



Lecture due Oct 5, 2021 20:30 IST



**Practice** 

### Circle 1

1/1 point (graded)

In lecture, we saw the parametric equations for the unit circle. More generally, one may consider the equations

$$x(t) = a + r\cos t \tag{6.95}$$

$$y(t) = b + r\sin t \tag{6.96}$$

where 
$$0 \le t < 2\pi$$
 (6.97)

What is the resulting trajectory?

| $lacksquare$ A circle centered at $(a,b)$ with radius $oldsymbol{r}$ . |
|------------------------------------------------------------------------|
| $igcap$ A circle centered at $(a,b)$ with radius $r^2$ .               |
| $igcap$ A circle centered at $(b,a)$ with radius $m{r}$ .              |
| igcap A circle centered at $(0,0)$ with radius $a+b+r$ .               |
| None of the above                                                      |

#### **Solution:**

The new radius is r, because the trajectory will be the unit circle scaled by r. The a and b terms serve to translate the x coordinate by a units to the right, and the y coordinate by b units up. The the correct choice is "A circle centered at (a,b) with radius r.".

Submit

You have used 1 of 2 attempts

**1** Answers are displayed within the problem

### Circle 2

1/1 point (graded)

Now consider the equations:

$$x\left(t\right) = \sin t \tag{6.98}$$

$$y(t) = \cos t \tag{6.99}$$

where 
$$0 \le t < \pi$$
 (6.100)

What is the resulting trajectory?

igorplus A semi-circle contained in the  $x\geq 0$  half-plane. igorplus Calculator igorplus Hide Notes

| A semi-circle contained in the $y \ge 0$ half-plane.  A semi-circle contained in the $y \le 0$ half-plane.  None of the above  Solution:  We still have $x^2 + y^2 = 1$ , so the trajectory is contained in a unit circle. By plotting points, we can see that $x$ will nove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice is the semi-circle in the $x \ge 0$ half-plane.  Submit You have used 1 of $2$ attempts  On Answers are displayed within the problem  Circular Parametric  A point (graded)  Consider the unit circle given by $x^2 + y^2 = 1$ . Which of the following parametric equations describes this curve or $t > 0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix} \qquad (6.101)$ $\vec{r}_3 = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix},  \vec{r}_4 = \begin{pmatrix} t \\ \sqrt{1-t^2} \end{pmatrix} \qquad (6.102)$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None of the above volution:  The still have $x^2 + y^2 = 1$ , so the trajectory is contained in a unit circle. By plotting points, we can see that $x$ will ove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice the semi-circle in the $x \geq 0$ half-plane.  Submit You have used 1 of 2 attempts  Tircular Parametric point (graded) onsider the unit circle given by $x^2 + y^2 = 1$ . Which of the following parametric equations describes this curve or $t > 0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix}$ (6.101)                                                                                                                                                                                                                                                                                                                     |
| Foliation:  e still have $x^2 + y^2 = 1$ , so the trajectory is contained in a unit circle. By plotting points, we can see that $x$ will ove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice the semi-circle in the $x \geq 0$ half-plane.  Submit You have used 1 of 2 attempts  Answers are displayed within the problem  incular Parametric point (graded) onsider the unit circle given by $x^2 + y^2 = 1$ . Which of the following parametric equations describes this curve of $t > 0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix}$ (6.101)                                                                                                                                                                                                                                                                                               |
| e still have $x^2+y^2=1$ , so the trajectory is contained in a unit circle. By plotting points, we can see that $x$ will ove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice the semi-circle in the $x\geq 0$ half-plane.  Submit You have used 1 of 2 attempts  Answers are displayed within the problem  incular Parametric point (graded) on sider the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve of $t>0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix}$ (6.101)                                                                                                                                                                                                                                                                                                                     |
| e still have $x^2+y^2=1$ , so the trajectory is contained in a unit circle. By plotting points, we can see that $x$ will ove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice the semi-circle in the $x\geq 0$ half-plane.  Submit You have used 1 of 2 attempts  Answers are displayed within the problem  incular Parametric point (graded) on sider the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve of $t>0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix}$ (6.101)                                                                                                                                                                                                                                                                                                                     |
| ove from $0$ , up to $1$ , then back to $0$ . Similarly, we find that $y$ moves from $1$ to $-1$ . Therefore, the correct choice the semi-circle in the $x \geq 0$ half-plane. Submit You have used 1 of 2 attempts  Answers are displayed within the problem ircular Parametric point (graded) onsider the unit circle given by $x^2 + y^2 = 1$ . Which of the following parametric equations describes this curve of $t > 0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix}$ (6.101)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Answers are displayed within the problem ircular Parametric point (graded) possider the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve or $t>0$ ? $\vec{r}_1=\begin{pmatrix}\cos t\\\sin t\end{pmatrix}, \vec{r}_2=\begin{pmatrix}\cos(-t)\\\sin(-t)\end{pmatrix} \tag{6.101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ircular Parametric point (graded) shader the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve $t>0$ ? $\vec{r}_1 = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix},  \vec{r}_2 = \begin{pmatrix} \cos (-t) \\ \sin (-t) \end{pmatrix} \tag{6.101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| point (graded) consider the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve $t>0$ ? $\vec{r}_1=\left(\frac{\cos t}{\sin t}\right), \vec{r}_2=\left(\frac{\cos(-t)}{\sin(-t)}\right) \tag{6.101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| In sider the unit circle given by $x^2+y^2=1$ . Which of the following parametric equations describes this curve $t>0$ ? $\vec{r}_1=\left(\frac{\cos t}{\sin t}\right), \vec{r}_2=\left(\frac{\cos(-t)}{\sin(-t)}\right) \tag{6.101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\vec{r}_3 = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix},  \vec{r}_4 = \begin{pmatrix} t \\ \sqrt{1 - t^2} \end{pmatrix}$ (6.102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ec{m{r}}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ec{m{r}}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ec{m{r}}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ec{r}_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| olution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| though $ec r_1$ , $ec r_2$ and $ec r_3$ have generally different motions, they all eventually trace out the unit circle trajectory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ne $ec r_4$ option could only trace out the top half of the circle, and for $t>0$ we only get a quarter of the circle. In thermore, the domain of $ec r_4$ is restricted to $t<1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Submit You have used 2 of 2 attempts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

2. Circular Trajectories

**Topic:** Unit 5: Curves and Surfaces / 2. Circular Trajectories



3/5

Next >

Show all posts

There are no posts in this topic yet.

Previous



© All Rights Reserved



## edX

**About** 

**Affiliates** 

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

# Legal

Terms of Service & Honor Code

Privacy Policy

**Accessibility Policy** 

<u>Trademark Policy</u>

<u>Sitemap</u>

## **Connect**

**Blog** 

**Contact Us** 

Help Center

Media Kit

**Donate** 















© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>



