

## **Description**

The VSM3400X uses advanced trench technology to provide excellent  $R_{\rm DS(ON)}$ , low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

#### **General Features**

•  $V_{DS} = 30V, I_{D} = 5.1A$ 

 $R_{DS(ON)}$  < 55m $\Omega$  @  $V_{GS}$ =2.5V

 $R_{DS(ON)}$  < 39m $\Omega$  @  $V_{GS}$ =4.5V

 $R_{DS(ON)}$  < 33m $\Omega$  @  $V_{GS}$ =10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- PWM applications
- Load switch
- Power management





SOT-23-3

Schematic Diagram

### **Package Marking and Ordering Information**

| Device Marking | Device   | Device Package | Reel Size | Tape width | Quantity   |
|----------------|----------|----------------|-----------|------------|------------|
| VSM3400X-S2    | VSM3400X | SOT-23-3       | Ø180mm    | 8 mm       | 3000 units |

Absolute Maximum Ratings (T<sub>A</sub>=25 ℃unless otherwise noted)

| Parameter                                        | Symbol                           | Limit      | Unit |
|--------------------------------------------------|----------------------------------|------------|------|
| Drain-Source Voltage                             | VDS                              | 30         | V    |
| Gate-Source Voltage                              | V <sub>G</sub> s                 | ±12        | V    |
| Drain Current-Continuous                         | I <sub>D</sub>                   | 5.1        | А    |
| Drain Current-Pulsed (Note 1)                    | I <sub>DM</sub>                  | 20         | А    |
| Maximum Power Dissipation                        | P <sub>D</sub>                   | 1.3        | W    |
| Operating Junction and Storage Temperature Range | T <sub>J</sub> ,T <sub>STG</sub> | -55 To 150 | ℃    |

#### **Thermal Characteristic**

| Thermal Resistance,Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 96 | °C/W |
|-------------------------------------------------|-----------------|----|------|
| I nermal Resistance, Junction-to-Ambient \ /    | ReJA            | 90 |      |

### **Electrical Characteristics (T<sub>A</sub>=25**°C unless otherwise noted)

| Parameter                       | Symbol            | Condition                                 | Min | Тур | Max | Unit |  |
|---------------------------------|-------------------|-------------------------------------------|-----|-----|-----|------|--|
| Off Characteristics             |                   |                                           |     |     |     |      |  |
| Drain-Source Breakdown Voltage  | BV <sub>DSS</sub> | V <sub>GS</sub> =0V I <sub>D</sub> =250μA | 30  | -   | -   | V    |  |
| Zero Gate Voltage Drain Current | I <sub>DSS</sub>  | V <sub>DS</sub> =30V,V <sub>GS</sub> =0V  | -   | -   | 1   | μA   |  |





| Parameter                          | Symbol              | Condition                                                                | Min | Тур | Max  | Unit |
|------------------------------------|---------------------|--------------------------------------------------------------------------|-----|-----|------|------|
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±12V,V <sub>DS</sub> =0V                                | -   | -   | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                                                          |     |     |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                       | 0.7 | 0.9 | 1.2  | V    |
|                                    |                     | V <sub>GS</sub> =2.5V, I <sub>D</sub> =3A                                | -   | 33  | 55   | mΩ   |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | $V_{GS}$ =4.5 $V$ , $I_{D}$ =4 $A$                                       | -   | 26  | 39   | mΩ   |
|                                    |                     | $V_{GS}$ =10V, $I_D$ =5A                                                 | -   | 24  | 33   | mΩ   |
| Forward Transconductance           | <b>g</b> FS         | $V_{DS}$ =5 $V$ , $I_{D}$ =5 $A$                                         | 10  | -   | -    | S    |
| Dynamic Characteristics (Note4)    |                     |                                                                          |     |     |      |      |
| Input Capacitance                  | C <sub>lss</sub>    | \/ -15\/\/ -0\/                                                          | -   | 595 | -    | PF   |
| Output Capacitance                 | Coss                | $V_{DS}$ =15V, $V_{GS}$ =0V,<br>F=1.0MHz                                 | -   | 39  | -    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | r-1.0IVIHZ                                                               | -   | 36  | -    | PF   |
| Switching Characteristics (Note 4) |                     |                                                                          |     |     |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                          | -   | 3.0 | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =15V, $R_L$ =3 $\Omega$<br>$V_{GS}$ =10V, $R_{GEN}$ =3 $\Omega$ | -   | 4.5 | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> |                                                                          | -   | 25  | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                          | -   | 3.8 | -    | nS   |
| Total Gate Charge                  | Qg                  | \/ 45\/  5A                                                              | -   | 9.3 | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}=15V,I_{D}=5A,$<br>$V_{GS}=4.5V$                                  | -   | 1.6 | -    | nC   |
| Gate-Drain Charge                  | $Q_{gd}$            | V <sub>GS</sub> -4.5V                                                    | -   | 2.1 | -    | nC   |
| Drain-Source Diode Characteristics |                     |                                                                          | ·   |     |      |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =5A                                   | -   | -   | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                          | -   | -   | 5.1  | Α    |

### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec.
- **3.** Pulse Test: Pulse Width  $\leq 300 \mu s$ , Duty Cycle  $\leq 2\%$ .
- **4.** Guaranteed by design, not subject to production



# **Typical Electrical and Thermal Characteristics**



**Figure 1:Switching Test Circuit** 



T<sub>J</sub>-Junction Temperature(°ℂ)

**Figure 3 Power Dissipation** 



**Figure 5 Output Characteristics** 



Figure 2:Switching Waveforms



**Figure 4 Drain Current** 



I<sub>D</sub>- Drain Current (A)

Figure 6 Drain-Source On-Resistance





Vgs Gate-Source Voltage (V) **Figure 7 Transfer Characteristics** 



Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs



Figure 11 Gate Charge



Figure 8 Drain-Source On-Resistance





Figure 12 Source- Drain Diode Forward





Vds Drain-Source Voltage (V)

Figure 13 Safe Operation Area



**Figure 14 Normalized Maximum Transient Thermal Impedance**