Proposition 45.3 implies the following important result.

Theorem 45.4. Let (P_2) be any standard linear program with objective function cx, where Ax = b and A is an $m \times n$ matrix of rank m. If (P_2) has some feasible solution and if it is bounded above, then some basic feasible solution \tilde{x} is an optimal solution of (P_2) .

Proof. By Proposition 45.3, for any feasible solution x there is some basic feasible solution \tilde{x} such that $cx \leq c\tilde{x}$. But there are only finitely many basic feasible solutions, so one of them has to yield the maximum of the objective function.

Geometrically, basic solutions are exactly the vertices of the polyhedron $\mathcal{P}(A, b)$, a notion that we now define.

Definition 45.8. Given an \mathcal{H} -polyhedron $\mathcal{P} \subseteq \mathbb{R}^n$, a vertex of \mathcal{P} is a point $v \in \mathcal{P}$ with property that there is some nonzero linear form $c \in (\mathbb{R}^n)^*$ and some $\mu \in \mathbb{R}$, such that v is the unique point of \mathcal{P} for which the map $x \mapsto cx$ has the maximum value μ ; that is, $cy < cv = \mu$ for all $y \in \mathcal{P} - \{v\}$. Geometrically, this means that the hyperplane of equation $cy = \mu$ touches \mathcal{P} exactly at v. More generally, a convex subset F of \mathcal{P} is a k-dimensional face of \mathcal{P} if F has dimension k and if there is some affine form $\varphi(x) = cx - \mu$ such that $cy = \mu$ for all $y \in F$, and $cy < \mu$ for all $y \in \mathcal{P} - F$. A 1-dimensional face is called an edge.

The concept of a vertex is illustrated in Figure 45.4, while the concept of an edge is illustrated in Figure 45.5.

Figure 45.4: The cube centered at the origin with diagonal through (-1, -1, -1) and (1, 1, 1) has eight vertices. The vertex (1, 1, 1) is associated with the linear form x + y + z = 3.

Since a k-dimensional face F of \mathcal{P} is equal to the intersection of the hyperplane $H(\varphi)$ of equation $cx = \mu$ with \mathcal{P} , it is indeed convex and the notion of dimension makes sense.