Processos Não Estacionários Testes de Raiz Unitária

Bibliografia Básica:

- Enders, W. *Applied Econometric Time Series*. Cap. 4.
- Bueno, R. L. S. *Econometria de Séries Temporais*. Cap. 4.
- Box, G.E., Jenkins, G. M., Reinsel, G.C. & Ljung, G.
 M.(2016). Time series analysis: forecasting and control.
 Cap. 4.
- Morettin, P. A. Análise de Séries Temporais. Cap. 5.

Revisão Conceitos

Processo estocástico: é uma coleção de variáveis aleatórias ordenadas no tempo.

Processo Estocástico Estacionário: média e variância são constantes ao longo do tempo; covariância depende da distância entre os valores da série.

Processo Ergódico: coeficiente de autocorrelação (autocovariância) tende a zero, para $t \to \infty$.

Processo Estocástico Não Estacionário: média e/ou variância serão dependentes do tempo.

Processos Puramente Aleatórios, chamado de "ruído branco", são processos que possuem média zero, variância constante e correlação serial igual a zero:

$$\epsilon_t \sim \textit{RB}(0, \sigma_\epsilon^2)$$

Processos Não Estacionários

Processo não estacionário é um processo cuja média e/ou variância serão dependentes do tempo.

Importante

Para remover a tendência determinística, deve-se estimar Y_t contra o tempo e armazenar os resíduos. Os resíduos armazenados constituem a nova série que deverá ser modelada de forma separada.

Para remover a tendência estocástica, basta aplicar o operador diferenças.

Processos Estocásticos Integrados

Processo estocástico integrado: processo estocástico que pode se tornar estacionário por meio da diferenciação.

Se um processo se torna estacionário ao se tomar sua primeira diferença dizemos que este processo é integrado de ordem um, ou I(1).

Se o processo somente se tornar estacionário na *d*-ésima diferença dizemos que este é um processo integrado de ordem d, ou I(d).

Um processo que não precisa ser diferenciado para se tornar estacionário é integrado de ordem zero, ou I(0).

Modelo Random Walk ou Passeio Aleatório

Um passeio aleatório é dado por:

$$Y_t = Y_{t-1} + \epsilon_t$$

em que $\epsilon_t \sim RB(0, \sigma_\epsilon^2)$

Este processo é estacionário ou não?

$$E(Y_t) = E(Y_{t-1} + \epsilon_t) = \ldots = E(Y_0 + \sum_{t=1}^{T} \epsilon_t) = Y_0$$

Temos que a esperança é constante e independe do tempo.

$$Var(Y_t) = E\{(Y_t - E(Y_t))^2\} = \dots = \sum_{t=1}^{T} \sigma_{\epsilon}^2 = T\sigma_{\epsilon}^2$$

A variância é, portanto, uma função crescente do tempo, logo o passeio aleatório não é um processo estacionário.

Como identificar se a série é ou não estacionária?

- 1. Análise gráfica
- 2. Função de autocorrelação:
 - Séries não estacionárias: fortes correlações seriais Exemplo: Faça a seguinte simulação no R

$$Y_t = \delta + Y_{t-1} + \epsilon_t$$

supondo $\delta = 0$ e $\delta = 0.2$, com $\epsilon_t \sim N(0, 1)$ e $Y_0 = 0$.

- δ ≠ 0: passeio aleatório com drift (ou deslocamento ou tendência estocástica). Neste caso, valor médio e variância são dependentes do tempo.
- $\delta = 0$: tendência estocástica pura. Neste caso, variância é dependente do tempo.
- Inspeção visual raramente permite distinguir o processo como de tendência estocástica ou tendência determinística

Como identificar se a série é ou não estacionária?

3. Teste de Raiz Unitária ou Teste de Estacionariedade. Considere o modelo:

$$Y_t = \rho Y_{t-1} + \epsilon_t$$

Raiz unitária: Quando temos que $\rho = 1$ aparece o problema de raiz unitária que, basicamente, é sinônimo de não estacionaridade.

Passeio aleatório, com ou sem drift, pode se tornar estacionário ao ser diferenciado, isto é:

$$Y_t = Y_{t-1} + \epsilon_t \Leftrightarrow \Delta Y_t = \epsilon_t$$

Exemplo

Considere a série de taxa de câmbio *Euro/US*\$, no período entre jan/1999 e agosto/2006.

