EAIiIB	Ewa Stachów		Rok	Grupa	Zespół
Informatyka	Weronika Olch	a	II	3	6
Pracownia	Temat:				Nr ćwiczenia:
FIZYCZNA	Współczynnik załamania ciał stałych				
WFiIS AGH	wspoiczynnik z	51			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
19.11.2016	22.11.2016				

Ćwiczenie nr 51: Współczynnik załamania ciał stałych

1 Cel ćwiczenia

Wyznaczenie współczynnika załamania światła dla ciał stałych metodą mikroskopu. Zbadanie zależności współczynnika załamania od długości fali.

2 Wstęp

Załamanie światła na granicy dwóch ośrodków przeźroczystych. Promień padający biegnący w pierwszym ośrodku pada na granicę ośrodków po czym zmienia kierunek, i jako promień złamany biegnie w ośrodku drugim. Wiązka światła ulega załamaniu, gdy przechodzi z jednego ośrodka do drugiego o innych własnościach optycznych.

$$\frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2}$$

Stosunek sinusa kąta padania do sinusa kąta załamania, zwany współczynnikiem załamania n ośrodka 2 względem ośrodka 1, jest równy stosunkowi prędkości rozchodzenia się fali w ośrodku 1 do prędkości rozchodzenia się fali w ośrodku 2. W obu ośrodkach promień fali padającej, promień fali załamanej i prosta prostopadła do granicy ośrodków leżą w jednej płaszczyźnie. Prawo załamania zostało sformułowane przez Snelliusa w XVII wieku.

$$n = \frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2} = \frac{n_2}{n_1}$$

W skutek załamania wiązki światła odległości przedmiotów umieszczonych w środowisku optycznie gęstszym obserwowane z powietrza wydają się mniejsze. Przykładami mogą być szyba, która wydaje się być cieńsza niż w rzeczywistości lub choćby nawet przedmioty w wodzie, które wydają się być bliżej tafli. Widać to wyraźnie na przykładzie płytki płaskorównoległej: Promień OB tworzy z prostopadłą wewnątrz szkła kąt β , a w powietrzu kąt α (wskutek załamania $\alpha > \beta$). Obserwowane promienie, które wychodzą z płytki są rozbieżne, a ich przedłużenia przecinają się w punkcie O_1 tworząc obraz pozorny. Rzeczywista grubość płytki to: d=AO, natomiast $h=AO_1$ stanowi pozorną grubość płytki płaskorównoległej.

3 Układ pomiarowy

- 1. Mikroskop wyposażony w czujnik mikrometryczny i nasadkę krzyżową.
- 2. Śruba mikrometryczna.
- 3. Płytka szklana i z pleksiglasu.

Rysunek 1: Powstanie pozornego obrazu \mathcal{O}_1 punktu \mathcal{O} leżącego na dolnej powierzchni płytki płaskorównoległej.

4 Wyniki pomiarów

Materiał: pleksiglas						
Grubość rzeczywista: $d=5,42$ [mm]						
niepewność $u(d) = 0,01$ [mm]						
	Wskazanie czujnika		Grubość	Współczynnik		
Lp			pozorna	załamania		
	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$		
	[mm]	[mm]	[mm]			
1.	7,75	4,21	3,54	1,53		
2.	7,69	4,18	3,51	1,54		
3.	7,71	4,19	3,52	1,54		
4.	7,76	4,22	3,54	1,53		
5.	7,72	4,19	3,53	1,54		
6.	7,71	4,21	3,50	1,55		
7.	7,74	4,17	3,57	1,52		
8.	7,68	4,24	3,44	1,58		
9.	7,77	4,26	3,51	1,54		
10.	7,70	4,19	3,51	1,54		
		Wartość	3,51	1,54		
		średnia	3,31	1,54		
		Niepewność	0,63	0,12		

Materiał: szkło		
Grubość rzeczywista: $d=4,29~\mathrm{[mr]}$	m]	
niepewność $u(d) = 0,01$ [mm]		
	C1	XX7 (1

	Wskazanie czujnika		Grubość	Współczynnik	
Lp.			pozorna	załamania	
	a_d	a_g	$h = a_d - a_g$	$n = \frac{d}{h}$	
	[mm]	[mm]	[mm]		
1.	8,10	5,46	2,64	1,63	
2.	8,07	5,51	2,56	1,68	
3.	8,04	5,59	2,45	1,75	
4.	8,06	5,53	2,53	1,70	
5.	8,04	5,49	2,55	1,68	
6.	8,04	5,48	2,56	1,68	
7.	8,02	5,49	2,53	1,70	
8.	8,04	5,53	2,51	1,71	
9.	8,04	5,53	2,51	1,71	
10.	8,04	5,53	2,51	1,71	
		Wartość	2,54	1.60	
		średnia	2,34	1,69	
		Niepewność	0,53	0,12	

5 Obliczenia

Aby obliczyć wartość współczynnika załamania światła korzystamy ze wzoru:

$$n = \frac{d}{h}$$

Niepewność pomiaru grubości płytki typu B przyjmujemy:

$$u(d) = 0,01 \ mm,$$

gdyż jest to najmniejsza możliwa do odczytania wartość na śrubie mikrometrycznej. Do obliczenia niepewności typu A dla grubości pozornej *h* korzystamy ze wzoru:

$$u(h) = \sqrt{\frac{\sum (h_i - \overline{h})^2}{n(n-1)}}$$

Dla pleksiglasu:

$$u(h) = \sqrt{\frac{(3,54-3,51)^2 + \dots + (3,51-3,51)^2}{10(10-1)}} \ mm = 0,63 \ mm$$

Dla szkła:

$$u(h) = \sqrt{\frac{(2,64-2,54)^2 + \dots + (2,51-2,54)^2}{10(10-1)}} \ mm = 0,53 \ mm$$

Następnie wyznaczamy niepewność obliczonego współczynnika załamania światła z prawa przenoszenia niepewności:

$$u(n) = \sqrt{\left(\frac{\partial n}{\partial d}u(d)\right)^2 + \left(\frac{\partial n}{\partial h}u(h)\right)^2} = \sqrt{\left(\frac{1}{h}u(d)\right)^2 + \left(\frac{-d}{h^2}u(h)\right)^2}$$

Dla pleksiglasu:

$$u(n) = \sqrt{\left(\frac{1}{3,51} \cdot 0,01\right)^2 + \left(\frac{-7,72}{3,51^2} \cdot 0,63\right)^2} = 0,12$$

Dla szkła:

$$u(n) = \sqrt{\left(\frac{1}{2,54} \cdot 0,01\right)^2 + \left(\frac{-8,05}{2,54^2} \cdot 0,53\right)^2} = 0,12$$

6 Porównanie z wartościami tabelarycznymi

Dla pleksiglasu:

$$u_{tab} = 1,9$$

 $|u_{tab} - u_{obl}| = |1,49 - 1,54| < u(n)$

Dla szkła:

$$u_{tab} = [1, 4; 1, 9]$$

 $u_{obl} \in [1, 4; 1, 9]$

7 Wnioski

Otrzymane wartości współczynnika załamania są zgodna z wartościami tablicowymi w granicach niepewności zarówno dla płytki ze szkła, jak i z pleksiglasu. Według przeprowadzonego badania, współczynnik załamania światła w szkle jest mniejszy od współczynnika załamania w plexiglasie – wynika z tego, że obraz widziany przez szkło jest wyraźniejszy niż ten widziany przez płytkę z plexiglasu.