КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Игудесман К.Б.

ЗАДАЧИ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ЧАСТЬ 1.

Учебное пособие к курсу «Аналитическая геометрия»

Печатается по решению учебно-методической комиссии механико-математического факультета $K\Gamma Y$

Игудесман К.Б. Задачи по аналитической геометрии. Часть 1. Казань, 2003. 63 с.

Рецензент: доктор физ.-мат. наук Шурыгин В.В.

Учебное пособие предназначено для студентов I курса механикоматематического факультета $K\Gamma Y$

Предисловие

В настоящем "Пособии" подобраны и методически распределены задачи по аналитической геометрии.

В начале каждого параграфа приведены формулы, определения и другие краткие пояснения теории, необходимые для решения последующих задач.

В конце каждого параграфа приведены (после черты) задачи для повторения. Эта особенность поможет преподавателю в подборе задач для работы в классе и для домашних заданий или для повторений перед контрольными работами.

1 Векторы на плоскости и в пространстве

Вектором называется упорядоченная пара точек, т. е. пара точек, взятых в определенном порядке. Первая точка называется началом вектора, вторая его концом. Если обе точки совпадают, то вектор называется нулевым.

Modyлем вектора \overrightarrow{AB} не равного нулю, называется длина отрезка AB. Модуль нуль-вектора равен нулю по определению. Если модуль вектора равен 1, то вектор называется edunuunum.

Два ненулевых вектора \overrightarrow{AB} и \overrightarrow{CD} называются p авнымu, если они коллинеарны, направлены в одну сторону и их модули равны.

Cуммой $\mathbf{a} + \mathbf{b}$ векторов \mathbf{a} и \mathbf{b} называется вектор, который строится так: от произвольной точки O откладывают вектор \mathbf{a} , от конца отложенного вектора \mathbf{a} откладывают вектор \mathbf{b} . Точка O будет началом вектора $\mathbf{a} + \mathbf{b}$, а конец вектора \mathbf{b} концом вектора $\mathbf{a} + \mathbf{b}$.

Вектором $-\mathbf{a}$, противоположным вектору $\mathbf{a} \neq \mathbf{0}$, называется вектор, коллинеарный вектору \mathbf{a} , имеющий тот же модуль и направленный в сторону, противоположную \mathbf{a} . Если $\mathbf{a} = \mathbf{0}$, то $-\mathbf{a} = \mathbf{0}$.

Свойства сложения:

$${f a} + ({f b} + {f c}) = ({f a} + {f b}) + {f c}$$
 (ассоциативность); ${f a} + {f 0} = {f a};$ ${f a} + (-{f a}) = {f 0};$ ${f a} + {f b} = {f b} + {f a}$ (коммутативность).

Произведением $\lambda \mathbf{a}$ числа $\lambda \neq 0$ на вектор $\mathbf{a} \neq \mathbf{0}$ называется вектор, коллинеарный вектору \mathbf{a} , модуль которого равен $|\lambda|$ $|\mathbf{a}|$ и который направлен в ту же сторону, что и вектор \mathbf{a} , если $\lambda > 0$, и в противоположную сторону, если $\lambda < 0$. Если $\lambda = 0$ или $\mathbf{a} = \mathbf{0}$, то $\lambda \mathbf{a} = \mathbf{0}$.

Свойства умножения вектора на число:

$$1 \cdot \mathbf{a} = \mathbf{a},$$

$$\lambda(\mu \mathbf{a}) = (\lambda \mu) \mathbf{a},$$

$$\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b},$$

$$(\lambda + \mu) \mathbf{a} = \lambda \mathbf{a} + \mu \mathbf{a}.$$

ЗАДАЧИ

- 1. Векторы $\overrightarrow{AC}=\mathbf{a}$ и $\overrightarrow{BD}=b$ служат диагоналями параллелограмма \overrightarrow{ABCD} . Выразить через векторы \mathbf{a} и \mathbf{b} векторы $\overrightarrow{AB}, \ \overrightarrow{BC}, \ \overrightarrow{CD}$ и \overrightarrow{DA} , являющиеся сторонами этого параллелограмма.
- **2.** В треугольнике \overrightarrow{ABC} проведена медиана \overrightarrow{AD} . Выразить вектор \overrightarrow{AD} через векторы \overrightarrow{AB} и \overrightarrow{AC} .
- 3. Точки E и P служат серединами сторон AB и CD четырехугольника ABCD. Доказать, что $\overrightarrow{EP}=\frac{\overrightarrow{BC}+\overrightarrow{AD}}{2}$. Вывести отсюда теорему о средней линии трапеции.
- **4.** Доказать, что сумма векторов, идущих из центра правильного многоугольника к его вершинам, равна 0.
- **5.** В треугольнике найти такую точку, чтобы сумма векторов, идущих из этой точки к вершинам треугольника, была равна 0.
- 6. Из точки O выходят два вектора $\overrightarrow{OA}=\mathbf{a},\ \overrightarrow{OB}=\mathbf{b}.$ Найти какой-нибудь вектор \overrightarrow{OM} , идущий по биссектрисе угла AOB.
 - 7. На трех некомпланарных векторах

$$\overrightarrow{AB} = \mathbf{p}, \quad \overrightarrow{AD} = \mathbf{q}, \quad \overrightarrow{AA'} = \mathbf{r}$$

построен параллелепипед ABCDA'B'C'D'. Выразить через \mathbf{p} , \mathbf{q} и \mathbf{r} векторы, совпадающие с ребрами, диагональю параллелепипеда и диагоналями граней этого параллелепипеда, для которых вершина A' служит началом.

8. Дан тетраэдр \overrightarrow{OABC} . Полагая $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, выразить через \mathbf{a} , \mathbf{b} и \mathbf{c} векторы \overrightarrow{MN} , \overrightarrow{PQ} и \overrightarrow{RS} , где M, P

и R — середины ребер OA, OB и OC, а N, Q и S — середины соответственно противоположных ребер.

- 9. Точки K и L служат серединами сторон BC и CD параллелограмма \overrightarrow{ABCD} . Полагая $\overrightarrow{AK} = \mathbf{k}$ и $\overrightarrow{AL} = \mathbf{l}$, выразить через векторы \mathbf{k} и \mathbf{l} векторы \overrightarrow{BC} и \overrightarrow{CD} .
- **10.** В треугольнике \overrightarrow{ABC} проведены медианы \overrightarrow{AD} , \overrightarrow{BE} и \overrightarrow{CF} . Найти сумму векторов $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$.
- 11. Векторы $\overrightarrow{AB} = \mathbf{p}$ и $\overrightarrow{AF} = \mathbf{q}$ служат двумя смежными сторонами правильного шестиугольника ABCDEF. Выразить через \mathbf{p} и \mathbf{q} векторы \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{EF} , идущие по сторонам этого шестиугольника.
- **12.** Доказать, что вектор, идущий из произвольной точки плоскости в центр правильного многоугольника, есть среднее арифметическое векторов, идущих из этой точки к вершинам многоугольника.
- ${f 13.}$ В параллелограмме найти такую точку, чтобы сумма векторов, идущих из этой точки к вершинам параллелограмма, была равна ${f 0}.$
- 14. В треугольнике ABC проведена биссектриса AD угла A. Выразить вектор \overrightarrow{AD} через векторы \overrightarrow{AB} и \overrightarrow{AC} .
 - **15.** В тетраэдре ABCD даны ребра, выходящие из вершины A:

$$\overrightarrow{AB} = \mathbf{b}, \ \overrightarrow{AC} = \mathbf{c}, \ \overrightarrow{AD} = \mathbf{d}.$$

Выразить через эти векторы остальные ребра тетраэдра, медиану \overrightarrow{DM} грани BCD и вектор \overrightarrow{AQ} , где Q — центр тяжести грани BCD.

- **16.** В четырехугольнике ABCD (плоском или пространственном) положим $\overrightarrow{AB}=\mathbf{m},\ \overrightarrow{BC}=\mathbf{n},\ \overrightarrow{CD}=\mathbf{p},\ \overrightarrow{DA}=\mathbf{q}.$ Найти вектор $\overrightarrow{EF},$ соединяющий середины диагоналей AC и BD.
- 17. На векторах \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} построен параллелепипед. Доказать, что диагональ OD проходит через центр тяжести E треуголь-

2 Радиус-вектор

Paduycom-вектором ${f r}$ точки M называется вектор \overrightarrow{OM} , где O — фиксированная точка.

- **18.** Даны радиусы-векторы ${\bf r}_1$, ${\bf r}_2$, ${\bf r}_3$ трех последовательных вершин $A,\ B$ и C параллелограмма. Найти радиус-вектор четвертой вершины D.
- **19.** Зная радиусы-векторы \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 вершин треугольника, найти радиус-вектор точки пересечения его медиан.
- **20.** Даны три последовательные вершины трапеции $A(\mathbf{r}_1)$, $B(\mathbf{r}_2)$ и $C(\mathbf{r}_3)$. Найти радиусы-векторы: \mathbf{r}_4 четвертой вершины D, \mathbf{r}' точки пересечения диагоналей и \mathbf{r}'' точки пересечения боковых сторон, зная, что основание AD в λ раз больше основания BC.
- 21. Доказать, что прямые, соединяющие середины противоположных ребер тетраэдра, пересекаются в одной точке и делятся в ней пополам. Доказать, что в этой же точке пересекаются и прямые, соединяющие вершины тетраэдра с центрами тяжести противоположных граней.
- **22.** Зная радиусы-векторы \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 трех последовательных вершин параллелограмма, найти радиус-вектор \mathbf{r} точки пересечения диагоналей параллелограмма.
- **23.** Зная радиусы-векторы \mathbf{r}_A , \mathbf{r}_B , \mathbf{r}_D и $\mathbf{r}_{A'}$ четырех вершин параллелепипеда ABCDA'B'C'D', найти радиусы-векторы четырех остальных его вершин.
 - ${f 24.}$ Радиусы-векторы $\overrightarrow{OA}={f r}_1,\;\overrightarrow{OB}={f r}_2$ и $\overrightarrow{OC}={f r}_3$ служат

ребрами параллелепипеда. Найти радиус-вектор точки пересечения диагонали параллелепипеда, выходящей из вершины O, с плоскостью, проходящей через вершины A, B и C.

3 Координаты векторов

$$\lambda^1 \mathbf{a}_1 + \lambda^2 \mathbf{a}_2 + \ldots + \lambda^k \mathbf{a}_k.$$

Линейная комбинация, все коэффициенты которой равны нулю: $\lambda^1 = \lambda^2 = \ldots = \lambda^k = 0$, называется *тривиальной*.

Векторы $\mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_k$ называются *линейно зависимыми*, если существует нетривиальная линейная комбинация этих векторов равная нулю:

$$\lambda^1 \mathbf{a}_1 + \lambda^2 \mathbf{a}_2 + \ldots + \lambda^k \mathbf{a}_k = \mathbf{0}.$$

Если же равна нулю только тривиальная линейная комбинация векторов $\mathbf{a}_1, \ \mathbf{a}_2, \ \dots, \ \mathbf{a}_k$, эти векторы называются линейно независимыми.

Упорядоченная пара ${\bf e}_1,\ {\bf e}_2$ неколлинеарных векторов называется базисом на плоскости.

 $Koop \partial u$ натами вектора ${\bf a}$ по отношению κ базису ${\bf e}_1$, ${\bf e}_2$ называются числа $X,\ Y,$ такие, что ${\bf a}=X{\bf e}_1+Y{\bf e}_2.$

Два вектора $\mathbf{a}=\{X,\ Y\},\ \mathbf{b}=\{X',\ Y'\}$ равны тогда и только тогда, когда равны их соответствующие координаты: $X=X',\ Y=Y'.$

Необходимым и достаточным условием коллинеарности двух векторов $\mathbf{a} = \{X, Y\} \neq \mathbf{0}, \ \mathbf{b} = \{X', Y'\} \neq \mathbf{0}$ является пропорциональность их соответствующих координат: $X' = \lambda X, \ Y' = \lambda Y$.

Если
$$\mathbf{a} = \{X, Y\}, \ \mathbf{b} = \{X', Y'\}, \ \mathbf{ro}$$

$$\mathbf{a} + \mathbf{b} = \{X + X', Y + Y'\},$$

$$\mathbf{a} - \mathbf{b} = \{X - X', Y - Y'\},$$

$$\lambda \mathbf{a} = \{\lambda X, \lambda Y\}.$$

Упорядоченная тройка e_1 , e_2 , e_3 некомпланарных векторов называется базисом в пространстве.

Равенство, коллинеарность, произведение вектора на число, сумма векторов в пространстве определяются аналогично плоскости, с той лишь разницей, что в пространстве вектор имеет не две, а три координаты $\mathbf{a} = \{X, Y, Z\}.$

Рис. 1.

Необходимым и достаточным условием компланарности трех векторов $\mathbf{a}=\{X,\ Y,\ Z\},\ \mathbf{b}=\{X',\ Y',\ Z'\},\ \mathbf{c}=\{X'',\ Y'',\ Z''\}$ является равенство

$$\begin{vmatrix} X & Y & Z \\ X' & Y' & Z' \\ X'' & Y'' & Z'' \end{vmatrix} = 0.$$

- **25.** Даны три вектора $\mathbf{a}=\{2,\ 4\},\ \mathbf{b}=\{-3,\ 1\},\ \mathbf{c}=\{5,\ -2\}.$ Найти векторы 1) $2\mathbf{a}+3\mathbf{b}-5\mathbf{c};\ 2)\ \mathbf{a}+24\mathbf{b}+14\mathbf{c}.$
- **26.** Представить вектор **c** как линейную комбинацию векторов **a** и **b** в каждом из нижеследующих случаев:

- 1) $\mathbf{a} = \{4, -2\}, \mathbf{b} = \{3, 5\}, \mathbf{c} = \{1, -7\};$
- 2) $\mathbf{a} = \{5, 4\}, \mathbf{b} = \{-3, 0\}, \mathbf{c} = \{19, 8\};$
- 3) $\mathbf{a} = \{-6, 2\}, \mathbf{b} = \{4, 7\}, \mathbf{c} = \{9, -3\}.$
- **27.** Установить, в каких из нижеследующих случаев тройки векторов \mathbf{a} , \mathbf{b} и \mathbf{c} будут линейно зависимы, и в том случае, когда это возможно, представить вектор \mathbf{c} как линейную комбинацию векторов \mathbf{a} и \mathbf{b} :
- 1) $\mathbf{a} = \{5, 2, 1\}, \mathbf{b} = \{-1, 4, 2\}, \mathbf{c} = \{-1, -1, 6\};$
- 2) $\mathbf{a} = \{6, 4, 2\}, \mathbf{b} = \{-9, 6, 3\}, \mathbf{c} = \{-3, 6, 3\};$
- 3) $\mathbf{a} = \{6, -18, 12\}, \mathbf{b} = \{-8, 24, -16\}, \mathbf{c} = \{8, 7, 3\}.$
- **28.** Дан параллелограмм ABCD. Точки E и F делят сторону AB на три равные части, а точки K, L и M сторону BC на четыре равные части. Принимая за базис векторы $\overrightarrow{DE} = \mathbf{e}_1$ и $\overrightarrow{FM} = \mathbf{e}_2$, найти координаты вектора \overrightarrow{AK} .
- **29.** Даны три вектора $\mathbf{a} = \{5, 3\}$, $\mathbf{b} = \{2, 0\}$, $\mathbf{c} = \{4, 2\}$. Подобрать числа α и γ так, чтобы три вектора α **a**, \mathbf{b} и γ **c** составили треугольник, если начало вектора \mathbf{b} совместить с концом вектора α **a**, a начало вектора γ **c** с концом вектора \mathbf{b} .
- **30.** Даны три вектора $\mathbf{a}=\{5,\ 7,\ 2\},\ \mathbf{b}=\{3,\ 0,\ 4\},\ \mathbf{c}=\{-6,\ 1,\ -1\}.$ Найти векторы 1) $3\mathbf{a}-2\mathbf{b}+\mathbf{c};\ 2)$ $5\mathbf{a}+6\mathbf{b}+4\mathbf{c}.$
- **31.** Представить вектор **d** как линейную комбинацию векторов **a**, **b** и **c** в каждом из нижеследующих случаев:
- 1) $\mathbf{a} = \{2, 3, 1\}, \mathbf{b} = \{5, 7, 0\}, \mathbf{c} = \{3, -2, 4\}, \mathbf{d} = \{4, 12, -3\};$
- 2) $\mathbf{a} = \{5, -2, 0\}, \mathbf{b} = \{0, -3, 4\}, \mathbf{c} = \{-6, 0, 1\}, \mathbf{d} = \{25, -22, 16\};$
- 3) $\mathbf{a} = \{3, 5, 6\}, \mathbf{b} = \{2, -7, 1\}, \mathbf{c} = \{12, 0, 6\}, \mathbf{d} = \{0, 20, 18\}.$
- **32.** Показать, что каковы бы ни были три вектора **a**, **b** и **c** и три числа λ , μ , ν , векторы $\lambda \mathbf{a} \mu \mathbf{b}$, $\nu \mathbf{b} \lambda \mathbf{c}$, $\mu \mathbf{c} \nu \mathbf{a}$ компланарны.
 - **33.** Даны четыре вектора $\mathbf{a} = \{1, 5, 3\}, \ \mathbf{b} = \{6, -4, -2\}, \ \mathbf{c} =$

 $\{0, -5, 7\}$, $\mathbf{d} = \{-20, 27, -35\}$. Подобрать числа α , β и γ так, чтобы векторы $\alpha \mathbf{a}$, $\beta \mathbf{b}$, $\gamma \mathbf{c}$ и \mathbf{d} образовывали замкнутую ломаную линию, если начало каждого последующего вектора совместить с концом предыдущего.

