EAST LONDON METROPOLITAN POLICE – USE OF FORCE

INSTITUTE OF DATA CAPSTONE REPORT

JOEL DOMINGO | JOELDOMINGO117@GMAIL.COM

SUMMARY This report addresses the issue of police use of force. Specifically, we have analyzed data provided by the London Metropolitan Police and published by the UK Government. The data contains incident reports logged by police officers for the 2020-2021 financial year. Within this report, we have provided statistical observations on factors which contribute to the level of force used by police when responding to any given incident. Following analysis, those features have been used to develop a model which can predict the probability and outcome of whether an officer will be required to use force in such an incident. To develop this model, multiple classification models have been evaluated, and further experimentation performed with ensemble techniques to increase performance. This model is purpose built for addressing the issue of unpreparedness in police officers and aims to assist police agencies regarding efficient and effective resource allocation. Concluding this report will be any recommendations and suggestions to the London Metropolitan Police regarding actions they can take post-analysis and modelling. ATA SCIENCE REPORT | 2

INTRODUCTION

Use of force has increasingly come into the spotlight of mainstream media outlets globally over the past 5 years. It has had major negative implications on sentiment and behaviour of police and public alike. Positive public sentiment on police performance has declined, proportional to police retaliation against crime, and in turn triggering further aggression against police, creating a cycle of steadily increasing aggression and safety risk.

This concept has been dubbed 'The Ferguson Effect', the idea that increased public criticism and distrust of police following the 2014 shooting of Michael Brown in Ferguson Missouri.

One case which illustrates this cycle is the case of George Floyd. For 8 minutes and 46 seconds, U.S Police officer Derek Chauvin used overwhelming force on an unarmed African American civilian resulting in fatality, causing protests (some violence) around the globe and creating pressure on police departments and politicians to reform law-enforcement tactics.

This presents an opportunity for police departments around the globe to investigate and explore the factors which lead to these behaviours. If done correctly, police agencies and local governments can use this data to develop a system as a learning loop for constant performance improvement and become more responsive to public needs and mindful of the impact of policing efforts.

According to studies shown by the University of Massachusetts and Arizona State University in 2010, 'law enforcement with some college education use force much less often than those with no higher education'. Particularly, at the time of the study, 'only 1% of police forces within the United States have education requirements for those looking to join'. Ultimately, studies have shown that use of excessive force is attributed to a question or preparedness, and thus, we will be exploring ways in which data can increase factors of preparedness in police forces.

In 2019, a report indicated that UK police out-of-court settlements totalled £30 Million between 2015 and 2019. The payments ranged from small sums for loss for 'embarrassment and humiliation' through to six-figure settlements paid for wrongful arrest, according to records revealed under the Freedom of Information Act. Beyond this, the Metropolitan Police were responsible for £7.9m to settle 479 claims categorised for being 'malfeasance'.

The issues this report aims to solve is to find potential measures which decrease risk to officer and civilian safety by increasing police department preparedness to respond to incidents to:

- 1. Reduce likelihood of settlement payout from government funds for malfeasance and police brutality lawsuits.
- 2. Reduce the usage of police force to a point of 'last resort'.

This report will develop an analytically based system in such an area, with the purpose of influencing strategies that mitigates the subjectivity which influences violence-oriented performance of officers in public incidents and arrests.

Specifically, we will be looking at data provided by the London Datastore, operated by the UK government, which reports historical figures contained in incident reports dating from April 2020 to February 2021, and contains features such as dates and time figures, demographic data on incidents and subjects, and officer-related data, and use-of-force. The report will illustrate trends in numerical and categorical data which will be used to develop a model that can predict the likelihood and probability that an officer will require the usage of force to arrest or detain a subject prior to encounters. Furthermore, analysis of such features will be used to develop recommendations to police department protocols and resource allocation which promote the safety of officers and civilians alike. Despite the specificity of the data, the model of analysis is predicted to be adjusted for use around the world.

Figure: Black Lives Matter Protests (2020) in Newcastle, UK

INPUTS

Based on categorical features received by triage officer.

OUTPUTS

- Expected outcome
- Probability of outcome

USE CASES

Used by resourcing officers to deploy officers based on available information

MODEL **EXPECTATIONS**

INPUTS

Categorical variables regarding subject, location, weapons on scene etc.

FUNCTIONS

Provide the probability and an expectation on whether use of force will be required when responding to an incident.

OUTPUT

Output	Description	Example
Whether or not usage of force	Boolean Value:	1
is expected.	1 – Force required	
	0 – No force required	
Probability of force being	Float Value.	0.76
required.	If no force expected: 1-	
	probability of zero.	
	If force expected: Probability	
	of 1.	

USABILITY

Allocate resources and dispatch officers/deploy resources appropriate for incident instance.

EXAMPLE RECOMMENDATIONS

Recommendations will be made based on the outputs of the model. For example, if force is expected at 75% likelihood, deploy experienced officers barring single-crewed officers, ensuring they are equipped with tasers and safety equipment.

