Problem Set: Measure Theory

OSM 2018 Dr. Evans Cache Ellsworth

Problem 3.1:

i)
$$\frac{1}{4}(||\mathbf{x}+\mathbf{y}||^2 - ||\mathbf{x}-\mathbf{y}||^2) = \frac{1}{4}(\langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle - \langle \mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle) = \frac{1}{4}(\langle \mathbf{x}, \mathbf{x}\rangle + \langle \mathbf{y}, \mathbf{x}\rangle + \langle \mathbf{x}+\mathbf{y}\rangle\langle \mathbf{y}, \mathbf{y}\rangle - \langle \mathbf{x}, \mathbf{x}\rangle + \langle \mathbf{y}, \mathbf{x}\rangle + \langle \mathbf{x}, \mathbf{y}\rangle - \langle \mathbf{y}, \mathbf{y}\rangle) = \frac{1}{4}(2\langle \mathbf{y}, \mathbf{x}\rangle + 2\langle \mathbf{x}, \mathbf{y}\rangle) = \langle \mathbf{x}, \mathbf{y}\rangle$$

Notice that $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ on the real inner product.

$$ii) \ \ \frac{1}{2}(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle) = \frac{1}{2}(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle) = \frac{1}{2}(2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle) = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$

Problem 3.2:

Proof.
$$\frac{1}{4}(||\mathbf{x}+\mathbf{y}||^2 - ||\mathbf{x}-\mathbf{y}||^2 + i||\mathbf{x}-i\mathbf{y}||^2 - i||\mathbf{x}+i\mathbf{y}||^2) = \frac{1}{4}(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle + i\langle \mathbf{x}-i\mathbf{y}, \mathbf{x}-i\mathbf{y} \rangle - i\langle \mathbf{x}+i\mathbf{y}, \mathbf{x}+i\mathbf{y} \rangle) = \frac{1}{4}(2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle + i\langle \mathbf{x}, \mathbf{x} \rangle + i\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle -i\mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle - i\langle i\mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle i\mathbf{y}, \mathbf{y} \rangle) = \frac{1}{4}(2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle + i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + i\langle \mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + i\langle \mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + i\langle \mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + i\langle \mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle - i\langle \mathbf{y}, \mathbf{y$$

Problem 3.3:

i) The angle between \mathbf{x} and \mathbf{x}^5 .

$$cos\theta = \frac{\langle \mathbf{x}, \mathbf{x}^5 \rangle}{||\mathbf{x}|| \, ||\mathbf{x}^5||} \implies \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^{10} dx}} = \frac{\sqrt{33}}{7} = cos\theta \implies \theta = 0.60825 \text{ radians}$$

ii) The angle between \mathbf{x}^2 and \mathbf{x}^4 .

$$cos\theta = \frac{\langle \mathbf{x}^2, \mathbf{x}^4 \rangle}{||\mathbf{x}^2|| \, ||\mathbf{x}^4||} \implies \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^4 dx} \sqrt{\int_0^1 x^8 dx}} = \frac{\sqrt{45}}{7} = cos\theta \implies \theta = 0.2898 \text{ radians}$$

Problem 3.8:

i)

Proof. Let $\mathbf{x} = \operatorname{span}(S) \subset V$, where $S = \{\cos(t), \sin(t), \cos(2t), \sin(2t)\}$. We notice that the following integrals equal 0:

- $\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(2t) dt = 0$
- $\bullet \ \ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(t) dt = 0$
- $\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(2t) dt = 0$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(2t) dt = 0$$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(2t) dt = 0$$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \sin(2t) dt = 0$$

We notice that the following integrals equal 1:

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(t) dt = 1$$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2(t) dt = 1$$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(2t) dt = 1$$

$$\bullet \ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^2(2t) dt = 1$$

Therefore by definition, this is a orthonormal set.

ii) Compute ||t||.

$$||t|| = \sqrt{\langle t, t \rangle} = \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt} = \sqrt{\frac{2\pi^2}{3}} = \sqrt{\frac{2}{3}}\pi$$

iii)

$$\operatorname{proj}_{\mathbf{x}}(\cos(3t)) = \sum_{i=1}^{m} \langle x_i, \cos(3t) \rangle x_i = \sum_{i=1}^{m} \frac{1}{\pi} \int_{\pi}^{\pi} x_i \cos(3t) dt x_i = 0 + 0 + 0 + 0 = 0$$
iv)

$$\operatorname{proj}_{\mathbf{x}}(t) = \sum_{i=1}^{m} \langle x_i, t \rangle x_i = \sum_{i=1}^{m} \frac{1}{\pi} \int_{\pi}^{\pi} x_i t dt x_i = 0 + \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cdot t dt \cdot \sin(t) + 0 + \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \cdot t dt \cdot \sin(2t) = 2\sin(t) - \sin(2t)$$

