·Office hours this week at Thursday 4pm-5pm, Friday 3pm-4pm · HW I coming soon,

المويدان:

Def: A top. wandeld of dem. n. is a space X s.f. I an cover $\{U_{x}\}$ of X and a collection of maps $A := \{ \phi_{\alpha} : U_{\alpha} : \longrightarrow \mathbb{R}^n \}_{\alpha \in \mathbb{Z}}$ satisfying:

• ϕ_{α} is a homeon and an open subset $\phi_{\alpha}(U_{\alpha})$ of \mathbb{R}^n .

(a top. markle is an X s.t. I "topological atlas" of as above.

Des: A smooth (or coo or differentible manifold) of dimension is a topological manifold egupped cently a choice of atks (X, &) satisfying the following condition:

· for every Uz, Up in & with Uan Up \$ 15, the transition nego φ_α(u_α ν u_β) - φ_ρ · φ_ρ · η · (u_α ν u_ρ)

are Comaps. (Since of od) is also therefore Co & nuese to \$ od; it files that the transition may must be diffeomorphisms.)

· each of is alled a chart.

· \$ of : transition map.

Going ferral: maisfold := Smooth manifold.

Examples of (smooth) manifolds:

(1) R" is a smooth market, with atks

A:= { U= R" P1=id R"} only one chart.

A= {U, \$\frac{\phi_{1}=id}{R^{n}}} dz={U_{2} \frac{\text{formathe}}{R^{n}}} R^{n}} dz={U_{2} \frac{\text{formathe}}{R^{n}}} R^ which is not Coo.

Then consider the topological office on Rh gaven by { U1=R" - R" R", U2=R" += fron-different

Note of o of = from diff: R^ > R, which is

(1'): V n-din 2 vector space ove IR, fix a linear isomphism T=V=> IR" (equalently, a basis), =) get an (2) Any open subset U of a smooth manifold M -s again a smooth manifel A:= ? V = R"} Given an offer of = { pha: Un -> IR"} for M, an offer for U :>

Alu =
$$\{\phi_{k} | U_{k} \cap U \longrightarrow \mathbb{R}^{N}\}$$
. (check: $(U_{k}, d|_{U_{k}})$ is a smoth marifild).

Subject: $M_{M\times n}(\mathbb{R}) = \{n \times n \text{ matrices}\} \cong \mathbb{R}^{n^{2}}$ is an n^{2} -dim't marifild by (1), \mathcal{B}
 $GL_{n}(\mathbb{R}) = \{n \times n \text{ matrices}\} A$ with $det(A) \neq 0\} \subseteq M_{n\times n}(\mathbb{R})$

Rule: $(X, A = \{U_{k}^{N}, X_{k}^{N}\})$

marifild, and $f: Y \to X$ hower, then $(Y, f \neq A = \{f(U_{k})\})$ is a marifild to.

 $(Y, f \neq A = \{f(U_{k})\})$ is a marifild $f(U_{k}) = \{f(U_{k})\}$ marifild to.

 $f(U_{k}) = \{f(U_{k})\}$ is a marifild $f(U_{k}) = \{f(U_{k})\}$ marifild to.

 $f(U_{k}) = \{f(U_{k})\}$ and $f(U_$

(3) Mm manifold, Nn n-din 2 manifold => M×N is a (smooth) manifelt of dimension in+n. Give atters &m= { px: Ux→Rm} of M get an aths { $\phi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n} \cong \mathbb{R}^{m + n}$ } AN= { 4: Vp→ R^) of N,

(4) 51 = {x2+y2=1} = R2 is a smooth mariful (rather, s'ran be given the otherhood a snooth manifold) · ore possible attis: the etter from last time:

(last time: wate explicit equations, & last as an exercise the hot that

PNOPS':
$$P_S(U_N \cap U_S) = R(0) \xrightarrow{\frac{1}{x}} P_N(U_N \cup U_S) = R(0)$$
which is a C^∞ map, as is $P_S \circ P_N^{-1} = \frac{1}{x}$
 $\Rightarrow S_N^1 A = \{P_N, P_S\}$ is a smooth monifold.

another possible at his; (thinking of 5' = 12,x):

$$U_{1} = \{ \times \times 0 \} \qquad \begin{array}{c} \phi_{1} = \text{project to b } \gamma \text{-axis} \\ (x, y) & \qquad \end{array}$$

$$(x, y) & \qquad \qquad \downarrow$$

$$U_{2} = \{ \times \times 0 \} \qquad \begin{array}{c} \phi_{2} = \text{project to } \gamma \text{-axis} \\ (x, y) & \qquad \end{array}$$

$$U_{3} = \{y > 0\} \xrightarrow{\frac{4}{3} = proj. + x - coris} \mathbb{R}$$

$$U_{4} = \{y < 0\} \xrightarrow{\frac{4}{3} = proj. + x - coris} \mathbb{R}$$

Check: U, U2, U3, U4 cover S1, beach \$i is a honeo, onto its mage in 18 (inage is always (-1,1)).

Is (S1, A=[\$\ph_{1},\ph_{2},\ph_{3},\ph_{4}]\$) a smooth monifold? Exercise: show it is. Start:

e.g., on U, n U3 = {\frac{2}{3}} x>0, y>0}

$$\frac{\phi_{1}(u_{1} \cap u_{3})}{(o_{1}i)} \xrightarrow{\phi_{3} \circ \phi_{1}^{-1}} \phi_{5}(u_{1} \cap U_{5})$$

$$\frac{(o_{1}i)}{(o_{1}i)}$$

(need to diech all pairwise overlapping intractus.)

Next time: In some sense the two atlesses above for S', A= 1 (PN, B), A= 5 (e, -, by) give the "same" smooth manifold.

(5) Exercise: Construct a smooth manifile structure (i.e., a smooth atty) on $S^n = \{\sum_{i=1}^{n+1} \sum_{i=1}^{n+1} i = 1\} \subseteq \mathbb{R}^{n+1}$ by generalizing either of above attases.

(6) (overlapping):
$$(n=2)$$
: S^2 , $T^2=S^1\times S^1$, ... genus g surfaces

"genus 0" "genus 1"

(7) RP real projective space "manifold of lines in \mathbb{R}^{n+1} " (generalizative: "Grassmanna of k-din'll subspaces of \mathbb{R}^{n+k} " as a space, $\mathbb{RP}^k = (\mathbb{R}^{n+1} \setminus (0,-.,0))/N$ where $(x_0,...,x_n) \sim (tx_0,...,tx_n)$ for any $t \in \mathbb{R}\setminus 0$.

Notation: on RPM, let [xo: x1---:xn] denote an equiller class of (x0,-, xn) under relation above.

So e.g., [1: a:3] = [=, 1,3]

Next the: smooth manifeld stractive on IRP", more examples "equivalent smooth strates!