Assignment #3

Nate Bitting

Introduction

The objective of this assignment is to first build several simple linear and multiple regression models and perform both model adequacy checking and model validation. We will build these models leveraging the original dataset without removal of any outliers and then rebuild the models by removing up to 200 observations of potential outliers. We will develop the criteria for what is deemed extreme observations versus a normal observations by analyzing the Ames Housing dataset's various features such as total *square footage* and *sale price*.

For model adequacy checking, we will perform several goodness-of-fit and residual analysis procedures including to assess the assumptions of regression analysis:

- 1. The relationship between the response y and the regressors is approximately linear
- 2. The error term ε has a mean of zero
- 3. The error term ε has constant variance
- 4. The errors are uncorrelated
- 5. The errors are normally distributed

Lastly, we will perform transformations on the response variable, *sale price*, and rebuild the models to compare the goodness-of-fit and residual analyses to see if there is any improvement over the original models. The ultimate goal is to thoroughly assess several models to find the optimal model for predictive accuracy when new observations are ran through the model for predicting *sale price* of other homes in the Ames area.

Simple Linear Regression without any Transformation on the Response Variable

The initial step we took was to develop two simple linear regression models leveraging one regressor and one response variable for each model. For Model 1, we decided to use Total Square Footage for our regressor variable and Sale Price as our response variable. For Model 2, we selected Overall Quality as the regressor variable and Sale Price as the response variable. We will then combine the regressors from Model 1 and Model 2 to produce a multiple regression model, which we call Model 3. In the next section we will produce all of the goodness-of-fit results and analysis to compare all three models.

<u>Table 1 - Goodness-of-Fit for Simple Regression vs Multiple Regression Models</u>

Analysis	<u> Model 1</u>	Model 2	Model 3
Components	SalePrice = Total_SF;	SalePrice = OverallQual	SalePrice = Total_SF OvearllQual;
R-Squared	0.7390	0.6415	0.8200
Adjusted R-	0.7389	0.6413	0.8198
Squared			
Residual	Scatter of Residuals vs	 Scatter of Residuals vs 	Scatter of Residuals vs Predicted
Analysis	Predicted Value – appears to	Predicted Value – similar to	Value – based on this plot, there
	be a funnel shape indicating	Model 1, a funnel shape is	appears to be a non-linear pattern,
	heteroscedasticity	present and indicates	which could indicate a
		heteroscedasticity	transformation may be required
	Scatter of Residuals vs		
	Regressor – there also appears	Scatter of Residuals vs	Scatter of Residuals vs Regressors –
	to be a funnel shape in this plot	Regressor – a funnel shape of	the variance appears to increase as
	and could indicate a	the plot is also present and	total_SF and OverallQual increase,
	transformation or additional	could indicate additional	indicating a transformation may be
	predictor variables are required	predictors are required or a	required
	for improved performance	transformation is needed	Alama dia Aaraa dia aaraa da d
	alamatika Assumatian kasal	Alama dia Aarama dia aa ah	Normality Assumption – residuals
	Normality Assumption – based and the histograms of the	Normality Assumption – the	appear to be normally distributed
	on the histogram of the	residuals appear to have a non- normal distribution and is	a CO Plate there is high an vanion as
	residuals, they appear to be normally distributed and have a	slightly skewed to the left	QQ-Plot – there is higher variance towards the unper and of the plot
	mean of zero	Slightly skewed to the left	towards the upper end of the plot indicating some outliers exist in the
	lifean of zero	• QQ-Plot – skewing is present	data
	• QQ-Plot – appears to be some	towards the right tail of the plot,	uata
	skewing towards the end of	indicating outliers must exist in	
	each tail of the plot, indicating	the dataset	
	some outliers may exist	the dataset	
	Some outliers may exist	Linear Relationship between	
	Linear Relationship between	Predictor and Response – there	
	Predictor and Response –	appears to be a linear	
	there does appear to be an	relationship between SalePrice	
	approximate linear relationship	and OverallQual	
	between Total_SF and SalePrice		

