$12n_{0267} (K12n_{0267})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.63228 \times 10^{53} u^{27} + 1.02544 \times 10^{54} u^{26} + \dots + 3.06469 \times 10^{56} b + 3.90256 \times 10^{56}, \\ &1.81316 \times 10^{54} u^{27} + 1.29787 \times 10^{55} u^{26} + \dots + 2.45175 \times 10^{57} a - 9.42098 \times 10^{56}, \\ &u^{28} + 7u^{27} + \dots - 256u - 1024 \rangle \\ I_2^u &= \langle -15a^5u^4 - 35a^4u^4 + \dots + 62a + 18, \ 12a^5u^4 + 166a^4u^4 + \dots + 144010a + 300665, \\ &u^5 - u^4 + 5u^3 - u^2 + 2u + 2 \rangle \\ I_3^u &= \langle -2796800274u^{16} + 1230170348u^{15} + \dots + 5782655035b + 1488757467, \\ &- 115474u^{16} + 4433863u^{15} + \dots + 2844395a - 26311393, \ u^{17} + 6u^{15} + \dots - 3u - 1 \rangle \\ I_1^v &= \langle a, \ 8v^3 - 12v^2 + b + 10v - 3, \ 8v^4 - 12v^3 + 12v^2 - 5v + 1 \rangle \\ I_2^v &= \langle a, \ b^6 - b^5 + 2b^4 - 2b^3 + 2b^2 - 2b + 1, \ v + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 85 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 1.63 \times 10^{53} u^{27} + 1.03 \times 10^{54} u^{26} + \dots + 3.06 \times 10^{56} b + 3.90 \times 10^{56}, \ 1.81 \times 10^{54} u^{27} + \\ 1.30 \times 10^{55} u^{26} + \dots + 2.45 \times 10^{57} a - 9.42 \times 10^{56}, \ u^{28} + 7u^{27} + \dots - 256u - 1024 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.000739535u^{27} - 0.00529364u^{26} + \dots + 1.32145u + 0.384255 \\ -0.000532608u^{27} - 0.00334597u^{26} + \dots - 0.222903u - 1.27339 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.000164451u^{27} - 0.000139457u^{26} + \dots + 0.107664u + 0.565098 \\ -0.000174750u^{27} - 0.00136950u^{26} + \dots - 0.302799u - 0.594774 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.000886322u^{27} - 0.00613088u^{26} + \dots + 1.06551u - 0.306723 \\ -0.000917462u^{27} - 0.00664824u^{26} + \dots + 2.05507u - 0.158393 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000128059u^{27} - 0.000962696u^{26} + \dots + 0.904215u + 1.23308 \\ 0.000823960u^{27} + 0.00616689u^{26} + \dots + 0.124171u - 0.0314143 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.000282712u^{27} - 0.00211501u^{26} + \dots - 0.172064u - 0.00475082 \\ -0.000128885u^{27} - 0.000876415u^{26} + \dots - 0.604047u - 0.709139 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000661565u^{27} - 0.00488332u^{26} + \dots + 2.13497u + 0.559124 \\ -0.000843467u^{27} - 0.00643716u^{26} + \dots - 0.604047u - 0.709139 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000661565u^{27} - 0.00488332u^{26} + \dots + 2.13497u + 0.559124 \\ -0.000843467u^{27} - 0.00643716u^{26} + \dots - 0.604047u - 0.709139 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000661565u^{27} - 0.00488332u^{26} + \dots + 2.13497u + 0.559124 \\ -0.000843467u^{27} - 0.00643716u^{26} + \dots - 0.172064u - 0.041978 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.000661565u^{27} - 0.00643716u^{26} + \dots - 0.604047u - 0.709139 \\ -0.000623273u^{27} - 0.00320663u^{26} + \dots + 2.56297u + 0.782535 \\ -0.000623273u^{27} - 0.00509696u^{26} + \dots + 4.09691u + 0.746524 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.000805991u^{27} + 0.000903953u^{26} + \cdots + 16.6786u + 9.73356$

