
'''Short demonstration of Python for scientific data analysis
This script covers the following points:
* Plotting a sine wave
* Generating a column matrix of data
* Writing data to a text-file, and reading data from a text-file
* Waiting for a button-press to continue the program exectution
    (Note: this does NOT work in ipython, if you run it with inline figures!)
* Using a dictionary, which is similar to MATLAB structures
* Extracting data which fulfill a certain condition
* Calculating the best-fit-line to noisy data
* Formatting text-output
* Waiting for a keyboard-press
* Calculating confidence intervals for line-fits
* Saving figures
For such a short program, the definition of a "main" function, and calling
it by default when the module is imported by the main program, is a bit
superfluous. But it shows good Python coding style.
Author: Thomas Haslwanter
Version: 1.0
Date: May-2013
# In contrast to MATLAB, you explicitly have to load the modules that you need.
# for interactive work, there is a shotcut: "pylab", which loads numpy and
# matplotlib.pyplot into the current workspace
from pylab import *
# For Python programs, it is common to load the modules explicitly.
```

```
# Don't worry here about not knowing the right modules: numpy, scipy, and
# matplotlib is almost everything you will need most of the time, and you
# will quickly get used to those.
# Check out "gettingStarted.py", how this script would look with that explicit
# use of the modules.
def main():
    '''Define the main function. '''
    # Create a sine-wave
   t = arange(0, 10, 0.1)
   x = sin(t)
    # Save the data in a text-file, in column form
    # The formatting is a bit clumsy: data are by default row variables; so to
    # get a matrix, you stack the two rows above each other, and then transpose
    # the matrix
   outFile = 'test.txt'
   savetxt(outFile, vstack([t,x]).T)
    # Read the data into a different variable
   inData = loadtxt(outFile)
   t2 = inData[:,0] # Note that Python starts at "0"!
   x2 = inData[:,1]
    # Plot the data, and wait for the user to click
   show()
   plot(t2,x2)
   title('Hit any key to continue')
   waitforbuttonpress()
    # Generate a noisy line
   t = arange(-100, 100)
    # use a Python "dictionary" for named variables
   par = {'offset':100, 'slope':0.5, 'noiseAmp':4}
   x = par['offset'] + par['slope']*t + par['noiseAmp']*randn(len(t))
    # Select "late" values, i.e. with t>10
   xHigh = x[t>10]
   tHigh = t[t>10]
    # Plot the "late" data
   close()
   plot(tHigh, xHigh)
    # Determine the best-fit line
    # To do so, you have to generate a matrix with "time" in the first
    # column, and a column of "1" in the second column:
    xMat = vstack((tHigh, ones(len(tHigh)))).T
    slope, intercept = linalg.lstsq(xMat, xHigh)[0]
    # Show and plot the fit, and save it to a PNG-file with a medium resolution.
    # The "modern" way of Python-formatting is used
   hold(True)
   plot(tHigh, intercept + slope*tHigh, 'r')
    title('Hit any key to continue')
   savefig('linefit.png', dpi=200)
   waitforbuttonpress()
   close()
   print('Fit line: intercept = {0:5.3f}, and slope = {1:5.3f}'.format(
       intercept, slope))
    #raw_input('Thanks for using programs by Thomas!')
    # If you want to know confidence intervals, best switch to "pandas"
```

1.4.2 Pandas

[Pandas(2013)] is a Python module which provides suitable data structures for statistical analysis. It significantly enhances the abilities of Python for data input, data organization, and data manipulation. In the following, I assume that pandas has been imported with

```
import pandas as pd
```

Data Input

Pandas offers tools for reading and writing data between in-memory data structures and different formats, e.g. CSV and text files, Microsoft Excel, and SQL databases. For example, if you have data in your clipboard, you can import them directly with

```
data = pd.io.parsers.read_clipboard()
```

```
Or data from "Sheet1" in an Excel-file "data.xls" can be read in easily with

xls = pd.io.parsers.ExcelFile('data.xls')

data = xls.parse('Sheet1')
```

Data Handling and Manipulation

Pandas offers powerful functions to handle missing data and "nans", and other kinds of data manipulation like pivoting.

To handle labeled data, pandas introduces *DataFrame* objects. A DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table. It is generally the most commonly used pandas object. For example, you can use data-frames to efficiently group objects, and do a statistical evaluation of each group:

```
x = tile([1,2,3], 4)
y = randn(len(x))
df = pd.DataFrame({'treatment':x, 'result':y})
groups = df.groupby('treatment')
print groups.mean()
```

produces

```
result
treatment
1 -0.624521
2 0.074425
3 -0.806102
```

For statistical analysis, pandas becomes really powerful if you combine it with *statsmodels* (see below).

The following piece of code shows you how pandas can be used for data analysis:

Listing 1.2: pandasIntro.py

```
'''Introductions into using "Pandas"
Pandas is a Python framework for statistical analysis. It allows you to label
and group data, etc.
The example here shows you
- how to group data, and analyze each group
- how to combine Pandas with statsmodels for elegant modeling
,,,
Author : Thomas Haslwanter
Date : June 2013
Ver : 2.0
import numpy as np
import pandas as pd
import statsmodels.formula.api as sm
def labelled_data():
    ''' Analyzed labelled data '''
    # To get reproducable values, I provide a seed value
    np.random.seed(987654321)
    # Generate three groups of normally distributed data, with different means
    data = np.random.randn(100,3)+np.array([2.5, 3.5, 2])
    # ... and the corresponding labels
    labels = np.tile([1,2,3], (100,1))
    # Flatten them, so you have them just as if you read them in from a file
    dataList = data.flatten()
    typeList = labels.flatten()
    # For simple data handling, put them into a Pandas "DataFrame"
    df = pd.DataFrame({'values': dataList, 'type': typeList})
    # Calculate mean, standard deviation, and size of each group
    grouped = df.groupby('type')
    grouped.mean()
    grouped.std()
    grouped.size()
    # Then, generate a boxplot
    df.boxplot(by='type')
    return df
def simple_fit(df):
    ''' Example 2: Linear regression fit '''
    # Generate a noisy line
    x = np.arange(100)
    y = 0.5*x - 20 + np.random.randn(len(x))
    # Fit a linear model ...
   model = sm.ols('y~x', data=df).fit()
```

```
# ... and print the summary
print model.summary()

return model.params

if __name__ == '__main__':
    df = labelled_data()
    simple_fit(df)
```

1.4.3 Statsmodels

[statsmodels(2013)] is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. In its latest release (version 0.5), statsmodels also allows the formulation of models with the popular formula language also used by R, the leading statistics package. For example, data on the connection between academic "success", "intelligence" and "diligence" can be described with the model 'success intelligence * diligence', which would capture the direct effect of "intelligence" and "diligence", as well as the interaction. You find more information on that topic in the section "Statistical Models".

While for complex statistical models R still has an edge, python has a much clearer and more readable syntax, and is arguably more powerful for the data manipulation often required for statistical analysis.

1.4.4 General Routines

Here is also a good place to introduce the short function that we will use a number of times to simplify the reading in of data:

```
Listing 1.3: getdata.py
```

```
'''Get data for the Python programs for statistics, FH OOe.
Most are from the tables in the Altman book "Practical Statistics for Medical
I use these data quite often, so I have put those by default in a subdirectory
"data_altman". This function reads them from there.
If the data are not found locally, they are retrieved from the WWW.
,,,
Author: Thomas Haslwanter
        May-2013
Version: 1.4
from os.path import join
from numpy import genfromtxt
import os
import urllib2
def getData(inFile, subDir=r'.\Data'):
    '''Data are taken from examples in D. Altman, "Practical Statistics for
       Medical Research" '''
    dataDir = os.path.join(os.path.dirname(__file__), subDir)
    fullInFile = join(dataDir, inFile)
        data = genfromtxt(fullInFile, delimiter=',')
```

```
except IOError:
    print fullInFile + ' does not exist: Trying to read from WWW'
    try:
        url_base = 'https://raw.github.com/thomas-haslwanter/statsintro/
            master/Data/'
        url = os.path.join(url_base, inFile)
        print url
        fileHandle = urllib2.urlopen(url)
        data = genfromtxt(fileHandle, delimiter=',')
    except:
        print url + ' also does not exist!'
        data = ()
    return data

if __name__ == '__main__':
    data = getData(r'data_altman\altman_93.txt')
    print data
```

Chapter 2

Basic Principles

2.1 Datatypes

The type of your data is essential for the choice of test that you have to use for your data analysis. Your data can have one of the following datatypes:

2.1.1 Categorical

boolean

Some data can only have two values. For example,

- 1. male/female
- 2. smoker/non-smoker

nominal

Many classifications require more than two categories, e.g. married / single / divorced

ordinal

These are ordered categorical data, e.g. very few / few / some / many / very many

2.1.2 Numerical

Numerical discrete

For example Number of children: 0 1 2 3 4 5

2.1.3 Continuous

Whenever possible, it is best to record the data in their original continuous format, and only with a sensible number of decimal places. For example, it does not make sense to record the body size with more than 1 mm accuracy, as there are larger changes in body height between the size in the morning and the size in the evening, due to compression of the intervertebral disks.

2.2 Data Display

When working with a statistical data set, you should *always* first look at the raw-data. Our visual system is incredibly good at recognizing patterns in visually represented data.

2.2.1 Scatter Plots

This is the simplest way of representing your data: just plot each individual data point. (In cases where many data points are superposed, you may want to add a little bit of jitter to show each data point.)

Figure 2.1: Scatter plot

2.2.2 Histograms

Histograms provide a first good overview of the distribution of your data. If you divide by the overall number of data points, you get a *relative frequency histogram*; and if you just connect the top center points of each bin, you obtain a *relative frequency polygon*.

Figure 2.2: Histogram

2.2.3 Cumulative Frequencies

Cumulative frequency curves indicate the number (or percent) of data with less than a given value. This is important for the statistical analysis (e.g. when we want to know the data range containing 95% of all the values). Cumulative frequencies are also useful for comparing the distribution of values in two or more different groups of individuals.

When you use percentage points, the cumulative frequency presentation has the additional advantage that it is bounded:

2.2. DATA DISPLAY

Figure 2.3: Cumulative frequency function

2.2.4 Box Plots

Box plots are frequently used in scientific publications to indicate values in two or more groups. The error bars typically indicate the *range*. However, outliers are often excluded, and plotted separately. There are a number of tests to check for outliers. One of them is to check for data which lie more than 1.5 * *inter-quartile-range* (IQR) above or below the first/third quartile (see Section 3.1.2).

Figure 2.4: Box plot

2.2.5 Programs: Data Display

Listing 2.1: showStats.py

```
''' Show different ways to present statistical data
This script is written in "MATLAB" or "ipython" style, to show how
best to use Python interactively.
Note than in ipython, the "show()" commands are automatically generated.
The examples contain:
- scatter plots
```

```
- histograms
- boxplots
- probplots
- cumulative density functions
- regression fits
,,,
Author: thomas haslwanter
Date: April-2013
Version: 1.2
# First, import the libraries that you are going to need. You could also do
# that later, but it is better style to do that at the beginning.
# pylab imports the numpy, scipy, and matplotlib.pyplot libraries into the
# current environment
from pylab import *
import scipy.stats as stats
def main():
    # Univariate data -----
    # Generate data that are normally distributed
    x = randn(500)
    # Scatter plot
    plot(x,'.')
    title('Scatter Plot')
    xlabel('X')
    ylabel('Y')
    draw()
    show()
    # Histogram
    hist(x)
    xlabel('Data Values')
    ylabel('Frequency')
    title('Histogram, default settings')
    show()
    hist(x, 25)
    xlabel('Data Values')
    ylabel('Frequency')
    title('Histogram, 25 bins')
    show()
    # Cumulative probability density
    numbins = 20
    cdf = stats.cumfreq(x, numbins)
    plot(cdf[0])
    xlabel('Data Values')
    ylabel('Cumulative Frequency')
    title('Cumulative probablity density function')
    show()
    # Boxplot
    # The error bars indiacte the range, and the box consists of the
    # first, second (middle) and third quartile
    boxplot(x)
    title('Boxplot')
```

2.3. STUDY DESIGN

```
ylabel('Values')
   show()
   boxplot(x, vert=False)
   title('Boxplot, horizontal')
   xlabel('Values')
    show()
    # Check for normality
   _ = stats.probplot(x, plot=plt)
   title('Probplot - check for normality')
   show()
    # Bivariate data -----
    # Generate data
   x = randn(200)
   y = 10+0.5*x+randn(len(x))
    # Scatter plot
   scatter(x,y)
    # This one is quite similar to "plot(x, y, '.')"
   title('Scatter plot of data')
   xlabel('X')
   ylabel('Y')
   show()
    # LineFit
   M = vstack((ones(len(x)), x)).T
   pars = linalg.lstsq(M,y)[0]
   intercept = pars[0]
   slope = pars[1]
   scatter(x,y)
   hold(True)
   plot(x, intercept + slope*x, 'r')
   show()
if __name__ == '__main__':
   main()
```

2.3 Study Design

To design a medical study properly is not only advisable - it is even required by ISO 14155-1:2003, for *Clinical investigations of medical devices for human subjects*. This norm specifies many aspects of your clinical study. It enforces the preparation of a *Clinical Investigation Plan (CIP)*, specifying

- The designation of a *monitor* for the investigation.
- The designation of a *clinical investigator*.
- Specification the data handling.
- Specification of the inclusion/exclusion criteria for the subjects.
- Specification of the paradigm.
- Specification and justification of the chosen sample numbers.
- Description of the data analysis.

2.3.1 Types of Studies

Observational or experimental

With observational studies the researcher only collects information, but does not interact with the study population. In contrast, in experimental studies the researcher deliberately influences events (e.g. treats the patient with a new type of treatment) and investigates the effects of these interventions.

Prospective or retrospective

In *prospective* studies the data are collected, starting with the beginning of the study. In contrast, a *retrospective* study takes data acquired from previous events, e.g. routine tests taken at a hospital.

Longitudinal or cross-sectional

In *longitudinal* investigations, the researcher collects information over a period of time, maybe multiple times from each patient. In contrast, in *cross-sectional* studies individuals are observed only once. For example, most surveys are cross-sectional, but experiments are usually longitudinal.

Case control and Cohort studies

In case control studies, first the patients are treated, and then they are selected for inclusion in the study, based on some characteristic (e.g. if they responded to a certain medication). In contrast, in cohort studies, first subjects of interest are selected, and then these subjects are studied over time, e.g. for their response to a treatment.

2.3.2 Design of Experiments

Bias

In general, when selecting our subject you try to make them representative of the population that you want to study; and you try to conduct your experiments in a way representative of investigations by other researchers. However, it is *very* easy to get a *bias* into your data. Bias can arise from a number of sources:

- The selection of subjects.
- The structure of the experiment.
- The measurement device.
- The analysis of the data.

Care should be taken to avoid bias as much as possible.

Randomized controlled trial

The gold standard for experimental scientific clinical trials is the randomized controlled trial. Thereby bias is avoided by splitting the subjects to be tested into an intervention group and a control group. The group allocation is made random. By having the groups differ in only one aspect, i.e. is the factor treatment, we should be able to detect the effect of the treatment on the patients. Factors that can affect the outcome of the experiment are called covariates or confoundings. Through randomization, covariates should be balanced across the groups.

Randomization

This may be one of the most important aspects of experimental planning. Randomization is used to avoid bias as much as possible, and there are different ways to randomize an experiment. For the randomization, random number generators, which are available with most computer languages, can be used. To minimize the chance of bias, the randomly allocated numbers should be presented to the experimenter as late as possible.

Depending on the experiment, there are different ways to randomize the group assingment.

Simple randomization This procedure is robust against selection and accidental bias. The disadvantage is that the resulting groupsize can differ significantly.

For many types of data analysis it is important to have the same sample number in each group. To achieve this, other options are possible:

Block randomization This is used to keep the number of subjects in the different groups closely balanced at all times. For example, if you have two types of treatment, A and B, you can allocate them to two subjects in the following blocks:

- 1. AABB
- 2. ABAB
- 3. ABBA
- 4. BBAA
- 5. BABA
- 6. BAAB

Based on this, you can use a random number generator to generate random integers between 1 and 6, and use the corresponding blocks to allocate the respective treatments. This will keep the number of subjects in each group always almost equal.

Minimization A closely related, but not completely random way to allocate a treatment is *minimization*. Thereby you take whichever treatment has the smallest number of subjects, and allocate this treatment with a probability greater than 0.5 to the next patient.

Stratified randomization Sometimes you may want to include a wider variety of subjects, with different characteristics. For example, you may choose to have younger as well as older subjects. In that case you should try to keep the number of subjects within each *stratum* balanced. For this you will have to keep different lists of random numbers for each group of subjects.

Crossover studies

An alternative to randomization is the *crossover* design of studies. A crossover study is a longitudinal study in which subjects receive a sequence of different treatments. Every subject receives every treatment. To avoid causal effects, the sequence of the treatment allocation should be randomized.

Blinding

Consciously or not, the experimenter can significantly influence the outcome of an experiment. For example, a young researcher with a new "brilliant" idea for a new treatment will be bias in the execution of the experiment, as well in the analysis of the data, to see his hypothesis confirmed. To avoid such a subjective influence, ideally the experimenter as well as the subject should be blinded to the therapy. This is referred to as *double blinding*.

Replication

For variable measurements it is helpful to have a number of independent repetitions of each measurement.

Sample selection

When selecting your subjects, you should take care of two points:

- 1. Make sure that the samples are representative of the population.
- 2. In comparative studies, care is needed in making groups similar with respect to known sources of variation.

For example, if you select your subjects randomly from patients at a hospital, you automatically bias your sample towards subjects with health problems.

Sample size

Many studies fail, because the sample size is too small to observed an effect of the desired magnitude. To plan your sample size, you have to know

- What is the variance of the parameter in the population you are investigating.
- What is the magnitude of the effect you are interested in, relative to the standard deviation of the parameter.

2.3.3 Structure of Experiments

In a designed experiment, there may be several conditions, called *factors*, that are controlled by the experimenter. If each combination of factors is tested, we talk about a *factorial design* of the experiment.

In planning the analysis, you have to keep the important distinction between within subject comparisons, and between subjects comparisons.

2.3.4 Data Management

Documentation

Make sure that you document all the factors that may influence your results:

- The date and time of the experiment.
- Information about the experimenters and the subjects.
- The exact paradigm that you have decided on.
- Anything noteworthy that happens during the experiment.

Data Handling

You can already significantly facilitate the data handling by storing your data with telltale names. For example, if you execute your experiments in Vienna and in Linz, you can store your rawdata with the format "[town][year][month][day].dat". For example, an experiment in Vienna on April 1, 2013 would be stored as "vi20130401.dat".

25

When you have finished recording the data, back up your data right away. Best do that into a directory that is separate from the one where you do your data analysis afterwards.

2.3.5 Clinical Investigation Plan

The ISO norm 14155 specifies in detail the requirements for the clinical investigation plan (CIP):

- 1. Type of study (e.g. double-blind, with or without control group etc.).
- 2. Discussion of the control group and the allocation procedure.
- 3. Description of the paradigm.
- 4. Description and justification of primary endpoint of study.
- 5. Description and justification of chosen measurement variable.
- 6. Measurement devices and their calibration.
- 7. Inclusion criteria for subjects.
- 8. Exclusion criteria for subjects.
- 9. Point of inclusion ("When is a subject part of the study?")
- 10. Description of the measurement procedure.
- 11. Criteria and procedures for the dropout of a subject.
- 12. Chosen sample number and level of significance, and their justification.
- 13. Procedure for documentation of negative effects or side-effects.
- 14. List of factors that can influence the measurement results or their interpretation.
- 15. Procedure for documentation, also for missing data.
- 16. Statistical analysis procedure.

Chapter 3

Distributions of one Variable

3.1 Characterizing a Distribution

3.1.1 Distribution Center

Mean

By default, when we talk about the mean value we mean the arithmetic mean \bar{x} :

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{3.1}$$

Median

The *median* is that value that comes half-way when the data are ranked in order. In contrast to the mean, it is not affected by outlying data points.

Mode

The mode value is the most frequently occurring value in a distribution.

Geometric Mean

In some situations the *geometric mean* can be useful to describe the location of a distribution. It is usually close to the median, and can be calculated via the arithmetic mean of the log of the values.

3.1.2 Quantifying Variability

Range

This one is fairly easy: it is the difference between the highest and the lowest data value. The only thing that you have to watch out for: after you have acquired your data, you have to check for *outliers*, i.e. data points with a value much higher or lower than the rest of the data. Often, such points are caused by errors in the selection of the sample or in the measurement procedure. There are a number of tests to check for outliers. One of them is to check for data which lie more than 1.5**inter-quartile-range* (IQR) above or below the first/third quartile (see below).

Centiles

The Cumulative distribution function (CDF) tells you for each value which percentage of the data has a lower value (Figure 3.1). The value below which a given percentage of the values occur is called *centile* or *percentile*, and corresponds to a value with a specified cumulative frequency.

For example, when you look for the data range which includes 95% of the data, you have to find the 2.5^{th} and the 97.5^{th} percentile of your sample distribution.

The 50th percentile is the median.

Also important are the *quartiles*, i.e. the 25th and the 75th percentile. The difference between them is sometimes referred to as *inter-quartile range (IQR)*.

Median, upper and lower quartile are used for the data display in box plots (Fig.2.4).

Figure 3.1: Probability distribution function (top) and Cumulative distribution function (bottom) of a normal distribution.

Standard Deviation and Variance

The variance (SD) of a distribution is defined as

$$var = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
(3.2)

Note that we divide by n-1 rather than the more obvious n: dividing by n gives the variance of the observations around the sample mean, but we virtually always consider our data as a sample from some larger population and wish to use the sample data to estimate the variability in the population. Dividing by n-1 gives us a better estimate of the population variance.

The standard deviation is simply given by the square root of the variance:

$$s = \sqrt{var} \tag{3.3}$$

In statistics it is often common to denote the population standard deviation with σ , and the sample standard deviation with s.

Watch out: in Python, by default the variance is calculated for "n". You have to set "ddof=1" to obtain the variance for "n-1":

In[19]: data = arange(7,14)
In[20]: std(data, ddof=0)
Out[20]: 2.0

In[21]: std(data, ddof=1)
Out[21]: 2.1602468994692865

Standard Error

While the standard deviation is a good measure for the distribution of your values, often you are more interested in the distribution of the mean value. For example, when you measure the response to a new medication, you might be interested in how well you can characterize this response, i.e. is how well you know the mean value. This measure is called the *standard error* of the mean, or sometimes just the *standard error*. In a single sample from a population with a standard deviation of σ the variance of the sampling distribution of the mean is σ^2/n , and so the standard error of the mean is σ/\sqrt{n} .

For the sample standard error of the mean, which is the one you will be working with most of the time, we have

$$SE = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \cdot \frac{1}{\sqrt{n}}}$$
 (3.4)

3.1.3 Parameters Describing a Distribution

Location

A location parameter x_0 determines the "location" or shift of a distribution.

$$f_{x0}(x) = f(x - x_0)$$

Examples of location parameters include the mean, the median, and the mode.

Scale

The scale parameter describes the width of a probability distribution. If s is large, then the distribution will be more spread out; if s is small then it will be more concentrated. If the probability density exists for all values of s, then the density (as a function of the scale parameter only) satisfies

$$f_s(x) = f(x/s)/s$$
,

where f is the density of a standardized version of the density.

Shape Parameters

A shape parameter is any parameter of a probability distribution that is neither a location parameter nor a scale parameter. If *location* and *shape* already completely determine the distribution (as is the case for e.g. the normal distribution or the exponential distribution, etc.), then these distributions don't have any *shape parameter*. It follows that the *skewness* and *kurtosis* of these distribution are constants.

Skewness

Distributions are *skewed* if they depart from symmetry. For example, if you have a measurement that cannot be negative, which is usually the case, then we can infer that the data have a skewed distribution if the standard deviation is more than half the mean. Such an asymmetry is referred to as *positive skewness*. The opposite, negative skewness, is rare.

(b) The "Darkness" data is platykurtic (0.194), while "Far Red Light" shows leptokurtosis (0.055).

Figure 3.2: Skew and Kurtosis of distributions (from Wikipedia).

Kurtosis

Kurtosis is any measure of the "peakedness" of the probability distribution. Distributions with negative or positive excess kurtosis are called platykurtic distributions or leptokurtic distributions respectively.

3.1.4 Central Limit Theorem

The central limit theorem states that for identically distributed independent random variables (also referred to as *random variates*), the mean of a sufficiently large number of these variables will be approximately normally distributed.

3.2 Distribution Functions

The variable for a standardized distribution function is often called *statistic*. So you often find expressions like "the z-statistic" (for the normal distribution function), the "t-statistic" (for the t-distribution) or the "F-statistic" (for the F-distribution).

3.2.1 Probability and Samples

3.2.2 Normal Distribution

The Normal distribution or Gaussian distribution is by far the most important of all the distribution functions. This is due to the fact that the mean values of all distribution functions approximate a normal distribution for large enough sample numbers. Mathematically, the normal distribution is characterized by a mean value μ , and a standard deviation σ :

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
 (3.5)

where $-\infty < x < \infty$, and $f_{\mu,\sigma}$ is the probability density function (PDF).

For smaller sample numbers, the sample distribution can show quite a bit of variability. For example, look at 25 distributions generated by sampling 100 numbers from a normal distribution (Fig. 3.4)

Some examples of applications are:

Figure 3.3: Normal Distribution

	Probability of being		
Range	within range	outside range	
$mean \pm 1SD$	0.683	.317	
mean \pm 2SD	0.954	0.046	
mean \pm 3SD	0.9973	0.0027	

Table 3.1: Tails of a normal distribution.

- If the average man is 175 cm tall with a variance of 6 cm, what is the probability that a man found at random will be 183 cm tall?
- If the average man is 175 cm tall with a variance of 6 cm and the average woman is 168 cm tall with a variance of 3 cm, what is the probability that the average man from a given sample will be shorter than the average woman from a given sample?
- If cans are assumed to have a variance of 4 grams, what does the average weight need to be in order to ensure that the 99% of all cans have a weight of at least 250 grams?

The normal distribution with parameters μ and σ is denoted as $N(\mu, \sigma)$. If the random variate (rv) X is normally distributed with expectation μ and standard deviation σ , one denotes: $X \sim N(\mu, \sigma)$ or $X \in N(\mu, \sigma)$.

Figure 3.5 shows a number of functions are commonly used to select appropriate points from a distribution function:

- Probability density function (PDF): note that to obtain the probability for the variable appearing in a certain interval, you have to integrate the PDF over that range.
- Cumulative distribution function (CDF): gives the probability of obtaining a value smaller than the given value
- Survival function (SF): 1-CDF: gives the probability of obtaining a value larger than the given value. It can also be interpreted as the proportion of data "surviving" above a certain value.

Figure 3.4: 25 randomly generated normal distributions of 100 points.

- Percentile point function (PPF): the inverse of the CDF. Answers the question "Given a certain probability, what is the corresponding value for the CDF?"
- Inverse survival function (ISF): the name says it all.

Note: In Python, the most elegant way of working with distribution function is a two-step procedure:

- In the first step, you create your distribution (e.g. nd = stats.norm()). Note that is a distribution (in Python parlance a "frozen distribution"), not a function yet!
- In the second step, you decide which function you want to use from this distribution, and calculate the function value for the desired x-input (e.g. y = nd.cdf(x))

Listing 3.1: distributionNormal.py

```
''' Simple manipulations of normal distribution functions.
- Different displays of normally distributed data
- Compare different samples from a normal distribution
- Work with the cumulative distribution function (CDF)

'''
Author: Thomas Haslwanter
Date: July-2013
Version: 1.4
'''
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

myMean = 0
```

```
mySD = 3
x = np.arange(-5, 15, 0.1)
def simple_normal():
    ''' Different aspects of a normal distribution'''
    # Generate the data
    x = np.arange(-4, 4, 0.1) # generate the desirded x-values
    x2 = np.arange(0, 1, 0.001)
    nd = stats.norm()
                         # First simply define the normal distribution;
                         # don't calculate any values yet
    # This is a more complex plot-layout: the first row
    # is taken up completely by the PDF
    ax = plt.subplot2grid((3,2),(0,0), colspan=2)
    plt.plot(x,nd.pdf(x))
    plt.xlim([-4,4])
    plt.title('Normal Distribution - PDF')
    plt.subplot(323)
    plt.plot(x,nd.cdf(x))
    plt.xlim([-4,4])
    plt.title('CDF: cumulative distribution fct')
    plt.subplot(324)
    plt.plot(x,nd.sf(x))
    plt.xlim([-4,4])
    plt.title('SF: survival fct')
    plt.subplot(325)
    plt.plot(x2,nd.ppf(x2))
    plt.title('PPF')
    plt.subplot(326)
    plt.plot(x2,nd.isf(x2))
    plt.title('ISF')
    plt.tight_layout()
    plt.show()
def shifted_normal():
    '''PDF, scatter plot, and histogram.'''
    # Generate the data
    # Plot a normal distribution: "Probability density functions"
    myMean = 5
    mySD = 2
    y = stats.norm.pdf(x, myMean, mySD)
    plt.plot(x,y)
    plt.title('Shifted Normal Distribution')
    plt.show()
    # Generate random numbers with a normal distribution
    numData = 500
    data = stats.norm.rvs(myMean, mySD, size = numData)
    plt.plot(data, '.')
    plt.title('Normally distributed data')
    plt.show()
    plt.hist(data)
    plt.title('Histogram of normally distributed data')
    plt.show()
```

```
def many_normals():
    ""Show multiple samples from the same distribution, and compare means."
    \# Do this 25 times, and show the histograms
   numRows = 5
    numData = 50
   numData = 100
    for ii in range(numRows):
        for jj in range(numRows):
            data = stats.norm.rvs(myMean, mySD, size=numData)
            plt.subplot(numRows, numRows, numRows*ii+jj+1)
            plt.hist(data)
            plt.gca().set_xticklabels(())
            plt.gca().set_yticklabels(())
   plt.tight_layout()
   plt.show()
    # Check out the mean of 1000 normally distributded samples
   numTrials = 1000;
   numData = 100
   myMeans = np.ones(numTrials)*np.nan
    for ii in range(numTrials):
        data = stats.norm.rvs(myMean, mySD, size=numData)
        myMeans[ii] = np.mean(data)
   print('The standard error of the mean, with {0} samples, is {1}'.format(
       numData, np.std(myMeans)))
def values_fromCDF():
    '''Calculate an empirical cumulative distribution function, compare it with
        the exact one, and
    find the exact point for a specific data value.'''
    # Generate normally distributed random data
   myMean = 5
   mySD = 2
   numData = 100
   data = stats.norm.rvs(myMean, mySD, size=numData)
    # Calculate the cumulative distribution function, CDF
   numbins = 20
   counts, bin_edges = np.histogram(data, bins=numbins, normed=True)
   cdf = np.cumsum(counts)
   cdf /= np.max(cdf)
    # compare with the exact CDF
   plt.step(bin_edges[1:],cdf)
   plt.hold(True)
   plt.plot(x, stats.norm.cdf(x, myMean, mySD),'r')
    # Find out the value corresponding to the x-th percentile: the
    # "cumulative distribution function"
   value = 2
   myMean = 5
   mySD = 2
    cdf = stats.norm.cdf(value, myMean, mySD)
   print(('With a threshold of {0:4.2f}), you get {1}% of the data'.format(value)
        , round(cdf*100))))
    # For the percentile corresponding to a certain value:
    # the "inverse cumulative distribution function"
   value = 0.025
   icdf = stats.norm.isf(value, myMean, mySD)
    print('To get {0}% of the data, you need a threshold of {1:4.2f}.'.format
```

```
((1-value)*100, icdf))
plt.show()

if __name__ == '__main__':
    simple_normal()
    shifted_normal()
    many_normals()
    values_fromCDF()
```


Figure 3.5: Utility functions for continuous distributions, here for the normal distribution.

```
In [33]: from scipy import stats
In [34]: mu = -2
In [35]: sigma = sqrt(0.5)
In [36]: myDistribution = stats.norm(mu, sigma)
In [37]: significanceLevel = 0.05
In [38]: myDistribution.ppf([significanceLevel/2, 1-significanceLevel/2])
Out[38]: array([-3.38590382, -0.61409618]
```

Example of how to calculate the interval of the PDF containing 95% of the data, for the green curve in Figure 3.3

3.2.3 Other Continuous Distributions

The distributions you will enounter most frequently are:

- Normal distribution the "ideal" continuous probability distribution
- t-distribution for sample distributions (What you will probably use most often.)
- χ -square distribution for describing variability
- F-distribution for comparing variability

In the following, we will describe these distributions in more detail.

Figure 3.6: t Distribution

t Distribution

For a small number of samples (ca. < 10) from a normal distribution, the distribution of the mean deviates slightly from the normal distribution. The reason is that the sample mean does not coincide exactly with the population mean. This modified distribution is the t-distribution, and converges for larger values towards the normal distribution (Fig. 3.6).

If \bar{x} is the sample mean, and s the sample standard deviation, then

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}} \tag{3.6}$$

A very frequent application of the t-distribution is in the calculation of confidence intervals (Eq. 3.3.4):

```
In [28]: n = 20
In [29]: alpha = 0.05
In [30]: stats.t(20).ppf(1-alpha/2)
Out[30]: 2.0859634472658364
In [31]: stats.norm.ppf(1-alpha/2)
Out[31]: 1.959963984540054
```

Calculating the t-values for confidence intervals, for n=20 and $\alpha=0.05$. For comparison, I also calculate the corresponding value from the normal distribution.

Chi-square Distribution

The Chi-square distribution is related to normal distribution in a simple way: If a random variable X has a normal distribution ($X \in N(0,1)$), then X^2 has a chi-square distribution, with one degree of freedom ($X^2 \in \chi^2_1$). The sum squares of n independent and standard normal random variables has a chi-square distribution with n degrees of freedom:

$$\sum_{i=1}^{n} X_i^2 \in \chi_n^2 \tag{3.7}$$

F Distribution

Named after Sir Ronald Fisher, who developed the F distribution for use in determining critical values in ANOVAs (ANalysis Of VAriance). The cutoff values in an F table are found using

Figure 3.7: Chi-square Distribution

three variables:

- ANOVA numerator degrees of freedom
- ANOVA denominator degrees of freedom
- significance level

ANOVA compares the size of the variance between two different samples. This is done by dividing the larger variance over the smaller variance. The formula for the resulting F statistic is:

$$F(r_1, r_2) = \frac{\chi_{r_1}^2 / r_1}{\chi_{r_2}^2 / r_2} \tag{3.8}$$

where $\chi_{r_1}^2$ and $\chi_{r_2}^2$ are the chi-square statistics of sample one and two respectively, and r_1 and r_2 are their degrees of freedom, i.e. the number of observations.

F-Test of Equality of Variances If you want to investigate whether two groups have the same variance, you have to calculate the ratio of the sample standard deviations squared:

$$F = \frac{S_x^2}{S_y^2} \tag{3.9}$$

where S_x ist he sample standard deviation of the first sample, and S_y the sample standard deviation for the second sample.

One example could be if you want to compare apples that look alike but are from different trees and have different sizes. There are three apples from the first tree that weigh 110, 121 and 143 grams respectively, and four from the other which weigh 88, 93, 105 and 124 grams respectively. The F statistic is F1.05, and has n-1 and m-1 degrees of freedom, where n and m are the number of apples in each batch. The code sample below shots what the F statistic is close to the center of the distribution, so we cannot reject the hypothesis that the two batches have the same variance.

```
In [1]: apples1 = array([110, 121, 143])
In [2]: apples2 = array([88, 93, 105, 124])
In [3]: fval = std(apples1, ddof=1)/std(apples2, ddof=1)
In [4]: fd = stats.f(2,3)
In [5]: p = fd.cdf(fval)
In [6]: print p
Out[6]: 0.548708891481
```


Figure 3.8: F Distribution

- (a) Plotted against a linear abscissa.
- (b) Plotted against a logarithmic abscissa.

Figure 3.9: Lognormal distribution

Lognormal Distribution

In some circumstances a set of data with a positively skewed distribution can be transformed into a symmetric distribution by taking logarithms. Taking logs of data with a skewed distribution will often give a distribution that is near to normal (see Figure 3.9).

Weibull Distribution

The Weibull distribution is the most commonly used distribution for modeling reliability data or "survival" data. It has two parameters, which allow it to handle increasing, decreasing or constant failure-rates (see Figure 3.10). It is defined as

$$f_x(x) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & x \ge 0, \\ 0 & x < 0, \end{cases}$$
 (3.10)

where k > 0 is the *shape parameter* and $\lambda > 0$ is the *scale parameter* of the distribution. Its complementary cumulative distribution function is a stretched exponential function.

Figure 3.10: Weibull Distribution

If the quantity x is a "time-to-failure", the Weibull distribution gives a distribution for which the failure rate is proportional to a power of time. The shape parameter, k, is that power plus one, and so this parameter can be interpreted directly as follows:

- A value of k < 1 indicates that the failure rate decreases over time. This happens if there is significant "infant mortality", or defective items failing early and the failure rate decreasing over time as the defective items are weeded out of the population.
- A value of k = 1 indicates that the failure rate is constant over time. This might suggest random external events are causing mortality, or failure.
- A value of k > 1 indicates that the failure rate increases with time. This happens if there is an "aging" process, or parts that are more likely to fail as time goes on.

In the field of materials science, the shape parameter k of a distribution of strengths is known as the Weibull modulus.

Exponential Distribution

For a stochastic variable X with an *exponential distribution*, the probability distribution function is:

$$f_x(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0\\ 0, & \text{if } x < 0 \end{cases}$$
 (3.11)

The exponential PDF is shown in Figure 3.11

Uniform Distribution

This is a simple one: an even probability for all data values (Figure 3.12). Not very common for real data.

Figure 3.11: Exponential Distribution

Figure 3.12: Uniform Distribution

Programs: Continuous Distribution Functions

Working with distribution functions in Python takes a bit to get used to. But once you get the concept, it is marvellously easy. In my opinion, the most logical way is first to define the function, with all the parameters that it requires; and then, to use the methods of this function, e.g. pdf, or cdf:

```
In [1]: from scipy import stats
In [2]: myDF = stats.norm(5,3)
In [3]: x = linspace(-5, 15, 101)
In [4]: y = myDF.pdf(x)
```

Listing 3.2: Continuous

```
''' Different continuous distribution functions.
- Normal distribution
- Exponential distribution
- T-distribution
- F-distribution
- Logistic distribution
- Weibull distribution
- Lognormal distribution
- Uniform distribution
,,,
Author: Thomas Haslwanter
Date: June-2013
Version: 1.5
# Note: here I use the iPython approach, which is best suited for interactive
from pylab import *
from scipy import stats
matplotlib.rcParams.update({'font.size': 18})
def showDistribution(x, d1, d2, tTxt, xTxt, yTxt, legendTxt, xmin=-10, xmax=10):
    ^{\prime\prime\prime}Utility function to show the distributions, and add labels and title.^{\prime\prime\prime}
    plot(x, dl.pdf(x))
    if d2 != '':
        hold(True)
        plot(x, d2.pdf(x), 'r')
        legend(legendTxt)
    xlim(xmin, xmax)
    title(tTxt)
    xlabel(xTxt)
    ylabel(yTxt)
    show()
    close()
def show_continuous():
    """Show a variety of continuous distributions"""
    x = linspace(-10, 10, 201)
    # Normal distribution
```

