Model checking, hierarchical modeling and combined M-H and Gibbs

SISMID/July 17-19, 2017

Instructors: Kari Auranen, Elizabeth Halloran, Vladimir Minin

Outline

- ▶ Chain binomial model for household outbreaks of measles
 - Bayesian analysis of incompletely observed data, using data augmentation (cf. the earlier lecture and computer lab)
 - Checking the model fit through comparison of predictive data with the observed data of the final number infected
- Model extension by allowing heterogeneity across households
 → a hierarchical model
- ► Implementation of posterior sampling in the hierarchical model by a combined Gibbs and Metropolis algorithm

The observed outbreak sizes

Recall the observed data in the chain binomial model:

Chain	Chain probability	Frequency	Observed frequency	Final number infected
1	q_i^2	n_1	34	1
$1 \rightarrow 1$	$2q_i^2 p_j$	n_{11}	25	2
$1 {\rightarrow} 1 {\rightarrow} 1$	$2q_j p_i^2$	n ₁₁₁	not observed	3
1→2	p_i^2	n_{12}	not observed	3
Total	1	N	334	

- If the final number infected is 1 or 2, the actual chain is observed
- If the final number infected is 3, the actual chain data are not observed
 - We still know that $N_3 \equiv n_{111} + n_{12} = 275$
- ▶ In the previous analysis, we assumed $q_j = q$ for j = 1, ..., 334, i.e., for all 334 households

Prediction

- ▶ Recall that new (predictive) data y^{pred} can be generated by drawing from their posterior predictive distribution $f(y^{pred}|y)$
- Posterior predictive distribution because
 - conditioning on the observed data y
 - predicting a future observable y^{pred}
- Predictive data can be compared with the observed data to assess the fit of the model
- ▶ In this example, we compare the predictive and observed frequencies of chains 1 and 1 \rightarrow 1

Posterior predictive distribution

▶ Denote the model parameters by θ . Then

$$egin{aligned} f(y^{ exttt{pred}}|y) &= \int f(y^{ exttt{pred}}, heta|y) d heta &= \int f(y^{ exttt{pred}}| heta, y) f(heta|y) d heta \ &= \int f(y^{ exttt{pred}}| heta) f(heta|y) d heta \end{aligned}$$

- ► This means that samples from the posterior predictive distribution can be realised as follows:
 - [1] Draw an MCMC sample θ_k from the posterior $f(\theta|y)$ of the model parameters
 - [2] Given θ_k , draw a sample y_k^{pred} from $f(y^{\text{pred}}|\theta_k)$
 - [3] Repeat steps [1] and [2] K times (k = 1, ..., K)

Model checking

▶ The posterior predictive distribution of the chain frequencies $(n_1, n_{11}, n_{111}, n_{12})$ is now

$$\begin{split} &f(\textit{n}_{1}^{\mathsf{pred}}, \textit{n}_{11}^{\mathsf{pred}}, \textit{n}_{111}^{\mathsf{pred}}, \textit{n}_{12}^{\mathsf{pred}}|\textit{n}_{1}, \textit{n}_{11}, \textit{N}_{3}) \\ &= \int_{0}^{1} f(\textit{n}_{1}^{\mathsf{pred}}, \textit{n}_{11}^{\mathsf{pred}}, \textit{n}_{111}^{\mathsf{pred}}, \textit{n}_{12}^{\mathsf{pred}}|q) f(q|\textit{n}_{1}, \textit{n}_{11}, \textit{N}_{3}) dq \end{split}$$

- Samples from the posterior predictive distribution:
 - [1] Draw an MCMC sample $q^{(k)}$ from the posterior $f(q|n_1, n_{11}, N_3)$
 - [2] Draw a sample $(n_1^{(k)}, n_{11}^{(k)}, n_{111}^{(k)}, n_{12}^{(k)})$ from Multinomial $(334, (q^{(k)}, 2(q^{(k)})^2 p^{(k)}, 2q^{(k)}(p^{(k)})^2, p^{(k)}))$
 - [3] Repeat steps [1] and [2] K times (k = 1, ..., K)

Model checking continues

- ▶ Comparison of a sample from the joint predictive posterior of $(n_1^{\text{pred}}, n_{11}^{\text{pred}})$ with the actually observed point (34,25) reveals a poor model fit (next page)
- ► The model did not take into account possible heterogeneity across households in the escape probability
- ► Therefore, we'll consider a model extension through allowing such heterogeneity

Model checking continues

A hierarchical model

- ▶ In household j, let $(n_1^{(j)}, n_{11}^{(j)}, n_{111}^{(j)}, n_{12}^{(j)})$ follow a multinomial distribution with size 1 and probability vector $(q_j^2, 2q_j^2p_j, 2q_jp_j^2, p_j^2)$, $j = 1, \ldots, 334$
- ▶ The household-specific escape probabilities q_j follow a Beta (α,β) distribution
- Assuming an uninformative joint prior* for α and β , the hierarchical model becomes fully defined:

$$(n_1^{(j)}, n_{11}^{(j)}, n_{111}^{(j)}, n_{12}^{(j)}) | q_j \sim \text{Multinomial}(1, (q_j^2, 2q_j^2 p_j, 2q_j p_j^2, p_j^2))$$
 $q_j | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$
 $(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$

* The odd-looking joint prior distribution for α and β follows from assuming independent uniform prior distibutions for $\alpha/(\alpha+\beta)$ (expectation of the Beta distribution) and $1/(\alpha+\beta)^{-1/2}$: see Chapter 5.3, Gelman et al.

