

	et Contact			
	Search			
Repository Web				
View ALL	View ALL Data Sets			

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11- 01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	782099

Source:

Creators:

1. Dr. William H. Wolberg, General Surgery Dept. University of Wisconsin, Clinical Sciences Center Madison, WI 53792 wolberg '@' eagle.surgery.wisc.edu

- 2. W. Nick Street, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 street '@' cs.wisc.edu 608-262-6619
- 3. Olvi L. Mangasarian, Computer Sciences Dept. University of Wisconsin, 1210 West Dayton St., Madison, WI 53706 olvi '@' cs.wisc.edu

Donor:

Nick Street

Data Set Information:

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. A few of the images can be found at [Web Link]

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/

Attribute Information:

- 1) ID number
- 2) Diagnosis (M = malignant, B = benign)

3-32)

Ten real-valued features are computed for each cell nucleus:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

Relevant Papers:

First Usage:

W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

[Web Link]

O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.

[Web Link]

Medical literature:

W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171. [Web Link]

W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Analytical and Quantitative Cytology and Histology, Vol. 17 No. 2, pages 77-87, April 1995.

W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian. Computerized breast cancer diagnosis and prognosis from fine needle aspirates. Archives of Surgery 1995;130:511-516. [Web Link]

W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian. Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathology, 26:792--796, 1995. [Web Link]

See also:

[Web Link] [Web Link]

Papers That Cite This Data Set¹:

Gavin Brown. <u>Diversity in Neural Network Ensembles</u>. The University of Birmingham. 2004. [<u>View Context</u>].

Hussein A. Abbass. <u>An evolutionary artificial neural networks approach for breast cancer diagnosis</u>. Artificial Intelligence in Medicine, 25. 2002. [View Context].

Baback Moghaddam and Gregory Shakhnarovich. <u>Boosted Dyadic Kernel Discriminants</u>. NIPS. 2002. [View Context].

Krzysztof Grabczewski and Wl/odzisl/aw Duch. <u>Heterogeneous Forests of Decision Trees</u>. ICANN. 2002. [View Context].

András Antos and Balázs Kégl and Tamás Linder and Gábor Lugosi. <u>Data-dependent margin-based generalization bounds for classification</u>. Journal of Machine Learning Research, 3. 2002. [<u>View Context</u>].

- Kristin P. Bennett and Ayhan Demiriz and Richard Maclin. <u>Exploiting unlabeled data in ensemble methods</u>. KDD. 2002. [View Context].
- Nikunj C. Oza and Stuart J. Russell. <u>Experimental comparisons of online and batch versions of bagging and boosting</u>. KDD. 2001. [View Context].
- Robert Burbidge and Matthew Trotter and Bernard F. Buxton and Sean B. Holden. <u>STAR Sparsity through Automated Rejection</u>. IWANN (1). 2001. [View Context].
- Yuh-Jeng Lee. <u>Smooth Support Vector Machines</u>. Preliminary Thesis Proposal Computer Sciences Department University of Wisconsin. 2000. [View Context].
- Justin Bradley and Kristin P. Bennett and Bennett A. Demiriz. <u>Constrained K-Means Clustering</u>. Microsoft Research Dept. of Mathematical Sciences One Microsoft Way Dept. of Decision Sciences and Eng. Sys. 2000. [View Context].
- Lorne Mason and Peter L. Bartlett and Jonathan Baxter. <u>Improved Generalization Through Explicit Optimization of Margins</u>. Machine Learning, 38. 2000. [View Context].
- P. S and Bradley K. P and Bennett A. Demiriz. <u>Constrained K-Means Clustering</u>. Microsoft Research Dept. of Mathematical Sciences One Microsoft Way Dept. of Decision Sciences and Eng. Sys. 2000. [<u>View Context</u>].
- Endre Boros and Peter Hammer and Toshihide Ibaraki and Alexander Kogan and Eddy Mayoraz and Ilya B. Muchnik. <u>An Implementation of Logical Analysis of Data</u>. IEEE Trans. Knowl. Data Eng, 12. 2000. [View Context].
- Chun-Nan Hsu and Hilmar Schuschel and Ya-Ting Yang. <u>The ANNIGMA-Wrapper Approach to Neural Nets Feature Selection for Knowledge Discovery and Data Mining</u>. Institute of Information Science. 1999. [View Context].
- W. Nick Street. A Neural Network Model for Prognostic Prediction. ICML. 1998. [View Context].
- Yk Huhtala and Juha Kärkkäinen and Pasi Porkka and Hannu Toivonen. <u>Efficient Discovery of Functional and Approximate Dependencies Using Partitions</u>. ICDE. 1998. [View Context].
- Huan Liu and Hiroshi Motoda and Manoranjan Dash. <u>A Monotonic Measure for Optimal Feature Selection</u>. ECML. 1998. [View Context].
- Lorne Mason and Peter L. Bartlett and Jonathan Baxter. <u>Direct Optimization of Margins Improves Generalization in Combined Classifiers</u>. NIPS. 1998. [View Context].
- Kristin P. Bennett and Erin J. Bredensteiner. <u>A Parametric Optimization Method for Machine Learning</u>. INFORMS Journal on Computing, 9. 1997. [View Context].
- Rudy Setiono and Huan Liu. <u>NeuroLinear: From neural networks to oblique decision rules</u>. Neurocomputing, 17. 1997. [<u>View Context</u>].
- . Prototype Selection for Composite Nearest Neighbor Classifiers. Department of Computer Science

