ПАРАЛЛЕЛЬНОЕ ПРОГРАММИРОВАНИЕ

Параллельные вычисления

ПАРАЛЛЕЛЬНОЕ ПРОГРАММИРОВАНИЕ

- 1. Программирование на параллельных вычислительных структурах
 - 2. Выявление естественного параллелизма задачи и синтез специализированной вычислительной структуры

Параллельная ярусная форма представления

Операции зависит тол алгоритма Группы операц

Группы операций, когда каждая операция зависит только от начальных данных

Группы операций, зависящих от результатов выполнения операций в предыдущих группах

ЖАРАКТЕРИСТИКИ ПАРАЛЛЕЛЬНЫХ ЯРУСНЫХ ФОРМ ПАРАЛЛЕЛЬНЫХ АЛГОРИТМОВ

Ярус - каждая группа операций параллельной формы — зависящих от начальных данных или результатов выполнения операций в предыдущих группах

Высота параллельной формы — число групп в форме

Ширина параллельной формы — максимальное число операций в ярусе

Максимальная параллельная форма—
параллельная форма алгоритмов с минимальной высотой— определяет
минимальное время исполнения на гипотетической машине

проблема построения параллельных форм с заданными свойствами

Вариант 1: 4 процессора. Решение: h = 3, $\Delta = 4$, $\tau 0 = 5$, $\tau w = 3$

Данные	a1, a2	a3, a4	a5, a6	a7, a8	Простой
Ярус 1	a1 * a2	a3 * a4	a5 * a6	a7 * a8	-
Ярус 2	(a1 * a2 + a3 * a4)	-	(a1 * a2 + a3 * a4)	-	2 ФУ
Ярус 3	()*()	-	-	-	3 ФУ

Вариант 2: 2 процессора. Решение: h = 4, $\Delta = 2$, $\tau 0 = 1$, $\tau w = 4$

Данные	a1, a2 / a5, a6	a3, a4 / a7, a8	Простой
Ярус 1	a1 * a2	a3 * a4	-
Ярус 2	a5 * a6	a7 * a8	-
Ярус 3	(a1 * a2 + a3 * a4)	(a5 * a6 + a7 * a8)	-
Ярус 4	()*()	_	1 ФУ

проблема построения параллельных форм с заданными свойствами

Вариант 3: 2 процессора. Решение: h = 5, $\Delta = 2$, $\tau 0 = 3$, $\tau w = 5$

Данные	a1, a2 / a5, a6	a3, a4 / a7, a8	Простой
Ярус 1	a1 * a2	a3 * a4	-
Ярус 2	(a1 * a2 + a3 * a4)	a5 * a6	-
Ярус 3	-	a7 * a8	1 ФУ
Ярус 4	(a5 * a6 + a7 * a8)	-	1 ФУ
Ярус 5	()*()	-	1 ФУ

ПРОБЛЕМА ПОСТРОЕНИЯ ПАРАЛЛЕЛЬНЫХ ФОРМ С ЗАДАННЫМИ СВОЙСТВАМИ

Вариант 1: Процесс сдваивания. $h = \log_2 n$, $\Delta = n / 2$, $\tau w = \log_2 n$

Данные	a1, a2	a3, a4	a5, a6	a7, a8	Простой
Ярус 1	a1 * a2	a3 * a4	a5 * a6	a7 * a8	-
Ярус 2	(a1 * a2)* (a3 * a4)	-	(a5 * a6) * (a7 * a8)	-	2 ФУ
Ярус 3	(a1 * a2 * a3 * a4) * (a5 * a6 * a7 * a8)	-	_	-	3 ФУ

Вариант 2: 4 процессора. h = 3, $\Delta = 4$, $\tau 0 = 5$, $\tau w = 3$

Данные	a1, a2	a3, a4	a5, a6	a7, a8	τ0
Ярус 1	a1 * a2	a3 * a4	a5 * a6	a7 * a8	
Ярус 2	(a1*a2) * a3	(a1*a2)*(a3* a4)	(a5 * a6) * a7	(a5*a6)*(a7*a8)	
Ярус 3	(a1*a2*a3*a4) * a5	(a1*a2*a3*a4) * a5*a6	(a1*a2*a3*a4) * (a5*a6*a7)	(a1*a2*a3*a4) * (a5*a6*a7*a8)	

ПРОБЛЕМА ПОСТРОЕНИЯ ПАРАЛЛЕЛЬНЫХ ФОРМ С ЗАДАННЫМИ СВОЙСТВАМИ

Вычислить:
$$\prod_{i=1}^{n-1} a_i$$

Вариант 3: 1 процессор. $h = 7, \Delta = 1, \tau 0 = 0, \tau w = 7$

1	a1 * a2
2	(a1*a2) * a3
3	(a1*a2*a3) * a4
4	(a1*a2*a3*a4) * a5
5	(a1*a2*a3*a4*a5) * a6
6	(a1*a2*a3*a4*a5*a6) * a7
7	(a1*a2*a3*a4*a5*a6*a7) * a8

$$\left(\prod_{i=1}^{n}a_{i}\right)_{A$$
лгоритм 2 = $\left(\prod_{i=1}^{n}a_{i}\right)_{A$ лгоритм 3 — ассоциативность умножения

ПРОБЛЕМА ПОСТРОЕНИЯ ПАРАЛЛЕЛЬНЫХ ФОРМ С ЗАДАННЫМИ СВОЙСТВАМИ

- 1. Лишние операции
- 2. Чем больше <u>промежуточных</u> результатов требуется, тем эффективней параллельный алгоритм

Устойчивость параллельных алгоритмов хуже, чем последовательных.

При большом числе процессоров эти области, по крайней мере, различны

3AKOH ГРОША И ГИПОТЕЗА МИНСКОГО

ЗАДАЧИ, КРИТЕРИИ, ВОПРОСЫ

сообщениями □ Защита от нежелательных □ Избежать образования сли процессов	окировок и бесполезных обменов состязаний шком большого количества параллельных программы простейшим способом.	
	Новые критерии: Ускорение программы в зависимости от Затраты времени на синхронизацию Влияние размера задачи на ускорение Максимальное число занятых процессоро Детерминизм выполнения программы	
□ Какой вид синхронизации□ Как должен управляться д□ Как гарантировать детерм	оцессов должно быть образовано? процессов должен быть принят? оступ к разделяемым данным? инированное выполнение программы? чи, чтобы параллельное оборудование	