목차

- 1 프로젝트 목적 및 과정
- 2 상품 소개
- **3** DP 수행 과정
- 4 코드 구현
- 5 최종 사례 적용

프로젝트 목적 및 과정

프로젝트 목적

정해진 예산 안에서 만족도를 최대로 얻을 수 있는 의류 구매 방식 찾기

프로젝트 과정

- 1. 각 제품의 CSAT 산출
- 2. Dynamic Programming 수행
- 3. 코드 구현
- 4. 최종 사례 적용

프로젝트 목적 및 과정

★ CSAT(Customer SATisfaction score)란?

CSAT는 고객 만족도 점수의 줄임말로 모든 종류의 사업에서 고객 서비스와 제품 품질에 대한 핵심 성과 지표로 주로 사용되는 측정 기준

긍정 응답 수 = 4, 5 점 으로 평가된 응답 수

고객 만족도 점수 (CSAT)

CSAT(%) = (긍정 응답 수/총 응답 수) x 100

Maximize: ∑ *CSAT*

상품 소개

무신사 스탠다드 맨투맨 코듀로이 밴딩 팬츠 스트리트 아트워크 후드티 아식스 맥시마이저25 스파오 배이직 푸퍼

Part 2.

상품 소개

이름	맨투맨	바지	후드티	신발	패딩
가격 (단위: 만원)	2	3	5	6	7
긍정 평가 수	23261	6077	141	298	35944
총평가수	23880	6279	144	299	36559
CSAT 값	97	97	98	100	98

Part 3.

- ★ 제한: 총 예산 20만원
- 맨투맨-1번, 바지-2번, 후드티-3번, 신발-4번, 패딩-5번 (가격 오름차순)
- 주어진 예산까지 허용됐을 때 최대 만족도

상품 / 예산(단위:만원)	0	1	2	3	4	5		20	최댓값	최종상품
0	0	0	0	0	0	0	•••	0	0	
상품1 (2만원/97)										
상품2 (3만원/97)										
상품3 (5만원/98)										
상품4 (6만원/100)										
상품5 (7만원/98)										

Part 3.

상품 / 예산(단위:만원)	0	1	2	3	4	5	 20	최댓값	최종상품
0	0	0	0	0	0	0	 0	0	
상품1 (2만원/97)	0	0	97	97	97	97	 97	97	상품1
상품2 (3만원/97)									
상품3 (5만원/98)									
상품4 (6만원/100)									
상품5 (7만원/98)									

상품1 2만원 97

상품 / 예산(단위:만원)	0	1	2	3	4	5		20	최댓값	최종상품
0	0	0	0	0	0	0		0	0	
상품1 (2만원/97)	0	0	97	97	97	97		97	97	상품1
상품2 (3만원/97)	0	0	97	97	97	194		194	194	상품1,상품2
상품3 (5만원/98)										
상품4 (6만원/100)										
상품5 (7만원/98)										
								\		
	상큼	蛋1 상	품2			상품1	상품2	상품	1+상품2	
	2민	원 3민	원			2만원	3만원	5만원	旦(2+3)	
	97	97				97	97	194 ((97+97)	

상품 / 예산(단위:만원)	 6	7	8	9	10	 20	최댓값	최종상품
0	 0	0	0	0	0	 0	0	
상품1 (2만원/97)	 97	97	97	97	97	 97	97	상품1
상품2 (3만원/97)	 194	194	194	194	194	 194	194	상품1,2
상품3 (5만원/98)	 194	<mark>195</mark>	195	195	292	 292	292	상품1,2,3
상품4 (6만원/100)								
상품5 (7만원/98)								

상품1+상품2	상품1+상품3
5만원(2+3)	7만원(2+5)
194 (97+97)	195 (97+98)

상품1+상품3	상품2+상품3
7만원(2+5)	8만원(3+5)
195 (97+98)	195 (97+98)

상품1+상품2	상품1+상품2+상품3
5만원(2+3)	10만원(2+3+5)
194 (97+98)	292 (97+97+98)

상품 / 예산(단위:만원)	 12	13	14	15	16	 20	최댓값	최종상품
0	 0	0	0	0	0	 0	0	
상품1 (2만원/97)	 97	97	97	97	97	 97	97	상품1
상품2 (3만원/97)	 194	194	194	194	194	 194	194	상품1,2
상품3 (5만원/98)	 292	292	292	292	292	 292	292	상품1,2,3
상품4 (6만원/100)	 294	295	295	295	392	 392	392	상품1,2,3,4
상품5 (7만원/98)								

상품1+상품2+상품3	상품1+상품3+상품4
10만원(2+3+5)	13만원(2+5+6)
292 (97+97+98)	295 (97+98+100)

상품1+상품2+상품3	상품1+상품2+상품3+상품4
10만원(2+3+5)	16만원(2+3+5+6)
292 (97+97+98)	392 (97+97+98+100)

상품 / 예산(단위:만원)	 15	16	17	18	19	20	최댓값	최종상품
0	 0	0	0	0	0	0	0	
상품1 (2만원/97)	 97	97	97	97	97	97	97	상품1
상품2 (3만원/97)	 194	194	194	194	194	194	194	상품1,2
상품3 (5만원/98)	 292	292	292	292	292	292	292	상품1,2,3
상품4 (6만원/100)	 295	392	392	392	392	392	392	상품1,2,3,4
상품5 (7만원/98)	 295	392	392	392	392	393	393	상품 1,3,4,5

상품1+상품2+상품3+상품4	상품1+상품3+상품4+상품5
16만원(2+3+5+6)	20만원(2+5+6+7)
392 (97+97+98+100)	393 (97+98+98+100)

상품 / 예산(단위:만원)	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
상품1 (2만원/97)	0	0	97	97	97	97	97	97	97	97	97
상품2 (3만원/97)	0	0	97	97	97	194	194	194	194	194	194
상품3 (5만원/98)	0	0	97	97	97	194	194	195	195	195	292
상품4 (6만원/100)	0	0	97	97	97	194	194	195	197	197	292
상품5 (7만원/98)	0	0	97	97	97	194	194	195	197	197	292

11	12	13	14	15	16	17	18	19	20	최댓값	최종상품
0	0	0	0	0	0	0	0	0	0	0	
97	97	97	97	97	97	97	97	97	97	97	상품1
194	194	194	194	194	194	194	194	194	194	194	상품1,2
292	292	292	292	292	292	292	292	292	292	292	상품1,2,3
294	294	295	295	295	392	392	392	392	392	392	상품1,2,3,4
294	294	295	295	295	392	392	392	392	393	393	상품 1,3,4,5

★ 점화식 정리

$$P[i,w] = \begin{cases} P[i-1,w] & (if \ w_i > w) \\ \max\{v_i + P[i-1,w-w_i], \ P[i-1,w]\} & (0.W) \end{cases}$$

$$P = \text{Add of } \text{Uniform } v = \text{In } \text{In } v = \text{In } \text{In } v = \text{In } v =$$

P = 최적의 만족도 v_i = 상품i의 만족도 w_i = 상품 i의 가격

- i번째 상품의 가격이 예산보다 비싸면 전 행(i-1)의 최적값을 그대로 들고 온다.
- 그렇지 않은 경우, [i번째 상품의 만족도 (v_i)]와 (예산(w) 상품i의 가격 (w_i))의 예산 $(w-w_i)$ 에서 전 행(i-1)의 최적값을 더한 값, 전 행의 최적값 중 큰 것 선택

Part 3.

$$\star P[i, w] = \begin{cases} P[i-1, w] & (if \ w_i > w) \\ \max\{v_i + P[i-1, w - w_i], \ P[i-1, w]\} & (0. W) \end{cases}$$

$$\star P[3,2] = P[2,2] = 97 \ (\because w_3 = 5 > 2)$$

상품 / 예산(단위:만원)	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
상품1 (2만원/97)	0	0	97	97	97	97	97	97	97	97	97
상품2 (3만원/97)	0	0	97	97	97	<mark>194</mark>	194	194	194	194	<mark>194</mark>
상품3 (5만원/ <mark>98</mark>)	0	0	97	97	97	194	194	195	195	195	292
상품4 (6만원/100)	0	0	97	97	97	194	194	195	197	197	292
상품5 (7만원/98)	0	0	97	97	97	194	194	195	197	197	292

$$\star P[3,10] = \max\{98 + 194, 194\} = 292$$

코드 구현

```
[] # DP numpv코드
    import numpy as np
    import pandas as pd
    def maximize_satisfaction(prices, values, budget):
       n = len(prices)
       # prices 배열을 정수로 변환
       prices = np.array(prices, dtype=int)
       print(f'prices 배열: {prices}', '\n')
       # dp[i][j]: i번째 상품까지 고려했을 때, 예산이 j일 때의 최대 만족도
       dp = np.zeros((n + 1, budget + 1), dtype=int)
       print(f'초기 dp배열: {dp}', '\n')
       # 각 단계별로 최적해를 저장하는 리스트
       optimal_items_bv_step = [[] for _ in range(budget + 1)]
       for i in range(1, n + 1):
           for j in range(1, budget + 1):
              # 현재 상품을 예산에 포함할 수 있는 경우
              if prices[i - 1] <= j:
                  # 상품을 선택할 때와 선택하지 않을 때의 만족도 비교하며 더 큰 값으로 갱신
                  if values[i - 1] + dp[i - 1, j - prices[i - 1]] > dp[i - 1, j]:
                     dp[i, j] = values[i - 1] + dp[i - 1, j - prices[i - 1]]
                     # 현재 선택된 상품의 변호를 추가
                     optimal_items_by_step[j] = optimal_items_by_step[j - prices[i - 1]] + [i]
                  else:
                     dp[i, j] = dp[i - 1, j]
                     # 선택되지 않은 경우에는 이전의 최적해를 그대로 저장
                     optimal_items_by_step[j] = optimal_items_by_step[j]
              # 현재 상품을 예산에 포함할 수 없는 경우
              else:
                  dp[i, j] = dp[i - 1, j]
                  # 선택되지 않은 경우에는 이전의 최적해를 그대로 저장
                  optimal_items_by_step[j] = optimal_items_by_step[j]
           print(f'예산 {j}에서의 최적해: {optimal_items_by_step[j]}')
           print(f'dp 업데이트: {dp}', '\n')
       df_{dp} = pd.DataFrame(dp)
       df_item_bv_step = pd.DataFrame(optimal_items_by_step)
       return dp[n, budget], optimal_items_by_step[budget], df_dp, df_item_by_step
```

```
▶ #예제 적용
   prices = [2, 3, 5, 6, 7]
   values = [97, 97, 98, 100, 98]
   budget = 20
   result, selected_items, df_dp, df_item = maximize_satisfaction(prices, values, budget)
   print(f"최대 만족도: {result}")
   print(f"선택된 상품들: {selected_items}")
   display(df_dp)

  최대 만족도: 393

   선택된 상품들: [1, 3, 4, 5]
     0 1 2 3 4 5 6 7 8 9 ... 11 12 13 14 15 16 17 18 19 20
   1 0 0 97 97 97 97 97 97 97 97 ... 97 97 97
   2 0 0 97 97 97 194 194 194 194 194
                                  4 0 0 97 97 97 194 194 195 197 197 ... 294 294 295 295 295 392 392 392 392 392
   5 0 0 97 97 97 194 194 195 197 197 ... 294 294 295 295 295 392 392 392 393 393
   6 rows x 21 columns
[ ] df_dp.to_excel('DP_2.xlsx', index=True)
```

df_item.to_excel('DP_2_item.xlsx', index=True)

최종 사례 적용

★ 상품 17개, 예산 20만원

번호	상품이름	가격	CSAT
1	남녀공용 특양면 후드티 8컬러	1	86
2	두발로 남성용 자물쇠 페이크삭스 10켤레	1	94
3	씨쏘 남성용 히든밴딩 스판 슬림 기모슬랙스	2	86
4	코튼 빅사이즈 오버핏 니트 골지 반집업 포라 맨투맨	2	90
5	캐럿 남성용 경량 패딩자켓	2	92
6	남녀공용 쭈리면 오버핏 무지 맨투맨	2	93
7	무신사 스탠다드 맨투맨	2	97
8	부들양털 뽀글이 후드자켓 MDJK124PP	3	83
9	탑보이 남녀공용 컬러풀 꽈베기 라운드 니트	3	84
10	해리슨 14컬러 울 캐시 라이크 니트	3	90
11	코듀로이 밴딩 팬츠	3	97
12	캐럿 남여공용 숏 패딩자켓	4	94
13	테라우드 남성 퍼스트에디션 드로즈 팬티 10종세트	4	95
14	나이키 남성용 REV5 운동화 런닝화	5	95
15	스트리트 아트워크 후드티	5	98
16	아식스 맥시마이저25	6	100
17	스파오 배이직 푸퍼	7	98

```
prices = [1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 7]
values = [86, 94, 86, 90, 92, 93, 97, 83, 84, 90, 97, 94, 95, 95, 98, 100, 98]
budget = 20

result, selected_items, df_dp, df_item = maximize_satisfaction(prices, values, budget)
print(f"최대 만족도: {result}")
print(f"선택된 상품들: {selected_items}")
display(df_dp)
```

Part 5.

최종 사례 적용

★ 결과

- 선택된 상품: 상품 1, 2, 4, 5, 6, 7, 10, 11, 13 (9개)

- 비용 = 20(만원)

- 최대 만족도: 834

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V
1		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86	86
4	2	0	94	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
5	3	0	94	180	180	266	266	266	266	266	266	266	266	266	266	266	266	266	266	266	266	266
6	4	0	94	180	184	270	270	356	356	356	356	356	356	356	356	356	356	356	356	356	356	356
7	5	0	94	180	186	272	276	362	362	448	448	448	448	448	448	448	448	448	448	448	448	448
8	6	0	94	180	187	273	279	365	369	455	455	541	541	541	541	541	541	541	541	541	541	541
9	7	0	94	180	191	277	284	370	376	462	466	552	552	638	638	638	638	638	638	638	638	638
10	8	0	94	180	191	277	284	370	376	462	466	552	552	638	638	638	721	721	721	721	721	721
11	9	0	94	180	191	277	284	370	376	462	466	552	552	638	638	638	722	722	722	805	805	805
12	10	0	94	180	191	277	284	370	376	462	466	552	552	638	642	642	728	728	728	812	812	812
13	11	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	739	825	825	825
14	12	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	743	825	829	833
15	13	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	744	825	830	834
16	14	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	744	825	830	834
17	15	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	744	825	830	834
18	16	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	744	825	830	834
19	17	0	94	180	191	277	284	370	376	462	467	552	559	638	649	649	735	739	744	825	830	834

