EE24BTECH11066 - YERRA AKHILESH

Ouestion:

Find the Maximum and Minimum values of the function

$$y(x) = -|x+1| + 3$$

Solution:

Threotical Solution:

As y(x) is modular function, The vertex of the function is at the point where,

$$|x+1| = 0 (0.1)$$

$$x = -1 \tag{0.2}$$

Substitute x = -1 in the function, gives :

$$y(-1) = 3 (0.3)$$

Hence, the vertex is at (-1,3), which is the **maximum** point and it can be explained by,

$$y = \begin{cases} -(x+1) + 3 & \text{if } x \ge -1, \\ (x+1) + 3 & \text{if } x < -1 \end{cases}$$

The derivative of y is:

$$\frac{dy}{dx} = \begin{cases} -1 & \text{if } x > -1, \\ 1 & \text{if } x < -1. \end{cases}$$

At x = -1, the derivative does not exist because of the abrupt change in slope. However, we can observe the behavior of the function:

- For x < -1, the derivative $\frac{dy}{dx} = 1 > 0$, indicating that the function is increasing. For x > -1, the derivative $\frac{dy}{dx} = -1 < 0$, indicating that the function is decreasing.

Therefore, **maximum** value of y(x) = 3 at x = -1

Now,

As $x \to \infty$ or $x \to -\infty$, the absolute value $|x+1| \to \infty$, and the negative of this term dominates. Thus:

$$y \to -\infty \tag{0.4}$$

This means the function decreases without bound, so there is no minimum value.

1

Computational solution:

Maximum value of the function can be done by **Gradient Ascent** method:

- Choose a starting point x_0 away from x = -1.
- Update the position iteratively:

$$x_{n+1} = x_n + \eta \cdot \frac{dy}{dx}$$

Here, $\eta = 0.01$, η is learning rate.

• Behaviour in each region:
for
$$x > -1$$
: $\frac{dy}{dx} = -1$,

$$x_{n+1} = x_n - \eta \tag{0.5}$$

This causes x_n to decrease toward x = -1.

for
$$x < -1$$
: $\frac{dy}{dx} = 1$,

$$x_{n+1} = x_n + \eta {(0.6)}$$

This causes x_n to increase toward x = -1.

At
$$x = -1$$
:

the gradient changes direction abruptly, and the iteration stops because the function value is maximized at this point.

Minimum value of the function can be done by **Gradient decent** method:

Here,

$$x_{n+1} = x_n - \eta \cdot \frac{dy}{dx} \tag{0.7}$$

Similarly finding behaviour in each region:

for x > -1:

$$x_{n+1} = x_n + \eta \tag{0.8}$$

This causes x_n to increase indefinitely, moving away from x = -1.

for x < -1:

$$x_{n+1} = x_n - \eta \tag{0.9}$$

This causes x_n to decrease indefinitely, moving away from x = -1.

The function decreases without bound as $x \to \infty$ or $x \to -\infty$, so **gradient descent** will not converge to a minimum. The iteration will continue indefinitely. so, No Minimum exists

Computational results:

-Absolute Maximum

$$x \approx -1, \ y(x) \approx 3 \tag{0.10}$$

-No Absolute Minimum

