Sprawozdanie 2

Eksploracja danych

Kacper Szmigielski, 282255 i Mateusz Wizner, 277508

2025-04-28

Spis treści

1	ZADANIE 1 (Dyskretyzacja(przedziałowanie) cech ciągłych)	2
	1.1 a) Dane: iris (R-pakiet datasets)	2
	1.2 b) Wybór cech	2
	1.3 c) Porównanie nienadzorowanych metod dyskretyzacji	3
	1.3.1 Metoda : Równe częstości(Frequency)	3
	1.3.2 Metoda : Równe szerokości (Interval)	5
	1.3.3 Metoda : k najbliższych sąsiadów (K-means)	7
	1.3.4 Dyskretyzacja z przedziałami zadanymi przez urzytkownika (fixed) .	9
	1.4 Wnioski :	11
2	ZADANIE 2 (Analizaskładowych głównych (Principal Component Analysis	
_	(PCA)))	12
	2.1 a) Przygotowanie danych	12
	2.2 b) Wyznaczenie składowych głównych	15
	2.3 c) Zmienność odpowiadająca poszczególnym składowym	16
	2.4 d) Wizualizacja danych wielowymiarowych	18
	2.5 e) Korelacja zmiennych	18
	2.6 f) Końcowe wnioski	18
	<u>-</u> 10 - 1) 1201200 NO N2120212	
3	ZADANIE 3 (Skalowaniewielowymiarowe (Multidimensional Scaling	
	(MDS)))	18
	3.1 a) Dane: titanic_train (R-pakiet titanic)	18
	3.2 b) Przygotowanie danych	18
	3.3 c) Redukcja wymiaru na bazie MDS	18
	3.4 d) Wizualizacja danych	18

1 ZADANIE 1 (Dyskretyzacja(przedziałowanie) cech ciągłych)

1.1 a) Dane: iris (R-pakiet datasets).

3 Pierwsze wiersze z pakietu iris

Zbiór danych zawiera wyniki pomiarów uzyskanych dla **trzech gatunków irysów** (tj. setosa, versicolor i virginica) i został **udostępniony przez Ronalda Fishera w roku 1936.**

– Pomiary dotyczą długości oraz szerokości dwóch różnych części kwiatu– działki kielicha (ang. sepal) oraz płatka (ang. petal).

1.2 b) Wybór cech

Szukamy cech, których róznice są najbardziej spójne z różnicami pomiędzy gatunkami.

Po przeanalizowaniu scatter-plotów, widać ,że podczas szukania cechy o najlepszej zdolności dyskryminacyjnej warto zwrócić uwagę na **Petal.Length i Petal.Width**, natomiast jeżeli poszukujemy kolumny o najgorszej zdolności dyskryminacyjnej to wybór rozsztrzygamy spośród **Sepal.Length i Sepal.Width**

Musimy jednak wybrać **wartości najlepsze i najgorsze** do dyksryminacji, aby to zrobić przeanalizujemy **box-ploty**.

Na ich podstawie możemy uznać, że **Petal.Width może stanowić najlepszy wyznacznik gatunku** roślin Najgorszym natomiast jest **Sepal.Width**. Ponieważ dla **Petal.Width** gatunki w najmniejszym stopniu się pokrywają ze względu na tą cechę , a w **Sepal.Width** w największym.

1.3 c) Porównanie nienadzorowanych metod dyskretyzacji

- 1.3.1 Metoda: Równe częstości(Frequency)
- 1.3.1.1 Dla najlepszej cechy : Petal.Length (Frequency)

W przypadku tej metody $\mathbf{zgodność}$ uzyskanego grupowania z realnymi wartościami \mathbf{wynosi} .

