Tutorial Problems - Sections 4 to 5 - MAT 327 - Summer 2014

4 Countability

- 1. Give an explicit bijection between \mathbb{N} and the collection of all finite binary strings.
- 2. Prove, using countability, that there is transcendental number (i.e. a number that is not a solution to any polynomial with rational coefficients).
- 3. Prove that $\mathbb{R} \times \mathbb{R}$ can be put in bijection with \mathbb{R} .
- 4. Let A be an infinite set. Prove that $A \times A$ can be put in bijection with A.
- 5. Prove that $\{[p,q): p,q\in\mathbb{Q}\}$ forms a (countable) basis for a topology on \mathbb{R} . Show that this does not generate the Sorgenfrey Line.
- 6. Prove that the particular point topology on \mathbb{R} is separable, but not second countable.
- 7. For two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$, we say that $f \leq g$ if there is an $N \in \mathbb{N}$ such that $f(n) \leq g(n)$ for all $N \leq n$. Show that given 1000 functions f_1, \ldots, f_{1000} , there is always a function g such that $f_i \leq g$ for all $i = 1, \ldots, 1000$.
- 8. Show that given *countably many* functions f_i $(i \in \mathbb{N})$, there is always a function g such that $f_i \leq g$ for all $i \in \mathbb{N}$.
- 9. Use the previous result to create an interesting topological space on $\mathbb{N} \times \mathbb{N}$, or possibly $(\mathbb{N} \times \mathbb{N}) \cup \{0\}$. What properties does it have?

5 Convergence and Limit Points

- 1. Explain what types of sequences converge in discrete spaces.
- 2. Explain what types of sequences converge in $\mathbb{R}_{\text{co-finite}}$.
- 3. Explain what types of sequences converge in $\mathbb{R}_{\text{co-countable}}$.
- 4. Explain what types of sequences converge in \mathbb{R}^2 by making reference to the coordinates. Is there something you can say about general product spaces?
- 5. Give a clear explanation of how second countable spaces relate to first countable spaces. Help us to understand how these properties are the same and how they are different.

- 6. In your analysis course you defined Cauchy sequences, and said that a metric space was complete if and only if all Cauchy sequences converge. Is it possible to make sense of Cauchy Sequences in a general topological space? Why or why not?
- 7. A point $p \in X$, a topological space, is said to be a **cluster point** of a sequence $\langle x_n \rangle$ in X if for all open sets U containing p, there is an $x_n \in U$. How do cluster points differ from limit points? Give some examples that distinguish these notions.
- 8. Let X be a first-countable space. Prove that each point $p \in X$ has a nested countable local base $B_1 \supseteq B_2 \supseteq \dots$