Functions Tutorial (Solutions)

3.

- a. One-one
- b. Onto
- c. Onto
- d. One-one
- e. Both
- f. Both

4.

If you are using the definition of function as a special kind of relation such that every element in domain is related to a unique element in codomain, then your function $f:A\to B$ is a subset of $A\times B$ such that

$$(x,y)$$
 and $(x,y_1) \in f \Rightarrow y = y_1$

and $x \in A \Rightarrow \exists y \in B \text{ such that } (x,y) \in f$.

Now can you get the equivalence you need?

OK. In all details, if f = g i.e. if $f \subseteq g$ and $g \subseteq f$ then,

$$\text{if } a \in dom(f), \exists b \in \mathit{Bs.t.} \ (a,b) \in \mathit{f}$$

Thus, $(a,b) \in f$ and hence $(a,b) \in g$ and hence $a \in dom(g)$ and also g(a) = b = f(a). Thus, $dom(f) \subseteq dom(g)$ and f(a) = g(a) on dom(f).

Similarly, you show that $dom(g) \subseteq dom(f)$ and f(a) = g(a) on dom(g).

The converse is proved along similar lines.

5.
$$(f\circ g)(x)=\sqrt{3x+1}\ (g\circ f)(x)=3\sqrt{x}+1$$
 And hence, $f\circ g
eq g\circ f$

 $g\circ f:\mathbb{Q}^+ o\mathbb{R}$ and $(g\circ f)(x)=2+rac{1}{x}$ for $x\in\mathbb{Q}^+$

P.S. note the domain of this composition.

10.

Statement is false

Counter-example:

$$A = B = \mathbb{N}, C = \{1\}, f(n) = n + 1$$

Thus f is one-one

$$f(A-C)=\mathbb{N}-\{1,2\}$$
 and $B-f(C)=\mathbb{N}-\{2\}$

And hence we can see that $B-f(C) \not\subseteq f(A-C)$

11.

Let the length and breadth of the rectangle be x and y, and let $g:\mathbb{R}^+ o \mathbb{R}^+$ such that y = g(x)

Since area is equal to it's perimeter, we get xy = 2(x+y)

and hence, $y=\frac{2x}{x-2}$ But also, $x=\frac{2y}{y-2}$

Thus, we can write $x=g^{-1}(y)$ and then we can see that $g=g^{-1}$

Hence, the function g is an involution.

Also,
$$f(x)=rac{2x}{x-2}$$
 for $x\in\mathbb{Z}^+$