

Are we what we tweet?

Final Capstone

Nadine Ruecker

April 15th 2019

Obesity

Body-mass-index >30kg/m²

Overweight: BMI 25-30

Medical condition, associated with:

- cardiovascular disease
- type-2-diabetes
- some forms of cancer
- osteoarthritis
- mental illness

Huge burden for the medical system and the economy.

Reasons: Genetics, behavior and society

Adult obesity rates, 1990 to 2017

https://www.stateofobesity.org/adult-obesity/

Hypothesis

Can twitter data predict obesity rates and associated health indicators?

Can NLP determine a healthy from an unhealthy tweet?

Data – Search terms

	healthy	unhealthy
Restaurants 15 vs. 19	Panerabread, jasonsdeli, aubonpain, Noodles and Company, Chipotle, AtlantaBread, EinsteinBros, LePainQuotidien, Justsalad, Mymarthas, krunch, chopt, sweetgreen, cava, olivegarden	kfc,tacobell,burgerking,cinnabon,chickfila, PandaExpress,dunkindonuts,pizzahut,Waffl e House, cinnabon, AutieAnnes, cheesecake,arbys,wendys,FiveGuys,Shake shack,WhiteCastle,DairyQueen,quiznos
Activities 44 vs. 38	run,running,ran,walk,walking,walked,hike, hiking,hiked,surf,surfing,yoga,exercise, climb,climbed,soccer,tennis,volleyball,base ball,softball,swim,swimming,swam,dance,b allet,mountainbike,marathon,triathlon,boxi ng,kickboxing,gymnastics,ski,skiing,snow boarding,snowboard,kanu,kayak,row,rowin g,sail,sailing,sailed, body building, spinning, cardio	couch,sofa,nap,sleep,TV,watch,watching,watched,HBO,Netflix,binge watch,binge watched,HULU,Amazon Video,season,primevideo,television,slinc,CBS,philo,fuboTV,direct TV,Youtube TV,Youtube,playstation,xbox,wii,ESPN,Showtime,ABC,Starz,Fox,binge,Pluto TV, lazy,cozy,blanket,pillow
Food 66 vs. 28	banana,blackberries,blueberries,cherry,coc onut,cranberry,date,fig,goji, grape,grapefruit,kiwi,lemon,lime,lyche,ma ngo,melon,watermelon,nectarine, orange,papaya,passionfruit,peach,pear,plu m,pineapple,pomegranate,raspberry, star fruit,strawberry,cantaloupe,artichoke,aspa ragus,beans,legumes,broccoli, brussels sprouts,cabbage,cauliflower,celery,endives ,fennel,kale,spinach,lettuce,salad,mushroo ms,okra,garlic,chives,beetroot,beets,ginge r,radish,squash,tomato	lemonade,coke,soda,sprite,pepsi,pizza,frie s,burger,cheeseburger,cheese,cream,sauc e,cupcake,cake,cookie,donut,chips,syrup,c andy,fudge,pie,pudding,brownie, all you can eat,frozen yoghurt,chicken nuggets,waffle,pancake

For each query collect a sample of 2000 tweets.

Data – Scrapping twitter

```
"created at": "Thu Jun 22 21:00:00 +0000 2017",
"id": 877994604561387500,
"id str": "877994604561387520",
"text": "Creating a Grocery List Manager Using Angular, Part 1: Add & amp; Display Items https://t.co/xFox78juL1 #Angular",
"truncated": false,
"entities": {
  "hashtags": [{
    "text": "Angular",
    "indices": [103, 111]
  }],
  "symbols": [],
  "user mentions": [],
  "urls": [{
    "url": "https://t.co/xFox78juL1",
    "expanded url": "http://buff.lv/2sr60pf",
    "display url": "buff.ly/2sr60pf",
    "indices": [79, 102]
  }]
"source": "<a href=\"http://bufferapp.com\" rel=\"nofollow\">Buffer</a>",
"user": {
  "id": 772682964,
  "id str": "772682964",
  "name": "SitePoint JavaScript",
  "screen name": "SitePointJS",
  "location": "Melbourne, Australia",
  "description": "Keep up with JavaScript tutorials, tips, tricks and articles at SitePoint.",
  "url": "http://t.co/cCH13ggeUK",
  "entities": {
```

Data – Scrapping twitter - Constraints

	Standard API						
Rate	2000 / h						
Li 200 queries * 4 years * 2000 tweets ⇒ 800.000 tweets But only 500 tweets per request							
Historic tweets	no						
Spe 200 queries * 4 year * 2000 tweets = 1.6 M tweets 1.600.000/2000= 800h to look up user data Cos => 33 days							
Cus	-> 33 (uays					
Main Problem	No historic tweets						

