CSIT302 Cybersecurity Day 1-2 – Incident Response Process /Cybersecurity Kill Chain

Subject Coordinator: Dr Partha Sarathi Roy School of Computing and Information Technology

 Incident Response (IR) process is related to detection and response in the security posture

> Detection: how to handle security incidents.

> Response: how to rapidly respond to them.

 Many companies have an IR process in place, but they fail to constantly review it to incorporate lessons learned from previous incidents. → Having addressed this issue well gives us better protection in the future.

An example of IR process

- At point (7), the IR process
 - > takes over the incidence case:
 - be documents every single step of the process, and
 - incorporates the *lessons learned* with the aim of enhancing the overall security posture, after the incident is resolved.
- The process may vary according to the company, industry segment and standard.
- No IR process in place results in
 - ➤ Bad security posture
 - ➤ Waste of human resources

- For the successful IR Process:
 - ► All IT Personnel should be trained to know how to handle a security incident.
 - > All Users should be trained to know the core fundamentals about security.
 - An integration between the help desk system and the incident response team.
 - ➤ Good sensors (Intrusion Detection System) in places. For example, Network sensors + Host sensors for quick and comprehensive detection.
 - ► IR process must be compliant with the laws and the industry's regulations.

Creating an IR Process

AUSTRALIA

Foundational areas of the incident response process:

Foundational Areas of IR Process

Objective:

- **►What's the purpose** of this process?
 - ✓ It is important to define clearly the purpose of process.
 - ✓ Everyone should be aware of what this process is trying to accomplish.

Scope:

- To whom does this process apply?
 - ✓ A company-wide scope vs a departmental scope.
- Define/Terminology:
 - Each company may have a different perception of a security incident.
 - ✓ Define what constitutes a security incident and give examples.
 - ✓ Create their own glossary using a clearly defined terminology.

Foundational Areas of IR Process

- Roles and responsibilities:
 - Example: Who has the authority to confiscate a computer in order to perform further investigation?
 - ✓ Define the users or groups that have this level of authority.
 - ✓ Let the entire company be aware of this.
- Priorities/Severity level:
 - Functional impact of the incident in the business
 - ✓ Type of information affected by the incident
 - ✓ Recoverability
- Additionally, interaction with third parties, partners and customers is needed to be defined.

Incident Response Team

- Incident response team carries out IR process
 - It varies according to the company size, budget and purpose.
 - It requires a personnel who has a technically broad knowledge, but have deep knowledge in some other areas.
 - The budget for IR team must cover the acquisition of proper tools and hardware and training programs for the employees in the company.
- Outsourcing on IR Team
 - Finding proper people who have different skill sets is sometimes difficult. > Outsourcing part of the IR team can be one of the solution.
 - ➤ When it is outsourced, well-defined Service-level-agreement (SLA) that meets the severity levels is essential.

End Users

• End users' roles

UNIVERSITY

OF WOLLONGONG

- They have important roles in identifying and reporting security incident.
- They should know the procedure how to create incident ticket.
- They are required to attend the security awareness training.
- Sometimes, the end user cannot reproduce the issue. To mitigate scenarios like this, make sure the following is in place:
 - ➤ System and network profiles
 - **≻**Log-retention policy
 - ➤ Clock synchronization across all systems (e.g. using Network Time Protocol (NTP))
 - Instruct the end user to contact support when the issue is currently happening and provide them with the environment to capture data.

• NIST Incident Response Process

Preparation

- Implementation of security controls that were created based on the *initial* risk assessment.
- Implementation of other security controls such as endpoint protection, malware protection and network security.
- ➤The preparation phase is not static → This phase will receive input from post-incident activity.

- Detection and Analysis
 - ➤ Detection system must be aware of the attack vectors.
 - Detection system must be able to dynamically learn more about new threats and new behaviours.
 - > Detection system triggers an alert if a suspicious activity is encountered.
 - To detect threats more quickly and reduce false positives, the leveraging of security intelligence and advanced analytics are required.
 - ➤ Detection and analysis are sometimes done almost in parallel: An attack is still taking place when it is detected.

