EE 523: Power System Stability and Control Report

Aryan Ritwajeet Jha

011807182

Washington State University, Pullman

Prof. Mani V. Venkatsumbramanian

05 May 2023

Summary of Work Completed:

	Туре 3	Type 2	Type 1	Remarks
Dynamic Initialization	V	V	V	
Small Signal Stability Analysis	V		V	
Transient Stability Analysis	V		•	
Small Signal Stability with PSS from chosen Project Paper	NA	NA		Proposed PSS is a higher order transfer function block. MATLABs fsolve seems to be unable to solve for double derivatives. Of course, suitable modifications could have been made, but due to lack of time, couldn't be implemented. A set of hand-written equations is presented which if implemented, should be sufficient for modelling the PSS in MATLAB.
Remarks		Infeasible Eigenvalu es for Type 2		

Legend:

✓	Implemented and Successfully Running
	Implemented but NOT giving expected results
♦	NOT Implemented

Questions for Assignment 08

Question 01:

Powerflow:

Consider the Kundur system in example 12.6 of Kundur book. Assume there are three lines connecting buses 7 and 8 and two lines connecting buses 8 and 9. Assume the capacities of the shunt capacitors have been increased to be 400 MVar each at buses 7 and 9. Resolve the power-flow using the Newton-Raphson algorithm.

CDF File:

??/??/?? UW ARCH	HIVE	100.0 IEEE 11 Bus	s Test Case								
BUS DATA FOLLO	WS	11 ITEMS									
1 Bus 1	HV 1 1 3 1.030	20.20	0.0	0.0	700.0 185.0	0.0 1.030	0.0	0.0 0.0	0.0	0	
2 Bus 2	HV 1 1 2 1.010	10.86	0.0	0.0	700.0 235.0	0.0 1.010	0.0	0.0 0.0	0.0	0	
3 Bus 3	HV 2 1 21.030	1.18	0.0	0.0	719.0 176.0	0.0 1.030	0.0	0.0 0.0	0.0	0	
4 Bus 4	HV 2 1 2 1.010	-8.88	0.0	0.0	700.0 202.0	0.0 1.010	0.0	0.0 0.0	0.0	0	
5 Bus 5	HV 1 1 0 1.020	13.90	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
6 Bus 6	LV 1 1 0 1.012	4.30	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
7 Bus 7	ZV 1 1 0 1.021 -	3.45	967.0	100.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	4.0	0
8 Bus 8	TV 3 1 0 1.010 -	11.46	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
9 Bus 9	LV 2 1 0 1.002 -2	23.60 1767.0	100.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	4.0	0	
10 Bus 10	LV 2 1 0 1.001 -1	15.51	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
11 Bus 11	LV 2 1 0 1.015 -	5.40	0.0	0.0	0.0	0.0	0.0 1.000	0.0	0.0 0.0	0.0	0
-999											
BRANCH DATA FO	DLLOWS	10 ITEMS									
1	5 1 1 1 0 0.0000	0 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
2	6 1 110 0.0000	0 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
3 11 2 1 1 0 0	.00000 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
4 10 2 1 1 0 0	.00000 0.01667	0.0	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
5	6 1 1 1 0 0.0025	0 0.02500	0.04375	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
6	7 1 1 1 0 0.0010	0 0.01000	0.01750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
7	8 1 1 1 0 0.0036	7 0.03667	0.57750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
8	9 2 1 1 0 0.0055	0 0.05500	0.38500	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0
9 10 2 1 1 0 0	.00100 0.01000	0.01750	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
10 11 2 1 1 0 0	0.00250 0.02500	0.04375	0	0	0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	
-999											
LOSS ZONES FOLL	LOWS	1 ITEMS									
1 IEEE 9 BUS											
-99											
INTERCHANGE DA	ATA FOLLOWS		1 ITEMS								
1	2 Bus 2	HV	0.0 999.99 IEEE1	1 IEEE 11 Bus Test (Case						
-9											

TIE LINES FOLLOWS 0 ITEMS
-999
END OF DATA

Power Flow Results Plots:

