

ullet If we want to achieve $\mathcal{O}(N)$ complexity of solving sparse linear systems, then direct solvers are not appropriate.

Iterative methods

- $\bullet \ \ \text{If we want to achieve} \ \mathcal{O}(N) \ \text{complexity of solving sparse linear systems, then direct solvers are not appropriate}.$
- If we want to solve partial eigenproblem, the full eigendecomposition is too costly.

♥ ი ⊘

- ullet If we want to achieve $\mathcal{O}(N)$ complexity of solving sparse linear systems, then direct solvers are not appropriate.
- If we want to solve partial eigenproblem, the full eigendecomposition is too costly.
- For both problems we will use iterative, Krylov subspace solvers, which treat the matrix as a **black-box** linear operator.

എ റ ഉ

• We have now an absolutely different view on a matrix: matrix is now a **linear operator**, that acts on a vector, and this action can be computed in $\mathcal{O}(N)$ operations.

Iterative methods

- We have now an absolutely different view on a matrix: matrix is now a **linear operator**, that acts on a vector, and this action can be computed in $\mathcal{O}(N)$ operations.
- This is the only information we know about the matrix: the matrix-by-vector product (matvec)

େ ଚ

- We have now an absolutely different view on a matrix: matrix is now a **linear operator**, that acts on a vector, and this action can be computed in $\mathcal{O}(N)$ operations.
- This is the only information we know about the matrix: the matrix-by-vector product (matvec)
- Can we solve linear systems using only matvecs?

େ ଚେଡ

- We have now an absolutely different view on a matrix: matrix is now a **linear operator**, that acts on a vector, and this action can be computed in $\mathcal{O}(N)$ operations.
- This is the only information we know about the matrix: the matrix-by-vector product (matvec)
- Can we solve linear systems using only matvecs?
- Of course, we can multiply by the colums of the identity matrix, and recover the full matrix, but it is not what we need.

 $f \to \min_{x \in X}$

Gradient Descent Richardson iteration

The simplest idea is the "simple iteration method" or Richardson iteration.

$$Ax = f$$
,

The simplest idea is the "simple iteration method" or Richardson iteration.

$$Ax = f$$
,

$$\tau(Ax - f) = 0,$$

The simplest idea is the "simple iteration method" or Richardson iteration.

$$Ax = f$$
,

$$\tau(Ax - f) = 0,$$

$$x - \tau(Ax - f) = x,$$

େ ଚ

The simplest idea is the "simple iteration method" or Richardson iteration.

$$Ax = f$$

$$\tau(Ax - f) = 0,$$

$$x - \tau(Ax - f) = x,$$

$$x_{k+1} = x_k - \tau (Ax_k - f),$$

where au is the **iteration parameter**, which can be always chosen such that the method **converges**.

Gradient Descent Richardson iteration

Connection to ODEs

• The Richardson iteration has a deep connection to the Ordinary Differential Equations (ODE).

Connection to ODEs

- The Richardson iteration has a deep connection to the Ordinary Differential Equations (ODE).
- Consider a time-dependent problem

$$\frac{dy}{dt} + Ay = f, \quad y(0) = y_0.$$

Connection to ODEs

- The Richardson iteration has a deep connection to the Ordinary Differential Equations (ODE).
- Consider a time-dependent problem

$$\frac{dy}{dt} + Ay = f, \quad y(0) = y_0.$$

• Then $y(t) \to A^{-1}f$ as $t \to \infty$, and the **Euler scheme** reads

$$\frac{y_{k+1} - y_k}{\tau} = -Ay_k + f.$$

which leads to the Richardson iteration

$$y_{k+1} = y_k - \tau (Ay_k - f)$$

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

େ ଚେ 🕈

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

େ ଚେ 🗢

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with $\boldsymbol{\alpha}$ step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for x_{k+1}

$$x_{k+1} = x_k - \alpha f'(x_k),$$

which is exactly gradient descent.