- ➤ Manual information gathering is often required to identifying an incident
 - ✓ Data gathering must be done in compliance with the company's policy.
 - ✓ In scenarios where you need to bring the data to a court of law, you need to guarantee the data's integrity.
- The combination and correlation of the following information to Identify IoC (Indication of Compromise) are required:
 - ✓ Endpoint protection and operating system *logs*: Phishing email, lateral movement
 - ✓ Server logs and network captures: Unauthorized or malicious process
 - ✓ The firewall log and the network capture: Data extraction and submission

Containment

- Perform short-term containment by isolating the portion of the network that is under threat. Then, focus on long-term containment, which requires temporary adjustments to allow systems to be used in production while rebuilding clean systems.
- ➤ Restore affected systems in minimal time.

Eradication

Remove malware from all infected devices, acknowledge the root cause of the attack and take necessary steps to avoid similar attacks in the future.

Recovery

- To avoid further attacks, put the affected production systems back online.
- ➤ To ensure that they return to normal operation, test, check and track the affected systems.

- Post-Incident Activity
 - ➤ Documenting Lesson Learned
 - ✓ It is one of the *most valuable* pieces of information that you have in the post-incident activity phase.
 - ✓ It helps to keep *refining the process* through the identification of gaps in the current process and areas of improvement.
 - ✓ This documentation must be very detailed with the full timeline of the incident.
 - ✓ Content: The *steps that were taken* to resolve the problem, what happened during each step and how the issue was finally resolved outlined in depth.

- The lesson learned will include the answers of the following:
 - ✓ Who identified the security issue? A user or the detection system?
 - ✓ Was the incident opened with the right priority?
 - ✓ Did the security operations team perform the initial assessment correctly?
 - ✓ Was the data analysis done correctly?
 - ✓ Were the containment, eradication and recovery done correctly?
 - ✓ Is there anything that could be improved at this point?
 - ✓ How long did it take to resolve this incident?
- > Evidence retention
 - ✓ All the artifacts should be stored according to the company's retention policy.
 - ✓ The evidence must be kept intact until legal actions are completely settled.

Incident Response in the Cloud

 A shared responsibility between the cloud provider and the company that is contracting the service

PaaS (**Platform as a Service**) provides a <u>platform</u> allowing customers to develop, run, and manage applications such as OS and middleware.

Incident Response in the Cloud

For the laaS model:

- Customers have full control of the **virtual machine** and have complete access to **all logs** provided by the operating system.
- ➤ Cloud provider has the information of the underlying network infrastructure and hypervisor logs.
- >Customers should review the cloud provider policy before requesting any data.

For the SaaS model:

- ➤ The vast majority of the **information** relevant to an incident response is in possession of the cloud provider. → contact the cloud provider directly, or open an incident via a portal.
- Customers review the SLA to better understand the rules of engagement in an incident response scenario.

Updating Your IR Process to Include Cloud

- The IR process must include cloud-computing-related aspects
- Preparation
 - In needs to update the contact list to include the cloud provider contact information, on-call process, and so on.
- Detection
 - include the cloud provider solution for detection in order to assist you during the investigation
- Containment
 - Revisit the cloud provider capabilities to isolate an incident (e.g, isolate compromised VM for the others)

- The Detection and Containment of the NIST IR process can be more specified by Threat Life Cycle management.
- An investment in threat life cycle management can enable an organization to stop attacks just as they happen.
- New technologies have been adopted, bringing new vulnerabilities and widening the surface area that cybercriminals can attack.
 - ➤ E.g. Internet of Things (IoT)
- 84% of all attacks left evidence in the log data → Appropriate tools and mindset, these attacks could have been mitigated early enough to prevent any damage.

• 6 Phases of threat life cycle management

Forensic data collection

Discovery

Qualification

Investigation

Neutralization

Recovery

- Forensic data collection
 - The threats come through the seven domains of IT. The more of the IT infrastructure the organization can see, the more threats it can detect.
 - ✓ Seven Domains of typical IT infrastructure: User Domain, Workstation Domain, LAN Domain, LAN-to-WAN Domain, Remote Access Domain, WAN Domain, and System/Application Domain
 - ➤ Collection of security event and alarm data
 - ➤ Collection of log and machine data
 - ➤ Collection of forensic sensor data

Discovery phase

- ➤ Search analytics
 - ✓ Carrying out software-aided analytics.
 - ✓ Review reports and identify any known or reported exceptions from network and antivirus security tools.
 - ✓ Labour-intensive → It should not be sole analytics method.
- ➤ Machine analytics
 - ✓ Purely done by *machines/software*.
 - ✓ Autonomously scan large amounts of data and give brief and simplified results to people using machine learning.

