

Engenharia econômica

Vinicius Santos

Economia - ENG1 07067

07 de Julho de 2025

1/11

Taxas de juros que variam com o tempo

- Empréstimos estudantis sob o programa Stafford do governo dos EUA permitem que os estudantes tomem emprestado até um certo valor a cada ano (com base no ano de curso e na necessidade financeira).
- Os empréstimos Stafford são o tipo mais comum de empréstimo educacional e têm uma taxa de juros flutuante que é reajustada a cada ano (mas não pode exceder 8,25% ao ano).
- Quando a taxa de juros de um empréstimo pode variar com o tempo, é necessário levar isso em consideração ao determinar o valor futuro equivalente do empréstimo.
- O Exemplo a seguir demonstra como essa situação deve ser tratada.

Ashea Smith é uma estudante de 22 anos no último ano da graduação que utilizou o programa de empréstimo Stafford para tomar emprestado \$4.000 há quatro anos, com taxa de juros de 4,06% ao ano. Há três anos, ela tomou emprestado \$5.000 a uma taxa de 3,42% ao ano. Há dois anos, ela tomou emprestado \$6.000 com juros de 5,23% ao ano. No ano passado, ela tomou emprestado \$7.000 com uma taxa de 6,03% ao ano. Agora, ela deseja consolidar toda a dívida em um único empréstimo de 20 anos com taxa fixa de 5% ao ano. Se Ashea fizer pagamentos anuais (começando em um ano) para quitar toda a dívida, qual será o valor de cada pagamento?

Taxas de juros que variam com o tempo - Solução

O diagrama de fluxo de caixa a seguir esclarece o cronograma dos empréstimos de Ashea e as taxas de juros aplicáveis. O diagrama é desenhado do ponto de vista de Ashea.

Antes de podermos encontrar o valor do pagamento anual, precisamos encontrar o valor equivalente atual (tempo 0) dos quatro empréstimos. Este problema pode ser resolvido capitalizando o valor devido no início de cada ano pela taxa de juros aplicável a cada ano individualmente. Esse processo deve ser repetido ao longo dos quatro anos para se obter o valor equivalente total atual.

Taxas de juros que variam com o tempo - Solução

$$\begin{split} F_{-3} &= \$4000(F/P, 4.06\%, 1) + \$5000 = \$4000(1.0406) + \$5000 = \$9162.40 \\ F_{-2} &= \$9162.40(F/P, 3.42\%, 1) + \$6000 = \$15475.75 \\ F_{-1} &= \$15475.75(F/P, 5.236\%, 1) + \$7000 = \$23285.13 \\ F_{0} &= \$23285.13(F/P, 6.03\%, 1) = \$24689.22 \end{split}$$

Note que foi simples substituir $(F/P, i\%, n) = (1+i)^n$ para os valores não inteiros de i. Agora que temos o valor equivalente atual do montante que Ashea tomou emprestado $(F_0 = P_0)$, podemos facilmente calcular seu pagamento anual ao longo de 20 anos, quando a taxa de juros é fixa em 5% ao ano.

$$A = \$24689.22(A/P, 5\%, 20) = \$24689.22(0.0802) = \$1980.08$$
 por ano

O principal total emprestado foi \$4000 + \$5000 + \$6000 + \$7000 = \$22000. Observe que um total de $$17601.60 (20 \times $1980.08 - $22000)$ em juros é pago ao longo de todo o período do empréstimo de 20 anos. Esse valor de juros é próximo ao montante principal originalmente emprestado. Moral da história: Pegue emprestado o mínimo possível e quite o empréstimo o mais rápido possível para reduzir os custos com juros!

Taxas de juros que variam com o tempo

- Para obter o equivalente presente de uma série de fluxos de caixa futuros sujeitos a taxas de juros variáveis, utiliza-se um procedimento semelhante ao anterior, com uma sequência de fatores (P/F, i_k %, k).
- Em geral, o valor presente equivalente de um fluxo de caixa que ocorre no final do período n pode ser calculado utilizando a Equação 1,
- onde i_k é a taxa de juros para o k-ésimo período (o símbolo \prod significa "o produto de").

$$P = \frac{F_n}{\prod_{k=1}^{n} (1 + i_k)}$$
 (1)

