ISSN 1062-3590, Biology Bulletin, 2019, том 46, № 6, стр. 636–645. © Pleiades Publishing, Inc., 2019. Русский текст © Автор(ы), 2019, опубликовано в Известия Академии Наук, Серия Биологическая, 2019, № 6, С. 658–668.

— ЭКОЛОГИЯ ———

Многолетний мониторинг воздействия на сосновые леса центральной части Кольского полуострова

В.Т. Ярмишкоа, * и О.В. Игнатьеваб

аБотанический институт им. В.Л. Комарова РАН, Санкт-Петербург, 197372 Россия о Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Санкт-Петербург, 194021 Россия *электронная почта: vasiliyarmishko@yandex.ru Получено 1 ноября 2018 г.; пересмотрено 23 апреля 2019 г.; принято 23 апреля 2019 г.

Аннотация. Пространственно- временная динамика структурных и функциональных параметров ненарушенных сосновых лесов. и подвергающиеся воздействию промышленных выбросов, содержащих высокоагрессивные соединения серы в сочетании с Были изучены тяжелые металлы Cu и Ni. Текущее состояние различных компонентов неповрежденной сосны лесов определяется естественными процессами сукцессии. Техногенное загрязнение воздуха является существенным фактором определяющие жизненное состояние лесных насаждений, а также вблизи крупного медно-никелевого комбината в центральной части Кольского полуострова, является основным фактором, вызывающим ослабление и даже гибель сосновых лесных сообществ. Наблюдается четкая тенденция улучшения жизненного состояния сосновых лесов, даже в зоне сильного загрязнения, на на фоне значительного сокращения выбросов в атмосферу.

ДОИ: 10.1134/S106235901906013X

ВВЕДЕНИЕ

Наблюдается общее увеличение загрязнения окружающей среды изменения, связанные с локальными и глобальными воздействиями вызванные интенсивной хозяйственной деятельностью человека в Ход исторического развития общества. Это Все труднее найти растительные сообщества, не затронутые природными и антропогенными факторами, чем места воздействия. Это обычная ситуация когда большинство популяций вида находятся в относительно оптимальные условия, но окружающая среда начинает изменилось. Необходимо оценить последствия развитие организмов в неоптимальных условиях, характеристики фонового состояния, и возможность его определения как обычного

норма. Чтобы понять реальные последствия наблюдаемые экологические эффекты, необходимо не только для того, чтобы зафиксировать определенные отклонения, но и выяснить дальнейшая судьба изменений.

В настоящее время одним из основных факторов, оказывающих существенное влияние на функционирование лесных экосистем Северо-Запад России, после вырубок и пожаров, является промышленным загрязнением атмосферы. В центральной части Кольского в составе выбросов медно-никелевого комбината. Полуостров, основным источником выбросов является комбинат «Североникель», который выбрасывает значительные объемы серы. В окружающую среду поступает диоксид углерода и тяжелые металлы (Ni, Cu и др.). Отрицательное влияние атмосферных выбросов этого предприятия на растительные сообщества отмечалось неоднократно (Раменская, 1974; Крючков и др.). Сыроид, 1984; Влияние..., 1990; Лукин и Никонов, 1996 1998; Ярмишко, 1997, 2009; Ярмишко и др., 2011; Ярмишко, В.Т. и Ярмишко, М.А., 2015,

и т. д.). Четверть века назад были предприняты попытки завод значительно сократит промышленные выбросы. В связи с этим можно предположить, что реакция нарушенные лесные экосистемы будут представлять собой процесс постепенное восстановление.

Целью нашей работы является анализ материалов многолетнего мониторинга сосновых лесов центральной части Кольского полуострова и при оценке их реакции на снижение загрязнения воздуха.

МАТЕРИАЛЫ И МЕТОДЫ

Кольский лесной массив расположен в границах Мурманской области на крайнем севере России.

(Рис. 1). Геологически район исследования представляет собой восточную часть Фенно-скандинавская окраина Балтийского кристаллического щит. В центральной части Кольского полуострова преобладают малопродуктивные лишайниковые и лишайниково-зеленые сосняки моховые. Основной вклад в загрязнение окружающей среды на Кольском Севере вносят кислотообразующие соединения серы и тяжелые металлы, поступающие в

Завод «Североникель» в Мончегорске (67°55′ с.ш., 32°48′ в.д.) начал свою деятельность в 1939 году (Позняков, 1999). Максимальный объем выбросов в год, в среднем 230000 тонн SO2 и 15000 тонн полиметаллической мелкой пыли, содержащей смесь сульфидов и оксиды тяжелых металлов, в основном Ni и Cu, были наблюдалось с 1973 по 1992 год (рис. 2). С 1993 по 1999 г. наблюдалась тенденция к сокращению видов

Рис. 1. Схема расположения постоянных пробных площадей (ПП) в сосновых лесах на Кольском полуострове. Основные районы исследований: 1 – Ливский; 2 — Мавринский; 3 — Эно-Ковдорский; 4 — Уполокшский; 5 — Ловозерский; 6 — Чунозерский; 7 — Мончегорский. Водные поверхности обозначены штриховкой. А — единичные; 5 — 2–3; В > 3 ПП.

численные и валовые выбросы загрязняющих веществ за счет специальных природоохранные мероприятия, проводимые заводом. С 1999 года годовой объем выбросов увеличился оставался относительно стабильным на уровне в среднем 40000 тонн SO2 и 5000 тонн полиметаллической пыли (Ежегодник КМК, 2007). Эти цифры мало изменились в последние годы (рис. 2).

