Comparator

Vivek Porush

Implementation of Comparator using Op-Amp (LM741)

Comparator

Documentation And Reference

Analog and Mixed Signal VLSI Design Porush, Vivek

vivek.91.porush@gmail.com

Aim: The primary purpose of this project is to design a comparator circuit using *Op-Amp* in SPICE. *SPICE* is industry standard software to design and simulate electrical circuits. It is derived from original SPICE program where, SPICE is acronym for *Simulation Program with Integrated Circuit Emphasis*.

Design Parameters: This project deals with implementation of *Op-Amp* as a comparator. As specified by the circuit we have following parameters available:

<u>Figure 1. Circuit implementation of Op- Amp as Comparator & Ground as reference</u> Circuit parameters are as follows:

Parameter	Value	Unit	Specification		
V _s	2.5 @ 1KHZ	V	AC SIN Input Voltage		
Op- Amp Biasing Parameters					
Parameter	Value	Unit	Specification		
LM741	-	-	Sub circuit from National Semiconductors		
V _{cc} (V+)	12	V	Positive Bias Voltage		
V _{ee} (V-)	-12	V	Negative Bias Voltage		

Table 1. Circuit Parameters

Required Output: We are required to observe and verify that the output is a square wave. Moreover we have to observer difference in period if any.

Theoretical Analysis: A comparator is a simple circuit that compares two input signals and outputs a discreet signal indicating which one of them is larger. Comparators uses the high open loop-gain property of *Op-Amps* and thus are extremely sensitive to small variation in input voltage. Generally reference signal is supplied on one of the inputs of *Op-Amps* and the other input signal is compared to it. Output signal is in accordance with the input terminal (inverting or non-inverting).

In the given design problem V_{ref} is taken as ground. Thus for all the values of input signal that are greater than V_{ref} the output will be V+ (open loop gain $\approx \infty$). When input signal drops below the V_{ref} output signal will also drop to V-. Thus resulting in a square wave. For a periodic signal the input and output period should be same as output closely follows variation in input signal.

Figure 2. Theoretically anticipated output

Theoretically anticipated values: Ideally the output from comparator is V_{cc} & V_{ee} for any input voltage greater or smaller than V_{ref} . However, due to offset voltage, current and other non-ideal effects the output voltage will be smaller. We will call this error and attribute it to non-ideal behavior of Op- Amp.

Voltage	V _s	Vo	Unit
Source	Input	Output	
	Voltage	Voltage	
V _s	$0 < V_s \le 2.5$	+12	V
(AC)			
	$-2.5 \le V_s < 0$	-12	V

Table 2. Theoretically anticipated output voltages

Nodal Circuit Diagrams: The circuit shown below is the nodal (representing 'nets') circuit as implemented in the *SPICE*.

Figure 3. Comparator as implemented in HSPICE

Error: Table below shows the error in the output voltage as compared to the theoretical predictions:

Frequency	Input Voltage	Predicted	Actual	Error
		Output Voltage (Peak)	Output Voltage (Peak)	(V Peak)
2.5V @1KHz AC	2.5	12	11.023	0.977 ≈ 1
	-2.5	-12	-11.029	-0.971 ≈ -1

Table 3. Deviations of V_s *from predicted values*

It is clear from the above data that the observed error is \pm 1 V and can attribute it to non-ideal behavior (saturation) of Op- *Amp*.

Conclusion: The circuit for Comparator was designed and simulated in *HSPICE* successfully. Following conclusions can be drawn from simulation:

- ➤ The observed error is small and can attribute it to non-ideal behavior of Op- *Amp*.
- ➤ The output signal is a square wave as expected.
- ➤ Period of output signal is same as input signal.