```
showDistribution(x, stats.norm, stats.norm(loc=2, scale=4),
                    'Normal Distribution', 'Z', 'P(Z)','')
    # Exponential distribution
   showDistribution(x, stats.expon, stats.expon(loc=-2, scale=4),
                    'Exponential Distribution', 'X', 'P(X)','')
    # Students' T-distribution
    # ... with 4, and with 10 degrees of freedom (DOF)
   plot(x, stats.norm.pdf(x), 'g')
   hold(True)
   showDistribution(x, stats.t(4), stats.t(10),
                   'T-Distribution', 'X', 'P(X)', ['normal', 't=4', 't=10'])
   # F-distribution
   # ... with (3,4) and (10,15) DOF
   showDistribution(x, stats.f(3,4), stats.f(10,15),
                    'F-Distribution', 'F', 'P(F)', ['(3,4) DOF', '(10,15) DOF'])
    # Weibull distribution
    \# ... with the shape parameter set to 1 and 2
    # Don't worry that in Python it is called "weibull_min": the "weibull_max"
       is
    # simply mirrored about the origin.
   showDistribution(arange(0,5,0.02), stats.weibull_min(1), stats.weibull_min
       (2),
                    'Weibull Distribution', 'X', 'P(X)', ['k=1', 'k=2'], xmin=0,
                         xmax=4)
    # Uniform distribution
   showDistribution(x, stats.uniform,'',
                    'Uniform Distribution', 'X', 'P(X)','')
    # Logistic distribution
   showDistribution(x, stats.norm, stats.logistic,
                    'Logistic Distribution', 'X', 'P(X)', ['Normal', 'Logistic'
                        1)
   # Lognormal distribution
   x = logspace(-9, 1, 1001) + 1e-9
   showDistribution(x, stats.lognorm(2), '',
                    'Lognormal Distribution', 'X', 'lognorm(X)','', xmin=-0.1)
   # The log-lin plot has to be done by hand:
   plot(log(x), stats.lognorm.pdf(x, 2))
   xlim(-10, 4)
   title('Lognormal Distribution')
   xlabel('log(X)')
   ylabel('lognorm(X)')
   show()
#______
if __name__ == '__main__':
   show_continuous()
```

3.2.4 Discrete Distributions

While the functions describing continuous distributions are referred to as *probability distribution* functions, discrete distributions are described by *probability mass functions*.

Figure 3.13: Binomial Distribution

Binomial Distribution

The Binomial is associated with the question "Out of a given number of trials, how many will succeed?" Some example questions that are modeled with a Binomial distribution are:

- Out of ten tosses, how many times will this coin land "heads"?
- From the children born in a given hospital on a given day, how many of them will be girls?
- How many students in a given classroom will have green eyes?
- How many mosquitos, out of a swarm, will die when sprayed with insecticide?

We conduct n repeated experiments where the probability of success is given by the parameter p and add up the number of successes. This number of successes is represented by the random variable X. The value of X is then between 0 and n.

When a random variable X has a Binomial Distribution with parameters p and n we write it as $X \sim Bin(n,p)$ or $X \sim B(n,p)$ and the probability mass function is given at X = k by the equation:

$$P[X = k] = \begin{cases} \binom{n}{k} p^k (1 - p)^{n - k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases} \quad 0 \le p \le 1, \quad n \in \mathbb{N}$$
 (3.12)

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

The binomial distribution for n = 1 is sometimes referred to as Bernoulli Distribution.

Poisson Distribution

Any French speaker will notice that "Poisson" means "fish", but really there's nothing fishy about this distribution. It's actually pretty straightforward. The name comes from the mathematician Simon-Denis Poisson (1781-1840).

The Poisson Distribution is "very similar" to the Binomial Distribution. We are examining the number of times an event happens. The difference is subtle. Whereas the Binomial Distribution looks at how many times we register a success over a fixed total number of trials,

Figure 3.14: Poisson Distribution

the Poisson Distribution measures how many times a discrete event occurs, over a period of continuous space or time. There isn't a "total" value n. As with the previous sections, let's examine a couple of experiments or questions that might have an underlying Poisson nature.

- How many pennies will I encounter on my walk home?
- How many children will be delivered at the hospital today?
- How many products will I sell after airing a new television commercial?
- How many mosquito bites did you get today after having sprayed with insecticide?
- How many defects will there be per 100 metres of rope sold?

What's a little different about this distribution is that the random variable X which counts the number of events can take on *any non-negative integer* value. In other words, I could walk home and find no pennies on the street. I could also find one penny. It's also possible (although unlikely, short of an armored-car exploding nearby) that I would find 10 or 100 or 10,000 pennies.

Instead of having a parameter p that represents a component probability like in the Binomial distribution, this time we have the parameter "lambda" or λ which represents the "average or expected" number of events to happen within our experiment. The probability mass function of the Poisson is given by

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!} \tag{3.13}$$

Programs: Discrete Distribution Functions

Listing 3.3: Discrete

''' Different discrete distribution functions.

- Binomial distribution
- Poisson distribution (PMF, CDF, and PPF)

,,

```
,,,
Author: Thomas Haslwanter
Date: April-2013
Version: 1.2
# Note: here I use the modular approach, which is more appropriate for scripts
import matplotlib.pyplot as plt
import scipy.stats as stats
import numpy as np
#_____
def show_binomial():
   """Show an example of binomial distributions"""
   bd1 = stats.binom(20, 0.5)
   bd2 = stats.binom(20, 0.7)
   bd3 = stats.binom(40, 0.5)
   k = np.arange(40)
   plt.plot(k, bd1.pmf(k), 'o-b')
   plt.hold(True)
   plt.plot(k, bd2.pmf(k), 'd-r')
   plt.plot(k, bd3.pmf(k), 's-g')
   plt.title('Binomial distribition')
   plt.legend(['p=0.5 and n=20', 'p=0.7 and n=20', 'p=0.5 and n=40'])
   plt.xlabel('X')
   plt.ylabel('P(X)')
   plt.show()
#_____
def show_poisson():
    """Show different views of a Poisson distribution"""
   fig, ax = plt.subplots(3,1)
   k = np.arange(25)
   pd = stats.poisson(10)
   ax[0].plot(k, pd.pmf(k), 'x-')
   ax[0].set_title('Poisson distribition')
   ax[0].set_xticklabels([])
   ax[0].set_ylabel('PMF(X)')
   ax[1].plot(k, pd.cdf(k))
   ax[1].set_xlabel('X')
   ax[1].set_ylabel('CDF (X)')
   y = np.linspace(0,1,100)
   ax[2].plot(y, pd.ppf(y))
   ax[2].set_xlabel('X')
   ax[2].set_ylabel('PPF (X)')
   plt.tight_layout()
   plt.show()
if __name__ == '__main__':
   show_binomial()
   show_poisson()
```


Figure 3.15: QQ-Plot, to check for normality of distribution.

3.3 Data Analysis

3.3.1 Data Screening

The first thing you have to do for your data analysis is simply *look at your data*. You should check for *missing data* in your data set, and *outliers* which can significantly influence the result of your analysis.

3.3.2 Normality Check

Many statistical tests already assume that your data are normally distributed, i.e. that they are linearly related to the standard normal distribution. If you use any of these tests, you first have to check this assumption.

QQ-Plots

In statistics, QQ plots ("Q" stands for quantile) are used for visual assessments of distributions. They are a graphical method for comparing two probability distributions by plotting their quantiles against each other. First, the set of intervals for the quantiles are chosen. A point (x, y) on the plot corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). Thus the line is a parametric curve with the parameter which is the (number of the) interval for the quantile.

If the two distributions being compared are similar, the points in the Q-Q plot will approximately lie on the line y=x. If the distributions are linearly related, the points in the Q-Q plot will approximately lie on a line, but not necessarily on the line y=x (Figure 3.15).

Kolmogorov-Smirnov Test

In addition, there are quantitative tests for normality. The test that I have encountered most frequently in recent literature is the *Kolmogorov-Smirnov test*. The Kolmogorov-Smirnov statistic quantifies a distance between the empirical distribution function of the sample and the

3.3. DATA ANALYSIS 47

cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. Note that this implies that in a test for normality, you have to i) standardize your sample distribution (i.e. subtract the mean, and divide by the standard deviation), and specify your reference distribution (i.e. if you want to check for normality, the normal distribution). Altman mainly uses the *Shapiro-Wilk W test* [Altman(1999)], and a number of other tests are also available.

Listing 3.4: checkNormality.py

```
"" Graphical and quantitative check, if a given distribution is normal.
Author: Thomas Haslwanter
Date: May-2013
Version: 1.1
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
myMean = 0
mySD = 3
x = np.arange(-5, 15, 0.1)
def check normality():
    '''Check if the distribution is normal.'''
    # Generate and show a distribution
    numData = 100
    # To get reproducable values, I provide a seed value
    np.random.seed(987654321)
    data = stats.norm.rvs(myMean, mySD, size=numData)
    plt.hist(data)
    plt.show()
    # Graphical test: if the data lie on a line, they are pretty much
    # normally distributed
    _ = stats.probplot(data, plot=plt)
    plt.show()
    # The scipy normaltest is based on D-Agostino and Pearsons test that
    \# combines skew and kurtosis to produce an omnibus test of normality.
    stats.normaltest(data)
    # Or you can check for normality with Kolmogorov-Smirnov test
    _,pVal = stats.kstest((data-np.mean(data))/np.std(data,ddof=1), 'norm')
    if pVal > 0.05:
        print('Data are normally distributed')
    return pVal
if __name__ == '__main__':
    p = check_normality()
    # raw_input('Done')
```


Figure 3.16: Illustration of the Kolmogorov-Smirnoff statistic. Red line is CDF, blue line is an ECDF, and the black arrow is the K-S statistic(from Wikipedia).

3.3.3 Transformation

If your data deviate significantly from a normal distribution, it is sometimes possible to make the distribution approximately normal by transforming your data. For example, data often have values that can only be positive (e.g. the size of persons), and that have long positive tail: such data can often be made normal by applying a *log transform*. This is demonstrated in Figure 3.9.

3.3.4 Confidence Intervals

Although it is common to concentrate the analysis on the p-values, it is often much more informative to report the *confidence intervals* for your data. The confidence intervals are given by

$$ci = mean \pm se * t_{n,\alpha} \tag{3.14}$$

where se is the standard error, and $t_{n,\alpha}$ the t statistic for n degrees of freedom. For the 95% two-sided confidence intervals, for example, you have to set $\alpha = 0.025$ and $\alpha = 0.975$.

3.4 Exercises

3.4.1 Numpy

- 1. Create an numpy-array, containing the data 1,2,3,...,10.
- 2. Calculate mean and sample(!)-standard deviation. (Correct answer: 3.03)

3.4.2 Distributions

- 1. Generate and plot the Probability Density Function (PDF) of a normal distribution, with a mean of 5 and a standard deviation of 3.
- 2. Generate 1000 random data from this distribution.
- 3. Calculate the standard error of the mean of these data. (Correct answer: ca. 0.096)

3.4. EXERCISES 49

- 4. Plot the histogram of these data.
- 5. From the PDF, calculate the interval containing 95(Correct answer: [-0.88, 10.88])

3.4.3 Reading and Writing of Datafiles

1. Read in the data from the file https://github.com/thomas-haslwanter/statsintro/blob/master/Data/data_o (you may want to download it onto your computer first), and plot them on graph (first column contains the x-data, the second column the y-data). Label the axes with "X-data" and "Y-data".

2. Write the data to the new outFile 'outFile.txt'

3.4.4 Continuous Distributions

- 1. **T-Distribution:** Measuring the weight of your collegues, you have obtained the following weights: 52, 70, 65, 85, 62, 83, 59 kg. Calculate the corresponding mean, and the 99(Correct answer: 68.0 +/- 17.2 kg)
- 2. **Chi-square Distribution** Create 3 normally distributed datasets (mean = 1, SD = 1), with 1000 samples each. Then square them, sum them (so that you have 1000 datapoints), and create a histogram with 100 bins. This should be similar to the curve for the Chi-square distribution, with 3 DOF (i.e. it should come down at the left).
- 3. **F Distribution** You have two apple trees. There are three apples from the first tree that weigh 110, 121 and 143 grams respectively, and four from the other which weigh 88, 93, 105 and 124 grams respectively. Are the variances from the two trees different? Note: calculate the corresponding F-value, and check if the CDF for the corresponding F-distribution is i0.025. (Correct answer: no)
- 4. Binomial Distribution "According to research, pure blue eyes in Europe approach greatest frequency in Finland, Sweden and Norway(at 72%), followed by Estonia, Denmark(69%); Latvia, Ireland(66%); Scotland(63%); Lithuania(61%); The Netherlands(58%); Belarus, England(55%); Germany(53%); Poland, Wales(50%); Russia, The Czech Republic(48%); Slovakia(46%); Belgium(43%); Austria, Switzerland, Ukraine(37%); France, Slovenia(34%); Hungary(28%); Croatia(26%); Bosnia and Herzegovina(24%); Romania(20%); Italy(18%); Serbia, Bulgaria(17%); Spain(15%); Georgia, Portugal(13%); Albania(11%); Turkey and Greece(10%). Further analysis shows that the average occurrence of blue eyes in Europe is 34%, with 50% in Northern Europe and 18% in Southern Europe."
 - If we have 15 Austrian students in the class-room, what ist the chance of finding 3, 6, or 10 students with blue eyes? (Correct answer: 9%, 20.1%, and 6.4%)
- 5. **Poisson Distribution** On the streets of Austria there were 62 fatal accidents in 2012. Assuming that those are evenly distributed, we have on average 62 /(365/7)=1.19 fatal accidents per week. How big is the chance that in a given week there are no, 2, or 5 accidents? (Correct answer: 30.5%, 21.5%, 0.6%)

Chapter 4

Statistical Tests

4.1 Hypothesis tests

Statistical evaluations are based on the initially often counterintuitive procedure of *hypothesis tests*. A hypothesis test is a standard format for assessing statistical evidence. It is ubiquitous in scientific literature, most often appearing in the form of statements of *statistical significance* and quotations like "p < 0.01" that pepper scientific journals. Thereby you proceed as follows: you

- state your hypothesis.
- decide which value you want to test your hypothesis on.
- \bullet calculate the *probability* p that you find the given value, assuming that your hypothesis is true

The first hypothesis is referred to as null-hypothesis, since we assume that there is null difference between the hypothesis and the result. The found probability for a specific target value is the p-value that you typically find in the literature. If p < 0.05, the difference between your sample and the value that you check is significant. If p < 0.001, we speak of a highly significant difference.

Example 1: Let us compare the weight of two groups of subject. Then the *null hypothesis* is that there is *null* difference in the weight between the two groups. If a statistical comparison of the weight produces a p-value of 0.03, this means that the probability that the null hypothesis is correct is 0.03, or 3%. Since this probability is quite low, we say that there is a significant difference between the weight of the two groups.

Example 2: If we want to check the assumption that the mean value of a group is 7, then the null hypothesis would be: "We assume that there is null difference between the mean value in our poulation and the value 7."

4.1.1 Types of Error

In hypothesis testing, two types of errors can occur:

Type I errors

These are errors, where you get a significant result despite the fact that the hypothesis is true. The likelihood of a Type I error is commonly indicated with α , and is set before you start the data analysis.

For example, assume that the population of young Austrian adults has a mean IQ of 105 (i.e. we are smarter than the rest) and a standard deviation of 15. We now want to check

if the average FH student in Linz has the same IQ as the average Austrian, and we select 20 students. We set $\alpha=0.05$, i.e. we set our significance level to 95%. Let us now assume that the average student has in fact the same IQ as the average Austrian. If we repeat our study 20 times, we will find one of those 20 times that our sample mean is significantly different from the Austrian average IQ. Such a finding would be a false result, despite the fact that our assumption is correct, and would constitute a type I error.

Type II errors and Test Power

If we want to answer the question "How much chance do we have to reject the null hypothesis when the alternative is in fact true?" Or in other words, "Whats the probability of detecting a real effect?" we are faced with a different problem. To answer these questions, we need an alternative hypothesis.

For the example given above, an *alternative hypothesis* could be: "We assume that our population has a mean value of 6."

A Type II error is an error, where you do not get a significant result, despite the fact that the null-hypothesis is false. The probability for this type of error is commonly indicated with β . The power of a statistical test is defined as $(1 - \beta) * 100$, and is the chance of correctly accepting the alternate hypothesis. Figure 4.1 shows the meaning of the power of a statistical test. Note that for finding the power of a test, you need an alternative hypothesis.

4.1.2 Sample Size

The power of a statistical test depends on four factors:

- 1. α , the probability for Type I errors
- 2. β , the probability for Type II errors (\Rightarrow power of the test)
- 3. d, the effect size, i.e. the magnitude of the investigated effect relative to σ , the standard deviation of the sample
- 4. n, the sample size

Only 3 of these 4 parameters can be chosen, the 4^{th} is then automatically fixed.

The absolute size of the difference D between mean treatment outcomes that will answer the clinical question being posed is often called *clinical significance* or *clinical relevance*.

Examples for some special cases

For a test on one mean, this leads to a minimum sample number of

$$n = \frac{(z_{1-\alpha/2} + z_{1-\beta})^2}{d^2} \tag{4.1}$$

Here z is the standardized normal variable (see also chapter 3.2.2)

$$z = \frac{x - \mu}{\sigma}.\tag{4.2}$$

and $d = \frac{D}{\sigma}$ the effect size.

For finding a difference between two normally distributed means, the minimum number of samples we need in each group to detect an absolute difference D is

$$n_1 = n_2 = \frac{(z_{1-\alpha/2} + z_{1-\beta})^2 (\sigma_1^2 + \sigma_2^2)}{D^2}.$$
 (4.3)

Figure 4.1: *Power* of a statistical test, for comparing the mean value of two given distributions.

Figure 4.2: Effect of an increase in sampling size on the power of a test.

Programs: SampleSize

Listing 4.1: sampleSize.py

```
'''Calculate the sample size for experiments, for normally distributed groups,
    for:
- Experiments with one single group
- Comparing two groups
'''
Author: Thomas Haslwanter
Date: May 2013
Ver: 1.1
'''
from scipy.stats import norm
```

```
from numpy import round
import numpy as np
def sampleSize_oneGroup(d, alpha=0.05, beta=0.2, sigma=1):
             '''Sample size for a single group.'''
           n = round((norm.ppf(1-alpha/2.) + norm.ppf(1-beta))**2 * sigma**2 / d**2)
           print('In order to detect a change of {0} in a group with an SD of {1},'.
                       format(d, sigma))
            print('with significance {0} and test-power {1}, you need at least {2:d}
                       subjects.'.format(alpha, 100*(1-beta), int(n)))
            return n
def sampleSize_twoGroups(d, alpha=0.05, beta=0.2, sigma1=1, sigma2=1):
             ""Sample size for two groups.""
           n = round((norm.ppf(1-alpha/2.) + norm.ppf(1-beta))**2 * (sigma1**2 + sigma2)*** (sigma1**2 + sigma2)** (sigma2**2 + sigma2)** (sigma2**2 + sigma2)** (sigma2**2 + sigma2)** (sigma2**2 + sigma2**2 + sigma2
                       **2) / d**2)
           print('In order to detect a change of {0} between groups with an SD of {1}
                      and {2},'.format(d, sigma1, sigma2))
            print('with significance {0} and test-power {1}, you need in each group at
                       least {2:d} subjects.'.format(alpha, 100*(1-beta), int(n)))
            return n
if __name__ == '__main__':
            sampleSize_oneGroup(0.5)
            print '\n'
            sampleSize_twoGroups(0.4, sigma1=0.6, sigma2=0.6)
```

4.2 Sensitivity and Specificity

Some of the more confusing terms in statistical analysis are sensitivity and specificity. A related topic are positive predictive value (PPV) and negative predictive value (NPV). The following diagram shows how the four are related:

		Condition (as determined by " <u>Gold standard</u> ")		
		Condition Positive	Condition Negative	
Test	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = $\frac{\Sigma \text{ True Positive}}{\Sigma \text{ Test Outcome Positive}}$
Outcome	Test Outcome Negative	False Negative (Type II error)	True Negative	$\frac{\text{Negative predictive value}}{\Sigma \text{ True Negative}} = \frac{\Sigma \text{ True Negative}}{\Sigma \text{ Test Outcome Negative}}$
		$\frac{\text{Sensitivity}}{\Sigma \text{ True Positive}} = \frac{\Sigma \text{ True Positive}}{\Sigma \text{ Condition Positive}}$	$\frac{\text{Specificity}}{\Sigma \text{ True Negative}} = \frac{\Sigma \text{ True Negative}}{\Sigma \text{ Condition Negative}}$	

Figure 4.3: Relationship between sensitivity, specificity, positive predictive value and negative predictive value. (From: Wikipedia)

• **Sensitivity** = proportion of positives that are correctly identified by a test = probability of a positive test, given the patient is ill.

- **Specificity** = proportion of negatives that are correctly identified by a test = probability of a negative test, given that patient is well.
- **Positive predictive value** is the proportion of patients with positive test results who are correctly diagnosed.
- **Negative predictive value** is the proportion of patients with negative test results who are correctly diagnosed.

While sensitivity and specificity are independent of prevalence, they do not tell us what portion of patients with abnormal test results are truly abnormal. This information is provided by the positive/negative predictive value. However, as Fig. 4.4 indicates, these values are affected by the *prevalence* of the disease. In other words, we need to know the prevalence of the disease as well as the PPV/NPV of a test to provide a sensible interpretation of the test results.

Figure 4.4: Effect of prevalence on PPV and NPV. "T" stands for "test", and "P" for "patient". (For comparison with below: T+P+=TP, T-P-=TN, T+P-=FP, and T-P+=FN)

Figure 4.5 gives a worked example:

			Patients with <u>bowel cancer</u> (as confirmed on <u>endoscopy</u>)		
			Condition Positive	Condition Negative	
Blood	Occult	Test Outcome Positive	True Positive (TP) = 20	False Positive (FP) = 180	Positive predictive value = TP / (TP + FP) = 20 / (20 + 180) = 10%
		Test Outcome Negative	False Negative (FN) = 10	True Negative (TN) = 1820	Negative predictive value = TN / (FN + TN) = 1820 / (10 + 1820) ≈ 99.5%
			Sensitivity = TP / (TP + FN) = 20 / (20 + 10) ≈ 67%	<u>Specificity</u> = TN / (FP + TN) = 1820 / (180 + 1820) = 91 %	

Figure 4.5: Worked example. (From: Wikipedia)

Related calculations

- False positive rate (α) = type I error = $1 specificity = \frac{FP}{FP + TN} = \frac{180}{180 + 1820} = 9\%$
- False negative rate (β) = type II error = 1sensitivity = $\frac{FN}{TP+FN}$ = $\frac{10}{20+10}$ = 33%
- Power = sensitivity = 1β
- Likelihood ratio positive = $\frac{sensitivity}{1specificity} = \frac{66.67\%}{191\%} = 7.4$
- Likelihood ratio negative = $\frac{1sensitivity}{specificity} = \frac{166.67\%}{91\%} = 0.37$

Hence with large numbers of false positives and few false negatives, a positive FOB screen test is in itself poor at confirming cancer (PPV = 10%) and further investigations must be undertaken; it did, however, correctly identify 66.7% of all cancers (the sensitivity). However as a screening test, a negative result is very good at reassuring that a patient does not have cancer (NPV = 99.5%) and at this initial screen correctly identifies 91% of those who do not have cancer (the specificity).

4.3 ROC Curve

Closely related to Sensitivity and Specificity is the receiver operating characteristic (ROC) curve. This is a graph displaying the relationship between the true positive rate (on the vertical axis) and the false positive rate (on the horizontal axis). The technique comes from the field of engineering, where it was developed to find the predictor which best discriminates between two given distributions. In the ROC-curve (Figure 4.6) this point is given by the value with the largest distance to the diagonal.

Figure 4.6: Top: Probability density functions for two distributions. Bottom: corresponding ROC-curve.

Independent Variable		Dependent Variable			
		2 Categories	> 2 Categories	Ranked	Continuous
1 or 2 Catagori	Not Matched (2 Samples)	Fisher's exact	Fisher's exact test or	Mann-Whitney	2-Sample t test
1 or 2 Categor	es (2 Samples)	test	χ^2 test	test	
	Matched (Re-	Binomial(Poisson)	χ^2 Goodness-of-fit	Wilcoxon signed-	Paired t test
	peated) or	test	test against uniform	rank test	
	Single Sample		distribution		
> 2 Cotomonica	Not Matched	Fisher's exact	Fisher's exact test or	Kruskal-Wallis	One-way ANOVA
> 2 Categories		test	χ^2 test	test	
	Matched	Cochran's Q test	χ^2 Goodness-of-fit	Friedman test	One-way ANOVA
			test against uniform		
			distribution		

Table 4.1: Typical tests for statistical problems.

4.4 Large Sample Tests

Here I give an overview of the most common statistical tests for different combinations of data. This overview is taken from [Riffenburgh(2012)].

Chapter 5

Test of Means of Continuous Data

5.1 Distribution of a Sample Mean

5.1.1 One sample t-test for a mean value

If we knew the mean and the standard deviation of a normally distributed population, we would know exactly the standard error, and use values from the normal distribution to determine how likely it is to find a certain mean value, given the population mean and standard deviation. However, in practice we have to *estimate* the mean and standard deviation from the sample, and the resulting distribution for the mean value deviates slightly from a normal distribution. Such distributions are called *t-distributions*, and were first described by a researcher working under the pseudonym of "Student".

Let us look at a specific example: we take 100 normally distributed data, with a mean of 7 and with a standard deviation of 3. What is the chance of finding a mean value at a distance of 0.5 or more from the mean:?

Listing 5.1: oneSample.py

