

UNIPAC - CENTRO UNIVERSITÁRIO PRESIDENTE ANTÔNIO CARLOS CAMPUS BARBACENA

Bacharelado em Ciência da Computação

Banco de Dados

Material de Apoio

Parte V - Álgebra Relacional

Prof. José Osvano da Silva, PMP, PSM I joseosvano@unipac.br

Sumário

- Modelo Relacional Manipulação
- Álgebra Relacional
 - Seleção (σ)
 - Projeção (π)
- Operações Teoria dos Conjuntos
 - Intersecção (∩)
 - União (∪)
 - Diferença (-)
 - Produto Cartesiano (x)

Sumário

- Junção
- Divisão
- Agregação
- Exercícios

Modelo Relacional - Manipulação

- Duas categorias de linguagens
 - Formais : álgebra relacional e cálculo relacional
 - Alto Nível (Comerciais) baseadas nas linguagens formais -SQL
- Linguagens formais Características
 - orientadas a conjuntos
 - linguagens de base: linguagens relacionais devem ter no mínimo um poder de expressão equivalente ao de uma linguagem formal
- Fechamento
 - resultados de consultas são relações

- Álgebra desenvolvida para descrever operações sobre uma base de dados relacional
- O conjunto de objetos são as Relações
- Operadores para consulta e alteração de relações
- Linguagem procedural
 - uma expressão na álgebra define uma execução seqüencial de operadores
 - a execução de cada operador produz uma relação

 Os operadores da álgebra relacional recebem uma ou mais relações de entrada e geram uma nova relação de saída

- Porque aprender:
 - Compreendendo álgebra relacional é mais fácil apreender SQL
 - Não há SGBD que implementa álgebra diretamente como DML (Data Manipulation Language), mas SQL incorpora cada vez mais conceitos de álgebra
 - Algoritmos de otimização de consulta são definidos sobre álgebra (possível uso internamente no SGBD)

- Operadores sobre conjuntos (uma tabela é um conjunto de linhas):
 - União
 - Interseção
 - Diferença
 - Produto Cartesiano
- Operadores específicos da álgebra relacional:
 - Seleção
 - Projeção
 - Junção
 - Divisão
 - Renomeação

Operações

Esquema Relacional: Exemplo

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Projeto

codProj	Descricao	codDep
Α	AATOM	001
В	DW espaço-temporal	002

Departamento

codDep	descricao
001	Pesquisa
002	Desenvolvimento

ProjetoEmpregado

codProj	codEmp	dataln	dataFi
Α	200	01/01/2017	atual
Α	201	01/01/2017	atual
Α	202	01/02/2016	18/02/2017
В	203	15/02/2016	15/02/2017

Seleção (σ)

- Retorna tuplas que satisfazem uma condição
- Age como um filtro que matém somente as tuplas que satisfazem a condição
 - Ex.: selecione os funcionários com salário maior que 500
- O resultado:
 - é uma relação que contém as tuplas que satisfazem a condição
 - Possui os mesmos atributos da relação de entrada

Seleção (σ)

- - Sigma(**o**): é o símbolo que representa a seleção
 - <condição de seleção> é uma expressão booleana que envolve literais e valores de atributos da relação
 - CLAUSULAS:

<nome do atributo> <operador de comparação> <valor constante> OU <nome do atributo> <operador de comparação> <nome do atributo>

- Nome do atributo: é um atributo de R;
- Operador de comparação: =, <, <=, >, >=, <>
- Valor constante: é um valor do domínio do atributo
- Podem ser ligadas pelos operadores AND, OR e NOT
- R> é o nome de uma relação ou uma expressão da álgebra relacional de onde as tuplas serão buscadas

Seleção (σ) - Exemplo

 Buscar os dados dos empregados que estão com salário menor que 2.000,00

Empregado

	Empreguati				
codEmp	Nome	Salario	idade	codDep	
200	Pedro	3.000,00	45	001	
201	Paulo	2.200,00	43	001	
202	Maria	2.500,00	38	001	
203	Ana	1.800,00	25	002	

Resultado

codEmp	Nome	Salario	idade	codDep
203	Ana Banco do Day	1.800,00	25	002

Seleção (σ) - Exemplo

 Buscar os dados dos empregados com salario maior que 2000 e com menos 45 anos

o salario>2000 AND idade < 45 (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

Projeção (π)

- Retorna um ou mais atributos de interesse
- O resultado é uma relação que contém apenas as colunas selecionadas.

