1. Što su mjerni otpornici?

Elementi koji utjelovljuju električki otpor s velikom točnošću i u najvećoj mogućoj mjeri potisnutim parazitskim utjecajima.

2. Kolika je relativna mjerna nesigurnost najboljih izvedbi mjernih otpornika?

10⁻⁵.

3. Primjena mjernih otpornika?

- kao mjerni shunt za posredno mjerenje struje
- u naponskim djelilima (za mjerenje viših napona)
- u mjernim mostovima

4. Čime je definiran otpornik?

- iznosom otpora R i njegovom dopuštenom promjenom (npr. tijekom 1 god.)
- dopuštenom snagom ili dopuštenom strujom
- temperaturnom karakteristikom

5. Nadomjesna shema otpornika?

Pri izmjeničnoj struji postoji fazni pomak između napona na otporniku i struje kroz otpornik: $\varphi = \omega \tau$. Na niskim frekvencijama (< 20 kHz) vrijedi: $\tau \approx \frac{L}{\rho} - RC$.

6. Kako se minimiziraju učinci neželjenih L i C?

Manji L postiže se smanjenjem površine presjeka tijela otpornika (plosnate izvedbe) ili načinom namatanja (npr. biliarni namot).

C dolazi do izražaja kod visokoomskih otpornika, kada se rabe izvedbe s više sekcija (npr. Chaperonov namot). Uz $\frac{L}{p} = RC$, vremenska stalnica će biti jednaka nuli (iako L i C postoje).

Dobri otpornici imaju malu vremensku stalnicu koja se izražava u nanosekundama.

7. Izvedbe mjernih otpornika?

Žičana izvedba: za veće snage (1 $\mu\Omega$ do 100 k Ω , do 10 W), traka ili žica od manganina, izaoma, konstantana, izabelina.

Slojna izvedba: za manje snage (1 Ω do 100 M Ω , 25 mW do 1 W), sloj metala ili metalnog oksida naparen na izolacijsku podlogu (porculan, staklo, keramika).

8. Temperaturna ovisnost otpornika?

Za temperaturni interval od 0°C do 100°C vrijedi nadomještanje s dva parametra. U užem temperaturnom području može se nadomjestiti samo linearnom promjenom.

$$R_{\theta} = R_{ref} \left[1 + \alpha (\theta - \theta_{ref}) + \beta (\theta - \theta_{ref})^2 \right]$$

9. Strujno opterećenje otpornika?

Prolaskom struje kroz otpornik ravzija se Jouleova toplina (P = fR) – poželjno je što manje jer utječe na poznavanje otpora.

10. Četiri stezaljke otpornika?

<u>Dvije strujne (S1 i S2)</u> – za dovod struje (vanjske), i dvije <u>naponske (P1 i P2)</u> – za "mjerenje" napona (unutrašnje, definiraju otpor). Kod većih otpornika razlikuju se po obliku i veličini.

Bilo kakvo točnije mjerenja otpora treba biti četverožično!

11. Zahtjevi mjernih kondenzatora?

- njihov C točno poznat, vremenski stalan, neovisan o temperaturi, naponu i frekvenciju, te što "čišći"
- vrlo veliki izolacijski otpor između elektroda (koji postoji zbog polarizacije i provodnih struja, a predstavljamo ga djelatnim otporom R_0)
- neznatni otpor dovoda (predstavljamo ga sa R_d)
- neznatni vlasiti induktivitet L

12. Nadomjesna shema realnog kondenzatora (za VF)?

Kod određene frekvencije (reda MHz) nastupa serijska rezonancija, nakon koje kondenzator iskazuje induktivni karakter!

13. Dvoelementna nadomjesna shema kondenzatora?

Za realni kondenzator (i niže frekvencije). Nadomještamo gubitke otporima R_s ili R_p .

$$C_{\rm S} = C_{\rm P} \left(1 + t g^2 \delta \right)$$

14. Gubici u kondenzatoru?

Definiramo ih tangensom kuta gubitaka.

$$\operatorname{tg} \delta = \frac{1}{\omega R_p C_p} = \omega R_s C_s$$

Osim ovih veličina, $tg\,\delta$ ovisi i o temperaturi i naponu na kondenzatoru! (Npr. $tg\,\delta=10^{-5}$ (kvarc), $tg\,\delta=10^{-4}$ (tinjac), $tg\,\delta=10^{-3}$ (plastične mase).)

15. Utjecaji parazitnih elemenata u kondenzatoru?

Zbog parazitnih elemenata, fazni pomak između U i I nesavršenog kondenzatora je $\frac{\pi}{2} - \delta$.

$$P = UI \cos \varphi = UI \sin \delta \approx UI\delta = U \cdot U\omega C \cdot \delta = U^2\omega C\delta$$

16. Tlačni kondenzatori?

Koriste se za visokonaponska mjerenja. Punjeni su komprimiranim plinom (dušik ili SF₆). Imaju visoku probojnu čvrstoću (npr. 270 kV uz 1 cm razmaka i tlak od 15 atmosfera).

17. Kako se namataju mjerni svitci i zbog čega?

Namataju se na neferomagnetska tijela da bi se izbjegao utjecaj nelinearne ovisnosti permeabilnosti o struji koja protječe svitkom, te gubici zbog histereze i vrtložnih struja.