Open In Colab &

େଟେଡ

Let's consider the following ODE, which is referred to as the Gradient Flow equation.

$$\frac{dx}{dt} = -f'(x(t)) \tag{GF}$$

and discretize it on a uniform grid with α step:

$$\frac{x_{k+1} - x_k}{\alpha} = -f'(x_k),$$

where $x_k \equiv x(t_k)$ and $\alpha = t_{k+1} - t_k$ - is the grid step.

From here we get the expression for x_{k+1}

$$x_{k+1} = x_k - \alpha f'(x_k),$$

which is exactly gradient descent.

Open In Colab 🌲

Figure 1: Gradient flow trajectory

Convergence of the Richardson method

• Let x_* be the solution; introduce an error $e_k = x_k - x_*$, then

$$e_{k+1} = (I - \tau A)e_k,$$

therefore if $\|I-\tau A\|<1$ in any norm, the iteration converges.

ardson iteration

Convergence of the Richardson method

• Let x_* be the solution; introduce an error $e_k = x_k - x_*$, then

$$e_{k+1} = (I - \tau A)e_k,$$

therefore if $||I - \tau A|| < 1$ in any norm, the iteration converges.

ullet For symmetric positive definite case it is always possible to select au such that the method converges.

Convergence of the Richardson method

• Let x_* be the solution; introduce an error $e_k = x_k - x_*$, then

$$e_{k+1} = (I - \tau A)e_k,$$

therefore if $\|I - \tau A\| < 1$ in any norm, the iteration converges.

- For symmetric positive definite case it is always possible to select au such that the method converges.
- What about the non-symmetric case? Below demo will be presented...

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

 \bullet Firstly, without loss of generality we can set c=0, which will not affect optimization process.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c=0, which will not affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will not affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will not affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will not affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x-x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$
$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- ullet Firstly, without loss of generality we can set c=0, which will not affect optimization process.
- ullet Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

• Let's show, that we can switch coordinates to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

$$= \frac{1}{2} \hat{x}^T \Lambda \hat{x}$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

Now we can work with the function $f(x) = \frac{1}{2}x^T \Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$

 $\boldsymbol{x}_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) \boldsymbol{x}_{(i)}^k$ For i-th coordinate

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For *i*-th coordinate

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

Gradient Descent Richardson iteration

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For *i*-th coordinate

$$x_{(i)} = (1 - \alpha \lambda_{(i)})x_{(i)}$$
 For i -th α

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu$.

$$|1 - \alpha \mu| < 1$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k \lambda \alpha) x^k \text{ For } i\text{-th coording}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu$.

$$|1 - \alpha \mu| < 1$$

- 1 < 1 - $\alpha \mu$ < 1

$$f \to \min_{x,y,z}$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinat $x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: a(x) = max | 1 a(x) = 1

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

$$|1 - \alpha \mu| < 1$$

- 1 < 1 - \alpha \mu < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x^{k+1} = (1 - \alpha^k) \times x^k \quad \text{For } i \text{ th coord} i$$

$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})x_{(i)}^k$$
 For i -th coordinate
$$x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})^kx_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $a(\alpha) = \max_{\alpha \in A} |1 - \alpha| < 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha \mu < 1

$$\alpha < \frac{2}{\mu} \qquad \alpha \mu > 0$$

Now we can work with the function $f(x)=\frac{1}{2}x^T\Lambda x$ with $x^*=0$ without loss of generality (drop the hat from the \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize $\alpha^k=\alpha.$ Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\pi} & \alpha \mu > 0 \end{aligned}$$

 $f \rightarrow \min_{x,y,z}$ Gradient Descent Richardson iteration

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For i -th coordinate

$$x_{(i)}^{\kappa+1}=(1-lpha^{\kappa}\lambda_{(i)})x_{(i)}^{\kappa}$$
 For i -th coordinate $x_{(i)}^{k+1}=(1-lpha^{k}\lambda_{(i)})^{k}x_{(i)}^{0}$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For i -th coordinate

$$x_{(i)}^{\kappa+1}=(1-lpha^{\kappa}\lambda_{(i)})x_{(i)}^{\kappa}$$
 For i -th coordinate $x_{(i)}^{k+1}=(1-lpha^{k}\lambda_{(i)})^{k}x_{(i)}^{0}$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $f \to \min_{x,y,z}$ Gradient Descent Richardson iteration

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \text{ is needed for convergence}.$$

$$|1 - \alpha L| < 1$$

$$\alpha L < 1$$

$$-\alpha L < 1$$

$$\alpha L < 1$$

$$-\alpha L < 1$$

$$-\alpha L < 1$$

$$-\alpha L < 1$$

$$\mu$$
.

