HOMEWORK 6

Q1

A. Bayesian network over Oil, Gas, and Test

Oil	P(Oil)
Т	0.3
F	0.7
Gas	P(Gas)
Gas T	P(Gas) 0.2

Test	Oil	Gas	P(Test)
T	Т	Т	0
Т	Т	F	0.8
Т	F	Т	0.2
T	F	F	0.1

B. Probability that oil is present

$$P(Oil | Test) = \frac{P(Test | Oil)P(Oil)}{P(Test)}$$

$$P(Test) = P(Test | Oil)P(Oil) + P(Test | \neg Oil)P(\neg Oil)$$

$$P(Test) = (0.8 \times 0.3) + ((0.2 + 0.1)) \times 0.7) = 0.45$$

$$P(Oil | Test) = \frac{0.8 \times 0.3}{0.45} = \mathbf{0}.533$$

A. P(A, B, C, D, E, F, G, H) = P(A)*P(B)*P(C|A)*P(D|A,B)*P(E|B)*P(F|C,D)*P(G|F)*P(H|F,E)

B.
$$P(E, F, G, H) = \sum_{A,B,C,D} P(A, B, C, D, E, F, G, H)$$

 $P(E, F, G, H) = \sum_{A,B,C,D} P(G|F) * P(H|F,E) * P(F|C,D) * P(E|B) * P(D|A,B) * P(C|A) * P(B) * P(A)$
1. Sum out D: $f_{10}(A, B, C, F) = \sum_{D} f_{3}(C, D, F) \times f_{5}(A, B, D)$
 $P(E, F, G, H) = \sum_{A,B,C} f_{1}(F, G) \times f_{2}(F, E, H) \times f_{10}(A, B, C, F) \times f_{4}(B, E) \times f_{6}(A, C) \times f_{7}(B) \times f_{8}(A)$
2. Sum out C: $f_{11}(A, B, F) = \sum_{C} f_{10}(A, B, C, F) \times f_{6}(A, C)$
 $P(E, F, G, H) = \sum_{A,B} f_{1}(F, G) \times f_{2}(F, E, H) \times f_{11}(A, B, F) \times f_{4}(B, E) \times f_{7}(B) \times f_{8}(A)$
3. Sum out B: $f_{12}(A, E, F) = \sum_{B} f_{11}(A, B, F) \times f_{4}(B, E) \times f_{7}(B)$
 $P(E, F, G, H) = \sum_{A} f_{1}(F, G) \times f_{2}(F, E, H) \times f_{12}(A, E, F) \times f_{8}(A)$
4. Sum out A: $f_{13}(E, F) = \sum_{A} f_{12}(A, E, F) \times f_{8}(A)$
 $P(E, F, G, H) = f_{1}(F, G) \times f_{2}(F, E, H) \times f_{13}(E, F)$

- C. $P(a, \neg b, c, d, \neg e, f, \neg g, h) = P(h|\neg e, f)*P(\neg g|f)*P(f|c,d)*P(\neg e|\neg b)*P(d|a,\neg b)*P(c|a)*P(\neg b)*P(a)$ = $P(h|\neg e, f)*P(\neg g|f)*P(f|c,d)*0.2*0.6*P(c|a)*0.4*0.1$ = $0.0048*P(h|\neg e, f)*P(\neg g|f)*P(f|c,d)*P(c|a)$
- D. $P(\neg a,b) = P(\neg a)^*P(b) = 0.9^*0.6 = \textbf{0.54}$ Since A and B are independent, we can simply multiply their individual probabilities, since $P(X,Y) = P(X)^*P(Y)$

$$P(\neg e|a) = P(\neg e,a)/P(a) = P(\neg e)P(a)/P(a) = P(\neg e)$$

 $P(\neg e) = P(\neg e, b) + P(\neg e, \neg b) = P(\neg e|b)P(b) + P(\neg e|\neg b)P(\neg b)$
 $= (0.9 * 0.6) + (0.2 * 0.4) = 0.54 + 0.08 = 0.62$

Product rule was applied to the first transformation. Then, since E is dependent on only B and A is independent, E and A are conditionally independent, allowing us to multiply their individual probabilities and then calculating $P(\neg e)$ as sum of its probability in the presence of B and in the absence of B.

E. Markovian assumption: given its parents, a node is independent of its non-descendants

A⊥B	B⊥C	C⊥D A	D⊥E A,B	E⊥C B	F⊥E C,D	G⊥H F	H⊥G E,F
A⊥E	B⊥A	C⊥E A	D⊥C A,B	E⊥D B	F⊥A C,D	G⊥A F	H⊥C E,F
		C⊥B A		E⊥F B	F⊥B C,D	G⊥C F	H⊥D E,F
				E⊥G B		G⊥D F	H⊥A E,F
				E⊥A B		G⊥E F	H⊥B E,F
						G⊥B F	

F. Markov blanket for variable D are **{A,B,F,C}**: the children, parents, and children's parents of node D.

G. Multiply the factors for Pr(D|AB) and Pr(E|B).

Α	В	D	P(D A,B)	В	E	P(E B)	Α	В	D	E	P(D A,B) * P(E B)
0	0	0	0.2	0	0	0.2	0	0	0	0	0.04 = 0.2*0.2
0	0	1	0.8	0	1	0.8	0	0	0	1	0.16 = 0.2*0.8
0	1	0	0.8	1	0	0.9	0	0	1	0	0.16 = 0.8*0.2
0	1	1	0.2	1	1	0.1	0	0	1	1	0.64 = 0.8*0.8
1	0	0	0.4				0	1	0	0	0.72 = 0.8*0.9
1	0	1	0.6				0	1	0	1	0.08 = 0.8*0.1
1	1	0	0.3				0	1	1	0	0.18 = 0.2*0.9
1	1	1	0.7				0	1	1	1	0.02 = 0.2*0.1
							1	0	0	0	0.08 = 0.4*0.2
							1	0	0	1	0.32 = 0.4*0.8
							1	0	1	0	0.12 = 0.6*0.2
							1	0	1	1	0.48 = 0.6*0.8
							1	1	0	0	0.27 = 0.3*0.9
							1	1	0	1	0.03 = 0.3*0.1
							1	1	1	0	0.63 = 0.7*0.9
							1	1	1	1	0.07 = 0.7*0.1

H. Sum out D

Α	В	Е	$\Sigma_d f(A,B,D,E) = f(A,B,E)$
0	0	0	0.2 = 0.04+0.16
0	0	1	0.8 = 0.16+0.64
0	1	0	0.9 = 0.72+0.18
0	1	1	0.1 = 0.08+0.02
1	0	0	0.2 = 0.08+0.12
1	0	1	0.8 = 0.32+0.48
1	1	0	0.9 = 0.27+0.63
1	1	1	0.1 = 0.03+0.07