Abstract Algebra: Lecture 10

Leo

2024.10.24

invertible mat.s Today we talk about group actions. **Example 1.** Recall: Let G = GL(V), this is a linear group. And we have a set V, also a vector space. 1. Each $g \in G$ is a bijection from V to V; km & kn B kl. 2. $\forall v \in V \text{ and } 1 \in G \text{ we have } v^1 = v;$ 3. $\forall v \in V \text{ and } g, h \in G \text{ we have } v^{gh} = (v^g)^h$. $BAx = x^{AB} = (x^A)^B$ We called G acts on V. **Definition 2.** Let G be a group and Ω be a set. We say that G acts on Ω if (1). each element of G is (bijection) from Ω to Ω ; Gis a group composed of bij. from Ω to Ω.
i.e. (hg)w=hlgw). (2). $\forall \omega \in \Omega, \ \omega^1 = \omega;$ (3). $\forall \omega \in \Omega \text{ and } g, h \in G \text{ we have } \underline{\omega^{gh}} = (\omega^g)^h$. We denote this action by $G \curvearrowright \Omega$ Sym(a) O.a., Alt(a) O.a. **Example 3.** $Sym(\Omega)$ and $Alt(\Omega)$ acts on Ω naturally. **Example 4.** Let G be a group, for each element $g \in G$, we define action $g: x \mapsto xg$ for all $x \in G$. We denote this map by \hat{g} , called right multiplication. This is a group action. We denote the group of this = $\{\hat{q} \mid \hat{q}: x \mapsto xg \text{ for all } x \in G, \text{ where } g \in G\}$. $\Rightarrow x^g = g^2xg$ **Example 5.** Let G be a group, for each element $g \in G$, we define action $g: x \mapsto g^{-1}xg$ for all $x \in G$. We denote this map by \tilde{g} , called conjugation. This is a group action. We denote the group of this example 6. Let G be a group, for each element $g \in G$, we define action $g: x \mapsto g^{-1}x$ for all $x \in G$. action by G. We denote this map by g, called left multiplication. This is a group action. We denote the group of this action by G. $G = \{g \mid g : \chi \mapsto g\chi \text{ for all } \chi \in G \}$. Exercise 7. If we right group action in another way, i.e. $(gh)\omega = g(h\omega)$, check example 4,5,6. this action by G. (gh) w= w(hg)= wh) g= g(hw). Proposition 8. 1. $\hat{g}, \check{g}, \tilde{g} \in \text{Sym}(G)$. $2. \ \hat{G}, \check{G}, \check{G} \leqslant \operatorname{Sym}(G).$ (gh) w= ghwhg = g' (hw)g = g (hw) $(\mathring{g}\mathring{h})w = \mathring{g}\mathring{h}W = \mathring{g}(\mathring{h}W) = \mathring{g}(\mathring{h}W)$

