PHIL 220: Introduction to Logic

Week 6 Discussion (10/03/2025)

Reminders:

Assignment 3 is due by midnight next Monday (10/06/2025).

Don't forget to post your questions on the weekly question sheet.

Goals for today:

Get more familiar with natural deduction proofs involving conjunctions and conditionals.

Truth tables vs. Natural deduction

A truth table is a *semantic* method. It checks the *meaning* of the statements by testing every single possible truth value assignment.

A proof is a *syntactic* method. It focuses on the *form* or *structure* of the argument, using rules of inference to derive a conclusion.

Two rules for conjunctions:

Conjunction Elimination ($E \land$) 1:

$$\begin{array}{c|cccc}
m & p \wedge q \\
\hline
n & p & E \wedge m
\end{array}$$

Conjunction Introduction (I \wedge):

$$\begin{array}{cccc}
l & p \\
m & q \\
\hline
n & p \wedge q & I \wedge l, m
\end{array}$$

Two rules for conditionals:

Conditional Elimination $(E \rightarrow)$ 1:

$$\begin{array}{cccc}
l & p \rightarrow q \\
m & p \\
n & q & E \rightarrow l, m
\end{array}$$

Conjunction Elimination (E \land) 2:

$$\begin{array}{c|cccc}
m & p \wedge q \\
\hline
n & q & E \wedge m
\end{array}$$

Conjunction Introduction ($I\rightarrow$):

$$\begin{array}{c|cccc}
l & & p \\
m & & q \\
n & p \to q & I \to l, m
\end{array}$$

Identify the missing rules in the following proofs:

Exercise 2							
		ı			1	$p \wedge q$	Assumption
1:	1	r	Assumption		2	$p \to (q \to r)$	Assumption
	2	$p \wedge q$	Assumption	2:	3	p	? 1
	3	q	? 2		4	$q \rightarrow r$? 2,3
	4	$q \wedge r$? 1,3		5	q	? 1
					6	r	? 4,5
		1				 [
3:	1	$p \wedge q$	Assumption		1	$p \to (q \land r)$	Assumption
	2	$r \wedge s$	Assumption		2	<u> </u>	Assumption
	3	p	? 1		3	$q \wedge r$? 1,2
	4	S	? 2	4:	4	r	? 3
	5	$p \wedge s$? 3,4		5	g q	? 3
	6	r	? 2		6	$r \wedge q$? 4,5
	7	$(p \land s) \land$	r ? 5,6		7	$p \to (r \land q)$? 2-6

Prove the following arguments:

Exercise 3

(a).
$$(p \land q) \land (r \land s) \vdash s$$

(b).
$$(p \land q) \land (r \land s) \vdash q \land s$$

(c).
$$\vdash p \rightarrow (q \rightarrow p)$$

(d).
$$p \rightarrow (q \rightarrow r) \vdash q \rightarrow (p \rightarrow r)$$