CHAPTER 3 Modal theory in cylindrical step index fiber

Dominique PAGNOUX

→ we develop Maxwell equations (pdf page 1):

$$curl\vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$curl\overrightarrow{\mathcal{H}} = \varepsilon \frac{\partial \overrightarrow{\mathcal{E}}}{\partial t}$$

$$\overrightarrow{div}(\overrightarrow{\mathcal{D}}) = \overrightarrow{div}(\varepsilon \overrightarrow{\mathcal{E}}) = \rho = 0$$

with
$$\frac{\partial}{\partial z}$$
 (component) = -j β .(component)

$$\frac{\partial}{\partial t}$$
(component) = j\omega.(component)

$$\frac{\partial E_z}{\partial y} + j\beta E_y = -j\omega\mu H_x \qquad (3)$$

$$-j\beta E_x - \frac{\partial E_z}{\partial x} = -j\omega\mu H_y \qquad (4)$$

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -j\omega\mu H_z \qquad (5)$$

$$-j\beta E_{x} - \frac{\partial E_{z}}{\partial x} = -j\omega\mu H_{y} \qquad (4)$$

$$\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} = -j\omega\mu H_{z}$$
 (5)

$$\frac{\partial H_{z}}{\partial y} + j\beta H_{y} = +j\omega\varepsilon E_{x} \qquad (6)$$

$$-j\beta H_{x} - \frac{\partial H_{z}}{\partial x} = +j\omega\varepsilon E_{y} \qquad (7)$$

$$\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y} = +j\omega\varepsilon E_{z} \qquad (8)$$

$$-j\beta H_{x} - \frac{\partial H_{z}}{\partial x} = +j\omega\varepsilon E_{y} \qquad (7)$$

$$\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y} = +j\omega\varepsilon E_{z} \qquad (8)$$

$$\frac{\partial E_z}{\partial v} + j\beta E_y = -j\omega\mu H_x \qquad (3)$$

$$-j\beta E_{x} - \frac{\partial E_{z}}{\partial x} = -j\omega\mu H_{y} \qquad (4)$$

$$\frac{\partial E_{z}}{\partial y} + j\beta E_{y} = -j\omega\mu H_{x} \qquad (3)$$

$$-j\beta E_{x} - \frac{\partial E_{z}}{\partial x} = -j\omega\mu H_{y} \qquad (4)$$

$$\frac{\partial E_{y}}{\partial x} - \frac{\partial E_{x}}{\partial y} = -j\omega\mu H_{z} \qquad (5)$$

$$\begin{vmatrix} \frac{\partial H_z}{\partial y} + j\beta H_y = +j\omega\varepsilon E_x & (6) \\ -j\beta H_x - \frac{\partial H_z}{\partial x} = +j\omega\varepsilon E_y & (7) \\ \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = +j\omega\varepsilon E_z & (8) \end{vmatrix}$$

$$-j\beta H_{x} - \frac{\partial H_{z}}{\partial x} = +j\omega\varepsilon E_{y} \qquad (7)$$

$$\frac{\partial H_{y}}{\partial x} - \frac{\partial H_{x}}{\partial y} = +j\omega\varepsilon E_{z} \qquad (8)$$

→ we write the transverse components Ex, Ey, Hx, et Hy versus the axial components Ez et Hz (pdf page 2):

$$E_{x} = \frac{-j}{\beta_{t}^{2}} \left[\beta \frac{\partial E_{z}}{\partial x} + \omega \mu \frac{\partial H_{z}}{\partial y} \right]$$

$$E_{y} = \frac{-j}{\beta_{\star}^{2}} \left[\beta \frac{\partial E_{z}}{\partial y} - \omega \mu \frac{\partial H_{z}}{\partial x} \right]$$

$$H_{x} = \frac{-j}{\beta_{t}^{2}} \left[\beta \frac{\partial H_{z}}{\partial x} - \omega \varepsilon \frac{\partial E_{z}}{\partial y} \right] \qquad \beta_{t}^{2} = k_{0}^{2} n_{i}^{2} - \beta^{2}$$

$$H_{y} = \frac{-j}{\beta_{t}^{2}} \left[\beta \frac{\partial H_{z}}{\partial y} + \omega \varepsilon \frac{\partial E_{z}}{\partial x} \right] \qquad k_{0} n_{2} \leq \beta \leq k_{0} n_{1}$$

$$\beta_t^2 = k_0^2 n_i^2 - \beta^2$$

$$k_0 n_2 \le \beta \le k_0 n_1$$

- → we can deduce, from the previous expressions, an equation which unknown factor is Ez
- → Helmoltz equation (pdf page 3):

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \beta_t^2 E_z = 0$$
 (idem with Hz)

- → we can deduce, from the previous expressions, an equation which unknown factor is Ez
- → Helmoltz equation (pdf page 3):

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \beta_t^2 E_z = 0$$
 (idem with Hz)

→ fibre = cylindrical guide ==> change of coordinate system and et change of basis (pdf page 3):

$$(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z}) \rightarrow (\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z})$$

- → we can deduce, from the previous expressions, an equation which unknown factor is Ez
- → Helmoltz equation (pdf page 3):

$$\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \beta_t^2 E_z = 0$$
 (idem with Hz)

→ fibre = cylindrical guide ==> change of coordinate system and et change of basis (pdf page 3):

