# **Computer Graphics**

Mathematical background

Konstantin Tretyakov kt@ut.ee



## In the previous episodes

- Computer graphics is useful and fun
- Computer graphics is about generating images
- Modeling, Rendering, Animation
- Raster vs Vector, 2D vs 3D
- Ad-hoc projection vs Light physics
- "Standard graphics pipeline"
- Matrix notation



## Mathematical background

#### • Vectors:

- Points, directions, vectors and matrices
- Linear combinations, convex combinations
- Norm, normalization
- Inner product, orthogonality, orthogonalization
- Box product, Cross product
- Orientation
- Representation of a straight line



## Mathematical background

- Matrices:
  - Linear transformations
  - Invertibility, rank, determinant
  - Orthogonal transformations
  - Affine transformations
  - Homogeneous coordinates



#### Vectors

In general, vectors are elements of a space.



#### Vectors

In computer graphics, we primarily deal with vector spaces  $\mathbb{R}^2$ ,  $\mathbb{R}^3$  and  $\mathbb{R}^4$ .



#### Vectors

In computer graphics, we primarily deal with vector spaces  $\mathbb{R}^2$ ,  $\mathbb{R}^3$  and  $\mathbb{R}^4$ .

We use those vectors to denote and \_\_\_\_\_



• Linear combinations:

$$3 \cdot {1 \choose 2} - 2 \cdot {2 \choose 1} =$$



• Linear combinations:

$$3 \cdot {1 \choose 2} - 2 \cdot {2 \choose 1} =$$

A linear combination

$$\lambda_1 \boldsymbol{v}_1 + \lambda_2 \boldsymbol{v}_2 + \dots + \lambda_n \boldsymbol{v}_n$$

is called *convex* if \_\_\_\_\_



Norm

$$\|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$



• Norm

$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$



• Norm

$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$

$$\|\binom{33}{44}\| =$$



• Normalization:

$$normalize(a) \coloneqq \frac{a}{\|a\|}$$



• Normalization:

normalize 
$$\binom{0}{1}$$
 =



• Normalization:

normalize 
$$\binom{44}{33} =$$



$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$



$$\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$



$$\langle \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$



$$\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$



$$\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle + \langle \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \rangle =$$



- Inner product
  - $\langle a, \lambda b + c \rangle = \lambda \langle a, b \rangle + \langle a, c \rangle$

Linearity

- $\langle a, a \rangle = ||a||^2$
- $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \|\boldsymbol{a}\| \cdot \|\boldsymbol{b}\| \cdot \cos \alpha$

Relationship with the norm

 $\bullet$   $\langle a, b \rangle = a^T b$ 

Relationship with the matrix product notation



Inner product

$$a^T(\lambda b + c) = \lambda a^T b + a^T c$$

Linearity

• 
$$a^T a = ||a||^2$$

$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$

Relationship with the norm

• 
$$\langle a, b \rangle = a^T b$$

Relationship with the matrix product notation



Inner product

$$\mathbf{p}^T \mathbf{a} = \|\mathbf{p}\| \cdot \|\mathbf{a}\| \cdot \cos \alpha$$

• If 
$$||p|| = 1$$
,

 $p^T a$  is the length of



Inner product

$$\mathbf{p}^T \mathbf{a} = \|\mathbf{p}\| \cdot \|\mathbf{a}\| \cdot \cos \alpha$$

• If ||p|| = 1,

 $p^T a$  is the length of the projection of a onto p.







Inner product

 $||\boldsymbol{p}|| = 1$ 





















## **Projector**

• For any nonzero vector **p** the matrix

$$\left(\frac{\boldsymbol{p}}{\|\boldsymbol{p}\|}\right)\left(\frac{\boldsymbol{p}}{\|\boldsymbol{p}\|}\right)^{T} = \frac{\boldsymbol{p}\boldsymbol{p}^{T}}{\|\boldsymbol{p}\|^{2}} = \frac{\boldsymbol{p}\boldsymbol{p}^{T}}{\boldsymbol{p}^{T}\boldsymbol{p}}$$

is the *projector matrix* for  $\boldsymbol{p}$ .



