* Elimina duplicatas

Projeção (π)

Sintaxe:

π < lista de atributos > (< R >)

onde:

- lista de atributos> é uma lista que contém nomes de colunas de uma ou mais relações.
- <R> é o nome da relação ou uma expressão da álgebra relacional de onde a lista de atributos será buscada

Projeção (π) – Exemplo

• Buscar o <u>nome</u> e a <u>idade</u> de todos os empregados

Empregado π nome, idade (Empregado)

Lilipi	Empregado				
codEmp	Nome	Salario	idade	codDep	
200	Pedro	3.000,00	45	001	
201	Paulo	2.200,00	43	001	
202	Maria	2.500,00	38	001	
203	Ana	1.800,00	25	002	

Resultado

Nome	idade
Pedro	45
Paulo	43
Maria	38
Ana	25

Projeção e Seleção

- Operadores diferentes podem ser aninhados
 - Exemplo: Buscar o nome e o salario dos empregados com mais de 40 anos

$$\pi_{\text{nome, salario}}(\sigma_{\text{idade} > 40} \text{ (Empregado)})$$

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

Nome	Salario
Pedro	3.000,00
Paulo	2.200,00

Exercícios de Fixação 05: Seleção e Projeção

Empregado

codEmp	Nome	Salario	idade	codDep	
200	Pedro	3.000,00	45	001	
201	Paulo	2.200,00	43	001	
202	Maria	2.500,00	38	001	
203	Ana	1.800,00	25	002	

Departamento

codDep	descricao
001	Pesquisa
002	Desenvolvimento

Projeto

codProj	Descricao	codDep
Α	AATOM	001
В	DW espaço-temporal	002

ProjetoEmpregado

codProj	codEmp	dataln	dataFi
Α	200	01/01/2007	atual
Α	201	01/01/2007	atual
Α	202	01/02/2006	18/02/2010
В	203	15/02/2008	15/02/2010

- 1) Busque todos os empregados com menos de 30 anos
- 2) Busque o código dos empregados que trabalham no projeto A
- 3) Selecione o nome e o salario dos empregados que trabalham no departamento 001
- 4) Busque o código do projeto e o código do empregado dos projetos em andamento em 2009

Exercícios de Fixação 06

Avalie o enunciado a seguir:

Um pequeno hospital deseja informatizar seu sistema de atendimentos e solicitou que você fizesse o levantamento de dados para uma primeira versão. Para o armazenamento de pacientes será necessário: RG, nome, idade, cidade e doença. Será necessário armazenar também os funcionários com: RG, nome, idade, cidade e salário. O Hospital tem alguns ambulatórios onde um funcionário é responsável e para eles é preciso armazenar: número, andar e capacidade. Cada médico atende em um Ambulatório e possui os seguintes dados: CRM, nome, idade, cidade e especialidade. As consultas são realizadas pelo Médico para um paciente e possui as informações de: data e hora.

Construa um Diagrama ER (Entidade Relacionamento) para esse enunciado.

Pode ser feito em dupla.

Entrega: 07/03/2022 23:59 no Portal.

Operações - Teoria dos Conjuntos

- A álgebra relacional utiliza 4 operadores da teoria dos conjuntos:
 - União, Intersecção, Diferença e Produto Cartesiano
- Todos os operadores utilizam ao menos DUAS relações
- As relações devem ser compatíveis:
 - possuir o mesmo número de atributos
 - o domínio da i-ésima coluna de uma relação deve ser idêntico ao domínio da i-ésima coluna da outra relação
- Quando os nomes dos atributos forem diferentes, adota-se a convenção de usar os nomes dos atributos da primeira relação

Intersecção (∩)

■ Retorna uma relação com as tuplas comuns a R e S

■ Notação: R ∩ S

R

S

	y	Ų
1	1	1
1	2	1
3	1	1

 $R \cap S$

х	y	z
1	1	1
3	1	1

Banco de Dados

207

Intersecção (∩) - Exemplo

- buscar o nome e RG dos funcionários de Porto Alegre que estão internados como pacientes
 - Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA)
 - Paciente (RG, nome, idade, cidade, doença)
 - Funcionário (RG, nome, idade, cidade, salário)

 π nome, rg (Funcionario) π nome, rg (σ cidade = 'Porto Alegre' (Paciente))

União (∪)

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema.
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é a união dos conjuntos de linhas das relações dadas como argumento.
- Retorna a união das tuplas de duas relações R e S
- Eliminação automática de duplicatas
- Notação: $R \cup S$

]	R		S				
х	y	Z		х	y	z	
1	1	1		1	1	1	
1	2	2		1	2	1	
2	2	3		1	2	3	
3	1	1					

União (∪) - Exemplo

- buscar o nome e o RG dos médicos e dos pacientes cadastrados no hospital
 - Médico (<u>CRM</u>, rg, nome, idade, cidade, especialidade, #númeroA)
 - Paciente (<u>RG</u>, nome, idade, cidade, doença)

 π nome, rg (Medico) \cup π nome, rg (Paciente)

Diferença (-)

- Requer que as duas relações fornecidas como argumento tenham o mesmo esquema.
- Resulta em uma nova relação, com o mesmo esquema, cujo conjunto de linhas é o conjunto de linhas da primeira relação menos as linhas existentes na segunda.

