CLT and the Pareto Distribution: Deep Dive

CLT and Pareto — the critical blurb

- **Classical CLT:** If X \blacksquare , X \blacksquare , ... are i.i.d. with mean μ and finite variance σ^2 , then: $Z\blacksquare = \sqrt{n}$ (X $\blacksquare\blacksquare \mu$)/ $\sigma \rightarrow \blacksquare (0,1)$ in distribution.
- **Pareto heavy tails:** Pareto(α , x \blacksquare) has tail P(X > x) ~ (x \blacksquare /x)^ α . Mean finite iff α > 1, μ = α x \blacksquare /(α -1). Variance finite iff α > 2, σ ² = α x \blacksquare ² / ((α -1)² (α -2)).
- **Failure mode:** For 1 < $\alpha \le 2$, the mean exists but variance is infinite \to classical CLT fails. The generalized CLT applies: properly scaled sums converge to an α -stable law (non-Gaussian). Studentizing by sample sd does not restore normality: t-statistics remain heavy-tailed.
- **Practical consequences:** t-intervals for the mean under-cover severely when $\alpha \le 2$. Robust estimators (trimmed means, Winsorized means, Huber M-estimators) regain asymptotic normality.
- **Takeaways for demonstrations:** 1. α = 2.5 (finite variance): LLN + CLT work as expected \rightarrow sample mean normalized looks Gaussian. 2. α = 1.5 (finite mean, infinite variance): LLN holds but CLT fails \rightarrow histograms remain heavy-tailed, Q–Q vs Normal bends, coverage of 95% CIs is poor. 3. Trimmed means dramatically stabilize inference in heavy tails.

This contrast makes Pareto the textbook demonstration of where LLN still works but CLT fails spectacularly.