Outline

Inferring propagation models over networks

- Accuracy of inference: exact or approximate
- Knowledge: partial or full

Problem: Inferring propagation models by active querying

- User knows:
 - Network (undirected, unweighted)
 - ► Concept class
 - * threshold functions
 - * symmetric local functions
- Exact inference

Sample complexity: How many queries are sufficient to infer the dynamical system?

Threshold propagation model

... and symmetric vertex functions

A. Adiga

- Closed neighborhood of a vertex v: N[v]
- Every node is associated with a threshold: t(v)

$$q_{i+1}(v) = \begin{cases} 1, & \sum_{v' \in N[v]} q_i(v') \ge t(v) \\ 0, & \text{otherwise} \end{cases}$$

$$0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{cases}$$

$$t(a) = 1$$
, $t(b) = 1$, $t(c) = 2$, $t(d) = 2$

 $\, \bullet \,$ Symmetric vertex functions: State depends only on number of neighbors in state 1.

Query models

Feb. 6, 2018 1 / 5

Feb. 6, 2018 3 / 5

Batch and adaptive modes

A. Adiga

- Batch: queries must be submitted at once.
- Adaptive: a query can be submitted after observing answers to previous queries ("Twenty questions" game).

Inferring the threshold of a single vertex $% \left(t\right) =\left(t\right) \left(t\right) \left($

	Batch mode							Adaptive mode			
	q_1	q_2	q_3		$q_{d(v)}$	$q_{d(v)+1}$			q_1	q_2	q
u_1	0	1	1		1	1		u_1	1	1	
u_2	0	0	1		1	1		u_2	1	1	
u_3	0	0	0		1	1		u_3	1	1	
u_4	0	0	0		1	1		u_4	0	1	
u_5	0	0	0		1	1		u_5	0	1	(
v	0	0	0		0	1		v	0	0	(