Capstone Presentation - April 15th 2019

Data - Locate Tweet to US State

Coo	rdinat Date	Location	Place	Query	ScreenNa	Text	TweetId	UserId	Cat
0	Wed Mar			fruit	Sofie_Lov	ðŸ~ðŸ~Introducing Soulfood	1.11E+18	4.49E+08	healthy
1	Wed Mar			fruit	marvinbry	If a fruit has to have seeds, what	1.11E+18	3.66E+08	healthy
2	Wed Mar			fruit	intemittn	colleges (Yale, etc.) because	1.11E+18	3.3E+08	healthy
3	Wed Mar :			fruit	fruit_brea	@expogamerdev 0_0	1.11E+18	1.07E+18	healthy
4	Wed Mar:	New Orleans		fruit	_cbiscuit	@cousinwayne Club in the FQ ca	1.11E+18	27380994	healthy
5	Wed Mar	West Java		fruit	dophamir	RT @techinsider: Here's how to I	1.11E+18	1.07E+18	healthy
6	Wed Mar	Cynthiana, IN		fruit	waynenal	Today's "Abide In Christ" by And	1.11E+18	18128585	healthy
7	Wed Mar	Yorkshire UK		fruit	LizWalker	@saranewman321 I also have a s	1.11E+18	4.37E+08	healthy
8	Wed Mar:	Republik Federasi Indonesia		fruit	Herrreza	RT @techinsider: Here's how to	1.11E+18	25979312	healthy
9	Wed Mar:	Sna Francisco		fruit	IDFRQK	RT @jiggyJurmy: Petition to char	1.11E+18	4.21E+09	healthy
10	Wed Mar:	Thataway		fruit	RhodyRep	@lanDon @StopandShop Bags of	1.11E+18	9.41E+17	healthy
11	Wed Mar:	Dublin City, Ireland		fruit	Strictlysu	@suggbuswell_ @Joe_Sugg @dk	1.11E+18	9.92E+17	healthy
12	Wed Mar:	805		fruit	Eazy22	Got some fruit to eat on my lunc	1.11E+18	38101845	healthy
13	Wed Mar:			fruit	MinionCa	Is it bad @preston_scherr that I'r	1.11E+18	1.11E+18	healthy
14	Wed Mar:	camp half blood		fruit	chxrasriel	RT @hattiesoykan: oliver:elio: i	1.11E+18	6.06E+08	healthy
15	Wed Mar:	Worldwide		fruit	TopTwts	Here's how to remove pesky pes	1.11E+18	4.89E+08	healthy
16	Wed Mar	STL		fruit	mirwads	I had to make a personality type	1.11E+18	1.94E+08	healthy

~17% can be located to a US State.

Source: https://www.kff.org/statedata/

Collected data for several health indicators -> age_adjusted Diabetes death rate

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed
- -> ER visits

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed
- -> ER visits
- -> Hospital stays

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed
- -> ER visits
- -> Hospital stays
- -> Inpatient days

Source: https://www.kff.org/statedata/

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed
- -> ER visits
- -> Hospital stays
- -> Inpatient days
- -> Adult Overweight/Obesity Rate

Source: https://www.kff.org/statedata/

Collected data for several health indicators

- -> age_adjusted Diabetes death rate
- -> age_adjusted Heart disease death rate
- -> Diabetes diagnosed
- -> ER visits
- -> Hospital stays
- -> Inpatient days
- -> Adult Overweight/Obesity Rate
- -> Adults reporting fair or poor health status

Adults reporting fair or poor health 2016

Combi_Indi: Add all normalized health indicators into one feature

The higher Combi_Indi the unhealthier.

:

ERvisits

HospStays

It Overweight/Obesity Rate

eporting Fair or Poor Health Status

- 1. Combi_Indi: Add all normalized health indicators into one feature
- 2. Regions and Divisions: 4 Regions + 9 Divisions
 - 1. Northeast:
 - I. CT, ME, MA, NH, RI, VT
 - II. NJ, NY, PA
 - 2. Midwest

III. IL, IN, MI, OH, WI

IV. IA, IN, KS, MN, ND, SD, MO, NE

3. South

V. DE, FL, GA, MD, NC, SC, WV

VI. AL, KY, MS, TN

VII. AR, LA, OK, TX

4. West

VIII: AZ, CO, ID, MT, NM, NV,UT,WY

IX: AK, CA, HI, OR, WA

- 1. Combi_Indi: Add all normalized health indicators into one feature
- 2. Regions and Divisions: 4 Regions + 9 Divisions
- 3. Drop normalized counts

norm healthy 1 0.97 0.93 0.98 norm_unhealthy norm healthyAct 0.96 0.93 0.97 norm unhealthyAct 0.99 0.99 0.94 0.99 norm healthyFood 0.97 0.92 0.97 norm unhealthyFood 0.96 0.99 0.97 0.93 0.95 0.93 0.94 0.92 0.95 norm healthyRest 1 0.97 0.99 0.97 norm unhealthyRest norm unhealthyRest norm_healthy norm_healthyFood norm_unhealthyFood norm_healthyRest norm_unhealthy norm_healthyAc norm_unhealthyAc Capstone Presentation - April 15th 2019