Let us first compare Models 1 and 2 leveraging the goodness-of-fit and residual analyses performed in Table 1. By comparing the R-Squared values of the two simple regression models, we can conclude that Model 1, leveraging *total*

square footage, fits the data much better than Model 2. Assessing the scatter plots of the residuals against the predicted values for both models, we noticed a funnel pattern was present for both Model 1 and 2. Thus, based on the models "as-is" we can conclude that Model 1 is superior to Model 2. We also saw indications of outliers that exist in the data. Removal of these outliers could improve the models, which we will explore in a later section.

For Model 3, we generated a multiple regression model by combining the regressors from Models 1 and 2. The scatter plot of residuals vs the predicted values actually showed a non-linear pattern, which indicates a transformation could be required to produce a model with better fit to the data. As we already learned from Models 1 and 2, outliers most likely exist in the data, which should be removed for improved model performance. As can be seen in Table 1, the Adjusted R-squared value increased to 0.8192 from 0.7389 when comparing Model 3 to Model 1, respectively. Thus, we can conclude that Model 3 has better performance than either Model 1 or Model 2.

Removal of Outliers

In order to perform exploratory data analysis for outlier detection, we first created categorical intervals of both the *Sale Price* and *Total Square Footage* variables. We then plotted a frequency table for each of those new categorical intervals in order to assess the number of observations in each interval. This provides us with a good assessment of where the outliers may exist in the dataset. After reviewing the frequency table, Figure 1, for *Sale Price* it can be concluded that the majority of observations fall between the price of \$100,000 and \$300,000, representing ~88% of the population. The results of the frequency table, Figure 2, for *Total Square Footage* indicate that most homes are in the range of 1,000 to 3,000 sqft, representing ~83% of the population. We then deleted all observations that did not fall within the bands mentioned above for both *Sale Price* and *Total Square Footage*. This procedure removed 559 observations from the original dataset. We attempted to find a way to reduce the number of observations removed, however, the remaining number of observations in particular categories were minimal. Thus, the outlier removal methods ended up removing far more than the original 200 targeted to be removed.

Figure 1 - Frequency Table for Sale Price

price_cat	Frequency	Percent	Cumulative Frequency	Cumulative Percent
01: [1; 100,000)	112	5.77	112	5.77
02: [100,000; 150,000)	710	36.60	822	42.37
03: [150,000; 200,000)	576	29.69	1398	72.06
04: [200,000; 250,000)	273	14.07	1671	86.13
05: [250,000; 300,000)	140	7.22	1811	93.35
06: [300,000; 350,000)	65	3.35	1876	96.70
07: [350,000; 400,000)	31	1.60	1907	98.30
08: [400,000+]	33	1.70	1940	100.00

<u>Figure 2 – Frequency Table for Total Square Footage</u>

sqft_cat	Frequency	Percent	Cumulative Frequency	Cumulative Percent
01: [1; 1,000]	322	16.60	322	16.60
02: (1,000; 1,500]	755	38.92	1077	55.52
03: (1,500; 2,000]	590	30.41	1667	85.93
04: (2,000; 2,500]	196	10.10	1863	96.03
05: (2,500; 3,000]	62	3.20	1925	99.23
06: (3,000+]	15	0.77	1940	100.00

Model Performance after Outliers were Removed

The next step is to rebuild the models from the first section now that the outliers have been removed from the dataset. In Table 2, we will provide the comparisons between the three models after rebuilt using the cleaned dataset, which is now free from outliers.

