Identifying News Shocks from Forecasts

SETA 2024, Academia Sinica, 29 May 2024

Jonathan J. Adams ¹ Philip Barrett ²

¹University of Florida

²International Monetary Fund

The views expressed herein are those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or IMF management

 Macroeconomic shocks have different effects when they are anticipated (news shocks) versus when they are unanticipated (surprise shocks)

- Macroeconomic shocks have different effects when they are anticipated (news shocks) versus when they are unanticipated (surprise shocks)
- How can we identify news vs. surprise shocks in macroeconomic data?

- Macroeconomic shocks have different effects when they are anticipated (news shocks) versus when they are unanticipated (surprise shocks)
- How can we identify news vs. surprise shocks in macroeconomic data?
 - Even cleanly identified shocks mix surprises with news about the future

- Macroeconomic shocks have different effects when they are anticipated (news shocks) versus when they are unanticipated (surprise shocks)
- How can we identify news vs. surprise shocks in macroeconomic data?
 - Even cleanly identified shocks mix surprises with news about the future
- Challenging when there is news about multiple shocks!

 Develop a novel SVAR methodology to identify news and surprise components of structural shocks

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - ullet News typically drives 1/5-1/4 of time series volatility

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - News typically drives 1/5 1/4 of time series volatility
 - ... except inflation (1/3)

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - News typically drives 1/5 1/4 of time series volatility
 - ... except inflation (1/3)
- Application: policy counterfactuals without a structural model

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - News typically drives 1/5 1/4 of time series volatility
 - ... except inflation (1/3)
- Application: policy counterfactuals without a structural model
 - McKay and Wolf (2023): With separately identified news and surprise policy shocks you can estimate counterfactual policy rules *robust to the Lucas Critique*

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - News typically drives 1/5 1/4 of time series volatility
 - ... except inflation (1/3)
- Application: policy counterfactuals without a structural model
 - McKay and Wolf (2023): With separately identified news and surprise policy shocks you can estimate counterfactual policy rules robust to the Lucas Critique
 - Benefit of our method: *joint identification* of fiscal/monetary news and surprises

- Develop a novel SVAR methodology to identify news and surprise components of structural shocks
 - Requirement: forecast data on every time series in the VAR
 - Benefit: identify news and surprise for the *entire* vector of structural shocks (vs. typical approach: assume news about a single shock)
- Apply method to US data, using forecasts derived from surveys and asset prices
 - News typically drives 1/5 1/4 of time series volatility
 - ... except inflation (1/3)
- Application: policy counterfactuals without a structural model
 - McKay and Wolf (2023): With separately identified news and surprise policy shocks you can estimate counterfactual policy rules robust to the Lucas Critique
 - Benefit of our method: joint identification of fiscal/monetary news and surprises
 - Coordinated monetary-fiscal policy reduces inflation (output) variance by an extra 10 (30) percent over uncoordinated.

• To build intuition, consider the simple NK model:

New Keynesian Phillips curve: $\pi_t = \beta \mathbb{E}_t[\pi_{t+1}] + \kappa y_t + x_t$

Euler equation: $0 = \mathbb{E}_t[z_t + \gamma(y_t - y_{t+1}) + i_t - \pi_{t+1}]$

Taylor rule: $i_t = \phi_\pi \pi_t + \frac{h_t}{h_t}$

where x_t and z_t are iid shocks, and h_t is the exogenous policy residual

• To build intuition, consider the simple NK model:

New Keynesian Phillips curve:
$$\pi_t = \beta \mathbb{E}_t[\pi_{t+1}] + \kappa y_t + x_t$$
 Euler equation:
$$0 = \mathbb{E}_t[z_t + \gamma(y_t - y_{t+1}) + i_t - \pi_{t+1}]$$
 Taylor rule:
$$i_t = \phi_\pi \pi_t + h_t$$

where x_t and z_t are iid shocks, and h_t is the exogenous policy residual

h_t is autocorrelated:

$$h_t = \rho h_{t-1} + \mathbf{u_t} + \mathbf{v_{t-1}}$$

 u_t is monetary policy surprise and v_{t-1} is monetary policy news

• To build intuition, consider the simple NK model:

New Keynesian Phillips curve:
$$\pi_t = \beta \mathbb{E}_t[\pi_{t+1}] + \kappa y_t + x_t$$
 Euler equation:
$$0 = \mathbb{E}_t[z_t + \gamma(y_t - y_{t+1}) + i_t - \pi_{t+1}]$$
 Taylor rule:
$$i_t = \phi_\pi \pi_t + h_t$$

where x_t and z_t are iid shocks, and h_t is the exogenous policy residual

h_t is autocorrelated:

$$h_t = \rho h_{t-1} + \mathbf{u_t} + \mathbf{v_{t-1}}$$

 u_t is monetary policy surprise and v_{t-1} is monetary policy news

• u_t and v_{t-1} are individually known to agents in the model, but *not the econometrician*!

Figure 1: Impulse Response Functions in the Simple Example

"Naive VAR" identifies by causal ordering, and consistently estimates IRFs w/o news.

ullet Problem: More shock (u_t, v_t, x_t, z_t) than observables (y_t, π_t, i_t)

- Problem: More shock (u_t, v_t, x_t, z_t) than observables (y_t, π_t, i_t)
- \bullet Solution: Assume that forecasters observe v_t when forming expectations

- Problem: More shock (u_t, v_t, x_t, z_t) than observables (y_t, π_t, i_t)
- Solution: Assume that forecasters observe v_t when forming expectations
- ullet In this example, only one news shock, so only need one forecast: $f_t^\pi \equiv \mathbb{E}_t[\pi_{t+1}]$

- Problem: More shock (u_t, v_t, x_t, z_t) than observables (y_t, π_t, i_t)
- Solution: Assume that forecasters observe v_t when forming expectations
- ullet In this example, only one news shock, so only need one forecast: $f_t^\pi \equiv \mathbb{E}_t[\pi_{t+1}]$
- Intuition for identification: news today cause forecasts today and outcomes tomorrow to move together; surprises cause today's outcomes to depart from yesterday's forecasts.

Identification with Forecasts the Simple Example

• Model solution is:

$$\pi_{t} = b_{h}^{\pi} h_{t} + b_{v}^{\pi} v_{t} + b_{x}^{\pi} x_{t} + b_{z}^{\pi} z_{t}$$

$$y_{t} = b_{h}^{y} h_{t} + b_{v}^{y} v_{t} + b_{x}^{y} x_{t} + b_{z}^{y} z_{t}$$

$$i_{t} = b_{h}^{i} h_{t} + b_{v}^{i} v_{t} + b_{x}^{i} x_{t} + b_{z}^{i} z_{t}$$

$$h_{t} = \rho h_{t-1} + u_{t} + v_{t-1}$$

Identification with Forecasts the Simple Example

Model solution is:

$$\pi_{t} = b_{h}^{\pi} h_{t} + b_{v}^{\pi} v_{t} + b_{x}^{\pi} x_{t} + b_{z}^{\pi} z_{t}$$

$$y_{t} = b_{h}^{y} h_{t} + b_{v}^{y} v_{t} + b_{x}^{y} x_{t} + b_{z}^{y} z_{t}$$

$$i_{t} = b_{h}^{i} h_{t} + b_{v}^{i} v_{t} + b_{x}^{i} x_{t} + b_{z}^{i} z_{t}$$

$$h_{t} = \rho h_{t-1} + u_{t} + v_{t-1}$$

• ... so inflation forecast is

$$f_t^{\pi} = \mathbb{E}_t[\pi_{t+1}]$$
$$= \mathbb{E}_t[b_h^{\pi} h_{t+1}] = b_h^{\pi} \rho h_t + b_h^{\pi} v_t$$

