机密★考试结束前

部署框架的是()

第六届全国中小学人工智能教育展示活动

教师基本功测试题 (断网施测)

(总分 100 分,测试时间:90 分钟)
一、单选题 (24分, 每题 3分)
1.人工智能的起源可以追溯到 1956 年的达特茅斯会议。下列人工智能专家中,没有参加过达特茅斯会议的是()
A. 约翰·麦卡锡(John McCarthy) B. 马文·明斯基(Marvin Minsky)
C. 杰弗里·辛顿(Geoffrey Everest Hinton) D. 克劳德·香农(Claude Elwood Shannon)
2.早期人工智能的研究主要分为三大学派。下列不属于三大学派的是()
A. 符号主义学派 B. 连接主义学派 C. 行为主义学派 D. 网络主义学派
3.深度学习(Deep Learning)是机器学习(Machine Learning)领域中一个重要的研究方向。以下不属于深度学习基本结构的是()
A. 卷积神经网络 B. 循环神经网络 C. 支持向量机 D. 深度信念网络
4.机器学习中的模型训练其实就是一个反复调整模型参数的过程。在训练模型的过程中,过拟合(overfitting)的表现是()
A. 模型的实际应用效果很好 B. 模型的训练误差很小,但是测试误差很大
C. 模型无法收敛 D. 模型的训练误差和测试误差都很大
5.神经网络最基本的组织单元是神经元。在人工神经网络的神经元中,通常与输入信号进行加权计算的变量是()
A. 激活函数(Activation Function) B. 损失函数 (Loss Function)
C. 学习率(Learning Rate) D. 权重(Weight)
6.SOTA 是"state-of-the-art"的缩写,指在某项研究任务中,目前表现最好、最先进的模型,如 LeNet、MobileNet 和 ResNet 都是常见的图像分类 SOTA 模型。在图像分类模型中,以下四种类型的网络层通常处于最后的是()
A. 全连接层 (Fully Connected) B. 卷积层 (Convolutional)
C. 池化层 (Pooling) D. 归一化层 (Normalization)

7.模型部署指的是将训练好的 AI 模型应用到实际场景中的过程。以下不属于常见模型

A. ONNX B.NCNN C. TensorRT D. PAH

8.ChatGPT 是一种语言模型,能够通过学习和理解人类语言来进行对话,并能够生成适当的响应。ChatGPT 的文本处理部分采用核心技术是()

- A. Convolutional Neural Networks B. Recurrent Neural Network
- C. Transformer D. K-means

二、编程完善题(36分,每空4分)

1.计算模型推理结果

默认情况下,分类模型的推理结果返回的是列表,内容是每一个类别的概率(总和为 1)。比如,一个 10 分类的 AI 模型返回的推理结果是 "[0.01,0.01,0.01,0.01,0.70,0.21,0.02,0.01,0.01,0.01]",表示第 4 类(序号从 0 开始)的概率最大,置信度(也称可靠度或者置信系数)是 0.70,其次是第 5 类,置信度是 0.21。

函数"top_k"能够对推理结果进行处理,输出概率最大的前 n 类的。参数"list_in"为推理结果,n 为要返回的类别数量。以上面的数据为例,如果 n 的值是 3,那么返回的数据如下:

{0: [4, 0.7], 1: [5, 0.21], 2: [6, 0.02]}

即返回的数据为有 3 组元素的字典,键名为"0"的是概率最大的类别,键值为由类别序号和置信度组成的列表,即"[4, 0.7]"。

【中学选手】根据上述信息,在答题卡上填写如下程序中画线处的代码,确保输出结果一致。

```
def top k(list_in, n):
    # n不能大于列表长度
    if n > len(list_in):
       n =
                _【1】
    pad = min(list_in)-1 # 设定最小值
    result ={}
    for i in range(n):
       val = max(__
                    _ 【2】_
       max_idx = list_in.index(val) # 找最大值索引
____[3] ___ = [max_idx,val]
       list_in[max_idx] = ___ [4] ___ # 填充
    return result
classes = ['夹子','橡皮','水杯','直尺','圆规','钢笔','水笔','圆珠笔','铅笔','修正带']
infer = [0.02, 0.01, 0.01, 0.01, 0.70, 0.21, 0.01, 0.01, 0.01, 0.01]
# 返回类别数量
n = 3
# 统计
result = top_k(infer,n)
# 输出
for kev in result:
   print(key,":",classes[____[5]__],result[key][1])
0: 圆规 0.7
1:钢笔 0.21
2: 夹子 0.02
```

【小学选手】根据上述信息,在答题卡上填写如下程序中【数字】处的变量名。

```
如果 n > 🔋 列表 list in 的长度 那么执行
将变量 n → 赋值为 自,列表 【1】 的长度
将变量 pad ▼ 赋值为 最小值 ▼ list_in
将变量 result → 赋值为 😽 初始化集合 { }
将变量 countlist • 赋值为 🔋 初始化列表 [ ]
将变量 i ▼ 赋值为 0
重复执行 n 次
副表 变量 countlist 将 变量 i 添加到末尾
将变量 i ▼ 赋值为 (变量 i) + 1
使用 i ▼ 从序列 变量 countlist
将变量 val ▼ 赋值为 最大值 ▼ 【2】
将变量 max_idx ▼ 赋值为 🔠 列表 list_in 查找 变量 val 的索引
房,列表(【3】 设置索引 变量 i 的值为 [max_idx,val]
剛表 list_in 设置索引 变量 max_idx 的值为
返回 变量 result
Python主程序开始
将变量 classes ▼ 赋值为 (前, 初始化列表 ['夹子','橡皮','水杯','直尺','圆规','钢笔','水笔','圆珠笔','铅笔','修正带']
                                                                           classes为分类标签列表
将变量 infer ▼ 赋值为 🗓 初始化列表 [0.02, 0.01, 0.01, 0.01, 0.70, 0.21, 0.01, 0.01, 0.01, 0.01]
                                                                           infer为推理结果列表
将变量 n ▼ 赋值为 3
                                                                           n为返回类别数量
将变量 result ▼ 赋值为 top_k 变量 infer 变量 n
使用 key · 从序列 变量 result
将变量 result_confidence · 赋值为 🔋 列表 🔋 列表 变量 result 索引 变量 key 的值 索引 1 的值
将变量 result_classid ▼ 赋值为 🗐 列表 🗐 列表 变量 result 索引 变量 key 的值 索引 0 的值
 将变量 result_class - 赋值为 🔋 列表
                             [5]
                                    索引 变量 result_classid 的值

↓ 打印 日 合并 变量 key 日 合并 "" 日 合并 变量 result_class 日 合并 "," 变量 result_confidence

 ② 终端
                                         ▶ 清除輸出
 0:圆规,0.7
 1:钢笔,0.21
 2:夹子,0.02
 >>>_
```