Table 2 - Goodness-of-Fit for Simple Regression vs Multiple Regression Models after Outliers Removed

Analysis	Model 4	Model 5	<u>Model 6</u>
Components	SalePrice = Total_SF;	SalePrice = OverallQual	SalePrice = Total_SF OvearllQual;
R-Squared	0.4525	0.4537	0.6299
Adjusted R-	0.4521	0.4533	0.6293
Squared			
Residual	 Scatter of Residuals vs 	 Scatter of Residuals vs 	Scatter of Residuals vs Predicted
Analysis	Predicted Value – After removing the outliers, the residual plot appears to have a funnel shape indicating heteroscedasticity • Scatter of Residuals vs Regressor – there also appears to be funnel shaped for the	Predicted Value – similar to Model 4, the residual plot against the predicted values also show a funnel shape indicating additional regressors are required • Scatter of Residuals vs Pagressor – the funnel shape is	 Value – as with the previous two models, the funnel shape appears in the residual plot for Model 6, indicating a transformation is required. Scatter of Residuals vs Regressors – the variance for total_SF appear to increase as total_SF increases.
	residuals plotted against total_SF • Normality Assumption – the	Regressor – the funnel shape is also present in the residuals plotted against OverallQual Normality Assumption – the	increase as total_SF increases whereas OvearllQual appears relatively constant • Normality Assumption – the
	residuals do appear to be normally distrusted based on the histogram of residuals	residuals appear to be normally distributed and have a mean variance of zero	residuals appear to be normally distributed and have a mean variance of zero
	QQ-Plot – This plot also supports the residuals are normally distributed Linear Relationship between	QQ-Plot – as with Model 4, the qq-plot shows a straight line, indicating the residuals are normally distributed	QQ-Plot – the same is true for Model6 in that the qq-plot shows a straight line and appears to be normally distributed
	Predictor and Response – the plot of the regression clearly shows a linear relationship between total_SF and SalePrice	Linear Relationship between Predictor and Response – there appears to be a linear relationship between OverallQual and SalePrice as depicted from the plot of the regression model	

As can be seen in Table 2, the overall performance of Models 4-6 over Models 1-3 resulted in significantly lower R-squared and Adjusted R-Squared values. The residual analysis also indicates unequal variance after analyzing the residual plots against the predictor and response variable in all three models. Thus, the removal of outliers does not seem to have improved the models significantly.

Model Performance after performing a Log Transformation on Sale Price

In this section we will analyze

Table 3 - Goodness-of-Fit for Multiple Regression Models before and after a Log Transformation on Sale Price

Analysis Components	<u>Model 7</u> SalePrice = Total_SF OverallQual total_baths good_kitchen good_exterior;	Model 8 Log(SalePrice) = Total_SF OverallQual total_baths good_kitchen good_exterior		
R-Squared	0.7021	0.6949		
Adjusted R-Squared	0.7010	0.6938		
Residual Analysis	 Scatter of Residuals vs Predicted Value – the residual plot still appears to have a funnel shape indicating the variance of residuals is not constant Scatter of Residuals vs Regressors – as with the first residual plot, the funnel shape is still present indicating heteroscedasticity Normality Assumption – the residuals appear to be normally distributed and have a mean of zero QQ-Plot – the straight line in the qq-plot is still present, indicating a normally distributed error term 	 Scatter of Residuals vs Predicted Value – the funnel shape is not present in Model 8, indicating the variance is constant after the log transformation is performed Scatter of Residuals vs Regressors – there appears to be relatively constant variance in Model 8 vs Model 7 for all regressors Normality Assumption – the residuals appear to be normally distributed and have a mean of zero QQ-Plot – the straight line in the qq-plot is still present, indicating a normally distributed error term 		

Based on the analysis presented in Table 3, performing the log transformation did not significantly change the Adjusted R-Squared values. However, while assessing the residuals between both models, the residuals from Model 8 are homoscedastic as opposed to the heteroscedasticity shown in Model 7. Thus, we can conclude that Model 8 fits the data much better than Model 7 after the log transformation is performed.

Conclusion

When comparing the original simple and multiple regression models against the models generated after the outlier removal step (Table 1 vs Table 2), we can clearly see that model performance decreased, rather than increased as originally anticipated. This result indicates that what we thought were outliers actually aided, rather than degraded, overall model performance. In order to improve the outcome of Models 4 – 9, further assessment of outlier removal would be required. A potential secondary option is to generate the studentized residuals in the original dataset and identify outliers exceeding a particular absolute value of the studentized residual values. Overall, Model 3 outperformed all other models produced in this analysis in Tables 1 and 2. In the last exercise of comparing a log transformation on the response variable and no transformation at all, we can see that in this particular instance, the transformation was beneficial in improving the model.

