LEZIONE 013 ANALISI 1

10/10/2024 Note Title

Esercizio 1 Dimostrare de, per ogui × > 0 reale, vale la relazione

$$(1+x)^m \ge \frac{m(m-1)}{2} \times^2$$
 \text{ \text{YmeN}}

Roviaus per indusione

Jupostiamo la solita caterra

$$(1+x)^{m+1} = (1+x) \cdot (1+x)^m \ge (1+x) \cdot \frac{m(m-1)}{2} x^2 \ge \frac{(m+1)^m}{2} x^2$$

$$+ \frac{1}{20} \cdot \frac{(1+x)}{20}$$

$$+ \frac{1}{20} \cdot \frac{(1+x)^m}{20} = \frac{(m+1)^m}{20} x^2$$

$$+ \frac{1}{20} \cdot \frac{(m+1)^m}{20} = \frac{(m+1)^m}{20} x^2$$

$$+ \frac{1}{20} \cdot \frac{(m+1)^m}{20} = \frac{(m+1)^m}{20} x^2$$

$$m = m + m \times - x = m + 1$$
 $m = (m-1) \times = 2$ $m = x = \frac{2}{m-1}$

Quiudi : la speranta è vera se e solo se
$$\times \ge \frac{2}{m-1}$$
 e questo è un GUA10 per ché noi sappiano solo che $\times \ge 0$

Esercizio 2 Dimostrare che, per ogui ×≥0, vale

$$(1+x)^m \ge 1+mx + \frac{m(m-1)}{2}x^2$$
 e vero questo, allora

Questo si riessa a few per indivisione.

Arriviano al parso industrio

(1+x)^{m+1} = (1+x) · (1+x)^m

the controlliano a speranta:

(1+x) (1+mx+
$$\frac{m(m-1)}{2}$$
 x²

2 controlliano a speranta:

(1+x) (1+mx+ $\frac{m(m-1)}{2}$ x²) $\stackrel{?}{>}$ 1+ (m+1)x+ $\frac{(m+1)m}{2}$ x²

1+mx+ $\frac{m(m-1)}{4}$ x²+ x+mx+ $\frac{m(m-1)}{2}$ x³ $\stackrel{?}{>}$ 1+ (m+1)x+ $\frac{(m+1)m}{2}$ x²

1+mx+ $\frac{m(m-1)}{4}$ x² + x+mx+ $\frac{m(m-1)}{2}$ x³ $\stackrel{?}{>}$ 1+ (m+1)x+ $\frac{(m+1)m}{2}$ x²

2 $\frac{m(m-1)}{2}$ x³ $\stackrel{?}{>}$ 0 e questo è vero $\frac{1}{2}$ x>0 $\frac{1}{2}$ x 1 $\frac{1}{2}$ x 1 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 2 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 3 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 4 $\frac{1}{2}$ x 5 $\frac{1}{2}$ x 6 $\frac{1}{2}$ x 7 $\frac{1}{2}$ x 6 $\frac{1}{2}$ x 8 $\frac{1}{2}$ x 6 $\frac{1}{2}$ x 8 $\frac{1}{2}$ x 9 $\frac{1}{2}$ x 1 $\frac{1}{2}$ x 1

La prima disug. disenta $(l+x)_{\omega} \geq l+\omega \times$ w Bernoulli (per x>-1) $(1+\times)_{\omega} \ge 1+\omega\times+\frac{\omega(\omega-1)}{\omega(\omega-1)}\times_{\delta}$ Dopo verrebbe ee $(1+x)^{m} \ge 1+mx+\frac{m(m-1)}{2}x^{2}+\frac{m(m-1)(m-2)}{6}x^{3}$ Esercitio 3 Calcolare la somma dei numeri della riga n-esima der friangolo di Tartaglia (attrove triangolo di PASCAL) 1 1 La souma della riga 1 2 1 n-esima viene 2ⁿ 1 3 3 1 1 4 6 4 1 Spiegazione algebrica $(a+b)^{m} = \sum_{k=0}^{m} {m \choose k} a^{m-k} b^{k}$ Metteudo a = b = 1 vieue 2ⁿ = $\sum_{k=0}^{n} \binom{n}{k}$ † unuei de compaione nella riga n-esima Spiegarione combinatoria Ricordianno che () = sottoinsieur de k element de un insieme de m studenti Z (m) = tutti i possibili sotto insiemi di un insieme din studenti Ora un insieme di m elementi ha 2 "sottoinsiemi 1 stiamo contambo futti i sotto iusi euri perdi ogni elemento può essere messo oppore uou messo.

Escupio 4	Quanti s	ous gli a	uagramu	ui di MA	TEMATI	CA ?	
						0	
Abbiano	so lettere.	SE foss	ero texte o	diverse so	nubbero sa	o !	
Ma qui al	amoido	2M, 3A,	2Te al	lora vie	ue		
10!	1						
2!3!2	- •						
Come op?	egare il de	evivie	tore? Co	us'ideria	un pli a	uocorauuu	i d
	_	TE MA				Ŭ	
Questi sa	no danve	no so!	Ma quar	ti diverdo	eus la ste	0222	
	o bozzo b						
Le T	1	u.		~			
Le A		*	3!	,			
Esempio 5	Luterpre	tare in c	wodo com	bivatoria	la rela	voioue	
						hiaugolo	di
	$\binom{m+1}{k+1}$	= (k)	+ (k+1)		ntaglia)		
2	messeni otta	idik+14	lementi				
ì	u uu iush	sine con	m+1 eleme	euti			
Bendo de	i n+1 ela	menti e	ue iso	lo mus			
7,3333 0	A. A.						
			7				
C01110 005	so costrui	201	toù Nieure	Con Fr	£1 2000,00	Li ?	
	due mod		10100310000		11 9444		
			ا لا رورو	on ' Daile	. M	(k+1) wo	۲,
	prendere					(RATI)	
	,			·			
pora	ggiungere	L CHACH	0 -0 -	k) ausc	X		
E-1		20:	24	leo con	500 52 C	4	
Esteusion	<u>e</u> (a+	0+c)	=	1	6 C	+,	
				2024.			
			30	500 / 500 / 5	24!		