Power Flow Results Table:

resultTable = 11×4 table

	Р	Q	V	delta
1 Bus 1	6.9125	0.9763	1.0300	0
2 Bus 2	6.9999	0.2874	1.0100	-0.1631
3 Bus 3	7.1900	1.3188	1.0300	-0.3319
4 Bus 4	6.9999	0.9600	1.0100	-0.5076
5 Bus 5	-0.0003	0.0001	1.0203	-0.1099
6 Bus 6	0.0001	0.0004	1.0118	-0.2775
7 Bus 7	-9.6704	-0.9992	1.0213	-0.4128
8 Bus 8	-0.0002	0.0006	1.0095	-0.5526
9 Bus 9	-17.6690	-0.9991	1.0025	-0.7645
10 Bus 10	0.0003	0.0005	1.0008	-0.6233
11 Bus 11	0	0.0001	1.0153	-0.4467

Y_Bus values:

ybusSparse =

- (1,1) 0 59.988i
- (5,1) 0 + 59.988i
- (2,2) 0 59.988i

EE 523: Power System Stability and Control (Spring 2023)

(6,2) 0 + 59.988i

(3,3) 0 - 59.988i

(11,3) 0 + 59.988i

(4,4) 0 - 59.988i

(10,4) 0 + 59.988i

(1,5) 0 + 59.988i

(5,5) 3.9604 - 99.57i

(6,5) -3.9604 + 39.604i

(2,6) 0 + 59.988i

(5,6) -3.9604 + 39.604i

(6,6) 13.861 - 198.57i

(7,6) -9.901 + 99.01i

(6,7) -9.901 + 99.01i

(7,7) 12.603 - 121.71i

(8,7) -2.7022 + 27i

(7,8) -2.7022 + 27i

(8,8) 4.5024 - 44.52i

(9,8) -1.8002 + 18.002i

(8,9) -1.8002 + 18.002i

(9,9) 11.701 - 112.81i

EE 523: Power System Stability and Control (Spring 2023)

$$(4,10)$$
 0 + 59.988i

Question 02:

Small-signal stability:

For the Kundur system from above, we want to study the small-signal stability properties. Assume KD = 2 pu for all generators. Assume a first order exciter control model with KA=50 and TA = 0.01 sec. Assume Vrmin = -4 and VRmax = +4. Efdmin = 0 and Efdmax = 2.0. For the governor model, assume that Tsg = 100 and Ksg = 1 with Psgmin=0 and Psgmax = 1 pu. R=5%. Then carry out initialization and small-signal analysis for each of Type 1, 2 and 3 models. For Type 1, assume the loads to be 50% P and 50% Z. Represent the equations in the standard DAE form for Type 1 and ODE form for Type 2.

- 1) Starting from the power-flow solution, initialize the steady-state values of all the dynamic variables.
- 2) Linearize the equations and find the system Jacobian matrix. You can use numerical differencing to compute the Jacobian entries numerically.
- 3) Find all eigenvalues and eigenvectors.
- 4) Compute all the participation factors and analyze each mode.
- 5) Design Power System Stabilizers (PSSs) as needed to render the damping ratios of all modes to be over 5% for each of Type 1 and Type 2 models.

Type 3:
Type 3:

DynInit:

ode_Type3_Init =
$$\begin{pmatrix} 0 = 376.9911 \ \omega_2 - 376.9911 \\ 0 = 376.9911 \ \omega_3 - 376.9911 \\ 0 = 376.9911 \ \omega_4 - 376.9911 \\ 0 = 0.0085 \ P_{m2} - 0.1538 \ \omega_2 + 0.0940 \\ 0 = 0.0090 \ P_{m3} - 0.1619 \ \omega_3 + 0.0973 \\ 0 = 0.0090 \ P_{m4} - 0.1619 \ \omega_4 + 0.0990 \end{pmatrix}$$

 $resultGen = 4 \times 2 table$

	E'	theta
Gen 1	1.0300	0
Gen 2	1.0745	0.1465
Gen 3	1.1392	-0.0383
Gen 4	1.1045	-0.2068

yGenTable = 4×4 table

	1	2	3	4
	3.2168	1.6434 +	0.9492 +	1.3592 +
1	-11.5866i	7.9619i	1.0023i	1.3569i
	1.6434 +	1.3830	0.6581 +	0.9393 +
2	7.9619i	-10.5241i	0.6164i	0.8316i
	0.9492 +	0.6581 +	1.6473 -	1.9706 +
3	1.0023i	0.6164i	8.1778i	4.2053i
	1.3592 +	0.9393 +	1.9706 +	2.9049 -
4	1.3569i	0.8316i	4.2053i	9.8799i

