Practice Problems - Lesson 36: Phase Space and Trajectories

ODE 1 Course

Part A: Phase Space Concepts (Problems 1-5)

- 1. Consider the system $\dot{x} = y$, $\dot{y} = -x$.
 - (a) What is the dimension of the phase space?
 - (b) Find all equilibrium points.
 - (c) Show that $x^2 + y^2$ is constant along trajectories.
 - (d) What does this tell you about the shape of trajectories?
- 2. For the equation $\ddot{x} + 2\dot{x} + 5x = 0$:
 - (a) Convert to a first-order system.
 - (b) Identify the phase space variables.
 - (c) Find the equilibrium point(s) in phase space.
- 3. True or False (explain your answer):
 - (a) Two different trajectories can pass through the same point.
 - (b) A trajectory can cross itself.
 - (c) Every bounded trajectory must be a closed orbit.
 - (d) In 1D phase space, closed orbits are possible.
- 4. Given the direction field at point (2,3) is (1,-2):
 - (a) What is the instantaneous direction of motion?
 - (b) What is the speed at this point?
 - (c) Find the slope of the trajectory at this point.
- 5. For the system $\dot{x} = x(1 x y), \ \dot{y} = y(1 2x y)$:
 - (a) Find all equilibrium points.
 - (b) Verify your answers by substitution.

Part B: Nullclines and Direction Fields (Problems 6-10)

- 6. For the system $\dot{x} = x y$, $\dot{y} = x + y$:
 - (a) Find the x-nullcline.
 - (b) Find the y-nullcline.
 - (c) Where do the nullclines intersect?
 - (d) What is special about this intersection point?
- 7. Consider $\dot{x} = y^2 x$, $\dot{y} = x 2y$:
 - (a) Find both nullclines.
 - (b) Sketch the nullclines on the same axes.
 - (c) Identify all equilibrium points.
- 8. For the system $\dot{x} = \sin(y)$, $\dot{y} = \cos(x)$:
 - (a) Find the equilibrium at the origin.
 - (b) Find another equilibrium point.
 - (c) Are there infinitely many equilibria? Why?
- 9. Given nullclines x = 0 and $y = x^2$:
 - (a) What system could have these nullclines?
 - (b) Find the equilibrium points.
 - (c) Determine the flow direction in the region $x > 0, y > x^2$.
- 10. For $\dot{x} = y x^2$, $\dot{y} = -x$:
 - (a) Show that the origin is an equilibrium.
 - (b) Find any other equilibria.
 - (c) What are the nullclines?
 - (d) Sketch the direction field at points (1,0), (0,1), (-1,0), (0,-1).

Part C: Trajectories and Invariant Sets (Problems 11-16)

11. Show that the unit circle $x^2 + y^2 = 1$ is an invariant set for:

$$\dot{x} = -y + x(1 - x^2 - y^2), \quad \dot{y} = x + y(1 - x^2 - y^2)$$

12. For the system $\dot{x} = y$, $\dot{y} = -\sin(x)$:

- (a) Find equilibria in $-\pi \le x \le \pi$.
- (b) Show that $E = \frac{1}{2}y^2 \cos(x)$ is constant along trajectories.
- (c) Use this to sketch different types of trajectories.
- 13. Consider the linear system $\dot{\mathbf{x}} = A\mathbf{x}$ where $A = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix}$:
 - (a) Find the eigenvalues of A.
 - (b) What type of trajectories do you expect?
 - (c) Find a conserved quantity.
- 14. Prove that if a trajectory is bounded and the vector field is continuous, then:
 - (a) The trajectory exists for all time.
 - (b) The omega-limit set is non-empty.
- 15. For the system $\dot{r} = r(1-r), \dot{\theta} = 1$ in polar coordinates:
 - (a) Find all circular trajectories.
 - (b) Describe the behavior as $t \to \infty$.
 - (c) Is the unit circle attracting or repelling?
- 16. Given a gradient system $\dot{\mathbf{x}} = -\nabla V(\mathbf{x})$:
 - (a) Show that V decreases along trajectories.
 - (b) What does this imply about closed orbits?
 - (c) Find equilibria in terms of V.

