§ 23. Элементарные частицы. Ускорители частиц

В задачах данного раздела используются данные таблиц 3, 21, 22 приложения.

23.1. В ядерной физике принято число заряженных частиц, бомбардирующих мишень, характеризовать их общим зарядом, выраженным в микроампер-часах (мкА·ч). Какому числу заряженных частиц соответствует общий заряд q = 1 мкА·ч? Задачу решить для: а) электронов; б) α -частиц.

Решенне:

- а) Заряд электрона равен $e=1,6\cdot 10^{-19}\,\mathrm{K}$ л, значит, $N=\frac{q}{e}=2,25\cdot 10^{16}\,\mathrm{электронов}$. б) Заряд α -частицы равен $2e=3,2\cdot 10^{-19}\,\mathrm{K}$ л, значит, $N=\frac{q}{2e}=1,125\cdot 10^{16}\,\alpha$ -частиц.
- 23.2. При упругом центральном столкновении нейтрона с неподвижным ядром замедляющего вещества кинетическая энергия нейтрона уменьшилась в 1,4 раза. Найти массу *т* ядер замедляющего вещества.

Решение:

Генение: По закону сохранения энергии $W_{\kappa 0} = W_{\kappa 1} + W_{\kappa 2}$ — (1), где $W_{\kappa 0}$ — начальная кинетическая энергия нейтрона, $W_{\kappa 1}$ — его кинетическая энергия после взаимодействия с ядром, $W_{\kappa 2}$ — кинетическая энергия ядра замедляющего вещества. По условию $\frac{W_{\kappa 0}}{W_{\kappa 1}} = k = 1,4$, отсюда $W_{\kappa 0} = kW_{\kappa 1}$ — (2) и после подстановки (2) в (1) получаем $(k-1)W_{\kappa 1} = W_{\kappa 2}$ — (3). По закону сохранения импульса $p_0 = p_2 - p_1$ — (4), где p_0 — начальный импульс нейтрона, p_1 — его импульс после взаимодействия с ядром, p_2 — импульс ядра

замедляющего вещества. Кинетическая энергия и импульс связаны между собой соотношением $W_{\kappa} = \frac{p^2}{2m}$ — (5). Подставляя (5) в (2), получаем $p_0^2 = kp_1^2$ или $p_0 = \sqrt{k}\,p_1$ — (6). Подставляя (6) в (4), получаем $\frac{(k-1)p_1^2}{m_n} = \frac{p_2^2}{m}$ — (8), где $m_n = 1,675^{-27}\,\mathrm{kr}$ — масса нейтрона. Решая совместно уравнения (7) и (8), находим массу ядер замедляющего вещества $m = \frac{(\sqrt{k}+1)^2m_n}{k-1} = 19,96\cdot 10^{-27}\,\mathrm{kr} = 12,02\,\mathrm{a.e.m.}$ По таблице Менделеева находим, что это углерод $\frac{12}{6}\,C$, следовательно, замедлителем является графит.

23.3. Какую часть первоначальной скорости будет составлять скорость нейтрона после упругого центрального столкновения **c** неподвижным ядром изотопа $^{23}_{11}$ Na?

Решение:

Масса ядер замедляющего вещества (см. задачу 23.2) равна $m = \frac{\left(\sqrt{k}+1\right)^2 m_n}{k-1}$ — (1), где $k = \frac{W_{\kappa 0}}{W_{\kappa 1}}$ — (2), $W_{\kappa 0}$ и $W_{\kappa 1}$ — соответственно начальная и кинетическая энергии бомбардирующего натрия, $m_n = 1,675 \cdot 10^{-27} \,\mathrm{kr}$ — масса нейтрона. Поскольку кинетическая энергия равна $W_{\kappa} = mv^2/2$ — (3), то, подставляя (3) в (2), получаем $k = \left(\frac{v_0}{v}\right)^2$ или $\frac{v_0}{v} = \sqrt{k}$ — (4). Из формулы (1) находим $\sqrt{k} = \frac{m+m_n}{m-m_n}$ — (5). Подставляя (5) в (4), получаем $\frac{v}{v_0} = \frac{m-m_n}{m+m_n} = 0,916 \cdot 100\% = 91,6\%$.

23.4. Для получения медленных нейтронов их пропускают через вещества, содержащие водород (например, парафин). Какую наибольшую часть своей кинетической энергии нейтрон массой m_0 может передать: а) протону (масса m_0); б) ядру атома свинца (масса $207m_0$)? Наибольшая часть передаваемой энергии соответствует упругому центральному столкновению.

Решение:

По закону сохранения энергии $W_{\kappa 0} = W_{\kappa 1} + W_{\kappa 2}$ — (1), где $W_{\kappa 0}$ и $W_{\kappa 1}$ — соответственно кинетическая энергия нейтрона до и после взаимодействия с ядром замедлителя, $W_{\kappa 2}$ — кинетическая энергия ядра замедляющегося ве-

щества. Если $\frac{W_{\kappa 0}}{W_{\kappa 1}}=k$ — (2), то из (1) и (2) следует, что

$$\frac{W_{\kappa^2}}{W_{\kappa^0}} = 1 - \frac{1}{k}$$
 — (3). Поскольку (см. задачу 23.3)

$$\sqrt{k} = \frac{m + m_0}{m - m_0}$$
, то $k = \left(\frac{m + m_0}{m - m_0}\right)^2$ — (4). Подставляя (4) в (3),

получаем
$$\frac{W_{\kappa 2}}{W_{\kappa 0}}=1-\left(\frac{m-m_0}{m+m_0}\right)^2$$
. а) Для протона $m\approx m_0$, поэ-

тому
$$\frac{W_{\kappa 2}}{W_{\kappa 0}} \approx 1.100\% = 100\%$$
. б) Для ядра атома свинца

$$m = 207 m_0$$
 , поэтому $\frac{W_{\text{K}2}}{W_{\text{K}0}} = 0.0191 \cdot 100\% = 19.1\%$.

23.5. Найти в предыдущей задаче распределение энергии между нейтроном и протоном, если столкновение неупругое. Нейтрон при каждом столкновении отклоняется в среднем на угол $\varphi = 45^{\circ}$.

Решение:

Направление скорости \vec{v} нейтрона и скорости частиц \vec{v}_1 показано на рисунке. Скорости частиц одинаковы и равны $\vec{v}' = \frac{v\sqrt{2}}{2}$. Следовательно, энергия распределится между нейтроном и протоном в среднем поровну.

23.6. Нейтрон, обладающий энергией $W_0 = 4.6$ МэВ, в результате столкновений с протонами замедляется. Сколько столкновений он должен испытать, чтобы его энергия уменьшилась до W = 0.23 эВ? Нейтрон отклоняется при каждом столкновении в среднем на угол $\varphi = 45^{\circ}$.

Решение:

После каждого столкновения кинетическая энергия нейтрона становится в два раза меньше (см. задачу 23.5). Тогда после n столкновений энергия нейтрона $W = \left(\frac{1}{2}\right)^n W_0$.

Отсюда
$$nlg 2 = lg\left(\frac{W_0}{W}\right) = lg\left(2 \cdot 10^7\right); n = \frac{lg\left(2 \cdot 10^7\right)}{lg 2} = 24$$
.

23.7. Поток заряженных частиц влетает в однородное магнитное поле с индукцией B = 3 Тл. Скорость частиц $v = 1,52 \cdot 10^7$ м/с и направлена перпендикулярно к направлению поля. Найти заряд q каждой частицы, если известно, что на нее действует сила $F = 1.46 \cdot 10^{-11}$ H.

Решенне:

В однородном магнитном поле на заряженные частицы действует сила Лоренца, которая равна $F_{\Pi} = qvB\sin\alpha$. По условию скорость частиц направлена перпендикулярно направлению поля, значит, $\alpha = \frac{\pi}{2}$, поэтому $\sin\alpha = 1$, а

следовательно, $F_{\Pi}=qvB$. Отсюда заряд каждой частицы $q=\frac{F_{\Pi}}{vB}=3.2\cdot 10^{-19}~{\rm K}\pi.$

23.8. Заряженная частица влетает в однородное магнитное поле с индукцией B=0.5 Тл и движется по окружности с радиусом R=10 см. Скорость частицы $\nu=2.4\cdot10^6$ м/с. Найти для этой частицы отношение ее заряда к массе.

Решение:

В однородном магнитном поле на заряженную частицу действует сила Лоренца, которая (см. задачу 23.7) равна $F_{\Pi} = qvB$ — (1). Она является центростремительной силой и сообщает частице нормальное ускорение $a_n = \frac{v^2}{R}$ — (2). По второму закону Ньютона $F_{\Pi} = ma_n$ — (3). Подставляя (1) и (2) в (3), получаем $qvB = m\frac{v^2}{R}$, откуда отношение заряда частицы к ее массе равно $\frac{q}{m} = \frac{v}{RR} = 4.8 \cdot 10^7 \, \text{Кл/кг}$.