Crossings	u-Polynomials at each crossing
c_1	$u^{28} + 11u^{27} + \dots + 38144u + 4096$
c_2, c_4	$u^{28} - 5u^{27} + \dots + 368u - 64$
c_3, c_8	$u^{28} - 7u^{27} + \dots + 256u - 1024$
c_5, c_7, c_{10} c_{11}	$u^{28} - u^{26} + \dots + 6u + 1$
c_6, c_{12}	$u^{28} - u^{27} + \dots + 5u + 1$
<i>c</i> ₉	$u^{28} - 11u^{27} + \dots - 464u + 32$

Crossings	Riley Polynomials at each crossing
c_1	$y^{28} + 17y^{27} + \dots - 423952384y + 16777216$
c_2, c_4	$y^{28} - 11y^{27} + \dots - 38144y + 4096$
c_3,c_8	$y^{28} + 21y^{27} + \dots + 7012352y + 1048576$
c_5, c_7, c_{10} c_{11}	$y^{28} - 2y^{27} + \dots - 16y + 1$
c_6,c_{12}	$y^{28} + 15y^{27} + \dots + 59y + 1$
<i>c</i> ₉	$y^{28} - 9y^{27} + \dots - 57088y + 1024$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.700519 + 0.599156I		
a = 0.801515 - 1.064090I	-3.55837 - 1.15126I	-11.39772 - 0.05458I
b = 0.037633 - 0.642247I		
u = -0.700519 - 0.599156I		
a = 0.801515 + 1.064090I	-3.55837 + 1.15126I	-11.39772 + 0.05458I
b = 0.037633 + 0.642247I		
u = 0.380572 + 0.813474I		
a = 0.564232 + 0.751884I	-0.05630 - 1.72703I	-1.78795 + 1.55176I
b = -0.166171 + 0.662526I		
u = 0.380572 - 0.813474I		
a = 0.564232 - 0.751884I	-0.05630 + 1.72703I	-1.78795 - 1.55176I
b = -0.166171 - 0.662526I		
u = -0.588263 + 1.018270I		
a = 0.470372 - 0.902968I	-2.26210 + 6.12921I	-7.94602 + 0.52990I
b = -0.094878 - 0.756998I		
u = -0.588263 - 1.018270I		
a = 0.470372 + 0.902968I	-2.26210 - 6.12921I	-7.94602 - 0.52990I
b = -0.094878 + 0.756998I		
u = 1.069010 + 0.807521I		
a = -0.138524 - 0.648901I	-0.304442 - 0.720791I	-1.85900 + 1.85047I
b = 0.903329 - 0.048342I		
u = 1.069010 - 0.807521I		
a = -0.138524 + 0.648901I	-0.304442 + 0.720791I	-1.85900 - 1.85047I
b = 0.903329 + 0.048342I		
u = 0.289195 + 0.590850I		
a = -0.185649 - 0.370483I	-4.11561 - 8.14651I	-4.6236 + 14.7439I
b = 0.454678 - 1.109670I		
u = 0.289195 - 0.590850I		
a = -0.185649 + 0.370483I	-4.11561 + 8.14651I	-4.6236 - 14.7439I
b = 0.454678 + 1.109670I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.008090 + 0.619126I		
a = 0.445860 + 0.546608I	0.33084 - 1.64029I	3.18047 + 4.70949I
b = -0.405809 + 0.656851I		
u = -0.008090 - 0.619126I		
a = 0.445860 - 0.546608I	0.33084 + 1.64029I	3.18047 - 4.70949I
b = -0.405809 - 0.656851I		
u = -1.31770 + 0.54916I		
a = 0.352145 - 0.329705I	3.36539 + 1.37186I	-0.78063 - 1.56765I
b = -1.100510 - 0.409135I		
u = -1.31770 - 0.54916I		
a = 0.352145 + 0.329705I	3.36539 - 1.37186I	-0.78063 + 1.56765I
b = -1.100510 + 0.409135I		
u = 0.535945		
a = 1.11271	-1.18275	-7.92670
b = 0.260909		
u = 0.66539 + 1.38340I		
a = 0.420370 + 0.447189I	-0.93155 + 4.11677I	-2.65942 - 4.73683I
b = -0.979556 - 0.414826I		
u = 0.66539 - 1.38340I		
a = 0.420370 - 0.447189I	-0.93155 - 4.11677I	-2.65942 + 4.73683I
b = -0.979556 + 0.414826I		
u = -1.68431		
a = 0.112961	-10.2990	-65.2260
b = 0.309973		
u = -1.70473 + 0.38435I		
a = -0.204716 + 0.352722I	2.18156 + 7.22574I	-3.09669 - 6.28834I
b = 1.155650 + 0.736871I		
u = -1.70473 - 0.38435I		
a = -0.204716 - 0.352722I	2.18156 - 7.22574I	-3.09669 + 6.28834I
b = 1.155650 - 0.736871I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.73389 + 1.71578I		
a = -1.098300 + 0.366340I	9.85046 + 9.25719I	-3.57812 - 5.07121I
b = 1.02566 + 1.08507I		
u = -0.73389 - 1.71578I		
a = -1.098300 - 0.366340I	9.85046 - 9.25719I	-3.57812 + 5.07121I
b = 1.02566 - 1.08507I		
u = -0.84442 + 1.78161I		
a = 1.062890 - 0.293393I	8.3503 + 16.4009I	-4.99450 - 7.83007I
b = -1.07966 - 1.38439I		
u = -0.84442 - 1.78161I		
a = 1.062890 + 0.293393I	8.3503 - 16.4009I	-4.99450 + 7.83007I
b = -1.07966 + 1.38439I		
u = 0.22185 + 2.03555I		
a = -0.956969 - 0.026772I	11.43660 - 1.44441I	-1.83528 + 0.I
b = 1.27197 - 0.92548I		
u = 0.22185 - 2.03555I		
a = -0.956969 + 0.026772I	11.43660 + 1.44441I	-1.83528 + 0.I
b = 1.27197 + 0.92548I		
u = 0.34578 + 2.17004I		
a = 0.853942 + 0.002644I	10.24040 - 8.22431I	-4.00000 + 4.11200I
b = -1.30777 + 1.19876I		
u = 0.34578 - 2.17004I		
a = 0.853942 - 0.002644I	10.24040 + 8.22431I	-4.00000 - 4.11200I
b = -1.30777 - 1.19876I		

II.
$$I_2^u = \langle -15a^5u^4 - 35a^4u^4 + \dots + 62a + 18, \ 12a^5u^4 + 166a^4u^4 + \dots + 144010a + 300665, \ u^5 - u^4 + 5u^3 - u^2 + 2u + 2 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.535714a^{5}u^{4} + 1.25000a^{4}u^{4} + \dots - 2.21429a - 0.642857 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.607143a^{5}u^{4} + 0.428571a^{4}u^{4} + \dots + 0.642857a + 2.71429 \\ -4.67857a^{5}u^{4} - 3.57143a^{4}u^{4} + \dots + 0.928571a + 3.14286 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3.71429a^{5}u^{4} - 1.03571a^{4}u^{4} + \dots - 0.928571a - 2.57143 \\ 16.5714a^{5}u^{4} + 9.71429a^{4}u^{4} + \dots - 7.71429a - 5.42857 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.21429a^{5}u^{4} - 0.607143a^{4}u^{4} + \dots + 2.78571a + 1.42857 \\ 7.07143a^{5}u^{4} + 3.64286a^{4}u^{4} + \dots - 3.42857a - 2.71429 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -607143a^{5}u^{4} + 0.428571a^{4}u^{4} + \dots + 0.642857a + 1.71429 \\ -4.67857a^{5}u^{4} - 3.57143a^{4}u^{4} + \dots + 0.928571a + 2.14286 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{4} - \frac{1}{4}u^{2} + \frac{3}{2}u - \frac{1}{2} \\ -u^{4} + \frac{1}{2}u^{3} - \frac{1}{2}u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{2} + \frac{1}{2}u - 1 \\ -\frac{1}{4}u^{4} - \frac{1}{4}u^{2} - u - \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{4} + \frac{1}{2}u^{3} + \dots + \frac{3}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{3} - \frac{1}{2}u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{17}{7}a^4u^4 + \frac{5}{7}u^4a^3 + \dots + \frac{22}{7}a \frac{92}{7}$

Crossings	u-Polynomials at each crossing
c_1	$(u^5 + 6u^3 + u^2 - u + 1)^6$
c_2, c_4	$(u^5 - 2u^4 + 2u^3 + u^2 - u + 1)^6$
