Excellent question 6 — tu touches ici à l'analyse de représentativité du NPS par segment, c'est-à-dire vérifier si les réponses NPS (5 244 répondants) reflètent bien la réalité de l'ensemble de la population (43 000 cas).

## **Objectif de ton analyse**

Tu veux:

- 1. Savoir qui tire le NPS vers le haut / bas
  - → via la contribution NPS pondérée
- 2. Vérifier si l'échantillon de répondants est représentatif de la population réelle
  - → via la comparaison des distributions et des écarts pondérés

# 1 Calculer le NPS global observé (réponses)

Tu as les segments et leurs NPS observés (répondants) :

| Segment          | Poids répon | dants NPS seg | ment Contribution au NPS observé |
|------------------|-------------|---------------|----------------------------------|
| Batterie         | 20 %        | 56            | $0.20 \times 56 = 11.2$          |
| Écran            | 30 %        | 62            | $0.30 \times 62 = 18.6$          |
| Caméra           | 40 %        | 58            | $0.40 \times 58 = 23.2$          |
| Système          | 10 %        | 29            | $0.10 \times 29 = 2.9$           |
| Total NPS (pondé | ré) 100 %   |               | <b>55.9</b> ≈ <b>56</b>          |



# 2 Calculer le NPS attendu si la population totale avait répondu

Tu utilises maintenant la vraie distribution (population totale de 43 000 cas):

| Segment  | Poids population totale | NPS segment (même que ci-<br>dessus) | Contribution pondérée   |
|----------|-------------------------|--------------------------------------|-------------------------|
| Batterie | 40 %                    | 56                                   | $0.40 \times 56 = 22.4$ |
| Écran    | 15 %                    | 62                                   | $0.15 \times 62 = 9.3$  |
| Caméra   | 25 %                    | 58                                   | $0.25 \times 58 = 14.5$ |

| Segment            | Poids population totale | NPS segment (même que ci-<br>dessus) | Contribution<br>pondérée |
|--------------------|-------------------------|--------------------------------------|--------------------------|
| Système            | 30 %                    | 29                                   | $0.30 \times 29 = 8.7$   |
| Total<br>(attendu) | 100 %                   |                                      | <b>54.9</b> ≈ <b>55</b>  |

✓ Le NPS corrigé (pondéré selon la population réelle) est  $\approx 55$ 

→ donc l'échantillon ne fausse pas beaucoup le NPS global (+1 point d'écart seulement).

# **3** Identifier qui tire le NPS vers le haut / vers le bas

Tu regardes maintenant les contributions pondérées :

| Segment  | t NPS segment | t Poids répondants | Contribution | Effet                      |
|----------|---------------|--------------------|--------------|----------------------------|
| Écran    | 62            | 30 %               | +18.6        | Tire vers le haut          |
| Caméra   | 58            | 40 %               | +23.2        | Tire vers le haut          |
| Batterie | 56            | 20 %               | +11.2        | 1 Légèrement positif       |
| Système  | 29            | 10 %               | +2.9         | Tire fortement vers le bas |

Le **segment "système"** a un **faible NPS** et **est sous-représenté** dans les réponses (10 % vs 30 % réel).

Donc ton NPS global observé est probablement un peu surestimé.

## 4 Vérifier la représentativité de la distribution

Tu compares les poids des segments "répondants" vs "population réelle" :

| Segment  | : % répondants | % population | Ecart absolu | Commentaire       |
|----------|----------------|--------------|--------------|-------------------|
| Batterie | 20 %           | 40 %         | -20 pts      | ▼ Sous-représenté |
| Écran    | 30 %           | 15 %         | +15 pts      | ■ Sur-représenté  |
| Caméra   | 40 %           | 25 %         | +15 pts      | ▲ Sur-représenté  |
| Système  | 10 %           | 30 %         | −20 pts      | ▼ Sous-représenté |

Si tu veux quantifier la représentativité, tu peux utiliser :

- Écart moyen absolu = (|-20|+|15|+|15|+|-20|)/4 = 17.5 points
- Indice de représentativité (1 somme des écarts/200) ≈ 0.825, donc 82.5 % représentatif → assez correct mais améliorable.

