CC1 Version B (durée 60 mn)

Exercice 1 (Question de cours). Soit β un nombres réel tel que $\beta \leq 1$. Montrer que l'intégrale impropre

$$\int_{2}^{+\infty} \frac{dx}{x(\ln(x))^{\beta}}$$

diverge.

Corrigé. Cf. Cours.

Exercice 2. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{dx}{x^2 + 3x + 2}$$

converge, et calculer sa valeur.

Corrigé. On remarque tout d'abord que $x^2 + 3x + 2 = (x+1)(x+2)$, et donc que la fonction $x \mapsto \frac{1}{x^2 + 3x + 2}$ est continue et positive sur \mathbb{R}_+ . L'intégrale est impropre en $+\infty$. Par ailleurs, $\frac{1}{x^2 + 3x + 2} \sim \frac{1}{x^2}$, qui est un exemple de Riemann dont l'intégrale converge en $+\infty$. Par critère d'équivalence sur les fonctions à valeurs positives, appliqué sur l'intervalle $[1; +\infty[$, l'intégrale est bien convergente (la question de la convergence sur [0; 1] ne se pose pas).

Pour le calcul de la valeur, on effectue une décomposition en éléments simples. On trouve que pour tout réel positif x, $\frac{1}{x^2+3x+2} = \frac{1}{x+1} - \frac{1}{x+2}$, et donc :

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 3x + 2} = \lim_{A \to +\infty} \int_{0}^{A} \frac{dx}{x^{2} + 3x + 2}$$

$$= \lim_{A \to +\infty} \int_{0}^{A} \frac{dx}{x + 1} - \int_{0}^{A} \frac{dx}{x + 2}$$

$$= \lim_{A \to +\infty} \left[\ln(x + 1) \right]_{0}^{A} - \left[\ln(x + 2) \right]_{0}^{A}$$

$$= \lim_{A \to +\infty} \ln(A + 1) - \ln(1) - \ln(A + 2) + \ln(2)$$

$$= \lim_{A \to +\infty} \ln\left(\frac{A + 1}{A + 2}\right) + \ln(2)$$

$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 3x + 2} = \ln(2)$$

Remarque : il est possible de calculer la limite $\lim_{A \to +\infty} \int_0^A \frac{dx}{x^2 + 3x + 2}$ dès le début, de constater que c'est un nombre réel, et de conclure à la convergence de l'intégrale a posteriori. Dans ce cas, il n'est pas possible d'écrire $\int_0^{+\infty} \frac{dx}{x^2 + 3x + 2} = \lim_{A \to +\infty} \int_0^A \frac{dx}{x^2 + 3x + 2}$ tant que la convergence de l'intégrale n'est pas assurée.

Exercice 3. Déterminer si l'intégrale impropre

$$\int_0^\infty \frac{dx}{x + 2x^{3/2} + 3x^{7/2}}$$

est convergente ou divergente.

Corrigé. L'intégrale est impropre en 0 et en $+\infty$. La fonction intégrée est positive et continue sur \mathbb{R}_+^* . En 0, la fonction intégrée est équivalente à $\frac{1}{x}$, qui est un exemple de Riemann divergent. Par critère d'équivalence sur les fonctions positives, l'intégrale diverge.

Exercice 4. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{\sin\left(\frac{1}{x}\right)}{x^{1/2}} dx$$

est absolument convergente.

Corrigé. La fonction intégrée est continue sur \mathbb{R}_+^* , l'intégrale est impropre en 0 et en $+\infty$.

- (1) Etude de $\int_0^1 \frac{\sin\left(\frac{1}{x}\right)}{x^{1/2}} dx$. Pour tout $x \in]0;1]$, $\left|\frac{\sin\left(\frac{1}{x}\right)}{x^{1/2}}\right| \leq \frac{1}{x^{1/2}}$. Or cette dernière fonction est un exemple de Riemann dont l'intégrale converge en 0. Par critère de majoration pour les fonctions à valeurs positives, l'intégrale initiale converge absolument.
- (2) Etude de $\int_{1}^{+\infty} \frac{\sin\left(\frac{1}{x}\right)}{x^{1/2}} dx$. Puisque $\frac{1}{x} \in]0;1]$, on a $\sin(\frac{1}{x}) \geq 0$, et donc la fonction intégrée est positive. La convergence équivaut à la convergence absolue. Puisque $\frac{1}{x}$ tend vers $0 \text{ en } +\infty$, on a $\sin(\frac{1}{x}) \underset{+\infty}{\sim} \frac{1}{x}$, et donc par quotient d'équivalents, $\frac{\sin\left(\frac{1}{x}\right)}{x^{1/2}} \underset{+\infty}{\sim} \frac{1}{x^{3/2}}$, qui est un exemple de Riemann dont l'intégrale converge en $+\infty$. Par ailleurs, la fonction $x \mapsto \frac{1}{x^{3/2}}$ est positive, et donc par critère d'équivalence, l'intégrale converge absolument.

L'intégrale de l'énoncé est bien absolument convergente.

Exercice 5. Montrer que l'intégrale impropre

$$\int_0^{+\infty} \frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{5}{2}}} dx$$

converge. Est-elle absolument convergente?

Corrigé. On a ici encore une intégrale impropre en 0 et en $+\infty$. On sait que pour tout réel strictement positif x, on a $x > |\sin(x)|$, et donc que $2x + \sin(x)$ est un nombre strictement positif. La fonction $x \mapsto \frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{5}{2}}}$ est donc continue sur \mathbb{R}_+^* , et l'intégrale est impropre en 0 et en $+\infty$.

- (1) Etude de $\int_0^1 \frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{5}{2}}} dx$. Sur l'intervalle]0;1], la fonction intégrée est positive, et donc la convergence équivaut à la convergence absolue. On remarque que $\sin(x) \sim x$, que $\ln(1+x) \sim x$. Un développement limité à l'ordre 1 de la fonction sin en 0 montre que $2x+\sin(x)=3x+o(x)$ au voisinage de 0, et donc $(2x+\sin(x))^{\frac{5}{2}} \sim 3^{\frac{5}{2}}x^{\frac{5}{2}}$. La fonction intégrée est donc équivalente en 0 à $x\mapsto \frac{1}{3^{\frac{5}{2}}}\times \frac{1}{x^{\frac{1}{2}}}$. À une constante multiplicative près, c'est un exemple de Riemann dont l'intégrale est convergente en 0, et donc, par critère d'équivalence sur les fonctions positives, $\int_0^1 \frac{\cos(x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$ converge et converge absolument.
- (2) Etude de $\int_1^{+\infty} \frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{5}{2}}} dx$. Pour montrer la convergence, il est plus facile ici de passer directement par la convergence absolue. En effet, pour tout $x \geq 1$, on a $\left|\frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{5}{2}}}\right| \leq \frac{x}{(2x-1)^{\frac{5}{2}}}$. Cette dernière expression est équivalente en $+\infty$ à $\frac{1}{2^{\frac{5}{2}}}\frac{1}{x^{\frac{3}{2}}}$, qui (à une constante multiplicative près) est un exemple de Riemann dont l'intégrale converge en $+\infty$. Par critère d'équivalence, $\int_1^{+\infty} \frac{\ln(1+x)\sin(x)}{(2x+\sin(x))^{\frac{3}{2}}} dx$ converge absolument, et donc converge.

L'intégrale de l'énoncé est donc absolument convergente.