Exercise 10.1. Find the optimal polynomial p of the second degree, i.e.

$$p(x) = a_0 + a_1 x + a_2 x^2,$$

which minimizes the distance to the following points in the least squares sense:

Sketch the points and the optimal p in a Cartesian coordinate system.

Exercise 10.2. For $n \in \mathbb{N}$, let the following arbitrary pairs of points of \mathbb{R}^2 be given:

Here, the x_i should not all be the same. Let the arithmetic mean values of the x_i and y_i be denoted by \bar{x} and \bar{y} , i.e.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Show that

$$\beta = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \quad \text{and} \quad \alpha = \bar{y} - \beta \bar{x}$$

are the optimal parameters of the regression line $y = \alpha + \beta x$ in the least squares sense.

Exercise 10.3. Consider the model function

$$f(x) = a_0 + a_1 x + a_2 e^x + a_3 e^{-x}.$$

This is to be optimally fitted to the data points

in least squares sense.

(a) Determine a matrix A and a vector y, s.t. this is equivalent to minimizing

$$\mathcal{E}(z) = ||Az - y||_2^2$$

over \mathbb{R}^2 .

- (b) Calculate the optimal model parameters by solving the Gaussian normal equations with Octave.
- (c) Graph the data points and the best model function (e.g. with Octave).

Remark: For part (c) you can use the Octave built-in function plot (see e.g. Ferreira - MATLAB Codes...)

Exercise 10.4. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $b \in \mathbb{R}^n$. Consider the following mappings

$$f: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \langle x, Ax \rangle,$$

 $g: \mathbb{R}^n \to \mathbb{R}, \ x \mapsto \langle x, b \rangle.$

Show that it then holds for the derivative of f or q:

$$\nabla f = 2Ax$$
 and $\nabla g = b$.