STAKEHOLDERS

Stakeholder	Estimated Impact on Stakeholder	Relationship
Police Department (London)	High	Project reflects on their local statistics on which analysis is performed to create our models. Models are relevant to this population.
Police Departments (globally)	High	Models can be developed using this report and catered towards different local police departments around the world to address issues of police usage of force.
Civilians	Medium	The safety of civilians is always of high importance; however, it is dependent on the police force presiding over them to implement the recommendations, and the effects of which will show in civilian behavior over time.
Officers	High	Our models and analytics will directly affect officers on the front line and aim to address issues to their safety and conduct.
Government	Low	Changes in police conduct resulting from our analysis can manifest itself in millions of dollars in savings from reduction in lawsuits regarding abuse/assault, malfeasance, and excessive use of force.

THE DATA

OVERVIEW

The data will be used to answer questions regarding the frequency in which force is used in effecting arrests in the East-London districts, as well as the factors involved in this distribution. Furthermore, analysis on features will reveal any contingencies which may be implemented to police department protocols and procedures to reduce risk to officer safety.

DESCRIPTION

Collection of data-points which reflect incident reports submitted by the London Metropolitan Police Service. The data contains information on incidents presiding in the boroughs of East-London.

DATASET SOURCE

Data can be found at: https://data.london.gov.uk/dataset/use-of-force

SIZE

Data contains 147, 895 incident reports, each with 271 features.

RELIABILITY

Data sourced from the UK Government is reviewed by reliable sourced prior to public upload. Any form of identification is censored for safety reasons.

QUALITY

Raw data contains a high volume of categorical data, with no missing data aside from empty contingency features.

TIME-RELEVANCE AND AVAILABILITY

Data contains information between the dates 01/04/2020 - 31/01/2021. Figures are updated and reconciled each month from the start of each financial year to the latest completed month.

INPUT DATA SOURCE

Data was generated from standardized police incident reports.

THE DATA (CONT.)

DATA DICTIONARY OF FEATURES (CONDENSED)

Feature	Description	Туре	Example
Incident date	Date of incident.	Datetime	12/01/2021
Incident time	Time of incident.	Datetime	17:30:00
Incident location	Vicinity of incident.	Object	Street/highway
Borough	District/suburb where incident is located.	Object	Croydon
Primary conduct	Primary conduct of subject.	Object	Compliant
Assaulted by Subject	Whether an officer has been assaulted by the subject.	Boolean	Yes
Threatened with	Whether an officer has been threatened	Boolean	Yes
weapon	with a weapon.		
Assaulted with weapon	Whether an officer has been assaulted with a weapon.	Object	Kick
Impact Factors	Impact factors which influence whether force was used or not.	Object	Alcohol
Reasons for force	Reason for which officer may use force.	Object	Protect self
Main duty	Main duty of officer responding.	Object	Mobile patrol
Single-crewed	Whether officer is by themselves or with other officers.	Boolean	Yes
Trained in CED	Whether officer is trained in taser use.	Boolean	No
Level of CED usage	Extent to which a taser was used.	Feature	Aimed/fired/shock activated
Tactic	What tactics were used in arrest.	Object	Non-compliant handcuffing
Effectiveness of tactic	Whether or not the tactic was effective in effecting an arrest.	Boolean	Yes
Firearm aimed	Whether firearm was aimed.	Boolean	No
Firearm fired	Whether firearm was discharged.	Boolean	No
Subject Age	Age of subject in a range.	Object	18-35
Subject ethnicity	Ethnicity of subject.	Object	Asian
Subject disabilities	Whether subject has mental or physical disability.	Boolean	Yes
Subject injury	Whether subject was injured in incident.	Boolean	No
Subject medical	Whether medical was offered or provided.	Boolean	Yes
Staff injury	Whether staff was injured in incident.	Boolean	No
Staff medical	Whether medical was offered or provided.	Boolean	No
Outcome	Outcome of arrest.	Feature	Made-off/escaped

DATA SCIENCE PROCESS

FEATURE ENGINEERING AND NUMERATION

Some features of the dataset contain 'string' variables with different classes. For our model to be effective, it must be converted to numeric classes, each with different levels of severity.

This applies to the following features:

- Primary Conduct of Subject
- Tactics

PRIMARY CONDUCT OF SUBJECT

Incident reports specify 6 classes of resistance levels. These are as following:

- Complaint
- Verbal resistance / gestures
- Passive resistance
- Active resistance
- Aggressive resistance
- Serious or aggravated resistance

Therefore, each class will be assigned a number, with each subsequent number indicating a higher level of aggression.

Class	Class Number
Compliant	0
Verbal resistance/gestures	1
Passive resistance	2
Active resistance	3
Aggressive resistance	4
Serious or aggravated resistance	5

LEVELS OF FORCE - TACTICS

Numerating this feature is essential to determine if level of force was used. In the original dataset, the following tactics are used.

Compliant handcuffing	CED (Taser) red-dotted	Firearm aimed
Tactical communications	Limb-body restraints	Baton drawn
Non-compliant handcuffing	Other/improvised	Spit guard
CED (Taser) drawn	Unarmed skills (including pressure points, strikes, restraints, take-downs)	Baton used
Ground restraint	CED (Taser) fired	Dog deployed
Irritant spray	Dog bite	Shield
CED (Taser) arced	CED (Taser) drive stun	CED(Taser) angle drive stun
AEP aimed	Firearm drawn	Firearm fired

It is paramount to distinguish as to what counts as force. Therefore, it will be distinguished by identifying anything other than 'Compliant handcuffing' and 'Tactical communications' as 'use of force'.

Tactic Used	Class
Compliant Handcuffing	0
Tactical Communications	0
Other	1

SUBJECT AGE

The original dataset has the following ranges of age classes:

To be viable for our models, we require them to be classed in numeric form.

