3.3.

Supposons que $\varphi = (M_n)$ est une filtration de M qui est f - fine, o $f = (I_n)$ une

Alors il existe $N \geq 1$ tel que pour tout $n > N, M_n = \sum_{n=1}^{N} I_p M_{n-p}$.

Comme n > N, posons n = N + 1, ainsi

$$M_{N+1} = \sum_{p=1}^{N} I_p M_{N+1-p} = \sum_{q=1}^{N} I_{N+1-q} M_q$$
, avec $q = N + 1 - p$.

Ainsi, il vient de proche en proche que $M_{N+j} = \sum_{n=1}^{N} I_{N+j-p} M_p$, pour tout j avec

Alors
$$M_{N+m} = \sum_{p=1}^{N} I_p M_{N+m-p} = \sum_{q=m}^{N+m-1} I_{N+m-q} M_q = \sum_{q=m}^{N} I_{N+m-q} M_q + \sum_{q=N+1}^{N+m-1} I_{N+m-q} M_q = \sum_{q=m}^{N} I_{N+m-q} M_q + \sum_{q=N+1}^{N+m-1} I_{N+m-q} (\sum_{p=1}^{N} I_{q-p} M_p).$$

$$\operatorname{Or} \sum_{q=m}^{N} I_{N+m-q} M_q \subseteq \sum_{p=1}^{N} I_{N+m-p} M_p \text{ et } \sum_{q=N+1}^{N+m-1} I_{N+m-q} (\sum_{p=1}^{N} I_{q-p} M_p) = \sum_{p=1}^{N} (\sum_{q=N+1}^{N+m-1} I_{N+m-p}) M_p = \sum_{q=N+1}^{N+m-1} I_{N+m-p} M_p = \sum_{q=N+1}^{N+m-1} I_$$

$$\sum_{n=1}^{N} I_{N+m-p} M_p \subseteq M_{N+m}$$

Par suite φ est f-bonne, l'inclusion inverse \tilde{A} ©tant \tilde{A} ©vidente.

3.5
$$M_{n} = \sum_{p=0}^{N} I_{n-p} M_{p} \text{ et pour tout } n \geq 1, I_{n} = \sum_{p=1}^{N'} I_{n-p} I_{p}. \text{ Alors pour } n > N'' = N + N',$$

$$M_{n} = \sum_{p=0}^{N} I_{n-p} M_{p} = \sum_{p=0}^{N} (\sum_{q=1}^{N'} I_{n-p-q} I_{p}) M_{p} = \sum_{q=1}^{N'} I_{q} (\sum_{p=0}^{N} I_{n-p-q} M_{p}) = \sum_{q=1}^{N'} I_{q} M_{n-q} \subseteq \sum_{p=1}^{N''} I_{q} M_{n-q}$$

Donc $M_n = \sum_{i=1}^{N''} I_q M_{n-q}$, l'inclusion inverse \tilde{A} ©tant triviale.

3.7

Il existe un entier $N \ge 1$ tel que pour tout $n > N, J_n = \sum_{n=1}^{N} I_{n-p} J_p \subseteq \sum_{n=1}^{N} J_{n-p} J_p \subseteq J_n$

Donc $J_n = \sum_{p=1}^{N} J_{n-p} J_p$ pour tout n > N.

Cette galit est valable si $1 \le n \le N$.

Comme q est E.P et A nothrien alors q est fortement entière sur f.

Par suite g est nothrien et d'après le thorème de Eakin f est noethrien.

3.8

Soient $f = (I_n)_{n \in \mathbb{N}}, g = (J_n)_{n \in \mathbb{N}} \in F(A)$.

Alors il existe un entier $N \ge 1$ tel que $I_n \subseteq J_n \subseteq I_{n-N} \subseteq J_{n-N}$ pour tout $N \ge 1$. Si f est A.P. alors il existe une suite d'entiers $(k_n)_{n \in \mathbb{N}}$ telle que $\lim_{n \to \infty} \frac{k_n}{n} = 1$ et $I_{k_n m} \subseteq I_n^m$

pour tout $m, n \in \mathbb{N}$.

Par suite, $J_{(k_n+N)m} \subseteq J_{k_nm+Nm} \subseteq J_{k_nm+N} \subseteq I_{k_nm+N} \subseteq I_{k_nm} \subseteq I_n^m \subseteq J_n^m$.

D'o $\lim_{n \to \infty} \frac{k_n + N}{n} = 1$, g est A.P.

Reiproquement si g est A.P. alors il existe une suite d'entiers $(k'_n)_{n\in\mathbb{N}}$ associe g.

Alors $I_{k'_n+N.m} \subseteq J_{k'_n+N.m} \subseteq J^m_{n+N} \subseteq I^m_n$ pour tout $m, n \in \mathbb{N}$.

Et
$$\lim_{n \to \infty} \frac{k'_n + N}{n} = 1, f \text{ est } A.P.$$