 $= (I - \alpha^k \Lambda) x^k$ $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to tune α to choose the best (lowest)

convergence rate

 $\rho^* = \min \rho(\alpha)$

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\mu$$
 $\alpha < \frac{2}{T}$ is needed for convergence.

$$\alpha < \overline{L}$$

$$\alpha L < 1$$

$$\alpha L > 0$$

 $\alpha < \frac{2}{r}$ $\alpha \mu > 0$ $\alpha < \frac{2}{r}$ $\alpha L > 0$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

 $= (I - \alpha^k \Lambda) x^k$ $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$ Let's use constant stepsize $\alpha^k = \alpha$. Convergence

condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

$$\alpha<\frac{2}{\mu} \qquad \alpha\mu>0 \qquad \qquad \alpha<\frac{2}{L} \qquad \alpha L>0$$

$$\alpha<\frac{2}{L} \text{ is needed for convergence.}$$

Now we would like to tune
$$\alpha$$
 to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$

$$f \to \min_{x,y,z}$$
 Gradient Descent Richardson iteration

 $= (I - \alpha^k \Lambda) x^k$ $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$ For *i*-th coordinate

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$
$$= (I - \alpha^k \Lambda) x^k$$
$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k$$
 For *i*-th coordi

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

condition:
$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to tune α to choose the best (lowest)

convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ $= (I - \alpha^k \Lambda) x^k$

$$-\alpha^k \Lambda x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

condition:
$$\rho(\alpha) = \max |1 - \alpha \lambda_{(i)}| < 1$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

at
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \ge \mu.$$

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $\alpha < \frac{2}{\mu}$ $\alpha \mu > 0$ $\alpha < \frac{2}{L}$ $\alpha L > 0$

 $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to tune α to choose the best (lowest)

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

convergence rate

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ $= (I - \alpha^k \Lambda) x^k$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) x^k_{(i)} \text{ For } i\text{-th coordinate} \end{split}$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})^kx_{(i)}^0$$
 Let's use constant stepsize $\alpha^k=\alpha$. Convergence

 $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

condition:

$$\lambda_{\mathsf{min}} = \mu > 0, \lambda_{\mathsf{max}} = L \geq \mu.$$

Remember, that
$$\lambda_{\min} = \mu > 0, \lambda_{\max} = L \geq \mu.$$

$$\begin{aligned} |1 - \alpha \mu| < 1 & |1 - \alpha L| < 1 \\ -1 < 1 - \alpha \mu < 1 & -1 < 1 - \alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha \mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{aligned}$$

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$
$$\alpha^* = \frac{2}{\mu + L}$$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ $= (I - \alpha^k \Lambda) x^k$

 $x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x_{(i)}^{k+1} &= (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate} \end{split}$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition: $\rho(\alpha) = \max|1 - \alpha\lambda_{(i)}| < 1$

$$b(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
- 1 < 1 - \alpha L < 1 - 1 < 1 - \alpha L < 1

 $\alpha < \frac{2}{\mu}$ $\alpha \mu > 0$ $\alpha < \frac{2}{L}$ $\alpha L > 0$ $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

Now we would like to tune α to choose the best (lowest)

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

 $\alpha^*: 1 - \alpha^* \mu = \alpha^* L - 1$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ $= (I - \alpha^k \Lambda) x^k$

$$x = x - \alpha \quad \forall f(x) = x - \alpha \quad \Lambda x$$

$$= (I - \alpha^k \Lambda) x^k$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)}) x_{(i)}^k \text{ For } i\text{-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$|1 - \alpha \mu| < 1$$
 $|1 - \alpha L| < 1$
 $-1 < 1 - \alpha \mu < 1$ $-1 < 1 - \alpha L < 1$