c_{3}, c_{8}	$(u^5 + u^4 + 5u^3 + u^2 + 2u - 2)^6$
c_5, c_7, c_{10} c_{11}	$u^{30} - 2u^{29} + \dots - 20u + 137$
c_6, c_{12}	$u^{30} - 6u^{29} + \dots + 392u + 191$
<i>c</i> ₉	$(u^3 + u^2 - 1)^{10}$

Crossings	Riley Polynomials at each crossing
c_1	$(y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1)^6$
c_2, c_4	$(y^5 + 6y^3 - y^2 - y - 1)^6$
c_{3}, c_{8}	$(y^5 + 9y^4 + 27y^3 + 23y^2 + 8y - 4)^6$
c_5, c_7, c_{10} c_{11}	$y^{30} + 6y^{29} + \dots + 131668y + 18769$
c_6, c_{12}	$y^{30} - 2y^{29} + \dots - 47468y + 36481$
<i>c</i> ₉	$(y^3 - y^2 + 2y - 1)^{10}$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.375669 + 0.888717I		
a = 0.674585 + 0.800660I	-0.05929 - 1.71921I	-2.12477 + 0.93832I
b = -0.250372 + 0.453019I		
u = 0.375669 + 0.888717I		
a = 0.150570 - 0.874514I	-0.05929 + 3.93704I	-2.12477 - 5.02057I
b = -0.372835 - 1.197460I		
u = 0.375669 + 0.888717I		
a = 0.865106 + 0.190043I	-4.19688 + 1.10891I	-8.65403 - 2.04112I
b = -0.079065 - 1.171220I		
u = 0.375669 + 0.888717I		
a = 0.500602 + 0.675276I	-0.05929 - 1.71921I	-2.12477 + 0.93832I
b = -0.122646 + 0.883622I		
u = 0.375669 + 0.888717I		
a = -0.790896 - 0.900150I	-0.05929 + 3.93704I	-2.12477 - 5.02057I
b = 1.154460 + 0.050802I		
u = 0.375669 + 0.888717I		
a = -0.156566 - 0.585774I	-4.19688 + 1.10891I	-8.65403 - 2.04112I
b = 0.62035 + 1.42290I		
u = 0.375669 - 0.888717I		
a = 0.674585 - 0.800660I	-0.05929 + 1.71921I	-2.12477 - 0.93832I
b = -0.250372 - 0.453019I		
u = 0.375669 - 0.888717I		
a = 0.150570 + 0.874514I	-0.05929 - 3.93704I	-2.12477 + 5.02057I
b = -0.372835 + 1.197460I		
u = 0.375669 - 0.888717I		
a = 0.865106 - 0.190043I	-4.19688 - 1.10891I	-8.65403 + 2.04112I
b = -0.079065 + 1.171220I		
u = 0.375669 - 0.888717I		
a = 0.500602 - 0.675276I	-0.05929 + 1.71921I	-2.12477 - 0.93832I
b = -0.122646 - 0.883622I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.375669 - 0.888717I		
a = -0.790896 + 0.900150I	-0.05929 - 3.93704I	-2.12477 + 5.02057I
b = 1.154460 - 0.050802I		
u = 0.375669 - 0.888717I		
a = -0.156566 + 0.585774I	-4.19688 - 1.10891I	-8.65403 + 2.04112I
b = 0.62035 - 1.42290I		
u = -0.504107		
a = -2.97283 + 2.25685I	-3.11432 + 2.82812I	-13.43328 - 2.97945I
b = -0.436616 - 0.497956I		
u = -0.504107		
a = -2.97283 - 2.25685I	-3.11432 - 2.82812I	-13.43328 + 2.97945I
b = -0.436616 + 0.497956I		
u = -0.504107		
a = -2.46586 + 7.51356I	-7.25191	-19.9625 + 0.I
b = -0.07832 + 1.49767I		
u = -0.504107		
a = -2.46586 - 7.51356I	-7.25191	-19.9625 + 0.I
b = -0.07832 - 1.49767I		
u = -0.504107		
a = 1.11141 + 9.05588I	-3.11432 + 2.82812I	-13.43328 - 2.97945I
b = 0.377491 + 0.857286I		
u = -0.504107		
a = 1.11141 - 9.05588I	-3.11432 - 2.82812I	-13.43328 + 2.97945I
b = 0.377491 - 0.857286I		
u = 0.37638 + 2.02979I		
a = -0.941568 - 0.072890I	9.99924 - 6.95303I	-3.38420 + 5.13388I
b = 0.99031 - 1.34752I		
u = 0.37638 + 2.02979I		
a = 0.895319 + 0.135542I	9.99924 - 1.29678I	-3.38420 - 0.82502I
b = -1.30155 + 1.31060I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.37638 + 2.02979I		
