Definition Leibnizregel

Definition 1. [Kapitel 16 David Eisenbud 1994] Sei S ein Ring und M ein S-Modul

Ein Homomoprphismus abelscher Gruppen $d: S \longrightarrow M$ ist eine <u>Ableitung,</u> falls gilt:

$$\forall s_1, s_2 \in S : d(s_1 \cdot s_2) = s_1 d(s_2) + s_2 d(s_1)$$
 (Leibnitzregel)

Sei S eine R-Algebra, dann nennen wir eine $\underline{Ableitung}$ $d: S \longrightarrow M$ \underline{R} -linear, falls sie zusätzlich ein R-Modulhomomorphismus ist, also falls gilt:

$$\forall r_1, r_2 \in R \, \forall s_1, s_2 \in S : d(r_1 s_1 + r_2 s_2) = r_1 d(s_1) + r_2 d(s_2)$$

Differenzial indempotenter Elemente

Lemma 2. [Aufgabe 16.1 David Eisenbud 1994]
Sei S ein Ring M ein S-Modul und d: S \(\to \) M eine Ah

Sei S ein Ring, M ein S-Modul und $d: S \longrightarrow M$ eine Ableitung. Sei weiter $a \in S$ ein indempotentes Element $(a^2 = a)$.

Dann gilt
$$d(a) = 0$$
.

Insbesondere gilt somit auch d(1) = 0.

Beweis. Nutze hierfür allein die Leibnizregel (crefDefinition Leibnizregel)

Schritt 1:
$$d_S(a) = d_S(a^2) = ad_S(a) + ad_S(a)$$

Schritt 2: $ad_S(a) = ad_S(a^2) = a^2d_S(a) + a^2d_S(a) = ad_S(a) + ad_S(a)$
 $\Rightarrow d_S(a) = ad_S(a) = 0$

Definition 3. Sei S eine R-Algebra.

Das S-Modul $\Omega_{S/R}$ der Kähler-Differenziale von S über R und die dazugehörige universelle R-lineare Ableitungd_S: $S \longrightarrow \Omega_{S/R}$ sind durch die folgende Universelle Eigenschaft definiert

Propositon 11 delta

Lemma 4. [Lemma 16.11 David Eisenbud 1994]

Seien S, S' zwei R-Algebren. Sei weiter $f: S \longrightarrow S'$ ein R-Algebrenhomomorphismus und $\delta: S \longrightarrow S'$ ein Homomorphismus abelscher Gruppen mit $\delta(S)^2 = 0$. Dann gilt:

$f + \delta$ ist ein R-Algebrenhomomorphismus

 δ ist eine R-linear und es gilt $\forall s_1, s_2 \in S$: $\delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1)$.

Beweis.

<u>"⇒</u> ": Da f und $f+\delta$ R-linear sind, ist auch $\delta=(f+\delta)-f$ R-linear. Seien nun $s_1,s_2\in S$ beliebig, somit gilt:

$$(f + \delta)(s_1 \cdot s_2) = (f + \delta)(s_1) \cdot (f + \delta)(s_2)$$

$$\Rightarrow f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2) = f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2) \text{ mit } \delta(s_1)\delta(s_2) \in \delta(S)^2 = 0$$

$$\Rightarrow \delta(s_1 \cdot s_2) = f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$$

<u>"</u> ": Da f und δ beide R-lineare Homomorphismen abelscher Gruppen sind, trifft die auch für $f+\delta$ zu.

Wähle nun also $s_1, s_2 \in S$ beliebig, somit gilt:

$$(f+\delta)(s_1) \cdot (f+\delta)(s_2)$$
= $f(s_1)f(s_2) + f(s_1)\delta(s_2) + f(s_2)\delta(s_1) + \delta(s_1)\delta(s_2)$
= $f(s_1 \cdot s_2) + \delta(s_1 \cdot s_2) = (f+\delta)(s_1 \cdot s_2)$

Damit haben wir gezeigt, dass $f + \delta$ ein R-Algebrenhomomorphismus ist.