 $\alpha < \frac{2}{t}$ $\alpha \mu > 0$ $\alpha < \frac{2}{t}$ $\alpha L > 0$ $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x})

Now we would like to tune α to choose the best (lowest) convergence rate

$$\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$$
$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$
$$\alpha^* : 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0$$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$ $= (I - \alpha^k \Lambda) x^k$

$$=(I-\alpha^k\Lambda)x^k$$

$$x_{(i)}^{k+1}=(1-\alpha^k\lambda_{(i)})x_{(i)}^k \text{ For i-th coordinate}$$

$$x_{(i)}^{k+1} = (1 - \alpha^k \lambda_{(i)})^k x_{(i)}^0$$

Let's use constant stepsize $\alpha^k = \alpha$. Convergence condition:

$$\rho(\alpha) = \max_{i} |1 - \alpha \lambda_{(i)}| < 1$$

Remember, that $\lambda_{\min} = \mu > 0, \lambda_{\max} = L > \mu$.

$$|1-lpha\mu|<1$$
 $|1-lpha L|<1$

 $\alpha < \frac{2}{\mu}$ $\alpha \mu > 0$ $\alpha < \frac{2}{L}$ $\alpha L > 0$ $\alpha < \frac{2}{L}$ is needed for convergence.

Now we can work with the function $f(x) = \frac{1}{2}x^T\Lambda x$ with $x^* = 0$ without loss of generality (drop the hat from the \hat{x}) Now we would like to tune α to choose the best (lowest)

> convergence rate $\rho^* = \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}|$

$$= \min_{\alpha} \{|1 - \alpha \mu|, |1 - \alpha L|\}$$

$$\alpha^*: \quad 1 - \alpha^* \mu = \alpha^* L - 1$$

$$\alpha^* = \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu}$$

$$=\frac{1}{L+\mu}$$

$$x^{k+1} = \left(\frac{L-\mu}{L+\mu}\right)^k x^0 \quad f(x^{k+1}) = \left(\frac{L-\mu}{L+\mu}\right)^{2k} f(x^0)$$

 $-1 < 1 - \alpha u < 1$ $-1 < 1 - \alpha L < 1$

Convergence analysis

So, we have a linear convergence in the domain with rate $\frac{\kappa-1}{\kappa+1}=1-\frac{2}{\kappa+1}$, where $\kappa=\frac{L}{\mu}$ is sometimes called *condition number* of the quadratic problem.

κ	ho	Iterations to decrease domain gap $10\ \mathrm{times}$	Iterations to decrease function gap $10\ \mathrm{times}$
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Optimal parameter choice

• The choise of τ that minimizes $\|I - \tau A\|_2$ for $A = A^* > 0$ is (prove it!)

$$au_{
m opt} = rac{2}{\lambda_{
m min} + \lambda_{
m max}}.$$

where λ_{\min} is the minimal eigenvalue, and λ_{\max} is the maximal eigenvalue of the matrix A.

Optimal parameter choice

• The choise of τ that minimizes $\|I - \tau A\|_2$ for $A = A^* > 0$ is (prove it!)

$$au_{
m opt} = rac{2}{\lambda_{
m min} + \lambda_{
m max}}.$$

where λ_{\min} is the minimal eigenvalue, and λ_{\max} is the maximal eigenvalue of the matrix A.

• So, to find optimal parameter, we need to know the **bounds of the spectrum** of the matrix A, and we can compute it by using **power method**.

Condition number

Condition number and convergence speed

Even with the optimal parameter choice, the error at the next step satisfies

$$||e_{k+1}||_2 \le q||e_k||_2, \quad \to \quad ||e_k||_2 \le q^k ||e_0||_2,$$

where

$$q = \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} = \frac{\operatorname{cond}(A) - 1}{\operatorname{cond}(A) + 1},$$

$$\operatorname{cond}(A) = \frac{\lambda_{\max}}{\lambda_{\min}} \quad \text{for} \quad A = A^* > 0$$

is the condition number of A.

