Elektronikpraktikum SS14, Auswertung: Versuchstag 1

Gruppe 1 Patrick Heuer Benjamin Lotter

Aufgabe 1a

 Durch Abtasten der angelegten Spannung wird der Innenwiderstand des DMMs berechnet.

Aufgabe 1a Schaltplan

Abbildung: Ersatzschaltung des Messaufbaus

Aufgabe 1a I/U Kennlinie

Aufgabe 1a I/U Kennlinie

Aufgabe 1a Beobachtungen

- Durch Abtasten der angelegten Spannung wird der Innenwiderstand des DMMs berechnet.
- Das Gerät variiert selbständig den Innenwiderstand ('Klicken' beim Verändern der Spannung)

Widerstandsschaltung Aufwärtsmessung:

	Stromstärke Bereich I/mA	Innenwiderstand R/Ω
Hersteller	0.10 - 1.00	200
Messwerte	0.25 - 1.11	199
Hersteller	10 - 100	2.00
Messwerte	98.6 - 115	2.43
Hersteller	1000 - 3000	0.10
Messwerte	746 — 2415	0.40

Widerstandsschaltung Abwärtsmessung:

	Stromstärke Bereich I/mA	Innenwiderstand R/Ω
Hersteller	3000 - 1000	0.10
Messwerte	1224 - 149	0.40
Hersteller	100 - 10	2.00
Messwerte	16.3 - 1.50	2.50
Hersteller	1.00 - 0.100	200
Messwerte	0.01 - 0.00	234.3

Aufgabe 1a Interpretation

Das Gerät schaltet selbständig Widerstände ein, um

- die Messgenauigkeit bei verschiedenen Widerständen gleich zu halten
- die Bauteile zu schützen

- Der Einschaltevorgang der Geräte am Messaufbau kann die Messung beeinflussen.
- Untersuchung des Einflusses auf eine Gleichstrommessung

1: Messungen

Abbildung: Graph 1

1: Messungen

Abbildung: Graph 2

Aufgabe 1b Ergebnis

Man betrachtet:

- Starker Abfall der Stromstärke von 0 − 200
- Annährung and den Endwert von 200 500 in Graph 1
- Sprung auf den Endwert bei 200 in Graph 2

Mögliche Erklärung:

- Bauteile des Geräts müssen sich erst aufwärmen oder einschwingen
- Bestimmte Bauteile funktionieren erst ab einer bestimmten Temperatur (Sprung in Graph 2)

Sofortige Messung nach Einschalten des Geräts liefert keine verlässlichen Werte!

Empfehlung des Herstellers: Gerät 30 Minuten warmlaufen lassen

- Die Wahl der Integrationszeit kann die Messung beeinflussen.
- Der Einfluss der Integrationszeit wurde durch verschiedene Netzzyklenzahlen und freie Zeiteinstellung getestet.

Aufgabe 1b 2:Messungen

NPLC	Maximum	Minimum	Mittelwert	Standardabweichung
0,006	0,201529	0,19882	0,20011369	5,69E-04
0,02	0,201495	0,198794	0,200125373	5,95E-04
0,06	0,201637	0,198639	0,20012612	7,70E-04
0,2	0,201453	0,198895	0,200099427	6,00E-04
1	0,200122	0,200035	0,200076633	1,54E-05
10	0,20006	0,199953	0,199991067	2,57E-05

Aufgabe 1b 2: Ergebnis

Je größer die Standardabweichung, desto mehr liegen Minima und Maxima voneinander entfernt \rightarrow mehr Rauschen

- Größte Standardabweichung bei 0.6 NPLC
- Kleinste Standardabweichung bei 10 NPLC
- → Beim Mitteln über Teilzyklen hebt sich das Rauschen nicht auf
- \rightarrow Beim Mitteln über ganzzahlige Netzzyklen wird das Rauschen herausgefiltert
- \rightarrow Erhöhung der ganzzahligen Netzzyklen verbessert die Genauigkeit

Aufabe 1b 3:Messungen

NPLC	Maximum	Minimum	Mittelwert	Standardabweichung
0,006	0,201529	0,19882	0,20011369	5,69E-04
0,02	0,201495	0,198794	0,200125373	5,95E-04
0,06	0,201637	0,198639	0,20012612	7,70E-04
0,2	0,201453	0,198895	0,200099427	6,00E-04
1	0,200122	0,200035	0,200076633	1,54E-05
10	0,20006	0,199953	0,199991067	2,57E-05
freie Int.				
25 ms	0.200182	0.199796	0.19999138	1.16F-04

Aufgabe 1b 3: Ergebnis

Mitteln über eine frei gewählte Zeit ist ungenauer als vielfache NPLCs.

 \rightarrow Netzzyklen werden nicht exakt abgeschlossen, Rauschen wird nicht vollständig weggehoben

Wie soll gemittelt werden?

- ullet Teilzyklen: erhöht Rauschen aber verkürzt Messzeit o nur bei sehr vielen Messreihen
- vielfache NPCLs: verringert Rauschen aber längere Messzeit
- freie Zeit: Nur wenn freie Integrationszeit notwendig

Aufgabe 2 Messung 1: einfache Parallelschaltung

Es soll eine einfache Parallelschaltung untersucht werden. Parallelschaltung $1k\Omega$ und $100k\Omega$

Aufgabe 2 Messung 1: einfache Parallelschaltung

Erwarteter Widerstand: $R_{ges} = 990\Omega$

gc3				
	I/mA	U/V	R/Ω berechnet	R/Ω gemessen
Gesamtschaltung	10.19	10	981.4	
Widerstand 1	10.09	10	991	991.9
Widerstand 2	0.1	10	10000	98940

ightarrow Werte stimmen innerhalb des Toleranzbereichs mit Rechnung überein.