Identification with Forecasts the Simple Example

Model solution is:

$$\pi_{t} = b_{h}^{\pi} h_{t} + b_{v}^{\pi} v_{t} + b_{x}^{\pi} x_{t} + b_{z}^{\pi} z_{t}$$

$$y_{t} = b_{h}^{y} h_{t} + b_{v}^{y} v_{t} + b_{x}^{y} x_{t} + b_{z}^{y} z_{t}$$

$$i_{t} = b_{h}^{i} h_{t} + b_{v}^{i} v_{t} + b_{x}^{i} x_{t} + b_{z}^{i} z_{t}$$

$$h_{t} = \rho h_{t-1} + u_{t} + v_{t-1}$$

• ... so inflation forecast is

$$f_t^{\pi} = \mathbb{E}_t[\pi_{t+1}]$$

= $\mathbb{E}_t[b_h^{\pi}h_{t+1}] = b_h^{\pi}
ho h_t + b_h^{\pi}v_t$

• Using forecasts, we can separately identify surprise shocks $(u_t = h_t - \frac{1}{b_h^{\pi}} f_{t-1}^{\pi})$ from news shocks $(v_t = \rho h_t - \frac{1}{b_t^{\pi}} f_t^{\pi})!$

What's in the paper

- General Case with Multiple News Shocks
 - Set up
 - Identification: Conditions and implementation
 - Verification via Monte Carlo simulation
- Application to the US
 - Data
 - Constructing forecasts
 - Impulse responses and shock labeling
 - Shock validation
 - News versus surprise IRFs
 - Accounting for sources of macro fluctuations
- Counterfactual policies without a structural model
 - Impulse responses under active policies
 - Assessing the benefits of policy coordination
 - Impulse responses under passive policies

▶ Identification

► Shock Validation

▶ News vs. Surprise IRFs

IRFs: Stabilization policies

→ IRFs: Passive policies

General SVAR Representation

• $n \times 1$ vector x_t determined by lags, structural shocks ϵ_t , and news v_t :

$$x_t = \sum_{j=1}^m B_j x_{t-j} + A \epsilon_t + C v_t$$

• $n \times 1$ structural shocks have news and surprise components:

$$\epsilon_t = u_t + v_{t-1}$$

- Theorem 1: Equilibrium in a large class of models has this form
- ullet Normalize the orthogonal structural shocks $Var(\epsilon_t) = I$
- Assume news/surprise also orthogonal (i.e. ϵ_t dimensions are *independent*) so diagonal variances satisfy:

$$Var(u_t) = D_u^2$$
 $Var(v_t) = D_v^2$ $\Longrightarrow D_u^2 + D_v^2 = I$

General SVAR Identification

- Theorem 2: If we have unbiased forecasts f_t for all entries of x_t , we can identify A, C, D_u^2 , D_v^2 and $\{B_j\}_{j=1}^m$
- Intuition: rational forecasts imply "enough" restrictions

$$x_t = \sum_{j=1}^m B_j x_{t-j} + A \epsilon_t + C v_t$$

$$\implies f_t = \mathbb{E}_t[x_{t+1}] = \sum_{j=1}^m B_j x_{t+1-j} + Av_t$$

• Approach: stack and estimate a VAR for $\begin{pmatrix} f_t \\ x_t \end{pmatrix}$ with linear restrictions

▶ Identification

Application to Fiscal and Monetary Policy

- Quarterly US data from 1968:IV 2016:IV
- Baseline model with 6 time series and associated forecasts, deseasonalized and detrended
- Clean the forecasts using additional time series and forecasts, selecting variables by machine learning
- Lag length determined by AIC
- Bootstrapped standard errors