a = 0.798012 + 0.078062I	5.86166 - 4.12490I	-9.91347 + 2.15443I
b = -1.64960 + 0.34874I		
u = 0.37638 + 2.02979I		
a = 0.768176 + 0.214026I	9.99924 - 6.95303I	-3.38420 + 5.13388I
b = -1.60645 - 0.98436I		
u = 0.37638 + 2.02979I		
a = -0.750216 + 0.005392I	5.86166 - 4.12490I	-9.91347 + 2.15443I
b = 0.616800 - 0.250072I		
u = 0.37638 + 2.02979I		
a = -0.685847 - 0.213681I	9.99924 - 1.29678I	-3.38420 - 0.82502I
b = 1.13805 + 1.09576I		
u = 0.37638 - 2.02979I		
a = -0.941568 + 0.072890I	9.99924 + 6.95303I	-3.38420 - 5.13388I
b = 0.99031 + 1.34752I		
u = 0.37638 - 2.02979I		
a = 0.895319 - 0.135542I	9.99924 + 1.29678I	-3.38420 + 0.82502I
b = -1.30155 - 1.31060I		
u = 0.37638 - 2.02979I		
a = 0.798012 - 0.078062I	5.86166 + 4.12490I	-9.91347 - 2.15443I
b = -1.64960 - 0.34874I		
u = 0.37638 - 2.02979I		
a = 0.768176 - 0.214026I	9.99924 + 6.95303I	-3.38420 - 5.13388I
b = -1.60645 + 0.98436I		
u = 0.37638 - 2.02979I		
a = -0.750216 - 0.005392I	5.86166 + 4.12490I	-9.91347 - 2.15443I
b = 0.616800 + 0.250072I		
u = 0.37638 - 2.02979I		
a = -0.685847 + 0.213681I	9.99924 + 1.29678I	-3.38420 + 0.82502I
b = 1.13805 - 1.09576I		

III.

 $I_3^u = \langle -2.80 \times 10^9 u^{16} + 1.23 \times 10^9 u^{15} + \dots + 5.78 \times 10^9 b + 1.49 \times 10^9, -1.15 \times 10^5 u^{16} + 4.43 \times 10^6 u^{15} + \dots + 2.84 \times 10^6 a - 2.63 \times 10^7, \ u^{17} + 6 u^{15} + \dots - 3 u - 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0405970u^{16} - 1.55881u^{15} + \dots - 7.16863u + 9.25026 \\ 0.483653u^{16} - 0.212735u^{15} + \dots - 1.67509u - 0.257452 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3.74840u^{16} - 2.16144u^{15} + \dots - 23.4255u - 3.72929 \\ 0.0829079u^{16} - 0.0995122u^{15} + \dots - 1.83555u - 0.881897 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 3.61930u^{16} - 2.25286u^{15} + \dots - 19.3756u + 0.277471 \\ 0.355787u^{16} - 0.159534u^{15} + \dots - 2.01409u - 0.833403 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.164018u^{16} - 1.84216u^{15} + \dots - 8.28234u + 10.6964 \\ 0.483653u^{16} - 0.212735u^{15} + \dots - 1.67509u - 0.257452 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3.51603u^{16} - 2.28526u^{15} + \dots - 2.43936u - 1.00571 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.23077u^{16} - 0.226208u^{15} + \dots - 2.43936u - 1.00571 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0648607u^{16} + 0.00369480u^{15} + \dots + 4.14992u - 2.86754 \\ 0.0648607u^{16} + 0.00369480u^{15} + \dots + 0.102878u - 0.137290 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1.08969u^{16} + 0.114263u^{15} + \dots + 3.70066u + 2.95645 \\ 0.141079u^{16} - 0.111945u^{15} + \dots - 0.449264u + 0.0889186 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.18986u^{16} - 0.118103u^{15} + \dots - 3.40302u - 2.98180 \\ 0.0172629u^{16} + 0.0956716u^{15} + \dots + 1.13318u - 0.143448 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{44404088866}{5782655035}u^{16} - \frac{1457732737}{5782655035}u^{15} + \cdots - \frac{34652808542}{1156531007}u - \frac{182738550788}{5782655035}u^{15} + \cdots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{17} - 8u^{16} + \dots + 3u - 1$
