

Analysis of Residential Electricity Usage in California

Bert Taube

Tuesday, November 22, 2016

Weather – Residential Electricity Usage 2,494 Data Frames by individual Customer

Data Frame - Customer 1

Customer ID	Date	Time	Temp	Hum	Electricity Usage
A01PMA 00102	Day 1	12 AM	Т	Н	U
A01PMA 00102	Day 1	1 AM	T	Н	U
				•••	
A01PMA 00102	Day 1	11 PM	Т	Н	U
A01PMA 00102	Day 2	12 AM	Т	H	U
A01PMA 00102	Day 576	12 AM	Т	Н	U
A01PMA 00102	Day 576	11 PM	Т	Н	U

Data Frame – Customer 2,494

Customer ID	Date	Time	Temp	Hum	Electricity Usage
R08PSL 20703	Day 1	12 AM	Т	Н	U
R08PSL 20703	Day 1	1 AM	Т	Н	U
				•••	
R08PSL 20703	Day 1	11 PM	Т	Н	U
R08PSL 20703	Day 2	12 AM	Т	Н	U
R08PSL 20703	Day 576	12 AM	Т	Н	U
R08PSL 20703	Day 576	11 PM	Т	Н	U

IoT Device Message Data Provision by Customer (Example: Customer ID A02SSH00302)

IoT Device Message Data Processing and Analysis by Customer (Example: Customer ID A02SSH00302)

Weather – Residential Electricity Usage Input – Output Data Model

Modelling of Weather Impact on Residential Customer Electricity Usage: SCE Customer

Modelling of Weather Impact on Residential Customer Electricity Usage: SCE Customer

Linear Regression Model

 $Usage_{kW} = 0.0666825 \times Temp_F - 3.1035150$

Regression Statistics - Coefficients

No.	Variable	Linear	Likelihood	Significance
		Coefficient	(Probability) of	Code
			Insignificance	
1	Intercept	-3.1035150	< 2e-16	
			(very small)	***
2	Т	0.0666825	< 2e-16	
	$Temp_F$		(very mall)	***

$$R_{Multiple}^2 = 0.3704; R_{Adjusted}^2 = 0.3703$$

Polynomial Regression Model

$$Usage_{kW} = -31.22 + 1.891 \times Temp_F$$
 $-0.04039 \times Temp_F^2 + 0.0003679 \times Temp_F^3$ $-1.177 \times 10^{-6} \times Temp_F^4$

Regression Statistics - Coefficients

No.	Variable	Linear Coefficient	Likelihood (Probability) of Insignificance	Significance Code
1	Intercept	-31.22	< 2e-16 (very small)	***
2	$Temp_F$	1.891	< 2e-16 (very small)	***
3	$Temp_F^2$	-0.04039	< 2e-16 (very small)	***
4	$Temp_F^3$	0.0003679	< 2e-16 (very small)	***
5	Temp _F ⁴	-1.177e-06	< 2e-16 (very small)	***

$$R^2_{Multiple} = 0.4407; \; R^2_{Adjusted} = 0.4405$$

Conclusions

- Linear multivariable regression is not well suited for modeling daily electricity load curves.
- Polynomial multivariable regression is not so well suited for modeling.
- ➤ The quality of fit of linear and polynomials regression models very much depends on the specific customer.
- Electricity usage has more significant impact from temperature than from humidity. Note: Temperature and humidity are not independent.
- ➤ In order to get a better reflection of the dynamic customer behavior in terms of electricity usage discrete time series models must be used.

Thank you!