Problem 3.9

Notice that the considered function is $P_{\theta}(x,y) = (x\cos(\theta) - y\sin(\theta), x\sin(\theta) + y\cos(\theta))$. This is an orthonormal transformation because:

$$\langle (x_1\cos(\theta) - x_2\sin(\theta), x_1\sin(\theta) + x_2\cos(\theta)), (y_1\cos(\theta) - y_2\sin(\theta), y_1\sin(\theta) + y_2\cos(\theta)) \rangle = (x_1\cos(\theta) - x_2\sin(\theta)(y_1\cos(\theta) - y_2\sin(\theta))) + (x_1\sin(\theta) + x_2\cos(\theta)(y_1\sin(\theta) + y_2\cos(\theta))) = x_1y_1 + x_2y_2 = \langle x, y \rangle$$

Problem 3.10

i)

Proof. Let
$$Q \in M_n(\mathbb{F})$$
 be orthonormal. Thus $\langle m, n \rangle = \langle Qm, Qn \rangle$. Then $(Qm)^H Qn = m^H n \implies m^H Q^H Qn = m^H n \implies Q^H Q = I$ From the other side, $Q^H Q = QQ^H = I$, $then\langle Q(x), Q(y) \rangle = (Qx)^H (Qy) = x^H Q^H Qy = x^H y = \langle x, y \rangle$.

$$||x||^2 = \langle x, x \rangle = \langle Qx, Qx \rangle = ||Qx||^2 \implies ||x|| = ||Qx||$$

iii)

Assume Q is orthonormal matrix. This implies that
$$QQ^H = Q^HQ = I \implies Q^H = Q^{-1} \implies (Q^H)^H = Q \implies (Q^H)(Q^H)^H = (Q^H)^HQ^H = I \implies Q^H = Q^{-1}$$
 is orthonormal.

iv) Let q_i be the i^{th} column of Q. We know that Q is orthonormal, therefore, $(Q^HQ)_{i,j}=q_i^Hq_j=\langle q_i,q_j\rangle$. If i=j then this is equal to one and if $i\neq j$ then this is equal to zero. Therefore by defintion the columns of Q are orthonormal.

v)

No, the converse isn't true. Here is a counterexample. $\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}^H \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 \frac{1}{4} \end{pmatrix}$ which is not equal to I.

Problem 3.11

This will give a **0** vector for one of the steps or one of the q_k . Particularly it will be the zero vector on the x_i where it is a linear combination or dependent on x_1, \ldots, x_{i-1} . This causes problems because q_{k+1} will have errors in the calculation because p_k will be multiplied by the zero vector. Thus it will not give us a set that is orthonormal in V with the same span. (Unless these zero vectors are discarded when realized they are a linear combination.)

Problem 3.16

- i) Let $A \in \mathbb{M}_{mxn}$ where $\operatorname{rank}(A) = n \leq m$. Then there exist orthonormal $Q \in \mathbb{M}_{mxm}$ and upper triangular $R \in \mathbb{M}_{mxn}$ such that A = QR. Since $\tilde{Q} = -Q$ is still orthonormal $(-Q(-Q)^H = -Q(-Q^H) = QQ^H = I$ and similarly one shows $(-Q)^H(-Q) = I$) and $\tilde{R} = -R$ is still upper triangular, $A = QR = \tilde{Q}\tilde{R}$. Therefore QR-decomposition is not unique.
- ii) Suppose now that A is invertible and can be decomposed into two different QR decompositions: QR and $\tilde{Q}\tilde{R}$, where the diagonal entries of R and \tilde{R} are strictly positive. Then both R and \tilde{R} are invertible and we conclude that $\tilde{R}^{-1}R = Q^H\tilde{Q}$. Since R and \tilde{R} are upper triangular, so is the LHS of the previous equation. On the other hand, since Q and \tilde{Q} are orthonormal, so is the RHS. Therefore $\tilde{R}^{-1}R = I$ and, by unicity of the inverse, we conclude that $R = \tilde{R}$, and so $Q = \tilde{Q}$.

