Mémo Electro-magnétisme

L2 SPI

Janvier 2013

1 Rappels d'électro-statique

1.1 Loi de Coulomb

$$\overrightarrow{E} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{r^2} \cdot \overrightarrow{u_R}$$

Avec:

- -r la distance à la particule chargée
- $-\overrightarrow{u_R}$ le vecteur unitaire sur l'axe entre la charge et le point où l'on calcule
- $-\epsilon_0$ la permitivité diélectrique du vide

1.2 Théorème de Gauss

$$\Phi = \iint_{S} \overrightarrow{E} \cdot \overrightarrow{dS} = \frac{\sum_{q_{int}}}{\epsilon_0}$$

2 Magnétostatique

2.1 Loi de Biot et Savart

$$\overrightarrow{B} = \frac{\mu_0}{4\pi} \oint_{(C)} \frac{I \overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$$

Avec:

 $-\mu_0$ la perméabilité magnétique du vide

3 Electro-magnétisme

3.1 Théorème d'Ampère

$$\Phi = \oint \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 \sum_i I_i$$

Avec \overrightarrow{dl} suivant le parcours de I.

3.2 Force de Lorentz

$$\overrightarrow{F} = q \left(\overrightarrow{E} + \overrightarrow{v} \wedge \overrightarrow{B} \right)$$

Avec \overrightarrow{v} la vitesse de la particule q.

3.3 Force de Laplace

$$\overrightarrow{F} = I \oint_{(C)} \overrightarrow{dr} \wedge \overrightarrow{B}$$

Avec (C) le contour du fil baignant dans \overrightarrow{B} .

Théorème de la divergence

$$\iint\limits_{\Sigma} \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}S} = \iiint\limits_{V} \operatorname{div} \overrightarrow{A} \, \mathrm{d}V$$

Avec:

- -V un volume
- Σ la surface entourant ce volume

3.5Théorème de Stokes

$$\oint_C \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}l} = \iint_{\Sigma} \overrightarrow{\mathrm{rot}} \overrightarrow{A} \cdot \overrightarrow{\mathrm{d}S}$$

Avec:

- Σ une surface
- C le contour de cette surface

3.6 Loi de Faraday

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

Avec:

- e la force électromotrice

Lien champ \leftrightarrow potentiel

$$\overrightarrow{E} = -\overrightarrow{\operatorname{grad}}e$$

- $\begin{array}{c} \text{Avec} : \\ \ \overrightarrow{E} \ \text{le champ \'electrique} \end{array}$
- e le potentiel

En découle par exemple :

$$e = \int \overrightarrow{E} \cdot \overrightarrow{\mathrm{d}l}$$

Equation de Maxwell 4

Equation de Maxwell-Gauss

$$\operatorname{div} \overrightarrow{D} = \rho$$

Aveç:

- \overline{D} le vecteur déplacement électrique
- $-\rho$ la charge volumique

Equation de Maxwell-Ampère 4.2

$$\overrightarrow{\operatorname{rot}}\overrightarrow{H} = \overrightarrow{J_c} + \frac{\partial \overrightarrow{D}}{\partial t}$$

Aveç:

- $-\overrightarrow{H}$ vecteur excitation magnétique $-\overrightarrow{J_c}$ vecteur densité de courant

4.3Equation de Maxwell-Thomson

$$\operatorname{div} \overrightarrow{B} = 0$$

Aveç:

- \overrightarrow{B} le champ magnétique

4.4 Equation de Maxwell-Faraday

$$\overrightarrow{\operatorname{rot}}\overrightarrow{E} = -\frac{\mathrm{d}\overrightarrow{B}}{\mathrm{d}t}$$

Equations générales – Equations dans le vide

	Générales	Dans le vide
Maxwell-Gauss	$\operatorname{div}(\epsilon_0 \overrightarrow{E}) = \rho$	$\operatorname{div}(\epsilon_0 \overrightarrow{E}) = 0$
Maxwell-Ampère	$\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\frac{B}{\mu_0}}\right) - \frac{\partial(\epsilon_0\overrightarrow{E})}{\partial t} = \overrightarrow{j}$	$\overrightarrow{\operatorname{rot}}\left(\frac{\overrightarrow{B}}{\mu_0}\right) - \frac{\partial(\epsilon_0\overrightarrow{E})}{\partial t} = \overrightarrow{0}$
Maxwell-Faraday	$\overrightarrow{\operatorname{rot}}\overrightarrow{E}=-rac{\partial \overrightarrow{B}}{\partial t}$	
Maxwell-Thomson	$\operatorname{div} \overrightarrow{B} = 0$	