5/11

ullet Por exemplo, se $F_4=\$1.000$ e $i_1=10\%,\ i_2=12\%,\ i_3=13\%$ e $i_4=10\%,\ {
m ent\~ao}$

$$P = \$1000[(P/F, 10\%, 1)(P/F, 12\%, 1)(P/F, 13\%, 1)(P/F, 10\%, 1)]$$

= $\$1000[(0.9091)(0.8929)(0.8850)(0.9091)] = \653

Vinicius Santos Engenharia Econômica 07 de Julho de 2025

- Muito frequentemente, o período de capitalização, ou o tempo entre capitalizações sucessivas, é inferior a um ano (por exemplo, diário, semanal, mensal ou trimestral).
- Tornou-se costumeiro citar taxas de juros em base anual, seguida do período de capitalização se este for diferente de um ano.
- Por exemplo, se a taxa de juros for 6% por período de capitalização e o período for de seis meses, é costume dizer "12% capitalizado semestralmente."
- Aqui, a taxa anual de juros é conhecida como taxa nominal, sendo 12% neste caso.
- Uma taxa de juros nominal é representada por r.
- No entanto, a taxa anual efetiva sobre o principal não é 12%, mas algo maior, pois a capitalização ocorre duas vezes ao ano.
- Consequentemente, a frequência com que uma taxa de juros nominal é capitalizada por ano pode ter um efeito marcante sobre o valor total de juros ganhos.
- Por exemplo, considere um valor principal de \$1000 a ser investido por três anos a uma taxa nominal de 12% capitalizada semestralmente.
- Os juros obtidos durante os primeiros seis meses seriam $1000 \times (0.12/2) = 60$.

O total de principal e juros no início do segundo período de seis meses é

$$P + P_i = $1000 + $60 = $1060.$$

 Os juros obtidos durante os segundos seis meses calculados sobre o novo montante acumulado são

$$1060 \times (0.12/2) = 63.60.$$

O total de juros obtidos durante o ano é a soma dos juros dos dois semestres:

$$\$60.00 + \$63.60 = \$123.60.$$

Finalmente, a taxa de juros efetiva anual para todo o ano é calculada como:

$$\frac{\text{Juros totais}}{\text{Valor principal}} = \frac{\$123.60}{\$1000} = 0.1236 \times 100 = 12.36\%.$$

7 / 11

 Se esse processo for repetido para os anos dois e três, o valor acumulado (capitalizado) dos juros pode ser representado graficamente conforme mostrado na Figura 1.

Vinicius Santos Engenharia Econômica 07 de Julho de 2025

Figura 1. \$1000 capitalizado com frequência semestral (r = 12%, M = 2)

8/11

- A taxa real ou exata de juros obtida sobre o principal durante um ano é conhecida como taxa efetiva.
- Deve-se observar que taxas efetivas de juros s\u00e3o sempre expressas em base anual, a menos que se declare especificamente o contr\u00e1rio.
- Neste contexto, a taxa de juros efetiva por ano é designada por i e a taxa nominal de juros por ano por r.
- ullet Em estudos de economia da engenharia nos quais a capitalização é anual, i=r.
- A relação entre o juro efetivo i e o juro nominal r é dada por:

$$i = (1 + \frac{r}{M})^M - 1,$$
 (2)

onde M é o número de períodos de capitalização por ano.

- Agora está claro pela Equação 1 por que i > r quando M > 1.
- A taxa efetiva de juros é útil para descrever o efeito de capitalização dos juros sobre os juros durante um ano.
- A Tabela 1 mostra as taxas efetivas para várias taxas nominais e períodos de capitalização.
- Suponha que os mesmos \$1.000 do caso anterior tivessem sido investidos a 12% ao ano com capitalização mensal, o que corresponde a 1% ao mês.
- O montante de juros acumulados ao longo de três anos com capitalização mensal é

$$i = \left(1 + \frac{0.12}{12}\right)^{12} - 1 \rightarrow 12.68\%$$

Vinicius Santos Engenharia Econômica 07

		Taxa efetiva (%) por taxa nominal de					
Freq. de capitalização	М	6%	8%	10%	12%	15%	24%
Anual	1	6.00	8.00	10.00	12.00	15.00	24.00
Semestral	2	6.09	8.16	10.25	12.36	15.56	25.44
Trimestral	4	6.14	8.24	10.38	12.55	15.87	26.25
Mimestral	6	6.15	8.27	10.43	12.62	15.97	26.53
Mensal	12	6.17	8.30	10.47	12.68	16.08	26.82
Diário	365	6.18	8.33	10.52	12.75	16.18	27.11

Tabela 1. Taxas de juros efetivas para várias taxas nominais e frequências de capitalização

Taxas de juros nominal e efetivas - Exercício

Uma administradora de cartão de crédito cobra uma taxa de juros de 1.375% ao mês sobre o saldo devedor de todas as contas. A taxa de juros anual, segundo a empresa, é $12 \times 1.375\% = 16.5\%$. Qual é a taxa efetiva de juros ao ano que está sendo cobrada pela empresa?

11 / 11