

Escola Politécnica da USP Departamento de Engenharia de Sistemas Eletrônicos

Exp. 1: Arranjos de Antenas (Beamforming)

Allan E. Feitosa

Vítor H. Nascimento

Agosto de 2023

1 Princípios básicos

Imagine um arranjo de M antenas. Para simplificar, vamos supor que as antenas estejam distribuídas uniformemente em linha reta, como na figura abaixo.

Figura 1: Arranjos de antenas e sinal de onda plana.

Imagine que uma onda se propaga no espaço, vinda da direção dada pelo ângulo θ . Defina o sinal chegando na antena m como sendo $x_m(t)$. Suponha inicialmente que haja apenas uma frente de onda chegando ao arranjo, vinda da direção θ (Figura 1). Se a fonte estiver bem distante do arranjo, podemos aproximar a frente de onda por uma onda plana, ou seja, o sinal observado é constante num plano perpendicular à direção de propagação, como pode ser visto na Figura 2.

O sinal recebido na antena m=0 pode ser representado por

$$x_0(t) = f(t).$$

Então, o sinal chegando na antena 1 será $x_1(t)$, e deverá chegar na antena m=1 antes de chegar na antena m=0, se θ for positivo. O adiantamento será $\tau=\frac{d \sin \theta}{c}$, em que c é a velocidade de propagação (Figura 3).

Figura 2: Ondas planas perpendiculares à direção de propagação.

Figura 3: Cálculo do atraso τ .

Portanto,

$$x_1(t) = f(t+\tau) = f\left(t + \frac{d \sin \theta}{c}\right),$$

$$x_2(t) = f(t+2\tau) = f\left(t + \frac{2d \sin \theta}{c}\right),$$

:

Defina $\tau_m = m \frac{d \sin \theta}{c}$ e vamos considerar um sinal complexo $f(t) = A e^{j\Omega t}$, para uma dada frequência angular Ω dada em rad/s. Na ausência de ruído, vale

$$x_m(t) = A e^{j\Omega(t+\tau_m)} = e^{j\Omega\tau_m} A e^{j\Omega t} = e^{j\Omega m(\frac{d \operatorname{sen} \theta}{c})} A e^{j\Omega t}.$$
(1)

Defina o vetor de sinais recebidos

$$\boldsymbol{x}(t) = \begin{bmatrix} x_0(t) \\ x_1(t) \\ \vdots \\ x_{M-1}(t) \end{bmatrix} = \begin{bmatrix} 1 \\ e^{j\frac{\Omega d \operatorname{sen} \theta}{c}} \\ \vdots \\ e^{j(M-1)\frac{\Omega d \operatorname{sen} \theta}{c}} \end{bmatrix} A e^{j\Omega t} = \boldsymbol{v}(\Omega, \theta) A e^{j\Omega t}, \tag{2}$$

em que $\mathbf{v}(\Omega, \theta)$ é chamado de vetor diretor.

Suponha que os sinais em cada microfone ou antena sejam amostrados a uma taxa $f_a = \frac{1}{T_a}$. Então

$$x_m[n] = x_m(nT_a) = e^{j\frac{\Omega m d \operatorname{sen} \theta}{c}} A e^{j\Omega T_a n} = e^{j\frac{\omega m d \operatorname{sen} \theta}{T_a c}} A e^{j\omega n}, \tag{3}$$

pois $\omega = \Omega T_a$.

Vamos reforçar os sinais que vêm de uma certa direção θ_0 . Definindo $u(\theta) = \frac{d \sin \theta}{T_a c}$, podemos então somar em fase os sinais que vêm da direção θ_0 :

$$y[n] = \frac{1}{M} \left[1 \cdot x_0[n] + e^{-j\omega u(\theta_0)} x_1[n] + e^{-j\omega^2 u(\theta_0)} x_2[n] + \dots + e^{-j\omega(M-1)u(\theta_0)} x_{M-1}[n] \right] = A e^{j\omega n}.$$
(4)

O que acontece com sinais vindos de outras direções? Suponha que tenhamos projetado nosso sistema para reforçar sinais vindos da direção θ_0 , mas veio um sinal da direção θ . Então,

$$y[n] = \frac{1}{M} \left[1 \cdot A e^{j\omega n} + e^{-j\omega u(\theta_0)} e^{j\omega u(\theta)} A e^{j\omega n} + e^{-j\omega 2u(\theta_0)} e^{j\omega 2u(\theta)} A e^{j\omega n} + \cdots + e^{-j\omega(M-1)u(\theta_0)} e^{j\omega(M-1)u(\theta)} A e^{j\omega n} \right]$$

$$= \frac{1}{M} \left[1 \cdot + e^{-j\omega u(\theta_0)} e^{j\omega u(\theta)} + e^{-j\omega 2u(\theta_0)} e^{j\omega 2u(\theta)} + \cdots + e^{-j\omega(M-1)u(\theta_0)} e^{j\omega(M-1)u(\theta)} \right] A e^{j\omega n}$$

$$= B(\theta, \theta_0) A e^{j\omega n}, \tag{5}$$

em que

$$B(\theta, \theta_0) = \frac{1}{M} \sum_{m=0}^{M-1} e^{j\omega(u(\theta) - u(\theta_0))m} = \frac{1}{M} \cdot \frac{1 - e^{j\omega M(u(\theta) - u(\theta_0))}}{1 - e^{j\omega(u(\theta) - u(\theta_0))}}.$$