23.9. Электрон ускорен разностью потенциалов U = 180 кВ. Учитывая поправки теории относительности, найти для этого электрона массу m, скорость v, кинетическую энергию W и отношение его заряда к массе. Какова скорость v' этого электрона без учета релятивистской поправки?

Решение:

Электрон, ускоренный разностью потенциалов, обладает потенциальной энергией $W_{\rm n}=eU$ — (1). По закону сохранения энергии $W_{\rm n}=W_{\rm k}$ — (2). Приравнивая правые части соотношений (1) и (2), получаем $eU=W_{\rm k}$ — (3) или 19 3269

 $W_{\kappa} = eU = 2.88 \cdot 10^{-14} \, \text{Дж} = 1.8 \cdot 10^5 \, \text{эВ}$. Зависимость кинетической энергии электрона от скорости его движения дается уравнением $W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-R^2}} - 1 \right)$ — (3), где $m_0 = 9;11 \times$ $\times 10^{-31}$ кг — масса покоя электрона, $\beta = \frac{v}{c}$ — (4) — относительная скорость электрона, с — скорость света. Из формулы (3) имеем $\sqrt{1-\beta^2} = \frac{m_0 c^2}{W_0 + m_0 c^2}$ — (5). Зависимость массы электрона от скорости его движения дается уравнением $m = \frac{m_0}{\sqrt{1-R^2}}$ — (6). Подставляя (5) в (6), получаем $m = \frac{W_{\kappa} + m_0 c^2}{c^2}$ — (7), а затем, подставляя (3) в окончательно находим массу электрона (7), $m = \frac{eU + m_0 c^2}{c^2} = 1,23 \cdot 10^{-30} \text{ кг. }$ Кинетическая энергия электрона $W_{\kappa} = \frac{mv^2}{2}$, откуда релятивистская скорость электрона $v' = \sqrt{\frac{2eU}{m}} = 2,52 \cdot 10^8$ м/с. Отношение заряда электрона к его массе равно $\frac{e}{m} = 1.3 \cdot 10^{11} \, \text{Kn/kr}$. Реальное значение равно $\frac{e}{m} = 1,759 \cdot 10^{11} \,\text{Кл/кг. C}$ учетом погрешностей величину, полученную в данной задаче, можно считать допустимой.

23.10. Мезон космических лучей имеет энергию W=3 ГэВ. Энергия покоя мезона $W_0=100$ МэВ. Какое расстояние l в атмо-562

сфере сможет пройти мезон за время его жизни τ по лабораторным часам? Собственное время жизни мезона $\tau_0 = 2$ мкс.

Решение:

Имсем
$$\frac{W}{W_0} = \frac{1}{\sqrt{1-v^2/c^2}} = 30$$
, отсюда найдем $v = 2.998 \cdot 10^8$ м/с. Время жизни мезона по лабораторным часам $\tau = \frac{\tau_0}{\sqrt{1-v^2/c^2}} = 30\tau_0$. Расстояние, пройденное мезоном за это время, равно $l = v\tau = v \cdot 30\tau_0 \approx 18 \cdot 10^3$ м.

23.11. Мезон космических лучей имеет кинетическую энергию $W = 7m_0c^2$, где m_0 — масса покоя мезона. Во сколько раз собственное время жизни τ_0 мезона меньше времени его жизни τ по лабораторным часам?

Решение:

Зависимость кинетической энергии мезона от скорости его движения дается уравнением $W_{\kappa} = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$ —

(1). По условию кинетическая энергия мезона равна $W_{\kappa} = 7m_0c^2$ — (2). Приравнивая правые части уравнений

(1) и (2), получаем
$$7m_0c^2 = m_0c^2\left(\frac{1}{\sqrt{1-\beta^2}}-1\right)$$
, откуда

$$\sqrt{1-\beta^2} = \frac{1}{8}$$
 — (3). Время жизни мезона по лабораторным часам τ связано с его собственным временем жизни τ_0

соотношением
$$\tau = \frac{\tau_0}{\sqrt{1-\beta^2}}$$
, откуда $\frac{\tau}{\tau_0} = \frac{1}{\sqrt{1-\beta^2}}$ — (4).

Подставляя (3) в (4), получаем $\frac{\tau}{\tau_0} = 8$.

23.12. Позитрон и электрон соединяются, образуя два фотона. Найти энергию $h\nu$ каждого из фотонов, считая, что начальная энергия частиц ничтожно мала. Какова длина волны λ этих фотонов?