```
'''Analysis of one sample of data
This script shows how to
- Use a t-test for a single mean
- Use a non-parametric test (Wilcoxon signed rank) to check a single mean
- Compare the values from the t-distribution with those of a normal distribution
,,,
Author: Thomas Haslwanter
Date: May-2013
Version: 1.1
import numpy as np
import scipy.stats as stats
from getdata import getData
def check_mean():
    "'Data from Altman, check for significance of mean value.
    Compare average daily energy intake (kJ) over 10 days of 11 healthy women,
    compare it to the recommended level of 7725 kJ.
    # Get data from Altman
    data = getData(r'data_altman/altman_91.txt')
```

```
# Watch out: by default the SD is calculated with 1/N!
   myMean = np.mean(data)
   mySD = np.std(data, ddof=1)
   print('Mean and SD: {0:4.2f} and {1:4.2f}'.format(myMean, mySD))
    # Confidence intervals
    tf = stats.t(len(data)-1)
    ci = np.mean(data) + stats.sem(data)*np.array([-1,1])*tf.isf(0.025)
    print('The confidence intervals are {0:4.2f} to {1:4.2f}.'.format(ci[0], ci
        [1]))
    # Check for significance
   checkValue = 7725
    t, prob = stats.ttest_1samp(data, checkValue)
    if prob < 0.05:</pre>
        print('{0:4.2f} is significantly different from the mean (p={1:5.3f}).'.
            format(checkValue, prob))
    # For not normally distributed data, use the Wilcoxon signed rank test
    (rank, pVal) = stats.wilcoxon(data-checkValue)
    if pVal < 0.05:</pre>
      issignificant = 'unlikely'
    else:
      issignificant = 'likely'
   print('It is ' + issignificant + ' that the value is {0:d}'.format(
       checkValue))
    return prob # should be 0.018137235176105802
def compareWithNormal():
    # generate the data
   np.random.seed(12345)
   normDist = stats.norm(loc=7, scale=3)
   data = normDist.rvs(100)
   checkVal = 6.5
    # t-tes
    t, tProb = stats.ttest_1samp(data, checkVal)
    # Comparison with corresponding normal distribution
   mmean = np.mean(data)
   mstd = np.std(data, ddof=1)
   normProb = stats.norm.cdf(6.5, loc=mmean,
           scale=mstd/np.sqrt(len(data)))*2
    # compare
   print('The probability from the t-test is ' + '{0:4.3f}, and from the normal
        distribution {1:4.3f}'.format(tProb, normProb))
    return normProb # should be 0.054201154690070759
if __name__ == '__main__':
   check_mean()
   compareWithNormal()
```

Subject	Daily en-	Difference	Ranks of
	ergy intake	from 7725	differences
	(kJ)	kJ	
1	5260	2465	11
2	5470	2255	10
3	5640	2085	9
4	6180	1545	8
5	6390	1335	7
6	6515	1210	6
7	6805	920	4
8	7515	210	1.5
9	7515	210	1.5
10	8230	-505	3
_11	8770	-1045	5

Table 5.1: Eaily energy intake of 11 healthy women with rank order of differences (ignoring their signs) from the recommended intake of 7725 kJ.

5.1.2 Wilcoxon signed rank sum test

If our data are not normally distributed, we cannot use the t-test (although this test is fairly robust against deviations from normality). Instead, we must use a *non-parametric* test on the mean value. We can do this by performing a *Wilcoxon signed rank sum test*. ^{1 2} This method has three steps:

- 1. Calculate the difference between each observation and the value of interest.
- 2. Ignoring the signs of the differences, rank them in order of magnitude.
- 3. Calculate the sum of the ranks of all the negative (or positive) ranks, corresponding to the observations below (or above) the chosen hypothetical value.

In Table 5.1 you see an example, where the significance to a deviation from the value of 7725 is tested. The rank sum of the negative values gives 3 + 5 = 8, and can be looked up in the corresponding tables to be significant. In practice, your computer program will nowadays do this for you. This example also shows another feature of rank evaluations: tied values (here 7515) get accorded their mean rank (here 1.5).

5.2 Comparison of Two Groups

When you compare two groups with each other, we have to distinguish between two cases. In the first case, we compare two values recorded from the same subject at two specific times. For example, we measure the size of students when they enter primary school and after their first year, and check if they have been growing. Since we are only interested in the *difference* between the first and the second measurement, this test is called *paired t-test*, and is essentially equivalent to a one-sample t-test for the mean difference.

The second test is if we compare two independent groups. For example, we can compare the effect of a two medications given to two different groups of patients, and compare how the two groups respond. This is called an *unpaired t-test*, or *t-test for two independent groups*.

¹Python Example: scipy.stats.wilcoxon, in "univariate.py"

²The following description and example has been taken from [Altman(1999)], Table 9.2

If we have two independent samples the variance of the difference between their means is the *sum* of the separate variances, so the standard error of the difference in means is the square root of the sum of the separate variances:

$$se(\bar{x}_1 - \bar{x}_2) = \sqrt{\text{var}(\bar{x}_1) + \text{var}(\bar{x}_2)}$$

$$= \sqrt{\{se(\bar{x}_1)\}^2 + \{se(\bar{x}_2)\}^2}$$

$$= \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where \bar{x}_i is the mean of the i-th sample, and se indicates the standard error.

5.2.1 Non-parametric Comparison of Two Groups: Mann-Whitney Test

If the measurement values from the two groups are not normally distributed we have to resort to a non-parametric test. The most common test for that is the *Mann-Whitney(-Wilkoxon)* test.

Listing 5.2: twoSample.py

```
''' Comparison of two groups
- Analysis of paired data
- Analysis of unpaired data
Author: Thomas Haslwanter
Date: May-2013
Version: 1.5
from numpy import genfromtxt, mean, std
import scipy.stats as stats
import matplotlib.pyplot as plt
from getdata import getData
def paired_data():
    '''Analysis of paired data
    Compare mean daily intake over 10 pre-menstrual and 10 post-menstrual days (
       in kJ).'''
    # Get the data: daily intake of energy in kJ for 11 women
    data = getData('altman_93.txt', subDir=r'..\Data\data_altman')
    mean(data, axis=0)
    std(data, axis=0, ddof=1)
    pre = data[:,0]
    post = data[:,1]
    # paired t-test: doing two measurments on the same experimental unit
    # e.g., before and after a treatment
    t_statistic, p_value = stats.ttest_1samp(post - pre, 0)
    # p < 0.05 \Rightarrow alternative hypothesis:
    # the difference in mean is not equal to 0
    print("paired t-test", p_value)
```

```
# alternative to paired t-test when data has an ordinary scale or when not
    # normally distributed
    z_statistic, p_value = stats.wilcoxon(post - pre)
    print("paired wilcoxon-test", p_value)
    return p_value # should be 0.0046360889354534881
def unpaired_data():
    ^{\prime\prime\prime} Then some unpaired comparison: 24 hour total energy expenditure (MJ/day)
    in groups of lean and obese women'''
    \# Get the data: energy expenditure in mJ and stature (0=obese, 1=lean)
    energ = getData('altman_94.txt', subDir=r'..\Data\data_altman')
    # Group them
    group1 = energ[:, 1] == 0
    group1 = energ[group1][:, 0]
    group2 = energ[:, 1] == 1
    group2 = energ[group2][:, 0]
    mean(group1)
    mean(group2)
    # two-sample t-test
    # null hypothesis: the two groups have the same mean
    # this test assumes the two groups have the same variance...
    # (can be checked with tests for equal variance)
    # independent groups: e.g., how boys and girls fare at an exam
    # dependent groups: e.g., how the same class fare at 2 different exams
    t_statistic, p_value = stats.ttest_ind(group1, group2)
    # p_value < 0.05 => alternative hypothesis:
    # they don't have the same mean at the 5% significance level
    print("two-sample t-test", p_value)
    # For non-normally distributed data, perform the two-sample wilcoxon test
    # a.k.a Mann Whitney U
    u, p_value = stats.mannwhitneyu(group1, group2)
    print("two-sample wilcoxon-test", p_value)
    # Plot the data
    plt.plot(group1, 'bx', label='obese')
    plt.hold(True)
    plt.plot(group2, 'ro', label='lean')
    plt.legend(loc=0)
    plt.show()
    return p_value # should be 0.0010608066929400244
if __name__ == '__main__':
    paired_data()
   unpaired_data()
```

5.3 Comparison of More Groups

5.3.1 Analysis of Variance - ANOVA

The idea behind the ANalysis Of VAriance (ANOVA) is to divide the variance into the variance between groups, and that within groups, and see if those distributions match the null hypothesis that all groups come from the same distribution. The variables that distinguish the different groups are often called factors.

(By comparison, t-tests look at the mean values of two groups, and check if those are consistent with the assumption that the two groups come from the same distribution.)

For example, if we compare a group with No treatment, another with treatment A, and a third with treatment B, then we perform a *one factor ANOVA*, sometimes also called *one-way ANOVA*, with "treatment" the one analysis factor. If we do the same test with men and with women, then we have a *two-factor* or *two-way ANOVA*, with "gender" and "treatment" as the two treatment factors. Note that with ANOVAs, it is quite important to have exactly the same number of samples in each analysis group!

Because the null hypothesis is that there is no difference between the groups, the test is based on a comparison of the observed variation between the groups (i.e. between their means) with that expected from the observed variability between subjects. The comparison takes the general form of an F test to compare variances, but for two groups the t test leads to exactly the same answer.

The one-way ANOVA assumes all the samples are drawn from normally distributed populations with equal variance. To test this assumption, you can use the *Levene test*.

ANOVA uses traditional standardized terminology. The definitional equation of sample variance is $s^2 = \frac{1}{n-1} \sum (y_i - \bar{y})^2$, where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation deviations from the grand mean, an error variance based on all the observation deviations from their appropriate treatment means and a treatment variance. The treatment variance is based on the deviations of treatment means from the grand mean, the result being multiplied by the number of observations in each treatment to account for the difference between the variance of observations and the variance of means. If the null hypothesis is true, all three variance estimates are equal (within sampling error).

The fundamental technique is a partitioning of the total sum of squares SS into components related to the effects used in the model. For example, the model for a simplified ANOVA with one type of treatment at different levels.

$$SS_{\text{Total}} = SS_{\text{Error}} + SS_{\text{Treatments}}$$
 (5.1)

The number of degrees of freedom DF can be partitioned in a similar way: one of these components (that for error) specifies a chi-squared distribution which describes the associated sum of squares, while the same is true for "treatments" if there is no treatment effect.

$$DF_{\text{Total}} = DF_{\text{Error}} + DF_{\text{Treatments}}$$
 (5.2)

Example: one-way ANOVA

As an example, let us take the red cell folate levels $(\mu g/l)$ in three groups of cardiac bypass patients given different levels of nitrous oxide ventilation (Amess et al, 1978), described in the Python code example below. I first show the result of this ANOVA test, and then explain the steps to get there.

DF SS MS F
$$p(>F)$$

```
C(treatment) 2 15515.76 7757.88 3.71 0.043
Residual 19 39716.09 2090.32 NaN NaN
```

- First the "Sums of squares (SS)" are calculated. Here the SS between treatments is 15515.88, and the SS of the residuals is 39716.09 . The total SS is the sum of these two values.
- The mean squares (MS) is the SS divided by the corresponding degrees of freedom (DF).
- The *F*-test or variance ratio test is used for comparing the factors of the total deviation. The F-value is the larger mean squares value divided by the smaller value. (If we only have two groups, the F-value is the square of the corresponding t-value. See listing 5.3).

$$F = \frac{\text{variance between treatments}}{\text{variance within treatments}}$$
 (5.3)

variance within treatments
$$F = \frac{MS_{\text{Treatments}}}{MS_{\text{Error}}} = \frac{SS_{\text{Treatments}}/(I-1)}{SS_{\text{Error}}/(n_T-I)}$$
(5.4)

• Under the null hypothesis that two normally distributed populations have equal variances we expect the ratio of the two sample variances to have an *F Distribution* (see section 3.2.3). From the F-value, we can look up the corresponding p-value.

Listing 5.3: anovaOneway.py

```
''' Analysis of Variance (ANOVA)
- Levene test
- ANOVA - oneway
- Do a simple one-way ANOVA, using statsmodels
- Show how the ANOVA can be done by hand.
- For the comparison of two groups, a one-way ANOVA is equivalent to
  a T-test: t^2 = F
Author: Thomas Haslwanter
        May-2013
Date:
Version: 1.5
,,,
import numpy as np
import scipy.stats as stats
import pandas as pd
from getdata import getData
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
def anova_oneway():
    ''' One-way ANOVA: test if results from 3 groups are equal. '''
    # Get the data
    print('One-way ANOVA: ----')
    data = getData('altman_910.txt', subDir='..\Data\data_altman')
    # Sort them into groups, according to column 1
    group1 = data[data[:,1]==1,0]
    group2 = data[data[:,1]==2,0]
    group3 = data[data[:,1]==3,0]
```

```
# First, check if the variances are equal, with the "Levene"-test
    (W,p) = stats.levene(group1, group2, group3)
   if p<0.05:</pre>
       print('Warning: the p-value of the Levene test is <0.05: p={0}'.format(p</pre>
          ))
    # Do the one-way ANOVA
   F_statistic, pVal = stats.f_oneway(group1, group2, group3)
    # Print the results
   print('Data form Altman 910:')
   print((F_statistic, pVal))
   if pVal < 0.05:</pre>
       print('One of the groups is significantly different.')
    # Elegant alternative implementation, with pandas & statsmodels
   df = pd.DataFrame(data, columns=['value', 'treatment'])
   model = ols('value ~ C(treatment)', df).fit()
   anovaResults = anova_lm(model)
   print (anovaResults)
    # Check if the two results are equal. If they are, there is no output
   np.testing.assert_almost_equal(F_statistic, anovaResults['F'][0])
   return (F_statistic, pVal) # should be (3.711335988266943,
     0.043589334959179327)
def show_teqf():
    """Shows the equivalence of t-test and f-test, for comparing two groups"""
    # Get the data
   data = pd.read_csv(r'..\Data\data_kaplan\galton.csv')
    # First, calculate the F- and the T-values, ...
   F_statistic, pVal = stats.f_oneway(data['father'], data['mother'])
   t_val, pVal_t = stats.ttest_ind(data['father'], data['mother'])
    # ... and show that t**2 = F
   print ('\nT^2 == F: -----')
   print('From the t-test we get t^2=\{0:5.3f\}, and from the F-test F=\{1:5.3f\}'.
       format(t_val**2, F_statistic))
    # numeric test
   \verb"np.testing.assert_almost_equal" (t_val**2, F_statistic)"
   return F_statistic
def anova_statsmodels():
    ''' do the ANOVA with a function '''
    # Get the data
   data = pd.read_csv(r'..\Data\data_kaplan\galton.csv')
   anova_results = anova_lm(ols('height ~ 1 + sex', data).fit())
   print('\nANOVA with "statsmodels" ----')
   print (anova_results)
   return anova_results['F'][0]
#-----
def anova_byHand():
```

```
"""Calculate the ANOVA by hand"""
     # Get the data
   data = getData('altman_910.txt', subDir='..\Data\data_altman')
    # Convert them to pandas-forman and group them by their group value
   df = pd.DataFrame(data, columns=['values', 'group'])
   groups = df.groupby('group')
    # The "total sum-square" is the squared deviation from the mean
   ss_total = np.sum((df['values']-df['values'].mean())**2)
    # Calculate ss_treatment and ss_error
    (ss\_treatments, ss\_error) = (0, 0)
    for val, group in groups:
        ss_error += sum((group['values'] - group['values'].mean())**2)
        ss_treatments += len(group) * (group['values'].mean() - df['values'].
           mean())**2
   df\_groups = len(groups)-1
   df_residuals = len(data)-len(groups)
   F = (ss_treatments/df_groups) / (ss_error/df_residuals)
   df = stats.f(df_groups,df_residuals)
   p = df.sf(F)
   print('ANOVA-Results: F = \{0\}, and p < \{1\}'.format(F, p))
   return (F, p)
if __name__ == '__main__':
    anova_oneway()
   anova_byHand()
   show_teqf()
   anova_statsmodels()
    #raw_input('Done!')
```

5.3.2 Multiple Comparisons

The Null hypothesis in a one-way ANOVA is that the means of all the samples are the same. So if a one-way ANOVA yields a significant result, we only know that they are *not* the same.

However, often we are not just interested in the joint hypothesis if all samples are the same, but we would also like to know for which pairs of samples the hypothesis of equal values is rejected. In this case we conduct several tests at the same time, one test for each pair of samples. (Typically, this is done with t-tests.)

This results, as a consequence, in a *multiple testing problem*: since we perform multiple comparison tests, we should compensate for the risk of getting a significant result, even if our null hypothesis is true. This can be cone by correcting the p-values to account for this. We have a number of options to do so:

- Tukey HSD
- Bonferroni correction
- Holms correction
- ... and others ...

Tukey's Test

Tukey's test, sometimes also referred to as the Tukey Honest Significant Difference (HSD) method, controls for the Type I error rate across multiple comparisons and is generally considered an acceptable technique. It is based on a formula very similar to that of the t-test. In fact, Tukey's test is essentially a t-test, except that it corrects for multiple comparisons.

The formula for Tukey's test is:

$$q_s = \frac{Y_A - Y_B}{SE} \tag{5.5}$$

where Y_A is the larger of the two means being compared, Y_B is the smaller of the two means being compared, and SE is the standard error of the data in question. This q_s value can then be compared to a q value from the *studentized range distribution*, which takes into account the multiple comparisons. If the qs value is larger than the critical value obtained from the distribution, the two means are said to be significantly different. Note that the studentized range statistic is the same as the t-statistic except for a scaling factor (np.sqrt(2)).

Listing 5.4: multipleTesting.py

```
'''Multiple testing
This script provides an example, where three treatments are compared.
It first performs a one-way ANOVA, to see if there is a difference between
the groups. Then it performs multiple comparisons, to check which of the
groups are different.
Taken from an example by Josef Perktold (http://jpktd.blogspot.co.at/)
Author: Thomas Haslwanter
Date: April 2013
Ver:
       1.1
,,,
import numpy as np
from scipy import stats
import pandas as pd
def main():
    # Note: the statsmodels module is required here.
   from statsmodels.stats.multicomp import (pairwise_tukeyhsd,
                                             MultiComparison)
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    # Set up the data, as a structured array.
    # The first and last field are 32-bit intergers; the second field is an
    # 8-byte string. Note that here we can also give names to the individual
    # fields!
    dta2 = np.rec.array([
           'mental', 2),
      1,
           'mental',
      2.
           'mental',
    (
      3,
           'mental',
      4,
           'mental',
      5,
           'mental',
       6,
           'mental',
                       3),
      7,
           'mental',
      8,
           'mental', 4 ),
      9,
            'mental', 4 ),
    (10,
```