## **5** Visualisation utile

### Un diagramme en barres comparant les distributions :

• Axe X : segments

• Axe Y : pourcentage

• Deux barres par segment : % répondants vs % population totale

### Et un graphique en bulles (ou heatmap) :

X = NPS segment, Y =écart de distribution, taille = poids total  $\rightarrow$  visualise qui influence le plus le NPS global.

# 6 Résumé d'interprétation

| Type d'analyse                   | Résultat         | Interprétation                                       |
|----------------------------------|------------------|------------------------------------------------------|
| NPS observé                      | 56               | Sur l'échantillon                                    |
| NPS attendu (pondéré population) | 55               | Très proche → échantillon presque représentatif      |
| Segments positifs                | Écran,<br>Caméra | Sur-représentés → NPS un peu surévalué               |
| Segments négatifs                | Système          | Sous-représenté → NPS réel légèrement plus bas       |
| Représentativité                 | 82.5 %           | Assez bonne, mais attention au biais "panne système" |
|                                  |                  |                                                      |

# **7** Pour aller plus loin (statistiquement)

Tu peux aussi calculer:

- **Écart pondéré par NPS** = (poids\_respondants poids\_population) × NPS\_segment
- Coefficient de corrélation entre poids et NPS pour voir si la sur/sous-représentation biaise globalement le résultat.
- Erreur de pondération = somme(|écart| × NPS\_segment)/somme(NPS\_segment)

Excellent — tu veux maîtriser l'analyse NPS segmentée dans plusieurs cas réalistes, pour apprendre à raisonner selon les distributions et représentativités.

On va faire 2 cas complets:

# **SOLUTION** CAS 1 — Répartition équilibrée et NPS proches

Cas typique d'un échantillon "plutôt bien réparti" et "homogène"

# Contexte

Une société d'électroménager envoie un questionnaire NPS après chaque intervention SAV.

Population totale : 10 000 clients
Répondants NPS : 1 200 clients

Elle classe les cas en 5 segments selon le type d'intervention.

| Segment           | % répondants | NPS segment | % population réelle |
|-------------------|--------------|-------------|---------------------|
| 1. Réfrigérateur  | 25 %         | 58          | 22 %                |
| 2. Lave-linge     | 20 %         | 61          | 20 %                |
| 3. Lave-vaisselle | 18 %         | 55          | 17 %                |
| 4. Micro-ondes    | 22 %         | 59          | 25 %                |
| 5. Climatisation  | 15 %         | 63          | 16 %                |
|                   |              |             |                     |

# Étape 1 — Calcul du NPS global observé (pondéré sur répondants)

```
[
NPS_{observé} = \sum (poids_{répondants} \times NPS_{segment})
]
```

| Segment        | % répondants NPS segment Contribution |    |      |  |
|----------------|---------------------------------------|----|------|--|
| Réfrigérateur  | 0.25                                  | 58 | 14.5 |  |
| Lave-linge     | 0.20                                  | 61 | 12.2 |  |
| Lave-vaisselle | 0.18                                  | 55 | 9.9  |  |
| Micro-ondes    | 0.22                                  | 59 | 13.0 |  |
| Climatisation  | 0.15                                  | 63 | 9.45 |  |

Total NPS observé 1.00

**59.05** ≈ **59** 



**✓** NPS observé = 59

# Étape 2 — NPS corrigé (pondéré selon la population réelle)

| Segment           | % population | NPS segment | Contribution |
|-------------------|--------------|-------------|--------------|
| Réfrigérateur     | 0.22         | 58          | 12.76        |
| Lave-linge        | 0.20         | 61          | 12.2         |
| Lave-vaisselle    | 0.17         | 55          | 9.35         |
| Micro-ondes       | 0.25         | 59          | 14.75        |
| Climatisation     | 0.16         | 63          | 10.08        |
| Total NPS corrigé | 1.00         |             | 59.14 ≈ 59   |



NPS corrigé = 59

L'échantillon représente très bien la population réelle.



