UNIVERSIDADE FEDERAL DE MINAS GERAIS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELE083 - COMPUTAÇÃO EVOLUCIONÁRIA

Trabalho Computacional

Prof. Cristiano Leite de Castro

10 de maio de 2016

1 Introdução

A localização de facilidades é um aspecto crítico do planejamento estratégico de empresas privadas e públicas. Exemplos típicos no setor público envolvem decisões de localização de centros de saúde, escolas e estações de bombeiros, enquanto no setor privado tem-se a localização de fábricas, armazéns e centros de distribuição. Em diversas situações, tais como em sistemas de distribuição, as decisões da localização de facilidades e de designação de clientes a facilidades são feitas simultaneamente.

1.1 Problema das p-Medianas

Este problema envolve a localização de p facilidades e a designação de clientes a facilidades de modo a minimizar a soma das distâncias de clientes a facilidades e tal que cada cliente seja atendido por uma única facilidade.

ENUNCIADO: dado um grafo completo e não orientado G = (V, E), em que V é o conjunto de n vértices e E é o conjunto de arestas representando as distâncias entre os vértices, o objetivo é encontrar um subconjunto $V_p \in V$ com cardinalidade p, em que V_p representa o conjunto de medianas do problema, de modo que a soma das distâncias entre os vértices restantes em $\{V - V_p\}$ e o vértice mais próximo em V_p seja a menor possível.

Considerando que:

- n = representa o número de vértices;
- p = representa o número de medianas que serão instaladas;
- d_{ij} = representa a distância entre os vértices i e j;

A formulação matemática do Problema das p-Medianas é dada por

$$\min \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij} x_{ij}$$
sa.
$$\sum_{j=1}^{N} x_{ij} = 1 \quad \forall i \in \{V - V_p\}$$

$$x_{ij} \leq y_j \quad \forall i \in \{V - V_p\} \quad \text{e } j \in V_p$$

$$\sum_{j=1}^{N} y_j = p \quad \forall j \in V_p$$

$$x_{ij}, y_j \in \{0, 1\}$$

em que:

$$x_{ij} = \begin{cases} 1 & \text{se o } i\text{-\'esimo v\'ertice \'e atendido pela mediana (v\'ertice) } j; \\ 0 & \text{caso contrario} \end{cases}$$

$$y_j = \begin{cases} 1 & \text{se o } j\text{-\'esimo v\'ertice for uma das } p\text{-medianas;} \\ 0 & \text{caso contrario} \end{cases}$$

A restrição (2) assegura que um vértice (cliente) seja atendido por uma única mediana (facilidade). A restrição (3) afirma que um vértice (cliente) somente seja atendido por uma mediana que esteja instalada. A restrição (4) garante que são designadas exatamente p medianas. A restrição (5) define que as variáveis de decisão envolvidas são binárias.

1.2 Exemplos de Instância do Problema

Considere, inicialmente, um conjunto de cinco cidades em que uma delas deve ser escolhida para a instalação de um determinado serviço (logo, p = 1). As ligações entre as cidades e as respectivas distâncias estão representadas no Grafo da Figura 1.1. As cidades estão representadas pelos nós a, b, c, d, e e as distâncias (d_{ij}) entre elas estão representadas pelo valor de cada aresta.

No próximo exemplo tem-se uma instância com 63 vértices (vide Figura 1.2) dos quais sete devem ser escolhidos como medianas (p=7). Na Figura 1.3 uma possível escolha das medianas é apresentada, enquanto que na Figura 1.4 são mostrados os vértices que cada mediana atende. Observe que cada vértice é atendido pela mediana mais próxima.

Figura 1.1: Representação da Instância como um Grafo Completo.

Figura 1.2: Representação dos vértices.

Figura 1.3: Vértices candidatos.

1.3 Representação de uma Solução para o Problema das p-Medianas

Uma das formas de se representar uma solução para o problema das p-Medianas é através de uma matriz contendo n colunas (representando os vértices) e três linhas, conforme pode ser visto na Figura 1.5.

A primeira linha "Vértices" contém os índices dos vértices, sendo que as p primeiras posições estão associadas aos vértices que são classificados como **medianas**. Cada configuração destas p primeiras colunas, desconsiderando a sua ordem, representa uma

Figura 1.4: Solução Alcançada.

Figura 1.5: Solução Alcançada.

possível solução para o problema. A segunda linha "Medianas" armazena o índice do vértice mediana que atende o vértice cliente. A terceira linha "Distância" armazena a distância entre a mediana e o cliente. Vale ressaltar que um cliente é atendido pela mediana que se encontra mais próxima a ele.

Observe que esta forma de representação para a solução do problema é apenas uma sugestão, retirada da literatura. Cada grupo está livre para escolher a representação que seja mais apropriada ao algoritmo selecionado para resolver o problema.

2 Tarefas

- 1. Projete e implemente um Algoritmo Evolucionario para resolver o problema das p-Medianas.
- 2. Aplique o algoritmo implementado às instâncias fornecidas no Moodle.
- 3. Apresente um relatório descrevendo sua implementação, suas decisões de projeto, testes e resultados obtidos;