Изучение электростатического поля с помощью проводящей бумаги.

 $x_{min} = 0$ мм

 $x_{max} = 210 \, мм$

φ , B	1	2	4	6	8	9					
у, мм		х, мм									
10	21	48	94	129	170	190					
30	21	48	92	128	167	190					
50	22	46	90	129	169	190					
70	20	45	87	127	166	190					
90	20	43	84	125	165	188					
110	19	42	82	121	163	187					
130	20	42	80	118	162	186					
150	20	41	78	117	160	185					
170	21	40	77	114	160	183					

 $y = 4.8 \, \text{мм}$

х, сл	1	2	4	6	8	10	12	14	16
φ, Β		0,88	1,72	2,54	3,50	4,47	5,55	6,62	7,64

Таблица 3

 $r_{\it внутр} = 14 \, \it мм$

r=100 мм

, _{внешн} — 10	oo mm									
φ , B	1	2	4	6	8	9				
α		r , $\mathcal{M}\mathcal{M}$								
0	14	18	27	41	65	82				
45	14	17	27	40	64	81				
90	14	16	24	39	63	79				
135	14	17	26	40	64	80				
180	14	16	26	41	66	83				
225	14	16	26	40	65	81				
270	14	16	26	38	64	80				
315	14	17	25	40	64	81				

Обработка результатов.

$$E_{12} = \frac{\varphi_1 - \varphi_2}{l_{12}}$$

xy	1-2	3-4	5-6	7-8
E_{xy}	-42,0	-48,0	-54,0	-51,0

$$\Delta E_{xy} = E_{xy} * \sqrt{\left(\frac{\Delta \varphi}{\varphi_{xy}}\right)^2 + \left(\frac{\Delta l}{l_{xy}}\right)^2}$$

xy	1-2	3-4	5-6	7-8
ΔE_{xy}	3,26	3,47	3,68	3,57

$\ln \frac{r}{r_0}$	1,07	1,29	1,43	1,79	2,14	2,5	2,86	3,57	4,29	5,71
φ, Β	1,60	2,55	3,23	4,10	4,86	5,48	6,04	6,96	7,82	8,93

$$\varphi(r) = \varphi_0 + \frac{U \ln \frac{r}{r_0}}{\ln \frac{r_1}{r_0}}$$

