Prova Totale di **Ottimizzazione Combinatoria**

11 Febbraio 2013

Cognome	
Nome	
Matricola	

Domanda 1

- 1. Dare la definizione di insieme trasversale su un grafo.
- 2. Formulare tramite la Programmazione Lineare Intera $\{0,1\}$ il problema di determinare il minimo insieme trasversale su un grafo G = (V, E).
- 3. Scrivere il duale del rilassamento lineare del problema intero formulato. Quale interpretazione combinatoria ha il problema duale?

Esercizio 1

Dire se la seguente matrice è totalmente unimodulare motivando la risposta:

$$M = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Esercizio 2

Siano n ed m due interi non negativi tali che $n \le m$. Sia U un insieme finito di m elementi e definiamo la famiglia $\mathfrak{I} = \{X \subseteq U : |X| \le n\}$. Dire se la coppia (U, \mathfrak{I}) è subclusiva e se soddisfa la proprietà di scambio.

Esercizio 3

Dato il seguente problema di Knapsack 0-1

$$\max -11x_1 + 9x_2 + 15x_3 + 21x_4 -3x_1 + 2x_2 + 4x_3 + 5x_4 <= 4 x \in \{0, 1\}^4$$

applicare l'algoritmo di branch-and-bound per determinare il vettore soluzione ottimo ed il suo valore.

Esercizio 4

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	1	2	3	4	5
1	-	9	8	15	12
2	9	-	7	12	15
3	8	7	-	7	8
4	15	12	7	-	9
5	12	15	8	9	-

Calcolare

1

- 1. Il valore del rilassamento che si ottiene determinando l'1-albero di costo minimo. Il valore ottenuto che tipo di bound rappresenta per il problema iniziale?
- 2. Una soluzione euristica *S* ottenuta tramite l'algoritmo di Christofides. La soluzione ottenuta che tipo di bound rappresenta per il problema iniziale?

Α