

MULTINEDIA AFSHIN ALAGHEHBAND CVCT

DEPARTEMANT OF COMPUTER ENGINEERING FERDOWSI UNIVERSITY OF MASHHAD >> SEMESTER-2, 1400-1401

DIA HISTORY SYSTEMS

VIDEO CODEC

Project

- Video CODEC
- Encoder
- Discrete Cosine Transform
- Quantization
- Zig-Zag Scan
- Run Length Scan
- Huffman Coding
- Decoder
- Comprehensive View
- Characteristics of Video

- Frame Difference
- Motion Estimation
- Frame Types
- Project

Video CODEC

VIDEO DISPLAY Compress (Encode) Coded video Decompress (Decode)

Encoder + Decoder = Codec

Discrete Cosine Transform

Discrete Cosine Transform

Quantization

Zig-Zag Scan

61	13	7	0	0	0	0	0
12	11	6	1	0	0	0	0
0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

{61,0-13,0-12,1-11,0-7,1-6,0-1,4-1,EOB}

- lossless compression
- Audio & Video

- Total bits = 8 * 15 = 120
- Total bits after encoding = 75

Frequency of string

- Characters sorted according to the frequency
 - Sort the characters in increasing order of the frequency. These are stored in a priority queue Q

- Make the Huffman coding tree
 - Make each unique character as a leaf node

- Create an empty node Z. Assign the minimum frequency to the left child of Z and assign the second minimum frequency to the right child of Z. Set the value of the Z as the sum of the above two minimum frequencies.
- Remove these two minimum frequencies
 from Q and add the sum into the list of
 frequencies (* denote the internal nodes in the figure above).
- Insert node Z into the tree.

D

Repeat 3 for all the characters

• For each non-leaf node, assign 0 to the left edge and 1 to the right edge.

Character	Frequency	Code	Size
A	5	11	5*2 = 10
В	1	100	1*3 = 3
С	6	0	6*1 = 6
D	3	101	3*3 = 9
4 * 8 = 32 bits	15 bits		28 bits

Huffman Decoding

• 1000111110110100110110110

Comprehensive View

Characteristics of Video

Frame Difference

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

Current Frame

Reference Frame

50 100 150 200 250 300 350

Frame 1

Frame 2

Frame Difference

Motion Estimation

Frame Types

- فیلم نمونه ارائه شده را به سطح خاکستری (Gray Level) تبدیل کنید.
 - نمونه coder و decoder ارائه شده را پیاده سازی کنید.
 - Motion Estimation و Decoder اضافه کنید.
- به ترتیب یک فریم به صورت i و سپس سه فریم به صورت p ذخیره کنید، این کار را تا پایان ویدیو انجام دهید.
- برنامه ارائه شده باید قادر به تولید یک فایل از ویدیو کد شده (در Coder) و تبدیل آن به ویدیو (در Decoder) را داشته باشد.
 - فایل میانی تولید شده باید حجمی کمتر از فایل اولیه داشته باشد.
 - ذخیره سازی ویدیو به صورت رنگی (RGB) نمره اضافه خواهد داشت.
 - موعد تحویل ۳ تیر خواهد بود.

