Package 'useful'

June 7, 2017

Type Package

Version 1.2.3

Title A Collection of Handy, Useful Functions

Date 2017-06-06
Author Jared P. Lander
Maintainer Jared P. Lander <packages@jaredlander.com></packages@jaredlander.com>
Description A set of little functions that have been found useful to do little odds and ends such as plotting the results of K-means clustering, substituting special text characters, viewing parts of a data.frame, constructing formulas from text and building design and response matrices.
License BSD_3_clause + file LICENSE
Depends ggplot2
Imports plyr, dplyr (>= 0.5.0), magrittr, purrr (>= 0.1.0), stats, scales, utils, Matrix
LazyLoad yes
ByteCompile TRUE
Suggests testthat, covr
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-06-07 05:39:41 UTC
R topics documented:
binary.flip 3 bottomleft 3 bottomright 4 build.formula 5 build.x 6 build.y 7

cart2pol	. 8
classdf	. 9
colsToFront	. 10
compare.list	. 11
ComputeHartigan	. 11
constant	. 12
corner	. 13
find.case	. 15
FitKMeans	. 16
ForceDataFrame	. 17
fortify.acf	. 18
fortify.kmeans	. 19
fortify.ts	. 20
ndexToPosition	. 21
nterval.check	. 22
eft	. 23
ower.case	. 24
MapToInterval	. 25
mixed.case	. 26
moveToFront	. 27
multiple	. 28
multiple.comma	. 29
multiple.dollar	. 30
multiple.identity	. 31
multiple_format	. 32
numeric.case	. 33
plot	. 34
plot.acf	. 34
plot.kmeans	. 35
PlotHartigan	. 36
plotTimesSeries	. 38
pol2cart	
positionToIndex	. 40
reclass	. 41
right	. 42
Shift.column	. 43
simple.impute	
simple.impute.data.frame	
simple.impute.default	
simple.impute.tbl_df	
subOut	
subSpecials	
subVector	
opleft	
opright	
s.plotter	
uniqueBidirection	. 54
apper.case	. 55

binary.flip 3 55 Index **58** binary.flip binary.flip Description

Flip binary numbers

Usage

```
binary.flip(x)
```

Arguments

A vector of 0/1 numbers.

Value

X with 0's flipped to 1's and 1's flipped to 0's

Author(s)

Jared P. Lander

Examples

```
binary.flip(c(1,1,0,1,0,0,1))
```

bottomleft

Grabs the bottom left corner of a data set

Description

Display the bottom left corner of a rectangular data set

Usage

```
bottomleft(x, r = 5L, c = 5L, ...)
```

4 bottomright

Arguments

Χ	The	data

r Number of rows to displayc Number of columns to show

... Arguments passed on to other functions

Details

Displays the bottom left corner of a rectangular data set.

This is a wrapper function for corner

Value

... The bottom left corner of the data set that was requested. The size depends on r and c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

```
head tail corner topright topleft bottomright left right
```

Examples

```
data(diamonds)
head(diamonds)  # displays all columns
bottomleft(diamonds)  # displays last 5 rows and only the first 5 columns
```

bottomright

Grabs the bottom right corner of a data set

Description

Display the bottom right corner of a rectangular data set

Usage

```
bottomright(x, r = 5L, c = 5L, ...)
```

Arguments

r Number of rows to displayc Number of columns to show

... Arguments passed on to other functions

build.formula 5

Details

Displays the bottom right corner of a rectangular data set.

This is a wrapper function for corner

Value

... The bottom right corner of the data set that was requested. The size depends on r and c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

head tail corner topright bottomleft topleft left right

Examples

```
data(diamonds)
head(diamonds)  # displays all columns
bottomright(diamonds)  # displays last 5 rows and only the last 5 columns
```

build.formula

Formula Builder

Description

Formula Builder

Usage

```
build.formula(lhs, rhs)
```

Arguments

1hs Character vector for left side of formularhs Character vector for right side of formula

Details

Builds a formula easily given the left and right hand sides. Right now it only handles additive formulas and not interactions unless that is specified in the character.

Value

A formula object

6 build.x

Author(s)

Jared P. Lander www.jaredlander.com

See Also

formula as.formula

Examples

```
build.formula("Y", "X")
build.formula(c("Y", "Z"), "X")
build.formula("Z", c("X", "Q"))
build.formula(c("Y", "Z"), c("X", "Q"))
```

build.x

build.x

Description

Build the x matrix for a glmnet model

Usage

```
build.x(formula, data, contrasts = TRUE, sparse = FALSE)
```

Arguments

 $\begin{array}{ll} \text{formula} & A \text{ formula} \\ \text{data} & A \text{ data.frame} \end{array}$

contrasts Logical indicating whether a factor's base level is removed. Can be either one

single value applied to every factor or a value for each factor. Values will be

recycled if necessary.

sparse Logical indicating if result should be sparse.

Details

Given a formula and a data.frame build the predictor matrix

Value

A matrix of the predictor variables specified in the formula

Author(s)

Jared P. Lander

build.y 7

Examples

```
require(ggplot2)
head(mpg)
head(build.x(hwy ~ class + cyl + year, data=mpg))
testFrame <- data.frame(First=sample(1:10, 20, replace=TRUE),</pre>
Second=sample(1:20, 20, replace=TRUE),
Third=sample(1:10, 20, replace=TRUE),
Fourth=factor(rep(c("Alice", "Bob", "Charlie", "David"), 5)),
Fifth=ordered(rep(c("Edward", "Frank", "Georgia", "Hank", "Isaac"), 4)),
Sixth=factor(rep(c("a", "b"), 10)), stringsAsFactors=F)
head(build.x(First ~ Second + Fourth + Sixth, testFrame,
contrasts=c("Fourth"=TRUE, "Fifth"=FALSE, "Sixth"=TRUE)))
head(build.x(First ~ Second + Fourth + Fifth + Sixth, testFrame,
contrasts=c(Fourth=TRUE, Fifth=FALSE, Sixth=TRUE)))
head(build.x(First ~ Second + Fourth + Fifth + Sixth, testFrame, contrasts=TRUE))
head(build.x(First ~ Second + Fourth + Fifth + Sixth, testFrame,
contrasts=FALSE))
head(build.x(First ~ Second + Fourth + Fifth + Sixth - 1, testFrame,
contrasts=TRUE))
build.x(First ~ Second + Fourth + Fifth + Sixth - 1, testFrame,
contrasts=TRUE, sparse=TRUE)
head(build.x(First ~ Second + Fourth + Fifth + Fourth*Sixth, testFrame, contrasts=TRUE))
head(build.x(First ~ Second + Fourth + Fifth + Third*Sixth, testFrame, contrasts=TRUE))
#' head(build.x(First ~ Second + Fourth + Fifth + Fourth*Sixth, testFrame, contrasts=FALSE))
head(build.x(First ~ Second + Fourth + Fifth + Third*Sixth, testFrame, contrasts=FALSE))
build.x(First ~ Second + Fourth + Fifth + Third*Sixth, testFrame, contrasts=FALSE, sparse=TRUE)
## if contrasts is a list then you can specify just certain factors
```