# **Les Etape 3** — Analyse de représentativité (distribution)

| Segment        | % répondants | % population | Écart | Interprétation             |
|----------------|--------------|--------------|-------|----------------------------|
| Réfrigérateur  | 25 %         | 22 %         | +3    | Sur-représenté             |
| Lave-linge     | 20 %         | 20 %         | 0     | Parfait                    |
| Lave-vaisselle | 18 %         | 17 %         | +1    | Très proche                |
| Micro-ondes    | 22 %         | 25 %         | -3    | Légèrement sous-représenté |
| Climatisation  | 15 %         | 16 %         | -1    | Très proche                |

- **Écart moyen absolu** = (3 + 0 + 1 + 3 + 1) / 5 = 1.6 **points**
- Indice de représentativité ≈ 99.2 %
- $\checkmark$  Très bonne représentativité  $\rightarrow$  NPS fiable.
- Aucun segment n'a de poids suffisant pour fausser la moyenne.



## 🚫 Étape 4 — Interprétation

- Les NPS sont proches (écart de 8 points max), donc la moyenne globale est stable.
- L'échantillon est quasi identique à la population  $\rightarrow$  aucun biais significatif.
- Tous les segments contribuent à un NPS homogène : pas de "point noir" majeur.

### III En résumé du Cas 1

| Type d'analyse                                                                                  | Résultat                                                       |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| NPS observé                                                                                     | 59                                                             |
| NPS corrigé                                                                                     | 59                                                             |
| Écart moyen de distribution                                                                     | 1.6 pts                                                        |
| Indice de représentativité                                                                      | 99.2 %                                                         |
| Segments dominants                                                                              | Réfrigérateur, Micro-ondes                                     |
| Biais global                                                                                    | Négligeable                                                    |
| Interprétation                                                                                  | L'échantillon est très représentatif et équilibré              |
| Écart moyen de distribution<br>Indice de représentativité<br>Segments dominants<br>Biais global | 1.6 pts<br>99.2 %<br>Réfrigérateur, Micro-ondes<br>Négligeable |

# **OUTION SE LA SE LA PRÉPARTITION DE SÉQUILIBRE LA VEC** un segment dominant



Cas d'un échantillon biaisé par une surreprésentation forte



Une société de télécommunication envoie un NPS après chaque interaction service client.

Population totale: 50 000 cas

Répondants: 4 000

| Segment                 | % répondants | NPS segment | % population réelle |
|-------------------------|--------------|-------------|---------------------|
| 1. Abonnement mobile    | 80 %         | 67          | 86 %                |
| 2. Internet fibre       | 8 %          | 52          | 5 %                 |
| 3. Télévision           | 5 %          | 49          | 3 %                 |
| 4. Facturation          | 4 %          | 42          | 3 %                 |
| 5. Assistance technique | 3 %          | 58          | 3 %                 |

# **Étape 1** — NPS observé (pondéré sur les répondants)

| Segment              | % répondants | NPS | Contribution    |
|----------------------|--------------|-----|-----------------|
| Abonnement mobile    | 0.80         | 67  | 53.6            |
| Internet fibre       | 0.08         | 52  | 4.16            |
| Télévision           | 0.05         | 49  | 2.45            |
| Facturation          | 0.04         | 42  | 1.68            |
| Assistance technique | 0.03         | 58  | 1.74            |
| Total NPS observé    | 1.00         |     | $63.6\approx64$ |