→ after some calculations, we find (pdf page 4):

$$E_r = -\frac{j}{\beta_r^2} \left(\beta \frac{\partial E_z}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_z}{\partial \theta}\right)$$

$$E_{\theta} = -\frac{j}{\beta_{\star}^{2}} (\beta \frac{1}{r} \frac{\partial E_{z}}{\partial r} - \omega \mu \frac{\partial H_{z}}{\partial r})$$

$$H_{r} = -\frac{j}{\beta_{r}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \theta}\right)$$

$$H_{\theta} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} + \omega \varepsilon \frac{\partial E_{z}}{\partial r}\right)$$

→ after some calculations, we find (pdf page 4):

$$\begin{split} E_{r} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \theta}) & H_{r} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \theta}) \\ E_{\theta} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{1}{r} \frac{\partial E_{z}}{\partial r} - \omega \mu \frac{\partial H_{z}}{\partial r}) & H_{\theta} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} + \omega \varepsilon \frac{\partial E_{z}}{\partial r}) \end{split}$$

→ and then we can deduce the Helmoltz equation (pdf page 5):

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + \beta_t^2 E_z = 0$$

→ after some calculations, we find (pdf page 4):

$$\begin{split} E_{r} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \theta}) & H_{r} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \theta}) \\ E_{\theta} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{1}{r} \frac{\partial E_{z}}{\partial r} - \omega \mu \frac{\partial H_{z}}{\partial r}) & H_{\theta} &= -\frac{j}{\beta_{t}^{2}} (\beta \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} + \omega \varepsilon \frac{\partial E_{z}}{\partial r}) \end{split}$$

→ and then we can deduce the Helmoltz equation (pdf page 5):

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + \beta_t^2 E_z = 0$$

→ this equation can be solved by the method of separation of variables (pdf page 5):

$$E_{z}(r,\theta) = R_{z}(r).T_{z}(\theta)$$

→ after some calculations, we find (pdf page 4):

$$E_{r} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \theta}\right) \qquad H_{r} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \theta}\right)$$

$$E_{\theta} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{1}{r} \frac{\partial E_{z}}{\partial r} - \omega \mu \frac{\partial H_{z}}{\partial r}\right) \qquad H_{\theta} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} + \omega \varepsilon \frac{\partial E_{z}}{\partial r}\right)$$

→ and then we can deduce the Helmoltz equation (pdf page 5):

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + \beta_t^2 E_z = 0$$

$$E_z(r,\theta) = R_z(r).T_z(\theta)$$

$$\underbrace{\frac{r^2}{R}\frac{\partial^2 R}{\partial r^2} + \frac{r}{R}\frac{\partial R}{\partial r} + r^2\beta_t^2}_{\mathbf{f}} + \underbrace{\frac{1}{T}\frac{\partial^2 T}{\partial \theta^2}}_{\mathbf{g}(\theta)} = 0$$

→ after some calculations, we find (pdf page 4):

$$E_{r} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{\partial E_{z}}{\partial r} + \frac{\omega \mu}{r} \frac{\partial H_{z}}{\partial \theta}\right) \qquad H_{r} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{\partial H_{z}}{\partial r} - \frac{\omega \varepsilon}{r} \frac{\partial E_{z}}{\partial \theta}\right)$$

$$E_{\theta} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{1}{r} \frac{\partial E_{z}}{\partial r} - \omega \mu \frac{\partial H_{z}}{\partial r}\right) \qquad H_{\theta} = -\frac{j}{\beta_{t}^{2}} \left(\beta \frac{1}{r} \frac{\partial H_{z}}{\partial \theta} + \omega \varepsilon \frac{\partial E_{z}}{\partial r}\right)$$

→ and then we can deduce the Helmoltz equation (pdf page 5):

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_z}{\partial \theta^2} + \beta_t^2 E_z = 0$$

$$E_{z}(r,\theta) = R_{z}(r).T_{z}(\theta)$$

$$\frac{r^2}{R} \frac{\partial^2 R}{\partial r^2} + \frac{r}{R} \frac{\partial R}{\partial r} + r^2 \beta_t^2 + \frac{1}{T} \frac{\partial^2 T}{\partial \theta^2} = 0$$

$$f(\mathbf{r}) = + \mathbf{v}^2 \qquad g(\theta) = -\mathbf{v}^2$$

$$f(r) = + v^2$$

$$g(\theta) = -v^2$$

$$\boxed{\mathbf{g}(\theta) = -\mathbf{v}^2} \quad \Rightarrow \quad \frac{1}{T} \frac{\partial^2 T}{\partial \theta^2} = -\mathbf{v}^2 \quad \Rightarrow \quad \frac{\partial^2 T}{\partial \theta^2} + \mathbf{v}^2 T = 0$$

(pdf page 6)

if
$$v \neq 0$$

$$T\left(\theta\right) = \begin{cases} \cos(\nu\theta + \varphi_0) \\ \sin(\nu\theta + \varphi_0) \end{cases}$$
 v integer

if
$$v = 0$$

$$T(\theta) = \text{constant}$$

$$g(\theta) = -v^2 \qquad \Rightarrow \qquad \frac{1}{T} \frac{\partial^2 T}{\partial \theta^2} = -v^2 \qquad \Rightarrow \qquad \frac{\partial^2 T}{\partial \theta^2} + v^2 T = 0 \qquad \qquad \text{(pdf page 6)}$$

$$\underline{\mathbf{if} \ \mathbf{v} \neq \mathbf{0}} \qquad T(\theta) = \begin{cases} \cos(\mathbf{v}\theta + \varphi_0) \\ \sin(\mathbf{v}\theta + \varphi_0) \end{cases} \quad \mathbf{v} \text{ integer}$$

$$\underline{\mathsf{if} \ \mathsf{v} = \mathsf{0}} \qquad T(\theta) = \mathsf{constant}$$

$$f(r) = + v^2$$
 \Rightarrow $\frac{\partial^2 R}{\partial r^2} + \frac{1}{R} \frac{\partial R}{\partial r} + \left(\beta_t^2 - \frac{v^2}{r^2}\right) R = 0$ Bessel equation

$$R(r) = \begin{cases} AJ_{v}(\beta_{t}r) + A'N_{v}(\beta_{t}r) & \text{si } \beta_{t} \text{ is real } --> \text{in the core} \\ CK_{v}(|\beta_{t}|r) + C'I_{v}(|\beta_{t}|r) & \text{si } \beta_{t} \text{ is imaginary } --> \text{i the cladding} \end{cases}$$

 \rightarrow taking into account the values of the functions for r = 0 and r = ∞ :

$$R(r) = \begin{cases} AJ_{\nu}(\beta_{t}r) & \text{if } \beta_{t} \text{ is real } --> \text{in the core} \\ CK_{\nu}(|\beta_{t}|r) & \text{if } \beta_{t} \text{ is imaginary} --> \text{in the cladding} \end{cases}$$

First orders v of the Bessel functions of first kind J_v (v = 0, 1, 2, 3)

First orders v of the modified Bessel functions of first kind K_v (v = 0, 1)

 \rightarrow One can specify the expression of the axial components of the fields, E_7 and H_7 (pdf page 8)

$$\begin{cases} E_z = AJ_v(\beta_{t1}r).\sin(v\theta) & --> \text{ in the core} \\ = CK_v(|\beta_{t2}|r).\sin(v\theta) --> \text{ in the cladding} \end{cases}$$

$$\begin{cases} H_z = BJ_v(\beta_{t1}r).\cos v\theta & --> \text{ in the core} \\ = DK_v(|\beta_{t2}|r).\cos v\theta --> \text{ in the cladding} \end{cases}$$

modes TE (Ez=0) or TM (Hz=0) if v = 0:

modes EH if Hz > Ezif $v \neq 0$: modes HE ifi Ez > Hz.

→ We can now introduce the important following quantities: u,w and V (pdf page 9)

$$k = k_0 n_1$$
 thu

In the core (radius = a):
$$k = k_0 n_1$$
 thus $\beta_t = \beta_{t1} = \sqrt{k_0^2 n_1^2 - \beta^2}$ $u = a\beta_{t1} = a\sqrt{k_0^2 n_1^2 - \beta^2}$

normalized transverse propagation constants

$$u = a\beta_{t1} = a\sqrt{k_0^2 n_1^2 - \beta^2}$$

In the cladding:
$$k = k_0 n_2$$
 thus $|\beta_t| = |\beta_{t2}| = \sqrt{\beta^2 - k_0^2 n_2^2}$ $\Rightarrow w = a |\beta_{t2}| = a \sqrt{\beta^2 - k_0^2 n_2^2}$

$$\underline{u^2 + w^2} = a^2 k_0^2 (n_1^2 - n_2^2) = \left(\frac{2\pi}{\lambda_0} a \sqrt{n_1^2 - n_2^2}\right)^2 = \underline{V^2} \qquad \qquad V = \frac{2\pi}{\lambda_0} a \sqrt{n_1^2 - n_2^2}$$

$$V = \frac{2\pi}{\lambda_0} a \sqrt{n_1^2 - n_2^2}$$

V : normalized spatial frequency

→ Finally (pdf page 10)

In the core

if $v \neq 0$

In the cladding

$$E_z = AJ_v \left(\frac{ur}{a}\right) \sin(v\theta)$$

$$E_{r} = \left[-A \frac{j\beta}{(u/a)} J_{v}^{'} \left(\frac{ur}{a} \right) + B \frac{j\omega\mu_{0}}{(u/a)^{2}} \frac{v}{r} J_{v} \left(\frac{ur}{a} \right) \right] \sin(v\theta)$$

$$E_{\theta} = \left[-A \frac{j\beta}{(u/a)^{2}} \frac{v}{r} J_{v} \left(\frac{ur}{a} \right) + B \frac{j\omega\mu_{0}}{(u/a)} J_{v}^{'} \left(\frac{ur}{a} \right) \right] \cos(v\theta)$$

$$H_z = BJ_v \left(\frac{ur}{a}\right) \cos(v\theta)$$

$$\begin{bmatrix} i\cos y & (yr) & i\beta & (yr) \end{bmatrix}$$

$$H_{r} = \left[A \frac{j\omega\varepsilon_{1}}{\left(u/a\right)^{2}} \frac{v}{r} J_{v} \left(\frac{ur}{a}\right) - B \frac{j\beta}{\left(u/a\right)} J_{v} \left(\frac{ur}{a}\right) \right] \cos(v\theta)$$

$$H_{\theta} = \left[-A \frac{j\omega\varepsilon_{1}}{(u/a)} J_{v}^{'} \left(\frac{ur}{a} \right) + B \frac{j\beta}{(u/a)^{2}} \frac{v}{r} J_{v} \left(\frac{ur}{a} \right) \right] \sin(v\theta)$$

$$E_z = CK_v \left(\frac{wr}{a}\right) \sin(v\theta)$$

$$E_{r} = \left[C \frac{j\beta}{(w/a)} K_{v}^{\prime} \left(\frac{wr}{a} \right) - D \frac{j\omega\mu_{0}}{(w/a)^{2}} \frac{v}{r} K_{v} \left(\frac{wr}{a} \right) \right] \sin(v\theta)$$