SAS Code Output

```
2 * Nate Bitting
 3 * Assignment 3
 4 *-
 5
 6 * Code used to get the data into my library;
 7 ods graphics on;
 8 libname mydata '/courses/d6fc9ae5ba27fe300/c 3505/SAS Data/' access=readonly;
 9 proc datasets library=mydata; run; quit;
10
11
12 * Create original dataset by filtering out unnecessary data and adding new categorical
13
    features to the dataset
14
15
16 * Smart data formats for sale price and square footage;
17 proc format;
18 value price_sfmt
19
      . = '10: Missing'
20
     1 -< 100000 = '01: [1; 100,000)'
     100000 -< 150000 = '02: [100,000; 150,000)'
22
     150000 -< 200000 = '03: [150,000; 200,000)'
     200000 -< 250000 = '04: [200,000; 250,000)'
23
      250000 -< 300000 = '05: [250,000; 300,000)'
24
     300000 -< 350000 = '06: [300,000; 350,000)'
25
     350000 -< 400000 = '07: [350,000; 400,000)'
26
     400000 - high = '08: [400,000+]'
27
28
     other = '09: Invalid Value'
29
      ; * use a semi-colon to end each format in the proc format statement;
       * Note on how we use the < to create open intervals.
30
31
      * The dash - will create closed intervals, and
32
     hence the dash should only be used with discrete values;
33 value sqft sfmt
34
      . = '08: Missing'
35
      1 - 1000 = '01: [1; 1,000]'
     1000 <- 1500 = '02: (1,000; 1,500]'
36
     1500 <- 2000 = '03: (1,500; 2,000]'
37
     2000 <- 2500 = '04: (2,000; 2,500]'
38
     2500 <- 3000 = '05: (2,500; 3,000]'
39
     3000 - high = '06: (3,000+]'
40
     other = '07: Invalid Value'
41
42
43 run;
44
45 * Dataset before removing outliers;
46 Data building;
47
      SET mydata.ames housing data;
48
49
      * filter on only single family homes that meet specific criteria;
50
      if (SaleCondition = 'Normal');
      if (BldgType = '1Fam'); * single family homes only;
51
52
      if (Zoning in ('RH', 'RL', 'RP', 'RM')); * residential zones only;
      if (Street='Pave'); * paved streets only;
53
      if (Utilities='AllPub'); * only homes with public utilities;
```

```
55
 56
        log price = log(SalePrice); *create a variable for the natural log of SalePrice;
 57
       * create new variables by combining multiple variables in the housing dataset;
 58
       total SF = max(GrLivArea, 0) + max(TotalBsmtSF, 0);
 59
 60
       total baths = max(FullBath, 0) + max(BsmtFullBath, 0);
 61
       total halfbaths = max(HalfBath, 0) + max(BsmtHalfBath, 0);
 62
       total baths calc = total baths + total halfbaths;
 63
 64
       * Neighborhood dummy variables;
       if (Neighborhood = 'Blmngtn') then Blmngtn=1; else Blmngtn=0;
 65
 66
       if (Neighborhood = 'Blueste') then Blueste=1; else Blueste=0;
       if (Neighborhood = 'BrDale') then BrDale=1; else BrDale=0;
 67
 68
       if (Neighborhood = 'BrkSide') then BrkSide=1; else BrkSide=0;
       if (Neighborhood = 'ClearCr') then ClearCr=1; else ClearCr=0;
 69
 70
       if (Neighborhood = 'CollgCr') then CollgCr=1; else CollgCr=0;
 71
       if (Neighborhood = 'Crawfor') then Crawfor=1; else Crawfor=0;
 72
       if (Neighborhood = 'Edwards') then Edwards=1; else Edwards=0;
 73
       if (Neighborhood = 'Gilbert') then Gilbert=1; else Gilbert=0;
 74
       if (Neighborhood = 'Greens') then Greens=1; else Greens=0;
       if (Neighborhood = 'GrnHill') then GrnHill=1; else GrnHill=0;