Наши исследования проводились с 1981 по 2017 год в лишайниково-зеленомошные средневозрастные (III–IV классы возраст) сосновые леса, расположенные на разном расстоянии от завод в трех зонах: фоновая, буферная и Воздействие. Постоянные участки (ПП) размером 0,15–0,2 га были заложены в каждой области. Краткая характеристика Ярусы деревьев в исследуемых лесных сообществах приведены в Таблица 1. Vaccinium myrtillus L., V. vitis-idaea L. и Етретити hermaphroditum Hagerup. доминируют в Напочвенный покров в травяно-кустарниковом ярусе. Мохлишайниковый слой образован лишайниками рода Cladonia (C. stellaris (Opiz.) Brodo; C. rangiferina (L.) Nyl., и С. mitis (Sandst.) Hustich). Среди мхов Pohlia nutans и Нераticae spp. встречаются чаще всего.

На каждом участке была проведена полная перепись деревьев. ПП. Коронки и их состояние были измерены, описаны и оценены; возраст хвои был определен, и их образцы были взяты для лабораторных исследований исследования; определены категории условий обитания всех особей Pinus sylvestris L. в древесном ярусе (Ярмишко, 1997; Санитарные..., 1998; Методы..., 2002). Для определения возраста и анализ радиального прироста древесины у модельных деревьев, Образцы древесины (керны) были взяты Пресслером сверло или срез ствола. Ширина годовых колец была

определяется на приборе LINTAB 6. В процессе исследования, мы разработали и описали новые Метод оценки площади годичного радиального рост на примере сосны обыкновенной (Лянгузов и т. д., 2017). Он был разработан с использованием близких и не точно измеренные значения площадей годовых прирост древесины на основе предположений о рост древесины стволов в виде концентрических колец.

Продолжительность жизни хвои P. sylvestris определялась у 120–150 особей в верхней (на 8–10-й обороты) и ниже (на 18–20-м оборотах) части кроны с южной стороны на 3–5 побегах второго порядка ветвления. Площадь иголки Повреждение хлорозами и некрозами оценивалось с помощью бинокулярный микроскоп МБС-9 на 100 парах хвоинок, отобранных с побегов 2-го порядка ветвления по 5–7 деревьев на каждой пробной площади (Ярмишко, 1997; Динамика..., 2009).

На всех ПП проводились учет и оценка состояния подроста (предварительно они были размечены на площадках 10×10 м). Характеристика надземного покрова исследуемого леса

Сообщества определялись на постоянных опытных участках (20– 25 на ПП) размером 1 × 1 м (Методы..., 2002). Статистическая обработка данных проводилась с использованием

2002). Статистическая обработка данных проводилась с использованием дисперсионный и регрессионный анализы (Зайцев, 1984).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Относительно молодые сообщества P. sylvestris на Фоновые районы Кольского полуострова имеют ряд

Рис. 2. Многолетняя динамика выбросов в атмосферу SO2, Ni и Cu по данным Кольской горно-металлургической компании.

ряд признаков, отличающих их от аналогичных насаждений, сформированных в европейской части северной тайги. Прежде всего, это преобладание основной породы над лиственными древесными растениями на огромной площади практически во всех типах леса, причем доминирование сосны в большинстве случаев проявляется уже на стадии формирования древесного полога. Характерной особенностью молодых сосновых насаждений является участие в них ели и осины.

В сосновых лесах фоновых условий центральной части Кольского полуострова в органогенном горизонте альфегумусовоподзолистых почв содержание подвижных форм Ni и Cu составляет в среднем 10 мг/кг.

Данные концентрации тяжелых металлов приняты за фоновое содержание (Динамика..., 2009). В хвое Р. sylvestris в возрасте 1–4 лет и листьях доминирующих видов кустарничков с 1981 по 2008 г. содержание Ni изменялось от 16,1 до 1,5, а содержание Cu снижалось от 11,7 до 2,5 мг/кг абсолютно сухого вещества (АСВ). Эти значения находятся в диапазоне региональных фоновых концентраций и соответствуют норме содержания этих элементов в растениях.

(Раменская, 1974; Лукина, Никонов, 1996, 1998; Лозановская и др., 1998).

Достаточно чувствительным и легко определяемым показателем состояния хвойных является продолжительность жизни хвои на деревьях (Алексеев, 1990; Ярмишко, 1990, 1997, 2005; Цветков, 1991; Степанчик и др., 1993 и др.). Информативность этого показателя определяется большой продолжительностью функционирования ассимиляционных органов хвойных деревьев в северотаежных сообществах, в которых хвоя на деревьях сохраняется 6–9, иногда 10–12 лет (Цветков, 1991; Ярмишко, 1997 и др.).

В исследованных лесах в фоновых условиях продолжительность жизни хвои P. sylvestris за весь период наблюдений составила от 5,7 до 6,7 лет (табл. 2).

Колебания продолжительности жизни хвои сосны на пробных площадях связаны в основном с различиями погодных условий в отдельные годы.

Повторный детальный осмотр поверхности хвои в разном возрасте позволил сделать вывод, что показатели жизненного состояния хвои существенно не различаются в исследуемые периоды времени.

