Logistic Regression vs. Bayesian Logistic Regression in Breast Cancer identification

Morgan Huang, Yuxiang Feng, Issey Sone, Tongyu Wu, Enze Zhao

Mar 23 2025

Table of Contents

Background

EDA

Logistic Regression Overview

Bayesian Logistic Regression Overview

Results

Discussion

References

Motivation

- ▶ Breast Cancer is one of the most common types of cancer, approx. 1 in 8.¹
- ► Traditional diagnostic methods like mammography can miss 10-30% of cancers, there is a need for better identification techniques.²
- When detected early, the 5-year survival rate is very high (over 90%), but is significantly lowered for late detection.³
- Using two approaches to Logistic Regression, a frequentist and Bayesian approach, what kind of performance can we get with our models?

Dataset

- Wisconsin Breast Cancer Dataset: link.
- ► Taken from UCI ML repository
- ▶ 699 observations
- ▶ 444 Benign, 239 Malignant cases (after removing missing values)
- 9 features

Variables and Their Visual Representation

Variables

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape
- Marginal Adhesion
- ► Single Epithelial Cell Size
- ► Bare Nuclei
- Bland Chromatin
- Normal Nucleoli
- Mitoses

Note: All features are on a scale of 1–10.

Source: verywellhealth.com / Lynne Eldridge, MD (2023)

Histograms

Figure 1: Histograms' of the 9 predictor variables in our dataset

Box plots

Figure 2: Box plots' of the 9 predictor variables in our dataset

Heatmap

Figure 3: Heat map of the 9 predictor variables

Logistic Regression

- ▶ We will focus more on inference rather than prediction
- Models probability of $\pi(x)$, the probability of a patient having malignant tumor, as follows:

$$\operatorname{logit}(\pi(x)) = \operatorname{log}(\frac{\pi(x)}{1 - \pi(x)}) = \alpha + \beta X$$

- Solving for $\pi(x)$, we get $\pi(x) = \frac{\exp(\alpha + \beta X)}{1 + \exp(\alpha + \beta X)}$ Research Question: How does clump thickness affect breast
- Research Question: How does clump thickness affect breast cancer diagnosis? What predictors are sufficient in detecting malignant tumors?

Figure 4: Logit function

Statistical Tests

- We would like to test to see if one or many predictors are statistically relevant in our model
- For just one predictor, β_j , we use a Wald test, testing for $H_0: \beta_j = 0$ against $H_a: \beta_j \neq 0$, with test statistic:

$$z = \frac{\hat{\beta}_j}{SE(\hat{\beta}_j)} \sim N(0,1)$$

For multiple predictors β_i, \ldots, β_p , we use LRT, testing for $H_0: \beta_i = \cdots = \beta_j = 0$ against $H_a:$ at least one $\beta_j \neq 0$:

$$D = -2(L_0 - L_a) \sim \chi^2_{(df)}$$

where L_0 and L_a are log likelihoods under H_0 and H_a , and degrees of freedom is difference between # of df under H_a and # of df under H_0

Clump Thickness

- We test if the level of Clump thickness is statistically significant in our model, where $\hat{\beta}_1 = 1.11$. We thus get: z = 3.896, with p-value less than 0.001
- ▶ Constructing a 95% confidence interval for β_1 , we get:

We are 95% confident that the odds of having a malignant tumor will multiply by a factor between $\exp(1.088) = 2.97$ and $\exp(1.132) = 3.1$ when we increase the level of Clump thickness, controlling for all other predictors

