

OBJETIVOS

- ldentificar as várias formas de transmissão de dados.
- Identificar os diversos tipos de redes.

CONTEÚDOS

- Necessidade das redes
- Tipos de redes
- Redes ponto-a-ponto
- Redes cliente-servidor
- Tipos de servidores
- Componentes de uma rede
- Transmissão de dados
- Modos informação analógica vs digital modulação
- Sistemas de Numeração (Binário, Octal, Decimal, Hexadecimal)
- Transmissão via porta série, paralela, USB, IEEE 1394, sem fios. FDD

INTRODUÇÃO ÀS REDES DE COMPUTADORES MODELO GERAL DE COMUNICAÇÃO

- Perguntas? Sobre as Redes...
- As Redes, Software de uma redes, Internet
- Objetivos e Vantagens, Classificação de redes
- Redes Informáticas, dados e Bits e ASCII
- Largura de Banda, dispositivos e tipos
- Tipos de redes, peer-to-peer e cliente-servidor
- Protocolos, normas e modelos de comunicação

ALGUMAS PERGUNTAS

- O que é uma rede informática?
 - Uma rede informática é uma infraestrutura/meio que permite a comunicação entre equipamentos.
- Que tipo de comunicação é possível realizar em uma rede informática?
 - Inicialmente cada tipo de conteúdo tinha o seu método de comunicação dedicado.
 - (Exemplos: Telefone, Televisão, acessos, segurança, CCTV, automatizações inteligentes, etc).
- Nos anos 90 foram dados os primeiros passos para a comunicação de vários conteúdos pelo mesmo meio (rede informática).
- Atualmente e graças às Redes Convergentes é possível com um único meio utilizar variadíssimos tipos conteúdos.

NUNO RAMOS 13/10/20

AS REDES

- Uma rede de computadores consiste na interligação de diversos computadores, dispositivos periféricos e outros sistemas informáticos, com o objectivo de proporcionar uma melhor comunicação, organização e partilha dos recursos existentes.
- Em, regra, é caracterizada pela sua extensão, abrangência e tecnologia de transmissão, bem como por características internas como o débito, meio de transmissão usado, topologia, número máximo de dispositivos de rede, distância entre dispositivos, etc.

SOFTWARE DE UMA REDE

- Drivers de placas de redes software que complementam o sistema operativo do computador, no sentido de este poder comunicar com a placa ou interface de rede;
- Protocolos de comunicação normas convertidas em software que tornam possível tecnicamente a transmissão de dados entre os computadores envolvidos numa comunicação;
- Sistemas operativos que integrem os módulos de software necessários para trabalho em rede;
- Utilitários e programas de aplicação vocacionados para trabalho em rede.

INTERNET/ONLINE

- Atualmente, damos por fato garantido que de uma forma, ou de outra estamos on-line, através de um dos nossos dispositivos pessoais ou profissionais.
- Normalmente, quando as pessoas usam o termo internet, não se referem às conexões entre os dispositivos físicos para que isso seja uma realidade, mas sim um "sítio" onde nos contactamos e partilhamos informação.

OBJETIVOS E VANTAGENS DO TRABALHO EM REDE

- Partilha de recursos físicos da rede: A partilha de periféricos foi a razão inicial para o desenvolvimento das redes. Esses periféricos podem ser impressoras, discos duros, modems, entre outros.
- Partilha de programas e ficheiros de dados: numa rede a centralização de dados permite a sua partilha e
 o seu acesso central, isto significa que só é necessário alterar os dados num local da rede.
- Comunicação (Intercâmbio de informação): os utilizadores ligados a uma rede podem comunicar entre si através de mensagens de correio electrónico, transferência de ficheiros, etc.
- Melhor organização do trabalho, nomeadamente com a possibilidade de:
 - Definição de diferentes níveis de acesso à informação, consoante o estatuto dos utilizadores.
 - Supervisão e controlo do trabalho na rede, por parte dos utilizadores com responsabilidades a esse nível.
 - Constituição de grupos de trabalho.
 - Calendarização de tarefas.

