第十一單元 指數與對數的應用

(甲)對數表的介紹

(1)數的四則運算中,加、減法比乘、除法簡單,為了將乘除法運算化成加、減法的運算,德國數學家 Stifel(1487~1567)發現了等比數列與等差數列之間的關係,將乘除法運算化成加、減法的運算。後來瑞士人 Briggs(1552~1632),英國人 Napier(1550~1617)等人都先後發展出對數表。一般而言,以 10 為底的對數表一般稱為常用對數表,另有一種是以無理數 e=2.71828... 為底數的對數表,叫做自然對數表,這在高層次的數學中,有極其重要的理論價值。常用對數的使用中,常以符號 \log 來代替 \log_{10} 。

(2)對數如何將乘除化為加減?

例如:計算
$$\frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72}$$
的值。設 $x = \frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72}$,兩邊取對數,

得
$$\log x = \log \frac{3.67 \times 4.92 \times 7.25}{9.75 \times 8.72} = \log 3.67 + \log 4.92 + \log 7.25 - \log 9.75 - \log 8.72$$

經查對數表[見附錄]可知:

log3.67=0.5647 log4.92=0.6920 log7.25=0.8603

log9.75=0.9890 log8.72=0.9405 (這裡的=代表近似值)

所以 log x=0.1875, 再查對數表可知 0.1875 所對應的數是 1.54, 即 x=1.54。

- (3)如何查對數表:
- (a)以 10 為底的對數叫做常用對數⇒將以符號 log 來代替 log₁₀。
- (b)課本附錄中,列有從 1.00 到 9.99 間三位有效數字的實數的對數值。 常用對數表(近似值)摘錄部分

Ν	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989

(c) 表中的對數 $\log N$, 是以 10 為底數的常用對數, 其中真數 N 的範圍為

 $1 \le N < 10$ 。對十進位的數來說,採用"常用對數"比較方便。如果遇到其他底數的對數 (如 $\log_2 3$),可引用換底公式,將它表成常用對數

$$\log_2 3 = \frac{\log 3}{\log 2}$$
,再查"常用對數表",計算它的對數值。

(4)如何查對數表,求對數值?(以 log 1.34 為例來說明。)

查書末的"常用對數表",求出 log 1.34 的值 (近似值)。

(a) 從最左邊一行 (直行),N 欄底下找出 $13 \circ (代表 1.3)$ 再從最上面一列 (橫列),N 欄右側找到 $4 \circ (代表 0.04)$

N	0	1	2	3	4	5	6	7	8	9
10										
:										
13				→	1271					
:										

(b) 在 13 所在的横列與 4 所在的直行交會處找到數 1271 (代表 0.1271),則 $\log 1.34 \approx 0.1271$ 。 其他如:

 $\log 1.73 \approx 0.2380$, $\log 2.00 \approx 0.3010$

(c) 反查表法: 由對數值反求真數。

例:logA=0.1139,則 A=? logB=0.2878,則 B=?

(5)線性內差法

使用時機:

利用對數表來求一正數的對數值,或從對數值反過來求真數時,有時會碰到表上沒有所要的數值。

以 log1.346 為例來說明:由於 1.34<1.346<1.35,

先查出 log1.34=0.1271, log1.35=0.1303

想法:當 x 由 1.34 變為 1.35,增量為 0.01,

其對應的對數 y 從 0.1271 變到 0.1303,增量為 0.0032。現在我們想要知道的是, 當 x 從 1.34 變到 1.346 時,其對應的 y 從 0.1271 變為多少? 設 log1.346 比 log1.34 大 p, 由右圖中,

我們發覺 p 與 \overline{BC} 相差極微, 而ΔABC 與ΔADE 相似,

所以 $\frac{BC}{AB} = \frac{DE}{AD}$,如果視 \overline{BC} 為p的近似值,由前面

的比例式就可求得p的近似值(\overline{BC}):

$$\frac{\overline{BC}}{0.006} = \frac{0.0032}{0.01}$$
, $\overline{BC} = 0.0019$,即 p 的近似值 0.0019 ,

因此 log1.346=log1.34+p=0.1271+0.0019=0.1290, 我們將以上的方法稱為線性內插法。

[例題1] 數學教科書所附的對數表中,

log4.34=0.6375、log4.35=0.6385。根據log4.34

和 log4.35 的查表值以內插法求 log4.342,設所求的值為 p,則下列哪一個選 項是正確的?(2009指定甲)

$$(1)p = \frac{1}{2}(0.6375 + 0.6385)$$
 $(2)p = 0.2 \times 0.6375 + 0.8 \times 0.6385$ (3)

