Les deux sens d'une réaction

Chapitre 2

I. Introduction au pH et à sa mesure

1. Définition

Pour des solutions tel quel la concentration est inférieure à 1,0 x 10^{-2} mol.L⁻¹, le pH est défini par $pH = -log[H_3O^+]$ et $[H_3O^+] = 10^{-pH}$.

2. Mesure du pH

- Indicateurs colorés (BBT, phénolphtaléine, hélianthine, ...)
- A l'aide du pH-mètre (la sonde mesure la différence de potentiel entre les deux électrodes)

II. Avancement final et avancement maximal

1. Transformation totale

La flèche indique le sens unique d'évolution du système qui n'est d'ailleurs pas affecté par l'addition d'un réactif ou d'un produit. Dans l'état final, le réactif limitant a totalement disparu.

2. Transformation non-totale

Ce type de transformation n'est pas total car aucun des réactifs n'est totalement consommé, et car l'avancement final est inférieur à l'avancement maximal.

Le signe « = » indique :

- la simultanéité des réactions directes et inverses
- la faculté du système à évoluer dans un sens ou dans l'autre (l'addition d'un réactif fait évoluer le système dans le sens direct, alors que l'addition d'un produit le fait évoluer dans le sens indirect).

3. Taux d'avancement final τ

$$\tau = \frac{x_f}{x_{max}}$$

Quand la réaction est totale, $\tau = 1$. La valeur dépend de l'acide et sa concentration.

III. Equilibre dynamique d'un système chimique

Une réaction chimique non-totale semble ne plus évoluer lorsqu'elle a atteint son état final. Cet équilibre est qualifié de dynamique car deux réactions se produisent simultanément ce qui annule leurs effets.