Assignment 1

Name: Harsukh Singh Sagri

Roll number: 210428

Problem Statement

Q.) Air pollution measurements available via multi-sensory system are PM10, PM2.5, SO2, NO, NO2, NOx, CO, NH3, O3 and Benzene.

Now, given **dataset** depicts levels of these pollutants at given time intervals spread over a duration of approx. 3 months. On the basis of information provided through dataset, answer the following:

- (a)Classification: time series data classify mainly two categories: stock and flow time series. Find out if it identifies and assigns categories to the air pollution data.
- **(b)Curve fitting:** Plot the air pollution data along a curve to study the relationships of variables within the data.
- **(c)Descriptive analysis:** in coal India blasting effect time is 13:45 pm to 14:45 pm, find trends like cycles, or seasonal variation.
- **(d) Explanatory analysis:** The aim of this analysis is to gain insights into the air pollution data and explore the relationships within the data. Additionally, we aim to understand the impact of coal blasting on air pollution in the context of coal India.

• **(e)Forecasting:** Analyse the time series method used for forecasting i.e., which model (AR, MA, ARMA, ARIMA) needs to be used for forecasting?

--> Firstly, we will start by importing all the required libraries for our analysis.

- **numpy** (imported as **np**): It is a popular numerical computing library in Python.
- **pandas** (imported as **pd**): It offers data structures and functions for efficiently handling and analysing structured data, such as data frames.
- **seaborn** (imported as **sns**): It is a data visualization library built on top of **matplotlib**.
- **matplotlib.pyplot** (imported as **plt**): It is a plotting library in Python that provides a wide range of functions for creating various types of plots, including line plots, scatter plots, bar plots, histograms, etc.
- **sklearn.metrics.mean_squared_error**: It calculates the mean squared error (MSE) between two arrays.
- **math.sqrt**: It is a function from the **math** module in Python. It calculates the square root of a number.

• **datetime.datetime**: It is a class from the **datetime** module in Python. In this case, it is imported to work with date and time-related operations.

ataSet													
	#	From	To (Interval: 15M)	Singrauli, Surya Kiran Bhawan Dudhichua PM10 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua PM2.5 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NO (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NO2 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NOX (ppb)	Singrauli, Surya Kiran Bhawan Dudhichua CO (mg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua SO2 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NH3 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua Ozone (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua Benzene (µg/m3)
0	1	01- 02- 2023 00:00	01-02- 2023 00:15	95.0	35.0	NaN	90.1	56.2	0.31	NaN	17.7	28.1	0.4
1	2	01- 02- 2023 00:15	01-02- 2023 00:30	95.0	35.0	NaN	88.0	55.1	0.33	NaN	18.3	27.1	0.4
2	3	01- 02- 2023 00:30	01-02- 2023 00:45	95.0	35.0	NaN	87.7	55.2	0.38	NaN	19.7	24.9	0.4
3	4	01- 02- 2023 00:45	01-02- 2023 01:00	122.0	34.0	NaN	88.9	55.7	0.38	NaN	21.3	21.9	0.4
4	5	01- 02- 2023 01:00	01-02- 2023 01:15	122.0	34.0	NaN	90.0	55.8	0.38	NaN	22.3	16.7	0.4

-->In our original dataset, there are many missing values in our data set. Now, we want to estimate the percentage of such missing values and the fill them by using interpolation.

```
columns=dataSet.columns
date = columns[2]
columns=columns[3:]
columns

Index(['Singrauli, Surya Kiran Bhawan Dudhichua 'Singrauli, Surya Kiran Bhawan 'Singrau
```

--> Now, we have eliminated 'Serial number', 'From' and 'To' columns and stored pollutant level columns.

--> Now, we have calculated percentage of missing values in each of the columns.

Q1) Updating NA Values By Interpolation (Cubic):

```
In [6]: M for column in columns:
    x = pd.Series(dataSet[column])
    dataSet[column] = x.interpolate(limit_direction='both', kind='cubic')
```

- --> Code updates the missing values of the current column in the **dataSet** Data Frame with the interpolated values.
- --> Replacing NA values with 0 can distort the representation of the data. Depending on the context, assigning a value of 0 to missing data points can introduce bias or inaccurately portray the actual measurements.

