

Rapport Projet PAP Courbes de Bézier et polices de caractères

XU KEVIN LI ZIHENG

13 janvier 2019

Sommaire

P	réambule	1
1	Modèle de Cox-Ross-Rubinstein	3
	1.0.1 Question 1	3

Préambule

L'objectif de ce projet est de modéliser un marché financier et de déterminer le prix et la couverture d'options européennes.

Notre marché sera constitué de deux actifs échangeables à un certain prix :

- un actif sans risque : S_t^0 à l'instant t un actif risqué (une action) : S_t une variable aléatoire

On va utiliser une fonction $f:\mathbb{R}_+\to\mathbb{R}_+$ tout au long du problème. Cette fonction renvoie le montant d'argent gagné pour un certain montant de l'actif risqué en paramètre.

1 Modèle de Cox-Ross-Rubinstein

Dans un premier temps, nous allons étudier le modèle de Cox-Ross-Rubinstein.

Le nombre de feuilles dans l'arbre modélisant le prix de l'actif risqué est : $l=2^N$. Et les différentes valeurs que peut prendre $S_{t_N}^{(N)}$ sont dans :

$$\{s(1+b_N)^k(1+h_N)^{N-k}, k \in [1; N]\}$$

1.0.1 Question 1

On a $q_N = \mathbb{Q}(T_1^{(N)} = 1 + h_N)$ donc $1 - q_N = \mathbb{Q}(T_1^{(N)} = 1 + b_N)$ car $T_1^{(N)}$ ne prendre que deux valeurs.

De plus, la probabilité \mathbb{Q} est telle que $\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = 1 + r_N$.

Déterminons q_N :

$$\mathbb{E}_{\mathbb{Q}}[T_1^{(N)}] = (1+h_N)\mathbb{Q}(T_1^{(N)} = 1+h_N) + (1+b_N)\mathbb{Q}(T_1^{(N)} = 1+b_N)$$

$$\Leftrightarrow 1+r_N = (1+h_N)q_N + (1+b_N)(1-q_N)$$

Ainsi, on obtient :
$$q_N = \frac{r_N - b_N}{h_N - b_N}$$

Voici les 3 graphes que l'on obtient :

FIGURE 1 – Courbes définie par ${\cal P}_0$