

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

Exercise 6: Adjustment Calculation - part I - Linear adjustment problem -				
Group:	Surname, First name:	Matriculation number:	Signature*:	
* With my signature I declare that I was involved in the elaboration of this homework.				
Submission until: 08.12.2024				

Objective

This exercise deals with the adjustment of the parameters of a straight line which is represented by four measured points as depicted in Figure 1.

Table 1: Coordinates of the four points

Point	х	у
	[m]	[m]
1	1.0	0.1
2	2.0	1.1
3	3.0	1.8
4	4.0	2.4

Figure 1: Four given points and adjusted straight line

Task 1:

Table 1 contains the coordinates of four points, where the x-coordinates are error free (fixed values) and the y-coordinates are measurements which are subject to random errors. The objective of this task is the determination of the unknown parameters of the straight line via least-squares adjustment **without** using matrix notation. The measurements are uncorrelated and were obtained with the same standard deviation.

- 1. Set up an appropriate functional model as well as the observation equations.
- 2. Set up the stochastic model.
- 3. Determine the normal equations for the target function $\sum p_i v_i^2 \rightarrow \min$.
- 4. Solve the normal equation system and determine the unknown parameters of the straight line.
- 5. Calculate the residuals.

Task 2 (Homework):

Adjust the two parameters of the straight line without using matrix notation.

- 1. The measurements are uncorrelated and were obtained with the standard deviations listed in Table 2.
- 2. Repeat steps 1 to 5 of Task 1 while this time using the given standard deviations for the measured *y*-coordinates.

Table 2: Standard deviations for the *y*-coordinates

Point	σ_{y_i} [cm]	
1	2	
2	1	
3	4	
4	2	