By using cubic interpolation, the missing values are replaced with estimated values based on the surrounding data points, following a cubic interpolation curve. This helps to retain the overall shape and characteristics of the data while filling in the gaps caused by missing values.

[7]: H	dataSe	t.describe(()									
Out[7]:		#	Singrauli, Surya Kiran Bhawan Dudhichua PM10 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua PM2.5 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NO (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NO2 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NOX (ppb)	Singrauli, Surya Kiran Bhawan Dudhichua CO (mg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua SO2 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua NH3 (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua Ozone (µg/m3)	Singrauli, Surya Kiran Bhawan Dudhichua Benzene (µg/m3)
	count	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000	8640.000000
	mean	4320.500000	177.463079	75.557350	14.940208	55.430689	42.328802	1.401927	31.923270	13.286956	35.193970	0.122002
	std	2494.297496	124.773568	54.826850	17.862679	20.205531	22.181225	0.633087	39.028371	6.171697	26.867859	0.063168
	min	1.000000	12.000000	3.000000	0.100000	0.200000	4.200000	0.100000	0.100000	4.600000	0.100000	0.100000
	25%	2160.750000	97.000000	36.821429	4.000000	39.300000	24.900000	0.950000	12.300000	9.500000	10.300000	0.100000
	50%	4320.500000	151.900794	61.000000	7.500000	52.800000	37.500000	1.410000	22.800000	11.000000	31.700000	0.100000
	75%	6480.250000	215.000000	101.000000	18.100000	70.700000	53.200000	1.850000	33.400000	14.000000	58.100000	0.100000
	max	8640.000000	847.000000	474.000000	157.500000	106.900000	165.200000	4.000000	645.600000	62.400000	123.800000	0.600000

--> Clearly, we have filled all the missing values by using cubic interpolation as can be seen from updated dataset.

Plotting Frequency Distribution Curves:

--> Using the given code, we have plotted frequency distribution curves of various pollutant levels.

Frequency Distribution Curves

- --> Classification (Flow Time Series Data) Q(3a), Explanatory Analysis Q(3d) and Statistical Inference (QQ Plot and Blasting Time) Q(2):
- --> Results from graph plotted below indicate that *blasting time of coal in India is* most likely occurring between 13:45 to 14:45 pm.

```
avg_level = dataSet.groupby(dataSet.index % 90).mean(numeric_only=True)

plt.figure(figsize=(12, 8))

colors = ['red', 'green', 'blue', 'orange', 'purple']

for i, column in enumerate(columns):
    plt.plot(avg_level[column], label=column, color=colors[i % len(colors)], linestyle='--')

plt.xlabel('Time Interval (15 minutes)')
plt.ylabel('Pollution Level')
plt.title('Average Pollution Level for a Single Day (Averaged over 90 Days)')

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.grid(True)
plt.show()
```

Plotted Graph (Flow Time Series):

The plotted graph shows the average pollution levels for different gases during a single day, averaged over the 90-day period.

The pollutants' levels exhibit noticeable increases specifically during and after the time interval of 13:45 to 14:45(somewhere between 50th and 60th interval), suggesting a correlation with the blasting activities of coal in the region.

The graph provides a clear visual representation of the heightened pollution levels during and after the suspected blasting time. This observation supports the conclusion that the blasting time of coal in India is most likely occurring between 13:45 to 14:45 pm.

This inference is based on the analysis of average pollution levels and spikes during the specified time interval.

This indicates level of most pollutant gases spikes after blasting time of coal in India starts (i.e 13:45 pm to 14:45 pm).

