

July 2001 Revised March 2005

74LCX760

Low Voltage Buffer/Line Driver with 5V Tolerant Inputs and Open Drain Outputs

General Description

The LCX760 is the Open Drain version of the LCX244. The LCX760 contains eight non-inverting buffers with 3-STATE outputs. The device may be employed as a memory address driver, clock driver and bus-oriented transmitter/ receiver. The LCX760 is designed for low voltage (2.5V or 3.3V) $\rm V_{CC}$ applications with capability of interfacing to a 5V signal environment.

The LCX760 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- Open drain version of the LCX244
- 5V tolerant inputs and outputs
- 2.3V-3.6V V_{CC} specifications provided
- 8.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μ A I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
 24 mA output drive (V_{CC} = 3.0V)
- Implements proprietary noise/EMI reduction circuitry
- Latch-up conforms to JEDEC JED78
- ESD performance: Human body model > 2000V Machine model > 200V

Note 1: To ensure the high-impedance state during power up or down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCX760WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX760SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX760MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LCX760MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Inputs
I ₀ -I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Tables

Inputs		Outputs
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	L
L	Н	Н
Н	Х	Z

Inputs		Outputs
OE ₂	In	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	Х	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Absolute Maximum Ratings (Note 2)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_O > V_{CC}$	IIIA
Io	DC Output Sink Current	50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 4)

Symbol	Parameter		Min	Max	Units
V_{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	5.5	V
V _O	Output Voltage		0	5.5	V
I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		24	
		$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		12	mA
		$V_{CC} = 2.3V - 2.7V$		8	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_O Absolute Maximum Rating must be observed.

Note 4: Unused inputs or I/Os must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°	C to +85°C	Units
Symbol	Farameter	Conditions	(V)	Min	Max	Offics
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 – 3.6	2.0		V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
			2.7 – 3.6		0.8	V
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \mu A$	2.3 – 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	٧
		I _{OL} = 12 mA	2.7		0.4	
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
I	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 – 3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \leq V_O \leq 5.5V$	2.3 - 3.6		±5.0	μА
		$V_I = V_{IH}$ or V_{IL}	2.5 - 5.0		±3.0	μΛ
I _{OFF}	Power-Off Leakage Current	V_I or $V_O = 5.5V$	0		10	μА
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		10	μА
		$3.6V \le V_I$, $V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μА
ΔI_{CC}	Increase in I _{CC} per Input	V _{IH} = V _{CC} -0.6V	2.3 – 3.6		500	μΑ
I _{OHZ}	Off State Current	V _O = 5.5	2 - 3.6		10	μΑ

Note 5: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

		$T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $R_L = 500\Omega$						
Symbol	Parameter	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$\begin{aligned} \textbf{V}_{\text{CC}} &= \textbf{2.5V} \pm \textbf{0.2} \\ \textbf{C}_{\textbf{L}} &= \textbf{30 pF} \end{aligned}$		Units
Syllibol	Farameter							
		Min	Max	Min	Max	Min	Max	
t _{PZL}	Propagation Delay	0.5	8.0	0.5	9.0	0.5	10.0	ns
t _{PLZ}	Data to Output	0.5	7.0	0.5	8.0	0.5	8.4	115
t _{PZL}	Output Enable Time	0.5	8.0	0.5	9.0	0.5	10.0	ns
	OE _n to Out	0.5	0.0	0.5	9.0	0.5	10.0	115
t _{PLZ}	Output Disable Time	0.5	7.0	0.5	8.0	0.5	8.4	ns
	OE _n to Out	0.5	7.0	0.5	0.0	0.5	0.4	115
toshl	Output to Output Skew		1.0					ns
toslh	(Note 6)		1.0					115

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C	Units
Symbol	Farameter	Conditions	(V)	Typical	Ollits
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	0.8	V
		$C_L = 30 \text{ pF, } V_{IH} = 2.5 \text{V, } V_{IL} = 0 \text{V}$	2.5	0.6	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C _L = 50 pF, V _{IH} = 3.3V, V _{IL} = 0V	3.3	-0.8	V
		$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V _{CC} = Open, V _I = 0V or V _{CC}	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	10	pF

AC LOADING and WAVEFORMS

FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)

Test	Switch
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 ± 0.3V V_{CC} x 2 at V_{CC} = 2.5 ± 0.2V

3-STATE Output Low Enable and Disable Times for Logic

t_{rise} and t_{fall}

FIGURE 2. Waveforms (Input Characteristics; f = 1 MHz, $t_r = t_f = 3 \text{ns}$)

Symbol	V _{CC}					
Cymbol	$3.3V \pm 0.3V$	2.7V	2.5V ± 0.2V			
V_{mi}	1.5V	1.5V	V _{CC} /2			
V_{mo}	1.5V	1.5V	V _{CC} /2			
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V			
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V			

Schematic Diagram Generic for LCX Family (output pull-up circuitry is not applicable to open drain versions)

FIGURE 3.

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

SEE DETAIL A

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6. DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

74LCX760WM 74LCX760MTC 74LCX760MTCX