Dealing with the badness of goodness-of-fit

Rishika Chopara Dr Ben Stevenson Professor Rachel Fewster

Department of Statistics, University of Auckland

30 November 2023

```
Call:
glm(formula = ofp ~ ., family = poisson, data = dt)
Deviance Residuals:
   Min
             10 Median
                                      Max
-8.4055 -1.9962 -0.6737 0.7049 16.3620
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
               1.028874 0.023785 43.258 <2e-16 ***
(Intercept)
               0.164797 0.005997 27.478 <2e-16 ***
hosp
healthpoor
                0.248307 0.017845 13.915 <2e-16 ***
healthexcellent -0.361993
                          0.030304 -11.945 <2e-16 ***
numchron
               0.146639
                          0.004580 32.020 <2e-16 ***
gendermale
              -0.112320 0.012945 -8.677 <2e-16 ***
                          0.001843 14.182 <2e-16 ***
school
               0.026143
              0.201687 0.016860 11.963 <2e-16 ***
privinsves
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26943 on 4405 degrees of freedom
Residual deviance: 23168 on 4398 degrees of freedom
AIC: 35959
Number of Fisher Scoring iterations: 5
```

```
Call:
glm(formula = ofp ~ ., family = poisson, data = dt)
Deviance Residuals:
   Min
             10 Median
                                      Max
-8.4055 -1.9962 -0.6737 0.7049 16.3620
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                1.028874 0.023785 43.258 <2e-16 ***
(Intercept)
                0.164797 0.005997 27.478 <2e-16 ***
hosp
healthpoor
                0.248307 0.017845 13.915 <2e-16 ***
healthexcellent -0.361993
                          0.030304 -11.945 <2e-16 ***
numchron
               0.146639
                          0.004580 32.020 <2e-16 ***
gendermale
               -0.112320 0.012945 -8.677 <2e-16 ***
                          0.001843 14.182 <2e-16 ***
school
               0.026143
               0.201687 0.016860 11.963 <2e-16 ***
privinsves
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26943 on 4405 degrees of freedom
Residual deviance (23168) on 4398 degrees of freedom
ATC: 35959
Number of Fisher Scoring iterations: 5
```

```
Call:
glm(formula = ofp ~ ., family = poisson, data = dt)
Deviance Residuals:
   Min
             10 Median
                                      Max
-8.4055 -1.9962 -0.6737 0.7049 16.3620
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                1.028874 0.023785 43.258 <2e-16 ***
(Intercept)
                0.164797 0.005997 27.478 <2e-16 ***
hosp
healthpoor
                0.248307 0.017845 13.915 <2e-16 ***
healthexcellent -0.361993
                          0.030304 -11.945 <2e-16 ***
numchron
               0.146639
                          0.004580 32.020 <2e-16 ***
gendermale
               -0.112320 0.012945 -8.677 <2e-16 ***
                          0.001843 14.182 <2e-16 ***
school
               0.026143
               0.201687 0.016860 11.963 <2e-16 ***
privinsves
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26943 on 4405 degrees of freedom
Residual deviance (23168) of 4398 degrees of freedom
ATC: 35959
Number of Fisher Scoring iterations: 5
```

Under H_0 that a model fits the data well, model deviance $\sim \chi^2$

```
Call:
glm(formula = ofp ~ .. family = poisson, data = dt)
Deviance Residuals:
   Min
             10 Median
                                      Max
-8.4055 -1.9962 -0.6737 0.7049 16.3620
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
               1.028874 0.023785 43.258
(Intercept)
                                            <2e-16 ***
                0.164797 0.005997 27.478 <2e-16 ***
hosp
healthpoor
                0.248307 0.017845 13.915 <2e-16 ***
healthexcellent -0.361993
                          0.030304 -11.945 <2e-16 ***
numchron
               0.146639
                          0.004580 32.020 <2e-16 ***
               -0.112320 0.012945 -8.677 <2e-16 ***
gendermale
                          0.001843 14.182 <2e-16 ***
school
               0.026143
               0.201687 0.016860 11.963 <2e-16 ***
privinsves
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 26943 on 4405 degrees of freedom
Residual deviance (23168) of 4398 degrees of freedom
AIC: 35959
Number of Fisher Scoring iterations: 5
```

1 - pchisq(23168, 4398)

• Traditionally, deviance = $2(\log(\hat{L}_{sat}) - \log(\hat{L}_{simple}))$

- ullet Traditionally, deviance $= 2(\log(\hat{L}_{sat}) \log(\hat{L}_{simple}))$
 - ullet L_{simple} evaluated at MLEs

- ullet Traditionally, deviance $= 2(\log(\hat{L}_{sat}) \log(\hat{L}_{simple}))$
 - L_{simple} evaluated at MLEs
 - ullet Empirical deviance, D_E

