```
In [1]: from urllib.request import urlopen
        import json
        with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as n
            counties = json.load(response)
In [2]: import pandas as pd
        import numpy
        df = pd.read_csv("County_food_insecurity_2017.csv",
                           dtype={"fips": str})
        import plotly.express as px
        #df['2017 Food Insecurity Rate'] = df['2017 Food Insecurity Rate'].str.replace(r'\D', '')
        #df["2017 Food Insecurity Rate"] = df["2017 Food Insecurity Rate"].astype(float)
        df["2017 Food Insecurity Rate"].max()
Out[2]: 0.363
In [3]: df['FIPS STR']=df["FIPS"].astype(str)
        df.loc[df['FIPS STR'].str.len() == 4, 'FIPS'] = '0'+ df['FIPS STR']
        df.loc[df['FIPS_STR'].str.len() > 4, 'FIPS'] = df['FIPS_STR']
```

	FIPS	State	County, State	2017 Food Insecurity Rate	# of Food Insecure Persons in 2017	Low Threshold in state	Low Threshold Type	High Threshold in state	High Threshold Type	% FI ≤ Low Threshold	% FI Btwn Thresholds	% FI > High Threshold
0	01001	AL	Autauga County, Alabama	13.20%	7,270	130%	SNAP	185%	Other Nutrition Program	48.50%	14.40%	37.10%
1	01003	AL	Baldwin County, Alabama	11.60%	23,560	130%	SNAP	185%	Other Nutrition Program	45.50%	14.40%	40.10%
2	01005	AL	Barbour County, Alabama	22.00%	5,760	130%	SNAP	185%	Other Nutrition Program	60.10%	17.10%	22.90%

DOMINICAN REPUBLIC

```
In [7]: import pandas as pd
import os
os.getcwd()
#url = 'https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_set
df_cd19 = pd.read_csv("time_series_covid19_confirmed_US.csv")
df_cd19['FIPS_STR']=df_cd19["FIPS"].astype(str)
df_cd19['FIPS_STR'] = df_cd19['FIPS_STR'].replace('\.0', '', regex=True)
```

```
In [8]: df_cd19.loc[df_cd19['FIPS_STR'].str.len() == 4, 'FIPS'] = '0'+ df_cd19['FIPS_STR']
df_cd19.loc[df_cd19['FIPS_STR'].str.len() == 5, 'FIPS'] = df_cd19['FIPS_STR']

df_cd19_rd = df_cd19.loc[df_cd19['FIPS'].str.len() == 5]

#df_cd19_rd['county_state'] = str(df_cd19_rd['Province_State'] + ' ' + df_cd19_rd['Admin2'])
df_cd19_rd['county_state'] = df_cd19_rd['Admin2'] + f", " + df_cd19_rd['Province_State']
df_cd19_rd.head()
```

/Users/huiyingzheng/opt/anaconda3/envs/PythonData/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin g.html#returning-a-view-versus-a-copy)

Out[8]:

	UID	iso2	iso3	code3	FIPS	Admin2	Province_State	Country_Region	Lat	Long_	 4/13/20	4/14/20	4/15/20	4/
5	84001001	US	USA	840	01001	Autauga	Alabama	US	32.539527	-86.644082	 19	23	24	
6	84001003	US	USA	840	01003	Baldwin	Alabama	US	30.727750	-87.722071	 72	87	91	
7	84001005	US	USA	840	01005	Barbour	Alabama	US	31.868263	-85.387129	 10	11	12	
8	84001007	US	USA	840	01007	Bibb	Alabama	US	32.996421	-87.125115	 17	17	18	
9	84001009	US	USA	840	01009	Blount	Alabama	US	33.982109	-86.567906	 14	16	17	

 $5 \text{ rows} \times 103 \text{ columns}$


```
JAMAICA REPUBLIC
```

BELIZE

```
In [10]: df_cd19_mort = pd.read_csv("time_series_covid19_deaths_US.csv")
         df_cd19_mort['FIPS_STR']=df_cd19_mort["FIPS"].astype(str)
         df_cd19_mort['FIPS_STR'] = df_cd19_mort['FIPS_STR'].replace('\.0', '', regex=True)
         df_cd19 mort['FIPS_STR']
Out[10]: 0
                   60
                   66
         2
                  69
         3
                  72
                  78
         3256
                 nan
         3257
                 nan
         3258
                 nan
         3259
                 nan
         3260
                 nan
         Name: FIPS_STR, Length: 3261, dtype: object
```

