Results are obtained with \boldsymbol{h}_0^P estimated

	CALIBRATED PARAMETERS ON WEDNESDAYS USING OPTIONS LIKELIHOOD, $h_0^Q = h_t^P$								
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	2.9373e - 07 $(1.5899e - 06)$ $4.4080e - 10$	8.3428e - 06 $(2.7177e - 05)$ $2.1679e - 09$	2.0557e - 09 $(4.0487e - 09)$ $1.1257e - 09$	1.4603e - 06 $(4.9823e - 06)$ $1.5347e - 09$	1.9938e - 06 $(6.7867e - 06)$ $1.3127e - 09$	4.7113e - 07 $(2.5578e - 06)$ $1.3856e - 09$	6.9592e - 07 $(3.0411e - 06)$ $7.3148e - 10$	3.5608e - 07 $(2.0030e - 06)$ $2.7972e - 10$	2.8373e - 07 $(1.8910e - 06)$ $4.9914e - 10$
$lpha ext{std} ext{median}$	2.6506e - 05 $(2.1430e - 05)$ $2.1958e - 05$	2.2808e - 05 $(2.2449e - 05)$ $2.0325e - 05$	2.0436e - 05 $(1.7810e - 05)$ $1.4954e - 05$	1.5988e - 05 $(1.2247e - 05)$ $1.5884e - 05$	1.4776e - 05 $(9.2665e - 06)$ $1.4270e - 05$	1.3678e - 05 $(6.8892e - 06)$ $1.2722e - 05$	1.3866e - 05 $(8.7406e - 06)$ $1.2912e - 05$	9.2340e - 06 (4.9557e - 06) 9.1517e - 06	1.6279e - 05 $(1.1036e - 05)$ $1.5918e - 05$
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.4708 (0.3272) 0.5549	0.3164 (0.3221) 0.3131	0.4553 (0.3657) 0.6192	$0.3331 \\ (0.3768) \\ 0.0023$	0.1703 (0.2815) 0.0002	0.1908 (0.2349) 0.0090	0.2374 (0.3108) 0.0007	0.1474 (0.2931) 0.0001	0.2896 (0.3377) 0.0010
$\gamma^* \ ext{std} \ ext{median}$	155.5027 (149.9840) 115.7838	256.7574 (289.5641) 148.3374	176.9894 (121.4388) 137.7486	247.3834 (267.6261) 166.2098	225.9295 (201.9510) 189.4759	224.0573 (48.8853) 226.1581	257.7868 (247.1550) 205.5256	275.5854 (187.7364) 237.1314	191.7579 (108.0334) 159.7501
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{std} \ & \mathbf{median} \end{aligned}$	1.2843e - 04 $(8.7675e - 05)$ $1.1288e - 04$	1.5885e - 04 $(1.0228e - 04)$ $1.3446e - 04$	8.8858e - 05 $(4.2482e - 05)$ $8.4289e - 05$	6.0313e - 05 $(3.1009e - 05)$ $4.8973e - 05$	6.5265e - 05 $(3.7863e - 05)$ $5.5260e - 05$	1.1085e - 04 $(6.5832e - 05)$ $9.2823e - 05$	9.9075e - 05 $(7.2668e - 05)$ $7.8758e - 05$	4.0828e - 05 $(2.3485e - 05)$ $3.3053e - 05$	1.1258e - 04 $(8.8642e - 05)$ $9.1614e - 05$
persistency std median	0.8296 (0.1480) 0.8790	0.8243 (0.1406) 0.8230	0.7887 (0.2140) 0.8761	0.7028 (0.2369) 0.7046	0.6687 (0.2103) 0.6817	0.7948 (0.0995) 0.7949	0.7570 (0.1568) 0.7223	0.6523 (0.2196) 0.6810	0.6896 (0.2197) 0.7138
MSE	1.3115	4.7861	2.6162	4.2244	8.4450	6.3652	10.9788	23.0601	13.4936
IVRMSE	0.0639	0.0955	0.0867	0.0890	0.0933	0.0939	0.1111	0.1248	0.0897
MAPE	0.0741	0.0936	0.1184	0.1292	0.1568	0.1523	0.1709	0.2464	0.1414
OptLL	215.4291	208.3681	251.0076	333.0039	351.3072	436.8099	513.2066	555.4006	684.7143