$$E_{\theta} = \left[C \frac{j\beta}{\left(w/a \right)^{2}} \frac{v}{r} K_{v} \left(\frac{wr}{a} \right) - D \frac{j\omega\mu_{0}}{\left(w/a \right)} K_{v}^{'} \left(\frac{wr}{a} \right) \right] \cos(v\theta)$$

$$H_z = DK_v \left(\frac{wr}{a}\right) \cos(v\theta)$$

$$H_{r} = \left[-C \frac{j\omega\varepsilon_{2}}{\left(w/a\right)^{2}} \frac{v}{r} K_{v} \left(\frac{wr}{a}\right) + D \frac{j\beta}{\left(w/a\right)} K_{v} \left(\frac{wr}{a}\right) \right] \cos(v\theta)$$

$$H_{\theta} = \left[C \frac{j\varepsilon_2}{\left(w/a \right)} K_{\nu}' \left(\frac{wr}{a} \right) - D \frac{j\beta}{\left(w/a \right)^2} \frac{v}{r} K_{\nu} \left(\frac{wr}{a} \right) \right] \sin(v\theta)$$

(C.6)

→ ... and (pdf page 11)

In the core

if
$$v = 0$$

In the cladding

TE modes : $E_z=0$, $H_\theta=0$

$$E_{\theta} = B \frac{j\omega\mu_0}{(u/a)} J_0 \left(\frac{ur}{a}\right)$$

$$H_z = BJ_0 \left(\frac{ur}{a}\right)$$

$$H_r = -B \frac{j\beta}{(u/a)} J_0 \left(\frac{ur}{a} \right)$$

$$E_{\theta} = -D \frac{j\omega\mu_0}{(w/a)} K_0 \left(\frac{wr}{a}\right)$$

$$H_z = DK_0 \left(\frac{wr}{a}\right)$$

$$H_r = D \frac{j\beta}{(w/a)} K_0 \left(\frac{wr}{a} \right)$$

TM modes: $H_z=0$, $E_\theta=0$

$$E_{r} = -A \frac{j\beta}{(u/a)} J_{0}' \left(\frac{ur}{a}\right)$$

$$E_z = AJ_0 \left(\frac{ur}{a}\right)$$

$$H_{\theta} = -A \frac{j\omega \varepsilon_{1}}{(u/a)} J_{0} \left(\frac{ur}{a} \right)$$

$$E_{r} = C \frac{j\beta}{(w/a)} K_{0}' \left(\frac{wr}{a}\right)$$

$$E_z = CK_0 \left(\frac{wr}{a}\right)$$

$$H_{\theta} = C \frac{j\varepsilon_2}{(w/a)} K_0 \left(\frac{wr}{a} \right)$$

> continuity of the tangential components of E and H at the core-cladding interface (pdf page 12)

$$E_{z}^{coeur}(r=a) = E_{z}^{gaine}(r=a)$$

$$H_{z}^{coeur}(r=a) = H_{z}^{gaine}(r=a)$$

$$E_{\theta}^{coeur}(r=a) = E_{\theta}^{gaine}(r=a)$$

$$H_{\theta}^{coeur}(r=a) = H_{\theta}^{gaine}(r=a)$$

> continuity of the tangential components of E and H at the core-cladding interface (pdf page 12)

$$E_{z}^{coeur}(r=a) = E_{z}^{gaine}(r=a)$$

$$H_{z}^{coeur}(r=a) = H_{z}^{gaine}(r=a)$$

$$E_{\theta}^{coeur}(r=a) = E_{\theta}^{gaine}(r=a)$$

$$H_{\theta}^{coeur}(r=a) = H_{\theta}^{gaine}(r=a)$$

dispersion equation (pdf page 12)

$$\underbrace{\left[\frac{J_{v}^{'}(u)}{uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F1} \underbrace{\left[\frac{\varepsilon_{1}J_{v}^{'}(u)}{\varepsilon_{2}uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F2} = v^{2}\underbrace{\left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)}_{F3} \underbrace{\left(\frac{\varepsilon_{1}}{\varepsilon_{2}} + \frac{1}{w^{2}}\right)}_{F4}$$

with $u^2 + w^2 = V^2 = k_0^2 a^2 (n_1^2 - n_2^2) = \text{cte}$ (determined by the fiber and the working wavelength)

V varies => β changes accordingly $\rightarrow \beta$ =f(V): dispersion curve of the considered mode

$$\underbrace{\left[\frac{J_{v}^{'}(u)}{uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F1} \underbrace{\left[\frac{\varepsilon_{1}J_{v}^{'}(u)}{\varepsilon_{2}uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F2} = v^{2}\underbrace{\left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)}_{F3} \underbrace{\left(\frac{\varepsilon_{1}}{\varepsilon_{2}} \frac{1}{u^{2}} + \frac{1}{w^{2}}\right)}_{F4}$$

 → F1 = 0 : dispersion equation of TE modes
 → or F2 = 0 : dispersion equation of TM modes if v = 0

if $v \neq 0 \rightarrow$ the entire equation must be solved : HE and EH modes

$$\underbrace{\left[\frac{J_{v}^{'}(u)}{uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F1}\underbrace{\left[\frac{\varepsilon_{1}J_{v}^{'}(u)}{\varepsilon_{2}uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)}\right]}_{F2} = v^{2}\underbrace{\left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)}_{F3}\underbrace{\left(\frac{\varepsilon_{1}}{\varepsilon_{2}} \frac{1}{u^{2}} + \frac{1}{w^{2}}\right)}_{F4}$$

if v = 0 \Rightarrow F1 = 0 : dispersion equation of TE modes \Rightarrow or F2 = 0 : dispersion equation of TM modes

if $v \neq 0 \rightarrow$ the entire equation must be solved: HE and EH modes

> designation of the electromagnetic modes (pdf page 13)

v = 0: TE₀, and TM₀,

 $v \neq 0$: EH_v, and HE_v,

weak guidance approximation (pdf page 13)

$$\Delta = \left(\frac{n_1^2 - n_2^2}{2n_1^2}\right) = \frac{ON^2}{2n_1^2}$$

 Δ : relative index difference

if n_1 close to n_2 such that $\Delta < 10^{-2}$: propagation in WEAK GUIDANCE conditions