Diferença (-)

- Retorna as tuplas presentes em R e ausentes em S
- Notação:

- R-9

Diferença (-) - Exemplo

- buscar o número dos ambulatórios onde nenhum médico dá atendimento
 - Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA)
 - Ambulatorio (<u>numeroA</u>, nome, andar)

 π numeroA (Ambulatorio) $\overline{}$ π numeroA (Medico)

Produto Cartesiano (x)

- Retorna todas as combinações de tuplas de duas relações R e S
- O resultado é uma relação cujas tuplas são a combinação das tuplas das relações R e S, tomando-se uma tupla de R e concatenando-a com uma tupla de S
- Notação:
 - RxS

Produto Cartesiano (x)

Total de atributos do

produto cartesiano = num. atributos de R + num. atributos de S

R

Número de tuplas do produto cartesiano = num. tuplas de R x num tuplas de S

Banco de Dados

215

Produto Cartesiano (x)

Exemplo:

R S

			_		
\boldsymbol{x}	y	1-2	_	7	y
1	1	1		1	I
2	2	2	•	2	2
3	3	3			. —

\boldsymbol{x}	$R_{1}y$	Z	w	$R_{2}y$
1	I	I	I	I
1	1	I	2	2
2	2	2	I	1
2	2	2	2	2
3	3	ሜ	1	1
3	3	3	2	2

Produto Cartesiano - Exemplo

- buscar o nome dos médicos que têm consulta marcada e as datas das suas consultas
 - Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA)
 - Consulta (#<u>CRM, #RG, data, hora)</u>

 π medico.nome, consulta.data (σ medico.CRM=consulta.CRM (Medico x Consulta))

Produto Cartesiano - Exemplo

 buscar, para as consultas marcadas para o período da manhã (7hs-12hs), o nome do médico, o nome do paciente e a data da consulta

Produto Cartesiano - Exemplo

 buscar, para as consultas marcadas para o período da manhã (7hs-12hs), o nome do médico, o nome do paciente e a data da consulta

```
π medico.nome, paciente.nome, consulta.data
(σ consulta.hora>=7 AND consulta.hora<=12) AND</p>
medico.CRM=consulta.CRM AND consulta.RG=paciente.RG
(Medico x Consulta x Paciente))
```

Exercício de Fixação 07

Empregado

Limpiegado					
codEmp	Nome	Salario	idade	codDep	
200	Pedro	3.000,00	45	001	
201	Paulo	2.200,00	43	001	
202	Maria	2.500,00	38	001	
203	Ana	1.800,00	25	002	

Departamento

codDep	descricao
001	Pesquisa
002	Desenvolvimento

Projeto

codProj	Descricao	codDep
Α	AATOM	001
В	DW espaço-temporal	002

ProjetoEmpregado

codProj	codEmp	dataln	dataFi
Α	200	01/01/2007	atual
Α	201	01/01/2007	atual
Α	202	01/02/2006	18/02/2010
В	203	15/02/2008	15/02/2010

- 1) Selecione o nome dos empregados que trabalham no departamento de Pesquisa
- 2) Selecione o nome e o salario dos empregados que trabalham no projeto AATOM
- 3) Selecione o nome dos empregados e o nome dos projetos em andamento em 2009

Exercício 01

Dado o esquema relacional

- Ambulatório (<u>númeroA</u>, andar, capacidade, #RG)
- Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA)
- Paciente (RG, nome, idade, cidade, doença)
- Consulta (#<u>CRM, #RG, data, hora)</u>
- Funcionário (RG, nome, idade, cidade, salário)
- 1) buscar os dados dos pacientes que estão com sarampo
- 2) buscar os dados dos médicos ortopedistas com mais de 40 anos
- 3) buscar os dados das consultas, exceto aquelas marcadas para os médicos com CRM 46 e 79
- 4) buscar os dados dos ambulatórios do quarto andar que ou tenham capacidade igual a 50 ou tenham número superior a 10

Banco de Dados 221

Exercício 01

- 5) buscar o nome e a especialidade de todos os médicos
- 6) buscar o número dos ambulatórios do terceiro andar
- 7) buscar o CRM dos médicos e as datas das consultas para os pacientes com RG 122 e 725
- 8) buscar os números dos ambulatórios, exceto aqueles do segundo e quarto andares, que suportam mais de 50 pacientes
- Valor: 1,0 ponto.
- Pode ser feito em dupla.
- Entrega: 13/03/2022 23:59 no Portal.
- Atrasos serão penalizados com 0,5 pontos por dia.

