Course title : CSE2001

Course title : Data Structures and Algorithms

Module : 6

Topic : 2

Shortest-path algorithms

Objectives

This session will give the knowledge about

Dijkstra's algorithm

Introduction to Dijkstra's algorithm

Dijkstra's Algorithm allows you to calculate the shortest path between one node (you pick which one) and every other node in the graph.

Here's how the algorithm is implemented:

- Mark all nodes as unvisited.
- Mark the selected initial node with a current distance of 0 and the rest with infinity.
- 3. Set the **initial** node as **current** node.
- 4. For the **current** node, consider all of its **unvisited** neighbors and calculate their distances by adding the current distance of **current** node to the weight of the edge connecting **neighbor** node and **current** node.

Introduction to Dijkstra's algorithm

- 5. Compare the newly calculated distance to the current distance assigned to the **neighboring** node and set is as the **new** current distance of **neighboring** node.
- When done considering all of the unvisited neighbors of the current node, mark the current node as visited.
- If the destination node has been marked visited then stop. The algorithm has finished.
- 8. Otherwise, select the **unvisited** node that is marked with the **smallest** distance, set it as the new **current node**, and go back to **step 4**.

Introduction to Dijkstra's algorithm

Find the Shortest path from the following directed Graph

01-02-2025

Initial directed Graph

ν	known	d_{v}	p_{ν}
v_1	F	0	0
ν ₂	F	∞	0
ν ₃	F	∞	0
ν ₄	F	∞	0
V ₅	F	∞	0
ν ₆	F	∞	0
ν ₇	F	∞	0

Initial path table

Step1: v1 is known

Directed Graph

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
ν ₂	F	2	v_1
٧3	F	∞	0
٧4	F	1	v_1
ν ₅	F	∞	0
ν ₆	F	∞	0
νγ	F	∞	0

Step2: v4 is declared known

Directed Graph

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
ν ₂	F	2	v_1
V3	F	3	٧4
ν ₄	T	1	v_1
V ₅	F	3	ν ₄
ν ₆	F	9	ν ₄
νγ	F	5	٧4

Step3: v2 is declared known

Directed Graph

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
ν ₂	T	2	v_1
٧3	F	3	ν ₄
ν ₄	T	1	ν1
V ₅	F	3	ν ₄
ν ₆	F	9	ν ₄
ν ₇	F	5	ν ₄

Step4: v5 and then v3 are declared known Directed Graph

ν	known	d_{v}	p_{ν}
v_1	Т	0	0
ν ₂	T	2	v_1
٧3	T	3	ν ₄
ν ₄	T	1	v_1
ν ₅	T	3	ν ₄
ν ₆	F	8	ν ₃
νγ	F	5	ν ₄

Step5: v7 is declared known

Directed Graph

ν	known	d_{v}	p_{ν}
ν_1	Т	0	0
ν ₂	T	2	v_1
٧3	T	3	ν ₄
ν ₄	T	1	v_1
ν ₅	T	3	v_4
ν ₆	F	6	ν ₇
ν ₇	T	5	v_4

Step6: v6 is declared known and algorithm terminates

Directed Graph

ν	known	d_{v}	pv
ν_1	Т	0	0
ν_2	T	2	v_1
٧3	T	3	ν ₄
ν ₄	T	1	v_1
V ₅	T	3	ν ₄
v_6	T	6	ν ₇
ν ₇	T	5	ν ₄

Result: Distance pairs

$$(v1,v2) = 2$$

$$(v4, v3) = 3$$

$$(v1, v4) = 1$$

$$(v4, v5) = 3$$

$$(v7, v6) = 6$$

$$(v4, v7) = 5$$

Total cost in Shortest path is = 20

ν	known	d_{v}	p_{v}
ν ₁	Т	0	0
ν ₂	T	2	v_1
٧3	T	3	ν ₄
ν ₄	T	1	v_1
V ₅	T	3	v_4
ν ₆	T	6	ν ₇
ν ₇	T	5	ν ₄

Reference Links

 https://www.educative.io/edpresso/what-is-dijkstrasalgorithm?affiliate_id=5082902844932096&utm_source=google&utm_m edium=cpc&utm_campaign=platform2&utm_content=ad-1dynamic&gclid=Cj0KCQjwgLLoBRDyARIsACRAZe4Q0tlv7xXB8R_RSD 5n9jgiKhXxA5OnETC7_kspXg03j-pnZz-_JjsaAg-qEALw_wcB

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Practice Problems