build.y

build.y

Description

Build the y object from a formula and data

Usage

```
build.y(formula, data)
```

Arguments

formula A formula data A data.frame

Details

Given a formula and a data.frame build the y object

8 cart2pol

Value

The y object from a formula and data

Author(s)

Jared P. Lander

Examples

```
require(ggplot2)
head(mpg)
head(build.y(hwy ~ class + cyl + year, data=mpg))
```

cart2pol

cart2pol

Description

Converts polar coordinates to cartesian coordinates

Usage

```
cart2pol(x, y, degrees = FALSE)
```

Arguments

x The x-coordinate of the point y The y-coordinate of the point

degrees Logical indicating if theta should be returned in degrees

Details

Converts polar coordinates to cartesian coordinates using a simple conversion. The angle, theta must be in radians.

Somewhat inspired by http://www.r-bloggers.com/convert-polar-coordinates-to-cartesian/ and https://www.mathsisfun.com/pcartesian-coordinates.html

Value

A data frame holding the polar coordinates and the original (x,y) coordinates

Author(s)

Jared P. Lander

classdf 9

Examples

```
library(dplyr)
x1 <- c(1, sqrt(3)/2, sqrt(2)/2, 1/2, 0)
y1 <- c(0, 1/2, sqrt(2)/2, sqrt(3)/2, 1)
d1 <- data_frame(x=x1, y=y1, Q='I')</pre>
x2 \leftarrow c(0, -1/2, -sqrt(2)/2, -sqrt(3)/2, -1)
y2 <- c(1, sqrt(3)/2, sqrt(2)/2, 1/2, 0)
d2 <- data_frame(x=x2, y=y2, Q='II')</pre>
x3 < c(-1, -sqrt(3)/2, -sqrt(2)/2, -1/2, 0)
y3 \leftarrow c(0, -1/2, -sqrt(2)/2, -sqrt(3)/2, -1)
d3 <- data_frame(x=x3, y=y3, Q='III')
x4 <- c(0, 1/2, sqrt(2)/2, sqrt(3)/2, 1)
y4 <- c(-1, -sqrt(3)/2, -sqrt(2)/2, -1/2, 0)
d4 <- data_frame(x=x4, y=y4, Q='IV')
dAll <- bind_rows(d1, d2, d3, d4)
cart2pol(dAll$x, dAll$y)
cart2pol(dAll$x, dAll$y, degrees=TRUE)
```

classdf

class df

Description

Get class information for each column in a data. frame.

Usage

```
classdf(data, cols)
```

Arguments

data link{data.frame} that is to be inspected.

cols The columns (named or numeric) to be included in the check.

Details

Get class information for each column in a data, frame.

Value

A vector detailing the class of each column.

10 colsToFront

Author(s)

Jared P. Lander

Examples

```
classdf(CO2)
classdf(iris)
classdf(mtcars)
```

colsToFront

colsToFront

Description

Moves column names to the front or back of the names

Usage

```
colsToFront(data, cols = names(data))
colsToBack(data, cols = names(data))
```

Arguments

data data.frame or tbl

cols Columns that should be moved

Details

Moves column names to the front or back of the names

Value

Character vector of column names

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=11:20, C=1:10, D=11:20)
colsToFront(theDF, c('B', 'C'))
colsToFront(theDF, c('C', 'B'))
colsToFront(theDF, c('C', 'C'))
colsToBack(theDF, c('C', 'C'))
colsToBack(theDF, c('C', 'B'))
colsToBack(theDF, c('C', 'C'))</pre>
```

compare.list 11

compare.list List Comparison

Description

List Comparison

Usage

```
## S3 method for class 'list'
compare(a, b)
```

Arguments

a A List
b A List

Details

Compare elements of two equal length lists.

Value

A vector with a logical indicator for equality of each element author Jared P. Lander www.jaredlander.com

Examples

```
vect <- c(mean, mode, mean)
vect2 <- c(mean, mode, max)
vect3 <- c(mean, mean)
compare.list(vect, vect)
compare.list(vect, vect2)
tryCatch(compare.list(vect, vect3), error=function(e) print("Caught error"))</pre>
```

ComputeHartigan

Compute Hartigan's Number

Description

Runs the computation found in http://www.stat.columbia.edu/~madigan/DM08/descriptive.ppt.pdf

Usage

```
ComputeHartigan(FitActualWSS, FitPlus1WSS, nrow)
```

12 constant

Arguments

FitActualWSS the WSS from a kmeans fit FitPlus1WSS the WSS from a kmeans fit

nrow the number of rows in the original dataset

Details

Not exported, only used by FitKMeans

Value

The computed Hartigan Number

Author(s)

Jared P. Lander www.jaredlander.com

References

http://www.stat.columbia.edu/~madigan/DM08/descriptive.ppt.pdf

See Also

kmeans FitKMeans

Examples

```
data(iris)
hartiganResults <- FitKMeans(iris[, -ncol(iris)])
PlotHartigan(hartiganResults)</pre>
```

constant

constant

Description

Helper function for imputing constants

Usage

```
constant(n = 1)
```

Arguments

n

The value to return

corner 13

Details

Returns a function that always returns the value of n.

Value

A function that when used simply returns n.

Author(s)

Jared P. Lander

Examples

```
constant(4)(1:10)
theDF <- data.frame(A=1:10, B=1:10, C=1:10)
theDF[c(1, 4, 6), c(1)] <- NA
theDF[c(3, 4, 8), c(3)] <- NA
simple.impute(theDF, constant(4))</pre>
```

corner

corner

Description

Display a corner section of a rectangular data set

Usage

