

Q02

195.2016

		1							7			-	T	-		I			- [1		1		1"	13,	201	6
Pra	S	CG	f		m	Ĉ,	R.	101	3	h	. is	he	n	h	re l	M	nen	Ą	Ca	KU	al	óh	k	in	ho	15	-	
Pa	10	Us		lu	U	4	18	cks			Co	rra	la	h	; in	A	w	101	hoi	ns								
	×D	er	h	ne	nt	Q	1	,	re	n	na.	k	26	he	;		•											
		Tt	n	21	<i>t</i>	00.	(22	ble		to	P.	na	ke	_	de	tel	AD	1	t	ha	<i>\f</i>	ar (H	20	h	ila	120	va)	
											ier		+-	-						1				.,				
				-							oho	+	+															
					-				-	_1	d'n	_	-		-				CF	20								
				-						_	lac	-	-	-													(2)	
		1									to				-		1	W	(1)),		inu	,	20	1/1)		
											10									•						//		
		B	U	<i>t</i> :		D	ar	t	C	N	nt	۲,	a	lea	d	ł	m	,					. /				cies	
			-				-		-			-	+	+	1													
	02	4	U	nd 1.	s	W	ha	<i>#</i>	1	OV	ndi	ho	ns		Ca	un	h	18	00	rea	lly	, 2	m	eles	un	, e	. 9.	,
	4	Uu	1			-							+	-	-	-		-				-	-		-	-	-	
					21	1	(a	+ 9.	2	a		= 1	-	<u>1</u>	,	v	h	av	e	t	Wo	10	pl	oto	1115	ian	(ow.	y.
													-															

Q02

19.5.2016 In experient: split up maxes. Pa probabilities per detection Good approximation if P. « I (avoid saturation) Px >> Phase (negligible stock Note: A more reclistic detection operator (state D = A - (1-Pde) (1-y) : 1 minus probability of having neither photon nor dark count Non also: Normalized correlation hunching factor out the loss of photons (conditional measurements, post-sulection) 13 Quantum Light Sources Light with properties that cannot be explained by classical theory (exception: shot noise) Examples (single-mode) - Fock states (go at non-dassical) - Squeezed states (continuous vanables, not triald)

