ÜBUNG 1 KONSISTENZORDNUNG

1. Geben Sie die Konsistenzordnung der modifizierten Euler-Formel an:

$$y_n = y_{n-1} + hf(t_{n-1} + \frac{h}{2}, y_{n-1} + \frac{h}{2}f(t_{n-1}, y_{n-1})).$$

2. Zeigen Sie, dass das Einschrittverfahren mit

$$F(h;t,x) = \sum_{r=1}^{3} b_r k_r(h;t,x)$$

und

$$k_1 := f(t, x), \quad k_2 := f(t + \frac{h}{3}, x + \frac{h}{3}k_1), \quad k_3 := f(t + \frac{5}{6}h, x - h(\frac{-5}{12}k_1 + \frac{5}{4}k_2))$$

 $b_1 = \frac{1}{10}, \qquad b_2 = \frac{1}{2}, \qquad b_3 = \frac{4}{10}$

die Konsistenzordnung drei besitzt.

3. Zeigen Sie, dass das allgemeine Einschrittverfahren mit

$$F(h;t,x) = \sum_{i=1}^{s} b_i k_i(h;t,x)$$

und

$$k_i = f(t_{n-1} + c_i h_n, y_{n-1} + h \sum_{j=1}^{s} a_{ij} k_j)$$

genau dann konsistent ist, wenn $\sum_{i=1}^{s} b_i = 1$.

7 Punkte

ÜBUNG 2 RUNDUNGSFEHLER

Bei der Durchführung einer expliziten (L-stetigen) Einschrittmethode mit Lösung u(t) für $t \ge t_0$ und numerischer Approximation durch eine Gitterfunktion $(\tilde{y}_n)_{n\ge 0}$, wird wegen des unvermeidbaren Rundungsfehlers eine gestörte Rekursion

$$\tilde{y}_n = \tilde{y}_{n-1} + h_n F(h_n; t_{n-1}, \tilde{y}_{n-1}) + \epsilon_n, \quad n \ge 1,$$

gelöst. Die "lokalen" Fehler verhalten sich dabei wie $\|\epsilon_n\| \propto \exp \|y_n\|$, wobei eps den maximalen relativen Rundungsfehler bezeichnet. O.B.d.A. sei $\tilde{y}_o = u(t_0)$ angenommen. Beweisen Sie die Abschätzung

$$\|\tilde{y}_n - u(t_n)\| \le K(t_n) \left(\max_{1 \le m \le n} \|\tau_m\| + \operatorname{eps} \max_{1 \le m \le n} h_m^{-1} \|y_m\| \right).$$

4 Punkte

ÜBUNG 3 VERGLEICH VERSCHIEDENER ZEITSCHRITTVERFAHREN (PROGRAMMIERAUFGABE)

Betrachten Sie die AWA

$$u'(t) = \frac{-t}{u(t)}, \quad t_0 = -0.5 \le t < 1, \quad u(t_0) = 0.75$$

- 1. Implementieren Sie ein Runge-Kutta Verfahren 3. Ordnung analog zum Beispiel explixiteuler.hh in hdnum. Verifizieren Sie für konstante Schrittweiten $h=2^{-i},\,i=3,\ldots,8$ die Konvergenz 3. Ordnung dieses Verfahrens zum Zeitpunkt t=0. (Exakte Lösung $u(t)=\sqrt{1-t^2}$) Betrachten sie ausserdem die Konvergenzordnung mit dem Expliziten Euler Verfahren zu denselben Schrittweiten zu diesem Zeitpunkt.
- 2. Untersuchen Sie für beide Verfahren die Konvergenzordnung zum Zeitpunkt t=1. Was beobachten sie, und wie lässt sich diese Verhalten erklären?

5 Punkte