/Users/huiyingzheng/opt/anaconda3/envs/PythonData/lib/python3.6/site-packages/ipykernel_launcher.py:7: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin g.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexin g.html#returning-a-view-versus-a-copy)

Out[11]:

	UID	iso2	iso3	code3	FIPS	Admin2	Province_State	Country_Region	Lat	Long_	 4/13/20	4/14/20	4/15/20
5	84001001	US	USA	840	01001	Autauga	Alabama	US	32.539527	-86.644082	 1	1	1
6	84001003	US	USA	840	01003	Baldwin	Alabama	US	30.727750	-87.722071	 1	2	2
7	84001005	US	USA	840	01005	Barbour	Alabama	US	31.868263	-85.387129	 0	0	0
8	84001007	US	USA	840	01007	Bibb	Alabama	US	32.996421	-87.125115	 0	0	0
9	84001009	US	USA	840	01009	Blount	Alabama	US	33.982109	-86.567906	 0	0	0

5 rows × 104 columns

In [12]: df_cd19_mort_rd.describe()

Out[12]:

	UID	code3	Lat	Long_	Population	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	 4/11/20	4
count	3.246000e+03	3246.0	3246.000000	3246.000000	3.246000e+03	3246.0	3246.0	3246.0	3246.0	3246.0	 3246.000000	3246.C
mean	8.403214e+07	840.0	37.223517	-89.312179	1.024073e+05	0.0	0.0	0.0	0.0	0.0	 6.285582	6.7
std	1.779447e+04	0.0	8.552691	20.597305	3.424430e+05	0.0	0.0	0.0	0.0	0.0	 115.602872	125.1
min	8.400100e+07	840.0	0.000000	-164.035380	0.000000e+00	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0
25%	8.401905e+07	840.0	34.253077	-98.044952	9.831250e+03	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0
50%	8.403005e+07	840.0	38.154335	-89.827060	2.458750e+04	0.0	0.0	0.0	0.0	0.0	 0.000000	0.0
75%	8.404701e+07	840.0	41.684874	-82.822027	6.568550e+04	0.0	0.0	0.0	0.0	0.0	 1.000000	1.0
max	8.410000e+07	840.0	69.314792	0.000000	1.003911e+07	0.0	0.0	0.0	0.0	0.0	 6367.000000	6898.C

8 rows × 95 columns

In []:


```
JAMAICA
```

REPUBLIC

```
In [14]: # Total number of counties
    df_cd19 mort_rd["FIPS"].count()
```

Out[14]: 3246

Out[15]:

	FIPS	4/19/20 Number of Death	county_state
5	01001	2	Autauga, Alabama
6	01003	2	Baldwin, Alabama
7	01005	0	Barbour, Alabama
8	01007	0	Bibb, Alabama
9	01009	0	Blount, Alabama

```
In [16]: df_cd19_rd_merge1 = df_cd19_rd[['FIPS','4/19/20']]
    df_cd19_rd_merge1 = df_cd19_rd_merge1.rename(columns={"4/19/20": "4/19/20 Number of Infected"})
    df_cd19_rd_merge1.head()
```

Out[16]:

5	01001	26
6	01003	112
7	01005	20
Ω	01007	28

01009

FIPS 4/19/20 Number of Infected

21

```
In [17]: df cd19 mort final = pd.merge(df cd19 rd merge1, df cd19 mort rd merge1, on='FIPS')
         df cd19 mort final.loc[df cd19 mort final['4/19/20 Number of Infected'] > 0, 'Mortality Rate (County Lev
         df cd19 mort final.loc[df cd19 mort final['4/19/20 Number of Infected'] == 0, 'Mortality Rate (County Le
In [18]: #import numpy as np
         #df cd19 mort final = df cd19 mort final.replace([np.inf, -np.inf], 0)
         df_cd19_mort_final["Mortality Rate (County Level)"] = round(df_cd19_mort_final["Mortality Rate (County I
         df cd19 mort final["Mortality Rate (County Level)"]
Out[18]: 0
                 0.077
                 0.018
         1
         2
                 0.000
         3
                 0.000
                 0.000
         3241
                 0.000
         3242
                 0.000
         3243
                 0.000
         3244
                 0.000
         3245
                 0.000
         Name: Mortality Rate (County Level), Length: 3246, dtype: float64
```