Type 2:

DynInit:

unknowns0_Type2_Gens_Vals_Table = 36×1 table

	Values
1	0.7510
theta2	
2	1
omega2	
3	0.7998
E_prime_q2	
4	0.5411
E_prime_d2	
5	1.7154
V_R2	
6	6.9999
P_m2	
7	1.0443
V_ref2	
8	6.9999
P_C2	
9	0.6166
V_q2	
10	0.7999
V_d2	

EE 523: Power System Stability and Control (Spring 2023)

I_q2 12		
I_d2 13		4.2349
I_d2 13		
theta3 14		5.4936
omega3 15		0.5838
omega3 15	1.1	1
E_prime_q3 16 0.5525 E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		
E_prime_q3 16 0.5525 E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240	45	0.8151
E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		0.0101
E_prime_d3 17 1.7531 V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240	16	0.5525
V_R3 18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		
18 7.1900 P_m3 19 1.0651 V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		1.7531
P_m3 19	V_110	
V_ref3 20 7.1900 P_C3 21 0.6275 V_q3 22 0.8168 V_d3 23 4.3240		7.1900
P_C3 21		1.0651
V_q3 22 0.8168 V_d3 23 4.3240		7.1900
V_d3 23 4.3240		0.6275
23		0.8168
		4.3240

EE 523: Power System Stability and Control (Spring 2023)

5.6277
0.4106
1
0.7986
0.5428
1.7249
6.9999
1.0445
6.9999
0.6134
0.8024
4.2482
5.5578

x0_Type2_Gens_Table = 18×1 table

	Values
1 theta2	0.7510
2 omega2	1
3	0.7998
E_prime_q2	0.5411
E_prime_d2	1.7154
V_R2	6.9999
P_m2	
7 theta3	0.5838
8 omega3	1
9 E_prime_q3	0.8151
10 E_prime_d3	0.5525
11 V_R3	1.7531
12 P_m3	7.1900

EE 523: Power System Stability and Control (Spring 2023)

13	0.4106
theta4	
14	1
omega4	
15	0.7986
E_prime_q4	
16	0.5428
E_prime_d4	
17	1.7249
V_R4	
18	6.9999
P_m4	

Small Signal Stability:

Jacobian:

	theta	2 omeg	a2	E_prim	ne_q2	E_prime_d2	V_R2	P_m2
theta3	omega3	E_prime_q3	E_prir	me_d3	V_R3	P_m3 theta	4	
omega4	E_prime_q4	E_prime_d4	V_R4	P_m4				
								

EE 523: Power System Stability and Control (Spring 2023)

		theta	2	0	376.9	9	0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0		
		omeg	a2	-0.07	25	-0.01	71	-0.09	5	0.026	3	0
0.008	5	0.004	ļ	0	-0.00	28	-0.00	69	0	0	0.003	37
0	-0.00	58	-0.00	86	0	0						
		E_prii	me_q2	-0.18	55	0	-0.34	43	-0.02	88	0.125)
0	0.018	35	0	0.010)4	-0.01	57	0	0	0.024	17	0
0.009	8	-0.02	42	0	0							
		E_prii	me_d2	1.461	.4	0	0.441	.8	-5.86	19	0	0
0.002	.9	0	0.240	1	0.159	2	0	0	0.081	.7	0	
0.371	.5	0.150)2	0	0							
		V_R2		-4439	9.9	0	-5316	5.6	377.5	54	-100	
0	-242.	38	0	-136.	03	205.1	.5	0	0	-323.	24	0
-128.	38	317.5	5	0	0							
		P_m2		0	-0.2		0	0	0	-0.01		0
0	0	0	0	0	0	0		0	0	0	0	
		theta	3	0	0		0	0	0	0	0	
376.9	9	0	0	0	0	0	0		0	0	0	0

