

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2015

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 17 pages. *Hierdie memorandum bestaan uit 17 bladsye.*

[20]

(2)

QUESTION 1/VRAAG 1

1.1 B √√ (2)

1.2 $\mathsf{D}\,\checkmark\!\checkmark$

1.3 A $\checkmark\checkmark$ (2)

1.4 A \checkmark (2)

1.5 B $\checkmark\checkmark$ (2)

1.6 $C \checkmark \checkmark$ (2)

1.7 B $\checkmark\checkmark$ (2)

1.8 D √√ (2)

1.9 B √√ (2)

 $1.10 \quad C \checkmark \checkmark \tag{2}$

QUESTION 2/VRAAG 2

2.1 2.1.1 B ✓ (1)

2.1.3 $C_nH_{2n-2} \checkmark$ (1)

2.1.4 4-ethyl-5-methylhept-2-yne / 4-ethyl-5-methyl-2-heptyne

4-etiel-5-metielhept-2-yn / 4-etiel-5-metiel-2-heptyn

Marking criteria/Nasienriglyne:

- 4-ethyl / 4-etiel ✓ **OR/OF** 4 ethyl / 4 etiel
- 5-methyl / 5-metiel ✓ **OR/OF** 5 methyl / 5 metiel
- hept-2-yne / 2-heptyne / hept-2-yn / 2-heptyn √
 OR/OF hept 2 yne / 2 heptyne / hept 2 yn / 2 heptyn

IF/INDIEN:

Any error e.g. hyphens omitted and/or incorrect sequence:

Enige fout bv. koppeltekens weggelaat en/of verkeerde volgorde: Max./Maks. $\frac{2}{3}$ (3)

2.1.5 Butan-2-one / 2-butanone / Butanone Butan-2-oon / 2-butanoon / Butanoon

Marking criteria/Nasienriglyne:

- Functional group / Funksionele groep ✓
- Whole name correct / Hele naam korrek √

2.2

2.2.1 Alkanes / Alkane ✓

(1)

2.2.2 <u>2-methyl</u>propane <u>2-metiel</u>propaan

OR/OF

Methylpropane Metielpropaan

Notes/Aantekeninge:

IF/INDIEN:

2 methylpropane / 2 metielpropaan √ 1/2

IF sequence incorrect/**INDIEN** volgorde verkeerd: Max./Maks. $\frac{1}{2}$

<u>Marking criteria structural formula:</u> *Nasienriglyne struktuurformule:*

- Three carbons in longest chain. ✓ Drie koolstowwe in die langste ketting.
- Methyl group on second carbon.
 Metielgroep op tweede koolstof. ✓

Notes/Aantekeninge:

- One or more H atoms omitted:
 Een of meer H-atome uitgelaat: 1/2
- Condensed or semi-structural formula: Gekondenseerde of semi-struktuurformule:

(4)

2.2.3 Chain / Ketting √

(1)

2.3

2.3.1 Haloalkanes / Alkyl halides ✓ Haloalkane / Alkielhaliede

(1)

2.3.2 Substitution / halogenation / bromonation ✓ Substitusie / halogenering / halogenasie / bromonering

(1) **[16]**

QUESTION 3/VRAAG 3

3.1

3.1.1 Esterification / Condensation ✓
Esterifikasie / Verestering / Kondensasie (1)

3.1.2

3.1.3

(1)

3.1.4 Dehydration / elimination √
Dehidrasie / dehidratering / eliminasie

Propanoic acid / Propanoësuur √

(1)

(1)

3.1.5 (Concentrated) H₂SO₄ / sulphuric acid / H₃PO₄ / phosphoric acid ✓ (Gekonsentreerde) H₂SO₄ / / swaelsuur / swawelsuur / H₃PO₄ / fosforsuur

(1)

3.1.6

Notes/Aantekeninge

- Functional group: √
 Funksionele groep:
- Whole structure correct: ✓ Hele struktuur korrek:

(2)

3.2

3.2.1 H , C=

Notes/Aantekeninge

- Functional group: √
 Funksionele groep:
- Whole structure correct: √
 Hele struktuur korrek:

(1)

(2)

3.2.2 Addition / Addisie ✓

[10]

QUESTION 4/VRAAG 4

4.1	A bond/an atom or a group or atoms that determine(s) the (physical and	
	chemical) properties of a group of organic compounds. ✓	
	'n Binding of 'n atoom of 'n groep atome wat die (fisiese en chemiese)	
	eienskappe van 'n groep organiese verbindings bepaal.	

