Universidade Federal de Santa Maria

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO

DISCIPLINA: PRINCÍPIOS DE TELECOMUNICAÇÕES

Estudo sobre Modulação de Sinais

Autores: Caio S. Guedes <caio_ee@hotmail.com> Marcelo Brum <marcelobrum.rs@gmail.com> Renan Birck Pinheiro <renan.ee.ufsm@gmail.com>.

Santa Maria, 23 de Junho de 2012.

Conteúdo

1	Introdução	2
2	Experimento 1: Modulação AM a diodo	3
	2.1 Fundamentação Teórica	
	2.2 Procedimento experimental	3
3	Experimento 2: Modulação AM a transistor	5
	3.1 Introdução	5
4	Experimento 3: Transmissão e recepção de FM	6
	4.1 Demodulação FM	6
5	Experimento 4: Modulação por código de pulso (PCM)	7
	5.1 Introdução	7

Introdução

Neste trabalho serão abordadas as práticas feitas em laboratório, na discplina de Princípios de Telecomunicações, visando estudar o funcionamento das modulações em amplitude (AM) e em frequência (FM). Também será abordada a modulação por códigos de pulso (PCM).

Experimento 1: Modulação AM a diodo

2.1 Fundamentação Teórica

Seja um sinal senoidal modulante dado por

$$V_s = A\cos(\omega_s t + \phi) \tag{2.1}$$

e uma portadora dada por

$$V_p = A\cos(\omega_p t + \phi) \tag{2.2}$$

tal que $\omega_p > \omega_s$. A fase dos sinais é fixa em 0, assim eliminando-se ϕ . Para a análise no domínio da frequência, reescrevem-se os cossenos na forma exponencial e usam-se as propriedades de Fourier.

A modulação em amplitude (*Amplitude Modulation*) feita desta forma resulta em duas *sidebands*, posicionadas em $F_s \pm F_c$.

Problema proposto:

Implemente o circuito da Figura 1 e calcule a frequência de ressonância do filtro passa faixa. Ajuste a freqüência de $E_o(t)$ para o valor calculado. Ajuste a freqüência de a(t) para 1KHz. Faça a amplitude de $E_0(t)$ igual a 10V pico a pico e a de a(t) 3V pico a pico. Apresente suas conclusões a respeito do uso do filtro e da freqüência de ressonância obtida.

2.2 Procedimento experimental

O circuito da figura 2.1 foi montado em uma protoboard:

Figura 2.1: Modulador AM a diodo.

Para sintonizar a portadora, calcula-se a frequência de ressonância do filtro LC da saída:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2.3}$$

Para os valores fornecidos (C=2,2nF e $L=1000\mu F$) ter-se-á que essa frequência será de cerca de 107 KHz.

Após sintonizados os sinais de portadora e da modulante, mede-se a saída.

Experimento 2: Modulação AM a transistor

3.1 Introdução

Experimento 3: Transmissão e recepção de FM

4.1 Demodulação FM

Ela também pode ser feita utilizando-se um circuito PLL (*Phase-Locked Loop*), o qual foge do foco do presente trabalho.

Experimento 4: Modulação por código de pulso (PCM)

5.1 Introdução

PCM é uma técnica para a representação de sinais analógicos convertidos para formato digital, visando transmissão ou posterior processamento. Uma codificação em PCM transforma uma amostra quantizada em um número codificado. [1]

Fundamentalmente, a técnica consiste na quantização dos dados através de um conversor A/D. No lado do receptor existirá um conversor D/A que irá fazer o processo oposto.

Bibliografia

- [1] MACHADO, R. Notas de aula da disciplina de Comunicação de Dados. Disponível em http://www.ufsm.br/gpscom/professores/Renato% 20Machado/comunicacaodedados.html. Acessado em 12/06/2012.
- [2] Euler Formula. Disponível em http://mathworld.wolfram.com/ EulerFormula.html. Acessado em 23/06/2012.