Решение:

Если электрон и позитрон образуют два фотона, то по закону сохранения энергии $2m_0c^2+W_1+W_2=2h\nu$, где $2m_0c^2$ — суммарная энергия покоя электрона и позитрона, W_1 и W_2 — кинетические энергии электрона и позитрона, $2h\nu$ — суммарная энергия образовавшихся фотонов. Поскольку по условию начальная энергия частиц W_1 и W_2 ничтожно мала, то энергия каждого из фотонов равна $h\nu=m_0c^2=0.51\,\mathrm{Mp}$. Отсюда частота излучения фотона $\nu=\frac{m_0c^2}{h}$ — (1). С другой стороны, $\nu=\frac{c}{\lambda}$ — (2). Приравнивая правые части уравнений (1) и (2), получаем $\frac{m_0c}{h}=\frac{1}{\lambda}$, откуда длина волны фотонов $\lambda=\frac{h}{m_0c}=2.42\cdot10^{-12}\,\mathrm{m}$.

23.13. Электрон и позитрон образуются фотоном с энергией hv = 2,62 МэВ. Какова была в момент возникновения полная кинетическая энергия $W_1 + W_2$ позитрона и электрона?

Решение:

По закону сохранения энергии $h\nu=2m_0c^2+W_1+W_2$. Энергия покоя каждой частицы $m_0c^2=0.51\cdot 10^6$ эВ. Тогда $W_1+W_2=h\nu-2m_0c^2=1.6\cdot 10^6$ эВ.

23.14. Электрон и позитрон, образованные фотоном с энергией $h\nu = 5.7$ МэВ, дают в камере Вильсона, помещенной в 564

магнитное поле, траектории с радиусом кривизны R=3 см. Найти магнитную индукцию B поля.

Решение:

На электрон и позитрон в магнитном поле действует сила Лоренца, сообщая им нормальное ускорение, т. е.

$$qBv = \frac{mv^2}{R}$$
, откуда $B = \frac{mv}{qR}$ — (1). Согласно теории отно-

сительности импульс частицы
$$p = mv = \frac{1}{c} \sqrt{W(W + 2m_0c^2)}$$
 —

(2). Подставляя (2) в (1), получим
$$B = \frac{1}{cqR} \sqrt{W(W + 2m_0c^2)}$$
 —

(3). Кинетическая энергия каждой частицы
$$W = \frac{h\nu - 2m_0c^2}{2} = 2,34\,\text{MpB}$$
 (см. задачу 23.13). Подставляя числовые данные в (3), получим $B = 0,31\,\text{Tл}$.

23.15. Неподвижный нейтральный π -мезон, распадаясь, превращается в два фотона. Найти энергию $h\nu$ каждого фотона. Масса покоя π -мезона $m_0(\pi) = 264, 2m_J$, где m_0 — масса покоя электрона.

Решение:

Если неподвижный нейтральный π -мезон распадается на два фотона, то по закону сохранения энергии $m_0(\pi)c^2=2h\nu$ — (1). По условию масса покоя мезона $m_0(\pi)=264,2m_0$ — (2), где $m_0=9,11\cdot10^{-31}\,\mathrm{kr}$ — масса покоя электрона. Подставляя (2) в (1), получаем $h\nu=132,1m_0c^2=67,7\,\mathrm{MpB}$.

23.16. Нейтрон и антинейтрон соедиияются, образуя два фотона. Найти энергию $h\nu$ каждого из фотонов, считая, что начальная энергия частиц ничтожно мала.

Решение:

Энергия каждого из фотонов (см. задачу 23.12) равна $hv = m_0c^2 = 942 \,\mathrm{Mps}$.

23.17. Неподвижный K^0 -мезон распадается на два заряженных π -мезона. Масса покоя K^0 -мезона $m_0(K^0)=965m_0$, где m_0 — масса покоя электрона; масса каждого π -мезона $m(\pi)=1,77m_0(\pi)$, где $m_0(\pi)$ — его масса покоя. Найти массу покоя $m_0(\pi)$ π -мезонов и их скорость ν в момент образования.

