Homework 3 Solution

Monday, April 19, 2021 11:29 PM

1. (a) Define X as multiplication of entitles of two matrices in corresponding position.

$$g(u, 1) = \begin{bmatrix} 1/2 & 1/0 & 8 \\ 1/0 & 8 & 1/0 \end{bmatrix} \dot{X}, \begin{bmatrix} 1/8 & 1/2 \\ 1/8 & 1/2 \end{bmatrix} = 8$$

$$g(1/2) = \begin{bmatrix} 10 & 8 & 6 \\ 8 & 10 & 4 \end{bmatrix} \dot{\chi}_{1} \qquad = -28$$

$$g(2,2) = \begin{bmatrix} 8 & 10 & 4 \\ 10 & 4 & 2 \\ 4 & 2 & 0 \end{bmatrix} \dot{X}$$

After applying median filter:

$$\frac{9}{10} \frac{11}{100}$$
 $\frac{9}{10} \frac{100}{100}$
 $\frac{9}{10} \frac{100}{100}$

f(x,y) and g(x,y) are different at x=10, y=10

3. (a) For image 1; at y=255, the pixel

If apply the overaging filter

254 255 256 257 <u>Y</u> 0 67 133 200 For image2, at corners the image is:

		_			_
	0	0	200	250	
	0	0)	290	200	$\rightarrow 0 \rightarrow 88$
	200	200	0	0	- 0 - 07
1	220	مدر	0	0	_
•			·	$\overline{}$	

Image has a value 89 which image I aboun't. So the histogram is different.

(b) Matlab code.

4. a) Yes.

First, convolution is linear.

Second, the linear transformation of a linear transformation is linear.

b).	, 					١
,,,	0,0	ונפ	82	0,3	0)4	
	1	2	3	2		
	ے مرا	114.	1,26	113g	1,4	
•	2,03	2,16	2,29	213	2,4	
	ラ ,02	3,1	3,2	<i>3</i> ,3	3,4	
	4,01	4,)	4.2	4.3	4.4.	
			l			_

Apply once:

 $f(2,2) = \frac{1}{9} \left(f(1) + f(1) + f(1) + f(2) + f(2) + f(2) + f(2) + f(3) + f$

Apply twice. $f''(2,2) = \frac{1}{9}(f'u,1) + f'(1,2) + f'(1,3) + f'(2,1) + f'(2,2)$ + f'(2,3) + f'(3,1) + f'(3,2) + f'(3,3)).

Substitute f' into the equation of f''.

(c) Using the double fittening,
the image would be more blurry
applying fix.y) once.