c_2	$u^{17} + 6u^{16} + \dots + u + 1$
c_3	$u^{17} + 6u^{15} + \dots - 3u + 1$
c_4	$u^{17} - 6u^{16} + \dots + u - 1$
c_5, c_{11}	$u^{17} + 6u^{15} + \dots + 3u - 1$
c_6, c_{12}	$u^{17} - 3u^{16} + \dots + 6u - 1$
c_{7}, c_{10}	$u^{17} + 6u^{15} + \dots + 3u + 1$
<i>C</i> 8	$u^{17} + 6u^{15} + \dots - 3u - 1$
<i>c</i> ₉	$u^{17} - 5u^{16} + \dots + 5u - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{17} + 8y^{16} + \dots - 25y - 1$
c_2, c_4	$y^{17} - 8y^{16} + \dots + 3y - 1$
c_3, c_8	$y^{17} + 12y^{16} + \dots + 3y - 1$
c_5, c_7, c_{10} c_{11}	$y^{17} + 12y^{16} + \dots - 3y - 1$
c_6, c_{12}	$y^{17} - 19y^{16} + \dots - 2y - 1$
<i>c</i> ₉	$y^{17} - 7y^{16} + \dots + 17y - 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.123817 + 0.916477I		
a = 0.72791 + 1.22000I	-0.67196 - 2.40485I	-7.80780 + 6.32008I
b = -0.302924 + 0.816439I		
u = 0.123817 - 0.916477I		
a = 0.72791 - 1.22000I	-0.67196 + 2.40485I	-7.80780 - 6.32008I
b = -0.302924 - 0.816439I		
u = -0.519605 + 0.973810I		
a = 0.205092 - 1.101040I	-2.24497 + 6.61108I	-7.2534 - 15.3751I
b = -0.199212 - 0.760976I		
u = -0.519605 - 0.973810I		
a = 0.205092 + 1.101040I	-2.24497 - 6.61108I	-7.2534 + 15.3751I
b = -0.199212 + 0.760976I		
u = -0.718697 + 0.273065I		
a = 0.143920 - 1.236700I	-2.14035 - 2.21103I	-3.32753 + 2.55558I
b = -0.503625 + 0.659985I		
u = -0.718697 - 0.273065I		
a = 0.143920 + 1.236700I	-2.14035 + 2.21103I	-3.32753 - 2.55558I
b = -0.503625 - 0.659985I		
u = 0.535223 + 1.162140I		
a = -0.218207 - 0.016209I	-4.41311 - 5.07181I	-7.38870 + 4.45168I
b = -0.154895 - 1.305200I		
u = 0.535223 - 1.162140I		
a = -0.218207 + 0.016209I	-4.41311 + 5.07181I	-7.38870 - 4.45168I
b = -0.154895 + 1.305200I		
u = -0.259361 + 1.266310I		
a = 0.298735 - 0.200867I	-2.77350 - 0.30087I	-3.43063 - 0.64342I
b = -0.27641 + 1.42034I		
u = -0.259361 - 1.266310I		
a = 0.298735 + 0.200867I	-2.77350 + 0.30087I	-3.43063 + 0.64342I
b = -0.27641 - 1.42034I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.642620 + 0.176331I		
a = -2.73234 - 3.06072I	-7.28871 + 0.50220I	-14.6902 - 9.4676I
b = 0.06025 - 1.48960I		
u = 0.642620 - 0.176331I		
a = -2.73234 + 3.06072I	-7.28871 - 0.50220I	-14.6902 + 9.4676I
b = 0.06025 + 1.48960I		
u = -0.314004 + 0.270023I		
a = 11.33940 - 1.30281I	-3.55921 - 3.00568I	-21.0214 - 13.1073I
b = 0.368087 - 0.696391I		
u = -0.314004 - 0.270023I		
a = 11.33940 + 1.30281I	-3.55921 + 3.00568I	-21.0214 + 13.1073I
b = 0.368087 + 0.696391I		
u = 1.73212		
a = -0.0334354	-10.2300	50.8770
b = -0.404382		
u = -0.35606 + 2.09120I		
a = -0.747795 + 0.030202I	6.82265 + 4.21829I	0.48138 - 3.10222I
b = 1.210930 + 0.258234I		
u = -0.35606 - 2.09120I		
a = -0.747795 - 0.030202I	6.82265 - 4.21829I	0.48138 + 3.10222I
b = 1.210930 - 0.258234I		

IV.