✓ NPS observé = 64

# Étape 2 — NPS corrigé (pondéré sur la population réelle)

| Segment              | % population | NPS | Contribution             |
|----------------------|--------------|-----|--------------------------|
| Abonnement mobile    | 0.86         | 67  | 57.62                    |
| Internet fibre       | 0.05         | 52  | 2.6                      |
| Télévision           | 0.03         | 49  | 1.47                     |
| Facturation          | 0.03         | 42  | 1.26                     |
| Assistance technique | 0.03         | 58  | 1.74                     |
| Total NPS corrigé    | 1.00         |     | <b>64.69</b> ≈ <b>65</b> |

**✓** NPS corrigé = 65

La différence est **faible (+1 point)**, donc le NPS global reste fiable. Mais la forte domination d'un segment demande vigilance dans l'interprétation.



## **Solution Les 1 Analyse de représentativité**

| Segment              | % répondants | % population | Ecart | Interprétation             |
|----------------------|--------------|--------------|-------|----------------------------|
| Abonnement mobile    | 80 %         | 86 %         | -6    | Légèrement sous-représenté |
| Internet fibre       | 8 %          | 5 %          | +3    | Sur-représenté             |
| Télévision           | 5 %          | 3 %          | +2    | Sur-représenté             |
| Facturation          | 4 %          | 3 %          | +1    | Sur-représenté             |
| Assistance technique | 3 %          | 3 %          | 0     | Parfait                    |

- **Écart moyen absolu** = (6 + 3 + 2 + 1 + 0) / 5 = 2.4 **points**
- Indice de représentativité ≈ 98.8 % → très bon, mais attention au poids massif d'un segment.

# **É**tape 4 — Analyse de contribution

| Segment              | Poids réel | NPS | Contribution réelle | Effet                       |
|----------------------|------------|-----|---------------------|-----------------------------|
| Abonnement mobile    | 86 %       | 67  | 57.6                | Tire fortement vers le haut |
| Internet fibre       | 5 %        | 52  | 2.6                 | Légèrement négatif          |
| Télévision           | 3 %        | 49  | 1.47                | ▼ Négatif                   |
| Facturation          | 3 %        | 42  | 1.26                | Très négatif                |
| Assistance technique | 3 %        | 58  | 1.74                | Légèrement positif          |

Le NPS global est presque entièrement déterminé par le segment "Abonnement mobile", car il représente 86 % de la population.

Les autres segments ont peu de poids sur le score global, mais peuvent être **critiques qualitativement** (mauvais NPS = irritants spécifiques).

## **Étape 5** — Interprétation stratégique

- Même si le NPS global est élevé (65), il cache des insatisfactions sur d'autres segments
  - o Facturation (42): à traiter en priorité.
  - o **Télévision (49)**: expérience à améliorer.
- Le segment "Abonnement mobile" a une **forte influence** → tout changement dans ce segment peut faire chuter le NPS global rapidement.

# **Étape 6** — Comparaison visuelle

Crée deux graphiques:

- 1. Barres comparatives : % répondants vs % population
  - → pour voir la sous/sur-représentation.
- 2. Graphique bulles:
  - $\circ$  X = NPS segment
  - $\circ$  Y = écart de distribution

- Taille = poids total
  - → montre l'effet de levier de chaque segment.



### En résumé du Cas 2

NPS observé 64 NPS corrigé 65 Écart moyen de distribution 2.4 pts Indice de représentativité 98.8 %

Segment dominant Abonnement mobile (86 %)

Faible mais structurel Biais global

NPS stable, mais masque de fortes disparités internes Interprétation



# 🇱 Comment comparer les deux cas

| Aspect                        | Cas 1 (équilibré)            | Cas 2 (dominant)                                      |
|-------------------------------|------------------------------|-------------------------------------------------------|
| Distribution des segments     | Assez homogène               | Très concentrée                                       |
| Différence NPS entre segments | Faible (≈6 pts)              | Forte (25 pts)                                        |
| NPS observé vs corrigé        | Identiques                   | Écart léger                                           |
| Risque de biais               | Très faible                  | Moyen (effet d'écrasement)                            |
| Segments à surveiller         | Aucun majeur                 | Facturation / TV                                      |
| Interprétation globale        | Échantillon fiable et stable | Score global fiable mais peu révélateur des irritants |



