L7.2.X Linear Chain Example

Zonghua Gu 2021

1

Linear Chain Example

- Consider the following MDP. Environment is deterministic. In each state, there are two possible actions $a \in \{l,r\}$, where l corresponds to moving left, and r corresponds to moving right. Each movement incurs a reward of r=-1. State s=4 is the goal state: taking any action from s=4 results in reward of r=0 and ends the episode, hence V(4) = 0, Q(4, a) = 0 for any action a. Assume $\gamma = 1$, $\alpha = 1$. All value functions are initialized to 0.
- A. Use Policy Iteration, Value Iteration to derive optimal policy.

TD, Sarsa, QL

- B. Consider 8 consecutive episodes in the form of (s,a,r):
- 1. EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 2. EP2: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 3. EP3: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 4. EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 5. EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 6. EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 7. EP7: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 8. EP8: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- Derive the following (only show the changed parts):
- 1. State value functions after TD learning.
- 2. State-action value functions (Q Value Functions) after Sarsa, and the resulting policy.
- 3. State-action value functions (Q Value Functions) after Q learning, and the resulting policy.

Recall: Simplified Bellman Equations for Deterministic Env

Bellman Equations:

$$- v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a); q_{\pi}(s,a) = \sum_{r,s'} p(r,s'|s,a) [r + \gamma v_{\pi}(s')]$$
$$- v_{*}(s) = \max_{a} q_{*}(s,a); q_{*}(s,a) =$$

 $\sum_{r,s'} p(r,s'|s,a) \left[r + \gamma v_*(s') \right]$

• For Deterministic Env: there is only one possible (r,s') for a given (s,a) (we use R_s^a to emphasize that reward r is specific to this (s,a)):

$$-q_{\pi}(s,a) = R_s^a + \gamma v_{\pi}(s')$$

$$-q_*(s,a) = R_s^a + \gamma v_*(s')$$

Policy Iteration

1.1 Policy Evaluation of Random Policy

- Bellman Exp Equation: $v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s,a)$; $q_{\pi}(s,a) = R_s^a + \gamma v_{\pi}(s')$
- $Q_{\pi}(1, l) = -1 + v_{\pi}(1), Q_{\pi}(1, r) = -1 + v_{\pi}(2)$
- $v_{\pi}(1) = .5[Q_{\pi}(1,l) + Q_{\pi}(1,r)] = -1 + .5[v_{\pi}(1) + v_{\pi}(2)]$
- $Q_{\pi}(2, l) = -1 + v_{\pi}(1), Q_{\pi}(2, r) = -1 + v_{\pi}(3)$
- $v_{\pi}(2) = .5[Q_{\pi}(2, l) + Q_{\pi}(2, r)] = -1 + .5[v_{\pi}(1) + v_{\pi}(3)]$
- $Q_{\pi}(3, l) = -1 + v_{\pi}(2), Q_{\pi}(3, r) = -1 + v(4) = -1$
- $v_{\pi}(3) = .5[Q_{\pi}(3, l) + Q_{\pi}(3, r)] = -1 + .5 v_{\pi}(2)$
- Solution: $v_{\pi}(1) = -12$, $v_{\pi}(2) = -10$, $v_{\pi}(3) = -6$

1.2 Policy Improvement

- Plug in values from PE to get new policy
- $Q_{\pi}(1,l) = -1 + v_{\pi}(1) = -13, Q_{\pi}(1,r) = -1 + v_{\pi}(2) = -11, \pi'(1) =$ $\operatorname{argmax}_{a}(Q_{\pi}(1,l), Q_{\pi}(1,r)) = r$
- $Q_{\pi}(2, l) = -1 + v_{\pi}(1) = -13, Q_{\pi}(2, r) = -1 + v_{\pi}(3) = -7, \pi'(2) =$ $\operatorname{argmax}_{a}(Q_{\pi}(2, l), Q_{\pi}(2, r)) = r$
- $Q_{\pi}(3, l) = -1 + v_{\pi}(2) = -11, Q_{\pi}(3, r) = -1, \pi'(3) =$ $\operatorname{argmax}_{a}(Q_{\pi}(3, l), Q_{\pi}(3, r)) = r$

