

X3-Class HiPerFET™ **Power MOSFET**

IXFT220N20X3HV **IXFH220N20X3 IXFK220N20X3**

200V 220A I_{D25} $6.2m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	200	V	
V _{DGR}	$T_{_{\mathrm{J}}} = 25^{\circ}\mathrm{C}$ to $150^{\circ}\mathrm{C}$, $R_{_{\mathrm{GS}}} = 1\mathrm{M}\Omega$	200	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C (Chip Capability)	220	Α	
L(RMS)	External Lead Current Limit	160	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	500	Α	
I _A	T _C = 25°C	110	Α	
E _{as}	$T_{c} = 25^{\circ}C$	2.5	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P_{D}	T _C = 25°C	890	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-264)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV	4	g	
	TO-247	6	g	
	TO-264	10	g	

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		5.2	6.2	mΩ

Symbol Test Conditions Char		acteristic Values		
$(T_J = 25$ °C, Unless Otherwise Specified) Min.		Min.	Тур.	Max
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	70	120	S
R_{Gi}	Gate Input Resistance		1.6	Ω
C _{iss}			13.6	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2.2	nF
C _{rss}			9.0	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		1000	pF
$\mathbf{C}_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		3250	pF
t _{d(on)}	Resistive Switching Times		37	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	ns
t _{d(off)}	$R_{\rm G} = 5\Omega$ (External)		155	ns
t,	n _G = 352 (External)		17	ns
$Q_{g(on)}$			204	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_D = 0.5 \cdot I_{D25}$		65	nC
Q _{gd}			47	nC
R _{thJC}				0.14 °C/W
R _{thCS}	TO-247		0.21	°C/W
-	TO-264		0.15	°C/W

Source-Drain Diode

Symbol Test Conditions Characterist		cteristic	Values		
$(T_{J} = 25^{\circ}C, L)$	Jnless Otherwise Specified)	Min.	Тур.	Max	
Is	$V_{GS} = 0V$			220	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			880	Α
V _{SD}	$I_F = 100A$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 110A$, -di/dt = 100A/ μ s $V_R = 100V$		128 580 9		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

V_{DS} - Volts

I_D - Amperes

Fig. 5. D. . . Nermalized to L. = 1104 Value va

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXFT220N20X3HV IXFH220N20X3 IXFK220N20X3

CVM	INCH	HES	MILLIMETE	
SYM	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
Α1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
р	.045	.057	1.15	1.45
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3 E	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
e	.215	BSC	5.45 BSC	
(e2)	.374	.386	9.50	9.80
Η	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4 .10

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.