Sufficient Predictors

- Given our short biological description of the predictors, we test if the following predictors are sufficient for our analysis
- Predictors to keep in reduced model: Clump Thickness, Marginal Adhesion, SECS, Bare Nuclei, and Mitosis
- Using LRT we compare reduced model with full model:

```
Likelihood ratio test

Model 1: Class ~ (Clump_thickness + Uniformity_of_cell_shape + Uniformity_of_cell_size + Marginal_adhesion + Single_epithelial_cell_size + Bare_nuclei + Bland_chromatin + Normal_nucleoli + Mitoses)^2

Model 2: Class ~ (Clump_thickness + Single_epithelial_cell_size + Marginal_adhesion + Bare_nuclei + Mitoses)^2

#Df LogLik Df Chisq Pr(>Chisq)

1 46 -22.060

2 16 -50.653 -30 57.185  0.00199 **
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 5: R output

- ▶ Test statistic D = 57.185, with p < 0.01
- Conclude that those predictors are not sufficient enough to create a diagnosis

Model Selection

- ► Goal: Obtain a model simple enough to interpret, and complex enough that it fits well with the data
- We can use many LRT tests to compare different models, but to also consider the number of parameters, we use Akaike Information Criteria(AIC), defined as:

$$AIC = -2(\log L(\hat{\theta}|X) - k)$$

where k is the number of parameters in the model

Describes the KL-distance between distribution of fitted values and expected values, accounting for k

Stepwise AIC

- We use backwards elimination for our stepwise AIC algorithm
- Start with all possible predictors and interaction terms(up to power of 2), and eliminate parameters such that the AIC is minimized
- Terminate when AIC cannot be minimized any further
- ► Final model with AIC = 108.99:
 - Removed: Uniformity of Cell Size, Single Epithelial Cell Size

Clump_thickness:Marginal_adhesion Uniformity_of_cell_shape:Marginal_adhesion Uniformity_of_cell_shape:Bare_nuclei Marginal_adhesion:Bare_nuclei Bare_nuclei:Mitoses Bland_chromatin:Normal_nucleoli Bland_chromatin:Mitoses

Figure 6: Interaction Terms Included

► An improvement from AIC = 136.12, when including all possible main effects and interactions

Bayesian Logistic Regression

- Probabilistic approach to logistic regression using prior beliefs of the features and updates with the observations to form a posterior distribution
- ► $P(y|X,\beta) = \prod_{i=1}^{n} \sigma(\beta^{T}x_{i})^{y_{i}}(1 \sigma(\beta^{T}x_{i}))^{1-y_{i}}$, where σ is the sigmoid function
- ▶ The posterior follows:

$$P(\beta|X,y) \propto P(y|X,\beta) \cdot P(\beta)$$

- Gives a full posterior distribution of predictors
- Incorporate Prior belief based on existing studies
- Regularization built in with the priors and is more robust to imbalanced classes and smaller datasets

MCMC (Monte Carlo Markov Chain)

- Class of algorithms to draw samples from a probability distribution, usually ones too complex
- Construct Markov Chain which converge to a target distribution
- ▶ given a sample $x_t \sim p(x)$, uses that sample to produce a new sample $x_{t+1} \sim p(x)$

MCMC visualized

Figure 7: MCMC visualized with different number of samples

Metropolis Hastings

- 1. $p(x) = \frac{f(x)}{NC}$, NC = Normalizing Constant
- 2. Start with drawing distributions centered around the previous sample eg.

$$g(x_{t+1}|x_t) = N(x_t, \sigma^2)$$

- 3. Based on this new candidate, you either accept or reject with probability $A(x_t \to x_{t+1})$
- 4. $A(a \rightarrow b) = \min(1, \frac{f(b)}{f(a)} \frac{g(a|b)}{g(b|a)})$
- 5. sample $u \sim U[0,1]$
- 6. if $A(a \rightarrow b) > u$ Then we accept our new state and we draw from a distribution centered around the new point x_{t+1}
- 7. if $A(a \rightarrow b) \leq u$ Then we don't accept our new state and we draw from the same distribution centered around x_t

Metropolis Hastings visualized

- ► Suppose g is symmetric, ie. $\frac{g(a|b)}{g(b|a)} = 1$
- ▶ $A(a \rightarrow b) = \min(1, \frac{p(b)}{p(a)})$, remember f(x) differs from p(x) only by a normalizing constant

Figure 8: First case of Metropolis Hastings

$$A(a
ightarrow b) = 1$$
 since $\mathsf{p}(\mathsf{b}) > \mathsf{p}(\mathsf{a})$ in this scenario

Metropolis Hastings visualized pt2

Figure 9: Second case of Metropolis Hastings

$$A(a \rightarrow b) = \frac{p(b)}{p(a)}$$
 since $p(b) < p(a)$ in this scenario

Whether we go to b here depends on what we sample from the Uniform distribution