Part D: Special Trajectories (Problems 17-21)

- 17. For a 2D system, explain why:
 - (a) A homoclinic orbit cannot exist in linear systems.
 - (b) Closed orbits require at least one equilibrium inside.
 - (c) Trajectories cannot spiral into a closed orbit from outside.
- 18. Consider the Van der Pol system $\ddot{x} \mu(1-x^2)\dot{x} + x = 0$:
 - (a) Convert to first-order form.
 - (b) Find the unique equilibrium.
 - (c) For $\mu = 0$, describe all trajectories.
- 19. For the Hamiltonian system with $H(x,y) = \frac{1}{2}(x^2 + y^2) + x^2y \frac{1}{3}y^3$:

- (a) Write the corresponding ODE system.
- (b) Show that H is conserved.
- (c) Find all equilibria.
- 20. Analyze the system $\dot{x}=y+x(x^2+y^2),\,\dot{y}=-x+y(x^2+y^2)$:
 - (a) Show the origin is an equilibrium.
 - (b) Convert to polar coordinates.
 - (c) Describe the trajectory behavior near the origin.
- 21. For the Lotka-Volterra system $\dot{x} = x(a by), \ \dot{y} = y(-c + dx)$:
 - (a) Find all equilibria (assume a, b, c, d > 0).
 - (b) Find a conserved quantity.
 - (c) What does this imply about trajectory types?

Part E: Advanced Concepts (Problems 22-26)

- 22. Prove the Poincaré-Bendixson theorem consequence: If a trajectory in 2D is bounded and contains no equilibria, it must approach a closed orbit.
- 23. For the system on the cylinder $(x \mod 2\pi, y \in \mathbb{R})$:

$$\dot{x} = 1, \quad \dot{y} = \sin(x)$$

- (a) Are there any equilibria?
- (b) Describe all possible trajectories.
- (c) Are there any closed orbits?
- 24. Consider a 3D system with a 2D invariant plane:
 - (a) How can you identify such a plane?
 - (b) What does this mean for trajectories starting in the plane?
 - (c) Give an example of such a system.
- 25. For the delayed logistic equation $\dot{x} = rx(1 x(t \tau))$:
 - (a) What is the phase space?
 - (b) Why is it infinite-dimensional?
 - (c) Find the equilibria.
- 26. Analyze the reversible system (invariant under $t \to -t, y \to -y$):

$$\dot{x} = y, \quad \dot{y} = x - x^3$$

- (a) Find all equilibria.
- (b) Use reversibility to deduce trajectory properties.
- (c) Find the homoclinic orbits.

Part F: Exam-Style Problems (Problems 27-30)

27. [Prof. Ditkowski Style] Consider the system:

$$\dot{x} = 2x - y - x^2, \quad \dot{y} = x - 2y + xy$$

- (a) Find ALL equilibrium points.
- (b) Find the nullclines.
- (c) Determine the direction field at (1,1).
- (d) Sketch the phase portrait near each equilibrium.
- (e) Classify the stability of each equilibrium (intuitive).

28. [Comprehensive] For the pendulum equation $\ddot{\theta} + \sin(\theta) = 0$:

- (a) Convert to phase space form.
- (b) Find equilibria in $[0, 2\pi]$.
- (c) Derive the energy function.
- (d) Sketch the complete phase portrait.
- (e) Identify separatrices, closed orbits, and equilibrium types.
- (f) Explain the physical meaning of each trajectory type.

29. [Theoretical] Prove or disprove:

- (a) Every 2D system has at least one equilibrium.
- (b) If all trajectories are bounded, there exists a closed orbit.
- (c) A trajectory can have empty omega-limit set.
- (d) Two closed orbits cannot intersect.

30. [Application] A chemical reaction follows:

$$\dot{A} = -kAB + \ell, \quad \dot{B} = -kAB + m$$

where $k, \ell, m > 0$ are constants.

- (a) Find equilibria.
- (b) Show that A + B changes linearly with time.
- (c) Use this to reduce to a 1D problem.
- (d) Describe the long-term behavior.
- (e) Sketch the phase portrait.

Key Solution Strategies:

- Always find equilibria first
- Look for conserved quantities (energy, momentum, etc.)
- Use nullclines to organize phase space
- Check trajectory uniqueness carefully
- Connect mathematical results to physical meaning
- For Prof. Ditkowski: Show ALL algebraic steps