 $p=0.8\times0.6375+0.2\times0.6385$

(4)p=0.6375+0.002 (5)p=0.6385-0.002 \circ

(練習1) 利用對數表查出下列的對數值:

(1)log5.79 (2)log6.321 (3)log2.44

Ans: (1)0.7627 (2)0.8008 (3)0.3874

(練習2) 利用對數表求下列各小題的 A 值:

 $(1)\log A=0.5263$ $(2)\log A=0.6614$ Ans : (1)3.36 (2)4.585

(練習3) 已知 log7.42=0.8704,log7.41=0.8698,

試利用內插法求 log7.4142 之值。 Ans: 0.8701

(乙)科學記號與數字的估計

(1)科學記號的引入:

當我們面臨很大或很小的數目,如原子數目、恆星數目、人口數、原子間的距離,微觀世界的度量等等,這些數目通常並不是要求得很精確的數字,而是以科學記號 $a \times 10^n$ 的方式($1 \le a < 10$, n 為整數)來呈現,在這種表示法中,n 值最重要,它告訴我們這個數目的數量級,即大約有多大或多小;其次才是 a 值,a 表示在此等級中的相對大小。

每一個正數 x 寫成科學記號,即 $x=a\times10^n$,其中 n 為整數, $1\le a<10$ 。

例如: $490=4.9\times10^2$, $0.0049=4.9\times10^{-3}$,根據對數律 $\log xy = \log x + \log y$,可得

 $\log 490 = \log 4.9 + \log 10^2 = \log 4.9 + 2$ $\log 0.0049 = \log 4.9 + (-3) = \log 4.9 - 3$

由附錄查表 $\log 4.9 = 2.6902$,所以 $\log 490 = 2.6902$, $\log 0.0049 = -3 + 0.6920$ 因此透過科學記號的表示,只要我們得知 1 與 10 之間的對數值,就可以找出其他正數的對數值。

[例題2] 利用對數表並應用科學記號求出 A 的值:

 $(1)\log A = 0.9455$ $(2)\log A = 5.9455$ $(3)\log A = -3.0545$

Ans: (1)8.82 $(2)A=8.82\times10^5=882000$ $(3)A=8.82\times10^{-4}=0.000882$

[例題3] 利用對數表求

$$(1)\log\frac{5070000}{2} \qquad (2)\log\sqrt{0.00123}$$

(3)
$$\frac{\sqrt[4]{6.35} \times (0.6327)^3}{0.6370}$$
(小數點以下第四位)

Ans: $(1)6.4040(2)\frac{1}{2}(0.0899-3)$ (3) 0.6314

[**例題4**] 已知 log48.6=1.6866,log4870000=6.6875,利用線性內插法求 log0.4866 之值。 Ans: -0.3129

- (練習4) 試利用對數表查出 log8.5=____, 從而求出 log850=____, log0.0085=___。 Ans: 0.9294, 2.9294, -3+0.9294
- (練習5) 已知 $\log x$ =4.8156,試利用對數表求出 x=____,又 $\log y$ =-2.1844,則 y=____。 Ans:6.54·10⁴,0.00654
- (練習6) 已知 $\frac{x}{\log x}$ | 5.45 | 1.07 | 7.58 | 9.16 | 9.17 | $\frac{1}{\log x}$ | 0.7364 | 0.0294 | 0.8797 | 0.9619 | 0.9624 | $\frac{3}{75.8}$ | 求 $a \ge 5$ 以似值至小數點後第四位。Ans:0.9162

(練習7) 利用對數表求(8.72)^{2.11}的折似值。 Ans: 96.5

(2)首數與尾數的意義:

將正數 x 表為科學記號即 $x=a\times10^n$,($1\leq a<10$,n 為整數), 其中 n 代表 x 的位數,a 決定了數字 x 的內容。

 $\log x = \log(a \times 10^n) = n + \log a$, n 為整數 , $\log 1 \le \log a < \log 10 \Rightarrow 0 \le \log a < 1$ 整數 n 稱為**首數(characteristic)** , $\log a$ 稱為**尾數(mantissa)** , 即 $\log x =$ 首數+**尾數** 。

請注意:

因為a決定了數字x的內容,n代表x的位數。所以首數決定了位數,而尾數決定了數字內容。

註:首數(characteristic)與尾數(mantissa)這兩個詞是由 Henry Briggs 在 1624 年提出的,mantissa 這個字源自於伊特魯里亞語(Etruscan)的晚期拉丁文,是添加物的意思,是指家在一個量上、使這個量更趨近於意想中的一個小量。

logx=3.65 ⇒ 首數=3,尾數=0.65,logx=-2.65 ⇒ 首數=-3,尾數=0.35

請注意:logx=-2.65 時,因為 0≤尾數<1,因此尾數=0.35 而非-0.65。

 $\log x = \overline{2.8698} = -2 + 0.8698 \Rightarrow \text{ ign} = -2, \text{ kg} = 0.8698$

(3)首數如何決定位數?

