Algorithm Design and Analysis

LECTURE 16

Dynamic Programming

- Least Common Subsequence
- Saving space

Adam Smith

Least Common Subsequence

A.k.a. "sequence alignment" "edit distance"

• • •

Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

$$x: A B C B D A B BCBA = UCS(x, y)$$
 $y: B D C A B A$

Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

$$x: A B C B D A B BCAB = LCS(x, y)$$
 $y: B D C A B A$

Motivation

- Approximate string matching [Levenshtein, 1966]
 - Search for "occurance", get results for "occurrence"
- Computational biology [Needleman-Wunsch, 1970's]
 - Simple measure of genome similarity
 cgtacgtacgtacgtacgtacgtacgtacgt
 acgtacgtacgtacgtacgtacgtacgt

Motivation

- Approximate string matching [Levenshtein, 1966]
 - Search for "occurance", get results for "occurrence"
- Computational biology [Needleman-Wunsch, 1970's]
 - Simple measure of genome similarity

• n - length(LCS(x,y)) is called the "edit distance"

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...m].

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).

```
Worst-case running time = O(n2^m)
= exponential time.
```

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Base case: c[i,j]=0 if i=0 or j=0.

The second case is similar.

Recursive formulation

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Case $x[i] \neq y[j]$: best matching might use x[i] or y[j] (or neither) but not both.

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

```
LCS(x, y, i, j) // ignoring base cases

if x[i] = y[j]

then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow \max\{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}

return c[i, j]
```

Worse case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height = $m + n \Rightarrow$ work potentially exponential.

Recursion tree

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark #2.

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
 \begin{aligned} \operatorname{LCS}(x, y, i, j) \\ & \text{if } c[i, j] = \operatorname{NIL} \\ & \text{then if } x[i] = y[j] \\ & \text{then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1) + 1 \\ & \text{else } c[i, j] \leftarrow \max \left\{ \operatorname{LCS}(x, y, i-1, j), \atop \operatorname{LCS}(x, y, i, j-1) \right\} \end{aligned}
```

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

IDEA:

Compute the table bottom-up.

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

		A	В	C	В	D	A	В
	0	0	0	0	0	0	0	0
В	0	0	1	1	1	1	1	1
D	0	0	1	1	1	2	2	2
C	0	0	1	2	2	2	2	2
A	0	1.	1	2	2	2	3	3
В	0	1	2	2	3	3	3	4
A	0	1	2	2	3	3	4	4

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Multiple solutions are possible.

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by tracing backwards.

Space = $\Theta(mn)$.

Section 6.7:

 $O(\min\{m, n\})$

		A	В	C	В	D	A	B
	0	0,	0	0	0	0	0	0
3	0	0	1	1	1	1	1	1
	0	0	1	1	1	2	2	2
7)	0	0	1	2	2	2	2	2
7	0	1.	1	2	2	2	3	3
3	0	1	2	2	3	3	3	4
1	0	1	2	2	3	3	4	4
!		_	_		_	_	_	

Saving space

- Why is space important?
 - Cost of storage
 - Cache misses
- Suppose we only want to compute the **cost** of the optimal solution

Fill the table left to right

Remember only the previous column

O(m) space in addition
 to input

Computing the optimum

- View the matrix as a directed acyclic graph: our goal is to find a longest path from (0,0) to (m,n)
 - Every path must pass through column n/2
- Algorithm
 - 1. Find longest path lengths from (0,0) to all points in column n/2, i.e. (0,n/2),(1,n/2),...,(m,n/2)
 - 2. Find longest path lengths from all of column n/2 to (m,n)
 - 3. Find a point q where optimal path crosses column n/2. Add (q,n/2) to output list
 - **4. Recursively** solve subproblems $(0,0) \rightarrow (q,n/2)$ and (q,n/2) to (m,n)
- How much time and space?