1.3.1.2 Dla najgorszej cechy : Sepal.Length (Frequency)

Zgodność dla nagj
roszej cechy wynosi jedynie ok $\bf 72\%,$ co mówi o znacznym spadku wi
arygodności (o ok $\bf 23~\%)$

1.3.2 Metoda : Równe szerokości (Interval)

1.3.2.1 Dla najlepszej cechy : Petal.Width (Interval)

Dla tej metody również mamy ${\bf zgodność}$ na ${\bf poziomie}$:

Widać lekki wzrost zgodności w porównaniu do poprzedniej metody (o ok 1%)

1.3.2.2 Dla najgorszej cechy ; Sepal.Length (Interval)

Metoda ta, dla najgorszzej cechy dyksryminuje ze zgodnością : Czyli w porównaniu do metody Frequency mamy \mathbf{spadek} aż \mathbf{o} ok $\mathbf{16}\%$

$1.3.3 \quad \text{Metoda}: k najbliższych sąsiadów (K-means)$

$1.3.3.1 \quad {\rm Dla\ najlepszej\ cechy: Petal.Width\ (K-means)}$

Zgodność na poziomie :

Lepsza o ok3%od ubiegłej metody

1.3.3.2 Dla najgorszej cechy : Sepal.Length (K-means)

Dla najgorszej cechy mamy zgodność :

W tym przypadku jest ona na poziome metody Frequency (gorsza o 1)

1.3.4 Dyskretyzacja z przedziałami zadanymi przez urzytkownika (fixed)

1.3.4.1 Dla najlepszej cechy : Petal.Width (fixed)

Na wykresie mamy zaznaczone też końce przedziałów, to jest potrzebne, co jest potrzebne podczas rysowania kolejnego wykresu

Zgodność na poziome poprzednich dwóch metod, wynosi :

1.3.4.2 Dla najgorszej cechy : Sepal.Length (fixed)

Dla cechy o najgorszej zdolności dyskryminacyjnej :

1.4 Wnioski :
Porównamy teraz zgodności procentowe wyników, dla poszczególnych algorytmów

	frequency	interval	cluster	fixed
Petal.Width	0.9466667	0.9600000	0.9600000	0.9600000
Sepal.Length	0.7200000	0.5729167	0.5801105	0.7066667

frequency	interval	cluster	fixed
-----------	----------	---------	-------

Na podstawie tabeli, dokłądniej **Porównania przyporządkować dla cech najgorszych i najlepszych pod względem dyskryminacji**. Możemy wnioskować, że dla obecnych danych **najlepszym algorytmem jest cluster(k-sąsiadów)** odznacza się najlepszym przyporządkowaniem zarówno dla Sepal.Length jak i Petal.Width

2 ZADANIE 2 (Analizaskładowych głównych (Principal Component Analysis (PCA)))

2.1 a) Przygotowanie danych

Tabela 2: Typy danych w zbiorze

Type
integer
character
character
character
numeric

X	UA_Name	$UA_{-}Country$	$UA_Continent$	Housing	Cost.of.Living
0	Aarhus	Denmark	Europe	6.132	4.015
1	Adelaide	Australia	Oceania	6.310	4.692

X	UA_Name	UA_Country	$UA_{-}Continent$	Housing	Cost.of.Living
2	Albuquerque	New Mexico	North America	7.262	6.059
3	Almaty	Kazakhstan	Asia	9.282	9.333
4	Amsterdam	Netherlands	Europe	3.053	3.824
5	Anchorage	Alaska	North America	5.434	3.141

X	Startups	Venture.Capital	Travel.Connectivity	Commute	Business.Freedom
0	2.827	2.512	3.536	6.312	9.940
1	3.136	2.640	1.777	5.336	9.400
2	3.772	1.493	1.456	5.056	8.671
3	2.458	0.000	4.592	5.871	5.568
4	7.972	6.107	8.325	6.118	8.837
5	2.795	0.000	1.738	4.715	8.671

X	Safety	Healthcare	Education	Environmental.Quality	Economy
0	9.617	8.704	5.367	7.633	4.887
1	7.926	7.937	5.142	8.331	6.070
2	1.343	6.430	4.152	7.319	6.514
3	7.309	4.546	2.283	3.857	5.269
4	8.504	7.907	6.180	7.597	5.053
5	3.470	6.060	3.624	9.272	6.514

