

Case-Control Data and Logistic Regression

Questions from Last Class?

Resources for the Curious

- Categorical Data Analysis Using SAS by Stokes, Davis and Koch
 - Somewhat staid book, and in the wrong language, but SAS Press books are often very accessible treatments of a topic
 - I have this book in my library
- Logistic Regression by Klein and Kleinbaum
- There are tons of logistic regression tutorials online, on Coursera, etc. Be aware that many of these are machine learning focused, but the principles are the same

Types of Observational Data

- Most of these got covered in Module 1
- Binary/Continuous
- People/Time/Events
- The decision on how to model is largely dictated by what you are modeling

Why Regression?

- Module 1 taught you how to calculate measures of association with 2x2 tables, long division, etc.
- Adjusting for confounding using stratification
- All of this seemed to work well enough, can be done in Excel, on a whiteboard, etc. – why bother with regression?

Stratification

Stratification

And this is just for two variables...what about 16?

Strengths of Regression

- Can handle adjustment by many variables
- Can handle non-categorical data
- Can smooth/spackle over empty cells
 - If you know what happens to 26 year olds and 28 year olds, you can guess what happens to 27 year olds
- You can predict
 - Given m, X and b, solve for Y
 - Regression is the foundational toolset of machine learning/data science

What Regression Isn't

Regression Can't...

- Automatically fix bad data collection
- Control for bias that it (or you) don't know about
- Solve your sample size problems for you
- ...solve any of your problems for you regression is a tool, and a dumb one at that

Assumptions and Problems of Regression

- Positivity: An individual has a non-zero probability of having any combination of parameter values
 - Regression assumes cells with 0's happened by chance what if those cells are impossible?
- Model misspecification: Missing confounders, the wrong distribution, etc.
 will give you the wrong answer
 - This is, I would argue, the biggest problem in observational epi
- Nonidentifiability: Two (or more) combinations of parameters are equally supported by the data, and there is no "best fit"
- Others we will discuss as the class goes on
- There are *more* assumptions necessary for causal inference, which is beyond the scope of this module

Reading a Regression Equation

 Regression is essentially progressively more complex versions of y = mx +b

$$Y = \beta_0 + \beta_1 A + \varepsilon$$
Linear Predictor

$$Y = \alpha + \beta_1 A + \gamma Z$$

What's a Link Function?

- A link function is a function that describes the relationship between Y and the rest of the equation
- Linear Predictor: Xβ
- Link function: $g(Y) = X\beta$
- Identity: $Y = X\beta$
- Log: $ln(Y) = X\beta$
- Logit: $\frac{Y}{1-Y} = \mathbf{X}\boldsymbol{\beta}$

What is a Distribution?

- Linear regression assumes things came from a normal distribution
- This is often not true
- Other distributions are common
- Binomial: Binary data
- Poisson/Negative Binomial: Counts and rates
- Exponential/Weibull/Gamma: Time
- When unspecified, it is often assumed to be normal

Least Squares and Maximum Likelihood

- Two ways to estimate the best fitting parameter
- Linear regression often uses least squares
- Most of the other models we will discuss use some form of maximum likelihood

Categorical Data

- Linear regression works really well for continuous, normally distributed outcomes
- But binary outcomes don't really work well in the linear regression context

- May predict values >1 (which doesn't make any sense for a 0/1 value...)
- · Assumes a linear function between exposure and the value of the outcome
- Undesirable properties of the residuals

- So we turn to logistic regression
- Instead of predicting a *value* of Y, lets predict the probability that Y = 1

- S-shaped curve bounded at 0 and 1
- Allows for different levels of change over levels of exposure, especially high or low
- · Residuals are better behaved

Formal Equation

$$\log\left(\frac{p(Y=1)}{1-p(Y=1)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots$$

$$p(Y = 1) = \frac{e^{\beta_0 + \beta_1 X_1}}{1 + e^{\beta_0 + \beta_1 X_1}}$$

In R

 $model \leftarrow glm(Y \sim X1 + X2,family=binomial(link='logit'), data=data)$


```
> summary(glm(Survived ~ Age + Sex, family=binomial(link='logit'),data=train))
Call:
glm(formula = Survived ~ Age + Sex, family = binomial(link = "logit"),
    data = train)
Deviance Residuals:
    Min
             10 Median
                               3Q
                                       Max
-1.7405 -0.6885 -0.6558 0.7533 1.8989
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.277273 0.230169 5.549 2.87e-08 ***
           -0.005426 0.006310 -0.860
                                           0.39
Age
Sexmale
           -2.465920 0.185384 -13.302 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 964.52 on 713 degrees of freedom
Residual deviance: 749.96 on 711 degrees of freedom
  (177 observations deleted due to missingness)
AIC: 755.96
Number of Fisher Scoring iterations: 4
```


An aside...

- In some fields (like economics) you will encounter something called 'probit' regression
- This is meant to model the same things as logistic regression
- Uses a different link function (probit instead of logit)
- The reason logistic regression is popular in epidemiology is because the output can be interpreted as an odds ratio
- Probit models are handy for some advanced applications in econometrics

Variable Selection

- One of the biggest hurdles in all regression is variable selection
- The challenge is not only to choose what variables, but what form
 - Recall from previous lectures the different between linear and quadratic forms of a variable
 - We'll pick this thread up in a few slides

How to Choose Variables

- Realistically, there will be some variables you have to control for, depending on your subject area.
- Use the literature to help inform your choices
- DAGS!

How **Not** To Choose Variables

- Automated algorithms (forward selection, backward selection, stepwise selection)
 - These all add or drop variables based on a significance threshold
 - This can drop variables that are confounders
- If you must, p = 0.05 is an anticonservative threshold
 - You want to protect yourself from accidentally dropping a needed variable
 - Use a much more generous threshold, like p = 0.20

What if I Just Don't Know?

A variable "C" should have a meaningful impact on the E -> D relationship

10% Change-in-Estimate

- If you include the variable vs. if you don't, does the estimate you're interested in change by 10% or more?
- If so, keep the variable
- Hint: log(Estimate 1) log(Estimate 2) > 0.10

What Shape Should A Variable Be In?

- Just having a linear term assumes a linear response
- Quadratic terms are also possible
- Cubic, quartic etc. are possible, but rare and difficult to interpret or argue that they have biological meaning
- Splines
- You can use AIC to evaluate between potential forms
 - AIC= $-2 \times ln(likelihood) + 2k$; k = # of parameters

What if My Variable is Categorical?

- Is it ordered and are the steps the same?
 - Percentiles etc.
 - Convert it to a continuous variable
 - If you can't, you can still use it as one
- If not, use indicator variables
 - A series of 0/1 variables for each possible "state" of the original variable 1
 - Pick sensible names

Logistic Regression on Paired or Matched Data

- Unconditional logistic regression overestimates the OR in a matched study
- You can use conditional logistic regression to estimate the conditional likelihood within each strata (each case: k controls set)
- Intercept is not estimated, so no way to estimate direct probabilities
 - We don't care, but again, the people who want to use logistic regression for prediction do
- Use clogit() in the survival package
 - There are statistical reasons why it lives in a package for survival analysis

Exact Logistic Regression

- Useful when you have very small samples and lots of cells with zeros
- Computationally very burdensome
- Maximum likelihood relies on asymptotic results, not valid with small sample sizes
- Use elrm() in the elrm package
- Note that you can get very funny answers from exact logistic regression

Logistic Regression on Multinomial Data

- Does it need to be multinomial, or can you collapse some categories?
- You can do essentially pairwise comparisons to a fixed baseline, or to the "neighboring" categories
- Use multinom() in the nnet package
- Good tutorial here: https://stats.idre.ucla.edu/r/dae/multinomiallogistic-regression/

Errors in Logistic Regression

- Convergence issues
- Complete or Quasi-complete seperation