UMB CS 622 PDA ⇔ CFL

Monday, March 25, 2024

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Announcements

- HW 5 in
 - ◆ Due Mon 3/25 12pm noon

- HW 6 out
 - Due Mon 4/1 12pm noon

(AN UNMATCHED LEFT PARENTHESIS CREATES AN UNRESOLVED TENSION THAT WILL STAY WITH YOU ALL DAY.

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
<u>describes</u> a Regular Lang	<u>describes</u> a CFL

Regular Languages	Context-Free Languages (CFLs)	
Regular Expression	Context-Free Grammar (CFG)	
<u>describes</u> a Regular Lang	g <u>describes</u> a CFL	
Finite State Automaton (FSM)	???	
<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL	

	Regular Languages	Context-Free Languages (CFLs)		
thm	Regular Expression	Context-Free Grammar (CFG)	def	
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL		
def	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm	
	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL		

	Regular Languages	Context-Free Languages (CFLs)		
thm	Regular Expression	Context-Free Grammar (CFG)	def	
	<u>describes</u> a Regular Lang	<u>describes</u> a CFL		
	Finite State Automaton (FSM)	Push-down Automata (PDA)	thm	
def	<u>recognizes</u> a Regular Lang	<u>recognizes</u> a CFL		
	Proved:	Must Prove:		
	Regular Lang ⇔Regular Expr ☑	CFL ⇔ PDA ???		

A lang is a CFL iff some PDA recognizes it

- \Rightarrow If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove this part, show: the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition

Shorthand: Multi-Stack Push Transition

Note the <u>reverse</u> order of pushes

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

 \Rightarrow **a**T**ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \to \mathbf{a} T \mathbf{b}$)

arepsilon,\$ightarrow arepsilon

 $q_{
m accept}$

a,aightarrowarepsilon

b,b $\rightarrow \varepsilon$

Example Derivation using CFG:

Tab\$

ab\$

b\$

ab

 q_{loop}

 $T \rightarrow Ta$

 $T \rightarrow \varepsilon$

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - To prove this part: show PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- 3. Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA

PDA P -> CFG G: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)

The Key IDEA

• To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \longrightarrow |$ If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Regular vs Context-Free Languages (and others?)

Is This Diagram "Correct"?

(What are the statements implied by this diagram?)

1. Every regular language is a CFL

2. Not every CFL is a regular language

How to Prove This Diagram "Correct"?

1. Every regular language is a CFL

2. Not every CFL is a regular language

Find a CFL that is not regular

$$\{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

- It's a CFL
 - Proof: CFG $S \rightarrow 0S1 \mid \varepsilon$
- It's not regular
 - Proof: by contradiction using the Pumping Lemma

How to Prove This Diagram "Correct"?

1. Every regular language is a CFL

For any regular language A, show ...

... it has a CFG or PDA

☑ 2. Not every CFL is a regular language

A regular language is represented by a:

- DFA
- NFA
- Regular Expression

Regular Languages are CFLs: 3 Ways to Prove

• DFA → CFG or PDA

• NFA → CFG or PDA

See HW 6!

Regular expression → CFG or PDA

Deterministic CFLs and DPDAs

Previously: Generating Strings

Generating strings:

- 1. Start with start variable,
- 2. Repeatedly apply CFG rules to get string (and parse tree)

$$A \rightarrow 0A1$$

$$A \to B$$

$$B \to \#$$

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$

Generating vs Parsing

Generating strings:

- 1. Start with start variable,
- 2. Repeatedly apply CFG rules to get string (and parse tree)

$$A \rightarrow 0A1$$

 $A \to B$

 $B \rightarrow \#$

In practice, <u>opposite</u> is more interesting:

- 1. Start with string,
- 2. Then parse into parse tree

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Generating vs Parsing

- In practice, parsing a string more important than generating one
 - E.g., a compiler (first) parses source code into a parse tree
 - (Actually, any program with string inputs must first parse it)

Previously: Example CFG>PDA

Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \to \mathbf{a} T \mathbf{b}$)

 \Rightarrow **a**T**ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

b,bightarrow arepsilon

This Machine is parsing:

- 1. Start with (input) string,
- 2. Find rules that generate string

\		1 DA LAGIIIPIC		
State	Input	Stack	Equiv Rule	
q_{start}	aab			
$q_{ m loop}$	aab	<i>S</i> \$		
$q_{ m loop}$	aab	a <i>T</i> b\$	$S \rightarrow \mathbf{a}T\mathbf{b}$	
$q_{ m loop}$	ab	<i>T</i> b\$		
$q_{ m loop}$	ab	Tab\$	T o Ta	
$q_{ m loop}$	ab	ab\$	$T \rightarrow \varepsilon$	
$q_{ m loop}$	b	b \$		
$q_{ m loop}$		\$		
$q_{ m accept}$				

PDA Fxample

Generating vs Parsing

- In practice, parsing a string more important than generating one
 - E.g., a compiler (first step) parses source code into a parse tree
 - (Actually, any program with string inputs must first parse it)

• But: the PDAs we've seen are non-deterministic (like NFAs)

Previously: (Nondeterministic) PDA

Generating vs Parsing

- In practice, parsing a string more important than generating one
 - E.g., a compiler (first step) parses source code into a parse tree
 - (Actually, any program with string inputs must first parse it)
- But: the PDAs we've seen are non-deterministic (like NFAs)

- Compiler's parsing algorithm must be deterministic
- <u>So</u>: to model parsers, we need a **Deterministic PDA** (DPDA)

DPDA: Formal Definition

The language of a DPDA is called a *deterministic context-free language*.