Forecast cleaning

Data

Variable	Date range	Forecast Source		
D # 6 # 17				
Baseline Specification				
Real GDP	1968:IV - 2022:II	SPF		
Federal tax receipts	1968:IV - 2016:IV	Fed Greenbooks		
Real government spending	1968:IV - 2022:II	Fed Greenbooks for 1968:IV - 1981:II		
		SPF for 1981:III - 2022:II		
GDP deflator	1968:IV - 2022:II	SPF		
3-month Treasury rate	1968:IV - 2022:II	Yield curve		
Housing starts	1968:IV - 2022:II	SPF		
Additional Variables				
Unemployment Rate	1968:IV - 2022:II	SPF		
Industrial production	1968:IV - 2022:II	SPF		
Federal budget surpluses	1968:IV - 2016:IV	Fed Greenbooks		
USD/CAD exchange rate	1968:IV - 2022:II	Futures contracts		
Real oil price	1983:I - 2022:II	Futures contracts		
1, 2, 3, 4, and 5-year Treasury rates	1968:IV - 2022:II	Yield curve		

Table 1: List of Variables

Shock Labeling

- SVARs require a scheme for labeling shocks
- We label based on responses to the surprise structural shocks u_t over the medium run. For example:
 - a "Fiscal Stimulus Shock" increases government spending, decreases taxes, and increases real activity.
 - a "Monetary Policy Shock" increases interest rates, decreases real activity and inflation
 - a "Demand Shock" increases interest rates, real activity and inflation.
 - a "Supply Shock" increases real activity, and decreases interest rates and inflation
- When bootstraping standard errors, we label shocks to minimize the error with our baseline estimates (satisfying Lewis (2021) theorem)

Structural Shock IRFs to 1 s.d. Surprise Shocks

Structural Shock IRFs Decomposed

Long-Run Variance Decomposition

Variable	Туре	Fiscal stimulus	Mon. policy	Demand	Supply	Unlabeled #1	Unlabeled #2	Total
Gov. spending	News	4.5	3.6	1.6	5.6	2.2	1.1	24.3
	Surprise	20.4	10.0	3.8	2.3	14.8	12.3	75.7
	Total	25.6	15.8	6.4	9.7	18.5	14.5	100.0
Output	News	7.0	2.2	3.7	4.3	2.1	2.3	26.3
	Surprise	8.0	6.7	19.5	23.9	4.6	4.3	73.7
	Total	15.9	9.9	24.4	28.3	8.3	7.7	100.0
Taxes	News	4.9	3.3	1.9	1.7	1.8	2.3	19.4
	Surprise	12.5	4.7	11.6	30.3	7.6	7.4	80.6
	Total	18.2	8.6	14.5	32.1	10.1	10.9	100.0
3-month interest rate	News	5.6	2.2	3.7	5.8	2.1	2.3	25.9
	Surprise	2.8	8.0	16.9	18.1	4.9	17.4	74.1
	Total	9.2	11.2	22.5	24.8	8.1	20.0	100.0
Housing starts	News	5.1	2.4	2.2	2.0	1.8	1.8	19.0
	Surprise	13.8	18.4	17.7	8.3	6.0	9.6	81.0
	Total	19.3	21.7	20.8	11.4	8.3	12.2	100.0
Inflation	News	4.1	1.9	4.3	17.0	1.5	2.9	37.8
	Surprise	5.2	4.0	12.6	21.9	2.4	7.0	62.2
	Total	10.0	7.4	19.6	40.4	4.8	11.8	100.0
Unweighted average	News	5.2	2.6	2.9	6.1	1.9	2.1	25.5
	Surprise	10.5	8.6	13.7	17.5	6.7	9.7	74.5
	Total	16.4	12.4	18.0	24.5	9.7	12.8	100.0

Policy Rule Counterfactuals: McKay and Wolf (2023) method

• Require identified IRFs to policy news/surprises

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models
 - Fails for Lucas (1972), many models with info frictions

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models
 - Fails for Lucas (1972), many models with info frictions
- Intuition:

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models
 - Fails for Lucas (1972), many models with info frictions
- Intuition:
 - Policymaker can choose how their policy shocks covary with other structural shocks

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models
 - Fails for Lucas (1972), many models with info frictions
- Intuition:
 - Policymaker can choose how their policy shocks covary with other structural shocks
 - In many models, IRFs do not depend on shock covariance

- Require identified IRFs to policy news/surprises
- Find the linear combination of policy news/surprise shocks such that a counterfactual policy rule holds (as closely as possibly) at all times
- Robust to the Lucas Critique if models only depend on policy rule through shock variance matrix
 - True for many DSGE and HANK models
 - Fails for Lucas (1972), many models with info frictions
- Intuition:
 - Policymaker can choose how their policy shocks covary with other structural shocks
 - In many models, IRFs do not depend on shock covariance
 - ... so choose counterfactual shock covariances!