已知 log2=0.3010, log3=0.4771, log7=0.8451

例如:

x=1000 是 4 位數 ⇒ logx=3,首數=3

x=0.001 小數點後第 3 位不為 0 \Rightarrow logx=-3, 首數=-3

例如:

x=30000 是 5 位數 , ⇒ logx=4.3010 , 首數=4

x=0.0003 小數點後第 4 位 ⇒ logx= -3.6990= -4+0.3010 首數= -4

用科學記號來看 $x=a\times 10^k$,

- ① 當首數=n>0 時,則 k=n 目 x 的整數位為(n+1)位。
- ② 當首數=-n<0時,則 k=-n且 x的小數部分自小數點後第 n 位開始不為 0。

(4)尾數如何決定x的數字內容:

常用對數:

例如:求 7100 的首位數字。

解: $\Leftrightarrow 7^{100}=a\cdot 10^n$, $\log 7^{100}=n+\log a=84.51$ $\Rightarrow n=84$, $\log a=0.51$

從 log2=0.3010, log3=0.4771, log7=0.8451 可知:

 $\begin{aligned} \log &4 = 2 \cdot \log 2 = 0.6020 \text{ , } \log 5 = 1 - \log 2 = 0.6990 \text{ , } \log 6 = \log 2 + \log 3 = 0.7781 \text{ , } \\ &\log 8 = 3 \cdot \log 2 = 0.9030 \text{ , } \log 9 = 2 \cdot \log 3 = 0.9542 \text{ . } \end{aligned}$

因為 log3=0.4771<loga<log4=0.6020⇒3<a<4⇒a=3...

因為 $\log 3 = 0.4771 < \log a < \log 4 = 0.0020 \Rightarrow 3 < a < 4 \Rightarrow a = 3 \dots$ 所以 7^{100} 的首位數字=3。

[**例題5**] 已知 log85=1.9294,則

(1)log8.5 的首數為______, 尾數為_____。Ans:0;0.9294 (2)log850 的首數為_____, 尾數為____。Ans:2;0.9294

[例題6]	設 $y=(\frac{2}{3})^{20}$,	則
-------	--------------------------	---	---

- (1)y 自小數點後第_____位,開始出現不為0的數字。
- (2)y 之小數點後第一個不為 0 的數字為____。Ans:(1)4 (2)3

[**例題7**] 設 $a=2^{26},b=3^{16}$ 且 $\log 2=0.3010$, $\log 3=0.4771$, 則(1)ab 是____位數,(2)a+b 為____位數。 Ans: 16,9

- (練習8) 已知 log 3.98 = 0.5999, 求下列各常用對數的首數與尾數:
 - $(1) \log (39800)^2$ $(2) \log (3980)^{-3}$

Ans:(1) 首數為 9, 尾數為 0.1998 (2) 首數為-11, 尾數為 0.2003

- (練習9) 下列對數,首數為-3的是:
 - (A) $\log 0.0023$ (B) $\log 0.00023$ (C) $\log \frac{1}{123}$ (D) $\log a = -3.4771$
 - (E) $\log b = -2.9931 \circ \text{Ans} : (A)(C)(E)$
- (練習10) 下列對數,選出尾數相同者:
 - (A) $\log 327$ (B) $\log 723$ (C) $\log \frac{1}{327}$ (D) $\log 0.0327$ (E) $\log 327000$ ° Ans: (A)(D)(E)
- (練習11) 目前所知最大質數為 2⁸⁵⁹⁴³³-1,利用對數表求出此質數的位數,最高位 的數字,次高位的數字。Ans:258690,2,1
- (練習12) 設 $x = \frac{7^{100} \times 3^{20}}{2^{300}}$,則:(1) x 的整數部分位數為_____。 (2) x 的首位數字為_____。Ans: (1) 4(2) 5
- (練習13) $25^{16}+16^{25}$ 是 m 位正整數且首位數字為 k,則序對(m,k)=____。 Ans: (31, 1)

(練習14) 設 $A = \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + ... + (\frac{1}{2})^{100}$,若將 A 表成小數,則在小數點後第____位 開始出現部為 9 的數字。 Ans:31