 **(I thank Albi for typing this problem out.)

Problem 3.17

Proof. Let $A \in M_{mxn}$ have rank $n \leq m$, and let $A = \hat{Q}\hat{R}$ be a reduced QR decomposition. Then $A^H A \boldsymbol{x} = A^H \boldsymbol{b} \implies (\hat{Q}\hat{R})^H (\hat{Q}\hat{R}) \boldsymbol{x} = (\hat{Q}\hat{R})^H \boldsymbol{b} \implies \hat{R}^H \hat{Q}^H \hat{Q} \hat{R} \boldsymbol{x} = \hat{R}^H \hat{Q}^H \boldsymbol{b}$. Because we have a QR decomposition, we know that Q is orthonormal.

Thus $\hat{Q}^H\hat{Q} = I$. We also know that R is invertible because it is a upper triangular matrix. Taking the inverse of R on the LHS, we then get $\hat{R}\boldsymbol{x} = \hat{Q}^H\boldsymbol{b}$.

Problem 3.23

Proof. Notice $||\mathbf{x} - \mathbf{y}||^2 = ||\mathbf{x}||^2 - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2 \ge ||\mathbf{x}||^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2 \ge ||\mathbf{x}||^2 - 2||\mathbf{x}||||\mathbf{y}|| + ||\mathbf{y}||^2 = (||\mathbf{x}|| - ||\mathbf{y}||)^2$. Thus $||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}||$. Switch \mathbf{x} and \mathbf{y} in this equation to get the other inequality.

Problem 3.24

Let $C([a,b];\mathbb{F})$ be the vector space of all continuous functions from $[a,b]\subset\mathbb{R}$ to \mathbb{F} i).

- 1. Positivity. $0 \leq |\int_a^b |f(t) + g(t)| dt \leq \int_a^b |f(t)dt|$. So it's positive. The equality will hold if and only if f(t) = 0. \to) Assume f(t) = 0 then $\int_a^b |0| dt = 0$. \leftarrow) We assume $0 = \int_a^b |f(t)| dt$. We prove by contradiction. $f(t) \neq 0$. Because b > a then $0 < \int_a^b |f(t)| dt$. This is a contradiction. So f(t) = 0.
- 2. Scale Preservation. Let c be a scaler. $||cf||_{L^1} = \int_a^b |cf(t)| dt = \int_a^b |c| |f(t)| dt = |c| \int_a^b |f(t)| dt = |c| |f||_{L^1}$.
- 3. Triangle inequality. $||f+g||_{L^1} = \int_a^b |f(t)+g(t)|dt \leq \int_a^b (|f(t)|+|g(t)|)dt = \int_a^b |f(t)|dt + \int_a^b |g(t)|dt = ||f||_{L^1} + ||g||_{L^1}$. So this is a norm on $C([a,b];\mathbb{F})$ ii).
- 1. Positivity. $||f||_{L^2} = (\int_a^b |f(t)|^2)^{\frac{1}{2}}$. By the thereom $0 \ge \int_a^b |f(t)|^2$ Then $0 \le (\int_a^b |f(t)|^2)^{\frac{1}{2}}$. So it's positive. The equality will hold iff f(t) = 0. This is essentially the same as i.
- 2. Scale Preservation. Let c be a scaler. $||cf||_{L^2} = (\int_a^b |f(t)|^2)^{\frac{1}{2}} = (\int_a^b |c|^2 |f(t)|^2)^{\frac{1}{2}} = (|c|^2 \int_a^b |f(t)|^2)^{\frac{1}{2}} = |c|||f||_{L^2}.$
- 3. Triangle inequality. $||f+g||_{L^2}^2 = (\int_a^b |f+g||_{L^2}^2) = \int_a^b |f^2+2fg+g|dt \leq \int_a^b |f(t)|^2 dt + 2 \int_a^b |g(t)|^2 dt \int_a^b |f(t)|^2 dt + \int_a^b |g(t)| dt = ||f||_{L^2}^2 + 2||f||_{L^2}||g||_{L^2} + ||g||_{L^2}^2 = (||f(t)|| + ||g(t)||)^2$. So $||f+g||_{L^2} \leq ||f(t)||_{L^2} + ||g(t)||_{L^2}$. iii
- 1. Positivity. This is positive because we take the supremum of a positive function. The equality will hold iff $f(x) = 0.(\rightarrow)$: Assume $\sup_{x \in [a,b]} |f(x)| = 0$. By contradiction we assume $f(x) \neq 0$. Case 1: x < 0. so |f(x)| > 0 and so $\sup_{x \in [a,b]} |f(x)| > 0$. This is a contradiction. Case 2: f(x) > 0 $\sup_{x \in [a,b]} |f(x)| > 0$. Contradiction. So f(x) = 0.
- $(\leftarrow:)$ We assume f(x)=0. Then $\sup_{x\in[a,b]}|f(x)|=0$. Therefore the inequality holds

iff f(x) = 0.