Решение:

Если неподвижный K^0 -мезон распадается на два заряженных π -мезона, то по закону сохранения энергии $m_{0\kappa}{}^{0}c^{2}-2m_{0\pi}c^{2}=2(m_{\pi}-m_{0\pi})c^{2}$ — (1). По условию задачи масса покоя K^0 -мезона $m_{\alpha F^0} = 965 m_0$ — (2), где $m_0 = 9.11 \cdot 10^{-31}$ кг — масса покоя электрона, а масса каждого π -мезона $m_{\pi^-}=1,77\,m_{0\pi}$ — (3), где $m_{0\pi}$ — его масса покоя. Подставляя (2) и (3) в (1), получаем $965m_0c^2 - 2m_{0\pi}c^2 = 2\cdot 1,77m_{0\pi}c^2$. Отсюда масса покоя π -мезонов равна $m_{0\pi} = \frac{965m_0}{2 \cdot 1.77} = 272,59m_0 = 2,48 \cdot 10^{-28}$ кг. Из теории относительности известно, что кинетическая энергия тела зависит от скорости его движения следующим образом: $W_{\kappa} = m_{0\pi}c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1 \right)$ — (4), где $\beta = \frac{v}{c}$ — (5) относительная скорость. С другой стороны, $W_{\kappa} = m_{\pi}c^2$, или, учитывая (3), $W_{\kappa}=1.77\,m_{0\pi}c^2$ (6). Приравнивая правые части уравнений (4) и (6), получим $\frac{1}{\sqrt{1-\beta^2}}-1=1,77$. Отсюда относительная скорость π -мезонов равна β = 0,932 . Тогда, учитывая (5), скорость π -мезонов в момент образования будет равна ν = 0,932 · c = 2,79 · 10⁸ м/c.

23.18. Вывести формулу, связывающую магнитную индукцию B поля циклотрона и частоту ν приложенной к дуантам разности потенциалов. Найти частоту приложенной к дуантам разности потенциалов для дейтонов, протонов и α -частиц. Магнитная индукция поля $B=1,26\,\mathrm{Tr}$.

Решение:

На заряженную частицу в циклотроне действует сила Лоренца $F_{\Pi}=qvB\sin\alpha$, где q — заряд частицы, B — индукция магнитного поля. Т. к. $\alpha=\frac{\pi}{2}$, то $\sin\alpha=1$, отсюда $F_{\Pi}=qvB$. Она является центростремительной силой и сообщает частице центростремительное ускорение $a_{\mathrm{u.c.}}=\frac{v^2}{R}$. По второму закону Ньютона $F_{\Pi}=ma_{\mathrm{u.c.}}=m\frac{v^2}{R}$. Приравняем правые части уравнений $qvB=\frac{mv^2}{R}$, откуда $R=\frac{mv}{qB}$ — радиус окружности циклотрона. Период обращения циклотрона $T_{\mathrm{u}}=\frac{L}{v}$, где $L=2\pi R=\frac{2\pi nv}{qB}$ — длина окружности циклотрона. $T_{\mathrm{u}}=\frac{2\pi nv}{qB}$. Тогда частота $v_{\mathrm{u}}=\frac{1}{T}=\frac{qB}{2\pi m}$. Для

того чтобы частица непрерывно ускорялась, необходимо, чтобы она попадала в ускоряющий промежуток между дуантами в тот момент, когда электрическое поле изменит свою полярность, т. е. частота изменения полярности ускоряющего электрического поля должна совпадать с

частотой циклотрона: $\nu = \nu_{\rm u} = \frac{qB}{2\pi m}$ — условие синхронизации. Подставляя числовые данные, получим $\nu_D = 9.7~{\rm M}\Gamma$ ц; $\nu_p = 19.4~{\rm M}\Gamma$ ц; $\nu_\alpha = 9.7~{\rm M}\Gamma$ ц.

23.19. Вывести формулу, связывающую энергию W вылетающих из циклотрона частиц и максимальный радиус кривизны R траектории частиц. Найти энергию W вылетающих из циклотрона дейтонов, протонов и α -частиц, если максимальный радиус кривизны R=48.3 см; частота приложенной к дуантам разности потенциалов $\nu=12$ МГи.

Радиус окружности циклотрона и частота изменения по-

Решение:

лярности ускоряющего электрического поля (см. задачу 23.18) равны: $R = \frac{mv}{qB}$ и $v = \frac{qB}{2\pi m}$, отсюда $qB = 2\pi mv$; $R = \frac{mv}{2\pi mv} = \frac{v}{2\pi v}$. Отсюда скорость вылетающих из циклотрона частиц $v = 2\pi vR$, а их кинетическая энергия $W = \frac{mv^2}{2} = \frac{m4\pi^2 v^2 R^2}{2} = 2\pi^2 m v^2 R^2$. Подставляя числовые данные, получим $W_D = 13.8 \, \mathrm{MpB}$; $W_p = 6.9 \, \mathrm{MpB}$; $W_n = 27.6 \, \mathrm{MpB}$.

23.20. Максимальный радиус кривизны траектории частиц в циклотроне $R=35\,\mathrm{cm}$; частота приложенной к дуантам разности потенциалов $\nu=13.8\,\mathrm{M}\Gamma_\mathrm{L}$. Найти магнитную индукцию B поля, необходимого для синхронной работы циклотрона, и максимальную энергию W вылетающих протонов.

Решение:

Частота приложенной к дуантам циклотрона разности потенциалов (см. задачу 23.18) определяется соотно-568 шением $v=\frac{Bq}{2\pi m}$. Отсюда индукция магнитного поля, необходимого для синхронной работы циклотрона, равна $B=\frac{2\pi m\, v}{q}$. Для протона $m=1,673\cdot 10^{-27}\,\mathrm{kr}$ и $q=e=1,6\cdot 10^{-19}\,\mathrm{Kn}$, поэтому $B=0,9\,\mathrm{Tn}$. Максимальная энергия вылетающих из циклотрона заряженных частиц (см. задачу 23.19) равна $W=2\pi^2m\, v^2\, R^2$. Подставляя значения для протона, получаем $W=4,8\,\mathrm{MpB}$.

23.21. Решить предыдущую задачу для: а) дейтонов, **6**) α -частиц.

Решение:

Индукция магнитного поля, необходимого для синхронной работы циклотрона (см. задачу 23.20), равна $B=\frac{2\pi m\, v}{q}$. Максимальная энергия вылетающих из циклотрона заряженных частиц равна $W=2\pi^2m\, v^2R^2$. а) Для дейтонов $q=e=1,6\cdot 10^{-19}\,\mathrm{Kr}$ и $m=3,346\cdot 10^{-27}\,\mathrm{kr}$, следовательно, $B=1,8\,\mathrm{Tr}$ и $W=9,6\,\mathrm{MpB}$. б) Для α -частиц $q=2e=3,2\cdot 10^{-19}\,\mathrm{Kr}$ и $m=6,692\cdot 10^{-27}\,\mathrm{kr}$, следовательно, $B=1,8\,\mathrm{Tr}$ и $W=19,25\,\mathrm{MpB}$.

23.22. Ионный ток в циклотроне при работе с α -частицами I=15 мкА. Во сколько раз такой циклотрон продуктивнее массы m=1 г радия?

Решение:

По определению ионный ток в циклотроне $I = \frac{q}{T} = qn$ — (1), где $q = 3.2 \cdot 10^{-19}$ Кл — заряд α -частицы, T — период 569

обращения α -частицы в циклотроне, n — частота излучения α -частиц циклотроном. Активность излучения α -частиц радием равна $a=\lambda N$ — (2), где $N=\frac{m}{\mu}N_A$ — (3) — число делящихся ядер радия, $\mu=226$ г/моль — молярная масса радия, $N_A=6,022\cdot 10^{23}$ моль — число Авогадро. Период полураспада радия равен $T_{1-2}=\frac{\ln 2}{\lambda}$, откуда постоянная распада $\lambda=\frac{\ln 2}{T_{1-2}}$ — (4). Подставляя (3) и (4) в (2), получим $a=\frac{mN_A\ln 2}{\mu T_{1-2}}$ — (5). Из формулы (1) $n=\frac{I}{q}$ — (6). Разделив (6) на (5), окончательно находим $\frac{n}{\alpha}=\frac{I\mu T_{1-2}}{amN_A\ln 2}=1270$.

23.23. Максимальный радиус кривизны траектории частиц в циклотроне R=50 см; магнитная индукция поля B=1 Тл. Какую постоянную разность потенциалов U должны пройти протоны, чтобы получить такое же ускорение, как в данном циклотроне?

Решение:

Частота разности потенциалов, приложенной к дуантам циклотрона (см. задачу 13.18), равна $v = \frac{Be}{2\pi m}$ — (1), а энергия вылетающих из циклотрона протонов (см. задачу 23.19) равна $W = 2\pi^2 m v^2 R^2$ — (2). Подставляя (1) в (2), получим $W = \frac{B^2 e^2 R^2}{2m}$ — (3). Потенциальная энергия протонов, прошедших ускоряющую разность потенциалов, равна $W_n = eU$ — (4). Чтобы протоны получили такое же ускорение, как в циклотроне, по закону сохранения 570

энергии необходимо, чтобы $W_n = W$ — (5). Подставляя (3) и (4) в (5), получаем $U = \frac{B^2 e R^2}{2m} = 11,98 \,\mathrm{MB}.$

23.24. Циклотрон дает дейтоны с энергией W = 7 МэВ. Магнитная индукция поля циклотрона B = 1,5 Тл. Найти минимальный радиус кривизны R траектории дейтона.

Решение:

Энергия дейтонов, вылетающих из циклотрона (см. задачу 23.23), равна $W=\frac{B^2q^2R^2}{2m}$. Отсюда максимальный радиус кривизны траектории дейтона равен $R=\frac{\sqrt{2mW}}{R_{C}}=36\,\mathrm{cm}$.

23.25. Между дуантами циклотрона радиусом R=50 см приложена переменная разность потенциалов U=75 кВ с частотой $\nu=10\,\mathrm{MFu}$. Найти магнитную индукцию B поля циклотрона, скорость ν и энергию W вылетающих из циклотрона частиц. Какое число оборотов n делает заряженная частица до своего вылета из циклотрона? Задачу решить для дейтонов, протонов и α -частиц.

Решение:

Частота разности потенциалов, приложенной к дуантам циклотрона (см. задачу 23.18), равна $v=\frac{Bq}{2\pi m}$. Отсюда магнитная индукция поля циклотрона равна $B=\frac{2\pi m\, v}{a}$

(1). Энергия вылетающих из циклотрона частиц (см. задачу 23.19) равна $W = 2\pi^2 m v^2 R^2$ — (2). Из теории относительности известно, что кинетическая энергия частицы

зависит от скорости ее движения следующим образом: $W_{\rm K} = mc^2 \left(\frac{1}{\sqrt{1 - R^2}} - 1 \right)$ — (3). Приравнивая правые части уравнений (2) и (3), получаем $2\pi^2 v^2 R^2 = c^2 \left[\frac{1}{\sqrt{1-\beta^2}} - 1 \right]$, откуда $\beta = \frac{2\pi v R \sqrt{\pi^2 v^2 R^2 + c^2}}{2\pi^2 v^2 R^2 + c^2}$ — (4). С другой стороны, относительная скорость $\beta = \frac{u}{c}$ — (5). Приравнивая правые части уравнений (4) и (5), находим скорость частиц $u = \frac{2\pi \nu Rc\sqrt{\pi^2 \nu^2 R^2 + c^2}}{2\pi^2 \nu^2 R^2 + c^2} \qquad \qquad \text{(6)}. \quad \text{При каждом полном}$ обороте заряженная частица проходит дважды расстояние между дуантами и, следовательно, дважды получит добавочный импульс. Поэтому при n оборотах заряженная частица приобретает энергию, эквивалентную ускоряющему потенциалу, U' = 2nU, где U — разность потенциалов, приложенная между дуантами. Отсюда $n = \frac{U'}{277}$ — (7). Подставляя значения в формулы (1), (2), (6) и (7), получаем следующие числовые значения: а) Для дейтонов: $B_1 = 1.3 \,\mathrm{T}\pi$; $W_1 = 10.2 \,\mathrm{MpB}$; $u_1 = 3.13 \cdot 10^7 \,\mathrm{m/c}$;

23.26. До какой энергии W можно ускорить α -частицы в циклотроне, если относительное увеличение массы частицы $k = \frac{m-m_0}{m_0}$ не должно превышать 5%?

n = 68. б) Для протонов: $B_1 = 0.65 \,\mathrm{Tr}$; $W_1 = 5.12 \,\mathrm{MpB}$; $u_1 = 3.13 \cdot 10^7 \,\mathrm{m/c}$; n = 34. в) Для α -частиц: $B_1 = 1.3 \,\mathrm{Tr}$;

 $W_1 = 5.12 \text{ M}_2\text{B}; \ u_1 = 3.13 \cdot 10^7 \text{ m/c}; \ n = 68.$

Решение:

Из теории относительности известно, что изменение массы частицы на Δm соответствует изменению ее энергии на $\Delta IV = c^2 \Delta m$ — (1). По условию задачи относительное увеличение массы частицы $k = \frac{m-m_0}{m_0} = \frac{\Delta m}{m_0} \le 0.05$ — (2).

Считая начальную энергию α -частицы равной нулю, можно предположить, что $W_{max} = \Delta W$ — (3). В этом случае из формулы (2) изменение массы α -частицы равно $\Delta m = 0.05m_0$ — (4). Подставляя (3) и (4) в (1), получаем $W_{max} = 0.05m_0c^2 = 187 \,\mathrm{M}$ эВ.

23.27. Энергия дейтонов, ускоренных синхротроном, W = 200 МэВ. Найти для этих дейтонов отношение $\frac{m}{m_0}$ (где m — масса движущегося дейтона и m_0 — его масса покоя) и скорость v.

Решение:

Считая начальную энергию дейтонов равной нулю (см. задачу 23.26), можно предположить, что $W=c^2\Delta m$ — (1), где $\Delta m=m-m_0$ — (2) — изменение массы дейтона. $m_0=2.0141$ а.е.м. — его масса покоя. Подставляя (2) в (1),

получаем
$$W=c^2\big(m-m_0\big),$$
 откуда $\frac{m}{m_0}=\frac{W}{c^2m_0}=1,1$. Из тео-

рии относительности известно, что масса дейтона зависит от скорости его движения следующим образом

$$m = \frac{m_0}{\sqrt{1-\beta^2}}$$
, откуда $\frac{m}{m_0} = \frac{1}{\sqrt{1-\beta^2}}$ — (3), где $\beta = \frac{v}{c}$ — (4)—

относительная скорость дейтона. Решая совместно урав-

нения (3) и (4), получаем
$$v = \frac{c\sqrt{(m/m_0)^2 - 1}}{m/m_0} = 1.3 \cdot 10^8 \text{ м/c}.$$

23.28. В фазотроне увеличение массы частицы при возрастании ее скорости компенсируется увеличением периода ускоряющего поля. Частота разности потенциалов, подаваемой на дуанты фазотрона, менялась для каждого ускоряющего цикла от $\nu_0 = 25 \ {\rm MF}_{\rm LI}$ до $\nu = 18,9 \ {\rm MF}_{\rm LI}$. Найти магнитную индукцию B поля фазотрона и кинетическую энергию W вылетающих протонов.

Решение:

Имеем
$$B = \frac{2\pi m_0 \nu_0}{q} = \frac{2\pi m \nu}{q} = 1,62 \text{ Тл. Поскольку } \frac{\nu_0}{\nu} = \frac{m}{m_0} = \frac{1}{\sqrt{1-\beta^2}},$$
 то $W = m_0 c^2 \left(\frac{1}{\sqrt{1-\beta^2}} - 1\right) = \frac{m_0 c^2 (\nu_0 - \nu)}{\nu} = \frac{300 \text{ M}_3 \text{B}}{100 \text{ M}_3 \text{B}}$

23.29. Протоны ускоряются в фазотроне до энергии W = 660 МэВ, α -частицы — до энергии W = 840 МэВ. Для того чтобы скомпенсировать увеличение массы, изменялся период ускоряющего поля фазотрона. Во сколько раз необходимо было изменить период ускоряющего поля фазотрона (для каждого ускоряющего цикла) при работе: а) с протонами; б) с α -частицами?

Решение:

В фазотроне при ускорении релятивистских частиц, когда их скорость приближается к скорости света, их масса заметно возрастает. Следовательно, возрастает и период обращения частицы. Чтобы сохранить синхронизацию, увеличивают период ускоряющего поля фазотрона. Начальный и конечный периоды можно найти аналогично, как в циклотроне (см. задачу 12.18): $T_0 = \frac{2\pi m_0}{qB}$; $T = \frac{2\pi m}{qB}$, где m_0 — масса покоя, m — конечная масса. $\frac{T}{T_0} = \frac{2\pi m}{qB} \frac{qB}{2\pi m_0} = \frac{m}{m_0}$. Релятивистская энергия частицы

 $\varepsilon = mc^2$, где c — скорость света. Энергия покоя $\varepsilon_0 = m_0 c^2$. По закону сохранения энергии разность начальной и конечной энергий составит кинетическая энергия, полученная частицей при ускорении фазотроном, $W = \varepsilon - \varepsilon_0 = mc^2 - m_0 c^2 = (m - m_0)c^2$, отсюда $m = \frac{W}{c^2} + m_0$.

$$\frac{T}{T_0} = \frac{W/c^2 + m_0}{m_0} = \frac{W}{c^2 m_0} + 1$$
. а) Для протона $W = W_p = 660 \times 10^6 \cdot 1,6 \cdot 10^{-19} = 1,06 \cdot 10^{-10}$ Дж, $\frac{T}{T_0} = 1,7$. б) Для α -частицы

$$W = W_{\alpha} = 840 \cdot 10^{6} \cdot 1,6 \cdot 10^{-19} = 1,34 \cdot 10^{-10}$$
 Дж, $\frac{T}{T_{0}} = 1,2$.