Policy Counterfactuals: Tradeoffs and policy coordination

Target:	Inflation			Output			Dual Mandate		
Policy used	Fisc.	Mon.	Joint	Fisc.	Mon.	Joint	Fisc.	Mon.	Joint
Inflation	0.19	0.09	0.00	0.46	1.41	0.80	0.43	0.44	0.34
Output	1.03	1.45	1.56	0.30	0.33	0.01	0.56	0.58	0.37
Government spending	3.28	2.73	1.24	2.77	1.08	2.47	2.49	1.22	1.32
Taxes	4.56	2.22	3.06	5.15	2.09	3.91	6.02	1.43	1.72
3-month interest rate	1.22	0.84	2.02	1.06	1.15	2.12	1.69	0.82	0.43
Housing starts	1.85	1.09	1.09	0.92	1.06	0.89	0.80	0.68	0.25

Table 2: Variance relative to baseline

Conclusion

- Including forecasts in VARs can identify news and surprise components of structural shocks
- We estimate realistic effects of fiscal and monetary shocks in US data
- News is a notable driver of business cycles
- News/surprise identification is particularly useful for estimating policy counterfactuals
- More work to do!

Identification Proof

- ullet Constructive proof we derive an analytical estimator for A and C given Σ and B_1
- Assumptions: structural shocks have linearly independent effects, and each shock has a news component
- Simple to implement a few lines of matrix operations
- Only identified up to sign and column order (typical) when calculating, ambiguity is due to non-uniqueness of the singular value decomposition

▶ Back

▶ Derivation

Deriving the Estimator (1/2)

• Subdivide the matrix $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{21}' \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$ into $n \times n$ blocks:

$$\begin{pmatrix} \Sigma_{11} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} = \begin{pmatrix} (B_1C + A)D_v^2(B_1C + A)' + B_1AD_u^2A'B_1' \\ CD_v^2(B_1C + A)' + AD_u^2A'B_1' & CD_v^2C' + AD_u^2A' \end{pmatrix}$$

• Define the $n \times n$ matrices ϕ and ψ by

$$\phi \equiv \Sigma_{11} - B_1 \Sigma_{21} - \Sigma'_{21} B'_1 + B_1 \Sigma_{22} B'_1$$

$$= A D_v^2 A'$$

$$\psi \equiv \Sigma_{22} - (\Sigma_{21} - \Sigma_{22} B'_1) \phi^{-1} (\Sigma_{21} - \Sigma_{22} B'_1)'$$

$$= A D_u^2 A'$$

Deriving the Estimator (2/2)

• The variance restriction implies:

$$\phi + \psi = AA'$$

 \bullet SVD of $\phi+\psi$ gives unitary matrix U and diagonal matrix Λ^2 such that for some unitary V

$$\phi + \psi = U\Lambda^2 U' \qquad A = U\Lambda V'$$

• SVD of $\Lambda^{-1}U'\phi U\Lambda^{-1}$ gives the matrices V and D_{ν}^2 from

$$\Lambda^{-1}U'\phi U\Lambda^{-1} = V'D_v^2 V$$

• This gives the matrices $A = U \Lambda V'$ and $D_u^2 = I - D_v^2$. Then the final matrix C is found from

$$C = (\Sigma_{21} - \Sigma_{22}B_1')(D_v^2A')^{-1}$$

General SVAR: Include Forecasts

• $n \times 1$ vector of forecasts $f_t = \mathbb{E}\left[x_{t+1} | \{x_{t-j}\}_{j=0}^{m-1}, \epsilon_t, v_t\right]$:

$$f_t = \sum_{i=1}^{m} B_j x_{t+1-j} + A v_t$$

• Stack the expectations and time series into a single VAR(m-1):

$$\begin{pmatrix} f_t \\ x_t \end{pmatrix} = \sum_{j=1}^{m-1} \mathbf{B}_j \begin{pmatrix} f_{t-j} \\ x_{t-j} \end{pmatrix} + \mathbf{A} \begin{pmatrix} v_t \\ u_t \end{pmatrix}$$

• With matrices:

$$\mathbf{B}_{j} \equiv \left\{ egin{array}{ccc} B_{1} & B_{2} \\ I & 0 \\ 0 & B_{j+1} \\ 0 & 0 \end{array}
ight. & j=1 \\ A \equiv \left(egin{array}{ccc} B_{1}C + A & B_{1}A \\ C & A \end{array}
ight)$$

Identifying Restrictions

$$x_t = \sum_{j=1}^{m} B_j x_{t-j} + A \epsilon_t + C v_t$$

- B_i matrices identified from **B**_i matrices in stacked VAR
- A and C? Classic SVAR problem:
 - ullet Observe 2n imes 1 innovation $w_t = \mathbf{A} \left(egin{array}{c} v_t \ u_t \end{array}
 ight)$ with $Var(w_t) \equiv \Sigma$
 - $\Sigma = \mathbf{A} Var \begin{pmatrix} v_t \\ u_t \end{pmatrix} \mathbf{A}'$ is symmetric: only $2n^2 + n$ unique entries
 - $\mathbf{A} = \begin{pmatrix} B_1C + A & B_1A \\ C & A \end{pmatrix}$ has $2n^2$ unknowns (A and C)
 - Shock variances: $D_u^2 + D_v^2 = I$ adds 2n unknowns and n restrictions

Policy Rule Counterfactuals: Implementation (1/2)

• Policymaker controls shock g. Consider policy rules linear in other shocks:

$$\underbrace{\begin{bmatrix} u_t^g \\ v_t^g \end{bmatrix}}_{\text{policy shocks}} = \underbrace{\begin{matrix} \text{to be found} \\ \alpha \end{matrix}}_{\text{to be found}} \underbrace{\begin{bmatrix} u_t^{-g} \\ v_t^{-g} \end{bmatrix}}_{\text{other shocks}}$$

Policy Rule Counterfactuals: Implementation (1/2)

Policymaker controls shock g. Consider policy rules linear in other shocks:

$$\underbrace{ \begin{bmatrix} u_t^g \\ v_t^g \end{bmatrix}}_{\text{policy shocks}} = \underbrace{ \begin{matrix} \text{to be found} \\ \alpha \end{matrix}}_{\text{to be found}} \underbrace{ \begin{bmatrix} u_t^{-g} \\ v_t^{-g} \end{bmatrix}}_{\text{other shocks}}$$

• The counterfactual impulse responses to other shocks $\psi_u(h)$ and $\psi_v(h)$ are:

$$\left[\begin{array}{cc} \psi_u(h) & \psi_v(h) \end{array}\right] = \left[\begin{array}{cc} \phi_u^{-g}(h) & \phi_v^{-g}(h) \end{array}\right] + \left[\begin{array}{cc} \phi_u^{g}(h) & \phi_v^{g}(h) \end{array}\right] \alpha$$

Policy Rule Counterfactuals: Implementation (2/2)

• To estimate the counterfactual, find α to minimize some loss function for a matrix F:

 $\min ||Fx_t||$

Policy Rule Counterfactuals: Implementation (2/2)

ullet To estimate the counterfactual, find lpha to minimize some loss function for a matrix ${\it F}$:

$$\min ||Fx_t||$$

• F may encode a policy objective (e.g. output stabilization) or a specific policy rule (e.g. a Taylor rule)

