MA378 Chapter 1: Polynomial Interpolation

Exercises 1.4, 2.3, 2.5, 4.4. Also: Presentation [10 Marks]

Exer 1.4 \star [30 Marks] For each of the following interpolation problems, determine (with explanation) if there is no solution, exactly one solution, or more than one solution. In all cases p_n denotes a polynomial of degree (at most) n. You are not required to determine p_n where it exists.

- (a) Find $p_1(x)$ that interpolates (x_0,y_0) , (x_1,y_1) , and (x_2,y_2) , where $x_i=i-1$ and $y_0=0$, $y_1=-1$, $y_2=1$.
- (b) Find $p_1(x)$ that interpolates (x_0,y_0) , (x_1,y_1) , and (x_2,y_2) , where $x_{\mathfrak{i}}=\mathfrak{i}-1$ and $y_0=0$, $y_1=-1$, $y_2=-2$.
- (c) Find $p_2(x)$ that interpolates (x_0,y_0) , (x_1,y_1) , and (x_2,y_2) , where $x_i=i-1$ and $y_0=0$, $y_1=-1$, $y_2=1$.
- (d) Find $p_2(x)$ that interpolates (x_0,y_0) , (x_1,y_1) , and (x_2,y_2) , where $x_i=(-1)^{i+1}$ and $y_0=0$, $y_1=-1$, $y_2=1$.
- (e) Find $p_2(x)$ that interpolates (x_0,y_0) and (x_1,y_1) where $x_i=(-1)^{i+1}$ and $y_0=0,\ y_1=-1.$

Exer $2.3 \star [15 \text{ Marks}]$ Show that

$$\sum_{i=0}^{n} L_i(x) = 1 \quad \text{ for all } x.$$

Exer 2.5 \star [20 Marks] Show that all the following represent the polynomial $T_3(x) = 4x^3 - 3x$ (often called the "Chebyshev Polynomial of Degree 3"),

- (a) Horner form: $H_3(x) := ((4x+0)x-3)x+0$.
- (b) Lagrange form: $\sum_{k=0}^{3} \bigg(\prod_{j=0, j \neq k}^{3} \frac{x-x_{j}}{x_{k}-x_{j}}\bigg) (-1)^{k+1} \text{, where}$ $x_{0}=-1, x_{1}=-1/2, x_{2}=1/2, x_{3}=1.$
- (c) Recurrence relation: $T_0=1$, $T_1=x$, and $T_n=2xT_{n-1}-T_{n-2}$ for n=2,3,...

Exer 4.4 \star [25 MARKS] Write down that formula for q_3 , the *Hermite* polynomial that interpolates $f(x) = \sin(x/2)$, and its derivative, at the points $x_0 = 0$ and $x_1 = 1$. Give an upper bound for $|f(1/2) - q_3(1/2)|$.