1) Comme dim(\mathbb{R}^2) = 2, il suffit de montrer que $(e_2; e_1)$ engendre \mathbb{R}^2 . 4.20

Soit u un vecteur de \mathbb{R}^2 .

Il existe des scalaires u_1 et u_2 tels que $u = u_1 \cdot e_1 + u_2 \cdot e_2$.

$$x \cdot e_2 + y \cdot e_1 = u = u_1 \cdot e_1 + u_2 \cdot e_2$$
$$(x \cdot e_2 + y \cdot e_1) - (u_1 \cdot e_1 + u_2 \cdot e_2) = 0$$
$$(y - u_1) \cdot e_1 + (x - u_2) \cdot e_2 = 0$$

Comme les vecteurs e_1 et e_2 sont linéairement indépendant, ceci équivaut au système $\begin{cases} y - u_1 = 0 \\ x - u_2 = 0 \end{cases} \implies \begin{cases} y = u_1 \\ x = u_2 \end{cases}$

- (a) Si $u = e_1$, alors $u_1 = 1$ et $u_2 = 0$. Comme x = 0 et y = 1, on en tire que $e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ dans la base $(e_2; e_1)$.
- (b) Si $u = e_2$, alors $u_1 = 0$ et $u_2 = 1$. De x=1 et y=0, on déduit que $e_2=\begin{pmatrix}1\\0\end{pmatrix}$ dans la base $(e_2\,;e_1)$.
- 2) Il suffit de vérifier que $(e_1; e_1 + e_2)$ engendre \mathbb{R}^2 .

Soit u un vecteur de \mathbb{R}^2 .

Il existe des scalaires u_1 et u_2 tels que $u = u_1 \cdot e_1 + u_2 \cdot e_2$.

$$x \cdot e_1 + y \cdot (e_1 + e_2) = u = u_1 \cdot e_1 + u_2 \cdot e_2$$
$$(x \cdot e_1 + y \cdot (e_1 + e_2)) - (u_1 \cdot e_1 + u_2 \cdot e_2) = 0$$
$$(x + y - u_1) \cdot e_1 + (y - u_2) \cdot e_2 = 0$$

Vu que les vecteurs
$$e_1$$
 et e_2 sont libres, ceci équivaut au système
$$\begin{cases} x+y-u_1=0 \\ y-u_2=0 \end{cases} \implies \begin{cases} x+y=u_1 \\ y=u_2 \end{cases} \implies \begin{cases} x=u_1-u_2 \\ y=u_2 \end{cases}$$

(a) Si $u = e_1$, alors $u_1 = 1$ et $u_2 = 0$.

Comme x = 1 et y = 0, on en tire que $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ dans la base $(e_1; e_1 + e_2)$.

(b) Si $u = e_2$, alors $u_1 = 0$ et $u_2 = 1$.

Étant donné que x = -1 et y = 1, on déduit que $e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ dans la base $(e_1; e_1 + e_2)$.

3) Il suffit de montrer que $(e_1 - e_2; e_1 + e_2)$ engendre \mathbb{R}^2 .

Soit u un vecteur de \mathbb{R}^2 .

Il existe des scalaires u_1 et u_2 tels que $u = u_1 \cdot e_1 + u_2 \cdot e_2$.

$$x \cdot (e_1 - e_2) + y \cdot (e_1 + e_2) = u = u_1 \cdot e_1 + u_2 \cdot e_2$$
$$\left(x \cdot (e_1 - e_2) + y \cdot (e_1 + e_2)\right) - (u_1 \cdot e_1 + u_2 \cdot e_2) = 0$$
$$(x + y - u_1) \cdot e_1 + (-x + y - u_2) \cdot e_2 = 0$$

Vu que les vecteurs e_1 et e_2 sont libres, ceci équivaut au système

$$\begin{cases} x+y-u_1=0\\ -x+y-u_2=0 \end{cases} \Longrightarrow \begin{cases} x+y=u_1 & \stackrel{\mathbf{L}_2\to\mathbf{L}_2+\mathbf{L}_1}{\Longrightarrow} \end{cases} \begin{cases} x+y=u_1\\ 2y=u_1+u_2 \end{cases}$$

- (a) Si $u = e_1$, alors $u_1 = 1$ et $u_2 = 0$. Comme $x = \frac{1}{2}$ et $y = \frac{1}{2}$, on en tire que $e_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ dans la base $(e_1 - e_2; e_1 + e_2)$.
- (b) Si $u=e_2$, alors $u_1=0$ et $u_2=1$. Attendu que $x=-\frac{1}{2}$ et $y=\frac{1}{2}$, il résulte que $e_2=\begin{pmatrix} -\frac{1}{2}\\ \frac{1}{2} \end{pmatrix}$ dans la base $(e_1-e_2\,;e_1+e_2)$.
- 4) Il suffit de vérifier que $(e_1 + \alpha e_2; e_2)$ engendre \mathbb{R}^2 . Soit u un vecteur de \mathbb{R}^2 .

Il existe des scalaires u_1 et u_2 tels que $u = u_1 \cdot e_1 + u_2 \cdot e_2$.

$$x \cdot (e_1 + \alpha e_2) + y \cdot e_2 = u = u_1 \cdot e_1 + u_2 \cdot e_2$$
$$(x \cdot (e_1 + \alpha e_2) + y \cdot e_2) - (u_1 \cdot e_1 + u_2 \cdot e_2) = 0$$
$$(x - u_1) \cdot e_1 + (\alpha x + y - u_2) \cdot e_2 = 0$$

Vu que les vecteurs e_1 et e_2 sont libres, ceci équivaut au système

$$\begin{cases} x - u_1 = 0 \\ \alpha x + y - u_2 = 0 \end{cases} \Longrightarrow \begin{cases} x = u_1 & L_2 \to L_2 - \alpha L_1 \\ \alpha x + y = u_2 \end{cases} \Longrightarrow \begin{cases} x = u_1 \\ y = -\alpha u_1 + u_2 \end{cases}$$

- (a) Si $u = e_1$, alors $u_1 = 1$ et $u_2 = 0$. Comme x = 1 et $y = -\alpha$, on en tire que $e_1 = \begin{pmatrix} 1 \\ -\alpha \end{pmatrix}$ dans la base $(e_1 + \alpha e_2; e_2)$.
- (b) Si $u = e_2$, alors $u_1 = 0$ et $u_2 = 1$. De x = 0 et y = 1, on déduit que $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ dans la base $(e_1 + \alpha e_2; e_2)$.