Music Information Retrieval A3

James Davidson - V00812527 March 17th, 2017

All up-to-date code for this can be found at https://github.com/jamesthomasdavidson/Music-Classifier

Question 1

```
import numpy as np
   from sklearn import svm, datasets, linear_model
3 from sklearn.externals.joblib import Memory
4 from sklearn.model_selection import train_test_split
5 from sklearn.metrics import confusion_matrix
6 from sklearn.neighbors import KNeighborsClassifier
8 def get_data():
        return datasets.load_svmlight_file('genres3.libsvm')
11 def SVC():
        X, y = get_data()
        print('Support Vector Machine')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = svm.SVC(kernel='linear', C=.8)
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
20 def SGD():
       X, y = qet_data()
        print('Stochastic Gradient Descent')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = linear model.SGDClassifier()
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
29 def NN():
        X, y = get_data()
        print('Nearest Neighbours')
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
        classifier = KNeighborsClassifier(n_neighbors=2)
        y_pred = classifier.fit(X_train, y_train).predict(X_test)
        print("Confusion matrix: \n" + str(confusion_matrix(y_test, y_pred)))
        print("Accuracy: " + str(classifier.score(X,y)) + '\n\n')
38 SVC()
39 SGD()
40 NN()
```

./mkcollection -c classical.mf -l classical ../../genres/classical ./mkcollection -c rock.mf -l rock ../../genres/rock ./mkcollection -c hiphop.mf -l hiphop ../../genres/hiphop cat cl.mf hi.mf ro.mf > genres3.mf bextract -sv genres3.mf -w genres3.arff

Using Weka:

======ZeroR======

100	33.3333 %
200	66.6667 %
0	
0.4444	
0.4714	
100 %	
100 %	
300	
	200 0 0.4444 0.4714 100 % 100 %

=== Detailed Accuracy By Class ===

	TP Ra	ite FP F	Rate Pre	cision Re	ecall F-	Measure	MCC	ROC A	rea PRC Area	Class
	1.000	1.000	0.333	1.000	0.500	0.000	0.500	0.333	classical	
	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.333	hiphop	
	0.000	0.000	0.000	0.000	0.000	0.000	0.500	0.333	rock	
Weighted	Avg.	0.333	0.333	0.111	0.333	0.167	0.000	0.500	0.333	

=== Confusion Matrix ===

a b c <-- classified as 100 0 0 | a = classical 100 0 0 | b = hiphop 100 0 0 | c = rock

=====NaiveBayesSimple=====

Correctly Classified Instances	253	84.6154 %
Incorrectly Classified Instances	46	15.3846 %
Kappa statistic	0.7692	
Mean absolute error	0.1021	
Post moon squared arror	0.2150	

Root mean squared error 0.3158
Relative absolute error 22.9815 %
Root relative squared error 66.99 %
Total Number of Instances 299

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.949 0.035 0.931 0.949 0.940 0.910 0.987 0.975 classical 0.710 0.025 0.934 0.710 0.807 0.742 0.974 0.938 hiphop 0.880 0.171 0.721 0.880 0.793 0.681 0.921 0.778 rock Weighted Avg. 0.846 0.077 0.862 0.846 0.846 0.777 0.961 0.897

=== Confusion Matrix ===

a b c <-- classified as 94 0 5 | a = classical 0 71 29 | b = hiphop 7 5 88 | c = rock

======J48=======

Correctly Classified Instances 248 82.6667 % Incorrectly Classified Instances 52 17.3333 % Kappa statistic 0.74 Mean absolute error 0.1225 Root mean squared error 0.3324

Root mean squared error 0.3324
Relative absolute error 27.5682 %
Root relative squared error 70.5044 %
Total Number of Instances 300

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.880 0.045 0.907 0.880 0.893 0.846 classical 0.842 0.923 0.850 0.085 0.833 0.850 0.842 0.761 0.895 0.763 hiphop 0.750 0.130 0.743 0.750 0.746 0.618 0.796 0.654 rock Weighted Avg. 0.827 0.087 0.828 0.827 0.827 0.740 0.871 0.754

=== Confusion Matrix ===

a b c <-- classified as 88 1 11 | a = classical 0 85 15 | b = hiphop 9 16 75 | c = rock

