Binary Search Trees-II

ESO207

Indian Institute of Technology, Kanpur

Summary

- In this part, we will study two basic operations on binary search tree.
- Insert into a binary search tree, and,
- Delete a node from a binary search tree.
- These operations cause the dynamic set represented by a binary search tree to change.
- The data structure must be modified so that the binary-search-tree property continues to hold.

Idea behind Insertion

- Suppose we wish to insert a node x with key k in a given binary search tree T.
- The goal is to insert x somewhere in the tree so that the bst property remains good. The insertion finds a "safe leaf position" and inserts the node there.
- If the given key is less than the key at the root, we move to the left-child, otherwise, we move to the right child.
- This step is repeatedly performed until we "are ready to drop off" the tree. The node is inserted in this very position.

Example

insert node with key 13 in tree

Pseudo-code

- Pseudo code for insertion BSTINSERT(T, z)— it inserts a node z in a binary search tree T.
- Procedure maintains a trailing node, namely, the parent node y of the current node x.
- The current node x moves down the tree:
 - 1. if z.key < x.key then set x = x.left.
 - 2. if $z.key \ge x.key$ then set x = x.right.
- Keep track of the trailing node y: the parent of x.
- This ensures that when current node x becomes NIL(i.e., we fall off the tree) then the node is inserted as a child of the trailing node y.

Pseudo-code: insertion in binary search tree

```
BSTINSERT(T, z) // insert node z into binary search tree T
1. x = T.root
2. y = NIL
3. while x \neq NIL
4. y = x
5. if z.key < x.key
6.
        x = x.left
else
8. x = x.right
9. if y == NIL //Tree T is empty
   T.root = z
10.
11. if z.key < y.key
12. y.left = z //insert z as y's left child

 else

14. y.right = z //insert z as y's right child
```

Time complexity of insertion

- As with other operations, we proceed from the root to some leaf, and then make O(1) operations to insert the node.
- Hence, time complexity is O(h).

Deletion

- Task: Delete a node z from a binary search tree T.
- These can be placed into three cases—the third case is a bit tricky.
 - Case 1: If z is a leaf (i.e., no children) then z is removed and its parent is suitably modified to replace z with NIL as its child.
 - Case 2: If z has only one child, then this child replaces z.
 For example, if z has parent q and child w. Then, w
 replaces z as the corresponding child of q.

Deletion: Cases 1 and 2

(a) Deleted node z is a leaf node. (a.1) z is a right child of its parent q, and (a.2) z is a left child of its parent q.

(b) Deleted node z has one child. z is replaced by this child.

Deletion: Case 3

- Case 3: z has two children.
- General idea: Replace z by its successor node, say y.
- There are two sub-cases.
 - Case 3.1 Successor node y of z is the right-child of z,
 - Case 3.2 Successor node *y* of *z* is not the right child of *z* (but is further down in the sub-tree rooted at the right child of *z*).
- Rest of z's original right subtree becomes y's new right subtree, and,
- z's left subtree becomes y's new left subtree.

- Call is to Delete(T, z).
- Case 3.1: z has both children and the successor of z is the right child of y.
- Then, y has no left child.
- z is replaced by y (together with y's right sub-tree if one exists).

y is the successor of z and is also the right child of z. Hence y does not have a left child.

The resulting tree after the deletion operation is shown. The node y replaces z as the corresponding child of q.

- Call is to Delete(T, z).
- Case 3.2: z has both children and the the successor node y of z is not the right child of z.
- y is located in the right-subtree of z.
- Let r be the right child of z.
- Then y is located in the left-subtree of r.
- The left child of y is NIL(y is a successor node of z in its right sub-tree).

- We now perform a 2-step deletion, namely
 - 1. Delete y from its position, and
 - 2. Replace z by y.
- Deleting y from its position falls into either Case 1 (i.e., y is a leaf node) or Case 2 (i.e., y has one child) and is done accordingly.

(d) The subtree at y is replaced by the sub-tree at x and z is replaced by y.

Pseudo-code: Subroutine REPLACE

Procedure REPLACE replaces the node z by the node y in the tree T. Node z is now deleted.

```
REPLACE(T, z, y)

1. if z.p == \text{NIL} // z is the root node

2. T.root = y

3. elseif z == z.p.left // z is left child of its parent

4. z.p.left = y // make y the left child of the parent node

5. elseif z == z.p.right // z is right child of its parent

6. z.p.right = y // make y the right child of the parent node

7. y.p = z.p
```

Pseudo-code for deletion

```
BST-DELETE(T, z)
    q = z.p
2. if z.left == NIL and z.right == NIL // Case 1
3.
        REPLACE(T, z, NIL)
  elseif z.left \neq NIL and z.right == NIL
                                         // Case 2.1
5.
        Replace(T, z, z.left)
6. elseif z.left == NIL and z.right \neq NIL // Case 2.2
        REPLACE(T, z, z.right)
8. v = SUCCESSOR(z)
9. if v == z.right
                             //Case 3.1
10. y.left = z.left
        Replace(T, z, y)
12. else
                             //Case 3.2
13.
        BST-DELETE(T, y)
14. y.left = z.left
15. y.right = z.right
16.
        REPLACE(T, z, y)
```