Let us do some demo...

• Thus, for **ill-conditioned** matrices the error of the simple iteration method decays very slowly.

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

Consider non-hermitian matrix A

Possible cases of Richardson iteration behaviour:

convergence

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an
 estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

Consider non-hermitian matrix A

Possible cases of Richardson iteration behaviour:

- convergence
- divergence

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

Consider non-hermitian matrix A

Possible cases of Richardson iteration behaviour:

- convergence
- divergence
- almost stable trajectory

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

Consider non-hermitian matrix A

Possible cases of Richardson iteration behaviour:

- convergence
- divergence
- almost stable trajectory

- Thus, for ill-conditioned matrices the error of the simple iteration method decays very slowly.
- This is another reason why **condition number** is so important:
- Besides the bound on the error in the solution, it also gives an estimate of the number of iterations for the iterative methods.
- Main questions for the iterative method is how to make the matrix better conditioned.
- The answer is use preconditioners. Preconditioners will be discussed in further lectures.

Consider non-hermitian matrix A

Possible cases of Richardson iteration behaviour:

- convergence
- divergence
- almost stable trajectory

Q: how can we identify our case before running iterative method?

Spectrum directly affects the convergence

One can still formulate a Lyapunov function ¹

¹Another approach to build Lyapunov functions for the first order methods in the quadratic case. D. M. Merkulov, I. V. Oseledets

Steepest Descent

Steepest Descent

Better iterative methods

But before preconditioners, we can use better iterative methods.

There is a whole **zoo** of iterative methods, but we need to know just few of them.

• Suppose we **change** τ every step, i.e.

$$x_{k+1} = x_k - \tau_k (Ax_k - f).$$

• Suppose we **change** τ every step, i.e.

$$x_{k+1} = x_k - \tau_k (Ax_k - f).$$

• A possible choice of τ_k is such that it minimizes norm of the current residual

$$\tau_k = \arg\min_{\tau} \|A(x_k - \tau_k(Ax_k - f)) - f\|_2^2.$$

• Suppose we change τ every step, i.e.

$$x_{k+1} = x_k - \tau_k (Ax_k - f).$$

• A possible choice of τ_k is such that it minimizes norm of the current residual

$$\tau_k = \arg\min_{\tau} \|A(x_k - \tau_k(Ax_k - f)) - f\|_2^2.$$

This problem can be solved analytically (derive this solution!)

$$au_k = rac{r_k^\top r_k}{r_k^\top A r_k}, \quad r_k = A x_k - f$$

• Suppose we change τ every step, i.e.

$$x_{k+1} = x_k - \tau_k (Ax_k - f).$$

• A possible choice of τ_k is such that it minimizes norm of the current residual

$$\tau_k = \arg\min_{\tau} \|A(x_k - \tau_k(Ax_k - f)) - f\|_2^2.$$

This problem can be solved analytically (derive this solution!)

$$\tau_k = \frac{r_k^\top r_k}{r_k^\top A r_k}, \quad r_k = A x_k - f$$

• This method is called the steepest descent.

• Suppose we change τ every step, i.e.

$$x_{k+1} = x_k - \tau_k (Ax_k - f).$$

• A possible choice of τ_k is such that it minimizes norm of the current residual

$$\tau_k = \arg\min_{\tau} \|A(x_k - \tau_k(Ax_k - f)) - f\|_2^2.$$

This problem can be solved analytically (derive this solution!)

$$au_k = rac{r_k^\top r_k}{r_k^\top A r_k}, \quad r_k = A x_k - f$$

- This method is called the steepest descent.
- However, it still converges similarly to the Richardson iteration.