(2)

4.2

4.2.1 D / ethanoic acid / etanoësuur ✓

Lowest vapour pressure. ✓ Laagste dampdruk.

(2)

4.2.2 A / butane / butaan ✓

(1)

- Between molecules of <u>A</u> / butane / alkanes are <u>London / induced dipole / dispersion forces</u>. ✓
 Tussen molekule van <u>A</u> / butaan / alkane is <u>London / geïnduseerde dipole / dispersiekragte</u>.
 - Between molecules of **B** / propan-2-one / ketones are <u>dipole-dipole</u> <u>forces</u> ✓ in addition to London / induced dipole / dispersion forces.

 Tussen molekule van **B** / propan-2-oon / ketone is <u>dipool-dipool-kragte</u> tesame met London / geïnduseerde dipool /dispersiekragte.
 - Intermolecular forces in A are weaker than those in B. / Less energy is needed in A to break/overcome intermolecular forces. ✓
 Intermolekulêre kragte in A is swakker as die in B./ Minder energie word by A benodig om intermolekulêre kragte te breek/oorkom.

OR/OF

Intermolecular forces in **B** are stronger than those in **A**. / More energy is needed in **B** to break/overcome intermolecular forces.

Intermolekulêre kragte in **B** is sterker as die in **A**. / Meer energie word by **B** benodig om intermolekulêre kragte te breek/oorkom.

OR/OF

- Between molecules of <u>A</u> / butane / alkanes are <u>weak London / induced</u> <u>dipole / dispersion forces</u>.
 Tussen molekule van <u>A</u> / butaan/alkane is <u>swak London / geïnduseerde</u> dipool / dispersiekragte.
- Between molecules of <u>B</u>/propan-2-one / ketone are <u>strong(er) dipoledipole</u> dipole forces in addition to London/induced dipole / dispersion forces.
 Tussen molekule van <u>B</u>/propan-2-oon / ketone is <u>sterk(er) dipool-dipool/dispersiekragte</u>.

(3)

4.4 London forces/dispersion forces/induced dipole forces/dipole-dipole forces. ✓ Londonkragte/dispersiekragte/geïnduseerde dipoolkragte/dipool-dipoolkragte.

OR/OF

A and **B** do not have hydrogen bonding./**C** and D have hydrogen bonding. **A** en **B** het nie waterstofbinding nie./**C** en **D** het waterstofbinding.

(1)

4.5 **OPTION 1/OPSIE 1**

- D has more sites for hydrogen bonding than C / forms dimers / is more polar than C. √
 - **D** het meer punte vir waterstofbinding as **C** / vorm dimere / is meer polêr as **C**.
- D has stronger / more intermolecular forces / dipole-dipole forces. ✓
 D het sterker / meer intermolekulêre kragte / dipool-dipoolkragte.

OR/OF

D needs more energy to overcome/break the intermolecular forces. **D** het meer energie nodig om die intermolekulêre kragte te oorkom/breek.

OPTION 2/OPSIE 2

- C has less sites for hydrogen bonding than D. / C does not form dimers / C is less polar.
 - **C** het minder plekke vir waterstofbinding as **D**. / **C** vorm nie dimere nie / **C** is minder polêr.
- C has weaker / less intermolecular forces / dipole-dipole forces./ C needs less energy to overcome/break intermolecular forces / dipole-dipole forces.
 C het swakker / minder intermolekulêre kragte / dipool-dipoolkragte./ C benodig minder energie om intermolekulêre kragte / dipool-dipoolkragte te oorkom/breek.

4.6 Marking criteria/Nasienriglyne

- Mole ratio for V(CO₂) correctly used. / Molverhouding vir V(CO₂) korrek gebruik.
- Mole ratio for V(H₂O) correctly used. / Molverhouding vir V(H₂O) korrek gebruik.
- Mole ratio for V(O₂ reacted) correctly used. / Molverhouding vir V(O₂ reageer) korrek gebruik.
- V(O₂ excess/oormaat) = V(O₂ initial/aanvanklik) V(O₂ change/verandering).
- $V_{tot} = 80 \text{ cm}^3$

