Developing a Predictive Model for GST Analytics

Team ID: GSTN_821

Solution developed by undergraduate students of Netaji Subhas University of Technology.

Problem Statement

Imbalanced Target Class

The dataset has a majority of 0s, making class 1 harder to predict.

Missing data

Some features had missing values, requiring careful imputation to ensure consistency.

Selecting Best Model

We evaluated models based on accuracy, efficiency, and their ability to handle large datasets.

Dataset Overview

X_train: 785133 records, ID+21 features
Y_train: 785133 records, ID+1 target(bool)

- 0.2

Correlation Matrix Heatmap: Displaying relationships between numeric features.

Null Values Bar Chart: Showing the proportion of missing data across features.

Model Training & Performance

KNN

Accuracy: 0.9729

Precision: 0.8301

Recall: 0.8958

F1 Score: 0.8617

AUC-ROC: 0.9867

Confusion Matrix:

[[232506 4526]

[2572 22106]]

Log Loss: 0.2525

Balanced Accuracy: 0.9383

Catboost

Accuracy: 0.9783

Precision: 0.8485

Recall: 0.9369

F1 Score: 0.8905

AUC-ROC: 0.9947

Confusion Matrix:

[[232902 4130]

[1556 23122]]

Log Loss: 0.0501

Balanced Accuracy: 0.9598