18. Nadomjesna shema mjernih svitaka?

- faktor dobrote: $Q = \frac{\omega L}{R}$
- na VF utjecaj parazitskog C (rezonancija) i ovisnost R o frekvenciji (skin-efekt)

19. Dvoelementna nadomjesna shema mjernih svitaka?

Realni svitak nadomještamo serijskom kombinacijom efektivnog otpora $R_{\rm e}$ i induktiviteta $L_{\rm e}$. Rezonancija nastupa na frekvenciji $f=\frac{1}{2\pi\sqrt{LC}}$.

$$Z = R_e + jL_e$$
 $R_e \approx R(1 + 2\omega^2 LC)$ $L_e \approx L(1 + \omega^2 LC)$

20. Osnovna podjela mjerenih veličina?

<u>Istosmjerne:</u> ne mijenjaju predznak, ali ne moraju nužno biti nepromjenjivog iznosa (pulzirajuće!). Izmjenične: mijenjaju predznak, a opisuju ih:

- amplituda i frekvencija
- elektrolitična srednja vrijednost i efektivna vrijednost
- omjerni faktori: faktor oblika i tjemeni faktor

21. Elektrolitička srednja vrijednost?

Srednja vrijednost punovalno ispravljene veličine.

$$I_{sr} = \frac{1}{T} \int_{0}^{T} |i(t)| dt$$

22. Efektivna vrijednost?

Odgovara vrijednosti istosmjerne struje (napona) istog toplinskog učinka.

$$I_{ef} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t)dt}$$

23. Amplituda?

Ili tjemena vrijednost. Najveća trenutna vrijednost veličine (npr. za napon U_m , za struju I_m).

24. Faktor oblika i tjemeni faktor?

sin – sinusni; tr – trokutasti; pr – pravokutni

Faktor oblika:

$$\xi = \frac{I}{I_{sr}}$$

$$\xi_{\sin} = \frac{\frac{I_m}{\sqrt{2}}}{\frac{2I_m}{\pi}} = \frac{\pi}{2\sqrt{2}} = 1.11$$

$$\xi_{\rm tr} = \frac{\frac{I_m}{\sqrt{3}}}{\frac{I_m}{2}} = \frac{2}{\sqrt{3}} = 1.15$$

$$\xi_{\rm pr} = \frac{I_m}{I_m} = 1.00$$

Tjemeni faktor:

$$\sigma = \frac{I_m}{I}$$

$$\sigma_{\sin} = \frac{I_m}{\frac{I_m}{\sqrt{2}}} = \sqrt{2} = 1.41$$

$$\sigma_{\rm tr} = \frac{I_m}{\frac{I_m}{\sqrt{3}}} = \sqrt{3} = 1.73$$

$$\sigma_{\rm pr} = \frac{I_m}{I_m} = 1.00$$

25. Istosmjerni laboratorijski izvori?

- <u>baterije i akumulatori:</u> jednokratna primjena ili višekratno punjenje; nema problema sa šumom mrežne frekvencije
- <u>ispravljači:</u> koriste se za napajanje; mrežni napon koji se ispravlja i filtrira (redovito i snižava na razine važne za laboratorijsku praksu)
- <u>kalibratori:</u> izvori s redovito finim namještanjem izlazne veličine, visoke točnosti i stalnosti (za napone do 1000 V i izlazne sturje do više ampera)
- generatori: rabe se za veće snage

26. Izmjenični laboratorijski izvori?

- <u>električna mreža:</u> izvor jedne frekvencije, kod koje su promjene napona do $\pm 5\%$, a promjene frekvencije do 0.1 Hz; preko regulacijskih transformatora napon mreže može se smanjiti na potreban iznos
- generatori: izrađuju se za frekvencije do nekoliko kiloherca i snage veće od 1 kVA
- <u>elektronički izvori:</u> sinusni oscilatori, sintetizatori frekvencije, generatori funkcija, signalni generatori, generatori impulsa, vobleri, kalibratori

27. Što su kalibratori?

Uređaji koji služe kao izvori vrlo stalnih i točno poznatih napona, struja i otpora.

- DC područje: 10 nV do 1100 V, 1 nA do 2.2 A
- AC područje: 10 Hz do 1 MHz

28. Načelo rada istosmjernog i izmjeničnog naponskog kalibratora?

29. Otporničke dekade i klizni otpornici?

Otporničke dekade su slogovi dekadski stupnjevanih otpornika smještenih u zajedničku kutiju. Za svaki slog se obično navodi dozvoljena snaga ili struja.

Klizni otpornici (promjenjivi otpornik, potenciometar) omogućuju kontinuiranu promjenu otpora. Gibanje kliznika može biti pravocrtno ili kružno.

30. Ugađanje struje u krugu?

Potenciometarski spoj – ugađanje struja kod velikih <i>R</i> (što je <i>p</i> manji, ugađanje je linearnije).	<u>Ugađanje struje predotporom</u> – ugađanje struja kod malih <i>R</i> (što je <i>p</i> manji, ugađanje je linearnije, ali su i manje granice unutar kojih se može ugađati).
$ \begin{array}{c} & \downarrow \\ $	R_{12} $R_{13}=nR_{12}$
$I = \frac{Un}{R\left[1 - \frac{R_{12}}{R}(n^2 - n)\right]}$	$I = \frac{U}{R + nR_{12}} = \frac{U}{R(1 + np)}$
$n = \frac{R_{13}}{R_{12}} \qquad p = \frac{R_{12}}{R}$	$n = \frac{R_{13}}{R_{12}} \qquad p = \frac{R_{12}}{R}$