

SN8P2604

由苏州艾思科技制作, 电话: 0512-62526163

SONiX 8 位单片机

SONIX 单片机应用推广中心忠心《苏州艾思科技》为您服务电话0512-62526163 传真: 0512-62522569 网址http://www.58ic.com

SONIX 公司保留对以下所有产品在可靠性、功能和设计方面的改进做进一步说明的权利。SONIX 不承担由本手册所涉及的产品或电路的运用和使用所引起的任何责任。SONIX 的产品不是专门设计应用于外科植入、生命维持和任何 SONIX 产品的故障会对个体造成伤害甚至死亡的领域。如果将 SONIX 的产品应用于上述领域,即使这些是由 SONIX 在产品设计和制造上的疏忽引起的,用户也应赔偿所有费用、损失、合理的人身伤害或死亡所直接或间接产生的律师费用,并且用户保证 SONIX 及其雇员、子公司、分支机构和销售商与上述事宜无关。

修改记录

版本	日期	说明
VER 0.1	2004年1月	第一版
VER 0.2	2004年3月	第二版

月 录

1	产品简介		5
		特性	
		系统时钟框图	
		引脚配置	
	-		
		引脚说明	
		引脚电路图	
2	中央处理器	(CPU)	9
	2.1 内存		9
	2.1.1 程序	亨存储器(ROM)	9
	2.1.1.1	复位向量地址(0000 H)	
	2.1.1.2	中断向量地址(0008H)	
	2.1.1.3	CHECKSUM 计算	
	2.1.1.4	查表功能说明	
	2.1.1.5	跳转表功能	
		译选项表(Code Option)	
		:据存储器(RAM)	
		·统寄存器	
	2.1.4.1	系统寄存器列表	
	2.1.4.2	系统寄存器的位地址配置表	
	2.1.4.3	H, L 寄存器	
	2.1.4.4	Y, Z 寄存器	
	2.1.4.5	R 寄存器	
		加器(ACC)	
		!序状态字(PGLAG)	
	2.1.7 程	!序计数器(PC)	21
		单地址跳转	
	2.1.7.2	多地址跳转	22
	2.2 寻址模式	.†	23
		. 即寻址	
		-	
		接寻址	
		1及 1 社	
		[述	
		栈指针寄存器	
		栈操作举例	
3	复位		27
	3.1 概述		27
	3.2 外部复	位	28
4		-XM(=+=)	
-40	731420113 11		
	,,,,,		
		图	
		寄存器	
	4.4 系统高	速时钟	31
	4.4.1 外音	邹高速时钟	31
	4.4.1.1	晶体振荡电路	31
	4.4.1.2	RC 振荡电路	31
	4.4.1.3	外部时钟输入	
		频率测试	
		,速时钟	
F			
5	747041-11 04	武	
	—		
	5.2 普通模	式	33
	5.3 低速模	式	33
		式	
		ス 式	
		式	
	3.0 永筑快	- 八江	34

	5.6.1	系统模式转换	35
	5.7	唤醒时间	36
	5.7.1	概述	36
	5.7.2	唤醒时间	36
	5.7.3	P1W 唤醒功能控制寄存器	36
6	中断.		37
	6.1	概述	37
	6.2 I	INTEN 中断使能寄存器	37
	6.3 I	INTRQ 中断请求寄存器	38
		中断操作举例	
	6.4.1	GIE 总中断操作	
	6.4.2	INTO (P0.0)中断操作	
	6.4.3	INT1 (P0.1) 中断操作	
	6.4.4	T0 中断操作	
	6.4.5	TC1 中断操作	42
	6.4.6	多个中断操作	43
7	I/O 峁	하다	44
	7.1 I	I/O 端口模式	44
	7.2 I	I/O 上拉电阻寄存器	45
		I/O 漏极开路寄存器	
		I/O 口数据寄存器	
8		## ## ## ## ## ## ## ## ## ## ## ## ##	
		 看门狗定时器	
		基本定时器(T0)	
	8.2.1		
	8.2.2	TOM 模式寄存器	
	8.2.3	TOC 计数寄存器	
		定时/计数器(TC1)	
	8.3.1	概述	
	8.3.2	TC1M 模式寄存器	
	8.3.3	TC1C 计数寄存器	
	8.3.4	TC1C 溢出时间	
	8.3.5	TC1R 自动装载寄存器	
	8.3.6	TC1 操作流程	
	8.3.7	TC1 时钟频率输出(BUZZER 输出)	53
	8.	3.7.1 TC1OUT 频率表	
	8.4 F	PWM 功能说明	56
	8.4.1	概述	56
	8.4.2	PWM 程序说明	57
9	指令	表	58
10	电气/	特性	59
	10.1		
	10.2	电气特性	59
11	-		
	11.1	SK-DIP 28 PIN	
	11.2	SOP 28 PIN.	
	11 3	SSOP 20 PIN	62

1 产品简介

1.1 特性

◆ 存储器配置 OTP ROM: 4K * 16 bits. RAM: 128 * 8 bits.

◆ 8 层堆栈缓存器

◆ I/O 引脚配置

双向输入输出: P0, P1, P2, P5 具有唤醒功能的引脚: P0, P1 的电平变换 内部上拉电阻: P0, P1, P2, P5 外部中断: P0.0 由 PEDGE 控制, P0.1 由下降沿触发。 漏极开路引脚: P1.0, P1.1

◆ 功能强大的指令集

指令周期由编译选项控制 指令的长度为一个字长 大多数指令的执行时间均为一个指令周期 最长指令周期是 2 个时钟周期 JMP 指令可在整个 ROM 区执行 CALL 指令可在 ROM 区的任何地址调用 查表功能(MOVC)可寻址整个 ROM 区

◆ 4个中断源

2个内部中断源: T0, TC1. 2个外部中断源: INT0, INT1.

◆ 1 个 PWM 输出通道(PWM1)

- ◆ 1 个 Buzzer 输出通道(BZ1)
- 2 个 8 位定时计数器(T0, TC1).
- ◆ 内置看门狗定时器

◆ 3 种系统时钟

外部高速时钟: RC,最大 10 MHz 外部高速时钟: 晶体,最大 16 MHz 内部低速时钟: RC, 16KHz(3V), 32KHz(5V)

◆ 4种操作模式

普通模式: 高低速时钟同时运行 低速模式: 仅低速时钟运行 睡眠模式: 高低速时钟均停止 绿色模式: 由定时器 T0 周期性唤醒

◆ 封装(支持的芯片格式)

SK-DIP 28 SOP 28 SSOP 28

特性比较表

芯片型号	ROM	РΛМ	推糕	定时器		I/O	绿色模式	PWM	唤醒功能引脚	封装		
心川至す	IXOIVI	IVAIVI	华汉	T0	TC1	"	冰口快八	Buzzer	大胜为形门网	当 农		
SN8P1604A	4K*16	128	8		٧	22	-	٧	10	SK-DIP28/SOP28		
SN8P2604	4K*16	128	8	>	V	24	V	V	11	SK-DIP28/SOP28/SSOP28		

☞ SN8P1604A 升级到 SN8P2604

项目	SN8P2604	SN8P1604A
AC 抗干扰能力	很好(添加了1个47uF的旁路电容)	一般
运算能力(16Mhz Crystal)	最大 16 MIPS	最大 4 MIPS
高速 PWM	PWM 占空比的范围为: 0~255, 0~64, 0~32, 0~16. 例: 采用 4MHz 晶体: TCOCKS = 0 时,最大 125K TCOCKS = 1 时,最大 250K	PWM 占空比的范围是 0~255.
定时器	T0/TC1	TC1
I/O 引脚的数目	24 (P0.2)	22
可编程漏极开路输出	P1.0/P1.1	-
内置上拉电阻	PnUR	PUR
绿色模式	有	-
P0.0 中断和唤醒功能触发沿	下降/上升沿/双向	下降/上升沿/双向
P1 唤醒功能	变换电平	变换电平
唤醒时间	1/Fosc * 2048 (sec) + X'tal 固定时间	1/Fosc * 1024 (sec) + X'tal 固定时间
看门狗定时器时钟源	仅内部低速 RC 时钟	内部低速 RC 时钟和外部高速时钟
看门狗清零	MOV A, #0x5A B0MOV WDTR, A	B0BSET FWDRST
标准电流	1uA/5V	10uA/5V
LVD	1.8V,一直处于使能状态	1.8V, 一直处于使能状态

1.2 系统时钟框图

SN8P2604

1.3 引脚配置

SN8P2604K (SK-DIP 28 pins) SN8P2604S (SOP 28 pins) SN8P2604X (SSOP 28 pins)

P0.1/INT1	1	U	28	RST/VPP/P0.2
VDD	2		27	XIN
P5.4	3		26	XOUT/Fcpu
VSS	4		25	P2.7
P0.0/INT0	5		24	P2.6
P5.0	6		23	P2.5
P5.1	7		22	P2.4
P5.2	8		21	P2.3
P5.3/BZ1/PWM1	9		20	P2.2
P1.0	10		19	P2.1
P1.1	11		18	P2.0
P1.2	12		17	P1.7
P1.3	13		16	P1.6
P1.4	14		15	P1.5
•	SN	8P260)4K	•
	SN	8P260)4S	
	SN	8P260)4X	

1.4 引脚说明

引脚名称	类型	说明
VDD, VSS	Р	数字电路的电源输入引脚
P0.2/RST/VPP	I, P	P0.2: 禁止外部复位功能时为单向输入引脚(施密特结构)/无内置上拉电阻。 RST: 系统复位输入引脚,施密特结构,低电平触发,通常保持高电平。 VPP: OTP ROM 编程引脚。
XIN		选择外部振荡器(晶体或 RC)时为振荡器输入引脚。
XOUT/Fcpu	I/O	XOUT:选择外部晶体振荡器时为振荡器输出引脚 Fcpu:使能外部 RC 模式时为信号输出引脚。
P0.0/INT0	I/O	P0.0: 双向输入输出引脚,施密特结构(输入模式下)。内置上拉电阻。 INTO 触发引脚(施密特结构)
P0.1/INT1	I/O	P0.1: 双向输入输出引脚,施密特结构(输入模式下)。内置上拉电阻。 INT1 触发引脚(施密特结构) TC1 事件计数器时钟输入引脚。
P1.0~P1.1	I/O	P1.0, P1.1: 双向输入输出引脚/漏极开路引脚/施密特结构(输入模式下)/内置上拉电阻。
P1.2~P1.7	I/O	P1.2~P1.7:双向输入输出引脚/施密特结构(输入模式下)/内置上拉电阻。
P2.0~P2.7	I/O	双向输入输出引脚/施密特结构(输入模式下)/内置上拉电阻。
P5.0~P5.2, P5.4	I/O	P5: 双向输入输出引脚/施密特结构(输入模式下)/内置上拉电阻。
P5.3/BZ1/PWM1	I/O	P5.3:双向输入输出引脚/施密特结构(输入模式下)/内置上拉电阻。 TC1 /2: Buzzer 或 PWM 信号输出引脚。

1.5 引脚电路图

Port 0, 1, 2, 5 structure:

Port 1.0, P1.1 structure:

Port 0.2 structure:

2 中央处理器(CPU)

2.1 内存

2.1.1 程序存储器(ROM)

4K words ROM

	ROM	
0000H	复位向量	程序开始
0001H 0002H 0003H	通用存储区	跳转到用户程序 跳转到用户程序 跳转到用户程序
0004H 0005H 0006H 0007H	保留区	
H8000	中断向量	中断入口地址
0009H : 000FH 0010H 0011H : :	通用存储区	用户程序区
0FFBH		程序结束
OFFCH OFFDH OFFEH OFFFH	保留区	

2.1.1.1 复位向量地址(0000H)

上电复位或看门狗溢出复位后,系统从地址 0000H 开始重新执行程序,所有的系统寄存器恢复为默认值。下面的例子给出了如何在程序存储器里定义复位向量。

○ 例:	定义复位向量 ORG JMP	0 START	; 0000H ; <i>跳转到用户程序区</i> ; 0004H~0007H 保留
START:	ORG	10H	; 0010H,<i>用户程序的起始位置</i> ; 用户程序
	ENDP		,程序结束

2.1.1.2 中断向量地址(0008H)

一旦有中断响应,程序计数器 (PC)的值就会存入堆栈缓冲器中并跳转至 0008H 处执行中断服务程序。用户使用时必须自行定义中断向量。下面的例子给出了如何在程序中定义中断向量。

☀ 注:"PUSH","POP"保存和恢复 ACC 和 PFLAG 寄存器的值(PFLAG 的复位标志 NT0 和 NPD 除外)。

⇒ 例:定义中断向量,中断服务程序位于 ORG 8 之后。

.CODE

ORG 0 ; 0000H

JMP START ; 跳转到用户程序

; 0004H~0007H保留

ORG 8 ;中断服务程序

PUSH ; 保存 ACC 和 PFLAG

POP : 恢复 ACC 和 PFLAG

RETI ; 中断返回

START: ; 用户程序起始地址

;用户程序

JMP START ; 用户程序结束

ENDP ;程序结束

⇒ 例: 定义中断向量,中断服务程序位于主程序之后。

.DATA ACCBUF DS 1 ; ACCBUF 用来保存 ACC 的值

.CODE

ORG 0 ; 0000H

JMP START ; 跳转到用户程序

; 0001H~0007H 保留

ORG 08

JMP MY_IRQ ; 0008H, 跳转到中断服务程序

ORG 10H

START: ; 0010H, 用户程序起始地址

: 用户程序

JMP START ; 用户程序结束

MY_IRQ: ; 中断服务程序的起始地址

PUSH ; 保存 ACC 和 PFLAG

POP : 保存 ACC 和 PFLAG

RETI : 中断返回

ENDP ;程序结束

- * 注:从上面的程序中很容易地得知 SONIX 的主要编程规则,有以下几点:
 - 1. 地址 0000H 处的"JMP"指令使程序从头开始执行。
 - 2. 0004H~0007H 是系统保留区,不允许用户使用。我们强烈建议用户在对 ROM 区作 Checksum 计算时 跳过跳过此区域。详见 Checksum 计算章节。

2.1.1.3 CHECKSUM 计算

ROM 中的 0004H~0007H 和最后的一个地址是系统保留区,用户应该在计算 Checksum 时跳过这一区域。

⋑ 例:下面的程序给出了在计算 Checksum 时如何跳过保留区。

MOV A,#END_USER_CODE\$L

BOMOV END_ADDR1,A ; 保存地址的低字节

MOV A,#END_USER_CODE\$M

B0MOV END_ADDR2,A ; 保存地址的高字节

 CLR
 Y
 ; 清 Y 寄存器

 CLR
 Z
 ; 清 Z 寄存器

@@:

CALL YZ_CHECK ; 调用函数,判断是否到 0004H 保留区

MOVC

B0BSET FC ; ADD DATA1,A ; MOV A,R

ADC DATA2,A

JMP END_CHECK ; 跳转到判断代码结束的函数

AAA:

INCMS Z; Z=Z+1

JMP @B JMP Y_ADD_1

END_CHECK:

MOV A,END_ADDR1

CMPRS A,Z ; 判断是否计算到代码结束位置

JMP AAA

MOV A,END_ADDR2

CMPRS A,Y

JMP AAA ; 不是则继续计算 JMP CHECKSUM_END ; 是则结束计算

YZ CHECK:

; 检查是否到 0004H 位置

不是 0004H 则返回继续计算

MOV A,#04H CMPRS A,Z

RET ;

MOV A,#00H CMPRS A,Y

RET A,Y

INCMS Z
INCMS Z
INCMS Z

INCMS Z

RET

ET .

