The Quotient Topology

Matteo Paz, Dylan Rupel March 5, 2024

1 The Quotient Topology and Examples

Definition 1 Let X be a topological space and suppose \sim is an equivalence relation on X. Then there is a natural surjective function $f: X \to X/\sim$ onto the set of equivalence classes $[x]_{\sim}$. The <u>quotient topology</u> is the finest topology for which f is continuous. This can be achieved exactly by defining $U \subseteq X/\sim$ open if and only if $f^{-1}(U) = \{x \in X : [x] \in U\}$ is open in X.

Example 1 Consider the unit sphere S_3 in \mathbb{R}^3 , and the disjoint union of two unit discs S'_2 in \mathbb{R}^2 , after identifying the boundaries of the disc with \sim .

If we take the intersection of an open ball in \mathbb{R}^3 with S_3 , we get a 2 dimensional ball on the surface of S_3 , which are exactly the open sets of S_2' - 2D balls. By identifying the boundaries of the two discs, we connect the equator of the sphere. Thus, these spaces are homeomorphic, and S_3 is the quotient topology for $S_2' \sqcup S_2' / \sim$

Example 2 Consider $[0,1]/\sim$ where $0\sim 1$.

This essentially wraps the interval [0,1] into a circle of circumference 1. Open intervals on the image about 0 become half open in the domain: $[0,a) \sqcup (b,1]$.

Example 3 Consider \mathbb{R} . Take \mathbb{Z} to be one equivalence class, identifying them all together, and leaving all non integers alone.

Similar to example 2, this creates a circle for every interval [z, z+1]. However, each circle does not identify except at its point z. Thus it creates a wedge of infinitely many circles, all meeting only at 0. Any open set about that 0 point will include an open interval about every point in \mathbb{Z} in the preimage.

2 Quotient of a Topological Space Under a Group Action

Definition 2 An action of a group G on a set X is $*: G \times X \to X$ such that

- 1. g.(h.x) = (gh).x for all $g, h \in G$ and $x \in X$
- 2. e.x = x for all $x \in X$

Definition 3 A group G is a topological group if it has a topology such that with g in G, the maps $\phi_g(h) = gh$ and $\rho_g(h) = hg$ are continuous.

Lets see some topological groups.

- 1. To start, any discrete / finite group is a topological group. With the discrete topology, any function is continuous, because all preimages are open: $(\mathbb{Z}, +), (S_n, \circ), D_n, (\mathbb{Z}_n, +)$
- 2. $GL_n(\mathbb{R}), GL_n(\mathbb{C})$
- 3. Any subgroup of a topological group

Definition 4 Let G be a topological group and X a topological space. Then G has a continuous action on X if there exists $*: G \times X \to X$ so that $\phi_g: X \to X$ is a continuous function.