> weak guidance approximation (pdf page 13)

$$\Delta = \left(\frac{n_1^2 - n_2^2}{2n_1^2}\right) = \frac{ON^2}{2n_1^2}$$

 Δ : relative index difference

if n_1 is close to n_2 such that $\Delta < 10^{-2}$: propagation in WEAK GUIDANCE conditions

Thus, the dispersion equation becomes : $F_1^2 = v^2 F_3^2 \Leftrightarrow F_1 = \pm v F_3$ (pdf page 14)

resulting in :
$$\frac{J_{v}^{'}(u)}{uJ_{v}(u)} + \frac{K_{v}^{'}(w)}{wK_{v}(w)} = \pm v \left(\frac{1}{u^{2}} + \frac{1}{w^{2}}\right)$$

 \rightarrow if v = 0: TE₀ (exact) et TM₀ (approximate)

⇒ if $v \neq 0$ signe + : EH_{vl} signe - : HE_{vl}

MODES CLASSIFICATION - DISPERSION CURVES IN THE WEAK GUIDANCE APPROXIMATION

$$\rightarrow$$
 if $v = 0$: TE or TM modes \rightarrow

$$u \frac{J_0(u)}{J_1(u)} = \frac{-wK_0(w)}{K_1(w)}$$

⇒ if
$$v \neq 0$$
 signe + : EH modes ⇒

$$u \frac{J_{v}(u)}{J_{v+1}(u)} = \frac{-wK_{v}(w)}{K_{v+1}(w)}$$

⇒ if
$$v \neq 0$$
 signe - : HE modes ⇒

$$\rightarrow$$
 if $v \neq 0$ signe - : HE modes \rightarrow $u \frac{J_{v-2}(u)}{J_{v-1}(u)} = \frac{-wK_{v-2}(w)}{K_{v-1}(w)}$

MODES CLASSIFICATION - DISPERSION CURVES IN THE WEAK GUIDANCE APPROXIMATION

⇒ if
$$v = 0$$
: TE or TM modes ⇒ $u \frac{J_0(u)}{J_1(u)} = \frac{-wK_0(w)}{K_1(w)}$

⇒ if
$$v \neq 0$$
 signe + : EH modes ⇒ $u \frac{J_{v}(u)}{J_{v+1}(u)} = \frac{-wK_{v}(w)}{K_{v+1}(w)}$

$$\Rightarrow \text{ if } v \neq \mathbf{0} \quad \text{signe - : HE modes } \Rightarrow \qquad u \frac{J_{\nu-2}(u)}{J_{\nu-1}(u)} = \frac{-wK_{\nu-2}(w)}{K_{\nu-1}(w)}$$

$$\rightarrow$$
 if $v = 0$: TE or TM modes $m=1$

⇒ if
$$v \neq 0$$
 signe + : EH modes $\underline{m = v+1}$

$$\rightarrow$$
 if $v \neq 0$ signe - : HE modes

(pdf page 15)

(pdf page 15)

MODES CLASSIFICATION - DISPERSION CURVES IN THE WEAK GUIDANCE APPROXIMATION

⇒ if
$$v = 0$$
: TE or TM modes ⇒ $u \frac{J_0(u)}{J_1(u)} = \frac{-wK_0(w)}{K_1(w)}$

⇒ if
$$v \neq 0$$
 signe + : EH modes ⇒ $u \frac{J_{v}(u)}{J_{v+1}(u)} = \frac{-wK_{v}(w)}{K_{v+1}(w)}$

$$\rightarrow \text{ if } v \neq 0 \quad \text{signe - : HE modes } \rightarrow \qquad u \frac{J_{\nu-2}(u)}{J_{\nu-1}(u)} = \frac{-wK_{\nu-2}(w)}{K_{\nu-1}(w)}$$

$$\rightarrow$$
 if $v = 0$: TE or TM modes $m=1$

⇒ if
$$v \neq 0$$
 signe + : EH modes $m = v+1$

⇒ if
$$v \neq 0$$
 signe - : HE modes $m = v-1$

 $u \frac{J_{m-1}(u)}{J_m(u)} = \frac{-wK_{m-1}(w)}{K_m(w)}$ m integer \geq 0

with $u^2 + w^2 = V^2$

(pdf page 15)

MODES CLASSIFICATION - DISPERSION CURVES IN THE WEAK GUIDANCE APPROXIMATION

⇒ if
$$v = 0$$
: TE or TM modes
$$m=1$$
⇒ if $v \neq 0$ signe + : EH modes
$$m=v+1$$

$$\rightarrow$$
 if $v \neq 0$ signe - : HE modes

$$m = v+1$$

$$v = m-1$$

$$m = v-1$$

$$v = m+1$$

$$u \frac{J_{m-1}(u)}{J_m(u)} = \frac{-wK_{m-1}(w)}{K_m(w)}$$
m integer ≥ 0

(pdf page 15)

