ЛАБОРАТОРНА РОБОТА № 2

Порівняння методів класифікації даних

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити різні методи класифікації даних та навчитися їх порівнювати

Хід роботи:

Завдання 2.1. Класифікація за допомогою машин опорних векторів (SVM). Створіть класифікатор у вигляді машини опорних векторів, призначений для прогнозування меж доходу заданої фізичної особи на основі 14 ознак (атрибутів). Метою ϵ з'ясування умов, за яких щорічний прибуток людини перевищує \$50000 або менше цієї величини за допомогою бінарної класифікації.

Таблиця 1 Опис ознак на прикладі першого запису

Значення	Назва	Опис	Вид
39	age	вік особи	число
State-gov	workclass	тип зайнятості (не працює, не оплачено, самозайнятий тощо)	категорія
77516	fnlwgt	final weight – кількість таких людей	число
Bachelors	education	степінь освіти	категорія
13	education-num	найвищий рівень освіти, який має особа	число
Never-married	marital-status	сімейний стан	категорія
Adm-clerical	occupation	рід зайнятості, професія	категорія
Not-in-family	relationship	відносини людини	категорія
White	race	paca	категорія
Male	sex	стать	категорія
2174	capital-gain	приріст капіталу особи	число
0	capital-loss	збитки	число
40	hours-per-week	скільки годин особа працює на тиждень	число
United-States	native-country	країна походження	категорія
<=50K	label	мітка чи заробляє особа більше 50 тисяч	число

					ДУЖП.22. <mark>12</mark> 1.1 <mark>9</mark> .000 – Лр2			
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	00 δ.	Хіміч В.О.				Літ.	Арк.	Аркушів
Пере	евір.	Пулеко І.В.			Звіт з		1	16
Керіє	вник							
Н. кс	энтр.				лабораторної роботи	ΦΙΚ	Т Гр. Г	71-60[2]
328	каф							

```
import numpy as np
from sklearn import preprocessing, svm
from sklearn.svm import LinearSVC
from sklearn.multiclass import OneVsOneClassifier
from sklearn.model_selection import train_test_split, cross_val_score
# Вхідний файл, який містить дані
input_file = 'Task/income_data.txt'
X = []
y = []
count class1 = 0
count class2 = 0
max_datapoints = 25000
with open(input_file, 'r') as f:
    for line in f.readlines():
        if count_class1 >= max_datapoints and count_class2 >= max_datapoints:
            break
        if '?' in line:
            continue
        data = line[:-1].split(', ')
        if data[-1] == '<=50K' and count class1 < max datapoints:
            X.append(data)
            count_class1 += 1
        if data[-1] == '>50K' and count_class2 < max_datapoints:</pre>
            X.append(data)
            count_class2 += 1
# Перетворення на масив питру
X = np.array(X)
# Перетворення рядкових даних на числові
label encoder = []
X_{encoded} = np.empty(X.shape)
for i, item in enumerate(X[0]):
    if item.isdigit():
        X_{encoded}[:, i] = X[:, i]
    else:
        label_encoder.append(preprocessing.LabelEncoder())
        X_encoded[:, i] = label_encoder[-1].fit_transform(X[:, i])
X = X_encoded[:, :-1].astype(int)
y = X_encoded[:, -1].astype(int)
```

Рис. 1. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
# Створення SVM-класифікатора classifier = OneVsOneClassifier(LinearSVC(random_state=0))
# Навчання класифікатора classifier.fit(X, y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
classifier = OneVsOneClassifier(LinearSVC(random_state=0, max_iter=1000))
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)
f1 = cross_val_score(classifier, X, y, scoring='f1_weighted', cv=3)
print("F1 score: " + str(round(100 * f1.mean(), 2)) + "%")
# Передбачення результату для тестової точки даних input_data = ['37', 'Private', '215646', 'HS-grad', '9', 'Never-married', 'Handlers-cleaners', 'Not-in-family', 'White', 'Male', '0', '0', '40', 'United-States']
# Кодування тестової точки даних input_data_encoded = [-1] * len(input_data)
for i, item in enumerate(input_data):
    if item.isdigit():
         input_data_encoded[i] = int(input_data[i])
         input_data_encoded[i] = int(label_encoder[count].transform([input_data[i]]))
input_data_encoded = np.array(input_data_encoded)
# Використання класифікатора для кодованої точки даних та виведення результату
predicted_class = classifier.predict(input_data_encoded.reshape(1, 14))
print("Label", label_encoder[-1].inverse_transform(predicted_class)[0])
accuracy_values = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy: " + str(round(100 * accuracy_values.mean(), 2)) + "%")
precision_values = cross_val_score(classifier, X, y, scoring='precision_weighted', cv=3)
print("Precision: " + str(round(100 * precision_values.mean(), 2)) + "%")
recall_values = cross_val_score(classifier, X, y, scoring='recall_weighted', cv=3)
print("Recall: " + str(round(100 * recall_values.mean(), 2)) + "%")
```

Рис. 2. Код програми

