Introduction to mean-field spin glasses and the TAP approach

David Belius

Faculty of Mathematics & Computer Science FernUni Schweiz / UniDistance Suisse

	Monday	Tuesday	Wednesday	Thursday	Friday
8.30-9.30	Registration				
09.30-10.20	BELIUS	BELIUS	SIMONELLA	SIMONELLA	DARIO
10.20-10.50	coffee	coffee	coffee	coffee	coffee
10.50-11.40	BISKUP	BERESTYCKI	PELED	BELIUS	BERESTYCKI
11.50-12.40	PELED	SIMONELLA	BERESTYCKI	BISKUP	BISKUP
12.40-15.00	lunch	lunch	lunch	lunch	lunch
15.00-15.50	BISKUP	BELIUS	free afternoon	SIMONELLA	PELED
15.50-16.20	coffee	coffee	free afternoon	coffee	coffee
16.20-17.10	short talks	short talks	free afternoon	short talks	BERESTYCKI
17.20-18.10	short talks	short talks	free afternoon	short talks	
18.30-20.00	Wine & Cheese				

EXERCISE CLASS

LECTURE

Spin model: Ising model (1920)

$$\beta \in [0, \infty)$$
: β =strength of interaction= $\frac{1}{Temp}$

 G_{eta} probability measure on space of all spin configurations

Phase transition at $\beta = \beta_c$

$$G_{\beta} \approx \frac{1}{2}G_{\beta,-} + \frac{1}{2}G_{\beta,+}$$

Spin glass model: Edwards-Anderson (EA) model (1975)

$$\beta \in [0, \infty)$$
: β =strength of interaction= $\frac{1}{Temp}$

 G_{eta} probability measure on space of all spin configurations

Nature of phases?

Mean-field spin glass model: Sherrington-Kirkpatrick (SK) model (1975)

$$\beta \in [0, \infty)$$
: β =strength of interaction= $\frac{1}{Temp}$

 G_{eta} probability measure on space of all spin configurations

High temp: kind of like Ising, decorrelated spins

Low temp: $G_{\beta} = \sum u_m G_{\beta,m}$ (Parisi 1980)

Similar structure in hard combinatorial optimization problems

Proper definitions

Curie-Weiss model (mean-field spin model)

$$H_N(\sigma) = \sum_{i,j=1,...,N} \frac{1}{N} \sigma_i \sigma_j$$

$$H_N^h(\sigma) = H_N(\sigma) + h \sum_{i=1,\dots,N} \sigma_i$$

 β , h: params

$$Q_N \left[\sigma_i\right] = 0$$

$$Q_N \text{ uniform on } \{-1,1\}^N \qquad \qquad \sigma \text{ i.i.d. under } Q_N$$

Gibbs measure:
$$G_N(A) := \frac{Q_N \left[1_A \exp \left(\beta H_N^h(\sigma) \right) \right]}{Z_N}$$

Partition function:
$$Z_N := Q_N \left[\exp \left(\beta H_N^h(\sigma) \right) \right]$$

Free energy:
$$F_N \coloneqq \frac{1}{N} \log Z_N$$

Goal: compute $\lim F_N$

Sherrington-Kirkpatrick (SK) model '75

$$H_N(\sigma) = \sum_{i,j=1,...,N} \frac{J_{ij}}{\sqrt{N}} \sigma_i \sigma_j$$

$$\beta$$
, h : params

$$H_N(\sigma) = \sum_{i,j=1,\dots,N} \frac{J_{ij}}{\sqrt{N}} \sigma_i \sigma_j \qquad H_N^h(\sigma) = H_N(\sigma) + h \sum_{i=1,\dots,N} \sigma_i$$

$$Q_N[\sigma_i] = 0$$

$$Q_N[\text{o}_i] = 0$$

$$\sigma \text{ i.i.d. under } Q_N$$

Gibbs measure:
$$G_N(A) := \frac{Q_N \left[1_A \exp \left(\beta H_N^h(\sigma) \right) \right]}{Z_N}$$

Partition function:
$$Z_N := Q_N \left[\exp \left(\beta H_N^h(\sigma) \right) \right]$$

Free energy:
$$F_N \coloneqq \frac{1}{N} \log Z_N$$

Goal: compute $\lim F_N$

THE END