Teoría de la integral y de la medida

Hoja 7 (medidas y σ-álgebras producto, medidas inducidas, el Teorema de Fubini)

1.- Sean $X = Y = \mathbb{N}$, $\mathcal{M} = \mathcal{N} = \mathcal{P}(\mathbb{N})$ y μ , ν las medidas de contar en \mathbb{N} . Probar que $d(\mu \times \nu)$ es la medida de contar en $\mathcal{P}(\mathbb{N} \times \mathbb{N})$. Si definimos

$$f(m,n) = \begin{cases} 1 & \text{si} & m=n\\ -1 & \text{si} & m=n+1\\ 0 & \text{en otro caso,} \end{cases}$$

comprobar que $\int \mid f \mid d(\mu \times \nu) = \infty$, y $\int (\int f d\mu) d\nu$, $\int (\int f d\nu) d\mu$) existen y son distintas.

- 2.- Sean (X, \mathcal{M}, μ) (Y, \mathcal{N}, ν) espacios de medida σ -finitos. Sea $f: X \to \mathbb{R}$, \mathcal{M} medible; $g: Y \to \mathbb{R}$, \mathcal{N} medible y h definida mediante h(x, y) = f(x)g(y).
 - a). Demostrar que h es $\mathcal{M} \otimes \mathcal{N}$ medible
 - b). Si $f \in L^1(\mu)$ y $g \in L^1(\nu)$ entonces $h \in L^1d(\mu \times \nu)$ y además

$$\int_{X\times Y} h\,d(\mu\times\nu) = \left(\int_X f\,d\mu\right)\left(\int_Y g\,d\nu\right)$$

Sugerencia: empezar con funciones simples.

- 3.- Sea $f: X \to \mathbb{R}$ una función \mathcal{M} -medible, $f \geq 0$, y sea $A_f = \{(x, y) \in X \times \mathbb{R} : 0 \leq y < f(x)\}$.
 - a) Probar que $A_f \in \mathcal{M} \otimes \mathcal{B}$ (\mathcal{B} es la σ -álgebra de Borel en \mathbb{R}). Sugerencia: empezar con f simple.
- b) Dada una medida μ en (X, \mathcal{M}) σ -finita, probar que $\int_X f d\mu$ coincide con la medida producto $\pi = d\mu \otimes dy$ del conjunto A_f .
- 4.- Sea $X = Y = [0,1], \quad \mathcal{A}_1, \mathcal{A}_2 = \mathcal{B}_{[0,1]}$ (álgebra de Borel en [0,1]), μ la **medida de Lebesgue** en \mathcal{A}_1, ν la **medida de contar** en \mathcal{A}_2 . En el espacio de medida

 $(X \times Y, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu \otimes \nu)$ se considera el conjunto $V = \{(x, y) : x = y\}$. Comprobar que $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$. Sin embargo $\int_V d\nu \int_X \chi_V d\mu = 0; \quad \int_Y d\mu \int_X \chi_V d\nu = 1.$

Sugerencia: Si $V_n = (I_1^j \times I_1^j) \cup \ldots \cup (I_n^j \times I_n^j)$ con $I_n^j = [\frac{j-1}{2^n}, \frac{j}{2^n}]$ $j = 1, 2, \ldots 2^n$, entonces $V = \bigcap_{1}^{\infty} V_n$. (Esto muestra que la hipótesis de que las medidas sean σ -finitas no se puede quitar).

5.- Sea

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Comprobar que $\int_0^1 dx \int_0^1 f(x,y) dy = \frac{\pi}{4}, \qquad \int_0^1 dy \int_0^1 f(x,y) dx = -\frac{\pi}{4}.$ ¿Qué hipotesis no se verifica en el teorema de Fubini?

6.- Sea

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & \text{si } -1 \le x \le 1 \\ 0 & \text{si } x = y = 0 \end{cases} -1 \le y \le 1 \quad (x,y) \ne (0,0)$$

1

Demostrar que las integrales iteradas (con respecto a la medida de Lebesgue) coinciden y valen cero, sin embargo f no es integrable en $[-1,1] \times [-1,1]$. ¿Qué hipotesis no se verifica en el Teorema de Fubini?

7.- Sean $f,g \in L^1(\mathbb{R},\mathcal{M},m)$, donde m es la medida de Lebesgue. Demostrar que f(x-y)g(y) es integrable en y para casi todo x. Para estos valores de x, definimos $h(x) = \int_{\mathbb{R}} f(x-y)g(y)dm(y)$. Se dice que h es la convolución de f y g y se escribe h = f * g. Demostrar que h es integrable y que $\|h\|_1 \leq \|f\|_1 \|g\|_1$. Recordamos que $\|h\|_1 = \int_{\mathbb{R}} |h| dm$.

8.- Sea $d\nu$ la medida definida sobre $\mathcal{P}(\mathbb{R}^2)$ por medio de

$$\nu(A) = \operatorname{card}(A \cap \mathbb{Z}^2), \quad \forall A \subset \mathbb{R}^2.$$

Es decir, $d\nu$ es la medida que "cuenta" el número de puntos de coordenadas enteras que hay en un conjunto. Sea $\phi: \mathbb{R}^2 \to \mathbb{R}$ definida por $\phi(x,y) = e^{x^2+y^2}$. Si $d\nu_{\phi}$ es la medida inducida por $d\nu$ y ϕ en \mathbb{R} , calcular $\nu_{\phi}([1,e])$ y $\nu_{\phi}([e^2,e^3])$.

9.- Si consideramos en $X=[0,1]\times [0,1]\subset \mathbb{R}^2$ la medida de área de Lebesgue habitual, dm, y si $\varphi(x_1,x_2)=x_1+x_2$, o $\varphi(x_1,x_2)=|x_1-x_2|$, demostrar que las medidas inducidas dm_{φ} son medidas de Lebesgue-Stieltjes sobre \mathbb{R} y encontrar, en cada caso, la función de distribución.