$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$



Inner product

$$\bullet a^T b = ||a|| \cdot ||b|| \cdot \cos \alpha$$

$$\bullet a^T b = 0 \iff \cos \alpha = 0$$



In this case we say that a and b are orthogonal.



















# **Gram-Schmidt algorithm**

$$a'=a$$

$$b' = b - \frac{a'a'^T}{a'^Ta'}b$$

$$c' = c - \frac{a'a'^T}{a'^Ta'}c - \frac{b'b'^T}{b'^Tb'}c$$

• • •



# Orthonormality

• If vectors **a** and **b** are orthogonal and unitlength, we say they are *orthonormal*.

• A set of m orthonormal vectors in  $\mathbb{R}^m$  is an orthonormal basis of  $\mathbb{R}^m$ .

• Give an example of an orthonormal basis for  $\mathbb{R}^3$ .



Box product

- Let  $a, b \in \mathbb{R}^2$ .
- The box product of  $\boldsymbol{a}$  and  $\boldsymbol{b}$  is:

$$|a \ b| = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - b_1 a_2$$



Box product

• 
$$|a \ b| = ||a|| ||b|| \sin \alpha$$

$$\bullet |b a| = -|a b|$$



Box product

$$|\boldsymbol{a} \ \boldsymbol{b}| = \|\boldsymbol{a}\| \|\boldsymbol{b}\| \sin \alpha$$





• Box product in 3D:

$$|a \ b \ c| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

 Corresponds to the *signed volume* of a parallelepiped constructed on the three vectors



• Box product in 3D:

$$|a \ b \ c| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

- Corresponds to the *signed volume* of a parallelepiped constructed on the three vectors
- The sign determines the *orientation* of the vectors.



### Orientation

• *m* vectors in an *m*-dimensional space have an *orientation*.

• Orientations in 2D and 3D have conventional names: *right-handed* and *left-handed*.

• You can also speak about *positive* and *negative* orientation *relative to the basis*.



# Right-handed basis

• In mathematics the right-handed basis is most often used.



In this basis any *positively* oriented pair is also a right-handed pair.



• How to determine whether a given point lies to the left or to the right of a given segment? 4





Cross product

$$egin{aligned} oldsymbol{a} imes oldsymbol{b} & oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{bmatrix}$$

$$= \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$



Cross product

- $a \times b$  is orthogonal to both a and b
- $(a, b, a \times b)$  is positively oriented



# Orthogonalization in 3D

 Orthogonalization of a right-handed basis in 3D using cross product:

• 
$$c' = a \times b$$

• 
$$b' = c' \times a$$

$$\mathbf{a}' = \mathbf{a}'$$



• A magical unicorn in your 3D world is flying in the direction given by vector  $\boldsymbol{v}$ .

• The user pushes the button "right", which should give an impulse to the unicorn towards the right (wrt its current flight direction). Compute the vector pointing to the right.



# Mathematical background

#### • Vectors:

- Points, directions, vectors and matrices
- Linear combinations, convex combinations
- Norm, normalization
- Inner product, orthogonality, orthogonalization
- Box product, Cross product
- Orientation
- Representation of a straight line



# Straight line

Parametric representation

• 
$$\mathbf{x} = \lambda \mathbf{a} + (1 - \lambda) \mathbf{b}$$

$$x = a + t(b - a)$$

Implicit representation

$$\mathbf{n}^T(\mathbf{x} - \mathbf{p}) = 0$$

$$\mathbf{n}^T \mathbf{x} = \mathbf{n}^T \mathbf{p}$$

$$n_1x_1 + n_2x_2 - b = 0$$



# Mathematical background

- Matrices:
  - Linear transformations
  - Invertibility, rank, determinant
  - Orthogonal transformations
  - Affine transformations
  - Homogeneous coordinates



• A transformation  $f: \mathcal{V}_1 \to \mathcal{V}_2$  is called *linear* (also *homomorphism*) if

$$f(\alpha x + y) = \alpha f(x) + f(y)$$

- Examples of linear transformations are:
  - Rotation around origin, scaling, shear,
     reflection, projection or combinations of those.



