产品承认书

PRODUCT SPECIFICATIONS

Customer (客户):	
Product (物料名称):	HT1.6IPSTFT-24P
Driver (驱动):	
Model (规格型号):	
Date (日期):	2019-9-24

客户确认 Cust	omer Approval
项目负责人 Project Manager	
品质主管 Director of Quality	
采购工程师 Purchasing Engineer	

REVISION RECORD

REV NO	REV DATE	CONTENTS	REMARKS
1.0	2019-08.10	First Release	

TABLE OF CONTENT

- GENERAL SPECIFICATIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- BACKLIGHT CHARACTERISTICS
- DIMENSIONAL DRAWING
- INTERFACE PIN CONNECTIONS
- ELECTRO-OPTICAL CHARACTERISTICS
- INSPECTION CRITERIA
- RELIABILITY
- PRECAUTIONS FOR USING LCD MODULE
- USING LCD MODULES

1.0 General Specifications

HT1.6IPSTFT-24pis a color active matrix LCD module incorporating amorphous silicon TFT (Thin Film Transistor). It iscomposed of a color TFT-LCD panel, driver IC, FPC and a back light unit. The module display area contains 400X400 pixels and can display up to 262K colors. This product accords with RoHS environmentalcriterion.

Item	Contents	Unit
LCD Type	Normally Black	/
	Transmissive LCD	
Viewing direction	IPS(Full View)	O' Clock
Module outline (W x HxD)	42.94 x45.89x1.65	mm
Active area (WxH)	39.84 x39.84	mm
Number of Dots	400(RGB) x400	/
Driver IC	ST7797	/
Colors	262K	/
Backlight Type	3 LED Parrallel	/
Interface Type	MIPI interface	/
Input voltage	2.8~3.2V	V

2.0 ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Supply voltage for logic	Vcc1,Vcc2	-0.3	4.6	V
Input voltage	Vin	-0.3	VCC+ 0.3	V
Operating temperatur	Тор	-20	70	$^{\circ}$ C
Storage temperature	Tst	-30	80	\mathbb{C}
Humidity	RH		90%(Max60C)	RH

3.0 ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage for logic	Vcc -Vss	2.6	2.8	3.2	V
Input Current	Idd		10		mA
Input voltage ' H ' level	Vih	0.7Vdd		Vdd	V
Input voltage ' L ' level	Vil	-Vss		0.2 Vdd	V
Output voltage 'H' level	Voh	0.8 Vcc		Vcc	V
Output voltage 'L' level	Vol	0	0	0.2 Vcc	V

4.0 BACKLIGHT CHARACTERISTICS

Item	Symbol	Min	Тур	Max	Unit	Condition
Forward voltage	Vf	5.6	6.0	6.5	v	
Luminance	Lv		300		cd/m2	If=20mA
Number of LED			2		Piece	
Connection mode	P		Serial			

Using condition: constant current driving method If= 20 mA(+/-10%)

5.0 DIMENSIONAL DRAWING

6.0 INTERFACE PIN CONNECTIONS

Pin.No	Symbol	Function
1	GND	Ground
2	RESET	This signal will reset the device and it must be applied to properly initialize the chip.
3	TDN0	Negative polarity of low voltage differential data signal.
4	NC	No Connect
5	TDP0	Positive polarity of low voltage differential data signal.
6	NC	No Connect
7	GND	Ground
8	TE	Tearing effect output. If not used, leave this pin open.
9	TCN	Negative polarity of low voltage differential clock signal.
10	GND	Ground
11	TCP	Positive polarity of low voltage differential clock signal.
12~14	GND	Ground
15	IOVCC18	Power Supply for I/O system.(1.8V or VCC)
16	VCC28	Power Supply for Analog, Digital System and Booster Circuit.
17,18	GND	Ground
19~22	NC	No Connect
23	LEDK	back light power supply negative
24	LEDA	back light power supply positive

6.1 TIMING CHARACTERISTICS

6.1.1 MIPI Interface Characteristics

--High Speed Mode

Clock Channel Timing

Timing Characteristics

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
DSI-CLK+/-	2xUI _{INSTA}	Double UI instantaneous	4	25	ns	590
DSI-CLK+/-	UI _{INSTA} UI _{INSTB}	UI instantaneous halfs	2	12.5	ns	UI = UI _{INSTA} = UI _{INSTB}
DSI-Dn+/-	tDS	Data to clock setup time	0.15	-	UI	((*)
DSI-Dn+/-	tDH	Data to clock hold time	0.15	12.6	UI	121
	-2					