Results are obtained with h_0^P estimated

$\textbf{CALIBRATED PARAMETERS ON WEDNESDAYS, } h_0^Q = \frac{\omega_0 + \alpha_0}{1 - \beta_0 - \alpha_0 \gamma_0^{*2}}, \textbf{WITH } \omega_0, \alpha_0, \beta_0, \gamma_0^{*2} \textbf{ FROM MLE UNDER P AND UPDATED UNDER Q}$									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	8.5029e - 08 $(4.4877e - 07)$ $4.8556e - 10$	9.2714e - 06 $(2.7968e - 05)$ $1.1932e - 09$	1.9246e - 07 $(1.0856e - 06)$ $9.6775e - 10$	2.2129e - 06 $(6.4184e - 06)$ $1.6296e - 09$	1.9389e - 06 $(6.6239e - 06)$ $1.4218e - 09$	4.1610e - 07 $(2.4952e - 06)$ $1.6699e - 09$	5.9987e - 07 (2.9189 $e - 06$) 8.8906e - 10	3.5299e - 07 (2.0142 $e - 06$) 3.4979e - 10	5.5812e - 07 $(2.7146e - 06)$ $6.2288e - 10$
$rac{lpha}{ ext{std}}$ median	2.5394e - 05 $(2.2029e - 05)$ $1.7658e - 05$	2.1003e - 05 $(2.0947e - 05)$ $1.9181e - 05$	1.8778e - 05 $(1.6410e - 05)$ $1.2068e - 05$	1.3908e - 05 $(1.1489e - 05)$ $1.2723e - 05$	1.3646e - 05 $(8.5375e - 06)$ $1.3239e - 05$	1.3883e - 05 $(5.9109e - 06)$ $1.3217e - 05$	1.3858e - 05 $(8.0356e - 06)$ $1.3228e - 05$	8.2692e - 06 (4.8704e - 06) 8.3302e - 06	1.5954e - 05 $(9.4418e - 06)$ $1.4242e - 05$
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.5032 (0.3188) 0.5759	0.3363 (0.3212) 0.3823	0.4882 (0.3411) 0.5857	0.3724 (0.3801) 0.3025	0.1836 (0.2898) 0.0003	0.1643 (0.2274) 0.0007	0.2466 (0.3159) 0.0018	0.1768 (0.3270) 0.0001	0.2450 (0.3193) 0.0023
$\gamma^* \ ext{std} \ ext{median}$	152.7405 (136.5742) 112.0207	213.9027 (168.6915) 155.9251	178.3425 (140.6359) 147.8898	268.5595 (295.7190) 169.4020	254.9716 (239.7515) 202.0041	221.9130 (41.5011) 228.8470	209.9787 (73.9368) 208.6253	301.8938 (189.9283) 261.8796	202.9867 (132.2615) 167.7543
$egin{aligned} h_0^Q &= h_t^P \ & \mathbf{std} \ & \mathbf{median} \end{aligned}$	1.2504e - 04 $(8.4350e - 05)$ $1.0398e - 04$	1.6094e - 04 $(1.0127e - 04)$ $1.3887e - 04$	8.8020e - 05 (3.9993e - 05) 7.9893e - 05	6.3516e - 05 $(3.0169e - 05)$ $5.2671e - 05$	6.4968e - 05 $(3.7802e - 05)$ $5.4472e - 05$	1.0677e - 04 $(5.3934e - 05)$ $8.9209e - 05$	9.4593e - 05 (6.6163e - 05) 6.9330e - 05	4.2065e - 05 $(2.5624e - 05)$ $3.6036e - 05$	1.2042e - 04 $(9.2499e - 05)$ $1.0226e - 04$
persistency std median	0.8400 (0.1471) 0.8873	0.8357 (0.1267) 0.8444	0.8048 (0.2039) 0.8985	0.7215 (0.2405) 0.7596	0.6850 (0.2211) 0.7232	0.7899 (0.0938) 0.7879	0.7567 (0.1574) 0.7342	0.6880 (0.2170) 0.7017	0.6960 (0.1905) 0.7484
MSE	1.1660	4.6442	2.4437	4.3159	7.5939	6.1701	10.7231	20.7106	13.3130
IVRMSE	0.0633	0.0921	0.0863	0.0894	0.0927	0.0927	0.1089	0.1237	0.0887
MAPE	0.0734	0.0906	0.1179	0.1315	0.1531	0.1484	0.1669	0.2416	0.1395
OptLL	216.3430	211.5388	252.2146	334.4711	356.0208	438.7128	515.4908	559.3221	688.0683

Results are obtained with \boldsymbol{h}_0^P estimated

C.	CALIBRATED PARAMETERS ON WEDNESDAYS USING OPTIONS LIKELIHOOD, h_0^Q IS REALIZED VOLATILITY								
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	4.4390e - 06 $(2.1202e - 05)$ $7.1991e - 10$	1.6421e - 05 $(3.7688e - 05)$ $2.7245e - 09$	1.2371e - 06 $(4.8847e - 06)$ $1.0594e - 09$	2.3916e - 06 $(6.4010e - 06)$ $3.2019e - 09$	1.6398e - 06 $(5.4933e - 06)$ $8.7991e - 10$	1.0287e - 06 $(3.6010e - 06)$ $1.5623e - 09$	1.3292e - 06 $(3.7767e - 06)$ $1.0905e - 09$	1.7818e - 07 $(9.9009e - 07)$ $2.9135e - 10$	5.5739e - 06 $(2.3025e - 05)$ $8.2769e - 10$
$lpha$ ${f std}$ ${f median}$	3.6449e - 05 (2.8777e - 05) 2.7865e - 05	3.0352e - 05 $(2.8048e - 05)$ $2.0508e - 05$	2.6117e - 05 $(2.0832e - 05)$ $1.8591e - 05$	1.0640e - 05 $(1.0869e - 05)$ $7.1029e - 06$	1.3074e - 05 $(1.3823e - 05)$ $7.8547e - 06$	1.1916e - 05 $(1.0055e - 05)$ $8.9842e - 06$	1.3060e - 05 $(1.1191e - 05)$ $8.6525e - 06$	4.4963e - 06 $(5.0144e - 06)$ $3.1924e - 06$	1.2185e - 05 $(1.3058e - 05)$ $9.4728e - 06$
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.4154 (0.3534) 0.5079	0.3178 (0.3373) 0.2049	0.4034 (0.3495) 0.4684	0.5183 (0.3480) 0.6798	0.4359 (0.3691) 0.5937	0.3807 (0.3181) 0.5059	0.3932 (0.3109) 0.4466	0.5989 (0.3133) 0.7443	0.4758 (0.3576) 0.6481
$\gamma^* \ ext{std} \ ext{median}$	122.4610 (110.7548) 100.2388	172.1046 (153.0932) 132.6313	148.9414 (118.6459) 126.5910	316.1972 (375.3863) 161.2021	260.0664 (259.3262) 177.3985	244.0577 (132.3480) 221.2115	251.5891 (243.2757) 194.6935	307.1280 (172.5592) 287.6256	256.7916 (228.0918) 179.1764
$h_0^Q = h_t^P$ std median	8.6011e - 05 $(7.7213e - 05)$ $6.0175e - 05$	1.5683e - 04 $(2.4253e - 04)$ $6.9450e - 05$	5.7150e - 05 $(4.8172e - 05)$ $4.1358e - 05$	4.7600e - 05 $(5.7769e - 05)$ $3.3327e - 05$	4.2269e - 05 $(7.5395e - 05)$ $2.2715e - 05$	7.3948e - 05 $(1.1377e - 04)$ $4.5815e - 05$	5.8848e - 05 (8.1886e - 05) 2.6906e - 05	1.2876e - 05 $(7.9046e - 06)$ $1.1264e - 05$	5.7619e - 05 $(5.6720e - 05)$ $3.6139e - 05$
persistency std median	0.7734 (0.1713) 0.8329	0.7755 (0.1684) 0.8363	0.7364 (0.2286) 0.8267	0.7961 (0.2241) 0.8976	0.7722 (0.2091) 0.8578	0.8342 (0.1443) 0.8858	0.8109 (0.1603) 0.8608	0.8913 (0.1272) 0.9436	0.7686 (0.2378) 0.8548
MSE	1.7891	5.3716	2.5919	3.0224	4.9591	3.6728	4.0827	4.0435	14.2469
IVRMSE	0.0710	0.1004	0.0897	0.0873	0.0936	0.0975	0.1014	0.1046	0.0966
MAPE	0.0802	0.1010	0.1322	0.1310	0.1535	0.1631	0.1585	0.1894	0.1503
OptLL	211.2856	207.1647	247.0419	341.4580	363.2253	438.8849	538.5336	625.4260	679.0972

