```
# Import libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
# Reading in datasets
data = pd.read_csv('/content/drive/MyDrive/Dataset of DAFE project/2015_16_Statewise_Elementary.csv')
meta_data = pd.read_csv('/content/drive/MyDrive/Dataset of DAFE project/2015_16_Statewise_Elementary_Metadata.csv')
def sort_vals(df,col):
    df_new = df.sort_values(by = col)
   df_new.reset_index().drop('index', axis = 1, inplace = True)
    return df_new
def plot_barh(df, col1, col2, size = (10,10), title = None, xlabel = None):
    fig, ax = plt.subplots(1,1,figsize = size)
    plt.barh(df[col1],df[col2],label = col2)
   if title:
       ax.set_title(title)
   else:
        ax.set_title('{} vs {}'.format(col2, col1))
    if xlabel:
       ax.set_xlabel(xlabel)
    else:
       ax.set_xlabel(col2)
def display_desc(row):
   return meta_data[meta_data['Field name'] == row].Description.values[0]
print(data.shape)
print(meta_data.shape)
     (36, 816)
     (816, 2)
print(data.isnull().sum()[data.isnull().sum() > 0].shape)
     (0,)
data.head(2)
```

	AC_YEAR	STATCD	STATNAME	DISTRICTS	BLOCKS	VILLAGES	CLUSTERS	TOTPOPULAT	P_URB_POP	POPULATION_0_6	 USCR35	NC
(2015-16	1	JAMMU & KASHMIR	22	201	7263	1628	12549	20.05	16.01	 1014	
	2015-16	2	HIMACHAL PRADESH	12	124	10120	2243	6857	8.69	11.14	 652	
2	2 rows × 816 columns											

meta_data.head(2)

Description	Field name	Fie				
AC_YEAR: AC_YEAR	AC_YEAR	0				
Data Reported from: Data Reported from	STATCD	1				

STATCD Data Reported from: Data Reported from

```
data['OVERALL_LI'].describe()
              36.000000
     count
     mean
              78.309444
     std
               8.257752
              63.820000
     min
     25%
              70.937500
```

```
50%
              78.480000
     75%
              86.287500
     max
              93.910000
     Name: OVERALL_LI, dtype: float64
data.AREA_SQKM.describe()
     count
                  36.000000
               94501.111111
     mean
              102321.909726
     std
                  32.000000
     min
     25%
                9926.750000
     50%
               54578.000000
     75%
              140320.000000
```

data.GROWTHRATE.describe()

max

36.000000 count 19.990556 mean 11.455856 std min -0.470000 25% 13.880000 50% 18.910000 75% 22.637500 55.500000 max

Name: GROWTHRATE, dtype: float64

342239.000000 Name: AREA_SQKM, dtype: float64

data[data.GROWTHRATE == -0.47]

AC_YEAR STATCD STATNAME DISTRICTS BLOCKS VILLAGES CLUSTERS TOTPOPULAT P_URB_POP POPULATION_0_6 ... USCR35 NOTCH_ASS **12** 2015-16 13 NAGALAND 14.44 21056 11 47 1478 125 1981 17.31 233

1 rows × 816 columns

```
(data.MALE_LIT - data.FEMALE_LIT).describe()
```

count 36.000000 mean 13.893611 5.679685 std 3.390000 min 10.130000 25% 50% 13.720000 75% 18.182500 max 27.850000 dtype: float64

'OVERALL_LI' is the overall literacy rate for each state data = sort_vals(data, 'OVERALL_LI')

plot_barh(data, 'STATNAME', 'OVERALL_LI', title = 'Literacy rate')

plot_barh(data, 'STATNAME', 'FEMALE_LIT')

data = sort_vals(data, 'MALE_LIT')

plot_barh(data, 'STATNAME', 'MALE_LIT')

data.plot(kind = 'bar',x = 'STATNAME',y = ['MALE_LIT','FEMALE_LIT'],stacked = False,figsize=(12,6),width = 0.7,color = ['salmon','dimgrey

sort_vals(data, 'DIFF_LIT').head()[['STATNAME','DIFF_LIT']]

	STATNAME	DIFF_LIT
16	MEGHALAYA	3.39
31	KERALA	4.04
14	MIZORAM	4.32
12	NAGALAND	6.60
30	LAKSHADWEEP	7.86

sort_vals(data, 'DIFF_LIT').tail()[['STATNAME','DIFF_LIT']]

	STATNAME	DIFF_LIT
22	MADHYA PRADESH	20.51
25	DADRA & NAGAR HAVELI	20.53
21	CHHATTISGARH	20.86
19	JHARKHAND	22.24
7	RAJASTHAN	27.85

```
north_east = ['NAGALAND','MANIPUR','MIZORAM','ASSAM','TRIPURA','ARUNACHAL PRADESH','MEGHALAYA','SIKKIM']
data.set_index(data.STATNAME,inplace = True)
ne_diff_lit_mean = data.loc[north_east,'DIFF_LIT'].mean()
print('The avg in DIFF_LIT for north-eastern states ({}) is much less than the national avg ({}}).'.format(ne_diff_lit_mean,diff_lit_mean)

The avg in DIFF_LIT for north-eastern states (9.1475) is much less than the national avg (13.893611111111113).
```

print("The Female literacy rate for meghalaya : {} .VS. the avg female literacy rate : {}".format(data.loc['MEGHALAYA','FEMALE_LIT'],data

The Female literacy rate for meghalaya : 73.78 .VS. the avg female literacy rate : 71.09138888888889

```
# We will drop Telangana from bottom 3 as its been recently founded(2014)
top_3_elem = data.sort_values(by = 'OVERALL_LI', ascending = False).head(3)
bottom_3_elem = data.sort_values(by = 'OVERALL_LI', ascending = True).head(4).drop('TELANGANA',axis = 0)
```

top_bottom = pd.concat([top_3_elem, bottom_3_elem], axis = 0, sort = False)

top_bottom

	AC_YEAR	STATCD	STATNAME	DISTRICTS	BLOCKS	VILLAGES	CLUSTERS	TOTPOPULAT	P_URB_POP	POPULATION_0_6	• • •
STATNAME											
KERALA	2015-16	32	KERALA	14	166	1907	1375	33388	24.76	9.95	
LAKSHADWEEP	2015-16	31	LAKSHADWEEP	1	3	10	9	64	41.86	11.00	
MIZORAM	2015-16	15	MIZORAM	8	36	851	169	1091	40.42	15.17	
BIHAR	2015-16	10	BIHAR	38	537	40779	5633	103805	8.36	17.90	
ARUNACHAL PRADESH	2015-16	12	ARUNACHAL PRADESH	20	99	2982	234	1383	16.48	14.66	
RAJASTHAN	2015-16	8	RAJASTHAN	33	302	41441	10594	68621	19.26	15.31	

6 rows × 817 columns

```
{\tt display\_desc('TOTPOPULAT')}
```

'Basic data from Census 2011: Total Population(in 1000's)'

top_bottom.TOTPOPULAT/top_bottom.AREA_SQKM * 1000

```
STATNAME
KERALA 859.120500
LAKSHADWEEP 2000.000000
MIZORAM 51.752763
BIHAR 1102.396907
ARUNACHAL PRADESH 16.514813
RAJASTHAN 200.506079
dtype: float64
```

top_bottom.DIFF_LIT

STATNAME
KERALA 4.04
LAKSHADWEEP 7.86
MIZORAM 4.32
BIHAR 20.06
ARUNACHAL PRADESH 14.12
RAJASTHAN 27.85
Name: DIFF_LIT, dtype: float64

top_bottom.plot(y = 'DIFF_LIT',kind= 'bar')
plt.title('Top 3 vs Bottom 3 states for DIFF_LIT')

Text(0.5, 1.0, 'Top 3 vs Bottom 3 states for DIFF_LIT')

Top 3 vs Bottom 3 states for DIFF_LIT


```
display_desc('P_URB_POP')
```

'Basic data from Census 2011: Percentage Urban Population'

top_bottom['P_RUR_POP'] = 100 - top_bottom['P_URB_POP']

 $top_bottom.plot(y = ['P_URB_POP', 'P_RUR_POP'], kind = 'bar', figsize = (10,5))$

data.SEXRATIO.mean()

930.88888888889 0 +

top_bottom.SEXRATIO

STATNAME KERALA 1084 LAKSHADWEEP 946 975 MIZORAM BIHAR 916 ARUNACHAL PRADESH 920 RAJASTHAN 926 Name: SEXRATIO, dtype: int64

top_bottom.plot(y ='SEXRATIO', kind = 'bar')

<Axes: xlabel='STATNAME'>

data.sort_values(by = 'OVERALL_LI', inplace=True) pd.concat([data.head(10),data.tail(10)], axis = 1, sort = False).plot(kind= 'bar', y = 'SEXRATIO', figsize = (10,7),width = 1) <Axes: xlabel='STATNAME'>

data.loc[:,['SEXRATIO','OVERALL_LI']].corr()

	SEXRATIO	OVERALL_LI
SEXRATIO	1.000000	-0.037555
OVERALL_LI	-0.037555	1.000000
	_	

print(display_desc('P_SC_POP'))
print(display_desc('P_ST_POP'))