Policy Rule Counterfactuals: Implementation (2/2)

• To estimate the counterfactual, find α to minimize some loss function for a matrix F:

$$min ||Fx_t||$$

- F may encode a policy objective (e.g. output stabilization) or a specific policy rule (e.g. a Taylor rule)
- Choose α to minimize the loss measured in IRFs over all h's:

$$\min \left| \left| F \left[\psi_u(h) \ \psi_v(h) \right] \right| \right| = \min \left| \left| F \left[\phi_u^{-g}(h) \ \phi_v^{-g}(h) \right] + F \left[\phi_u^{g}(h) \ \phi_v^{g}(h) \right] \alpha \right| \right|$$

• Identification requires f_t to be unbiased in sample

- \bullet Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data

- Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data
 - Forecasters have behavioral biases

- Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data
 - Forecasters have behavioral biases
 - Even if perfectly rational, sample size is small enough that correlation will not be exactly zero

- Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data
 - Forecasters have behavioral biases
 - Even if perfectly rational, sample size is small enough that correlation will not be exactly zero
- Therefore we must *clean* the forecasts

- Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data
 - Forecasters have behavioral biases
 - Even if perfectly rational, sample size is small enough that correlation will not be exactly zero
- Therefore we must *clean* the forecasts
 - Constructing an in-sample rational expectation

- Identification requires f_t to be unbiased in sample
- Large literature documents that this fails in raw forecast data
 - Forecasters have behavioral biases
 - Even if perfectly rational, sample size is small enough that correlation will not be exactly zero
- Therefore we must *clean* the forecasts
 - Constructing an in-sample rational expectation
 - Removes biases and small sample correlations

▶ Back

• To construct the rational expectation f_t from empirical expectations \tilde{f}_t , run the VAR(k) with $k \geq m$:

$$\begin{pmatrix} \tilde{f}_t \\ z_t \\ x_t \end{pmatrix} = \sum_{j=1}^k \mathbf{G}_j \begin{pmatrix} \tilde{f}_{t-j} \\ z_{t-j} \\ x_{t-j} \end{pmatrix} + v_t$$

• To construct the rational expectation f_t from empirical expectations \tilde{f}_t , run the VAR(k) with $k \geq m$:

$$\begin{pmatrix} \tilde{f}_t \\ z_t \\ x_t \end{pmatrix} = \sum_{j=1}^k \mathbf{G}_j \begin{pmatrix} \tilde{f}_{t-j} \\ z_{t-j} \\ x_{t-j} \end{pmatrix} + \upsilon_t$$

• Let $G_{x,j}$ denote the final n rows of G_j :

$$f_t = \sum_{j=1}^k \mathbf{G}_{x,j} \begin{pmatrix} \tilde{f}_{t+1-j} \\ z_{t+1-j} \\ x_{t+1-j} \end{pmatrix}$$

• To construct the rational expectation f_t from empirical expectations \tilde{f}_t , run the VAR(k) with $k \geq m$:

$$\begin{pmatrix} \tilde{f}_t \\ z_t \\ x_t \end{pmatrix} = \sum_{j=1}^k \mathbf{G}_j \begin{pmatrix} \tilde{f}_{t-j} \\ z_{t-j} \\ x_{t-j} \end{pmatrix} + \upsilon_t$$

• Let $G_{x,j}$ denote the final n rows of G_j :

$$f_t = \sum_{j=1}^k \mathbf{G}_{\mathsf{x},j} \left(egin{array}{c} ilde{f}_{t+1-j} \ z_{t+1-j} \ x_{t+1-j} \end{array}
ight)$$

• Cleaned forecast f_t is best linear forecast of x_{t+1} given \tilde{f}_t , x_t , and other regressors z_t . Baseline: Construct z_t as a machine-learning predictor for x_t using a large set of other variables (include lots of information without over-fitting).

• Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks
 - Compare the *cumulative output multipliers* to values from the literature

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks
 - Compare the *cumulative output multipliers* to values from the literature
 - The stimulus shock conflates the spending multiplier ($\approx 1-1.5$ over 20Q) with the tax multiplier ($\approx 2-3$):

$$\mu_G^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta G_{t+s}} \qquad \qquad \mu_T^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta T_{t+s}}$$

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks
 - Compare the *cumulative output multipliers* to values from the literature
 - The stimulus shock conflates the spending multiplier ($\approx 1-1.5$ over 20Q) with the tax multiplier ($\approx 2-3$):

$$\mu_G^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta G_{t+s}} \qquad \qquad \mu_T^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta T_{t+s}}$$

Monetary policy shocks

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks
 - Compare the *cumulative output multipliers* to values from the literature
 - The stimulus shock conflates the spending multiplier ($\approx 1-1.5$ over 20Q) with the tax multiplier ($\approx 2-3$):

$$\mu_G^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta G_{t+s}} \qquad \qquad \mu_T^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta T_{t+s}}$$

- Monetary policy shocks
 - Compare with shocks from the literature

Validating the Policy Shocks

- Are the shocks that we label "fiscal stimulus" and "monetary policy" realistic?
- Fiscal stimulus shocks
 - Compare the *cumulative output multipliers* to values from the literature
 - The stimulus shock conflates the spending multiplier ($\approx 1-1.5$ over 20Q) with the tax multiplier ($\approx 2-3$):

$$\mu_G^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta G_{t+s}} \qquad \qquad \mu_T^h = \frac{\sum_{s=0}^h \mathbb{E}_t \Delta Y_{t+s}}{\sum_{s=0}^h \mathbb{E}_t \Delta T_{t+s}}$$

- Monetary policy shocks
 - Compare with shocks from the literature
- Appear reasonable, and robust to alternative specifications

Fiscal Stimulus Cumulative Multipliers

Monetary Policy IRFs

Estimating x_t ARMA(1,1)
 IRF without forecasts

- Estimating x_t ARMA(1,1) IRF without forecasts
- ... does not recover true (average) IRF to ϵ_t shock

- Estimating x_t ARMA(1,1)
 IRF without forecasts
- ... does not recover true (average) IRF to ϵ_t shock
- Including forecasts identifies news and surprise IRFs independently

- Estimating x_t ARMA(1,1) IRF without forecasts
- ... does not recover true (average) IRF to ϵ_t shock
- Including forecasts identifies news and surprise IRFs independently
- ullet ... linear combination recovers the ϵ_t IRF

Baseline Series and Forecasts

 News shock is scaled to be as if a unit SD surprise is expected in period 1.

- News shock is scaled to be as if a unit SD surprise is expected in period 1.
- In the long run, responses look similar (sense check)

- News shock is scaled to be as if a unit SD surprise is expected in period 1.
- In the long run, responses look similar (sense check)
- Anticipation effects are non-negligible

- News shock is scaled to be as if a unit SD surprise is expected in period 1.
- In the long run, responses look similar (sense check)
- Anticipation effects are non-negligible
 - Anticipated fiscal expansion (partly) pre-funded by taxes.

- News shock is scaled to be as if a unit SD surprise is expected in period 1.
- In the long run, responses look similar (sense check)
- Anticipation effects are non-negligible
 - Anticipated fiscal expansion (partly) pre-funded by taxes.
 - Monetary policy: no liquidity effect.

Monetary Policy Counterfactual: Business cycle stabilization

- Minimize one of three quadratic objective functions: weight on either inflation, output, or equally on both.
- Single objectives successfully implemented (not pre-baked).
- Demand surprises: raise rates to stabilize both output and inflation. (Demand news is tiny)
- Supply shocks: Cut (raise) interest rates to stabilize inflation (output).

Passive Policy Counterfactual

- What if government spending was acyclical?
- Much harder to implement.
- Substantially more output volatility Inflation depends on the nature of the shock
- Current government spending behavior moderates business cycles?

