Quantum Gravity and Extremal Black Holes

Calvin Y.-R. Chen Imperial College London 25th June 2024 Theoretical Physics Colloquium

Quantum Gravity and Extremal Black Holes

based on 2407.XXXXX in collaboration with C. de Rham and A. J. Tolley

EFTs of Gravity

General relativity accurately describes gravity across various scales...

...but predicts its own breakdown: Need UV completion!

Effective Field Theory perspective: Use most general local action

- 1) consistent with symmetries,
- 2) organised in derivative expansion, and

→ Treat as **standard QFT** (careful about breakdown!)

Question: Are all these terms physical?

Deforming Extremal Charged Black Holes

Charged Black Holes in AdS

Gravity + Maxwell in D dimensions

$$S_{\rm EM} = \int d^D x \sqrt{-g} \left[\frac{1}{2\kappa} \left(R + \frac{(D-2)(D-1)}{L^2} \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

- \rightarrow Asymptotically flat limit when $L \rightarrow \infty$.
- Spherically symmetric and static background solutions

$$\mathrm{d}s^2 = -A(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{B(r)} + r^2\mathrm{d}\Omega_d^2, \quad F = \Psi'(r)\mathrm{d}t\wedge\mathrm{d}r$$
 ter Reissner-Nordström (AdS RN)

→ Anti-de Sitter Reissner-Nordström (AdS RN)

$$Q^2 = \frac{D-3}{D-2}\kappa q^2$$

$$A(r) = B(r) = f(r) := 1 + \frac{r^2}{L^2} - \frac{M}{r^{D-3}} + \frac{Q^2}{r^{2(D-3)}}, \quad \Psi(r) = \frac{q}{r^{D-3}}$$

The Extremal Limit

Solution possesses two horizons

$$r_{\pm} = \frac{M}{2} - \sqrt{\left(\frac{M}{2}\right)^2 - Q^2}$$

 \rightarrow Degenerate to extremal horizon $r_H:=r_+=r_-$ in extremal limit.

$$\rho = r - r_{+}$$

• Extremal near-horizon geometry is leading-order in ho/r_H :

$$ds^{2} = \frac{2}{f''(r_{H})} \left[-\rho^{2} \left(\frac{f''(r_{H})}{2} dt \right)^{2} + \frac{d\rho^{2}}{\rho^{2}} \right] + r_{H}^{2} d\Omega_{d}^{2}$$

i.e.
$$AdS_2 \times S^d$$
!

→ **Generic** to extremal black holes!

Deformations

What about solutions with less symmetry?

→ Interested in *stationary* deformations to *near-horizon* regions of *extremal* black holes!

Horowitz, Kolanowski, and Santos [2022, 2023] Gralla & Zimmermann [2018]

ullet From full analysis of gravitational perturbations: Deformations $\,h\,$

$$h=c_-
ho^{\gamma_-} + c_+
ho^{\gamma_+}, \quad \gamma_\pm = \frac{1}{2} \big(-1 \pm \sqrt{1+4U}\big)$$
 Effective Potential

 \rightarrow Finite B.C. @ $\rho=0$ require $c_-=0$.

Other branch always arises from **regular** sub-extremal geometry.

Hence **physical even if singular**!

Singularities

Scaling in terms of original metric perturbations is $h_{\cdot \cdot} \sim \rho^{\gamma}$.

• Scalar invariants on deformed geometry scale as:

$$S \sim \rho^{n\gamma}, \quad n \in \mathbb{N}^+$$

- \rightarrow Scalar polynomial **singularity** when $\gamma < 0$.
- Perturbations to the Weyl tensor scale as:

$$\delta C.... \sim \rho^{\gamma-2}$$

 \rightarrow Parallel-propagated **singularity** when $\gamma < 2$.

Tidal force on particles travelling along geodesics of deformed background. Artefact of **geodesic approximation**/breakdown of wordline EFT.

