Announcements

- O Homework 1: Search
 - 0 due tomorrow
- Project 1: Search
 - 0 due Friday 5pm
- Ocontest 1: Search optional but fun
 - O due Sunday
- O Homework 2: CSPs
 - O due Monday

CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

CS 188: Artificial Intelligence

Search

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

O Examples:

0.0

O Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

• A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- O Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- O Some ancestor *n* of A is on the fringe, too (maybe A!)
- O Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- O Imagine B is on the fringe
- O Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Empty Water Shallow/Deep - Guess Algorithm

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- O How many states?
- What are the actions?
- O How many successors from the start state?
- O What should the costs be?

Admissible heuristics?

8 Puzzle I

- O Heuristic: Number of tiles misplace
- Why is it admissible?
- o h(start) =8
- This is a *relaxed-problem* heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

8 Puzzle II

O What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

Start State

Goal State

- Total Manhattan distance
- Why is it admissible?
- oh(start) = 3 + 1 + 2 + ... = 18

	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - O What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - O As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Graph Search

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work.

Graph Search

• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- O Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - O Before expanding a node, check to make sure its state has never been expanded before
 - O If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Ocan graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set:S B C A

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - O Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A \text{ to } C)$$

- O Consequences of consistency:
 - The f value along a path never decreases $h(A) \le cost(A \text{ to } C) + h(C)$
 - A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 See slides, also video lecture from past years for details.
- With h=0, the same proofs shows that UCS is optimal.

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure

fringe \leftarrow Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow remove-front(fringe)

if Goal-test(problem, state[node]) then return node

for child-node in expand(state[node], problem) do

fringe \leftarrow insert(child-node, fringe)

end

end
```

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```

CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Constraint Satisfaction Problems

N variables domain D constraints

states
partial assignment

goal test complete; satisfies constraints

successor function
assign an unassigned variable

What is Search For?

O Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - O Paths have various costs, depths
 - O Heuristics give problem-specific guidance
- Identification: assignments to variables
 - O The goal itself is important, not the path
 - O All paths at the same depth (for some formulations)
 - O CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - O State is a "black box": arbitrary data structure
 - O Goal test can be any function over states
 - O Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - O A special subset of search problems
 - O State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - O Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- O Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

CSP Examples

Example: Map Coloring

- o Variables: WA, NT, Q, NSW, V, SA, T
- o Domains: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors

Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), \ldots\}$

O Solutions and assignments satisfying 11 contents of the content of the content

Example: N-Queens

• Formulation 1:

O Variables: X_{ij}

O Domains: {0, 1}

O Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

Example: N-Queens

• Formulation 2:

O Variables: Q_k

o Domains: $\{1, 2, 3, ... N\}$

O Constraints:

Implicit: $\forall i,j$ non-threatening (Q_i,Q_j)

Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$

• • •

Example: Cryptarithmetic

• Variables:

$$F T U W R O X_1 X_2 X_3$$

O Domains:

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Oconstraints:

 $\mathsf{alldiff}(F, T, U, W, R, O)$

$$O + O = R + 10 \cdot X_1$$

• • •

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - **1**,2,...,9
- Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

Solving CSPs

Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - O Initial state: the empty assignment, {}
 - O Successor function: assign a value to an unassigned variable
 - O Goal test: the current assignment is complete and satisfies all constraints
- We'll start with the straightforward, naïve approach, then improve it

Search Methods

• What would BFS do?

$$\{WA=g\} \{WA=r\} \dots \{NT=g\} \dots$$

Search Methods

• What would BFS do?

• What would DFS do?

O let's see!

• What problems does naïve search have?

Video of Demo Coloring -- DFS

Backtracking Search

Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering -> better branching factor!
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - O I.e. consider only values which do not conflict previous assignments
 - O Might have to do some computation to check the constraints
 - O "Incremental goal test"
- Open Depth-first search with these two improvements is called *backtracking search* (not the best name)
- Can solve n-queens for $n \approx 25$

Backtracking Example

Video of Demo Coloring – Backtracking

Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking (\{\}, asp\}
function Recursive-Backtracking (assignment, csp) returns soln/failure
   <u>if assignment</u> is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
            if result \neq failure then return result
            remove \{var = value\} from assignment
  return failure
```

- Backtracking = DFS + variable-ordering + fail-onviolation
- What are the choice points?