======SMO=======

Correctly Classified Instances 288 96 % Incorrectly Classified Instances 12 4 % Kappa statistic 0.94

Mean absolute error0.2311Root mean squared error0.288Relative absolute error52 %

Root relative squared error 61.101 % Total Number of Instances 300

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.990 0.000 1.000 0.990 0.995 0.993 0.999 0.998 classical 0.920 0.015 0.968 0.920 0.944 0.917 0.979 0.938 hiphop 0.970 0.045 0.915 0.970 0.942 0.912 0.963 0.898 rock 0.941 0.980 0.944 Weighted Avg. 0.960 0.020 0.961 0.960 0.960

=== Confusion Matrix ===

a b c <-- classified as 99 0 1 | a = classical 0 92 8 | b = hiphop 0 3 97 | c = rock

Using scikit-learn:

	Support Vector Machine	Stochastic Gradient Descent	Nearest Neighbours
Confusion matrix:	[[23 0 1] [0 23 3] [0 0 25]]	[[24 0 0] [3 23 0] [7 18 0]]	[[23 0 1] [2 22 2] [3 6 16]]
Accuracy:	0.966666666667	0.64	0.886666666667

Question 2

```
69  #start
70  tag = {'Rap' : 12, 'Pop_Rock' : 1, 'Country' : 3}
71  words = get_words()
72  tracks = get_tracks()
73  labels = genres()
```

```
def extract_vocabulary(D):
                                                                          def train_multinomial(C, D):
                                                                              V = extract_vocabulary(D)
                                                                             N = count_documents(D)
    return V
                                                                              prior, condprob = dict.fromkeys(C), {}
                                                                              for c in C:
def count_documents(D):
    return len(D)
                                                                                  N_c = count_docs_in_class(D, c)
                                                                                  prior[c] = float(N_c)/N
                                                                                  text_c = concatenate_all_text_in_docs(D, c)
def count_docs_in_class(D, c):
    return len([get_tracks(genre = c)])
                                                                                     T[(t,c)] = count_tokens_of_terms(text_c, t)
    text, tracks = [], get_tracks(genre = c)
                                                                                      condprob[(t,c)] = float(T[(t,c)] + 1)
    for word in words:
                                                                                                         /(sum([T[tp,c] + 1 for tp in V]))
        for track in tracks:
                                                                              return V, prior, condprob
                                                                         def apply_multinomial(C, V, prior, condprob, d):
    W = extract_tokens_from_doc(V, d)
                                                                              for c in C:
def extract_tokens_from_doc(V, d):
                                                                                    score[c] += np.log(condprob[(t,c)])
    text = []
                                                                              argmax, max_score = '', -np.inf
    for word in words:
                                                                                  if score[c] > max_score:
                                                                                     max_score = score[c]
            text.append(word)
                                                                                      argmax = c
                                                                             return argmax
```

The probability of a word given a genre, pr(word | genre), is obtaining by condprob[(word,genre)] which can be obtained by calling train_multinomial(C, D). (lines 110 - 124 above) (Resulting table below)

