CS & IT

ENGINEERING

Minimization

Lecture No. 1

By- CHANDAN SIR

TOPICS TO BE COVERED **01** THEOREM

02 D-MORGAN'S Law

03 QUESTION PRACTICE

04 DUAL & SELF DUAL

05 DISCUSSION

1854- George Boole

"An Investigation of Law of Thoughts"

'Gareeb"

Boolean Function It is the combination of inputs on which output is

depends.

BOOLEAN ALGEBRA

ABC = A+B+C A+B+C

Likha hai	7	Ye	aise h	
			likh	hai

Decimal	ABC	Min Term	Max Term	Function
0	000	ABC	A+B+ C	1
1	001	ABC	A+B+C	0 ~
2	010	ABE	Atistc	0 -
3	011	ĀBC	Atatc.	1
4	100	ABE.	Atotc	0
5	101	ABC	A+B+c	1
6	110	ABE	AtBtC	0
7	111	ABC	Atiste	1

Standard Canonical SOP Form

Each term should contain all the variable. $0 \quad \textcircled{3} \quad \textcircled{4}$ $f(A_1B_1C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ $= M_0 + M_3 + M_5 + M_7$ $= \sum m(0,3,5,7)$

Standard Canonical POS Form

$$F(A_1B_1C) = (A_1B_1C) \cdot (A_$$

$$F(A_1B_1C) = \sum m(o_11.3) \rightarrow sop$$

 $F(A_1B_1C) = \prod (2,4,5,6,7) \rightarrow Pos$

	8 4 2 1	0	8421	Pw
0	0000	8	1000	
1	0001	9	1001	
2	0 0 1 0	10	1010	n' digit
	0011	11	1011	Ligh
4	0 1 0 0	12	1100	Combination
5	0 1 0 1	13	1101	
6.	0110	19		
7	0111	15	1111	

Question- For the the function given below how many terms are present in the standard canonical SOP form?

$$f(A, B, C) = A + BC$$

EX f(A,B,C)= A + BC

(ATA)BC

001-(1)

101 -5

ABC -101-5

ABC-000 ABC-0010 ABC-011

$$f(A,B,C) = Em(0,1,2,3,5)$$

(1) DISTRIBUTION THEOREM

$$A+BC = (A+B)(A+C)$$

$$A+BCD=(A+B)(A+C)(A+D)$$

$$Q = \frac{1}{A + AB}$$

$$(\overline{A} + A) (\overline{A} + B)$$

Me

A+BC

3 Concensus Theorem

- 1 Three terms
- 2) Each terms consist of two Variables
- 3 Each variable repeated twise only one variable repeated in complement.

3) TRANSPOSE THEOREM

$$(A+B)(\bar{A}+c) = Ac+\bar{A}B$$

$$\frac{EX}{A+B} (A+B) (A+B) = AB+AB = ABB$$

$$EX (A+B) (A+B) - AB+AB = ABB$$

$$EX (A+B) (A+B) - AB+AB = ABB$$

4) P.E. MORGIANS LAW

Distribution theorem

$$(A + B) (A + C)$$

$$A \cdot (B + C) = AB + AC$$

2) Consensus theorem

$$AB + \overline{AC} + BC$$

Transpose theorem

$$(A + B) + (\overline{A} + C)$$

D-Morgan's Law

$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

$$\overline{A + B + C} -= \overline{A} \cdot \overline{B} \cdot \overline{C}$$

Theorem

$$A \cdot 0 = 0$$

$$A + 1 = 1$$

Identity Law

$$A + 0 = A$$

$$A \cdot 1 = A$$

Idempotent Law

$$A + A = A$$

$$A \cdot A = A$$

8) Absorptive Law

$$A + AB = A$$

 $A \cdot (A + B) = A$

ATATA

Find the minimum number of the NAND gate required to implement the Boolean function given below:

$$f(A, B, C) = A + ABC + ABC$$

$$\Rightarrow$$
 A

$$f(A, B) = A + AB$$

$$= A$$

$$f(A, B) = A + AB$$

$$f(A, B) = A + \overline{AB}$$

$$f(A, B) = \overline{A} \overline{B} + \overline{A}B + AB$$

$$=(\bar{A}+\bar{B})(\bar{A}+\bar{B})$$

Minimize the expression.

$$f(A, B) = \overline{A} B + \overline{A}B + AB + AB$$

$$=\overline{A}+A$$

$$=1$$

2 Variables

minterm

$$f(A, B) = \overline{A}B + A\overline{B}$$

$$f(A, B) = AB + \overline{A}C + BC$$

$$f(A, B, C) = \overline{A} \overline{B} + \overline{A}C + \overline{B} \overline{C}$$

$$f(A, B, C) = (A + B)(A + C)(\overline{B} + C)$$

Write the function for truth table and minimize it.

A	В	Y(0/p)
0	0	1
0	1	0
1	0	1
1	1	1

Write the function for truth table and minimize it.

A	В	Y(O/p)
0	0	С
0	1	C
1	0	1
1	1	1

Two way switch is a example of which logic?

- A AND
- B OR
- C X-OR
- D NAND

If we have '4' variable, then total different expression will be?

Thank you

Seldiers!

