Dynamic Measurements of the Mechanical Properties of Rocks

Geophysics 457 Safian Omar Qureshi Kenneth Olusola Adebayo ID 10086638

Purpose:

The purpose of this experiment is to make direct measurements of the velocity of compressional and shear waves. This is done for various samples, and from them we can calculate elastic constants. This experiment also examines the effects of varying confining pressures on seismic waveforms and the elastic constants themselves.

Materials:

- Olympus 5077PR Ultrasonic Transmitter and Receiver
- Tektronix DPO3014 Digital oscilloscope
- Hydraulic press
- High accuracy 24 bit A/D data acquisition converter
- LoadVue acquisition
- Mass scale
- Calipers

Relevant Formulae:

$$V_{P} = \left(\frac{k + \frac{4}{3}\mu}{\rho}\right)^{\frac{1}{2}} = \left(\frac{E(1-\nu)}{\rho(1-2\nu)(1+\nu)}\right)^{\frac{1}{2}} \quad \text{and} \quad V_{S} = \left(\frac{\mu}{\rho}\right)^{\frac{1}{2}} = \left(\frac{E}{2\rho(1+\nu)}\right)^{\frac{1}{2}}$$

Procedure:

*Refer to lab manual

Analysis:

- 1. and 2. are on excel spreadsheet.
- 3. Graph on excel. Some of the trends we can see on the graphs is that generally as axial stress increases, the P wave and S wave velocity stay relatively linear. Obviously the S wave plot is lower than the P wave plot, because P wave velocity is always higher than S wave.
- 4. On excel.
- 5. For the belly river sample specifically, as we increases the load stress, the P wave velocity began to increase as well. The S wave velocity stayed relatively the same. For the Bereta sample similar pattern was observed for the S wave form, and P wave exhibited that a little bit as well.

As for direct relationships between the elastic constants, we know that μ depends entirely on S wave velocity. If S wave velocity goes up, so does that.

k is larger if P wave velocity is large, and smaller when μ is large.

E depends on S wave velocity and v, if those two are large, it is also large.

- 6. N/A since we did not use perpendicular fiber sample.
- 7. The only sample that was the same from last lab was the belly river. From looking at last labs values, they do not match at all with this labs. All the elastic constants are quite off, along with the P and S wave velocities. I feel like this lab values are more on the correct side because they match more closely with the textbook/literature values, as we can see in the table down below.

Lab 04

P wave	S wave	P wave	S wave	μ	k	λ	v	Е
velocity	Velocity	stress	stress					
(m/s)	(m/s)	(Pa)	(Pa)					
3885.47	2897.91	589954.	483572.	2260678	1049776	-	-	3948027
486	6667	2812	9387	3455	2099	457342	0.12	6469
						6870	68	
3896.35	2897.91	760874.	663971.	2260678	1072575	-	-	3983410
8543	6667	7357	9873	3455	6828	434543	0.11	5019
						2142	898	
3907.30	2897.91	941038.	930454.	2260678	1095567	-	-	4018208
3371	6667	5835	5455	3455	5557	411551	0.11	3387
						3413	128	
3907.30	2897.91	1124801	1124730	2260678	1095567	-	-	4018208
3371	6667	.004	.444	3455	5557	411551	0.11	3387
						3413	128	
3918.30	2897.91	1305364	1380628	2260678	1118753	-	-	4052435
9859	6667	.693	.964	3455	9997	388364	0.10	1467
						8973	371	

Lab 03

	E	V	Р	k	μ	λ	Vp	Vs
	(N/m2)		(kg/m^3)	(MPa)	(MPa)	(MPa)	(m/s)	(m/s)
Bellyriver	6.324	0.3994	2628	2873	2260	1366	1497	927
Sandstone	E9							

Literature/Textbook Values

Coefficients for the equation $\rho_b = aV_P^2 + bV_P + c$								
Castagna Lithology	et al. 1993 <i>a</i>	b	c	V _P range (km/s)				
Shale	-0.0261	0.373	1.458	1.5-5.0				
Sandstone	-0.0115	0.261	1.515	1.5-6.0				
Limestone	-0.0296	0.461	0.963	3.5-6.4				
Dolomite	-0.0235	0.390	1.242	4.5-7.1				
Anhydrite	-0.0203	0.321	1.732	4.6-7.4				