In [25]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [26]:

```
data = pd.read_csv("EuropeanSales.csv")
```

In [27]:

```
data1 = data.drop(["Country"],axis=1)
```

In [29]:

```
data1.plot(kind='box',figsize=(15,10),subplots=True,layout=(3,3))
plt.show()
```


In [30]:

```
plt.figure(figsize=(20,20))
p=sns.heatmap(data1.corr(), annot=True,cmap='RdYlGn',square=True)
```


In [36]:

```
data2 = data.drop(["Country", "SalesPerCapita", "SalesPerCapita", "EducationSpending"], axi
s=1)
```

In [40]:

```
X = data2.drop('ComputerSales',axis=1)
y = data2['ComputerSales']
xc = st.add_constant(X)
lm = st.OLS(y,xc).fit()
```

C:\Users\User\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

In [41]:

```
lm.summary()
```

Out[41]:

OLS Regression Results

Dep. Variable:	ComputerSales	R-squared:	0.745
Model:	OLS	Adj. R-squared:	0.700
Method:	Least Squares	F-statistic:	16.53
Date:	Mon, 24 Feb 2020	Prob (F-statistic):	2.75e-05
Time:	22:14:47	Log-Likelihood:	-179.25
No. Observations:	21	AIC:	366.5
Df Residuals:	17	BIC:	370.7
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-1765.3933	1442.889	-1.224	0.238	-4809.623	1278.836
Population	80.7945	12.381	6.526	0.000	54.673	106.916
GDPperHead	44.7542	18.995	2.356	0.031	4.678	84.830
UnemploymentRate	54.8559	117.952	0.465	0.648	-194.000	303.712

 Omnibus:
 23.114
 Durbin-Watson:
 2.135

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 41.691

 Skew:
 1.783
 Prob(JB):
 8.85e-10

 Kurtosis:
 8.910
 Cond. No.
 242.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [42]:

```
data3 = data.drop(["Country","ComputerSales","UnemploymentRate","Population"],axis=1)
```

In [43]:

```
X = data3.drop('SalesPerCapita',axis=1)
y = data3['SalesPerCapita']
xc = st.add_constant(X)
lm = st.OLS(y,xc).fit()
```

In [44]:

```
lm.summary()
```

Out[44]:

OLS Regression Results

Dep. Variable:	SalesPerCapita	R-squared:	0.514
Model:	OLS	Adj. R-squared:	0.460
Method:	Least Squares	F-statistic:	9.522
Date:	Mon, 24 Feb 2020	Prob (F-statistic):	0.00151
Time:	22:17:42	Log-Likelihood:	-113.46
No. Observations:	21	AIC:	232.9
Df Residuals:	18	BIC:	236.0
Df Model:	2		

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 -66.5294
 54.849
 -1.213
 0.241
 -181.762
 48.703

 GDPperHead
 1.9555
 0.861
 2.272
 0.036
 0.147
 3.764

 EducationSpending
 21.1470
 12.645
 1.672
 0.112
 -5.418
 47.712

 Omnibus:
 31.301
 Durbin-Watson:
 2.671

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 68.425

 Skew:
 2.494
 Prob(JB):
 1.39e-15

 Kurtosis:
 10.302
 Cond. No.
 183.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: