Cours de probabilité Avancée

Diffalah LAISSAOUI

Université de Médéa Faculté des sciences Département de mathématiques et Informatique

L3 Maths

Mai 2022

Inegalité de Markov

Proposition

Soit X une variable aléatoire positive dont l'espérance mathématique existe, l'inégalité de Markov établit que pour tout $\lambda>0$:

$$P(X \ge \lambda) \le \frac{E(X)}{\lambda}.$$

Remarque

Dans le cas d'une variable aléatoire de signe quelconque, en appliquant l'inégalité de Markov à $|X|^k$, pour tout k tel que $E |X|^k$ existe : on obtient $P(|X|^k \geq \lambda) \leq \frac{E|X|^k}{\lambda}$. On introduit alors un nombre $\epsilon > 0$ tel que $\epsilon^k = \lambda$ et on en déduit pour tout $\epsilon > 0$:

$$P(|X| \ge \epsilon) \le \frac{E|X|^k}{\epsilon^k}.$$

Inegalité de Bienaymé-Tchebychev

On obtient l'inegalité de Bienaymé-Tchebychev en appliquant l'inégalité de Markov sous sa dernière forme, à la variable aléatoire X - E(X) pour k = 2, donc pour une variable dont la variance existe on obtient

$$P(|X - E(X)| \ge \epsilon) \le \frac{V(X)}{\epsilon^2}.$$

Inégalité de Jensen

Si g est une fonction réelle convexe sur un intervalle I de \mathbb{R} $(g(\alpha x + (1-\alpha)y) \leq \alpha g(x) + (1-\alpha)g(y)$ pour tout x et y de I et tout $\alpha \in [0,1]$ ou $g''(x) \geq 0$ si g est deux fois dérivable) et si E(X) et E(g(X)) existent, alors

$$g(E(X)) \leq E(g(X)).$$

Exemple

Si on applique cette inégalité à $g(t) = t^2$ on obtient $(E(X))^2 \le E(X^2)$, résultat bien connu par ailleurs puisqu'il traduit que la variance est positive.

Convergence en probabilité :

Si (X_n) est une suite de variable aléatoire qui converge vers une variable aléatoire X, cela signifie que X_n se rapproche de X quand n augmente. On mesure la distance entre X_n et X par $|X_n-X|$ qui sera d'autant plus petite que n sera grand.

Définition

On dit que la suite de variable aléatoire (X_n) converge en probabilité vers une variable aléatoire X si, pour tout $\epsilon > 0$:

$$P(|X_n - X| < \epsilon) \rightarrow 1$$
 quand $n \rightarrow \infty$,

ou de façon équivalente :

$$P(|X_n - X| > \epsilon) \to 0$$
 quand $n \to \infty$.

On écrit

$$X_n \rightarrow_p X$$
.

Conditions suffisantes de convergence en probabilité :

Si (X_n) est une suite de variable aléatoire telle que

$$E(X_n) \rightarrow a$$

$$V(X_n) \rightarrow 0$$

quand $n \to \infty$, alors :

$$X_n \rightarrow_p a$$
.

Convergence en moyenne d'ordre p :

Definition

On dit que la suite de variable aléatoire (X_n) converge en moyenne d'ordre p, avec 0 , vers la variable aléatoire <math>X si :

$$E(|X_n - X|^p) \to 0$$
 quand $n \to \infty$.

On écrit

$$X_n \rightarrow_{Mp} X$$
.

Convergence en loi:

Définition

On dit que la suite de variable aléatoire (X_n) , de fonction de répartition F_n , converge en loi vers une variable aléatoire X de fonction de répartition F si la suite $\{F_n(x)\}$ converge vers F(x) en tout point x où F est continue ; on écrit alors :

$$X_n \rightarrow_{loi} X$$
.

Lien avec la convergence en probabilité :

Théorème

La convergence en probabilité d'une suite (X_n) implique sa convergence en loi

$$X_n \rightarrow_p X \Longrightarrow X_n \rightarrow_{loi} X$$
.

Propriété

Si (X_n) et (Y_n) sont deux suites de variable aléatoire telles que pour $n \to \infty$,

$$X_n \rightarrow_{loi} X$$
 et $Y_n \rightarrow_p a$

où a est un nombre réel, alors :

•
$$X_n + Y_n \rightarrow_{loi} X + a$$
.

Lien avec la convergence en probabilité :

Théorème

La convergence en probabilité d'une suite (X_n) implique sa convergence en loi

$$X_n \rightarrow_p X \Longrightarrow X_n \rightarrow_{loi} X$$
.

Propriété

Si (X_n) et (Y_n) sont deux suites de variable aléatoire telles que pour $n \to \infty$,

$$X_n \rightarrow_{loi} X$$
 et $Y_n \rightarrow_p a$

où a est un nombre réel, alors :

- $\bullet \ X_n + Y_n \to_{loi} X + a.$
- $X_n Y_n \rightarrow_{loi} aX$.

Lien avec la convergence en probabilité :

Théorème

La convergence en probabilité d'une suite (X_n) implique sa convergence en loi

$$X_n \rightarrow_p X \Longrightarrow X_n \rightarrow_{loi} X$$
.

Propriété

Si (X_n) et (Y_n) sont deux suites de variable aléatoire telles que pour $n \to \infty$.

$$X_n \rightarrow_{loi} X$$
 et $Y_n \rightarrow_p a$

où a est un nombre réel, alors :

- $X_n + Y_n \rightarrow_{loi} X + a$.
- $X_n Y_n \rightarrow_{loi} aX$.
- $\frac{X_n}{Y_n} \rightarrow_{loi} \frac{X}{a}$ si $a \neq 0$.

Convergence presque sure :

On dit que la suite (X_n) converge presque surement vers la variable aléatoire X si :

$$P\{\omega \in \Omega/\underset{n}{\lim}X_{n}(\omega) = X(\omega)\} = 1$$

et on écrit

$$X_n \xrightarrow{p.s} X$$
, $n \to \infty$.

Lien entre les convergences en :

Théorème

La convergence presque sure d'une suite (X_n) implique sa convergence en en probabilité.

$$X_n \rightarrow_{p.s} X \Longrightarrow X_n \rightarrow_p X \Longrightarrow X_n \rightarrow_{loi} X$$
.