Age	Class Number
1 – 10	1
11 – 17	2
18 – 34	3
35 – 49	4
50 – 64	5
65 +	6

FEATURE ENGINEERING - USE OF FORCE

Using the tactic classes, we can distinguish whether force by our definition, was used in a specific incident. This column will be defined as the sum of all tactics, and if the sum is greater than or equal to 1, then force was indeed used in that incident.

Example 1 – No force used

	Tactic 1	Tactic 2	Tactic 3	Was Force Required?
Boolean Translation	0	0	0	0
Original	Tactical Communications	Compliant handcuffing	Null	No Force Required

Example 2 - Force was used

	Tactic 1	Tactic 2	Tactic 3	Was Force Required?
Boolean Translation	0	1	1	1
Original	Tactical Communications	Unarmed skills	Uncompliant handcuffing	Force Required

CREATING DUMMY VARIABLES

Due to a large portion of our features are categorical, dummy variables are essential to create a numerical model. The following features require dummy variables.

- Officer main duty
- Subject Gender

INSIGHTS

For a summary of statistical analysis, proceed for Page 48.

The following statistics have been gathered using the wrangled data, displaying trends, and highlighting important factors which contribute to the outcomes and probabilities of force usage during recorded incidents. These statistics will also provide insights for future resource allocation for the London Metropolitan police, in the form of recommendations towards the conclusion of this report.

FREQUENCY OF FORCE USAGE

For the purpose of analysis, it is important to look at the distribution of which officers were required to use force in effecting arrests. Results show that by our definition of force, 45.94% of officers were required to use force.

	Yes	No
Officer Required Force	67,950	79,945

IMPACT FACTORS FOR FORCE USAGE (SUBJECT-ORIENTED)

It is important to note that multiple factors can influence an officer's decision-making when opting to use force. The following is a list of all impact factors which incident reports allow an officer to specify.

Factor	Count
Possession of weapon	18,509
Alcohol	19,235
Drugs	22,435
Mental health	16,375
Prior Knowledge	21,459
Size/Gender/Build	27,393
Acute Behaviour Disorder	2,635
Crowd	11,089
Other	5,347

Figure: Correlation heatmap for impact factors

Looking at correlation, we see that the factors which most correlate to an outcome of force include mental health, alcohol, and behavioural disorders. However, out of the 67,950 officers which required force usage, we see that size/gender/build, drugs, and prior knowledge account for the most frequent factors.

REASONS TO USE FORCE (OFFICERS)

It is important to note that effecting an arrest accounts for all records, and that there can be multiple reasons for an officer to decide to use force. It is evident that the most prevalent factors revolve around the protection of officers.

Reason	Counts
Effect arrest	67,950
Protect self	55,930
Protect other officers	54,332
Prevent escape	38,708
Prevent harm	36,520
Protect subject	36,219
Prevent offence	34,325
Protect public	27,703
Effect search	24,945
Secure evidence	19,183
Remove handcuffs	1,972
Other	315

VICINITY OF ARRESTS (TOTAL)

The following visualizations illustrate the distribution of locations in which arrests are made. The highest risk location for officers to attend to seem to be street/highway incidents, with 59.9% of incidents.

Location	Count
Street/Highway	88,577
Public transport	1,383
Retail premises	2,864
Licensed premises	436
Sports or events stadia	27
Hospital (non-mental health	2,633
setting)	
Mental health setting	617
Police vehicle with prisoner	353
handling cage	
Police vehicle without	257
prisoner handling cage	
Dwelling	31,212
Police station	2,605
Custody block	8,974
Ambulance	459
Other	4,500

LOCATIONS OF INCIDENTS (BOROUGH)

The following tables and graphs illustrate the distribution of incidents across Boroughs in East London. We see that most incidents occur in the Boroughs of Westminster, Lambeth, Newham and Croydon.

	Incidents	longitude	latitude
City of Westminster	10239	51.5145	0.1595
Lambeth	7274	51.4571	0.1231
Newham	7160	51.5255	0.0352
Croydon	7119	51.3762	0.0982
Southwark	6802	51.4881	0.0763
Brent	6528	51.5673	0.2711
Tower Hamlets	6192	51.5203	0.0293
Hackney	5960	51.5734	0.0724
Lewisham	5884	51.4415	0.0117
Camden	5560	51.5455	0.1628
Haringey	5071	51.5906	0.1110
Greenwich	4855	51.4934	0.0098
Ealing	4797	51.5250	0.3414
Barking and Dagenham	4258	51.5541	0.1340
Wandsworth	4210	51.4568	0.1897
Islington	4164	51.5465	0.1058
Waltham Forest	4044	51.5886	0.0118

Barnet	3999	51.6050	0.2076
Hammersmith and Fulham	3900	51.4990	0.2291
Hillingdon	3804	51.5352	0.4481
Enfield	3802	51.6623	0.1181
Bromley	3788	51.4060	0.0132
Hounslow	3601	51.4828	0.3882
Redbridge	3541	51.5886	0.0824
Havering	3464	51.5779	0.2121
Bexley	3192	51.4399	0.1543
Kensington and Chelsea	2707	51.4991	0.1938
Harrow	2563	51.5806	0.3420
Kingston upon Thames	2487	51.4123	0.3007
Sutton	1844	51.3614	0.1940
Merton	1839	51.4098	0.2108
Richmond upon Thames	1412	51.4613	0.3037
Out of force	1107	51.7520	1.2577
Heathrow	728	51.4700	0.4543

Figure: Location Heatmap of Boroughs Recorded

LOCATIONS OF INCIDENTS (BOROUGH) CONT.