- 2. Scalar Preservation. $||\lambda f||_{L^{\infty}} = \sup_{x \in [a,b]} |\lambda f(x)| = |\lambda| \sup_{x \in [a,b]} |f(x)| = |\lambda| ||f||_{L^{\infty}}.$
- 3. Triangle inequality. $||f+g||_{\infty} = \sup_{x \in [a,b]} |f(x)+g(x)| \le \sup_{x \in [a,b]} (|f(x)|+|g(x)|) \le \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)| = ||f||_{\infty} + ||g||_{\infty}.$

Problem 3.26

i)

- 1. Reflexive: Let $||\cdot||_a \in V$. Let $m = \frac{1}{3}$ and M = 3. So $\frac{1}{3}||\cdot||_a \leq ||\cdot||_a \leq 3||\cdot||_a$. Since $||\cdot||_a \geq 0$ by norm. properties. So $||\cdot||_a ||\cdot||_a$
- 2. Symmetric: Suppose $||\cdot||_a ||\cdot||_b$ so $\exists 0 \leq m \leq M$ s.t. $m||\cdot||_a \leq ||\cdot||_b \leq M||\cdot||_a$. So $m||\cdot||_a \leq ||\cdot||_b \implies ||\cdot||_a \leq \frac{1}{m}||\cdot||_b$. Also $||\cdot||_b \leq M||\cdot||_a \implies \frac{1}{M}||\cdot||_b \leq ||\cdot||_a$. We let $N = \frac{1}{m}$ and $n = \frac{1}{M}$. Then $n||\cdot||_b \leq ||\cdot||_a \leq N||\cdot||_b$. Therefore $||\cdot||_b ||\cdot||_a$.
- 3. Transitivity: Assume $||\cdot||_a ||\cdot||_b$ and $||\cdot||_b ||\cdot||_c$. So $\exists 0 \leq m \leq M$ s.t. $m||\cdot||_a \leq ||\cdot||_b \leq M||\cdot||_a$ and $\exists 0 \leq n \leq N$ s.t. $n||\cdot||_b \leq ||\cdot||_c \leq N||\cdot||_b$. We times n to our first inequality. $nm||\cdot||_a \leq n||\cdot||_b \leq ||\cdot||_c \leq N||\cdot||_b \leq NM||\cdot||_a$. So $nm||\cdot||_a \leq ||\cdot||_c \leq NM||\cdot||_a$ where nm = g and NM = G. Therefore $||\cdot||_a ||\cdot||_c$. This is an equivalence relation. We prove that the p-norms for $p = 1, 2, \infty$ on \mathbb{F}^n are topologically equivalent by
- a) $||x||_{2}^{2} = |x_{1}|^{2} + \dots + |x_{n}|^{2} \le |x_{1}|^{2} + \dots + |x_{n}|^{2} + |x_{i}||x_{j}| + \dots = (|x_{1}| + \dots + |x_{n}|)^{2} = ||x||_{1}^{2}$. So $||x||_{2} \le ||x||_{1}$. $||x||_{1} = \sum_{i=1}^{n} |x_{i}| = \sum_{i=1}^{n} |x_{i}| * 1 \le (\sum_{i=1}^{n} |x_{i}| * 1)^{\frac{1}{2}} (\sum |1|)^{\frac{1}{2}}$ by cauchy schwartz. Then this is equal to $||x||_{2}n^{\frac{1}{2}}$. Thus $||x||_{2} \le ||x||_{1} \le \operatorname{sqrtn}||x||_{2}$. b) $||x||_{\infty}^{2} = (\sup\{|x_{1}|, |x_{2}|, \dots, |x_{n}|\})^{2} = \sup\{|x_{1}|^{2}, \dots, |x_{n}|^{2}\} \le \sum_{i=1}^{n} |x_{i}|^{2} = ||x||_{2}^{2}$. So $||x||_{\infty} \le ||x||_{2}$. Also $||x||_{2}^{2} = (|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}) \le \operatorname{nsup}\{|x_{1}|^{2}, |x_{2}|^{2}, \dots, |x_{n}|^{2}\} = n||x||_{\infty}$. Therefore the ∞ and 2 norm are topologically equivalent by $||x||_{\infty} \le ||x||_{2} \le \sqrt{2}||x||_{\infty}$.