EE 523: Power System Stability and Control (Spring 2023)

		omeg	ja3	0.006	51	0	-0.00	04405	6	-0.00	3	0
0	-0.04	79	-0.01	8	-0.08	18	0.003	33	0	0.009	0.032	5
0	-0.00	06466	9	-0.04	11	0	0					
		E_pri	me_q3	0.017	2	0	0.014	19	-0.01	14	0	0
-0.13	34	0	-0.29	54	-0.03	43	0.125	5	0	0.087	4	0
0.079	92	-0.05	55	0	0							
		E_pri	me_d3	-0.08	88	0	0.174	15	0.229	2	0	0
0.699	98	0	0.526	2	-5.11	23	0	0	-0.50	79	0	
0.851	16	1.214	18	0	0							
		V_R3		-225.	72	0	-196.	24	149.4	.5	0	0
-503	7.2	0	-5969	9.5	450.6	63	-100		0	-1147	7	0
-1040	0.3	729.2	24	0	0							
		P_m3	3	0	0		0	0	0	0	0	-0.2
	0	0	0	-0.01		0	0		0	0	0	0
		theta	4	0	0		0	0	0	0	0	0
0	0	0	0	0	376.9	9	0	0	0	0		
		omeg	ja4	0.009	2	0	0.000	99266	-0.01	09	0	0
0.038	34	0	0.013	1	-0.03	81	0	0	-0.06	18	-0.01	8
-0.09	92	0.009	9	0	0.009)						

EE 523: Power System Stability and Control (Spring 2023)

		E_pri	me_q4	0.022	25	0	0.022	29	-0.01	27	0	0
0.072	22	0	0.093	34	-0.02	.53	0	0	-0.13	31	0	
-0.33	80	-0.06	05	0.125	5	0						
		E_pri	me_d4	-0.17	53	0	0.194	12	0.350)6	0	0
-0.95	23	0	0.388	36	1.431	L7	0	0	1.358	35	0	
0.927	'9	-5.65	61	0	0							
		V_R4		-296.	41	0	-301.	22	166.8	31	0	0
-951.	76	0	-1230	0.1	333.8	35	0	0	-497	7.2	0	
-5522	2.2	797.2	27	-100		0						
		P_m4	ļ	0	0		0	0	0	0	0	0
0	0	0	0	0	-0.2		0	0	0	-0.01		

Je_Type2_Gens_Table = 18×18 table

	het a2		_prim e_d2	_m 2		_prim e_q3		_m 3	het a4	_prim e_q4	_R4	_m 4
thet		76.9 911										

EE 523: Power System Stability and Control (Spring 2023)

om	0.07	0.01	0.095	.0263		.00	.004		0.002	0.006		.003	0.005	0.008	
ega	25	71	0			85	0		8	9		7	8	6	
2															
E n	0.18		0.344	0.028	.12		.018		.0104	0.015		.024	.0098	0.024	
rim	55		3				5			7		7		2	
e_q															
2															
E_ p	.461		.4418	5.861			.002		.2401	.1592		.081	.3715	.1502	
rim	4			9			9					7			
e_d															
2															
v_	4.43		5.316	77.54	100		242.		136.0	05.14		323.	128.3	17.49	
R2	99e		6e+03	12			376		339	94		236	760	83	
	+03						0					6			
P_		0.20				0.0									
m2		00				100									
thet								76.9							
a3								911							
om	.006		4.405	0.008			0.04	0.01	0.081	.0033	.00	.032	6.466	0.041	
ega	1		6e-04	0			79	80	8		90	5	9e-04	1	
3															

EE 523: Power System Stability and Control (Spring 2023)

E_p rim e_q	.017	.0149	0.011	0.13		0.295	0.034	.12 50		.087		.0792	0.055 5	
3	0.08	.1745	.2292	.699		.5262	5.112			0.50		.8516	.2148	
E_p rim e_d 3	88			8			3			79				
1 V_ R3	225. 715 6	196.2 388	49.45 09	5.03 72e +03		5.969 5e+03	50.62 72	100		114		1.040 3e+03	29.24 41	
2 P_ m3					0.20				0.0					
3 thet a4											76.9 911			
4 om ega 4	.009	.9266 e-04	0.010	.038		.0131	0.038			0.06	0.01	0.099	.0099	.00

EE 523: Power System Stability and Control (Spring 2023)

5 E_p rim e_q 4	.022	.0229	0.012	.072	.0934	0.025	0.13		0.330	0.060	.12 50	
6 E_p rim e_d 4	0.17 53	.1942	.3506	0.95	.3886	.4317	.358		.9279	5.656		
7 V_ R4	296. 406 3	301.2 165	66.81 43	951. 760 5	1.230 1e+03	33.84 73	4.97 72e +03		5.522 2e+03	97.27	100	
8 P_ m4								0.20				0.0

lambdasType2 = 18×1 complex

-90.3864 + 0.0000i

-92.8899 + 0.0000i

-93.8844 + 0.0000i

3.7230 + 0.0000i

EE 523: Power System Stability and Control (Spring 2023)

-3.3880 + 5.0894i

-3.3880 - 5.0894i

-4.0915 + 4.2569i

-4.0915 - 4.2569i

-5.8262 + 3.0605i

-5.8262 - 3.0605i

So eigenvalues are coming in the RHP, which makes it small signal unstable.

