How Powerful are Graph Neural Networks?

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka

ICLR 2019 (oral)

Yizhu Jiao 2019/06/04

Introduction

- Tasks on graph
 - Graph classification
 - Node classification
 - Link prediction

- Currently used framework in GNN
 - neighborhood aggregation (message passing)

Graph Neural Networks (GNN)

Iteratively update the representation of nodes

$$a_v^{(k)} = \text{AGGREGATE}^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \right\} \right)$$
$$h_v^{(k)} = \text{COMBINE}^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

Get the entire graph's representation

$$h_G = \text{READOUT}(\{h_v^{(K)} \mid v \in G\})$$

GNN variants

- GraphSAGE (Hamilton et al., 2017)
 - AGGREGATE

$$a_v^{(k)} = \text{MAX}\left(\left\{\text{ReLU}\left(W \cdot h_u^{(k-1)}\right), \, \forall u \in \mathcal{N}(v)\right\}\right)$$

COMBINE

$$W \cdot \left[h_v^{(k-1)} \middle| a_v^{(k)} \right]$$

GNN variants

Graph Convolutional Networks (GCN)

AGGREGATE and COMBINE are integrated

$$h_v^{(k)} = \text{ReLU}\left(W \cdot \text{MEAN}\left\{h_u^{(k-1)}, \ \forall u \in \mathcal{N}(v) \cup \{v\}\right\}\right)$$

Motivations

- Design of new GNNs
 - mostly based on empirical intuition and experimental trial-anderror

- How to analyze the representational power of GNNs?
- How to design a more powerful GNN ?

Base on neighborhood aggregation framework

- Base on graph classification
 - distinguish different graph structures
 - imply solving graph isomorphism
 - capture different graph's structural similarity

Graph isomorphism

weaker criterion: Weisfeiler-Lehman (WL) test

Given two graphs G and G'

WL graph isomorphism test

WL Algorithm: iteration 1

Each Iteration of WL test comprises of following steps:-

1. Multiset label determination and sorting

O(m) via Bucket Sort

WL graph isomorphism test

WL Algorithm: iteration 1

- 1. Multiset label determination and sorting
- O(m) via Bucket Sort
- 2.label compression
 - O(m) via Radix Sort

```
1,11 1,11 1,111
1,11 1,11 1,111
1,11 1,111 1,1111
1,11 1,111 1,1111
```

```
1,11 ---- 2
1,111 ---- 3
1,1111 ---- 4
```

WL graph isomorphism test

WL Algorithm: iteration 1

- 1. Multiset label determination and sorting
- O(m) via Bucket Sort
- 2.label compression
- · O(m) via Radix Sort
- 3. Relabeling
- O(n)

WL graph isomorphism test

WL Algorithm: iteration 1

- 1. Multiset label determination and sorting
- · O(m) via Bucket Sort
- 2.label compression
- O(m) via Radix Sort
- 3. Relabeling
- O(n)
- 4.Are the labels of G and G' identical?
 Yes, continue.

WL graph isomorphism test

WL Algorithm: iteration 2

- 1. Multiset label determination and sorting
- O(m) via Bucket Sort
- 2.label compression
 - O(m) via Radix Sort
- 3. Relabeling
- O(n)
- 4.Are the labels of G and G' identical? NO, output YES.
- 5.complexity O(hm) for hiteration

- Multiset
 - the feature vectors of a node's neighbors

$$X = (S, m)$$

Lemma 2. Let G_1 and G_2 be any non-isomorphic graphs. If a graph neural network $\mathcal{A}: \mathcal{G} \to \mathbb{R}^d$ following the neighborhood aggregation scheme maps G_1 and G_2 to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides G_1 and G_2 are not isomorphic.

 GNNs are at most as powerful as the WL test in distinguishing graph structures

Theorem 3. Let $A: \mathcal{G} \to \mathbb{R}^d$ be a GNN following the neighborhood aggregation scheme. With sufficient iterations, A maps any graphs G_1 and G_2 that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

$$h_v^{(k)} = \phi\left(h_v^{(k-1)}, f\left(\left\{h_u^{(k-1)} : u \in \mathcal{N}(v)\right\}\right)\right),\,$$

where the functions f, which operates on multisets, and ϕ are injective.

b) A's graph-level readout, which operates on the multiset of node features $\{h_v^{(k)}\}$, is injective.

 GNN maps different graph structures to different embedding if AGGREGATE, COMBINE, READOUT are injective

Graph Isomorphism Network (GIN)

Corollary 6. Assume \mathcal{X} is countable. There exists a function $f: \mathcal{X} \to \mathbb{R}^n$ so that for infinitely many choices of ϵ , including all irrational numbers, $h(c,X) = (1+\epsilon) \cdot f(c) + \sum_{x \in X} f(x)$ is unique for each pair (c,X), where $c \in \mathcal{X}$ and $X \subset \mathcal{X}$ is a finite multiset. Moreover, any function g over such pairs can be decomposed as $g(c,X) = \phi\left((1+\epsilon) \cdot f(c) + \sum_{x \in X} f(x)\right)$ for some function ϕ .

•
$$g(c,X) = \phi\left((1+\epsilon) \cdot f(c) + \sum_{x \in X} f(x)\right)$$

• model $f^{(k+1)} \circ \phi^{(k)}$ with one MLP

Graph Isomorphism Network (GIN)

AGGREGATE and COMBINE

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$$

READOUT

$$h_G = \text{CONCAT}\left(\text{READOUT}\left(\left\{h_v^{(k)}|v \in G\right\}\right) \mid k = 0, 1, \dots, K\right)$$

GIN provably generalizes the WL test

Ablation on the aggregator in

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right)$$

- Two aspects
 - 1-layer perceptrons instead of MLPs
 - Mean or Max-pooling instead of the sum
 - Mean -> GCN
 - Max -> GraphSAGE

Lemma 7. There exist finite multisets $X_1 \neq X_2$ so that for any linear mapping W, $\sum_{x \in X_1} \operatorname{ReLU}(Wx) = \sum_{x \in X_2} \operatorname{ReLU}(Wx)$.

