Analisi Matematica per Bio-Informatici Esercitazione 06 – a.a. 2007-2008

Dott. Simone Zuccher

06 Dicembre 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

1 Serie numeriche

Richiami sulle serie utili ai fini degli esercizi.

 \bullet Chiamiamo (con abuso di notazione) serie di termine generale x_n l'espressione

$$\sum_{n=0}^{+\infty} x_n = \lim_{n \to +\infty} \sum_{h=0}^{n} x_h.$$
 La serie
$$\sum_{n=0}^{+\infty} x_n$$
 si dice:

- convergente se
$$\lim_{n \to +\infty} \sum_{h=0}^{n} x_h = l \in \mathbb{R}$$

- divergente positivamente se
$$\lim_{n\to+\infty}\sum_{h=0}^n x_h = +\infty$$

– divergente negativamente se
$$\lim_{n\to+\infty} \sum_{h=0}^{n} x_h = -\infty$$

- indeterminata se
$$\exists \lim_{n \to +\infty} \sum_{h=0}^{n} x_h$$

- Studiare il carattere di una serie significa determinare se essa è convergente, divergente o indeterminata, ossia uno dei quattro casi precedenti.
- Condizione necessaria affiché una serie converga è che $\lim_{n\to+\infty} x_n = 0$. Si noti che tale condizione, in generale, non è sufficiente a garantire la convergenza (per esempio la serie armonica $\sum_{n=1}^{+\infty} 1/n$ non è convergente).

- Serie geometrica di ragione $x \in \mathbb{R}$, $\sum_{n=0}^{+\infty} x^n$. Si ha
 - (a) $|x| < 1 \Rightarrow \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$, ossia la serie è convergente
 - (b) $x \ge 1 \Rightarrow \sum_{n=0}^{+\infty} x^n = +\infty$, ossia la serie è positivamente divergente
 - (c) $x \le -1 \Rightarrow \sum_{n=0}^{+\infty} x^n$ è indeterminata
- La serie armonica $\sum_{n=1}^{+\infty} \frac{1}{n}$ è positivamente divergente.
- Criteri di convergenza per serie a **termini positivi**. Una serie $\sum_{n=0}^{+\infty} x_n$ si dice a termini positivi se $x_n \ge 0 \ \forall n \in \mathbb{N}$.
 - (a) Criterio del **confronto**. Siano x_n e y_n due serie a termini positivi e tali che $x_n \leq y_n \ \forall n > \bar{n} \in \mathbb{N}$. Allora:
 - 1. $\sum_{n=0}^{+\infty} y_n$ convergente $\Rightarrow \sum_{n=0}^{+\infty} x_n$ convergente
 - 2. $\sum_{n=0}^{+\infty} x_n$ divergente $\Rightarrow \sum_{n=0}^{+\infty} y_n$ divergente

Corollario. È immediato verificare che se $x_n \sim y_n$ per $n \to +\infty$ allora le serie $\sum_{n=0}^{+\infty} x_n$ e $\sum_{n=0}^{+\infty} y_n$ hanno lo stesso carattere.

- (b) Criterio della **radice**. Sia x_n una serie a termini positivi. Allora:
 - 1. $\lim_{n \to +\infty} \sqrt[n]{x_n} = l < 1 \implies \sum_{n=0}^{+\infty} x_n$ convergente
 - 2. $\lim_{n \to +\infty} \sqrt[n]{x_n} = l > 1 \implies \sum_{n=0}^{+\infty} x_n$ divergente
 - 3. $\lim_{n \to +\infty} \sqrt[n]{x_n} = 1$ \Rightarrow non si può dire nulla
- (c) Criterio del **rapporto**. Sia x_n una serie a termini positivi. Allora:

2

1.
$$\lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = l < 1 \quad \Rightarrow \sum_{n=0}^{+\infty} x_n \text{ convergente}$$

2.
$$\lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = l > 1 \quad \Rightarrow \sum_{n=0}^{+\infty} x_n$$
 divergente

3.
$$\lim_{n \to +\infty} \frac{x_{n+1}}{x_n} = 1$$
 \Rightarrow non si può dire nulla