Assim, o módulo e fase do sinal y[n] reconstruído em (5) são afetados segundo $B(\theta,\theta_0)$. Por exemplo, na figura 4, temos o gráfico de $|B(\theta,\theta_0)|$ para $\theta_0=20\,^\circ$, M=8 e $d=\lambda/2$, sendo λ o comprimento de onda do sinal que chega ao arranjo de antenas. Perceba como o módulo é máximo e igual a um para $\theta_0=20\,^\circ$, e que para outros sinais vindos de outros valores de θ há uma considerável atenuação de sua amplitude.

Suponha agora que duas frentes de onda, $f_0(t)$ e $f_1(t)$, cheguem ao arranjo de antenas simultaneamente, uma vinda da direção θ_0 , e outra da direção θ_1 , e ambas na mesma frequência Ω :

$$\mathbf{x}[n] = \mathbf{v}(\Omega, \theta_0) f_0(nT_a) + \mathbf{v}(\Omega, \theta_1) f_1(nT_a)$$

$$\mathbf{x}[n] = \mathbf{v}(\Omega, \theta_0) A_0 e^{j\Omega T_a n} + \mathbf{v}(\Omega, \theta_1) A_1 e^{j\Omega T_a n}$$

$$= \left[\mathbf{v}(\Omega, \theta_0) \quad \mathbf{v}(\Omega, \theta_1) \right] \begin{bmatrix} A_0 e^{j\Omega T_a n} \\ A_1 e^{j\Omega T_a n} \end{bmatrix}$$

$$= \mathbf{V} \cdot \mathbf{f}[n], \tag{6}$$

Figura 4: Exemplo de $|B(\theta,\theta_0)|$.

em que V é a matriz diretora que depende da frequência Ω , das posições das antenas e dos ângulos dos sinais, e f[n] o vetor com os sinais.

Em geral, fazemos a saída do arranjo como sendo

$$y[n] = w_0^* x_0[n] + w_1^* x_1[n] + \dots + w_{M-1}^* x_{M-1}[n] = \boldsymbol{w}^H \boldsymbol{x}[n],$$
 (7)

em que $\boldsymbol{w}^H = [w_0^* \ w_1^* \cdots w_{M-1}^*]$ é o hermitiano ou "transposto conjugado" do vetor \boldsymbol{w} . Escolhendo então

$$\boldsymbol{w} = \frac{1}{M} \boldsymbol{v}(\Omega, \theta_0) \,, \tag{8}$$

resulta

$$y[n] = \boldsymbol{w}^{H} \boldsymbol{x}[n] = \boldsymbol{w}^{H} \boldsymbol{V} \boldsymbol{f}[n]$$

$$= \frac{1}{M} \boldsymbol{v}^{H}(\Omega, \theta_{0}) \left[\boldsymbol{v}(\Omega, \theta_{0}) \ \boldsymbol{v}(\Omega, \theta_{0}) \right] \boldsymbol{f}[n]$$

$$= \frac{1}{M} \left[\boldsymbol{v}^{H}(\Omega, \theta_{0}) \boldsymbol{v}(\Omega, \theta_{0}) \ \boldsymbol{v}^{H}(\Omega, \theta_{0}) \boldsymbol{v}(\Omega, \theta_{0}) \right] \boldsymbol{f}[n]$$

$$= \left[B(\theta_{0}, \theta_{0}) \ B(\theta, \theta_{0}) \right] \boldsymbol{f}[n]$$

$$= \left[1 \ B(\theta, \theta_{0}) \right] \begin{bmatrix} A_{0} e^{j\Omega T_{a}n} \\ A_{1} e^{j\Omega T_{a}n} \end{bmatrix} = A_{0} e^{j\Omega T_{a}n} + B(\theta, \theta_{0}) A_{1} e^{j\Omega T_{a}n}.$$

$$(9)$$

Como $|B(\theta,\theta_0)| \leq 1$, o sinal vindo da direção θ_0 é recebido sem distorções, enquanto o sinal vindo da direção θ_1 é atenuado. O que construímos então é um filtro espacial, que permite escolher apenas sinais que venham de direções de interesse, e cancelar interferências vindas de outras direções. Tal sistema como descrito acima é chamada de "formador de feixe" (beamformer), já que permite modificar o diagrama de radiação equivalente do arranjo de antenas (ou microfones).

