Allgemeine_Sinusfunktion

October 28, 2017

1 Allgemeine Sinusfunktion

$$y(t) = A * sin(\omega * t + \phi) \tag{1}$$

1.1 Amplitude

- A ... Amplitude, A e R
- A > 1 ... Streckung in y-Richtung
- 0 < A < 1 ... Stauchung in y-Richtung
- A < 0 ... Spiegelung an der x-Achse + Stauchung bzw. Streckung

1.2 Kreisfrequenz

- ω ...Kreisfrequenz; T...Periode(Umlaufzeit in einem Kreis)
- $T = 2\pi/\omega$
- $\omega > 1$...Periode wird verkürzt
- $0 < \omega < 1$...Periode wird vergröSSert
- $\omega < 0$... Cosinus

1.3 Phasenwinkel

- ϕ ...Nullphasenwinkel | $\omega * t + \phi$...Phasenwinkel
- ϕ < 0 ...rechtsverschiebung auf der x-Achse
- $\phi > 0$...linksverschiebung auf der x-Achse

1.4 Funktionsplotter

```
In [74]: import matplotlib.pyplot as plt
import numpy as np
def sinusplot(A, w, p):
    A = Amplitude
    w = Winkelgeschwindigkeit
    p = Phasenwinkel
    """
    # Grundmenge
    t = np.arange(0.0, np.pi * 2., 0.01)
    # Formel
    y = A * np.sin(w * t + p)
    # Plot
    fig, ax = plt.subplots()
    fig.set_dpi(150)
    ax.plot(t, y)
    ax.set(
       xlabel='time(t)',
       ylabel='Amplitude(y)',
       title='Sinuskurve A=\{0:0.3f\}, w=\{1:0.3f\}, p=\{2:0.3f\}'.format(A, w, p),)
    ax.grid()
    plt.show()
```

1.5 Bsp.

```
In [75]: sinusplot(A=1.3, w=2.4, p=np.pi/3.1)
```


1.6 Achtung bei Nullstellen

•
$$t_0 = -\frac{\phi}{\omega}$$

•
$$\frac{\pi}{2} = \frac{\phi}{1} = -\phi ==) \phi = -\frac{\pi}{2}$$

$$\bullet \quad \frac{\pi}{4} = -\frac{\phi}{2} \mid /2$$

•
$$\frac{\pi}{2} = -\phi ==) \phi = \frac{\pi}{2}$$

1.7 bsp. Allgemeine Sinusfunktion aus Grundsinus

1. Grundsinus: sin(t)

2. +Winkelgeschwindigkeit: $sin(\omega * t)$

3. +Phasenverschiebung: $sin(\omega * t + \phi)$

4. +Amplitude: $A * sin(\omega * t + \phi)$

Formel: $y = 1.5(A) * sin(2(\omega) * t + \frac{3}{\pi})$

1.8 1.) y = sin(t)

In [76]: sinusplot(A=1, w=1, p=0)

1.9 2.)
$$y = sin(2(\omega) * t)$$

In [77]: sinusplot(A=1, w=2, p=0)

1.10 3.)
$$y = sin(2(\omega) * t + \frac{3}{\pi})$$

In [78]: sinusplot(A=1, w=2, p=3/np.pi)

1.11 4.)
$$y = 1,5(A) * sin(2(\omega) * t + \frac{3}{\pi})$$

In [79]: sinusplot(A=1.5, w=2, p=3/np.pi)

