Problem

Recall that a subset $U \subseteq \mathbb{R}$ is **open** if

$$(\forall x \in U)(\exists \varepsilon > 0) \ni V_{\varepsilon}(x) \subseteq U.$$

Prove that a mapping $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if $f^{-1}(U) \subseteq \mathbb{R}$ is open for every open $U \subseteq \mathbb{R}$.

(⇒) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall c \in \mathbb{R}$, $x \in V_\delta(c) \Rightarrow f(x) \in V_\varepsilon(f(c))$. Let U be an open set such that $f(c) \in U$. Then, $\exists \varepsilon_0$ such that $V_{\varepsilon_0}(f(c)) \subseteq U$. So, $\exists \delta_0$ such that $V_{\delta_0}(c) \subseteq f^{-1}(V_{\varepsilon_0}(f(c))) \subseteq f^{-1}(U)$. So, $f^{-1}(U)$ is open.

 (\Leftarrow) Let $f: \mathbb{R} \to \mathbb{R}$ be such that for every open set $U \subseteq \mathbb{R}$, $f^{-1}(U)$ is open in \mathbb{R} .

Since U is open in \mathbb{R} , it must be the case that for every $f(c) \in U$, $\exists \varepsilon > 0$ such that $V_{\varepsilon}(f(c)) \subseteq U$. Since $f^{-1}(U) = \{c \mid f(c) \in U\}$, it must be the case that $\exists \delta > 0$ such that $V_{\delta}(c) \subseteq f^{-1}(U)$.

Therefore, $x \in V_{\delta}(c) \Rightarrow f(x) \in V_{\varepsilon}(f(c))$ for sufficiently small δ . Thus, $f : \mathbb{R} \to \mathbb{R}$ is continuous.

Problem

Let $f, g: D \to \mathbb{R}$ be continuous. Show that $f \cdot g$ is continuous.

Since $f: D \to \mathbb{R}$ is continuous, then $\forall (x_n)_n, c \in D$ such that $(x_n)_n \to c$, $(f(x_n))_n \to f(c)$. Similarly, since $g: D \to \mathbb{R}$ is continuous, then $\forall (x_n)_n, c \in D$ such that $(x_n)_n \to c$, $(g(x_n))_n \to g(c)$.

So, $\forall (x_n)_n$, $c \in D$ such that $(x_n)_n \to c$, $(f(x_n)g(x_n))_n \to f(c)g(c)$ by the properties of sequences. Thus, $f \cdot g$ is continuous.

Problem 3

Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be continuous mappings with $Ran(f) \subseteq E$. Show that $g \circ f$ is continuous.

Every sequence $(x_n)_n \in D$ with $(x_n)_n \to c \in D$ has $(f(x_n))_n \to f(c)$. Since $(f(x_n))_n \in E$ and $f(c) \in E$, it must be the case that $(g(f(x_n)))_n \to g(f(c))$. So, $g \circ f : D \to \mathbb{R}$ is continuous.

Problem 4

Show that the following functions are Lipschitz:

- (i) $f: [-M, M] \to \mathbb{R}$ given by $f(x) = x^2$
- (ii) $g:[1,\infty)\to\mathbb{R}$ given by $g(x)=\frac{1}{x}$
- (iii) $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = \sqrt{x^2 + 4}$

(a)

Let $x, y \in [-M, M]$. Then,

$$|f(x) - f(y)| = |x^2 - y^2|$$

$$= |x - y||x + y|$$

$$\leq (|x| + |y|)|x - y|$$

$$\leq 2|M||x - y|$$

Let $x, y \in [1, \infty)$. Then,

 $|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$ $= \frac{1}{xy} |x - y|$ $\le |x - y|$

$$|f(x) - f(y)| = |\sqrt{x^2 + 4} - \sqrt{y^2 + 4}|$$

$$= \frac{|x^2 - y^2|}{\sqrt{x^2 + 4} + \sqrt{x^2 + 4}}$$

$$= \frac{|x + y||x - y|}{\sqrt{x^2 + 4} + \sqrt{x^2 + 4}}$$

$$\leq \frac{(|x| + |y|)|x - y|}{\sqrt{x^2 + 4} + \sqrt{y^2 + 4}}$$

$$\leq \frac{(|x| + |y|)|x - y|}{\sqrt{x^2} + \sqrt{y^2}}$$

$$= \frac{(|x| + |y|)|x - y|}{|x| + |y|}$$

$$= |x - y|$$

Problem 5

Show that the following functions are not Lipschitz:

- (a) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$
- (b) $g:(0,\infty)$ given by $g(x)=\frac{1}{x}$

Let $x, y \in \mathbb{R}$. Then,

Let $x, y \in \mathbb{R}$. Then,

$$|f(x) - f(y)| = |x^2 - y^2|$$

= $|x - y||x + y|$
 $\leq (|x| + |y|)|x - y|$

but since |x| + |y| is unbounded, it must be the case that $\nexists c$ such that $|f(x) - f(y)| \le c|x - y|$.

Let $x, y \in (0, \infty)$. Then,

$$|f(x) - f(y)| = \left| \frac{1}{x} - \frac{1}{y} \right|$$
$$= \frac{|x - y|}{xy}$$
$$= \frac{1}{xy}|x - y|$$

but since $\frac{1}{xy}$ is unbounded on $(0,\infty)$, it must be the case that $\nexists c$ such that $|f(x)-f(y)|\leq c|x-y|$.

Problem 6

Suppose $f: \mathbb{R} \to \mathbb{R}$ and for some $C \geq 0$, we have $|f(q)| \leq C$ for all rationals $q \in \mathbb{Q}$. Show that $||f||_{\mathbb{R}} \leq C$.

Let $t \in \mathbb{R}$. Then, $\exists (q_n)_n \in \mathbb{Q}$ such that $(q_n)_n \to t$, as the rationals are dense.

Since f is continuous, $(f(q_n))_n \to f(t)$.

Since $|f(q_n)| \le C$ for all q_n , it must be the case that $f(t) \le C$.

Problem 7

Suppose $f: \mathbb{R} \to \mathbb{R}$ is an additive map, that is,

$$f(x+y) = f(x) + f(y)$$
 $\forall x, y \in \mathbb{R}.$

If f is continuous at some point, say x = c, show that f is continuous everywhere and that f(x) = ax for some $a \in \mathbb{R}$.

Let $t \in \mathbb{R}$. Let $(x_n)_n \in \mathbb{R}$ with $(x_n)_n \to c$. Then, for the sequence $(x_n - c + t)_n \in \mathbb{R}$, with $(x_n - c + t)_n \to t$, we have

$$f(x_n - c + t) = f(x_n) + -f(c) + f(t)$$
$$\rightarrow f(c) - f(c) + f(t)$$
$$= f(t)$$

so f must be continuous at x = t.

Therefore, if f(x) = ax for some $a \in \mathbb{R}$, we have that f(c) = ac and is continuous at x = c, and

$$f(x + y) = a(x + y)$$
$$= ax + ay$$
$$= f(x) + f(y)$$

Problem 8

Assume $g: \mathbb{R} \to \mathbb{R}$ satisfies

$$g(x+y) = g(x)g(y)$$
 $\forall x, y \in \mathbb{R}.$

If g is continuous at x=0, show that g is continuous everywhere. Then show that there is a $b\geq 0$ with $g(x)=b^x$.

Let $(x_n)_n \in \mathbb{R}$ where $(x_n)_n \to 0$. Consider $(x_n + c)_n$ for some $c \in \mathbb{R}$. Then,

$$g(x_n + c) = g(x_n)g(c)$$

$$\to g(0)g(c)$$

$$= g(0 + c)$$

$$= g(c).$$

So, g(x) is continuous at x = c for any $c \in \mathbb{R}$.

Therefore, if we have $g(x) = b^x$, then by the definition of exponentiation, we have that g(0) = 1 and g is continuous at x = 0, and

$$g(x + y) = b^{x+y}$$
$$= b^{x}b^{y}$$
$$= g(x)g(y)$$

Problem 9

Let p be a polynomial of odd degree. Show that p has a real root.

Let $p(x) = a_{2n+1}x^{2n+1} + \cdots + a_1x + a_0$. Then, $\lim_{x \to \infty} p(x) = \pm \infty$, and $\lim_{x \to -\infty} p(x) = \mp \infty$. Without loss of generality, suppose $\lim_{x \to \infty} p(x) = +\infty$, and $\lim_{x \to -\infty} p(x) = -\infty$.