$$I_1^v = \langle a, 8v^3 - 12v^2 + b + 10v - 3, 8v^4 - 12v^3 + 12v^2 - 5v + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v \\ -8v^{3} + 12v^{2} - 10v + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -8v^{3} + 8v^{2} - 8v + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -8v^{3} + 12v^{2} - 10v + 3 \\ -8v^{3} + 8v^{2} - 6v \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 8v^{3} - 12v^{2} + 10v - 3 \\ 16v^{3} - 16v^{2} + 14v - 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -8v^{3} + 8v^{2} - 8v + 2 \\ -8v^{3} + 8v^{2} - 8v + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 8v^{3} - 12v^{2} + 12v - 5 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -8v^{3} + 12v^{2} - 12v + 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} v - 1 \\ 8v^{3} - 12v^{2} + 12v - 5 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8v^3 + 5v^2 9$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_8	u^4
c_4	$(u+1)^4$
c_5, c_7	$u^4 + u^2 + u + 1$
<i>c</i> ₆	$u^4 - 2u^3 + 3u^2 - u + 1$
<i>c</i> ₉	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_{10}, c_{11}	$u^4 + u^2 - u + 1$
c_{12}	$u^4 + 2u^3 + 3u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_8	y^4
c_5, c_7, c_{10} c_{11}	$y^4 + 2y^3 + 3y^2 + y + 1$
c_6, c_{12}	$y^4 + 2y^3 + 7y^2 + 5y + 1$
<i>c</i> ₉	$y^4 - y^3 + 2y^2 + 7y + 4$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.447562 + 0.776246I		
a = 0	-0.66484 - 1.39709I	-5.25608 + 3.48426I
b = -0.547424 + 0.585652I		
v = 0.447562 - 0.776246I		
a = 0	-0.66484 + 1.39709I	-5.25608 - 3.48426I
b = -0.547424 - 0.585652I		
v = 0.302438 + 0.253422I		
a = 0	-4.26996 - 7.64338I	-8.61892 + 0.34032I
b = 0.547424 - 1.120870I		
v = 0.302438 - 0.253422I		
a = 0	-4.26996 + 7.64338I	-8.61892 - 0.34032I
b = 0.547424 + 1.120870I		

V.
$$I_2^v = \langle a, \ b^6 - b^5 + 2b^4 - 2b^3 + 2b^2 - 2b + 1, \ v + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a_{11} \\ b^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a_{11} \\ b^{2} \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} a_{11} \\ b^{2} \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} a_{11} \\ b^{2} \\ b^{2} \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} a_{15} \\ b^{2} \\ b^{2} \\ b^{2} \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} a_{15} \\ b^{2} \\ b^{2} \\ b^{2} \\ a_{15} = \begin{pmatrix} a_{15} \\ b^{2} \\ b^{2} \\ a_{15} = \begin{pmatrix} a_{15} \\ b^{2} \\ b^{2} \\ a_{15} \\ a_{15} = \begin{pmatrix} a_{15} \\ b^{2} \\ b^{2} \\ a_{15} \\ a_{15}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4b^3 + 4b 8$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^{6}$
c_3, c_8	u^6
c_4	$(u+1)^6$
c_5, c_7	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
<i>c</i> ₆	$u^6 - 3u^5 + 4u^4 - 2u^3 + 1$
<i>C</i> 9	$(u^3 - u^2 + 1)^2$
c_{10}, c_{11}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$
c_{12}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_8	y^6
c_5, c_7, c_{10} c_{11}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_6, c_{12}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$
<i>c</i> ₉	$(y^3 - y^2 + 2y - 1)^2$

Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-1.91067 - 2.82812I	-4.49024 + 2.97945I
b = -0.498832 + 1.001300I		
v = -1.00000		
a = 0	-1.91067 + 2.82812I	-4.49024 - 2.97945I
b = -0.498832 - 1.001300I		
v = -1.00000		
a = 0	-6.04826	-11.01951 + 0.I
b = 0.284920 + 1.115140I		
v = -1.00000		
a = 0	-6.04826	-11.01951 + 0.I