- a) Faça o gráfico da série e construa a função de autocorrelação;
- b) Tome a primeira diferença e construa a função de autocorrelação.

Testes de Raiz Unitária

Considere o modelo:

$$Y_t = \rho Y_{t-1} + \epsilon_t$$

Se $|\rho|$ < 1 : série é estacionária;

Se $\rho = 1$: série é não estacionária;

Objetivo:

Teste de Raiz Unitária: testar H_0 : $\rho = 1$ contra H_1 : $\rho < 1$

Testes de Raiz Unitária

Testes que abordaremos:

- 1. Testes Dickey Fuller
- 2. Teste Dickey Fuller Aumentado ADF
- 3. Teste de KPSS
- 4. Teste de Phillips Perron
- 5. Teste de DF-GLS (ERS)
- Teste com Quebra Estrutural

1. Teste Dickey Fuller – DF

Objetivo:

Testar a existência de 1 RU em Y_t quando o processo gerador da série for expresso por uma das expressões abaixo:

(1)
$$Y_t = \alpha + \beta t + \rho Y_{t-1} + \epsilon_t \Rightarrow \Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \epsilon_t$$

(2)
$$Y_t = \alpha + \rho Y_{t-1} + \epsilon_t$$
 $\Rightarrow \Delta Y_t = \alpha + \gamma Y_{t-1} + \epsilon_t$

$$(3) \quad Y_t = \rho Y_{t-1} + \epsilon_t \qquad \Rightarrow \quad \Delta Y_t = \gamma Y_{t-1} + \epsilon_t$$

em que α e βt são componentes determinísticos, denominados constante ou *drift* e tendência linear, respectivamente; ϵ_t é um ruído branco.

Teste DF

Hipóteses nula e alternativa:

$$H_0: \rho = 1 \Leftrightarrow \gamma = 0 \quad (1 \text{ RU})$$

$$H_1: \rho < 1 \Leftrightarrow \gamma < 0 \quad (0 \text{ RU})$$

- Teste Monocaudal à esquerda
- Estatísticas dos testes são chamadas de:
- 1. Modelo com constante e tendência determinística: $au_{ au}$
- 2. Modelo com constante: τ_{μ}
- 3. Modelo sem termos determinísticos: τ

Teste DF

Sob a hipótese nula, a distribuição do teste não é convencional, ou seja, não é igual à distribuição t, dado que Y_t não é estacionário.

FIGURE 4.7 The Dickey-Fuller Distribution

Dickey & Fuller (1979) recalcularam os valores críticos: Tabela A, p. 488, Enders (2010)

Empirical Cumulative Distribution of τ

Probability of a Smaller Value							
Sample Size	0.01	0.025	0.05	0.10			
No Constant or Time $(a_0 = a_2 = 0)$			τ				
25	-2.66	-2.26	-1.95	-1.60			
50	-2.62	-2.25	-1.95	-1.61			
100	-2.60	-2.24	-1.95	-1.61			
250	-2.58	-2.23	-1.95	-1.62			
300	-2.58	-2.23	-1.95	-1.62			
∞ .	-2.58	-2.23	-1.95	-1.62			
Constant (a2 =	0)			τ_{μ}			
25	-3.75	-3.33	-3.00	-2.62			
50	-3.58	-3.22	-2.93	-2.60			
100	-3.51	-3.17	-2.89	-2.58			
250	-3.46	-3.14	-2.88	-2.57			
500	-3.44	-3.13	-2.87	-2.57			
60	-3.43	-3.12	-2.86	-2.57			
Constant + time				τ_{τ}			
25	-4.38	-3.95	-3.60	-3.24			
50	-4.15	-3.80	-3.50	-3.18			
100	-4.04	-3.73	-3.45	-3.15			
250	-3.99	-3.69	-3.43	-3.13			
500	-3.98	-3.68	-3.42	-3.13			
∞	-3.96	-3.66	-3.41	-3.12			

Teste DF no R

Para realizar o teste de Dickey-Fuller, carregue o pacote urca.