2.计算模型推理的准确率

准确率是衡量一个模型效果好坏的重要指标。函数 cal_acc 能够对真实标签和推理结果进行比较,计算出准确率。

有一个三分类(三个标签)问题,参数中的"infer_y"是具有 4 个样本的推理结果,比如"[[0.1,0.2,0.7],[0.4,0.1,0.5],[0.3,0.4,0.3],[0.6,0.2,0.2]]",其中"[0.1,0.2,0.7]"是第一个样本的推理结果,以此类推。参数中的"true_y"是样本的真实标签(Ground Truth),比如"[2,2,1,2]"。前三个预测正确(推理结果与真实标签一致),最后一个错误(推理结果与真实标签不一致),因此准确率为 3/4,即返回值为 75%。

【中学选手】根据上述信息,在答题卡上填写如下程序中画线处的代码,确保输出结果一致。

```
def cal acc(true y, infer y):
    count = len(true y)
    newlist = []
    for i in range(count):
        temp = infer_y[i].index(max(\underline{ [6]}\underline{ )})
        newlist.append(temp)
    a = 0
    for i in range(count):
        if ___ [7] __=true_y[i]:
            a+=1
    acc = a / ___ [8] ___
    return acc
# 真实标签
true_y = [2,2,1,2]
# 推理结果
infer y = [[0.1, 0.2, 0.7], [0.4, 0.1, 0.5], [0.3, 0.4, 0.3], [0.6, 0.2, 0.2]]
# 计算, 小数点保留4位
acc = round(cal_acc(true_y,infer_y),4)
# 输出
print('模型推理的准确率为: ' + str(______(9]____) +'%')
```

模型推理的准确率为: 75.0%

【小学选手】根据上述信息,在答题卡上填写如下程序中【数字】处的变量名。

三、编程实践题(40分)

为保护文物古迹,有些景区会规定不允许游客拍照。请使用组委会提供的 AI 模型 (ONNX 格式),结合摄像头完成一个简单的"景区防拍照"检测系统。当发现有游客拿出手机,则发出语音警告,以物联网消息(MQTT)的方式通知管理员并保存画面作为处罚的证据。

AI 模型说明:

本测试提供的模型"det.onnx"是在 COCO80 数据集上基于 Pytorch 框架通过

SSD_Lite 网络训练并执行模型转换操作得到的。模型支持对 80 类的物体检测识别,包括手机(标签名称为"cell phone"),使用方式可以参考 Demo 程序。

1) 输入数据格式

该模型输入张量形状为[1,3,320,320]。使用 BaseDeploy 推理,可以直接传入图片路径或者 OpenCV 的帧画面。

2) 输出数据格式

通过 BaseDeploy 的模型完成推理后,输出的格式为列表,列表中套字典。推理结果示例如下:

[{'标签': 67, '置信度': 0.8131059408187866, '预测结果': 'cell phone', '坐标': {'x1': 229, 'y1': 113, 'x2': 352, 'y2': 441}}, {'标签': 67, '置信度': 0.7117214202880859, '预测结果': 'cell phone', '坐标': {'x1': 443, 'y1': 103, 'x2': 615, 'y2': 447}}, {'标签': 67, '置信度': 0.6600658297538757, '预测结果': 'cell phone', '坐标': {'x1': 25, 'y1': 142, 'x2': 144, 'y2': 479}}]

解释:

列表长度为 3,可通过 result[0], result[1], result[2]得到检测结果。列表中的值为字典,字典中包含一个检测框中的标签、置信度、预测结果和检测框的四角坐标。

物联网服务器说明:

双击运行"siot.exe"文件,不需要做任何设置,就能够在本机启动了 MQTT 服务。使用本机地址(127.0.0.1)即可发送 MQTT 消息。可以通过浏览器访问 siot 服务器 (http://127.0.0.1:8080),查看消息接收情况。

你需要实现的功能如下:

- 1) 启动程序后, 自动打开摄像头, 弹出窗口呈现摄像头实时画面; (10分)
- 2) 载入模型, 间隔 0.2 秒对摄像头画面进行推理, 实时输出推理结果; (10 分)
- 3)发现画面中出现"手机"则保存画面(以时间作为文件名称,格式为 png,要确保图片不会被覆盖),并输出警告信息(文字);(10分)
 - 4) 向物联网服务器 (SloT 地址: 127.0.0.1) 发送 MQTT 消息, 消息主题 (TopicID) 为"ai/camera", 内容为模型推理的置信度。(10分)

提交要求:

程序代码请保存在试题素材文件夹中,文件名为"序号-省份-名字",如"1-广东-钟柏昌",在学生端提交程序代码到教师机。