Therefore, $||\cdot||_2$ and $||\cdot||_{\infty}$ are topologically equivalent and $||\cdot||_1$ and $||\cdot||_2$ are topologically equivalent. Adding it all together, $||x||_{\infty} \leq ||x||_2 \leq ||x||_1 \leq \sqrt{n}||x||_2 \leq n||x||_{\infty}$. So $-|x||_{\infty} \leq ||x||_1 \leq n||x||_{\infty}$. So ∞ and 1 are topologically equivalent. So ∞ and 1 and 2 are TE.

Problem 3.28

- i) Using the previous exercise we can see that $\sup_{x\neq 0} \frac{||Ax||_1}{||x||_1} \leq \sup_{x\neq 0} \frac{||Ax||_1}{||x||_2}$ because the 2 norm is smaller. Then this is less than $\sqrt{n}\sup_{x\neq 0} \frac{||Ax||_2}{||x||_2}$ because Ax is a vector and the 2 norm is bigger with a square rooted n. Also, $\frac{1}{sqrtn}\sup_{x\neq 0} \frac{||Ax||_2}{||x||_2} \leq \sup_{x\neq 0} \frac{||Ax||_2}{||x||_1}$ because the denominator is larger using the fact proved in problem 26. This is also less than $\sup_{x\neq 0} \frac{||Ax||_1}{||x||_1}$ because $||\cdot||_2 \leq ||\cdot||_1$. Thus the inequality follows by putting these together.
- ii) Using the previous exercise and skipping the intermediate step shown in part i) we can see that $\frac{1}{\sqrt{n}}\sup_{x\neq 0}\frac{||Ax||_{\infty}}{||x||_{\infty}}\leq \sup_{x\neq 0}\frac{||Ax||_2}{||x||_2}$. Also we see that $\sup_{x\neq 0}\frac{||Ax||_2}{||x||_2}\leq \sqrt{n}\sup_{x\neq 0}\frac{||Ax||_{\infty}}{||x||_{\infty}}$. Putting these together gives us the inequality.

Problem 3.29

Let $\mathbf{x} \neq 0$ and $||\cdot||$ be the standard inner product. Then

$$\begin{aligned} ||Qx|| &= \sqrt{\langle Qx,Qx\rangle} = \sqrt{x^H Q^H Qx} = \sqrt{(Q^H Qx)^H x} = \sqrt{\langle Q^H Qx,x\rangle} = \sqrt{\langle x,x\rangle} = \\ ||x||. \text{ Thus, } ||Q|| &= \sup_{x \neq 0} \frac{||Qx||}{||x||} = 1. \text{ Now } ||R_x|| = \sup_{A \neq 0} \frac{||Ax||}{||A||} = \sup_{A \neq 0} \frac{||Ax||||x||}{||A|||x||} \text{ and } \\ \text{then by the sup-multiplicative property this is less than } \sup_{A \neq 0} \frac{||Ax||||x||}{||Ax||} = ||x||. \end{aligned}$$

Problem 3.30

Let $S, A, B \in M_n \mathbb{F}$ and S be an invertible matrix.

- 1.) Positivity. So $||A||_S = ||SAS^{-1}|| \ge 0 \forall A$. We prove equality, $||0||_S = ||S0S^{-1}| = ||0|| = 0$ because $||\cdot||$ is a norm. Also if $0 = ||A||_S = ||SAS^{-1}|| \implies A = SAS^{-1} \implies A = 0$
- 2.) Scalar Preservation. Let $a \in \mathbb{F}$

$$||aA||_S = ||SaAS^{-1}|| = ||aSAS^{-1}|| = |a|||SAS^{-1}|| = |a|||A||_S$$
 because $||\cdot||$ is a norm.

