#### **EE403: Digital Communications**

Lecture 10: Advanced Data Communications

Daewon Seo April 25, 2022

#### M-ary Communications

- The main focus of this chapter is M-ary modulation schemes, i.e., each symbol could take M different signals, and their signal space (=signal constellation) representations
- Notation
  - $-T_s$ : symbol time or duration
  - If binary modulation (M=2),  $T_s$  = bit duration
- Recall that by (matched) filtering we can compute any operation such that

$$\int_{T} s(t)\phi(t)dt = \langle s(t), \phi(t) \rangle$$

#### **Orthonormal Sets**

- If a set of signals  $\{\phi_i(t)\}_{i=1}^K$  satisfies
  - $-\phi_i$  has unit energy over  $T_s$ , i.e.,

$$\|\phi_i\|^2 = \langle \phi_i, \phi_i \rangle = \int_{T_s} \phi_i^2(t) dt = 1$$

 $-\phi_i, \phi_j$  are orthogonal each other if  $i \neq j$ , i.e.,

$$\langle \phi_i, \phi_j \rangle = \int_{T_s} \phi_i(t) \phi_j(t) dt = 0$$

then it is said to be **orthonormal** 

• It means, if  $x(t) = \sum_{i=1}^{K} a_i \phi_i(t)$  was sent, a receiver can always detect  $\{a_i\}_{i=1}^{K}$ 

- Consider two signals,  $\phi_1(t) = \sqrt{\frac{2}{T_s}}\cos(2\pi f_c t)$  and  $\phi_2(t) = \sqrt{\frac{2}{T_s}}\sin(2\pi f_c t)$
- $\phi_1, \phi_2$  have unit energy over  $T_s$ , i.e.,

$$\|\phi_1\|^2 = \langle \phi_1, \phi_1 \rangle = \frac{2}{T_s} \int_{T_s} \cos^2(2\pi f_c t) dt = \frac{2}{T_s} \int_{T_s} \frac{1 + \cos(4\pi f_c t)}{2} dt = 1$$

• In addition, they are (almost) orthogonal each other, i.e.,

$$\langle \phi_1, \phi_2 \rangle = \frac{2}{T_s} \int_{T_s} \cos(2\pi f_c t) \sin(2\pi f_c t) dt = \frac{2}{T_s} \frac{1}{2} \int_{T_s} \sin(4\pi f_c t) - \sin(0) dt \approx 0$$

(If  $T_s$  is an integer multiple of the period of  $\sin(4\pi f_c t)$ , it is exactly zero)

• Quadrature multiplexing:

$$x_c(t) = A[d_1(t)\cos(2\pi f_c t) + d_2(t)\sin(2\pi f_c t)] = R(t)\cos(2\pi f_c t + \theta_i(t))$$
  
where  $R(t) = \sqrt{d_1^2(t) + d_2^2(t)}$  and  $\theta_i = \tan^{-1}(d_2(t)/d_1(t))$ 

- Let  $d_1, d_2 \in \{-1, +1\}$  (called **QPSK**, quadriphase-shift keying)
- If QPSK,  $\theta_i$  takes  $\pm 45$  degrees and  $\pm 135$  degrees
- For any M-PSK, if  $x_c(t)$  was sent, we can exactly find  $d_1, d_2$





Figure 10.1 Modulator and typical waveforms for QPSK.

- Error analysis of QPSK
- A symbol is correctly detected only if  $d_1, d_2$  are both correct, i.e.,

$$Pr[a \text{ symbol is correct}] = P_c = (1 - P_{E_1})(1 - P_{E_2})$$

- Suppose  $y(t) = Ad_1(t)\cos(2\pi f_c t) Ad_2(t)\sin(2\pi f_c t) + n(t)$
- Repeat what we did in Chap. 9 and take **inner product** directly (via

filtering)



• The upper part output

$$V_{1} = \int_{T_{s}} y(t) \cos(2\pi f_{c}t) dt = \int_{T_{s}} A d_{1}(t) \cos^{2}(2\pi f_{c}t) dt + \int_{T_{s}} n(t) \cos(2\pi f_{c}t) dt$$
$$= \pm \frac{AT_{s}}{2} + N_{1}$$