(練習15) 設 100 < x < 1000,若 $\log x$ 與 $\log \frac{1}{x}$ 的尾數相同,則 $x = \underline{\hspace{1cm}}$ 。Ans: $100\sqrt{10}$

(丙)指數與對數的應用

- (1)利率問題:
- (2)生長函數:

形如 $f(x)=c\cdot a^x$ 的函數稱為**生長函數**,其中 a 是生長因子,c 是 f(x)在 x=0 的初始值。

(3)Weber–Fechner Law:

設 E 代表某種刺激量, M 代表相對應的感受度,刺激量以等比增加,而相對應的感受度以等差增加,即量要增加到相當程度時,質才會感到有顯著的增加。

 $E=ar^{M}$

參考資料:

- (1)從生活中學數學(曹亮吉著,天下文化出版)
- (2)http://en.wikipedia.org/wiki/Weber%E2%80%93Fechner_law

「例題1] 等比級數的和:

設 $\{a_n\}$ 為等比數列,公比為r,試用 a_1 與r來表示 $S_n=a_1+a_2+...+a_n$ 。

[**例題2**] 古時候有一個國王的女兒要出嫁時,國王問女兒要甚麼物品當嫁妝,女兒說:「只要自今天起,第一天給我 1 元,第二天 2 元,第三天 4 元,……,而後每一天所給的錢是前一天所給的 2 倍,且只要給 88 天就好了。」國王一口就答應,但後來卻付不出來了,你知道為什麼嗎?

設國王給女兒 88 天錢的總數是 A 元,請問:

- (1) A 是幾位正整數?
- (2) A 的最左邊一位數的數字是多少? Ans: (1)27 (2)3

[**例題3**] 假設目前的定期儲蓄存款的年利率為 4.8%,每二個月為一期,複利計算,今存進 10000 元,言明定期 5 年,試利用對數表,求期滿之本利和。Ans: 12560元

x	1.048	1.024	1.016	1.012	1.008	1.006	1.004	1.002	1.001
$\log x$	0.0203	0.0103	0.0068	0.0051	0.0033	0.0025	0.0017	0.0008	0.0004
$\boldsymbol{\mathcal{X}}$	1.236	1.267	1.265	1.256	1.259	1.247	1.261	1.250	1.253
$\log x$	0.1015	0.1030	0.1020	0.0990	0.1000	0.0960	0.1007	0.0969	0.0979

[例題4] 假設放射性元素鐳每經 1 年質量只剩下原質量的 a 倍,其中 a 為一常數,已知鐳的半衰期(即衰變到質量一半所需的時間)為 1600 年,求鐳衰變到原質量的 $\frac{3}{4}$ 時所需的時間。 Ans:約 664 年

西元前二世紀,希臘天文學家希巴爾卡斯(Hipparchus)根據目視,把恆星的亮度分成 6 等級,最亮的為 1 等星,最弱的為 6 等星。天文學家知道了如何測量亮度之後,發現希巴爾卡斯的 1 等星大約是 6 等星的 100 倍。於是就以比例 $\sqrt[3]{100}\approx2.5$ 來規定相鄰兩星等之間的亮度比:即 5 等星的亮度為 6 等星亮度的 2.5 倍,4 等星的亮度為 5 等星亮度的 2.5 倍,以此類推,用比例 $\sqrt[3]{100}\approx2.5$ 可以類推到肉眼看不到的 7 等星、8 等星,同樣的也可以從 1 等星推到 0 等星、負 1 等星等等,從地球上看到天空中最亮的星星為太陽,它的亮度等級為—26.8。

星等其它資料請參閱https://zh.wikipedia.org/wiki/%E6%98%9F%E7%AD%89

[**例題5**] 夜空中群星閃爍,明亮有別。為定量描述星星亮度,天文學家創用「星等」的概念,把星星分成六個等級,一等星最亮,六等星最暗,一等星的星光強度大約是六等星的 100 倍。「星等」的定義可用對數方法較精確地表示為: $m-m_0=-2.5\log\frac{F}{F_0}$,其中m 和 m_0 是星等,F 和 F_0 是星光强度。因星光視亮度不僅與恆星本體的輻射光度有關,距離遠近也有重大影響,目視星等m 外,天文學家又制定絕對星等M,定義: $M=m+5-5\log d$,

以明確描述恆星本體的實際光亮度,其中d為距離。

- (1)已知金星最亮時目視星等為-4.4,星空中最亮的恆星天狼星的目視星等為-1.45,問:以視星光強度言,金星約為天狼星的幾倍?(取整數倍)
- (2)已知牛郎星的目視星等為 0.77,絕對星等為 2.2,織女星的目視星等為 0.03,絕對星等為 0.5,又知牛郎星距離地球約 16 光年,問:織女星距離 地球約為多少光年?(取整數。已知 $10^{0.192}$ = 1.556, $10^{0.18}$ = 1.5136)

Ans: (1)15 (2)25 光年

[解法]:

(1)設 F_1 、 F_2 分別是金星、天狼星的視星光強度,則

$$\begin{split} -4.4 - m_0 &= -2.5 \log \frac{F_1}{F_0} , -1.45 - m_0 = -2.5 \log \frac{F_2}{F_0} \\ \Rightarrow & -2.95 = -2.5 \log \frac{F_1}{F_0} - 2.5 \log \frac{F_2}{F_0} = -2.5 \log \frac{F_1}{F_2} \\ \Rightarrow & \log \frac{F_1}{F_2} = 1.18 \Rightarrow \frac{F_1}{F_2} = 10^{1.18} = 10 \times 10^{0.18} = 15.136 , \end{split}$$

故金星之星光強度約為天狼星之星光強度的15倍。

(2)設 $d_1 \cdot d_2$ 分別是牛郎星、織女星與地球的距離,

則
$$2.2 = 0.77 + 5 - 5 \log d_1$$
 , $0.5 = 0.03 + 5 - 5 \log d_2$

$$\Rightarrow 1.7 = 0.74 - 5(\log d_1 - \log d_2) \Rightarrow \log \frac{d_2}{d_1} = \frac{1.7 - 0.74}{5} = 0.192$$

$$\Rightarrow \frac{d_2}{d_1} = 10^{0.192}$$
, $\therefore d_1 = 16$, $\therefore d_2 = 16 \times 10^{0.192} = 24.896$,

故織女星與地球的距離約為25光年。

[**例題6**] 經過長期的追蹤調查,某國家公園 10 年前有 10 隻熊,這 10 年熊的數量的數學式子為 $N(t) = \frac{100}{1+9\cdot 3^{-0.1(t+10)}}$,即 $t(0 \le t \le 10)$ 年前,熊的數量約有 N(-t)隻。假設未來熊的數量仍按照這數學式子成長(即 t 年後,熊的數量約有 N(t)隻)。 (1)現在熊的數量是幾隻?(2)再過幾年,熊的數量才會達到 50 隻? Ans:(1)25 (2)10

(練習16) 前行政院長提出知識經濟,喊出 10 年內要讓台灣 double(加倍),一般 小市民希望第 11 年開始的薪水加倍。如果每年調薪 a%,其中 a 為整 數,欲達成小市民的希望,那麼 a 的最小值為_____. (參考數值:log2=0.3010) (91 指定考科乙) Ans: 8

x	1	2	3 ~11-1	04	5	6	7	8	9
log(1+0.01x)	0.0043	0.0086	0.0128	0.0170	0.0212	0.0253	0.0294	0.0334	0.0374

- (練習17) 某甲在股票市場裡買進賣出頻繁。假設每星期結算都損失該星期初資金的 1%,而 n 個星期結束後資金損失已經超過原始資金的一半,則 n 的最小值為_____。Ans: 69 (89 自然) (已知 $\log_{10}2=0.3010$, $\log_{10}3=0.4771$, $\log_{10}11=1.0414$)
- (練習18) 承例題 11,已知天狼星的目視星等為 -1.45,絕對星等為 1.43,又絕對星等 $M=m+5-5\log d$ 定義中的距離 d 之單位為天文學上常用的距離單位「秒差距」,1 秒差距 = 3.26 光年,問:天狼星與地球的距離約為多少光年?(求至一位小數,已知 $10^{0.424}$ = 2.655) Ans:8.7 光年
- (練習19) 阿財有錢 20 萬元,存入一家銀行,已知年利率為 7%,每年複利一次,若阿財欲使 $n(n \in \mathbb{N})$ 年後的本利和達到 30 萬元以上,則 n 的最小值為 (A)4 (B)5 (C)6 (D)7 (E)8 (log1.07=0.0294, log1.5=0.1761)Ans: (C)
- (練習20) 某人於十年間,每年年初須付保險費 1200元,若依 4%複利計算, 十年後,此項保險費總數為_____(log1.04=0.0170,log1.479=0.170)。 Ans: 14944.8
- (練習21) 已知碳 14 的半衰期約為 5770 年,試求碳 14 衰變至原質量之 $\frac{2}{3}$ 所需的時間。 Ans:約 3376 年

綜合練習

- (1) 利用對數,求下列方程式中 *x* 的值: (a)log*x*=2.4823 (b)log*x*=4.7147 (c)log*x*=5.6487-8
- (2) 利用對數表求下列各式的值:

(a)
$$\sqrt[3]{\frac{9.721 \times 10.73}{62.9}}$$
 (b) $\frac{0.372 \times (0.00587)^3}{\sqrt[3]{0.273}}$ (c) $(2.71)^{12.31}$

- (3) 己知 $\log x$ 之尾數與 $\log 0.1234$ 之尾數相同, $\log x$ 之首數與 $\log 5678$ 之首數相同,則 x= (A)0.1234 (B)0.5678 (C)5678 (D)1234 (E)無法判斷。
- (4) 方程式 4^x = 100×3^x 在下列那兩個連續整數間有實數解?(log2=0.3010,log3=0.4771) (A)13,14 (B)14,15 (C)15,16 (D)16,17 (E)17,18
- (5) (a)已知 47^{100} 是 168 位數,則 47^{17} 是幾位數? (b) $\frac{1}{47^{17}}$ 在小數點後第幾位數字開始不為 0?
- (6) 設 n 為自然數,數列 $< a_n >$ 定義成 $a_n = (1.25)^n$,問此數列中整數部分為三位數者計有幾項?
- (7) 等比數列< a_n >中, a_1 =1, a_4 =2 $-\sqrt{5}$, a_{n+2} = a_{n+1} + a_n ,n≥1,則< a_n >的公比為?
- (8) 若 $A=1+2+2^2+2^3+...+2^{73}$,則 (a)A 為幾位數? (b)A 的最高位數為多少? (c)A 的個位數為何?
- (9) 若 I 為地震時所散發出來的相對能量,則芮氏規模 r 定義為 log I,即 r=log I。 去年 921 大地震時,最大地震芮氏規模為 7.3,而 1995 年日本神戶大地震時, 最大地震芮氏規模為 7.2。試問 921 大地震所釋放的能量為日本神戶大地震的 幾倍?(已知 log1.259=0.1,log7.2=0.8573,log7.3=0.8633;答案請計算至小數 點後第三位)
- (10) 在 1999 年 6 月 1 日數學家利用超級電腦驗證出 $2^{6972593}$ -1是一個質數。若想要列印出此質數至少需要多少張 A4 紙?假定每張 A4 紙,可列印出 3000 個數字。在下列選項中,選出最接近的張數。 [$\log_{10} 2 \approx 0.3010$] (A) 50 (B) 100(C) 200 (D) 500(E) 700 (89 學科)
- (11) 設年利率為 12.5%, 若依複利計算,則最少要_____年(取整數年數)本利和 才會超過本金的 2 倍。 (86 大學聯考自然組)

- (12) 設有一張很大很大的白報紙,厚 1/100 公分,對摺一次,厚度加倍,再對摺一次厚度又加倍,如此繼續下去,則至少要對摺幾次,其厚度才達地球到太陽的距離?(地球到太陽的距離約為 14549 萬公里,而 log1.4549≒0.1628)
- (14) 根據統計資料,在 A 小鎮當某件訊息發布後,t 小時內聽到該訊息的人口是全鎮人口的 $100(1-2^{-kt})$ %,其中 k 是某個大於 0 的常數。今有某訊息假設在發布後 3 小時之內已經有 70%的人口聽到該訊息。又設最快要 T 小時後,有 99%的人口已聽到該訊息,則 T 最接近下列哪一個選項? (1) 5 小時 (2) $7\frac{1}{2}$ 小時 (3) 9 小時 (4) $11\frac{1}{2}$ 小時 (5) 13 小時 (92 學測)
- (15) 在養分充足的條件下,細菌的數量會以指數函數的方式成長,假設細菌 A 的數量每兩個小時可以成長為兩倍,細菌 B 的數量每三個小時可以成長為三倍。若養分充足且一開始兩種細菌的數量相等,則大約幾小時後細菌 B 的數量除以細菌 A 的數量最接近 10 ? (2007 學科) (1)24 小時 (2)48 小時 (3)69 小時 (4)96 小時 (5)117 小時。
- (16) 設 $a_1,a_2,a_3,....,a_{10}$ 是一等比數列,其首項 $a_1>1$ 且公比 r>1。坐標平面上有一質點 M 自原點(0,0)出發,依以下規則連續移動十次:第一次移動往右 $\log a_1$ 單位,第二次移動向上 $\log a_2$ 單位,第三次移動往右 $\log a_3$ 單位,第四次移動向上 $\log a_4$ 單位,依此類推直到第十次;即第 2k-1 次的移動是往右 $\log a_{2k-1}$ 單位,接著第 2k 次的移動是向上 $\log a_{2k}$ 單位。已知經過這十次的移動後,該質點 M 停在點 $(5+5\log 2,5+\frac{15}{2}\log 2)$ 的位置上,試問首項 a_1 與公比 r 組成的序對 (a_1,r) 為以下哪一選項? (2007 指定甲) $(1)(\sqrt{2},\sqrt{2})$ $(2)(2\sqrt{2},\sqrt{5})$ $(3)(2,\sqrt{2})$ $(4)(5,\sqrt{5})$ $(5)(5,\sqrt{2})$
- (17) 統計學家<u>克利夫蘭</u>對人體的眼睛詳細研究後發現:我們的眼睛看到圖形面積的大小與此圖形實面積的 0.7 次方成正比。例如:大圖形是小圖形的 3 倍,眼睛感覺到的只有 $3^{0.7}$ (約 2.16) 倍。觀察某個國家地圖,感覺全國面積約為某縣面積的 10 倍,試問這個國家的實際面積大約是該縣面積的幾倍? (已知 $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, $\log 7 \approx 0.8451$) (1) 18 倍 (2) 21 倍 (3) 24 倍 (4) 27 倍 (5) 36 倍(93 指定考科乙)
- (18) 聲音的強度是用每平方公尺多少瓦特(W/m^2)來衡量,一般人能感覺出聲音的最小強度為 $I_0=10^{-12}(W/m^2)$;當測得的聲音強度為 $I(W/m^2)$ 時,所產生的噪音分貝數 d 為 $d(I)=10\cdot\log\frac{I}{I}$

- (a)一隻蚊子振動翅膀測得的聲音強度為 $10^{-12}(W/m^2)$,求其產生的噪音分貝數。 (b)汽車製造廠測試發現,某新車以每小時 60 公里速度行駛時,
 - 測得的聲音強度為 $10^{-4}(W/m^2)$,問此聲音強度產生的噪音為多少分貝?
- (c)棒球比賽場中,若一支瓦斯汽笛獨鳴,測得的噪音為70分貝,則百支瓦斯 汽笛同時同地合鳴,被測得的噪音大約為多少分貝? (93指定考科乙)
- (19) 經濟學上有所謂「72 規則」:意指當經濟年成長率維持在r%時,經濟規模實際達到兩倍所需要的最少時間約為 $\frac{72}{r}$ 年。試利用下表的數據,從選項中選出符合此規則的年成長率。

Х	1.03	1.04	1.06	1.08	1.09	2
$\log x$	0.0128	0.0170	0.0253	0.0334	0.0374	0.3010

- (A) 9% (B) 8% (C) 6% (D) 4% (E) 3%
 - (20) 濃度 8%的食鹽水 100 克,今從中取出 20 克再加入 20 克的純水混合,再從其中取出 20 克後,再加入 20 克的純水混合,如此繼續操作 n 次,欲使食鹽水的濃度低於 2%,求 n 的最小值。
 - (21) 某甲向銀行貸款 100 萬元,約定從次月開始每月還給銀行 1 萬元,依月利率 0.6% 複利計算,則某甲需要_____年就可還清。(答案以四捨五入計算成整數,而 log₁₀2=0.3010, log₁₀1.006=0.0026) (88 大學自)
 - (22) 某君於九十年初,在甲、乙、丙三銀行各存入十萬元,各存滿一年後,分別取 出。已知該年各銀行之月利率如下表,且全年十二個月皆依機動利率按月以複 利計息。

	甲銀行	乙銀行	丙銀行
1~4月	0.3%	0.3%	0.3%
5~8月	0.3%	0.4%	0.2%
9~12月	0.3%	0.2%	0.4%

假設存滿一年,某君在甲、乙、丙三家銀行存款的本利和分別為a、b、c元,請問下列哪些式子為真? (1) a>b (2)a>c (3)b>c (4)a=b=c. (91 指定甲)

- (23) 西元 1990 年,臺灣地區的人口數是 21×10^6 人(二千一百萬人),如果每年人口數平均成長率為 1.2%,那麽從 1990 年算起,x 年後臺灣地區的人口數表成 x 的函數 f(x)。(a)試求 f(x) (b)試估測西元 2000 年臺灣地區的人口數。 ((1.012) 10 =1.12669)
- (24) 某種傳染病的感染率之定義為 $I(t)=\frac{$ 在時間t時被感染過的人數 ,根據此理論 這城市的總人數

得知,感染率之值為 $I(t) = \frac{1}{1+a\cdot7^{-bt}}$,而當 $I(t) = \frac{1}{2}$ 的時間 t 是該傳染病的傳染高峰。若此種傳染病在某城市蔓延,剛開始(即 t=0 時),有 2%的人口被傳染;而 t=3 時,有 12.5%的人口被傳染。

