

Tree

Considera uma **árvore** formada por N **vértices**, numerados de 0 a N-1. O vértice 0 é chamado de **raíz**. Todos os vértices, com excepção da raíz, têm um único **pai**. Para cada i, tal que $1 \le i < N$, o pai do vértice i é o vértice P[i], onde P[i] < i. Assumimos também que P[0] = -1.

Para cada vértice i ($0 \le i < N$), a **subárvore** de i é o conjunto dos seguintes vértices

- *i*, e
- qualquer vértice cujo pai é i, e
- qualquer vértice cujo pai do pai seja i, e
- qualquer vértice cujo pai do pai do pai seja i, e
- etc.

A imagem abaixo mostra uma árvore exemplo com N=6 vértices. Cada seta liga um vértice ao seu pai, exceto a raíz, que não tem pai. A subárvore do vértice 2 contém os vértices 2,3,4 e 5. A subárvore do vértice 0 contém todos os 6 vértices da árvore e a subárvore do vértice 4 contém apenas o vértice 4.

A cada vértice é atribuído um **peso** inteiro não negativo Denotamos o peso do vértice i ($0 \le i < N$) por W[i].

A tua tarefa é escrever um programa para responder a Q questões, cada uma especificada por um par de inteiros positivos (L,R). A resposta a uma pergunta deve ser calculada da seguinte maneira.

Considera atribuir um inteiro, chamado de **coeficiente**, a cada vértice da árvore. Estas atribuições são descritas por uma sequência $C[0],\ldots,C[N-1]$, onde C[i] ($0\leq i < N$) é o coeficiente atribuído ao vértice i. Chamemos a esta sequência a **sequência de coeficientes**. Nota que os elementos da sequência de coeficientes podem ser negativos, 0, ou positivos.

Para uma pergunta (L,R), uma sequência de coeficientes é chamada de **válida** se, para cada vértice i $(0 \le i < N)$, a seguinte condição é válida: a soma dos coeficientes dos vértices da subárvore do vértice i não é menor que L e não é maior que R.

Para uma dada sequência de coeficientes $C[0],\ldots,C[N-1]$, o **custo** de um vértice i é $|C[i]|\cdot W[i]$, onde |C[i]| denota o valor absoluto de C[i]. Finalmente, o **custo total** é a soma dos custos de todos os vértices. A tua tarefa é calcular, para cada questão, o **custo mínimo total** que pode ser obtido por uma sequência de coeficientes válida.

Pode ser mostrado que para qualquer pergunta existe pelo menos uma sequência de coeficientes válida.

Detalhes de Implementação

Deves implementar as seguintes duas funções:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arrays de inteiros de tamanho N especificando os pais e os pesos.
- Esta função é chamada exatamente uma única vez em cada caso de teste no início da interação entre o avaliador o teu programa.

```
long long query(int L, int R)
```

- *L*, *R*: inteiros descrevendo uma pergunta.
- Esta função é chamada Q vezes depois da invocação de init em cada caso de teste.
- Esta função deve devolver a resposta para a pergunta correspondente.

Restrições

- $1 \le N \le 200\,000$
- $1 \le Q \le 100\,000$
- P[0] = -1
- $0 \le P[i] < i$ para cada i tal que $1 \le i < N$
- $0 \le W[i] \le 1\,000\,000$ para cada i tal que $0 \le i < N$
- $1 \le L \le R \le 1\,000\,000$ em cada pergunta

Subtarefas

Subtarefa	Pontos	Restrições Adicionais	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para cada i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para cada i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para cada i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Sem restrições adicionais.	

Exemplos

Considera as seguintes chamadas:

A árvore consiste em 3 vértices, a raíz e os seus 2 filhos. Todos os vértices têm peso 1.

Nesta pergunta L=R=1, o que significa que a soma dos coeficientes em cada subárvore deve ser igual a 1. Considera a sequência de coeficientes [-1,1,1]. A árvore e os coeficientes correspondentes (em retângulos a sombreado) estão ilustrados na figura.

Para cada vértice i ($0 \le i < 3$), a soma dos coeficientes de todos os vértices na subárvore i é igual a 1. Portanto, a sequência de coeficientes é válida. O custo total pode ser calculado da seguinte maneira:

Vértice	Peso	Coeficiente	Custo
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Portanto o custo total é 3. Esta é a única sequência de coeficientes válida, e por isso esta chamada deve devolver 3.

```
query(1, 2)
```

O custo total mínimo para esta chamada é 2, e pode ser obtido quando a sequência de coeficientes é $\left[0,1,1\right]$.

Avaliador Exemplo

Formato de input:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

onde L[j] and R[j] (para $0 \le j < Q$) são os argumentos do input na j-ésima chamada a query. Nota que a segunda linha de input contém **somente** N-1 **inteiros**, uma vez que o avaliador exemplo não lê o valor de P[0].

Formato de output:

```
A[0]
A[1]
...
A[Q-1]
```

onde A[j] (para $0 \leq j < Q$) é o valor devolvido pela j-ésima chamada a query.