(de,Rap,0.072)	(de,Pop_Rock,0.026)	(de,Country,0.002)
(niggaz,Rap,0.042)	(niggaz,Pop_Rock,0.003)	(niggaz,Country,0.001)
(ya,Rap,0.093)	(ya,Pop_Rock,0.012)	(ya,Country,0.012)
(und,Rap,0.047)	(und,Pop_Rock,0.019)	(und,Country,0.000)
(yall,Rap,0.042)	(yall,Pop_Rock,0.002)	(yall,Country,0.005)
(ich,Rap,0.067)	(ich,Pop_Rock,0.030)	(ich,Country,0.000)
(fuck,Rap,0.069)	(fuck,Pop_Rock,0.022)	(fuck,Country,0.002)
(shit,Rap,0.093)	(shit,Pop_Rock,0.006)	(shit,Country,0.003)
(yo,Rap,0.078)	(yo,Pop_Rock,0.009)	(yo,Country,0.005)
(bitch,Rap,0.059)	(bitch,Pop_Rock,0.004)	(bitch,Country,0.001)
(end,Rap,0.014)	(end,Pop_Rock,0.037)	(end,Country,0.022)
(wait,Rap,0.013)	(wait,Pop_Rock,0.045)	(wait,Country,0.026)
(again,Rap,0.019)	(again,Pop_Rock,0.048)	(again,Country,0.053)
(light,Rap,0.016)	(light,Pop_Rock,0.044)	(light,Country,0.032)
(eye,Rap,0.023)	(eye,Pop_Rock,0.056)	(eye,Country,0.042)
(noth,Rap,0.012)	(noth,Pop_Rock,0.038)	(noth,Country,0.021)
(lie,Rap,0.009)	(lie,Pop_Rock,0.038)	(lie,Country,0.017)
(fall,Rap,0.011)	(fall,Pop_Rock,0.050)	(fall,Country,0.031)
(our,Rap,0.023)	(our,Pop_Rock,0.062)	(our,Country,0.043)
(away,Rap,0.017)	(away,Pop_Rock,0.079)	(away,Country,0.054)
(gone,Rap,0.016)	(gone,Pop_Rock,0.035)	(gone,Country,0.044)
(good,Rap,0.029)	(good,Pop_Rock,0.033)	(good,Country,0.062)
(night,Rap,0.023)	(night,Pop_Rock,0.063)	(night,Country,0.071)
(blue,Rap,0.007)	(blue,Pop_Rock,0.015)	(blue,Country,0.037)

```
(home,Rap,0.015)
                                      (home,Pop Rock,0.034)
                                                                             (home,Country,0.055)
                                      (long,Pop_Rock,0.037)
                                                                             (long,Country,0.065)
(long,Rap,0.017)
(littl,Rap,0.025)
                                      (littl,Pop_Rock,0.038)
                                                                             (littl,Country,0.075)
(well,Rap,0.022)
                                      (well,Pop_Rock,0.044)
                                                                             (well,Country,0.065)
                                      (heart,Pop_Rock,0.052)
(heart, Rap, 0.015)
                                                                             (heart,Country,0.087)
(old,Rap,0.011)
                                      (old,Pop_Rock,0.019)
                                                                             (old,Country,0.066)
```

More code used in Q2:

```
def run_multinomial():
    C, D, k = ['Rap', 'Pop_Rock', 'Country'], get_tracks(), 10
   def print_statistics(data):
      confusion_matrix = [[0,0,0,C[2]],[0,0,0,C[1]],[0,0,0,C[0]]]
       total = 0
       for d in [d for d in data if d.genre == tag['Rap']]:
           c = apply_multinomial(C, V, prior, condprob, d)
              total += 1
               confusion_matrix[2][0] += 1
               confusion_matrix[2][1] += 1
           elif c == C[2]:
               confusion_matrix[2][2] += 1
       for d in [d for d in data if d.genre == tag['Pop_Rock']]:
          c = apply_multinomial(C, V, prior, condprob, d)
               confusion_matrix[1][0] += 1
           elif c == C[1]:
              total += 1
               confusion_matrix[1][1] += 1
           elif c == C[2]:
               confusion_matrix[1][2] += 1
       for d in [d for d in data if d.genre == tag['Country']]:
           c = apply_multinomial(C, V, prior, condprob, d)
               confusion_matrix[0][0] += 1
              confusion_matrix[0][1] += 1
               total += 1
               confusion_matrix[0][2] += 1
       print("classification accuracy: " + str(total*1.0/count_documents(data)))
       print('|%10s |%10s |%10s |' % (C[0],C[1],C[2]))
       print('-
       for row in confusion_matrix:
           for col in row:
              print('|%10s' % col),
           print('')
       print('\n')
   random.shuffle(D)
   V, prior, condprob = train_multinomial(C, D)
       k_folds = np.split(D, k)
       test_data = k_folds.pop(i)
       train_data = [j for i in k_folds for j in i]
       V, prior, condprob = train_multinomial(C, train_data)
       print_statistics(test_data)
```

Confusion Matrix for Naive Bayes classifier.

