5. (10 points) Derive the order of the error with respect to the sin and cosine approximations.

Sin and Cos Error at x=1/N		
Series	$\sin(x) = x - x^3/3! + x^5/5! + \dots$	$\cos(x)=1-x^2/2!+x^4/4!-\dots$
Approx	$sin(x) \approx x$	$cos(x) \approx 1 - x^2/2$
Error Big O()	(sin series - approx) at $x=1/N$	(cos series - approx) at x=1/N

For sine:

• Error =
$$\sin(x) - x = (x - \frac{x^3}{6} + \frac{x^5}{120} - ...) - x$$

• Error =
$$-\frac{x^3}{6} + \frac{x^5}{120} - \dots$$

• Substituting
$$x = = \frac{1}{N}$$

• Error =
$$-\frac{1}{\frac{N^3}{6}} + \frac{1}{\frac{N^5}{120}} - \dots$$

• Error =
$$-\frac{1}{6N^3} + \frac{1}{120N^5} - \dots$$

• When N is large,
$$\frac{1}{6N^3}$$
 is much larger than $\frac{1}{120N^5}$, so:

• Error
$$\approx -\frac{1}{6N^3}$$

• This means the error is of order o
$$(\frac{1}{N^3})$$

For cosine:

• Error =
$$cos(x) - (1 - \frac{x^2}{2}) = (1 - \frac{x^2}{2} + \frac{x^4}{24}) - ...) - (1 - \frac{x^2}{2})$$

• Error =
$$\frac{x^4}{24}$$
 - ...

• Substituting
$$x = \frac{1}{N}$$

• Error =
$$\frac{1}{\frac{N^4}{24}} - \frac{1}{\frac{N^6}{720}} + \dots$$

• Error =
$$\frac{1}{24N^4} - \frac{1}{720N^6} + \dots$$

• When N is large,
$$\frac{1}{24N^4}$$
 is much larger than $\frac{1}{720N^6}$ so:

• Error
$$\approx \frac{1}{24N^4}$$

• This means the error is of order o
$$(\frac{1}{N^4})$$