Type 1:

Jacobian:

1.0e+03 *

Columns 1 through 15

		0	0	0	0.37	770	0	0	0	0	0	0
0	0	0	0	0								
		0	0	0	0	0.37	770	0	0	0	0	0
0	0	0	0	0								
		0	0	0	0	0	0.37	770	0	0	0	0
0	0	0	0	0								

EE 523: Power System Stability and Control (Spring 2023)

-	0.0002	-0.0000	-0.0000	-0.0000)	0	0 -0	0.0002	-0.0000
-0.0000	0.00	01	0.0000	0.000	00	0	0	0	
-	0.0000	-0.0002	-0.0000	0 -0	.0000		0 -0	0.0000	-0.0002
-0.0000	-0.0000	0.0001	-0.0000	0	0	0			
-	0.0000	0.0000	-0.0002	0	0 -0	0.0000	-0.00	00 -0.	0000
-0.0002	-0.0000	-0.000	0.00	001	0	0	0		
-	0.0005	0.0001	0.00	001	0	0	0 -0	0.0006	0.0001
0.0001	0.00	01 -0.00	001 -0.00	001	0.00	01	0	0	
	0.00	00 -0.00	0.00	000	0	0	0	0.000	00 -0.0006
0.0001	0.00	00	0.0002	0.000)1	0	0.000	01	0
	0.00	00 -0.00	000 -0.00	005	0	0	0	0.000	00
0.0001 -	-0.0005	0.0000	0.00	001	0.00	01	0	0	0.0001
	0.00	33	0.0016	0.001	15	0	0	0	0.0020
0.0014	0.00	13 -0.00	064 -0.00	007 -0.0	0007	0	0	0	
	0.00	01	0.0025	0.000)4	0	0	0	0.0003
0.0018	0.00	15	0.0002 -0	0.0057	0.000	06	0	0	0
	0.00	01 -0.00	0.00	036	0	0	0	0.000)4
0.0009	0.00	28	0.0002	0.000	08 -0.	0062	0	0	0
-	0.1090	-1.9626	-1.8677	0	0	0 -2	.4383	-1.69	78 -1.5995
-1.5720	0.84	48	0.8507 -0	0.1000	0	0			

EE 523: Power System Stability and Control (Spring 2023)

0.8937 -0.5186 0 0 0 -0.3998 -2.2298 -1.7629 -0.0826 -0.1898 -2.4640 -0.6783 0 -0.1000 -0.1110 0.2445 -0.4961 0 0 0 -0.5376 -1.0931 -3.3175 -0.2552 -1.0086 -1.7798 0 0 -0.1000 0 -0.0002 0 -0.0002 0 0 -0.0002 0

Columns 16 through 18

EE 523: Power System Stability and Control (Spring 2023)

0	0	0

Eigenvalues:

lambdas_Type1 = 18×1 complex

-4.4652 - 2.2061i

-2.4172 + 0.0000i

-1.6255 + 0.0000i

-0.0100 + 0.0000i

-0.0100 + 0.0000i

-0.0100 + 0.0000i

Type 1:

Set of ODEs for DynInit.