OPTION 2/OPSIE 2

	C ₄ H ₁₀	O ₂	CO ₂	H ₂ O
Initial V (cm ³) BeginV (cm ³)	8	60	0	0
Change in V (cm ³) Verandering V (cm ³)	8	52 ✓	32 √	40 ✓
Final V (cm ³) Finale V (cm ³)	0	8 🗸	32	40

Total/totale volume = $8 + 32 + 40 = 80 \text{ cm}^3 \checkmark$

(2)

OPTION 3/OPSIE 3						
	C ₄ H ₁₀	O_2	CO ₂	H ₂ O		
Initial V (dm³) <i>Begin</i> V (dm³)	0,008	0,06	0	0		
Change in V (dm ³) Verandering V (dm ³)	0,008	0,052 ✓	0,032 ✓	0,04 ✓		
Final V (dm ³) <i>Finale</i> V (dm ³)	0	0,008 ✓	0,032	0,04		

Total/totale volume = $0.008 + 0.032 + 0.04 = 0.08 \text{ dm}^3 \checkmark$

(5) **[16]**

QUESTION 5/VRAAG 5

5.1 Time/Tyd: (Stop) watch / (Stop)horlosie ✓

Volume: (Gas) syringe / Burette / Measuring cylinder / (Chemical) balance /

Erlenmeyer flask / Graduated flask √

(Gas)spuit / Buret / Maatsilinder / (Chemiese) balans /

Erlenmeyer fles / Gegradueerde fles

Notes/Aantekeninge

• Only one mark per type of apparatus. / Slegs een punt per tipe apparaat.

(2)

o Only one mark per ty

5.2 5.2.1 $t_1 \checkmark$ (1)

5.2.2 $t_3 \checkmark$ (1)

5.3 Between t_1 and $t_2 \checkmark$ Tussen t_1 en t_2 (1)

5.4

Marki	Marking criteria/Nasienriglyne					
Exp.	Initial gradient higher than that of Exp.1. Aanvanklike gradient groter as die van Eksp 1.	✓				
2	Curve reaches same constant volume as for Exp. 1 (but earlier).					
	Kurwe bereik dieselfde konstante volume as in Eksp 1 (maar gouer).	√				
Exp. 3	Initial gradient lower than that of Exp.1. Aanvanklike gradient kleiner as die van Eksp. 1.	✓				
	Curve reaches a smaller constant volume as for Exp. 1 (at a later stage). Kurwe bereik (later) 'n kleiner konstante volume as vir Eksp. 1.	✓				

(4)

5.5.1 Marking criteria/Nasienriglyne

- $n(HC\ell) = (0,1)(100 \times 10^{-3})$
- Use mole ratio/Gebruik molverhouding: n(Zn) = ½n(HCℓ)
- Substitute 65 into/ Vervang 65 in $n = \frac{m}{M}$
- $n(Zn_{final/finaal}) = n(Zn_{initial/aanvanklik}) n(Zn_{used/gebruik})$ $m(Zn_{final/finaal}) = m(Zn_{initial/aanvanklik}) - m(Zn_{used/gebruik})$
- Final answer/Finale antwoord: Range/gebied: 0,33 g 0,48 g

OPTION/OPSIE 1 $n(HC\ell) = cV$ $= (0,1)(100 \times 10^{-3}) \checkmark$ = 0.01 moln(Zn reacted/gereageer): $n(Zn) = \frac{1}{2}n(HC\ell)$ $= \frac{1}{2}(0.01) \checkmark$ $= 5 \times 10^{-3} \text{ mol}$ n(Zn reacted/gereageer): $m(Zn) = (5 \times 10^{-3})(65) \sqrt{= 0.325} g$ $m(Zn_f) = 0.8 - 0.325 \checkmark$ $= 0.48 \, \text{g} \, \checkmark \, (0.475 \, \text{g})$

Smaller than / Kleiner as ✓ 5.5.2

(1) [15]

(1)

(5)

QUESTION 6/VRAAG 6

6.1 Equal to / Gelyk aan ✓

 $K_c = \frac{[X_3]^2}{[X_2]^3} \checkmark$

6.2

6.3.2

$$= \frac{(0,226)^2}{(0,06)^3} \checkmark$$
$$= 236,46 \checkmark$$

korrekte substitusie: Max./Maks. 3/1

Wrong K_C expression / Verkeerde K_c -uitdrukking Max./Maks. 0/4

No K_C expression, correct substitution / Geen K_c- uitdrukking,

If one or more exponents are omitted in substitution step but correct answer obtained: Max 3/1

Indien een of meer eksponente uitgelaat by substitusie stap, maar korrekte antwoord verkry: Maks 3/

6.3 (1)

✓ Increases / Vermeerder ✓ 6.3.1

> The increase in $[X_3]$ is opposed. / Change is opposed. \checkmark Die <u>verhoging in [X₃] word teengewerk</u>. / <u>Verandering word teenwerk</u>.