34. Доказать, что стороны AB и DC четырехугольника ABCD параллельны тогда и только тогда, когда отрезок MN, соединяющий середины их сторон, проходит через точку O пересечения диагоналей.

4 Аффинные системы координат на плоскости и в пространстве

 $A \phi \phi$ инным репером на плоскости называется набор $\{O,\ \mathbf{e}_1,\ \mathbf{e}_2\},$ состоящий из точки O и векторного базиса $\{\mathbf{e}_1,\ \mathbf{e}_2\}$ на плоскости.

 $Koop \partial u$ натами точки A относительно репера $\{O, \mathbf{e}_1, \mathbf{e}_2\}$ называются координаты $\{X, Y\}$ ее радиуса-вектора \mathbf{r}_A относительно векторного базиса $\{\mathbf{e}_1, \mathbf{e}_2\}$ на плоскости.

Таким образом, $\mathbf{r}_A = X\mathbf{e}_1 + Y\mathbf{e}_2$. Чтобы отличать в координатной записи точки от векторов, координаты точек будем заключать в круглые скобки: A(X, Y).

Если
$$A(X, Y)$$
, $B(X', Y')$, то $\overrightarrow{AB} = \{X' - X, Y' - Y\}$.

 $A\phi\phi$ инным репером в пространстве называется набор $\{O,\ \mathbf{e}_1,\ \mathbf{e}_2,\ \mathbf{e}_3\},$ состоящий из точки O и векторного базиса $\{\mathbf{e}_1,\ \mathbf{e}_2,\ \mathbf{e}_3\}$ пространства.

 $Koop \partial u$ натами точки A относительно репера $\{O, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ называются координаты $\{X, Y, Z\}$ ее радиуса-вектора \mathbf{r}_A относительно векторного базиса $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ пространства.

Если
$$A(X, Y, Z), B(X', Y', Z'),$$
 то $\overrightarrow{AB} = \{X' - X, Y' - Y, Z' - Z\}.$

- 35. Дан правильный шестиугольник ABCDEF. Найти координаты его вершин, принимая за начало координат вершину A, за положительное направление оси абсцисс направление стороны AB, за положительное направление оси ординат направление диагонали AE, а за единицу масштаба по обеим осям сторону шестиугольника.
- 36. В трапеции ABCD нижнее основание AB в три раза больше ее верхнего основания CD. Принимая за начало координат точку A, за положительное направление оси абсцисс направление основания AB, за положительное направление оси ординат направление боковой стороны AD, а стороны AB и AD за единичные отрезки на этих осях, найти координаты вершин трапеции, а также координаты точки O пересечения ее диагоналей и координаты точки S пересечения ее боковых сторон.
- **37.** Даны две вершины параллелограмма A(-1, 3), B(2, -1). Найти две другие его вершины при условии, что диагонали параллелограмма параллельны осям координат.
- **38.** Дана точка $M(x,\ y,\ z)$. Найти ее проекцию: 1) на ось $Ox;\ 2)$ на плоскость Oyz.
- **39.** Дан параллелограмм ABCD. Точки E и F делят сторону AB на три равные части, а точки K,L и M сторону BC на четыре равные части. Принимая за начало координат точку E, за базис векторы $\overrightarrow{EK}=\mathbf{e}_1$ и $\overrightarrow{ED}=\mathbf{e}_2$, найти координаты точки M.
- 40. В равнобочной трапеции большее ее основание AB=8, высота равна 3, а угол при основании равен 45°. Принимая за ось абсцисс прямоугольной системы координат большее основание трапеции, а за ось ординат перпендикуляр в его середине и выбирая

за положительное направление оси ординат то направление этого перпендикуляра, которое идет внутрь трапеции, найти координаты вершин трапеции, точки M пересечения ее диагоналей и точки S пересечения ее боковых сторон.

- **41.** Даны три вершины параллелограмма A(-2, 1), B(1, 3), C(4, 0). Найти четвертую его вершину.
- **42.** Три ребра параллелепипеда, выходящих из одной вершины, приняты за единичные векторы осей координат. Найти в этой системе координаты всех его вершин.
- **43.** Дана точка M(x, y, z). Найти координаты точки, симметричной с точкой M: 1) относительно начала координат; 2) относительно плоскости Oxy; 3) относительно оси Oz.

5 Простое отношение трех точек на прямой

Простым отношением трех точек ABC, лежащих на прямой и таких, что $B \neq C$, называется следующее число:

$$(ABC) = \frac{\overrightarrow{AC}}{\overrightarrow{CB}}.$$

Это число (ABC) называют также отношением, в котором точка C делит (направленный) отрезок AB.

Если точка C делит отрезок AB в отношении $\lambda,$ то

$$\mathbf{r}_C = \frac{\mathbf{r}_A + \lambda \mathbf{r}_B}{1 + \lambda},$$

в координатах на плоскости

$$X_C = \frac{X_A + \lambda X_B}{1 + \lambda}, \quad Y_C = \frac{Y_A + \lambda Y_B}{1 + \lambda},$$

в пространстве

$$X_C = \frac{X_A + \lambda X_B}{1 + \lambda}, \quad Y_C = \frac{Y_A + \lambda Y_B}{1 + \lambda}, \quad Z_C = \frac{Z_A + \lambda Z_B}{1 + \lambda}.$$

- 44. Доказать, что в каждом из нижеследующих случаев точки $A,\ B,\ C$ находятся на одной прямой, и найти простое отношение ABC:
- 1) A(2, 1), B(-2, 5), C(0, 3);
- 2) A(1, 6), B(5, 10), C(-3, 2);
- 3) A(0, 0), B(-3, -3), C(1, 1).
- **45.** Даны две точки $A(3,\ 4)$ и $B(2,\ -1)$. Найти точки пересечения прямой AB с осями координат.
- **46.** Даны середины сторон треугольника $M_1(2, 4), M_2(-3, 0),$ $M_3(2, 1).$ Найти его вершины.
- **47.** Даны две точки $A(-4,\ 2),\ B(8,\ -7).$ Найти точки C и D, делящие отрезок AB на три равные части.
- 48. Даны две вершины треугольника: A(-4, -1, 2) и B(3, 5, -16). Найти третью вершину C, зная, что середина стороны AC лежит на оси Oy, а середина стороны BC— на плоскости Oxz.
- 49. Доказать, что прямые, соединяющие середины противоположных ребер тетраэдра, пересекаются в одной точке и делятся в ней пополам. Доказать, что в этой же точке пересекаются прямые, соединяющие вершины тетраэдра с центрами тяжести противоположных граней. Найти отношение, в котором эта точка делит отрезки указанных прямых.
- **50.** (Теорема Менелая). На сторонах AB, BC и CA треугольника ABC даны точки C_0 , A_0 и B_0 такие, что $(BCA_0)=\lambda_1$, $(CAB_0)=\lambda_2$ и $(ABC_0)=\lambda_3$. Доказать, что точки A_0 , B_0 и C_0 лежат на одной прямой тогда и только тогда, когда $\lambda_1\lambda_2\lambda_3=-1$.
- **51.** Найти координаты точки M, делящей отрезок M_1M_2 , ограниченный точками $M_1(2, 3)$ и $M_2(-5, 1)$, в отношении:

1)
$$\lambda = 2$$
; 2) $\lambda = -\frac{1}{2}$; 3) $\lambda = -4$; 4) $\lambda = \frac{1}{3}$.

- **52.** Один из концов отрезка AB находится в точке A(2, 3), его серединой служит точка M(1, -2). Найти другой конец отрезка.
- **53.** Даны две смежные вершины параллелограмма A(-4, -7) и B(2, 6) и точка пересечения его диагоналей M(3, 1). Найти две другие вершины параллелограмма.
- **54.** Определить координаты концов A и B отрезка, который точ-ками $C(2,\ 2),\ D(1,\ 5)$ разделен на три равные части.
- **55.** Найти отношение, в котором каждая из плоскостей координат делит отрезок AB: A(2, -1, 7) и B(4, 5, -2).
- **56.** В каком отношении плоскость, проведенная через концы трех ребер параллелепипеда, исходящих из одной точки, делит диагональ, исходящую из этой же точки?

6 Расстояние между точками

Если базисные векторы $\{\mathbf{e}_1, \ \mathbf{e}_2\}$ на плоскости (соответственно, $\{\mathbf{e}_1, \ \mathbf{e}_2, \ \mathbf{e}_3\}$ в пространстве) попарно ортогональны, а модули их равны 1, то система координат называется *прямоугольной*. В этом случае базисные векторы обычно обозначают так: $\{\mathbf{i}, \ \mathbf{j}\}$ (соответсвенно, $\{\mathbf{i}, \ \mathbf{j}, \ \mathbf{k}\}$).

В прямоугольной системе координат расстояние d между двумя точками $M_1(x_1,\ y_1)$ и $M_2(x_2,\ y_2)$ на плоскости вычисляется по формуле

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} ,$$

в пространстве

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

- **57.** Найти расстояние d между точками A и B в каждом из следующих случаев:
- 1) A(4, 3), B(7, 7); 3) A(12, -1), B(0, 4);
- 2) A(3, 1), B(-2, 4); 4) A(3, 5), B(4, 6).
- **58.** На осях координат найти точки, каждая из которых равноудалена от точек (1, 1) и (3, 7).
- **59.** Найти центр окружности, проходящей через точку A(-4, 2) и касающейся оси Ox в точке B(2, 0).
- **60.** На оси Oy найти точку, равноудаленную от двух точек $A(3,\ 1,\ 0)$ и $B(-2,\ 4,\ 1).$
- **61.** Начало вектора находится в точке A(2, -1, 5). Длина вектора равна 11. Найти конец этого вектора, зная, что первые две его координаты равны соответственно x=7, y=6.
- **62.** Найти расстояние от начала координат каждой из следующих точек: 1) A(11, 4); 2) B(-3, -4); 3) C(-11, 0); 4) D(5, 12).
- **63.** На оси Oy найти точку, равноудаленную от точки (-8, -4) и от начала координат.
- **64.** Найти центр и радиус окружности, проходящей через точку A(2, -1) и касающейся обеих осей координат.
- **65.** Найти в плоскости Oxz точку, равноудаленную от трех точек $A(1,\ 1,\ 1),\ B(-1,\ 1,\ 0),\ C(3,\ 1,\ -1).$
- **66.** Даны четыре точки $A(1,\ 2,\ 3),\ B(5,\ 2,\ 3),\ C(2,\ 5,\ 3),$ $D(1,\ 2,\ -1).$ Найти центр и радиус сферы, проходящей через эти точки.

7 Скалярное произведение векторов

Скалярным произведением ab (часто используются обозначения (a, b) или $a \cdot b$) двух векторов $a \neq 0$ и $b \neq 0$ называется число, равное произведению модулей этих векторов на косинус угла между ними:

$$\mathbf{ab} = |\mathbf{a}| |\mathbf{b}| \cos \varphi$$
.

Если $\mathbf{a} = \mathbf{0}$ или $\mathbf{b} = \mathbf{0}$, то $\mathbf{a}\mathbf{b} = \mathbf{0}$ по определению.

Скалярное произведение ${\bf a}{\bf b}$ равно нулю тогда и только тогда, когда ${\bf a}\bot {\bf b}$ или ${\bf a}={\bf 0}$ или ${\bf b}={\bf 0}.$

Свойства скалярного умножения:

$$\mathbf{ab} = \mathbf{ba}$$
 (коммутативность) ,
$$\lambda(\mathbf{ab}) = (\lambda \mathbf{a}) \mathbf{b} \ ,$$

$$(\mathbf{a} + \mathbf{b}) \mathbf{c} = \mathbf{ac} + \mathbf{bc}$$
 (дистрибутивность) ,
$$\mathbf{aa} = \mathbf{a}^2 = |\mathbf{a}|^2 \geq 0 \ ,$$

причем $\mathbf{a}\mathbf{a}=0$ тогда и только тогда, когда $\mathbf{a}=\mathbf{0}$.

- **67.** Найти скалярное произведение векторов **a** и **b** в каждом из следующих случаев:
- 1) $|\mathbf{a}| = 8$, $|\mathbf{b}| = 5$, $\angle(\mathbf{a}, \mathbf{b}) = 60^{\circ}$;
- 2) $|\mathbf{a}| = 1$, $|\mathbf{b}| = 1$, $\angle(\mathbf{a}, \mathbf{b}) = 135^{\circ}$;
- $3) \mathbf{a} \perp \mathbf{b};$
- 4) |a| = 3, |b| = 6, $a \uparrow \uparrow b$;
- 5) $|\mathbf{a}| = 3$, $|\mathbf{b}| = 1$, $\mathbf{a} \uparrow \downarrow \mathbf{b}$.
- **68.** В равнобедренном треугольнике ABC медианы AA_1 и BB_1 , проведенные к боковым (равным) сторонам CB и CA, пересекаются под прямым углом. Найти углы этого треугольника.
- **69.** Доказать, что векторы ${f p}={f a}({f b}{f c})-{f b}({f a}{f c})$ и ${f c}$ перпендикулярны друг другу.

- **70.** В треугольнике \overrightarrow{ABC} проведены медианы \overrightarrow{AD} , \overrightarrow{BE} и \overrightarrow{CF} . Вычислить $(\overrightarrow{BC}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BE}) + (\overrightarrow{AB}, \overrightarrow{CF})$.
- **71.** В прямоугольном треугольнике ABC опущен перпендикуляр CH на гипотенузу AB. Выразить вектор \overrightarrow{CH} через векторы $\mathbf{a}=\overrightarrow{CB}$ и $\mathbf{b}=\overrightarrow{CA}$.
- **72.** Доказать, что если в тетраэдре ABCD два ребра перпендикулярны соответсвенно своим противоположным, то и остальные два ребра взаимно-перпендикулярны.
- 73. Доказать, что сумма квадратов сторон четырехугольника $A_1A_2A_3A_4$ равна сумме квадратов его диагоналей и учетверенного квадрата расстояния между серединами диагоналей.
- 74. В треугольнике ABC даны длины его сторон $BC=5,\ CA=6,\ AB=7.$ Найти скалярное произведение векторов \overrightarrow{BA} и \overrightarrow{BC} .
- 75. Какой угол образуют единичные векторы ${\bf s}$ и ${\bf t}$, если известно, что векторы ${\bf p}={\bf s}+2{\bf t}$ и ${\bf q}=5{\bf s}-4{\bf t}$ взаимно-перпендикулярны.
- 76. Дан равносторонний треугольник ABC, у которого длины сторон равны 1. Полагая $\overrightarrow{BC} = \mathbf{a}$, $\overrightarrow{CA} = \mathbf{b}$, $\overrightarrow{AB} = \mathbf{c}$, вычислить выражение $\mathbf{ab} + \mathbf{bc} + \mathbf{ca}$.
- 77. Дан прямоугольник ABCD и точка M (которая может лежать как в плоскости прямоугольника, так и вне ее). Показать, что: 1) скалярное произведение векторов, идущих от точки M к двум несмежным вершинам прямоугольника, равно скалярному произведению векторов, идущих от той же точки к двум другим вершинам $(\overrightarrow{MA}, \overrightarrow{MC}) = (\overrightarrow{MB}, \overrightarrow{MD});$
- 2) сумма квадратов векторов одной пары равна сумме квадратов другой пары $(\overrightarrow{MA}^2 + \overrightarrow{MC}^2 = \overrightarrow{MB}^2 + \overrightarrow{MD}^2)$.
- 78. В треугольнике ABC точка D делит сторону AB в отношении \overrightarrow{AD} : $\overrightarrow{DB}=\lambda$. Выразить длину отрезка CD через три стороны

треугольника и число λ .

- 79. Доказать, что при любом расположении точек \overrightarrow{ABCD} на плоскости или в пространстве имеет место равенство $(\overrightarrow{BC}, \overrightarrow{AD}) + (\overrightarrow{CA}, \overrightarrow{BD}) + (\overrightarrow{AB}, \overrightarrow{CD}) = 0$.
- $oldsymbol{80.}$ В равнобедренном треугольнике угол против основания равен $rac{\pi}{6}$. Найти углол между медианами этого треугольника, проведенными к боковым сторонам.
- 81. Точка M расположена внутри выпуклого n-угольника $P = A_1A_2 \dots A_n$. Доказать, что найдется такая сторона A_iA_{i+1} этого n-угольника, что основание перпендикуляра, опущенного из точки M на A_iA_{i+1} является внутренней точкой отрезка A_iA_{i+1} .

8 Скалярное произведение в координатах

Скалярное произведение векторов $\mathbf{a} = \{X, Y\}$ и $\mathbf{b} = \{X', Y'\}$ в произвольной аффинной системе координат на плоскости вычисляется по формуле:

$$\mathbf{ab} = g_{11}XX' + g_{12}(XY' + YX') + g_{22}YY'$$
,

где $g_{ij} = \mathbf{e}_i \mathbf{e}_j$, i, j = 1, 2 — скалярное произведение базисных векторов.

В пространстве:

$$\mathbf{ab} = g_{11}XX' + g_{12}(XY' + YX') + g_{13}(XZ' + ZX') +$$
$$g_{22}YY' + g_{23}(YZ' + ZY') + g_{33}ZZ',$$

где $g_{ij}={\bf e}_i{\bf e}_j,\ i,j=\overline{1,3}$ — скалярное произведение базисных векторов.

В прямоугольной системе координат эти формулы принимают вид:

$$\mathbf{ab} = XX' + YY'$$

$$\mathbf{ab} = XX' + YY' + ZZ'$$

в пространстве.

- 82. Построить аффинную систему координат, если
- 1) $g_{11} = 4$, $g_{12} = 0$, $g_{22} = 1$;
- 2) $g_{11} = 1$, $g_{12} = \frac{1}{2}$, $g_{22} = 1$;
- 3) $g_{11} = 4$, $g_{12} = 8$, $g_{22} = 25$;
- 4) $g_{11} = 4$, $g_{12} = -8$, $g_{22} = 25$.
- **83.** Определить длину вектора $\mathbf{a} = \{56, -10\}$, если $g_{11} = 4, \ g_{12} = 8, \ g_{22} = 25.$
- **84.** Определить единичный вектор **b**, перпендикулярный к вектору $\mathbf{a}=\{7,\ -8\},$ если $g_{11}=4,\ g_{12}=8,\ g_{22}=25.$
- 85. Длины единичных векторов аффинной системы координат суть соответственно $|{\bf e}_1|=2,\ |{\bf e}_2|=\sqrt{3},$ а угол между ними $\omega=\frac{5\pi}{6}$. Относительно этой системы координат даны два вектора ${\bf a}=\{1,\ 2\},\ {\bf b}=\{2,\ 2\}.$ Найти угол от первого вектора до второго.
- 86. Относительно аффинной системы координат дан треугольник ABC с вершинами в точках A(1, 1), B(5, 3), C(3, 5), длины сторон которого суть $AB = \sqrt{52}, AC = 4, BC = \sqrt{28}$. Определить длины единичных векторов этой системы координат и угол между ними.
- **87.** Вычислить скалярное произведение векторов **a** и **b**, заданных своими прямоугольными координатами в каждом из нижеследующих случаев:
- 1) $\mathbf{a} = \{5, 2\}, \quad \mathbf{b} = \{-3, 6\};$
- 2) $\mathbf{a} = \{6, -8\}, \mathbf{b} = \{12, 9\};$
- 3) $\mathbf{a} = \{3, -5\}, \mathbf{b} = \{7, 4\}.$
 - 88. Определить угол lpha между двумя векторами ${f a}$ и ${f b}$, заданны-

ми своими прямоугольными координатами в каждом из нижеследующих случаев:

- 1) $\mathbf{a} = \{8, 4, 1\}, \mathbf{b} = \{2, -2, 1\};$
- 2) $\mathbf{a} = \{2, 5, 4\}, \mathbf{b} = \{6, 0, 3\}.$
- 89. В правильном тетраэдре ABCD найти угол ψ между медианами BB_1 и CC_1 граней ABC и ACD.
- **90.** Определить длину вектора $\mathbf{a} = \{7, -8\}$, если $g_{11} = 4$, $g_{12} = 8$, $g_{22} = 25$.
- **91.** Даны длины единичных векторов репера $|\mathbf{e}_1|=2, \ |\mathbf{e}_2|=3$ и угол между ними $\omega=\frac{\pi}{3}$. Определить $g_{11},\ g_{12},\ g_{22}$ и расстояние d между точками $A(1,\ -2),\ B(-3,\ 4)$.
- 92. Длины единичных векторов аффинной системы координат суть соответственно $|\mathbf{e}_1|=4, \ |\mathbf{e}_2|=2.$ Угол между ними $\omega=\frac{\pi}{3}.$ Относительно этой системы координат вершины треугольника ABC имеют координаты $A(1,\ 3),\ B(1,\ 0),\ C(2,\ 1).$ Определить длины сторон AB и AC этого треугольника и угол A между ними.
- 93. Относительно аффинной системы координат дан прямоугольный треугольник ABC с вершинами в точках A(1, 0), B(0, 1), C(3, 2), прямым углом при вершине C и катетами CA = 2, CB = 3. Определить длины сторон A'B' и A'C' треугольника A'B'C' и угол между ними, если вершины этого треугольника имеют координаты A'(1, 1), B'(2, 2), C'(2, 4).
- **94.** Определить угол α между двумя векторами **a** и **b**, заданными своими прямоугольными координатами в каждом из нижеследующих случаев:
- 1) $\mathbf{a} = \{4, 3\}, \quad \mathbf{b} = \{1, 7\};$
- 2) $\mathbf{a} = \{6, -8\}, \mathbf{b} = \{12, 9\};$
- 3) $\mathbf{a} = \{2, 5\}, \quad \mathbf{b} = \{3, -7\};$
- 4) $\mathbf{a} = \{2, -6\}, \mathbf{b} = \{-3, 9\}.$

- **95.** Вычислить скалярное произведение векторов **a** и **b**, заданных своими прямоугольными координатами в каждом из нижеследующих случаев:
- 1) $\mathbf{a} = \{3, 5, 7\}, \quad \mathbf{b} = \{-2, 6, 1\};$
- 2) $\mathbf{a} = \{3, 0, -6\}, \mathbf{b} = \{2, -4, 0\};$
- 3) $\mathbf{a} = \{2, 5, 1\}, \quad \mathbf{b} = \{3, -2, 4\}.$
- **96.** Найти численную величину проекции вектора $\{8, 4, 1\}$ на ось, параллельную вектору $\{2, -2, 1\}$.
- 97. В треугольнике ABC длины сторон CA и CB равны, соответственно, 4 и 6, а угол при вершине C равен $\frac{\pi}{6}$. 1) Найти угол φ между медианами AA_1 и BB_1 . 2) Найти длину медианы CC_1 .

9 Поворот вектора на ориентированной плоскости

Пусть $\{O; \ \mathbf{i}, \ \mathbf{j}\}$ — ортонормированный репер на плоскости. Вектор $\mathbf{e}(\varphi)$, получающийся поворотом вектора \mathbf{i} на угол φ , имеет следующий вид:

$$\mathbf{e}(\varphi) = \mathbf{i}\cos\varphi + \mathbf{j}\sin\varphi.$$

Используя этот вектор, произвольный вектор $\mathbf{a} = \{X, Y\}$ можно представить в виде:

$$\mathbf{a} = |\mathbf{a}|\mathbf{e}(\varphi),$$

где φ — угол, на который нужно повернуть вектор \mathbf{i} , чтобы его направление совпало с направлением вектора \mathbf{a} . При этом

$$X = |\mathbf{a}|\cos\varphi, \quad Y = |\mathbf{a}|\sin\varphi.$$

Рассмотрим вектор $\mathbf{b} = \{X', Y'\}$, полученный поворотом вектора

 ${f a}$ на угол ${f lpha}$. Тогда ${f b}=|{f a}|{f e}({f arphi}+{f lpha})$, в координатах

$$\begin{cases} X' = X \cos \alpha - Y \sin \alpha \\ Y' = X \sin \alpha + Y \cos \alpha \end{cases}.$$

В частном случае, вектор, полученный поворотом вектора ${\bf a}$ на угол $\frac{\pi}{2}$, будем обозначать $[{\bf a}]$, в координатах $[{\bf a}]=\{-Y,\ X\}.$

- **98.** Даны две точки $A(2,\ 1)$ и $B(5,\ 5)$. Найти конец вектора \overrightarrow{AC} , получающегося из вектора \overrightarrow{AB} поворотом на угол $\frac{5\pi}{6}$.
- **99.** Даны две соседние вершины квадрата $A(-3,\ 2)$ и $B(2,\ 4)$. Найти две другие вершины.
- **100.** Основанием равнобедренного треугольника служит отрезок AC: A(-4, 2), C(4, -4). Найти координаты вершины B этого треугольника, зная, что углы при его основании равны $\arctan \frac{5\pi}{6}$.
- **101.** Определить координаты k-ой вершины правильного n-угольника, если даны координаты первой вершины $A_1(x_1, y_1)$ и координаты центра $S(x_0, y_0)$.
- **102.** Составить уравнения траектории, описываемой точкой M, лежащей на окружности ω радиуса R, катящейся без скольжения по данной прямой ℓ (циклоида).
- **103.** Круг радиуса r катится по кругу радиуса R, оставаясь внутри него. Написать параметрические уравнения линии, описываемой точкой катящегося круга (гипоциклоида).
- **104.** По окружности ω , заданной уравнением $x^2 + y^2 = R^2$, катится без скольжения прямая ℓ , начальное положение которой x = R. Составить уравнения траектории, описываемой точкой M, лежащей на ℓ , принимая за начальное ее положение точку $M_0(R;0)$. (эвольвента окружности).

- **105.** Даны две противоположные вершины квадрата $A(-3,\ 2)$ и $B(5,\ -4)$. Найти две другие вершины.
- **106.** Даны две вершины равностороннего треугольника $A(2,\ 1),$ $B(6,\ 3).$ Найти его третью вершину.
- **107.** Векторы $\overrightarrow{A_0A_1}$, $\overrightarrow{A_1A_2}$, $\overrightarrow{A_2A_3}$ имеют длины a_1 , a_2 , a_3 и образуют углы ω_1 , ω_2 , ω_3 с положительным направлением оси Ox. Определить координаты вектора $\overrightarrow{A_0A_3}$.
- **108.** Векторы $\overrightarrow{A_0A_1}$, $\overrightarrow{A_1A_2}$, ..., $\overrightarrow{A_{n-1}A_n}$ имеют длины d_1, d_2, \ldots, d_n и образуют углы $\phi_1, \phi_2, \ldots, \phi_n$ с положительным направлением оси Ox. Определить координаты точки A_n , если $A_0(x_0, y_0)$.
- 109. Круг радиуса r катится по кругу радиуса R, оставаясь вне его. Найти параметрические уравнения линии, описываемой точкой катящегося круга (эпициклоида), принимая за начало координат центр неподвижного круга, а за параметр угол t между положительным направлением оси абсцисс и с радиусом неподвижного круга, идущим в точку касания подвижного круга с неподвижным. В начальном положении подвижная окружность касалась неподвижной в точке A пересечения последней с осью абсцисс.

10 Косое произведение векторов на плоскости

Косым произведением векторов **а** и **b** на ориентированной плоскости называется следующее число:

$$<\mathbf{a},\mathbf{b}>=[\mathbf{a}]\mathbf{b}=|\mathbf{a}||\mathbf{b}|\sin\phi$$
,

где ϕ — угол от вектора ${\bf a}$ до вектора ${\bf b}$. Таким образом, $|<{\bf a},{\bf b}>|$ — площадь параллелограмма, построенного на векторах ${\bf a}$ и ${\bf b}$.

Свойства косого произведения:

$$<{f a},{f b}>=-<{f b},{f a}>$$
 (кососимметричность) ,
$$\lambda<{f a},{f b}>=<(\lambda{f a}),{f b}>\;, < ({f a}+{f b}),{f c}>=<{f a},{f c}>+<{f b},{f c}>$$
 (дистрибутивность) .

Косое произведение векторов $\mathbf{a} = \{X, Y\}$ и $\mathbf{b} = \{X', Y'\}$ в произвольной аффинной системе координат на плоскости вычисляется по формуле:

$$<\mathbf{a},\mathbf{b}>=arepsilon_{12}\left|egin{array}{cc} X & Y \ X' & Y' \end{array}\right|$$

где $\varepsilon_{12} = <{\bf e}_1, {\bf e}_2>$ — косое произведение базисных векторов. В прямоугольной системе координат

$$<\mathbf{a},\mathbf{b}>=\left|egin{array}{cc} X & Y \ X' & Y' \end{array}\right|$$

Имеет место следующая формула для площади треугольника ABC на плоскости:

$$S_{\triangle ABC} = \frac{1}{2} |\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle| = \frac{1}{2} \begin{vmatrix} X_B - X_A & Y_B - Y_A \\ X_C - X_A & Y_C - Y_A \end{vmatrix}$$

- **110.** Вычислить площадь треугольника, вершинами которого служат точки A(4, 2), B(9, 4) и C(7, 6).
- **111.** Вычислить площадь пятиугольника, вершинами которого служат точки A(-2, 0), B(0, -1), C(2, 0), D(3, 2) и E(-1, 3).
- **112.** Найти расстояние от точки (2, 0) до прямой, проходящей через точки (1, 1) и (5, 4).
- **113.** Две вершины треугольника находятся в точках (5, 1) и (-2, 2), третья вершина на оси Ox. Зная, что площадь треугольника равна 10, найти третью вершину.

- **114.** Вычислить площадь треугольника ABC в каждом из следующих случаев:
- 1) A(2, 1), B(3, 4), C(1, 6);
- 2) A(-2, 4), B(0, -3), (1, 7);
- 3) A(5, 4), B(11, 0), C(0, 3).
- **115.** Найти расстояние от начала координат до прямой, проходящей через точки (1, 5) и (2, 4).
- **116.** Площадь треугольника S=3, две его вершины суть точки $A(3,\ 1)$ и $B(1,\ -3)$, центр тяжести этого треугольника лежит на оси Ox. Определить координаты третьей вершины C.

11 Полярная система координат на плоскости

Полярная система координат на плоскости определяется точкой O (полюс), исходящим из нее лучом Ox (полярная ось), масштабным отрезком e и направлением отсчета углов.

Рис. 3.

 $Полярными\ координатами\ точки\ M$, не совпадающей с полюсом, называются: расстояние ρ (полярный радиус) от точки M до полюса O и угол φ (полярный угол) от полярной оси Ox до луча OM.

Если полюс O принять за начало декартовой прямоугольной системы координат, направление полярной оси — за положительное направление оси Ox, то между декартовыми координатами x и y точки и ее полярными координатами ρ и φ имеют место следующие соотношения:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}, \qquad \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}.$$

- 117. Дан правильный шестиугольник, сторона которого равна а. Взяв за полюс одну из его вершин, а за полярную ось сторону, через нее проходящую, определить полярные координаты остальных пяти вершин.
 - 118. Вычислить расстояние между двумя данными точками:
- 1) $A(2, \frac{\pi}{12})$ и $B(1, \frac{5\pi}{12})$;
- 2) $C(4, \frac{\pi}{5})$ u $D(6, \frac{6\pi}{5})$;
- 3) $E(3, \frac{11\pi}{18})$ u $F(4, \frac{4\pi}{9})$.
- **119.** Вычислить площадь треугольника, одна из вершин которого помещается в полюсе, а две другие имеют полярные координаты $(4, \frac{\pi}{9}), (1, \frac{5\pi}{18}).$
- **120.** Найти полярные координаты точки M, зная ее декартовы координаты $x=8,\ y=-6.$
- **121.** Написать в полярных координатах уравнение прямой, перпендикулярной к полярной оси и отсекающей на ней отрезок OA = a.
- 122. Даны точка O и прямая, находящаяся от точки O на расстоянии OA = a. Вокруг точки O вращается луч, пересекающий данную прямую в переменной точке B. На этом луче по обе стороны от точки B откладываются отрезки $BM_1 = BM_2 = b$. Написать в полярных координатах уравнение линии (конхоида Никомеда), описываемой точками M_1 и M_2 , при вращении луча, принимая за полюс точку O, а за полярную ось перпендикуляр OA, опущенный из точки O на данную прямую.
- 123. На окружности радиуса a дана точка O. Вокруг точки O вращается луч, пересекающий окружность в переменной точке A. На этом луче по обе стороны от точки A откладываются отрезки $AM_1 = AM_2 = 2a$. Линия, описываемая точками M_1 и M_2 , называется кардиоидой. Написать уравнение этой линии в полярных коорди-

натах, принимая за полюс точку O, а за полярную ось проходящий через нее диаметр OK.

- **124.** Относительно полярной системы координат дана точка $A(5, \frac{2\pi}{3}).$ Найти:
- 1) точку B, симметричную точке A относительно полюса;
- (2) точку (C), симметричную точке (A) относительно полярной оси.
- **125.** Найти прямоугольные координаты точек, которые даны своими полярными координатами: $A(2, \frac{\pi}{3}), B(\sqrt{2}, \frac{3\pi}{4}), C(5, \frac{\pi}{2}),$ $D(3, -\frac{\pi}{6}),$ причем ось абсцисс совпадает с полярной осью, а начало координат с полюсом.
- **126.** Написать уравнение окружности радиуса a в полярных координатах, приняв за полюс точку O на окружности, а за полярную ось проходящий через нее диаметр OA.
- 127. Даны точка O и прямая, находящаяся от точки O на расстоянии OA = a. Вокруг точки O вращается луч, пересекающий прямую в переменной точке B. На этом луче по обе стороны от точки B откладываются равные отрезки $BM_1 = BM_2 = AB$. Написать уравнение линии (строфоида), описываемой точками M_1 и M_2 , при вращении луча, в полярных координатах, принимая за полюс точку O, а за полярную ось перпендикуляр OA, опущенный из точки O на данную прямую.
- 128. На окружности радиуса a взята точка O и через точку K, диаметрально противоположную O, к окружности проведена касательная. Вокруг точки O вращается луч, пересекающий окружность и касательную соответственно в точках A и B. На этом луче от точки O откладывается отрезок OM, равный отрезку AB луча, заключенному между окружностью и касательной. Линия, описываемая точкой M при вращении луча, называется циссоидой Диоклеса. На-

писать ее уравнение в полярных координатах, принимая за полюс точку O и за полярную ось диаметр OK.

- **129.** На окружности радиуса a взята точка O. Через точку K диаметрально противоположную O, к окружности проведена касательная. Вокруг точки O вращается прямая, пересекающая окружность и касательную соответственно в точках A и B. Из точки A проводится прямая, параллельная касательной, а из точки B прямая, параллельная диаметру OK. Найти геометрическое место точек пересечения этих прямых (верзьера Марии Аньези), принимая за начало прямоугольной системы координат точку O, а за ось абсцисс диаметр OK.
- 130. Вокруг точки O вращается луч с постоянной угловой скоростью ω . По этому лучу движется точка M с постоянной скоростью v. Составить уравнение линии, описываемой точкой M, в полярных координатах, если в начальный момент движения луч совпадает с полярной осью, а точка M с точкой O. Линия, описываемая точкой M, называется спиралью Архимеда.

12 Прямая линия на аффинной плоскости

Общим уравнением прямой на аффинной плоскости называется уравнение вида:

$$Ax + By + C = 0 ,$$

при этом вектор $\{-B, A\}$ параллелен прямой.

Уравнение прямой, проходящей через точку (x_1, y_1) параллельно вектору $\{l, m\}$, может быть записано так:

$$\begin{vmatrix} x - x_1 & y - y_1 \\ l & m \end{vmatrix} = 0$$

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} \ ,$$

последнее уравнение называется каноническим уравнением прямой.

Если заданы произвольная точка (x_1, y_1) и произвольный вектор $\{l, m\} \neq \mathbf{0}$, то napamempuчecкие уравнения прямой, проходящей через данную точку параллельно данному вектору, будут:

$$x = x_1 + lt$$
$$y = y_1 + mt.$$

Уравнение прямой, не проходящей через начало координат и пересекающей оси координат в точках (a, 0) и (0, b) может быть записано в виде (уравнение прямой в отрезках):

$$\frac{x}{a} + \frac{y}{b} = 1 \ .$$

Если прямая задана своим общим уравнением, то для координат всех точек, лежащих по одну сторону от нее,

$$Ax + By + C > 0 ,$$

а для координат x, y всех точек, лежащих по другую сторону от нее,

$$Ax + By + C < 0$$
.

- **131.** Составить уравнения прямых, проходящих через точку (3, -2) параллельно осям координат.
- **132.** Дан треугольник ABC: A(-2, 3), B(4, 1), C(6, -5). Написать уравнение медианы этого треугольника, проведенной из вершины A.
- **133.** Составить уравнение прямой, отсекающей на осях координат отрезки 3 и 5.

- **134.** Написать параметрические уравнения прямой, проходящей через точку (3, -5) параллельно вектору {-4, 2}.
- **135.** Написать в параметрической форме уравнения следующих прямых:
 - 1) 3x + 6y + 5 = 0; 4) x = 2;
 - 2) x 2y 4 = 0; 5) y = -3;
 - 3) y = -3x + 5; 6) 2x + 3y = 0.
- **136.** Записать в виде Ax + By + C = 0 уравнения следующих прямых: 1) x = t; y = 1 3t; 2) x = 2 + 5t; y = 4 7t.
- **137.** Установить, какие из нижеследующих пар прямых совпадают, параллельны или пересекаются; в последнем случае найти точку пересечения:
 - 1) x + y 3 = 0, 2x + 3y 8 = 0;
 - 2) x y + 5 = 0, 2x 2y + 3 = 0;
 - 3) x 2y + 4 = 0, -2x + 4y 8 = 0;
 - 4) x + y + 5 = 0, 2x + 3y + 10 = 0;
 - 5) 2x + 3y 1 = 0, 4x + 6y 7 = 0;
 - 6) x 5y = 0, 2x 10y = 0;
 - 7) 7x + 9y 62 = 0, 8x + 3y + 2 = 0;
 - 8) x + 2 = 0, 2x + 3 = 0;
 - 9) $x y\sqrt{3} = 0$, $x\sqrt{3} 3y = 0$.
- **138.** Установить, какие из нижеследующих пар прямых совпадают, параллельны или пересекаются; в последнем случае найти точку пересечения:
 - 1) x = 3 + t, y = 2 t; x = 3t, y = -2t;
 - 2) x = 5 + 4t, y = -2 2t; x = 1 2t, y = 7 + t;
 - 3) x = 4 8t, y = 2 + 6t; x = -4 + 4t, y = 8 3t.
- **139.** Даны середины $M_1(2, 3)$, $M_2(-1, 2)$ и $M_3(4, 5)$ сторон треугольника. Составить уравнения сторон.

- **140.** Даны уравнения двух сторон параллелограмма $x-y-1=0,\ x-2y=0$ и точка пересечения его диагоналей $M(3,\ -1)$. Написать, уравнение двух других сторон параллелограмма.
- **141.** В каком отношении прямая 2x y + 5 = 0 делит отрезок, начало которого находитсь в точке (-5, 4), а конец в точке (2, 1)?
- **142.** Доказать, что прямая 5x-y-5=0 пересекает отрезок прямой 3x-2y-6=0, заключенный между осями координат.
- **143.** Определить положение прямой x-7y+5=0 относительно треугольника, вершины которого $A(3,\ 1),\ B(-2,\ 4),\ C(1,\ 0).$
- **144.** Составить уравнение прямой, проходящей через начало координат и через точку (-1, -8).
- **145.** Составить параметрические уравнения прямой, отсекающей на осях Ox и Oy отрезки 3 и -5.
- **146.** Установить, какие из нижеследующих пар прямых совпадают, параллельны или пересекаются; в последнем случае найти точку пересечения:
 - 1) 3x + 4y + 5 = 0, x = -3 + 4t, y = 1 3t;
 - 2) 2x 5y 7 = 0, x = 2 + t, y = -9 t;
 - 3) 6x 3y + 5 = 0, x = 5 + t, y = -3 + 2t;
 - 4) 2x + 5y 38 = 0, x = -2 + 2t, y = -9 + 5t;
 - 5) 3x + 9y + 5 = 0, x = 2 + 3t, y = -t;
 - 6) 4x + 5y 6 = 0, x = -6 + 5t, y = 6 4t.
- **147.** Через точку (7,4) провести прямую, параллельную прямой 3x-2y+4=0.
- **148.** Составить уравнение прямой, проходящей через точку $(-8,\ 1)$ параллельно прямой x+y+7=0.
- **149.** Зная уравнения двух сторон параллелограмма x-3y=0 и 2x+5y+6=0 и одну из его вершин $C(4,\;-1)$ составить уравнения

двух других сторон параллелограмма.

- **150.** Даны вершины треугольника: A(-1, 2), B(3, -1) и C(0, 4). Через каждую из них провести прямую, параллельную противолежащей стороне.
- **151.** Составить уравнения сторон параллелограмма ABCD, зная, что его диагонали пересекаются в точке M(1, 6), а стороны AB, BC, CD и DA проходят соответственно через точки P(3, 0), Q(6, 6), R(5, 9), S(-5, 4).
- **152.** В параллелограмме ABCD даны уравнения сторон AB: 3x+4y-12=0 и AD: 5x-12y-6=0 и точка $E(-2,\frac{13}{6})$ середина стороны BC. Найти уравнения других сторон параллелограмма.
- **153.** Даны две точки $A(-3,\ 1)$ и $B(5,\ 4)$ и прямая x-2y=0. Доказать, что данная прямая пересекает продолжение отрезка AB за точку B.
- **154.** Определить положение точек A(3, 1), B(7, -6), C(-1, 1), D(3, 2) относительно треугольника, уравнения сторон которого $2x y + 2 = 0, \ x + y 4 = 0, \ 2x + y = 0.$

13 Уравнение пучка прямых

Совокупность прямых, проходящих через одну точку $M(x_0, y_0)$, называется nyukom npsmux. Точка $M(x_0, y_0)$ при этом называется ueumpom nyuka. Очевидно, пучок прямых с центром $M(x_0, y_0)$ задается уравнением

$$A(x - x_0) + B(y - y_0) = 0.$$

Пусть даны две пересекающиеся (различные) прямые ℓ_1 и ℓ_2 , заданные, соответственно, уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$. Любая прямая, проходящая через точку пересечения

двух данных прямых может быть определена уравнением вида:

$$\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0.$$

при некоторых λ и μ , не равных нулю одновременно. Последнее уравнение называют уравнением пучка прямых.

Если прямые ℓ_1 и ℓ_2 , заданные, соответственно, уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$ параллельны (но не совпадают), то всякая прямая, имеющая уравнение

$$\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0.$$

при некоторых λ и μ , параллельна ℓ_1 и ℓ_2 . Всю совокупность прямых при этом также называют пучком (несобственным) прямых.

- **155.** Определить взаимное расположение прямых в каждой из следующих троек прямых:
 - 1) 2x + y 3 = 0, 3x 2y + 5 = 0, 5x y + 2 = 0;
 - 2) x 2y + 3 = 0, 2x 4y + 7 = 0, 3x 6y + 4 = 0;
 - 3) x + 4y 5 = 0, x 2y + 7 = 0, x + 3 = 0;
 - 4) y 5 = 0, y + 2 = 0, y = 0;
 - 5) x y + 3 = 0, 2x 2y + 7 = 0, 4x 4y + 1 = 0;
 - 6) 2x + 3y + 5 = 0, x y + 1 = 0, 3x 4y 12 = 0;
 - 7) 3x + 2y + 6 = 0, 9x + 6y 5 = 0, 5x y + 3 = 0.
- **156.** Написать уравнение прямой, проходящей через точку пересечения прямых: 7x y + 3 = 0 и 3x + 5y 4 = 0, и через точку A(2, -1).
- **157.** Через точку пересечения прямых 2x-6y+3=0, 5x+y-2=0 провести прямые, параллельные осям координат.
- **158.** (Теорема Чевы). На сторонах AB, BC и CA треугольника ABC даны точки C_0 , A_0 и B_0 такие, что $(BCA_0)=\lambda_1$, $(CAB_0)=\lambda_2$

и $(ABC_0)=\lambda_3$. Доказать, что прямые $AA_0,\,BB_0$ и CC_0 пересекаются в одной точке тогда и только тогда, когда $\lambda_1\lambda_2\lambda_3=1$.

159. Составить уравнение прямой, проходящей через начало координат и точку пересечения прямых 2x + y - 3 = 0, 7x - 4y + 2 = 0.

- **160.** Через точку пересечения прямых 3x-5y+2=0, 5x-2y+4=0 провести прямую, параллельную прямой 2x-y+4=0.
- **161.** Составить уравнение прямой, проходящей через точки пересечения пар прямых $2x-y=0,\ x+4y-2=0$ и $x+2y=0,\ 3x-7y+4=0.$

14 Прямая в прямоугольной системе координат

Для прямой ℓ , имеющей уравнение Ax + By + C = 0 в прямоугольной системе координат, вектор $\mathbf{N} = \{A, B\}$ является нормальным вектором, а вектор $\mathbf{a} = \{-B, A\}$ направляющим вектором.

Если прямые ℓ_1 и ℓ_2 заданы, соответственно, уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$, то косинус угла между ними равен

$$\cos \varphi = \pm \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} .$$

Расстояние d от точки $M(x_0, y_0)$ до прямой, заданной относительно прямоугольной системы координат уравнением Ax + By + C = 0 определяется по формуле

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \ .$$

Пусть α — угол от положительного направления оси Ox до луча OP, проходящего через начало координат, перпендикулярного к прямой AB и пересекающего эту прямую, а p — расстояние от начала координат до прямой AB. Тогда уравнение прямой AB может

быть записано в виде:

$$x\cos\alpha + y\sin\alpha - p = 0.$$

Это уравнение называется нормальным уравнением прямой.

- **162.** Составить уравнение прямой, проходящей через точку (7, 4) перпендикулярно к прямой 3x-2y+4=0.
- **163.** Даны вершины треугольника: A(4, 6), B(-4, 0) и C(-1, -4). Составить уравнение высоты, опущенной из вершины A на сторону BC.
 - **164.** Найти проекцию точки (-5,6) на прямую 7x-13y-105=0.
- **165.** Найти точку, симметричную точке M(-2, 9) относительно прямой 2x 3y + 18 = 0.
- **166.** Определить углы между двумя прямыми, если известны их угловые коэффициенты $k_1=\frac{1}{3},\ k_2=-\frac{1}{2}.$
- **167.** Составить уравнение биссектрисы угла $\angle A$ треугольника ABC с вершинами $A(3,\ 1),\ B(0,\ -3)$ и $C(7,\ 4).$
- **168.** Найти расстояния от точек (3,1),(2,-4),(5,-1),(0,-3),(0,0) до прямой 3x+4y=0.
- **169.** Составить уравнения прямых, параллельных прямой 7x-2y+4=0 и отстоящих от нее на расстоянии $\sqrt{53}$.
- **170.** Найти расстояние от точки M(2, 1) до прямой ℓ , заданной уравнением 2x-3y-5=0 в некоторой аффинной системе координат, если известны $g_{11}=4,\ g_{12}=8,\ g_{22}=25.$
- **171.** Доказать, что высоты треугольника пересекаются в одной точке (принадлежат одному пучку прямых).
 - 172. Установить, какие из нижеследующих пар прямых будут

взаимно перпендикулярны:

1)
$$x - 2y + 3 = 0$$
, $2x + y - 5 = 0$;

2)
$$2x + 3y - 6 = 0$$
, $2x - 3y + 4 = 0$;

3)
$$3x + 7y + 4 = 0$$
, $7x - 3y + 2 = 0$;

4)
$$5x + 6y - 8 = 0$$
, $6x + 5y + 2 = 0$;

5)
$$x - y = 0$$
, $x + y = 0$;

6)
$$x + 3 = 0$$
, $y - 2 = 0$.

- 173. Через точку пересечения прямых $3x-y=0,\ x+4y-2=0$ провести прямую, перпендикулярную к прямой 2x+7y=0.
- **174.** На прямой x-3y+1=0 найти точку, равноудаленную от двух точек (-3,1) и (5,4).
- 175. Даны две вершины треугольника A(-6, 2), B(2, -2) и точка H(1, 2) пересечения его высот. Вычислить координаты третьей вершины C.
- **176.** Через точку (3, 1) провести прямые, наклоненные к прямой 2x + 3y 1 = 0 под углом 45° .
- **177.** Определить расстояния от точек (1, 0) и (-1, 2) до прямой 3x y + 4 = 0.
- **178.** Доказать, что прямые 3x 7y + 2 = 0, 3x 7y + 3 = 0 параллельны, и найти расстояние и между ними.
- **179.** Центр симметрии квадрата находится в точке (-1, 0); уравнение одной из его сторон x + 3y 5 = 0. Составить уравнения трех других сторон.

15 Окружность

Уравнение окружности с центром в точке C(a, b) и радиусом r относительно прямоугольной системы координат имеет вид:

$$(x-a)^2 + (y-b)^2 = r^2$$
.

Это уравнение называется нормальным уравнением окружности.

Уравнение $\kappa a came \iota b h o \ddot{u} \kappa o \kappa p y \varkappa h o c m u$ в точке $M_0(x_0, y_0)$ имеет вид:

$$(x-x_0)(x_0-a)+(y-y_0)(y_0-b)=0.$$

ЗАДАЧИ

- **180.** Определить координаты центра S и радиус r каждой из следующих окружностей:
- 1) $x^2 + y^2 6x = 0$;
- 2) $x^2 + y^2 + 6x 8y = 0$;
- 3) $x^2 + y^2 10x + 24y 56 = 0$;
- 4) $3x^2 + 3y^2 + 6x 4y 1 = 0$.
- **181.** Составить уравнение окружности, проходящей через точки (2, 1) и (3, 4), если ее центр лежит на прямой 2x y + 1 = 0.
- **182.** Составить уравнение окружности, касающейся двух прямых $2x+y-1=0,\ 2x-y+2=0$ и проходящей через начало координат.
- **183.** Составить уравнение касательной к окружности $x^2 + y^2 2x + 6y = 0$ в начале координат.
- **184.** При каком необходимом и достаточном условии прямая Ax + By + C = 0 касается окружности $x^2 + y^2 = R^2$?
- **185.** Составить уравнения касательных к окружности $(x-1)^2 + (y+2)^2 = 25$, параллельных прямой 3x-4y=0.
 - 186. Привести к нормальному виду уравнения окружностей:
- 1) $x^2 + y^2 2x + 4y = 0$;
- 2) $x^2 + y^2 + x 5y 3 = 0$;
- 3) $3x^2 + 3y^2 2x + 7y + 1 = 0$.
 - **187.** Окружность проходит через точки (1, 4), (-7, 4) и (2, -5).

Найти ее центр, радиус и уравнение.

- **188.** Составить уравнение окружности, касающейся прямой x+2y=0 и прямой x-2y+1=0 в точке $(-1,\,0)$.
- **189.** Составить уравнение касательной к окружности $x^2 + y^2 + Ax + By = 0$ в начале координат.
- **190.** Определить длину отрезка касательной, проведенной из точки (7, 1) к окружности $x^2 + y^2 6x = 0$.

16 Эллипс

Эллипс есть геометрическое место точек, сумма расстояний которых от двух постоянных точек — ϕ окусов эллипса есть величина постоянная, равная 2a. Расстояние между фокусами $F_2F_1=2c$ (рис.4).

Простейшее уравнение эллипса мы получим, выбрав прямую, соединяющую фокусы, за ось абсцисс и поместив начало координат в

середине между ними. Тогда уравнение эллипса примет вид:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ ,$$

где
$$b^2 = a^2 - c^2$$
.

При таком выборе системы координат оси координат совпадают с осями симметрии эллипса, а начало координат с центром симметрии.

Точки пересечения эллипса с его осями $(A_1$ и A_2, B_1 и $B_2)$ называются вершинами эллипса.

Отрезки, заключенные между вершинами, называются *осями* эллипса: большая (фокальная) ось $A_2A_1=2a$ и малая ось $B_2B_1=2b$.

Число

$$e = \frac{c}{a} < 1$$

называется эксцентриситетом эллипса.

Расстояния любой точки M(x, y) эллипса до фокусов называются ее ϕ окальными paduycamu-векторами r_1 и r_2 ; мы имеем:

$$r_1 = a + ex, \qquad r_2 = a - ex .$$

Прямые, определяемые уравнениями

$$x = \pm \frac{a}{e} ,$$

называются директрисами эллипса.

Отношение расстояния любой точки эллипса до фокуса $(r_1$ или $r_2)$ к расстоянию той же точки до соответствующей директрисы $(d_1$ или $d_2)$ равно эксцентриситету:

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = e .$$

Середины параллельных хорд эллипса лежат на одной прямой, называемой $\partial uamempom$ эллипса, сопряженным этим хордам. Если

k — угловой коэффициент хорд эллипса, то уравнение сопряженного им диаметра имеет вид:

$$\frac{x}{a^2} + k \frac{y}{b^2} = 0 .$$

Два диаметра, из которых каждый делит пополам хорды, параллельные другому, называются conpяженными. Если $k_1,\ k_2$ — их угловые коэффициенты, то

$$r_1 r_2 = -\frac{b^2}{a^2}$$
.

Kacameльная к эллипсу в его точке $M_0(x_0,\ y_0)$ определяется уравнением:

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1 \ .$$

ЗАДАЧИ

- 191. Составить каноническое уравнение эллипса, если:
- 1) полуоси его соответственно равны 5 и 4;
- 2) расстояние между фокусами равно 8 и большая ось равна 10;
- 3) большая ось равна 26 и эксцентриситет $e = \frac{12}{13}$.
 - **192.** Определить фокусы эллипса $\frac{x^2}{25} + \frac{y^2}{169} = 1$.
 - **193.** Дан эллипс $\frac{x^2}{36} + \frac{y^2}{20} = 1$. Написать уравнения его директрис.
 - 194. Определить эксцентриситет эллипса, зная, что:
- 1) малая ось его видна из фокуса под прямым углом;
- 2) расстояние между фокусами равно расстоянию между вершинами малой и большой осей;
- 3) расстояние между директрисами в четыре раза больше расстояния между фокусами.
- **195.** На эллипсе $\frac{x^2}{100} + \frac{y^2}{36} = 1$ найти точку, расстояние которой от правого фокуса в четыре раза больше расстояния ее от левого фокуса.

- **196.** Определить диаметр эллипса $\frac{x^2}{25} + \frac{y^2}{16} = 1$, сопряженный хордам, имеющим угловой коэффициент $k = \frac{2}{3}$.
- **197.** Составить уравнение такой хорды эллипса $\frac{x^2}{25} + \frac{y^2}{16} = 1$, которая точкой $M(2,\ 1)$ делится пополам.
- **198.** Доказать, что стороны прямоугольника, вписанного в эллипс параллельны его осям.
- **199.** Написать уравнение касательной к эллипсу $\frac{x^2}{32} + \frac{y^2}{18} = 1$ в точке $M(4,\ 3)$.
- **200.** Составить уравнения касательных к эллипсу $\frac{x^2}{25} + \frac{y^2}{16} = 1$, проходящих через точку $N(10,\ 4)$.
- **201.** При каком необходимом и достаточном условии прямая Ax+By+C=0 касается эллипса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$?
- **202.** Найти общие касательные к следующим двум эллипсам: $\frac{x^2}{5} + \frac{y^2}{4} = 1$ и $\frac{x^2}{4} + \frac{y^2}{5} = 1$.
- **203.** Доказать, что отрезки касательных к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, заключенные между касательными, проведенными в вершинах большой оси, видны из фокусов под прямым углом.
- **204.** Найти геометрическое место проекций какого-либо фокуса эллипса на касательные к этому эллипсу.
- **205.** Найти геометрическое место центров окружностей, касающихся данной окружности и проходящих через данную точку, лежащую внутри этой окружности.
 - **206.** Определить фокусы эллипса $\frac{x^2}{25} + \frac{y^2}{16} = 1$.
 - 207. Определить эксцентриситет эллипса, если:
- 1) отрезок между фокусами виден из вершин малой оси под углом 60° ;
- 2) расстояние между двумя вершинами эллипса различных осей в два раза больше расстояния между фокусами;

- 3) расстояние между фокусами есть среднее арифметическое длин осей.
- **208.** Прямые $x = \pm 8$ служат директрисами эллипса, малая ось которого равна 8. Найти уравнение этого эллипса.
- **209.** Через фокус F(c, 0) эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ проведена хорда, перпендикулярная к большой оси. Найти длину этой хорды.
- **210.** Составить уравнение прямой, проходящей через середины хорд $2x-y+7=0,\ 2x-y-1=0$ эллипса $\frac{x^2}{100}+\frac{y^2}{64}=1.$
- **211.** Определить касательные к эллипсу $\frac{x^2}{16} + \frac{y^2}{9} = 1$, параллельные прямой x + y 1 = 0.
- **212.** Доказать, что касательные к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, проведенные в концах одного и того же диаметра, параллельны между собой, и обратно, если две касательные к эллипсу параллельны, то точки и касания лежат на одном и том же диаметре.
- **213.** Доказать, что произведение расстояний любой касательной эллипса от двух его фокусов есть величина постоянная, равная квадрату малой полуоси.
- **214.** Доказать, что касательные к эллипсу $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ отсекают на двух касательных, проведенных в концах большой оси, отрезки, произведение которых есть величина постоянная, равная b^2 .
- **215.** При каком необходимом и достаточном условии прямая Ax + By + C = 0:
- 1) пересекает эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$?
- 2) не пересекает этот эллипс?
- **216.** Найти произведение расстояний от фокуса данного эллипса до любых двух параллельных касательных к этому эллипсу.

17 Гипербола

Гипербола есть геометрическое место точек, для которых абсолютная величина разности расстояний от двух постоянных точек — ϕ о-кусов гиперболы есть величина постоянная, равная 2a. Расстояние между фокусами $F_2F_1 = 2c$ (рис. 5).

Простейшее уравнение гиперболы мы получим, выбрав прямую, соединяющую фокусы, за ось абсцисс и поместив начало координат в середине между ними. Тогда уравнение гиперболы примет вид:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ ,$$

где
$$b^2 = c^2 - a^2$$
.

При таком выборе системы координат оси координат совпадают с осями симметрии гиперболы, а начало координат — с центром симметрии.

Гипербола имеет две действительные вершины — точки пересече-

ния гиперболы с осью Ox; отрезок, заключенный между ними называется deŭcmeumenьной (вещественной) ocью гиперболы. Со второй осью гипербола пересекается в двух мнимых точках $(0, \pm ib)$. Условно, действительный отрезок 2b называется mumoŭ ocью гиперболы.

Число

$$e=\frac{c}{a}>1$$

называется эксцентриситетом гиперболы.

Расстояния любой точки M(x, y) гиперболы до фокусов называются ее ϕ окальными paduycamu-векторами r_1 и r_2 ; для левой ветви гиперболы мы имеем:

$$r_1 = -a - ex, \qquad r_2 = a - ex \; ;$$

для правой ветви:

$$r_1 = a + ex, \qquad r_2 = -a + ex .$$

Прямые, определяемые уравнениями

$$x = \pm \frac{a}{e} ,$$

называются $\partial upe\kappa mpucamu$ гиперболы.