```
(11, 'physical', 4),
( 12, 'physical', 4 ),
(13, 'physical', 3),
(14, 'physical', 5),
( 15, 'physical', 4 ),
                  1),
( 16, 'physical',
( 17, 'physical',
                  1),
( 18, 'physical',
                  2),
( 19, 'physical',
                   3),
( 20, 'physical',
                   3),
      'medical', 1),
(21,
( 22, 'medical',
                   2),
( 23, 'medical', 2 ),
(24, 'medical', 2),
( 25, 'medical', 3 ),
(26, 'medical', 2),
(27, 'medical', 3),
( 28, 'medical', 1 ),
(29, 'medical', 3),
( 30, 'medical', 1 )], dtype=[('idx', '<i4'),
                                ('Treatment', '|S8'),
                                ('StressReduction', '<i4')])
# First, do an one-way ANOVA
df = pd.DataFrame(dta2)
model = ols('StressReduction ~ C(Treatment)', df).fit()
anovaResults = anova_lm(model)
print (anovaResults)
if anovaResults['PR(>F)'][0] < 0.05:
    print('One of the groups is different.')
#Then, do the multiple testing
mod = MultiComparison(dta2['StressReduction'], dta2['Treatment'])
print (mod.tukeyhsd().summary())
# The following code produces the same printout
res2 = pairwise_tukeyhsd(dta2['StressReduction'], dta2['Treatment'])
#print res2[0]
# Show the group names
print (mod.groupsunique)
# Generate a print
import matplotlib.pyplot as plt
xvals = np.arange(3)
plt.plot(xvals, res2.meandiffs, 'o')
#plt.errorbar(xvals, res2.meandiffs, yerr=np.abs(res2[1][4].T-res2[1][2]),
   1s='o')
errors = np.ravel(np.diff(res2.confint)/2)
plt.errorbar(xvals, res2.meandiffs, yerr=errors, ls='o')
xlim = -0.5, 2.5
plt.hlines(0, *xlim)
plt.xlim(*xlim)
pair_labels = mod.groupsunique[np.column_stack(res2._multicomp.pairindices)]
plt.xticks(xvals, pair_labels)
plt.title('Multiple Comparison of Means - Tukey HSD, FWER=0.05' +
          '\n Pairwise Mean Differences')
# Save to outfile
outFile = 'MultComp.png'
plt.savefig('MultComp.png', dpi=200)
print('Figure written to {0}'.format(outFile))
```

```
plt.show()
    # Instead of the Tukey's test, we can do pairwise t-test
    # First, with the "Holm" correction
   rtp = mod.allpairtest(stats.ttest_rel, method='Holm')
   print(rtp[0])
    # and then with the Bonferroni correction
   print (mod.allpairtest(stats.ttest_rel, method='b')[0])
    # Done this way, the variance is calculated at each comparison.
    # If you want the joint variance across all samples, you have to
    # use a few tricks: (http://jpktd.blogspot.co.at/2013/03/multiple-comparison-
       and-tukey-hsd-or_25.html)
   res2 = pairwise_tukeyhsd(dta2['StressReduction'], dta2['Treatment'])
   studentized_mean = res2.meandiffs
   studentized_variance = res2.variance
   t_stat = (studentized_mean / studentized_variance) / np.sqrt(2)
   dof = len(dta2) - len(mod.groupsunique)
   my_pvalues = stats.t.sf(np.abs(t_stat), dof) * 2 # two-sided
    # Now with the Bonferroni correction
   from statsmodels.stats.multitest import multipletests
   res_b = multipletests(my_pvalues, method='b')
   return res2.variance
if __name__ == '__main__':
   main()
```


Figure 5.1: Comparing the means of multiple groups - here three different treatment options.

Bonferroni correction

Tukey's studentized range test (HSD) is a test specific to the comparison of all pairs of k independent samples. Instead we can run t-tests on all pairs, calculate the p-values and apply one of the p-value corrections for multiple testing problems. The simplest - and at the same time quite conservative - approach is to divide the required p-value by the number of tests that we do (Bonferroni correction). For example, if you perform 4 comparisons, you check for significance not at p = 0.05, but at p = 0.0125.

While multiple testing is not yet included in Python standardly, you can get a number of multiple-testing corrections done with the statsmodels package:

```
In[7]: from statsmodels.sandbox.stats.multicomp import multipletests
In[8]: multipletests([.05, 0.3, 0.01], method='bonferroni')
Out[8]:
  (array([False, False, True], dtype=bool),
  array([ 0.15,  0.9 ,  0.03]),
  0.016952427508441503,
  0.0166666666666666666666)
```

Holms correction

The Holm adjustment sequentially compares the lowest p-value with a Type I error rate that is reduced for each consecutive test. For example, if you have three groups (and thus three comparisons), this means that the first p-value is tested at the .05/3 level (.017), the second at the .05/2 level (.025), and third at the .05/1 level (.05). This method is generally considered superior to the Bonferroni adjustment.

5.3.3 Kruskal-Wallis test

When we compare two groups to each other, we use the *t-test* when the data are normally distributed and the non-parametric *Mann-Whitney test* otherwise. For three or more groups, the test for normally distributed data is the *ANOVA-test*; for not-normally distributed data, the corresponding test is the *Kruskal-Wallis test*. When the null hypothesis is true the test statistic for the Kruskal-Wallis test follows the *Chi squared distribution*.

Listing 5.5: KruskalWallis.py

```
'''Example of a Kruskal-Wallis test (for not normally distributed data)
Taken from http://www.brightstat.com/index.php?option=com_content&task=view&id
   =41&Itemid=1&limit=1&limitstart=2
,,,
Author: Thomas Haslwanter
Date:
       May-2013
       1.2
Ver:
,,,
from scipy.stats.mstats import kruskalwallis
from numpy import array
def main():
    # Get the data
   city1 = array([68, 93, 123, 83, 108, 122])
   city2 = array([119, 116, 101, 103, 113, 84])
   city3 = array([70, 68, 54, 73, 81, 68])
   city4 = array([61, 54, 59, 67, 59, 70])
    # Perform the Kruskal-Wallis test
   h, p = kruskalwallis(city1, city2, city3, city4)
    # Print the results
    if p<0.05:
        print('There is a significant difference between the cities.')
   else:
        print('No significant difference between the cities.')
```

```
return h

if __name__ == '__main__':
    main()
```

5.4 Exercises

5.4.1 One or Two Groups

1. Wilcoxon signed rank sum test

The daily energy intake from 11 healthy women is [5260., 5470., 5640., 6180., 6390., 6515., 6805., 7515., 7515., 8230., 8770.] kJ. The data are clearly not normally distributed.

Is this value significantly different from the recommended value of 7725? (Correct answer: yes, p=0.018)

2. t-test of independent samples

In a clinic, 15 lacy patients weight [76., 101., 66., 72., 88., 82., 79., 73., 76., 85., 75., 64., 76., 81., 86.] kg, and 15 sporty patients weigh [64., 65., 56., 62., 59., 76., 66., 82., 91., 57., 92., 80., 82., 67., 54.] kg.

Are the lacy patients significantly heavier? (Correct answer: yes, p=0.045)

3. Kolmogoriv-Smirnov test

Are the two datasets normally distributed? (Correct answer: yes, they are)

4. Mann-Whitney test

Are the lacy patients still heavier, if you check with the Mann-Whitney test? (Correct answer: yes, p=0.039)

5.4.2 Multiple Groups

(The following example is taken from the really good, but somewhat advanced book by AJ Dobson: "An Introduction to Generalized Linear Models")

1. Get the data

The file https://github.com/thomas-haslwanter/statsintro/blob/master/Data/data_others/Table 6.6 Plant experiment.xls contains data from an experiment with plants in three different growing conditions. Get the data into Python. Hint: use the module xlrd

2. Perform an ANOVA

Are the three groups different? (Correct answer: yes, they are.)

3. Multiple Comparisons

Using the Tukey test, which of the pairs are different? (Correct answer: only TreamtmentA and TreatmentB differ)

4. Kruskal-Wallis

Would a non-parametric comparison lead to a different result? (Correct answer: no)

Chapter 6

Test on Discrete Data

Data can be discrete for different reasons. On is that you acquired them in a discrete way (e.g. levels in a questionnaires.) Another one is that your paradigm only gives discrete results (e.g. rolling a dice). For the analysis of such data, we can build on the tools that we have already covered in the previous chapters.

6.1 Tests on Ordinal Data

Ordinal data have clear rankings, e.g. "none - little - some - much - very much". However they are not continuous. For the analysis of such *rank ordered data* we can use rank order methods for the analysis:

Two groups When comparing two rank ordered groups, we can use the *Mann-Whitney test* 5.2.1

Three or more groups When comparing two rank ordered groups, we can use the *Kruskal-Wallis test* 5.3.3

6.2 Binomial Test

Suppose we have a board game that depends on the roll of a die and attaches special importance to rolling a 6. In a particular game, the die is rolled 235 times, and 6 comes up 51 times. If the die is fair, we would expect 6 to come up 235/6 = 39.17 times. Is the proportion of 6's significantly higher than would be expected by chance, on the null hypothesis of a fair die?

To find an answer to this question using the *Binomial Test*, we consult the binomial distribution with n=235 and p=1/6, to determine the probability of finding exactly 51 sixes in a sample of 235 if the true probability of rolling a 6 on each trial is 1/6. We then find the probability of finding exactly 52, exactly 53, and so on up to 235, and add all these probabilities together. In this way, we calculate the probability of obtaining the observed result (51 6s) or a more extreme result (51 6's) assuming that the die is fair. In this example, the result is 0.0265443, which indicates that observing 51 6's is unlikely (significant at the 5% level) to come from a die that is not loaded to give many 6's (one-tailed test).

Clearly a die could roll too few sixes as easily as too many and we would be just as suspicious, so we should use the two-tailed test which (for example) splits the 5% probability across the two tails.

Listing 6.1: binomialTest.py

```
http://en.wikipedia.org/wiki/Binomial_test
Author: Thomas Haslwanter
Date: July 2013
Ver: 1.0
from scipy import stats
def binomial_test(checkVal):
   '''Binomial Test'''
   # Set the parameters
   n = 235
   p = 1/6.
    # Calculate the on-sided test, i.e. the likelihood that you get the same or
      more times of "6"
   bd = stats.binom(n,p)
   p_oneTail = bd.sf(checkVal-1) # how many values are "higher than" checkVal
    # Calculate the two-sided test, i.e. how many cases "as extreme or more"
       than the given case are likely to occur by chance:
   p_twoTail = stats.binom_test(checkVal, n, p)
   return (p_oneTail, p_twoTail)
#-----
if __name__ == '__main__':
   checkVal = 51
   p1, p2 = binomial_test(checkVal)
   print('The chance that you roll {0} or more "6" is {1}, and the chance of an
       event as extreme as {0} or more rolls is {2}'.format(checkVal, p1, p2))
```

Chapter 7

Tests on Categorical Data

In a sample of individuals the number falling into a particular group is called the *frequency*, so the analysis of categorical data is the analysis of frequencies. When two or more groups are compared the data are often shown in the form of a *frequency table*, sometimes also called *contingency table*.

If you have only one sample group of data, the analysis options are somewhat limited. In contrast, a number of statistical tests exist for the analysis of frequency tables.

Chi-square test This is the most common type. It is a hypothesis test, which checks if the entries in the individual cells all come from the same distribution. In other words, it checks the null hypothesis H_0 that the results are independent of the row or column in which they appear. The alternative hypothesis H_a does not specify the type of association, so close attention to the data is required to interpret the information provided by the test.

Fisher's Exact Test While the chi-square test is approximate, the *Fisher's Exact Test* is an exact test. As it is computationally much more expensive and intricate than the chi-square test, it was originally used only for small sample numbers. However, in general it is now the more advisable test to use.

Cochran's Q Test This test, for which we will not go into detail here, is used if you have matched/paired observations. For example, if you have exactly the same samples analyzed by 3 different laboratories, and you want to check if the results are statistically equivalent, you would use this test.

McNemar's Test This is a matched pair test for 2x2 tables.

7.1 One Proportion

If you have one sample group of data, you can check if your sample is representative of the standard population. To do so, you have to know the proportion p of the characteristic in the standard population. It can be shown that a in population with a characteristic with probability p, the standard error of samples with this characteristic is given by

	Right Handed	Left Handed	Total
Males	43	9	52
Females	44	4	48
Total	87	13	100

Table 7.1: Example of a frequency table

	Right Handed	Left Handed	Total
Males	45.2	6.8	52
Females	41.8	6.2	48
Total	87	13	100

Table 7.2: Corresponding expected values for Table 7.1

$$se(p) = \sqrt{p(1-p)/n} \tag{7.1}$$

and the corresponding 95% confidence interval is

$$ci = mean \pm se * t_{n,0.95}$$

If your data lie outside this confidence interval, they are *not* representative of the population.

7.2 Frequency Tables

7.2.1 Chi-square Test

The chi-square test is based on a test statistic that measures the divergence of the observed data from the values that would be expected under the null hypothesis of no association. This requires calculation of the expected values based on the data. When n is the total number of observations included in the table, the expected value for each cell in a two-way table is

$$expectedFrequency = \frac{RowTotal * ColumnTotal}{n}$$
 (7.2)

Assume you have observed absolute frequencies o_i and expected absolute frequencies e_i under the Null hypothesis of your test then it holds

$$V = \sum_{i} \frac{(o_i - e_i)^2}{e_i} \approx \chi_f^2 \tag{7.3}$$

where f are the degrees of freedom. i might denote a simple index running from 1, ..., I or even a multiindex $(i_1, ..., i_p)$ running from (1, ..., 1) to $(I_1, ..., I_p)$.

Assumptions

The test statistic V is approximately χ^2 distributed, if

- for all absolute expected frequencies e_i holds $e_i \geq 1$ and
- for at least 80% of the absolute expected frequencies e_i holds $e_i \geq 5$.

For small sample numbers, corrections should be made for some bias that is caused by the use of the continuous chi-squared distribution, while the frequencies are by definition integers. This correction is referred to as *Yates correction*.

Degrees of Freedom

The degrees of freedom can be computed by the numbers of absolute observed frequencies which can be chosen freely. For example, only one cell of a 2x2 table with the sums at the side and bottom needs to be filled, and the others can be found by subtraction. In general, an $r \times c$ table has $df = (r-1) \times (c-1)$ degrees of freedom. We know that the sum of absolute expected frequencies is

$$\sum_{i} o_i = n \tag{7.4}$$

which means that the maximum number of degrees of freedom is I-1. We might have to subtract from the number of degrees of freedom the number of parameters we need to estimate from the sample, since this implies further relationships between the observed frequencies.

Example 1

The Python command $stats.chi2_contingency$ returns, the χ^2 -value, the p-value, the degrees of freedom, and the expected values. For the example data in Table 7.1, the results are $\chi^2 = 1.1, p = 0.3, df = 1$. In other words, there is no indication that there is a difference in left-handed people vs right-handed people between males and females.

Example 2

The χ^2 test can be used to generate "quick and dirty" test, e.g.

 H_0 : The random variable X is symmetrically distributed versus

 H_1 : the random variable X is not symmetrically distributed.

We know that in case of a symmetrical distribution the arithmetic mean \bar{x} and median should be nearly the same. So a simple way to test this hypothesis would be to count how many observations are less than the mean (n_{-}) and how many observations are larger than the arithmetic mean (n_{+}) . If mean and median are the same than 50% of the observation should smaller than the mean and 50% should be larger than the mean. It holds

$$V = \frac{(n_{-} - n/2)^{2}}{n/2} + \frac{(n_{+} - n/2)^{2}}{n/2} \approx \chi_{1}^{2}$$
 (7.5)

Comments

The Chi-square test is a pure hypothesis test. It tells you if your observed frequency can be due to a random sample selection from a single population. A number of different expressions have been used for chi-square tests, which are due to the original derivation of the formulas (from the time before computers were pervasive). Expression such as 2x2 tables, r-c tables, or Chi-square test of contingency all refer to frequency tables and are typically analyzed with chi-square tests.

7.2.2 Fisher's Exact Test

If the requirement that 80% of cells should have expected values of at least 5 is not fulfilled, Fisher's exact test should be used. This test is based on the observed row and column totals. The method consists of evaluating the probability associated with all possible 2x2 tables which have the same row and column totals as the observed data, making the assumption that the null hypothesis (i.e. that the row and column variables are unrelated) is true. In most cases, Fisher's exact test is preferable to the chi-square test. But until the advent of powerful computers, it was not practical. You should use it up to approximately 10-15 cells in the frequency tables. It is

		В	
	1	0	Totals
A 1	a	b	a+b
0	c	d	c+d
Totals	a+c	b+d	N=a+b+c+d

Table 7.3: General Structure of 2x2 Frequency Tables

called "exact" because the significance of the deviation from a null hypothesis can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.

Fisher is said to have devised the test following a comment from Dr Muriel Bristol, who claimed to be able to detect whether the tea or the milk was added first to her cup. The test is useful for categorical data that result from classifying objects in two different ways; it is used to examine the significance of the association (contingency) between the two kinds of classification. So in Fisher's original example, one criterion of classification could be whether milk or tea was put in the cup first; the other could be whether Dr Bristol thinks that the milk or tea was put in first. We want to know whether these two classifications are associated - that is, whether Dr Bristol really can tell whether milk or tea was poured in first. Most uses of the Fisher test involve, like this example, a 2–2 contingency table. The p-value from the test is computed as if the margins of the table are fixed, i.e. as if, in the tea-tasting example, Dr Bristol knows the number of cups with each treatment (milk or tea first) and will therefore provide guesses with the correct number in each category. As pointed out by Fisher, this leads under a null hypothesis of independence to a hypergeometric distribution of the numbers in the cells of the table.

In using the test, you have to decide if you want to use a one-tailed test or a two-tailed test. The former one looks for the probability to find a distribution as extreme or more extreme as the observed one. The latter one (which is the default in python) also considers tables as extreme in the opposite direction.

7.2.3 McNemar's Test

Although the McNemar test bears a superficial resemblance to a test of categorical association, as might be performed by a 2x2 chi-square test or a 2x2 Fisher exact probability test, it is doing something quite different. The test of association examines the relationship that exists among the cells of the table. The McNemar test examines the difference between the proportions that derive from the marginal sums of the table (see Table 7.3): $p_A = (a+b)/N$ and $p_B = (a+c)/N$. The question in the McNemar test is: do these two proportions, p_A and p_B , significantly differ? And the answer it receives must take into account the fact that the two proportions are not independent. The correlation of p_A and p_B is occasioned by the fact that both include the quantity a in the upper left cell of the table.

Example

In the following example, a researcher attempts to determine if a drug has an effect on a particular disease. Counts of individuals are given in the table, with the diagnosis (disease: present or absent) before treatment given in the rows, and the diagnosis after treatment in the columns. The test requires the same subjects to be included in the before-and-after measurements (matched pairs).

In this example, the null hypothesis of "marginal homogeneity" would mean there was no effect of the treatment. From the above data, the McNemar test statistic with Yates's continuity correction is

	After: present	After: absent	Row total
Before: present	101	121	222
Before: absent	59	33	92
Column total	160	154	314

Table 7.4: McNemar's Test: example

The general solution for the McNemar's test is

$$\chi^2 = \frac{(|b-c| - correctionFactor)^2}{b+c}. (7.6)$$

For small number of sample numbers the *correctionFactor* should be 0.5 (*Yates's correction*) or 1.0 (*Edward's correction*). (In fact, for small numbers an exact calculation is typically done for the probabilities, based on a binomial test.) Using Yates's correction, we get

$$\chi^2 = \frac{(|121 - 59| - 0.5)^2}{121 + 59} \tag{7.7}$$

has the value 21.01, which is extremely unlikely from the distribution implied by the null hypothesis. Thus the test provides strong evidence to reject the null hypothesis of no treatment effect.

7.3 Analysis Programs

With computers, the computational steps are trivial:

Listing 7.1: compGroups.py

```
''' Analysis of categorical data
- Analysis of one proportion
- Chi-square test
- Fisher exact test
Author: Thomas Haslwanter
         June-2013
Date:
Version: 1.2
,,,
import numpy as np
import scipy.stats as stats
def oneProportion():
    ^{\prime\prime\prime}Calculate the confidence intervals of the population, based on a
    given data sample.
    The data are taken from Altman, chapter 10.2.1.'''
    # Get the data
    numTotal = 215
    numPositive = 39
    # Calculate the confidence intervals
    p = float(numPositive)/numTotal
    se = np.sqrt(p*(1-p)/numTotal)
    td = stats.t(numTotal-1)
```