Y_ADD_1:

INCMS Y ; 递增Y,继续计算

NOP

JMP @B

CHECKSUM_END:

.....

END_USER_CODE: ;

2.1.1.4 查表功能说明

在 ROM 的查表功能程序中, Y 寄存器指向地址的高 8 位(第 8~15 位),Z 寄存器指向低 8 位(第 0~7 位)地址,执行 MOVC 指令后,数据的低字节存入累加器 ACC 中,而数据的高字节存入 R 寄存器中。

● 例: 查找位于 "table1"的 ROM 数据.

B0MOV Y, #TABLE1\$M ; 取得表格地址高字节 B0MOV Z, #TABLE1\$L : 取得表格地址低字节

MOVC ; 查表, R = 00H, ACC = 35H

;索引地址加1

INCMS Z ; Z+1 JMP @F ; 无进位

INCMS Y ; Z 溢出(FFH → 00), → Y=Y+1

NOP

TABLE1: DW 0035H ; 定义表格数据

DW 5105H ; " DW 2012H ; "

* 注: 当 Z 寄存器从 0XFFH 增至 0X00H 跨越页边界时,Y 寄存器不会自动增加。所以,用户必须非常小心处理 这种情况,避免查表错误。如果 Z 寄存器发生溢出,Y 寄存器必须增 1。下面给出的宏指令 INC_YZ 提供了解 决此问题的方法。

● 例: 宏指令 INC_YZ

INC_YZ MACRO

INCMS Z ; Z+1 JMP @F ; Z 无溢出

INCMS Y ; Y+1 NOP ; Y 无溢出

@@:

ENDM

另一种编译风格的查表是通过累加器来增加间接寄存器 Y 和 Z, 但要注意是否有进位发生。

⋑ 例: 执行指令 B0ADD/ADD 増加 Y、Z

B0MOV Y, #TABLE1\$M ; 取得查表地址高字节 B0MOV Z, #TABLE1\$L ; 取得查表地址低字节

B0MOV A, BUF ; Z = Z + BUF. B0ADD Z, A

B0BTS1 FC ; 检查进位标志 C

JMP GETDATA ; FC = 0
INCMS Y ; FC = 1. Y+1.

NOP

;若 BUF = 1,结果是 0x5105 ;若 BUF = 2,结果是 0x2012

TABLE1: DW 0035H ; 定义一个 Word 的表格数据

DW 5105H ; "
DW 2012H : "

2.1.1.5 跳转表功能

跳转表操作可以完成多个地址跳转功能,将程序计数器的低字节 PCL 与累加器 ACC 相加从而得到一个指向新的跳转地址的程序计数器值,这种方法可以方便多个任务的处理。

⇒ 例:跳转表

 ORG
 0X0100
 ; 跳转表最好放在 ROM 的边界位置

 B0ADD
 PCL, A
 ; PCL = PCL + ACC, 但 PCH 不会改变.

 JMP
 A0POINT
 ; ACC = 0, 跳转到 A0POINT

 JMP
 A1POINT
 ; ACC = 1, 跳转到 A1POINT

 JMP
 A2POINT
 ; ACC = 2, 跳转到 A2POINT

 JMP
 A3POINT
 ; ACC = 3, 跳转到 A3POINT

SONIX 提供了一条宏指令以保证安全的跳转表操作,这条宏指令会检查 ROM 的边界,并自动将跳转表移动到正确的位置。但宏指令会占用 ROM 的存储空间。

@JMP A MACRO VAL

IF ((\$+1)!& 0XFF00)!!= ((\$+(VAL))!& 0XFF00)

JMP (\$ | 0XFF) ORG (\$ | 0XFF)

ENDIF

ADD PCL, A

ENDM

* 注: "VAL"为跳转表的个数。

⇒ 例: "@JMP_A" 在 SONIX 的宏文件中称为"MACRO3.H".

B0MOV A, BUF0 ; "BUF0"的值为 0-4. @JMP_A ;要跳转的总的地址数是5. **A0POINT JMP** ; ACC = 0, 跳转到 A0POINT A1POINT **JMP** ; ACC = 1, 跳转到 A1POINT **JMP** A2POINT ; ACC = 2, 跳转到 A2POINT A3POINT **JMP** ; ACC = 3, 跳转到 A3POINT **JMP** A4POINT ; ACC = 4, 跳转到 A4POINT

如果跳转表格的位置是从 00FDH 到 0101H, 那么宏指令"@JMP_A"将使跳转表格从 0100h 开始

2.1.2 编译选项表(Code Option)

编译选项	内容	功能说明
	RC	外部振荡器采用廉价 RC 振荡电路,XOUT 成为普通 I/O 口(P1.2)
High_Clk	32K X'tal	外部振荡器采用低功耗振荡器(如 32.768KHz)
Tilgii_Cik	12M X'tal	外部振荡器采用高频晶体振荡器(如 12MHz)
	4M X'tal	外部振荡器采用一般晶体振荡器(如 4MHz)
	Always_On	看门狗定时器在省电模式和绿色模式下仍然处于使能状态。
Watch_Dog	Enable	使能看门狗定时器功能,看门狗定时器在省电模式和绿色模式下被禁止。
	Disable	禁止看门狗定时器功能
	Fosc/1	指令周期为 1 个振荡器时钟。
Fcpu	Fosc/2	指令周期为2个振荡器时钟。
Гори	Fosc/4	指令周期为4个振荡器时钟。
	Fosc/8	指令周期为8个振荡器时钟。
Reset_Pin	Reset	使能外部复位引脚功能
Keset_Fiii	P02	P0.2 作为单向输入端,没有上拉电阻
Security	Enable	代码加密
Security	Disable	禁止代码加密
Noise_Filter	Enable	使能噪音滤除功能,Fcpu=Fosc/4~Fosc/8.
NOISE_I III.EI	Disable	禁止噪音滤除功能,Fcpu=Fosc/1~Fosc/8.

* 注:

- 1.在高干扰环境下,强烈建议使能"Noise Filter"选项,并使看门狗选择"Always_On"选项。使能
- "Noise_Filter"后就会限制 Fcpu = Fosc/4 ~ Fosc/8.
- 2.如果用户选择看门狗为"Always_On",编译器会自动使能看门狗功能。
- 3.Fcpu 编译选项仅在高速时钟下有效。低速时钟下,Fcpu=Fosc/4(Fosc 为内部低速时钟)。

2.1.3 数据存储器(RAM)

	Address	RAM]
	000h " " " 07Fh	通用寄存器区	
BANK 0	080h " " "	系统寄存器区	Bank 0 的 80h~FFh 是系统寄存器区 共 128 bytes.
	0FFh	BANK 0 结束区	

2.1.4 系统寄存器

2.1.4.1 系统寄存器列表

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
8	L	Н	R	Z	Υ	-	PFLAG	-	-	-	-	-	-	-	-	-
9	-	ı	ı	-	-	1	-	-	-	-	-	ı	ı	ı	1	-
Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
В	-	-	-	-	-	-	-	-	P0M	-	-	-	-	-	-	PEDGE
С	P1W	P1M	P2M	-	-	P5M	-	-	INTRQ	INTEN	OSCM	-	WDTR	TC1R	PCL	PCH
D	P0	P1	P2	-	1	P5	-	-	TOM	T0C	-	ı	TC1M	TC1C	TC1R	STKP
Ε	P0UR	P1UR	P2UR	-	-	P5UR	@HL	@YZ	-	P10C	-	-	1	-	-	-
F	STK7L	STK7H	STK6L	STK6H	STK5L	STK5H	STK4L	STK4H	STK3L	STK3H	STK2L	STK2H	STK1L	STK1H	STK0L	STK0H

说明:

PFLAG = ROM 页和特殊标志寄存器

H, L = 工作寄存器,@HL和ROM寻址寄存器

P1W = P1 口唤醒功能寄存器

PnM = Pn 口输入/输出模式控制寄存器

P1OC = P1 口开漏控制寄存器

INTRQ = 中断请求寄存器

OSCM = 振荡模式寄存器

TOM = TO 模式寄存器

TC1M = TC1 模式寄存器

TC1R = TC1 自动装载数据缓存器

STKP = 堆栈指针

@YZ = 间接寻址寄存器

R = 工作寄存器和 ROM 查表数据缓存器

Y, Z = 工作寄存器, @YZ 和 ROM 寻址寄存器

PEDGE = P0.0 模式控制寄存器

Pn = Pn 口数据缓存器

PnUR = Pn 口上拉电阻控制寄存器

INTEN = 中断使能寄存器

PCH, PCL = 程序计数器

TOC = TO 计数寄存器

TC1C = TC1 计数寄存器

WDTR = 看门狗清零寄存器

STK0~STK7 = 堆栈

@HL = 间接寻址寄存器

2.1.4.2 系统寄存器的位地址配置表

## ## ## ## ## ## ## #		7411767	4 11 HH H 1		<u> </u>						
081H HBIT7 HBIT6 HBIT5 HBIT4 HBIT3 HBIT2 HBIT1 HBIT0 RW R 083H ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 RW R 083H ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 RW Y 084H VBIT7 YBIT6 YBIT5 YBIT4 YBIT3 YBIT2 YBIT1 YBIT0 RW Y 084H NTO NPD	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	R/W	备注
081H HBIT7 HBIT6 HBIT5 HBIT4 HBIT3 HBIT2 HBIT1 HBIT0 RW R 083H ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 RW R 083H ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 RW Y 084H VBIT7 YBIT6 YBIT5 YBIT4 YBIT3 YBIT2 YBIT1 YBIT0 RW Y 084H NTO NPD	080H	LBIT7	LBIT6	LBIT5	LBIT4	LBIT3	LBIT2	LBIT1	LBIT0	R/W	L
082H BBIT7 RBIT6 RBIT5 RBIT4 RBIT3 RBIT2 RBIT1 RBIT0 RW Z	081H				HBIT4	HBIT3		HBIT1	HBIT0	R/W	Н
OBSH ZBIT7 ZBIT6 ZBIT5 ZBIT4 ZBIT3 ZBIT2 ZBIT1 ZBIT0 RW Y Y OB6H NTO NPD NPD	082H								RBIT0		
OBSH							ZBIT2			R/W	
Debt	084H	YBIT7	YBIT6	YBIT5			YBIT2	YBIT1	YBIT0	R/W	
Debt							С			R/W	PFLAG
CCH									P00M		
CCH	0BFH				P00G1	P00G0				R/W	PEDGE
CC1H		P17W	P16W	P15W			P12W	P11W	P10W		
OC2H P27M P26M P25M P23M P22M P21M P50M RW P9M OC8H TC1IRQ T0IRQ P63M P63M P63M P61M P60M RW P6M OC8H TC1IRQ T0IRQ P01IRQ P00IRQ RW INTRQ OC8H TC1IRQ T0IRQ P01IRQ P01IRQ P00IRQ RW INTRQ OC6H WDTR7 WDTR6 WDTR8 WDTR4 WDTR3 WDTR1 WDTR0 W DTR1 WDTR1 WDTR0 WDTR1 WDTR2 PDC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC2 PC1 PC2 PC1 PC2 PC2 PC1 PC2 PC2 PC1 PC2 PC2 PC2											
Desh											
OCSH							P52M			R/W	
OCSH			TC1IRQ		T0IRQ					R/W	
OCCH										R/W	
OCCH	0CAH				CPUM1	CPUM0	CLKMD	STPHX		R/W	
DCFH		WDTR7	WDTR6	WDTR5			WDTR2		WDTR0	W	WDTR
DD0H	0CEH	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	R/W	PCL
DD1H	0CFH					PC11	PC10	PC9	PC8	R/W	PCH
DD1H	0D0H						P02	P01	P00	R/W	P0
DD5H		P17	P16	P15	P14	P13		P11	P10	R/W	P1
DD5H	0D2H	P27	P26	P25	P24	P23	P22	P21	P20	R/W	P2
DOBH	0D5H				P54					R/W	P5
ODCH		T0ENB	T0rate2	T0rate1	T0rate0						TOM
ODDH	0D9H	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0	R/W	T0C
ODEH	0DCH	TC1ENB	TC1rate2	TC1rate1	TC1rate0		ALOAD1	TC10UT		R/W	TC1M
ODFH GIE	0DDH	TC1C7	TC1C6	TC1C5	TC1C4	TC1C3	TC1C2	TC1C1	TC1C0	R/W	TC1C
DEOH	0DEH	TC1R7	TC1R6	TC1R5	TC1R4	TC1R3	TC1R2	TC1R1	TC1R0	W	TC1R
0E1H P17R P16R P15R P14R P13R P12R P11R P10R W P1UR 0E2H P27R P26R P25R P24R P23R P22R P21R P20R W P2UR 0E5H B P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @ HL6 @ HL5 @ HL4 @ HL3 @ HL2 @ HL1 @ HL0 RW @ HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 RW @YZ 0E9H P110C P100C W P10C P110C P100C W P10C 0F0H S7PC7 S7PC6 S7PC5 S7PC4 S7PC3 S7PC2 S7PC1 S7PC0 RW STK7L 0F1H - - - - S6PC1 S6PC3 S6PC1 S6PC0 RW STK6L 0F3H -	0DFH	GIE					STKPB2	STKPB1	STKPB0	R/W	STKP
0E2H P27R P26R P25R P24R P23R P22R P21R P20R W P2UR 0E5H BLS P54R P53R P52R P51R P50R W P5UR 0E6H BLL7 BLL6 BLL5 BLL4 BLL3 BLL2 BLL1 BLL0 RW BLL 0E7H WYZ7 BYZ6 BYZ5 BYZ4 BYZ3 BYZ2 BYL1 BLL0 RW BLL 0E9H BYZ7 BYZ6 BYZ5 BYZ4 BYZ3 BYZ2 BYZ1 BYZ0 RW BYZ0 0F9H BYZ7 BYZ6 SYPC5 SYPC4 SYPC3 SYPC2 SYPC1 BYPC0 RW BYX7 0F9H BYZ7 SYPC6 SYPC5 SYPC4 SYPC3 SYPC2 SYPC1 SYPC0 RW STK7L 0F1H - - - - SYPC3 S6PC3 S6PC1 S6PC0 RW STK6L	0E0H							P01R	P00R	W	P0UR
0E5H P54R P54R P53R P52R P51R P50R W P5UR 0E6H @HL7 @ HL 6 @ HL5 @ HL4 @ HL3 @ HL2 @ HL1 @ HL0 R/W @ HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E9H P10C P100C W P10C W P10C P10C W P10C P10C W P10C	0E1H	P17R	P16R	P15R	P14R	P13R	P12R	P11R	P10R	W	P1UR
0E6H @HL7 @ HL 6 @ HL5 @ HL4 @ HL3 @ HL2 @ HL1 @ HL0 R/W @ HL 0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E9H 0F0H P110C P110C P10C W P10C 0F0H S7PC7 S7PC6 S7PC5 S7PC4 S7PC1 S7PC0 R/W STK7L 0F1H - - S7PC1 S7PC1 S7PC8 R/W STK7H 0F2H S6PC6 S6PC5 S6PC3 S6PC1 S6PC1 S6PC0 R/W STK6L 0F3H - - - S6PC11 S6PC1 S6PC1 S6PC3 S6PC3 S6PC3	0E2H	P27R	P26R	P25R	P24R	P23R	P22R	P21R	P20R		P2UR
0E7H @YZ7 @YZ6 @YZ5 @YZ4 @YZ3 @YZ2 @YZ1 @YZ0 R/W @YZ 0E9H P110C P110C P100C W P10C 0F0H S7PC7 S7PC6 S7PC5 S7PC4 S7PC3 S7PC2 S7PC0 R/W STK7L 0F1H - - - S7PC11 S7PC10 S7PC9 S7PC8 R/W STK7H 0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - - S6PC11 S6PC1 S6PC8 R/W STK6L 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - - S5PC1 S5PC1 S5PC0 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3	0E5H				P54R	P53R	P52R	P51R	P50R	W	P5UR
0E9H P110C P10C W P10C 0F0H S7PC7 S7PC6 S7PC5 S7PC4 S7PC3 S7PC2 S7PC1 S7PC0 R/W STK7L 0F1H - - - S7PC11 S7PC10 S7PC9 S7PC8 R/W STK7H 0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - S6PC11 S6PC9 S6PC8 R/W STK6H 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - S5PC1 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC10 S4PC9 S4PC8 R/W	0E6H	@HL7	@ HL 6					@ HL1	@ HL0	R/W	
0F0H S7PC7 S7PC6 S7PC5 S7PC4 S7PC3 S7PC2 S7PC1 S7PC0 R/W STK7L 0F1H - - - - S7PC11 S7PC10 S7PC9 S7PC8 R/W STK7H 0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - - S6PC11 S6PC10 S6PC9 S6PC8 R/W STK6H 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - S5PC3 S4PC3 S4PC3 S4PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC1 S3PC0 <	0E7H	@YZ7	@YZ6	@YZ5	@YZ4	@YZ3	@YZ2		@YZ0	R/W	@YZ
0F1H - - - S7PC11 S7PC10 S7PC9 S7PC8 R/W STK7H 0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - - S6PC11 S6PC10 S6PC9 S6PC8 R/W STK6H 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - S5PC11 S5PC10 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC1 S3PC0 R/W STK3H 0FAH S2PC7 <td>0E9H</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P110C</td> <td>P100C</td> <td>W</td> <td>P10C</td>	0E9H							P110C	P100C	W	P10C
0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - - S6PC11 S6PC10 S6PC9 S6PC8 R/W STK6H 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - - S5PC11 S5PC10 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC6 S2PC5 S2PC4 S2PC3 S2PC1 S2PC0 R/W STK2L	0F0H	S7PC7	S7PC6	S7PC5	S7PC4				S7PC0	R/W	
0F2H S6PC7 S6PC6 S6PC5 S6PC4 S6PC3 S6PC2 S6PC1 S6PC0 R/W STK6L 0F3H - - - S6PC11 S6PC10 S6PC9 S6PC8 R/W STK6H 0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - - S5PC11 S5PC10 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC10 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3H 0F9H - S3PC10 S3PC9 S3PC8 R/W STK2L 0FBH - S2PC6	0F1H			-	-	S7PC11	S7PC10		S7PC8	R/W	STK7H
0F4H S5PC7 S5PC6 S5PC5 S5PC4 S5PC3 S5PC2 S5PC1 S5PC0 R/W STK5L 0F5H - - - S5PC11 S5PC10 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC1 S3PC1 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FCH S1PC7	0F2H	S6PC7	S6PC6	S6PC5	S6PC4	S6PC3	S6PC2	S6PC1	S6PC0	R/W	STK6L
0F5H - - - S5PC11 S5PC10 S5PC9 S5PC8 R/W STK5H 0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC10 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC11 S3PC10 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10		-	-	-	-						
0F6H S4PC7 S4PC6 S4PC5 S4PC4 S4PC3 S4PC2 S4PC1 S4PC0 R/W STK4L 0F7H - - - S4PC11 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC11 S3PC10 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC		S5PC7	S5PC6	S5PC5	S5PC4						
0F7H - - - S4PC11 S4PC9 S4PC8 R/W STK4H 0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC11 S3PC10 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L		-	-	-	-						
0F8H S3PC7 S3PC6 S3PC5 S3PC4 S3PC3 S3PC2 S3PC1 S3PC0 R/W STK3L 0F9H - S3PC11 S3PC10 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L		S4PC7	S4PC6	S4PC5	S4PC4						
0F9H - S3PC11 S3PC10 S3PC9 S3PC8 R/W STK3H 0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L			-	-						R/W	
0FAH S2PC7 S2PC6 S2PC5 S2PC4 S2PC3 S2PC2 S2PC1 S2PC0 R/W STK2L 0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L		S3PC7	S3PC6	S3PC5	S3PC4						
0FBH - S2PC11 S2PC10 S2PC9 S2PC8 R/W STK2H 0FCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L					-						
OFCH S1PC7 S1PC6 S1PC5 S1PC4 S1PC3 S1PC2 S1PC1 S1PC0 R/W STK1L 0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L		S2PC7	S2PC6	S2PC5	S2PC4						
0FDH - S1PC11 S1PC10 S1PC9 S1PC8 R/W STK1H 0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L					-						
0FEH S0PC7 S0PC6 S0PC5 S0PC4 S0PC3 S0PC2 S0PC1 S0PC0 R/W STK0L		S1PC7	S1PC6	S1PC5	S1PC4						
					-						
0FFH - S0PC11 S0PC9 S0PC8 R/W STK0H		S0PC7	S0PC6	S0PC5	S0PC4						
	0FFH				-	S0PC11	S0PC10	S0PC9	S0PC8	R/W	STK0H

☀ 注:

- 1. 有些位元要固定放入"0"或"1"(如上表中所示),以免系统出错。
- 2. 所有寄存器的名称在 SN8ASM 编译器是默认的。
- 3. 寄存器中各位的名称已在 SN8ASM 编译器中以"F"为前缀定义过。
- 4. 指令"B0BSET", "B0BCLR", "BSET", "BCLR" 仅对 "R/W" 寄存器有效。
- 5. 详细细节请查阅"系统寄存器参照表"。

2.1.4.3 H, L 寄存器

8 位系统专用寄存器 H 和 L 主要用作工作寄存器和间接寻址 RAM 数据。数据寄存器@HL 位于 RAM bank_0 的 E6H 单元, H 和 L 寄存器的内容决定了被访问的 RAM 单元的地址,可通过累加器 ACC 对此单元进行读/写。 H 寄存器的低 4 位决定了单元所在的 RAM 页,L 寄存器给出该单元在某 RAM 页中的具体地址。H 寄存器的高 4 位在间接寻址中是无意义的。

081H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Н	HBIT7	HBIT6	HBIT5	HBIT4	HBIT3	HBIT2	HBIT1	HBIT0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

H080	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
L	LBIT7	LBIT6	LBIT5	LBIT4	LBIT3	LBIT2	LBIT1	LBIT0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

○ 例: 间接寻址读取 RAM bank_0 的 20H 单元数据。

BOMOV H, #00H ; 用 H 确定 BANK0

 B0MOV
 L, #20H
 ; 用 L 确定 RAM 中的位置

 B0MOV
 A, @HL
 ; 25H 的数据放到 ACC 中

⇒ 例: 用 @HL 对 RAM bank 0 进行清零

CLR H ; 清零 (Bank0)

MOV A, #07FH

BOMOV L, A ; L = 7FH, 数据存储器的低地址

CLR_HL_BUF:

CLR @HL ;清零

DECMS L ; L-1, L = 0 子程序结束

JMP CLR_HL_BUF ; 不为零继续计算

CLR @HL

END_CLR: ; 结束通用区所有存储器的清零程序

. .

2.1.4.4 Y, Z 寄存器

8 位寄存器 Y 和 Z 的主要功能有:

- 系统专用寄存器
- @YZ间接寻址
- 查表寻址寄存器

084H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Υ	YBIT7	YBIT6	YBIT5	YBIT4	YBIT3	YBIT2	YBIT1	YBIT0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

083H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Z	ZBIT7	ZBIT6	ZBIT5	ZBIT4	ZBIT3	ZBIT2	ZBIT1	ZBIT0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

Y, #00H **B0MOV** ; 用 Y 确定 BANK0

B0MOV Z, #25H ;用Z确定RAM中的位置 **B0MOV** A, @YZ ; 25H 的数据放到 ACC 中

● 例:用@YZ对RAM bank0 清零

; Y = 0, bank 0**B0MOV** Y, #0

B0MOV Z, #07FH ;Y=7FH,数据存储器的低地址

CLR_YZ_BUF:

CLR @YZ ;清零

DECMS Ζ ; Z – 1, Z= 0 结束子程序

JMP CLR_YZ_BUF ; 不为零继续计算

CLR @YZ

END_CLR: ; 结束通用区所有存储器的清零程序

2.1.4.5

R寄存器 寄存器R是一个8位缓存器,可作为工作寄存器或在查找ROM数据时存放数据的高字节。执行MOVC指令后, ROM 数据的高字节存入 R 寄存器中, 低字节存入累加器 ACC 中。

082H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R	RBIT7	RBIT6	RBIT5	RBIT4	RBIT3	RBIT2	RBIT1	RBIT0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

注: R 寄存器的查表功能请参考"查表功能说明"

2.1.5 累加器 (ACC)

累加器 ACC 是一个 8 位专用数据寄存器,用来进行算术逻辑运算或数据存储器之间数据的传送和处理。如果对 ACC 的操作结果为零(Z)或者有进位产生(C或DC),那么这些标志将会影响 PFLAG 寄存器。

由于 ACC 不在数据存储器(RAM)中,所以在立即寻址模式下,执行"B0MOV"指令不能够访问 ACC。

⋑ 例: 读/写 ACC 中数据

;把 ACC 中断数据送到 BUF 中

MOV BUF, A

;给 ACC 送立即数

MOV A, #0FH

;把 BUF 中的数据送到 ACC 中

MOV A, BUF

中断发生时,PUSH 和 POP 指令不会自动保存 ACC 的值,因此必须对它进行保护和恢复。一旦中断发生,必须把 ACC 存储在用户自定义的存储器中,如下所示:

⇒ 例:保护 ACC 和工作寄存器

INT_SERVICE:

PUSH ; 保存 ACC 和 PFLAG 的值

. .

POP ; 恢复 ACC 和 PFLAG 的值

RETI ; 退出中断服务程序

2.1.6 程序状态字 (PFLAG)

程序状态寄存器 PFLAG 包括进位标志(C),辅助进位标志(DC) 和零标志(Z),如果运算结果为零或者有进位、借位发生,将会影响到 PFLAG 寄存器。

086H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PFLAG	NT0	NPD	-	-	-	С	DC	Z
读/写	R/W	R/W	-	-	-	R/W	R/W	R/W
复位后	-	-	-	-	-	0	0	0

☞ 复位标志

NT0	NPD	复位状态
0	0	看门狗溢出
0	1	保留
1	0	LVD 复位
1	1	外部复位引脚复位

☞ 进位标志

C=1: 执行算术加法后有进位发生,执行算术减法后没有借位或移位指令后移出逻辑"1" C=0: 执行算术加法后没有进位发生,执行算术减法后有借位或移位指令后移出逻辑"0"

☞ 辅助进位标志

DC = 1: 执行算术加法操作产生由低字节向高字节的进位或执行算术减法操作没有从高字节借位 DC = 0: 执行算术加法操作没有产生由低字节向高字节的进位或执行算术减法操作从高字节借位

☞ 零标志

Z=1: 指令执行后,累加器 ACC 的结果为零 Z=0: 指令执行后,累加器 ACC 的结果非零

2.1.7 程序计数器 (PC)

程序计数器 PC 是一个 12 位专用二进制计数器,由 4 位高字节和 8 位低字节组成,PC 总是指向下一条将要访问指令的地址,一般在程序执行过程中,PC 会随着指令的执行自动增量。

执行程序调用(CALL)和跳转(JMP)指令时,下一条将要执行指令的地址会被装入PC的0~11位。

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PC	-	-	-	-	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
复位后	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0
		PCH							PCL							

2.1.7.1 单地址跳转

单地址跳转指令共有 9 条: CMPRS、INCS、INCMS、DECS、DECMS、BTS0、BTS1、B0BTS0、B0BTS1。如果运算的结果符合跳转调节,PC 加 2,跳过当前指令的下一条指令。

⇒ 如果位测试结果匹配,那么 PC 加 2,跳过当前指令的下一条指令:

B0BTS1 FC ; 如果 C=1 则跳过下一条指令

JMP COSTEP ; 否则调转到 COSTEP.

COSTEP: NOP

B0MOV A, BUF0 ; 把 BUF0 的值赋给 ACC. **B0BTS0** FZ ; 如果 Z=0,则跳过下一条指令

JMP COSTEP ; 否则跳到 C1STEP.

C1STEP: NOP

⇒ 如果 ACC 与立即数或内存中的内容相等,那么 PC 加 2,跳过当前指令的下一条指令

CMPRS A, #12H ; 如果 ACC = 12H. 则跳过下一条指令

JMP COSTEP ; 否则跳到 COSTEP.

COSTEP: NOP

⇒ 如果加 1 (INCS、INCMS) 后的结果溢出 (0xFF 到 0x00),则 PC 加 2 跳过当前指令的下一条指令。

INCS:

INCS BUF0

JMP COSTEP ; ACC 不为 0 跳到 COSTEP

COSTEP: NOP

INCMS:

INCMS BUF0

JMP COSTEP ; BUF0 不为 0 跳到 COSTEP

COSTEP: NOP

⇒ 如果減 1(DECS、DECMS)后的结果下溢(0x00 到 0xFF),则 PC 加 2 跳过当前指令的下一条指令。

DECS:

DECS BUF0

JMP COSTEP ; ACC 不为 0 跳到 COSTEP

COSTEP: NOP

DECMS:

DECMS BUF0

JMP COSTEP ; BUF0 不为 0 跳到 COSTEP

o----

COSTEP: NOP

2.1.7.2 多地址跳转

用户可以通过 JMP 和" ADD PCL, A"指令实现多地址跳转。"ADD PCL, A"执行后若有进位发生,进位标志并不会影响 PCH 寄存器。

; PC = 0323H

MOV A, #28H

B0MOV PCL, A ; 跳到地址 0328H

.

