<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:21:47

Lecture due Aug 18, 2021 20:30 IST Completed

Practice

Vector magnitude

PROFESSOR: Speaking of magnitude,

Start of transcript. Skip to the end.

we write it this way.

or length,

The norm of the vector, the absolute value of a vector,

this means the length of the vector, also called the magnitude.

And in terms of v1 and v2, we can find it from the picture

0:00 / 0:00

▶ 2.0x

X

CC 66

Video Download video file **Transcripts** Download SubRip (.srt) file Download Text (.txt) file

Definition 4.1 The **magnitude** of a vector \vec{v} is equal to its length and is denoted by $|\vec{v}|$.

We can find the magnitude of the vector $ec{v}=\langle v_1,v_2
angle$ by using the Pythagorean theorem. We draw a triangle with base v_1 , height v_2 , and hypotenuse |v| . Then the magnitude of the vector $ec{v}=\langle v_1,v_2
angle$ is given by

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2}. (3.3)$$

→ Spoiler: Magnitude in higher dimensions

Consider a vector with n components given by $ec{v}=\langle v_1,v_2,\ldots,v_n
angle$. The magnitude of $ec{v}$ is given by

$$|\vec{v}| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}. (3.4)$$

<u>Hide</u>

A note about terminology: In some videos, the professor uses the word "norm" when referring to the magnitude. This is because the magnitude of a vector is given by what is called the Euclidean norm. There are many different kinds of norms used to measure different mathematical objects such as numbers, vectors, and functions.

Vector magnitude practice 1

3/3 points (graded)

Find the magnitude of the following vectors.

(Note you may enter math expressions or numbers. You need only enter decimals to 2 decimal places.)

Solution:

From the definition of magnitude, we have

$$ert ec v ert \ = \ ert \langle 3,4
angle ert = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$
 $ert ec w ert \ = \ ert \langle -2,0
angle ert = \sqrt{(-2)^2 + 0^2} = \sqrt{4} = 2$ $ert ec u ert \ = \ ert \langle -1,1,-10
angle ert = \sqrt{(-1)^2 + (1)^2 + (-10)^2} = \sqrt{102}.$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Vector magnitude practice 2

1/1 point (graded)

Find the magnitude of the vector drawn below.

(Note you may enter math expressions or numbers. You need only enter decimals to 2 decimal places.)

 $|\vec{v}| =$ **✓ Answer:** sqrt(1.25) 1.118034

Solution:

The vector plotted is given by $ec{v}=\langle 1,-0.5
angle$. The magnitude is therefore

$$|\vec{v}| = |\langle 1, -0.5 \rangle| = \sqrt{1^2 + 0.5^2} = \sqrt{1.25}.$$
 (3.5)

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

4. Magnitude

Topic: Unit 2: Geometry of Derivatives / 4. Magnitude

Hide Discussion

Add a Post

Show all posts \checkmark by recent activity		ity 🗸
•	tick marks on line above not working Although I correctly answered the questions in this particular section, the tick marks for these exercises are not showing on the top I	7
Q	Why does the pythagorean theorem work beyond two dimensions? Could someone provide some insights on this matter? Thanks in advance!	4

Previous	Next >
----------	--------

© All Rights Reserved

edX

About Affiliates edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>