

Machine Learning

Dimensionality Reduction

Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \in \mathbb{R}^{2} \longrightarrow z^{(m)} \in \mathbb{R}$$

Data Compression

10000 -> 1000

Reduce data from 3D to 2D

Machine Learning

Dimensionality Reduction

Motivation II: Data Visualization

Data Visualization

Country

China

India

Russia

Singapore

USA

→ Canada

X,

GDP

(trillions of

US\$)

1.577

5.878

1.632

1.48

0.223

14.527

[resources from en.wikipedia.org]

X2

Per capita

GDP

(thousands

of intl. \$)

39.17

7.54

3.41

19.84

56.69

46.86

X3

Human

Develop-

0.908

0.687

0.547

0.755

0.866

0.91

...

XE	18 20

X4

Life

ment Index|expectancy|percentage)|

80.7

73

64.7

65.5

80

78.3

...

× (1) e 1050

Xs

Poverty

Index

(Gini as

32.6

46.9

36.8

39.9

42.5

40.8

...

= 112	
	% 6

Mean

household

income

(thousands

of US\$)

67.293

10.22

0.735

0.72

67.1

84.3

...

• • •

...

...

...

...

...

...

Andrew Ng

Data Visualization

I			2 "Elk
Country	z_1	z_2	
Canada	1.6	1.2	
China	1.7	0.3	Reduce data
India	1.6	0.2	from SOD
Russia	1.4	0.5	to 5D
Singapore	0.5	1.7	
USA	2	1.5	
•••	•••	•••	

Data Visualization

Machine Learning

Dimensionality Reduction

Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $\underline{u^{(1)}} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

Machine Learning

Dimensionality Reduction

Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$
 Replace each $x_j^{(i)}$ with $x_j - \mu_j$.

If different features on different scales (e.g., $x_1 = \text{size of house}$, $x_2 = \text{number of bedrooms}$), scale features to have comparable range of values.

Principal Component Analysis (PCA) algorithm

Reduce data from 2D to 1D

Reduce data from 3D to 2D

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

$$\sum = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^{T}$$
pute "eigenvectors" of matrix Σ :
$$\sum [U, S, V] = \text{svd}(\text{Sigma});$$

Compute "eigenvectors" of matrix Σ :

matrix

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Machine Learning

Dimensionality Reduction

Reconstruction from compressed representation

Reconstruction from compressed representation

Machine Learning

Dimensionality Reduction

Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \stackrel{\text{(i)}}{\underset{\text{rec}}{\underset{\text{(i)}}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}}{\underset{\text{(i)}}{\underset{\text{(i)}}}{\underset{\text{(i)}}}{\underset{\text{(i)}}}}}}}}}}}}}}}}}}}}}}}} prespectrusing in the substitute the substitute the substitute (i)}}}}}}}} prespectrusing in the substitute (i)}}}}} prespectrusing in the substitute (i)}}}}}} prespectrusing in the substitute (i)}}}}} prespectrusing in the substitute (i)}}}}} prespectrusing in the substitute (i)}}}} prespectrusing in the substitute (i)}}}} prespectrusing in the substitute (i)}}}} prespectrusing in the substitute (i)}}} prespectrusi$ Total variation in the data: 👆 😤 🗓 🗥 🗥

Typically, choose k to be smallest value so that

→ "99% of variance is retained"

Choosing k (number of principal components)

Algorithm:

Try PCA with k=1

Compute $U_{reduce}, \underline{z}^{(1)}, \underline{z}^{(2)},$

 $\ldots, z^{(m)}, x^{(1)}_{approx}, \ldots, x^{(m)}_{approx}$

Check if

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

Choosing k (number of principal components)

 \rightarrow [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \ge 0.99$$

k=100

(99% of variance retained)

Machine Learning

Dimensionality Reduction

Advice for applying PCA

Supervised learning speedup

$$x^{(1)}, y^{(1)}, (x^{(2)}, y^{(2)}), \dots$$

Extract inputs:

New training set:

Sets

Unlabeled dataset: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in \mathbb{R}^{10000}$

$$_{\sim}(1)$$

 $z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000}$

 $(z^{(1)},y^{(1)}),(z^{(2)},y^{(2)}),\ldots,(z^{(m)},y^{(m)}) \qquad \text{he}^{(z)} = \frac{1}{1+e^{-\Theta^{\tau}z}}$

Note: Mapping
$$x^{(i)} \to z^{(i)}$$
 should be defined by running PCA

 $\downarrow PCA$

only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test

Andrew Ng

$$(x^{(2)}, y^{(2)}), \dots, (x^{(n)})$$

 $\rightarrow (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$

Application of PCA

- Compression
 - Reduce memory/disk needed to store data Speed up learning algorithm Reduce Land Marches L

- Visualization

Bad use of PCA: To prevent overfitting

 \rightarrow Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to $\underline{k} < \underline{n}$.

Thus, fewer features, less likely to overfit.

Bod

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left| \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \right|$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- \rightarrow Train logistic regression on $\{(z_{test}^{(i)}, y^{(1)}), \dots, (z_{test}^{(n)}, y^{(m)})\}$ \rightarrow Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on
- \rightarrow Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$
- How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.