- University of Massachusetts. 1997. [View Context].
- Jennifer A. Blue and Kristin P. Bennett. <u>Hybrid Extreme Point Tabu Search</u>. Department of Mathematical Sciences Rensselaer Polytechnic Institute. 1996. [View Context].
- Erin J. Bredensteiner and Kristin P. Bennett. <u>Feature Minimization within Decision Trees</u>. National Science Foundation. 1996. [View Context].
- Ismail Taha and Joydeep Ghosh. <u>Characterization of the Wisconsin Breast cancer Database Using a Hybrid Symbolic-Connectionist System</u>. Proceedings of ANNIE. 1996. [<u>View Context</u>].
- Geoffrey I. Webb. <u>OPUS: An Efficient Admissible Algorithm for Unordered Search</u>. J. Artif. Intell. Res. (JAIR, 3. 1995. [<u>View Context</u>].
- Rudy Setiono. <u>Extracting M-of-N Rules from Trained Neural Networks</u>. School of Computing National University of Singapore. [<u>View Context</u>].
- Jarkko Salojarvi and Samuel Kaski and Janne Sinkkonen. <u>Discriminative clustering in Fisher metrics</u>. Neural Networks Research Centre Helsinki University of Technology. [View Context].
- WI odzisl and Rafal Adamczak and Krzysztof Grabczewski and Grzegorz Zal. A hybrid method for extraction of logical rules from data. Department of Computer Methods, Nicholas Copernicus University. [View Context].
- Charles Campbell and Nello Cristianini. <u>Simple Learning Algorithms for Training Support Vector Machines</u>. Dept. of Engineering Mathematics. [<u>View Context</u>].
- Chotirat Ann and Dimitrios Gunopulos. <u>Scaling up the Naive Bayesian Classifier: Using Decision</u>
 <u>Trees for Feature Selection</u>. Computer Science Department University of California. [View Context].
- WI odzisl/aw Duch and Rudy Setiono and Jacek M. Zurada. <u>Computational intelligence methods for rule-based data understanding</u>. [View Context].
- Rafael S. Parpinelli and Heitor S. Lopes and Alex Alves Freitas. <u>An Ant Colony Based System for Data Mining: Applications to Medical Data</u>. CEFET-PR, CPGEI Av. Sete de Setembro, 3165. [View <u>Context</u>].
- WI/odzisl/aw Duch and Rafal/ Adamczak Email:duchraad@phys. uni. torun. pl. <u>Statistical methods for construction of neural networks</u>. Department of Computer Methods, Nicholas Copernicus University. [View Context].
- Rafael S. Parpinelli and Heitor S. Lopes and Alex Alves Freitas. <u>PART FOUR: ANT COLONY OPTIMIZATION AND IMMUNE SYSTEMS Chapter X An Ant Colony Algorithm for Classification Rule Discovery</u>. CEFET-PR, Curitiba. [View Context].
- Adam H. Cannon and Lenore J. Cowen and Carey E. Priebe. <u>Approximate Distance Classification</u>. Department of Mathematical Sciences The Johns Hopkins University. [View Context].
- Andrew I. Schein and Lyle H. Ungar. <u>A-Optimality for Active Learning of Logistic Regression Classifiers</u>. Department of Computer and Information Science Levine Hall. [View Context].

Bart Baesens and Stijn Viaene and Tony Van Gestel and J. A. K Suykens and Guido Dedene and Bart De Moor and Jan Vanthienen and Katholieke Universiteit Leuven. <u>An Empirical Assessment of Kernel Type Performance for Least Squares Support Vector Machine Classifiers</u>. Dept. Applied Economic Sciences. [View Context].

Adil M. Bagirov and Alex Rubinov and A. N. Soukhojak and John Yearwood. <u>Unsupervised and supervised data classification via nonsmooth and global optimization</u>. School of Information Technology and Mathematical Sciences, The University of Ballarat. [View Context].

Rudy Setiono and Huan Liu. <u>Neural-Network Feature Selector</u>. Department of Information Systems and Computer Science National University of Singapore. [View Context].

Huan Liu. <u>A Family of Efficient Rule Generators</u>. Department of Information Systems and Computer Science National University of Singapore. [View Context].

Citation Request:

Please refer to the Machine Learning Repository's citation policy

[1] Papers were automatically harvested and associated with this data set, in collaboration with Rexa.info

Supported By: In Collaboration With:

About | Citation Policy | Donation Policy | Contact | CML