Presentation on EDA Bank Loan Data

Mr. Ankush Kisan Patil

Aim of EDA:

- 1.Understand how the bank approves and refuses loan. Find out different patterns and represent the outcomes to help the bank reduce the credit risk and interest risk. By using EDA analysis.
- 2. To develop your understanding of the domain, you are advised to independently research a little about risk analytics understanding the types of variables and their significance should be enough.

Steps:

- Business Understanding
- Data Understanding
- Importing the libraries and files and check data.
- Data Analysis
- Values to impute in columns, binning of data, imbalance in Target
- Univariate Analysis: Categorical Ordered Analysis and Categorical Ordered Analysis, Categorical Ordered Analysis
- Correlation of the selected columns
- Bivariate Analysis of numerical variables
- Data Analysis For Previous Application Data
- Univariate analysis
- Correlation in the Previous Application.
- Bivariate analysis on numerical columns
- Merging the files and analyzing the data
- Recommendation

Impute of value:

Percentage of Type of Occupations

Percentage of Type of Occupations

Imbalance in Target

TARGET Variable - DEFAULTER Vs NONDEFAULTER

Univariate Analysis:

Categorical Ordered Analysis: Defaulter and no-defaulter as per Gender

Categorical Ordered Analysis: Defaulter and no-defaulter as per flag own car

Categorical Ordered Analysis: Defaulter and no-defaulter as per name income type

Categorical Ordered Analysis: Defaulter and no-defaulter as per name family status

Categorical Ordered Analysis: Defaulter and no-defaulter as per name housing type

▶ Categorical Ordered Analysis: Defaulter and no-defaulter as per name income group

Categorical Ordered Analysis: Defaulter and no-defaulter as per name education type

Categorical Ordered Analysis: Defaulter and no-defaulter as per region rating client

Univariate continuous variable

Univariate continuous variable

Univariate continuous variable

Bivariate Analysis of numerical variables

Bivariate Analysis of numerical variables

Bivariate analysis For Target0

Bivariate analysis For Target1

Single / not married
Widow
Married
Civil marriage

Previous application analysis: Univariate analysis on categorical variables

Univariate analysis on categorical variables

Univariate analysis on categorical variables

Bivariate analysis by using pair plot

Bivariate analysis on categorical vs numeric columns

Merging the files and analyzing the data

Conclusion

- We can see that the people who were approved for a loan earlier, defaulted less often where as people who were refused a loan earlier have higher chances of defaulting.
- We see that code gender doesn't have any effect on application approval or rejection. But we saw earlier that female have lesser chances of default compared to males.
- We see that car ownership doesn't have any effect on application approval or rejection. But we saw earlier that the people who has a car has lesser chances of default.