

POPAyI: Muscling Ordinal Patterns for low-complex and usability-aware transportation mode detection

Isadora Cardoso-Pereira, João B. Borges, Aline C. Viana, Antonio A. F. Loureiro, **Heitor S. Ramos** - heitor@dcc.ufmg.br

Federal University of Minas Gerais (UFMG), Brazil, Federal University of Rio Grande do Norte (UFRN), Brazil, Inria, France

Introduction

- Transportation Mode Detection (TMD) involves classifying mobility traces to identify the corresponding transport mode.
- Most TMD literature relies on hand-crafted features (reaching hundreds of features) or computationally- and data-intensive DL methods, which pose challenges for resource-constrained Internet of Things (IoT) scenarios
- We present POPAyI, an innovative strategy based on Ordinal Pattern (OP) transformation applied to mobility-related time series that is computationally efficient, scalable, and provides accurate transportation mode detection.

Ordinal Patterns

A lightweight solution well-suited for edge computing applications, enabling on-device analytics: preserving privacy

Ordinal Patterns Limitations

Traditional OPs face limitations when dealing with multidimensional data (e.g., mobility)

- 1. Absence of amplitude information
- 2. Originally defined for univariate time series

Ordinal Patterns Limitations

Our approach: PoPayl

POPAyl (Polar Ordinal Patterns with Amplitude Information) is the first work to leverage amplitude information in a multivariate OP approach.

Methodology

Goals:

- **i** Note
- Evaluate the effectiveness of POPAyI in classifying different transportation modes. Compare POPAyI to state-of-the-art Machine Learning (ML) and Deep Learning (DL) methods.

Setup:

i Note

- We used GeoLife dataset, which contains 182 users' GPS trajectories over 5 years and various transportation modes: walking, biking, car, bus, subway, train.
- Fixed-length segments of 500 points to ensure comparability across all models
- Classification using cross-validation with 5 folds and stratified classes

Hyperparameters selection

- Explored values:
 - Embedding Dimension: D = 3, 4, 5
 - Embedding Delay: = 1, 2
 - Amplitude Threshold: q = 0.0005 to 3 (0.5 m to 3 km)
- Selection Process:
 - Used Successive Halving: progressively eliminated weaker configurations based on F1-score
 - au=2 consistently achieving the best results suggests that non-consecutive points capture more meaningful transport dynamics
 - Difficulty of establishing a straightforward correlation between hyperparameter values

Final choice: D = 3, τ = 2, q = 0.0005

TM sets	Methods	F1	D. Size	# feat.	# params.
walk, bike car&taxi, bus	DT	74.77%	10-8000	13	-
	POPAyI	86.34%	10-8000	19	7.8×10^{1}
	Light. CNN	87.10%	500	500	1.1×10^4
	POPAyI	86.86%	500	19	$7.8 imes 10^1$
	POPAyI	87.41%	1000	19	7.8×10^{1}
walk, bike, car, train	XGBoost	87.40%	10-39120	111	-
bus&taxi, subway	POPAyI	82.40%	10-39120	19	7.8×10^{1}
walk, bike, car&taxi, bus, train	Best CNN	74.80%	200	200	2.6×10^{6}
	7 CNNs	83.90%	200	200	1.8×10^{7}
	LSTM	91.90%	200	200	8.1×10^{6}
	AE + CNN	88.28%	200	200	4.1×10^{7}
	Light. CNN	83.90%	500	500	1.1×10^4
	POPAyI	85.68%	500	19	7.8×10^{1}
	POPAyI	85.77%	1000	19	7.8×10^{1}
	POPAyI	86.71%	10-17000	19	7.8×10^{1}

Confusion Matrix

Confusion Matrix

- Imbalanced classes might significantly impact classification
- Certain transportation modes may misclassify due to shared traffic characteristics and similar temporal dynamics
- Classifications are clearer between motor and non-motor transports due to distinct speed and distance behaviors
- Some misclassifications result from data quality issues
- Impact of False Positives/Negatives varies across ITS applications
 - Acceptable mixing of transport types in urban planning.
 - Critical applications require minimal false negatives for safety.
 - POPAyl Advantage: Fewer false negatives between motorized and non-motorized transports enhance safety in critical applications

Conclusions

- POPAyl demonstrates effective TMD by leveraging multivariate ordinal patterns and amplitude information
- Achieves high accuracy with minimal computational resources, making it suitable for resource-constrained environments (e.g., IoT)
- Outperforms traditional methods and DL approaches while maintaining a lightweight framework

Future Directions

- Expand Dataset Applications: Test POPAyl on more diverse mobility datasets to validate generability
- Integrate with Smart City Infrastructure: Explore the use of POPAyI in smart city projects for traffic management and urban planning
- Address Misclassifications: Investigate methods to further reduce misclassifications, particularly between similar transportation modes
- Incorporate Additional Features: Enrich the model by integrating more features from mobility data, such as environmental factors affecting transport dynamics