Элементы сферической астрономии

Миронова Светлана Михайловна 22 сентября 2020

Сферическая астрономия

- самый древний раздел астрономии
- предсказывает положение небесных тел в определённую дату в определённом месте

Литература:

1. Жаров «Сферическая астрономия» http://iaaras.ru/media/library/zharov_sf.pdf

Небесная сфера

Небесная сфера

Горизонтальная система координат

O — наблюдатель

Z, N — зенит и надир

ZN- отвесная линия

ESNW – плоскость горизонта

Координаты звезды C:

- ZC зенитное расстояние **Z** CB высота **h**
- SB азимут А

Горизонтальная система координат (определения)

Отве́сная ли́ния — прямая, совпадающая с направлением нити отвеса в месте наблюдения.

Зенит — верхняя точка пересечения отвесной линии с небесной сферой

Надир — нижняя точка пересечения отвесной линии с небесной сферой

Математический горизонт — плоскость, перпендикулярная отвесной линии.

Горизонтальная система координат (определения)

Зенитное расстояние (z) — угол между зенитом и звездой

Высота (h) — угол между математическим горизонтом и звездой

Азимут — угол между точкой юга (S) и проекцией звезды на математический горизонт

(отсчитывается по часовой стрелке, то есть на запад (W)).

Экваториальная система координат

 P_N, P_S — северный и южный полюса мира

 $P_N P_S$ — ось мира

Ү — точка весеннего равноденствия

Координаты звезды С:

- YA прямое восхождение α
 QA часовой угол t
- AC склонение δ P_NC полярное расстояние ρ

Экваториальная система координат (определения)

мира

Ось мира — прямая, параллельная оси вращения Земли Северный полюс мира — одна из точек пересечения оси мира с небесной сферой (вращение Земли происходит против часовой стрелки) Небесный экватор — плоскость, перпендикулярная оси

Эклиптика — видимый годичный путь Солнца **Точка весеннего равноденствия** — одна из точек пересечения эклиптики с небесным экватором

Экваториальная система координат (определения)

- **Склонение (δ)** угол между небесным экватором и звездой
- Полярное расстояние (р) угол между северным полюсом мира и звездой
- **Часовой угол (t)** угол между *Q* и проекцией звезды на небесный экватор
- Прямое восхождение (α) угол между точкой весеннего равноденствия и проекцией звезды на небесный экватор

Горизонтальная и экваториальная системы координат

Сферический треугольник

Это фигура, состоящая из трёх точек и трёх дуг **больших кругов**

- Сферический дефект: $a+b+c<2\pi$
- Сферический избыток: $\pi < A + B + C < 3\pi$

Рисунок: Сферический треугольник ABC

Основные формулы сферической геометрии

Сферическая теорема косинусов $\cos a = \cos b \cos c + \sin b \sin c \cos A$

Сферическая теорема синусов

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

Формула пяти элементов $\sin a \cos B = \cos b \sin c - \sin b \cos c \cos A$

Рисунок: Сферический треугольник ABC

Переход между горизонтальной и экваториальной системами координат

$$\begin{cases}
\cos z = \sin \delta \sin \varphi + \cos \delta \cos \varphi \cos t \\
\sin z \sin A = \cos \delta \sin t \\
\sin z \cos A = -\sin \delta \cos \varphi + \cos \delta \sin \varphi \cos t
\end{cases}$$

(вывод формул можно посмотреть в http://www.astronet.ru/db/msg/1190817/node16.html)