Отношение расстояния любой точки гиперболы до фокуса $(r_1$ или $r_2)$ к расстоянию той же точки до соответствующей директрисы $(d_1$ или $d_2)$ равно эксцентриситету:

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = e .$$

Середины параллельных хорд гиперболы лежат на одной прямой, называемой $\partial uamempom$ гиперболы, сопряженным этим хордам. Если k — угловой коэффициент хорд гиперболы, то уравнение сопряженного им диаметра имеет вид:

$$\frac{x}{a^2} - k \frac{y}{b^2} = 0 .$$

Два диаметра, из которых каждый делит пополам хорды, параллельные другому, называются conpяженными. Если $k_1,\ k_2$ — их угловые коэффициенты, то

$$k_1 k_2 = \frac{b^2}{a^2} .$$

 $Kacameльная\ \kappa\ гиперболе\ в$ его точке $M_0(x_0,\ y_0)$ определяется уравнением:

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1 \ .$$

Асимптоты гиперболы определяются уравнениями:

$$y = \pm \frac{b}{a}x .$$

Две гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 и $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$

называются сопряженными.

ЗАДАЧИ

- 217. Составить каноническое уравнение гиперболы, если:
- 1) действительная ось равна 48 и эксцентриситет $e = \frac{13}{12}$;
- 2) действительная ось равна 16 и угол ϕ между асимптотой и осью абсцисс определяется условием $\operatorname{tg} \phi = \frac{3}{4}.$
- **218.** Даны уравнения асимптот гиперболы $y=\pm \frac{5}{12}x$ и коорднаты точки $M(24,\ 5)$, лежащей на гиперболе. Составить уравнение гиперболы.
 - **219.** Определить фокусы гиперболы $\frac{x^2}{25} \frac{y^2}{144} = 1$.
- **220.** Доказать, что директриса гиперболы проходит через основание перпендикуляра, опущенного из соответствующего фокуса на асимптоту гиперболы. Вычислить длину этого перпендикуляра.
- **221.** Составить уравнение такой хорды гиперболы $\frac{x^2}{9} \frac{y^2}{4} = 1$, которая точкой $M(5,\ 1)$ делится пополам.

- **222.** Составить уравнение касательной к гиперболе $\frac{x^2}{5} \frac{y^2}{4} = 1$ в точке M(5, -4).
- **223.** Составить уравнение касательной к гиперболе $\frac{x^2}{9} \frac{y^2}{36} = 1$, если касательная:
- 1) параллельна прямой 3x y 17 = 0;
- (2) перпендикулярна к прямой (2x + 5y + 11) = 0.
- **224.** Определить произведение расстояния от фокусов гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ до касательной.
- **225.** Доказать, что произведение отрезков, отсекаемых касательной к гиперболе на ее асимптотах (считая от центра), равно квадрату половины расстояния между фокусами.
- **226.** Доказать, что точка гиперболы служит серединой отрезка касательнои к этой гиперболе, заключенного между асимптотами.
 - 227. Составить каноническое уравнение гиперболы, если:
- 1) действительная полуось a = 5 и мнимая b = 3;
- 2) расстояние между фокусами равно 10 и действительная ось равна 8.
 - **228.** Определить фокусы гиперболы $\frac{x^2}{225} \frac{y^2}{64} = 1$.
- **229.** Составить уравнение гиперболы, имеющей общие фокусы с эллипсом $\frac{x^2}{49} + \frac{y^2}{24} = 1$ при условии, что эксцентриситет ее $e = \frac{5}{4}$.
 - **230.** Дана гипербола $\frac{x^2}{9} \frac{y^2}{16} = 1$. Требуется:
- 1) вычислить координаты фокусов;
- 2) вычислить эксцентриситет;
- 3) написать уравнения асимптот и директрис; 4) написать уравнение сопряжении гиперболы и вычислить ее эксцентриситет.
- **231.** Найти вершины квадрата, вписанного в гиперболу $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, и исследовать, в какие гиперболы возможно вписать квадрат.
 - 232. Найти необходимое и достаточное условие касания прямой

Ax + By + C = 0 с гиперболой $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

- **233.** Даны фокусы гиперболы $F_1(4, 2), F_2(-1, -10)$ и уравнение касательной 3x + 4y 5 = 0. Определить полуоси.
- **234.** Найти геометрическое место центров окружностей, касающихся данной окружности и проходящих через данную точку, лежащую вне этой окружности.
- **235.** Найти произведение расстояний от фокуса данной гиперболы до любых двух параллельных касательных, к этой гиперболе.
- **236.** Найти площадь треугольника, образованного асимптотами гиперболы $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ и произвольной касательной к этой гиперболе.

18 Парабола

 $\Pi a p a f o n a$ есть геометрическое место точек, равноудаленных от постоянной точки — $\phi o \kappa y c a$ параболы — и постоянной прямой — $\partial u - p e \kappa m p u c b$ параболы (рис. 6).

Если за ось абсцисс принять перпендикуляр, опущенный из фокуса на директрису, а начало координат поместить посредине между фокусом и директрисой, то уравнение параболы будет:

$$y^2 = 2px ,$$

где параметр p есть расстояние фокуса от директрисы. Парабола имеет одну ось симметрии, которая совпадает, при таком выборе системы координат, с осью Ox. Единственная вершина параболы совпадает с началом координат.

Директриса параболы определяется уравнением:

$$x = -\frac{p}{2} .$$

Расстояние r любой точки M(x, y) параболы до фокуса опреде-

Рис. 6.

ляется формулой

$$r = \frac{p}{2} + x .$$

Середины параллельных хорд параболы лежат на одной прямой, называемой $\partial uamempom$ параболы, сопряженным этим хордам. Все диаметры параболы параллельны ее оси симметрии и определяются уравнением

$$y = \frac{p}{k} ,$$

где k — угловой коэффициент сопряженных ему хорд.

Kacameльная к napaболе в точке $M_0(x_0,\ y_0)$ определяется уравнением

$$y_0 y = p(x + x_0) .$$

ЗАДАЧИ

237. Определить координаты фокуса параболы $y^2 = 4x$.

- **238.** Составить каноническое уравнение параболы, если расстояние фокуса от вершины равно 3.
- **239.** На параболе $y^2 = 6x$ найти точку, фокальный радиус-вектор которой равен 20.
- **240.** Через фокус параболы $y^2 = 2px$ проведена хорда, перпендикулярная к ее оси. Определить длину этой хорды.
- **241.** Найти такую хорду параболы $y^2 = 4x$, которая точкой (3, 1) делится пополам.
- **242.** Найти необходимое и достаточное условие касания прямой Ax + By + C = 0 и параболы $y^2 = 2px$.
- **243.** Определить геометрическое место оснований перпендикуляров, опущенных из фокуса параболы $y^2 = 2px$ на касательные.
- **244.** Найти кратчайшее расстояние параболы $y^2 = 4x$ от прямой 4x + 3y + 46 = 0.
- **245.** Мостовая арка имеет форму параболы. Определить параметр этой параболы, зная, что пролет арки равен 24 м, а высота 6 м.
- **246.** Найти геометрическое место центров кругов, проходящих через данную точку и касающихся данной прямой.

^{247.} Определять координаты фокуса параболы $x^2 = 4y$.

^{248.} Определить координаты фокуса параболы $y^2 = -8x$.

^{249.} Составить уравнение директрисы параболы $y^2 = 6x$.

^{250.} Составить уравнение касательной к параболе $y^2 = 4x$; в точке M(9, 6).

^{251.} Дано уравнение касательной x - 3y + 9 = 0 к параболе $y^2 = 2px$. Составить уравнение параболы.

^{252.} Доказать, что любая касательная параболы пересекает директрису и фокальную хорду, перпендикулярную к оси, в точках,

равноудаленных от фокуса.

- **253.** Камень, брошенный под острым углом к горизонту, описал дугу параболы и упал на расстоянии 16 м от начального положения. Определить параметр параболической траектории, зная, что наибольшая высота, достигнутая камнем, равна 12 м.
- **254.** Найти геометрическое место центров кругов, касающихся оси ординат и круга $x^2 + y^2 = 1$.

19 Преобразования аффинных координат на плоскости и в пространстве

Общее преобразование одной аффинной системы координат на плоскости в другую определяется по формулам:

$$x = a_1 x' + b_1 y' + c_1 ,$$

$$y = a_2 x' + b_2 y' + c_2 ,$$

где (рис.7) a_1, a_2 — координаты вектора $\overrightarrow{O'E_1'}, b_1, b_2$ — координаты вектора $\overrightarrow{O'E_2'}, c_1, c_2$ — координаты точки O' относительно системы координат Oxy, x, y — координаты произвольной точки M плоскости относительно системы Oxy и x', y' координаты той же точки M относительно системы O'x'y'.

В случае параллельного переноса формулы имеют вид:

$$x = x' + c_1 ,$$

$$y = y' + c_2 .$$

Формулы преобразования поворота одной прямоугольной системы координат Oxy в другую прямоугольную систему O'x'y' имеют вид:

$$x = x' \cos \alpha - y' \sin \alpha ,$$

$$y = x' \sin \alpha + y' \cos \alpha ,$$

Рис. 7.

где α — угол от положительного направления оси Ox до положительного направления оси Ox'. Системы Oxy и O'x'y' в этом случае называются системами одного класса. Если же новая система координат O'x'y' получается из старой системы Oxy поворотом на угол α и последующей симметрией относительно Ox', то формулы преобразования будут:

$$x = x' \cos \alpha + y' \sin \alpha,$$

$$y = x' \sin \alpha - y' \cos \alpha.$$

В этом случае системы Oxy и O'x'y' называются системами разных классов.

Если нам даны две системы координат в пространстве Oxyz и O'x'y'z', причем $\overrightarrow{O'E_1'}=\{a_1,\ a_2,\ a_3\},\ \overrightarrow{O'E_2'}=\{b_1,\ b_2,\ b_3\},\ \overrightarrow{O'E_3'}=\{b_1,\ b_2,\ b_3\}$ $\{c_1,\ c_2,\ c_3\},\ O'(d_1,\ d_2,\ d_3),\$ то координаты x,y,z точки M относительно системы Oxyz через координаты $x^{\prime},y^{\prime},z^{\prime}$ той же точки относительно системы O'x'y'z' выражаются формулами:

$$x = a_1x' + b_1y' + c_1z' + d_1,$$

$$y = a_2x' + b_2y' + c_2z' + d_2,$$

$$z = a_3x' + b_3y' + c_3z' + d_3.$$

ЗАЛАЧИ

- **255.** Найти новые координаты точек A(2, 3), B(-5, 4), C(0, 2) в системе, полученной переносом данной аффинной, если за новое начало координат принимается точка O'(7, -1).
- **256.** Найти формулы преобразования аффинной системы координат на плоскости в каждом из следующих случаев, если даны старые координаты новых единичных векторов и старые координаты нового начала координат:
- 1) $\overrightarrow{O'E_1'} = \{2, 5\}, \overrightarrow{O'E_2'} = \{7, 9\}, O'(3, 1);$
- 2) $\overrightarrow{O'E_1'} = \{5, 0\}, \overrightarrow{O'E_2'} = \{0, 4\}, O'(3, 5);$
- 3) $\overrightarrow{O'E_1'} = \{0, 2\}, \overrightarrow{O'E_2'} = \{-7, 0\}, O'(0, 2);$
- 4) $\overrightarrow{O'E_1'} = \{a, 0\}, \overrightarrow{O'E_2'} = \{0, b\}, O'(0, 0);$
- 5) $\overrightarrow{O'E_1'} = \{0, a\}, \overrightarrow{O'E_2'} = \{b, 0\}, O'(0, 0).$
- **257.** Даны две системы координат Oxy и O'x'y'.. По отношению к первой системе начало второй находится в точке O'(2, 1, 3), а единичные векторы второй системы суть $\mathbf{e}'_1\{2, 4, 1\}$, $\mathbf{e}'_2\{0, 4, 4\}$, $\mathbf{e}'_3\{1, 1, 0\}$;
- 1) написать выражения координат точек относительно первой системы через их координаты во второй системе;
- 2) выразить координаты точек относительно второй системы через их координаты в первой системе;
- 3) найти координаты начала O и единичных векторов $\mathbf{e}_1,\ \mathbf{e}_2,\ \mathbf{e}_3$ первой системы относительно второй.
- **258.** Найти уравнение гиперболы в системе координат, координатными осями которой являются асимптоты.

- **259.** Начало и векторы базиса нового репера на плоскости заданы своими координатами относительно первоначального репера: $O'(1, -1), \mathbf{e}'_1 = \{2, 3\}, \mathbf{e}'_2 = \{1, 2\}.$
- 1) Какое уравнение в новой системе координат будет иметь прямая $\ell: 2x 3y + 5 = 0$?
- 2) Какое уравнение относительно первоначальной системы координат имеет координатная ось O'y'?
- 3) Какие координаты имеют точки $O(0,\ 0)$ и $A(-2,\ 1)$ в новой системе координат?
- **260.** Векторы $\mathbf{e}_1, \ \mathbf{e}_2, \dots, \ \mathbf{e}_n$ и \mathbf{x} заданы своими кординатами в некотором базисе. Показать, что векторы $\mathbf{e}_1, \ \mathbf{e}_2, \dots, \ \mathbf{e}_n$ сами образуют базис, и найти координаты вектора \mathbf{x} в этом базисе: $\mathbf{e}_1 = \{1, \ 1, \ 1\}, \mathbf{e}_2 = \{1, \ 1, \ 2\}, \ \mathbf{e}_3 = \{1, \ 2, \ 3\}; \ \mathbf{x} = \{6, \ 9, \ 14\}.$
- **261.** Доказать, что каждая из двух систем векторов является базисом, и найти связь координат одного и того же вектора в этих двух базисах: $\mathbf{e}_1 = \{1, 2, 1\}, \ \mathbf{e}_2 = \{2, 3, 3\}, \ \mathbf{e}_3 = \{3, 7, 1\}; \ \mathbf{e}_1' = \{3, 1, 4\}, \ \mathbf{e}_2' = \{5, 2, 1\}, \ \mathbf{e}_3' = \{1, 1, -6\}.$
- **262.** По отношению к косоугольной системе координат ($\omega = \frac{\pi}{3}$) дана точка $M(-1,\ 4)$. Найти координаты этой же точки, приняв за новые оси координат биссектрисы прежних координатных углов.
- **263.** Координаты ряда точек удовлетворяют уравнению $x^2 + y^2 + 2x 10y + 22 = 0$. Какому уравнению будут удовлетворять координаты тех же точек, если прежняя система координат заменена новой, а именно начало координат перенесено в точку O'(-1, 5), а направление осей не изменилось?
- **264.** В аффинной системе координат задана точка M(2, 5). Ее коорнаты после переноса соответственно равны -4 и 7. Найти старые координаты нового начала O' и новык единичных точек E_1' , E_2' , E'

и новые координаты старого начала O и старых единичных точек E_1, E_2, E .

265. Даны две системы координат Oxy и O'x'y'. Координаты x и y произвольной точки относительно первой системы выражаются через ее координаты x' и y' относительно второй системы следующими формулами:

$$x = 2x' - 5y' + 3,$$
 $y = -x' + 2y' - 2.$

Найти координаты начала второй системы и единичных векторов ее осей относительно первой системы.

266. Координаты x, y, z точек в системе Oxyz выражаются через координаты x', y', z' этих точек в системе O'x'y'z' соотношениями

$$x = -2x' - y' - z' - 1$$
, $y = -y' - z'$, $z = x' + 3y' + z' + 1$;

- 1) выразить координаты x', y', z' через координаты x, y, z;
- 2) найти координаты начала O' и единичных векторов $\mathbf{e}_1', \ \mathbf{e}_2', \ \mathbf{e}_3'$, второй системы относительно первой;
- 3) найти координаты начала O и единичных векторов $\mathbf{e}_1,\ \mathbf{e}_2,\ \mathbf{e}_3$, второй системы относительно первой.
- **267.** Векторы $\mathbf{e}_1, \ \mathbf{e}_2, \dots, \ \mathbf{e}_n$ и \mathbf{x} заданы своими кординатами в некотором базисе. Показать, что векторы $\mathbf{e}_1, \ \mathbf{e}_2, \dots, \ \mathbf{e}_n$ сами образуют базис, и найти координаты вектора \mathbf{x} в этом базисе: $\mathbf{e}_1 = \{2, 1, -3\}, \mathbf{e}_2 = \{3, 2, -5\}, \ \mathbf{e}_3 = \{1, -1, 1\}; \ \mathbf{x} = \{6, 2, -7\}.$
- **268.** Доказать, что каждая из двух систем векторов является базисом, и найти связь координат одного и того же вектора в этих двух базисах: $\mathbf{e}_1 = \{1, 1, 1, 1\}, \, \mathbf{e}_2 = \{1, 2, 1, 1\}, \, \mathbf{e}_3 = \{1, 1, 2, 1\}, \, \mathbf{e}_4 = \{1, 3, 2, 3\}; \, \mathbf{e}_1' = \{1, 0, 3, 3\}, \, \mathbf{e}_2' = \{-2, -3, -5, -4\}, \, \mathbf{e}_3' = \{2, 2, 5, 4\}, \, \mathbf{e}_4 = \{-2, -3, -4, -4\}.$

- **269.** Дан ромб, сторона которого a=2. Оси координат сначала совпадали с двумя сторонами, угол между которыми $\omega=\frac{2\pi}{3}$, и затем с его диагоналями. Определить координаты вершин ромба относительно второй системы и дать соответствующие формулы преобразования координат.
- **270.** Координаты некоторых точек удовлетворяют уравнению xy + 3x 2y 6 = 0. Какому уравнению будут удовлетворять координаты тех же точек после того, как начало координат будет перенесено в точку O'(2, -3)?

ОТВЕТЫ

1. $\overrightarrow{AB} = \frac{\mathbf{a} - \mathbf{b}}{2}$, $\overrightarrow{BC} = \frac{\mathbf{a} + \mathbf{b}}{2}$, $\overrightarrow{CD} = \frac{\mathbf{b} - \mathbf{a}}{2}$, $\overrightarrow{DA} = -\frac{\mathbf{a} + \mathbf{b}}{2}$. 2. $\overrightarrow{AD} = -\frac{\mathbf{a} + \mathbf{b}}{2}$ $\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$. 5. Точка пересечения медиан треугольника. 6. $\overrightarrow{OM}=$ $\frac{\mathbf{a}}{|\mathbf{a}|} + \frac{\mathbf{b}}{|\mathbf{b}|}$. 7. $\overrightarrow{A'B'} = \mathbf{p}$, $\overrightarrow{A'D'} = \mathbf{q}$, $\overrightarrow{A'C'} = \mathbf{p} + \mathbf{q}$, $\overrightarrow{A'B} = \mathbf{p} - \mathbf{q}$ $\overrightarrow{\mathbf{r}}, \overrightarrow{A'D} = \mathbf{q} - \mathbf{r}, \overrightarrow{A'C} = \mathbf{p} + \mathbf{q} - \mathbf{r}. \quad \mathbf{9.} \overrightarrow{BC} = \frac{4\mathbf{l} - 2\mathbf{k}}{3}, \overrightarrow{CD} = \frac{2\mathbf{l} - 4\mathbf{k}}{3}.$ 10. 0. 11. $\overrightarrow{BC} = \mathbf{p} + \mathbf{q}$, $\overrightarrow{CD} = -\mathbf{q}$, $\overrightarrow{DE} = -\mathbf{p}$, $\overrightarrow{EF} = -\mathbf{p} - \mathbf{q}$. 13. Точка пересечения диагоналей. 14. $\overrightarrow{AD} = \frac{\overrightarrow{AB}|\overrightarrow{AC}| + \overrightarrow{AC}|\overrightarrow{AB}|}{|\overrightarrow{AB}| + |\overrightarrow{AC}|}$. 15. $\overrightarrow{BC} = \mathbf{c} - \mathbf{b}$, $\overrightarrow{CD} = \mathbf{d} - \mathbf{c}$, $\overrightarrow{DB} = \mathbf{b} - \mathbf{d}$, $\overrightarrow{DM} = \frac{\mathbf{b} + \mathbf{c}}{2} - \mathbf{d}$, $\overrightarrow{AQ} = \mathbf{d}$ $\frac{\mathbf{b}+\mathbf{c}+\mathbf{d}}{2}$. 16. $\overrightarrow{EF} = \frac{\mathbf{m}+\mathbf{p}}{2} - \frac{\mathbf{n}+\mathbf{q}}{2}$. 18. $\mathbf{r}_1 + \mathbf{r}_3 - \mathbf{r}_2$. 19. $\mathbf{r} = \frac{\mathbf{r}_1+\mathbf{r}_2+\mathbf{r}_3}{3}$. **20.** $\mathbf{r}_4 = \mathbf{r}_1 + \lambda(\mathbf{r}_3 - \mathbf{r}_2), \ \mathbf{r}' = \frac{\mathbf{r}_1 + \lambda \mathbf{r}_3}{1 + \lambda}, \ \mathbf{r}'' = \frac{\mathbf{r}_1 - \lambda \mathbf{r}_3}{1 - \lambda}.$ **22.** $\mathbf{r} = \frac{\mathbf{r}_1 + \mathbf{r}_3}{2}.$ **23.** $\mathbf{r}_C = \mathbf{r}_B + \mathbf{r}_D - \mathbf{r}_A, \ \mathbf{r}_{B'} = \mathbf{r}_B - \mathbf{r}_A + \mathbf{r}_{A'}, \ \mathbf{r}_{C'} = \mathbf{r}_B + \mathbf{r}_D + \mathbf{r}_{A'} - 2\mathbf{r}_A, \ \mathbf{r}_{D'} = \mathbf{r}_{A'} - 2\mathbf{r}_{A'}$ $\mathbf{r}_D - \mathbf{r}_A + \mathbf{r}_{A'}$. **24.** $\mathbf{r} = \frac{\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3}{3}$. **25.** 1) $\{-30, 21\}$; 2) $\{0, 0\}$. **26.** 1) $\mathbf{c} = \mathbf{a} - \mathbf{b}$; 2) $\mathbf{c} = 2\mathbf{a} - 3\mathbf{b}$; 3) $\mathbf{c} = -\frac{3}{2}\mathbf{a}$. **27.** 1) Векторы а, **b** и **c** линейно независимы; 2) векторы **a**, **b** и **c** линейно зависимы $\mathbf{c} = \frac{1}{2}\mathbf{a} + \frac{2}{3}\mathbf{b}$; 3) векторы \mathbf{a} , \mathbf{b} и \mathbf{c} линейно зависимы, но вектор с не может быть представлен как линейная комбинация векторов а и b, так как эти последние коллинеарны между собой, а вектор **c** им не коллинеарен. **28.** $\overrightarrow{AK} = \{\frac{8}{7}, \frac{13}{7}\}$. **29.** $\alpha = 2, \gamma =$ -3. **30.** 1) $\{3, 22, -3\}$; 2) $\{19, 39, 30\}$. **31.** 1) $\mathbf{d} = \mathbf{a} + \mathbf{b} - \mathbf{c}$; 2) $\mathbf{d} = 5\mathbf{a} + 4\mathbf{b}$; 3) $\mathbf{d} = 4\mathbf{a} - \mathbf{c}$. 33. $\alpha = 2$, $\beta = 3$, $\gamma = 5$. **35.** $A(0, 0), B(1, 0), (\frac{3}{2}, \frac{\sqrt{3}}{2}), D(1, \sqrt{3}), E(0, \sqrt{3}), F(-\frac{1}{2}, \frac{\sqrt{3}}{2}).$ **36.** $A(0, 0), B(1, 0), (\frac{1}{3}, 1), D(0, 1), O(\frac{1}{4}, \frac{3}{4}), S(0, \frac{3}{2}).$ **37.** C(5, 3),D(2, 7) или C(-1, -5), D(-4, -1). **38.** 1) (x, 0, 0), 2) (0, y, z). **39.** $M(\frac{10}{9}, \frac{2}{9})$. **40.** $A(-4, 0), B(4, 0), (1, 3), D(-1, 3), M(0, \frac{12}{5}),$ S(0, 4). **41.** D(1, -2). **42.** (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1). **43.** 1) (-x, -y, -z); 2)(x, y, -z); 3) (-x, -y, z). 44. 1) 1; 2) $-\frac{1}{2}; 3) -\frac{1}{4}$. 45. $(\frac{11}{5}, 0)$ и (0, -11). **46.** (-3, 3), (7, 5), (-3, -3). **47.** C(0, -1), D(4, -4).

48. C(4, -5, -2). **49.** 3. **51.** 1) $\left(-\frac{8}{3}, \frac{5}{3}\right)$; 2) $\left(9, 5\right)$; 3) $\left(-\frac{22}{3}, \frac{1}{3}\right)$; 4) $(-\frac{1}{4}, \frac{5}{2})$. **52.** B(0, -7). **53.** C(10, 9), D(4, -4). **54.** A(3, -1), B(0, 8). **55.** $\lambda_1 = \frac{7}{2}, \ \lambda_2 = \frac{1}{5}, \ \lambda_3 = -\frac{1}{2}.$ **56.** $\frac{1}{2}.$ **57.** 1) 5; 2) $\sqrt{34}$; 3) 13; 4) $\sqrt{2}.$ **58.** (14, 0) M $0, \frac{14}{3}$. **59.** M(2, 10). **60.** $(0, \frac{11}{6}, 0)$. **61.** $B_1(9, 5, 11)$, $B_2(9, 5, -1)$. **62.** 1) $\sqrt{137}$; 2) 5; 3) 11; 4) 13. **63.** (0, -10). **64.** $M_1(1, -1)$, $r_1 = 1; M_2(5, -5), r_2 = 5.$ **65.** $(\frac{5}{6}, 0, -\frac{7}{6}).$ **66.** (3, 3, 1), R = 3.**67.** 1) 20; 2) $\frac{-\sqrt{2}}{2}$; 3) 0; 4) 18; 5) - 3. **68.** $\cos \alpha = \frac{4}{5}$. **70.** 0. 71. $\overrightarrow{CH} = \frac{\mathbf{a}^2\mathbf{b} + \mathbf{b}^2\mathbf{a}}{c^2}$. 73. 74. -19. 75. $\frac{\pi}{3}$. 76. $-\frac{3}{2}$. 78. $CD^2 =$ $\frac{\lambda}{1+\lambda}a^2+\frac{1}{1+\lambda}b^2-\frac{1}{(1+\lambda)^2}c^2,$ где $a,\ b,\ c$ — длины сторон треугольника. **80.** $\phi = \arccos \frac{9\sqrt{3}-10}{26}$. **82.** $1)\omega = \frac{\pi}{2}$, $|\mathbf{e}_1| = 2$, $|\mathbf{e}_2| = 1$; $2)\omega =$ $\frac{\pi}{3}$, $|\mathbf{e}_1| = 1$, $|\mathbf{e}_2| = 1$; 3) $\cos \omega = \frac{4}{5}$, $|\mathbf{e}_1| = 2$, $|\mathbf{e}_2| = 5$; 4) $\cos \omega =$ $-\frac{4}{5}$, $|\mathbf{e}_1| = 2$, $|\mathbf{e}_2| = 5$. **83.** $|\mathbf{a}| = 78$. **84.** $\mathbf{b}_1 = \left\{\frac{4}{5}, -\frac{1}{5}\right\}$, $\mathbf{b}_2 =$ $\left\{-\frac{4}{5}, \frac{1}{5}\right\}$. 85. $\alpha = \frac{5\pi}{3}$. 86. $|\mathbf{e}_1| = 2, |\mathbf{e}_2| = 1, \angle(\mathbf{e}_1, \mathbf{e}_2) = \frac{2\pi}{3}$. 87. 1) -3; 2) 0; 3)1. **88.** 1) $\cos \alpha = \frac{1}{3}$; 2) $\alpha = 90^{\circ}$. **89.** $\cos \psi = \frac{3\sqrt{3}-4}{12}$. **90.** $|\mathbf{a}| = 30$. **91.** $g_{11} = 4$, $g_{22} = 9$, $g_{12} = 3$, $d = \sqrt{244}$. **92.** AB = 66, AC = 4, $\angle A = \frac{\pi}{3}$. **93.** A'B' = 1, A'C' = 5, $\cos A' = \frac{4}{5}$. **94.** $1)45^{\circ}$; $2)90^{\circ}$; $3)135^{\circ}$; $4)180^{\circ}$. **95.** 1) 31; 2) 6; 3) 0. **96.** 3. **97.** $\cos \phi = -\frac{11}{\sqrt{13}\sqrt{28}}$. **98.** $C(-\frac{3\sqrt{3}}{2}, \frac{5}{2} - 2\sqrt{3})$. **99.** D(-5, 7), C(0, 9)или D'(-1, -3), C'(4, -1). **100.** $B_1(\frac{5}{2}, \frac{7}{3})$, $B_2(-\frac{5}{2}, -\frac{13}{3})$. **101.** $(x_0 +$ $(x_1-x_0)\cos\frac{2\pi(k-1)}{n}-(y_1-y_0)\sin\frac{2\pi(k-1)}{n},\ y_0+(x_1-x_0)\sin\frac{2\pi(k-1)}{n}+(y_1-x_0)\sin\frac{2\pi(k-1)}{n}$ $(y_0)\cos\frac{2\pi(k-1)}{n}$. 102. $(Rt-R\sin t, R-R\cos t)$. 103. $((R-r)\cos t+$ $r\cos\frac{R-r}{r}t$, $(R-r)\sin t + r\sin\frac{R-r}{r}t$). 104. $(R\cos t + Rt\sin t, R\sin t Rt \cos t$). **105.** C(4, 3), D(-2, -5). **106.** $C_1(4 - \sqrt{3}, 2 + 2\sqrt{3}), C_2(4 + \sqrt{3})$ $\sqrt{3}$, $2-2\sqrt{3}$). 107. $\{a_1\cos\omega_1+a_2\cos\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_2+a_3\cos\omega_3, a_1\sin\omega_1+a_2\sin\omega_2+a_3\cos\omega_2+a_3\cos\omega_3\}$ $a_3 \sin \omega_3$ \}. 108. $(x_0 + d_1 \cos \phi_1 + \ldots + d_n \cos \phi_n, y_0 + d_1 \sin \phi_1 + \ldots + d_n \cos \phi_n)$ $d_n \sin \phi_n$). 109. $((R+r)\cos t - r\cos\frac{R+r}{r}t, (R+r)\sin t - r\sin\frac{R+r}{r}t)$. **110.** 7. **111.** 12,5. **112.** $\frac{7}{5}$. **113.** (32, 0), (-8, 0). **114.** 1) 4; 2) $\frac{27}{2}$; 3) 13. **115.** $3\sqrt{2}$. **116.** (5, 2) или (2, 2). **117.** (a, 0), $(a\sqrt{3}, \frac{\pi}{6})$, $(2a, \frac{\pi}{3}), (a\sqrt{3}, \frac{\pi}{2}), (a, \frac{2\pi}{3}).$ **118.** 1) $AB = \sqrt{3}$; 2) CD=10; 3) EF=5.

