

Odhadování ceny SW - původní COCOMO

Idea

- Cena vývoje aplikace přímo závisí na velikosti SW.
- Přesnost odhadu velikosti SW závisí na etapě vývoje.
 - V pozdějších etapách je odhad přesnější.
 - Přesnost odhadu se může lišit až čtyřikrát (4:1) oběma směry.

COCOMO

- COCOMO Constructive Cost Model
- B.Boehm (IBM), 1981, 1984, 1995
- #SLOC jako hlavní indikátor velikosti a složitosti SW
- Empirické vztahy pro vyjádření E=E (KSLOC) a T=T(KSLOC)
 - E effort (práce, člověk-měsíc)
 - T doba vývoje (měsíc)

COCOMO

Zdroje empirických dat:

- větší počet předchozích komplexních projektů
 - aplikace odlišného druhu s odlišnými cíly
 - odlišná vývojová prostředí
- rozhovory s více manažery

Parametry modelu byly nastaveny podle získaných empirických dat.

Původní COCOMO

3 úrovně detailu:

- Základní model: hrubý odhad E(KSLOC) a T(KSLOC) založen na odhadu KSLOC.
- Střední model: vliv jiných faktorů na E(KSLOC) a T(KSLOC).
- Pokročilý model: bere v úvahu vlivy vývojové etapy, ve které se projekt nachází.

Původní COCOMO

3 vývojové módy:

- Organický mód jednodušší, dobře řešitelné projekty, zpravidla menšího rozsahu
- Bezprostřední mód středně obtížné projekty
- Vázaný mód rozsáhlé projekty s vysokými nároky na řízení

Organický mód

- malé projekty (SW < 50 KSLOC)
- úplné porozumění požadavkům
- malá omezení, volnost při návrhu rozhraní
- velké zkušenosti při zpracování podobných projektů
- malá závislost na speciálním HW
- minimální potřeba nových algoritmů a architektur
- minimum požadavků na zkrácení termínu dodání

Organický mód - příklady

- vědecké aplikace
- jednoduché obchodní modely a aplikace
- jednoduchá skladová aplikace
- jednoduchý systém pro řízení výroby

Bezprostřední mód

- projekty střední velikosti (SW < 300 KSLOC)
- dobré pochopení požadavků
- zřetelná omezení pro uživatelské rozhraní
- nezanedbatelná zkušenost při práci na podobných projektech
- střední závislost na speciálním HW
- střední potřeba nových algoritmů a architektur
- nezanedbatelný podnět pro ukončení před plánovaným termínem

Bezprostřední mód - příklady

- transakční zpracování
- nový operační systém a překladač
- skladová aplikace střední složitosti
- systém pro řízení výroby střední složitosti

Vázaný mód

- SW všech velikostí
- jen hrubá představa o cílech projektu
- těsná omezení, striktní požadavky na rozhraní
- nezanedbatelná zkušenost při práci na podobných projektech
- vysoká závislost na speciálním HW
- extrémní požadavky na nové algoritmy a architektury
- vysoké podněty pro dokončení před termínem

Vázaný mód - příklady

- složité transakční zpracování
- ambiciózní a složitý operační systém
- RT aplikace
- složité povelové a řídící systémy

Úsilí a čas

Výpočet E(KSLOC) a T(KSLOC):

$$E = a . (KSLOC)^b$$
$$T = c.E^d$$

a,b,c,d: parametry volené podle úrovně modelu a vývojového módu

Hodnoty parametrů

Empirické hodnoty parametrů pro výpočet E(KSLOC) a T(KSLOC)

- tabulky hodnot a,b,c,d pro všechny kombinace úrovně modelu/vývojové módy
- příklady:
 - základní model, bezprostřední mód:

- střední model, vázaný mód:

$$a=2.8.F_c$$
, $b=1.2$, $c=2.5$, $d=0.32$

Hodnoty parametrů

Empirické hodnoty parametrů pro výpočet E(KSLOC) a T(KSLOC)

Intervaly hodnot parametrů:

- $a \in [2.4, 3.6]$ pro základní model
- $a \in [2.8 \text{ F}_c, 3.2 \text{ F}_c]$ pro střední a pokročilý model
- $b \in [1.05, 1.20]$
- c = 2.5 ve všech případech
- $d \in [0.32, 0.38]$

Hodnoty parametrů

Empirické hodnoty parametrů pro výpočet E(KSLOC) a T(KSLOC)

- V základním modelu mají všechny parametry konstantní hodnoty.
- Ve středním a pokročilém modelu ve všech vývojových módech *a* závisí na F_c, ostatní parametry jsou konstantní. Korekční faktor F_c je součinem hodnot 15 atributů (cost drivers) specifických pro vývojový proces.

Korekční faktor

Atributy, které mají vliv na korekční faktor F_c:

- atributy SW produktu
- HW atributy
- atributy vývojového týmu
- atributy projektu

Korekční faktor

Atributy, které mají vliv na korekční faktor F_c, mohou nabývat 6 možných hodnot ve stupnici:

- velmi nízký
- nízký
- normální
- velký
- velmi velký
- extrémně velký

Hodnotám odpovídají diskrétní numerické hodnoty.

Atributy SW produktu

- RELY požadovaná spolehlivost (0.75 1.40) (velmi nízká: 0.75, extrémně velká: 1.40)
- DATA velikost databáze (0.94 1.16)
- CPLX složitost produktu (0.70 1.65)

Atributy SW produktu

Příklady RELY a DATA atributů:

- vysoké finanční riziko => RELY = velký
- (DB byty)/(program SLOC) ≥ 1000 => DATA = velmi velký

Atributy SW produktu

Příklady CPLX hodnot řídící operace: Rekurzivní procedury, zpracování přerušení s pevnou prioritou

- výpočty: obtížné, ale strukturované numerické operace, parciální diferenciální rovnice
- I/O operace: detekce přerušení, zpracování a maskování, síťové komunikace
- zpracování dat: složité soubory, vyhledávání

CMPLX = velmi velká

HW atributy

- TIME omezení času výpočtu (1.00 1.66)
- STOR využití paměti/disku (1.00 1.56)
- VIRT spolehlivost (zranitelnost) virtuálních strojů, tj. HW + DBMS + OS + ... (0.87 - 1.30)
- TURN doba obrátky (0.87 1.15)

HW atributy

Příklady:

- omezení na časy výpočtu větší než 95% => TIME = extrémně velký
- využití paměti/disku < 50% => STOR = normální
- velké změny ve virtuálních strojích každé 2 týdny, malé změny každé 2 dny => VIRT = velmi velký
- interaktivní práce => TURN = nízký

Atributy vývojového týmu

- ACAP schopnost analytická (1.46 0.71)
- PCAP schopnost programátorská (1.42 0.70)
- AEXP zkušenost s podobnými aplikacemi (1.29 0.82)
- VEXP zkušenost se specifickým "virtuálním strojem" (1.21 - 0.90)
- LEXP zkušenost se specifickým programovacím jazykem (1.14 - 0.95)

Atributy vývojového týmu

Příklady

- 3-letá zkušenost s podobnými aplikacemi => AEXP = normální
- programátorská schopnost v týmové práci = 35 (stupnice
 0..100) => PCAP = nízký
- 3-letá zkušenost se specifickým programovacím jazykem
 LEXP = velký

Atributy projektu

- MODP použití moderních programovacích technik (1.24 0.82)
- TOOL použití SW nástrojů (1.24 0.83)
- SCED přesné plánování (1.23 1.10)

Atributy projektu

Příklady:

- občasné použití moderních programovacích technik => MODP = normální
- stálé používání SW nástrojů pro programování =>
 TOOL = velký
- použití SW nástrojů také pro návrh, testování a analýzu požadavků => TOOL = velmi velký
- striktní plány = 75% nominálních hodnot => SCED = velmi nízký