3.) Triangle Inequality:

$$||A + B||_S = ||S(A + B)S^{-1}|| = SAS^{-1} + SBS^{-1}|| \le ||SAS^{-1}|| + ||SBS^{-1}|| = ||A||_S + ||B||_S$$

4.) Sub-multiplicative Property:

$$||AB||_S = ||SABS^{-1}|| = ||SAS^{-1}SBS^{-1}|| \le ||SAS^{-1}|| ||SBS^{-1}|| = ||A||_S ||B||_S.$$

Problem 3.37

Let $V = \mathbb{R}[x;2]$ be the space of polynomials of degree at most two. Let $L:V \to \mathbb{R}$ be the linear functional given by L[p] = p'(1). Let $p(x), q(x) \in V$ where $p(x) = ax^2 + bx + c$ and $q(x) = a'x^2 + b'x + c'$ with $a, b, c, a', b', c' \in \mathbb{R}$ and a vector such that p = (a, b, c) and q = (a', b', c'). Also we let q be the unique vector so that $\langle q, p \rangle = 2a + b = p'(1) = L[p]$. So a' = 2, b' = 1, c' = 0 and q = (2, 1, 0).

Problem 3.38

Let $V = \mathbb{F}[x;2]$ and $D: V \to V$ be the derivative operator. Then the matrix representation of D with respect to the power basis $\begin{bmatrix} 1, x, x^2 \end{bmatrix}$ is $\begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Also the

adjoint of
$$D$$
 is $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Problem 3.39

Let V and W be finite-dimensional inner product spaces. Let $S < T \in \mathcal{L}(V:W)$.

(i)

Proof.
$$\langle (S+T)^*w, v \rangle_V = \langle w, (S+T)v \rangle_W = \langle w, Sv + Tv \rangle_W = \langle w, Sv \rangle_W + \langle w, Tv \rangle_W = \langle S^*w, v \rangle_V + \langle T^*w, v \rangle_V = \langle S^*w + T^*w, v \rangle_V \text{ So } (S+T) = S^* + T^*. \text{ Also, } \langle (\alpha T)^*w, v \rangle_V = \langle w, (\alpha T)v \rangle_W = \langle w, \alpha Tv \rangle_W = \alpha \langle w, Tv \rangle = \alpha \langle T^*w, v \rangle = \langle \bar{\alpha} T^*w, v \rangle. \text{ So } (\alpha T)^* = \bar{\alpha} T.$$

(ii)

Proof.
$$\langle w, Sv \rangle_W = \langle S^*w, v \rangle_V = \overline{\langle v, S^*w \rangle_V} = \overline{\langle S^{**}v, w \rangle_W} = \langle w, S^{**}v \rangle_W$$
. Therefore $(S^*)^* = S$

(iii)

Proof.
$$\langle (ST)^*v', v \rangle_V = \langle v', (ST)v \rangle_V = \langle v', S(Tv) \rangle_V = \langle S^*v', Tv \rangle_V = \langle T^*S^*v', v \rangle_V$$

Therefore $(ST)^* = T^*S^*$

(iv)

Proof. By part
$$(iii)$$
: $(TT^{-1})^* = T^*(T^*)^{-1} = I^* = I$. Thus $(T^*)^{-1} = (T^{-1})^*$.

Problem 3.40

(i)

Proof. Let
$$S, T \in M_n(\mathbb{F})$$
. Then $\langle A^*S, T \rangle_F = \langle S, AT \rangle_F = \operatorname{tr}(S^H A T) = \operatorname{tr}((A^H S)^H T) = \langle A^H S, T \rangle$. Therefore, $A^* = A^H$.

(ii)

Proof. Let
$$A_1, A_2, A_3 \in M_n(\mathbb{F})$$
. Then $\langle A_2, A_3 A_1 \rangle_F = \operatorname{tr}(A_2^H A_3 A_1) = \operatorname{tr}(A_1 A_2^H A_3) = \operatorname{tr}((A_2 A_1^H)^H A_3) = \langle A_2 A_1^H, A_3 \rangle_F = \langle A_2 A_1^*, A_3 \rangle_F$ by part (i). Therefore, $\langle A_2, A_3 A_1 \rangle_F = \langle A_2 A_1^*, A_3 \rangle_F$.

