

2019年「大学物理 2」 水州をチ科が大学期末试题 🥒

任课教师: 大学物理教学团队

课程编号: A0715012 解析制作: 未央物理讲师 Axia

1. 选择题 (每题 3 分, 共 27 分)

考试时间: 2020年2月20日

☑ 题目 1

一质量为m的滑块,两边分别与劲度系数为 k_1 和 k_2 的轻弹簧联接,两弹簧的另外两端分别固定在墙上. 滑块m可在光滑的水平面上滑动,O 点为系统平衡位置. 将滑块m 向右移动到 x_0 , 自静止释放, 并从释放时开始计时. 取 水平向右为正方向,则其振动方程为

A.
$$x_0 \cos \sqrt{\frac{k_1 + k_2}{m}}$$

B.
$$x_0 \cos \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t$$

$$C. \ x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t + \pi$$

A.
$$x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t$$
 B. $x_0 \cos \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t$ C. $x_0 \cos \sqrt{\frac{k_1 + k_2}{m}} t + \pi$ D. $x_0 \cos \left[\sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}} t + \pi \right]$

▶ 题目 2

●平面简谐波

图为沿x轴负方向传播的平面简谐波在t=0时刻的波形。若波的表达式 以余弦函数表示,则O点处质点振动的初相为

B.
$$\frac{1}{2}\pi$$

B.
$$\frac{1}{2}\pi$$
 C. π D. $\frac{3}{2}\pi$

驻波

▶ 题目 3

在波长为λ的驻波中,两个相邻波腹之间的距离为

A.
$$\frac{\lambda}{4}$$

B.
$$\frac{\lambda}{2}$$

C.
$$\frac{3\lambda}{4}$$

D. λ

☑ 题目 4

→ 弗琅禾费衍射

一束波长为 λ 的平行单色光垂直入射到一单缝AB上,装置如图.在屏幕D上形成衍射图样,如果 P 是一级暗纹所在的位置,则 \overline{BC} 的长度为

Β. λ

C. $\frac{3\lambda}{2}$

D. 2λ

☑ 题目 5

● 光的偏振

使一光强为 I_0 的平面偏振光先后通过两个偏振片 P_1 和 P_2 . P_1 和 P_2 的偏振化方向与原入射光光矢量振动方向的 夹角分别是 α 和 90°,则通过这两个偏振片后的光强 I 是

- A. $\frac{1}{2}I_0\cos^2\alpha$
- B. 0

- C. $\frac{1}{4}I_0\sin^2(2\alpha)$
- D. $\frac{1}{4}I_0\sin^2\alpha$

☑ 答题区域

☑ 题目 6

相对论基本原理

有下列几种说法

- (1) 所有惯性系对物理基本规律都是等价的
- (2) 在真空中光度与光的频率、光源的运动状态无关
- (3) 在任何惯性系中, 光在真空中沿任何方向的传播速率都相同

其中说法正确的是

A. (1)(2)

B. (1)(3)

C. (2)(3)

D. (1)(2)(3)

☑ 题目 7

▶尺缩效应 1

一宇航员要到离地球为5光年的星球. 如果宇航员希望把路程缩短为3光年,则他所乘的火箭相对于地球的速度应

A. $\frac{1}{2}c$

B. $\frac{3}{5}c$

C. $\frac{4}{5}c$

☑ 答题区域

☑ 题目 8

四个量子数

在原子的 L 壳层中,电子可能具有的四个量子数 (n,l,m_l,m_s) 是

- i. $(2,0,1,\frac{1}{2})$ ii. $(2,1,0,-\frac{1}{2})$ iii. $(2,1,1,\frac{1}{2})$ iv. $(2,1,-1,-\frac{1}{2})$
- A. 只有 i, ii 是正确的 B. 只有 ii, iii 是正确的 C. 只有 ii, iii, iv 是正确的
- D. 全部是正确的

☑ 答题区域

☑ 题目 9

→ 光电效应 1

以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,然后保持光的频率不变,增大照射 光的强度,测出其光电流曲线在图中用虚线表示.满足题意的图是

2. 填空题 (共 21 分)

☑ 题目 10 (本题 3 分)

● 弹簧振子

一物块悬挂在弹簧下方做简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的___(设平衡位置处势能为零). 当这物块在平衡位置时,弹簧的长度比原长长 Δl ,这一振动系统的周期为____.