- 1. Combi_Indi: Add all normalized health indicators into one feature
- 2. Regions and Divisions: 4 Regions + 9 Divisions
- 3. Drop normalized counts
- 4. Keeping only UnH_ratio
 - $Tweet_ratio = \frac{Sum(unhealthy\ tweets)}{Sum(healthy\ tweets)}$

•

Data for Modeling

Data for Modeling

Tweet count ratio

Combi_Indi

Data for Modeling

Tweet count ratio

Unhealthy/Healthy Tweet Ratio Average 2013-2016

Tweet Ratio

1.4

1.2

1

0.8

0.6

Combi_Indi

Combined health indicator Average 2013-2016

Modeling with hand selected features

Natural language processing

- 1. Vectorized tweets into tfidf matrix
- 2. Tested models on:
 - 1. LSA (n=300, ~30% variance)

Classification of Health Cat

- 1. Vectorized tweets into tfidf matrix
- 2. Feature generation:
 - 1. LSA (n=300, ~30% variance)
 - 2. Combined LSA with health data and regional data
 - 3. Categorized Combi_Indi to Health_Cat
 - 4. Balanced dataset by undersampling

Capstone Presentation - April 15th 2019

Classification of Health Cat

- 1. Vectorized tweets into tfidf matrix
- 2. Feature generation:
 - 1. LSA (n=300, ~30% variance)
 - 2. Combined LSA with health data and regional data
 - 3. Categorized Combi_Indi to Health_Cat
 - 4. Balanced dataset by undersampling

Tweet count ratio and regional features per Year- State - Combi_Indi

• U	JnH_ratio o	Combi_indi ø	Year o	Division_EastNorthCentral	Division_East:	SouthCentral Division_N	ildAtiantic Division_	Mountain Division_NewEr	¹ 188,
0	0.852940	0.599171	2013	0		1	0	0	100,
1	1.028597	0.510582	2014	0	1	1	0	0	
2	0.834628	0.559005	2015	0	_	1	0	0	
3	1.566837	0.560150	2016	0		1	0	0	
4	0.768955	-0.409322	2013	0		0	0	0	

LSA data and regional features per tweet

Combl_Indl	I88_1 ⊕	I88_2 ⊕	I88_3 ⊕	188_4 ⊕	I88_5 ⊕	I88_6 ⊕	I88_7 ø	I88_8 ø	I8a_9 ⊕
0.600182	0.098676	-0.031747	-0.031175	0.002269	-0.040481	-0.018853	-0.038722	0.014207	-0.001484
0.600182	0.028051	0.016936	-0.016182	-0.001850	-0.012465	v63	-0.008152	-0.008289	0.009551
0.600182	0.210179	0.027338	-0.029103	-0.112215	0.020549	0.009320	-0.042097	-0.084879	0.021942
0.600182	0.153372	-0.090189	-0.018333	0.028724	-0.065652	-0.089376	-0.115554	0.022423	-0.015860
0.600182	0.091618	0.003121	-0.033694	-0.047823	-0.022902	-0.010381	-0.002685	-0.053919	-0.010912

11820, 363

Capstone Presentation - April 15th 2019

Classification of Health Cat

- 1. Vectorized tweets into tfidf matrix
- 2. Feature generation:
 - 1. LSA (n=300, ~30% variance)
 - 2. Combined LSA with health data and regional data
 - 3. Categorized Combi_Indi to Health_Cat
 - 4. Balanced dataset by undersampling

Capstone Presentation - April 15th 2019

Discussion and Outlook

Can twitter data predict obesity rates and associated health indicators? -yes

Can NLP determine a healthy from an unhealthy tweet? - yes

Discussion:

Region data carried a lot predictive power.

Biggest problem- Size of the dataset.

Better use tfidf-svd data set with categorical variable.

Discussion and Outlook

Can twitter data predict obesity rates and associated health indicators? -yes

Can NLP determine a healthy from an unhealthy tweet? - yes

Discussion:

Region data carried a lot predictive power.

Biggest problem: Size of the dataset

Better use tfidf-svd data set with categorical variable.

Future:

Refine the model to city level

Collect ten years of maximum amount of data: since twitter went online

Use data for time series prediction

Thank You!

Tweepy: http://docs.tweepy.org/en/v3.5.0/

Twint: https://github.com/twintproject/twint

Code:

https://github.com/NaRuecker/Final-

<u>Capstone/blob/master/Final%20Capstone%20Regression%204Years.ipynb</u>