Таблица 1. Краткая характеристика древостоев III–IV классов возраста в лишайниково-зеленомошных лесах в условиях Разные уровни аэротехногенного загрязнения в центральной части Кольского полуострова Мурманской области

					Средние таксаци	онные характер	ристики деревье	3	
КВардиватежение	ўрурунах ение	рактоконнеменя,	Regerence COCTAB	высота,	дмаметр,	вевраст,	деринество Б Ж З./	Apersecunts. M Bd	блакстета
67°33.227′	180, Ю3,	70	10 П	8.5	10.1	50	1750	22,3 0	
31°04.751′	3°								
67°35.356′	161, Ю3,	60	10 П	8.0	8.3	60	5273	47,5 B	
31°39.159′	2-3°								
67°38.168′	177, Ю3	35	10 П	8.1	7.9	70	1852	32,0 B	
32°42.234′	5°								
67°49.216′	175, Ю3	8	10 П	3.2	3.4	60	5300	10.1 B-a	
32°46.447′	4°								
68°00.384′	198, ЮЗ	10	10 П,	4.3	5.1	70	5450	21,8 B-a	
32°55.540′	10°		Б						

Верхние линии — С, нижние — В; ЮЗ — юго-запад; состав древостоя: П — сосна обыкновенная; Б — береза (единично).

Таблица 2. Средняя продолжительность жизни хвои Pinus sylvestris на деревьях в сосновых лесах среднего возраста на территориях с разным уровнем обеспеченности загрязнение атмосферы на Кольском полуострове

Год	Фоновая область	Буферная зона	Зона воздействия
1982	6,0 ± 0,4	3,9 ± 0,8	2,4 ± 0,6
1987	5,7 ± 0,6	4,2 ± 1	2,5 ± 0,6
2005	6,4 ± 0,4	4,2 ± 0,7	5,3 ± 0,7
2008	6,7 ± 0,5	6,4 ± 07	5,0 ± 0,6
2014	6,2 ± 0,5	6,1 ± 0,5	5,3 ± 0,7
2017	6,3 ± 0,4	6,2 ± 0,6	5,3 ± 0,6

В этих условиях только небольшая часть (не более менее 5%) сосновых иголок имели хлорозы и несколько точек в виде некроза, который занимал <5% Общая поверхность (таблица 3). На старых хвое (5–7 лет) область визуально наблюдаемых изменений цвета иглы иногда достигали 20% поверхности, что по-видимому, это связано с возрастными изменениями в органах ассимиляции.

Средневозрастные лишайниково-зеленомошные сосновые леса в фоновая зона характеризуется хорошим ростом и застройка; деревья равномерно распределены по площади, Их численность достигает в среднем 4000–4500 экз./га. Под их пологом размещаются сильно угнетенные живые и сухие особи сосны (2000–3000 экз./га).

Анализ данных по радиальному приросту сосны показали (рис. 3а), что в первые 12–15 лет жизни, когда нет жестких конкурентных отношений в надземная часть и в зоне корневых систем, характеризуется достаточно активным ростом

диаметр 1,2-1,5 мм/год и более. В дальнейшем, с развитием молодой сосны и напочвенного покрова растений скорость роста снижается на 23-25%, достигая >1 мм/год. С начала 1980-х годов этот показатель достиг своего минимума (0,6-0,8 мм/год) и не менялся почти 20 лет. Согласно количество сосен на гектар и наличие худых и сильно угнетенных людей, это может быть предполагалось, что процессы дифференциации в Средневозрастные сосновые леса сохранятся. Данные на рис. За показывают, что краткосрочные циклы увеличения диаметра колебания, которые, очевидно, связаны с изменения погодных условий, четко выражены в исследуемой области. Как правило, они синхронны в характер и несколько различаются по амплитуде колебаний. Радиальный прирост сосны в последние годы после некоторого подъема начался спад на всех изученных участках (рис. За), что связано, по нашему мнению, с усиление конкурентных отношений в сообществах с возрастом.

940 ярмишко, игнатьева

Таблица 3. Уровень поражения хвои Pinus sylvestris хлорозами и некрозами в условиях различного уровня промышленного

загрязнения атмосферы. Верхние строки – 1998 г., нижни	e – 2014
--	----------

	г.	г. Фоновая территория Буферная зона					Зона воздействия			
Площадь	возраст хвои, лет									
поражения иг	лой, % 1231231	23								
<1	-	-	2	36	17	10	25	55	100	
	-	-	1	26	5	5	18	20	35	
1–5	-	-	2	31	56	56	37	46	100	
	-	1	2	1	6	7	23	27	49	
6–10	-	-	-	3	17	16	17	21	27	
	-	-	-	-	-	-	3	13	22	
11-25	-	-	-	-	9	16	12	38	36	
	-	-	2	-	-	-	-	5	7	
26-50	-	-	-	-	1	2	9	19	20	
	-	-	-	1	-	-	-	-	-	
51-75	-	-	-	-	-	-	-	3	7	
	-	-	-	-	-	-	-	-	-	
>6	-	-	-	-	-	-	-	13	10	
	-	-	-	-	-	-	-	-	-	

^{«-»} означает отсутствие следов повреждения иглой.

В фоновых сообществах Р. sylvestris, расположенных на расстоянии 65 км и более от комбината «Североникель», визуальных признаков повреждения хвои и крон не наблюдается, поэтому в виталитных спектрах древостоев сосны на протяжении всего периода наблюдений абсолютно преобладали здоровые особи (табл. 4). Доля ослабленных особей колебалась от 10 до 25,9%. В последние годы (2008–2014 гг.) виталитная структура древостоев сосны обыкновенной заметно ухудшилась: здоровые особи составляют 62–68%, ослабленные и сильно ослабленные 24–30%, сухие почти 4% (табл. 4).

Как было отмечено выше, заметное ухудшение жизни насаждений сосны обыкновенной на ПП в фоновых условиях мы связываем с усилением внутрипопуляционных конкурентных отношений и, возможно, с глобальным изменением климата.

Живой напочвенный покров в фоновых сосняках развит хорошо. Проективное покрытие травяно-кустарничкового яруса за период исследований составило 18% и существенно не изменилось в результате разнонаправленной динамики проективного покрытия отдельных видов. Общее проективное покрытие мохово-лишайникового яруса также не изменилось и в среднем составило 70-75%. Отмечено перераспределение участия раннесукцессионных, средне- и позднесукцессионных видов мхов и лишайников в формировании надземного растительного покрова. Проективное покрытие раннесукцессионными видами лишайников Trapeliopsis granulosa (Hoffin.) Lumbsch, Cladonia deformis (L.) Hofifrn., C. cornuta (L.) Hoffm., C. crispata (Ach.) Flot. и C. gracilis (L.) Willd. за период исследований снизилось с 8 до 1%. Охват средне- и позднесукцессионных видов Cladonia uncialis (L.) Weber ex FH Wigg., Cladina spp. и Pleurozium schreberi (Brid.) Mitt. увеличилось с 50 до 70%, а проективное покрытие P. schreberi увеличилось с 4 до 33% (Динамика..., 2009). Указанные изменения в моховолишайниковом ярусе обусловлены усилением средообразующих функций древесного яруса.

Таким образом, весь комплекс изменений фоновых условий древесного, травяно-кустарничкового и мохово-лишайникового ярусов в исследованных сосняках лишайниково-зеленомошных средневозрастного возраста отражает естественные сукцессионные процессы при восстановлении сообществ после внешних нарушений, таких как рубки и пожары.

В зоне среднего уровня техногенного загрязнения, в буферной зоне, расположенной в 35 км от основного источника выбросов, содержание кислоторастворимых форм Ni и Cu в верхних горизонтах почв до 1997 г. превышало фоновые значения в 4–8 раз (Дина-мика..., 2009), а валовое содержание этих металлов в хвое P. sylvestris было в 5–10 раз выше, чем в фоновых сообществах. По данным 2008 г. их содержание снизилось в три раза по отношению к максимальным значениям, зафиксированным в 1984–1988 гг. (Ярмишко и др., 2011). Между общим содержанием Ni и Cu в хвое P. sylvestris и выбросами твердых веществ комбинатом «Североникель» существует линейная зависимость: r = 0,93, n = 6, P < 0,05, где r — коэффициент корреляции, n — число наблюдений, P — уровень значимости.

Продолжительность жизни хвои Р. sylvestris на исследуемой территории в 1982–1990 гг. была существенно ниже, чем в фоновых условиях, и в среднем составляла четыре года (табл. 2). Преобладание неповрежденной хвои (64%) отмечено только для 1–2-летнего возраста. В большинстве

Рис. 3. Динамика радиального прироста сосны обыкновенной III–IV классов возраста за пределами зоны влияния аэротехногенного воздействия. Выбросы комбината «Североникель» (а) 1, ПП 20; 2 и 3, ПП 31 и 32 и в (1) импактной, (2) фоновой и (3) буферной зонах в центральной части Кольского полуострова (б).

трехлетней хвои (56%) площадь поражения составила 1–5%. С увеличением возраста хвои

Доля здоровой хвои уменьшается, а площадь увеличения повреждений: 50% четырехлетних иголок были покрыты хлорозами и некрозами, занимающими 6–10% всей поверхности; небольшая часть иголок (2–3%) имели некрозы красно-коричневого цвета и здоровые иглы отсутствовали (таблица 3). Исследования, проведенные в 2008–2014 гг. показали, что в пределах буферной зоны Основная часть однолетней хвои Р. sylvestris (93–98%) не имели следов повреждений. Пятнистые хлорозы и точечные некрозы микроскопических размеров, занимающие 1–5% поверхности, были обнаружены только в небольшой части (~6%) хвои 2–3-летнего возраста. Доля здоровых старых игл было не более 78%.

2008–2014 гг., состояние хвои по продолжительности жизни и степень повреждения достигла почти фонового уровня значения (таблицы 2, 3). Существует отрицательная связь между продолжительностью жизни игл P. sylvestris и ежегодные выбросы в атмосферу диоксида серы и

твердые частицы (r = -1 и -0.97, p = 4, P < 0.05). Связь между содержанием тяжелых металлов в хвое P. sylvestris и продолжительность его жизни отсутствуют.

Динамика классов роста сосны обыкновенной III-IV в древесине по годам в условиях разных уровни техногенного загрязнения в центральной части Кольский полуостров показан на рис. 36. В районе умеренного уровня загрязнения атмосферы значения показателей радиального прироста древесины до начала 1990-х годов были близки к аналогичным значениям Показатели в контрольных сообществах. Затем рост кривая приобрела более четкий нисходящий характер, в по нашему мнению, из-за накопления загрязняющих веществ в обществе, особенно в почве, и продолжающиеся внутрипопуляционные конкурентные процессы в развивающиеся сообщества. Корреляционный анализ серия радиальных приростов сосны обыкновенной в четко выявлены районы умеренного загрязнения и выбросов газообразных веществ (Ярмишко, 1997) отрицательная связь (r = -0,47, n = 24, P < 0,05).

Таблица 4. Распределение деревьев сосны обыкновенной по категориям жизненного состояния на постоянных пробных площадях в условиях разного уровня аэротехногенного загрязнения в центральной части Кольского полуострова

Год	Категории жизненного состояния деревьев сосны обыкновенной							
ТОД	здоровый	ослабленный	сильно ослаблен	сухой	общий			
		Фонова	я область		\$-			
1985	79.2	18.7	0	2.1	100			
1987	76.3	21.5	1.5	0,7	100			
1990	80.1	15.3	1.8	2.8	100			
1991	81,6	14.1	2.3	2	100			
2005	89,7	10.3	0	0	100			
2008	68.1	25.9	4.3	1.7	100			
2014	62.1	20.5	13.6	3.8	100			
		Буфе	оная зона					
1985	11.1	40.0	36.7	12.2	100			
1987	4.9	54,9	25.6	14.6	100			
1990	1.8	54	29.2	15	100			
1991	8.3	29.5	45,5	16.7	100			
2005	69.4	8.1	4.1	18.4	100			
2008	61	17.1	4.8	17.1	100			
2014	64.2	12.6	10.6	12.6	100			
		Зона в	оздействия					
1987	0	6.2	43,5	50.3	100			
1990	0	8.1	42	49.9	100			
2005	25.0	16.1	13.6	45.3	100			
2008	21.3	28.7	9	41	100			
2014	25.5	23.6	23.6	27.3	100			

Исследования, проведенные в последние годы, показали, что сосна отреагировала на снижение выбросов токсичные вещества, усиливая рост в раннем возрасте 2000-е годы, на 10–15% по сравнению с предыдущим периодом (рис. 36).

Результаты нашего исследования виталитической структуры сообщества сосны обыкновенной в буферной зоне указывают что в 1981–1982 годах доля здоровых лиц не превышала 50%, ослабленных — 31%;

сильно ослабленные и усыхающие, 19%. К началу В 1990-х годах состояние сосновых насаждений заметно ухудшилось: доля здоровых особей составила 10–12%, доля ослабленных составила ~50%, а доля сильно ослабленных и усыхающих деревьев составила 20–25% (таблица 4). При этом доля

количество сухих деревьев увеличилось в десять раз по сравнению с прошлым годом 1982. Анализ наших данных показал, что в зоне средние уровни техногенного загрязнения ослабление Деревья сосны обыкновенной еще не достигли критического значения, после чего образовательная роль древесного яруса теряется его важность в обществе. Ранее было отмечено что в случае значительного сокращения или прекращения загрязнение окружающей среды на рассматриваемой

последние годы подтвердили наши предположения. С 4- до Снижение среднегодового объема выбросов загрязняющих веществ в атмосферу по ОАО «Североникель» в 6 раз с 2010 г. к началу 2000-х годов значения продолжительности жизни хвои приблизились к фоновым значениям (таблица 2), интенсивность повреждений также существенно снизилась (таблица 3). Снижение нагрузки на лесные сообщества и, как следствие, улучшение состояния органов ассимиляции привело к увеличение доли здоровых людей в виталитичный спектр, который в 2008-2014 годах превысил 60% (Таблица 4). Увеличение доли здоровых деревьев произошло за счет перехода ослабленных особей в категорию здоровых. В результате доля ослабленных деревьев на ПП снизилась почти на в четыре раза по сравнению с 1990 годом и составил 14%, а доля сильно ослабленных особей снизилась почти до 5% за счет перехода

(Ярмишко, 2005). Результаты исследований, проведенных в

В напочвенном покрове обследованных сосновых лесов буферная зона в течение всего периода наблюдения, значения проективного покрытия и высоты

территории, сосновые леса могут быть восстановлены естественным **Труавя**но-кустарничковый ярус существенно не отличался от

деревьев в более высокие категории условий жизни.

фоновые, а содержание Ni и Cu в листьях доминирующих видов кустарников превышало фоновые концентрации в 2-3 раза (Динамика..., 2009). Связь изменения концентраций тяжелых металлов в листьях кустарников с динамикой эмиссии, а также с динамикой кислоторастворимых форм Ni и Cu в органогенном горизонте почв не выявлена.

Состояние мохово-лишайникового яруса оставалось существенно нарушенным: в покрове преобладали раннесукцессионные виды, покрытие климаксовыми видами не превышало 10%, что в пять раз меньше фоновых условий. Средняя высота яруса составила 3 см, что в 1,5–3 раза меньше соответствующих фоновых значений. Наиболее нарушенное состояние яруса было зафиксировано в 1994 г. в ответ на 20летний период максимальных атмосферных выбросов (1973-1992 гг.): полное отсутствие основного доминанта в моховом покрове фоновых сосняков - P. schreberi и минимальное (1,5%) покрытие видов рода Cladina. В 2006 г. общее проективное покрытие яруса сохранилось на уровне 1994 г., однако покрытие климаксовыми видами возросло до 9%, что свидетельствует о некотором улучшении состояния яруса в ответ на резкое снижение загрязнения воздуха (Динамика..., 2009). В настоящее время в составе мохово-лишайникового яруса основную роль по-прежнему играют раннесукцессионные виды лишайников T. granulosa, Cladonia spp. и др.

Анализ полученных данных показал, что в буферной зоне динамика состояния древесного яруса определяется режимом атмосферных выбросов комбината «Североникель». По нашему мнению, состояние мохово-лишайникового покрова связано с уровнем как атмосферного, так и почвенного загрязнения.

Следует отметить, что моховой компонент изученных сообществ наиболее чувствителен к комплексному воздействию поллютантов. Травяно-кустарничковый ярус устойчив к наблюдаемым на исследуемой территории концентрациям загрязняющих веществ окружающей среды.

В районах сильного загрязнения (импактная зона) динамика содержания кислоторастворимых форм тяжелых металлов в органогенном горизонте почв характеризовалась колебаниями, не зависящими от режима атмосферных выбросов (Лянгузова, 2009). Максимальные концентрации тяжелых металлов в хвое Р. sylvestris , в 20–40 раз превышающие фоновые значения, были зафиксированы в 1984–1988 гг., минимальные, в 10–20 раз превышающие фоновые значения, – в 2005–2008 гг. (Динамика..., 2009). Коэффициент корреляции между содержанием Ni и Cu в хвое Р. sylvestris и годовыми твердыми выбросами составил 0,95 (n = 6, P < 0,05). Уменьшение общей концентрации Ni и Cu в ассимиляционных органах Р. sylvestris обусловлено уменьшением доли их поступления с воздухом, поскольку уровень загрязнения верхнего горизонта почвы оставался достаточно высоким.

Продолжительность жизни хвои P. sylvestris в импактной зоне за период наблюдений варьировала от 1,4 до 4,6 лет (табл. 2). Минимальные значения зафиксированы в 1987 г., максимальные – в 2008–2014 гг. Динамика продолжительности жизни хвои характеризуется отрицательной связью с объемом выбросов диоксида серы и твердых веществ, в обоих случаях r = – 1 (n = 4, P < 0,05).

В 1988 г. неповрежденной была только однолетняя хвоя Р. sylvestris, ее доля составила 25% (табл. 3). Двух- и трехлетняя хвоя по степени поврежденности была практически одинаковой: последняя составляла 20–40%. В 2008 г. доля неповрежденной хвои Р. sylvestris постепенно снижалась с увеличением возраста и составила для хвои 1–3-летнего возраста 74, 55 и 12% соответственно. При этом площадь хлорозов и некрозов поврежденной хвои не превышала 10%. В целом, несмотря на существенное улучшение состояния ассимиляционного аппарата Р. sylvestris к концу периода исследований (2008–2014 гг.), продолжительность жизни оказалась ниже фоновых значений, а степень его повреждения – выше (табл. 2, 3).

На протяжении всего периода наблюдений древесный ярус характеризовался высокой степенью угнетения в импактной зоне. Как и в буферной зоне, наихудшее состояние надстроечных синусий исследованных лесных сообществ наблюдалось через 15 лет после достижения годовых выбросов максимальных значений, наблюдавшихся с 1973 по 1992 гг. На фоне последующего снижения аэротехногенной нагрузки состояние древесного яруса соснового леса постепенно стало улучшаться. Важно отметить, что в 2005 г. впервые в импактной зоне было отмечено появление в древесном ярусе условно здоровых особей Р. sylvestris, что составило 25% (табл. 4).

Радиальный прирост сосны обыкновенной в зоне сильного загрязнения, в радиусе 8-12 км от источника эмиссии, в начале формирования древостоев не характеризовался большой интенсивностью. Он составлял 0,8-0,9 мм/год. Несмотря на большое сходство кривых прироста молодых сообществ в рассматриваемых условиях (сверху вниз) с таковыми на фоне и в буферной зоне, сосна здесь подверглась существенному воздействию поллютантов с момента ее заселения (рис. 36). Увеличение мощности комбината и одновременное начало использования в 1970-х годах норильской руды, отличающейся от локальной высоким содержанием S, явились непосредственными причинами существенного снижения (до 0,3 мм/год) прироста сосны на исследуемой территории (рис. 36). Интенсивность радиального прироста сосны обыкновенной в зоне сильного антропогенного загрязнения постепенно начала увеличиваться в 1990-х годах, достигнув в 2000-х годах значений ее прироста в двух других исследованных районах. Корреляционный анализ рядов радиального прироста сосны обыкновенной в зонах сильного загрязнения выявляет достаточно высокую отрицательную связь.

Существенная корреляция существует как между радиальным ростом сосны, так и количеством выбросов диоксида серы.

в атмосферу (r = -0.8, n = 24, P < 0.05) и количеством твердых частиц (r = -0.85, n = 24, P < 0.05). Следует отметить, что в зоне сильного загрязнения наблюдается гораздо более тесная связь, чем в условиях умеренного промышленного загрязнения. Здесь рост и развитие отдельных деревьев и древостоев сосны обыкновенной в большей степени зависят от интенсивности загрязнения среды диоксидом серы и оксидами тяжелых металлов, чем от изменения климатических факторов.

Однако и в рассматриваемых условиях, по нашему мнению, нельзя исключать конкурентные отношения между растениями. Плотность сосновых насаждений здесь еще достаточно высока – 3500–4200 шт./га, хотя они в значительной степени повреждены и ослаблены.

Результаты анализа виталитетной структуры сообществ сосны обыкновенной в импактной зоне показали, что в начале наших исследований и до конца 1980-х гг. здоровые особи сосны в древостое не встречались, ослабленные составляли 6-8%, а сильно ослабленные достигали 42-43% (табл. 4). Затем на фоне снижения аэротехногенного загрязнения с 1990 по 2005 гг. состояние сосновых древостоев стало заметно улучшаться, и к 2005 г. количество здоровых особей составило 25%, тогда как доля ослабленных и сильно ослабленных особей составила 16 и 14% соответственно (табл. 3). В это время в древостое преобладали сухие особи: ~45%. Исследования последних лет не выявили существенного улучшения состояния здоровья сообществ Р. sylves-tris . Наблюдались переходы особей некоторых категорий в более высокие, что в конечном итоге положительно отразилось на общем состоянии изученных сообществ в импактной зоне.

В напочвенном покрове исследуемых сосняков общее проективное покрытие травяно-кустарничкового яруса с 1984 по 2006 г. снизилось с 14 до 6%. Его современное значение существенно отличается от фоновых значений. Отрицательная реакция яруса на сокращение атмосферных выбросов связана с длительным воздействием высоких концентраций тяжелых металлов в органогенном горизонте почв, где находится основная масса корней и подземных побегов кустарников. Средняя высота яруса за период исследований составила 7-8 см, что в 1,5-2 раза меньше, чем на фоновом участке. Доминирующим ярусом в течение всего периода исследований в отличие от фоновых сообществ был Arctostaphyllos uva-ursi L. Содержание тяжелых металлов в листьях кустарников к концу периода исследований снизилось в среднем в два раза относительно их максимальных концентраций в этой зоне, а в листьях E. hermaphroditum L. более чем в десять раз.

Мохово-лишайниковый ярус в период наблюдений находился в полностью разрушенном состоянии: его проективное покрытие составило 10%, а высота – 0,5 см, что соответствует 7 и 15 раз меньше фоновых значений. В формировании покрова принимают участие только раннесукцессионные виды. Общее состояние яруса соответствует начальным стадиям восстановления на фоновых участках, зафиксированным 5–15 лет назад.

10 лет после пожара (Горшков и Баккал, 2009). При сохраняющемся уровне аэротехногенного загрязнения мохово-лишайниковый покров будет оставаться в полностью разрушенном состоянии неопределенно долгое время.

Таким образом, в пределах импактной зоны динамика жизненного состояния сосновых древостоев определяется уровнем аэротехногенного загрязнения. По нашему мнению, отсутствие значимых положительных реакций травянокустарничкового и мохово-лишайникового ярусов на сокращение атмосферных выбросов обусловлено сохранением высокого уровня загрязнения почв тяжелыми металлами.

выводы

Многолетний импактный мониторинг средневозрастных сосновых лесов центральной части Кольского полуострова показал, что накопление тяжелых металлов в ассимиляционных органах растений древесного яруса может служить маркером уровня загрязнения окружающей среды. Содержание тяжелых металлов в листьях кустарников не является таким индикатором, очевидно, из-за перераспределения пылевых частиц, поступающих из воздуха, а также с древесного яруса и поверхности почвы.

По нашему мнению, потенциал восстановления растительных сообществ зависит от сценария дальнейшей динамики уровня аэротехногенной нагрузки: сохранение объемов выбросов в атмосферу на сложившемся в настоящее время уровне или полное прекращение промышленных выбросов (остановка предприятий). В настоящее время характеристики хвои Р. sylvestris в буферной зоне достигли фоновых значений, что свидетельствует о возможности постепенного восстановления древесного яруса лесных сообществ в этих условиях.

Растения травяно-кустарничкового яруса в пределах буферной зоны, независимо от сценария динамики уровня техногенной нагрузки, остаются в хорошем жизненном состоянии. В импактной зоне, при сохранении существующего режима промышленных выбросов, ярус будет находиться в нынешнем существенно нарушенном состоянии, поскольку снижения уровня загрязнения почв тяжелыми металлами не происходит.

Мохово-лишайниковый ярус при сохранении современного уровня выбросов и содержания тяжелых металлов в лесной подстилке на территории на уровне среднего уровня промышленного загрязнения полностью не восстановится.

В заключение следует отметить, что, несмотря на установленные с 1999 г. минимальные объемы выбросов в атмосферу (~40000 тонн SO2 и 5000 тонн полиметаллической пыли), в настоящее время некорректно считать, что начался процесс постепенного восстановления сильно нарушенных лесных экосистем в районе основного источника эмиссии – комбината «Североникель». Только один, хотя и важный, компонент экосистем сосновых лесов – древесный ярус – демонстрирует существенные положительные изменения. Травяно-кустарниковый и мохово-лишайниковый ярусы, практически не проявившие реакции на режимы эмиссии, остаются в сильно нарушенном и разрушенном состоянии соответственно.

Наличие связи между выбросами режим и содержание тяжелых металлов в P. sylvestris хвои, а также ее отсутствие при содержании тяжелых металлы в листьях кустарников в буферной зоне и

Зоны воздействия указывают на то, что древесный слой, даже в В разрушенном состоянии сохраняет свою фильтрующую функцию и улавливает из воздуха основное количество пылевых загрязнителей.

Динамика различных компонентов сосновых лесов в фоновых условиях центральной части Кольский полуостров обусловлен естественными процессами сукцессии, в буферных и импактных зонах - зом Федеральной службы лесного хозяйства России от режим выбросов в атмосферу и содержание тяжелые металлы в почве.

СОБЛЮДЕНИЕ ЭТИЧЕСКИХ СТАНДАРТОВ

Авторы заявляют об отсутствии конфликта интересов. В этой статье не содержится никаких исследований с участием животных или человеческие участники, выполненные кем-либо из авторов.

ссылки

Алексеев В.А. Некоторые вопросы диагностики и классификации лесных экосистем, нарушенных загрязнением // Лесные экосистемы и атмосферное загрязнение . Л.: Наука, 1990.

стр. 38-54.

Динамика лесных сообществ Северо -Запада России. СПб.: ВВМ, 2009.

Горшков В.В., Баккал И.Ю. Нижние ярусы хвойных лесов // Динамика лесных сообществ Северо-Запа-да России . СПб.: ВВМ, 2009., стр. 197-204.

Ежегодник КМК. Ежегодник. 2007. Вып. 5.

Крючков В.В., Сыроид Н.А. Почвенно-ботанический мониторинг в центральной части Кольского полуострова // Мониторинг природной среды Кольского полуострова. Апатиты: Кольск. Научн.

Центр, Акад. Наук СССР, 1984, стр. 15–26.

Лозановская И.Н., Орлов Д.С., Садовникова Л.К. Экология и охрана биосферы при химическом загрязнении (Экология и защита биосферы при химическом загрязнении). М.: Высшая школа, 1998.

Лукина Н.В., Никонов В.В. Биогеохимические циклы в. лесах Севера в условиях аэротехногенного загрязнения Биогеохимические циклы в северных лесах в условиях аэротехногенного загрязнения. Апатиты: Кольск. Научн. Центр, Росс. Акад. Наук, 1996, тт. 1-2.

Лукина Н.В., Никонов В.В. Питательный режим леса северной тайги: природные и техногенные аспекты. Режим лесов северной тайги: природные и техногенные аспекты. Апатиты: Кольский научн. центр, Росс.

Лянгузов, А.Ю., Ярмишко, В.Т., Лянгузова, И.Ю., А новый метод оценки годового прироста стволов древесные растения, Растительные ресурсы, 2017, т. 53, № 4, стр. 580–593. Лянгузова И.В. Динамика выбросов в атмосферу предприятие по производству цветных металлов и Накопление токсичных веществ в растениях и почве // Динамика лесных сообществ Северо-Запада России. СПб.: ВВМ, 2009. С. 25Методы изучения лесных сообществ.

лесных сообществ), СПб.: Научно-исследовательский институт лесного хозяйства. Инст. Химии С.-Петербург. Гос. ун-т, 2002.

Позняков В.Я., Североникель (страницы истории комбината «Североникель» (Страницы истории комбината «Североникель»). М.: Руда и металлы, 1999.

Раменская М.Л., Микроэлементы в растениях Крайнего Микроэлементы в растениях Крайнего Севера. Ленинград: Наука, 1974.

Санитарные правила в лесах Российской Федерации (утв. прика-15.01.1998 г.) (Санитарные правила в лесах Российской Федерации (утв. приказом Федеральной службы по надзору в сфере лесного хозяйства) (Лесное хозяйство России от 15 января 1998 г.), М.: Рослеск-хоз,

Степанчик В.В., Тарасенко В.П., Василенко А.И. Техногенное загрязнение Республики Беларусь и ее воздействие на сосновые насаждения, в Проблемы лесоведения и лесоводства: Научные труды Института леса АН Беларуси (Проблемы лесного хозяйства и лесоведения: Научные труды Института леса Академии наук Беларуси), Гомель, 1993, вып. 37, часть 1, стр. 62-70.

Цветков В.Ф. Состояние лесов, подверженных воздействию промышленных Выбросы в Мурманской области и проблема их охраны окружающей среды // Экологические исследования в лесах Европейского Севера. Европейский Север), Архангельск: Изд. АИЛиЛХ, 1991 г., стр. 125-136.

Влияние промышленного атмосферного загрязнения на сосновые леса Кольского полуострова Загрязнение сосновых лесов Кольского полуострова. Л.: Бот. инт РАН, 1990.

Ярмишко, В.Т. Состояние ассимиляционного аппарата сосна, во « Влиянии промышленного загрязнения воздуха на сосновые леса Кольского полуострова»,

Ленинград: Бот. Инст. Росс. Акад. Наук, 1990, стр. 55-64. Ярмишко В.Т. Сосна обычная и атмосферное загрязнение на Европейском Севере. СПб.: Научно-исслед. Инст. Химии С.-Петербург. Гос. ун-т, 1997.

Ярмишко В.Т. Крона дерева как показатель его состояние в условиях техногенного загрязнения, в Проблемы экологии растительных сообществ. Экология растительных сообществ. СПб.: ВВМ, 2005, стр. 28-57.

Ярмишко В.Т. Динамика древесного яруса сосны (Pinus sylvestris L.) леса // Динамика лесных сообществ северо-запада России.

Северо-Запад России. СПб.: ВВМ, 2009. С. 58-73.

Ярмишко, В.Т. и Ярмишко, М.А. Радиальный рост

Сосна обыкновенная (Pinus sylvestris L.) в условиях изменения среды обитания под влиянием загрязнения воздуха на Европейском Севере России, Forestry Ideas (Болгария), София, 2015, т. 21, № 2 (50), стр. 96-105.

Ярмишко В.Т., Горшков В.В., Лянгузова И.В., Баккал И.Ю. Экологический мониторинг лесных экосистем Кольского полуострова в условиях загрязнения окружающей среды // Регион. Экол., 2011, №№ 1-2 (31). стр. 21-29.

Зайцев Г.И. Математическая статистика в экспериментальной ботанике.

Ботаника. М.: Наука, 1984.

Перевод С. Кузьмина