- (d) Criterio di **condensazione**. Sia x_n una serie a termini positivi con x_n decrescente. Allora $\sum_{n=0}^{+\infty} x_n$ è convergente se e solo se $\sum_{n=0}^{+\infty} 2^n x_{2^n}$ è convergente.
- Dal criterio di condensazione (o, in modo più articolato, utilizzando il criterio del confronto per serie a termini positivi), si verifica immediatamente che

1.
$$\lambda > 1 \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^{\lambda}}$$
 convergente

2.
$$\lambda \leq 1 \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^{\lambda}}$$
 positivamente divergente

- Criteri di convergenza per serie a termini di segno variabile.
 - (a) Convergenza assoluta. Ogni serie assolutamente convergente è convergente. (Nota: una serie $\sum_{n=0}^{+\infty} x_n$ si dice assolutamente convergente se la serie dei valori assoluti $\sum_{n=0}^{+\infty} |x_n|$ è convergente)
 - (b) Criterio di **Leibniz**. Se $\{x_n\}$ è una successione reale a termini positivi decrescente e infinitesima $(\lim_{n\to+\infty} x_n=0)$, allora la serie $\sum_{n=0}^{+\infty} (-1)^n x_n$ è convergente e si ha che $|s_n-S| \leq x_{n+1} \quad \forall n \in \mathbb{N}$, essendo s_n l'n-esimo termine della successione delle somme parziali $s_n = \sum_{h=0}^{n} (-1)^h x_h$.

Esercizio 1.1 Utilizzando il criterio del confronto, si dimostri che per la serie $\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\log n)^{\beta}}$ si ha

Risoluzione. Sia $\alpha < 1$. Scelto $\epsilon > 0$ in modo che $\alpha + \epsilon < 1$, $\forall \beta \in \mathbb{R}$ si ha $(\log n)^{\beta}/n^{\epsilon} \to 0$ per $n \to +\infty$ e quindi si avrà definitivamente $(\log n)^{\beta} < n^{\epsilon}$, che implica

$$\frac{1}{n^{\alpha}(\log n)^{\beta}} > \frac{1}{n^{\alpha+\epsilon}}.$$

Siccome $1/n^{\alpha+\epsilon}$ diverge, per il criterio del confronto la serie data diverge. Sia $\alpha > 1$. Scelto $\epsilon > 0$ in modo che $\alpha - \epsilon > 1$, $\forall \beta \in \mathbb{R}$ si ha $(\log n)^{\beta} n^{\epsilon} \to +\infty$ per $n \to +\infty$ e quindi si avrà definitivamente $(\log n)^{\beta} > n^{-\epsilon}$, che implica

$$\frac{1}{n^{\alpha}(\log n)^{\beta}} < \frac{1}{n^{\alpha - \epsilon}}.$$

Siccome $1/n^{\alpha-\epsilon}$ converge, la serie data converge.

Sia $\alpha = 1$. Utilizzando il criterio di condensazione si ha $2^n x_{2^n} = 2^n \frac{1}{2^n (\log 2^n)^{\beta}} =$

 $\frac{1}{n^{\beta}(\log 2)^{\beta}}, \text{ ovvero la serie } \sum_{n=2}^{+\infty} 2^n x_{2^n} = \frac{1}{(\log 2)^{\beta}} \sum_{n=2}^{+\infty} \frac{1}{n^{\beta}} \text{ converge solo nel caso } \beta > 1$ mentre diverge per $\beta \leq 1$.

Esercizio 1.2 Calcolare la somma delle seguenti serie

a)
$$\sum_{n=0}^{+\infty} \frac{1}{2^n}$$
 b) $\sum_{n=1}^{+\infty} \frac{9}{10^n}$ c) $\sum_{n=2}^{+\infty} e\pi^{-n}$ d) $\sum_{n=4}^{+\infty} \left(\frac{e}{\pi}\right)^{-n}$ e) $\sum_{n=0}^{+\infty} \frac{(-5)^n}{\pi^n}$ f) $\sum_{n=2}^{+\infty} \left(-\frac{e}{\pi}\right)^{n-2}$ g) $\sum_{n=0}^{+\infty} \frac{\pi + e^n}{e^{n+2}}$ h) $\sum_{n=0}^{+\infty} \frac{\pi + e^n}{\pi^{n+2}}$

Risoluzione. a) 2 b) 1 c) $\frac{e}{\pi(\pi-1)}$ d) $+\infty$ e) indeterminata f) $\frac{\pi}{\pi+e}$ g) $+\infty$ h) dopo aver osservato che $\frac{\pi+e^n}{\pi^{n+2}} = \frac{1}{\pi^{n+1}} + \frac{1}{\pi^2} \left(\frac{e}{\pi}\right)^n$ si proceda come nei casi precedenti.