Figure: Distribution of Incidents by Borough

PRIMARY CONDUCT OF SUBJECTS

The following table and chart illustrate the distribution of resistance levels across all reported incidents. It is good to note that 43.3% of officers experience initial compliance. The aim is to increase this proportion and reduce the number of aggressive and aggravated resistance.

Resistance Level	Counts
Compliant	65,058
Active resistance	26,525
Verbal resistance/gestures	20,243
Aggressive resistance	18,655
Passive resistance	13,017
Serious or aggravated resistance	5,397

OFFICERS ASSAULTED BY SUBJECT

The following chart illustrates that only 3.3% of officers experience assault when responding to an incident.

Assaulted	Counts
No	142,968
Yes	4,927

Assaulted by Subject

Figure: Proportion of assaults against officers

ANALYSIS OF POLICE DUTIES

If we specifically look at the distribution of all incidents per main duty of the officer, we see that the incidents are disproportionately leaning towards mobile patrol duties. Narrowing that down to only the number of incidents which require force, we see that the distribution remains the same. Despite this, mobile patrol officers seem to be of the highest risk duty for officers in London.

SINGLE CREW VS PARTNERED/SQUAD DISTRIBUTION

Our analysis of deployment revealed that only 2.3% of those are single-crewed officers. However, data indicates that at least 61% of those incidents require use of force. This can be attributed to the higher risk of being individually deployed. This contrasts to squad or partnered units, in which only 45% of incidents for partnered units require the use of force. This means that single units are 1.35x more likely required to use force when being deployed.

	Force Required	No Force Required	Total
Single Crew	2,065	1,322	3,387
Squad	65,885	78,623	144,508

OFFICERS TRAINED IN CED (TASER)

In a report to the independent, a survey of the Police Federation of England and Wales found 94% of officers think tasers should be issued to more frontline staff considering increased aggression. The National Chair of the Federation stated, 'officers state daily they feel vulnerable and isolated due to lack of vital protective equipment'.

The following charts illustrate the distribution of officers trained in CED usage. The data shows us that only 38.2% of officers are properly trained in taser usage in the London Metropolitan Police area. In 149,895 cases, only 56,450 officers were trained in a CED, with 91,445 officers without training. This is a huge indication of unpreparedness on the side of the metropolitan police, considering the severity of taser use.

Trained in Taser	Counts
Trained	56,450
Not Trained	91,445

SUBJECT AGE ANALYSIS

In all reported incidents, at least 57.2% of subjects are in the ages between 18-34, with 35-49 being the second largest group at 24.3%. When looking at distribution of age and scale it for only cases which have required force, we see that the distribution proportions remain the same.

Age Range	Total number of incidents	Number of incidents which required force	Proportion of age sample required force
0 – 10	46	42	91%
11 – 17	16,094	7,321	45.5%
18 – 34	84,545	38,767	45.9%
35 – 49	35,886	16,410	45.7%
50 – 64	10,401	4,897	47%
65+	923	513	55.6%
Total	147,895	67,950	46%

DISTRIBUTION OF SUBJECT GENDER

In cases which require force (67,960), majority are males, which make up 83.4% of cases, while females only make up 16.1%, and 0.5% consist of others.

Gender	Counts	Percentage of force-required cases
Male	56,646	83.4%
Female	10,968	16.1%
Other	336	0.5%
Total	67.950	100%

Distribution of Gender for cases which required force (67950 cases)

Distribution of Gender for cases which required force (67950 cases)

DISTRIBUTION OF SUBJECT DISABILITIES

Our data shows that of all cases, 84.2% have no known disability, however, 14.3% have a mental disability, while only 1.1% have a physical disability, with 0.4% having both. When we look at force usage, officer usage of force is at an alarmingly large rate of the mental disability population. This shows lack of preparation of officers dealing with individuals with mental health issues.

	Subset Population	Proportion which require force	Percentage of subset population
No Disability	124,501	51,775	45.6%
Physical Disability	1,651	864	52.3%
Mental Disability	21,133	15,311	72.5%

ETHNIC DISTRIBUTION OF SUBJECTS

When looking at the distribution of ethnicities for total incidents, people of white and black descent seem to be the most frequent. However, this does not reflect the ethnic population of London, being a predominantly white demographic. When comparing total ethnic populations to incidents which have required force, we see that the trend follows the same distribution.

	Subset Population	Proportion which require force	Percentage of subset population
White	60,937	27,578	47%
Black	53,853	25,441	47%
Asian	19,607	7,052	36%
Other	6,359	2,378	37%
Mixed	4,741	2,157	45%
Unknown	1,666	951	58%
Chinese	732	273	37%

Distribution of Ethnicity in Incidents which Required Force

ETHNIC DISTRIBUTION OF SUBJECTS (CONT.)