CLASSIFICAÇÃO DE REDES

Classificação de redes de acordo com a abrangência geográfica das redes:

Classificação das Redes	Área	Velocidade	Fiabilidade	Responsabilidade
LAN	Pequena <	Muito Alta	Grande	Utilizador
MAN	Média <	Alta	Grande	Repartida entre o utilizador e o fornecedor de serviço
WAN	Grande	Baixa	Baixa	Fornecedor de Serviço

PAN (PERSONAL AREA NETWORKS)

- São designadas de redes de área pessoal;
- Estas redes que usam tecnologias de rede sem fios para interligar os mais variados dispositivos (computadores, smartphones, etc) numa área muito reduzida.
- Os débitos são relativamente baixos, na casa de 1 Mbps.
- Exemplo de uma rede ad-hoc

LAN - LOCAL AREA NETWORKS

- As Redes de área local são de pequena dimensão, geralmente com um raio inferior a 1 Km, e são muito usadas para interligar sistemas de informação dentro do mesmo edifício, complexo industrial ou campus.
- Dada a sua dimensão, é conseguido um alto débito de dados, podendo actualmente atingir o Gbit/s.
- São também muito fiáveis no que respeita à transmissão dos dados.
- O equipamento utilizado para a sua construção e implementação é privado.
- O objectivo primário destas redes está no aumento de produtividade e de eficiência dos utilizadores, reduzindo custos através da partilha de recursos, facilidade e rapidez na comunicação e organização interna.

VIRTUAL LOCAL AREA NETWORK (VLAN)

- Permitem distinguir utilizadores na LAN mediante a sua estrutura na organização em que estão inseridos.
- Simula a mesma ligação física embora não seja necessariamente o caso.
- Necessidade de um switch para agrupar portas.
 - Questões de Segurança.
 - Network balance load.
 - Tráfico de Broadcast.

WLAN - WIRELESS LOCAL AREA NETWORK

- Tem crescido a utilização das redes locais sem fios.
- São adequadas a situações em que é necessário mobilidade
- (ex.: posto montado num veiculo que circula num armazém, ou portátil que circula nas mãos de um operador de "hipermercado");
- São flexíveis e de fácil instalação.
- Embora os equipamentos sejam mais caros do que para uma LAN tradicional a redução significativa dos custos de instalação é muitas vezes compensatória.

CAN - CAMPUS AREA NETWORKS

Entre as LAN e as WAN podemos encontrar redes de dimensões intermédias, como, por exemplo:

Redes de campus CAN: consistem normalmente em diversas redes locais ligadas entre si, abrangendo um conjunto de edifícios vizinhos (como, por exemplo, os vários departamentos de uma universidade, hospital ou grande unidade fabril;

MAN - METROPOLITAN AREA NETWORK

- As redes de área metropolitana não são mais do que versões alargadas das redes de área local.
- A tecnologia usada é a mesma que em ambos os tipos de redes.
- A sua principal utilização está na interligação de zonas locais dentro de uma área geográfica que não é maior que a área urbana de uma cidade.
- A distância entre duas redes locais tem de ser inferior a 10Km.
- Depois de desenhada uma rede de área local, a rede de área metropolitana é facilmente implementada com a introdução de dispositivos intermédios entre as várias LANs, de modo a existir uma interligação.

MAN - METROPOLITAN AREA NETWORK

- A velocidade de transmissão de dados é equivalente ao das redes locais, de modo a evitar o congestionamento da informação e a sobrecarga nos circuitos da rede.
- As redes de área metropolitana podem-se considerar semi-privadas.
- O equipamento informático e dispositivos intermédios são pertença da empresa ou instituição, no entanto a ligação física entre dois dispositivos intermédios, os cabos, pertencem a um fornecedor de serviço.
- Isto porque não é viável economicamente a uma empresa estar a realizar obras numa área metropolitana para passar um ou dois cabos.