MODES CLASSIFICATION - DISPERSION CURVES IN THE WEAK GUIDANCE APPROXIMATION

$$\rightarrow$$
 if $v = 0$: TE or TM modes ______1

⇒ if
$$v \neq 0$$
 signe + : EH modes

$$\rightarrow$$
 if $v \neq 0$ signe - : HE modes

$$u \frac{J_{m-1}(u)}{J_m(u)} = \frac{-wK_{m-1}(w)}{K_m(w)}$$
m integer ≥ 0

m = v-1

v = m + 1

for a given value of m, same dispersion relationship for certain modes:

if m=1
$$\rightarrow$$
 TE_{0,l}, TM_{0l} and HE_{2,l} (\rightarrow degenerated modes) \longrightarrow LP_{1,l} mode

if m>1
$$\rightarrow$$
 EH_{m-1, l}, and HE_{m+1, l} (\rightarrow degenerated modes) LP_{m,l} mode m>1

if $m=0 \rightarrow HE_{1,l}$ mode only

LP_{0./}mode

distribution of the electric field in the LP modes (pdf page 16)

- > distribution of the electric field in the LP_{m,l} modes (pdf page 16)
 - \rightarrow along a radius : following J_mfunction in the core and following K_m function in the cladding
 - \rightarrow along a circle at a fixed distance from the center : following the cos (m $\theta+\phi$) er sin (m $\theta+\phi$) function

examples (with m=0) : \rightarrow LP_{0.1} modes

- > distribution of the electric field in the LP_{m,l} modes (pdf page 16)
 - → along a radius : following J_mfunction in the core and following K_m function in the cladding
 - \rightarrow along a circle at a fixed distance from the center : following the cos (m $\theta+\phi$) er sin (m $\theta+\phi$) function

examples (with m=0) : \rightarrow LP_{0.1} modes

intensity distribution in $LP_{0,I}$ modes \rightarrow one central circular lobe surrounded by (I-1) rings

> distribution of the electric field in the LP_{m,l} modes (pdf page 18)

other examples (with m=1):

 \triangleright distribution of the electric field in the LP_{m,l} modes (pdf page 18)

other examples (with m=1):

> distribution of the electric field in the LP_{m,l} modes (pdf page 19)

still other examples (with m=2 or 3):

intensity distribution in $LP_{m,l}$ modes $(m\neq 0)$ \rightarrow pattern with l rings and 2m lobes in each ring

> distribution of the electric field in the LP_{m,l} modes (pdf page 19)

> cutoff normalized spatiale frequency for LP modes (pdf page 20)

> cutoff normalized spatial frequency for LP modes (pdf page 20)

propagation condition for the $LP_{m/}$ mode : $V > V_c(LP_{m/})$

> cutoff normalized spatial frequency for LP modes (pdf page 20)

At the cutoff of the mode :
$$\beta=k_0n_2$$

$$w=a\left|\beta_{t2}\right|=a\sqrt{\beta^2-k_0^2n_2^2}=0$$

$$u=V=V_c$$

and the dispersion equation
$$u \frac{J_{m-1}(u)}{J_m(u)} = \frac{-wK_{m-1}(w)}{K_m(w)}$$
 becomes $u \frac{J_{m-1}(u)}{J_m(u)} = 0$ avec $u = V_c$

Thus the cutoff normalized spatial frequencies of the LP_{m/} modes are: (voir pdf page 21)

$$\begin{cases} m \neq 0 & l \geq 1 & V_c(LP_{m,l}) = j_{m-1, l} \\ \\ m = 0 & l = 1 & V_c(LP_{0,1}) = 0 \\ \\ l > 1 & V_c(LP_{0,l}) = j_{1, l-1} \end{cases}$$

> cutoff normalized spatial frequency for LP modes

DISPERSION CURVES (electromagnetic modes)

DISPERSION CURVES (LP modes)

COURBES DE DISPERSION DES MODES LP DES FIBRES A SAUT D'INDICE

reminder: propagation condition of the $LP_{m/}$ mode: $V > V_c(LP_{m/})$

The cutoff wavelength of the LP_{m/} mode is λ_c , such that $V(\lambda_c) = V_c$

$$\frac{2\pi}{\lambda_c}.a.ON = V_c \implies \lambda_c = \frac{2\pi}{V_c}.a.ON$$

<u>possible propagation</u> of the X mode if $V_c(X) < V => \lambda < \lambda_c(X)$

> <u>summary on the first LP_{m/} modes</u> (pdf page 26)

Modes LP	Ϋ́¢	Modes dégénérés	Nombre de modes
		((x) = nombre de polars)	dégénérés
LP ₀₁	0	$HE_{11}(2) = HE_{11\pi} \text{ et } HE_{11y}$	2
LP ₁₁	2,405	$TE_{01}(1)$, $TM_{01}(1)$, et $HE_{21}(2)$	4
		$E_z = 0$ $E_\theta = 0$	
		(A) (A) (B) (B)	
		(C)(C)(C)(C)	
		(lignes du champ électrique)	
		(2gas 22 statup stronger)	
LP ₂₁	3,83	EH ₁₁ (2) et HE ₃₁ (2)	4
LP ₀₂	3,83	HE ₁₂ (2)	2
LP ₃₁	5,14	EH ₂₁ (2) et HE ₄₁ (2)	4
LP ₁₂	5,52	$TE_{02}(1)$, $TM_{02}(1)$, et $HE_{22}(2)$	4
LP ₄₁	6,38	EH ₃₁ (2) et HE ₃₁ (2)	4
LP ₂₂			
etc			
202			
	1		

Step index fibers : LP modes of the lowest orders

 $V_c = 0$

LP ₁₁ mode

 $V_c = 2,405$

The yellow circle represents the boundary between the core and the cladding

Step index fibers: LP modes of the lowest orders (cont'd))

