改装电表实验报告

2411545 邱凯锐

2025. 3. 10

实验目的

- 1. 掌握微电流表性能参数的测量方法。
- 2. 掌握直流指针式电流表和电压表的改装原理、校准曲线测量和刻度方法。
- 3. 掌握欧姆表的改装原理、调零方法和刻度方法。
- 4. 掌握仪表的校准测量方法,以及使用最大示值误差法确定仪表等级。

实验原理

2.1 测量微电流表的性能参数:

微电流表的线圈有一定内阻,用 R_g 表示; 微电流表允许通过的最大电流 称为满度电流,用 I_g 表示;微电流表的准确度等级用 Q_g 表示。微电流表的内阻 R_g 、满度电流 I_g 和准确度等级 Q_g 是表示其特性的三个重要参数。

1. **测量微电流表内阻** R_g 和满度电流 I_g 常用方法有:

替代法、中值法(半电流法)

替代法测量原理见 Figure 1,中值法测量原理见 Figure 2。图中 E 为直 流电源电压, R_2 、 R_w 为阻值可以调节的电阻箱。

Figure 1: 替代法原理图

Figure 2: 中值法原理图

2. 仪表准确度等级:

仪表的准确度等级有 0.1、0.2、0.5、1.0、1.5、2.5、5.0 七个等级。用 最大示值误差的绝对值除以仪表量程的百分比,即为仪表的准确度等级。

$$Q\% = \frac{\Delta X_m}{X_m} \times 100\%$$

仪表的准确度等级可以由其校准曲线获得。

2.2 将微电流表改装成大量程电流表:

Figure 3 为改装电流表的原理图。这种由微电流表和并联电路 R_2 组成的整体(图中虚线框住的部分)就是改装后的电流表。如需将量程扩大为原来的n 倍,则不难得出:

$$R_2 = R_q/(n-1)$$

Figure 3: 改装电流表实验线路图

Figure 4: 改装电压表实验线路图

2.3 将微电流表改装成电压表:

Figure 4 为改装电压表原理图。这种由微电流表和串联电阻 R_2 组成的整体就是改装电压表。选取不同大小的 R_2 ,就可以得到不同量程的电压表。如果改装电压表的量程为 U,通过微电流表的最大电流为 I_g ,改装电压表的内阻为 U/I_g ,因此需要串联的分压电阻 R_2 的阻值为:

$$R_2 = \frac{U}{I_g} - R_g$$

2.4 将微电流表改装成欧姆表:

用来测量电阻大小的电表称为欧姆表。根据调零方式的不同,可分为串联分压式和并联分流式两种。其原理电路如 Figure 5 所示。 Figure 5 中 E

Figure 5: 欧姆表改装原理图

为电源电压, R_3 为限流电阻, R_W 为调"零"电阻, R_X 为待测电阻, R_g 为

微电流表内阻。在 Figure 5(a) 中,当 a、b 端接入被测电阻 R_X 后,电路中的电流为:

$$I = \frac{E}{R_g + R_W + R_3 + R_X}$$

当电源端电压 E 保持不变时,被测电阻和电流值有一一对应的关系。 R_X 越大,电流 I 越小。短路 a、b 两端,即 $R_X=0$ 时:

$$I = \frac{E}{R_g + R_W + R_3} = I_g$$

当 $R_X = R_g + R_W + R_3$ 时:

$$I = \frac{E}{R_q + R_W + R_X + R_3} = \frac{1}{2}I_g$$

这是指针在微电流表的中间位置,对应的阻值为中值电阻,显然 $R_+ = R_g + R_w + R_3$ 。

当 $R_X = \infty$ 时, I = 0,即指针在微电流表的机械零位。 综上所诉,欧姆表的标度尺为反向刻度,且刻度是不均匀的。

3 实验设备

实验用设备为 FB308 型电表改装和校准实验仪(杭州经科仪器有限公司), 如 Figure 6 所示。

Figure 6: 仪器设备版面图

- 1. 直流电压源: 电压源有 0~2V、0~10V 两档,输出电压可连续调节。
- 2. 微电流表: 量程约 $100\,\mu{\rm A}$, 内阻约 $1.6k\Omega$, 准确度等级为 1.5 级。
- 3. 标准电压表: 量程 20V, 四位半数字式电压表, 准确度等级为 0.1 级。
- 4. 标准电流表: 三个量程: 200 μA, 2 mA, 20 mA, 准确度等级为 0.1 级。
- 5. 电阻箱 R:0 ~ 11111Ω, 分辨率 0.1Ω
- 6. 外电源: AC 220V±10%, 50 Hz。

4 实验内容

4.1 测量微电流表相关参数

- 1. 测量微电流表满度电流 Ia
- (1) 按照电路图,依次串联电源、滑动变阻器 R_W 、微安表和标准表。
- (2) 将电源电压调至 $0.5\,\mathrm{V}$ 。调节滑动变阻器 R_W ,使微安表满偏(指针指最大量程),读取标准表读数,即为微安表满度电流 I_q 。
 - 2. 用替代法测量微电流表内阻 R_{q1}
- (1) 按照电路图连接电路,将电源电压调至 $0.5\,\mathrm{V}$ 。开关断开 R_2 ,接入微电流表,调节滑动变阻器 R_W 使微电流表满偏,记录标准表读数。
- (2) 保持 R_W 不变, 开关断开微电流表, 连接电阻箱 R_2 , 调节 R_2 阻值, 使标准表读数与步骤(1) 中相等。此时 R_2 阻值等于微电流表的内阻 R_{qII} 。
 - 3. 用中值法测量微电流表内阻 R_{q2}
- (1) 按照电路图连接电路,将电源电压调至 $0.5\,\mathrm{V}$ 。开关断开 R_2 ,调节滑动变阻器 R_W 使得微电流表满度,记录此时标准表的读数。
- (2) 开关闭合,将电阻箱 R_2 接入电路,通过调节滑动变阻器 R_W 和电阻箱 R_2 的阻值,同时满足标准表读数和步骤(1)中相等、微电流表指针指中值。此时电阻箱 R_2 的阻值大小等于微电流表的内阻 R_{g2} 。计算 R_{g2} 相对于 R_{g1} 的误差。

4.2 改装成 1 mA 量程的改装电流表

- 1. 根据电路参数计算出分流电阻阻值。
- 2. 用标准电流表改装电流表并且记下标准电流表相应的读数。
- (1) 按照电路图连接电路,调节电源电压至 0.5 V。将电阻箱阻值设置为分流电阻阻值。
- (2) 调节滑动变阻器 R_W ,使改装电流表的指针分别指 $0.2\,\mathrm{mA}$ 、 $0.4\,\mathrm{mA}$ 、 $0.6\,\mathrm{mA}$ 、 $0.8\,\mathrm{mA}$ 、 $1.0\,\mathrm{mA}$ 。读取并记录相应的标准电流表读数。
 - 3. 根据数据,绘制改装电表的校准曲线,确定改装电流表的准确度等级。

4.3 **改装成** 1.5 V **量程的改装电压表**

- 1. 根据电路参数计算扩程电阻阻值。
- 2. 用标准电流表改装电压表并且记下标准电压表相应的读数。
- (1) 按照电路图连接电路,调节电源电压至 1.5 V。将电阻箱阻值设置为扩程电阻阻值。
- (2)调节电源电压,使改装电压表的示数分别指 0.3 V、0.6 V、0.9 V、1.2 V、1.5 V。读取并记录相应的标准电压表读数。
 - 3. 根据数据,绘制改装电表的校准曲线,确定改装电压表的准确度等级。

4.4 改装欧姆表并标定表面刻度:

- 1. 按照串联分压式电路图连接电路,调节电源电压至 1.5V。
- 2. 将欧姆表进行调零。
- (1) 对于欧姆表来说,最大刻度对应电路的断路,也就是待测电阻无穷大,