WAN - WIDE AREA NETWOKS

- Este tipo de rede abrange uma grande área geográfica (cidades, países, continentes). Consiste numa série de dispositivos especializados que permitem a interligação de todos os outros computadores e redes.
- As redes mais pequenas que são interligadas chama-se **subrede.** Na interligação das diversas subredes são utilizados circuitos alugados a fornecedores de serviços.
- A velocidade de transmissão de dados é muito baixa quando comparada com as redes anteriormente descritas, e a manutenção da rede é da responsabilidade do fornecedor de serviços.
- As redes públicas existentes de telefone, TV e dados (Internet) são redes de área alargada.

RESUMO - CLASSIFICAÇÃO DE REDES

1m	Pessoal	PAN
10 m	Sala	
100m	Prédio	Redes Locais
1 Km	Campus	(LAN) S/Fio (WLAN)
10 Km	Cidade	Redes Metropolitanas (MAN) S/Fio (WMAN)
100 Km	País	Redes de Longa Distância
1000 Km	Continente	(WAN) S/Fio (WWAN)
10000 Km	Planeta	Interconexão de WAN's S/Fio WWAN'S INTERNET

NUNO RAMOS 13/10/2023 19

REDES INFORMÁTICAS — DADOS/BIT

Ao contrário do seres humanos que comunicam através de variadíssimas linguagens, os equipamentos só comunicam com o sistema binário.

Na linguagem binária só existem 2 caracteres o "1" e o "0".

O termo bit é uma abreviação de "dígito binário/binary digit" e representa a unidade mais baixa dos dados.

DADOS/BIT - ASCII

Os equipamentos usam códigos binários para representar e interpretar letras, números e caracteres especiais com bits. Um código comumente usado é o American Standard Code for Information Interchange (ASCII).

Com ASCII, cada caracter é representado por oito bits. Por exemplo:

- Letra maiúscula: A = 01000001
- Número: 9 = 00111001
- Caracter especial: # = 00100011

Curiosidade: ASCII – Wikipédia, a enciclopédia livre (wikipedia.org)

LARGURA DE BANDA/BANDWIDTH

É a métrica que permite quantificar a capacidade da comunicação/ligação. Para além de determinar a largura de banda de uma rede também é importante ter em conta outros aspetos de uma comunicação.

- Latência é o tempo que um pacote demora a chegar de um emissor ao destinatário
- Throughput (Taxa de Transferência) - mede a quantidade de dados transmitidos numa determinada ligação durante um certo tempo
- Goodput mede a quantidade de dados úteis transmitidos numa determinada link durante um certo tempo

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	Kbps	1 Kbps = 1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10 ¹² bps

EXEMPLOS DE REDES INFORMÁTICAS — DISPOSITIVOS

Exemplo rede particular(casa)

Exemplo de escritório(empresa)

TIPOS DE REDES

Classificação de acordo com a importância dos computadores:

Prede tipo cliente-servidor: um computador com funções especiais (servidor) e outros computadores que usam esses serviços (clientes);

Rede **peer-to-peer**: todos os computadores estão em igualdade no que diz

respeito às funções.

CLIENTE-SERVIDOR

- •Serviço de ficheiros: Acesso (leitura/escrita) a ficheiros armazenados no servidor.
- •Serviço de impressão: Acesso a uma impressora remota gerida pelo servidor.
- •Serviço de base de dados: Acesso base de dados gerida pelo servidor.
- •Serviço de comunicações: Acesso a outras redes, serviço de e-mail. acesso remoto a outras redes, por exemplo Internet, e outros dispositivos.

TIPOS DE DISPOSITIVOS NA REDE INFORMÁTICA

Dispositivos terminais

- Clientes
- Servidores
- Servidores/Clientes(Peer-to-Peer)
- Periféricos

Dispositivos intermediários

- Todos os responsáveis pela comunicação entre terminais:
- Router
- Switch
- Firewall
- Modem
- Hub
- Etc.