EFT Corrections

Deformations in the EFT of Gravity

Parameterise corrections from UV with higher-derivative EFT corrections

$$S = S_{\rm EM} + S_{\rm EFT}$$

Due to rigidity of near-horizon geometry:

$$h... \sim \rho^{\gamma}, \quad \gamma = \gamma_{\rm GR} + \gamma_{\rm EFT}$$

→ EFT correction **resums** into exponent

Specifically:

$$S_{\text{EFT}} = \int d^D x \sqrt{-g} \sum_{\mathcal{O}} \frac{c_{\mathcal{O}}}{\Lambda^{[\mathcal{O}] - D}} \mathcal{O} \longrightarrow \gamma_{\text{EFT}} = \sum_{\mathcal{O}} c_{\mathcal{O}} \gamma_{\mathcal{O}}$$

• Marginal case: When $\gamma_{\rm GR}=0$, singularity of horizon sensitive to sign of

$$\hat{\gamma} := \gamma_{\text{EFT}} \big|_{\gamma_{\text{GR}} = 0}$$

Example: EFT Correction

Specific yet generic EFT correction

$$S = S_{\rm EM} + \frac{\kappa c}{\Lambda^2} \int d^5 x \sqrt{-g} (F_{\mu\nu} F^{\mu\nu})^2.$$

Static and spherically symmetric background solutions with

$$A(r) = B(r) = f(r) - \frac{c}{\Lambda^2} \frac{12Q^4}{r^{10}}, \quad \Psi(r) = \frac{q}{r^2} - 16c \frac{\kappa}{\Lambda^5} \frac{q^3}{r^8}$$

- → Modifies extremality bound.
- Scaling exponents obtained by decoupling and solving perturbations equations.
 - Marginal deformation for every harmonic ℓ :

$$\hat{\gamma} = -\frac{c}{\Lambda^2 r_H^2} \frac{72k_S^2 (k_S^2 - 4)^2}{15k_S^4 - 128k_S^2 + 256}$$

 $k_S^2 = \ell(\ell+2)$

 \rightarrow Negative for sign c>0 (expected from positivity bounds and WGC).

Breakdown of Breakdowns

Sign of $\hat{\gamma}$ and hence presence of curvature singularities on horizon UV sensitive!

- Suggests breakdown of EFT near horizon, but...
 - EFT expansion under control when

$$r_H \Lambda \gg 1$$
, $h \sim h_0 \rho^{\gamma} \ll (\Lambda r_H)^4$

Metric perturbation theory under control when

$$h \sim h_0 \rho^{\gamma} \ll 1$$

→ Metric perturbation theory out of control before EFT breaks down!

This is supported by the following example...

Example: UV Avatar

Einstein-Maxwell-Dilaton system

$$S_{\text{EMD}} = \int d^{D}x \sqrt{-g} \left[\frac{1}{2\kappa} (R - 2\Lambda) + \sum_{i=1}^{N} \left(-\frac{1}{4N} e^{\alpha\phi_i} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \nabla_{\mu} \phi_i \nabla^{\mu} \phi_i - \frac{1}{2} m_i^2 \phi_i^2 \right) \right]$$

Useful to define

$$\frac{1}{m_{\text{eff}}^2} = \sum_{i=1}^{N} \frac{1}{m_i^2}$$

- Near-horizon geometry in previous example are full solution.
- Find scaling exponents of deformations from full analysis of gravitational perturbations.
 In marginal case:

$$\hat{\gamma} = -\frac{\alpha^2}{N^2 r_H^2 m_{\text{eff}}^2 \kappa} \frac{3k_S^2 (k_S^2 - 4)^2}{4 \left(15k_S^4 - 128k_S^2 + 256\right)} \left(\sum_{i=1}^N \frac{4r_H^2 m_{\text{eff}}^2}{r_H^2 m_i^2 + k_S^2} - 1 \right)$$

Example: UV Avatar

Interesting features...!

- Good UV behaviour: Two-derivative theory
- When $m_i^2 r_H^2 \gg 1$, tree-level effective action includes F^{2n} -terms (n>1). At leading order, reproduce F^4 -correction from previous example with

$$c = \frac{1}{32}, \quad \Lambda^2 = \frac{N^2 \kappa m_{\text{eff}}^2}{\alpha^2}$$

- → Presents partial UV completion!
- Scaling exponents at leading-order manifestly negative:

$$\hat{\gamma} = -\frac{\alpha^2}{N^2 r_H^2 m_{\text{eff}}^2 \kappa} \frac{9k_S^2 (k_S^2 - 4)^2}{4 (15k_S^4 - 128k_S^2 + 256)} + \dots$$

→ Singularity already present in the UV.

A Conjecture

Leading EFT

EFT corrections in $D=5\,\mathrm{up}$ to four-derivatives

$$S_{\text{EFT}} = \int d^{5}x \sqrt{-g} \left[\frac{c_{1}}{\kappa \Lambda^{2}} R^{2} + \frac{c_{2}}{\kappa \Lambda^{2}} R_{\mu\nu} R^{\mu\nu} + \frac{c_{3}}{\kappa \Lambda^{2}} R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \frac{c_{4}}{\Lambda^{2}} R F^{2} \right]$$

$$+ \frac{c_{5}}{\Lambda^{2}} R_{\mu\nu} F^{\mu}_{\ \lambda} F^{\nu\lambda} + \frac{c_{6}}{\Lambda^{2}} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \frac{\kappa c_{7}}{\Lambda^{2}} (F^{2})^{2} + \frac{\kappa c_{8}}{\Lambda^{2}} F_{\mu}^{\ \nu} F_{\nu}^{\ \rho} F_{\rho}^{\ \sigma} F_{\sigma}^{\ \mu} \right]$$

• Field-redefinition **invariant** combinations are c_3 , c_6 ,

$$c_0 = \frac{1}{2} \left[c_1 + 11c_2 + 31c_3 + 6c_4 + 12(c_5 + c_6) + 18(2c_7 + c_8) \right]$$

$$c_9 = c_2 + c_5 + c_8$$

- Perturbatively admits static and spherically symmetric background solutions. Determine scaling exponents from deformations.
 - → Subtle: EFT changes asymptotics.

Weak Gravity Conjecture

When $L \to \infty$, this is constrained by the Weak Gravity Conjecture (WGC).

- Super-extremal black holes in tension with Weak Cosmic Censorship.
 - **WGC**: UV physics should allow super-extremal states to allow for decay without super-extremality:

$$\frac{M/2}{|Q|} < 1$$

- For small black holes: Extremal charge-to-mass ratio should decrease with decreasing mass
 - At leading order (four derivatives), WGC implies

$$\frac{M/2}{|Q|} = 1 - \frac{1}{3\Lambda^2 r_H^2} c_0 \longrightarrow c_0 > 0$$

Near-Horizon Negativity

Examples (Einstein-Maxwell-Dilaton and scalar toy model) suggest following **speculative conjecture**...

Near-Horizon Negativity: EFTs consistent with UV completions have

$$\hat{\gamma} \lesssim 0$$

For four-derivative corrections to Einstein-Maxwell, marginal scaling exponent is

$$\hat{\gamma} = -\frac{512k_S^2}{(16 - 3k_S^2)^2 (5k_S^2 - 16)\Lambda^2 r_H^2} \tilde{c}_0$$

with

$$1024\tilde{c}_0 = 2c_0(k_S^2 - 4)^2 (11k_S^2 - 56)$$
$$-(k_S^2 - 8) \left[c_3(69k_S^4 - 544k_S^2 + 960) - 16c_6(3k_S^4 - 28k_S^2 + 64)\right]$$

Near-Horizon Negativity

→ Near-Horizon Negativity implies

$$\tilde{c}_0(\ell) > 0, \quad \forall \ell$$

• For $L \to \infty$, marginal mode is $\ell=2$

$$\tilde{c}_0(\ell=2) = c_0 > 0$$

→ Reproduces (and hence strictly stronger than) AF WGC.

Kats, Motl, and Padi [2007]

Horowitz, Kolanowski, Remmen, and Santos [2023]

- Other bounds obtained from $\ell > 2$.
 - For instance, as $\ell \to \infty$

$$\tilde{c}_{\infty} = \lim_{k_S \to \infty} \frac{\tilde{c}_0}{k_S^6} = \frac{22c_0 - 69c_3 + 48c_6}{1024} > 0$$

Conclusion

Summary

- UV sensitivity of extremal black holes
 - Deformations to near-horizon geometry are UV sensitive, but no breakdown of EFT!
 - → Generalisation to extremal black branes!

[WIP] with A. Kovacs

- → Better understanding of relation to Aretakis instability and Love Numbers.
- Constraints on EFTs
 - Near-horizon negativity (speculative): Generalisation of bound from WGC for leading EFT.
 - → Physical intuition Holography, energy conditions?

Thanks for your attention! Questions?