

Example. Consider a board

Example. Consider a board with each side of length 8 inch.

Example. Consider a board with each side of length 8 inch. Prove that if we choose 65 points on the board,

Solution. Divide the square into an 8×8 grid

Solution. Divide the square into an 8×8 grid

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of squares of the grid

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

f:

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B,$

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) =

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) = the square containing x.

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) = the square containing x.

Since |A|

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) = the square containing x.

Since |A| = 64

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) = the square containing x.

Since |A| = 64 < 65

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f: A \to B$, so that f(x) = the square containing x.

Since |A| = 64 < 65 = |B|,

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points.

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle:

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets

Pigeonhole principle: A and B are finite sets f:

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Pigeonhole principle: A and B are finite sets f:A

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Pigeonhole principle: A and B are finite sets $f:A\to B$

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets

 $f:A\to B$

If |B| = n

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets

$$f:A\to B$$

If
$$|B| = n$$
 and $|A| \ge kn + 1$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets $f:A\to B$ If |B|=n and $|A|\ge kn+1$ then there is a $b\in B$,

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets $f: A \to B$ If |B| = n and $|A| \ge kn + 1$ then there is a $b \in B$, so that $|f^{-1}(b)| \ge k + 1$

Pigeonhole principle: A and B are finite sets $f:A\to B$ If |B|=n and $|A|\ge kn+1$ then there is a $b\in B$, so that $|f^{-1}(b)|\ge k+1$

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Pigeonhole principle: A and B are finite sets $f: A \to B$ If |B| = n and $|A| \ge kn + 1$ then there is a $b \in B$, so that $|f^{-1}(b)| \ge k + 1$

Solution. Divide the square into an 8×8 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

Pigeonhole principle: A and B are finite sets $f:A\to B$ If |B|=n and $|A|\ge kn+1$ then there is a $b\in B$, so that $|f^{-1}(b)|\ge k+1$

Solution. Divide the square into an
$$8 \times 8$$
 grid

A: the given set of 65 points

B: the set of 64 squares of the grid

Proof.
$$B = \{b_1, \}$$

Pigeonhole principle: A and B are finite sets $f:A\to B$ If |B|=n and $|A|\ge kn+1$ then there is a $b\in B$, so that $|f^{-1}(b)|\ge k+1$

Solution. Divide the square into an
$$8 \times 8$$
 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Proof.
$$B = \{b_1, b_2, \}$$

Pigeonhole principle: A and B are finite sets $f:A\to B$ If |B|=n and $|A|\ge kn+1$ then there is a $b\in B$, so that $|f^{-1}(b)|\ge k+1$

Solution. Divide the square into an
$$8 \times 8$$
 grid

Proof. $B = \{b_1, b_2, \dots, b_n\}$

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall,

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b)$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A\}$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i),$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle, $|A|$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume,

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Pigeonhole principle: A and B are finite sets $f: A \to B$ If |B| = n and $|A| \ge kn + 1$ then there is a $b \in B$, so that $|f^{-1}(b)| > k + 1$

Proof. $B = \{b_1, b_2, ..., b_n\}$ Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$ $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle, $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$ If we assume, $|f^{-1}(b_i)| \le k$, then,

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le$

Solution. Divide the square into an 8×8 grid

 \overline{A} : the given set of 65 points

B: the set of 64 squares of the grid

 $f:A\to B$, so that f(x)= the square containing x. Since |A|=64<65=|B|, there is one square with two points. The largest distance between any two points on a square is $\sqrt{2}\times$ length of side.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. A

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{ \} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, \} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, \} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, n_3, \} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, n_3, n_4, \} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, n_3, n_4, n_5\} \subset \mathbb{Z}_{>0}$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, n_3, n_4, n_5\} \subset \mathbb{Z}_{>0}$ For any permutation, $n_{i_1}n_{i_2}n_{i_3}n_{i_4}n_{i_5}$,

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Example. $A := \{n_1, n_2, n_3, n_4, n_5\} \subset \mathbb{Z}_{>0}$ For any permutation, $n_{i_1}n_{i_2}n_{i_3}n_{i_4}n_{i_5}$, $(n_{i_1} - n_1)$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Pigeonhole principle: A and B are finite sets $f: A \to B$ If |B| = n and $|A| \ge kn + 1$ then there is a $b \in B$, so that $|f^{-1}(b)| > k + 1$

Proof. $B = \{b_1, b_2, ..., b_n\}$ Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$ $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle, $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$ If we assume, $|f^{-1}(b_i)| \le k$, then, $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. f:

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. f: A

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as,

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, f(a) =

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$ Observe, Pigeonhole principle: A and B are finite sets $f: A \to B$ If |B| = n and $|A| \ge kn + 1$ then there is a $b \in B$, so that $|f^{-1}(b)| \ge k + 1$

Proof. $B = \{b_1, b_2, ..., b_n\}$ Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$ $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle, $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$ If we assume, $|f^{-1}(b_i)| \le k$, then, $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe,

Elements of $f^{-1}(b)$ are all even or all odd

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(h)$

Elements of $f^{-1}(b)$ are all even or all odd x-y is even for any $x,y \in f^{-1}(b)$

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe,

Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1.$$

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe,

Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1$$
. So,

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1$$
. So,
So at least 3 are either

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe,

Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

 $5 \ge 2 \times 2 + 1$. So, So at least 3 are either all even

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe, Florents of f^{-1}

Elements of $f^{-1}(b)$ are all even or all odd x-y is even for any $x,y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1$$
. So,
So at least 3 are either all even or all odd.

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution.
$$f: A \to \{0, 1\}$$
 defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1$$
. So,
So at least 3 are either all even or all odd.
Say they are $\{n_1, n_2, n_3\}$.

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe,

Elements of $f^{-1}(b)$ are all even or all odd x-y is even for any $x,y \in f^{-1}(b)$

 $5 \ge 2 \times 2 + 1$. So,

So at least 3 are either all even or all odd.

Say they are $\{n_1, n_2, n_3\}$.

There are only 2 other elements

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

 $5 \ge 2 \times 2 + 1$. So, So at least 3 are either all even or all odd. Say they are $\{n_1, n_2, n_3\}$. There are only 2 other elements So, one, say, n_1

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

$$5 \ge 2 \times 2 + 1$$
. So,

So at least 3 are either all even or all odd.

Say they are $\{n_1, n_2, n_3\}$.

There are only 2 other elements

So, one, say, n_1 is forced to map to one of $\{n_1, n_2, n_3\}$

Proof.
$$B = \{b_1, b_2, \dots, b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$

Solution. $f: A \to \{0, 1\}$ defined as, $f(a) = a \mod 2$

Observe, Elements of $f^{-1}(b)$ are all even or all odd x - y is even for any $x, y \in f^{-1}(b)$

 $5 \ge 2 \times 2 + 1$. So,

So at least 3 are either all even or all odd.

Say they are $\{n_1, n_2, n_3\}$.

There are only 2 other elements

So, one, say, n_1 is forced to map to one of $\{n_1, n_2, n_3\}$

The difference of the image, n_{i_1} , with the original, n_1 , is even

Proof.
$$B = \{b_1, b_2, ..., b_n\}$$

Recall, $f^{-1}(b) := \{a \in A \mid f(a) = b\}$
 $A := \bigsqcup_{i=1}^n f^{-1}(b_i)$, so by summation principle,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)|$
If we assume, $|f^{-1}(b_i)| \le k$, then,
 $|A| := \sum_{i=1}^n |f^{-1}(b_i)| \le nk$