Practical No.3

Data Science and Visualization (Honors Course)

Name: Preeti Shantilal Chaudhari

PRN: 72017986G

Class: TE ENTC 'B'

To determine the age of abalone on the basis of its physical measurements

In [19]:

```
import pandas as pd
```

```
In [20]:
```

```
col = ['sex', 'length', 'diameter', 'height', 'weight', 'sweight', 'vweight', 'shweight',
df=pd.read_csv('abalone.csv')
```

In [21]:

```
df.head()
```

Out[21]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [22]:

```
df.describe()
```

Out[22]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell we
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005
4							•

We can say the dataset here is already cleaned because there are no null values.

```
In [24]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
 #
     Column
                     Non-Null Count Dtype
     -----
                     -----
- - -
                                     ____
 0
     Sex
                     4177 non-null
                                     object
 1
     Length
                     4177 non-null
                                     float64
 2
     Diameter
                     4177 non-null
                                     float64
 3
     Height
                     4177 non-null
                                     float64
 4
     Whole weight
                     4177 non-null
                                     float64
 5
                                     float64
     Shucked weight 4177 non-null
 6
     Viscera weight 4177 non-null
                                     float64
 7
     Shell weight
                     4177 non-null
                                     float64
     Rings
 8
                     4177 non-null
                                     int64
dtypes: float64(7), int64(1), object(1)
memory usage: 293.8+ KB
In [12]:
X = df.drop('Rings' , axis=1) #Input
y = df['Rings'] #Output
```

In [13]:

X.head()

Out[13]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055

In [14]:

```
from collections import Counter
Counter(y)
```

Out[14]:

```
Counter({15: 103,
         7: 391,
         9: 689,
         10: 634,
         8: 568,
         20: 26,
         16: 67,
         19: 32,
         14: 126,
         11: 487,
         12: 267,
         18: 42,
         13: 203,
         5: 115,
         4: 57,
         6: 259,
         21: 14,
         17: 58,
         22: 6,
         1: 1,
         3: 15,
         26: 1,
         23: 9,
         29: 1,
         2: 1,
         27: 2,
         25: 1,
         24: 2})
```

```
In [17]:
```

```
set(X['Sex']) #Displaying unique entries
```

Out[17]:

{'F', 'I', 'M'}

In [26]:

from sklearn.preprocessing import LabelEncoder
enc=LabelEncoder()
X['Sex']=enc.fit_transform(X['Sex'])

In [27]:

```
set(X['Sex'])
```

Out[27]:

 $\{0, 1, 2\}$

In [28]:

df.head()

Out[28]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

In [29]:

```
\textbf{from} \  \, \textbf{sklearn.model\_selection} \  \, \textbf{import} \  \, \textbf{train\_test\_split}
```

In [34]:

```
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0,test_size=0.25)
#Splitting the dataset
```

In [33]:

```
len(X_train)
```

Out[33]:

3132

```
In [35]:
```

```
len(X_test)
```

Out[35]:

1045

In [36]:

X_train.head()

Out[36]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight
940	1	0.460	0.345	0.105	0.4490	0.1960	0.0945	0.1265
2688	2	0.630	0.465	0.150	1.0270	0.5370	0.1880	0.1760
1948	2	0.635	0.515	0.165	1.2290	0.5055	0.2975	0.3535
713	2	0.355	0.265	0.085	0.2010	0.0690	0.0530	0.0695
3743	0	0.705	0.555	0.195	1.7525	0.7105	0.4215	0.5160

Prediction

```
In [37]:
```

from sklearn.naive_bayes import GaussianNB

In [38]:

clf = GaussianNB()

In [39]:

#train
clf.fit(X_train,y_train)

Out[39]:

GaussianNB()

In [40]:

y_pred=clf.predict(X_test)

In [42]:

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report

In [43]:

```
accuracy_score(y_test,y_pred)*100
```

Out[43]:

26.02870813397129

The accuracy score is low due to presence of multiple classes.

Regression

precision=TP/TP+FP

recall=TP/TP+FN

f1-score=2PR/P+R

Support is the number of actual occurences of class in a specified dataset.

In [44]:

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
3	0.50	1.00	0.67	7
4	0.30	0.62	0.40	13
5	0.27	0.42	0.33	40
6	0.32	0.43	0.36	63
7	0.26	0.36	0.30	114
8	0.27	0.29	0.28	139
9	0.25	0.30	0.27	152
10	0.21	0.24	0.23	139
11	0.26	0.42	0.32	121
12	0.50	0.01	0.02	93
13	0.00	0.00	0.00	51
14	0.00	0.00	0.00	32
15	0.00	0.00	0.00	22
16	0.00	0.00	0.00	16
17	0.00	0.00	0.00	12
18	0.00	0.00	0.00	6
19	0.00	0.00	0.00	10
20	0.00	0.00	0.00	8
21	0.00	0.00	0.00	2
22	0.00	0.00	0.00	1
23	0.00	0.00	0.00	2
24	0.00	0.00	0.00	1
27	0.00	0.00	0.00	0
29	0.00	0.00	0.00	1
accuracy			0.26	1045
macro avg	0.13	0.17	0.13	1045
weighted avg	0.24	0.26	0.22	1045

C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1245: UndefinedMetricWarning: Recall and F-score are ill-defined and be ing set to 0.0 in labels with no true samples. Use `zero_division` parame ter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1245: UndefinedMetricWarning: Recall and F-score are ill-defined and be ing set to 0.0 in labels with no true samples. Use `zero_division` parame ter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics_classification.p y:1245: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

```
12/17/21, 4:06 PM
                                            Practical3_72017986G - Jupyter Notebook
    _warn_prf(average, modifier, msg_start, len(result))
 C:\Users\HP\anaconda3\lib\site-packages\sklearn\metrics\_classification.p
  y:1245: UndefinedMetricWarning: Recall and F-score are ill-defined and be
  ing set to 0.0 in labels with no true samples. Use `zero_division` parame
  ter to control this behavior.
    _warn_prf(average, modifier, msg_start, len(result))
 In [45]:
  from sklearn.linear_model import LinearRegression
  In [46]:
  reg=LinearRegression()
  In [47]:
  reg.fit(X_train,y_train)
 Out[47]:
  LinearRegression()
  In [48]:
 y_pred = reg.predict(X_test)
  In [49]:
 y_pred
 Out[49]:
  array([13.10451425, 9.66747548, 10.35605247, ..., 9.95962005,
         12.59111443, 12.18516586])
  In [50]:
  from sklearn.metrics import mean_absolute_error
 In [51]:
 mean_absolute_error(y_test,y_pred) #summation of (|y_pred-y_train|/no.of entries)
 Out[51]:
  1.5955158378194019
```

In [52]:

from sklearn.metrics import r2_score

In [53]:

r2_score(y_test,y_pred)	<pre>#r2_score = 1-(summation o</pre>	f (y_pred-y_train)^2 /	summation	of	(me

Out[53]:

0.5354158501894077

In this case we can say that Regression outperforms GaussianNB in terms of accuracy. (due to the dataset)

In []:			