Time-per-Revolution in the Prime-Driven Torus

Abstract

Periodic parameter spaces and their resonance phenomena are captured by toroidal windings. We show that:

- 1. The classical Tonnetz is the case n=2, a 2-torus T_{Tonnetz}^2 with rational angular increments encoding musical fifths and thirds.
- 2. The Prime-FM model is the case n=8, an 8-torus T_{PrimeFM}^{8} with twist fractions derived from prime-gap ratios.
- 3. Both admit the same linear-flow description $\theta(t) = \theta(0) + t \omega \pmod{2\pi}$, differing only in the choice of ω .

1 Definitions

Definition 1 (*n*-Torus).

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n} = \mathbb{R}^n / (2\pi \mathbb{Z})^n,$$

with coordinates $\theta = (\theta_1, \dots, \theta_n) \mod 2\pi$.

Definition 2 (Linear Flow). Given $\omega \in \mathbb{R}^n$, the discrete flow $\Phi : \mathbb{Z} \to T^n$ is

$$\Phi(t) = \theta(0) + t\omega \pmod{2\pi}.$$

2 Periodicity versus Density

Proposition 1. If each ratio $\omega_i/\omega_j \in \mathbb{Q}$, then $\Phi(t)$ is periodic. Otherwise, its orbit is dense in an embedded sub-torus of T^n .

Proof. Standard results on linear flows on tori (Kronecker's theorem).

3 Tonnetz as T_{Tonnetz}^2

Define two angular velocities on $\mathbb{Z}_{12} \cong S^1$:

$$\omega_F = 2\pi \frac{7}{12}, \quad \omega_M = 2\pi \frac{4}{12}.$$

Then

$$T_{\mathrm{Tonnetz}}^2 = S_F^1 \times S_M^1, \quad \Phi_{\mathrm{Tonnetz}}(t) = (t \,\omega_F, \, t \,\omega_M) \pmod{2\pi}.$$

Since $\omega_F/\omega_M = 7/4 \in \mathbb{Q}$, all orbits close after at most 12 steps.

4 Prime-FM Model as $T_{ m PrimeFM}^8$

Let p_1, \ldots, p_8 be eight successive primes and set

$$\phi_i = \frac{p_i}{\sum_{j=1}^8 p_j}, \quad \omega_i = 2\pi \,\phi_i.$$

Then

$$T_{\text{PrimeFM}}^8 = \prod_{i=1}^8 S_i^1, \quad \Phi_{\text{PrimeFM}}(t) = (t \,\omega_1, \dots, t \,\omega_8) \pmod{2\pi}.$$

Each $\omega_i/\omega_j = p_i/p_j \in \mathbb{Q}$, so the flow is periodic with period $\sum_j p_j$.

5 Unified Theorem and Proof

Theorem 1. Both the Tonnetz and the Prime-FM constructions are instances of the linear flow $\Phi(t) = \theta(0) + t \omega \pmod{2\pi}$ on T^n , differing only in n and the choice of ω .

Proof. 1. By definition $T^n = \mathbb{R}^n/(2\pi\mathbb{Z})^n$.

- 2. Any $\omega \in \mathbb{R}^n$ yields $\Phi(t) = t \omega \pmod{2\pi}$.
- 3. Tonnetz: n = 2, $\omega = (2\pi \frac{7}{12}, 2\pi \frac{4}{12})$.
- 4. Prime-FM: n = 8, $\omega_i = 2\pi p_i / \sum_j p_j$.
- 5. Conclusion: Same underlying toroidal-winding framework.

6 Conclusion

The classical Tonnetz (n = 2, rational intervals) and the Prime-FM 8-torus (n = 8, prime-ratio twists) both realize toroidal resonance as linear flows on T^n . Rational vs. irrational-ratio regimes govern closed orbits versus dense quasi-periodicity, unifying musical and number-theoretic resonances in one geometric paradigm.