

### DIFFERENTIAL ENTROPY

## Why

We want a notion of "uncertainty" for a real-valued (continuous) random variable.

### **Definition**

The *relative entropy* of a probability density function is the integral of the density against the negative log of the density.

#### Notation

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a probability density function. The differential entropy of f is

$$-\int f \log f$$

We denote the differential entropy of f by h(f).

## Example

Let  $x: \Omega \to \mathbb{R}$  be uniform on [0, 1/2]. Then  $h(x) = \log 1/2 < 0$ .

### **Problems**

We have  $h(ax) = h(x) + \log |a|$ . In generaly  $h(Ax) = h(x) + \log |A|$ .

# Differences still meaningful

Even though the value of the differential entropy is not necessarily a good analogy to discrete entropy, differences still are.

In particular, the following holds

$$I(X;Y) = H(Y) - H(Y \mid X) = H(X) = H(X \mid Y)$$