Data Transmission

Data lanes-Low Power Mode to/from High Speed Mode Timing

Clock lanes- High Speed Mode to/from Low Power Mode Timing

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
	Lov	v Power Mode to High Speed Mo	de Timing	- 39		
DSI-Dn+/-	TLPX	Length of any low power state period	50	72	ns	Input
DSI-Dn+/-	THS-PREPARE	Time to drive LP-00 to prepare for HS transmission	40+4UI	85+6U	l ns	Input
DSI-Dn+/-	THS-TERM-EN	Time to enable data receiver line termination measured from when Dn crosses VILMAX	131	35+4U	l ns	Input
DSI-Dn+/-	THS-PREPARE + THS-ZERO	THS-PREPARE + time to drive HS-0 before the sync sequence	140+10U	-	ns	Input
	Hig	h Speed Mode to Low Power Mo	de Timing			
DSI-Dn+/-	THS-SKIP	Time-out at display module to ignore transition period of EoT	40	55+4UI	ns	Input
DSI-Dn+/-	THS-EXIT	Time to drive LP-11 after HS burst	100		ns	Input
DSI-Dn+/-	THS-TRAIL	Time to drive flipped differential state after last payload data bit of a HS transmission burst	data 60+4UI -		ns	Input
	High S	Speed Mode to/from Low Power I	Mode Timi	ng	- 10	
DSI-CLK+/-	TCLK-POS	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52 UI		ns	Input
DSI-CLK+/-	TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	ns	Input
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100		ns	Input
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for HS transmission	38	95	ns	Input
DSI-CLK+/-	TCLK-TERM-EN	Time-out at clock lan display module to enable HS transmission	- 2	38	ns	Input
DSI-CLK+/-	TCLK-PREPARE + TCLK-ZERO	Minimum lead HS-0 drive period before starting clock	300 -		ns	Input
DSI-CLK+/-	TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8UI -		ns	Input
DSI-CLK+/-	ТЕОТ	Time form start of TCLK-TRAIL period to start of LP-11 state	=	105ns+ 12UI	ns	Input

--Bus Turnaround Procedure

Bus Turnaround (BTA) from display module to MPU Timing

Bus Turnaround (BTA) from MPU to display module Timing

VDDI=1.8V,VCI=2.8V, AGND=DGND=AGNDR=0V, Ta=25 €

Signal	Symbol	Parameter	MIN	MAX	Uni t	Description
DSI-D0+/-	TLPXM	Length of LP-00,LP-01, LP-10 or LP-11 periods MPU→Display Module	50	75	ns	Input
DSI-D0+/-	TLPXD	Length of LP-00,LP-01, LP-10 or LP-11 periods MPU→Display Module	50	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	TLPXD	2xT _{LPXD}	ns	Output
DSI-D0+/-	TTA-GETD	Time to drive LP-00 by display module	5xTurxo		ns	Input
DSI-D0+/-	TTA-GOD	Time to drive LP-00 after turnaround request-MPU	4xTLPxD		ns	Output

MIPI Interface BTA ModeTiming Characteristics

6.2. Reset Input Timing

VDDI=1.8V,VCI=2.8V, AGND=DGND=AGNDR=0V, Ta=25 ℃

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	1-4	us
RESX	TDT	D	// <u>*</u>	5 (Note 1, 5)	ms
	TRT	Reset cancel	-	120 (Note 1, 6, 7)	ms

6.3 BLOCK DIAGRAM OF LCM

7. ELECTRO-OPTICAL CHARACTERISTICS

Item Symbol Condition Min. Typ. Max. Unit Note Transmittance % Normal POL T(%) 4.65 (with Polarizer) Transmittance % T(%) TBD (without Polarizer) 640 800 Θ=0 Contrast Ratio CR (1)(2)Normal viewing 30 35 Response Time $T_R + T_F$ (1)(3)msec angle Color Gamut S(%) 50 % (0.281)(0.301)(0.321) W_{x} White (0.31)(0.33)(0.35)Wy TBD TBD TBD Rx Red Color TBD TBD Ry TBD (1)(4)Chromaticity CF glass TBD TBD Gx TBD (CIE1931) Green TBD TBD Gy TBD TBD TBD Bx TBD Blue TBD TBD TBD By Viewing Angle Θ_{L} 80 Hor. base on using Θ_R 80 Normal Viewing Angle CR>10 Polarizer , Θυ 80 Reference Ver. Θ_D 80 Only Optima View Direction ALL (5)