```
ci = p + np.array([-1,1])*td.isf(0.025)*se
   # Print them
   print('ONE PROPORTION -----')
   print('The confidence interval for the given sample is {0:5.3f} to {1:5.3f}'
       .format(
       ci[0], ci[1]))
   return ci
def chiSquare():
   ^{\prime\prime\prime} Application of a chi square test to a 2x2 table.
   The calculations are done with and without Yate's continuity
   correction.
   Data are taken from Altman, Table 10.10:
   Comparison of number of hours' swimming by swimmers with or without erosion
      of dental enamel.
   >= 6h: 32 yes, 118 no
   < 6h: 17 yes, 127 no'''
   # Enter the data
   obs = np.array([[32, 118], [17, 127]])
   # Calculate the chi-square test
   chi2_corrected = stats.chi2_contingency(obs, correction=True)
   chi2_uncorrected = stats.chi2_contingency(obs, correction=False)
   # Print the result
   print('\nCHI SQUARE -----')
   print('The corrected chi2 value is {0:5.3f}, with p={1:5.3f}'.format(
       chi2_corrected[0], chi2_corrected[1]))
   print('The uncorrected chi2 value is {0:5.3f}, with p={1:5.3f}'.format(
       chi2_uncorrected[0], chi2_uncorrected[1]))
   return chi2_corrected
def fisherExact():
   '''Fisher's Exact Test:
   Data are taken from Altman, Table 10.14
   Spectacle wearing among juvenile delinquensts and non-delinquents who failed
       a vision test
   Spectecle wearers: 1 delinquent, 5 non-delinquents
   non-spectacle wearers: 8 delinquents, 2 non-delinquents'''
   # Enter the data
   obs = np.array([[1,5], [8,2]])
   # Calculate the Fisher Exact Test
   # Note that by default, the option "alternative='two-sided'" is set;
    # other options are 'less' or 'greater'.
   fisher_result = stats.fisher_exact(obs)
   # Print the result
   print('\nFISHER -----')
   print('The probability of obtaining a distribution at least as extreme '
   + 'as the one that was actually observed, assuming that the null ' +
   'hypothesis is true, is: {0:5.3f}.'.format(fisher_result[1]))
   return fisher_result
if __name__ == '__main__':
   oneProportion()
   chiSquare()
```

fisherExact()

Chapter 8

Relation Between Two Continuous Variables

If we have two related variables, the *correlation* measures the association between the two variables. In contrast, a *linear regression* is used for the prediction of the value of one variable from another. If we want to compare more than two groups of variables, we have to use a technique known as *Analysis of Variance (ANOVA)*.

8.1 Correlation

8.1.1 Correlation Coefficient

If the two variables are normally distributed, the standard measure of determining the correlation coefficient, often ascribed to Pearson, is

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$
(8.1)

With

$$s_{xy} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$
(8.2)

and s_x, s_y the sample standard deviations of the x and y values, respectively, the Equation 8.1 can also be written as

$$r = \frac{s_{xy}}{s_x \cdot s_y}. ag{8.3}$$

Pearson's correlation coefficient, sometimes also referred to as population correlation coefficient or sample correlation, can take any value from -1 to +1. Examples are given in Figure 8.2. Note that the formula for the correlation coefficient is symmetrical between x and y.

8.1.2 Coefficient of determination

The coefficient of determination or R^2 is the square of the correlation. It is easier to interpret than the correlation coefficient r: Values of R^2 close to 1 are good, values close to 0 are poor. To explain the interpretation of R^2 , let us look at the math more formally:

Figure 8.1: The better the linear regression (on the right) fits the data in comparison to the simple average (on the left graph), the closer the value of R^2 is to one. The areas of the blue squares represent the squared residuals with respect to the linear regression. The areas of the red squares represent the squared residuals with respect to the average value (from Wikipedia)

A data set has values y_i , each of which has an associated modelled value f_i (also sometimes referred to as \hat{y}_i). Here, the values y_i are called the *observed values** and the modelled values f_i are sometimes called the *predicted values*.

In the following \bar{y} is the mean of the observed data:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{8.4}$$

where n is the number of observations.

The "variability" of the data set is measured through different sums of squares:

 $SS_{\text{tot}} = \sum_{i} (y_i - \bar{y})^2$, the total sum of squares (proportional to the sample variance);

 $SS_{\text{reg}} = \sum_{i}^{n} (f_i - \bar{y})^2$, the regression sum of squares, also called the explained sum of squares.

 $SS_{\text{res}} = \sum_{i}^{\infty} (y_i - f_i)^2$, the sum of squares of residuals, also called the residual sum of squares.

The notations SS_R and SS_E should be avoided, since in some texts their meaning is reversed to "Residual sum of squares" and "Explained sum of squares", respectively.

The most general definition of the coefficient of determination is

$$R^2 \equiv 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}.$$
 (8.5)

Relation to unexplained variance

In a general form, R^2 can be seen to be related to the unexplained variance, since the second term compares the unexplained variance (variance of the model's errors) with the total variance (of the data). See fraction of variance unexplained.

Adjusted R^2

For multiple regression, the adjusted R^2 value (written as \bar{R}^2) is often used instead of R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1} \tag{8.6}$$

where n is the sample size and p is the number of independent variables.

8.2. REGRESSION 85

Figure 8.2: Several sets of (x, y) points, with the correlation coefficient of x and y for each set. Note that the correlation reflects the non-linearity and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero. (From: Wikipedia)

Examples

How large R^2 or \bar{R}^2 must be to be considered good depends on the discipline. They are usually expected to be larger in the physical sciences than it is in biology or the social sciences. In finance or marketing, it also depends on what is being modeled.

Caution: the sample correlation and R^2 are misleading if there is a nonlinear relationship between the independent and dependent variables!

8.1.3 Rank Correlation

If the data distribution is not normal, a different approach is necessary. In that case one can rank the set of subjects for each variable and compare the orderings. There are two commonly used methods of calculating the rank correlation.

- Spearman's ρ , which is exactly the same as the Pearson correlation coefficient r calculated on the ranks of the observations.
- Kendall's τ is also a rank correlation coefficient, measuring hte association between two measured quantities. It is harder to calculate than Spearman's rho, but it has been argued that confidence intervals for Spearmans rho are less reliable and less interpretable than confidence intervals for Kendalls tau-parameters.

8.2 Regression

We can use the method of regression when we want to predict the value of one variable from the other

When we search for the best-fit line to a given (x_i, y_i) dataset, we are looking for the parameters (k, d) which minimize the sum of the squared residuals ϵ_i in

$$y_i = k * x_i + d + \epsilon_i \tag{8.7}$$

where k is the *slope* or *inclination* of the line, and d the *intercept*. This is in fact just the one-dimensional example of the more general technique, which is described in the next section. Note that in contrast to the correlation, this relationship between x and y is no more

Figure 8.3: Linear regression. (From Wikipedia)

symmetrical: it is assumed that the x-values are known exactly, and that all the variability lies in the residuals.

8.2.1 Introduction

¹ Given a data set $\{y_i, x_{i1}, \dots, x_{ip}\}_{i=1}^n$ of n statistical units, a linear regression model assumes that the relationship between the dependent variable y_i and the p-vector of regressors x_i is linear. This relationship is modelled through a disturbance term or error variable ϵ_i , an unobserved random variable that adds noise to the linear relationship between the dependent variable and regressors. Thus the model takes the form

$$y_i = \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$$
 (8.8)

where T denotes the transpose, so that $x_i^T \beta$ is the inner product between vectors $x_i \beta$. Often these n equations are stacked together and written in vector form as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},\tag{8.9}$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \mathbf{x}_2^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_n^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} x_{11} & \cdots & x_{1p} \\ x_{21} & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}. \tag{8.10}$$

Some remarks on terminology and general use:

• y_i is called the regressand, endogenous variable, response variable, measured variable, or dependent variable. The decision as to which variable in a data set is modeled as the dependent variable and which are modeled as the independent variables may be based on a presumption that the value of one of the variables is caused by, or directly influenced by

¹This section has been taken from Wikipedia

8.2. REGRESSION 87

Figure 8.4: Best-fit linear regression line (red) and residuals (black).

the other variables. Alternatively, there may be an operational reason to model one of the variables in terms of the others, in which case there need be no presumption of causality.

- \mathbf{x}_i are called regressors, exogenous variables, explanatory variables, covariates, input variables, predictor variables, or independent variables, but not to be confused with independent random variables. The matrix \mathbf{X} is sometimes called the design matrix.
 - Usually a constant is included as one of the regressors. For example we can take $x_{i1} = 1$ for i = 1, ..., n. The corresponding element of β is called the *intercept*. Many statistical inference procedures for linear models require an intercept to be present, so it is often included even if theoretical considerations suggest that its value should be zero.
 - Sometimes one of the regressors can be a non-linear function of another regressor or of the data, as in polynomial regression and segmented regression. The model remains linear as long as it is linear in the parameter vector β .
 - The regressors x_{ij} may be viewed either as random variables, which we simply observe, or they can be considered as predetermined fixed values which we can choose. Both interpretations may be appropriate in different cases, and they generally lead to the same estimation procedures; however different approaches to asymptotic analysis are used in these two situations.
- β is a p-dimensional parameter vector. Its elements are also called effects, or regression coefficients. Statistical estimation and inference in linear regression focuses on β .
- ε_i is called the *error term*, disturbance term, or noise. This variable captures all other factors which influence the dependent variable y_i other than the regressors x_i . The relationship between the error term and the regressors, for example whether they are correlated, is a crucial step in formulating a linear regression model, as it will determine the method to use for estimation.
- If i = 1 and p = 1 in Eq.8.8, we have a *simple linear regression*, corresponding to Eq.8.7. If i > 1 we talk about multilinear regression or multiple linear regression.

Figure 8.5: The sets in the *Anscombe's quartet* have the same linear regression line but are themselves very different.

Example. Consider a situation where a small ball is being tossed up in the air and then we measure its heights of ascent h_i at various moments in time t_i . Physics tells us that, ignoring the drag, the relationship can be modelled as:

$$h_i = \beta_1 t_i + \beta_2 t_i^2 + \varepsilon_i, \tag{8.11}$$

where β_1 determines the initial velocity of the ball, β_2 is proportional to the standard gravity, and ϵ_i is due to measurement errors. Linear regression can be used to estimate the values of β_1 and β_2 from the measured data. This model is non-linear in the time variable, but it is linear in the parameters β_1 and β_2 ; if we take regressors $\mathbf{x}_i = (x_{i1}, x_{i2}) = (t_i, t_i^2)$, the model takes on the standard form : $h_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \varepsilon_i$.

8.2.2 Assumptions

To use the technique of linear regression, five assumptions should be fulfilled:

- 1. The errors in the data values (i.e. the deviations from average) are independent from one another.
- 2. The model must be appropriate. (A linear regression does not properly describe a quadratic curve.)
- 3. The independent variables (i.e. x) are exactly known.
- 4. The variance of the dependent variable (i.e. y) is the same for all values of x.
- 5. The distribution of y is approximately normal for all values of x.

Listing 8.1: multivariate.py

^{&#}x27;'' Analysis of multivariate data

⁻ Regression line

8.2. REGRESSION 89

```
- Correlation (Pearson-rho, Spearman-rho, and Kendall-tau)
,,,
,,,
Author: Thomas Haslwanter
Date: June-2013
Version: 2.0
import pandas as pd
from getdata import getData
from scipy import stats
from numpy import testing
def regression_line():
    ""Fit a line, using the powerful "ordinary least square" method of pandas
    # Get the data
    data = getData('altman_11_6.txt', subDir=r'..\Data\data_altman')
    df = pd.DataFrame(data, columns=['glucose', 'Vcf'])
   model = pd.ols(y=df['Vcf'], x=df['glucose'])
   print (model.summary)
    return model.f_stat['f-stat'] # should be 4.4140184331462571
def correlation():
    ""Pearson correlation, and two types of rank correlation (Spearman, Kendall
    Data from 24 type 1 diabetic patients, relating Fasting blood glucose (mmol/
   mean circumferential shortening velocity (%/sec)."
    # Get the data
   data = getData('altman_11_1.txt', subDir='..\Data\data_altman')
   x = data[:,0]
    y = data[:,1]
    # Calculate correlations
    corr = {}
    corr['pearson'], _ = stats.pearsonr(x,y)
   corr['spearman'], _ = stats.spearmanr(x,y)
    corr['kendall'], _ = stats.kendalltau(x,y)
   print (corr)
    # Assert that Spearman's rho is just the correlation of the ranksorted data
    testing.assert_almost_equal(corr['spearman'], stats.pearsonr(stats.rankdata(
       x), stats.rankdata(y))[0])
    return corr['pearson'] # should be 0.79208623217849117
if __name__ == '__main__':
   regression_line()
   correlation()
```

Since to my knowledge there exists no program in the Python standard library (or numpy, scipy) to calculate the confidence intervals for a regression line, I include my corresponding program lineFit.py 8.2. The output of this program is shown in Figure 8.6. This program also shows how Python programs intended for distribution should be documented.

Figure 8.6: Regression, with confidence intervals for the mean, as well as for the predicted data. The red dotted line shows the confidence interval for the mean; and the green dotted line the confidence interval for predicted data. (This can be compared to the standard error and the standard deviation for a population.)

```
Linear regression fit
Parameters
x : ndarray
    Input / Predictor
y : ndarray
    Input / Estimator
alpha : float
    Confidence limit [default=0.05]
newx : float or ndarray
    Values for which the fit and the prediction limits are calculated (optional)
plotFlag: int (optional)
    1 = plot, 0 = no_plot [default]
Returns
a : float
    Intercept
b : float
    Slope
ci : ndarray
    Lower and upper confidence interval for the slope
info : dictionary, containing return information on
    - residuals
    - var_res
    - sd_res
    - alpha
    - tval
    - df
```

8.2. REGRESSION 91

```
newy : list(ndarray)
   Predictions for (newx, newx-ciPrediction, newx+ciPrediction)
Examples
>>> import numpy as np
>>> from fitLine import fitLine
>>> x = np.r_[0:10:11j]
>>> y = x**2
>>> (a,b,(ci_a, ci_b),_)=fitLine(x,y)
Notes
Example data and formulas are taken from
D. Altman, "Practical Statistics for Medicine"
author : thomas haslwanter
date : 13.Dec.2012
ver : 1.2
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
def fitLine(x, y, alpha=0.05, newx=[], plotFlag=1):
    ''' Fit a curve to the data using a least squares 1st order polynomial fit
    # Summary data
    n = len(x)
                      # number of samples
   Sxx = np.sum(x**2) - np.sum(x)**2/n
    Syy = np.sum(y**2) - np.sum(y)**2/n
                                           # not needed here
    Sxy = np.sum(x*y) - np.sum(x)*np.sum(y)/n
    mean_x = np.mean(x)
    mean_y = np.mean(y)
    # Linefit
    b = Sxy/Sxx
    a = mean_y - b*mean_x
    # Residuals
    fit = lambda xx: a + b*xx
    residuals = y - fit(x)
    var\_res = np.sum(residuals**2)/(n-2)
    sd_res = np.sqrt(var_res)
    # Confidence intervals
    se_b = sd_res/np.sqrt(Sxx)
    se_a = sd_{res*np.sqrt(np.sum(x**2)/(n*Sxx))}
    df = n-2
                                        # degrees of freedom
    tval = stats.t.isf(alpha/2., df) # appropriate t value
    ci_a = a + tval*se_a*np.array([-1,1])
    ci_b = b + tval*se_b*np.array([-1,1])
    # create series of new test x-values to predict for
    npts = 100
```

```
px = np.linspace(np.min(x), np.max(x), num=npts)
se fit
          = lambda x: sd_res * np.sqrt( 1./n + (x-mean_x)**2/Sxx)
se_predict = lambda x: sd_res * np.sqrt(1+1./n + (x-mean_x)**2/Sxx)
print 'Summary: a = \{0:5.4f\} + / -\{1:5.4f\}, b = \{2:5.4f\} + / -\{3:5.4f\}'.format(a,tval*
   se_a,b,tval*se_b)
print 'Confidence intervals: ci_a=({0:5.4f} - {1:5.4f}), ci_b=({2:5.4f} -
   {3:5.4f})'.format(ci_a[0], ci_a[1], ci_b[0], ci_b[1])
print 'Residuals: variance = {0:5.4f}, standard deviation = {1:5.4f}'.format
    (var_res, sd_res)
print 'alpha = \{0:.3f\}, tval = \{1:5.4f\}, df=\{2:d\}'.format(alpha, tval, df)
# Return info
ri = {'residuals': residuals,
    'var_res': var_res,
    'sd_res': sd_res,
    'alpha': alpha,
    'tval': tval,
    'df': df}
if plotFlag == 1:
    # Plot the data
    plt.figure()
    plt.plot(px, fit(px),'k', label='Regression line')
    \#plt.plot(x,y,'k.', label='Sample observations', ms=10)
    plt.plot(x,y,'k.')
    x.sort()
    limit = (1-alpha) *100
    plt.plot(x, fit(x)+tval*se_fit(x), 'r--', lw=2, label='Confidence limit
        ({0:.1f}%)'.format(limit))
    plt.plot(x, fit(x)-tval*se_fit(x), 'r--', lw=2)
    plt.plot(x, fit(x)+tval*se\_predict(x), '--', lw=2, color=(0.2,1,0.2),
       label='Prediction limit ({0:.1f}%)'.format(limit))
    plt.plot(x, fit(x)-tval*se\_predict(x), '--', lw=2, color=(0.2,1,0.2))
    plt.xlabel('X values')
    plt.ylabel('Y values')
    plt.title('Linear regression and confidence limits')
    # configure legend
    plt.legend(loc=0)
    leg = plt.gca().get_legend()
    ltext = leg.get_texts()
    plt.setp(ltext, fontsize=10)
    # show the plot
    plt.show()
if newx != []:
    try:
       newx.size
    except AttributeError:
        newx = np.array([newx])
    print 'Example: x = \{0\} + / -\{1\} =  se_fit = \{2:5.4f\}, se_predict = \{3:6.5f\}
       } ' \
    .format(newx[0], tval*se_predict(newx[0]), se_fit(newx[0]), se_predict(
       newx[0]))
```

8.3. EXERCISES 93

```
newy = (fit(newx), fit(newx)-se_predict(newx), fit(newx)+se_predict(newx
           ))
        return (a,b,(ci_a, ci_b), ri, newy)
   else:
        return (a,b,(ci_a, ci_b), ri)
if __name__ == '__main__':
        # example data
        x = np.array([15.3, 10.8, 8.1, 19.5, 7.2, 5.3, 9.3, 11.1, 7.5, 12.2,
                      6.7, 5.2, 19.0, 15.1, 6.7, 8.6, 4.2, 10.3, 12.5, 16.1,
                      13.3, 4.9, 8.8, 9.5])
        y = np.array([1.76, 1.34, 1.27, 1.47, 1.27, 1.49, 1.31, 1.09, 1.18,
                      1.22, 1.25, 1.19, 1.95, 1.28, 1.52, np.nan, 1.12, 1.37,
                      1.19, 1.05, 1.32, 1.03, 1.12, 1.70])
        goodIndex = np.invert(np.logical_or(np.isnan(x), np.isnan(y)))
        (a,b,(ci_a, ci_b), ri,newy) = fitLine(x[goodIndex],y[goodIndex], alpha
           =0.01, newx=np.array([1, 4.5]))
```

8.3 Exercises

1. Correlation

Read in the data for the average yearly temperature at the Sonnblick, from https://github.com/thomas-haslwanter/statsintro/blob/master/Data/data_others/AvgTemp.xls Calculate the Pearson and Spearman correlation, and Kendall's tau, for the temperature vs. year.

2. Regression

For the same data, calculate the yearly increase in temperature, assuming a linear increase with time. Is this increase significant?

3. Normality Check

For the data from the regression model, check if the model is ok by testing if the residuals are normally distributed (e.g. by using the Komogorov-Smirnov test)

Chapter 9

Relation Between Several Variables

When we have two groups, we can ask the question: "Are they different?" The answer is provided by hypothesis tests: by a *t-test* if the data are normally distributed, or by a *Mann-Whitney test* otherwise. If we want to go one step further and predict the value of one variable from another, we have to use the technique of *linear regression*.

So what happens when we have more than two groups?

To answer the question "Are they different?" for more than two groups, we have to use the *Analysis of Variance (ANOVA)-test* for data where the residuals are normally distributed. If this condition is not fulfilled, the *Kruskal-Wallis Test* has to be used.

What should we do if we have paired data?

If we have matched pairs for two groups, and the differences are not normally distributed, we can use the *Wilcoxon signed rank sum test*. The rank test for more than two groups of matched data is the *Friedman test*.¹

An example for the application of the Friedman test: Ten professional piano players are blindfolded, and are asked to judge the quality of three different pianos. Each player rates each piano on a scale of 1 to 10 (1 being the lowest possible grade, and 10 the highest possible grade). The null hypothesis is that all three pianos rate equally. To test the null hypothesis, the Friedman test is used on the ratings of the ten piano players.

And if we want to and predict the value of one variable many other variables, linear regression has to be replaced by of $multilinear\ regression$, sometimes also referred to as $multiple\ linear\ regression$.

9.1 Two-way ANOVA

Compared to one-way ANOVAs, the analysis with two-way ANOVAs has a new element. We can look not only if each of the factors is significant; we can also check if the *interaction* of the factors has a significant influence on the distribution of the data. For sticking to the example above, if only women with treatment B get healthy, we have a significant interaction effect between "gender" and "treatment".

See the example in listing 10.2

Listing 9.1: anovaTwoway.py

```
''' Two-way Analysis of Variance (ANOVA)

The model is formulated using the "patsy" formula description. This is very similar to the way models are expressed in R.
```

¹It may be worth mentioning that Thom Baguley suggested the following: Where one-way repeated measures ANOVA is not appropriate, rank transformation followed by ANOVA will provide a more robust test with greater statistical power than the Friedman test.