LP ₃₁ mode

$$V_c = 5,14$$

The yellow circle represents the boundary between the core and the cladding

Step index fibers : other LP modes

 $LP_{0,5}$ mode

LP_{1,3} mode

LP_{6,3} mode

The black circle represents the boundary between the core and the cladding

LP _{28,5} mode

LP _{17,16} mode

Graded index fibers: LP modes of lowest order

LP₀₁ mode

LP₁₁ mode

The yellow or black circles represent the boundary between the core and the cladding

Graded index fibers: LP modes of lowest order (cont'd)

 LP_{02} mode

The black circle represents the boundary between the core and the cladding

 $a = 40\mu m$; NA =0,24

Graded index fibers : other LP modes

LP $_{40,\,2}$ mode

LP_{8,1} mode

LP _{17, 16} mode

LP _{28, 1} mode

LP _{28, 5} mode

The black circle represents the boundary between the core and the cladding

 $a = 40\mu m$; NA =0,24

Comparison of modes of step index fibers vs modes of graded index fibers

The yellow or black circles represent the boundary between the core and the cladding

NUMBER OF MODES ABLE TO PROPAGATE IN A MULTIMODE FIBER (pdf page 26)

index profile given by :
$$\begin{cases} n_{core} = n_1(r) = n_1 \left[1 - 2\Delta \left(\frac{r}{a}\right)^g\right]^{1/2} & r \leq a \\ n_{cladding} = n_2 & r \geq a \end{cases}$$

number of EM modes: $\mathcal{N}_{\text{EM}} = \frac{V^2}{2} \frac{g}{g+2}$ number of LP modes: $\mathcal{N}_{\text{LP}} = \frac{\mathcal{N}_{\text{EM}}}{4} = \frac{V^2}{8} \frac{g}{g+2}$

- fiber with a parabolic index profile \Rightarrow g = 2 $\mathcal{N}_{\text{EM}} = \frac{V^2}{4}$ and $\mathcal{N}_{\text{LP}} = \frac{V^2}{16}$
- fiber with a step index profile \Rightarrow g = ∞ $\mathcal{N}_{\text{EM}} = \frac{V^2}{2}$ and $\mathcal{N}_{\text{LP}} = \frac{V^2}{2}$

 $\mathcal{N}_{cp} \sim 170$ example : step index fiber, with NA = 0.2, a = 25 μ m, λ =0.85 μ m \rightarrow V = 37 \rightarrow

WHAT IS THE "ORDER" OF A MODE IN A MULTIMODE FIBER ? (pdf page 27)

order of the LP_{m1} mode : M = 2l + m - 1

M small

M large

- → simple pattern of the mode
- → (low number of lobes)

- → low order mode
- > energy rather in the center
- $\rightarrow \beta$ close to $k_0 n_1$

- \rightarrow low v_{ϕ} and \rightarrow large v_a

→ complexe pattern of the mode (large number of lobes)

- high order mode
- → energy rather at the periphery
- $\rightarrow \beta$ close to $k_0 n_2$

- \rightarrow large v_{o} and
- \rightarrow low v_q

 $k=k_0n_1$

OVERLAP OF MODES, COUPLING, SPECKLE (pdf page 28)

Changes in the speckle along the propagation are due to :

- → changes in the relative phase shifts between the modes
- →mode coupling occuring in axially non uniforme or perturbated guides (along z)

SENSITIVITY OF PERFORMANCES OF SOME COMPONENTS TO THE "MODAL POPULATION" (pdf page 28)

case of a misaligned connector

SENSITIVITY OF PERFORMANCES OF SOME COMPONENTS TO THE "MODAL POPULATION" (pdf page 28)

coupling ratio :
$$\frac{P_{S1}}{P_{S1} + P_{S2}}(caseA) > \frac{P_{S1}}{P_{S1} + P_{S2}}(caseB)$$

excess loss (dB):
$$10\log \frac{P_e}{P_{S1} + P_{S2}}(caseB) > 10\log \frac{P_e}{P_{S1} + P_{S2}}(caseA)$$

+ possible significant change in the modal population in the coupler!

SENSITIVITY OF PERFORMANCES OF SOME COMPONENTS TO THE "MODAL POPULATION" (pdf page 28)

→ necessity of characterizing (and using) the components in the conditions of "equilibrium mode distribution " allowing steady state propagation

"Equilibrium mode distribution": modal population which is overall invariant along the fiber

how to obtain it ? → use of a "mode scrambler" → or

Fine modal characterization of multimode components: "selective excitation" of modes

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): SCALAR APPROACH (LP_{01} MODE)

index profiles:

 $\psi_{LP01}(x,y)$

if 1,2 < V < 4

whatever the index profile LP₀₁ mode ~ gaussian mode

$$\psi_{LP01}(x, y) \approx A. \exp\left(-\frac{x^2 + y^2}{w_0^2}\right)$$

mode field radius (MFR) -

lne=1

With the support of the Erasmus+ Programme of the European Union

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): SCALAR APPROACH (LP₀₁ MODE)

$$\psi_{LP01}(x, y) \approx A. \exp\left(-\frac{x^2 + y^2}{w_0^2}\right)$$

mode field radius (MFR)

ode field radius (MFR)
$$w_0 = a \left(0.65 + \frac{1.619}{V_1^{3/2}} + \frac{2.879}{V^6} \right)$$
1.2 < V < 4

 $\psi_{IP01}(x,y)$

→ In single mode fibers, loss at misaligned splices depend on w₀

$$A_{eff} = \frac{\left| \int \left| \psi \right|^2 dS \right|^2}{\int \left| \psi \right|^4 dS}$$

General expression of the "effective area" of a mode: $A_{eff} = \frac{\left|\int \left|\psi\right|^2 dS\right|^2}{\int \left|\omega\right|^4 dS}$ For a gaussian mode: A_{eff}

→ In single mode fibers, non linear effects (Kerr, Raman, Brillouin...) depend on A_{eff}

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): VECTORIAL APPROACH (HE11 MODES)

2 expressions for the field of the HE₁₁ mode

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): VECTORIAL APPROACH (HE₁₁ MODES)

polarization states of light in the core

are excited En(*)

 $\vec{E} = E_x \cos(\omega t - \beta_x z) \cdot e\vec{x} + E_y \cos\left[\omega t - \beta_x z + (\beta_x - \beta_y)\right]$ β_x - β_y = $\delta\beta$: linear birefringence of the fiber

for a given z:

- * if $\varphi = \delta \beta.z = 0$: linear polarization
- * if $\varphi = \delta \beta z = \pi/2$ and $E_x = E_y$: circular polarization
- * general case (any φ and/or $E_x \neq E_v$: elliptical polarization

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): VECTORIAL APPROACH (HE11 MODES)

phase effects of the birefringence of the fiber (1):

is of the birefringence of the fiber (1):
$$\beta_{x} = h_{0} \wedge e^{x}$$

$$\beta_{y} = h_{0} \wedge e^{y}$$

$$\vec{E} = E_{x} \cos(\omega t - \beta_{x} z) . e\vec{x} + E_{y} \cos\left[\omega t - \beta_{x} z + (\beta_{x} - \beta_{y})z\right] . e\vec{y}$$

$$B_{\phi} = \delta \beta / k_0 = |n_{ex} - n_{ey}|$$
 $B_{\phi} : \underline{\text{normalized phase birefringence}}$

* if $n_{ex} \neq n_{ey}$: $v_{\phi x} = c/n_{ex} \neq v_{\phi y} = c/n_{ey}$ \rightarrow phase velocities of HE_{11x} and HE_{11y} are different

* along z, the phase shift φ between Ex and Ey increases (\rightarrow polarization state changes: see previous and next slides)

* the phase shift φ increases by $\Delta \varphi = 2\pi$ over a length L_b (i.e. between z and z+ L_b)

L_b: beat length of the fiber $\Delta \varphi = 2\pi$ and $\Delta \varphi = \varphi(z + L_B) - \varphi(z) = \frac{2\pi}{\lambda_0} \left| n_{ex} - n_{ey} \right| L_b \implies L_b = \frac{\lambda_0}{\left| n_{ex} - n_{ey} \right|} = \frac{\lambda_0}{B_a}$

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): VECTORIAL APPROACH (HE₁₁ MODES)

phase effects of the birefringence of the fiber (2):

$$\beta_x$$
- β_y = $\delta\beta = \frac{2\pi}{\lambda}$ ($n_{ex} - n_{ey}$)

$$\vec{E} = E_x \cos(\omega t - \beta_x z) \cdot e\vec{x} + E_y \cos\left[\omega t - \beta_x z + (\beta_x - \beta_y)z\right] \cdot e\vec{y}$$

if $\delta\beta \neq 0$: polarization changes with z

 $\delta \beta$. L_b = 2π

L_b = beat length

Copp 4

In order to maintain a linear polarization in a single mode fiber :

- excite only one mode (HE_{11x} or HE_{11y})
- avoid mode coupling \rightarrow L_b as short as few mm \rightarrow high $\delta\beta$ required \rightarrow highly birefringent fibers

"polarization maintaining fibers or PM fibers"

PROPAGATION IN SINGLE MODE FIBERS (V < 2,405): VECTORIAL APPROACH (HE₁₁ MODES)

group effects of the birefringence of the fiber:

$$\beta_x$$
- β_y = $\delta\beta = \frac{2\pi}{\lambda} (n_{ex} - n_{ey})$

$$\vec{E} = E_x \cos(\omega t - \beta_x z) \cdot e\vec{x} + E_y \cos\left[\omega t - \beta_x z + (\beta_x - \beta_y)z\right] \cdot e\vec{y}$$

Chromatic

dispersion

PMD

Distance (km)

If
$$n_{ex} \neq n_{ey}$$
, then $N_{ex} \neq N_{ey}$ and $v_{gx} = \frac{c}{N_{ex}} \neq v_{gy} = \frac{c}{N_{ey}}$

N= Ne - Idne

B_G: normalized group birefringence

$$\Delta t = \left| t_{gx} - t_{gy} \right| = \left| \frac{z}{\mathbf{v}_{gx}} - \frac{z}{\mathbf{v}_{gy}} \right|$$

$$= \left| N_{gx} - N_{gy} \right| \frac{z}{c} = B_G \frac{z}{c}$$

due to mode coupling _ along the fiber (if not PM fiber) →group velocities of pulses propagating in HE_{11x} and HE_{11v} are different

→ polarization mode dispersion (PMD)

Pulse spreading caused by polarization dispersion:

$$\Rightarrow \Delta \tau = D_{PMD} \sqrt{L}$$

$$D_{PMD} \sim 0.05 \text{ to 1 ps/km}^{0.5}$$

$$D_{PMD} \sim 0.05 \text{ to 1 ps/km}^{0.5}$$

If R=40Gbps, L=100 \rightarrow D_{PMD} <0.25 ps/km^{0.5} to have $\Delta \tau < 2.5$ ps

End of chapter 3