; PC = 0328H .

MOV A, #00H

B0MOV PCL, A ; 跳到地址 0300H

● 例:设 PC = 0323H (PCH = 03H、PCL = 23H)

; PC = 0323H

BOADD PCL, A ; PCL = PCL + ACC, PCH 的值不变

 JMP
 A0POINT
 ; ACC = 0, 跳到 A0POINT

 JMP
 A1POINT
 ; ACC = 1, 跳到 A1POINT

 JMP
 A2POINT
 ; ACC = 2, 跳到 A2POINT

 JMP
 A3POINT
 ; ACC = 3, 跳到 A3POINT

. . ;

2.2 寻址模式

2.2.1 立即寻址

将一个立即数送入累加器或指定的 RAM 单元: MOV A, # I ; B0MOV M, # I

⇒ 例:把立即数 12H 送入 ACC 中。

MOV A, #12H ; 立即数 12H 存入 ACC

2.2.2 直接寻址

通过单元地址访问存储器: MOV A, 12H ; MOV 12H, A

⇒ 例: RAM 中 12H 的数据送入 ACC 中。

B0MOV A, 12H ; bank 0 中 12H 的数据送入 ACC

2.2.3 间接寻址

间接寻址是通过数据指针寄存器 (H/L, Y/Z) 访问存储器。

⇒ 例:对@HL间接寻址。

B0MOV A, @HL ; 用数据指针@HL 取得相应存储器的地址 012H 的数据送到 ACC。

⇒ 例: 对@YZ 间接寻址:

CLR Y ; 清 Y,指向 RAM bank 0. B0MOV Z, #12H ; 送一个立即数 12H 到 Z

BOMOV A, @YZ ; 用数据指针 @YZ 取得相应存储器的地址 012H 的数据送给 ACC

2.3 堆栈

2.3.1 概述

SN8P2604 共有 8 层堆栈,每层 12 位。堆栈寄存器在中断现场保护和恢复时存放程序计数器 PC。堆栈指针 STKP 指示当前栈顶位置以便保护和恢复数据,12 位寄存器 STKnH 和 STKnL 存放程序计数器 PC 的数据。

2.3.2 堆栈指针寄存器

堆栈指针 STKP 是一个 3 位的寄存器,用来指示堆栈栈顶位置,12 位的数据存储器(STKnH 和 STKnL)用来存储程序计数器(PC)的值。

堆栈操作有两种,入栈 (PUSH) 和 出栈 (POP)。执行入栈 (PUSH) 操作,STKP 就会减一,执行出栈 (POP) 操作,STKP 就会加一。这样,STKP 总是指向栈顶位置。

执行 CALL 指令和响应中断时,程序计数器(PC)的值会被保存在堆栈中,堆栈操作遵循先进后出的原则。堆栈指针寄存器(STKP)和缓冲器 STKnH、STKnL 位于 BANK0。

0DFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	-	-	-	-	STKPB2	STKPB1	STKPB0
读/写	R/W	-	-	-	-	R/W	R/W	R/W
复位后	0	_	-	-	-	1	1	1

Bit[2:0] **STKPBn:** 堆栈指针(n = 0 ~ 2)

Bit 7 GIE: 总中断控制位。

0 = 禁止中断

1 = 使能中断。详见中断章节。

⇒ 例: 堆栈指针(STKP) 复位,强烈建议在程序开始时清零。

MOV A, #00000111B B0MOV STKP, A

0F0H~0FFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnH	-	-	-	-	SnPC11	SnPC10	SnPC9	SnPC8
读/写	-	-	-	-	R/W	R/W	R/W	R/W
复位后	-	-	-	-	0	0	0	0

0F0H~0FFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKnL	SnPC7	SnPC6	SnPC5	SnPC4	SnPC3	SnPC2	SnPC1	SnPC0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

STKn = STKnH, STKnL $(n = 7 \sim 0)$

2.3.3 堆栈操作举例

程序调用指令(CALL)和中断都涉及到对堆栈指针 STKP 的操作和将程序计数器 PC 保存在堆栈缓冲区。在两种操作中,堆栈指针 STKP 都会减 1 并指向下一个可用的堆栈区域,堆栈缓冲器中则保存了程序指针。入栈保护操作如下表所示:

堆栈层数	STKP			堆栈缓冲器		说明	
	STKPB2	STKPB1	STKPB0	高字节	低字节	1 1/2 1/3 1 1/2 1/3	
0	1	1	1	Free	Free	-	
1	1	1	0	STK0H	STK0L	-	
2	1	0	1	STK1H	STK1L	-	
3	1	0	0	STK2H	STK2L	-	
4	0	1	1	STK3H	STK3L	-	
5	0	1	0	STK4H	STK4L	-	
6	0	0	1	STK5H	STK5L	-	
7	0	0	0	STK6H	STK6L	-	
8	1	1	1	STK7H	STK7L	-	
> 8	1	1	0	-	-	堆栈溢出,出错	

对应每个入栈操作,都有一个出栈操作来恢复程序计数器 PC 的值。RETI 指令用于中断服务程序中,RET 用于子程序调用。出栈时,STKP 加 1 并指向下一个空闲堆栈缓冲器。堆栈恢复操作如下表所示:

堆栈层数		STKP		堆栈组	爱冲器	说明	
	STKPB2	STKPB1	STKPB0	高字节	低字节	ר <i>יי</i> יזש	
8	1	1	1	STK7H	STK7L	-	
7	0	0	0	STK6H	STK6L	-	
6	0	0	1	STK5H	STK5L	-	
5	0	1	0	STK4H	STK4L	-	
4	0	1	1	STK3H	STK3L	-	
3	1	0	0	STK2H	STK2L	-	
2	1	0	1	STK1H	STK1L	-	
1	1	1	0	STK0H	STK0L	-	
0	1	1	1	Free	Free	-	

3 复位

3.1 概述

SN8P2604 有两种系统复位方式:外部复位和内部低电压侦测(LVD)复位。外部复位电路是一个简单的 RC 电路,低电压侦测(LVD)是芯片内置电路。当其中任何一个复位信号产生时,系统复位并初始化系统寄存器,时序图如下:

图 3-1 上电复位时序图

3.2 外部复位

外部复位为低电平有效,当复位引脚侦测到低电压时,系统开始复位,直到侦测到的电压达到高电平。

图 3-2 外部复位时序图

用户必须确保 VDD 先于外部复位电压达到稳定状态,否则复位无效。外部复位电路是一个简单的 RC 电路,如下图所示:

图 3-3 外部复位电路

在某些情况下,通过在 VCC 和复位引脚之间放置一个二极管可以改善掉电复位。

图 3-4 加二极管后的外部复位电路

3.3 低电压侦测(LVD)

LVD 为低电压侦测,当侦测到 VDD 低于设定值时,系统就会复位。例如,侦测电压为 1.8V,如果 VDD 低于 1.8V,系统就会复位。

图 3-5 LVD 时序图

4 系统时钟

4.1 概述

SN8P2604 是具有高速时钟和低速时钟的双时钟微控制器。高速时钟是由外部振荡电路提供,而低速时钟则是由内置低速 RC 振荡电路(ILRC 16KHz @3V, 32KHz @5V)提供。

高低速时钟均可作为系统时钟(Fosc)。系统时钟 4 分频后就是指令周期(Fcpu)。

- **普通模式(高速时钟): Fcpu = Fosc / N,** N = 1 ~ 128, N由 Fcpu 编译选项选择。
- ☞ 低速模式(低速时钟): Fcpu = Fosc/4

4.2 时钟框图

图 4-1 时钟框图

◆ HOSC: High_Clk 编译选项◆ EHOSC: 外部高速时钟◆ ILRC: 内部低速 RC 时钟

4.3 OSCM 寄存器

OSCM 寄存器是一个振荡器控制寄存器,它控制着振荡器的状态和系统模式。

0CAH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSCM	0	0	0	CPUM1	CPUM0	CLKMD	STPHX	0
读/写	-	-	-	R/W	R/W	R/W	R/W	-
复位后	-	-	-	0	0	0	0	- 1

Bit 1 STPHX: 外部高速振荡器控制位

0 =运行

1 = 停止,内部低速 RC 振荡器仍处于运行状态。

Bit 2 CLKMD: 系统高/低速模式选择位.

0=普通模式(双重时钟),系统时钟为高速时钟;

1=低速模式,系统时钟为内部低速时钟。

Bit[4:3] **CPUM[1:0]:** CPU 运行模式控制位。

00=普通模式,

01=睡眠(省电)模式,

10=绿色模式,

11=保留。

⇒ 例:停止高速振荡器

BOBSET FSTPHX ; 仅停止高速振荡器

○ 例:在省电模式下,高速振荡器和内部低速振荡器都停止。

BOBSET FCPUMO ; 停止外部高速和内部低速振荡器

;进入睡眠模式.

4.4 系统高速时钟

4.4.1 外部高速时钟

外部高速时钟有三种(晶体,RC 和外部时钟)。高速振荡电路由编译选项的 HIGH_CLK 选项控制。

4.4.1.1 晶体振荡电路

晶体振荡器由 XIN, XOUT 引脚驱动,对于高/普通/低速不同的频率,其驱动电流也是不一样的。Hign_Clk 编译 选项支持不同的频率:

高速: **12M** (如: 12M) 普通: **4M** (如: 4M) 低速: **32k** (如: 32.768K)

图 4-2 晶体振荡电路

4.4.1.2 RC 振荡电路

RC 振荡器由 High_Dlk 编译选项中的 RC 选项来选择。RC 振荡器的频率可达到 16MHz。建议改变"R"的值来改变频率。"C"的值一般为 50p~100P。

图 4-3 RC 振荡电路

4.4.1.3 外部时钟输入

由 High-Clk 编译选项中的 RC 选项来选择外部时钟输入作为系统时钟。外部时钟的信号由 XIN 引脚输入。

☀ 注:外部振荡器电路必须和微控制器的 Vss 引脚直接相连。

4.5 振荡器频率测试

在 RC 模式,用户可以由指令周期(Fcpu)来测试 Fosc 的周期。

⇒ 例:由测量指令周期来测量外部振荡器的周期

BOBSET P1M.0 ; 设置 P1.0 为输出模式.

@@:

BOBSET P1.0 ; 输出方波信号

BOBCLR P1.0 ; 通过测量指令周期来测试频率

JMP @B

* 注:不能直接由 XIN 测试 RC 频率;探针会影响 RC 的频率值。

4.6 内部低速时钟

SN8P2602A 内置内部低速振荡器的时钟源来自内部 RC 振荡器电路。

- ☞ 系统低速时钟(Fcpu) = 内部低速时钟(16KHz @3V, 32KHz @5V) / 4
- ⊃ 例:停止内部低速振荡器。

B0BSET FCPUM0 ; 停止外部高速振荡器和内部低速振荡器

; 进入睡眠模式.

★ 注:内部低速振荡器不能单独关闭,而是由 OSCM 寄存器的 CPUM0 位控制。

低速振荡器采用 RC 振荡电路,频率受系统电压和温度的影响。通常情况下,RC 振荡器的频率约为 16KHZ(3V)、32KHZ(5V)。RC 频率和电压之间的关系如下图所示:

D 例:由 Fcpu 测试内部 RC 频率。 内部 RC 频率等于 4 倍的 Fcpu。我们可以从 Fcpu 得到内部 RC 的频率.

B0BSET P1M.0 ; 设置 P1.0 为输出模式

BOBSET FCLKMD : 进入内部低速模式

@@:BOBSET P1.0 : 在任谏模式下输出频

 B0BSET
 P1.0
 ; 在低速模式下输出频率信号

 B0BCLR
 P1.0
 ; 通过测量指令周期来测试频率

JMP @B

5 系统操作模式

5.1 概述

SN8P2604 具有低功耗的特性,能在 4 种不同的操作模式下相互转换。

- ▶ 高速(普通)模式
- ▶ 低速模式
- ▶ 省电(睡眠)模式
- ▶ 绿色模式

5.2 普通模式

普通模式中,系统时钟源为外部高速时钟。系统上电时,系统默认为普通模式,指令周期为 fosc /4。当外部高速振荡器为 3.58MHz 时,指令周期为 3.58MHz /4=895KHz。所有的软件和硬件都能够在普通模式下运行,系统可转入睡眠模式、绿色模式和低速模式。

5.3 低速模式

低速模式时,系统时钟源为内部低速 RC 时钟。设置 CLKMD=1,系统就进入内部低速模式。低速模式下的运行与普通模式一样,仅是时钟频率有所降低。系统可在低速模式下转入高速模式及低功耗的绿色模式和省电模式。

5.4 绿色模式

绿色模式提供一个定时唤醒功能。用户可通过设置定时器 T0 来确定系统的唤醒时间。系统可以从普通模式和低速模式进入绿色模式。普通模式下,T0 的溢出时间非常短;低速模式下,T0 的溢出时间则相对要长一些。针对实际应用可以选择合适的模式。绿色模式下,功耗约为 5uA/3V。系统可以由 T0 定时器或 P0、P1 的触发信号唤醒。

5.5 省电模式

省电模式也称睡眠模式,系统进入睡眠状态时,将停止工作。设 CPUM0=1,系统进入省电模式,外部高速和内部低速振荡器均停止工作,P0、P1的触发信号可将系统唤醒。

5.6 系统模式控制

系统模式转换框图

操作模式说明

操作模式	普通模式	低速模式	绿色模式	省电(睡眠)模式	备注
HX osc.	运行	由 STPHX 位决定	由 STPHX 位决定	停止	
LX osc.	运行	运行	运行	停止	
CPU 指令	执行	执行	Stop	停止	
T0 定时器	*有效	*有效	*有效	无效	*程序激活
TC1 定时器	*有效	*有效	*有效	无效	*程序激活
看门狗定时器	编译选项编译选项		编译选项	编译选项	Enable Disable Always_On
内部中断	全部有效	全部有效	T0	全部无效	
外部中断	全部有效	全部有效	全部有效	全部无效	
系统唤醒	-	-	P0, P1, T0 复位	P0, P1, 复位	

5.6.1 系统模式转换

⇒ 例:普通/低速模式进入省电(睡眠)模式。

BOBSET FCPUM0 ; 设置 CPUM0 = 1.