Banco de Dados 222

Junção

- Retorna a combinação de tuplas de duas relações R e S que satisfazem um predicado
 - É a Seleção combinada com Produto Cartesiano
- Como esta é uma operação muito comum, foi criada para simplicar a sequência de operações necessárias para a realização de uma consulta.
- Sintaxe:
 - <Relação S> ⋈ <critério> <Relação R>
 - onde:
 - <relação> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela
 - <critério> é uma expressão booleana envolvendo literais e valores de atributos das duas tabelas.

Junção - Exemplo

 buscar o número dos ambulatórios e o nome dos médicos que atendem neles

Ambulatório (<u>númeroA</u>, andar, capacidade)
Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #*númeroA*)
Paciente (<u>RG</u>, nome, idade, cidade, doença)
Consulta (#<u>CRM</u>, #RG, data, hora)
Funcionário (<u>RG</u>, nome, idade, cidade, salário)

Junção Natural

- Junção na qual é uma igualdade predefinida entre todos os atributos de mesmo nome presentes em duas relações R e S (atributos de junção). Estes atributos só aparecem uma vez no resultado
- Notação:
 - <relação>R × <relação>S

Onde:

<relação> é o nome de uma tabela ou uma expressão de álgebra relacional que resulta em uma tabela

Junção Natural - Exemplo

Exemplo: buscar o número e nome do ambulatório onde o médico atende

π medico.numeroA, ambulatorio.nome Medico ⋈ Ambulatorio

Ambulatório (<u>númeroA</u>, andar, capacidade,nome)

Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA)

Paciente (RG, nome, idade, cidade, doença)

Consulta (#*CRM*, #*RG*, data, hora)

Funcionário (RG, nome, idade, cidade, salário)

Junções Externas (outer joins)

- Junção na qual as tuplas de uma ou ambas as relações que não são combinadas são mesmo assim preservadas no resultado
- Tipos:
 - •junção externa à esquerda (left [outer] join)
 - junção externa à direita (right [outer] join)
 - •junção externa completa (full [outer] join)

Junção Externa à esquerda

tuplas da relação à esquerda são preservadas

Notação:R □ S

R

х	y	z	a	b
1	1	1	1	1
2	1	2	1	2
3	3	3		
5	5	5		

Junção Externa à esquerda

 Exemplo: buscar os dados de todos os médicos, e para aqueles que têm consultas marcadas, mostrar os dados de suas consultas

Médico

Consulta

(medico.CRM=consulta.CRM)

Ambulatório (<u>númeroA</u>, andar, capacidade)
Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #*númeroA*)
Paciente (<u>RG</u>, nome, idade, cidade, doença)
Consulta (#<u>CRM</u>, #RG, data, hora)
Funcionário (<u>RG</u>, nome, idade, cidade, salário)

Junção externa à direita

tuplas da relação à direita são preservadas

Notação

 $R \bowtie \square S$

R

S

y	z	\boldsymbol{x}	а	b
1	1	1	1	1
1	2	2	1	2
3	3	4	4	4
5	5			

 $R \bowtie S$

х	y	z	a	b
1	1	1	1	1
2	1	2	1	2
4			4	4

Divisão

- Útil para responder questões como: "encontre os pacientes que consultaram com TODOS os médicos"
- Sintaxe: R : S
- Os nomes das colunas de S devem estar contidos em R
- A relação resultante tem como nomes das colunas aquelas que aparecem em R mas não aparecem em S
- Para que uma linha apareça no resultado, é necessário que a sua concatenação com cada linha de R apareça também em S.

Divisão

R	
Α	В
a1	b1
a2	b1
a3	b1
a4	b1
a1	b2
a3	b2
a2	b3
a3	b3
a4	b3
a1	b4
a2	b4
a3	b4

S
Α
a1
a2
аЗ

 $T \leftarrow R \div S$

R-consultas S-Medicos

Divisão

buscar o RG dos pacientes que têm consultas marcadas com todos os médicos

$$\pi$$
 RG, crm (Consulta): π crm (Médico)

Ambulatório (<u>númeroA</u>, andar, capacidade) Médico (<u>CRM</u>, nome, idade, cidade, especialidade, #númeroA) Paciente (<u>RG</u>, nome, idade, cidade, doença)

Consulta (#*CRM*, #*RG*, data, hora)

Funcionário (RG, nome, idade, cidade, salário)

Armazenamento do resultado

■ tabelaResultado ← operação da álgebra

Agregação

- $\blacksquare \pi$ nome, sum(salario) (Funcionario)
- $\blacksquare \pi$ count(nome), sum(salario) (funcionario)
- $\blacksquare \pi$ nome, max(salario) (funcionario)
- $\blacksquare \pi$ nome, min(salario) (funcionario)
- $\blacksquare \pi$ count(nome), avg(salario) (funcionario)

Dúvidas

Banco de Dados 237