(iii)

Proof. Let $A, B, C \in M_n(\mathbb{F})$ and define the linear operator $T_A : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ by $T_A(X) = AX - XA$. Then $\langle T_A^*B, C \rangle_F = \langle B, AC - CA \rangle_F = \langle B, AC \rangle - \langle B, CA \rangle_F$. We apply part (ii) and get $\langle B, AC \rangle - \langle BA^*, C \rangle$ Also, $\langle B, AC \rangle = \operatorname{tr}(B^AC) = \operatorname{tr}((A^HB)^HC) = \langle A^HB, C \rangle = \langle A*B, C \rangle$. So no we have $\langle A^*B, C \rangle - \langle BA^*, C \rangle = \langle AB - BA, C \rangle$. Therefore $T_A^* = T_{A^*}$..

Problem 3.44

We suppose that $y \in \mathcal{N}(A^H)$ such that $\langle y, b \rangle \neq 0$. Then $b \notin \mathcal{N}(A^H)^{\perp} = \mathcal{R}(A)$ Then there is no $x \in \mathbb{F}^n$, Ax = b. Now suppose $\exists x \in \mathbb{F}^n$ s.t. Ax = b. Then, $\forall y \in \mathcal{N}(A^H)$, $\langle y, b \rangle = \langle y, Ax \rangle = \langle A^H y, x \rangle = \langle 0, x \rangle = 0$.

Problem 3.45

Let $A \in \operatorname{Sym}_n(\mathbb{R})$ and $B \in \operatorname{Skew}_n(\mathbb{R})$. Then $\langle B, A \rangle = \operatorname{Tr}(B^T A) = \operatorname{Tr}(AB^T) = \operatorname{Tr}(A^T(-B)) = -\langle A, B \rangle$ Therefore $\langle A, B \rangle$ must equal 0 because the inner product is

positive. Also, $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Sym}_n(\mathbb{R})^{\perp}$. Let $B \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$ and $B + B^T \in \operatorname{Sym}_n(\mathbb{R})$. So, $0 = \rangle B + B^T$, $B \subseteq \operatorname{Tr}((B + B^T)B) = \operatorname{Tr}(BB + B^TB) = \operatorname{Tr}(BB) + \operatorname{Tr}(B^TB) \Longrightarrow \langle B^T, B \rangle = \langle -B, B \rangle$. So, $B^T = -B$. Therefore, $\operatorname{Sym}_n(\mathbb{R})^{\perp} = \operatorname{Skew}_n(\mathbb{R})$

Problem 3.46

i)

$$x \in \mathcal{N}(A^H A)$$
 So, $0 = (A^H A)x = A^H (Ax)$ so $Ax \in \mathcal{N}(A^H)$ then $Ax \in \mathcal{R}(A)$ by definition.

ii) Suppose $x \in \mathcal{N}(A^H A)$. Then $0 = A^H A x \implies x^H 0 = x^H A^H A x = ||Ax||$. Then Ax = 0 and so $x \in \mathcal{N}(A)$. Now, Suppose $x \in \mathcal{N}(A)$. So $Ax = 0 \implies A^H A x = A^H 0 = 0 \implies x \in \mathcal{N}(A^H A)$. Thus $\mathcal{N}(A^H A) = \mathcal{N}(A)$. iii)

$$n = \operatorname{rank}(A^H A) + \operatorname{dim} \mathcal{N}(A^H A)$$
. Since $\mathcal{N}(A^H A) = \mathcal{N}(A)$. So then, $n = \operatorname{rank}(A^H A) + \operatorname{dim} \mathcal{N}(A)$, Thus $\operatorname{rank}(A^H A) = \operatorname{rank}(A)$.

iv) Assume A has linearly independent columns. So, $\operatorname{rank}(A) = n = \operatorname{rank}(A^H A)$ by part three. Then $A^H A \in \mathbb{M}_n$ so it is nonsingular.

Problem 3.47

i)

$$P^2 = A(A^H A)^{-1} A^H A(A^H A)^{-1} A^H = A(A^H A)^{-1} A^H = P$$

ii

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H} = A^{H^{H}}((A^{H}A)^{-1})^{H}A^{H} = A(A^{H}A)^{-1}A^{H} = P$$

iii) We know that rank(A) = n

 $textrank(A(A^HA)^{-1}A^H) \le \min(\operatorname{rank}(A), \operatorname{rank}(A^HA^{-1}), \operatorname{rank}(A^H))$. This is by a matrix property

Thus, we know that an invertible matrix is full rank and so all of these ranks are n. So the minimum is n. So the rank is n.

