Mathematics for Machine Learning

Homework Problems 2 (Matrices)

Problem 1. Match the descriptions a)-f) with matrices 1)-6): Descriptions:

- a) Rotation by 70°
- b) Not changing anything
- c) Flipping around the x-axis
- d) Stretching out 5 times in y-direction
- e) Sending all vectors onto the line y = 6x
- f) Sending all vectors onto the line y = 6x + 1

Matrices:

$$1) \quad \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}$$

- 2) Such matrix does not exist
- $3) \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $4) \quad \begin{bmatrix} 0.342 & -0.939 \\ 0.939 & 0.342 \end{bmatrix}$
- $5) \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- $6) \quad \begin{bmatrix} 3 & -1 \\ 18 & -6 \end{bmatrix}$

Hint: Compute the determinants.

Problem 2. What is the determinant of the matrix

- a) which rotates everything by 14° and stretches 1.5 times in the x-direction,
- b) which does the inverse of a),
- c) which sends $[1 \ 0]$ to $[2 \ 4]$ and $[0 \ 1]$ to $[-1 \ 0]$,
- d) which has the form $\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$,
- e) which has the form = $\begin{bmatrix} 8 & 3 & 5 \\ 1 & 4 & 2 \\ -4 & 0 & 4 \end{bmatrix}$,
- f) which is the matrix of e) raised to the power 3.

Problem 3. Fill in the missing entries of

$$\begin{bmatrix} 2 & * \\ -1 & * \end{bmatrix}$$

if it

- a) stretches [0 1] by 2 times,
- b) has trace 2 and determinant 3,
- c) has eigenvalues 1 and 5.

Problem 4. A subspace of which dimension (at most) can you construct with the vectors:

a)
$$\mathbf{v}_1 = \begin{bmatrix} 6\\1\\5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\3\\2 \end{bmatrix},$$

b)
$$\mathbf{v}_1 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 5 \\ 2 \end{bmatrix},$$

c)
$$\mathbf{v}_1 = \begin{bmatrix} 4\\1\\2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -4\\2\\-1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 8\\-1\\7 \end{bmatrix}$,

d)
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ -4 \\ 4 \end{bmatrix}.$$

Problem 5. Find the eigenvalues and eigenvectors of the following matrices:

a)
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
,

b)
$$B = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
,

c)
$$C = \begin{bmatrix} 8 & 1 \\ 8 & 1 \end{bmatrix}$$
,

$$\mathbf{d}) \quad D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

You may use any of the techniques (characteristic polynomial / trace and determinant / columns-basis relationship) but try to also think of the problem visually.

Problem 6. If you take the unit circle $x^2 + y^2 = 1$ (i.e. the circle with center at (0,0) and radius 1) and stretch it out 2 times along the x-axis, you will get an *ellipse*. What is its area equal to?

(Additional:) Can you generalize the result to derive a formula for the area of ellipse?

Problem 7. It is known that the matrix

$$A = \begin{bmatrix} 4 & -8 \\ 1 & 2 \end{bmatrix}$$

sends a certain vector \mathbf{v} to

a)
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
.

Can you find the vector \mathbf{v} ?

Problem 8 (additional). Consider the 5×5 matrix

$$A = \begin{bmatrix} a_1 & 0 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 & 0 \\ 0 & 0 & a_3 & 0 & 0 \\ 0 & 0 & 0 & a_4 & 0 \\ 0 & 0 & 0 & 0 & a_5 \end{bmatrix}$$

where a_1, \ldots, a_5 are some fixed positive numbers.

- a) What is the standard basis of \mathbb{R}^5 ?
- b) Where does A send the standard basis vectors of \mathbb{R}^5 ?
- c) What do you think is the determinant of A?
- d) What do you think are the eigenvalues and eigenvectors of A?