

Este documento describe los requisitos hardware que debe cumplir el subsistema MPPT (sistema de energía) para el satélite EASAT2.

Esta especificación es provisional y puede sufrir cambios debidos a cambios a su vez en las especificaciones y requisitos concretos del resto de subsistemas.

Cambios respecto a la anterior edición

En este apartado se recoge el historial de cambios del documento.

No hay cambios

Aspectos pendientes de esta especificación

Aquí se detallan aspectos de la especificación que están pendientes de definir y que deberán ser abordados en próximas revisiones del documento.

• Características mecánicas (definición de conectores con otros módulos y orificios para fijación a la estructura).

Introducción al subsistema MPPT

El subsistema MPPT es el encargado de la gestión energética del satélite. Su función es procesar la energía proporcionada por los paneles solares y adaptarla para cargar las baterías en su punto óptimo, siendo por tanto el responsable de suministrar la electricidad necesaria al resto de subsistemas.

Forman parte de este subsistema tres componentes: los paneles solares, las baterías y la propia placa PCB con los componentes electrónicos.

Aquí se detallan las características de los paneles y baterías seleccionados:

Paneles solares: 9 paneles con las siguientes características:

- 1 sun, AM 1.5G (1000 W por metro cuadrado) a 25ºC
- Corriente en corto circuito Isc = 31mA
- Voltaje en cortocircuito Voc = 15.12V
- Intensidad en punto de máxima potencia Imp = 28mA
- Voltaje en punto de máxima potencia Vmp = 13.14V
- Potencia en punto de máxima potencia PmP = 368mW

Si bien el satélite tiene **9 paneles** no todos van a estar iluminados simultáneamente. Como media, ya que además el satélite rota de una forma aleatoria, vamos a suponer que tan solo **2.25 paneles** están simultáneamente recibiendo luz del sol de forma significativa. Esto nos da un total de potencia máxima teórica de **368mW** x **2.25 = 828mW** Ahora bien, esa potencia sería la obtenida en condiciones óptimas de trabajo del panel. Vamos a suponer que de forma media se encuentra trabajando a **dos tercios de su punto óptimo**. La potencia efectiva sería de **828mW** x **0.66 = 546mW**. Debemos tener en cuenta que el satélite estará **en zona iluminada durante dos tercios de**

Debemos tener en cuenta que el satélite estará en zona iluminada durante dos tercios de su órbita y en zona de eclipse durante el tercio restante.

Por tanto, esta potencia de **546mW** estará disponible en **fase de iluminación** y será de **0mW** en **fase de eclipse.**

Baterías: 2 baterías con las siguientes características:

- Voltaje nominal de 3.7V
- Corriente de 570mAh
- Capacidad total por batería de 2000mWh

Por tanto, con las dos baterías de $3.7V \times 570$ mAh y capacidad por batería de 2000mWh obtenemos un suministro de corriente de 570mAh x 2 = 1140mAh (1.14Ah) y una capacidad combinada de 2000mWh x 2 = 4000mWh (4Wh).

Requisitos globales

El módulo de energía (MPPT) cumplirá los siguientes requisitos generales:

- REQ.GLO.MPPT.1 Implementación con componentes SMD
- **REQ.GLO.MPPT.2** Utilización de 5 entradas de paneles (una por cara útil)
- REQ.GLO.MPPT.3 Autoprotección contra corriente inversa desde la batería
- REQ.GLO.MPPT.4 Posibilidad de desconexión del regulador para poder medir batería
- REQ.GLO.MPPT.5 Posibilidad de medición de la corriente solar
- **REQ.GLO.MPPT.6** Posibilidad de medición de la corriente de batería
- REQ.GLO.MPPT.7 Rango de temperatura de funcionamiento de -30ºC a 90ºC

Requisitos funcionales

El módulo cumplirá los siguientes requisitos de funcionalidad:

- **REQ.FUN.MPPT.1** El subsistema MPPT obtendrá la energía disponible de los paneles solares y cargará las baterías en sus puntos óptimos.
- REQ.FUN.MPPT.2 La placa proporcionará un rango de tensión 2.3V a 5.5V a todos los subsistemas.
- REQ.FUN.MPPT.3 El subsistema MPPT tendrá una digital línea que se activará a nivel alto mediante la cual el MCU indicará a la placa que va a realizar una medición del voltaje de batería. Cuando esta línea esté activa el sistema MPPT desactivará el regulador para poder realizar una medición realista.

Requisitos de interfaz con otros módulos

Este módulo tiene las siguientes conexiones de interfaz:

Módulo MCU

- Salida Línea VDD de tensión (2.3 a 5.5V)
- Salida Línea GND
- Salida Línea I_SOLAR donde medir intensidad corriente solar (analógica)
- Salida Línea I BATT donde medir intensidad del consumo (analógica)

• Entrada – Línea DISABLE_SOLAR que indica al módulo MPPT que se va a medir la tensión de batería (digital a nivel alto)

Módulo de transmisión

Las líneas de interfaz con el módulo de transmisiones son las siguientes:

- Salida Línea VDD
- Salida Línea GND (masa común)

Módulo de recepción

Las líneas de interfaz con el módulo de recepción son las siguientes:

- Salida Línea VDD
- Salida Línea GND (masa común)

Requisitos de conexión internos

El módulo cumplirá los siguientes requisitos de conexión interna:

Conexión con paneles solares

- Entrada PV1_IN Conexión tensión panel 1
- Entrada PV1_GND Conexión masa panel 1
- Entrada PV2_IN Conexión tensión panel 2
- Entrada PV2 GND Conexión masa panel 2
- Entrada PV3_IN Conexión tensión panel 3
- Entrada PV3 GND Conexión masa panel 3
- Entrada PV4_IN Conexión tensión panel 4
- Entrada PV4_GND Conexión masa panel 4
- Entrada PV5_IN Conexión tensión panel 5
- Entrada PV5_GND Conexión masa panel 5

Conexión con baterías

- Línea BATT línea para conexión a positivo de la batería
- Línea GND línea de masa común

Requisitos mecánicos

Se deberán observar los siguientes requisitos mecánicos

- **REQ.MEC.MPPT.1** La placa tendrá unas dimensiones de 4 cm x 4 cm
- **REQ.MEC.MPPT.2** La placa tendrá 4 orificios en las esquinas para su agarre a la estructura con tornillos. Falta concretar las medidas exactas.
- REQ.MEC.MPPT.3 Las conexiones de interfaz irán situadas juntas en uno de los lados de la placa

Última revisión Félix Páez Pavón EA4GQS 1 de Octubre de 2016