 75
 76
       if (Neighborhood = 'IDOTRR') then IDOTRR=1; else IDOTRR=0;
       if (Neighborhood = 'Landmrk') then Landmrk=1; else Landmrk=0;
 77
 78
       if (Neighborhood = 'MeadowV') then MeadowV=1; else MeadowV=0;
 79
       if (Neighborhood = 'Mitchel') then Mitchel=1; else Mitchel=0;
 80
       if (Neighborhood = 'NAmes') then NAmes=1; else NAmes=0;
 81
       if (Neighborhood = 'NPkVill') then NPkVill=1; else NPkVill=0;
       if (Neighborhood = 'NWAmes') then NWAmes=1; else NWAmes=0;
 82
       if (Neighborhood = 'NoRidge') then NoRidge=1; else NoRidge=0;
 83
 84
       if (Neighborhood = 'NridgHt') then NridgHt=1; else NridgHt=0;
 85
       if (Neighborhood = 'OldTown') then OldTown=1; else OldTown=0;
 86
       if (Neighborhood = 'SWISU') then SWISU=1; else SWISU=0;
       if (Neighborhood = 'Sawyer') then Sawyer=1; else Sawyer=0;
 87
       if (Neighborhood = 'SawyerW') then SawyerW=1; else SawyerW=0;
 88
 89
       if (Neighborhood = 'Somerst') then Somerst=1; else Somerst=0;
       if (Neighborhood = 'StoneBr') then StoneBr=1; else StoneBr=0;
 90
       if (Neighborhood = 'Timber') then Timber=1; else Timber=0;
 91
 92
       if (Neighborhood = 'Veenker') then Veenker=1; else Veenker=0;
 93
 94
       * KitchenQual dummy variable;
 95
       if (KitchenQual in ('Ex', 'Gd')) then good kitchen=1; else good kitchen=0;
 96
 97
       * FireplaceQu dummy variable;
 98
       if (FireplaceQu in ('Ex', 'Gd')) then good fireplace=1; else good fireplace=0;
 99
100
        * ExterQual dummy variable;
101
        if (ExterQual in ('Ex', 'Gd')) then good_exterior=1; else good_exterior=0;
102
103
       * Foundation dummy variables;
104
       if (Foundation = 'BrkTil') then Foundation BrkTil=1; else Foundation BrkTil=0;
105
       if (Foundation = 'CBlock') then Foundation_CBlock=1; else Foundation_CBlock=0;
106
       if (Foundation = 'PConc') then Foundation_PConc=1; else Foundation_PConc=0;
107
       if (Foundation = 'Slab') then Foundation Slab=1; else Foundation Slab=0;
       if (Foundation = 'Stone') then Foundation Stone=1; else Foundation Stone=0;
108
109
       if (Foundation = 'Wood') then Foundation_Wood=1; else Foundation_Wood=0;
```

```
111
       * MoSold dummy variables;
112
       if (MoSold = 1) then jan_sold=1; else jan_sold=0;
113
       if (MoSold = 2) then feb_sold=1; else feb_sold=0;
       if (MoSold = 3) then mar_sold=1; else mar_sold=0;
114
115
       if (MoSold = 4) then apr_sold=1; else apr_sold=0;
116
       if (MoSold = 5) then may_sold=1; else may_sold=0;
117
       if (MoSold = 6) then jun_sold=1; else jun_sold=0;
118
       if (MoSold = 7) then jul_sold=1; else jul_sold=0;
119
       if (MoSold = 8) then aug_sold=1; else aug_sold=0;
120
       if (MoSold = 9) then sep sold=1; else sep sold=0;
121
       if (MoSold = 10) then oct_sold=1; else oct_sold=0;
122
       if (MoSold = 11) then nov_sold=1; else nov_sold=0;
123
       if (MoSold = 12) then dec_sold=1; else dec_sold=0;
124
       * Construct a composite quality index;
125
126
       quality_index = OverallCond*OverallQual;
127
128
       * Central Air Indicator;
129
       if (CentralAir='Y') then central air=1; else central air=0;
130
        * Fireplace Indicator;
131
       if (Fireplaces>0) then fireplace_ind=1; else fireplace_ind=0;