7. 1 ELECTRO-OPTICAL CHARACTERISTICS TEST METHOD

7.2 DEFINITION OF OPERATING VOLTAGE, VOP

 $Vop = (V_{10,ON} + V_{90,OFF})/2$

7.3 DEFINITION OF OPTICAL RESPONSE TIME

7.4 DEFINITION OF VIEWING ANGLE @ AND

7.5 DEFINITION OF CONTRAST RATIO, CR

 $CR = \frac{Brightness\ of\ Non-selected\ Segment\ (B2)}{Brightness\ of\ Selected\ Segment\ (B1)}$

8. INSPECTION CRITERIA

8.1 Inspection Conditions

8.1.1Environmental conditions

The environmental conditions for inspection shall be as follows

Room temperature: 20 ± 3 °C

Humidity: 65±20%RH

8.1.2 The external visual inspection

With a single 20-watt fluorescent lamp as the light source, the inspection was in the distance of 30cm or more from the LCD to the inspector's eyes.

8.2 LIGHT METHOD

Inspection distance and angle

Inspection should be performed within angle $\phi(\phi)$ is usually 30°) from Z axis to each X and Y. Inspection distance in any direction within ϕ must be kept 30±5cm from the display surface.

8.3 Classification of defects

9.3.1Major defect

A major defect refers to a defect that may substantially degrade usability for product applications.

9.3.2 Minor defect

A minor defect refers to a defect which is not considered to be able substantially degrade the product application or a defect that deviates from existing standards almost unrelated to the effective use of the product or its operation.

9. RELIABILITY

9.1 MTBF

The LCD module shall be designed to meet a minimum MTBF value of 50000 hours with normal. (25°C in the room without sunlight)

9.2 **TESTS**

NO.	Test Item	Test condition	Criterion
1	High Temperature Storage	80℃±2℃ 96H Restore 2H at 25℃ Power off	
2	Low Temperature Storage	-30℃±2℃ 96H Restore 2H at 25℃ Power off	
3	High Temperature Operation	70℃±2℃ 96H Restore 2H at 25℃ Power on	
4	Low Temperature Operation	-20°C±2°C 96H Restore 4H at 25°C Power on	
5	High Temperature & Humidity Operation	60°C±2°C 90%RH 96H Power on	
6	Temperature Cycle	30°C ←→25°C ←→80°C 30min 5min 30min after 10cycle, Restore 2H at 25°C Power off	Aftertesting,cosmetic and electrical defects should not happen.
7	Vibration Test	10Hz~150Hz, 100m/s2, 120min	
8	Shock Test	Half-sinewave,300m/s2,11ms	
9	Drop Test(package state)	800mm, concrete floor,1corner, 3edges, 6 sides each time	1.After testing, cosmetic and electrical defects should not happen. 2.the product should remain at initial place 3.Product uncovered or package broken is not permitted.

10. PRECAUTIONS FOR USING LCD MODULE

10.1 handing precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock or impact by dropping it.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten a cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above mentioned may damage the polarizer.

Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- (7) Extra care to minimize corrosion of the electrode. Water droplets, moisture condensation or a current flow in a high-humidity environment accelerates corrosion of the electrode.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD Module, make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- (9) Do not attempt to disassemble or process the LCD Module.
- (10) NC terminal should be open. Do not connect anything.
- (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling he LCD Module.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembling and other

work under dry conditions.

-The LCD Module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

10.2 STORAGE PRECAUTIONS

When storing The LCD Module, avoid exposure to direct sunlight of fluorescent lamps. Keep the modules in bags (avoid high temperature/ high humidity and low temperatures below 0° C). Whenever possible, the LCD Module should be stored in the same conditions in which they were shipped from our company.

10.3 OTHERS

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD Module have been operating for a long time showing the same display patterns the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be recovered by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD Module resulting from destruction caused by static electricity etc. exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.