Proposition 11.13. If $f: E \to F$ is any linear map, then the following identities hold:

$$\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}$$
$$\operatorname{Ker}(f^{\top}) = (\operatorname{Im} f)^{0}$$
$$\operatorname{Im} f = (\operatorname{Ker}(f^{\top})^{0}$$
$$\operatorname{Ker}(f) = (\operatorname{Im} f^{\top})^{0}.$$

Proof. The equation $\operatorname{Ker}(f^{\top}) = (\operatorname{Im} f)^0$ has already been proven in Proposition 11.11.

By the duality theorem $(\operatorname{Ker}(f))^{00} = \operatorname{Ker}(f)$, so from $\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}$ we get $\operatorname{Ker}(f) = (\operatorname{Im} f^{\top})^{0}$. Similarly, $(\operatorname{Im} f)^{00} = \operatorname{Im} f$, so from $\operatorname{Ker}(f^{\top}) = (\operatorname{Im} f)^{0}$ we get $\operatorname{Im} f = (\operatorname{Ker}(f^{\top})^{0}$. Therefore, what is left to be proven is that $\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}$.

Let $p: E \to E/\mathrm{Ker}(f)$ be the canonical surjection, $\overline{f}: E/\mathrm{Ker}(f) \to \mathrm{Im}\, f$ be the isomorphism induced by f, and $j: \mathrm{Im}\, f \to F$ be the inclusion map. Then, we have

$$f = j \circ \overline{f} \circ p,$$

which implies that

$$f^\top = p^\top \circ \overline{f}^\top \circ j^\top.$$

Since p is surjective, p^{\top} is injective, since j is injective, j^{\top} is surjective, and since \overline{f} is bijective, \overline{f}^{\top} is also bijective. It follows that $(E/\operatorname{Ker}(f))^* = \operatorname{Im}(\overline{f}^{\top} \circ j^{\top})$, and we have

$$\operatorname{Im} f^{\top} = \operatorname{Im} p^{\top}.$$

Since $p: E \to E/\mathrm{Ker}(f)$ is the canonical surjection, by Proposition 11.9 applied to $U = \mathrm{Ker}(f)$, we get

$$\operatorname{Im} f^{\top} = \operatorname{Im} p^{\top} = (\operatorname{Ker} (f))^{0},$$

as claimed.

In summary, the equation

$$\operatorname{Im} f^{\top} = (\operatorname{Ker}(f))^{0}$$

applies in any dimension, and it implies that

$$\operatorname{Ker}(f) = (\operatorname{Im} f^{\top})^{0}.$$

The following proposition shows the relationship between the matrix representing a linear map $f \colon E \to F$ and the matrix representing its transpose $f^{\top} \colon F^* \to E^*$.

Proposition 11.14. Let E and F be two vector spaces, and let (u_1, \ldots, u_n) be a basis for E and (v_1, \ldots, v_m) be a basis for F. Given any linear map $f: E \to F$, if M(f) is the $m \times n$ -matrix representing f w.r.t. the bases (u_1, \ldots, u_n) and (v_1, \ldots, v_m) , then the $n \times m$ -matrix $M(f^{\top})$ representing $f^{\top}: F^* \to E^*$ w.r.t. the dual bases (v_1^*, \ldots, v_m^*) and (u_1^*, \ldots, u_n^*) is the transpose $M(f)^{\top}$ of M(f).