# (W) Ce que tu dois retenir (méthodologie d'analyse)

- 1. Comparer la distribution % répondants vs % population
  - → détecter sur/sous-représentation
- 2. Pondérer le NPS par les poids réels
  - o → obtenir le vrai NPS "corrigé"
- 3. Analyser les contributions
  - $\circ$   $\rightarrow$  voir qui tire vers le haut/bas

### 4. Vérifier la représentativité

o → avec écart moyen et indice de représentativité

### 5. Interpréter le biais

- o Surreprésentation d'un segment positif → NPS surestimé
- o Sous-représentation d'un segment négatif → NPS artificiellement élevé

### 6. Communiquer les résultats

- o NPS global, mais aussi NPS par segment, et leur poids réel
- o Toujours préciser si le NPS global est "représentatif" ou "corrigé"

Excellent  $\bigcirc$  — tu veux maintenant approfondir : non seulement savoir calculer et corriger le NPS, mais aussi analyser la représentativité de la population et interpréter les biais statistiques.

Je vais donc t'expliquer comment aller au niveau "data analyst / data scientist":

- en structurant ta réflexion,
- en ajoutant des analyses de population,
- et en te donnant des **méthodes concrètes** (Excel / Python).

# **Ouverage des consents des consents de con**

Quand on calcule un NPS, on travaille toujours avec un **échantillon** de répondants. Mais cet échantillon **ne reflète pas toujours fidèlement la population réelle**. → Cela crée un **biais d'échantillonnage (sampling bias)**.

### **Exemple:**

 Si 80 % des répondants viennent du segment "mobile" alors qu'il ne représente que 50 % de la population,

ton NPS sera surreprésenté par les opinions des clients mobile.

### **Objectif de ton analyse populationnelle :**

Vérifier si la distribution de ton échantillon reflète celle de ta population réelle, et estimer l'impact de toute différence sur ton NPS.

# Les bases de la comparaison population / échantillon

| Étape | Ce qu'on compare                                                | Indicateur                                            |
|-------|-----------------------------------------------------------------|-------------------------------------------------------|
| 1     | % de chaque segment dans la population vs % dans les répondants | Écart absolu / relatif                                |
| 2     | Moyenne du NPS par segment                                      | Variance et dispersion                                |
| 3     | Pondération corrigée du NPS                                     | NPS ajusté                                            |
| 4     | Structure globale                                               | Indice de représentativité / test du chi <sup>2</sup> |

## ♦ a) L'écart absolu

C'est la différence directe entre la part du segment dans la population et dans les répondants :

```
[
Ecart = | %{répondants} - %{population} |
]
```

### Exemple:

• Segment "A" = 30 % des répondants, 40 % de la population  $\rightarrow$  écart = 10 points

### Interprétation :

- Écart  $< 5 \% \rightarrow$  très représentatif
- Écart entre 5–10 % → légèrement biaisé
- Écart > 10 % → sous/sur-représentation importante

# b) L'écart relatif

Permet de voir l'ampleur du biais proportionnellement à la vraie taille :

### Exemple:

- 30 % répondants vs 40 % population
  - $\rightarrow$  (30-40)/40 = -25 %
  - → Le segment est sous-représenté de 25 %.

## c) L'indice de représentativité global

```
Indice = 1 - \frac{\sqrt{r\acute{e}pondants} - \%{population}}{200}
(200 = cas où 100 % de la population est dans un segment et 0 % dans l'autre)
```

Exemple: somme des écarts =  $20 \rightarrow Indice = 1-(20/200)=0.90 \rightarrow 90$  % représentatif

# Comment analyser la population en

# profondeur



### a) Calculer la distribution de la population

Liste tes segments et leur part réelle.

Cela te donne le **poids "structurel"** de chaque type de cas.

### Segment Nombre total % sur 43 000

Batterie 17 200 40 % Écran 6 4 5 0 15 % Caméra 10 750 25 % Système 8 600 20 %

→ Tu obtiens ta **population de référence**.

## b) Calculer la distribution des répondants NPS

### Segment Nombre de répondants % sur 5 244

20 % Batterie 1 050 Écran 30 % 1 573 Caméra 2 098 40 %



### c) Comparer les deux distributions

### Segment % population % répondants Écart absolu Écart relatif

| Batterie | 40 % | 20 % | -20 pts | <b>−50 %</b> |
|----------|------|------|---------|--------------|
| Écran    | 15 % | 30 % | +15 pts | +100 %       |
| Caméra   | 25 % | 40 % | +15 pts | +60 %        |
| Système  | 20 % | 10 % | −10 pts | <b>−50 %</b> |

### Tu vois ici:

- Batterie et Système → sous-représentés
- Écran et Caméra → sur-représentés

# Corriger le NPS pour estimer la réalité populationnelle

C'est ici qu'on parle de pondération :

chaque NPS segment est multiplié par le poids réel de son segment (pas celui des répondants).

Tu peux comparer:

- NPS observé (pondéré par répondants)
- NPS corrigé (pondéré par population)







# 3 5 Aller plus loin : analyses avancées sur

# la population

Maintenant que tu as la structure, tu peux faire des analyses plus "data science".



### 📈 a) Test du Chi² de représentativité

Tu veux vérifier si les distributions (population vs répondants) sont **statistiquement identiques**.

Formule du test du  $\chi^2$ :

```
\dot{chi}^2 = \sum \frac{(observé - attendu)^2}{attendu}
En Python:
from scipy.stats import chisquare
observed = [20, 30, 40, 10] # % répondants
expected = [40, 15, 25, 20] # % population
chisquare(observed, expected)
```

- Si p-value  $> 0.05 \rightarrow$  pas de différence significative  $\rightarrow$  échantillon représentatif
- Si p-value  $< 0.05 \rightarrow$  distributions différentes  $\rightarrow$  biais de population

### b) Corrélation entre NPS et sur/sous-représentation

Objectif : voir si les segments avec un NPS haut sont sur-représentés (car cela gonfle artificiellement ton score global).

```
corrélation = corr(NPS {segment}, (%{répondants} - %{population}))
```

- Corrélation positive → surreprésentation des segments satisfaits → NPS biaisé à la hausse
- Corrélation négative → surreprésentation des mécontents → NPS biaisé à la baisse



### c) Analyse de contribution pondérée

Chaque segment peut être mesuré par sa contribution réelle au NPS global :

```
Contribution = NPS {segment} × poids {population}
et par sa contribution au biais :
Biais {segment} = (poids {répondants} - poids {population}) × NPS {segment}
```

- Si biais  $> 0 \rightarrow$  le segment fait artificiellement monter le NPS
- Si biais  $< 0 \rightarrow$  le segment **fait baisser** le NPS observé

### **d)** Variance inter-segments

Tu peux aussi mesurer la dispersion du NPS pour estimer la stabilité du score global.

```
Variance = \frac{\text{NPS}_i - \text{NPS}_{\text{moyen}}}^2 \times \text{poids}_i}{\text{sum poids}_i}
```

- → Plus la variance est faible, plus ton NPS global est "robuste".
- → Si elle est forte, cela signifie que certains segments extrêmes influencent le résultat.

### e) Repondération / Raking

Technique utilisée par les instituts de sondage pour simuler une population représentative.

### L'idée:

- 1. Tu multiplies les poids des répondants sous-représentés par un facteur de correction : Facteur = \frac{\%{population}}{\%{répondants}}
- 2. Tu recalcules le NPS corrigé.