Bayesian Setup

We assigned a Cauchy Prior for the predictors for these reasons:

- ► Andrew Gelman (et al., 2008) suggested a Cauchy(0, 2.5) as a weakly informative prior for logistic regression
- Cauchy distribution is heavy-tailed, so it doesn't heavily penalize larger coefficients.
- "Most effects are small, but I allow for occasional large coefficients."

Figure 10: Normal vs. Cauchy distribution

Distribution of predictors

Figure 11: Distribution of predictors of Bayesian model

Hypothesis Testing via. Posterior Probabilities

Instead of p-values, we compute probabilities:

$$P(\beta_j > 0 | \mathsf{data}) > 0$$

- ightharpoonup Ex. if clump thickness is significant $P(\beta_1 > 0 | \text{data})$
- ▶ $P(\beta_1 > 0 | \text{data}) = 1$
- Overwhelming evidence that the coefficient for Clump Thickness is positive, ie. the coefficient is significant
- ightharpoonup Ex. if UniformityCellShape is significant $P(eta_3>0|{\sf data})$
- $P(\beta_3 > 0 | \text{data}) = 0.77$
- ► There is a 77% chance that an increase in UniformityCellShape increases the odds of a Malignant tumor
- Not a significant coefficient

Results

On an 80-20 split with threshold of 0.5, we get the following results from the two models

- Logistic Regression:
 - ▶ 97.62% training accuracy, 96.3% testing accuracy
 - Sensitivity: 93.62%, Specificity: 97.73%
- Bayesian Regression:
 - ▶ 97.08% training accuracy, 98.52% testing accuracy
 - Sensitivity: 100%, Specificity: 97.73%

In medical settings, it is better to have higher specificity, since false classifying malignant tumor is costly

Can change threshold to increase specificity

Post Posterior Check

Figure 12: Post Posterior Check 50 draws

Significant predictors

Bayesian LR

- ClumpThickness
- MarginalAdhesion
- BareNuclei
- BlandChromatin
- NormalNucleoi
- Mitoses

Ordinary LR

- ClumpThickness
- UniformityOfCellShape
- MarginalAdhesion
- BareNuclei
- ► BlandChromatin
- NormalNucleoi

Bayesian vs. Frequentist model

Bayesian LR

- Slower due to MCMC sampling
- Use posterior distribution to understand coefficients and their uncertainty
- More robust (less prone to overfitting)

Regular LR

- Faster, especially with large datasets
- More interpretable and works better with classical inference (p-values, wald tests)
- More prone to overfitting, especially since we added interaction terms

Future directions

- Trying different prior distributions (Jeffreys' Prior, or tighter priors)
- Using K-fold cross validation to optimize the decision threshold for classification
- Dimensionality reduction(PCA), or adding a regularization termi to prevent multicollinearity and also prevent overfitting in the regular LR case
- Analyze how the models' perform across subgroups (age, race, etc.) (if data allows)
- Survival analysis to model progression risk over time instead of classification (if data allows)

References

- Canada, Public Health Agency of. "Government of Canada." Canada.Ca, / Gouvernement du Canada, 30 Dec. 2024, www.canada.ca/en/public-health/services/chronic-diseases/cancer/breast-cancer.html.
- "Limitations of Mammograms: How Accurate Are Mammograms?" How Accurate Are Mammograms? American Cancer Society, www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/mammograms/limitations-of-mammograms.html. Accessed 17 Mar. 2025.
- "Survival Rates for Breast Cancer." American Cancer Society, www.cancer.org/cancer/types/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html. Accessed 17 Mar. 2025.
- Eldridge, Lynne. Cancer Cells vs. Normal Cells: How Are They Different? 21 Apr. 2023. verywellHealth, Dotdash Meredith, https://www.verywellhealth.com/thmb/dMlwdlGJt8aJ25ScrDbYciu3J3U=/750x0/illo_normal-cells-cancer-cells-596cdd256f53ba00111a65bb.png. Accessed 23 Mar. 2025.
- Nahhas, Ramzi W. Introduction to Regression Methods for Public Health Using R. CHAPMAN & HALL CRC, 2025.
- Chdrappi. Metropolis algorithm convergence example. 1 Apr. 2013. Using R; FOSS Statistical Software, https://commons.wikimedia.org/wiki/File:Metropolis_algorithm_convergence_example.png. Accessed 23 Mar. 2025.
- Gelman, Andrew, et al. "A weakly informative default prior distribution for logistic and other regression models." The Annals of Applied Statistics, vol. 2, no. 4, 1 Dec. 2008, https://doi.org/10.1214/08-aoas191.