```
F1 score: 56.15%
Accuracy: 62.64%
Precision: 75.88%
Recall: 62.64%
```

Рис. 3. Показники якості класифікації

```
Label <=50K
```

Рис. 4. Передбачений результат

За результатами виконання коду можна зробити висновок, що особа з заданими вхідними парамерами, ймовірно, буде мати заробітну платню менше за 50 тисяч доларів.

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.2. Порівняння якості класифікаторів SVM з нелінійними ядрами.

```
from sklearn import svm
from sklearn.model_selection import train_test_split
from methods import get_X_y, get_result, show_quality_values

X, y, label_encoder = get_X_y()

# CTBODDEHHR SVM-KJACUMDIKATOPA
classifier = svm.SVC(kernel='poly', degree=8, max_iter=50000, random_state=0)
classifier.fit(X, y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
classifier = svm.SVC(kernel='poly', degree=8, max_iter=50000, random_state=0)
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)

label = get_result(classifier, label_encoder)
print("Label", label)

show_quality_values(classifier, X, y)
```

Рис. 5. Код програми для поліномінального ядра

```
from sklearn import svm
from sklearn.model_selection import train_test_split
from methods import get_X_y, get_result, show_quality_values

X, y, label_encoder = get_X_y()

# CTBODDEHHR SVM-KNACKONIKATODA
classifier = svm.SVC(kernel='rbf', max_iter=50000, random_state=0)
classifier.fit(X, y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
classifier = svm.SVC(kernel='rbf', max_iter=50000, random_state=0)
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)

label = get_result(classifier, label_encoder)
print("Label", label)

show_quality_values(classifier, X, y)
```

Рис. 6. Код програми для гаусового ядра

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
from sklearn import svm
from sklearn.model_selection import train_test_split
from methods import get_X_y, get_result, show_quality_values

X, y, label_encoder = get_X_y()

# CTBODENHAR SVM-KJACKODIKATODA
classifier = svm.SVC(kernel='sigmoid', max_iter=50000, random_state=0)
classifier.fit(X, y)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
classifier = svm.SVC(kernel='sigmoid', max_iter=50000, random_state=0)
classifier.fit(X_train, y_train)
y_test_pred = classifier.predict(X_test)

label = get_result(classifier, label_encoder)
print("Label", label)

show quality values(classifier, X, y)
```

Рис. 7. Код програми для сигмоїдального ядра

Label <=50K F1 score: 69.64% Accuracy: 76.21% Precision: 73.09% Recall: 76.21%

Рис. 8. Результат виконання програми для поліномінального ядра

Label <=50K F1 score: 69.73% Accuracy: 76.24% Precision: 73.17% Recall: 76.24%

Рис. 9. Результат виконання програми для гаусового ядра

Label <=50K F1 score: 66.74% Accuracy: 74.34% Precision: 67.07% Recall: 74.34%

Рис. 10. Результат виконання програми для сигмоїдального ядра

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Порівняння показників якості

Ядро	F -міра	Акуратність	Точність	Повнота
Лінійне	56,15%	62,64%	62,64%	75,88%
Поліноміальне	69,64%	76,21%	73,09%	76,21%
Гаусове	69,73%	76,24%	73,17%	76,24%
Сигмоїдальне	66,74%	74,34%	67,07%	74,34%

При порівнянні результатів можна зробити висновик, що гаусову ядро має найвищі показники.

