

@OrbitGNX

CIRCUIT ANALYSIS METHOD

TOPIC OUTLINE

Thevenin's Theorem

Arbitrary Network:

It is possible to simplify any <u>linear circuit</u>, irrespective of how complex it is, to an equivalent circuit with a single voltage source, v_{TH} and a series resistance, R_{TH} .

Thevenin's Equivalent Circuit:

Arbitrary Network:

STEPS TO APPLY THEVENIN'S THEOREM

1. Identify the load.

STEPS TO APPLY THEVENIN'S THEOREM

- 1. Identify the load.
- 2. Remove the load

STEPS TO APPLY THEVENIN'S THEOREM

- 1. Identify the load.
- 2. Remove the load
- 3. Determine the Thevenin voltage, v_{th} :
 Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.

STEPS TO APPLY THEVENIN'S THEOREM

- 1. Identify the load.
- 2. Remove the load
- 3. Determine the Thevenin voltage, v_{th} :
 Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.
- 4. Determine the Thevenin Resistance, R_{TH} :
 Set all independent <u>sources to zero</u> and calculate the equivalent resistance looking into the terminals where the load was connected.

STEPS TO APPLY THEVENIN'S THEOREM

Thevenin Equivalent Circuit

- 1. Identify the load.
- 2. Remove the load
- 3. Determine the Thevenin voltage, v_{th} :
 Calculate the <u>open-circuit voltage</u> across the terminals where the load was connected.
- 4. Determine the Thevenin Resistance, R_{TH} :
 Set all independent <u>sources to zero</u> and calculate the equivalent resistance looking into the terminals where the load was connected.
- 5. Replace the original circuit with **Thevenin equivalent** and reconnect the load.

EXERCISE

Determine the load <u>current</u>, load <u>voltage</u>, and <u>total power</u> of the given circuit.

Solution:

LABORATORY

