3



# ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006 DIGITAL ELECTRONICS AND LOGIC DESIGN SEMESTER - 3

Time: 3 Hours]

1.

[Full Marks: 70

#### Group - A

## ( Multiple Choice Questions )

| Cho | ose the correct alternatives                                                            | for any ten o | f the following question | ns: $10 \times 1 = 10$ |
|-----|-----------------------------------------------------------------------------------------|---------------|--------------------------|------------------------|
| a)  | A full adder circuit can be designed using                                              |               |                          |                        |
|     | i) a half adder & an C                                                                  | )R gate       |                          |                        |
|     | ii) a half adder & an A                                                                 | ND gate       |                          |                        |
|     | iii) two half adders & a                                                                | n OR gate     |                          |                        |
|     | iv) none of these.                                                                      |               |                          |                        |
| b)  | The fastest logic family is                                                             |               |                          |                        |
| ,   | i) TTL                                                                                  | 11)           | CMOS                     |                        |
|     | iii) RTL                                                                                | iv)           | ECL.                     |                        |
| c)  | For a parallel in parallel out shift register we need                                   |               |                          |                        |
|     | i) 1                                                                                    | ti)           | n                        |                        |
|     | iii) 2n + 1                                                                             | iv)           | n + 1                    |                        |
|     | clock pulse/pulses.                                                                     |               |                          |                        |
| d)  | The number of Flip-Flops required to design a MOD-18 counter is                         |               |                          |                        |
|     | i) 3                                                                                    | ii)           | 4                        |                        |
|     | ш) 5                                                                                    | iv)           | 6.                       |                        |
| e)  | The maximum positive number that can be represented in 1's complement representation is |               |                          |                        |
|     | i) $2^{n-1}-1$                                                                          | ii)           | 1-2^{n-1                 |                        |
|     | iii) $-(2^{(n-1)}-1)$                                                                   | iv)           | $2^{n-1}$ .              |                        |

| DR gate is                                        |  |  |  |  |
|---------------------------------------------------|--|--|--|--|
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
| alid ?                                            |  |  |  |  |
| alid ?                                            |  |  |  |  |
| alid ?                                            |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
| The figure of merit of a logic family is given by |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
| PROMs are used primarily for                      |  |  |  |  |
| i) data storage                                   |  |  |  |  |
| temporary program and data storage                |  |  |  |  |
|                                                   |  |  |  |  |
|                                                   |  |  |  |  |
| The decimal 37 is represented in BCD by           |  |  |  |  |
|                                                   |  |  |  |  |
| ·                                                 |  |  |  |  |
|                                                   |  |  |  |  |

5



#### Group - B

### (Short Answer Questions)

Answer any three questions.

 $3 \times 5 = 15$ 

- 2. Perform the arithmetic operation  $(-25)_{10} + (-15)_{10}$  in sign 2's complement method. Assume 1-bit sign and 6-bit information.
- 3. Minimize the following expression using K-map and realize the simplified expression using NAND gates only.

G (A, B, C, D) = 
$$\Sigma$$
 (1, 2, 3, 5, 6, 11, 12) + D (7, 8, 10, 14)

- Implement a full adder circuit using decoder.
- 5. Implement a clocked JK flip-flop using NAND gates only.
  - Implement the following function using 8:1 MUX:

F (A, B, C, D) =  $\Sigma$  (0, 2, 4, 8, 9, (10, 11, 12, 13, 14, 15)

# Group - C ( Long Answer Questions )

Note: Answer any three of the following questions.

 $3\times15=45$ 

- 7. a) Distinguish between ROM, PLA and PLD's as elements realising Boolean functions.
  - b) Design a combinational circuit using an  $8 \times 4$  ROM that accepts a 3-bit number and generates an output binary number equal to the square of the input number.

c) Draw logic diagram of Master/Slave JK flip-flop. Why is it called so?

6

- 8. a) Write down the excitation table of JK and D flip-flops. Derive the excitation equations for these two flip-flops.
  - Design a 4-bit Up/Down asynchronous counter using all JK flip-flops and other necessary logic gates. Use one direction control input M. If M = 0, the counter will count up and for M = 1 the counter will count down.

4.

6.

#### CS/B.Tech/SEM-3/EC-312/06

6



- a) Describe the operation of successive approximation type A to D converter. How many clock pulses are required in worst case for conversion for an 8-bit SAR?
   Define quantizing error for an ADC.
  - b) Draw a neat diagram for a R-2R ladder type DAC. What is linearity error and offset error in a DAC? 5+1+1
- 10. a) Draw the circuit for a four-bit Johnson counter using D flip-flops and explain its operation. Draw the timing diagram for this 4-bit Johnson counter. How does this timing diagram differ from that of a Ring counter? 8 + 2 + 2
  - b) Perform the conversion from D flip-flop to JK flip-flop.

3

11. Write short notes on any three from the following:

 $3 \times 5 = 15$ 

- a) Content Addressed Memory
- b) Tri-state gates in TTL family
- c) BCD-to-7 segment decoder/driver
- d) Data lock-out in a counter.