# Credit card Approval Predication

**Presentation by** 

Akhilesh Maurya



#### Introduction

In this project, I applied machine learning techniques to predict credit card application approvals. By analyzing various applicant attributes and building predictive models, the goal is to understand the factors influencing approval decisions and improve the decision-making process.











### **Problem Statement**

- The primary objective of this project is to predict the approval or rejection of credit card applications.
- The challenge lies in understanding the key factors influencing credit card approval decisions and
- building a predictive model to assist in the decision-making process.











SIDDHARTH RAM

#### **Dataset Overview**



## Steps



Exploratory Data Analysis (EDA):

Feature Engineering:

Data Preprocessing:

Machine Learning Model Development:

Model Evaluation:

Predicting Credit Card Approval:

**Recommendations:** 









|            | ID      | Gender | Has<br>a<br>car | Has a<br>property | Children count | Income   | Employment<br>status | Education<br>level                  | Marital<br>status          | Dwelling             | Age    | Employment<br>length | Has a<br>mobile<br>phone | Has a<br>work<br>phone | Has a phone | Has<br>an<br>email | Job title   | Family<br>member<br>count | Account<br>age | Is<br>high<br>risk |
|------------|---------|--------|-----------------|-------------------|----------------|----------|----------------------|-------------------------------------|----------------------------|----------------------|--------|----------------------|--------------------------|------------------------|-------------|--------------------|-------------|---------------------------|----------------|--------------------|
| 0 5        | 5037048 | М      | Υ               | Y                 | 0              | 135000.0 | Working              | Secondary<br>/ secondary<br>special | Married                    | With parents         | -16271 | -3111                | 1                        | 0                      | 0           | 0                  | Core staff  | 2.0                       | -17.0          | 0                  |
| 1 5        | 5044630 | F      | Y               | N                 | 1              | 135000.0 | Commercial associate | Higher<br>education                 | Single /<br>not<br>married | House /<br>apartment | -10130 | -1651                | 1                        | 0                      | 0           | 0                  | Accountants | 2.0                       | -1.0           | 0                  |
| 2 5        | 5079079 | F      | N               | Υ                 | 2              | 180000.0 | Commercial associate | Secondary<br>/ secondary<br>special | Married                    | House /<br>apartment | -12821 | -5657                | 1                        | 0                      | 0           | 0                  | Laborers    | 4.0                       | -38.0          | 0                  |
| <b>3</b> 5 | 5112872 | F      | Y               | Υ                 | 0              | 360000.0 | Commercial associate | Higher<br>education                 | Single /<br>not<br>married | House /<br>apartment | -20929 | -2046                | 1                        | 0                      | 0           | 1                  | Managers    | 1.0                       | -11.0          | 0                  |
| 4 5        | 5105858 | F      | N               | N                 | 0              | 270000.0 | Working              | Secondary<br>/ secondary<br>special | Separated                  | House / apartment    | -16207 | -515                 | 1                        | 0                      | 1           | 0                  | NaN         | 1.0                       | -41.0          | 0                  |

df.shape

(36457, 20)



#### Distribution of Categorical Variables

14000

Distribution of Has a car

Distribution of Has a property

16000

Distribution of Gender

16000

14000



#### Distribution of Numerical Variables



Has a car vs. Is high risk

Is high risk

16000

14000

Has a property vs. Is high risk

Is high risk

1

#### Distribution of Categorical vs Target Variables

Gender vs. Is high risk

14000

Is high risk

14000

12000



#### Distribution of Numerical vs target Variables



## 2. Feature Engineerig

#### Creating 2 New columns



## 3. Data Preprocessing

## **Encoding Catgorical to Numerical**

| Gender | Has<br>a<br>car | Has a property | Children<br>count | Income   | Age | Employment<br>length | mobile | Has a<br>work<br>phone | <br>Job<br>title_Security<br>staff | Job<br>title_Waiters/barmen<br>staff | Age<br>Group_31-<br>45 | Age<br>Group_46-<br>60 | Age<br>Group_61-<br>100 | l<br>Category |
|--------|-----------------|----------------|-------------------|----------|-----|----------------------|--------|------------------------|------------------------------------|--------------------------------------|------------------------|------------------------|-------------------------|---------------|
| 1      | 1               | 1              | 0                 | 135000.0 | 44  | 8                    | 0      | 0                      | <br>0                              | 0                                    | 1                      | 0                      | 0                       |               |
| 0      | 1               | 0              | 1                 | 135000.0 | 27  | 4                    | 0      | 0                      | <br>0                              | 0                                    | 0                      | 0                      | 0                       |               |
| 0      | 0               | 1              | 2                 | 180000.0 | 35  | 15                   | 0      | 0                      | <br>0                              | 0                                    | 1                      | 0                      | 0                       |               |
| 0      | 1               | 1              | 0                 | 360000.0 | 57  | 5                    | 0      | 0                      | <br>0                              | 0                                    | 0                      | 1                      | 0                       |               |
| 0      | 1               | 1              | 0                 | 135000.0 | 36  | 10                   | 0      | 1                      | <br>0                              | 0                                    | 1                      | 0                      | 0                       |               |

## 4. Machine Learning Model Development

```
X = df encoded.drop(columns=['Is high risk', 'ID'])
y = df encoded['Is high risk']
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
y train.value counts()
Is high risk
     17464
       293
Name: count, dtype: int64
models = {
    'Logistic Regression': LogisticRegression(max iter=1000, random state=42),
    'Decision Tree': DecisionTreeClassifier(random state=42),
    'Random Forest': RandomForestClassifier(random state=42),
    'Gradient Boosting': GradientBoostingClassifier(random state=42),
    'Support Vector Machine': SVC(probability=True, random state=42),
    'K-Nearest Neighbors': KNeighborsClassifier(),
    'XGBoost': xgb.XGBClassifier(eval metric='logloss', use label encoder=False, random state=42)
```

## 5. Model Evaluation

```
Model: Random Forest
Confusion Matrix:
[[4341
         16]
 65
         18]]
Classification Report:
                           recall f1-score
               precision
                                                 support
                    0.99
                               1.00
                                         0.99
                                                    4357
           1
                    0.53
                               0.22
                                         0.31
                                                      83
                                         0.98
    accuracy
                                                    4440
   macro avg
                    0.76
                               0.61
                                         0.65
                                                    4440
weighted avg
                    0.98
                               0.98
                                         0.98
                                                    4440
Model: Gradient Boosting
Confusion Matrix:
[[4355
          2]
          411
    79
Classification Report:
                            recall f1-score
               precision
                                                 support
           0
                    0.98
                               1.00
                                         0.99
                                                    4357
           1
                    0.67
                               0.05
                                         0.09
                                                      83
    accuracy
                                         0.98
                                                    4440
   macro avg
                    0.82
                               0.52
                                         0.54
                                                    4440
weighted avg
                    0.98
                               0.98
                                         0.97
                                                    4440
Model: Support Vector Machine
Confusion Matrix:
[[4357
          0]
    83
          ø]]
```

## 5. Model Evaluation

#### data is imbalanced



# 6. Making data balanced

#### I Apply Smote



## 7. Feature Importance



### 8. Conclusion

- Our Random Forest model achieved an impressive 99% accuracy in predicting credit card approvals.
- Key factors influencing approval include income, employment length, age, marital status, and credit history.
- These insights highlight the importance of stable income and long-term employment in the approval process.
- By focusing on these critical factors, financial institutions can better assess applicant risk, improve decision-making, and enhance the credit approval process.