Results are obtained with h_0^P estimated

CA	CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED WITH RESPECT TO OPTIONS LIKELIHOOD									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018	
$egin{array}{c} \omega \ \mathbf{std} \ \mathbf{median} \end{array}$	4.2779e - 09 $(1.6791e - 08)$ $5.6987e - 10$	3.2992e - 07 $(1.5604e - 06)$ $1.1448e - 09$	3.3648e - 08 $(1.6574e - 07)$ $8.8539e - 10$	3.8491e - 07 (1.3052e - 06) 1.3899e - 09	1.2743e - 07 $(4.5655e - 07)$ $7.7997e - 10$	4.4951e - 08 $(2.0855e - 07)$ $1.5014e - 09$	2.5272e - 08 $(1.4770e - 07)$ $9.8128e - 10$	3.9321e - 08 $(1.7009e - 07)$ $4.0373e - 10$	3.7781e - 08 $(2.2443e - 07)$ $7.1023e - 10$	
$lpha \mathbf{std} \mathbf{median}$	1.8528e - 05 $(1.9304e - 05)$ $1.0906e - 05$	1.6271e - 05 $(2.1985e - 05)$ $7.6580e - 06$	9.0589e - 06 $(1.2012e - 05)$ $4.5292e - 06$	6.1070e - 06 $(7.9519e - 06)$ $3.1281e - 06$	7.6946e - 06 $(9.6389e - 06)$ $3.2390e - 06$	7.2374e - 06 $(7.2754e - 06)$ $4.3350e - 06$	5.1346e - 06 (5.8307e - 06) 2.9817e - 06	2.3951e - 06 (3.0938e - 06) 1.4483e - 06	1.3159e - 05 $(1.6443e - 05)$ $4.5077e - 06$	
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.6378 (0.2696) 0.7368	0.5560 (0.2971) 0.6567	0.7245 (0.2146) 0.8002	0.7258 (0.2478) 0.8149	0.6358 (0.2979) 0.7673	0.5520 (0.2466) 0.6572	0.6269 (0.2257) 0.6945	0.7263 (0.2586) 0.8054	0.5387 (0.3753) 0.7356	
$\gamma^* \ ext{std} \ ext{median}$	134.9727 (47.8695) 128.3648	191.7168 (93.1766) 175.8916	186.9011 (76.3909) 175.0860	254.4028 (194.7410) 184.1932	276.4433 (232.3643) 222.8042	280.6426 (175.7277) 257.4585	298.3299 (157.3293) 297.1472	331.9039 (112.0556) 333.3806	243.3202 (122.2386) 221.0610	
$h_0^Q \ ext{std} \ ext{median}$	1.3056e - 04 $(1.3959e - 04)$ $9.1311e - 05$	$\begin{array}{c} 2.2460e - 04 \\ (2.3120e - 04) \\ 1.1465e - 04 \end{array}$	8.4830e - 05 $(5.7765e - 05)$ $6.1522e - 05$	4.8801e - 05 $(4.5932e - 05)$ $3.3426e - 05$	4.8652e - 05 $(5.7911e - 05)$ $2.7470e - 05$	0.0001 (1.1307e - 04) 5.5238e - 05	7.5242e - 05 $(1.0294e - 04)$ $3.7873e - 05$	1.9048e - 05 $(1.9023e - 05)$ $1.3922e - 05$	1.3485e - 04 $(1.7128e - 04)$ $4.6996e - 05$	
persistency std median	0.8865 (0.1325) 0.9423	0.9140 (0.0899) 0.9529	0.9172 (0.1260) 0.9643	0.9104 (0.1125) 0.9574	0.8914 (0.1276) 0.9469	0.9184 (0.0760) 0.9499	0.9374 (0.0690) 0.9650	0.9523 (0.0709) 0.9764	0.8261 (0.2077) 0.9464	
MSE	0.6499	1.0486	1.0785	0.7407	1.1260	1.2960	1.6303	1.7009	4.5699	
IVRMSE	0.0565	0.0656	0.0812	0.0793	0.0798	0.0918	0.0991	0.0994	0.0797	
MAPE	0.0672	0.0724	0.1105	0.1056	0.1224	0.1361	0.1324	0.1677	0.1248	
OptLL	226.1068	234.9978	265.1968	365.6016	393.4111	469.1520	576.9261	651.9071	731.5026	