```
,,,
Author: Thomas Haslwanter
Date: May-2013
Version: 1.3
import pandas as pd
from getdata import getData
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
def anova interaction():
    '''ANOVA with interaction: Measurement of fetal head circumference,
   by four observers in three fetuses.'''
    # Get the data
    data = getData(r'data_altman/altman_12_6.txt')
    # Bring them in dataframe-format
    df = pd.DataFrame(data, columns=['hs', 'fetus', 'observer'])
    # Determine the ANOVA with interaction
    formula = 'hs ~ C(fetus) + C(observer) + C(fetus):C(observer)'
    lm = ols(formula, df).fit()
    anovaResults = anova_lm(lm)
   print (anovaResults)
    return anovaResults['F'][0]
if __name__ == '__main__':
    anova_interaction()
```

```
df sum_sq mean_sq
                                             F
                                                  PR (>F)
C(fetus)
                      2
                        324.00 162.00
                                       2113.10 1.05e-27
C(observer)
                      3
                          1.19
                                 0.39
                                          5.21 6.497-03
C(fetus):C(observer)
                    6
                           0.56
                                 0.09
                                           1.22 3.29e-01
Residual
                     24
                          1.84
                                  0.07
                                            NaN
                                                      NaN
```

9.2 Multilinear Regression

If you have truly independent variables, multilinear regression is a straitforward extension of the simple linear regression. However, if your variables may be related to each other, you have to proceed much more carefully. For example, you may want to investigate how the prevalence of some disease correlates with age and with income: if you do so, you have to keep in mind that age and income are most likely correlated! For details, [Kaplan(2009)] gives a good introduction to that topic. Also, check out the chapter on Modeling.

```
Listing 9.2: mult_regress.py

'''Multiple Regression
Shows how to calculate just the best fit, or - using "statsmodels" - all the corresponding statistical parameters.
Also shows how to make 3d plots.

'''
```

```
Author: Thomas Haslwanter
Date: May-2013
Ver: 1.1
# The standard imports
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# For the 3d plot
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
# For the statistic
from statsmodels.formula.api import ols
def generatedata():
    ''' Generate and show the data '''
    x = np.linspace(-5, 5, 101)
    (X,Y) = np.meshgrid(x,x)
    # To get reproducable values, I provide a seed value
    np.random.seed(987654321)
    Z = -5 + 3*X - 0.5*Y + np.random.randn(np.shape(X)[0], np.shape(X)[1])
    # Plot the figure
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    surf = ax.plot_surface(X,Y,Z, cmap=cm.coolwarm)
    ax.view_init(20,-120)
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
   fig.colorbar(surf, shrink=0.6)
    plt.show()
    return (X.flatten(), Y.flatten(), Z.flatten())
def regressionmodel(X,Y,Z):
    ""Multilinear regression model, calculating fit, P-values, confidence
       intervals etc.'''
    # Convert the data into a Pandas DataFrame
    df = pd.DataFrame({'x':X, 'y':Y, 'z':Z})
    # Fit the model
    model = ols("z ~ x + y", df).fit()
    # Print the summary
    print (model.summary())
    return model._results.params # should be array([-4.99754526, 3.00250049,
       -0.50514907])
def linearmodel(X,Y,Z):
    '''Just fit the plane'''
    M = np.vstack((np.ones(len(X)), X, Y)).T
    bestfit = np.linalg.lstsq(M, Z)
    print('Best fit plane:', bestfit)
```

```
return bestfit

if __name__ == '__main__':
    (X,Y,Z) = generatedata()
    regressionmodel(X,Y,Z)
    linearmodel(X,Y,Z)
```

Chapter 10

Statistical Models

10.1 Model language

The mini-language commonly used now in statistics to describe formulas was first used in the languages R and S, but is now also available in Python through the module patsy.

For instance, if we have some variable y, and we want to regress it against some other variables x, a, b, and the interaction of a and b, then we simply write

$$y \sim x + a + b + a : b \tag{10.1}$$

The symbols in Table 10.1 are used on the right hand side to denote different interactions. A complete set of the description is found under [patsy(2013)]

10.1.1 Design Matrix

Definition

A very general definition of a regression model is the following:

$$y = f(x, \epsilon) \tag{10.2}$$

In the case of a linear regression model, the function f is simply the affine function, and the model can be rewritten as:

$$y = X\beta + \epsilon, \tag{10.3}$$

Y is a vector of dimension $(n \times 1)$ and is called the *endogenous variable*, the *Design matrix X* is a matrix of dimension $(n \times k)$ where each column is an explanatory variable, and ϵ is the error term. β is the vector of dimension $(k \times 1)$ and contains the parameters we want to estimate.

Operator	Meaning
~	Separate the left-hand side from the right-hand side. If omitted,
	formula is assumed right-hand side only.
+	Combines terms on either side (set union).
-	Removes terms on the right from set of terms on the left (set
	difference).
*	a*b is shorthand for the expansion $a + b + a:b$.
/	a/b is shorthand for the expansion $a + a:b$. It is used when b
	is nested within a (e.g., states and counties)
:	Computes the interaction between terms on the left and right.
**	Takes a set of terms on the left and an integer n on the right
	and computes the \ast of that set of terms with itself n times.

Table 10.1: Formula sytax

Examples

Simple Regression Example of simple linear regression with 7 observations. Suppose there are 7 data points $\{y_i, x_i\}$, where i = 1, 2, 7. The simple linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \tag{10.4}$$

where β_0 is the y-intercept and β_1 is the slope of the regression line. This model can be represented in matrix form as

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \\ 1 & x_5 \\ 1 & x_6 \\ 1 & x_7 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix}$$
(10.5)

where the first column of ones in the design matrix represents the y-intercept term while the second column is the x-values associated with the y-value.

Multiple Regression Example of multiple regression with covariates (i.e. independent variables) w_i and x_i . Again suppose that the data are 7 observations, and for each observed value to be predicted (y_i) , there are two covariates that were also observed w_i and x_i . The model to be considered is

$$y_i = \beta_0 + \beta_1 w_i + \beta_2 x_i + \epsilon_i \tag{10.6}$$

This model can be written in matrix terms as

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & w_1 & x_1 \\ 1 & w_2 & x_2 \\ 1 & w_3 & x_3 \\ 1 & w_4 & x_4 \\ 1 & w_5 & x_5 \\ 1 & w_6 & x_6 \\ 1 & w_7 & x_7 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix}$$

$$(10.7)$$

One-way ANOVA (Cell Means Model) Example with a one-way analysis of variance (ANOVA) with 3 groups and 7 observations. The given data set has the first three observations belonging to the first group, the following two observations belong to the second group and the final two observations are from the third group. If the model to be fit is just the mean of each group, then the model is

$$y_{ij} = \mu_i + \epsilon_{ij} \tag{10.8}$$

which can be written

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix}$$

$$(10.9)$$

It should be emphasized that in this model μ_i represents the mean of the *i*th group.

One-way ANOVA (offset from reference group) The ANOVA model could be equivalently written as each group parameter τ_i being an offset from some overall reference. Typically this reference point is taken to be one of the groups under consideration. This makes sense in the context of comparing multiple treatment groups to a control group and the control group is considered the "reference". In this example, group 1 was chosen to be the reference group. As such the model to be fit is:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij} \tag{10.10}$$

with the constraint that τ_1 is zero.

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \tau_2 \\ \tau_3 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \\ \epsilon_6 \\ \epsilon_7 \end{bmatrix}$$
(10.11)

In this model μ is the mean of the reference group and τ_i is the difference from group i to the reference group. τ_1 and is not included in the matrix because its difference from the reference group (itself) is necessarily zero.

10.1.2 Example: Program Effectiveness

Using data from Spector and Mazzeo (1980), we estimate a linear regression model with statsmodels.

```
""Linear Regression
```

```
Estimation of a linear regression model using the Spector and Mazzeo (1980) data
    set.
Documentation:
   data on 32 students TUCE scores
    5 columns with rows = students
    1) Grade ..... post grade
   2) constant .. term
   3) psi
    4) tuce ..... tuce (test of understanding of college economics) score
    5) gpa ..... grade point average
,,,
Author: Bruno Rodrigues
Date: March-2013
Ver:
       1.3 (Thomas Haslwanter)
# For this we only need to import statsmodels
import statsmodels.api as sm
def main():
    # We load the spector dataset as a pandas dataframe
    # Of course, you can load your own datasets
   data = sm.datasets.spector.load_pandas()
    \# We define y as the endogenous variable, and x as the
```

```
# exogenous variable.
   # Note that if you load your own data, the methods endog
   # and exog will not be available and you will have to
   # explicitly define the endogenous and exogenous variables
   y, x = data.endog, data.exog
   # We do the regression
   reg = sm.OLS(y, x).fit()
   # And here we can see the results in a very nice looking table
   print ('SUMMARY -----')
   print reg.summary()
   # We can only take a look at the parameter values though
   print ('PARAMETERS -----')
   print reg.params
   # We can also extract the residuals
   print ('RESIDUALS -----')
   print reg.resid
   # This line is just to prevent the output from vanishing when you
   # run the program by double-clicking
   raw_input('Done - Hit any key to finish.')
if __name__ == '__main__':
   main()
```

10.2 Assumptions

Standard linear regression models with standard estimation techniques make a number of assumptions about the predictor variables, the response variables and their relationship. Numerous extensions have been developed that allow each of these assumptions to be relaxed (i.e. reduced to a weaker form), and in some cases eliminated entirely. Some methods are general enough that they can relax multiple assumptions at once, and in other cases this can be achieved by combining different extensions. Generally these extensions make the estimation procedure more complex and time-consuming, and may also require more data in order to get an accurate model.

The following are the major assumptions made by standard linear regression models with standard estimation techniques (e.g. ordinary least squares):

- Weak exogeneity. This essentially means that the predictor variables x can be treated as fixed values, rather than random variables. This means, for example, that the predictor variables are assumed to be error-free, that is they are not contaminated with measurement errors. Although not realistic in many settings, dropping this assumption leads to significantly more difficult errors-in-variables models.
- Linearity. This means that the mean of the response variable is a linear combination of the parameters (regression coefficients) and the predictor variables. Note that this assumption is much less restrictive than it may at first seem. Because the predictor variables are treated as fixed values (see above), linearity is really only a restriction on the parameters. The predictor variables themselves can be arbitrarily transformed, and in fact multiple copies of the same underlying predictor variable can be added, each one transformed differently. This trick is used, for example, in polynomial regression, which uses linear regression to fit the response variable as an arbitrary polynomial function (up to a given rank) of a predictor variable. This makes linear regression an extremely

10.2. ASSUMPTIONS 103

powerful inference method. In fact, models such as polynomial regression are often "too powerful", in that they tend to overfit the data. As a result, some kind of regularization must typically be used to prevent unreasonable solutions coming out of the estimation process. Common examples are ridge regression and lasso regression. Bayesian linear regression can also be used, which by its nature is more or less immune to the problem of overfitting. (In fact, ridge regression and lasso regression can both be viewed as special cases of Bayesian linear regression, with particular types of prior distributions placed on the regression coefficients.)

- Constant variance (aka homoscedasticity). This means that different response variables have the same variance in their errors, regardless of the values of the predictor variables. In practice this assumption is invalid (i.e. the errors are heteroscedastic) if the response variables can vary over a wide scale. In order to determine for heterogeneous error variance, or when a pattern of residuals violates model assumptions of homoscedasticity (error is equally variable around the 'best-fitting line' for all points of x), it is prudent to look for a "fanning effect" between residual error and predicted values. This is to say there will be a systematic change in the absolute or squared residuals when plotted against the predicting outcome. Error will not be evenly distributed across the regression line. Heteroscedasticity will result in the averaging over of distinguishable variances around the points to get a single variance that is inaccurately representing all the variances of the line. In effect, residuals appear clustered and spread apart on their predicted plots for larger and smaller values for points along the linear regression line, and the mean squared error for the model will be wrong. Typically, for example, a response variable whose mean is large will have a greater variance than one whose mean is small. For example, a given person whose income is predicted to be \$100,000 may easily have an actual income of \$80,000 or \$120,000 (a standard deviation) of around \$20,000), while another person with a predicted income of \$10,000 is unlikely to have the same \$20,000 standard deviation, which would imply their actual income would vary anywhere between -\$10,000 and \$30,000. (In fact, as this shows, in many cases often the same cases where the assumption of normally distributed errors fails the variance or standard deviation should be predicted to be proportional to the mean, rather than constant.) Simple linear regression estimation methods give less precise parameter estimates and misleading inferential quantities such as standard errors when substantial heteroscedasticity is present. However, various estimation techniques (e.g. weighted least squares and heteroscedasticity-consistent standard errors) can handle heteroscedasticity in a quite general way. Bayesian linear regression techniques can also be used when the variance is assumed to be a function of the mean. It is also possible in some cases to fix the problem by applying a transformation to the response variable (e.g. fit the logarithm of the response variable using a linear regression model, which implies that the response variable has a log-normal distribution rather than a normal distribution).
- Independence of errors. This assumes that the errors of the response variables are uncorrelated with each other. (Actual statistical independence is a stronger condition than mere lack of correlation and is often not needed, although it can be exploited if it is known to hold.) Some methods (e.g. generalized least squares) are capable of handling correlated errors, although they typically require significantly more data unless some sort of regularization is used to bias the model towards assuming uncorrelated errors. Bayesian linear regression is a general way of handling this issue.
- Lack of multicollinearity in the predictors. For standard least squares estimation methods, the design matrix X must have full column rank p; otherwise, we have a condition known as multicollinearity in the predictor variables. This can be triggered by having two or more perfectly correlated predictor variables (e.g. if the same predictor variable is

mistakenly given twice, either without transforming one of the copies or by transforming one of the copies linearly). It can also happen if there is too little data available compared to the number of parameters to be estimated (e.g. fewer data points than regression coefficients). In the case of multicollinearity, the parameter vector β will be non-identifiable, it has no unique solution. At most we will be able to identify some of the parameters, i.e. narrow down its value to some linear subspace of R^p . Methods for fitting linear models with multicollinearity have been developed. Note that the more computationally expensive iterated algorithms for parameter estimation, such as those used in generalized linear models, do not suffer from this problem and in fact it's quite normal to when handling categorical data—categorically-valued predictors to introduce a separate indicator variable predictor for each possible category, which inevitably introduces multicollinearity.

Beyond these assumptions, several other statistical properties of the data strongly influence the performance of different estimation methods:

- The statistical relationship between the error terms and the regressors plays an important role in determining whether an estimation procedure has desirable sampling properties such as being unbiased and consistent.
- The arrangement, or probability distribution of the predictor variables x has a major influence on the precision of estimates of β . Sampling and design of experiments are highly-developed subfields of statistics that provide guidance for collecting data in such a way to achieve a precise estimate of β .

10.2.1 Interpretation

A fitted linear regression model can be used to identify the relationship between a single predictor variable x_j and the response variable y when all the other predictor variables in the model are held fixed. Specifically, the interpretation of β_j is the expected change in y for a one-unit change in x_j when the other covariates are held fixed that is, the expected value of the partial derivative of y with respect to x_j . This is sometimes called the "unique effect" of x_j on "y". In contrast, the "marginal effect" of x_j on y can be assessed using a correlation coefficient or simple linear regression model relating x_j to y; this effect is the total derivative of y with respect to x_j .

Care must be taken when interpreting regression results, as some of the regressors may not allow for marginal changes (such as dummy variables, or the intercept term), while others cannot be held fixed (recall the example from the introduction: it would be impossible to hold t_i fixed and at the same time change the value of t_i^2 .

It is possible that the unique effect can be nearly zero even when the marginal effect is large. This may imply that some other covariate captures all the information in x_j , so that once that variable is in the model, there is no contribution of x_j to the variation in y. Conversely, the unique effect of x_j can be large while its marginal effect is nearly zero. This would happen if the other covariates explained a great deal of the variation of y, but they mainly explain variation in a way that is complementary to what is captured by x_j . In this case, including the other variables in the model reduces the part of the variability of y that is unrelated to x_j , thereby strengthening the apparent relationship with x_j .

The meaning of the expression held fixed may depend on how the values of the predictor variables arise. If the experimenter directly sets the values of the predictor variables according to a study design, the comparisons of interest may literally correspond to comparisons among units whose predictor variables have been held fixed by the experimenter. Alternatively, the expression held fixed can refer to a selection that takes place in the context of data analysis. In this case, we hold a variable fixed by restricting our attention to the subsets of the data that

10.2. ASSUMPTIONS 105

happen to have a common value for the given predictor variable. This is the only interpretation of held fixed that can be used in an observational study.

The notion of a unique effect is appealing when studying a complex system where multiple interrelated components influence the response variable. In some cases, it can literally be interpreted as the causal effect of an intervention that is linked to the value of a predictor variable. However, it has been argued that in many cases multiple regression analysis fails to clarify the relationships between the predictor variables and the response variable when the predictors are correlated with each other and are not assigned following a study design.

