

--	--	--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2017/2018

DET5028 – INDUSTRIAL ELECTRONICS

(Diploma in Electronic Engineering - All sections/groups)

28 OCTOBER 2017

9:00 AM – 11:00 AM

(2 HOURS)

INSTRUCTIONS TO STUDENT

1. This question paper consists of 7 pages with 5 questions.
2. Answer **ALL** questions. All necessary working steps **MUST** be shown.
3. Write all your answers in the answer booklet provided.

QUESTION 1 [20 marks]

- (a) An escalator in a shopping complex is designed to have a switch (SW) to control its motor (M) as shown in the PLC ladder diagram in *Figure 1-1*. For each of the following cases, modify the rung of the ladder diagram accordingly. **Consider each case separately as they are not related to each other.**

Figure 1-1

- (i) Start the escalator once the switch is **momentarily** pressed. [2 marks]
- (ii) Assume the motor is running and latched. Now, add a stop switch (STOP) in order to turn it off during shutdown or emergency. [3 marks]
- (iii) Add a motion sensor (MS) to detect people approaching the escalator so that the motor can be turned on automatically, besides using the manual switch. [2 marks]
- (iv) Turn on an indicator light (IL) as a second output to display the activation of the motor. [2 marks]

- (b) Design a ladder diagram for an automatic door control as shown in *Figure 1-2* that requires the specifications described below. X0, X1, X2, Y0 and Y1 refer to the I/O assignment as described in *Table 1-1*. **The answer should be drawn into a single ladder diagram only.**

- (i) When someone enters the sensing field of the infrared sensor, the opening motor starts working to open the door automatically. It will stop when the

Continued...

- door touches the opening limit switches.
- (ii) After the door touches the opening limit switches for 7 seconds and nobody enters the sensing field during that time, the closing motor starts working to close the door automatically. It will stop when the closing limit switches touch together.
 - (iii) The closing action is stopped immediately if someone enters the sensing field during the door closing process, and the door will be opened once again.

Note: The opening and closing motors will be latched after they are turned on.

Table 1-1

Input Port	External Device	Output Port	External Device
X0	Infrared Sensor	Y0	Opening Motor
X1	Closing Limit Switch	Y1	Closing Motor
X2	Opening Limit Switch		

Figure 1-2

[11 marks]

Continued...

QUESTION 2 [20 marks]

- (a) Explain how a single-pole, double-throw (SPDT) switch can be used in a lamp brightness control circuit as shown in *Figure 2-1(a)*. The switch has a center-off position for the wiper. The lamp waveforms for dim and full illumination are shown in *Figure 2-1(b)*.

Figure 2-1

[4 marks]

- (b) Refer to the circuit as shown in *Figure 2-2*. Given that $r_{BB} = 8.5 \text{ k}\Omega$, $\eta = 0.62$, $V_V = 1.5 \text{ V}$, $I_P = 4.7 \mu\text{A}$ and $I_V = 5.3 \text{ mA}$. Determine:

- (i) The values of r_{B1} and r_{B2} when the UJT is not in operation.

[4 marks]

- (ii) The rise time and discharge time if $r_{B1} = 50 \Omega$ during the discharge phase.

[8 marks]

- (iii) The minimum and maximum values of R that could be used in the circuit.

[4 marks]

Continued...

Figure 2-2

Continued...

QUESTION 3 [20 marks]

- (a) Define negative temperature coefficient (NTC) of resistance and give one example of a temperature sensor that exhibits this characteristic.

[2 marks]

- (b) An RTD with $R_r = 1 k\Omega$ is placed in a circuit with a voltage of $5 V$ across it, where:

- The temperature coefficient of resistivity is $\alpha = 0.003902/\text{ }^{\circ}\text{C}$.
- The resistance of the RTD at $25 \text{ }^{\circ}\text{C}$ is 110Ω .
- The self-heating factor is $F_{SH} = 0.1 \text{ }^{\circ}\text{C}/mW$.

Due to the self-heating problem of the RTD, determine the new value of temperature measurement that will be indicated by it at $180 \text{ }^{\circ}\text{C}$ and the new value of resistance.

[10 marks]

- (c) Determine the new length of a strain indicator wire in a strain gauge after it is strained if its original length was 12 mm. It has a gauge factor of 3 and $\varepsilon = 400 \mu$.

Calculate the new resistance of the wire having an original resistance of 500Ω .

[8 marks]

Continued...

QUESTION 4 [20 marks]

- (a) Explain briefly the operation of a photodiode. [4 marks]
- (b) An optical shaft-encoder has a 10:1 gear ratio and an optical disk with 15 slits. It also has a direction-indicating ability. Its output is a 9-bit signed magnitude binary, with the 9th bit on the far left representing either sign bit 0 for positive (disc rotating clockwise), or 1 for negative (disc rotating counter clockwise).
- (i) Calculate the resolution of the optical shaft-encoder. [2 marks]
- (ii) How far can the measured shaft turn without exceeding the capacity of the counter? [4 marks]
- (iii) What direction and amount of shaft movement represented by a binary output of 0 1011 0010 ? [4 marks]
- (iv) If the measured shaft moves $\frac{3}{5}$ turn in counter clockwise rotation, what is the content of the binary counter? [3 marks]
- (v) If the measured shaft moves 240° in clockwise rotation, what is the content of the binary counter? [3 marks]

Continued...

QUESTION 5 [20 marks]

- (a) Explain what is Counter Electromotive Force and how it affects the effective voltage in the armature circuit of a motor.

[4 marks]

- (b) Suppose that a shunt-configured dc motor has an armature winding resistance $R_A = 2.8 \Omega$, an applied voltage $V_A = 230V$, a proportionality constant $k_{E_c} = 0.08017$, a field winding resistance $R_F = 169 \Omega$, a magnetic field strength $B = 0.95 T$ and a proportional factor $k_r = 0.83$. If the motor generates 226.22 V, find the following:

- (i) The armature current.

[2 marks]

- (ii) The motor's mechanical power.

[8 marks]

- (iii) The proportionality factor, $k_{E_{c3}}$.

[4 marks]

- (iv) Suppose the mechanical load increases and more torque is required such that the new torque value is 3.8 N-m, calculate the new armature current.

[2 marks]

End of Page.