- Which of those are linear transformations?
  - f(x) = x
  - f(x) = -4x
  - f(x) = 4x + 4
  - $f(x) = x^2$
  - f(x) = 3
  - f(x) = 0



- Which of those are linear transformations?
  - f(x) = Ax
  - $f(x) = x^T x$
  - $f(x) = a^T x$
  - f(x) = |a b x|
  - $f(x) = a \times x$
  - $f(x) = a^T x + |a b x| + a \times x + Ax$



$$f\begin{pmatrix}2\\-3\\4\end{pmatrix} =$$



$$f\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix} = f\begin{pmatrix} 2\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$



$$f\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix} = f\begin{pmatrix} 2\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$
$$= 2f\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3f\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4f\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$$



$$f\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix} = f\begin{pmatrix} 2\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$

$$=2f_1-3f_2+4f_3$$



$$f\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix} = f\begin{pmatrix} 2\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$
$$= |\mathbf{f}_1 \ \mathbf{f}_2 \ \mathbf{f}_3| \begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix}$$



$$f\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix} = f\begin{pmatrix} 2\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} - 3\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} + 4\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} \end{pmatrix}$$
$$= \mathbf{F}\begin{pmatrix} 2\\ -3\\ 4 \end{pmatrix}$$



Each linear transformation corresponds to a matrix.



Each linear transformation corresponds to a matrix.

Columns of a matrix show how it transforms the canonical basis



• How does this matrix transform the (canonical) basis?

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$



• How does this matrix transform the (canonical) basis?

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$



• How does this matrix transform the (canonical) basis?

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$



• How does this matrix transform the (canonical) basis?

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$



• Which matrix does the following?





• Which matrix does the following?





Let f, g, h be linear transformations and
 F, G, H the corresponding matrices, then:

 Composition of transformations corresponds to matrix multiplication:

$$(f \otimes g)(x) = f(g(x)) = FGx$$



Let f, g, h be linear transformations and
 F, G, H the corresponding matrices, then:

 Function composition is associative, hence matrix multiplications is too:

$$(f \otimes g) \otimes h = f \otimes (g \otimes h)$$
  
 $(FG)H = F(GH)$ 



Let f, g, h be linear transformations and
 F, G, H the corresponding matrices, then:

Sum of transformations corresponds to matrix sum:

$$(f+g)(x) = f(x) + g(x) = (F+G)x$$



Let f, g, h be linear transformations and
 F, G, H the corresponding matrices, then:

Composition is distributive wrt sum:

$$(f+g) \otimes h = f \otimes h + g \otimes h$$
  
 $(F+G)H = FH + GH$ 



#### Rank

• Consider a linear transformation  $f: \mathbb{R}^3 \to \mathbb{R}^3$  it will always either:

- Map the whole 3D space to itself somehow
- Project the whole 3D space to a plane
- Project the whole 3D space to a line
- Map all points to 0.



#### Rank

• The dimensionality of the resulting space is the *rank* of *f* .

• If f is full rank (i.e. rank(f) = 3 in our case), it is *invertible*. Otherwise it is not.

• f is invertible  $\Leftrightarrow \det(F) \neq 0$ 



• A transformation *F* is called orthogonal if it maps the canonical basis into an **orthonormal basis**.



• A transformation *F* is called orthogonal if it maps the canonical basis into an **orthonormal basis**.

 It must keep lengths and angles intact, i.e. it is a rotation (possibly mirrored).

• 
$$F^T F = ?$$



• A transformation *F* is called orthogonal if it maps the canonical basis into an **orthonormal basis**.

- It must keep lengths and angles intact, i.e. it is a rotation (possibly mirrored).
- $\mathbf{F}^T \mathbf{F} = \mathbf{I}$ , because the columns are orthonormal



• A transformation *F* is called orthogonal if it maps the canonical basis into an **orthonormal basis**.

- It must keep lengths and angles intact, i.e. it is a rotation (possibly mirrored).
- $\mathbf{F}^T \mathbf{F} = \mathbf{I}$ , because the columns are orthonormal
- Hence,  $F^{-1} = F^T$



To compute the inverse of an orthogonal matrix, simply transpose it.