Завдання 2.3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів.

```
from sklearn.datasets import load_iris

iris_dataset = load_iris()

print("Ключі iris_dataset: \n{}".format(iris_dataset.keys()))

print(iris_dataset['DESCR'][:193] + "\n...")

# print(iris_dataset['DESCR'][193:-1])

print("Назви відповідей: {}".format(iris_dataset['target_names']))

print("Назва ознак: \n{}".format(iris_dataset['feature_names']))

print("Тип масиву data: {}".format(type(iris_dataset['data'])))

print("Форма масиву data: {}".format(iris_dataset['data'].shape))

# - Виведіть значення ознак для перших п'яти прикладів

print("Перші 5 прикладів: \n{}".format(type(iris_dataset['data'][0:5]))

print("Тип масиву target: {}".format(type(iris_dataset['target'])))

print("Відповіді:\n{}".format(iris_dataset['target']))
```

Рис. 11. Код програми для ознайомлення з даними

```
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
 . _iris_dataset:
Iris plants dataset
**Data Set Characteristics:**
   :Number of Instances: 150 (50 in each of three classes)
   :Number of Attributes: 4 numeric, pre
Назви відповідей: ['setosa' 'versicolor' 'virginica']
["sepal length (cm)", 'sepal width (cm)", 'petal length (cm)", 'petal width (cm)"]
Тип масиву data: <class 'numpy.ndarray'>
Форма масиву data: (150, 4)
Перші 5 прикладів:
[[5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5. 3.6 1.4 0.2]]
Тип масиву target: <class 'numpy.ndarray'>
```

Рис. 12. Результат виконання коду

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 13. Діаграма розмаху

Рис. 14. Діаграма розподілу атрибутів

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 15. Матриця діаграм розсіювання

```
# 3aBaNTAWAHNA MATACETY
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(url, names=names)

# shape
print(dataset.shape)

# 3Dia Manux head
print(dataset.head(20))

# CTATAWHI 3BEAGENHA METOAOM describe
print(dataset.describe())

# PORTORIA 3a ATUMÓNTOM class
print(dataset.groupby('class').size())

# Alarpama poamany
dataset.plot(kind='box', subplots=True, layout=(2, 2), sharex=False, sharey=False)
pxplot.show()

# CTOTOPAMA poanodiny atumóntis mataceta
dataset.hist()
pxplot.show()

# Matpuna Alarpam poaciobanha
scatter_matrix(dataset)
pxplot.show()
```

Рис. 16. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 17. Графік порівняння алгоритмів

```
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
models = [('LR', LogisticRegression(solver='liblinear', multi_class='ovr')),
          ('LDA', LinearDiscriminantAnalysis()),
         ('KNN', KNeighborsClassifier()),
         ('CART', DecisionTreeClassifier()),
          ('NB', GaussianNB()),
          ('SVM', SVC(gamma='auto'))
results = []
names = []
for name, model in models:
   kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
   cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')
   results.append(cv_results)
   names.append(name)
   print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
# Порівняння алгоритмів
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
```

Рис. 18. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

LR: 0.941667 (0.065085) LDA: 0.975000 (0.038188) KNN: 0.958333 (0.041667) CART: 0.941667 (0.038188) NB: 0.950000 (0.055277) SVM: 0.983333 (0.033333)

Рис. 19. Оцінка моделей

3 даних вище можна зробити висновок про те, що найбільш оптимальним методом класифікації ϵ SVM

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	0.92	0.96	13
Iris-virginica	0.86	1.00	0.92	6
accuracy			0.97	30
macro avg	0.95	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30

Рис. 20. Показники якості

```
# Створюємо прогноз на контрольній вибірці
model = SVC(gamma='auto')
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)

# Оцінюємо прогноз
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))

X_new = np.array([[5, 2.9, 1, 0.2]])
print("форма массива X_new: {}".format(X_new.shape))
prediction = model.predict(X_new)
print("Прогноз: {}".format(prediction))
print("Спрогнозированная метка: {}".format(prediction[0]))
```

Рис. 21. Код програми

```
Прогноз: ['Iris-setosa']
Спрогнозированная метка: Iris-setosa
```

Рис. 22. Прогноз

Отже, за даними, отриманими в результаті виконання програми, можна побачити, що прогноз має точність 97%, а квітка з заданими параметрами належить до класу Iris-setosa

		Хіміч В.О.				Αp
		Пулеко І.В.			ДУЖП.22. <mark>121.19</mark> .000 – Лр2	1/
Змн.	Арк.	№ докум.	Підпис	Дата	·	10

Завдання 2.4. Порівняння якості класифікаторів для набору даних завд. 2.1.

```
from methods import get_X_y
from matplotlib import pyplot
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
X, y, label_encoder = get_X_y()
# Разделение X и у на обучающую и контрольную выборки
X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
# Завантажуємо алгоритми моделі
models = [('LR', LogisticRegression(solver='liblinear', multi_class='ovr')),
         ('LDA', LinearDiscriminantAnalysis()),
         ('KNN', KNeighborsClassifier()),
          ('CART', DecisionTreeClassifier()),
          ('NB', GaussianNB()),
          ('SVM', SVC(gamma='auto'))
      # оцінюємо модель на кожній ітерації
      results = []
      names = []
      for name, model in models:
          kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
          cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')
          results.append(cv_results)
          names.append(name)
          print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
      pyplot.boxplot(results, labels=names)
      pyplot.title('Algorithm Comparison')
      pyplot.show()
      model = SVC(gamma='auto')
      model.fit(X_train, Y_train)
      predictions = model.predict(X_validation)
      print('SVC')
      print(classification_report(Y_validation, predictions))
      model = GaussianNB()
      model.fit(X_train, Y_train)
      predictions = model.predict(X_validation)
      print('Gaussian')
      print(classification_report(Y_validation, predictions))
      model = DecisionTreeClassifier()
      model.fit(X_train, Y_train)
      predictions = model.predict(X_validation)
      print('DecisionTree')
      print(classification_report(Y_validation, predictions))
```

Рис. 23. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
# - KNeighbors
model = KNeighborsClassifier()
model.fit(X_train, Y_train)
predictions = model.predict(X validation)
print('KNeighbors')
print(classification_report(Y_validation, predictions))
# - LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print('LinearDiscriminantAnalysis')
print(classification_report(Y_validation, predictions))
# - LogisticRegression
model = LogisticRegression(solver='liblinear', multi_class='ovr')
model.fit(X_train, Y_train)
predictions = model.predict(X_validation)
print('LogisticRegression')
print(classification_report(Y_validation, predictions))
```

Рис. 24. Код програми

Рис. 25. Графік порівняння алгоритмів

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

LR: 0.764143 (0.002261) LDA: 0.763604 (0.002613) KNN: 0.751668 (0.016548) CART: 0.763936 (0.002371) NB: 0.388244 (0.127274) SVM: 0.763397 (0.003756)

Рис. 26. Оцінка моделей

SVC				
	precision	recall	f1-score	support
0	0.75	1.00	0.86	4483
1	0.87	0.05	0.10	1550
accuracy			0.76	6033
macro avg	0.81	0.53	0.48	6033
weighted avg	0.78	0.76	0.66	6033

Рис. 27. Показники якості для алгоритму SVC

Gaussian				
	precision	recall	f1-score	support
0	0.91	0.13	0.22	4483
1	0.28	0.96	0.43	1550
accuracy			0.34	6033
macro avg	0.59	0.54	0.33	6033
weighted avg	0.75	0.34	0.28	6033

Рис. 28. Показники якості для алгоритму Gaussian

DecisionTree				
	precision	recall	f1-score	support
0	0.76	0.98	0.86	4483
1	0.64	0.12	0.20	1550
accuracy			0.76	6033
macro avg	0.70	0.55	0.53	6033
weighted avg	0.73	0.76	0.69	6033

Рис. 29. Показники якості для алгоритму DecisionTree

KNeighbors		11	£4	
	precision	recall	f1-score	support
0	0.76	0.98	0.86	4483
1	0.64	0.12	0.20	1550
accuracy			0.76	6033
macro avg	0.70	0.55	0.53	6033
weighted avg	0.73	0.76	0.69	6033

Рис. 30. Показники якості для алгоритму KNeighbors

		Хіміч В.О.				Арн
		Пулеко І.В.			ДУЖП.22. <mark>121.19</mark> .000 – Лр2	12
Змн.	Арк.	№ докум.	Підпис	Дата		13

LinearDiscriminantAnalysis						
	precision	recall	f1-score	support		
0	0.76	0.97	0.86	4483		
1	0.63	0.13	0.22	1550		
accuracy			0.76	6033		
macro avg	0.70	0.55	0.54	6033		
weighted avg	0.73	0.76	0.69	6033		

Рис. 31. Показники якості для алгоритму LinearDiscriminantAnalysis

LogisticRegression						
	precision	recall	f1-score	support		
0	0.76	0.98	0.86	4483		
1	0.64	0.11	0.19	1550		
accuracy			0.76	6033		
macro avg	0.70	0.55	0.53	6033		
weighted avg	0.73	0.76	0.69	6033		
_						

Рис. 32. Показники якості для алгоритму LogisticRegression

Беручи до розсуду графік, оцінки та результати показників якості можна виокремити три алгоритми: SVC, LinearDiscriminantAnalysis та LogisticRegression. Проте, судячи з графіку, можна сказати, що найкращим буде SVC.

Завдання 2.5. Класифікація даних лінійним класифікатором Ridge.

