2. TORZIONO, MATEMATIČKO I FIZIČKO NJIHALO

2.1. TORZIONO NJIHALO

Sastoji se od tijela obješenog na žicu tako da je objesište na vertikali koja prolazi kroz težište tijela T.

SLIKA: TORZIONO NJIHALO – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.20. STR.33

Tijelo iz ravnotežnog položaja zakrenemo za kut θ , žica se tordira i djeluje na tijelo momentom sile koji je proporcionalan θ , ali je suprotnog smjera: $M = -D\theta$

M - zbog utjecaja tog momenta sile tijelo titra oko ravnotežnog položaja D - torziona konstanta – ovisi o materijalu i dimenzijama žice

Jednadžba gibanja:

$$M = I\alpha = I\frac{d^2\theta}{dt^2} = -D\theta$$

$$\frac{d^2\theta}{dt^2} + \frac{D}{I}\theta = 0$$

I – moment tromosti s obzirom na os OT

Jednadžba istog oblika kao: $\frac{d^2s}{dt^2} + \frac{k}{m}s = 0$ pa zaključujemo da torziono njihalo harmonički titra.

Rješenje je: $\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$

$$\omega = \sqrt{\frac{D}{I}}$$
 kružna frekvencija

$$T = 2\pi \sqrt{\frac{I}{D}}$$
 period (ovisi o momentu tromosti tijela *I*, o elastičnim svojstvima žice (torziona konstanta *D*), ne ovisi o amplitudi)

Tiranje torzionog njihala je harmoničko <u>i za velike amplitude</u> što nije slučaj kod matematičkog i fizičkog njihala.

1

Pictures of Torsional Pendulum Clock (German Make)

2.2. MATEMATIČKO NJIHALO

To je sitno tijelo ili materijalna točka, koja njiše obješena o nerastezljivu, laganu nit duljine l, čiju masu zanemarimo.

SLIKA: MATEMATIČKO NJIHALO – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.15. STR.26

- a) njihalo u mirovanju napetost niti uravnotežuje silu težu: N = G = mg
- b) njihalo izvučeno za neki kut θ iz položaja ravnoteže:
- normalnu komponentu sile teže uravnotežuje napetost niti: $N = mg \cos \theta$
- tangencijalna komponenta sile usmjerena prema ravnotežnom položaju: $F_t = -mg \sin \theta$ (zbog djelovanja te sile materijalna točka njiše oko položaja ravnoteže; predznak '-' jer sila djeluje u smjeru suprotnom od smjera povećanja kuta θ)

Sila nije proporcionalna pomaku θ , već $\sin\theta$ pa sila nije harmonička i gibanje njihala nije harmoničko.

No za male θ vrijedi $\sin \theta \approx \theta$ pa je $F = -mg\theta$ i sila je harmonička i gibanje njihala je analogno gibanju harmoničkog oscilatora (za male amplitude).

Za velike amplitude njihanje matematičkog njihala nije harmoničko.

Jednadžba gibanja matematičkog njihala:

$$ma_t = F_t = -mg \sin \theta$$

Za male amplitude: $ma_t = -mg\theta$, odn. $a_t = -g\theta$.

Uz $a_t = l\alpha$, gdje je:

 a_t tangencijalna akceleracija

 $\alpha = \frac{d^2\theta}{dt^2}$ kutna akceleracija

l polumjer putanje

$$a_t = l \frac{d^2 \theta}{dt^2} = -g \theta$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

Rješenje: $\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$

$$heta_0$$
 amplituda
$$\omega = \sqrt{\frac{g}{l}}$$
 kružna frekvencija
$$\varphi_0$$
 početna faza
$$T = 2\pi\sqrt{\frac{l}{g}}$$
 period (ne ovisi o amplitudi i masi već samo o duljini njihala l i akceleraciji sile teže g)

Za veće amplitude period njihala ovisi o amplitudi θ_0 i raste s njom:

$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + \frac{1}{2^2} \sin^2 \frac{\theta_0}{2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} \sin^4 \frac{\theta_0}{2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} \sin^6 \frac{\theta_0}{2} + \dots \right]$$

Članovi reda se brzo smanjuju pa je dovoljno uzeti prva 2-3 člana:

$$T = 2\pi \sqrt{\frac{l}{g}} \left[1 + \frac{1}{4} \sin^2 \frac{\theta_0}{2} + \frac{9}{64} \sin^4 \frac{\theta_0}{2} + \dots \right]$$

Ovisnost perioda matematičkog njihala o amplitudi se može pogledati u tablici u knjizi, ali time se nećemo baviti već ćemo razmatranja najčešće svesti na matematičko njihalo koje njiše malim amplitudama.