A deterministic pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$,

where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow (Q \times \Gamma_{\varepsilon}) \cup \{\emptyset\}$ is the transition function

"do nothing"

- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

A *pushdown automaton* is a 6-tuple

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta \colon Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

<u>Difference:</u> **DPDA has only <u>one possible action,</u>** for any given <u>state, input,</u> and <u>stack op</u> (similar to **DFA** vs **NFA**)

Must take into account ε reads or stack ops! E.g., if $\delta(q, a, X)$ does "something", then $\delta(q, \varepsilon, X)$ must "do nothing"

DPDAs are <u>Not</u> Equivalent to PDAs!

of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs

Compiler Stages

A Lexer Implementation

```
/* C Declarations: */
 #include "tokens.h" /* definitions of IF, ID, NUM, ... */
 #include "errormsq.h"
 union {int ival; string sval; double fval;} yylval;
 int charPos=1;
 #define ADJ (EM tokPos=charPos, charPos+=yyleng)
 /* Lex Definitions: */
 digits [0-9]+
 응응
 /* Regular Expressions and Actions: */
                             {ADJ; return IF;}
<mark>→</mark> [a-z] [a-z0-9]*
                             {ADJ; yylval.sval=String(yytext);
                               return ID; }
 {digits}
                           {ADJ; yylval.ival=atoi(yytext);
                               return NUM; }
```

({digits}"."[0-9]*)|([0-9]*"."{digits})

("--"[a-z]*"\n")|(" "|"\n"|"\t")+

Remember our analogy:

- DFAs are like programs
- All possible DFA tuples is like a programming language

This DFA is a real program!

A "lex" tool converts the program:

- from "DFA Lang" ...

{ADJ;

yylval.fval=atof(yytext);

{ADJ;}

{ADJ; EM error("illegal character");}

return REAL; }

- to an **equivalent** one in \mathbb{C} !

DFAs (represented as regular expressions)!

Compiler Stages

A Parser Implementation

Just write the CFG!

Remember our analogy: **CFGs** are like **programs**

This CFG is a real program!

A "yacc" tool converts the program:

- from "CFG Lang" ...
- to an **equivalent** one in \mathbb{C} !

DPDAs are <u>Not</u> Equivalent to PDAs!

 $egin{aligned} R & o S \mid T \ S & o \mathbf{a} S \mathbf{b} \mid \mathbf{a} \mathbf{b} \ T & o \mathbf{a} T \mathbf{b} \mathbf{b} \mid \mathbf{a} \mathbf{b} \end{aligned}$

Parsing = generating reversed:

- start with string
- end with parse tree
- PDA: can non-deterministically "try all rules" (abandoning failed attempts);
- **DPDA**: must <u>choose one</u> rule at each step!

Should use S rule $aa\underline{ab}bb \longrightarrow a\underline{aSb}b$ Should use T rule

When parsing reaches this position, does it know which rule, S or T?

To choose "correct" rule, need to "look ahead" at rest of the input!

PDAs recognize CFLs, but DPDAs only recognize DCFLs! (a subset of CFLs)

Subclasses of CFLs

- L = left-to-right
- L = leftmost derivation

Game: <u>"You're the Parser"</u>: Guess which rule applies?

(and how much did you have to "look ahead"?)

1
$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

- $\stackrel{2}{\longrightarrow} S \stackrel{}{\longrightarrow} \text{begin } S L$
- $3 S \rightarrow \text{print } E$

$$4 L \rightarrow \text{end}$$

$$5 L \rightarrow ; SL$$

6
 $E \rightarrow \text{num} = \text{num}$

if
$$2 = 3$$
 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

```
1 S \rightarrow \text{if } E \text{ then } S \text{ else } S
```

- $2 S \rightarrow \text{begin } S L$
- $\mathbf{S} S \to \text{print } E$

$$\stackrel{4}{\sim} L \rightarrow \text{end}$$

$$5 L \rightarrow ; SL$$

$$6 E \rightarrow \text{num} = \text{num}$$

- L = left-to-right
- L = leftmost derivation

- 1 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $\mathbf{S} S \to \text{print } E$

- $\stackrel{4}{\sim} L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

- L = left-to-right
- L = leftmost derivation

- 1 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$
- $2 S \rightarrow \text{begin } S L$
- $S \rightarrow \text{print } E$

