ARCOS Group

uc3m Universidad Carlos III de Madrid

L5: Memory hierarchy (1) Computer Structure

Bachelor in Computer Science and Engineering
Bachelor in Applied Mathematics and Computing
Dual Bachelor in Computer Science and Engineering and Business Administration

Contents

- Types of memories
- 2. Memory hierarchy
- 3. Main memory
- 4. Cache memory

5. Virtual memory

Computer overview

Types of memories (so far)

Types of memories (so far)

- Capacity: stores few data
- Access time: around ns.

- Capacity: in the order of GB
- ▶ Access time: 40 100 ns.
 - ▶ 1 M.M. access = many clock cycles

Program and data NOT in execution

Disk

- Capacity: almost unlimited (replaceable)
- Access time: ~milliseconds (slow)

Different types of physical devices

Semiconductor memories

- Electronic circuits
- E.g.: RAM, ROM y Flash

Magnetic memories

- Information on a magnetized surface
- E.g.: hard disk and tapes

Optic memories

- Information engraved with a laser that generates perforations on a surface
- E.g.: CD, DVD and Blu-ray

Where is it located?

Main features

Data Permanency:

- Volatile (e.g. RAM)
- Non-volatile (e.g. ROM, Flash)

Types of operations:

- Read and write: RAM
- Read-only: ROM

Organization:

- Storage unit:
 - ▶ Bits, bytes, words, blocks, etc.
- Access mode:
 - ▶ Sequential (e.g., magnetic tape),
 - Random (RAM): can be accessed in any order. Same access time

Performance:

- Access time: time between submitting address and obtaining data.
- Bandwidth or Transfer rate: amount of data accessed per unit of time.

Other:

- Capacity: amount of data that can be stored
- Cost: price per unit of storable data

Size units

Usually expressed in bytes (octet):

```
byte
                I byte = 8 bits
                                            2<sup>10</sup> bytes
               I KB = I.024 bytes
  kilobyte
megabyte | MB = 1.024 KB
                                            2<sup>20</sup> bytes
                                            2<sup>30</sup> bytes
gigabyte
                I GB = I.024 MB
terabyte
                                            2<sup>40</sup> bytes
                ITB = 1.024 GB
                                            2<sup>50</sup> bytes
  petabyte
                I PB = I.024 TB
exabyte
                I EB = I.024 PB
                                            2<sup>60</sup> bytes
zettabyte
               I ZB = I.024 EB
                                            2<sup>70</sup> bytes
                                            2<sup>80</sup> bytes
                IYB = 1.024 ZB
yottabyte
```

Size units (with care)

In communication the kilobit is usually used instead of the kilobyte (I Kb <> I KB) and powers of 10:

```
▶ I Kb = 1.000 bits
```

- ▶ I KB = 1.000 bytes
- In storage (hard disks) some manufacturers do not use powers of two, but powers of 10:

```
kilobyte | KB = 1.000 bytes | 10^3 bytes
```

- Arr megabyte | MB = 1.000 KB | 10⁶ bytes
- gigabyte I GB = 1.000 MB $I O^9$ bytes
- terabyte ITB = 1.000 GB $I0^{12}$ bytes
- ...

Performance evolution

Processors

Source: Computer Architecture, A Quantitative Approach by John L. Hennessy and David A. Patterson

- ▶ 1980-2000: 60% of annual average increase
- DRAM memories
 - ▶ 1980-2000: 7% of annual average increase
- Distance between memory and CPU increases every year

different access times to memory...

- Registers access time
- A library in UC3M...

~ I ns

SRAM access time

A library in UAB...

▶ ~2-5 ns

DRAM access time

A library in Florida...

▶ ~70-100 ns

Number of memory accesses

```
int i;
int s = 0;
for (i=0; i<1000; i++)
    s = s + i;
i=0;</pre>
```

How many memory accesses are generated in this code fragment?

Number of memory accesses

```
int i;

int s = 0;

for (i=0; i<1000; i++)

s = s + i;

i=0;

li t0, 0 # s

li t1, 0 # i

li t2, 1000

bucle1: bge t1, t2, fin1

add t0, t0, t1

addi t1, t1, 1

beq x0, x0, bucle1

fin1: li t1, 0
```

How many memory accesses are generated in this code fragment?

