Chapter 5

Mathematical Induction

Mathematical Induction

Proposition 5.1. Prove that for any integer $n \ge 1$ the sum of the odd integers from 1 to 2n-1 is n^2 .

Proposition 5.1 is an example of a statement that can be proved using Mathematical Induction. Mathematical Induction is used to prove a statement is true for an infinite list of consecutive integers which contains a least element.

Theorem 5.2. (Principle of Mathematical Induction)

Given a statement P(n) concerning the integer n, suppose

- (1) $P(n_0)$ is a true statement for some integer n_0 , and
- (2) if k is an arbitrary integer greater than n_0 and P(k) is true, then P(k+1) is true.

Then the statement P(n) is true for all integers n such that $n_0 \leq n$.

Proof. Proof of Proposition 5.1

Proof by induction on n

Base step:

For n = 1, 2n - 1 = 2(1) - 1 = 1. The sum of odd integers from 1 to 1 is 1. Also $n^2 = 1^2 = 1$. Therefore the statement is true for n = 1.

37

Induction step:

Assume that the statement is true for some integer k > 1. Then $1 + 3 + \cdots + 2k - 1 = k^2$. Now,

$$1+3+\cdots+(2(k+1)-1) = [1+3+\cdots+(2k+1)] + (2(k+1)-1)$$
$$= k^2 + 2(k+1) - 1$$
$$= k^2 + 2k + 1$$
$$= (k+1)^2.$$

Therefore by the Principle of Mathematical Induction the statement is true.

Proof. Proof of Theorem 5.2

Proof by contradiction

Suppose (1) and (2) are true and P(n) is false for some positive integer. Let $Q = \{t \mid P(t) \text{ is false }\}$. We can assume $Q \neq \emptyset$ and $1 \notin Q$. Since $Q \subseteq \mathbb{N}$, Q contains a least element k. Hence $1, 2, \ldots, k \notin Q$ which implies $P(1), \ldots, P(k-1)$ are true. Thus by assumption P(k) is true for arbitrary k. This contradicts that $k \in Q$.

Theorem 5.3. Principle of Mathematical Induction implies the Well Ordering Principle.

Proof. Let P be an nonempty subset of natural numbers. Suppose P has no least element. Let Q be the set of elements of \mathbb{N} which are not in P. Then $1, 2, \ldots, k, k+1 \in Q$ for an arbitrary $k \in \mathbb{N}$.

Base Step: $1 \in Q$.

Induction Step: Assume $1, 2, ..., k \in Q$. If $k + 1 \in P$ then k + 1 is a least element. Hence $k + 1 \in Q$. By the Principle of Mathematical Induction $\mathbb{N} \subseteq Q$. This contradicts that $P \neq \emptyset$.

The summation of the statement P(i) from k to n, denoted by $\sum_{i=k}^{n} P(i)$, is

$$P(k) + P(k+1) + P(k+2) + \cdots + P(k+n)$$
.