Query Languages with Recursion

May 3, 2018

1 Relational Algebra special characters

selection	$\sigma_{cname < cname 2 \land enr > 10000} E$
projection	$\pi_{cname}E$
aggregate function	$G_{h_1,h_2,,h_m}$

Table 1: Unary operators

union	U
intersection	\cap
difference	-
cartesian product	×
division	÷
rename	ρ
natural join	\bowtie
theta join	\bowtie_{θ}
left semijoin	\bowtie
right semijoin	\bowtie
left outer join	\bowtie
right outer join	M
full outer join	M
antijoin	?

Table 2: Binaryoperators

Logical AND	Λ
Logical OR	V
Logical NOT	_
null	ω

Table 3: Logic symbols and others

 $Grades \leftarrow \pi_{(students.ssn, students.name, grades.grade)}(\sigma_{students.ccn = grades.ccn \land grades.assignment = 1}(students \times grades))$

 $\begin{array}{lll} \textit{Grades} & \leftarrow & \pi_{(\textit{students.ssn}, \textit{students.name}, \textit{grades.grade})} \\ & & (\sigma_{(\textit{students.ssn}, \textit{students.name}, \textit{grades.grade})} \\ & & & (\textit{students} \times \textit{grades})) \end{array}$

2 section

2.1 subsection