The reverse reaction is favoured. / X_3 is used / $[X_3]$ decreases. \checkmark Die terugwaartse reaksie word bevoordeel./X₃ word gebruik / [X₃] neem af. (2)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om assbelief

(4)

6.4 Higher than / Hoër as ✓

(1)

- The <u>concentration of the product/X₃(g) is lower</u> / the concentration of the reactant / X₂(g) is higher. ✓
 Die <u>konsentrasie van die produkte/X₃(g) is laer</u> / die konsentrasie van die reaktans / X₂(g) is hoër.
- The increase in temperature <u>favoured the reverse reaction</u>. ✓ Die toename in temperatuur het die terugwaartse reaksie bevoordeel.
- According to Le Chatelier's principle an increase in temperature favours the
 endothermic reaction. ✓
 Volgens Le Chatelier se beginsel bevoordeel 'n toename in temperatuur die
 endotermiese reaksie.

OR/OF

Exothermic / Eksotermies ✓

- $[X_3]$ decreases and $[X_2]$ increases. / $[X_3]$ neem af en $[X_2]$ neem toe. \checkmark
- K_c decreases if temperature increases./K_c neem af as die temperatuur afneem. √
- Decrease in temperature favoured the forward reaction. / Verlaging in temperatuur het die voorwaartse reaksie bevoordeel. ✓

6.6

Marking criteria/Nasienriglyne	
Peak of curve at 400 °C lower than at 300 °C and shifted to the right. Piek van kurwe by 400 °C laer as by 300 °C en skuif na regs.	✓
Curve at 400 °C has larger area at the higher E _k . Kurwe by 400 °C het groter oppervlak by hoë E _k .	✓

(2) **[15]**

(4)

QUESTION 7/VRAAG 7

7.1

7.1.2 Acidic / Suur ✓

Forms H_3O^+ ions during hydrolysis./ Vorm H_3O^+ ione gedurende hidrolise. \checkmark

OR/OF

Salt of strong acid and weak base./Sout van sterk suur en swak basis.

OR/OF

 (NH_4^+) acts as proton donor. / (NH_4^+) tree op as 'n protonskenker.

(2)

7.2

7.2.1
$$n = cV \checkmark$$

= $(0,1)(0,1) \checkmark$
= 0,01 mol \checkmark

(3)

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1. POSITIEWE NASIEN VAN VRAAG 7.2.1.

Marking criteria/Nasienriglyne

- Substitute volume and concentration to calculate n(HCℓ) ✓ Vervang volume en konsentrasie om n(HCℓ) te bereken.
- Use mole ratio/Gebruik molverhouding: n(NaOH) = n(HCℓ) = 1:1 √
- n(NaOH) x 4 OR/OF V(HCℓ) x 4 OR/OF n(HCℓ) x 4 ✓
- Subtraction/Aftrekking: n(NaOHinitial/aanvanklik) n(NaOHexcess/oormaat) ✓
- Use mole ratio/Gebruik molverhouding: n(NaOH) = n(NH₄Cℓ) = 1:1 √
- Substitute/Vervang 53,5 g·mol⁻¹ in n = $\frac{m}{M}$. \checkmark
- Percentage calculation/Persentasieberekening ✓
- Final answer/Finale antwoord: 0,11 g 0,21 g ✓

92

100%:

OPTION 4/OPSIE 4

$$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b} \therefore \frac{0.11 \times 14.55}{c_b \times 25} = \frac{1}{1} \checkmark$$

$$c_b = 0.064 \text{ mol} \cdot \text{dm}^{-3}$$

n(NaOH in excess in 100 cm³): n(NaOH in oormaat in 100 cm³):

$$n(NaOH) = cV$$

= $(0,064)(0,1) \checkmark$
= $6.4 \times 10^{-3} \text{ mol}$

n(NaOH reacted/gereageer):

$$n(NaOH) = 0.01 - 0.006402 \checkmark$$

= 0.003598 mol

$$n(NH_4C\ell) = n(NaOH)$$

= 0,003598 mol \checkmark

$$m(NH_4C\ell) = nM$$

= (0,003598)(53,5) \checkmark
= 0,1,92 g

92%: 0,192 g

100%: 0,192 x
$$\frac{100}{92}$$
 \checkmark = 0,21 g \checkmark

OPTION 5/OPSIE 5

$$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b} :: \frac{0.11 \times 14.55}{c_b \times 25} = \frac{1}{1} \checkmark$$

$$\therefore c_b = 0.064 \text{ mol} \cdot \text{dm}^{-3}$$

$$\Delta c(NaOH) = 0.1 - 0.064 \checkmark \checkmark$$

= 0.036 mol·dm⁻³

n(NaOH reacted/gereageer):

$$n(NaOH) = cV$$

= 0,036 x 0,1
= 0,0036 mol

$$n(NH_4C\ell) = n(NaOH) = 0,0036 \text{ mol } \checkmark$$

$$n = \frac{m}{M}$$

$$\therefore 0,0036 = \frac{92}{100}x$$

$$0,0036(53,5) = 0,92x$$

$$x = 0,21 \text{ g } \checkmark$$

(8)

7.3 **OPTION 1/OPSIE 1**

 $[OH^{-}] = [NaOH] = 0,5 \text{ mol} \cdot \text{dm}^{-3}$

$$K_w = [H_3O^+][OH^-]$$

1 x 10⁻¹⁴ = $[H_3O^+]0,5$ \checkmark
 $\therefore [H_3O^+] = 2 \times 10^{-14} \text{ mol·dm}^{-3}$
 $pH = -log[H^+] \checkmark$
 $= -log(2 \times 10^{-14}) \checkmark$
 $= 13.7 \checkmark$

OPTION 2/OPSIE 2

pOH =
$$-log[OH^-] \checkmark$$

= $-log(0,5) \checkmark$
= 0,301
 ψ
pH + pOH = 14
pH = 14 - 0,301 \checkmark
= 13,7 \checkmark (13,699)

Notes/Aantekeninge

IF/INDIEN:

Wrong formula/*Verkeerde formule*: pH = -log[OH⁻]; pOH = -log[NaOH] No marks for substitution and answer./*Geen punte vir vervanging en antwoord*.

(4) [18]

QUESTION 8/VRAAG 8

8.2

25 °C / 298 K ✓ 8.1 Temperature/*Temperatuur*:

> $101.3 \text{ kPa} / 1.013 \text{ x } 10^5 \text{ Pa} / 1 \text{ atm} / 100 \text{ kPa} \checkmark$ Pressure/Druk:

Concentration/Konsentrasie: 1 mol·dm⁻³ ✓ (3)

8.2.1 Cd(s) / Cadmium / Kadmium / Cd|Cd²⁺ / Cd²⁺|Cd ✓

Notes/Aantekeninge Ignore phases. / Ignoreer (1)fases.

(5)

8.2.2

$$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} \checkmark$$

$$0,13 = E_{cathode}^{\theta} - (-0,40) \checkmark$$

$$E_{cathode}^{\theta} = 0,13 - 0,40$$

$$= -0,27 (V) \checkmark$$

Q is Ni/nickel/nikkel ✓

Notes/Aantekeninge

- Accept any other correct formula from the data sheet. / Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. $E^{\circ}_{cell} = E^{\circ}_{OA} - E^{\circ}_{RA}$ followed by correct substitutions: / Enige ander formule wat onkonvensionele afkortings gebruik bv. $E^{\circ}_{sel} = E^{\circ}_{OM}$ - E°_{RM} gevolg deur korrekte vervangings: 4/5

8.3 $Cd(s) \rightarrow Cd^{2+}(aq) + 2e^{-} \checkmark \checkmark$ 8.3.1 Ignore phases. / Ignoreer fases.

