M378 K: February 21st, 2025.

Theorem 9.8. If m_Y exists, then for $k \in \mathbb{N}$, we have

$$m_Y^{(k)}(0) = \mu_k.$$

Example 9.9. Let $Y \sim b(n = 1, p)$, i.e., let Y model a Bernoulli trial with the probability of success denoted by p. Find m_Y .

$$m_{\gamma}(t) = \mathbb{E}[e^{t\gamma}] = e^{t\cdot 0}(1-p) + e^{t\cdot 1} \cdot p$$

$$= \frac{1-p + pe^{t}}{t} \cdot t \in \mathbb{R}$$

Proposition 9.10. Let Y_1 and Y_2 be independent random variables with m.g.f.s denoted by m_{Y_1} and m_{Y_2} . Define $Y = Y_1 + Y_2$. Then, for every t for which both m_{Y_1} and m_{Y_2} are well defined, we have

$$m_Y(t) =$$
 ?

Proof. By definition:

$$m_Y(t) = \mathbf{E}[\mathbf{e^{t\cdot Y}}]$$

Using $Y = Y_1 + Y_2$, we can substitute $Y_1 + Y_2$ for Y in the expression above. So,

$$m_Y(t) = \mathbb{E}\left[e^{\mathbf{t}(X_t + Y_t)}\right]$$

One of the properties of the exponential function is that $e^{A+B}=e^A\times e^B$. Thus, the above becomes:

$$m_Y(t) = \mathbb{E}[e^{t\cdot Y_k} \cdot e^{t\cdot Y_k}]$$

Recall that Y_1 and Y_2 are assumed to be independent random variables. With this in mind, we get:

$$m_Y(t) = \mathbb{E}[e^{t_Y}] \cdot \mathbb{E}[e^{t_Y}]$$

Finally, using the definition of a m.g.f., we have

$$m_Y(t) = \mathbf{m_{Y_1}(t) \cdot m_{Y_2}(t)}$$

Example 9.11. Let $Y \sim b(n, p)$. What is the moment generating function of Y?

Example 9.12. Let $N \sim Poisson(\lambda)$. What is the moment

Example 9.13. Let
$$Z \sim N(0,1)$$
. What is the moment generating function m_Z of Z ?

$$\longrightarrow : m_Z(t) = \mathbb{E}\left[e^{t\cdot Z}\right] = \int_0^\infty e^{t\cdot Z} \varphi(z) dz = \int_0^\infty e^{t\cdot Z} \frac{1}{|Z|!} e^{-\frac{Z}{2}} dz$$

$$= \int_0^\infty \frac{1}{|Z|!} e^{-\frac{Z}{2}} dz + t \cdot 2 - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}\right)^2 dz$$

$$= e^{\frac{Z}{2}} \int_0^\infty \frac{1}{|Z|!} e^{-\frac{Z}{2}} dz$$

Example 9.14. Let the random variable Y have the $mgfm_Y$. Define X = aY + b for some constants a and b. Express the $mgfm_X$ of X in terms of m_Y , a and b.

$$\rightarrow: m_{X}(t) = \mathbb{E}[e^{tX}] = \mathbb{E}[e^{t(aY+b)}] =$$

$$= \mathbb{E}[e^{taY} e^{tb}] = e^{tb} \mathbb{E}[e^{taY}] = e^{tb} m_{Y}(ta)$$

Example 9.15. Let $X \sim N(\mu, \sigma^2)$. What is the moment generating function m_X of X?

$$\longrightarrow: X = \mu + \sigma \cdot Z \qquad \omega / Z \sim \omega_{0,1}$$

$$b \quad a \qquad b \quad a$$

$$m_{X}(t) = e^{\mu t} \cdot m_{Z}(\sigma \cdot t) = e^{\mu t} \cdot e^{\frac{\sigma^{2} \cdot t^{2}}{2}} = e^{\mu t + \frac{\sigma^{2} t^{2}}{2}}$$

Problem 9.2. A random variable Y is said to be lognormal if there exists a normally distributed random variable $X \sim N(\mu, \sigma^2)$ such that $Y \stackrel{(d)}{=} e^X$ Express the mean and the variance of the lognormal r.v. Y in terms of the parameters μ and σ . $F[Y] = F[e^X] = F[e^X] = m_X(1) = e^{\mu + \frac{\sigma^2}{2}}$

Proposition 9.16. 1. If m_Y exists for a certain probability distribution, then it is unique.

2. If m_{Y_1} and m_{Y_2} are equal on an interval, then $Y_1 \stackrel{(d)}{=} Y_2$.

Corollary 9.17. Let Y_1 and Y_2 be independent and normally distributed. Define $Y = Y_1 + Y_2$. Then, the distribution of Y is ...

$$= e^{\mu \cdot t + \frac{\sigma_1^2 t^2}{2}} \cdot e^{\mu_2 \cdot t + \frac{\sigma_2^2 t^2}{2}}$$

$$= e^{\mu_1 \cdot t + \frac{\sigma_1^2 t^2}{2}} \cdot e^{\mu_2 \cdot t + \frac{\sigma_2^2 t^2}{$$

Y~ Normal (mean= \mu = \mu_1 + \mu_2, var = \sigma^2 + \sigma_2^2)

Disthy, 1/2 Distin of Y