

2CPI

Contrôle Intermédiaire

Avril 2024

Durée : 2 heures

Analyse mathématique 4

- Les documents, calculatrices et téléphones sont interdits.
- Le sujet comporte 4 exercices et 1 questionnaire.
- Traiter les exercices 1, 2, 3 et 4 chacun sur une double feuille séparée.
- Toute copie (double feuille, intercalaire ou questionnaire) sans nom ne sera pas corrigée.

Exercice1 (3.5 points) . Soit la fonction f donnée par

$$f(x,y,z) = x^2 + y^2 + z^2 + xy + xz + yz + x + 1.$$

Déterminer les extrémums locaux et globaux de f sur \mathbb{R}^3 .

Exercice2 (5,5 points) . Soient les fonctions f et φ suivantes :

$$f(x,y) = x^2 + y - \ln(x^2 + y^2 - 7), \ \varphi(x,y) = x^2 + y^2 - 8.$$

On définit l'ensemble A par: $A = \{(x,y) \in \mathbb{R}^2 / \varphi(x,y) = 0\}$.

- 1) Donner D_f ainsi que sa représentation graphique, puis montrer que $A \subset D_f$.
- 2) Sous la contrainte $\varphi(x,y)=0, f$ admet-elle un minimum global et un maximum global? Justifier.
- 3) Montrer qu'il y a 4 points critiques seulement (à déterminer) issus de la méthode des opérateurs de Lagrange, on les notera $M_i(x_i, y_i)$ où $1 \le i \le 4$.
- 4) Préciser les points pour lesquels ces extrema globaux sous contrainte sont atteints.

Exercice 3 (4,5 points). Soient la fonction $\varphi(u,v) = (3u + v, u + 2v)$ et le parallélogramme D de sommets (0,0); (1,2); (3,1); (4,3).

- 1) Montrer que $(x,y) = \varphi(u,v)$ représente un changement de variables dans \mathbb{R}^2 .
- 2) Détreminer Δ le transformé de D par le changement de variables donné par φ .
- 3) Représenter graphiquement D et Δ .
- 4) Calculer l'aire de D.
- 5) Calculer la masse d'une plaque mince occupant le domaine D dont la masse surfacique est $f(x,y) = (2x y)^2 e^{-x+3y}$.

Indication : $Masse = \iint_D f(x,y) dx dy$.

Exercice 4 (3,5 points): Soit $\Omega = \{(x,y,z) \in \mathbb{R}^3 / x^2 + y^2 \le 1, x^2 + y^2 \le z \le 2 - x^2 - y^2 \}$. **I- Question bonus**: Représenter Ω.

II- Soit

$$I = \iiint_{\Omega} (x^2 + y^2)^{\frac{3}{2}} dx dy dz.$$

- 1) Calculer I.
- 2) Compléter $I = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} (x^2 + y^2)^{\frac{3}{2}} dz \right) dy \right) dx$ et donner le nom de la méthode utilisée.

Nom :	Prénom :	Groupe :
Nom:	Prénom :	Groupe :

Répondre sur le sujet

Questionnaire (3 points) . I est un intervalle quelconque de \mathbb{R} .
1) Soit f une fonction numérique réelle sur \mathbb{R}^n . Completer : a) On dit que f est coercive sur une partie non bornée $E \subset D_f$ de \mathbb{R}^n ssi
b) Si f est une fonction convexe sur un convexe E . Alors, $\Big((a,f(a))$ est un minimum local de f sur $E\Big) \Leftrightarrow$
2) Soit $F: x \to F(x) = \int_{u(x)}^{v(x)} f(t,x)dt$ où u et v sont des fonctions de I vers $[a,b]$ et f une
fonction numérique réelle sur $[a,b] \times I$, on supposera f intégrable sur $[a,b]$ selon la

- 3) Parmi les affirmations suivantes lesquelles sont vraies V, lesquelles sont fausses F sans justifier.

 A1 : Si f est continue sur $[a,b] \times [0,+\infty[$ alors $\lim_{\substack{x \to +\infty \\ +\infty}} \int_a^b f(t,x) dt = \int_a^b \left(\lim_{\substack{x \to +\infty }} f(t,x)\right) dt$.
 - **A2**: Soit la fonction F donnée par : $F(x) = \int_{0}^{+\infty} f(t,x)dt$ où f une fonction

numérique réelle sur $[0,+\infty[imes I,$ on supposera $f\in R_{loc}[0,+\infty[$ selon la variable t.

Si $\int_{0}^{+\infty} f(t,x)dt$ est convergente sur tout $[\alpha,\beta] \subseteq I$ alors F est bien définie sur I.