

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Medieninformatik / Human-Computer Interaction

Grundlagen der Multimediatechnik

Bildanalyse

19.11.2021, Prof. Dr. Enkelejda Kasneci

Termine und Themen

22.10.2021	Einführung
29.10.2021	Menschliche Wahrnehmung - visuell, akustisch, haptisch,
05.11.2021	Informationstheorie, Textcodierung und -komprimierung
12.11.2021	Bildverbesserung
19.11.2021	Bildanalyse
26.11.2021	Grundlagen der Signalverarbeitung
03.12.2021	Bildkomprimierung
10.12.2021	Videokomprimierung
17.12.2022	Audiokomprimierung
14.01.2022	Videoanalyse
21.01.2022	Dynamic Time Warping
28.01.2022	Gestenanalyse
04.02.2022	Tiefendatengenerierung
11.02.2022	FAQ mit den Tutoren
15.02.2022	Klausur (noch nicht bestätigt)

Flächenbasierte Bildverbesserung

- Mit Punktoperation ist Glättung oder eine Schärfung eines Bildes nicht zu erreichen
- Bilder sehen scharf aus, wo sich die Intensität lokal (in einer Umgebung) stark ändert → flächenbasierte Techniken notwendig

- Rauschen kann durch Integration einer Signalfolge mit (nahezu) konstantem Signal reduziert werden
- Annahmen
 - Aufnahme mehrerer Bilder f_i , i=1,...,I über gegeb. Zeitraum
 - Bild verändert sich über den Zeitraum nicht (keine Bewegung, keine Beleuchtungsänderung)
 - Erwartungswert *E* des Rauschens ist 0
 - Jede Veränderung eines Bildes f_i muss durch Rauschen verursacht sein
- Näherung an die "unverrauschte" Funktion
 - Abschätzung durch
 Mittelwertbildung über die Bilder

Beispiel

- Einzelne Aufnahme mit normalverteiltem Rauschen (Signal-Rausch-Verhältnis: SNR ≈ 1,2)
- Mittelwert von 10 bzw. 50 Aufnahmen

Exkurs: Filter und Faltung

- Der neue Bildwert ist eine gewichtete Summe der Pixel unter einer Filtermatrix → lineare Filter
- Als Gewichte dienen die Matrizenwerte
- Bildmatrizen werden in den relevanten Randbereichen mit Nullen gefüllt
- Bildfilterung ist die Faltung eines Bildes mit einer Filtermatrix bzw.
 Maske

Exkurs: Faltung im Signalbereich

•
$$g(u,v) = \sum_{(i,j)\in U_H} f(u+i,v+j) \cdot h(i,j)$$

•
$$g(u,v) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(u+i,v+j) \cdot h(i,j)$$
 für 3x3-Region U_H

Berechnung der Faltungsoperation

- Variante A: Filterergebnis wird in einem Zwischenbild (Intermediate Image) gespeichert und dieses abschließend in das Originalbild kopiert
- Variante B: Originalbild wird zuerst in ein Zwischenbild kopiert und dieses danach gefiltert, wobei die Ergebnisse im Originalbild abgelegt werden

Behandlung der Bildränder

- Anstatt der Berechnung der Filterergebnisse im Randbereich:
 - 1. Einsetzen eines konstanten Werts (z.B. "schwarz")
 - 2. Beibehalten der ursprünglichen (ungefilterten) Bildwerte
 - 3. Berechnung des Randbereichs unter der Annahme, dass ...
 - sich die Randpixel außerhalb des Bilds fortsetzen
 - sich das Bild in beiden Richtungen (horizontal und vertikal) zyklisch wiederholt

Mittelwertbildung über die Fläche

• Falls für eine Reihe von Bildpunkten $(p_0, ..., p_n)$ gilt, dass $f(p_i) = const$ ist, dann kann Rauschen durch Mittelwertbildung der gemessenen Funktionswerte $g(p_i)$ reduziert werden

Annahmen

- Bild besteht aus homogenen Bereichen
- Benachbarte Punkte haben den gleichen Grauwert
- Rauschunterdrückung
 - Mittelwertbildung über vorgegebene Nachbarschaft

Mittelwertbildung durch Faltung

Faltungskern: Gleichmäßige Gewichtung der Pixel in einer

gegebenen Nachbarschaft, Rest = 0

3x3 Boxcar-Filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Filterkern $H(i,j) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

7x7 Boxcar-Filter

Beobachtung: Kanten werden degradiert.

Grund: Annahme konstanter Funktionswerte ist

nicht wahr.

Auswirkung des Glättungsfilters

- Lineare Glättungsfilter verwischen auch beabsichtigte Bildstrukturen
- Sprungkanten (oben) oder dünne Linien (unten) werden verbreitert und gleichzeitig ihr Kontrast reduziert

Nichtlineare Glättungsfilter: Min-Filter und Max-Filter

Min- und Max-Filter ersetzen die Werte in einer (z.B. 3x3-)
 Umgebung R mit dem enthaltenen minimalen bzw. maximalen

Wert
$$I'(u,v) \leftarrow \min \{I(u+i,v+j) \mid (i,j) \in R\} = \min(R_{u,v})$$

 $I'(u,v) \leftarrow \max \{I(u+i,v+j) \mid (i,j) \in R\} = \max(R_{u,v})$

Nichtlineare Glättungsfilter: Min-Filter und Max-Filter

- Min-Filter: eliminiert weiße Punkte beim so genannten "Salt-and-Pepper"-Rauschen und verbreitert dunkle Stellen
- Max-Filter: gegenteiliger Effekt

Bild gestört mit "Salt-and-Pepper"-Rauschen

Anwendung des Min-Filters

Anwendung des Max-Filters

• Medianfilter ersetzt jedes Bildelement durch den **Median** der **Pixelwerte innerhalb der Filterregion** R, wobei der Median von 2K+1 Pixelwerten p_i definiert ist als

$$median(p_0, p_1, ..., p_K, ..., p_{2K}) = p_K$$

also der mittlere Wert, wenn die Folge $(p_0, ..., p_{2K})$ nach der Größe ihrer Elemente sortiert ist $(p_i \le p_i + 1)$.

 Falls Anzahl Elemente gerade sein sollte, dann verwende den arithmetischen Mittelwert der beiden mittleren Werte

Auswirkungen des Median-Filters

- Ein einzelner Puls wird eliminiert (a), genauso wie eine 1-Pixel dünne horizontale oder vertikale Linie (b).
- Die Sprungkante (c) bleibt unverändert, eine Ecke (d) wird abgerundet.

Vergleich des Median-Filters

Verhalten an Kanten

Alternative Filterung: Gauß I

- Gaußfunktion wird bei Fouriertransformation zu Gaußfunktion mit invertierter Breite
- Keine Richtungsabhängigkeit und Periodizität im Frequenzraum
- Gaußfilter mit Radius σ
 definiert durch die Gaußfunktion
 g(x,y) bzw. ihrer Fourier Transformierten G(u,v):

$$g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \longrightarrow G(u,v) = e^{-\frac{u^2 + v^2}{2}\sigma^2}$$

Gauß-Filter

- Ziel: Rauschunterdrückung, Glättung
- Definiert durch zweidimensionale Gauß-Funktion:

$$g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \qquad \bullet \qquad \qquad G(u,v) = e^{-\frac{u^2 + v^2}{2}\sigma^2}$$

• Approximation von g(x) durch einen 3×3 -Filter für $\sigma=1$:

$$F_{Gau\beta} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Gauß-Filter

Beispielanwendung

Originalbild

Geglättetes Bild

Grenzen

Lineare Glättungs- und Differenzfilter

Boxcar-Glättungsfilter Gauß-Glättungsfilter

Durchschnittsbildung → Glättung örtlicher Intensitätsunterschiede

Laplace-Differenzfilter

Differenzbildung → Verstärkung örtlicher Intensitätsunterschiede

Rauschunterdrückung

Verwendung des passenden Filters anhand der Art des Rauschens

Rauschen	Filterung
Salt & Pepper	Median
Gaussian	Gauߑscher
Poisson	Mittelwert
Speckle	Weiner

https://medium.com/image-vision/noise-filtering-in-digital-image-processing-d12b5266847c

Kantendetektion

Erste Ableitung zur Kantendetektion

Filterung – Prewitt I

Prewitt-X Filter

$$P_{x} = \frac{\partial g(x, y)}{\partial x}$$

Approximiert durch

$$p_{x} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

Filterung – Prewitt II

Prewitt-Y Filter

$$P_{y} = \frac{\partial g(x, y)}{\partial y}$$

Approximiert durch

$$p_{y} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

gute horizontale

schlechte vertikale

Kantendetektion

Filterung – Prewitt III

Prewitt-Operator

 Kombination der Prewitt-Filter zur Bestimmung des Grauwertgradientenbetrages M

$$M \approx \sqrt{P_x^2 + P_y^2}$$

Danach: Schwellwertfilterung

Filterung – Sobel I Sobel-X Filter

$$S_{x} = \frac{\partial g(x, y)}{\partial x}$$

Approximiert durch

$$s_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

gute vertikale schlechte horizontale Kantendetektion

Filterung – Sobel II

Sobel-Y Filter

$$S_{y} = \frac{\partial g(x, y)}{\partial y}$$

Approximiert durch

$$s_y = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

gute horizontale

schlechte vertikale

Kantendetektion

Filterung – Sobel III Sobel-Operator

 Kombination der Sobel-Filter zur Bestimmung des Grauwertgradienten-Betrages M

$$M \approx \sqrt{S_x^2 + S_y^2}$$

Danach: Schwellwertfilterung

Canny-Algorithmus (John Francis Canny)

- 1. Umwandlung des Bildes in Graustufen
- 2. Anwendung des Gauß Filters zur Rauschreduktion
- 3. Anwendung der Sobel Operatoren

https://de.wikipedia.org/wiki/Canny-Algorithmus

SobelX, size=3

SobelY, size=3

Canny-Algorithmus (John Francis Canny)

4. Berechnung der absoluten Kantenstärke (wie bei Sobel)

$$G(x,y) = \sqrt{g_X(x,y)^2 + g_y(x,y)^2}$$

Non-maximum Suppression (schmälern der Kanten)

Canny-Algorithmus (John Francis Canny)

6. Hysterese: Filterung anhand eines Kantenschwellwertes T

```
for y in range(height):
    for x in range(width):
        if img[x][y] > T:
            img[x][y] = 255
        else:
        img[x][y] = 0
```

Beispielhafte Python Implementierung

7. Resultierendes Kantenbild

https://de.wikipedia.org/wiki/Canny-Algorithmus

Filterung – Roberts

• Roberts-Filter: $R(g(x,y)) = |R_x(g(x,y))| + |R_y(g(x,y))|$

$$R_{x} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad R_{y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Gute diagonale

Kantendetektion

Kompassfilter

- Dienen der Hervorhebung von Kanten in einer bestimmten Richtung.
- Prewitt-Operator (Rotation um 45°)

$$h_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}, \quad h_2 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}, \quad h_3 = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \dots \quad h_8 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

Kirsch-Operator (Rotation um 45°)

$$h_{1} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 0 & 3 \\ -5 & -5 & -5 \end{pmatrix}, \quad h_{2} = \begin{pmatrix} 3 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & -5 & 3 \end{pmatrix}, \quad h_{3} = \begin{pmatrix} -5 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & 3 & 3 \end{pmatrix} \dots \quad h_{8} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 0 & -5 \\ 3 & -5 & -5 \end{pmatrix}$$

Kirschoperator

Verwendung der zweiten Ableitung zur Kantendetektion

Filterung – Laplace

Laplace-Operator:

Addition der zweiten Ableitungen in x-Richtung und in y-Richtung

$$\nabla^2 g(x,y) = \frac{\partial^2 g(x,y)}{\partial x^2} + \frac{\partial^2 g(x,y)}{\partial y^2}$$

$$\nabla^2 \approx \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Nulldurchgänge markieren Kanten Subpixelgenauigkeit erreichbar

Filterung – Laplace II

Näherung des Laplace-Operators:

$$\nabla^2 \approx \begin{pmatrix} 1 & 4 & 1 \\ 4 & -20 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

Stärkere Kanten

(z.B. Ultraschallverkabelung hinter Plexiglas), aber mehr Störkanten

Filterung – Laplacian of Gauss (LoG)

- Der Laplace-Operator ist gegen Rauschen sehr empfindlich.
- Wesentlich bessere Ergebnisse erhält man, wenn man das Bild zunächst mit einem Gauss-Filter glättet und danach den Laplace-Operator anwendet
- (Laplacian of Gauss, LoG)

$$LoG(g(x,y)) = \nabla^2(G(x,y) * g(x,y))$$

Filterung – LoG II

- Approximation
- Faltung mit Matrix

$$\nabla^2 G(x,y) = \begin{pmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

Zusammenfassung

- Lokale Operationen werden oftmals zur Filterung verwendet
- Viele Filter werden als Faltungsoperationen mit Faltungskern dargestellt
- Filter können Bildrauschen beseitigen
- Filter ermöglichen eine Kantendetektion
- Kantendetektion ist stark richtungsabhängig

Literatur

K. D. Tönnies:

Grundlagen der Bildverarbeitung,

Pearson Studium, 2005.

W. Burger, M.Burge:

Digitale Bildverarbeitung: Eine algorithmische Einführung mit Java;

Springer Vieweg, 3. Auflage 2015.

J. Steinmüller:

Bildanalyse,

Springer-Verlag, 1. Auflage 2008.

Quellenangabe: Bilder und Folienmaterial sind auszugsweise aus den Lehrbüchern und Materialien von Tönnies und Burger, Burge sowie den Vorlesungsmaterialien von Prof. Xiaoyi Jiang, Universität Münster entnommen.