$$\begin{array}{c} 0 = 376.9911\,\omega_2 - 376.9911\\ 0 = 376.9911\,\omega_3 - 376.9911\\ 0 = 376.9911\,\omega_4 - 376.9911\\ 0 = 0.0085\,P_{\mathrm{m}2} - 0.0171\,\omega_2 - 0.0427\\ 0 = 0.0090\,P_{\mathrm{m}3} - 0.0180\,\omega_3 - 0.0467\\ 0 = 0.0090\,P_{\mathrm{m}4} - 0.0180\,\omega_4 - 0.0450\\ 0 = 0.1250\,V_{\mathrm{R}2} - 0.0208\,I_{\mathrm{d}2} - 0.1250\,E'_{\mathrm{q}2}\\ 0 = 0.1250\,V_{\mathrm{R}3} - 0.0208\,I_{\mathrm{d}3} - 0.1250\,E'_{\mathrm{q}3}\\ 0 = 0.1250\,V_{\mathrm{R}4} - 0.0208\,I_{\mathrm{d}4} - 0.1250\,E'_{\mathrm{q}4}\\ 0 = 0.3194\,I_{\mathrm{q}2} - 2.5000\,E'_{\mathrm{d}2}\\ 0 = 0.3194\,I_{\mathrm{q}3} - 2.5000\,E'_{\mathrm{d}3}\\ 0 = 0.3194\,I_{\mathrm{q}4} - 2.5000\,E'_{\mathrm{d}4}\\ 0 = 5000\,V_{\mathrm{ref}2} - 100\,V_{\mathrm{R}2} - 5050\\ 0 = 5000\,V_{\mathrm{ref}3} - 100\,V_{\mathrm{R}3} - 5150\\ 0 = 5000\,V_{\mathrm{ref}4} - 100\,V_{\mathrm{R}4} - 5050\\ \end{array}$$

$$\begin{array}{c} 0 = 0.0100 \, P_{\text{C2}} - 0.0100 \, P_{\text{m3}} - 0.2000 \, \omega_2 + 0.2000 \\ 0 = 0.0100 \, P_{\text{C3}} - 0.0100 \, P_{\text{m3}} - 0.2000 \, \omega_3 + 0.2000 \\ 0 = 0.0100 \, P_{\text{C4}} - 0.0100 \, P_{\text{m4}} - 0.2000 \, \omega_4 + 0.2000 \\ 0 = I_{\text{d2}} - 6.9364 \, \sin \left(\theta_2 + 0.1631\right) \\ 0 = I_{\text{d3}} - 7.0970 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = I_{\text{d4}} - 6.9954 \, \sin \left(\theta_4 + 0.5076\right) \\ 0 = I_{\text{q2}} - 6.9364 \, \cos \left(\theta_2 + 0.1631\right) \\ 0 = I_{\text{q3}} - 7.0970 \, \cos \left(\theta_3 + 0.3319\right) \\ 0 = I_{\text{q4}} - 6.9954 \, \cos \left(\theta_4 + 0.5076\right) \\ 0 = V_{\text{q2}} - 1.0100 \, \cos \left(\theta_2 + 0.1631\right) \\ 0 = V_{\text{q3}} - 1.0300 \, \cos \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{q4}} - 1.0100 \, \sin \left(\theta_2 + 0.1631\right) \\ 0 = V_{\text{d3}} - 1.0300 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{d4}} - 1.0100 \, \sin \left(\theta_3 + 0.3319\right) \\ 0 = V_{\text{d4}} - 1.0100 \, \sin \left(\theta_4 + 0.5076\right) \\ \end{array}$$

$$0 = I_{d2} - 30 E_{q2} + 30 V_{q2}$$

$$0 = I_{d3} - 30 E_{q3} + 30 V_{q3}$$

$$0 = I_{d4} - 30 E_{q4} + 30 V_{q4}$$

$$0 = 16.3636 E_{d2}' + I_{q2} - 16.3636 V_{d2}$$

$$0 = 16.3636 E_{d3}' + I_{q3} - 16.3636 V_{d3}$$

$$0 = 16.3636 E_{d4}' + I_{q4} - 16.3636 V_{d4}$$

Participation Factors and remarks on inter-area oscillation:

EE 523: Power System Stability and Control (Spring 2023)

Mode	Type of Oscillation	Coupling State Variables
1.062 Hz	Local oscillation	Theta 2 vs Omega 2
0.892 Hz	Local oscillation	Theta 3 vs Omega 3
0.452 Hz	Inter-area oscillation	Theta 4 vs Theta 2

Project: Implement a PSS in the Type 1 System

Inputs of the PSS: Current flowing between the two areas 1 and 2. Here, the current between buses 7 and 8 is chosen as the input to the PSS.

The first block is a washout filter which negates any steady state values (DC Offset) in the line current, and only allows high frequency signal noise to pass through.

The second block can actually be thought of as two separate lead compensator blocks.

Both Type 1 and Type 2 do not require PSS.

Question 03:

Transient Stability:

We want to study a fault on one of the transmission lines between buses 7 and 8. Assume a solid fault in the middle of the line. Assume Euler integration method with a step size of 1 msec.