☑ 题目 11 (本题 3 分)

₩ 驻波

设入射波的表达式为 $y_1 = A\cos\left[2\pi\left(\nu t + \frac{x}{\lambda}\right) + \pi\right]$,波在 x = 0 处发生反射,反射点为一固定端,则入射波和反射波合成的驻波的波腹位置所在处的坐标为

☑ 题目 12 (本题 3 分)

▶ 光程和光程差

如图所示,两缝 S_1 和 S_2 之间的距离为 d,媒质的折射率为 n=1,平行 单色光斜入射到双缝上,入射角为 θ 则屏幕上 P 处,两相干光的光程差 为_______.

☑ 题目 13 (本题 3分)

▶起偏角

一束自然光入射到折射率分别为 n_1 和 n_2 的两种介质的交界面上,发生反射和折射. 已知反射光是完全偏振光,那么折射角 r 的值为

☑ 题目 14 (本题 3 分)

→ 钟慢效应

 π^+ 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 $2.6\times 10^{-8}{
m s}$,如果它相对于实验室以 0.8c 的速率运动,那么实验室坐标系中测得的 π^+ 介子的寿命是______.

☑ 题目 15 (本题 3 分)

●相对论能动量关系

设电子静止质量为 m_e ,将一个电子从静止加速到速率为0.6c,需做功

☑ 题目 16 (本题 3 分)

→ 売层结构

多电子原子中,电子的排列遵循______原理和____原理.

3. 计算题 (共 52 分)

☑ 题目 17 (本题 6 分)

● 简谐振动

一简谐振动的振动曲线如图所示, 求振动方程.

☑ 答题区域

☑ 题目 18 (本题 6 分)

→ 平面简谐波的波函数

如图所示,一简谐波向 x 轴正向传播,波速 $u=500 \mathrm{m/s},\ x_0=1 \mathrm{m}$ 处 P 点的振动方程为 $y=0.03\cos\left(500\pi t-\frac{\pi}{2}\right)$ (SI).

- 1. 按图所示坐标系,写出相应的波的表达式.
- 2. 在图上画出 t=0 时刻的波形曲线.

☑ 答题区域

☑ 题目 19 (本题 5 分)

→ 劈尖干涉

用波长为 $\lambda = 500$ nm 的单色光垂直照射折射率 n = 1.33 的劈尖膜观察反射光的等厚干涉. 从劈尖膜的棱算起,第五条明纹中心对应的膜厚是多少.

☑ 答题区域

☑ 题目 20 (本题 10 分)

➡弗琅禾费衍射

- 1. 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长, $\lambda_1 = 400 \text{nm} \ \lambda_2 = 760 \text{nm}$. 已知单缝宽度 $a = 1.0 \times 10^{-2} \text{cm}$,透镜焦距 f = 50 cm. 求两种光第一级衍射明纹中心之间的距离.
- 2. 若用光栅常数 $d = 1.0 \times 10^{-3}$ cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.

✓ 答题区域

☑ 题目 21 (本题 8 分)

→ 光的偏振

将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为,一束光强为 I_0 的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成 30° 角.

- 1. 求透过每个偏振片后的光束强度.
- 2. 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.

☑ 答题区域

☑ 题目 22 (本题 6 分)

▶相对论能动量关系

- 一电子(静质量 $m_e = 9.11 \times 10^{-31} \text{kg}$)以 0.99c 的速率运动,试求
- 1. 电子的总能量.
- 2. 电子的经典力学的动能与相对论动能之比.

☑ 题目 23 (本题 6 分)

▶ 光电效应

☑ 题目 24 (本题 5 分)

光电管的阴极用逸出功 A = 2.2eV 的金属制成,今用一单色光照射此光电管,阴极发射出光电子,测得遏止电势差为 $|U_a| = 5.0eV$. 试求

- 1. 光电管的阴极金属的光电效应红限波长.
- 2. 入射光波长.

无限深势阱中运动粒子波函数为 $\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$,求发现粒子的概率密度为最大的位置 $(0 \le x \le a)$.

☑ 答题区域