DISPOSITIVOS TERMINAIS

São todos os equipamentos que solicitam e fornecem dados:

- Cliente Solicita serviços
- Servidor Fornece serviços
- Servidor/Cliente Solicita e fornece serviços

DISPOSITIVOS TERMINAIS - PERIFÉRICOS

Existem periféricos que estão diretamente ligados aos terminais, que por sua vez podem ser partilhados via o terminal em que estão conectados.

DISPOSITIVOS INTERMEDIÁRIOS

Dispositivos intermediários ou de rede, são todos os equipamentos que direcionam e encaminham os dados entre dispositivos terminais.

TRANSMISSÕES DE DADOS

PROF. NUNO RAMOS 2022-2023 30

VÍDEO — MODO DE TRANSMISSÃO

31

TAXAS DE TRANSMISSÃO

- A taxa de transmissão de um canal ou meio físico é a quantidade de bits que esse meio consegue transmitir por segundo;
- Esta taxa pode ser expressa em bits por segundo - bps (bits por segundo)
 – ou em Kylobits, Megabits ou Gigabits por segundo.

Recommended video bitrates for SDR uploads

To view new 4K uploads in 4K, use a browser or device that supports VP9.

Туре	Video Bitrate, Standard Frame Rate (24, 25, 30)	Video Bitrate, High Frame Rate (48, 50, 60)
2160p (4k)	35-45 Mbps	53-68 Mbps
1440p (2k)	16 Mbps	24 Mbps
1080p	8 Mbps	12 Mbps
720p	5 Mbps	7.5 Mbps
480p	2.5 Mbps	4 Mbps
360p	1 Mbps	1.5 Mbps

Recommended video bitrates for HDR uploads

Туре		eo Bitrate, Standar 25, 30)	d Frame Rate	Video Bitrate, High Frame Rate (48, 50, 60)
2160p (4	4k)	44-56 Mbps	66-85 Mbps	
1440p (2	2k)	20 Mbps	30 Mbps	
1080p		10 Mbps	15 Mbps	
720p		6.5 Mbps	9.5 Mbps	
4 80p		Not supported	Not supported	
360p		Not supported	Not supported	

Recommended audio bitrates for uploads

Туре	Audio Bitrate
Mono	128 kbps
Stereo	384 kbps
5.1	512 kbps

TAXAS DE TRANSMISSÃO

As taxas de transmissão dependem de vários fatores, tais como:

- As características dos cabos utilizados;
- A quantidade de tráfego de mensagens provenientes dos vários nós da rede;
- A utilização da largura de banda para transmissão de um só ou vários fluxos de mensagens ao mesmo tempo (multiplexação);
- As taxas máximas de transmissão dos modems ou outros dispositivos de comunicação.

TAXAS DE TRANSMISSÃO

- Um modem, através de uma linha telefónica tradicional, pode transmitir, por exemplo: a 14400 bps, 28800 bps, 56600 bps, etc.
- •Uma rede local, baseada no padrão mais difundido Ethernet pode transmitir de 10 Mbps até 10 GBps.
- •Uma rede de banda larga, como por exemplo a RDIS de banda larga, pode transmitir centenas de Mbps ou mesmo vários Gbps.

	10 Mbps	100 Mbps	1 Gbps	10 Gbps
Fibra Monomodo	25 Km	20 Km	3 Km	40 Km
Fibra Multimodo	2 Km	2 Km	500 m	300 m
STP/COAX	500 m	100 m	25 m	
UTP cat5	100 m	100 m	100 m	(#)

ainda sob estudo de viabilidade no IEEE.

LARGURA DE BANDA

- A largura de banda de um cabo ou canal de transmissão de dados é a diferença entre as frequências mais altas e mais baixas que esse canal permite ou utiliza.
- As frequências são expressas em hertzs, ou seja, número de ciclos ou impulsos por segundo.

LARGURA DE BANDA

- As linhas telefónicas tradicionais, que transmitem a voz humana sob a forma de sinais elétricos analógicos, têm uma largura de banda que se situa entre os 300 e os 3000 hertzs.
- As comunicações sem fios utilizam frequências muito elevadas (ondas curtas), em que a largura de banda se situa, por exemplo, entre os 2 e os 6 Gigahertzs.

