Introduction to Machine Learning

Neural Networks Universal Approximation

Learning goals

- Universal approximation theorem for one-hidden-layer neural networks
- The pros and cons of a low approximation error

UNIVERSAL APPROXIMATION PROPERTY

Theorem. Let $\sigma:\mathbb{R}\to\mathbb{R}$ be a continuous, non-constant, bounded, and monotonically increasing function. Let $C\subset\mathbb{R}^p$ be compact, and let $\mathcal{C}(C)$ denote the space of continuous functions $C\to\mathbb{R}$. Then, given a function $g\in\mathcal{C}(C)$ and an accuracy $\varepsilon>0$, there exists a hidden layer size $m\in\mathbb{N}$ and a set of coefficients $W_j\in\mathbb{R}^p$, $u_j,b_j\in\mathbb{R}$ (for $j\in\{1,\ldots,m\}$), such that

$$f: C \to \mathbb{R}; \quad f(\mathbf{x}) = \sum_{j=1}^{m} u_j \cdot \sigma \left(W_j^T \mathbf{x} + b_j \right)$$

is an ε -approximation of g, that is,

$$||f-g||_{\infty} := \max_{\mathbf{x} \in C} |f(\mathbf{x}) - g(\mathbf{x})| < \varepsilon$$
.

The theorem extends trivially to multiple outputs.

EXAMPLE: REGRESSION/CLASSIFICATION

× 0 0 × ×

- Let's look at a few examples of the types of functions and decisions boundaries learnt by neural networks (with a single hidden layer) of various sizes.
- "size" here refers to the number of neurons in the hidden layer.
- The number of "iterations" in the following slides corresponds to the number of steps of the applied iterative optimization algorithm (stochastic gradient descent).

REGRESSION EX.: 1000 TRAINING ITERATIONS