X	Taxation	Internet.Access	LeisureCulture	Tolerance	Outdoors
0	5.068	8.373	3.187	9.739	4.130
1	4.588	4.341	4.328	7.822	5.531
2	4.346	5.396	4.890	7.028	3.515
3	8.522	2.886	2.937	6.540	5.500
4	4.955	4.523	8.874	8.368	5.307
5	4.772	4.964	3.266	7.093	5.358

	Wariancja
Housing	5.265
Cost.of.Living	5.988
Startups	4.635
Venture.Capital	6.520
Travel.Connectivity	4.375
Commute	2.320
Business.Freedom	4.450

	Wariancja
Safety	3.051
Healthcare	2.196
Education	4.897
Environmental.Quality	4.840
Economy	2.302
Taxation	2.855
Internet.Access	3.505
LeisureCulture	4.027
Tolerance	2.974
Outdoors	2.534

Rozklad cech ilosciowych przed standaryzacja

2.2 b) Wyznaczenie składowych głównych

Tabela 8: Podsumowanie analizy PCA

Składowa	Odchylenie_standardowe	Procent_wariancji	Kumulatywna_wariancja
PC1	2.251	29.80	29.80
PC2	1.606	15.16	44.96
PC3	1.443	12.25	57.21
PC4	1.140	7.65	64.86
PC5	1.095	7.05	71.90
PC6	0.980	5.65	77.55
PC7	0.831	4.06	81.62
PC8	0.815	3.90	85.52
PC9	0.764	3.43	88.95
PC10	0.651	2.50	91.45
PC11	0.569	1.90	93.35
PC12	0.539	1.71	95.06
PC13	0.524	1.62	96.68
PC14	0.434	1.11	97.79
PC15	0.393	0.91	98.69
PC16	0.352	0.73	99.42
PC17	0.313	0.58	100.00

2.3 c) Zmienność odpowiadająca poszczególnym składowym

Tabela 9: Wektory ładunków dla PC1, PC2 i PC3

	PC1	PC2	PC3
Housing	0.3078251	0.0533534	-0.3135465
Cost.of.Living	0.2596091	-0.1757815	-0.3305352
Startups	-0.1802385	-0.4834415	0.0061000
Venture.Capital	-0.2365974	-0.4274509	0.0148768
Travel.Connectivity	-0.2094543	-0.1353067	-0.3397760
Commute	-0.1142045	0.0259310	-0.5057359
Business.Freedom	-0.3772809	0.0982196	0.0241046
Safety	-0.0389355	0.2871039	-0.3330100
Healthcare	-0.2803590	0.2419482	-0.2810248
Education	-0.4025620	-0.0490795	-0.0738645
Environmental.Quality	-0.3262220	0.2525355	0.0535717
Economy	-0.2731752	-0.0740033	0.3086705
Taxation	0.0262992	0.1074151	-0.0201849
Internet.Access	-0.2761922	0.0227056	0.0284416
LeisureCulture	-0.0744466	-0.3647324	-0.3050545
Tolerance	-0.1897496	0.3550911	-0.1027251
Outdoors	-0.0915866	-0.1933825	-0.1485868

Liczba składowych głównych wyjaśniających 80% wariancji: 7 Liczba składowych głównych wyjaśniających 90% wariancji: 10

Numer skladowej glównej

- 2.4 d) Wizualizacja danych wielowymiarowych
- 2.5 e) Korelacja zmiennych
- 2.6 f) Końcowe wnioski
- 3 ZADANIE 3 (Skalowaniewielowymiarowe (Multidimensional Scaling (MDS)))
- 3.1 a) Dane: titanic_train (R-pakiet titanic)
- 3.2 b) Przygotowanie danych
- 3.3 c) Redukcja wymiaru na bazie MDS
- 3.4 d) Wizualizacja danych