```
Listing 10.2: modeling.py
```

```
"'Simple linear models.
- "model_formulas" is based on examples in Kaplan "Statistical Modeling".
- "polynomial_regression" shows how to work with simple design matrices, like
   MATLAB's "regress" command.
,,,
Author: Thomas Haslwanter
Date: May-2013
Ver:
       2.1
111
from pandas import read_csv
from statsmodels.formula.api import ols
import statsmodels.regression.linear_model as sm
from statsmodels.stats.anova import anova_lm
import numpy as np
def model_formulas():
    ''' Define models through formulas '''
    # Get the dta
   data = read_csv(r'..\Data\data_kaplan\swim100m.csv')
    # Different models
   model1 = ols("time ~ sex", data).fit() # one factor
   model2 = ols("time ~ sex + year", data).fit() # two factors
   model3 = ols("time ~ sex * year", data).fit() # two factors with
       interaction
    # Model information
   print (model1.summary())
   print (model2.summary())
   print (model3.summary())
    # ANOVAs
   print ('-----')
   print (anova_lm (model1))
   print('-----
   print (anova_lm (model2))
   print('-----
   model3Results = anova_lm(model3)
   print (model3Results)
    # Just to check the correct run
    return model3Results['F'][0] # should be 156.1407931415788
def polynomial_regression():
    ^{\prime\prime\prime} Define the model directly through the design matrix. Similar to MATLAB's
```

```
"regress" command '''
    # Generate the data
    # To get reproducable values, I provide a seed value
    np.random.seed(987654321)
    t = np.arange(0, 10, 0.1)
    y = 4 + 3*t + 2*t**2 + 5*np.random.randn(len(t))
    # Make the fit. Note that this is another "OLS" than the one in "
       model_formulas"!
   M = np.column_stack((np.ones(len(t)), t, t**2))
    res = sm.OLS(y, M).fit()
    # Display the results
   print 'Summary:'
   print res.summary()
   print 'The fit parameters are: {0}'.format(str(res.params))
   print 'The confidence intervals are:'
    print res.conf_int()
    return res.params # should be [ 4.74244177, 2.60675788, 2.03793634]
if __name__ == '__main__':
   model_formulas()
   polynomial_regression()
```

10.3 Evaluation of for Linear Regression Models

One of the things that intimidated me about statistical modeling is the deluge of expressions that appear when you run a modeling command. In the following I will try to explain the most common parameters that you are going to encounter when working with Linear Regression Models.

10.3.1 Definitions for Regression with Intercept

n is the number of observations, p is the number of regression parameters. For example, if you fit a straight line, p = 2. In the following \hat{y}_i will indicate the fitted model values, and \bar{y} will indicate the mean.

- $SSM = \sum_{i=1}^{n} (\hat{y}_i \bar{y})^2$ is the Sum of Square for Model, or the sum of squares for the regression.
- $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ is the sum of Squares for Error, or the sum of squares for the residuals
- $SST = \sum_{i=1}^{n} (y_i \bar{y})^2$ is the Sum of Squares Total, and is equivalent to the sample variance multiplied by n-1.

For multiple regression models, SSM + SSE = SST

- DFM = p-1 is the (Corrected) Degrees of Freedom for Model. (The "-1" comes from the fact that we are only interested in the correlation, not in the absolute offset of the data.
- DFE = n p is the Degrees of Freedom for Error

• DFT = n - 1 is the (Corrected) Degrees of Freedom Total. The Horizontal line regression is the null hypothesis model.

For multiple regression models with intercept, DFM + DFE = DFT.

- MSM = SSM/DFM: Mean of Squares for Model
- MSE = SSE/DFE: Mean of Squares for Error. MSE is an unbiased estimate for σ^2 for multiple regression models.
- MST = SST/DFT: Mean of Squares Total, which is the sample variance of the yvariable.

The R^2 Value 10.3.2

The R^2 value indicates the proportion of variation in the y-variable that is due to variation in the x-variables. For simple linear regression, the R^2 value is the square of the sample correlation r_{xy} . For multiple linear regression with intercept (which includes simple linear regression), the R^2 value is defined as

$$R^2 = \frac{SSM}{SST} \tag{10.12}$$

Many researchers prefer the adjusted \bar{R}^2 value (Eq 8.6), which is penalized for having a large number of parameters in the model:

Here is the logic behind the definition of \bar{R}^2 : R^2 is defined as $R^2 = 1 - SSE/SST$ or $1 - R^2 = SSE/SST$. To take into account the number of regression parameters p, define the adjusted R-squared value as

$$1 - \bar{R}^2 = \frac{Variance for Error}{Variance Total}$$
 (10.13)

where Variance for Error is estimated by SSE/DFE = SSE/(n-p), and Variance Total is estimated by SST/DFT = SST/(n-1). Thus,

$$1 - \bar{R}^{2} = \frac{SSE/(n-p)}{SST/(n-1)}$$

$$= \frac{SSE}{SST} \frac{n-1}{n-p}$$
(10.14)

$$= \frac{SSE}{SST} \frac{n-1}{n-p} \tag{10.15}$$

SO

$$\bar{R}^2 = 1 - \frac{SSE}{SST} \frac{n-1}{(n-p)} \tag{10.16}$$

$$= 1 - (1 - R^2) \frac{n-1}{n-p} \tag{10.17}$$

10.3.3 The F-test

If $t_1, t_2, ..., t_m$ are independent, $N(0, \sigma^2)$ random variables, then $\sum_{i=1}^m t_i^2$ is a χ^2 (chi-squared) random variable with m degrees of freedom.

For a multiple regression model with intercept,

$$Y_{j} = \alpha + \beta_{1} X_{1j} + \dots + \beta_{n} X_{nj} + \epsilon_{i} = \alpha + \sum_{i=1}^{n} \beta_{i} X_{ij} + \epsilon_{j} = E(Y_{j}|X) + \epsilon_{j}$$
 (10.18)

we want to test the following null hypothesis and alternative hypothesis:

 $H_0: \beta_1 = \beta_2 = , \dots , = \beta_n = 0$

 H_1 : $\beta_i \neq 0$, for at least one value of j

This test is known as the overall *F-test for regression*.

It can be shown that if H_0 is true and the residuals are unbiased, homoscedastic, independent, and normal:

- 1. SSE/σ^2 has a χ^2 distribution with DFE degrees of freedom.
- 2. SSM/σ^2 has a χ^2 distribution with DFM degrees of freedom.
- 3. SSE and SSM are independent random variables.

If u is a χ^2 random variable with n degrees of freedom, v is a χ^2 random variable with m degrees of freedom, and u and v are independent, then if $F = \frac{u/n}{v/m}$ has an F distribution with (n,m) degrees of freedom.

If H0 is true,

$$F = \frac{(SSM/\sigma^2)/DFM}{(SSE/\sigma^2)/DFE} = \frac{SSM/DFM}{SSE/DFE} = \frac{MSM}{MSE},$$
(10.19)

has an F distribution with (DFM, DFE) degrees of freedom, and is independent of σ .

10.3.4 Log-Likelihood Function

A very common approach in statistics is the idea of *Maximum Likelihood* estimation. The basic idea is quite different from the *minimum square* approach: there, the model is constant, and the errors of the response are variable; in contrast, in the maximum likelihood approach, the data response values are regarded as constant, and the likelihood of the model is maximised.

For the Classical Linear Regression Model (with normal errors) we have

$$\epsilon = y_i - \sum_{k=1}^{n} \beta_k x_{ik} = y_i - \mathbf{x}_i' \cdot \boldsymbol{\beta} \ in \ N(0, \sigma^2)$$
 (10.20)

so the probability density is given by

$$p(\epsilon_i) = \Phi(\frac{y_i - \mathbf{x}_i' \cdot \boldsymbol{\beta}}{\sigma})$$
 (10.21)

where $\Phi(z)$ is the standard normal probability distribution function. The probability of independent samples is the product of the individual probabilities

$$\Pi_{total} = \prod_{i=1}^{n} p(\epsilon_i)$$
(10.22)

The Log Likelihood function is defined as

$$LogL = log(\Pi_{total})$$

$$= log \left[\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{(y_i - \mathbf{x}_i' \cdot \boldsymbol{\beta})^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^{n} \left[log\left(\frac{1}{\sigma \sqrt{2\pi}}\right) - \left(\frac{(y_i - \mathbf{x}_i' \cdot \boldsymbol{\beta})^2}{2\sigma^2}\right) \right]$$

$$= nlog(\sigma) - nlog\sqrt{2\pi} - \frac{SSE}{2\sigma^2}$$

It can be shown that the maximum likelihood estimator of σ^2 is

$$E(\sigma^2) = \frac{SEE}{n} \tag{10.23}$$

With this, the maximised log likelihood is

$$Max(LogL) = -\frac{n}{2}log\left(\frac{2\pi}{n}\right) - \frac{n}{2} - \frac{n}{2}log(SSE)$$
 (10.24)

and the maximised likelihood is

$$Max(L) = \left(\frac{2\pi}{n}\right)^{n/2} \cdot exp(-\frac{n}{2}) \cdot (SSE)^{-n/2}$$
(10.25)

10.3.5 Information Content of Statistical Models

To judge the quality of your model, you should first visually inspect the residuals. In addition, you can also use a number of numerical criteria to assess the quality of a statistical model. These criteria represent various approaches for balancing model accuracy with parsimony.

We have already encountered the $adjustedR^2$ value (Eq 8.6), which - in contrast to the R^2 value - decreases if there are too many regressors in the model.

The Akaike Information Criterion AIC

$$AIC = n * ln(SSE/n) + 2p \tag{10.26}$$

and the Schwartz or Baysian Information Criterion BIC

$$BIC = n * ln(SSE/n) + pln(n)$$
(10.27)

are other commonly encountered criteria.

Analysis of Residuals

The OLS command from statsmodels.formula.api provides some additional information about the residuals of the model:

Omnibus In Multiple Regression the omnibus test is an ANOVA F test on all the coefficients, that is equivalent to the multiple correlations R Square F test. The omnibus F test is an overall test that examines model fit, thus rejecting the null hypothesis implies that the suggested linear model is not significally suitable to the data.

Skewness Sample skewness of the residuals, i.e. if they have a tail to the left or to the right. Equivalent to stats.skew(model.resid, bias=True).

Kurtosis Sample kurtosis of the residuals, i.e. the pointedness of the data distribution. For normally distributed data approximately 3. (Equivalent to stats.kurtosis(model.resid, fisher=False, bias=True))

Durbin-Watson A test statistic used to detect the presence of autocorrelation (a relationship between values separated from each other by a given time lag) in the residuals.

Jarque-Bera A goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution.

10.4 Bootstrapping

Another type of modelling is *bootstrapping*/. Sometimes you have data describing a distribution, but do not know what type of distribution it is. So what can you do if you want to find out e.g. confidence values for the mean?

The answer is bootstrapping. Bootstrapping is a scheme of *resampling*, i.e. taking additional samples repeatedly from the initial sample, to provide estimates of its variability. In a case where the distribution of the initial sample is unknown, bootstrapping is of especial help in that it provides information about the distribution.

Listing 10.3: bootstrap.py

```
''' Example of bootstrapping the confidence interval for the mean of a sample
   distribution
Since no bootstrapping is implemented in Python, you first have to install the
   the
scikits-bootstrapping module
  pip install -e git+http://github.org/cgevans/scikits-bootstrap.git#egg=
      Package
Author: Thomas Haslwanter
Date:
        May-2013
Version: 1.1
import scipy as sp
import matplotlib.pyplot as plt
from scipy import stats
import scikits.bootstrap as bootstrap
def generate_data():
    # To get reproducable values, I provide a seed value
   sp.random.seed(987654321)
    # Generate a non-normally distributed datasample
   data = stats.poisson.rvs(2, size=1000)
    # Show the data
   plt.plot(data, '.')
    plt.title('Non-normally distributed dataset: Press any key to continue')
   plt.waitforbuttonpress()
   plt.close()
   return (data)
def calc_bootstrap(data):
    # Calculate the bootstrap
   CIs = bootstrap.ci(data=data, statfunction=sp.mean)
    # Print the data: the "*" turns the array CIs into a list
    print('The conficence intervals for the mean are: {0} - {1}'.format(*CIs))
   return CIs
if __name__ == '__main__':
   data = generate_data()
   calc_bootstrap(data)
```

Chapter 11

Analysis of Survival Times

When analyzing survival times, different problems come up than the ones discussed so far. One question is how do we deal with subjects dropping out of a study. For example, assume that we test a new cancer drug. While some subjects die, others may believe that the new drug is not effective, and decide to drop out of the study before the study is finished. A similar problem would be faced when we investigate how long a machine lasts before it breaks down.

11.1 Survival Probabilities

11.1.1 Kaplan-Meier survival curve

A clever way to deal with these problems is described in detail in [Altman(1999)]. First, the time is subdivided into small periods. Then the likelihood is calculated that a subject survives a given period. The survival probability is given by

$$p_k = p_{k-1} * \frac{r_k - f_k}{r_k} \tag{11.1}$$

where p_k is the probability to survive period k; r_k is the number of subjects still at risk (i.e. still being followed up) immediately before the k^{th} day, and f_k is the number of observed failures on the day k. The curve describing the resulting survival probability is called *life table*, survival curve, or Kaplan-Meier curve (see Figure 11.1).

Note that the survival curve changes only when a "failure" occurs, i.e. when a subject dies. Censored entries, describing either when a subject drops out of the study or when the study

Figure 11.1: Survival curve corresponding to a motion sickness experiment, described in more detail in [Altman(1999)], chapter 13

finishes, are taken into consideration at the "failure" times, but otherwise do not affect the survival curve.

11.2 Comparing Survival Curves in Two Groups

The most common test for comparing independent groups of survival times is the *logrank* test. This test is a non-parametric hypothesis test, testing the probability that both groups come from the same underlying population. Since to my knowledge this test is not yet implemented in a Python library, I have included an implementation based on the equations given by [Altman(1999)] (see program 11.1).

To explore the effect of different variables on survival, more advanced methods are required. The Cox regression model introduced by Cox in 1972 is used widely when it is desired to investigate several variables at the same time. For details, check [Altman(1999)] or other statistic textbooks.

Listing 11.1: survival.py

```
'''Survival Analysis
The first function draws the Survival Curve (Kaplan-Meier curve).
The second function implements the logrank test, comparing two survival curves.
The formulas and the example are taken from Altman, Chapter 13.
,,,
Author : Thomas Haslwanter
Date : May 2013
Ver : 1.2
import numpy as np
from scipy import stats
from getdata import getData
import matplotlib.pyplot as plt
def kaplanmeier(data):
    ^{\prime\prime\prime}Determine and the Kaplan-Meier curve for the given data.
    Censored times are indicated with "1" in the second column, uncensored with
        "0"///
    times = data[:,0]
    censored = data[:,1]
    atRisk = np.arange(len(times), 0, -1)
    failures = times[censored==0]
    num_failures = len(failures)
    p = np.ones(num_failures+1)
    r = np.zeros(num_failures+1)
    se = np.zeros(num_failures+1)
    # Calculate the numbers-at-risk, the survival probability, and the standard
    for ii in range(num_failures):
        if failures[ii] == failures[ii-1]:
            r[ii+1] = r[ii]
            p[ii+1] = p[ii]
            se[ii+1] = se[ii]
        else:
            r[ii+1] = max(atRisk[times==failures[ii]])
            p[ii+1] = p[ii] * (r[ii+1] - sum(failures==failures[ii]))/r[ii+1]
```

```
se[ii+1] = p[ii+1]*np.sqrt((1-p[ii+1])/r[ii+1])
            \# confidence intervals could be calculated as ci = p +/- 1.96 se
    # Plot survival curve (Kaplan-Meier curve)
    \# Always start at t=0 and p=1, and make a line until the last measurement
    t = np.hstack((0, failures, np.max(times)))
    sp = np.hstack((p, p[-1]))
    return(p, atRisk, t, sp, se)
def logrank(data_1, data_2):
    '''Logrank hypothesis test, comparing the survival times for two different
       datasets'''
    times_1 = data_1[:,0]
    censored_1 = data_1[:,1]
    atRisk_1 = np.arange(len(times_1), 0, -1)
    failures_1 = times_1[censored_1==0]
    times_2 = data_2[:,0]
    censored_2 = data_2[:,1]
    atRisk_2 = np.arange(len(times_2), 0, -1)
    failures_2 = times_2[censored_2==0]
    failures = np.unique(np.hstack((times_1[censored_1==0], times_2[censored_2
       ==0])))
    num_failures = len(failures)
    r1 = np.zeros(num_failures)
    r2 = np.zeros(num_failures)
    r = np.zeros(num_failures)
    f1 = np.zeros(num_failures)
    f2 = np.zeros(num_failures)
    f = np.zeros(num_failures)
    e1 = np.zeros(num_failures)
    f1me1 = np.zeros(num_failures)
    v = np.zeros(num_failures)
    for ii in range(num_failures):
        r1[ii] = np.sum(times_1 >= failures[ii])
        r2[ii] = np.sum(times_2 >= failures[ii])
        r[ii] = r1[ii] + r2[ii]
        f1[ii] = np.sum(failures_1==failures[ii])
        f2[ii] = np.sum(failures_2==failures[ii])
        f[ii] = f1[ii] + f2[ii]
        e1[ii] = r1[ii] * f[ii] / r[ii]
        f1me1[ii] = f1[ii] - e1[ii]
        v[ii] = r1[ii] * r2[ii] * f[ii] * (r[ii] - f[ii]) / (r[ii] * * 2 * (r[ii] - 1))
    01 = np.sum(f1)
    O2 = np.sum(f2)
    E1 = np.sum(e1)
    O1mE1 = np.sum(f1me1)
    V = sum(v)
    chi2 = (O1-E1) **2/V
    p = stats.chi2.sf(chi2, 1)
    print('X^2 = \{0\}'.format(chi2))
    if p < 0.05:
        print('p={0}, the two survival curves are significantly different.'.
            format(p))
```

```
else:
        print('p={0}, the two survival curves are not significantly different.'.
           format(p))
    return(p, chi2)
def main():
    # get the data
    data1 = getData('altman_13_2.txt', subDir='..\Data\data_altman')
    data2 = getData('altman_13_3.txt', subDir='...\Data\data_altman')
    # Determine the Kaplan-Meier curves
    (p1, r1, t1, sp1,se1) = kaplanmeier(data1)
    (p2, r2, t2, sp2, se2) = kaplanmeier(data2)
    # Make a combined plot for both datasets
    plt.step(t1,sp1, where='post')
    plt.hold(True)
    plt.step(t2,sp2,'r', where='post')
    plt.legend(['Data1', 'Data2'])
    plt.ylim(0,1)
    plt.xlabel('Time')
    plt.ylabel('Survival Probability')
    plt.show()
    # Check the hypothesis that the two survival curves are the same
    (p, X2) = logrank(data1, data2)
    return p # supposed to be 0.073326322306832212
if __name__=='__main__':
    main()
```

Appendix A

Appendix

A.1 Lecture Schedule

- 1. Introduction
- 2. Basics [T]
- 3. Study Design
- 4. Normal Distribution [T]
- 5. Other Continuous Distributions
- 6. Data Analysis [T]
- 7. Statistical Tests
- 8. Continous Tests
- 9. Presentation Experimental Design
- 10. Categorical Tests
- 11. Correlation [T]
- 12. Regression [T]
- 13. ANOVA [T]
- 14. Statistical Models
- 15. Final Presentation

A.2 To Do

- 1. Example and implementation of Cochran's Q-test
- 2. Outlier detection
- 3. Bayesian statistics
- 4. Improve statistical modeling

Bibliography

- [Altman(1999)] Douglas G. Altman. Practical Statistics for Medical Research. Chapman & Hall/CRC, 1999.
- [Harms and McDonald(2010)] D. Harms and K. McDonald. The Quick Python Book (2nd Ed). Manning Publications Co., 2010.
- [IPython(2013)] IPython, 2013. URL http://ipython.org/.
- [Kaplan(2009)] Daniel Kaplan. Statistical Modeling: A Fresh Approach. Macalester College, 2009.
- [Pandas(2013)] Pandas, 2013. URL http://pandas.pydata.org/.
- [patsy(2013)] patsy, 2013. URL http://patsy.readthedocs.org/en/latest/overview.html.
- [Python(xy)(2013)] Python(xy), 2013. URL http://code.google.com/p/pythonxy/.
- [Riffenburgh(2012)] R.H. Riffenburgh. Statistics in Medicine. Academic Press, 3rd edition, 2012.
- [statsmodels(2013)] statsmodels, 2013. URL http://statsmodels.sourceforge.net/.
- [WinPython(2013)] WinPython, 2013. URL http://code.google.com/p/winpython/.

118 BIBLIOGRAPHY

Index Topics

Akaike Information Criterion AIC, 107	Type I, 51
ANOVA, 64	Type II, 52
ANOVA, two-way, 93	exogenous variable, 84
Baysian Information Criterion BIC, 107	factor, 24
bias, 22	frequency tables, 76
blinding, 24	
Bonferroni correction, 70	geometric mean, 27
bootstrapping, 108	II 1 4: 71
	Holms correction, 71
centiles, 28	hypotheses, 51
central limit theorem, 30	IQR, 28
clinical investigation plan (CIP), 25	1010, 20
coefficient of determination, 81	Kaplan-Meier survival curve, 109
adjusted, 82	kurtosis, 30
confidence interval, 48	,
control group, 22	log likelihood function, 106
correlation	
Kendall's τ , 83	Maximum likelihood, 106
Pearson, 81	mean, 27
Spearman, 83	median, 27
correlation coefficient, 81	mode, 27
covariate, 84	Multiple Comparisons, 67
Cox regression model, 110	1 1 1
crossover studies, 23	negative predictive value, 54
cumulative distribution function, 28	nominal, 17
cumulative frequency, 18	normality check, 46
data	percentiles, 28
categorical, 17	plots
numerical, 17	Q-Q plot, 46
ordinal, 17	boxplot, 19
distributions	histogram, 18
Bernoulli, 43	scatter, 18
binomial, 43	positive predictive value, 54
chi square, 36	power, 51
continuous, 35	prevalence, 55
discrete, 42, 44	probability density function, 30
exponential, 39	Python
F distribution, 36	ipython, 9
lognormal, 38	Matplotlib, 10
normal, 30	pylab, 10
poisson, 43	pyplot, 10
t-distribution, 36	
uniform, 39	randomization, 23
weibull, 38	randomized controlled trial, 22
documentation, 24	range, 27
,	regressand, 84
endogenous variable, 84	regression, 83
error	multilinear, 85, 93, 94

INDEX TOPICS 119

multiple, 98 regressor, 84 replication, 24 ROC curve, 56 sample selection, 24 sample size, 52 sensitivity, 54 shape parameters, 29 skewness, 29 specificity, 54 standard deviation, 28 standard error, 29 statistic, 30 statistical modeling, 97 survival times, 109 test t-test, one sample, 59 t-test, paired, 61 ANOVA, 64, 93 binomial, 73 chi square, 76Cochran's Q, 75 F-test, 65 Fisher's exact, 77 Friedman, 93 Kolmogorov-Smirnov, 46 Kruskal-Wallis, 71 Levene, 64 logrank, 110 Mann-Whitney, 62 McNemar's, 78 Shapiro-Wilk, 47 Tukey's, 68 variance ratio, 65 Wilcoxon signed rank sum, 61 transformation, 48 variance, 28 variate, 30

120 BIBLIOGRAPHY

Python Programs

anova Oneway, 67 anova Twoway, 94

binomialTest, 74 bootstrap, 108

 $\begin{array}{c} {\rm checkNormality,\ 47} \\ {\rm compGroups,\ 80} \end{array}$

distContinuous, 42 distDiscrete, 46

fitLine, 91

getdata, 16 gettingStarted, 13

KruskalWallis, 72

linear regression model, 100

modeling, 104 multipleTesting, 70 multivariate, 87

 $pandasIntro,\,15$

regress, 96

sampleSize, 54 showStats, 21 survival, 112