132
       * Garage Indicator;
133
       if (GarageCars>0) then garage_ind=1; else garage_ind=0;
134
       * Good Basement Indicator;
135
       if (BsmtQual in ('Ex','Gd')) or (BsmtCond in ('Ex','Gd')) then good basement ind=1; else good basement ind=0;
136
137
       *apply the put function to create the categorical variables for the various scales of price and sqft;
138
       price_cat = put(SalePrice,price_sfmt.);
139
       sqft_cat = put(total_SF,sqft_sfmt.);
140
141 run; quit;
142
143
144 * Review new dataset to ensure no missing values based on filtering;
145 proc contents data=building;
146 run; quit;
147
148
    * Models 1 - 3 are built before outliers are removed
149
150
151
152
    * 1st simple regression model - Model 1;
153 proc reg data=building;
154
    model SalePrice = total_SF;
155 run; quit;
156
157 * 2nd simple regression model - Model 2;
158 proc reg data=building;
159 model SalePrice = OverallOual;
160 run; quit;
161
162 * Multiple Regression Model - Model 3;
163 proc reg data=building;
164
    model SalePrice = total_SF OverallQual;
165 run; quit;
```

```
168
169
     Analysis to determine outliers to remove from the dataset
170
171
172 * Create frequency tables for each category;
173 proc freq data=building;
174 tables price_cat sqft_cat;
175 run; quit;
176
177
    * Dataset after removing outliers;
178 Data building no outliers;
179
      SET building;
180
181
       *remove outliers for total square footage;
182
      if sqft_cat in ('01: [1; 1,000]','06: (3,000+]', '07: Invalid Value','08: Missing') then do;
183
           outlier_score = 1;
184
       end:
      if price_cat in ('01: [1; 100,000)','06: [300,000; 350,000)',
185
186
                            '07: [350,000; 400,000)','08: [400,000+]','09: Invalid Value') then do;
187
                            outlier score = 2;
188
       end;
189
190
       if (outlier_score>0) then delete;
191
192 run; quit;
193
194 * Create frequency tables for each category;
195 proc freq data=building_no_outliers;
196 tables price_cat * sqft_cat;
197 run; quit;
198
199
200
201 * Models 4 - 6 include a log transformation on the response variable, SalePrice
202
203
204 * 1st simple regression model without outliers - Model 4;
205 proc reg data=building_no_outliers;
206 model SalePrice = total_SF;
207 run; quit;
208
209 * 2nd simple regression model without outliers - Model 5;
210 proc reg data=building_no_outliers;
211
    model SalePrice = OverallQual;
212 run; quit;
213
214 * Multiple Regression Model - Model 6;
215 proc reg data=building_no_outliers;
216    model SalePrice = total_SF OverallQual;
217 run; quit;
220 *----
221 * Models 7 - 8 compare two models with the same predictors, but the 2nd model
222 * has a log transformation on the response variable, SalePrice
223
224
225 * 1st multipe regression model WITHOUT a log transformation on SalePrice - Model 7;
226 proc reg data=building_no_outliers;
227
      model SalePrice = total_SF OverallQual total_baths good_kitchen good_exterior;
228 run; quit;
229
230 * 2nd simple regression model WITH a log transformation on SalePrice - Model 8;
231 proc reg data=building_no_outliers;
232 model log_price = total_SF OverallQual total_baths good_kitchen good_exterior;
233 run; quit;
```