Notes/Aantekeni	<u>inge</u>			
Cd ²⁺ + 2e ⁻ ← Cd	$(\frac{2}{2})$	$Cd \rightleftharpoons Cd^{2+} + 2e^{-}$	$(\frac{1}{2})$	
Cd ← Cd ²⁺ + 2e ⁻	$(\frac{0}{2})$	$Cd^{2+} + 2e^{-} \rightleftharpoons Cd$	$(\frac{0}{2})$	(2)

8.3.2 Pt/Platinum ✓ (1)

8.4 **OPTION 1/OPSIE 1**

Compare/Vergelyk Q ²⁺ & Cd ²⁺	Q ²⁺ is reduced / Cd is oxidised and therefore Q ²⁺ is a stronger oxidising agent than Cd ²⁺ . Q ²⁺ word gereduseer / Cd word geoksideer, en dus is Q ²⁺ 'n sterker oksideermiddel as Cd ²⁺ .	√
Compare/Vergelyk R ₂ & Cd ²⁺	R_2 is reduced / Cd is oxidised and therefore R_2 is a stronger oxidising agent than Cd^{2+} . \checkmark R_2 word gereduseer / Cd word geoksideer, dus is R_2 'n sterker oksideermiddel as Cd^{2+} .	✓
Compare/Vergelyk R ₂ & Q ²⁺	The cell potential of combination II is higher than that of combination I, therefore R_2 is a stronger oxidising agent than Q^{2+} . Die selpotensiaal van kombinasie II is hoër as dié van kombinasie I en dus is R_2 'n sterker oksideermiddel as Q^{2+} .	√
Final answer/ Finale antwoord	$Cd^{2+}; Q^{2+}; R_2$ OR/OF $Cd^{2+}; Ni^{2+}; C\ell_2$	✓

OPTION 2/OPSIE 2

• The reduction potential of <u>Cl'|Cl₂ = 1,36 V</u> ✓ because the cell potential of combination II is 1,76 V and the reduction potential of Cd|Cd²⁺ is 0,4 V. Die reduksiepotensiaal van <u>Cl'|Cl₂ = 1,36 V</u> omdat die selpotensiaal van kombinasie II 1,76 V is en die reduksiepotensiaal van Cd|Cd²⁺ 0,4 V is.

OR/OF

 R_2 is $C\ell_2$ because the cell potential of combination II is 1,76 V and the reduction potential of Cd|Cd²⁺ is 0,4 V./ R_2 is $C\ell_2$ omdat die selpotensiaal van kombinasie II 1,76 V is en die reduksiepotensiaal van Cd|Cd²⁺ 0,4 V is.

- Cd|Cd²⁺ has the lowest reduction potential (-0,4 V) and therefore Cd²⁺ is the weakest oxidising agent. / Cd|Cd²⁺ het die laagste reduksiepotensiaal (0,4 V) en dus is Cd²⁺ die swakste oksideermiddel. ✓
- Cl'|Cl₂ has the highest reduction potential and therefore Cl₂ is the strongest oxidising agent. / Cl'|Cl₂ het die hoogste reduksiepotensiaal en dus is Cl₂ die sterkste oksideermiddel. ✓
- Final answer/Finale antwoord: Cd²⁺; Q²⁺; R₂ ✓ OR/OF Cd²⁺; Ni²⁺; Cℓ₂ (4) [16]

(2)

(1)

QUESTION 9/VRAAG 9

9.1 **ANY ONE/ENIGE EEN:**

- The chemical <u>process</u> in which <u>electrical energy is converted to chemical energy</u>. ✓✓
 Die chemiese <u>proses</u> waarin <u>elektriese energie omgeskakel word na chemiese energie</u>.
- The <u>use</u> of <u>electrical energy to produce a chemical change</u>.

 Die <u>gebruik</u> van <u>elektriese energie om 'n chemiese verandering te weeg</u> <u>te bring</u>.
- <u>Decomposition of an ionic compound by means of electrical energy.</u> Ontbinding van 'n ioniese verbinding met behulp van elektriese energie.
- The <u>process</u> during which and <u>electric current passes through a solution/ionic liquid/molten ionic</u> compound.
 Die <u>proses</u> waardeur 'n <u>elektriese stroom deur 'n oplossing/ioniese vloeistof/gesmelte ioniese</u> verbinding beweeg.

9.2 ANY ONE/ENIGE EEN:

- To keep the polarity of the electrodes the same. ✓ Om die polariteit van die elektrodes dieselfde te hou.
- To prevent the anode and cathode from swopping. Om te verhoed dat die anode en katode omruil.
- DC provides a <u>one way flow of electrons</u> ensuring that the same chemical reaction occurs all the time at the electrodes.
 GS verskaf 'n <u>eenrigting vloei van elektrone</u> en verseker dat dieselfde chemiese reaksie altyd by die elektrodes plaasvind.
- If you use AC the polarity of the electrodes will keep changing.