### Exemple:

- Segment Batterie : 40 % réel / 20 % répondants = 2 → chaque réponse batterie "vaut
- Segment Caméra : 25 % réel / 40 % répondants = 0.625 → chaque réponse caméra "vaut 0.625"

# **Représentation visuelle pour l'analyse populationnelle**

### **♦** Barres côte à côte :

Comparer la répartition répondants / population.

### **Graphique de contribution :**

X = NPS, Y = % population, taille de la bulle = contribution pondérée.

### ♦ Waterfall chart (graphique en cascade) :

Visualiser l'effet de chaque segment sur le NPS global.

### ♦ Heatmap :

Segments vs écart de distribution, coloré selon le NPS.

# **T** Lecture stratégique (comment présenter les résultats)

### **Quand les écarts sont faibles :**

"L'échantillon des répondants reflète fidèlement la population réelle. Le NPS observé peut être considéré comme représentatif."

### **Quand les écarts sont moyens:**

"On observe des différences modérées entre la structure des répondants et celle de la population. Le NPS global reste fiable mais légèrement biaisé par la surreprésentation des segments X et Y."

### Quand les écarts sont forts :

"L'échantillon présente une forte distorsion de structure : les segments Z sont sous-représentés et X surreprésentés. Une repondération statistique du NPS est nécessaire pour estimer le vrai score global."





# En pratique : outils à utiliser

Outil Ce que tu peux faire

**Excel** Calculs pondérés, graphiques, formules d'écart

**Python (pandas, scipy)** Tests  $\chi^2$ , corrélations, simulations

**Power BI / Tableau** Visualisations de distributions et contributions

R (survey package) Repondération statistique avancée

SPSS Analyse de représentativité, pondération automatique





# Exemple de plan d'analyse complet

# (prêt à suivre)

| Étape | Action                                               | Objectif                      | Sortie attendue          |
|-------|------------------------------------------------------|-------------------------------|--------------------------|
| 1     | Construire les distributions répondants / population | Identifier les<br>différences | Tableau comparatif       |
| 2     | Calculer NPS observé et corrigé                      | Mesurer le biais              | Deux valeurs comparées   |
| 3     | Mesurer les écarts et l'indice de représentativité   | Quantifier la fiabilité       | Indice (%)               |
| 4     | Tester la significativité ( $\chi^2$ )               | Vérifier statistiquement      | p-value                  |
| 5     | Corréler NPS vs sur/sous-représentation              | Détecter le sens du biais     | Coefficient r            |
| 6     | Visualiser les distributions                         | Présenter clairement          | Graphiques barres/bulles |
| 7     | Corriger (raking) et recalculer                      | Obtenir NPS réaliste          | NPS repondéré            |



# En résumé

| Élément      | Rôle                       | Interprétation                      |
|--------------|----------------------------|-------------------------------------|
| Distribution | Structure de la population | Sert à vérifier la représentativité |
| NPS segmenté | Mesure qualitative         | Sert à pondérer la satisfaction     |
| NPS corrigé  | Score global ajusté        | Reflète la réalité                  |
| _            |                            |                                     |

Écart moyen / indice Mesure quantitative de fiabilité Indique la solidité du sondage

| Élément              | Rôle                 | Interprétation                       |
|----------------------|----------------------|--------------------------------------|
| Tests / corrélations | Mesures statistiques | Détectent les biais structurels      |
| Visualisations       | Communication        | Rend le message clair et actionnable |

Souhaites-tu que je te fasse un modèle Excel complet d'analyse NPS populationnelle, avec :

- les formules de représentativité,
- les graphiques automatiques,
- le calcul du NPS corrigé,
- et les interprétations automatiques (ex : "sous-représenté / sur-représenté" + "impact sur le NPS") ?

Ainsi tu pourrais coller n'importe quel cas réel et obtenir ton diagnostic complet.