b = 0.284920 - 1.115140I		
v = -1.00000		
a = 0	-1.91067 - 2.82812I	-4.49024 + 2.97945I
b = 0.713912 + 0.305839I		
v = -1.00000		
a = 0	-1.91067 + 2.82812I	-4.49024 - 2.97945I
b = 0.713912 - 0.305839I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^{10})(u^5 + 6u^3 + u^2 - u + 1)^6(u^{17} - 8u^{16} + \dots + 3u - 1)$ $\cdot (u^{28} + 11u^{27} + \dots + 38144u + 4096)$
c_2	$((u-1)^{10})(u^5 - 2u^4 + \dots - u + 1)^6(u^{17} + 6u^{16} + \dots + u + 1)$ $\cdot (u^{28} - 5u^{27} + \dots + 368u - 64)$
c_3	$ u^{10}(u^5 + u^4 + \dots + 2u - 2)^6(u^{17} + 6u^{15} + \dots - 3u + 1) $ $ \cdot (u^{28} - 7u^{27} + \dots + 256u - 1024) $
c_4	$((u+1)^{10})(u^5 - 2u^4 + \dots - u + 1)^6(u^{17} - 6u^{16} + \dots + u - 1)$ $\cdot (u^{28} - 5u^{27} + \dots + 368u - 64)$
c_5	$(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{17} + 6u^{15} + \dots + 3u - 1)(u^{28} - u^{26} + \dots + 6u + 1)$ $\cdot (u^{30} - 2u^{29} + \dots - 20u + 137)$
c_6	$(u^{4} - 2u^{3} + 3u^{2} - u + 1)(u^{6} - 3u^{5} + 4u^{4} - 2u^{3} + 1)$ $\cdot (u^{17} - 3u^{16} + \dots + 6u - 1)(u^{28} - u^{27} + \dots + 5u + 1)$ $\cdot (u^{30} - 6u^{29} + \dots + 392u + 191)$
c_7	$(u^{4} + u^{2} + u + 1)(u^{6} - u^{5} + 2u^{4} - 2u^{3} + 2u^{2} - 2u + 1)$ $\cdot (u^{17} + 6u^{15} + \dots + 3u + 1)(u^{28} - u^{26} + \dots + 6u + 1)$ $\cdot (u^{30} - 2u^{29} + \dots - 20u + 137)$
c_8	$ u^{10}(u^5 + u^4 + \dots + 2u - 2)^6(u^{17} + 6u^{15} + \dots - 3u - 1) $ $ \cdot (u^{28} - 7u^{27} + \dots + 256u - 1024) $
<i>c</i> ₉	$(u^{3} - u^{2} + 1)^{2}(u^{3} + u^{2} - 1)^{10}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)$ $\cdot (u^{17} - 5u^{16} + \dots + 5u - 1)(u^{28} - 11u^{27} + \dots - 464u + 32)$
c_{10}	$(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{17} + 6u^{15} + \dots + 3u + 1)(u^{28} - u^{26} + \dots + 6u + 1)$ $\cdot (u^{30} - 2u^{29} + \dots - 20u + 137)$
c_{11}	$(u^{4} + u^{2} - u + 1)(u^{6} + u^{5} + 2u^{4} + 2u^{3} + 2u^{2} + 2u + 1)$ $\cdot (u^{17} + 6u^{15} + \dots + 3u - 1)(u^{28} - u^{26} + \dots + 6u + 1)$ $\cdot (u^{30} - 2u^{29} + \dots - 20u + 137)$
c_{12}	$(u^{4} + 2u^{3} + 3u^{2} + u + 1)(u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)$ $\cdot (u^{17} - 3u^{16} + \dots + 6u - 1)(u^{28} - u^{27} + \dots + 5u + 1)$ $\cdot (u^{30} - 6u^{29} + \dots + 392u + 191)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{10}(y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1)^6$ $\cdot (y^{17} + 8y^{16} + \dots - 25y - 1)$ $\cdot (y^{28} + 17y^{27} + \dots - 423952384y + 16777216)$
c_2, c_4	$((y-1)^{10})(y^5 + 6y^3 - y^2 - y - 1)^6(y^{17} - 8y^{16} + \dots + 3y - 1)$ $\cdot (y^{28} - 11y^{27} + \dots - 38144y + 4096)$
c_3, c_8	$y^{10}(y^5 + 9y^4 + \dots + 8y - 4)^6(y^{17} + 12y^{16} + \dots + 3y - 1)$ $\cdot (y^{28} + 21y^{27} + \dots + 7012352y + 1048576)$
c_5, c_7, c_{10} c_{11}	$(y^{4} + 2y^{3} + 3y^{2} + y + 1)(y^{6} + 3y^{5} + 4y^{4} + 2y^{3} + 1)$ $\cdot (y^{17} + 12y^{16} + \dots - 3y - 1)(y^{28} - 2y^{27} + \dots - 16y + 1)$ $\cdot (y^{30} + 6y^{29} + \dots + 131668y + 18769)$
c_6, c_{12}	$(y^{4} + 2y^{3} + 7y^{2} + 5y + 1)(y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)$ $\cdot (y^{17} - 19y^{16} + \dots - 2y - 1)(y^{28} + 15y^{27} + \dots + 59y + 1)$ $\cdot (y^{30} - 2y^{29} + \dots - 47468y + 36481)$
<i>C</i> 9	$((y^3 - y^2 + 2y - 1)^{12})(y^4 - y^3 + 2y^2 + 7y + 4)(y^{17} - 7y^{16} + \dots + 17y - 1)$ $\cdot (y^{28} - 9y^{27} + \dots - 57088y + 1024)$