Midterm ECON 713 Part II

April 10, 2018

Good luck and allocate your time efficiently!

Professor : Marzena Rostek

TA : Chen Lyu

1. (A Bundle Auction (30 points)) The Wisconsin Government owns two pieces of land. The commercial values of Land 1 and Land 2 are v_1 and v_2 , respectively, which are common to every potential bidder. Assume that v_1 and v_2 are independent and uniformly distributed, U[0,1] (which is the common prior). There are two bidders: bidder 1 and bidder 2. Bidder 1 knows v_1 but not v_2 and bidder 2 knows v_2 but not v_1 .

Suppose that the Wisconsin Government bundles these two pieces of land together and sells them in a single second price auction for the bundled good. Each bidder's valuation of the bundled good in the auction is the sum of v_1 and v_2 .

- (a) (5 points) Define a Bayesian Game for this problem.
- (b) (10 points) Find a symmetric BNE (if any) in which each bidder is using a strictly increasing linear bidding strategy without a constant term. Remember to check the second-order condition.
- (c) (5 points) Is the equilibrium you found in (b) in weakly dominant strategies? Prove or disprove that it is.
- (d) (2 points) Find the Government's ex-ante expected revenue given the equilibrium in (b).

Now, suppose that the government adopts an all-pay auction, i.e., the highest bid wins and each bidder pays his/her bid no matter whether s/he wins or not.

- (e) (8 points) Find a symmetric BNE (if any) in which each bidder uses a bidding strategy $b_i = av_i^2$ for some a > 0. Remember to check the second-order condition.
- 2. (A Gamble (16 points)) Two players gamble with each other. The rules are as follows:
 - First, two numbers, t_1 and t_2 , are independently drawn from U[0,1] and assigned to player 1 and player 2, respectively. Each player's number is her private information.
 - After seeing their numbers, they simultaneously decide to raise or to fold.
 - The final payoffs are determined as follows: if both players raise, the player with a higher number t_i gets 2 while the other player gets -2; if one of them raises, the person who raises gets 1 and her opponent gets -1; if both of them fold, they both receive payoff 0.
 - (a) (7 points) Show that given any strategy used by player 2, if it is optimal for player 1 to raise when $t_1 = \bar{t}$, it is also optimal for player 1 to raise when $t_1 > \bar{t}$.
 - (b) (9 points) Motivated by (a), let's assume that each player is using a threshold strategy, i.e., player i raises if and only if $t_i > a$ for some a. Solve for a symmetric BNE in such strategies.