- **Example 1** Find the image of $\triangle ABC$ under the expansion $D_{O_{2}}$.
- **Solution** $D_{o,2}:\triangle ABC \rightarrow \triangle A'B'C'$
 - $OA' = 2 \cdot OA$ $OB' = 2 \cdot OB$ $OC' = 2 \cdot OC$

Example 2 Find the image of $\triangle RST$ under the contraction $D_{O,\frac{2}{3}}$.

Solution
$$D_{O,\frac{2}{3}}: \triangle RST \rightarrow \triangle R'S'T'$$
 $OR' = \frac{2}{3} \cdot OR$ $OS' = \frac{2}{3} \cdot OS$ $OT' = \frac{2}{3} \cdot OT$

In the examples above, can you prove that the two triangles are similar? How are the areas of each pair of triangles related?

- **Example 3** Find the image of figure F under the contraction $D_{O_{1}-\frac{1}{2}}$.
- **Solution** $D_{O,-\frac{1}{2}}$: figure $F \to \text{figure } F'$ \overrightarrow{OP} is opposite to \overrightarrow{OP}' . $OP' = |-\frac{1}{2}| \cdot OP = \frac{1}{2} \cdot OP$

If the scale factor in Example 3 was -1 instead of $-\frac{1}{2}$, the figure F' would be congruent to the figure F, and the transformation would be an isometry, equivalent to a half-turn. In general, however, as these examples illustrate, dilations do not preserve distance. Therefore a dilation is not an isometry (unless k = 1 or k = -1).

But a dilation always maps any geometric figure to a similar figure. In the examples above, $\triangle ABC \sim \triangle A'B'C'$, $\triangle RST \sim \triangle R'S'T'$ and the figure F is similar to the figure F'. For this reason, a dilation is an example of a similarity mapping.