这时微安表上没有电流流过;零刻度对应待测的短路,电阻无穷小,这时需要调节控制使微安表满度,即为调零。

(2) 操作上,将待测电阻 R_x 短路,调节滑动变阻器 R_w ,使微安表满度,此时电路中电流等于欧姆表电流,电路中电阻等于欧姆表的内阻。

3. 测量改装成的欧姆表的中值电阻 R_{+} 。

将 R_x 接入电路,调节 R_x 阻值,当 R_x 的阻值等于欧姆表内阻时,电路中的电流等于被该表满度电流的一半,此时 R_x 的阻值称为中值电阻。

4. 绘制出改装成欧姆表的标度盘。

分别将中值电阻、中值电阻的 1/2、1/3、1/4、1/5、2、3、4、5 倍接入电路,读取电流表指针偏离中间刻度的格数(估读一位),以此为基础,绘制表盘刻度。

5. 确定改装成的欧姆表的电源电压使用范围。

欧姆表电源电压的使用范围,就是欧姆表的可调零范围。操作中,将 R_x 短路,分别将 R_w 的阻值调至最小和最大值,对应可以使被改表满偏的电源电压范围,即为电源电压的可用范围。

5 实验数据

5.1 微电流表相关参数

Table 1: 微电流表相关参数

满度电流 $I_g(\mu A)$	替代法 $R_{g1}(\Omega)$	中值法 $R_{g2}(\Omega)$	$ R_{g1} - R_{g2} $	
99.87	99. 87 1955. 0		3. 4	

5.2 改装成 1 mA 电流表

Table 2: 改装电流表校准数据

少. 壮丰、土. 4 (A)	标准表读数 I_s (mA))	
改装表读数 I (mA)	递减时	递增时	平均值	误差 ΔI (mA)	
0.2	0.2004	0. 2032	0.2018	0.0018	
0.4	0.3996	0.3994	0.3995	0.0005	
0.6	0.5989	0.5989	0.5989	0.0011	
0.8	0.7989	0.8025	0.8007	0.0007	
1.0	1.0070	0.9996	1.0033	0.0033	

计算可得,Q=0.33,从而确定准确度等级为 0.5,校准曲线如 Figure 7 所示。

Figure 7: 改装电流表校准曲线

Figure 8: 改装电压表校准曲线

5.3 改装成 1.5 V 量程的改装电压表

Table 3: 改装电压表校准数据

改装表读数 U (V)	标准表读数 U_s (V)			误差 ΔU (V)	
以农农庆奴 0 (1)	递减时	递增时	平均值	· 庆左 Δ0 (V)	
0.3	0.298	0.301	0. 2995	0.0005	
0.6	0. 587	0.590	0. 5885	0.0115	
0.9	0.882	0.889	0.8855	0.0145	
0. 12	1. 191	1. 191	1. 191	0.0090	
0. 15	1.496	1.497	1.4965	0.0035	

计算可得: Q=0.97,从而确定的准确度等级为 1.0,校准曲线如 Figure 8 所示。

5.4 改装欧姆表并标定表面刻度

中值电阻 $R_{+}(\Omega)$	电源电压可用范围 $E(V)$					
1 阻-6四 10円(22)	E_{min}	E_{max}				
15550.5	1. 180	1. 695				

Table 4: 欧姆表改装数据

$R_{X_i}(\Omega)$	$\frac{1}{5}R_{\oplus}$	$\frac{1}{4}R_{\oplus}$	$\frac{1}{3}R_{\oplus}$	$\frac{1}{2}R_{\oplus}$	R_{\oplus}	$2R_{\oplus}$	$3R_{\oplus}$	$4R_{\oplus}$	$5R_{\oplus}$
偏转格数(div)	33. 1	29.9	25. 1	16.8	0	-17	-25 . 2	-30.5	-34

The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.