CSIE4105 Database Systems

Homework # 2

Due on 11/01/2023

- 1. (20%) You are asked to design the database for RX chain of pharmacies. The followings are the collected data requirements.
 - Patients are identified by an SSN, and their names, addresses, and ages must be recorded.
 - Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded.
 - Each pharmaceutical company is identified by name and has a phone number.
 - For each drug, the trade name and formula must be recorded. Each drug is sold by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. If a pharmaceutical company is deleted, you need not keep track of its products any longer.
 - Each pharmacy has a name, address, and phone number.
 - Every patient has a primary physician. Every doctor has at least one patient.
 - Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies, and the price could vary from one pharmacy to another.
 - Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors. Each prescription has a date and a quantity associated with it. You can assume that, if a doctor prescribes the same drug for the same patient more than once, only the last such prescription needs to be stored.
 - Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical company can contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies. For each contract, you have to store a start date, an end date, and the text of the contract.

Draw an ER or EER schema diagram for this system. Be sure to indicate all **key**, **cardinality**, and **participation constraints** and state any *assumptions* you make.

- 2. (25%) Consider a database system for a baseball organization such as the major leagues. The data requirements are summarized as follows:
 - The personnel involved in the league include players, coaches, managers, and umpires. Each is identified by a unique personnel id. They are also described by their first and last names along with the date and place of birth.
 - Players are further described by other attributes such as their batting

orientation (left, right, or switch) and have a lifetime batting average (BA).

- Within the players group is a subset of players called pitchers. Pitchers have a life time ERA (earned run average) associated with them.
- Teams are uniquely identified by their names. Teams are also described by the city in which they are located and the division and league in which they play (such as Central division of the American league).
- Teams have one manager, a number of coaches, and a number of players.
- Games are played between two teams with one designated as the home team and the other the visiting team on a particular date. The score (runs, hits, and errors) are recorded for each team. The team with more number of runs is declared the winner of the game.
- With each finished game, a winning pitcher and a losing pitcher are recorded. In case there is a save awarded, the save pitcher is also recorded.
- With each finished game, the number of hits (singles, doubles, triples, and home runs) obtained by each player is also recorded.

Draw an ER or EER schema diagram for this system. Be sure to indicate all **key**, **cardinality**, and **participation constraints** and state any *assumptions* you make.

3. (30%, each 5%) Suppose that each of the following *Update* operations is applied directly to the database state shown in the following figure. Discuss *all* integrity constraints <u>violated</u> by each operation, if any, and the different ways of <u>enforcing</u> these constraints.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX M		30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX M		40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX F		25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX		43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX		38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT LOCATIONS

Dnumber	Dlocation		
1	Houston		
4	Stafford		
5	Bellaire		
5	Sugarland		
5	Houston		

WORKS ON

WORKING_OIN					
Essn	<u>Pno</u>	Hours			
123456789	1	32.5			
123456789	2	7.5			
666884444	3	40.0			
453453453	1	20.0			
453453453	2	20.0			
333445555	2	10.0			
333445555	3	10.0			
333445555	10	10.0			
333445555	20	10.0			
999887777	30	30.0			
999887777	10	10.0			
987987987	10	35.0			
987987987	30	5.0			
987654321	30	20.0			
987654321	20	15.0			
888665555	20	NULL			

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

- (a) Insert <'Robert', 'F', 'Scott', '943775543', '1972-06-21', '2365 Newcastle Rd, Bellaire, TX', M, 58000, '888665555', 1> into EMPLOYEE.
- (b) Insert <'ProductA', 4, 'Bellaire', 2> into PROJECT.
- (c) Delete the DEPENDENT tuples with Essn = '987654321'.
- (d) Delete the PROJECT tuple with Pname = 'ProductX'.
- (e) Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn = '999887777' to '943775543'.
- (f) Modify the Pnumber attribute of the PROJECT tuple with Pnumber = 30 to 40
- 4. (25%) Translate the following EER diagram into a relational database schema. Indicate the **primary key** and **foreign key** (if any) for each relation. (Note: please use **the foreign key approach** for 1:1 and 1:N relationships and the **multiple relations approach** for specification/generalization relationships).

