Analysis of Flip Flop Circuits

Analysis of Sequential Logic Circuits

- * State equations are similar to Boolean expressions from combinational logic
 - Describe the output and transition logic of circuit
- * State table is similar to a truth table
 - Describes state transition and output given combination of inputs
- * State diagrams are visual representations of the state table

Circuit to State Equation

- * State equation is the Boolean expression for circuit
- * Will have multiple equations
 - One for output of circuit (F)
 - One to describe, state, or input to flip flops * Each flip flop is designated A,B,C,...etc. * Input and output to flip flop is A

RESET

F = AX'

$$A = (A + X)Y'$$

What are the state equations for following circuits?

State Table

- * Similar to a truth table, it describes all the possible outputs given input combinations
 - Inputs include current output of flip flops (A,B,..etc.) and input of circuit (X,Y,..etc.)
- Outputs include next output of flip flops (A,B,..etc.) and output of circuit (F,G,..etc.)
 Input to circuit Flip Flops next output

Flip Flops current output

	Present State			Next	Output	
-	A	В	×	A	В	(F)
-	0	0	0	0	0	1
	0	0	1	0	1	1
	0	1	0	1	1	0
	0	1	1	0	0	0
	1	0	0	1	0	1
	1	0	1	0	1	1
	1	1	0	0	1	0
	1	1	1	1	1	1

Output of circuit

Input to state table

Output of state table

Create a State Table for the following circuit

Present State	Input	Next State	Output
Α	X	А	F
0	0		
0	1		
1	0		
1	1		

State Table to K-map

* Each column of a state table output can be simplified with a K - map

Present State		Input	Next	Next State		
Α	В	X	A	В	F	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	1	1	0	
0	1	1	0	0	0	
1	0	0	1	0	1	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	1	1	1	

3 K – maps in total

Use K – Map to draw the logic circuit from the state table

Preser	Present State		Next	Output	
Α	В	X	A	В	F
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	1	1	1

Finite State Machine

- * Diagram showing all states, how to transition from state to state, and output at each state
- * **Mealy** Output depends on current state and input. Output changes immediately

Mealy State Diagram

When in state 2, transition to state 1 if input is 1, output becomes 0. If input is 0, transition to state 0, output becomes 1. Get to state 2 from state 3 if input is 1, output becomes 0.

Moore State Diagram

Encode States

- * States are encoded as binary values to design FSM into a logic circuit
- * Make each state a binary number
- * Previous examples had 4 states, so 2 bits are used to represent each state. Each bit is 1 flip floo

Creating State Table

* Use encoded state values and input to create table for next state and output. A and B are a single bit from state encoding.

Present State		Input	Next	State	Output
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	1	0	0

S0

S1

S2

S3

Moore State Table

Pres	ent State	Input	Next	State	Output	
Α	В	X	A	В	У	
0	0	0	0	1	0	
0	0	1	0	0	0	
0	1	0	1	0	1	Output is dependent
0	1	1	1	1	1	on present state
1	0	0	0	0	1]
1	0	1	1	0	1	
1	1	0	1	0	0	
1	1	1	1	1	0	

K – Map State Table

Inputs on K-Map

Present State		Input	Next	Output	
A	В	X	A	В	у
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	1	0	0

K-Map outputs (each column will need a K-Map)

K - Map

Present state and input from state table

Next state from state table

K - Map

$$A = A'B'x + ABx$$

$$B = B'x + A'x$$

$$y = Bx' + Ax'$$

Build Logic Circuit

* A and B are flip flop output and fed back into flip flop input. (Using D Flip

What if State Doesn't Exist?

- * Mark states that don't exist as "don't care", or X on a state table
- * Same applies if a transition does not exist as well
- * Use the X when creating k-map to try and simplify circuit

* Given the following state diagram create the state table and logic circuit