PRUE NIINU BYWUZ

LARGURA BANDA WIFI VS FREQUÊNCIA

Wi-Fi generations

Generation/IEEE Standard	Maximum Linkrate	Adopted	Frequency
Wi-Fi 6 (802.11ax) 600–9		2019	2.4/5 GHz
	600–9608 Mbit/s		1–6 GHz ISM
Wi-Fi 5 (802.11ac)	433–6933 Mbit/s	2014	5 GHz
Wi-Fi 4 (802.11n)	72–600 Mbit/s	2009	2.4/5 GHz
Wi-Fi 3 (802.11g)	3-54 Mbit/s	2003	2.4 GHz
Wi-Fi 2 (802.11a)	1.5 to 54 Mbit/s	1999	5 GHz
Wi-Fi 1 (802.11b)	1 to 11 Mbit/s	1999	2.4 GHz

PROF. NUNO RAMOS 2022-2023

The evolution of a wireless revolution

¹ Includes PHY and multi-link data rate improvements

NUNO RAMOS 13/10/2023

38

^{*} Theoretical maximum data rates based on the latest draft of the IEEE 802.11be standard.

^{**&}quot;>5 Gbps Wi-Fi 7 2x2 client speed" - is based on the current draft of the 802.11be specification which specifies the theoretical maximum data rate for a 2x2 device that supports 320 MHz channels, 4096 QAM, and Multi-Link Operation is 5.76 Gbps. Based on an industry-standard assumption of 90% efficiency for new Wi-Fi products operating in the exclusive 6 GHz band, the resulting estimated maximum over the air 2x2 client speed would be 5.19 Gbps.

MULTIPLEXAÇÃO

A multiplexação consiste na operação de transmitir várias comunicações diferentes ao mesmo tempo através de um único canal físico.

O dispositivo que efetua este tipo de operação chama-se multiplexador

(multiplexer).

TRANSMISSÕES EM SÉRIE E EM PARALELO

As transmissões de dados de um computador para outro computador ou outro dispositivo podem ser feitas em dois modos distintos:

- •Transmissão em série em que os dados são transmitidos bit a bit, uns a seguir aos outros, sequencialmente (como acontece, por exemplo entre a porta série de um computador e um modem externo);
- Transmissão em paralelo em que são transmitidos vários bits ao mesmo tempo (por exemplo, 8 bits em simultâneo, como acontece entre uma porta paralela de um computador e uma impressora).

TRANSMISSÕES SIMPLEX, HALF-DUPLEX E FULL-DUPLEX

Quanto aos sentidos em que a informação pode ser transmitida através de um canal entre emissores e recetores, as transmissões de dados podem ser de três tipos:

Simplex;

•Half-duplex;

*Full-duplex.

TRANSMISSÕES SIMPLEX

- As transmissões podem ser feitas apenas num só sentido, de um dispositivo emissor para um ou mais dispositivos recetores;
- É o que se passa, por exemplo, numa emissão de rádio ou televisão; em redes de computadores, normalmente, as transmissões não são deste tipo.

PROF. NUNO RAMOS 2022-2023

TRANSMISSÕES HALF-DUPLEX

- As transmissões podem ser feitas nos dois sentidos, mas alternadamente, isto é, ora num sentido ora no outro, e não nos dois sentidos ao mesmo tempo;
- Este tipo de transmissão é bem exemplificado pelas comunicações entre radioamadores (quando um transmite o outro escuta e vice-versa); ocorre em muitas situações na comunicação entre computadores.

PROF. NUNO RAMOS

TRANSMISSÕES FULL-DUPLEX

- As transmissões podem ser feitas nos dois sentidos simultaneamente, ou seja, um dispositivo pode transmitir informação ao mesmo tempo que pode também recebê-la;
- Um exemplo típico destas transmissões são as comunicações telefónicas; também são possíveis entre computadores, desde que o meio de transmissão utilizado contenha pelo menos dois canais, um para cada sentido do fluxo de dados.