Problem 3.48

i) Let $A, B \in \mathbb{M}_n(\mathbb{R})$ and $s, t \in \mathbb{R}$. Then $P(sA + tB) = \frac{sA + tB + (sA + tB)^T}{2} = s\frac{A + A^2}{2} + t\frac{B + B^T}{2} = sP(A) + tP(B)$. ii)

$$P^{2}(A) = \frac{\frac{A+A^{T}}{2} + \frac{A^{T}+A}{2}}{=} \frac{2A+2A^{T}}{2} = P(A)$$

iii) Adjoint is defined as
$$< P^*(A), B > = < A, P(B) >$$
. Thus, $< A, P(B) > = < A, \frac{(B+B^T)}{2} > = < A, \frac{B}{2} > + < A, \frac{B^T}{2} > = \text{Tr}(\frac{A^TB}{2}) + \text{Tr}(\frac{A^TB^T}{2}) = \text{Tr}(\frac{A^T}{2B}) + \text{Tr}(\frac{BA}{2}) = \text{Tr}(\frac{A^T}{2B}) + \text{Tr}(\frac{A}{2B}) = < \frac{(A+A^T)}{2}, B > = < P(A), B >$. So $P = P^*$. iv) Let $A \in \mathcal{N}(P)$. Then $0 = P(A) = \frac{A+A^T}{2} \implies A^T = -A$, so $\mathcal{N}(P) \subset \text{Skew}(\mathbb{R})$.

iv) Let $A \in \mathcal{N}(P)$. Then $0 = P(A) = \frac{A+A^T}{2} \implies A^T = -A$, so $\mathcal{N}(P) \subset \text{Skew}(\mathbb{R})$. Now, let $A \in \text{Skew}(\mathbb{R})$. Then $A^T = -A$ and so $P(A) = \frac{A+A^T}{2} = 0$. Therefore, $\text{Skew}(\mathbb{R}) \subset \mathcal{N}(P)$

v) Let $A \in \mathbb{M}_n(\mathbb{R})$. Then $P(A) = \frac{A+A^T}{2} = \frac{A^T+A}{2} = P(A)^T$ and so $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$. Now let $A = \operatorname{Sym}(\mathbb{R})$. Then $A = A^T$ and $P(A) = \frac{A+A^T}{2} = \frac{A+A}{2} = A$ and so $A \in \mathcal{R}(P)$. Therefore by proof, $\mathcal{R}(P) = \operatorname{Sym}(\mathbb{R})$.

vi) Notice that

$$||A - P(A)||_F^2 = \langle A - P(A), A - P(A) \rangle = \langle A - \frac{A + A^T}{2}, A - \frac{A + A^T}{2} \rangle =$$

$$\langle \frac{A - A^T}{2}, \frac{A - A^T}{2} \rangle = \operatorname{Tr}\left(\left(\frac{A - A^T}{2}\right)^T \frac{A - A^T}{2}\right) =$$

$$\operatorname{Tr}\left(\frac{A^T - A A - A^T}{2}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2 - (A^T)^2 + AA^T}{4}\right) =$$

$$\operatorname{Tr}\left(\frac{A^T A - A^2 - A^2 + A^T A}{4}\right) = \operatorname{Tr}\left(\frac{A^T A - A^2}{2}\right) = \frac{\operatorname{Tr}(A^T A) - \operatorname{Tr}(A^2)}{2}.$$

Therefore $||A - P(A)||_F = \sqrt{\frac{\operatorname{Tr}(A^T A) - \operatorname{Tr}(A^2)}{2}}$.

**(I thank Albi for typing most of this problem out.)

Problem 3.50
Let
$$A = \begin{bmatrix} x_1^2 & 1 \\ x_2^2 & 1 \\ \vdots & \vdots \\ x_n^2 & 1 \end{bmatrix}$$
. $\mathbf{x} = \begin{bmatrix} \frac{1}{s} \\ \frac{-r}{s} \end{bmatrix} \mathbf{b} = \begin{bmatrix} y_1^2 \\ y_2^2 \\ \vdots \\ y_n^2 \end{bmatrix}$

So Ax = b model will solve the least squares approximation for r and s. Then the normal equation in terms are $A^HAx = A^Hb$ where $A^HAx = \begin{bmatrix} n/s - \frac{r}{s} \sum_{i=1}^{n} x_i^2 \\ \frac{1}{s} \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i^4 \end{bmatrix} =$

$$A^H b = \begin{bmatrix} \sum_i^n y_i^2 \\ \sum_i^2 x_i^2 y_i^2 \end{bmatrix}$$