119. S=1. **120.** $\rho=10$, $\arccos\phi=\frac{4}{5}$, $\arcsin\phi=-\frac{3}{5}$. **121.** $r=\frac{a}{\cos\phi}$. **122.** $r = \frac{a}{\cos \phi} \pm b$. **123.** $r = 2a(\cos \phi \pm 1)$. **124.** 1) $B(5, \frac{5\pi}{3}; 2)$ $C(5, \frac{4\pi}{3})$. **125.** $A(1, \sqrt{3}), B(-1, 1), C(0, 5), D(\frac{3\sqrt{3}}{2}, -\frac{3}{2}).$ **126.** $r = 2a \cos \phi.$ **127.** $r = \frac{a}{\cos \phi} \pm a \operatorname{tg} \phi$. **128.** $r = \frac{2a \sin^2 \phi}{\cos \phi}$. **129.** $x = 2a \cos^2 \phi$, $y = 2a \operatorname{tg} \phi$. **130.** $r = \frac{v}{\omega}\phi$. **131.** x - 3 = 0, y + 2 = 0. **132.** 5x + 7y - 11 = 0. **133.** 5x + 3y - 15 = 0. **134.** x = 3 - 4t, y = -5 + 2t. **135.** 1) x = -2t, $y = -\frac{5}{6} + t$; 2) x = 4 + 2t, y = t; 3) x = t, y = -3t + 5; 4) x = 2, y = t; 5) x = t, y = -3; 6) x = 3t, y = -2t. **136.** 3x + y - 1 = 0, 7x + 5y - 34 = 0. **137.** 1) пересекаются в точке (1, 2); 2) параллельны; 3) совпадают; 4) пересекаются в точке (-5, 0); 5) параллельны; 6) совпадают; 7) пересекаются в точке (-4, 10); 8) параллельны; 9) совпадают. **138.** 1) пересекаются в точке (15, -10); 2) параллельны; 3) совпадают. **139.** 3x - 5y + 9 = 0, x - y + 3 = 0; **140.** $x-y-7=0, \ x-2y-10=0.$ **141.** $\frac{9}{8}$. **143.** Данная прямая пересекает стороны CB и BA, а также продолжение сторны CA за точку A. **144.** 8x - y = 0. **145.** x = 3 + 3t, y = -5t. **146.** 1) совпадают; 2) пересекаются в точке (-4, 3); 3) параллельны; 4) пересекаются в точке (4, 6); 5) параллельны; 6) совпадают. 147. 3x-2y-13=0. 148. Такой прямой не существует, так как данная точка лежит на данной прямой. 149. x-3y-7=0, 2x+5y-3=0.**150.** 3x-4y+16=0, 5x+3y-1=0, 2x-y-7=0. **151.** x+2y-3=0; 2x - y - 6 = 0; x + 2y - 23 = 0; 2x - y + 14 = 0. **152.** 9x + 12y + 20 = 0, 5x - 12y + 36 = 0. **154.** Точка A лежит на второй стороне, на ее продолжении за третью вершину; Точка В лежит в области, ограниченной первой стороной и продолжениями второй и третьей сторон соответсвенно за третью и вторую вершины. Точка C лежит в области, ограниченной третьей стороной и продолжениями первой и второй сторон соответсвенно за вторую и первую вершины. Точка D лежит в области, ограниченной продолжениями первой и второй сторон за третью вершину. 155. 1) три прямые проходят через одну точку; 2) три прямые параллельны между собой; 3) три прямые проходят через одну точку; 4) три прямые параллельны между собой; 5) три прямые параллельны между собой; 6) прямые образуют треугольник; 7) первые две прямые параллельны, трятья их пересекает. **156.** 25x + 29y - 21 = 0. **157.** 32x - 9 = 0, 32y - 19 = 0. **159.** 5x - 2y = 0. **160.** 38x - 19y + 30 = 0. **161.** 8x - 49y + 20 = 0. **162.** 2x + 3y - 26 = 0. **163.** 3x - 4y + 12 = 0. **164.** (2, -7). **165.** M'(2, 3). **166.** 45° M 135° . **167.** x+y-4=0. **168.** $\frac{13}{5}$, 2, $\frac{11}{5}$, $\frac{12}{5}$, 0. **169.** 7x - 2y + 57 = 0, 7x - 2y - 49 = 0. **170.** $\frac{12}{\sqrt{58}}$. **172.** 1), 3), 5), 6). **173.** 91x - 26y - 2 = 0. **174.** $(\frac{29}{18}, \frac{47}{54})$. **175.** C(2, 4). **176.** 5x + y - 16 = 0, x - 5y + 2 = 0. **177.** $\frac{7}{\sqrt{10}}$, $\frac{1}{\sqrt{10}}$. **178.** $\frac{1}{\sqrt{58}}$. **179.** 3x - y + 9 = 0, 3x - y - 3 = 0, x + 3y + 7 = 0. **180.** 1) S(3, 0), r = 3; 2) S(-3, 4), r = 5; 3) S(5, -12), r = 15; 4) $S(-1, \frac{2}{3})$, $r = \frac{4}{3}$. **181.** $x^2 + y^2 - 2x - 6y + 5 = 0$. **182.** $4x^2 + 4y^2 + 2x + (3 \pm 2\sqrt{10})y = 0$. **183.** x-3y=0. **184.** $(A^2+B^2)R^2-C^2=0$. **185.** 3x-4y+14=0, 3x-4y+14=04y-36=0. **186.** 1) $(x-1)^2+(y+2)^2-5=0$; 2) $(x+\frac{1}{2})^2+(y-\frac{5}{2})^2-\frac{19}{2}=0$; 3) $(x - \frac{1}{3})^2 + (y + \frac{7}{6})^2 - \frac{41}{36} = 0$. **187.** $S(-3, -1), r = \sqrt{41}$. **188.** $(x+\frac{9}{8})^2+(y-\frac{1}{4})^2-\frac{5}{64}=0, (x+\frac{1}{2})^2+(y+1)^2-\frac{5}{4}=0.$ **189.** Ax + By = 0. **190.** $2\sqrt{2}$. **191.** 1) $\frac{x^2}{25} + \frac{y^2}{16} = 1$; 2) $\frac{x^2}{25} + \frac{y^2}{9} = 1$; 3) $\frac{x^2}{169} + \frac{y^2}{25} = 1$. **192.** $(0, \pm 12)$. **193.** $x = \pm 9$. **194.** a) $e = \frac{\sqrt{2}}{2}$; б) $e = \frac{\sqrt{10}}{5}$; в) $e = \frac{1}{2}$. **195.** $\left(-\frac{15}{2}, \pm \frac{3\sqrt{7}}{2}\right)$. **196.** 24x + 25y = 0. **197.** 32x + 25y - 89 = 0. **199.** 3x + 4y - 24 = 0. **200.** 1) y = 4; 2) 16x - 5y - 100 = 0. **201.** $A^2a^2 + B^2b^2 - C^2 = 0$. **202.** $x \pm y \pm 3 = 0$. **204.** Окружность. **205.** Эллипс. **206.** $(\pm 3, 0)$. **207.** 1) $e = \frac{1}{2}$; 2) e = $sqrt\frac{2}{17}$; 3) $e = \frac{4}{5}$. **208.** $\frac{x^2}{36} + \frac{y^2}{16} = 1$. **209.** $\frac{2b^2}{a}$. **210.** 8x + 25y = 0. **211.** $x+y\pm 5=0$. **215.** 1) $A^2a^2+B^2b^2-C^2>0$; 2) $A^2a^2+B^2b^2-C^2<0$. **216.** b^2 , где b — меньшая полуось эллипса. **217.** 1) $\frac{x^2}{576} - \frac{y^2}{100} = 1$; 2) $\frac{x^2}{64} - \frac{y^2}{36} = 1$. **218.** $\frac{x^2}{432} - \frac{y^2}{75} = 1$. **219.** $F_1(-13, 0), F_2(13, 0)$.

220. b. **221.** 20x - 9y - 91 = 0. **222.** x + y - 1 = 0. **223.** 1) $3x - y \pm 3\sqrt{5} = 0.2$) $5x - 2y \pm 9 = 0$. **224.** b^2 . **227.** 1) $\frac{x^2}{25} - \frac{y^2}{9} = 1$; 2) $\frac{x^2}{16} - \frac{y^2}{9} = 1$. **228.** $F_1(0, 17), F_2(0, -17)$. **229.** $\frac{x^2}{16} - \frac{y^2}{9} = 1$. **230.** 1) $F_1(5, 0)$, $F_2(-5, 0)$; 2) $e = \frac{5}{3}$; 3) $y = \pm \frac{4}{3}x$, $x = \pm \frac{9}{5}$; 4) $\frac{y^2}{16}-\frac{x^2}{9}=1,\ e=\frac{5}{4}.$ **231.** $(\pm\frac{ab}{\sqrt{b^2-a^2}},\ \pm\frac{ab}{\sqrt{b^2-a^2}});$ задача имеет решение, если b>a. **232.** $a^2A^2-b^2B^2=C^2$. **233.** $a=\frac{\sqrt{269}}{2\sqrt{5}},\ b=\frac{12}{\sqrt{5}}$. **234.** Гипербола. **235.** b^2 , где b — длина мнимой полуоси. **236.** ab. **237.** (1, 0). **238.** $y^2 = 12x$. **239.** (18, 12) и (18, -12). **240.** 2p. **241.** y=2x-5. **242.** $B^2p=2AC$. **243.** Касательные к параболе и ее вершине. 244. 2. 245. 12. 246. Парабола, имеющая данную точку фокусом и данную прямую директрисой. **247.** (0, 1). **248.** (-2, 0). **249.** $x = -\frac{3}{2}$. **250.** x - 3y + 9 = 0. **251.** $y^2 = 4x$. **253.** $\frac{8}{3}$. **254.** Две параболы: $y^2 = \pm 2x + 1$. **255.** (-5, 4), (-12, 5), (-7, 3). **256.** 1) x = 2x' + 7y' + 3, y = 5x' + 9y' + 1, 2) x = 5x' + 3, y = 4y' + 5, 3) x = -7y', y = 2x' + 2, 4 x = ax', y = by', 5 x = by', y = ax'. **257.** 1) x = 2x' + z' + 2, y = 4x' + 4y' + z' + 1, z = x' + 4y' + 3; 2) x' = -x + y - z + 14, $y' = \frac{1}{4}x - \frac{1}{4}y + \frac{1}{2}z - \frac{7}{4}$, z' = 3x - 2y + 2z - 10; 3) $O(4, -\frac{7}{4}, -10)$, $\mathbf{e}_1 = \frac{1}{4}x - \frac{1}{4}y + \frac{1}{2}z - \frac{7}{4}$ $\{-1, \frac{1}{4}, 3\}, \mathbf{e}_2 = \{1, -\frac{1}{4}, -2\}, \mathbf{e}_3 = \{-1, \frac{1}{2}, 2\}.$ **258.** x'y' = 1.**259.** 1) 5x' - 4y' + 5 = 0, 2) 2x - y - 3 = 0, 3) O'(-3, 5), A'(-8, 13). **260.** $\{1, 2, 3\}$. **261.** x = -27x' - 71y' - 41z', y = 9x' + 20y' + 9z', z =4x' + 12y' + 8z'. **262.** $x' = \frac{3\sqrt{3}}{2}$; $y' = \frac{5}{2}$. **263.** $x'^2 + y'^2 = 4$. **264.** O'(6, -2), $E'_1(7, -2)$, $E'_2(6, -1)$; O(-6, 2), $E_1(-5, 2)$, $E_2(-6, 3)$. **265.** O'(3, -2), $\mathbf{e}'_1 = \{2, -1\}$, $\mathbf{e}'_2 = \{-5, 2\}$. **266.** 1) $x' = -\frac{1}{2}x + \frac{1}{2}x + \frac{1}{2}x$ $\frac{1}{2}y - \frac{1}{2}$, $y' = \frac{1}{4}x + \frac{1}{4}y + \frac{1}{2}z - \frac{1}{4}$, $z' = -\frac{1}{4}x - \frac{5}{4}y - \frac{1}{2}z + \frac{1}{4}$; 2) O'(-1, 0, 1), $\mathbf{e}'_1 = \frac{1}{4}x - \frac{1}{4}y + \frac{1}{4}z - \frac{1}{4}z \frac{$ $\{-2, 0, 1\}, \mathbf{e}'_2 = \{-1, -1, 3\}, \mathbf{e}'_3 = \{-1, -1, 1\}; 3\} O(-\frac{1}{2}, -\frac{1}{4}, \frac{1}{4}), \mathbf{e}_1 = \{-1, -1, 1\}; 3\} O(-\frac{1}{2}, -\frac{1}{4}, \frac{1}{4})$ $\{-\frac{1}{2}, \frac{1}{4}, -\frac{1}{4}\}, \mathbf{e}_2 = \{\frac{1}{2}, \frac{1}{4}, -\frac{5}{4}\}, \mathbf{e}_3 = \{0, \frac{1}{2}, -\frac{1}{2}\}.$ **267.** $\{1, 1, 1\}.$ **268.** $x_1 = 2x_1' + x_3' - x_4'$, $x_2 = -3x_1' + x_2' - 2x_3' + x_4'$, $x_3 = x_1' - 2x_2' + 2x_3' - 2x_3' + x_4'$ $x_4', x_4 = x_1' - x_2' + x_3' - x_4'$. **269.** $(-1, 0), (1, 0), (0, \sqrt{3}), (0, -\sqrt{3}), x = (-1, 0)$ $x' - \frac{y'}{\sqrt{3}} + 1$, $y = x' + \frac{y'}{\sqrt{3}} + 1$. **270.** x'y' = 0.

Литература

- [1] Бахвалов С.В., Моденов П.С., Пархоменко А.С. Сборник задач по аналитической геометрии. М. Наука. 1964.
- [2] Проскуряков И.В. Сборник задач по линейной алгебре. М. Наука. 1967. 384 с.
- [3] Цубербиллер О.Н. Задачи и упражнения по аналитической геометрии. М. Наука. 1964.
- [4] Шурыгин В.В. Векторная алгебра и ее применение в аналитической геометрии плоскости. Учебное пособие к курсу аналитической геометрии. Казанск. ун-т. 2001. 50 с.
- [5] Шурыгин В.В. Векторная алгебра и ее применение в аналитической геометрии пространства. Учебное пособие к курсу аналитической геометрии. Казанск. ун-т. 2002. 72 с.

Содержание

1	Векторы на плоскости и в пространстве	4
2	Радиус-вектор	7
3	Координаты векторов	8
4	Аффинные системы координат на плоскости и в про- странстве	11
5	Простое отношение трех точек на прямой	13
6	Расстояние между точками	15
7	Скалярное произведение векторов	17
8	Скалярное произведение в координатах	19
9	Поворот вектора на ориентированной плоскости	22
10	Косое произведение векторов на плоскости	2 4
11	Полярная система координат на плоскости	26
12	Прямая линия на аффинной плоскости	29
13	Уравнение пучка прямых	33
14	Прямая в прямоугольной системе координат	35
15	Окружность	37
16	Эллипс	39
17	Гипербола	44

19	Преобразования	аффинных	координат	на	плоскости и	
	в пространстве					51

18 Парабола