(a)試求感染率I(t)中的常數 a 與 b 之值

- (b)當t為何時,是該傳染病的傳染高峰
- (c)當 t=12 時,該城市有多少比例的人口被傳染過該傳染病
- (25) 已知碳 14 的半衰期約為 5770 年,即假設碳 14 之原來質量為 m,衰變時間為 t, 則 $m(t)=m\cdot(\frac{1}{2})^{\frac{t}{5770}}$,求其衰變至原質量之 $\frac{2}{3}$ 所需的時間。
- (26) 設 *x*>0 , *y*>0 , 試證: log*x* 與 log*y* 之尾數相同 ⇔ *x*=*y*×10ⁿ (*n* 為某一個整數)
- (27) 設 $10 \le x \le 100$,且 $\log x^2$ 與 $\log \frac{1}{x}$ 之尾數相同,則 x=_____。

進階問題

- (28) 已知 $3.06=10^{0.4857}$, $30.7=10^{1.4871}$,而 $10^x=306.6$,求 x=?
- (29) 常用對數之首數為2的正整數共有幾個?
- (30) 設x 為實數,且 1 < x < 100,如果 $\log 3x$ 之尾數為 $\log x$ 之尾數的 3 倍,求x 的值。
- (31) 已知 7¹⁰⁰, 11¹⁰⁰之位數各為 85,105 利用此事實求 77²⁰的位數。
- (32) 設 1.6^n 之整數部分為 3 位數時,(n 為自然數),則 n=?

綜合練習解答

- **1.** (a)x = 303.6 (b) $x = 5.185 \times 10^{-4}$ (c) $x = 4.453 \times 10^{-3}$
- **2.** (a) 1.183 (b) 1.1596×10^{-7} (c) 2.118×10^{5}
- **3.** (D)
- **4.** D
- 5. (a)29 位數(b) 29 位
- **6.** 10
- 7. $\frac{1-\sqrt{5}}{2}$
- **8.** (a)23 位 (b)1 (c)3
- **9.** 1.259 倍
- **10.** (E)
- **11.** 6
- 12.51 次
- **13.** 10
- **14.** (4)
- **15.** (5)
- **16.** (5)
- **17.** (4)

[解法]:設實際倍數為t倍 $\Rightarrow t^{0.7} = 10$

取對數
$$0.7 \log t = 1 \Rightarrow t = \frac{1}{0.7} = 1.428 \cdots$$

 $\sqrt{\log 18} = \log 2 + 2\log 3 = 1.2552$, $\log 21 = \log 3 + \log 7 = 1.3222$,

$$\log 24 = 3\log 2 + \log 3 = 1.3801$$
, $\log 27 = 3\log 3 = 1.4313$,

$$\log 36 = 2(\log 2 + \log 3) = 1.5562$$
,故 t 最接近27。

18. (a)0 分貝 (b)80 分貝 (c)90 分貝

[解法]:

(a)
$$d(10^{-12}) = 10 \cdot \log \frac{10^{-12}}{10^{-12}} = 0$$
 (分貝)

(c)
$$70 = 10 \cdot \log \frac{I}{10^{-12}} \Rightarrow I = 10^{-5}$$

百支的強度 $I = 100 \cdot 10^{-5} = 10^{-3}$

故噪音=
$$d(10^{-3}) = 10 \cdot \log \frac{10^{-3}}{10^{-12}} = 10 \cdot \log 10^9 = 90$$
(分貝)

- **19.** (C)(D)(E)
- **20.** 7
- **21.** 13年
- **22.** (1)(2)
- **23.** (a) $21 \cdot 10^6 (1.012)^x$ (b) 2.366×10^7
- **24.** (a)49 \ 1/3 (b)6 (c)98%
- 25.約3376年
- **26.** 可令 $\log x$ 與 $\log y$ 之尾數為 α , $\log x$ 與 $\log y$ 的首數分別為a,b,所以 $\log x = a + \alpha$, $\log y = b + \alpha$ $\log x \log y = a b$ 為整數 所以可令 $\log x \log y = n \Leftrightarrow x = y \times 10^n$

27.
$$x=10$$
, $10^{\frac{4}{3}}$, $10^{\frac{5}{3}}$

- **28.** 2.4865
- **29.** 900

30.
$$x = \sqrt{3}$$
, $\sqrt{30}$, $10\sqrt{3}$, $10\sqrt{30}$

- **31.** 38
- **32.** 10,11,12,13,14