Esercizio 1.3 Calcolare la somma delle seguenti serie (telescopiche)

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$$
 b) $\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)}$ c) $\sum_{n=2}^{+\infty} \frac{2n+1}{n^2(n+1)^2}$ d) $\sum_{n=3}^{+\infty} \frac{(-1)^n(2n+1)}{n(n+1)}$

Risoluzione. a) 3/4, infatti $\frac{1}{n(n+2)} = \frac{1}{2} \left[\frac{1}{n} - \frac{1}{n+2} \right]$

b) 1/2. Nel caso la successione $\{x_n\}$ tenda a x per $n \to +\infty$, si ha che $\sum_{n=1}^{+\infty} x_n - x_{n+1} = 1$

$$x_1 - x$$
. Essendo $\frac{1}{(2n-1)(2n+1)} = \frac{1}{2(2n-1)} - \frac{1}{2(2n+1)} = x_n - x_{n+1}$, si arriva

facilmente al risultato.
c) 1/4, infatti
$$\frac{2n+1}{n^2(n+1)^2} = \frac{1}{n^2} - \frac{1}{(n+1)^2} = x_n - x_{n+1}$$

d)
$$-1/3$$
, infatti $\frac{(-1)^n(2n+1)}{n(n+1)} = \frac{(-1)^n}{n} - \frac{(-1)^{n+1}}{n+1} = x_n - x_{n+1}$

Esercizio 1.4 Determinare il carattere delle seguenti serie (a termini positivi)

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n+2007}$$
 b) $\sum_{n=1}^{+\infty} \frac{1}{2007n+2006}$ c) $\sum_{n=1}^{+\infty} \frac{2007^n}{n!}$ d) $\sum_{n=1}^{+\infty} \frac{n^{2007}}{2007^n}$

$$e) \sum_{n=1}^{+\infty} \frac{n!}{n^n} \qquad f) \sum_{n=1}^{+\infty} \frac{(n!)^3}{n^3 (3n)!} \qquad g) \sum_{n=1}^{+\infty} \frac{(2n)!}{(n!)^2} \qquad h) \sum_{n=1}^{+\infty} \left(\frac{n}{n+1}\right)^{n^2} \qquad i) \sum_{n=1}^{+\infty} \frac{1-\cos n}{n^2}$$

Risoluzione. a)
$$x_n \to 0$$
 però $\sum_{n=1}^{+\infty} \frac{1}{n+2007} = \sum_{n=2008}^{+\infty} \frac{1}{n} = \sum_{n=1}^{+\infty} \frac{1}{n} - \sum_{n=1}^{2007} \frac{1}{n}$, ma $\sum_{n=1}^{+\infty} \frac{1}{n}$

diverge positivamente per cui la serie data diverge. Si può anche notare che $\frac{1}{n+2007}$ ~ $\frac{1}{2}$, da cui la divergenza.

b)
$$x_n \to 0$$
 ma la serie diverge essendo $\sum_{n=1}^{+\infty} \frac{1}{2007n + 2006} = \frac{1}{2007} \sum_{n=1}^{+\infty} \frac{1}{n + 2006/2007} >$

$$\frac{1}{2007}\sum_{n=1}^{+\infty}\frac{1}{n+1}=\frac{1}{2007}\sum_{n=2}^{+\infty}\frac{1}{n}$$
 e quindi diverge. Alternativamente, tramite in confronto

asintotico, bastava notare che $\frac{1}{2007n + 2006} \sim \frac{1}{2007n}$. c) $x_n \to 0$, converge per il criterio del rapporto.

d) $x_n \to 0$, converge per il criterio del rapporto (o della radice).

e) $x_n \to 0$, converge per il criterio del rapporto, essendo $\lim_{n \to +\infty} x_{n+1}/x_n = 1/e < 1$. f) $x_n \to 0$, converge per il criterio del rapporto, essendo $\lim_{n \to +\infty} x_{n+1}/x_n = 1/27 < 1$.

g) $x_n \to +\infty$ quindi diverge positivamente. Si sarebbe arrivati allo stesso risultato applicando il criterio del rapporto, ottenendo $\lim_{n\to+\infty} x_{n+1}/x_n = 4 > 1$.

h) $x_n \to 0$ converge per il criterio della radice, essendo $\lim_{n \to +\infty} \sqrt[n]{x_n} = 1/e < 1$.

i) $x_n \to 0$ e $0 < \frac{1-\cos n}{n^2} < \frac{2}{n^2}$ quindi converge per il criterio del confronto.