MODEL DEVELOPMENT

MAIN FEATURES AND TARGET VARIABLE

For our model, the aim is to predict whether a particular subject(s) will require the use of force, to give some expectation to officers who are called to the scene. For this model, we will require only features which the officer/police triage would be made available to via public reports. These include:

- Date
- Incident Location
- The main duty of the officer
- Number of officers sent (single crew / partnered or crew)
- Subject age
- Physical Disabilities
- Mental Disabilities
- Subject Gender
- Subject Ethnicity
- Borough

Our target variable will be **whether use of force is expected or not.** This variable/feature was engineered by distinguishing tactics used over the course of the incident, with tactical communications and compliant handcuffing not under the umbrella of use of force. Anything above said tactics will be considered use of force.

TRAINING METHOD

The training method used will be a train test split of 20% with a random state of 7 for reproducibility. Due to the large volume of data (150,000 records) and the number of features used, the data will be randomly sampled to 20,000 records to maintain a reliable CPU workload and compute time. Furthermore, we will explore training with and without dimensionality reduction, via PCA (Principal Component Analysis).

BREAKDOWN OF MODEL TRAINING AND PERFORMANCE

For performance summary, proceed to Page 36.

Any defined pipelines for evaluation will be available in the provided code.

BASELINE MODEL RESULTS

Model and Accuracy Score	Classification	n Report			
Logistic Regression	Classification Report:				
Accuracy: 0.55		precision	recall	f1-score	support
	0 1	0.55 0.00	1.00 0.00	0.71 0.00	2199 1801
	accuracy macro avg weighted avg	0.27 0.30	0.50 0.55	0.55 0.35 0.39	4000 4000 4000
K-Nearest Neighbours	Classificatio	on Report:			
Accuracy: 0.6 We performed GridSearchCV to find the optimal		precision	recall	f1-score	support
number of K. In this case, it yielded a parameter result of 2.	0 1	0.59 0.61	0.84 0.30	0.70 0.40	2199 1801
	accuracy macro avg weighted avg	0.60 0.60	0.57 0.60		4000 4000 4000
Support Vector Classifier	Classificatio	on Report:			
Accuracy: 0.55		precision	recall	f1-score	support
	0 1	0.55 0.00	1.00 0.00	0.71 0.00	2199 1801
	accuracy macro avg weighted avg	0.27 0.30	0.50 0.55	0.55 0.35 0.39	4000 4000 4000
Decision Tree Classifier	Classificatio	on Report:			
Accuracy: 0.67 We performed a GridSearch Cross Validation function to		precision	recall	f1-score	support
find the optimal number of max leaf nodes. In this case, results yielded a parameter of 25.	0 1	0.65 0.76	0.90 0.40		
,	accuracy macro avg weighted avg	0.70 0.70	0.65 0.67		4000 4000 4000

BASELINE MODEL RESULTS (CONT.)

Model and Accuracy Score	Classification	Report					
Naive Bayes (Bernoulli)	Classification Report:						
Accuracy: 0.67		precision	recall	f1-score	support		
	0	0.65	0.84	0.73	2199		
	1	0.70	0.46	0.55	1801		
	accuracy			0.67	4000		
	macro avg	0.67	0.65	0.64	4000		
	weighted avg	0.67	0.67	0.65	4000		
Random Forest Classifier Accuracy: 0.63	Classification Report:						
		precision	recall	f1-score	support		
	0	0.66	0.67	0.67	2199		
	1	0.59	0.59	0.59	1801		
	accuracy			0.63	4000		
	macro avg	0.63	0.63	0.63	4000		
	weighted avg	0.63	0.63	0.63	4000		

ENSEMBLE MODELS: BAGGING RESULTS

Classifier used: SKlearn Bagging Classifier.

Bagging Classifier	Classification F	Report					
Logistic Regression Bagging Accuracy: 0.55	Classification Report:						
Accuracy. 0.33		precision	recall	f1-score	support		
	0 1	0.55 0.00	1.00 0.00	0.71 0.00	2199 1801		
	accuracy			0.55	4000		
	macro avg weighted avg	0.27 0.30	0.50 0.55	0.35 0.39	4000 4000		
K-Nearest Neighbours Bagging (K = 2) Accuracy: 0.59	Classificatio	n Report:					
		precision	recall	f1-score	support		
	0	0.61 0.55	0.69 0.47	0.65 0.51	2199 1801		
	_	0.55	0.47				
	accuracy macro avg	0.58	0.58	0.59 0.58	4000 4000		
	weighted avg	0.58	0.59	0.58	4000		
Support Vector Classifier Bagging	Classificatio	n Report:					
Accuracy: 0.55		precision	recall	f1-score	support		
	0	0.61	0.69	0.65	2199		
	1	0.55	0.47	0.51	1801		
	accuracy macro avg	0.58	0.58	0.59 0.58	4000 4000		
	weighted avg	0.58	0.59	0.58	4000		
Decision Tree Classifier Bagging	Classification Report:						
Accuracy: 0.67		precision	recall	f1-score	support		
	0	0.65	0.89	0.75	2199		
	1	0.75	0.41	0.53	1801		
	accuracy			0.67	4000		
	macro avg weighted avg	0.70 0.69	0.65 0.67	0.64 0.65	4000 4000		

ENSEMBLE MODELS: BAGGING RESULTS (CONT.)

Classifier used: SKlearn Bagging Classifier.

