Métodos Estadísticos Tarea I

Rubén Pérez Palacios Lic. Computación Matemática Profesora: Dra. Eloísa Díaz Francés Murguía

21 de marzo de 2021

Problemas

1. Da un ejemplo de un modelo probabilístico y de un modelo estadístico con alguna de tus distribuciones que ahora son tus hijas adoptivas.

Ejemplo de modelo probabilístico es la distribución Gamma con parámetros $\alpha=1$ y $\beta=1.$

Un ejemplo de modelo estadístico es la finailia de distribuciones

$$\Phi = \left\{ F(x;\theta) : F \text{ es Gamma con parametros } (1,\frac{1}{\lambda}) \right\},$$

es decir la familia de distribuciones exponenciales con parametro λ .

- 2. Demuestra si tus tres distribuciones continuas adoptadas pertenecen a la familia Exponencial de distribuciones o no.
 - Uniforme Continua
 Su función de densidad es

$$f(x; a, b) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

Al depender su soporte de parámetros desconocidos entonces esta no pertenece a la familia Exponencial.

Gamma
 Su función de densidad es

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}}{\Gamma\alpha\beta^{\alpha}} exp\left(-\frac{x}{\beta}\right) \mathbbm{1}_{(0,\infty)}(x).$$

Podemos reexpresarla de la siguiente forma

$$f(x;\alpha,\beta) = \left(\frac{1}{\Gamma\alpha\beta^{\alpha}}\right) \left(\frac{1}{x}\right) \exp\left(\alpha \log(x) - \frac{x}{\beta}\right) \mathbbm{1}_{(0,\infty)}(x).$$

Donde su soporte no depende de parámetros desconocidos y $A(\theta) = \frac{1}{\Gamma \alpha \beta^{\alpha}}$, $B(x) = \frac{1}{x}$, $C_1(\theta) = \alpha$, $D_1(x) = \log(x)$, $C_2(\theta) = \frac{1}{\beta}$ y D(x) = x, por lo tanto la distirbución Gamma pertenece a la familia exponencial.

■ DGVE

Su función de densidad es

$$f(x;a,b,c) = \begin{cases} b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbb{1}_{\left(- \infty, a - \frac{b}{c} \right]}(x) & \text{si } c < 0, \\ b^{-1} \exp \left\{ - \frac{x-a}{b} - \exp \left[- \left(\frac{x-a}{b} \right) \right] \right\} \mathbb{1}_{\left(- \infty, \infty \right)}(x) & \text{si } c < 0, \\ b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbb{1}_{\left[a - \frac{b}{c}, \infty \right)}(x) & \text{si } c < 0, \end{cases}$$

Al depender su soporte de parámetros desconocidos entonces esta no pertenece a la familia Exponencial.

- 3. Demuestra si tus tres distribuciones continuas adoptadas pertenecen a la familia de distribuciones de Localización y Escala o no.
 - Uniforme Continua
 Su función de densidad es

$$f(x; a, b) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

Al depender su soporte de parámetros desconocidos entonces esta no pertenece a la familia de localización y escala.

■ Gamma

Su función de densidad es

$$f(x;\alpha,\beta) = \frac{x^{\alpha-1}}{\Gamma\alpha\beta^{\alpha}} exp\left(-\frac{x}{\beta}\right) \mathbbm{1}_{(0,\infty)}(x).$$

Primero su soporte no depende de parámetros desconocidos. Ahora puesto que α es parámetro de forma entonces si concideramos ambos parámetros no sería de localización y escala. En cambio para cada valor α fijo podemos ver que

$$f(x; \alpha, \beta) = \left(\frac{1}{\beta}\right) \left(\left(\frac{1}{\Gamma \alpha}\right) \left(\frac{x}{\beta}\right)^{k-1}\right) \exp\left(-\frac{x}{\beta}\right) \mathbb{1}_{(0,\infty)}(x) = \left(\frac{1}{\beta}\right) f_0(\frac{x}{\beta}),$$

donde

$$f_0(x) = \left(\left(\frac{1}{\Gamma\alpha}\right)(x)^{k-1}\right) \exp\left(-x\right) \mathbb{1}_{(0,\infty)}(x)$$

Ahora si $Y = \frac{x}{\beta}$ por el Teorema de Cambio de variable con $g(x) = \frac{x}{v}$ vemos que la densidad de Y es $f_0(x)$ la cual no depende de parametros desconocidos (por ello tomamos α fijo), por lo tanto concluimos que Gamma para un parametro dijo α pertenece a la familia de localización y escala.

■ DGVE

Su función de densidad es

$$f(x;a,b,c) = \begin{cases} b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbbm{1}_{\left(-\infty, a - \frac{b}{c} \right]}(x) & \text{si } c < 0, \\ b^{-1} \exp \left\{ - \frac{x-a}{b} - \exp \left[- \left(\frac{x-a}{b} \right) \right] \right\} \mathbbm{1}_{\left(-\infty, \infty \right)}(x) & \text{si } c < 0, \\ b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbbm{1}_{\left[a - \frac{b}{c}, \infty \right)}(x) & \text{si } c < 0, \end{cases}$$

Al depender su soporte de parámetros desconocidos entonces esta no pertenece a la familia de localización y escala.

4. Demuestra que la distribución Binomial (N, θ) con N conocido y θ la probabilidad de éxito de cada ensayo Bernoulli, sí pertenece a la familia Exponencial de distribuciones.

