

Model Selection Cheat Sheet

Save for later reference

IMAGE CLASSIFICATION

Convolutional Neural Network (CNN): Ideal for classifying images, detecting patterns, and spatial hierarchies.

OBJECT DETECTION

Region-based CNNs (R-CNN, Fast R-CNN, Faster R-CNN): Excellent for detecting and classifying objects within images.

IMAGE GENERATION

Generative Adversarial Network (GAN): Great for generating realistic images and data synthesis.

NATURAL LANGUAGE PROCESSING

- Recurrent Neural Network (RNN): Suitable for sequential data, such as text, due to its ability to consider previous inputs.
- Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU): Variants of RNNs that address the vanishing gradient problem, making them more effective for longer sequences.
- **Transformer:** Particularly effective for NLP tasks, such as language translation and understanding context in large amounts of text.

SPEECH RECOGNITION

 Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU): Effective for sequential data like audio signals.

REGRESSION PROBLEMS

• Feedforward Neural Network (FNN): Suitable for predicting continuous values.

TIME SERIES PREDICTION

 Recurrent Neural Network (RNN) or Long Short-Term Memory (LSTM): Effective for predicting sequences over time.

ANOMALY DETECTION

 Autoencoder: Useful for learning the normal patterns in data and identifying anomalies.

TRANSFER LEARNING

• Pre-trained models (e.g., VGG16, ResNet, BERT): Leveraging models trained on large datasets for a specific domain and fine-tuning for a specific task with a smaller dataset.

REINFORCEMENT LEARNING

- Deep Q Network (DQN): Used for solving problems with discrete action spaces.
- Policy Gradient Methods: Suitable for problems with continuous action spaces.

RECOMMENDATION SYSTEMS

- Matrix Factorization Models: Effective for collaborative filtering in recommendation systems.
- Neural Collaborative Filtering: Utilizing neural networks to model user-item interactions.

Never Miss a Post!Turn on the Notifications

Was it helpful?

Follow Us For More Amazing Data Science & Programming Related Posts

OMMENT

HARE

Checkout Our Other Posts

07 Killer Data Science Project ideas

With Description

Actual Projects
That Data
Scientists Work

On In Companies

Data Science Concepts Explained

Overfitting & Underfitting

Data Science Interview

Questions & Answers

Save for later reference

