ITS	OSI-Schichtenmodell Lernaufgaben	OSZIMT
Name:	Datum: Klasse:	Blatt Nr.: 1/3 Lfd. Nr.:

ISO/OSI-REFERENZMODELL - AUFGABEN

1. Ergänzen Sie die Schichten des OSI-Modells und die entsprechende Funktion:

1. Erganzen Sie die Schichten des OSI-Modells und die entsprechende Funktion:			
SCHICHT (ENGLISCH UND DEUTSCH)	FUNKTION		
Physical Layer / Bitübergagngsschicht	Übertragung von Bits über ein physisches Medium, z. B. Kabel, Funk		
Data Link Layer /Sicherungsschicht	Fehlererkennung und -korrektur, Steuerung des Zugriffs auf das Medium		
Network Layer / Netzwerkschicht	Logische Adressierung, Routing zwischen Netzwerken		
Transport Layer/ Transportschicht	Segmentierung der Daten, Flusskontrolle, Fehlerkontrolle		
Session Layer / Sitzungsschicht	Aufbau, Verwaltung und Beendigung von Sitzungen		
Presentation Layer / Darstellungsschicht	Datenumwandlung, Verschlüsselung und Komprimierung		
Application Layer / Anwendungsschicht	Schnittstelle für Anwendungen zur Kommuni- kation im Netzwerk		

2. Ordnen Sie in der nebenstehenden Abbildung die Protokolldateneinheiten den entsprechenden Schichten zu.

ITS	OSI-Schichtenmodell Lernaufgaben	OSZIMT	
Name:	Datum: Klasse:	Blatt Nr.: 2/3 Lfd. Nr.:	

3. Bringen Sie die Schritte des Kapselungsprozesses in die richtige Reihenfolge.

•	Bilder und Texte in Da-			
	ten umwandeln.	Daten		Application
•	Daten segmentieren.			
•	IP-Adresse einfügen.	Bit		Physical
•	Header der Siche-]]	•
	rungsschicht einfügen.	Frame		Data Link
•	Daten in Bits umwan-	Paket		Network
	deln.		I	
		Segment		Transport

4. Ergänzen Sie in der folgenden Tabelle die Begriffe: MAC-Adresse, PDU, Segment, Segmentierung, IP-Adresse

BEGRIFF / ABKÜRZUNG	ERLÄUTERUNG	
PDU	Der allgemeine Begriff für Daten in den einzelnen Schichten.	
Segmentierung	Unterteilung von Datenströmen in kleinere Einheiten, die für	
	eine Übertragung geeignet sind.	
MAC-Adresse	Genormte Adresse (6 Byte lang) der Sicherungsschicht, die für	
	jeden Port bzw. jedes Gerät benötigt wird, der bzw. das mit ei-	
	nem LAN verbunden ist. Diese Adresse wird auch Hardware-Ad-	
	resse oder physikalische Adresse genannt.	
IP-Adresse	Form der Adressierung in der OSI-Schicht 3.	
Segment	PDU der Schicht 4.	

5. Ergänzen Sie zu bekannten Port-Nummern auf der linken Seite die Protokolle der Transport- und Anwendungsschicht auf der rechten Seite.

Port 443	HTTPS
Port 23	Telnet
Port 25	SMTP
Port 53	DNS
Port 69	TFTP
Port 80	НТТР
Port 110	POP3

6. Welche der folgenden Protokolle nutzen das UDP-Protokoll? (Wählen Sie drei Antworten.)

- 7. In der Abbildung ist ein Header der Transportschicht dargestellt.
 - **a)** Ist das ein UDP- oder ein TCP-Header? Begründen Sie Ihre Entscheidung. UDP-Header
 - **b)** Um welche Anwendung handelt es sich hierbei? Keine Ahnung

Bit 0	Bit 15		Bit 16	Bit 31
Source Port 13357		Destination Port 23		
Sequence Number	43693			
Acknowlegement N	Number 873	2		
Header Length	Reserved	Code Bits	Window 12000	
Checksum			Urgent	

8. Welche IP-Adresse hat der DNS-Server in der nebenstehenden Abbildung?

192.168.1.99

9. Wozu dienen die TCP- und UDP-Ports?

Sie identifizieren spezifische Anwendungen/Dienste auf einem Gerät

C:\> nslookup
Default Server: resolver1.xyz.local
Address: 10.10.10.32

>www.abcd.com
server: resolver1.xyz.local
Address: 10.10.10.32

Name: www.abcd.com
Address: 192.168.1.5

>www.klmn.com
server: resolver1.xyz.local
Address: 192.163.1.32

Name: www.klmn.com
Address: 19.10.10.32

Name: www.klmn.com
Address: 192.168.1.99

C:\WINDOWS\system32\cmd.exe

- **10.** Was befindet sich im Header jedes Segments und Datagramms?
 - TCP: Quell-/Zielport, Sequenznummer, Prüfsumme.
 - UDP: Quell-/Zielport, Länge, Prüfsumme.
- **11.** Wozu dient die Sequenznummer?

Sie gewährleistet die richtige Reihenfolge von Paketen bei der Übertragung (TCP).

- 12. Worin unterscheiden sich UDP und TCP?
 - TCP: Verbindungsorientiert, zuverlässige Datenübertragung, Sequenznummern.
 - UDP: Verbindungslos, schnell, keine Garantie für Datenintegrität oder -reihenfolge.