Problem Set 4

Tessie Dong, Derek Li, Andi Liu

Due Jan 26th, 2024

Part 1: Describe the Data (10 p)

1. Fill Table 1's columns 5 and 6 using, respectively, the data in nswpsid.csv and in nswcps.csv. Notes: You want to limit attention to observations with treat=0. You filled columns 3 and 4 in PSet 3.

```
# Load data
nswpsid <- read_csv("starter-files/nswpsid.csv")
nswcps <- read_csv("starter-files/nswcps.csv")
nswpsid_treat0 <- nswpsid %>% filter(treat == 0)
nswcps_treat0 <- nswcps %>% filter(treat == 0)

summary_cps <- summarise_all(nswcps_treat0, list(mean))
summary_psid <- summarise_all(nswpsid_treat0, list(mean))</pre>
```

Variable	Definition	NSW		PSID-1	CPS-1
		Treated	Control	Control	Control
[1]	[2]	[3]	[4]	[5]	[6]
age	Age in years	25.82	25.05	34.85	33.22
edu	Education in years	10.35	10.09	12.12	12.03
nodegree	1 if education < 12	0.71	0.83	0.31	0.30
black	1 if Black	0.84	0.83	0.25	0.07
hisp	1 if Hispanic	0.06	0.11	0.03	0.07
married	1 if married	0.19	0.15	0.87	0.71
u74	1 if unemployed in '74	0.71	0.75	0.09	0.12
u75	1 if unemployed in '75	0.60	0.68	0.10	0.11
re74	Real earnings in '74 (in '82 \$)	2,096	2,107	19429	14017
re75	Real earnings in '75 (in '82 \$)	1,532	1,267	19063	13631
re78	Real earnings in '78 (in '82 \$)	6,349	4,555	21,554	14,847
treat	1 if received offer of training	1	0	0	0
Sample Size		185	260	2,490	15,992

Table 1: Sample averages for the NSW data (treated and control groups), PSID-1 data, and CPI-1 data.

2. Briefly comment on the completed Table 1. Hint: Are the PSID-1 and CPS-1 samples "good" control groups?

I would argue that these samples are not the best control groups - this is mostly because many of the OPV covariates from the PSID and CPS exhibit large differences from the characteristics of the NSW sample. For example, the average age of the NSW sample is 25.82, while the average age of the PSID sample is 34.5, and there are large differences in income across the three samples. This suggests that the populations from which PSID and CPS were drawn are not very similar to the population of the NSW sample - making comparisons between treated individuals in the NSW sample and "untreated" individuals in the PSID and CPS samples less reliable, in our opinion.

3. Why do you think that Dehajia and Wahba constructed their "observational datasets" by pulling together the treated sample from NSW and a sample of individuals drawn from either the PSID or the CPS data? Hint: Both PSID and CPS include information on whether an individual enrolled in a training course during the previous 12 months. Thus, Dehajia and Wahba could have exploited exclusively observational variation in whether an individual enrolled in a training program. Why do you think that they chose not to follow this approach?

We believe that Dehajia and Wahba chose to pool the NSW and PSID/CPS datasets because they wanted to have a larger sample size to work with. This is because the NSW sample is relatively small, and the PSID/CPS samples are much larger. By pooling the NSW and PSID/CPS samples, Dehajia and Wahba are able to increase the sample size of their dataset. In addition, by analyzing samples drawn from different distributions (i.e. PSID/CPS datasets), they could increase the generalizability of their results to the population.