- 1) For tc = 3 cycles, check if the system is stable.
- 2) Find the critical clearing time.

Repeat for each of Type 1, Type 2 and Type 3 models from your small-signal stability homework solutions.

Type 3: yGen during Fault:

 $yGenTable = 4 \times 4 table$

	1	2	3	4
	1.8186	0.6173+	0.2689 +	0.3889 +
1	-14.5133i	6.1083i	0.3831i	0.5223i
	0.6173 +	0.6414	0.1903 +	0.2740 +
2	6.1083i	-11.6926i	0.2393i	0.3253i
	0.2689 +	0.1903 +	1.4033 -	1.6277 +
3	0.3831i	0.2393i	8.2672i	4.0905i
	0.3889 +	0.2740 +	1.6277 +	2.4236
4	0.5223i	0.3253i	4.0905i	-10.0261i

```
 \begin{array}{l} \text{ode\_Type3\_TransientFaultOn} = \\ & 0 = 376.9911 \,\, \omega_2 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_3 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_3 - 376.9911 \\ & 0 = 376.9911 \,\, \omega_4 - 376.9911 \\ & 0 = 0.0706 - 0.0043 \, \cos(\theta_4 - \theta_2 + 0.8707) - 0.0032 \, \cos(\theta_3 - \theta_2 + 0.8988) - 0.0581 \, \cos(\theta_2 - 1.4701) - 0.0171 \,\, \omega_2 \\ & 0 = 0.0663 - 0.0498 \, \cos(\theta_4 - \theta_3 + 1.1921) - 0.0034 \, \cos(\theta_2 - \theta_3 + 0.8988) - 0.0049 \, \cos(\theta_3 - 0.9587) - 0.0180 \,\, \omega_3 \\ & 0 = 0.0544 - 0.0498 \, \cos(\theta_3 - \theta_4 + 1.1921) - 0.0045 \, \cos(\theta_2 - \theta_4 + 0.8707) - 0.0067 \, \cos(\theta_4 - 0.9307) - 0.0180 \,\, \omega_4 \\ \end{array}
```

```
\begin{aligned} \text{ode\_Type3\_TransientPostFault} &= \\ & 0 = 376.9911 \, \omega_2 - 376.9911 \\ & 0 = 376.9911 \, \omega_3 - 376.9911 \\ & 0 = 376.9911 \, \omega_3 - 376.9911 \\ & 0 = 376.9911 \, \omega_4 - 376.9911 \\ & 0 = 0.0629 - 0.0116 \cos(\theta_4 - \theta_2 + 0.6973) - 0.0086 \cos(\theta_3 - \theta_2 + 0.7254) - 0.0787 \cos(\theta_2 - 1.3658) - 0.0171 \, \omega_2 \\ & 0 = 0.0626 - 0.0537 \cos(\theta_4 - \theta_3 + 1.1187) - 0.0090 \cos(\theta_2 - \theta_3 + 0.7254) - 0.0133 \cos(\theta_3 - 0.7853) - 0.0180 \, \omega_3 \\ & 0 = 0.0475 - 0.0537 \cos(\theta_3 - \theta_4 + 1.1187) - 0.0122 \cos(\theta_2 - \theta_4 + 0.6973) - 0.0179 \cos(\theta_4 - 0.7572) - 0.0180 \, \omega_4 \\ \end{aligned}
```

yGen after clearing the fault:

 $yGenTable = 4 \times 4 table$

	1	2	3	4
	3.2766	1.6935 +	0.8894 +	1.2717 +
1	-11.3047i	8.1434i	0.8893i	1.2020i
	1.6935 +	1.4228	0.6147 +	0.8762 +
2	8.1434i	-10.4077i	0.5451i	0.7340i
	0.8894 +	0.6147 +	1.7186 -	2.0714 +
3	0.8893i	0.5451i	8.1324i	4.2656i
	1.2717 +	0.8762 +	2.0714 +	3.0475 -
4	1.2020i	0.7340i	4.2656i	9.8000i

Transient Simulation

Critical Clearing Time was found to be 7 cycles.

Transient simulation for Type 2 blew up.

Transient simulation for Type 1 was NOT implemented for lack of time.

References

Kundur, P. S., & Malik, O. P. (2022). Power System Stability and Control. McGraw-Hill

Education. Retrieved from

https://www.accessengineeringlibrary.com/content/book/9781260473544

Appendix: