Internal Sorting

- Two general types of sorting:
 Internal sorting, in which all elements are sorted in main memory
 External sorting, in which elements must be sorted on disk or tape
- The focus here is on internal sorting techniques
- Sorting Classifications:
 - □ Exchange sorts that all run in O(n²)
 o Insert sort, bubble sort, selection sort
 □ Shell sort: an in-the-middle sort that runs in O(n¹.5) or o(n²)
 □ Efficient sorts that run in O(n log n)
 o Heap sort, merge sort, quicksort
 - $\hfill \square$ Special-purpose sorts that run in quicker time:
 - $\circ\,$ Bin sort, bucket sort, radix sort
- The **problem** of sorting, in general, is $\Omega(n \log n)$
 - ☐ Special cases are allowed to take less time because they are special cases, not general

The Sorting Problem

- Each record contains a field called the key
- Definition of the sorting problem:
 - \square Given a sequence of records r_1, r_2, \ldots, r_n with key values k_1, k_2, \ldots, k_n
 - $\ \square$ Arrange the records into any order s such that
 - \square $r_{s_1}, r_{s_2}, \ldots, r_{s_n}$ have keys obeying the property $k_{s_1} \leq k_{s_2} \leq \ldots \leq k_{s_n}$
- Duplicate key values may be (are usually) allowed
 - ☐ Implicit ordering of duplicates:
 - After sorting, duplicate keys remain in the order in which they occurred in the input
 - This may be desirable, and the property is called stability

CSC 375-Turner, Page 2

Comparing Performance of Sorting Algorithms

- Most obvious method: run two sorts on identical input and compare times
 - ☐ Problem: running time may depend on specifics of input values
 - ☐ Factors: number of records, key size, record size, range of key values, amount by which records are out of order
- Analytically, sorts are usually compared using two measures:
 - \square the number of comparisons
 - \square the number of swaps
- Common assumptions:
 - $\hfill \Box$ Each sort is passed an array containing the elements
 - $\ \square$ n is the number of elements to be sorted
 - □ While int is the type in all examples, assume that any complex type implementing binary comparators (e.g. < or ≤) can be sorted</p>

Insertion Sort

One of the simplest sorting algorithms to implement.

- Characteristics:
 - \square Makes n-1 passes
 - \Box For a given pass numbered p, elements in positions 0 through p are ensured to be sorted
- Code example:

Insertion Sort

• Example sort

```
i=1 i=2 i=3 i=4 i=5 i=6 i=7
42
20
17
13
28
14
23
15
```

- Time complexity
 - ☐ Best case:
 - $\ \square$ average case
 - □ worst case

CSC 375-Turner, Page 5

Bubble Sort

Another very simple sort.

- Characteristics:
 - \square Also makes n-1 passes, each pass represents a position
 - \Box For a given pass numbered i, "bubble-up" the element in the upper part of the array belonging in position i
- Code example:

```
void bubble_sort(int *array, int n) {
  for (int i = 0; i < n - 1; i++)
   for (int j = n - 1; j > i; j--)
      if (array[j] < array[j - 1])
        swap(array[j], array[j - 1]);
}</pre>
```

CSC 375-Turner, Page 6

Bubble Sort

Example sort

```
i=1 i=2 i=3 i=4 i=5 i=6 i=7
42
20
17
13
28
14
23
15
```

- Time complexity
 - ☐ Best case:
 - □ average case
 - □ worst case

Selection Sort

Yet another very simple sort.

- Characteristics:
 - \square Also makes n-1 passes, each pass represents a position
 - \square For a given pass numbered i, find the element in the upper part of the array belonging in position i. Only swap after that element is found.
- Code example:

```
void selection_sort(int *array, int n) {
  for (int i = 0; i < n - 1; i++) {
    int lowindex = i;
    for (int j = n - 1; j > i; j--)
        if (array[j] < array[lowindex])
        lowindex = j;
    swap(array[i], array[lowindex]);
  }
}</pre>
```

Selection Sort

• Example sort

```
i=1 i=2 i=3 i=4 i=5 i=6 i=7
42
20
17
13
28
14
23
```

Time complexity

15

☐ Best case:

□ average case

□ worst case

CSC 375-Turner, Page 9

Keeping Swap Costs Low

- Some sorts aren't practical in an array
 - ☐ Desired: a means to swap objects without actually moving them
 - ☐ Pointer swapping can accomplish this

- Examples:
 - ☐ Array of integers: no pointers necessary
 - ☐ Array of student records: pointers necessary

CSC 375-Turner, Page 10

Exchange Sorting

- An exchange is a swap of adjacent records.
 - ☐ Insert, bubble, and selection sort (basically) perform exchanges to move
 - ☐ Therefore, they are sometimes called the exchange sorts.
- Exchange sort performance is measured based on inversions.
 - $\hfill \Box$ An inversion is any pair of array elements out of order with respect to each other
 - That is, consider an ordered pair (i, j) for which i < j and array[i] > array[j]
 - Observation: the number of inversions is exactly the number of exchanges used by insert sort
 - o If the number of inversions is n, then insert sort is O(n)
 - o The average number of inversions in an array of n distinct elements is n(n-1)/4 (a theorem)
 - Exchange sorts are therefore $\Omega(n^2)$ (another theorem)

