Marches aléatoires embranchantes dans un milieu variable

Yvann Le Fay

Août 2021

Resumé

Dans cet article, on considère une marche aléatoire embrachant dans un environnement variable (Branching Random Walks in Varying Environment (BRWE)). Si $Z_n(x)$ est une variable aléatoire indiquant la quantité de particules à la ligne n à gauche de x, on montre, sous certaines conditions assez générales, que la quantité appelée flux quadratique, $\mathbb{E}(Z_n(+\infty)^2)/\mathbb{E}(Z_n(+\infty))^2$ évolue en \sqrt{n} . De plus, on calcule les flux des ordres supérieures pour en déduire que $\mathbb{P}(Z_n(+\infty) = 0)$ évolue en $\frac{1}{\sqrt{n}}$. Les notations introduites sont celles de [insérer citation vers KLEBANER 82].

0.1 Introduction et notations

Une marche aléatoire embrachante dans un milieu variable (BRWVE) tel qu'on l'entend dans cet article est un processus embrachant ponctuel. On considère qu'à la ligne n=0, il existe une particule $anc\hat{e}tre$ à l'origine dont la présence est indiquée par $Z_0=\mathbbm{1}(\{0\})$. A la ligne suivante, les positions des particules forment un processus ponctuel réel noté X_0 . Définissons $\{X_n:n\in\mathbb{N}\}$ une suite de processus ponctuels indépendants sur \mathbb{R} , et pour $n\in\mathbb{N}$, $\{X_{n,r}\}_r$ une suite de copies indépendantes de X_n . On introduit Z_n le processus ponctuel formé à la n-ème ligne par les particules de positions $\{z_{n,r}\}_r$, défini par récurrence par, pour tout $B\in\mathcal{B}(\mathbb{R})$, un borélien,

$$Z_{n+1}(B) = \sum_{r} X_{n,r}(B - z_{n,r})$$
 $Z_0(B) = \mathbb{1}_B(\{0\}).$

On note $Z_n(x) = Z_n(]-\infty,x]$) et $Z_n(\mathbb{R}) = Z_n(+\infty), m_{n,r} = \mathbb{E}(Z_n^r)$, les moments d'ordre r. On suppose que les moments d'ordres 1 et 2 sont finis pour tout n.

Il a été montré dans [citation vers autre papier que] que $\mathbb{E}(Z_n) = \prod_{k=0}^{n-1} \mathbb{E}(X_k)$ et que la suite de variables aléatoires normalisées $\{W_n = Z_n/\mathbb{E}(Z_n)\}_n$ est une martingale.

0.2 Flux quadratique

Nous définissons le flux quadratique à la ligne n, $\Phi_2(n)$ comme étant la moyenne de la quantité de particules à la ligne n au carrée après normalisation, $\Phi_2(n) = \mathbb{E}(W_n(+\infty)^2)$.

0.3 Temps d'arrêt

On note $T = \inf\{n \in \mathbb{N} : Z_n(+\infty) = 0\}$. On a $\mathbb{P}(T \ge n) =$

 $D\acute{e}monstration$. On a

$$\Phi_k(n) = \mathbb{E}(W_n(+\infty)^k) = \mathbb{E}(\sum_r W_n(\{z_{n,r}\}))^k$$

$$= \sum_{(x_1,\dots,x_k)} \mathbb{P}([W_n(\{x_1\}) > 0] \cap \dots \cap [W_n(\{x_k\} > 0]))$$

Mais aussi,

$$\mathbb{P}(T \ge n) = \mathbb{P}(\bigcup_{r} [W_n(z_{n,r}) > 0])$$

$$= \sum_{\varnothing \ne I \subset \{z_{n,r}\}_r\}} (-1)^{|I|-1} \mathbb{P}(\bigcap_{z \in I} [W_n(z) > 0])$$

$$= 1 - (\Phi_2(n) - 1) + (\Phi_3(n) - \Phi_2(n)) - \dots$$

$$= 2 \sum_{j=0}^{\infty} \Phi_{2j+1}(n) - \Phi_{2j}(n)$$