Esercizio 1.5 Discutere la convergenza semplice o assoluta delle sequenti serie (a termini non necessariamente positivi)

a)
$$\sum_{n=1}^{+\infty} \frac{\sin(\pi/2 + n\pi)}{n}$$
 b) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n} + 1}$ c) $\sum_{n=1}^{+\infty} \frac{\sin n}{n^2}$ d) $\sum_{n=1}^{+\infty} (-1)^n \frac{(n!)^2}{(2n)!}$

e)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{3n! + n}{2n! + n^{2007}}$$
 f) $\sum_{n=2}^{+\infty} (-1)^n \frac{1}{n \log n}$ g) $\sum_{n=2}^{+\infty} \frac{(-1)^n}{(\log n)^{2007}}$

Risoluzione. a) $x_n \to 0$, convergenza semplice (non converge assolutamente).

- b) $x_n \to 0$, convergenza semplice (non converge assolutamente).
- c) $x_n \to 0$, convergenza assoluta (si noti che non è a segni alternati).
- d) $x_n \to 0$, convergenza assoluta.
- $e) x_n \not\to 0.$
- f) $x_n \to 0$, convergenza semplice (ma bisogna dimostrare che $\frac{1}{n \log n}$ è decrescente, ovvero che $n \log n$ è crescente), però non converge assolutamente.
- g) $x_n \to 0$, convergenza semplice (non converge assolutamente).

Esercizio 1.6 Determinare la convergenza delle seguenti serie

a)
$$\sum_{n=2}^{+\infty} \frac{\sin n + 1/n + \pi}{n^2 \log n}$$
 b) $\sum_{n=1}^{+\infty} \cos n \sin(1/n^2)$ c) $\sum_{n=1}^{+\infty} (-1)^n \sin(1/n)$
d) $\sum_{n=2}^{+\infty} \frac{\sqrt{n} \arctan n}{n^2 + \cos n}$ e) $\sum_{n=1}^{+\infty} (\sqrt[n]{n} - 1)^n$ f) $\sum_{n=1}^{+\infty} \sqrt{n} + 1 - \sqrt{n}$

Risoluzione. a) $x_n \to 0$, converge (essendo $1/n + \pi - 1 < \sin n + 1/n + \pi < 1/n + \pi + 1$, da cui...).

- b) $x_n \to 0$, converge assolutamente essendo $\sin(1/n^2) \sim 1/n^2$.
- c) $x_n \to 0$, non converge assolutamente (essendo $\sin(1/n) \sim 1/n$), ma converge semplicemente.
- d) $x_n \to 0$, converge essendo $(\sqrt{n} \arctan n)/(n^2 + \cos n) \sim \pi/2/n^{3/2}$.
- e) $x_n \to 0$, converge (criterio della radice).
- $f(x_n) \to 0$, non converge essendo $(\sqrt{n+1} \sqrt{n}) \sim 1/(2\sqrt{n})$.

Esercizio 1.7 Si discuta al variare di $\alpha \in \mathbb{R}$ il comportamento della serie $\sum_{n=0}^{+\infty} \frac{(n+1)^{\alpha}}{n^2 + \sqrt[4]{n}}$.

Risoluzione. Converge se $\alpha < 1$, diverge positivamente se $\alpha \ge 1$ (si noti che $\frac{(n+1)^{\alpha}}{n^2 + \sqrt[4]{n}} \sim \frac{1}{n^{2-\alpha}}$).