A escolha $\mathbf{w}^H = \frac{1}{M} \mathbf{v}^H(\Omega, \theta_0)$ é chamada de beamformer Delay-and-Sum, pois corresponde a equalizar os atrasos em todos os sensores de sinais vindos da direção θ_0 , de forma a que a soma seja de sinais em fase (e assim o efeito é de reforçar o sinal). Repare que os valores dos coeficientes dependem da frequência Ω .

2 Parte Experimental 1

- 1. Imagine que queiramos projetar um sistema com 8 antenas, dispostas numa linha plana, operando no padrão IEEE 802.11ad (WiGig) a 60GHz. A distância entre cada antena adjacente é d. Desenhe o gráfico de $|B(\theta,\theta_0)|$ considerando $d = \lambda/4$ (comprimento de onda do sinal transmitido), $\theta_0 = -25^{\circ}$ e θ variando entre -90° e 90° . Considere a velocidade de propagação $c = 3 \cdot 10^{8} \text{m/s}$. Comente o que acontece com sinais vindos de diferentes direções quando recebidos por este sistema.
- 2. Desenhe gráficos de $|B(\theta, \theta_0)|$ para $d = \lambda/2$, $d = 3\lambda/4$ e $d = \lambda$. Comente o que acontece, comparando os 4 gráficos de $|B(\theta, \theta_0)|$, conforme aumentamos o valor de d. Que problema você notou para $d > \lambda/2$?
- 3. Desenhe agora os gráficos de $|B(\theta, 90^{\circ})|$ para $d = \lambda/4$ e $d = \lambda/2$. Você nota algum problema?
 - Obs 1: A função **sin** do MATLAB e de Julia calcula o seno de um ângulo medido em radianos, enquanto a função **sind** já calcula o seno de um ângulo medido em graus.
- 4. Fixe $d = \lambda/2$. Suponha que uma frente de onda de frequência 60 GHz com amplitude $A_1 = 1$ incida sobre as antenas com ângulo $\theta_0 = -25^{\circ}$, juntamente com um outro sinal de interferência de mesma frequência e com amplitude $A_2 = 2$, que incide em um ângulo θ_2 . Plote a amplitude do sinal estimada pelo Beamforming Delay-and-Sum em função de θ_2 . Comente o resultado.

3 Beamforming de banda estreita usando sinais reais

Como vimos anteriormente, toda a formulação do Beamforming Delay-and-Sum supõe que os sinais incidentes sejam sinais complexos da forma

$$f(t) = A e^{j\Omega t}.$$

Como já sabemos nesta altura da nossa vida, os sinais recebidos só podem ser sinais reais; entretanto, o processamento do Beamforming como feito na Equação (7) depende dos coeficientes do vetor \boldsymbol{w} , que são números complexos. Como podemos utilizar esta técnica se os sinais recebidos são reais?

Código decimal	Código binário	Símbolo
0	0000	-3 + 3j
1	0001	-3 + 1j
2	0010	-3 - 3j
3	0011	-3 - 1j
4	0100	-1 + 3j
5	0101	-1 + 1j
6	0110	-1 - 3j
7	0111	-1 - 1j
8	1000	3+3j
9	1001	3+1j
10	1010	3-3j
11	1011	3-1j
12	1100	1+3j
13	1101	1+1j
14	1110	1-3j
15	1111	1-1j

Tabela 1: Relação entre informação a ser transmitida e símbolo no 16-QAM

Uma das maneira possíveis é (1) utilizar uma codificação dos sinais a serem transmitidos utilizando símbolos no domínio complexo, então (2) realizar um processamento que transforme estes símbolos em sinais reais na transmissão, e finalmente (3) recuperar os símbolos complexos num novo processamento e utilizar o *Beamforming Delay-and-Sum* no sistema de recepção.

Para (1), podemos utilizar uma modulação de amplitude em quadratura, ou QAM (*Quadrature Amplitude Modulation*), bastante utilizada em transmissão de tv digital, internet 4G e conexões radio-satélite. Por exemplo, a codificação em 16-QAM transforma sequências de 4 bits em símbolos no plano complexo segundo a tabela 1.

Seja z(t) o sinal já codificado segundo o QAM, portanto complexo. Para transmitir este sinal, fazemos

$$x(t) = \operatorname{Re}\{z(t)\} \cos(\Omega_0 t) - \operatorname{Im}\{z(t)\} \sin(\Omega_0 t),$$

sendo x(t) o sinal real que será transmitido e Ω_0 a frequência de portadora tal que $\Omega_0 >>$ banda de z(t) (banda estreita).

