CS 561 Artificial Intelligence Lecture 5-6 Inference in Bayesian Networks

Rashmi Dutta Baruah

Department of Computer Science & Engineering

IIT Guwahati

भारतीय प्रौद्योगिकी संस्थान गुवाहाटी Indian Institute of Technology Guwahati

Guwahati - 781039, INDIA

Outline

- Sampling
 - Direct Sampling methods
 - Likelihood sampling
 - Markov chain sampling
 - Metropolis-Hasting's Algorithm
 - Gibbs Sampling
 - Bayesian Networks with Continuous Variables

Sampling Method

Problem of Rejection Sampling: for unlikely evidence, lots of samples rejected

- Likelihood Weighting
 - fix the values for evidence variables, and sample only non-evidence variable (not sampling from right distribution anymore)
 - Now weight the samples by evidence likelihood (probability of evidence given parents).

```
For k = 1 to N

For each each X_i in topological order o = (X_1, ..., X_n):

w_k = 1

if X_i \notin E

X_i \leftarrow \text{sample } x_i \text{ from } P(x_i \mid parents(X_i))

else

assign X_i = e_i

w_k = w_k \bullet P(e_i \mid parents(X_i))
```

Assume ordering: Cloudy, Sprinkler, Rain, WetGrass

Likelihood Weighting

Problem: Evidence does not influence parents (C still sampled from Prior) We would like evidence to influence every variable while sampling.

→ Gibbs sampling

P(_| W)

Evidence: W = +w

P(W|S,R)

0.99

-W

		-1
Rai	-c	+
Nall		-1
WetGrass		
Wetdiass		

+s	+r	+W	0.99
		-W	0.01
	-r	+W	0.90
		-W	0.10
-S	+r	+W	0.90
		-W	0.10

Samples:

Sampling Method: MCMC

- Markov Chain Monte Carlo Sampling
- MCMC techniques often applied to solve integration and optimisation problems in large dimensional spaces
- So where do we need this in Bayesian Inference?
 (So far considered only discrete state space, yet to see continuous space)

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \qquad P(X) = \sum_{y} P(X,y) \qquad P(X) = \int_{y} P(X,y)$$

Normalisation

$$P(Y|X) = \sum_{z} P(Y, z|X) \text{ OR } \int_{z} P(Y, z|X)$$

Marginal Posterior

Expectations

$$E[f(x)] = \int_{x} f(x)p(x)d(x)$$

Sampling Method: MCMC

- Example Monte Carlo Approximation: Compute the distribution of a function of a random variable, y = f(x).
- Suppose $x \sim \text{Unif}(-1, 1)$ and $y = x^2$. We can approximate p(y) by drawing many samples from p(x), squaring them, and computing the resulting empirical distribution

Figure: Computing the distribution of $y = x^2$, where p(x) is uniform (left). The analytic result is shown in the middle, and the Monte Carlo approximation is shown on the right. (From the book Kevin P. Murphy, ML a probabilistic perspective)

Sampling Method: MCMC

- Example 2: estimating π by Monte Carlo integration
 - Draw a square, then inscribe a circle within it
 - Uniformly scatter a given number of points over the square
 - Count the number of points inside the circle (C) and inside the square (S).
 - The ratio of the inside-count and the total-sample-count is an estimate of the ratio of the two areas.

$$\frac{C}{S} \approx \frac{\pi r^2}{(2r)^2}$$
 $\pi \approx \frac{4C}{S}$

$$x^{\,2}+y^{\,2}=r^{\,2}\,$$
 : Equation of a circle $\pi\,r^2\,$ Area of a circle

Figure: Estimating π by Monte Carlo integration. Blue points are inside the circle, red crosses are outside.

• A Markov chain is a sequence of random variables $X_0, X_1, X_2, ...$ with Markov property that the probability of moving to the next state depends only on the current state of the random variable.

$$\Pr\left(X_{t+1} = s_i \mid X_0 = s_k, ..., X_t = s_i\right) = \Pr(X_{t+1} = s_i \mid X_t = s_i)$$

- For simplicity, $\Pr\left(X_{t+1} = s_j \,\middle|\, X_0 = s_k, \dots, X_t = s_i\right) = \Pr(X_{t+1} = s_j \,\middle|\, X_t = s_i)$
- A particular chain is defined by its transition probabilities, a transition probability the probability that the chain at state S_i moves to state S_j in a single step and can be given as:

$$P(i \rightarrow j) = \Pr(X_{t+1} = s_i | X_t = s_i)$$

• Let $\pi_i(t) = \Pr(X_t = s_i)$ be the probability that the chain is in state i at time t and $\pi(t)$ denote the vector of the state space probabilities at time step t.

$$\pi_{i}(t+1) = \Pr(X_{t+1} = s_{i}) = \sum_{k} \Pr(X_{t+1} = s_{i}, X_{t} = s_{k})$$

$$= \sum_{k} \Pr(X_{t+1} = s_{i}, | X_{t} = s_{k}) \Pr(X_{t} = s_{k}) = \sum_{k} P(k \to i) \pi_{k}(t)$$

$$\pi_i(t+1) = \sum_k P(k \to i) \pi_k(t) \qquad \dots (1)$$

- This can be written in matrix forms if a transition probability matrix **P** is defined whose i, jth element is $P(i \rightarrow j)$ also the row sums to 1 i.e $\sum_{j} P(i \rightarrow j) = 1$
- Now, equation (1) becomes $\pi(t+1) = \pi(t)P$

$$\pi(t) = \pi(t-1) P = (\pi(t-2) P) P = \pi(t-2) P^2 = \dots = \pi(t-t) P^t$$

$$\boldsymbol{\pi}(t) = \boldsymbol{\pi}(0)\mathbf{P}^t$$

• Let the n-step transition probability be p_{ij}^n i.e. the probability that the chain is at state i given that it was in state j, n time steps ago. It can be determined from the matrix \mathbf{P}^n as it is just the i,jth element of the matrix.

$$\pi_i(t+1) = \sum_k P(k \to i)\pi_k(t)$$

$$\pi(t+1) = \pi(t)\mathbf{P} \qquad \pi(t) = \pi(0)\mathbf{P}^t$$

$$\boldsymbol{\pi}(t) = \boldsymbol{\pi}(0)\mathbf{P}^t$$

$$p_{ij}^n = \Pr(X_{t+n} = s_j \mid X_t = s_i)$$

= i, jth element of the matrix \mathbf{P}^n

Let
$$\pi(0) = [0 \ 1 \ 0]$$

$$\pi(1) = \pi(0)\mathbf{P} = [0.5 \ 0 \ 0.5]$$

 $\pi(2) = \pi(1)\mathbf{P} = [0.375 \ 0.25 \ 0.375]$

$$\pi(7) = \pi(0)\mathbf{P}^7 = [0.4 \ 0.2 \ 0.4]$$

- After a sufficient amount of time, the probability values are independent of actual starting value and we say that the chain has reached a stationary distribution.
- As the process converges, it is expected that
 - $\pi(t) = \pi(t+1) = \pi(t)\mathbf{P}$ i.e. $\pi^* = \pi^*\mathbf{P}$: a distribution satisfying this condition is called stationary distribution.

- In general, there is no guarantee that a chain will converge to stationary distribution.
- Example : for the given Markov chain if $\pi(0) = [1\ 0]$ then $\pi(t) = \pi(0)\mathbf{P}^t$

If t is even then $\mathbf{P}^t = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\boldsymbol{\pi}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix}$ If t is odd then $\mathbf{P}^t = \mathbf{P}$ and $\boldsymbol{\pi}(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}$

Markov chains like this, which exhibits fixed cyclic behaviour, are called periodic Markov chains.

- For any starting value, the chain will converge to the stationary distribution, as long as the following conditions are satisfied:
 - Aperiodicity: the chain should not get trapped in cycles between certain states.
 - Irreducibility: there exists a positive integer k such that for every i, j the probability of getting from s_i to s_j in k steps is greater than 0 i.e. $p_{ij}^k > 0$. (all states can be visited from every other state, although it may take more than one step). If this is satisfied then the chain has **unique** stationary distribution.
- A finite-state Markov chain is reversible if there exists a unique distribution π^* such that for all i, j

 $\pi_i^* P(i \to j) = \pi_i^* P(j \to i)$: Detailed balance equation

If the a Markov chain is irreducible and it satisfies the detailed balance equation relative to π^* , then π^* is the unique stationary distribution.

- MCMC samplers are irreducible and aperiodic Markov chains that have the target distribution as the stationary distribution.
- How to construct such MCMC samplers?
 - One way is to ensure that the detailed balance is satisfied

MCMC Methods

- Markov Chain Monte Carlo (MCMC) methods
 - Unlike direct sampling methods that we discussed, MCMC methods do not generate samples from scratch. Each sample is generated by making a random change to the preceding sample.
 - Say, MCMC algorithm is in a particular current state specifying a value for every variable, it generates a next state by making random changes to the current state.
 - generates samples while exploring the state space of random variables using a Markov chain such that it draws samples from target distribution.
 - cycle mimics the distribution by spending more time in the most important regions (with high probability in the distribution)
- MCMC methods :
 - Metropolis-Hastings algorithm, Gibbs Sampling

- Metropolis-Hastings (MH) algorithm involves two distributions
 - proposal distribution : q(.) a simple distribution from where samples can be drawn directly)
 - Target distribution: p(x) ______ Note the change in notations
- Sample from proposal distribution while keeping track of current state $\mathbf{x}^{(t)}$
- the proposal distribution $\mathbf{q}(\mathbf{x}|\mathbf{x}^{(t)})$ depends on this current state, and so the sequence of samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots$ forms a Markov chain.
- Assumption: if we write $p(\mathbf{x}) = \frac{\tilde{p}(\mathbf{x})}{Z}$ where Z is the normalization constant, then $\tilde{p}(\mathbf{x})$ can be evaluated for any given value of \mathbf{x} , although the value of Z may be unknown or difficult to compute (as it involves high dimension integration or summation).

• At each cycle of the algorithm, a candidate sample $\mathbf{x}^{(cand)}$ is generated from the proposal distribution and then accepted according to an appropriate criterion.

```
MH Algorithm
```

- Initialize $\mathbf{x}^{(0)} \sim \mathbf{q}(\mathbf{x})$
- for iteration $t = 1, 2, 3 \dots do$
 - Propose: $\mathbf{x}^{(cand)} \sim q(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})$
 - Compute acceptance probability:

•
$$\alpha(\mathbf{x}^{(cand)} \mid x^{(t-1)}) = \min \left\{ 1, \frac{q(x^{(t-1)} \mid x^{cand}) \tilde{p}(x^{cand})}{q(x^{cand} \mid x^{(t-1)}) \tilde{p}(x^{(t-1)})} \right\}$$

- $u \sim Uniform(0,1)$
- if $u < \alpha$ then
 - Accept the proposal: $x^{(t)} \leftarrow x^{cand}$
- else
 - Reject the proposal: $x^{(t)} \leftarrow x^{(t-1)}$
- end if
- end for

$$\alpha(\mathbf{x}^{(cand)} \mid x^{(t-1)}) = \min\left\{1, \frac{q(x^{(t-1)}|x^{cand})\tilde{p}(x^{cand})}{q(x^{cand}|x^{(t-1)})\tilde{p}(x^{(t-1)})}\right\}$$

- Expectations from the sampler
 - visit high probability regions in the distribution- this can be achieved by the ratio $\frac{\tilde{p}(x^{cand})}{\tilde{p}(x^{(t-1)})}$
 - explore the state space and avoid getting stuck in one region this can be achieved by the ratio $\frac{q(x^{(t-1)}|x^{cand})}{q(x^{cand}|x^{(t-1)})}$
 - Proposal distribution: symmetric or asymmetric distribution
 - If $q(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}) = q(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)})$ then the distribution is symmetric
 - Example of symmetric distributions:
 Gaussian distributions or Uniform distribution centred at current state of the chain.

For symmetric proposal distribution: $q(\mathbf{x}^{(cand)}|\mathbf{x}^{(t-1)}) = q(\mathbf{x}^{(t-1)}|\mathbf{x}^{(cand)})$

$$\frac{q(x^{(t-1)}|x^{cand})}{q(x^{cand}|x^{(t-1)})} = 1$$

Metropolis Algorithm

for Fig. (a)
$$\frac{\tilde{p}(x^{cand})}{\tilde{p}(x^{(t-1)})} = 6.06$$
: accepted

for Fig. (b)
$$\frac{\tilde{p}(x^{cand})}{\tilde{p}(x^{(t-1)})} = 0.17$$
 :accepted with probability 0.17

In Fig (c) the proposal distribution is asymmetric [fixed at normal(0,0.5)]

$$\frac{\tilde{p}(x^{cand})}{\tilde{p}(x^{(t-1)})} < 1$$

$$\frac{q(x^{(t-1)}|x^{cand})}{q(x^{cand}|x^{(t-1)})} > 1$$

So, $\mathbf{x}^{(cand)}$ in this case will be accepted or rejected?

- After a sufficient time (say k steps burn-in period), the chain approaches the stationary distribution and the generated samples $x^{(k+1)}, x^{(k+2)}, ...$ are from the target distribution.
- We can show that p(x) is the stationary distribution of the Markov chain defined by the Metropolis-Hastings algorithm by showing that the detailed balance is satisfied .

$$\frac{q(x^{(t-1)}|x^{cand})}{q(x^{cand}|x^{(t-1)})} = \frac{\tilde{p}(x^{cand})}{\tilde{p}(x^{(t-1)})}$$
: Detailed balance equation

Gibbs Sampling

- MCMC algorithm and special case of the Metropolis-Hastings algorithm
- Let $p(x_1, x_2, ... x_n | e_1, ..., e_m)$ denote the joint distribution of a set of random variables $(x_1, x_2, ... x_n)$ conditioned on a set of evidence variables $(e_1, ..., e_m)$. A sequence of samples can be generated from such joint probability distribution using Gibbs sampling.
- The method resamples one variable at a time, conditioned on the rest, but keeps the evidence fixed
 - Intialize $\{x_i : i = 1:n\}$
 - For t = 1, 2, ...
 - ullet Pick a variable x_i uniformly at random
 - Sample x_i from $p(x_i|x_{(-i)}^{(t-1)}, \mathbf{e})$
 - Let $\mathbf{x}^t = (\mathbf{x}_{(-i)}, \mathbf{x}_i)$
 - End for

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - R = +r

- Step 2: Initialize other variab
 - Randomly

- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)

Sample from P(S|+c,-w,+r)

Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

- Buys and Subsidy:
 - Discrete variables
- Harvest and Cost:
 - Continuous Variables

- Probability tables for Continuous Variables:
 - Use discretization
 - Define standard families of PDF specified by finite number of parameters
 - Example: Gaussian (or normal distribution) $N(\mu, \sigma^2)(x)$

- Buys and Subsidy:
 - Discrete variables
- Harvest and Cost:
 - Continuous Variables

• CPT continuous variable and discrete/continuous parent

```
P(Cost | Harvest, Subsidy)
P(Cost | Harvest, subsidy)
P(Cost | Harvest, \neg subsidy)
```

We will use linear Gaussian distribution to specify how

• We will use linear Gaussian distribution to specify how the distribution over c (Cost) depends on h (Harvest).

$$P(c | h, subsidy) = N(a_t h + b_t, \sigma_t^2)(c) = \frac{1}{\sigma_t \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{c - (a_t h + b_t)}{\sigma_t}\right)^2}$$

$$P(c \mid h, \neg subsidy) = N(a_f h + b_f, \sigma_f^2)(c) = \frac{1}{\sigma_f \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{c - (a_f h + b_f)}{\sigma_f}\right)^2}.$$

$$\label{eq:logistic function} \mbox{logistic function } 1/(1+e^{-x}) \qquad P(buys \mid Cost = c) = \frac{1}{1 + exp(-2\frac{-c + \mu}{\sigma})} \; .$$

Summary

- In this lecture we focussed on MCMC Technique.
 - What is Monte Carlo Approximation?
 - What is Markov Chain?
 - What is Markov Chain Monte Carlo Approximation?
 - Working of Metropolis-Hastings Algorithm
 - Working of Gibbs Sampling