- Linear mapping + ReLU is not sufficient
- Linear mapping + bias + ReLU can distinguish to some degree
 - May not adequately capture structural similarity
 - Difficult for simple classifiers to fit

Structures that confuse mean and max-pooling

• f(a) and $2 \cdot f(a)$ are different

Mean-pooling learns distributions

$$X_1 = (S, m) \quad X_2 = (S, k \cdot m)$$

 Mean aggregator is as powerful as the sum aggregator if node features are diverse and rarely repeat

- Max-pooling learns sets with distinct elements
 - Treat a multiset as a set
 - Capture graph skeleton

 Max aggregator may be suitable for tasks where it is important to identify representative elements

Ranking by expressive power

Other neighbor aggregations (not message-passing-based)

- Graph Attention Networks (GAT)
 - Self-attention

LSTM pooling (Hamilton et al., 2017a; Murphy et al., 2018)

Experiments

Training set performance

Experiments

	Datasets	IMDB-B	IMDB-M	RDT-B	RDT-M5K	COLLAB	MUTAG	PROTEINS	PTC	NCI1
Datasets	# graphs	1000	1500	2000	5000	5000	188	1113	344	4110
	# classes	2	3	2	5	3	2	2	2	2
	Avg # nodes	19.8	13.0	429.6	508.5	74.5	17.9	39.1	25.5	29.8
Baselines	WL subtree	73.8 ± 3.9	50.9 ± 3.8	81.0 ± 3.1	52.5 ± 2.1	78.9 ± 1.9	90.4 ± 5.7	75.0 ± 3.1	59.9 ± 4.3	86.0 \pm 1.8 *
	DCNN	49.1	33.5	-	-	52.1	67.0	61.3	56.6	62.6
	PATCHYSAN	71.0 ± 2.2	45.2 ± 2.8	86.3 ± 1.6	49.1 ± 0.7	72.6 ± 2.2	92.6 \pm 4.2 *	75.9 ± 2.8	60.0 ± 4.8	78.6 ± 1.9
	DGCNN	70.0	47.8	-	-	73.7	85.8	75.5	58.6	74.4
	AWL	74.5 ± 5.9	51.5 ± 3.6	87.9 ± 2.5	54.7 ± 2.9	73.9 ± 1.9	87.9 ± 9.8	-	-	-
GNN variants	GIN- ϵ (SUM-MLP)	$\textbf{74.3} \pm \textbf{5.1}$	$\textbf{52.1} \pm \textbf{3.6}$	$\textbf{92.2} \pm \textbf{2.3}$	$\textbf{57.0} \pm \textbf{1.7}$	$\textbf{80.1} \pm \textbf{1.9}$	$\textbf{89.0} \pm \textbf{6.0}$	$\textbf{75.9} \pm \textbf{3.8}$	63.7 ± 8.2	$\textbf{82.7} \pm \textbf{1.6}$
	GIN-0 (SUM-MLP)	$\textbf{75.1} \pm \textbf{5.1}$	$\textbf{52.3} \pm \textbf{2.8}$	$\textbf{92.4} \pm \textbf{2.5}$	$\textbf{57.5} \pm \textbf{1.5}$	$\textbf{80.2} \pm \textbf{1.9}$	$\textbf{89.4} \pm \textbf{5.6}$	$\textbf{76.2} \pm \textbf{2.8}$	$\textbf{64.6} \pm \textbf{7.0}$	$\textbf{82.7} \pm \textbf{1.7}$
	SUM-1-LAYER	74.1 ± 5.0	$\textbf{52.2} \pm \textbf{2.4}$	90.0 ± 2.7	55.1 ± 1.6	$\textbf{80.6} \pm \textbf{1.9}$	$\textbf{90.0} \pm \textbf{8.8}$	$\textbf{76.2} \pm \textbf{2.6}$	63.1 ± 5.7	82.0 ± 1.5
	MEAN-MLP	73.7 ± 3.7	3.7 ± 3.7 52.3 \pm 3.1	$50.0\pm~0.0$ †	$20.0\pm0.0~^\dagger$	79.2 ± 2.3	83.5 ± 6.3	75.5 ± 3.4	$\textbf{66.6} \pm \textbf{6.9}$	80.9 ± 1.8
				(71.2 ± 4.6)	(41.3 ± 2.1)					
	MEAN-1-LAYER	74.0 ± 3.4	51.9 ± 3.8	50.0 ± 0.0 †	20.0 ± 0.0 [†]	79.0 ± 1.8	85.6 ± 5.8	76.0 ± 3.2	64.2 ± 4.3	80.2 ± 2.0
				(69.7 ± 3.2)	(39.7 ± 2.4)					
	MAX-MLP	73.2 ± 5.8	51.1 ± 3.6		-	-	84.0 ± 6.1	76.0 ± 3.2	64.6 ± 10.2	77.8 ± 1.3
	MAX-1-LAYER	72.3 ± 5.3	50.9 ± 2.2	_	_	_	85.1 ± 7.6	75.9 ± 3.2	63.9 ± 7.7	77.7 ± 1.5

Classification accuracies

Conclusion

- Develop theoretical foundations for reasoning about expressive power of GNNs
- Prove tight bounds on the representational capacity of popular GNN variants
- Design a provably most powerful GNN under the message passing framework

Q & A