证明:若不然,则存在 $c \in \langle a \rangle \cap \langle b \rangle$, $c \neq e$ 。考虑 $\langle c \rangle$ 。由于 $c \neq e$ 且 c, $e \in \langle c \rangle$,故 $|\langle c \rangle| > 1$ 。又由于 $c \in \langle a \rangle$,且 $\langle a \rangle$ 是群,故由 $\langle c \rangle$ 的定义知: $\langle c \rangle \leqslant \langle a \rangle$ 。从而由 $|\langle a \rangle| = |a| = p$ 是素数和 Lagrange 定理可知, $|\langle c \rangle| = |\langle a \rangle|$ 。结合 $\langle c \rangle \subseteq \langle a \rangle$ 就有, $a \in \langle c \rangle = \langle a \rangle$ 。这就是说,存在是 $k \in \mathbb{Z}$,使得 $c^k = a$ 。从而由 $\langle b \rangle$ 是群和 $c \in \langle b \rangle$ 可知, $a = c^k \in \langle b \rangle$ 。这与题设 $a \notin \langle b \rangle$ 矛盾。

17.21

证明: $H_1H_2 \subset G$ 是显然的。

设 $G=\langle a\rangle$ 。由教材定理 17.13(3) 可知, $H_1=\langle a^s\rangle, H_2=\langle a^r\rangle$ 。由于 (r,s)=1。故存在 $m,n\in\mathbb{Z}$,使得 mr+ns=1。对任意 $x\in G$,设 $x=a^t$,则有 $x=a^{tmr+tns}=a^{s(tm)}a^{r(tn)}\in H_1H_2$ 。从而有 $G\subseteq H_1H_2$ 。

综合即有:
$$G = H_1H_2$$
。

17.22

证明:记 $H = H_1 \cap H_2$ 。由定义有, $a^d \in H$ 。对由教材例 17.12(1) 知, $H \leq G$ 。从而有 $\langle a^d \rangle \subseteq H$ 。下面证明 $H \subseteq \langle a^d \rangle$ 。分两种情况讨论:

情况一: 若 G 是无限群,则对任意 $a^t \in H$,由于 $H = H_1 \cap H_2$,故 $a^t \in H_1$, $a^t \in H_2$,由定义知,存在 $k_1, k_2 \in \mathbb{Z}$,使得 $a^{k_1r} = a^{k_2s} = a^t$ 。由于 G 是无限阶的,所以必有 $k_1r = t$ 和 $k_2s = t$ (否则,不妨设 $k_1r \neq t$,则由消去律知 $a^{k_1r-t} = 0$ 和 $k_1r - t \neq 0$,从而 $|G| = |a| \mid k_1r - t$,这与 G 是无限阶群矛盾),从而有 $r \mid t$, $s \mid t$,由最小公倍数的性质知 $d = [r, s] \mid t$,从而有 $a^t \in \langle a^d \rangle$ 。由 a^t 的任意性知, $H \subseteq \langle a^d \rangle$ 。

情况二: 若 G 是 n 阶有限群,则由教材例 17.12 和子群定义知, $H \leqslant H_1$ 且 $H \leqslant H_2$ 。从而由 Lagrange 定理知和教材例 17.16 知, $|H| \mid |H_1| = \frac{n}{(n,r)}$, $|H| \mid |H_2| = \frac{n}{(n,s)}$ 。从而 $(n,r) \mid n|H|$, $(n,s) \mid n|H|$, $[(n,r),(n,s)] \mid n|H|$,也即 $|H| \mid \frac{n}{[(n,r),(n,s)]}$ 。另一方面,由教材例 17.16 知, $|\langle a^d \rangle| = |\langle a^d \rangle| = \frac{n}{(n,d)} = \frac{n}{(n,[r,s])}$ 。

下面只需证明 (n,[r,s])=[(n,r),(n,s)],就可得到 $|H|\mid |\langle a^d\rangle|$,进而由 $\langle a^d\rangle\subseteq H$ 可得 $|\langle a^d\rangle|\leq |H|$,综合得 $|\langle a^d\rangle|=|H|$ 。再由 $H\subseteq G$ 是有限群和教材定理 5.5 推论就有 $\langle a^d\rangle=H$ 。

在证明 (n, [r, s]) = [(n, r), (n, s)] 之前, 注意到如下事实:

引理 17.2 对任意 $x, y, z \in \mathbb{R}$,有 $\min(x, \max(y, z)) = \max(\min(x, y), \min(x, z))$ 。证明: 分两种情况考虑。

若 $x \leq \max(y,z)$, 则 $\min(x,\max(y,z)) = x$, 而对 y,z 中较大者(不妨设为 y), 则有 $\min(x,y) = x$, 而 $\min(x,z) \leq x$ 。从而 $\max(\min(x,y),\min(x,z)) = x$ 。等式成立。

若 $x > \max(y, z)$,则必有 x > y, x > z,从而 $\min(x, y) = y$, $\min(x, z) = z$, $\max(\min(x, y), \min(x, z)) = \max(y, z)$ 。而由于 $x > \max(y, z)$,所以 $\min(x, \max(y, z)) = \max(y, z)$ 。等式也成立。

下面证明 (n, [r, s]) = [(n, r), (n, s)]。 设 n, r, s 的素因子分解式分别为 $n = \prod p_i^{a_i}$, $r = \prod p_i^{b_i}$, $s = \prod p_i^{c_i}$ 。则: $(n, [r, s]) = \prod p_i^{\min(n, \max(r, s))}$ (gcd, lcm 性质) $= \prod p_i^{\max(\min(n, r), \min(n, s))}$ (引理 17.2) = [(n, r), (n, s)] (gcd, lcm 性质)

17.23