- Traditionally, deviance = $2(\log(\hat{L}_{sat}) \log(\hat{L}_{simple}))$
 - L_{simple} evaluated at MLEs
 - Empirical deviance, D_E
- ullet Alternatively, could evaluate L_{simple} at true parameter values

- ullet Traditionally, deviance $=2(\log(\hat{L}_{sat})-\log(\hat{L}_{simple}))$
 - L_{simple} evaluated at MLEs
 - Empirical deviance, D_E
- ullet Alternatively, could evaluate L_{simple} at true parameter values
 - Generative deviance, D_G

Under H_0 that a model fits the data well,

Under H_0 that a model fits the data well, $D_E \sim \chi^2_{df},$ df = difference in free parameters for saturated and simple model

Under H_0 that a model fits the data well, $D_E \sim \chi^2_{df},$

df = difference in free parameters
for saturated and simple model

Under H_0 that a model fits the data well, $D_E \sim \chi_{df}^2,$

df = difference in free parameters
for saturated and simple model

Doesn't hold if data doesn't contain enough information...

$E[Y_1]$	0.29
$E[Y_2]$	1.3
$E[Y_3]$	3.2
$E[Y_4]$	0.3
$E[Y_5]$	2.2
$E[Y_6]$	29.1
$E[Y_7]$	5.2
E[Y ₈]	14.2
$E[Y_{90}]$	3.5

For capture-recapture/spatial capture-recapture, sparse sets of counts are common

For capture-recapture/spatial capture-recapture, sparse sets of counts are common

$E[Y_1]$	0.001
$E[Y_2]$	0.04
$E[Y_3]$	0.09
$E[Y_4]$	0.025
$E[Y_5]$	1.1
$E[Y_6]$	0.0003
$E[Y_7]$	0.29
$E[Y_8]$	0.047
$E[Y_{90}]$	0.99

Can approximate the distribution of D_E , without assuming χ^2

Fit model to dataset

- Fit model to dataset
- 2 Calculate model deviance

- Fit model to dataset
- 2 Calculate model deviance
- Using MLEs, simulate m datasets

- Fit model to dataset
- Calculate model deviance
- Using MLEs, simulate m datasets
- Fit the same model to each dataset, calculate deviance

- Fit model to dataset
- 2 Calculate model deviance
- Using MLEs, simulate m datasets
- Fit the same model to each dataset, calculate deviance

- Fit model to dataset
- Calculate model deviance
- Using MLEs, simulate m datasets
- Fit the same model to each dataset, calculate deviance

Can approximate the distribution of D_E , without assuming χ^2

- Fit model to dataset
- Calculate model deviance
- Using MLEs, simulate m datasets
- Fit the same model to each dataset, calculate deviance

Can require a lot of time/resources

• Could adjusting the mean of the Chi-squared approximation work?

Chi-squared approximation when data is sparse

- Could adjusting the mean of the Chi-squared approximation work?
 - Need to find $E[D_E]$

• Looked at $D_G - D_E$

- Looked at $D_G D_E$
 - Recall: $D_G = 2(\log(\hat{L}_{sat}) \log(L_{simple}))$, L_{simple} evaluated at true parameter values

- Looked at $D_G D_E$
 - Recall: $D_G = 2(\log(\hat{L}_{sat}) \log(L_{simple}))$, L_{simple} evaluated at true parameter values
- $D_G D_E \sim \chi_p^2$

- Looked at $D_G D_E$
 - Recall: $D_G = 2(\log(\hat{L}_{sat}) \log(L_{simple}))$, L_{simple} evaluated at true parameter values
- $D_G D_E \sim \chi_p^2$
 - ullet p = number of parameters in the model we are considering

- Looked at $D_G D_E$
 - Recall: $D_G = 2(\log(\hat{L}_{sat}) \log(L_{simple}))$, L_{simple} evaluated at true parameter values
- $D_G D_E \sim \chi_p^2$
 - ullet p= number of parameters in the model we are considering
- Therefore, $E[D_G D_E] = p$

- Looked at $D_G D_E$
 - Recall: $D_G = 2(\log(\hat{L}_{sat}) \log(L_{simple}))$, L_{simple} evaluated at true parameter values
- $D_G D_E \sim \chi_p^2$
 - p = number of parameters in the model we are considering
- Therefore, $E[D_G D_E] = p$
- By linearity of expectations, $E[D_E] = E[D_G] p$

• We have: $E[D_E] = E[D_G] - p$

If we fit a closed-population CR model using a Poisson likelihood:

$$E[D_G] = \sum_{i=1}^k \sum_{n=1}^\infty \frac{\mu_i^n e^{-\mu_i}}{n!} \cdot 2\left[n\left(\log\left(\frac{n}{\mu_i}\right) - 1\right) + \mu_i\right]$$

where:

- k is the number of observable capture histories;
- μ_i is the expected count for the *i*th observable capture history, evaluated at the generating parameter values.

Variance wrong

- Variance wrong
- ullet χ^2 distribution is a special case of the Gamma distribution

- Variance wrong
- ullet χ^2 distribution is a special case of the Gamma distribution
 - Can separately specify mean and variance for Gamma distribution

- Variance wrong
- ullet χ^2 distribution is a special case of the Gamma distribution
 - Can separately specify mean and variance for Gamma distribution
 - Would a Gamma approximation work?

• If
$$Cov(D_E, D_G - D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $\bullet \ \mathsf{Var}(D_G D_E) = \mathit{Var}(D_G) + \mathit{Var}(D_E) 2\mathsf{Cov}(D_E, D_G)$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $Var(D_G D_E) = Var(D_G) + Var(D_E) 2Cov(D_E, D_G)$

$$\implies 2p = Var(D_G) + Var(D_E) - 2Var(D_E)$$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $Var(D_G D_E) = Var(D_G) + Var(D_E) 2Cov(D_E, D_G)$

$$\implies 2p = Var(D_G) + Var(D_E) - 2Var(D_E)$$

$$\implies 2p = Var(D_G) - Var(D_E)$$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $Var(D_G D_E) = Var(D_G) + Var(D_E) 2Cov(D_E, D_G)$

$$\implies 2p = \mathsf{Var}(D_G) + \mathsf{Var}(D_E) - 2\mathsf{Var}(D_E)$$

$$\implies 2p = Var(D_G) - Var(D_E)$$

$$\implies Var(D_E) = Var(D_G) - 2p$$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $Var(D_G D_E) = Var(D_G) + Var(D_E) 2Cov(D_E, D_G)$

$$\implies 2p = \mathsf{Var}(D_G) + \mathsf{Var}(D_E) - 2\mathsf{Var}(D_E)$$

$$\implies 2p = \mathsf{Var}(D_G) - \mathsf{Var}(D_E)$$

$$\implies \mathsf{Var}(D_F) = \mathsf{Var}(D_G) - 2p$$

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $\bullet \ \mathsf{Var}(D_G D_E) = \mathit{Var}(D_G) + \mathit{Var}(D_E) 2\mathsf{Cov}(D_E, D_G)$

$$\implies 2p = \mathsf{Var}(D_G) + \mathsf{Var}(D_E) - 2\mathsf{Var}(D_E)$$

$$\implies 2p = \mathsf{Var}(D_G) - \mathsf{Var}(D_E)$$

$$\implies \mathsf{Var}(D_E) = \mathsf{Var}(D_G) - 2p$$

• Using Wilks' Theorem, we can show this holds for a Normal response

- If $Cov(D_E, D_G D_E) = 0 \implies Var(D_E) = Cov(D_E, D_G)$
- $D_G D_E \sim \chi_p^2$, so $Var(D_G D_E) = 2p$
- $Var(D_G D_E) = Var(D_G) + Var(D_E) 2Cov(D_E, D_G)$

$$\implies 2p = \mathsf{Var}(D_G) + \mathsf{Var}(D_E) - 2\mathsf{Var}(D_E)$$

$$\implies 2p = \mathsf{Var}(D_G) - \mathsf{Var}(D_E)$$

$$\implies \mathsf{Var}(D_E) = \mathsf{Var}(D_G) - 2p$$

- Using Wilks' Theorem, we can show this holds for a Normal response
- For other models (e.g. CR), have found by simulation this holds approximately

ullet Used simulation to test use of p-values to assess goodness-of-fit under H_0

- ullet Used simulation to test use of p-values to assess goodness-of-fit under H_0
- Non-sparse data scenario from capture-recapture:

- ullet Used simulation to test use of p-values to assess goodness-of-fit under H_0
- Non-sparse data scenario from capture-recapture:

- \bullet Used simulation to test use of p-values to assess goodness-of-fit under ${\it H}_0$
- Sparse data scenario from capture-recapture:

- ullet Used simulation to test use of p-values to assess goodness-of-fit under H_0
- Sparse data scenario from capture-recapture:

Summary

• Accurate approximation to the distribution of the deviance

Summary

- Accurate approximation to the distribution of the deviance
 - Whether or not we have sparse data

Summary

- Accurate approximation to the distribution of the deviance
 - Whether or not we have sparse data
 - Doesn't just apply to CR or Poisson models, is general

Future research

• Formalise theory underlying the Gamma approximation

Future research

- Formalise theory underlying the Gamma approximation
 - Formalise when $Cov(D_E, D_G D_E) = 0$ for a model

Future research

- Formalise theory underlying the Gamma approximation
 - Formalise when $Cov(D_E, D_G D_E) = 0$ for a model
 - Use statistical theory to justify: "why Gamma?"

Calculting p-values using the Gamma approximation

- To calculate p-values using the Gamma approximation:
 - Fit model to data, find deviance
 - Treat MLEs as true parameter values, find $E[D_G]$, $Var(D_G)$
 - Find $E[D_E]$, $Var(D_E)$
 - Fit Gamma curve, find p-value associated with model deviance