• You are standing at the origin, rotated with respect to the coordinate system, looking in the direction (0.3, 0.4) (your local "x" axis).

• At position (7,2) there is an object. What are the coordinates of this object with respect to you?





### **Examples**

$$\mathbf{R}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

$$S(a,b) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

$$\mathbf{Mir}_{y} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{Sh}_{\mathbf{x}}(\mathbf{a}) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$



### **Examples**

Rotation around z axis:

$$\mathbf{R}_{\mathbf{Z}}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotation around y axis:

$$R_{z}(\alpha) = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$



#### Shift

• Shift (translation) is not a linear transformation.

• To deal with shifts we must introduce the notion of an *affine space* and *affine transformations*.



Vector space



- Vector space
  - Vectors  $\boldsymbol{v} \in \mathbb{R}^3$

- Basis:  $\{e_1, e_2, e_3\}$
- Linear transformations f(x) = Fx



- Vector space
  - Vectors  $\boldsymbol{v} \in \mathbb{R}^3$

- Basis:  $\{e_1, e_2, e_3\}$
- Linear transformations f(x) = Fx

- Affine space
  - Vectors  $\boldsymbol{v} \in \mathbb{R}^3$
  - Points  $P \in \mathbb{R}^3$ 
    - point+vector = point
  - Frame:  $(0, \{e_1, e_2, e_3\})$
  - Affine transformations:

$$f(\mathbf{v}) = \mathbf{F}\mathbf{v}$$
$$f(P) = \mathbf{t} + \mathbf{F}\mathbf{p}$$



Vector space







#### Affine transformations

$$f(\boldsymbol{p}) = \boldsymbol{t} + \boldsymbol{F}\boldsymbol{p}$$



#### Affine transformations

$$f(\boldsymbol{p}) = \boldsymbol{t} + \boldsymbol{F}\boldsymbol{p}$$

$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} + \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$



#### Affine transformations

$$f(\boldsymbol{p}) = \boldsymbol{t} + \boldsymbol{F}\boldsymbol{p}$$

$$\begin{pmatrix} q_1 \\ q_2 \end{pmatrix} = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} + \begin{pmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

$$\begin{pmatrix} q_1 \\ q_2 \\ 1 \end{pmatrix} = \begin{pmatrix} f_{11} & f_{12} & t_1 \\ f_{21} & f_{22} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ 1 \end{pmatrix}$$



- We shall represent the **points** of an affine space using 3-dimensional vectors of the form  $(p_1, p_2, 1)^T$
- We shall represent the **vectors** of an affine space using 3-dimensional vectors of the form  $(v_1, v_2, 0)^T$
- Any affine transformation is a matrix

$$\begin{pmatrix} f_{11} & f_{12} & t_1 \\ f_{21} & f_{22} & t_2 \\ \hline 0 & 0 & 1 \end{pmatrix}$$



- Analogously, for 3D space we use 4-dimensional vectors and 4x4 matrices.
- E.g. the following transformation rotates around z axis and shifts along x axis by 0.5:

$$\begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 0.5 \\
\sin \phi & \cos \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
\hline
0 & 0 & 0 & 1
\end{pmatrix}$$



• Note how the representation implicitly enforces the rules:

- vector + vector = vector
- point + vector = point
- point + point = undefined
- convex combination of points = point



• Rotation:

$$\mathbf{R}(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

• Scaling:

$$\mathbf{S}(a,b) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

• Translation:  $T(x,y) = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & y \\ \hline 0 & 0 & 1 \end{pmatrix}$ 



• Construct a matrix, that performs a rotation by 10 degrees around the point (20, 30) in homogeneous coordinates.



• Construct a matrix, that performs a rotation by 10 degrees around the point (20, 30) in homogeneous coordinates.

$$T(20,30)R(10)T(-20,-30)$$



# Mathematical background

- Matrices:
  - Linear transformations
  - Invertibility, rank, determinant
  - Orthogonal transformations
  - Affine transformations
  - Homogeneous coordinates