▶ 注: 系统在睡眠模式中,只有具有唤醒功能的引脚和复位引脚能够将系统唤醒。

⋑ 例:普通模式转换为低速模式。

BOBSET FCLKMD ; 设置 CLKMD = 1, 进入低速模式

BOBSET FSTPHX ; 停止高速振荡器以省电

⋑ 例:低速模式转换为普通模式(外部高速时钟仍然运行)

BOBCLR FCLKMD ; 设置 CLKMD = 0

⇒ 例:低速模式转换为普通模式(外部高速时钟停止)

如果外部高速时钟停止时程序欲返回到普通模式,就必须延迟至 10mS 以等待外部时钟稳定下来。

BOBCLR FSTPHX ; 启动外部高速振荡器

B0MOV Z, #27 ; 若 VDD = 5V, 则内部 RC 的频率为 32KHz (典型值) @@: DECMS Z ; 高速振荡器稳定时间 0.125ms X 81 = 10.125ms

JMP @B

;

BOBCLR FCLKMD ; 返回到普通模式

⇒ 例:进入绿色模式,使能 T0 的唤醒功能。

;设置 T0 定时器的唤醒功能

BOBCLR FTOIEN ; 禁止 TO 中断 BOBCLR FTOENB ; 禁止 TO 计数

MOV A,#20H

BOMOV TOM,A ; 设置 TO 时钟源 = Fcpu / 64

MOV A,#74H

B0MOV T0C,A ; 设置 T0C 初始值= 74H (设置 T0 定时间隔 = 10 ms)

BOBCLR FTOIEN ; 禁止 TO 中断

BOBCLR FTOIRQ ;清 TO 中断请求标志 BOBSET FTOENB ;使能 TO 定时器 BOBSET FTOGN ;使能 TO 的唤醒功能

; 进入绿色模式

BOBCLR FCPUMO ; 设置 CPUMx = 10

B0BSET FCPUM1

* 注: 若 T0ENB = 0, T0 不能把系统从绿色模式中唤醒进入普通/低速模式。

5.7 唤醒时间

5.7.1 概述

外部高速振荡器从停止到运行需要一段时间的延迟,这段延迟时间对振荡器的稳定工作是必需的。外部高速振荡器重新启动需要的这一延迟时间称为唤醒时间。

下面两种情况需要唤醒时间:一种是从省电模式转换到普通模式,另一种是从低速模式转换到普通模式。对前一种情况,SN8P2604 提供了 2048 个振荡时钟作为唤醒时间,后一种情况需要用户自行计算唤醒时间。

5.7.2 唤醒时间

当系统处于省电(睡眠)模式时,外部高速振荡器停止运行。从睡眠模式唤醒时,SN8P2604 提供 2048 个外部高速振荡周期作为唤醒时间,以使振荡电路达到稳定状态。唤醒时间结束后,系统进入普通模式,唤醒时间的计算方法如下:

唤醒时间 = 1/Fosc×2048 (sec)+X'tal 固定时间

X'tal 固定时间决定于 X'tal 的类型,一般的,约为 2~4ms(4MHz 晶体振荡器)

○ 例:省电(睡眠)模式下,系统可由 P0 和 P1 的触发信号唤醒。唤醒时间结束后,系统进入普通模式,P0, P1 的唤醒时间的计算如下所示:

唤醒时间 = 1/Fosc * 2048 = 0.57 ms (Fosc = 3.58MHz)

总的唤醒时间 = 0.57ms + X'tal 固定时间

5.7.3 P1W 唤醒功能控制寄存器

省电(睡眠)模式下,具有唤醒功能的 P0 和 P1 都能将系统唤醒, P0 永远具有唤醒功能,而 P1 的唤醒功能受寄存器 P1W 控制。

0C0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1W	P17W	P16W	P15W	P14W	P13W	P12W	P11W	P10W
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

Bit[7:0] P10W~P17W: P1 唤醒功能控制位.

0 = 禁止 P1 口的唤醒功能 1 = 使能 P1 口的唤醒功能

6.1 概述

SN8P2604 提供 4 个中断源: 2 个内部中断源(T0/TC1), 2 个外部中断源(INT0/INT1)。外部中断能够唤醒睡眠模式进入高速模式。当系统进入到中断服务程序时,全局中断控制位 GIE 清零;系统退出中断服务后,GIE 被置为"1"以准备响应下一个中断请求。所有的中断请求存放于寄存器 INTRQ 中,用户可编程设置中断优先级。

*注:GIE 使能后,才能响应各中断。

6.2 INTEN 中断使能寄存器

INTEN 为中断使能控制寄存器,包括 2 个内部中断和 2 个外部中断的控制位。INTEN 的某位被置为"1",则相对应的中断请求便能够被响应。一旦有中断发生,程序将跳至 ORG 8 处执行中断服务程序。当执行到中断服务返回指令(RETI)时,将退出中断程序。

0C9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEN	-	TC1IEN	-	T0IEN	-	-	P01IEN	P00IEN
读/写	-	R/W	-	R/W	-	-	R/W	R/W
复位后	-	0	-	0	-	-	0	0

Bit 0 **P00IEN**: 外部 P0.0 (INT0) 中断控制位

0 = 禁止 INTO 中断 1 = 使能 INTO 中断

Bit 1 **P01IEN:** 外部 P0.0 (INT1) 中断控制位

0 = 禁止 INT1 中断 1 = 使能 INT1 中断

Bit 4 TOIEN: 定时器 TO 中断控制位

0 = 禁止 T0 中断 1 = 使能 T0 中断

Bit 6 TC1IEN: 定时器 TC1 中断控制位.

0 = 禁止 TC1 中断 1 = 使能 TC1 中断

6.3 INTRQ 中断请求寄存器

INTRQ 为中断请求寄存器,包含了所有的中断请求标志,当有中断发生时,INTRQ 寄存器中的相应位会置为"1"。中断请求标志需要用软件清零。用户通过检查中断请求寄存器可以知道中断的种类,从而执行相应的中断服务程序。

0C8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTRQ	-	TC1IRQ	-	T0IRQ	-	-	P01IRQ	P00IRQ
读/写	-	R/W	-	R/W	-	-	R/W	R/W
复位后	-	0	-	0	-	-	0	0

Bit 0 **P00IRQ**: 外部 P0.0 (INT0) 中断请求位

0 = 禁止 INT0 中断请求 1 = 使能 INT0 中断请求

Bit 1 **P01IRQ**: 外部 P0.1 (INT1) 中断请求位

0 = 禁止 INT1 中断请求 1 = 使能 INT1 中断请求

Bit 4 TOIRQ: T 0 定时器中断请求位

0 = 禁止 T0 中断请求 1 = 使能 T0 中断请求

Bit 6 TC1IRQ: TC1 定时器中断请求位

0 = 禁止 TC1 中断请求 1 = 使能 TC1 中断请求

6.4 中断操作举例

6.4.1 GIE 总中断操作

GIE 是总中断控制位。所有的中断在 GIE 使能的前提下才能够得到响应。一旦有中断请求发生,程序计数器 PC 指向中断向量地址(ORG 8),堆栈层数加 1。

0DFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STKP	GIE	ı	ı	-	ı	STKPB2	STKPB1	STKPB0
读/写	R/W	-	-	-	-	R/W	R/W	R/W
复位后	0	-	-	-	-	1	1	1

Bit 7 GIE: 总中断控制位

0 = 禁止总中断 1 = 使能总中断.

⇒ 例: 设置总中断控制位(GIE)

BOBSET FGIE ; 总中断使能

☀ 注: GIE 必须使能,所有中断才能被响应。

6.4.2 INTO (P0.0)中断操作

当 INTO 中断发生时,不管 P00IEN 是否使能,P00IRQ 都会置"1"。若 P00IEN=1,且 P00IRQ=1,那么系统就进入中断向量地址(ORG 8)执行中断服务程序。但若 P00IEN=0,不管 P00IRQ 是否等于 1,系统都不进入中断。用户应注意多种中断下的处理。

☀ 注:中断触发的方式由 PEDGE 寄存器控制。

0BFH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PEDGE	ı	-	-	P00G1	P00G0	-	-	-
读/写	-	-	-	R/W	R/W	-	-	-
复位后	-	-	-	1	0	-	-	-

Bit[4:3] P00G[1:0]: P0.0 中断触发边沿控制位

00 = 保留

01 = 上升沿

10 = 下降沿

11 = 上升/下降沿(变换电平触发)

BOBSET FP00IEN ; INTO 中断使能

B0BCLR FP00IRQ ; 清 INT0 中断请求标志

BOBSET FGIE ; 总中断使能

⊃ 例: INT0 中断服务程序

ORG 8 ; 中断向量地址

JMP INT_SERVICE

INT_SERVICE:

PUSH ; 保存 ACC 和 PFLAG 的值

BOBTS1 FP00IRQ ; 判断是否有外部中断请求

JMP EXIT_INT

BOBCLR FP00IRQ ; 清中断标志

; INTO 中断服务程序

EXIT_INT:

POP ; 恢复 ACC 和 PFLAG 的值

6.4.3 INT1 (P0.1) 中断操作

当 INT1 中断发生时,不管 P01IEN 是否使能,P01IRQ 都会置"1"。若 P01IEN=1,且 P01IRQ=1,那么系统就进入中断向量地址(ORG 8)执行中断服务程序。但若 P01IEN=0,不管 P01IRQ 是否等于 1,系统都不进入中断。用户应注意多种中断下的处理。

☀ 注:中断触发的方式是下降沿触发。

● 例: 初始化 INT1.

B0BSET FP01IEN ; INT1 中断使能 B0BCLR FP01IRQ ; 清 INT1 中断请求 B0BSET FGIE ; 总中断使能

⇒ 例: INT1 中断服务。

ORG 8 ; 中断向量地址

JMP INT_SERVICE INT_SERVICE:

_

PUSH ; 保存 ACC 和 PFLAG 的值

BOBTS1 FP01IRQ ; 判断是否有外部中断请求

JMP EXIT_INT ;

BOBCLR FP01IRQ ; 清中断标志

. ; INT1 中断服务程序

EXIT_INT:

POP ; 恢复 ACC 和 PFLAG 的值

6.4.4 T0 中断操作

当 TOC 计数器溢出,无论 TOIEN 是否使能,TOIRQ 都会置"1"。若 TOIEN=1,且 TOIRQ =1,那么系统就进入中断向量地址(ORG 8)执行中断服务程序。若 TOIEN =0,不管 TOIRQ 是否等于 1,系统都不进入中断。用户应注意多种中断下的处理。

⇒ 例:初始化 T0.

BOBCLR FTOIEN ; 禁止 TO 中断 BOBCLR FTOENB ; 停止 TO 计数

MOV A, #20H

 B0MOV
 T0M, A
 ; 设置 T0 定时模式 Fcpu / 64

 MOV
 A, #74H
 ; 设置 T0 的初始值 = 74H

BOMOV TOC, A ; 定时中断为 10 ms

BOBSET FTOIEN ; 使能 TO 中断

BOBCLR FTOIRQ ; 清 TO 中断请求标志

BOBSET FTOENB ; 开始 TO 计数

BOBSET FGIE ; 使能总中断

⇒ 例: T0 中断服务程序。

ORG 8 ; 中断向量地址

JMP INT_SERVICE

INT_SERVICE:

PUSH ; 保存 ACC 和 PFLAG 的值

BOBTS1 FTOIRQ ; 判断是否有 TO 中断请求

JMP EXIT_INT ;

BOBCLR FTOIRQ ; 清中断标志

MOV A, #74H

 B0MOV
 T0C, A
 ; 重新装载时间常数

 .
 ; T0 中断服务程序

, 10

EXIT INT:

POP ; 恢复 ACC 和 PFLAG 的值

6.4.5 TC1 中断操作

当计数器 TC1C 溢出时,无论 TC1IEN 是否使能,TC1IRQ 都会置"1"。若 TC1IEN =1,且 TC1IRQ =1,那么系 统就进入中断向量地址(ORG 8)执行中断服务程序。若 TC1IEN =0,不管 TC1IRQ 是否等于 1,系统都不进入中 断。用户应注意多种中断下的处理。

例:初始化 TC1

B0BCLR FTC1IEN ; 禁止 TC1 中断 **B0BCLR** FTC1ENB ;停止 TC1 计数

A, #20H MOV

B0MOV TC1M, A ;设置 TC1 定时模式 Fcpu / 64 MOV A, #74H ;设置 TC1 的初始值 = 74H

B0MOV TC1C, A ; 定时中断为 10 ms

B0BSET FTC1IEN ; 使能 TC1 中断

B0BCLR FTC1IRQ ;清 TC1 中断请求标志

BOBSET FTC1ENB ; 开始 TC1 计数

BOBSET FGIE ; 使能总中断

例: TC1 中断服务

ORG 8 ; 中断向量地址

JMP INT_SERVICE

INT SERVICE:

PUSH ;保存ACC和PFLAG的值

FTC1IRQ B0BTS1 ; 判断是否有 TC1 中断请求

JMP EXIT_INT

B0BCLR FTC1IRQ ;清中断标志

MOV A. #74H

B0MOV TC1C, A ; 重新装载时间常数 ; TC1 中断服务程序

EXIT INT:

POP ;恢复 ACC 和 PFLAG 的值

> **RETI** ;中断返回

6.4.6 多个中断操作

大部分情况下,用户需要同时处理多个中断。处理多个中断就需要设置中断的优先权。中断请求由不同的事件控制,但是,有中断请求并不意味着系统就会去执行中断服务程序。不管中断是否使能,都可触发中断请求,一旦有中断发生,相应的中断请求标志就会被置为"1"。各中断与对应的触发事件关系如下表所示:

中断	触发事件
P00IRQ	P0.0 的触发由 PEDGE 寄存器控制
P01IRQ	P0.1 由下降沿触发
T0IRQ	TOC 溢出
TC1IRQ	TC1C 溢出

在处理多中断请求下,用户必须对各中断进行优先权的设置,并根据 IEN 和 IRQ 的状态决定系统是否响应中断请求。用户必须在中断向量里检查中断控制位和中断请求标志位。

○ 例:在多中断情况下,检查是否响应各中断请求。

ORG 8 ; 中断向量地址

PUSH ; 保存 ACC 和 PFLAG 的值

INTP00CHK: ; 检查是否有 INT0 中断

BOBTS1FP00IEN; 检查是否允许外部中断 0JMPINTP01CHK; 跳转到下一个中断

BOBTSO FP00IRQ ; 检查是否有外部中断 0 的请求

JMP INTP00 ; 跳转到 INTO 的中断服务程序

INTP01CHK: ; 检查是否有 INT1 中断

B0BTS1 FP01IEN ; 检查是否允许外部中断 1

JMP INTTOCHK ; 跳转到下一个中断 BOBTSO FP01IRQ ; 检查是否有外部中断 1 的请求

JMP INTP01 ; 跳转到 INT1 的中断服务程序

INTTOCHK: ; 检查是否有 TO 中断

B0BTS1 FT0IEN ; 检查是否允许 T0 中断

JMPINTTC1CHK; 跳转到下一个中断B0BTS0FT0IRQ; 检测是否有 T0 中断请求

JMP INTTO ; 跳转到 TO 中断服务程序

INTTC1CHK: ; 检查是否有 TC1 中断

B0BTS1FTC0IEN; 检查是否允许 TC1 中断JMPINT_EXIT; 跳转到下一个中断

B0BTS0FTC0IRQ; 检测是否有 TC1 中断请求JMPINTTC1; 跳转到 TC1 中断服务程序

INT_EXIT:

POP ; 恢复 ACC 和 PFLAG 的值

7 //0 端口

7.1 I/O 端口模式

寄存器 PnM 控制端口的输入输出方向,大部分端口均为双向(输入输出)模式。

0B8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0M	ı	ı	-	ı	ı	ı	P01M	P00M
读/写	-	-	-	-	-	-	R/W	R/W
复位后	-	-	-	-	-	-	0	0

0C1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1M	P17M	P16M	P15M	P14M	P13M	P12M	P12M	P10M
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

0C2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2M	P27M	P26M	P25M	P24M	P23M	P22M	P22M	P20M
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

0C5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5M	-	-	-	P54M	P53M	P52M	P51M	P50M
读/写	-	-	-	R/W	R/W	R/W	R/W	R/W
复位后	-	-	-	0	0	0	0	0

Bit[7:0] PnM[7:0]: Pn 模式控制位 (n = 0~5).