Demostración. Recordemos que la función de masa de probabilidad de un Binomial (N, θ) es

$$f(x; N, \theta) = \binom{N}{x} \theta^x (1 - \theta)^{N-x} \mathbb{1}_{\{1, \dots, N\}}(x).$$

Ahora reexpresandola de la siguiente forma

$$f(x; N, \theta) = \left((1 - \theta)^N \right) \binom{N}{x} \exp\left(x \log\left(\frac{\theta}{1 - \theta}\right) \right) \mathbb{1}_{\{1, \dots, N\}}(x).$$

Podemos ver que su soporte no depende de parámetros desconocidos, y con $A(\theta) = (1 - \theta)^N$, $B = {N \choose x}$, $C(\theta) = \log\left(\frac{\theta}{1-\theta}\right)$ y D(x) = x, por lo tanto la distribución Binomial (N,θ) con N conocido pertence a la familia Exponencial.

5. Para cada una de tus tres distirbuciones continuas, da la expresión de la función de densidad conjunta, factorizandola pra identificar las estadísticas suficientes $T(x_1, \dots, x_n)$:

$$f(x_1, \cdots, x_n; \theta) = h(x_1, \cdots, x_n) g(T(x_1, \cdots, x_n); \theta).$$

Simplifica tus expreciones para que puedas encontrar el vector T que tenga la menor dimensión posible. Recuerda que la muestra obsevada siempre es un vector de estadísticas suficientes y su dimensión es n.

Solución 1 -

Uniforme Continua

Su función de densidad es

$$f(x; a, b) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x).$$

Entonces la densidad conjunta de X_1, \dots, X_n variables aleatorias Uniformes Continuas (a, b) es

$$f(\vec{x}; a, b) = \prod_{i=1}^{n} f(x_i; a, b) = \left(\frac{1}{b-a}\right)^n \prod_{i=1}^{n} \mathbb{1}_{[a,b]}(x).$$

Veamos que $x_i \leq b, \forall i=1,\cdots,n$ si y sólo máx $(\vec{x}) \leq b$ y también $x_i \geq a, \forall i=1,\cdots,n$ si y sólo mín $(\vec{x}) \geq a$, por lo que

$$f(\vec{x}; a, b) = \prod_{i=1}^{n} f(x_i; a, b) = \left(\frac{1}{b-a}\right)^n \mathbb{1}_{[a,b]}(\max(\vec{x})) \mathbb{1}_{[a,b]}(\min(\vec{x})).$$

Por el Teorema de la factorización de Fisher concluimos que $máx(\vec{x}), mín(\vec{x})$ son estadísticas suficientes de (a,b).

Gamma

Su función de densidad es

$$f(x; \alpha, \beta) = \frac{x^{\alpha - 1}}{\Gamma \alpha \beta^{\alpha}} exp\left(-\frac{x}{\beta}\right) \mathbb{1}_{(0, \infty)}(x).$$

Entonces la densidad conjunta de X_1, \dots, X_n variables aleatorias Gamma (α, β) es

$$f(\vec{x};a,b) = \prod_{i=1}^{n} f(x_i;a,b) = \left(\prod_{i=1}^{n} \mathbb{1}_{(0,\infty)}(x_i)\right) \left(\frac{1}{\Gamma \alpha \beta^{\alpha}}\right)^n \left(\prod_{i=1}^{n} x_i\right)^{\alpha-1} \exp\left(-\frac{\sum_{i=1}^{n} x_i}{\theta}\right)^{\alpha-1}$$

Por el Teorema de la factorización de Fisher concluimos que $(\prod_{i=1}^n x_i, \sum_{i=1}^n x_i)$ son estadísticas suficientes de (α, β) .

DGVE

Su función de densidad es

$$f(x;a,b,c) = \begin{cases} b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbbm{1}_{\left(-\infty, a - \frac{b}{c} \right]}(x) & si \ c < 0, \\ b^{-1} \exp \left\{ - \frac{x-a}{b} - \exp \left[- \left(\frac{x-a}{b} \right) \right] \right\} \mathbbm{1}_{\left(-\infty, \infty \right)}(x) & si \ c < 0, \\ b^{-1} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbbm{1}_{\left[a - \frac{b}{c}, \infty \right)}(x) & si \ c < 0, \end{cases}$$

Entonces la densidad conjunta de X_1, \dots, X_n variables aleatorias DGVE (a, b, c) es

$$f(\vec{x}; a, b) = \prod_{i=1}^{n} f(x_i; a, b)$$

$$= \begin{cases} b^{-n} \prod_{i=1}^{n} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbb{1}_{\left(-\infty, a - \frac{b}{c} \right]}(x) & \text{si } c < 0, \\ b^{-n} \prod_{i=1}^{n} \exp \left\{ - \frac{x-a}{b} - \exp \left[- \left(\frac{x-a}{b} \right) \right] \right\} \mathbb{1}_{\left(-\infty, \infty \right)}(x) & \text{si } c < 0, \\ b^{-n} \prod_{i=1}^{n} \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-1 - \frac{1}{c}} \exp \left\{ - \left[1 + c \left(\frac{x-a}{b} \right) \right]^{-\frac{1}{c}} \right\} \mathbb{1}_{\left[a - \frac{b}{c}, \infty \right)}(x) & \text{si } c < 0, \end{cases}$$

Prodriamos simplificar el producto de las indicadoras con las funciones min y max de la muestra pero no hay forma de encontrar funciones que simplifiquen el producto del resto ya que los terminos $\left[1+c\left(\frac{x-a}{b}\right)\right]$ están en terminos del resto de los parametros en funciones exponenciales y de potencias. Por lo que las estadisticas suficientes de (a,b,c) es toda la muestra.