```
corner(x, ...)
## S3 method for class 'data.frame'
corner(x, r = 5L, c = 5L, corner = "topleft", ...)
## S3 method for class 'matrix'
corner(x, r = 5L, c = 5L, corner = "topleft", ...)
## S3 method for class 'table'
corner(x, r = 5L, c = 5L, corner = "topleft", ...)
## Default S3 method:
corner(x, r = 5L, ...)
```

14 corner

Arguments

X	The data
	Arguments passed on to other functions
r	Number of rows to display
С	Number of columns to show
corner	Which corner to grab. Possible values are c("topleft", "bottomleft", "topright", "bottomright")

Details

Grabs a corner of a data set

Display a corner section of a rectangular data set

Displays a corner of a rectangular data set such as a data.frame, martrix or table. If showing the right side or bottom, the order of the data is preserved.

The default method reverts to simply calling head

corner of a rectangular data set such as a data.frame, martrix or table. If showing the right side or bottom, the order of the data is preserved.

Value

... The part of the data set that was requested. The size depends on r and c and the position depends on corner.

Author(s)

Jared P. Lander

See Also

head tail topleft topright bottomleft bottomright left right

```
data(diamonds)
head(diamonds)  # displays all columns
corner(diamonds)  # displays first 5 rows and only the first 5 columns
corner(diamonds, corner="bottomleft")  # displays the last 5 rows and the first 5 columns
corner(diamonds, corner="topright")  # displays the first 5 rows and the last 5 columns
```

find.case 15

find.case

find.case

Description

Checks if strings are all upper or all lower case

Usage

```
find.case(string, case = c("upper", "lower", "mixed", "numeric"))
```

Arguments

string Character vector of strings to check cases

case Whether checking for upper or lower case

Details

Checks if strings are all upper or all lower case. If string is all numbers it returns TRUE.

Value

A vector of TRUE AND FALSE

Author(s)

Jared P. Lander

See Also

upper.case lower.case numeric.case mixed.case

```
toCheck <- c('BIG', 'little', 'Mixed', 'BIG WITH SPACE', 'little with space', 'MIXED with SPACE')
find.case(toCheck, 'upper')
find.case(toCheck, 'lower')</pre>
```

16 FitKMeans

FitKMeans	Fit a series of kmeans clusterings and compute Hartigan's Number
-----------	--

Description

Given a numeric dataset this function fits a series of kmeans clusterings with increasing number of centers. k-means is compared to k+1-means using Hartigan's Number to determine if the k+1st cluster should be added.

Usage

```
FitKMeans(x, max.clusters = 12L, spectral = FALSE, nstart = 1L,
  iter.max = 10L, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
  "MacQueen"), seed = NULL)
```

Arguments

x	The data, numeric, either a matrix or data.frame
max.clusters	The maximum number of clusters that should be tried
spectral	logical; If the data being fit are eigenvectors for spectral clustering
nstart	The number of random starts for the kmeans algorithm to use
iter.max	Maximum number of tries before the kmeans algorithm gives up on conversion
algorithm	The desired algorithm to be used for kmeans. Options are c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"). See kmeans
seed	If not null, the random seed will be reset before each application of the kmeans algorithm

Details

A consecutive series of kmeans is computed with increasing k (number of centers). Each result for k and k+1 are compared using Hartigan's Number. If the number is greater than 10, it is noted that having k+1 clusters is of value.

Value

A data frame consisting of columns, for the number of clusters, the Hartigan Number and whether that cluster should be added, based on Hartigan's Number.

Author(s)

Jared P. Lander www.jaredlander.com

References

http://www.stat.columbia.edu/~madigan/DM08/descriptive.ppt.pdf

ForceDataFrame 17

See Also

kmeans PlotHartigan

Examples

```
data(iris)
hartiganResults <- FitKMeans(iris[, -ncol(iris)])
PlotHartigan(hartiganResults)</pre>
```

ForceDataFrame

ForceDataFrame

Description

Force matrix and arrays to data.frame

Usage

```
ForceDataFrame(data)
```

Arguments

data

matrix, data.frame, array, list, etc. . .

Details

This is a helper function for build.x and build.y to convert arrays and matrices—which are not accepted in model.frame—into data.frames

Value

a data.frame of the data

Author(s)

Jared P. Lander

18 fortify.acf

fortify.acf

fortify.acf

Description

Fortify an acf/pacf object

Usage

```
## S3 method for class 'acf'
fortify(model, data = NULL, ...)
```

Arguments

model An acf object.

data Not used. Just for consistency with the fortify method.

... Other arguments

Details

Prepares acf (and pacf) objects for plotting with ggplot.

Value

```
data.frame for plotting with ggplot.
```

Author(s)

Jared P. Lander

```
fortify(acf(sunspot.year, plot=FALSE))
fortify(pacf(sunspot.year, plot=FALSE))
```

fortify.kmeans 19

fortify.kmeans fortify.kmeans

Description

Fortify a kmeans model with its data

Usage

```
## S3 method for class 'kmeans'
fortify(model, data = NULL, ...)
```

Arguments

model kmeans model

data Data used to fit the model

... Not Used

Details

Prepares a kmeans object to be plotted using cmdscale to compute the projected x/y coordinates. If data is not provided, then just the center points are calculated.

Value

The original data with extra columns:

. x The projected x position.. y The projected y position.

.Cluster The cluster that point belongs to.

Author(s)

Jared P. Lander

See Also

kmeans fortify ggplot plot.kmeans

```
k1 <- kmeans(x=iris[, 1:4], centers=3)
hold <- fortify(k1, data=iris)
head(hold)
hold2 <- fortify(k1)
head(hold2)</pre>
```

20 fortify.ts

fortify.ts

fortify.ts

Description

Fortify a ts object.

Usage

```
## S3 method for class 'ts'
fortify(model, data = NULL, name = as.character(m[[2]]), ...)
```

Arguments

model	A ts object.
data	A vector of the same length of \boldsymbol{x} that specifies the time component of each element of \boldsymbol{x} .
name	Character specifying the name of x if it is to be different that the variable being inputed.
	Further arguments.

Details

Prepares a ts object for plotting with ggplot.

Value

```
data. frame for plotting with ggplot.
```

Author(s)

Jared P. Lander

```
fortify(sunspot.year)
```

indexToPosition 21

indexToPosition

indexToPosition

Description

Given a long matrix index convert to row and column positions

Usage