0 = Pn 为输入模式.

1 = Pn 为输出模式

☀ 注:

- 1. 用户可用位操作指令(B0BSET, B0BCLR)对它们进行操作。
- 2. P0.2 是单向输入引脚, 故 P0M.2 = 1。

⇒ 例:输入/输出模式选择

CLR POM ; 设置为输入模式

CLR P2M CLR P1M CLR P5M

MOV A, #0FFH ; 设置为输出模式

 B0MOV
 P0M, A

 B0MOV
 P1M, A

 B0MOV
 P2M,A

 B0MOV
 P5M, A

B0BCLR P1M.2 ; 设置 P1.2 为输入模式

BOBSET P1M.2 ; 设置 P1.2 为输出模式

7.2 I/O 上拉电阻寄存器

0E0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0UR	-	-	-	-	-	-	P01R	P00R
读/写	-	-	-	-	-	-	W	W
复位后	-	-	-	-	-	-	0	0

0E1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1UR	P17R	P16R	P15R	P14R	P13R	P12R	P11R	P10R
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

0E2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2UR	P27R	P26R	P25R	P24R	P23R	P22R	P21R	P20R
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

0E5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5UR	-	-	-	P54R	P53R	P52R	P51R	P50R
读/写	-	-	-	W	W	W	W	W
复位后	-	-	-	0	0	0	0	0

* 注: P0.2 是单向输入引脚,无上拉电阻。故 P0UR.2 = 1。

⇒ 例: I/O 上拉电阻寄存器

MOV A, #0FFH ; 使能 P0、P1、P2、P5 口的上拉电阻

B0MOV P0UR, A B0MOV P1UR, A B0MOV P2UR,A

P5UR, A

7.3 I/O 漏极开路寄存器

B0MOV

0E9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P10C	ı	-	1	-	ı	-	P110C	P100C
读/写	-	-	-	-	-	-	W	W
复位后	-	-	-	-	-	-	0	0

Bit 0 **P10OC**: P10 开漏控制位

0=禁止漏极开路模式 1=使能漏极开路模式

Bit 1 **P110C**: P11 开漏控制位

0=禁止漏极开路模式 1=使能漏极开路模式

7.4 I/O 口数据寄存器

0D0H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	-	-	-	-	-	P02	P01	P00
读/写	-	-	-	-	-	R	R/W	R/W
复位后	-	-	-	-	-	0	0	0

0D1H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P17	P16	P15	P14	P13	P12	P11	P10
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

0D2H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P27	P26	P25	P24	P23	P22	P21	P20
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

0D5H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P5	P57	P56	P55	P54	P53	P52	P51	P50
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

* 当选择外部复位功能时,P02 保持为"1"

⇒ 例:从输入端读取数据

 B0MOV
 A, P0
 ; 读 P0 口的数据

 B0MOV
 A, P1
 ; 读 P1 口的数据

 B0MOV
 A, P2
 ; 读 P2 口的数据

 B0MOV
 A, P5
 ; 读 P5 口的数据

⇒ 例:写数据到输出端

MOV A, #0FFH ; 所有端口写 FFH B0MOV P0, A B0MOV P1, A B0MOV P2, A

P5, A

⇒ 例:写 1-bit 的数据到输出端口

B0MOV

B0BSET P1.3 ; 置 P1.3 和 P5.5 为"1"

B0BSET P5.5

B0BCLR P1.3 ; 置 P1.3 和 P5.5 为"0"

B0BCLR P5.5

8 定时/计数器

8.1 看门狗定时器

看门狗定时器(WDT)是一个二进制加 1 计数器,用来监控程序的运行状态,如果程序由于干扰进入未知状态,看门狗定时器将溢出,使微控制器复位。看门狗定时器的时钟由编译选项控制,其时钟源为内部低速振荡器(ILRC,16K @3V,32K @5V)。

* 注:

- 1. 看门狗定时器的溢出时间约为: 0.5 sec @3V, 0.25 sec @5V.
- 2. 如果编译选项选择"Always_On",则看门狗定时器即使在省电模式和绿色模式下都会保持运行。
- 3. 在用 S8KD ICE 仿真时,清除看门狗定时器必须晶体宏指令"@RST_WDT",否则看门狗会出错。

看门狗定时器的清零由 WDTR 寄存器控制,写入 0x5A 到 WDTR 使看门狗定时器复位。

0CCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTR	WDTR7	WDTR6	WDTR5	WDTR4	WDTR3	WDTR2	WDTR1	WDTR0
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

○ 例:下面是看门狗定时器的操作,在程序的开始将看门狗定时计数器清零。

Main:

MOV B0MOV	A,#5AH WDTR,A	;清看门狗计数器
CALL CALL	SUB1 SUB2	
JMP	MAIN	

⇒ 例:用宏指令@RST_WDT将看门狗定时器清零。

Main:

@RST_WDT ; 清看门狗计数器
.
CALL SUB1
CALL SUB2
.
JMP MAIN

8.2 基本定时器(T0)

8.2.1 概述

基本定时器 T0 是一个 8 位二进制加一计数器。当 T0 溢出 (从 FFH 至 00H)时,产生一个信号触发 T0 中断。

T0 基本定时器的功能如下:

- **8 位可编程定时器:**根据所选的时钟频率,定时发出中断请求信号。
- ☞ **绿色模式唤醒功能:** T0ENB=1, T0 定时器溢出使系统从绿色模式返回到上一个操作模式。

8.2.2 TOM 模式寄存器

0D8H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOM	T0ENB	T0rate2	T0rate1	T0rate0	ı	ı	ı	ı
读/写	R/W	R/W	R/W	R/W	-	-	-	-
复位后	0	0	0	0	-	-	-	-

Bit [6:4] TORATE[2:0]: TO 内部时钟选择位。

000 = fcpu/256.

001 = fcpu/128.

110 = fcpu/4.

111 = fcpu/2.

Bit 7 **T0ENB**: T0 计数控制位。

0 = 禁止.

1 = 使能.

8.2.3 TOC 计数寄存器

TOC 是一个 8 位计数寄存器。

0D9H	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0C	T0C7	T0C6	T0C5	T0C4	T0C3	T0C2	T0C1	T0C0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

T0 基本时间常数表

	1.3.10.30-00					
TODATE	T0CLOCK	高速模式(Fc	pu = 3.58MHz / 4)	低速模式(Fc	pu = 32768Hz / 4)	
TURATE	TUCLOCK	最大溢出间隔时间	单步间隔时间=max/256	最大溢出间隔时间	单步间隔时间=max/256	
000	fcpu/256	73.2 ms	286us	8000 ms	31.25 ms	
001	fcpu/128	36.6 ms	143us	4000 ms	15.63 ms	
010	fcpu/64	18.3 ms	71.5us	2000 ms	7.8 ms	
011	fcpu/32	9.15 ms	35.8us	1000 ms	3.9 ms	
100	fcpu/16	4.57 ms	17.9us	500 ms	1.95 ms	
101	fcpu/8	2.28 ms	8.94us	250 ms	0.98 ms	
110	fcpu/4	1.14 ms	4.47us	125 ms	0.49 ms	
111	fcpu/2	0.57 ms	2.23us	62.5 ms	0.24 ms	

TOC 初始值的计算方法如下:

T0C 初始值=256-(T0 中断间隔时间×输入时钟)

⊅ 例: 3.58MHZ 高速模式下,设 T0 的时间间隔为 10ms。T0C (74H) = 256一(10ms×fcpu÷64)。 Fcpu = Fosc/4。

TOC 初始值 = 256 - (TO 中断间隔时间 * 输入时钟)

= 256 - (10ms * 3.58 * 106 / 4 / 64)

 $= 256 - (10^{-2} * 3.58 * 10^{6} / 4 / 64)$

= 116

= 74H

8.3 定时/计数器(TC1)

8.3.1 概述

TC1 是一个二进制定时器/计数器,利用 TC1M 寄存器从 Fcpu 或者外部 INT1 引脚(下降沿触发)选择 TC1C 的时钟源,以进行精确的计时/计数。如果 TC1 溢出(从 FFH 到 00H), TC1 将继续计数并产生溢出触发信号,请 求 TC1 中断服务。

TC1 定时器的主要功能如下:

- 8 位可编程定时器:根据设定的时钟频率,产生定时中断。
- 外部事件计数器: 在 INT1 输入引脚端,用外部时钟信号的下降沿记录系统"事件"。 (P)
- Buzzer 输出 (P)
- PWM 输出

8.3.2 TC1M 模式寄存器

0DCH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1M	TC1ENB	TC1rate2	TC1rate1	TC1rate0	TC1CKS	ALOAD1	TC10UT	PWM10UT
读/写	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
复位后	0	0	0	0	0	0	0	0

Bit 0 PWM1OUT: PWM 输出控制位

0 = 禁止 PWM 输出

1 = 使能 PWM 输出, PWM 的占空比由 TC1OUT 和 ALOAD1 位决定。

Bit 1 TC1OUT: TC1 溢出信号输出控制位。仅在 PWM1OUT=0 时有效。

0 = 禁止, P5.3 为基本输入/输出端

1 = 使能, P5.3 为 TC1OUT 信号的输出端。

Bit 2 ALOAD1: 自动装载控制位。仅在 PWM1OUT=0 时有效。

0 = 禁止 TC1 的自动装载功能

1 = 使能 TC1 的自动装载功能

Bit 3 TC1CKS: TC1 时钟源选择位

0 = 内部时钟(Fcpu).

1 = 来自 INT1/P0.1 引脚的外部时钟

Bit [6:4] TC1RATE[2:0]: TC1 内部时钟选择位

000 = fcpu/256. 001 = fcpu/128.

110 = fcpu/4. 111 = fcpu/2.

Bit 7 TC1ENB: TC1 计数器控制位

0 = 禁止 TC1 定时器

1 = 使能 TC1 定时器

当 TC1CKS=1 时, TC1 作为外部事件计数器。P0.1 的中断请求被禁止(P0.1IRQ 始终为 0)。

8.3.3 TC1C 计数寄存器

TC1C 是一个8位计数寄存器,用来控制 TC1的间隔时间。

0DDH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1C	TC1C7	TC1C6	TC1C5	TC1C4	TC1C3	TC1C2	TC1C1	TC1C0
读/写	R/W							
复位后	0	0	0	0	0	0	0	0

TC1 基本时间常数表

TC1DATE	TC1CLOCK	高速模式(Fc	pu = 3.58MHz / 4)	低速模式(Fcpu = 32768Hz / 4)		
TOTRATE	TOTOLOGK	最大溢出间隔时间	单步间隔时间=max/256	最大溢出间隔时间	单步间隔时间=max/256	
000	fcpu/256	73.2 ms	286us	8000 ms	31.25 ms	
001	fcpu/128	36.6 ms	143us	4000 ms	15.63 ms	
010	fcpu/64	18.3 ms	71.5us	2000 ms	7.8 ms	
011	fcpu/32	9.15 ms	35.8us	1000 ms	3.9 ms	
100	fcpu/16	4.57 ms	17.9us	500 ms	1.95 ms	
101	fcpu/8	2.28 ms	8.94us	250 ms	0.98 ms	
110	fcpu/4	1.14 ms	4.47us	125 ms	0.49 ms	
111	fcpu/2	0.57 ms	2.23us	62.5 ms	0.24 ms	

TC1C 初始值的计算方法如下:

TC1C 初始值=256-(TC1 中断间隔时间×输入时钟)

● 例: 3.58MHZ 高速模式下,设 TC1 的时间间隔为 10ms。TC1C (74H) = 256—(10ms×fcpu÷64)。(Fcpu=Fosc/4)

TC1C 初始值 = 256 - (TC1 中断间隔时间 * 输入时钟)

= 256 - (10ms * 3.58 * 106 / 4 / 64) = 256 - (10-2 * 3.58 * 106 / 4 / 64)

= 116

= 74H

8.3.4 TC1C 溢出时间

TC1 的溢出时间有两种(PWM 模式和无 PWM 模式)。无 PWM 模式,其溢出边界为 0~255; PWM 模式,溢出边界包括四种(0~16,0~32,0~64,0~255),由 TC1M 寄存器的 TC1OUT, ALOAD1 位控制。

TC1C 溢出时间列表

PWM1	ALOAD1	TC10UT	TC1C 有效值	TC1C 的边界类型	备注
0	х	Х	0x00~0xFF	00000000b~1111111b	每计数 256 次溢出
1	0	0	0x00~0xFF	00000000b~11111111b	每计数 256 次溢出
1	0	1	0x00~0x3F	xx000000b~xx111111b	每计数 64 次溢出
1	1	0	0x00~0x1F	xxx00000b~xxx11111b	每计数 32 次溢出
1	1	1	0x00~0x0F	xxxx0000b~xxxx1111b	每计数 16 次溢出

8.3.5 TC1R 自动装载寄存器

TC1 的自动装载功能由 TC1M 的 ALOAD1 位控制,当 TC1C 溢出时,TC1R 的值装载到 TC1C 中。易于产生一个精确时间,在中断发生时用户不需复位 TC1C。

☀ 注:在 PWM 模式下,自动使能自动装载功能,ALOAD1 位选择溢出的边界。

0DEH	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1R	TC1R7	TC1R6	TC1R5	TC1R4	TC1R3	TC1R2	TC1R1	TC1R0
读/写	W	W	W	W	W	W	W	W
复位后	0	0	0	0	0	0	0	0

TC1R 初始值的计算如下:

TC1R 初始值 = 256 - (TC1R 中断间隔时间*输入时钟

● 例:设 Fosc=3.58MHz,TC1的中断时间间隔为 10ms。TC1R(74H)=256-(10ms*fcpu/64)。Fcpu=Fosc/4 TC1R 初始值 = 256 - (TC1 中断时间间隔 * 输入时钟)

= 256 - (10ms * 3.58 * 106 / 4 / 64)

= 256 - (10-2 * 3.58 * 106 / 4 / 64)

= 116

= 74H

8.3.6 TC1 操作流程

TC1 的操作包括定时器的中断,事件的计数。TC1OUT 和 PWM。TC1 的初始化操作如下:

☞ TC1 停止计数,禁止 TC1 中断并清 TC1 中断请求标志。

 	_ , ,,,,,,,	77.77 7 77 =
程序	茅	注释
B0BCLR	FTC1ENB	停止 TC1 定时器,TC1OUT 和 PWM
B0BCLR	FTC1IEN	禁止 TC1 中断功能。
B0BCLR	FTC1IRQ	清 TC1 中断请求标志

☞ 设置 TC1 的速率 (事件计数器模式除外)

	程序	注释			
MOV	A, #00H	由 TC1M 的第 4~6 位控制 TC1 的速率,其值处于 00h~70h 之间			
B0MOV	TC1M,A	田 TOTM 的第4 *0 世生制 TOT的逐举,共且处了 00H*70H之间			

☞ 设置 TC1 定时功能模式

程	序	注释
B0BSET	FTC1IEN	使能 TC1 中断
B0BSET	FTC1OUT	使能 TC1OUT 功能
B0BSET	FPWM1OUT	使能 PWM 功能

☞ 设置 TC1 定时时钟源

程	序	注释		
B0BCLR	FTC1CKS	从系统时钟中选择 TC1 的时钟源		
B0BSET	FTC1CKS	从外部事件计数器中选择 TC1 的时钟源		

☞ 设置 TC0 的自动装载模式.

