# **Algorithms and Analysis**

## Outline

## **Lesson 15**: Use Arrays for Fast Set Algorithms



Equivalent classes, Disjoint Set, Fast Sets

1. Equivalent Classes

2. Disjoint Sets

3. Fast Sets



AICE1005 Algorithms and Analysis

AICE1005 Algorithms and Analysis

# **Equivalence Relations**

• Given a set of elements  $\mathcal{X} = \{x_1, x_2, \ldots\}$  and a binary relationship  $\sim$  with the following properties!

(Reflexivity) For every element  $x \in \mathcal{X}$ ,  $x \sim x$  (Symmetry) For every two elements  $x,y \in \mathcal{X}$  if  $x \sim y$  then  $y \sim x$  (Transitivity) For every three elements  $x,y,z \in \mathcal{X}$  if  $x \sim y$  and  $y \sim z$  then  $x \sim z$ 

ullet Then  $\sim$  defines a partitioning of the set into **equivalence classes** 



# **Example of Equivalence Classes**

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them!
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social medial

## **Dynamic Equivalence Classes**

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time!
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging, but fortunately there is an elegant solution to this.

Algorithms and Analysis

## **Union-Find**

- In the union-find algorithm we have a set of objects  $x \in \mathcal{S}$  which are to be grouped into subsets  $\mathcal{S}_1, \mathcal{S}_2, \dots$
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to **find** the subset given an element
- This is a common problem for which we will write a class DisjointSets to perform fast unions and finds

## **Outline**

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets



AICE1005 Algorithms and Analysis 6

# **DisjointSets**

We want to create a class
 public class DisjointSets

```
public class DisjointSets
{
    public DisjointSets(int numElements) {/* Constructor */}
    public int find(int x) {/* Find root */}
    public void union(int root1, int root2) {/* Union */}
    private int[] s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

AICE1005

### The Union-Find Dilemma

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is  $\Theta(n^2)$
- $\bullet$  If we ensure that we relabel the smaller subset then the time complexity is  $\Theta(n\log(n)) \mathbb{I}$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

AICE1005 Algorithms and Analysis

# **Putting it Together**



## **Fast Union**

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree!
- The cost of find depends on the depth of the tree!
- To make unions efficient we make the shallow tree a subtree of the deeper tree!

AICE1005 Algorithms and Analysis 10

### **Smart Union**

```
public DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<s.length; i++)</pre>
        s[i] = -1;
                                        // roots are negative number
}
public void union(int root1, int root2)
    if (s[root2] < s[root1]) {</pre>
                                        // root2 is deeper
        s[root1] = root2;
                                        // make root2 the root
    } else {
        if (s[root1] == s[root2])
                                        // update height if same
             s[root1]--;
        s[root2] = root1;
                                        // make root1 new root
}
s[]
                                             -B
```

11

## **Path Compression**

## **Mazes**

• To speed up find we relabel all nodes we visit during find by the root label

