Solution 11

- 1. Arrivals at a public telephone booth form a Poisson process with a rate of 12 per hour. The duration of a phone call made from the booth is an exponential RV with average 2 minutes.
 - (a) Explain why the phone calls in the tooth is a M/M/1 queueing system and find the traffic intensity.
 - (b) Find the probability that an arrival will find the phone occupied.
 - (c) Find the average length of the queue (including the person speaking) when it forms in the lung run.
 - (d) It is the policy of the telephone company to install additional booth if the customers wait on the average at least 3 min for the phone. By how much must the flow of arrivals increase in order to justify the second booth?

Solution:

- (a) $\lambda = 12$ / per hour=1/5 per min and $\mu = 1/2$ per min. So $\rho = 2/5$.
- (b) $1 \pi_0 = \rho = 0.4$
- (c) In the lung run,

$$E(L \mid L > 0) = \sum_{k=1}^{\infty} kP(L = k \mid L > 0)$$

$$= \sum_{k=1}^{\infty} kP(L = k)/P(L > 0) = EL/P(L > 0)$$

$$= 1/(1 - \rho) = 5/3.$$

(d) We have the average waiting time:

$$EW = \rho/[\mu(1-\rho)] = \lambda/[\mu(\mu-\lambda)].$$

Given $\mu = 0.5$. the new booths will be installed if

$$EW = \lambda/[0.5(0.5 - \lambda)] \ge 3.$$

Solving this equation, we find that $\lambda \geq 0.3/\text{min}$. With $\lambda = 0.3$, the average number of arrivals per hour is 18. Therefore, for an additional booth to be justified the arrivals rate should increase by 6 per hour.

1

2. Assume that the arrival of cars at a service station with one service-man is a Poisson process with rate λ (cars/per hour) and the service times are exponential with mean $1/\mu$ (hours/per car). Also assume that the cost incurred by the service station due to waiting cars (including being served) is C_1 per car per hour and the extra operating and service costs are μ 0 per hour when the service rate is μ 1. Determine the service rate μ 2 that results in the least expected cost in the lung run.

Solution: As "arrival-service" of the cars is a M/M/1 system with the traffic intensity $\rho = \lambda/\mu$, the average number of cars waiting (including being served) at the service station is $EL = \rho/(1-\rho) = \lambda/(\mu-\lambda)$. Hence, the total cost per hour to the station can be given as

$$C(\mu) = \lambda C_1/(\mu - \lambda) + \mu C_2.$$

Minimizing $C(\mu)$ through standard techniques, we get

$$\mu = \lambda + \sqrt{\frac{\lambda C_1}{C_2}}$$
 or $\lambda - \sqrt{\frac{\lambda C_1}{C_2}}$.

Since for stability we need $\lambda < \mu$, we get the optimal value

$$\mu^* = \lambda + \sqrt{\frac{\lambda C_1}{C_2}}.$$

3. (3921/4021) In a single-server queuing system with random arrivals and exponential service times with parameter β , customers only arrive in pairs, the probability of two arrivals in the interval (t, t + h) being $\alpha h + o(h)$. Show that the stationary distribution of this system satisfies

$$\alpha \pi_0 = \beta \pi_1$$

$$(\alpha + \beta)\pi_1 = \beta \pi_2$$

$$(\alpha + \beta)\pi_n = \alpha \pi_{n-2} + \beta \pi_{n+1}, \quad n \ge 2.$$

By multiplying both sides by s^n and summing over n, show that the pgf $\Pi(s) = \sum_{n=0}^{\infty} \pi_n s^n$ satisfies the equation

$$\Pi(s) = \frac{2 - 2\gamma}{2 - \gamma s - \gamma s^2},$$

where $\gamma = 2\alpha/\beta$. Hence or otherwise find the mean of the distribution and the variance.

Solution: Let X_t be the number of customers at time t. It is P+D P with transition probability:

For i = 0,

$$p_{ij}(h) = 1 - \alpha h + o(h), \quad j = i,$$

= $\alpha h + o(h), \quad j = i + 2,$
= $o(h), \quad \text{otherwise}$

For $i \geq 1$,

$$p_{ij}(h) = \beta h + o(h), \quad j = i - 1,$$

= $\alpha h + o(h), \quad j = i + 2,$
= $1 - (\alpha + \beta)h + o(h), \quad j = i,$
= $o(h), \quad \text{otherwise}$

Hence the stationary distribution satisfies ($\pi Q = 0$):

$$\alpha \pi_0 = \beta \pi_1$$

$$(\alpha + \beta)\pi_1 = \beta \pi_2$$

$$(\alpha + \beta)\pi_n = \alpha \pi_{n-2} + \beta \pi_{n+1}, \quad n > 2.$$

Multiplying the first line by s^0 , the second line by s^1 and so on, and adding, gives

$$\alpha\Pi(s) + \beta(\Pi(s) - \pi_0) = \beta\left(\frac{\Pi(s) - \pi_0}{s}\right) + \alpha s^2\Pi(s)$$

so that

$$\Pi(s) = \frac{\pi_0 \beta (1 - 1/s)}{\alpha + \beta - \frac{\beta}{s} - \alpha s^2}$$
$$= \frac{\pi_0 \beta}{\beta - \alpha s - \alpha s^2}.$$

 π_0 is chosen to make $\sum \pi_n = 1$ giving $\pi_0 = 1 - 2\alpha/\beta$.

Differentiating $\Pi(s)$ and putting s=1 shows the mean to be $\mu=\frac{3\gamma}{2(1-\gamma)}$.

Differentiating twice and putting s=1 gives

$$\sigma^2 = \Pi''(1) + \Pi'(1) - \Pi'(1)^2 = \frac{\gamma(10 - \gamma)}{4(1 - \gamma)^2}.$$