中国科学院大学

试期专用概

WERE NOTE OF THE BUTCH THE

课程各称、模式积据与铁器学习

作器被绑: 黄淡明、兰物物、磐嘉丰、山松丸

(专定时间为 上边, 分钟, 专业方式, 进, 卷)

3.专以结束价、团体未过资积非赎机、等施机一年至111。

(8 分) 试测迷线性判别消散的基本概念,并说明既然有线性判别函数,为什么还 需要非线性判别高载? 假设有两类模式、每类包括6个4维不同的模式、且以好分 布。如果它们是线性可分的。同权向量至少需要几个系数分量7假如要建立二次的 多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而 改变)

- 2. (8 分) 簡述 SVM 算法的原理。如果使用 SVM 做二分类问题得到如下结果,分别应 该采取什么措施以取得更好的结果? 并说明原因。
 - (1) 训练集的分类准确率 90%, 验证集的分类准确率 90%, 测试集的分类准确率 88%;
 - (2) 训练集的分类准确率 98%, 验证集的分类准确率 90%, 测试集的分类准确率 88%。
- 3. (8分) 请从两种角度解释主成分分析 (PCA) 的优化目标。
- 4. (8分)请给出卷积神经网络 CNN 中卷积、Pooling、RELU 等基本层操作的含义。然 后从提取特征的角度分析 CNN 与传统特征提取方法 (例如 Gabor 小波滤波器) 的异 同。
- (10分) 用线性判别函数的感知器赏罚训练算法求下列模式分类的解向量,并给出 相应的判别函数。

 ω_1 : {(0 0)[†], (0 1)[†]}

 ω_2 : {(1 0)^T, (1 1)^T}

(10分) 试述 K-L 变换的基本原理,并将如下两类样本集的特征维数降到一维, 6. 时画出样本在该空间中的位置。

 ω_1 : { $(-5 - 5)^{\mathsf{T}}$, $(-5 - 4)^{\mathsf{T}}$, $(-4 - 5)^{\mathsf{T}}$, $(-5 - 6)^{\mathsf{T}}$, $(-6 - 5)^{\mathsf{T}}$ }

 ω_2 : { $(5 \ 5)^{\mathsf{T}}$, $(5 \ 6)^{\mathsf{T}}$, $(6 \ 5)^{\mathsf{T}}$, $(5 \ 4)^{\mathsf{T}}$, $(4 \ 5)^{\mathsf{T}}$ },

其中假设其先验概率相等,即 $P(\omega_1)=P(\omega_2)=0.5$ 。

(12分) 请解释 AdaBoost 的基本思想和工作原理,写出 AdaBoost 算法

8. (12分) 选择颁示来特差项式, 其前面几项的表达式为 B.(x)-1, B.(x)-2x, B.(x)-4x*-2, B.(x)-8x*-12x, B.(x)=16x*-48x*+12 证用二次统示来特多项式的转函数算法求解以下模式的分类问题 ω;: ((0 1)*, (0 -1)*) ω;: ((1 0)*, (-1 0)*)

9. (12分) 已知以下关于垃圾邮件的 8 条标注数据, A、B 为邮件的 2 个特征, Y 为类别, 其中 Y=1 表示该邮件为垃圾邮件, Y=0 表示该邮件为正常邮件。请依此训练一个朴素贝叶斯分类器,并预测特征为 "A=0, B=1" 的邮件是否为垃圾邮件。

序号	1	12	3	14	5	6	7	8
A	0	0	1	1	1	1	1	1
B	0	0	0	0	0	0	1	1

10. (12分) 假设有 3 个罐子,每个罐子里都装有红、黑两种颜色的弹珠。按照下面的方法取弹珠:开始,以概率 4 随机选取 1 个罐子,从这个罐子以概率 B 随机取出一个弹珠,记录其颜色后,放回;然后,从当前盒子以概率 A 随机转移到下一个盒子,再从这个盒子里以概率 B 随机抽出一个球,记录其颜色,放回;如此重复 3 次,得到一个弹珠的颜色观测序列:0=(红,黑,红)。请用前向传播算法计算生成该序列的概率 P(0/{A,B, \pi})。

罐子1
 罐子2
 罐子3
 红 黑

$$\pi = [0.4, 0.4, 0.2]^T$$
 $A =$
 罐子1
 0.3
 0.5
 0.2
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5

2. 根据结果来看, SVM 在进行二分类时采用的是软间隔, 其中 1 和 2 的训练集分类准确度不同, 是因为 C 值设置的问题, C 表示对分类错误的惩罚程度, C 越大分类器就越不会允许出现分类错误现象, 此时对应 2, C 越小分类器就越不会在乎训练集上的分类错误, 此时对应 1, 所以应该采取对 1 来说增大 C 值, 对 2 来说减小 C 值。另外 C 值和间隔宽度有着互斥关系, C 越大导致间隔宽度表小。