Ideally, the programming language best suited for the task at hand will be selected. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. There exist a lot of different approaches for each of those tasks. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Following a consistent programming style often helps readability. Techniques like Code refactoring can enhance readability. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging), Ideally, the programming language best suited for the task at hand will be selected. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Scripting and breakpointing is also part of this process. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Different programming languages support different styles of programming (called programming paradigms). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language.