```
indexToPosition(x, nrow = 1)
```

Arguments

x Position of indices

nrow The number of rows in the matrix

Details

Using which on a matrix returns a number that iterates down rows then across columns. This function returns the (row, column) position of that index.

Value

A Matrix with row and column columns and a row for each value of x

Author(s)

Jared P. Lander

```
indexToPosition(3, 2)
indexToPosition(c(1, 4, 5, 7, 9), 3)
indexToPosition(1:16, 4)
indexToPosition(c(1, 3, 5, 6, 8, 10, 11, 13, 15), 5)
```

22 interval.check

interval.check	interval.check

Description

Check which interval a number belongs to

Usage

```
interval.check(data, input = "Stop", times, fun = "<=")</pre>
```

Arguments

data	data.frame
input	character name of column we wish to compare
times	vector in ascending order where the differences between sequential elements are the intervals
fun	character containing comparator

Details

This function takes in a data.frame with a specified column and compares that to a vector of times

Value

Vector indicating which element of times that row belongs to. If the row is beyond any element NA is in it's spot.

Author(s)

Jared P. Lander

```
head(cars)
interval.check(cars, input="speed", times=seq(min(cars$speed), max(cars$speed), length=10))
```

left 23

left

Grabs the left side of a data set

Description

Display the left side of a rectangular data set

Usage

```
left(x, c = 5L, ...)
```

Arguments

x The data

c Number of columns to show

... Arguments passed on to other functions

Details

Displays the left side of a rectangular data set.

This is a wrapper function for corner

Value

... The left side of the data set that was requested. The size depends on c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

head tail corner topright bottomleft bottomright topleft right

24 lower.case

lower.case

lower.case

Description

Checks if strings are all lower case

Usage

```
lower.case(string)
```

Arguments

string

Character vector of strings to check cases

Details

Checks if strings are all lower case. This is a wrapper for find.case('text', 'lower'). If string is all numbers it returns TRUE.

Value

A vector of TRUE AND FALSE

Author(s)

Jared P. Lander

See Also

find.case upper.case mixed.case numeric.case

```
toCheck <- c('BIG', 'little', 'Mixed', 'BIG WITH SPACE', 'little with space', 'MIXED with SPACE')
lower.case(toCheck)</pre>
```

MapToInterval 25

MapToInterval

Map numbers to interval

Description

Maps a range of numbers to a given interval

Usage

```
MapToInterval(nums, start = 1, stop = 10)
```

Arguments

nums The vector of numbers to be mapped

start The start of the interval stop The end of the interval

Details

```
formula: a + (x - \min(x)) * (b - a) / (\max(x) - \min(x))
```

Value

The original numbers mapped to the given interval

Author(s)

Jared P. Lander www.jaredlander.com

See Also

mapping

```
MapToInterval(1:10, start=0, stop=1)
mapping(1:10, start=0, stop=1)
```

26 mixed.case

mixed.case

mixed.case

Description

Checks if strings are all lower case

Usage

```
mixed.case(string)
```

Arguments

string

Character vector of strings to check cases

Details

Checks if strings are a mix of upper and lower case. This is a wrapper for find.case('text', 'mixed'). If string is all numbers it returns FALSE.

Value

A vector of TRUE AND FALSE

Author(s)

Jared P. Lander

See Also

find.case all.upper

```
toCheck <- c('BIG', 'little', 'Mixed', 'BIG WITH SPACE', 'little with space', 'MIXED with SPACE')
mixed.case(toCheck)</pre>
```

moveToFront 27

Description

Rearranges column order by moving specified columns to the front or back.

Usage

```
moveToFront(data, cols)
moveToBack(data, cols)
```

Arguments

data data.frame

cols Character vector specifying the columns to be moved to the front or back

Details

Rearranges column order by moving specified columns to the front or back.

Value

A data.frame with the columns in the right order

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=11:20, C=1:10, D=11:20)
moveToFront(theDF, c('B', 'C'))
moveToFront(theDF, c('C', 'B'))
moveToFront(theDF, c('C', 'C'))
moveToBack(theDF, c('C', 'C'))
moveToBack(theDF, c('C', 'B'))
moveToBack(theDF, c('C', 'C'))</pre>
```

28 multiple

multiple	multiple
martipic	пипри

Description

Order of Magnitude Formatter

Usage

```
multiple(x, multiple = c("K", "M", "B", "T", "H", "k", "m", "b", "t", "h"), extra = scales::comma, digits = 0)
```

Arguments

X	Vector of numbers to be formatted.
multiple	The multiple to display numbers in. This symbol will be added to the end of the numbers.
extra	Function for perform any further formatting.
digits	Number of decimal places for rounding.

Details

This divides the number by the appropriate amount and adds on the corresponding symbol at the end of the number.

Value

Character vector of formatted numbers.

Author(s)

Jared P. Lander

```
require(scales)
vect <- c(1000, 1500, 23450, 21784, 875003780)
multiple(vect)
multiple(vect, extra=dollar)
multiple(vect, extra=identity)

require(ggplot2)
data(diamonds)
ggplot(diamonds, aes(x=x, y=y, color=price*100)) + geom_point() +
scale_color_gradient2(labels=multiple)</pre>
```

multiple.comma 29

multiple.comma

multiple.comma

Description

Order of Magnitude Formatter

Usage

```
multiple.comma(x, ...)
```

Arguments

x Vector of numbers to be formatted.

... Further arguments to be passed on to link{multiple}

Details

Simply a wrapper for multiple that prespecifies the extra comma.

Value

Character vector of comma formatted numbers.

Author(s)

Jared P. Lander

```
require(scales)
vect <- c(1000, 1500, 23450, 21784, 875003780)
multiple.comma(vect)
multiple.comma(vect, multiple="k")
multiple.comma(vect, multiple="h")

require(ggplot2)
data(diamonds)
ggplot(diamonds, aes(x=x, y=y, color=price*100)) + geom_point() + scale_color_gradient2(labels=multiple.comma)</pre>
```

30 multiple.dollar

multiple.dollar

multiple.dollar

Description

Order of Magnitude Formatter

Usage

```
multiple.dollar(x, ...)
```

Arguments

x Vector of numbers to be formatted.

... Further arguments to be passed on to multiple

Details

Simply a wrapper for multiple that prespecifies the extra dollar.

Value

Character vector of dollar formatted numbers.

Author(s)

Jared P. Lander

```
require(scales)
vect <- c(1000, 1500, 23450, 21784, 875003780)
multiple.dollar(vect)
multiple.dollar(vect, multiple="k")
multiple.dollar(vect, multiple="h")

require(ggplot2)
data(diamonds)
ggplot(diamonds, aes(x=x, y=y, color=price*100)) + geom_point() + scale_color_gradient2(labels=multiple.dollar)</pre>
```

multiple.identity 31

multiple.identity

multiple.identity

Description

Order of Magnitude Formatter

Usage

```
multiple.identity(x, ...)
```

Arguments

x Vector of numbers to be formatted.

... Further arguments to be passed on to link{multiple}

Details

Simply a wrapper for multiple that prespecifies the extra identity.

Value

Character vector of formatted numbers.

Author(s)

Jared P. Lander

```
vect <- c(1000, 1500, 23450, 21784, 875003780)
multiple.identity(vect)
multiple.identity(vect, multiple="k")
multiple.identity(vect, multiple="h")

require(ggplot2)
data(diamonds)
ggplot(diamonds, aes(x=x, y=y, color=price*100)) + geom_point() +
scale_color_gradient2(labels=multiple.identity)</pre>
```

32 multiple_format

multiple_format

multiple_format

Description

Multiple Style Formatting

Usage

```
multiple_format(...)
```

Arguments

.. Arguments to be passed onto multiple

Details

Since ggplot requires a function for formatting this allows the user to specify the function's arguments, which will return a function that can be used by ggplot.

Value

The function multiple.

Author(s)

Jared P. Lander

```
library(scales)
vect <- c(1000, 1500, 23450, 21784, 875003780)
multiple_format()(vect)
multiple_format(extra=dollar)(vect)
multiple_format(extra=identity)(vect)

require(ggplot2)
data(diamonds)
ggplot(diamonds, aes(x=x, y=y, color=price*100)) + geom_point() + scale_color_gradient2(labels=multiple_format(extra=dollar))</pre>
```

numeric.case 33

numeric.case

numeric.case

Description

Checks if strings are all numbers or spaces

Usage

```
numeric.case(string)
```

Arguments

string

Character vector of strings to check cases

Details

Checks if strings are all numbers and spaces. This is a wrapper for find.case('text', 'numeric').

Value

A vector of TRUE AND FALSE

Author(s)

Jared P. Lander

See Also

find.case upper.case lower.case numeric.case

plot.acf

plot

plot

Description

Overwritten plot generic so that plot.acf can be defined in this package

Usage

```
plot(x, ...)
```

Arguments

x Object to be plotted

Further arguments

Details

Overwritten plot generic so that plot.acf can be defined in this package

Value

A plot

Author(s)

Jared P. Lander

plot.acf

plot.acf

Description

Plot acf objects

Usage

```
## S3 method for class 'acf'
plot(x, xlab = x, ylab = y, title = sprintf("%s Plot", y),
    ...)
```

plot.kmeans 35

Arguments

Χ	An acf object.
xlab	X-axis label.
ylab	y-axis label.
title	Graph title.
	Further arguments.

Details

Plot acf (and pacf) objects.

Value

A ggplot object.

Author(s)

Jared P. Lander

Examples

```
plot(acf(sunspot.year, plot=FALSE))
plot(pacf(sunspot.year, plot=FALSE))
```

plot.kmeans

plot.kmeans

Description

Plot the results from a k-means object

Usage

```
## S3 method for class 'kmeans'
plot(x, data = NULL, class = NULL,
  legend.position = c("right", "bottom", "left", "top", "none"),
  title = "K-Means Results", xlab = "Principal Component 1",
  ylab = "Principal Component 2", ...)
```

36 PlotHartigan

Arguments

x A kmeans object.

data The data used to kit the kmeans object.

class Character name of the "true" classes of the data.

legend.position

Character indicating where the legend should be placed.

title Title for the plot.

xlab Label for the x-axis.

ylab Label for the y-axis.

... Not Used.

Details

Plots the results of k-means with color-coding for the cluster membership. If data is not provided, then just the center points are calculated.

Value

A ggplot object

Author(s)

Jared P. Lander

See Also

kmeans fortify ggplot plot.kmeans

Examples

```
k1 <- kmeans(x=iris[, 1:4], centers=3)
plot(k1)
plot(k1, data=iris)</pre>
```

PlotHartigan

Plot a series of Hartigan's Numbers

Description

After fitting a series of Hartigan's Numbers (see FitKMeans) this will plot the results so it is easy to visualize

PlotHartigan 37

Usage

```
PlotHartigan(hartigan, title = "Hartigan's Rule", smooth = FALSE,
linecolor = "grey", linetype = 2L, linesize = 1L, minor = TRUE)
```

Arguments

hartigan	The results from FitKMeans
title	Title to be used in the plot
smooth	logical; if true a smoothed line will be fit to the points, otherwise it will be a piecewise line
linecolor	Color of the horizontal line denoting 10
linetype	Type of the horizontal line denoting 10
linesize	Size of the horizontal line denoting 10

minor logical; if true minor grid lines will be plotted

Details

Displays a graphical representation of the results of FitKMeans

Value

```
a ggplot object
```

Author(s)

Jared P. Lander www.jaredlander.com

References

#' http://www.stat.columbia.edu/~madigan/DM08/descriptive.ppt.pdf

See Also

```
kmeans FitKMeans
```

```
data(iris)
hartiganResults <- FitKMeans(iris[, -ncol(iris)])
PlotHartigan(hartiganResults)</pre>
```

38 plotTimesSeries

Description

Plot ts object

Usage

```
plotTimesSeries(x, time = NULL, acf = FALSE, lag.max = NULL,
  na.action = na.fail, demean = TRUE, title = sprintf("%s Plot", name),
  xlab = "Time", ylab = name, ...)
```

Arguments

X	a ts object.
time	A vector of the same length of x that specifies the time component of each element of x .
acf	Logical indicating if the acf and pacf should be plotted.
lag.max	maximum lag at which to calculate the acf. Default is $10*log10(N/m)$ where N is the number of observations and m the number of series. Will be automatically limited to one less than the number of observations in the series.
na.action	function to be called to handle missing values. na.pass can be used.
demean	logical. Should the covariances be about the sample means?
title	Graph title.
xlab	X-axis label.
ylab	Y-axis label.
	Further arguments.
• • •	Turtier arguments.

Details

Plot a ts object and, if desired, it's acf and pacf.

Value

A ggplot object if acf is FALSE, otherwise TRUE indicating success.

Author(s)

Jared P. Lander

See Also

ts.plotter plot.acf fortify.ts

pol2cart 39

Examples

```
plot(sunspot.year)
plot(sunspot.year, acf=TRUE)
```

pol2cart

pol2cart

Description

Converts polar coordinates to cartesian coordinates

Usage

```
pol2cart(r, theta, degrees = FALSE)
```

Arguments

r The radius of the point

theta The angle of the point, in radians

degrees Logical indicating if theta is specified in degrees

Details

Converts polar coordinates to cartesian coordinates using a simple conversion. The angle, theta must be in radians.

Somewhat inspired by http://www.r-bloggers.com/convert-polar-coordinates-to-cartesian/ and https://www.mathsisfun.com/pcartesian-coordinates.html

Value

A data frame holding the (x,y) coordinates and original polar coordinates

Author(s)

Jared P. Lander

40 positionToIndex

```
theta=-1*c(pi, 7*pi/6, 5*pi/4, 4*pi/3, 3*pi/2, 5*pi/3, 7*pi/4, 9*pi/6, 2*pi))

pol2cart(polarRadPosTop$r, polarRadPosTop$theta)
pol2cart(polarRadPosBottom$r, polarRadPosBottom$theta)
pol2cart(polarRadNegTop$r, polarRadNegTop$theta)
pol2cart(polarRadNegBottom$r, polarRadNegBottom$theta)
```

positionToIndex

positionToIndex

Description

Given row and column positions calculate the index.

Usage

```
positionToIndex(row, col, nrow = max(row))
```

Arguments

row Vector specifying row positions
col Vector specifying column positions
nrow The number of rows in the matrix

Details

With row and column positions this computes the index, starting at (1,1) working down rows then across columns.

Value

A vector of indices

Author(s)

Jared P. Lander

```
\label{eq:positionToIndex} $$ positionToIndex(row=c(1, 1, 2, 1, 3), col=c(1, 2, 2, 3, 3), nrow=3) $$ positionToIndex(rep(1:4, 4), rep(1:4, each=4), nrow=4) $$ positionToIndex(rep(c(1, 3, 5), 3), rep(1:3, each=3), nrow=5) $$
```

reclass 41

reclass

reclass

Description

Adds a class to an x.

Usage

```
reclass(x, value)
reclass(x) <- value</pre>
```

Arguments

x The x getting the new class

value The new class

Details

Adds a class to an x by putting the new class at the front of the vector of classes for the x.

Value

The original x with the class containing value in addition to the previous class(es)

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=1:10)
reclass(theDF) <- 'newclass'
class(theDF)
theDF <- reclass(theDF, 'another')
class(theDF)</pre>
```

42 right

right

Grabs the right side of a data set

Description

Display the right side of a rectangular data set

Usage

```
right(x, c = 5L, ...)
```

Arguments

x The data

c Number of columns to show

... Arguments passed on to other functions

Details

Displays the right side of a rectangular data set.

This is a wrapper function for corner

Value

... The left side of the data set that was requested. The size depends on c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

head tail corner topright bottomleft bottomright topleft topleft

```
data(diamonds)
head(diamonds)  # displays all columns
right(diamonds)  # displays all rows and only the last 5 columns
```

shift.column 43

Description

Shift a column of data

Usage

```
shift.column(data, columns, newNames = sprintf("%s.Shifted", columns),
  len = 1L, up = TRUE)
```

Arguments

data	data.frame
columns	Character vector specifying which columns to shift.
newNames	Character vector specifying new names for the columns that will be created by the shift. Must be same length as columns.
len	Integer specifying how many rows to shift the data.
up	logical indicating if rows should be shifted up or down.

Details

Shifts a column of data up or down a certain number of rows

Value

```
data.frame with the specified columns shifted.
```

Author(s)

Jared P. Lander

```
myData <- data.frame(Upper=LETTERS, lower=letters)
shift.column(data=myData, columns="lower")
shift.column(data=myData, columns="lower", len=2)</pre>
```

44 simple.impute

simple.impute

simple.impute

Description

Generic function for simple imputation.

Usage

```
simple.impute(x, fun = median, ...)
```

Arguments

x An object to be imputed

fun The function with which to fill in missing values

... Further arguments

Details

Provides the ability to simply impute data based on a simple measure such as mean or median. For more robust imputation see the packages Amelia, mice or mi.

Value

An object with the missing values imputed.

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=1:10, C=1:10)
theDF[c(1, 4, 6), c(1)] <- NA
theDF[c(3, 4, 8), c(3)] <- NA

simple.impute(theDF$A)
simple.impute(theDF$A, mean)
simple.impute(theDF$A, constant(4))
simple.impute(theDF)
simple.impute(theDF, mean)
simple.impute(theDF, constant(4))</pre>
```

Description

Function for imputing a data.frame with missing data.

Usage

```
## S3 method for class 'data.frame'
simple.impute(x, fun = stats::median, ...)
```

Arguments

x A data.framefun The function with which to fill in missing values... Further arguments

Details

Provides the ability to simply impute data based on a simple measure such as mean or median. For more robust imputation see the packages Amelia, mice or mi.

Each column is imputed independently.

Value

A data frame with the missing values imputed.

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=1:10, C=1:10)
theDF[c(1, 4, 6), c(1)] <- NA
theDF[c(3, 4, 8), c(3)] <- NA
simple.impute.data.frame(theDF)
simple.impute.data.frame(theDF, mean)
simple.impute.data.frame(theDF, constant(4))</pre>
```

simple.impute.default

```
simple.impute.default simple.impute.default
```

Description

Function for imputing a vector with missing data.

Usage

```
## Default S3 method:
simple.impute(x, fun = median, ...)
```

Arguments

x A numeric or integer vector

fun The function with which to fill in missing values

... Further arguments

Details

Provides the ability to simply impute data based on a simple measure such as mean or median. For more robust imputation see the packages Amelia, mice or mi.

Value

An object with the missing values imputed.

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=1:10, C=1:10)
theDF[c(1, 4, 6), c(1)] <- NA
theDF[c(3, 4, 8), c(3)] <- NA
simple.impute.default(theDF$A)
simple.impute.default(theDF$A, mean)
simple.impute.default(theDF$A, constant(4))</pre>
```

simple.impute.tbl_df 47

```
simple.impute.tbl_df simple.impute.tbl_df
```

Description

Function for imputing a tbl_df with missing data.

Usage

```
## S3 method for class 'tbl_df'
simple.impute(x, fun = median, ...)
```

Arguments

x A data.framefun The function with which to fill in missing values... Further arguments

Details

Provides the ability to simply impute data based on a simple measure such as mean or median. For more robust imputation see the packages Amelia, mice or mi.

Each column is imputed independently.

Value

A data.frame with the missing values imputed.

Author(s)

Jared P. Lander

```
theDF <- data.frame(A=1:10, B=1:10, C=1:10)
theDF[c(1, 4, 6), c(1)] <- NA
theDF[c(3, 4, 8), c(3)] <- NA
simple.impute.data.frame(theDF)
simple.impute.data.frame(theDF, mean)
simple.impute.data.frame(theDF, constant(4))</pre>
```

48 subOut

subOut

Sub special characters out of a character vector.

Description

Converts each of the special characters to their escaped equivalents in each element of a single vector.

Usage

```
subOut(toAlter, specialChars = c("!", "(", ")", "-", "=", "*", "."))
```

Arguments

toAlter Character vector that will be altered by subbing the special characters with their

escaped equivalents

specialChars The characters to be subbed out

Details

Each element in the specialChar vector is subbed for its escaped equivalent in each of the elements of toAlter

Value

to Alter is returned with any of the defined special Chars subbed out for their escaped equivalents

Author(s)

Jared P. Lander www.jaredlander.com

See Also

```
sub subSpecials
```

```
subOut(c("Hello", "(parens)", "Excited! Mark"))
subOut(c("Hello", "(parens)", "Excited! Mark"), specialChars=c("!", "("))
```

subSpecials 49

subSpecials Sub special characters out of character vectors.
--

Description

Converts each of the special characters to their escaped equivalents in each element of each vector.

Usage

```
subSpecials(..., specialChars = c("!", "(", ")", "-", "=", "*", "."))
```

Arguments

... Character vectors that will be altered by subbing the special characters with their escaped equivalents

specialChars The characters to be subbed out

Details

Each element in the specialChar vector is subbed for its escaped equivalent in each of the elements of each vector passed in

Value

The provided vectors are returned with any of the defined specialChars subbed out for their escaped equivalents. Each vector is returned as an element of a list.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

```
sub subOut
```

```
subSpecials(c("Hello", "(parens)", "Excited! Mark"))
subSpecials(c("Hello", "(parens)", "Excited! Mark"), specialChars=c("!", "("))
subSpecials(c("Hello", "(parens)", "Excited! Mark"),
c("This is a period. And this is an asterisk *"), specialChars=c("!", "("))
subSpecials(c("Hello", "(parens)", "Excited! Mark"),
c("This is a period. And this is an asterisk *"), specialChars=c("!", "(", "*"))
```

50 subVector

Description

Substitutes multiple patterns and corresponding replacements

Usage

```
subVector(x, toSub)
subMultiple(x, pattern, replacement)
```

Arguments

x Vector of text to search

toSub Named vector where the elements are the pattern and the names are the replace-

ment values

pattern Vector of patterns to find in each element of x

replacement Vector of replacement values corresponding to each value of pattern

Details

Given a vector of text replaces all patterns each each element

Value

The text in x with substitutions made

Author(s)

Jared P. Lander

```
theText <- c('Hi Bob & Cooper how is life today',
'Anything happening now?',
'Sally & Dave are playing with Jess & Julio | with their kids')
subVector(theText, toSub=c("and"='&', 'or'='\\|'))
subVector(theText)

theText <- c('Hi Bob & Cooper how is life today',
'Anything happening now?',
'Sally & Dave are playing with Jess & Julio | with their kids')
subMultiple(theText, pattern=c('&', '\\|'), replacement=c('and', 'or'))</pre>
```

topleft 51

topleft

Grabs the top left corner of a data set

Description

Display the top left corner of a rectangular data set

Usage

```
topleft(x, r = 5L, c = 5L, ...)
```

Arguments

x The data

r Number of rows to display

c Number of columns to show

... Arguments passed on to other functions

Details

Displays the top left corner of a rectangular data set.

This is a wrapper function for corner

Value

... The top left corner of the data set that was requested. The size depends on r and c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

head tail corner topright bottomleft bottomright left right

```
data(diamonds)
head(diamonds)  # displays all columns
topleft(diamonds)  # displays first 5 rows and only the first 5 columns
```

52 topright

topright

Grabs the top right corner of a data set

Description

Display the top right corner of a rectangular data set

Usage

```
topright(x, r = 5L, c = 5L, ...)
```

Arguments

x The data

r Number of rows to display

c Number of columns to show

... Arguments passed on to other functions

Details

Displays the top right corner of a rectangular data set.

This is a wrapper function for corner

Value

... The top right corner of the data set that was requested. The size depends on r and c.

Author(s)

Jared P. Lander www.jaredlander.com

See Also

head tail corner topleft bottomleft bottomright left right

```
data(diamonds)
head(diamonds)  # displays all columns
topright(diamonds)  # displays first 5 rows and only the last 5 columns
```

ts.plotter 53

Description

Plot a ts object

Usage

```
ts.plotter(data, time = NULL, title = "Series Plot", xlab = "Time",
  ylab = "Rate")
```

Arguments

data	A ts object to be plotted.
time	A vector of the same length of data that specifies the time component of each element of data.
title	Title of plot.
xlab	X-axis label.
ylab	Y-axis label.

Details

Fortifies, then plots a ts object.

Value

A ggplot object

Author(s)

Jared P. Lander

```
ts.plotter(sunspot.year)
```

54 uniqueBidirection

unique Bidirection

uniqueBidirection

Description

Find unique rows of a data.frame regardless of the order they appear

Usage

```
uniqueBidirection(x)
```

Arguments

Χ

a data.frame

Details

Sorts individual rows to get uniques regardless of order of appearance.

Value

A data.frame that is unique regardless of direction

Author(s)

Jared P. Lander

```
ex <- data.frame(One=c('a', 'c', 'a', 'd', 'd', 'c', 'b'),
Two=c('b', 'd', 'b', 'e', 'c', 'd', 'a'),
stringsAsFactors=FALSE)

# make a bigger version
exBig <- ex
for(i in 1:1000)
{
    exBig <- rbind(exBig, ex)
}

dim(exBig)

uniqueBidirection(ex)
uniqueBidirection(exBig)

ex3 <- dplyr::bind_cols(ex, dplyr::data_frame(Three=rep('a', nrow(ex))))
uniqueBidirection(ex3)</pre>
```

upper.case 55

upper.case

upper.case

Description

Checks if strings are all upper case

Usage

```
upper.case(string)
```

Arguments

string

Character vector of strings to check cases

Details

Checks if strings are all upper case. This is a wrapper for find.case('text', 'upper'). If string is all numbers it returns TRUE.

Value

A vector of TRUE AND FALSE

Author(s)

Jared P. Lander

See Also

find.case lower.case mixed.case numeric.case

Examples

```
toCheck <- c('BIG', 'little', 'Mixed', 'BIG WITH SPACE', 'little with space', 'MIXED with SPACE')
upper.case(toCheck)</pre>
```

useful

Helper functions

Description

A collection of handy, helper functions

56 WhichCorner

vplayout

vplayout

Description

Viewport

Usage

```
vplayout(x, y)
```

Arguments

The x cell of the viewport to push into.

y The y cell of the viewport to push into.

Details

Creates viewport for pushing ggplot objects to parts of a console.

Value

An R object of class viewport.

Author(s)

Jared P. Lander

Examples

```
library(ggplot2)
library(grid)
```

WhichCorner

WhichCorner

Description

Function to build the right row selection depending on the desired corner.

Usage

```
WhichCorner(corner = c("topleft", "bottomleft", "topright", "bottomright"),
    r = 5L, c = 5L, object = "x")
```

WhichCorner 57

Arguments

corner	(character) which corner to display c("topleft", "bottomleft", "topright", "bottomright")
r	(numeric) the number of rows to show
С	(numeric) the number of columns to show
object	The name of the object that is being subsetted

Details

Function to build the right row selection depending on the desired corner. Helper function for getting the indexing for data.frame's, matrices

Value

An expression that is evaluated to return the proper portion of the data

Author(s)

Jared P. Lander

```
## Not run:
WhichCorner('topleft')
WhichCorner('bottomleft')
WhichCorner('topright')
WhichCorner('bottomright')
WhichCorner('topleft', r=6)
WhichCorner('bottomleft', r=6)
WhichCorner('topright', r=6)
WhichCorner('bottomright', r=6)
WhichCorner('topleft', c=7)
WhichCorner('bottomleft', c=7)
WhichCorner('topright', c=7)
WhichCorner('bottomright', c=7)
WhichCorner('topleft', r=8, c=3)
WhichCorner('bottomleft', r=8, c=3)
WhichCorner('topright', r=8, c=3)
WhichCorner('bottomright', r=8, c=3)
## End(Not run)
```

Index

*Topic clustering	Computallantican 11
1 0	ComputeHartigan, 11
ComputeHartigan, 11	FitKMeans, 16
FitKMeans, 16	PlotHartigan, 36
PlotHartigan, 36	*Topic list
*Topic cluster	compare.list, 11
ComputeHartigan, 11	*Topic mapping
FitKMeans, 16	MapToInterval, 25
PlotHartigan, 36	*Topic numbers
*Topic corner	MapToInterval, 25
bottomleft, 3	*Topic string
bottomright, 4	subOut, 48
corner, 13	subSpecials, 49
left, 23	*Topic subsection
right, 42	bottomleft, 3
topleft, 51	bottomright, 4
topright, 52	corner, 13
*Topic display	left, 23
bottomleft, 3	right,42
bottomright, 4	topleft, 51
corner, 13	topright, 52
left, 23	*Topic tail
right,42	bottomleft, 3
topleft, 51	bottomright, 4
topright, 52	corner, 13
*Topic hartigan	left, 23
ComputeHartigan, 11	right,42
FitKMeans, 16	topleft, 51
PlotHartigan, 36	topright, 52
*Topic head	*Topic text
bottomleft, 3	sub0ut, 48
bottomright, 4	subSpecials, 49
corner, 13	*Topic view
left, 23	bottomleft, 3
right, 42	bottomright, 4
topleft, 51	corner, 13
topright, 52	left, 23
*Topic interval	right, 42
MapToInterval, 25	topleft, 51
*Topic kmeans	topright, 52

INDEX 59

acf, 18, 35	plot, 34 plot.acf, 34
binary.flip, 3	plot.kmeans, 35
bottomleft, 3, 5, 14, 23, 42, 51, 52	plot.times.series(plotTimesSeries), 38
bottomright, 4, 4, 14, 23, 42, 51, 52	PlotHartigan, 17, 36
build.formula, 5	plotTimesSeries, 38
build.x,6	pol2cart, 39
build.y,7	positionToIndex, 40
cart2pol,8	reclass, 41
classdf, 9	reclass<- (reclass), 41
cmdscale, 19	right, 4, 5, 14, 23, 42, 51, 52
colsToBack (colsToFront), 10	
colsToFront, 10	shift.column,43
compare.list, 11	simple.impute,44
ComputeHartigan, 11	simple.impute.data.frame,45
constant, 12	simple.impute.default,46
corner, 4, 5, 13, 23, 42, 51, 52	simple.impute.tbl_df,47
	sub, 48, 49
data.frame, 9, 18, 20, 43	subMultiple(subVector), 50
6: 1	sub0ut, 48, 49
find.case, 15	subSpecials, 48, 49
FitKMeans, 12, 16, 36, 37	subVector, 50
ForceDataFrame, 17	
fortify.acf, 18	tail, 4, 5, 14, 23, 42, 51, 52
fortify.kmeans, 19	topleft, 4, 5, 14, 23, 42, 51, 52
fortify.ts, 20	topright, 4, 5, 14, 23, 42, 51, 52
hand 4 5 14 22 42 51 52	ts, 20, 38, 53
head, 4, 5, 14, 23, 42, 51, 52	ts.plotter, 53
indexToPosition, 21	,
interval.check, 22	uniqueBidirection, 54
Tittel val. check, 22	upper.case, 55
kmeans, 12, 16, 17, 19, 36, 37	useful, 55
	useful-package (useful), 55
left, 4, 5, 14, 23, 51, 52	
lower.case, 24	vplayout, 56
mapping, 25	which, <i>21</i>
mapping (MapToInterval), 25	WhichCorner, 56
MapToInterval, 25	
mixed.case, 26	
moveToBack (moveToFront), 27	
moveToFront, 27	
multiple, 28, 30, 32	
multiple.comma, 29	
multiple.dollar, 30	
multiple.identity, 31	
multiple_format, 32	
martiple_i of mat, 32	
numeric.case, 33	