Using all sets as training data and test data:

classification accuracy: 0.68

	Rap Po	p_Rock	Country	
	25 114	206 507	•	Country Pop Rock
	748	118	134	Rap

Using k = 10 folds, use 9 sets for training and 1 for testing. Run 10 times to try each k^{th} fold as test data with the remaining k-1 folds as training data:

cla		accuracy: 0.6		classification accuracy: 0.71
 		p_Rock C	ountry 	Rap Pop_Rock Country
	3	•	70 Country	3 18 81 Country
	11	56	33 Pop_Rock	7 53 37 Pop_Rock
I	78	15	11 Rap	79 10 12 Rap
cla	ssification a	accuracy: 0.6	83333333333	classification accuracy: 0.653333333333
	Rap Po	p_Rock Co	ountry	Rap Pop_Rock Country
	4	23	84 Country	2 23 81 Country
	10	46	36 Pop_Rock	15 52 37 Pop_Rock
	75	10	12 Rap	63 12 15 Rap
cla	ssification a	accuracy: 0.6	2	classification accuracy: 0.6666666666667
I	Rap Po	p_Rock C	ountry	Rap Pop_Rock Country
	•	•	58 Country	1 13 77 Country
			46 Pop_Rock	7 46 46 Pop_Rock
I	76	15	16 Rap	77 18 15 Rap
cla	ssification a	accuracy: 0.6	8	classification accuracy: 0.693333333333
l	Rap Po	p_Rock Co	ountry	Rap Pop_Rock Country
 	2	23	86 Country	2 23 72 Country
	13	48	38 Pop_Rock	13 64 33 Pop_Rock
	70	8	12 Rap	72 11 10 Rap
cla	ssification a	accuracy: 0.6	7	classification accuracy: 0.69
	Rap Po	p_Rock C	ountry	Rap Pop_Rock Country
	2	21	77 Country	4 19 83 Country
	14	44	37 Pop_Rock	9 46 36 Pop_Rock
	80	13	12 Rap	78 6 19 Rap

Making randomly generated tracks using the probability distribution of a word occurring given a genre:

```
def get_probabilistic_word(genre = None):
                     assert(genre is not None)
                     prob_dist = []
                     for word in words:
                          prob_dist.append(condprob[(word, genre)])
                     return np.random.choice(words, p = prob_dist)
               n_lyrics, n_songs = 20, 5
               generated_tracks = []
               for e, c in enumerate(C):
                     for i in range(n_songs):
                          t = Track(n_songs*e+i, [0]*30, c)
                          for j in range(n_lyrics):
                                t.add_word(words.index(get_probabilistic_word(c)))
                          generated_tracks.append(t)
               for t in generated_tracks:
                    t.print_track()
ID: 0 Genre:
Feature Vector: [0, 2, 0, 2, 0, 3, 2, 2, 1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0]
ID: 1 Genre:
               12
Feature Vector: [0, 2, 1, 2, 2, 1, 3, 5, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
ID: 2 Genre:
Feature Vector: [1, 1, 0, 0, 2, 1, 1, 4, 3, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0]
ID: 3 Genre:
Feature Vector: [3, 0, 1, 2, 1, 0, 3, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0]
ID: 4 Genre:
Feature Vector: [2, 2, 1, 1, 2, 0, 1, 1, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0]
ID: 5 Genre:
Feature Vector: [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 0]
ID: 6 Genre:
Feature Vector: [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 2, 3, 1, 0, 0, 3, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0]
ID: 7 Genre:
Feature Vector: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 2, 1, 0, 0, 1, 0, 1, 1, 2, 2, 0, 3]
ID: 8 Genre:
Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 2, 3, 2, 1, 1, 3, 1, 2, 0, 0, 0, 0, 1]
ID: 9 Genre:
```

Feature Vector: [0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0]

ID: 10 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 2, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 2, 4, 0]

ID: 11 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 0, 0, 1, 3, 1, 1]

ID: 12 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 3, 0, 0, 0, 1, 3, 0, 0, 3, 0, 0, 0, 1, 1, 0, 4]

ID: 13 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 2, 2, 0, 4, 3]

ID: 14 Genre: 3

Feature Vector: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2, 3, 1]

Running classifier on generated data for fun:)

classification accuracy: 0.86666666667

	Rap Po	p_Rock	Country	
	 0	0	5	Country
	0	3	2	Pop_Rock
1	5	0	0	Rap

Happy Marking!