2.3. FIZIČKO NJIHALO

To je kruto tijelo koje zbog utjecaja sile teže njiše oko horizontalne osi koja ne prolazi kroz težište tijela.

SLIKA: FIZIČKO NJIHALO – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.16. STR.29

Moment sile koji uzorkuje titranje:

$$M = -mgL\sin\theta$$

L udaljenost osi rotacije O od težišta tijela T

 θ kut koji spojnica \overline{OT} zatvara s vertikalom

Predznak '-' jer moment sile nastoji smanjiti kut θ .

Za male amplitude: $\sin \theta \approx \theta$

$$M = -mgL\theta$$

Jednadžba gibanja fizičkog njihala (jednadžba rotacije krutog tijela oko nepomične osi za male amplitude):

$$M = I\alpha = I\frac{d^2\theta}{dt^2} = -mgL\theta$$

$$\frac{d^2\theta}{dt^2} + \frac{mgL}{I}\theta = 0$$
 jednadžba harmoničkog titranja

I moment tromosti tijela s obzirom na os rotacije

Rješenje:
$$\theta(t) = \theta_0 \sin(\omega t + \varphi_0)$$
 $\omega = \sqrt{\frac{mgL}{I}}$

Period fizičkog njihala za male amplitude: $T = 2\pi \sqrt{\frac{I}{mgL}}$

Računamo koliku duljinu mora imati matematičko njihalo da bi imalo isti period kao fizičko njihalo:

$$T_m = 2\pi \sqrt{\frac{l}{g}}$$

$$T_m = 2\pi \sqrt{\frac{l}{g}} \qquad T_f = 2\pi \sqrt{\frac{I}{mgL}}$$

$$T_m = T_f$$

$$2\pi\sqrt{\frac{l}{g}} = 2\pi\sqrt{\frac{I}{mgL}}$$

$$l_r = \frac{I}{mL}$$

REDUCIRANA DULJINA FIZIČKOG NJIHALA

Promatrajmo fizičko njihalo u obliku štapa koje njiše oko osi koja prolazi jednim krajem štapa:

SLIKA: REDUCIRANA DULJINA FIZIČKOG NJIHALA U OBLIKU ŠTAPA -HENČ-BARTOLIĆ, KULIŠIĆ - SL. 1.17. STR.30

d duljina štapa $I = md^2/3$ moment tromosti štapa

Reducirana duljina takvog njihala: $l_r = \frac{I}{mL}$, $I = md^2/3$, L = d/2

Slijedi:
$$l_r = \frac{md^2}{3} \cdot \frac{1}{\frac{md}{3}} = \frac{2}{3}d$$

Matematičko njihalo duljine $l_r = \frac{2}{3}d$ imat će isti period kao štap duljine d.

Točka C na štapu, koja je od osi udaljena za reduciranu duljinu l_r , zove se SREDIŠTE TITRANJA.

Može se dokazati da fizičko njihalo obješeno u središtu titranja (točka C) ima isto vrijeme titranja kao i kad njiše oko točke O.

Isti primjer štapa:

SLIKA: FIZIČKO NJIHALO OBJEŠENO U SREDIŠTU NJIHANJA – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.18. STR.31

a)
$$T = 2\pi \sqrt{\frac{I_0}{mgL}}$$
 $I_0 = I_{CM} + mL^2$ prema Steinerovom poučku

b)
$$T' = 2\pi \sqrt{\frac{I_1}{mgL_1}}$$
 $I_1 = I_{CM} + mL_1^2$

$$I_{CM}$$
 moment tromosti s obzirom na os kroz težište T

$$L + L_1 = l_r = \frac{I_0}{mL}$$
 reducirana duljina

$$L_{1} = l_{r} - L = \frac{I_{0}}{mL} - L = \frac{I_{0} - mL^{2}}{mL} = \frac{I_{CM}}{mL}$$

$$T' = 2\pi \sqrt{\frac{I_1}{mgL_1}} = 2\pi \sqrt{\frac{I_{CM} + mL_1^2}{mgL_1}} = 2\pi \sqrt{\frac{I_{CM} + \frac{mI_{CM}^2}{m^2L^2}}{mg\frac{I_{CM}}{mL}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}}} = 2\pi \sqrt{\frac{1 + \frac{I_{CM}}{mL^2}}{\frac{g}{L}}} = 2\pi$$

$$=2\pi \sqrt{\frac{\frac{mL^{2} + I_{CM}}{mL^{2}}}{\frac{g}{I_{L}}}} = 2\pi \sqrt{\frac{I_{CM} + mL^{2}}{mgL}} = 2\pi \sqrt{\frac{I_{0}}{mgL}} = T$$

Njihalo koje se može objesiti tako da se njiše oko točke O i oko točke C (središta titranja) zove se REVERZIONO NJIHALO.

Za reverziono njihalo je lako odrediti reduciranu duljinu pa se mjerenjem perioda T reverzionog njihala može izračunati akceleracija sile teže g.

CENTAR UDARA

Promatrat ćemo gibanje krutog tijela kad na njega djeluje impulsna sila u kratkom vremenskom intervalu.

Promatrat ćemo fizičko njihalo u obliku štapa obješenog na jednom njegovom kraju.

Ako štap udarimo na udaljenosti a od osi, u točku P, onda će impuls momenta sile biti:

$$M\Delta t = Fa\Delta t$$

Fa - sila F djeluje na kraju sile a

Impuls momenta sile će proizvesti promjenu kutne količine gibanja:

$$\Delta L = M\Delta t = I\omega - I\omega_0 = Fa\Delta t$$

Odatle je kutna brzina: $\omega = \omega_0 + Fa\Delta t / I$

Zbog impulsa sile CM će se početi gibati translatorno brzinom $v_{CM} = l\omega/2$, gdje je l/2 udaljenost CM od objesišta.

$$v_{CM} = \frac{l}{2} (\omega_0 + \frac{Fa\Delta t}{I})$$

Pri djelovanju sile na štap doći će do gibanja štapa u smjeru sile, pa će objesište djelovati silom \vec{R} (reakcijom prema 3. Newtonovom zakonu) na tijelo:

-skalarno pisano:
$$(F - R)\Delta t = m\Delta v_{CM} = mv_{CM} - mv_{CM0}$$

$$v_{CM0} = l\omega_0/2$$

$$F\Delta t - R\Delta t = m\frac{l}{2}(\omega_0 + \frac{Fa\Delta t}{I} - \omega_0) = \frac{ml}{2}\frac{Fa\Delta t}{I}$$

$$R = F(1 - m\frac{l}{2}\frac{a}{I})$$

Ako želimo da os "ne osjeti" da je tijelo udareno, moramo staviti da je sila reakcije R = 0:

$$0 = F(1 - m\frac{l}{2}\frac{a}{I}) \qquad a = \frac{2I}{ml}$$

Za štap je
$$I = ml^2 / 3$$
 pa je: $a = \frac{2I}{ml} = \frac{2ml^2}{3ml} = \frac{2l}{3}$

Od prije znamo da je reducirana duljina fizičkog njihala za štap jednaka $l_r=\frac{2}{3}l$, što znači da je $a=l_r$.

Točku P zovemo CENTAR UDARA.

Zadatak: Fizičko njihalo

Od tanke žice načinjeno je tijelo mase 120 g u obliku jednakostraničnog trokuta sa stranicom 60 cm. Taj trokut je oslonjen na oštar brid jednim uglom. Izračunajte:

- a) moment tromosti i frekvenciju njihanja f za male otklone oko vodoravne osi koja ide osloncem i okomita je na ravninu trokuta,
- b) moment tromosti i frekvenciju *f* njihanja za male otklone oko vodoravne osi koja ide osloncem i leži u ravnini trokuta.