Then, for any N > 0, $\exists x_1 > 0$ such that p(x) > N for all $x > x_1$. So, $p(x_1) > 0$. Similarly, for any M < 0, $\exists x_2 < 0$ such that p(x) < M for all $x < x_2$. So, $p(x_2) < 0$.

By the intermediate value theorem on $[x_2, x_1]$, there must be a point where p(x) = 0 where $x \in [x_2, x_1]$.

Problem 10

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function that vanishes at infinity, that is,

$$\lim_{x \to \pm \infty} f = 0.$$

Show that f is bounded.

Let $\varepsilon > 0$. Then, $\exists N > 0$ and M < 0 such that $|f(x)| < \varepsilon$ for all x > N and x < M.

So, on $(-\infty, M)$ and (N, ∞) , |f| is bounded by ε . Finally, on [M, N], |f| must be bounded by the Extreme Value Theorem.

Therefore, |f| is bounded on \mathbb{R} , and thus f is bounded on \mathbb{R} .

Problem 11

A function $f:D\to\mathbb{R}$ is said to be lower semicontinuous (LSC) at x=c if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni x \in D \cap V_{\delta}(c) \Rightarrow f(c) - \varepsilon < f(x).$$

A function $f: D \to \mathbb{R}$ is said to be upper semicontinuous (USC) at x = c if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni x \in D \cap V_{\delta}(c) \Rightarrow f(x) < f(c) + \varepsilon$$

- (i) Show that f is continuous at c if and only if f is USC and LSC at c.
- (ii) Show that f is LSC at c if and only if

$$\liminf_{n\to\infty} f(x_n) \geq f(c),$$

for every sequence $(x_n)_n$ in D that converges to c.

(iii) Show that f is USC at c if and only if

$$\limsup_{n\to\infty} f(x_n) \le f(c)$$

for every sequence $(x_n)_n$ in D that converges to c.

(iv) Show that a USC function $f:[a,b] \to \mathbb{R}$ admits an absolute maximum on [a,b].

(i)

(⇒) Let $f: D \to \mathbb{R}$ be continuous at x = c. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $x \in V_{\delta}(c) \cap D \Rightarrow f(x) \in V_{\varepsilon}(f(c))$. Then,

$$|f(x) - f(c)| < \varepsilon$$

$$f(x) - f(c) > -\varepsilon$$

$$f(x) - f(c) < \varepsilon$$

$$f(x) > f(c) - \varepsilon$$

$$f(x) < f(c) + \varepsilon$$

Therefore, f is both USC and LSC at x = c.

 (\Leftarrow) Let $f: D \to \mathbb{R}$ be USC and LSC at x = c. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $x \in V_{\delta}(c) \cap D$ implies

$$f(x) > f(c) - \varepsilon$$

$$f(x) < f(c) + \varepsilon$$

$$f(x) - f(c) > -\varepsilon$$

$$f(x) - f(c) < \varepsilon$$

$$|f(x) - f(c)| < \varepsilon$$

$$f(x) \in V_{\varepsilon}(f(c)),$$

so f is continuous at x = c.

(ii)

I don't know how to do this problem.

(iii)

I don't know how to do this problem.

(iv)

I don't know how to do this problem.

Problem 12

Let $f:[a,b]\to\mathbb{R}$ be a continuous function satisfying the following property:

$$\forall x \in [a, b], \exists y \in [a, b] \ni |f(y)| \le \frac{1}{2} |f(x)|.$$

Show that there is a $c \in [a, b]$ with f(c) = 0.

Let $(t_n)_n$ be defined by the following:

$$t_1 = a$$

 $t_{n+1} \in [a, b] \ni |f(t_{n+1})| \le \frac{1}{2} |f(t_n)|$

Then, $|f(t_n)| \leq \frac{1}{2^n} |f(a)|$, so for any $\varepsilon > 0$, $\exists N$ large such that $t_n < \varepsilon$, as $\frac{|f(a)|}{2^n} < \frac{|f(a)|}{n} = c \cdot \frac{1}{n}$.

Since $(t_n)_n$ is bounded, $\exists n_k$ such that $(t_{n_k})_k$ is convergent; so, $(t_{n_k})_k \to t \in [a,b]$, but $|f(t)| \le 0$, so f(t) = 0.