程	序	注释
B0BCLR	FALOAD1	禁止自动装载模式
B0BSET	FALOAD1	使能自动装载模式

☞ 设置 TC0 的间隔时间和 PWM 占空比

	程序	注释
MOV	A,#7FH	设置 TC1 的间隔时间,并由 TC1C 设置 PWM 的占空比。TC1R
B0MOV	1 C 1 C A	处于自动装载模式(PWM 模式下)
B0MOV	TC1R,A	文 J 日 列 农 软 (F W W)
B0BCLR	FTC1OUT	设置 PWM 的占空比为 0~255
B0BCLR	FALOAD1	以且FVVIVI 的日主比为 0~255

☞ 使能 TC1 定时器, TC1OUT 和 PWM 输出

程序	注释
B0BSET FTC1ENB	使能 TC1 定时/计数器

8.3.7 TC1 时钟频率输出(BUZZER 输出)

TC1 定时器/计数器提供了一个频率输出功能。通过设置 TC1 的时钟频率,可以从 P5.3 输出时钟信号,同时 P5.3 的基本输入/输出功会自动屏蔽。TC1 的输出信号是 2 分频的。由于 TC1 时钟源可以有多种选择,相应就可产生多种频率输出,这个功能常用作蜂鸣器输出。

● 例: 设置 TC1 的 TC1OUT (P5.3)输出。外部高速时钟为 4MHz, TC1OUT 输出信号的频率为 1KHz。 因为 TC1OUT 输出信号是经过了 2 分频, 因此设置 TC1 的时钟频率 2KHz。TC1 时钟源来自外部振荡器, T1C 的 基频为 Fcpu/4. TC1RATE2~TC1RATE1 = 110. TC1C = TC1R = 131.

MOV A,#01100000B

B0MOV TC1M,A ; 设置 TC1 的时钟分频数 Fcpu/4

MOV A,#131 ; 设置自动重新转载的时间常数

B0MOV TC1C,A B0MOV TC1R,A

BOBSET FTC1OUT ; 使能 TC1OUT 功能并禁止 P5.3 的输入/输出功能

BOBSET FALOAD1 ; 使能自动装载 BOBSET FTC1ENB ; TC1 开始计数

☀ 注: 使能 Buzzer 输出, "PWM0OUT"必须为"0"。

8.3.7.1 TC1OUT 频率表

Fosc = 4MHz, TC1 Rate = Fcpu/8

TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)
0	0.2441	56	0.3125	112	0.4340	168	0.7102	224	1.9531
1	0.2451	57	0.3123	113	0.4371	169	0.7184	225	2.0161
2	0.2461	58	0.3141	114	0.4401	170	0.7164	226	2.0833
3	0.2470	59	0.3173	115	0.4433	171	0.7353	227	2.1552
4	0.2480	60	0.3173	116	0.4464	172	0.7440	228	2.2321
5	0.2490	61	0.3205	117	0.4496	173	0.7530	229	2.3148
6	0.2500	62	0.3222	118	0.4529	174	0.7622	230	2.4038
7	0.2510	63	0.3238	119	0.4562	175	0.7716	231	2.5000
8	0.2520	64	0.3255	120	0.4596	176	0.7813	232	2.6042
9	0.2530	65	0.3272	121	0.4630	177	0.7911	233	2.7174
10	0.2541	66	0.3289	122	0.4664	178	0.8013	234	2.8409
11	0.2551	67	0.3209	123	0.4699	179	0.8117	235	2.9762
12	0.2561	68	0.3324	124	0.4735	180	0.8224	236	3.1250
13	0.2572	69	0.3342	125	0.4771	181	0.8333	237	3.2895
14	0.2583	70	0.3360	126	0.4808	182	0.8446	238	3.4722
15	0.2593	71		127	0.4845	183	0.8562	239	
16	0.2604	72	0.3378 0.3397	127	0.4883	184	0.8681	240	3.6765 3.9063
17	0.2615	73	0.3415	129	0.4921	185	0.8803	241	4.1667
18	0.2626	74	0.3434	130	0.4960	186	0.8929	242	4.4643
19	0.2637	75	0.3453	131	0.4980	187	0.8929	242	4.8077
20	0.2648	76	0.3472	132	0.5040	188	0.9056	243	5.2083
21	0.2660	77	0.3472	133	0.5040	189	0.9328	244	5.6818
22	0.2671	78	0.3492	134	0.5123	190	0.9328	245	6.2500
23	0.2682	79			0.5123	191	0.9470	247	
	0.2694		0.3531	135	0.5208				6.9444 7.8125
24 25	0.2694	80 81	0.3551	136 137	0.5252	192 193	0.9766 0.9921	248	
26	0.2706	82	0.3571	138	0.5252	193	1.0081	249 250	8.9286 10.4167
27	0.2717	83	0.3592 0.3613	139		195	1.0246	251	12.5000
	0.2729	84	0.3634	140	0.5342 0.5388	195	1.0246	251	
28	0.2741								15.6250
29 30	0.2765	85	0.3655 0.3676	141 142	0.5435 0.5482	197 198	1.0593 1.0776	253 254	20.8333 31.2500
	0.2765	86						254	
31		87	0.3698	143	0.5531	199	1.0965	255	62.5000
32 33	0.2790 0.2803	88 89	0.3720 0.3743	144 145	0.5580 0.5631	200 201	1.1161 1.1364		
34	0.2815				0.5682	202			
35	0.2828	90	0.3765 0.3788	146	0.5734		1.1574 1.1792		
36	0.2841	91 92	0.3766	147 148	0.5787	203 204	1.2019	-	
37	0.2854	93	0.3834	149	0.5841	204	1.2255		
38						-	1.2500		
39	0.2867 0.2880	94 95	0.3858 0.3882	150 151	0.5896 0.5952	206 207	1.2755		
						-		1	
40 41	0.2894 0.2907	96 97	0.3906 0.3931	152 153	0.6010 0.6068	208 209	1.3021 1.3298	1	
42	0.2907	98	0.3956	154	0.6127	210	1.3587	1	
42	0.2921	98	0.3981	154	0.6127	210	1.3889	1	
43	0.2934	100	0.4006	156	0.6250	211	1.3889	1	
		101	0.4032		0.6250		1.4535	1	
45 46	0.2962 0.2976		0.4032	157	0.6378	213	1.4535	1	
46	0.2976	102 103	0.4085	158 159	0.6378	214 215	1.4881	1	
48	0.3005	103	0.4112	160	0.6510	216	1.5625	1	
49	0.3019	105	0.4112	161	0.6579	217	1.6026	1	
50	0.3019	105	0.4139	162	0.6649	217	1.6447	 	
51	0.3044	107	0.4195	163	0.6720	219	1.6892	 	
52	0.3049	107	0.4195	164	0.6720	220	1.7361	1	
53	0.3064	108	0.4252	165	0.6793	221	1.7857	1	
54	0.3079				0.6868			1	
54 55	0.3094	110 111	0.4281 0.4310	166 167	0.6944	222 223	1.8382 1.8939	 	
ეე	0.3109	111	0.4310	107	0.7022	223	1.0939	11	

Fosc = 16MHz, TC1 Rate = Fcpu/8

rosc :	Fosc = 16MHz, TC1 Rate = Fcpu/8										
TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)	TC1R	TC1OUT (KHz)		
0	0.9766	56	1.2500	112	1.7361	168	2.8409	224	7.8125		
1	0.9804	57	1.2563	113	1.7483	169	2.8736	225	8.0645		
2	0.9843	58	1.2626	114	1.7606	170	2.9070	226	8.3333		
3	0.9881	59	1.2690	115	1.7730	171	2.9412	227	8.6207		
4	0.9921	60	1.2755	116	1.7857	172	2.9762	228	8.9286		
5	0.9960	61	1.2821	117	1.7986	173	3.0120	229	9.2593		
6	1.0000	62	1.2887	118	1.8116	174	3.0488	230	9.6154		
7	1.0040	63	1.2953	119	1.8248	175	3.0864	231	10.0000		
8	1.0081	64	1.3021	120	1.8382	176	3.1250	232	10.4167		
9	1.0121	65	1.3089	121	1.8519	177	3.1646	233	10.8696		
10	1.0163	66	1.3158	122	1.8657	178	3.2051	234	11.3636		
11	1.0204	67	1.3228	123	1.8797	179	3.2468	235	11.9048		
12	1.0246	68	1.3298	124	1.8939	180	3.2895	236	12.5000		
13	1.0288	69	1.3369	125	1.9084	181	3.3333	237	13.1579		
14	1.0331	70	1.3441	126	1.9231	182	3.3784	238	13.8889		
15	1.0373	71	1.3514	127	1.9380	183	3.4247	239	14.7059		
16	1.0417	72	1.3587	128	1.9531	184	3.4722	240	15.6250		
17	1.0460	73	1.3661	129	1.9685	185	3.5211	241	16.6667		
18	1.0504	74	1.3736	130	1.9841	186	3.5714	242	17.8571		
19	1.0549	75	1.3812	131	2.0000	187	3.6232	243	19.2308		
20	1.0593	76	1.3889	132	2.0161	188	3.6765	244	20.8333		
21	1.0638	77	1.3966	133	2.0325	189	3.7313	245	22.7273		
22	1.0684	78	1.4045	134	2.0492	190	3.7879	246	25.0000		
23	1.0730	79	1.4124	135	2.0661	191	3.8462	247	27.7778		
24	1.0776	80	1.4205	136	2.0833	192	3.9063	248	31.2500		
25	1.0823	81	1.4286	137	2.1008	193	3.9683	249	35.7143		
26	1.0870	82	1.4368	138	2.1186	194	4.0323	250	41.6667		
27	1.0917	83	1.4451	139	2.1368	195	4.0984	251	50.0000		
28	1.0965	84	1.4535	140	2.1552	196	4.1667	252	62.5000		
29	1.1013	85	1.4620	141	2.1739	197	4.2373	253	83.3333		
30	1.1062	86	1.4706	142	2.1930	198	4.3103	254	125.0000		
31	1.1111	87	1.4793	143	2.2124	199	4.3860	255	250.0000		
32	1.1161	88	1.4881	144	2.2321	200	4.4643				
33	1.1211	89	1.4970	145	2.2523	201	4.5455				
34	1.1261	90	1.5060	146	2.2727	202	4.6296				
35	1.1312	91	1.5152	147	2.2936	203	4.7170				
36	1.1364	92	1.5244	148	2.3148	204	4.8077				
37	1.1416	93	1.5337	149	2.3364	205	4.9020				
38	1.1468	94	1.5432	150	2.3585	206	5.0000				
39	1.1521	95	1.5528	151	2.3810	207	5.1020				
40	1.1574	96	1.5625	152	2.4038	208	5.2083				
41	1.1628	97	1.5723	153	2.4272	209	5.3191				
42	1.1682	98	1.5823	154	2.4510	210	5.4348				
43	1.1737	99	1.5924	155	2.4752	211	5.5556				
44	1.1792	100	1.6026	156	2.5000	212	5.6818				
45	1.1848	101	1.6129	157	2.5253	213	5.8140				
46	1.1905	102	1.6234	158	2.5510	214	5.9524				
47	1.1962	103	1.6340	159	2.5773	215	6.0976				
48	1.2019	104	1.6447	160	2.6042	216	6.2500				
49	1.2077	105	1.6556	161	2.6316	217	6.4103				
50	1.2136	106	1.6667	162	2.6596	218	6.5789				
51	1.2195	107	1.6779	163	2.6882	219	6.7568				
52	1.2255	108	1.6892	164	2.7174	220	6.9444				
53	1.2315	109	1.7007	165	2.7473	221	7.1429				
54	1.2376	110	1.7123	166	2.7778	222	7.3529				
55	1.2438	111	1.7241	167	2.8090	223	7.5758				

8.4 PWM 功能说明

8.4.1 概述

PWM1 功能使用的时钟源为 TC1,产生的 PWM 信号通过 PWM1OUT 引脚(P5.3)输出。8 位计数器计数范围可为 256,64,32,16,由 ALOAD1 和 TC1OUT 位控制。8 位计数器的值与 TC1R 中的参考值相比较,当 TC1R 和 TC1C 的值相等时,PWM 输出低电平;当 TC1C 的值重新回到 0 时,PWM 输出高电平。PWM 的高低电平之比(占空比)等于 TC1R/256,64,32,16。

向参考寄存器 TCOR 中写入 00H 可以使 PWM 输出保持在低电平;在 PWM 运行中,可以通过调整 TC1R 的值改变 PWM 的占空比。

ALOAD1	TC1OUT	PWM 占空比范围	TC1C 有效值	TC1R 有效值	PWM 的最大频率 (Fcpu = 4MHz)	备注
0	0	0/256~255/256	0x00~0xFF	0x00~0xFF	7.8125K	每计数 256 次溢出
0	1	0/64~63/64	0x00~0x3F	0x00~0x3F	31.25K	每计数 64 次溢出
1	0	0/32~31/32	0x00~0x1F	0x00~0x1F	62.5K	每计数 32 次溢出
1	1	0/16~15/16	0x00~0x0F	0x00~0x0F	125K	每计数 16 次溢出

对不同的 TC1R, PWM 的输出占空比的范围为 0/256~255/256

8.4.2 PWM 程序说明

● 例: 设置 PWM1 的输出 PWM1OUT (P5.3),其中,外部高速振荡器时钟 4MHz,Fcpu=Fosc/4。 PWM 输出占空比为 30/256. PWM 的输出频率是 1KHz. PWM 的时钟源来自外部振荡器,TC1 的速率是 Fcpu/4. TC1RATE2~TC1RATE1 = 110. TC1C = TC1R = 30.

