

Faculty of Computer Science Data Science and Business Analytics (DSBA)

Algorithms and Data Structures

Seminar 10 - Module 3

Floyd-Warshall Algorithm "All-Pairs Optimal Cost Paths"

February 2022

J.C. Carrasquel

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

Let us label nodes as 1, 2,..., n

Sub-Problem of size k

For all possible pairs of nodes u,v in the graph, calculate $D^{(k-1)}[u][v]$

 $\mathbf{D}^{(k-1)}[\mathbf{u}][\mathbf{v}]$: cost of the optimal path from node \mathbf{u} to node \mathbf{v} , so that for every intermediate node \mathbf{x} in the path we have that $\mathbf{x} \in \{1, ..., k-1\}$

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

How we can find $D^{(k)}[u][v]$ using $D^{(k-1)}[u][v]$?

 $\mathbf{D}^{(k)}[\mathbf{u}][\mathbf{v}]$: cost of the optimal path from node u to node v, so that for every intermediate node x in the path we have that $x \in \{1, ..., k\}$

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

How we can find $D^{(k)}[u][v]$ using $D^{(k-1)}[u][v]$?

 $\mathbf{D}^{(k)}[\mathbf{u}][\mathbf{v}]$: cost of the optimal path from node u to node v, so that for every intermediate node x in the path we have that $\mathbf{x} \in \{1, ..., k\}$

Case #1: we DON'T need node k. $D^{(k)}[u][v] = D^{(k-1)}[u][v]$

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

How we can find $D^{(k)}[u][v]$ using $D^{(k-1)}[u][v]$?

 $\mathbf{D}^{(k)}[\mathbf{u}][\mathbf{v}]$: cost of the optimal path from node u to node v, so that for every intermediate node x in the path we have that $\mathbf{x} \in \{1, ..., k\}$

Case #2: we DO need node k. $D^{(k)}[u][v] = D^{(k-1)}[u][k] + D^{(k-1)}[k][v]$

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

How we can find $D^{(k)}[u][v]$ using $D^{(k-1)}[u][v]$?

 $\mathbf{D}^{(k)}[\mathbf{u}][\mathbf{v}]$: cost of the optimal path from node u to node v, so that for every intermediate node x in the path we have that $\mathbf{x} \in \{1, ..., k\}$

Putting Case#1 and Case#2 together!

$$D^{(k)}[u][v] = \min(D^{(k-1)}[u][v], D^{(k-1)}[u][k] + D^{(k-1)}[k][v])$$

Floyd-Warshall Algorithm "All-Pairs Minimum Cost Paths"

Floyd-Warshall's Algorithm follows a *dynamic programming* approach

```
Idea: For a graph G = (V,E), let n = |V|
```

Initialize n-by-n matrices $D^{(k)}$ for k = 0,...,n

- $D^{(k)}[u][u] = 0$ for all u, for all k
- $D^{(k)}[u][v] = \infty$ for all $u \neq v$, for all k
- $D^{(0)}[u][v] = edgeWeight(u,v)$ for all $(u,v) \in E$

```
For k=1,...,n: For each pair (u,v) in VxV:  D^{(k)}[u][v] = min(\ D^{(k-1)}[u][v]\ ,\ D^{(k-1)}[u][k]\ +\ D^{(k-1)}[k][v]\ )  return D^{(n)}
```