Bagging Classifier	Classification Report					
Naive Bayes (Bernoulli) Bagging Accuracy: 0.67	Classification Report:					
·		precision		f1-score	support	
	0	0.65	0.89	0.75	2199	
	1	0.75	0.41	0.53	1801	
	accuracy			0.67	4000	
	macro avg	0.70	0.65	0.64	4000	
	weighted avg	0.69	0.67	0.65	4000	

ENSEMBLE MODELS: BOOSTING RESULTS

Classifier used:

- AdaBoost Classifier
- GradientBoost Classifier
- **XGBoost Classifier**

ENSEMBLE MODELS: BOOSTING RESULTS (CONT.)

Classifier used:

- AdaBoost Classifier
- GradientBoost Classifier
- XGBoost Classifier

Boosting Classifier	Learning Curve	Classificatio	n Report			
Random Forest AdaBoost	RandomForest AdaBoost	Classificatio	n Report:			
Accuracy: 0.63	0.40 -		precision	recall	f1-score	support
	0.35 - 0.30 -	0 1	0.66 0.59	0.67 0.57	0.67 0.58	2199 1801
	0.40 - 0.35 - 0.30 - 0.25 - 0.20 - 0.15 - 0.10 - training set test set	accuracy macro avg weighted avg	0.62 0.63	0.62 0.63	0.63 0.62 0.63	4000 4000 4000
	0.05 - training set test set t					
Gradient Boost	Classification	n Report:				
Classifier Accuracy: 0.68	0.40 - training set		precision	recall	f1-score	support
ŕ	ation	0	0.65	0.89	0.75	2199
	0.35 -	1	0.75	0.41	0.54	1801
	training set test set 0.40	accuracy macro avg weighted avg	0.70 0.70	0.65 0.68	0.68 0.64 0.65	4000 4000 4000
	हैं 0.20 - 0 20 40 60 80 100 Training set size in percent					
XGBoost Classifier (max	XGBoost Learning Curve	Classification	Report:			
depth = 1) Accuracy: 0.67	training set		precision	recall	f1-score	support
,	0.35 -	0 1	0.65 0.74	0.88 0.41	0.75 0.53	2199 1801
	SSE	accuracy			0.67	4000
	0.40 - training set test set se	macro avg weighted avg	0.70 0.69	0.65 0.67	0.64 0.65	4000 4000
	0 20 40 60 80 100 Training set size in percent					

ENSEMBLE MODELS: BOOSTING RESULTS (CONT.)

Classifier used:

- AdaBoost Classifier
- **GradientBoost Classifier**
- **XGBoost Classifier**

SUMMARY OF BASELINE & ENSEMBLE PERFORMANCE (NO DIMENSIONALITY REDUCTION)

OBSERVATIONS:

- Overall, the Decision Tree Classifier had the best baseline model improvement on our target accuracy of
- Ensemble techniques such as random forest, bagging and boosting techniques did little to improve on
- Models which involved SVC and Random Forest took approximately 30 minutes to train the model and
- Using GridSearchCV on certain model parameters took 10 minutes to compute.
- Using Gradient Boost provided us with our best ensemble and overall method.
- We can potentially increase the accuracy of our model by experimenting via Principal Component dimensionality reduction.
- However, aiming for a target accuracy of over 75% is very optimistic, due to the nature of our data and the problem we are trying to solve. Predicting human behaviour and risk of certain actions is highly subjective and circumstantial. As a result, any significant increase in our model's ability to predict, above the capability of target result of 45% can be considered a success.

BREAKDOWN OF MODEL TRAINING AND PERFORMANCE WITH DIMENSIONALITY REDUCTION

For performance summary, proceed to Page 43.

Following models are trained with principal components equal to 20.

MODEL PERFORMANCE WITH PC =

Model	Learning Curve	Classification	n Report			
Gradient Boosting	Gradient Boosting Classifier Learning Curve	Classification	Report:			
Accuracy: 0.66	0.40 - training set test set		precision	recall	f1-score	support
	ion on the control of	0 1	0.65 0.71	0.86 0.42	0.74 0.53	2199 1801
	0.40 - training set test set 0.35 - 0.30 - 0.25 - 0.20 -	accuracy macro avg weighted avg	0.68 0.68	0.64 0.66	0.66 0.63 0.64	4000 4000 4000
	은 0.20 - 60 80 100 Training set size in percent					
XGBoost (max_depth	XGBoost Learning Curve	Classification	Report:			
= 2, learning rate = 0.3)	training set		precision	recall	f1-score	support
A	0.35 .	0 1	0.65 0.70	0.85 0.45	0.74 0.55	2199 1801
Accuracy: 0.67	training set test set 0.40 0.35 0.30 0.25 0.20	accuracy macro avg weighted avg	0.68 0.67	0.65 0.67	0.67 0.64 0.65	4000 4000 4000
	0 20 40 60 80 100 Training set size in percent					
Stacking Classifier	Stacking Classifier Learning Curve	Classification	Report:			
(estimators = Logistic Regression, Decision	0.40 - training set test set 0.38 -		precision	recall	f1-score	support
Tree & Bernoulli NB)	0.36 -	0 1	0.65 0.73	0.87 0.43	0.74 0.54	2199 1801
Accuracy: 0.67	0.40 - training set test set 0.38 - 0.36 - 0.34 - 0.32 - 0.30 -	accuracy macro avg weighted avg	0.69 0.68	0.65 0.67	0.67 0.64 0.65	4000 4000 4000
	Training set size in percent					

SUMMARY OF BASELINE & ENSEMBLE PERFORMANCE (WITH PC = 20)

OBSERVATIONS:

- To recall, our model takes in all the factors involved such as subject demographic, location, officers involved etc. and predicts whether force will be required.
- We can see that conducting dimensionality reduction improved the average result of our models, revealing more homogeneous results.
- However, the top models were unable to exceed results without dimensionality reduction. Therefore, we will
 choose the top models from our trials without model scores, and experiment on a full dataset (147,895 records
 vs 20,000 records).

