

If Ax = b has no solution, we can find the least squares solutions \hat{z} of Ax = b (1) by Solving Ax = P, where P is the projection of b onto the columnspace (A). However, in practice this is not an effective way to do so. Instead, we can form a new linear system $A^TA x = A^Tb$ (2), and a solution of (2) gives us a least squares Solution of (1).

(2) How Can we prove a Solution of (2) is a least squares solution of (1)?

Solution:

If we assume that $A\hat{x} = P$, \hat{x} is the least squares solution of (1),

 $w = \omega | \omega | \omega = (A),$

 W^{\perp} = the vector space $\perp \omega$

then

In fact, we can we prove that $W^{\perp} = \text{null space}(A^{\top})$,

and hence, $A^{T}(b-p)=0$ ⇒ AT(b-A2)=0

 \Rightarrow ATb = ATA \hat{x} , which is, ATA \hat{x} = ATb

Hence, a solution of (2) is a least squares solution of (1).

So, the rest working is about how to show (*).

 \mathbb{O} nullspace $(A^T) \subseteq \mathcal{W}^T$.

We assume $x \in \text{nullspace}(A^T) \implies A^T x = 0$. We assume $A = (a_1 \ a_2 \ \cdots \ a_n) \Rightarrow A^T = \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{pmatrix} \Rightarrow \begin{pmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{pmatrix} \cdot x = 0$ (where 0 is a vector). $\Rightarrow \begin{pmatrix} a_{1}^{\mathsf{T}} \times \mathbf{x} \\ a_{2}^{\mathsf{T}} \times \mathbf{x} \\ \vdots \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{pmatrix}$

$$\Rightarrow a_i^7 \times x = 0, i = 1, 2, \dots, n \Rightarrow \langle a_i, x \rangle = 0, i = 1, 2, \dots, n.$$

$$\Rightarrow$$
 $\chi \perp Span \{a_1, a_2, \dots a_n\} = Columnspace(A)$

$$\Rightarrow$$
 $\chi \in (column space (A))^{\perp} = W^{\perp}$

Recall x is an arbitrary vector in nullspace (A^{T}),

$$\Rightarrow$$
 nullspace (AT) $\subseteq \omega^{\mathsf{T}}$.

② $W^{\mathsf{T}} \subseteq \mathsf{nullspace}(A^{\mathsf{T}})$.

Assume
$$\forall y \in W^{T}$$
, $\Rightarrow y \perp W = \text{columnspace } (A) = \text{span } \{a_{1}, \dots, a_{n}\}$
 $\Rightarrow y \perp a_{i}, i = 1, 2, \dots, n$.
 $\Rightarrow \langle a_{i}^{T}, y \rangle = 0, i = 1, 2, \dots, n$.
 $\Rightarrow \begin{pmatrix} a_{1}^{T} \\ a_{2}^{T} \\ \vdots \\ a_{n}^{T} \end{pmatrix} \cdot y = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow A^{T} \cdot y = 0$
 $\Rightarrow y \in \text{nullspace } (A^{T})$.

From O and O, $W^T = null space (A).$