Por fim, os sinais $x_m(t)$ recebidos nas antenas do arranjo são processados segundo o esquema da Figura 5. O filtro $H(j\Omega)$ é um filtro passa-baixas com corte em Ω_0 .

Pode-se demonstrar que (ver apostila em separado no Moodle)

$$x_{im}(t) \approx \text{Re}\{z(t)\}$$
 e $x_{qm}(t) \approx \text{Im}\{z(t)\}$,

Figura 5: Processamento para recuperar o sinal original após transmissão.

e, portanto,

$$x_{im}(t) + jx_{am}(t) \approx z(t)$$
.

4 Parte experimental 2

Considere que o arranjo de antenas da parte 1 do experimento receba uma sequência de dados modulados usando 16-QAM (Tabela 1). O sinal de interesse tem amplitude máxima $A_0 = 3$ e incide com ângulo $\theta_0 = 20$ °. Há também dois sinais de interferência incidindo sobre o arranjo, vindos das direções $\theta_1 = 45$ ° e $\theta_2 = -15$ °, ambos com amplitude 1 e com mesma frequência. Há também em cada antena um ruído na medida, de potência unitária. O que é de fato medido pelo arranjo ("sinal de interesse" + "interferências" + "ruído") está no arquivo **sinais.mat**. Considerando as condições da parte 1 do experimento, vamos projetar um sistema beamforming Delay-and-Sum para recuperar o sinal de interesse.

1. A partir dos sinais fornecidos, vamos realizar o processamento necessário para trabalhar com sinais reais, como descrito na Figura 5. Utilize para o passa-baixas um filtro Butterworth de ordem 6 com a devida frequência de corte — ela deve ser igual à frequência de portadora dos sinais.

Um filtro de Butterworth é um filtro IIR simples. Para fazer o projeto usando Julia, use os comandos

flt = digitalfilter(Lowpass(wn/
$$\pi$$
), Butterworth(6)),

em que wn é a frequência de corte do filtro normalizada, em rad/amostra. Para passar um sinal x pelo filtro flt, use o comando y = filt(flt, x).

Em Matlab, use a função butter para adquirir os parâmetros a e b do filtro, como descrito abaixo:

$$[b, a] = butter(6, wn),$$

A frequência de amostragem utilizada é $f_a = 10^{12}$ Hz. Plote a resposta em frequência do filtro projetado. Em Julia, use os comandos

$$\omega$$
= range(0, π , length=500),
H = freqresp(flt, ω),

е

plot(
$$\omega/\pi$$
, abs.(H)).

Plote também os gráficos de x_{im} e x_{qm} filtrados para uma das 8 antenas. Comente o que você observa.

- 2. Projete os coeficientes do vetor \boldsymbol{w} e realize o *Delay-and-Sum* (Equação (7)) para recuperar o sinal. Plote as partes reais e imaginárias do y[n] obtido. Comente o resultado.
- 3. Agora vamos recuperar os símbolos que foram transmitidos. Para isto precisamos saber por quanto tempo cada símbolo foi transmitido, e juntamente com a informação da taxa de amostragem, obter o número N de amostras no sinal correspondente a cada símbolo. Sabendo que cada símbolo foi transmitido por 1ns, calcule N e comente se está coerente com o que se observa nos gráficos das parte real e imaginária de y[n]. Para cada trecho de símbolo, calcule o valor médio das N amostras. Quantos símbolos foram transmitidos?
- 4. Escreva num trecho do seu código um algoritmo que decide a qual símbolo do 16-QAM cada símbolo reconstruído na etapa anterior se refere, utilizando a mínima distância em módulo para cada símbolo reconstruído em relação aos símbolos do 16-QAM.

Dica: crie um vetor com os símbolos do 16-QAM utilizando o comando:

$$symbols_16_qam = qammod(0:15,16).$$

Isto criará a terceira coluna da tabela 1.

- 5. Compare os símbolos reconstruídos com o vetor **mensagem** fornecido e diga se houve erros na transmissão. O vetor fornecido está em decimal, então utilize a Tabela 1 para conversão. Plote num mesmo gráfico as partes reais e imaginárias da mensagem e do sinal reconstruído em 16-QAM, utilizando a função *scatter* do Matlab. Se feito corretamente, o gráfico deve apresentar um mapa no plano complexo com os pontos de ambos os vetores.
- 6. Vamos observar o que acontece se diminuirmos a relação sinal/ruído nas antenas. Ao sinal fornecido no vetor **sinais.mat** some em cada antena ruídos brancos gaussianos e média nula com desvio-padrão 10, 30 e 50, utilizando a função *randn*. Realize

novamente o Delay-and-Sum para cada caso, plote os gráficos das partes reais e imaginárias de y[n] e comente o que você observa nos gráficos. O que acontece com os símbolos reconstruídos? Eles apresentam erros? Plote os símbolos reconstruídos e os da mensagem original utilizando o scatter e comente o que você observa.