Basic data from Census 2011: Percentage SC Population Basic data from Census 2011: Percentage ST Population

top_bottom['SC_ST_POP'] = top_bottom.P_SC_POP + top_bottom.P_ST_POP

 $top_bottom.plot(y = ['SC_ST_POP','P_SC_POP','P_ST_POP'], kind = 'bar', figsize = (15,7))$

```
<Axes: xlabel='STATNAME'>
meta_sch = meta_data[meta_data['Field name'].str.contains(r'^SCH\w*TOT')]
print(meta_sch)
         Field name
                                                              Description
     28
             SCHTOT
                                              Schools By Category: Total
     37
            SCHTOTG
                                 Schools by Category: Government: Total
                                   Schools by Category: Private : Total
     46
            SCHTOTP
     55
            SCHTOTM Schools by Category: Madarsas & Unrecognised: ...
     64
           SCHTOTGR
                          Government Schools by Category - Rural: Total
           SCHTOTGA
     73
                        Schools by Category: Government & Aided : Total
     82
           SCHTOTPR
                             Private Schools by Category - Rural: Total
     91
          SCHBOYTOT
                                  Schools by Category: Boys Only: Total
     100
          SCHGIRTOT
                                 Schools by Category: Girls Only: Total
display_desc('SCHTOT')
     'Schools By Category: Total'
display_desc('TOT_6_10_15')
     'Projected Population : Age Group 6 to 10
         1
display_desc('TOT_11_13_15')
     'Projected Population : Age Group 11 to 13'
                                                                            Z
top_bottom.SCHTOT
     STATNAME
     KERALA
                            16458
     LAKSHADWEEP
                               41
                             3072
     MT7ORAM
     BIHAR
                            80166
     ARUNACHAL PRADESH
                             4012
     RAJASTHAN
                           107931
     Name: SCHTOT, dtype: int64
top_bottom['SCHKIDS'] = top_bottom.TOT_6_10_15 + top_bottom.TOT_11_13_15
top_bottom['KIDSPERSCH'] = top_bottom.SCHKIDS/top_bottom.SCHTOT
top_bottom.plot(y = 'KIDSPERSCH', kind = 'bar',)
     <Axes: xlabel='STATNAME'>
                                                                 KIDSPERSCH
      250
      200
      150
      100
        50
                KERALA
                           LAKSHADWEEP
                                                  BIHAR
                                                             ARUNACHAL PRADESH
                                                                        RAJASTHAN
                                       MIZORAM
```

STATNAME

2

```
display_desc('TOTCLS1G')
    'Total Classrooms: Primary Only - Primary Only'
top_bottom['TOTCLS1G'].plot(kind= 'bar')
```


primary kids per class
top_bottom['KIDSPERCL'] = top_bottom['SCHKIDS']/top_bottom['TOTCLS1G']

top_bottom['KIDSPERCL'].plot(kind= 'bar')

elem = data.copy(deep = True)
elem['SCHKIDS'] = elem.TOT_6_10_15 + elem.TOT_11_13_15

```
elem['KIDSPERCL'] = elem['SCHKIDS']/elem['TOTCLS1G']
elem.sort_values(by = 'OVERALL_LI',ascending = False,inplace = True)
```

pd.concat([elem.head(5),elem.tail(5)], axis = 0, sort = False).plot(kind= 'bar', y = 'KIDSPERCL', figsize = (10,7),width = 1)

<Axes: xlabel='STATNAME'>

elem[['KIDSPERCL','OVERALL_LI']].corr()

	KIDSPERCL	OVERALL_LI
KIDSPERCL	1.00000	0.16714
OVERALL LI	0.16714	1.00000

```
# Plot of the % of data private, govt schools and Madarsas and comparing them with the national avg.
schtotg_avg = (data.SCHTOTG/data.SCHTOT).mean()
schtotp_avg = (data.SCHTOTP/data.SCHTOT).mean()
schtotm_avg = (data.SCHTOTM/data.SCHTOT).mean()
\label{lower_schtot} \verb"top_3_elem['SCHTOTG_P'] = (top_3_elem.SCHTOTG/top_3_elem.SCHTOT)
top_3_elem['SCHTOTP_P'] = (top_3_elem.SCHTOTP/top_3_elem.SCHTOT)
top_3_elem['SCHTOTM_P'] = (top_3_elem.SCHTOTM/top_3_elem.SCHTOT)
bottom_3_elem['SCHTOTG_P'] = (bottom_3_elem.SCHTOTG/bottom_3_elem.SCHTOT)
bottom_3_elem['SCHTOTP_P'] = (bottom_3_elem.SCHTOTP/bottom_3_elem.SCHTOT)
bottom\_3\_elem['SCHTOTM\_P'] = (bottom\_3\_elem.SCHTOTM/bottom\_3\_elem.SCHTOT)
pd.concat([top\_3\_elem,\ bottom\_3\_elem],\ axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTG\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], axis = 1,\ sort = False).plot(y = ['SCHTOTP\_P', 'SCHTOTM\_P'], \ bottom\_3\_elem], \ bottom\_3\_el
                                                                                                                                                                                               figsize = (18,8), kind = 'bar',\
                                                                                                                                                                                               color =['blue','blue','g','g','black','black'], \
                                                                                                                                                                                                       )
plt.plot([schtotg_avg]*8, linestyle ='--',color = 'g') # National avg for % of govt schools
plt.plot([schtotp_avg]*8, linestyle ='--',color = 'blue') # National avg for % of private schools
{\tt plt.plot([schtotm\_avg]*8, linestyle ='--', color='black') \# National avg for \% of Madarsas}
plt.legend(['Pvt','Govt','Madarsas'],loc = 1)
```

<matplotlib.legend.Legend at 0x7fc3c06288b0>

display_desc('CONTIE')

'Grants: School Development - Expended'

ጛ

elem[['CONTIE','OVERALL_LI']].corr()

	CONTIE	OVERALL_LI
CONTIE	1.000000	-0.481281
OVERALL LI	-0 481281	1 000000

top_bottom.CONTIE.plot(kind = 'bar')

```
<Axes: xlabel='STATNAME'>
display_desc('C9_B')
     'Enrolment By Grade: Boys - Grade 9'
      4 1
                                                                           - 1
display_desc('C9_G')
     'Enrolment By Grade: Girls - Grade 9'
display_desc('C8_B')
     'Enrolment By Grade: Boys - Grade 8'
        - [
                                                                           display_desc('C8_G')
     'Enrolment By Grade: Girls - Grade 8'
data['C9_TOTAL'] = data.loc[:,'C9_B'] + data.loc[:,'C9_G']
                        Д
                                    5
data['C8_TOTAL'] = data.loc[:,'C8_B'] + data.loc[:,'C8_G']
                        Ā
                                   1
                                                                      A
data['DROP_8_9'] = (data.C8_TOTAL - data.C9_TOTAL)/data.C8_TOTAL
top_bottom_drop = pd.concat([data.sort_values('OVERALL_LI').tail(3).DROP_8_9,
                              data.sort_values('OVERALL_LI').head(3).DROP_8_9], axis = 0)
top_bottom_drop
     STATNAME
     MIZORAM
                         -0.025558
     LAKSHADWEEP
                         -0.292279
     KERALA
                          -0.038128
     BIHAR
                          0.216246
     TELANGANA
                          0.038714
     ARUNACHAL PRADESH 0.102825
     Name: DROP_8_9, dtype: float64
top_bottom_drop.plot(kind='bar', y = 'DROP_8_9', x = 'STATNAME')
     <Axes: xlabel='STATNAME'>
        0.2
        0.1
        0.0
      -0.1
      -0.2
       -0.3
                MIZORAM
                                                                         ARUNACHAL PRADESH
                            LAKSHADWEEP
                                       KERALA
                                         STATNAME
```

https://colab.research.google.com/drive/1FqBkMzZMzPRt8DF6W1-UdB20RxFAsawx#printMode=true

data[['DROP_8_9','OVERALL_LI']].corr()

```
DROP_8_9 OVERALL_LI
       DROP_8_9
                   1.000000
                               -0.703246
data.set_index('STATNAME', inplace = True)
class_b_columns = data.columns[data.columns.str.contains('C\d_[B]$',case = False, regex = True)].tolist()
class\_g\_columns = data.columns[data.columns.str.contains('C\d_[G]\$', case = False, regex = True)].tolist()
sums_classes_df = pd.DataFrame(np.matrix(data[class_b_columns]) + np.matrix(data[class_g_columns]))
sums_classes_cols=[i[:2] for i in class_b_columns]
sums_classes_index = data.index
sums_classes_df.columns = sums_classes_cols
totals = sums_classes_df.sum(axis = 0)
dropout = []
for i,_ in enumerate(totals):
    try:
        {\tt dropout.append((totals[i] - totals[i+1])/totals[i])}
       pass
dropout
     [0.049807894807547,
      0.014726304017832778,
      -0.008486844753752712,
```

```
0.023597734638681263,
0.08056395873036064,
0.019658139068640237,
0.026063321302817914,
0.06841362994279623]
```

plt.bar(x = range(2,10,1),height = dropout)

<BarContainer object of 8 artists>

