QUICKSORT

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Conteúdo

- ▶ Descrição do algoritmo QUICKSORT.
- Correção.
- Análise de desempenho.
- Versão aleatória.
- Exercícios.

Introdução

Quicksort

- Algoritmo de ordenação proposto por C.A.R. Hoare (1960).¹
- ► Estudaremos uma versão desenvolvida por N. Lomuto.²
- Baseado no paradigma de divisão e conquista.
- Bom desempenho na prática.
- ► Comparação com o MERGE-SORT:

	Quicksort	Merge-sort
Tempo de execução no pior caso	$\Theta(n^2)$	$\Theta(n \lg n)$
Tempo de execução esperado	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Ordenação local	Sim	Não
Estável	Não	Sim

¹Ver versão original em ▶ Sedgewick-Wayne

²Versão apresentada no livro do Cormen.

Descrição do QUICKSORT

Divisão e conquista

Para ordenar um vetor $A[p \dots r]$:

- ▶ **Dividir**: divida o vetor $A[p \dots r]$ em dois subvetores $A[p \dots q-1]$ e $A[q+1 \dots r]$, tal que $A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$.
- ► Conquistar: Ordenar os dois subvetores *recursivamente* usando o QUICKSORT.
- Combinar: Como os subvetores são ordenados localmente, não é necessário nenhum trabalho para combiná-los.

Descrição do QUICKSORT

Divisão e conquista

Para ordenar um vetor $A[p \dots r]$:

- ▶ **Dividir**: divida o vetor $A[p \dots r]$ em dois subvetores $A[p \dots q-1]$ e $A[q+1 \dots r]$, tal que $A[p \dots q-1] \leq A[q] < A[q+1 \dots r]$.
- Conquistar: Ordenar os dois subvetores recursivamente usando o QUICKSORT.
- ► **Combinar**: Como os subvetores são ordenados localmente, não é necessário nenhum trabalho para combiná-los.

Importante

O passo de divisão é feito pelo procedimento Partition, que devolve o índice q que marca a posição de divisão dos subvetores.

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

Quicksort(A, p, r)

- 1 if p < r then
- **2** $q \leftarrow \text{PARTITION}(A, p, r)$
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q+1, r)
 - ▶ Para ordenar todo um array A, a chamada inicial é QUICKSORT(A, 1, A.length).
 - ► Antes de entender o QUICKSORT, temos que entender o PARTITION.

O que faz o procedimento PARTITION?

Problema

Rearranjar $A[p \dots r]$ e devolver um índice q, $p \leq q \leq r$, tal que:

$$A[p \dots q-1] \le A[q] < A[q+1 \dots r].$$

Entrada

$$A = [8, 1, 6, 4, 0, 3, 9, 5]$$

Saída

$$A = [1,4,0,3,5,8,9,6] \label{eq:alpha}$$

$$\mathbf{q} = \mathbf{5} \text{ (indice)}.$$

Procedimento Partition

```
PARTITION(A, p, r)

1 x \leftarrow A[r]

2 i \leftarrow p - 1

3 for j \leftarrow p to r - 1 do

4 | if A[j] \leq x then

5 | i \leftarrow i + 1

6 | SWAP(A[i], A[j])

7 SWAP(A[i+1], A[r])

8 return i + 1
```

Invariantes

No começo de cada iteração da linha 3:

- 1. $A[p \dots i] \leq x$.
- 2. A[i+1...j-1] > x.
- 3. A[r] = x.

// x é o pivô

Correção do PARTITION

Demonstração

- ▶ Inicialização: Antes do início do laço todas as condições da invariante são satisfeitas, porque o r é o pivô e os subvetores $A[p \dots i]$ e $A[i+1\dots j-1]$ são vazios.
- Manutenção: Dois casos:
 - A[j] > x: j é incrementado e o invariante 2 se mantém para a próxima iteração. Como o índice i não foi alterado, o invariante 1 também se mantém.
 - ▶ $A[j] \le x$: i é incrementado e na posição A[i+1] é colocado o valor de A[j] (mantendo o invariante 1). Sabe-se o valor do elemento na posição i+1 era maior que o pivô, portanto, ao incrementar o valor de j, o invariante 2 se mantém.
- ► Término: Quando o laço termina, j = r, todos os elementos de A estão particionados em um dos três casos:

$$A[p...i] \le x$$
, $A[i+1...j-1] > x$ e $A[r] = x$.

