Algoritmų sudarymas ir analizė

P170B400

doc. Dalius Makackas (teorija, pratybos)

doc. Vytautas Pilkauskas... (laboratoriniai)

Orientacinis temų turinys

Eil. Nr.	Pavadinimai
1.	Algoritmų analizės pagrindai
1.1	Algoritmas ir jo darbo efektyvumo vertinimas
1.2	Funkcijų augimo greičiai
1.3	Rekurentinės formulės
1.4	Tikimybinė algoritmų analizė
2.	Rikiavimo algoritmų analizė
2.1	Rikiavimas burbuliuko ir įterpimo metodais
2.2	Piramidės ir greito rikiavimo metodai
2.3	Optimalus rikiavimas
2.4	Rikiavimo metodai, kurių darbo laikas auga tiesiškai
3.	Hešavimo lentelės
3.1	Hešavimas grandinėlių metodu
3.2	Hešavimo funkcijos
3.3	Atviro adresavimo hešavimas

Eil. Nr.	Pavadinimai								
4.	Išrinkimo algoritmai								
4.1	Binariniai paieškos medžiai								
4.2	Raudonai juodi medžiai								
	II dalis								
5.	Algoritmų sudarymo principai ir jų sudėtingumo vertinimas								
5.1	Dinaminis programavimas								
5.2	Godūs algoritmai								
5.3	Amortizacinė analizė								
6.	Algoritmai darbui su grafais								
6.1	Grafo aprašymo duomenų struktūros								
6.2	Paieška į gylį ir plotį								
6.3	Topologinis rikiavimas ir stipriai susieti komponentai								
6.4	Minimalūs dengiantys medžiai. Kruskalo ir Prima algoritmai								

Eil. Nr.	Pavadinimai
6.5	Trumpiausi keliai. Belmano–Fordo ir Dikstra algoritmai
6.6	Džionsono ir Floido-Varšalo algoritmai
6.7	Srautų tinklai. Fordo–Falkersono metodas
6.8	Maksimalaus porų skaičiaus radimo uždavinys
•••	
7.	Uždaviniai neturintys sprendimo algoritmo
8.	N ir NP uždaviniai
	Egzaminas

Pagrindinė literatūra:

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to algorithms. MIT Press (2009), 1312 pages, ISBN 0262033844 (II leidimas, galima naudoti ir III leidimą)

Savarankiško darbo užduočių grafikas ir jų įtaka galutiniam pažymiui

ity na			(%	Užduoties pateikimo (*) ir atsiskaitymo savaitė (o)																
Atsiskaity mo forma	Temos	Val. sk.									8	9	10	11	12	13	14	15	16	17- 20
Laboratorinio darbo gynimas		32	30	*							0				0					
Egzaminas žodžiu	1-9	32	50	*																0
Indvidualus darbas	1-8	20	10									*							0	
Kontrolinis darbas	1-8	12	10	*															0	

Vertinimas

I laboratorinis – 15% (užduotys bus pateiktos 4 savaitę) II laboratorinis – 15% (užduotys bus pateiktos atsiskaičius I lab. darbą)

(Kiekviena vėlavimo savaitė baudžiama 1 balu, iki 5 balų; t. y. naudojant formulę $\left\lceil \frac{VėluojamaDienu}{7} \right\rceil + 1$)

Savarankiškas ir kontroliniai darbai po 10% (bus vykdomas raštu) Egzaminas žodžiu – 50%

Galutinis pažymys – gautų įvertinimų suma.

Kaip suprasime algoritmą

- Algoritmas tai bet kuri korektiškai apibrėžta skaičiavimo procedūra, kuriai perduodama reikšmė ar reikšmių rinkinys (įėjimas), o jos vykdymo rezultatas yra reikšmė ar reikšmių rinkinys (išėjimas).
- Korektiškas algoritmas jei kiekvienai įėjimo duomenų rinkiniui skaičiavimo procedūra grąžina korektišką rezultatą.

Ar reikia studijuoti algoritmus?

- Tarkime turime begalinių resursų (greitaveikos ir atminties) kompiuterius
- Tarkime turime "realius"
 - Ribota greitaveika
 - Ribota atmintis

Pavyzdys:

A variantas	B variantas				
A algoritmas (n ²)	B algoritmas (n lg n)				

A variantas	B variantas
A algoritmas (n^2)	B algoritmas (n lg n)
1000 000 000 instrukcijų	1000 000 instrukcijų
Realizacija c_1 =2 (2 n^2)	Realizacija c_2 =50 ($n \lg n$)
Rikiuojame 1000 000	Rikiuojame 1000 000 skaičių
skaičių	
Darbo laikas	Darbo laikas
$2(10^6)^2$ komandos	$50\times10^6 \lg 10^6 komandos$
$\frac{2(10^6)^2 komandos}{10^9 komandos/s} = 2000s$	$\frac{50 \times 10^6 \text{ lg } 10^6 \text{ komandos}}{10^6 \text{ komandos/s}} \approx 100s$
Kai n=10 000 000 — 2,3	Kai n=10 000 000 — 20 min
dienos	

Riby skaičiavimas

Liopitalio taisyklė:

$$\lim_{n\to\infty}\frac{f(x)}{g(x)}=\lim_{n\to\infty}\frac{f'(x)}{g'(x)}, \text{ jei yra } \frac{\infty}{\infty} \text{ ar } \frac{0}{0}.$$

Diferencijavimas

f(x)	f'(x)
а	0
x^a	ax^{a-1}
e^x	e^x
a^x	$a^x \ln x$
ln x	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \ln a}$

x^x	$x^{x}(1+\ln x)$
u(x)+v(x)	u'(x)+v'(x)
u(x)v(x)	u'(x)v(x)+u(x)v'(x)
u(v(x))	u'(v(x))v'(x)