FINAL MODEL PERFORMANCE USING FULL DATASET (147,895 RECORDS)

For the final model, we will be examining the model using our top models from the testing phase:

- **Decision Tree Classifier**
- **Decision Tree Bagging Classifier**
- **Gradient Boosting Classifier**

For training the model, we will again use a train test split of 20%, which is in actual volume is nearly double the records for our previous 20,000 record tests.

PARAMETERS FOR DECISION TREE

Due to the change in volume for our dataset, finding the best parameters for this training set will be required. In this case, GridsearchCV reported an optimal max leaf node value of 95.

FINAL MODEL PERFORMANCE USING FULL DATASET (147,895 RECORDS) (CONT.)

FINAL RESULTS:

Model	Scores
Decision Tree	0.662
Decision Tree Bagging Classifier	0.664
Gradient Booster Classifier	0.662

FEATURE IMPORTANCE:

From our final models, we see that the following features had the largest impact on our model, seen in the graph below, with the x axis displaying the feature number, and the y axis showing the coefficient of that feature:

Feature	Coefficient
Location: Dwelling	0.386
Subject Age:	0.276

MODEL TEST AND USE CASE

To test our model in a practical manner and demonstrate potential use cases, we will simulate a hypothetical scenario of a single-crewed officer responding to a call.

CONTEXT:

Officer responding to call with the following features. Using our top models, we will predict whether the officer should expect/be prepared to use force on the subject.

- Located at a sports stadium
- Officer called is on mobile patrol duty
- They are single crewed
- Subject age 18 34
- No sign of disability
- Subject gender is male
- Subject ethnicity is Asian
- Located in Lewisham

USE CASE RESULTS:

Model	Outcome	Probability of outcome	Probability of officer requiring force	Summary
Decision Tree Classifier	0	0.72	0.28	Model predicts no force will be required. Probability of requiring force is only 28%.
Gradient Booster Classifier	0	0.60	0.40	Model predicts no force will be required. Probability of requiring force is at 40%.

FINAL OUTCOMES OF MODEL

In our final models, we see that in the learning curve, each model was able to converge at the optimal balance between variance and bias, considering the ambiguous nature of our dataset, achieving scores of 0.66, consistent with the optimal scores for our training models.

Within the final models, the most important features appeared to be whether the location is at a person's dwelling, as well as the subject's age, and seemed to be consistent between the models.

The processing time of each model took no longer than 2 minutes, contrasting to our experimental phase, in which SVC, KNN and Random Forest models took a considerable amount of computing time and power. Considering the size of the dataset, we remain optimistic on this model regarding training time, when adapted to other datasets.

After testing, we can confidently use this model to predict our target variable in various instances of a use case, predicting an expected outcome, along with its probabilities.

SUMMARY OF STATISTICAL ANALYSIS

The following are the main insights summarized from our data analysis process.

- 45.94% of officers are required to use force, meaning most officers are capable of settling disputes using tactical communication and compliant handcuffing.
- Multiple factors influence an officer's decision to use force, with the most frequent being a subject build and drug use. However, in cases including factors of mental health, alcohol and behavioural disorders, the rate of force usage increases.
- Officers use force primarily as a mechanism for protection of themselves, other officers and to prevent escape.
- Most incidents occur on the street or on highways.
- The highest incident rates are present in Westminster, Lambeth, Newham, and Croydon.
- More than half (56%) of subjects are not primarily compliant with police and exert some form of resistance.
- 3.3% of officers are assaulted by the subject.
- The highest-risk main duty for an officer are mobile patrols, experiencing 78% of incidents which require force.
- Only 2.3% of deployed officers are single-crewed. However, they are 1.35x more likely required to use force compared to partnered or crewed units.
- Only 38.2% of officers are properly trained in taser usage.
- The largest age demographic for subjects is the 18-34yo range. Trends for use of force regarding subject age remains proportional to the population distribution, except for 0-10. It is alarming that 91% of minors under 10 require usage of force.
- In cases which require force, 83.4% of those are male.
- While 84.2% of all cases have no known disability, while 15.4% of those have either a mental or physical disability. Officers have an alarmingly large rate of force usage on the mental health population over any other demographic.

RECOMMENDATIONS

Suggestions for London Police Agencies

- Implement further or more extensive training in tactical communications. By implementing such a course, officers will be better trained to settle disputes through their ability to mitigate incitement of violence and handling aggression in non-violent methods.
- Police departments to implement education requirements prior to successful recruitment.
- Implement further training/education on dealing with mentally ill individuals without resorting to violence.
- Use models to appropriately allocate resources. If an incident is in a high-risk area, with high risk subject conditions, deploy experienced officers with support of 1 or more officers, equipped with proper safety equipment.
- Officers who are more experienced to be shifted on mobile patrol duty, or be the primary candidates sent to incidents located in high-risk boroughs and locations such as streets/highways to mitigate risk of extended altercations.
- Develop protocols which remove single-crew deployments. Single-crewed officers are of highest risk in experiencing aggression.
- Implement training on settling disputes with minors in non-violent solutions. Furthermore, implement protocols to send officers with experience with children to such incidents. A rate of 91% force usage on minors is damaging to the subject, officer and negatively influences public opinion.
- Suggest implementation of police-department/community initiatives to reduce the divide between the public and officers. As a recommendation, communities with African descent should be a priority due to their statistically high proportion of incidents (violent and non-violent) with officers compared to other ethnic backgrounds in London.
- Implement suggested models and distribute to all London police departments for use in real time.