Aufgabe 2 Messung 2: geringer Gesamtwiderstand

Es soll eine Schaltung mit $R_{\rm ges} \leq 800\Omega$ untersucht werden. Parallelschaltung $2 \times 1 k\Omega$

Erwarteter Widerstand $R_{ges} = 500\Omega$

en
=

→ *I*-Werte liegen zu niedrig

Aufgabe 2 Messung 3: hoher Gesamtwiderstand

Es soll eine Schaltung mit $R_{\rm ges} \geq 8M\Omega$ untersucht werden. Reihenschaltung $2\times 4.7M\Omega$

Erwarteter Widerstand $R_{ges} = 9.4 M\Omega$

	0 -			
	$I/\mu A$	U/V	$R/M\Omega$ berechnet	$R/M\Omega$ gemessen
Gesamtschaltung	2.1	20	9.5	
Widerstand 1	2.1	8.12	3.9	4.7
Widerstand 2	2.1	8.0	3.8	4.7
	!			

 \rightarrow *U*-Werte zu niedrig

Aufgabe2 Messung3: HI-Z

Nach Umstellen des DMM auf "HI-Z":

Nacii Offistelleli des Divilvi adi TII-Z .				
	$I/\mu A$	U/V	$R/M\Omega$ berechnet	$R/M\Omega$ gem.
Gesamtschaltung	2.1	20	9.5	
Widerstand 1	2.1	10.0	4.8	4.7
Widerstand 2	2.1	9.97	4.7	4.7

ightarrow korrigierte U-Werte liefern erwarteten Widerstand

- niedriger Widerstand: Innenwiderstand nicht sehr viel kleiner als Gesamtwiderstand: DMM kein ideales Strommessgerät Innenwiderstand beeinflusst Messung
- hoher Widerstand: Innenwiderstand nicht sehr viel größer als Gesamtwiderstand: DMM kein ideales Spannungsmessgerät
- → Innenwiderstand beeinflusst Messung
 - HI-Z: Innenwiderstand wird auf $10\,G\Omega$ gesetzt ightarrow Innenwiderstand wieder sehr viel großer als Gesamtwiderstand

Messung wird an Randbereichen ungenauer: Für gute Ergebnisse muss man das Messgerät berücksichtigen.

Aufgabe 3

Im Oszilloskop wurden verschiedene Kennlinien von Bauteilen analysiert:

- Kondensator
- Diode
- Spule
- LED

Abbildung: Kondensator bei 69Hz

Aufgabe 3 Kennlinie Kondensator

- ullet hohe Frequenz o Gerade, Bauteil wird hoher Widerstand
- niedrige Frequenz: → Kreis/Elipsem Strom eilt Spannung durch Auf- und Entladen vorraus
- \rightarrow Kondensator

Abbildung: Diode bei 69Hz

Aufgabe 3 Kennlinie Diode

ullet Kennlinie ist Null bis Sperrspannung überschritten ist ullet Diode oder LED

Einfluss des eingebauten Kondensators bei hohen Frequenzen:

Diodenkennlinie bei höheren Frequenzen.

Aufgabe 3 Kennlinie Diode

Aufgabe 3 Kennlinie Diode

 \rightarrow Kennlinie wird durch Bauelemente in Quelle und Messgerät stark verfälscht.

Aufgabe 3 Kennlinie Spule

Aufgabe 3 Kennlinie Spule

- hohe Frequenz → Gerade, Bauteil wird hoher Widerstand
- niedrige Frequenz: → Phasenverschiebung durch Induktivität
- $\to \mathsf{Spule}$

Aufgabe 3 Kennlinie LED

Aufgabe 3

- Kennlinie wie Diode
- Kein erkennbarer Unterschied → durch einen größeren Spannungsbereich hätte eventuell die Diode von der LED unterschieden werden können (früheres Abfallen im negativen)

Aufgabe 4 Zufallssignal

Analyse eines Zufallssignals durch Funktionengenerator

Form	Rechtecksspannung
Frequenz	55.6 <i>kHz</i>
Amplitude	2.41 <i>V</i>
Offset	0.03 <i>mV</i>

 $\rightarrow \ \mathsf{Netzfrequenz}, \ \mathsf{eventuell} \ \mathsf{modulierte} \ \mathsf{Netzspannung}$

Aufgabe 5a

- Mit Labview wurden Störfrequenzen in das Signal eingespeist
- Analyse der störenden Frequenzen im Oszilloskop

Gemessene Störfrequenzen:

Gerät	Frequenz/kHz
PC	53.7
Monitor	55.0, 66.5
Oszillosop	57.3
DMM	94.1
Frequenzgenerator	45.6,60.6
Kaffeemaschine	keine erkennbaren Frequenzen

Aufgabe 5b

- Messung der Störung kleiner Spannungen durch Versuchsgeräte.
- Wiederholte Messung bei nähergelegten Kabeln

Aufgabe 5b

Gerät	Frequenz/kHz
Funktionsgenerator	44.4 , 57,1, 62.3, 82,4, 76.0
DMM	57.1 , 81.1
Monitor	47.7 , 55.8, 64.2
	'

Mit Koaxialkabel: Keine Störungen.

- ightarrow Der räumliche Versuchsaufbau hat Auswirkung auf die Messung
- ightarrow Zur exakter Messung Störquellen vom Messort entfernen, oder Koaxialkabel verwenden
 - \rightarrow Keine unnötigen Geräte betreieben