www.bsc.es

Introduction to MareNostrum IV

LifeSciences startup guide

Carlos Tripiana <carlos.tripiana@bsc.es>
Oscar Hernández <oscar.hernandez@bsc.es>
David Vicente <david.vicente@bsc.es>
BSC Support Team

Requesting supercomputing resources

((Through the "resource petitions" app avilabe at:

https://webapps.bsc.es/resource-petitions/

Team leaders can issue "special petitions"

Intended for non-BSC personeel

BSC HPC access

- Access through SSH
 - OpenSSH for Linux / OSX
 - PuTTY for Windows
- (On the facilities granted you can authenticate by:
 - password
 - SSH public keys

Shared Credentials

((Shared users among:

- Data Transfer (dt01.bsc.es) >> Data management
- MareNostrum IV (mn1.bsc.es) >> 48 core nodes | 166000cpus
- Ultraviolet (bscsmp02.bsc.es) >> 96 cpus | 1.5 TB RAM
- CTE-POWER (plogin1.bsc.es) >> P8(160 cpus) | 2xTesla P100
- CTE-KNL (klogin1.bsc.es) >> 16*64 core xeon-phi
- Nord3 (nord3.bsc.es)
 >> 16 core nodes
- Minotauro (mt01.bsc.es)
 >> 16/12 core nodes | 2* M2090/K80

(Same \$HOME, \$USER and password

General Parallel Filesystem (GPFS)

- (High performance parallel filesystem
- (GPFS Filesystems on the cluster
 - /gpfs/apps (Support vetted applications)
 - /gpfs/home (User's home, backup)
 - /gpfs/projects (Inputs, custom installations, backup)
 - /gpfs/scratch (Temporary files, NO backup)
 - /gpfs/archive (Long term storage, batch interaction)

Filesystem limits (Quota)

- **((** Filesystem limit per user and/or group.
- ((Check with: bsc_quota
- **((** Typical related problems:
 - Job submission failure when \$HOME is over quota
 - Job execution failure when writing to over-quota filesystem
- (Group-shared quota on /gpfs/projects and /gpfs/scratch

/gpfs/home Filesystem usage

- (Few space (~40 GB per user)
- **((** /gpfs/home Do:
 - Store source code
 - Store personal scripts

/gpfs/archive Filesystem usage

- (You can check availability with bsc_quota and dtquota
- (/gpfs/archive Do:
 - Store data you are not going to use soon
 - Store processed final results

- (/gpfs/archive Don't:
 - Execute commands interactively (cp, mv, ...)
 - Try to put ACLs

Data Transfer Commands

- Set of commands to send data transfer jobs to queues
 - Available in MareNostrum and dt01 & dt02

(Commands

- File movement: dtcp & dtmv
- Archiving & synchronizing: dttar & dtrsync
- Job control: dtq & dtcancel

Node's local disk (/scratch)

- (All nodes have disk for temporary files
 - Accessible via \$TMPDIR
 - Not shared between nodes (different to /gpfs/scratch)
 - Content erased after execution
- **((** Useful for temporary files
 - Temporal data from MPI communication
- **((** 200 GB disk

MareNostrum logins

- **(1)** 3 external accessible logins:
 - mn1.bsc.es
 - mn2.bsc.es
 - mn3.bsc.es

- No outgoing connections
 - No downloads or uploads
 - 5 minutes cpu time limit

- 1 2 internal accessible logins:
 - Login4
 - Login5

Login usage

Manage & edit files

Small & medium compilations

Submit jobs to batch system

Check results and prepare scripts

Run production executions

Copy large amount of files

Long and heavy load graphical interfaces

Compilers

- Intel and GNU compiler suites available
- Intel compilers available in:
 - login1
 - Interactive nodes (\$ salloc -p interactive)
- Several versions, managed by modules
 - Fortran, C, C++
 - Intel (licensed)
 - GCC (Free Software)

- MPI compilation also managed by modules through wrappers
 - mpicc, mpifort...

Module Environment (I)

- **((Open Source project**
- (Environment variables and software dependencies management
- (Several versions of same program side-to-side (/gpfs/apps only)
- **((** Typical dependencies:
 - MPI libraries
 - Mathematical libraries

Module Environment (II)

((Module commands:

Command	Option	Example	Info
avail	[program]	module avail	List modules available
list		module list	List loaded modules
purge		module purge	Unload all modules
load	<pre><pre><pre>cprogram[/version]></pre></pre></pre>	module load gcc/5.1.0	Load a module
switch	<old> <new></new></old>	module switch intel gcc	Change a module by another

Batch System

- MareNostrum IV uses Platform SLURM as batch system
- **((** Benefits of using jobscripts
 - Defines resources needed
 - Reusable
 - Documents needs and requests

- Jobscripts are shellscripts with special markings
- **((** Each submission is a job