Q02

3/

19.5.2016

Examples (multi-mate) - Entangled states (polarization, photon number, energy, orbitid angulis maren term.) 18.1 Single-photon socies Requires single emotive Possibilities: - single molecule - single atom - MV-centur or similar - Quantum dots Parameters: - Yield (emotive photon) per request - Collection efficiency - Indi-tingualization to photon and emotites.) Sides		17.0.2
- Entangled stats (polarization, photon number, energy, orbital angular momentum) 15.1 Single-photon surius lequires single emeter. Possibilities: - single molecule - single atom - NV-centur or similar - Quantum obts Parameters: - Yield (emethod photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)		
Parameters: - Sugar Single emeter Possibilities: - Single molecule - single about - Mr-centur or similar - Quantum abots Parameters: - Yild (emitted photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)	Examples (mult-male)	
Parameters: - Sugar Single emeter Possibilities: - Single molecule - single about - Mr-centur or similar - Quantum abots Parameters: - Yild (emitted photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)		
Parameters: - Suple moter or similar - Quantum dots Parameters: - Yild (emitted photons per request) - Collection efficiency - Indictingual hadricity (photon and emitters)	- Entangled state (notonickon photon number	MINU
13.1 Single-photon sousies Requires single emotive. Possibilities: - single molecule - single about - Mr-centur or similar - Quantum dots Parameters: - Yield (emitted photons per request) - Collection efficiency - Indi-tinguishaditity (photon and conitiens)		2. 73/1
Requires single emoter Possibilities: - single molecule - single atom - Mr-center or similar - Quantum dots Parameters: - Yield (emoted photons per request) - Collection efficiency - Indi-tingui-hability (photon and emitters)	orbital angular momentum)	
Requires single emoter Possibilities: - single molecule - single aborn - Mr-center or similar - Quantum dots Parameters: - Yield (emitted photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)	-+	
Requires single emitter. Possibilities: - single molecule - single alom - Mr-center or similar - Quantum dots Parameters: - Yield (emitted photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)	13.1 Single-photon Courses	
- single molecide - single alom - MV-center or similar - Quantum alots Parameters: - Yield (emithal photons per request) - Collection extremity - Indi-tinguishouts they (photon and emitters)	9.00.0	
- single molecide - single alom - MV-center or similar - Quantum alots Parameters: - Yield (emithal photons per request) - Collection extra new - Indi-tinguishability (photon and emitters)	2001 Signt of 11 Post 12 12 12 12 12 12 12 12 12 12 12 12 12	
- single alom - Mr-centur or similar - Quantum dots Parameters: - Yeld (emithal photons per request) - Collection extremily - Indictinguishability (photon and emitters)	Regulas single emitta, 104st prunes	
- single alom - M - centur or similar - Quantum dots Parameters: - Yield (emithal photons per request) - Collection extremaly - Indictinguishability (photon and emitters)		
- MV - centur or similar - Quantum dots Parameters: - Yield (emithal photons per request) - Collection efficiency - Indi-tinguishability (photon and emitters)	- Single molecide	
- MV-centur or similar - Quantum dots Parameters: - Yield (emithal photons per request) - Collection extresing - Indi-tinguishability (photon and emitters)		
- MV-centur or similar - Quantum dots Parameters: - Yield (emithal photons per request) - Collection extresing - Indi-tinguishability (photon and emitters)	single alom	
Parameters: - Yield (emithod photons per request) - Collaction extremity - Indi-tinguishousility (photon and emitters)		
Parameters: - Yield (emithod photons per request) - Collaction extremity - Indi-tinguishousility (photon and emitters)	- Mr - centur on complex	
Parameters: - Yield (emithod photons per request) - Collection efficiency - Indictinguishousility (photon and emitters)		
Parameters: - Yield (emithod photons per request) - Collection efficiency - Indictinguishoubility (photon and conitters)		
- Yield (emithal photons per request) - Collection efficiency - Indictinguishoubility (photon and emitters)	J. Quantum gors	
- Yield (emithal photons per request) - Collection efficiency - Indi-tinguishousility (photon and emitters)		
- Yield (emithal photons per request) - Collection efficiency - Indictinguishoubility (photon and emitters)	Parameters	
- Collaction efficiency - Indictinguishoubility (photon and emitters)	- Vietal (emistral about Des replies)	
	- Collection esticioney	
	- Inditional profitate opporer and envilled	
Sides	Tribital region of the second	
-11der		
	121/als	

10 9 01 10	19.5.2016
13.2 Photon-Pair sources	
It is districult to entample two	
= easier to general an entance	gled pair
Creating photon pairs by casea	de Dicay (Aprict 1981)
42 Solom SSIAM Afor	decays back to
4p. P. grou	nd slah by unithing the
423pm phony	4.
45 is Enta	noted in plantation!
Catain alms	
Photon-pair sources band on no	n-linear materials
pure phonen	
Principle crystal	
Simple model:	prosp / des
Intraction Hamiltonian: H=	3 4
Intrachon numicionicai. H	
	Humitian!
Cannot be solved analyte	ally (as far as I know,

5/

		19.5.20
Non-depleted	(classical) pump appro.	ximation:
Ascume pun	mp in coherent state lx>	1. H ~ 35 /
	$ \alpha\rangle = \alpha \alpha\rangle$ and a^{\dagger}	$\alpha > 2\alpha * /\alpha >$
> 1/2 to	x (x b'c' + \$bc)	
We want to	know what happens t	to modes b and c,
when they	an initially in vacuum.	
+		