QQ Plots (Statistical Inference Q2):

```
import statsmodels.api as sm
colors = ['red', 'green', 'blue', 'orange', 'purple'] # List of colors for each pollutant

for i, column in enumerate(columns):
    fig, ax = plt.subplots()
    sm.qqplot(dataSet[column], line='s', ax=ax)
    ax.set_title(f"QQ Plot for {column}")
    ax.spines['top'].set_visible(False) # Remove top spine
    ax.spines['right'].set_visible(False) # Remove right spine
    ax.grid(True, linestyle='--', alpha=0.5) # Add grid lines
    ax.tick_params(axis='both', which='both', length=0) # Remove tick marks
    ax.set_xlabel('Theoretical Quantiles')
    ax.set_ylabel('Sample Quantiles')
    ax.lines[0].set_color(colors[i % len(colors)]) # Set color for QQ plot line
    plt.show()
```


As we can infer from QQ plots, in general, the curves are positively skewed and *none of the curves resembles normal distribution*.

-->Descriptive Analysis (Trend and Seasonality) Q3(c):

I have used below code to decompose a time series into its trend, seasonal, and residual components.

```
from statsmodels.tsa.seasonal import seasonal_decompose
for column in columns:
    decompose_result_mult = seasonal_decompose(dataSet[column], period = 96, model="multiplicative")
    plt.figure(figsize=(30, 50))
    trend = decompose_result_mult.trend
    seasonal = decompose_result_mult.seasonal
    decompose_result_mult.plot()
```

-->Following are the plots of all the 3 components for all the pollutants:

- --> Trend: By looking at these graphs, we can conclude that since trend graph is not continuously increasing or decreasing, there is no trend in level of pollutant gases.
- ---> Seasonality: Since duration in which data is available is 3 months and seasonality graphs repeat in very small duration of time, we can conclude *there is no seasonality in level of pollutant gases*.

--> ADF Test For Seasonality and Trend: Q3(C)

```
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
for column in columns:
    result = adfuller(dataSet[column])
    print('ADF Statistic: %f' % result[0])
    print('p-value: %f' % result[1])
    print('No. of Lags: %f' % result[2])
    print('No of Observation used for ADF regression and Critical Value Prediction: %f' % result[3])
    print('Critical Values:')
    for key, value in result[4].items():
        print('\t%s: %.3f' % (key, value))
```

-->In our context of analysing air pollution data and its relationship with coal blasting, the ADF test can help us assess the presence of trend and seasonality in the data.

In the ADF test, the null hypothesis assumes that the time series has a unit root, indicating that it is non-stationary and contains a trend. The alternative hypothesis suggests that the time series is stationary, meaning it does not contain a trend.

Below is the result of code:

```
ADF Statistic: -9.023314
p-value: 0.000000
No. of Lags : 36.000000
No of Observation used for ADF regression and Critical Value Prediction: 8603.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -11.159054
p-value: 0.000000
No. of Lags: 36.000000
No of Observation used for ADF regression and Critical Value Prediction: 8603.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -14.799960
p-value: 0.000000
No. of Lags : 11.000000
No of Observation used for ADF regression and Critical Value Prediction: 8628.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -9.181725
p-value: 0.000000
No. of Lags: 21.000000
No of Observation used for ADF regression and Critical Value Prediction: 8618.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
```

```
ADF Statistic: -12.734220
p-value: 0.000000
No. of Lags: 24.000000
No of Observation used for ADF regression and Critical Value Prediction: 8615.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -9.976113
p-value: 0.000000
No. of Lags: 8.000000
No of Observation used for ADF regression and Critical Value Prediction: 8631.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -14.141881
p-value: 0.000000
No. of Lags : 20.000000
No of Observation used for ADF regression and Critical Value Prediction: 8619.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -3.059899
p-value: 0.029667
No. of Lags: 33.000000
No of Observation used for ADF regression and Critical Value Prediction: 8606.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -20.958946
p-value: 0.000000
No. of Lags: 34.000000
No of Observation used for ADF regression and Critical Value Prediction: 8605.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
ADF Statistic: -9.037111
p-value: 0.000000
No. of Lags : 37.000000
No of Observation used for ADF regression and Critical Value Prediction: 8602.000000
Critical Values:
        1%: -3.431
        5%: -2.862
        10%: -2.567
```

- --> Based on the ADF test results, we can make the following conclusions:
 - p-value: The p-value is significantly lower than the significance level (e.g., 0.05), indicating strong evidence against the null hypothesis. By rejecting the

null hypothesis, we can conclude that the time series is stationary and does not exhibit a trend.