PROF. NUNO RAMOS

PORTA SERIAL

- É um interface entre o computador e um dispositivo (mouse, modem, impressora) no qual o computador envia bits separados, um após o outro, ou seja, bit a bit.
- Tem um funcionamento muito simples, tem uma linha para enviar dados e outra para receber e os pinos restantes para verificar e regular como os dados estão sendo transferidos.
- Originalmente as portas seriais transmitiam a apenas 9.600 bits por segundo.
- No final da era do PC 486 a porta serial foi aperfeiçoada transmitindo 115 Kbits.
- A vantagem da porta serial é a sua simplicidade de funcionamento.

PORTA PARALELA

- É um interface entre o computador e um dispositivo (impressora, por exemplo)
 que permite o envio de vários bits de informação simultaneamente.
- Esta porta consegue enviar vários bits de dados através de oito condutores distintos em paralelo de uma só vez.
- O cabo tem uma grande espessura contendo 25 condutores e a transferência dos dados é controlada através do Standard Centronics (elo de ligação).
- Com o aparecimento da porta paralela bidirecional (EPP/ECP) ela consegue uma taxa de transferência elevada chegando a 1,2 MBps.
- Na transmissão unidirecional a porta paralela SPP (Standard Parallel Port) pode chegar a uma taxa de transmissão de dados a 150 KB/s.
- Comunica-se com o computador utilizando um Bus de dados de 8 bits.
- Na transmissão bidirecional a porta EPP (Enhanced Parallel Port) chega a atingir uma taxa de transferência de 2 MB/s.

FIREWIRE (IEEE 1394):

- FireWire é uma tecnologia que permite a conexão e a comunicação em alta velocidade.
- Por trás de seu desenvolvimento está a Apple (entre outras empresas), durante os anos de 1990.
- Em 1995, a tecnologia recebeu a padronização **IEEE 1394** e utilizam essa denominação ao invés de FireWire.
- A Sony foi umas da primeiras empresas (além da própria Apple) a utilizar essa tecnologia, a denomina i.LINK.
- O FireWire foi criado tendo como meta atingir vários objetivos, como:
- permitir uma conexão rápida e fácil de vários dispositivos, permitir uma taxa de transmissão de dados alta e estável, ter custo viável de fabricação;
- funcionar como "plug-and-play" e permitir que a transmissão de dados e a alimentação elétrica sejam feitas pelo mesmo cabo.

THUNDERBOLT

- THUNDERBOLT.
- Tendo a Intel como principal responsável por seu desenvolvimento;
- A tecnologia foi desenvolvida para se tornar compatível com quase todos os tipos de conexão existentes em computadores.
- Faz uso de protocolos de dois padrões bastante conhecidos pelo mercado: PCI Express e DisplayPort.
- O primeiro é um barramento há muito tempo utilizado para a conexão interna de dispositivos ao computador, como placas de vídeo e placas Ethernet.
- O segundo é uma interface para transmissões de vídeo e áudio muito usada pela Apple e por outras empresas.
- Até certo ponto, o DisplayPort concorre com o HDMI.

Thunderbolt™ 3 brings Thunderbolt to USB-C

USB

- Em 1995, um conjunto de empresas entre elas, Microsoft, Intel, NEC, IBM e Apple formou um consórcio para estabelecer um padrão.
- As primeiras especificações comerciais do que ficou conhecido como Universal Serial Bus (USB) surgiram:
 - **USB 1.0:** janeiro de 1996;
 - **USB 1.1:** setembro de 1998;
 - **USB 2.0:** abril de 2000;
 - **USB 3.0:** novembro de 2008;
 - **USB 3.1:** agosto de 2013;
 - **USB 3.2:** setembro de 2017.
- USB 3.0: SuperSpeed USB
- USB 3.1: SuperSpeed USB 10Gbps
- USB 3.2: SuperSpeed USB 20Gbps
- **USB4** (ou *USB 4*) pode permitir transferência de dados em até 40 Gb/s

THUNDERBOLT VS USB

https://youtu.be/ftOlqsJU1P8?si= uPVcMPbvLZvL3B6p&t=356

USB 2.0 high speed	480 Mbit/s	60 MB/s	2000			
FireWire (IEEE 1394b) 800 ^[65]	786.432 Mbit/s	98.304 MB/s	2002			
Fibre Channel 1 Gb SCSI	1.0625 Gbit/s	100 MB/s				
FireWire (IEEE 1394b) 1600 ^[65]	1.573 Gbit/s	196.6 MB/s	2007			
Fibre Channel 2 Gb SCSI	2.125 Gbit/s	200 MB/s				
eSATA (SATA 300)	3 Gbit/s	300 MB/s	2004			
CoaXPress Base (up and down bidirectional link)	3.125 Gbit/s + 20.833 Mbit/s	390 MB/s	2009			
FireWire (IEEE 1394b) 3200 ^[65]	3.1457 Gbit/s	393.216 MB/s	2007			
External PCI Express 2.0 ×1	4 Gbit/s	500 MB/s				
Fibre Channel 4 Gb SCSI	4.25 Gbit/s	531.25 MB/s				
USB 3.0 SuperSpeed (aka USB 3.1 Gen 1)	5 Gbit/s	500 MB/s	2010			
eSATA (SATA 600)	6 Gbit/s	600 MB/s	2011			
CoaXPress full (up and down bidirectional link)	6.25 Gbit/s + 20.833 Mbit/s	781 MB/s	2009			
External PCI Express 2.0 ×2	8 Gbit/s	1 GB/s				
USB 3.1 SuperSpeed+ (aka USB 3.1 Gen 2)	10 Gbit/s	1.212 GB/s	2013			
External PCI Express 2.0 ×4	16 Gbit/s	2 GB/s				
Thunderbolt	2 × 10 Gbit/s	2 × 1.25 GB/s	2011			
USB 3.2 SuperSpeed+[66] (aka USB 3.2 Gen 2×2)	20 Gbit/s	2.424 GB/s	2017			
Thunderbolt 2	20 Gbit/s	2.5 GB/s	2013			
FPGA Mezzanine Card Plus (FMC+)[67]	28 Gbit/s	3.5 GB/s	2019			
External PCI Express 2.0 ×8	32 Gbit/s	4 GB/s				
USB4 Gen 3×2 ^[68]	40 Gbit/s	4.8 GB/s	2019			
Thunderbolt 3 two links	40 Gbit/s	5 GB/s	2015			
Thunderbolt 4	40 Gbit/s	5 GB/s	2020			
External PCI Express 2.0 ×16	64 Gbit/s	8 GB/s				
USB4 Gen 4×2 ^[69]	80 Gbit/s	9.6 GB/s	2022			
USB4 Gen 4×2 Asymmetric	120 Gbit/s	14.4 GB/s	2022			
	13/10/2023 50					

FICHA DE TRABALHO 1 — INTRODUÇÃO ÀS REDES DE COMPUTADORES E MODELO DE COMUNICAÇÃO

- O que é uma rede informática? E as redes convergentes?
- Que tipo de comunicação é possível realizar em uma rede informática?
- Quais são os tipos de software de redes? Apresente alguns exemplos.
- Como classificação as redes de computadores de acordo com a abrangência geográfica das redes. Para isso, deve inserir imagens e uma explicação por cada imagem.
- Quais as vantagens da arquitetura Cliente-Servidor?
- Identifique os dispositivos terminais e intermédios de uma rede informática? Deve indicar exemplos de cada um.
- Diga o entende por largura de banda?
- Descreva o que são as taxas de transmissão?
- Quais as diferenças de transmissões em série e em paralelo?
- Quais as diferenças de transmissões simplex, half-duplex e full-duplex?
- Quais as principais diferenças Firewire, Thunderbolt e USB. Para isso, encontre uma imagem ou uma tabela.

NUNO RAMOS 52