- Qualification phase
 - >Threats are assessed to find out
 - √ their potential impact;
 - ✓ urgency of resolution;
 - ✓ how to mitigate the threats
 - Inefficient qualification may lead to true positives being missed and false positives being included.
 - ➤ False positives are a big challenge. → Waste of resources against non-existent threats

Investigation phase

- The qualified threats are fully investigated to determine whether or not they have caused a security incident.
- ➤A threat might have done in the organization *before* it was identified by the security tools → Need to look at any potential damage.
- Continuous access to forensic data and intelligence about a large amount of threats is required. (It is mostly automated.)

Neutralization phase

- Eliminate or reduce the impact of an identified threat.
- Automated process to ensure a higher throughput of deleting threats, and to ease information sharing and collaboration in the organisation.

- Recovery phase
 - The phase comes after the all threats are neutralized and risks are put under control.
 - ➤ The organization to a position is restored prior to being attacked by threats
 ✓ Changes caused by the attacker or for the recover are needed to be backtracked
 - ➤ Automated recovery tools can be used to return systems to a backed-up state.
 - Ensure that no backdoors are introduced or are left behind

Cybersecurity Kill Chain

Cybersecurity Kill Chain

Kill chain

- The term was originally used as a military concept related to the structure of an attack, consisting of the followings:
 - √ target identification
 - ✓ dispatch of troops to the target
 - ✓ decision and order to attack the target
 - ✓ the destruction of the target.
- Cybersecurity kill chain
 - ➤ Lockheed Martin adapted this concept to the cybersecurity, using it as a method for modelling intrusions on a computer network.

Cybersecurity Kill Chain

- Most cyber attackers use a series of similar phases
 - The skilled attackers operate on well-structured and scheduled plans to remain their intrusion undetected until the time is right.
 - Those attacks are often performed through the following steps:
 - ✓ External reconnaissance (or information gathering)
 - ✓ Compromising the system
 - ✓ Lateral movement
 - ✓ Privilege escalation
 - ✓ Concluding the mission

External Reconnaissance

- The attackers in the external reconnaissance phase
 - harvest as much information as possible to find vulnerabilities;
 - >decide on the exploitation techniques that are suitable for each vulnerability.
- The information that the attacker gathers:
 - ➤ It is from outside the target's network and systems.
 - It includes the target's supply chain, obsolete device disposal and employee's social media activities.
 - Anyone in an organization can be targeted including suppliers and customers.

External Reconnaissance

- Commonly used techniques to get an entry point of the organisation's network: Social engineering attacks
 - ➤ Phishing: Attackers send the target some carefully crafted emails to cause them to reveal secret information or open a network to attacks.
 - ✓ Phishing emails are usually linked to a malware installation.
 - ✓ They claim to be from reputable institutions.
 - ➤Other types of social engineering attacks: Attackers closely follow targets and collect information about them: This happens mostly through social media

Compromising

- Once either of these or another technique is used, the attacker will find a point of entrance. (i.e. compromise the system) such as through **stolen passwords** or **malware infection**.
- **Stolen passwords** will give the attacker direct access to computers, servers, or devices within the internal network of an organization.
- Malware can be used to infect even more computers or servers, thus bringing them under the command of the hacker.

Lateral movement

- Lateral movement phase involves the use of various scanning tools to find loopholes that can be exploited to stage an attack.
- Popular scanning tools (Framework):
 - ➤ Metasploit and Kali Linux: Linux-based hacking framework. It is made up of numerous hacking tools and frameworks that have been made to effect different types of attacks.
- Popular password cracking tools:
 - ➤ John the Ripper, THC Hydra and Cain and Abel: Those tools support brute force or dictionary attacks on passwords.

