Analysis Taylor's Theorem

Daniel Yu

October 6, 2024

Contents

1	Taylor's Theorem	3
2	Series	5

CONTENTS 2

1 Taylor's Theorem

Lemma 1. Let

$$Q(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0.$$

a polynomial with real coefficients. Then $Q \in D(\mathbb{R})$ and $Q'(x) = a_m m x^{m-1} + \ldots + a_1 \ (\Rightarrow Q \in C(\mathbb{R}))$.

Proof. . Take $x_0 \in \mathbb{R}$ and $f(x) = x^m$. Then,

$$(x_0 + h)^m = x_0^m + {m \choose 1} x_0^{m-1} h + {m \choose 2} x_0^{m-2} h^2 + \dots + h^m$$

$$= x_0^m + {m \choose 1} x_0^{m-1} h + h {m \choose 2} x_0^{m-2} h^1 + \dots + h^{m-1}$$

$$= x_0^m + m x_0^{m-1} h + h \cdot r(h).$$

Notice that $f'(x_0) = mx_0^{m-1}$, so $x^m \in D(x_0)$ and $(x^m)|_{x=x_0} = mx_0^{m-1}$.

Definition 1. Define the Taylor's polynomial of degree n at point x_0 is a polynomial approximation of the function f(x) at the point x_0 which matches the functions value and first n derivatives at that point. It describes the *neighborhood around* $f(x_0)$

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^n(x_0)}{(n)!}(x - x_0)^n.$$

Definition 2.

$$f \in D^m((a,b)) \text{ if } f, f', \dots, f^{m-1} \in D((a,b)).$$

 $f \in C^m((a,b)) \text{ if } f, f', \dots, f^{m-1}, f^m \in C((a,b)).$

Note. $f \in D((a,b)) \Rightarrow f \in C^{m-1}((a,b))$

Theorem 1. Taylor's Theorem (Lagrange)

Assume that $f:(a,b)\to\mathbb{R}$ and $f\in D^n((a,b))$ where $n\geq 1,\ x\in(a,b)$. Then, $\forall x\in(a,b)$ $\exists x_*\in(x_0,x)$ [or $x_*\in(x,x_0)$ if $x\leq x_0$] such that:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(x_*)}{(n+1)!}(x - x_0)^{n+1}.$$

Note that $\frac{f^{(n+1)}(x_*)}{(n+1)!}(x-x_0)^{n+1}$ is known as the Langrangian Error Term which represents the difference between the taylor polynomial T_n and f(x)

Proof. Consider the taylor polynomial,

$$T_{n-1}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{n-1}(x_0)}{(n-1)!}(x - x_0)^{n-1}.$$

where $T_{n-1}(x_0) = f(x_0), T_{n-1}^1(x_0) = f'(x_0), \dots, T_{n-1}^{n-1}(x_0) = f^{n-1}(x_0)$ We will prove the taylors theorem with x replaced by x_1 . Then, take $x_0, x_1 \in (a, b), x_1 \neq x_0$. First, we find $M \in \mathbb{R}$ such that:

$$f(x_1) = T_{n-1}(x_1) + \frac{M}{n!}(x_1 - x_0)^n.$$

Since M obviously exists since we can solve the linear equation. Our task now is to show that $M = f^n(x_*)$ for some $x_* \in (x_0, x_1)$. Consider the function,

$$g(x) = f(x) - T_{n-1}(x) - \frac{M}{n!}(x - x_0)^n.$$

Then,

- 1. Take $g(x_0) = 0$, $g'(x_0) = 0$, ..., $g^{n-1}(x_0) = 0$.
- 2. Take $g(x_1) = 0$.

Then, $g \in D((x_0, x_1)) \cap C([x_0, x_1])$. By the mean-value theorem, $\exists x_1 \in (a, b)$ such that

$$q'(x_2) = 0.$$

Since by (1), $g'(x_0) = 0$, and $g' \in D((x_0, x_1)) \cap C([x_0, x_1])$ we find $x_3 \in (x_0, x_2)$ such that $g''(x_3) = 0$. (apply the mean value theorem again, this time with endpoints $\{x_0, x_2\}$).

Continuing this process, we find: $\exists x_{n+1} \in (x_0, x_n)$ such that,

$$g^n(x_{n+1}) = 0.$$

Then we set $x_* = x_{n+1}$. Then $g^n(x_*) = 0$. Clearly, $x_* \in (x_0, x_1)$. But $g^n(x) = f^n(x) - M \Rightarrow 0 = g^n(x_*) = f^n(x_*) - M \Rightarrow M = f^n(x_*)$

Lemma 2. For any a > 0 we have that

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0.$$

Proof. Take a > 0. Then,

$$\frac{a^n}{n!} = \frac{a}{1} \cdot \frac{a}{2} \cdot \frac{a}{3} \cdot \ldots \cdot \frac{a}{n}.$$

choose $n_0 \ge 1$ such that $\frac{a}{n_0} < \frac{1}{2}$. Then, for $n \ge n_0$,

$$\frac{a}{n!} = \left[\frac{a}{1} \frac{a}{2} \frac{a}{3} \dots \frac{a}{n_0}\right] \left[\frac{a}{n_0 + 1} \dots \frac{a}{n}\right]$$
$$\leq \left[\frac{a}{1} \frac{a}{2} \frac{a}{3} \dots \frac{a}{n_0}\right] \left(\frac{1}{2}\right)^{n - n_0}, n \geq n_0.$$

This decays to 0 as $n \to \infty$, so $\frac{a^n}{n!} \to 0$

Lemma 3. Stirling Approximation $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^e$ (rate of growth)

2 Series

Definition 3. $(a_n)_{n\geq 1}, a_n \in \mathbb{R} \text{ (or } \mathbb{C}), n \geq 1.$ We write

$$\sum_{n=1}^{\infty} a_n = A.$$

and say that that the series converges to A if the partial sums $S_N = \sum_{n=1}^N a_n$ converges to A, i.e. $S_N \to A$ ($N \to \infty$).

Equivalently, $|\sum_{n=1}^{N} a_n - A| \to 0$ as $(N \to \infty)$.

Definition 4. For series, we will often consider the "upper limit",

$$\overline{\lim_{n\to\infty}} x_n = \lim_{n\to\infty} (\sup\{x_n \mid n \ge N\}).$$

- 1. $\overline{\lim_{n\to\infty}} \mid a_{\frac{n}{a_{n+1}}} \mid < 1$ converges
- 2. $\overline{\lim}_{n\to\infty} \sqrt{|a_n|}^n < 1$ converges