Exercise 1

From the following matrices, identify unit matrices, row matrices, column matrices and null matrices.

Ans. $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, Null matrix

 $B=[2 \quad 3 \quad 4]$, Row matrix

$$C = \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix}, \qquad \text{Column matrix}$$

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ Unit matrix}$$

E=[0], Null matrix

$$F = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix}$$
 Column matrix

2. From the following matrices, identify

- Square matrices (a)
- Rectangular matrices (b)
- Row matrices (c)
- Column matrices (d)
- (e) Identity matrices
- (f) Null matrices

Square Matrices: (a) Ans.

(iii)
$$\begin{bmatrix} 6 & -4 \\ 3 & -2 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(viii)
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rectangular Matrices: Ans. (b)

$$\begin{pmatrix}
-8 & 2 & 7 \\
12 & 0 & 4
\end{pmatrix}$$

(ii)
$$\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

$$(v) \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Row Matrices: Ans. (c)

$$(vi) \quad \begin{bmatrix} 3 & 10 & -1 \end{bmatrix}$$

Column Matrices: Ans. (d)

(ii)
$$\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

(vii)
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Identity Matrices: Ans. (e)

(iv)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Null matrices:

$$(ix) \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3. From the following matrices, identify diagonal, scalar and unit (identity) matrices.

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix},$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$D = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix},$$

$$E = \begin{bmatrix} 5-3 & 0 \\ 0 & 1+1 \end{bmatrix}$$

Ans. Scalar matrices:

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}, E = \begin{bmatrix} 5-3 & 0 \\ 0 & 1+1 \end{bmatrix}$$

Unit Matrices:

$$\mathbf{C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Diagonal Matrices:

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}$$

$$E = \begin{bmatrix} 5-3 & 0 \\ 0 & 1+1 \end{bmatrix}$$

4. Find negative of matrices A, B, C, D and E when:

$$\mathbf{A} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

$$B = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 6 \\ 3 & 2 \end{bmatrix}, D = \begin{bmatrix} -3 & 2 \\ -4 & 5 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & -5 \\ 2 & 3 \end{bmatrix}$$

Negative of matrices

Ans.
$$-A = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Ans.
$$-B = \begin{bmatrix} -3 & 1 \\ -2 & -1 \end{bmatrix}$$

Ans.
$$-C = \begin{bmatrix} -2 & -6 \\ -3 & -2 \end{bmatrix}$$

Ans.
$$-D = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix},$$

Ans.
$$E = \begin{bmatrix} -1 & 5 \\ -2 & -3 \end{bmatrix}$$

5. Find the transpose of each of following matrices:

Ans. (i)

$$A = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \Rightarrow A^{t} = \begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} 5 & 1 & -6 \end{bmatrix} \Rightarrow B^{1} = \begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 0 \end{bmatrix} \quad \Rightarrow \quad C^{t} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$\dot{D} = \begin{bmatrix} 2 & 3 \\ 0 & 5 \end{bmatrix} \implies D^{t} = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$$

$$E = \begin{bmatrix} 2 & 3 \\ -4 & 5 \end{bmatrix} \implies E^{t} = \begin{bmatrix} 2 & -4 \\ 3 & 5 \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \implies \mathbf{F}^{\mathsf{t}} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

6. Verify that
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}, \text{ then}$$

if

(i)
$$(A^{t})^{t} = A$$

(ii) $(B^{t})^{t} = B$

Ans. (i)
$$(\Lambda^t)^t = \Lambda$$

L.H.S = $(\Lambda^t)^t$

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow A^{t} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

$$(\mathsf{A}^{\mathfrak{r}})^{\mathfrak{r}} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$(A^t)^t = \Lambda = R.H.S.$$

Hence L.H.S = R.H.S.

Ans. (ii)
$$(\mathbf{B}^t)^t = \mathbf{B}$$

L.H.S = $(\mathbf{B}^t)^t$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$\mathbf{B}^{\mathrm{I}} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$(\mathbf{B}^{\mathsf{t}})^{\mathsf{t}} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$(B^t)^t = B$$

$$= R.H.S$$

Hence L.H.S = R.H.S.