Lateral movement

- Popular scanning tools (for Network):
 - ➤ Wireshark: Very popular tool among both hackers and pen testers to capture the data packets in the network.
 - >Nmap: NMap is a free and open source network mapping tool.
 - ➤ Aircrack-ng: a suite of tools that is used for wireless hacking. The suite includes attacks such as FMS, KoreK, and PTW.
 - ✓ The FMS attack is used to attack keys that have been encrypted using RC4.
 - ✓ KoreK is used to attack Wi-Fi networks that are secured with WEP-encrypted passwords.
 - ✓ PTW is used to hack through WEP- and WPA-secured Wi-Fi networks.
 - **Kismet:** Wireless network sniffer and intrusion detection system.
 - ➤ OWASP Zap: A website vulnerability scanner that hackers use to identify any exploitable loopholes in organizational websites.

Access and Privilege Escalation

- In order to achieve the freedom of movement without being detected, an attacker needs to perform privilege escalation.
- Vertical privilege escalation
 - >Attacker moves from one account to another that has a higher level of authority
 - ➤ Tools are used to escalate privileges
- Horizontal privilege escalation
 - Attacker uses the account that has the same level of authority
 - ➤ User account is used to escalate privileges

Access and Privilege Escalation

- In vertical privilege escalation,
 - The attacker gets access rights and privileges of high level authority such as administrator and a super user.
 - The attacker can run any unauthorized code (e.g., malwares and ransomwares) through the privileges it acquires.
 - ➤ It is complex operation. It may need some kernel-level operations to elevate their access rights.
 - > Buffer overflow is widely used for vertical privilege escalation.
 - > EternalBlue, which is a vulnerability that is used for WannaCry, is also based on buffer overflow.

Access and Privilege Escalation

- In horizontal privilege escalation,
 - An attacker uses the *same privileges* gained from the initial access.
 - >A normal user is erroneously able to access the account of another user.
 - ➤ Horizontal privilege occurs when an attacker is able to access protected resources using a normal user account.
 - This is normally done through session and cookie theft, cross-site scripting, guessing weak passwords, and logging keystrokes.
 - >As a result of this escalation
 - ✓ the attacker normally has well-established remote access entry points into a target system.
 - ✓ The attacker might also have access to the accounts of several users.
 - ✓ The attacker knows how to avoid detection from security tools that the target might have.

Exfiltration

- The attacker will start *extracting sensitive data* from an organization.
- This could include trade secrets, usernames, passwords, personally identifiable data, top-secret documents, and other types of data.
- ➤ Attackers normally steal huge chunks of data in this stage.
- Example of the data exfiltration
 - ✓ Ashley Madison (2015)
 - ✓ Yahoo (Happened in 2013, reported to the public in 2016)
 - ✓ LinkedIn (2016)
- The hackers soon put the data on sale for any interested buyers.
- The hackers could erase or modify the files stored in the compromised computers, systems, and servers

Sustainment

- The hackers may decide to *remain silent* even after it exfiltrated all valuable information.
- Attackers install malware, such as rootkit viruses to assure them of access to the victim's computers and systems whenever they want.
- The victim's security tools are at this point ineffective at either detecting or stopping the attack from proceeding.
- The attacker normally has *multiple access points* to the victims, such that even if one access point is closed, their access is not compromised.

Assault

- >most feared stage of any cyber-attack.
- permanently damage the data and software, disable or alter the functioning of the victim's hardware.
- ➤ Stuxnet attacks on Iranian nuclear facility.
 - ✓ The first recorded digital weapon to be used to wreak havoc on physical resources

✓ The nuclear station was not connected to the Internet. It is transmitted by USB thumb drive.

Obfuscation

- The attackers cover their tracks.
- They use various techniques to confuse, deter, or divert the forensic investigation process.
- There are a few techniques to obfuscation:
 - ➤ Hackers at times attack outdated servers in small businesses or public schools and then laterally move to attack other servers or targets.
 - > Hackers also can use a free WiFi, which is generally not highly protected.
 - ➤ Dynamic code obfuscation: This prevents detection from signature-based antivirus and firewall programs.