```
ort <mark>seaborn</mark> as sns
 import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from io import BytesIO
iris = load iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
clf = RidgeClassifier(tol=1e-2, solver="sag")
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print('Accuracy:', np.round(metrics.accuracy_score(y_test, y_pred), 4))
print('Precision:', np.round(metrics.precision_score(y_test, y_pred, average='weighted'), 4))
print('Recall:', np.round(metrics.recall_score(y_test, y_pred, average='weighted'), 4))
print('F1 Score:', np.round(metrics.f1_score(y_test, y_pred, average='weighted'), 4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test, y_pred), 4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test, y_pred), 4))
print('\t\tClassification Report:\n', metrics.classification_report(y_pred, y_test))
mat = confusion_matrix(y_test, y_pred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.savefig("Confusion.jpg")
 = BytesIO()
plt.savefig(f, format="svg")
```

Рис. 33. Код програми

		Хіміч В.О.			
		Пулеко І.В.			
Змн.	Арк.	№ докум.	Підпис	Дата	

Accuracy: 0.7556 Precision: 0.8333 Recall: 0.7556 F1 Score: 0.7503 Cohen Kappa Score: 0.6431 Matthews Corrcoef: 0.6831						
	Classifica	ation Repo	rt:			
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	16		
1	0.44	0.89	0.59	9		
2	0.91	0.50	0.65	20		
accuracy			0.76	45		
macro avg	0.78	0.80	0.75	45		
weighted avg	0.85	0.76	0.76	45		

Рис. 34. Результат виконання програми

Опишіть які налаштування класифікатора Ridge тут використані та що вони позначають.

Перший параметр tol позначає точність рішення в цьому випадку це 1 е-2.

Другий параметр solver метод, який використовується у обчислювальних процесах, встановлений як 'sag' – 'Stochastic Average Gradient'.

Опишіть які показники якості використовуються та їх отримані результати. Вставте у звіт та поясніть зображення Confusion.jpg

Були обраховані значення акуратності, точності, повноти та F-міра (рис. 34).

Рис. 35 – Confusion.jpg

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

На цьому зображенні показано скільки разів передбачений результат співпадав з реальним. Так, 16 разів перебачено було значення 0, яке ε правдивим. Жодного разу при передбаченому 0 не було виявленого хибного результату. При передбаченому результаті 1 виявлено одну помилку. При передбаченому результаті 2 половина результатів ε правдивими, а половина — хибними.

Опишіть, що таке коефіцієнт Коена Каппа та коефіцієнт кореляції Метьюза. Що вони тут розраховують та що показують.

Коефіцієнт Коена Каппа — статистика, яка показує коефіцієнт зменшення помилок між класифікацією та випадковою класифікацією. У цьому випадку маємо значення 0,6431 > 0,5, що означає більш-менш задовільну згоду між коефіцієнтами.

Коефіцієнт кореляції Метьюза — міра якості моно- та мультикласових класифікацій. Отримане значення 0,6831, що означає, що класифікатор близький до правильного результату.

Висновок: в ході виконання лабораторної роботи було досліджено різні методи класифікації даних та навчено їх порівнювати за допомогою мови програмування Python.

GitHub

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата