

Adults take advantage of fine phonetic detail when learning words in a novel language

Bożena Pająk, Sarah C. Creel, & Roger Levy

[bɔˈʒɛna ˈpajɔ̃k]

[liky is eras,]

[ˈɹadzə ˈlivi]

UC San Diego

LSA :: Jan 6, 2012

- Learning and processing a language involves integrating multiple pieces of information at once
 - e.g., phonetic cues + mapping between meaning and phonetic form

- Learning and processing a language involves integrating multiple pieces of information at once
 - e.g., phonetic cues + mapping between meaning and phonetic form

- Learning and processing a language involves integrating multiple pieces of information at once
 - e.g., phonetic cues + mapping between meaning and phonetic form

- Learning a language involves integrating multiple pieces of information at once
 - e.g., phonetic cues + mapping between meaning and phonetic form

Question

Are beginner L2 learners able to **both** pay attention to fine phonetic detail **and** learn word meaning?

 Attending to phonetic detail while learning new words is hard for young infants

Stager & Werker 1997, *Nature*Werker et al. 2002, *Infancy*Swingley & Aslin 2002, *Psych. Sci.*Swingley & Aslin 2007, *Cog. Psych.*Rost & McMurray 2009, *Dev. Sci.*

 Attending to phonetic detail while learning new words is hard for young infants

Stager & Werker 1997, Nature Werker et al. 2002, Infancy Swingley & Aslin 2002, Psych. Sci. Swingley & Aslin 2007, Cog. Psych. Rost & McMurray 2009, Dev. Sci.

 Attending to phonetic detail while learning new words is hard for young infants

Stager & Werker 1997, Nature Werker et al. 2002, Infancy Swingley & Aslin 2002, Psych. Sci. Swingley & Aslin 2007, Cog. Psych. Rost & McMurray 2009, Dev. Sci.

 Attending to phonetic detail while learning new words is hard for young infants

Explanations:

- attentional or cognitive demands
- competition with known words
- incompletely developed phonetic categories

infants confuse similar-sounding words

e.g., bih & dih (L1-English)

e.g., discriminate between *b* & *d* (L1-English)

Stager & Werker 1997, Nature Werker et al. 2002, Infancy Swingley & Aslin 2002, Psych. Sci. Swingley & Aslin 2007, Cog. Psych. Rost & McMurray 2009, Dev. Sci.

What about adults?

- There are reasons to expect that adult L2 learners might have difficulties similar to 14-month-olds at the early stage of word learning:
 - competition with other L2 words, but also L1 words
 - incompletely developed L2 phonetic categories, interference from L1
- But we might also expect adult L2 learners to perform better than 14-month-olds:
 - adults have better developed attentional and cognitive capacities

What we know about word learning in L2

 Learning similar-sounding words is hard if they are contrasted by hard-to-discriminate sounds

(Strange & Dittmann 1984, Dobel et al. 2009)

- Example: rake lake for L1-Japanese speakers
 - b/c Japanese speakers have difficulty discriminating between English r and I
 (Goto 1971, Iverson et al. 2003, Miyawaki et al. 1975)

(due to Japanese only having one category in that acoustic-phonetic range; Best 1995, Best & Tyler 2007, Flege 1995, Kuhl & Iverson 1995)

What we know about word learning in L2

 But adults can be trained on perception & categorization of these hard-to-discriminate sounds

(Goudbeek et al. 2008, Lim & Holt 2011, Logan et al. 1991, Maye & Gerken 2001, McClaskey et al. 1983, Pająk & Levy 2011, Perfors & Dunbar 2010, Pisoni et al. 1982)

- Example:
 - L1-English speakers can be trained to discriminate a non-native VOT contrast, such as prevoiced vs. voiceless unaspirated stops
 - this trained perceptual ability generalizes to untrained places of articulation

What we know about word learning in L2

 Perceptual training on novel sounds helps with word learning, but doesn't generalize (e.g., to related sounds) in a word learning task (Perfors & Dunbar 2010)

Example:

- voiceless unaspirated
- perceptual training for L1-English speakers on discriminating [G]ipur vs.
- [K]ipur helps to later associate these words with meaning
- but it doesn't generalize to learning [B]ipur [P]ipur
- even though it generalizes perceptually to discriminate B vs. P
- This is similar to infants having difficulty learning bih & dih despite discriminating b vs. d
- But adults only received a short distributional training on G vs. K, and their discrimination of B vs. P might simply not be sufficiently robust
 - whereas 14-month-old infants can easily discriminate b vs. d in their L1

prevoiced

Current study

- We aim for a more direct comparison with the situation of 14month old infants learning new words that they can tell apart perceptually
- We use novel minimal-pair words with subtle distinctions that our ppts have been shown to distinguish perceptually
- Unlike in Perfors & Dunbar (2010), we don't train ppts on a novel contrast, but we take advantage of their perceptual abilities that come from their L1s

Experiment: general predictions

- If better developed attentional and cognitive capacities enable L2 learners to attend to fine phonetic detail at the early stage of word learning
 - then adults should be able to use their perceptual abilities generalized from L1
- If other factors are more important: like competition with known words or incompletely developed phonetic categories
 - then adults should have difficulty, just like 14-month-old infants

Experiment: participants

- Korean-English & Mandarin-English bilinguals (N=54)
- Known perceptual biases of Korean & Mandarin speakers: (Pajak & Levy, in prep.)
 - Korean > Mandarin at perception of length

kena - kenna

Korean < Mandarin at perception of alv.-pal. vs. retroflex place (w/o following vowel transition cue) ketsa - ketsa

Experiment: materials

12 "length" words each in a minimal pair		
short	long	
tala	talla	
kema	kemma	
kena	kenna	
taja	tajja	
diwa	diwwa	
difa	diffa	

4 "place" words each in a minimal pair		
alveolo-palatal	retroflex	
gotsa	gotşa	
go≱a	доза	

Cs exist in Mandarin

Cs exist in Korean

Experiment: materials

	+	
(co	ntr	ol)

4 "place" words each in a minimal pair		
alveolo-palatal	retroflex	
gotea	gotşa	
go≱a	доза	

WORDS FOR MUSHROOMS

Cs exist in Mandarin

Cs exist in Korean

Pająk, Creel, & Levy :: UC San Diego

Pająk, Creel, & Levy :: UC San Diego

DISSIMILAR PICTURE PAIRS

tala-diwwa kenna-taja gotsa-kema difa-goza

each word played 8x

Pająk, Creel, & Levy :: UC San Diego

Experiment: testing

NO FEEDBACK

Experiment: testing

PICTURE PAIRS		
Filler-Dissimilar	tala-go z a	
Filler-Similar	tala-taja	
Critical-Length	tala-talla	
Critical-Place	go z a-goza	

Pająk, Creel, & Levy :: UC San Diego

Experiment: timeline

Experiment: predictions

for all participants:

Filler-Dissimilar > Filler-Similar > Critical

tala-goza

tala-taja

tala-talla goza-goza

Experiment: results

Experiment: predictions

If adults use fine phonetic detail at the early stage of word learning, then:

Korean ppts > Mandarin ppts at Critical-Length tala-talla

Korean ppts < Mandarin ppts at Critical-Place goza-goza

Experiment: results

- Korean & Mandarin ppts not significantly different only overall numerical tendency in the predicted direction
 - no evidence that ppts use their perceptual advantages

Experiment: results

- Korean & Mandarin ppts not significantly different only overall numerical tendency in the predicted direction
 - no evidence that ppts use their perceptual advantages
 - exact segments don't seem to matter

Question

Learners vary in their attention, motivation, and learning skills.

Do better learners use fine phonetic detail?

Experiment: splitting ppts by performance on fillers

Korean: N=13 Mandarin: N=14

95% ACCURACY ON FILLERS

Korean: N=14 Mandarin: N=13

Experiment: splitting ppts by performance on fillers

Experiment: predictions

If only better learners use fine phonetic detail at the early stage of word learning, then:

For ppts scoring high on fillers:

Korean ppts > Mandarin ppts at Critical-Length tala-talla

Korean ppts < Mandarin ppts at Critical-Place goza-goza

Experiment: results split by performance on fillers

Experiment: summary

- There seems to be something inherently hard about the early stage of word learning that precludes attention to fine phonetic detail
 - adult L2 learners just like 14-month-old infants don't take full advantage of their perceptual abilities when beginning to learn words
- Since adults have well-developed attentional and cognitive capacities, the reasons for difficulties in L2 might be, as also proposed for infants:
 - competition with known words
 - incompletely developed phonetic categories
- But learning also seems modulated by attentive & cognitive factors
 - better learners do attend to phonetic detail, but worse learners don't

Conclusion

Are beginner L2 learners able to **both** pay attention to fine phonetic detail **and** learn word meaning?

Yes, but only good learners

- more attentive?
- more motivated?
- with better learning skills?

Thank you

Discussion:

Eric Baković, Klinton Bicknell, Computational Psycholinguistics Lab at UC San Diego

Research assistant:

K. Michael Brooks

Funding:

NIH Training Grant T32-DC000041 from the Center for Research in Language at UC San Diego

UC San Diego Academic Senate Grant