 Wanneer jy WS gebruik word hou die polariteit van die elektrodes aan om te verander.
- Pure copper deposited on only one electrode.
 Suiwer koper slaan slegs op een elektrode neer.

9.3 Cu²⁺ (aq) + 2e⁻ → Cu (s) ✓ ✓ Ignore phases. / Ignoreer fases.

Notes/Aantekeninge			
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu (\frac{1}{2})$	$Cu \leftarrow Cu^{2+} + 2e^{-}$	$(\frac{2}{2})$	
$Cu \rightleftharpoons Cu^{2+} + 2e^{-}$ $\binom{0}{2}$	Cu ²⁺ + 2e ⁻ ← Cu	$(\frac{0}{2})$	(2)

- 9.4 Cu²+ is a stronger oxidising agent √ than Zn²+. √ Cu²+ is 'n sterker oksideermiddel as Zn²+.
 - Cu²⁺ will be reduced to Cu. / Cu²⁺ sal gereduseer word na Cu. ✓

OR/OF

- Zn is a stronger reducing agent than Cu. Zn is 'n sterker reduseermiddel as Cu.
- Cu²⁺ will be reduced to Cu. / Cu²⁺ sal gereduseer word na Cu.

OR/OF

- The <u>standard reduction potential of Cu²⁺|Cu is higher than that of Zn²⁺|Zn.</u>

 Die <u>standaard reduksie potensiaal van Cu²⁺|Cu is hoër as die van Zn²⁺|Zn.</u>
- Cu²⁺ will be reduced to Cu. / Cu²⁺ sal gereduseer word na Cu.

OR/OF

- The standard reduction potential of Zn²⁺|Zn is lower than that of Cu²⁺|Cu. Die standard reduksie potensiaal van Zn²⁺|Zn is laer as die van Cu²⁺|Cu.
- Cu²⁺ will be reduced to Cu. / Cu²⁺ sal gereduseer word na Cu.

9.5

$$n = \frac{m}{M}$$
2,85 x 10⁻² = $\frac{m}{63,5}$

$$m = 1,81 g$$
% purity = $\frac{1,81}{2}$ × 100 ×
= 90,49 % ×

Marking guidelines/Nasienriglyne

• Substitute 63,5 \checkmark and 2,85 x 10⁻² \checkmark in n = $\frac{m}{M}$ Vervang 63,5 en 2,85 x 10⁻² in n = $\frac{m}{M}$

- Percentage purity. ✓ Persentasie suiwerheid.
- Final answer/Finale antwoord:
 90,49% ✓ (Accept/Aanvaar: 90,5%)

[12]

(4)

(3)

QUESTION 10/VRAAG 10

10.1

10.1.1 Haber (process) / Haber(proses) √ (1)

(3)

(3)

10.1.2

 $N_2 + 3H_2 \checkmark \Rightarrow 2NH_3 \checkmark$ bal √

Notes/Aantekeninge

- Balancing ✓ Reactants ✓ Products ✓ Reaktanse √ Produkte √ Balansering ✓
- Ignore/Ignoreer → and phases / en fases
- Marking rule 6.3.10/Nasienreël 6.3.10

Air / Lug ✓ 10.1.3 (1)

10.2

10.2.1 40% ✓ (1)

- 10.2.2 High yield / percentage ✓ Hoë opbrengs / persentasie
 - High rate due to higher concentration. ✓ Hoë tempo weens hoër konsentrasie. (2)
- 10.2.3 Low reaction rate / Lae reaksietempo ✓ (1)

10.3

Marking guidelines/Nasienriglyne 28

$$\frac{28}{80}$$
 \(x \ 50 \left\) 17,5 kg \(\left\)

OPTION 1/OPSIE 1

% N in NH₄NO₃ = $\frac{28}{80}$ \checkmark ×100

= 35%

m(N) in 50 kg: $\times 50 \checkmark = 17,5 \text{ kg} \checkmark$ **OPTION 2/OPSIE 2**

 $m(N \text{ in } NH_4NO_3) = \frac{28}{80} \checkmark \times 50 \checkmark$ $= 17.5 \text{ kg} \checkmark$

> TOTAL/TOTAAL: 150