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Steepest Descent

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

Exact line search aka steepest descent

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_{k+1}) = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

More theoretical than practical approach. It also allows you to analyze the convergence, but often exact line search can be difficult if the function calculation takes too long or costs a lot. An interesting theoretical property of this method is that each following iteration is orthogonal to the previous one:

$$\alpha_k = \arg\min_{\alpha \in \mathbb{R}^+} f(x_k - \alpha \nabla f(x_k))$$

Optimality conditions:

$$\nabla f(x_{k+1})^{\top} \nabla f(x_k) = 0$$

Figure 2: Steepest Descent

Open In Colab 🌲

Chebyshev iteration

Chebyshev iteration

Attempt 2: Chebyshev iteration

Another way to find τ_k is to consider

$$e_{k+1} = (I - \tau_k A)e_k = (I - \tau_k A)(I - \tau_{k-1} A)e_{k-1} = \dots = p(A)e_0,$$

where p(A) is a matrix polynomial (simplest matrix function)

$$p(A) = (I - \tau_k A) \dots (I - \tau_0 A),$$

and p(0) = 1.

Optimal choice of time steps

The error is written as

$$e_{k+1} = p(A)e_0,$$

and hence

$$||e_{k+1}|| \le ||p(A)|| ||e_0||,$$

where p(0) = 1 and p(A) is a matrix polynomial.

To get better **error reduction**, we need to minimize

over all possible polynomials p(x) of degree k+1 such that p(0)=1. We will use $\|\cdot\|_2$.

Polynomials least deviating from zeros

Important special case: $A = A^* > 0$.

Then, $A = U\Lambda U^*$.

and

$$||p(A)||_2 = ||Up(\Lambda)U^*||_2 = ||p(\Lambda)||_2 = \max_i |p(\lambda_i)| \stackrel{!}{\leq} \max_{\lambda = i, i \leq \lambda \leq \lambda_{max}} |p(\lambda)|.$$

The latter inequality is the only approximation. Here we make a crucial assumption that we do not want to benefit from the distribution of the spectrum between λ_{\min} and λ_{\max} .

Thus, we need to find a polynomial $p(\lambda)$ such that p(0)=1, and which has the least possible deviation from 0 on $[\lambda_{\min}, \lambda_{\max}].$

Polynomials least deviating from zeros (2)

We can do the affine transformation of the interval $[\lambda_{\min}, \lambda_{\max}]$ to the interval [-1, 1]:

$$\xi = \frac{\lambda_{\max} + \lambda_{\min} - (\lambda_{\min} - \lambda_{\max})x}{2}, \quad x \in [-1, 1].$$

The problem is then reduced to the problem of finding the polynomial least deviating from zero on an interval [-1,1].

Exact solution: Chebyshev polynomials

The exact solution to this problem is given by the famous Chebyshev polynomials of the form

$$T_n(x) = \cos(n \arccos x)$$

1. This is a polynomial!

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

3. $|T_n(x)| \le 1$ on $x \in [-1, 1]$.

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 3. $|T_n(x)| \le 1$ on $x \in [-1, 1]$.
- 4. It has (n+1) alternation points, where the maximal absolute value is achieved (this is the sufficient and necessary condition for the optimality) (Chebyshev alternance theorem, no proof here).

- 1. This is a polynomial!
- 2. We can express T_n from T_{n-1} and T_{n-2} :

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

- 3. $|T_n(x)| < 1$ on $x \in [-1, 1]$.
- 4. It has (n+1) alternation points, where the maximal absolute value is achieved (this is the sufficient and necessary condition for the optimality) (Chebyshev alternance theorem, no proof here).
- 5. The **roots** are just

$$n \arccos x_k = \frac{\pi}{2} + \pi k, \quad \to \quad x_k = \cos \frac{\pi (2k+1)}{2n}, \ k = 0, \dots, n-1$$

Demo

30

Convergence of the Chebyshev-accelerated Richardson iteration

Note that $p(x) = (1 - \tau_n x) \dots (1 - \tau_0 x)$, hence roots of p(x) are $1/\tau_i$ and that we additionally need to map back from [-1,1] to $[\lambda_{\min},\lambda_{\max}]$. This results into

$$\tau_i = \frac{2}{\lambda_{\max} + \lambda_{\min} - (\lambda_{\max} - \lambda_{\min})x_i}, \quad x_i = \cos\frac{\pi(2i+1)}{2n} \quad i = 0, \dots, n-1$$

The convergence (we only give the result without the proof) is now given by

$$e_{k+1} \le Cq^k e_0, \quad q = \frac{\sqrt{\operatorname{cond}(A) - 1}}{\sqrt{\operatorname{cond}(A) + 1}},$$

which is better than in the Richardson iteration.

Demo

• Permutation of roots of Chebyshev polynomial has crucial effect on convergence

Demo

- Permutation of roots of Chebyshev polynomial has crucial effect on convergence
- On the optimal permutation you can read in paper (V. Lebedev, S. Finogenov 1971) (ru, en)

Chebyshev iteration

Beyond Chebyshev

• We have made an important assumption about the spectrum: it is contained within an interval over the real line (and we need to know the bounds)

♥ດ

Beyond Chebyshev

- We have made an important assumption about the spectrum: it is contained within an interval over the real line (and we need to know the bounds)
- If the spectrum is contained within **two intervals**, and we know the bounds, we can also put the optimization problem for the **optimal polynomial**.

Spectrum of the matrix contained in multiple segments

 For the case of two segments the best polynomial is given by Zolotarev polynomials (expressed in terms of elliptic functions). Original paper was published in 1877, see details here

Spectrum of the matrix contained in multiple segments

- For the case of **two segments** the best polynomial is given by **Zolotarev polynomials** (expressed in terms of elliptic functions). Original paper was published in 1877, see details here
- For the case of more than two segments the best polynomial can be expressed in terms of hyperelliptic functions

େ ଚେ 🌣

• The implementation of the Chebyshev acceleration requires the knowledge of the spectrum.

$$r_k = Ax_k - f.$$

- The implementation of the Chebyshev acceleration requires the knowledge of the spectrum.
- It only stores the **previous vector** x_k and computes the new correction vector

$$r_k = Ax_k - f.$$

- The implementation of the Chebyshev acceleration requires the knowledge of the spectrum.
- It only stores the **previous vector** x_k and computes the new correction vector

$$r_k = Ax_k - f.$$

• It belongs to the class of **two-term** iterative methods, i.e. it approximates x_{k+1} using 2 vectors: x_k and r_k .

- The implementation of the Chebyshev acceleration requires the knowledge of the spectrum.
- It only stores the **previous vector** x_k and computes the new correction vector

$$r_k = Ax_k - f.$$

- It belongs to the class of **two-term** iterative methods, i.e. it approximates x_{k+1} using 2 vectors: x_k and r_k .
- It appears that if we **store more vectors**, then we can go without the spectrum estimation (and better convergence in practice)!

Crucial point: Krylov subspace

The Chebyshev method produces the approximation of the form

$$x_{k+1} = x_0 + p(A)r_0,$$

i.e. it lies in the Krylov subspace of the matrix which is defined as

$$\mathcal{K}_k(A, r_0) = \text{Span}(r_0, Ar_0, A^2r_0, \dots, A^{k-1}r_0)$$

The most natural approach then is to find the vector in this linear subspace that minimizes certain norm of the error

Idea of Krylov methods

The idea is to minimize given functional: - Energy norm of error for systems with hermitian positive-definite matrices (CG method). - Residual norm for systems with general matrices (MINRES and GMRES methods). - Rayleigh quotient for eigenvalue problems (Lanczos method).

To make methods practical one has to 1. Orthogonalize vectors $A^i r_0$ of the Krylov subspace for stability (Lanczos process). 2. Derive recurrent formulas to decrease complexity.

We will consider these methods in details on the next lecture.

• Main idea of iterative methods

Chebyshev iteration

- Main idea of iterative methods
- Richardson iteration: hermitian and non-hermitian case

- Main idea of iterative methods
- Richardson iteration: hermitian and non-hermitian case
- Chebyshev acceleration

- Main idea of iterative methods
- Richardson iteration: hermitian and non-hermitian case
- Chebyshev acceleration

Chebyshev iteration

• Definition of Krylov subspace

Source

• NLA lecture by prof. Ivan Oseledets

Chebyshev iteration