Number of memory accesses

```
int i;

int s = 0;

for (i=0; i<1000; i++)

s = s + i;

i=0;

li t1, 0 # i

li t2, 1000

bucle1: bge t1, t2, fin1

add t0, t0, t1

addi t1, t1, 1

beq x0, x0, bucle1

fin1: li t1, 0
```

Solution: $3 + 4 \times 1000 + 1 + 1 = 4005$

Number of memory accesses

```
li t0, 0 # s
                                   li t1,0 # i
int i;
                                   li t2, 1000
int s = 0;
                           bucle1: bge t1, t2, fin1
for (i=0; i<1000; i++)
                                   add
                                       t0, t0, t1
    s = s + i;
                                   addi t1, t1, 1
                                   beq x0, x0, bucle1
i = 0;
                           fin1:
                                   li
                                       t1, 0
```

Solution: $3 + 4 \times 1000 + 1 + 1 = 4005$

- If memory access time is 60 ns the total time is 240,240 ns
- A processor would use more that 98% waiting for data from main memory

Number of memory accesses

```
int v[1000];  // global
int i;
for (i=0; i < 1000; i++)
   v[i] = 0;</pre>
```

How many memory accesses are generated in this code fragment?

Number of memory accesses

```
.data
                                        v: .zero 4000
                                .text:
int v[1000]; // global
                                         li t0, 0 # i
                                         li t1, 0 # i de v
                                         li t2, 1000 # n. eltos
int i;
                                bucle2:
                                        bgt t0, t2, fin2
for (i=0; i < 1000; i++)
                                            0, v(t1)
                                         SW
    v[i] = 0;
                                         addi t0, t0, 1
                                         addi t1, t1, 4
                                             bucle2
                                fin2:
```

How many memory accesses are generated in this code fragment?

Number of memory accesses

```
.data
                                        v: .zero 4000
                                .text:
int v[1000]; // global
                                         li t0, 0 # i
                                         li t1,0 # i de v
                                         li t2, 1000 # n. eltos
int i;
                                bucle2:
                                         bgt t0, t2, fin2
for (i=0; i < 1000; i++)
                                             0, v(t1)
                                         SW
     v[i] = 0;
                                         addi t0, t0, 1
                                         addi t1, t1, 4
                                             bucle2
                                fin2:
```

Solution:

 $3 + 5 \times 1000 + 1 + 1000$ (additional access of sw) = 6004

Contents

- Types of memories
- 2. Memory hierarchy
- 3. Main memory
- 4. Cache memory
- 5. Virtual memory

What would the ideal memory system look like?

- Minimizes access time
- Maximizes capacity
- Minimizes cost

Reality

- Incompatible goals :
 - + speed size⇒
- Different types of memory are used:
 - ▶ DRAM, Hard disk, ...
- Different types of memory are organized by access speed:
 - Memory hierarchy

Memory hierarchy

Comparison

, , ,

Technology	Bytes per Access (typ.)	Latency per Access	Cost per Megabyte ^a	Energy per Access
On-chip Cache	10	100 of picoseconds	\$1-100	1 nJ
Off-chip Cache	100	Nanoseconds	\$1-10	10-100 nJ
DRAM	1000 (internally fetched)	10-100 nanoseconds	\$0.1	1-100 nJ (per device)
Disk	1000	Milliseconds	\$0.001	100–1000 mJ

Memory Systems Cache, DRAM, Disk Bruce Jacob, Spencer Ng, David Wang Elsevier

Use of memory hierarchy

Only in memory what is needed at any given time.

If it is not present, the necessary portion is copied from one level to another:

E.g.: load a program into RAM

When it is no longer needed, the copy made is deleted.

- Access behavior supports it:
 - Proximity of references

Idea of the memory hierarchy

Memory hierarchy design

- The design of the memory hierarchy is crucial in multicore processors.
- Bandwidth increases with the number of cores
 - An Intel Core i7 generates two memory accesses per core per clock cycle
 - With 4 cores and 3.2 GHz clock frequency
 - ▶ 25.6 billion 64-bits data accesses per second +
 - ▶ 12.8 billion 128-bits data accesses for instructions = 409.6 GB/s
 - ▶ A DRAM memory offers only 6% (25GB/s)
 - It is required:
 - Multi-port memories
 - Cache levels

Contents

- Types of memories
- 2. Memory hierarchy
- 3. Main memory

4. Cache memory

5. Virtual memory

Semiconductor memories

- Read only memory (ROM)
 - Non-volatile memory
 - persistent
 - Example of use: BIOS
- Random access memory (RAM)
 - Volatile memory
 - Not persistent
 - Faster than ROM
 - Example of use: main memory

Semiconductor Memory Matrix

Each cell stores a I or a 0

(b) Matriz 16×4

Fundamentos de Sistemas Digitales Thomas L. Floyd

(c) Matriz 64 × 1

Addresses and capacity

Address: position of a data unit in the memory matrix

(b) La dirección del byte gris claro es la fila 3.

Fundamentos de Sistemas Digitales Thomas L. Floyd

Capacity: total number of data units that can be stored

Addressing types

Fundamentos de Sistemas Digitales Thomas L. Floyd

Example of organization

Read operation

RAM (random access memories)

From Computer Desktop Encyclopedia © 2005 The Computer Language Co. Inc

Dynamic RAM (DRAM)

- Stores bits as charge in capacitors.
- Tends to discharge: needs periodic refreshing.
 - Advantage: simpler construction, more storage, more cost effective
 - Disadvantage: needs refreshing circuitry, slower.
 - □ 2%-3% of clock cycles consumed by the refresh
 - Used in main memory

Static RAM (SRAM)

- Stores bits as on and off switches.
- Tends **not** to discharge: does **not** need refreshing.
 - Advantage: No need for refresh circuitry, faster.
 - Disadvantage: Complex construction, less storage, more expensive.
 - Used in memory caches

From Computer Desktop Encyclopedia @ 2005 The Computer Language Co. Inc.

Where is the DRAM memory located?

DRAM memory

SRAM memory example

DRAM structure

Address multiplexing in DRAM

Row/column addressing

Row/column addressing with CAS/RAS

Read operation with CAS/RAS

Refresh cycles

- ▶ A DRAM stores a bit in a capacitor.
- This charge degrades with time and temperature
- Each bit needs to be refreshed
- Typically, a DRAM must be refreshed every few milliseconds.
- A read operation refreshes all the addresses in a row.
- A DRAM uses refresh cycles

DRAM memory speed

Production year	Chip size	DRAM Type	Slowest DRAM (ns)	Fastest DRAM (ns)	Column access strobe (CAS) data transfer time (ns)	/ Cycle time (ns)
1980	64K bit	DRAM	180	150	75	250
1983	256K bit	DRAM	150	120	50	220
1986	1M bit	DRAM	120	100	25	190
1989	4M bit	DRAM	100	80	20	165
1992	16M bit	DRAM	80	60	15	120
1996	64M bit	SDRAM	70	50	12	110
1998	128M bit	SDRAM	70	50	10	100
2000	256M bit	DDR1	65	45	7	90
2002	512M bit	DDR1	60	40	5	80
2004	1G bit	DDR2	55	35	5	70
2006	2G bit	DDR2	50	30	2.5	60
2010	4G bit	DDR3	36	28	1	37
2012	8G bit	DDR3	30	24	0.5	31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 95.) Perfor-

Patterson y Hennesy

Types of DDR memories

Standard	Clock rate (MHz)	M transfers per second	DRAM name	MB/sec/DIMM	DIMM name
DDR	133	266	DDR266	2128	PC2100
DDR	150	300	DDR300	2400	PC2400
DDR	200	400	DDR400	3200	PC3200
DDR2	266	533	DDR2-533	4264	PC4300
DDR2	333	667	DDR2-667	5336	PC5300
DDR2	400	800	DDR2-800	6400	PC6400
DDR3	533	1066	DDR3-1066	8528	PC8500
DDR3	666	1333	DDR3-1333	10,664	PC10700
DDR3	800	1600	DDR3-1600	12,800	PC12800
DDR4	1066–1600	2133-3200	DDR4-3200	17,056–25,600	PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-

Hennesy & Patterson

DRAM memory controller

- Controller handles refresh and DRAM peculiarities
- It hides all this from the processor and offers a simple interface.
 - Processor not dependent on memory technology

ROM memories

Fundamentos de Sistemas Digitales Thomas L. Floyd

ARCOS Group

uc3m Universidad Carlos III de Madrid

L5: Memory hierarchy (1) Computer Structure

Bachelor in Computer Science and Engineering
Bachelor in Applied Mathematics and Computing
Dual Bachelor in Computer Science and Engineering and Business Administration