2.1 Policy Evaluation of Det Policy

- $Q_{\pi}(1,r) = -1 + v_{\pi}(2)$
- $v_{\pi}(1) = 1Q_{\pi}(1,r) = -1 + v_{\pi}(2)$
- $Q_{\pi}(2,r) = -1 + v_{\pi}(3)$
- $v_{\pi}(2) = 1Q_{\pi}(2, r) = -1 + v_{\pi}(3)$
- $Q_{\pi}(3,r) = -1$
- $v_{\pi}(3) = 1Q_{\pi}(3, r) = -1$
- Solution: $v_{\pi}(1) = -3$, $v_{\pi}(2) = -2$, $v_{\pi}(3) = -1$

2.2 Policy Improvement

- Plug in values from PE to get new policy
- $Q_{\pi}(1,l) = -1 3 = -4$, $Q_{\pi}(1,r) = -1 2 = -3$, $\pi'(1) = \arg\max_{a} (Q_{\pi}(1,l), Q_{\pi}(1,r)) = r$
- $Q_{\pi}(2,l) = -1 3 = -4$, $Q_{\pi}(2,r) = -1 1 = -2$, $\pi'(2) = \arg\max_{a} (Q_{\pi}(2,l), Q_{\pi}(2,r)) = r$
- $Q_{\pi}(3, l) = -1 2 = -3$, $Q_{\pi}(3, r) = -1$, $\pi'(3) = \operatorname{argmax}_{a}(Q_{\pi}(3, l), Q_{\pi}(3, r)) = r$
- Policy is now stable

Value Iteration

Value Iteration

- Bellman Opt Equation: $v_*(s) = \max_a q_*(s, a); q_*(s, a) = R_s^a + \gamma v_*(s')$
- $Q_*(1,l) = -1 + v_*(1), Q_*(1,r) = -1 + v_*(2)$
- $v_*(1) = \max_{q}[Q_*(1,l), Q_*(1,r)] = \max_{q}[-1 + v_*(1), -1 + v_*(2)]$
- $Q_*(2,l) = -1 + v_*(1), Q_*(2,r) = -1 + v_*(3)$
- $v_*(2) = \max_{a}[Q_*(2,l), Q_*(2,r)] = \max_{a}[-1 + v_*(1), -1 + v_*(3)]$
- $Q_*(3,l) = -1 + v_*(2), Q_*(3,r) = -1 + v(4) = -1$
- $v_*(3) = \max_{a}[Q_*(3, l), Q_*(3, r)] = \max_{a}[-1 + v_*(2), -1 + v(4)] = \max_{a}[-1 + v_*(2), -1]$
- Solution: $v_*(1) = -3$, $v_*(2) = -2$, $v_*(3) = -1$
- W use Value Iteration to solve it. Table shows the iteration process until convergence
- Optimal policy: $\pi_*(1) = \underset{a \in (l,r)}{\operatorname{argmax}} \, Q_*(1,a) = r; \pi_*(2) = \underset{a \in (l,r)}{\operatorname{argmax}} \, Q_*(2,a) = r; \pi_*(3) = \underset{a \in (l,r)}{\operatorname{argmax}} \, Q_*(3,a) = r$

	V _* (1)	V _* (2)	V _* (3)
Init	0	0	0
lter1	-1	-1	-1
lter2	-2	-2	-1
Iter3	-3	-2	-1
Iter4	-3	-2	-1

TD Learning

- TD update equation: $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) V(S_t)) = R_{t+1} + V(S_{t+1})$
 - With $\gamma = 1$, $\alpha = 1$, each V(s) is completely replaced overwritten by the TD update
- $V(4) \equiv 0$. Initialize V(1) = V(2) = V(3) = 0,
- EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 + 0 = -1$
- 2. $V(2) \leftarrow -1 + V(3) = -1 + 0 = -1$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$
- EP2: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 1 = -2$
- 2. $V(2) \leftarrow -1 + V(3) = -1 1 = -2$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$
- EP3: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $V(1) \leftarrow -1 + V(2) = -1 2 = -3$
- 2. $V(2) \leftarrow -1 + V(3) = -1 1 = -2$
- 3. $V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$

EP1-3

V(1)	V(2)	V(3)
0	0	0
-1	-1	-1
-2	-2	-1
-3	-2	-1
- 5	-4	-1
-7	-6	-1
-9	-8	-1
-11	-10	-1
-13	-12	-1
	0 -1 -2 -3 -5 -7 -9 -11	0 0 -1 -1 -2 -2 -3 -2 -5 -4 -7 -6 -9 -8 -11 -10

- TD update equation: $V(S_t) \leftarrow R_{t+1} + V(S_{t+1})$
- 1. EP4:

$$(3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

EP4-8

2.
$$V(3) \leftarrow -1 + V(2) = -1 - 2 = -3$$

3.
$$V(2) \leftarrow -1 + V(1) = -1 - 3 = -4$$

4.
$$V(1) \leftarrow -1 + V(1) = -1 - 3 = -4$$

5.
$$V(1) \leftarrow -1 + V(2) = -1 - 4 = -5$$

6.
$$V(2) \leftarrow -1 + V(3) = -1 - 3 = -4$$

7.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• EP5:

$$(3,l,-1),(2,l,-1),(1,l,-1),(1,r,-1),(2,r,-1),(3,r,-1),(4,r,0)\\$$

1.
$$V(3) \leftarrow -1 + V(2) = -1 - 4 = -5$$

2.
$$V(2) \leftarrow -1 + V(1) = -1 - 5 = -6$$

3.
$$V(1) \leftarrow -1 + V(1) = -1 - 5 = -6$$

4.
$$V(1) \leftarrow -1 + V(2) = -1 - 6 = -7$$

5.
$$V(2) \leftarrow -1 + V(3) = -1 - 5 = -6$$

6.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• EP6-8 omitted

TD	V(1)	V(2)	V(3)
Init	0	0	0
After EP1	-1	-1	-1
After EP2	-2	-2	-1
After EP3	-3	-2	-1
After EP4	-5	-4	-1
After EP5	-7	-6	-1
After EP6	-9	-8	-1
After EP7	-11	-10	-1
After EP8	-13	-12	-1

TD failed to converge

- TD failed to converge for this set of episodes. The sequence of TD updates cause all value functions to be increasingly negative.
 - For simplicity, consider the infinite sequence of $(2, l, -1), (1, r, -1), (2, l, -1) \dots$
 - The sequence of TD updates: V(2) = -1 + V(1), V(1) = -1 + V(2), ... So V(1) and V(2) bootstrap off each other and both go to $-\infty$.
 - An analogy is that two students V(1) and V(2) are copying from each other, but they never get any true reward feedback from the teacher (V(4) = 0)
- V(3) is bootstrapped off V(2) when moving left, and is bootstrapped off $V(4) \equiv 0$ when moving right. Steps 1-5 form a bootstrap dependency cycle $V(3) \leftarrow V(2) \leftarrow V(1) \leftarrow V(2) \leftarrow V(3)$ that causes V(1), V(2), V(3) to blow up. Even though V(3) is updated to V(3) = -1 + V(4) = -1 when it moves right to state 4, the episode ends immediately afterwards, so V(1) and V(2) do not have a chance to bootstrap off the correct V(3).

1.
$$V(3) \leftarrow -1 + V(2) = -1 - 4 = -5$$

2.
$$V(2) \leftarrow -1 + V(1) = -1 - 5 = -6$$

3.
$$V(1) \leftarrow -1 + V(1) = -1 - 5 = -6$$

4.
$$V(1) \leftarrow -1 + V(2) = -1 - 6 = -7$$

5.
$$V(2) \leftarrow -1 + V(3) = -1 - 5 = -6$$

6.
$$V(3) \leftarrow -1 + V(4) = -1 + 0 = -1$$

• If the episode does not end immediately, but the agent moves left again, then V(1) and V(2) will have a chance to bootstrap off the new V(3), and they may converge to the correct values.

TD	V(1)	V(2)	V(3)
Init	0	0	0
After EP1	-1	-1	-1
After EP2	-2	-2	-1
After EP3	-3	-2	-1
After EP4	- 5	-4	-1
After EP5	-7	-6	-1
After EP6	-9	-8	-1
After EP7	-11	-10	-1
After EP8	-13	-12	-1

Sarsa

- Sarsa update equation: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)) = R_{t+1} + Q(S_{t+1}, A_{t+1})$
 - With $\gamma = 1$, $\alpha = 1$, each Q(S, A) is completely replaced overwritten by the Sarsa update

•
$$Q(4, a) \equiv 0$$
. Initialize $Q(1,*) = Q(2,*) = Q(3,*) = 0$

• After EP1:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 + 0 = -1$$

2.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 + 0 = -1$$

3.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

• After EP2:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 - 1 = -2$$

2.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 - 1 = -2$$

3.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

• After EP3:
$$(1, r, -1)$$
, $(2, r, -1)$, $(3, r, -1)$, $(4, r, 0)$

1.
$$Q(1,r) \leftarrow -1 + Q(2,r) = -1 - 2 = -3$$

2.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 - 1 = -2$$

3.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

EP1-3

r = -1 $r = -1$							
Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)	
Init	0	0	0	0	0	0	
After EP1	0	-1	0	-1	0	-1	
After EP2	0	-2	0	-2	0	-1	
After EP3	0	-3	0	-2	0	-1	
After EP4	-4	-3	-1	-2	-1	-1	
After EP5	-4	-3	- 5	-2	-2	-1	
After EP6	-4	-3	- 5	-2	-6	-1	
After EP7	-4	-3	-5	-2	-6	-1	
After EP8	-4	-3	-5	-2	-6	-1	

- Sarsa update equation: $Q(S_t, A_t) \leftarrow R_{t+1} + Q(S_{t+1}, A_{t+1})$
- EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 + 0 = -1$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 + 0 = -1$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 1 = -2$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 5 = -6$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $O(1,r) \leftarrow -1 + O(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$
- EP7: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + Q(2,l) = -1 5 = -6$
- 2. $Q(2,l) \leftarrow -1 + Q(1,l) = -1 4 = -5$
- 3. $Q(1,l) \leftarrow -1 + Q(1,r) = -1 3 = -4$
- 4. $Q(1,r) \leftarrow -1 + Q(2,r) = -1 2 = -3$
- 5. $Q(2,r) \leftarrow -1 + Q(3,r) = -1 1 = -2$
- 6. $Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$ (Q values have converged, EP8 omitted)

EP4-8

Init 0 0 0 0 0 After EP1 0 -1 0 -1 0 -1							
After EP1 0 -1 0 -1	Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
	Init	0	0	0	0	0	0
After EP2 0 -2 0 -1	After EP1	0	-1	0	-1	0	-1
	After EP2	0	-2	0	-2	0	-1
After EP3 0 -3 0 -2 0 -1	After EP3	0	-3	0	-2	0	-1
After EP4 -4 -3 -1 -2 -1 -1	After EP4	-4	-3	-1	-2	-1	-1
After EP5 -4 -3 -5 -2 -1	After EP5	-4	-3	-5	-2	-2	-1
After EP6 -4 -3 -5 -2 -6 -1	After EP6	-4	-3	-5	-2	-6	-1
After EP7 -4 -3 -5 -2 -6 -1	After EP7	-4	-3	-5	-2	-6	-1
After EP8 -4 -3 -5 -2 -6 -1	After EP8	-4	-3	-5	-2	-6	-1

Comments on Sarsa

- State-action value functions for moving right look reasonable: Q(1,r) = -3, Q(2,r) = -2, Q(3,r) = -1.
- State-action value functions for moving left look unreasonable: Q(1,l) = -4, Q(2,l) = -5, Q(3,l) = -6. This is because the only trajectory with move left actions are $3 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, the Q values are updated based on only this episode (onpolicy), i.e., from state 3 taking action left, it can only take the above trajectory, and reach the goal in 6 steps, hence Q(3,l) = -6. If we had collected more trajectories like $3 \rightarrow 2 \rightarrow 3 \rightarrow 4$, then Sarsa could learn the more accurate Q value Q(3,l) = -1 + Q(2,r) = -3.
- Even though the Q values for left actions are inaccurate, the greedy policy is still optimal since right action is always better than left:
- $\pi_*(1) = \operatorname{argmax}_a(Q(1, l), Q(1, r)) = r$
- $\pi_*(2) = \operatorname{argmax}_a(Q(2, l), Q(2, r)) = r$
- $\pi_*(3) = \operatorname{argmax}_a(Q(3, l), Q(3, r)) = r$

Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1	0	-1	0	-1
After EP2	0	-2	0	-2	0	-1
After EP3	0	-3	0	-2	0	-1
After EP4	-4	-3	-1	-2	-1	-1
After EP5	-4	-3	-5	-2	-2	-1
After EP6	-4	-3	-5	-2	-6	-1
After EP7	-4	-3	-5	-2	-6	-1
After EP8	-4	-3	-5	-2	-6	-1

Why Sarsa did not blow up

- TD: V(s) is updated regardless if agent moves left or right. V(3) is bootstrapped off V(2) when moving left, and is bootstrapped off $V(4) \equiv 0$ when moving right. bootstrap dependency cycle $V(3) \leftarrow V(2) \leftarrow V(1) \leftarrow V(2) \leftarrow V(3)$ that causes V(1), V(2), V(3) to blow up
- Sarsa: when agent moves left, Q(s, l) is updated; when agent moves right, Q(s, r) is updated. Q(3, r) is always bootstrapped off $Q(4, r) \equiv 0$. So there is no bootstrap dependency cycle like TD. The linear dependency chain from Q(4, r) to Q(3, l) determines the stable values:

1.
$$Q(3,l) \leftarrow -1 + Q(2,l) = -1 - 5 = -6$$

2.
$$Q(2,l) \leftarrow -1 + Q(1,l) = -1 - 4 = -5$$

3.
$$Q(1,l) \leftarrow -1 + Q(1,r) = -1 - 3 = -4$$

4.
$$O(1,r) \leftarrow -1 + O(2,r) = -1 - 2 = -3$$

5.
$$Q(2,r) \leftarrow -1 + Q(3,r) = -1 - 1 = -2$$

6.
$$Q(3,r) \leftarrow -1 + Q(4,r) = -1 + 0 = -1$$

Sarsa	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1	0	-1	0	-1
After EP2	0	-2	0	-2	0	-1
After EP3	0	-3	0	-2	0	-1
After EP4	-4	-3	-1	-2	-1	-1
After EP5	-4	-3	- 5	-2	-2	-1
After EP6	-4	-3	- 5	-2	-6	-1
After EP7	-4	-3	– 5	-2	-6	-1
After EP8	-4	-3	-5	-2	-6	-1

Q Learning

- QL update equation: $(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') Q(S_t, A_t)\right) = R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$
 - With $\gamma = 1$, $\alpha = 1$, each Q(S, A) is completely replaced overwritten by the Q update
- After EP1: (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)

1.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(0,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(0,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• After EP2:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• After EP3:
$$(1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,0) = -1$$

2.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,0) = -1$$

3.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

EP1-3

QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1	0	-1	0	-1
After EP2	0	-1	0	-1	0	-1
After EP3	0	-1	0	-1	0	-1
After EP4	-1	-2	-1	-2	-1	-1
After EP5	-2	-3	-2	-2	-2	-1
After EP6	-3	-3	-3	-2	-3	-1
After EP7	-4	-3	-4	-2	-3	-1
After EP8	-4	-3	-4	-2	-3	-1

- EP4: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(0,-1) = -1$
- 2. $Q(2,l) \leftarrow -1 + \max_{al} Q(1,a') = -1 + \max(0,-1) = -1$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(0,-1) = -1$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,-1) = -2$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-1,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$
- EP5: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-1,-2) = -2$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-1,-2) = -2$
- 3. $Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-1,-2) = -2$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-2,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-2,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{\alpha} Q(4,\alpha') = -1 + 0 = -1$
- EP6: (3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)
- 1. $Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-2,-2) = -3$
- 2. $Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-2,-3) = -3$
- 3. $Q(1,l) \leftarrow -1 + \max_{\alpha} Q(1,\alpha') = -1 + \max(-2,-3) = -3$
- 4. $Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-3,-2) = -3$
- 5. $Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$
- 6. $Q(3,r) \leftarrow -1 + \max_{\alpha} Q(4,\alpha') = -1 + 0 = -1$