A hierarchical model continues

The joint distribution

▶ The joint distribution of the parameters α and β , the household-specific escape probabilities q_j ($j=1,\ldots,334$) and the chain frequencies is

$$\prod_{j=1}^{334} \left(f(n_1^{(j)}, n_{11}^{(j)}, n_{111}^{(j)}, n_{12}^{(j)} | q_j) f(q_j | \alpha, \beta) \right) f(\alpha, \beta),$$

▶ The model unknowns are parameters α and β , frequencies $n_{111}^{(j)}$ for all 275 household with outbreak size 3, as well as all 334 household-specific escape probabilities q_j

Sampling from the posterior

▶ A sketch of the steps in kth iteration of the sampling algorithm:

Sampling from the posterior cont.

- In each household, the full conditional (Beta) distribution of $q_j^{(k)}$ depends on the current iterates of the numbers of escapes $(e_j^{(k-1)})$ and infections $(d_j^{(k-1)})$ in that household and the prior parameters $\alpha^{(k-1)}$ and $\beta^{(k-1)}$
- ► So, $q_j^{(k)} \sim \text{Beta}(e_j^{(k-1)} + \alpha^{(k-1)}, d_j^{(k-1)} + \beta^{(k-1)})$
- ► The numbers of escapes and infections are given in the table below

Chain	Number of	Number of
	escapes $e_j^{(k-1)}$	infections $d_j^{(k-1)}$
1	2	0
$1\rightarrow 1$	2	1
$\begin{array}{c c} 1 \rightarrow 1 \\ 1 \rightarrow 1 \rightarrow 1 \end{array}$	1	2
1→2	0	2

Note that the unknown number of escapes in a household with outbreak size 3 (i.e. with either chain $1 \rightarrow 1$ or $1 \rightarrow 2$) is equal to $n_{111}^{(j,k-1)}$; this is useful in implementing the sampling routine (see computer lab)

Sampling from the posterior cont.

- lacktriangle Parameters lpha and eta require a Metropolis-Hastings step
- ▶ For example, for parameter α , if the current iterate is $\alpha^{(k-1)}$, a new value $\bar{\alpha}$ is first proposed (e.g.) uniformly about the current iterate (this is a symmetric proposal)
- ▶ The proposal is then accepted, i.e., $\alpha^{(k)} := \bar{\alpha}$, with probability

$$\prod_{j=1}^{334} f(q_j^{(k)}|\bar{\alpha},\beta^{(k-1)}) f(\bar{\alpha},\beta^{(k-1)}) \\ \min\{1,\frac{1}{334} f(q_j^{(k)}|\alpha^{(k-1)},\beta^{(k-1)}) f(\alpha^{(k-1)},\beta^{(k-1)}) \}$$

Posterior distributions of α and β

Predictive distribution of the household-specific escape probability

▶ Posterior predictive distribution of the household-specific escape probability, $\int f(q_{335}|\alpha,\beta)f(\alpha,\beta|n_1,n_{11},N_3)d\alpha d\beta$

Checking the hierarchical model

An alternative approach

- ▶ In this example, it is actually possible to marginalise *q_j* over its prior distribution
- ▶ This means calculating the chain probabilities as expectations of the probabilities given in the Table on page 3 with respect to Beta $(\tilde{q}/z,(1-\tilde{q})/z)$
 - Note that the Beta distribution is now parameterised differently: $\tilde{q} = \alpha/(\alpha + \beta)$, $z = 1/(\alpha + \beta)$

Chain	Chain	Frequency	Observed	Final number
	probability		frequency	infected
1	$\tilde{q}(\tilde{q}+z)/(1+z)$	n_1	34	1
$1 \rightarrow 1$	$2\tilde{p}\tilde{q}(\tilde{q}+z)/((1+z)(1+2z))$	n_{11}	25	2
$1 \rightarrow 1 \rightarrow 1$	$2\tilde{p}\tilde{q}(\tilde{p}+z)/((1+z)(1+2z))$	n_{111}	missing	3
1→2	$\tilde{p}(\tilde{p}+z)/(1+z)$	n ₁₂	missing	3

Alternative approach continues

▶ The following identity helps to calculate the expectations:

$$\mathsf{E}(p_j^uq_j^v) = \frac{\tilde{q}(\tilde{q}+z)\dots(\tilde{q}+z(u-1))\tilde{p}(\tilde{p}+z)\dots(\tilde{p}+z(v-1))}{(1+z)\dots(1+z(u+v-1))}$$

- ▶ Using the probabilities as given in the table, it is straightforward to implement a Metropolis-Hastings algorithm to draw samples from the posterior of parameters \tilde{q} and z
- ightharpoonup A suitable prior for \tilde{q} and z is of course needed

References

- [1] Bailey T.J.N. The Mathematical Theory of Infectious Diseases. Charles Griffiths and Company, London 1975.
- [2] O'Neill Ph. and Roberts G. Bayesian inference for partially observed stochastic processes. Journal of the Royal Statistical Society, Series A, 1999; 162: 121–129.
- [3] Becker N. Analysis of infectious disease data. Chapman and Hall, New York 1989.
- [4] O'Neill Ph. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Mathematical Biosciences 2002; 180:103-114.
- [5] Gelman, Carlin, Stern, Rubin: Bayesian Data Analysis, Chapman and Hall, 2004; see Chapter 5.3.