Week 3 Attendance Solutions

MATH 23A

(1) (Q) Given two planes \mathcal{P} and \mathcal{Q} , we want to discuss the notion of a *distance* between them. Note that by intuition this can only work when the planes are parallel as otherwise there would not be a consistent value for the distance. Assuming the planes are parallel, it must be that the normal vectors are parallel. Thus, we can take the normal vector and some point on \mathcal{P} denoted by \overrightarrow{n} and $\overrightarrow{p_0}$ respectively to form the line:

$$\overrightarrow{l}(t) = \overrightarrow{p_0} + t\overrightarrow{n}$$

For some value of $t \in \mathbb{R}$, say $t = t_0$, we will reach a point on \mathcal{Q} that is going to be denoted by $\overrightarrow{l}(t_0)$, the point of intersection between \mathcal{Q} and $\overrightarrow{l}(t)$. We now have enough information to write down the vector $\overrightarrow{r} = \overrightarrow{l}(t_0) - \overrightarrow{p_0}$ and define our distance as:

$$\operatorname{dist}(\mathcal{P}, \mathcal{Q}) = \|\overrightarrow{r}\|$$

As a computational exercise we take our planes to be:

$$\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 14\} \text{ and } \mathcal{Q} = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 7\}$$

Calculate dist(\mathcal{P}, \mathcal{Q}) (Hint: A good starting point on \mathcal{P} would be (14, 0, 0)).

(A) When drawn out our scenario looks like:

As recommended, we take the starting point and direction vector to be:

$$\overrightarrow{p_0} = \begin{pmatrix} 14\\0\\0 \end{pmatrix} \quad \text{and} \quad \overrightarrow{n} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

which provides:

$$\overrightarrow{l}(t) = \begin{pmatrix} 14\\0\\0\\0 \end{pmatrix} + t \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 14+t\\2t\\3t \end{pmatrix}$$

Now to find t_0 we must satisfy:

$$7 = (14 + t_0) + 2(2t_0) + 3(3t_0)$$
$$7 = 14 + 14t_0$$
$$t_0 = -\frac{1}{2}$$

Finally the distance is:

$$\operatorname{dist}(\mathcal{P},\mathcal{Q}) = \left\| \begin{pmatrix} \frac{27}{2} \\ -1 \\ -\frac{3}{2} \end{pmatrix} - \begin{pmatrix} 14 \\ 0 \\ 0 \end{pmatrix} \right\| = \left\| \begin{pmatrix} -\frac{1}{2} \\ -1 \\ -\frac{3}{2} \end{pmatrix} \right\| = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-1\right)^2 + \left(-\frac{3}{2}\right)^2} = \frac{\sqrt{14}}{2}$$

(2) (Q) Show that the following identity is true (one way is to compute both sides and show that they match up):

$$\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$$

(A) We compute each side separately:

* First:

$$\overrightarrow{v} \times \overrightarrow{w} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{pmatrix} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$$

and now:

$$\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_2 w_3 - v_3 w_2 & v_3 w_1 - v_1 w_3 & v_1 w_2 - v_2 w_1 \end{pmatrix}$$

$$= \begin{pmatrix} u_2 (v_1 w_2 - v_2 w_1) - u_3 (v_3 w_1 - v_1 w_3) \\ u_3 (v_2 w_3 - v_3 w_2) - u_1 (v_1 w_2 - v_2 w_1) \\ u_1 (v_3 w_1 - v_1 w_3) - u_2 (v_2 w_3 - v_3 w_2) \end{pmatrix}$$

*

$$(\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} - (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w} = \begin{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} - \begin{bmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

$$= (u_1 w_1 + u_2 w_2 + u_3 w_3) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} - (u_1 v_1 + u_2 v_2 + u_3 v_3) \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

$$= \begin{pmatrix} u_1 v_1 w_1 + u_2 v_1 w_2 + u_3 v_1 w_3 \\ u_1 v_2 w_1 + u_2 v_2 w_2 + u_3 v_2 w_3 \\ u_1 v_3 w_1 + u_2 v_3 w_2 + u_3 v_3 w_3 \end{pmatrix} - \begin{pmatrix} u_1 v_1 w_1 + u_2 v_2 w_1 + u_3 v_3 w_1 \\ u_1 v_1 w_2 + u_2 v_2 w_2 + u_3 v_3 w_2 \\ u_1 v_1 w_3 + u_2 v_2 w_3 + u_3 v_3 w_3 \end{pmatrix}$$

$$= \begin{pmatrix} u_2 (v_1 w_2 - v_2 w_1) - u_3 (v_3 w_1 - v_1 w_3) \\ u_3 (v_2 w_3 - v_3 w_2) - u_1 (v_1 w_2 - v_2 w_1) \\ u_1 (v_3 w_1 - v_1 w_3) - u_2 (v_2 w_3 - v_3 w_2) \end{pmatrix}$$