EE 330

Homework 12

Fall 2020

Due 10:00 p.m. Wednesday Nov. 4

Problem 1

The small-signal equivalent circuit of the standard common-source amplifier biased to operate in the saturation region is shown below where a **small** capacitor, C_L , has been placed on the amplifier output.

What is the small-signal gain of the amplifier, $A_{V}(s) = \frac{v_{OUT}(s)}{v_{IN}(s)}$? Your answer should be in terms of

the load resistor, R_L , the load capacitor, C_L , and the small signal model parameters of the transistor, g_{o1} , and g_{m1} .

Problem 2

Consider the standard common-source amplifier structure given in Problem 1 where the transistor is biased to operate in the saturation region. Assuming that $C_L=1nF$, $g_m=1m\frac{V}{A}$, and $g_o=10\mu\frac{1}{\Omega}$, determine the magnitude of the amplifier's gain to be at 0Hz? at 1kHz? and at 1MHz?

Problem 3

Find V_{OUT} for the circuit below.

Problem 4

Assume the biasing voltages have been selected so that the quiescent output voltage is 2V and that all transisotrs are operating in the forward active region. Determine the small-signal voltage gain if $A_{E1}=A_{E2}=40\mu^2$ and $A_{E3}=A_{E4}=60\mu^2$. Assume the transistors all have parameters $\beta=100$ and $V_{AF}=100V$.

Problem 5

Assume the quiescent output is 2V and all transistors are in the forward active region of operation. Find the small signal voltage gain if $A_{E1}=A_{E2}=55\mu^2$ and $A_{E3}=75\mu^2$. Assume the transistors all have parameters $\beta=100$ and $V_{AF}=100V$.

Problem 6

What is the difference between the two following configurations? What role does that difference play and why?