IMPLEMENTING THE MODEL

Suggestions on how to implement our models.

The goal of this model is to provide officers with details on whether to use force when responding to any deployment. When responding to a situation, an officer must be prepared for any situation, and be trained to appropriately follow protocols which maintain the safety of himself, the subject, and the public. These are complex factors to consider, and thus this model provides a certain level of expectation to assist the officer in preparation, as well as the triage officer in allocating additional resources to the scene.

The final model consists of 77 potential features, and due to the time-series nature of officer deployment, it is important to keep in mind as such. Therefore, it is important that a triage officer be able to use the model with a certain level of ease and efficiency.

Our proposed implementation of the model requires a simple and easy-to-use graphical user interface (GUI) software with the following features to accommodate for such requirements:

- Each input variable must have a default. These defaults are essential for such a reason that a triage officer may not receive all required feature information across an emergency call. By having a default for each variable, not only does this reduce input time, but it gives the officer a more accurate probability by giving value to any assumptions made, compared to having null values or no information on other variables.
- Such defaults will be demographically related. For example, if subject demographics are unknown, assumptions will be able to be drawn from the location and Borough of the incident, such as the average demographic or modal value. Again, each variable input instance is dependent on the call given to triage officers.
- The output of such a software will report back whether to expect to use force, as well as the probability of that outcome.

CONCLUSIONS

After performing exploratory analysis on our data, many observations have appeared to be statistically significant enough to make recommendations based on such analysis. These recommendations may pertain to either the police department protocols, resource allocation and training suggestions on how to properly deal with subjects and scenarios outlined by our data.

The models developed create a practical way to foresee and diminish harm to both civilian and officer populations, by informing police agencies on appropriate resource deployment suggestions.

Ultimately the goal of this process is to find ways to reduce risk to both officers and the public regarding safety, by reducing usage of force to a point of last resort, and in turn increase police sentiment and inversely treatment of subjects in the post-Ferguson era of policing. It is expected that through implementations of potential recommendations, these goals are possible over time, and provides a tangible way for police departments, not just in London, but around the world, to enact positive change by being more prepared in resources and increased capacity to serve and protect. Overall, the optimistic effects of these combined implementations may see a reduction in police brutality, public opinion, and be tangibly evident through a steady reduction over time in lawsuit settlements for malfeasance and wrongful arrests.

REFERENCES

Baker, K., 2019. Should all frontline police officers use Tasers?. [online] BBC News. Available at: https://www.bbc.com/news/uk-49405999 [Accessed 5 March 2021].

McLay, C., 2018. Sentiment Analysis: The Missing Link in Police Performance Management Systems. [online] Policechiefmagazine.org. Available at: https://www.policechiefmagazine.org/sentiment-analysis/ [Accessed 4 March 2021].

Peeples, L., 2020. What the data say about police brutality and racial bias — and which reforms might work. [online] Nature.com. Available at: https://www.nature.com/articles/d41586-020-01846-z [Accessed 6] March 2021].

Phys.org. 2020. Police officers' views before and after Ferguson counter accuracy of 'Ferguson Effect'. [online] Available at: https://phys.org/news/2020-03-police-officers-views-ferguson-counter.html [Accessed 6 March 2021].

Quinn, B., 2019. UK police out-of-court settlements total £30m in four years. [online] the Guardian. Available at: [Accessed 6 March 2021].

Shaw, D., 2019. Rise of knife crime in England and Wales. [online] BBC News. Available at: https://www.bbc.com/news/uk-42749089 [Accessed 6 March 2021].

Dataset:

Metropolitan Police Dept. 2021, Use of Force Dataset, UK Government. https://data.london.gov.uk/dataset/use-of-force

REFERENCES (CONT.)

Code and Notebooks can be found at:

https://github.com/jdomingo117/ProjectsJoeldomingo/tree/main/Police%20Use%20of%20Force%20Project/C ode%20%26%20Notebooks

Notebooks included:

- Conduct and assault analysis
- Location analysis
- Location mapping
- Main duty analysis
- Taser analysis
- Feature engineering notebook
- Final model notebook
- Impact factors for use of force
- Model feature selection
- Reasons for force analysis
- Single crew analysis
- Subject age & gender analysis
- Subject disabilities analysis
- Subject ethnicity analysis
- Preliminary model training notebooks

Libraries used in code:

- NumPy
- Seaborn
- Matplotlib
- **Pandas**
- SkLearn
- XGBoost
- MLxtend
- Datetime

Algorithms used in code:

- Cross Val score
- Train test split
- GridsearchCV
- **Decision Tree Classifier**
- Logistic Regression
- **KNeighborsClassifier**
- Support Vector Classifier
- Naive Bayes Classifier
- **Bagging Classifier**
- AdaBoost Classifier
- Random Forest Classifier
- **Gradient Boosting Classifier**
- XG boost Classifier
- Stacking Classifier