4/14/2019 Calc Team

question 2 views

Daily Challenge 13.7

(Due: Wednesday 9/12 at 12:00 noon eastern)

(1) The MVT guarantees a point where the derivative equals the secant line slope on an interval.

In our proof that the sign of the derivative controls whether a function is increasing or decreasing, we had to develop a very powerful result known as the mean value theorem.

Along with the intermediate value theorem and extreme value theorem, the MVT is among the most overpowered results in calculus. I repeat it here for convenience.

Theorem (MVT). Let f be continuous on [a,b] and differentiable on (a,b). Then there exists some $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Graphically, this is telling us that there must be *some* point in the interval at which the slope of the tangent line to f matches the slope of the secant line through the endpoints (a, f(a)) and (b, f(b)).

One can use this to obtain some surprisingly strong results. I provide two examples.

Example. Suppose a driver passes a point on the road at t=0, then passes a second point on the road 70 miles away at time t=1 hour. The speed limit along the road is 65 miles per hour. Prove that the driver exceeded the speed limit at some time.

Proof. Let f(t) be the position of the car at time t, so that f(0) = 0 and f(1 hour) = 70 miles. Then the slope of the secant line on the interval is

$$\frac{f(b) - f(a)}{b - a} = 70 \frac{\text{miles}}{\text{hour}}$$

If the function f(t) is continuous and differentiable (which it should be, unless cars can teleport), then we may apply the mean value theorem to find that there was a time $t_0 \in (0,1)$ at which f'(t) = 70 mph. At the time t_0 , the car exceeded the speed limit. \square

Here is a second example which is less playful.

Example. Let f be differentiable on (a,b) and continuous on [a,b], and suppose that f'(x)=0 for all $x\in(a,b)$. Prove that f must be a constant function.

Proof. Consider any two points $c,d\in(a,b)$ with c< d. By restricting to the interval [c,d], we know that f is still continuous and differentiable on [c,d], and thus we may apply the mean value theorem to conclude that there must exist a point $z\in(c,d)$ such that

$$f'(z) = \frac{f(d) - f(c)}{d - c}.$$

However, we have by assumption that f'(z)=0, so we immediately conclude that f(d)=f(c). But the two points d and c were completely arbitrary, so the function f must take on the same value at every point in [a,b] (that is, f is constant). \Box

(2) Problem: polynomial roots.

Recall that we say a polynomial p(x) has n distinct roots if there are n different numbers x_i such that $p(x_i) = 0$. For instance, the polynomial $p(x) = x^2$ has only one distinct root (namely x = 0), while p(x) = (x - 1)(x + 2) has two distinct roots (here they are x = 1 and x = -2).

Clearly, by the fundamental theorem of algebra, a polynomial of degree n can have at most n distinct roots (so long as we demand that the polynomial is not simply the constant function p(x) = 0, which has infinitely many roots). But it can certainly have fewer than n distinct roots, if a root occurs with multiplicity, as we see with examples like $p(x) = x^2$.

Challenge: suppose that f is a degree n polynomial with n distinct roots. Show that f' has exactly n-1 distinct roots.

4/14/2019 Calc Team

(Hint: apply the mean value theorem where the endpoints are roots of the original polynomial f .)	
daily_challenge	
	Updated 7 months ago by Christian Ferko

the students' answer, where students collectively construct a single answer

Logan Pachulski:

We are given that p'(x) is an n degree polynomial with n distinct roots. Let a be the smallest of the distinct roots, and b be the largest of the distinct roots. We know that polynomials are continuous and differentiable at all points; We can then apply the mean value theorem to see that there exists some point c such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. We see that since f(b) = f(a) = 0, then it must be true f'(c) = 0 and therefore c is a root of the derivative. We see that we can choose various pairs of the original distinct roots and find a point in that range where the derivative is zero. Intuitive idea follows: like a fork, there is one point in each "gap" between roots where the derivative equals zero, and as a result of that derivative being zero it is a distinct root of the derivative's graphed equation.

Updated 7 months ago by Logan Pachulski

the instructors' answer, where instructors collectively construct a single answer

Proof. Let p(x) be a polynomial of degree n with n distinct roots. Enumerate the roots x_1, x_2, \cdots, x_n from smallest to largest.

Because p(x) is a polynomial, it satisfies the hypotheses of the mean value theorem everywhere, so we may apply the MVT to the interval $[x_1,x_2]$ to find that there exists some $y_1 \in (x_1,x_2)$ where

$$f'(y_1) = rac{f(x_2) - f(x_1)}{x_2 - x_1} = 0,$$

where in the last step we have used the assumption that $f(x_2) = 0 = f(x_1)$.

But clearly we may apply the argument again to the interval $[x_2,x_3]$, to $[x_3,x_4]$, and so on, up to $[x_{n-1},x_n]$. In this way we construct a sequence of n-1 points y_1,\cdots,y_{n-1} with the property that $f(y_i)=0$.

Thus the derivative f'(x) has at least n-1 distinct roots, the y_i constructed above. On the other hand, by the power rule we know that f'(x) is a polynomial of degree n-1, so by the fundamental theorem of algebra it has a total of n-1 complex roots counting multiplicity. In particular, this means that it can have at most n-1 distinct roots.

We conclude that f'(x) has precisely n-1 distinct roots, as claimed. \Box

Updated 7 months ago by Christian Ferko

followup discussions for lingering questions and comments