Em seguida use a função UR.DF, a qual retorna, automaticamente, os valores críticos para o teste.

No R as estatísticas são denotadas por:

$$au_{ au} = au_3$$

$$au_{\mu} = au_{2}$$

$$au= au_1$$

Significância dos Termos Determinísticos

Análise da significância dos elementos determinísticos (constante e tendência linear) por meio de testes de hipóteses conjuntos, utilizando valores críticos simulados por DF. Dickey & Fuller (1981) sugerem as estatísticas F denominadas ϕ_1,ϕ_2 e ϕ_3 para testar hipóteses conjuntas:

$$H_0: \gamma = \alpha = 0 \Rightarrow \Phi_1$$
 $H_0: \gamma = \alpha = \beta = 0 \Rightarrow \Phi_2$
 $H_0: \gamma = \beta = 0 \Rightarrow \Phi_3$

As estatísticas relacionadas a essas hipóteses são:

$$\Phi_{i} = \frac{(SQRes_{restrita} - SQRes_{irrestrita})/r}{SQRes_{irrestrita}/(T - k)} \quad i = 1, 3$$

sendo r o número de restrições, T número de observações, k número de parâmetros estimados no modelo irrestrito.

Φ ₁ FOR ($(\alpha, \rho) = (0,$	1) IN Y,	$= \alpha + \rho$	$r_{t-1} + e_t$
Sample				
size	0.90	0.95	0.975	0.99
	4.12	5.18	6.30	7.88
25 50	3.94	4.86	5.80	7.88
	3.86	4.71	5.57	6.70
100				
250	3.81	4.63	5.45	6.52
500	3.79	4.61	5.41	6.47
∞	3.78	4.59	5.38	6.43
Φ_2 for ($(\alpha, \beta, \rho) = 0$	(0, 0, 1) IN	$Y_t = \alpha$	$+\beta t + \rho Y_{t-}$
25	4.67	5.68	6.75	8.21
50	4.31	5.13	5.94	7.02
100	4.16	4.88	5.59	6.50
250	4.07	4.75	5.40	6.22
500	4.05	4.71	5.35	6.15
∞	4.03	4.68	5.31	6.09
Φ_3 for (a	$(\alpha, \beta, \rho) = 0$	α, 0, 1) 18	$Y_t = \alpha$	$+\beta t + \rho Y_{t-}$
25	5.91	7.24	8.65	10.61
50	5.61	6.73	7.81	9.31
100	5.47	6.49	7.44	8.73
250	5.39	6.34	7.25	8.43
500	5.36	6.30	7.20	8.34
00	5.34	6.25	7.16	8.27

2. Testes Dickey Fuller Aumentado – ADF

Resíduos $\hat{\epsilon}_t$ obtidos dos modelos (1) a (3) são ruídos brancos? Teste ADF: adiciona as defasagens da variável dependente, ou seja, supõe-se que a série é gerada por um processo auto-regressivo de ordem p.

(4)
$$\Delta Y_t = \alpha + \beta t + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

(5)
$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

(6)
$$\Delta Y_t = \gamma Y_{t-1} + \sum_{i=1}^{p-1} \delta_i \Delta Y_{t-i} + \epsilon_t$$

Inclusão de termos autorregressivos não altera a convergência das estatísticas τ, τ_{μ} e τ_{τ} . Portanto, usa-se nos testes ADF os mesmo valores críticos utilizados nos testes DF.

Teste ADF

Para identificar o número de atrasos p de forma que $\hat{\epsilon}_t \sim RB(0, \sigma_{\epsilon}^2)$, usa-se:

- análise das autocorrelações dos resíduos do modelo sem termos de aumento;
- 2) critérios de informação: Akaike (AIC) ou Bayesian (BIC):

$$AIC(p) = In(\sigma_{\epsilon}^2) + p\frac{2}{T}$$

$$BIC(p) = In(\sigma_{\epsilon}^2) + p \frac{In(T)}{T}$$

em que T é o número de observações e p número de parâmetros.

Figure 4.7 A procedure to test for unit roots.

Atividades

Verificar a existência de RU para:

- 1. IPCA (Fonte: IPEADATA).
- A partir da série encaminhada por email, faça o teste ADF. Analise os resultados.