 $\int_{\chi} \hat{g} \hat{g} = \{ \bar{g} \mid \bar{g} : \chi \mapsto \chi g, \chi g = g^{-1}\chi \text{ for some } g^{-1} \}.$ $\chi^{\bar{g}} \bar{g} = (\chi g)^{\bar{g}} = (g^{-1}\chi)^{\bar{g}} = g^{-1}\chi g \in \tilde{G}. \Rightarrow g^{-1}\chi g = \chi \Rightarrow g\chi = \chi g,$ for all x e.G. g. eZ(G). gt eZ(G) = GNG=Z(G)=Z(G). $= Z(\hat{G}) = Z(\hat{G}), \quad \hat{G} \cap \hat{G} = \hat{G} \cap \hat{G} = \{1\}; \quad Z(\hat{G}) = \{g \mid g : \chi \mapsto \chi g = g \chi \}. = Z(\hat{G})$ $C \in (G \times H)$, $C \cong A \in Z(G) \times \{0\} \cong Z(G)$ **Definition 9.** For two groups G and H, assume there exist $C \lesssim Z(G)$ and $C \lesssim Z(H)$. s.t. $C \neq \{1\}$. Let $Z_1 \leqslant Z(G)$ and $Z_2 \leqslant Z(H)$. s.t. $Z_1 \simeq Z_2 \simeq C$. Let ϕ be an isomorphism from Z_1 to Z_2 . Let $X=(G\times H)/\langle (x,x^{\phi})|x\in Z_1\rangle\simeq (G\times H)/C$. This group X is called a central product of G and H. denoted by $G \circ H$. **Definition 10.** Let H, K < G s.t. $H \triangleleft G$ and $H \cap K = \{1\}$. Then $\langle H, K \rangle = HK = H \rtimes K = H : K$ called a semi-direct product of H and K G acts on Ω also can be said as an action of G on Ω or group action of G on Ω . Definition 11. Let G act on Ω . Then G partitions Ω into orbits, where an orbit is $\Delta = \omega^G = \{\omega^g | g \in \mathcal{G}\}$ Example 12. \tilde{G} acts on G naturally, i.e. \tilde{g} $\tilde{$ $\{G\}, where \ \omega \in \Omega. \ So \ \Omega = \bigsqcup_{\omega \in \Omega} \omega^G$ $x_i^G = \{g^{-1}x_ig|g \in G\}$ called a conjugacy class of x_i , denoted by $C(x_i)$. $C(x_i) = \{g^{-1}x_ig|g \in G\}$ is a orbit of the action of G on G. Definition 13. For G acting on Ω , $G_{\omega} = \{g \in G | \omega^g = \omega\}$ called the stabilizer of ω in G. It's easy to check that G_{ω} is a subgroup of G. |Orb(w)|= |G: Stab(w) (=> 1G1= (Orb(w) | Stab(w)| **Theorem 14.** (Orbit-Stabilizer Theorem) For G acting on Ω , For $\omega \in \Omega$, $|G| = |\omega^G| \cdot |G_{\omega}|$. 证明. Let $\Delta = \omega^G = \{\delta_1, \delta_2, \dots, \delta_m\}$ write $\delta = \delta_1$. Let g_i s.t. $\delta^{g_i} = \delta_i$ for $1 \leqslant i \leqslant m$. Claim: For any element $x \in G$, $\delta^x = \delta_i \Leftrightarrow x \in G_\delta g_i$. Which is due to $\delta^x = \delta_i = \delta^{g_i} \Leftrightarrow \delta^{xg_i^{-1}} = \delta \Leftrightarrow$ $xg_i^{-1} \in G_\delta \Leftrightarrow x \in G_\delta g_i.$ Oberserve: consider conjugate action of G on itself, $|x^G| = 1$ iff $x \in Z(G)$. So by Orbit-Stabilizer Theorem, $|G| = |Z(G)| + |C(g_1)| + \cdots + |C(g_r)|$ and $|g_i^G| + |G|$ due to $|G| = |C(g_i)| \cdot |C_G(g_i)|$. $\chi \in \mathbb{Z}(G) \Leftrightarrow g \times g \times g$. **Theorem 15.** (Sylow's 1st Theorem) Let G be a finite group, $|G| = p^e m$ s.t. p is a prime and (p,m)=1, a subgroup H of G s.t. $|H|=p^e$ exists. And H is called a Sylow p-subgroup of G, denoted by $H \in Syl_p(G)$.

Recall: If G is abelian, then let $H=\{g\in G||g|\mid p^e\}$. Then H is a subgroup of G and $|H|=p^e$. In other words H is a Sylow p-subgroup of G. 证明. Write $|G|=|Z(G)|+|C(g_1)|+\cdots+|C(g_r)|$. If p||Z(G)| then Z(G) has a Sylow p-subgroup N

证明. Write $|G| = |Z(G)| + |C(g_1)| + \cdots + |C(g_r)|$. If p||Z(G)| then Z(G) has a Sylow p-subgroup N and $N \triangleleft G$. Then $\bar{G} = G/N$ has order $|\bar{G}| < |G|$. If $|N| = p^e$ then N is a Sylow p-subgroup of G. If $|N| < p^e$ then $|\bar{G}| < p^e m$. By induction, \bar{G} has a Sylow p-subgroup \bar{N} , the preimage of \bar{N} is a Sylow p-subgroup of G.

 $|C(g_i)| \cdot |C_G(g_i)|$. Then $p^e \mid |C_G(g_i)|$ and by induction $C_G(g_i)$ has a Sylow p-subgroup N, which is also a Sylow p-subgroup of G.

Theorem 16. (Cauthy) If $p \mid |G|$ then G has a subgroup of order p. Lemma 17. If G is a p-group i.e. $|G| = p^n$ then G has a non-trivial center. \square Sylow's law - \square

9. This exercise outlines a proof of Cauchy's Theorem due to James McKay (Another proof of Cauchy's group theorem, Amer. Math. Monthly, 66(1959), p. 119). Let G be a finite group and let p be a prime dividing |G|. Let S denote the set of p-tuples of elements of G the product of whose coordinates is 1: $S = \{(x_1, x_2, \dots, x_p) \mid x_i \in G \text{ and } x_1 x_2 \cdot | \cdots x_p = 1\}.$ (a) Show that S has $|G|^{p-1}$ elements, hence has order divisible by p.

Define the relation \sim on S by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

- (b) Show that a cyclic permutation of an element of S is again an element of S.
- (c) Prove that \sim is an equivalence relation on \mathcal{S} .

 (d) Prove that an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.
- (e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). Deduce that $|G|^{p-1} = k + pd$, where k is the number of classes of size 1 and d is the
- number of classes of size p. (f) Since $\{(1, 1, ..., 1)\}$ is an equivalence class of size 1, conclude from (e) that there must be a nonidentity element x in G with $x^p = 1$, i.e., G contains an element of order p. [Show $p \mid k$ and so k > 1.] Otherwise, $\gamma \mid LHS$, $RHS = o \pmod{p}$