BELIZE

```
In [20]: df['2017 Food Insecurity Rate']
    df['FIPS']

df_food = df[['FIPS','2017 Food Insecurity Rate']]
    df_food
```

Out[20]:

FIP5	2017	Food	insecurity	нате

0	01001	0.132
1	01003	0.116
2	01005	0.220
3	01007	0.143
4	01009	0.107
3137	56037	0.107
3138	56039	0.097
3139	56041	0.128
3140	56043	0.112
3141	56045	0.131

3142 rows × 2 columns

Out[21]:

	4/19/20 Number of Infected	4/19/20 Number of Death	Mortality Rate (County Level)	2017 Food Insecurity Rate
count	3142.000000	3142.000000	3142.000000	3142.000000
mean	238.917568	12.661044	0.027793	0.132508
std	2752.408561	262.921666	0.070478	0.039603
min	0.000000	0.000000	0.000000	0.029000
25%	2.000000	0.000000	0.000000	0.106000
50%	11.000000	0.000000	0.000000	0.128000
75%	49.750000	2.000000	0.037000	0.152000
max	138700.000000	14451.000000	1.000000	0.363000

```
In [25]: import matplotlib.pyplot as plt
# Next conduct a regression analysis
x_values = df_cd19_food.loc[df_cd19_food["Mortality Rate (County Level)"] <= 1].loc[:,'2017 Food Insecur
y_values = df_cd19_food.loc[df_cd19_food["Mortality Rate (County Level)"] <= 1].loc[:,'Mortality Rate (
```


0.038585684719504146 0.02268021515718703 0.021681864307566936 0.2243643384617289 0.031751383945363254

Out[26]:

	FIPS	4/19/20 Number of Infected	4/19/20 Number of Death	county_state	Mortality Rate (County Level)	2017 Food Insecurity Rate
0	01001	26	2	Autauga, Alabama	0.077	0.132
1	01003	112	2	Baldwin, Alabama	0.018	0.116
2	01005	20	0	Barbour, Alabama	0.000	0.220
3	01007	28	0	Bibb, Alabama	0.000	0.143
4	01009	21	0	Blount, Alabama	0.000	0.107

In [27]: df_cd19_food.describe()

Out[27]:

	4/19/20 Number of Infected	4/19/20 Number of Death	Mortality Rate (County Level)	2017 Food Insecurity Rate
count	3142.000000	3142.000000	3142.000000	3142.000000
mean	238.917568	12.661044	0.027793	0.132508
std	2752.408561	262.921666	0.070478	0.039603
min	0.000000	0.000000	0.000000	0.029000
25%	2.000000	0.000000	0.000000	0.106000
50%	11.000000	0.000000	0.000000	0.128000
75%	49.750000	2.000000	0.037000	0.152000
max	138700.000000	14451.000000	1.000000	0.363000

Out[28]: Generalized Linear Model Regression Results

Dep. Variable:	N_MORT	No. Observations:	2738
Model:	GLM	Df Residuals:	2736
Model Family:	Poisson	Df Model:	1
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-4296.9
Date:	Sat, 25 Apr 2020	Deviance:	6516.3
Time:	11:34:31	Pearson chi2:	1.18e+04
No. Iterations:	6		
Covariance Type:	nonrobust		

```
        coef
        std err
        z
        P>|z|
        [0.025
        0.975]

        Intercept
        -0.8245
        0.074
        -11.098
        0.000
        -0.970
        -0.679

        P FOOD
        4.0586
        0.504
        8.046
        0.000
        3.070
        5.047
```

Out[29]: Generalized Linear Model Regression Results

Dep. Variable:		N_IFTC		No. Observations:		s: 36
Model:		GLM		Df F	Residuals	s: 34
Model Family:			Poisson	Df Model:		l: 1
Link Function:			log	Scale:		1.0000
Method:			IRLS	Log-Likelihood:		: -2.9684e+05
Date:		Sat, 25 A	Apr 2020	Deviance:		5.9328e+05
Time:		11:34:51		Pearson chi2:		1.40e+06
No. Iterations:			6			
Covariance Type:		nonrobust				
	coef	std err	ž	z P> z	[0.025	0.975]
Intercept	9.3185	0.004	2222.95	7 0.000	9.310	9.327
P_FOOD	1.1497	0.036	31.928	0.000	1.079	1.220