• The bottom part output

$$V_2 = \int_{T_s} y(t) \sin(2\pi f_c t) dt = \pm \frac{AT_s}{2} + N_2$$

•  $N_1, N_2$  are Gaussian with mean zero

$$Var(N_1) = Var(N_2) = \mathbb{E}[N_1^2] = \mathbb{E}\left[\int \int n(t)n(\alpha)\cos(2\pi f_c t)\cos(2\pi f_c \tau)dtd\tau\right]$$
$$= \int \int \mathbb{E}[n(t)n(\alpha)]\cos(2\pi f_c t)\cos(2\pi f_c \tau)dtd\tau$$
$$= \int \int \frac{N_0}{2}\delta(t-\tau)\cos(2\pi f_c t)\cos(2\pi f_c \tau)dtd\tau$$
$$= \frac{N_0}{2}\int\cos^2(2\pi f_c t)dt = \frac{N_0 T_s}{4}$$

•  $P_{E_i}$  is the error probability of  $\mathcal{N}(-AT_s/2, N_0T_s/4)$  vs  $\mathcal{N}(AT_s/2, N_0T_s/4)$ : decision threshold is 0

$$P_{E_i} = Q\left(\sqrt{\frac{A^2 T_s}{N_0}}\right) = Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

• Symbol error probability

$$P_E = 1 - P_c = 1 - (1 - P_{E_1})^2 = 2P_{E_1} - P_{E_1}^2$$

$$\approx 2P_{E_1} = Q\left(\sqrt{\frac{A^2T_s}{N_0}}\right) = 2Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

• Let a set of signals  $\{\phi_i(t)\}_{i=1}^K$  be orthonormal, i.e,

$$\langle \phi_i, \phi_j \rangle = \int_{T_s} \phi_i(t) \phi_j(t) dt = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

• We form M-ary signals  $s_1(t), s_2(t), \ldots, s_M(t)$ 

$$s_i(t) = \sum_{j=1}^K a_{ij}\phi_j(t)$$

- For instance, QPSK: M = 4, K = 2
- Noise corrupted signal is received,  $y(t) = s_i(t) + n(t)$

• The receiver consists of a bank of K correlator (=inner productor)



*Note:*  $y(t) = s_i(t) + n(t)$  where n(t) is white Gaussian noise.

• As  $\phi_j$  are orthonormal each other,

$$Z_j = a_{ij} + N_j$$

where  $N_j$  is a Gaussian RV with mean zero and variance  $N_0/2$ 

- In addition,  $N_i, N_j, j \neq i$  are uncorrelated, i.e.,  $\mathbb{E}[N_i N_j] = 0$
- As they are Gaussian, uncorrelated  $\Leftrightarrow$  independence
- The signal space representation preserves all the information required to detect symbols





# Signal Space (QPSK)



Noise variance in each dimension =  $N_0/2$ 

## Signal Space (QAM)

• Quadrature amplitude modulation (QAM): convey bits on the **amplitude** of carriers

$$s_i(t) = \sqrt{\frac{2}{T_s}} (A_i \cos(2\pi f_c t) + B_i \sin(2\pi f_c t))$$



#### M-PSK vs M-QAM

- QPSK is indeed the same as 4-QAM
- As M-PSK only changes phase of signals, signal space gets denser and denser quickly with  $M \Rightarrow$  High-order M-PSK is not widely used
- However, M-QAM changes phase and amplitude both, signal space gets denser less quickly with  $M \Rightarrow$  High-order M-QAM is often used
- 4-QAM: 2 bits
- 16-QAM: 4 bits
- 64-QAM: 6 bits

# Gray Code

- As tail of Gaussian pdf exponentially decreases, the most probable symbol error is mistaking an adjacent signal point
- Example 1: Two symbols  $s_1 = (0000)$  and  $s_2 = (1111)$  are adjacent, mistaking an adjacent symbol means 4 bit error
- Example 2: Two symbols  $s_1 = (0000)$  and  $s_2 = (0100)$  are adjacent, mistaking an adjacent symbol means 1 bit error only
- We wish to minimize the "bit difference" of adjacent symbols so that mistaking an adjacent symbol only gives one bit error
- Frank Gray finds how to encode bits in this way  $\Rightarrow$  **Gray code**

# Gray Code

Table 10.2 Gray Code for M = 8

| Digit | Binary code | Gray code |
|-------|-------------|-----------|
| 0     | 000         | 000       |
| 1     | 001         | 001       |
| 2     | 010         | 011       |
| 3     | 011         | 010       |
| 4     | 100         | 110       |
| 5     | 101         | 111       |
| 6     | 110         | 101       |
| 7     | 111         | 100       |

Note: The encoding algorithm is given in Problem 9.32.