## CS 161 Final Cheat Sheet

#### Kerchoff's Principle

You should not rely on the secrecy of the algorithm/protocol and or keysize, as wall as the possible plain text for security because eventually the adversary will figure them out.

# Mono-Alphabetic Ciphers: 1 to 1 mapping of characters to symbols

- Substitution
  - Shift or Caesar's Cipher  $E_k(m) \leftarrow m + k \pmod{N}$  $D_k(c) \leftarrow c - k \pmod{N}$
  - Affine Cipher:  $E_k(m) \leftarrow k_! m + k_2 \pmod{N}$  $D_k(c) \leftarrow k_!^{-1} (c - k \pmod{N})$
  - Substitution Ciphers have an extreme vulnerability to frequency attacks.

#### Poly-Alphabetic Ciphers

- Vigenere Cipher: Shift by a repeated key
- Book Cipher (Beale Cipher) key is hidded in a passage of a set book.
- Vernam Cipher
  - Message is m bits and the key is n bits.
  - Bitwise xor the message and the key, if m is greater than n, then use the key multiple times.
- One-Time Pad
  - Same idea as the Vernam Cipher except we use a key that is the same length or greater than the length of the message, then discard it after each use.
- Transposition/Permutation Cipher
  - Break the message into n bit blocks, then on each block perfor the same permutation
  - Despite being polyalphabit, the cipher is still vulnerable to frequency attacks. Because the original patterns are still basically present. You can attack by checking anagrams.

## Data Encryption Standard (DES)

DES is a block cipher in which messages are divided into data blocks of a fixed length and each block is treated as one message either in M or in C. The DES encryping and decryption algorithms take as an input a 64-bit plaintext or ciphertext message and a 56-bit key, and output a 64-bit ciphertext or plaintext message. DES is done in 3 steps:

- 1. Apply a fixed "initial permutation" IP to the input block.  $(L_0, R_0) \leftarrow IP(\text{Input Block})$  This step has no apparent cryptographic significance.
- 2. Iterate the following 16 rounds of operations (Feistel Cipher)



- the function is nonlinear and is considered a Substitution Cipher
- the move from  $L_i \to R_{i-1}$  is a Transposition cipher
- Vernam cipher is used at the xor
- k is a 48 bit subsection of the 56 bit, "round key"

#### Single DES

• vulnerable to brute force or exaustive key search attacks

#### Triple DES

Triple DES uses an encryption-decryption-encryption scheme,  $c \leftarrow E_{k_1}(D_{k_2}(E_{k_1}(m)))$  $m \leftarrow D_{k_1}(E_{k_2}(D_{k_1}(m)))$ 

This scheme enlarges the keyspace while maintaining backward compatibility with single DES if  $k_1 = k_2$ 

## Advanced Encryption Standard (AES)

AES is a block cipher with variable block size and variable keysize. (block size can be 128, 192, 256 bit)

AES has 4 states:

- 1. Sub Bytes State: nonlinear substitution on each byte
- 2. Shift Rows State: Transposition rearranges the order of elements in each row
- 3. Mix Columns State: Polynomial multiplication after converting column to polynomial.
- 4. Add Round Key State: adds elements of round key to the state, basically bitwise "OR"

Decryption is the inverse of these steps.

#### Confidentiality Modes of Operation

Different modes of operation have been devised on top of an underlying block cipher algorithm

- Electronic Codebook (ECB) Mode This mode encrypts and decrypts every block seperately. It is deterministic and leaves patterns in the cipher text. (for example images.)
- Cipher Block Chaining (CBC) Mode
  - This is the most common mode of operation. In this
    mode the output is a sequence of n-bit cipher blocks
    which are chained together so that each cipher block
    is dependent on all the previous data blocks.
  - Decryption can be done in parallel
  - CBC cannot prived data integrity protection.

 If the CBC claims data integrity protection, Eve can use (Bomb Oracle Attack) a Decryption Oracle to figure out the padding scheme and eventually the last byte of the cipher text.



- Cipher Feedback (CFB) Mode
  - CFB mode of opration features feeding successive cipher segments which are output from the mode back as input to the underlying block cipher algorithm.
  - CFB requires an IV as the initial n-bit input block



- Output Feedback (OFB) Mode
  - The OFB mode feeds successive output blocks from the underlying block cipher back to it.
  - The feedback blocks form a string of bits which used as the key stream of the Vernam cipher.

Shift to left (initially loaded with IV)



- Counter (CTR) Mode
  - The CTR mode features feeding the underlying block cipher algorithm with a counter value which counts up from an initial value. With a counter counting up, the underlying block cipher algorithm outputs successive blocks to form a string of bits. This string of bits is used as the key stream of the vernam cipher, that is, the key stream is XOR-ed with the plaintext blocks.  $C_i \leftarrow P_i \oplus E(Ctr_i, i = 1, 2, \dots, m$   $P_i \leftarrow C_i \oplus E(Ctr_i, i = 1, 2, \dots, m$

#### **Bomb Oracle Attack**

### **Asymmetric Cryptography**

#### **Oneway Trapdoor Function**

- Asymmetric crypto system, Public Key Cryptography
- $D \to R$  is oneway, it is easy to evaluate  $\forall x \in D$  and difficult to invert for all values in R.

#### Textbook Encryption Algorithms

- All or Nothing Secrecy: Given Cipher Text the attacker must not be able to get any information about the plain text
- Passive Attacker: The attacker doesn't modify or manipulate ciphertexts they also don't ask for encryption or Decryption services.

#### Diffie-Hellman Key Exchange Protocol

Common Input (p,g):p is a large prime, g is a generator element in  $F_p^*$ 

- 1. Alice picks  $a \in U(1, p-1)$ ; computes  $g_a \leftarrow g^a \pmod{p}$ ; sends  $g_a$  to Bob.
- 2. Bob picks  $b \in U(1, p-1)$ ; computes  $g_b \leftarrow g^b \pmod{p}$ ; sends  $g_b$  to Alice.
- 3. Alice computes  $k \leftarrow g_b^a \pmod{p}$
- 4. Bob computes  $k \leftarrow g_a^b \pmod{p}$

Alice and Bob both compute the same key,

$$k = g^{ba} \pmod{p} = g^{ab} \pmod{p}$$

P is a public 2048 bit prime number.

#### Man in the Middle Attack on Diffie-Helman



- 1. Alice picks  $a \in_u [1, p-1)$ , computes  $g_a \leftarrow g^a \pmod{p}$  she sends  $g_a$  to Malice("bob");
- 2. (1') Malice("Alice") computes  $g_m \leftarrow g^m \pmod{1}$  for some  $m \in [1, p-1)$ ; he sends  $g_m$  to Bob;
- 3. (2) Bob picks  $b \in U[1, p-1)$ , computes  $g_b \leftarrow g^b \pmod{p}$ ; he sends  $g_b$  Malice("Alice");
- 4. (2') Malice("Bob") sends to Alice:  $g_m$ ;
- 5. (3) Alice computes  $k_1 \leftarrow g_m^a \pmod{p}$ ;
- 6. (4) Bob computes  $k_2 \leftarrow g_m^b \pmod{p}$ ;

#### Diffie-Helman and the Discrete Logarithm Problem

- Computational Diffie-Hellman Problem
- Discrete Logarithm Problem