Esercizio 1.8 Si discuta al variare di $x \in \mathbb{R}$ il comportamento della serie $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Risoluzione. Applicando il criterio del rapporto alla serie dei valori assoluti si ottiene $\lim_{n \to +\infty} |x_{n+1}|/|x_n| = \lim_{n \to +\infty} |x|/(n+1) = 0 \quad \forall x \in \mathbb{R}$ e, pertanto, la serie è sempre

assolutamente convergente. Si noti che $\exp(x) = e^x = \lim_{t \to +\infty} (1 + x/t)^t = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Esercizio 1.9 Si discuta al variare di $x \in \mathbb{R}$ il comportamento della serie $\sum_{n=1}^{+\infty} \pi^{\frac{-xn^3}{x^2+n^2}}$.

Risoluzione. Applicando il criterio della radice si ottiene $\lim_{n\to +\infty} \sqrt{x_n} = \pi^{-x}$, quindi la serie è convergente per x>0 e divergente per x<0. Per x=0 la serie evidentemente diverge.

Esercizio 1.10 Si discuta al variare di $x \in \mathbb{R}$ il comportamento della serie $\sum_{n=2}^{+\infty} \frac{(2x-1)^n}{n \log n}$.

Risoluzione. Applicando il criterio della radice alla serie dei valori assoluti si ha $\lim_{n\to+\infty} \sqrt[n]{|x_n|} = \lim_{n\to+\infty} \frac{|2x-1|}{\sqrt[n]{\log n}} = |2x-1|$. Quindi, se |2x-1| < 1, ossia 0 < x < 1 la serie converge assolutamente. Se 2x-1>1, ossia x>1 la serie diverge essendo la serie a termini positivi e $x_n \not\to 0$. Se 2x-1<-1, ossia x<0 la serie è a termini alternati ma essendo $x_n \not\to 0$ essa non converge. Se |2x-1|=1, ossia $x=0 \lor x=1$, non si può concludere nulla e bisogna riesaminare la serie iniziale. Per x=0 si ha convergenza (Leibniz), se x=1 divergenza positiva (confronto asintotico). Quindi, la serie data converge solo per $x\in[0;1[$.

Esercizio 1.11 Si discuta al variare di $x \in \mathbb{R}$ il comportamento della serie

$$\sum_{n=0}^{+\infty} (x+1)^n \frac{n+1}{n^2+1}.$$

Risoluzione. Applicando il criterio del rapporto alla serie dei valori assoluti si ottiene $\lim_{n\to+\infty}|x_{n+1}|/|x_n|=|x+1|$, quindi la serie è assolutamente convergente per |x+1|<1. Se x+1>1, ossia x>0 allora diverge $(x_n \not\to 0)$, mentre se x+1<-1, ossia x<-2 la serie non converge essendo a termini non positivi e $x_n \not\to 0$. Se x=0 la serie (a termini positivi) diverge (confronto asintotico) mentre se x=-2 converge per Leibniz.

Esercizio 1.12 Si discuta al variare di $x \in \mathbb{R}$ il comportamento della serie $\sum_{n=0}^{+\infty} \frac{x^n n!}{n^n}$.

Risoluzione. Applicando il criterio del rapporto alla serie dei valori assoluti si ottiene $\lim_{n\to+\infty}|x_{n+1}|/|x_n|=\lim_{n\to+\infty}|x|/(1+1/n)^n=|x|/e$. Quindi si ha convergenza se |x|< e. Se x>e la serie è a termini positivi e quindi il criterio del rapporto assicura la divergenza a $+\infty$. Se x<-e la serie è di segno alternato ma siccome $x_n\neq 0$ allora si ha non convergenza. Se |x|=e allora $\lim_{n\to+\infty}|x_{n+1}|/|x_n|=|x|/(1+1/n)^n=1^+$, essendo $(1+1/n)^n$ una successione crescente, e quindi il termine generale non è infinitesimo. Pertanto, se x=e si ha divergenza, se x=-e si ha non convergenza.

Esercizio 1.13 Data la serie alternata $\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{1}{2n-1}$, si verifichi che converge e determinare la sua somma con un errore minore di 1/10.

Risoluzione. Applicando Leibniz, essendo la successione $\{1/(2n-1)\}$ positiva e descrescente, la serie converge. Grazie alla stima dell'errore, si ha che $|S-s_n| \leq |a_{n+1}| = \frac{1}{2n+1}$, da cui $1/(2n+1) < 1/10 \Rightarrow n > 9/2$. Prendendo n=5 la somma risulta $1-1/3+1/5-1/7+1/9=0.835\ldots$, che differisce da S di meno di 1/10.