MOV A,#01100000B

B0MOV TC1M,A ; 设置 TC1 的时钟分频数 Fcpu/4

MOV A,#30 ; 设置 PWM 占空比为 30/256

B0MOV TC1C,A B0MOV TC1R,A

B0BCLR FTC1OUT ; 禁止 TC1OUT 功能

B0BCLR FALOAD1

B0BSET FPWM1OUT ; 使能 PWM0 输出到 P5.4 并禁止 P5.4 的输入输出功能

BOBSET FTC1ENB ; TC1 开始计数

☀ 注: TC1R 是只写寄存器,不能执行 INCMS, DECMS 指令。

例: 调整 TC1R 寄存器的值。

MOV A, #30H B0MOV TC1R, A

INCMS BUF0 ; B0MOV A, BUF0 ; B0MOV TC1R, BUF0

* 注:

1.在调整 PWM0 的占空比时,最好同时改变 TC0C 和 TC0R 的值,以避免 PWM0 的信号受到干扰; 2.PWM 功能在中断请求下可同时运行。

9

指令表

MOV MA M ← A - 1	Field	Mnem	onic	Description	С	DC	Ζ	Cycle
MICV MA M ← A					-	-	√	-
D BOMCV AM A ← M (bank 0) - - √ √ 1 1 N MOV AI A ← I -<	М				-	-		1
V BOMOV A.J. A ← I - - - 1 1 E MOV A.J. A ← I -	0		A,M		-	-	√	1
E MOV A, I A ←	V	B0MOV		· · · · · ·	-	-	_	1
XCH	Е	MOV	A,I	, , , , , , , , , , , , , , , , , , ,	-	-	-	1
ADC A,M A ← A + M + C, if occur carry, then C=1, else C=0		XCH		$A \leftarrow \rightarrow M$	-	-	-	1+N
ADC		MOVC		$R, A \leftarrow ROM[Y,Z]$	-	-	-	2
ADC MA M ← A + M + C, if occur carry, then C=1, else C=0		ADC	A.M		V	V	√	1
R ADD AM A ← A + M, if occur carry, then C=1, else C=0	Α							1+N
ADD M,A M, C, A + M, if occur carry, then C=1, else C=0							- :	1
T			-	·	1	V		1+N
H ADD A,I A,←A,+I,if occur carry, then C=1, else C=0 M SBC A,M A,←A,+I,if occur borrow, then C=0, else C=1 SBC M,A M,←A,-M,-if, if occur borrow, then C=0, else C=1 V, V, V, 1 T SUB A,M A,←A,-M, if occur borrow, then C=0, else C=1 V, V, V, 1 SUB A,M A,←A,-M, if occur borrow, then C=0, else C=1 V, V, V, 1 SUB A,I A,←A,-I, if occur borrow, then C=0, else C=1 AND A,M A,M A,—A, and M A,—A,-I, if occur borrow, then C=0, else C=1 AND A,M A,M A,—A, and M AND A,M A,M A,—A, and M AND A,M A,M A,—A and M A,—A, A,M A,—A and M C OR A,M A,M A,—A are M A,M A,M A,M A,M A,M M,M A,M M,M M,M M,M	Т		M,A	·	1	1	√	1+N
M SBC A.M A ← A - M - /C, if occur borrow, then C=0, else C=1 √	Н		A,I	· · · · · · · · · · · · · · · · · · ·	V	V	√	1
E SBC MA M ← A - M /C, if occur borrow, then C=0, else C=1	М			·	√	√	-\-\	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	SBC	M,A		V	1	√	1+N
SUB M,A M ← A - M, if occur borrow, then C=0, else C=1	Т		A,M	· · · · · · · · · · · · · · · · · · ·	√	√	√	1
C SUB A,I A ← A - I, if occur borrow, then C=0, else C=1 √ √ √ √ √ √ 1 AND A,M A ← A and M - - √ 1 1 O AND A,I A ← A and I - - √ 1 1 G OR A,M A ← A or M - - √ 1 1 I OR M,A M ← A or M - - √ 1 1 C OR A,I A ← A or M - - √ 1 1 1 1 XOR A,M A ← A xor M - - √ 1 1 1 XOR A,M A ← A xor M - - √ 1 1 XOR A,A A ← A xor M - - √ 1 1 XOR A,A A & A xor M - - 1 1 XOR A,A A XOR A<	1	SUB		· · · · · ·	√	√	√	1+N
AND A,M A ← A and M - - √ 1	С		A,I		V	V	√	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_	√ √	1
O AND A,I A ← A and I √ 1 G OR A,M A ← A or M √ 1 I OR M,A M ← A or M √ 1 OR A,I A ← A or I √ 1 XOR A,M A ← A xor M √ 1 XOR A,I A ← A xor I √ 1 XOR A,I A ← A xor I √ 1 SWAP M, A A ← X xor I √ 1 SWAP M A (b3-b0, b7-b4) ← (M(b7-b4, b3-b0) 1 + N RRC M A ← RC M √ 1 + N O RRCM M A ← RC M √ 1 + N C RLC M A ← RLC M √ 1 + N B CRC M A ← RLC M √ 1 + N CLR M M ← RLC M √ 1 + N B BCLR M.b M(b h0 b ← 0 1 + N B BCR M.b M(b h0 b ← 0 1 + N					_	_	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		_	-	√	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	-	√	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ĭ	_			-	_	\	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ċ		,		_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŭ							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,		_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р	_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					- ;			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ŭ				_	_		
BOBSET M.b M(bank 0).b ← 1 1+NCMPRS A,I $ZF,C \leftarrow A - I$, If $A = I$, then skip next instruction $\sqrt{}$ - $\sqrt{}$ 1 + SB CMPRS A,M $ZF,C \leftarrow A - M$, If $A = M$, then skip next instruction $\sqrt{}$ - $\sqrt{}$ 1 + SR INCS M A ← M + 1, If $A = 0$, then skip next instruction 1+N+SA INCMS M M ← M + 1, If $M = 0$, then skip next instruction 1+N+SN DECS M A ← M - 1, If $A = 0$, then skip next instruction 1+N+SC DECMS M M ← M - 1, If $M = 0$, then skip next instruction 1+N+SH BTS0 M.b If M.b = 0, then skip next instruction 1+SBTS1 M.b If M.b = 1, then skip next instruction 1+SBOBTS0 M.b If M(bank 0).b = 0, then skip next instruction 1+SBOBTS1 M.b If M(bank 0).b = 1, then skip next instruction 1+SJMP d PC15/14 ← RomPages1/0, PC13~PC0 ← d 2CALL d Stack ← PC15~PC0, PC15/14 ← RomPages1/0, PC13~PC0 ← d 2					-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	-	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					ما			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ь					-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					V		V	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	''			·	-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				·	_	_		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-	_	-	
CALL d Stack \leftarrow PC15~PC0, PC15/14 \leftarrow RomPages1/0, PC13~PC0 \leftarrow d 2					-	-	-	
				•	-	-	-	
I MILKEL IPC ← Stack	М	RET	-	PC ← Stack	_	_		2
I RETI PC ← Stack, and to enable global interrupt 2	1							
S PUSH To push ACC and PFLAG into buffers.	S				_	_		
C POP To pop ACC and PFLAG from buffers. $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 1				·				
NOP No operation 1				, ,	-			

[★] 注: 1."M"代表寄存器和存储器,"S"代表下一条指令的设置周期。若"M"是系统寄存器,则"N"=0,否则"N"=1。2. OSCM 的任何一条读/写指令都不加特别的时钟周期。

10 电气特性

10.1 极限参数

电源电压(Vdd)	0.3V ~ 6.0V
输入电压(Vin)	Vss – 0.2V ~ Vdd + 0.2V
	-20°C ~ + 70°C
存储温度(Tstor)	
功耗(Pc)	500mW

10.2 电气特性

(所有电压以 Vss, Vdd=5.0V 为参考值, fosc=3.579545MHz,环境温度为 25℃)

参数	符号	说明		最小值	标准值	最大值	单位
工作电压	Vdd	普通模式, Vpp = Vdd		2.4	5.0	5.5	V
工作电压	Vuu	编程模式, Vpp = 12.5V	-	6.0	-	ľ	
OTP 编程电压	Vpp	OTP 编程电压		-	12.5	-	V
RAM 数据保持电压	Vdr			-	1.5	-	V
内部 POR	Vpor	Vdd 的上升速率,以确保	内部的上电复位	-	0.05	-	V/ms
	ViL1	除特别申明的所有引脚		Vss	-	0.3Vdd	V
输入低电压	ViL2	施密特触发的输入端		Vss	-	0.2Vdd	V
- 桐八瓜屯広	ViL3	复位引脚; Xin (RC 模式)		Vss	-	0.2Vdd	V
	ViL4	Xin (X'tal 模式)		Vss	-	0.3Vdd	V
	ViH1	除特别申明的所有引脚		0.7Vdd	-	Vdd	V
输入高电压	ViH2	施密特触发的输入端		0.8Vdd	-	Vdd	V
和八尚	ViH3	复位引脚; Xin (RC 模式)	0.9Vdd	-	Vdd	V	
	ViH4	Xin (X'tal 模式)		0.7Vdd	-	Vdd	V
复位引脚漏电流	llekg	Vin = Vdd	-	-	1	uA	
I/O 口的上拉电阻	Rup	Vin = Vss , Vdd = 5V	-	100	-	K(
I/O 口的输入漏电流	llekg	Pull-up resistor disable, Vin =	Pull-up resistor disable, Vin = Vdd			1	uA
所有端口的源电流	loH	Vop = Vdd - 0.5V		-	15	-	mA
灌电流	loL	Vop = Vss + 0.5V		-	15	-	
INTn 触发脉冲宽度	Tintn	INTn 中断请求脉冲宽度		2/fcpu	-	-	cycle
		二仁拱	Vdd= 5V 4Mhz	-	2.5	-	mA
	ldd1	运行模式,无负载 (禁止低功耗功能)	Vdd= 3V 4Mhz Vdd= 3V	-	1	-	mA
			32768Hz	-	25	-	uA
	1440	中如 DC 掛子(4CKU-)	Vdd= 5V	-	25	-	uA
电源电流	ldd2	内部 RC 模式(16KHz)	Vdd= 3V	-	5	-	uA
电你 电机	ldd3	睡眠模式 Vdd= 5V		-	0.70		uA
		Vdd= 3V		-	0.50		uA
		绿色模式(高速时钟)	Vdd= 5V Vdd= 3V		0.50 0.15		mA mA
	ldd4		Vdd= 5V		15		uA
		绿色模式(低速时钟) Vdd= 3V Vdd= 3V			3		uA
LVD 侦测电平	VLVD	低电压侦测电平		-	1.8	-	V

11 封装

11.1 SK-DIP 28 PIN

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
		(inch)		(mm)		
Α	-	-	0.210	-	-	5.334
A1	0.015	-	-	0.381	-	-
A2	0.114	0.130	0.135	2.896	3.302	3.429
D	1.390	1.390	1.400	35.306	35.306	35.560
E		0.310		7.874		
E1	0.283	0.288	0.293	7.188	7.315	7.442
L	0.115	0.130	0.150	2.921	3.302	3.810
e B	0.330	0.350	0.370	8.382	8.890	9.398
θ°	0 °	7°	15°	0 °	7°	15°

11.2 SOP 28 PIN

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX
		(inch)		(mm)		
Α	0.093	0.099	0.104	2.362	2.502	2.642
A1	0.004	0.008	0.012	0.102	0.203	0.305
D	0.697	0.705	0.713	17.704	17.907	18.110
E	0.291	0.295	0.299	7.391	7.493	7.595
Н	0.394	0.407	0.419	10.008	10.325	10.643
L	0.016	0.033	0.050	0.406	0.838	1.270
θ°	0 °	4 °	8°	0°	4 °	8°

11.3 SSOP 20 PIN

SYMBOLS	MIN	NOR	MAX	MIN	NOR	MAX	
STIVIBULS		(inch)		(mm)			
Α	-	-	0.08	-	-	2.13	
A1	0.00	-	0.01	0.05	-	0.25	
A2	0.06	0.07	0.07	1.63	1.75	1.88	
В	0.01	-	0.01	0.22	-	0.38	
С	0.00	-	0.01	0.09	-	0.20	
D	0.39	0.40	0.41	9.90	10.20	10.50	
E	0.29	0.31	0.32	7.40	7.80	8.20	
E1	0.20	0.21	0.22	5.00	5.30	5.60	
[e]	0.002BSC 0.065B			0.065BSC			
L	0.02	0.04	0.04	0.63	0.90	1.03	
R	0.00	-		0.09	-	•	
θ°	0°	4°	8°	0 °	4 °	8°	

SONIX 公司保留对以下所有产品在可靠性、功能和设计方面的改进做进一步说明的权利。SONIX 不承担由本手册所涉及的产品或电路的运用和使用所引起的任何责任。SONIX 的产品不是专门设计来应用于外科植入、生命维持和任何 SONIX 产品的故障会对个体造成伤害甚至死亡的领域。如果将 SONIX 的产品应用于上述领域,即使这些是由 SONIX 在产品设计和制造上的疏忽引起的,用户应赔偿所有费用、损失、合理的人身伤害或死亡所直接或间接产生的律师费用,并且用户保证 SONIX 及其雇员、子公司、分支机构和销售商与上述事宜无关。

Main Office:

Address: 9F, NO. 8, Hsien Cheng 5th St, Chupei City, Hsinchu, Taiwan R.O.C.

Tel: 886-3-551 0520 Fax: 886-3-551 0523 **Taipei Office:**

Address: 15F-2, NO. 171, Song Ted Road, Taipei, Taiwan R.O.C.

Tel: 886-2-2759 1980 Fax: 886-2-2759 8180 **Hong Kong Office:**

Address: Flat 3 9/F Energy Plaza 92 Granville Road, Tsimshatsui East Kowloon.

Tel: 852-2723 8086 Fax: 852-2723 9179

Technical Support by Email:

Sn8fae@sonix.com.tw 深圳技术支持中心:

地址:深圳市科技园南区 T2-B 栋 2 楼

电话: 0755-26719666 传真: 0755-26719786