作業八:UART 實驗

資工三乙 陳奕帆 406262199

資工三乙 劉品萱 406262216

繳交日期:

Q1:何謂 UART?其功能為何?請解釋串列傳輸資料格式,何謂 Baud Rate? UART (Universal Asynchronous Receiver/Transmitter)是一種非同收發傳輸器,將資料由串列傳輸與平行傳輸間作傳輸轉換。

Q2:資料傳輸有分串列(serial) 與平行(parallel),請解釋。

串列傳輸為 1 個 bit 接著 1 個 bit 的傳輸資料。而平行則是一次傳輸多個位元,也因此,平行傳輸容易因為線路因素影響造成資料錯誤。而序列傳輸則不容易漏失資料。

Q3:何謂 Simplex 傳輸?何謂 Half-Duplex 傳輸?何謂 Full-Duplex 傳輸? Simplex 傳輸是指只能單向傳輸的通訊頻道。而傳送資料的方向可調整,其又分為 Half-Duplex 與 Full-Duplex。

Half-Duplex(半雙工):允許兩台設備之間的雙向資料傳輸(接收、傳送),但不能同時進行,因此同一時間只允許一設備傳送資料,若另外一方要傳資料,需等待傳送資料的那一方設備傳送完成之後才能。

Full-Duplex(全雙工):允許兩台設備間同時進行雙向傳輸,是另用兩個反向的 Simplex(單工通訊)來達成

Q4:WT58F2C8/WT58F2C9 32-bit Microcontroller 之 UART0~UART3 對應的記憶體位址範圍。

UART0 → address range 0x0020_3000 ~ 0x0020_33FF

UART1 → address range 0x0020_B000 ~ 0x0020_B3FF

UART2 → address range 0x0020_3400 ~ 0x0020_37FF

UART3 → address range 0x0020_B400 ~ 0x0020_B7FF

Q5:WT58F2C8/WT58F2C9UART 之 RXD 與 TXD 位元對應哪個 GPIO port 的那個位元?

RXD 與 TXD 對應的為 GPIO Port C 的第 9、8 個位元

Q6:簡述 WT58F2C8/WT58F2C9UART 之暫存器(registers)功能。 Hint: 3 Control Registers (CR), 1 Status Register (SR), 1 Transmit Data Register (TDR), 1 Receive Data Register (RDR), 1 Baud Rate Register(BRR)

Control Registers_1(CR)

第 17 位	控制 UART enable
第 15 位	Transmitter enable
第 14 位	RE Receiver enable
第 13 位	Over sampling mode
第 12 位	Word length
第 11 位	DMA enable transmitter
第 10 位	DMA enable receiver
第 9 位	Receiver wakeup
第8位	Wakeup method
第7位	Address of the UART node
第 2 位	Parity control enable
第1位	Parity selection
第0位	STOP

Control Registers_2(CR)

第8位	IDLE interrupt enable
第7位	BD interrupt enable
第 6 位	TXE interrupt enable
第 5 位	Transmission complete interrupt enable
第 4 位	RXNE interrupt enable
第 3 位	Error Interrupt enable
第 0 位	PE interrupt enable

Control Registers_3(CR)

第 14 位	IrDA mode enable
第 13 位	Half-duplex selection
第 12 位	Synchronous mode enable
第 11 位	Clock polarity
第 10 位	Clock phase
第9位	Last bit clock pulse

Status Register (SR)

第8位	IDLE line detected
第7位	BD Break Detect
第 6 位	Transmit data register empty
第 5 位	USART: Transmission complete
第4位	USART: Read data register not empty

Transmit Data Register (TDR)

第8位	USART : Transmit USART Data value
第7位	USART : Transmit USART Data value.
第8位	USART : Transmit USART Data value
第 7~6 位	USART: Transmission complete
第 5~0 位	USART: Read data register not empty

Receive Data Register (RDR)

第 8~0 位	Receive Data value
---------	--------------------

Baud Rate Register(BRR)

第 15~4 位	Mantissa of Baud Rate Generator
第 3~0 位	Fraction of Baud Rate Generator

Q7:Baud Rate 設定公式為何?Mantissa 設定公式為何?Fraction 設定公式為何?

Baud rate =
$$\frac{Pclk}{8*(2-OVER8)*(Mantissa + \frac{Franction}{16})}$$

依據上圖推算出,

Baud Rate = Pclk / 8 * (2 - over 8) * (Mantissa + Fraction/16)

Mantissa = Pclk / (8 * (2 - over8) * Baud Rate) - Fraction/16

Fraction = 16 (Pclk / (8 * (2 – over8) * Baud Rate) – Mantissa)

Q8:假設系統時脈(System Clock)為 24MHz 及 Baud Rate = 38400 bps · 請用 Q6 之公式 · 詳列計算過程並算出 Mantissa 與 Fraction 之值

因為 mantissa 為整數部分,fraction/16 為小數部分,故省略- Fraction/16 的部分。

Mantissa = 24000000 / (8 * (2-0) * 38400) = 39Fraction = 16 (24000000 / (8 * (2-0) * 38400) - 39) = 1