Desempenho do PARTITION

Complexidade de tempo (n = r - p + 1)

```
\begin{array}{ll} \operatorname{PARTITION}(A,p,r) & \operatorname{Tempo} \\ 1 & x \leftarrow A[r] & //x \neq \text{o pivo} \\ 2 & i \leftarrow p-1 \\ 3 & \operatorname{for} j \leftarrow p \operatorname{to} r-1 \operatorname{do} \\ 4 & \operatorname{if} A[j] \leq x \operatorname{then} \\ 5 & i \leftarrow i+1 \\ 6 & \operatorname{SWAP}(A[i],A[j]) \\ 7 & \operatorname{SWAP}(A[i+1],A[r]) \\ 8 & \operatorname{return} i+1 \end{array}
```

Desempenho do PARTITION

Complexidade de tempo (n = r - p + 1)

PA	$\operatorname{ARTITION}(A, p, r)$	Tempo
1	$x \leftarrow A[r]$ //x é o pivo	$\Theta(1)$
2	$i \leftarrow p-1$	$\Theta(1)$
3	for $j \leftarrow p$ to $r-1$ do	$\Theta(n)$
4	if $A[j] \leq x$ then	$\Theta(n)$
5	$i \leftarrow i + 1$	O(n)
6	$\operatorname{SWAP}(A[i], A[j])$	O(n)
7	SWAP(A[i+1], A[r])	$\Theta(1)$
8	return $i+1$	$\Theta(1)$

Conclusão

A complexidade de Partition é $\Theta(n)$.

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

```
Quicksort(A, p, r)
```

- 1 if p < r then
- **2** $q \leftarrow \text{PARTITION}(A, p, r)$
- 3 QUICKSORT(A, p, q 1)
- 4 Quicksort(A, q+1, r)

Considere a entrada:

$$A = [8, 1, 6, 4, 0, 3, 9, 5]$$

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

Quicksort(A, p, r)

- 1 if p < r then
- 2 | $q \leftarrow \text{Partition}(A, p, r)$
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q+1, r)

Considere a entrada:

$$A = [8, 1, 6, 4, 0, 3, 9, 5]$$

Após a execução da linha 2 temos:

$$A = [1, 4, 0, 3, 5, 8, 9, 6]$$

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

Quicksort(A, p, r)

- 1 if p < r then
- **2** | $q \leftarrow \text{Partition}(A, p, r)$
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q+1, r)

Considere a entrada:

$$A = [8, 1, 6, 4, 0, 3, 9, 5]$$

Chamada recursiva da linha 3 para a parte em vermelho:

$$A = [1, 4, 0, 3, 5, 8, 9, 6]$$

Rearranja um vetor $A[p \dots r]$ em ordem crescente.

Quicksort(A, p, r)

- 1 if p < r then
- **2** $q \leftarrow \text{PARTITION}(A, p, r)$
- **3** Quicksort(A, p, q 1)
- 4 Quicksort(A, q+1, r)

Considere a entrada:

$$A = [8, 1, 6, 4, 0, 3, 9, 5]$$

Chamada recursiva da linha 4 para a parte em vermelho:

$$A = [\mathbf{0}, \mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{8}, \mathbf{9}, \mathbf{6}]$$

Complexidade de tempo (n = r - p + 1)

```
\begin{array}{ll} \text{Quicksort}(A,p,r) & \text{Tempo} \\ 1 & \text{if } p < r \\ 2 & q \leftarrow \text{Partition}(A,p,r) \\ 3 & \text{Quicksort}(A,p,q-1) \\ 4 & \text{Quicksort}(A,q+1,r) \end{array}
```

Complexidade de tempo (n = r - p + 1)

Q	UICKSORT(A, p, r)	Tempo
1	if $p < r$	$\Theta(1)$
2	$q \leftarrow \text{Partition}(A, p, r)$	$\Theta(n)$
3	Quicksort $(A, p, q - 1)$	T(k)
4	Quicksort $(A, q + 1, r)$	T(n-k-1)

Portanto

$$T(n) = T(k) + T(n-k-1) + \Theta(n),$$

$$0 \le k = q - p \le n - 1.$$

O tempo de execução do QUICKSORT depende do particionamento dos subvetores.

Recorrência

$$T(n) = \begin{cases} \Theta(1) & n = 0 \\ \Theta(1) & n = 1 \\ T(k) + T(n - k - 1) + \Theta(n) & n \ge 2 \end{cases}$$

Pior caso

Quando os subvetores estão completamente desbalanceados: um com $\bf 0$ elementos e outro com $\bf n$ - $\bf 1$.

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(1) + \Theta(n)$$
$$= \Theta(n^2)$$

Análise no melhor caso

- Ocorre quando os subarrays estão balanceados.
- ▶ Um subarray tem tamanho $\lfloor n/2 \rfloor$ e o outro tem tamanho $\lceil n/2 \rceil 1$.
- Obtemos a recorrência:

$$T(n) \leq 2\,T(n/2) + \Theta(n)$$

$$= \Theta(n\lg n) \qquad \text{caso 2 do teorema mestre.}$$

Particionamento constante

- ▶ O tempo médio de execução do QUICKSORT é muito mais próximo do melhor caso do que do pior caso.
- Suponha que o algoritmo de particionamento sempre produza uma divisão na proporção 9 para 1.
- Obtemos a recorrência:

$$T(n) \le T(9n/10) + T(n/10) + \Theta(n)$$

= $O(n \lg n)$.

Por que? Vejamos a árvore de recursão.

FIGURA 7.4 Uma árvore de recursão para QUICKSORT, na qual PARTITION sempre produz uma divisão de 9 para 1, resultando no tempo de execução $O(n \lg n)$. Os nós mostram tamanhos de subproblemas, com custos por nível à direita. Os custos por nível incluem a constante c implícita no termo $\Theta(n)$

Observação importante

Desde que seja constante, a base do logaritmo não importa para a notação assintótica. Qualquer divisão de proporção constante gerará uma árvore de recursão de profundidade $\Theta(\lg n)$.

Intuição para o caso médio

- A proporção de divisões não será sempre constante.
- Suponha que que as divisões boas e ruins se alternem.

▶ A combinação de divisões boas e ruins resulta em um tempo esperado $\Theta(n \lg n)$, mas com uma constante maior escondida pela notação Θ .

Versão aleatória do QUICKSORT

- ▶ Para explorar o caso médio, assumiremos que todas as permutações de entrada são igualmente possíveis (o que nem sempre ocorre – ver Exercício 7.2-4).
- Para corrigir esta situação, adicionamos aleatoriedade ao QUICKSORT.
- A ideia é não usar sempre A[r] como pivô. Ao invés, escolhemos um elemento do vetor aleatoriamente.
- Como o pivô é escolhido aleatoriamente, esperamos que a divisão do vetor de entrada seja equilibrada na média.

Versão aleatória do QUICKSORT

```
RANDOMIZED-PARTITION(A, p, r)
```

- 1 $i \leftarrow \text{RANDOM}(p, r)$
- 2 SWAP(A[r], A[i])
- 3 return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

- 1 if p < r then
- **2** $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$
- **3** RANDOMIZED-QUICKSORT(A, p, q 1)
- 4 RANDOMIZED-QUICKSORT(A, q + 1, r)

- ▶ QUICKSORT e RANDOMIZED-QUICKSORT diferem apenas na maneira como o pivô é escolhido.
- ▶ Uma vez que um elemento é escolhido como pivô, ele nunca será incluído novamente em futuras chamadas de Partition, portanto, ocorrem ao todo no máximo n chamadas de Partition.
- ► Cada chamada de PARTITION consome tempo proporcional ao número de iterações do laço **for** (linhas 3–6).
- ► Limitaremos este consumo pela quantidade de vezes que a linha 4 é executada.

Relembrando algumas definições

Variável aleatória indicadora

Dado um espaço amostral S e um evento A, uma **variável aleatória** indicadora $I\{A\}$ para o evento A é definida como:

$$I\{A\} = \begin{cases} 1 & \text{se } A \text{ ocorre,} \\ 0 & \text{se } A \text{ não ocorre.} \end{cases}$$

Valor esperado (esperança)

A esperança de uma variável aleatória discreta X é dada por:

$$E[X] = \sum_{x} x \cdot Pr\{X = x\}$$

Linearidade da esperança

Para qualquer coleção finita de variáveis aleatórias discretas $\{X_1,\ldots,X_n\}$ com esperanças finitas

$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Objetivo

Seja X o total de comparações feitas em **todas** as chamadas do PARTITION, queremos determinar este valor de X.

Entendendo quando o algoritmo compara dois elementos?

- ▶ Renomeie os elementos de A para $z_1, z_2, \dots z_n$, com z_i sendo o i-ésimo menor elemento.
- ▶ Seja $Z_{ij} = \{z_i, z_{i+1}, \dots z_j\}$ os elementos entre z_i e z_j inclusive.
- ▶ Quando o algoritmo compara z_i e z_j ?

Objetivo

Seja X o total de comparações feitas em **todas** as chamadas do Partition, queremos determinar este valor de X.

Entendendo quando o algoritmo compara dois elementos?

- ▶ Renomeie os elementos de A para $z_1, z_2, \dots z_n$, com z_i sendo o i-ésimo menor elemento.
- ▶ Seja $Z_{ij} = \{z_i, z_{i+1}, \dots z_j\}$ os elementos entre z_i e z_j inclusive.
- ▶ Quando o algoritmo compara z_i e z_j ?
 - ▶ Quando z_i ou z_j são pivôs.
 - ► Cada par de elementos é comparado no máximo uma única vez.
 - ▶ Depois de usado o pivô, nunca mais o elemento é comparado.

Usaremos a seguinte variável aleatória indicadora:

$$X_{ij} = I\{z_i \text{ \'e comparado com } z_j\}$$

Como cada par é comparado no máximo uma vez, podemos caracterizar o número total de comparações efetuadas pelo algoritmo como:

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

Aplicando a esperança em ambos os lados temos:

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right]$$

Usando a linearidade da esperança temos:

$$\begin{split} E[X] &= E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij}\right] \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^n E[X_{ij}] \\ &= \sum_{i=1}^{n-1} \sum_{j=i+1}^n Pr\{z_i \text{ ser comparado com } z_j\}. \end{split}$$

Precisamos então computar: $Pr\{z_i \text{ ser comparado com } z_j\}$

A comparação entre z_i e z_j só ocorre quando um deles é escolhido como pivô do conjunto Z_{ij} . (Assumindo que todos os elementos são distintos.)

Um exemplo

- ► Suponha a execução do RANDOMIZED-QUICKSORT para elementos de 1 a 10 (em qualquer ordem).
- Suponha que o primeiro pivo é o 7.
- ▶ Então o Partition separa os conjuntos em $\{1,2,3,4,5,6\}$ e $\{8,9,10\}$.
- Nenhum membro do primeiro conjunto será comparado com um membro do segundo conjunto.

- ▶ Qualquer elemento de Z_{ij} (em uma mesma partição) pode ser escolhido como pivô.
- ▶ Z_{ij} possui j i + 1 elementos.
- ► Como o pivô é escolhido aleatoriamente, a probabilidade de cada elemento ser escolhido como pivô é: 1/(j-i+1)

Portanto:

$$Pr\{z_i ext{ ser comparado com } z_j\} = Pr\{z_i ext{ ou } z_j ext{ ser primeiro pivô em } Z_{ij}\}$$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1}$$

$$= \frac{2}{j-i+1}$$

Continuando o desenvolvimento da equação do valor esperado, usando substituição de variáveis $\left(k=j-i\right)$ e limitando pela série harmônica, temos:

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$= \sum_{i=1}^{n-1} O(\lg n)$$

$$= O(n \lg n).$$

Exercícios

- 7.1-1 Usando a figura 7.1 (ver livro-texto) como modelo, ilustre a operação de Partition sobre o array $A = \langle 13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21 \rangle$.
- 7.1-2 Que valor de q Partition retorna quando todos os elementos no arranjo $A[p\dots r]$ têm o mesmo valor? Modifique Partition de forma que q=(p+r)/2 quando todos os elementos no array $A[p\dots r]$ têm o mesmo valor.
- 7.1-3 Forneça um breve argumento mostrando que o tempo de execução de Partition sobre um subarray de tamanho n é $\Theta(n)$.
- 7.1-4 De que maneira você modificaria QUICKSORT para fazer a ordenação em ordem não crescente?

Exercícios

- 7.2-1 Use o método de substituição para provar que a recorrência $T(n) = T(n-1) + \Theta(n)$ tem a solução $T(n) = \Theta(n^2)$.
- 7.2-2 Qual o tempo de execução de QUICKSORT quando todos os elementos do array A têm o mesmo valor.
- 7.2-3 Mostre que o tempo de execução de QUICKSORT é $\Theta(n^2)$ quando o array A contém elementos distintos e está ordenado em ordem decrescente.

Exercícios

- 7.3-1 Por que analisamos o desempenho do caso médio de um algoritmo aleatório e não o seu desempenho no pior caso?
- 7.3-2 Durante a execução do procedimento RANDOMIZED-QUICKSORT, quantas chamadas são feitas ao gerador de números aleatórios RANDOM no pior caso? E no melhor caso? Dê a resposta em termos da notação Θ .

Referências

- ► Thomas H. Cormen et al. Introdução a Algoritmos. 2^a edição em português. Capítulo 7.
- ▶ Robert Sedgewick and Kevin Wayne. 2011. Algorithms (4th ed.). Addison-Wesley Professional.