Shellsort

The first algorithm to break the quadratic time barrier

- Characteristics:
 - $\ \square$ Consists of $\log n$ phases
 - ☐ Works by comparing (and swapping) distant elements
 - ☐ Each phase reduces the distance between compared elements by half
 - ☐ Also called diminishing increment sort
- Code example:

```
void shellsort(int *array, int n) {
  int j;
  for (int gap=n / 2; gap > 0; gap /= 2)
    for (int i = gap; i < n; i++)
    {
      tmp = array[i];
      for (j = i; j >= gap && tmp < a[j - gap]; j -= gap)
            array[j] = array[j - gap];
      array[j] = tmp;
    }
}</pre>
```

Shellsort

- \bullet Shellsort has been shown to be $O(n^{1.5})$ or $o(n^2)$
- Example: sort the list 59, 20, 17, 13, 28, 14, 23, 83, 36, 98, 11, 70, 65, 41, 42, 15

CSC 375-Turner, Page 13

Quicksort

Based on the concept of divide and conquer: a list is divided into sublists divided by a pivot.

- Fastest known sorting algorithm
- ullet Basic algorithm: given a list S of numbers:
 - \Box Choose a **pivot** v from some location in the list
 - ☐ Partition the list into two sublists separated by the pivot:
 - \circ S_1 is the sublist having values >v
 - \circ S_2 is the sublist having values < v
 - \square Quicksort is called recursively on the sublists (when it returns, S_1 and S_2 will be sorted)
 - \square The sorted list is S_1 followed by v followed by S_2 .
 - ☐ Recursion process stops when a list length of 0 or 1 is reached

CSC 375-Turner, Page 14

Quicksort

```
• Code example: initial call would be
  qsort(array,0,n-1);
  void qsort(int *array, int left, int right) {
    int pivot = findpivot(array,left,right);
    swap(array,pivot,right);
    int k = partition(array,left-1,right,array[right]);
    swap(array,k,right);
    if ((k - left) > 1)
      qsort(array,left,k-1);
    if ((right - k) > 1)
      qsort(array,k+1,right);
  int findpivot(int *array, int i, int j) {
    return (i + j) / 2;
  int partition(int *a, int 1, int r, int & pivot) {
      while (array[++1] < pivot);
      while (r && array[--r] > pivot);
      swap(array,1,r);
    } while (l < r);
    swap(array,1,r);
    return 1;
```

Quicksort

• One pivot and partition run:

position	0	1	2	3	4	5	6	7	8	9
initial list	72	6	57	88	60	42	83	73	48	85
partition swap	72	6	57	88	85	42	83	73	48	60
partition:										
pass 1	72	6	57	88	85	42	83	73	48 r	60
swap 1	48	6	57	88	85	42	83	73	72	60
pass 2	48	6	57	88	85	42	83	73	72	60
swap 2	48	6	57	42	85	r 88	83	73	72	60
pass 3	48	6	57	42 r	85	88	83	73	72	60
swap 3	48	6	57	85	42	88	83	73	72	60
reverse swap	48	6	57	42	85	88	83	73	72	60
Partition relocation	48	6	57	42	85 X	88	83	73	72	60 X
Telocation	48	6	57	42	60	88	83	73	72	8 ⁵

- All values less than 60 are now to its left
- All values greater than 60 are now to its right

Cost of Quicksort

- Best case: always partition in half
 - \square Cost is $O(n \log n)$
- Worst case: a bad parttion
 - \square Cost is $O(n^2)$
- Average case:
 - \square Cost is $O(n \log n)$
- Quicksort Optimizations:
 - ☐ Choose a better pivot
 - ☐ Use a better algorithm for small sublists
 - □ Eliminate recursion

CSC 375-Turner, Page 17

Heapsort

Heapsort uses a max heap.

- The general procedure:
 - \square Read in n elements
 - ☐ Build the heap
 - \square Call deleteMax n times in a row
 - \square The array is sorted at that point.
- Code example:

```
void heapsort(int *array, int n) {
  heap H(array,n,n);
  for (int i = 0; i < n; i++)
     H.deleteMax();
}</pre>
```

Mergesort

Based on the concept of merging two sorted lists.

- The general principles:
 - ☐ Each list is assumed sorted
 - ☐ Merge of two lists is accomplished in one pass
 - $\hfill\Box$ Output of merge is placed into a third list
- Pseudocode algorithm:

```
list mergesort(list inlist) {
  if (length(inlist) == 1)
    return inlist;
  list 11 = first half of inlist;
  list 12 = second half of inlist;
  return merge(mergesort(11),mergesort(12));
}
```

Example:

36	20	17	13	28	14	23	15	
20	36	13	17	14	28	15	23]
13	17	20	36	14	15	23	28]
13	14	15	17	20	23	28	36	

CSC 375-Turner, Page 18

Heapsort Example

- Sort the list 73, 6, 57, 88, 60, 42, 83, 72, 48, 85
 - ☐ Before buildHeap:

Array contents

☐ After buildHeap:

Array contents

Heapsort Example (cont.)

• After first deleteMax:

Array contents

• After second deleteMax:

Array contents

CSC 375-Turner, Page 21

Binsort

This is a special-purpose, simple and very efficient sort.

- Given an unsorted array A
 - □ Let B be the array into which the data is sorted
 - ☐ The binsort code is:

```
for (i = 0; i < n; i++)
B(A[i]) = A[i];
```

- Time complexity: $\Theta(n)$
- Why it isn't general:
 - $\hfill\square$ No comparisons are performed
 - \square It only works on a specific list of numbers:
 - Array A contains exactly n elements
 - o Array A must contain a permutation of the numbers from 0 to n
- Improvements:
 - \square Make each bin the head of a list
 - ☐ Allow more keys than records

CSC 375-Turner, Page 22

Improved Binsort

Code:

```
void binsort(int *A, int n) {
  List B[MaxKeyValue]; // an array of lists.
  int item;
  for (i = 0; i < n; i++)
    B[A[i]].append(A[i]);
  for (i = 0; i < MaxKeyValue; i++)
    for (B[i].setFirst(); B[i].isInList(); B[i].next())
    cout << B[i].value() << endl;
}</pre>
```

- Cost appears to be $\Theta(n)$
 - ☐ Actual cost also depends on MaxKeyValue

Bucket Sort

This is a simple generalization of Binsort

- Each bin is associated with a range of values:
- Assign records to bins
 - ☐ Rely on some other sorting technique to sort each bin
 - ☐ The other sorting technique is hopefully very efficient.
- Example:
 - ☐ Given a sequence of numbers between 0 and 99 inclusive
 - ☐ Use 10 bins
 - \square Assign numbers as follows: $bin = key \mod 10$

Radix Sort

This is one specific type of bin sort.

- General idea:
 - ☐ Bin computations are based on the key's radix (its base)
 - ☐ Bins are computed in a series of steps using operations mod base
 - ☐ Example: for base 10 numbers, there are 10 bins and computations are done mod 10
- Example: sort 26, 93, 3, 97, 15, 77, 23, 48, 82, 87, 55, 36, 54, 46
 - \square All keys are in the range 0 through $r^2 1$ (i.e., $0 \le \text{key} \le 99$)
 - \square First pass: compute bin = key mod r (key mod 10), append to that bin
 - \square Second pass: compute bin = key/10 mod r (key/10 mod 10), append to that bin

CSC 375-Turner, Page 25

Radix Sort

• Example:

Initial list: 26, 93, 3, 97, 15, 77, 23, 48, 82, 87, 55, 36, 54, 46

List after second pass: 3, 15, 23, 26, 36, 46, 54, 55, 77, 82, 87, 93, 97

First pass (right digit) 0 1 1 1 2 82 3 93 4 54 5 6 26 7 97 77 8 48 9 9 9 9 9 9

CSC 375-Turner, Page 26

Empirical Comparison

Which algorithm is the fastest?

- Analysis reveals several classes of algorithms but doesn't distinguish among those in a class
- Some times from Figure 7.13: (data is lists of integers, all times are in seconds)

	Size					
Sort	1K	10K	100K	1M	U	D
Insert	2.86	352.1	47241	-	0.0	803.0
Bubble	9.18	1066.1	123808	-	513.5	812.9
Selection	5.82	563.5	69437	-	577.8	560.8
Shell	5.50	9.9	170	3080	2.8	6.1
Quick	0.33	3.8	49	600	1.7	2.2
Quick/O	0.27	3.3	44	550	1.7	1.6
Merge	0.61	60.0	105	1430	6.0	6.1
Неар	0.38	47.2	94	1650	5.0	5.0
Radix/8	2.31	23.6	241	2470	23.6	23.6

- U and D columns: data consisted of 10,000 previously sorted in increasing (Up) or decreasing (Down) order
 - □ Note insert sort performance for U
 - \square Why is quicksort so good for these two?

General Lower Bound for Sorting

- It is possible to prove a lower bound for all general-purpose sorting algorithms
- Facts:
 - \square Sorting is $O(n \log n)$
 - \square Sorting I/O takes $\Omega(n)$ time
 - \square This give a "cheap" lower found of $\Omega(n)$
- It can be shown:
 - \square The **problem** of sorting is $\Omega(n \log n)$
 - ☐ Form of the proof:
 - Comparison-based sorting can be modeled by a binary tree
 - It can be shown the tree must have $\Omega(n!)$ leaves
 - \circ Thus the tree must have $\Omega(n\log n)$ levels, representing the number of comparisons