EP4-6

r = -1 $r = -1$								
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)		
Init	0	0	0	0	0	0		
After EP1	0	-1	0	-1	0	-1		
After EP2	0	-1	0	-1	0	-1		
After EP3	0	-1	0	-1	0	-1		
After EP4	-1	-2	-1	-2	-1	-1		
After EP5	-2	-3	-2	-2	-2	-1		
After EP6	-3	-3	-3	-2	-3	-1		
After EP7	-4	-3	-4	-2	-3	-1		
After EP8	-4	-3	-4	-2	-3	-1		

• EP7:

$$(3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-3,-2) = -3$$

2.
$$Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-3,-3) = -4$$

3.
$$Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-3,-3) = -4$$

4.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$$

5.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$$

6.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• EP8:

$$(3, l, -1), (2, l, -1), (1, l, -1), (1, r, -1), (2, r, -1), (3, r, -1), (4, r, 0)$$

1.
$$Q(3,l) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$$

2.
$$Q(2,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-4,-3) = -4$$

3.
$$Q(1,l) \leftarrow -1 + \max_{a'} Q(1,a') = -1 + \max(-4,-3) = -4$$

4.
$$Q(1,r) \leftarrow -1 + \max_{a'} Q(2,a') = -1 + \max(-4,-2) = -3$$

5.
$$Q(2,r) \leftarrow -1 + \max_{a'} Q(3,a') = -1 + \max(-3,-1) = -2$$

6.
$$Q(3,r) \leftarrow -1 + \max_{a'} Q(4,a') = -1 + 0 = -1$$

• Q values have converged

EP7-8

71 71						
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1	0	-1	0	-1
After EP2	0	-1	0	-1	0	-1
After EP3	0	-1	0	-1	0	-1
After EP4	-1	-2	-1	-2	-1	-1
After EP5	-2	-3	-2	-2	-2	-1
After EP6	-3	-3	-3	-2	-3	-1
After EP7	-4	-3	-4	-2	-3	-1
After EP8	-4	-3	-4	-2	-3	-1

Comments on QL

- QL converges. All state-action value functions look reasonable: Q(1,r) = -3, Q(2,r) = -2, Q(3,r) = -1.
- Q(1, l) = -4: If agent moves left in state 1, it takes at most 4 steps to reach goal state 4: $1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.
- Q(2, l) = -4: If agent moves left in state 2, it takes at most 4 steps to reach goal state 4: $2 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.
- Q(3, l) = -3: If agent moves left in state 3, it takes at most 3 steps to reach goal state 4: $3 \rightarrow 2 \rightarrow 3 \rightarrow 4$.
- So QL is smarter than Sarsa: since it is off-policy, agent can learn the correct Q value functions that correspond to trajectories that it has never actually experienced, e.g., if If agent moves left in state 3, even though it never experienced the trajectory 3 → 2 → 3 → 4, its Q values are updated so that the optimal policy follows that trajectory.
- Q values learned by QL are accurate, and the greedy policy is optimal:
- $\pi_*(1) = \operatorname{argmax}_a(Q(1, l), Q(1, r)) = r$
- $\pi_*(2) = \operatorname{argmax}_a(Q(2, l), Q(2, r)) = r$
- $\pi_*(3) = \operatorname{argmax}_a(Q(3, l), Q(3, r)) = r$

T = -1 $T = -1$						
QL	Q(1,l)	Q(1,r)	Q(2,l)	Q(2,r)	Q(3,l)	Q(3,r)
Init	0	0	0	0	0	0
After EP1	0	-1	0	-1	0	-1
After EP2	0	-1	0	-1	0	-1
After EP3	0	-1	0	-1	0	-1
After EP4	-1	-2	-1	-2	-1	-1
After EP5	-2	-3	-2	-2	-2	-1
After EP6	-3	-3	-3	-2	-3	-1
After EP7	-4	-3	-4	-2	-3	-1
After EP8	-4	-3	-4	-2	-3	-1
·						