SLURM commands

- Submit a job defined in job_script.cmd
 - sbatch job_script.cmd
- **((** Check status of jobs submitted:
 - User's: squeue
- **((Cancel a job:**
 - scancel JobID

SLURM Common Parameters

Option

-n | -ntasks

-t |--time

-J | --job-name

-o | --output

-e | --error

--qos

--exclusive

-D | --workdir

--reservation

Comment

Number of tasks

Wallclock limit

Job name

Output file

Error file

Queue

Exclusive mode

Current working dir

Reservation

Example

#SBATCH -n 32

#SBATCH -t 01:00

#SBATCH -J myjob

#SBATCH -o %j.out

#SBATCH -e %j.err

#SBATCH --qos debug

#SBATCH --exclusive

#SBATCH -D = /my/path/

#SBATCH --reservation

reserv_name

SLURM Extra Parameters: Process layout

((How to define spicific load balance configurations:

Option	Comment	Example
ntasks-per-core	Tasks per core	#SBATCHntasks-per-core 1
ntasks-per-node	Tasks per node	#SBATCHntasks-per-node 48
-c cpus-per-task	Cpus per task	#SBATCH -c 1

Generic MNIV example:

```
#SBATCH --ntasks-per-core 1
#SBATCH --ntasks-per-node 48
```


SLURM Extra Parameters: Memory layout

2 nodetypes:

((HIGH MEMORY NODES

- Total of 384GBytes per node (8G per core)
- Only 216 nodes available

#SBATCH --constraint=highmem

((LOW MEMORY NODES

- Total of 96GBytes per node (2G per core)
- Deafult nodes

Job queues

- (Jobs are assigned to queues (QoS)
- **((** Default queue automatically selected.
- (Specify when special need: debug, interactive, graphical...
- (Different queues have different limits and goals
- (Check your available queues and their limits:
 - bsc_queues
- **((** Example: #SBATCH --qos debug

Job Examples: Sequential

((Sequential

```
#!/bin/bash

#SBATCH -n 1

#SBATCH -o %J.out

#SBATCH -e %J.err

#SBATCH -t 01:00
```

hostname

Job Examples: Threaded

```
(Threaded (OpenMP, pthreads, ...)
```

```
#!/bin/bash
#SBATCH -n 1
#SBATCH --exclusive
#SBATCH -o %j.out
#SBATCH -e %j.err
#SBATCH -t 01:00
export OMP_NUM_THREADS=16
```


Job Examples: Typical MPI

(MPI (multiple nodes, OpenMPI)

```
#!/bin/bash

#SBATCH -n 96

#SBATCH -o %j.out

#SBATCH -e %j.err

#SBATCH -t 01:00

module purge

module load openmpi

mpirun ...
```


Job Examples: MPI + OpenMP

((MPI + Threads

```
#!/bin/bash
#SBATCH -n 96
#SBATCH -o %j.out
#SBATCH -e %j.err
#SBATCH --ntasks-per-node=4
#SBATCH -t 01:00
export OMP_NUM_THREADS=4
module purge
module load openmpi
mpirun ...
```


(We do know that it is a common practice

We do know that it is a common practice

Docker the most used platform

((We do know that it is a common practice

Docker the most used platform

Not availbale in our clusters

(We do know that it is a common practice

Docker the most used platform

Not availbale in our clusters

(Why?

HPC Complex environment setup

((We do know that it is a common practice

Docker the most used platform

Not availbale in our clusters

((Why?

- Root priveleges
- High level abstraction features

Singularity

(Singularity is available in Nord3, Minotauro & Marenostrum4

Singularity

(Singularity is available in Nord3, Minotauro & Marenostrum4

((Why Singularity?

- Application level virtualization
- No root privileges

Singularity

(Singularity is available in Nord3, Minotauro & Marenostrum4

((Why Singularity?

- Application level virtualization
- No root privileges

more info at http://singularity.lbl.gov/faq

We suggest

(Install singularity locally

Available via git

We suggest

(Install singularity locally

Available via git

(Generate and edit your containers locally

\$ sudo singularity shell --writable container.img

Always create folders in container for mountpoints:

\$mkdir /gpfs/home /gpfs/scratch /gpfs/projects /gpfs/apps

We suggest

((Install singularity locally Available via git

(Generate and edit your containers locally

\$ sudo singularity shell --writable container.img

(Upload them to GPFS for production runs

\$ scp /local/path/container bscXX@dt01.bsc.es:/gpfs/path

- > Singularity run [container]
- Singularity exec [container] [executable + args]

From Docker to Singularity

- (Singularity supports pulling containers from docker repos
- **((** Docker2singularity

Docker script that converts containers

Run the following script from your local machine

https://github.com/singularityware/docker2singularity

Support Contact practices

((When contacting support remember to:

- Specify Job Ids, software version and environment (if applies),
 machine, username
- Not take for granted we know what you know, want or need
- We don't know who you are but we care you do fine
- **((** We have no favorites