```
public int find(int index)
       if (s[index]<0)</pre>
           return index;
       else
           return s[index] = find(s[index]);
   }
ន[]
```

• Union-Find is a data structure which can occur in very different applications

- One application is building a mazel
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

| 0   | 1  | 2  | 3  | 4  |  |
|-----|----|----|----|----|--|
| 5   | 6  | 7  | 8  | 9  |  |
| 10  | 11 | 12 | 13 | 14 |  |
| I . |    | 17 |    |    |  |
|     |    | 22 |    |    |  |
|     |    | 27 |    |    |  |
| 30  | 31 | 32 | 33 | 34 |  |
| 35  | 36 | 37 | 38 | 39 |  |
|     |    |    |    | 44 |  |
| 45  | 46 | 47 | 48 | 49 |  |

AICE1005

Algorithms and Analysis

AICE1005

Algorithms and Analysis

## Time Complexity of Union-Find

- ullet If we perform M finds and N unions then the time complexity is  $O(M \log_2^*(N))$
- Where  $\log_2^*(N)$  is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice  $\log_2^*(N) \le 5$  for all conceivable N

log\_(logogleghete/debt/debt/debt/debt/f/000000))=03000000

• The proof of this time complexity is rather involved

## **Outline**

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets



AICE1005

# **Comparison of Sets**

## What Set to Use?

- Binary Search Trees:  $O(\log_2(n))$ , general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- B-trees:  $O((k-1)\log_k(n))$  very complicated, used for large amounts of data
- ullet Tries:  $O(\log_k(n))$  for large k expensive in memory, complicated to code efficiently

AICE1005 Algorithms and Analysis

AICE1005

Algorithms and Analysis

## **Bounded Set**

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set!
- But how do we find a random element of the set quickly?
- Use another array of course!

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random—what should we use?

### FastSet

| _ | 0  | 1           | 2  | 3  | 4   | 5  | 6  | 7   | 8  | 9   |
|---|----|-------------|----|----|-----|----|----|-----|----|-----|
|   | -1 | <b>-3</b> 1 | -1 | -1 | -01 | -1 | -1 | -21 | -1 | -11 |
|   | 4  | 9           | 7  | 1  |     |    |    |     |    |     |

## **Implementation**

```
public class FastSet extends AbstractSet<Integer> {
    private int[] indexArray;
    private int[] memberArray;
    private int noMembers;

public FastSet(int n) {
        indexArray = new int[n];
        memberArray = new int[n];
        for(int i=0; i<n; i++) {
            indexArray [i] = -1;
        }
        noMembers = 0;
}

public int size() {
        return noMembers;
}</pre>
```

AICE1005 Algorithms and Analysis

## **Collection Methods**

```
public void clear() {
    for(int i=0; i<noMembers; i++) {
        indexArray[memberArray[i]] = -1;
    }
    noMembers = 0;
}

public boolean isEmpty() {
    return noMembers==0;
}

public Iterator<Integer> iterator() {
    return new FastSetIterator();
}
```

### **Add and Remove**

```
public boolean add(int i) {
    if (indexArray[i]>-1)
        return false;
    memberArray[noMembers] = i;
    indexArray[i] = noMembers;
    ++noMembers;
    return true;
}

public boolean remove(int i) {
    if (indexArray[i]==-1)
        return false;
    --noMembers;
    memberArray[indexArray[i]] = memberArray[noMembers];
    indexArray[memberArray[noMembers]] = indexArray[i];
    indexArray[i] = -1;
    return true;
}
```

AICE1005 Algorithms and Analysis 22

### **Iterator**

```
private class FastSetIterator implements Iterator<Integer> {
   int current = 0;

public boolean hasNext() {
    return current < noMembers;
}

public Integer next() throws NoSuchElementException {
    if (current>=noMembers) throw new NoSuchElementException();
        current++;
    return memberArray[current-1];
}

public void remove() throws IllegalStateException {
    if (current==0) throw new IllegalStateException();
        indexArray[memberArray[current-1]] = -1;
        noMembers--;
        memberArray[current-1] = memberArray[noMembers];
        indexArray[memberArray[noMembers]] = current-1;
}
```

AICE1005

### And Random?

- So far we have just implemented a new Set<Integer> as part of the java Collection class
- We can add additional methods taking advantage of the classes strength

```
private static Random rand = new Random();
public int getRandomElement() {
    return memberArray[rand.nextInt(noMembers)];
}
```

• Need to use FastSet signature to use this

```
FastSet fastSet = new FastSet(n);
:
int r = fastSet.getRandomElement();
```

AICE1005

Algorithms and Analysis

AICE1005

Algorithms and Analysis

\_\_\_\_

### Lessons

- If you have a bounded set then using an array is usually going to be very fast O(1) (or  $O(\log^*(n))$ ).
- These data structures are not general purpose for solving every day problems (c.f. List<T>, Set<T> and Map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist!

# Speed Up

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure!
- The competitor algorithm used a complex tree structure instead of the simple array!
- Why? The array solution isn't in the books