• ADF Statistic: The ADF statistic is significantly negative, lower than the critical values at 1%, 5%, and 10% significance levels. This further supports the rejection of the null hypothesis.

Based on these findings, we can confidently conclude that there is no presence of trend or seasonality in the pollutant levels.

--> Forecasting Q3 (E):

ACF (Autocorrelation) and PACF (Partial Autocorrelation) Plots:

Based on the autocorrelation function (ACF) and partial autocorrelation function (PACF) graphs, we can make the following observations:

- ACF: The ACF graph shows that the autocorrelation values do not decay fully after a certain lag. This indicates the presence of significant autocorrelation in the data. This behaviour is indicative of a time series that follows an autoregressive (AR) model.
- PACF: The PACF graph shows that the partial autocorrelation values decay after a lag of 2 or 3. This pattern is consistent with an **autoregressive model** with a lag of 2 or 3.

-->Based on these observations, we can infer that the time series data follows an autoregressive model, specifically an AR (2) or AR (3) model. The autocorrelation and partial autocorrelation patterns indicate the presence of a memory effect and direct influence of past values on the current value.

--> <u>Autoregressive Model (AR): Stock Time Series Data Q3(A):</u>

```
from statsmodels.tsa.ar model import AutoReg
for column in columns:
    data = dataSet[column]
    train_data = data[:-80]
    test_data = data[-80:]
    ar_model = AutoReg(data, lags = 3).fit()
    print(ar_model.summary())
    pred = ar model.predict(start = len(train data), end = len(data) - 1, dynamic=False)
    plt.plot(pred, color = "blue")
    plt.plot(test_data, color = "red")
   plt.show()
   rmse = sqrt(mean_squared_error(pred, test_data))
   mean = data.mean()
    print("Mean : %f" % mean)
    print("Root Mean Squared Error : %f" %rmse)
```

PM10

Mean: 177.463079

Root Mean Squared Error: 10.852239

PM2.5

Mean : 75.557350

Root Mean Squared Error: 6.033443

NO

					AutoRe	g Mode	l Results						
Dep. Variable:	Singra	uli, Surya	Kiran	Bh	awan Du	dhichu	a NO (μg	/m3)	No.	Observations:		8640	
Model:							AutoRe	g(3)	Log	Likelihood		-21046.714	
Method:						Cor	nditional	MLE	S.D.	 of innovations 		2.767	
Date:						Tue	, 27 Jun	2023	AIC			42103.428	
Time:							18:1	0:56	BIC			42138.747	
Sample:								3	HQIO	0		42115.471	
•								8640	-				
							coef	sto	d err	Z	P> z	[0.025	0.975
const							0.4641		0.039		0.000	0.387	0.54
Singrauli, Surya							1.7210	(0.011	161.729	0.000	1.700	1.74
Singrauli, Surya	Kiran Bha	awan Dudhi	.chua	NO	(µg/m3)	.L2	-0.9002	(0.019	-47.289	0.000	-0.937	-0.86
Singrauli, Surya	Kiran Bha	awan Dudhi	.chua	NO	(µg/m3)	.L3	0.1481	(0.011	13.916	0.000	0.127	0.16
			Roots										
	Real	Ima	ginary			Modul	us	Fred	quency	y			
AR.1	1.0963	+6	.0000i			1.09	63		0.000	- 9			
AR.2	2.2758	+6	.00001			2.27	58		0.000	9			
						2.70			0.000				

Mean : 14.940208 Root Mean Squared Error : 0.724277

NO2

							AutoF	teg I	Model	Results							
Dep. Variabl		Sind	grauli,	Cupyo		Dha	wan f	udbi	ichua	NO2 /	rg /m2 \	No		Observations:		8640	
Model:	e.	STITE	graull,	Sui ya	VTI dii	Dila	wall L	/uuii.	LCIIua		ig/ilis/ leg(3)			Likelihood		-21774.830	
Method:									Con	dition				of innovations		3,011	
Date:										27 Jur						43559.661	
Time:									,		10:57		c			43594,980	
Sample:											3		OIC			43571.704	
											8640						
										coef	s	td er	r	Z	P> z	[0.025	0.975
const										1.2417		0.09		12.952	0.000	1.054	1.43
Singrauli, S										1.4797		0.01		137.515	0.000	1.459	1.50
Singrauli, S							(µg/m			-0.5027		0.01		-27.264	0.000	-0.539	-0.46
Singrauli, S	urya	Kiran	Bhawan		hua I Roots	WO2	(µg/m	13).	L3	0.0007	,	0.01	1	0.062	0.950	-0.020	0.02
													-				
		Real		Imag	inary			Mo	odulus		Fre	quenc	y				
AR.1	1	.0496		+0.	0000j			1	1.0496			0.000	90				
AR.2	1	.9026		+0.	0000j			1	1.9026			0.000	90				
AR.3	746	.5461		+0.	6000i			746	5.5461			0.000	90				

Mean : 55.430689 Root Mean Squared Error : 1.292297

NOX

Dep. Variable: Model: Method: Date: Time: Sample:	Singrauli,	Surya Kiran		Tue, 27 Jun 18:1	g(3) Log L MLE S.D. 2023 AIC 9:57 BIC 3 HQIC	bservations: ikelihood of innovation	s	8640 -21068.541 2.774 42147.081 42182.400 42159.124		70 - 65 -	
					3640					60 -	
	========			coef	std err	z	P> z	[0.025	0.975]		
const Singrauli, Surya	Vinan Dhawan	Dudhichua	NOV (nnh) I	0.9017 .1 1.7625	0.065 0.011	13.767 165.867	0.000	0.773 1.742	1.030	55 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Singrauli, Surya Singrauli, Surya	Kiran Bhawan	Dudhichua	NOX (ppb).L	.2 -0.9412	0.011 0.019 0.011	-48.931 14.815	0.000	-0.979 0.137	-0.904 0.178		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Jingradil, Jarya	KIT UIT DIIUWUIT	Roots		.5 0.1574	0.011	14.015	0.000	0.137	0.170	50 -	- N
	Real	Imaginary	/	Modulus	Frequency						
	1.0661	+0.0000j		1.0661	0.0000					45 -	→
	2.1829 2.7294	+0.0000j		2.1829 2.7294	0.0000						8560 8570 8580 8590 8600 8610 8620 8630 864C

Mean : 42.328802 Root Mean Squared Error : 0.888006

AutoReg Model Results

Dep. Variable:	Singrauli,	Surya Kiran	Bhawan	Dudhichua	CO (mg/r	n3) No.	Observations:		8640		1.6 -	
Model:					AutoReg	(3) Log	Likelihood		3269.221		1.0	
Method:				Con	ditional N	ILE S.D.	of innovations		0.166			
Date:				Tue,	27 Jun 26	923 AIC			-6528.441			
Time:					18:10:	57 BIC			-6493.122		1.4	
Sample:						3 HQIC			-6516.398			
					86	540						
											1.2	
					coef	std err	Z	P> z	[0.025	0.975]		
const					0.0495	0.004		0.000	0.041	0.058		
Singrauli, Surya k					1.0969	0.011		0.000	1.076	1.118	1.0 -	
Singrauli, Surya k					-0.2610	0.016	-16.667	0.000	-0.292	-0.230		
Singrauli, Surya k	iran Bhawan	Dudhichua	CO (mg/r	m3).L3	0.1289	0.011	12.080	0.000	0.108	0.150		- A1 A
		Roots									0.8	. .
							ı					\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Real	Imaginary		Modulu	S	Frequency	•					\ <u>\</u>

Mean : 1.401927

Root Mean Squared Error: 0.123370

SO2

			Au	toReg Mode	l Results						
Dep. Variable: S	ingrauli,	Surya Kiran	Bhawa	n Dudhichu	a SO2 (μg	/m3)	No.	Observations:		8640	
Model:					AutoRe	g(3)		Likelihood		-35623.041	
Method:				C	onditional	MLE	S.D.	of innovations		14.962	
Date:				Tu	e, 27 Jun 1	2023	AIC			71256.081	
Time:					18:10	3:58	BIC			71291.400	
Sample:						3	HQIC			71268.124	
					1	3640					
					coef	std	err	Z	P> Z	[0.025	0.975]
const					2.4705		.212	11.661	0.000	2.055	2.886
Singrauli, Surya Kir					1.0446	0	.011	97.801	0.000	1.024	1.066
Singrauli, Surya Kir					-0.2433	0	.015	-15.920	0.000	-0.273	-0.213
Singrauli, Surya Kir	an Bhawan			g/m3).L3	0.1214	0	.011	11.362	0.000	0.100	0.142
		Roots									
Re	al	Imaginary		Modul	us	Frequ	ency				

-0.0000 -0.2233 0.2233

Mean : 31.923270

Root Mean Squared Error : 12.248406

NH3

	-						Auto	Reg	Model	Res	ults								
Dep. Variab	ole:	Sing	rauli.	Surva	Kiran	Rh:	awan	Dudi	hichua	NH	13 (ug	/m3)	No.	Observ	ations:			8640	
Model:		J.1.16		Ju. , u					1201100		utoRe			Likeli			_	12623,571	
Method:									Co		ional			of in		ns		1.044	
Date:											Jun		AIC					25257,142	
Time:											18:1		BIC					25292.461	
Sample:												3	HOI	C				25269.185	
												8640							
											coef	sto	err		Z	P>	z	[0.025	0.975]
const										0.	2084	6	.027	7	.766	0.0	00	0.156	0.261
Singrauli,										1.	0795	6	0.011	100	.339	0.0	00	1.058	1.101
Singrauli,										-0.	1078	6	.016	-6	.826	0.0	00	-0.139	-0.077
Singrauli,	Surya Ki	ran	Bhawan	Dudhi	hua	NH3	(μg/	/m3).	.L3	0.	0126	6	.011	. 1	.168	0.2	43	-0.009	0.034
					Roots														
	F	teal		Imag	ginary				Modulu	S		Frequ	iency						
AR.1		175			.0000j				1.017				0000						
AR.2		817			.9967j				8.845				1797						
AR.3	3.7	817		+7	.9967j				8.845	8		0.	1797						

Mean : 13.286956

Root Mean Squared Error: 0.701728

				AutoReg Mod	el Results								
Dep. Varia Model: Method: Date: Time: Sample:	ble: Si	ngrauli,	Surya Kira	n Bhawan Dudhichu	AutoF Conditiona Tue, 27 Jur	leg(3)	Log	Observations: Likelihood of innovations		8640 -26579.724 5.251 53169.447 53204.766 53181.490			
= 51					coef	st	d err	z	P> z	[0.025	0.97		Wh
												60 -	/V \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
onst					0.9851		0.094	10.473	0.000	0.801	1.17		//
0 Singrauli,	Surya Kira	n Bhawan	Dudhichua	Ozone (µg/m3).L1	1.3038	3	0.011	121.196	0.000	1.283	1.32	50 -	
Singrauli,	Surya Kira	n Bhawan	Dudhichua	Ozone (µg/m3).L2	-0.3546	5	0.017	-20.543	0.000	-0.388	-0.32	40 -	/V IM
Singrauli,	Surya Kira	n Bhawan	Dudhichua	Ozone (µg/m3).L3	0.0229)	0.011	2.128	0.033	0.002	0.04		a / Wh An .
•			Root	s								30 -	
	Rea	1	Imaginar	y Modul	us	Freque	ency					20 -	\forall
AR.1	1.043	a	+0.0000	j 1.04	30	0.0	9000					20	y v y
AR.2 AR.3	4.013		+0.0000				9999					10	3560 8570 8580 8590 8600 8610 8620 8630 86

Mean : 35.193970

Root Mean Squared Error: 5.236985

Benzene

Mean : 0.122002

Root Mean Squared Error: 0.000493