- $4 L \rightarrow \text{end}$
- $5 L \rightarrow ; SL$
- $6 E \rightarrow \text{num} = \text{num}$

if 2 = 3 begin print 1; print 2; end else print 0

"Prefix" languages (Scheme/Lisp) are easily parsed with LL parsers (zero lookahead)

1
$$S \rightarrow S$$
; S 4 $E \rightarrow id$
2 $S \rightarrow id := E$ 5 $E \rightarrow num$

• L = left-to-right

• **R** = rightmost derivation
$$\stackrel{3}{\circ}$$
 $S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

When parse is here, can't determine whether it's an assign (:=) or addition (+)

Need to <u>save</u> input (lookahead) to some memory, like a **stack!** this is a job for a (D)PDA!

$$S \rightarrow S$$
; S

$$E \to id$$

• L = left-to-right

$$S \rightarrow S$$
; S $E \rightarrow id$
 $S \rightarrow id := E$ $E \rightarrow num$

$$E \rightarrow \text{num}$$

• **R** = rightmost derivation $S \rightarrow \text{print}(L)$ $E \rightarrow E + E$

$$S \rightarrow \text{print} (L)$$

$$E \rightarrow E + E$$

$$a := 7;$$
 $b := c + (d := 5 + 6, d)$

State name

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

Stack
 Input
 Action

 1

$$a := 7 ; b := c + (d := 5 + 6 , d)$$
 shift

 1 id₄
 $:= 7 ; b := c + (d := 5 + 6 , d)$ shift

 1 id₄ := 6
 7; $b := c + (d := 5 + 6 , d)$ shift

- L = left-to-right
- **R** = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

Stack
 Input
 Action

 1

$$a := 7 ; b := c + (d := 5 + 6 , d)$$
 $shift$

 1 id₄ := 6
 $7 ; b := c + (d := 5 + 6 , d)$
 $shift$

 1 id₄ := 6 num₁₀
 $; b := c + (d := 5 + 6 , d)$
 $shift$
 $; b := c + (d := 5 + 6 , d)$
 $; c := c + (d := 5 + 6 , d)$
 $; c := c + (d := 5 + 6 , d)$

- $1 S \rightarrow S$; $S \rightarrow Id$
- L = left-to-right $2S \rightarrow id := E$ $5E \rightarrow num$
- R = rightmost derivation $\stackrel{3}{\circ} S \rightarrow \text{print} (L) \stackrel{6}{\circ} E \rightarrow E + E$

```
Stack

Input

Action

a := 7 ; b := c + ( d := 5 + 6 , d ) $ shift

Can determine (rightmost) rule

id<sub>4</sub> := c + ( d := 5 + 6 , d ) $ shift

id<sub>4</sub> := c + ( d := 5 + 6 , d ) $ shift

id<sub>4</sub> := c + ( d := 5 + 6 , d ) $ reduce E → num
```

- L = left-to-right

- $1 S \rightarrow S ; S \qquad 4 E \rightarrow id$
- $S \rightarrow id := E$ $S \rightarrow num$
- **R** = rightmost derivation $\stackrel{3}{\circ} S \rightarrow \text{print}(L) \stackrel{6}{\circ} E \rightarrow E + E$

```
Stack
                                              Input
                                                                         Action
                   a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                         shift
                      := 7 ; b := c + (d := 5 + 6 , d) $
                                                                         shift
1 id4
_1 id_4 :=_6
                      Can determine = c + (d := 5 + 6, d)
                                                                        shift
                     (rightmost) rule = c + (d := 5 + 6, d) $
                                                                       reduce E \rightarrow num
_{1} id_{4} :=_{6} num_{10}
_{1} id_{4} :=_{6} E_{11} \checkmark
                             ; b := c + (d := 5 + 6, d) $
                                                                        reduce S \rightarrow id := E
```

- L = left-to-right
- R = rightmost derivation

```
S \rightarrow S; S E \rightarrow id

S \rightarrow id := E E \rightarrow num

S \rightarrow print (L) E \rightarrow E + E
```

```
Stack
                                                                       Action
                                             Input
                   a := 7 ; b := c + (d := 5 + 6 , d) $
                                                                       shift
                                                                             LR Parsers also called
                     := 7 ; b := c + (d := 5 + 6 , d) $
1 id4
                                                                       shift
                                                                             "Shift-Reduce" Parsers
_1 id_4 :=_6
                         7; b := c + (d := 5 + 6, d)$
                                                                       shift
                            ; b := c + (d := 5 + 6, d) $
_{1} id_{4} :=_{6} num_{10}
                                                                      reduce E \rightarrow num
_{1} id<sub>4</sub> :=<sub>6</sub> E_{11}
                                                                      reduce S \rightarrow id := E
                            ; b := c + (d := 5 + 6, d)
_1 S_2
                              b := c + (d := 5 + 6, d)
                                                                       shift
```

To learn more, take a Compilers Class!

