Math 322 Homework 6

Xander Naumenko

16/10/23

Question 2. Consider G, H, K as in the question. Then by theorem 1.5 in the textbook we have that |G| = |H|[G:H], |H| = |K|[H:K] and |G| = |K|[G:K]. Multiplying these three identities together, we get $|K|[G:K]|G||H| = |H|[G:H]|K|[H:K] \implies [G:K] = [G:H][H:K]$.

Question 3. Let $x \in G$ and $y \in (H_1 \cap H_2)x$. Then there exists $h \in H_1 \cap H_2$ s.t. hx = y, so h also witness that both $y \in H_1x$ and $y \in H_2x$. Since this is true of any y we have that $(H_1 \cap H_2)x \subseteq H_1x \cap H_2x$.

For the other direction, let $y \in H_1x \cap H_2x$. Then there exist $h_1 \in H_1, h_2 \in H_2$ with $y = h_1x$ and $y = h_2x$. But every element in a group is invertible so $h_1 = h_2 = yx^{-1}$, so in particular $h_1 \in H_1 \cap H_2 \implies (H_1 \cap H_2)x \supseteq H_1x \cap H_2x$. Putting the two last paragraphs together we get that $(H_1 \cap H_2)x = H_1x \cap H_2x$.

To prove Poincaré's theorem, since we have that $[G:H_1] < \infty$ and $[G:H_2] < \infty$, we can write $G = H_1x_1 \cup \ldots \cup H_1x_m$, $G = H_2y_1 \cup \ldots \cup H_2y_n$ for some $x_i \in G, y_i \in G$ with $H_1x_i \cap H_1x_j = \emptyset$, $H_2y_i \cap H_2y_j = \emptyset$ for $i \neq j$. By our previously proven result, every coset $(H_1 \cap H_2)z$ can be written as $H_1z \cap H_2z$, but there are only m and n unique cosets for H_1 and H_2 in G respectively, so there are at most $mn < \infty$ unique cosets generated this way.

Question 4. Let $G = \langle s_1, s_2, \ldots, s_n \rangle$ and assume that $H \subseteq G$ with finite index. Since H has finite index we can write $G = Hx_1 \cup Hx_2 \cup \ldots \cup Hx_{n-1}$ with $x_1 = 1$. Thus for every combination x_i, s_j , we have that there exists $h_{ij}, x_{k_{ij}}$ such that $x_i s_j = h_{ij} x_{k_{ij}}$. I claim that the finite set of all these h_{ij} s generate H. To see why, let $h \in H$. Since G is finitely generated we can write $h = s_{i_1} \cdot \ldots \cdot s_{i_m}$. Since $x_1 = 1$, we can write $s_{i_1} = x_1 s_{i_1} = h_{1i_1} x_{k_{1i_1}}$. We've thus converted our previous expression for h into $h = h_{1i_1} x_{k_{1i_1}} s_{i_2} \cdot \cdots \cdot s_{i_m}$. Now considering $x_{k_{1i_1}} s_{i_2}$, we can repeat this process repeatedly to convert each element in this product to purely elements of H, so H is finitely generated by the h_{ij} s.

Question 5. Denote $f_{hk}(x) = hxk$ be the elements of the group described, and let F be the set of all such maps. Clearly f_{hk} permutes elements of G, so we just need to show that it is indeed a group. For closure, let f_{hk} and $f_{h'k'}$ be maps and note that $f_{hk}f_{h'k'}x = hh'xk'k = f_{(hh')(k'k)}x$ which is in F (since H, K are subgroups $hh' \in H$ and $k'k \in K$). Note that $f_{h^{-1}k^{-1}}f_{hk} = h^{-1}hxkk^{-1}x = x$, so invertibility is fulfilled. Finally since they are subgroups $1 \in H, 1 \in K$, so $f_{11}x = 1x1 = x$ for identity. Since F is a group and it permutes elements of G, it is a group of transformations.

Consider an arbitrary combination of these maps, $f_{h_1k_1}f_{h_1k_1}\dots f_{h_mk_m}x = h_1h_2\dots h_mxk_m\dots k_1$. Since H, K are groups, by closure $h_1h_2\dots h_m\in H$ and $k_m\dots k_1\in K$, so $f_{h_1k_1}f_{h_1k_1}\dots f_{h_mk_m}x\in HxK$. But also every element $y=hxk\in HxK$ is reachable from x via f_{hk} , so we have that the orbit of x is exactly HxK.

Now suppose G is finite. I will prove the first equality, the second follows by the exact same argument except with right multiplication replaced with left and vice versa. Let $A = x^{-1}Hx \cap K$. I claim that there is a bijection between cosets of A in K to cosets of H in HxK, more specifically

the mapping $Ak \to Hxk$. The mapping is clearly onto, since all cosets of for any coset Hxk of H in HxK, Mk maps to it. To show one-to-one, consider k, k' such that Ak = Ak'. Then we have that $k(k^{-1})' \in M \implies k(k')^{-1} \in x^{-1}Hx$, which implies that $xk(k')^{-1}x^{-1} \in H \implies Hxk = Hxk'$. Thus |A| is the cardinality of the number of cosets of H in HxK and each one has size |H|, so putting this together gives $|HxK| = |H||A| = |H||K : x^{-1}Hx \cap K|$.

Question 3. Let $g=(a,b)\in G$ and $k=(1,c)\in K$. Note that as proven in homework 2, $g^{-1}=(\frac{1}{a},-\frac{b}{a})$. Then we have that

$$g^{-1}kg=\left(\frac{1}{a},-\frac{b}{a}\right)(1,c)\left(a,b\right)=\left(\frac{1}{a},-\frac{b}{a}\right)(a,b+c)=(1,\frac{c}{a}-\frac{b}{a})\in K.$$

Thus K is normal.