#		Cost Drivers	VL	L	NOM	HGH	VH	EH
1	PROD	Reliability	0,75	0,88	1	1,15	1,40	Χ
2	PROD	Database size	Х	0,94	1	1,08	1,16	Χ
3	PROD	Product complexity	0,70	0,85	1	1,15	1,30	1,65
4	PFRM	Execution time constraints	Χ	Χ	1	1,11	1,30	1,66
5	PFRM	Main storage constraints	Χ	Χ	1	1,06	1,21	1,56
6	PFRM	Virtual machine volatility	Х	0,87	1	1,15	1,30	Х
7	PFRM	Computer turnaround time	Х	0,87	1	1,07	1,15	Х
8	PERS	Analyst capability	1,46	1,19	1	0,86	0,71	Х
9	PERS	Applications experience	1,29	1,13	1	0,91	0,82	Х
10	PERS	Programmer capability	1,42	1,17	1	0,86	0,70	Χ
11	PERS	Virtual machine experience	1,21	1,10	1	0,90	Χ	Χ
12	PERS	Programming language exp.	1,14	1,07	1	0,95	Χ	Χ
13	TOOL	Use of modern progr. Techn.	1,24	1,10	1	0,91	0,82	Χ
14	TOOL	Use of software tools	1,24	1,10	1	0,91	0,83	Χ
15	TOOL	Req. development schedule	1,23	1,08	1	1,04	1,10	Χ

Při aplikaci modelu COCOMO se postupně provádějí následující kroky:

- Určení nominálního úsilí E_n
- Určení korekčního faktoru F_c
- Určení aktuálního (zpřesněného) úsilí E
- Určení doby vývoje T a dalších faktorů relevantních pro projekt

Krok 1 - Určení nominálního úsilí E_n

- definujte (odhadni) úroveň modelu a vývojový mód
- nastavte odpovídající hodnoty a a b podle tabulky
- vypočtěte E_n

Krok 2 - Určení korekčního faktoru F_c

- na základní úrovni není třeba řešit
- určete popisné hodnoty pro každý z 15 atributů
- převeďte na numerické hodnoty podle tabulky

$$F_C = \prod_{i=1}^{15} F_i$$

Krok 3 - Určení aktuálního (zpřesněného) úsilí E

- na základní úrovni E = E_n
- $E[\check{c}lov\check{e}k-m\check{e}s\acute{i}c]=F_c.E_n$
- F_c vyjadřuje nárůst pracnosti E_n podle vlivu a významu jednotlivých atributů vývojového procesu

Krok 4 - Určení doby vývoje T a dalších faktorů relevantních pro projekt

- nastavte odpovídající hodnoty c a d podle tabulky
- $T[m\check{e}sic] = c \cdot E^{d}$
- COCOMO také umožňuje:
 - výpočet odhadovaných nákladů
 - rozložení práce a ceny v jednotlivých etapách řešení projektu

•

Původní COCOMO

Hodnoty *a,b,c,d* jsou shodné pro střední a pokročilou úroveň modelu

- pro střední úroveň se aplikuje výpočet na celý projekt
- pro pokročilou úroveň se výpočet aplikuje pro jednotlivé etapy životního cyklu

Původní COCOMO

COCOMO lze také použít pro odhad nákladů při modifikaci existujících aplikací

$$ESLOC = ASLOC \cdot (0.4 DM + 0.3 CM + 0.3 IM) / 100$$

ESLOC - ekvivalentní počet SLOC

ASLOC - odhadnutý počet modifikovaných SLOC

DM - procento modifikace v návrhu

CM - procento modifikace v kódu

IM - integrační úsilí (procento původní práce)

Rozšířené a upravené modely

Existují různé verze COCOMO pro různé účely a prostředí

- COCOMO_85 a COCOMO_87, malé odchylky
- ADA_87 a APM_88, pro projekty v jazyce ADA
- inkrementální COCOMO, upravené pro použití při inkrementálním vývoji SW
- REVIC
 - odlišné hodnoty parametrů a rozložení úsilí v různých etapách projektu
 - statistický odhad SLOC a kvantitativní přístup k nejistotě

Úkoly

- Seznamte se s prostředím systému COCOMO.
- Aplikujte model COCOMO na vámi řešený projekt.