

Redes de Flujo: Matching y Diseño de encuestas

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Grafo bipartito y Matching

Un grafo G=(V,E) no dirigido es bipartito si

Se puede dividir V = X unión Y

Tal que cada eje de E sale de X y llega a Y.

Un matching M en G

es el subconjunto de ejes tal que cada nodo aparece como mucho en un eje.

Bipartite Matching problem

encontrar el set M del major tamaño posible.

Resolver utilizando el problema de flujo máximo

Dado el Grafo G del problema de matching

Idea detrás

Resolvemos el problema de red de flujo máximo con G'

Obtenemos el flujo máximo s-t.

El valor del flujo total es igual al tamaño del matching máximo.

Podemos usar el flujo mismo para recuperar el matching

Aquellos ejes que van de un elemento de X a Y con flujo en 1 forman una pareja

La suma del flujo de los ejes que salen de s indican la cantidad de parejas formadas

Análisis de la solución

Supongamos

que hay un matching en G de k ejes.

Consideremos en G' un flujo f

que envía un flujo de s a t pasando por cada uno de esos vértices.

Las condiciones de conservación se cumplen.

Si M' son los ejes (x,y) que tienen 1 de flujo

Sabemos que hay k de esos ejes (podemos probarlo con un corte A-B)

Cada nodo en X es como mucho el inicio de un eje en M' (no pueden pertenecer a mas por que el flujo es entero y 1 es el mínimo)

Cada nodo en Y es como mucho el final de un eje en M'

Diseño de encuestas

Sea

k productos que vende una empresa

n clientes que realizaron compras a la empresa

Se desea

Construir una encuesta de satisfacción "personalizada"

Con las restricciones

Cada cliente puede responder únicamente por productos que haya comprado

El cliente i puede responder consultas entre c_i y c'_i productos

El producto j debe tener entre p_i y p'_i respuestas de clientes

Análisis del problema

Cada cliente

Compró un subconjunto de productos

Cada producto

Fue comprado por un subconjunto de clientes

Se los puede modelizar como

conjuntos disjuntos

Existe una relación entre un elemento i del conjunto "cliente" y j del conjunto "producto" si i "compro" j

Grafo

Podemos construir

Utilizando ambos conjuntos y la relación entre ellos Un grafo bipartito

Restricciones

Para construir las encuestas

Se deben cumplir con las restricciones

Para el cliente i

Tenemos que elegir un subconjunto x de sus "relaciones"

Con
$$C_i \le |x| \le C'_i$$

Para el producto j

Tenemos que elegir un subconjunto y de sus "relaciones"

Con
$$P_j \le |y| \le P'_j$$

Reducción a red de flujo

Podemos transformar el problema

A un problema de determinación de flujo máximo

Cada cliente y producto

Es un nodo

Cada relación cliente-producto

Define un eje de capacidad 1 entre el cliente y el producto

Reducción a red de flujo (cont.)

Agregamos

nodo ficticio "s"

nodo ficticio "t"

Por cada cliente i

Agregamos un eje s-i

Con capacidad C'_i y

Límite inferior C_i

Por cada producto j

Agregamos un eje j-t

Con capacidad P'_i y

Límite inferior C_{iX}

Reducción a red de flujo (cont.)

Agregamos

Eje t-s

Con capacidad ∑C'i

Y límite inferior ∑C_i

Todos los nodos

tienen demanda 0

Resolución del problema

Queda planteado un problema

De circulación con demanda y limite inferior

Reducirlo

A un problema de circulación con demanda

Y luego a un problema de flujo máximo

Resolver el problema

Mediante Ford-Fulkerson

Verificación Factibilidad

Una vez obtenido el flujo máximo

El flujo en eje s-t contiene la cantidad total de preguntas a realizar

El flujo de cada s-ci contiene cuantas preguntas debe contestar el cliente i

El flujo de cada pj-t contiene cuantas preguntas se realizan al producto j

Aquellos ejes ci-pj con flujo 1 corresponden a preguntar al cliente i sobre el producto j

Si algún flujo no cumple las restricciones

No se puede hacer la encuesta con las restricciones solicitadas.

Presentación realizada en Mayo de 2020