Distributed Hybrid Quantum-Classical Performance Prediction for Hyperparameter Optimization

J.P. García Amboage^{†,*,1}, E. Wulff^{*,1}, M. Aach^{*,2,3}, M. Girone¹, A. Delilbasic^{2,3}, E. Pasetto², R. Sarma², M. Riedel^{2,3}, A. Lintermann²

- †jugarcia@student.ethz.ch
- *Authors contributed equally to this work
- ¹CERN, The European Organization for Nuclear Research
- ²Jülich Supercomputing Centre
- ³University of Iceland

Performance Prediction

Partial learning curves

(regressor features)

1. Introduction

- The performance of neural networks is highly sensitive to the choice of Hyperparameters (HPs).
- Popular HP optimization (HPO) algorithms such as Hyperband [1] or ASHA [2] rely on a method of early termination, where under-performing trials are automatically terminated to free up compute resources for more promising trials.
- Since the training process is non-linear, the ranking of trials at one point during the training does not necessarily hold at a later point.
- A potential solution to this problem is to use a model performance predictor such as an SVR to predict future model performance improvements, from a partially trained model learning curve [3].

2. Quantum SVR

• The Support Vector Regression (SVR) model can be modified to be trained on a Quantum Annealer by formulating it as a QUBO problem [4].

- The complexity order of training a classical SVR is cubic on the number of training samples. However, training the Q-SVR on the Quantum Annelaer is linear in the number of training samples [5].
- Via CoE RAISE, the Quantum Annealer at the Jülich Supercomputer Centre was used to train and evaluate Q-SVR models for predicting the performance of MLPF [6], a particle flow reconstruction neural network.

3. Swift-Hyperband

- Swift-Hyperband [7] and Fast-Hyperband [3] are enhanced versions of the HPO algorithm Hyperband that incorporate performance predictors at multiple decision points.
- Swift-Hyperband requires fewer performance predictors than Fast-Hyperband.
- Each round of Swift-Hyperband can be parallelized as the partial and full trainings can be executed at the same time.

4. Hybrid Quantum-Classical workflow

- We implemented a distributed version of Swift-Hyperband that uses multiple GPU nodes for training the target model and which connects to a Quantum Annealer for training the performance predictor.
- MPI and the dwave-ocen-sdk are used to handle communication among nodes and with the Quantum Annelaer.

5. Results

- We compare Swift-Hyperband using Q-SVR and classical SVR with Hyperband for several target models from different domains: computer vision (CV), natural language processing (NLP) and high energy physics (HEP).
- The results show that Swift-Hyperband, both in case of SVRs and Q-SVRs, achieves similar results as classical Hyperband in terms of the target model performance while consuming less computational resources in all cases.

Summary of the benchmarking cases used to test the HPO algorithms						
NN architecture	Dataset	Domain	Evaluation metric	# HPs for HPO	Target epoch for HPO	# GPU Nodes for HPO
CNN	CIFAR-10	CV	accuracy	5	100	50
CNN	Tiny ImageNet	CV	loss	3	35	50
LSTM	bABI, task 17	NLP	accuracy	4	300	50
MLPF	Delphes	HEP	loss	7	100	simulated

6. Conclusions

- The presented work along with the obtained results highlight the potential of hybrid Quantum-Classical machine learning algorithms in various fields of application.
- Further lines of work include integrating the presented quantum-classical workflow and performance prediction with other HPO algorithms and studying the applicability of Swift-Hyperband to even more neural network architectures and use cases.

7. References

- L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1):6765-6816, 2017.
- L. Li, K. Jamieson, A. Rostamizadeh, E. Gonina, M. Hardt, B. Recht, and A. Talwalkar. Massively parallel hyperparameter tuning. CoRR, abs/1810.05934, 2018. Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture search using performance prediction, 2017.
- Edoardo Pasetto, Morris Riedel, Farid Melgani, Kristel Michielsen, and Gabriele Cavallaro. Quantum SVR for chlorophyll concentration in water with remote sensing. IEEE Geoscience and Remote Sensing Letters 19:1-5, 2022.Prasanna Date, Davis Arthur, and Lauren Pusey-Nazzaro. QUBO formulations for training machine learning models. Scientific Reports, 11(1), may 2021.
- J. Pata, J. Duarte, JR. Vlimant, M. Pierini, and M. Spiropulu. MLPF: efficient machine-learned particle-flow reconstruction using graph neural networks. The European Physical Journal C, 81(5), may 2021.
- JP García Amboage, E Wulff, M Girone, and Tomás F Pena. Optimizing AI-based HEP algorithms using HPC and Quantum Computing, 2023.
- This work was performed in the Center of Excellence (CoE) Research on AI and Simulation-Based Engineering at Exascale (RAISE) receiving funding from EU's Horizon 2020 Research and Innovation Framework Programme H2020-INFRAEDI-2019-1 under grant agreement no. 951733.
- The authors gratefully acknowledge the Jülich Supercomputing Centre for funding time on the D-Wave AdvantageTM System JUPSI through the Jülich Unified Infrastructure for Quantum computing (JUNIQ).